

4th International Conference on Electrical, Computer and Communication Engineering (ECCE 2025)

Spectrogram-driven Emotion Detection from Electroencephalogram

Paper ID: 611

Authors

Md. Taisirul Muktadi, Tanzeem Tahmeed Reza, Mohammed Tawshif Hossain, Eshat Jahan Arifa, Md. Fazlul Karim Khondakar

Chittagong University of Engineering and Technology (CUET),
Chittagong, Bangladesh

Outlines

Introduction

Emotions profoundly shape cognition, guiding decision-making, social interactions and motivation. They shape how individuals interpret, respond and interact with their surroundings [1].

Electroencephalography is the measure of brain's electrical activity that reflects neural oscillations, network dynamics and offers crucial insights into neurocognition [2].

Spectrogram visualizes the dynamic spectral composition of EEG signals, enabling emotion recognition more reliable, accurate and efficient.

The research paper presented here proposes spectrogram based deep learning classification to advance EEG-based emotion recognition system.

Problem Statement

01

Traditional EEG-based emotion recognition cannot completely capture the complex temporal and spectral characteristics of EEG signals.

02

Spectrogram based emotion detection from EEG is not available.

03

Classifiers fail to incorporate both spatial and temporal aspects of EEG data, limiting their effectiveness.

Research Objectives

01

To transform the processed EEG signals into spectrogram based representations for improved emotion recognition.

02

To benchmark the effectiveness of the proposed model against state-ofthe-art deep learning architectures and prior studies in EEG-based emotion recognition.

Related Works

Table 1: Related Works

Work	Feature Extraction Method	Models Used	Accuracy	Limitations
Q. Zhao [3]	DE	DE-CNN-RNN	95%	 Exploring only one feature. Did not handle EEG Signals variablities across different individuals.
A. N. A. Gul [4]	DE, DCAU, RASM, DASM	SVM, DNN	SVM- 79.4% DNN - 79.8%	Study is conducted in a controlled environment and no analysis is done on how the model performs in realworld EEG noise and artifacts.
H. Shrara [5]	-	SVM, RF, LSTM	SVM - 90% RF - 93% LSTM - 97%	 Small dataset (10 participants) limits generalizability. Limited emotion categories; no mixed emotions considered
P. Kar [6]	WPD	SVM	64.06%	Discrepancies between established emotion labels and actual physiological responses suggest potential labeling inaccuracies Limited classification accuracy

Methodology

Proposed Workflow

Dataset

SJTU Emotion EEG Dataset (SEED) [7,8]

15 Volunteers

Chinese emotional movie clips

62 channels with 1000 Hz
Sampling rate

Downsampled to 200 Hz

Feature Extraction

Generated energy-time-frequency representations, visualized as spectrograms

Short Time Fourier Transform (STFT) provided spectrograms of selected channels

$$STFT \{x(t)\}(\tau, w) = \int x(t)\omega(t - \tau)e^{-i\omega t} dt$$

Fig. 1. Equation of STFT [9]

Table 2: Parameters use	d for STFT
-------------------------	------------

Parameters	Conditions		
Sampling Frequency	256 Hz		
Length of each segment	256		
No. of Points to overlap	128		
No.of FFT Points	128		

15 Channels Used

FP1,FP2,F3,F4,F8,F7,AF3,AF4,F2,P5,P3,PZ,C3,C4,CZ

Spectrograms

Table 3: Parameters used in image processing

Parameters	Conditions
Batch Size	40
Brightness	0.8
Random Contrast	Lower = 0.32 Upper =1.1
Random Rotation	0.03
Random Zoom	0.4

Fig. 1. Original Spectrograms derived from MATLAB (left) and processed Spectrograms (right)

CNN Model Architecture

Fig. 2. The CNN Architecture

Table 4: Parameters used in CNN Model

Parameters	Conditions		
Learning Rate	0.0001		
Optimizer	'Adam'		
Epochs	10		
Activation Function	ReLU		
Dropout	0.5		

Results

Performance Evaluation

Performance metrics used

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 - Score = \frac{(2*recall*precision)}{recall + precision}$$

Table 5: Parameters used in image processing

Data	No. of	Performance Metrices			
Condition	trained Images	Accuracy	Precision	Recall	F1-score
Processed Image	10125	0.9980	0.9900	0.9900	0.9900

Results (Cont.)

