

高中数学・一阶

适用于联赛一试与强基计划

作者: Johnny Tang 组织: DEEP Team

时间: January 21, 2022

请:相信时间的力量,敬畏概率的准则

目录

第一部	3分 预备知识	4
第0章	数理逻辑与集合	5
0.1	数理逻辑	5
0.2	集合	7
第1章	新的数域与运算	10
1.1	复数	10
1.2	对数运算	12
第2章	代数变换基础	14
2.1	多项式的概念	14
2.2	多项式的根与 Vieta 定理	14
2.3	整式恒等变形	14
2.4	简单的不等式	15
第二部	3分 高中数学基础	16
第1章	函数	17
1.1	映射与函数	17
1.2	常见初等函数	17
1.3	函数的性质	18
1.4	函数迭代与函数方程	18
第2章	三角函数	19
2.1	三角函数的概念	19
2.2	三角函数的计算	19
2.3	三角函数的应用	19
2.4	反三角函数	20
第3章	平面向量与复数	21
3.1	平面向量的概念	21
3.2	平面向量基本定理	21
3.3	复数	21
第4章	数列	22
4.1	等差数列与等比数列	22

		目录
4.2	数列的变形	23
4.3	数学归纳法与无穷递降法	24
第5章	极限与导数	26
5.1	极限的概念与运算	26
5.2	导数的概念与运算	26
5.3	导数的应用	26
第6章	不等式	27
6.1	常用不等式	27
6.2	若干著名不等式	27
6.3	常见代数不等式	27
6.4	常见几何不等式	27
第7章	概率、计数与组合	28
7.1	概率与数学期望	28
7.2	排列组合模型	28
7.3	二项式定理	28
第8章	几何中的距离与角度	29
8.1	常用平面几何结论——边长	29
8.2	常用平面几何结论——三角	29
8.3	常用平面几何结论——平面向量	29
第9章	解析几何	30
9.1	平面基本元素	30
9.2	圆锥曲线	30
9.3	圆锥曲线计算技巧	30
第 10 章	金 立体几何	31
10.1	空间中的几何体	31
10.2	空间中的位置关系	31
10.3	空间中的距离与角度	31
10.4	· 多面体与球	31
10.5	空间向量	31
第三部	邓分 高中数学习题	32
第1章	集合	33
1.1	集合及其运算	33
1.2	集合元素的个数	34
1.3	子集的性质	36

		目录
第2章	函数	37
第3章	三角函数	38
第4章	平面向量	39
第5章	复数	40
第6章	数列	41
第7章	极限与导数	42
第8章	不等式	43
第9章	概率统计与计数	44
第 10 章	全解析几何	45
第 11 章	立体几何	46

第一部分

预备知识

第0章 数理逻辑与集合

0.1 数理逻辑

先讨论命题之间的关系.

定义 0.1 (充分条件与必要条件)

设命题 A 和 B. 若 A 可以推得 B, 则称命题 A 是 B 的充分条件 (sufficient condition), B 是 A 的必要条件 (necessary condition), 记作

$$A \Rightarrow B$$
, $\not \equiv B \Leftarrow A$

若A可以推得B且B可以推得A,则称命题A和B 互为充分必要条件 (necessary and sufficient condition),简称充要条件,此时也称命题A和B等价 (A成立当且仅当B成立),记作

$$A \Leftrightarrow B$$

此时 $B \Rightarrow A$ 的过程称为充分性, $A \Rightarrow B$ 的过程称为必要性.

注 还有一个类似的逻辑语言:有且仅有(恰有),这意味着存在一个(存在性)且只有一个(唯一性).例如,平面中,过直线外一点有且仅有一条直线与之平行.

可以用图像来更好理解该定义:

例题 0.1.1(1) 一个四边形"是菱形"是"它的对角线互相垂直"的 条件.

- (2)"0 < x < 1"是"x < 2"的_____条件.
- (3)"人类生存"是"人类呼吸"的 条件
- 解(1) 充分; (2) 必要; (3) 充分.

不过这种直观的判断方式比较迷惑, 我们可以通过命题的逻辑运算更好地思考这些问题.

定义 0.2 (命题的逻辑运算)

设命题A与B,

(1) 若 A 和 B 中至少有一个命题成立,则称 A 或 (or)B,记作

 $A \vee B$

(2) 若 A 和 B 同时成立,则称 A 且 (and) B,记作

 $A \wedge B$

(3) 若 A 的相反形式成立、则称非 (not)A、记作

 $\neg A$

定义 0.3 (原命题, 逆命题, 否命题, 逆否命题)

设有原命题 (primitive proposition): $P \Rightarrow Q$.

(1) 逆命题 (converse proposition) 定义为:

 $Q \Rightarrow P$

(2) 否命题 (inverse proposition) 定义为:

$$\neg P \Rightarrow \neg Q$$

(3) 逆否命题 (contrapositive proposition) 定义为:

$$\neg Q \Rightarrow \neg P$$

命题 0.1

逆否命题与原命题的真假性相同.

由这个命题,我们知道" $A \in B$ 的必要条件"等价于" $\neg A \Rightarrow \neg B$ ". 这就比之前的判断方式更确切.

定义 0.4 (存在, 任意)

设命题A,

(1) 若存在 (exist)x 使得命题 A 成立,可以记作

 $\exists x \ s.t. \ A$

(2) 若对于任意 (for all)x 都能使得命题 A 成立,可以记作

 $\forall x, A$

注 "s.t."是"such that"的缩写.

注"存在"与"任意"的相互关系如下:

$$\neg(\forall x, A) = \exists x \ s.t. \ \neg A$$

例题 0.1.2 证明: $\sqrt{2}$ 是无理数.

证明 设原命题: "能表示为 $\frac{p}{q}$ (p,q) 都是正整数且互质)的形式的数都是有理数" \Rightarrow " $\sqrt{2}$ 是无理数".

构造逆否命题: " $\sqrt{2}$ 是有理数" \Rightarrow "存在一个能表示为 $\frac{p}{q}$ (p,q) 都是正整数且互质) 的形式的数不是有理数",

即 " $\sqrt{2}$ 是有理数" \Rightarrow "存在一个不能表示为 $\frac{p}{q}$ (p,q) 都是正整数且互质) 的形式的数是有理数".

