(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 18 August 2005 (18.08.2005)

PCT

(10) International Publication Number WO 2005/076408 A1

(51) International Patent Classification⁷: 15/14, H01P 1/18

H01Q 3/44,

(21) International Application Number:

PCT/SE2004/000164

(22) International Filing Date: 10 February 2004 (10.02.2004)

(25) Filing Language:

English

(26) Publication Language:

English

- (71) Applicant (for all designated States except US): TELE-FONAKTIEBOLAGET L M ERICSSON (PUBL) [SE/SE]; S-126 25 Stockholm (SE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): GEVORGIAN, Spartak [AM/SE]; Adler Salvius gata 15, S-411 11 Göteborg (SE). DERNERYD, Anders [SE/SE]; Kvarnpirsgatan 4, S-417 64 Götebord (SE).
- (74) Agents: BERGENTALL, Annika et al.; Cegumark AB, P.O. Box 53047, S-400 14 Göteborg (SE).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TUNABLE ARRANGEMENTS

(57) Abstract: The present invention relates to a tunable microwave/millimeter-wave arrangement comprising a tunable impedance surface. It comprises an Electromagnetic Bandgap Structure (EBG) (Photonic Bandgap Structure) comprising at least one tunable ferroelectric layer (3), at least one first, top, metal layer (1) and at least one second metal layer (2A, 2B). Said first (1) and second metal layers (2A) are disposed on opposite sides of the/a ferroelectric layer (3), and at least the first, top, metal layer (1) is patterned and the dielectric permittivity of the at least one ferroelectric layer (3) is dependent on a DC biasing voltage directly or indirectly applied to first (1) and/or second (2A, 2B) metal layers disposed on different sides of the/a ferroelectric layer.

Title:

5 TUNABLE ARRANGEMENTS

FIELD OF THE INVENTION

The present invention relates to a tunable microwave/millimeterwave arrangement comprising a tunable impedance surface.
Particularly the invention relates to such an arrangement comprising a beam scanning antenna or a frequency selective surface or a phase modulator. Even more particularly the invention relates to such an arrangement comprising a reflection and/or a transmission type antenna.

STATE OF THE ART

It has been realised that in some microwave systems of different 20 kinds, for example microwave telecommunication systems, tunable arrangements which comprise a tunable impedance surface required. Particularly it has been realised that arrangements having a small size and being adaptable or reconfigurable are needed. It has also been realised that for example beam scanning 25 antennas or phase modulators are needed which are small sized, adaptable or reconfigurable and cost effective. Phased array antennas are known which utilize phase shifters, attenuators and power splitters based on semiconductor technology. However, they are expensive, large sized devices which also require a high power 30 consumption. Such phased array antennas are for example described in "Phased array antenna handbook", by R.J. Mailloux, Artech House, Boston 1994. Also such antennas based on semiconductor

2

technology are known, but they are quite expensive, large and require a high power consumption.

Recently ferroelectrics has been considered in order to be able to reduce the size of for example tunable antennas and also to reduce the power consumption. Tunable antennas based on ferroelectrics are for example described in US 6 195 059 and (SE-C-513 223), in US 6 329 959 and in SE-C-517 845.

5

0

5

0

The antenna suggested in SE-C-513 223 has a simple design and it is expected to be quite cost effective. In this design it is possible to achieve the desired phase amplitude distribution across the surface of the antenna. However, it is a drawback of this antenna that it needs extremly large DC voltages in order to be able to allows for beam scanning. US-A-6 329 959 suggests an antenna utilizing the DC field dependent permittivity of ferroelectric materials. However, it does not adress any tunable surface impedance or beam scanning capabilities.

SE-C-517 845 describes a ferroelectric antenna which however does not allow for a beam scanning functionality.

O Still further, in "Beam steering microwave reflector based on electrically tunable impedance surfaces" by D. Sievenpiper, J. Schaffner, in Electronics Letters, Vol. 38, no. 21, pp. 1237-1238, 2002, an antenna is disclosed which has a simple design and which uses lumped semiconductor varactors to control the beam. However, the use of semiconductor varactors makes the design very expensive, particularly when large antenna arrays are concerned. Thus, none of these suggested arrangements functions satisfactorily and they are all generally complicated from a design point of view and require high DC voltages for tuning.

3

SUMMARY OF THE INVENTION

What is needed is therefore a tunable microwave arrangement comprising a tunable impedance surface which is small, costeffective and which does not require a high power consumption. Still further an arrangement is needed which is adaptable or reconfigurable. Particularly an arrangement is needed which can be used as a beam scanning antenna or as a phase modulator, for example in microwave telecommunication systems. Still further an arrangement is needed which has a simple design. A beam scanning antenna fulfilling one or more of the above mentioned objects is also needed. Still further a phase modulating arrangement meeting one or more of the above mentioned requirements is needed. Particularly an arrangement is needed through which it is possible to control microwave signals in free space or in a cavity waveguide particularly for changing the phase and/or the amplitude of the microwave signals, reflected distribution transmitted through it. An arrangement is also needed which is easy to fabricate.

