Project: Predictive Modeling

Name- Manisha Rout PGP-DSBA Online Mar'22

Date: 22.05.2022

Table of Content

	Q/A	Page no
1.1	Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, Data types, shape, EDA, duplicate values). Perform Univariate and Bivariate Analysis	4-42
1.2	Impute null values if present, also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Check for the possibility of combining the sub levels of a ordinal variables and take actions accordingly. Explain why you are combining these sub levels with appropriate reasoning.	42-43
1.3	Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Linear regression using scikit learn. Perform checks for significant variables using appropriate method from stats model. Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare. Compare these models and select the best one with appropriate reasoning.	44-56
1.4	Inference: Basis on these predictions, what are the business insights and recommendations.	56-57
2.1	Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis	58-87
2.2	Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis).	87-89
2.3	Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized	89-103
2.4	Inference: Basis on these predictions, what are the insights and recommendations.	103-104

List of Figures

- 1. Pair Plot
- 2. Hist Plot
- Hist Plot
 Probability Plot
 Box Plot
 Heat Map
 Count Plot
 Confusion Matrix
 AUC curve

List of Tables

- 1. Confusion Matrix
- 2. Comparison Table of Models

Problem 1.1

Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, Data types, shape, EDA, duplicate values). Perform Univariate and Bivariate Analysis.

- The given dataset has 26967 rows and 10 columns. There are 7 attributes are of numeric data type (carat', 'depth', 'table', 'x', 'y', 'z', 'price') and 3 attributes are of object data type.
- The dataset has 697 missing values in the depth attribute. There are 34 duplicate instances present in the dataset. The index number '6215' is having 0 values for x (Length), y(width) and z(height) attributes which seems odd as it should have at least certain non-zero positive value.
- Outliers are present in all the numeric features which can be seen from the boxplot.
- Few anomalies present in the dataset, for instance The index number '6215' is having 0 values for x (Length), y(width) and z(height) attributes which seems odd as it should have at least certain non-zero positive value.
- The dataset requires few feature engineering before proceeding for model building.
- For feature engineering duplicate instances have been deleted. After deleting the instances, the dataset has 26933 rows and 10 columns.
- Outlier treatment has not been done on the original dataset since:
 - the outliers carry important information for the prediction, for instance in real life scenario a high carat cubic zirconia will have high price. Hence, we have not removed the outliers in the original data set.

However, to check the model performance, we have removed outliers in the cloned version of original dataset.

Univariate analysis for Numerical Attributes

1. Carat: Carat weight of the cubic zirconia

- Carat weight of the cubic zirconia ranges from 0.2 to 4.5
- Average carat weight of the cubic zirconia is 0.79
- The mean is greater than median, the distribution is not normal which is evident from the boxplot and probability plot.
- Skewness of the carat attribution is 1.1 indicating a right tailed distribution, positively skewed
- Outliers are present for this attribution which is evident from the box plot

Description ofcarat

.

count	26933.000000
mean	0.798010
std	0.477237
min	0.200000
25%	0.400000
50%	0.700000
75%	1.050000
max	4.500000

Name: carat, dtype: float64

carat:

- 2. Depth: The Height of cubic zirconia, measured from the Culet to the table, divided by its average Girdle Diameter.
 - Depth of cubic zirconia ranges from 51 to 74
 - Average depth of cubic zirconia is 62
 - The mean is almost equal to median, the distribution is almost normal which is evident from the boxplot and probability plot
 - Skewness of the depth attribution is -0.02 indicating a moderately left tailed distribution, negatively skewed.
 - Outliers are present for this attribution which is evident from the box plot

Description ofdepth

• • • • • • •	
count	26236.000000
mean	61.745285
std	1.412243
min	50.800000
25%	61.000000
50%	61.800000
75%	62.500000
max	73.600000

Name: depth, dtype: float64

3. Table: The Width of the cubic zirconia's Table expressed as a Percentage of its Average Diameter.

- Table ranges from 49 to 79
- Average of Table in cubic zirconia is 57
- The mean is almost equal to median, the distribution is almost normal which is evident from the boxplot and probability plot
- Skewness of the depth attribution is 0.76 indicating a moderately right tailed distribution, positively skewed.
- Outliers are present for this attribution which is evident from the box plot

Description oftable

26933.000000 count 57.455950 mean std 2.232156 min 49.000000 25% 56.000000 57.000000 50% 75% 59.000000 79.000000 max

Name: table, dtype: float64

table:

4. X: Length of cubic zirconia in mm.

- Length of cubic zirconia ranges from 0.00mm to 10mm
- The minimum length of cubic Zirconia seems odd as it should have at least certain non-zero positive value.
- Average of length of cubic zirconia is 6
- The mean is almost equal to median, the distribution is almost normal which is evident from the boxplot and probability plot
- Skewness of the x attribution is 0.4 indicates a moderately right tailed distribution, positively skewed.
- Outliers are present for this attribution which is evident from the box plot

Description ofx

• • • • •	
count	26933.000000
mean	5.729346
std	1.127367
min	0.000000
25%	4.710000
50%	5.690000
75%	6.550000
max	10.230000
Name:	x. dtvpe: float6

x:

5. Y: Width of the cubic zirconia in mm

- Width of the cubic zirconia ranges from 0 to 59
- The minimum width of cubic Zirconia seems odd as it should have at least certain non-zero positive value.
- Average of width of cubic zirconia is 6
- The mean is almost equal to median, the distribution is almost normal which is evident from the boxplot and probability plot
- Skewness of the depth attribution is 3.8 indicating a right tailed distribution, positively skewed.
- Outliers are present for this attribution which is evident from the box plot

Description ofy 26933.000000 count mean 5.733102 std 1.165037 min 0.000000 25% 4.710000 50% 5.700000 75% 6.540000 58.900000 max Name: y, dtype: float64

6. Z: Height of the cubic zirconia in mm

- Height of the cubic zirconia ranges from 0 to 32
- The minimum height of cubic Zirconia seems odd as it should have at least certain non-zero positive value.
- Average of width of cubic zirconia is 4
- The mean is almost equal to median, the distribution is almost normal which is evident from the boxplot and probability plot
- Skewness of the depth attribution is 2.8 indicating a right tailed distribution, positively skewed.
- Outliers are present for this attribution which is evident from the box plot

Description ofz count 26933.000000 3.537769 mean std 0.719964 min 0.000000 25% 2.900000 50% 3.520000 75% 4.040000 31.800000 max

Name: z, dtype: float64

Z:

7. Price: The Price of the cubic zirconia.

- Price ranges from 326 to 18818
- Average of Table in cubic zirconia is 3937
- The mean is significantly higher than the median, the distribution is skewed which is evident from the boxplot and probability plot
- Skewness of the price attribution is 1.6 indicating a moderately right tailed distribution, positively skewed.
- Outliers are present for this attribution which is evident from the box plot

count	26933.000000
mean	3937.526120
std	4022.551862
min	326.000000
25%	945.000000
50%	2375.000000
75%	5356.000000
max	18818.000000
Manage .	Annual Clause

Name: price, dtype: float64

Univariate analysis for Categorical Attributes

1. Cut: Describe the cut quality of the cubic zirconia

- There are 5 types of cut available in cubic zirconia
- Ideal cut has maximum instances and fair cut has minimum

Description ofcutcount 26933

unique 5 top Ideal freq 10805

Name: cut, dtype: object

2. Colour: Describe the colour of the cubic zirconia

- There are 7 types of color codes available in cubic zirconia
- Code G color has maximum instances and code j has minimum

Description ofcolor

count 26933 unique 7 top G freq 5653

Name: color, dtype: object Description ofclarity

3. Clarity: Clarity refers to the absence of the Inclusions and Blemishes.

- There are 8 different types of clarity available in cubic zirconia
- Code SI1 clarity has maximum instances and code I1 has minimum

D	e	S	C	r	i	p	t	i	0	n		0	f	C	1	a	r	i	t	у	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				

count	26933
unique	8
top	SI1
freq	6565

Multivariate-Bivariate analysis

Heat map shows the correlation between different numeric attributes by assigning numbers as well as colours and Pair plot gives a graphical representation of correlation between different numeric attributes.

Figure 1: Pairplot of numeric attributes

Figure 2: Heat map of numeric attributes

Bivariate analysis for numeric attributes

- The observations are as follows:
 - There is a very strong positive correlation (0.92) between the carat and price exists; which infers that as the carat weight of cubic zirconia increases, the price of cubic zirconia also increases. In short, carat is a potential attribute among all other attributes to predict the price of cubic zirconia.

There is a very strong positive correlation (0.98) between the carat and Length of the cubic zirconia in mm exists; which infers that as the carat weight of cubic zirconia increases, length of cubic zirconia in mm also increases. In short, a strong correlation may cause some impact on model performance

There is a very strong positive correlation (0.94) between the carat and width of the cubic zirconia in mm exists; which infers that as the carat weight of cubic zirconia increases, width of cubic zirconia in mm also increases. In short, a strong correlation may cause some impact on model performance

There is a very strong positive correlation (0.94) between the carat and height of the cubic zirconia in mm exists; which infers that as the carat weight of cubic zirconia increases, height of cubic zirconia in mm also increases. In short, a strong correlation may cause some impact on model performance

There is a very strong positive correlation (0.96) between the length and height of the cubic zirconia in mm exists; which infers that as the length of cubic zirconia increases, height of cubic zirconia in mm also increases. In short, a strong correlation may cause some impact on model performance

There is a very strong positive correlation (0.96) between the length and width of the cubic zirconia in mm exists; which infers that as the length of cubic zirconia increases, width of cubic zirconia in mm also increases. In short, a strong correlation may cause some impact on model performance

There is a very strong positive correlation (0.93) between the width and height of the cubic zirconia in mm exists; which infers that as the width of cubic zirconia increases, height of cubic zirconia in mm also increases. In short, a strong correlation may cause some impact on model performance

There is a very strong positive correlation (0.89) between the length of cubic zirconia and price; which infers that as the length of cubic zirconia increases, the price of cubic zirconia also increases. In short, length of cubic zirconia is a potential attribute among all other attributes to predict the price of cubic zirconia

There is a very strong positive correlation (0.86) between the width and price; which infers that as the width of cubic zirconia increases, the price of cubic zirconia also increases. As we have already seen the presence of outliers present in the data, we have checked two scatter plot one with outliers and another without outliers. Inference is, width is a potential attribute among all other attributes to predict the price of cubic zirconia.