由 " $\sqrt{2}$ 是有理数", 假设 $\sqrt{2} = \frac{p}{q} (p, q)$ 都是正整数且互质). 两边同时平方, 有

$$2q^2 = p^2$$

这要求 p 是 2 的倍数,因而 p^2 是 4 的倍数,故 q^2 是 2 的倍数.又因为 q 是整数,所以 q 是 2 的倍数,那么 p, q 不互质,即 $\sqrt{2}$ 不能表示为上述形式.这就证明了"存在一个不能表示为 $\frac{p}{q}$ (p, q 都是正整数且互质)的形式的数是有理数".由于原命题与逆否命题的真假性相同,故原命题也成立.

0.2 集合

0.2.1 集合的概念

一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的**集合** (set). 其中,构成集合的每一个对象称为**元素** (element). 集合中的元素满足如下性质:确定性,互异性,无序性. 特别地,一个集合可以没有元素,这样的集合叫做空集,记作 \varnothing .

若 x 是集合 X 中的元素,则称 x **属于** (belongs to)X,记作 $x \in X$. 反之,x **不属于** X 记作 $x \notin X$. 对于一个集合,我们有两种方式描述集合中的元素:

(1) 列举法:将集合中的元素——列举,例如

$$\{1, 2, 3, \cdots\}$$

其中"…"表示类似的元素.

(2) 描述法: 为了描述含有无限个元素的集合(即无限集),我们用所含元素的性质来表示该集合,例如

$${x \in E | P(x)}, \ \ \text{$\sharp \{x \in E : P(x)\}$}$$

其中x为这些元素的代表元素, $E \in x$ 的范围,P(x)表示x满足的性质.

另外,一些常见的数集有它们特定的表示符号:

符号	数集
\mathbb{R}	实数 (real number) 集
\mathbb{Q}	有理数 (rational number) 集
\mathbb{Z}	整数 (integer) 集
\mathbb{N}	有理数 (natural number) 集

为了描述类似于"正整数集"的集合,我们规定一些标记. 例如, \mathbb{R}^+ (或 \mathbb{R}_+)表示正实数集, \mathbb{Z}^- 表示负整数集, \mathbb{N}^* 表示正有理数集 (等价于正整数集).

例题 0.2.1 (1) 集合 $A = \{2,0,1,3\}$, $B = \{x | -x \in A, 2 - x^2 \notin A\}$, 则集合 B 中所有元素的和为_____. (2) 由三个实数构成的集合,既能表示为 $\{a,1,b/a\}$,也能表示为 $\{a^2,a+b,0\}$,则 $a^{99}+b^{99}=$.

(3) 给定实数集合 A,B,定义运算 $A \oplus B = \{x|x=ab+a+b, a \in A, b \in B\}$. 设 $A = \{0,2,4,\cdots,18\}, B = \{98,99,100\}$,则 $A \oplus B$ 中所有元素之和为_____.

解 待解答.

以下介绍集合之间的关系:

定义 0.5 (子集和母集)

设集合A和B,若

$$\forall x, \ x \in A \Rightarrow x \in B$$

则称 A 包含于 (is included in)B, 或 B 包含 (includes)A; A 是 B 的一个子集 (subset), B 是 A 的一个母集 (superset), 记作

$$A \subseteq B$$
, $\not a B \supseteq A$

当 A 和 B 互为子集时,记作 A = B.即,A = B 表示

$$\forall x, x \in A \Leftrightarrow x \in B$$

特别地, 若

$$(A \subseteq B) \land (A \neq B)$$

则称 $A \neq B$ 的一个真子集 (proper subset), $B \neq A$ 的一个真母集 (proper superset), 记作

$$A \subsetneq B, \ \text{\'a}B \supsetneq A$$

\$

注意 上述定义中符号" \subseteq , \subseteq "在一些数学课本中也会写作" \subset "等. 本书均采用上述写法.

由上述定义,不难证明,空集是任意集合的子集、是任意非空集合的真子集.

有时我们需要研究某个有限集合的元素个数. 设有限集 A,可以用 card(A) 表示其元素个数 (card 即 *cardinal* , 基数). 另外,有限集 A 的**阶**也表示其元素个数,记作 |A|.

例题 0.2.2 对于一个有限集 A,它的子集个数为 $2^{|A|}$ 个,真子集个数为 $2^{|A|}$ — 1 个.

例题 0.2.3 设 $\{b_n\}$ 是集合 $\{2^t + 2^s + 2^r | 0 \le r < s < t, r, s, t \in \mathbb{Z}\}$ 中所有的数从小到大排列成的数列,已知 $b_k = 1160$,求 k.

0.2.2 集合间的运算与运算律

类似于上文对子集和母集的定义,我们可以从集合中元素的角度来研究集合间的运算.

定义 0.6 (集合的交、并、差、补)

设集合A和B,

(1)A 与 B 的交集 (intersection),记作 $A \cap B$,定义为

$$A \cap B = \{x | (x \in A) \land (x \in B)\}$$

(2)A 与 B 的并集 (union),记作 $A \cup B$,定义为

$$A \cup B = \{x | (x \in A) \lor (x \in B)\}$$

(3)A 与 B 的差集 (difference),记作 A-B 或 $A\setminus B$,定义为

$$A \setminus B = \{x | (x \in A) \land (x \notin B)\}$$

(4) 设 U 为全集.A 的补集 (complement),记作 C_UA ,定义为

$$\mathbf{C}_U A = \{x | (x \in U) \land (x \notin A)\}$$

若已知该全集(题目中明确定义), A 的补集也可记作 \overline{A} .

就像对于加减乘除运算,我们要研究其运算律一样,集合的交、并、补运算也有类似的运算律.

命题 0.2 (集合运算的运算律)

设集合 $A \cap B$, 全集U.

