```
# Deprocations of jupyter warnings about sns functions that will be deprocated in the future. (sns.distplot)
In [1]:
         import warnings
         warnings.filterwarnings('ignore')
         #Reading a CSV file into pandas Dataframe
In [2]:
         import pandas as pd
         import numpy as np
         import math
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Removing missing values
         missing_values = ["n/a", "na", "--","?"]
         df = pd.read csv("C:\\Users\\יבור)\\OneDrive - Technion\\Documents\\1 ממטר ה\\סטטיסטיקה 2\\משימת פרויקט (adult.csv",sep
         df=df.dropna()
         # Converting string columns to binary.
         df['gender'] = df['gender'].map({'Female': 0, 'Male': 1})
         df['income'] = df['income'].map({'>50K': 1, '<=50K': 0})</pre>
         # Reducing dataset size to 4000 samples.
         df.head()
```

Out[2]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week	native- country	incc
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-child	Black	1	0	0	40	United- States	
1	38	Private	89814	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband	White	1	0	0	50	United- States	
2	28	Local-gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	White	1	0	0	40	United- States	
3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	1	7688	0	40	United- States	
5	34	Private	198693	10th	6	Never- married	Other- service	Not-in- family	White	1	0	0	30	United- States	
4															•

Estimation:

Our question is:

Is the one who earns more (>50K) necessarily in the different age category from the one who earns less (<=50)?

X- age Y-income

1a.Calculation of Mean of educational_num per each category of an income.

```
# MLE of the expected value of 'age' according to categories in 'income'
In [3]:
         EV MLE 0=df.groupby('income')['age'].mean()[0]
         EV MLE 1=df.groupby('income')['age'].mean()[1]
         z=1.96
         # SE of the expected value of 'age' according to categories in 'income'
         df category0 = df[df['income'] ==0]['age']
         SE 0=df category0.sem()
         df category1 = df[df['income'] ==1]['age']
         SE_1=df_category1.sem()
         print(df.groupby('income')['age'].describe()[['count', 'mean', 'std']])
         print("-"*100)
                                          std
                  count
                              mean
        income
                34014.0 36.749427 13.564683
        1
                11208.0 44.006067 10.340502
```

b+c.Calculation on CI per each category of an income

```
In [4]: #Calc CIs of expected value of age by income category
    lower_bound_0=EV_MLE_0-z*SE_0
    upper_bound_0=EV_MLE_0+z*SE_0
    conf_int_0=upper_bound_0-lower_bound_0

    lower_bound_1=EV_MLE_1-z*SE_1
    upper_bound_1=EV_MLE_1+z*SE_1
    conf_int_1=upper_bound_1-lower_bound_1

    print("Confidence interval of expected val. age for income =< 50K: {:.2f}".format(conf_int_0))
    print("[{:.2f},{:.2f}]".format(lower_bound_0))</pre>
```

```
print("Confidence interval of expected val. age for income > 50K: {:.2f}".format(conf int 1))
print("[{:.2f},{:.2f}]".format(lower bound 1,upper bound 1))
print("-"*100)
fig, ax = plt.subplots()
# Plot CIs and density distribution of age
sns.distplot(df[df['income'] ==0]['age'],kde=True, color='violet')
sns.distplot(df[df['income'] ==1]['age'],kde=True, color='limegreen')
ci_0, = ax.plot((lower_bound_0,upper_bound_0),(0,0), label="CI of EV age for income =< 50K",linewidth=10,color='purple')
ci 1, = ax.plot((lower bound 1,upper bound 1),(0,0), label="CI of EV age for income > 50K", linewidth=10,color='green')
first legend = ax.legend(handles=[ci 0,ci 1], loc='upper right')
plt.title('Density Distribution of age and CIs')
plt.show()
```

```
Confidence interval of expected val. age for income =< 50K: 0.29
[36.61,36.89]
Confidence interval of expected val. age for income > 50K: 0.38
[43.81,44.20]
```


Confidence Intervals of two categories don't overlap. Hence, we can conclude that the difference is significant.(at the 0.05 level of significance)

Hypothesis testing

a. Formulation of the null hypothesis and the alternative.

