

# NASA Tech Briefs Index 1980

National  
Aeronautics and  
Space  
Administration



This document is available from the National Technical Information Service (NTIS),  
Springfield, Virginia 22161, at price code A06 (\$11.00 domestic; \$22.00 Foreign).  
Order NASA SP-5021(22).

# INTRODUCTION

Tech Briefs are short announcements of new technology derived from the research and development activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application.

This *Index to NASA Tech Briefs* contains abstracts and four indexes -- subject, personal author, originating Center, and Tech Brief number -- for 1980 Tech Briefs.

## Abstract Section

The abstract section is divided into nine categories: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. Within each category, abstracts are arranged sequentially by Tech Brief number.

A typical abstract entry has these elements:



The originating Center number in each entry includes an alphabetical prefix that identifies the NASA Center where the Tech Brief originated. A list of prefixes and the corresponding Center names are given on page iii.

## Indexes

Four indexes are provided. The first is a subject index, arranged alphabetically by subject heading. Each entry in the subject index includes a Tech Brief number and a category number to aid the user in locating pertinent entries in the abstract section.



The January 1976 edition of the *NASA Thesaurus* (NASA SP-7050) is used as the authority for the indexing vocabulary that appears in the subject index. The *NASA Thesaurus* should be consulted in examining the current indexing vocabulary, including associated cross-reference structure. Only the subject terms that have been selected to describe the documents abstracted in this issue appear in the subject index. Copies of the *NASA Thesaurus* may be obtained from the National Technical Information Service at \$23.50 for the two-volume set.

The second index is a personal author index. Entries in this index are arranged alphabetically by author's name. Tech Brief and category numbers are supplied to help the user find the appropriate entries in the abstract section.



The third index relates each originating Center number to the corresponding Tech Brief number and category. Entries in this index are arranged in alphanumeric order by Center number.



The fourth index relates each Tech Brief number to its originating Center number. Entries are arranged in ascending Tech Brief number order.



## Originating Center Prefixes

|         |                                                             |
|---------|-------------------------------------------------------------|
| ARC     | Ames Research Center                                        |
| GSFC    | Goddard Space Flight Center                                 |
| HQ      | NASA Headquarters                                           |
| KSC     | Kennedy Space Center                                        |
| LANGLEY | Langley Research Center                                     |
| LEWIS   | Lewis Research Center                                       |
| M-FS    | Marshall Space Flight Center                                |
| MSC     | Johnson Space Center (formerly Manned<br>Spacecraft Center) |
| NPO     | Jet Propulsion Laboratory/NASA Pasadena Office              |

## Availability of NASA Tech Briefs

Distribution of *NASA Tech Briefs*, a quarterly publication, is limited to managers and engineers in U.S. Industry and to other qualified technology transfer agents, such as; members of the media, teachers, librarians, and professionals supporting domestic commerce and industry.

Requests for individual Tech Briefs or for copies of the quarterly publication should be addressed to the Director, Technology Transfer Division Office, P.O. Box 8757, Baltimore/Washington International Airport, Maryland 21240.

# TABLE OF CONTENTS

## Abstract Section

|             |                                      |         |
|-------------|--------------------------------------|---------|
| Category 01 | Electronic Components and Circuits   | ...1    |
| 02          | Electronic Systems                   | .....6  |
| 03          | Physical Sciences                    | .....9  |
| 04          | Materials                            | .....19 |
| 05          | Life Sciences                        | .....23 |
| 06          | Mechanics                            | .....25 |
| 07          | Machinery                            | .....33 |
| 08          | Fabrication Technology               | .....39 |
| 09          | Mathematics and Information Sciences | .....47 |

## Indexes

|                                      |       |      |
|--------------------------------------|-------|------|
| Subject                              | ..... | I-1  |
| Personal Author                      | ..... | I-33 |
| Originating Center/Tech Brief Number | ..... | I-47 |
| Tech Brief/Originating Center Number | ..... | I-51 |



# Index to NASA Tech Briefs

June 1981

## Abstract Section

### 01 ELECTRONIC COMPONENTS AND CIRCUITS

**B80-10001**

#### MULTIBAND MICROSTRIP ANTENNA

I. YU (Lockheed Electronics Co., Inc.)

Aug. 1980

**MSC-18334**

Compact antenna transmits and receives elliptically and circularly polarized radiation. Antenna consists of layers of elliptical disks separated by dielectric substrates. Each disk operates at frequency determined by its size and dielectric constant of substrate. Individual frequency bands can be made to overlap, to yield single broadband antenna. Standard microstrip techniques are used to build it.

**B80-10002**

#### SIMPLE CIRCUIT MONITORS 'THIRD WIRE' IN AC LINES

T. T. KOJIMA (Rockwell International Corp.) and D. E. STUCK (Rockwell International Corp.)

Aug. 1980

**M-FS-19457**

Device detects interruption of ground connection in three-wire electrical equipment and shuts off ac power to prevent shock hazard. Silicon-controlled rectifiers detect floating ground, and deenergize optoelectric relays thereby breaking power connections. Circuit could be incorporated into hand tools, appliances, and other electrical equipment.

**B80-10003**

#### SIMPLE BUCK/BOOST VOLTAGE REGULATOR

J. PAULKOVICH and G. E. RODRIGUEZ

Aug. 1980

**GSFC-12360**

Circuit corrects low or high supply voltage, produces regulated output voltage. Circuit has fewer components because inductive/transformer combination and pulse-width modulator serve double duty. Regulator handles input voltage variation from as low as one half output voltage to as high as input transistor rating. Solar arrays, fuel cells, and thermionic generators might use this regulator.

**B80-10004**

#### INDEPENDENT SYNCHRONIZER FOR DIGITAL DECODERS

J. J. STIFFLER (Raytheon Co.)

Aug. 1980

**MSC-16723**

Logic circuit synchronizes branches of any convolution code-decoder at low signal to noise ratios. Parity checks determine correct node synchronization. Device maintains synchrony as low as -3 dB. Circuit consists of 15 stage shift register, three up down counters, and some logic gates.

**B80-10005**

#### MULTICHANNEL COINCIDENCE CIRCUIT

J. I. CLEMMONS, JR.

Aug. 1980

**LANGLEY-12531**

Digital circuit detects coincident pulses in two or more channels, and records time between primary pulses that are coincident with secondary pulses. Circuit has three major blocks: interval time subcircuit, measurement control subcircuit, and time sequence generator. Timer can be used in laser velocimeter or other instruments receiving data at irregular rates from two or more sources.

**B80-10006**

#### UNIVERSAL ODD-MODULUS FREQUENCY DIVIDER

A. ENGEL (Caltech)

Aug. 1980

**NPO-13426**

Simple circuit divides frequency by preselected odd number. Exclusive-OR gate, divide-by-N circuit, and flip-flop are only components. Input pulses must be symmetrical.

**B80-10007**

#### DETECTING SHORT CIRCUITS DURING ASSEMBLY

G. J. DEBOO

Aug. 1980

**ARC-11116**

Detector circuit identifies shorts between bus bars of electronic equipment being wired. Detector sounds alarm and indicates which planes are shorted. Power and ground bus bars are scanned continuously until short circuit occurs.

**B80-10008**

#### CONTINUOUS CONTROL OF PHASE-LOCKED-LOOP BANDWIDTH

G. W. MOTAL (Lockheed Electronics Co., Inc.) and J. C. VANELLI (Lockheed Electronics Co., Inc.)

Aug. 1980

**MSC-16684**

Tracking loop filter with continuous bandwidth control smooths transition from wide to narrow band. Circuit was designed for Space Shuttle where bandwidth varied between 320 Hz for acquisition and 20 Hz for tracking. Field-effect transistor (FET) acts as voltage controlled variable resistance, changing time constant of filter between phase detector and voltage-controlled oscillator in phase-locked loop.

**B80-10009**

#### PHOTOCAPACITIVE IMAGE CONVERTER

W. E. MILLER, A. SHER (College of William and Mary), and Y. H. TSUO (College of William and Mary)

Aug. 1980

**LANGLEY-12513**

Solid-state converters yield high sensitivity at high information-retrieval speed. Main advantages are high sensitivity of photocapacitive mechanism and inherent speed of information

## 01 ELECTRONIC COMPONENTS AND CIRCUITS

retrieval method. Fabrication of both devices is relatively simple and inexpensive.

### B80-10010

#### CROSSED-GRID CHARGE LOCATOR

D. C. HARRISON (American Science and Engineering, Inc.)

Aug. 1980

### M-FS-25170

#### Vol. 5, No. 1, p. 12

Circuit locates center of cloud of charge on wire grid to within 6.5 micrometers. Wires in vicinity of charge cloud develop voltages that are processed by priority encoders to develop coarse and fine position codes. Device is used with microchannel plate amplifier in X-ray photon detectors, electron microscopes, and closed-circuit television.

### B80-10011

#### SEMICONDUCTOR STEP-STRESS TESTING

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10012 - B80-10030

### M-FS-25329

#### Vol. 5, No. 1, p. 13

Report describes extensive program to test behavior of discrete diodes and transistors subjected to power and temperature overstress. Commercially available bipolar and field effect transistors and diodes were stressed between 0.5 and 1.75 times maximum rated power. Two groups were temperature stressed: 160 hour steps starting at 75 C to maximum of 300 C. Cumulative failures and changes in device parameters were monitored and reasons for failures presented.

### B80-10012

#### JANTX1N2970B ZENER DIODE

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011; B80-10013 - B80-10030

### M-FS-25260

#### Vol. 5, No. 1, p. 14

Report evaluates effects of power and temperature overstress on General Semiconductor and Siemens devices. Excessive failure rates limited testing. Failure modes are described.

### B80-10013

#### JANTX1N2989B ZENER DIODE

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011; B80-10012; B80-10014; B80-10030

### M-FS-25261

#### Vol. 5, No. 1, p. 14

Report evaluates effects of power and temperature overstress on General Semiconductor and Siemens devices. Mechanical disruption is prominent failure mode. Other failures are described.

### B80-10014

#### JANTX1N3016B ZENER DIODE

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10013; B80-10015; B80-10030

### M-FS-25262

#### Vol. 5, No. 1, p. 14

Report evaluates effects of power and temperature overstress on Motorola and Siemens devices. Reverse bias leakage maximum limit failure and Zener-breakdown maximum limit failure were common. Other failures are described.

### B80-10015

#### JANTX1N3031B ZENER DIODE

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B81-10014; B80-10016; B80-10030

### M-FS-25263

#### Vol. 5, No. 1, p. 14

Report describes effects of power and temperature overstress on Motorola and Siemens diodes. Failure was predominantly due to melted metal on die connections. Other failures are described.

### B80-10016

#### JANTX1N5622 DIODE

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10015; B80-10017; B80-10030

### M-FS-25280

#### Vol. 5, No. 1, p. 15

Report describes effects of power and temperature overstress on Semtech and Micro Semiconductor diodes. Semtech devices failed with excessive reverse bias leakage due to external paint. Micro Semiconductor diodes had reverse bias leakage failure due to damaged silicon.

### B80-10017

#### JANTX1N5623 SWITCHING DIODE

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10016; B80-10018; B80-10030

### M-FS-25281

#### Vol. 5, No. 1, p. 15

Report describes effects of power and temperature overstress on Semtech and Micro Semiconductor devices. Only two Semtech diodes failed catastrophically. Testing on Micro Semiconductor devices stopped because failure limit was reached. Micro diodes suffered lead separation.

### B80-10018

#### JANTX2N2060 DUAL TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10017; B80-10019; B80-10030

### M-FS-25251

#### Vol. 5, No. 1, p. 15

Report describes effects of power and temperature overstress on Motorola and Raytheon devices. Motorola devices were weak in power overstress. Raytheon devices succumbed to 160 hour temperature stress. Failure modes are detailed.

### B80-10019

#### JANTX2N2219A DUAL TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10018; B80-10020; B80-10030

### M-FS-25252

#### Vol. 5, No. 1, p. 15

Report describes effects of power and temperature overstress on Texas Instruments and National Semiconductor devices. Texas Instruments devices had only two failures in 2500 hours of testing. National Semiconductor devices reached 50% failure limit. No consistent failure mode was detected.

### B80-10020

#### JANTX2N2369A TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10019; B80-10021; B80-10030

### M-FS-25254

#### Vol. 5, No. 1, p. 16

Report describes effects of power and temperature overstress on National Semiconductor and Raytheon transistors. Good junction quality was maintained. Gain losses predominated. Other failures are reported.

### B80-10021

#### JANTX2N2432A TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10020; B80-10022; B80-10030

### M-FS-26255

#### Vol. 5, No. 1, p. 16

Report evaluates effects of power and temperature overstress on Crystalonics and Texas Instruments devices. Crystalonics devices survived better, as Texas Instruments lot exceeded 50 percent failure at 225 deg C. Failure modes are evaluated.

### B80-10022

#### JANTX2N2484 TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10021; B80-10023; B80-10030

### M-FS-25253

#### Vol. 5, No. 1, p. 16

Report evaluates effects of power and temperature overstress on Raytheon and Teledyne devices. Power overstress produced few failures. Both lots of devices exceeded 50 percent failure at 250 deg C. Failure modes are evaluated.

## 01 ELECTRONIC COMPONENTS AND CIRCUITS

### B80-10023

#### JANTX2N2605 TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10022; B80-10024; B80-10030

### M-FS-25150

Vol. 5, No. 1, p. 16

Report evaluates effects of power and temperature overstress on Raytheon and National Semiconductor devices. Breakdown voltage hysteresis, possibly due to contamination of semiconductor by gold from leads, was prominent.

### B80-10024

#### JANTX2N2905A TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10023; B80-10025; B80-10030

### M-FS-25256

Vol. 5, No. 1, p. 17

Report evaluates effects of power and temperature overstress on Motorola and Texas Instruments devices. A variety of failure modes are described.

### B80-10025

#### JANTX2N2920 DUAL TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10024; B80-10026; B80-10030

### M-FS-25258

Vol. 5, No. 1, p. 17

Report describes effects of power and temperature overstress on Fairchild and National Semiconductor devices. 160 hour temperature stress was only test to cause notable damage. Loss of gain is principal failure mode.

### B80-10026

#### JANTX2N2945A TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10025; B80-10027; B80-10030

### M-FS-25259

Vol. 5, No. 1, p. 17

Report describes effects of power and temperature overstress on Raytheon and Teledyne devices. Increasing T in 16 hour steps damaged both manufacturers' lots. Raytheon lot exceeded 50 percent failure rate 160 hours before completion of test due to current gain failure. Teledyne samples completed test but had more catastrophic failures.

### B80-10027

#### JANTX2N3637 TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10026; B80-10028; B80-10030

### M-FS-25264

Vol. 5, No. 1, p. 17

Report describes effects of power and temperature overstress on Transistor and Motorola devices. Transistor batches exceeded 50 percent failure in power overstress and 160 hour temperature stress. Design differences are evaluated.

### B80-10028

#### JANTX2N3811 DUAL TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10027; B80-10029; B80-10030

### M-FS-25265

Vol. 5, No. 1, p. 18

Report evaluates effects of power and temperature overstress on Motorola and National Semiconductor devices. National Semiconductor devices exceeded 50 percent failure after 160 hours at 225 deg C. Motorola suffered more rejects but failures occurred at 300 deg C. Difference in lead bonding technique may explain performance.

### B80-10029

#### JANTX2N4150 TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10028; B80-10030

### M-FS-25267

Vol. 5, No. 1, p. 18

Report evaluates effects of power and temperature overstress

on General Semiconductor and Transitron devices. General Semiconductor lot exceeded 50 percent failure 500 hours into 125 percent maximum rated power test. Catastrophic failure rates differed between manufacturers. Modes of failure are analyzed.

### B80-10030

#### JANTX2N4856 FIELD-EFFECT TRANSISTOR

Innovator not given (Special Products Division of DCA Reliability Laboratory) Aug. 1980 See also B80-10011 - B80-10029

### M-FS-25269

Vol. 5, No. 1, p. 18

Report evaluates effects of power and temperature overstress on Teledyne and Texas Instruments devices. Temperature stress caused most failures for both manufacturers' lots. Failure modes are analyzed.

### B80-10149

#### IMPROVED POWER FACTOR CONTROLLER

F. J. NOLA

Sep. 1980 See also B77-10154; B79-10004

### M-FS-25323

Vol. 5, No. 2, p. 133

Power dissipation in ac induction motor is reduced by circuit that lowers applied voltage when motor is idling or only lightly loaded. Timing voltages in phase with motor current are sensed a cross gate-controlled semiconductor switch with motor, rather than across high-power resistor, as in earlier version.

### B80-10150

#### ENERGY SAVING IN AC GENERATORS

F. J. NOLA

Sep. 1980 See also B80-10149

### M-FS-25302

Vol. 5, No. 2, p. 134

Circuit cuts no-load losses, without sacrificing full-load power. Phase-contro circuit includes gate-controlled semiconductor switch that cuts off applied voltage for most of ac cycle if generator idling. Switch 'on' time increases when generator is in operation.

### B80-10151

#### 'PELLED-FILM' SOLAR CELLS

R. J. STIRN (Caltech)

Sep. 1980

### NPO-14734

Vol. 5, No. 2, p. 135

Cells are lighter and less expensive than conventional cells. GaAs cells are deposited on GaAs substrate coated with thin etchable layer that allows completed cell film to be peeled away from substrate. At estimated conversion of 18 percent, array of cells delivers about 1 kW of electricity per kilogram of cell material. Blanket of cells delivers energy at power-to-weight ratio about 4 times that of conventional 2-mil (0.5-mm) silicon solar cells. GaAs solar cells have better radiation resistance than silicon cells.

### B80-10152

#### TEMPERATURE-COMPENSATING DC RESTORER

H. M. THOMAS (Martin Marietta Corp.)

Sep. 1980

### LANGLEY-12549

Vol. 5, No. 2, p. 136

Circuit provides stable references restoration in addition to temperature compensation. Possible TV monitor applications include traffic and security surveillance systems, where cameras are subject to environmental extremes, as in unheated warehouses or outdoors.

### B80-10153

#### ALIASING FILTER FOR MULTIRATE SYSTEMS

J. F. L. LEE (Honeywell, Inc.)

Sep. 1980

### MSC-18472

Vol. 5, No. 2, p. 137

Rolloff filter is inexpensive way of reducing aliasing in digital control systems. Rolloff filter operating at faster sample rate (or rates) of system with 2:1 rate ratio gives infinite attenuation at half-sample rate of fast-rate loop. Tested successfully on Space Shuttle primary flight-control systems, filter technique could be applied to other multirate sampled-data systems.

## 01 ELECTRONIC COMPONENTS AND CIRCUITS

**B80-10154**

**DUAL-FREQUENCY BIDIRECTIONAL ANTENNA**

W. H. KUMMER (Hughes Aircraft Co.)

Sep. 1980

**GSFC-12601**

**Vol. 5, No. 2, p. 138**

Simultaneous two-way communication at 20 and 30 GHz is possible with versatile paraboloid-dish antenna. Developed for two-way communications between Space Shuttle and ground station, antenna includes parabolic reflector, feed horn, waveguide network, and single-axis gimbal mounting. System resolution and accuracy are better than 1 percent.

**B80-10155**

**COMPUTER-CONTROLLED WARMUP CIRCUIT**

J. J. DAEGES (Caltech)

Sep. 1980

**NPO-14815**

**Vol. 5, No. 2, p. 139**

Filament of high-power radio transmitter is brought to operating temperature automatically. Pushbutton reduces operator's role to one-step command and is compatible with various forms of computer control. Filament shutdown is initiated by 'down' command from operator, failure of cooling systems, or power failure for more than few seconds.

**B80-10156**

**DIRECT-CURRENT CONVERTER FOR GAS-DISCHARGE LAMPS**

P. LUTUS (1LC Technology)

Sep. 1980

**MSC-18407**

**Vol. 5, No. 2, p. 140**

Metal/halide and similar gas-discharge lamps are powered from low-voltage dc source using small efficient converter. Converter is useful whenever 60-cycle ac power is not available or where space and weight allocations are limited. Possible applications are offshore platforms, mobile homes, and emergency lighting. Design innovations give supply high reliability and efficiency up to 75 percent.

**B80-10157**

**POSITION MONITOR FOR MINING MACHINES**

J. LUBICH (Benton Corp.)

Sep. 1980

**M-FS-25342**

**Vol. 5, No. 2, p. 141**

Circuit at output of incremental transducer records progress of longwall shearer. In contrast to mechanical shaft encoders, electronic circuit can be easily packaged to withstand shock and vibration of mining machine as it cuts across coal seam.

**B80-10158**

**11-LINE TO 512-LINE DECODER**

W. N. MILLER (Rockwell International Corp.)

Sep. 1980

**MSC-19751**

**Vol. 5, No. 2, p. 141**

CMOS decoder is assembled from standard 4-line to 16-line decoder/demultiplexer IC's. Matrix may also be used to generate 256 latched-on or latched-off logic signals instead of 512 discrete unlatched signals. By using conventional CMOS IC's, circuit consumes only about 30 milliwatts.

**B80-10159**

**INPUT/OUTPUT INTERFACE MODULE**

E. M. OZYAZICI (Rockwell International Corp.)

Sep. 1980

**MSC-18180**

**Vol. 5, No. 2, p. 143**

Module detects level changes in any of its 16 inputs, transfers changes to its outputs, and generates interrupts when changes are detected. Up to four changes-in-state per line are stored for later retrieval by controlling computer. Using standard TTL logic, module fits 19-inch rack-mounted console.

**B80-10160**

**SMOOTHING THE OUTPUT FROM A DAC**

C. WAGNER

Aug. 1980

**FRC-11025**

**Vol. 5, No. 2, p. 144**

Circuit smooths stepped waveform from analog-to-digital

converter without appreciable phase shift between stepped input signal and smoothed output signal and without any effect from stepping rate. Waveform produced is suitable for driving controls used in manufacturing processes, aerospace systems, and automobiles.

**B80-10161**

**LSI LOGIC FOR PHASE-CONTROL RECTIFIERS**

C. DOLLAND (Airsearch Manufacturing Co.)

Sep. 1980

**M-FS-25208**

**Vol. 5, No. 2, p. 144**

Signals for controlling phase-controlled rectifier circuit are generated by combinatorial logic than can be implemented in large-scale integration (LSI). LSI circuit saves space, weight, and assembly time compared to previous controls that employ one-shot multivibrators, latches, and capacitors. LSI logic functions by sensing three phases of ac power source and by comparing actual currents with intended currents.

**B80-10162**

**MODEL FOR MOS FIELD-TIME-DEPENDENT BREAKDOWN**

S. P. LI (Caltech), J. MASERJIAN (Caltech), and S. PRUSSIN (Caltech)

Sep. 1980

**NPO-14701**

**Vol. 5, No. 2, p. 145**

Quantitative model for MOC breakdown is derived and correlated with experiments.

**B80-10163**

**DDL: DIGITAL SYSTEMS DESIGN LANGUAGE**

S. G. SHIVAL (Alabama Univ.)

Sep. 1980

**M-FS-25352**

**Vol. 5, No. 2, p. 146**

Hardware description languages are valuable tools in such applications as hardware design, system documentation, and logic design training. DDL is convenient medium for inputting design details into hardware-design automation system. It is suitable for describing digital systems at gate, register transfer, and major combinational block level.

**B80-10294**

**ULTRASTABLE AUTOMATIC FREQUENCY CONTROL**

D. J. SABOURIN (Motorola, Inc.) and A. FURIGA (Motorola, Inc.)

Jan. 1981

**MSC-18679**

**Vol. 5, No. 3, p. 267**

Center frequency of wideband AFC circuit drifts only hundredths of percent per day. Since circuit responds only to slow frequency drifts and modulation signal has high-pass characteristics, AFC does not interfere with normal FM operation. Stable oscillator, reset circuit, and pulse generator constitute time-averaging discriminator; digital counter in pulse generator replaces usual monostable multivibrator.

**B80-10295**

**FAST MICROWAVE SWITCHING POWER DIVIDER**

R. W. JOHNSON (Ball Corp.) and R. J. STOCKTON (Ball Corp.)

Jan. 1981

**GSFC-12420**

**Vol. 5, No. 3, p. 268**

Unit divides power from single input among any 12 of 120 output terminals and redistributes it in 6 microseconds. Microwave current from coaxial line excites disk feeding many radial strip transmission lines. Built for use in electronically-steered S-band antenna, device also divides and switches energy among filters and phase shifters.

**B80-10296**

**HIGH-POWER SOLID-STATE MICROWAVE TRANSMITTER**

J. D. BOREHAM (Caltech), B. L. CONROY (Caltech), R. B. POSTAL (Caltech), and D. G. YENCHE (Caltech)

Jan. 1981

**NPO-14803**

**Vol. 5, No. 3, p. 269**

Transmitter phases outputs from individual amplifier modules then combines them in multielement array feed antenna. Size and power capability of system are variable for radar and small-angle scanning applications.

**B80-10297****ANTENNA FEED FOR LINEAR AND CIRCULAR POLARIZATION**

D. A. BATHKER (Caltech) and B. L. SEIDEL (Caltech)

Jan. 1981

**NPO-14810**

Antenna system transmits linearly-polarized microwave radio signal, yet circularly-polarized incoming signal is received without polarization-mismatch losses. Network uses only hybrid junctions, diplexer, and four-probe antenna; no waveguide switches are required. Other circuit arrangements are possible, using additional transmitters and receivers.

**B80-10298****SIGNAL CONDITIONER FOR NICKEL TEMPERATURE SENSORS**

R. R. WALKER (Rockwell International Corp.)

Jan. 1981

**MSC-18367**

Simple circuit conditions output of 50 ohm sensor for readout on strainage recorder. It consists of resistors, switch, and 'matching' network. Device saves time and reduced instrumentation costs when strain and temperature are measured in same setup.

**B80-10299****EFFICIENT, LIGHTWEIGHT DC/DC SWITCHING CONVERTER**

S. CUK (Caltech) and R. D. MIDDLEBROOK (Caltech)

Jan. 1981 See also NASA-CR-135174(N78-29351)

**LEWIS-12809**

Converters have input properties of boost power stage and output properties of buck power stage, yet they perform general conversion function with high efficiency. Other features include non-pulsating input/output currents, use of capacitive energy transfer, low output voltage ripple, reduced EMI, and small size.

**B80-10300****28-CHANNEL ROTARY TRANSFORMER**

W. T. MCILYMAN (Caltech)

Jan. 1981

**NPO-14861**

Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential 1 megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

**B80-10301****IMPROVING MOS MINORITY-CARRIER LIFETIME**

R. H. COCKRUM (Caltech), S. P. LI (Caltech), and S. PRUSSIN (Caltech)

Jan. 1981

**NPO-14738**

Fluorine implantation increases minority-carrier lifetime in silicon by factor of 100, enhancing power efficiency in MOS applications. Implantation does not increase microdefects at silicon surface when thin oxide layers are grown, and process gathers existing impurities near surface without adversely affecting MOS electrical parameters. With these advantages, fluorine may be left on wafer surfaces after processing.

**B80-10302****COOLING/GROUNDING MOUNT FOR HYBRID CIRCUITS**

B. BAGSTAD (TRW, Inc.), R. ESTRADA (TRW, Inc.), and H. MANDEL (TRW, Inc.)

Jan. 1981

**MSC-18728**

Extremely short input and output connections, adequate grounding, and efficient heat removal for hybrid integrated circuits are possible with mounting. Rectangular clamp holds hybrid on printed-circuit board, in contact with heat-conductive ground plate. Clamp is attached to ground plane by bolts.

**B80-10424****ALINING SLEEVE FOR OPTICAL FIBERS**

K. L. AUSTIN (Lockheed Electronics Co.)

Jan. 1981

**MSC-18756****Vol. 5, No. 3, p. 389**

Sleeve for alining two optical fibers is made with precisely correct inside diameter by using section of fiber as mandrel. Because optical fiber is manufactured to very close tolerances, diameter of section serving as mandrel will be same as diameters of two fibers that are mated in butt joint inside sleeve. Result, determined by experiments, is loss of no more than 0.3 dB at joint.

**B80-10440****IMPROVED BATTERY CHARGER FOR ELECTRIC VEHICLES**

W. E. RIPPEL (Caltech)

Apr. 1981

**NPO-14964****Vol. 5, No. 4, p. 411**

Polyphase version of single-phase 'boost chopper' significantly reduces ripple and electromagnetic interference (EMI). Drive circuit of n-phase boost chopper incorporates n-phase duty-cycle generator; inductor, transistor, and diode compose chopper which can run on single-phase or three-phase alternating current or on direct current. Device retains compactness and power factors approaching unity, while improving efficiency.

**B80-10441****MULTIJUNCTION HIGH-VOLTAGE SOLAR CELL**

J. C. EVANS, JR., C. GORADIA, and A. T. CHAI

Apr. 1981 See also NASA-TM-81389(N80-16914)

**LEWIS-13400****Vol. 5, No. 4, p. 412**

Multijunction cell allows for fabrication of high-voltage solar cell on single semiconductor wafer. Photovoltaic energy source using cell is combined on wafer with circuit it is to power. Cell consists of many voltage-generating regions internally or externally interconnected to give desired voltage and current combination. For computer applications, module is built on silicon wafer with energy for internal information processing and readouts derived from external light source.

**B80-10442****SOLAR CELL IS HOUSED IN LIGHT-BULB ENCLOSURE**

J. C. EVANS, JR.

Apr. 1981 See also B80-10441

**LEWIS-13418****Vol. 5, No. 4, p. 413**

Inexpensive, conventional solar-cell module uses focusing principle of electric lamp in reverse to produce electric power from sunlight. Standard outdoor light enclosure provides low-cost housing which concentrates sunlight in solar cell. Unit is capable of producing approximately 1 watt of electric power.

**B80-10443****SIMPLE JFET OSCILLATOR**

L. L. KLEINBERG

Apr. 1981

**GSFC-12555****Vol. 5, No. 4, p. 413**

Device used in mixers, modulators, and function generators provides stable sine-wave signal compatible with both integrated circuits and discrete-component assemblies. Oscillator's frequency is tunable over narrow band about design value. Frequency range, stability, linearity, and low power drain of device are suited to communications receivers and transmitters and digital microprocessors, computers, and displays. Circuit simplicity allows for easy monolithic construction.

**B80-10444****SPEED CONTROL FOR SYNCHRONOUS MOTORS**

H. PACKARD (Northrop Corp.) and J. SCHOTT (Northrop Corp.)

Apr. 1981

**MSC-18680****Vol. 5, No. 4, p. 44**

Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

**B80-10445****LOW-RESISTANCE CONTINUITY TESTER**

## 02 ELECTRONIC SYSTEMS

R. B. REASONER (Caltech)

Apr. 1981

**NPO-14881**

IC printed-circuit board tester measures resistance as low as 0.1 ohm but uses little power. Two 4.7 kilohm resistors and connected transistors prevent current flow through operational amplifier until probe circuit is complete, eliminating need for on/off switch. Zener diode in series with amplifier output prevents audio oscillator operation until output has sufficient amplitude. Circuit utilizes 741 operational amplifier on 11.2 volt battery or lower voltage amplifiers.

**Vol. 5, No. 4, p. 45**

T. O. ANDERSON (Caltech)

Aug. 1980

**NPO-13422**

**Vol. 5, No. 1, p. 25**

Device concept permits parallel computers to scan several common network-connected data stations at maximum rate. Sequencers leap-frog to bypass ports already being serviced by another computer. Two-path system for 16-port star switch controller is cost effective if added bandwidth or increased reliability is desired. Triple-path system would be cost effective for 32-port controller.

## 02 ELECTRONIC SYSTEMS

**B80-10031**

**MICROPROCESSOR-CONTROLLED DATA SYNCHRONIZER**

S. W. HOUSTON (TRW, Inc.), D. R. MARTIN (TRW, Inc.), and L. R. STINE (TRW, Inc.)

Aug. 1980

**MSC-18535**

**Vol. 5, No. 1, p. 21**

Versatile receiver processes data at variety of rates and code formats. Functions performed are: bit detection, NRZ-L conversion, frame synchronization (with programmable word length), bit-sync acquisition and tracking, error-curve normalization, lock detection, half-bit-ambiguity resolution, and data-rate tracking.

**B80-10032**

**VOLTAGE CONTROLLER/CURRENT LIMITER FOR AC**

T. T. WU (Caltech)

Aug. 1980

**NPO-13061**

**Vol. 5, No. 1, p. 22**

Circuit protects ac power systems for overload failures, limits power surge and short-circuit currents to 150 percent of steady state level, regulates ac output voltage, and soft starts loads. Limiter generates dc error signal in response to line fluctuations and dumps power when overload is reached. Device is inserted between ac source and load.

**B80-10033**

**MICROPROCESSOR CONTROL FOR PHASE-LOCK RECEIVER**

L. M. CARSON (Motorola, Inc.) and J. R. SHANER (Motorola, Inc.)

Aug. 1980

**NPO-14438**

**Vol. 5, No. 1, p. 23**

Subsystem facilities flexible data acquisition by combining hardware and software processing. Device controls complex signal acquisition sequence and assists in precise phase locking to received signal. Key features include software system and code-generator initialization routines, executive routines, utility subroutines, control sequence routines for each receiver acquisition state, control-command decoding routine, and look-up tables for code-generator configuration versus code-set number. Steps can be added to extend input signal dynamic range.

**B80-10034**

**IMPROVED CODE-TRACKING LOOP**

D. T. LAFLAME (Hughes Aircraft Co.)

Aug. 1980

**MSC-18035**

**Vol. 5, No. 1, p. 24**

Delay-locked loop tracks pseudonoise codes without introducing dc timing errors, because it is not sensitive to gain imbalance between signal processing arms. 'Early' and 'late' reference codes pass in combined form through both arms, and each arm acts on both codes. Circuit accommodates 1 dB weaker input signals with tracking ability equal to that of tau-dither loops.

**B80-10035**

**MULTIPATH STAR SWITCH CONTROLLER**

T. O. ANDERSON (Caltech)

Aug. 1980

**NPO-14440**

**Vol. 5, No. 1, p. 26**

Command detector unit operates over wide range of data rates and signal levels in space environment. It consists of signal conditioning, read-only memory, random-access memory, and digital processor. Entire unit fits on single multilayer printed-wiring board.

**B80-10037**

**ONLINE ASSESSMENT OF A DISTRIBUTED PROCESSOR**

L. F. EHRLICH (IBM Corp.)

Aug. 1980

**KSC-11124**

**Vol. 5, No. 1, p. 27**

ORT (Operational Readiness Test) software allows one engineer to test readiness of 64 minicomputers and their peripherals from single console. Software makes roll call of computers and peripherals via common data buffer to check readiness of system in morning 'wake up' or at other important times. Subsystems are tested in parallel to save time. 'Watchdog' terminates test of any system that does not respond in time, so one failed system does not halt test sequence. Entire rollcall is complete in about 15 minutes. Software is designed for Space Shuttle prelaunch checkout, but approach should interest users of similar equipment.

**B80-10164**

**RAM-BASED FRAME SYNCHRONIZER**

J. K. NISWANDER and R. J. STATTI

Sep. 1980

**GSFC-12430**

**Vol. 5, No. 2, p. 149**

Frame synchronizer for serial telemetry is rapidly reconfigured for changing formats. Synchronizer generates signals marking data-word boundaries, beginning of each frame, and beginning of each paragraph. Also derived are search, check, and lock status signals. Existing unit is assembled from standard random-access memory elements and MOS and low-power-Schottky logic.

**B80-10165**

**RAM-BASED PARALLEL-OUTPUT CONTROLLER**

J. K. NISWANDER and R. J. STATTI

Sep. 1980

**GSFC-12447**

**Vol. 5, No. 2, p. 150**

Selected bit strings in serial-data link are extracted for processing. Controller is programmable interface between serial-data link and peripherals that accept parallel data. It can be used to drive displays, printers, plotters, digital-to-analog converters, and parallel-output ports.

**B80-10166**

**MICROCOMPUTER-BASED DOPPLER SYSTEMS FOR WEATHER MONITORING**

P. E. SCHMID and J. J. LYNN (Old Dominion Systems, Inc.)

Sep. 1980

**GSFC-12448**

**Vol. 5, No. 2, p. 151**

Ground-based microcomputer determines geographical positions of beacons using Doppler data from weather satellites. System requires only 7 W and incorporates least-squares iteration to compute positions. Results are printed out in alphanumerics either on CRT or on teletype. 6502 CPU was used, although equivalent processor could be substituted (with appropriate modifications to hardware).

**B80-10167****LINEARIZING MAGNETIC-AMPLIFIER DC TRANSDUCER OUTPUT**

S. NAGANO (Caltech)

Sep. 1980

**NPO-14617**

Diode corrects nonlinearity at small currents in magnetic-amplifier dc transducer circuit.

**B80-10168****BETTER-QUALITY CCD-ARRAY IMAGES**

S. D. GAALEMA (Caltech)

Sep. 1980

**NPO-14426**

Vol. 5, No. 2, p. 152

In quadruple sampling, signal from each element in array is sampled once before element is clamped on, twice during 'on' period, once again after element is turned off. Quadruple-sampling scheme increases overall signal-to-noise by about 40 percent above level for double sampling, prediction verified by measurements on star-tracking imager.

**B80-10169****REAL-TIME FILM RECORDING FROM STROKE-WRITTEN CRT'S**

R. HUNT and A. J. GRUNWALD (National Research Council)

Sep. 1980

**LANGLEY-12529**

Vol. 5, No. 2, p. 154

Real-time simulation studies often require motion-picture recording of events directly from stroke written cathode-ray tubes (CRT's). Difficulty presented is prevention of 'flicker,' which results from lack of synchronization between display sequence on CRT and shutter motion of camera. Programmable method has been devised for phasing display sequence to shutter motion, ensuring flicker-free recordings.

**B80-10170****TORQUE CONTROL FOR ELECTRIC MOTORS**

C. A. BERNARD (RCA Corp.)

Sep. 1980

**MSC-18635**

Vol. 5, No. 2, p. 155

Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recovered, relay restores starting circuit to its normal operating mode.

**B80-10171****FREQUENCY-CONTROLLED VOLTAGE REGULATOR**

W. T. MCILYMAN (Caltech)

Sep. 1980

**NPO-13633**

Vol. 5, No. 2, p. 156

Converting input ac to higher frequency reduce size and weight and makes possible unique kind of regulation. Since conversion frequency is above range of human hearing, supply generated on audible noise. It also exploits highfrequency conversion features to regulate its output voltage in novel way. Circuit is inherently short-circuit proof.

**B80-10172****A REDUNDANT REGULATOR CONTROL WITH LOW STANDBY LOSSES**

R. W. ANDRYCZYK (GE) and S. R. PECK (GE)

Sep. 1980

**NPO-13165**

Vol. 5, No. 2, p. 157

Shunt regulator circuit for outer-planet-spacecraft radiosotope thermoelectric generator minimizes power-conditioning losses. Unit consists of bank of duplicate regulator control amplifiers and their associated shunt transistors connector across power supply line. Its high-gain circuitry arranged in redundant configuration in very reliable and is characterized by low standby loss. Circuit can be used on other power-supply applications where size, weight, and reliability are important.

**B80-10173****FREQUENCY RESPONSE FO MULTIPLE-SAMPLING RATE SYSTEMS**

D. K. SCHARMACK (Honeywell, Inc.)

Sep. 1980

**MSC-18473**

Vol. 5, No. 2, p. 158

Analytical procedure simplifies prediction of frequency response of multirate digital control systems. Although developed for Space Shuttle flightcontrol system, procedure is applicable to any multirate system describable by linear, constant-coefficient differential equations of difference equations.

**B80-10303****COMMON DATA BUFFER**

F. BYRNE

Jan. 1981

**KSC-11048**

Vol. 5, No. 3, p. 277

Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of 'first-in, first-out' memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.

**B80-10304****SIMULTANEOUS DISK STORAGE AND RETRIEVAL**

F. E. LEVINE (IBM)

Jan. 1981

**KSC-11167**

Vol. 5, No. 3, p. 278

Data are concurrently recorded on disk by one minicomputer and accessed by another, using format of memory blocks, buffering algorithm, and time-sequence addressing. Buffering algorithm works at data rates up to 68,000 words per second; modifications up rate to 160,000 words per second.

**B80-10305****FOUR-QUADRANT CCD ANALOG MULTIPLIER**

C. W. BROOKS (Westinghouse Electric Corp.) and D. R. LAMPE (Westinghouse Electric Corp.)

Jan. 1981 See also NASA-CR-145334(N79-14796)

**LANGLEY-12332**

Vol. 5, No. 3, p. 279

Sequential processing technique improves accuracy when CCD-array signals are multiplied by weighting function to remove offsets. System uses two schemes to cancel undesired output contributions arising from prerequisite biases. First is spontaneous cancellation by multiple 'nominally identical' devices; second is sequential cancellation where same devices are used repeatedly to form multiple products. Single device then successively subtracts products, eliminating effects of MOS-array threshold nonuniformities.

**B80-10306****MONOLITHIC FOUR-QUADRANT MULTIPLIER**

D. R. LAMPE (Westinghouse Electric Corp.)

Jan. 1981 See also NASA-CR-145334(N79-14796)

**LANGLEY-12330A**

Vol. 5, No. 3, p. 280

Integrated configuration for 'differential' sequential processor is less susceptible to noise than one using discrete components. Accuracy of version is unaffected by sample-and-hold (S/H) acquisition speed, S/H droop rate, and stray pickup by separate card-mounted parts.

**B80-10307****MONOLITHIC CCD-ARRAY READOUT**

D. L. FARNSWORTH (Westinghouse Electric Corp.), D. R. LAMPE (Westinghouse Electric Corp.), and T. J. SHUTT (Westinghouse Electric Corp.)

Jan. 1981 See also NASA-CR-145334(N79-14796)

**LANGLEY-12376**

Vol. 5, No. 3, p. 282

Circuit is self-biasing, with differential current-to-voltage conversion. CMOS current-differencing readout consists of dc-balanced pair of virtual ground stages and current-differencing circuit similar to circuit mirror. Triode multiplier cell replaces test sources to form monolithic configuration. Transistors belonging to selected multiplier cell need to be duplicated for each multiplier

## 02 ELECTRONIC SYSTEMS

within correlator chip. Remaining elements form part of readout and may be scaled as single common readout stage.

### B80-10308

#### RECEIVER ARRAY FOR HIGH-RATE TELEMETRY

M. H. BROCKMAN (Caltech) and M. F. EASTERLING (Caltech)  
Jan. 1981 See also B80-10309

### NPO-14579

Vol. 5, No. 3, p. 284

RF carrier uses two receiver systems to increase signal-to-noise ratio and sensitivity. Signals separately processed are coherently combined at summing junction for improved reception of marginal high-rate signals frequently lost to system, atmosphere, and galactic noises. Two receivers improve ratio by 2.7 dB; improvement is made by arraying more receiver systems.

### B80-10309

#### ARRAYED RECEIVERS FOR LOW-RATE TELEMETRY

M. H. BROCKMAN (Caltech) and M. F. EASTERLING (Caltech)  
Jan. 1981 See also B80-10308

### NPO-14590

Vol. 5, No. 3, p. 285

RF carrier array includes one master and slave receiving system to improve overall signal-to-noise ratio. Greater number of slave systems creates additional improvement. Scheme reduces detection threshold of low-rate telemetry signals transmitted from spacecraft, enhancing communications efficiency.

### B80-10310

#### COMPRESSING TV-IMAGE DATA

E. E. HILBERT (Caltech), J. LEE (Caltech), R. F. RICE (Caltech), and A. P. SCHLUTSMEYER (Caltech)  
Jan. 1981

### NPO-14823

Vol. 5, No. 3, p. 286

Compressing technique calculates activity estimator for each segment of image line. Estimator is used in conjunction with allowable bits per line,  $N$ , to determine number of bits necessary to code each segment and which segments can tolerate truncation. Preprocessed line data are then passed to adaptive variable-length coder, which selects optimum transmission code. Method increases capacity of broadcast and cable television transmissions and helps reduce size of storage medium for video and digital audio recordings.

### B80-10311

#### REAL-TIME IMAGE ENHANCEMENT

V. S. WONG (Caltech)  
Jan. 1981

### NPO-14281

Vol. 5, No. 3, p. 287

Pipelined system with 'vision' algorithm is implemented on LSI chip that processes input digital image data to produce image-edge map. System contains 3 input adder, difference and absolute value cells, and adder and comparator. Data store for 1 to 2 ms. and are easily transmitted or isolated; design has reduced package count and number of interconnections for increased reliability. Applications include locating objects on moving belt, deep-sea and coal mining, and control of robotic rovers.

### B80-10312

#### TOGGLED SIGNAL FOR PREVENTION OF CONTROL ERRORS

C. E. WYLIE (Honeywell, Inc.)  
Jan. 1981

### MSC-1879

Vol. 5, No. 3, p. 288

Redundant command lines use two different 'true' signals to avoid common failure modes. When function is required to operate, computer generates command and transmits it to demultiplexer, where it is split along two paths, producing outputs from separate electronic cards. Outputs combine to drive and gate high and begin function.

### B80-10313

#### CONVERTING A DIGITAL FILTER TO ITS ANALOG EQUIVALENT

J. F. L. LEE (Honeywell, Inc.)  
Jan. 1981

### MSC-18587

Vol. 5, No. 3, p. 289

Two complementary methods for conversion are direct conversion method and inverse of Tustin's method. Required accuracy of filter is achieved using best-matched technique. Both require only direct computations and are simpler and more efficient than conventional iterative systems or methods requiring 'ad hoc' filter parameter adjustment.

### B80-10314

#### AIRBORNE METEOROLOGICAL DATA-COLLECTION SYSTEM

J. W. BAGWELL and B. G. LINDOW

Jan. 1981 See also NASA-TM-78992(N78-33283)

### LEWIS-13346

Vol. 5, No. 3, p. 290

Aircraft position and weather data are collected, formatted, and relayed to ground from in-flight commercial jets. Data Acquisition and Control Unit in plane receives information from standard avionics data units, and provides scaling and storage. Normally, eight sets of data are acquired in 1 hour period and transmitted to satellite at precise time. Besides meteorological applications, system can locate and reroute aircraft into favorable winds to conserve fuel or aid search for downed planes.

### B80-10315

#### RECEIVING SIGNALS OF ANY POLARIZATION

J. E. OHLSON (Caltech), B. L. SEIDEL (Caltech), and C. H. STELZRIED (Caltech)

Jan. 1981 See also B80-10297

### NPO-14836

Vol. 5, No. 3, p. 291

Two-channel detection accommodates linear, circular, and elliptical polarization in one receiving unit. Receiver employs orthomode transducer which breaks any type signal into one left and one right circular component. These are processed in separate receiver channels with equal time-delay, and then recombined for data extraction. System eliminates losses due to polarization mismatch.

### B80-10316

#### PORTABLE ZERO-DELAY ASSEMBLY

M. M. FRANCO (Caltech), T. Y. OTOSHI (Caltech), and E. J. SERHAL, JR. (Caltech)

Jan. 1981

### NPO-14671

Vol. 5, No. 3, p. 292

Instrument is calibrated using back-to-back method. In comparison standard, S-X isolators are opposite from device being tested to permit signal flow in reverse direction. After calibration portable zero-delay assembly (PZDA) is used to set time delays of deep-space network ground-station ranging systems. Approach is also used to calibrate microwave links in other communications systems.

### B80-10317

#### PHOTOMETER USED FOR RESPONSE TIME MEASUREMENT

A. J. DA SILVA

Jan. 1981

### MSC-18712

Vol. 5, No. 3, p. 293

Photometer detects motion for measuring response speed and acceleration of servocontrol system. Instrument senses selected output movement shortly after operator activates hand-controlled input. Time delay is measured on X/T recorder and response calculated. With suitable motion targets, photometer measures any open- or closed-loop servoresponse and servorate or computer lag without system disturbance.

### B80-10446

#### SUPERCONDUCTING GYROCON WOULD BE VERY EFFICIENT

H. C. YEN (Caltech)

Apr. 1981

### NPO-14975

Vol. 5, No. 4, p. 419

Cryogenic operation of gyrocon increases gain by more than 35 dB and efficiency by 90 percent. Device consists of electron gun, deflection cavity, output cavity, collector, and output coupler. Input and output cavities are made of superconducting lead or niobium. Gyrocon operates at frequencies up to 50 GHz.

**B80-10447****HIGH-POWER DUAL-DIRECTIONAL COUPLER**

T. Y. OTOSHI (Caltech) and K. B. WALLACE (Caltech)

Apr. 1981

**NPO-14713****Vol. 5, No. 4, p. 420**

Water-cooled coupler installed in S-band polarization diversity (SPD) cone is used to calibrate receiving-station relay. Coupler operates without arcing at 400 kw and permits accurate calibration of entire system below antenna feed horn. Device has good directivity, contributes less than 0.01 K to system noise temperature, and eliminates saturation of ground station and spacecraft receivers during high-power operation.

**B80-10448****CAVITY-BACKED SPIRAL-SLOT ANTENNA**

H. ELLIS, JR. (Rockwell International Corp.)

Apr. 1981

**MSC-18532****Vol. 5, No. 4, p. 421**

Compact, rugged, flush-mounted antenna operates in sum or difference modes with circular polarization. Radiating elements consist of two pairs of centered, interleaved spiral slots in conductive aperture plane. At center feedpoint of each slot pair is balanced feed assembly. Center points are fed from split-tube coaxial balun passing through quarter-wave length deep cavity. Circularly polarized patterns represent both received and transmitted signals.

**B80-10449****TIMING SIGNAL PROPAGATES WITHOUT PHASE SHIFT**

A. V. KANTAK (LinCom Corp.) and W. C. LINDSEY (LinCom Corp.)

Apr. 1981

**MSC-18777****Vol. 5, No. 4, p. 422**

Continuous monitoring of transmission delay corrects for phase shift. Nodes in Master/Slave Returnable Timing System (MSRTS) are arranged in hierarchy, with each node serving as master to several slave nodes. As signal at each slave is synchronized with original master, it serves as master to synchronize following slave nodes. System improves performance of phased microwave antenna arrays in solar-powered satellites and clock distribution systems in avionics and computers.

**B80-10450****TRISLOT-CAVITY MICROSTRIP ANTENNA**

H. ELLIS, JR. (Rockwell International Corp.)

Apr. 1981

**MSC-18793****Vol. 5, No. 4, p. 422**

Flush-mountable assembly composed of disk radiator sandwiched between planes of metal-clad dielectric board has greater bandwidths and beamwidths than simple disk antenna. Conducting planes connect so that disk is enclosed in cavity with Y-shaped slot in top plane. Cavity is excited by microwave energy from disk and radiates from trislot aperture.

**B80-10451****DEVELOPING EXPERIMENT INSTRUMENT PACKAGES**

R. HERREID

Apr. 1981

**GSFC-12536****Vol. 5, No. 4, p. 423**

Ground-Support Equipment (GSE) system supports development, calibration, and testing of experiment packages. It is also used for 'quick look' processing and in-progress data analysis. User interacts with incoming telemetry data, performs computations, and controls execution of procedures using versatile Experiment Command Interactive Language (ECIL). Program is implemented many ways with minimal modification. It is written in MARCO II and FORTRAN for DEC PDP-11/34 using the RSX-11M operating system.

## 03 PHYSICAL SCIENCES

**B80-10038****PHOTOELECTROCHEMICAL CELL WITH NONDISSOLVING ANODE**

A. B. ELLIS (MIT), S. W. KAISER (MIT), and M. S. WRIGHTON (MIT)

Aug. 1980

**LANGLEY-12591****Vol. 5, No. 1, p. 31**

Improved electrolytic cells have efficiencies comparable to those of best silicon solar cells but are potentially less expensive to manufacture. Cells consist of light-sensitive n-type semiconductor anode and metallic cathode immersed in electrolytic solution. Reversible redox cells produce no chemical change in electrolyte and stabilize anode against dissolving. Cell can produce more than 500 mW of power per square centimeter of anode area at output voltage of 0.4 V.

**B80-10039****NEW MOUNTING IMPROVES SOLAR-CELL EFFICIENCY**

N. F. SHEPARD, JR. (General Electric Co.)

Aug. 1980

**NPO-14467****Vol. 5, No. 1, p. 32**

Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.

**B80-10040****ENERGY-SAVING THERMOSTAT**

R. N. JENSEN

Aug. 1980

**LANGLEY-12450****Vol. 5, No. 1, p. 33**

Thermostat for two-stage heating system adjusts turn-on time and thermostat setpoint so that reserve resistance electrical heaters are not activated in morning warm up. Thermostat monitors outside temperature and turns on heat earlier in cold weather so that room will be at desired temperature by specified time. Mechanical, electrical, electronic, pneumatic, or microprocessor versions of device are possible. Correctional factors can be included where second-stage operation is more cost-effective than prolonged first-stage operation.

**B80-10041****ROTATABLE PRISM FOR PAN AND TILT**

W. B. BALL

Aug. 1980

**LANGLEY-12388****Vol. 5, No. 1, p. 34**

Compact, inexpensive, motor-driven prisms change field of view of TV camera. Camera and prism rotate about lens axis to produce pan effect. Rotating prism around axis parallel to lens produces tilt. Size of drive unit and required clearance are little more than size of camera.

**B80-10042****ULTRAVIOLET SPECTROMETER/POLARIMETER**

Innovator not given (Brown Engineering of Teledyne Industries, Inc.) Aug. 1980

**M-FS-25298****Vol. 5, No. 1, p. 34**

Improved satellite instrument package consists of telescope, spectrometer with polarimeter, five detectors, and control electronics. Instrument is designed to study solar ultraviolet radiation. Polarimeter will determine four Stokes parameters and possible mechanisms for producing linear and circular polarization. Density measurements of Earth's upper atmosphere constituents are possible.

**B80-10043****AN ADJUSTABLE SOLAR CONCENTRATOR**

E. R. COLLINS, JR. (Caltech)

Aug. 1980

**NPO-14710****Vol. 5, No. 1, p. 35**

Fixed cylindrical converging lenses followed by movable parabolic mirror focus solar energy on conventional linear collector.

## 03 PHYSICAL SCIENCES

System is low cost and accommodates daily and seasonal movements of the sun. Mirrors may be moved using simple, low-power electrical motors.

**B80-10044**

### LARGE-VOLUME MULTIPLE-PATH NUCLEAR-PUMPED LASER

F. HOHL and R. J. DE YOUNG (Miami Univ.)

Aug. 1980

**LANGLEY-12592**

**Vol. 5, No. 1, p. 36**

Output of nuclear pumped laser is increased using mirrors, so multiple optical reflections enlarge lasing-mode volume. Design requires comparatively low thermal neutron flux, uses flux more efficiently. Flux for lasing approaches that available from steady-state reactor. Outputs over 100 watts have been reached.

**B80-10045**

### EXTRACTING ENERGY FROM NATURAL FLOW

L. M. DELIONBACK and G. A. WILHOLD

Aug. 1980

**M-FS-23989**

**Vol. 5, No. 1, p. 37**

Three concepts for extracting energy from wind, waterflow, and tides utilize flow instability to generate usable energy. Proposed converters respond to vortex excitation motion, galloping or plunging motion, and flutter. Fluid-flow instability is more efficient in developing lift than is direct flow.

**B80-10046**

### TWELVE SOLAR-HEATING/COOLING SYSTEMS: DESIGN AND DEVELOPMENT

Innovator not given (Energy Resources Center of Honeywell, Inc.) Aug. 1980

**M-FS-25358**

**Vol. 5, No. 1, p. 38**

Two quarterly reports describe first 6 months of development on single family, multifamily, and commercial installations in Minneapolis area. Reports discuss basic requirements, and reasons for selecting specific configurations. Systems consist of liquid cooled flat plate collectors, two fluid loops, and gas-fired forced-air auxiliary heat source.

**B80-10047**

### SOLAR-HEATING AND COOLING SYSTEM DESIGN PACKAGE

Innovator not given (Solaron Corp.) Aug. 1980

**M-FS-25393**

**Vol. 5, No. 1, p. 38**

Package of information includes design data, performance specifications, drawings, hazard analysis, and spare parts list for commercially produced system installed in single-family dwelling in Akron, Ohio. System uses air flat-plate collectors, 12000 kg rock storage and backup heat pump. Solar portion requires 0.7 kW, and provides 35% of average total heating load including hot water. Information aids persons considering installing solar home-heating systems.

**B80-10048**

### BENEFIT ASSESSMENT OF SOLAR-AUGMENTED NATURAL GAS SYSTEMS

E. S. DAVIS (Caltech), R. L. FRENCH (Caltech), and R. L. SOHN (Caltech)

Aug. 1980

**NPO-14568**

**Vol. 5, No. 1, p. 38**

Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.

**B80-10049**

### AIR-COOLED SOLAR-COLLECTOR SPECIFICATION

Innovator not given (Owens-Illinois, Inc.) Aug. 1980

**M-FS-25336**

**Vol. 5, No. 1, p. 39**

Report summarizes performance specifications of 72-element, concentric-tube collector. Chart shows minimum collector efficiency as function of operating conditions.

**B80-10050**

### INDOOR TESTS OF THE CONCENTRIC-TUBE SOLAR COLLECTOR

Innovator not given (Solar Energy Systems Division of Wyle Laboratories) Aug. 1980

**M-FS-25390**

**Vol. 5, No. 1, p. 39**

Report describes performance tests on 12-tube, liquid-filled collector. Thermal efficiency, change in efficiency with sun position, and time constant for temperature drop after solar flux is cut are described.

**B80-10051**

### EVACUATED-TUBE SOLAR COLLECTOR-PERFORMANCE EVALUATION

Innovator not given (Wyle Laboratories) Aug. 1980

**M-FS-25339**

**Vol. 5, No. 1, p. 39**

Report gives thermal performance test procedures and results for commercially produced, water-filled, 8-tube collectors. Tests include efficiency, time constant for temperature drop after solar flux is cut, change in efficiency as function of sun angle, and test to see if tubes break when filled with hot water.

**B80-10052**

### GLYCOL/WATER EVACUATED-TUBE SOLAR COLLECTOR

Innovator not given (Wyle Laboratories) Aug. 1980

**M-FS-25337**

**Vol. 5, No. 1, p. 40**

Report describes performance of 8 tube and 10 tube commercially produced solar collectors. Tests include thermal efficiency, time constant for temperature drop after solar flux is cut, change in efficiency with Sun angle, and temperature rise if circulation is stopped.

**B80-10053**

### THERMOSYPHON HEAT EXCHANGER

J. D. HANKINS

Aug. 1980

**M-FS-25389**

**Vol. 5, No. 1, p. 40**

Report summarizes final development, testing, and certification of pumpless, liquid-to-air heat exchanger for solar heating. System requires blower but no pump in water loop. Output is 35,000 Btu/hr when water temperature is 49 C.

**B80-10054**

### CONTROLLER FOR SOLAR-ENERGY SYSTEMS

J. D. HANKINS

Aug. 1980

**M-FS-25386**

**Vol. 5, No. 1, p. 40**

Report describes operation and testing of computerized control unit for solar-heating and cooling systems. Unit includes electronics and 'plumbing'. Components are modular. Microprocessor with ROM and RAM operates fans, pumps, and valves, and retains selected data for 32 hours.

**B80-10055**

### CONTROLLER AND TEMPERATURE MONITOR FOR SOLAR HEATING

J. D. HANKINS

Aug. 1980

**M-FS-25387**

**Vol. 5, No. 1, p. 41**

Report describes development and certification of 77-171 differential thermostat for controlling solar-heating and cooling systems and 77-180 temperature monitor of indoor, outdoor, and storage temperatures. Units are commercially available.

**B80-10056**

### INHIBITING CORROSION IN SOLAR-HEATING AND COOLING SYSTEMS

G. E. DERAMUS, JR. and T. S. HUMPHRIES

Aug. 1980

**M-FS-25387**

**Vol. 5, No. 1, p. 41**

Report describes evaluation of 12 water additives in contact with aluminum, copper, steel, and stainless steel at 80 C for one year. Several promising formulations were found.

**B80-10057**

### NUMERICAL TRACING OF ELECTRON TRAJECTORIES

T. N. DELMER (Science Applications, Inc.) and T. C. STEPHENS  
Aug. 1980  
**GSFC-12535**

Computer program integrates path of relativistic electron through region of nonuniform static electromagnetic fields with accuracy of 1 micrometer in 10 centimeters. Program can be used to evaluate and modify design of electron-imaging systems. Language is FORTRAN IV, for batch or interactive execution on PDP 10, 11, CYBER 70, 170, and CDC 6000.

**B80-10058****NASA CHARGING ANALYZER PROGRAM**

J. J. CASSIDY, III (Systems, Science & Software), J. M. HARVEY (Systems, Science & Software), I. KATZ (Systems, Science & Software), and M. J. MANDELL (Systems, Science & Software)  
Aug. 1980

**LEWIS-12973**

Computer program predicts electrostatic charging of three dimensional, conducting object partially or completely covered with dielectric films. Program is useful in describing spacecraft charging and material accumulation in plasma environment of magnetosphere. Numerous graphic outputs are implemented. Language is FORTRAN V, for batch execution on 1100-series computer.

**B80-10174****AN EQUATION OF STATE FOR LIQUIDS**

R. F. FEDORS (Caltech), R. F. LANDEL (Caltech), and J. MOACANIN (Caltech)  
Sep. 1980

**NPO-14821**

Closed expression for volume as function of pressure and temperature has been verified for over 250 liquids. Equation can assist chemical engineers, solid-state researchers, and others with interest in thermodynamic behavior of liquids.

**B80-10175****HIGH-RESOLUTION SPECTROMETRY/INTERFEROMETER**

J. B. BRECKINRIDGE (Caltech), R. H. NORTON (Caltech), and R. A. SCHINDLER (Caltech)  
Sep. 1980

**NPO-14448**

Modified double-pass interferometer has several features that maximize its resolution. Proposed for rocket-borne probes of upper atmosphere, it includes cat's-eye retroreflectors in both arms, wedge-shaped beam splitter, and wedged optical-path compensator. Advantages are full tilt compensation, minimal spectrum 'channeling,' easy tunability, maximum fringe contrast, and even two-sided interferograms.

**B80-10176****INSTRUMENT REMOTELY MEASURES WIND VELOCITIES**

J. S. MARGOLIS (Caltech), D. J. MCCLEESE (Caltech), C. H. SEAMAN (Caltech), and M. S. SHUMATE (Caltech)  
Sep. 1980

**NPO-14524**

Doppler-shift spectrometer makes remote satellite measurements of atmospheric wind velocity and temperature at specified altitudes. As in correlation spectrometer, spectrum of gas in reference cell and spectrum of same gas in atmosphere are correlated both in emission and absorption.

**B80-10177****FAR-FIELD RADIATION PATTERN OF TUNABLE DIODE LASERS**

T. J. LASH  
Sep. 1980

**LANGLEY-12631**

Technique rapidly determines far-field spatial energy distribution. Method takes about 3 minutes. It is optically simple and is economical, using standard laboratory parts and equipment. It records automatically without operator control and is easily adaptable to computer control of input instructions and computer treatment of output data. Degree of data resolution is limited only by width of recorder pen, and data are repeatable.

**B80-10178****OPTICAL CALIBRATOR FOR TDL SPECTROMETERS**

D. E. JENNINGS  
Sep. 1980

**GSFC-12562****Vol. 5, No. 2, p. 164**

Two etalons and monochromator mode selector help calibrate spectrometer in selected laser mode. Technique accurately determines free spectral range of etalon. By establishing number of fringes between two modes, both of which have been calibrated with molecular line standards, one finds free spectral range with error inversely proportional to spectral interval between calibration points. Procedure establishes free spectral range of etalon without prior knowledge of its length or refractive index.

**B80-10179****UV ACTINOMETER FILM**

C. D. COULBERT (Caltech), A. GUPTA (Caltech), and J. PITTS (California Univ., Riverside)  
Sep. 1980

**NPO-14479****Vol. 5, No. 2, p. 165**

Cumulative UV radiation can be measured by low-cost polymer film that is unaffected by visible light. Useful for virtually any surface, film can help paint and plastics manufacturers determine how well their products stand up against UV radiation. Actinometer film uses photochemically sensitive compound that changes its chemical composition in response to solar radiation. Extent of chemical conversion depends on length exposure and can be measured by examining film sample with spectrophotometer. Film can be exposed from several seconds up to month.

**B80-10180****FLUORESCENT RADIATION CONVERTER**

W. VIEHMANN  
Sep. 1980

**GSFC-12528****Vol. 5, No. 2, p. 166**

Fluorescent radiation converter used optically transparent substrate. One side of substrate is coated with plastic film containing fluorescent organic dyes that absorb optical radiation at one wavelength and emit it at longer one. Coating is formulated to respond to specific wavelengths. Emitted radiation is reflected internally inside substrate, amplifying intensity that reaches radiation detector. Converter can be made in several shapes and size; round and square bars coated all round their lengths are useful in converting relatively intense radiation and transmitting it through substrate over lengthy distances.

**B80-10181****AUTOMATED HOLOGRAPHIC DROP-SIZE ANALYZER RPN****NPO-14676**

S. P. FEINSTEIN (Caltech) and M. A. GIRARD (Caltech)  
Sep. 1980

**Vol. 5, No. 2, p. 166**

System analyzes drop-size distribution in liquid-droplet-spray combustion fields. Holographic camera takes 'stop-motion' hologram of combustion volume; it is then viewed by vidicon camera connected to digital data-processing system that identifies particles or droplets, determining their size and count, and displays histogram of drop-size distribution in holographic field.

**B80-10182****PHOTOGRAPHIC MEASUREMENT OF DROPLET DENSITY**

W. C. YAGER (GE)  
Sep. 1980

**M-FS-25326****Vol. 5, No. 2, P. 167**

Density of cloud droplets in expansion chamber or static diffusion liquid chamber is measured with error of less than 3 percent by improved photographic technique. Precision is substantial advance over 10 percent accuracy limitation in methods used in past. Method should be useful in pollutant analysis, fine-particle research, and aerosol studies.

**B80-10183****CAMERA ADD-ON RECORDS TIME OF EXPOSURE**

E. C. COMPTON, P. C. KASSEL, JR., and C. W. KNIGHT  
Sep. 1980

**LANGLEY-12635****Vol. 5, No. 2, p. 168**

Time photograph is taken and is permanently recorded on

## 03 PHYSICAL SCIENCES

edge of exposure by compact electronics module that attaches to camera case. Single-chip timing circuit drives LED display, which is imaged on film plane. Normally blanked display is unblanked when shutter switch is activated.

**B80-10184**

### IMPROVED MULTISPECTRAL SOLAR CELL ARRAY

J. J. REDMANN (The Aerospace Corp.)

Sep. 1980

**HQN-10937**

Solar-collector system projects oval-shaped color-band images onto solar cells designed to be most efficient at specific wavelength. Image size can be altered by changing width of reflecting mirror or power of lens. Image intensity is thus kept at optimum level, preventing cells from overheating.

**B80-10185**

### LOW-COST CALIBRATION OF ACOUSTIC LOCATORS

R. F. BERRY

Sep. 1980

**LANGLEY-12632**

Vol. 5, No. 2, p. 169

Method uses modified commercially-available piezoelectric-torch lighter. Handheld lighter has controlled spark gap that can be easily adjusted to produce repeatable short-duration high-amplitude voltage spikes. Pulser and lighter are coupled via short axial cable, eliminating long cable run variations in cable attenuation, and problem with cable entangling with anything in its path.

**B80-10186**

### INTEGRAL STORAGE-BULB AND MICROWAVE CAVITY FOR MASERS

V. S. REINHARDT

Sep. 1980

**GSFC-12542**

Vol. 5, No. 2, p. 170

Mechanically-stable integral storage-bulb/microwave cavity made out of single piece of fused quartz improves frequency stability. Single-piece construction eliminates joints, making cavity dimensionally and hence frequency-stable. Fused quartz is used because of its low thermal expansion coefficient.

**B80-10187**

### A SURVEY OF PHOTOVOLTAIC SYSTEMS

Innovator not given (Alabama Univ.) Sep. 1980

**M-FS-25397**

Vol. 5, No. 2, p. 171

Results of extensive telephone survey of photovoltaic manufacturers are compiled in 220 page report. Three part report includes catalog of suppliers, data sheets on specific products, and typical operating, installation, and maintenance procedures.

**B80-10188**

### THERMAL STRATIFICATION IN LIQUID STORAGE TANKS

D. L. CHRISTENSEN (Alabama Univ.) and S. M. HAN (Alabama Univ.)

Sep. 1980

**M-FS-25416**

Vol. 5, No. 2, p. 171

Comprehensive literature survey indicates thermal stratification in solar-energy/liquid-storage tank improves system performance by as much as 15 percent. Collector efficiency increases when collector inlet fluid is drawn from bottom of storage tank, where fluid is coolest; warmest liquid drawn top of tank to satisfy thermal load.

**B80-10189**

### FINAL REPORT ON DEVELOPMENT OF A PROGRAMABLE CONTROLLER

J. D. HANKINS

Sep. 1980 See also B78-10183

**M-FS-25388**

Vol. 5, No. 2, p. 172

Microprocessor-based controller for solar-heating and cooling systems is described in report. Analog data from flow sensors, temperature sensors, and other devices are accepted by programmable controller. It also receives digital input from relays and switches. Report describes background of development program. It also summarizes operation, performance, and applications of controller.

**B80-10190**

### FRESNEL LENS TRACKING SOLAR COLLECTOR

Innovator not given (Solar Energy Systems Div. of Wyle Laboratories) Sep. 1980 See also B79-10061

**M-FS-25419**

Vol. 5, No. 2, p. 172

Commercial tracking collector that uses acrylic Fresnel lenses to focus Sunlight on copper absorber tubes was evaluated. Tests are documented in 16 page report.

**B80-10191**

### OUTDOOR TESTS OF THE CONCENTRIC-TUBE COLLECTOR

Innovator not given (Wyle Laboratories) Sep. 1980 See also B80-10050

**M-FS-25398**

Vol. 5, No. 2, p. 172

Seventy two element, air-filled version of concentric-tube solar collector recently underwent 2 month performance evaluation at Marshall Space Flight Center solar house. Summary of results, along with other relevant data, is presented in 27 page report.

**B80-10192**

### SELECTIVE OPTICAL COATINGS FOR SOLAR COLLECTORS

J. R. LOWERY

Sep. 1980

**M-FS-23589**

Vol. 5, No. 2, p. 173

For best performance, energy-absorbing surface of solar collector should be characterized by high ratio of solar absorptance to thermal emittance. Report on optical characteristics of several chemical treatments and electrodeposited coatings for metal solar-absorbing surfaces should interest designers and users of solar-energy systems. Moisture resistance of some coatings is also reported.

**B80-10193**

### FINNED-ABSORBER SOLAR COLLECTOR

Innovator not given (Solar Energy Systems Div. of Wyle Laboratories) Sep. 1980

**M-FS-25385**

Vol. 5, No. 2, p. 173

Report presents results of performance evaluation. Tests are part of continuing study of solar-heating systems and components for NASA and Department of Energy. Test data are presented as graphs and tables. Report also summarizes test procedures and mathematical analysis of results.

**B80-10194**

### A TEST PROGRAM FOR SOLAR COLLECTORS

Innovator not given (Energy Resources Center of Honeywell, Inc.) Sep. 1980 See also B79-10059

**M-FS-25433**

Vol. 5, No. 2, p. 173

Rigorous environmental and performance tests qualify solar collector for use in residential solar-energy systems. Testing over 7 month period examined pressurized effects, wind and snow loading, hail damage, solar and thermal degradation, effects of pollutants, efficiency, and outgassing. Test procedures and results are summarized in tables, graphs, and text.

**B80-10195**

### OPERATIONAL TESTS OF A SOLAR-ENERGY SYSTEM IN GEORGIA

Innovator not given (Federal Systems Div. of IBM Corp.) Sep. 1980

**M-FS-25420**

Vol. 5, No. 2, p. 174

Seventy three page report describes one year performance of commercial solar-energy hot-water system. Silicone oil is heat-exchange fluid in tested system, designed to meet needs of family of four. Roll-bend heat exchanger is wrapped around hot-water storage tank. Oil circulates through exchanger and flat-plate solar collectors. Auxiliary energy, to maintain temperature in storage tank, is supplied by 4,500-watt resistance-heating element.

**B80-10196**

### OPERATIONAL TESTS OF A SOLAR ENERGY SYSTEM FLORIDA SITE

Innovator not given (Federal Systems Division of IBM Corp.) Sep. 1980

**M-FS-25423**

System has been evaluated for performance at test site in Loxahatchee, Florida. Results of tests are available in 76 page report. Projected annual electrical energy savings are above 10 million Btu.

**Vol. 5, No. 2, p. 174****B80-10197****A SOLAR-ENERGY SYSTEM IN PENNSYLVANIA**

Innovator not given (Energy Resources Center of Honeywell, Inc.) Sep. 1980

**M-FS-25427****Vol. 5, No. 2, p. 174**

Report describes development of solar-heating system for single-family residence at site in Pennsylvania. 143 page document, containing detailed drawings, performance specifications, cost tradeoff studies, and other material, can assist those planning similar systems in areas of similar climate.

**B80-10198****INSTALLATION GUIDELINES FOR THE PENNSYLVANIA SYSTEM**

Innovator not given (Energy Resources Center of Honeywell, Inc.) Sep. 1980

**M-FS-25424****Vol. 5, No. 2, p. 175**

Installation of solar-energy system is documented in report. Included are procedures for filling and testing entire system, along with installation guidelines for each major subsystem.

**B80-10199****A SOLAR-ENERGY SYSTEM IN MINNESOTA**

Innovator not given (Energy Resources Center of Honeywell, Inc.) Sep. 1980

**M-FS-25428****Vol. 5, No. 2, p. 175**

Report discusses system for Minnesota residence. Final design was arrived at that will meet 45 percent of total average heating load and will supply 40 gallons of potable water at 140 F. Document contains detailed drawings, specifications, and cost tradeoff studies. Also included are outline of proposed installation, operation and maintenance manual, and analysis of hazards.

**B80-10200****SOLAR-ENERGY SYSTEM EVALUATION-PENNSYLVANIA SITE**

Innovator not given (Federal Systems Division of IBM Corp.) Sep. 1980 See also B79-10336

**M-FS-25434****Vol. 5, No. 2, p. 175**

Solar-heating and hot-water system installed in single-family residence test program. Results of tests are available in 82 page report.

**B80-10201****A HOT-WATER SYSTEM TESTED ONSITE--TOGUS, MAINE**

Innovator not given (Federal Systems Division of IBM Corp.) Sep. 1980 See also B78-10334

**M-FS-25435****Vol. 5, No. 2, p. 175**

Performance close to design specifications was verified over one year study in solar hot-water system. Study looked at long-term operation of system installed in residential building in Togus, Maine.

**B80-10202****A RELIABLE SOLAR-HEATING SYSTEM--HUNTSVILLE, ALABAMA**

Innovator not given (City of Huntsville) Sep. 1980

**M-FS-25431****Vol. 5, No. 2, p. 176**

Final report on solar-heating demonstration project in Huntsville, Alabama, is rich in technical data, planning considerations, test and maintenance data, and other information. It can be useful reference for those planning similar systems.

**B80-10203****SOLAR-HEATING AND COOLING DEMONSTRATION PROJECT**

Innovator not given (Florida Solar Energy Center of the Univ. of Florida) Sep. 1980

**M-FS-25443****Vol. 5, No. 2, p. 176**

Florida Solar Energy Center has retrofitted office building.

approximately 5,000 square feet of area, with solar heating and air-conditioning. Information on operation, installation, controls, and hardware for system is contained in 164 page report. Document includes manufacturer's product literature and detailed drawings.

**B80-10318****MULTIPLEXED LOGIC CONTROLS SOLAR-HEATING SYSTEM**

J. R. CURRIE

Jan. 1981 See also B78-10182

**M-FS-25287****Vol. 5, No. 3, p. 297**

Four inexpensive thermocouples monitor temperatures at key points. On command from logic circuitry, dampers open and close to direct airflow, and fan and auxiliary heater shut on or off. Controlling complex arranges heating system in any one of four operating configurations.

**B80-10319****FOUR-CELL SOLAR TRACKER**

C. M. BERDAHL (Caltech)

Jan. 1981

**NPO-14811****Vol. 5, No. 3, p. 298**

Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

**B80-10320****OFFSET PARABOLOIDAL SOLAR CONCENTRATOR**

E. Y. CHOW (Caltech)

Jan. 1981

**NPO-14846****Vol. 5, No. 3, p. 299**

Section of conventional paraboloid, offset from its major axis, is used as reflector in solar concentrator. Design increases solar gathering efficiency by 3 to 4 percent by eliminating shadowing and blocking of solar rays. In addition, reflector can be folded toward receiver, reducing wind-loading and making maintenance easier.

**B80-10321****MINIATURE PERSONAL UV SOLAR DOSIMETER**

R. R. ADAMS, I. O. MACCONOCHIE, and B. D. POOLE, JR.

Jan. 1981

**LANGLEY-12469****Vol. 5, No. 3, p. 300**

Small light-powered meter measures accumulated radiation in ultraviolet or other selected regions. Practical advantages are device's low cost, small size, accuracy, and adaptability to specific wave-band measurements. Medical applications include detection of skin cancer, vitamin D production, and jaundice. Dosimeter also measures sunlight for solar energy designs, agriculture and meteorology, and monitors stability of materials and environmental and occupational lighting.

**B80-10322****ECONOMICAL ULTRAVIOLET RADIOMETER**

C. H. SEAMAN (Caltech) and R. S. ESTEY (Kirk-Mayer, Inc.)

Jan. 1981

**NPO-14843****Vol. 5, No. 3, p. 301**

Inexpensive, cosine-corrected radiometer measures ultraviolet radiation. In field use, instrument tests materials for effects of ultraviolet exposure and studies solar-cell degradation. It consists of cup-shaped diaphragm and diffusing dome for corrected response, two filters that select wavelength range, and silicon solar cell. Filters control response within passband of 300 to 400 nm.

**B80-10323****PREDICTING AND MONITORING DUSTSTORMS**

P. M. WOICESHYN (Caltech)

Jan. 1981

**NPO-14277****Vol. 5, No. 3, p. 302**

Information on duststorms is processed by terminal receiving

### 03 PHYSICAL SCIENCES

signals from two geosynchronous satellites. Data are correlated with that of other agencies to produce color maps depicting storm area. Series of maps reveals storm direction, warning regions up to 24 hours before they are struck.

**B80-10324**

#### NOISE SUPPRESSION IN FORWARD-SCATTERING OPTICAL INSTRUMENTS

J. M. FRANKE and L. R. GARTRELL  
Jan. 1981

**LANGLEY-12730**

Apertures and stops located at conjugate points in receiver optics reduce noise caused by scattered light. They are placed as real, inverse images of each other, so only light from sample volume reaches detector. Noise suppression technique increases signal-to-noise ratio on order of 15 dB.

**B80-10325**

#### ENERGY-REDUCTION CONCEPT FOR INCANDESCENT LAMPS

K. H. VORHABEN (Lockheed Electronics Co.)  
Jan. 1981

**MSC-18757**

Reusable infrared reflector maintains filament temperature and reduces power requirements. Fixed installed over light bulb directs energy formerly lost back to lamp filament. This energy aids electric current in heating filament, allowing lower-wattage bulb to produce same amount of light as higher-wattage bulb in ordinary fixture.

**B80-10326**

#### ACOUSTICALLY-TUNED OPTICAL SPECTROMETER

E. SKLAR (American Science and Engineering, Inc.)  
Jan. 1981

**HQN-10924**

Lens arrangement corrects for aberrations and gives resolution of 0.7 seconds of arc. In spectrometer, light from telescope is relayed by doublet lens to acoustically tuned optical filter. Selected wavelengths are relayed by triplet lens to charge coupled device camera. Intervening cylindrical lens, tilted at 12 degree angle, corrects for astigmatism and coma introduced by two element birefringent crystal in filter.

**B80-10327**

#### COMBINED PHOTOVOLTAIC AND THERMAL-STORAGE MODULE

J. W. STULTZ (Caltech)  
Jan. 1981

**NPO-14591**

Module uses phase change heat absorbing wax to reduce peak temperatures, increasing electrical efficiency. Wax makes module more cost effective than conventional thermomodules by also storing thermal energy for air and water heating.

**B80-10328**

#### TRACKING FALLING OBJECTS

R. E. FRAZER (Caltech)  
Jan. 1981

**NPO-14813**

Moving lens follows movement of object accelerated by gravity. Lenses and mirrors maintain constant magnification regardless of distance between moving optical carriage mechanism and fixed telescope. Device tracks objects up to 2 cm in diameter over vertical distance of 2 m.

**B80-10329**

#### DIPLEXER FOR LASER-BEAM HETERODYNE RECEIVER

G. KOEPPF (Phoenix Corp.)  
Jan. 1981

**GSFC-12589**

Four prism interferometer superposes local oscillator beam on signal beam. Position of movable prism directs incident energy in both beams out one output port. Output port is spatially separated from input ports, and there is no limitation on size of frequency difference between laser beams.

**B80-10330**

#### POWERFUL COPPER CHLORIDE LASER

T. J. PIVIROTTO (Caltech)

Jan. 1981

**NPO-14782**

**Vol. 5, No. 3, p. 308**

Two design innovations give up to thirtyfold increase in power in 300 W laser amplifier. Heat is removed by flowing lasing gas through system, allowing larger lasing volumes. Fast, uniform excitation discharges are obtained with transverse, rather than longitudinal, electrodes.

**B80-10331**

#### HEAT FOR FILM PROCESSING FROM SOLAR ENERGY

Innovator not given (Interactive Resources, Inc.) Jan. 1981 See also DOE/NASA-CR-161414 (N80-22781)

**M-FS-25444**

**Vol. 5, No. 3, p. 309**

Report describes solar water heating system for laboratory in Mill Valley, California. System furnishes 59 percent of hot water requirements for photographic film processing. Text of report discusses system problems and modifications, analyzes performance and economics, and supplies drawings and operation/maintenance manual.

**B80-10332**

#### SOLAR HEATER/COOLER FOR MASS MARKET

Innovator not given (Space Div. of GE) Jan. 1981 See also DOE/NASA-CR-161422 (N80-24746)

**M-FS-25452**

**Vol. 5, No. 3, p. 309**

Report describes project to design, build, and test simple and affordable solar systems. Four combinations of heating, cooling, and domestic hot water supply systems were developed and installed. Test sites, plan for systems and components, and performance are discussed; text is complimented by detailed drawings and test data.

**B80-10333**

#### DATA-ACQUISITION AND CONTROL SYSTEM FOR SEVERE ENVIRONMENTS

Innovator not given (Wyle Labs., Inc.) Jan. 1981 See also DOE/NASA-CR-161449 (N80-25783)

**M-FS-25471**

**Vol. 5, No. 3, p. 310**

Report evaluates control system by measuring accuracy and performance of system subcomponents, including interface wiring unit, power controller, and tape recorder. Test parameters establish variety of severe operation environments. Text features test program descriptions, sample readouts, and results. Summary of custom solar system simulator is included.

**B80-10334**

#### SOLAR HEATER/COOLER FOR MASS MARKET

Innovator not given (Lutz-Sotire Partnership) Jan. 1981 See also DOE/NASA-CR-161436 (N80-27800)

**M-FS-25468**

**Vol. 5, No. 3, p. 310**

Electrical energy consumption is reduced by half for 2 1/2 story office building. 138 liquid flat plate solar collectors are mounted on building roof, which faces nearly due south. Final project report includes detailed drawings and photographs, operation and maintenance manual, acceptance test plan, and related information.

**B80-10335**

#### SOLAR-HEATED AND COOLED OFFICE BUILDING--DALTON, GEORGIA

Innovator not given (N. GA. Area Planning and Development Commission) Jan. 1981 See also DOE/NASA-CR-161273 (N80-11555)

**M-FS-25451**

**Vol. 5, No. 3, p. 310**

Modern energy efficient building is heated and cooled by five rows of flat plate solar collectors; its domestic hot water needs are also met. Final report includes detailed drawings and photographs, manufacturer's literature, performance specifications, acceptance test data, and performance verification statements. Operation and maintenance manual is also attached.

**B80-10336**

#### SOLAR-HEATING AND HOT WATER SYSTEM--ST. LOUIS, MISSOURI

Innovator not given (William Tao and Assoc.) Jan. 1981 See also DOE/NASA-CR-161420 (N80-24744)

**M-FS-25453**

**Vol. 5, No. 3, p. 311**

Sunlight supplies about half heat energy needs of small office. System includes six tilt-adjustable commercial collectors and 1,000 gallon energy storage tank. Report contains description of system and components, drawings and photographs, manufacturer's data, and related material.

**B80-10337**

**SOLAR HEATING FOR AN ELECTRONICS MANUFACTURING PLANT--BLUE EARTH, MINNESOTA**

Innovator not given (Telex Comm., Inc.) Jan. 1981 See also DOE/NASA-CR-161437 (N80-25786)

**M-FS-25459**

**Vol. 5, No. 3, p. 311**

Partial space heating for 97,000 square foot plant is supplied by 360 flat plate solar collectors; energy is sorted as heat in indoor 20,000 gallon water tank. System includes all necessary control electronics for year round operation. During December 1978, solar energy supplied 24.4 percent of building's space heating load.

**B80-10338**

**COSTS AND DESCRIPTION OF A SOLAR-ENERGY SYSTEM--AUSTIN, TEXAS**

Innovator not given (Radian Corp.) Jan. 1981 See also DOE/NASA-CR-161442 (N80-25784)

**M-FS-25472**

**Vol. 5, No. 3, p. 312**

Heating and cooling system uses Fresnel lens concentrating collectors. Major system components are 36 collectors, 1,500 gallon thermal storage tank, absorption cooler, cooling tower, heating coil, pumps, heat exchanger, and backup heating and air conditioning. Final report includes detailed breakdown of component and installation costs for seven project subsystems.

**B80-10339**

**SOLAR ENERGY IN A HISTORICAL CITY--ABBREVILLE, SOUTH CAROLINA**

Innovator not given (Gilliland-Bell Assoc., Inc.) Jan. 1981 See also DOE/NASA-CR-161443 (N80-25788)

**M-FS-25479**

**Vol. 5, No. 3, p. 312**

Direct air solar heating does not alter building appearances, winning approval of state and local historical societies. Final report on system contains performance data, drawings, photographs, and other information. Installation manual is included as appendix.

**B80-10340**

**MUNICIPAL RECREATION CENTER IS HEATED AND COOLED BY SOLAR ENERGY**

Innovator not given (Travis-Braun and Assoc., Inc.) Jan. 1981 See also DOE/NASA-CR-161444 (N80-26766)

**M-FS-25478**

**Vol. 5, No. 3, p. 312**

Major fraction of energy requirements for community building is supplied by Sun. The 238 flat plate solar collectors are roof mounted on single story structure enclosing gymnasium, locker area, and health care clinic; heat exchanger transfers collected energy to 6,000 gallon storage tank. Final report chronicles project from inception to completion, documenting performance, costs, operating modes, and data acquisition system. Appendix contains manufacturers' product literature and engineering drawings.

**B80-10341**

**SOLAR ENERGY MEETS 50 PERCENT OF MOTEL HOT WATER NEEDS--KEY WEST, FLORIDA**

Innovator not given (Quality Inn of Key West) Jan. 1981 See also DOE/NASA-CR-161434 (N80-23774)

**M-FS-25454**

**Vol. 5, No. 3, p. 313**

Final report describes domestic water preheat installed in 148 room motel. Equipment meets 50 percent of needs when motel is 100 percent occupied; equivalently, it supplies 100 percent of hot water when occupancy is 50 percent. System consists of 1,400 square feet of flat plate liquid solar collectors, storage tanks, pump, controller, and hardware.

**B80-10342**

**SOLAR HEATED OFFICE COMPLEX--GREENWOOD, SOUTH CAROLINA**

Innovator not given (W. E. Gilbert & Assoc., Inc.) Jan. 1981 See also DOE/NASA-CR-161435 (N80-23776)

**M-FS-25458**

**Vol. 5, No. 3, p. 313**

Report contains thorough documentation of project meeting 85 percent of building heat requirements. System uses roof mounted recirculating water solar panels and underground hot water energy storage. Aluminum film reflectors increase total solar flux captured by panels.

**B80-10343**

**RESIDENTIAL SYSTEM TESTED IN AN OFFICE--HUNTSVILLE, ALABAMA**

Innovator not given (IBM Federal Systems Div.) Jan. 1981 See also DOE/NASA-CR-161464 (N80-25790)

**M-FS-25481**

**Vol. 5, No. 3, p. 314**

System does not meet its design specifications if not matched with intended application. Key differences between office and residential application were (1) space heating demand at office was greater than design value because thermostat was not held at 70 degrees F as specified, and (2) much energy collected and stored went unused because office used relatively little hot water. Report discusses observations and contains design, performance, and test information.

**B80-10344**

**SOLAR HEATED TWO LEVEL RESIDENCE--AKRON, OHIO**

Innovator not given (IBM Federal Systems Div.) Jan. 1981 See also DOE/NASA-CR-161465 (N80-25791)

**M-FS-25480**

**Vol. 5, No. 3, p. 314**

Report describes 1 year evaluation of solar heating and hot water system which satisfied 24 percent of energy requirements. System uses flat plate solar collectors with air as heat transport medium. Rock storage bin stores collected energy; air to liquid heat pump supplies backup heat.

**B80-10345**

**SOLAR ENERGY WORKSHOP--TUCSON, ARIZONA**

Innovator not given (IBM Federal Systems Div.) Jan. 1981 See also DOE/NASA-CR-161450 (N80-25787)

**M-FS-25473**

**Vol. 5, No. 3, p. 314**

Showplace for solar energy utilization includes complex solar heating and cooling system which supplies 95 percent of space heat requirements. Project utilized superior construction techniques and quality materials, and full time maintenance staff was assigned to keep systems operating.

**B80-10346**

**RESIDENTIAL SOLAR HOT WATER SYSTEM--TEMPE, ARIZONA**

Innovator not given (IBM Federal Systems Div.) Jan. 1981 See also DOE/NASA-CR-161466 (N80-26778)

**M-FS-25490**

**Vol. 5, No. 3, p. 315**

Domestic hot water for single story home is heated by two 4 by 8 foot solar collectors. Solar energy saved 5.54 million Btu in six month period; savings with increased water consumption would be significantly higher.

**B80-10347**

**RESIDENTIAL SOLAR HEATING INSTALLATION--STILLWATER, MINNESOTA**

Innovator not given (Energy Resources Ctr. of Honeywell, Inc.) Jan. 1981 See also B80-10199; DOE/NASA-CR-161480 (N80-28861)

**M-FS-25504**

**Vol. 5, No. 3, p. 315**

Report presents installer guidelines for network subsystems, including filling and testing. Information on operating procedures, controls, caution requirements, and routine scheduled maintenance is included as written procedures, schematics, detailed drawings, and manufacturer's component data.

