

Chapter 3

Using the DE1-SoC Board

This chapter provides an instruction to use the board and describes the peripherals.

3.1 Settings of FPGA Configuration Mode

When the DE1-SoC board is powered on, the FPGA can be configured from EPCS or HPS. The MSEL[4:0] pins are used to select the configuration scheme. It is implemented as a 6-pin DIP switch **SW10** on the DE1-SoC board, as shown in **Figure 3-1**.

Figure 3-1 DIP switch (SW10) setting of Active Serial (AS) mode at the back of DE1-SoC board

Table 3-1 shows the relation between MSEL[4:0] and DIP switch (SW10).

Table 3-1 FPGA Configuration Mode Switch (SW10)

Board Reference	Signal Name	Description	Default
SW10.1	MSEL0		ON ("0")
SW10.2	MSEL1	Handler de la Control de Control	OFF ("1")
SW10.3	MSEL2	Use these pins to set the FPGA	ON ("0")
SW10.4	MSEL3	Configuration scheme	ON ("0")
SW10.5	MSEL4		OFF ("1")
SW10.6	N/A	N/A	N/A

Figure 3-1 shows MSEL[4:0] setting of AS mode, which is also the default setting on DE1-SoC. When the board is powered on, the FPGA is configured from EPCS, which is pre-programmed with the default code. If developers wish to reconfigure FPGA from an application software running on Linux, the MSEL[4:0] needs to be set to "01010" before the programming process begins. If developers using the "Linux Console with frame buffer" or "Linux LXDE Desktop" SD Card image, the MSEL[4:0] needs to be set to "00000" before the board is powered on.

Table 3-2 MSEL Pin Settings for FPGA Configure of DE1-SoC

MSEL[4:0]	Configure Scheme	Description
10010	AS	FPGA configured from EPCS (default)
01010	FPPx32	FPGA configured from HPS software: Linux
		FPGA configured from HPS software: U-Boot, with
00000	FPPx16	image stored on the SD card, like LXDE Desktop or
		console Linux with frame buffer edition.

3.2 Configuration of Cyclone V SoC FPGA on DE1-SoC

There are two types of programming method supported by DE1-SoC:

1. JTAG programming: It is named after the IEEE standards Joint Test Action Group.

The configuration bit stream is downloaded directly into the Cyclone V SoC FPGA. The FPGA will retain its current status as long as the power keeps applying to the board; the configuration information will be lost when the power is off.

2. AS programming: The other programming method is Active Serial configuration.

The configuration bit stream is downloaded into the quad serial configuration device (EPCS128), which provides non-volatile storage for the bit stream. The information is retained within EPCS128

even if the DE1-SoC board is turned off. When the board is powered on, the configuration data in the EPCS128 device is automatically loaded into the Cyclone V SoC FPGA.

■ JTAG Chain on DE1-SoC Board

The FPGA device can be configured through JTAG interface on DE1-SoC board, but the JTAG chain must form a closed loop, which allows Quartus II programmer to the detect FPGA device. **Figure 3-2** illustrates the JTAG chain on DE1-SoC board.

Figure 3-2 Path of the JTAG chain

■ Configure the FPGA in JTAG Mode

There are two devices (FPGA and HPS) on the JTAG chain. The following shows how the FPGA is programmed in JTAG mode step by step.

1. Open the Quartus II programmer and click "Auto Detect", as circled in Figure 3-3

Figure 3-3 Detect FPGA device in JTAG mode

2. Select detected device associated with the board, as circled in Figure 3-4.

Figure 3-4 Select 5CSEMA5 device

3. Both FPGA and HPS are detected, as shown in Figure 3-5.

Figure 3-5 FPGA and HPS detected in Quartus programmer

4. Right click on the FPGA device and open the .sof file to be programmed, as highlighted in **Figure 3-6**.

Figure 3-6 Open the .sof file to be programmed into the FPGA device

5. Select the .sof file to be programmed, as shown in Figure 3-7.

Figure 3-7 Select the .sof file to be programmed into the FPGA device

6. Click "Program/Configure" check box and then click "Start" button to download the .sof file into the FPGA device, as shown in **Figure 3-8**.