Figure 3: Scatterplot Without the outliers treatment

Figure 4: Scatterplot with outliers' treatment

There is a very strong positive correlation (0.85) between the height and price; which infers that as the height of cubic zirconia increases, the price of cubic zirconia also increases. As we have already seen the presence of outliers in the data, we have checked two scatter plot one with outliers and another without outlier. Inference is, height of cubic zirconia is a potential attribute among all other attributes to predict the price of cubic zirconia

Figure 5: Scatterplot Without the outliers treatment

Figure 6: Scatter plot with outliers treatment

We have done outlier treatment for 'z' and 'y' attributes:

- Because there is strong correlation between the above attribute with price individually, which we have verified from correlation map
- However, the scatterplot between 'z'- 'price' and 'y'-'price' without the outliers treatment are not clearly observed
- Hence, the outlier treatment

• Bivariate analysis of all the categorical attributes

Color, Clarity, Cut

 Ideal cut with color code G has the maximum instances in cubic zirconia whereas fair cut with color J has minimum instances in cubic zirconia

cut	Fair	Good	Ideal	Premium	Very Good	All
color						
D	74	311	1409	806	741	3341
E	100	490	1966	1174	1186	4916
F	148	453	1891	1164	1067	4723
G	147	418	2463	1471	1154	5653
н	149	351	1550	1159	886	4095
- 1	94	252	1073	707	639	2765
J	68	160	453	405	354	1440
All	780	2435	10805	6886	6027	26933

 Clarity SI1 with color code E has the maximum instances whereas, clarity I1 with color code J has minimum instances in cubic zirconia

Ideal cut with color code VS2 has maximum instances whereas, fair cut with color code
 IF has minimum instances in cubic zirconia

Bivariate analysis of all the num-cat attributes

Carat with Other categorical attributes

Color code J has maximum and color code E has minimum mean carat weight in cubic zirconia

```
Mean of carat for color
color
D
     0.658515
E
     0.656019
F
     0.731139
     0.770520
G
     0.910464
Н
Ι
     1.033515
J
     1.161653
```

Name: carat, dtype: float64

Plot of carat vs color

Clarity code I1 has maximum and clarity code IF has minimum mean carat weight in cubic zirconia

Mean of carat for clarity clarity

11

1.278132 0.495443

ΙF

SI1 0.849601

SI2 1.082358 VS1

0.726643 VS2

0.767939

WS1 0.499929

WS2 0.593047 Name: carat, dtype: float64

Plot of carat vs clarity

Fair cut has maximum and Ideal cut has minimum mean carat weight in cubic zirconia

Mean of carat for cut
cut
Fair 1.062000
Good 0.848953
Ideal 0.701430
Premium 0.888360
Very Good 0.813182
Name: carat, dtype: float64

Plot of carat vs cut

Depth with Other categorical attributes

Color code J has maximum and color code E has minimum mean depth in cubic zirconia

Mean of depth for color color D 61.703553 E 61.657575 F 61.676400 G 61.744611 Н 61.827937 Ι 61.869101 J 61.901001

Name: depth, dtype: float64

Plot of depth vs color

 Clarity code I1 has maximum and clarity code IF has minimum mean depth in cubic zirconia

color Mean of depth for clarity clarity Ι1 62.630791 ΙF 61.499656 SI1 61.854342 SI2 61.775293 VS1 61.661029 VS2 61.719902 VVS1 61.624344 61.653188 WS2

Plot of depth vs clarity

Name: depth, dtype: float64

....

Fair cut has maximum and premium cut has minimum mean depth in cubic zirconia

Mean of depth for cut cut Fair 63.944312 Good 62.373948 Ideal 61.705363 Premium 61.267598 Very Good 61.823932 Name: depth, dtype: float64

Plot of depth vs cut

Table with Other categorical attributes

Color code J has maximum and color code E has minimum mean table in cubic zirconia

Mean of table for color color D 57.374828 Ε 57.516843 F 57.439318 G 57.304617 57.484420 Н Ι 57.565533 J 57.793542

Plot of table vs color

 Clarity code I1 has maximum and clarity code IF has minimum mean table in cubic zirconia

Mean of table for clarity clarity 11 58.376923 ΙF 56.449270 SI1 57.637106 SI2 57.912007 VS1 57.322021 VS2 57.429805 WS1 56.910984 VVS2 57.060632

Name: table, dtype: float64

Plot of table vs clarity

Fair cut has maximum and Ideal cut has minimum mean table in cubic zirconia

Mean of table for cut
cut
Fair 59.300513
Good 58.703860
Ideal 55.956205
Premium 58.714406
Very Good 57.963929
Name: table, dtype: float64

Plot of table vs cut

Length ('x') with Other categorical attributes

• Color code J has maximum and color code E has minimum mean length in cubic zirconia

Mean of x for color color D 5.414385 E 5.403961 F 5.598562 G 5.678289 Н 5.979648 Τ 6.236796 J 6.514146

Name: x, dtype: float64

Plot of table vs color

 Clarity code I1 has maximum and clarity code IF has minimum mean length in cubic zirconia

Mean of x for clarity clarity
I1 6.758132

I1 6.758132 IF 4.943962 SI1 5.884967 SI2 6.411873 VS1 5.567127 VS2 5.665168 VVS1 4.946900 VVS2 5.208213

Name: x, dtype: float64

Plot of table vs clarity

• Fair cut has maximum and Ideal cut has minimum mean length in cubic zirconia

Mean of x for cut
cut
Fair 6.284244
Good 5.841326
Ideal 5.500229
Premium 5.966265
Very Good 5.752359
Name: x, dtype: float64

Plot of table vs cut

Width ('y') with Other categorical attributes

Color code J has maximum and color code E has minimum mean width in cubic zirconia

Mean of y for color color D 5.419129 Ε 5.409329 5.602494 F G 5.680258 5.987057 Н 6.236604 Ι 6.513729 Name: y, dtype: float64

Plot of y vs color

 Clarity code I1 has maximum and clarity code VVS1 has minimum mean width in cubic zirconia

```
Mean of y for clarity
clarity
11
        6.708379
ΙF
        4.965230
SI1
        5.885100
SI2
        6.413149
VS1
        5.572190
VS2
        5.666368
VVS1
        4.962501
WS2
        5.222810
Name: y, dtype: float64
```

Plot of y vs clarity

• Fair cut has maximum and Ideal cut has minimum mean width in cubic zirconia

```
Mean of y for cut
cut
Fair
              6.216179
Good
              5.856033
Ideal
              5.511296
Premium
              5.940520
Very Good
              5.781583
Name: y, dtype: float64
Plot of y vs cut
   50
   40
 > 30
   20
   10
        ldeal
                 Premium
                          Very Good
                                     Good
                                                Fair
                             cut
```

Height ('z') with Other categorical attributes

• Color code J has maximum and color code E has minimum mean height in cubic zirconia

Mean of z for color color D 3.341152 Ε 3.338973 F 3.453242 G 3.505128 Н 3.691353 Ι 3.855732 4.030708 Name: z, dtype: float64 Plot of z vs color

 Clarity code I1 has maximum and clarity code IF has minimum mean height in cubic zirconia

Mean of z for clarity

clarity

I1 4.194313

IF 3.045567

SI1 3.637467

SI2 3.955703

VS1 3.440763

VS2 3.495383

WS1 3.053861

WS2 3.214542

Name: z, dtype: float64

Plot of z vs clarity

• Fair cut has maximum and Ideal cut has minimum mean carat height in cubic zirconia

Mean of z for cut cut Fair 3.993013 Good 3.644678 Ideal 3.396558 Premium 3.642084 Very Good 3.569637 Name: z, dtype: float64

Plot of z vs cut

Price with Other categorical attributes

Color code J has maximum and color code E has minimum mean price in cubic zirconia

```
Mean of price for color
color
D 3184.827597
E 3073.940399
F 3699.944527
G 4005.046170
H 4477.932112
I 5124.816637
J 5329.706250
```

Name: price, dtype: float64

 Clarity code SI2 has maximum and clarity code VVS1 has minimum mean price in cubic zirconia Mean of price for clarity clarity Ι1 3908.750000 ΙF 2739.534231 SI1 3998.635644 SI2 5088.869413 VS1 3838.752386 VS2 3965.496964 VVS1 2502.874388 VVS2 3263.042688

Name: price, dtype: float64

Plot of price vs clarity

Fair cut has maximum and Ideal cut has minimum mean price in cubic zirconia

Mean of price for cut

cut

Fair 4568.096154 Good 3926.336756 Ideal 3454.820639 Premium 4544.558525 Very Good 4032.267961 Name: price, dtype: float64

Plot of price vs cut

17500 - 15000 - 10000

Problem 1.2

Impute null values if present, also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Check for the possibility of combining the sub levels of a ordinal variables and take actions accordingly. Explain why you are combining these sub levels with appropriate reasoning.

Null Value Imputation

- There are 697 NAN values present in the 'depth' attribute. From the correlation matrix we have seen that 'depth' attributes has very low correlation with the price attribute.
- Also, we have seen that 'depth' attribute has approx. normally distributed.
 Thus, we can use the mean or median values to impute the Null values present in the variable.
- Median value is used for imputation for 'depth' attribute.

Significance of '0' values and its presence in the dataset

- From the data description we have seen anomalies in few attributes.
 Independent attributes 'X', 'Y', 'Z' are physical measurements. Hence a 0 value seems nonrational
- Moreover, in real life scenario price for 0 value will not give a relevant outcome
- Also, we have removed a duplicate instance that had '0' values for 'x', 'y'
 and 'z'.
- We have observed that there are two instances where 'x', 'y' and 'z' are all
 And six other instances where only z is 0, which is 0.03% of the dataset.

Hence, they have been dropped from the original dataset and the dataset shape has changed to (26925,10)

Combining the sub levels of an ordinal variables

- From the frequency table we have seen that cut type 'Premium' and 'Very Good' cut type have similar instances. Also, from the num-cat analysis we have observed that they show similar instance.
- We have checked the correlation matrix after converting the categorical variable into numerical variable
- It can be seen from the correlation matrix that after combining the ordinal sub-level of 'cut' attribute magnitude of correlation changed between the price and cut attributes.
- Hence, we have combined them into one sub-level and saved it another cloned dataset of original dataset
- Further, we have analyzed the performance of the sub-level combined cloned dataset in a model building

	carat	cut
carat	1.000000	-0.139908
cut	-0.139908	1.000000
color	0.293760	-0.026809
clarity	0.354786	-0.183331
depth	0.035070	-0.212275
table	0.181511	-0.443049
x	0.977908	-0.132945
у	0.942378	-0.127480
Z	0.946774	-0.154347
price	0.922400	-0.059806

Figure 7: Correlation
matrix before
combining the sub-level

	carat	cut
carat	1.000000	-0.166600
cut	-0.166600	1.000000
color	0.293760	-0.035903
clarity	0.354786	-0.210420
depth	0.035070	-0.189732
table	0.181511	-0.498909
x	0.977908	-0.162478
У	0.942378	-0.150097
Z	0.946774	-0.176546
price	0.922400	-0.077190
	Figure 8: C	Correlation
	matrix bef	ore
	combining	the sub-level

Problem 1.3

Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Linear regression using scikit learn. Perform checks for significant variables using appropriate method from stats model. Create multiple models and check the performance of Predictions on Train and Test sets using Square, RMSE & Adj Square. Compare these models and select the best one with appropriate reasoning.