(1) 它们的交、并运算满足交换律,即

$$A \cap B = B \cap A$$
 $A \cup B = B \cup A$

(2) 它们的交、并运算满足结合律,即

$$A \cap B \cap C = (A \cap B) \cap C = A \cap (B \cap C)$$

$$A \cup B \cup C = (A \cup B) \cup C = A \cup (B \cup C)$$

(3) 它们的交运算与并运算之间满足分配律,即

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

(4) 它们的交、并运算与补运算之间满足摩根律 (或称德摩根定理, De Morgan's theorem),即

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \qquad \overline{A \cup B} = \overline{A} \cap \overline{B}$$

- (2) 已知 M, N 均为 \mathbb{R} 的子集,且 $(\mathbb{C}_{\mathbb{R}}M) \subseteq N$,则 $M \cup (\mathbb{C}_{\mathbb{R}}N) =$ _____.
- (3) 设集合 $A = \{x | 1 \le x \le 2000, \ x \in \mathbb{N}\}, \ B = \{x | 1993 \le x \le 2021, \ x \in \mathbb{N}\}.$ 则满足 $S \subseteq A$,且 $S \cap B \ne \emptyset$ 的集合 S 的个数为______.

第1章 新的数域与运算

1.1 复数

定义 1.1 (复数)

记 z=a+b i $(a,b\in\mathbb{R})$ 为一个复数 (complex number),其中 i $^2=-1$. 由所有复数构成的集合记为 \mathbb{C} . \mathbb{C} 上的加法与乘法定义如下:

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a + bi)(c + di) = (ac - bd) + (ad + bc)i$$

命题 1.1 (复数运算的性质)

(1) 交换性质

$$\forall \alpha, \beta \in \mathbb{C}, \alpha + \beta = \beta + \alpha, \alpha\beta = \beta\alpha$$

(2) 结合性质

$$\forall \alpha, \beta, \lambda \in \mathbb{C}, (\alpha + \beta) + \lambda = \alpha + (\beta + \lambda), (\alpha\beta)\lambda = \alpha(\beta\lambda)$$

(3) 单位元

$$\forall \lambda \in \mathbb{C}, \lambda + 0 = \lambda, 1\lambda = \lambda$$

(4) 加法逆元

$$\forall \alpha \in \mathbb{C}, \exists ! \beta \in \mathbb{C}, \alpha + \beta = 0$$

(5) 乘法逆元

$$\forall \alpha \in \mathbb{C}(\alpha \neq 0), \exists ! \beta \in \mathbb{C}, \alpha\beta = 1$$

(6) 分配性质

$$\forall \lambda, \alpha, \beta \in \mathbb{C}, \lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta$$

证明 这里只选择部分性质证明:

(1) 加法交换性质: 设 $\alpha = a + bi$, $\beta = c + di$ $(a, b, c, d \in \mathbb{R})$, 则

$$\alpha + \beta = (a + bi) + (c + di)$$

$$= (a + c) + (b + d)i$$

$$= (c + a) + (d + b)i$$

$$\beta + \alpha = (c + di) + (a + bi)$$

$$= (c + a) + (d + b)i$$

因此有 $\alpha + \beta = \beta + \alpha$

(2) 乘法单位元: 设 $\lambda = a + bi$ $(a, b \in \mathbb{R})$, 那么

$$1\lambda = (1+0i)(a+bi) = a+bi = \lambda$$

(3) 加法逆元: 先证明存在. 设 $\alpha = a + bi$, 取 $\beta = (-a) + (-b)i$, 则 $\alpha + \beta = 0 + 0i = 0$; 再证明唯一. 假设 $\beta_1, \beta_2 \in \mathbb{C}$ 均为 α 的加法逆元, 那么

$$\beta_1 = \beta_1 + 0 = \beta_1 + \alpha + \beta_2 = 0 + \beta_2 = \beta_2$$

这与假设矛盾,则 α 的加法逆元是唯一的.

由此可以引出域的正式定义:

定义 1.2 (域)

城是一个集合 \mathbb{F} , 它带有加法与乘法两种运算(分别在加法与乘法上封闭), 且这些运算满足命题1.1所示所有性质.

注 最小的域是一个集合 $\{0,1\}$,带有通常的加法与乘法运算,但规定 1+1=0. 容易验证,ℝ 与 ℂ 都是域.

总是用 β 表示 α 的逆元非常不自然,因此定义出加/乘法逆元的表示与减/除法.

定义 1.3 (加法逆元,减法,乘法逆元,除法)

设 $\alpha, \beta \in \mathbb{C}$.

• 令 $-\alpha$ 表示 α 的加法逆元, 即 $-\alpha$ 是使得

$$\alpha + (-\alpha) = 0$$

成立的唯一复数.

• 对于 $\alpha \neq 0$, 令 α^{-1} 表示 α 的乘法逆元, 即 α^{-1} 是使得

$$\alpha(\alpha^{-1}) = 1$$

成立的唯一复数.

• 定义 ℂ上的减法:

$$\beta - \alpha = \beta + (-\alpha)$$

• 定义 ℂ上的除法:

$$\beta/\alpha = \beta(1/\alpha)$$

1.2 对数运算

在初中我们常常遇到一类问题:例如,求2的多少次方是1024.这种简单的式子还可以一眼看出结果,那么2的多少次方是1023 呢?这就不好说明.更进一步,我们甚至找不到一个比较好的逼近计算的方式.于是人们发明了对数运算:

一般地,若 $a^x = y$ (a > 0, $a \ne 1$),则称 x 为以 a 为底 y 的**对数** (logarithm),记作 $x = \log_a y$,其中 a 叫做底数,y 叫做真数. 通常把以 10 为底的对数叫做**常用对数** (common logarithm)(化学中 pH 值的计算公式就包括它),简记为 $\log_{10} N = \lg N$;把以自然常数 e 为底的对数叫做**自然对数**,简记为 $\log_{e} N = \ln N$.

对数运算有两条重要性质: (1) $\log_a 1 = 0$, $\log_a a = 1$; (2) $a^{\log_a N} = N$. 第二条看起来是个废话,其实很有用.

例题 1.2.1 计算: $\log_2 8 =$ ______, $\log_{\sqrt{5}} 125 =$ ______, $\log_{114514} 1 =$ ______, $\log_8 16 =$ _____.

类似于指数运算,对数运算也有一些重要运算公式:

命题 1.2 (对数的运算法则)

假设下列式子都有意义.

