F

Lógica El

	Exame de Recurso — 26 de junho de 2018 —	——— duração: 2 horas ————————————————————————————————————	
nome:		número	

Grupo I

Este grupo é constituído por 5 questões. Em cada questão, deve dizer se a afirmação indicada é verdadeira (V) ou falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída será 1 valor, -0,5 valores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalada resposta, respetivamente. A cotação total neste grupo é no mínimo 0 valores.

- 1. Para quaisquer $\varphi, \psi \in \mathcal{F}^{CP}$, se $\varphi \leftrightarrow \psi$ é tautologia, então $\varphi \lor \psi$ é tautologia. \square 2. $p_0 \to \neg p_1, \neg p_0 \to p_1 \models p_0 \leftrightarrow \neg p_1$. \square
- 3. Para quaisquer $\Gamma \subseteq \mathcal{F}^{CP}$ e $\varphi, \psi \in \mathcal{F}^{CP}$, se Γ é semanticamente consistente e $\square \square \varphi \to \psi \in \Gamma$, então $\varphi \not\in \Gamma$ ou $\neg \psi \not\in \Gamma$.
- 4. A fórmula $s(x_0) + x_1 < x_0 + x_1$ de tipo Arit é satisfazível.
- 5. Para todo o tipo de linguagem L com um símbolo de relação unário \mathbb{Q} , a fórmula \square $(\forall x_0 \mathbb{Q}(x_0)) \to (\exists x_1 \mathbb{Q}(x_1))$ é universalmente válida.

Grupo II

- 1. Considere o conjunto $X \subseteq \mathcal{F}^{CP}$, definido indutivamente pelas seguintes regras:
 - (1) Para todo $i \in \mathbb{N}_0, p_i \in X$;
 - (2) Para todo $i \in \mathbb{N}_0, \neg p_i \in X$;
 - (3) Para quaisquer $\varphi, \psi \in \mathcal{F}^{CP}$, se $\varphi \in X$ e $\psi \in X$, então $\varphi \wedge \psi \in X$.
 - (a) Sem justificar, dê exemplo de uma fórmula de X com pelo menos três ocorrências de conetivos.
 - (b) Prove, por indução estrutural em X, que nenhum elemento de X é tautologia.
- 2. Indique, justificando, uma forma normal disjuntiva logicamente equivalente à fórmula $\neg((\neg p_0 \lor p_1) \leftrightarrow ((p_1 \to \bot) \to p_2)).$
- 3. Construa uma derivação em DNP que mostre que $(p_0 \to (p_1 \to p_2)) \vdash ((p_0 \land p_1) \to p_2)$.
- 4. Prove que, para quaisquer fórmulas φ , ψ e σ do Cálculo Proposicional e qualquer conjunto de fórmulas Γ do Cálculo Proposicional, se $\varphi \vee \sigma$ é um teorema de DNP e $\Gamma, \varphi \models \psi$, então $\Gamma \vdash \sigma \vee \psi$.

Grupo III

(Nas seguintes questões, exceto na 6(a), apresente cada resposta no espaço disponibilizado para o efeito.)

Considere o tipo de linguagem $L = (\{0,x\}, \{Q,<\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(x) = 2$, $\mathcal{N}(Q) = 1$ e $\mathcal{N}(<) = 2$. Seja $E = (\mathbb{R}, \overline{})$ a estrutura de tipo L tal que:

 $\begin{array}{ll} \overline{\mathbb{Q}} \text{ \'e o n\'umero zero} & \overline{\mathbb{Q}} \text{ \'e o predicado "\'e racional" em } \mathbb{R} \\ \overline{\mathbb{X}} \text{ \'e a multiplicação em } \mathbb{R} & \overline{<} \text{ \'e a relação "menor do que" em } \mathbb{R} \end{array}$

- 1. Sem justificar, dê exemplo de um termo de tipo L com exatamente duas ocorrências do símbolo x e quatro subtermos.
- 2. Sem justificar, dê exemplo de um termo t de tipo L tal que $x_1 \in VAR(t)$ e \bar{t}_{α} não depende da atribuição α em E.
- 3. Defina, por recursão estrutural, a função $f: \mathcal{T}_L \to \mathbb{N}_0$ que a cada termo t faz corresponder o número de ocorrências de constantes em t.

- 4. Seja α a atribuição em E tal que, para todo $i \in \mathbb{N}_0$, $\alpha(x_i) = i 2$. Indique, sem justificar, $\overline{((x_1 \times x_3) \times x_1)}_{\alpha}$.
- 5. Sem justificar, apresente uma fórmula de tipo L, verdadeira em E, que represente a seguinte afirmação: O produto de dois racionais positivos é um racional positivo.
- 6. Seja φ a fórmula $\forall x_0 \neg (x_0 \times x_0 < 0)$.
 - (a) Prove que φ é verdadeira em E.
 - (b) Indique, sem justificar, uma estrutura E' de tipo L que seja diferente de E apenas na interpretação de algum dos símbolos de função de L e tal que φ não seja verdadeira em E'.

0-42	Ι	II	III
Cotações	5	4,5+2,5+2+1,5	0,5+0,5+1+0,5+0,5+1,5