- To find the most optimized model we have done multiple models based on different treatments, factors etc.
- For better understanding we have divided our multiple models into two broad categories A & B
- Category A contains models with outliers treatment whereas, category B contains models without outliers treatment

Category A With Outlier treatment (OT)

```
Model – 1: Only OT is done
```

Model- 2: OT + Scaling is done

Model- 3: OT + combining the sub levels of 'cut' variable is done

Model- 4: OT+ dropping of 'depth' variable is done

Model- 5: OT+ Variance Inflation factor is done

Model-6: OT+ Scaling+ Variance Inflation factor is done

Without Outlier treatment (No OT)

Category B Without Outlier treatment (OT)

Model-7: No OT is done

Model- 8: No OT + Scaling is done

Model- 9: No OT+ Variance Inflation factor is done

Model- 10: No OT+ Scaling+ Variance Inflation factor is done

Cat-A:

 Outliers may affect the linear regression models; we have 1st checked the total percentage of outliers in the data set. We observed as follows:

- 'carat' has all the outliers on the upper side, around 2.44% of the total data points present.
- 'depth' has outliers on either side, a total of around 5.24% of the total data points present.
- 'table' has outliers on either side, a total of around 1.18% of the total data points present.
- 'x', 'y' and 'z' have few outliers on either side, a total of around 0.05%, 0.05% and 0.08% of the total data points present.

•

- Further, we have replaced the outliers are capped by the appropriate whisker values
 of the corresponding variables. There are no more outliers as measured by IQR
 method.
- Categorical value has been encoded and converted into numeric data type
- We have performed the model building by using both scikit learn and statsmodel

- Model 1 has been treated with outlier Treatment
- Sub-level of ordinal categories are not combined
- The intercept for model-1 is 9146, which means in in present case when the other predictor variables are zero i.e., like carat, cut, colour, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price is 9146. which is meaningless. We can do Z score or scaling the data and make it nearly zero.
- R^2 and Adjusted R^2 for model are nearly equal (0.92)
- Hence, we have assumed all the independent variables play a significant role in the prediction of price and should be kept for better prediction
- RMSE for this model is 1156
- Prob (F-statistics) is 0 (less than alpha) for the model, hence rejected the null hypothesis
- We have observed the p(t) with respect to 'depth' attributes is 0.471 and its coefficient magnitude is much higher than 0, which is slippery point in this model
- We have not treated the multicollinearity hence, cannot rely on the coefficient.

Dep. Variable:	price	R-squared:	0.917
Model:	OLS	Adj. R-squared:	0.917
Method:	Least Squares	F-statistic:	2.301e+04
Date:	Fri, 20 May 2022	Prob (F-statistic):	0.00
Time:	18:38:08	Log-Likelihood:	-1.5969e+05
No. Observations:	18847	AIC:	3.194e+05
Df Residuals:	18837	BIC:	3.195e+05
Df Model:	9		

nonrobust

========	========	========	========	=======	========	========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	9145.7570	1017.388	8.989	0.000	7151.586	1.11e+04
carat	1.379e+04	105.369	130.908	0.000	1.36e+04	1.4e+04
cut	130.8333	9.333	14.019	0.000	112.540	149.127
color	-327.3451	5.239	-62.481	0.000	-337.614	-317.076
clarity	-480.1245	5.706	-84.147	0.000	-491.308	-468.941
depth	-10.2118	14.157	-0.721	0.471	-37.960	17.536
table	-33.6326	4.994	-6.734	0.000	-43.422	-23.843
x	-2473.5489	172.779	-14.316	0.000	-2812.211	-2134.887
у	1550.4375	169.810	9.130	0.000	1217.594	1883.281
Z	-1677.6340	177.497	-9.452	0.000	-2025.544	-1329.724
========	========	========	========	========	========	========
Omnibus:		3548	.194 Durb	in-Watson:		2.000
Prob(Omnib	us):	0	.000 Jarq	ue-Bera (JB):	33949.762
Skew:		0	.629 Prob	(JB):		0.00
Kurtosis:		9	.454 Cond	. No.		1.03e+04

Warnings:

Covariance Type:

- [1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [2] The condition number is large, 1.03e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

Figure 9: Summary table model-1

- Model 2 has been treated with outlier Treatment and Scaled with z-score scaling
- Sub-level of ordinal categories is not combined
- The intercept for model-2 is -3.209e-17, which means in in present case when the other predictor variables are zero i.e., like carat, cut, color, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price tends to 0. Which seems rational
- R^2 and Adjusted R^2 for model are nearly equal (0.92)
- RMSE for this model is 0.29
- Prob (F-statistics) is 0 (less than alpha) for the model, hence rejected the null hypothesis
- We have observed the p(t) with respect to 'depth' attributes is 0.471 and its coefficient magnitude tends to 0, hence we have assumed it does not play any significant role in price prediction
- We have not treated the multicollinearity hence, cannot rely on the coefficient.

=======	=======	======	=====		=======	
	рі					0.917
			_	•		0.917
						2.301e+04
Fri			,			0.00
	18:4		_	kelihood:		-3332.8
:						6686.
	18	8837	BIC:			6764.
		9				
	nonrol	bust				
======	=======	======	=====	=========	======	
coef	std err		t	P> t	[0.025	0.975]
9e-17	0.002	-1.53e	-14	1.000	-0.004	0.004
.5826	0.012	130.	908	0.000	1.559	1.606
.0363	0.003	14.	019	0.000	0.031	0.041
.1392	0.002	-62.	481	0.000	-0.144	-0.135
.1975	0.002	-84.	147	0.000	-0.202	-0.193
.0031	0.004	-0.	721	0.471	-0.012	0.005
.0181	0.003	-6.	734	0.000	-0.023	-0.013
.6919	0.048	-14.	316	0.000	-0.787	-0.597
.4307	0.047	9.	130	0.000	0.338	0.523
.2900	0.031	-9.	452	0.000	-0.350	-0.230
======	=======	======	=====	========	======	=======
	3548	.194	Durbin	ı-Watson:		2.000
	0	.000	Jarque	e-Bera (JB):		33949.762
	0	.629	Prob(J	B):		0.00
	9	.454	Cond.	No.		62.9
======		======	=====			
	Fri coef 9e-17 .5826 .0363 .1392 .1975 .0031 .0181 .6919 .4307 .2900	Least Square Fri, 20 May 18:4 : 11:	OLS Least Squares Fri, 20 May 2022 18:43:11 : 18847 18837 9 nonrobust	OLS Adj. F Least Squares F-stat Fri, 20 May 2022 Prob (18:43:11 Log-Li : 18847 AIC: 18837 BIC: 9 nonrobust	OLS Adj. R-squared: Least Squares F-statistic: Fri, 20 May 2022 Prob (F-statistic): 18:43:11 Log-Likelihood: : 18847 AIC: 18837 BIC: 9 nonrobust	OLS Adj. R-squared: Least Squares F-statistic: Fri, 20 May 2022 Prob (F-statistic): 18:43:11 Log-Likelihood: : 18847 AIC:

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.

- Model 3 has been treated with outlier Treatment and the sub-level value of ordinal category have also been combined
- The intercept for model-3 is 9296, which means in in present case when the other predictor variables are zero i.e., like carat, cut, color, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price is 9296. which is meaningless.
- R^2 and Adjusted R^2 for model are nearly equal (0.92)
- Hence, we have assumed all the independent variables play a significant role in the prediction of price and should be kept for better prediction
- Prob (F-statistics) is 0 (less than alpha) for the model, hence rejected the null hypothesis
- RMSE for this model is 1157
- We have observed the p(t) with respect to 'depth' attributes is 0.2511 and its coefficient magnitude is much higher than 0, which is slippery point in this model
- We have not treated the multicollinearity hence, cannot rely on the coefficient.

========	========	========	 =======	=====	.=======	:=======	========
Dep. Varia	ble:	r	orice	R-squ	uared:		0.917
Model:					R-squared:		0.917
Method:		Least Squ			ntistic:		2.300e+04
Date:	F	ri, 20 May	2022	Prob	(F-statistic	:):	0.00
Time:		16:2	29:01	Log-L	ikelihood:		-1.5969e+05
No. Observ	ations:	1	L8847	AIC:			3.194e+05
Df Residua	ls:	1	L8837	BIC:			3.195e+05
Df Model:			9				
Covariance	Type:	nonro	bust				
=======	coef	std err		t	P> t	[0.025	0.975]
Intercept	9296.3743	1014.429	9.	164	0.000	7308.003	1.13e+04
carat	1.38e+04	105.372	130.	947	0.000	1.36e+04	1.4e+04
cut	202.0082	14.510	13.	922	0.000	173.567	230.449
color	-326.9693	5.240	-62.	404	0.000	-337.239	-316.699
clarity	-479.6436	5.710	-84.	005	0.000	-490.835	-468.452
depth	-16.1612	14.073	-1.	148	0.251	-43.745	11.423
table	-31.0770	5.104	-6.		0.000	-41.081	-21.073
X	-2121.4499	171.844	-12.	345	0.000	-2458.279	-1784.620
У	1168.0355	169.027		910	0.000	836.728	1499.343
Z 	-1631.4311	177.581	-9.	187	0.000	-1979.506	-1283.356
Omnibus:		3554	1.509	 Durbi	.n-Watson:		1.998
Prob(Omnib	us):	6			ie-Bera (JB):		33736.640
Skew:	•	6		Prob(, ,		0.00
Kurtosis:		g		Cond.			1.03e+04
========							

- Model 4 has been treated with outlier Treatment and depth attributes has been dropped
- Sub-level of ordinal categories is not combined
- The intercept for model-4 is 8453, which means in in present case when the other predictor variables are zero i.e., like carat, cut, color, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price is 8453. which is meaningless.
- R^2 and Adjusted R^2 for model are nearly equal (0.92)
- Hence, we have assumed all the independent variables play a significant role in the prediction of price and should be kept for better prediction
- RMSE for this model is 1156
- Prob (F-statistics) is 0 (less than alpha) for the model, hence rejected the null hypothesis
- We have not treated the multicollinearity hence, cannot rely on the coefficient

