EXERCISE FOR CSE202 - WEEK 9

1. Union-Find

The amortized complexity estimate for a sequence of m union or find operations with rank and path compression can be further improved. Recall that the simple bound $T(m,n,r) \leq nr$ was used in an intermediate step to compute a better bound $T(m,n,r) \leq m+2n\log^* r$. The basic observation is that we can improve the estimate by using this better bound instead of the simple one.

Question 1. Using this idea show that the amortized complexity of that algorithm is actually $O(m \log^* \log^* n)$ array accesses $(m \ge n)$. Indicate for which value of n this function $\log^* \log^* n$ becomes larger than 3.

Solution. The bound we have on T(F,C) is $m+2n\log^* r$. Using this bound for the high forest gives

$$T(F_+, C_+) \le m_+ + 2\frac{n}{2^s} \log^* r.$$

Thus, from the inequality at the bottom of slide 47,

$$T(F,C) \le T(F_-,C_-) + 2m_+ + n + 2\frac{n}{2^s}\log^* r$$

and since $m_+ = m - m_-$,

$$T(F,C) - 2m \le T(F_-, C_-) - 2m_- + n + 2\frac{n}{2^s} \log^* r.$$

Choosing $s = \lceil \log_2 \log^* r \rceil$, the last summand becomes smaller than 2n, whence

$$T(F,C) - 2m < T(F_-,C_-) - 2m_- + 3n.$$

where now F_{-} is a forest all whose nodes have rank at most $\log_2 \log^* r$. Iterating this construction on this forest and so on $\log^* \log^* r$ times gives

$$T(F, C) \le 2m + 3n \log^* \log^* r = O(m \log^* \log^* n).$$

The largest value of k such that $\log^* \log^* k = 3$ satisfies $\log^* k = 16$, which means that k is obtained by iterating 16 times the map $x \mapsto 2^x$ starting from x = 1. This is a number that is unimaginably large (and so is its number of digits). This, plus 1, is the value where this function becomes larger than 3.

1