§2. Отыскание наибольших и наименьших значений функции

Пусть функция $f(x_1, x_2, ..., x_m)$ задана и непрерывна в некоторой замкнутой ограниченной области D. Тогда по второй теореме Вейерштрасса (§5, гл. 1) заведомо имеются и наибольшее и наименьшее значения, которые эта функция принимает в области D. Для отыскания этих значений функции сначала ищем критические точки, лежащие внутри области D, вычисляем значения функции f в этих точках и сравниваем их со значениями функции на границе области: наибольшее из всех этих значений и будет наибольшим значением функции в области D, а наименьшее из всех этих значений будет наименьшим значением функций в D.

Пример 2.1. Найти наибольшее и наименьшее значение функции $w = x^2 + y^2 + 2x - 2y$ в области D, определяемой неравенством $x^2 + y^2 \le 4$.

Найдем критические точки: $w_x' = 2x + 2 \implies x = -1$; $w_y' = 2y - 2 \implies y = 1$. Следовательно, (-1,1) — критическая точка. Уравнение границы области $x^2 + y^2 = 4$ может быть записано так: $x = 2\cos t$, $y = 2\sin t$, $t \in [0,2\pi]$. Тогда на границе $w = 4 + 2(\cos t - \sin t)$, $t \in [0,2\pi]$. Найдем критические точки функции w = w(t) на границе, т. е. при $t \in [0,2\pi]$

$$w'_t = -2(\cos t + \sin t) = -2\sqrt{2}\sin\left(t + \frac{\pi}{4}\right) = 0 \implies t = \frac{3\pi}{4}, \quad t = \frac{7\pi}{4},$$

откуда $w\big|_{t=\frac{3\pi}{4}}=4-\sqrt{2}$, $w\big|_{t=\frac{7\pi}{4}}=4+\sqrt{2}$. Кроме того, $w\big|_{x=-1}=-2$. Следовательно, -2 – наименьшее значение функции в области D, а $4+\sqrt{2}$ – наибольшее значение.