			U				
========	========	========		.=====		=======	
Dep. Varia	ble:	ŗ	orice		ıared:		0.917
Model:			OLS	_	R-squared:		0.917
Method:		Least Squ			atistic:		2.588e+04
Date:		Sat, 21 May	2022	Prob	(F-statisti	(c):	0.00
Time:		04:5	7:47	Log-l	.ikelihood:		-1.5969e+05
No. Observ	ations:	1	L8847	AIC:			3.194e+05
Df Residua	ls:	1	L8838	BIC:			3.195e+05
Df Model:			8				
Covariance	Type:	nonro	bust				
========	========	=========		=====			
	coef	std err		t	P> t	[0.025	0.975]
Intercent	0452 2574	227 242		066	0.000	7702 222	0114 303
Intercept	8453.3571			.066	0.000		9114.382
carat	1.379e+04			. 287	0.000		1.4e+04
cut	132.3327			.545	0.000	114.499	
color	-327.4516			.527	0.000		
-	-480.3010	5.700	-84	.256	0.000	-491.474	
table	-32.7856	4.854	-6	.754	0.000	-42.301	-23.271
X	-2446.0024	168.504	-14	.516	0.000	-2776.285	-2115.720
У	1589.5151	160.935	9	.877	0.000	1274.068	1904.963
Z	-1781.4102	103.962	-17	.135	0.000	-1985.186	-1577.635
Omnibus:	=======	25/0	 9.783	Duchi	in-Watson:		2,000
Prob(Omnib	us).						33990.190
•	us):		0.000	-	ue-Bera (JB)	•	
Skew:			0.629	Prob(• •		0.00
Kurtosis:		2	.458	Cond.	NO.		2.41e+03
========							

- Model 5 has been treated with outlier Treatment and multicollinearity checked with variation inflation factor and further treated to reduce multicollinearity
- Sub-level of ordinal categories is not combined
- The intercept for model-5 is -1.476e+04, which means in in present case when the other predictor variables are zero i.e., like carat, cut, color, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price tends to -1.476e+04. which seems nonrational
- R^2 and Adjusted R^2 for model are nearly equal (0.91)
- Hence, we have assumed all the independent variables play a significant role in the prediction of price and should be kept for better prediction
- RMSE for this model is 1225
- We have observed the p(t) with respect to 'depth' attribute is 0.075. its coefficient magnitude is nearly 0. Its coefficient is much higher than 0, which is a slippery point in this model
- Prob (F-statistics) is 0 (less than alpha) for the model, hence rejected the null hypothesis

OLS Regression Results						
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	price OLS Least Squares Sat, 21 May 2022 04:57:48 18847 18841 5 nonrobust	Adj. R-squared: F-statistic: Prob (F-statistic)	0.064 0.063 255.6): 3.64e-265 -1.8248e+05 3.650e+05			
coe	ef std err	t P> t	[0.025 0.975]			
Intercept -1.476e+0 cut 115.704 color 407.985 clarity 328.628 depth 47.498 table 227.368	31.049 6 16.628 7 17.568 8 26.641	-6.502 0.000 - 3.727 0.000 24.535 0.000 18.706 0.000 1.783 0.075 13.899 0.000	-1.92e+04 -1.03e+04 54.845 176.563 375.392 440.579 294.194 363.062 -4.720 99.718 195.303 259.433			
Omnibus: Prob(Omnibus): Skew: Kurtosis:	5401.033 0.000 1.629 5.357	Jarque-Bera (JB):	1.990 12698.778 0.00 6.79e+03			

- Model 6 has been treated with outlier Treatment and multicollinearity checked with variation inflation factor and further treated to reduce multicollinearity
- It has been scaled with Z-score
- Sub-level of ordinal categories is not combined
- The intercept for model-6 is -1.988e-17, which means in in present case when the other predictor variables are zero i.e., like carat, cut, color, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price tends to 0. which seems rational
- R^2 and Adjusted R^2 for model are nearly equal (0.91)
- RMSE for this model is 0.28
- We have observed the p(t) with respect to 'table' attribute is 0.310. its coefficient magnitude is nearly 0. Hence, we have assumed table attribute is less significant for price prediction
- Prob (F-statistics) is 0 (less than alpha) for the model, hence rejected the null hypothesis

========	========			=====			========
Dep. Varia	ble:	1	orice	R-sq	uared:		0.841
Model:			OLS	Adj.	R-squared:		0.841
Method:		Least Squ	uares	F-st	atistic:		1.656e+04
Date:		Sat, 21 May	2022	Prob	(F-statistic)	:	0.00
Time:		04:5	57:48	Log-	Likelihood:		-9436.7
No. Observ	ations:	1	L8847	AIC:			1.889e+04
Df Residua	ls:	1	L8840	BIC:			1.894e+04
Df Model:			6				
Covariance	Type:	nonro	bust				
=======	coef	std err	======	t	P> t	[0.025	0.975]
Intercept	-1.988e-17	0.003	-6.84	le-15	1.000	-0.006	0.006
cut	0.0435	0.004	12	.233	0.000	0.037	0.050
color	-0.1091	0.003	-35	.633	0.000	-0.115	-0.103
clarity	-0.2236	0.003	-69	.698	0.000	-0.230	-0.217
depth	0.0497	0.003	14	.868	0.000	0.043	0.056
table	0.0037	0.004	1	.015	0.310	-0.003	0.011
У	1.0067	0.003	303	.086	0.000	1.000	1.013
Omnibus:	=======	4345	 5.601	Durb:	======== in-Watson:		2.003
Prob(Omnib	us):	(0.000	Jarq	ue-Bera (JB):		10299.292
Skew:	-			Prob	, ,		0.00
Kurtosis:			5.541		. No.		2.23
========							

Cat-B:

- All the models in category B are not treated with the outlier treatment since:
 - In this particular problem outliers may have some importance in price prediction
 - For instance, in the correlation matrix, we have seen carat has a very strong positive correlation with price. Hence, higher the carat weight higher will be price. If we remove outliers, we will be unable to predict the price for the high carat weight
 - Dataset has been encoded and converted into numeric datatype

- Model -7 has not been treated with outlier Treatment
- Sub-level of ordinal categories is not combined
- The intercept for model-7 is 1.047e+04, which means in in present case when the other predictor variables are zero i.e., like carat, cut, color, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price tends to 1.047e+04. which seems nonrational
- R^2 and Adjusted R^2 for model are nearly equal (0.91), Hence, we have assumed all
 the independent variables play a significant role in the prediction of price and should
 be kept for better prediction

- RMSE for this model is 1218
- Prob (F-statistics) is 0 (less than alpha) for the model, hence rejected the null hypothesis
- We have observed the p(t) with respect to 'y' and 'z' attributes is 0.780 and 0.312 respectively; However, its coefficient magnitude is much higher than 0, which is slippery point in this model
- We have not treated the multicollinearity hence, cannot rely on the coefficient

Dep. Varia	ole:	p	rice	R-sq	 uared:		0.908
Model:			OLS	Adj.	R-squared:		0.908
Method:		Least Squ	ares	F-st	atistic:		2.065e+04
Date:	9	Sat, 21 May	2022	Prob	(F-statistic	:):	0.00
Time:		10:3	5:25	Log-	Likelihood:		-1.6062e+05
No. Observa	ations:	1	.8847	AIC:			3.213e+05
Df Residual	ls:	1	.8837	BIC:			3.213e+05
Df Model:			9				
Covariance	Type:	nonro	bust				
========		std err	=====	===== t	======== P> t	 	
		sta err				[0.025	0.975]
Intercept	1.047e+04	711.141	14	.721	0.000	9074.799	1.19e+04
carat	1.105e+04	93.359	118	. 409	0.000	1.09e+04	1.12e+04
cut	107.3618	9.738	11	.025	0.000	88.274	126.450
color	-329.6089	5.507	-59	.855	0.000	-340.403	-318.815
clarity	-502.9605	5.957	-84	.432	0.000	-514.637	-491.284
depth	-84.3959	7.862		.734	0.000	-99.807	-68.985
table	-35.5932	5.011	-7	.103	0.000	-45.415	-25.771
×	-951.9872	50.865	-18	.716	0.000	-1051.687	-852.287
У	6.6726	23.895	0	. 279	0.780	-40.164	53.509
Z	-42.1737	41.726	-1	.011	0.312	-123.960	39.613
Omnibus:	========	 1196	790	Dunh	======== in-Watson:		1.993
Prob(Omnibu	ıe).				ue-Bera (JB):		205176.201
Skew:			.059				0.00
Kurtosis:			.164		. No.		6.84e+03
========	========				. no. ========	.=======	

- Model-8 has not been treated with outlier Treatment
- It has been scaled with z-score
- Sub-level of ordinal categories is not combined
- The intercept for model-7 is-3.209e-17, which means in present case when the other predictor variables are zero i.e., like carat, cut, color, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price tends to 0. which seems rational
- R^2 and Adjusted R^2 for model are nearly equal (0.91)
- RMSE for this model is 0.30
- Prob (F-statistics) is 0 (less than alpha) for the model, hence rejected the null hypothesis

- We have observed the p(t) with respect to 'y' and 'z' attributes is 0.780 and 0.312 respectively; its coefficient magnitude is nearly 0. Which implies that these two attributes do not play important roles in price prediction.
- We have not treated the multicollinearity hence, cannot rely on the coefficient

=======						======	========
Dep. Varia	ble:	ŗ	orice	R-sq	uared:		0.908
Model:			OLS	Adj.	R-squared:		0.908
Method:		Least Squ	iares	F-st	atistic:		2.065e+04
Date:	:	Sat, 21 May	2022	Prob	(F-statistic)	:	0.00
Time:		10:3	35:38	Log-	Likelihood:		-4260.0
No. Observ	ations:	1	L8847	AIC:			8540.
Df Residua	ls:	1	18837	BIC:			8618.
Df Model:			9				
Covariance	Type:	nonro	bust				
	coef	std err		 t	P> t	[0.025	0.9751
							0.9/3]
Intercept	-3.209e-17	0.002	-1.45	e-14	1.000	-0.004	0.004
carat	1.3100	0.011	118.	. 409	0.000	1.288	1.332
cut	0.0298	0.003	11.	. 025	0.000	0.025	0.035
color	-0.1401	0.002	-59.	.855	0.000	-0.145	-0.136
clarity	-0.2069	0.002	-84.	.432	0.000	-0.212	-0.202
depth	-0.0294	0.003	-10.	.734	0.000	-0.035	-0.024
table	-0.0198	0.003	-7.	. 103	0.000	-0.025	-0.014
x	-0.2664	0.014	-18.	.716	0.000	-0.294	-0.239
у	0.0020	0.007	0.	. 279	0.780	-0.012	0.016
Z	-0.0076	0.008	-1.	.011	0.312	-0.022	0.007
Omnibus:	=======	4104	 5.790	Dunh	======== in-Watson:		1.993
Prob(Omnib					ue-Bera (JB):		205176.201
Skew:	us).		0.059		(JB):		0.00
Skew: Kurtosis:			9.164		(JB): . No.		15.9
Kur.tos15;			.104	Cond	. NO.		15.9

