Name : Vivi Student ID : 24S153073 Grade :

Problem 1 Score: . Smooth maps and differentials

(1) let $\mathcal{M}, \mathcal{M}', \mathcal{M}''$ be embedded submanifolds of the linear spaces $\mathcal{E}, \mathcal{E}', \mathcal{E}''$, respectively. For smooth maps $F: \mathcal{M} \to \mathcal{M}'$ and $G: \mathcal{M}' \to \mathcal{M}''$, show that $G \circ F: \mathcal{M} \to \mathcal{M}''$ is smooth, and the chain rule is satisfied:

$$D(G \circ F)(x) = DG(F(x)) \circ DF(x).$$

(2) Give an example of an embedded submanifold \mathcal{M} in a linear space \mathcal{E} and a smooth function $f: \mathcal{M} \to \mathbb{R}$ for which there does not exist a smooth extension $\tilde{f}: \mathcal{E} \to \mathbb{R}$ smooth on all of \mathcal{E} . Aim for an example where f is bounded on \mathcal{M} .

Solution: (1) (a) smoothness

Since F and G are smooth, we have two smooth extensions $\bar{F}: U \to \mathcal{E}'$ and $\bar{G}: U' \to \mathcal{E}''$.

Let $\tilde{F}: U \cap \bar{F}^{-1}(U') \to U'$ be the restriction of \bar{F} .

Since \bar{F} is smooth, $\bar{F}^{-1}(U')$ is open in U, then $U \cap \bar{F}^{-1}(U')$ is open in U.

Moreover, for $x \in \mathcal{M}$, we have $\bar{F}(x) = F(x) \in \mathcal{M}' \subseteq U'$, i.e., $x \in \bar{F}^{-1}(U')$.

Then $x \in U \cap \bar{F}^{-1}(U')$, i.e., $\mathcal{M} \subseteq U \cap \bar{F}^{-1}(U')$.

So $U \cap \bar{F}^{-1}(U')$ is a neighborhood of \mathcal{M} in \mathcal{E} , and \tilde{F} is a smooth extension of F.

Then, $\bar{G} \circ \tilde{F} : U \cap \bar{F}^{-1}(U') \to \mathcal{E}''$ is a smooth extension of $G \circ F$, therefore $G \circ F$ is smooth.

(b) chain rule

Let $(x, v) \in T\mathcal{M}$, then $x \in \mathcal{M}$ and $v \in T_x\mathcal{M}$, and a smooth curve $c : \mathbb{R} \to \mathcal{M}$ with c(0) = x and c'(0) = v.

Then $F \circ c : \mathbb{R} \to \mathcal{M}'$ is a smooth curve with $(F \circ c)(0) = F(x)$ and $(F \circ c)'(0) = DF(x)[v]$.

Therefore, we have

$$D(G \circ F)(x)[v] = D(G \circ F)(c(0))[c'(0)]$$

$$= \frac{d}{dt}(G \circ F)(c(t))|_{t=0}$$

$$= DG((F \circ c)(0))[(F \circ c)'(0)]$$

$$= DG(F(x))[DF(x)[v]]$$

$$= DG(F(x)) \circ DF(x)[v].$$

(2)
$$\mathcal{E} = \mathbb{R}, \mathcal{M} = \mathbb{R} \setminus 0, f(x) = \frac{1}{x}$$
.

Problem 2 Score: . Submanifolds of submanifolds

Let \mathcal{M} be an embedded submanifold of a linear space \mathcal{E} , and \mathcal{N} a subset of \mathcal{M} defined by $\mathcal{N} = g^{-1}(0)$, where $g : \mathcal{M} \to \mathbb{R}^l$ is smooth and rank $(Dg(x)) = l \geq 1$ for all $x \in \mathcal{N}$.

Show that \mathcal{N} is itself an embedded submanifold of \mathcal{E} , of dimension $\dim(\mathcal{M}) - l$, with tangent spaces $T_x \mathcal{N} = \ker(Dg(x)) \subset T_x \mathcal{M}$.

Solution: Assume that $\dim(\mathcal{E}) = d, \dim(\mathcal{M}) = m < d$.