**B80-10348**

**THREE STORY RESIDENCE WITH SOLAR HEAT--MANCHESTER, NEW HAMPSHIRE**

Innovator not given (IBM Federal Systems Div.) Jan. 1981 See

## 03 PHYSICAL SCIENCES

also DOE/NASA-CR-161471(N80-27802)

**M-FS-25499**

When heat lost through ducts is counted for accurate performance assessment, solar energy supplied 56 percent of building's space heating load. Average outdoor temperature was 53 degrees F; average indoor temperature was 69 degrees F. System operating modes included heating from solar collectors, storing heat, heating from storage, auxiliary heating with oil fired furnace, summer venting, and hot water preheating.

**B80-10349**

### A HIGH SCHOOL IS SUPPLIED WITH SOLAR ENERGY--DALLAS, TEXAS

Innovator not given(Dallas Independent School District) Jan. 1981 See also DOE/NASA-CR-161482(N80-29847)

**M-FS-25514**

System preheats 100 percent of domestic hot water and supplies almost half of heating requirements for three story, concrete frame, brick building with basement. Final report includes details of installation, operation and maintenance, contract negotiation, and acceptance test plan.

**B80-10452**

### MULTIBEAM COLLIMATOR USES PRISM STACK

P. O. MINOTT

Apr. 1981

**GSFC-12608**

Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

**B80-10453**

### PULSE-SHAPING CIRCUIT FOR LASER EXCITATION

J. B. LAUDENSLAGER (Caltech) and T. J. PACALA (Caltech)

Apr. 1981

**NPO-14556**

Narrower, impedance-matched pulses initiate stabler electric discharges for gas lasers. Discharges are more efficient, more compact, capable of high repetition rate, and less expensive than conventional electron-beam apparatus, but gas tends to break down and form localized arcs. Pulse-shaping circuit compresses width of high-voltage pulses from relatively-slow rise-time voltage generator and gradually grades circuit impedance from inherent high impedance of generator to low impedance of gas.

**B80-10454**

### FIELD LIMITER FOR SOLAR RADIOMETERS

C. M. BERDAHL (Caltech)

Apr. 1981

**NPO-14781**

Lenses project solar image onto aperture to exclude circumsolar radiation, more precisely measuring energy captured by receiver apertures of highly-concentrating solar thermal-energy converters. First version uses achromatic objective lens to form image of Sun at aperture ahead of radiometer cavity. Smaller second version with shorter focal length forms image magnified by another lens and thrown onto aperture. Both Versions require calibration against standard radiometer.

**B80-10455**

### GAS-LASER POWER MONITOR

C. E. RUSS, JR.

Apr. 1981

**LANGLEY-12682**

Device attaches simply to front of laser housing for continuous monitoring of power output. Monitor is calibrated to read either total output or power generated in test volume. It is fabricated from four black-anodized aluminum parts; crown glass positioned at Brewster angle reflects 0.33 percent of beam onto photodiode calibrated for electrical output proportional to laser power. Unlike conventional calorimeter, monitor does not interrupt laser

**Vol. 5, No. 3, p. 315**

beams, and fast-response diode allows instantaneous tracking of power fluctuations.

**B80-10456**

### FIBER OPTICS TRANSMIT CLOCK SIGNAL MORE RELIABLY

G. F. LUTES, JR. (Caltech)

Apr. 1981

**NPO-14749**

**Vol. 5, No. 4, p. 430**

Optical automatic gain control smooths maser clock amplitude fluctuations without phase shift. Uncomplicated optical system is more reliable than electrical transmission circuits which require phase-locked loops to compensate for shift. Maser feeds reference signal to linear fiber-optic analog transmitter which emits modulated laser beam directed to splitter. Splitter consists of dichroic mirrors and associated lenses for distributing beam to output ports. Cables attached there guide signals to receiving station.

**B80-10457**

### REDUCED VISCOSITY INTERPRETED FOR FLUID/GAS MIXTURES

D. H. LEWIS (Caltech)

Apr. 1981

**NPO-14976**

**Vol. 5, No. 4, p. 431**

Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.

**B80-10458**

### TUNABLE PULSED CARBON DIOXIDE LASER

G. J. MEGIE (Caltech) and R. T. MENZIES (Caltech)

Apr. 1981

**NPO-14984**

**Vol. 5, No. 4, p. 432**

Transverse electrically-excited-atmosphere (TEA) laser is continuously tunable over several hundred megahertz about centers of spectral lines of carbon dioxide. It is operated in single longitudinal mode (SLM) by injection of beam from continuous-wave, tunable-waveguide carbon dioxide laser, which serves as master frequency-control oscillator. Device measures absorption line of ozone; with adjustments, it is applicable to monitoring of atmospheric trace species.

**B80-10459**

### SHORT-RANGE SELF-PULSED OPTICAL RADAR

C. M. BERDAHL (Catech)

Apr. 1981

**NPO-14901**

**Vol. 5, No. 4, p. 433**

Laser for radar device is retriggered when previous laser pulse is reflected from target. Target range R is computed from number of pulses triggered per time interval. Radar accurately measures distances up to 500 meters; it is useful for determining surface shape of reflectors in large, high-gain, highly directional antennas and for other short-range surveying.

**B80-10460**

### SOLAR-SITE TEST MODULE

R. R. KISSEL and D. R. SCOTT

Apr. 1981 See also DOE/NASA-TM-78291(N80-30899)

**M-FS-25543**

**Vol. 5, No. 4, p. 433**

Report describes small test set which interrogates solar-energy data acquisition systems. Lightweight, portable set includes microcomputer with keyboard, alphanumeric display, printer, cassette recorder/player for storing programs and data, and cable for connection to Site Data Acquisition System (SDAS). Unit is operated by BASIC program and Assembly language. Report is specific to DOE/NASA application yet contains general information to assist in designing similar units.

**B80-10461**

### EVALUATION OF AN EVACUATED-TUBE LIQUID SOLAR COLLECTOR

Innovator not given(Solar Energy Systems Div. of Wyle

Labs) Apr. 1981 See also DOE/NASA-CR-161421(N80-24745); B80-10050

**M-FS-25450**

Indoor and outdoor thermal performances of collectors are compared in report. Tests conducted on indoor solar simulator with data from both diffuse and specular reflectors are presented graphically and in tables. Comparisons with previous data for prototype show effects of improved manifold.

**B80-10462**

**SOLAR WATER HEATER DESIGN PACKAGE**

Innovator not given(Elcam, Inc.) Apr. 1981 See also DOE/NASA-CR-150605(N80-27518)

**M-FS-25521**

Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

**B80-10463**

**FIVE-CITY ECONOMICS OF A SOLAR HOT-WATER-SYSTEM**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161510(N80-29854)

**M-FS-25532**

Report projects energy savings and system costs for five sites using analysis of actual solar energy installation performance in Togus, Maine. Maine system supplies 75 percent of hot water needed for single-family residence; economic payback period is 19 years. Benefits for all sites depend on maintenance or decrease of initial investment required and continuing increase in cost of conventional energy. Report includes analysis weighing potential changes in variables used to evaluate system profitability.

**B80-10464**

**ECONOMIC EVALUATION OF A SOLAR HOT-WATER-SYSTEM**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161492(N80-31872)

**M-FS-25529**

Analysis shows economic benefits at six representative sites using actual data from Tempe, Arizona and San Diego, California installations. Model is two-tank cascade water heater with flat-plate collector array for single-family residences. Performances are forecast for Albuquerque, New Mexico; Fort Worth, Texas; Madison, Wisconsin; and Washington, D.C. Costs are compared to net energy savings using variables for each site's environmental conditions, loads, fuel costs, and other economic factors; uncertainty analysis is included.

**B80-10465**

**RESIDENTIAL SOLAR-HEATING SYSTEM USES PYRAMIDAL OPTICS**

Innovator not given(Wormser Scientific Corp.) Apr. 1981 See also DOE/NASA-CR-161203(N80-33864)

**M-FS-25567**

Report describes reflective panels which optimize annual solar energy collection in attic installation. Subunits include collection, storage, distribution, and 4-mode control systems. Pyramid optical system heats single-family and multi-family dwellings.

**B80-10466**

**SOLAR-HEATED BANK-MARKS MISSISSIPPI**

Innovator not given(First National Bank of Clarksdale) Apr. 1981 See also DOE/NASA-CR-161549(N80-33858)

**M-FS-25558**

Report describes air solar-energy collectors which supply 60 percent of space heating load for full-service bank. Contemporary structure supports 468 square feet of flat-plate arrays, and features onsite temperature and power measurement readouts. Air-flow collectors minimize problems experienced with conventional liquid solar equipment and eliminate need for heat exchanger for space heating.

**B80-10467**

**SOLAR WATER-HEATING PERFORMANCE EVALUATION-SAN DIEGO, CALIFORNIA**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161481(N80-27806)

**M-FS-25502**

Report describes energy saved by replacing domestic, conventional natural gas heater with solar-energy subsystem in single-family residence near San Diego, California. Energy savings for 6 month test period averaged 1.089 million Btu. Collector array covered 65 square feet and supplied hot water to both 66-gallon solar storage tank and 40-gallon tank for domestic use. Natural gas supplied house's auxiliary energy.

**B80-10468**

**SOLAR-HEATED AND COOLED SAVINGS AND LOAN BUILDING-1-LEAVENWORTH, KANASAS**

Innovator not given(Mutual Savings & Loan Association of Leavenworth, Kanas) Apr. 1981 See also DOE/NASA-CR-161484(N80-29848)

**M-FS-25520**

Report describes heating and cooling system which furnishes 90 percent of annual heating load, 70 percent of cooling load, and all hot water for two-story building. Roof-mounted flat-plate collectors allow three distinct flow rates and are oriented south for optimum energy collection. Building contains fully automated temperature controls is divided into five temperature-load zones, each with independent heat pump.

**B80-10469**

**SOLAR-ENERGY LANDMARK BUILDING--COLUMBIA, MISSOURI**

Innovator not given(Building and Grounds Department of Stephens College) Apr. 1981 See also DOE/NASA-CR-161485(N80-29849)

**M-FS-25524**

Report includes design, cost, installation, maintenance, and performance details for attractive solar installation which supplies space heating for four-story Visitors Center. 176 hydronic flat-plate collectors, water-to-water heat exchanger, and 5,000-gallon storage tank comprise system which provides 71 percent of building's heat. Natural-gas-fired boiler supplies auxiliary hot water to heating system when necessary.

**B80-10470**

**SOLAR HEATING FOR AN OBSERVATORY--LINCOLN, NEBRASKA**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161495(N80-29851)

**M-FS-25525**

Report describes solar-energy system for 50 seat observatory that provides 60 percent of space heating needs. System includes 9 flat-plate collectors, rock storage bin, blowers, controls, ducting, and auxiliary natural-gas furnace; it has five operation modes. Net energy savings were 11.31 million Btu for 12 months, or equivalent of 1.9 barrels of oil. Report appendixes list performance factor definitions, performance equations, and average area weather conditions.

**B80-10471**

**TWO-STORY RESIDENCE WITH SOLAR HEATING--NEWMAN, GEORGIA**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161494(N80-29853)

**M-FS-25526**

Report evaluates performance of warm-air collector system for 11 month period and provides operation and maintenance information. System consists of 14 warm air collectors, rock-storage bin, air handler, heat exchangers, hot-water preheat tank, associated controls, plumbing, and air ducting. Average building temperature was maintained at 72 F (22 C); solar equipment provided 47 percent of space-heating requirement.

**B80-10472**

**SOLAR-ENERGY HEATS A TRANSPORTATION TEST CENTER--PUEBLO, COLORADO**

## 03 PHYSICAL SCIENCES

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161493(N80-29850)

**M-FS-25527** Vol. 5, No. 4, p. 438

Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.

**B80-10473**

**SINGLE-FAMILY-RESIDENCE SOLAR HEATING--CARLSBAD, NEW MEXICO**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161508(N80-29856)

**M-FS-25528** Vol. 5, No. 4, p. 438

Solar-heating and hot-water system includes 408 square feet of flat-plate air collectors, rock storage bin, energy transport system, air-to-water heat exchanger, controls, and hot-water preheat tank. Hot-air oil furnace supplies auxiliary space heating, and electricity powers air-handler blower and hot water preheat pump. For 12 month period, system provided 43 percent of space-heating and 53 percent of hot-water energy; net energy savings were 23,072 million Btu.

**B80-10474**

**MULTIMODE SOLAR-HEATING SYSTEM--COLUMBIA, SOUTH CAROLINA**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161546(N80-31880)

**M-FS-25529** Vol. 5, No. 4, p. 439

Report describes failure of six-mode pyramidal-optics system to reduce winter energy savings. Over 12 month period, control problems, energy dissipation, and high operating-energy requirements undermined system efficiency. Energy savings were maximal when system in direct space-heating or hot-water preheating mode. In least efficient mode, heat pumps alternatively mingled storage or collector energy, and space heating was provided by electric heat strip.

**B80-10475**

**SOLAR-HEATED SWIMMING SCHOOL--WILMINGTON, DELAWARE**

Innovator not given(Cooperson Brack Association) Apr. 1981 See also DOE/NASA-CR-161538(N80-31878)

**M-FS-25548** Vol. 5, No. 4, p. 439

Report describes operation, installation, and performance of solar-energy system which provides alternative to natural gas pool heating. System is comprised of 2,500 square feet of liquid flat-plate collectors connected to 3,600 gallon; gallongallon storage tank, with microcomputer-based controls. Extension of building incorporates vertical-wall, passive collection system which provides quarter of heated fresh air for office.

**B80-10476**

**WINTER PERFORMANCE OF A DOMESTIC SOLAR-HEATING SYSTEM--DUFFIELD, VIRGINIA**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161507(N80-30892)

**M-FS-25540** Vol. 5, No. 4, p. 439

Sunlight supplies 39 percent of heat load, saving 9 barrels of fuel oil in one heating season. Report describes system installation in two-story, single-family residence. Energy is collected with roof-mounted air flat-plate collectors, stored in rock bin, and transferred to water preheat tank whenever system is storing energy; heat pump supplies heat to house.

**B80-10477**

**ONE-YEAR ASSESSMENT OF A SOLAR SPACE/WATER HEATER--CLINTON, MISSISSIPPI**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161509(N80-30893)

**M-FS-25539** Vol. 5, No. 4, p. 440

Unit called 'System 4' integrated into space-heating and

hot-water systems of dormitory satisfied 32 percent of building heat load. System 4 includes flat-plate air collectors, circulation blowers, rock storage bed with heat exchanger, two hot water tanks, and auxiliary heaters. Report describes performance of system and subsystems, operating-energy requirements and savings, and performance parameters.

**B80-10478**

**FIRE-STATION SOLAR-ENERGY SYSTEM--KANSAS CITY, MISSOURI**

Innovator not given(City of Kansas City, Missouri) Apr. 1981 See also DOE/NASA-CR-161513(N80-30895)

**M-FS-25538** Vol. 5, No. 4, p. 440

Screen-walled, flat-plate air collectors are part of award-winning architectural design; concrete-box storage subsystem, domestic hot-water preheat tank, blowers, pumps, heat exchangers, ducting, controls, and plumbing complete solar system. Design provides half of space heating and 75 percent of heat for domestic hot-water for fire station. Report includes historical narrative of project along with detailed drawings, charts, and product literature.

**B80-10479**

**SOLAR-HEATED RANGER STATION--GLENDO, WYOMING**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161520(N80-30896)

**M-FS-25537** Vol. 5, No. 4, p. 440

Report evaluates solar-energy system in residential ranger station. Installation provided 22 percent of space-heating and 58 percent of hot-water energy requirements. Annual net energy savings were 30 million Btu. Report describes system and its subsystems: collector array, storage, hot-water, and space-heating. Average weather conditions of test site, performance values, and energy savings are listed.

**B80-10480**

**ECONOMIC EVALUATION OF A SOLAR HOT-WATER SYSTEM--PALM BEACH COUNTY, FLORIDA**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See also DOE/NASA-CR-161512(N80-30894)

**M-FS-25536** Vol. 5, No. 4, p. 441

Report projects solar-energy costs and savings for residential hot-water system over 20 year period. Evaluation uses technical and economic models with inputs based on working characteristics of installed system. Primary analysis permits calculation of economic viability for four other U.S. sites.

**B80-10481**

**RESIDENTIAL SYSTEM--LANSING, MICHIGAN**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr.

1981 See also DOE/NASA-CR-161491(N80-29855)

**M-FS-25530** Vol. 5, No. 4, p. 411

Air collectors are combined with water storage to supply 15 percent of space-heating and hot-water load to residence. Report discusses typical system operation, energy savings, and maintenance for 11 month period. Although unusual combination of water storage with air collecting medium creates loss of heat exchanging efficiency, net energy savings were 21 million Btu.

**B80-10482**

**SOLAR SPACE-HEATING SYSTEM--YOSEMITE NATIONAL PARK, CALIFORNIA**

Innovator not given(Federal Systems Div. of IBM Corp.) Apr. 1981 See Also DOE/NASA-CR-161539(N80-31883)

**M-FS-25553** Vol. 5, No. 4, p. 442

A 12 months performance of Visitors Center installation suffered from low insolation, high energy dissipation, and equipment breakdown. System has 980 square feet of liquid flat-plate collectors, water energy storage, 4-mode control, heat exchangers, pumps, and plumbing. Design expected system to supply over 50 percent of annual heating demand, but only 109 million Btu were conserved.

**B80-10483**

**MOTEL SOLAR-HOT-WATER SYSTEM--DALLAS, TEXAS**

## 04 MATERIALS

Innovator not given(Day's Inn of America, Inc.) Apr. 1981 See also DOE/NASA-CR-161570(N81-10521)

### M-FS-25576

Report describes system which meets 64 percent of hot water requirements of 120 room motel. Key system components include 1,000 square foot, roof-mounted collector array, 1,000 gallon storage tank, tube-in-shell heat exchanger, and three domestic hot-water tanks. Report contains calibration instructions for differential temperature controllers, shutdown procedures, and operation guidelines, performance analysis, and manufacturers' maintenance literature.

### B80-10484

#### MOTEL SOLAR-HOT-WATER SYSTEM WITH NONPRESSURIZED STORAGE--JACKSONVILLE, FLORIDA

Innovator not given(Day's Inn of America, Inc.) Apr. 1981 See also DOE/NASA-CR-161560(N81-10523)

### M-FS-25569

Modular roof-mounted copper-plated arrays collect solar energy; heated water drains from them into 1,000 gallon nonpressurized storage tank which supplies energy to existing pressurized motel hot water lines. System provides 65 percent of hot water demand. Report described systems parts and operation, maintenance, and performance and provides warranty information.

### B80-10485

#### CLOSED-CIRCULATION SYSTEM FOR MOTEL HOT WATER--SAVANNAH, GEORGIA

Innovator not given(Day's Inn of America, Inc.) Apr. 1981 See also DOE/NASA-CR-161561(N81-10522)

### M-FS-25572

Inexpensive guy wires support roof-mounted solar-energy collectors. Mounting system withstands 120 mph winds with no roof penetrations. Collectors circulate 50 percent ethylene glycol solution eliminating need for drain system for freeze protection. Heat exchanger transfers energy to domestic hot water which heats to 140 F.

### B80-10486

#### SOLAR HEATING FOR A RESTAURANT--NORTH LITTLE ROCK, ARKANSAS

Innovator not given(Shoney's South, Inc.) Apr. 1981 See also DOE/NASA-CR-161557(N81-10520)

### M-FS-25568

Hot water consumption of large building affects solar-energy system design. Continual demand for hot water at restaurant makes storage less important than at other sites. Storage capacity of system installed in December 1979 equals estimated daily hot-water requirement. Report describes equipment specifications and modifications to existing building heating and hot water systems.

### B80-10487

#### MOTEL SOLAR HOT-WATER INSTALLATION--ATLANTA, GEORGIA

Innovator not given(Day's Inn of America, Inc.) Apr. 1981 See also DOE/NASA-CR-161559(N81-10519)

### M-FS-25564

Analysis of hardness of local water, average insolation for site, and daily hot water requirements insures suitability of solar-energy system design. Report describes two units which are designed to supply 81 percent of motel's annual hot water demand based on hypothetical 85 percent occupancy. Report includes drawings, operating and maintenance instructions, and test results for 1 day of operation.

### B80-10488

#### BUILDING WITH INTEGRAL SOLAR-HEAT STORAGE--STARKVILLE, MISSISSIPPI

Innovator not given(Security State Bank, Starkville, Mississippi) Apr. 1981 See also DOE/NASA-CR-161550(N81-10518)

### M-FS-25559

Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space

heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.

## 04 MATERIALS

### B80-10059

#### CONTAINERLESS MATERIALS PROCESSING IN THE LABORATORY

L. L. LACY, D. B. NISEN, T. J. RATHZ, and M. B. ROBINSON Aug. 1980

### M-FS-25242

### Vol. 5, No. 1, p. 45

Drop tube makes possible preparation of exotic materials. The 100 foot tube is oriented precisely vertical to prevent free-falling drop from hitting tube walls. Inert-gas supply, evacuation pumps, viewing ports, and flexibility in choice of melt technique allow precise control and monitoring of solidification.

### B80-10060

#### MEASURING COAL DEPOSITS BY RADAR

T. A. BARR

Aug. 1980

### M-FS-23922

### Vol. 5, No. 1, p. 46

Front-surface, local-oscillator radar directly compares frequency of signals reflected from front and back surfaces of coal deposits. Thickness is measured directly as frequency difference. Transmitter is frequency modulated, so thickness is computed directly from frequency difference. Because front and back reflections are detected in combination rather than separately, masking of comparatively weak back signal is less problem. Also system is not sensitive to extraneous reflections from targets between transmitting antenna and coal surface.

### B80-10061

#### DETECTING A COAL/SHALE INTERFACE

P. H. BROUSSARD, J. L. BURCH, R. A. CAMPBELL, E. J. DROST, J. L. HEDGINS, P. W. MORRIS, H. REID, JR., R. J. STEIN, and J. E. ZIMMERMAN

Aug. 1980

### M-FS-23720

### Vol. 5, No. 1, p. 47

Detector, intended for use with longwall shearer, determines when cut has pierced through coal layer. Accelerometer measures hardness of material struck by penetrometer ram, while reflectometers measure reflectivity of surface on either side of penetrometer. Signals are combined in voting circuit that indicates 'coal' or 'shale', depending on information supplied by three sensors. It distinguishes by differences in accelerometer waveforms.

### B80-10062

#### FAST-RESPONSE ATMOSPHERIC-POLLUTANT MONITOR

D. I. SEBACHER

Aug. 1980 See also NASA-TP-1113 (N78-13408)

### LANGLEY-12317

### Vol. 5, No. 1, p. 48

Fast infrared spectrometer measures atmospheric CO, CH<sub>4</sub>, and HCl over range of 1 to 12 ppm. With modifications it could measure other pollutants and use natural light as source. Cell filled with sample to be measured filters out spectral lines of interest. Infrared beam passes through rotating cell holder that produces chopped signals at two frequencies. Difference in signal amplitudes depends on amount of test gas in sample. Signal processing circuitry amplifies and separates test-gas and reference signals.

### B80-10063

#### FIRE TESTS FOR AIRPLANE INTERIOR MATERIALS

E. A. TUSTIN (Boeing Co.)

Aug. 1980 See also NASA-CR-145658 (N79-19112)

### MSC-18478

### Vol. 5, No. 1, p. 49

Large scale, simulated fire tests of aircraft interior materials

## 04 MATERIALS

were carried out in salvaged airliner fuselage. Two 'design' fire sources were selected: Jet A fuel ignited in fuselage midsection and trash bag fire. Comparison with six established laboratory fire tests show that some laboratory tests can rank materials according to heat and smoke production, but existing tests do not characterize toxic gas emissions accurately. Report includes test parameters and test details.

### **B80-10064 REDOX ELECTROCHEMICAL ENERGY STORAGE**

L. H. THALLER  
Aug. 1980 See also NASA-TM-X-71540 (N74-21688)

### **LEWIS-13398**

**Vol. 5, No. 1, p. 50**

Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are \$325/kW of power requirement plus \$51/kWh storage capacity. Mass production would reduce cost by about factor of two.

### **B80-10065 ADDITIVE IMPROVES ENGINE-OIL PERFORMANCE**

A. J. BABECKI and H. C. FLETCHER

Aug. 1980

### **GSFC-12327**

**Vol. 5, No. 1, p. 51**

Tests of metal erosion in operating engines show that addition of 5% tricresyl phosphate significantly reduces wear rate. Commercial 10W30 oil gives one tenth wear and degrades less with additive.

### **B80-10066 DRILLING SIDE HOLES FROM A BOREHOLE**

E. R. COLLINS, JR. (Caltech)

Aug. 1980

### **NPO-14465**

**Vol. 5, No. 1, p. 52**

Machine takes long horizontal stratum samples from confines of 21 cm bore hole. Stacked interlocking half cylindrical shells mate to form rigid thrust tube. Drive shaft and core storage device is flexible and retractable. Entire machine fits in 10 meter length of steel tube. Machine could drill drainage or ventilation holes in coal mines, or provide important information for geological, oil, and geothermal surveys.

### **B80-10067 CORROSION-RESISTANT CERAMIC THERMAL BARRIER COATING**

P. E. HODGE, S. R. LEVINE, and R. A. MILLER

Aug. 1980

### **LEWIS-13088**

**Vol. 5, No. 1, p. 53**

Two-layer thermal barrier coating, consisting of metal-CrAlY bond coating and calcium silicate ceramic outer layer, greatly improves resistance of turbine parts to hot corrosion from fuel and air impurities. Both layers can be plasma sprayed, and ceramic layer may be polished to reduce frictional losses. Ceramic provides thermal barrier, so parts operate cooler metal temperatures, coolant flow can be reduced, or gas temperatures increased. Lower grade fuels also can be used.

### **B80-10068 REDUCING STATIC CHARGES IN FLUIDIZED BED REACTIONS**

T. WYDEVEN, E. V. BALLOU (San Jose State Univ. Foundation), P. C. WOOD (San Jose State Univ. Foundation), and L. A. SPITZE (San Jose State Univ.)

Aug. 1980

### **ARC-11245**

**Vol. 5, No. 1, p. 54**

Radio frequency glow discharge apparatus ionizes fluidizing gas, making it conductive enough to neutralize static charge on fluidized particles. Particles agglomerate less, and in one case reactant loading capacity was increased six fold.

### **B80-10069**

**TRANSFERRING SMALL SAMPLES OF VISCOUS LIQUID**  
B. W. MILLER (Rockwell International Corp.), S. M. MITCHELL (Rockwell International Corp.), and J. N. OLNEY (Rockwell International Corp.)

Aug. 1980

### **MSC-18533**

**Vol. 5, No. 1, p. 55**

To avoid trapped air bubbles, fluid after removing plunger. Plunger is reinserted, syringe inverted, and air bubbles expelled by depressing plunger. Technique makes it easy to control sample quantities as small as one microliter, without problems from bubbles created by plunger suction.

### **B80-10070**

**COAL CONVERSION AND SYNTHETIC-FUEL PRODUCTION**

R. BRADFORD, W. T. ATKINS (BDM Corp.), R. M. BASS (BDM Corp.), R. DASCHER (BDM Corp.), J. DUNKIN (BDM Corp.), N. LUCE (BDM Corp.), W. SEWARD (BDM Corp.), and D. WARREN (BDM Corp.)

Aug. 1980

### **M-FS-25330**

**Vol. 5, No. 1, p. 56**

Report evaluates potential coal gasification and synthetic-fuel production technologies for 1985 to 1990. Book includes overview of present and future technical and economic potential, ways of evaluating gasification facility designs, discussion of promising processes, characterization of potential markets, and list of available gasification systems.

### **B80-10071**

**UNDERGROUND COAL MINING**

G. M. HILL (Caltech)

Aug. 1980

### **NPO-14704**

**Vol. 5, No. 1, p. 56**

Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

### **B80-10204**

**A TEMPERATURE FIXED POINT NEAR 58 C**

M. E. GLICKSMAN (Rensselaer Polytech. Inst.)

Sep. 1980

### **M-FS-25304**

**Vol. 5, No. 2, p. 179**

Triple-point cell contains about 300 g of high-purity succinonitrile. Experiments show that lower 4 cm of thermometer well are virtually isothermal, making placement of thermometer not very critical. Bulb at bottom of well helps to prevent solid succinonitrile mantel from slipping.

### **B80-10205**

**REMOVAL OF HYDROGEN BUBBLES FROM NUCLEAR REACTORS**

R. V. JENKINS

Sep. 1980

### **LANGLEY-12597**

**Vol. 5, No. 2, p. 180**

Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.

### **B80-10206**

**PLASTICIZER FOR POLYIMIDE COMPOSITES**

T. L. ST. CLAIR (V.P.I.&State Univ.) and J. M. BUTLER

Sep. 1980

### **LANGLEY-12642**

**Vol. 5, No. 2, p. 180**

Problem of maintaining good prepreg tack and drape has been solved by modification of addition polyimide. Tack and drape are ability of prepreg to adhere to adjacent plies and to conform to desired shape during layup process. Alternate approach allows both longer life of polymer prepreg and processing of low-void laminates. It appears to be applicable to all addition polyimide systems. Modified addition polyimide takes advantage of reactive

## 04 MATERIALS

liquid plasticizer, monoethylphthalate, which is used in place of solvent. Because of low vapor pressure of reactive liquid, it is retained and, thereby, tack and flexibility of prepreg are retained.

### B80-10207

#### IMPROVED ADHERENCE OF TiC COATINGS TO STEEL

W. A. BRAINARD and D. R. WHEELER

Sep. 1980 See also NASA TP-1377(N79-15184)

### LEWIS-13169

Vol. 5, No. 2, p. 181

Modified process for RF sputtering of titanium carbide coatings onto 440-C steel has resulted in improved adherence. Small partial pressure of nitrogen, approximately 0.5 percent, during first minutes of deposition marked by improved adherence, friction, and wear properties when compared with coatings applied on sputter-etched surfaces, or oxidized surfaces or in presence of small oxygen partial pressure. X-ray photoelectron spectroscopy and X-ray diffraction were used to characterize resultant coatings.

### B80-10208

#### HYBRID POLYMER MICROSPHERES

A. REMBAUM (Caltech)

Sep. 1980

### NPO-14462

Vol. 5, No. 2, p. 182

Techniques have been successfully tested for bonding polymeric spheres, typically 0.1 micron in diameter, to spheres with diameter up to 100 microns. Hybrids are being developed as improved packing material for ion-exchange columns, filters, and separators.

### B80-10209

#### COMPOSITES FOR AEROPROPULSION

G. M. AULT and J. C. FRECHE

Sep. 1980

### LEWIS-13438

Vol. 5, No. 2, p. 183

Report summarizes status of composite materials for aeropropulsion. It describes key advances made in past several years and lists 47 references published from 1971 to 1979.

### B80-10210

#### LUBRICATION HANDBOOK

Innovator not given(Midwest Res. Inst.) Sep. 1980

### M-FS-26158

Vol. 5, No. 2, p. 183

Handbook is divided into two major parts: solid lubricants and liquid lubricants used in aerospace industry. Listed materials cover broad application spectrum from manufacturing and ground support to missile and spacecraft hardware. Handbook can serve as ready reference in design and maintenance service of industrial equipment.

### B80-10211

#### METHANE/AIR FLAMES IN A CONCENTRIC TUBE COMBUSTOR

N. C. MARKATOS (Concentration, Heat and Momentum Ltd.),

D. B. SPALDING (Concentration, Heat and Momentum Ltd.),

and S. K. SRTVATSA (Concentration, Heat and Momentum Ltd.)

Sep. 1980

### LEWIS-13388

Vol. 5, No. 2, p. 184

Computer program gives realistic prediction of hydrodynamics and chemical reaction in reverse-flow two-concentric-tube combustor. Special attention is given to formation of oxides of nitrogen in combustion process. Program is written in FORTRAN IV for batch execution.

### B80-10350

#### HEAT RESISTANT POLYPHOSPHAZENE POLYMERS

L. L. FEWELL, H. R. ALLCOCK (Pennsylvania State Univ.), J. P. O'BRIEN (Pennsylvania State Univ.), and A. G. SCOPELIANOS (Pennsylvania State Univ.)

Jan. 1981

### ARC-11176

Vol. 5, No. 3, p. 319

Polymers of carboranyl substituted polyphosphazene are stable at high temperatures and produce insulating char upon pyrolysis. Substituted compounds are prepared by heat polymerizing carboranyl halophosphazene, which is obtained by reacting lithium carborane with, for example, hexachlorocyclotriphosphazene

under anhydrous conditions. Chlorine of polymer may be replaced by aryloxy and alkoxy groups.

### B80-10351

#### OXIDE DISPERSION STRENGTHENED SUPERALLOY

T. K. GLASGOW, Y. G. KIM (Inco R and D Ctr.), L. R. CURWICK (Inco R and D Ctr.), and H. F. MERRICK (Inco R and D Ctr.)

Jan. 1981 See also NASA-CR-135150(N77-22213); NASA-CR-159493(N80-13218); NASA-TM-79088(N79-20180)

### LEWIS-13689

Vol. 5, No. 3, p. 320

MA6000E alloy is strengthened at high temperatures by dispersion of yttrium oxide. Strength properties are about twice those of conventional nickel base alloys. Good thermal fatigue, intermediate temperature strength, and good oxidation resistance give alloy unique combination of benefits. Application in aircraft gas turbine is improved.

### B80-10352

#### LOW COST HIGH TEMPERATURE, DUPLEX COATING FOR SUPERALLOYS

S. G. YOUNG and D. L. DEADMORE

Jan. 1981 See also NASA-TM-79178(N79-29292)

### LEWIS-13497

Vol. 5, No. 3, p. 321

Duplex silicon-slurry/aluminide coating substantially improves high temperature resistance to oxidation and corrosion of nickel base alloys. Coating used in critical sections of power systems like turbojet engines extends their operating capabilities.

### B80-10353

#### IMPROVED METALLIC AND THERMAL BARRIER COATINGS

S. STECURA

Jan. 1981 See also NASA-TM-79206(N7929293); NASA-TM-78976(N78-31212)

### LEWIS-13324

Vol. 5, No. 3, p. 321

Low thermal conductivity two layer ceramic coatings are efficient thermal barriers between cooled metallic components and high temperature combustion gases. Potential components are combustors, blades, and vanes in aircraft engines of power-generating turbines. Presence of two layer coatings greatly reduces temperature and coolant requirements.

### B80-10354

#### RESIN CHAR OXIDATION RETARDANT FOR COMPOSITES

K. J. BOWLES and R. E. GLUYAS

Jan. 1981 See also NASA-TM-79314(N80-14196); NASA-TM-79288(N80-13171)

### LEWIS-13275

Vol. 5, No. 3, p. 322

Boron powder stabilizes char, so burned substances are shiny, smooth, and free of loose graphite fibers. Resin weight loss of laminates during burning in air is identical for the first three minutes for unfilled and boron-filled samples, then boron samples stabilize.

### B80-10355

#### COMPOSITES WITH NEARLY ZERO THERMAL EXPANSION

T. J. DUNN, A. J. CWIERTNY, JR. (McDonnell Douglas Corp.), V. L. FREEMAN (McDonnell Douglas Corp.), and R. JOHNSON, JR. (McDonnell Douglas Corp.)

Jan. 1981 See also NASA-CR-160558(N80-19144)

### MSC-18724

Vol. 5, No. 3, p. 323

Graphite, glass, and resin composite is very strong, stiff, and thermally stable. As mounting material for antennas, mirrors and lenses, composite minimizes structural distortion and misalignment. Rods of substance are made by pulling preimpregnated ribbon of glass and graphite through die. When materials are combined in proper proportion, graphite contracts, and glass and resin expand as temperature increases. Matrix for fiber may be polysulfane, epoxy, polyimide, or othe resin.

### B80-10356

#### CARBON SCRUBBER

M. S. FRANT (Orion Res., Inc.)

Jan. 1981

### MSC-16531

Vol. 5, No. 3, p. 324

Inorganic carbon is removed from samples to be analyzed

## 04 MATERIALS

for 'total organic carbon'. In automated water analysis systems, semipermeable membrane separates two sample streams, one treated with acid, other with base. Carbonate and bicarbonated ions are converted to dissolved CO<sub>2</sub> by acid; reverse process occurs in basic stream. Only CO<sub>2</sub> is passed by membrane, from acid treated stream to base treated stream. Acidic stream emerges free of all inorganic carbon.

### **B80-10357 ELECTRICALLY CONDUCTIVE PALLADIUM-CONTAINING POLYIMIDE FILMS**

A. K. ST.CLAIR, T. A. FURTSCH (VPI&SU), and L. T. TAYLOR (VPI&SU)

Jan. 1981

#### **LANGLEY-12629**

**Vol. 5, No. 3, p. 325**

Palladium addition makes light, flexible film with low resistivity to relieve space charging. Polyimide film is prepared in four steps: preparation of polyamic acid in polar solvent; addition of soluble palladium complex salt; fabrication of film of 'palladium polyamic acid' solution; and thermal imidization of film to palladium-containing polyimide by 300 C heating. Lowered resistivities were achieved without loss in film flexibility or increase in film weight.

### **B80-10358 ALUMINUM IONS ENHANCE POLYIMIDE ADHESIVE**

A. K. ST.CLAIR, T. L. ST.CLAIR, and L. T. TAYLOR (VPI&SU)

Jan. 1981

#### **LANGLEY-12640**

**Vol. 5, No. 3, p. 326**

Adding complexed aluminum ions raises useful temperature of polyimide adhesive without embrittling it or reducing long term stability. Adhesives may be applied to prepared substrate surface without supports. Possible substrates are metal, composite, or polymeric film. Adhesive is excellent where bond flexibility is required.

### **B80-10359 SIMULTANEOUS MEASUREMENT OF THREE ATMOSPHERIC POLLUTANTS**

M. P. SINHA (Caltech)

Jan. 1981

#### **NPO-14828**

**Vol. 5, No. 3, p. 327**

Method enables simultaneous concentration monitoring of atmospheric SO<sub>2</sub>, NO, and NO<sub>2</sub>. Fluorescing pollutant gases in sample are excited by visible output of dye laser and its second-harmonic ultraviolet frequencies. Three photomultipliers, each with suitable optical filters, view fluorescence. Method tests ambient air, stack emissions, and highway automotive exhausts.

### **B80-10360 AEROSOL LASTS UP TO SIX MINUTES**

M. A. APPEL (Caltech)

Jan. 1981

#### **NPO-14947**

**Vol. 5, No. 3, p. 328**

Simple aerosol generator catalytically converts hydrogen peroxide to super-heated steam and then mixes steam with dye. Highly visible mist lasts for 6 minutes and can be used to study aerodynamic turbulence. Method does not depend on formation of ice crystals at cold high altitudes and is environmentally safe.

### **B80-10361 HIGH CHAR YIELD EPOXY CURING AGENTS**

P. DELVIGS, T. T. SERAFINI, and R. D. VANUCCI

Jan. 1981 See also NASA-TM-79226(N79-29240)

#### **LEWIS-13226**

**Vol. 5, No. 3, p. 328**

Class of imide-amine curing agents preserves structural integrity, prevents fiber release, and is fully compatible with conventional epoxy resins; agents do not detract from composite properties while greatly reducing char yield. Materials utilizing curing are used in aerospace, automotive, and other structural components where deterioration must be minimized and fiber release avoided in event of fire.

### **B80-10362 CAP PROTECTS AIRCRAFT NOSE CONE**

C. F. BRYAN, JR. and D. C. BRYAN

Jan. 1981

#### **LANGLEY-12367**

**Vol. 5, No. 3, p. 329**

Inexpensive, easily fabricated cap protects aircraft nose cone from erosion. Made of molded polycarbonate, cap has been flight tested at both subsonic and supersonic speeds. Its strength and erosion characteristics are superior to those of fiberglass cones.

### **B80-10363**

#### **LASER BEAM METHANE DETECTOR**

E. D. HINKLEY, JR. (Caltech)

Jan. 1981

#### **NPO-14929**

**Vol. 5, No. 3, p. 330**

Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

### **B80-10364**

#### **REDUCED HYDROGEN PERMEABILITY AT HIGH TEMPERATURES**

J. R. STEPHENS, W. D. KLOPP, and J. A. MISENCIK

Jan. 1981

#### **LEWIS-13485**

**Vol. 5, No. 3, p. 331**

CO and CO<sub>2</sub> reduce hydrogen loss through iron, nickel, and cobalt based alloy tubes. Method is based on concept that oxide film on metal surface reduces hydrogen permeability through metal; adding CO or CO<sub>2</sub> forms oxide films continuously during operation, and hydrogen containment is improved. Innovation enhances prospects for Stirling engine system utilization.

### **B80-10365**

#### **CHLORINOLYSIS RECLAIMS RUBBER OF WASTE TIRES**

E. R. DUFRESNE (Caltech), J. H. TERVET (Caltech), and G. G.

HULL (Caltech)

Jan. 1981

#### **NPO-14935**

**Vol. 5, No. 3, p. 331**

Process reclaims rubber and reduces sulfur content by using chlorine gas to oxidize sulfur bonds in preference to other bonds. Rubber does not have poor hysteresis and abrasion resistance like conventionally reclaimed rubber and is suitable for premium radial tires. Chlorinated rubber is less susceptible to swelling by oils and may be used as paint ingredient.

### **B80-10366**

#### **REDUCED GRAVITY FAVORS COLUMNAR CRYSTAL GROWTH**

T. Z. KATTAMIS (Grumman Aerospace Corp.) and J. M. PAPAZIAN (Grumman Aerospace Corp.)

Jan. 1981

#### **M-FS-25205**

**Vol. 5, No. 3, p. 332**

In zero gravity, aligned columnar microstructures form at expense of equiaxed growth. Preferential crystal growth occurs in solidification chamber consisting of semicylindrical copper chill block brazed to stainless steel top plate. Method is best utilized in castings where directional dependence of physical properties is beneficial, as in turbine blades.

### **B80-10489**

#### **IMPROVED CELL FOR WATER-VAPOR ELECTROLYSIS**

J. R. AYLWARD (United Technologies Corp.)

Apr. 1981

#### **MSC-16394**

**Vol. 5, No. 4, p. 447**

Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

**B80-10490****APPLYING THE HELIUM IONIZATION DETECTOR IN CHROMATOGRAPHY**

E. K. GIBSON, F. F. ANDRAWES (Lockheed Engineering and Management Services Co., Inc.), and R. S. BRAZELL (University of Houston)  
Apr. 1981

**MSC-18835****Vol. 5, No. 4, p. 448**

High noise levels and oversensitivity of helium detector make flame-ionization and thermal-conductivity detectors more suitable for chromatography. Deficiencies are eliminated by modifying helium device to operate in saturation rather than multiplication mode. Result is low background current, low noise, high stability, and high sensitivity. Detector analyzes halocarbons, hydrocarbons, hydrogen cyanide, ammonia, and inorganics without requiring expensive research-grade helium.

**B80-10491****PHOTOPRODUCTION OF HALOGENS USING PLATINIZED TIO2**

B. REICHMAN (Christopher Newport College) and C. E. BYVIK  
Apr. 1981

**LANGLEY-12713****Vol. 5, No. 4, p. 449**

Unlike electrolysis of halide salt solutions, technique using powdered titanium dioxide catalyst requires no external power other than ultraviolet radiation source. Semiconductor powders photocatalyze and photosynthesize many useful reactions; applications are production of halogen molecules, oxidation of hazardous materials in wastewater, and conversion of carbon monoxide to carbon dioxide.

**B80-10492****RECYCLING PAPER-PULP WASTE LIQUORS**

M. N. SARBOLOUKI (Caltech)  
Apr. 1981

**NPO-14797****Vol. 5, No. 4, p. 450**

Papermills in U.S. annually produce 3 million tons of sulfite waste liquor solids; other fractions of waste liquor are monomeric sugars and lignosulfonates in solution. Recovery of lignosulfonates involves precipitation and cross-linking of sulfonates to form useful solid ion-exchange resin. Contamination of sugars recovered from liquor is avoided by first converting them to ethanol, then removing ethanol by distillation.

**B80-10493****USER CHOOSES COATING PROPERTIES**

C. S. GILLILAND and R. J. DUCKETT  
Apr. 1981

**LANGLEY-12719****Vol. 5, No. 4, p. 451**

Anodizing technique allows independent selection of coating thermal emittance and solar absorption. Process has three phases: initial material processing, which prepares material and establishes initial values of emittance and absorption; anodizing with chromic acid solution, which determines final values; and material postprocessing. Stability tests show less than 15 percent coating degradation over 2,000 hour solar exposure.

**B80-10494****REMOVING FREON GAS FROM HYDRAULIC FLUID**

B. B. WILLIAMS (Rockwell International Corp.), S. M. MITCHELL (Rockwell International Corp.), and T. S. STATE (Rockwell International Corp.)  
Apr. 1981

**MSC-18740****Vol. 5, No. 4, p. 452**

Dissolved freon gas is removed from hydraulic fluid by raising temperature to 150 F and bubbling dry nitrogen gas through it, even while fluid circulates through hydraulic system. Procedure reduces parts corrosion, sludge formation, and contamination.

**B80-10495****NEW PRESSURE-SENSITIVE SILICONE ADHESIVE**

J. L. LEIFFER, W. E. STOOPS, JR., T. L. ST. CLAIR, V. E. WATKINS, JR., and T. P. KELLY  
Apr. 1981

**LANGLEY-12737****Vol. 5, No. 4, p. 452**

Adhesive for high or low temperatures does not stretch

severely under load. It is produced by combining intermediate-molecular-weight pressure sensitive adhesive which does not cure with silicone resin that cures with catalyst to rubbery tack-free state. Blend of silicone tackifier and cured rubbery silicone requires no solvents in either atmospheric or vacuum environments. Ratio of ingredients varies for different degrees of tack, creep resistance, and tensile strength.

**B80-10496****DRIVING BUBBLES OUT OF GLASS**

D. M. MATTOX (Westinghouse Electric Corp.)  
Apr. 1981

**M-FS-25414****Vol. 5, No. 4, p. 453**

Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250  $\mu$ m bubbles as rapidly as 30  $\mu$ m/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.

**B80-10497****LESS-TOXIC CORROSION INHIBITORS**

T. S. HUMPHRIES  
Apr. 1981 See also NASA-TP-1279(N78-28226)

**M-FS-25496****Vol. 5, No. 4, p. 453**

Combinations of borates, nitrates, phosphates, silicates, and sodium MBT protect aluminum from corrosion in fresh water. Most effective combinations contained sodium phosphate and were alkaline. These inhibitors replace toxic chromates which are subject to governmental restrictions, but must be used in larger quantities. Experimental exposure times varied from 1 to 14 months depending upon nature of submersion solution.

**B80-10498****DIFFUSION IN SINGLE-PHASE BINARY ALLOYS**

D. R. TENNEY and J. UNNAM (VPI and State University)  
Apr. 1981

**LANGLEY-12665****Vol. 5, No. 4, p. 454**

DBAS 1 computer program provides analyst with simple algorithms for exact rapid solutions of systems with planar, cylindrical, or spherical interfaces. Conventional solutions are complex and present convergence problems. Two algorithm types are figured for each geometry: one converges rapidly for short and the other for long diffusion times. DBAS 1 is written in FORTRAN IV for batch execution.

**05 LIFE SCIENCES****B80-10072****TEMPERATURE CONTROLLER FOR HYPERTHERMIA DEVICES**

R. H. COUCH, C. P. HEARN, and J. B. WILLIAMS  
Aug. 1980

**LANGLEY-12528****Vol. 5, No. 1, p. 59**

Temperature controller monitors and controls temperature in local region of tumor. Medical grade thermocouples are inserted in or near tumor, controller pulse modulates radio frequency diathermy power source to maintain temperature within 0.2 C. System may be extended to control diathermy of more than one tumor or patient.

**B80-10073****MEASURING WATER PROPERTIES FROM A MOVING BOAT**

A. G. LAWSON  
Aug. 1980

**LANGLEY-12325****Vol. 5, No. 1, p. 60**

Modification of commercial water analyzer permits measure-

## 05 LIFE SCIENCES

ment of pH, temperature, dissolved oxygen, conductivity, and turbidity for continuous water flow. Ram pressure on inlet tube mounted below power boat drives water through modified sample chamber where it is analyzed.

### B80-10212

#### TESTING EKG ELECTRODES ON-LINE

W. G. CROSIER (Technol., Inc.) and G. S. RUTT (Technol., Inc.)

Sep. 1980

#### MSC-18696

#### Vol. 5, No. 2, p. 187

Simple test instrument allows electrocardiograph operator to check individual electrodes while they are attached to subject. Simply by rotating switch and observing meter, operator verifies that each electrode is not short-circuited or open-circuited and does not present excessive contact resistance at its interface with skin. Instrument also makes it convenient to check electrode cables that are subject to frequent bending and wear, such as cables used on patients who are exercising.

### B80-10213

#### LASER-FUORESCENCE MEASUREMENT OF MARINE ALGAE

E. V. BROWELL

Sep. 1980 See also NASA TND-8447(N77-26480)

#### LANGLEY-12282

#### Vol. 5, No. 2, p. 187

Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evaluates factors affecting accuracy of laser-fluorosensor systems.

### B80-10367

#### FLOW SENSOR FOR BIOMEDICAL FLUIDS

H. E. WINKLER

Jan. 1981 See also B78-10267

#### MSC-18761

#### Vol. 5, No. 3, p. 335

Electronic sensor accurately measures and controls flow of plasma, whole blood, or drugs in solution. Since sensor does not directly contact fluid, it does not have to be sterilized. It is compatible with disposable bottles, tubes, and hypodermic needles widely used in hospitals. Only modification necessary is in tube, which must contain two small metal inserts, spaced to fit in curved thermistor plates.

### B80-10368

#### TREATING DOMESTIC WASTEWATER WITH WATER HYACINTHS

R. C. MCDONALD (Natl. Space Sci. Lab.) and B. C. WOLVERTON

Jan. 1981

#### M-FS-23964

#### Vol. 5, No. 3, p. 336

Greenhouse system purifies water, extracts fertilizers, and generates fuels. When fully developed, system may supplant septic tanks and central sewage for rural and underdeveloped areas.

### B80-10369

#### COMPLIANT TRANSDUCER MEASURES ARTERY PROFILE

C. FELDSTEIN (Caltech), V. H. CULLER (Caltech), D. W. CRAWFORD (So. Calif. Univ.), and J. R. SPEARS (So. Calif. Univ.)

Jan. 1981

#### NPO-14899

#### Vol. 5, No. 3, p. 337

Instrument consisting of compliant fingers with attached semiconductor pickups measures inside contours of narrow vessels. Instrument, originally designed to monitor human arteries, is drawn through vessel to allow fingers to follow contours. Lead wires transmit electrical signals to external processing equipment.

### B80-10370

#### IMPROVED URETERAL STONE FRAGMENTATION CATHETER

P. M. GAMMELL (Caltech)

Jan. 1981

#### NPO-14745

#### Vol. 5, No. 3, p. 337

Catheter includes fiber optic viewer, more reliable ultrasonic

probe, and better contact sensor. It is guided by four steering wires, and irrigation fluid is supplied through lumen to remove stone fragments.

### B80-10371

#### MINIATURIZED PHYSIOLOGICAL DATA TELEMETRY SYSTEM

W. M. PORTNOY (Texas Tech. Univ.) and L. J. STOTTS (Texas Tech. Univ.)

Jan. 1981 See also NASA-CR-160660(N80-24357)

#### MSC-18804

#### Vol. 5, No. 3, p. 338

Portable digital physiological data telemetry system uses less power, is more compact, and provides better data integrity than two previous systems designed to similar specifications. It has 13 data channels and two-way voice communication.

### B80-10372

#### MANUAL FOR PHYSICAL FITNESS

A. E. COLEMAN (Univ. of Houston)

Jan. 1981 See also NASA-CR-160758(N80-29024)

#### MSC-18915

#### Vol. 5, No. 3, p. 339

Training manual used for preflight conditioning of NASA astronauts is written for audience with diverse backgrounds and interests. It suggests programs for various levels of fitness, including sample starter programs, safe progression schedules, and stretching exercises. Related information on equipment needs, environmental considerations, and precautions can help readers design safe and effective running programs.

### B80-10499

#### CARDIOPULMONARY DATA-ACQUISITION SYSTEM

W. G. CROSIER and R. A. REED

Apr. 1981 See also NASA-CR-160608(N80-33083); NASA-CR-160609(N80-33084); B80-10501

#### MSC-18783

#### Vol. 5, No. 4, p. 457

Computerized system controls and monitors bicycle and treadmill cardiovascular stress tests. It acquires and reduces stress data and displays heart rate, blood pressure, workload, respiratory rate, exhaled-gas composition, and other variables. Data are printed on hard-copy terminal every 30 seconds for quick operator response to patient. Ergometer workload is controlled in real time according to experimental protocol. Collected data are stored directly on tape in analog form and on floppy disks in digital form for later processing.

### B80-10500

#### MICROPROCESSOR-CONTROLLED ULTRASONIC PLETHYSMOGRAPH

P. K. BHAGAT (University of Kentucky) and V. C. WU (University of Kentucky)

Apr. 1981

#### MSC-18759

#### Vol. 5, No. 4, p. 458

Safe, nonintrusive microprocessor system times ultrasonic pulses to measure limb cross-sectional area. Simple instrument requires no calibration and does not confine leg movement, making tests relating limb volume to activity level possible. Program considers more realistic geometries of human limb than circular cross-sections and monitors changes in area with great accuracy. Errors due to body temperature changes and timing roundoff are insignificant.

### B80-10501

#### MICROPROCESSOR-BASED CARDIOTACHOMETER

W. G. CROSIER (Technology, Inc.) and J. A. DONALDSON (Technology, Inc.)

Apr. 1981 See also NASA-CR-160607(N80-33082); B80-10499

#### MSC-18775

#### Vol. 5, No. 4, p. 459

Instrument operates reliably even with stress-test electrocardiogram (ECG) signals subject to noise, baseline wandering, and amplitude change. It records heart rate from preamplified, single-lead ECG input signal and produces digital and analog heart-rate outputs which are fed elsewhere. Analog hardware processes ECG input signal, producing 10-ms pulse for each heartbeat. Microprocessor analyzes resulting pulse train, identifying

irregular heartbeats and maintaining stable output during lead switching. Easily modified computer program provides analysis.

**B80-10502****IMPROVED MICROBE DETECTION IN WATER SAMPLES**

J. R. WILKINS, D. C. GRANA, and S. C. FOX (The Bionetics Corp.)

Apr. 1981

**LANGLEY-12709**

**Vol. 5, No. 4, p. 460**

Method combines membrane filtration and electrochemical microbial detection. Together, techniques give fast response and accurate detection of low concentrations. Membrane filter placed on moistened absorbent pad collects cells; platinum-wire electrodes are positioned on filter surface. Second moistened pad is placed on top of electrodes and filter. Retainer ring maintains constant pressure and close contact between system components which are held in petri dish to reduce moisture loss.

**B80-10503****GAGE FOR EVALUATING RHEUMATOID HANDS**

J. C. HOUGE (University of Wisconsin) and K. A. PLAUTZ (University of Wisconsin)

Apr. 1981

**GSFC-12610**

**Vol. 5, No. 4, p. 461**

Two-axis goniometer accurately measures movements of fingers about knuckle joints, diagnosing hands structurally changed by rheumatoid arthritis. Instrument measures lateral movement which is small in normal knuckles but increased in diseased joints. Goniometer is two connected protractors that simultaneously measure angles in perpendicularly planes. Dials are offset to clear bony protuberances; extension and offset adjustments span any hand size.

**B80-10504****FIBER-OPTICS COUPLE ARTHROSCOPE TO TV**

J. M. FRANKE and D. B. RHODES

Apr. 1981

**LANGLEY-12718**

**Vol. 5, No. 4, p. 462**

Convenient, hand-held coupler images output of arthroscope onto coherent fiber bundle. Arthroscope allows surgeons to examine internal organs through any small opening in body. Coupler is also used for engine inspection, instrument repair, and around-corner visual inspection. Image from arthroscope travels along flexible bundle and appears at other cable end where it is recollimated by lens. Image is read from lens or projected on color TV camera.

**B80-10505****BEEF GRADING BY ULTRASOUND**

P. M. GAMMELL (Caltech)

Apr. 1981

**NPO-14812**

**Vol. 5, No. 4, p. 463**

Reflections in ultrasonic A-scan signatures of beef carcasses indicate USDA grade. Since reflections from within muscle are determined primarily by fat/muscle interface, richness of signals is direct indication of degree of marbling and quality. Method replaces subjective sight and feel tests by individual graders and is applicable to grade analysis of live cattle.

## 06 MECHANICS

**B80-10074****CABLE-SPlice DETECTOR**

R. D. LEE, E. J. IUFER, and A. GIOVANNETTI

Aug. 1980

**ARC-11291**

**Vol. 5, No. 1, p. 63**

Detector has possible uses in aerial cable-car systems, equipment handling in mines, boreholes, and undersea operations, and other applications where moving steel cable must be

measured, monitored, or controlled. Detector consists of Hall-effect magnetic sensor located close to cable. Magnetic markings on cable are converted to electrical signals. Signals are filtered, amplified, and can actuate alarm.

**B80-10075****LVDT GAGE FOR FRACTURE-TOUGHNESS TESTS IN LIQUID HYDROGEN**

W. S. PIERCE and J. L. SHANNON, JR.

Aug. 1980

**LEWIS-13038**

**Vol. 5, No. 1, p. 64**

Linear-variable differential transformer replaces conventional resistance strain gages to measure crack-mouth-opening displacement. LVDT is superior in tests under liquid hydrogen, where boiling of hydrogen on resistive is suited to broad temperature range and hostile environments such as nuclear reactors.

**B80-10076****TENSION-MODE LOADING FOR BEND SPECIMENS IN CRYOGENS**

W. S. PIERCE and J. L. SHANNON, JR.

Aug. 1980

**LEWIS-13040**

**Vol. 5, No. 1, p. 65**

Special fixture permits use of tension-loading apparatus in fracture-toughness tests on standard bend specimens. Specimen is held in place by spacer blocks and wire clips. Central, load-application roller bends specimen between lateral, reaction-load rollers.

**B80-10077****MODIFIED DISPLACEMENT GAGE FOR CRYOGENIC TESTING**

W. S. PIERCE

Aug. 1980 See also NASA-TN-D-3724 (N67-10749)

**LEWIS-13039**

**Vol. 5, No. 1, p. 66**

Modification of double-cantilever-beam resistance strain gage makes boiling of hydrogen on gage arms less of problem. Modified gages are encapsulated nickel/chromium alloy, and bridge-excitation voltage is reduced from 10 to 1.5 volts. Sensitivity is 1.0 millivolt per inch with 1.5 volt excitation.

**B80-10078****BROADBAND ELECTROSTATIC ACOUSTIC TRANSDUCER FOR LIQUIDS**

J. H. CANTRELL, JR. (National Research Council), J. S. HEYMAN, M. A. BREAZEALE (Univ. of Tennessee), M. A. TORBETT (Univ. of Tennessee), and W. T. YOST (Univ. of Tennessee)

Aug. 1980

**LANGLEY-12465**

**Vol. 5, No. 1, p. 67**

Capacitive electrostatic transducer (ESAT) measures absolute displacement amplitudes of ultrasonic waves in liquids, and may be used as calibrator for other transducers or as probe for nondestructive study and characterization of materials. ESAT consists of thin conductive membrane stretched over metallic housing. Ultrasonic waves incident on membrane cause it to vibrate and generate signal proportional to wave amplitude. Entire assembly is sealed for immersion in liquid.

**B80-10079****EDDY-CURRENT SENSOR MEASURES BOLT LOADING**

M. E. BURR (Rockwell International Corp.)

Aug. 1980

**M-FS-19486**

**Vol. 5, No. 1, p. 68**

Thin wire welded to bottom of hole down center of bolt permits measurement of tension in bolt. Bolt lengthens under strain, but wire is not loaded, so gap between wire and eddy-current gap transducer mounted on bolt head indicates bolt loading. Eddy-current transducer could measure gap within 0.05 mm. Method does not require separate 'standard' for each bolt type, and is not sensitive to dirt or oil in bolt hole, unlike ultrasonic probes.

**B80-10080****MULTIPLE-CREEP-TEST APPARATUS**

C. L. HAEHNER

## 06 MECHANICS

Aug. 1980

**GSFC-12561**

Simplified, compact apparatus uses fixtures that can test three samples at once for flexure, compression, or double-shear creep. Each fixture uses series of rods and plates to divide one load equally among three samples. Fixtures could be expanded to carry more samples by adding more rods and plates.

**B80-10081**

**COMPACT, SUPER HEAT EXCHANGER**

A. FORTINI and J. M. KAZAROFF

Aug. 1980

**LEWIS-12441**

Heat exchanger uses porous media to enhance heat transfer through walls of cooling channels, thereby lowering wall temperature. Porous media within cooling channel increases internal surface area from which heat can be transferred to coolant. Comparison data shows wall has lower temperature and coolant has higher temperature when porous medium is used within heat exchanger. Media can be sintered powdered metal, metal fibers, woven wire layers, or any porous metal having desired permeability and porosity.

**B80-10082**

**APPLICATIONS OF REMOTE-SENSING IMAGERY**

T. H. HUGHES (Univ. of Alabama)

Aug. 1980

**M-FS-25107**

Compilation of reports discusses usefulness of aircraft and satellite data in land-development projects. Landsat and Earth Resources Technology Satellites data are available to general public. Much information on biological, geological, and hydrological features as well as land use can be determined by eye without sophisticated analyzers.

**B80-10083**

**EQUATIONS OF MOTION FOR COUPLED N-BODY SYSTEMS**

H. P. FRISCH

Aug. 1980

**GSFC-12407**

Computer program, developed to analyze spacecraft attitude dynamics, can be applied to large class of problems involving objects that can be simplified into component parts. Systems of coupled rigid bodies, point masses, symmetric wheels, and elastically flexible bodies can be analyzed. Program derives complete set of non-linear equations of motion in vectorial format. Numerical solutions may be printed out. Program is in FORTRAN IV for batch execution and has been implemented on IBM 360.

**B80-10084**

**VISCOUS CHARACTERISTICS ANALYSIS**

R. V. JENKINS

Aug. 1980

**LANGLEY-12598**

Program considers combustion and diffusive effects in analysis of supersonic, combustion-flow fields with imbedded subsonic regions. Effects of finite-rate chemistry, mixing, and wave propagation are linked together. Program handles up to 20 simultaneous shock waves. Some chemistry terms are computed for seven-species, eight-mechanism, hydrogen-and-air reaction scheme. Program is aid for supersonic-combustor development studies and is written in FORTRAN IV for batch execution on CYBER 175.

**B80-10085**

**TRANSONIC AIRFOIL DESIGN CODE**

F. BAUER (New York Univ.), P. GARABEDIAN (New York Univ.), and D. KORN (New York Univ.)

Aug. 1980

**LANGLEY-12460**

Program aids in design of shockless airfoils, assists development of fuel-conserving, supercritical wings. Algorithm calculates approximate airfoil shape given prescribed pressure distribution. This allows design of families of transonic airfoils

**Vol. 5, No. 1, p. 69**

for use in aircraft wings or turbine and compressor blades. Program is written in FORTRAN IV for batch execution on CDC-6000.

**B80-10086**

**IMPROVED MULTIELEMENT AIRFOIL ANALYSIS**

G. W. BRUNE (The Boeing Co.) and J. W. MANKE (The Boeing Co.)

Aug. 1980

**LANGLEY-12489**

**Vol. 5, No. 1, p. 73**

Program is revised of NASA/Lockheed program to numerically analyze complex viscous flow about slotted airfoils. Airfoil to be analyzed can contain as many as 10 components with negative or positive overlap. Program is written in FORTRAN IV and Assembled for batch execution on CYBER 175 only.

**B80-10087**

**AIRCRAFT EQUILIBRIUM SPIN CHARACTERISTICS**

W. M. ADAMS, JR.

Aug. 1980

**LANGLEY-12502**

**Vol. 5, No. 1, p. 74**

Program provides analytic solutions to nonlinear equations of motion describing spin conditions. Stability characteristics also are determined. Program can be used to study effects of aerodynamic and inertial parameters on spin and could be modified to compute equilibrium conditions for steady maneuvers. Program is written in FORTRAN IV for batch execution on CYBER 173.

**B80-10088**

**FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS**

A. R. BISHOP, J. D. HOFFMAN (Purdue Univ.), and J. VADYAK (Purdue Univ.)

Aug. 1980

**LEWIS-13279**

**Vol. 5, No. 1, p. 74**

Program uses method of characteristics for steady three-dimensional flow to calculate flow field in supersonic portion of mixed-compression aircraft inlet at non-zero angle of attack. Results agree well with experimental data except in regions of high viscous interaction. Flow field for variety of mixed-compression inlets can be calculated. Input includes geometry and attack of inlet. Output consists of list of parameters, solution planes, and description of shock waves. Program is written in FORTRAN IV for batch execution on CDC 6000-series.

**B80-10089**

**SHELL THEORY AUTOMATED FOR ROTATIONAL STRUCTURES**

J. KEY, V. S. GONAS (Grumman Aerospace Corp.), S. LEVINE (Grumman Aerospace Corp.), and P. OGILVIE (Grumman Aerospace Corp.)

Aug. 1980

**M-FS-23027**

**Vol. 5, No. 1, p. 74**

Package of numerical integration programs static, buckling, vibration, and plastic analysis on thin shells of revolution. Shells may be subjected to distributed loads, concentrated line loads, and thermal strain. Outputs include stresses, displacement, plastic strains, and vibration and buckling results. Program aids design of aircraft bodies, spacecraft, submarines, and storage tanks. Written in FORTRAN IV for batch execution, program has been implemented on UNIVAC 1108.

**B80-10090**

**THREE-DIMENSIONAL POTENTIAL FLOW**

N. D. HALSEY (McDonnell Douglas Corp.) and J. L. HESS (McDonnell Douglas Corp.)

Aug. 1980 See also NASA-TM-80088 (N79-31142)

**LANGLEY-12623**

**Vol. 5, No. 1, p. 75**

Program calculates viscous effects on lift and pressure distribution for arbitrary-dimensional lifting configuration. Geometry package generates input data from reduced amount of user-supplied configuration data. Calculated inviscid and viscous lift and pressure distribution agree well with experimental data for variety of wings and wing/fuselages. Program is in FORTRAN IV for batch execution on CYBER 175.

**B80-10091****FULL-COVERAGE FILM COOLING**P. L. MEITNER (U.S. Army Research and Technology Laboratories)  
Aug. 1980**LEWIS-13249****Vol. 5, No. 1, p. 75**

Program calculates coolant flow and wall temperatures of full-coverage film-cooled vanes or blades. Thermal barrier coatings may be specified on outer surfaces of blade. Program is written in FORTRAN IV for batch execution on UNIVAC 1100.

**B80-10092****DISTURBANCE AMPLIFICATION RATES**

A. J. SROKOWSKI, S. A. ORSZAG (Cambridge Hydrodynamics, Inc.), T. CEBECH (McDonnell Douglas), and K. KAUPS (McDonnell Douglas Corp.)

Aug. 1980

**LANGLEY-12556****Vol. 5, No. 1, p. 76**

Program computes incompressible linear stability characteristics for swept and tapered wings. Amplification rates of boundary-layer disturbances also are calculated. Program is useful in designing tapered, laminar-flow control wings incorporating suction to prevent boundary layer separation. Program is written in FORTRAN IV and Assembler for batch execution on CYBER 70-series.

**B80-10214****AUTOMATIC THERMAL SWITCHES**

J. W. CUNNINGHAM and L. D. WING

Sep. 1980

**GSFC-12553****Vol. 5, No. 2, p. 191**

Two automatic switches control heat flow from one thermally conductive plate to another. One switch permits heat flow to outside; other limits heat flow. In one switch, heat on conductive plate activates piston that forces saddle against plate. Heat carriers then conduct heat to second plate that radiates it away. After temperature is first plate drops, piston contracts and spring breaks thermal contact with plate. In second switch, action is reversed.

**B80-10215****GROOVES REDUCE AIRCRAFT DRAG**

M. J. WALSH

Sep. 1980

**LANGLEY-12599****Vol. 5, No. 2, p. 192**

Aerodynamic drag can be reduced by many small longitudinal grooves machined in aircraft skin. Experiments show that grooves parallel to airflow reduce drag by 4 to 7 percent. Reduced drag translates into reduced engine power required to overcome drag and ultimately to lower fuel consumption.

**B80-10216****EFFICIENT MEASUREMENT OF SHEAR PROPERTIES OF FIBER COMPOSITES**

C. C. CHAMIS and J. H. SINCLAIR

Sep. 1980 See also NASA-TN-D-8215(N76-22314)

**LEWIS-13011****Vol. 5, No. 2, p. 193**

Intralaminar (in-plane) shear characterization (shear stress/strain relationships) of unidirectional fiber composites has been hampered by difficulty of producing state of pure shear in practical laboratory test specimens. Proposed method uses 10 deg off-axis tensile specimen (fiber oriented 10 deg from load direction) in conjunction with simple transformation equations for intralaminar shear characterization of fiber composites.

**B80-10217****FRESNEL LENSES FOR ULTRASONIC INSPECTION**

C. C. KAMMERER (Rockwell Intern. Corp.)

Sep. 1980

**MSC-18469****Vol. 5, No. 2, p. 194**

Ultrasonic Fresnel lenses are effective focusing elements with potential applications in ultrasonic 'contact' testing for defects in materials. Ultrasonic beams focused on concave lenses are used successfully with immersion transducers, for which test object is immersed in water bath. However, for large objects, objects that are already installed, objects on production lines, and objects that can be damaged by water, contact testing is more practical than immersion.

**B80-10218****CHANGES IN 'THERMAL LENS' MEASURE DIFFUSIVITY**

A. GUPTA (Caltech), S. D. HONG (Caltech), and J. MOACANIN (Caltech)

Sep. 1980

**NPO-14657****Vol. 5, No. 2, p. 194**

In an extension of 'thermal lens' effect to new applications and better resolution, two laser beams combine to rapidly measure thermal diffusivity and other molecular dynamic properties. New double-beam technique handles very small samples unlike classical techniques for measuring diffusivity. It can be used for measurements on samples undergoing stress, making it applicable to data collection for structural engineering.

**B80-10219****PASSIVE WING/STORE FLUTTER SUPPRESSION**

J. T. FOUGHNER, JR., W. H. REED, III, and H. L. RUNYAN, JR. (George Washington Univ.)

Sep. 1980

**LANGLEY-12468****Vol. 5, No. 2, p. 195**

Passive flutter-suppression system has been developed to increase flutter speed of aircraft wings that are adversely affected by addition of large masses (stores) to the wings, such as external fuel tanks. Important features of system are its effectiveness for large variations in mass of store as well as unsensitivity of system to large change in location of store center-of-gravity.

**B80-10220****SUPPRESSING BUZZ-SAW NOISE IN JET ENGINES**

L. MAESTRELLI

Sep. 1980 See also NASA-TM-78802(N79-13820)

**LANGLEY-12645****Vol. 5, No. 2, p. 196**

Buzz-saw noise, most annoying noise component generated by turbofan engines, can be suppressed by installing porous surface on duct wall directly above engine fan-blade tip. Porous surface and its housing would reduce shock-wave reflection from wall and thus suppress noise.

**B80-10221****DETECTION OF TANKER DEFECTS WITH INFRARED THERMOGRAPHY**

A. G. KANTSIOS

Sep. 1980

**LANGLEY-12655****Vol. 5, No. 2, p. 196**

Infrared scanning technique for finding defects in secondary barrier of liquid natural gas (LNG) tank has been successfully tested on ship under construction at Newport News Shipbuilding and Dry Dock Company. Technique determines defects with minimal expenditure of time and manpower. Tests could be repeated during life of tanker and make more complicated testing unnecessary. Tests also confirmed that tank did not have any major defects, and tank was certified.

**B80-10222****RECORDING FLUID CURRENTS BY HOLOGRAPHY**

L. O. HEFLINGER (TRW, Inc.) and R. F. WUERKER (TRW, Inc.)

Sep. 1980

**M-FS-25373****Vol. 5, No. 2, p. 198**

Convection in fluids can be studied with aid of holographic apparatus that reveals three-dimensional motion of liquid. Apparatus eliminates images of fixed particles such as dust on windows and lenses, which might mask behavior of moving fluid particles. Holographic apparatus was developed for experiments on fluid convection cells under zero gravity. Principle is adaptable to study of variety of fluid processes—for example, electrochemical plating and combustion in automotive engines.

**B80-10223****DOWNHOLE PRESSURE SENSOR**

C. M. BERDAHL (Caltech)

Sep. 1980

**NPO-14729****Vol. 5, No. 2, p. 199**

Sensor remains accurate in spite of varying temperatures. Very accurate, sensitive, and stable downhole pressure measurements are needed for variety of reservoir engineering applica-

## 06 MECHANICS

tions, such as deep petroleum reservoirs, especially gas reservoirs, and in areas of high geothermal gradient.

### B80-10224 OCEANIC-WAVE-MEASUREMENT SYSTEM

J. F. HOLMES (Computer Sci. Corp.) and R. T. MILES (Computer Sci. Corp.)

Sep. 1980

#### M-FS-23862

Vol. 5, No. 2, p. 200

Barometer mounted on buoy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.

### B80-10225 ELECTROFLUIDIC ACCELEROMETER

D. E. HEWES

Sep. 1980

#### LANGLEY-12493

Vol. 5, No. 2, p. 201

Electrofluidic accelerometer senses components of linear and angular acceleration field. Typical application of such acceleration is as active controlling element in airplane autopilot. In contrast to conventional accelerometers, electrofluidic accelerometer is lightweight, small, inexpensive, rugged, and requires little power. It consists of two temperature sensors on opposite sides of heating element. Sensors detect temperature gradient created by acceleration field on fluid; when device is accelerated, gradient changes because of buoyant force on hotter (thus lighter) portion of fluid.

### B80-10226 FLASHBACK-FREE COMBUSTOR

S. G. ANDERSON and N. T. WAKELYN

Sep. 1980 See also NASA-TP-1472(N79-28259)

#### LANGLEY-12666

Vol. 5, No. 2, p. 202

All zirconia combustion chamber for testing fuels prevents 'flashback' accidental extension of flame into fuel supply line. Chamber consists of hemispherical injector on base surrounded by hemispherical cap. Cap has two additional ports for thermocouple and gas sampling probes.

### B80-10227 MEASURING RADIATION EFFECTS ON MOS CAPACITORS

M. BAKOWSKI (Caltech), R. H. COCKRUM (Caltech), J. MASERJIAN (Caltech), and N. ZAMANI (Caltech)

Sep. 1980

#### NPO-14700

Vol. 5, No. 2, p. 203

Electron injection technique serves as powerful probe of trapped hole distribution after irradiation because it was determined that electrons only annihilate trapped holes. Other effects, such as other electron traps and interface state generation, are negligible in injection range used. Trap cross sections and densities indicate at least three trap species: interfacial species, dominant bulk species determined to tail off from silicon interface, and lower density and cross section species that may be distributed throughout bulk of oxide.

### B80-10228 PREDICTING LIFETIME OF CAST PARTS

R. A. COOPER (Rockwell International Corp.)

Sep. 1980

#### M-FS-19549

Vol. 5, No. 2, p. 204

Life expectancy of cast aluminum machine parts can be predicted accurately from fatigue tests at 78 K on notched specimens of aluminum alloy. Method was developed for rocket engine turbopump parts made of high strength, heat treatable alloy with high silicon content; however, technique is applicable to other aluminum casting alloys.

### B80-10229 DETECTING CONTAMINANTS BY ULTRAVIOLET PHOTOGRAPHY

D. W. NEISWANDER (Martin Marietta Corp.)

Sep. 1980

#### M-FS-25296

Vol. 5, No. 2, p. 205

Relatively high ultraviolet absorptivity of most organics as compared to metal is suggested as basis for detecting traces of contamination. By photographing metal surface in ultraviolet light, contaminants that might otherwise interfere with adhesion of surface coatings, or with welding or brazing, could be detected and removed. Real time monitoring of cleaning process is also possible if ultraviolet sensitive television camera is used instead of photographic film.

### B80-10230

#### DETECTING SURFACE FAULTS ON SOLAR MIRRORS

M. J. ARGOUD (Caltech), M. S. SHUMATE (Caltech), W. L. WALKER (Caltech), and R. A. ZANTESON (Caltech)

Sep. 1980

#### NPO-14684

Vol. 5, No. 2, p. 205

Two quality control tests determine reflectivity and curvature faults of concave solar mirrors. Curvature defects in solar mirrors are easily revealed by photographing mirror surface. Calibrated aperture placed in front of camera lens admits rays reflecting only from acceptable areas of mirror, blocking out diverging rays reflected from defective areas. Defects can pinpoint problems that may exist in production. Same photograph can be obtained using calibrated disk instead of aperture, except that, this time, only defective areas would be exposed.

### B80-10231

#### REFRACTION CORRECTIONS FOR SURVEYING

W. M. LEAR (TRW, Inc.)

Sep. 1980 See also TM-80803(N80-10907)

#### MSC-18664

Vol. 5, No. 2, p. 206

Optical measurements of range and elevation angles are distorted by refraction of Earth's atmosphere. Theoretical discussion of effect, along with equations for determining exact range and elevation corrections, is presented in report. Potentially useful in optical site surveying and related applications, analysis is easily programmed on pocket calculator. Input to equation is measured range and measured elevation; output is true range and true elevation.

### B80-10232

#### DIGITAL ENHANCEMENT OF X-RAYS FOR NDT

R. L. BUTTERFIELD

Sep. 1980

#### KSC-11118

Vol. 5, No. 2, p. 206

Report is 'cookbook' for digital processing of industrial X-rays. Computer techniques, previously used primarily in laboratory and developmental research, have been outlined and codified into step by step procedures for enhancing X-ray images. Those involved in nondestructive testing should find report valuable asset, particularly is visual inspection is method currently used to process X-ray images.

### B80-10233

#### DESIGN CONSIDERATIONS FOR MECHANICAL FACE SEALS

L. P. LUDWIG and H. F. GREINER (Sealol, Inc.)

Sep. 1980 See also NASA-TM-73735(N78-13439); NASA-TM-73736(N77-33518)

#### LEWIS-13146

Vol. 5, No. 2, p. 207

Two companion reports deal with design considerations for improving performance of mechanical face seals, one of family of devices used in general area of fluid sealing of rotating shafts. One report deals with basic seal configuration and other with lubrication of seal.

### B80-10234

#### REGENERATIVE SUPERHEATED STEAM TURBINE CYCLES

L. C. FULLER (Union Carbide Corp.) and T. K. STOVALL (Union Carbide Corp.)

Sep. 1980

#### LEWIS-13392

Vol. 5, No. 2, p. 208

PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles.

It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

**B80-10235****STREAM TUBE CURVATURE ANALYSIS**

D. R. FERGUSON (GE) and J. S. KEITH (GE)

Sep. 1980

**LANGLEY-11535****Vol. 5, No. 2, p. 208**

Program accurately calculates inviscid pressure distribution and flow field, including viscous displacement effects, around arbitrary axisymmetric ducted body at transonic speeds. Computerized flow field analysis predicts transonic flow around long and short high bypass ratio fan duct nacelles with inlet and outlet flows having appropriate aerothermodynamic properties. It makes possible parametric studies for evaluating nacelle design criteria and selecting configurations for further experimental investigations.

**B80-10236****A GENERALIZED VORTEX LATTICE METHOD**

W. M. BAKER (Lockheed Aircraft Corp.), R. D. ELLIOTT (Lockheed Aircraft Corp.), and L. R. MIRANDA (Lockheed Aircraft Corp.)

Sep. 1980

**LANGLEY-12636****Vol. 5, No. 2, p. 209**

Several variations of vortex lattice method that are currently available have proved practical and versatile theoretical tools for aerodynamic analysis and design of planar and nonplanar configurations. Success of method is due in great part to relative simplicity of numerical technique involved and to accuracy of results obtained; however, most of available procedures are for subsonic flow applications. VORLAX program was developed to incorporate direct extension of vortex lattice method into supersonic flow regime, thus providing analyst with full flow range capability.

**B80-10237****VIBRATION MODES AND FREQUENCIES OF STRUCTURES**

R. J. DURLING and R. G. KVATERNIK

Sep. 1980

**LANGLEY-12647****Vol. 5, No. 2, p. 209**

SUDAN, Substructuring in Direct Analysis, analyzes natural modes and frequencies of vibration of structural systems. Based on direct method of analysis that employs substructures methodology, program is used with structures that may be represented as equivalent system of beam, springs, and rigid bodies.

**B80-10238****PREDICTING PROPULSION SYSTEM DRAG**

L. E. PUTNAM

Sep. 1980

**LANGLEY-12619****Vol. 5, No. 2, p. 210**

DONBOL computer program analytically predicts axisymmetric nozzle afterbody pressure distributions and drag. Predictions are based on Neumann solution for inviscid external flow coupled with modified Reshotko-Tucker integral boundary layer technique, control volume method of Presz for calculating flow in separated region, and inviscid one dimensional solution for jet exhaust flow. Comparisons with experimental data indicate program accurately predicts pressure distributions of boattail afterbodies for which jet exhaust plume can be simulated by solid body. For other configurations, nozzle pressure drag seems to be significantly underpredicted. Method is limited to subsonic free stream mach numbers below those for which flow over body becomes sonic.

**B80-10239****HEAT CONDUCTION IN THREE DIMENSIONS**

T. M. DANZA (Rockwell Intern. Corp.), L. W. FESLER (Rockwell Intern. Corp.), and R. D. MONGAN (Rockwell Intern. Corp.)

Sep. 1980

**MSC-18616****Vol. 5, No. 2, p. 210**

Multidimensional heat conduction program computes transient temperature history and steady state temperatures of complex body geometries in three dimensions. Emphasis is placed on type of problems associated with Space Shuttle thermal protection system, but program could be used in thermal analysis of most three dimensional systems.

**B80-10373****HOLES HELP CONTROL TEMPERATURE**

C. K. CHHATPAR (RCA Corp.)

Jan. 1981

**GSFC-12618****Vol. 5, No. 3, p. 343**

Study of passive thermal control for the Solar Terrestrial Subsatellite (STSS) has found that array of 'see through' holes substantially improves performance of system. Holes in payload mounting plates allow line of sight radiative heat transfer between hot and cold ends of spacecraft and between mounting plates and ends. Temperature gradients between plates are thereby reduced, as is temperature of each plate. Holes and selected exterior paints and finishes keep payload cool for all orientations and operating modes of STSS.

**B80-10374****FAST RESPONSE CRYOGEN LEVEL SENSOR**

J. B. FITZPATRICK (Simmonds Precision Products, Inc.) and L. C. MAIER (Simmonds Precision Products, Inc.)

Jan. 1981

**MSC-18697****Vol. 5, No. 3, p. 344**

Liquid level in cryogenic tank or pipe, or amount of gas trapped in pipeline flow, is monitored electronically by cylindrical capacitive sensor. Changes in liquid level between concentric tubes of capacitor change its impedance, varying current in drive circuit. Since it is oriented parallel to direction of liquid flow, sensor presents little resistance to moving fluid.

**B80-10375****FIBER OPTIC LEVEL SENSOR FOR CRYOGENS**

M. SHARMA (TRW, Inc.)

Jan. 1981

**MSC-18674****Vol. 5, No. 3, p. 345**

Sensor is useful in cryogenic environments where liquids of very low index of refraction are encountered. It is 'yes/no' indication of whether liquid is in contact with sensor. Sharp bends in fiber alter distribution of light among propagation modes. This amplifies change in light output observed when sensor contacts liquid, without requiring long fiber that would increase insertion loss.

**B80-10376****ACOUSTIC LENS IS GAS-FILLED**

J. M. KENDALL, JR. (Caltech)

Jan. 1981

**NPO-14757****Vol. 5, No. 3, p. 345**

Fluorocarbon gas contained by plastic membrane is effective lens for sound waves. In tests, lens substantially improved accuracy of sound 'maps' of turbulent airflow. It could also be used to record sound intensity patterns in design of speakers, lecture halls, and auditoriums. Lens is fabricated by clamping together two membranes of thin plastic and filling enclosed space with fluorocarbon gas. Since speed of sound in gas is considerably less than in air, lens refracts and focuses sound waves, analogous to focusing light by glass lens. Focal length is adjusted simply by changing gas pressure, which changes lens curvature.

**B80-10377****ULTRASONIC FREQUENCY ANALYSIS**

J. H. CANTRELL, JR. and J. S. HEYMAN

Jan. 1981

**LANGLEY-12697****Vol. 5, No. 3, p. 346**

Technique is used for evaluation and characterization of materials, fluids, and biological tissue. Method eliminates problem of electrical drive pulse shape by slaving tracking generator to local oscillator of spectrum analyzer. Logic/timing generator is used to control pulse transmission and receiving sequence, pulse width, and pulse repetition rate.

## 06 MECHANICS

### B80-10378

#### TEMPERATURE CONTROLLER ADAPTS TO FATIGUE TESTER

L. A. IMIG and M. R. GARDNER

Jan. 1981

### LANGLEY-12393

Vol. 5, No. 3, p. 347

Identical blocks of aluminum, held against front and back of specimen, each contain electrical heaters, liquid nitrogen cavity with input and exhaust tubes, and thermocouple. Thermocouples are connected to control unit, which adjusts specimen temperature during fatigue tests over range of 850 degrees F.

### B80-10379

#### ENVIRONMENTAL TESTING UNDER LOAD

R. K. CLARK and W. B. LISAGOR

Jan. 1981

### LANGLEY-12602

Vol. 5, No. 3, p. 348

Inexpensive fixture applies compression loads to specimens exposed to environment. Fixture handles relatively large specimens suitable for postexposure analysis of physical, chemical, and mechanical properties.

### B80-10380

#### TESTING PANELS IN TENSION AND FLEXURE

G. K. JING (Martin Marietta Corp.)

Jan. 1981

### M-FS-25421

Vol. 5, No. 3, p. 349

Simple jig adapts tensile test machine for simultaneous application of tension and flexure, for evaluating panel composition, processing, and design. Environmental test chamber can be added so that panel properties can be measured at extreme temperatures.

### B80-10381

#### A CONSTRUCTION TECHNIQUE FOR WIND TUNNEL MODELS

P. L. LAWING, P. G. SANDEFUR, JR., and W. H. WOOD

Jan. 1981

### LANGLEY-12710

Vol. 5, No. 3, p. 350

High strength, good surface finish, and corrosion resistance are imparted to miniature wind tunnel models by machining pressure channels as integral part of model. Pattern for pressure channels is scribed, machined, or photoetched before channels are drilled. Mating surfaces for channels are flashed and then diffusion brazed together.

### B80-10382

#### MEASURING THE THERMAL CONDUCTIVITY OF INSULATION

C. A. WILKINS (Caltech), R. ASH (Caltech), and W. L. DOWLER (Caltech)

Jan. 1981

### NPO-14871

Vol. 5, No. 3, p. 351

Two symmetrical heat sources help determine thermal transmission properties of insulating material.

### B80-10383

#### RAIN, FOG, AND CLOUDS FOR AIRCRAFT SIMULATORS

W. D. CHASE

Jan. 1981

### ARC-11158

Vol. 5, No. 3, p. 352

Environmental chamber creates realistic fog and rain effects in aircraft simulator. It reproduces clouds, homogeneous fog, patches of fog, rain and fog, and rain only. It is used with real time digital computer, color computer generated image display that simulates airport lights, or color television camera that produces moving display of airport runway as depicted on model terrain board.

### B80-10384

#### IMPROVED MAGNETIC MATERIAL ANALYZER

J. E. TRINER

Jan. 1981 See also NASA-TM-79234 (N79-31499)

### LEWIS-13493

Vol. 5, No. 3, p. 353

Flux-controlled magnetic-core-loss tester has been developed that produces high-frequency core-loss data (within 2 percent)

for any desired waveform excitation and allows magnetic characteristics of material to be measured under symmetrical and asymmetrical excitation conditions. It allows direct control of additional loss variable rather than just driving frequency as is case for all previous sinusoidal core-loss measurements.

### B80-10385

#### ELECTRONIC DEPTH MICROMETER

R. K. MAJOR (United Space Boosters, Inc.)

Jan. 1981

### KSC-11181

Vol. 5, No. 2, p. 354

Device for measuring depth or thickness reads distance of penetration by small-diameter probe. It was developed specifically to measure thickness of wet (uncured) insulation applied to Space Shuttle structures; thin probes penetrate wet insulation to substrate, and reference surface on gage is then positioned against outer surface of insulation to measure its thickness. Gage is easy to use, even by workers wearing gloves or other protective clothing, and allows remote reading and recording of production data.

### B80-10386

#### INTERCHANGEABLE SPRING MODULES FOR INERTIA MEASUREMENTS

J. W. MCNAMARA and J. W. OAKLEY

Jan. 1981

### LANGLEY-12402

Vol. 5, No. 3, p. 355

Operation of inertia balance is simplified by packaging set of balance springs in interchangeable modules. They are held in place in balance pedestal by just two fasteners, making removal and replacement fast and simple. With them, balance can be readied in less than 15 minutes, in contrast to more than 2 hours by previous method.

### B80-10387

#### WAKEFLOW ANALYSIS BY COST

V. J. ANSELMO (Caltech)

Jan. 1981

### NPO-14705

Vol. 5, No. 3, p. 355

COST (Computerized Optical Scanning Tomography) is proposed for visualizing wakeflows of aircraft and wind-tunnel models. Operating very close to real time, COST hardware could be installed at airports to monitor turbulent flow trailing large aircraft, so that smaller aircraft could be directed to avoid turbulence. Real-time analysis of jet-engine exhaust plumes, to reduce pollution and optimize performance, is also possible.

### B80-10388

#### INTEGRATED MATERIAL-SURFACE ANALYZER

F. J. GRUNTHANER (Caltech) and B. F. LEWIS (Caltech)

Jan. 1981

### NPO-14702

Vol. 5, No. 3, p. 356

These 10 surface-analysis tests can be run without breaking vacuum: secondary-ion mass spectroscopy, ion-scattering spectroscopy, electron-stimulated desorption, residual-gas analysis, auger electron spectroscopy, x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, characteristic-electron energy-loss spectroscopy, scanning electron microscope, scanning low-energy electron probe. Quadrupole mass spectrometer, used in first 4 tests, serves as electron transfer lens in last 6 tests.

### B80-10389

#### FIBER OPTIC ACCELEROMETER

R. R. AUGUST (Rockwell Intern. Corp.)

Jan. 1981

### LEWIS-13219

Vol. 5, No. 3, p. 357

Low-cost, rugged lightweight accelerometer has been developed that converts mechanical motion into digitized optical outputs and is immune to electromagnetic and electrostatic interferences. Instrument can be placed in hostile environment, such as engine under test, and output led out through miscellany of electrical fields, high temperatures, etc., by optic fiber cables to benign environment of test panel. There, digitized optical signals can be converted to electrical signals for use in standard

electrical equipment or used directly in optical devices, such as optical digital computer.

**B80-10390****HEAT/PRESSURE SEAL FOR MOVING PARTS**

M. L. STEVENS (Fairchild Republic Co.)

Jan. 1981

**MSC-18422****Vol. 5, No. 3, p. 368**

Prototype seal keeps hot gases from leaking between large, adjacent parts in relative motion. Seal withstands temperatures greater than 1,000 degrees C (1800 degrees F) and accommodates heat and pressure caused distortion of parts. It is nonabrasive, creates little resistance to movement of parts, and causes minimal wear and damage to surface coatings.