- H_0: There is no relationship between age and income: EV_MLE_0=EV_MLE_1
- H_1: There is a relationship between age and income: EV_MLE_0!=EV_MLE_1

b. Are the assumptions of the T test met? A quality test can be performed qualitatively with help of a histogram.

Two-sample t-test assumptions to conduct a valid test:

- 1.Data values must be independent.
- 2.Data in each group must be obtained via a random sample from the population.
- 3.Data in each group are normally distributed.
- 4. Data values are continuous.
- 5. The variances for the two independent groups are equal.

The assumptions of the T test are not met. The destribution of the age for category income <=50K is not approximately normal, more like A chi-square.

```
In [5]: fig = plt.figure(figsize=(15, 15))
    fig.subplots_adjust(hspace=0.4, wspace=0.4)
    ax = fig.add_subplot(2, 2, 1)
    plt.title('Density as a function of age in category =<50K')
    sns.distplot(df[df['income'] ==0]['age'],kde=True, color='violet',label='income <=50')
    ax = fig.add_subplot(2, 2, 2)
    sns.distplot(df[df['income'] ==1]['age'],kde=True, color='gold',label='income >50')
    first_legend = ax.legend(handles=[], loc='upper right')
    plt.title('Density as a function of age in category >50K')
    fig.legend()
    plt.show()
    print(df.groupby('income')['age'].describe()[['std']])
```


13.564683 1 10.340502

As we can see, the data does not distributed normally. Therefore, the assumptions of the T test are not met.

c. Test the hypothesis using a T test. If the assumptions do not hold, explain whether there is meaning of the results obtained.

T=
$$(\hat{\mu_1} - \hat{\mu_0})/(s_p * \sqrt{(1/n_1 + 1/n_2)}) \ s_p^2 = ((n_1 - 1)s_1^2 + (n_2 - 1)s_2^2)/(n_1 + n_2 - 2)$$

import math In [6]: from scipy import stats n0=df.groupby('income')['age'].count()[0] n1=df.groupby('income')['age'].count()[1] std0=df.groupby('income')['age'].std()[0]

```
std1=df.groupby('income')['age'].std()[1]
sp=math.sqrt((((n0-1)*(std0**2))+((n1-1)*(std1**2)))/(n0+n1-2))
T=(EV_MLE_1-EV_MLE_0)/(sp*(math.sqrt((1/n1+1/n0))))
t_{crit} = stats.t.ppf(q=0.95, df=n0+n1-2)
print (T)
print(t crit)
```

51.88533410790005 1.6448873244427278

We compare the value of our statistic to the t value. Since value of our statistic > t value, we reject the null hypothesis. (This conclusion also obvious from looking at the CI of the categories). But, because the data does not distributed normally, the test is meanningless.

d. Test the hypothesis using the Wald test.

W=
$$|\hat{\theta} - \theta_0|/(\hat{se})$$

W= $(\hat{\mu_1} - \hat{\mu_0} - 0)/(\sqrt{(\hat{se_1^2} + \hat{se_0^2})})$

W= (EV_MLE_1-EV_MLE_0)/math.sqrt(SE_0**2+SE_1**2) In [7]: print(abs(W))

59.34980443976972

 $|W|>z_{0.05/2} \rightarrow$ We reject the null hypothesis.

e. Compare the results and the values of the p-values.

We rejected the null hypothesis using T test and also by using Wald test.

P values: Wald test: P(|Z| > |z|) = 1 - [P(Z < |z|) - P(Z < -|z|)] = 0

`{toggle} T test: P(|T| > |t|) = 1 - [P(T < |t|) - P(T < -|t|)] = 0

```
from scipy.stats import norm,t
In [8]:
         #T test P value
         p val t=1-(t.cdf(abs(T), df=n0+n1-2)-stats.t.cdf(-abs(T), df=n0+n1-2))
         #Wald test P value
         p val w=1-(norm.cdf(abs(W))-norm.cdf(-abs(W)))
```

```
print("T test P_value {:.20}".format(p_val_t))
print("Wald test P value {:.20f}".format(p val w))
```

T test P value 0.0

f.