20

25

5

10

15

Therefore an arrangement as initally referred to is provided which comprises an electromagnetic bandgap structure (EBG), also denoted a photonic bandgap structure with at least one tunable ferroelectric layer. At least a first or top metal layer and least one second metal layer are so arranged that the first and second metal layers are disposed on opposite sides of the ferroelectric tunable layer. At least the first, top, metal layer is patterned and the dielectric permittivity of the at least one ferroelectric layer depends on an applied DC field.

30 The use of photonic bandgap (PBG), i.e. EBG, materials for base station antennas is described in PBG Evaluation for Base Station Antennas by Jonathan Redvik and Anders Derneryd in 24th ESTEC Antenna Workshop on Innovative Periodic Antennas: Photonic

5

. 0

.5

20

25

30

4

Bandgap, Fractal and Frequency Selective Structures (WPP-185), pp. 5-10, 2001.

Recently there has been much investigation concerning the use of bandgap (PBG) structures, also photonic electromagnetic crystals, for microwave and millimeter-wave applications. Ferroelectromagnetic crystals are particularly attractive since they are easy to fabricate at a low cost and compatible with standard planar circuit technology. Phothonic bandgap structures are artificially produced structures which are periodic either in one, two or three dimensions. Since they have similarities with the periodic structure of natural crystals, they are also denoted electromagnetic crystals. These artificially produced materials are denoted photonic bandgap materials or photonic crystals. Bandgap here applies to electromagnetic waves of all waveleghts. Actually the existence of an electromagnetic bandgap where propagation of an electromagnetic wave prohibited, is in analogy to the electronic bandgap forming the basis of semiconductor technology and applications. photonic bandgap materials form class a new of periodic dielectrics being the photonic analogy of semiconductors. Electromagnetic waves behave in photonic crystals in a manner similar to that of electrons in semiconductors.

According to the invention at least the first patterned metal layer is so patterned as to form or comprise an array of radiators, which most particularly comprise resonators. The resonators may for example comprise patch resonators which may be circular, square shaped, rectangular or of any other appropriate shape. Particularly the radiators, e.g. the resonators, are arranged such as to form a two-dimensional (2D) array, e.g. a 2D array antenna. Particularly it comprises a reflective antenna. Particularly the radiators of the first, top, metal plane are galvanically connected, by means of via connections through the

5

ferroelectric layer, with the/a further, second metal layer. The (if any) intermediate second metal layer is patterned, or provided with holes, enabling passage of the via connections therethrough. The via connections are used for connecting the radiators of the first top layer with an additional (bottom) second metal layer which may be patterned or not, and a DC biasing (control) voltage is applied between the two second metal layers to change the impedance of the (top) radiator array and thus the resonant frequency of the resonators, e.g. the radiators through changing the permittivity of the ferroelectric layer. Advantageously the via connections are connected to the center points of two radiators where the radio frequent (RF) (microwave) current is the highest. Particularly the radiator or resonator spacing in the top layer is approximately 0.1 cm, approximately corresponding to $\lambda_0/30$, wherein λ_0 is the free space wavelength of the microwave signal. Through controlling the DC biasing voltage, the impedance of the array of radiators can be changed from inductive to capacitive, reaching infinity at the resonant frequency of the radiators or resonators. Particularly the top array of radiators comprises around 20x20 radiators and the dielectric permittivity $(\varepsilon(V))$ of the ferroelectric layer is approximately 225-200 or e.g. between 50 and 20000, the ferroelectric layer having a thickness about 50 µm. It should be clear that these values only are given for exemplifying reasons and of course any other appropriate number of radiators can be used, and as referred to above, they may be circular in shape or of any other appropriate form. Also the dielecric permittivity of the ferroelectric layer may be another but it has to be high. The dielectric permittivity may even be as high as up to several times tenthousand, or even more. Still further the thickness of the ferroelectric layer may in principle deviate considerably from the exemplifying value of 50μm.

. 0

.5

20

25

6

According to an alternative implementation of a reflection type radiator array, there are but a first metal layer and a second metal layer, of which the first (top) layer comprises radiators (e.g. patch resonators) and the second may be patterned, but preferably it is unpatterned. Then the DC biasing voltage is applied to these two metal layers, thus no via connection between layers are needed.

5

. 0

.5

20

2.5

30

In an alternativ implementation the arrangement comprises a transmission type arrangement, e.g. a transmission antenna. The radiators may be arranged in 2D arrays, comprising said first and second metal layers, between which the ferroelectric layer is disposed. Particularly the second metal layer also is patterned comprising radiators arranged with the same periodicity as the radiators of the first, top, metal layer, but displaced by an amount corresponding substantially to the spacing between the radiators in a layer or in a plane.