**B80-10391****HEAT SWITCH HAS NO MOVING PARTS**

S. H. CASTLES

Jan. 1981

**GSFC-12825****Vol. 5, No. 3, p. 359**

No moving parts are needed for thermally actuated switch. It could also operate as variable thermal conductance, allowing temperature of equipment to be regulated with minimal expenditure of energy.

**B80-10392****DYNAMICS OF CAVITATING CASCADES AND INDUCER PUMPS**

C. E. BRENNEN (California Inst. of Tech.) and A. J. ACOSTA (California Inst. of Tech.)

Jan. 1981

**M-FS-25399****Vol. 5, No. 3, p. 359**

Report chronicles advances in understanding and predicting unsteady dynamic characteristics of cavitating cascades and inducer pumps. It includes bibliography of 19 papers authored between 1972 and 1980.

**B80-10393****SIMPLIFIED THERMAL ANALYZER**

M. J. COYLE

Jan. 1981

**GSFC-12638****Vol. 5, No. 3, p. 360**

Simplified Shuttle Payload Thermal Analyzer (SSPTA) aids in evaluating thermal design of instruments to be flown in Space Shuttle cargo bay. It is collection of programs that are currently used in thermal analysis of spacecraft, modified for quick, preliminary analysis of payloads. Although designed primarily to analyze Shuttle payloads, it can be easily used for thermal analysis in other situations.

**B80-10394****RESIZING STRUCTURES FOR MINIMUM WEIGHT**

C. FLEURY and L. A. SCHMIT (California Univ.)

Jan. 1981

**LANGLEY-12699****Vol. 5, No. 3, p. 361**

Approximation concepts and dual-method algorithms are combined in method of minimum-weight design for structures. Approximation Concepts Code for Efficient Structural Synthesis (ACCESS3) program is powerful research tool in which mathematical programming and optimality criteria are coalesced in efficient structural weight-minimization method.

**B80-10395****NASTRAN MODIFICATIONS FOR RECOVERING STRAINS AND CURVATURES**

C. C. CHAMIS and C. H. HENNRICH (MacNeal-Schwendler Corp.)

Jan. 1981

**LEWIS-12592****Vol. 5, No. 3, p. 361**

NASTRAN, NASA's general-purpose finite-element structural analysis program, has been modified to allow recovery of surface strains, reference plane strains, and local curvatures at nodes of general plane elements. NASTRAN routines that operate on element stress/strain/temperature relationships and strain/temperature relationships have been modified to incorporate generation and return of strains and curvatures in lieu of stresses. Strains and curvatures are then transformed to material axes

and interpolated to generate corresponding strains and curvatures at nodes of element. This interpolation is accomplished using special surface-mapping function.

**B80-10396****COST-MINIMIZED AIRCRAFT TRAJECTORIES**

H. LEE and H. ERZBERGER

Jan. 1981

**ARC-11282****Vol. 5, No. 3, p. 361**

For aircraft operating over fixed range, operating costs are basically sum of fuel cost and time cost; but determining minimum cost trajectory can be complex. Program optimizes trajectories with respect to cost function that is based on weighed sum of fuel cost and time cost. Minimum fuel, minimum time, and various delay trajectories are obtained by specifying particular values for fuel and time cost factors.

**B80-10397****AERODYNAMIC PRELIMINARY ANALYSIS**

E. BONNER (Rockwell International Corp.), W. CLEVER (Rockwell International Corp.), P. DIVAN (Rockwell International Corp.), K. DUNN (Rockwell International Corp.), and J. KOJIMA (Rockwell International Corp.)

Jan. 1981

**LANGLEY-12404****Vol. 5, No. 3, p. 362**

Computerization of aerodynamic theory has progressed to state where analysis of complete aircraft configurations can be performed in single program. Aerodynamic Preliminary Analysis System, APAS, is comprehensive aerodynamic analysis system, based on linearized potential theory. Three-dimensional configurations (with or without jet flaps) having multiple nonplanar surfaces of arbitrary planform and open or closed slender bodies of noncircular contour may be analyzed with APAS. As preliminary design aid, APAS allows designer to survey systematically large number of alternative configurations and component geometries economically.

**B80-10398****INVISCID TRANSONIC FLOW OVER AXISYMMETRIC BODIES**

J. C. SOUTH, JR. and J. D. KELLER

Jan. 1981

**LANGLEY-12499****Vol. 5, No. 3, p. 363**

Axisymmetric transonic flow is of interest not only because of its practical application to missile and launch vehicle aerodynamics but also because of its relation, in terms of area rule, to fully three dimensional flow. RAXBOD computer program analyzes steady, inviscid, irrotational, transonic flow over axisymmetric bodies in free air. RAXBOD uses finite-difference relaxation method to solve numerically exact formulation of disturbance velocity potential with exact surface boundary conditions. Agreement with available experimental results has been good in cases where viscous effects and wind-tunnel wall interference are not important.

**B80-10399****PLASTIC DEFORMATION OF ENGINES AND OTHER NONLINEAR STRUCTURES**

R. G. VOS (Boeing Co.) and J. L. ARNQUIST (Boeing Co.)

Jan. 1981

**M-FS-23814****Vol. 5, No. 3, p. 363**

Plastic Analysis Capability for Engines (BOPACE3D) is nonlinear stress-analysis program based on very general family of isoparametric finite elements. Although development of BOPACE3D has been heavily influenced by requirements for engine analysis (in particular Space Shuttle main engine), it is general program applicable to many nonlinear structures.

**B80-10400****ANALYSIS OF A COOLED, TURBINE BLADE OR VANE WITH AN INSERT**

R. E. SAUGLER

Jan. 1981

**LEWIS-13293****Vol. 5, No. 3, p. 364**

Computer program, TACTI, has been developed to calculate transient and steady-state temperatures, pressures, and flow in cooled turbine blade or vane with impingement insert. Coolant-side

## 06 MECHANICS

heat-transfer coefficients are calculated internally in program, with user specifying 1 of 3 modes of heat transfer at each station: impingement (including effect of crossflow); or forced convection over pin fins.

### B80-10506 AN OVEN FOR MANY THERMOCOUPLE REFERENCE JUNCTIONS

L. P. LEBLANC  
Apr. 1981

**FRC-10112** **Vol. 5, No. 4, p. 467**  
Compact, lightweight oven designed with geometric and heating symmetry holds many junctions at stable temperature. Oven has cylindrical wall with all points equidistant from heating coil. Thermocouple junctions are inserted in holes bored radially in wall. Sensor controls power supplied to heating coil, maintaining cylinder wall and junctions at constant temperature.

### B80-10507 ISOLATION AND MEASUREMENT OF ROTOR VIBRATION FORCES

I. KENIGSBERG (United Technologies Corp.) and J. F. MADDEN (United Technologies Corp.)  
Apr. 1981 See also A79-18654

**LANGLEY-12476** **Vol. 5, No. 4, p. 468**  
Mounting for helicopter gearbox measures forces generated by rotor and isolates transmission from airframe. Mountings have frequency-dependent load/displacement relationship that gives statically rigid but dynamically soft support, lowering vibratory transfer. Previous isolation by springs or force-opposing devices required strain gages to measure rotor vibration and were operative at only one vibration frequency. Active system eliminates these limitations.

### B80-10508 IMPROVED LEEM RANGES OVER FOUR DECADES

J. J. SINGH, G. M. WOOD, JR., G. H. RAYBORN (University of Southern Mississippi), and F. A. WHITE (Rensselaer Polytechnic Institute)

Apr. 1981 See also NASA-TM-80172(N80-13429)

**LANGLEY-12706** **Vol. 5, No. 4, p. 469**

Low-energy electron magnetometer is suitable for terrestrial and aerial applications. Electron beam strikes tantalum collector plates in device, amplifying current and converting it to frequency. Current difference increases with beam deflection, providing measure of local field strength. LEEM operation requires no liquid helium unlike superconducting quantum interference device. LEEM sensitivity compares favorably with that of optical absorption magnetometers, and microsecond response range makes analyzing fast magnetic transients and signatures possible.

### B80-10509 IMAGER DISPLAYS FREE FALL IN STOP ACTION

R. E. FRAZER (Caltech)  
Apr. 1981

**NPO-14779** **Vol. 5, No. 4, p. 470**

Microprocessor-controlled imaging system displays sequence of 'frozen' images of free-falling object, using video cameras positioned along fall. Strobe lights flash as object passes each camera's viewfield. Sequence stored on video disk and displayed on television monitor is stop-action record of fall dynamics. With modification, system monitors other high speed phenomena.

### B80-10510 TRANSDUCER FOR EXTREME TEMPERATURES AND PRESSURES

H. NADLER (Rockwell International Corp.)  
Apr. 1981

**MSC-18778** **Vol. 5, No. 4, p. 471**

Transducer with limits of 500 C and 10 kilobars responds to mechanical vibrations up to 20 kHz. Vibration pickup performs well in nuclear reactors, turbines, and other extreme environments. Low pressure problems of outgassing and 'virtual' leakage experienced with conventional transducers potted in epoxy are eliminated with use of glass and metal supports. Interior opens

to atmosphere, preventing buildup of pressure-induced stresses. Spring holds transducer against housing, reducing strain distortion.

### B80-10511 BULK LIFETIME INDICATES SURFACE CONTAMINATION

P. D. BLAIS (Westinghouse Electric Corp.)  
Apr. 1981

**NPO-14966** **Vol. 5, No. 4, p. 471**

Indirect measurement of wafer surface impurities has sensitivity of 300 monolayers. Photoconductivity-decay apparatus determines bulk recombination lifetime in semiconductor materials. Bulk impurity levels before and after annealing relate to level of surface contamination. Method evaluates wafer cleaning techniques, qualifying purity of chemical and deionized water used, or monitors production process.

### \*B80-10512 BIAXIAL METHOD FOR IN-PLANE SHEAR TESTING

H. G. BUSH and T. WELLER (National Academy of Sciences)  
Apr. 1981 See also NASA-TM-74070(N78-21489)

**LANGLEY-12680** **Vol. 5, No. 4, p. 472**

Method for obtaining uniform shear deformation yields more accurate values for material mechanical properties than uniaxial picture frame techniques. Forces applied are one-half usual magnitude, reducing transmitted force and related pin deformations. Biaxial method installs square sandwich specimen in stiff frame with pinned corners. Frictional effects are negligible, and stiffening of honeycomb core is corrected for in results.

### B80-10513 GAS ABSORPTION/DESORPTION TEMPERATURE-DIFFERENTIAL ENGINE

C. G. MILLER (Caltech)  
Apr. 1981

**NPO-14528** **Vol. 5, No. 4, p. 474**

Continuously operating compressor system converts 90 percent of gas-turbine plant energy to electricity. Conventional plants work in batch mode, operating at 40 percent efficiency. Compressor uses metal hydride matrix on outside of rotating drum to generate working gas, hydrogen. Rolling valve seals allow continuous work. During operation, gas is absorbed, releasing heat, and desorbed with heat gain. System conserves nuclear and fossil fuels, reducing powerplant capital and operating costs.

### B80-10514 INSTRUMENT MEASURES CLOUD COVER

E. G. LAUE (Caltech)  
Apr. 1981

**NPO-14936** **Vol. 5, No. 4, p. 474**

Eight solar sensing cells comprise inexpensive monitoring instrument. Four cells always track Sun while other four face sky and clouds. On overcast day, cloud-irradiance sensors generate as much short-circuit current as Sun sensor cells. As clouds disappear, output of cloud sensors decreases. Ratio of two sensor type outputs determines fractional cloud cover.

### B80-10515 COMPACT INFRARED DETECTOR

A. GUPTA (Caltech), S. HONG (Caltech), and J. MOACANIN (Caltech)

Apr. 1981

**NPO-14864** **Vol. 5, No. 4, p. 475**

Broadband IR detector integrated into compact package for pollution monitoring and weather prediction is small, highly responsive, and immune to high noise. Sensing material is transparent sheet metallized with reflecting coating and overcoated with black material on same side. Pulse produced by chopping of infrared source beam creates transient 'thermal lens' that temporarily defocuses laser beam probe. Detector monitoring beam measures defocusing which parallels infrared intensity.

### B80-10516 FAST CALIBRATION OF GAS FLOWMETERS

R. V. LISLE and T. L. WILSON  
Apr. 1981

**KSC-11076** **Vol. 5, No. 4, p. 476**

Digital unit automates calibration sequence using calculator IC and programmable read-only memory to solve calibration equations. Infrared sensors start and stop calibration sequence. Instrument calibrates mass flowmeters or rotameters where flow measurement is based on mass or volume. This automatic control reduces operator time by 80 percent. Solid-state components are very reliable, and digital character allows system accuracy to be determined primarily by accuracy of transducers.

**B80-10517****WIND-SIMULATION TESTER FOR SOLAR MODULES**

J. S. GRIFFITH (Caltech)

Apr. 1981

**NPO-14837****Vol. 5, No. 4, p. 477**

Tester induces cyclic pressure loads across module surface, guaranteeing its mechanical integrity. Module to be tested is sandwiched between stiffened aluminum layers covered with rubber sheets. Automatic front and back pressure loading is cycled by pneumatic system on separate stand. Relief valves prevent overpressuring. Fixture operates at high speed, completing cycle in 5 seconds, and typically applies 2,400 pascals.

**B80-10518****HEAT PIPES COOL PROBE AND SANDWICH PANEL**

C. J. CAMARDA, L. M. COUCH, and H. N. KELLY

Apr. 1981

**LANGLEY-12637****Vol. 5, No. 4, p. 478**

Two concepts integrate heat-pipe technology. Probe with heat-pipe cooled jacket is self-contained, passive, and has no moving parts, unlike conventional air and water cooled probes. It is used in hostile, high temperature environments like wind tunnels and powerplants or on high-speed research and hypersonic cruise vehicles. Heat-pipe sandwich panel combines structural efficiency of sandwich with thermal efficiency of heat-pipe. It is used to eliminate thermal gradients and stresses, minimize thermal distortions, and transfer heat from one face of panel to other.

**B80-10519****THERMODYNAMIC AND TRANSPORT PROPERTIES OF AIR/WATER MIXTURES**

T. E. FESSLER

Apr. 1981

**LEWIS-13432****Vol. 5, No. 4, p. 479**

Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

**B80-10520****CALCULATING LINEAR A, B, C, AND D MATRICES FROM A NONLINEAR DYNAMIC ENGINE SIMULATION**

L. C. GEYSER

Apr. 1981

**LEWIS-13250****Vol. 5, No. 4, p. 479**

Digital program DYGABCD generates linear state-space models for simulating turbofan and turbojet engines over complete range of power settings and flight conditions. Program is written in FORTRAN IV for batch execution and is implemented on IBM 360-series computer.

**B80-10521****STRUCTURAL DESIGN WITH STRESS AND DISPLACEMENT CONSTRAINTS**

J. KIUSALAAS (Pennsylvania State University) and G. B. REDDY (Pennsylvania State University)

Apr. 1981

**M-FS-25235****Vol. 5, No. 4, p. 480**

DESAPI program synthesizes linear elastic structures under static loads. Its design objective is finding element sizes that minimize total weight without changing layout structure. Primary constraints are upper limits on stresses and displacements

prescribed as yield and local instability criteria. Program is written in FORTRAN IV for batch execution and is implemented on IBM 360 computer.

**B80-10522****AN ALL-FORTRAN VERSION OF NASTRAN FOR THE VAX**

L. PURVES

Apr. 1981

**GSFC-12600****Vol. 5, No. 4, p. 481**

All FORTRAN version of NASA structural analysis program NASTRAN is implemented on DEC VAX-series computer. Applications of NASTRAN extend to almost every type of linear structure and construction. Two special features are available in VAX version: program is executed from terminal in manner permitting use of VAX interactive debugger, and links are interactively restarted when desired by first making copy of all NASTRAN work files.

**B80-10523****POTENTIAL FLOW IN TWO-DIMENSIONAL DEFLECTED NOZZLES**

J. D. HAWK and N. O. STOCKMAN

Apr. 1981

**LEWIS-13461****Vol. 5, No. 4, p. 481**

Three programs analyze flow: SCIRCL, geometry definition program; 24Y, incompressible two-dimensional potential-flow program; and NOZZLEC, program combining incompressible potential-flow solutions into solutions of interest after compressibility correction. Program group is written in FORTRAN IV for implementation on UNIVAC 1100/42.

**B80-10524****THE DESIGN AND ANALYSIS OF LOW-SPEED AIRFOILS**

R. EPPLER (University of Stuttgart) and D. M. SOMERS

Apr. 1981

**LANGLEY-12727****Vol. 5, No. 4, p. 481**

PROFILE program solves diverse and inverse airfoil-flow problems. It combines conformational mapping method for design of airfoils with prescribed velocity-distribution characteristics, panel method for potential-flow analysis, and boundary-layer method. PROFILE is written in FORTRAN IV for implementation on CDC 6000-series computer.

**B80-10525****TRANSONIC FLOW OVER WING/FUSELAGE CONFIGURATIONS**

C. W. BOPPE (Grumman Aerospace Corp.)

Apr. 1981

**LANGLEY-12702****Vol. 5, No. 4, p. 482**

Wing Body Code (WIBCO) program simulates flow-field configurations for reduction of design cost and improvement of aircraft performance. Inputs to WIBCO consist of ambient flow conditions and geometric configuration data; grid control and relaxation parameters are internally set. Outputs include input data echo, grid system verification, relaxation-solution convergence history, and computed velocities, pressures, forces, moments, reference lengths, and areas. Program is written in FORTRAN IV for batch execution.

**07 MACHINERY****B80-10093****PRECISION FILAMENT CUTTER**

A. D. MCHATTON, A. L. NEWCOMB, JR., and G. SCHLUFE (Bionetics Corp.)

Aug. 1980

**LANGLEY-12564****Vol. 5, No. 1, p. 79**

Automated cutter precisely chops filaments of glass, graphite, plastic, and other materials into fibers for use in composites and other applications. Cutter uses movable blade that is pushed

## 07 MACHINERY

and pulled across fixed blade. Because mass of movable blade is small and stroke is short, operation is fast, and wear and energy consumption are low. Blade cuts on both forward and return movements. Operator selects fiber length and chopping rate. After each cut, blast of air blows filament away so it can be collected.

### B80-10094

#### AUTOMATIC CONNECTOR FOR STRUCTURAL BEAMS

G. F. VON TIESSEHAUSEN

Aug. 1980

### M-FS-25134

Vol. 5, No. 1, p. 80

Lightweight connector automatically aligns beams to be joined, and withstands torsion, tension, and compression loads. One beam has connector, other has receptor. Bracket aligns connector and receptor. When actuated, spring in connector pushes shaft into receptor. Hooks on shaft snap to lock into receptor slots. Union can be separated easily without damage. Connectors are designed for in-space assembly, but may be suited to ground assemblies as well.

### B80-10095

#### MECHANICAL END JOINT FOR STRUCTURAL COLUMNS

H. G. BUSH and R. E. WALLSOM (Vought Corp.)

Aug. 1980

### LANGLEY-12482

Vol. 5, No. 1, p. 81

Connector for tubular struts permits construction of lightweight frames without tools or assembly equipment. Two main components are node fitting and strut element. Components are cleaned approximately and pushed together. Design accommodates reasonable axial and rotational misalignment of nodes and struts. Also, individual columns can be inserted into receptacle and given slight push by operator, trigger pins release ratchet, allowing energy stored in springs to rotate screw into nut in receptacle.

### B80-10096

#### SELF-ENERGIZED SCREW COUPLING

A. E. LEFEVER (Rockwell International Corp.) and R. S. TOTAH (Rockwell International Corp.)

Aug. 1980

### M-FS-25340

Vol. 5, No. 1, p. 82

Threaded coupling carries its own store of rotational energy. Originally developed to ease task of astronauts assembling structures in space, coupling offers same advantages in other hazardous operations, such as underwater and in and around nuclear reactors. Coupling consists of two parts: crew portion and receptacle. When screw portion is inserted into receptacle and given slight push by operator, trigger pins release ratchet, allowing energy stored in springs to rotate screw into nut in receptacle.

### B80-10097

#### AUTOMATIC SHUTOFF VALVE

S. F. HAWKINS (Rockwell International Corp.) and C. W. OVERBEY (Rockwell International Corp.)

Aug. 1980

### MSC-19385

Vol. 5, No. 1, p. 8

Cellulose-sponge disk absorbs incoming water and expands with enough force to shut valve. When water recedes, valve opens by squeezing sponge dry to its original size. This direct mechanical action is considered more reliable than solenoid valve.

### B80-10098

#### VICE HOLDS SPECIMENS FOR MICROSCOPE

W. N. GREULE (Rockwell International Corp.)

Aug. 1980

### MSC-18690

Vol. 5, No. 1, p. 83

Convenient, miniature, spring-loaded clamp holds specimens for scanning electron microscope. Clamp is made out of nesting sections of studded angle-aluminum. Specimens are easier to mount and dismount with vise than with conductive adhesive or paint.

### B80-10099

#### TUBING CUTTER FOR TIGHT SPACES

A. S. GIRALA

Aug. 1980

### MSC-18538

Vol. 5, No. 1, p. 84

Cutter requires few short swings of handle to rotate its cutting edge full 360 around tube. It will cut tubing installed in confined space that prevents free movement of conventional cutter. Cutter is snapped onto tube and held in place by spring-loaded clamp. Screw ratchet advances cutting wheel.

### B80-10100

#### ALUMINUM-ENCASED LEAD MALLET

F. CHIN (Rockwell International Corp.) and I. F. PARDUE (Rockwell International Corp.)

Aug. 1980

### MSC-18529

Vol. 5, No. 1, p. 85

Soft hammer will not mar or distort work piece. Aluminum casing, made from aluminum tube, reduces flaring and flaking of lead. Lead can be melted out and recast to refurbish hammer when necessary. Hammer would replace plastic, lead, and aluminum soft hammers currently used widely in industry.

### B80-10101

#### CLAMSHELL DOOR SYSTEM

D. R. HELBLE (Rockwell International Corp.)

Aug. 1980

### MSC-18468

Vol. 5, No. 1, p. 85

Space shuttle system opens, closes, and latches bay doors. System includes remotely controlled 'zipper latch' that accommodates misalignment. Opening, closing, and latching follow specific sequences, and are monitored from cockpit. Entire system could be modified for commercial jetliners and marine vessels with underwater access doors.

### B80-10102

#### MEASURING BALL-BEARING LOADS

M. F. BUTNER (Rockwell International Corp.)

Aug. 1980

### M-FS-19505

Vol. 5, No. 1, p. 86

Contour of wear-path boundary in bearing race gives precise information about magnitude, direction and imbalance of load. Simple tool measures height of path perimeter as bearing race is rotated manually on flat surface.

### B80-10103

#### RETAINING A SLEEVE ON A SHAFT

R. PESSIN (Rockwell International Corp.)

Aug. 1980

### M-FS-19518

Vol. 5, No. 1, p. 87

Snap ring with slotted tabs fits groove in shaft. Sleeve to be held on shaft fits over snap ring keeping it from expanding. Tabs are bent out to keep sleeve from slipping off shaft.

### B80-10104

#### COMPACT POSITIONING FLANGE

S. L. HOOPER (Kenton Hawaii, Ltd.)

Aug. 1980

### MSC-14876

Vol. 5, No. 1, p. 88

Flange adjusts center of rotation of gimble-mounted objects such as telescopes. Three aluminum plates are machined to have interlocking orthogonal keys and ways. Outer plate is mounted to shaft. Inner plate is attached to object. Middle and inner plate slide along on axis. Screws slide in slots parallel to ways for adjustment, then tighten to lock position along each axis. Device is similar to crossed ways found on industrial machine tools, but simpler, lighter, and much smaller.

### B80-10105

#### BOLT-TENSION INDICATOR

K. L. WILSON (Rockwell International Corp.)

Aug. 1980

### M-FS-19324

Vol. 5, No. 1, p. 88

Pin attached to bottom of hole through long axis of machine bolt can be used to indicate correct bolt tension without torque meters or extensometers. Bolt elongates when tightened, but pin does not, and so appears to recede within bolt head. Steps cut in exposed end of pin would indicate acceptable range of

tightness. Design would be particularly convenient in field locations without specialized instrumentation.

**B80-10106**  
**DUAL MODE ACTUATOR**  
 S. C. RICK  
 Aug. 1980

**LANGLEY-12412**

**Vol. 5, No. 1, p. 89**

Compact mechanism functions under automatic control, manual control, or both. Output shaft rotation is controlled automatically by two hydraulic cylinders or manually by movement of input lever. Automatic control movement is isolated from manual-control movement by adjustment of force on piston spring. Actuator can be modified to control straight line position rather than rotation, or to open valves that regulate fluid flow in actuator, thus creating special movements other than simple rotation.

**B80-10107**  
**ZERO-TORQUE SPANNER WRENCH**  
 M. V. FRIEDELL (Martin Marietta Corp.)  
 Aug. 1980

**MSC-14843**

**Vol. 5, No. 1, p. 90**

Wrench converts gripping action of hand to rotary motion without imparting reactive moments or forces on part being turned or on operator. Wrench should be useful in undersea operations and other delicate work where reactive forces and torques have to be controlled. In design for valve tightening, tool resembles cross between conventional spanner wrench and pliers. One handle engages valve body; second handle has ratchet pawl that engages toothed coupling ring on perimeter of valve handle. When operator squeezes wrench handles, valve handle rotates with respect to valve body.

**B80-10108**  
**DRILL-MOTOR HOLDING FIXTURE**  
 E. N. CHARTIER (Rockwell International Corp.) and L. N. CULP (Rockwell International Corp.)  
 Aug. 1980

**MSC-18582**

**Vol. 5, No. 1, p. 91**

Guide improves accuracy and reduces likelihood of bit breakage in drilling large work pieces. Drill motor is mounted on pipe that slides on furniture clamp. Drill is driven into work piece by turning furniture-clamp handle.

**B80-10109**  
**SELF-ACTING SHAFT SEALS**  
 L. P. LUDWIG  
 Aug. 1980

**LEWIS-13229**

**Vol. 5, No. 1, p. 92**

Report reviews operating principles and design of self-acting seals. Influences of adverse operating conditions are considered also. Elements of analysis used in seal performance predictions are described and evaluated. Mathematical models for obtaining seal force balance and equilibrium film thickness are outlined. Self-acting seals are nonrubbing, have lower leakage rates than labyrinth seals, and are well suited for advanced aircraft engines.

**B80-10240**  
**FLARED TUBE ATTACHMENT FITTING**  
 I. D. ALKIRE (Rockwell Intern. Corp.) and J. P. KING, JR. (Rockwell Intern. Corp.)  
 Sep. 1980

**MSC-18416**

**Vol. 5, No. 2, p. 213**

Tubes can be flared first, then attached to valves and other flow line components, with new fitting that can be disassembled and reused. Installed fitting can be disassembled so parts can be inspected. It can be salvaged and reused without damaging flared tube; tube can be coated, tempered, or otherwise treated after it has been flared, rather than before, as was previously required. Fitting consists of threaded male portion with conical seating surface, hexagonal nut with hole larger than other diameter of flared end of tube, and split ferrule.

**B80-10241**  
**TUBE FLARE INSPECTION TOOL**  
 G. E. MEUNIER (Rockwell Intern. Corp.)

Sep. 1980

**MSC-19636**

**Vol. 5, No. 2, p. 213**

Flare angle and symmetry of tube ends can be checked by simple tool that consists of two stainless steel pins bonded to rubber plug. Primary function of tool is to inspect tubes before they are installed, thereby eliminating expense and inconvenience of repairing leaks caused by imperfect flares. Measuring hole tapers, countersink angles, and bearing race angles are other possible uses. Tool is used with optical comparator. Axis of tool is aligned with centerline of tube. Shadow of seated pins on comparator screen allows operator to verify flare angle is within tolerance.

**B80-10242**

**A VERSATILE TUNNEL ACTS AS A FLEXIBLE DUCT**

N. D. BROWN (Goodyear Aerospace Corp.), N. C. COSTAKOS (Goodyear Aerospace Corp.), and G. L. JEPPESEN (Goodyear Aerospace Corp.)  
 Sep. 1980

**M-FS-22636**

**Vol. 5, No. 2, p. 214**

Tunnel activated by cable assembly can be expanded, contracted, and bent similar to flexible duct without uncoupling at either end. Tunnel was developed to join reusable space vehicle with cargo module and could be modified to be used as hydraulic or pneumatic hose or duct connecting complex moveable joints in remote manipulators and earth moving machinery.

**B80-10243**

**MECHANICAL HAND FOR GRIPPING OBJECTS**

K. H. CLARK and J. D. JOHNSTON

Sep. 1980

**M-FS-23692**

**Vol. 5, No. 2, p. 215**

End effector serves as 'hand' for remote manipulator spacecraft system to grasp objects of various sizes. Device has built in flexible wrist joint 'cartilage' for increased gripping force without significant strain on mechanical connections.

**B80-10244**

**HIGH-PERFORMANCE, MULTIROLLER TRACTION DRIVE**

S. LOWENTHAL, D. A. ROHN, E. ZARETSKY, N. E. ANDERSON (U.S. Army Research & Technology Lab.), and A. NASVYTIS (Transmission Research, Inc.)  
 Sep. 1980 See also NASA-TP-1378(N79-13369)

**LEWIS-13347**

**Vol. 5, No. 2, p. 216**

Fixed-speed-ratio traction drive (NASVYTRAC) has been developed that can transmit high power across large speed ratio using compact cluster of rollers. Traction drive transmits power without gear teeth, through shear forces on thin lubricant film that separates drive rollers. Automatic loading mechanism regulates normal load between rollers so sufficient normal load is present to transmit required torque without slip or overloading.

**B80-10245**

**LOCKNUT PRELOAD TOOL**

J. E. GREENWOOD (Rockwell Intern. Corp.) and J. F. KAUPPI (Rockwell Intern. Corp.)  
 Sep. 1980

**MSC-16153**

**Vol. 5, No. 2, p. 217**

Small tool replaces large torque wrench for turning locknuts. Preload tool 'stretches' threaded rod on which locknut turns, reducing force on nut which can then be turned by common hand wrench. Advantages are reduced cost and weight, ease of manipulation in cramped space near actuators, and portability.

**B80-10246**

**SELF-ADJUSTING MECHANICAL SNUBBING LINK**

E. V. HOLMAN (Rockwell Intern. Corp.)

Sep. 1980

**MSC-16134**

**Vol. 5, No. 2, p. 218**

All-mechanical shock-absorber concept has several advantages over hydraulic devices. Snubbing link automatically adjusts length under light loads, locks at any position when onslaught exceeds design limits for which it is set, and will not leak oil or require periodic servicing. Concept can be incorporated as safety device on material handling systems or as energy absorption device or governor for machines or equipment.

## 07 MACHINERY

**B80-10247**

### **BAYONET PLUG WITH RAMP-ACTIVATED LOCK**

K. E. WOOD (Rockwell Intern. Corp.)

Sep. 1980

**MSC-18526**

**Vol. 5, No. 2, p. 218**

Matched pair of washers with broad surface ramps is locking mechanism in bayonet plug. It can be used where threaded springs and fasteners are impractical because of extreme temperatures or other environmental incompatibility. Matched pair of ramped washers is placed on plug and bayonet inserted. Inner slot of one washer matches contour of plug; this washer is stationary. Inner slot of second washer is circular. When second washer is rotated, washers push against bayonet plug, locking it in place. Retaining wire secures plug.

**B80-10248**

### **HEAT-PIPE SENSOR FOR REMOTE LEVELING**

J. P. MARSHBURN

Sep. 1980

**GSFC-12095**

**Vol. 5, No. 2, p. 219**

System gives level readings in inaccessible areas. Level sensor is equipped with three thermocouples used to measure temperature differences that arise when pipe is tilted. When platform on which pipe is resting is level, three thermocouple recordings are identical. When readings are unequal, platform is leveled by remote control. System can replace expensive optical equipment and can function in cold, vacuum, and hot humid environments that produce nonlinear expansion and contraction in conventional equipment. Other advantages include low cost, no moving parts, and operation in toxic environments.

**B80-10249**

### **AUTOMATIC 35 MM SLIDE DUPLICATOR**

H. F. SEIDEL and R. E. TEXLER

Sep. 1980

**LEWIS-13399**

**Vol. 5, No. 2, p. 220**

Automatic duplicator is readily assembled from conventional, inexpensive equipment and parts. Series of slides can be exposed without operator attention, eliminating considerable manual handling and processing ordinarily required. At end of programmed exposure sequence, unit shuts off and audible alarm signals completion of process.

**B80-10250**

### **THE 3-D GUIDANCE SYSTEM WITH PROXIMITY SENSORS**

A. K. BEJCZY (Caltech)

Sep. 1980

**NPO-14521**

**Vol. 5, No. 2, p. 221**

Four proximity sensors help to guide mechanical claw into alignment with target fixture. Digital signals are used to sense distance and to align roll, pitch, and yaw with respect to target before it is grasped. Sixteen sensor-to-operator messages are possible with binary signal system. Similar, more precise alternative presents 75 workable logic states; most precise alternative uses continuous calibrated data from sensors.

**B80-10251**

### **AUTOMATIC CONNECTOR JOINS STRUCTURAL COLUMNS**

G. G. JACQUEMIN (Lockheed Missiles & Space Co., Inc.)

Sep. 1980

**LANGLEY-12578**

**Vol. 5, No. 2, p. 222**

Connector snap-locks over toothed bolthead mounted on column end, forming rigid joint that will not bend or twist. Connector is used in conventional construction to install temporary structures or as mechanical coupler. Up to nine receptacles can be clustered in one node to join up to nine converging columns.

**B80-10252**

### **TEST FITTINGS FOR DIMENSIONALLY CRITICAL TUBES**

R. HAGLER (Caltech)

Sep. 1980

**NPO-14399**

**Vol. 5, No. 2, p. 222**

Method using lightweight fitting protects tubes and tube stubs during testing and through to final welding. Fitting does

not interfere with final welding or brazing like temporary test fittings, and is not heavy like machined-on integral fittings with face-seal O-rings. Fitting approach is adaptable to many types of components, including valves, transducers, and filters.

**B80-10253**

### **ELECTROMECHANICAL SLIP SENSOR**

A. K. BEJCZY (Caltech) and S. PARK (Caltech)

Sep. 1980

**NPO-14654**

**Vol. 5, No. 2, p. 223**

Sensor indicates direction of slip and slip rate of objects handled by remote manipulators. Freely movable spheroid with staggered pattern of surface indentations rotates in direction of slipping body, tilting shaft with conductive disk plate. Plate assembly is bent toward contact corresponding to direction of slip and is flicked by indentations at rate corresponding to slip rate. Slip direction and rate are determined using LED's arranged circularly or microcomputer with CRT display.

**B80-10254**

### **X-RAY BEAM POINTER**

C. W. NELSON (Beech Aircraft Co.)

Sep. 1980

**MSC-18590**

**Vol. 5, No. 2, p. 224**

Inexpensive, readily assembled pointer aims X-ray machine for welded assembly radiographs. Plumb bob used for vertical alignment and yardstick used to visualize X-ray paths were inconvenient and inaccurate. Pointer cuts alignment time by one-half and eliminates necessity of retakes. For 3,000 weld radiographs, pointer will save 300 worker-hours and significant materials costs.

**B80-10255**

### **HANDTOOL ASSISTS IN BUNDLING CABLES**

E. J. STRINGER (Rockwell Intern. Corp.)

Sep. 1980

**MSC-18567**

**Vol. 5, No. 2, p. 225**

Simple tool makes it possible to bundle electrical cables in channel or 'tray' without requiring cables be lifted out. Procedure for bundling is faster and less awkward than lifting method. Used with commercially-available plastic ribbons that tie cables together, tool guides ribbon along tray wall, through bracket at bottom of tray, and up opposite wall. One end of ribbon locks in other end, securing cable bundle.

**B80-10256**

### **SLEEVE PULLER SALVAGES WELDED TUBES**

J. F. WEAVER (Rockwell Intern. Corp.)

Sep. 1980

**MSC-18686**

**Vol. 5, No. 2, p. 225**

Tool removes sleeve remnants without distorting or damaging tubes, unlike pliers and other conventional handtools. Tubes can be reused, saving time, labor, and material in many applications. Sleeve-removal fixture consists of pressure screw, swing arm, locking screws, and base. It removes sleeve remnant from tubing after welded joint has been sawed through.

**B80-10257**

### **A LINEAR MAGNETIC MOTOR AND GENERATOR**

P. A. STUDER

Sep. 1980

**GSFC-12518**

**Vol. 5, No. 2, p. 226**

In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

**B80-10258**

### **CRYOGENIC-STORAGE-TANK SUPPORT**

G. H. WISDOM (McDonnell Douglas Corp.)

Sep. 1980

**MSC-14848**

Support isolates tank from thermal and mechanical loading by environment. Design uses combination of well-known common mechanisms to isolate tank and allow for tank expansion and contraction due to temperature and pressure changes. Similar support method is used on nitrogen tanks.

**B80-10259****ROTOR TRANSIENT ANALYSIS**

P. E. ALLAIRE (Virginia Univ.), K. C. CHOY (Virginia Univ.), and E. J. GUNTER (Virginia Univ.)

Sep. 1980

**LEWIS-13230****Vol. 5, No. 2, p. 228**

Undamped modes approximate dynamic behavior of rotors and bearings. Application of modal analysis to uncouple equations of motion simplifies stability, steady-state unbalance response, and transient response analysis of system; nonlinear stability is predicted from calculated frequency spectra. Analysis provides designers with complete information without involving large-scale computational costs. Programs are written in FORTRAN IV for use on CDC 6600 computer.

**B80-10401****CLEAVING MACHINE FOR HARD CRYSTALS**

J. S. J. BENEDICTO and F. HALLBERG

Jan. 1981

**GSFC-12584****Vol. 5, No. 3, p. 367**

Hard crystalline materials such as lithium fluoride (LiF) are cleaved in thin sections by semiautomatic machine. Yield of undistorted LiF crystals is almost 100 percent, even when cleaved section is only 1/32 inch thick. Machine contains spring-activated hammer that limits penetration of blade and controls shock that cleaves crystal. Fixture with spring-loaded clamps precisely locates and holds crystal, restraining it in ideal position for cleaving. Crystal then splay apart.

**B80-10402****ABRASIVE DRILL FOR RESILIENT MATERIALS**

A. J. KOCH

Jan. 1981

**LEWIS-13411****Vol. 5, No. 3, p. 368**

Resilient materials normally present problem in obtaining accurate and uniform hole size and position. Tool is fabricated from stiff metal rod such as tungsten or carbon steel that has diameter slightly smaller than required hole. Piercing/centering point is ground on one end of rod. Rod is then plasma-sprayed (flame-sprayed) with suitable hard abrasive coating. High-speed, slow-feed operation of tool is necessary for accurate holes, and this can be done with drill press, hard drill, or similar machines.

**B80-10403****DRILLING AT RIGHT ANGLES IN BLIND HOLES**

R. PESSION (Rockwell International Corp.)

Jan. 1981

**M-FS-19535****Vol. 5, No. 3, p. 369**

Tool drills small hole perpendicular to and at bottom of blind hole. It consists of carbide cutter brazed to flexible shaft, inside thin metal tube with 90 degree bend. Wood dowel holds tube while motor turns shaft and drives cutter. It was developed for clearing plugged fuel orifices. Concept is adaptable to other hard-to-reach drilling situations.

**B80-10404****SOLAR-POWERED AIRCRAFT**

W. H. PHILLIPS

Jan. 1981

**LANGLEY-12615****Vol. 5, No. 3, p. 369**

Solar-powered aircraft, driven by electric motor, has vertical and horizontal wings. Design allows aircraft to fly straight path while banked, permitting optimal exposure of its wing-mounted solar cells to Sun. Such aircraft would fly at altitude high enough to be above clouds and to avoid winds with velocities much greater than its own airspeed. Its most likely application would be as pilotless aircraft to take advantage of its ability to remain aloft for long periods (for very long flights).

**B80-10405****BALL-JOINT GROUNDING RING**

P. J. A. APERLO (Rockwell International Corp.), P. A. BUCK (Rockwell International Corp.), and V. A. WELDON (Rockwell International Corp.)

Jan. 1981

**MSC-18824****Vol. 5, No. 3, p. 371**

In ball and socket joint where electrical insulator such as polytetrafluoroethylene is used as line to minimize friction, good electrical contact across joint may be needed for lightning protection or to prevent static-charge build-up. Electrical contact is maintained by ring of spring-loaded fingers mounted in socket. It may be useful in industry for cranes, trailers, and other applications requiring ball and socket joint.

**B80-10406****VERSATILE MODULAR SCAFFOLDS**

J. KERLEY

Jan. 1981

**GSFC-12606****Vol. 5, No. 3, p. 372**

Movable and fixed modular scaffolds can be tailored to most scaffolding needs by interconnecting only 4 basic structural elements: platforms, rails, vertical-support angles, and stiffener. Standard nuts and bolts are used to join elements, simplifying construction, and reducing costs. Scaffolds are rigid and can be made any length. They are stable on unlevel ground and can extend to well over 50 feet in height. Scaffolds allow for internal elevators and for wheels and air mounts so that same elements can be used for standing or movable scaffold.

**B80-10407****RESHAPING TUBE ENDS FOR WELDING**

W. H. EMANUEL (McDonnell Douglas Corp.) and C. A. HEADLEY (McDonnell Douglas Corp.)

Jan. 1981

**MSC-18462****Vol. 5, No. 3, p. 373**

Tube ends are rounded in preparation for welding by new semiautomatic tool. Tubes that have been trimmed close to bend may be deformed by process. To restore roundness, out-of-round tube is opened, plug inserted, and crimper compresses tube into proper shape around plug.

**B80-10408****REMOTE MANIPULATOR WITH FORCE FEED-BACK**

J. W. HILL (SRI International) and J. K. SALISBURY, JR. (SRI International)

Jan. 1981

**ARC-11272****Vol. 5, No. 3, p. 373**

Controller for remote manipulators gives user 'feel' for forces required to lift, slide, turn, and otherwise handle objects. Because operator experiences sensations similar to those he would perceive if he handled objects directly, he needs much less skill and training for manipulator than for one with force feedback. It was developed to handle hazardous materials, such as radioactive substances, explosives, or corrosive chemicals. Other possible uses include tracking moving objects, vehicle control, and human interaction with computers (for example, via three dimensional display of computer model).

**B80-10409****SPRAYING SUSPENSIONS UNIFORMLY**

W. P. PRASTHOFER

Jan. 1981

**M-FS-25139****Vol. 5, No. 3, p. 374**

With head on each of its ends, bolt can be disengaged from its blind side. Bolt has conventional hexagonal head on one end and smaller hexagonal head on its threaded end. Since reduced head is smaller than bolt diameter, it does not interfere with insertion of bolt shank in bolthole. However, it can be turned by wrench to release bolt from its blind (threaded) end. Bolt should be tethered on its large-head end so that it does not drop away from assembly.

**B80-10410****TWO-HEADED BOLT**

G. W. JEFFERS (Rockwell Intern. Corp.)

## 07 MACHINERY

Jan. 1981

**M-FS-19619**

Coarse, multi-ingredient suspensions are sprayed on surface smoothly and uniformly with aid of nozzle attachment for commercial spray gun. Nozzle attachment is contoured internally to suppress overspray and to prevent spray from segregating. From its conical inlet, nozzle converges smoothly to throat, then diverges in bell-shaped chamber that allows suspension to flow uninterrupted without building up turbulently in nozzle. End of nozzle is adjustable and can be extended or retracted to avoid dripping when inlet pressure, pump pressure, or density of mixture changes.

**B80-10411**

**COMPACT TABLE-TILTING MECHANISM**

F. R. MITCHELL (Frank R. Mitchell and Assoc.)

Jan. 1981

**NPO-14800**

**Vol. 5, No. 3, p. 376**

Optical components are oriented precisely by motorized device for manipulating objects attached to plane tilt table. Mechanism is compact, simple, and has low backlash. It consists of drive motor, rotatable disk, rigid link, and table. Motor rotates about vertical axis, and motion is converted through disk and rigid link to rotation of table about perpendicular axis.

**B80-10412**

**TIME-SHARING SWITCH FOR VACUUM BRAZING**

J. A. STEIN

Jan. 1981

**MSC-18699**

**Vol. 5, No. 3, p. 376**

Switching unit changes power and cooling-water connections between two vacuum-brazing machines. It allows both units to be powered by single radio-frequency (RF) generator. One machine can be used for brazing while bell jar of other is being evacuated (20 minute process) in preparation for brazing or is being cooled after brazing (10 minute process).

**B80-10413**

**LIMITING CURRENT IN ELECTRON-BEAM WELDERS**

K. W. SPIEGEL

Jan. 1981

**M-FS-19503**

**Vol. 5, No. 3, p. 377**

Damage to workpiece by excessive current in electron-beam welder is prevented by mechanism that accurately adjusts anode-to-cathode spacing. Mechanism is installed on standard Sciaky (or equivalent) electron-beam gun with only minimal modification. By turning knurled knob and observing digital readout of anode/cathode separation, machine operator adjusts welder for safe maximum current before welding begins.

**B80-10414**

**TORQUE-WRENCH EXTENSION**

D. H. PETERSON (Rockwell International Corp.)

Jan. 1981

**MSC-18769**

**Vol. 5, No. 3, p. 378**

Torque-wrench extension makes it easy to install and remove fasteners that are beyond reach of typical wrenches or are located in narrow spaces that prevent full travel of wrench handle. At same time, tool reads applied torque accurately. Wrench drive system, for torques up to 125 inch-pounds, uses 2 standard drive-socket extensions in aluminum frame. Extensions are connected to bevel gear that turns another bevel gear. Gears produce 1:1 turn ratio through 90 degree translation of axis of rotation. Output bevel has short extension that is used to attach 1/4-inch drive socket.

**B80-10415**

**QUICK MIXING OF EPOXY COMPONENTS**

D. E. DUNLAP, JR. (McDonnell Douglas Corp.)

Jan. 1981

**MSC-18731**

**Vol. 5, No. 3, p. 379**

Two materials are mixed quickly, thoroughly, and in precise proportion by disposable cartridge. Cartridge mixes components of fast-curing epoxy resins, with no mess, just before they are used. It could also be used in industry and home for caulking, sealing, and patching. Materials to be mixed are initially isolated

by cylinder wall within cartridge. Cylinder has vanes, with holes in them, at one end and handle at opposite end. When handle is pulled, grooves on shaft rotate cylinder so that vanes rotate to extrude material A uniformly into material B.

**B80-10416**

**WRENCH FOR SMOOTH OR DAMAGED FASTENERS**

R. CARRILLO (Rockwell International Corp.)

Jan. 1981

**MSC-18772**

**Vol. 5, No. 3, p. 380**

Smooth-surfaced or damaged fasteners that cannot be gripped by conventional wrench can be unscrewed by special wrench. It can be used in tight spaces and will not damage adjacent structures. Wrench consists of central handle and 2 independent jaws with serrated teeth. Teeth are placed on fastener to be removed, and handle is rotated until fastener is gripped with positive locking action. Rotation of wrench handle removes fastener.

**B80-10526**

**INTERLOCKING WEDGE JOINT IS EASILY ASSEMBLED**

M. J. LONG

Apr. 1981

**LANGLEY-12729**

**Vol. 5, No. 4, p. 485**

Wedge joint links structural members in manual, remote, or automated assemblies. Joint is simple enough to be assembled by undersea divers, workers in nuclear reactors, and other wearing gloves or bulky clothing. Combination of wedging angles on parts overcomes structural misalignments and forces assembly into true position as locking sleeve moves into place. Joint transmits tension, compression, bending moments and torsion and is inherently insensitive to thermal excursions, vibration, and machining tolerance buildup.

**B80-10527**

**PNEUMATIC-POWER SUPPLY**

R. C. KRAMER (Rockwell International Corp.)

Apr. 1981

**MSC-18855**

**Vol. 5, No. 4, p. 486**

Portable compressed air supply has two or more outputs at pressures from 20 to 100 psi. Applications include operating production equipment, spraying paint and lubricants, and pressurizing refrigeration systems. Supply filters air from standard high-pressure line, reduces it to working pressure, and adds lubricant when required. Regulator supplies low-pressure air to output channels. On channel lines, vernier-control valves select output pressures.

**B80-10528**

**SIDEWALL PENETRATOR FOR OIL WELLS**

E. R. COLLINS, JR. (Caltech)

Apr. 1981

**NPO-14306**

**Vol. 5, No. 4, p. 487**

Penetrator bores horizontal holes in well casing to increase trapped oil drainage. Several penetrators operated by common drive are inserted into well at once. Shaft, made from spiraling cable, rotates and thrusts simultaneously through rigid curvilinear guide tube forcing bit through casing into strata. Device pierces more deeply than armor-piercing bullets and shaped explosive charges.

**B80-10529**

**FOUR-WHEEL DUAL BRAKING FOR AUTOMOBILES**

H. B. EDWARDS

Apr. 1981

**LANGLEY-12687**

**Vol. 5, No. 4, p. 488**

Each master cylinder applies braking power to all four wheels unlike conventional systems where cylinder operates only two wheels. If one master system fails because of fluid loss, other stops car by braking all four wheels although at half force.

**B80-10530**

**LOCK FOR HYDRAULIC ACTUATORS**

R. H. WOOD (Rockwell International Corp.)

Apr. 1981

**MSC-18853**

**Vol. 5, No. 4, p. 489**

Two clamps hold rod in fixed extension from cylinder even when power is off, converting actuator into stiff structural member. Locked actuator is useful as mechanical support or linkage or as fail-safe device in case of loss of hydraulic pressure. Potential applications include manufacturing processes and specialized handling and holding devices.

**B80-10531**  
**GENTLE ARRESTER FOR MOVING BODIES**

R. A. HULL

Apr. 1981

**LANGLEY-12372**

**Vol. 5, No. 4, p. 490**

Wire cable absorbs energy at constant rate with reduced shock and rebounding. Cable typically elongates to 90 percent of its potential, but is surrounded by braided sheath to absorb remaining energy should it break prematurely. Applications of arrester include passenger restraint in air and land vehicles, parachute risers, and ground snatch by aircraft. Possible cable material is type 302 stainless steel.

**B80-10532**  
**SOFT CONTAINER FOR EXPLOSIVE NUTS**

D. C. GLENN, W. E. DRUMMOND, and G. MILLER

Apr. 1981

**MSC-18871**

**Vol. 5, No. 4, p. 491**

Flexible fabric fits over variety of assembly shapes to contain debris produced by detonations or safety tests. Bag material is woven multifilament polyamide or aramid. Belt loops hold bag to clamp. Ring supports explosive nut structure and detonator wires, and after nut is mounted, bag and clamp are slipped over ring and fastened.

**B80-10533**  
**CYLINDRICAL BEARING ANALYSIS**

R. J. KLECKNER (SKF Industries) and J. PIRVICS (SKF Industries)

Apr. 1981

**LEWIS-13393**

**Vol. 5, No. 4, p. 491**

Program CYBEAN computes behavior of rolling-element bearings including effects of bearing geometry, shaft misalignment, and temperature. Accurate assessment is possible for various outer-ring and housing configurations. CYBEAN is structured for coordinated execution of modules that perform specific analytical tasks. It is written in FORTRAN IV for use on the UNIVAC 1100/40 computer.

Small holes drilled along back edge of surface to be joined are filled when weld root is adequately fused. Holes 2% of thickness of material can be detected with X-rays. Absence of detectable holes indicates good weld. Procedure has been proven in production and is more reliable than conventional X-ray methods.

**B80-10112**  
**ETCHANT FOR INCOLOY-903 WELDS**

J. A. GERSTMEYER (Rockwell International Corp.)

Aug. 1980

**M-FS-19378**

**Vol. 5, No. 1, p. 96**

Special reagent consists of 1 part 90% lactic acid, 1 part 70% nitric acid, and 4 part, 37% hydrochloric acid. Solution etches parent and weld metals at same rate, without overetching. Underlying grain structure of both metals is revealed.

**B80-10113**  
**CHEMICAL-MILLING SOLUTION FOR INVAR ALLOY**

W. BATIUK (Perkin-Elmer Corp.)

Aug. 1980

**M-FS-25365**

**Vol. 5, No. 1, p. 97**

Excellent surface finishes and tolerances are achieved using two formulations. Solution A gives finish of 3.17 micrometers after milling at 57 to 63 deg C. Constituents of A are: Hydrofluoric acid (70%), 5.8 oz/gal; nitric acid (40-42) degrees Baume, 40 oz/gal. Alternative solution gives 2.16 micrometer finish, and differs from A by addition of 7% phosphoric acid. Formulations eliminate channeling at root fillets, dishing, island formation, and overhangs.

**B80-10114**  
**ELIMINATING UNDERBEAD FISSURING IN SUPERALLOYS**

R. D. BETTS (Rockwell International Corp.)

Aug. 1980

**M-FS-19460**

**Vol. 5, No. 1, p. 97**

Parameters that produce high-integrity overlay welds in Incoloy-903, Incoloy-88, and Inconel-718 differ from those in conventional metal-in groove welds. Reduced weld velocity eliminates underbead crack-inducing level.

**B80-10115**  
**ION-BEAM CLEANING FOR COLD WELDS**

B. L. SLATER

Aug. 1980

**LEWIS-12982**

**Vol. 5, No. 1, p. 98**

1000 eV beam bombarding metal surfaces to be joined removes oxides and contaminants at rate of several atomic layers per second for current density of 1 mA/squ. cm. Clean surfaces can then be joined by squeezing them together. With ion-beam cleaning, mating force for strong bond is low enough to cause only 1% deformation. Conventional cold-welding requires about 70% deformation for bonding. Technique was tested successfully on aluminum to aluminum welds, copper to copper, copper to aluminum, copper to nickel, and silver to iron. Base metals failed before welds in tear test.

**B80-10116**  
**COATINGS FOR HYBRID MICROCIRCUITS**

D. L. KINSER (Vanderbilt Univ.)

Aug. 1980

**M-FS-26292**

**Vol. 5, No. 1 p. 99**

Silicone or polyimide coatings protect circuits from damage by battery of military standard tests. PIND (Partical Impact Noise Detection) test proved unreliable in predicting failure for either coated or uncoated circuits.

**B80-10117**  
**PLACEMENT TECHNIQUE FOR SEMICUSTOM DIGITAL LSI CIRCUITS**

B. CARROLL (Auburn Univ.) and G. W. COX (Auburn Univ.)

Aug. 1980

**M-FS-25324**

**Vol. 5, No. 1, p. 100**

Small lots of special-purpose integrated circuits are fabricated from standard transistor arrays. Folded linear order of cells minimizes interconnection length and puts cell in juxtaposition. Cell-placement technique is carried out via computer program.

## 08 FABRICATION TECHNOLOGY

**B80-10110**

**VERIFYING ROOT FUSION IN ELECTRON-BEAM WELDS**

F. L. BECKER (Rockwell International Corp.), S. DOCTOR (Rockwell International Corp.), and R. E. KLEINT (Rockwell International Corp.)

Aug. 1980

**M-FS-19499**

**Vol. 5, No. 1, p. 95**

Ultrasonic equipment and x-y recorder indicate where back side of joint is properly welded. Wire waveguide placed in groove at root of joint to be welded is fused when joint is adequately penetrated. Ultrasonic signal moving down waveguide is reflected where guide is melted. Change in reflected-signal arrival time with change in weld-head position is nearly constant unless joint is incompletely penetrated. Method permits determination of penetration depth in preweld samples without opening vacuum chamber and sectioning weld. Technique is particularly valuable when back side of joint is inaccessible.

**B80-10111**

**X-RAY TECHNIQUE VERIFIES WELD-ROOT FUSION**

R. E. KLEINT (Rockwell International Corp.)

Aug. 1980

**M-FS-19468**

**Vol. 5, No. 1, p. 96**

## 08 FABRICATION TECHNOLOGY

### B80-10118

#### A GENERAL LOGIC STRUCTURE FOR CUSTOM LSI'S

M. W. SIEVERS (Caltech)

Aug. 1980

### NPO-14410

Structure composed of standardized-circuit arrays reduces cost and complexity of fabricating special integrated circuits. Desired circuits are formed from basic mask, custom cuts, and contact points. Interactive computer program speeds design.

Vol. 5, No. 1, p. 101

### B80-10119

#### JIG FOR ASSEMBLING LARGE COMPOSITE PANELS

J. T. WATTS (McDonnell Douglas Corp.)

Aug. 1980

### LANGLEY-12394

Vol. 5, No. 1, p. 102

Layup of composite panels as large as 15 by 60 ft is greatly facilitated by simple mechanism. Jig consists of flat, detachable table, and curved laminating-plate joined by rack and pinion to insure accurate registration. Vacuum holds thin plastic film to laminating-plate. Preimpregnated composite sheet is applied to plate, which is then lowered face down onto table. Release of vacuum leaves layer and film and table. Film is peeled off, and steps are repeated for next layer of laminate.

### B80-10120

#### SHAPING GRAPHITE/EPOXY STIFFENERS

J. L. CUPP (Rockwell International Corp.)

Aug. 1980

### MSC-18494

Vol. 5, No. 1, p. 103

Layers of graphite/epoxy, tape stacked on ridges and in grooves of channel like ribs stiffen curved laminates. Twenty-five to 38 layers of tape on each cap and flange are vacuum-bagged into shape and then interleaved with plies of fabric to form light-weight structural members free of wrinkles and voids. Structure could be parts for cars, trucks, and other vehicles.

### B80-10121

#### FLUSH-MOUNTING TECHNIQUE FOR COMPOSITE BEAMS

T. C. HARMAN (United Technologies Corp.) and B. F. KAY (United Technologies Corp.)

Aug. 1980

### LANGLEY-12389

Vol. 5, No. 1, p. 104

Procedure permits mounting of heavy parts to surface of composite beams without appreciably weakening beam web. Web is split and held apart in region where attachment is to be made by lightweight precast foam filler. Bolt hole penetrates foam rather than web, and is secured by barrelnut in transverse bushing through web.

### B80-10122

#### EXAMINING GRAPHITE REINFORCEMENT IN COMPOSITES

R. E. SANDERS (Rockwell International Corp.) and C. I. YATES (Rockwell International Corp.)

Aug. 1980

### MSC-19594

Vol. 5, No. 1, p. 104

Structure of graphite layers in composite parts can be checked by pyrolyzing epoxy portion of composite samples. After 2-3 hours in nitrogen atmosphere at 540 C, only graphite fibers remain. These can be separated and checked for proper number, thickness, and orientation.

### B80-10123

#### CRYOGENIC MACHINING OF POLYURETHANE FOAM

E. A. MOSHEY (RCA) and P. PRYCHKA (RCA)

Aug. 1980

### MSC-18572

Vol. 5, No. 1, p. 105

Low-density foam can be machined precisely while frozen. Liquid nitrogen cools foam and aluminum heat sink prior to machining. Heat sink keeps part frozen during entire machining operation.

### B80-10124

#### 'GRINDING' CAVITIES IN POLYURETHANE FOAM

J. R. BROWER (Rockwell International Corp.), R. E. DAVEY (Rockwell International Corp.), W. F. DIXON (Rockwell Interna-

tional Corp.), P. H. ROBB (Rockwell International Corp.), and P. P. ZEBUS (Rockwell International Corp.)

Aug. 1980

### MSC-18564

Vol. 5, No. 1, p. 105

Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

### B80-10125

#### ALUMINA BARRIER FOR VACUUM BRAZING

C. S. BEUYKIAN (Rockwell International Corp.)

Aug. 1980

### MSC-18528

Vol. 5, No. 1, p. 106

Heating platens of vacuum-brazing press will not stick to workpiece if aluminum oxide 'paper' is interposed. Paper does not disintegrate in press, will not contaminate braze alloy, and helps form smoothly contoured, regular fillet at brazed edges.

### B80-10126

#### CONNECTOR HEAT SHIELD

S. CLARKE (Wright Components, Inc.)

Aug. 1980

### MSC-18282

Vol. 5, No. 1, p. 106

Polytetrafluoroethylene tape wrapped around electrical connectors protects them from heat damage during soldering. Tape is easily removed after contacts are joined.

### B80-10127

#### FOAM-FILLED CUSHIONS FOR SLIDING TRAYS

S. B. NAHIN (Rockwell International Corp.) and P. H. ROBB (Rockwell International Corp.)

Aug. 1980

### MSC-18565

Vol. 5, No. 1, p. 107

Polytetrafluoroethylene tube filled with polyurethane foam forms low friction sliding surface that cushions vibrations and absorbs manufacturing tolerances and misalignment. Possible uses include packaging of components for shipping and seals for doors in lockers, cars, and refrigerators.

### B80-10128

#### ION-BEAM ETCHING ENHANCES ADHESIVE BONDING

B. A. BANKS, M. J. MIRTICH, and J. S. SOVEY

Aug. 1980 See also NASA-TM-79004 (N79-12909); NASA-TM-78888 (N78-24358)

### LEWIS-13028

Vol. 5, No. 1, p. 108

Metals and fluoropolymers exposed to 0.5 to 1.0 keV argon ions at current densities of 0.2 to 1.5 mA/sq cm develop surface texturing that increases tensile and shear strength of epoxy bonds. Bonds are 46 to 100 percent stronger than those of chemically etched surfaces. Metals require 3 to 4 hours of bombardment to become properly textured. Fluoropolymers require 5 seconds to 30 minutes. Ion beam will not texture nickel. Unlike chemical treatments, bonding of fluoropolymers can be done days or months after ion treatment.

### B80-10129

#### ROOM-TEMPERATURE ADHESIVE FOR HIGH-TEMPERATURE USE

J. L. BROOKS (Rockwell International Corp.), W. L. HILL (Rockwell International Corp.), and C. R. ROUSSEAU (Rockwell International Corp.)

Aug. 1980

### MSC-16930

Vol. 5, No. 1, p. 109

PPQ (polyphenylquinoxaline) cures at room temperature, but withstands temperatures between -186 and +402 deg C. Adhesive is applied in chloroform solution. Bond forms as solvent evaporates.

### B80-10130

#### EASILY-ASSEMBLED HELICAL HEATER

D. E. PIZZECK

Aug. 1980

### LANGLEY-11712

Vol. 5, No. 1, p. 110

Rugged, compact heater is made from 0.1 mm diameter

Inconel wire (125 ohms per meter). Heating element is enclosed in PTFE heat-shrink sleeve. Ends of coil pass through small ceramic spools and are silver-brazed to lead wires. Junctions are potted in epoxy or silicon and covered with crimp sleeves and heat-shrink tubing.

**B80-10131****MICROPROCESSOR SYSTEMS FOR INDUSTRIAL PROCESS CONTROL**

F. H. LEESH (Caltech)

Aug. 1980

**NPO-14661****Vol. 5, No. 1, p. 110**

Six computers operate synchronously and are interconnected by three independent data buses. Processors control one subsystem. Some can control buses to transfer data at 1 megabit per second. Every 2.5 msec each processor examines list of things to do during next interval. This spacecraft control system could be adapted for controlling complex industrial processes.

**B80-10132****WIRE HARNESS TWISTING AID**

E. J. CASEY (Rockwell International Corp.), C. C. COMMADORE (Rockwell International Corp.), and M. E. INGLES (Rockwell International Corp.)

Aug. 1980

**MSC-18581****Vol. 5, No. 1, p. 111**

Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

**B80-10133****ADJUSTABLE BASE FOR CENTERING STAKED BEARINGS**

L. A. BERSON (Rockwell International Corp.)

Aug. 1980

**MSC-19660****Vol. 5, No. 1, p. 112**

Adjustable base permits housing and race to be supported separately so that unequal widths can be accounted for and bearing staked on center. If race is centered and staked on flat base and housing and race are not same width, then offset may occur and bearing will be set off center.

**B80-10134****SAFELY SPLICING GLASS OPTICAL FIBERS**

K. KORBELAK (General Cable Corp.)

Aug. 1980

**KSC-11107****Vol. 5, No. 1, p. 112**

Field-repair technique fuses glass fibers in flammable environment. Apparatus consists of v-groove vacuum chucks on manipulators, high-voltage dc power supply and tungsten electrodes, microscope to observe joint alignment and fusion, means of test transmission through joint. Apparatus is enclosed in gas tight box filled with inert gas during fusion. About 2 feet of fiber end are necessary for splicing.

**B80-10135****KNIFE-EDGE SEAL FOR VACUUM BAGGING**

J. A. RAUSCHL (Rockwell International Corp.)

Aug. 1980

**M-FS-24049****Vol. 5, No. 1, p. 113**

Cam actuated clamps pinch bagging material between long knife edge (mounted to clamps) and high temperature rubber cushion bonded to baseplate. No adhesive, tape, or sealing groove is needed to seal edge of bagging sheet against base plate.

**B80-10136****A PRECOAT PREVENTS CERAMIC STOPOFFS FROM SPALLING**

A. BRENNAN (Rockwell International Corp.)

Aug. 1980

**M-FS-19495****Vol. 5, No. 1, p. 114**

Nickel-alloy precoat applied with plasmagun improves

adhesion of ceramic materials applied to protect areas from unintentional brazing. Metal surface should be grit-blasted before precoating. Coating does not interfere with brazing or contaminate vacuum pumping systems.

**B80-10137****SHOULD WE INDUSTRIALIZE SPACE?**

G. W. DRIGGERS (Science Applications, Inc.) and C. L. GOULD (Rockwell International Corp.)

Aug. 1980

**M-FS-23963****Vol. 5, No. 1, p. 114**

Two reports project world needs over next 30 to 50 years and correlate them with space opportunities. Effects of diminishing resources, market, population, and technological changes are considered. Possible benefits are outlined.

**B80-10138****COST MODELS AND ECONOMICAL PACKAGING OF LSI'S**

R. P. HIMMEL (Hughes Aircraft Co.), R. G. RAVETTI, C. W. ROTHROCK, S. M. STUHLBARG, and P. J. ZULUETA

Aug. 1980

**M-FS-25359****Vol. 5, No. 1, p. 115**

Report discusses mathematical models used to estimate costs of developing and fabricating microcircuits. Second part discusses LSI packaging using tape chip carrier technology.

**B80-10139****AUTOMATED ION IMPLANTATION FOR IC'S**

B. W. KENNEDY

Aug. 1980

**M-FS-25193****Vol. 5, No. 1, p. 115**

Report discusses automated ion-implantation facility under development at Marshall Space Flight Center. Facility will produce ultra-reliable IC's with minimal human intervention.

**B80-10140****AN AUTOMATED PHOTOLITHOGRAPHY FACILITY FOR IC'S**

B. W. KENNEDY

Aug. 1980

**M-FS-25073****Vol. 5, No. 1, p. 116**

Report discusses subsystems that will constitute fully-automated photolithography facility for IC's. Facility being developed at Marshall Space Flight Center will produce ultrareliable IC's with minimal human intervention.

**B80-10141****MODELS OF MOS AND SOS DEVICES**

J. D. GASSAWAY (Mississippi State Univ.), Q. MAHMOOD (Mississippi State Univ.), and J. D. TROTTER (Mississippi State Univ.)

Aug. 1980

**M-FS-25153****Vol. 5, No. 1, p. 116**

Quarterly report describes progress in three programs: dc sputtering machine for aluminum and aluminum alloys; two dimensional computer modeling of MOS transistors; and development of computer techniques for calculating redistribution diffusion of dopants in silicon on sapphire films.

**B80-10260****PHOTONITRIDE PASSIVATING COATING FOR IC'S**

T. C. HALL and J. W. PETERS

Sep. 1980

**M-FS-25401****Vol. 5, No. 2, p. 231**

Increased reliability and simplified fabrication result from postassembly preencapsulation passivation process. Photonitride reaction chamber receives silane, ammonia, and mercury from mixing manifold to form passivating coating on IC's. Photonitride layer is barrier to moisture and penetration by mobile ions, and helps to protect IC devices subjected to severe mechanical handling or circuit repair procedures. Process is compatible with variety of wire-bonded lead frame assemblies. Advantages over plasma and sputtering deposition processes are low deposition temperature and zero stray radiation and ion levels.

## 08 FABRICATION TECHNOLOGY

### B80-10261

#### DOUBLE METALIZATION FOR VLSI

J. D. TROTTER (Mississippi State Univ.) and T. E. WADE (Mississippi State Univ.)

Sep. 1980

### M-FS-25149

#### Vol. 5, No. 2, p. 232

Postsintering process increases yield of double-layer metal conductors to almost 100 percent. When wafers containing double-metalized chips are sintered, metal layers react with oxide film remaining in insulation layer holes, breaking it up so that it no longer impedes electric current. Cooling also mechanically disrupts oxide film.

### B80-10262

#### MORE-RELIABLE SOS ION IMPLANTATIONS

D. S. WOO (RCA Corp.)

Sep. 1980

### M-FS-25322

#### Vol. 5, No. 2, p. 232

Conducting layer prevents static charges from accumulating during implantation of silicon-on-sapphire MOS structures. Either thick conducting film or thinner film transparent to ions is deposited prior to implantation, and gaps are etched in regions to be doped. Grounding path eliminates charge flow that damages film or cracks sapphire wafer. Prevention of charge buildup by simultaneously exposing structure to opposite charges requires equipment modifications less practical and more expensive than deposition of conducting layer.

### B80-10263

#### OHMIC CONTACT TO GAAS SEMICONDUCTOR

H. J. HOVEL (IBM Corp.) and J. M. WOODALL (IBM Corp.)

Sep. 1980

### LANGLEY-12466

#### Vol. 5, No. 2, p. 233

Multimetallic layers produce stable, low-resistance contacts for p-type GaAs and p-type GaAlAs devices. Contacts present no leakage problems, and their series resistance is too small to measure at 1 Sun intensity. Ohmic contacts are stable and should meet 20-year-life requirement at 150°C for GaAs combined photothermal/photovoltaic concentrators.

### B80-10264

#### RESISTANCE WELDING GRAPHITE-FIBER COMPOSITES

R. T. LAMOUREUX (McDonnell Douglas Corp.)

Sep. 1980

### MSC-18534

#### Vol. 5, No. 2, p. 234

High-strength joints are welded in seconds in carbon-reinforced thermoplastic beams. Resistance-welding electrode applies heat and pressure to joint and is spring-loaded to follow softening material to maintain contact; it also holds parts together for cooling and hardening. Both transverse and longitudinal configurations can be welded. Adhesive bonding and encapsulation are more time consuming methods and introduce additional material into joint, while ultrasonic heating can damage graphite fibers in composite.

### B80-10265

#### ALL-INORGANIC SPARK-CHAMBER FRAME

T. M. HESLIN

Sep. 1980

### GSFC-12354

#### Vol. 5, No. 2, p. 235

Outgassing is reduced by using ceramic and glass materials exclusively. Frames are assembled from four beams with rabbeted ends. Only ceramic or glass adhesives are used, and printed circuit is applied by screen printing directly on beams. Inorganic frames provide stable spark-chamber operation without gas refill, useful in terrestrial gamma-ray studies, in high-energy physics research, and other applications.

### B80-10266

#### CONTROLLING THE SHAPE OF GLASS MICROBALLOONS

S. A. DUNN (Bjorksten Res. Labs., Inc.) and S. GUNTER (Bjorksten Res. Labs., Inc.)

Sep. 1980

### M-FS-25230

#### Vol. 5, No. 2, p. 236

Percent yield of 'perfect' glass microballoons is increased by using microlevitating furnaces. Furnace components operate

at higher temperatures and with levitation gases that will not affect glass materials. Furnace speeds up remelting and reshaping, reducing number of rejects for laser fusion studies. Electronic sensing maintains constant pressure differential across CHS despite changing furnace pressure and temperature; control retains microballoon in stable levitating state.

### B80-10267

#### FORMING COMPLEX CAVITIES IN CLEAR PLASTIC

T. RILEY, G. MATUSIK, and C. CASTERLINE

Sep. 1980

### LEWIS-13412

#### Vol. 5, No. 2, p. 237

Metal casting 'lost wax' process is used to mold plastic parts. Highly economical technique produces optically-clear components of complex shapes, which can be used in complex combustion and manifold systems.

### B80-10268

#### SHRINKING PLASTIC TUBING AND NONSTANDARD DIAMETERS

W. V. RUIZ (Rockwell Intern. Corp.) and C. S. THATCHER (Rockwell Intern. Corp.)

Sep. 1980

### MSC-18430

#### Vol. 5, No. 2, p. 237

Process allows larger-than-normal postshrink diameters without splitting. Tetrafluoroethylene tubing on mandrel is supported within hot steel pipe by several small diameter coil sections. Rising temperature of mandrel is measured via thermocouple so assembly can be removed without overshrinking (and splitting) of tubing.

### B80-10269

#### THERMAL BARRIER AND GAS SEAL

J. O. KANE (Rockwell Intern. Corp.) and M. SURBAT (Rockwell Intern. Corp.)

Sep. 1980

### MSC-18390

#### Vol. 5, No. 2, p. 238

Resilient baglike seal tolerates thousand-degree temperatures and accommodates small changes in gap size without losing gas-barrier properties; at same time, it maintains smooth aerodynamic surface across gap. Seal includes alumina filler backed by metal plate. Alumina-filled envelope is easily handled and installed, and can be used in high-temperature industrial processes like coal gasification and liquefaction.

### B80-10270

#### HEAT-SHRINKABLE SLEEVE AIDS IN INSULATING UNIVERSAL JOINTS

W. S. GREEN (Rockwell Intern. Corp.) and F. W. THOMPSON (Rockwell Intern. Corp.)

Sep. 1980

### MSC-18685

#### Vol. 5, No. 2, p. 239

Tubing stiffens joint so that it can be aligned with spline fitting; unsleeved joint would normally droop, making it difficult to attach to splines. Sleeve technique saves time and effort when assembling nonrigid parts by making special holding tools or fixtures unnecessary. Tubing also protects joint from dust and other contamination.

### B80-10271

#### IMPROVED PARTICULATE-SAMPLING FILTER

A. R. HOFFMAN (Caltech) and H. W. SCHNEIDER (Caltech)

Sep. 1980

### NPO-14801

#### Vol. 5, No. 2, p. 240

Small surface indentations entrain larger and more representative sampling than conventional petri-dish smeared with smooth layer adhesive. Filter is assembled from perforated disk and flat backing plate with sticky surface. Due to design-created currents, particulates come in contact with surface for longer time and have greater probability of being trapped. Filter is useful in air-quality monitoring at industrial sites, in mines, and in and around nuclear power plants.

### B80-10272

#### TIME-SHAPED RF BRAZING

J. A. STEIN (Rockwell Intern. Corp.) and M. A. VANNASSE

(Rockwell Intern. Corp.)  
Sep. 1980

**MSC-18617**

One RF generator is controlled from two independent work stations with aid of RF switch and simple control boxes. Brazing may be stopped manually or automatically by external brazing-temperature controller or timer in RF switch housing. Switch is air-operated with water-cooled contacts. If switch loses air pressure, generator stops transmitting power. Time-shared outlet increases utilization and productivity of costly RF generator.

**B80-10273****PRODUCING GAPPED-FERRITE TRANSFORMER CORES**

W. T. MCILYMAN (Caltech)

Sep. 1980

**NPO-14715**

Improved manufacturing techniques make reproducible gaps and minimize cracking. Molded, unfired transformer cores are cut with thin saw and then fired. Hardened semicircular core sections are bonded together, placed in aluminum core box, and fluidized-coated. After winding is run over box, core is potted. Economical method significantly reduces number of rejects.

**B80-10274****PLASTIC WELDER**

J. D. BUCKLEY, R. L. FOX, and R. J. SWAIN

Sep. 1980

**LANGLEY-12540**

Low-cost, self-contained, portable welder joins plastic parts by induction heating. Welder is useable in any atmosphere or in vacuum and with most types of thermoplastic; plastic components can be joined in situ. Device is applicable to aerospace industry and in automobile, furniture, and construction industries. Power requirements are easily met by battery or solar energy. In welder, toroidal inductor transfers magnetic flux through thermoplastic to screen. Heated screen causes plastic surface on either side to melt and flow into it to form joint.

**B80-10275****ELECTRON-BEAM WELDER CIRCLE GENERATOR**

R. K. BURLEY (Rockwell Intern. Corp.)

Sep. 1980

**M-FS-19441**

Generator rotates electron beam and performs other convenient functions during welding process. Device eliminates time-consuming techniques relying heavily on operator's skill. Welding speed is varied with frequency selector, and amplitudes of x- and y-axes are varied by adjusting phase shift. Both high and low-range adjustments are available, and each axis can be separately controlled. Crosshair is provided for set-up and beam alignments.

**B80-10276****'FOREIGN MATERIAL' TO VERIFY ROOT FUSION IN WELDED JOINTS**

R. E. KLEINT (Rockwell Intern. Corp.)

Sep. 1980

**M-FS-19496**

Foil or thin wire at weld root is used to verify weld penetration. When weld is adequate, material mixes with weld and traces of it diffuse to weld crown. Spectroscopic analysis of samples identifies foreign material and verifies root has fused. Weld roots are usually inaccessible to visual inspection, and X-ray and ultrasonic inspection techniques are not always reliable. Good results are obtained with use of gold/nickel alloy.

**B80-10277****TUBE-WELDER AIDS**

J. F. WEAVER (Rockwell Intern. Corp.)

Sep. 1980

**MSC-18687**

Simple tools assist in setting up and welding tubes. Welder aids can be easily made to fit given tube diameter. Finished set can be used repeatedly to fix electrode-to-weld gap and mark sleeve and joint positions. Tools are readily made in tube-manufacturing plants and pay for themselves in short time in

reduced labor costs and quality control. Conventional measurements are too slow for mass production and are prone to errors.

**B80-10278****HONING FIXTURE FOR WELDED ELECTRODES**

R. F. NICHOLAS (Rockwell Intern. Corp.) and W. H. SCHUBERT (Rockwell Intern. Corp.)

Sep. 1980

**M-FS-19537****Vol. 5, No. 2, p. 244**

Fixture for refacing electrodes mounts directly on welding machine. Up-and-down movement of stone against electrode is done manually or with designed motor drive. Fixture is used in lieu of manually refinishing electrodes with emory paper or other abrasive. It produces uniformly flat, parallel electrodes in less time, saving cost on production time.

**B80-10279****SILICON NITRIDE PASSIVATION OF IC'S**

J. J. ERICKSON (Hughes Aircraft Co.), F. L. GEBHART (Hughes Aircraft Co.), T. C. HALL (Hughes Aircraft Co.), and J. W. PETERS (Hughes Aircraft Co.)

Sep. 1980

**M-FS-25309****Vol. 5, No. 2, p. 245**

Feasibility study looks at effectiveness of silicon nitride passivation coating against moisture and mobile ions. Coating was tested on CMOS microcircuits. Tests included temperature cycling, high-temperature electrical stress, and temperature and humidity exposure. Report concludes plastic-encapsulated circuits with protective coating exhibit high survival rates; it includes tables summarizing test results and figures that show effects of flexing.

**B80-10280****PROGRESS IN MOSFET DOUBLE-LAYER METALIZATION**

J. D. GASSAWAY (Mississippi State Univ.), J. D. TROTTER (Mississippi State Univ.), and T. E. WADE (Mississippi State Univ.)

Sep. 1980

**M-FS-25349****Vol. 5, No. 2, p. 246**

Report describes one-year research effort in VLSI fabrication. Four activities are described: theoretical study of two-dimensional diffusion in SOS (silicon-on-sapphire); setup of sputtering system, furnaces, and photolithography equipment; experiments on double layer metal; and investigation of two-dimensional modeling of MOSFET's (metal-oxide-semiconductor field-effect transistors).

**B80-10281****OPTIMIZING COSTS OF VLSI CIRCUITS**

K. B. COOK, JR. (Auburn Univ.) and D. V. KERNS, JR. (Auburn Univ.)

Sep. 1980

**M-FS-25348****Vol. 5, No. 2, p. 248**

Report analyzes costs of developing and producing low-production-volume, customized VLSI (very large-scale, integrated) circuits. Relationship is developed between IC cost and electronic system cost using IC cost models based on design/fabrication approach. Emphasis is on development of understanding between cost and volume for custom circuits to be used by NASA. Reliability is major cost component in models. Report is divided into five sections and includes four appendices with useful reference literature.

**B80-10282****AN AUTOMATED OXIDE AND DIFFUSION FACILITY FOR IC'S**

B. W. KENNEDY

Sep. 1980

**M-FS-25357****Vol. 5, No. 2, p. 248**

Report discusses totally-automated oxidation and diffusion facility for fabricating IC's. Several innovations are demonstrated: process controller specifically designed for semiconductor processing; automatic loading system to accept wafers from air track, insert them in quartz carrier, and place carrier on paddle for insertion into furnace; automatic unloading of wafers back onto air track; and boron diffusion using diborane.

## 08 FABRICATION TECHNOLOGY

### B80-10283

#### PREDICTING CRACK PROPAGATION

T. HU (Rockwell Intern. Corp.)

Sep. 1980

#### MSC-18718

Flaw growth under load is predicted in two dimensions with Advanced Crack Propagation Predictive Analysis Program (FLAGRO4). FLAGRO4 accommodates variety of cracks, crack transitions, stress gradients, changes in material properties, and Willenberg retardation. Program is written in FORTRAN IV for batch execution and is available for CDC and IBM machines.

### B80-10417

#### CONTOUR-MEASURING TOOL FOR COMPOSITE LAYUPS

M. J. FONTES

Jan. 1981

#### ARC-11246

Simple handtool helps form contours and complex shapes from laminae of resin-impregnated fabric. Tool, which consists of yoke having ballpoint pen and spindle and gage, is placed so that it straddles model. As toll is moved, pen draws constant thickness focus that is used as template.

### B80-10418

#### A NEW FAMILY OF FIRE-RESISTANT FOAMS

J. GAGLIANI (International Harvester Co.)

Jan. 1981 See also NASA-CR-160576 (N80-22492); B78-10053

#### MSC-16921

Need for lightweight flame-resistant, nonsmoking materials in interiors of spacecraft has spawned family of foams that could find applications in aircraft and other vehicles. Polyimide-based foams are being developed as resilient fillers for seat cushions, as rigid, low-density wall panels, as high-strength sheets for floors, and as thermal and acoustical insulation.

### B80-10419

#### MODIFIED FIRE-RESISTANT FOAMS FOR SEAT CUSHIONS

J. GAGLIANI (International Harvester Co.), R. LEE (International Harvester Co.), U. A. K. SORATHIA (Intern Harvester Co.), and A. L. WILCOXSON (Intern. Harvester Co.)

Jan. 1981

#### MSC-18704

Modified polyimide-polymer resins are precursors for new family of resilient fire-resistant foams. Terpolyimide foams containing long-chain aliphatic diamines withstand 50,000 cycles of compression over a 200 pound load - an equivalent of 3 years of continuous use as seat cushion filler.

### B80-10420

#### ONE-STEP MICROWAVE FOAMING AND CURING

J. GAGLIANI (International Harvester Co.), R. LEE (International Harvester Co.), U. A. K. SORATHIA (International Harvester Co.), and A. L. WILCOXSON (International Harvester Co.)

Jan. 1981 See Also NASA-CR-160576(N80-22492); NASA-CR-151472 (N77-28301)

#### MSC-18707

Process that combines microwave foaming and curing of polyimide precursors in single step produces fire-resistant foam slabs of much larger volume than has previously been possible. By adding selected conductive fillers to powder precursors and by using high-power microwave oven, foam slabs with dimensions in excess of 61 by 61 by 7.6 cm are made. Typical foaming and curing and curing time is 35 minutes in microwave oven with additional 1 to 2 hour postcure in conventional oven.

### B80-10421

#### RIGID FIRE-RESISTANT FOAMS FOR WALLS AND FLOORS

J. GAGLIANI (International Harvester Co.), R. LEE (International Harvester Co.), U. A. K. SORATHIA (International Harvester Co.), and A. L. WILCOXSON (International Harvester Co.)

Jan. 1981 See also NASA-CR-160576 (N80-22492); NASA-CR-151472 (N77-28301)

#### MSC-18708

Previous techniques for fabricating rigid fire-resistant polyi-

mide foams by compressing already-foamed precursor have been supplanted by one-step constrained-rise process. Precursor mixed with reinforcing fillers is placed between rigid substrates that constrain expansion of foam as it is heated by microwave energy. Process works for both liquid and powder precursors and can also be adapted to attach woven fiberglass skins at same time precursor is being foamed.

### B80-10422

#### HOT FORMING GRAPHITE/POLYIMIDE STRUCTURES

R. M. BAUCOM and P. W. KIDDER (LTV)

Jan. 1981

#### LANGLEY-12547

Hot forming process has been developed in which structural shapes and panels are fabricated directly from stabilized graphite/polyimide preforms. Process can be used with thermosetting polymers that have high-temperature melt phase just before final cure. This phase allows fibers to move without destroying matrix-to-fiber adhesion. One of key advantages of this process is that prestages preforms are very stable and do not require refrigerated storage.

### B80-10423

#### METHOD FOR SHAPING POLYETHYLENE TUBING

R. C. KRAMER (Rockwell International Corp.)

Jan. 1981

#### MSC-18771

Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing in low pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

### B80-10425

#### FILM COATINGS FOR CONTOURED SURFACES

H. E. FLANERY (Rockwell International Corp.), R. K. FROST (Rockwell International Corp.), and A. J. OLSON (Rockwell International Corp.)

Jan. 1981

#### MSC-18784

Thickness of fluorocarbon elastomer films applied in contoured shapes by vacuum forming is difficult to control at sharply curved areas. Process for spraying contoured fluorocarbon elastomer films of uniform strength and thickness has been used instead of vacuum forming to fabricate curtain covering external tank of Space Shuttle. Conventional spray equipment may be used.

### B80-10426

#### KILOVOLT VACUUM FEED THROUGH IS LESS NOISY

L. D. HOWELL (ITT)

Jan. 1981

#### NPO-14802

Electrical feedthrough connects both low-voltage and high-voltage signals between cryogenic environment and 'outside world.' Developed for cooled germanium gamma-ray detector, feedthrough has especially low capacitance and low sensitivity to microphonic noise. Its high-voltage lead is free of corona discharge and electrical breakdown to at least 5 kV.

### B80-10427

#### CUTTING HOLES IN FABRIC-FACED PANELS

S. A. PETERSON (Rockwell International Corp.)

Jan. 1981

#### MSC-18786

Tool has 2 carbide inserts that bore clean holes through fibrous material with knifelike slicing action. Cutting edge of insert is curved, with plane inner surface at 30 degree angle to tool axis. Drill press or hand-held drill can be used to hold cutting tool.

### B80-10428

#### SEALING MICROPORES IN THIN CASTINGS

G. A. MERSEREAU (Honeywell, Inc.), G. O. NITZSCHKE (Honeywell, Inc.), H. L. OCHS (Honeywell, Inc.), and F. S. SUTCH

(Honeywell, Inc.)

Jan. 1981

**MSC-18623**

Microscopic pores in thin-walled aluminum castings are sealed by impregnation pretreatment. Technique was developed for investment castings used in hermetically sealed chassis for electronic circuitry. Excessively high leakage rates were previously measured in some chassis.

**B80-10429****LIGHTWEIGHT TERMINAL BOARD**

J. D. DRECHSLER (Rockwell International Corp.) and H. EATON (Rockwell International Corp.)

Oct. 1981

**MSC-18787****Vol. 5, No. 3, p. 391**

Sandwich construction for terminal boards reduces fabrication time and produces thinner boards with better insulation consistency, better appearance, and less weight. New method also permits closer spacing of terminal posts. Method starts with thin (0.031 inch) sheet of polyimide and consists of drilling, inserting terminal posts, upsetting ends, and then bonding second sheet to upset side as continuous insulation member. Resulting sandwich is lighter and much cheaper than single board.

**B80-10430****TRANSISTOR PACKAGE FOR HIGH PRESSURE APPLICATIONS**

P. J. ZANTOS (Rockwell International Corp.)

Jan. 1981

**MSC-18743****Vol. 5, No. 3, p. 393**

T063 transistor package can operate in hydraulic oil at pressures of 200 psi or greater without leakage failure if it is reinforced by alumina disk brazed to cap and terminals. This inexpensive modification has been used successfully on power transistors in hydraulic circulating-pump assemblies for Space Shuttle orbiter and should be effective in other pressurized environments, such as in oil exploration equipment.

**B80-10431****AUTOMATIC CHEMICAL VAPOR DEPOSITION**

B. W. KENNEDY

Jan. 1981

**M-FS-25249****Vol. 5, No. 3, p. 393**

Report reviews chemical vapor deposition (CVD) for processing integrated circuits and describes fully automatic machine for CVD. CVD proceeds at relatively low temperature, allows wide choice of film compositions (including graded or abruptly changing compositions), and deposits uniform films of controllable thickness at fairly high growth rate. Report gives overview of hardware, reactants, and temperature ranges used with CVD machine.

**B80-10432****CADAT LOGIC SIMULATION PROGRAM**

C. L. MITCHELL (M & S Computing, Inc.) and J. F. TAYLOR (M & S Computing, Inc.)

Jan. 1981 See also B80-10437

**M-FS-25183****Vol. 5, No. 3, p. 394**

CADAT Logic Simulation Program (LOGSIM) checks functional correctness of electronic logic circuit by simulating circuit at logic gate level. LOGSIM also checks propagation delay through logic nets and indicates any timing or 'race' problems.

**B80-10433****CADAT TEST PATTERN GENERATOR**

Innovator not given (M & S Computing Co.) Jan. 1981

**M-FS-25066****Vol. 5, No. 3, p. 394**

CADAT test pattern generator (TPG) aids in checkout, fault detection, and fault isolation of complex digital circuits. Time and effort of manually generating digital test patterns can be major limiting factor in effectively utilizing automatic testing. This time and effort are reduced from several months to several days by TPG.

**B80-10434****CADAT FIELD-EFFECT-TRANSISTOR SIMULATOR**

Innovator not given (RCA Corp.) Jan. 1981

**M-FS-25067****Vol. 5, No. 3, p. 395**

CADAT field-effect transistor simulator (FETSIM) analyzes dc and transient behavior of metal-oxide-semiconductor (MOS) circuits. Both N-MOS and P-MOS transistor configurations in either bulk of silicon-on-sapphire (SOS) technology and almost any combination of R/C elements are analyzed.

**B80-10435****CADAT PLACE-AND-ROUTINE IN TWO DIMENSIONS**

Innovator not given (RCA Corp.) Jan. 1981

**M-FS-25058****Vol. 5, No. 3, p. 395**

CADAT place-and-route-in-two dimensions program (PR2D) is standard-cell automatic-layout program for generating large-scale-integrated/metal-oxidesemiconductor (LSI/MOS) arrays. PR2D translates logic designer's cell interconnection requirements into physically-defined MOS chip. PR2D reads input data, searches pin data file for data on each pattern type, generates placement of patterns, and interconnects patterns. As output, it generates artwork for layouts.