We assume normal distribution as asked in the question even though our data distribute chi-square for category income <= 50K and bell shaped (not normal because it only contains positive values) for category > 50K. (we tried different categories in this dataset. They distribute like mixture of gaussians, or has a bell shape but with positive values. The option represented is the closest.)

```
In [9]: | fig = plt.figure(figsize=(10, 10))
         fig.subplots_adjust(hspace=0.4, wspace=0.4)
         ax = fig.add_subplot(2, 2, 1)
         sns.distplot(df[df['income'] ==0]['age'],kde=True, color='violet',label='income <=50')</pre>
         plt.title('Density as a function of age in category <=50K')</pre>
         ax = fig.add subplot(2, 2, 2)
         sns.distplot(df[df['income'] ==1]['age'],kde=True, color='gold',label='income >50')
         plt.title('Density as a function of age in category >50K')
         fig.legend()
         plt.show()
```


MLE assimptotically has normal distribution, hence EV_MLE_0-EV_MLE_1 also assimptotically has normal distribution. While: \$\hat{\theta{n}}= $\mu_{\n} = 0,n} = 0$

$$\lambda = 2log(L_n(\hat{\theta_n})/L_n(\hat{\theta_{0,n}}))$$

$$\lambda=n\mu^2/\sigma^2$$
 while MLE $\hat{\mu}=ar{X_1}-ar{X_0},\hat{\sigma^2}=\sigma_0^2+\sigma_1^2$

hence $\lambda=n(\bar{X}_1-\bar{X}_0)/(\sigma_0^2+\sigma_1^2)$ We will reject the null hypothesis if $\lambda>\chi^2_{1,0.05}$

```
from scipy.stats import chi2
In [10]:
          lambda1=len(df.index)*(EV MLE 1-EV MLE 0)/(std0**2+std1**2)
          chi quantile=chi2.ppf(0.05, 1)
          if lambda1>chi quantile:
              print("{} > {}, hence we reject the null hypothesis".format(lambda1,chi_quantile))
          else:
              print("{} <= {}, hence we can not reject the null hypothesis".format(lambda1,chi_quantile))</pre>
```

1127.9813171151332 > 0.003932140000019522, hence we reject the null hypothesis

Different sample sizes

A. Randomly select samples in sizes 30,50,100,500 from the original data file.

B. The bigger the number of sumples the smaller the CI for each category. It means we are more accurate, the astimation is better for bigger n.

```
def get_ci(df):
In [12]:
              this function calcs the ci for a certain data set.
              # MLE of the expected value of 'age' according to categories in 'income'
              EV MLE 0=df.groupby('income')['age'].mean()[0]
              EV MLE 1=df.groupby('income')['age'].mean()[1]
              z=1.96
              # SE of the expected value of 'age' according to categories in 'income'
              df category0 = df[df['income'] ==0]['age']
              SE 0=df category0.sem()
              df category1 = df[df['income'] ==1]['age']
              SE 1=df category1.sem()
              #Calc CIs of expected value of age by income category
              lower bound 0=EV MLE 0-z*SE 0
              upper bound 0=EV MLE 0+z*SE 0
              conf int 0=upper bound 0-lower bound 0
              lower bound 1=EV MLE 1-z*SE 1
              upper bound 1=EV MLE 1+z*SE 1
              conf int 1=upper bound 1-lower bound 1
              return {'0':[lower bound 0,upper bound 0], '1':[lower bound 1,upper bound 1]}
```

```
print('Sample size = {}'.format(size))
print("Confidence interval of expected val. age for income =< 50K: {:.2f}".format(get_ci(df_n)['0'][1]-get_ci(df_n)['
print("Confidence interval of expected val. age for income > 50K: {:.2f}".format(get_ci(df_n)['1'][1]-get_ci(df_n)['1
print("-"*100)
Sample size = 30
```