- Model 9 has not been treated with outlier Treatment and multicollinearity checked with variation inflation factor and further treated to reduce multicollinearity
- Sub-level of ordinal categories is not combined
- The intercept for model-9 is 4149, which means in in present case when the other predictor variables are zero i.e., like carat, cut, color, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price tends to 4149 which seems nonrational.
- R^2 and Adjusted R^2 for model are nearly equal (0.91)
- Hence, we have assumed all the independent variables play a significant role in the prediction of price and should be kept for better prediction

- RMSE for this model is 1236
- Prob (F-statistics) is 0 (less than alpha) for the model, hence rejected the null hypothesis

Dep. Variat Model: Method: Date: Time:	ole:	Sat, 21 /	price OLS Squares May 2022 10:38:26	F-sta Prob	======================================):	0.905 0.905 2.993e+04 0.00 -1.6091e+05
No. Observa			18847 18840	AIC: BIC:			3.218e+05 3.219e+05
Df Model:			6	bic.			J.219e+03
Covariance	Type:	no	onrobust				
	coe	f std (err	t	P> t	[0.025	0.975]
Intercept	4149.329	0 655.	314	6.332	0.000	2864.855	5433.803
cut	111.624	9 9.8	384 1	l1.293	0.000	92.250	130.999
color	-324.560	2 5.5	589 -5	8.068	0.000	-335.516	-313.605
clarity	-526.260	8 5.9	972 -8	38.121	0.000	-537.966	-514.555
depth	-43.485	7 7.	391 -	-5.884	0.000	-57.973	-28.999
table	-34.430	7 5.0	984 -	-6.772	0.000	-44.396	-24.466
carat	8830.952			98.783	0.000	8788.608	8873.296
Omnibus: Prob(Omnibus Skew: Kurtosis:			3816.891 0.000 0.474 12.464	Durbi Jarqu Prob(======	1.996 71040.120 0.00 6.16e+03
========			=======				0.100.05

- Model 9 has not been treated with outlier Treatment and multicollinearity checked with variation inflation factor and further treated to reduce multicollinearity
- Data has been scaled
- Sub-level of ordinal categories is not combined
- The intercept for model-10 is -3.209e-17, which means in in present case when the other predictor variables are zero i.e., like carat, cut, color, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price tends to 0, which seems rational.
- R^2 and Adjusted R^2 for model are nearly equal (0.91)
- Hence, we have assumed all the independent variables play a significant role in the prediction of price and should be kept for better prediction
- RMSE for this model is 0.31
- Prob (F-statistics) is 0 (less than alpha) for the model, hence rejected the null hypothesis

				=====			
Dep. Varia	ble:	Į.	orice	R-squ	ared:		0.905
Model:		OLS		Adj. R-squared:			0.905
Method:		Least Squares		F-statistic:			2.993e+04
Date:		Sat, 21 May	2022	Prob	(F-statistic):		0.00
Time:		10:39:31		Log-Likelihood:			-4555.3
No. Observations:		1	18847	AIC:			9125.
Df Residuals:		1	18840	BIC:			9180.
Df Model:			6				
Covariance	Type:	nonro	bust				
=======	coet	======== f std err		t	P> t	[0 025	0.0751
	coe	sta err			P2[1]	[0.025	0.975]
Intercept	-3.209e-17	7 0.002	-1.43	e-14	1.000	-0.004	0.004
cut .	0.0310		11	.293	0.000	0.026	0.036
color	-0.1386	0.002	-58	.068	0.000	-0.143	-0.133
clarity	-0.216	0.002	-88	.121	0.000	-0.221	-0.212
depth	-0.0152	0.003	-5	.884	0.000	-0.020	-0.010
table	-0.0192	0.003	-6	.772	0.000	-0.025	-0.014
carat	1.0469	0.003	408	.783	0.000	1.041	1.051
Omnibus:		391 <i>6</i>	===== 5.891	Dunhi	n-Watson:		1.996
Prob(Omnibus):			0.000		e-Bera (JB):		71040.120
Skew:			.474	Prob(0.00
Kurtosis:			2.464	Cond.	*		2.24

Observation

Model Name	R^2	Adjusted R^2	RMSE	Intercept
Model- 1	0.92	0.92	1156	9146
Model- 2	0.92	0.92	0.29	-3.209e-17
Model- 3	0.92	0.92	1157	9296
Model- 4	0.92	0.92	1156	8453
Model- 5	0.91	0.91	1225	-1.476e+04
Model- 6	0.91	0.91	0.28	-1.988e-17
Model- 7	0.91	0.91	1218	1.047e+04
Model- 8	0.91	0.91	0.30	-3.209e-17
Model- 9	0.91	0.91	1236	4149
Model- 10	0.91	0.91	0.31	-3.209e-17

Figure 10: Comparison table of all the models

With Outlier treatment (OT)

Model – 1: Only OT is done Model- 2: OT + Scaling is done

Model- 3: OT + combining the sub levels of 'cut' variable is done

Model- 4: OT+ dropping of 'depth' variable is done

Model- 5: OT+ Variance Inflation factor is done

Model-6: OT+ Scaling+ Variance Inflation factor is done

Without Outlier treatment (No OT)

Model- 7: No OT is done

Model- 8: No OT + Scaling is done

Model- 9: No OT+ Variance Inflation factor is done

Model- 10: No OT+ Scaling+ Variance Inflation factor is done

• It is evident from the table that R^2 and Adjusted R^2 is similar in model (1, 2, 3, 4) and similar in model (5,6,7,8,9,10)

- The intercept for unscaled models is much higher than 0 which means in in present case when the other predictor variables are zero i.e., like carat, cut, color, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price tends to have higher number, which is unlikely
- The intercept for scaled models is tends to 0 which means in in present case when the other predictor variables are zero i.e., like carat, cut, color, clarity all are zero then the C=-3. (Y = m1X1 + m2X2+ + mnXn + C + e) that means price tends to have higher number, which is very likely
- RMSE for all the scaled models are within the range of 0.28 to 0.31
- P(f-statistics) is less than alpha value (0.05) hence, we have rejected the null hypothesis
- Since, we have seen in model-1 and model -3 there is no significant difference, we
 proceed with the dataset without combining the sub-level in ordinal value. We have
 encoded them before making the model

Selection of Model

- Lower the RMSE, better is the performance
- We have seen models with outliers treatment shown better performance than without outliers treatment. However, we have found that the percentage of outliers in certain attributes is significantly higher (In carat 2.24%) and the outliers are not anomalies as well. Hence, we are proceeding with the models which have outliers
- Model 7 and 8 gives similar performance, However, multicollinearity has not been treated in these two models. Hence, we cannot rely on the coefficient of these two models
- Model 9 is treated with the multicollinearity but it has not been scaled hence the intercept value is quite high, which is very unlikely
- Model 10 seems to be the suitable model, performance wise it's R^2 and adjusted R^2 values are same, which implies all the independent variables plays significant values in model selection, RMSE value is 0.31 which shows that the model can relatively predict the price accurately. The intercept value tends to 0, that means when all the independt variables are 0 the dependent variable also tends to 0.
- Hence, we are selecting Meld-10 as our final model for price prediction in zirconia csv.
- Important features are= Carat, Clarity, Cut, Color, Table, Depth

Final equation for Model 10

Price = 1.047* Carat + 0.031* Cut + -0.217 * Clarity + -0.138 * colour + -0.019* table + -0.015* depth + (-3.209e-17)

Problem 1.4

Inference: Basis on these predictions, what are the business insights and recommendations

Insights from EDA:

- 'carat': From the scatter plot with price, it is observed that overall price seems to increase with 'carat'. This is also confirmed by the high positive correlation value, which is approximately 0.92. This means that the price of the cubic zirconia diamond seems to increase with carat weight of the cubic zirconia.
- 'x': From the scatter plot with price, it is observed that price has non linearly increasing relationship with 'x'. This also supported by the high positive correlation value of approximately 0.88. This means that the price of the cubic zirconia diamond seems to increase with length of the cubic zirconia diamond.
- 'y': From the scatter plot with price, it is observed that price has non linearly increasing relationship with 'y'. This also supported by the high positive correlation value of approximately 0.86. This means that the price of the cubic zirconia diamond seems to increase with width of the cubic zirconia diamond.
- 'z': From the scatter plot with price, it is observed that price has non linearly increasing relationship with 'z'. This also supported by the high positive correlation value of approximately 0.85. This means that the price of the cubic zirconia diamond seems to increase with height of the cubic zirconia diamond.
- 'depth' & 'table': From the scatter plots with price, it is observed that neither 'depth' nor 'table' seem to have any particular increasing or decreasing trend with 'price'. This also supported by low correlation values of -0.003 and 0.13 respectively with 'price'. This means that for the given range of 'depth' and 'table' there are both low and high prices present.
- 'cut', 'color' & 'clarity': It is observed that in general the mean prices of higher quality cut, color or clarity are having fewer mean prices, this contradiction arises because the mean values of 'carat', 'x', 'y' and 'z' are higher for the diamonds with lower quality cut, color or clarity. The effect of 'carat', 'x', 'y' and 'z' more than compensates the effect of quality of diamond based on cut, color or clarity.

Recommendations:

- It is observed that carat and Clarity are important factors in pricing of the diamonds irrespective of cut, color, table, dimension. If carat weight is more, then the prices are higher on average. Thus, the diamond manufactures may focus on increasing the carat weight and clarity such that the diamonds could be priced higher.
- Since the quality of table and depth are not affecting the price as much as carat weight and clarity, i.e., prices more than compensates the effect of quality of diamond based on table and depth. The manufacturers may give less attention in acquiring higher quality of color, cut which are cost and time intensive.
- There is manufacturing cost associated with making depth and table within the ideal range such that light reflection of the diamond is perfect. But since it is observed that certain diamonds not within the ideal range of table and depth are still priced higher owing to the

dimensions and carat weight of the diamond, thus the manufacturer may not pay extra attention to the precision of these parameters and thereby leading to reduction in costs.

Problem 2.1

Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis.