**B80-10436****CADAT MULTIPORT PLACEMENT AND ROUTING**

Innovator not given (RCA Corp.) Jan. 1981

**M-FS-25065****Vol. 5, No. 3, p. 395**

CADAT multiport-in-two dimensions program (MP2D) is powerful placement and routing aid for processing double-ended cell equivalents of high-speed silicon-on-sapphire (SOS) standard-cell family. Basic purpose of MP2D is to design high-density large-integrated (LSI) arrays.

**B80-10437****CADAT INTEGRATED CIRCUIT MASK ANALYSIS**

Innovator not given (M & S Computing Co.) Jan. 1981 See also B80-10432

**M-FS-25054****Vol. 5, No. 3, p. 395**

CADAT System Mask Analysis Program (MAPS2) is automated software tool for analyzing integrated-circuit mask design. Included in MAPS2 functions are artwork verification, device identification, nodal analysis, capacitance calculation, and logic equation generation.

**B80-10534****'DENSIFIED' TILES FORM STRONGER BONDS**

R. L. DOTT and J. W. HOLT (Rockwell International Corp.)

Apr. 1981 See also B80-10535

**MSC-18741****Vol. 5, No. 4, p. 495**

Application of colloidal silica more than doubles bond strength of ceramic tile/substrate attachments. 'Densification' process strengthens surface where tile attaches to felt strain-isolator pad, redistributing stresses and preventing failures at that point. First, isopropyl alcohol is applied to bottom tile surface. Second, aqueous mixture of cementing colloidal silica and reinforcing ball-milled silica particles is painted on tile. Finally, after drying, tile is rewaterproofed by exposure to vapors or methyltrimethoxysilane and acetic acid.

**B80-10535****TILE DENSIFICATION WITH TEOS**

G. M. ECORD and C. SCHOMBURG

Apr. 1981

**MSC-18737****Vol. 5, No. 4, p. 495**

Densification process uses brushed or sprayed coating of tetraethyl orthosilicate. Liquid is applied and cured in three steps: tile weight increase averages 0.15 g per square centimeter. TEOS liquid is prepared by mixing TEOS with hydrochloric acid and adding marking dye. TEOS application provides variable stiffness, strength, and penetration. Surface of tile shows no buildup and is more durable for additional coatings.

**B80-10536****REPAIRING HIGH-TEMPERATURE GLAZED TILES**

G. M. ECORD and C. SCHOMBURG

Apr. 1981

**MSC-18736****Vol. 5, No. 4, p. 495**

Tetraethyl orthosilicate (TEOS) mixture fills chips and cracks in glazed tile surface. Filler is made by mixing hydrolyzed TEOS,

## 08 FABRICATION TECHNOLOGY

silicon tetraboride powder, and pulverized tile material. Repaired tiles survived testing by intense acoustic emissions, arc jets, and intense heat radiation. Repair is reliable and rapid, performed in 1-1 1/2 hours with tile in any orientation.

**B80-10537**

### PRODUCING SILICON CONTINUOUSLY

W. M. INGLE (Motorola, Inc.), R. S. ROSLER (Motorola, Inc.), and S. THOMPSON (Motorola, Inc.)

Apr. 1981

**NPO-14796**

**Vol. 5, No. 4, p. 497**

Fluid-bed vaporization followed by chemical vapor deposition generates large, semiconductor-grade silicon particles. Method is economical, high-volume alternative to conventional batch-processing methods. Harvested chunks, extracted in cyclone separator, are about 0.5 to 1.3 centimeters in diameter. Process is not limited to polymer feedstock; it utilizes any halosilane intermediate used in silicon production.

**B80-10538**

### MOBILE GLAZING UNIT

J. W. HOLT (Rockwell International Corp.)

Apr. 1981 See also NASA-N81-70850

**KSC-11171**

**Vol. 5, No. 4, p. 498**

Unit programs thermal cycle from 100 to 2,300 F for firing ceramic glaze coatings on refractory surfaces in any attitude and position. Device includes control console, heater assembly, protective cover, and manipulator boom; boom places heater next to surface to be fired. Unit is industrially useful for in situ repair of ceramics and curing individual refractory blocks during furnace maintenance.

**B80-10539**

### LEARNING HIGH-QUALITY SOLDERING

W. S. READ (Caltech)

Apr. 1981

**NPO-14869**

**Vol. 5, No. 4, p. 499**

Soldering techniques for high-reliability electronic equipment are taught in 5 day course at NASA's Jet Propulsion Laboratory. Topic covered include new circuit assembly, printed-wiring board reworking, circuit changes, wire routing, and component installation.

**B80-10540**

### ELIMINATING GAPS IN SPLIT RINGS

R. W. GOULD (Rockwell International Corp.)

Apr. 1981

**MSC-18854**

**Vol. 5, No. 4, p. 500**

Simple installation method allows thinner, lighter tether rings than conventional procedures, saving expensive materials. Installer inverts ring with pliers before it is slid over cable, then returns it to its original position after installation. Ring is in correct orientation, and coils are tightly compressed for high reliability fastening.

**B80-10541**

### PASSIVATION LAYER FOR STEEL SUBSTRATE OF SOLAR CELL

R. J. STIRN (Caltech) and Y. M. YEH (Caltech)

Apr. 1981

**NPO-14961**

**Vol. 5, No. 4, p. 501**

Solar cell is fabricated on commercial sheet-steel substrate passivated with tungsten layer. Layer prevents constituents of steel from interacting with semiconductor materials in MOS thin-film solar cell. Thin plating of nickel on steel improves bonding of tungsten. Use of steel as substrate reduces materials cost of solar cell construction.

**B80-10542**

### LOW-COST CONCENTRATING MIRRORS

T. R. CARROLL (Caltech)

Apr. 1981

**NPO-14962**

**Vol. 5, No. 4, p. 502**

Parabolic concentrators used in solar-energy systems are constructed from many flat rectangular mirrors. Each mirror is elastically deformed in one dimension. Several such mirrors placed

adjacent to each other along parabolic curve form inexpensive mirror suitable for solar application.

**B80-10543**

### SPIRAL-WOUND GASKET FORMS LOW-TEMPERATURE SEAL

S. C. IRICK

Apr. 1981

**LANGLEY-12315**

**Vol. 5, No. 4, p. 502**

Spiral-wound cryogenic gasket with one component requires no encapsulant and is easily produced with self-locking features. Seal either opens and closes or is fixed. It is made by skiving strip from circumference of disk of glass-filled material. Successive turns of strip are spirally wrapped in groove machined into one flange surface. Closing joint compresses gasket.

**B80-10544**

### ARC SPRAYING SOLDERABLE TABS TO GLASS

J. LINDMAYER (Solarex Corp.)

Apr. 1981

**NPO-14853**

**Vol. 5, No. 4, p. 503**

Tabs suitable for electrical or mechanical connections in solar cells and integrated circuits are made by spraying technique. Solder wets copper, copper bonds to aluminum, and aluminum adheres to glass. Arc spraying is automated and integrated with encapsulation, eliminating hand tabbing, improving reliability, and reducing cost.

**B80-10545**

### BACK CONTACTS FOR SILICON-ON-CERAMIC SOLAR CELLS

T. L. SCHULLER (Honeywell, Inc.) and S. MARQUARDT (Honeywell, Inc.)

Apr. 1981

**NPO-14809**

**Vol. 5, No. 4, p. 504**

Grooved substrate exposes back surface of photovoltaic cells, allowing dopant diffusion into surface and electrical contact. When substrate is coated successively with carbon and molten silicon, polycrystalline-silicon bridges form over grooves, but leave channels open. Best adhesion results when substrate grooves run perpendicular to direction of liquid-silicon layer and are closely spaced.

**B80-10546**

### SELF-LUBRICATING GEARSET

D. S. BINGE (RCA Corp.)

Apr. 1981

**MSC-18801**

**Vol. 5, No. 4, p. 504**

Gearset fabricated from molybdenum sulfide filled polyimide allows attention-free operation in vacuum and at extreme temperatures. Ring gear drives pinion gear on shaft in skewed-axis arrangement. Because loads are shared among multiple meshing teeth, self-lubricating material is strong enough to accommodate high gear ratio.

**B80-10547**

### REFLECTING LAYERS REDUCE WEIGHT OF INSULATION

J. D. COLE (Rockwell International Corp.), E. D. SCHLESSINGER (Rockwell International Corp.), and H. J. ROCKOFF (Rockwell International Corp.)

Apr. 1981

**MSC-18785**

**Vol. 5, No. 4, p. 505**

Metalized films placed between layers of fibrous material maintain equivalent thermal conductivity while cutting blanket density in half. Tests indicate that insulation with 1 lb/cu ft density with goldized films has thermal conductivity equal to 2 lb/cu ft of conventional insulation. Concept reduces weight in commercial aircraft and increases cargo space.

**B80-10548**

### LIGHTWEIGHT CRYOGENIC VESSEL

J. C. LEWIS (Caltech)

Apr. 1981

**NPO-14794**

**Vol. 5, No. 4, p. 505**

Thin cooling jacket of recirculating liquid nitrogen is contained by relatively thin walls. Nitrogen is maintained at slight positive

pressure, unlike full atmospheric pressure of conventional Dewar design, eliminating need for evacuated insulating spaces and heavy-walled shells. Besides cryogenic applications, design keeps liquids hot when recirculating liquid hotter than nitrogen is used.

**B80-10549**  
**DROP TOWER WITH NO AERODYNAMIC DRAG**

J. M. KENDALL, JR. (Caltech)

Apr. 1981

**NPO-14845**

Cooling air accelerated to match velocity of falling object eliminates drag. 3 meter drop tower with suction fan and specific geometry causes air to accelerate downward at 1 g. Although cooling of molten material released from top is slow because surrounding air moves with it, drop remains nearly spherical.

**B80-10550**  
**NICKEL-DOPED SILICON FOR SOLAR CELLS**

A. M. SALAMA (Caltech)

Apr. 1981

**NPO-14780**

Large grain boundaries in polycrystals act as gettering centers for nickel precipitates, improving cell performance. Effects are described in report. Data on open-circuit voltage, short-circuit current, maximum power, and conversion efficiency for illuminated cells are compared with values for undoped cells. Dark forward current versus voltage is also measured for cell types.

**B80-10551**  
**CADAT NETWORK TRANSLATOR**

E. R. PITTS (M&S Computing, Inc.)

Apr. 1981 See also B80-10432 - B80-10437

**M-FS-25055**

Program converts cell-net data into logic-gate models for use in test and simulation programs. Input consists of either Place, Route, and Fold (PRF) or Place-and-Route-in-Two-Dimensions (PR2D) layout data deck. Output consists of either Test Pattern Generator (TPG) or Logic-Simulation (LOGSIM) logic circuitry data deck. Designer needs to build only logic-gate-model circuit description since program acts as translator. Language is FORTRAN IV.

**B80-10552**  
**CADAT INTEGRATED CIRCUIT ARTWORK PROGRAM**

R. L. KVELTHAU (M&S Computing, Inc.)

Innovator not given (RCA Corp.) Apr. 1981 See also B80-10551

**M-FS-25017**

Versatile, ready-to-use program (ARTWORK) converts artwork data into mask patterns. ARTWORK generates signals for controlling mask-fabricating equipment. Extensive utility package enables user to create new pattern libraries, develop and incorporate new cells, and perform systems orientation functions. Program is written in FORTRAN IV.

## 09 MATHEMATICS AND INFORMATION SCIENCES

**B80-10142**  
**EFFICIENT TELEMETRY FORMAT**

E. GREENBERG (Caltech) and A. J. HOOKE (Caltech)

Aug. 1980

**NPO-13679**

Format would simplify ground processing of telemetry data. Also, missing minor frame would create error in only one set of source data instead of disrupting all sets. Format organizes data from various sources into autonomous blocks. Data are pre-processed, in effect, so main computer only needs to determine block type and process data set as batch.

**B80-10143**

**USER'S GUIDE TO SFTRAN**

T. E. FESSLER and W. F. FORD

Aug. 1980

**LEWIS-13172**

Structured programming language has been given new features and some limitations are removed. Language runs more efficiently, and concepts of top down development and modularity are extended to task management.

**B80-10144**

**GODDARD MISSION ANALYSIS SYSTEM**

F. E. MCGARRY

Aug. 1980

**GSFC-12392**

Collection of software modules can be configured to solve variety of mission analysis problems. GMAS includes modules for performing large selection of standard mission analyses. Graphics executive system is provided. Program is in FORTRAN IV and Assembler for and interactive execution on IBM 360-series.

**B80-10145**

**SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE**

H. KLEINE (Caltech)

Aug. 1980

**NPO-14610**

Language supports design and documentation of complex software. Included are: design and documentation language for expressing design concepts; processor that produces intelligible documentation based on design specifications; and methodology for using language and processor to create well-structured top-down programs and documentation. Processor is written in SIMSCRIPT 11.5 programming language for use on UNIVAC, IBM, and CDC machines.

**B80-10146**

**ESTIMATION OF INCOMPLETE MULTINOMIAL DATA**

K. R. CREDEUR

Aug. 1980

**LANGLEY-12593**

Program estimates cell probabilities for data observed to fall in one of two or more categories when exact category cannot be determined. Data are assumed to be randomly incomplete. Estimation minimizes risk of quadratic loss. Program should be useful in projects where multinomial data is analyzed, but where observations are sometimes incomplete. Program is in FORTRAN IV and Assembler for batch execution on CYBER 173.

**B80-10147**

**AUTOMATED FLOW-CHART SYSTEM**

W. WOODFORD

Aug. 1980

**GSFC-12514**

Program produces flow chart of any program written in FORTRAN. Each FORTRAN statement is printed with symbol representing actions required during execution. Flow chart is generated on line-printer. This program is in COBOL for batch execution on IBM 370-series computer.

**B80-10148**

**SYSTEMS IMPROVED NUMERICAL DIFFERENCING ANALYZER**

Innovator not given (Johnson Space Center) Aug. 1980

**MSC-18697**

Program solves physical problems governed by diffusion-type equations, provided that equations can be modeled by lumped-parameter representation. Program is used for thermal analysis, and could be adapted to solve Fourier, Poisson, and Laplace differential equations. Program is in FORTRAN IV and Assembler for execution on UNIVAC 1100-series or CYBER 175.

**B80-10284**

**AN APPROXIMATION TO STUDENT'S T-DISTRIBUTION**

D. R. RUMMLER and C. W. STOUD

Sep. 1980

**LANGLEY-12238**

Vol. 6, No. 2, p. 251

## 09 MATHEMATICS AND INFORMATION SCIENCES

Three equations relate Student's t-distribution to standard normal distribution with maximum error of less than 0.8 percent. First equation, used for degrees of freedom (v) greater than 2, expresses t variable in terms of standard normal variable z. For v=1 and 2, second and third equations express t exactly in terms of probability P.

**B80-10285**

### LOW-COST LANDSAT PROCESSING SYSTEM

N. L. FAUST (Metrics, Inc.), N. J. HOOPER (Metrics, Inc.), and G. W. SPANN (Metrics, Inc.)

Sep. 1980

**M-FS-25396**

**Vol. 5, No. 2, p. 252**

LANDSAT analysis system is assembled from commercially available components at relatively low cost. Small-scale system is put together for price affordable for state agencies and universities. It processes LANDSAT data for subscene areas on repetitive basis. Amount of time required for processing decreases linearly with number of classifications desired. Computer programs written in FORTRAN IV are available for analyzing data.

**B80-10286**

### NASA PERT TIME II

R. C. BAINBRIDGE, F. FUNICELLI, D. J. HIRSCH, E. A. PALLAT, E. RYAN, J. D. WALKER, and H. BREMMER

Sep. 1980

**LEWIS-13145**

**Vol. 5, No. 2, p. 252**

Program Evaluation and Review Technique (PERT) is disciplined management technique involving computer processing. NASA PERT Time 11 gives project manager insight into current and future project development and forewarns of potential problems. Program utilizes modular technique. Module is 'fragnet'; once aspects of project are described in terms of fragnets, control network is automatically generated. Program is written in FORTRAN IV and OS Assembler for batch execution and has been implemented on IBM 370.

**B80-10287**

### LINEAR STOCHASTIC OPTIMAL CONTROL AND ESTIMATION PROBLEM

L. C. GEYSER and F. K. B. LEHTINEN

Sep. 1980

**LEWIS-13206**

**Vol. 5, No. 2, p. 253**

Problem involves design of controls for linear time-invariant system disturbed by white noise. Solution is Kalman filter coupled through set of optimal regulator gains to produce desired control signal. Key to solution is solving matrix Riccati differential equation. LSOCE effectively solves problem for wide range of practical applications. Program is written in FORTRAN IV for batch execution and has been implemented on IBM 360.

**B80-10288**

### MULTIPLE LINEAR REGRESSION ANALYSIS

T. R. EDWARDS

Sep. 1980

**M-FS-23764**

**Vol. 5, No. 2, p. 254**

Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

**B80-10289**

### STRUCTURED FORTRAN PREPROCESSOR

S. AUSTIN (Science Applications, Inc.), B. BUCKLES (Science Applications, Inc.), and J. P. RYAN (Science Applications, Inc.)

Sep. 1980

**M-FS-23813**

**Vol. 5, No. 2, p. 254**

Structured-programming features simplify software design. Programmer needs only few control statements to code program in format easy to debug and maintain, freeing him/her from flow constraints of standard FORTRAN. Program is written in ANSI FORTRAN and is compatible with machine supporting

FORTRAN compiler that accepts ANSI statements. It has been implemented on IBM 370.

**B80-10290**

### MBASIC PROCESSOR

R. B. HARTLEY (Caltech) and R. E. HOLZMAN (Caltech)

Sep. 1980

**NPO-14245**

**Vol. 5, No. 2, p. 254**

MBASIC is high-level, interactive computer language that reduces time of computer task programming. Outstanding features of MBASIC include: multiple assignments or statements in single instruction; conditional, assignment, and repetitive statement modifiers; and excellent string-handling capabilities. Two machine versions are available: UNIVAC (written in reentrant Assembler code for execution under EXEC 8) AND DEC-10 (written in Assembler code for execution under TOPS-10).

**B80-10291**

### BASIC CLUSTER COMPRESSION ALGORITHM

E. E. HILBERT (Caltech) and J. LEE (Caltech)

Sep. 1980

**NPO-14816**

**Vol. 5, No. 2, p. 255**

Feature extraction and data compression of LANDSAT data is accomplished by BCCA program which reduces costs associated with transmitting, storing, distributing, and interpreting multispectral image data. Algorithm uses spatially local clustering to extract features from image data to describe spectral characteristics of data set. Approach requires only simple repetitive computations, and parallel processing can be used for very high data rates. Program is written in FORTRAN IV for batch execution and has been implemented on SEL 32/55.

**B80-10292**

### SYSTEM TIME-DOMAIN SIMULATION

C. T. DAWSON, T. W. EGGLESTON, A. C. GORIS, M. FASHANO (Hughes Aircraft Co.), D. PAYNTER (Hughes Aircraft Co.), and W. H. TRANTER (Missouri Univ.)

Sep. 1980

**MSC-18333**

**Vol. 5, No. 2, p. 255**

Complex systems are simulated by engineers without extensive computer experience. Analyst uses free-form engineering-oriented language to input 'black box' description. System Time Domain (SYSTID) Simulation Program generates appropriate algorithms and proceeds with simulation. Program is easily linked to postprocessing routines. SYSTID program is written in FORTRAN IV for batch execution and has been implemented on UNIVAC 1110 under control of EXEC 8, Level 31.

**B80-10293**

### IMAGE-BASED INFORMATION, COMMUNICATION, AND RETRIEVAL

N. A. BRYANT (Caltech) and A. L. ZOBRIST (Caltech)

Sep. 1980

**NPO-14893**

**Vol. 5, No. 2, p. 256**

IBIS/VICAR system combines video image processing and information management. Flexible programs require user to supply only parameters specific to particular application. Special-purpose input/output routines transfer image data with reduced memory requirements. New application programs are easily incorporated. Program is written in FORTRAN IV, Assembler, and OS JCL for batch execution and has been implemented on IBM 360.

**B80-10438**

### AN IMAGE-DATA-COMPRESSION ALGORITHM

E. E. HILBERT (Caltech) and R. F. RICE (Caltech)

Jan. 1981

**NPO-14496**

**Vol. 5, No. 3, p. 399**

Cluster Compression Algorithm (CCA) preprocesses LANDSAT image data immediately following satellite data sensor (receiver). Data are reduced by extracting pertinent image features and compressing this result into concise format for transmission to ground station. This results in narrower transmission bandwidth, increased data-communication efficiency, and reduced computer time in reconstructing and analyzing image. Similar technique could be applied to other types of recorded data to cut costs of

transmitting, storing, distributing, and interpreting complex information.

**B80-10439**

**DETERMINING MANUFACTURING COST FROM PRODUCT COMPLEXITY**

L. M. DELIONBACK

Jan. 1981

**M-FS-25371**

**Vol. 5, No. 3, p. 400**

Procedure allows calculation of manufacturing complexity - the totality of cost elements that determine cost of manufacturing unit. Procedure is based on premise that manufacturing follows learning curve; that is costs are assumed to decrease as experience is acquired and improvements are made in design, tooling, and methods.

**B80-10553**

**AN APPROXIMATION FOR INVERSE LAPLACE TRANSFORMS**

W. M. LEAR (TRW, Inc.)

Apr. 1981 See also NASA-TM-81064(N80-25056)

**MSC-18867**

**Vol. 5, No. 4, p. 511**

Programmable calculator runs simple finite-series approximation for Laplace transform inversions. Utilizing family of orthonormal functions, approximation is used for wide range of transforms, including those encountered in feedback control problems. Method works well as long as  $F(t)$  decays to zero as it approaches infinity and so is applicable to most physical systems.

**B80-10554**

**SAFETY ANALYSIS FOR COMPLEX SYSTEMS**

J. P. ONESTY (Rockwell International Corp.) and R. L. PEERCY, JR. (Rockwell International Corp.)

Apr. 1981

**MSC-18745**

**Vol. 5, No. 4, p. 511**

Operational risk assessment considers hardware, environment, and human factors. Technique starts with division of postulated mission into segments which are further subdivided into separate operational steps. Consequences of steps, nonoccurrence, premature operation, out-of-sequence operation, and inadvertent execution are examined at subevent, event, and phase levels. Hazards are identified and treated individually. Analysis is well suited to application in energy and transportation fields.

**B80-10555**

**EVALUATING COMPUTER-DRAWN GROUND-COVER MAPS**

L. G. ARVANITIS (Univ. of Florida), R. NEWBURNE (Univ. of Florida), and R. REICH (Univ. of Florida)

Apr. 1981 See also NASA-CR-154635(N80-32805)

**KSC-11195**

**Vol. 5, No. 4, p. 512**

Computer-generated character maps from LANDSAT data are compared to aerial photos for test sites in Florida. Report describes extraction of ground features by two analytical techniques: unsupervised clustering algorithm, called LANDSAT Signature Development Program (LSDP), and interactive algorithm based on multispectral image analyzer. Study concluded that computer classification of digital LANDSAT multispectral data, supplemented with certain ground-cover information, is valuable tool for analysis of renewable resources.

**B80-10556**

**OCCULT-ORSER COMPLETE CONVERSATIONAL USER-LANGUAGE TRANSLATOR**

H. K. RAMAPRIYAN and K. YOUNG (Computer Science Corp.)

Apr. 1981

**GSFC-12604**

**Vol. 5, No. 4, p. 512**

Translator program (OCCULT) assists non-computer-oriented users in setting up and submitting jobs for complex ORSER system. ORSER is collection of image processing programs for analyzing remotely sensed data. OCCULT is designed for those who would like to use ORSER but cannot justify acquiring and maintaining necessary proficiency in Remote Job Entry Language, Job Control Language, and control-card formats. OCCULT is written in FORTRAN IV and OS Assembler for interactive execution.

**B80-10557**

**SELECTING OPTIMUM ALGORITHMS FOR IMAGE PROCESSING**

R. R. JAROE, J. HODGES, R. E. ATKINSON, B. GAGGINI, L. CALLAS, and J. PETERSON

Apr. 1981

**M-FS-25367**

**Vol. 5, No. 4, p. 513**

Collection of registration, compression, and classification algorithms allows users to evaluate approaches and select best one for particular application. Program includes six registration algorithms, six compression algorithms, and two classification algorithms. Package also includes routines for evaluating effects of processing on image data. Collection is written in FORTRAN IV for batch execution.

**B80-10558**

**A UNIVERSAL STRUCTURED-DESIGN DIAGRAMER**

Innovator not given (Higher Order Software, Inc.) Apr. 1981

**LANGLEY-12548**

**Vol. 5, No. 4, p. 513**

Program (FLOWCHARTER) generates standardized flowcharts and concordances for development and debugging of programs in any language. User describes programming-language grammar, providing syntax rules in Backus-Naur form (BNF), list of semantic rules, and set of concordance rules. Once grammar is described, user supplies only source code of program to be diagrammed. FLOWCHARTER automatically produces flow diagram and concordance. Source code for program is written for PASCAL Release 2 compiler, as distributed by University of Minnesota.

# SUBJECT INDEX

## Index to NASA Tech Briefs

Issue 22

### Subject Index

The title of each Tech Brief is listed under several selected subject headings to provide the user with a variety of approaches in his search for specific information. The Tech Brief number, e.g., B80-10326, is located under and to the right of the title and is followed by a two-digit number, e.g., 03, which designates the subject category in which the entire entry can be found.

### A

#### ABERRATION

Acoustically-tuned optical spectrometer  
HQN-10924 B80-10326 03

#### ABSORBERS (EQUIPMENT)

Self-adjusting mechanical snubbing link  
MSC-16134 B80-10246 07

#### ABSORBERS (MATERIALS)

Removal of hydrogen bubbles from nuclear reactors  
LANGLEY-12597 B80-10205 04

#### ABSORPTANCE

Selective optical coatings for solar collectors  
M-FS-23589 B80-10192 03

User chooses coating properties  
LANGLEY-12719 B80-10493 04

#### ABSORPTION SPECTROSCOPY

UV actinometer film  
NPO-14479 B80-10179 03

#### AC GENERATORS

Energy saving in ac generators  
M-FS-25302 B80-10150 01

A linear magnetic motor and generator  
GSFC-12518 B80-10257 07

#### ACCELEROMETERS

Electrofluidic accelerometer  
LANGLEY-12493 B80-10225 06

Fiber optic accelerometer  
LEWIS-13219 B80-10389 06

#### ACOUSTIC MEASUREMENTS

Low-cost calibration of acoustic locators  
LANGLEY-12632 B80-10185 03

#### ACOUSTIC PROPAGATION

Acoustic lens is gas-filled  
NPO-14757 B80-10376 06

#### ACOUSTIC SIMULATION

Low-cost calibration of acoustic locators  
LANGLEY-12632 B80-10185 03

#### ACOUSTO-OPTICS

Acoustically-tuned optical spectrometer  
HQN-10924 B80-10326 03

#### ACTINOMETERS

UV actinometer film  
NPO-14479 B80-10179 03

#### ACTUATORS

Clamshell door system  
MSC-18468 B80-10101 07

Dual mode actuator  
LANGLEY-12412 B80-10106 07

Lock for hydraulic actuators  
MSC-18853 B80-10530 07

#### ADDITIVES

Additive improves engine-oil performance  
GSFC-12327 B80-10065 04

Improving MOS minority-carrier lifetime  
NPO-14738 B80-10301 01

Nickel-doped silicon for solar cells  
NPO-14780 B80-10550 08

#### ADHESIVE BONDING

Jig for assembling large composite panels  
LANGLEY-12394 B80-10119 08

Ion-beam etching enhances adhesive bonding  
LEWIS-13028 B80-10128 08

Arc spraying solderable tabs to glass  
NPO-14853 B80-10544 08

#### ADHESIVES

Room-temperature adhesive for high-temperature use  
MSC-16930 B80-10129 08

Aluminum ions enhance polyimide adhesive  
LANGLEY-12640 B80-10358 04

New pressure-sensitive silicone adhesive  
LANGLEY-12737 B80-10495 04

#### AERIAL PHOTOGRAPHY

Applications of remote-sensing imagery  
M-FS-25107 B80-10082 06

#### AERODYNAMIC CONFIGURATIONS

Aerodynamic preliminary analysis  
LANGLEY-12404 B80-10397 06

#### AERODYNAMIC DRAG

Improved multielement airfoil analysis  
LANGLEY-12489 B80-10086 06

Grooves reduce aircraft drag  
LANGLEY-12599 B80-10215 06

#### AERODYNAMIC LOADS

A generalized vortex lattice method  
LANGLEY-12636 B80-10236 06

#### AERODYNAMIC STABILITY

Aircraft equilibrium spin characteristics  
LANGLEY-12502 B80-10087 06

#### AERODYNAMICS

Three-dimensional potential flow  
LANGLEY-12623 B80-10090 06

The design and analysis of low-speed airfoils  
LANGLEY-12727 B80-10524 06

Transonic flow over wing/fuselage configurations  
LANGLEY-12702 B80-10525 06

#### AEROSOLS

Aerosol lasts up to six minutes  
NPO-14947 B80-10360 04

#### AGGLOMERATION

Reducing static charges in fluidized bed reactions  
ARC-11245 B80-10068 04

#### AIR COOLING

Air-cooled solar-collector specification  
M-FS-25336 B80-10049 03

#### AIR POLLUTION

Fast-response atmospheric-pollutant monitor  
LANGLEY-12317 B80-10062 04

Photographic measurement of droplet density  
M-FS-25326 B80-10182 03

#### AIR QUALITY

Improved particulate-sampling filter  
NPO-14801 B80-10271 08

#### AIR WATER INTERACTIONS

Thermodynamic and transport properties of air/water mixtures  
LEWIS-13432 B80-10519 06

#### AIRBORNE EQUIPMENT

Airborne meteorological data-collection system  
LEWIS-13346 B80-10314 02

#### AIRCRAFT DESIGN

Three-dimensional potential flow  
LANGLEY-12623 B80-10090 06

Disturbance amplification rates  
LANGLEY-12556 B80-10092 06

A generalized vortex lattice method  
LANGLEY-12636 B80-10236 06

Aerodynamic preliminary analysis  
LANGLEY-12404 B80-10397 06

Solar-powered aircraft  
LANGLEY-12615 B80-10404 07

#### AIRCRAFT ENGINES

Self-acting shaft seals  
LEWIS-13229 B80-10109 07

Composites for aeropropulsion  
LEWIS-13438 B80-10209 04

#### AIRCRAFT HYDRAULIC SYSTEMS

Dual mode actuator  
LANGLEY-12412 B80-10106 07

#### AIRCRAFT MANEUVERS

Cost-minimized aircraft trajectories  
ARC-11282 B80-10396 06

#### AIRCRAFT PARTS

Cap protects aircraft nose cone  
LANGLEY-12367 B80-10362 04

#### AIRCRAFT PERFORMANCE

Grooves reduce aircraft drag  
LANGLEY-12599 B80-10215 06

#### AIRCRAFT SAFETY

Fire tests for airplane interior materials  
MSC-18478 B80-10063 04

#### AIRCRAFT WAKES

Wakeflow analysis by cost  
NPO-14705 B80-10387 06

## AIRFOILS

Transonic airfoil design code  
LANGLEY-12460 B80-10085 06  
Improved multielement airfoil analysis  
LANGLEY-12489 B80-10086 06  
A construction technique for wind tunnel models  
LANGLEY-12710 B80-10381 06  
The design and analysis of low-speed airfoils  
LANGLEY-12727 B80-10524 06

## ALGAE

Laser-fluorescence measurement of marine algae  
LANGLEY-12282 B80-10213 05

## ALGORITHMS

Basic cluster compression algorithm  
NPO-14816 B80-10291 09  
Selecting optimum algorithms for image processing  
M-FS-25367 B80-10557 09

## ALIGNMENT

Clamshell door system  
MSC-18468 B80-10101 07  
Adjustable base for centering staked bearings  
MSC-19660 B80-10133 08  
X-ray beam pointer  
MSC-18590 B80-10254 07  
Compact table-tilting mechanism  
NPO-14800 B80-10411 07  
Alining sleeve for optical fibers  
MSC-18756 B80-10424 01

## ALLOYS

Etchant for incoloy-903 welds  
M-FS-19378 B80-10112 08  
Eliminating underbead fissuring in superalloys  
M-FS-19460 B80-10114 08

## ALTERNATING CURRENT

Simple circuit monitors 'third wire' in ac lines  
M-FS-19457 B80-10002 01

## ALUMINUM

Aluminum ions enhance polyimide adhesive  
LANGLEY-12640 B80-10358 04  
User chooses coating properties  
LANGLEY-12719 B80-10493 04

## ALUMINUM ALLOYS

Predicting lifetime of cast parts  
M-FS-19549 B80-10228 06

## AMPLIFICATION

Improved code-tracking loop  
MSC-18035 B80-10034 02

## ANALOG SIMULATION

Converting a digital filter to its analog equivalent  
MSC-18587 B80-10313 02

## ANALOG TO DIGITAL CONVERTERS

Temperature-compensating dc restorer  
LANGLEY-12549 B80-10152 01

## ANALYSIS (MATHEMATICS)

Goddard mission analysis system  
GSFC-12392 B80-10144 09

## ANALYZERS

Fast-response atmospheric-pollutant monitor  
LANGLEY-12317 B80-10062 04  
Automated holographic drop-size analyzer  
B80-10181 03

## ANATASE

Photoproduction of halogens using platinized TiO<sub>2</sub>  
LANGLEY-12713 B80-10491 04

## ANCHORS (FASTENERS)

Eliminating gaps in split rings  
MSC-18854 B80-10540 08

## ANGULAR ACCELERATION

Electrofluidic accelerometer  
LANGLEY-12493 B80-10225 06

## ANODES

Photoelectrochemical cell with nondissolving anode  
LANGLEY-12591 B80-10038 03

## ANODIZING

User chooses coating properties  
LANGLEY-12719 B80-10493 04

## ANTENNA ARRAYS

Receiver array for high-rate telemetry  
NPO-14579 B80-10308 02  
Arrayed receivers for low-rate telemetry  
NPO-14590 B80-10309 02

## ANTENNA COUPLERS

High-power dual-directional coupler  
NPO-14713 B80-10447 02

## ANTENNAS

Multiband microstrip antenna  
MSC-18334 B80-10001 01

Antenna feed for linear and circular polarization  
NPO-14810 B80-10297 01

Cavity-backed spiral-slot antenna  
MSC-18532 B80-10448 02

Trislot-cavity microstrip antenna  
MSC-18793 B80-10450 02

## ANTIBODIES

Hybrid polymer microspheres  
NPO-14462 B80-10208 04

## ARC SPRAYING

Arc spraying solderable tabs to glass  
NPO-14853 B80-10544 08

## ARRESTING GEAR

Gentle arrester for moving bodies  
LANGLEY-12372 B80-10531 07

## ARTERIES

Compliant transducer measures artery profile  
NPO-14899 B80-10369 05

## ARTHRITIS

Gage for evaluating rheumatoid hands  
GSFC-12610 B80-10503 05

## ASSEMBLING

Placement technique for semicustom digital LSI circuits  
M-FS-25324 B80-10117 08

## ATMOSPHERIC COMPOSITION

Simultaneous measurement of three atmospheric pollutants  
NPO-14828 B80-10359 04

## ATMOSPHERIC MOISTURE

Thermodynamic and transport properties of air/water mixtures  
LEWIS-13432 B80-10519 06

## ATMOSPHERIC PHYSICS

Photographic measurement of droplet density  
M-FS-25326 B80-10182 03

## ATMOSPHERIC REFRACTION

Refraction corrections for surveying  
MSC-18664 B80-10231 06

## ATTENUATION

Aliasing filter for multirate systems  
MSC-18472 B80-10153 01

## ATTITUDE (INCLINATION)

Equations of motion for coupled n-body systems  
GSFC-12407 B80-10083 06

Compact table-tilting mechanism  
NPO-14800 B80-10411 07

## ATTITUDE CONTROL

Aircraft equilibrium spin characteristics  
LANGLEY-12502 B80-10087 06

The 3-D guidance system with proximity sensors  
NPO-14521 B80-10250 07

## AUGMENTATION

Digital enhancement of X-rays for NDT  
KSC-11118 B80-10232 06

## AUTOMATIC CONTROL

Computer-controlled warmup circuit  
NPO-14815 B80-10155 01

Automatic thermal switches  
GSFC-12553 B80-10214 06

Automatic 35 mm slide duplicator  
LEWIS-13399 B80-10249 07

Automatic chemical vapor deposition  
M-FS-25249 B80-10431 08

## AUTOMATIC CONTROL VALVES

Automatic shutoff valve  
MSC-19385 B80-10097 07

## AUTOMATIC FREQUENCY CONTROL

Ultrastable automatic frequency control  
MSC-18679 B80-10294 01

## AUTOMATIC GAIN CONTROL

Fiber optics transmit clock signal more reliably  
NPO-14749 B80-10456 03

## AUTOMATIC PILOTS

Electrofluidic accelerometer  
LANGLEY-12493 B80-10225 06

## AUTOMATIC TEST EQUIPMENT

Developing experiment instrument packages  
GSFC-12536 B80-10451 02

Solar-site test module  
M-FS-25543 B80-10460 03

## AUTOMOBILE ENGINES

Reduced hydrogen permeability at high temperatures  
LEWIS-13485 B80-10364 04

## AUTOMOBILES

Four-wheel dual braking for automobiles  
LANGLEY-12687 B80-10529 07

## AVALANCHE DIODES

Semiconductor step-stress testing  
M-FS-25329 B80-10011 01

JANTX1N2970B zener diode  
M-FS-25260 B80-10012 01

JANTX1N2989B zener diode  
M-FS-25261 B80-10013 01

JANTX1N3016B zener diode  
M-FS-25262 B80-10014 01

JANTX1N3031B zener diode  
M-FS-25263 B80-10015 01

## AXISYMMETRIC BODIES

Predicting propulsion system drag  
LANGLEY-12619 B80-10238 06

Inviscid transonic flow over axisymmetric bodies  
LANGLEY-12499 B80-10398 06

## B

## BAGS

Soft container for explosive nuts  
MSC-18871 B80-10532 07

## BALL BEARINGS

Measuring ball-bearing loads  
M-FS-19505 B80-10102 07

## BALLOONS

Controlling the shape of glass microballoons  
M-FS-25230 B80-10266 08

|                                                                       |                                                                           |                                                                                   |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| <b>BALLS</b>                                                          | <b>BIREFRINGENCE</b>                                                      | <b>C</b>                                                                          |
| Ball-joint grounding ring<br>MSC-18824                                | Acoustically-tuned optical spectrometer<br>HQN-10924                      | Gentle arrester for moving bodies<br>LANGLEY-12372                                |
| B80-10405 07                                                          | B80-10326 03                                                              | B80-10531 07                                                                      |
| <b>BANDPASS FILTERS</b>                                               | <b>BLADES (CUTTERS)</b>                                                   | <b>CABLES (ROPES)</b>                                                             |
| Continuous control of phase-locked-loop<br>bandwidth<br>MSC-16684     | Cutting holes in fabric-faced panels<br>MSC-18786                         | Broadband electrostatic acoustic<br>transducer for liquids<br>LANGLEY-12465       |
| B80-10008 01                                                          | B80-10427 08                                                              | B80-10078 06                                                                      |
| <b>BANDWIDTH</b>                                                      | <b>BLOOD VESSELS</b>                                                      | <b>CALIBRATING</b>                                                                |
| Continuous control of phase-locked-loop<br>bandwidth<br>MSC-16684     | Compliant transducer measures artery<br>profile<br>NPO-14899              | Optical calibrator for TDL<br>spectrometers<br>GSFC-12562                         |
| B80-10008 01                                                          | B80-10369 05                                                              | B80-10178 03                                                                      |
| <b>BASIC (PROGRAMMING LANGUAGE)</b>                                   | <b>BOLTS</b>                                                              | Low-cost calibration of acoustic<br>locators<br>LANGLEY-12632                     |
| MBASIC processor<br>NPO-14245                                         | Eddy-current sensor measures bolt<br>loading<br>M-FS-19486                | B80-10185 03                                                                      |
| B80-10290 09                                                          | B80-10079 06                                                              | A temperature fixed point near 58 C<br>M-FS-25304                                 |
| <b>BATTERY CHARGERS</b>                                               | Bolt-tension indicator<br>M-FS-19324                                      | B80-10204 04                                                                      |
| Improved battery charger for electric<br>vehicles<br>NPO-14964        | Two-headed bolt<br>M-FS-19619                                             | Portable zero-delay assembly<br>NPO-14671                                         |
| B80-10440 01                                                          | B80-10410 07                                                              | Fast calibration of gas flowmeters<br>KSC-11076                                   |
| <b>BEADS</b>                                                          | <b>BONDING</b>                                                            | B80-10516 06                                                                      |
| Eliminating underbead fissuring in<br>superalloys<br>M-FS-19460       | 'Densified' tiles form stronger bonds<br>MSC-18741                        | <b>CAMERAS</b>                                                                    |
| B80-10114 08                                                          | B80-10534 08                                                              | Camera add-on records time of<br>exposure<br>LANGLEY-12635                        |
| <b>BEAMS (SUPPORTS)</b>                                               | Tile densification with TEOS<br>MSC-18737                                 | B80-10183 03                                                                      |
| Automatic connector for structural<br>beams<br>M-FS-25134             | B80-10535 08                                                              | <b>CAPACITANCE SWITCHES</b>                                                       |
| B80-10094 07                                                          | Arc spraying solderable tabs to glass<br>NPO-14853                        | Fast response cryogen level sensor<br>MSC-18697                                   |
| Flush-mounting technique for composite<br>beams<br>LANGLEY-12389      | B80-10544 08                                                              | B80-10374 06                                                                      |
| B80-10121 08                                                          | <b>BORING MACHINES</b>                                                    | <b>CAPACITIVE FUEL GAGES</b>                                                      |
| Resistance welding graphite-fiber<br>composites<br>MSC-18534          | Cutting holes in fabric-faced panels<br>MSC-18786                         | Fast response cryogen level sensor<br>MSC-18697                                   |
| B80-10264 08                                                          | B80-10427 08                                                              | B80-10374 06                                                                      |
| <b>BEARINGS</b>                                                       | <b>BOUNDARY LAYER STABILITY</b>                                           | <b>CAPACITORS</b>                                                                 |
| Measuring ball-bearing loads<br>M-FS-19505                            | Disturbance amplification rates<br>LANGLEY-12556                          | Measuring radiation effects on MOS<br>capacitors<br>NPO-14700                     |
| B80-10102 07                                                          | B80-10092 06                                                              | B80-10227 06                                                                      |
| Adjustable base for centering staked<br>bearings<br>MSC-19660         | <b>BRAKES (FOR ARRESTING MOTION)</b>                                      | <b>CARBON</b>                                                                     |
| B80-10133 08                                                          | Four-wheel dual braking for<br>automobiles<br>LANGLEY-12687               | Carbon scrubber<br>MSC-16531                                                      |
| Rotor transient analysis<br>LEWIS-13230                               | B80-10529 07                                                              | B80-10356 04                                                                      |
| Cylindrical bearing analysis<br>LEWIS-13393                           | Gentle arrester for moving bodies<br>LANGLEY-12372                        | <b>CARBON DIOXIDE LASERS</b>                                                      |
| B80-10533 07                                                          | B80-10531 07                                                              | Tunable pulsed carbon dioxide laser<br>NPO-14984                                  |
| <b>BELLOWS</b>                                                        | <b>BRAYTON CYCLE</b>                                                      | B80-10458 03                                                                      |
| A versatile tunnel acts as a flexible<br>duct<br>M-FS-22636           | Gas absorption/desorption<br>temperature-differential engine<br>NPO-14528 | <b>CARBON FIBER REINFORCED</b>                                                    |
| B80-10242 07                                                          | B80-10513 06                                                              | PLASTICS                                                                          |
| <b>BENDING</b>                                                        | <b>BRAZING</b>                                                            | Examining graphite reinforcement in<br>composites<br>MSC-19594                    |
| Tension-mode loading for bend<br>specimens in cryogens<br>LEWIS-13040 | Alumina barrier for vacuum brazing<br>MSC-18528                           | B80-10122 08                                                                      |
| B80-10076 06                                                          | A precoat prevents ceramic stopoffs from<br>spalling<br>M-FS-19495        | <b>CARDIOTACHOMETERS</b>                                                          |
| Method for shaping polyethylene tubing<br>MSC-18771                   | B80-10136 08                                                              | Microprocessor-based cardiotachometer<br>MSC-18775                                |
| B80-10423 08                                                          | Time-shaped RF brazing<br>MSC-18617                                       | B80-10501 05                                                                      |
| <b>BERYLLIUM COMPOUNDS</b>                                            | Time-sharing switch for vacuum brazing<br>MSC-18699                       | <b>CARDIOVASCULAR SYSTEM</b>                                                      |
| Ball-joint grounding ring<br>MSC-18824                                | B80-10412 07                                                              | Cardiopulmonary data-acquisition<br>system<br>MSC-18783                           |
| B80-10405 07                                                          | <b>BUBBLES</b>                                                            | B80-10499 05                                                                      |
| <b>BIAS</b>                                                           | Removal of hydrogen bubbles from<br>nuclear reactors<br>LANGLEY-12597     | Microprocessor-based cardiotachometer<br>MSC-18775                                |
| Temperature-compensating dc restorer<br>LANGLEY-12549                 | B80-10205 04                                                              | B80-10501 05                                                                      |
| B80-10152 01                                                          | Driving bubbles out of glass<br>M-FS-25414                                | <b>CARTRIDGES</b>                                                                 |
| <b>BINARY ALLOYS</b>                                                  | B80-10496 04                                                              | Quick mixing of epoxy components<br>MSC-18731                                     |
| Diffusion in single-phase binary alloys<br>LANGLEY-12665              | <b>BUFFER STORAGE</b>                                                     | B80-10415 07                                                                      |
| B80-10498 04                                                          | Online assessment of a distributed<br>processor<br>KSC-11124              | <b>CASTING</b>                                                                    |
| <b>BIOINSTRUMENTATION</b>                                             | B80-10037 02                                                              | Forming complex cavities in clear<br>plastic<br>LEWIS-13412                       |
| Cardiopulmonary data-acquisition<br>system<br>MSC-18783               | Common data buffer<br>KSC-11048                                           | B80-10267 08                                                                      |
| B80-10499 05                                                          | B80-10303 02                                                              | <b>CASTINGS</b>                                                                   |
| Microprocessor-based cardiotachometer<br>MSC-18775                    | <b>BUNDLES</b>                                                            | Predicting lifetime of cast parts<br>M-FS-19549                                   |
| B80-10501 05                                                          | Handtool assists in bundling cables<br>MSC-18567                          | B80-10228 06                                                                      |
| <b>BIOMEDICAL DATA</b>                                                | B80-10255 07                                                              | Sealing micropores in thin castings<br>MSC-18623                                  |
| Flow sensor for biomedical fluids<br>MSC-18761                        | <b>BUS CONDUCTORS</b>                                                     | B80-10428 08                                                                      |
| B80-10367 05                                                          | Detecting short circuits during<br>assembly<br>ARC-11116                  | Improved cell for water-vapor<br>electrolysis<br>MSC-16394                        |
| Microprocessor-based cardiotachometer<br>MSC-18775                    | B80-10007 01                                                              | B80-10489 04                                                                      |
| B80-10501 05                                                          | <b>CATALYSTS</b>                                                          | Photoproduction of halogens using<br>platinized TiO <sub>2</sub><br>LANGLEY-12713 |
| <b>BIOTELEMETRY</b>                                                   |                                                                           | B80-10491 04                                                                      |
| Miniaturized physiological data telemetry<br>system<br>MSC-18804      |                                                                           |                                                                                   |
| B80-10371 05                                                          |                                                                           |                                                                                   |

**CATHETOMETERS**

Improved ureteral stone fragmentation catheter  
NPO-14745 B80-10370 05

**CATHODE RAY TUBES**

Real-time film recording from stroke-written CRT's  
LANGLEY-12529 B80-10169 02

**CAVITATION FLOW**

Dynamics of cavitating cascades and inducer pumps  
M-FS-25399 B80-10392 06

**CAVITIES**

Downhole pressure sensor  
NPO-14729 B80-10223 06

Forming complex cavities in clear plastic  
LEWIS-13412 B80-10267 08

**CAVITY RESONATORS**

Cavity-backed spiral-slot antenna  
MSC-18532 B80-10448 02

**CENTRAL PROCESSING UNITS**

Microprocessor-controlled data synchronizer  
MSC-18535 B80-10031 02

Common data buffer  
KSC-11048 B80-10303 02

**CERAMIC COATINGS**

Corrosion-resistant ceramic thermal barrier coating  
LEWIS-13088 B80-10067 04

A precoat prevents ceramic stopoffs from spalling  
M-FS-19495 B80-10136 08

Mobile glazing unit  
KSC-11171 B80-10538 08

**CERAMICS**

'Densified' tiles form stronger bonds  
MSC-18741 B80-10534 08

**CHARGE COUPLED DEVICES**

Better-quality CCD-array images  
NPO-14426 B80-10168 02

Four-quadrant CCD analog multiplier  
LANGLEY-12332 B80-10305 02

Monolithic four-quadrant multiplier  
LANGLEY-12330A B80-10306 02

Monolithic CCD-array readout  
LANGLEY-12376 B80-10307 02

**CHARGE DISTRIBUTION**

Crossed-grid charge locator  
M-FS-25170 B80-10010 01

NASA charging analyzer program  
LEWIS-12973 B80-10058 03

**CHARGED PARTICLES**

NASA charging analyzer program  
LEWIS-12973 B80-10058 03

**CHARRING**

Heat resistant polyphosphazene polymers  
ARC-11176 B80-10350 04

Resin char oxidation retardant for composites  
LEWIS-13275 B80-10354 04

High char yield epoxy curing agents  
LEWIS-13226 B80-10361 04

**CHEMICAL ANALYSIS**

Simultaneous measurement of three atmospheric pollutants  
NPO-14828 B80-10359 04

**CHEMICAL MACHINING**

Chemical-milling solution for invar alloy  
M-FS-25365 B80-10113 08

**CHEMICAL REACTIONS**

Methane/air flames in a concentric tube combustor  
LEWIS-13388 B80-10211 04

**CHEMICAL REACTORS**

Producing silicon continuously  
NPO-14796 B80-10537 08

**CHLOROPHYLLS**

Laser-fluorescence measurement of marine algae  
LANGLEY-12282 B80-10213 05

**CIRCLES (GEOMETRY)**

Electron-beam welder circle generator  
M-FS-19441 B80-10275 08

**CIRCUIT BOARDS**

Low-resistance continuity tester  
NPO-14881 B80-10445 01

**CIRCUIT PROTECTION**

Simple circuit monitors 'third wire' in ac lines  
M-FS-19457 B80-10002 01

Voltage controller/current limiter for ac  
NPO-13061 B80-10032 02

Cooling/grounding mount for hybrid circuits  
MSC-18728 B80-10302 01

**CIRCULAR POLARIZATION**

Antenna feed for linear and circular polarization  
NPO-14810 B80-10297 01

**CLAMPS**

Vise holds specimens for microscope  
MSC-18690 B80-10098 07

Drill-motor holding fixture  
MSC-18582 B80-10108 07

Lock for hydraulic actuators  
MSC-18853 B80-10530 07

Eliminating gaps in split rings  
MSC-18854 B80-10540 08

**CLEANERS**

Removing freon gas from hydraulic fluid  
MSC-18740 B80-10494 04

**CLEANING**

Ion-beam cleaning for cold welds  
LEWIS-12982 B80-10115 08

**CLEARANCES**

Adjustable base for centering staked bearings  
MSC-19660 B80-10133 08

**CLEAVAGE**

Cleaving machine for hard crystals  
GSFC-12584 B80-10401 07

**CLOCKS**

Fiber optics transmit clock signal more reliably  
NPO-14749 B80-10456 03

**CLOSURES**

Clamshell door system  
MSC-18468 B80-10101 07

**CLOUD COVER**

Instrument measures cloud cover  
NPO-14936 B80-10514 06

**CLOUDS**

Instrument measures cloud cover  
NPO-14936 B80-10514 06

**CLOUDS (METEOROLOGY)**

Instrument measures cloud cover  
NPO-14936 B80-10514 06

**COAL**

Measuring coal deposits by radar  
M-FS-23922 B80-10060 04

Detecting coal/shale interface  
M-FS-23720 B80-10061 04

Underground Coal Mining  
NPO-14704 B80-10071 04

Position monitor for mining machines  
M-FS-25342 B80-10157 01

**COAL GASIFICATION**

Coal conversion and synthetic-fuel production  
M-FS-25330 B80-10070 04

**COATING**

Spraying suspensions uniformly  
M-FS-25139 B80-10409 07

**COATINGS**

Coatings for hybrid microcircuits  
M-FS-25292 B80-10116 08

Fluorescent radiation converter  
GSFC-12528 B80-10180 03

Selective optical coatings for solar collectors  
M-FS-23589 B80-10192 03

Improved adherence of TiC coatings to steel  
LEWIS-13169 B80-10207 04

Photoniitride passivating coating for IC's  
M-FS-25401 B80-10260 08

Low cost high temperature, duplex coating for superalloys  
LEWIS-13497 B80-10352 04

Improved metallic and thermal barrier coatings  
LEWIS-13324 B80-10353 04

Film coatings for contoured surfaces  
MSC-18784 B80-10425 08

User chooses coating properties  
LANGLEY-12719 B80-10493 04

**CODING**

Structured FORTRAN preprocessor  
M-FS-23813 B80-10289 09

Converting a digital filter to its analog equivalent  
MSC-18587 B80-10313 02

**COINCIDENCE CIRCUITS**

Multichannel coincidence circuit  
LANGLEY-12531 B80-10005 01

**COLD WELDING**

Ion-beam cleaning for cold welds  
LEWIS-12982 B80-10115 08

**COLLIMATORS**

Multibeam collimator uses prism stack  
GSFC-12608 B80-10452 03

**COLLOIDS**

Reducing static charges in fluidized bed reactions  
ARC-11245 B80-10068 04

**COLUMNS (SUPPORTS)**

Mechanical end joint for structural columns  
LANGLEY-12482 B80-10095 07

Automatic connector joins structural columns  
LANGLEY-12578 B80-10251 07

**COMBUSTION CHAMBERS**

Methane/air flames in a concentric tube combustor  
LEWIS-13388 B80-10211 04

Flashback-free combustor  
LANGLEY-12666 B80-10226 06

**COMBUSTION PHYSICS**

Automated holographic drop-size analyzer  
B80-10181 03

**COMMUNICATION CABLES**

Handtool assists in bundling cables  
MSC-18567 B80-10255 07

**COMMUNICATION EQUIPMENT**

Multiband microstrip antenna  
MSC-18334 B80-10001 01

Receiving signals of any polarization  
NPO-14836 B80-10315 02

Miniaturized physiological data telemetry system  
MSC-18804 B80-10371 05

**COMPLEX SYSTEMS**

Safety analysis for complex systems  
MSC-18745 B80-10554 09

**COMPONENT RELIABILITY**

Semiconductor step-stress testing  
M-FS-25329 B80-10011 01  
JANTX1N2970B zener diode  
M-FS-25260 B80-10012 01  
JANTX1N2989B zener diode  
M-FS-25261 B80-10013 01  
JANTX1N3016B zener diode  
M-FS-25262 B80-10014 01  
JANTX1N3031B zener diode  
M-FS-25263 B80-10015 01  
JANTX1N5622 diode  
M-FS-25280 B80-10016 01  
JANTX1N5623 switching diode  
M-FS-25281 B80-10017 01  
JANTX2N2060 dual transistor  
M-FS-25251 B80-10018 01  
JANTX2N2219A dual transistor  
M-FS-25252 B80-10019 01  
JANTX2N2369A transistor  
M-FS-25254 B80-10020 01  
JANTX2N2432A transistor  
M-FS-26255 B80-10021 01  
JANTX2N2484 transistor  
M-FS-25253 B80-10022 01  
JANTX2N2605 transistor  
M-FS-25150 B80-10023 01  
JANTX2N2905A transistor  
M-FS-25256 B80-10024 01  
JANTX2N2920 Dual transistor  
M-FS-25258 B80-10025 01  
JANTX2N2945A transistor  
M-FS-25259 B80-10026 01  
JANTX2N3637 transistor  
M-FS-25264 B80-10027 01  
JANTX2N3811 dual transistor  
M-FS-25265 B80-10028 01  
JANTX2N4150 transistor  
M-FS-25267 B80-10029 01  
JANTX2N4856 field-effect transistor  
M-FS-25269 B80-10030 01

**COMPOSITE MATERIALS**

Jig for assembling large composite panels  
LANGLEY-12394 B80-10119 08  
Shaping graphite/epoxy stiffeners  
MSC-18494 B80-10120 08  
Flush-mounting technique for composite beams  
LANGLEY-12389 B80-10121 08  
Examining graphite reinforcement in composites  
MSC-19594 B80-10122 08  
Knife-edge seal for vacuum bagging  
M-FS-24049 B80-10135 08  
Plasticizer for polyimide composites  
LANGLEY-12642 B80-10206 04  
Composites for aeropropulsion  
LEWIS-13438 B80-10209 04  
Efficient measurement of shear properties of fiber composites  
LEWIS-13011 B80-10216 06  
Resistance welding graphite-fiber composites  
MSC-18534 B80-10264 08  
Plastic welder  
LANGLEY-12540 B80-10274 08  
Resin char oxidation retardant for composites  
LEWIS-13275 B80-10354 04  
Composites with nearly zero thermal expansion  
MSC-18724 B80-10355 04

High char yield epoxy curing agents  
LEWIS-13226 B80-10361 04

Testing panels in tension and flexure  
M-FS-25421 B80-10380 06

Contour-measuring tool for composite layups  
ARC-11246 B80-10417 08

Hot forming graphite/polyimide structures  
LANGLEY-12547 B80-10422 08

Cutting holes in fabric-faced panels  
MSC-18786 B80-10427 08

**COMPRESSED AIR**

Pneumatic-power supply  
MSC-18855 B80-10527 07

**COMPRESSIBLE FLOW**

Transonic flow over wing/fuselage configurations  
LANGLEY-12702 B80-10525 06

**COMPRESSION TESTS**

Environmental testing under load  
LANGLEY-12602 B80-10379 06

**COMPRESSORS**

Gas absorption/desorption temperature-differential engine  
NPO-14528 B80-10513 06

**COMPUTER COMPONENTS**

Detecting short circuits during assembly  
ARC-11116 B80-10007 01

**COMPUTER GRAPHICS**

Real-time film recording from stroke-written CRT's  
LANGLEY-12529 B80-10169 02

**COMPUTER PROGRAMMING**

Automated flow-chart system  
GSFC-12514 B80-10147 09

DDL:Digital systems design language  
M-FS-25352 B80-10163 01

Structured FORTRAN preprocessor  
M-FS-23813 B80-10289 09

MBASIC processor  
NPO-14245 B80-10290 09

**COMPUTER PROGRAMS**

A universal structured-design diagrammer  
LANGLEY-12548 B80-10558 09

**COMPUTERIZED DESIGN**

Aerodynamic preliminary analysis  
LANGLEY-12404 B80-10397 06

**COMPUTERIZED SIMULATION**

Equations of motion for coupled n-body systems  
GSFC-12407 B80-10083 06

Models of MOS and SOS devices  
M-FS-25153 B80-10141 08

System time-domain simulation  
MSC-18333 B80-10292 09

Cost-minimized aircraft trajectories  
ARC-11282 B80-10396 06

Calculating linear A, B, C, and D matrices from a nonlinear dynamic engine simulation  
LEWIS-13250 B80-10520 06

CADAT network translator  
M-FS-25055 B80-10551 08

CADAT integrated circuit artwork program  
M-FS-25017 B80-10552 08

**CONCENTRATORS**

Offset paraboloidal solar concentrator  
NPO-14846 B80-10320 03

Low-cost concentrating mirrors  
NPO-14962 B80-10542 08

**CONDUCTIVE HEAT TRANSFER**

Heat conduction in three dimensions  
MSC-18616 B80-10239 06

Powerful copper chloride laser  
NPO-14782 B80-10330 03

Holes help control temperature  
GSFC-12618 B80-10373 06

**CONNECTORS**

Automatic connector for structural beams  
M-FS-25134 B80-10094 07

Flared tube attachment fitting  
MSC-18416 B80-10240 07

Automatic connector joins structural columns  
LANGLEY-12578 B80-10251 07

Ball-joint grounding ring  
MSC-18824 B80-10405 07

Interlocking wedge joint is easily assembled  
LANGLEY-12729 B80-10526 07

**CONSTRUCTION**

Automatic connector joins structural columns  
LANGLEY-12578 B80-10251 07

**CONSTRUCTION MATERIALS**

Versatile modular scaffolds  
GSFC-12606 B80-10406 07

**CONTACT RESISTANCE**

Ohmic contact to GaAs semiconductor  
LANGLEY-12466 B80-10263 08

**CONTAINERLESS MELTS**

Containerless materials processing in the laboratory  
M-FS-25242 B80-10059 04

**CONTAINMENT**

Soft container for explosive nuts  
MSC-18871 B80-10532 07

**CONTAMINANTS**

Detecting contaminants by ultraviolet photography  
M-FS-25296 B80-10229 06

Removing freon gas from hydraulic fluid  
MSC-18740 B80-10494 04

**CONTAMINATION**

Bulk lifetime indicates surface contamination  
NPO-14966 B80-10511 06

**CONTOURS**

Contour-measuring tool for composite layups  
ARC-11246 B80-10417 08

Film coatings for contoured surfaces  
MSC-18784 B80-10425 08

**CONTROL**

One-year assessment of a solar space/water heater--Clinton, Mississippi  
M-FS-25539 B80-10477 03

**CONTROL EQUIPMENT**

Torque control for electric motors  
MSC-18635 B80-10170 02

Electromechanical slip sensor  
NPO-14654 B80-10253 07

Multiplexed logic controls solar-heating system  
M-FS-25287 B80-10318 03

Speed control for synchronous motors  
MSC-18680 B80-10444 01

**CONTROLLERS**

Controller for solar-energy systems  
M-FS-25386 B80-10054 03

Controller and temperature monitor for solar heating  
M-FS-25387 B80-10055 03

Final report on development of a programmable controller  
M-FS-25388 B80-10189 03

|                                                           |                                                            |              |                                                  |                                                               |                                                             |                                                 |                                           |                                                      |
|-----------------------------------------------------------|------------------------------------------------------------|--------------|--------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|------------------------------------------------------|
| Toggled signal for prevention of control errors           | MSC-18779                                                  | B80-10312 02 | <b>COUPLINGS</b>                                 | Self-energized screw coupling                                 | M-FS-25340                                                  | B80-10096 07                                    | <b>CRYOSTATS</b>                          | Modified displacement gage for cryogenic testing     |
| Temperature controller adapts to fatigue tester           | LANGLEY-12393                                              | B80-10378 06 | MSC-18416                                        | Flared tube attachment fitting                                | LEWIS-13039                                                 | B80-10077 06                                    | <b>CRYSTAL GROWTH</b>                     | Reduced gravity favors columnar crystal growth       |
| <b>CONVECTION</b>                                         | Recording fluid currents by holography                     | M-FS-25373   | B80-10222 06                                     | The 3-D guidance system with proximity sensors                | NPO-14521                                                   | B80-10250 07                                    | M-FS-25205                                | B80-10366 04                                         |
| <b>CONVECTIVE FLOW</b>                                    | Analysis of a cooled, turbine blade or vane with an insert | LEWIS-13293  | B80-10400 06                                     | Automatic connector joins structural columns                  | LANGLEY-12578                                               | B80-10251 07                                    | <b>CRYSTALLIZATION</b>                    | Containerless materials processing in the laboratory |
| <b>COOLING</b>                                            | Inhibiting corrosion in solar-heating and cooling systems  | M-FS-25387   | B80-10056 03                                     | Heat-shrinkable sleeve aids in insulating universal joints    | MSC-18685                                                   | B80-10270 08                                    | <b>CRYSTALS</b>                           | Cleaving machine for hard crystals                   |
| Compact, super heat exchanger                             | LEWIS-12441                                                | B80-10081 06 | Ball-joint grounding ring                        | MSC-18824                                                     | B80-10405 07                                                | GSFC-12584                                      | B80-10401 07                              |                                                      |
| Solar-heating and cooling demonstration project           | M-FS-25443                                                 | B80-10203 03 | Two-headed bolt                                  | M-FS-19619                                                    | B80-10410 07                                                | <b>CURING</b>                                   | Knife-edge seal for vacuum bagging        |                                                      |
| Cooling/grounding mount for hybrid circuits               | MSC-18728                                                  | B80-10302 01 | Interlocking wedge joint is easily assembled     | LANGLEY-12729                                                 | B80-10526 07                                                | M-FS-24049                                      | B80-10135 08                              |                                                      |
| Heat pipes cool probe and sandwich panel                  | LANGLEY-12588; LANGLEY-12637                               | B80-10518 06 | <b>COVERINGS</b>                                 | Cap protects aircraft nose cone                               | LEWIS-13226                                                 | B80-10361 04                                    |                                           |                                                      |
| <b>COORDINATES</b>                                        | Crossed-grid charge locator                                | M-FS-25170   | B80-10010 01                                     | LANGLEY-12367                                                 | B80-10362 04                                                | One-step microwave foaming and curing           |                                           |                                                      |
| <b>COPPER CHLORIDES</b>                                   | Powerful copper chloride laser                             | NPO-14782    | B80-10330 03                                     | <b>CRACK PROPAGATION</b>                                      | Modified displacement gage for cryogenic testing            | MSC-18707                                       | B80-10420 08                              |                                                      |
| <b>CORE SAMPLING</b>                                      | Drilling side holes from a borehole                        | NPO-14465    | B80-10066 04                                     | LEWIS-13039                                                   | B80-10077 06                                                | <b>CURRENT REGULATORS</b>                       | Limiting current in electron-beam welders |                                                      |
| <b>CORES</b>                                              | Producing gapped-ferrite transformer cores                 | NPO-14715    | B80-10273 08                                     | <b>CRACKING (FRACTURING)</b>                                  | Predicting crack propagation                                | M-FS-19503                                      | B80-10413 07                              |                                                      |
| <b>CORROSION PREVENTION</b>                               | Silicon nitride passivation of IC's                        | M-FS-25309   | B80-10279 08                                     | MSC-18718; MSC-18721                                          | B80-10283 08                                                | <b>CURVATURE</b>                                | Stream tube curvature analysis            |                                                      |
| <b>CORROSION RESISTANCE</b>                               | Inhibiting corrosion in solar-heating and cooling systems  | M-FS-25387   | B80-10056 03                                     | <b>CREEP ANALYSIS</b>                                         | Modifying underbead fissuring in superalloys                | LANGLEY-11535                                   | B80-10235 06                              |                                                      |
| Corrosion-resistant ceramic thermal barrier coating       | LEWIS-13088                                                | B80-10067 04 | M-FS-19460                                       | B80-10114 08                                                  | NASTRAN modifications for recovering strains and curvatures |                                                 |                                           |                                                      |
| Photoniide passivating coating for IC's                   | M-FS-25401                                                 | B80-10260 08 | <b>CREEP PROPERTIES</b>                          | Plastic deformation of engines and other nonlinear structures | LEWIS-12592                                                 | B80-10395 06                                    |                                           |                                                      |
| Low cost high temperature, duplex coating for superalloys | LEWIS-13497                                                | B80-10352 04 | M-FS-23814                                       | B80-10399 06                                                  | <b>CUSHIONS</b>                                             | Modified fire-resistant foams for seat cushions |                                           |                                                      |
| <b>COST ANALYSIS</b>                                      | Cost models and economical packaging of LSI's              | M-FS-25359   | B80-10138 08                                     | <b>CREEP TESTS</b>                                            | Multiple-creep-test apparatus                               | MSC-18704                                       | B80-10419 08                              |                                                      |
| Optimizing costs of VLSI circuits                         | M-FS-25348                                                 | B80-10281 08 | GSFC-12561                                       | B80-10080 06                                                  | <b>CUTTERS</b>                                              | Precision filament cutter                       |                                           |                                                      |
| Low-cost LANDSAT processing system                        | M-FS-25396                                                 | B80-10285 09 | New pressure-sensitive silicone adhesive         | LANGLEY-12737                                                 | B80-10495 04                                                | LANGLEY-12564                                   | B80-10093 07                              |                                                      |
| Determining manufacturing cost from product complexity    | M-FS-25371                                                 | B80-10439 09 | <b>CRYOGENIC EQUIPMENT</b>                       | Solar-powered aircraft                                        | MSC-18538                                                   | B80-10099 07                                    |                                           |                                                      |
| <b>COST REDUCTION</b>                                     | Cost-minimized aircraft trajectories                       | ARC-11282    | B80-10396 06                                     | LANGLEY-12615                                                 | B80-10404 07                                                | Cutting holes in fabric-faced panels            |                                           |                                                      |
| Multichannel coincidence circuit                          | LANGLEY-12531                                              | B80-10005 01 | <b>CRYOGENIC FLUID STORAGE</b>                   | LVDT gage for fracture-toughness tests in liquid hydrogen     | MSC-18786                                                   | B80-10427 08                                    |                                           |                                                      |
| Universal odd-modulus frequency divider                   | NPO-13426                                                  | B80-10006 01 | LEWIS-13038                                      | B80-10075 06                                                  | <b>CYANIDES</b>                                             | A temperature fixed point near 58 C             |                                           |                                                      |
|                                                           |                                                            |              | LEWIS-13040                                      | B80-10076 06                                                  | M-FS-25304                                                  | B80-10204 04                                    |                                           |                                                      |
|                                                           |                                                            |              | Modified displacement gage for cryogenic testing |                                                               |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              | LEWIS-13039                                      | B80-10077 06                                                  | <b>D</b>                                                    |                                                 |                                           |                                                      |
|                                                           |                                                            |              | Cryogenic machining of polyurethane foam         |                                                               |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              | MSC-18572                                        | B80-10123 08                                                  | <b>DAMPING</b>                                              | Rotor transient analysis                        |                                           |                                                      |
|                                                           |                                                            |              | Cryogenic-storage-tank support                   |                                                               | LEWIS-13230                                                 | B80-10259 07                                    |                                           |                                                      |
|                                                           |                                                            |              | MSC-14848                                        | B80-10258 07                                                  | <b>DATA ACQUISITION</b>                                     | Solar-site test module                          |                                           |                                                      |
|                                                           |                                                            |              | Fast response cryogen level sensor               | M-FS-25543                                                    | B80-10460 03                                                |                                                 |                                           |                                                      |
|                                                           |                                                            |              | MSC-18697                                        | B80-10374 06                                                  | Cardiopulmonary system                                      |                                                 |                                           |                                                      |
|                                                           |                                                            |              | Spiral-wound gasket forms                        | MSC-18783                                                     | B80-10499 05                                                |                                                 |                                           |                                                      |
|                                                           |                                                            |              | low-temperature seal                             | Microprocessor-based cardiottachometer                        |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              | LANGLEY-12315                                    | B80-10543 08                                                  | MSC-18775                                                   | B80-10501 05                                    |                                           |                                                      |
|                                                           |                                                            |              | <b>CRYOGENIC FLUIDS</b>                          | <b>DATA COLLECTION PLATFORMS</b>                              |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              | Lightweight cryogenic vessel                     | Applications of remote-sensing imagery                        |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              | NPO-14794                                        | M-FS-25107                                                    | M-FS-25107                                                  |                                                 |                                           |                                                      |
|                                                           |                                                            |              | 880-10548 08                                     | B80-10082 06                                                  |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              | <b>DATA COMPRESSION</b>                          | <b>DATA CONVERTERS</b>                                        |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              | Fiber optic level sensor for cryogens            | Basic cluster compression algorithm                           |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              | MSC-18674                                        | NPO-14816                                                     |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              | 880-10375 06                                     | B80-10291 09                                                  |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              |                                                  | Compressing TV-image data                                     |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              |                                                  | NPO-14823                                                     |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              |                                                  | B80-10310 02                                                  |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              |                                                  | An image-data-compression algorithm                           |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              |                                                  | NPO-14496                                                     |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              |                                                  | B80-10438 09                                                  |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              |                                                  | <b>DATA CONVERTERS</b>                                        |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              |                                                  | 11-Line to 512-line decoder                                   |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              |                                                  | MSC-19751                                                     |                                                             |                                                 |                                           |                                                      |
|                                                           |                                                            |              |                                                  | B80-10158 01                                                  |                                                             |                                                 |                                           |                                                      |

|                                                                                      |                                                                                 |                                                            |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|
| <b>DATA LINKS</b>                                                                    | <b>DEFORMETERS</b>                                                              | <b>JANTX1N2989B</b> zener diode                            |
| Multipath star switch controller<br>NPO-13422 B80-10035 02                           | Biaxial method for in-plane shear testing<br>LANGLEY-12680 B80-10512 06         | M-FS-25261 B80-10013 01                                    |
| <b>DATA MANAGEMENT</b>                                                               | <b>DELAY</b>                                                                    | JANTX1N3016B zener diode                                   |
| NASA PERT time II<br>LEWIS-13145 B80-10286 09                                        | Improved code-tracking loop<br>MSC-18035 B80-10034 02                           | M-FS-25262 B80-10014 01                                    |
| <b>DATA PROCESSING</b>                                                               | <b>DEMODULATORS</b>                                                             | JANTX1N3031B zener diode                                   |
| Selecting optimum algorithms for image processing<br>M-FS-25367 B80-10557 09         | Microprocessor-based detector for PSK commands<br>NPO-14440 B80-10036 02        | M-FS-25263 B80-10015 01                                    |
| <b>DATA PROCESSING EQUIPMENT</b>                                                     | <b>DENSIFICATION</b>                                                            | JANTX1N5622 diode                                          |
| Microprocessor-controlled data synchronizer<br>MSC-18535 B80-10031 02                | 'Densified' tiles form stronger bonds<br>MSC-18741 B80-10534 08                 | M-FS-25280 B80-10016 01                                    |
| RAM-Based frame synchronizer<br>GSFC-12430 B80-10164 02                              | Tile densification with TEOS<br>MSC-18737 B80-10535 08                          | JANTX1N5623 switching diode                                |
| RAM-Based parallel-output controller<br>GSFC-12447 B80-10165 02                      | <b>DEPOSITION</b>                                                               | M-FS-25281 B80-10017 01                                    |
| Simultaneous disk storage and retrieval<br>KSC-11167 B80-10304 02                    | Automatic chemical vapor deposition<br>M-FS-25249 B80-10431 08                  | <b>DIPLEXERS</b>                                           |
| <b>DATA REDUCTION</b>                                                                | <b>DEPTH MEASUREMENT</b>                                                        | Diplexer for laser-beam heterodyne receiver                |
| Low-cost LANDSAT processing system<br>M-FS-25396 B80-10285 09                        | Electronic depth micrometer<br>KSC-11181 B80-10385 06                           | GSFC-12589 B80-10329 03                                    |
| Image-based information, communication, and retrieval<br>NPO-14893 B80-10293 09      | <b>DESTRUCTIVE TESTS</b>                                                        | <b>DIRECTIONAL ANTENNAS</b>                                |
| <b>DATA RETRIEVAL</b>                                                                | Bulk lifetime indicates surface contamination<br>NPO-14966 B80-10511 06         | Dual-frequency bidirectional antenna                       |
| Software design and documentation language<br>NPO-14610 B80-10145 09                 | <b>DIFFERENCE EQUATIONS</b>                                                     | GSFC-12501 B80-10154 01                                    |
| RAM-Based parallel-output controller<br>GSFC-12447 B80-10165 02                      | Systems improved numerical differencing analyzer<br>MSC-18597 B80-10148 09      | <b>DISCONNECT DEVICES</b>                                  |
| Simultaneous disk storage and retrieval<br>KSC-11167 B80-10304 02                    | <b>DIFFUSION</b>                                                                | Automatic connector joins structural columns               |
| <b>DATA SAMPLING</b>                                                                 | Systems improved numerical differencing analyzer<br>MSC-18597 B80-10148 09      | LANGLEY-12578 B80-10251 07                                 |
| Aliasing filter for multirate systems<br>MSC-18472 B80-10153 01                      | <b>DIGITAL COMMAND SYSTEMS</b>                                                  | <b>DISEASES</b>                                            |
| Frequency response for multiple-sampling rate systems<br>MSC-18473 B80-10173 02      | Frequency response for multiple-sampling rate systems<br>MSC-18473 B80-10173 02 | Compliant transducer measures artery profile               |
| <b>DATA STORAGE</b>                                                                  | <b>DIGITAL DATA</b>                                                             | NPO-14899 B80-10369 05                                     |
| Input/output interface module<br>MSC-18180 B80-10159 01                              | 11-Line to 512-line decoder<br>MSC-19751 B80-10158 01                           | <b>DISPERSING</b>                                          |
| Simultaneous disk storage and retrieval<br>KSC-11167 B80-10304 02                    | Real-time image enhancement<br>NPO-14281 B80-10311 02                           | Spraying suspensions uniformly                             |
| <b>DATA TRANSMISSION</b>                                                             | <b>DIGITAL FILTERS</b>                                                          | M-FS-25139 B80-10409 07                                    |
| Efficient telemetry format<br>NPO-13679 B80-10142 09                                 | Aliasing filter for multirate systems<br>MSC-18472 B80-10153 01                 | <b>DISPERSIONS</b>                                         |
| RAM-Based frame synchronizer<br>GSFC-12430 B80-10164 02                              | Smoothing the output from a DAC<br>FRC-11025 B80-10160 01                       | Oxide dispersion strengthened superalloy                   |
| <b>DECARBONATION</b>                                                                 | Converting a digital filter to its analog equivalent<br>MSC-18587 B80-10313 02  | LEWIS-13589 B80-10351 04                                   |
| Carbon scrubber<br>MSC-16531 B80-10356 04                                            | <b>DIGITAL SYSTEMS</b>                                                          | <b>DISPLACEMENT MEASUREMENT</b>                            |
| <b>DECODERS</b>                                                                      | DDL:Digital systems design language<br>M-FS-25352 B80-10163 01                  | LVDT gage for fracture-toughness tests in liquid hydrogen  |
| Independent synchronizer for digital decoders<br>MSC-16723 B80-10004 01              | <b>DIGITAL TO ANALOG CONVERTERS</b>                                             | LEWIS-13038 B80-10075 06                                   |
| 11-Line to 512-line decoder<br>MSC-19751 B80-10158 01                                | Smoothing the output from a DAC<br>FRC-11025 B80-10160 01                       | Modified displacement gage for cryogenic testing           |
| <b>DECONTAMINATION</b>                                                               | Converting a digital filter to its analog equivalent<br>MSC-18587 B80-10313 02  | LEWIS-13039 B80-10077 06                                   |
| Removing freon gas from hydraulic fluid<br>MSC-18740 B80-10494 04                    | <b>DIMENSIONAL MEASUREMENT</b>                                                  | <b>DISPLAY DEVICES</b>                                     |
| <b>DECOUPLING</b>                                                                    | Electronic depth micrometer<br>KSC-11181 B80-10385 06                           | Monolithic CCD-array readout                               |
| Passive wing/store flutter suppression<br>LANGLEY-12468 B80-10219 06                 | Contour-measuring tool for composite layups<br>ARC-11246 B80-10417 08           | LANGLEY-12376 B80-10307 02                                 |
| <b>DEFECTS</b>                                                                       | <b>DIMENSIONAL STABILITY</b>                                                    | Rain, fog, and clouds for aircraft simulators              |
| Fresnel lenses for ultrasonic inspection<br>MSC-18469 B80-10217 06                   | Test fittings for dimensionally critical tubes<br>NPO-14399 B80-10252 07        | ARC-11158 B80-10383 06                                     |
| Detection of tanker defects with infrared thermography<br>LANGLEY-12655 B80-10221 06 | <b>DIODES</b>                                                                   | Imager displays free fall in stop action                   |
| <b>DEFORMATION</b>                                                                   | Semiconductor step-stress testing<br>M-FS-25329 B80-10011 01                    | NPO-14779 B80-10509 06                                     |
| Reshaping tube ends for welding<br>MSC-18462 B80-10407 07                            | JANTX1N2970B zener diode<br>M-FS-25260 B80-10012 01                             | <b>DISTANCE MEASURING EQUIPMENT</b>                        |
|                                                                                      |                                                                                 | Short-range self-pulsed optical radar                      |
|                                                                                      |                                                                                 | NPO-14901 B80-10459 03                                     |
|                                                                                      |                                                                                 | <b>DISTRIBUTION FUNCTIONS</b>                              |
|                                                                                      |                                                                                 | An approximation to student's t-distribution               |
|                                                                                      |                                                                                 | LANGLEY-12238 B80-10284 09                                 |
|                                                                                      |                                                                                 | <b>DOORS</b>                                               |
|                                                                                      |                                                                                 | Clamshell door system                                      |
|                                                                                      |                                                                                 | MSC-18468 B80-10101 07                                     |
|                                                                                      |                                                                                 | <b>DOPPLER EFFECT</b>                                      |
|                                                                                      |                                                                                 | Instrument remotely measures wind velocities               |
|                                                                                      |                                                                                 | NPO-14524 B80-10176 03                                     |
|                                                                                      |                                                                                 | <b>DOPPLER RADAR</b>                                       |
|                                                                                      |                                                                                 | Microcomputer-based doppler systems for weather monitoring |
|                                                                                      |                                                                                 | GSFC-12448 B80-10166 02                                    |
|                                                                                      |                                                                                 | <b>DOSIMETERS</b>                                          |
|                                                                                      |                                                                                 | Miniature personal UV solar dosimeter                      |
|                                                                                      |                                                                                 | LANGLEY-12469 B80-10321 03                                 |
|                                                                                      |                                                                                 | <b>DRAG</b>                                                |
|                                                                                      |                                                                                 | Predicting propulsion system drag                          |
|                                                                                      |                                                                                 | LANGLEY-12619 B80-10238 06                                 |
|                                                                                      |                                                                                 | <b>DRAG REDUCTION</b>                                      |
|                                                                                      |                                                                                 | Grooves reduce aircraft drag                               |
|                                                                                      |                                                                                 | LANGLEY-12599 B80-10215 06                                 |
|                                                                                      |                                                                                 | <b>DRILL BITS</b>                                          |
|                                                                                      |                                                                                 | Abrasive drill for resilient materials                     |
|                                                                                      |                                                                                 | LEWIS-13411 B80-10402 07                                   |

## DRILLING

Drilling side holes from a borehole  
NPO-14465 B80-10066 04  
Drill-motor holding fixture  
MSC-18582 B80-10108 07  
Drilling at right angles in blind holes  
M-FS-19535 B80-10403 07  
Sidewall penetrator for oil wells  
NPO-14306 B80-10528 07

## DROP SIZE

Automated holographic drop-size  
analyzer B80-10181 03

## DROPS (LIQUIDS)

Photographic measurement of droplet  
density  
M-FS-25326 B80-10182 03  
Drop tower with no aerodynamic drag  
NPO-14845 B80-10549 08

## DUCTS

A versatile tunnel acts as a flexible  
duct  
M-FS-22636 B80-10242 07

## DUST STORMS

Predicting and monitoring duststorms  
NPO-14277 B80-10323 03

## DYE LASERS

Simultaneous measurement of three  
atmospheric pollutants  
NPO-14828 B80-10359 04

## DYNAMIC CHARACTERISTICS

Frequency response of multiple-sampling  
rate systems  
MSC-18473 B80-10173 02

## DYNAMIC LOADS

Isolation and measurement of rotor  
vibration forces  
LANGLEY-12476 B80-10507 06

## DYNAMIC RESPONSE

Rotor transient analysis  
LEWIS-13230 B80-10259 07  
An all-FORTRAN version of NASTRAN  
for the VAX  
GSFC-12600 B80-10522 06

## DYNAMIC STABILITY

Isolation and measurement of rotor  
vibration forces  
LANGLEY-12476 B80-10507 06

## E

## EARTH ATMOSPHERE

Ultraviolet spectrometer/polarimeter  
M-FS-25298 B80-10042 03

## ECONOMIC ANALYSIS

Optimizing costs of VLSI circuits  
M-FS-25348 B80-10281 08

## ECONOMIC DEVELOPMENT

Should we industrialize space?  
M-FS-23963 B80-10137 08

## EDDY CURRENTS

Eddy-current sensor measures bolt  
loading  
M-FS-19486 B80-10079 06

## EDITING ROUTINES (COMPUTERS)

A universal structured-design diagrammer  
LANGLEY-12548 B80-10558 09

## EDUCATION

Learning high-quality soldering  
NPO-14869 B80-10539 08

## ELASTIC DEFORMATION

Plastic deformation of engines and other  
nonlinear structures  
M-FS-23814 B80-10399 06

## ELASTIC PROPERTIES

Composites with nearly zero thermal  
expansion  
MSC-18724 B80-10355 04

## ELASTOMERS

Film coatings for contoured surfaces  
MSC-18784 B80-10425 08

## ELECTRIC CONDUCTORS

NASA charging analyzer program  
LEWIS-12973 B80-10058 03  
Electrically conductive  
palladium-containing polyimide films  
LANGLEY-12629 B80-10357 04

## ELECTRIC CONNECTORS

Connector heat shield  
MSC-16282 B80-10126 08  
Kilovolt vacuum feed through is less  
noisy  
NPO-14802 B80-10426 08

## ELECTRIC CONTACTS

Back contacts for silicon-on-ceramic  
solar cells  
NPO-14809 B80-10545 08

## ELECTRIC CONTROL

Torque control for electric motors  
MSC-18635 B80-10170 02

## ELECTRIC DISCHARGES

Pulse-shaping circuit for laser excitation  
NPO-14556 B80-10453 03

## ELECTRIC GENERATORS

A linear magnetic motor and generator  
GSFC-12518 B80-10257 07

## ELECTRIC MOTORS

Improved power factor controller  
M-FS-25323 B80-10149 01  
Torque control for electric motors  
MSC-18635 B80-10170 02  
A linear magnetic motor and generator  
GSFC-12518 B80-10257 07

## ELECTRIC WIRE

Wire harness twisting aid  
MSC-18581 B80-10132 08

## ELECTRICAL FAULTS

Coatings for hybrid microcircuits  
M-FS-25292 B80-10116 08  
Model for MOS field-time-dependent  
breakdown  
NPO-14701 B80-10162 01

## ELECTRICAL GROUNDING

Simple circuit monitors 'third wire' in  
ac lines  
M-FS-19457 B80-10002 01  
Cooling/grounding mount for hybrid  
circuits  
MSC-18728 B80-10302 01

## ELECTRICAL MEASUREMENT

Low-resistance continuity tester  
NPO-14881 B80-10445 01

## ELECTRICAL RESISTANCE

Low-resistance continuity tester  
NPO-14881 B80-10445 01

## ELECTRICAL RESISTIVITY

Electrically conductive  
palladium-containing polyimide films  
LANGLEY-12629 B80-10357 04

## ELECTROACOUSTIC TRANSDUCERS

Broadband electrostatic acoustic  
transducer for liquids  
LANGLEY-12465 B80-10078 06

## ELECTROCARDIOGRAPHY

Testing EKG electrodes on-line  
MSC-18696 B80-10212 05

## MICROPROCESSOR-BASED CARDIOTACHOMETER

Microprocessor-based cardiotachometer  
MSC-18775 B80-10501 05

## ELECTROCATALYSTS

REDOX electrochemical energy storage  
LEWIS-13398 B80-10064 04  
Improved cell for water-vapor  
electrolysis  
MSC-16394 B80-10489 04

## ELECTROCHEMICAL CELLS

REDOX electrochemical energy storage  
LEWIS-13398 B80-10064 04

## ELECTRODES

Testing EKG electrodes on-line  
MSC-18696 B80-10212 05  
Honing fixture for welded electrodes  
M-FS-19537 B80-10278 08

Limiting current in electron-beam  
welders  
M-FS-19503 B80-10413 07

## ELECTROLYTES

Photoelectrochemical cell with  
nondisolving anode  
LANGLEY-12591 B80-10038 03

## ELECTROLYTIC CELLS

Improved cell for water-vapor  
electrolysis  
MSC-16394 B80-10489 04

## ELECTROMAGNETIC INTERFERENCE

Improved battery charger for electric  
vehicles  
NPO-14964 B80-10440 01

## ELECTROMAGNETIC WAVE FILTERS

Smoothing the output from a DAC  
FRC-11025 B80-10160 01

## ELECTROMECHANICAL DEVICES

Improved battery charger for electric  
vehicles  
NPO-14964 B80-10440 01

## ELECTRON AVALANCHE

Measuring radiation effects on MOS  
capacitors  
NPO-14700 B80-10227 06

## ELECTRON BEAM WELDING

Verifying root fusion in electron-beam  
welds  
M-FS-19499 B80-10110 08

X-ray technique verifies weld-root  
fusion  
M-FS-19468 B80-10111 08

Electron-beam welder circle generator  
M-FS-19441 B80-10275 08

'Foreign material' to verify root fusion  
in welded joints  
M-FS-19496 B80-10276 08

Limiting current in electron-beam  
welders  
M-FS-19503 B80-10413 07

## ELECTRON BEAMS

Superconducting gyrocon would be very  
efficient  
NPO-14975 B80-10446 02

Improved LEEM ranges over four  
decades  
LANGLEY-12706 B80-10508 06

## ELECTRON DISTRIBUTION

Crossed-grid charge locator  
M-FS-25170 B80-10010 01

## ELECTRON MICROSCOPES

Vise holds specimens for microscope  
MSC-18690 B80-10098 07

## ELECTRON RADIATION

Applying the helium ionization detector  
in chromatography  
MSC-18835 B80-10490 04