(1) 加减法

$$\log_{\alpha} MN = \log_{\alpha} M + \log_{\alpha} N \qquad \log_{\alpha} \frac{M}{N} = \log_{\alpha} M - \log_{\alpha} N$$

(2) 换底公式

$$\log_{\alpha} x = \frac{\log_{\beta} x}{\log_{\beta} \alpha}$$

(3) 指数

$$\log_{\alpha^n} x^m = \frac{m}{n} \log_{\alpha} x$$

(4) 倒数

$$\log_{\alpha} \beta = \frac{1}{\log_{\beta} \alpha}$$

(5) 链式

$$\log_{\alpha} \beta \cdot \log_{\beta} \gamma = \log_{\alpha} \gamma$$

证明 这里只选择部分运算法则证明:

(1) 加法: 由对数的定义, $\alpha^{\log_{\alpha} M} = M$, $\alpha^{\log_{\alpha} N} = N$, 于是

$$MN = \alpha^{\log_{\alpha} M} \cdot \alpha^{\log_{\alpha} N} = \alpha^{\log_{\alpha} M + \log_{\alpha} N}$$

这告诉我们 $\log_{\alpha} MN = \log_{\alpha} M + \log_{\alpha} N$.

(2) 换底公式: 由对数的定义, $\beta^{\log_{\beta} x} = x$, $\beta^{\log_{\beta} \alpha} = \alpha$, 那么

$$x = (\beta^{\log_{\beta} \alpha})^{\frac{\log_{\beta} x}{\log_{\beta} \alpha}} = \alpha^{\frac{\log_{\beta} x}{\log_{\beta} \alpha}}$$

这告诉我们 $\log_{\alpha} x = \frac{\log_{\beta} x}{\log_{\beta} \alpha}$

(5) 链式: 令

$$\log_{\alpha} \beta = \frac{\ln \beta}{\ln \alpha}, \ \log_{\beta} \gamma = \frac{\ln \gamma}{\ln \beta}$$

所以

$$\log_{\alpha}\beta \cdot \log_{\beta}\gamma = \frac{\ln\beta}{\ln\alpha} \cdot \frac{\ln\gamma}{\ln\beta} = \frac{\ln\gamma}{\ln\alpha} = \log_{\alpha}\gamma$$

注不难发现,在应用换底公式之后做证明变得很轻松.可以说,如果把"重要性质"比作一个轮子,那么换底公式就是一辆车:用轮子也能向前走(用重要性质也能写证明),但远不及一辆车快速与舒适(引入换底公式会十分便捷).

注 换底公式的本质是找到了一个"工具对数"作为中间量化简计算,就跟我们倾向于使用 $\frac{1}{7}$ 而不是 $0.142857 \cdots$ 一样.

注 由加减法运算法则,可以一窥常用对数的作用.例如,

$$\lg 120 = \lg 1.2 \times 10^2 = \lg 1.2 + 2$$
$$\lg 0.012 = \lg 1.2 \times 10^{-2} = \lg 1.2 - 2$$

若要计算 $\lg 120$ 与 $\lg 0.012$,只需要知道 $\lg 1.2$ 的值. 于是 $\lg N$ 可以被用在换底公式中作为"工具对数"来近似计算.

第2章 代数变换基础

2.1 多项式的概念

多项式, 多项式间的关系与运算, 多项式的带余除法

定义 2.1 (多项式)

形如

$$f(x) = a_n x^n + \dots + a_1 x + a_0 \ (a_n \neq 0)$$

的表达式称为关于x的一元n次多项式 (polynomial), 其中n称为多项式的次数,记作 $\deg f = n$. 规定恒等于0的多项式的次数为 $-\infty$.

定义 2.2 (多项式间的关系与运算)

设 $f(x) = \sum_{k=0}^{n} a_k x^k$, $g(x) = \sum_{k=0}^{m} b_k x^k$. 不妨设 $n \ge m$, 规定 $b_k = 0$ (k > m).

- f(x) = g(x) 的充要条件是 n = m, $a_k = b_k$.
- 多项式的加减法定义如下:

$$f(x) \pm g(x) := \sum_{k=0}^{n} (a_k \pm b_k) x^k$$

• 多项式的乘法定义如下:

$$f(x) \cdot g(x) := \sum_{k=0}^{m+n} \left(\sum_{i+j=k} a_i b_j \right) x^k$$

命题 2.1 (多项式的带余除法)

若 f(x) 和 g(x) 是两个已知的多项式,其中 g(x) 不是零多项式,那么存在唯一的一对多项式 q(x) 和 r(x),使得

$$f(x) = g(x) \cdot q(x) + r(x)$$

其中 $\deg r < \deg g$ 或 r(x) = 0. 称 q(x) 和 r(x) 分别为 f(x) 除以 g(x) 所得的商式与余式.

2.2 多项式的根与 Vieta 定理

多项式的根,余数定理,因式定理, Vieta 定理

2.3 整式恒等变形

换元技巧, 齐次性原理

2.4 简单的不等式

绝对值不等式,糖水不等式,均值不等式,线性规划

第二部分

高中数学基础

第1章 函数

1.1 映射与函数

映射、映射相等的概念,特殊的映射,逆映射,映射的复合,函数的概念

定义 1.1 (映射)

• 设 $A \rightarrow B$ 为两个集合,若对A 中每个元素x,都存在B 中唯一的元素y 与之对应,则称此对应关系为一个映射 (map),记作

$$f: A \to B, x \mapsto y$$

• $x \in B$ 中的对应元素 y 称为 $x \in f$ 下的象 (image), x 称为 $y \in f$ 下的原象 (preimage), 记作

$$f(x) = y, x \in A$$

- 集合 A 称作映射 f 的定义域 (domain),记作 D_f ; 集合 B 称为映射 f 的陪域 (codomain); A 中所有元素在 f 下的象组成的集合称为 f 的值域 (range),记作 R_f 或 f(D).
- 两个映射相等, 当且仅当它们的定义域、对应关系、值域相同.

定义域、陪域与值域的关系如下:

定义 1.2 (特殊的映射)

设映射 $f: A \to B$.

- 若 A 中的每一个 x 的唯一对应 B 中的一个 f(x), 则称 f 是单射 (injection).
- 若对于 B 中的每一个元素 y, 总能找到 A 中的一个 x 使得 f(x) = y, 则称 f 是满射 (surjection).
- 若 f 既是单射,又是满射,则称 f 是双射 (bijection).