Performance Evaluation for Pre-trained Models

Table 6: Performance evaluation with pre-trained models

Models	Class Labels	Performance Metrics			Overall accuracy
		Precision	Recall	F1-score	
VGG16	1	1.00	1.00	1.00	0.99
	0	1.00	1.00	1.00	
	-1	1.00	1.00	1.00	
VGG19	1	1.00	1.00	1.00	0.98
	0	0.97	1.00	0.98	
	-1	1.00	0.97	0.90	
InceptionNet	1	1.00	0.81	0.90	0.94
	0	1.00	1.00	1.00	
	-1	0.85	1.00	0.92	

Results (Cont.)

Comparison with Recent Studies

Table 7: Comparison with recent studies

Work	Feature Extraction Method	Models Used	Accuracy
Q. Zhao [3]	DE	DE-CNN-RNN	95%
A. N. A. Gul [4]	DE, DCAU, RASM, DASM	SVM, DNN	SVM- 79.4% DNN - 79.8%
H. Shrara [5]	-	SVM, RF, LSTM	SVM - 90% RF - 93% LSTM - 97%
P. Kar [6]	WPD	SVM	64.06%
Proposed Work	STFT	CNN	99.80%

Conclusion

- A comprehensive study on emotion recognition using EEG signals using an effective feature extraction method has been done.
- Proposed CNN model achieved a high accuracy of 99.80% leveraging the Spectrograms generated by Short Time Fourier Transfrom method.
- The findings underscore deep learning models in interpreting EEG signals for emotion detection & provides a foundation for working with time-frequency representations.

References

- [1] Li, X., Zhang, Y., Tiwari, P., Song, D., Hu, B., Yang, M., Zhao, Z., Kumar, N., & Marttinen, P. (2022). EEG Based Emotion Recognition: A tutorial and review. ACM Computing Surveys, 55(4), 1–57. https://doi.org/10.1145/3524499
- [2] D. L. Schomer and F. Lopes da Silva, "Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields", 6th ed. Philadelphia, PA: Wolters Kluwer, 2012.
- [3] Q. Zhao, Y. Dong, and W. Yin, "Emotion Recognition Based on EEG and DE-CNN-RNN," 2023 China Automation Congress (CAC), Nov. 2023, doi: 10.1109/cac59555.2023.10450238
- [4] A. N. A. Gul and A. Altuntas, "Comparison of EEG- Based Deep Neural Network Classifiers for Emotion Recognition using Selected Electrodes," 2023 Medical Technologies Congress (TIPTEKNO), pp. 1–4, Nov. 2023, doi: 10.1109/tiptekno59875.2023.10359196
- [5] H. Shrara, H. Ammar, M. Nasseredine, J. Charara, and F. Sbeity, "An EEG-Based Emotion Recognition Study Using Machine Learning and Deep Learning," 2023 Seventh International Conference on Advances in Biomedical Engineering (ICABME), 2023, pp. 125-129, doi: 10.1109/ICABME59496.2023.10293013
- [6] P. Kar, J. Hazarika, and M. R. Sethi, "A Comparative Study between Supervised and Unsupervised Techniques for Two-Class Emotion Recognition Using EEG," in 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), Pune, India, Apr. 2023, pp. 1-6, doi: 10.1109/I2CT57861.2023.10126336
- [7] W. L. Zheng and B. L. Lu, "Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks," in IEEE Transactions on Autonomous Mental Development, vol. 7, no. 3, pp. 162-175, Sept. 2015, doi: 10.1109/TAMD.2015.2431497
- [8] R. N. Duan, J. Y. Zhu and B. L. Lu, "Differential entropy feature for EEG-based emotion classification," 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 2013, pp. 81-84, doi: 10.1109/NER.2013.6695876.
- [9] A. Sulaiman, S. Abdallah, and K. K. George, "On the intersection of signal processing and Machine Learning: A use case-driven analysis approach," arXiv [eess.SP], 2024

THANK YOU

Q&A