For m = d, (N) is apparently an embedded submanifold of \mathcal{E} , and $\dim(\mathcal{N}) = d - l = m - l$.

For m < d, let the local defining function of \mathcal{M} be $f: U \to \mathbb{R}^{d-m}$, where U is a neighborhood of \mathcal{M} in \mathcal{E} .

We can build a smooth extension of $\bar{g}: V \to \mathbb{R}^l$ of g where V is another neighborhood of \mathcal{M} in \mathcal{E} .

Then we have a local defining funcion $F: U \cap V \to \mathbb{R}^{d-m+l}, F(x) = (f(x), \overline{g}(x)).$

Apparently F is smooth.

Assume F(x) = 0, then f(x) = 0 and $\bar{g}(x) = 0$, i.e., $x \in \mathcal{M}$ and $x \in \mathcal{N}$; conversely assume $x \in \mathcal{M}$ and $x \in \mathcal{N}$, then f(x) = 0 and $\bar{g}(x) = g(x) = 0$, i.e., F(x) = 0.

Then focus on the differential of F at x, $DF(x): \mathcal{E} \to \mathbb{R}^{d-m+l}$, $DF(x)[v] = (Df(x)[v], D\bar{g}(x)[v])$.

$$\ker Dg(x) = \{ v \in T_x \mathcal{M} : Dg(x)[v] = 0 \}$$

$$= \{ v \in T_x \mathcal{M} : D\bar{g}(x)[v] = 0 \}$$

$$= \{ v \in \mathcal{E} : Df(x)[v] = 0, D\bar{g}(x)[v] = 0 \}$$

$$= \ker DF(x).$$

Since, $\operatorname{rank}(Dg(x)) = l$, we have $\operatorname{rank}(\ker DF(x)) = \operatorname{rank}(\ker Dg(x)) = \dim(\mathcal{M}) - \operatorname{rank}(Dg(x)) = m - l$.

Then, $\operatorname{rank}(DF(x)) = \dim(\mathcal{E}) - \operatorname{rank}(\ker DF(x)) = d - (m-l) = d - m + l$.

Therefore, F is a local defining function of \mathcal{N} , and \mathcal{N} is an embedded submanifold of \mathcal{E} , of dimension $m-l=\dim(\mathcal{M})-l$, with tangent spaces $T_x\mathcal{N}=\ker DF(x)=\ker Dg(x)\subset T_x\mathcal{M}$.

Problem 3 Score: _____. Stereographic projection

For $(x, v) \in T\mathbb{S}^{d-1}$, let $R_x(v)$ denote the point which lies on \mathbb{S}^{d-1} and on the line connecting x + v and -x, and which is not -x. Show that $(x, v) \mapsto R_x(v)$ is well defined on the whole tangent bundle, and that it is retraction.

Solution: The line connecting x + v and -x can be written as

$$R_x(v) = t(x+v) + (1-t)(-x) = tx + tv + tx - x = (2t-1)x + tv$$

where $t \in \mathbb{R} \setminus 0$.

Since $x \in \mathbb{S}^{d-1}$, we have $x \cdot x = 1$ and $x \cdot v = 0$. Then, we have

$$R_x(v) \cdot R_x(v) = (2t - 1)^2 x \cdot x + t^2 v \cdot v + 2t(2t - 1)x \cdot v$$
$$= (2t - 1)^2 + t^2 ||v||^2$$
$$= (4 + ||v||^2)t^2 - 4t + 1 = 1.$$

We get $t = \frac{4}{4+\|v\|^2}$, then $R_x(v) = \frac{4(2x+v)}{4+\|v\|^2} - x$, which is smooth. For $c(t) = R_x(tv)$, we have

$$c(0) = \frac{4(2x)}{4} - x = x.$$
$$c'(0) = \frac{4v}{4} = v.$$

Therefore, $(x, v) \mapsto R_x(v)$ is well defined on the whole tangent bundle, and it is retraction.

Problem 4 Score: _____. QR retraction for small Stiefel

We've showed that

$$\mathcal{M} = \{ X = (x, y) \in \mathbb{R}^d \times \mathbb{R}^d = \mathbb{R}^{d \times 2} : x^{\top} x = 1, y^{\top} y = 1, x^{\top} y = 0 \}$$

is an embedded submanifold of $\mathcal{E} = \mathbb{R}^d \times \mathbb{R}^d = \mathbb{R}^{d \times 2}$.

