Introducción a la Inteligencia Artificial Facultad de Ingeniería Universidad de Buenos Aires

Ing. Lautaro Delgado (lautarodc@unops.org)

Índice

Índice

- 1. Repaso Ejercicio Clase 3
- 2. Variabilidad y p-values
- 3. Máxima Verosimilitud, Regresión Polinómica
- 4. Descomposición Bias-Varianza
- 5. Enfoque Bayesiano, MAP
- 6. Ejercicio de Aplicación

Repaso Ejercicio Clase 3

Regresión Lineal - R2

$$SS(fit) = (happiness - lr_fit)^2$$

$$Variaci\'on(fit) = \frac{(happiness - lr_fit)^2}{n}$$

$$SS(media) = (happiness-media)^2$$

$$Variaci\'on(media) = \frac{(happiness - media)^2}{n}$$

Regresión Lineal - R2

$$R^2 = \frac{Variaci\'on(media) - Variaci\'on(fit)}{Variaci\'on(media)}$$

Fuente: StatQuest with Josh Starmer

Regresión Lineal - R2

$$F = \frac{Varaci\'{o}n~en~happiness~explicada~por~income}{Variaci\'{o}n~en~happiness~no~explicada~por~income}$$

Regresión Lineal - R2

$$F = \frac{Varaci\'{o}n~en~happiness~explicada~por~income}{Variaci\'{o}n~en~happiness~no~explicada~por~income}$$

- Hipótesis nula (H0): El modelo de regresión lineal afín no explica mejor la varianza de happiness que el modelo constante
- Hipótesis alternativa (H1): El modelo de regresión lineal afín explica de mejor manera (estadísticamente significativo) la varianza en happiness que el modelo constante.

Regresión Lineal - R2

$$F = \frac{Varación\ en\ happiness\ explicada\ por\ income}{Variación\ en\ happiness\ no\ explicada\ por\ income}$$

Pasos del test:

- Calculamos la estadística F
- Identificamos la PDF asumiendo que H0 es correcta
- Con la PDF calcular la probabilidad de observar el estadístico
- 4. Fijarse si la probabilidad es menor al umbral establecido (Ej: 5%)

Regresión Lineal

En ésta clase vamos a continuar con conceptos de aprendizaje estadístico como framework teórico detrás de la gran mayoría de los modelos de Machine Learning, usando como modelo base la regresión lineal.

Jamboard Máxima Verosimilitud

Bias-Variance Tradeoff

Cuando utilizamos el error cuadrático medio en un modelo de ML, podemos descomponer el mísmo en términos de bias (sesgo) y variance (varianza).

Jamboard Bayes Regresión Lineal

Bibliografía

Bibliografía

- The Elements of Statistical Learning | Trevor Hastie | Springer
- An Introduction to Statistical Learning | Gareth James | Springer
- Deep Learning | Ian Goodfellow | https://www.deeplearningbook.org/
- Stanford | CS229T/STATS231: Statistical Learning Theory | http://web.stanford.edu/class/cs229t/
- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Artificial Intelligence, A Modern Approach | Stuart J. Russell, Peter Norvig
- Sachin Date. (Oct 16 2019). The F-Test for Regression Analysis.