## ELECTRON TRAJECTORIES

Numerical tracing of electron  
trajectories  
GSFC-12535 B80-10057 03

|                                                         |                                                                                       |                                                             |
|---------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------|
| <b>ELECTRON TUBES</b>                                   | Gas absorption/desorption                                                             | <b>ENGINES</b>                                              |
| Superconducting gyrocon would be very efficient         | temperature-differential engine                                                       | Additive performance                                        |
| NPO-14975                                               | B80-10446 02                                                                          | GSFC-12327                                                  |
| <b>ELECTRONIC CONTROL</b>                               | NPO-14528                                                                             | improves                                                    |
| Speed control for synchronous motors                    | B80-10513 06                                                                          | engine-oil                                                  |
| MSC-18680                                               |                                                                                       | B80-10065 04                                                |
| <b>ELECTRONIC EQUIPMENT</b>                             | <b>ENERGY CONVERSION EFFICIENCY</b>                                                   | <b>ENVIRONMENT EFFECTS</b>                                  |
| Signal conditioner for nickel temperature sensors       | New mounting improves solar-cell efficiency                                           | Environmental testing under load                            |
| MSC-18367                                               | B80-10298 01                                                                          | LANGLEY-12602                                               |
| <b>ELECTRONIC EQUIPMENT TESTS</b>                       | NPO-14467                                                                             | B80-10379 06                                                |
| Testing EKG electrodes on-line                          | Improved power factor controller                                                      | <b>ENVIRONMENT POLLUTION</b>                                |
| MSC-18696                                               | B80-10212 05                                                                          | Recycling paper-pulp waste liquors                          |
| <b>ELECTRONIC PACKAGING</b>                             | M-FS-25323                                                                            | NPO-14797                                                   |
| Placement technique for semicustom digital LSI circuits | B80-10149 01                                                                          | B80-10492 04                                                |
| M-FS-25324                                              |                                                                                       | <b>ENVIRONMENT SIMULATORS</b>                               |
| Double metalization for VLSI                            | M-FS-25302                                                                            | Environmental testing under load                            |
| M-FS-25149                                              | B80-10261 08                                                                          | LANGLEY-12602                                               |
| Cooling/grounding mount for hybrid circuits             | Energy saving in ac generators                                                        | B80-10379 06                                                |
| MSC-18728                                               | B80-10302 01                                                                          | <b>ENVIRONMENTAL CONTROL</b>                                |
| Lightweight terminal board                              | Combined photovoltaic and thermal-storage module                                      | Data-acquisition and control system for severe environments |
| MSC-18787                                               | NPO-14591                                                                             | M-FS-25471                                                  |
| Transistor package for high pressure applications       | B80-10327 03                                                                          | B80-10333 03                                                |
| MSC-18743                                               |                                                                                       | <b>ENVIRONMENTAL TESTS</b>                                  |
| CADAT logic simulation program                          | <b>ENERGY DISSIPATION</b>                                                             | A test program for solar collectors                         |
| M-F-25183                                               | B80-10432 08                                                                          | M-FS-25433                                                  |
| CADAT test pattern generator                            | A redundant regulator control with low standby losses                                 | B80-10194 03                                                |
| M-FS-25066                                              | B80-10433 08                                                                          | Environmental testing under load                            |
| CADAT field-effect-transistor simulator                 | NPO-13165                                                                             | LANGLEY-12602                                               |
| M-FS-25067                                              | B80-10434 08                                                                          | B80-10379 06                                                |
| CADAT place-and-routine in two dimensions               | <b>ENERGY DISTRIBUTION</b>                                                            | <b>ENZYMES</b>                                              |
| M-FS-25058                                              | B80-10435 08                                                                          | Hybrid polymer microspheres                                 |
| CADAT multiport placement and routing                   | Far-field radiation pattern of tunable diode lasers                                   | NPO-14462                                                   |
| M-FS-25065                                              | B80-10436 08                                                                          | B80-10208 04                                                |
| CADAT integrated circuit mask analysis                  | LANGLEY-12631                                                                         | <b>EPOXY RESINS</b>                                         |
| M-FS-25054                                              | B80-10437 08                                                                          | Examining graphite reinforcement in composites              |
| <b>ELECTRONIC TRANSDUCERS</b>                           | <b>ENERGY POLICY</b>                                                                  | MSC-19594                                                   |
| Ultrasonic frequency analysis                           | REDOX electrochemical energy storage                                                  | B80-10122 08                                                |
| LANGLEY-12697                                           | LEWIS-13398                                                                           | High char yield epoxy curing agents                         |
|                                                         | B80-10064 04                                                                          | LEWIS-13226                                                 |
| <b>ELECTROPLATING</b>                                   | Self-energized screw coupling                                                         | B80-10361 04                                                |
| Selective optical coatings for solar collectors         | M-FS-25340                                                                            | Quick mixing of epoxy components                            |
| M-FS-23589                                              | B80-10192 03                                                                          | MSC-18731                                                   |
| <b>ELECTROSTATIC CHARGE</b>                             | <b>ENERGY STORAGE</b>                                                                 | B80-10415 07                                                |
| Reducing static charges in fluidized bed reactions      | REDOX electrochemical energy storage                                                  | <b>EQUATIONS OF MOTION</b>                                  |
| ARC-11245                                               | LEWIS-13398                                                                           | Equations of motion for coupled n-body systems              |
|                                                         | B80-10068 04                                                                          | GSFC-12407                                                  |
| <b>ELLIPTICAL POLARIZATION</b>                          | <b>ENERGY TECHNOLOGY</b>                                                              | B80-10083 06                                                |
| Multiband microstrip antenna                            | A survey of photovoltaic systems                                                      | <b>EQUATIONS OF STATE</b>                                   |
| MSC-18334                                               | M-FS-25397                                                                            | An equation of state for liquids                            |
|                                                         | B80-10001 01                                                                          | NPO-14821                                                   |
| <b>ELONGATION</b>                                       | B80-10187 03                                                                          | B80-10174 03                                                |
| Gentle arrester for moving bodies                       | A test program for solar collectors                                                   | <b>EQUILIBRIUM FLOW</b>                                     |
| LANGLEY-12372                                           | M-FS-25433                                                                            | Analysis of a cooled, turbine blade or vane with an insert  |
|                                                         | B80-10197 03                                                                          | LEWIS-13293                                                 |
| <b>EMITTANCE</b>                                        | Operational tests of a solar energy system Florida site                               | B80-10400 06                                                |
| User chooses coating properties                         | M-FS-25423                                                                            | <b>ERROR CORRECTING CODES</b>                               |
| LANGLEY-12719                                           | B80-10531 07                                                                          | Improved code-tracking loop                                 |
|                                                         | B80-10196 03                                                                          | MSC-18035                                                   |
| <b>ENDOSCOPES</b>                                       | A solar-energy system in Pennsylvania                                                 | B80-10034 02                                                |
| Fiber-optics couple arthroscope to TV                   | M-FS-25427                                                                            | <b>ESTIMATING</b>                                           |
| LANGLEY-12718                                           | B80-10504 05                                                                          | Estimation of incomplete multinomial data                   |
| <b>ENERGY CONSERVATION</b>                              | Installation guidelines for the Pennsylvania system                                   | LANGLEY-12593                                               |
| Energy-saving thermostat                                | M-FS-25424                                                                            | B80-10146 09                                                |
| LANGLEY-12450                                           | B80-10040 03                                                                          | <b>ETCHANTS</b>                                             |
| Energy-reduction concept for incandescent lamps         | A solar-energy system in Minnesota                                                    | Etchant for incoloy-903 welds                               |
| MSC-18757                                               | M-FS-25428                                                                            | M-FS-19378                                                  |
|                                                         | B80-10325 03                                                                          | B80-10112 08                                                |
| <b>ENERGY CONVERSION</b>                                | Solar-energy system evaluation-Pennsylvania site                                      | <b>ETCHING</b>                                              |
| Extracting energy from natural flow                     | M-FS-25434                                                                            | Ion-beam etching enhances adhesive bonding                  |
| M-FS-23989                                              | B80-10045 03                                                                          | LEWIS-13028                                                 |
| Solar cell is housed in light-bulb enclosure            | A hot-water system tested onsite--Togus, Maine                                        | B80-10128 08                                                |
| LEWIS-13418                                             | M-FS-25435                                                                            | <b>ETHYLENE COMPOUNDS</b>                                   |
|                                                         | B80-10200 03                                                                          | A temperature fixed point near 58 C                         |
| <b>ENGINE COOLANTS</b>                                  | A reliable solar-heating system--Huntsville, Alabama                                  | M-FS-25304                                                  |
| Full-coverage film cooling                              | M-FS-25431                                                                            | B80-10204 04                                                |
| LEWIS-13249                                             | B80-10202 03                                                                          | <b>EXPANDABLE STRUCTURES</b>                                |
|                                                         | Solar-heating and cooling demonstration project                                       | A versatile tunnel acts as a flexible duct                  |
| <b>ENGINE DESIGN</b>                                    | M-FS-25443                                                                            | M-FS-22636                                                  |
| Viscous characteristics analysis                        | B80-10203 03                                                                          | B80-10242 07                                                |
| LANGLEY-12598                                           | LANGLEY-12598                                                                         | <b>EXPLOSIVES</b>                                           |
|                                                         | B80-10084 06                                                                          | Soft container for explosive nuts                           |
| <b>ENGINES</b>                                          | Plastic deformation of engines and other nonlinear structures                         | MSC-18871                                                   |
| Gas absorption/desorption                               | M-FS-23814                                                                            | B80-10532 07                                                |
| temperature-differential engine                         | B80-10399 06                                                                          | <b>EXPOSURE</b>                                             |
| NPO-14528                                               | NPO-14528                                                                             | Camera add-on records time of exposure                      |
|                                                         | B80-10513 06                                                                          | LANGLEY-12635                                               |
| <b>ENVIRONMENT EFFECTS</b>                              | Calculating linear A, B, C, and D matrices from a nonlinear dynamic engine simulation | B80-10183 03                                                |
| Environmental testing under load                        | LEWIS-13250                                                                           | <b>EXTENSIONS</b>                                           |
| LANGLEY-12602                                           | B80-10520 06                                                                          | Torque-wrench extension                                     |
|                                                         |                                                                                       | MSC-18769                                                   |
| <b>ENVIRONMENT POLLUTION</b>                            |                                                                                       | B80-10414 07                                                |
| Recycling paper-pulp waste liquors                      |                                                                                       |                                                             |
| NPO-14797                                               |                                                                                       |                                                             |

**EXTENSOMETERS**

|                                        |               |                                       |              |
|----------------------------------------|---------------|---------------------------------------|--------------|
| Eddy-current sensor loading            | measures bolt | LEWIS-13219                           | B80-10389 06 |
| M-FS-19486                             | B80-10079 06  | Alining sleeve for optical fibers     |              |
| Bolt-tension indicator                 |               | MSC-18756                             | B80-10424 01 |
| M-FS-19324                             | B80-10105 07  | Fiber-optics couple arthroscope to TV |              |
| <b>EXTRACTION</b>                      |               | LANGLEY-12718                         | B80-10504 05 |
| Wrench for smooth or damaged fasteners |               |                                       |              |
| MSC-18772                              | B80-10416 07  |                                       |              |

**F****FABRICATION**

|                            |              |
|----------------------------|--------------|
| Lightweight terminal board |              |
| MSC-18787                  | B80-10429 08 |

**FABRICS**

|                                      |              |
|--------------------------------------|--------------|
| Cutting holes in fabric-faced panels |              |
| MSC-18786                            | B80-10427 08 |

**FAILURE MODES**

|                                                 |              |
|-------------------------------------------------|--------------|
| Toggled signal for prevention of control errors |              |
| MSC-18779                                       | B80-10312 02 |

**FALLING SPHERES**

|                                     |              |
|-------------------------------------|--------------|
| Tracking falling objects            |              |
| NPO-14813                           | B80-10328 03 |
| Drop tower with no aerodynamic drag |              |

|           |              |
|-----------|--------------|
| NPO-14845 | B80-10549 08 |
|-----------|--------------|

**FASTENERS**

|                               |              |
|-------------------------------|--------------|
| Self-energized screw coupling |              |
| M-FS-25340                    | B80-10096 07 |
| Retaining a sleeve on a shaft |              |

|                                              |              |
|----------------------------------------------|--------------|
| M-FS-19518                                   | B80-10103 07 |
| Flush-mounting technique for composite beams |              |

|                      |              |
|----------------------|--------------|
| LANGLEY-12389        | B80-10121 08 |
| Locknut preload tool |              |

|                                       |              |
|---------------------------------------|--------------|
| MSC-16153                             | B80-10245 07 |
| Bayonet plug with ramp-activated lock |              |

|                                     |              |
|-------------------------------------|--------------|
| MSC-18526                           | B80-10247 07 |
| Handtool assists in bundling cables |              |

|                 |              |
|-----------------|--------------|
| MSC-18567       | B80-10255 07 |
| Two-headed bolt |              |

|                                              |              |
|----------------------------------------------|--------------|
| M-FS-19619                                   | B80-10410 07 |
| Interlocking wedge joint is easily assembled |              |

|                                 |              |
|---------------------------------|--------------|
| LANGLEY-12729                   | B80-10526 07 |
| Eliminating gaps in split rings |              |

|           |              |
|-----------|--------------|
| MSC-18854 | B80-10540 08 |
|           |              |

**FATIGUE (MATERIALS)**

|                              |              |
|------------------------------|--------------|
| Predicting crack propagation |              |
| MSC-18718;MSC-18721          | B80-10283 08 |

**FATIGUE TESTING MACHINES**

|                                                 |              |
|-------------------------------------------------|--------------|
| Temperature controller adapts to fatigue tester |              |
| LANGLEY-12393                                   | B80-10378 06 |

**FATIGUE TESTS**

|                                   |              |
|-----------------------------------|--------------|
| Predicting lifetime of cast parts |              |
| M-FS-19549                        | B80-10228 06 |

**FEEDBACK CONTROL**

|                                      |              |
|--------------------------------------|--------------|
| Temperature-compensating dc restorer |              |
| LANGLEY-12549                        | B80-10152 01 |

|                                      |              |
|--------------------------------------|--------------|
| Speed control for synchronous motors |              |
| MSC-18680                            | B80-10444 01 |

**FERRITES**

|                                            |              |
|--------------------------------------------|--------------|
| Producing gapped-ferrite transformer cores |              |
| NPO-14715                                  | B80-10273 08 |

**FIBER OPTICS**

|                                                |              |
|------------------------------------------------|--------------|
| Improved ureteral stone fragmentation catheter |              |
| NPO-14745                                      | B80-10370 05 |

|                                       |              |
|---------------------------------------|--------------|
| Fiber optic level sensor for cryogens |              |
| MSC-18674                             | B80-10375 06 |

|                                       |              |
|---------------------------------------|--------------|
| Fiber optic accelerometer             |              |
| LEWIS-13219                           | B80-10389 06 |
| Alining sleeve for optical fibers     |              |
| MSC-18756                             | B80-10424 01 |
| Fiber-optics couple arthroscope to TV |              |
| LANGLEY-12718                         | B80-10504 05 |

**FIBERS**

|                           |              |
|---------------------------|--------------|
| Precision filament cutter |              |
| LANGLEY-12564             | B80-10093 07 |

**FIELD EFFECT TRANSISTORS**

|                                                   |              |
|---------------------------------------------------|--------------|
| Continuous control of phase-locked-loop bandwidth |              |
| MSC-16684                                         | B80-10008 01 |

|             |                         |
|-------------|-------------------------|
| JANTX2N4856 | field-effect transistor |
| M-FS-25269  | B80-10030 01            |

|                                              |              |
|----------------------------------------------|--------------|
| Progress in MOSFET double-layer metalization |              |
| M-FS-25239                                   | B80-10280 08 |

|                                         |              |
|-----------------------------------------|--------------|
| CADAT field-effect-transistor simulator |              |
| M-FS-25067                              | B80-10434 08 |

|                        |              |
|------------------------|--------------|
| Simple JFET oscillator |              |
| GSFC-12555             | B80-10443 01 |

|                                         |              |
|-----------------------------------------|--------------|
| Repairing high-temperature glazed tiles |              |
| MSC-18736                               | B80-10536 08 |

**FILM COOLING**

|                            |              |
|----------------------------|--------------|
| Full-coverage film cooling |              |
| LEWIS-13249                | B80-10091 06 |

|                                               |              |
|-----------------------------------------------|--------------|
| Reflecting layers reduce weight of insulation |              |
| MSC-18785                                     | B80-10547 08 |

**FILTRATION**

|                                      |              |
|--------------------------------------|--------------|
| Improved particulate-sampling filter |              |
| NPO-14801                            | B80-10271 08 |

|                                                   |              |
|---------------------------------------------------|--------------|
| Treating domestic wastewater with water hyacinths |              |
| M-FS-23964                                        | B80-10368 05 |

**FINITE ELEMENT METHOD**

|                                        |              |
|----------------------------------------|--------------|
| Resizing structures for minimum weight |              |
| LANGLEY-12699                          | B80-10394 06 |

|                                      |              |
|--------------------------------------|--------------|
| A new family of fire-resistant foams |              |
| MSC-16921                            | B80-10418 08 |

|                                                 |              |
|-------------------------------------------------|--------------|
| Modified fire-resistant foams for seat cushions |              |
| MSC-18704                                       | B80-10419 08 |

|                                       |              |
|---------------------------------------|--------------|
| One-step microwave foaming and curing |              |
| MSC-18707                             | B80-10420 08 |

|                                                 |              |
|-------------------------------------------------|--------------|
| Rigid fire-resistant foams for walls and floors |              |
| MSC-18708                                       | B80-10421 08 |

**FITTINGS**

|                                |              |
|--------------------------------|--------------|
| Flared tube attachment fitting |              |
| MSC-18416                      | B80-10240 07 |

|                                                |              |
|------------------------------------------------|--------------|
| Test fittings for dimensionally critical tubes |              |
| NPO-14399                                      | B80-10252 07 |

**FLAME PROPAGATION**

|                                                   |              |
|---------------------------------------------------|--------------|
| Methane/air flames in a concentric tube combustor |              |
| LEWIS-13388                                       | B80-10211 04 |

|                                               |              |
|-----------------------------------------------|--------------|
| Resin char oxidation retardant for composites |              |
| LEWIS-13275                                   | B80-10354 04 |

|                                     |              |
|-------------------------------------|--------------|
| High char yield epoxy curing agents |              |
| LEWIS-13226                         | B80-10361 04 |

|                                      |              |
|--------------------------------------|--------------|
| A new family of fire-resistant foams |              |
| MSC-16921                            | B80-10418 08 |

|                                                 |              |
|-------------------------------------------------|--------------|
| Modified fire-resistant foams for seat cushions |              |
| MSC-18704                                       | B80-10419 08 |

|                                       |              |
|---------------------------------------|--------------|
| One-step microwave foaming and curing |              |
| MSC-18707                             | B80-10420 08 |

|                                                 |              |
|-------------------------------------------------|--------------|
| Rigid fire-resistant foams for walls and floors |              |
| MSC-18708                                       | B80-10421 08 |

|                                                                          |                                                                                 |                                                                        |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|
| <b>FLUID FILTERS</b>                                                     | <b>FOCUSING</b>                                                                 | <b>FREQUENCY MODULATION</b>                                            |
| Improved particulate-sampling filter<br>NPO-14801                        | Acoustic lens is gas-filled<br>NPO-14757                                        | Ultrastable automatic frequency control<br>MSC-18679                   |
| B80-10271 08                                                             | B80-10376 06                                                                    | B80-10294 01                                                           |
| <b>FLUID FLOW</b>                                                        | <b>FORMING TECHNIQUES</b>                                                       | <b>FREQUENCY MULTIPLIERS</b>                                           |
| Grooves reduce aircraft drag<br>LANGLEY-12599                            | Forming complex cavities in clear<br>plastic<br>LEWIS-13412                     | Superconducting gyrocon would be very<br>efficient<br>NPO-14975        |
| B80-10215 06                                                             | B80-10267 08                                                                    | B80-10446 02                                                           |
| Recording fluid currents by holography<br>M-FS-25373                     |                                                                                 |                                                                        |
| B80-10222 06                                                             |                                                                                 |                                                                        |
| Design considerations for mechanical<br>face seals<br>LEWIS-13146        | Automated flow-chart system<br>GSFC-12514                                       | Ultrastable automatic frequency control<br>MSC-18679                   |
| B80-10233 06                                                             | Structured FORTRAN preprocessor<br>M-FS-23813                                   | B80-10294 01                                                           |
| Test fittings for dimensionally critical<br>tubes<br>NPO-14399           | An all-FORTRAN version of NASTRAN<br>for the VAX<br>GSFC-12600                  | Integral storage-bulb and microwave<br>cavity for masers<br>GSFC-12542 |
| B80-10252 07                                                             | B80-10522 06                                                                    | B80-10186 03                                                           |
| Dynamics of cavitating cascades and<br>inducer pumps<br>M-FS-25399       | <b>FORWARD SCATTERING</b>                                                       | <b>FRESNEL DIFFRACTION</b>                                             |
| B80-10392 06                                                             | Noise suppression in forward-scattering<br>optical instruments<br>LANGLEY-12730 | Fresnel lens tracking solar collector<br>M-FS-25419                    |
| Reduced viscosity interpreted for<br>fluid/gas mixtures<br>NPO-14976     | B80-10324 03                                                                    | B80-10190 03                                                           |
| B80-10457 03                                                             |                                                                                 | Fresnel lenses for ultrasonic inspection<br>MSC-18469                  |
| Potential flow in two-dimensional<br>deflected nozzles<br>LEWIS-13461    | <b>FRACTURE MECHANICS</b>                                                       | B80-10217 06                                                           |
| B80-10523 06                                                             | Predicting crack propagation<br>MSC-18718;MSC-18721                             | <b>FRiction REDUCTION</b>                                              |
| Transonic flow over wing/fuselage<br>configurations<br>LANGLEY-12702     | B80-10283 08                                                                    | Lubrication handbook<br>M-FS-25158                                     |
| B80-10525 06                                                             | <b>FRACTURE STRENGTH</b>                                                        | B80-10210 04                                                           |
| <b>FLUID POWER</b>                                                       | LVDT gage for fracture-toughness tests<br>in liquid hydrogen<br>LEWIS-13038     | Flashback-free combustor<br>LANGLEY-12666                              |
| Extracting energy from natural flow<br>M-FS-23989                        | B80-10075 06                                                                    | B80-10226 06                                                           |
| B80-10045 03                                                             | Tension-mode loading for bend<br>specimens in cryogens<br>LEWIS-13040           |                                                                        |
| <b>FLUID TRANSMISSION LINES</b>                                          | Modified displacement gage for<br>cryogenic testing<br>LEWIS-13039              |                                                                        |
| Flared tube attachment fitting<br>MSC-18416                              | B80-10077 06                                                                    |                                                                        |
| B80-10240 07                                                             | <b>FRAMES</b>                                                                   | <b>FUEL INJECTION</b>                                                  |
| <b>FLUIDIZED BED PROCESSORS</b>                                          | Versatile modular scaffolds<br>GSFC-12606                                       | Flashback-free combustor<br>LANGLEY-12666                              |
| Reducing static charges in fluidized bed<br>reactions<br>ARC-11245       | B80-10406 07                                                                    | B80-10226 06                                                           |
| B80-10068 04                                                             | <b>FREE FALL</b>                                                                |                                                                        |
| Producing silicon continuously<br>NPO-14796                              | Tracking falling objects<br>NPO-14813                                           |                                                                        |
| B80-10537 08                                                             | B80-10328 03                                                                    |                                                                        |
| <b>FLUORESCENCE</b>                                                      | Imager displays free fall in stop action<br>NPO-14779                           |                                                                        |
| Fluorescent radiation converter<br>GSFC-12528                            | B80-10509 06                                                                    |                                                                        |
| B80-10180 03                                                             | Drop tower with no aerodynamic drag<br>NPO-14845                                |                                                                        |
| Laser-fluorescence measurement of<br>marine algae<br>LANGLEY-12282       | B80-10549 08                                                                    |                                                                        |
| B80-10213 05                                                             | <b>FREE FLOW</b>                                                                |                                                                        |
| Simultaneous measurement of three<br>atmospheric pollutants<br>NPO-14828 | Extracting energy from natural flow<br>M-FS-23989                               |                                                                        |
| B80-10359 04                                                             | B80-10045 03                                                                    |                                                                        |
| <b>FLUOROCARBONS</b>                                                     | <b>FREON</b>                                                                    |                                                                        |
| Film coatings for contoured surfaces<br>MSC-18784                        | Removing freon gas from hydraulic<br>fluid<br>MSC-18740                         |                                                                        |
| B80-10425 08                                                             | B80-10494 04                                                                    |                                                                        |
| <b>FLUTTER</b>                                                           | <b>FREQUENCIES</b>                                                              |                                                                        |
| Extracting energy from natural flow<br>M-FS-23989                        | Vibration modes and frequencies of<br>structures<br>LANGLEY-12647               |                                                                        |
| B80-10045 03                                                             | B80-10237 06                                                                    |                                                                        |
| Passive wing/store flutter suppression<br>LANGLEY-12468                  | <b>FREQUENCY ANALYZERS</b>                                                      |                                                                        |
| B80-10219 06                                                             | Frequency response for multiple-sampling<br>rate systems<br>MSC-18473           |                                                                        |
|                                                                          | B80-10173 02                                                                    |                                                                        |
| <b>FLUX DENSITY</b>                                                      | Ultrasonic frequency analysis<br>LANGLEY-12697                                  |                                                                        |
| Improved magnetic material analyzer<br>LEWIS-13493                       | B80-10377 06                                                                    |                                                                        |
| B80-10384 06                                                             | <b>FREQUENCY CONTROL</b>                                                        |                                                                        |
| <b>FOAMS</b>                                                             | Frequency-controlled voltage regulator<br>NPO-13633                             |                                                                        |
| Cryogenic machining of polyurethane<br>foam<br>MSC-18572                 | B80-10171 02                                                                    |                                                                        |
| B80-10123 08                                                             | <b>FREQUENCY CONVERTERS</b>                                                     |                                                                        |
| Foam-filled cushions for sliding trays<br>MSC-18565                      | Frequency-controlled voltage regulator<br>NPO-13633                             |                                                                        |
| B80-10127 08                                                             | B80-10171 02                                                                    |                                                                        |
| A new family of fire-resistant foams<br>MSC-16921                        | Fluorescent radiation converter<br>GSFC-12528                                   |                                                                        |
| B80-10418 08                                                             | B80-10180 03                                                                    |                                                                        |
| Modified fire-resistant foams for seat<br>cushions<br>MSC-18704          | <b>FREQUENCY DIVIDERS</b>                                                       |                                                                        |
| B80-10419 08                                                             | Universal odd-modulus frequency<br>divider<br>NPO-13426                         |                                                                        |
| One-step microwave foaming and<br>curing<br>MSC-18707                    | B80-10006 01                                                                    |                                                                        |
| B80-10420 08                                                             | <b>FREQUENCY MEASUREMENT</b>                                                    |                                                                        |
| Rigid fire-resistant foams for walls and<br>floors<br>MSC-18708          | Optical calibrator for TDL<br>spectrometers<br>GSFC-12562                       |                                                                        |
| B80-10421 08                                                             | B80-10178 03                                                                    |                                                                        |

**G****GALLIUM ARSENIDES**

'Pelled-film' solar cells  
NPO-14734 B80-10151 01

Ohmic contact to GaAs semiconductor  
LANGLEY-12466 B80-10263 08

**GAPS**

Producing gapped-ferrite transformer  
cores  
NPO-14715 B80-10273 08

**GAS CHROMATOGRAPHY**

Applying the helium ionization detector  
in chromatography  
MSC-18835 B80-10490 04

**GAS COOLING**

Compact, super heat exchanger  
LEWIS-12441 B80-10081 06

**GAS DETECTORS**

Laser beam methane detector  
NPO-14929 B80-10363 04

Applying the helium ionization detector  
in chromatography  
MSC-18835 B80-10490 04

**GAS DYNAMICS**

Methane/air flames in a concentric tube  
combustor  
LEWIS-13388 B80-10211 04

**GAS FLOW**

Fast calibration of gas flowmeters  
KSC-11076 B80-10516 06

**GAS HEATING**

Benefit assessment of solar-augmented  
natural gas systems  
NPO-14568 B80-10048 03

**GAS LASERS**

Powerful copper chloride laser  
NPO-14782 B80-10330 03  
Gas-laser power monitor  
LANGLEY-12682 B80-10455 03

**GAS PRESSURE**

Downhole pressure sensor  
NPO-14729 B80-10223 06

**GAS TURBINE ENGINES**

Corrosion-resistant ceramic thermal barrier coating  
LEWIS-13088 B80-10067 04  
Full-coverage film cooling  
LEWIS-13249 B80-10091 06  
Oxide dispersion strengthened superalloy  
LEWIS-13589 B80-10351 04  
Gas absorption/desorption temperature-differential engine  
NPO-14528 B80-10513 06

**GAS-LIQUID INTERACTIONS**

Driving bubbles out of glass  
M-FS-25414 B80-10496 04

**GASEOUS DIFFUSION**

An automated oxide and diffusion facility for IC's  
M-FS-25357 B80-10282 08

**GASKETS**

Spiral-wound gasket forms  
low-temperature seal  
LANGLEY-12315 B80-10543 08

**GEARS**

Self-lubricating gearset  
MSC-18801 B80-10546 08

**GEOLOGICAL SURVEYS**

Refraction corrections for surveying  
MSC-18664 B80-10231 06

**GEOMAGNETISM**

Improved LEEM ranges over four decades  
LANGLEY-12706 B80-10508 06

**GIMBALS**

Compact positioning flange  
MSC-14876 B80-10104 07

**GLASS**

Controlling the shape of glass microballoons  
M-FS-25230 B80-10266 08  
Driving bubbles out of glass  
M-FS-25414 B80-10496 04  
Arc spraying solderable tabs to glass  
NPO-14853 B80-10544 08

**GLASS FIBERS**

Safely splicing glass optical fibers  
KSC-11107 B80-10134 08

**GLAZES**

Mobile glazing unit  
KSC-11171 B80-10538 08

**GLOW DISCHARGES**

Reducing static charges in fluidized bed reactions  
ARC-11245 B80-10068 04

**GLYCOLS**

Glycol/water evacuated-tube solar collector  
M-FS-25337 B80-10052 03

**GOLD COATINGS**

Reflecting layers reduce weight of insulation  
MSC-18785 B80-10547 08

**GORNIOMETERS**

Gage for evaluating rheumatoid hands  
GSFC-12610 B80-10503 05

**GRAVITATION**

Containerless materials processing in the laboratory  
M-FS-25242 B80-10059 04

**GRINDING (MATERIAL REMOVAL)**

'Grinding' cavities in polyurethane foam  
MSC-18564 B80-10124 08

**GROOVING**

Grooves reduce aircraft drag  
LANGLEY-12599 B80-10215 06

**GROUND SUPPORT EQUIPMENT**

Developing experiment instrument packages  
GSFC-12536 B80-10451 02

**GUIDANCE SENSORS**

The 3-D guidance system with proximity sensors  
NPO-14521 B80-10250 07

**GUNN DIODES**

High-power solid-state microwave transmitter  
NPO-14803 B80-10296 01

**H****HALOGENS**

Photoproduction of halogens using platinized TiO<sub>2</sub>  
LANGLEY-12713 B80-10491 04

**HAMMERS**

Aluminum-encased lead mallet  
MSC-18529 B80-10100 07

**HAND (ANATOMY)**

Gage for evaluating rheumatoid hands  
GSFC-12610 B80-10503 05

**HARNESSES**

Wire harness twisting aid  
MSC-18581 B80-10132 08

**HEART RATE**

Microprocessor-based cardiotachometer  
MSC-18775 B80-10501 05

**HEAT BALANCE**

Heat-pipe sensor for remote leveling  
GSFC-12095 B80-10248 07

**HEAT EXCHANGERS**

Thermosyphon heat exchanger  
M-FS-25389 B80-10053 03

Compact, super heat exchanger  
LEWIS-12441 B80-10081 06

Alumina barrier for vacuum brazing  
MSC-18528 B80-10125 08

Operational tests of a solar-energy system in Georgia  
M-FS-25420 B80-10195 03

**HEAT PIPES**

Heat-pipe sensor for remote leveling  
GSFC-12095 B80-10248 07

Heat pipes cool probe and sandwich panel  
LANGLEY-12588; LANGLEY-12637 B80-10518 06

**HEAT RESISTANT ALLOYS**

Eliminating underbead fissuring in superalloys  
M-FS-19460 B80-10114 08

Oxide dispersion strengthened superalloy  
LEWIS-13589 B80-10351 04

Low cost high temperature, duplex coating for superalloys  
LEWIS-13497 B80-10352 04

**HEAT SHIELDING**

Connector heat shield  
MSC-16282 B80-10126 08

Thermal barrier and gas seal  
MSC-18390 B80-10269 08

Heat/pressure seal for moving parts  
MSC-18422 B80-10390 06

**Tile densification with TEOS**

MSC-18737 B80-10535 08  
Repairing high-temperature glazed tiles  
MSC-18736 B80-10536 08

**HEAT STORAGE**

Thermal stratification in liquid storage tanks  
M-FS-25416 B80-10188 03

Combined photovoltaic and thermal-storage module  
NPO-14591 B80-10327 03

**HEAT TRANSFER**

Automatic thermal switches  
GSFC-12553 B80-10214 06

Heat conduction in three dimensions  
MSC-18616 B80-10239 06

Cooling/grounding mount for hybrid circuits  
MSC-18728 B80-10302 01

Holes help control temperature  
GSFC-12618 B80-10373 06

Heat switch has no moving parts  
GSFC-12625 B80-10391 06

Simplified thermal analyzer  
GSFC-12638 B80-10393 06

Heat pipes cool probe and sandwich panel  
LANGLEY-12588; LANGLEY-12637 B80-10518 06

**HEAT TREATMENT**

Mobile glazing unit  
KSC-11171 B80-10538 08

**HEATING**

Computer-controlled warmup circuit  
NPO-14815 B80-10155 01

**HEATING EQUIPMENT**

Energy-saving thermostat  
LANGLEY-12450 B80-10040 03

An adjustable solar concentrator  
NPO-14710 B80-10043 03

Twelve solar-heating/cooling systems: Design and development  
M-FS-25358 B80-10046 03

Solar-heating and cooling system design package  
M-FS-25393 B80-10047 03

Benefit assessment of solar-augmented natural gas systems  
NPO-14568 B80-10048 03

Air-cooled solar-collector specification  
M-FS-25336 B80-10049 03

Indoor tests of the concentric-tube solar collector  
M-FS-25390 B80-10050 03

Evacuated-tube solar collector--performance evaluation  
M-FS-25339 B80-10051 03

Glycol/water evacuated-tube solar collector  
M-FS-25337 B80-10052 03

Thermosyphon heat exchanger  
M-FS-25389 B80-10053 03

Controller for solar-energy systems  
M-FS-25386 B80-10054 03

Controller and temperature monitor for solar heating  
M-FS-25387 B80-10055 03

Inhibiting corrosion in solar-heating and cooling systems  
M-FS-25387 B80-10056 03

Easily-assembled helical heater  
LANGLEY-11712 B80-10130 08

Final report on development of a programmable controller  
M-FS-25388 B80-10189 03

Fresnel lens tracking solar collector  
M-FS-25419 B80-10190 03

**SUBJECT INDEX****HOLDERS**

Outdoor tests of the concentric-tube collector M-FS-25398 B80-10191 03 Selective optical coatings for solar collectors M-FS-25589 B80-10192 03 Finned-absorber solar collector M-FS-25385 B80-10193 03 A test program for solar collectors M-FS-25433 B80-10194 03 Operational tests of a solar-energy system in Georgia M-FS-25420 B80-10195 03 Operational tests of a solar energy system Florida site M-FS-25423 B80-10196 03 A solar-energy system in Pennsylvania M-FS-25427 B80-10197 03 Installation guidelines for the Pennsylvania system M-FS-25424 B80-10198 03 A solar-energy system in Minnesota M-FS-25428 B80-10199 03 Solar-energy system evaluation-Pennsylvania site M-FS-25434 B80-10200 03 A hot-water system tested onsite--Togus, Maine M-FS-25435 B80-10201 03 A reliable solar-heating system--Huntsville, Alabama M-FS-25431 B80-10202 03 Solar-heating and cooling demonstration project M-FS-25443 B80-10203 03 Multiplexed logic controls solar-heating system M-FS-25287 B80-10318 03 Offset paraboloidal solar concentrator NPO-14846 B80-10320 03 Heat for film processing from solar energy M-FS-25444 B80-10331 03 Solar heater/cooler for mass market M-FS-25452 B80-10332 03 Data-acquisition and control system for severe environments M-FS-25471 B80-10333 03 Solar heater/cooler for mass market M-FS-25468 B80-10334 03 Solar-heated and cooled office building--Dalton, Georgia M-FS-25451 B80-10335 03 Solar-heating and hot water system--St. Louis, Missouri M-FS-25453 B80-10336 03 Solar heating for an electronics manufacturing plant--Blue Earth, Minnesota M-FS-25469 B80-10337 03 Costs and description of a solar-energy system--Austin, Texas M-FS-25472 B80-10338 03 Solar energy in a historical city--Abbeville, South Carolina M-FS-25479 B80-10339 03 municipal recreation center is heated and cooled by solar energy M-FS-25478 B80-10340 03 Solar energy meets 50 percent of motel hot water needs--Key West, Florida M-FS-25454 B80-10341 03 Solar heated office complex--Greenwood, South Carolina M-FS-25458 B80-10342 03 Residential system tested in an office--Huntsville, Alabama M-FS-25481 B80-10343 03 Solar heated two level residence--Akron, Ohio M-FS-25480 B80-10344 03 Solar energy workshop--Tucson, Arizona M-FS-25473 B80-10345 03 Residential solar hot water system--Tempe, Arizona M-FS-25490 B80-10346 03 Residential solar heating installation--Stillwater, Minnesota M-FS-25504 B80-10347 03 Three story residence with solar heat--Manchester, New Hampshire M-FS-25499 B80-10348 03 A high school is supplied with solar energy--Dallas, Texas M-FS-25514 B80-10349 03 Evaluation of an evacuated-tube liquid solar collector M-FS-25450 B80-10461 03 Solar water heater design package M-FS-25521 B80-10462 03 Five-city economics of a solar hot-water-system M-FS-25532 B80-10463 03 Economic evaluation of a solar hot-water-system M-FS-25529 B80-10464 03 Residential solar-heating system uses pyramidal optics M-FS-25567 B80-10465 03 Solar-heated bank--Marks Mississippi M-FS-25558 B80-10466 03 Solar water-heating performance evaluation--San Diego, California M-FS-25502 B80-10467 03 Solar-heated and cooled savings and loan building--Leavenworth, Kansas M-FS-25520 B80-10468 03 Solar-energy landmark Building--Columbia, Missouri M-FS-25524 B80-10469 03 Solar heating for an observatory--Lincoln, Nebraska M-FS-25525 B80-10470 03 Two-story residence with solar heating--Newman, Georgia M-FS-25526 B80-10471 03 Solar-energy heats a transportation test center--Pueblo, Colorado M-FS-25527 B80-10472 03 Single-family-residence solar heating--Carlsbad, New Mexico M-FS-25528 B80-10473 03 Multimode solar-heating system--Columbia, South Carolina M-FS-25552 B80-10474 03 Solar-heated swimming school--Wilmington, Delaware M-FS-25548 B80-10475 03 Winter performance of a domestic solar-heating system--Duffield, Virginia M-FS-25540 B80-10476 03 One-year assessment of a solar space/water heater--Clinton, Mississippi M-FS-25539 B80-10477 03 Fire-station solar-energy system--Kansas City, Missouri M-FS-25538 B80-10478 03 Solar-heated ranger station--Glendo, Wyoming M-FS-25537 B80-10479 03 Economic evaluation of a solar hot-water system--Palm Beach County, Florida M-FS-25536 B80-10480 03 Residential system--Lansing, Michigan M-FS-25530 B80-10481 03 Solar space-heating system--Yosemite National Park, California M-FS-25553 B80-10482 03 Motel solar-hot-water system--Dallas, Texas M-FS-25575 B80-10483 03 Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida M-FS-25569 B80-10484 03 Closed-circulation system for motel hot water--Savannah, Georgia M-FS-25572 B80-10485 03 Solar heating for a restaurant--North Little Rock, Arkansas M-FS-25568 B80-10486 03 Motel solar hot-water installation--Atlanta, Georgia M-FS-25564 B80-10487 03 Building with integral solar-heat storage--Starkville, Mississippi M-FS-25559 B80-10488 03 Less-toxic corrosion inhibitors M-FS-25496 B80-10497 04

**HELICAL WINDINGS**  
Easily-assembled helical heater  
LANGLEY-11712 B80-10130 08

**HELICOPTER DESIGN**  
Isolation and measurement of rotor vibration forces  
LANGLEY-12476 B80-10507 06

**HELIUM**  
Applying the helium ionization detector in chromatography  
MSC-18835 B80-10490 04

**HERMETIC SEALS**  
Sealing micropores in thin castings  
MSC-18623 B80-10428 08

**HIGH PRESSURE**  
Transistor package for high pressure applications  
MSC-18743 B80-10430 08  
Transducer for extreme temperatures and pressures  
MSC-18778 B80-10510 06

**HIGH RESOLUTION**  
High-resolution ferometer  
NPO-14448 B80-10175 03

**HIGH TEMPERATURE**  
Low cost high temperature, duplex coating for superalloys  
LEWIS-13497 B80-10352 04

**HIGH TEMPERATURE ENVIRONMENTS**  
Transducer for extreme temperatures and pressures  
MSC-18778 B80-10510 06

**HIGH TEMPERATURE GASES**  
Reduced hydrogen permeability at high temperatures  
LEWIS-13485 B80-10364 04

**HIGH VOLTAGES**  
Direct-current converter for gas-discharge lamps  
MSC-18407 B80-10156 01  
Kilovolt vacuum feed through is less noisy  
NPO-14802 B80-10426 08

**HOLDERS**  
Vise holds specimens for microscope  
MSC-18690 B80-10098 07

|                                                                       |                                    |                                                                              |                                                      |                                                                            |
|-----------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|
| Drill-motor holding fixture<br>MSC-18582                              | B80-10108 07                       | OCCULT-ORSER<br>conversational<br>GSFC-12604                                 | complete<br>user-language translator<br>B80-10556 09 | <b>INHIBITORS</b>                                                          |
| <b>HOLOGRAPHY</b>                                                     |                                    | <b>IMAGERY</b>                                                               |                                                      | Additive performance<br>GSFC-12327                                         |
| Automated holographic drop-size analyzer<br>M-FS-25373                | B80-10181 03<br>B80-10222 06       | Applications of remote-sensing imagery<br>M-FS-25107                         | B80-10082 06                                         | improves<br>B80-10065 04<br>Silicon nitride passivation of IC's            |
| Recording fluid currents by holography<br>M-FS-25373                  | B80-10222 06                       | Low-cost LANDSAT processing system<br>M-FS-25396                             | B80-10285 09                                         | M-FS-25309                                                                 |
| <b>HONING</b>                                                         |                                    | Image-based communication, and retrieval<br>NPO-14893                        | information,<br>B80-10293 09                         | <b>INJECTION LASERS</b>                                                    |
| Honing fixture for welded electrodes<br>M-FS-19537                    | B80-10278 08                       | Evaluating computer-drawn<br>ground-cover maps<br>KSC-11195                  | B80-10555 09                                         | Tunable pulsed carbon dioxide laser<br>NPO-14984                           |
| <b>HORN ANTENNAS</b>                                                  |                                    | Selecting optimum algorithms for image<br>processing<br>M-FS-25367           | B80-10557 09                                         | B80-10458 03                                                               |
| Dual-frequency bidirectional antenna<br>GSFC-12501                    | B80-10154 01                       | <b>IMAGING TECHNIQUES</b>                                                    |                                                      | <b>INSPECTION</b>                                                          |
| <b>HOT WORKING</b>                                                    |                                    | Numerical tracing of electron<br>trajectories<br>GSFC-12535                  | B80-10057 03                                         | Detecting contaminants by ultraviolet<br>photography<br>M-FS-25296         |
| Hot forming graphite/polyimide<br>structures<br>LANGLEY-12547         | graphite/polyimide<br>B80-10422 08 | Acoustically-tuned optical spectrometer<br>HQN-10924                         | B80-10326 03                                         | B80-10229 06                                                               |
| <b>HYBRID CIRCUITS</b>                                                |                                    | Imager displays free fall in stop action<br>NPO-14779                        | B80-10509 06                                         | <b>INSTALLATION MANUALS</b>                                                |
| Cooling/grounding mount for hybrid<br>circuits<br>MSC-18728           | B80-10302 01                       | <b>IMPACTORS</b>                                                             |                                                      | Installation guidelines for the<br>Pennsylvania system<br>M-FS-25424       |
| <b>HYDRAULIC EQUIPMENT</b>                                            |                                    | Aluminum-encased lead mallet<br>MSC-18529                                    | B80-10100 07                                         | <b>INSTALLING</b>                                                          |
| Locknut preload tool<br>MSC-16153                                     | B80-10245 07                       | <b>IMPELLERS</b>                                                             |                                                      | Heat-shrinkable sleeve aids in insulating<br>universal joints<br>MSC-18685 |
| Lock for hydraulic actuators<br>MSC-18853                             | B80-10530 07                       | Dynamics of cavitating cascades and<br>inducer pumps<br>M-FS-25399           | B80-10392 06                                         | B80-10270 08                                                               |
| <b>HYDRAULIC FLUIDS</b>                                               |                                    | <b>IMPINGEMENT</b>                                                           |                                                      | <b>INSTRUMENT ORIENTATION</b>                                              |
| Removing freon gas from hydraulic<br>fluid<br>MSC-18740               | B80-10494 04                       | Analysis of a cooled, turbine blade or<br>vane with an insert<br>LEWIS-13293 | B80-10400 06                                         | Compact positioning flange<br>MSC-14876                                    |
| <b>HYDROCARBONS</b>                                                   |                                    | <b>INDUCTION HEATING</b>                                                     |                                                      | X-ray beam pointer<br>MSC-18590                                            |
| Removing freon gas from hydraulic<br>fluid<br>MSC-18740               | B80-10494 04                       | Plastic welder<br>LANGLEY-12540                                              | B80-10274 08                                         | B80-10254 07                                                               |
| <b>HYDRODYNAMICS</b>                                                  |                                    | <b>INDUCTION MOTORS</b>                                                      |                                                      | <b>INSTRUMENT PACKAGES</b>                                                 |
| Methane/air flames in a concentric tube<br>combustor<br>LEWIS-13388   | B80-10211 04                       | Improved power factor controller<br>M-FS-25323                               | B80-10149 01                                         | Developing experiment instrument<br>packages<br>GSFC-12536                 |
| <b>HYDROFLUORIC ACID</b>                                              |                                    | <b>INDUCTORS</b>                                                             |                                                      | B80-10451 02                                                               |
| Chemical-milling solution for invar alloy<br>M-FS-25365               | B80-10113 08                       | Improved magnetic material analyzer<br>LEWIS-13493                           | B80-10384 06                                         | <b>INSULATION</b>                                                          |
| <b>HYDROGEN</b>                                                       |                                    | <b>INDUSTRIAL PLANTS</b>                                                     |                                                      | Measuring the thermal conductivity of<br>insulation<br>NPO-14871           |
| Removal of hydrogen bubbles from<br>nuclear reactors<br>LANGLEY-12597 | B80-10205 04                       | Microprocessor systems for industrial<br>process control<br>NPO-14661        | B80-10131 08                                         | B80-10382 06                                                               |
| Reduced hydrogen permeability at high<br>temperatures<br>LEWIS-13485  | B80-10364 04                       | <b>INDUSTRIES</b>                                                            |                                                      | Electronic depth micrometer<br>KSC-11181                                   |
| <b>HYPERTHERMIA</b>                                                   |                                    | Should we industrialize space?<br>M-FS-23963                                 | B80-10137 08                                         | B80-10385 06                                                               |
| Temperature controller for hyperthermia<br>devices<br>LANGLEY-12528   | B80-10072 05                       | <b>INERTIA</b>                                                               |                                                      | Reflecting layers reduce weight of<br>insulation<br>MSC-18785              |
| <b>IMAGE CONVERTERS</b>                                               |                                    | Interchangeable spring modules for<br>inertia measurements<br>LANGLEY-12402  | B80-10386 06                                         | <b>INTEGRAL TRANSFORMATIONS</b>                                            |
| Photocapacitive image converter<br>LANGLEY-12513                      | B80-10009 01                       | <b>INFORMATION RETRIEVAL</b>                                                 |                                                      | An approximation for inverse Laplace<br>transforms<br>MSC-18867            |
| Four-quadrant CCD analog multiplier<br>LANGLEY-12332                  | B80-10305 02                       | Photocapacitive image converter<br>LANGLEY-12513                             | B80-10009 01                                         | B80-10553 09                                                               |
| Monolithic four-quadrant multiplier<br>LANGLEY-12330A                 | B80-10306 02                       | <b>INFRARED DETECTORS</b>                                                    |                                                      | <b>INTEGRATED CIRCUITS</b>                                                 |
| Monolithic CCD-array readout<br>LANGLEY-12376                         | B80-10307 02                       | Compact infrared detector<br>NPO-14864                                       | B80-10515 06                                         | Coatings for hybrid microcircuits<br>M-FS-25292                            |
| An image-data-compression algorithm<br>NPO-14496                      | B80-10438 09                       | <b>INFRARED INSPECTION</b>                                                   |                                                      | B80-10116 08                                                               |
| <b>IMAGE ENHANCEMENT</b>                                              |                                    | Detection of tanker defects with infrared<br>thermography<br>LANGLEY-12655   | B80-10221 06                                         | Placement technique for semicustom<br>digital LSI circuits<br>M-FS-25324   |
| Better-quality CCD-array images<br>NPO-14426                          | B80-10168 02                       | <b>INFRARED RADIATION</b>                                                    |                                                      | B80-10117 08                                                               |
| Digital enhancement of X-rays for NDT<br>KSC-11118                    | B80-10232 06                       | Fast-response atmospheric-pollutant<br>monitor<br>LANGLEY-12317              | B80-10062 04                                         | Cost models and economical packaging<br>of LSI's<br>M-FS-25359             |
| Real-time image enhancement<br>NPO-14281                              | B80-10311 02                       | <b>INFRARED REFLECTION</b>                                                   |                                                      | B80-10138 08                                                               |
|                                                                       |                                    | Energy-reduction concept for<br>incandescent lamps<br>MSC-18757              | B80-10325 03                                         | Automated ion implantation for IC's<br>M-FS-25193                          |
|                                                                       |                                    |                                                                              |                                                      | An automated photolithography facility<br>for IC's<br>M-FS-25073           |
|                                                                       |                                    |                                                                              |                                                      | B80-10140 08                                                               |
|                                                                       |                                    |                                                                              |                                                      | Models of MOS and SOS devices<br>M-FS-25153                                |
|                                                                       |                                    |                                                                              |                                                      | B80-10141 08                                                               |
|                                                                       |                                    |                                                                              |                                                      | Photonitride passivating coating for IC's<br>M-FS-25401                    |
|                                                                       |                                    |                                                                              |                                                      | B80-10260 08                                                               |
|                                                                       |                                    |                                                                              |                                                      | Double metalization for VLSI<br>M-FS-25149                                 |
|                                                                       |                                    |                                                                              |                                                      | B80-10261 08                                                               |
|                                                                       |                                    |                                                                              |                                                      | More-reliable SOS ion implantations<br>M-FS-25322                          |
|                                                                       |                                    |                                                                              |                                                      | B80-10262 08                                                               |
|                                                                       |                                    |                                                                              |                                                      | Silicon nitride passivation of IC's<br>M-FS-25309                          |
|                                                                       |                                    |                                                                              |                                                      | B80-10279 08                                                               |
|                                                                       |                                    |                                                                              |                                                      | Progress in MOSFET double-layer<br>metallization<br>M-FS-25239             |
|                                                                       |                                    |                                                                              |                                                      | B80-10280 08                                                               |
|                                                                       |                                    |                                                                              |                                                      | Optimizing costs of VLSI circuits<br>M-FS-25348                            |
|                                                                       |                                    |                                                                              |                                                      | B80-10281 08                                                               |
|                                                                       |                                    |                                                                              |                                                      | An automated oxide and diffusion facility<br>for IC's<br>M-FS-25357        |
|                                                                       |                                    |                                                                              |                                                      | B80-10282 08                                                               |

|                                                  |              |                           |                                                            |               |                                                             |                                                 |
|--------------------------------------------------|--------------|---------------------------|------------------------------------------------------------|---------------|-------------------------------------------------------------|-------------------------------------------------|
| Cooling/grounding mount for hybrid circuits      |              |                           |                                                            |               |                                                             | L                                               |
| MSC-18728                                        | B80-10302 01 | ION EXCHANGE ELECTROLYTES | REDOX electrochemical energy storage                       | LEWIS-13398   | B80-10064 04                                                | LAMINAR FLOW AIRFOILS                           |
| Four-quadrant CCD analog multiplier              |              |                           |                                                            |               |                                                             | Disturbance amplification rates                 |
| LANGLEY-12332                                    | B80-10305 02 | ION EXCHANGING            | Hybrid polymer microspheres                                | NPO-14462     | B80-10208 04                                                | LANGLEY-12556 B80-10092 06                      |
| Monolithic four-quadrant multiplier              |              |                           |                                                            |               |                                                             | LAMINATES                                       |
| LANGLEY-12330A                                   | B80-10306 02 | ION IMPLANTATION          | Automated ion implantation for IC's                        | M-FS-25193    | B80-10139 08                                                | Jig for assembling large composite panels       |
| Monolithic CCD-array readout                     |              |                           |                                                            |               |                                                             | LANGLEY-12394 B80-10119 08                      |
| LANGLEY-12376                                    | B80-10307 02 | IONIZATION CHAMBERS       | More-reliable SOS ion implantations                        | M-FS-25322    | B80-10262 08                                                | Shaping graphite/epoxy stiffeners               |
| Automatic chemical vapor deposition              |              |                           |                                                            |               |                                                             | MSC-18494 B80-10120 08                          |
| M-FS-25249                                       | B80-10431 08 | IRON ALLOYS               | Applying the helium ionization detector in chromatography  | MSC-18835     | B80-10490 04                                                | Plasticizer for polyimide composites            |
| CADAT logic simulation program                   |              |                           |                                                            |               |                                                             | LANGLEY-12642 B80-10206 04                      |
| M-FS-25183                                       | B80-10432 08 | ISOLATORS                 | Etchant for incoloy-903 welds                              | M-FS-19378    | B80-10112 08                                                | Cutting holes in fabric-faced panels            |
| CADAT test pattern generator                     |              |                           |                                                            |               |                                                             | MSC-18786 B80-10427 08                          |
| M-FS-25066                                       | B80-10433 08 | J                         | Chemical-milling solution for invar alloy                  | M-FS-25365    | B80-10113 08                                                | LAND USE                                        |
| CADAT field-effect-transistor simulator          |              | JET ENGINES               | Self-adjusting mechanical snubbing link                    | MSC-16134     | B80-10246 07                                                | Applications of remote-sensing imagery          |
| M-FS-25067                                       | B80-10434 08 | JIGS                      | Suppressing buzz-saw noise in jet engines                  | LANGLEY-12645 | B80-10220 06                                                | M-FS-25107 B80-10082 06                         |
| CADAT place-and-routine in two dimensions        |              | JOINTS (ANATOMY)          | Jig for assembling large composite panels                  | LANGLEY-12394 | B80-10119 08                                                | LANDSAT SATELLITES                              |
| M-FS-25058                                       | B80-10435 08 | JOINTS (JUNCTIONS)        | Gage for evaluating rheumatoid hands                       | GSFC-12610    | B80-10503 05                                                | Applications of remote-sensing imagery          |
| CADAT multiport placement and routing            |              |                           |                                                            |               |                                                             | M-FS-25107 B80-10082 06                         |
| M-FS-25065                                       | B80-10436 08 |                           | Automatic connector for structural beams                   | M-FS-25134    | B80-10094 07                                                | Low-cost LANDSAT processing system              |
| CADAT integrated circuit mask analysis           |              |                           |                                                            |               |                                                             | M-FS-25396 B80-10285 09                         |
| M-FS-25054                                       | B80-10437 08 |                           | Mechanical end joint for structural columns                | LANGLEY-12482 | B80-10095 07                                                | Basic cluster compression algorithm             |
| Low-resistance continuity tester                 |              |                           |                                                            |               |                                                             | NPO-14816 B80-10291 09                          |
| NPO-14881                                        | B80-10445 01 |                           | Heat-shrinkable sleeve aids in insulating universal joints | MSC-18685     | B80-10270 08                                                | Image-based communication, and retrieval        |
| CADAT network translator                         |              |                           |                                                            |               |                                                             | NPO-14893 B80-10293 09                          |
| M-FS-25055                                       | B80-10551 08 |                           | Ball-joint grounding ring                                  | MSC-18824     | B80-10405 07                                                | An image-data-compression algorithm             |
| CADAT integrated circuit artwork program         |              |                           |                                                            |               |                                                             | NPO-14496 B80-10438 09                          |
| M-FS-25017                                       | B80-10552 08 |                           | Alining sleeve for optical fibers                          | MSC-18756     | B80-10424 01                                                | Evaluating computer-drawn ground-cover maps     |
| INTERFACES                                       |              |                           |                                                            |               |                                                             | KSC-11195 B80-10555 09                          |
| Input/output interface module                    |              |                           | Interlocking wedge joint is easily assembled               | LANGLEY-12729 | B80-10526 07                                                | LANGUAGE PROGRAMMING                            |
| MSC-18180                                        | B80-10159 01 |                           |                                                            |               |                                                             | DDL:Digital systems design language             |
| INTERFACIAL TENSION                              |              |                           | JUNCTION TRANSISTORS                                       | GSFC-12555    | B80-10443 01                                                | M-FS-25352 B80-10163 01                         |
| Driving bubbles out of glass                     |              |                           | Simple JFET oscillator                                     |               |                                                             | LAPLACE TRANSFORMATION                          |
| M-FS-25414                                       | B80-10496 04 |                           |                                                            |               |                                                             | An approximation for inverse Laplace transforms |
| INTERFEROMETERS                                  |              |                           | K                                                          |               |                                                             | MSC-18867 B80-10553 09                          |
| High-resolution spectrometry/interferometer      |              |                           | KALMAN-SCHMIDT FILTERING                                   |               |                                                             | LARGE SCALE INTEGRATION                         |
| NPO-14448                                        | B80-10175 03 |                           | Linear stochastic optimal control and estimation problem   |               |                                                             | A general logic structure for custom LSIS       |
| Diplexer for laser-beam heterodyne receiver      |              |                           | LEWIS-13206                                                | B80-10287 09  | NPO-14410 B80-10118 08                                      |                                                 |
| GSFC-12589                                       | B80-10329 03 |                           |                                                            |               | LSI logic for phase-control rectifiers                      |                                                 |
| INTERNAL COMBUSTION ENGINES                      |              |                           |                                                            |               | M-FS-25208 B80-10161 01                                     |                                                 |
| Additive improves engine-oil performance         |              |                           |                                                            |               | Optimizing costs of VLSI circuits                           |                                                 |
| GSFC-12327                                       | B80-10065 04 |                           |                                                            |               | M-FS-25348 B80-10281 08                                     |                                                 |
| INTRAVENOUS PROCEDURES                           |              |                           |                                                            |               | An automated oxide and diffusion facility for IC's          |                                                 |
| Flow sensor for biomedical fluids                |              |                           |                                                            |               | M-FS-25357 B80-10282 08                                     |                                                 |
| MSC-18761                                        | B80-10367 05 |                           |                                                            |               | LASER APPLICATIONS                                          |                                                 |
| INVERTED CONVERTERS (DC TO AC)                   |              |                           |                                                            |               | Laser-fluorescence measurement of marine algae              |                                                 |
| Direct-current converter for gas-discharge lamps |              |                           |                                                            |               | LANGLEY-12282 B80-10213 05                                  |                                                 |
| MSC-18407                                        | B80-10156 01 |                           |                                                            |               | Changes in 'thermal lens' measure diffusivity               |                                                 |
| INVESTMENT CASTING                               |              |                           |                                                            |               | NPO-14657 B80-10218 06                                      |                                                 |
| Forming complex cavities in clear plastic        |              |                           |                                                            |               | Simultaneous measurement of three atmospheric pollutants    |                                                 |
| LEWIS-13412                                      | B80-10267 08 |                           |                                                            |               | NPO-14828 B80-10359 04                                      |                                                 |
| Sealing micropores in thin castings              |              |                           |                                                            |               | Laser beam methane detector                                 |                                                 |
| MSC-18623                                        | B80-10428 08 |                           |                                                            |               | NPO-14929 B80-10363 04                                      |                                                 |
| INVISCID FLOW                                    |              |                           |                                                            |               | LASER DOPPLER VELOCIMETERS                                  |                                                 |
| Viscous characteristics analysis                 |              |                           |                                                            |               | Noise suppression in forward-scattering optical instruments |                                                 |
| LANGLEY-12598                                    | B80-10084 06 |                           |                                                            |               | LANGLEY-12730 B80-10324 03                                  |                                                 |
| Stream tube curvature analysis                   |              |                           |                                                            |               | LASER HEATING                                               |                                                 |
| LANGLEY-11535                                    | B80-10235 06 |                           |                                                            |               | Changes in 'thermal lens' measure diffusivity               |                                                 |
| Inviscid transonic flow over axisymmetric bodies |              |                           |                                                            |               | NPO-14657 B80-10218 06                                      |                                                 |
| LANGLEY-12499                                    | B80-10398 06 |                           | KLYSTRONS                                                  |               | LASER MODE LOCKING                                          |                                                 |
| ION BEAMS                                        |              |                           | Computer-controlled warmup circuit                         | NPO-14815     | Tunable pulsed carbon dioxide laser                         |                                                 |
| Ion-beam cleaning for cold welds                 |              |                           |                                                            |               | NPO-14984 B80-10458 03                                      |                                                 |
| LEWIS-12982                                      | B80-10115 08 |                           |                                                            |               |                                                             |                                                 |
| Ion-beam etching enhances adhesive bonding       |              |                           |                                                            |               |                                                             |                                                 |
| LEWIS-13028                                      | B80-10128 08 |                           |                                                            |               |                                                             |                                                 |

**LASER OUTPUTS**

Powerful copper chloride laser  
NPO-14782 B80-10330 03  
Gas-laser power monitor  
LANGLEY-12682 B80-10455 03

**LASER RANGE FINDERS**

Short-range self-pulsed optical radar  
NPO-14901 B80-10459 03

**LASERS**

Large-volume multiple-path  
nuclear-pumped laser  
LANGLEY-12592 B80-10044 03  
Far-field radiation pattern of tunable  
diode lasers  
LANGLEY-12631 B80-10177 03  
Ohmic contact to GaAs semiconductor  
LANGLEY-12466 B80-10263 08  
Diplexer for laser-beam heterodyne  
receiver  
GSFC-12589 B80-10329 03  
Tunable pulsed carbon dioxide laser  
NPO-14984 B80-10458 03

**LATCHES**

Clamshell door system  
MSC-18468 B80-10101 07

**LEG (ANATOMY)**

Microprocessor-controlled ultrasonic  
plethysmograph  
MSC-18759 B80-10500 05

**LENSES**

Fresnel lenses for ultrasonic inspection  
MSC-18469 B80-10217 06  
Acoustic lens is gas-filled  
NPO-14757 B80-10376 06

**LEVEL (HORIZONTAL)**

Heat-pipe sensor for remote leveling  
GSFC-12095 B80-10248 07

**LEVEL (QUANTITY)**

Fast response cryogen level sensor  
MSC-18697 B80-10374 06  
Fiber optic level sensor for cryogens  
MSC-18674 B80-10375 06

**LIFE (DURABILITY)**

Predicting lifetime of cast parts  
M-FS-19549 B80-10228 06

**LIFT**

Three-dimensional potential flow  
LANGLEY-12623 B80-10090 06

**LIGHT BEAMS**

Multibeam collimator uses prism stack  
GSFC-12608 B80-10452 03

**LIGHT SCATTERING**

Noise suppression in forward-scattering  
optical instruments  
LANGLEY-12730 B80-10324 03

**LIGHT TRANSMISSION**

Safely splicing glass optical fibers  
KSC-11107 B80-10134 08

**LIGHTING EQUIPMENT**

Direct-current converter for  
gas-discharge lamps  
MSC-18407 B80-10156 01

**LINEARIZATION**

Linearizing magnetic-amplifier dc  
transducer output  
NPO-14617 B80-10167 02

**LINKAGES**

Lock for hydraulic actuators  
MSC-18853 B80-10530 07

**LIQUEFIED GASES**

Fiber optic level sensor for cryogens  
MSC-18674 B80-10375 06

**LIQUEFIED NATURAL GAS**

Detection of tanker defects with infrared  
thermography  
LANGLEY-12655 B80-10221 06

Laser beam methane detector  
NPO-14929 B80-10363 04

**LIQUID HELIUM**

Cryogenic-storage-tank support  
MSC-14848 B80-10258 07

**LIQUID NITROGEN**

Lightweight cryogenic vessel  
NPO-14794 B80-10548 08

**LIQUIDS**

An equation of state for liquids  
NPO-14821 B80-10174 03

**LITHIUM FLUORIDES**

Cleaving machine for hard crystals  
GSFC-12584 B80-10401 07

**LITHOGRAPHY**

An automated photolithography facility  
for IC's  
M-FS-25073 B80-10140 08

**LIVESTOCK**

Beef grading by ultrasound  
NPO-14812 B80-10505 05

**LOAD DISTRIBUTION (FORCES)**

Flush-mounting technique for composite  
beams  
LANGLEY-12389 B80-10121 08

**LOAD TESTS**

Eddy-current sensor measures bolt  
loading  
M-FS-19486 B80-10079 06

Measuring ball-bearing loads  
M-FS-19505 B80-10102 07

**LOADS (FORCES)**

Self-adjusting mechanical snubbing link  
MSC-16134 B80-10246 07

**LOCKS (FASTENERS)**

Bayonet plug with ramp-activated lock  
MSC-18526 B80-10247 07

Lock for hydraulic actuators  
MSC-18853 B80-10530 07

**LOGIC CIRCUITS**

Independent synchronizer for digital  
decoders  
MSC-16723 B80-10004 01

LSI logic for phase-control rectifiers  
M-FS-25208 B80-10161 01

CADAT logic simulation program  
M-FS-25183 B80-10432 08

CADAT test pattern generator  
M-FS-25066 B80-10433 08

CADAT field-effect-transistor simulator  
M-FS-25067 B80-10434 08

CADAT place-and-route in two  
dimensions  
M-FS-25058 B80-10435 08

CADAT multiport placement and  
routing  
M-FS-25065 B80-10436 08

CADAT integrated circuit mask analysis  
M-FS-25054 B80-10437 08

CADAT network translator  
M-FS-25055 B80-10551 08

CADAT integrated circuit artwork  
program  
M-FS-25017 B80-10552 08

**LOGIC DESIGN**

A general logic structure for custom  
LSI's  
NPO-14410 B80-10118 08

**LOOPS**

Improved code-tracking loop  
MSC-18035 B80-10034 02

**LOW FREQUENCIES**

Converting a digital filter to its analog  
equivalent  
MSC-18587 B80-10313 02

**LOW GRAVITY MANUFACTURING**

Reduced gravity favors columnar crystal  
growth  
M-FS-25205 B80-10366 04

**LOW PASS FILTERS**

Smoothing the output from a DAC  
FRC-11025 B80-10160 01

**LOW TEMPERATURE**

Spiral-wound gasket forms  
low-temperature seal  
LANGLEY-12315 B80-10543 08

**LUBRICANTS**

Lubrication handbook  
M-FS-25158 B80-10210 04

**LUBRICATING OILS**

Additive improves engine-oil  
performance  
GSFC-12327 B80-10065 04

**LUBRICATION**

Additive improves engine-oil  
performance  
GSFC-12327 B80-10065 04

Design considerations for mechanical  
face seals  
LEWIS-13146 B80-10233 06

High-performance, multiroller traction  
drive  
LEWIS-13347 B80-10244 07

**LUMINAIRES**

Energy-reduction concept for  
incandescent lamps  
MSC-18757 B80-10325 03

Solar cell is housed in light-bulb  
enclosure  
LEWIS-13418 B80-10442 01

**M****MACHINE ORIENTED LANGUAGES**

DDL:Digital systems design language  
M-FS-25352 B80-10163 01

**MACHINE TOOLS**

Precision filament cutter  
LANGLEY-12564 B80-10093 07

Abrasive drill for resilient materials  
LEWIS-13411 B80-10402 07

**MACHINE-INDEPENDENT PROGRAMS**

A universal structured-design diagramer  
LANGLEY-12548 B80-10558 09

**MACHINING**

Cryogenic machining of polyurethane  
foam  
MSC-18572 B80-10123 08

A construction technique for wind tunnel  
models  
LANGLEY-12710 B80-10381 06

**MAGNETIC AMPLIFIERS**

Linearizing magnetic-amplifier dc  
transducer output  
NPO-14617 B80-10167 02

**MAGNETIC CORES**

Producing gapped-ferrite transformer  
cores  
NPO-14715 B80-10273 08

Improved magnetic material analyzer  
LEWIS-13493 B80-10384 06

**MAGNETIC MATERIALS**

Improved magnetic material analyzer  
LEWIS-13493 B80-10384 06

**MAGNETIC MEASUREMENT**

Improved LEEM ranges over four  
decades  
LANGLEY-12706 B80-10508 06

**SUBJECT INDEX****METEOROLOGICAL FLIGHT**

|                                                   |              |                                            |                                       |
|---------------------------------------------------|--------------|--------------------------------------------|---------------------------------------|
| <b>MAGNETIC TRANSDUCERS</b>                       |              | Remote manipulator with force              | Improved ureteral stone fragmentation |
| Cable-splice detector                             |              | catheter                                   | catheter                              |
| ARC-11291                                         | B80-10074 06 | ARC-11272                                  | NPO-14745                             |
| Transducer for extreme temperatures and pressures |              | B80-10408 07                               | B80-10370 05                          |
| MSC-18778                                         | B80-10510 06 | Soft container for explosive nuts          |                                       |
| <b>MAGNETOMETERS</b>                              |              | MSC-18871                                  |                                       |
| Improved LEEM ranges over four decades            |              | B80-10532 07                               |                                       |
| LANGLEY-12706                                     | B80-10508 06 | Lightweight cryogenic vessel               |                                       |
| <b>MAGNETOSPHERE</b>                              |              | NPO-14794                                  |                                       |
| NASA charging analyzer program                    |              | B80-10548 08                               |                                       |
| LEWIS-12973                                       | B80-10058 03 | <b>MATERIALS RECOVERY</b>                  |                                       |
| <b>MAINTENANCE</b>                                |              | Chlorinolysis reclaims rubber of waste     |                                       |
| Honing fixture for welded electrodes              |              | tires                                      |                                       |
| M-FS-19537                                        | B80-10278 08 | NPO-14935                                  |                                       |
| Repairing high-temperature glazed tiles           |              | B80-10365 04                               |                                       |
| MSC-18736                                         | B80-10536 08 | Recycling paper-pulp waste liquors         |                                       |
| <b>MANAGEMENT SYSTEMS</b>                         |              | NPO-14797                                  |                                       |
| User's guide to SFTRAN                            |              | B80-10492 04                               |                                       |
| LEWIS-13172                                       | B80-10143 09 | <b>MATERIALS TESTS</b>                     |                                       |
| <b>MANAGEMENT SYSTEMS</b>                         |              | Temperature controller adapts to fatigue   |                                       |
| NASA PERT time II                                 |              | tester                                     |                                       |
| LEWIS-13145                                       | B80-10286 09 | LANGLEY-12393                              |                                       |
| <b>MANIPULATORS</b>                               |              | B80-10378 06                               |                                       |
| Mechanical hand for gripping objects              |              | Environmental testing under load           |                                       |
| M-FS-23692                                        | B80-10243 07 | LANGLEY-12602                              |                                       |
| Electromechanical slip sensor                     |              | B80-10379 06                               |                                       |
| NPO-14654                                         | B80-10253 07 | <b>MATHEMATICAL MODELS</b>                 |                                       |
| Remote manipulator with force                     |              | Models of MOS and SOS devices              |                                       |
| feed-back                                         |              | M-FS-25153                                 |                                       |
| ARC-11272                                         | B80-10408 07 | B80-10141 08                               |                                       |
| <b>MANUFACTURING</b>                              |              | <b>MATRICES (MATHEMATICS)</b>              |                                       |
| Automated ion implantation for IC's               |              | Calculating linear A, B, C, and D matrices |                                       |
| M-FS-25193                                        | B80-10139 08 | from a nonlinear dynamic engine            |                                       |
| An automated photolithography facility            |              | simulation                                 |                                       |
| for IC's                                          |              | LEWIS-13250                                |                                       |
| M-FS-25073                                        | B80-10140 08 | B80-10520 06                               |                                       |
| Producing gapped-ferrite transformer              |              | <b>MAXIMUM LIKELIHOOD ESTIMATES</b>        |                                       |
| cores                                             |              | Estimation of incomplete multinomial       |                                       |
| NPO-14715                                         | B80-10273 08 | data                                       |                                       |
| Determining manufacturing cost from               |              | LANGLEY-12593                              |                                       |
| product complexity                                |              | B80-10146 09                               |                                       |
| M-FS-25371                                        | B80-10439 09 | <b>MEASUREMENT</b>                         |                                       |
| <b>MANY BODY PROBLEM</b>                          |              | Measuring radiation effects on MOS         |                                       |
| Equations of motion for coupled n-body            |              | capacitors                                 |                                       |
| systems                                           |              | NPO-14700                                  |                                       |
| GSFC-12407                                        | B80-10083 06 | B80-10227 06                               |                                       |
| <b>MAPS</b>                                       |              | <b>MEASURING INSTRUMENTS</b>               |                                       |
| Evaluating computer-drawn ground-cover            |              | Measuring water properties from a          |                                       |
| maps                                              |              | moving boat                                |                                       |
| KSC-11195                                         | B80-10555 09 | LANGLEY-12325                              |                                       |
| <b>MARINE TECHNOLOGY</b>                          |              | B80-10073 05                               |                                       |
| Laser-fluorescence measurement of                 |              | Eddy-current sensor measures bolt          |                                       |
| marine algae                                      |              | loading                                    |                                       |
| LANGLEY-12282                                     | B80-10213 05 | M-FS-19486                                 |                                       |
| <b>MASERS</b>                                     |              | B80-10079 06                               |                                       |
| Integral storage-bulb and microwave               |              | Measuring ball-bearing loads               |                                       |
| cavity for masers                                 |              | M-FS-19505                                 |                                       |
| GSFC-12542                                        | B80-10186 03 | Electromechanical slip sensor              |                                       |
| <b>MASS DISTRIBUTION</b>                          |              | NPO-14654                                  |                                       |
| Interchangeable spring modules for                |              | B80-10253 07                               |                                       |
| inertia measurements                              |              | Improved magnetic material analyzer        |                                       |
| LANGLEY-12402                                     | B80-10386 06 | LEWIS-13493                                |                                       |
| <b>MATERIAL BALANCE</b>                           |              | B80-10384 06                               |                                       |
| Interchangeable spring modules for                |              | <b>MECHANICAL DRIVES</b>                   |                                       |
| inertia measurements                              |              | Design considerations for mechanical       |                                       |
| LANGLEY-12402                                     | B80-10386 06 | face seals                                 |                                       |
| <b>MATERIALS HANDLING</b>                         |              | LEWIS-13146                                |                                       |
| Transferring small samples of viscous             |              | B80-10233 06                               |                                       |
| liquid                                            |              | High-performance, multiroller traction     |                                       |
| MSC-18533                                         | B80-10069 04 | drive                                      |                                       |
| Mechanical hand for                               |              | LEWIS-13347                                |                                       |
| M-FS-23692                                        | B80-10243 07 | B80-10244 07                               |                                       |
| <b>MATERIALS RECOVERY</b>                         |              | Compact table-tilting mechanism            |                                       |
| Chlorinolysis reclaims rubber of waste            |              | NPO-14800                                  |                                       |
| tires                                             |              | B80-10411 07                               |                                       |
| <b>MATERIALS TESTS</b>                            |              | Torque-wrench extension                    |                                       |
| Self-adjusting mechanical snubbing link           |              | MSC-18769                                  |                                       |
| MSC-18791                                         | B80-10408 07 | B80-10414 07                               |                                       |
| <b>MATERIALS TESTS</b>                            |              | <b>MECHANICAL PROPERTIES</b>               |                                       |
| Testing EKG electrodes on-line                    |              | Multiple-creep-test apparatus              |                                       |
| MSC-18696                                         | B80-10212 05 | GSFC-12561                                 |                                       |
| <b>MEDICAL ELECTRONICS</b>                        |              | B80-10080 06                               |                                       |
| Testing EKG electrodes on-line                    |              | Examining graphite reinforcement in        |                                       |
| MSC-18696                                         | B80-10212 05 | composites                                 |                                       |
| <b>MEDICAL EQUIPMENT</b>                          |              | MSC-19594                                  |                                       |
| Improved ureteral stone fragmentation             |              | B80-10122 08                               |                                       |
| catheter                                          |              | Efficient measurement of shear             |                                       |
| NPO-14745                                         | B80-10370 05 | properties of fiber composites             |                                       |
| <b>METEOROLOGICAL FLIGHT</b>                      |              | LEWIS-13011                                |                                       |
| Airborne meteorological data-collection           |              | B80-10216 06                               |                                       |
| system                                            |              | Environmental testing under load           |                                       |
| LEWIS-13346                                       | B80-10314 02 | LANGLEY-12602                              |                                       |
| <b>METEOROLOGICAL FLIGHT</b>                      |              | B80-10379 06                               |                                       |
| Containerless materials processing in the         |              | <b>MECHANICAL SHOCK</b>                    |                                       |
| laboratory                                        |              | Self-adjusting mechanical snubbing link    |                                       |
| M-FS-25242                                        | B80-10059 04 | MSC-16134                                  |                                       |
| <b>METASTABLE STATE</b>                           |              | B80-10246 07                               |                                       |
| Containerless materials processing in the         |              | <b>MEDICAL ELECTRONICS</b>                 |                                       |
| laboratory                                        |              | Testing EKG electrodes on-line             |                                       |
| M-FS-25242                                        | B80-10059 04 | MSC-18696                                  |                                       |
| <b>METEOROLOGICAL FLIGHT</b>                      |              | B80-10212 05                               |                                       |

|                                                            |                                                     |                                                           |
|------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|
| <b>METEOROLOGICAL SATELLITES</b>                           | <b>MILLING (MACHINING)</b>                          | Compact positioning flange                                |
| Microcomputer-based doppler systems for weather monitoring | Chemical-milling solution for invar alloy           | MSC-14876 B80-10104 07                                    |
| GSFC-12448                                                 | M-FS-25365 B80-10113 08                             | Flush-mounting technique for composite beams              |
| <b>METEOROLOGY</b>                                         | 'Grinding' cavities in polyurethane foam            | LANGLEY-12389 B80-10121 08                                |
| Instrument measures cloud cover                            | MSC-18564 B80-10124 08                              | Compact table-tilting mechanism                           |
| NPO-14936                                                  | B80-10514 06                                        | NPO-14800 B80-10411 07                                    |
| <b>METHANE</b>                                             | <b>MINES (EXCAVATIONS)</b>                          | <b>MULTICHANNEL COMMUNICATION</b>                         |
| Methane/air flames in a concentric tube combustor          | Drilling side holes from a borehole                 | 28-Channel rotary transformer                             |
| LEWIS-13388                                                | NPO-14465 B80-10066 04                              | NPO-14861 B80-10300 01                                    |
| Laser beam methane detector                                | Underground Coal Mining                             | <b>MULTIPHASE FLOW</b>                                    |
| NPO-14929                                                  | NPO-14704 B80-10071 04                              | Reduced viscosity interpreted for fluid/gas mixtures      |
| B80-10363 04                                               | <b>MINIATURIZATION</b>                              | NPO-14976 B80-10457 03                                    |
| <b>METHOD OF CHARACTERISTICS</b>                           | Miniature personal UV solar dosimeter               | <b>MULTIPLEXING</b>                                       |
| Flow field in supersonic mixed-compression inlets          | LANGLEY-12469 B80-10321 03                          | Efficient telemetry format                                |
| LEWIS-13279                                                | B80-10088 06                                        | NPO-13679 B80-10142 09                                    |
| <b>MICROELECTRONICS</b>                                    | <b>MINICOMPUTERS</b>                                | Multiplexed logic controls solar-heating system           |
| Improving MOS minority-carrier lifetime                    | Low-cost LANDSAT processing system                  | M-FS-25287 B80-10318 03                                   |
| NPO-14738                                                  | M-FS-25396 B80-10285 09                             | <b>MULTIPLIERS</b>                                        |
| B80-10301 01                                               | Common data buffer                                  | Four-quadrant CCD analog multiplier                       |
| <b>MICROMETERS</b>                                         | KSC-11048 B80-10303 02                              | LANGLEY-12332 B80-10305 02                                |
| Electronic depth micrometer                                | <b>MINING</b>                                       | Monolithic four-quadrant multiplier                       |
| KSC-11181                                                  | Measuring coal deposits by radar                    | LANGLEY-12330A B80-10306 02                               |
| B80-10385 06                                               | M-FS-23922 B80-10060 04                             | <b>MULTIPROCESSING (COMPUTERS)</b>                        |
| <b>MICROORGANISMS</b>                                      | Detecting a coal/shale interface                    | Online assessment of a distributed processor              |
| Improved microbe detection in water samples                | M-FS-23720 B80-10061 04                             | KSC-11124 B80-10037 02                                    |
| LANGLEY-12709                                              | Position monitor for mining machines                | Simultaneous disk storage and retrieval                   |
| B80-10502 05                                               | M-FS-25342 B80-10157 01                             | KSC-11167 B80-10304 02                                    |
| <b>MICROPARTICLES</b>                                      | <b>MINORITY CARRIERS</b>                            | <b>MUSCULAR STRENGTH</b>                                  |
| Recording fluid currents by holography                     | Improving MOS minority-carrier lifetime             | Manual for physical fitness                               |
| M-FS-25373                                                 | NPO-14738 B80-10301 01                              | MSC-18915 B80-10372 05                                    |
| B80-10222 06                                               | <b>MIRRORS</b>                                      | <b>N</b>                                                  |
| <b>MICROPOROSITY</b>                                       | Detecting surface faults on solar mirrors           | <b>NACELLES</b>                                           |
| Sealing micropores in thin castings                        | NPO-14684 B80-10230 06                              | Stream tube curvature analysis                            |
| MSC-18623                                                  | NPO-14962 B80-10542 08                              | LANGLEY-11535 B80-10235 06                                |
| B80-10428 08                                               | <b>MISSION PLANNING</b>                             | <b>NEOPLASMS</b>                                          |
| <b>MICROPROCESSORS</b>                                     | Goddard mission analysis system                     | Temperature controller for hyperthermia devices           |
| Microprocessor systems for industrial process control      | GSFC-12392 B80-10144 09                             | LANGLEY-12528 B80-10072 05                                |
| NPO-14661                                                  | <b>MIST</b>                                         | <b>NEUTRON BEAMS</b>                                      |
| B80-10131 08                                               | Aerosol lasts up to six minutes                     | Large-volume nuclear-pumped laser                         |
| <b>MICROSCOPES</b>                                         | NPO-14947 B80-10360 04                              | LANGLEY-12592 B80-10044 03                                |
| Vise holds specimens for microscope                        | <b>MIXING</b>                                       | <b>NICKEL ALLOYS</b>                                      |
| MSC-18690                                                  | Quick mixing of epoxy components                    | Etchant for incoloy-903 welds                             |
| B80-10098 07                                               | MSC-18731 B80-10415 07                              | M-FS-19378 B80-10112 08                                   |
| <b>MICROSTRUCTURE</b>                                      | <b>MODAL RESPONSE</b>                               | A precoat prevents ceramic stopoffs from spalling         |
| Reduced gravity favors columnar crystal growth             | Rotor transient analysis                            | M-FS-19495 B80-10136 08                                   |
| M-FS-25205                                                 | LEWIS-13230 B80-10259 07                            | Low cost high temperature, duplex coating for superalloys |
| B80-10366 04                                               | <b>MODULES</b>                                      | LEWIS-13497 B80-10352 04                                  |
| <b>MICROWAVE ANTENNAS</b>                                  | Versatile modular scaffolds                         | <b>NICKEL COATINGS</b>                                    |
| Cavity-backed spiral-slot antenna                          | GSFC-12606 B80-10406 07                             | A precoat prevents ceramic stopoffs from spalling         |
| MSC-18532                                                  | Producing gapped-ferrite transformer cores          | M-FS-19495 B80-10136 08                                   |
| B80-10448 02                                               | NPO-14715 B80-10273 08                              | <b>NITRIC ACID</b>                                        |
| <b>MICROWAVE COUPLING</b>                                  | <b>MOLDS</b>                                        | Chemical-milling solution for invar alloy                 |
| One-step microwave foaming and curing                      | Forming complex cavities in clear plastic           | M-FS-25365 B80-10113 08                                   |
| MSC-18707                                                  | LEWIS-13412 B80-10267 08                            | <b>NITROGEN</b>                                           |
| B80-10420 08                                               | <b>MOLYBDENUM SULFIDES</b>                          | Removing freon gas from hydraulic fluid                   |
| High-power dual-directional coupler                        | Self-lubricating gearset                            | MSC-18740 B80-10494 04                                    |
| NPO-14713                                                  | MSC-18801 B80-10546 08                              | <b>NOISE REDUCTION</b>                                    |
| B80-10447 02                                               | <b>MONITORS</b>                                     | Suppressing buzz-saw noise in jet engines                 |
| <b>MICROWAVE EQUIPMENT</b>                                 | Measuring coal deposits by radar                    | LANGLEY-12645 B80-10220 06                                |
| Computer-controlled warmup circuit                         | M-FS-23922 B80-10060 04                             | Linear stochastic optimal control and estimation problem  |
| NPO-14815                                                  | Fast-response atmospheric-pollutant monitor         | LEWIS-13206 B80-10287 09                                  |
| B80-10155 01                                               | LANGLEY-12317 B80-10062 04                          |                                                           |
| Integral storage-bulb and microwave cavity for masers      | Linearizing magnetic-amplifier dc transducer output |                                                           |
| GSFC-12542                                                 | NPO-14617 B80-10167 02                              |                                                           |
| B80-10186 03                                               | <b>MOTORS</b>                                       |                                                           |
| Portable zero-delay assembly                               | A linear magnetic motor and generator               |                                                           |
| NPO-14671                                                  | GSFC-12518 B80-10257 07                             |                                                           |
| B80-10316 02                                               | <b>Mounting</b>                                     |                                                           |
| <b>MICROWAVE SWITCHING</b>                                 | New mounting improves solar-cell efficiency         |                                                           |
| Fast microwave switching power divider                     | NPO-14467 B80-10039 03                              |                                                           |
| GSFC-12420                                                 |                                                     |                                                           |
| B80-10295 01                                               |                                                     |                                                           |
| <b>MICROWAVE TRANSMISSION</b>                              |                                                     |                                                           |
| High-power solid-state microwave transmitter               |                                                     |                                                           |
| NPO-14803                                                  |                                                     |                                                           |
| B80-10296 01                                               |                                                     |                                                           |
| <b>MICROWAVE TUBES</b>                                     |                                                     |                                                           |
| Superconducting gyrocon would be very efficient            |                                                     |                                                           |
| NPO-14975                                                  |                                                     |                                                           |
| B80-10446 02                                               |                                                     |                                                           |
| <b>MICROWAVES</b>                                          |                                                     |                                                           |
| Trislot-cavity microstrip antenna                          |                                                     |                                                           |
| MSC-18793                                                  |                                                     |                                                           |
| B80-10450 02                                               |                                                     |                                                           |

