ME599 Simulation Workshop

CARLA, ROS and Docker By: Urban Pistek

Background: Vehicle Software Development

Background: Vehicle Software Development

Need: Develop and test software without conflicting with rest of the team, in a controlled environment.

Solution: Leverage simulation and software tools to automate testing and parallelize development.

Background: Software & Simulation Tools

Solution: Leverage simulation and software tools to automate testing and parallelize development.

Simulation: Docker

Docker: A software platform that allows developers to easily create, deploy, and run applications in a virtual environment called a container.

Portability: Docker containers are platform-agnostic

Efficiency: Lightweight and use fewer resources than traditional virtual machines

Consistency: Built from a set of instructions called a Dockerfile, which ensures that the application is built and deployed in a consistent and repeatable way

Isolation: Docker containers provide a level of isolation between the application and the host system

Scalability: Docker makes it easy to scale applications horizontally by running multiple instances of the same container across multiple machines

Simulation: CARLA

CARLA: An open-source simulation platform designed for testing and developing autonomous driving systems.

Semi-Realistic Environment: Realistic and configurable simulation environment that includes realistic physics, weather conditions, and a range of urban and suburban scenarios

Safe & Cost-Effective Testing: Test autonomous driving algorithms and systems in a safe and controlled environment, without the need for real-world testing

Sensor Simulation: Supports lidar, radar, and cameras

Open-source & Extensible: Open-source platform, which means it can be customized and extended to meet the specific needs of individual developers and research teams

Simulation: ROS

ROS: ROS (Robot Operating System) is an open-source framework for building and programming robots

Modularity: Easy to reuse code and build on existing components

Flexibility: Supports a wide range of hardware and software platforms

Large Community: Active community of developers, researchers, and users

Rich set of tools and libraries: Visualization tools, simulation environments, and software libraries

Open-source & Extensible: Open-source, which means it can be customized and extended to meet the specific needs of individual developers and research teams

Simulation: Foxglove

Foxglove: Foxglove is an open-source software platform designed to provides a suite of tools & libraries to quickly build robotic systems

Simple: Foxglove provides a suite of pre-built tools and libraries that simplify the development of robotic applications

Modular: Foxglove's modular architecture allows users to create custom workflows by combining pre-built components and libraries

Real-Time Monitoring & Control: Foxglove's user interface makes it easy to monitor and control robotic systems in real-time

Support: Foxglove supports a wide range of hardware platforms and communication protocols

Open-source & Extensible: Open-source, which means it can be customized and extended to meet the specific needs of individual developers and research teams

Simulation: Architecture

Workshop Outline:

- 1. Docker Overview
- 2. Docker Compose Overview
- 3. ROS with Docker
- 4. CARLA with Docker
- 5. Foxglove Overview
- 6. Running the simulation stack locally
- 7. Watonomous Server Cluster
- 8. Running the simulation stack from the server