单射、满射、双射举例如下:

1.2 常见初等函数

基本初等函数、初等函数的概念

1.2.1 二次函数

二次函数的性质,最值问题,实根分布问题

1.2.2 对勾函数

对勾函数、垃圾函数的性质

1.2.3 常值函数、指数函数、幂函数、对数函数

常值函数的概念、幂函数的概念、指数函数的概念、图像与性质,对数函数的概念、图像与性质

1.2.4 三角函数与双曲函数

详见下一章.

1.3 函数的性质

1.3.1 单调性

单调性的概念,用单调性判断函数单射,函数单调性的运算,区间根定理

1.3.2 奇偶性

奇偶性的概念,函数奇偶性的运算

1.3.3 对称性

对称性的概念, 函数的对称变换, 含绝对值的函数

1.3.4 周期性

周期性的概念

1.4 函数迭代与函数方程

1.4.1 函数的迭代与不动点

函数迭代的概念,函数不动点的概念

1.4.2 简单的函数方程

函数方程问题, Cauchy 方程

第2章 三角函数

2.1 三角函数的概念

任意角, 弧度制

2.1.1 三角函数的性质

三角函数的定义,诱导公式,和差角公式

2.1.2 三角函数的函数性质

三角函数的图像与性质

2.1.3 三角函数与双曲函数

三角函数的复数表示, 双曲函数的定义

2.2 三角函数的计算

2.2.1 三角恒等变形

二倍角、半角公式,三倍角公式,万能公式,辅助角公式,积化和差、和差化积公式,双曲恒等变形公式

2.2.2 正弦定理与余弦定理

正弦面积公式,正弦定理,余弦定理

2.3 三角函数的应用

2.3.1 三角换元

三角换元常见形式

2.3.2 三角恒等式

常见的三角恒等式

2.3.3 三角不等式

常见的三角不等式

2.4 反三角函数

反三角函数的概念、图像与性质

第3章 平面向量与复数

3.1 平面向量的概念

平面向量的概念,向量间的关系,向量的运算

3.2 平面向量基本定理

3.2.1 平面向量基本定理

平面向量基本定理, 定比分点公式

3.2.2 向量的本质

平面向量的坐标表示,组,高维向量的定义

3.3 复数

3.3.1 复数的表示

复数的几何表示,复数的三角表示

3.3.2 复数的运算

复数的四则运算, 共轭复数的运算

第4章 数列

数列,顾名思义,就是将一组数按顺序排为一列的形式. 为了区别于集合与组,一般直接将每一项列出来而不加括号,例如 a_1, a_2, \dots, a_n . 也可以用通项公式或递推公式表示,例如

$$\{a_n\}_{n=1}^{\infty}$$
 $a_{n+k} = f(a_{n+1}, \cdots, a_{n+k-1})$

其中第一种表示形式的" $\sum_{n=1}^{\infty}$ "常省略不写.

数列可按以下标准分类:

- 1. 单调性: 若 $\forall n \in \mathbb{Z}^+$, $a_{n+1} \geq (>)$ a_n , 称 $\{a_n\}$ 为 (严格) 递增数列; 反之,若 $\forall n \in \mathbb{Z}^+$, $a_{n+1} \leq (<)$ a_n , 称 $\{a_n\}$ 为 (严格) 递减数列; 若 $\forall n \in \mathbb{Z}^+$, $a_{n+1} = a_n$, 称 $\{a_n\}$ 为常数数列.
- 2. 有限性: 若数列 $\{a_n\}$ 的项数有限, 称其为**有限数列**; 反之, 若数列 $\{a_n\}$ 的项数无限, 称其为**无限数列**.
- 3. 有界性: 以上界为例. 若数列 $\{a_n\}$ 满足

$$\exists M > 0 \ s.t. \ \forall n \in \mathbb{N}^*, \ a_n < M$$

则称其为**有界数列**,其中它的**上界**是M;若满足

$$\forall M > 0, \ \exists n_0 \in \mathbb{N}^* \ s.t. \ a_n > M$$

则称其为无界数列. 下界的定义类似.

对于一个给定的数列,我们会研究它的递推公式、通项公式、前n 项和 S_n 、前n 项积 T_n ,等等.

4.1 等差数列与等比数列

4.1.1 等差数列

我们定义满足递推式 $a_{n+1}=a_n+d$ 的数列 $\{a_n\}$ 为**等差数列** (又名算术数列),并称 a_1 为**首项**,d 为**公差**. 等差数列的通项公式可以表达为 $a_n=a_1+(n-1)d$. 若将 a_n 看做关于 n 的函数,容易发现任何一个形如 $a_n=pn+q$ 的式子都代表一个等差数列.

等差数列的前 n 项和公式表达为

$$S_n = \sum_{k=1}^n [a_1 + (k-1)d] = na_1 + d[0 + 1 + \dots + (n-1)] = na_1 + \frac{n(n-1)}{2}d$$

若将 S_n 看做关于 n 的函数,容易发现任何一个形如 $S_n = pn^2 + qn$ 的式子都代表一个等差数列.

以下列出等差数列的部分性质:

命题 4.1 (等差数列的性质)

设等差数列 $\{a_n\}$,

- 2. $S_m, S_{2m} S_m, S_{3m} S_{2m}, \cdots$ 也为等差数列,且其公差为 m^2d .
- 3. $S_{2n-1} = (2n-1)a_n$.

在证明一个数列是等差数列或利用题目中关于等差数列的条件时,常常利用等差数列的定义,即相邻两项之差为定值.

4.1.2 等比数列

类似于等差数列,定义满足递推式 $a_{n+1}=qa_n\ (q\neq 0)$ 的数列 $\{a_n\}$ 为**等比数列** (又名几何数列),称 a_1 为**首** 项,q 为**公比**.

等比数列的通项公式为 $a_n = a_1 q^{n-1}$. 任何一个形如 $a_n = pq^n$ 的式子都代表一个等比数列.

等比数列的前 n 项和公式推导过程如下:

当 $q \neq 1$ 时,

$$\begin{cases} S_n = a_1 + a_1 q + a_1 q^2 + \dots + a_1 q^{n-1} \\ q S_n = a_1 q + a_1 q^2 + \dots + a_1 q^n \end{cases} \implies (q-1) S_n = a_1 q^n - a_1, i.e. S_n = \frac{1-q^n}{1-q} a_1$$

当 q=1 时,显然 $S_n=a_n$.