**SUBJECT INDEX****PARALLEL PROCESSING (COMPUTERS)**

|                                                                              |              |                                                                                                                      |              |                                                                                                 |              |
|------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------|--------------|
| Noise suppression in forward-scattering optical instruments<br>LANGLEY-12730 | B80-10324 03 | <b>NUTS (FASTENERS)</b><br>Locknut preload tool<br>MSC-16153                                                         | B80-10245 07 | <b>OPTICAL TRANSITION</b><br>Fluorescent radiation converter<br>GSFC-12528                      | B80-10180 03 |
| Kilovolt vacuum feed through is less noisy<br>NPO-14802                      | B80-10426 08 | Wrench for smooth or damaged fasteners<br>MSC-18772                                                                  | B80-10416 07 | <b>OPTICS</b><br>Improved multispectral solar cell array<br>HQN-10937                           | B80-10184 03 |
| <b>NONDESTRUCTIVE TESTS</b>                                                  |              | <b>O</b>                                                                                                             |              | <b>OPTIMIZATION</b><br>Structural design with stress and displacement constraints<br>M-FS-25235 | B80-10521 06 |
| X-ray technique verifies weld-root fusion<br>M-FS-19468                      | B80-10111 08 | <b>OCEAN SURFACE</b><br>Oceanic-wave-measurement system<br>M-FS-23862                                                | B80-10224 06 | <b>ORTHONORMAL FUNCTIONS</b><br>An approximation for inverse Laplace transforms<br>MSC-18867    | B80-10553 09 |
| Digital enhancement of X-rays for NDT<br>KSC-11118                           | B80-10232 06 | <b>OIL ADDITIVES</b><br>Additive improves engine-oil performance<br>GSFC-12327                                       | B80-10065 04 | <b>OSCILLATORS</b><br>Ultrastable automatic frequency control<br>MSC-18679                      | B80-10294 01 |
| <b>NONLINEAR SYSTEMS</b>                                                     |              | <b>OIL EXPLORATION</b><br>Drilling side holes from a borehole<br>NPO-14465                                           | B80-10066 04 | Simple JFET oscillator<br>GSFC-12555                                                            | B80-10443 01 |
| Plastic deformation of engines and other nonlinear structures<br>M-FS-23814  | B80-10399 06 | <b>OIL RECOVERY</b><br>Downhole pressure sensor<br>NPO-14729                                                         | B80-10223 06 | <b>OUTGASSING</b><br>All-inorganic spark-chamber frame<br>GSFC-12354                            | B80-10265 08 |
| <b>NONLINEARITY</b>                                                          |              | Sidewall penetrator for oil wells<br>NPO-14306                                                                       | B80-10528 07 | <b>OVENS</b><br>An oven for many thermocouple reference junctions<br>FRC-10112                  | B80-10506 06 |
| Linearizing magnetic-amplifier dc transducer output<br>NPO-14617             | B80-10167 02 | <b>OPENINGS</b><br>Clamshell door system<br>MSC-18468                                                                | B80-10101 07 | <b>OXIDATION</b><br>REDOX electrochemical energy storage<br>LEWIS-13398                         | B80-10064 04 |
| <b>NONNEWTONIAN FLOW</b>                                                     |              | <b>OPERATIONAL AMPLIFIERS</b><br>Low-resistance continuity tester<br>NPO-14881                                       | B80-10445 01 | An automated oxide and diffusion facility for IC's<br>M-FS-25357                                | B80-10282 08 |
| Reduced viscosity interpreted for fluid/gas mixtures<br>NPO-14976            | B80-10457 03 | <b>OPTICAL COMMUNICATION</b><br>Safely splicing glass optical fibers<br>KSC-11107                                    | B80-10134 08 | <b>OXIDATION RESISTANCE</b><br>Resin char oxidation retardant for composites<br>LEWIS-13275     | B80-10354 04 |
| <b>NORMAL DENSITY FUNCTIONS</b>                                              |              | Diplexer for laser-beam heterodyne receiver<br>GSFC-12589                                                            | B80-10329 03 | <b>P</b>                                                                                        |              |
| An approximation to student's t-distribution<br>LANGLEY-12238                | B80-10284 09 | Fiber optics transmit clock signal more reliably<br>NPO-14749                                                        | B80-10456 03 | <b>PACKAGING</b><br>Cost models and economical packaging of LSI's<br>M-FS-25359                 | B80-10138 08 |
| <b>NOSE CONES</b>                                                            |              | <b>OPTICAL DATA PROCESSING</b><br>Better-quality CCD-array images<br>NPO-14426                                       | B80-10168 02 | <b>PACKINGS (SEALS)</b><br>Spiral-wound gasket forms<br>low-temperature seal<br>LANGLEY-12315   | B80-10543 08 |
| Cap protects aircraft nose cone<br>LANGLEY-12367                             | B80-10362 04 | <b>OPTICAL EQUIPMENT</b><br>Optical calibrator for TDL spectrometers<br>GSFC-12562                                   | B80-10178 03 | <b>PALLADIUM</b><br>Removal of hydrogen bubbles from nuclear reactors<br>LANGLEY-12597          | B80-10205 04 |
| <b>NOTCH TESTS</b>                                                           |              | Noise suppression in forward-scattering optical instruments<br>LANGLEY-12730                                         | B80-10324 03 | Electrically conductive palladium-containing polyimide films<br>LANGLEY-12629                   | B80-10357 04 |
| Predicting lifetime of cast parts<br>M-FS-19549                              | B80-10228 06 | Multibeam collimator uses prism stack<br>GSFC-12608                                                                  | B80-10452 03 | <b>PANELS</b><br>Testing panels in tension and flexure<br>M-FS-25421                            | B80-10380 06 |
| <b>NOZZLE DESIGN</b>                                                         |              | <b>OPTICAL FILTERS</b><br>Acoustically-tuned optical spectrometer<br>HQN-10924                                       | B80-10326 03 | <b>PANORAMIC SCANNING</b><br>Rotatable prism for pan and tilt<br>LANGLEY-12388                  | B80-10041 03 |
| Predicting propulsion system drag<br>LANGLEY-12619                           | B80-10238 06 | <b>OPTICAL MEASUREMENT</b><br>Detecting surface faults on solar mirrors<br>NPO-14684                                 | B80-10230 06 | <b>PAPERS</b><br>Recycling paper-pulp waste liquors<br>NPO-14797                                | B80-10492 04 |
| <b>NOZZLE FLOW</b>                                                           |              | <b>OPTICAL MEASURING INSTRUMENTS</b><br>Noise suppression in forward-scattering optical instruments<br>LANGLEY-12730 | B80-10324 03 | <b>PARABOLIC BODIES</b><br>Offset paraboloidal solar concentrator<br>NPO-14846                  | B80-10320 03 |
| Potential flow in two-dimensional deflected nozzles<br>LEWIS-13461           | B80-10523 06 | <b>OPTICAL RADAR</b><br>Short-range self-pulsed optical radar<br>NPO-14901                                           | B80-10459 03 | <b>PARABOLIC REFLECTORS</b><br>Low-cost concentrating mirrors<br>NPO-14962                      | B80-10542 08 |
| <b>NOZZLE GEOMETRY</b>                                                       |              | <b>OPTICAL REFLECTION</b><br>Large-volume multiple-path nuclear-pumped laser<br>LANGLEY-12592                        | B80-10044 03 | <b>PARALLEL PROCESSING (COMPUTERS)</b><br>Input/output interface module<br>MSC-18180            | B80-10159 01 |
| Potential flow in two-dimensional deflected nozzles<br>LEWIS-13461           | B80-10523 06 | <b>OPTICAL TRACKING</b><br>An adjustable solar concentrator<br>NPO-14710                                             | B80-10043 03 |                                                                                                 |              |
| <b>NUCLEAR REACTIONS</b>                                                     |              | Tracking falling objects<br>NPO-14813                                                                                | B80-10328 03 |                                                                                                 |              |
| Large-volume multiple-path nuclear-pumped laser<br>LANGLEY-12592             | B80-10044 03 |                                                                                                                      |              |                                                                                                 |              |
| <b>NUCLEAR REACTORS</b>                                                      |              |                                                                                                                      |              |                                                                                                 |              |
| Removal of hydrogen bubbles from nuclear reactors<br>LANGLEY-12597           | B80-10205 04 |                                                                                                                      |              |                                                                                                 |              |
| <b>NUMERICAL ANALYSIS</b>                                                    |              |                                                                                                                      |              |                                                                                                 |              |
| Numerical tracing of electron trajectories<br>GSFC-12535                     | B80-10057 03 |                                                                                                                      |              |                                                                                                 |              |
| Systems improved numerical differencing analyzer<br>MSC-18597                | B80-10148 09 |                                                                                                                      |              |                                                                                                 |              |
| <b>NUMERICAL CONTROL</b>                                                     |              |                                                                                                                      |              |                                                                                                 |              |
| Microprocessor systems for industrial process control<br>NPO-14661           | B80-10131 08 |                                                                                                                      |              |                                                                                                 |              |
| Computer-controlled warmup circuit<br>NPO-14815                              | B80-10155 01 |                                                                                                                      |              |                                                                                                 |              |
| Final report on development of a programmable controller<br>M-FS-25388       | B80-10189 03 |                                                                                                                      |              |                                                                                                 |              |
| Rain, fog, and clouds for aircraft simulators<br>ARC-11158                   | B80-10383 06 |                                                                                                                      |              |                                                                                                 |              |
| <b>NUMERICAL INTEGRATION</b>                                                 |              |                                                                                                                      |              |                                                                                                 |              |
| Shell theory automated for rotational structures<br>M-FS-23027               | B80-10089 06 |                                                                                                                      |              |                                                                                                 |              |

**PARAMETERIZATION****SUBJECT INDEX****PARAMETERIZATION**

Determining manufacturing cost from product complexity  
M-FS-25371 B80-10439 09

**PARTICLE DENSITY (CONCENTRATION)**

Photographic measurement of droplet density  
M-FS-25326 B80-10182 03

**PARTICULATE SAMPLING**

Improved particulate-sampling filter  
NPO-14801 B80-10271 08

**PASSIVITY**

Photonitride passivating coating for IC's  
M-FS-25401 B80-10260 08

Silicon nitride passivation of IC's  
M-FS-25309 B80-10279 08

Passivation layer for steel substrate of solar cell  
NPO-14961 B80-10541 08

**PENETRATION**

Sidewall penetrator for oil wells  
NPO-14306 B80-10528 07

**PENETROMETERS**

Detecting a coal/shale interface  
M-FS-23720 B80-10061 04

**PERFORMANCE PREDICTION**

NASA PERT time II  
LEWIS-13145 B80-10286 09

**PERFORMANCE TESTS**

Indoor tests of the concentric-tube solar collector  
M-FS-25390 B80-10050 03

Outdoor tests of the concentric-tube collector  
M-FS-25398 B80-10191 03

Finned-absorber solar collector  
M-FS-25385 B80-10193 03

A test program for solar collectors  
M-FS-25433 B80-10194 03

Operational tests of a solar-energy system in Georgia  
M-FS-25420 B80-10195 03

Operational tests of a solar energy system Florida site  
M-FS-25423 B80-10196 03

A hot-water system tested onsite--Togus, Maine  
M-FS-25435 B80-10201 03

**PERMEABILITY**

Reduced hydrogen permeability at high temperatures  
LEWIS-13485 B80-10364 04

**PHASE CONTROL**

Improved power factor controller  
M-FS-25323 B80-10149 01

Energy saving in ac generators  
M-FS-25302 B80-10150 01

LSI logic for phase-control rectifiers  
M-FS-25208 B80-10161 01

**PHASE LOCKED SYSTEMS**

Continuous control of phase-locked-loop bandwidth  
MSC-16684 B80-10008 01

Microprocessor control for phase-lock receiver  
NPO-14438 B80-10033 02

Torque control for electric motors  
MSC-18635 B80-10170 02

Fiber optics transmit clock signal more reliably  
NPO-14749 B80-10456 03

**PHASE SHIFT**

Timing signal propagates without phase shift  
MSC-18777 B80-10449 02

**PHASE SHIFT KEYING**

Microprocessor-based detector for PSK commands  
NPO-14440 B80-10036 02

**PHASE TRANSFORMATIONS**

Combined photovoltaic and thermal-storage module  
NPO-14591 B80-10327 03

**PHOTOCHEMICAL REACTIONS**

UV actinometer film  
NPO-14479 B80-10179 03

Photonitride passivating coating for IC's  
M-FS-25401 B80-10260 08

**PHOTOCONDUCTIVITY**

Bulk lifetime indicates surface contamination  
NPO-14966 B80-10511 06

**PHOTOELECTRIC CELLS**

Solar cell is housed in light-bulb enclosure  
LEWIS-13418 B80-10442 01

**PHOTOGRAPHIC FILM**

Automatic 35 mm slide duplicator  
LEWIS-13399 B80-10249 07

**PHOTOGRAPHIC MEASUREMENT**

Photographic measurement of droplet density

M-FS-25326 B80-10182 03

**PHOTOGRAPHIC PROCESSING**

Automatic 35 mm slide duplicator  
LEWIS-13399 B80-10249 07

Heat for film processing from solar energy  
M-FS-25444 B80-10331 03

**PHOTOGRAPHIC RECORDING**

Recording fluid currents by holography  
M-FS-25373 B80-10222 06

**PHOTOGRAPHY**

Camera add-on records time of exposure  
LANGLEY-12635 B80-10183 03

**PHOTOMETERS**

Photometer used for response time measurement  
MSC-18712 B80-10317 02

Gas-laser power monitor  
LANGLEY-12682 B80-10455 03

Compact infrared detector  
NPO-14864 B80-10515 06

**PHOTOPRODUCTION**

Photoproduction of halogens using platinized TiO<sub>2</sub>  
LANGLEY-12713 B80-10491 04

**PHOTOVOLTAIC CELLS**

Photoelectrochemical cell with nondissolving anode  
LANGLEY-12591 B80-10038 03

A survey of photovoltaic systems  
M-FS-25397 B80-10187 03

Multijunction high-voltage solar cell  
LEWIS-13400 B80-10441 01

**PHOTOVOLTAIC CONVERSION**

Combined photovoltaic and thermal-storage module  
NPO-14591 B80-10327 03

**PHYSICAL EXERCISE**

Manual for physical fitness  
MSC-18915 B80-10372 05

**PHYSICAL FITNESS**

Manual for physical fitness  
MSC-18915 B80-10372 05

**PHYSIOLOGICAL TESTS**

Miniaturized physiological data telemetry system  
MSC-18804 B80-10371 05

**Cardiopulmonary system**

data-acquisition system  
MSC-18783 B80-10499 05

**PHYSIOLOGY**

Microprocessor-controlled ultrasonic plethysmograph  
MSC-18759 B80-10500 05

**PIERCING**

Abrasive drill for resilient materials  
LEWIS-13411 B80-10402 07

**PIEZOELECTRIC TRANSDUCERS**

Low-cost calibration of acoustic locators  
LANGLEY-12632 B80-10185 03

**PILOT TRAINING**

Rain, fog, and clouds for aircraft simulators  
ARC-11158 B80-10383 06

**PIPES (TUBES)**

Tubing cutter for tight spaces  
MSC-18538 B80-10099 07

Flared tube attachment fitting

MSC-18416 B80-10240 07

Tube flare inspection tool

MSC-19636 B80-10241 07

Test fittings for dimensionally critical tubes

NPO-14399 B80-10252 07

Sleeve puller salvages welded tubes

MSC-18686 B80-10256 07

Shrinking plastic tubing and nonstandard diameters

MSC-18430 B80-10268 08

Heat-shrinkable sleeve aids in insulating universal joints

MSC-18685 B80-10270 08

Tube-welder aids

MSC-18687 B80-10277 08

A construction technique for wind tunnel models

LANGLEY-12710 B80-10381 06

Reshaping tube ends for welding

MSC-18462 B80-10407 07

Method for shaping polyethylene tubing

MSC-18771 B80-10423 08

**PLASTIC COATINGS**

UV actinometer film

NPO-14479 B80-10179 03

**PLASTIC DEFORMATION**

Plastic deformation of engines and other nonlinear structures

M-FS-23814 B80-10399 06

**PLASTICIZERS**

Plasticizer for polyimide composites

LANGLEY-12642 B80-10206 04

**PLASTICS**

Ion-beam etching enhances adhesive bonding

LEWIS-13028 B80-10128 08

Hybrid polymer microspheres

NPO-14462 B80-10208 04

Forming complex cavities in clear plastic

LEWIS-13412 B80-10267 08

Shrinking plastic tubing and nonstandard diameters

MSC-18430 B80-10268 08

Plastic welder

LANGLEY-12540 B80-10274 08

**PLATINUM**

Removal of hydrogen bubbles from nuclear reactors

LANGLEY-12597 B80-10205 04

Photoproduction of halogens using platinized TiO<sub>2</sub>

LANGLEY-12713 B80-10491 04

**SUBJECT INDEX****PROPELLION SYSTEM CONFIGURATIONS**

|                             |                                                                               |              |                                        |                                                                          |                     |                                         |                                                                             |              |
|-----------------------------|-------------------------------------------------------------------------------|--------------|----------------------------------------|--------------------------------------------------------------------------|---------------------|-----------------------------------------|-----------------------------------------------------------------------------|--------------|
| <b>PLETHYSMOGRAPHY</b>      | Microprocessor-controlled ultrasonic plethysmograph<br>MSC-18759              | B80-10500 05 | <b>POLYPHENYLS</b>                     | Room-temperature adhesive<br>high-temperature use<br>MSC-16930           | for<br>B80-10129 08 | <b>PRESSURE</b>                         | An equation of state for liquids<br>NPO-14821                               | B80-10174 03 |
| <b>PLUGS</b>                | Bayonet plug with ramp-activated lock<br>MSC-18526                            | B80-10247 07 | <b>POLYQUINOXALINES</b>                | Room-temperature adhesive<br>high-temperature use<br>MSC-16930           | for<br>B80-10129 08 | <b>PRESSURE DISTRIBUTION</b>            | Three-dimensional potential flow<br>LANGLEY-12623                           | B80-10090 06 |
| <b>PNEUMATIC EQUIPMENT</b>  | Method for shaping polyethylene tubing<br>MSC-18771                           | B80-10423 08 | <b>POLYURETHANE FOAM</b>               | Cryogenic machining of polyurethane foam<br>MSC-18572                    | B80-10123 08        |                                         | Stream tube curvature analysis<br>LANGLEY-11535                             | B80-10235 06 |
|                             | Penumatic-power supply<br>MSC-18855                                           | B80-10527 07 |                                        | 'Grinding' cavities in polyurethane foam<br>MSC-18564                    | B80-10124 08        | <b>PRESSURE EFFECTS</b>                 | Wind-simulation tester for solar modules<br>NPO-14837                       | B80-10517 06 |
| <b>POLARIMETERS</b>         | Ultraviolet spectrometer/polarimeter<br>M-FS-25298                            | B80-10042 03 |                                        | Foam-filled cushions for sliding trays<br>MSC-18565                      | B80-10127 08        | <b>PRESSURE REGULATORS</b>              | Penumatic-power supply<br>MSC-18855                                         | B80-10527 07 |
| <b>POLARIZATION (WAVES)</b> | Antenna feed for linear and circular polarization<br>NPO-14810                | B80-10297 01 | <b>POROUS MATERIALS</b>                | Compact, super heat exchanger<br>LEWIS-12441                             | B80-10081 06        | <b>PRESSURE SENSORS</b>                 | Downhole pressure sensor<br>NPO-14729                                       | B80-10223 06 |
| <b>POLARIZED RADIATION</b>  | Receiving signals of any polarization<br>NPO-14836                            | B80-10315 02 | <b>PORTABLE EQUIPMENT</b>              | Penumatic-power supply<br>MSC-18855                                      | B80-10527 07        | <b>PRESSURE VESSELS</b>                 | Integral storage-bulb and microwave cavity for masers<br>GSFC-12542         | B80-10186 03 |
| <b>POLARIZED RADIATION</b>  | Dual-frequency bidirectional antenna<br>GSFC-12501                            | B80-10154 01 | <b>POSITION (LOCATION)</b>             | Crossed-grid charge locator<br>M-FS-25170                                | B80-10010 01        | <b>PRESSURE WELDING</b>                 | Resistance welding graphite-fiber composites<br>MSC-18534                   | B80-10264 08 |
| <b>POLISHING</b>            | Honing fixture for welded electrodes<br>M-FS-19537                            | B80-10278 08 |                                        | Microcomputer-based doppler systems for weather monitoring<br>GSFC-12448 | B80-10166 02        | <b>PRETREATMENT</b>                     | Sealing micropores in thin castings<br>MSC-18623                            | B80-10428 08 |
| <b>POLLUTION MONITORING</b> | Measuring water properties from a moving boat<br>LANGLEY-12325                | B80-10073 05 | <b>POSITION INDICATORS</b>             | Position monitor for mining machines<br>M-FS-25342                       | B80-10157 01        | <b>PRINTED CIRCUITS</b>                 | Low-resistance continuity tester<br>NPO-14881                               | B80-10445 01 |
|                             | Simultaneous measurement of three atmospheric pollutants<br>NPO-14828         | B80-10359 04 | <b>POSITIONING</b>                     | Compact positioning flange<br>MSC-14876                                  | B80-10104 07        | <b>PRISMS</b>                           | Rotatable prism for pan and tilt<br>LANGLEY-12388                           | B80-10041 03 |
|                             | Improved microbe detection in water samples<br>LANGLEY-12709                  | B80-10502 05 | <b>POSITIONING DEVICES (MACHINERY)</b> | Drill-motor holding fixture<br>MSC-18582                                 | B80-10108 07        |                                         | Diplexer for laser-beam heterodyne receiver<br>GSFC-12589                   | B80-10329 03 |
| <b>POLYAMIDE RESINS</b>     | One-step microwave foaming and curing<br>MSC-18707                            | B80-10420 08 |                                        | Jig for assembling large composite panels<br>LANGLEY-12394               | B80-10119 08        | <b>POTENTIAL THEORY</b>                 | Multibeam collimator uses prism stack<br>GSFC-12608                         | B80-10452 03 |
| <b>POLYCARBONATES</b>       | Cap protects aircraft nose cone<br>LANGLEY-12367                              | B80-10362 04 | <b>POTENTIAL FLOW</b>                  | Three-dimensional potential flow<br>LANGLEY-12623                        | B80-10090 06        |                                         |                                                                             |              |
| <b>POLYETHYLENES</b>        | Method for shaping polyethylene tubing<br>MSC-18771                           | B80-10423 08 |                                        | Potential flow in two-dimensional deflected nozzles<br>LEWIS-13461       | B80-10523 06        | <b>PROBLEM SOLVING</b>                  | Estimation of incomplete multinomial data<br>LANGLEY-12593                  | B80-10146 09 |
| <b>POLYIMIDE RESINS</b>     | A new family of fire-resistant foams<br>MSC-16921                             | B80-10418 08 | <b>POWER CONDITIONING</b>              | Fast microwave switching power divider<br>GSFC-12420                     | B80-10295 01        | <b>PRODUCTION ENGINEERING</b>           | Linear stochastic optimal control and estimation problem<br>LEWIS-13206     | B80-10287 09 |
|                             | Modified fire-resistant foams for seat cushions<br>MSC-18704                  | B80-10419 08 | <b>POWER EFFICIENCY</b>                | Improved power factor controller<br>M-FS-25323                           | B80-10149 01        | <b>PRODUCTION MANAGEMENT</b>            | Microprocessor systems for industrial process control<br>NPO-14661          | B80-10131 08 |
|                             | Rigid fire-resistant foams for walls and floors<br>MSC-18708                  | B80-10421 08 | <b>POWER LIMITERS</b>                  | Voltage controller/current limiter for ac<br>NPO-13061                   | B80-10032 02        | <b>PRODUCTIVITY</b>                     | Determining manufacturing cost from product complexity<br>M-FS-25371        | B80-10439 09 |
| <b>POLYIMIDES</b>           | Plasticizer for polyimide composites<br>LANGLEY-12642                         | B80-10206 04 | <b>POWER LINES</b>                     | Handtool assists in bundling cables<br>MSC-18567                         | B80-10255 07        | <b>PROGRAMMING LANGUAGES</b>            | Underground Coal Mining<br>NPO-14704                                        | B80-10071 04 |
|                             | Electrically conductive palladium-containing polyimide films<br>LANGLEY-12629 | B80-10357 04 | <b>POWER SUPPLY CIRCUITS</b>           | Frequency-controlled voltage regulator<br>NPO-13633                      | B80-10171 02        |                                         | User's guide to SFTRAN<br>LEWIS-13172                                       | B80-10143 09 |
|                             | Aluminum ions enhance polyimide adhesive<br>LANGLEY-12640                     | B80-10358 04 |                                        | Efficient, lightweight dc/dc switching converter<br>LEWIS-12809          | B80-10299 01        |                                         | Software design and documentation language<br>NPO-14610                     | B80-10145 09 |
|                             | Self-lubricating gearset<br>MSC-18801                                         | B80-10546 08 | <b>PREFORMS</b>                        | Hot forming graphite/polyimide structures<br>LANGLEY-12547               | B80-10422 08        |                                         | MBASIC processor<br>NPO-14245                                               | B80-10290 09 |
| <b>POLYMER CHEMISTRY</b>    | Heat resistant polymers<br>ARC-11176                                          | B80-10350 04 | <b>PREIMPREGNATION</b>                 | Plasticizer for polyimide composites<br>LANGLEY-12642                    | B80-10206 04        | <b>PROJECT MANAGEMENT</b>               | Occult-ORSER complete conversational user-language translator<br>GSFC-12604 | B80-10556 09 |
|                             | UV actinometer film<br>NPO-14479                                              | B80-10179 03 | <b>PRESSING (FORMING)</b>              | Knife-edge seal for vacuum bagging<br>M-FS-24049                         | B80-10135 08        | <b>PROPELLION SYSTEM CONFIGURATIONS</b> | Predicting propulsion system drag<br>LANGLEY-12619                          | B80-10238 06 |

## PROPELLION SYSTEM PERFORMANCE

## SUBJECT INDEX

### PROPELLION SYSTEM PERFORMANCE

Calculating linear A, B, C, and D matrices from a nonlinear dynamic engine simulation

LEWIS-13250 B80-10520 06

### PROTECTIVE COATINGS

Coatings for hybrid microcircuits

M-FS-25292 B80-10116 08

Alumina barrier for vacuum brazing

MSC-18528 B80-10125 08

A precoat prevents ceramic stopoffs from spalling

M-FS-19495 B80-10136 08

Low cost high temperature, duplex coating for superalloys

LEWIS-13497 B80-10352 04

Improved metallic and thermal barrier coatings

LEWIS-13324 B80-10353 04

Film coatings for contoured surfaces

MSC-18784 B80-10425 08

Passivation layer for steel substrate of solar cell

NPO-14961 B80-10541 08

### PROXIMITY

The 3-D guidance system with proximity sensors

NPO-14521 B80-10250 07

### PULMONARY CIRCULATION

Cardiopulmonary data-acquisition system

MSC-18783 B80-10499 05

### PULSE COMPRESSION

Pulse-shaping circuit for laser excitation

NPO-14556 B80-10453 03

### PULSE GENERATORS

Ultrasonic frequency analysis

LANGLEY-12697 B80-10377 06

Pulse-shaping circuit for laser excitation

NPO-14556 B80-10453 03

### PULSED LASERS

Tunable pulsed carbon dioxide laser

NPO-14984 B80-10458 03

### PUMPS

Dynamics of cavitating cascades and inducer pumps

M-FS-25399 B80-10392 06

### PURIFICATION

Treating domestic wastewater with water hyacinths

M-FS-23964 B80-10368 05

Driving bubbles out of glass

M-FS-25414 B80-10496 04

### PYLONS

Passive wing/store flutter suppression

LANGLEY-12468 B80-10219 06

### PYROTECHNICS

Soft container for explosive nuts

MSC-18871 B80-10532 07

## Q

### QUALITY CONTROL

Controlling the shape of glass microballoons

M-FS-25230 B80-10266 08

## R

### RACKS (FRAMES)

Versatile modular scaffolds

GSFC-12606 B80-10406 07

### RADAR

Short-range self-pulsed optical radar

NPO-14901 B80-10459 03

### RADAR MEASUREMENT

Measuring coal deposits by radar

M-FS-23922 B80-10060 04

### RADIANT HEATING

Operational tests of a solar energy system Florida site

M-FS-25423 B80-10196 03

A solar-energy system in Pennsylvania

M-FS-25427 B80-10197 03

Installation guidelines for the Pennsylvania system

M-FS-25424 B80-10198 03

A solar-energy system in Minnesota

M-FS-25428 B80-10199 03

Solar-energy system evaluation-Pennsylvania site

M-FS-25434 B80-10200 03

A hot-water system tested onsite-Togus, Maine

M-FS-25435 B80-10201 03

A reliable solar-heating system--Huntsville, Alabama

M-FS-25431 B80-10202 03

Solar-heating and cooling demonstration project

M-FS-25443 B80-10203 03

Mobile glazing unit

KSC-11171 B80-10538 08

### RADIATION DETECTORS

Crossed-grid charge locator

M-FS-25170 B80-10010 01

### RADIATION EFFECTS

Measuring radiation effects on MOS capacitors

NPO-14700 B80-10227 06

### RADIATION MEASUREMENT

Miniature personal UV solar dosimeter

LANGLEY-12469 B80-10321 03

Economical ultraviolet radiometer

NPO-14843 B80-10322 03

Field limiter for solar radiometers

NPO-14781 B80-10454 03

### RADIATION INSTRUMENTS

Far-field radiation pattern of tunable diode lasers

LANGLEY-12631 B80-10177 03

All-inorganic spark-chamber frame

GSFC-12354 B80-10265 08

### RADIATIVE HEAT TRANSFER

Holes help control temperature

GSFC-12618 B80-10373 06

### RADIO FREQUENCY HEATING

Time-shaped RF brazing

MSC-18617 B80-10272 08

### RADIO TELEMETRY

Receiver array for high-rate telemetry

NPO-14579 B80-10308 02

Receiving signals of any polarization

NPO-14836 B80-10315 02

### RADIOGRAPHY

X-ray beam pointer

MSC-18590 B80-10254 07

### RADIOMETERS

Economical ultraviolet radiometer

NPO-14843 B80-10322 03

Field limiter for solar radiometers

NPO-14781 B80-10454 03

Gas-laser power monitor

LANGLEY-12682 B80-10455 03

Compact infrared detector

NPO-14864 B80-10515 06

### RANDOM ACCESS MEMORY

RAM-Based frame synchronizer

GSFC-12430 B80-10164 02

RAM-Based parallel-output controller

GSFC-12447 B80-10165 02

### RANGE FINDERS

Short-range self-pulsed optical radar

NPO-14901 B80-10459 03

### READOUT

Monolithic CCD-array readout

ANGLEY-12376 B80-10307 02

### REAL TIME OPERATION

Simultaneous disk storage and retrieval

KSC-11167 B80-10304 02

### RECEIVERS

Microprocessor control for phase-lock receiver

NPO-14438 B80-10033 02

Receiver array for high-rate telemetry

NPO-14579 B80-10308 02

Arrayed receivers for low-rate telemetry

NPO-14590 B80-10309 02

Receiving signals of any polarization

NPO-14836 B80-10315 02

### RECLAMATION

Chlorinolysis reclaims rubber of waste tires

NPO-14935 B80-10365 04

### RECORDING

Real-time film recording from stroke-written CRT's

ANGLEY-12529 B80-10169 02

### RECTIFIERS

LSI logic for phase-control rectifiers

M-FS-25208 B80-10161 01

### RECYCLING

Chlorinolysis reclaims rubber of waste tires

NPO-14935 B80-10365 04

Treating domestic wastewater with water hyacinths

M-FS-23964 B80-10368 05

Recycling paper-pulp waste liquors

NPO-14797 B80-10492 04

### REDUCTION (CHEMISTRY)

REDOX electrochemical energy storage

LEWIS-13398 B80-10064 04

### REDUNDANCY

Toggled signal for prevention of control errors

MSC-18779 B80-10312 02

### REDUNDANT COMPONENTS

A redundant regulator control with low standby losses

NPO-13165 B80-10172 02

Four-wheel dual braking for automobiles

ANGLEY-12687 B80-10529 07

### REFLECTOMETERS

Detecting a coal/shale interface

M-FS-23720 B80-10061 04

### REFLECTORS

Low-cost concentrating mirrors

NPO-14962 B80-10542 08

### REFRACTIVITY

Changes in 'thermal lens' measure diffusivity

NPO-14657 B80-10218 06

### REFRACTORY MATERIALS

Thermal barrier and gas seal

MSC-18390 B80-10269 08

Tile densification with TEOS

MSC-18737 B80-10535 08

Repairing high-temperature glazed tiles

MSC-18736 B80-10536 08

**SUBJECT INDEX****SEMICONDUCTOR DEVICES**

|                                                          |              |                                                     |              |
|----------------------------------------------------------|--------------|-----------------------------------------------------|--------------|
| <b>REGENERATION (ENGINEERING)</b>                        |              | <b>RODS</b>                                         |              |
| Regenerative superheated steam turbine cycles            |              | Lock for hydraulic actuators                        |              |
| LEWIS-13392                                              | B80-10234 06 | MSC-18853                                           | B80-10530 07 |
| <b>REGRESSION ANALYSIS</b>                               |              | <b>ROLLER BEARINGS</b>                              |              |
| Multiple linear regression analysis                      |              | Cylindrical bearing analysis                        |              |
| M-FS-23764                                               | B80-10288 09 | LEWIS-13393                                         | B80-10533 07 |
| <b>RELIABILITY</b>                                       |              | <b>ROLLERS</b>                                      |              |
| A redundant regulator control with low standby losses    |              | High-performance, multiroller traction drive        |              |
| NPO-13165                                                | B80-10172 02 | LEWIS-13347                                         | B80-10244 07 |
| <b>REMOTE CONTROL</b>                                    |              | <b>ROLLING CONTACT LOADS</b>                        |              |
| The 3-D guidance system with proximity sensors           |              | Cylindrical bearing analysis                        |              |
| NPO-14521                                                | B80-10250 07 | LEWIS-13393                                         | B80-10533 07 |
| Electromechanical slip sensor                            |              | <b>ROTARY WINGS</b>                                 |              |
| NPO-14654                                                | B80-10253 07 | Isolation and measurement of rotor vibration forces |              |
| <b>REMOTE HANDLING</b>                                   |              | LANGLEY-12476                                       | B80-10507 06 |
| Mechanical hand for gripping objects                     |              | <b>ROTATING SHAFTS</b>                              |              |
| M-FS-23692                                               | B80-10243 07 | 28-Channel rotary transformer                       |              |
| Remote manipulator with force feed-back                  |              | NPO-14861                                           | B80-10300 01 |
| ARC-11272                                                | B80-10408 07 | <b>ROTORS</b>                                       |              |
| <b>REMOTE SENSORS</b>                                    |              | Rotor transient analysis                            |              |
| Applications of remote-sensing imagery                   |              | LEWIS-13230                                         | B80-10259 07 |
| M-FS-25107                                               | B80-10082 06 | <b>RUBBER</b>                                       |              |
| Laser-fluorescence measurement of marine algae           |              | Chlorinolysis reclaims rubber of waste tires        |              |
| LANGLEY-12282                                            | B80-10213 05 | NPO-14935                                           | B80-10365 04 |
| Heat-pipe sensor for remote leveling                     |              | <b>RUGGEDNESS</b>                                   |              |
| GSFC-12095                                               | B80-10248 07 | Self-lubricating gearset                            |              |
| Evaluating computer-drawn ground-cover maps              |              | MSC-18801                                           | B80-10546 08 |
| KSC-11195                                                | B80-10555 09 | <b>RUNNING</b>                                      |              |
| <b>RENDEZVOUS SPACECRAFT</b>                             |              | Manual for physical fitness                         |              |
| High-power dual-directional coupler                      |              | MSC-18915                                           | B80-10372 05 |
| NPO-14713                                                | B80-10447 02 | <b>S</b>                                            |              |
| <b>REPORTS</b>                                           |              | <b>SAFETY DEVICES</b>                               |              |
| Final report on development of a programmable controller |              | Cable-splice detector                               |              |
| M-FS-25388                                               | B80-10189 03 | ARC-11291                                           | B80-10074 06 |
| Finned-absorber solar collector                          |              | <b>SAFETY FACTORS</b>                               |              |
| M-FS-25385                                               | B80-10193 03 | Safety analysis for complex systems                 |              |
| <b>REPRODUCTION (COPYING)</b>                            |              | MSC-18745                                           | B80-10554 09 |
| Automatic 35 mm slide duplicator                         |              | <b>SAMPLING</b>                                     |              |
| LEWIS-13399                                              | B80-10249 07 | Better-quality CCD-array images                     |              |
| <b>RESILIENCE</b>                                        |              | NPO-14426                                           | B80-10168 02 |
| Abrasive drill for resilient materials                   |              | Improved particulate-sampling filter                |              |
| LEWIS-13411                                              | B80-10402 07 | NPO-14801                                           | B80-10271 08 |
| <b>RESISTANCE HEATING</b>                                |              | <b>SANDWICH STRUCTURES</b>                          |              |
| Easily-assembled helical heater                          |              | Lightweight terminal board                          |              |
| LANGLEY-11712                                            | B80-10130 08 | MSC-18787                                           | B80-10429 08 |
| <b>RESPONSE TIME (COMPUTERS)</b>                         |              | Heat pipes cool probe and sandwich panel            |              |
| Photometer used for response time measurement            |              | LANGLEY-12588; LANGLEY-12637                        | B80-10518 06 |
| MSC-18712                                                | B80-10317 02 | <b>SAPPHIRE</b>                                     |              |
| <b>RETAINING</b>                                         |              | More-reliable SOS ion implantations                 |              |
| Retaining a sleeve on a shaft                            |              | M-FS-25322                                          | B80-10262 08 |
| M-FS-19518                                               | B80-10103 07 | <b>SATELLITE OBSERVATION</b>                        |              |
| <b>REUSE</b>                                             |              | Ultraviolet spectrometer/polarimeter                |              |
| Sleeve puller salvages welded tubes                      |              | M-FS-25298                                          | B80-10042 03 |
| MSC-18686                                                | B80-10256 07 | <b>SATELLITE-BORNE INSTRUMENTS</b>                  |              |
| <b>RIBBONS</b>                                           |              | Applications of remote-sensing imagery              |              |
| Handtool assists in bundling cables                      |              | M-FS-25107                                          | B80-10082 06 |
| MSC-18567                                                | B80-10255 07 | <b>SCHOOLS</b>                                      |              |
| <b>RIBS (SUPPORTS)</b>                                   |              | Learning high-quality soldering                     |              |
| Shaping graphite/epoxy stiffeners                        |              | NPO-14869                                           | B80-10539 08 |
| MSC-18494                                                | B80-10120 08 | <b>SCINTILLATION COUNTERS</b>                       |              |
| <b>RING STRUCTURES</b>                                   |              | Multiple-creep-test apparatus                       |              |
| Eliminating gaps in split rings                          |              | GSFC-12561                                          | B80-10080 06 |
| MSC-18854                                                | B80-10540 08 | <b>SCREWS</b>                                       |              |
| <b>RISK</b>                                              |              | Self-energized screw coupling                       |              |
| Estimation of incomplete multinomial data                |              | M-FS-25340                                          | B80-10096 07 |
| LANGLEY-12593                                            | B80-10146 09 | <b>SCRUBBERS</b>                                    |              |
|                                                          |              | Carbon scrubber                                     |              |
|                                                          |              | MSC-16531                                           | B80-10356 04 |
| <b>SEA ROUGHNESS</b>                                     |              |                                                     |              |
| Oceanic-wave-measurement system                          |              |                                                     |              |
| M-FS-23862                                               | B80-10224 06 |                                                     |              |
| <b>SEALING</b>                                           |              |                                                     |              |
| Sealing micropores in thin castings                      |              |                                                     |              |
| MSC-18623                                                | B80-10428 08 |                                                     |              |
| Transistor package for high pressure applications        |              |                                                     |              |
| MSC-18743                                                | B80-10430 08 |                                                     |              |
| Spiral-wound gasket forms                                |              |                                                     |              |
| low-temperature seal                                     |              |                                                     |              |
| LANGLEY-12315                                            | B80-10543 08 |                                                     |              |
| <b>SEALS (STOPPERS)</b>                                  |              |                                                     |              |
| Self-acting shaft seals                                  |              |                                                     |              |
| LEWIS-13229                                              | B80-10109 07 |                                                     |              |
| Knife-edge seal for vacuum bagging                       |              |                                                     |              |
| M-FS-24049                                               | B80-10135 08 |                                                     |              |
| Design considerations for mechanical face seals          |              |                                                     |              |
| LEWIS-13146                                              | B80-10233 06 |                                                     |              |
| Thermal barrier and gas seal                             |              |                                                     |              |
| MSC-18390                                                | B80-10269 08 |                                                     |              |
| Heat/pressure seal for moving parts                      |              |                                                     |              |
| MSC-18422                                                | B80-10390 06 |                                                     |              |
| <b>SELF LUBRICATING MATERIALS</b>                        |              |                                                     |              |
| Self-lubricating gearset                                 |              |                                                     |              |
| MSC-18801                                                | B80-10546 08 |                                                     |              |
| <b>SEMICONDUCTING FILMS</b>                              |              |                                                     |              |
| 'Pelled-film' solar cells                                |              |                                                     |              |
| NPO-14734                                                | B80-10151 01 |                                                     |              |
| <b>SEMICONDUCTOR DEVICES</b>                             |              |                                                     |              |
| Photocapacitive image converter                          |              |                                                     |              |
| LANGLEY-12513                                            | B80-10009 01 |                                                     |              |
| Semiconductor step-stress testing                        |              |                                                     |              |
| M-FS-25329                                               | B80-10011 01 |                                                     |              |
| JANTX1N2970B zener diode                                 |              |                                                     |              |
| M-FS-25260                                               | B80-10012 01 |                                                     |              |
| JANTX1N2989B zener diode                                 |              |                                                     |              |
| M-FS-25261                                               | B80-10013 01 |                                                     |              |
| JANTX1N3016B zener diode                                 |              |                                                     |              |
| M-FS-25262                                               | B80-10014 01 |                                                     |              |
| JANTX1N3031B zener diode                                 |              |                                                     |              |
| M-FS-25263                                               | B80-10015 01 |                                                     |              |
| JANTX1N5622 diode                                        |              |                                                     |              |
| M-FS-25280                                               | B80-10016 01 |                                                     |              |
| JANTX1N5623 switching diode                              |              |                                                     |              |
| M-FS-25281                                               | B80-10017 01 |                                                     |              |
| JANTX2N2060 dual transistor                              |              |                                                     |              |
| M-FS-25251                                               | B80-10018 01 |                                                     |              |
| JANTX2N2219A dual transistor                             |              |                                                     |              |
| M-FS-25252                                               | B80-10019 01 |                                                     |              |
| JANTX2N2369A transistor                                  |              |                                                     |              |
| M-FS-25254                                               | B80-10020 01 |                                                     |              |
| JANTX2N2432A transistor                                  |              |                                                     |              |
| M-FS-26255                                               | B80-10021 01 |                                                     |              |
| JANTX2N2484 transistor                                   |              |                                                     |              |
| M-FS-25253                                               | B80-10022 01 |                                                     |              |
| JANTX2N2605 transistor                                   |              |                                                     |              |
| M-FS-25150                                               | B80-10023 01 |                                                     |              |
| JANTX2N2905A transistor                                  |              |                                                     |              |
| M-FS-25256                                               | B80-10024 01 |                                                     |              |
| JANTX2N2920 Dual transistor                              |              |                                                     |              |
| M-FS-25258                                               | B80-10025 01 |                                                     |              |
| JANTX2N2945A transistor                                  |              |                                                     |              |
| M-FS-25259                                               | B80-10026 01 |                                                     |              |
| JANTX2N3637 transistor                                   |              |                                                     |              |
| M-FS-25264                                               | B80-10027 01 |                                                     |              |
| JANTX2N3811 dual transistor                              |              |                                                     |              |
| M-FS-25265                                               | B80-10028 01 |                                                     |              |
| JANTX2N4150 transistor                                   |              |                                                     |              |
| M-FS-25267                                               | B80-10029 01 |                                                     |              |
| JANTX2N4856 field-effect transistor                      |              |                                                     |              |
| M-FS-25269                                               | B80-10030 01 |                                                     |              |
| Model for MOS field-time-dependent breakdown             |              |                                                     |              |
| NPO-14701                                                | B80-10162 01 |                                                     |              |

|                                                                                 |              |                                                                                 |                                                                    |                                                                               |                                                                  |
|---------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|
| Ohmic contact to GaAs semiconductor<br>LANGLEY-12466                            | B80-10263 08 | Noise suppression in forward-scattering<br>optical instruments<br>LANGLEY-12730 | B80-10324 03                                                       | Trislot-cavity microstrip antenna<br>MSC-18793                                | B80-10450 02                                                     |
| <b>SENSORY FEEDBACK</b>                                                         |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Remote manipulator with force<br>feed-back<br>ARC-11272                         | B80-10408 07 | <b>SIGNAL TRANSMISSION</b>                                                      | Receiver array for high-rate telemetry<br>NPO-14579                | B80-10308 02                                                                  | SLUDGE                                                           |
| <b>SEQUENCING</b>                                                               |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Multipath star switch controller<br>NPO-13422                                   | B80-10035 02 | Compressing TV-image data<br>NPO-14823                                          | B80-10310 02                                                       | Removing freon gas from hydraulic<br>fluid<br>MSC-18740                       | B80-10494 04                                                     |
| <b>SERVOCONTROL</b>                                                             |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Photometer used for response time<br>measurement<br>MSC-18712                   | B80-10317 02 | <b>SILICON</b>                                                                  | More-reliable SOS ion implantations<br>M-FS-25322                  | B80-10262 08                                                                  | <b>SNELLS LAW</b>                                                |
| <b>SETUPS</b>                                                                   |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Wire harness twisting aid<br>MSC-18581                                          | B80-10132 08 | Producing silicon continuously<br>NPO-14796                                     | B80-10537 08                                                       | Refraction corrections for surveying<br>MSC-18664                             | B80-10231 06                                                     |
| <b>SHAFTS (MACHINE ELEMENTS)</b>                                                |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Retaining a sleeve on a shaft<br>M-FS-19518                                     | B80-10103 07 | Back contacts for silicon-on-ceramic<br>solar cells<br>NPO-14809                | B80-10545 08                                                       | <b>SODIUM IODIDES</b>                                                         | Multiple-creep-test apparatus<br>GSFC-12561                      |
| Self-acting shaft seals<br>LEWIS-13229                                          |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Wire harness twisting aid<br>MSC-18581                                          | B80-10132 08 | Nickel-doped silicon for solar cells<br>NPO-14780                               | B80-10550 08                                                       | <b>SOLAR CELLS</b>                                                            | Photoelectrochemical<br>nondissolving anode<br>LANGLEY-12591     |
| <b>SHALES</b>                                                                   |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Detecting a coal/shale interface<br>M-FS-23720                                  | B80-10061 04 | <b>SILICON COMPOUNDS</b>                                                        | Tile densification with TEOS<br>MSC-18737                          | B80-10535 08                                                                  | 'Pelled-film' solar cells<br>NPO-14734                           |
| <b>SHAPERS</b>                                                                  |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Shaping graphite/epoxy stiffeners<br>MSC-18494                                  | B80-10120 08 | Repairing high-temperature glazed tiles<br>MSC-18736                            | B80-10536 08                                                       | Improved multispectral<br>solar cell array<br>HQN-10937                       | B80-10184 03                                                     |
| Controlling the shape of glass<br>microballoons<br>M-FS-25230                   |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Reshaping tube ends for welding<br>MSC-18462                                    | B80-10407 07 | <b>SILICON NITRIDES</b>                                                         | Photoniitride passivating coating for IC's<br>M-FS-25401           | B80-10260 08                                                                  | A survey of photovoltaic systems<br>M-FS-25397                   |
| <b>SHAPES</b>                                                                   |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Contour-measuring tool for composite<br>layups<br>ARC-11246                     | B80-10417 08 | Silicon nitride passivation of IC's<br>M-FS-25309                               | B80-10279 08                                                       | Ohmic contact to GaAs semiconductor<br>LANGLEY-12466                          | B80-10263 08                                                     |
| <b>SHARP PROPERTIES</b>                                                         |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Efficient measurement of shear properties<br>of fiber composites<br>LEWIS-13011 | B80-10216 06 | <b>SILICONES</b>                                                                | Solar-powered aircraft<br>LANGLEY-126'x5                           | B80-10404 07                                                                  | Solar-powered aircraft<br>LANGLEY-126'x5                         |
| Biaxial method for in-plane shear<br>testing<br>LANGLEY-12680                   | B80-10512 06 | A reliable solar-heating<br>system--Huntsville, Alabama<br>M-FS-25431           | B80-10202 03                                                       | Multijunction high-voltage solar cell<br>LEWIS-13400                          | B80-10441 01                                                     |
| <b>SHELL THEORY</b>                                                             |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Shell theory automated for rotational<br>structures<br>M-FS-23027               | B80-10089 06 | New pressure-sensitive silicone<br>adhesive<br>LANGLEY-12737                    | B80-10495 04                                                       | Solar cell is housed in light-bulb<br>enclosure<br>LEWIS-13418                | B80-10442 01                                                     |
| <b>SHOCK ABSORBERS</b>                                                          |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Self-adjusting mechanical snubbing link<br>MSC-16134                            | B80-10246 07 | <b>SILICONIZING</b>                                                             | Coatings for hybrid microcircuits<br>M-FS-25292                    | B80-10116 08                                                                  | Wind-simulation tester for solar<br>modules<br>NPO-14837         |
| <b>SHOCK WAVE CONTROL</b>                                                       |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Suppressing buzz-saw noise in jet<br>engines<br>LANGLEY-12645                   | B80-10220 06 | Photoniitride passivating coating for IC's<br>M-FS-25401                        | B80-10260 08                                                       | Passivation layer for steel substrate of<br>solar cell<br>NPO-14961           | B80-10541 08                                                     |
| <b>SHORT CIRCUITS</b>                                                           |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Detecting short circuits during<br>assembly<br>ARC-11116                        | B80-10007 01 | <b>SIMULATION</b>                                                               | CADAT logic simulation program<br>M-FS-25183                       | B80-10432 08                                                                  | Back contacts for silicon-on-ceramic<br>solar cells<br>NPO-14809 |
| Voltage controller/current limiter for ac<br>NPO-13061                          |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Shrinking plastic tubing and nonstandard<br>diameters<br>MSC-18430              | B80-10268 08 | CADAT field-effect-transistor simulator<br>M-FS-25067                           | B80-10434 08                                                       | Nickel-doped silicon for solar cells<br>NPO-14780                             | B80-10550 08                                                     |
| <b>SIGNAL PROCESSING</b>                                                        |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Improved code-tracking loop<br>MSC-18035                                        | B80-10034 02 | <b>SINTERING</b>                                                                | Wind-simulation tester for solar<br>modules<br>NPO-14837           | B80-10517 06                                                                  | <b>SOLAR COLLECTORS</b>                                          |
| Smoothing the output from a DAC<br>FRC-11025                                    |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Receiving signals of any polarization<br>NPO-14836                              | B80-10315 02 | Double metalization for VLSI<br>M-FS-25149                                      | B80-10261 08                                                       | Fresnel lens tracking solar collector<br>M-FS-25419                           | B80-10190 03                                                     |
| <b>SIGNAL RECEPTION</b>                                                         |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Real-time image enhancement<br>NPO-14281                                        | B80-10311 02 | <b>SIZE DETERMINATION</b>                                                       | Resizing structures for minimum weight<br>LANGLEY-12699            | B80-10394 06                                                                  | Outdoor tests of the concentric-tube<br>collector<br>M-FS-25398  |
| <b>SIGNAL TO NOISE RATIOS</b>                                                   |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Cavity-backed spiral-slot antenna<br>MSC-18532                                  | B80-10448 02 | <b>SIZING (SHAPING)</b>                                                         | Shrinking plastic tubing and nonstandard<br>diameters<br>MSC-18430 | B80-10268 08                                                                  | Selective optical coatings for solar<br>collectors<br>M-FS-23589 |
| <b>SLICING</b>                                                                  |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Precision filament cutter<br>LANGLEY-12564                                      | B80-10093 07 | Retaining a sleeve on a shaft<br>M-FS-19518                                     | B80-10103 07                                                       | Finned-absorber solar collector<br>M-FS-25385                                 | B80-10193 03                                                     |
| <b>SLIDING</b>                                                                  |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Electromechanical slip sensor<br>NPO-14654                                      | B80-10253 07 | Sleeve puller salvages welded tubes<br>MSC-18686                                | B80-10256 07                                                       | A test program for solar collectors<br>M-FS-25433                             | B80-10194 03                                                     |
| <b>SLOT ANTENNAS</b>                                                            |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Cavity-backed spiral-slot antenna<br>MSC-18532                                  | B80-10448 02 | Heat-shrinkable sleeve aids in insulating<br>universal joints<br>MSC-18685      | B80-10270 08                                                       | <b>SOLAR ENERGY</b>                                                           | New mounting improves solar-cell<br>efficiency                   |
| <b>SLIPPING</b>                                                                 |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Alining sleeve for optical fibers<br>MSC-18756                                  | B80-10424 01 | Retaining a sleeve on a shaft<br>M-FS-19518                                     | B80-10103 07                                                       | NPO-14467                                                                     | B80-10039 03                                                     |
| <b>SLICING</b>                                                                  |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Precision filament cutter<br>LANGLEY-12564                                      | B80-10093 07 | Sleeve puller salvages welded tubes<br>MSC-18686                                | B80-10256 07                                                       | An adjustable solar concentrator<br>NPO-14710                                 | B80-10043 03                                                     |
| <b>SLIDING</b>                                                                  |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Electromechanical slip sensor<br>NPO-14654                                      | B80-10253 07 | Heat-shrinkable sleeve aids in insulating<br>universal joints<br>MSC-18685      | B80-10270 08                                                       | Twelve solar-heating/cooling systems:<br>Design and development<br>M-FS-25358 | B80-10046 03                                                     |
| <b>SLOT ANTENNAS</b>                                                            |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Cavity-backed spiral-slot antenna<br>MSC-18532                                  | B80-10448 02 | Alining sleeve for optical fibers<br>MSC-18756                                  | B80-10424 01                                                       | Solar-heating and cooling system design<br>package<br>M-FS-25393              | B80-10047 03                                                     |
| <b>SLIPPING</b>                                                                 |              |                                                                                 |                                                                    |                                                                               |                                                                  |
| Benefit assessment of solar-augmented<br>natural gas systems<br>NPO-14568       | B80-10048 03 | Indoor tests of the concentric-tube solar<br>collector<br>M-FS-25390            | B80-10050 03                                                       | Air-cooled solar-collector specification<br>M-FS-25336                        | B80-10049 03                                                     |
| <b>SLIPPING</b>                                                                 |              |                                                                                 |                                                                    |                                                                               |                                                                  |

**SUBJECT INDEX****SOLAR HEATING**

Evacuated-tube solar  
collector--performance evaluation  
M-FS-25339 B80-10051 03

Glycol/water evacuated-tube solar collector  
M-FS-25337 B80-10052 03

Thermosyphon heat exchanger  
M-FS-25389 B80-10053 03

Controller for solar-energy systems  
M-FS-25386 B80-10054 03

Controller and temperature monitor for solar heating  
M-FS-25387 B80-10055 03

Inhibiting corrosion in solar-heating and cooling systems  
M-FS-25387 B80-10056 03

A survey of photovoltaic systems  
M-FS-25397 B80-10187 03

Thermal stratification in liquid storage tanks  
M-FS-25416 B80-10188 03

Final report on development of a programmable controller  
M-FS-25388 B80-10189 03

Fresnel lens tracking solar collector  
M-FS-25419 B80-10190 03

Outdoor tests of the concentric-tube collector  
M-FS-25398 B80-10191 03

Selective optical coatings for solar collectors  
M-FS-23589 B80-10192 03

Finned-absorber solar collector  
M-FS-25385 B80-10193 03

A test program for solar collectors  
M-FS-25433 B80-10194 03

Operational tests of a solar-energy system in Georgia  
M-FS-25420 B80-10195 03

Operational tests of a solar energy system Florida site  
M-FS-25423 B80-10196 03

A solar-energy system in Pennsylvania  
M-FS-25427 B80-10197 03

Installation guidelines for the Pennsylvania system  
M-FS-25424 B80-10198 03

A solar-energy system in Minnesota  
M-FS-25428 B80-10199 03

Solar-energy system evaluation--Pennsylvania site  
M-FS-25434 B80-10200 03

A hot-water system tested onsite--Togus, Maine  
M-FS-25435 B80-10201 03

A reliable solar-heating system--Huntsville, Alabama  
M-FS-25431 B80-10202 03

Solar-heating and cooling demonstration project  
M-FS-25443 B80-10203 03

Detecting surface faults on solar mirrors  
NPO-14684 B80-10230 06

Multiplexed logic controls solar-heating system  
M-FS-25287 B80-10318 03

Four-cell solar tracker  
NPO-14811 B80-10319 03

Offset paraboloidal solar concentrator  
NPO-14846 B80-10320 03

Heat for film processing from solar energy  
M-FS-25444 B80-10331 03

Solar heater/cooler for mass market  
M-FS-25452 B80-10332 03

Data-acquisition and control system for severe environments  
M-FS-25471 B80-10333 03

Solar heater/cooler for mass market  
M-FS-25468 B80-10334 03

Solar--heated and cooled office building--Dalton, Georgia  
M-FS-25451 B80-10335 03

Solar-heating and hot water system--St. Louis, Missouri  
M-FS-25453 B80-10336 03

Solar heating for an electronics manufacturing plant--Blue Earth, Minnesota  
M-FS-25469 B80-10337 03

Costs and description of a solar-energy system--Austin, Texas  
M-FS-25472 B80-10338 03

Solar energy in a historical city--Abbeville, South Carolina  
M-FS-25479 B80-10339 03

municipal recreation center is heated and cooled by solar energy  
M-FS-25478 B80-10340 03

Solar energy meets 50 percent of motel hot water needs--Key West, Florida  
M-FS-25454 B80-10341 03

Solar heated office complex--Greenwood, South Carolina  
M-FS-25458 B80-10342 03

Residential system tested in an office--Huntsville, Alabama  
M-FS-25481 B80-10343 03

Solar heated two level residence--Akron, Ohio  
M-FS-25480 B80-10344 03

Solar energy workshop--Tucson, Arizona  
M-FS-25473 B80-10345 03

Residential solar hot water system--Tempe, Arizona  
M-FS-25490 B80-10346 03

Residential solar heating installation--Stillwater, Minnesota  
M-FS-25504 B80-10347 03

Three story residence with solar heat--Manchester, New Hampshire  
M-FS-25499 B80-10348 03

A high school is supplied with solar energy--Dallas, Texas  
M-FS-25514 B80-10349 03

Solar-powered aircraft  
LANGLEY-12615 B80-10404 07

Multijunction high-voltage solar cell  
LEWIS-13400 B80-10441 01

Solar-site test module  
M-FS-25543 B80-10460 03

Evaluation of an evacuated-tube liquid solar collector  
M-FS-25450 B80-10461 03

Solar water heater design package  
M-FS-25521 B80-10462 03

Five-city economics of a solar hot-water-system  
M-FS-25532 B80-10463 03

Economic evaluation of a solar hot-water-system  
M-FS-25529 B80-10464 03

Residential solar-heating system uses pyramidal optics  
M-FS-25567 B80-10465 03

Solar-heated bank--Marks Mississippi  
M-FS-25558 B80-10466 03

Solar water-heating performance evaluation--San Diego, California  
M-FS-25502 B80-10467 03

Solar-heated and cooled savings and loan building--Leavenworth, Kansas  
M-FS-25520 B80-10468 03

Solar-energy landmark  
Building--Columbia, Missouri  
M-FS-25524 B80-10469 03

Solar heating for an observatory--Lincoln, Nebraska  
M-FS-25525 B80-10470 03

Two-story residence with solar heating--Newman, Georgia  
M-FS-25526 B80-10471 03

Solar-energy heats a transportation test center--Pueblo, Colorado  
M-FS-25527 B80-10472 03

Single-family-residence solar heating--Carlsbad, New Mexico  
M-FS-25528 B80-10473 03

Multimode solar-heating system--Columbia, South Carolina  
M-FS-25552 B80-10474 03

Solar-heated swimming school--Wilmington, Delaware  
M-FS-25548 B80-10475 03

Winter performance of a domestic solar-heating system--Duffield, Virginia  
M-FS-25540 B80-10476 03

One-year assessment of a solar space/water heater--Clinton, Mississippi  
M-FS-25539 B80-10477 03

Fire-station solar-energy system--Kansas City, Missouri  
M-FS-25538 B80-10478 03

Solar-heated ranger station--Glendo, Wyoming  
M-FS-25537 B80-10479 03

Economic evaluation of a solar hot-water system--Palm Beach County, Florida  
M-FS-25536 B80-10480 03

Residential system--Lansing, Michigan  
M-FS-25530 B80-10481 03

Solar space-heating system--Yosemite National Park, California  
M-FS-25553 B80-10482 03

Motel solar-hot-water system--Dallas, Texas  
M-FS-25575 B80-10483 03

Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida  
M-FS-25569 B80-10484 03

Closed-circulation system for motel hot water--Savannah, Georgia  
M-FS-25572 B80-10485 03

Solar heating for a restaurant--North Little Rock, Arkansas  
M-FS-25568 B80-10486 03

Motel solar hot-water installation--Atlanta, Georgia  
M-FS-25564 B80-10487 03

Building with integral solar-heat storage--Starkville, Mississippi  
M-FS-25559 B80-10488 03

Less-toxic corrosion inhibitors  
M-FS-25496 B80-10497 04

Low-cost concentrating mirrors  
NPO-14962 B80-10542 08

Nickel-doped silicon for solar cells  
NPO-14780 B80-10550 08

**SOLAR ENERGY CONVERSION**  
Field limiter for solar radiometers  
NPO-14781 B80-10454 03

**SOLAR HEATING**  
Final report on development of a programmable controller  
M-FS-25388 B80-10189 03

**SOLAR RADIATION**

Ultraviolet spectrometer/polarimeter  
M-FS-25298 B80-10042 03  
Miniature personal UV solar dosimeter  
LANGLEY-12469 B80-10321 03  
Economical ultraviolet radiometer  
NPO-14843 B80-10322 03  
Field limiter for solar radiometers  
NPO-14781 B80-10454 03

**SOLAR REFLECTORS**

Detecting surface faults on solar mirrors  
NPO-14684 B80-10230 06

**SOLDERING**

Connector heat shield  
MSC-16282 B80-10126 08  
Learning high-quality soldering  
NPO-14869 B80-10539 08  
Arc spraying solderable tabs to glass  
NPO-14853 B80-10544 08

**SOLID LUBRICANTS**

Lubrication handbook  
M-FS-25158 B80-10210 04

**SPACE MANUFACTURING**

Should we industrialize space?  
M-FS-23963 B80-10137 08

**SPACECRAFT COMMUNICATION**

High-power dual-directional coupler  
NPO-14713 B80-10447 02

**SPACECRAFT INSTRUMENTS**

The 3-D guidance system with proximity sensors  
NPO-14521 B80-10250 07

**SPALLING**

A precoat prevents ceramic stopoffs from spalling  
M-FS-19495 B80-10136 08

**SPARK CHAMBERS**

All-inorganic spark-chamber frame  
GSFC-12354 B80-10265 08

**SPECIES DIFFUSION**

Diffusion in single-phase binary alloys  
LANGLEY-12665 B80-10498 04

**SPECIMENS**

Vise holds specimens for microscope  
MSC-18690 B80-10098 07

**SPECTRAL ENERGY DISTRIBUTION**

Improved multispectral solar cell array  
HQN-10937 B80-10184 03

**SPECTROMETERS**

Fast-response atmospheric-pollutant monitor  
LANGLEY-12317 B80-10062 04

Instrument remotely measures wind velocities  
NPO-14524 B80-10176 03

Optical calibrator for TDL spectrometers  
GSFC-12562 B80-10178 03

Acoustically-tuned optical spectrometer  
HQN-10924 B80-10326 03

Cleaving machine for hard crystals  
GSFC-12584 B80-10401 07

**SPECTROSCOPIC ANALYSIS**

Integrated material-surface analyzer  
NPO-14702 B80-10388 06

**SPECTROSCOPIC TELESCOPES**

Ultraviolet spectrometer/polarimeter  
M-FS-25298 B80-10042 03

**SPECTROSCOPY**

High-resolution spectrometry/interferometer  
NPO-14448 B80-10175 03

**SPEED CONTROL**

Speed control for synchronous motors  
MSC-18680 B80-10444 01

**SPEED REGULATORS**

Speed control for synchronous motors  
MSC-18680 B80-10444 01

**SPHERES**

Hybrid polymer microspheres  
NPO-14462 B80-10208 04

**SPHERICAL SHELLS**

Drop tower with no aerodynamic drag  
NPO-14845 B80-10549 08

**SPIN STABILIZATION**

Aircraft equilibrium spin characteristics  
LANGLEY-12502 B80-10087 06

**SPlicing**

Cable-splice detector  
ARC-11291 B80-10074 06

Safely splicing glass optical fibers  
KSC-11107 B80-10134 08

**SPRAYED COATINGS**

Film coatings for contoured surfaces  
MSC-18784 B80-10425 08

**SPRAYING**

Spraying suspensions uniformly  
M-FS-25139 B80-10409 07

Pneumatic-power supply  
MSC-18855 B80-10527 07

**SPRINGS (ELASTIC)**

Self-energized screw coupling  
M-FS-25340 B80-10096 07

Interchangeable spring modules for inertia measurements  
LANGLEY-12402 B80-10386 06

**SPUTTERING**

Improved adherence of TiC coatings to steel  
LEWIS-13169 B80-10207 04

**STANDARDS**

A temperature fixed point near 58 C  
M-FS-25304 B80-10204 04

**STATIC DISCHARGERS**

More-reliable SOS ion implantations  
M-FS-25322 B80-10262 08

**STATIC ELECTRICITY**

Reducing static charges in fluidized bed reactions  
ARC-11245 B80-10068 04

**STATISTICAL ANALYSIS**

Estimation of incomplete multinomial data  
LANGLEY-12593 B80-10146 09

Multiple linear regression analysis  
M-FS-23764 B80-10288 09

**STATISTICAL DISTRIBUTIONS**

An approximation to student's t-distribution  
LANGLEY-12238 B80-10284 09

**STATISTICS**

Multiple linear regression analysis  
M-FS-23764 B80-10288 09

**STEAM TURBINES**

Regenerative superheated steam turbine cycles  
LEWIS-13392 B80-10234 06

**STEELS**

Improved adherence of TiC coatings to steel  
LEWIS-13169 B80-10207 04

**STIFFENING**

Heat-shrinkable sleeve aids in insulating universal joints  
MSC-18685 B80-10270 08

**STOCHASTIC PROCESSES**

Linear stochastic optimal control and estimation problem  
LEWIS-13206 B80-10287 09

**STORAGE TANKS**

Thermal stratification in liquid storage tanks  
M-FS-25416 B80-10188 03

**STOWAGE (ONBOARD EQUIPMENT)**

Lightweight cryogenic vessel  
NPO-14794 B80-10548 08

**STRAIN GAGES**

LVD gage for fracture-toughness tests in liquid hydrogen  
LEWIS-13038 B80-10075 06

Modified displacement gage for cryogenic testing  
LEWIS-13039 B80-10077 06

Signal conditioner for nickel temperature sensors  
MSC-18367 B80-10298 01

**STRATIFICATION**

Thermal stratification in liquid storage tanks  
M-FS-25416 B80-10188 03

**STRESS (PHYSIOLOGY)**

Cardiopulmonary system  
MSC-18783 B80-10499 05

Microprocessor-based cardiotachometer  
MSC-18775 B80-10501 05

**STRESS ANALYSIS**

Structural design with stress and displacement constraints  
M-FS-25235 B80-10521 06

**STRESS CONCENTRATION**

Predicting lifetime of cast parts  
M-FS-19549 B80-10228 06

NASTRAN modifications for recovering strains and curvatures  
LEWIS-12592 B80-10395 06

**STRESS MEASUREMENT**

Efficient measurement of shear properties of fiber composites  
LEWIS-13011 B80-10216 06

Biaxial method for in-plane shear testing  
LANGLEY-12680 B80-10512 06

**STRIP TRANSMISSION LINES**

Multiband microstrip antenna  
MSC-18334 B80-10001 01

Fast microwave switching power divider  
GSFC-12420 B80-10295 01

**STRUCTURAL ANALYSIS**

Shell theory automated for rotational structures  
M-FS-23027 B80-10089 06

Predicting crack propagation  
MSC-18718:MSC-18721 B80-10283 08

NASTRAN modifications for recovering strains and curvatures  
LEWIS-12592 B80-10395 06

Plastic deformation of engines and other nonlinear structures  
M-FS-23814 B80-10399 06

An all-FORTRAN version of NASTRAN for the VAX  
GSFC-12600 B80-10522 06

**STRUCTURAL DESIGN**

Resizing structures for minimum weight  
LANGLEY-12699 B80-10394 06

Versatile modular scaffolds  
GSFC-12606 B80-10406 07

Structural design with stress and displacement constraints  
M-FS-25235 B80-10521 06

## SUBJECT INDEX

## TEMPERATURE

|                                                                               |                                                                              |                                                                                                    |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| <b>STRUCTURAL MEMBERS</b>                                                     | <b>SURGES</b>                                                                | <b>SYSTEMS ENGINEERING</b>                                                                         |
| Automatic connector for structural beams<br>M-FS-25134 B80-10094 07           | Voltage controller/current limiter for ac<br>NPO-13061 B80-10032 02          | Goddard mission analysis system<br>GSFC-12392 B80-10144 09                                         |
| Mechanical end joint for structural columns<br>LANGLEY-12482 B80-10095 07     | Improved ureteral stone fragmentation catheter<br>NPO-14745 B80-10370 05     |                                                                                                    |
| Shaping graphite/epoxy stiffeners<br>MSC-18494 B80-10120 08                   |                                                                              | <b>T</b>                                                                                           |
| Automatic connector joins structural columns<br>LANGLEY-12578 B80-10251 07    | A survey of photovoltaic systems<br>M-FS-25397 B80-10187 03                  | <b>TACKINESS</b>                                                                                   |
| Lock for hydraulic actuators<br>MSC-18853 B80-10530 07                        | Thermal stratification in liquid storage tanks<br>M-FS-25416 B80-10188 03    | New pressure-sensitive silicone adhesive<br>LANGLEY-12737 B80-10495 04                             |
| <b>STRUCTURAL VIBRATION</b>                                                   | <b>SUSPENDING (MIXING)</b>                                                   | <b>TANK GEOMETRY</b>                                                                               |
| Vibration modes and frequencies of structures<br>LANGLEY-12647 B80-10237 06   | Spraying suspensions uniformly<br>M-FS-25139 B80-10409 07                    | Lightweight cryogenic vessel<br>NPO-14794 B80-10548 08                                             |
| <b>SUBSONIC FLOW</b>                                                          | <b>SWAGING</b>                                                               | <b>TANKER SHIPS</b>                                                                                |
| A generalized vortex lattice method<br>LANGLEY-12636 B80-10236 06             | Adjustable base for centering staked bearings<br>MSC-19660 B80-10133 08      | Detection of tanker defects with infrared thermography<br>LANGLEY-12655 B80-10221 06               |
| <b>SUPERCOOLING</b>                                                           | <b>SWITCHES</b>                                                              | <b>TASK COMPLEXITY</b>                                                                             |
| Containless materials processing in the laboratory<br>M-FS-25242 B80-10059 04 | Automatic thermal switches<br>GSFC-12553 B80-10214 06                        | Determining manufacturing cost from product complexity<br>M-FS-25371 B80-10439 09                  |
| <b>SUPERCritical WINGS</b>                                                    | <b>SWITCHING</b>                                                             | <b>TEA LASERS</b>                                                                                  |
| Transonic airfoil design code<br>LANGLEY-12460 B80-10085 06                   | Multipath star switch controller<br>NPO-13422 B80-10035 02                   | Tunable pulsed carbon dioxide laser<br>NPO-14984 B80-10458 03                                      |
| <b>SUPERHEATING</b>                                                           | <b>SWITCHING CIRCUITS</b>                                                    | <b>TECHNOLOGY ASSESSMENT</b>                                                                       |
| Regenerative superheated steam turbine cycles<br>LEWIS-13392 B80-10234 06     | Energy saving in ac generators<br>M-FS-25302 B80-10150 01                    | Should we industrialize space?<br>M-FS-23963 B80-10137 08                                          |
| <b>SUPersonic COMBUSTION RAMJET ENGINES</b>                                   | Frequency-controlled voltage regulator<br>NPO-13633 B80-10171 02             | <b>TEFLON (TRADEMARK)</b>                                                                          |
| Viscous characteristics analysis<br>LANGLEY-12598 B80-10084 06                | Fast microwave switching power divider<br>GSFC-12420 B80-10295 01            | Shrinking plastic tubing and nonstandard diameters<br>MSC-18430 B80-10268 08                       |
| <b>SUPERSONIC FLOW</b>                                                        | Efficient, lightweight dc/dc switching converter<br>LEWIS-12809 B80-10299 01 | <b>TELECOMMUNICATION</b>                                                                           |
| A generalized vortex lattice method<br>LANGLEY-12636 B80-10236 06             | Time-sharing switch for vacuum brazing<br>MSC-18699 B80-10412 07             | Dual-frequency bidirectional antenna<br>GSFC-12501 B80-10154 01                                    |
| <b>SUPERSONIC INLETS</b>                                                      | <b>SWIVELS</b>                                                               | Basic cluster compression algorithm<br>NPO-14816 B80-10291 09                                      |
| Flow field in supersonic mixed-compression inlets<br>LEWIS-13279 B80-10088 06 | Ball-joint grounding ring<br>MSC-18824 B80-10405 07                          | <b>TELEMETRY</b>                                                                                   |
| <b>SUPPORTS</b>                                                               | <b>SYNCHRONISM</b>                                                           | Microprocessor-controlled data synchronizer<br>MSC-18535 B80-10031 02                              |
| Drill-motor holding fixture<br>MSC-18582 B80-10108 07                         | Timing signal propagates without phase shift<br>MSC-18777 B80-10449 02       | Efficient telemetry format<br>NPO-13679 B80-10142 09                                               |
| Cryogenic-storage-tank support<br>MSC-14848 B80-10258 07                      | Fiber optics transmit clock signal more reliably<br>NPO-14749 B80-10456 03   | RAM-Based frame synchronizer<br>GSFC-12430 B80-10164 02                                            |
| Versatile modular scaffolds<br>GSFC-12606 B80-10406 07                        | <b>SYNCHRONIZERS</b>                                                         | Receiver array for high-rate telemetry<br>NPO-14579 B80-10308 02                                   |
| Compact table-tilting mechanism<br>NPO-14800 B80-10411 07                     | Independent synchronizer for digital decoders<br>MSC-16723 B80-10004 01      | Arrayed receivers for low-rate telemetry<br>NPO-14590 B80-10309 02                                 |
| Lock for hydraulic actuators<br>MSC-18853 B80-10530 07                        | Microprocessor-controlled data synchronizer<br>MSC-18535 B80-10031 02        | Receiving signals of any polarization<br>NPO-14836 B80-10315 02                                    |
| <b>SUPPRESSORS</b>                                                            | RAM-Based frame synchronizer<br>GSFC-12430 B80-10164 02                      | Miniatized physiological data telemetry system<br>MSC-18804 B80-10371 05                           |
| Suppressing buzz-saw noise in jet engines<br>LANGLEY-12645 B80-10220 06       | <b>SYNCHRONOUS MOTORS</b>                                                    | <b>TELEOPERATORS</b>                                                                               |
| <b>SURFACE DEFECTS</b>                                                        | Speed control for synchronous motors<br>MSC-18680 B80-10444 01               | Electromechanical slip sensor<br>NPO-14654 B80-10253 07                                            |
| Detecting surface faults on solar mirrors<br>NPO-14684 B80-10230 06           | <b>SYNCHRONOUS SATELLITES</b>                                                | <b>TELESCOPES</b>                                                                                  |
| Chemical-milling solution for invar alloy<br>M-FS-25365 B80-10113 08          | Predicting and monitoring duststorms<br>NPO-14277 B80-10323 03               | Compact positioning flange<br>MSC-14876 B80-10104 07                                               |
| <b>SURFACE FINISHING</b>                                                      | <b>SYNTHETIC FUELS</b>                                                       | Rotatable prism for pan and tilt<br>LANGLEY-12388 B80-10041 03                                     |
| Integrated material-surface analyzer<br>NPO-14702 B80-10388 06                | Coal conversion and synthetic-fuel production<br>M-FS-25330 B80-10070 04     | Temperature-compensating dc restorer<br>LANGLEY-12549 B80-10152 01                                 |
| <b>SURFACE VEHICLES</b>                                                       | <b>SYRINGES</b>                                                              | <b>TELEVISION TRANSMISSION</b>                                                                     |
| Improved battery charger for electric vehicles<br>NPO-14964 B80-10440 01      | Transferring small samples of viscous liquid<br>MSC-18533 B80-10069 04       | Compressing TV-image data<br>NPO-14823 B80-10310 02                                                |
| <b>SURGERY</b>                                                                | <b>SYSTEMS ANALYSIS</b>                                                      | <b>TEMPERATURE</b>                                                                                 |
| Improved ureteral stone fragmentation catheter<br>NPO-14745 B80-10370 05      | System time-domain simulation<br>MSC-18333 B80-10292 09                      | An equation of state for liquids<br>NPO-14821 B80-10174 03                                         |
|                                                                               |                                                                              | One-year assessment of a solar space/water heater--Clinton, Mississippi<br>M-FS-25539 B80-10477 03 |

## TEMPERATURE COMPENSATION

### TEMPERATURE COMPENSATION

Temperature-compensating dc restorer  
LANGLEY-12549 B80-10152 01

**TEMPERATURE CONTROL**

Energy-saving thermostat  
LANGLEY-12450 B80-10040 03

Controller and temperature monitor for solar heating  
M-FS-25387 B80-10055 03

Temperature controller for hyperthermia devices  
LANGLEY-12528 B80-10072 05

Final report on development of a programmable controller  
M-FS-25388 B80-10189 03

Solar-heating and cooling demonstration project  
M-FS-25443 B80-10203 03

Automatic thermal switches  
GSFC-12553 B80-10214 06

Cooling/grounding mount for hybrid circuits  
MSC-18728 B80-10302 01

Multiplexed logic controls solar-heating system  
M-FS-25287 B80-10318 03

Heat for film processing from solar energy  
M-FS-25444 B80-10331 03

Solar heater/cooler for mass market  
M-FS-25452 B80-10332 03

Data-acquisition and control system for severe environments  
M-FS-25471 B80-10333 03

Solar heater/cooler for mass market  
M-FS-25468 B80-10334 03

Solar-heated and cooled office building--Dalton, Georgia  
M-FS-25451 B80-10335 03

Solar-heating and hot water system--St. Louis, Missouri  
M-FS-25453 B80-10336 03

Solar heating for an electronics manufacturing plant--Blue Earth, Minnesota  
M-FS-25469 B80-10337 03

Costs and description of a solar-energy system--Austin, Texas  
M-FS-25472 B80-10338 03

Solar energy in a historical city--Abbeville, South Carolina  
M-FS-25479 B80-10339 03

municipal recreation center is heated and cooled by solar energy  
M-FS-25478 B80-10340 03

Solar energy meets 50 percent of motel hot water needs--Key West, Florida  
M-FS-25454 B80-10341 03

Solar heated office complex--Greenwood, South Carolina  
M-FS-25458 B80-10342 03

Residential system tested in an office--Huntsville, Alabama  
M-FS-25481 B80-10343 03

Solar heated two level residence--Akron, Ohio  
M-FS-25480 B80-10344 03

Solar energy workshop--Tucson, Arizona  
M-FS-25473 B80-10345 03

Residential solar hot water system--Tempe, Arizona  
M-FS-25490 B80-10346 03

Residential solar heating installation--Stillwater, Minnesota  
M-FS-25504 B80-10347 03

Three story residence with solar heat--Manchester, New Hampshire  
M-FS-25499 B80-10348 03

A high school is supplied with solar energy--Dallas, Texas  
M-FS-25514 B80-10349 03

Holes help control temperature  
GSFC-12618 B80-10373 06

Temperature controller adapts to fatigue tester  
LANGLEY-12393 B80-10378 06

Heat/pressure seal for moving parts  
MSC-18422 B80-10390 06

Heat switch has no moving parts  
GSFC-12625 B80-10391 06

Evaluation of an evacuated-tube liquid solar collector  
M-FS-25450 B80-10461 03

Solar water heater design package  
M-FS-25521 B80-10462 03

Five-city economics of a solar hot-water-system  
M-FS-25532 B80-10463 03

Economic evaluation of a solar hot-water-system  
M-FS-25529 B80-10464 03

Residential solar-heating system uses pyramidal optics  
M-FS-25567 B80-10465 03

Solar-heated bank--Marks Mississippi  
M-FS-25558 B80-10466 03

Solar water-heating performance evaluation--San Diego, California  
M-FS-25502 B80-10467 03

Solar-heated and cooled savings and loan building--Leavenworth, Kansas  
M-FS-25520 B80-10468 03

Solar-energy landmark  
Building--Columbia, Missouri  
M-FS-25524 B80-10469 03

Solar heating for an observatory--Lincoln, Nebraska  
M-FS-25525 B80-10470 03

Two-story residence with solar heating--Newman, Georgia  
M-FS-25526 B80-10471 03

Solar-energy heats a transportation test center--Pueblo, Colorado  
M-FS-25527 B80-10472 03

Single-family-residence solar heating--Carlsbad, New Mexico  
M-FS-25528 B80-10473 03

Multimode solar-heating system--Columbia, South Carolina  
M-FS-25552 B80-10474 03

Solar-heated swimming school--Wilmington, Delaware  
M-FS-25548 B80-10475 03

Winter performance of a domestic solar-heating system--Duffield, Virginia  
M-FS-25540 B80-10476 03

Fire-station solar-energy system--Kansas City, Missouri  
M-FS-25538 B80-10478 03

Solar-heated ranger station--Glendo, Wyoming  
M-FS-25537 B80-10479 03

Economic evaluation of a solar hot-water system--Palm Beach County, Florida  
M-FS-25536 B80-10480 03

Residential system--Lansing, Michigan  
M-FS-25530 B80-10481 03

Solar space-heating system--Yosemite National Park, California  
M-FS-25553 B80-10482 03

## SUBJECT INDEX

Motel solar-hot-water system--Dallas, Texas  
M-FS-25575 B80-10483 03

Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida  
M-FS-25569 B80-10484 03

Closed-circulation system for motel hot water--Savannah, Georgia  
M-FS-25572 B80-10485 03

Solar heating for a restaurant--North Little Rock, Arkansas  
M-FS-25568 B80-10486 03

Motel solar hot-water installation--Atlanta, Georgia  
M-FS-25564 B80-10487 03

Building with integral solar-heat storage--Starkville, Mississippi  
M-FS-25559 B80-10488 03

Less-toxic corrosion inhibitors  
M-FS-25496 B80-10497 04

An oven for many thermocouple reference junctions  
FRC-10112 B80-10506 06

**TEMPERATURE DISTRIBUTION**

Thermal stratification in liquid storage tanks  
M-FS-25416 B80-10188 03

Heat conduction in three dimensions  
MSC-18616 B80-10239 06

Simplified thermal analyzer  
GSFC-12638 B80-10393 06

**TEMPERATURE GRADIENTS**

Electrofluidic accelerometer  
LANGLEY-12493 B80-10225 06

Heat-pipe sensor for remote leveling  
GSFC-12095 B80-10248 07

Measuring the thermal conductivity of insulation  
NPO-14871 B80-10382 06

**TEMPERATURE INSTRUMENTS**

Measuring the thermal conductivity of insulation  
NPO-14871 B80-10382 06

**TEMPERATURE SCALES**

A temperature fixed point near 58 C  
M-FS-25304 B80-10204 04

**TEMPERATURE SENSORS**

Signal conditioner for nickel temperature sensors  
MSC-18367 B80-10298 01

**TENSILE TESTS**

Tension-mode loading for bend specimens in cryogens  
LEWIS-13040 B80-10076 06

Testing panels in tension and flexure  
M-FS-25421 B80-10380 06

**TEST EQUIPMENT**

Online assessment of a distributed processor  
KSC-11124 B80-10037 02

Temperature controller adapts to fatigue tester  
LANGLEY-12393 B80-10378 06

CADAT test pattern generator  
M-FS-25066 B80-10433 08

Solar-site test module  
M-FS-25543 B80-10460 03

**TEST FACILITIES**

Environmental testing under load  
LANGLEY-12602 B80-10379 06

Testing panels in tension and flexure  
M-FS-25421 B80-10380 06

**TETHERING**

Eliminating gaps in split rings  
MSC-18854 B80-10540 08

## SUBJECT INDEX

|                                                  |                                                           |  |
|--------------------------------------------------|-----------------------------------------------------------|--|
| <b>THERMAL CONDUCTIVITY</b>                      | Measuring the thermal conductivity of insulation          |  |
| NPO-14871                                        | B80-10382 06                                              |  |
| <b>THERMAL CONDUCTIVITY GAGES</b>                | Measuring the thermal conductivity of insulation          |  |
| NPO-14871                                        | B80-10382 06                                              |  |
| <b>THERMAL CONDUCTORS</b>                        | An oven for many thermocouple reference junctions         |  |
| FRC-10112                                        | B80-10506 06                                              |  |
| <b>Thermal Control Coatings</b>                  | Corrosion-resistant ceramic thermal barrier coating       |  |
| LEWIS-13088                                      | B80-10067 04                                              |  |
| Improved metallic and thermal barrier coatings   |                                                           |  |
| LEWIS-13324                                      | B80-10353 04                                              |  |
| <b>Thermal Diffusion</b>                         | Systems improved numerical differencing analyzer          |  |
| MSC-18597                                        | B80-10148 09                                              |  |
| <b>Thermal Diffusivity</b>                       | Changes in 'thermal lens' measure diffusivity             |  |
| NPO-14657                                        | B80-10218 06                                              |  |
| <b>Thermal Expansion</b>                         | Composites with nearly zero thermal expansion             |  |
| MSC-18724                                        | B80-10355 04                                              |  |
| <b>Thermal Fatigue</b>                           | Low cost high temperature, duplex coating for superalloys |  |
| LEWIS-13497                                      | B80-10352 04                                              |  |
| <b>Thermal Insulation</b>                        | Cryogenic-storage-tank support                            |  |
| MSC-14848                                        | B80-10258 07                                              |  |
| Thermal barrier and gas seal                     |                                                           |  |
| MSC-18390                                        | B80-10269 08                                              |  |
| Measuring the thermal conductivity of insulation |                                                           |  |
| NPO-14871                                        | B80-10382 06                                              |  |
| Reflecting layers reduce weight of insulation    |                                                           |  |
| MSC-18785                                        | B80-10547 08                                              |  |
| <b>Thermal Protection</b>                        | Heat/pressure seal for moving parts                       |  |
| MSC-18422                                        | B80-10390 06                                              |  |
| <b>Thermal Resistance</b>                        | Heat resistant polymers                                   |  |
| ARC-11176                                        | B80-10350 04                                              |  |
| Aluminum ions enhance polyimide adhesive         |                                                           |  |
| LANGLEY-12640                                    | B80-10358 04                                              |  |
| <b>Thermal Stresses</b>                          | Simplified thermal analyzer                               |  |
| GSFC-12638                                       | B80-10393 06                                              |  |
| <b>Thermoclines</b>                              | Thermal stratification in liquid storage tanks            |  |
| M-FS-25416                                       | B80-10188 03                                              |  |
| <b>Thermocouples</b>                             | An oven for many thermocouple reference junctions         |  |
| FRC-10112                                        | B80-10506 06                                              |  |
| <b>Thermodynamic Efficiency</b>                  | Benefit assessment of solar-augmented natural gas systems |  |
| NPO-14568                                        | B80-10048 03                                              |  |
| Outdoor tests of the concentric-tube collector   |                                                           |  |
| M-FS-25398                                       | B80-10191 03                                              |  |

|                                                              |                                                              |  |
|--------------------------------------------------------------|--------------------------------------------------------------|--|
| <b>THERMODYNAMIC PROPERTIES</b>                              | Thermodynamic and transport properties of air/water mixtures |  |
| LEWIS-13432                                                  | B80-10519 06                                                 |  |
| <b>THERMODYNAMICS</b>                                        | An equation of state for liquids                             |  |
| NPO-14821                                                    | B80-10174 03                                                 |  |
| <b>Thermoplastic Resins</b>                                  | Resistance welding graphite-fiber composites                 |  |
| MSC-18534                                                    | B80-10264 08                                                 |  |
| Plastic welder                                               |                                                              |  |
| LANGLEY-12540                                                | B80-10274 08                                                 |  |
| <b>Thermosiphons</b>                                         | Thermosyphon heat exchanger                                  |  |
| M-FS-25389                                                   | B80-10053 03                                                 |  |
| <b>Thermostats</b>                                           | Energy-saving thermostat                                     |  |
| LANGLEY-12450                                                | B80-10040 03                                                 |  |
| Automatic thermal switches                                   |                                                              |  |
| GSFC-12553                                                   | B80-10214 06                                                 |  |
| <b>Thickness</b>                                             | Electronic depth micrometer                                  |  |
| KSC-11181                                                    | B80-10385 06                                                 |  |
| <b>Thin Films</b>                                            | Models of MOS and SOS devices                                |  |
| M-FS-25153                                                   | B80-10141 08                                                 |  |
| 'Pelled-film' solar cells                                    |                                                              |  |
| NPO-14734                                                    | B80-10151 01                                                 |  |
| Electrically conductive palladium-containing polyimide films |                                                              |  |
| LANGLEY-12629                                                | B80-10357 04                                                 |  |
| Film coatings for contoured surfaces                         |                                                              |  |
| MSC-18784                                                    | B80-10425 08                                                 |  |
| <b>Threshold Gates</b>                                       | LSI logic for phase-control rectifiers                       |  |
| M-FS-25208                                                   | B80-10161 01                                                 |  |
| <b>Thrust Bearings</b>                                       | Self-acting shaft seals                                      |  |
| LEWIS-13229                                                  | B80-10109 07                                                 |  |
| <b>Tidal Waves</b>                                           | Oceanic-wave-measurement system                              |  |
| M-FS-23862                                                   | B80-10224 06                                                 |  |
| <b>Tightness</b>                                             | Bolt-tension indicator                                       |  |
| M-FS-19324                                                   | B80-10105 07                                                 |  |
| <b>Tiles</b>                                                 | 'Densified' tiles form stronger bonds                        |  |
| MSC-18741                                                    | B80-10534 08                                                 |  |
| Tile densification with TEOS                                 |                                                              |  |
| MSC-18737                                                    | B80-10535 08                                                 |  |
| Repairing high-temperature glazed tiles                      |                                                              |  |
| MSC-18736                                                    | B80-10536 08                                                 |  |
| <b>Time Lag</b>                                              | Improved code-tracking loop                                  |  |
| MSC-18035                                                    | B80-10034 02                                                 |  |
| Portable zero-delay assembly                                 |                                                              |  |
| NPO-14671                                                    | B80-10316 02                                                 |  |
| Timing signal propagates without phase shift                 |                                                              |  |
| MSC-18777                                                    | B80-10449 02                                                 |  |
| <b>Time Measurement</b>                                      | Multichannel coincidence circuit                             |  |
| LANGLEY-12531                                                | B80-10005 01                                                 |  |
| <b>Time Sharing</b>                                          | Time-shaped RF brazing                                       |  |
| MSC-18617                                                    | B80-10272 08                                                 |  |
| Common data buffer                                           |                                                              |  |
| KSC-11048                                                    | B80-10303 02                                                 |  |
| Time-sharing switch for vacuum brazing                       |                                                              |  |
| MSC-18699                                                    | B80-10412 07                                                 |  |
| <b>Time Signals</b>                                          | Timing signal propagates without phase shift                 |  |
| MSC-18777                                                    | B80-10449 02                                                 |  |

|                                                  |                                                               |  |
|--------------------------------------------------|---------------------------------------------------------------|--|
| <b>Trace Contaminants</b>                        | Fiber optics transmit clock signal more reliably              |  |
| NPO-14749                                        | B80-10456 03                                                  |  |
| <b>Timing Devices</b>                            | Camera add-on records time of exposure                        |  |
| LANGLEY-12635                                    | B80-10183 03                                                  |  |
| Timing signal propagates without phase shift     |                                                               |  |
| MSC-18777                                        | B80-10449 02                                                  |  |
| Fiber optics transmit clock signal more reliably |                                                               |  |
| NPO-14749                                        | B80-10456 03                                                  |  |
| <b>Tires</b>                                     | Chlorinolysis reclaims rubber of waste tires                  |  |
| NPO-14935                                        | B80-10365 04                                                  |  |
| <b>Titanium Carbides</b>                         | Improved adherence of TiC coatings to steel                   |  |
| LEWIS-13169                                      | B80-10207 04                                                  |  |
| <b>Titanium Oxides</b>                           | Photoproduction of halogens using platinized TiO <sub>2</sub> |  |
| LANGLEY-12713                                    | B80-10491 04                                                  |  |
| <b>Tools</b>                                     | Tubing cutter for tight spaces                                |  |
| MSC-18538                                        | B80-10099 07                                                  |  |
| Aluminum-encased lead mallet                     |                                                               |  |
| MSC-18529                                        | B80-10100 07                                                  |  |
| Measuring ball-bearing loads                     |                                                               |  |
| M-FS-19505                                       | B80-10102 07                                                  |  |
| Zero-torque spanner wrench                       |                                                               |  |
| MSC-14843                                        | B80-10107 07                                                  |  |
| Wire harness twisting aid                        |                                                               |  |
| MSC-18581                                        | B80-10132 08                                                  |  |
| Adjustable base for centering staked bearings    |                                                               |  |
| MSC-19660                                        | B80-10133 08                                                  |  |
| Tube flare inspection tool                       |                                                               |  |
| MSC-19636                                        | B80-10241 07                                                  |  |
| Locknut preload tool                             |                                                               |  |
| MSC-16153                                        | B80-10245 07                                                  |  |
| Handtool assists in bundling cables              |                                                               |  |
| MSC-18567                                        | B80-10255 07                                                  |  |
| Sleeve puller salvages welded tubes              |                                                               |  |
| MSC-18686                                        | B80-10256 07                                                  |  |
| Tube-welder aids                                 |                                                               |  |
| MSC-18687                                        | B80-10277 08                                                  |  |
| Drilling at right angles in blind holes          |                                                               |  |
| M-FS-19535                                       | B80-10403 07                                                  |  |
| Torque-wrench extension                          |                                                               |  |
| MSC-18769                                        | B80-10414 07                                                  |  |
| Wrench for smooth or damaged fasteners           |                                                               |  |
| MSC-18772                                        | B80-10416 07                                                  |  |
| Cutting holes in fabric-faced panels             |                                                               |  |
| MSC-18786                                        | B80-10427 08                                                  |  |
| <b>Torque</b>                                    | Zero-torque spanner wrench                                    |  |
| MSC-14843                                        | B80-10107 07                                                  |  |
| Torque control for electric motors               |                                                               |  |
| MSC-18635                                        | B80-10170 02                                                  |  |
| Locknut preload tool                             |                                                               |  |
| MSC-16153                                        | B80-10245 07                                                  |  |
| <b>Torquemeters</b>                              | Eddy-current sensor measures bolt loading                     |  |
| M-FS-19486                                       | B80-10079 06                                                  |  |
| Bolt-tension indicator                           |                                                               |  |
| M-FS-19324                                       | B80-10105 07                                                  |  |
| Torque-wrench extension                          |                                                               |  |
| MSC-18769                                        | B80-10414 07                                                  |  |
| <b>Trace Contaminants</b>                        | Bulk lifetime indicates surface contamination                 |  |
| NPO-14966                                        | B80-10511 06                                                  |  |