Figure 3-8 Program .sof file into the FPGA device

■ Configure the FPGA in AS Mode

- The DE1-SoC board uses a quad serial configuration device (EPCS128) to store configuration data for the Cyclone V SoC FPGA. This configuration data is automatically loaded from the quad serial configuration device chip into the FPGA when the board is powered up.
- Users need to use Serial Flash Loader (SFL) to program the quad serial configuration device via JTAG interface. The FPGA-based SFL is a soft intellectual property (IP) core within the FPGA that bridge the JTAG and Flash interfaces. The SFL Megafunction is available in Quartus II. Figure 3-9 shows the programming method when adopting SFL solution.
- Please refer to Chapter 9: Steps of Programming the Quad Serial Configuration Device for the basic programming instruction on the serial configuration device.

Figure 3-9 Programming a quad serial configuration device with SFL solution

3.3 Board Status Elements

In addition to the 10 LEDs that FPGA device can control, there are 5 indicators which can indicate the board status (See Figure 3-10), please refer the details in **Table 3-3**

Figure 3-10 LED Indicators on DE1-SoC

Table 3-3 LED Indicators

Board Reference	LED Name	Description
D14	12-V Power	Illuminate when 12V power is active.
TXD	UART TXD	Illuminate when data is transferred from FT232R to USB Host.
RXD	UART RXD	Illuminate when data is transferred from USB Host to FT232R.
D5	JTAG_RX	Reserved
D4	JTAG_TX	

3.4 Board Reset Elements

There are two HPS reset buttons on DE1-SoC, HPS (cold) reset and HPS warm reset, as shown in **Figure 3-11**. **Table 3-4** describes the purpose of these two HPS reset buttons. **Figure 3-12** is the reset tree for DE1-SoC.

Figure 3-11 HPS cold reset and warm reset buttons on DE1-SoC

Table 3-4 Description of Two HPS Reset Buttons on DE1-SoC

Board Reference	Signal Name	Description
KEY5	HPS RESEL N	Cold reset to the HPS, Ethernet PHY and USB host device. Active low input which resets all HPS logics that can be reset.
KEY7	HPS WARM RSI N	Warm reset to the HPS block. Active low input affects the system reset domain for debug purpose.

Figure 3-12 HPS reset tree on DE1-SoC board

3.5 Clock Circuitry

Figure 3-13 shows the default frequency of all external clocks to the Cyclone V SoC FPGA. A clock generator is used to distribute clock signals with low jitter. The four 50MHz clock signals connected to the FPGA are used as clock sources for user logic. One 25MHz clock signal is connected to two HPS clock inputs, and the other one is connected to the clock input of Gigabit

Ethernet Transceiver. Two 24MHz clock signals are connected to the clock inputs of USB Host/OTG PHY and USB hub controller. The associated pin assignment for clock inputs to FPGA I/O pins is listed in Table 3-5.

Figure 3-13 Block diagram of the clock distribution on DE1-SoC

Table 3-5 Pin Assignment of Clock Inputs

Signal Name	FPGA Pin No.	Description	I/O Standard
CLOCK_50	PIN_AF14	50 MHz clock input	3.3V
CLOCK2_50	PIN_AA16	50 MHz clock input	3.3V
CLOCK3_50	PIN_Y26	50 MHz clock input	3.3V
CLOCK4_50	PIN_K14	50 MHz clock input	3.3V
HPS_CLOCK1_25	PIN_D25	25 MHz clock input	3.3V
HPS_CLOCK2_25	PIN_F25	25 MHz clock input	3.3V

3.6 Peripherals Connected to the FPGA

This section describes the interfaces connected to the FPGA. Users can control or monitor different interfaces with user logic from the FPGA.

3.6.1 User Push-buttons, Switches and LEDs

The board has four push-buttons connected to the FPGA, as shown in **Figure 3-14** Connections between the push-buttons and the Cyclone V SoC FPGA. Schmitt trigger circuit is implemented and act as switch debounce in **Figure 3-15** for the push-buttons connected. The four push-buttons named KEY0, KEY1, KEY2, and KEY3 coming out of the Schmitt trigger device are connected directly to the Cyclone V SoC FPGA. The push-button generates a low logic level or high logic level when it is pressed or not, respectively. Since the push-buttons are debounced, they can be used as clock or reset inputs in a circuit.