Dielectric or ferroelectric layers may be provided on those sides the first and second metal layers, i.e. the radiator (resonator) arrays, which are not in contact ferroelectric layer. Particularaly a DC voltage is applied to the arrays and the same DC voltage is provided to each individual for changing the dielectric permittivity of radiator ferroelectric layer and hence the resonant frequency of the radiators. Particularly the arrangement comprises a wavefront phase modulator for changing the phase of a transmitted microwave signal.

In an alternativ embodiment the radiators of the arrays are individually biased by a DC voltage. In a particular implementation it may comprise a beam scanning antenna. Then separate impedance DC voltage dividers may be connected to the radiators, one for example in the X-direction and one in the Y-direction (one to one of the radiator arrays, one to the other),

7

to allow for a non-uniform voltage distribution in the X-, and Y-direction respectively, allowing a tunable, non-uniform modulation of the microwave signal phase front.

The impedances particularly comprises resistors. In an alternative implementation the impedances comprise capacitors. Still further some of the impedances may comprise resistors whereas others comprise capacitors. Each radiator may, separately and individually be connected to the DC biasing voltage over a separate resistor or capacitor.

5

10 The thickness of the ferroelectric layer may be between 1 μm up to several mm:s, the DC biasing voltage may range from 0 up to several kV:s.

In one implementation, of a transmission arrangement, the first 15 and second metal layers may comprise each a number of radiators, wherein the radiators of the first and second layers different configuration and/or are differently arranged. Particularly different coupling means are provided for the radiators of said first and second layers respectively. A DC 20 biasing or a control voltage may be supplied to the radiators of said first and second metal layers in order to change the lumped capacitance and thus the capacitive (weak) coupling between the radiators, which for example may be patch resonators as referred to above.

25 Still further the tunable radiator array or arrays may be integrated with a waveguide horn, such that the horn will scan a microwave beam in space or modulate the phase of a microwave signal.

Particularly the arrangement comprises a 3D tunable radiator array, for example used as a filter, or a multiplexor/demultiplexor etc. Particularly the spacing between radiators or resonators in a layer corresponds to a factor 0.5-1.5

8

times the wavelength of an incidant microwave signal in the ferroelectric layer.

The invention suggests a use of an arrangement according to the above description in any implementation for controlling microwave/(sub)millimeterwave signals in free space or cavity waveguides, or for changing the phase and/or the amplitude distribution of the signals reflected and/or transmitted through it.

For reflective antennas both metal layers may be patterned but not necessarily, on the contrary, the bottom metal layer is preferably non-patterned. Particularly the layer furthest away from the incident microwave signal is not patterned. In a transmission antenna generally all metal layers are patterned. Both for transmission and reflection type arrangements multilayer structures can be used, with metal layers and ferroelectric layers arranged according to the inventive concept in an alternating manner.

It should be clear that the inventive concept covers many applications and that it can be varied in a number of ways. The invention suggests a tunable impedance surface based on a ferroelectric layer and an electromagnetic bandgap structure instead of based on semiconductors.

BRIEF DESCRIPTION OF THE DRAWINGS

25

5

LO

15

20

The invention will in the following be more thoroughly described, in a non-limiting manner, and with reference to accompanying drawings, in which:

30 Fig.1A shows a first embodiment of a reflective radiator array in cross-section,

WO 2005/076408

9

PCT/SE2004/000164

- Fig. 1B is a plane view illustrating the microwave current and voltage distributions of a radiator element of the embodiment of Fig. 1A,
- Fig. 2 is a plane view of the entire reflective radiator array according to the embodiment of Fig. 1A,
- Fig. 3 shows, in a simplified manner, a plane view of a reflective radiator array according to another embodiment,
- Fig. 4 shows, in a simplified manner, another embodiment of a reflective radiator array (in part), in cross-section,
- Fig. 5 shows a further embodiment of a reflective array comprising a multilayer structure,
- Fig. 6A is a cross-sectional view of a transmissive radiator array comprising an EBG wavefront phase modulator,
- Fig. 6B is a plane view of the arrangement according to Fig. 6A,
- Fig. 7A is a cross-sectional view of a transmissive radiator array comprising a beam scanning antenna,
- Fig. 7B is a plane view of the arrangement of Fig. 7A,
- Fig. 8 shows, in a plane view, another embodiment of a transmissive radiator array comprising differently shaped radiators in the different metal layers,
- Fig. 9 is a simplified cross-sectional view of still another transmissive radiator array comprising a multilayer structure,
- Fig. 10A shows a transmission type arrangement with differently configured radiator arrays in the first and second metal layers based on weakly (capacitively) coupled patch resonators,
- Fig. 10B is a simplified cross-sectional view of the arrangement of Fig. 10A, and
- Fig. 11 shows, in a simplified manner, an arrangement in crosssection comprising a beam scanner integrating a

10

waveguide horn and an EBG structure according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

2.0

25

30

Fig. 1A shows a first embodiment of the invention comprising an arrangement in the form of a reflective radiator array 10. It comprises a first metal layer 1 comprising a number of radiators a_{22} , a_{23} , of which only these two radiators are illustrated since Fig. 1A only shows a fragment of the radiator array and it is shown in its entirety in Fig. 2.