特别地,当 -1 < q < 1 时,注意到 $\lim_{n\to\infty} q^n = 0$,于是可得**无穷递降等比数列**的求和公式: $S_{\infty} = \frac{1}{1-q}a_1$. 以下列出等比数列的部分性质:

命题 4.2 (等比数列的性质)

设等比数列 $\{a_n\}$,

- 2. $S_m, S_{2m} S_m, S_{3m} S_{2m}, \cdots$ 也为等比数列, 且其公比为 q^m .
- 3. $\{\log_b a_n\}$ 为等差数列, 且其公差为 $\log_b q$.

由等比数列与等差数列的别名不难联想到 AM-GM 不等式. 实际上,对于等比数列 $\{b_n\}$,有 $b_{n+1}=(\sqrt{q\cdot b_n})^2\leq \left(\frac{b_n+q}{2}\right)^2$,从而可以与另一个等差数列进行比较/放缩.

4.2 数列的变形

4.2.1 数列递推求通项

以下给出几种常见的由递推求通项的方式:

命题 4.3 (由递推求通项基本方法)

1. 求满足下列递推式的数列的通项公式: $a_{n+1} = a_n + f(n)$.

解法一 利用类似于等差数列求和的递推累加法,即

$$a_n = a_{n-1} + f(n-1) = a_{n-2} + f(n-1) + f(n-2) = \dots = a_1 + \sum_{k=1}^{n-1} f(k)$$

解法二 构造裂项形成常数列,作 f(n) = g(n+1) - g(n),则

$$a_n - g(n) = a_{n-1} - g(n-1) = \dots = a_1 - g(1) \implies a_n = a_1 - g(1) + g(n)$$

2. 求满足下列递推式的数列的通项公式: $a_{n+1} = a_n \cdot f(n)$ $(a_i \neq 0)$.

 \Diamond

解法一 利用递推累乘法,即

$$a_n = f(n-1) \cdot a_{n-1} = f(n-1) \cdot f(n-2) \cdot a_{n-1} = \dots = a_1 \cdot \prod_{k=1}^{n-1} f(k)$$

[解法二] 构造裂项形成常数列,作 $f(n) = \frac{g(n+1)}{g(n)}$,则

$$\frac{a_n}{g(n)} = \frac{a_{n-1}}{g(n-1)} = \dots = \frac{a_1}{g(1)} \implies a_n = \frac{g(n)}{g(1)}a_1$$

3. 求满足下列递推式的数列的通项公式: $a_{n+1} = pa_n + q \ (p \neq 1, q \neq 0)$.

解法一 化为等比数列,构造 $a_{n+1}-t=p(a_n-t)$,其中 $t=\frac{q}{1-p}$.

[解法二] 化为等差数列,构造 $\frac{a_{n+1}}{p^{n+1}} = \frac{a_n}{p^n} + \frac{a}{p^{n+1}}$ 即可.

4. 求满足下列递推式的数列的通项公式: $a_{n+1} = p(n)a_n + q(n)$.

解法一 化为等比数列,构造 $a_{n+1} - f(n+1) = p(n)(a_n - f(n))$.(这种构造方法不太好用)

 $\overline{ \text{ [mks]} }$ 化为等差数列,作 $p(n)=\frac{f(n+1)}{f(n)}$,则 $\frac{a_{n+1}}{f(n+1)}=\frac{a_n}{f(n)}+\frac{q(n)}{f(n+1)}$

不过以上方法只是抛砖引玉,具体如何进行构造还要靠代数变形的技巧.

4.2.2 数列求和与 〉符号运算

本节我们着重于研究数列求和的一些例题.

4.3 数学归纳法与无穷递降法

4.3.1 数学归纳法

回顾前文等差数列的定义. 我们发现,只需要规定数列中第一个元素以及整个数列满足的递推关系,就可以唯一地确定这个数列,即这两个条件是该数列的特征. 运用同样的思路,可以用首项、递推关系来证明一个关于正整数 n 的命题. 这就是数学归纳法.

公理 4.1 (归纳公理)

设S是正整数集 \mathbb{N}^* 的一个子集,满足条件:

(i) $1 \in S$; (ii) 若 $n \in S$, 则 $n+1 \in S$.

那么 $S = \mathbb{N}^*$.

注 归纳公理是 Peano 提出的关于正整数的五条公理的最后一条,是本节所有形式数学归纳法的基础.

定理 4.1 (第一数学归纳法)

设P(n)是关于正整数n的一个命题(或性质).如果

(i) 当 n=1 时, P(n) 成立; (ii) 由 P(n) 成立可以推出 P(n+1) 成立.

那么,对任意 $n \in \mathbb{N}^*$,P(n)都成立.

证明 XXX

在应用数学归纳法时,我们可以对"跨度"有轻微的调整,这就是跳跃数学归纳法:

推论 4.1 (跳跃数学归纳法)

设P(n)是关于正整数n的一个命题(或性质).如果

(i) 当 $n=1,2,\cdots,k$ 时,P(n) 成立;(ii) 由 P(n) 成立可以推出 P(n+k) 成立.

那么,对任意 $n \in \mathbb{N}^*$, P(n) 都成立.

 \Diamond

证明 XXX

还有一种略有不同的归纳法:

定理 4.2 (第二数学归纳法)

设P(n) 是关于正整数n的一个命题(或性质).如果

(i) 当 $n=1,2,\cdots,k$ 时,P(n) 成立;(ii) 由"对一切小于 n 的整数 k ,P(k) 都成立"可以推出 P(n) 成立. 那么,对任意 $n\in\mathbb{N}^*$,P(n) 都成立.