- (1) Show that for all $(X, V) \in T\mathcal{M}$, there is a unique way to write X + V = QR where $Q \in \mathcal{M}$ and R is upper triangular with positive diagonal entries. Then define $\mathcal{R}: T\mathcal{M} \to \mathcal{M}$ by $\mathcal{R}_X(V) = Q$. Hint: When is the QR decomposition unique for a matrix $A \in \mathbb{R}^{d \times m}$?
- (2) Derive an explicit formula for $R_X(V)$, and use it to show that \mathcal{R} is a retraction for \mathcal{M} .
- (3) For $X \in \mathcal{M}$, is $\mathcal{R}_X : T_X \mathcal{M} \to \mathcal{M}$ surjective?

Solution: (1) For $(X, V) \in T\mathcal{M}$, $(X + V)^{\top}(X + V) = I + V^{\top}V \succ 0$, i.e., X + V has full collumn rank. Then, we have the QR decomposition X + V = QR where $Q \in \mathcal{M}$ and R is upper triangular with positive diagonal entries is unique.

(2) For $X = (x_1, x_2), V = (v_1, v_2)$, we have $X + V = (x_1 + v_1, x_2 + v_2) = QR$. We can apply the Gram-Schmidt process to $x_1 + v_1, x_2 + v_2$ to get $Q = (q_1, q_2)$:

$$q_1 = \frac{x_1 + v_1}{\|x_1 + v_1\|},$$

$$q_2 = \frac{x_2 + v_2 - (x_2 + v_2) \cdot q_1}{\|x_2 + v_2 - (x_2 + v_2) \cdot q_1\|}$$

To show that \mathcal{R} is a retraction for \mathcal{M} , we need to show, for the curve $c(t) = R_X(tV)$, that c(0) = X and c'(0) = V. That is to say, for two curves $q_1(t) = \frac{x_1 + tv_1}{\|x_1 + tv_1\|}$ and $q_2(t) = \frac{x_2 + tv_2 - (x_2 + tv_2) \cdot q_1(t)}{\|x_2 + tv_2 - (x_2 + tv_2) \cdot q_1(t)\|}$, $q_1(0) = x_1, q_2(0) = x_2$ and $q'_1(0) = v_1, q'_2(0) = v_2$.

(3) For $X \in \mathcal{M}$, $\mathcal{R}_X : T_X \mathcal{M} \to \mathcal{M}$ is not surjective.

Problem 5 Score: _____. Metric projection retraction for Stiefel

For $p \leq n$, consider the Stiefel

$$\mathcal{M} = St(n, p) = \{ X \in \mathbb{R}^{n \times p} : X^{\top} X = I_p \}.$$

(1) Show that \mathcal{M} is an embedded submanifold of $\mathbb{R}^{n \times p}$. As usual, we endow $\mathbb{R}^{n \times p}$ with the inner product $\langle X, Y \rangle = \operatorname{Tr}(X^{\top}Y)$. What is the dimension of \mathcal{M} ? What are the tangent spaces $T_X \mathcal{M}$?

Exercise 3

(2) For $(X, V) \in T\mathcal{M}$, let $U\Sigma W^{\top}$ be a thin SVD of X + V (i.e., $U \in \mathcal{M}$, $W \in O(p)$ and $\Sigma \in \mathbb{R}^{p \times p}$ is diagonal with positive entries). Show that UW^{\top} is the unique metric projection of X + V to \mathcal{M} , i.e., $Y = UW^{\top}$ is the unique solution of

$$\min_{Y \in \mathcal{M}} \|X + V - Y\|^2.$$

For $(X, V) \in T\mathcal{M}$, define $\mathcal{R}_X(V) = UW^{\top}$.

(3) Show that

$$R_X(V) = (X+V)(I_p + V^{\top}V)^{-1/2}.$$

- (4) Show that R is a retraction for \mathcal{M} , which is known as the polar retraction.
- (5) Is $\mathcal{R}_X : T_X \mathcal{M} \to \mathcal{M}$ surjective?