Between the first metal layer 1 comprising the reflective radiators a_{22} , a_{23} and a second metal layer 2A which is patterned to form a split-up structure with openings, comprising, here, elements b_{12} , b_{13} , b_{14} which are so disposed that tiny openings are provided, a ferroelectric layer 3 is disposed. The ferroelectric layer comprises a high dielectric permittivity which is DC field dependent ($\epsilon(V)$). The ferroelectric material may comprise a thin or a thick film layer, a ceramic etc. $\epsilon(V)$ may be between 225 and 200, although these values only are given for exemplifying reasons. As referred to above it may be lower as well as consideraibly higher up to 20000, 30000 or more. The dielectric permittivity may of course be of this magnitudes for every embodiment disclosed herein and covered by the inventive concept. A further second metal layer 2B is disposed below the second metal layer 2A, between which metal layers 2A, 2B a conventional dielectric layer 4 is disposed. The holes or openings in the "first", upper second metal layer 2A are so arranged that via connections between the first metal layer 1 with radiators and the "bottom" metal layer 2B can pass therethrough for galvanically connecting the centerpoints of the radiator patches a22, a23 (corresponding to maximum microwave or RF current) with the second metal layer 2B. The second metal layer 2A here forms a RF ground

11

plane whereas the second metal layer 2B form a DC bias plane, and a DC biasing voltage applied between the second metal layers 2A, 2B will change the dielectric permittivity of the ferroelectric layer 3, and hence also change the resonant frequency f(V) of the patch resonators a_{22} , a_{23} , which depends on $\epsilon(V)$ as follows from the following relationship:

$$f(V) = \frac{c_n}{2a\sqrt{\varepsilon_f(V)}} \quad ,$$

a being the length of the side of the square patch resonator.

According to the invention the ferroelectric material having a high dielectric permittivity which is strongly dependent on the applied DC field, makes it possible to control the impedance of the radiators and the phase distribution of incident waves reflected from the array. Since the dielectric permittivity is high, the size of the arrangement, particularly the antenna, can be made very small (the microwave wavelength in the ferroelectric material is inversely proportional to the square root of the permittivity, as referred to above), which enables fabrication of monolithically integrated radiator arrays, for example using group fabrication technology such as LTCC (Low Temperature Cofired Ceramic), thin epitaxial film technology or similar. These materials are extremely good dielectrics with virtually no leakage (control) currents.

According to the invention the radiators, particularly resonators, here form a 2D array antenna implemented in the form of an electromagnetic bandgap (photonic bandgap) structure as discussed earlier in the application. The tunable reflective array as illustrated in Fig. 1A is potentially useful for frequencies between 1 and 50 GHz.

12

The patch radiators may in principle have any shape, square shaped (as in this embodiment), rectangular or circular etc. The second metal planes, in the embodiment of Fig. 1A, 2 also denoted RF and DC metal planes, or plates, form an effective ground plane for the patch resonators.

5

LO

15

20

?5

30

Fig. 1B shows the current and voltage microwave distribution in radiator patch a_{22} as an example. At the central point of the patch it is galvanically connected with the DC biasing plane 2B. The center point corresponds to current maximum as can be seen from the figure.

Fig. 2 shows, in a simplified manner, the entire reflective array of which the fragment described in Fig. 1A forms a small portion. It here comprises 400 radiators disposed in 20 columns and 20 rows. It is supposed that the side a of each patch radiator comprises 0.8 mm. The radiator pitch, i.e. the distance between corresponding edges or center points of two radiators is here 0.1 cm, approximately corresponding to $1/30 \times \lambda_0$, λ_0 wavelength of the microwaves in free space, and the size of the array will be 2.0 cm x 2.0 cm, $\lambda_0 = 3$ cm. By changing the DC biasing voltage, the impedance of the array will change from inductive impedance to capacitive impedance, reaching infinity at resonant frequency. In this embodiment it is supposed that the thickness of the ferroelectric layer 3 comprises 50 µm. It should be clear that the shape of the patch radiators, the number of the patch radiators, the thicknesses of the layers, the grid layout etc. merely are given for exemplifying reasons.