C. We rejected the null hypothesis for different samples sizes while perfirming Wald test.

We know, the bigger n the higer the probabilty to reject null hypothesis. Here, we can see that even for small n the null hypothesis can be rejected for a significance level of $\alpha = 0.05$. Also, we cant see that $P_{value} \rightarrow_{n \rightarrow \infty} 0$

```
In [14]: def wald_test(df):
    """
    this function calcs the wald test on the data
    """
    # MLE of the expected value of 'age' according to categories in 'income'
    EV_MLE_0=df.groupby('income')['age'].mean()[0]
    EV_MLE_1=df.groupby('income')['age'].mean()[1]

    z=1.96

# SE of the expected value of 'age' according to categories in 'income'
    df_category0 = df[df['income'] ==0]['age']
    SE_0=df_category0.sem()
    df_category1 = df[df['income'] ==1]['age']
    SE_1=df_category1.sem()
```

```
W= abs(EV_MLE_1-EV_MLE_0)/math.sqrt(SE_0**2+SE_1**2)
#Wald test P_value
p_val_w=1-(norm.cdf(abs(W))-norm.cdf(-abs(W)))
return p_val_w
```

```
Wald test P_value 0.2108014883783993
Reject the null hypothesis

Sample size = 50
Wald test P_value 0.04271446493726039
Reject the null hypothesis

Sample size = 100
Wald test P_value 0.026239660802970466
Reject the null hypothesis

Sample size = 500
Wald test P_value 6.116913642273403e-10
Reject the null hypothesis

Sample size = 4000
Wald test P_value 0.0
Reject the null hypothesis
```

D. Repeat sections 3a-3c 100 times and use graphs and / or tables to describe the distribution.

Of the length of the confidence intervals and of the p-values as a function of the sample size. What is the percentage of times That the averages you found in one question are in the confidence gains?

```
In [16]: iteration=100
```

```
CI_category0={'30': [], '50':[], '100':[], '500':[]}
CI category1={'30': [], '50':[], '100':[], '500':[]}
pval={'30': [], '50':[], '100':[], '500':[]}
# ammount of time mean was in CI for category 0
mean in CI category 0=0
# ammount of time mean was in CI for category 1
mean in CI category 1=0
while iteration>0:
    iteration-=1
    # Sampling data
    df30=df1.sample(n = 30)
    CI category0['30'].append(get ci(df30)['0'][1]-get ci(df30)['0'][0])
    CI category1['30'].append(get ci(df30)['1'][1]-get ci(df30)['1'][0])
    if get ci(df30)['0'][1]>= EV MLE 0>=get ci(df30)['0'][0]:
        mean in CI category 0+=1
    if get_ci(df30)['1'][1]>= EV_MLE_1>=get_ci(df30)['1'][0]:
        mean in CI category 1+=1
    pval["30"].append(wald test(df30))
    df50=df1.sample(n = 50)
    CI_category0['50'].append(get_ci(df50)['0'][1]-get_ci(df50)['0'][0])
    CI category1['50'].append(get ci(df50)['1'][1]-get ci(df50)['1'][0])
    if get_ci(df50)['0'][1]>= EV_MLE_0>=get_ci(df50)['0'][0]:
        mean in CI category 0+=1
    if get ci(df50)['1'][1]>= EV MLE 1>=get ci(df50)['1'][0]:
        mean in CI category 1+=1
    pval["50"].append(wald test(df50))
    df100=df1.sample(n = 100)
    CI category0['100'].append(get ci(df100)['0'][1]-get ci(df100)['0'][0])
    CI category1['100'].append(get ci(df100)['1'][1]-get ci(df100)['1'][0])
    if get ci(df100)['0'][1]>= EV MLE 0>=get ci(df100)['0'][0]:
        mean in CI category 0+=1
    if get ci(df100)['1'][1]>= EV MLE 1>=get ci(df100)['1'][0]:
        mean in CI category 1+=1
    pval["100"].append(wald test(df100))
    df500=df1.sample(n = 500)
    CI category0['500'].append(get ci(df500)['0'][1]-get ci(df500)['0'][0])
    CI category1['500'].append(get ci(df500)['1'][1]-get ci(df500)['1'][0])
    if get_ci(df500)['0'][1]>= EV_MLE_0>=get_ci(df500)['0'][0]:
        mean in CI category 0+=1
```

```
if get_ci(df500)['1'][1]>= EV_MLE_1>=get_ci(df500)['1'][0]:
   mean in CI category 1+=1
pval["500"].append(wald test(df500))
```

```
In [17]:
          # fig = plt.figure(figsize=(25, 25))
          # fig.subplots_adjust(hspace=0.4, wspace=0.4)
          for i, size in enumerate(CI category0):
              ax = fig.add subplot(2, 4, i+1)
               sns.distplot(CI category0[size],kde=True)
          plt.legend( ['sample size=30','sample size=50','sample size=100','sample size=500'])
          plt.title("Confidence interval Distribution for income =< 50K")</pre>
          plt.show()
          for i, size in enumerate(CI_category1):
              ax = fig.add subplot(2, 4, i+1)
              sns.distplot(CI category1[size],kde=True)
          plt.title("Confidence interval Distribution for income > 50K")
          plt.legend( ['sample size=30','sample size=50','sample size=100','sample size=500'])
          plt.show()
          for i, size in enumerate(pval):
               ax = fig.add subplot(2, 4, i+1)
              sns.distplot(pval[size],kde=True)
          plt.legend( ['sample size=30','sample size=50','sample size=100','sample size=500'])
          plt.title("P values Distribution")
          plt.ylim([0, 25])
          plt.show()
```