- The given dataset has 872 rows and 7 columns. There are 5 attributes are of numeric data type and 2 attributes are of object data type.
- The dataset has no missing values. There are no duplicate.
- No bad data has been present
- Outliers are present in all the numeric features which can be seen from the boxplot.
- logistic Regression models are not much impacted due to the presence of outliers because the sigmoid function tapers the outliers. Hence, we have not treated the outliers

Univariate analysis of numeric Variables

Salary: Employee Salary

- Employee Salary ranges from 1322 to 236961
- Average employee salary is 41903
- The mean is greater than median, the distribution is not normal which is evident from the boxplot and probability plot.
- Skewness of the salary attribution is 3.1 indicating a right tailed distribution, positively skewed
- Outliers are present for this attribution which is evident from the box plot

```
Description of Salary
. . . . . . . . . . . . . . . . . .
count 872.000000
mean 47729.172018
std
         23418.668531
min
           1322.000000
25%
           35324.0000000
50%
         41903.500000
75%
          53469.500000
          236961.000000
max
Name: Salary, dtype: float64
```


Age: Age in years

- Age ranges from 20 to 62
- Average age is 40
- The mean is greater than median, the distribution is not normal which is evident from the boxplot
- Skewness of the age attribution is 0.4 indicating a right tailed distribution, positively skewed
- Outliers are present for this attribution which is evident from the box plot

```
Description ofage
. . . . . . . . . . . . . . . . . .
count
         872.000000
           39.955275
mean
std
           10.551675
min
           20.000000
25%
           32.000000
50%
           39.000000
75%
           48.000000
           62.000000
max
Name: age, dtype: float64
```


Educ: Years of formal education

- Years of formal education ranges from 1 to 21
- Average Years of formal education is 9
- The mean is nearly equal to median, the distribution is almost normal which is evident from the boxplot
- Skewness of the years of formal education attribution is indicating a left tailed distribution, positively skewed
- Outliers are present for this attribution which is evident from the box plot

Description ofeduc

count	872.000000
mean	9.307339
std	3.036259
min	1.000000
25%	8.000000
50%	9.000000
75%	12.000000
max	21.000000

Name: educ, dtype: float64

No_young_children: The number of young children (younger than 7 years)

- The number of young children (younger than 7 years ranges from 0.00 to 3
- Average of number of young children (younger than 7 years is 0
- The mean is greater than median, the distribution is not normal
- It looks like clusters formed for each unique value
 Description ofno_young_children

count	872.000000
mean	0.311927
std	0.612870
min	0.000000
25%	0.000000
50%	0.000000
75%	0.000000
max	3.000000

Namo: no vound children dtyno: float64

No_older_children: number of older children

- The number of older children ranges from 0.00 to 3
- Average of number of older children is 1
- The mean is almost equal to median, the distribution is not normal

Description ofno_older_children

. count 872.000000 mean 0.982798 std 1.086786 0.000000 min 25% 0.000000 50% 1.000000 75% 2.000000 6.000000 max

Name: no_older_children, dtype: float64

Further, after observing the box plot of No_older_children and No_younger_children, we have found that they have very few unique values compared to other numeric attribute. After performing the unique value function, we found that. The number of unique values are only 4 and 7 in 'no_young_children' and 'no_older_children'. Hence analysing them with the categorical variables can give good insights.

Univariate analysis for Categorical Attributes

Holiday Package: Opted for Holiday Package yes/no

- There are 2 types, People either opted for yes or no
- It has approximately 54% as people who didn't opt for holiday package and 46% of the people opted for the holiday package. Thus, the dataset is nearly balanced, imbalance effect in classification model is not expected.

Percentage Value counts of Holiday_Package

no 0.540138 yes 0.459862

Name: Holiday_Package, dtype: float64

Frequency Distribution of Holiday_Package

foreign: Foreigners Yes/No

- There are 2 types, either a foreigner employee or a non- foreigner employee
- It has approximately 75% people who are no- foreigners and 25% of the people are foreigners.

Percentage Value counts of foreign

no 0.752294 yes 0.247706

Name: foreign, dtype: float64

Frequency Distribution of foreign

No_young_children: The number of young children (younger than 7 years)

- Number of children under this attribute ranges from 0 to 3
- Most of the employees (76%) have no children below 7 years. The number of employees with 3 number of children below 7 years is very less (0.05%).

Percentage Value counts of no_young_children

- 0.762615
- 1 0.168578
- 2 0.063073
- 3 0.005734

Name: no_young_children, dtype: float64

Frequency Distribution of no_young_children

No_older_children: The number of older children

- Number of children under this attribute ranges from 0 to 6
- Most of the employees (45%). The number of employees with 6 number of children below (0.002%).

Percentage Value counts of no_older_children

0 0.450688
2 0.238532
1 0.227064
3 0.063073
4 0.016055
5 0.002294
6 0.002294

Name: no_older_children, dtype: float64

Frequency Distribution of no_older_children

Multivariate-Bivariate analysis

Heat map shows the correlation between different numeric attributes by assigning numbers as well as colors and Pair plot gives a graphical representation of correlation between different numeric attributes

- There is no high correlation between the variables.
- The maximum correlation is observed between 'age' and 'no_young_children'. It is a negative correlation of -0.52.
- It can also be observed that 'Salary' does not have high positive correlation with 'educ' or 'age'.

Bivariate analysis for Categorical attributes

Holiday Package and other categorical variables:

 Non-foreigner employees mostly opted for no Holiday package (402) whereas foreigner employees mostly opted for Holiday package (147)

• Employees having no young children opted for holiday package. Remaining Employees having 1 or 2 or 3 young children prefers no holiday package

 Employees having no (0) or 1 or 5 old children opted for no holiday package. Employees having 2 or 3 children opted for holiday package. Employees having 4 children have equal instance

Foreign employees and other categorical variables:

- Maximum foreigner employees have no young children and only 3 foreigner employees have 3 children
- Maximum non- foreigner employees have no young children and only 2 of them have young children

2 3 All 🥕 no_young_children foreign no yes All 55 5 no_young_children no yes foreign

- Maximum foreigner employees have no old children and none of them have 5 or 6 children
- Maximum non- foreigner employees have no children and 2 out of them have 5 children and 2 out of them have 6 children

Bivariate Analysis in num-cat attributes

Age with one categorical

Mean age of People who opted for holiday package is 40 whereas mean age for people who
don't opt for holiday package is 38.9. Average age for both yes and no for holiday package is
nearly same

Mean of age for Holiday_Package Holiday Package

no 40.853503 yes 38.900249

Name: age, dtype: float64

Plot of age vs Holiday_Package

• Employees with no young children have maximum mean age 43, whereas employees with 1 or 2 or 3 young children have nearly equal mean age I.e., 29

Mean of age for no_young_children no_young_children

0 43.296241

1 29.265306

2 29.072727

3 29.600000

Name: age, dtype: float64

Plot of age vs no_young_children

60 - 50 - 50 - 40 - 30 - 20 - 1 2 3 no_young_children

Employees with 5 old children have maximum mean age 43, whereas employees with 2 old children have minimum mean age of 37

```
Mean of age for no_older_children
no_older_children
     41.615776
1
     39.161616
2
     37.798077
3
     38.800000
4
     40.285714
5
     43.500000
     42.500000
Name: age, dtype: float64
```

Plot of age vs no_older_children

Employees who are foreigners have maximum mean age 40; whereas, non-foreigners have minimum mean age

Mean of age for foreign

foreign

no

40.603659 37.986111 yes

Name: age, dtype: float64

Plot of age vs foreign

Salary with one categorical variable

Mean Salary of People who don't opted for holiday package is maximum whereas mean age for people who opt for holiday package is minimum.

Plot of Salry vs Holiday_Package

Mean of Salary for no_young_children

no young children

- 48210.348872
- 1 45810.176871
- 2 47275.854545
- 3 45137.600000

76

• Employees with no young children have maximum mean salary, whereas employees with 3 young children have minimum mean salary

Mean of Salary for no_young_children no_young_children 0 48210.348872 1 45810.176871 2 47275.854545 3 45137.600000 Name: Salary, dtype: float64

Name: Salary, utype: 110at04

Plot of Salry vs no_young_children

• Employees with 4 old children have maximum mean salary, whereas employees with 6 old children have minimum mean salary

Plot of Salry vs no_older_children

Mean of Salary for foreign

foreign

no 50429.248476 yes 39528.939815

Name: Salary, dtype: float64

• Employees who are foreigners have maximum mean salary; whereas, non-foreigners have minimum mean salary

Mean of Salary for foreign

foreign

no 50429.248476 yes 39528.939815

Name: Salary, dtype: float64

Plot of Salry vs foreign

Education with one categorical variable

 People who don't opted for holiday package have maximum mean number of years in education whereas people who opt for holiday package have minimum mean number of years in education. Average number of years in education for both yes and no for holiday package is nearly same.

Mean of educ for Holiday_Package Holiday_Package no 9.594480 yes 8.970075 Name: educ, dtype: float64

Plot of educ vs Holiday_Package

 Employees with 3 young children have maximum mean number of years in education whereas, employees with no or 1 child have almost same mean number of years in education

```
Mean of educ for no_young_children
no_young_children
0 9.144361
1 9.761905
2 9.890909
3 11.200000
Name: educ, dtype: float64
```

Plot of educ vs no_young_children

• Employees with 4 old children have maximum mean number of years in education whereas, employees with no or 1 or 2 or 3 or 5 or 6 children have almost same mean number of years in education

```
Mean of educ for no_older_children
no_older_children
      9.544529
1
      8.792929
2
      9.461538
3
      8.709091
4
     10.285714
5
      8.000000
      8.500000
Name: educ, dtype: float64
```

Plot of educ vs no_older_children

Foreigner Employees have maximum mean number of years in education whereas, nonforeigner employee has minimum mean number of years

Mean of educ for foreign foreign no 10.038110 yes 7.087963 Name: educ, dtype: float64

Plot of educ vs foreign

Multivariate analysis cat-num-cat

Salary with two categorical attributes

 Employees who are not foreigners and don't opt for holiday package have maximum mean salary compare to foreigners who also don't opt for holiday package. Employees who are not foreigners and opt for holiday package have maximum mean salary compare to foreigners who opt for holiday package.

• Employees who don't opt for holiday package and have no young children have maximum mean of salary and with 3 no of young children have minimum mean salary.

Employees who opt for holiday package and have no young children have maximum mean of salary and other employees with 1 or 2 or 3 young children have minimum mean salary.

• Employees who don't opt for holiday package and have 5 old children have maximum mean of salary and with no old children have minimum mean salary. Employees who opt for holiday package and have 4 old children have maximum mean of salary and other employees with 0 or 1 or 2 or 3 or 6 old children have minimum mean salary. Employees with 5 old children don't opt for holiday package at all.

