FUNDAMENTALS OF ALGEBRAIC GEOMETRY: QUESTIONS FOR MIDTERM

- (1) (a) Describe the points of Spec $\mathbb{C}[x, y]/\langle xy \rangle$.
 - (b) What are the stalks of the structure sheaf at the points $\langle x, y \rangle$, $\langle x 1, 0 \rangle$, and $\langle y \rangle$?
 - (c) Which of these stalks are integral domains?
 - (d) For which of these stalks is the natural map from $\mathbb{C}[x,y]/\langle xy \rangle$ injective?
 - (e) What is the closure of the point $\langle y \rangle$?
- (2) Let $f: A \rightarrow B$ be a map of rings.
 - (a) Prove that the preimage of a prime ideal is a prime ideal.
 - (b) Is the preimage of a maximal ideal a maximal ideal?
 - (c) Is the answer "yes" under some hypotheses on *A* and *B*?
 - (d) Use the above to prove that, under the same hypotheses on *A*, the nilradical of *A* is the intersection of all maximal ideals of *A*.
 - (e) Can you state the previous result in terms of functions on Spec A?
 - (f) Take $A = \mathbb{C}[x]$ and $B = \mathbb{C}[x, y]/(y^2 x)$ with the obvious map $f : A \to B$. Describe the sets Spec A, Spec B and the map between them induced by f.
- (3) Let A be a ring.
 - (a) What is a distinguished open subset of Spec A?
 - (b) Prove that the distinguished open subsets form a base of the Zariski topology.
 - (c) Is every open subset a distinguished open subset?
 - (d) Is the intersection of two distinguished open subsets a distinguished open subset?
 - (e) Use the distinguished open subsets to show that Spec *A* is quasi-compact.
- (4) (a) Define a scheme.
 - (b) Define an affine scheme.
 - (c) Give an example of a scheme which is not an affine scheme.
 - (d) Let *X* be the one point set. Let O_X be the sheaf of rings on *X* defined by $O_X(X) = \mathbb{Z}$. Is this a scheme?
- (5) Let $A = \mathbb{C}[x, y]/(xy)$ and $B = \mathbb{C}[x, y]/(xy^2)$.
 - (a) Are Spec *A* and Spec *B* isomorphic as schemes?
 - (b) What is the relationship between the underlying topological spaces?
 - (c) Draw pictures of Spec *A* and Spec *B*.
 - (d) There are (non-zero) $f \in A$ and $g \in B$ such that A_f and B_g are isomorphic. Using your pictures (or otherwise), find them.
- (6) Let $A = \mathbb{C}[t]$ and P = Proj A[X, Y], where X, Y are in degree 1.
 - (a) What are the points of *P*?
 - (b) Describe the distinguished open D_{XY} and the ring $O_P(D_{XY})$.
 - (c) Let $Z \subset P$ be the closed subscheme cut out by $Y^2 tX^2$. what are the points of Z and where are they mapped by the map $Z \to \operatorname{Spec} A$?
 - (d) Write *Z* as the Proj of a graded algebra.
 - (e) Write down an affine open cover of Z.
 - (f) Is Z affine?