## Diskretne strukture

#### Gašper Fijavž

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

#### 11. december 2024

## Kaj so permutacije

Naj bo A poljubna množica. Permutacija na A je vsaka bijektivna preslikava  $f:A\to A$ .

*Permutacija reda n* je permutacija v  $\{1, 2, ..., n\}$ . Množico vseh permutacij reda n imenujemo *simetrična grupa reda n* in jo označimo z  $S_n$ . Zgled:

# Produkt permutacij

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix} \qquad \psi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}$$

$$\pi * \psi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix} * \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}$$

$$\psi * \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix} * \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}$$

# Inverzna permutacija

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix} \qquad \psi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}$$

$$\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 2 & 3 & 7 & 6 & 5 \end{pmatrix} \qquad \psi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 4 & 5 & 3 & 2 & 7 & 1 \end{pmatrix}$$

$$\pi * \pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix} * \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 2 & 3 & 7 & 6 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix}$$

# Zapis permutacije z disjunktnimi cikli

Permutacijo lahko zapišemo tudi z disjunktnimi cikli in ne v obliki tabelice.

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix} \qquad \psi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}$$

# Ciklična struktura permutacije

*Ciklična struktura permutacije* je število posameznih dolžin ciklov v zapisu permutacije z disjunktnimi cikli.

Ciklična struktura permutacije  $\pi$  je ciklična struktura permutacije  $\psi$  je

1-ciklu pravimo tudi *fiksna točka* permutacije, 2-ciklu pravimo *transpozicija*.

# Potenciranje permutacij

Za potenciranje permutacij je ugodnejši zapis permutacije *z disjunktnimi cikli* kot pa zapis v obliki *tabelice*.

 $\pi =$ 

Kako izračunati  $\pi^2, \pi^3, \pi^4, \ldots$ ?

$$\pi^2 = \pi^3 =$$

:

# Potenciranje permutacij

## Trditev

Naj bo  $\alpha$  permutacija, sestavljena iz samo enega cikla dolžine n. Permutacija  $\alpha^k$  je sestavljena iz  $\gcd(n,k)$  disjunktnih ciklov, ki so vsi iste dolžine  $\frac{n}{\gcd(n,k)}$ .

### Posledica

Naj bo  $\alpha$  permutacija, sestavljena iz samo enega cikla dolžine n. Potem je  $\alpha^n = \mathrm{id}$  in  $\alpha^{-1} = \alpha^{n-1}$  in je n najmanjše naravno število (>0) s to lastnostjo.

# Potenciranje permutacij

### Izrek

Naj bo

$$\pi = \alpha_1 * \alpha_2 * \cdots * \alpha_m,$$

kjer so  $\alpha_i$ ,  $i=1,\ldots,m$ , cikli v zapisu permutacije  $\pi$  z disjunktnimi cikli. Potem je

$$\pi^k = \alpha_1^{\ k} * \alpha_2^{\ k} * \dots * \alpha_m^{\ k}.$$

## Red permutacije

Red permutacije  $\pi$  je najmanjše naravno število  $k \geq 1$ , za katerega je  $\pi^k = \mathrm{id}.$ 

Če je  $\alpha$  *n*-cikel, potem je  $\alpha^k$  je sestavljen iz  $\gcd(n,k)$  disjunktnih ciklov, ki so vsi iste dolžine  $n/\gcd(n,k)$ .

#### **Trditev**

Red permutacije  $\pi$  je najmanjši skupni večkratnik dolžin ciklov v zapisu permutacije  $\pi$  z disjunktnimi cikli.

# Zapis permutacije s transpozicijami

## **Trditev**

Vsako permutacijo lahko zapišemo kot produkt transpozicij.

Komentar: Ker že zapis cikla ni enoličen, tudi zapis kot produkt transpozicij ni enolično določen.

# Parnost permutacij

Izrek (o parnosti permutacij)

Denimo, da lahko permutacijo  $\pi$  zapišemo kot produkt m transpozicij, pa tudi kot produkt (morda drugih) n transpozicij. Potem je

 $m \equiv n \pmod{2}$ .

# Parnost permutacij

Permutacija je *soda*, če jo lahko zapišemo kot produkt sodo mnogo transpozicij, permutacija je *liha*, če jo lahko zapišemo kot produkt liho mnogo transpozicij.

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 7 & 6 & 5 \end{pmatrix}$$

Pravimo, da sta (v permutaciji  $\pi$ ) števili 1 in 2 v *inverziji*, ker sta v spodnji vrstici tabelice v *napačnem* vrstnem redu: 1 je manjše kot 2, toda 2 je zapisana pred 1.

## Parnost permutacij, ponovimo

## Izrek (o parnosti permutacij)

Denimo, da lahko permutacijo  $\pi$  zapišemo kot produkt m transpozicij, pa tudi kot produkt (morda drugih) n transpozicij. Potem je

$$m \equiv n \pmod{2}$$
.

Permutacija je *soda*, če jo lahko zapišemo kot produkt sodo mnogo transpozicij, permutacija je *liha*, če jo lahko zapišemo kot produkt liho mnogo transpozicij.

# Igra 15

*Igro 15* igramo na kvadratni igralni površini, na kateri je 15 ploščic s številskimi oznakami in eno *prazno polje*.







Naš cilj je, da s premikanjem ploščic dosežemo *ciljno pozicijo*, v kateri so številke po poljih urejene po velikosti.

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
7 & 8 & 9 & 10 & 6 & 1 & 2 & 11 & 5 & 4 & 3 & 12 & 16 & 15 & 14 & 13
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16
\end{pmatrix} = id$$

# Zgled igre 15

| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 16 | 10 | 12 |
| 13 | 14 | 11 | 15 |

 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)

 (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)

 1 2 3 4 5 6 7 8 9

 1 2 13 14

## Potenčna enačba

### **Trditev**

Naj bodo  $\alpha, \beta, \gamma$  dane permutacije,  $\pi$  pa permutacija-neznanka. Enačba

$$\alpha * \pi * \beta = \gamma$$

je enolično rešljiva.

# Potenčna enačba

Naloga: Poišči rešitve enačb

$$\pi^{2015} = (12)(34)(56789)$$

$$\pi^{2021} = (12)(34)(56789)$$

$$\pi^{2022} = (12)(34)(56789)$$

$$\pi^{2023} = (12)(34)(56789)$$

$$\pi^{2024} = (12)(34)(56789)$$

Če je  $\alpha$  *n*-cikel, potem je  $\alpha^k$  je sestavljen iz  $\gcd(n,k)$  disjunktnih ciklov, ki so vsi iste dolžine  $n/\gcd(n,k)$ .

## Potenčna enačba

Naloga: Poišči rešitve enačb

$$\pi^{2015} = (12)(34)(56)(78)(910)(1112)$$

$$\pi^{2021} = (12)(34)(56)(78)(910)(1112)$$

$$\pi^{2022} = (12)(34)(56)(78)(910)(1112)$$

$$\pi^{2023} = (12)(34)(56)(78)(910)(1112)$$

$$\pi^{2024} = (12)(34)(56)(78)(910)(1112)$$

# Konjugirane permutacije

Permutaciji  $\alpha$  in  $\beta$  sta *konjugirani*, če obstaja permutacija  $\pi$ , za katero je

$$\beta = \pi^{-1} * \alpha * \pi.$$

## **Trditev**

Konjugiranost je ekvivalenčna relacija v S<sub>n</sub>.

#### Izrek

Permutaciji  $\alpha$  in  $\beta$  sta konjugirani natanko takrat, ko imata isto ciklično strukturo.