

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Gate/Wire Delays, Timing

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Gate/Wire Delays, Timing

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - **★** Gate/Wire Delays, Timing
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- Propagation Delay
- Timing Diagram
- Critical Path

GATE/WIRE DELAYS, TIMING Delay

Delay

Delay

Delay

Delay

Propagation Delay of a Gate

Delay

Propagation Delay of a Gate

Delay

Propagation Delay of a Gate

Delay

Propagation Delay of a Gate

Propagation delay (t_{pd}) of gate is the time required for the output to change after an input has changed

Critical Path Delay or Propagation Delay of a Logic Circuit

In a combinational logic circuit, there are typically multiple **paths** from input to output. A path along which the delay is maximum is called the **critical path** and the delay is called the **critical path** delay or the propagation delay for the logic circuit

GATE/WIRE DELAYS, TIMING Delay Example

GATE/WIRE DELAYS, TIMING Delay Example

 $\bullet \ \ {\rm Assume} \ t_{pd} = 100 {\rm ps} \ {\rm for} \ {\rm each} \\ {\rm gate}$

- Assume $t_{pd} = 100$ ps for each gate
- Critical path: j, t, v, o
 - ► Through NOT, AND and OR gates

- Assume $t_{pd} = 100 \text{ps}$ for each gate
- Critical path: j, t, v, o
 - ► Through NOT, AND and OR gates
- Critical path delay (three gates): 300ps

GATE/WIRE DELAYS, TIMING Wire Delay

 Wires connecting gates also have a finite delay, but wire delay outside the scope of this course

Think About It

- Critical path delay of example 2:1 mux circuit: 300ps
- How many input changes can the logic circuit perform in one second?