证明 XXX

4.3.2 最小数原理与无穷递降法

第5章 极限与导数

5.1 极限的概念与运算

数列的极限,函数的极限,极限的四则运算,常用极限

5.2 导数的概念与运算

导数的概念,导函数的概念,初等函数的导数,导数的运算法则

5.3 导数的应用

导数与单调性,导数与极值点

第6章 不等式

6.1 常用不等式

6.1.1 均值不等式

均值不等式, 加权均值不等式

6.1.2 Cauchy 不等式

Cauchy 不等式

6.1.3 排序不等式

排序不等式, 切比雪夫不等式

6.1.4 函数的凹凸性与 Jensen 不等式

函数的凹凸性, Jensen 不等式, 加权 Jensen 不等式

6.2 若干著名不等式

Hölder 不等式, Young 不等式, Schur 不等式, 权方和不等式, Bernoulli 不等式

6.3 常见代数不等式

一些常见的代数不等式

6.4 常见几何不等式

一些常见的几何不等式

第7章 概率、计数与组合

7.1 概率与数学期望

7.2 排列组合模型

计数原理, 无重排列与组合, 可重排列与组合, 圆排列

7.3 二项式定理

二项式定理,组合恒等式

第8章 几何中的距离与角度

8.1 常用平面几何结论——边长

Ptolemy 定理,定差幂线定理,Stewart 定理,Menelaus 定理,Ceva 定理

8.2 常用平面几何结论——三角

张角定理,角元 Menelaus 定理,角元 Ceva 定理

8.3 常用平面几何结论——平面向量

极化恒等式,奔驰定理

第9章 解析几何

9.1 平面基本元素

9.1.1 点与直线

形式,位置关系判断,点到直线距离公式,定比分点公式

9.1.2 圆

标准方程,参数方程

9.2 圆锥曲线

9.2.1 椭圆与双曲线

椭圆的概念, 双曲线的概念

9.2.2 第二定义与抛物线

第二定义, 抛物线

9.3 圆锥曲线计算技巧

第10章 立体几何

10.1 空间中的几何体

空间中的几何体及其表面积、体积计算

10.2 空间中的位置关系

公理体系,空间中的平行关系,空间中的垂直关系

10.3 空间中的距离与角度

空间中的距离,空间中的角度

10.4 多面体与球

正方体,正四面体

10.5 空间向量

空间向量基本定理, 法向量与夹角计算

第三部分

高中数学习题

第1章 集合

1.1 集合及其运算

填空题

例题 1.1.1 设集合 $M = \{-1,0,1\}, N = \{2,3,4,5,6\}$, 映射 $f: M \to N$, 则对任意的 $x \in M$, 使得 x+f(x)+xf(x) 恒为奇数的映射 f 的个数为

提示 分类讨论.

例题 1.1.2 称有限集 S 的所有元素的乘积为 S 的"积数",给定数集 $M = \{\frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{100}\}$,则集合 M 的所有含偶数个元素的子集的"积数"之和为______.

提示 举例分析.

解答题

例题 1.1.3 (2015 高联)设 a_1, a_2, a_3, a_4 是 4 个有理数,使得 $\{a_i a_j | 1 \le i < j \le 4\} = \{-24, -2, -\frac{3}{2}, -\frac{1}{8}, 1, 3\}$. 求 $a_1 + a_2 + a_3 + a_4$ 的值.

提示 通过大小关系将 $a_1a_2, a_1a_3, a_1a_4, a_2a_3, a_2a_4, a_3a_4$ 与这六个数字对应.

例题 1.1.4 (2017 清华 THUSSAT) 已知集合 $A = \{a_1, a_2, a_3, a_4\}$,且 $a_1 < a_2 < a_3 < a_4$, $a_i \in \mathbb{N}^*$ (i = 1, 2, 3, 4). 记 $a_1 + a_2 + a_3 + a_4 = S$,集合 $B = \{(a_i, a_j) : (a_i + a_j) | S, a_i, a_j \in A, i < j\}$ 中的元素个数为 4 个,求 a_1 的值. 提示 通过大小关系得出不能被 S 整除的两项.

例题 1.1.5 X 是非空的正整数集合,满足下列条件: (i) 若 $x \in X$,则 $4x \in X$; (ii) 若 $x \in X$,则 $[\sqrt{x}] \in X$. 求证: X 是全体正整数的集合.

提示 将两种关于X的性质结合起来看.

例题 **1.1.6** 设 S 为非空数集,且满足: (i)2 $\notin S$; (ii) 若 $a \in S$, 则 $\frac{1}{2-a} \in S$. 证明:

(1) 对一切 $n \in \mathbb{N}^*$, $n \ge 3$, 有 $\frac{n}{n-1} \notin S$; (2) S 或者是单元素集,或者是无限集.

提示 数学归纳法.

例题 1.1.7 以某些整数为元素的集合 P 具有下列性质: (i) P 中的元素有正数,有负数; (ii) P 中的元素有奇数,有偶数; (iii) $-1 \notin P$; (iv) 若 $x,y \in P$,则 $x+y \in P$. 试证明:

 $(1)0 \in P$; $(2)2 \notin P$.

提示 第一问:构造;第二问:反证法.

例题 1.1.8 已知数集 A 具有以下性质: (i) $0 \in A, 1 \in A$; (ii) 若 $x, y \in A$, 则 $x - y \in A$; (iii) 若 $x \in A, x \neq 0$, 则 $\frac{1}{x} \in A$.

求证: 当 $x, y \in A$ 时,则 $xy \in A$.

提示 只需证明 $\frac{1}{xy} \in A$, 然后构造.

1.2 集合元素的个数

定理 1.1 (容斥原理 1——容斥公式)

设 $A_i(i=1,2,\cdots,n)$ 为有限集,则

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| + \dots + (-1)^{n-1} |\bigcap_{i=1}^{n} A_{i}|$$

可以使用数学归纳法证明.

 \odot

定理 1.2 (容斥原理 2——筛法公式)

设 $A_i(i=1,2,\cdots,n)$ 为全集 I 的子集,则

$$|\bigcap_{i=1}^{n} C_{I} A_{i}| = |I| - \sum_{i=1}^{n} |A_{i}| + \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| - \dots + (-1)^{n} |\bigcap_{i=1}^{n} A_{i}|$$

可以通过摩根律证明. 这个公式常常用来计算不满足任意给定性质的子集个数.

填空题

例题 1.2.1 设 $\{b_n\}$ 是集合 $\{2^t + 2^s + 2^r | 0 \le r < s < t, r, s, t \in \mathbb{Z}\}$ 中所有的数从小到大排列成的数列,已知 $b_k = 1160$,则 k 的值为

提示 分段考虑.

例题 1.2.2 $A = \{z|z^{18} = 1\}$, $B = \{w|w^{48} = 1\}$ 都是 1 的复单位根的集合, $C = \{zw|z \in A, w \in B\}$ 也是 1 的复单位根的集合. 则集合 C 中含有元素的个数为_____.