An array as disclosed in Fig. 2 may be fabricated using a standard cost-effective ceramic technology such as LTCC based on solid solutions of ferroelectric materials such as Ba_x $Sr_{1-x}TiO_3$ or a material with similar properties.

13

It should be clear that the inventive concept is likewise applicable to other grid layouts than squareshaped or rectangular layouts. The grid may e.g. also be triangular or of any other appropriate shape.

5

Fig. 3 is a plane view of another reflective array 30 here comprising a number of circular radiator patches $a'_{1,1},...$, $a'_{1,6},...$, $a'_{4,1},...$, $a'_{4,6}$. They are disposed on a ferroelectric layer 3', e.g. as in Fig. 1A. In other aspects the functioning may be similar to that of Fig. 1A with two second metal layers between which a DC bias is applied etc. although this is not necessarily the case; a DC biasing may also be applied between the first metal layer comprising the circular radiator patches and the (only, e.g. non-patterned) second metal layer (not shown).

15

20

25

10

Fig. 4 shows another implementation of an arrangement 40 with a number (only three illustrated) reflective radiator patches 1'' arranged on a ferroelectric layer 3'', which in turn is disposed on a second metal layer 2''. As can be seen in this case there is only one second metal layer 2, which in this case is not patterned. In this case the DC biasing voltage has to be applied to the radiator patches themselves and to the second metal layer 2''. The arrangement disclosed in Fig. 3 may thus in cross-section look like the arrangement of Fig. 4, or like the fragment 10 of an arrangement 20 of Fig. 1A, 2.

Both of the second metal layers 231, 232 are patterned, however

Fig. 5 shows still another arrangement 50 with a reflective radiator array comprising a first metal layer 1^3 with a number of radiator patches and a second metal layer 2^{31} , between which a first ferroelectric layer 3_1^3 is disposed, and wherein below said second metal layer 2^{31} a second ferroelectric layer 3_2^3 is disposed, below which there is another second metal layer 2^{32} .

14

they are patterned in different manners. A DC biasing voltage is applied to each metal layer, including the first metal layer 1³ comprising the radiator patches. This embodiment is illustrated merely in order to show that also the bottom layer in a reflective array might be patterned, although presumably it is more advantageous if it comprises a solid layer, i.e. an unpatterned layer, most preferably similar to the embodiment as illustrated in Fig. 1A (although e.g. being a multilayer structure).

In the following some examples on implementation of the inventive concept for transmission type arrangements, will be disclosed.

Fig. 6A is a cross-sectional view of a first arrangement 60 of a transmission type array comprising a first array of patch antennas $c_{1,1}$, $c_{1,2}$,..., $c_{8,8}$ provided in a 2D array (in Fig. 6A only patches $c_{8,1}$,..., $c_{8,8}$ are shown) and forming a first metal layer l_3 . A second array of patch antennas $d_{8,1}$,..., $d_{8,8}$ form a second metal layer 2_3 . Between these two arrays l_3 , l_3 of patch antennas, a tunable ferroelectric film layer l_3 is sandwiched. The thickness of the ferroelectric film may typically be less than 50 μ m, although the inventive concept of course not is limited thereto. On those sides of the first and second metal layers l_3 , l_3 facing away from the intermediate ferroelectric layer l_3 , conventional dielectric layers l_3 , l_3 , are provided. The first and second metal layers are DC biased as schematically illustrated in Fig. 6A.

Fig. 6B is a plane view of the arrangement shown in Fig. 6A seen from above with dielectric layer 4A, removed. In this embodiment the radiator patches of the top layer are illustrated, here comprising radiator patches $c_{1,1},...$, $c_{8,8}$. In this embodiment the radiator patches of the first metal layer l_3 are somewhat larger than the radiator patches of the second metal layer l_3 , which are not shown in the figure. A DC voltage is applied to all the radiator patches of the second metal layer l_3 shown by a faint horizontal line. The radiator patches of the second metal layer l_3 shown by a faint

15

(not shown) are interconnected column- wise such that all radiator patches of said second layer are supplied with the same DC voltage. Also the radiator patches of the first metal layer 1_3 are connected to a DC bias voltage (all to the same as opposed to the patches in Figs. 7A, 7B) and these radiator patches are, as can be seen from the figure, interconnected row-wise. The arrangement 60 of Fig. 6A, 6B comprises a frequency tuneable EBG wave front phase modulator. The DC voltage supplied to the arrays, will change the dielectric permittivity of the intermediate ferroelectric layer 3_3 , and hence the resonant frequency of the radiators. As referred to above, the arrangement of Fig. 6A, 6B provides for a uniform modulation of a phase front and no scanning of the beam is enabled.