Solution: (1) Define a map

$$h: \mathbb{R}^{n \times p} \to Sym(p), h(X) = X^{\top}X - I_p,$$

where $Sym(p) := \{ A \in \mathbb{R}^{p \times p} : A = A^{\top} \}.$

As h is clearly smooth and $\mathcal{M} = h^{-1}(0)$, we just need to show that Dh(X) has full rank for all $X \in \mathcal{M}$.

$$Dh(X)(V) = \frac{d}{dt}h(X + tV)|_{t=0} = V^{\top}X + X^{\top}V.$$

For $W \in Sym(p), V = \frac{1}{2}XW$, we have

$$Dh(X)(V) = \frac{1}{2}W^{\top}X^{\top}X + \frac{1}{2}X^{\top}XW = W,$$

i.e., Dh(X) has full rank for all $X \in \mathcal{M}$.

Thus, \mathcal{M} is an embedded submanifold of $\mathbb{R}^{n \times p}$, and $\dim(\mathcal{M}) = \dim(\mathbb{R}^{n \times p}) - \dim(Sym(p)) = np - \frac{p(p+1)}{2} = p(n - \frac{p+1}{2})$.

Lastly, the tangent space $T_X \mathcal{M}$ is the kernel of Dh(X), i.e., $T_X \mathcal{M} = \{V \in \mathbb{R}^{n \times p} : V^\top X + X^\top V = 0\}$.

(2) As the map $Y \to YW, W \in O(p)$ from St(n,p) to St(n,p) is bijective,

$$\min_{Y \in \mathcal{M}} \|X + V - Y\|^2 = \min_{Y \in \mathcal{M}} \|U\Sigma W^\top - Y\|^2$$

$$= \min_{Y \in \mathcal{M}} \|U\Sigma - YW\|^2$$

$$= \min_{Z \in \mathcal{M}} \|U\Sigma - Z\|^2$$

$$= \min_{Z \in \mathcal{M}} \left(\sum_{i=1}^p \|\sigma_i u_i - z_i\|^2\right)$$

$$= \min_{Z \in \mathcal{M}} \left(\sum_{i=1}^p \sigma_i^2 - 2\sigma_i \langle u_i, z_i \rangle + 1\right)$$

$$\geq \sum_{i=1}^p (\sigma_i^2 - 2\sigma_i + 1)$$

where the equality holds when Z = YW = U, i.e., $Y = UW^{\top}$

(3) For $V \in T_X \mathcal{M}$,

$$(I_p + V^{\top}V)^{-1/2} = ((X + V)^{\top}(X + V))^{-1/2}$$

$$= (W\Sigma U^{\top}U\Sigma W^{\top})^{-1/2}$$

$$= (W\Sigma^2 W^{\top})^{-1/2}$$

$$= W\Sigma^{-1}W^{\top}$$

Then, $(X+V)(I_p+V^{\top}V)^{-1/2} = U\Sigma W^{\top}W\Sigma^{-1}W^{\top} = UW^{\top} = R_X(V)$.

(4) Define a curve $c(t) = R_X(tV)$, then obviously, c(0) = X. We then show that c'(0) = V.

$$c'(0) = \frac{d}{dt} R_X(tV)|_{t=0} = \frac{d}{dt} (X + tV) (I_p + tV^\top V)^{-1/2}|_{t=0} = V.$$

Therefore, R is a retraction for \mathcal{M} .

(5) For $X \in \mathcal{M}$, $\mathcal{R}_X : T_X \mathcal{M} \to \mathcal{M}$ is not surjective.