## TRACKING (POSITION)

Position monitor for mining machines  
 M-FS-25342 B80-10157 01  
 Fresnel lens tracking solar collector  
 M-FS-25419 B80-10190 03  
 Four-cell solar tracker  
 NPO-14811 B80-10319 03

## TRACKING FILTERS

Continuous control of phase-locked-loop bandwidth  
 MSC-16684 B80-10008 01

## TRACTION

High-performance, multiroller traction drive  
 LEWIS-13347 B80-10244 07

## TRAINING DEVICES

Learning high-quality soldering  
 NPO-14869 B80-10539 08

## TRAJECTORY OPTIMIZATION

Cost-minimized aircraft trajectories  
 ARC-11282 B80-10396 06

## TRANSDUCERS

Broadband electrostatic acoustic transducer for liquids  
 LANGLEY-12465 B80-10078 06

Linearizing magnetic-amplifier dc transducer output  
 NPO-14617 B80-10167 02

Compliant transducer measures artery profile  
 NPO-14899 B80-10369 05

Fiber optic accelerometer  
 LEWIS-13219 B80-10389 06

Transducer for extreme temperatures and pressures  
 MSC-18778 B80-10510 06

## TRANSFER TUNNELS

A versatile tunnel acts as a flexible duct  
 M-FS-22636 B80-10242 07

## TRANSFORMERS

LVDT gage for fracture-toughness tests in liquid hydrogen  
 LEWIS-13038 B80-10075 06

Producing gapped-ferrite transformer cores  
 NPO-14715 B80-10273 08

28-Channel rotary transformer  
 NPO-14861 B80-10300 01

Improved magnetic material analyzer  
 LEWIS-13493 B80-10384 06

## TRANSIENT RESPONSE

Rotor transient analysis  
 LEWIS-13230 B80-10259 07

## TRANSISTOR LOGIC

A general logic structure for custom LSIs  
 NPO-14410 B80-10118 08

## TRANSISTORS

JANTX2N2060 dual transistor  
 M-FS-25251 B80-10018 01

JANTX2N2219A dual transistor  
 M-FS-25252 B80-10019 01

JANTX2N2369A transistor  
 M-FS-25254 B80-10020 01

JANTX2N2432A transistor  
 M-FS-26255 B80-10021 01

JANTX2N2484 transistor  
 M-FS-25253 B80-10022 01

JANTX2N2605 transistor  
 M-FS-25150 B80-10023 01

JANTX2N2905A transistor  
 M-FS-25256 B80-10024 01

JANTX2N2920 Dual transistor  
 M-FS-25258 B80-10025 01

JANTX2N2945A transistor  
 M-FS-25259 B80-10026 01

JANTX2N3637 transistor  
 M-FS-25264 B80-10027 01

JANTX2N3811 dual transistor  
 M-FS-25265 B80-10028 01

JANTX2N4150 transistor  
 M-FS-25267 B80-10029 01

JANTX2N4856 field-effect transistor  
 M-FS-25269 B80-10030 01

Transistor package for high pressure applications  
 MSC-18743 B80-10430 08

## TRANSLATING

OCCULT-ORSER complete conversational user-language translator  
 GSFC-12604 B80-10556 09

## TRANSMISSION EFFICIENCY

Efficient telemetry format  
 NPO-13679 B80-10142 09

## TRANSMITTERS

High-power solid-state microwave transmitter  
 NPO-14803 B80-10296 01

## TRANSONIC FLOW

Transonic airfoil design code  
 LANGLEY-12460 B80-10085 06

Stream tube curvature analysis  
 LANGLEY-11535 B80-10235 06

Inviscid transonic flow over axisymmetric bodies  
 LANGLEY-12499 B80-10398 06

Transonic flow over wing/fuselage configurations  
 LANGLEY-12702 B80-10525 06

## TRANSPONDERS

Microprocessor control for phase-lock receiver  
 NPO-14438 B80-10033 02

Microprocessor-based detector for PSK commands  
 NPO-14440 B80-10036 02

## TRANSPORT PROPERTIES

Thermodynamic and transport properties of air/water mixtures  
 LEWIS-13432 B80-10519 06

## TREES (MATHEMATICS)

Equations of motion for coupled n-body systems  
 GSFC-12407 B80-10083 06

## TUMORS

Temperature controller for hyperthermia devices  
 LANGLEY-12528 B80-10072 05

## TUNING

Ultrastable automatic frequency control  
 MSC-18679 B80-10294 01

## TURBINE BLADES

Analysis of a cooled, turbine blade or vane with an insert  
 LEWIS-13293 B80-10400 06

## TURBINE ENGINES

Composites for aeropropulsion  
 LEWIS-13438 B80-10209 04

## TURBINES

Regenerative superheated steam turbine cycles  
 LEWIS-13392 B80-10234 06

## TURBOFAN ENGINES

Suppressing buzz-saw noise in jet engines  
 LANGLEY-12645 B80-10220 06

## TURBULENCE

Extracting energy from natural flow  
 M-FS-23989 B80-10045 03

Aerosol lasts up to six minutes  
 NPO-14947 B80-10360 04

## TURBULENT WAKES

Wakeflow analysis by cost  
 NPO-14705 B80-10387 06

## TWISTING

Wire harness twisting aid  
 MSC-18581 B80-10132 08

## U

## ULTRASONIC RADIATION

Acoustic lens is gas-filled  
 NPO-14757 B80-10376 06

## ULTRASONIC TESTS

Broadband electrostatic acoustic transducer for liquids  
 LANGLEY-12465 B80-10078 06

Verifying root fusion in electron-beam welds  
 M-FS-19499 B80-10110 08

Fresnel lenses for ultrasonic inspection  
 MSC-18469 B80-10217 06

Ultrasonic frequency analysis  
 LANGLEY-12697 B80-10377 06

Microprocessor-controlled ultrasonic plethysmograph  
 MSC-18759 B80-10500 05

Beef grading by ultrasound  
 NPO-14812 B80-10505 05

## ULTRASONICS

Improved ureteral stone fragmentation catheter  
 NPO-14745 B80-10370 05

## ULTRAVIOLET PHOTOGRAPHY

Detecting contaminants by ultraviolet photography  
 M-FS-25296 B80-10229 06

## ULTRAVIOLET RADIATION

Miniature personal UV solar dosimeter  
 LANGLEY-12469 B80-10321 03

Economical ultraviolet radiometer  
 NPO-14843 B80-10322 03

## ULTRAVIOLET SPECTROMETERS

Ultraviolet spectrometer/polarimeter  
 M-FS-25298 B80-10042 03

## ULTRAVIOLET SPECTROPHOTOMETERS

UV actinometer film  
 NPO-14479 B80-10179 03

## USER MANUALS (COMPUTER PROGRAMS)

User's guide to SFTRAN  
 LEWIS-13172 B80-10143 09

## USER REQUIREMENTS

Goddard mission analysis system  
 GSFC-12392 B80-10144 09

## V

## VACUUM APPARATUS

Knife-edge seal for vacuum bagging  
 M-FS-24049 B80-10135 08

Time-sharing switch for vacuum brazing  
 MSC-18699 B80-10412 07

Kilovolt vacuum feed through is less noisy  
 NPO-14802 B80-10426 08

## VACUUM TESTS

Integrated material-surface analyzer  
 NPO-14702 B80-10388 06

## VALVES

Automatic shutoff valve  
 MSC-19385 B80-10097 07

Zero-torque spanner wrench  
 MSC-14843 B80-10107 07

**VAPOR DEPOSITION**

Automatic chemical vapor deposition  
M-FS-25249 B80-10431 08  
Producing silicon continuously  
NPO-14796 B80-10537 08

**VARIANCE**

Multiple linear regression analysis  
M-FS-23764 B80-10288 09

**VEHICLE WHEELS**

Four-wheel dual automobiles  
LANGLEY-12687 B80-10529 07

**VELOCITY DISTRIBUTION**

The design and analysis of low-speed airfoils  
LANGLEY-12727 B80-10524 06

**VENTS**

Automatic shutoff valve  
MSC-19385 B80-10097 07

**VERSATILITY**

Versatile modular scaffolds  
GSFC-12606 B80-10406 07

**VIBRATION DAMPING**

Foam-filled cushions for sliding trays  
MSC-18565 B80-10127 08

**VIBRATION MEASUREMENT**

Transducer for extreme temperatures and pressures  
MSC-18778 B80-10510 06

**VIBRATION MODE**

Vibration modes and frequencies of structures  
LANGLEY-12647 B80-10237 06

**VIBRATORY LOADS**

Passive wing/store flutter suppression  
LANGLEY-12468 B80-10219 06

**VIDEO EQUIPMENT**

Real-time film recording from stroke-written CRT's  
LANGLEY-12529 B80-10169 02

Imager displays free fall in stop action  
NPO-14779 B80-10509 06

**VISCOPLASTICITY**

Reduced viscosity interpreted for fluid/gas mixtures  
NPO-14976 B80-10457 03

**VISCOSEITY**

Three-dimensional potential flow  
LANGLEY-12623 B80-10090 06

Reduced viscosity interpreted for fluid/gas mixtures  
NPO-14976 B80-10457 03

**VISCOUS FLOW**

Viscous characteristics analysis  
LANGLEY-12598 B80-10084 06

Improved multielement airfoil analysis  
LANGLEY-12489 B80-10086 06

Reduced viscosity interpreted for fluid/gas mixtures  
NPO-14976 B80-10457 03

**VISCOUS FLUIDS**

Transferring small samples of viscous liquid  
MSC-18533 B80-10069 04

**VOLTAGE CONVERTERS (DC TO DC)**

Direct-current converter for gas-discharge lamps  
MSC-18407 B80-10156 01

Efficient, lightweight dc/dc switching converter  
LEWIS-12809 B80-10299 01

**VOLTAGE REGULATORS**

Simple buck/boost voltage regulator  
GSFC-12360 B80-10003 01

Frequency-controlled voltage regulator  
NPO-13633 B80-10171 02

A redundant regulator control with low standby losses  
NPO-13165 B80-10172 02

**VOLUME**

An equation of state for liquids  
NPO-14821 B80-10174 03

**VORTEX SHEETS**

A generalized vortex lattice method  
LANGLEY-12636 B80-10236 06

**VORTICES**

Extracting energy from natural flow  
M-FS-23989 B80-10045 03

**W****WAKES**

Aerosol lasts up to six minutes  
NPO-14947 B80-10360 04

**WARNING SYSTEMS**

Simple circuit monitors 'third wire' in ac lines  
M-FS-19457 B80-10002 01

**WASTE ENERGY UTILIZATION**

Gas absorption/desorption temperature-differential engine  
NPO-14528 B80-10513 06

**WASTE UTILIZATION**

Chlorinolysis reclaims rubber of waste tires  
NPO-14935 B80-10365 04

**WASTES**

Recycling paper-pulp waste liquors  
NPO-14797 B80-10492 04

**WATER**

Glycol/water evacuated-tube solar collector  
M-FS-25337 B80-10052 03

**WATER POLLUTION**

Treating domestic wastewater with water hyacinths  
M-FS-23964 B80-10368 05

**WATER QUALITY**

Measuring water properties from a moving boat  
LANGLEY-12325 B80-10073 05

Improved microbe detection in water samples  
LANGLEY-12709 B80-10502 05

**WATER RECLAMATION**

Treating domestic wastewater with water hyacinths  
M-FS-23964 B80-10368 05

**WATER TREATMENT**

Carbon scrubber  
MSC-16531 B80-10356 04

Treating domestic wastewater with water hyacinths  
M-FS-23964 B80-10368 05

**WATER VAPOR**

Improved cell for water-vapor electrolysis  
MSC-16394 B80-10489 04

Thermodynamic and transport properties of air/water mixtures  
LEWIS-13432 B80-10519 06

**WATER WAVES**

Oceanic-wave-measurement system  
M-FS-23862 B80-10224 06

**WAVEGUIDES**

Verifying root fusion in electron-beam welds  
M-FS-19499 B80-10110 08

**WEAR INHIBITORS**

Additive performance improves engine-oil  
GSFC-12327 B80-10065 04

**WEAR TESTS**

Measuring ball-bearing loads  
M-FS-19505 B80-10102 07

A test program for solar collectors  
M-FS-25433 B80-10194 03

**WEATHER DATA RECORDERS**

Microcomputer-based doppler systems for weather monitoring  
GSFC-12448 B80-10166 02

**WEATHER FORECASTING**

Airborne meteorological data-collection system  
LEWIS-13346 B80-10314 02

Predicting and monitoring duststorms  
NPO-14277 B80-10323 03

Instrument measures cloud cover  
NPO-14936 B80-10514 06

**WEIGHT REDUCTION**

Resizing structures for minimum weight  
LANGLEY-12699 B80-10394 06

Lightweight terminal board  
MSC-18787 B80-10429 08

Structural design with stress and displacement constraints  
M-FS-25235 B80-10521 06

Reflecting layers reduce weight of insulation  
MSC-18785 B80-10547 08

**WEIGHTLESSNESS**

Containerless materials processing in the laboratory  
M-FS-25242 B80-10059 04

**WELD TESTS**

'Foreign material' to verify root fusion in welded joints  
M-FS-19496 B80-10276 08

**WELDED JOINTS**

Sleeve puller salvages welded tubes  
MSC-18686 B80-10256 07

'Foreign material' to verify root fusion in welded joints  
M-FS-19496 B80-10276 08

**WELDING**

Verifying root fusion in electron-beam welds  
M-FS-19499 B80-10110 08

X-ray technique verifies weld-root fusion  
M-FS-19468 B80-10111 08

Etchant for incoloy-903 welds  
M-FS-19378 B80-10112 08

Eliminating underbead fissuring in superalloys  
M-FS-19460 B80-10114 08

A precoat prevents ceramic stopoffs from spalling  
M-FS-19495 B80-10136 08

Resistance welding graphite-fiber composites  
MSC-18534 B80-10264 08

Plastic welder  
LANGLEY-12540 B80-10274 08

Electron-beam welder  
LEWIS-13432 B80-10275 08

**WELDERS**

Tube-welder aids  
MSC-18687 B80-10277 08

Reshaping tube ends for welding  
MSC-18462 B80-10407 07

Limiting current in electron-beam welders  
M-FS-19503 B80-10413 07

**WELDING MACHINES**

Honing fixture for welded electrodes  
M-FS-19537 B80-10278 08

**WELLS**

Downhole pressure sensor  
NPO-14729 B80-10223 06

**WHEATSTONE BRIDGES**

Signal conditioner for nickel temperature  
sensors  
MSC-18367 B80-10298 01

**WHEEL BRAKES**

Four-wheel dual braking for  
automobiles  
LANGLEY-12687 B80-10529 07

**WIND PRESSURE**

Wind-simulation tester for solar  
modules  
NPO-14837 B80-10517 06

**WIND TUNNEL MODELS**

A construction technique for wind tunnel  
models  
LANGLEY-12710 B80-10381 06

**WIND TUNNEL TESTS**

Wakeflow analysis by cost  
NPO-14705 B80-10387 06

**WIND VELOCITY MEASUREMENT**

Instrument remotely measures wind  
velocities  
NPO-14524 B80-10176 03

**WING LOADING**

Transonic flow over wing/fuselage  
configurations  
LANGLEY-12702 B80-10525 06

**WINGS**

Three-dimensional potential flow  
LANGLEY-12623 B80-10090 06

Disturbance amplification rates  
LANGLEY-12556 B80-10092 06

Passive wing/store flutter suppression  
LANGLEY-12468 B80-10219 06

Solar-powered aircraft  
LANGLEY-12615 B80-10404 07

**WIRE WINDING**

Wire harness twisting aid  
MSC-18581 B80-10132 08

**WIRING**

Simple circuit monitors 'third wire' in  
ac lines  
M-FS-19457 B80-10002 01

Learning high-quality soldering  
NPO-14869 B80-10539 08

**WRENCHES**

Zero-torque spanner wrench  
MSC-14843 B80-10107 07

Torque-wrench extension  
MSC-18769 B80-10414 07

Wrench for smooth or damaged  
fasteners  
MSC-18772 B80-10416 07

**Y****YTTRIUM OXIDES**

Oxide dispersion strengthened  
superalloy  
LEWIS-13589 B80-10351 04

**Z****ZIRCONIUM OXIDES**

Flashback-free combustor  
LANGLEY-12666 B80-10226 06

**X****X RAY INSPECTION**

X-ray technique verifies weld-root  
fusion  
M-FS-19468 B80-10111 08

Digital enhancement of X-rays for NDT  
KSC-11118 B80-10232 06

X-ray beam pointer  
MSC-18590 B80-10254 07

## PERSONAL AUTHOR INDEX

## Personal Author Index

This index is arranged alphabetically by author. The Tech Brief title is listed followed by the originating Center number, e.g., GSFC-12327. The Tech Brief number, e.g., B80-10065 is followed by a two-digit number, e.g., 04 which designates the subject category.

## A

**ACOSTA, A. J.**  
Dynamics of cavitating cascades and inducer pumps  
M-FS-25399 B80-10392 06

**ADAMS, R. R.**  
Miniature personal UV solar dosimeter  
LANGLEY-12469 B80-10321 03

**ADAMS, W. M., JR.**  
Aircraft equilibrium spin characteristics  
LANGLEY-12502 B80-10087 06

**ALKIRE, I. D.**  
Flared tube attachment fitting  
MSC-18416 B80-10240 07

**ALLAIRE, P. E.**  
Rotor transient analysis  
LEWIS-13230 B80-10259 07

**ALLCOCK, H. R.**  
Heat resistant polyphosphazene  
polymers  
ARC-11176 B80-10350 04

**ANDERSON, N. E.**  
High-performance, multiroller traction drive  
LEWIS-13347 B80-10244 07

**ANDERSON, S. G.**  
Flashback-free combustor  
LANGLEY-12666 B80-10226 06

**ANDERSON, T. O.**  
Multipath star switch controller  
NPO-13422 B80-10035 02

**ANDRAWES, F. F.**  
Applying the helium ionization detector in chromatography  
MSC-18835 B80-10490 04

**ANDRYCZYK, R. W.**  
A redundant regulator control with low standby losses  
NPO-13165 B80-10172 02

**ANSELMO, V. J.**  
Wakeflow analysis by cost  
NPO-14705 B80-10387 06

**APERLO, P. J. A.**  
Ball-joint grounding ring  
MSC-18824 B80-10405 07

**APPEL, M. A.**  
Aerosol lasts up to six minutes  
NPO-14947 B80-10360 04

**ARGOUD, M. J.**  
Detecting surface faults on solar mirrors  
NPO-14684 B80-10230 06

**ARNQUIST, J. L.**  
Plastic deformation of engines and other nonlinear structures  
M-FS-23814 B80-10399 06

**ARVANITIS, L. G.**  
Evaluating computer-drawn ground-cover maps  
KSC-11195 B80-10555 09

**ASH, R.**  
Measuring the thermal conductivity of insulation  
NPO-14871 B80-10382 06

**ATKINS, W. T.**  
Coal conversion and synthetic-fuel production  
M-FS-25330 B80-10070 04

**ATKINSON, R. E.**  
Selecting optimum algorithms for image processing  
M-FS-25367 B80-10557 09

**AUGUST, R. R.**  
Fiber optic accelerometer  
LEWIS-13219 B80-10389 06

**AULT, G. M.**  
Composites for aeropropulsion  
LEWIS-13438 B80-10209 04

**AUSTIN, K. L.**  
Alining sleeve for optical fibers  
MSC-18756 B80-10424 01

**AUSTIN, S.**  
Structured FORTRAN preprocessor  
M-FS-23813 B80-10289 09

**AYLWARD, J. R.**  
Improved cell for water-vapor electrolysis  
MSC-16394 B80-10489 04

**BABECKI, A. J.**  
Additive improves engine-oil performance  
GSFC-12327 B80-10065 04

**BAGSTAD, B.**  
Cooling/grounding mount for hybrid circuits  
MSC-18728 B80-10302 01

**BAGWELL, J. W.**  
Airborne meteorological data-collection system  
LEWIS-13346 B80-10314 02

**BAINBRIDGE, R. C.**  
NASA PERT time II  
LEWIS-13145 B80-10286 09

**BAKER, W. M.**  
A generalized vortex lattice method  
LANGLEY-12636 B80-10236 06

**BAKOWSKI, M.**  
Measuring radiation effects on MOS capacitors  
NPO-14700 B80-10227 06

**BALL, W. B.**  
Rotatable prism for pan and tilt  
LANGLEY-12388 B80-10041 03

**BALLOU, E. V.**  
Reducing static charges in fluidized bed reactions  
ARC-11245 B80-10068 04

**BANKS, B. A.**  
Ion-beam etching enhances adhesive bonding  
LEWIS-13028 B80-10128 08

**BARR, T. A.**  
Measuring coal deposits by radar  
M-FS-23922 B80-10060 04

**BASS, R. M.**  
Coal conversion and synthetic-fuel production  
M-FS-25330 B80-10070 04

**BATHKER, D. A.**  
Antenna feed for linear and circular polarization  
NPO-14810 B80-10297 01

**BATIUK, W.**  
Chemical-milling solution for invar alloy  
M-FS-25365 B80-10113 08

**BAUCOM, R. M.**  
Hot forming graphite/polyimide structures  
LANGLEY-12547 B80-10422 08

**BAUER, F.**  
Transonic airfoil design code  
LANGLEY-12460 B80-10085 06

**BECKER, F. L.**  
Verifying root fusion in electron-beam welds  
M-FS-19499 B80-10110 08

**BEJCZY, A. K.**  
The 3-D guidance system with proximity sensors  
NPO-14521 B80-10250 07

**BERDAHL, C. M.**  
Electromechanical slip sensor  
NPO-14654 B80-10253 07

**BENEDICTO, J. S. J.**  
Cleaving machine for hard crystals  
GSFC-12584 B80-10401 07

**BERDAHL, C. M.**  
Downhole pressure sensor  
NPO-14729 B80-10223 06

**BEST, R. J.**  
Four-cell solar tracker  
NPO-14811 B80-10319 03

**BIGGINS, R. J.**  
Field limiter for solar radiometers  
NPO-14781 B80-10454 03

**BIGGINS, R. J.**  
Short-range self-pulsed optical radar  
NPO-14901 B80-10459 03

## B

|                                          |              |                                          |              |                                           |
|------------------------------------------|--------------|------------------------------------------|--------------|-------------------------------------------|
| <b>BERNARD, C. A.</b>                    |              | <b>BRENNEN, C. E.</b>                    |              | <b>BUTTERFIELD, R. L.</b>                 |
| Torque control for electric motors       |              | Dynamics of cavitating cascades and      |              | Digital enhancement of X-rays for NDT     |
| MSC-18635                                | B80-10170 02 | inducer pumps                            |              | KSC-11118 B80-10232 06                    |
| <b>BERRY, R. F.</b>                      |              | M-FS-25399                               | B80-10392 06 | <b>BYRNE, F.</b>                          |
| Low-cost calibration of acoustic         |              | <b>BROCKMAN, M. H.</b>                   |              | Common data buffer                        |
| locators                                 |              | Receiver array for high-rate telemetry   |              | KSC-11048 B80-10303 02                    |
| LANGLEY-12632                            | B80-10185 03 | NPO-14579                                | B80-10308 02 | <b>BYVIK, C. E.</b>                       |
| <b>BERSON, L. A.</b>                     |              | Arrayed receivers for low-rate telemetry |              | Photoproduction of halogens using         |
| Adjustable base for centering staked     |              | NPO-14590                                | B80-10309 02 | platinized TiO <sub>2</sub>               |
| bearings                                 |              | <b>BROOKS, C. W.</b>                     |              | LANGLEY-12713 B80-10491 04                |
| MSC-19660                                | B80-10133 08 | Four-quadrant CCD analog multiplier      |              |                                           |
| <b>BETTS, R. D.</b>                      |              | LANGLEY-12332                            | B80-10305 02 |                                           |
| Eliminating underbead fissuring in       |              | <b>BROOKS, J. L.</b>                     |              | <b>C</b>                                  |
| superalloys                              |              | Room-temperature adhesive for            |              |                                           |
| M-FS-19460                               | B80-10114 08 | high-temperature use                     |              | <b>CALLAS, L.</b>                         |
| <b>BEUYUKIAN, C. S.</b>                  |              | MSC-16930                                | B80-10129 08 | Selecting optimum algorithms for image    |
| Alumina barrier for vacuum brazing       |              | <b>BROUSSARD, P. H.</b>                  |              | processing                                |
| MSC-18528                                | B80-10125 08 | Detecting a coal/shale interface         |              | M-FS-25367 B80-10557 09                   |
| <b>BHAGAT, P. K.</b>                     |              | M-FS-23720                               | B80-10061 04 | <b>CAMARDA, C. J.</b>                     |
| Microprocessor-controlled ultrasonic     |              | <b>BROWELL, E. V.</b>                    |              | Heat pipes cool probe and sandwich        |
| plethysmograph                           |              | Laser-fluorescence measurement of        |              | panel                                     |
| MSC-18759                                | B80-10500 05 | marine algae                             |              | LANGLEY-12588; LANGLEY-12637              |
| <b>BINGE, D. S.</b>                      |              | LANGLEY-12282                            | B80-10213 05 | B80-10518 06                              |
| Self-lubricating gearset                 |              | <b>BROWER, J. R.</b>                     |              | <b>CAMPBELL, R. A.</b>                    |
| MSC-18801                                | B80-10546 08 | 'Grinding' cavities in polyurethane foam |              | Detecting a coal/shale interface          |
| <b>BISHOP, A. R.</b>                     |              | MSC-18564                                | B80-10124 08 | M-FS-23720 B80-10061 04                   |
| Flow field in supersonic                 |              | <b>BROWN, N. D.</b>                      |              | <b>CANTRELL, J. H., JR.</b>               |
| mixed-compression inlets                 |              | A versatile tunnel acts as a flexible    |              | Broadband electrostatic acoustic          |
| LEWIS-13279                              | B80-10088 06 | duct                                     |              | transducer for liquids                    |
| <b>BLAIS, P. D.</b>                      |              | M-FS-22636                               | B80-10242 07 | LANGLEY-12465 B80-10078 06                |
| Bulk lifetime indicates surface          |              | <b>BRUNE, G. W.</b>                      |              | Ultrasonic frequency analysis             |
| contamination                            |              | Improved multielement airfoil analysis   |              | LANGLEY-12697 B80-10377 06                |
| NPO-14966                                | B80-10511 06 | LANGLEY-12489                            | B80-10086 06 | <b>CARRILLO, R.</b>                       |
| <b>BONNER, E.</b>                        |              | <b>BRYAN, C. F., JR.</b>                 |              | Wrench for smooth or damaged              |
| Aerodynamic preliminary analysis         |              | Cap protects aircraft nose cone          |              | fasteners                                 |
| LANGLEY-12404                            | B80-10397 06 | LANGLEY-12367                            | B80-10362 04 | MSC-18772 B80-10416 07                    |
| <b>BOPPE, C. W.</b>                      |              | <b>BRYAN, D. C.</b>                      |              | <b>CARROLL, B.</b>                        |
| Transonic flow over wing/fuselage        |              | Cap protects aircraft nose cone          |              | Placement technique for semicustom        |
| configurations                           |              | LANGLEY-12367                            | B80-10362 04 | digital LSI circuits                      |
| LANGLEY-12702                            | B80-10525 06 | <b>BRYANT, N. A.</b>                     |              | M-FS-25324 B80-10117 08                   |
| <b>BOREHAM, J. D.</b>                    |              | Image-based information,                 |              | <b>CARROLL, T. R.</b>                     |
| High-power solid-state microwave         |              | communication, and retrieval             |              | Low-cost concentrating mirrors            |
| transmitter                              |              | NPO-14893                                | B80-10293 09 | NPO-14962 B80-10542 08                    |
| NPO-14803                                | B80-10296 01 | <b>BUCK, P. A.</b>                       |              | <b>CARSON, L. M.</b>                      |
| <b>BOWLES, K. J.</b>                     |              | Ball-joint grounding ring                |              | Microprocessor control for phase-lock     |
| Resin char oxidation retardant for       |              | MSC-18824                                | B80-10405 07 | receiver                                  |
| composites                               |              | <b>BUCKLES, B.</b>                       |              | NPO-14438 B80-10033 02                    |
| LEWIS-13275                              | B80-10354 04 | Structured FORTRAN preprocessor          |              | <b>CASEY, E. J.</b>                       |
| <b>BRADFORD, R.</b>                      |              | M-FS-23813                               | B80-10289 09 | Wire harness twisting aid                 |
| Coal conversion and synthetic-fuel       |              | <b>BUCKLEY, J. D.</b>                    |              | MSC-18581 B80-10132 08                    |
| production                               |              | Plastic welder                           |              | <b>CASSIDY, J. J., III</b>                |
| M-FS-25330                               | B80-10070 04 | LANGLEY-12540                            | B80-10274 08 | NASA charging analyzer program            |
| <b>BRAINARD, W. A.</b>                   |              | <b>BURCH, J. L.</b>                      |              | LEWIS-12973 B80-10058 03                  |
| Improved adherence of TiC coatings to    |              | Detecting a coal/shale interface         |              | <b>CASTERLINE, C.</b>                     |
| steel                                    |              | M-FS-23720                               | B80-10061 04 | Forming complex cavities in clear         |
| LEWIS-13169                              | B80-10207 04 | <b>BURLEY, R. K.</b>                     |              | plastic                                   |
| <b>BRAZELL, R. S.</b>                    |              | Electron-beam welder                     |              | LEWIS-13412 B80-10267 08                  |
| Applying the helium ionization detector  |              | M-FS-19441                               | B80-10275 08 | <b>CASTLES, S. H.</b>                     |
| in chromatography                        |              | <b>BURR, M. E.</b>                       |              | Heat switch has no moving parts           |
| MSC-18835                                | B80-10490 04 | Eddy-current sensor                      |              | GSFC-12625 B80-10391 06                   |
| <b>BREAZEALE, M. A.</b>                  |              | loading                                  |              | <b>CEBECH, T.</b>                         |
| Broadband electrostatic acoustic         |              | M-FS-19486                               | B80-10079 06 | Disturbance amplification rates           |
| transducer for liquids                   |              | <b>BUSH, H. G.</b>                       |              | LANGLEY-12556 B80-10092 06                |
| LANGLEY-12465                            | B80-10078 06 | Mechanical end joint for structural      |              | <b>CHAI, A. T.</b>                        |
| <b>BRECKINRIDGE, J. B.</b>               |              | columns                                  |              | Multijunction high-voltage solar cell     |
| High-resolution spectrometry/inter-      |              | LANGLEY-12482                            | B80-10095 07 | LEWIS-13400 B80-10441 01                  |
| ferometer                                |              | Biaxial method for in-plane shear        |              | <b>CHAMIS, C. C.</b>                      |
| NPO-14448                                | B80-10175 03 | testing                                  |              | Efficient measurement of shear properties |
| <b>BREMMER, H.</b>                       |              | LANGLEY-12680                            | B80-10512 06 | of fiber composites                       |
| NASA PERT time II                        |              | <b>BUTLER, J. M.</b>                     |              | LEWIS-13011 B80-10216 06                  |
| LEWIS-13145                              | B80-10286 09 | Plasticizer for polyimide composites     |              | NASTRAN modifications for recovering      |
| <b>BRENNAN, A.</b>                       |              | LANGLEY-12642                            | B80-10206 04 | strains and curvatures                    |
| A precoat prevents ceramic stopoffs from |              | <b>BUTNER, M. F.</b>                     |              | LEWIS-12592 B80-10395 06                  |
| spalling                                 |              | Measuring ball-bearing loads             |              | <b>CHARTIER, E. N.</b>                    |
| M-FS-19495                               | B80-10136 08 | M-FS-19505                               | B80-10102 07 | Drill-motor holding fixture               |
|                                          |              |                                          |              | MSC-18582 B80-10108 07                    |

## PERSONAL AUTHOR INDEX

## DRIGGERS, G. W.

**CHASE, W. D.**  
Rain, fog, and clouds for aircraft simulators  
ARC-11158 B80-10383 06

**CHHATPAR, C. K.**  
Holes help control temperature  
GSFC-12618 B80-10373 06

**CHIN, F.**  
Aluminum-encased lead mallet  
MSC-18529 B80-10100 07

**CHOW, E. Y.**  
Offset paraboloidal solar concentrator  
NPO-14846 B80-10320 03

**CHOY, K. C.**  
Rotor transient analysis  
LEWIS-13230 B80-10259 07

**CHRISTENSEN, D. L.**  
Thermal stratification in liquid storage tanks  
M-FS-25416 B80-10188 03

**CLARK, K. H.**  
Mechanical hand for gripping objects  
M-FS-23692 B80-10243 07

**CLARK, R. K.**  
Environmental testing under load  
LANGLEY-12602 B80-10379 06

**CLARKE, S.**  
Connector heat shield  
MSC-16282 B80-10126 08

**CLEMONS, J. I., JR.**  
Multichannel coincidence circuit  
LANGLEY-12531 B80-10005 01

**CLEVER, W.**  
Aerodynamic preliminary analysis  
LANGLEY-12404 B80-10397 06

**COCKRUM, R. H.**  
Measuring radiation effects on MOS capacitors  
NPO-14700 B80-10227 06  
Improving MOS minority-carrier lifetime  
NPO-14738 B80-10301 01

**COLE, J. D.**  
Reflecting layers reduce weight of insulation  
MSC-18785 B80-10547 08

**COLEMAN, A. E.**  
Manual for physical fitness  
MSC-18915 B80-10372 05

**COLLINS, E. R.**  
Sidewall penetrator for oil wells  
NPO-14306 B80-10528 07

**COLLINS, E. R., JR.**  
An adjustable solar concentrator  
NPO-14710 B80-10043 03  
Drilling side holes from a borehole  
NPO-14465 B80-10066 04

**COMMADORE, C. C.**  
Wire harness twisting aid  
MSC-18581 B80-10132 08

**COMPTON, E. C.**  
Camera add-on records time of exposure  
LANGLEY-12635 B80-10183 03

**CONROY, B. L.**  
High-power solid-state microwave transmitter  
NPO-14803 B80-10296 01

**COOK, K. B., JR.**  
Optimizing costs of VLSI circuits  
M-FS-25348 B80-10281 08

**COOPER, R. A.**  
Predicting lifetime of cast parts  
M-FS-19549 B80-10228 06

**COSTAKOS, N. C.**  
A versatile tunnel acts as a flexible duct  
M-FS-22636 B80-10242 07

**COUCH, L. M.**  
Heat pipes cool probe and sandwich panel  
LANGLEY-12588; LANGLEY-12637 B80-10518 06

**COUCH, R. H.**  
Temperature controller for hyperthermia devices  
LANGLEY-12528 B80-10072 05

**COULBERT, C. D.**  
UV actinometer film  
NPO-14479 B80-10179 03

**COX, G. W.**  
Placement technique for semicustom digital LSI circuits  
M-FS-25324 B80-10117 08

**COYLE, M. J.**  
Simplified thermal analyzer  
GSFC-12638 B80-10393 06

**CRAWFORD, D. W.**  
Compliant transducer measures artery profile  
NPO-14899 B80-10369 05

**CREDEUR, K. R.**  
Estimation of incomplete multinomial data  
LANGLEY-12593 B80-10146 09

**CROSIER, W. G.**  
Testing EKG electrodes on-line  
MSC-18696 B80-10212 05  
Cardiopulmonary data-acquisition system  
MSC-18783 B80-10499 05

**CUK, S.**  
Efficient, lightweight dc/dc switching converter  
LEWIS-12809 B80-10299 01

**CULLER, V. H.**  
Compliant transducer measures artery profile  
NPO-14899 B80-10369 05

**CULP, L. N.**  
Drill-motor holding fixture  
MSC-18582 B80-10108 07

**CUNNINGHAM, J. W.**  
Automatic thermal switches  
GSFC-12553 B80-10214 06

**CUPP, J. L.**  
Shaping graphite/epoxy stiffeners  
MSC-18494 B80-10120 08

**CURRIE, J. R.**  
Multiplexed logic controls solar-heating system  
M-FS-25287 B80-10318 03

**CURWICK, L. R.**  
Oxide dispersion strengthened superalloy  
LEWIS-13589 B80-10351 04

**CWIERTNY, A. J., JR.**  
Composites with nearly zero thermal expansion  
MSC-18724 B80-10355 04

**D**

**DA SILVA, A. J.**  
Photometer used for response time measurement  
MSC-18712 B80-10317 02

**DAEGES, J. J.**  
Computer-controlled warmup circuit  
NPO-14815 B80-10155 01

**DANZA, T. M.**  
Heat conduction in three dimensions  
MSC-18616 B80-10239 06

**DASCHER, R.**  
Coal conversion and synthetic-fuel production  
M-FS-25330 B80-10070 04

**DAVEY, R. E.**  
'Grinding' cavities in polyurethane foam  
MSC-18564 B80-10124 08

**DAVIS, E. S.**  
Benefit assessment of solar-augmented natural gas systems  
NPO-14568 B80-10048 03

**DAWSON, C. T.**  
System time-domain simulation  
MSC-18333 B80-10292 09

**DE YOUNG, R. J.**  
Large-volume nuclear-pumped laser  
LANGLEY-12592 B80-10044 03

**DEADMORE, D. L.**  
Low cost high temperature, duplex coating for superalloys  
LEWIS-13497 B80-10352 04

**DEBOO, G. J.**  
Detecting short circuits during assembly  
ARC-11116 B80-10007 01

**DELIONBACK, L. M.**  
Extracting energy from natural flow  
M-FS-23989 B80-10045 03

**DELVIGS, P.**  
Determining manufacturing cost from product complexity  
M-FS-25371 B80-10439 09

**DELMER, T. N.**  
Numerical tracing of electron trajectories  
GSFC-12535 B80-10057 03

**DERAMUS, G. E., JR.**  
Inhibiting corrosion in solar-heating and cooling systems  
M-FS-25387 B80-10056 03

**DIVAN, P.**  
Aerodynamic preliminary analysis  
LANGLEY-12404 B80-10397 06

**DIXON, W. F.**  
'Grinding' cavities in polyurethane foam  
MSC-18564 B80-10124 08

**DOCTOR, S.**  
Verifying root fusion in electron-beam welds  
M-FS-19499 B80-10110 08

**DOLLAND, C.**  
LSI logic for phase-control rectifiers  
M-FS-25208 B80-10161 01

**DONALDSON, J. A.**  
Microprocessor-based cardiotachometer  
MSC-18775 B80-10501 05

**DOTTS, R. L.**  
'Densified' tiles form stronger bonds  
MSC-18741 B80-10534 08

**DOWLER, W. L.**  
Measuring the thermal conductivity of insulation  
NPO-14871 B80-10382 06

**DRECHSLER, J. D.**  
Lightweight terminal board  
MSC-187 B80-10429 08

**DRIGGERS, G. W.**  
Should we industrialize space?  
M-FS-23963 B80-10137 08

**DROST, E. J.**  
Detecting a coal/shale interface  
M-FS-23720 B80-10061 04

**DRUMMOND, W. E.**  
Soft container for explosive nuts  
MSC-18871 B80-10532 07

**DUCKETT, R. J.**  
User chooses coating properties  
LANGLEY-12719 B80-10493 04

**DUFRESNE, E. R.**  
Chlorinolysis reclaims rubber of waste tires  
NPO-14935 B80-10365 04

**DUNKIN, J.**  
Coal conversion and synthetic-fuel production  
M-FS-25330 B80-10070 04

**DUNLAP, D. E., JR.**  
Quick mixing of epoxy components  
MSC-18731 B80-10415 07

**DUNN, K.**  
Aerodynamic preliminary analysis  
LANGLEY-12404 B80-10397 06

**DUNN, S. A.**  
Controlling the shape of glass microballoons  
M-FS-25230 B80-10266 08

**DUNN, T. J.**  
Composites with nearly zero thermal expansion  
MSC-18724 B80-10355 04

**DURDEN, J.**  
Microprocessor-based detector for PSK commands  
NPO-14440 B80-10036 02

**DURLING, R. J.**  
Vibration modes and frequencies of structures  
LANGLEY-12647 B80-10237 06

**E**

**EASTERLING, M. F.**  
Receiver array for high-rate telemetry  
NPO-14579 B80-10308 02

Arrayed receivers for low-rate telemetry  
NPO-14590 B80-10309 02

**EATON, H.**  
Lightweight terminal board  
MSC-187 B80-10429 08

**ECORD, G. M.**  
Tile densification with TEOS  
MSC-18737 B80-10535 08

Repairing high-temperature glazed tiles  
MSC-18736 B80-10536 08

**EDWARDS, H. B.**  
Four-wheel dual braking for automobiles  
LANGLEY-12687 B80-10529 07

**EDWARDS, T. R.**  
Multiple linear regression analysis  
M-FS-23764 B80-10288 09

**EGGLESTON, T. W.**  
System time-domain simulation  
MSC-18333 B80-10292 09

**EHRLICH, L. F.**  
Online assessment of a distributed processor  
KSC-11124 B80-10037 02

**ELLIOTT, R. D.**  
A generalized vortex lattice method  
LANGLEY-12636 B80-10236 06

**ELLIS, A. B.**  
Photoelectrochemical cell with nondissolving anode  
LANGLEY-12591 B80-10038 03

**ELLIS, H. JR.**  
Cavity-backed spiral-slot antenna  
MSC-18532 B80-10448 02

Trislot-cavity microstrip antenna  
MSC-18793 B80-10450 02

**EMANUEL, W. H.**  
Reshaping tube ends for welding  
MSC-18462 B80-10407 07

**ENGEL, A.**  
Universal odd-modulus frequency divider  
NPO-13426 B80-10006 01

**EPPLER, R.**  
The design and analysis of low-speed airfoils  
LANGLEY-12727 B80-10524 06

**ERICKSON, J. J.**  
Silicon nitride passivation of IC's  
M-FS-25309 B80-10279 08

**ERZBERGER, H.**  
Cost-minimized aircraft trajectories  
ARC-11282 B80-10396 06

**ESTEY, R. S.**  
Economical ultraviolet radiometer  
NPO-14843 B80-10322 03

**ESTRADA, R.**  
Cooling/grounding mount for hybrid circuits  
MSC-18728 B80-10302 01

**EVANS, J. C., JR.**  
Multijunction high-voltage solar cell  
LEWIS-13400 B80-10441 01

Solar cell is housed in light-bulb enclosure  
LEWIS-13418 B80-10442 01

**F**

**FARNSWORTH, D. L.**  
Monolithic CCD-array readout  
LANGLEY-12376 B80-10307 02

**FASHANO, M.**  
System time-domain simulation  
MSC-18333 B80-10292 09

**FAUST, N. L.**  
Low-cost LANDSAT processing system  
M-FS-25396 B80-10285 09

**FEDORS, R. F.**  
An equation of state for liquids  
NPO-14821 B80-10174 03

**FEINSTEIN, S. P.**  
Automated holographic drop-size analyzer  
B80-10181 03

**FELDSTEIN, C.**  
Compliant transducer measures artery profile  
NPO-14899 B80-10369 05

**FERGUSON, D. R.**  
Stream tube curvature analysis  
LANGLEY-11535 B80-10235 06

**FESLER, L. W.**  
Heat conduction in three dimensions  
MSC-18616 B80-10239 06

**FESSLER, T. E.**  
User's guide to SFTRAN  
LEWIS-13172 B80-10143 09

Thermodynamic and transport properties of air/water mixtures  
LEWIS-13432 B80-10519 06

**FEWELL, L. L.**  
Heat resistant polymers  
ARC-11176 B80-10350 04

**FITZPATRICK, J. B.**  
Fast response cryogen level sensor  
MSC-18697 B80-10374 06

**FLANERY, H. E.**  
Film coatings for contoured surfaces  
MSC-18784 B80-10425 08

**FLETCHER, H. C.**  
Additive improves engine-oil performance  
GSFC-12327 B80-10065 04

**FLEURY, C.**  
Resizing structures for minimum weight  
LANGLEY-12699 B80-10394 06

**FONTES, M. J.**  
Contour-measuring tool for composite layups  
ARC-11246 B80-10417 08

**FORD, W. F.**  
User's guide to SFTRAN  
LEWIS-13172 B80-10143 09

**FORTINI, A.**  
Compact, super heat exchanger  
LEWIS-12441 B80-10081 06

**FOUGHNER, J. T., JR.**  
Passive wing/store flutter suppression  
LANGLEY-12468 B80-10219 06

**FOX, R. L.**  
Plastic welder  
LANGLEY-12540 B80-10274 08

**FOX, S. C.**  
Improved microbe detection in water samples  
LANGLEY-12709 B80-10502 05

**FRANCO, M. M.**  
Portable zero-delay assembly  
NPO-14671 B80-10316 02

**FRANKE, J. M.**  
Noise suppression in forward-scattering optical instruments  
LANGLEY-12730 B80-10324 03

Fiber-optics couple arthroscope to TV  
LANGLEY-12718 B80-10504 05

**FRANT, M. S.**  
Carbon scrubber  
MSC-16531 B80-10356 04

**FRAZER, R. E.**  
Tracking falling objects  
NPO-14813 B80-10328 03

Imager displays free fall in stop action  
NPO-14779 B80-10509 06

**FRECHE, J. C.**  
Composites for aeropropulsion  
LEWIS-13438 B80-10209 04

**FREEMAN, V. L.**  
Composites with nearly zero thermal expansion  
MSC-18724 B80-10355 04

**FRENCH, R. L.**  
Benefit assessment of solar-augmented natural gas systems  
NPO-14568 B80-10048 03

**FRIEDELL, M. V.**  
Zero-torque spanner wrench  
MSC-14843 B80-10107 07

**FRISCH, H. P.**  
Equations of motion for coupled n-body systems  
GSFC-12407 B80-10083 06

**FROST, R. K.**  
Film coatings for contoured surfaces  
MSC-18784 B80-10425 08

## PERSONAL AUTHOR INDEX

HAWKINS, S. F.

|                                                                                                      |                                                                         |                                                                        |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|
| <b>FULLER, L. C.</b>                                                                                 | <b>GIBSON, E. K.</b>                                                    | <b>GRUNWALD, A. J.</b>                                                 |
| Regenerative superheated steam turbine cycles<br>LEWIS-13392                                         | Applying the helium ionization detector in chromatography<br>MSC-18835  | Real-time film recording from stroke-written CRT's<br>LANGLEY-12529    |
| <b>FUNICELLI, F.</b>                                                                                 | <b>GILLILAND, C. S.</b>                                                 | <b>LANGLEY-12529</b>                                                   |
| NASA PERT time II<br>LEWIS-13145                                                                     | User chooses coating properties<br>LANGLEY-12719                        | <b>B80-10169 02</b>                                                    |
| <b>FURIGA, A.</b>                                                                                    | <b>GIOVANNETTI, A.</b>                                                  | <b>GUNTER, E. J.</b>                                                   |
| Ultrastable automatic frequency control<br>MSC-18679                                                 | Cable-splice detector<br>ARC-11291                                      | Rotor transient analysis<br>LEWIS-13230                                |
| <b>FURTSCHE, T. A.</b>                                                                               | <b>GIRALA, A. S.</b>                                                    | <b>B80-10259 07</b>                                                    |
| Electrically conductive palladium-containing polyimide films<br>LANGLEY-12629                        | Tubing cutter for tight spaces<br>MSC-18538                             | Controlling the shape of glass microballoons<br>M-FS-25230             |
| <b>G</b>                                                                                             | <b>GIRARD, M. A.</b>                                                    | <b>B80-10266 08</b>                                                    |
| <b>GAALEMA, S. D.</b>                                                                                | <b>GLASGOW, T. K.</b>                                                   | <b>GUPTA, A.</b>                                                       |
| Better-quality CCD-array images<br>NPO-14426                                                         | Oxide dispersion strengthened superalloy<br>LEWIS-13589                 | UV actinometer film<br>NPO-14479                                       |
| <b>GAGGINI, B.</b>                                                                                   | <b>GLENN, D. C.</b>                                                     | Changes in 'thermal lens' measure diffusivity<br>NPO-14657             |
| Selecting optimum algorithms for image processing<br>M-FS-25367                                      | Soft container for explosive nuts<br>MSC-18871                          | Compact infrared detector<br>NPO-14864                                 |
| <b>GAGLIANI, J.</b>                                                                                  | <b>GLICKSMAN, M. E.</b>                                                 | <b>H</b>                                                               |
| A new family of fire-resistant foams<br>MSC-16921                                                    | A temperature fixed point near 58 C<br>M-FS-25304                       | <b>HAEHNER, C. L.</b>                                                  |
| Modified fire-resistant foams for seat cushions<br>MSC-18704                                         | Resin char oxidation retardant for composites<br>LEWIS-13275            | Multiple-creep-test apparatus<br>GSFC-12561                            |
| One-step microwave foaming and curing<br>MSC-18707                                                   | Shell theory automated for rotational structures<br>M-FS-23027          | <b>B80-10080 06</b>                                                    |
| Rigid fire-resistant foams for walls and floors<br>MSC-18708                                         | <b>GORADIA, C.</b>                                                      | <b>HAGLER, R.</b>                                                      |
| Improved ureteral stone fragmentation catheter<br>NPO-14745                                          | Multijunction high-voltage solar cell<br>LEWIS-13400                    | Test fittings for dimensionally critical tubes<br>NPO-14399            |
| Beef grading by ultrasound<br>NPO-14812                                                              | <b>GORIS, A. C.</b>                                                     | <b>HALL, T. C.</b>                                                     |
| Transonic airfoil design code<br>LANGLEY-12460                                                       | System time-domain simulation<br>MSC-18333                              | Photoniitride passivating coating for IC's<br>M-FS-25401               |
| <b>GARABEDIAN, P.</b>                                                                                | <b>GOULD, C. L.</b>                                                     | Silicon nitride passivation of IC's<br>M-FS-25309                      |
| Progress in MOS and SOS devices<br>M-FS-25153                                                        | Should we industrialize space?<br>M-FS-23963                            | <b>B80-10260 08</b>                                                    |
| Models of MOS and SOS devices<br>M-FS-25153                                                          | <b>GOULD, R. W.</b>                                                     | <b>HALLBERG, F.</b>                                                    |
| Progress in MOSFET double-layer metalization<br>M-FS-25239                                           | Eliminating gaps in split rings<br>MSC-18854                            | Cleaving machine for hard crystals<br>GSFC-12584                       |
| Noise suppression in forward-scattering optical instruments<br>LANGLEY-12730                         | <b>GRANA, D. C.</b>                                                     | <b>B80-10401 07</b>                                                    |
| <b>GAASSAWAY, J. D.</b>                                                                              | Improved microbe detection in water samples<br>LANGLEY-12709            | <b>HALSEY, N. D.</b>                                                   |
| Silicon nitride passivation of IC's<br>M-FS-25309                                                    | <b>GREEN, W. S.</b>                                                     | Three-dimensional potential flow<br>LANGLEY-12623                      |
| Etchant for incoloy-903 welds<br>M-FS-19378                                                          | Heat-shrinkable sleeve aids in insulating universal joints<br>MSC-18685 | <b>B80-10090 06</b>                                                    |
| <b>GEBHART, F. L.</b>                                                                                | <b>GREENBERG, E.</b>                                                    | <b>HAN, S. M.</b>                                                      |
| Linear stochastic optimal control and estimation problem<br>LEWIS-13206                              | Efficient telemetry format<br>NPO-13679                                 | Thermal stratification in liquid storage tanks<br>M-FS-25416           |
| Calculating linear A, B, C, and D matrices from a nonlinear dynamic engine simulation<br>LEWIS-13250 | <b>GREENWOOD, J. E.</b>                                                 | <b>B80-10188 03</b>                                                    |
| <b>GERSTMAYER, J. A.</b>                                                                             | Locknut preload tool<br>MSC-16153                                       | <b>HANKINS, J. D.</b>                                                  |
| Design considerations for mechanical face seals<br>LEWIS-13146                                       | <b>GREINER, H. F.</b>                                                   | Thermosyphon heat exchanger<br>M-FS-25389                              |
| Etchant for incoloy-903 welds<br>M-FS-19378                                                          | Vise holds specimens for microscope<br>MSC-18690                        | Controller for solar-energy systems<br>M-FS-25386                      |
| <b>GEYSER, L. C.</b>                                                                                 | <b>GREULE, W. N.</b>                                                    | Controller and temperature monitor for solar heating<br>M-FS-25387     |
| Wind-simulation tester for solar modules<br>NPO-14837                                                | <b>GRIFFITH, J. S.</b>                                                  | Final report on development of a programmable controller<br>M-FS-25388 |
| Integrated material-surface analyzer<br>NPO-14702                                                    | <b>GRUNTHANER, F. J.</b>                                                | <b>B80-10055 03</b>                                                    |
| <b>H</b>                                                                                             | Autoxatic shutoff valve<br>MSC-19385                                    | <b>HARMAN, T. C.</b>                                                   |
| <b>HAWKINS, S. F.</b>                                                                                |                                                                         | Flush-mounting technique for composite beams<br>LANGLEY-12389          |
| <b>HAWK, J. D.</b>                                                                                   |                                                                         | <b>B80-10121 08</b>                                                    |
| <b>HARRISON, D. C.</b>                                                                               |                                                                         | <b>HARRISON, D. C.</b>                                                 |
| <b>HARTLEY, R. B.</b>                                                                                |                                                                         | Crossed-grid charge locator<br>M-FS-25170                              |
| <b>HARVEY, J. M.</b>                                                                                 |                                                                         | <b>B80-10010 01</b>                                                    |
| <b>HAWK, J. D.</b>                                                                                   |                                                                         | MBASIC processor<br>NPO-14245                                          |
| <b>HAWKINS, S. F.</b>                                                                                |                                                                         | <b>B80-10290 09</b>                                                    |
| <b>HAWK, J. D.</b>                                                                                   |                                                                         | NASA charging analyzer program<br>LEWIS-12973                          |
| <b>HAWKINS, S. F.</b>                                                                                |                                                                         | <b>B80-10058 03</b>                                                    |
| <b>HAWKINS, S. F.</b>                                                                                |                                                                         | Potential flow in two-dimensional deflected nozzles<br>LEWIS-13461     |
| <b>HAWKINS, S. F.</b>                                                                                |                                                                         | <b>B80-10523 06</b>                                                    |
| <b>HAWKINS, S. F.</b>                                                                                |                                                                         | Autoxatic shutoff valve<br>MSC-19385                                   |
| <b>HAWKINS, S. F.</b>                                                                                |                                                                         | <b>B80-10097 07</b>                                                    |

|                                                                               |              |                                                                            |              |                                                                        |
|-------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------|--------------|------------------------------------------------------------------------|
| <b>HEADLEY, C. A.</b>                                                         |              | <b>HOFFMAN, J. D.</b>                                                      |              | <b>HUNT, R.</b>                                                        |
| Reshaping tube ends for welding<br>MSC-18462                                  | B80-10407 07 | Flow field in supersonic<br>mixed-compression inlets<br>LEWIS-13279        | B80-10088 06 | Real-time film recording from<br>stroke-written CRT's<br>LANGLEY-12529 |
| <b>HEARN, C. P.</b>                                                           |              | <b>HOHL, F.</b>                                                            |              |                                                                        |
| Temperature controller for hyperthermia<br>devices<br>LANGLEY-12528           | B80-10072 05 | Large-volume multiple-path<br>nuclear-pumped laser<br>LANGLEY-12592        | B80-10044 03 |                                                                        |
| <b>HEFLINGER, L. O.</b>                                                       |              | <b>HOLMAN, E. V.</b>                                                       |              |                                                                        |
| Recording fluid currents by holography<br>M-FS-25373                          | B80-10222 06 | Self-adjusting mechanical snubbing link<br>MSC-16134                       | B80-10246 07 | <b>IMIG, L. A.</b>                                                     |
| <b>HELBLE, D. R.</b>                                                          |              | <b>HOLMES, J. F.</b>                                                       |              | Temperature controller adapts to fatigue<br>tester<br>LANGLEY-12393    |
| Clamshell door system<br>MSC-18468                                            | B80-10101 07 | Oceanic-wave-measurement system<br>M-FS-23862                              | B80-10224 06 | B80-10378 06                                                           |
| <b>HENNICH, C. H.</b>                                                         |              | <b>HOLT, J. W.</b>                                                         |              | <b>INGLE, W. M.</b>                                                    |
| NASTRAN modifications for recovering<br>strains and curvatures<br>LEWIS-12592 | B80-10395 06 | 'Densified' tiles form stronger bonds<br>MSC-18741                         | B80-10534 08 | Producing silicon continuously<br>NPO-14796                            |
| <b>HERREID, R.</b>                                                            |              | Mobile glazing unit<br>KSC-11171                                           | B80-10538 08 | B80-10537 08                                                           |
| Developing experiment instrument<br>packages<br>GSFC-12536                    | B80-10451 02 | <b>HOLZMAN, R. E.</b>                                                      |              | <b>INGLES, M. E.</b>                                                   |
| <b>HESLIN, T. M.</b>                                                          |              | MBASIC processor<br>NPO-14245                                              | B80-10290 09 | Wire harness twisting aid<br>MSC-18581                                 |
| All-inorganic spark-chamber frame<br>GSFC-12354                               | B80-10265 08 | <b>HONG, S.</b>                                                            |              | B80-10132 08                                                           |
| <b>HESS, J. L.</b>                                                            |              | Compact infrared detector<br>NPO-14864                                     | B80-10515 06 | <b>IRICK, S. C.</b>                                                    |
| Three-dimensional potential flow<br>LANGLEY-12623                             | B80-10090 06 | <b>HONG, S. D.</b>                                                         |              | Spiral-wound gasket forms<br>low-temperature seal<br>LANGLEY-12315     |
| <b>HEWES, D. E.</b>                                                           |              | Changes in 'thermal lens' measure<br>diffusivity<br>NPO-14657              | B80-10218 06 | B80-10543 08                                                           |
| Electrofluidic accelerometer<br>LANGLEY-12493                                 | B80-10225 06 | <b>HOODE, A. J.</b>                                                        |              | <b>IUFER, E. J.</b>                                                    |
| <b>HEYMAN, J. S.</b>                                                          |              | Efficient telemetry format<br>NPO-13679                                    | B80-10142 09 | Cable-splice detector<br>ARC-11291                                     |
| Broadband electrostatic acoustic<br>transducer for liquids<br>LANGLEY-12465   | B80-10078 06 | <b>HOOPER, N. J.</b>                                                       |              | B80-10074 06                                                           |
| Ultrasonic frequency analysis<br>LANGLEY-12697                                | B80-10377 06 | Low-cost LANDSAT processing system<br>M-FS-25396                           | B80-10285 09 | <b>J</b>                                                               |
| <b>HILBERT, E. E.</b>                                                         |              | <b>HOOPER, S. L.</b>                                                       |              | <b>JACQUEMIN, G. G.</b>                                                |
| Basic cluster compression algorithm<br>NPO-14816                              | B80-10291 09 | Compact positioning flange<br>MSC-14876                                    | B80-10104 07 | Automatic connector joins structural<br>columns<br>LANGLEY-12578       |
| Compressing TV-image data<br>NPO-14823                                        | B80-10310 02 | <b>HOUGE, J. C.</b>                                                        |              | B80-10251 07                                                           |
| An image-data-compression algorithm<br>NPO-14496                              | B80-10438 09 | Gage for evaluating rheumatoid hands<br>GSFC-12610                         | B80-10503 05 | <b>JAROE, R. R.</b>                                                    |
| <b>HILL, G. M.</b>                                                            |              | <b>HOUSTON, S. W.</b>                                                      |              | Selecting optimum algorithms for image<br>processing<br>M-FS-25367     |
| Underground Coal Mining<br>NPO-14704                                          | B80-10071 04 | Microprocessor-controlled data<br>synchronizer<br>MSC-18535                | B80-10031 02 | B80-10557 09                                                           |
| <b>HILL, J. W.</b>                                                            |              | <b>HOVEL, H. J.</b>                                                        |              | <b>JEFFERS, G. W.</b>                                                  |
| Remote manipulator with force<br>feed-back<br>ARC-11272                       | B80-10408 07 | Ohmic contact to GaAs semiconductor<br>LANGLEY-12466                       | B80-10263 08 | Two-headed bolt<br>M-FS-19619                                          |
| <b>HILL, W. L.</b>                                                            |              | <b>HOWELL, L. D.</b>                                                       |              | B80-10410 07                                                           |
| Room-temperature adhesive for<br>high-temperature use<br>MSC-16930            | B80-10129 08 | Kilovolt vacuum feed through is less<br>noisy<br>NPO-14802                 | B80-10426 08 | <b>JENKINS, R. V.</b>                                                  |
| <b>HIMMEL, R. P.</b>                                                          |              | <b>HU, T.</b>                                                              |              | Viscous characteristics analysis<br>LANGLEY-12598                      |
| Cost models and economical packaging<br>of LSI's<br>M-FS-25359                | B80-10138 08 | Predicting crack propagation<br>MSC-18718:MSC-18721                        | B80-10283 08 | B80-10084 06                                                           |
| <b>HINKLEY, E. D., JR.</b>                                                    |              | <b>HUDGINS, J. L.</b>                                                      |              | Removal of hydrogen bubbles from<br>nuclear reactors<br>LANGLEY-12597  |
| Laser beam methane detector<br>NPO-14929                                      | B80-10363 04 | Detecting a coal/shale interface<br>M-FS-23720                             | B80-10061 04 | B80-10205 04                                                           |
| <b>HIRSCH, D. J.</b>                                                          |              | <b>HUGHES, T. H.</b>                                                       |              | <b>JENNINGS, D. E.</b>                                                 |
| NASA PERT time II<br>LEWIS-13145                                              | B80-10286 09 | Applications of remote-sensing imagery<br>M-FS-25107                       | B80-10082 06 | Optical calibrator for TDL<br>spectrometers<br>GSFC-12562              |
| <b>HODGE, P. E.</b>                                                           |              | <b>HULL, G. G.</b>                                                         |              | B80-10178 03                                                           |
| Corrosion-resistant ceramic thermal<br>barrier coating<br>LEWIS-13088         | B80-10067 04 | Chlorinolysis reclaims rubber of waste<br>tires<br>NPO-14935               | B80-10365 04 | <b>JENSEN, R. N.</b>                                                   |
| <b>HODGES, J.</b>                                                             |              | <b>HULL, R. A.</b>                                                         |              | Energy-saving thermostat<br>LANGLEY-12450                              |
| Selecting optimum algorithms for image<br>processing<br>M-FS-25367            | B80-10557 09 | Gentle arrester for moving bodies<br>LANGLEY-12372                         | B80-10531 07 | B80-10040 03                                                           |
| <b>HOFFMAN, A. R.</b>                                                         |              | <b>HUMPHRIES, T. S.</b>                                                    |              | <b>JEPPESEN, G. L.</b>                                                 |
| Improved particulate-sampling filter<br>NPO-14801                             | B80-10271 08 | Inhibiting corrosion in solar-heating and<br>cooling systems<br>M-FS-25387 | B80-10056 03 | A versatile tunnel acts as a flexible<br>duct<br>M-FS-22636            |
|                                                                               |              | Less-toxic corrosion inhibitors<br>M-FS-25496                              | B80-10497 04 | B80-10242 07                                                           |
|                                                                               |              |                                                                            |              | <b>JING, G. K.</b>                                                     |
|                                                                               |              |                                                                            |              | Testing panels in tension and flexure<br>M-FS-25421                    |
|                                                                               |              |                                                                            |              | B80-10380 06                                                           |
|                                                                               |              |                                                                            |              | <b>JOHNSON, R. W.</b>                                                  |
|                                                                               |              |                                                                            |              | Fast microwave switching power<br>divider<br>GSFC-12420                |
|                                                                               |              |                                                                            |              | B80-10295 01                                                           |
|                                                                               |              |                                                                            |              | <b>JOHNSON, R., JR.</b>                                                |
|                                                                               |              |                                                                            |              | Composites with nearly zero thermal<br>expansion<br>MSC-18724          |
|                                                                               |              |                                                                            |              | B80-10355 04                                                           |
|                                                                               |              |                                                                            |              | <b>JOHNSON, J. D.</b>                                                  |
|                                                                               |              |                                                                            |              | Mechanical hand for gripping objects<br>M-FS-23692                     |
|                                                                               |              |                                                                            |              | B80-10243 07                                                           |

|                                                                                                                |                                                                                                               |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| <b>K</b>                                                                                                       | <b>LEAR, W. M.</b>                                                                                            |
| <b>KAISER, S. W.</b><br>Photoelectrochemical cell with nondissolving anode<br>LANGLEY-12591 B80-10038 03       | An automated oxide and diffusion facility for IC's<br>M-FS-25357 B80-10282 08                                 |
| <b>KAMMERER, C. C.</b><br>Fresnel lenses for ultrasonic inspection<br>MSC-18469 B80-10217 06                   | Automatic chemical vapor deposition<br>M-FS-25249 B80-10431 08                                                |
| <b>KANE, J. O.</b><br>Thermal barrier and gas seal<br>MSC-18390 B80-10269 08                                   | <b>KERLEY, J.</b><br>Versatile modular scaffolds<br>GSFC-12606 B80-10406 07                                   |
| <b>KANTAK, A. V.</b><br>Timing signal propagates without phase shift<br>MSC-18777 B80-10449 02                 | <b>KERNS, D. V., JR.</b><br>Optimizing costs of VLSI circuits<br>M-FS-25348 B80-10281 08                      |
| <b>KANTSIOS, A. G.</b><br>Detection of tanker defects with infrared thermography<br>LANGLEY-12655 B80-10221 06 | <b>KEY, J.</b><br>Shell theory automated for rotational structures<br>M-FS-23027 B80-10089 06                 |
| <b>KASSEL, P. C., JR.</b><br>Camera add-on records time of exposure<br>LANGLEY-12635 B80-10183 03              | <b>KIDDER, P. W.</b><br>Hot forming graphite/polyimide structures<br>LANGLEY-12547 B80-10422 08               |
| <b>KATTAMIS, T. Z.</b><br>Reduced gravity favors columnar crystal growth<br>M-FS-25205 B80-10366 04            | <b>KIM, Y. G.</b><br>Oxide dispersion strengthened superalloy<br>LEWIS-13589 B80-10351 04                     |
| <b>KATZ, I.</b><br>NASA charging analyzer program<br>LEWIS-12973 B80-10058 03                                  | <b>KING, J. P., JR.</b><br>Flared tube attachment fitting<br>MSC-18416 B80-10240 07                           |
| <b>KAUPPI, J. F.</b><br>Locknut preload tool<br>MSC-16153 B80-10245 07                                         | <b>KINSER, D. L.</b><br>Coatings for hybrid microcircuits<br>M-FS-25292 B80-10116 08                          |
| <b>KAUPS, K.</b><br>Disturbance amplification rates<br>LANGLEY-12556 B80-10092 06                              | <b>KISSEL, R. R.</b><br>Solar-site test module<br>M-FS-25543 B80-10460 03                                     |
| <b>KAY, B. F.</b><br>Flush-mounting technique for composite beams<br>LANGLEY-12389 B80-10121 08                | <b>KIUSALAAS, J.</b><br>Structural design with stress and displacement constraints<br>M-FS-25235 B80-10521 06 |
| <b>KAZAROFF, J. M.</b><br>Compact, super heat exchanger<br>LEWIS-12441 B80-10081 06                            | <b>KLARE, S. W.</b><br>Microprocessor-based detector for PSK commands<br>NPO-14440 B80-10036 02               |
| <b>KEITH, J. S.</b><br>Stream tube curvature analysis<br>LANGLEY-11535 B80-10235 06                            | <b>KLECKNER, R. J.</b><br>Cylindrical bearing analysis<br>LEWIS-13393 B80-10533 07                            |
| <b>KELLER, J. D.</b><br>Inviscid transonic flow over axisymmetric bodies<br>LANGLEY-12499 B80-10398 06         | <b>KLEINBERG, L. L.</b><br>Simple JFET oscillator<br>GSFC-12555 B80-10443 01                                  |
| <b>KELLY, H. N.</b><br>Heat pipes cool probe and sandwich panel<br>LANGLEY-12588; LANGLEY-12637 B80-10518 06   | <b>KLEINE, H.</b><br>Software design and documentation language<br>NPO-14610 B80-10145 09                     |
| <b>KELLY, T. P.</b><br>New pressure-sensitive silicone adhesive<br>LANGLEY-12737 B80-10495 04                  | <b>KLEINT, R. E.</b><br>Verifying root fusion in electron-beam welds<br>M-FS-19499 B80-10110 08               |
| <b>KENDALL, J. M., JR.</b><br>Acoustic lens is gas-filled<br>NPO-14757 B80-10376 06                            | X-ray technique verifies weld-root fusion<br>M-FS-19468 B80-10111 08                                          |
| Drop tower with no aerodynamic drag<br>NPO-14845 B80-10549 08                                                  | 'Foreign material' to verify root fusion in welded joints<br>M-FS-19496 B80-10276 08                          |
| <b>KENIGSBERG, I.</b><br>Isolation and measurement of rotor vibration forces<br>LANGLEY-12476 B80-10507 06     | <b>KLOPP, W. D.</b><br>Reduced hydrogen permeability at high temperatures<br>LEWIS-13485 B80-10364 04         |
| <b>KENNEDY, B. W.</b><br>Automated ion implantation for IC's<br>M-FS-25193 B80-10139 08                        | <b>KNIGHT, C. W.</b><br>Camera add-on records time of exposure<br>LANGLEY-12635 B80-10183 03                  |
| An automated photolithography facility for IC's<br>M-FS-25073 B80-10140 08                                     | <b>KOCH, A. J.</b><br>Abrasive drill for resilient materials<br>LEWIS-13411 B80-10402 07                      |
|                                                                                                                | <b>KOEPF, G.</b><br>Diplexer for laser-beam heterodyne receiver<br>GSFC-12589 B80-10329 03                    |
|                                                                                                                | <b>KOJIMA, J.</b><br>Aerodynamic preliminary analysis<br>LANGLEY-12404 B80-10397 06                           |
|                                                                                                                | <b>KOJIMA, T. T.</b><br>Simple circuit monitors 'third wire' in ac lines<br>M-FS-19457 B80-10002 01           |
|                                                                                                                | <b>KORBELAK, K.</b><br>Safely splicing glass optical fibers<br>KSC-11107 B80-10134 08                         |
|                                                                                                                | <b>KORN, D.</b><br>Transonic airfoil design code<br>LANGLEY-12460 B80-10085 06                                |
|                                                                                                                | <b>KRAMER, R. C.</b><br>Method for shaping polyethylene tubing<br>MSC-18771 B80-10423 08                      |
|                                                                                                                | Pneumatic-power supply<br>MSC-18855 B80-10527 07                                                              |
|                                                                                                                | <b>KUMMER, W. H.</b><br>Dual-frequency bidirectional antenna<br>GSFC-12501 B80-10154 01                       |
|                                                                                                                | <b>KVATERNIK, R. G.</b><br>Vibration modes and frequencies of structures<br>LANGLEY-12647 B80-10237 06        |
|                                                                                                                | <b>KVELTHAU, R. L.</b><br>CADAT integrated circuit artwork program<br>M-FS-25017 B80-10552 08                 |
|                                                                                                                | <b>L</b>                                                                                                      |
|                                                                                                                | <b>LACY, L. L.</b><br>Containerless materials processing in the laboratory<br>M-FS-25242 B80-10059 04         |
|                                                                                                                | <b>LAFLAME, D. T.</b><br>Improved code-tracking loop<br>MSC-18035 B80-10034 02                                |
|                                                                                                                | <b>LAMOUREUX, R. T.</b><br>Resistance welding graphite-fiber composites<br>MSC-18534 B80-10264 08             |
|                                                                                                                | <b>LAMPE, D. R.</b><br>Four-quadrant CCD analog multiplier<br>LANGLEY-12332 B80-10305 02                      |
|                                                                                                                | Monolithic four-quadrant multiplier<br>LANGLEY-12330A B80-10306 02                                            |
|                                                                                                                | Monolithic CCD-array readout<br>LANGLEY-12376 B80-10307 02                                                    |
|                                                                                                                | <b>LANDEL, R. F.</b><br>An equation of state for liquids<br>NPO-14821 B80-10174 03                            |
|                                                                                                                | <b>LASH, T. J.</b><br>Far-field radiation pattern of tunable diode lasers<br>LANGLEY-12631 B80-10177 03       |
|                                                                                                                | <b>LAUDENSLAGER, J. B.</b><br>Pulse-shaping circuit for laser excitation<br>NPO-14556 B80-10453 03            |
|                                                                                                                | <b>LAUE, E. G.</b><br>Instrument measures cloud cover<br>NPO-14936 B80-10514 06                               |
|                                                                                                                | <b>LAWING, P. L.</b><br>A construction technique for wind tunnel models<br>LANGLEY-12710 B80-10381 06         |
|                                                                                                                | <b>LAWSON, A. G.</b><br>Measuring water properties from a moving boat<br>LANGLEY-12325 B80-10073 05           |
|                                                                                                                | <b>LEAR, W. M.</b><br>Refraction corrections for surveying<br>MSC-18664 B80-10231 06                          |

|                    |                                                                    |              |                    |                                                                          |              |                  |                                                                          |              |
|--------------------|--------------------------------------------------------------------|--------------|--------------------|--------------------------------------------------------------------------|--------------|------------------|--------------------------------------------------------------------------|--------------|
| LEBLANC, L. P.     | An approximation for inverse Laplace transforms<br>MSC-18867       | B80-10553 09 | LINDMAYER, J.      | Arc spraying solderable tabs to glass<br>NPO-14853                       | B80-10544 08 | MAJOR, R. K.     | Electronic depth micrometer<br>KSC-11181                                 | B80-10385 06 |
| LEE, H.            | An oven for many thermocouple reference junctions<br>FRC-10112     | B80-10506 06 | LINDOW, B. G.      | Airborne meteorological data-collection system<br>LEWIS-13346            | B80-10314 02 | MANDEL, H.       | Cooling/grounding mount for hybrid circuits<br>MSC-18728                 | B80-10302 01 |
| LEE, J.            | Cost-minimized aircraft trajectories<br>ARC-11282                  | B80-10396 06 | LINDSEY, W. C.     | Timing signal propagates without phase shift<br>MSC-18777                | B80-10449 02 | MANDELL, M. J.   | NASA charging analyzer program<br>LEWIS-12973                            | B80-10058 03 |
| LEE, J. F. L.      | Basic cluster compression algorithm<br>NPO-14816                   | B80-10291 09 | LISAGOR, W. B.     | Environmental testing under load<br>LANGLEY-12602                        | B80-10379 06 | MANKE, J. W.     | Improved multielement airfoil analysis<br>LANGLEY-12489                  | B80-10086 06 |
| LEE, J. F. L.      | Compressing TV-image data<br>NPO-14823                             | B80-10310 02 | LISLE, R. V.       | Fast calibration of gas flowmeters<br>KSC-11076                          | B80-10516 06 | MARGOLIS, J. S.  | Instrument remotely measures wind velocities<br>NPO-14524                | B80-10176 03 |
| LEE, R.            | Aliasing filter for multirate systems<br>MSC-18472                 | B80-10153 01 | LONG, M. J.        | Interlocking wedge joint is easily assembled<br>LANGLEY-12729            | B80-10526 07 | MARKATOS, N. C.  | Methane/air flames in a concentric tube combustor<br>LEWIS-13388         | B80-10211 04 |
| LEE, R. D.         | Converting a digital filter to its analog equivalent<br>MSC-18587  | B80-10313 02 | LOWENTHAL, S.      | High-performance, multiroller traction drive<br>LEWIS-13347              | B80-10244 07 | MARQUARDT, S.    | Back contacts for silicon-on-ceramic solar cells<br>NPO-14809            | B80-10545 08 |
| LEFEVER, A. E.     | Modified fire-resistant foams for seat cushions<br>MSC-18704       | B80-10419 08 | LOWERY, J. R.      | Selective optical coatings for solar collectors<br>M-FS-23589            | B80-10192 03 | MARSHBURN, J. P. | Heat-pipe sensor for remote leveling<br>GSFC-12095                       | B80-10248 07 |
| LEHTINEN, F. K. B. | One-step microwave foaming and curing<br>MSC-18707                 | B80-10420 08 | LUBICH, J.         | Position monitor for mining machines<br>M-FS-25342                       | B80-10157 01 | MARTIN, D. R.    | Microprocessor-controlled data synchronizer<br>MSC-18535                 | B80-10031 02 |
| LEIFFER, J. L.     | Rigid fire-resistant foams for walls and floors<br>MSC-18708       | B80-10421 08 | LUCE, N.           | Coal conversion and synthetic-fuel production<br>M-FS-25330              | B80-10070 04 | MASERJIAN, J.    | Model for MOS field-time-dependent breakdown<br>NPO-14701                | B80-10162 01 |
| LESH, F. H.        | New pressure-sensitive silicone adhesive<br>LANGLEY-12737          | B80-10495 04 | LUDWIG, L. P.      | Self-acting shaft seals<br>LEWIS-13229                                   | B80-10109 07 | MATTOX, D. M.    | Measuring radiation effects on MOS capacitors<br>NPO-14700               | B80-10227 06 |
| LEVINE, F. E.      | Microprocessor systems for industrial process control<br>NPO-14661 | B80-10131 08 | LUTES, G. F., JR.  | Design considerations for mechanical face seals<br>LEWIS-13146           | B80-10233 06 | MATUSIK, G.      | Driving bubbles out of glass<br>M-FS-25414                               | B80-10496 04 |
| LEVINE, S.         | Simultaneous disk storage and retrieval<br>KSC-11167               | B80-10304 02 | LUTUS, P.          | Fiber optics transmit clock signal more reliably<br>NPO-14749            | B80-10456 03 | MCCLEESE, D. J.  | Forming complex cavities in clear plastic<br>LEWIS-13412                 | B80-10267 08 |
| LEVINE, S. R.      | Shell theory automated for rotational structures<br>M-FS-23027     | B80-10089 06 | LYNN, J. J.        | Microcomputer-based doppler systems for weather monitoring<br>GSFC-12448 | B80-10166 02 | MCDONALD, R. C.  | Instrument remotely measures wind velocities<br>NPO-14524                | B80-10176 03 |
| LEWIS, B. F.       | Corrosion-resistant ceramic thermal barrier coating<br>LEWIS-13088 | B80-10067 04 | M                  |                                                                          |              | MCGARRY, F. E.   | Treating domestic wastewater with water hyacinths<br>M-FS-23964          | B80-10368 05 |
| LEWIS, D. H.       | Integrated material-surface analyzer<br>NPO-14702                  | B80-10388 06 | MACCONOCHIE, I. O. | Miniature personal UV solar dosimeter<br>LANGLEY-12469                   | B80-10321 03 | MCHATTON, A. D.  | Goddard mission analysis system<br>GSFC-12392                            | B80-10144 09 |
| LEWIS, J. C.       | Reduced viscosity interpreted for fluid/gas mixtures<br>NPO-14976  | B80-10457 03 | MADDEN, J. F.      | Isolation and measurement of rotor vibration forces<br>LANGLEY-12476     | B80-10507 06 | MCLYMAN, W. T.   | Precision filament cutter<br>LANGLEY-12564                               | B80-10093 07 |
| LI, S. P.          | Lightweight cryogenic vessel<br>NPO-14794                          | B80-10548 08 | MAESTRELLO, L.     | Isolation and measurement of rotor vibration forces<br>LANGLEY-12645     | B80-10220 06 | MCYLANDER, W. T. | Frequency-controlled voltage regulator<br>NPO-13633                      | B80-10171 02 |
| LIU, J. C.         | Model for MOS field-time-dependent breakdown<br>NPO-14701          | B80-10162 01 | MAHMOOD, Q.        | Models of MOS and SOS devices<br>M-FS-25153                              | B80-10141 08 | MEIGE, G. J.     | Producing gapped-ferrite transformer cores<br>NPO-14715                  | B80-10273 08 |
| LIU, J. C.         | Improving MOS minority-carrier lifetime<br>NPO-14738               | B80-10301.01 | MAIER, L. C.       | Suppressing buzz-saw noise in jet engines<br>LANGLEY-12645               | B80-10220 06 | MCNAMARA, J. W.  | 28-Channel rotary transformer<br>NPO-14861                               | B80-10300 01 |
|                    |                                                                    |              | MAIER, L. C.       | Fast response cryogen level sensor<br>MSC-18697                          | B80-10374 06 | MEIGE, G. J.     | Interchangeable spring modules for inertia measurements<br>LANGLEY-12402 | B80-10386 06 |
|                    |                                                                    |              |                    |                                                                          |              | MEIGE, G. J.     | Tunable pulsed carbon dioxide laser<br>NPO-14984                         | B80-10458 03 |

|                                        |                                            |              |
|----------------------------------------|--------------------------------------------|--------------|
| <b>MEITNER, P. L.</b>                  | Compact infrared detector                  | <b>O</b>     |
| Full-coverage film cooling             | NPO-14864                                  | 880-10515 06 |
| LEWIS-13249                            | B80-10091                                  | 06           |
| <b>MENZIES, R. T.</b>                  | MONGAN, R. D.                              |              |
| Tunable pulsed carbon dioxide laser    | Heat conduction in three dimensions        |              |
| NPO-14984                              | MSC-18616                                  | 880-10239 06 |
| <b>MERRICK, H. F.</b>                  | MORRIS, P. W.                              |              |
| Oxide dispersion strengthened          | Detecting a coal/shale interface           |              |
| superalloy                             | M-FS-23720                                 | B80-10061 04 |
| LEWIS-13589                            | B80-10351                                  | 04           |
| <b>MERSEREAU, G. A.</b>                | MOSHEY, E. A.                              |              |
| Sealing micropores in thin castings    | Cryogenic machining of polyurethane        |              |
| MSC-18623                              | foam                                       |              |
| B80-10428                              | MSC-18572                                  | 880-10123 08 |
| <b>MEUNIER, G. E.</b>                  | MOTAL, G. W.                               |              |
| Tube flare inspection tool             | Continuous control of phase-locked-loop    |              |
| MSC-19636                              | bandwidth                                  |              |
| B80-10241                              | MSC-16684                                  | B80-10008 01 |
| <b>MIDDLEBROOK, R. D.</b>              | <b>N</b>                                   |              |
| Efficient, lightweight dc/dc switching |                                            |              |
| converter                              |                                            |              |
| LEWIS-12809                            |                                            | B80-10299 01 |
| <b>MILES, R. T.</b>                    | <b>NADLER, H.</b>                          |              |
| Oceanic-wave-measurement system        | Transducer for extreme temperatures and    |              |
| M-FS-23862                             | pressures                                  |              |
| B80-10224                              | MSC-18778                                  | 880-10510 06 |
| <b>MILLER, B. W.</b>                   | <b>NAGANO, S.</b>                          |              |
| Transferring small samples of viscous  | Linearizing magnetic-amplifier dc          |              |
| liquid                                 | transducer output                          |              |
| MSC-18533                              | NPO-14617                                  | B80-10167 02 |
| <b>MILLER, C. G.</b>                   | <b>NAHIN, S. B.</b>                        |              |
| Gas absorption/desorption              | Foam-filled cushions for sliding trays     |              |
| temperature-differential engine        | MSC-18565                                  | B80-10127 08 |
| NPO-14528                              |                                            |              |
| <b>MILLER, G.</b>                      | <b>NASVYTIS, A.</b>                        |              |
| Soft container for explosive nuts      | High-performance, multiroller traction     |              |
| MSC-18871                              | drive                                      |              |
| B80-10532                              | LEWIS-13347                                | 07           |
| <b>MILLER, R. A.</b>                   | <b>NEISWANDER, D. W.</b>                   |              |
| Corrosion-resistant ceramic thermal    | Detecting contaminants by ultraviolet      |              |
| barrier coating                        | photography                                |              |
| LEWIS-13088                            | M-FS-25296                                 | B80-10229 06 |
| <b>MILLER, W. E.</b>                   | <b>NELSON, C. W.</b>                       |              |
| Photocapacitive image converter        | X-ray beam pointer                         |              |
| LANGLEY-12513                          | MSC-18590                                  | B80-10254 07 |
| B80-10009                              |                                            |              |
| <b>MILLER, W. N.</b>                   | <b>NEWBURNE, R.</b>                        |              |
| 11-Line to 512-line decoder            | Evaluating                                 |              |
| MSC-19751                              | ground-cover maps                          |              |
| B80-10158                              | KSC-11195                                  | B80-10555 09 |
| <b>MINOTT, P. O.</b>                   | <b>NEWCOMB, A. L. JR.</b>                  |              |
| Multibeam collimator uses prism stack  | Precision filament cutter                  |              |
| GSFC-12608                             | LANGLEY-12564                              | B80-10093 07 |
| <b>MIRANDA, L. R.</b>                  | <b>NICHOLAS, R. F.</b>                     |              |
| A generalized vortex lattice method    | Honing fixture for welded electrodes       |              |
| LANGLEY-12636                          | M-FS-19537                                 | B80-10278 08 |
| B80-10236                              |                                            |              |
| <b>MIRTICH, M. J.</b>                  | <b>NISEN, D. B.</b>                        |              |
| Ion-beam etching enhances adhesive     | Containerless materials processing in the  |              |
| bonding                                | laboratory                                 |              |
| LEWIS-13028                            | M-FS-25242                                 | B80-10059 04 |
| <b>MISENCIK, J. A.</b>                 | <b>NISWANDER, J. K.</b>                    |              |
| Reduced hydrogen permeability at high  | RAM-Based frame synchronizer               |              |
| temperatures                           | GSFC-12430                                 | 880-10164 02 |
| LEWIS-13485                            | RAM-Based parallel-output controller       |              |
| B80-10364                              | GSFC-12447                                 | B80-10165 02 |
| <b>MITCHELL, C. L.</b>                 | <b>NITZSCHKE, G. O.</b>                    |              |
| CADAT logic simulation program         | Sealing micropores in thin castings        |              |
| M-F-25183                              | MSC-18623                                  | 880-10428 08 |
| <b>MITCHELL, F. R.</b>                 | <b>NOLA, F. J.</b>                         |              |
| Compact table-tilting mechanism        | Improved power factor controller           |              |
| NPO-14800                              | M-FS-25323                                 | B80-10149 01 |
| B80-10411                              | Energy saving in ac generators             |              |
| <b>MITCHELL, S. M.</b>                 | <b>NORTON, R. H.</b>                       |              |
| Transferring small samples of viscous  | High-resolution ferrometer                 |              |
| liquid                                 | NPO-14448                                  | B80-10175 03 |
| MSC-18533                              |                                            |              |
| B80-10069                              |                                            |              |
| 04                                     |                                            |              |
| Removing freon gas from hydraulic      |                                            |              |
| fluid                                  |                                            |              |
| MSC-18740                              |                                            |              |
| B80-10494                              |                                            |              |
| 04                                     |                                            |              |
| <b>MOACANIN, J.</b>                    | <b>P</b>                                   |              |
| An equation of state for liquids       |                                            |              |
| NPO-14821                              |                                            |              |
| B80-10174                              |                                            |              |
| 03                                     |                                            |              |
| Changes in 'thermal lens' measure      |                                            |              |
| diffusivity                            |                                            |              |
| NPO-14657                              |                                            |              |
| B80-10218                              |                                            |              |
| 06                                     |                                            |              |
| <b>OAKLEY, J. W.</b>                   | <b>PACALA, T. J.</b>                       |              |
| Interchangeable spring modules for     | Pulse-shaping circuit for laser excitation |              |
| inertia measurements                   | NPO-14556                                  | 880-10453 03 |
| LANGLEY-12402                          |                                            |              |
| <b>OBRIEN, J. P.</b>                   | <b>PACKARD, H.</b>                         |              |
| Heat resistant polymers                | Speed control for synchronous motors       |              |
| polyphosphazene                        | MSC-18680                                  | B80-10444 01 |
| ARC-11176                              |                                            |              |
| <b>OCHS, H. L.</b>                     | <b>PALLAT, E. A.</b>                       |              |
| Sealing micropores in thin castings    | NASA PERT time II                          |              |
| MSC-18623                              | LEWIS-13145                                | B80-10286 09 |
| <b>OGILVIE, P.</b>                     | <b>PAPAZIAN, J. M.</b>                     |              |
| Shell theory automated for rotational  | Reduced gravity favors columnar crystal    |              |
| structures                             | growth                                     |              |
| M-FS-23027                             | M-FS-25205                                 | B80-10366 04 |
| <b>OHLSON, J. E.</b>                   | <b>PARDUE, I. F.</b>                       |              |
| Receiving signals of any polarization  | Aluminum-encased lead mallet               |              |
| NPO-14836                              | MSC-18529                                  | B80-10100 07 |
| <b>OLNEY, J. N.</b>                    | <b>PARK, S.</b>                            |              |
| Transferring small samples of viscous  | Electromechanical slip sensor              |              |
| liquid                                 | NPO-14654                                  | B80-10253 07 |
| MSC-18533                              |                                            |              |
| B80-10069                              |                                            |              |
| 04                                     |                                            |              |
| <b>ONESTY, J. P.</b>                   | <b>PAULKOVICH, J.</b>                      |              |
| Safety analysis for complex systems    | Simple buck/boost voltage regulator        |              |
| MSC-18745                              | GSFC-12360                                 | B80-10003 01 |
| <b>ORSZAG, S. A.</b>                   | <b>PAYNTER, D.</b>                         |              |
| Disturbance amplification rates        | System time-domain simulation              |              |
| LANGLEY-12556                          | MSC-18333                                  | B80-10292 09 |