Fig. 7A is a cross-sectional view of another transmission type arrangement 70 comprising a first metal layer 1_4 consisting of a number of radiator patches, a second metal layer 2_4 ' consisting of a number of radiator patches. In this embodiment the radiator patches of the bottom layer, i.e. of the second metal layer 24', are somewhat larger than the radiator patches of the first metal layer 1_4 . Arranged between the first and second metal layers $1_4'$, $2_4'$ is a ferroelectric layer $3_4'$ as in the preceding embodiments. Also like in the preceding embodiment the first and second metal layers respectively are surrounded by conventional dielectric layers $4A'_1$, $4A'_2$ on those sides thereof facing away from the ferroelectric layer 3_4 . The arrays of the first and second metal layers are DC biased illustrated in the Fig. by voltage $V(R_i)$ on, here, resistance R_i . In general each of the radiator in the arrays may be individually voltage biased for the purposes of tailoring the wave front. A simple biasing circuit enables scanning of the transmitted beam in X and Y directions as shown in Fig. 7B, which is a plane view of the embodiment of Fig.

16

7A, B indicating where the cross-section is drawn. Here two resistive DC voltage dividers are used enabling non-uniform voltage distributions in the X and Y direction respectively, and hence non-uniform changes of the dielectric permittivity and resonant frequencies of the radiators. By changing the voltages on the X and Y dividers, it gets possible to achieve a tunable, non-uniform modulation of the phase front and scanning of the transmitted beam in X and Y directions.

In this embodiment, between the connections to the external radiator patches in a row or in a column, resistors are provided, R_{1x} , R_{2x} ,..., R_{7x} ; R_{1y} ,..., R_{7y} , indicating that the resistance may be different. The impedance means (resistors above) may alternatively comprise capacitors.

In this embodiment the first voltage divider is connected to the larger radiator patches of the second (lower) metal layer 2_4 ' whereas the second voltage divider is connected to the somewhat smaller radiator patches of the first upper, metal layer 1_4 ', which all are interconnected horizontally (the lower radiator patches are interconnected vertically as can be seen from the figure).

However, the radiators of the first and second metal layers 1_4 , 2_4 , i.e. on both (upper and lower) surfaces of the intermediate ferroelectric film 3_4 may have different configurations and different coupling means.

An example of such an arrangement 80 is shown in Fig. 8 which shows one of many possible configurations. In this embodiment the radiator patches of the first metal layer 1_5 are circular, whereas the radiator patches of the second metal layer 2_5 are rectangular. The ferroelectric film layer indicated 3_5 is disposed between the circular and rectangular radiator arrays. In this embodiment the circular radiator patches are connected to a voltage divider (no impedance is illustrated in this figure) whereas the rectangular radiator patches are connected to another voltage divider (no

17

impedance is illustrated). This implementation could be scanning or not, depending on whether impedances are provided (individually or groupwise to the radiator patches) or not, c.f. Figs. 6B and 7B respectively.

5

LO

L 5

20

25

30

Fig. 9 is a very schematical cross-sectional view of a multilayer structure 90 comprising a number of ferroelectric layers 3A,..., 3G and a number of metal layers, 1A, 2A, 1B, 2B, 1C, 2C, 1D, 2D. A biasing DC voltage is applied to the metal layers surrounding ferroelectric layers. In other aspects the functioning is similar to that described above.

Fig. 10A schematically illustrates a tunable EBG based structure 100 based on an array of weakly (capacitively) coupled patch resonators comprising a first top layer with smaller sized square shaped resonators 17, and a second metal layer 27 comprising larger sized rectangular radiator patches. A DC biasing voltage is applied, as can be seen from the figure, over one divider connected to the top layer and over another divider connected to the bottom layer. Fig. 10B is a simplified cross-sectional view of the arrangement of Fig. 10A.

Fig. 11 shows a tunable EBG array integrated with a waveguide 7 and a horn 8. Depending on the radiator arrangement 105, the beam radiated by the horn will be modulated or scanned in the space by changing the DC bias voltage applied to the EBG structure.

It should be clear that 3D tunable arrays in the form of electromagnetic bandgap structures, also denoted photonic bandgap structures, might be designed, using the same principles to perform complex functions such as filtering, duplexing etc. and the inventive concept can be varied in a number of ways without departing from the scope of the appended claims. It should be

clear that in a number of aspects the inventive concept can be varied in a number of ways, these may e.g. be several layers of alternating ferroelectric layers/metal layers, voltage biasing can be provided for in different manners, the patch radiators can take a number of different shapes and be provided in different numbers, different materials can be used for the ferroelectric layers and metal layers (and possible surrounding dielectric layers) etc. Also in a number of other aspects the invention is not limited to the specifically illustrated embodiments.