提示 复数的三角表示.

例题 1.2.3 已知集合 $\{1,2,\cdots,3n\}$ 可以分为 n 个互不相交的三元组 $\{x,y,z\}$,其中 x+y=3z,则满足上述要求的两个最小的正整数 n 是

提示 从条件 x + y = 3z 入手变形消元.

例题 1.2.4 集合 $M = \{x | \cos x + \lg \sin x = 1\}$ 中元素的个数是 .

提示 有没有可能无解?

解答题

例题 **1.2.5** 设集合 $M = \{1, 2, \dots, 1995\}$, $A \in M$ 的子集且满足条件: 当 $x \in A$ 时, $15x \notin A$,求 A 中元素个数的最大值.

提示 先构造最大值情况, 再证明这是最大值.

例题 1.2.6 求最大的正整数 n,使得 n 元集合 S 同时满足: (i)S 中的每个数均为不超过 2002 的正整数; (ii) 对于 S 的两个元素 a 和 b(可以相同),它们的乘积 ab 不属于 S.

提示 先构造最大值情况, 再证明这是最大值.

例题 1.2.7 我们称一个正整数的集合 A 是"一致"的,是指:删除 A 中任何一个元素之后,剩余的元素可以分成两个不相交的子集,而且这两个子集的元素之和相等. 求最小的正整数 n(n>1),使得可以找到一个具有 n 的元素的"一致"集合 A.

提示 将 A 中元素分奇偶讨论.

例题 1.2.8 设 n 是正整数,我们说集合 $\{1,2,\cdots,2n\}$ 的一个排列 (x_1,x_2,\cdots,x_{2n}) 具有性质 P ,是指在 $\{1,2,\cdots,2n-1\}$ 中至少有一个 i,使得 $|x_i-x_{i+1}|=n$,求证:对于任何 n,具有性质 P 的排列比不具有性质 P 的排列的个数多.

提示 只需证明具有性质 P 的排列个数大于全部排列数的一半. 利用容斥原理放缩.

例题 1.2.9 设 $S \subseteq \mathbb{R}$ 是一个非空的有限实数集,定义 |S| 为 S 中的元素个数,

$$m(S) = \frac{\sum_{x \in S} x}{|S|}$$

已知 S 的任意两个非空子集的元素的算术平均值都不相同. 定义

$$\dot{S} = \{ m(A) | A \subseteq S, \ A \neq \emptyset \}$$

证明: $m(\dot{S}) = m(S)$.

提示 贡献法.

1.3 子集的性质

填空题

例题 1.3.1 设 $S = \{(x,y)|x^2 - y^2$ 为奇数, $x,y \in \mathbb{R}\}$, $T = \{(x,y)|\sin^2(2\pi x^2) - \sin^2(2\pi y^2) = \cos^2(2\pi x^2) - \cos^2(2\pi y^2)$, $x,y \in \mathbb{R}\}$, 则 $S \supset T$ 的关系为_____.

提示 变形.

解答题

例题 1.3.2 设 S 是集合 $\{1,2,3,\cdots,50\}$ 的非空子集,S 中任何两个数之和不能被 7 整除. 求 $\operatorname{card}(S)$ 的最大值. 提示 列举.

例题 1.3.3 已知集合 $A = \{1, 2, \dots, 10\}$. 求集合 A 的具有下列性质的子集个数:每个子集至少含有 2 个元素,且每个子集中任何两个元素的差的绝对值大于 1.

提示 递推思想.

例题 1.3.4 证明:任何一个有限集的全部子集可以这样地排列顺序,使任意两个相邻的集相差一个元素.

提示 举例或递推.

例题 **1.3.5** 对于整数 $n (n \ge 2)$,如果存在集合 $\{1, 2, \dots, n\}$ 的子集族 A_1, A_2, \dots, A_n 满足:

- (a) $i \notin A_i, i = 1, 2, \dots, n$;
- (b) 若 $i \neq j$, $i, j \in \{1, 2, \dots, n\}$, 则 $i \in A_i$ 当且仅当 $j \notin A_i$;
- (c) $\forall i, j \in \{1, 2, \dots, n\}, A_i \cap A_j \neq \emptyset$.

则称 n 是"好数". 证明: (1)7 是"好数"; (2) 当且仅当 $n \ge 7$ 时, n 是"好数".

提示 举例与构造.

例题 1.3.6 设 S 是一个有 6 个元素的集合,能有多少种方法选取 S 的两个 (不必不相同) 子集,使得这两个子集的并是 S? 选取的次序无关紧要,例如,一对子集 $\{a,c\},\{b,c,d,e,f\}$ 与一对子集 $\{b,c,d,e,f\},\{a,c\}$ 表示同一种取法.

提示 对 card $(A \cap B)$ 进行讨论.

例题 1.3.7 (2018 山东预赛) 设集合 A, B 满足: $A \cup B = \{1, 2, \cdots, 10\}, A \cap B = \emptyset$. 若集合 A 中的元素个数不是 A 中的元素,集合 B 中的元素个数不是 B 中的元素,求满足条件的所有不同的集合 A 的个数.

提示 对 |A|, |B| 进行讨论.

例题 1.3.8 设 k,n 为给定的整数, $n>k\geq 2$,对任意 n 元的数集 P,作 P 的所有 k 元子集的元素和,记这些和组成的集合为 Q,集合 Q 中元素个数是 C_Q . 求 C_Q 的最大值和最小值.

提示 数学归纳法.

例题 **1.3.9** 设集合 $S_n = \{1, 2, \dots, n\}$. 若 $X \in S_n$ 的子集,把 X 中所有数的和为 X 的"容量"(规定空集的容量为 0),若 X 的容量为奇(偶)数,则称 X 为 S_n 的奇(偶)子集.

- (1) 证明: S_n 的奇子集与偶子集的个数相等;
- (2) 证明: 当n > 2时, S_n 的所有奇子集的容量之和等于所有偶子集的容量之和;
- (3) 当 n > 2 时,求 S_n 的所有奇子集的容量之和.

提示 贡献法.

第2章 函数

第3章 三角函数

第4章 平面向量

第5章 复数

第6章 数列

第7章 极限与导数

第8章 不等式

第9章 概率统计与计数

第10章 解析几何

第11章 立体几何