|                                                           |                                                            |                                                               |
|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|
| PECK, S. R.                                               | Improving MOS minority-carrier lifetime                    | RHODES, D. B.                                                 |
| A redundant regulator control with low standby losses     | NPO-14738 B80-10301 01                                     | Fiber-optics couple arthroscope to TV                         |
| NPO-13165                                                 | B80-10172 02                                               | LANGLEY-12718 B80-10504 05                                    |
| PEERCY, R. L. JR.                                         |                                                            |                                                               |
| Safety analysis for complex systems                       | PRYCHKA, P.                                                | RICE, R. F.                                                   |
| MSC-18745                                                 | MSC-18572 B80-10554 09                                     | Compressing TV-image data                                     |
|                                                           | Cryogenic machining of polyurethane foam                   | NPO-14823 B80-10310 02                                        |
| PESSIN, R.                                                | MSC-18572 B80-10123 08                                     | An image-data-compression algorithm                           |
| Retaining a sleeve on a shaft                             | PURVES, L.                                                 | NPO-14496 B80-10438 09                                        |
| M-FS-19518                                                | An all-FORTRAN version of NASTRAN for the VAX              | RICK, S. C.                                                   |
| B80-10103 07                                              | GSFC-12600 B80-10522 06                                    | Dual mode actuator                                            |
| Drilling at right angles in blind holes                   | PUTNAM, L. E.                                              | LANGLEY-12412 B80-10106 07                                    |
| M-FS-19535                                                | B80-10403 07                                               | RILEY, T.                                                     |
|                                                           | Predicting propulsion system drag                          | Forming complex cavities in clear plastic                     |
| PETERS, J. W.                                             | LANGLEY-12619 B80-10238 06                                 | LEWIS-13412 B80-10267 08                                      |
| Photonitride passivating coating for IC's                 |                                                            | RIPPEL, W. E.                                                 |
| M-FS-25401                                                |                                                            | Improved battery charger for electric vehicles                |
| B80-10260 08                                              | RAMAPRIYAN, H. K.                                          | NPO-14964 B80-10440 01                                        |
| Silicon nitride passivation of IC's                       | OCCULT-ORSER                                               | ROBB, P. H.                                                   |
| M-FS-25309                                                | complete conversational user-language translator           | 'Grinding' cavities in polyurethane foam                      |
| B80-10279 08                                              | GSFC-12604 B80-10556 09                                    | MSC-18564 B80-10124 08                                        |
| PETERSON, D. H.                                           |                                                            | Foam-filled cushions for sliding trays                        |
| Torque-wrench extension                                   | RATHZ, T. J.                                               | MSC-18565 B80-10127 08                                        |
| MSC-18769                                                 | Containerless materials processing in the laboratory       | ROBINSON, M. B.                                               |
| B80-10414 07                                              | M-FS-25242 B80-10059 04                                    | Containerless materials processing in the laboratory          |
| PETERSON, J.                                              |                                                            | M-FS-25242 B80-10059 04                                       |
| Selecting optimum algorithms for image processing         | RAUSCHL, J. A.                                             | ROCKOFF, H. J.                                                |
| M-FS-25367                                                | Knife-edge seal for vacuum bagging                         | Reflecting layers reduce weight of insulation                 |
| B80-10557 09                                              | M-FS-24049 B80-10135 08                                    | MSC-18785 B80-10547 08                                        |
| PETERSON, S. A.                                           |                                                            | RODRIGUEZ, G. E.                                              |
| Cutting holes in fabric-faced panels                      | RAVETTI, R. G.                                             | Simple buck/boost voltage regulator                           |
| MSC-18786                                                 | Cost models and economical packaging of LSI's              | GSFC-12360 B80-10003 01                                       |
| B80-10427 08                                              | M-FS-25359 B80-10138 08                                    | ROHN, D. A.                                                   |
| PHILLIPS, W. H.                                           |                                                            | High-performance, multiroller traction drive                  |
| Solar-powered aircraft                                    | RAYBORN, G. H.                                             | LEWIS-13347 B80-10244 07                                      |
| LANGLEY-12615                                             | Improved LEEM ranges over four decades                     | READ, W. S.                                                   |
| B80-10404 07                                              | LANGLEY-12706 B80-10508 06                                 | Learning high-quality soldering                               |
| PIERCE, W. S.                                             |                                                            | NPO-14869 B80-10539 08                                        |
| LVDT gage for fracture-toughness tests in liquid hydrogen | REASONER, R. B.                                            | REED, W. S.                                                   |
| LEWIS-13038                                               | Low-resistance continuity tester                           | Producing silicon continuously                                |
| B80-10075 06                                              | NPO-14881 B80-10445 01                                     | NPO-14796 B80-10537 08                                        |
| Tension-mode loading for bend specimens in cryogens       | REDDY, G. B.                                               | ROTHROCK, C. W.                                               |
| LEWIS-13040                                               | Structural design with stress and displacement constraints | Cost models and economical packaging of LSI's                 |
| B80-10076 06                                              | M-FS-25235 B80-10521 06                                    | M-FS-25359 B80-10138 08                                       |
| Modified displacement gage for cryogenic testing          | REDMANN, J. J.                                             | ROUSSEAU, C. R.                                               |
| LEWIS-13039                                               | Improved multispectral solar cell array                    | Room-temperature adhesive for high-temperature use            |
| B80-10077 06                                              | HQN-10937 B80-10184 03                                     | MSC-16930 B80-10129 08                                        |
| PIRVICS, J.                                               |                                                            | RUIZ, W. V.                                                   |
| Cylindrical bearing analysis                              | REED, R. A.                                                | Shrinking plastic tubing and nonstandard diameters            |
| LEWIS-13393                                               | Cardiopulmonary system                                     | MSC-18430 B80-10268 08                                        |
| B80-10533 07                                              | MSC-18783 B80-10499 05                                     | REED, W. H. III                                               |
| PITTS, E. R.                                              |                                                            | Passive wing/store flutter suppression                        |
| CADAT network translator                                  | REICH, R.                                                  | LANGLEY-12468 B80-10219 06                                    |
| M-FS-25055                                                | Evaluating ground-cover maps                               | REICHMAN, B.                                                  |
| B80-10551 08                                              | KSC-11195 B80-10555 09                                     | Photoproduction of halogens using platinized TiO <sub>2</sub> |
| PITTS, J.                                                 |                                                            | LANGLEY-12713 B80-10491 04                                    |
| UV actinometer film                                       | REID, H. JR.                                               | Detecting a coal/shale interface                              |
| NPO-14479                                                 | M-FS-23720 B80-10061 04                                    | M-FS-23720 B80-10061 04                                       |
| B80-10179 03                                              | REINHARDT, V. S.                                           | Integral storage-bulb and microwave cavity for masers         |
| PIVIROTTO, T. J.                                          | MSC-18804 B80-10371 05                                     | GSFC-12542 B80-10186 03                                       |
| Powerful copper chloride laser                            | REIMBAUM, A.                                               | Hybrid polymer microspheres                                   |
| NPO-14782                                                 | B80-10330 03                                               | NPO-14462 B80-10208 04                                        |
| PIZZECK, D. E.                                            |                                                            |                                                               |
| Easily-assembled helical heater                           | REUTT, G. S.                                               |                                                               |
| LANGLEY-11712                                             | LANGLEY-12469 B80-10321 03                                 | Testing EKG electrodes on-line                                |
| B80-10130 08                                              | REYAN, E.                                                  | MSC-18696 B80-10212 05                                        |
| PLAUTZ, K. A.                                             |                                                            | NASA PERT time II                                             |
| Gage for evaluating rheumatoid hands                      | REYAN, J. P.                                               | LEWIS-13145 B80-10286 09                                      |
| GSFC-12610                                                | MSC-18804 B80-10371 05                                     | Structured FORTRAN preprocessor                               |
| B80-10503 05                                              | REUTT, G. S.                                               | M-FS-23813 B80-10289 09                                       |
| POOLE, B. D., JR.                                         |                                                            |                                                               |
| Miniature personal UV solar dosimeter                     |                                                            |                                                               |
| LANGLEY-12469                                             |                                                            |                                                               |
| B80-10321 03                                              |                                                            |                                                               |
| PORTNOY, W. M.                                            |                                                            |                                                               |
| Miniaturized physiological data telemetry system          |                                                            |                                                               |
| MSC-18804                                                 |                                                            |                                                               |
| B80-10371 05                                              |                                                            |                                                               |
| POSTAL, R. B.                                             |                                                            |                                                               |
| High-power solid-state microwave transmitter              |                                                            |                                                               |
| NPO-14803                                                 |                                                            |                                                               |
| B80-10296 01                                              |                                                            |                                                               |
| PRASTHOFER, W. P.                                         |                                                            |                                                               |
| Spraying suspensions uniformly                            |                                                            |                                                               |
| M-FS-25139                                                |                                                            |                                                               |
| B80-10409 07                                              |                                                            |                                                               |
| PRUSSIN, S.                                               |                                                            |                                                               |
| Model for MOS field-time-dependent breakdown              |                                                            |                                                               |
| NPO-14701                                                 |                                                            |                                                               |
| B80-10162 01                                              |                                                            |                                                               |

|                                                                                                            |                                                                       |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| <b>S</b>                                                                                                   |                                                                       |
| <b>SABOURIN, D. J.</b><br>Ultrastable automatic frequency control<br>MSC-18679                             | B80-10294 01                                                          |
| <b>SALAMA, A. M.</b><br>Nickel-doped silicon for solar cells<br>NPO-14780                                  | B80-10550 08                                                          |
| <b>SALISBURY, J. K., JR.</b><br>Remote manipulator with force<br>feed-back<br>ARC-11272                    | B80-10408 07                                                          |
| <b>SANDEFUR, P. G., JR.</b><br>A construction technique for wind tunnel<br>models<br>LANGLEY-12710         | B80-10381 06                                                          |
| <b>SANDERS, R. E.</b><br>Examining graphite reinforcement in<br>composites<br>MSC-19594                    | B80-10122 08                                                          |
| <b>SARBOLOUKI, M. N.</b><br>Recycling paper-pulp waste liquors<br>NPO-14797                                | B80-10492 04                                                          |
| <b>SAUGLER, R. E.</b><br>Analysis of a cooled, turbine blade or<br>vane with an insert<br>LEWIS-13293      | B80-10400 06                                                          |
| <b>SCHARMACK, D. K.</b><br>Frequency response fo multiple-sampling<br>rate systems<br>MSC-18473            | B80-10173 02                                                          |
| <b>SCHINDLER, R. A.</b><br>High-resolution spectrometry/inter-<br>ferometer<br>NPO-14448                   | B80-10175 03                                                          |
| <b>SCHLESSINGER, E. D.</b><br>Reflecting layers reduce weight of<br>insulation<br>MSC-18785                | B80-10547 08                                                          |
| <b>SCHLUFE, G.</b><br>Precision filament cutter<br>LANGLEY-12564                                           | B80-10093 07                                                          |
| <b>SCHLUTSMEYER, A. P.</b><br>Compressing TV-image data<br>NPO-14823                                       | B80-10310 02                                                          |
| <b>SCHMID, P. E.</b><br>Microcomputer-based doppler systems<br>for weather monitoring<br>GSFC-12448        | B80-10166 02                                                          |
| <b>SCHMIT, L. A.</b><br>Resizing structures for minimum weight<br>LANGLEY-12699                            | B80-10394 06                                                          |
| <b>SCHNEIDER, H. W.</b><br>Improved particulate-sampling filter<br>NPO-14801                               | B80-10271 08                                                          |
| <b>SCHOMBURG, C.</b><br>Tile densification with TEOS<br>MSC-18737                                          | B80-10535 08                                                          |
|                                                                                                            | Repairing high-temperature glazed tiles<br>MSC-18736                  |
|                                                                                                            | B80-10536 08                                                          |
| <b>SCHOTT, J.</b><br>Speed control for synchronous motors<br>MSC-18680                                     | B80-10444 01                                                          |
| <b>SCHUBERT, W. H.</b><br>Honing fixture for welded electrodes<br>M-FS-19537                               | B80-10278 08                                                          |
| <b>SCHULLER, T. L.</b><br>Back contacts for silicon-on-ceramic<br>solar cells<br>NPO-14809                 | B80-10545 08                                                          |
| <b>SCOPELIANOS, A. G.</b><br>Heat resistant polymers<br>ARC-11176                                          | polyphosphazene<br>B80-10350 04                                       |
| <b>SCOTT, D. R.</b><br>Solar-site test module<br>M-FS-25543                                                | B80-10460 03                                                          |
| <b>SEAMAN, C. H.</b><br>Instrument remotely measures wind<br>velocities<br>NPO-14524                       | B80-10176 03                                                          |
|                                                                                                            | Economical ultraviolet radiometer<br>NPO-14843                        |
|                                                                                                            | B80-10322 03                                                          |
| <b>SEBACHER, D. I.</b><br>Fast-response atmospheric-pollutant<br>monitor<br>LANGLEY-12317                  | B80-10062 04                                                          |
| <b>SEIDEL, B. L.</b><br>Antenna feed for linear and circular<br>polarization<br>NPO-14810                  | B80-10297 01                                                          |
|                                                                                                            | Receiving signals of any polarization<br>NPO-14836                    |
|                                                                                                            | B80-10315 02                                                          |
| <b>SEIDEL, H. F.</b><br>Automatic 35 mm slide duplicator<br>LEWIS-13399                                    | B80-10249 07                                                          |
| <b>SERAFINI, T. T.</b><br>High char yield epoxy curing agents<br>LEWIS-13226                               | B80-10361 04                                                          |
| <b>SERHAL, E. J., JR.</b><br>Portable zero-delay assembly<br>NPO-14671                                     | B80-10316 02                                                          |
| <b>SEWARD, W.</b><br>Coal conversion and synthetic-fuel<br>production<br>M-FS-25330                        | B80-10070 04                                                          |
| <b>SHANER, J. R.</b><br>Microprocessor control for phase-lock<br>receiver<br>NPO-14438                     | B80-10033 02                                                          |
| <b>SHANNON, J. L., JR.</b><br>LVDT gage for fracture-toughness tests<br>in liquid hydrogen<br>LEWIS-13038  | B80-10075 06                                                          |
|                                                                                                            | Tension-mode loading for bend<br>specimens in cryogens<br>LEWIS-13040 |
|                                                                                                            | B80-10076 06                                                          |
| <b>SHARMA, M.</b><br>Fiber optic level sensor for cryogens<br>MSC-18674                                    | B80-10375 06                                                          |
| <b>SHEPARD, N. F., JR.</b><br>New mounting improves solar-cell<br>efficiency<br>NPO-14467                  | B80-10039 03                                                          |
| <b>SHER, A.</b><br>Photocapacitive image converter<br>LANGLEY-12513                                        | B80-10009 01                                                          |
| <b>SHIVAL, S. G.</b><br>DDL:Digital systems design language<br>M-FS-25352                                  | B80-10163 01                                                          |
| <b>SHUMATE, M. S.</b><br>Instrument remotely measures wind<br>velocities<br>NPO-14524                      | B80-10176 03                                                          |
|                                                                                                            | Detecting surface faults on solar<br>mirrors<br>NPO-14684             |
|                                                                                                            | B80-10230 06                                                          |
| <b>SHUTT, T. J.</b><br>Monolithic CCD-array readout<br>LANGLEY-12376                                       | B80-10307 02                                                          |
| <b>SIEVERS, M. W.</b><br>A general logic structure for custom<br>LSI's<br>NPO-14410                        | B80-10118 08                                                          |
| <b>SINCLAIR, J. H.</b><br>Efficient measurement of shear<br>properties of fiber composites<br>LEWIS-13011  | B80-10216 06                                                          |
| <b>SINGH, J. J.</b><br>Improved LEEM ranges over four<br>decades<br>LANGLEY-12706                          | B80-10508 06                                                          |
| <b>SINHA, M. P.</b><br>Simultaneous measurement of three<br>atmospheric pollutants<br>NPO-14828            | B80-10359 04                                                          |
| <b>SKLAR, E.</b><br>Acoustically-tuned optical spectrometer<br>HQN-10924                                   | B80-10326 03                                                          |
| <b>SLATER, B. L.</b><br>Ion-beam cleaning for cold welds<br>LEWIS-12982                                    | B80-10115 08                                                          |
| <b>SOHN, R. L.</b><br>Benefit assessment of solar-augmented<br>natural gas systems<br>NPO-14568            | B80-10048 03                                                          |
| <b>SOMERS, D. M.</b><br>The design and analysis of low-speed<br>airfoils<br>LANGLEY-12727                  | B80-10524 06                                                          |
| <b>SORATHIA, U. A. K.</b><br>Modified fire-resistant foams for seat<br>cushions<br>MSC-18704               | B80-10419 08                                                          |
|                                                                                                            | One-step microwave foaming and<br>curing<br>MSC-18707                 |
|                                                                                                            | B80-10420 08                                                          |
|                                                                                                            | Rigid fire-resistant foams for walls and<br>floors<br>MSC-18708       |
|                                                                                                            | B80-10421 08                                                          |
| <b>SOUTH, J. C., JR.</b><br>Inviscid transonic flow over axisymmetric<br>bodies<br>LANGLEY-12499           | B80-10398 06                                                          |
| <b>SOVEY, J. S.</b><br>Ion-beam etching enhances adhesive<br>bonding<br>LEWIS-13028                        | B80-10128 08                                                          |
| <b>SPALDING, D. B.</b><br>Methane/air flames in a concentric tube<br>combustor<br>LEWIS-13388              | B80-10211 04                                                          |
| <b>SPANN, G. W.</b><br>Low-cost LANDSAT processing system<br>M-FS-25396                                    | B80-10285 09                                                          |
| <b>SPEARS, J. R.</b><br>Compliant transducer measures artery<br>profile<br>NPO-14899                       | B80-10369 05                                                          |
| <b>SPIEGEL, K. W.</b><br>Limiting current in electron-beam<br>welders<br>M-FS-19503                        | B80-10413 07                                                          |
| <b>SPITZE, L. A.</b><br>Reducing static charges in fluidized bed<br>reactions<br>ARC-11245                 | B80-10068 04                                                          |
| <b>SROKOWSKI, A. J.</b><br>Disturbance amplification rates<br>LANGLEY-12556                                | B80-10092 06                                                          |
| <b>SRTVATSA, S. K.</b><br>Methane/air flames in a concentric tube<br>combustor<br>LEWIS-13388              | B80-10211 04                                                          |
| <b>ST.CLAIR, A. K.</b><br>Electrically conductive<br>palladium-containing polyimide films<br>LANGLEY-12629 | B80-10357 04                                                          |
|                                                                                                            | Aluminum ions enhance polyimide<br>adhesive<br>LANGLEY-12640          |
|                                                                                                            | B80-10358 04                                                          |
| <b>ST.CLAIR, T. L.</b><br>Plasticizer for polyimide composites<br>LANGLEY-12642                            | B80-10206 04                                                          |

|                                                                                        |              |                                                                                                |              |                                                                                           |              |
|----------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------|--------------|
| Aluminum ions enhance polyimide adhesive<br>LANGLEY-12640                              | B80-10358 04 | STOVALL, T. K.<br>Regenerative superheated steam turbine cycles<br>LEWIS-13392                 | B80-10234 06 | TOTAH, R. S.<br>Self-energized screw coupling<br>M-FS-25340                               | B80-10096 07 |
| New pressure-sensitive silicone adhesive<br>LANGLEY-12737                              | B80-10495 04 | STRINGER, E. J.<br>Handtool assists in bundling cables<br>MSC-18567                            | B80-10255 07 | TRANTER, W. H.<br>System time-domain simulation<br>MSC-18333                              | B80-10292 09 |
| STATE, T. S.<br>Removing freon gas from hydraulic fluid<br>MSC-18740                   | B80-10494 04 | STUCK, D. E.<br>Simple circuit monitors 'third wire' in ac lines<br>M-FS-19457                 | B80-10002 01 | TRINER, J. E.<br>Improved magnetic material analyzer<br>LEWIS-13493                       | B80-10384 06 |
| STATTEL, R. J.<br>RAM-Based frame synchronizer<br>GSFC-12430                           | B80-10164 02 | STUDER, P. A.<br>A linear magnetic motor and generator<br>GSFC-12518                           | B80-10257 07 | TROTTER, J. D.<br>Models of MOS and SOS devices<br>M-FS-25153                             | B80-10141 08 |
| RAM-Based parallel-output controller<br>GSFC-12447                                     | B80-10165 02 | STUHLBARG, S. M.<br>Cost models and economical packaging of LSI's<br>M-FS-25359                | B80-10138 08 | Double metalization for VLSI<br>M-FS-25149                                                | B80-10261 08 |
| STECURA, S.<br>Improved metallic and thermal barrier coatings<br>LEWIS-13324           | B80-10353 04 | STULTZ, J. W.<br>Combined photovoltaic and thermal-storage module<br>NPO-14591                 | B80-10327 03 | Progress in MOSFET double-layer metalization<br>M-FS-25239                                | B80-10280 08 |
| STEIN, J. A.<br>Time-shaped RF brazing<br>MSC-18617                                    | B80-10272 08 | SURBAT, M.<br>Thermal barrier and gas seal<br>MSC-18390                                        | B80-10269 08 | TSUO, Y. H.<br>Photocapacitive image converter<br>LANGLEY-12513                           | B80-10009 01 |
| Time-sharing switch for vacuum brazing<br>MSC-18699                                    | B80-10412 07 | SUTCH, F. S.<br>Sealing micropores in thin castings<br>MSC-18623                               | B80-10428 08 | TUSTIN, E. A.<br>Fire tests for airplane interior materials<br>MSC-18478                  | B80-10063 04 |
| STEIN, R. J.<br>Detecting a coal/shale interface<br>M-FS-23720                         | B80-10061 04 | SWAIN, R. J.<br>Plastic welder<br>LANGLEY-12540                                                | B80-10274 08 | U                                                                                         |              |
| STELZRIED, C. H.<br>Receiving signals of any polarization<br>NPO-14836                 | B80-10315 02 | T                                                                                              |              | V                                                                                         |              |
| STEPHENSON, J. R.<br>Reduced hydrogen permeability at high temperatures<br>LEWIS-13485 | B80-10364 04 | TAYLOR, J. F.<br>CADAT logic simulation program<br>M-FS-25183                                  | B80-10432 08 | VADYAK, J.<br>Flow field in supersonic mixed-compression inlets<br>LEWIS-13279            | B80-10088 06 |
| STEPHENSON, T. C.<br>Numerical tracing of electron trajectories<br>GSFC-12535          | B80-10057 03 | TAYLOR, L. T.<br>Electrically conductive palladium-containing polyimide films<br>LANGLEY-12629 | B80-10357 04 | VANELLI, J. C.<br>Continuous control of phase-locked-loop bandwidth<br>MSC-16684          | B80-10008 01 |
| STEVENS, M. L.<br>Heat/pressure seal for moving parts<br>MSC-18422                     | B80-10390 06 | TIFFLER, J. J.<br>Independent synchronizer for digital decoders<br>MSC-16723                   | B80-10004 01 | VANNASSE, M. A.<br>Time-shaped RF brazing<br>MSC-18617                                    | B80-10272 08 |
| STINE, L. R.<br>Microprocessor-controlled data synchronizer<br>MSC-18535               | B80-10031 02 | TENNEY, D. R.<br>Diffusion in single-phase binary alloys<br>LANGLEY-12665                      | B80-10498 04 | VANUCCI, R. D.<br>High char yield epoxy curing agents<br>LEWIS-13226                      | B80-10361 04 |
| STIRN, R. J.<br>'Pelled-film' solar cells<br>NPO-14734                                 | B80-10151 01 | TERVET, J. H.<br>Chlorinolysis reclaims rubber of waste tires<br>NPO-14935                     | B80-10365 04 | VIEHMANN, W.<br>Fluorescent radiation converter<br>GSFC-12528                             | B80-10180 03 |
| Passivation layer for steel substrate of solar cell<br>NPO-14961                       | B80-10541 08 | TEXLER, R. E.<br>Automatic 35 mm slide duplicator<br>LEWIS-13399                               | B80-10249 07 | VON TIESSEHAUSEN, G. F.<br>Automatic connector for structural beams<br>M-FS-25134         | B80-10094 07 |
| STOCKMAN, N. O.<br>Potential flow in two-dimensional deflected nozzles<br>LEWIS-13461  | B80-10523 06 | THALLER, L. H.<br>REDOX electrochemical energy storage<br>LEWIS-13398                          | B80-10064 04 | VORHABEN, K. H.<br>Energy-reduction concept for incandescent lamps<br>MSC-18757           | B80-10325 03 |
| STOCKTON, R. J.<br>Fast microwave switching power divider<br>GSFC-12420                | B80-10295 01 | THATCHER, C. S.<br>Shrinking plastic tubing and nonstandard diameters<br>MSC-18430             | B80-10268 08 | VOS, R. G.<br>Plastic deformation of engines and other nonlinear structures<br>M-FS-23814 | B80-10399 06 |
| STOOPS, W. E., JR.<br>New pressure-sensitive silicone adhesive<br>LANGLEY-12737        | B80-10495 04 | THOMAS, H. M.<br>Temperature-compensating dc restorer<br>LANGLEY-12549                         | B80-10152 01 | W                                                                                         |              |
| STOTTS, L. J.<br>Miniaturized physiological data telemetry system<br>MSC-18804         | B80-10371 05 | THOMPSON, F. W.<br>Heat-shrinkable sleeve aids in insulating universal joints<br>MSC-18685     | B80-10270 08 | WADE, T. E.<br>Double metalization for VLSI<br>M-FS-25149                                 | B80-10261 08 |
| STOUD, C. W.<br>An approximation to student's t-distribution<br>LANGLEY-12238          | B80-10284 09 | THOMPSON, S.<br>Producing silicon continuously<br>NPO-14796                                    | B80-10537 08 | Progress in MOSFET double-layer metalization<br>M-FS-25239                                | B80-10280 08 |

PERSONAL AUTHOR INDEX

ZIMMERMAN, J. E.

|                                                                     |                                                                        |                                                                                   |
|---------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| <b>WAGNER, C.</b>                                                   | <b>WILKINS, J. R.</b>                                                  | <b>WUERKER, R. F.</b>                                                             |
| Smoothing the output from a DAC<br>FRC-11025                        | Improved microbe detection in water<br>samples<br>LANGLEY-12709        | Recording fluid currents by holography<br>M-FS-25373                              |
| <b>WAKELYN, N. T.</b>                                               | <b>LANGLEY-12709</b>                                                   | <b>B80-10222 06</b>                                                               |
| Flashback-free combustor<br>LANGLEY-12666                           | Removing freon gas from hydraulic<br>fluid<br>MSC-18740                | Reducing static charges in fluidized bed<br>reactions<br>ARC-11245                |
| <b>WALKER, J. D.</b>                                                | <b>MSC-18740</b>                                                       | <b>B80-10068 04</b>                                                               |
| NASA PERT time II<br>LEWIS-13145                                    | Temperature controller for hyperthermia<br>devices<br>LANGLEY-12528    | <b>WYDEVEN, T.</b>                                                                |
| <b>WALKER, R. R.</b>                                                | <b>MSC-18779</b>                                                       | Reducing static charges in fluidized bed<br>reactions<br>ARC-11245                |
| Signal conditioner for nickel temperature<br>sensors<br>MSC-18367   | <b>WILLIAMS, J. B.</b>                                                 | <b>WYLLIE, C. E.</b>                                                              |
| <b>WALKER, W. L.</b>                                                | Temperature controller for hyperthermia<br>devices<br>LANGLEY-12528    | Toggled signal for prevention of control<br>errors<br>MSC-18779                   |
| Detecting surface faults on solar<br>mirrors<br>NPO-14684           | <b>WILSON, K. L.</b>                                                   | <b>B80-10312 02</b>                                                               |
| <b>WALLACE, K. B.</b>                                               | Bolt-tension indicator<br>M-FS-19324                                   | <b>Y</b>                                                                          |
| High-power dual-directional coupler<br>NPO-14713                    | Fast calibration of gas flowmeters<br>KSC-11076                        | <b>YAGER, W. C.</b>                                                               |
| <b>WALLSM, R. E.</b>                                                | <b>WILSON, T. L.</b>                                                   | Photographic measurement of droplet<br>density<br>M-FS-25326                      |
| Mechanical end joint for structural<br>columns<br>LANGLEY-12482     | Automatic thermal switches<br>GSFC-12553                               | <b>B80-10182 03</b>                                                               |
| <b>WALSH, M. J.</b>                                                 | <b>WINKLER, H. E.</b>                                                  | <b>YATES, C. I.</b>                                                               |
| Grooves reduce aircraft drag<br>LANGLEY-12599                       | Flow sensor for biomedical fluids<br>MSC-18761                         | Examining graphite reinforcement in<br>composites<br>MSC-19594                    |
| <b>WARREN, D.</b>                                                   | <b>WISDOM, G. H.</b>                                                   | <b>B80-10122 08</b>                                                               |
| Coal conversion and synthetic-fuel<br>production<br>M-FS-25330      | Cryogenic-storage-tank support<br>MSC-14848                            | <b>YEH, Y. M.</b>                                                                 |
| <b>WATKINS, V. E., JR.</b>                                          | Predicting and monitoring duststorms<br>NPO-14277                      | Passivation layer for steel substrate of<br>solar cell<br>NPO-14961               |
| New pressure-sensitive silicone<br>adhesive<br>LANGLEY-12737        | <b>WOICESHYN, P. M.</b>                                                | <b>B80-10541 08</b>                                                               |
| <b>WATTS, J. T.</b>                                                 | Treating domestic wastewater with water<br>hyacinths<br>M-FS-23964     | <b>YEN, H. C.</b>                                                                 |
| Jig for assembling large composite<br>panels<br>LANGLEY-12394       | <b>WONG, V. S.</b>                                                     | Superconducting gyrocon would be very<br>efficient<br>NPO-14975                   |
| <b>WEAVER, J. F.</b>                                                | Real-time image enhancement<br>NPO-14281                               | <b>B80-10446 02</b>                                                               |
| Sleeve puller salvages welded tubes<br>MSC-18686                    | <b>WOO, D. S.</b>                                                      | <b>YENCHE, D. G.</b>                                                              |
| Tube-welder aids<br>MSC-18687                                       | More-reliable SOS ion implantations<br>M-FS-25322                      | High-power solid-state microwave<br>transmitter<br>NPO-14803                      |
| <b>WELDON, V. A.</b>                                                | <b>WOOD, G. M., JR.</b>                                                | <b>B80-10296 01</b>                                                               |
| Ball-joint grounding ring<br>MSC-18824                              | Improved LEEM ranges over four<br>decades<br>LANGLEY-12706             | Broadband electrostatic acoustic<br>transducer for liquids<br>LANGLEY-12465       |
| <b>WELLER, T.</b>                                                   | <b>WOOD, K. E.</b>                                                     | <b>B80-10078 06</b>                                                               |
| Biaxial method for in-plane shear<br>testing<br>LANGLEY-12680       | Bayonet plug with ramp-activated lock<br>MSC-18526                     | <b>YOUNG, K.</b>                                                                  |
| <b>WHEELER, D. R.</b>                                               | <b>WOOD, P. C.</b>                                                     | OCCULT-ORSER<br>complete<br>conversational user-language translator<br>GSFC-12604 |
| Improved adherence of TiC coatings to<br>steel<br>LEWIS-13169       | Reducing static charges in fluidized bed<br>reactions<br>ARC-11245     | <b>B80-10556 09</b>                                                               |
| <b>WHITE, F. A.</b>                                                 | <b>WOOD, R. H.</b>                                                     | <b>YOUNG, S. G.</b>                                                               |
| Improved LEEM ranges over four<br>decades<br>LANGLEY-12706          | Lock for hydraulic actuators<br>MSC-18853                              | Low cost high temperature, duplex<br>coating for superalloys<br>LEWIS-13497       |
| <b>WILCOXSON, A. L.</b>                                             | <b>WOOD, W. H.</b>                                                     | <b>B80-10352 04</b>                                                               |
| Modified fire-resistant foams for seat<br>cushions<br>MSC-18704     | A construction technique for wind tunnel<br>models<br>LANGLEY-12710    | <b>YU, I.</b>                                                                     |
| One-step microwave foaming and<br>curing<br>MSC-18707               | <b>WOODALL, J. M.</b>                                                  | Multiband microstrip antenna<br>MSC-18334                                         |
| Rigid fire-resistant foams for walls and<br>floors<br>MSC-18708     | Ohmic contact to GaAs semiconductor<br>LANGLEY-12466                   | <b>B80-10001 01</b>                                                               |
| <b>WILHOLD, G. A.</b>                                               | <b>WOODFORD, W.</b>                                                    | <b>Z</b>                                                                          |
| Extracting energy from natural flow<br>M-FS-23989                   | Automated flow-chart system<br>GSFC-12514                              | <b>ZAMANI, N.</b>                                                                 |
| <b>WILKINS, C. A.</b>                                               | <b>WRIGHTON, M. S.</b>                                                 | Measuring radiation effects on MOS<br>capacitors<br>NPO-14700                     |
| Measuring the thermal conductivity of<br>insulation<br>NPO-14871    | Photoelectrochemical cell with<br>nondissolving anode<br>LANGLEY-12591 | <b>B80-10227 06</b>                                                               |
| <b>WU, T. T.</b>                                                    | <b>WU, T. T.</b>                                                       | <b>ZANTESON, R. A.</b>                                                            |
| <b>WU, V. C.</b>                                                    | Voltage controller/current limiter for ac<br>NPO-13061                 | Detecting surface faults on solar<br>mirrors<br>NPO-14684                         |
| Microprocessor-controlled ultrasonic<br>plethysmograph<br>MSC-18759 | <b>B80-10032 02</b>                                                    | <b>B80-10230 06</b>                                                               |
| <b>WU, V. C.</b>                                                    | <b>WU, V. C.</b>                                                       | <b>ZANTOS, P. J.</b>                                                              |
| Microprocessor-controlled ultrasonic<br>plethysmograph<br>MSC-18759 | Microprocessor-controlled ultrasonic<br>plethysmograph<br>MSC-18759    | Transistor package for high pressure<br>applications<br>MSC-18743                 |
| <b>ZEBUS, P. P.</b>                                                 | <b>WU, V. C.</b>                                                       | <b>B80-10430 08</b>                                                               |
| 'Grinding' cavities in polyurethane foam<br>MSC-18564               | <b>ZARETSKY, E.</b>                                                    | High-performance, multiroller traction<br>drive<br>LEWIS-13347                    |
| <b>ZIMMERMAN, J. E.</b>                                             | <b>ZIMMERMAN, J. E.</b>                                                | <b>B80-10244 07</b>                                                               |
| Detecting a coal/shale interface<br>M-FS-23720                      | Measuring the thermal conductivity of<br>insulation<br>NPO-14871       | <b>B80-10061 04</b>                                                               |

**ZOBRIST, A. L.**

Image-based information,  
communication, and retrieval  
NPO-14893 B80-10293 09

**ZULUETA, P. J.**

Cost models and economical packaging  
of LSI's  
M-FS-25359 B80-10138 0f

# ORIGINATING CENTER/TECH BRIEF NUMBER INDEX

Index to NASA Tech Briefs

Issue 22

## Originating Center/Tech Brief Number Index

The left hand column identifies the originating Center number; to the right of each originating Center number is the Tech Brief number, e.g., B80-10248, followed by a two-digit number, e.g., 07, which identifies the subject category containing the entire citation.

|                  |              |                     |                   |              |
|------------------|--------------|---------------------|-------------------|--------------|
| HQN-10924 .....  | B80-10326 03 | LANGLEY-12599 ..... | B80-10215 06      |              |
| HQN-10937 .....  | B80-10184 03 | LANGLEY-12602 ..... | B80-10379 06      |              |
| KSC-11048 .....  | B80-10303 02 | LANGLEY-12615 ..... | B80-10404 07      |              |
| KSC-11076 .....  | B80-10516 06 | LANGLEY-12619 ..... | B80-10238 06      |              |
| KSC-11107 .....  | B80-10134 08 | LANGLEY-12623 ..... | B80-10090 06      |              |
| KSC-11118 .....  | B80-10232 06 | LANGLEY-12629 ..... | B80-10357 04      |              |
| KSC-11124 .....  | B80-10037 02 | LANGLEY-12631 ..... | B80-10177 03      |              |
| KSC-11167 .....  | B80-10304 02 | LANGLEY-12632 ..... | B80-10185 03      |              |
| KSC-11171 .....  | B80-10538 08 | LANGLEY-12635 ..... | B80-10183 03      |              |
| KSC-11181 .....  | B80-10385 06 | LANGLEY-12636 ..... | B80-10236 06      |              |
| KSC-11195 .....  | B80-10555 09 | LANGLEY-12640 ..... | B80-10358 04      |              |
| ARC-11116 .....  | B80-10007 01 | LANGLEY-12642 ..... | B80-10206 04      |              |
| ARC-11158 .....  | B80-10383 06 | LANGLEY-12645 ..... | B80-10220 06      |              |
| ARC-11176 .....  | B80-10350 04 | LANGLEY-12647 ..... | B80-10237 06      |              |
| ARC-11245 .....  | B80-10068 04 | LANGLEY-12655 ..... | B80-10221 06      |              |
| ARC-11246 .....  | B80-10417 08 | LANGLEY-12665 ..... | B80-10498 04      |              |
| ARC-11272 .....  | B80-10408 07 | LANGLEY-12666 ..... | B80-10226 06      |              |
| ARC-11282 .....  | B80-10396 06 | LANGLEY-12680 ..... | B80-10512 06      |              |
| ARC-11291 .....  | B80-10074 06 | LANGLEY-12682 ..... | B80-10455 03      |              |
| FRC-10112 .....  | B80-10506 06 | LANGLEY-12687 ..... | B80-10529 07      |              |
| FRC-11025 .....  | B80-10160 01 | LANGLEY-12697 ..... | B80-10377 06      |              |
| GSFC-12095 ..... | B80-10248 07 | LANGLEY-12699 ..... | B80-10394 06      |              |
| GSFC-12327 ..... | B80-10065 04 | LANGLEY-12702 ..... | B80-10525 06      |              |
| GSFC-12354 ..... | B80-10265 08 | LANGLEY-12706 ..... | B80-10508 06      |              |
| GSFC-12360 ..... | B80-10003 01 | LANGLEY-12709 ..... | B80-10502 05      |              |
| GSFC-12392 ..... | B80-10144 09 | LANGLEY-12710 ..... | B80-10381 06      |              |
| GSFC-12407 ..... | B80-10083 06 | LANGLEY-12713 ..... | B80-10491 04      |              |
| GSFC-12420 ..... | B80-10295 01 | LANGLEY-12718 ..... | B80-10504 05      |              |
| GSFC-12430 ..... | B80-10164 02 | LANGLEY-12719 ..... | B80-10493 04      |              |
| GSFC-12447 ..... | B80-10165 02 | LANGLEY-12727 ..... | B80-10524 06      |              |
| GSFC-12448 ..... | B80-10166 02 | LANGLEY-12729 ..... | B80-10526 07      |              |
| GSFC-12501 ..... | B80-10154 01 | LANGLEY-12730 ..... | B80-10324 03      |              |
| GSFC-12514 ..... | B80-10147 09 | LANGLEY-12737 ..... | B80-10495 04      |              |
| GSFC-12518 ..... | B80-10257 07 | LANGLEY-12394 ..... | B80-10119 08      |              |
| GSFC-12528 ..... | B80-10180 03 | LANGLEY-12402 ..... | B80-10386 06      |              |
| GSFC-12535 ..... | B80-10057 03 | LANGLEY-12404 ..... | B80-10397 06      |              |
| GSFC-12536 ..... | B80-10451 02 | LANGLEY-12412 ..... | B80-10106 07      |              |
| GSFC-12542 ..... | B80-10186 03 | LANGLEY-12450 ..... | B80-10040 03      |              |
| GSFC-12553 ..... | B80-10214 06 | LANGLEY-12460 ..... | B80-10085 06      |              |
| GSFC-12555 ..... | B80-10443 01 | LANGLEY-12465 ..... | B80-10078 06      |              |
| GSFC-12561 ..... | B80-10080 06 | LANGLEY-12466 ..... | B80-10263 08      |              |
| GSFC-12562 ..... | B80-10178 03 | LANGLEY-12468 ..... | B80-10219 06      |              |
| GSFC-12584 ..... | B80-10401 07 | LANGLEY-12469 ..... | B80-10321 03      |              |
| GSFC-12589 ..... | B80-10329 03 | LANGLEY-12476 ..... | B80-10507 06      |              |
| GSFC-12600 ..... | B80-10522 06 | LANGLEY-12482 ..... | B80-10095 07      |              |
| GSFC-12604 ..... | B80-10556 09 | LANGLEY-12513 ..... | B80-10009 01      |              |
| GSFC-12606 ..... | B80-10406 07 | LANGLEY-12528 ..... | B80-10072 05      |              |
| GSFC-12608 ..... | B80-10452 03 | LANGLEY-12529 ..... | B80-10169 02      |              |
| GSFC-12610 ..... | B80-10503 05 | LANGLEY-12531 ..... | B80-10005 01      |              |
| GSFC-12618 ..... | B80-10373 06 | LANGLEY-12540 ..... | B80-10274 08      |              |
| GSFC-12625 ..... | B80-10391 06 | LANGLEY-12547 ..... | B80-10422 08      |              |
| GSFC-12638 ..... | B80-10393 06 | LANGLEY-12548 ..... | B80-10558 09      |              |
|                  |              | LANGLEY-12549 ..... | B80-10152 01      |              |
|                  |              | LANGLEY-12556 ..... | B80-10092 06      |              |
|                  |              | LANGLEY-12564 ..... | B80-10093 07      |              |
|                  |              | LANGLEY-12578 ..... | B80-10251 07      |              |
|                  |              | LANGLEY-12588 ..... | B80-10518 06      |              |
|                  |              | LANGLEY-12591 ..... | B80-10038 03      |              |
|                  |              | LANGLEY-12592 ..... | B80-10044 03      |              |
|                  |              | LANGLEY-12597 ..... | B80-10205 04      |              |
|                  |              | LANGLEY-12598 ..... | B80-10084 06      |              |
|                  |              |                     | LEWIS-12441 ..... | B80-10081 06 |
|                  |              |                     | LEWIS-12592 ..... | B80-10395 06 |
|                  |              |                     | LEWIS-12809 ..... | B80-10299 01 |
|                  |              |                     | LEWIS-12973 ..... | B80-10058 03 |
|                  |              |                     | LEWIS-12982 ..... | B80-10115 08 |
|                  |              |                     | LEWIS-13011 ..... | B80-10216 06 |
|                  |              |                     | LEWIS-13028 ..... | B80-10128 08 |
|                  |              |                     | LEWIS-13038 ..... | B80-10075 06 |
|                  |              |                     | LEWIS-13039 ..... | B80-10077 06 |
|                  |              |                     | LEWIS-13040 ..... | B80-10076 06 |
|                  |              |                     | LEWIS-13088 ..... | B80-10067 04 |
|                  |              |                     | LEWIS-13145 ..... | B80-10286 09 |
|                  |              |                     | LEWIS-13146 ..... | B80-10233 06 |
|                  |              |                     | LEWIS-13169 ..... | B80-10207 04 |
|                  |              |                     | LEWIS-13172 ..... | B80-10143 09 |
|                  |              |                     | LEWIS-13206 ..... | B80-10287 09 |
|                  |              |                     | LEWIS-13219 ..... | B80-10389 06 |
|                  |              |                     | LEWIS-13226 ..... | B80-10361 04 |
|                  |              |                     | LEWIS-13229 ..... | B80-10109 07 |
|                  |              |                     | LEWIS-13230 ..... | B80-10259 07 |
|                  |              |                     | LEWIS-13249 ..... | B80-10091 06 |
|                  |              |                     | LEWIS-13250 ..... | B80-10520 06 |
|                  |              |                     | LEWIS-13275 ..... | B80-10354 04 |
|                  |              |                     | LEWIS-13279 ..... | B80-10088 06 |
|                  |              |                     | LEWIS-13293 ..... | B80-10400 06 |
|                  |              |                     | LEWIS-13324 ..... | B80-10353 04 |
|                  |              |                     | LEWIS-13346 ..... | B80-10314 02 |
|                  |              |                     | LEWIS-13347 ..... | B80-10244 07 |
|                  |              |                     | LEWIS-13388 ..... | B80-10211 04 |
|                  |              |                     | LEWIS-13392 ..... | B80-10234 06 |
|                  |              |                     | LEWIS-13393 ..... | B80-10533 07 |

**ORIGINATING CENTER/TECH BRIEF NUMBER INDEX**

|                   |              |                  |              |                  |              |
|-------------------|--------------|------------------|--------------|------------------|--------------|
| LEWIS-13398 ..... | B80-10064 04 | M-FS-25258 ..... | B80-10025 01 | M-FS-25478 ..... | B80-10340 03 |
| LEWIS-13399 ..... | B80-10249 07 | M-FS-25259 ..... | B80-10026 01 | M-FS-25479 ..... | B80-10339 03 |
| LEWIS-13400 ..... | B80-10441 01 | M-FS-25260 ..... | B80-10012 01 | M-FS-25480 ..... | B80-10344 03 |
| LEWIS-13411 ..... | B80-10402 07 | M-FS-25261 ..... | B80-10013 01 | M-FS-25481 ..... | B80-10343 03 |
| LEWIS-13412 ..... | B80-10267 08 | M-FS-25262 ..... | B80-10014 01 | M-FS-25490 ..... | B80-10346 03 |
| LEWIS-13418 ..... | B80-10442 01 | M-FS-25263 ..... | B80-10015 01 | M-FS-25496 ..... | B80-10497 04 |
| LEWIS-13432 ..... | B80-10519 06 | M-FS-25264 ..... | B80-10027 01 | M-FS-25499 ..... | B80-10348 03 |
| LEWIS-13438 ..... | B80-10209 04 | M-FS-25265 ..... | B80-10028 01 | M-FS-25502 ..... | B80-10467 03 |
| LEWIS-13461 ..... | B80-10523 06 | M-FS-25267 ..... | B80-10029 01 | M-FS-25504 ..... | B80-10347 03 |
| LEWIS-13485 ..... | B80-10364 04 | M-FS-25269 ..... | B80-10030 01 | M-FS-25514 ..... | B80-10349 03 |
| LEWIS-13493 ..... | B80-10384 06 | M-FS-25280 ..... | B80-10016 01 | M-FS-25520 ..... | B80-10468 03 |
| LEWIS-13497 ..... | B80-10352 04 | M-FS-25281 ..... | B80-10017 01 | M-FS-25521 ..... | B80-10462 03 |
| LEWIS-13589 ..... | B80-10351 04 | M-FS-25287 ..... | B80-10318 03 | M-FS-25524 ..... | B80-10469 03 |
|                   |              | M-FS-25292 ..... | B80-10116 08 | M-FS-25525 ..... | B80-10470 03 |
|                   |              | M-FS-25296 ..... | B80-10229 06 | M-FS-25526 ..... | B80-10471 03 |
|                   |              | M-FS-25298 ..... | B80-10042 03 | M-FS-25527 ..... | B80-10472 03 |
|                   |              | M-FS-25302 ..... | B80-10150 01 | M-FS-25528 ..... | B80-10473 03 |
|                   |              | M-FS-25304 ..... | B80-10204 04 | M-FS-25529 ..... | B80-10464 03 |
| M-FS-19324 .....  | B80-10105 07 | M-FS-25309 ..... | B80-10279 08 | M-FS-25530 ..... | B80-10481 03 |
| M-FS-19378 .....  | B80-10112 08 | M-FS-25322 ..... | B80-10262 08 | M-FS-25532 ..... | B80-10463 03 |
| M-FS-19441 .....  | B80-10275 08 | M-FS-25323 ..... | B80-10149 01 | M-FS-25536 ..... | B80-10480 03 |
| M-FS-19457 .....  | B80-10002 01 | M-FS-25324 ..... | B80-10117 08 | M-FS-25537 ..... | B80-10479 03 |
| M-FS-19460 .....  | B80-10114 08 | M-FS-25326 ..... | B80-10182 03 | M-FS-25538 ..... | B80-10478 03 |
| M-FS-19468 .....  | B80-10111 08 | M-FS-25329 ..... | B80-10011 01 | M-FS-25539 ..... | B80-10477 03 |
| M-FS-19486 .....  | B80-10079 06 | M-FS-25330 ..... | B80-10070 04 | M-FS-25540 ..... | B80-10476 03 |
| M-FS-19495 .....  | B80-10136 08 | M-FS-25336 ..... | B80-10049 03 | M-FS-25543 ..... | B80-10460 03 |
| M-FS-19496 .....  | B80-10276 08 | M-FS-25337 ..... | B80-10052 03 | M-FS-25548 ..... | B80-10475 03 |
| M-FS-19499 .....  | B80-10110 08 | M-FS-25339 ..... | B80-10051 03 | M-FS-25552 ..... | B80-10474 03 |
| M-FS-19503 .....  | B80-10413 07 | M-FS-25340 ..... | B80-10096 07 | M-FS-25553 ..... | B80-10482 03 |
| M-FS-19505 .....  | B80-10102 07 | M-FS-25342 ..... | B80-10157 01 | M-FS-25558 ..... | B80-10466 03 |
| M-FS-19518 .....  | B80-10103 07 | M-FS-25348 ..... | B80-10281 08 | M-FS-25559 ..... | B80-10488 03 |
| M-FS-19535 .....  | B80-10403 07 | M-FS-25352 ..... | B80-10163 01 | M-FS-25564 ..... | B80-10487 03 |
| M-FS-19537 .....  | B80-10278 08 | M-FS-25357 ..... | B80-10282 08 | M-FS-25567 ..... | B80-10465 03 |
| M-FS-19549 .....  | B80-10228 06 | M-FS-25358 ..... | B80-10046 03 | M-FS-25568 ..... | B80-10486 03 |
| M-FS-19619 .....  | B80-10410 07 | M-FS-25359 ..... | B80-10138 08 | M-FS-25569 ..... | B80-10484 03 |
| M-FS-22636 .....  | B80-10242 07 | M-FS-25365 ..... | B80-10113 08 | M-FS-25572 ..... | B80-10485 03 |
| M-FS-23027 .....  | B80-10089 06 | M-FS-25367 ..... | B80-10557 09 | M-FS-25575 ..... | B80-10483 03 |
| M-FS-23589 .....  | B80-10192 03 | M-FS-25371 ..... | B80-10439 09 | M-FS-26255 ..... | B80-10021 01 |
| M-FS-23692 .....  | B80-10243 07 | M-FS-25373 ..... | B80-10222 06 |                  |              |
| M-FS-23720 .....  | B80-10061 04 | M-FS-25385 ..... | B80-10193 03 |                  |              |
| M-FS-23764 .....  | B80-10288 09 | M-FS-25386 ..... | B80-10054 03 |                  |              |
| M-FS-23813 .....  | B80-10289 09 | M-FS-25387 ..... | B80-10055 03 | MSC-18787 .....  | B80-10429 08 |
| M-FS-23814 .....  | B80-10399 06 | M-FS-25387 ..... | B80-10056 03 | MSC-14843 .....  | B80-10107 07 |
| M-FS-23862 .....  | B80-10224 06 | M-FS-25388 ..... | B80-10189 03 | MSC-14848 .....  | B80-10258 07 |
| M-FS-23922 .....  | B80-10060 04 | M-FS-25389 ..... | B80-10053 03 | MSC-14876 .....  | B80-10104 07 |
| M-FS-23963 .....  | B80-10137 08 | M-FS-25390 ..... | B80-10050 03 | MSC-16134 .....  | B80-10246 07 |
| M-FS-23964 .....  | B80-10368 05 | M-FS-25393 ..... | B80-10047 03 | MSC-16153 .....  | B80-10245 07 |
| M-FS-23989 .....  | B80-10045 03 | M-FS-25396 ..... | B80-10285 09 | MSC-16282 .....  | B80-10126 08 |
| M-FS-24049 .....  | B80-10135 08 | M-FS-25397 ..... | B80-10187 03 | MSC-16394 .....  | B80-10489 04 |
| M-FS-25017 .....  | B80-10552 08 | M-FS-25398 ..... | B80-10191 03 | MSC-16531 .....  | B80-10356 04 |
| M-FS-25054 .....  | B80-10437 08 | M-FS-25399 ..... | B80-10392 06 | MSC-16684 .....  | B80-10008 01 |
| M-FS-25055 .....  | B80-10551 08 | M-FS-25401 ..... | B80-10260 08 | MSC-16723 .....  | B80-10004 01 |
| M-FS-25058 .....  | B80-10435 08 | M-FS-25414 ..... | B80-10496 04 | MSC-16921 .....  | B80-10418 08 |
| M-FS-25065 .....  | B80-10436 08 | M-FS-25416 ..... | B80-10188 03 | MSC-16930 .....  | B80-10129 08 |
| M-FS-25066 .....  | B80-10433 08 | M-FS-25419 ..... | B80-10190 03 | MSC-18035 .....  | B80-10034 02 |
| M-FS-25067 .....  | B80-10434 08 | M-FS-25420 ..... | B80-10195 03 | MSC-18180 .....  | B80-10159 01 |
| M-FS-25073 .....  | B80-10140 08 | M-FS-25421 ..... | B80-10380 06 | MSC-18333 .....  | B80-10292 09 |
| M-FS-25107 .....  | B80-10082 06 | M-FS-25423 ..... | B80-10196 03 | MSC-18334 .....  | B80-10001 01 |
| M-FS-25134 .....  | B80-10094 07 | M-FS-25424 ..... | B80-10198 03 | MSC-18367 .....  | B80-10298 01 |
| M-FS-25139 .....  | B80-10409 07 | M-FS-25427 ..... | B80-10197 03 | MSC-18390 .....  | B80-10269 08 |
| M-FS-25149 .....  | B80-10261 08 | M-FS-25428 ..... | B80-10199 03 | MSC-18407 .....  | B80-10156 01 |
| M-FS-25150 .....  | B80-10023 01 | M-FS-25431 ..... | B80-10202 03 | MSC-18416 .....  | B80-10240 07 |
| M-FS-25153 .....  | B80-10141 08 | M-FS-25433 ..... | B80-10194 03 | MSC-18422 .....  | B80-10390 06 |
| M-FS-25158 .....  | B80-10210 04 | M-FS-25434 ..... | B80-10200 03 | MSC-18430 .....  | B80-10268 08 |
| M-FS-25170 .....  | B80-10010 01 | M-FS-25435 ..... | B80-10201 03 | MSC-18462 .....  | B80-10407 07 |
| M-FS-25183 .....  | B80-10432 08 | M-FS-25443 ..... | B80-10203 03 | MSC-18468 .....  | B80-10101 07 |
| M-FS-25193 .....  | B80-10139 08 | M-FS-25444 ..... | B80-10331 03 | MSC-18469 .....  | B80-10217 06 |
| M-FS-25205 .....  | B80-10366 04 | M-FS-25450 ..... | B80-10461 03 | MSC-18472 .....  | B80-10153 01 |
| M-FS-25208 .....  | B80-10161 01 | M-FS-25451 ..... | B80-10335 03 | MSC-18473 .....  | B80-10173 02 |
| M-FS-25230 .....  | B80-10266 08 | M-FS-25452 ..... | B80-10332 03 | MSC-18478 .....  | B80-10063 04 |
| M-FS-25235 .....  | B80-10521 06 | M-FS-25453 ..... | B80-10336 03 | MSC-18494 .....  | B80-10120 08 |
| M-FS-25239 .....  | B80-10280 08 | M-FS-25454 ..... | B80-10341 03 | MSC-18526 .....  | B80-10247 07 |
| M-FS-25242 .....  | B80-10059 04 | M-FS-25458 ..... | B80-10342 03 | MSC-18528 .....  | B80-10125 08 |
| M-FS-25249 .....  | B80-10431 08 | M-FS-25468 ..... | B80-10334 03 | MSC-18529 .....  | B80-10100 07 |
| M-FS-25251 .....  | B80-10018 01 | M-FS-25469 ..... | B80-10337 03 | MSC-18532 .....  | B80-10448 02 |
| M-FS-25252 .....  | B80-10019 01 | M-FS-25471 ..... | B80-10333 03 | MSC-18533 .....  | B80-10069 04 |
| M-FS-25253 .....  | B80-10022 01 | M-FS-25472 ..... | B80-10338 03 | MSC-18534 .....  | B80-10264 08 |
| M-FS-25254 .....  | B80-10020 01 | M-FS-25473 ..... | B80-10345 03 | MSC-18535 .....  | B80-10031 02 |
| M-FS-25256 .....  | B80-10024 01 | M-FS-25473 ..... | B80-10345 03 | MSC-18538 .....  | B80-10099 07 |

ORIGINATING CENTER/TECH BRIEF NUMBER INDEX

|           |           |    |           |           |    |           |           |    |
|-----------|-----------|----|-----------|-----------|----|-----------|-----------|----|
| MSC-18564 | B80-10124 | 08 | NPO-14277 | B80-10323 | 03 | NPO-14929 | B80-10363 | 04 |
| MSC-18565 | B80-10127 | 08 | NPO-14281 | B80-10311 | 02 | NPO-14935 | B80-10365 | 04 |
| MSC-18567 | B80-10255 | 07 | NPO-14306 | B80-10528 | 07 | NPO-14936 | B80-10514 | 06 |
| MSC-18572 | B80-10123 | 08 | NPO-14399 | B80-10252 | 07 | NPO-14947 | B80-10360 | 04 |
| MSC-18581 | B80-10132 | 08 | NPO-14410 | B80-10118 | 08 | NPO-14961 | B80-10541 | 08 |
| MSC-18582 | B80-10108 | 07 | NPO-14426 | B80-10168 | 02 | NPO-14962 | B80-10542 | 08 |
| MSC-18587 | B80-10313 | 02 | NPO-14438 | B80-10033 | 02 | NPO-14964 | B80-10440 | 01 |
| MSC-18590 | B80-10254 | 07 | NPO-14440 | B80-10036 | 02 | NPO-14966 | B80-10511 | 06 |
| MSC-18597 | B80-10148 | 09 | NPO-14448 | B80-10175 | 03 | NPO-14975 | B80-10446 | 02 |
| MSC-18616 | B80-10239 | 06 | NPO-14462 | B80-10208 | 04 | NPO-14976 | B80-10457 | 03 |
| MSC-18617 | B80-10272 | 08 | NPO-14465 | B80-10066 | 04 | NPO-14984 | B80-10458 | 03 |
| MSC-18623 | B80-10428 | 08 | NPO-14467 | B80-10039 | 03 |           |           |    |
| MSC-18635 | B80-10170 | 02 | NPO-14479 | B80-10179 | 03 |           |           |    |
| MSC-18664 | B80-10231 | 06 | NPO-14496 | B80-10438 | 09 |           |           |    |
| MSC-18674 | B80-10375 | 06 | NPO-14521 | B80-10250 | 07 |           |           |    |
| MSC-18679 | B80-10294 | 01 | NPO-14524 | B80-10176 | 03 |           |           |    |
| MSC-18680 | B80-10444 | 01 | NPO-14528 | B80-10513 | 06 |           |           |    |
| MSC-18685 | B80-10270 | 08 | NPO-14556 | B80-10453 | 03 |           |           |    |
| MSC-18686 | B80-10256 | 07 | NPO-14568 | B80-10048 | 03 |           |           |    |
| MSC-18687 | B80-10277 | 08 | NPO-14579 | B80-10308 | 02 |           |           |    |
| MSC-18690 | B80-10098 | 07 | NPO-14590 | B80-10309 | 02 |           |           |    |
| MSC-18696 | B80-10212 | 05 | NPO-14591 | B80-10327 | 03 |           |           |    |
| MSC-18697 | B80-10374 | 06 | NPO-14610 | B80-10145 | 09 |           |           |    |
| MSC-18699 | B80-10412 | 07 | NPO-14617 | B80-10167 | 02 |           |           |    |
| MSC-18704 | B80-10419 | 08 | NPO-14654 | B80-10253 | 07 |           |           |    |
| MSC-18707 | B80-10420 | 08 | NPO-14657 | B80-10218 | 06 |           |           |    |
| MSC-18708 | B80-10421 | 08 | NPO-14661 | B80-10131 | 08 |           |           |    |
| MSC-18712 | B80-10317 | 02 | NPO-14671 | B80-10316 | 02 |           |           |    |
| MSC-18718 | B80-10283 | 08 | NPO-14684 | B80-10230 | 06 |           |           |    |
| MSC-18724 | B80-10355 | 04 | NPO-14700 | B80-10227 | 06 |           |           |    |
| MSC-18728 | B80-10302 | 01 | NPO-14701 | B80-10162 | 01 |           |           |    |
| MSC-18731 | B80-10415 | 07 | NPO-14702 | B80-10388 | 06 |           |           |    |
| MSC-18736 | B80-10536 | 08 | NPO-14704 | B80-10071 | 04 |           |           |    |
| MSC-18737 | B80-10535 | 08 | NPO-14705 | B80-10387 | 06 |           |           |    |
| MSC-18740 | B80-10494 | 04 | NPO-14710 | B80-10043 | 03 |           |           |    |
| MSC-18741 | B80-10534 | 08 | NPO-14713 | B80-10447 | 02 |           |           |    |
| MSC-18743 | B80-10430 | 08 | NPO-14715 | B80-10273 | 08 |           |           |    |
| MSC-18745 | B80-10554 | 09 | NPO-14719 | B80-10223 | 06 |           |           |    |
| MSC-18756 | B80-10424 | 01 | NPO-14729 | B80-10151 | 01 |           |           |    |
| MSC-18757 | B80-10325 | 03 | NPO-14734 | B80-10301 | 01 |           |           |    |
| MSC-18759 | B80-10500 | 05 | NPO-14738 | B80-10370 | 05 |           |           |    |
| MSC-18761 | B80-10367 | 05 | NPO-14745 | B80-10456 | 03 |           |           |    |
| MSC-18769 | B80-10414 | 07 | NPO-14749 | B80-10376 | 06 |           |           |    |
| MSC-18771 | B80-10423 | 08 | NPO-14757 | B80-10509 | 06 |           |           |    |
| MSC-18772 | B80-10416 | 07 | NPO-14779 | B80-10550 | 08 |           |           |    |
| MSC-18775 | B80-10501 | 05 | NPO-14780 | B80-10454 | 03 |           |           |    |
| MSC-18777 | B80-10449 | 02 | NPO-14781 | B80-10330 | 03 |           |           |    |
| MSC-18778 | B80-10510 | 06 | NPO-14782 | B80-10548 | 08 |           |           |    |
| MSC-18779 | B80-10312 | 02 | NPO-14794 | B80-10537 | 08 |           |           |    |
| MSC-18783 | B80-10499 | 05 | NPO-14796 | B80-10492 | 04 |           |           |    |
| MSC-18784 | B80-10425 | 08 | NPO-14797 | B80-10411 | 07 |           |           |    |
| MSC-18785 | B80-10547 | 08 | NPO-14800 | B80-10271 | 08 |           |           |    |
| MSC-18786 | B80-10427 | 08 | NPO-14801 | B80-10426 | 08 |           |           |    |
| MSC-18793 | B80-10450 | 02 | NPO-14802 | B80-10296 | 01 |           |           |    |
| MSC-18801 | B80-10546 | 08 | NPO-14803 | B80-10545 | 08 |           |           |    |
| MSC-18804 | B80-10371 | 05 | NPO-14809 | B80-10155 | 01 |           |           |    |
| MSC-18824 | B80-10405 | 07 | NPO-14810 | B80-10297 | 01 |           |           |    |
| MSC-18835 | B80-10490 | 04 | NPO-14811 | B80-10319 | 03 |           |           |    |
| MSC-18853 | B80-10530 | 07 | NPO-14812 | B80-10505 | 05 |           |           |    |
| MSC-18854 | B80-10540 | 08 | NPO-14813 | B80-10328 | 03 |           |           |    |
| MSC-18855 | B80-10527 | 07 | NPO-14815 | B80-10445 | 01 |           |           |    |
| MSC-18867 | B80-10553 | 09 | NPO-14816 | B80-10291 | 09 |           |           |    |
| MSC-18871 | B80-10532 | 07 | NPO-14821 | B80-10174 | 03 |           |           |    |
| MSC-18915 | B80-10372 | 05 | NPO-14823 | B80-10310 | 02 |           |           |    |
| MSC-19385 | B80-10097 | 07 | NPO-14828 | B80-10359 | 04 |           |           |    |
| MSC-19594 | B80-10122 | 08 | NPO-14836 | B80-10315 | 02 |           |           |    |
| MSC-19636 | B80-10241 | 07 | NPO-14837 | B80-10517 | 06 |           |           |    |
| MSC-19660 | B80-10133 | 08 | NPO-14843 | B80-10322 | 03 |           |           |    |
| MSC-19751 | B80-10158 | 01 | NPO-14845 | B80-10549 | 08 |           |           |    |
|           |           |    | NPO-14846 | B80-10320 | 03 |           |           |    |
|           |           |    | NPO-14853 | B80-10544 | 08 |           |           |    |
| NPO-13061 | B80-10032 | 02 | NPO-14861 | B80-10300 | 01 |           |           |    |
| NPO-13165 | B80-10172 | 02 | NPO-14864 | B80-10515 | 06 |           |           |    |
| NPO-13422 | B80-10035 | 02 | NPO-14869 | B80-10539 | 08 |           |           |    |
| NPO-13426 | B80-10006 | 01 | NPO-14871 | B80-10382 | 06 |           |           |    |
| NPO-13633 | B80-10171 | 02 | NPO-14881 | B80-10445 | 01 |           |           |    |
| NPO-13679 | B80-10142 | 09 | NPO-14893 | B80-10293 | 09 |           |           |    |
| NPO-14245 | B80-10290 | 09 | NPO-14899 | B80-10369 | 05 |           |           |    |
|           |           |    | NPO-14901 | B80-10459 | 03 |           |           |    |

**Page intentionally left blank**

**Page intentionally left blank**

# TECH BRIEF/ORIGINATING CENTER NUMBER INDEX

Index to NASA Tech Briefs

Issue 22

## Tech Brief/Originating Center Number Index

The left hand column identifies the Tech Brief number, e.g., B80-10062, followed by a two-digit number, e.g., 04, which identifies the subject category containing the entire citation. Following the subject category number is the originating Center number.

|              |               |              |               |              |               |
|--------------|---------------|--------------|---------------|--------------|---------------|
| B80-10001 01 | MSC-18334     | B80-10045 03 | M-FS-23989    | B80-10110 08 | M-FS-19499    |
| B80-10002 01 | M-FS-19457    | B80-10046 03 | M-FS-25358    | B80-10111 08 | M-FS-19468    |
| B80-10003 01 | GSFC-12360    | B80-10047 03 | M-FS-25393    | B80-10112 08 | M-FS-19378    |
| B80-10004 01 | MSC-16723     | B80-10048 03 | NPO-14568     | B80-10113 08 | M-FS-25365    |
| B80-10005 01 | LANGLEY-12531 | B80-10049 03 | M-FS-25336    | B80-10114 08 | M-FS-19460    |
| B80-10006 01 | NPO-13426     | B80-10050 03 | M-FS-25390    | B80-10115 08 | LEWIS-12982   |
| B80-10007 01 | ARC-11116     | B80-10051 03 | M-FS-25339    | B80-10116 08 | M-FS-25292    |
| B80-10008 01 | MSC-16684     | B80-10052 03 | M-FS-25337    | B80-10117 08 | M-FS-25324    |
| B80-10009 01 | LANGLEY-12513 | B80-10053 03 | M-FS-25389    | B80-10118 08 | NPO-14410     |
| B80-10010 01 | M-FS-25170    | B80-10054 03 | M-FS-25386    | B80-10119 08 | LANGLEY-12394 |
| B80-10011 01 | M-FS-25329    | B80-10055 03 | M-FS-25387    | B80-10120 08 | MSC-18494     |
| B80-10012 01 | M-FS-25260    | B80-10056 03 | M-FS-25387    | B80-10121 08 | LANGLEY-12389 |
| B80-10013 01 | M-FS-25261    | B80-10057 03 | GSFC-12535    | B80-10122 08 | MSC-19594     |
| B80-10014 01 | M-FS-25262    | B80-10058 03 | LEWIS-12973   | B80-10123 08 | MSC-18572     |
| B80-10015 01 | M-FS-25263    | B80-10059 04 | M-FS-25242    | B80-10124 08 | MSC-18564     |
| B80-10016 01 | M-FS-25280    | B80-10060 04 | M-FS-23922    | B80-10125 08 | MSC-18528     |
| B80-10017 01 | M-FS-25281    | B80-10061 04 | M-FS-23720    | B80-10126 08 | MSC-16282     |
| B80-10018 01 | M-FS-25251    | B80-10062 04 | LANGLEY-12317 | B80-10127 08 | MSC-18565     |
| B80-10019 01 | M-FS-25252    | B80-10063 04 | MSC-18478     | B80-10128 08 | LEWIS-13028   |
| B80-10020 01 | M-FS-25254    | B80-10064 04 | LEWIS-13398   | B80-10129 08 | MSC-16930     |
| B80-10021 01 | M-FS-26255    | B80-10065 04 | GSFC-12327    | B80-10130 08 | LANGLEY-11712 |
| B80-10022 01 | M-FS-25253    | B80-10066 04 | NPO-14465     | B80-10131 08 | NPO-14661     |
| B80-10023 01 | M-FS-25150    | B80-10067 04 | LEWIS-13088   | B80-10132 08 | MSC-18581     |
| B80-10024 01 | M-FS-25256    | B80-10068 04 | ARC-11245     | B80-10133 08 | MSC-19660     |
| B80-10025 01 | M-FS-25258    | B80-10069 04 | MSC-18533     | B80-10134 08 | KSC-11107     |
| B80-10026 01 | M-FS-25259    | B80-10070 04 | M-FS-25330    | B80-10135 08 | M-FS-24049    |
| B80-10027 01 | M-FS-25264    | B80-10071 04 | NPO-14704     | B80-10136 08 | M-FS-19495    |
| B80-10028 01 | M-FS-25265    | B80-10072 05 | LANGLEY-12528 | B80-10137 08 | M-FS-23963    |
| B80-10029 01 | M-FS-25267    | B80-10073 05 | LANGLEY-12325 | B80-10138 08 | M-FS-25359    |
| B80-10030 01 | M-FS-25269    | B80-10074 06 | ARC-11291     | B80-10139 08 | M-FS-25193    |
| B80-10031 02 | MSC-18535     | B80-10075 06 | LEWIS-13038   | B80-10140 08 | M-FS-25073    |
| B80-10032 02 | NPO-13061     | B80-10076 06 | LEWIS-13040   | B80-10141 08 | M-FS-25153    |
| B80-10033 02 | NPO-14438     | B80-10077 06 | LEWIS-13039   | B80-10142 09 | NPO-13679     |
| B80-10034 02 | MSC-18035     | B80-10078 06 | LANGLEY-12465 | B80-10143 09 | LEWIS-13172   |
| B80-10035 02 | NPO-13422     | B80-10079 06 | M-FS-19486    | B80-10144 09 | GSFC-12392    |
| B80-10036 02 | NPO-14440     | B80-10080 06 | GSFC-12561    | B80-10145 09 | NPO-14610     |
| B80-10037 02 | KSC-11124     | B80-10081 06 | LEWIS-12441   | B80-10146 09 | LANGLEY-12593 |
| B80-10038 03 | LANGLEY-12591 | B80-10082 06 | M-FS-25107    | B80-10147 09 | GSFC-12514    |
| B80-10039 03 | NPO-14467     | B80-10083 06 | GSFC-12407    | B80-10148 09 | MSC-18597     |
| B80-10040 03 | LANGLEY-12450 | B80-10084 06 | LANGLEY-12598 | B80-10149 01 | M-FS-25323    |
| B80-10041 03 | LANGLEY-12388 | B80-10085 06 | LANGLEY-12460 | B80-10150 01 | M-FS-25302    |
| B80-10042 03 | M-FS-25298    | B80-10086 06 | LANGLEY-12489 | B80-10151 01 | NPO-14734     |
| B80-10043 03 | NPO-14710     | B80-10087 06 | LANGLEY-12502 | B80-10152 01 | LANGLEY-12549 |
| B80-10044 03 | LANGLEY-12592 | B80-10088 06 | LEWIS-13279   | B80-10153 01 | MSC-18472     |
|              |               | B80-10089 06 | M-FS-23027    | B80-10154 01 | GSFC-12501    |
|              |               | B80-10090 06 | LANGLEY-12623 | B80-10155 01 | NPO-14815     |
|              |               | B80-10091 06 | LEWIS-13249   | B80-10156 01 | MSC-18407     |
|              |               | B80-10092 06 | LANGLEY-12556 | B80-10157 01 | M-FS-25342    |
|              |               | B80-10093 07 | LANGLEY-12564 | B80-10158 01 | MSC-19751     |
|              |               | B80-10094 07 | M-FS-25134    | B80-10159 01 | MSC-18180     |
|              |               | B80-10095 07 | LANGLEY-12482 | B80-10160 01 | FRC-11025     |
|              |               | B80-10096 07 | M-FS-25340    | B80-10161 01 | M-FS-25208    |
|              |               | B80-10097 07 | MSC-19385     | B80-10162 01 | NPO-14701     |
|              |               | B80-10098 07 | MSC-18690     | B80-10163 01 | M-FS-25352    |
|              |               | B80-10099 07 | MSC-18538     | B80-10164 02 | GSFC-12430    |
|              |               | B80-10100 07 | MSC-18529     | B80-10165 02 | GSFC-12447    |
|              |               | B80-10101 07 | MSC-18468     | B80-10166 02 | GSFC-12448    |
|              |               | B80-10102 07 | M-FS-19505    | B80-10167 02 | NPO-14617     |
|              |               | B80-10103 07 | M-FS-19518    | B80-10168 02 | NPO-14426     |
|              |               | B80-10104 07 | MSC-14876     | B80-10169 02 | LANGLEY-12529 |
|              |               | B80-10105 07 | M-FS-19324    | B80-10170 02 | MSC-18635     |
|              |               | B80-10106 07 | LANGLEY-12412 | B80-10171 02 | NPO-13633     |
|              |               | B80-10107 07 | MSC-14843     | B80-10172 02 | NPO-13165     |
|              |               | B80-10108 07 | MSC-18582     | B80-10173 02 | MSC-18473     |
|              |               | B80-10109 07 | LEWIS-13229   | B80-10174 03 | NPO-14821     |

**TECH BRIEF/ORIGINATING CENTER NUMBER INDEX**

|              |               |              |                |              |               |
|--------------|---------------|--------------|----------------|--------------|---------------|
| B80-10175 03 | NPO-14448     | B80-10252 07 | NPO-14399      | B80-10329 03 | GSFC-12589    |
| B80-10176 03 | NPO-14524     | B80-10253 07 | NPO-14654      | B80-10330 03 | NPO-14782     |
| B80-10177 03 | LANGLEY-12631 | B80-10254 07 | MSC-18590      | B80-10331 03 | M-FS-25444    |
| B80-10178 03 | GSFC-12562    | B80-10255 07 | MSC-18567      | B80-10332 03 | M-FS-25452    |
| B80-10179 03 | NPO-14479     | B80-10256 07 | MSC-18686      | B80-10333 03 | M-FS-25471    |
| B80-10180 03 | GSFC-12528    | B80-10257 07 | GSFC-12518     | B80-10334 03 | M-FS-25468    |
| B80-10181 03 | NPO-14676     | B80-10258 07 | MSC-14848      | B80-10335 03 | M-FS-25451    |
| B80-10182 03 | M-FS-25326    | B80-10259 07 | LEWIS-13230    | B80-10336 03 | M-FS-25453    |
| B80-10183 03 | LANGLEY-12635 | B80-10260 08 | M-FS-25401     | B80-10337 03 | M-FS-25469    |
| B80-10184 03 | HQN-10937     | B80-10261 08 | M-FS-25149     | B80-10338 03 | M-FS-25472    |
| B80-10185 03 | LANGLEY-12632 | B80-10262 08 | M-FS-25322     | B80-10339 03 | M-FS-25479    |
| B80-10186 03 | GSFC-12542    | B80-10264 08 | MSC-18534      | B80-10340 03 | M-FS-25478    |
| B80-10187 03 | M-FS-25397    | B80-10265 08 | GSFC-12354     | B80-10341 03 | M-FS-25454    |
| B80-10188 03 | M-FS-25416    | B80-10266 08 | M-FS-25230     | B80-10342 03 | M-FS-25458    |
| B80-10189 03 | M-FS-25388    | B80-10267 08 | LEWIS-13412    | B80-10343 03 | M-FS-25481    |
| B80-10190 03 | M-FS-25419    | B80-10268 08 | MSC-18430      | B80-10344 03 | M-FS-25480    |
| B80-10191 03 | M-FS-25398    | B80-10269 08 | MSC-18390      | B80-10345 03 | M-FS-25473    |
| B80-10192 03 | M-FS-23589    | B80-10270 08 | MSC-18685      | B80-10346 03 | M-FS-25490    |
| B80-10193 03 | M-FS-25385    | B80-10271 08 | NPO-14801      | B80-10347 03 | M-FS-25504    |
| B80-10194 03 | M-FS-25433    | B80-10272 08 | MSC-18617      | B80-10348 03 | M-FS-25499    |
| B80-10195 03 | M-FS-25420    | B80-10273 08 | NPO-14715      | B80-10349 03 | M-FS-25514    |
| B80-10196 03 | M-FS-25423    | B80-10274 08 | LANGLEY-12540  | B80-10350 04 | ARC-11176     |
| B80-10197 03 | M-FS-25427    | B80-10275 08 | M-FS-19441     | B80-10351 04 | LEWIS-13589   |
| B80-10198 03 | M-FS-25424    | B80-10276 08 | M-FS-19496     | B80-10352 04 | LEWIS-13497   |
| B80-10199 03 | M-FS-25428    | B80-10277 08 | MSC-18687      | B80-10353 04 | LEWIS-13324   |
| B80-10200 03 | M-FS-25434    | B80-10278 08 | M-FS-19537     | B80-10354 04 | LEWIS-13275   |
| B80-10201 03 | M-FS-25435    | B80-10279 08 | M-FS-25309     | B80-10355 04 | MSC-18724     |
| B80-10202 03 | M-FS-25431    | B80-10280 08 | M-FS-25239     | B80-10356 04 | MSC-16531     |
| B80-10203 03 | M-FS-25443    | B80-10281 08 | M-FS-25348     | B80-10357 04 | LANGLEY-12629 |
| B80-10204 04 | M-FS-25304    | B80-10282 08 | M-FS-25357     | B80-10358 04 | LANGLEY-12640 |
| B80-10205 04 | LANGLEY-12597 | B80-10283 08 | MSC-18718      | B80-10359 04 | NPO-14828     |
| B80-10206 04 | LANGLEY-12642 | B80-10284 09 | LANGLEY-12238  | B80-10360 04 | NPO-14947     |
| B80-10207 04 | LEWIS-13169   | B80-10285 09 | M-FS-25396     | B80-10361 04 | LEWIS-13226   |
| B80-10208 04 | NPO-14462     | B80-10286 09 | LEWIS-13145    | B80-10362 04 | LANGLEY-12367 |
| B80-10209 04 | LEWIS-13438   | B80-10287 09 | LEWIS-13206    | B80-10363 04 | NPO-14929     |
| B80-10210 04 | M-FS-25158    | B80-10288 09 | M-FS-23764     | B80-10364 04 | LEWIS-13485   |
| B80-10211 04 | LEWIS-13388   | B80-10289 09 | M-FS-23813     | B80-10365 04 | NPO-14935     |
| B80-10212 05 | MSC-18696     | B80-10290 09 | NPO-14245      | B80-10366 04 | M-FS-25205    |
| B80-10213 05 | LANGLEY-12282 | B80-10291 09 | NPO-14816      | B80-10367 05 | MSC-18761     |
| B80-10214 06 | GSFC-12553    | B80-10292 09 | MSC-18333      | B80-10368 05 | M-FS-23964    |
| B80-10215 06 | LANGLEY-12599 | B80-10293 09 | NPO-14893      | B80-10369 05 | NPO-14899     |
| B80-10216 06 | LEWIS-13011   | B80-10294 01 | MSC-18679      | B80-10370 05 | NPO-14745     |
| B80-10217 06 | MSC-18469     | B80-10295 01 | GSFC-12420     | B80-10371 05 | MSC-18804     |
| B80-10218 06 | NPO-14657     | B80-10296 01 | NPO-14803      | B80-10372 05 | MSC-18915     |
| B80-10219 06 | LANGLEY-12468 | B80-10297 01 | NPO-14810      | B80-10373 06 | GSFC-12618    |
| B80-10220 06 | LANGLEY-12645 | B80-10298 01 | MSC-18367      | B80-10374 06 | MSC-18697     |
| B80-10221 06 | LANGLEY-12655 | B80-10299 01 | LEWIS-12809    | B80-10375 06 | MSC-18674     |
| B80-10222 06 | M-FS-25373    | B80-10300 01 | NPO-14861      | B80-10376 06 | NPO-14757     |
| B80-10223 06 | NPO-14729     | B80-10301 01 | NPO-14738      | B80-10377 06 | LANGLEY-12697 |
| B80-10224 06 | M-FS-23862    | B80-10302 01 | MSC-18728      | B80-10378 06 | LANGLEY-12393 |
| B80-10225 06 | LANGLEY-12493 | B80-10303 02 | KSC-11048      | B80-10379 06 | LANGLEY-12602 |
| B80-10226 06 | LANGLEY-12666 | B80-10304 02 | KSC-11167      | B80-10380 06 | M-FS-25421    |
| B80-10227 06 | NPO-14700     | B80-10305 02 | LANGLEY-12332  | B80-10381 06 | LANGLEY-12710 |
| B80-10228 06 | M-FS-19549    | B80-10306 02 | LANGLEY-12330A | B80-10382 06 | NPO-14871     |
| B80-10229 06 | M-FS-25296    | B80-10307 02 | LANGLEY-12376  | B80-10383 06 | ARC-11158     |
| B80-10230 06 | NPO-14684     | B80-10308 02 | NPO-14579      | B80-10384 06 | LEWIS-13493   |
| B80-10231 06 | MSC-18664     | B80-10309 02 | NPO-14590      | B80-10385 06 | KSC-11181     |
| B80-10232 06 | KSC-11118     | B80-10310 02 | NPO-14823      | B80-10386 06 | LANGLEY-12402 |
| B80-10233 06 | LEWIS-13146   | B80-10311 02 | NPO-14281      | B80-10387 06 | NPO-14705     |
| B80-10234 06 | LEWIS-13392   | B80-10312 02 | MSC-18779      | B80-10388 06 | NPO-14702     |
| B80-10235 06 | LANGLEY-11535 | B80-10313 02 | MSC-18587      | B80-10389 06 | LEWIS-13219   |
| B80-10236 06 | LANGLEY-12636 | B80-10314 02 | LEWIS-13346    | B80-10390 06 | MSC-18422     |
| B80-10237 06 | LANGLEY-12647 | B80-10315 02 | NPO-14836      | B80-10391 06 | GSFC-12625    |
| B80-10238 06 | LANGLEY-12619 | B80-10316 02 | NPO-14671      | B80-10392 06 | M-FS-25399    |
| B80-10239 06 | MSC-18616     | B80-10317 02 | MSC-18712      | B80-10393 06 | GSFC-12638    |
| B80-10240 07 | MSC-18416     | B80-10318 03 | M-FS-25287     | B80-10394 06 | LANGLEY-12699 |
| B80-10241 07 | MSC-19636     | B80-10319 03 | NPO-14811      | B80-10395 06 | LEWIS-12592   |
| B80-10242 07 | M-FS-22636    | B80-10320 03 | NPO-14846      | B80-10396 06 | ARC-11282     |
| B80-10243 07 | M-FS-23692    | B80-10321 03 | LANGLEY-12469  | B80-10397 06 | LANGLEY-12404 |
| B80-10244 07 | LEWIS-13347   | B80-10322 03 | NPO-14843      | B80-10398 06 | LANGLEY-12499 |
| B80-10245 07 | MSC-16153     | B80-10323 03 | NPO-14277      | B80-10399 06 | M-FS-23814    |
| B80-10246 07 | MSC-16134     | B80-10324 03 | LANGLEY-12730  | B80-10400 06 | LEWIS-13293   |
| B80-10247 07 | MSC-18526     | B80-10325 03 | MSC-18757      | B80-10401 07 | GSFC-12584    |
| B80-10248 07 | GSFC-12095    | B80-10326 03 | HQN-10924      | B80-10402 07 | LEWIS-13411   |
| B80-10249 07 | LEWIS-13399   | B80-10327 03 | NPO-14591      | B80-10403 07 | M-FS-19535    |
| B80-10250 07 | NPO-14521     | B80-10328 03 | NPO-14813      | B80-10404 07 | LANGLEY-12615 |
| B80-10251 07 | LANGLEY-12578 |              |                | B80-10405 07 | MSC-18824     |

TECH BRIEF/ORIGINATING CENTER NUMBER INDEX

|              |               |              |               |
|--------------|---------------|--------------|---------------|
| B80-10406 07 | GSFC-12606    | B80-10483 03 | M-FS-25575    |
| B80-10407 07 | MSC-18462     | B80-10484 03 | M-FS-25569    |
| B80-10408 07 | ARC-11272     | B80-10485 03 | M-FS-25572    |
| B80-10409 07 | M-FS-25139    | B80-10486 03 | M-FS-25568    |
| B80-10410 07 | M-FS-19619    | B80-10487 03 | M-FS-25564    |
| B80-10411 07 | NPO-14800     | B80-10488 03 | M-FS-25559    |
| B80-10412 07 | MSC-18699     | B80-10489 04 | MSC-16394     |
| B80-10413 07 | M-FS-19503    | B80-10490 04 | MSC-18835     |
| B80-10414 07 | MSC-18769     | B80-10491 04 | LANGLEY-12713 |
| B80-10415 07 | MSC-18731     | B80-10492 04 | NPO-14797     |
| B80-10416 07 | MSC-18772     | B80-10493 04 | LANGLEY-12719 |
| B80-10417 08 | ARC-11246     | B80-10494 04 | MSC-18740     |
| B80-10418 08 | MSC-16921     | B80-10495 04 | LANGLEY-12737 |
| B80-10419 08 | MSC-18704     | B80-10496 04 | M-FS-25414    |
| B80-10420 08 | MSC-18707     | B80-10497 04 | M-FS-25496    |
| B80-10421 08 | MSC-18708     | B80-10498 04 | LANGLEY-12665 |
| B80-10422 08 | LANGLEY-12547 | B80-10499 05 | MSC-18783     |
| B80-10423 08 | MSC-18771     | B80-10500 05 | MSC-18759     |
| B80-10424 01 | MSC-18756     | B80-10501 05 | MSC-18775     |
| B80-10425 08 | MSC-18784     | B80-10502 05 | LANGLEY-12709 |
| B80-10426 08 | NPO-14802     | B80-10503 05 | GSFC-12610    |
| B80-10427 08 | MSC-18786     | B80-10504 05 | LANGLEY-12718 |
| B80-10428 08 | MSC-18623     | B80-10505 05 | NPO-14812     |
| B80-10429 08 | MSC-18787     | B80-10506 06 | FRC-10112     |
| B80-10430 08 | MSC-18743     | B80-10507 06 | LANGLEY-12476 |
| B80-10431 08 | M-FS-25249    | B80-10508 06 | LANGLEY-12706 |
| B80-10432 08 | M-FS-25183    | B80-10509 06 | NPO-14779     |
| B80-10433 08 | M-FS-25066    | B80-10510 06 | MSC-18778     |
| B80-10434 08 | M-FS-25067    | B80-10511 06 | NPO-14966     |
| B80-10435 08 | M-FS-25058    | B80-10512 06 | LANGLEY-12680 |
| B80-10436 08 | M-FS-25065    | B80-10513 06 | NPO-14528     |
| B80-10437 08 | M-FS-25054    | B80-10514 06 | NPO-14936     |
| B80-10438 09 | NPO-14496     | B80-10515 06 | NPO-14864     |
| B80-10439 09 | M-FS-25371    | B80-10516 06 | KSC-11076     |
| B80-10440 01 | NPO-14964     | B80-10517 06 | NPO-14837     |
| B80-10441 01 | LEWIS-13400   | B80-10518 06 | LANGLEY-12588 |
| B80-10442 01 | LEWIS-13418   | B80-10519 06 | LEWIS-13432   |
| B80-10443 01 | GSFC-12555    | B80-10520 06 | LEWIS-13250   |
| B80-10444 01 | MSC-18680     | B80-10521 06 | M-FS-25235    |
| B80-10445 01 | NPO-14881     | B80-10522 06 | GSFC-12600    |
| B80-10446 02 | NPO-14975     | B80-10523 06 | LEWIS-13461   |
| B80-10447 02 | NPO-14713     | B80-10524 06 | LANGLEY-12727 |
| B80-10448 02 | MSC-18532     | B80-10525 06 | LANGLEY-12702 |
| B80-10449 02 | MSC-18777     | B80-10526 07 | LANGLEY-12729 |
| B80-10450 02 | MSC-18793     | B80-10527 07 | MSC-18855     |
| B80-10451 02 | GSFC-12536    | B80-10528 07 | NPO-14306     |
| B80-10452 03 | GSFC-12608    | B80-10529 07 | LANGLEY-12687 |
| B80-10453 03 | NPO-14556     | B80-10530 07 | MSC-18853     |
| B80-10454 03 | NPO-14781     | B80-10531 07 | LANGLEY-12372 |
| B80-10455 03 | LANGLEY-12682 | B80-10532 07 | MSC-18871     |
| B80-10456 03 | NPO-14749     | B80-10533 07 | LEWIS-13393   |
| B80-10457 03 | NPO-14976     | B80-10534 08 | MSC-18741     |
| B80-10458 03 | NPO-14984     | B80-10535 08 | MSC-18737     |
| B80-10459 03 | NPO-14901     | B80-10536 08 | MSC-18736     |
| B80-10460 03 | M-FS-25543    | B80-10537 08 | NPO-14796     |
| B80-10461 03 | M-FS-25450    | B80-10538 08 | KSC-11171     |
| B80-10462 03 | M-FS-25521    | B80-10539 08 | NPO-14869     |
| B80-10463 03 | M-FS-25532    | B80-10540 08 | MSC-18854     |
| B80-10464 03 | M-FS-25529    | B80-10541 08 | NPO-14961     |
| B80-10465 03 | M-FS-25567    | B80-10542 08 | NPO-14962     |
| B80-10466 03 | M-FS-25558    | B80-10543 08 | LANGLEY-12315 |
| B80-10467 03 | M-FS-25502    | B80-10544 08 | NPO-14853     |
| B80-10468 03 | M-FS-25520    | B80-10545 08 | NPO-14809     |
| B80-10469 03 | M-FS-25524    | B80-10546 08 | MSC-18801     |
| B80-10470 03 | M-FS-25525    | B80-10547 08 | MSC-18785     |
| B80-10471 03 | M-FS-25526    | B80-10548 08 | NPO-14794     |
| B80-10472 03 | M-FS-25527    | B80-10549 08 | NPO-14845     |
| B80-10473 03 | M-FS-25528    | B80-10550 08 | NPO-14780     |
| B80-10474 03 | M-FS-25552    | B80-10551 08 | M-FS-25055    |
| B80-10475 03 | M-FS-25548    | B80-10552 08 | M-FS-25017    |
| B80-10476 03 | M-FS-25540    | B80-10553 09 | MSC-18867     |
| B80-10477 03 | M-FS-25539    | B80-10554 09 | MSC-18745     |
| B80-10478 03 | M-FS-25538    | B80-10555 09 | KSC-11195     |
| B80-10479 03 | M-FS-25537    | B80-10556 09 | GSFC-12604    |
| B80-10480 03 | M-FS-25536    | B80-10557 09 | M-FS-25367    |
| B80-10481 03 | M-FS-25530    | B80-10558 09 | LANGLEY-12548 |
| B80-10482 03 | M-FS-25553    |              |               |

National Aeronautics and

Space Administration

Washington, D.C.

20546

Official Business

Penalty for Private Use \$300

SPECIAL FOURTH-CLASS RATE  
BOOK

POSTAGE AND FEES PAID  
NATIONAL AERONAUTICS AND  
SPACE ADMINISTRATION  
NASA-451



NASA