Age with two categorical attributes

 Employees who are not foreigners and don't opt for holiday package have maximum mean age compare to foreigners who also don't opt for holiday package. Employees who are not foreigners and opt for holiday package have maximum mean salary compare to non-foreigners who opt for holiday package.

Employees who don't opt for holiday package and have no young children have
maximum mean of age and with 1 no of young children have minimum mean age.
 Employees who opt for holiday package and have no young children have maximum
mean of age and other employees with 1 or 2 or 3 young children have minimum mean
age.

 Employees who don't opt for holiday package and have no old children have maximum mean of age and with 2 old children have minimum mean age. Employees who opt for holiday package and have no old children have maximum mean age and with 2 old children have age.

Educ with two categorical attributes

Employees who are not foreigners and don't opt for holiday package have maximum
mean number of years of education compare to foreigners who also don't opt for
holiday package. Employees who are not foreigners and opt for holiday package have
maximum mean number of years of education compare to non-foreigners who opt for
holiday package.

• Employees who don't opt for holiday package and have 3 young children have maximum mean of number of years of education and with no young children have minimum mean number of years of education. Employees who opt for holiday package have 3 young children have maximum mean of number of years of education and other employees with no or 1 or 2 young children have minimum mean number of years of education.

 Employees who don't opt for holiday and have 4 old children have maximum mean of number of years of education and with 1 or 3 old children have minimum mean number of years of education. Employees who opt for holiday and have 3 old children have minimum mean number of years of education and

Problem 2.2

Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis).

Logistic Regression

- For Logistic regression model building all the data should be in the form of numerical data type. In the given dataset there are 2 attributes are of object data type presents in the data; therefore, they are converted into categorical type with codes.
- From Sklearn packages train_test_split was imported and splitting of data is being done in 70:30 ratio (70% for train and 30% for test). Random state has been set to 1
- The shape of the data is as follows

```
X_train (610, 6)
X_test (262, 6)
y_train (610, 1)
y_test (262, 1)
Total observations is 872
```

- Logistic Regression imported from Sklearn model package.
- For Model Building we have combined 4 different combinations of Penalty and Solver

Combination 1:

```
penalty: 'I2'
, solver: 'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'
```

- For better model we have performed grid search with different set of values
- Cross validation used as 10

- Classification report for the particular model also generated. Accuracy obtained for train sample is 0.68 and for test sample is 0.67.
- > AUC score for the train set is 0.742 and test set is 0.705

Combination 2:

Penalty: '11'

Solver: 'liblinear', 'saga'

- For better model we have performed grid search with different set of values
- Cross validation used as 10
- Classification report for the particular model also generated. Accuracy obtained for train sample is 0.53 and for test sample is 0.55.
- > AUC score for the train set is 0.572 and test set is 0.629

Combination 3:

Penalty: 'elasticnet' Solver: 'saga'

- For better model we have performed grid search with different set of values
- Cross validation used as 10
- Classification report for the particular model also generated. Accuracy obtained for train sample is 0.54 and for test sample is 0.55.
- > AUC score for the train set is 0.590 and test set is 0.634

Combination 4:

Penalty: 'elasticnet'

Solver: 'saga', 'newton-cg', 'lbfgs', 'sag'

- For better model we have performed grid search with different set of values
- Cross validation used as 10
- ➤ Classification report for the particular model also generated. Accuracy obtained for train sample is 0.54 and for test sample is 0.55.
- AUC score for the train set is 0.590 and test set is 0.634

Linear Discriminant Analysis

- For LDA model building all the data should be in the form of numerical data type. In the given dataset there are 2 attributes are of object data type presents in the data; therefore, they are converted into categorical type with codes.
- From Sklearn packages train_test_split was imported and splitting of data is being done in 70:30 ratio (70% for train and 30% for test). Random state has been set to 1
- The shape of the data is as follows

```
X_train (610, 7)
X_test (262, 7)
y_train (610, 1)
y_test (262, 1)
Total observations is 872
```

- LDA imported from Sklearn discriminant analysis.
- For Model Building we have made 2 different model with respect to solver

Combination 1:

'tol': 0.1

Solver: 'liblinear', 'saga'

- For better model we have performed grid search with different set of values
- Cross validation used as 10
- Classification report for the particular model also generated. Accuracy obtained for train sample is 0.67 and for test sample is 0.63.
- > AUC score for the train set is 0.75 and test set is 0.70

Combination 2:

'tol': 0.1 Solver: 'Isqr'

- For better model we have performed grid search with different set of values
- Cross validation used as 10
- ➤ Classification report for the particular model also generated. Accuracy obtained for train sample is 0.68 and for test sample is 0.69.

Problem 2.3

Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized.

Logistic Regression

Combination 1

Classificat:	ion Report	Training D	ata:	
	precision	recall	f1-score	support
0	0.70	0.70	0.70	326
1	0.65	0.65	0.65	284
accuracy			0.68	610
macro avg	0.68	0.68	0.68	610
weighted avg	0.68	0.68	0.68	610
AUC Score Tra	ining Data:	0.742		
Classificat:	ion Report	Testing Da	ta:	
	precision	recall	f1-score	support
0	0.72	0.65	0.68	145
1	0.61	0.69	0.65	117
accuracy			0.67	262
macro avg	0.67	0.67	0.67	262
weighted avg	0.67	0.67	0.67	262

AUC Score Testing Data: 0.705

Figure 11: CLassification report for Combination 1

True Negatives: 227
False Positives: 99
False Negatives: 98
True Positives: 186

Figure 12: Confusion Matrix for train data set

True Negatives: 94
False Positives: 51
False Negatives: 36
True Positives: 81

Figure 13: Confusion Matrix for test data set

Figure 14: AUC curve train

Figure 15: AUC curve test

Inference:

- Accuracy for the train set was found to be 0.67 and for test set 0.68
- Precision for Holiday Package 'Yes' in the train set are found to be 0.65 and for test 0.61, In the test set, it implies from the confusion matrix that 51 instances are false positives
- Recall for claim status 'Yes' in the train set was found to be 0.65 and for test 0.69. This implies 0.31 were wrongly claimed as 'No'. From the confusion matrix of test set we can see that 36 instances are false negatives.
- The accuracy and precision values are almost similar for both the training and test data set which implies no overfitting and underfitting happened in the model
- Precision metrics plays a very important role for this particular business problem.
 Since there are 51 false positives present, it could lead to a negative implication to Travel agency.
- Recall metrics also have an implication to the business. Since, there are 186 false negatives present in, it could lead to have a negative impression on travel agency

- Area under the curve o training data is 74% and on test data is 70% which seems good. AUC graph for both the test and train dataset are not flat which implies a good performance model
- Overall, it is a decent model can be used for prediction.

Combination 2

Classification Report Training Data:							
	precision	recall	f1-score	support			
0	0.53	0.95	0.68	326			
1	0.41	0.04	0.07	284			
accuracy			0.53	610			
macro avg	0.47	0.49	0.38	610			
weighted avg	0.47	0.53	0.40	610			
AUC Score Trai	_						
**Classificati		_					
	precision	recall	f1-score	support			
0	0.55	0.98	0.70	145			
1	0.25	0.01	0.02	117			
accuracy			0.55	262			
macro avg	0.40	0.49	0.36	262			
weighted avg	0.42	0.55	0.40	262			
AUC Score Test	ing Data:	0.629					

Figure 16: Classification Report for combination 2

True Negatives: 227
False Positives: 99
False Negatives: 98
True Positives: 186

Figure 17: Confusion matrix for train set

True Negatives: 94
False Positives: 51
False Negatives: 36
True Positives: 81

Figure 18: Confusion matrix for test set

Figure 19: ROC AUC curve train

Figure 20: ROC AUC curve test

Inference:

- Accuracy for the train set was found to be 0.53 and for test set 0.55
- Precision for Holiday Package 'Yes' in the train set are found to be 0.41 and for test 0.25, In the test set, it implies from the confusion matrix that 51 instances are false positives
- Recall for claim status 'Yes' in the train set was found to be 0.04and for test 0.95. This implies 0.05 were wrongly claimed as 'No'. From the confusion matrix of test set we can see that 36 instances are false negatives.
- Recall value is very less
- The accuracy and precision values are almost similar for both the training and test data set which implies no overfitting and underfitting happened in the model
- Area under the curve of training data is 57% and on test data is 63% which does not seem good. AUC graph for both the test and train dataset are nearly flat which implies average performance model

• Overall, it is not a decent model cannot be used for prediction

Combination 3

Classification	Report T	raining D	ata:		
pr	ecision	recall	f1-score	support	
0	0.54	1 00	0.70	226	
0	0.54	1.00	0.70	326	
1	1.00	0.00	0.01	284	
accuracy			0.54	610	
macro avg	0.77	0.50	0.35	610	
weighted avg	0.75	0.54	0.38	610	
AUC Score Traini	ng Data:	0.590			
Classification	Report T	esting Da	ta:		
		_	f1-score	support	
0	0.55	1.00	0.71	145	
1	0.00	0.00	0.00	117	
accuracy			0.55	262	
macro avg	0.28	0.50	0.36	262	
weighted avg	0.31	0.55	0.39	262	
0					
AUC Score Testin	- D-t 0	63.4			

 ${\it Figure~21: Classification~Report~for~combination~3}$

True Negatives: 326
False Positives: 0
False Negatives: 283
True Positives: 1

Figure 22: Confusion matrix for train dataset

True Negatives: 145
False Positives: 0
False Negatives: 117
True Positives: 0

Figure 23: Confusion matrix for test dataset

Figure 24: ROC AUC curve for the train data set

Figure 25: ROC AUC curve for the test data set

Inference:

- Accuracy for the train set was found to be 0.54 and for test set 0.55
- Precision for Holiday Package 'Yes' in the train set are found to be 1 and for test
 0.54, In the test set, it implies from the confusion matrix that there are no instances of false positives
- Recall for claim status 'Yes' in the train set was found to be 0 and for test 0.0.
 However, From the confusion matrix of test set we can see that 283 instances are false negatives. Which is a slippery point for this model
- Recall value is 0
- The accuracy and precision values are almost similar for both the training and test data set which implies no overfitting and underfitting happened in the model

- Area under the curve of training data is 59% and on test data is 63% which does not seem good. AUC graph for both the test and train dataset are nearly flat which implies average performance model
- Overall, it is not a decent model and cannot be used for prediction