19

CLAIMS

A tunable microwave/millimeter-wave arrangement comprising a
 tunable impedance surface,

characterized in

that it comprises an Electromagnetic Bandgap Structure (EBG) (Photonic Bandgap Structure) comprising at least one tunable ferroelectric layer, at least one first, top, metal layer and at least one second metal layer, said first and second metal layers being disposed on opposite sides of the/a ferroelectric layer, and in that at least the first, top, metal layer is patterned and in that the dielectric permittivity of the at least one ferroelectric layer is dependent on a DC biasing voltage applied directly or indirectly to first and/or second metal layers disposed on different sides of the/a ferroelectric layer.

- 2. An arrangement according to claim 1, characterized in
- that at least the first patterned metal layer is so patterned as to form/comprise an array of radiators.
 - 3. An arrangement according to claim 2, characterized in
- 25 that the radiators comprise resonators.

- 4. An arrangement according to claim 3, c h a r a c t e r i z e d i n that the resonators comprise patch resonators.
- 5. An arrangement according to claim 4, c h a r a c t e r i z e d i n

20

that the patch resonators are circular, square shaped, rectangular or of any other appropriate shape.

6. An arrangement according to any one of claims 2-5,

5 characterized in that the radiators, e.g. the resonators, are arranged in a two-dimensional (2D) array, forming a 2D array antenna, e.g. with a square, rectangular, triangular or any other appropriate grid layout of the patches.

- 7. An arrangement according to claim 6, c h a r a c t e r i z e d i n that it comprises a reflective antenna.
- 15 8. An arrangement according to any one of claims 6 or 7, c h a r a c t e r i z e d i n that the radiators of the first, top, metal plane are galvanically connected, by means of via connections through the ferroelectric layer with a further second metal plane and in that a DC biasing voltage is applied to said first metal plane indirectly over said further second metal plane.
 - 9. An arrangement according to claim 8, characterized in
- that the second metal layer is patterned, and comprises openings or holes allowing the via connections pass to said further, or additional, bottom, second metal layer which may be patterned or not, and in that the DC biasing (control) voltage is applied between the two second metal layers to vary the impedance of the (top) radiator array, and thus the resonant frequency of the resonator.

21

10. An arrangement according to claim 9,

characterized in

that the via connections are connected to the center points of the radiators where the RF microwave current is highest.

5

11. An arrangement according to any one of claims 7-10,

characterized in

that the radiator spacing in the top layer is approximately 0.1 cm $\approx \lambda_0/30, \; \lambda_0 \; \text{being the free space wavelength of incident microwave}$ 10 signals.

- 12. An arrangement according to any one of claims 7-11, characterized in
- that by varying the DC control (bias voltage) the impedance of the array of radiators can be changed from inductive to capacitive, reaching infinity at the resonant frequency of the radiators (resonators).
 - 13. An arrangement according to any one of claims 7-12,
- characterized in that the (top) array of radiators comprises substantially 20 x 20 radiators and in that the dielectric permittivity $\epsilon(V)$ of the ferroelectric layer varies between approximately 225-200 or lies between 50-n x 10000, n beeing an integer, the ferroelectric layer
- having a thickness of about 50 μ m.
 - 14. An arrangement according to any one of claims 1-6, characterized in

that radiators are arranged in at least two 2D arrays, comprising said first and second metal layers between which the ferroelectric layer is disposed and in that it comprises a transmission type array, e.g. a transmission antenna.

22

- 15. An arrangement according to claim 14, c h a r a c t e r i z e d i n that dielectric or ferroelectric layers are provided on the sides of the first and second metal layers, i.e. the radiator (resonator) arrays, which are not in contact with said ferroelectric layer.
- 16. An arrangement according to claim 14 or 15, characterized in

5

- .0 that a DC voltage is applied to the metal layers, and in that the same DC voltage is provided to each individual radiator for changing the dielectric permittivity of the ferroelectric film and hence the resonant frequency of the radiators.
- 17. An arrangement according to claim 16, c h a r a c t e r i z e d i n that it comprises a wavefront phase modulator for changing the phase of a transmitted microwave signal.
- 18. An arrangement according to claim 14 or 15, c h a r a c t e r i z e d i n that the radiators of the arrays are individually DC voltage biased, i.e. that the DC voltage applied to each radiator is controllable, or settable, by means of impedance means.
 - 19. An arrangement according to claim 18, c h a r a c t e r i z e d i n that i comprises a beam scanning antenna.
- 20. An arrangement according to claim 18 or 19, c h a r a c t e r i z e d i n that separate DC voltage dividers are connected to the radiators, one in x-direction for the radiators of one metal plane and one in

23

the y-direction in order for the radiators of another metal plane to allow for non-uniform voltage distribution in the x-, and y-direction respectively, thus allowing a tunable, non-uniform modulation of the microwave signal phase front.