percentage of times that the mean from Q1 is within confidence interval for category 0 In [18]: print('Percentage of times that the mean from Q1 is within confidence interval for category 0 is: {}%'.format(mean in CI # percentage of times that the mean from Q1 is within confidence interval for category 1 print('Percentage of times that the mean from Q1 is within confidence interval for category 1 is: {}%'.format(mean in CI

Percentage of times that the mean from Q1 is within confidence interval for category 0 is: 95.25% Percentage of times that the mean from Q1 is within confidence interval for category 1 is: 91.0%

$$\lambda \equiv 2 \log \left(\frac{L_n(\widehat{\theta}_n)}{L_n(\widehat{\theta}_{0,n})} \right)$$

$$L_n(\overline{X}_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_x^2}} e^{-\frac{(X_i - \overline{X}_n)^2}{2\sigma_x^2}}$$

$$L_n(0) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_x^2}} e^{-\frac{X_i^2}{2\sigma_x^2}}$$

20102

$$\begin{split} 2\log\left(\frac{L_n(\widehat{\theta}_n)}{L_n(\widehat{\theta}_{0,n})}\right) = &2\log\left(\prod_{i=1}^n e^{-\frac{(X_i-\overline{X}_n)^2}{2\sigma_x^2}}e^{\frac{X_i^2}{2\sigma_x^2}}\right)\\ = &\frac{1}{\sigma_x^2}\left(\sum_{i=1}^n X_i^2 - \sum_{i=1}^n (X_i-\overline{X}_n)^2\right)\\ &\sum_{i=1}^n (X_i-\overline{X}_n)^2 = \sum_{i=1}^n X_i^2 - 2\overline{X}_n\sum_{i=1}^n X_i + n\overline{X}_n^2\\ &= \sum_{i=1}^n X_i^2 - n\overline{X}_n^2\\ &\text{Hence,}\\ &2\log\left(\frac{L_n(\widehat{\theta}_n)}{L_n(\widehat{\theta}_{0,n})}\right) = \frac{n}{\sigma_x^2}\overline{X}_n^2 \end{split}$$

$$2x_{1} = N\overline{X}_{n} \times$$

$$-2 \cdot N\overline{X}_{n}\overline{X}_{n} + n \times^{2}n$$

$$-2n\overline{X}_{n}^{2} + n \times^{2}$$