Problem 6 Score: _____. Exponential map on rotations Let $\mathcal{M} = SO(n) = \{X \in \mathbb{R}^{n \times n} : X^\top X = I, \det(X) = 1\}$ be the special orthogonal group. The matrix exponential map $exp: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ is the smooth function defined by

$$\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}, \text{where } A^0 = I.$$

- (1) Show that \mathcal{M} is an embedded submanifold of $\mathbb{R}^{n\times n}$. What is the dimension of \mathcal{M} ? What are the tangent spaces
- (2) Let $\Omega \in \mathbb{R}^{n \times n}$ be skew-symmetric, i.e., $\Omega^{\top} = -\Omega$. Show that $\exp(\Omega) \in SO(n)$.
- (3) Let $\Omega \in \mathbb{R}^{n \times n}$ be skew-symmetric. Show that $\frac{d}{dt}[exp(t\Omega)]|_{t=0} = \Omega$.
- (4) Define $R_X(V) = X \exp(X^{\top}V)$. Show that $R_X(V) \in \mathcal{M}$ for all $(X, V) \in T\mathcal{M}$.
- (5) Show that $R: T\mathcal{M} \to \mathcal{M}$ is a retraction.
- (6) For, $X \in \mathcal{M}$, is $\mathcal{R}_X : T_X \mathcal{M} \to \mathcal{M}$ injective?

Solution: (1) Observe that $SO(n) = St(n,n) \cap (\det^{-1}(\{-1\}))^c$, where St(n,n) is the Stiefel manifold.

Then, \mathcal{M} is an embedded submanifold of $\mathbb{R}^{n \times n}$, because $(\det^{-1}(\{-1\}))^c$ is open.

Thus, $\dim(\mathcal{M}) = \dim(St(n,n)) = n(n-\frac{n+1}{2}) = \frac{n(n-1)}{2}$. Moreover, \mathcal{M} has the same tangent spaces as St(n,n), i.e., $T_X\mathcal{M} = \{V \in \mathbb{R}^{n \times n} : V^\top X + X^\top V = 0\}$.

(2) For $\Omega \in \mathbb{R}^{n \times n}$, we have

$$\begin{split} \exp(\Omega)^\top \exp(\Omega) &= \exp(\Omega^\top) \exp(\Omega) \\ &= \exp(-\Omega) \exp(\Omega) \\ &= \exp(\Omega - \Omega) \\ &= \exp(0) = I. \end{split}$$

And

$$\det(\exp(\Omega)) = \exp(\operatorname{Tr}(\Omega)) = 1.$$

Therefore, $\exp(\Omega) \in SO(n)$.

(3)

$$\exp(t\Omega) = \sum_{k=0}^{\infty} \frac{(t\Omega)^k}{k!} = I + t\Omega + \frac{t^2\Omega^2}{2} + \cdots$$

Then,

$$\frac{d}{dt}[\exp(t\Omega)]|_{t=0} = \sum_{k=1}^{\infty} \frac{d}{dt} \left[\frac{(t\Omega)^k}{k!} \right]|_{t=0}$$
$$= \sum_{k=1}^{\infty} \frac{\Omega^k t^{k-1}}{(k-1)!}|_{t=0}$$
$$= \Omega.$$

(4) For $(X, V) \in T\mathcal{M}$, we have $V^{\top}X + X^{\top}V = 0$, i.e., $X^{\top}V$ is skew-symmetric. Then, $\exp(X^{\top}V) \in SO(n)$, and for $R_X(V) = X \exp(X^{\top}V)$:

$$R_X(V)^\top R_X(V) = \exp(X^\top V)^\top X^\top X \exp(X^\top V)$$
$$= \exp(-X^\top V) \exp(X^\top V)$$
$$= \exp(X^\top V - X^\top V)$$
$$= \exp(0) = I.$$

And $\det(R_X(V)) = \det(X) \det(\exp(X^\top V)) = 1$. Therefore, $R_X(V) \in \mathcal{M}$ for all $(X, V) \in T\mathcal{M}$.

(5) Define a curve $c(t) = R_X(tV)$, then obviously, c(0) = X. We then show that c'(0) = V.

$$c'(0) = \frac{d}{dt} R_X(tV)|_{t=0}$$

$$= \frac{d}{dt} X \exp(tX^\top V)|_{t=0}$$

$$= X \frac{d}{dt} \exp(tX^\top V)|_{t=0}$$

$$= XX^\top V = V.$$

As $R_X(V)$ is smooth, R is a retraction for \mathcal{M} .

(6) For $X \in \mathcal{M}$, $\mathcal{R}_X : T_X \mathcal{M} \to \mathcal{M}$ is not injective.

5 / 5