- 21. An arrangement according to claim 20, c h a r a c t e r i z e d i n that the impedances comprise resistors.
- .0 22. An arrangement according to claim 20, c h a r a c t e r i z e d i n that the impedance comprise capacitors.
 - 23. An arrangement according to claim 21 or 22,
- .5 characterized in that each radiator is separately and individually connected to a DC biasing voltage over a separate resistor/capacitor.
 - 24. An arrangement according to any one of claims 14-23,
- % c h a r a c t e r i z e d i n that the thickness of the ferroelectric layer(s) is between about $1\mu m-$ several mm and in that the DC biasing voltage ranges from 0 several kV.
- 25. An arrangement according to any one of claims 1-5, 14-24, c h a r a c t e r i z e d i n that the first and second metal layers comprise a number of radiators respectively, wherein the radiators of the first and the second layer have different configuration and/or are differently arranged.
 - 26. An arrangement according to claim 25, characterized in

24

that different coupling means are provided for the radiators of said first and second layer respectively.

- 27. An arrangement according to claim 25 or 26,
- 5 characterized in that a DC biasing (control voltage) is applied to the radiators of said first and second metal layers to change the lumped capacitance and hence the capacitive (weak) coupling between the radiators, e.g. patch resonators.

LO

- 28. An arrangement according to any one of the claims 14-27, c h a r a c t e r i z e d i n that the tunable radiator arrray(s) is/are integrated with a waveguide horn such that by changing the DC bias voltage the horn will scan a microwave beam or modulate the phase in space of a microwave signal.
 - 29. An arrangement according to any one of the preceding claims, c h a r a c t e r i z e d i n
- that the spacing between adjacent radiators (e.g. resonators) corresponds to a factor about 0-1.5 times the wavelength of an incident/microwave signal in the ferroelectric layer.
 - 30. An arrangement according to any one of claims 1-5, charcterized in
- 25 charcterized in that it comprises a 3D tunable radiator array, e.g. used as a filter, duplexor etc.
- 31. Use of an arrangement according to any one of claims 1-30, for controlling microwave/(sub)millimeter wave signals in free space or cavity waveguides for changing the phase and/or amplitude distribution of the signals reflected and/or transmitted through it.

Fig. 1A

Fig. 1B

Fig.3

ď_{8,1}

`4A′2

ď8,8

Fig.9

Fig. 10B

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 2004/000164

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: H010 3/44, H010 15/14, H01P 1/18
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: H01P, H01Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION vol.51, No. 10, October 2003, page 2691-2703, Fan Yang et al, "Reflection Phase characterizations of the EBG Ground Plane for Low Profile Wire Antenna Application"; page 2698, chapter III	1-31
A	Microwave and Optical Technology Letters Vol. 39, No. 2, October 20 2003, page 81 - 86 D. Kuylenstierna et al "TUNABLE ELECTROMAGNETIC BANDGAP PERFORMANCE OF COPLANAR WAVEGUIDES PERIODICALLY LOADED BY FERROELECTRIC VARACTORS" page 82, chapter 1; page 83, chapter 2.1	1,31

X	Further documents are listed in the continuation of Box	C.	See patent family annex.	
*	Special categories of cited documents:	"T"	later document published after the international filing date or priority	
"A"	document defining the general state of the art which is not considered to be of particular relevance		date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
"E"	earlier application or patent but published on or after the international filing date	"X"	document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive	
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		step when the document is taken alone	
	special reason (as specified)	"Y"	document of particular relevance: the claimed invention cannot be	
"O"	document referring to an oral disclosure, use, exhibition or other means		considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art	
"P"	document published prior to the international filing date but later than the priority date claimed	"& "	document member of the same patent family	
Date	e of the actual completion of the international search	Date of mailing of the international search report		
23 Sept 2004		2 8 -09- 2004		
Name and mailing address of the ISA/		Authorized officer		
Swedish Patent Office				
Box 5055, S-102 42 STOCKHOLM		Bo Gustavsson/MP		
Facsimile No. +46 8 666 02 86		Telephone No. +46 8 782 25 00		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 2004/000164

C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	Electronics Letters, Vol. 38, No. 21, 10 October 2002, page 1237-1238, D. Sievenpiper et al, "Beam Steering microwave reflector based on electrically tunable impedance surface" cited in the application	1~31
A	IEEE International Conference on Microwave and Millimeter Wave Technology Proceedings, page 528-531, Fan Yang et al, "Applications of Electromagnetic Band-Gap (EBG) Structures in Microwave Antenna Designs"	1-31
A	US 6329959 B1 (VIJAY K. VARADAN ET AL), 11 December 2001 (11.12.2001), cited in the application	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

03/09/2004

International application No. PCT/SE 2004/000164

5618600 A 09/01/2001 6333719 B 25/12/2001 0079648 A 28/12/2000 US 6329959 B1 11/12/2001 ΑU US WO