Combination 4

Classificat	ion Report	Training D	ata:	
	•	recall		support
0	0.70	0.70	0.70	326
1	0.66	0.65	0.65	284
accuracy			0.68	610
macro avg	0.68	0.68	0.68	610
weighted avg	0.68	0.68	0.68	610
AUC Score Tra	ining Data:	0.743		
Classificat	ion Report	Testing Da	ta:	
**Classificat		Testing Da recall		support
**Classificat		_		support
**Classificat		_		support 145
	precision	recall	f1-score	
0	precision 0.72	recall 0.67	f1-score 0.70	145
0	precision 0.72	recall 0.67	f1-score 0.70	145
0 1	precision 0.72	recall 0.67	f1-score 0.70 0.65	145 117
0 1 accuracy	precision 0.72 0.62	recall 0.67 0.68	f1-score 0.70 0.65 0.68	145 117 262
0 1 accuracy macro avg	0.72 0.62 0.67	recall 0.67 0.68	f1-score 0.70 0.65 0.68 0.67	145 117 262 262

Figure 26: Classification Report for combination 4

True Negatives: 229
False Positives: 97
False Negatives: 99
True Positives: 185

Figure 27: Confusion matrix for train set

True Negatives: 97
False Positives: 48
False Negatives: 37
True Positives: 80

Figure 28: Confusion matrix for test set

Figure 29: ROC AUC curve for train set

Figure 30: ROC AUC curve for test set

Inference:

- Accuracy for the train set was found to be 0.68 and for test set 0.68
- Precision for Holiday Package 'Yes' in the train set are found to be 0.66 and for test 0.62, In the test set, it implies from the confusion matrix that 51 instances are false positives
- Recall for claim status 'Yes' in the train set was found to be 0.65 and for test 0.68. This implies 0.32 were wrongly claimed as 'No'. From the confusion matrix of test set we can see that 37 instances are false negatives.
- The accuracy and precision values are almost similar for both the training and test data set which implies no overfitting and underfitting happened in the model

- Precision metrics plays a very important role for this particular business problem.
 Since there are 48 false positives present, it could lead to a negative implication to Travel agency.
- Recall metrics also have an implication to the business. Since, there are 37 false negatives present in, it could lead to have a negative impression on the travel agency
- Area under the curve o training data is 59% and on test data is 64% which seems good. AUC graph for both the test and train dataset are not flat which implies a good performance model
- Overall, it is a decent model can be used for prediction

LDACombination 1

	precision	recall	f1-score	support	
0	0.67	0.78	0.72	326	
1	0.69	0.55	0.61	284	
accuracy			0.67	610	
macro avg	0.68	0.67	0.67	610	
weighted avg	0.68	0.67	0.67	610	
AUC Score Tra **Classificat	ion Report			support	
0	0.66	0.68	0.67	145	
1	0.58	0.56	0.57	117	
accuracy macro avg	0.62	0.62	0.63 0.62	262 262	
weighted avg	0.62	0.63	0.63	262	
AUC Score Tes	ting Data:	0.697			

Figure 31: Confusion matrix for combination 1 in LDA

True Negatives: 254
False Positives: 72
False Negatives: 127
True Positives: 157

Figure 32: Confusion matrix for train set

True Negatives: 98 False Positives: False Negatives: 51 True Positives: 66

Figure 33: Confusion Matrix for test set

Figure 34: ROC AUC curve for combination 1

Inference:

- Accuracy for the train set was found to be 0.67 and for test set 0.63
- Precision for Holiday Package 'Yes' in the train set are found to be 0.69 and for test 0.58, In the test set, it implies from the confusion matrix that 47 instances are false positives

- Recall for claim status 'Yes' in the train set was found to be 0.55 and for test 0.56. This implies 0.44 were wrongly claimed as 'No'. From the confusion matrix of test set we can see that 51 instances are false negatives.
- The accuracy and precision values are almost similar for both the training and test data set which implies no overfitting and underfitting happened in the model
- Precision metrics plays a very important role for this particular business problem.
 Since there are 48 false positives present, it could lead to a negative implication to Travel agency.
- Recall metrics also have an implication to the business. Since, there are 51false negatives present in, it could lead to have a negative impression on the travel agency
- Area under the curve o training data is 75% and on test data is 65% which seems good. AUC graph for both the test and train dataset are not flat which implies a good performance model
- Overall, it is a decent model can be used for prediction

Combination 2

	precision	recall	f1-score	support
0	0.67	0.79	0.72	326
1	0.69	0.55	0.61	284
accuracy			0.68	610
macro avg	0.68	0.67	0.67	610
weighted avg	0.68	0.68	0.67	610

AUC Score Training Data: 0.745

Classification Report Testing Data:

	precision	recall	†1-score	support
0	0.68	0.70	0.69	145
1	0.62	0.60	0.61	117
accuracy			0.66	262
macro avg	0.65	0.65	0.65	262
weighted avg	0.66	0.66	0.66	262

AUC Score Testing Data: 0.703

Figure 36: Classification report for combination 2

True Negatives: 256
False Positives: 70
False Negatives: 127
True Positives: 157

Figure 37: Confusion matrix for train

True Negatives: 102 False Positives: 43 False Negatives: 47 True Positives: 70

Figure 38: confusion matrix for test

Figure 39: ROC AUC curve for train

Figure 40: ROC AUC curve for test

Inference:

- Accuracy for the train set was found to be 0.68 and for test set 0.66
- Precision for Holiday Package 'Yes' in the train set are found to be 0.69 and for test 0.62, In the test set, it implies from the confusion matrix that 47 instances are false positives
- Recall for claim status 'Yes' in the train set was found to be 0.55 and for test 0.60. This implies 0.40 were wrongly claimed as 'No'. From the confusion matrix of test set we can see that 47 instances are false negatives.

- The accuracy and precision values are almost similar for both the training and test data set which implies no overfitting and underfitting happened in the model
- Precision metrics plays a very important role for this particular business problem.
 Since there are 47 false positives present, it could lead to a negative implication to Travel agency.
- Recall metrics also have an implication to the business. Since, there are 43 false negatives present in, it could lead to have a negative impression on the travel agency
- Area under the curve o training data is 75% and on test data is 70% which seems good. AUC graph for both the test and train dataset are not flat which implies a good performance model
- Overall, it is a decent model can be used for prediction

Observation

LRC: Logistic Regression combination

LDA: Linear Discriminant analysis

	Accuracy		Precision Recall			ROC_AUC score		F1 score		
	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
LRC-1	0.68	0.67	0.65	0.61	0.65	0.69	0.74	0.70	0.62	0.65
LRC-2	0.57	0.63	0.41	0.25	0.01	0.04	0.58	0.63	0.61	0.62
LRC-3	0.55	0.54	1	1	0.0	0.00	0.59	0.63	0.01	0.00
LRC-4	0.68	0.68	0.66	0.62	0.65	0.68	0.59	0.63	0.65	0.65
LDA-1	0.67	0.63	0.69	0.58	0.55	0.56	0.75	0.70	0.61	0.57
LDA-2	0.68	0.66	0.69	0.62	0.55	0.60	0.75	0.70	0.61	0.61

Figure 41:Comparison table for all the models

Conclusion

Final Model selection in Logistic Regression

- Accuracy score for LRC-2 and LRC-3 are very low and precision value is too high and recall value is too low. ROC _AUC score is too low for both the models. And their area under graph is nearly flat. F1 score is evidently low in in both of them. Hence, we are not considering them as our final model among all other models in Logistic Regression.
- It is evident from the table that accuracy metrics are better for the LRC1, LRC4 models among all other models in Logistic Regression model
- Between LRC-1 And LRC-2 accuracy is similar, Precision metrics is similar, recall metrics is similar and F1 score metrics is similar. However, the ROC_AUC score is much better in LRC-1. Hence, we are considering LRC-1 as our final model among Logistic Regression models

Final Model selection in LDA

 Between LDA-1 And LDA-2 the ROC_AUC score is same. LDA-2 has better accuracy score, Precision score and Recall Score. Hence, we are considering LDA-2 as our final model between the two models in LDA

	Accuracy Precision Recall		ROC_AL	JC score F1 score		2				
	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
LRC-1	0.68	0.67	0.65	0.61	0.65	0.69	0.74	0.70	0.62	0.65
LDA-2	0.68	0.66	0.69	0.62	0.55	0.60	0.75	0.70	0.61	0.61

- Accuracy, Precision and ROC AUC score metrics is similar in both the final models.
- Recall is greater in LRC-1 (logistic regression final model) compare to LDA-1 (LDA final model)
- F1 score is greater in LRC-1 (logistic regression final model) compare to LDA-1 (LDA final model)
- Hence, we are choosing LRC-1 (logistic regression final model) as our final model for prediction in the given model.

2.4 Inference: Basis on these predictions, what are the insights and recommendations

Important insights from the data set

- The average salary of employees who opted for holiday package is less.
- Among the employees who are not foreigners approximately only 38.7% opted for Holiday package whereas among the employees who are foreigners approximately 68.06% of the employees opted for Holiday package.
- Employees who have no young children below 7 years have nearly equal percentage
 of employees opting or not opting for the Holiday package. But employees who have
 1 or 2 children below 7 years of age have much lesser percentage opting for holiday
 package.
- Employees who have no children above 7 years of age have lesser percentage opting for holiday package.
- The average age of employees with no children below 7 years who have opted for the holiday package is more than 5 years younger than employees who have not opted.
- Employees with 1 child have much lesser percentage of people opting for Holiday package.
- The average age of employees with no children who have opted for the holiday package is around 10 years younger than employees who have not opted. It could be observed from swarm plot that the employees above 50 have higher number of people not opting for the package.

Recommendation

 Since percentage of employees who are not foreigners opting for Holiday packages is less, this means the Tour agency needs to make packages that attract the local employees. May be the packages at present are focused more in within the country

- tours and hence the local employees are less interested in these packages. So international holiday packages could be more attractive to the local employees.
- Since the percentage of foreign employees have higher percentage opting for the
 packages. It may be because this section of employees is interested in seeing and
 knowing the foreign country. Hence packages designed at more culturally satisfying
 experiences could further bolster the package selection rate among the foreign
 employees.
- Since the average salary of the employees not opting for the holiday package is high, it
 may suggest that the packages are not luxurious enough for the high earners. So, more
 luxury-oriented packages with a higher price cap could be designed for this section of
 employees.
- Since percentage of employees with 1 or 2 children below 7 years of age opting for holiday package is less. The Tour agency needs to understand the reason behind this situation and see if the packages designed are comfortable enough for employees with children of this age like baby care facilities. Including features specific to children of this age group like amusement park tours could further make the packages attractive for the parents.
- Employees with no children who are aged above 50 have higher count of employees not opting for holiday packages. So, packages aiming at more comfort and relaxationoriented features could be designed for this section.