Figure 3-14 Connections between the push-buttons and the Cyclone V SoC FPGA

23

Figure 3-15 Switch debouncing

There are ten slide switches connected to the FPGA, as shown in **Figure 3-16**. These switches are not debounced and to be used as level-sensitive data inputs to a circuit. Each switch is connected directly and individually to the FPGA. When the switch is set to the DOWN position (towards the edge of the board), it generates a low logic level to the FPGA. When the switch is set to the UP position, a high logic level is generated to the FPGA.

Figure 3-16 Connections between the slide switches and the Cyclone V SoC FPGA

There are also ten user-controllable LEDs connected to the FPGA. Each LED is driven directly and individually by the Cyclone V SoC FPGA; driving its associated pin to a high logic level or low

level to turn the LED on or off, respectively. **Figure 3-17** shows the connections between LEDs and Cyclone V SoC FPGA. **Table 3-6**, **Table 3-7** and **Table 3-8** list the pin assignment of user push-buttons, switches, and LEDs.

Figure 3-17 Connections between the LEDs and the Cyclone V SoC FPGA

Table 3-6 Pin Assignment of Slide Switches

Signal Name	FPGA Pin No.	Description	I/O Standard
SW[0]	PIN_AB12	Slide Switch[0]	3.3V
SW[1]	PIN_AC12	Slide Switch[1]	3.3V
SW[2]	PIN_AF9	Slide Switch[2]	3.3V
SW[3]	PIN_AF10	Slide Switch[3]	3.3V
SW[4]	PIN_AD11	Slide Switch[4]	3.3V
SW[5]	PIN_AD12	Slide Switch[5]	3.3V
SW[6]	PIN_AE11	Slide Switch[6]	3.3V
SW[7]	PIN_AC9	Slide Switch[7]	3.3V
SW[8]	PIN_AD10	Slide Switch[8]	3.3V
SW[9]	PIN_AE12	Slide Switch[9]	3.3V

Table 3-7 Pin Assignment of Push-buttons

Signal Name	FPGA Pin No.	Description	I/O Standard	
KEY[0]	PIN_AA14	Push-button[0]	3.3V	
KEY[1]	PIN_AA15	Push-button[1]	3.3V	
KEY[2]	PIN_W15	Push-button[2]	3.3V	
KEY[3]	PIN_Y16	Push-button[3]	3.3V	

Table 3-8 Pin Assignment of LEDs

Signal Name	FPGA Pin No.	Description	I/O Standard
LEDR[0]	PIN_V16	LED [0]	3.3V
LEDR[1]	PIN_W16	LED [1]	3.3V
LEDR[2]	PIN_V17	LED [2]	3.3V
LEDR[3]	PIN_V18	LED [3]	3.3V
LEDR[4]	PIN_W17	LED [4]	3.3V
LEDR[5]	PIN_W19	LED [5]	3.3V
LEDR[6]	PIN_Y19	LED [6]	3.3V
LEDR[7]	PIN_W20	LED [7]	3.3V
LEDR[8]	PIN_W21	LED [8]	3.3V
LEDR[9]	PIN_Y21	LED [9]	3.3V

3.6.2 7-segment Displays

The DE1-SoC board has six 7-segment displays. These displays are paired to display numbers in various sizes. **Figure 3-18** shows the connection of seven segments (common anode) to pins on Cyclone V SoC FPGA. The segment can be turned on or off by applying a low logic level or high logic level from the FPGA, respectively.

Each segment in a display is indexed from 0 to 6, with corresponding positions given in **Figure 3-18**. **Table 3-9** shows the pin assignment of FPGA to the 7-segment displays.

Figure 3-18 Connections between the 7-segment display HEX0 and the Cyclone V SoC FPGA

Table 3-9 Pin Assignment of 7-segment Displays

Signal Name	FPGA Pin No.	Description	I/O Standard
HEX0[0]	PIN_AE26	Seven Segment Digit 0[0]	3.3V
HEX0[1]	PIN_AE27	Seven Segment Digit 0[1]	3.3V
HEX0[2]	PIN_AE28	Seven Segment Digit 0[2]	3.3V
HEX0[3]	PIN_AG27	Seven Segment Digit 0[3]	3.3V
HEX0[4]	PIN_AF28	Seven Segment Digit 0[4]	3.3V
HEX0[5]	PIN_AG28	Seven Segment Digit 0[5]	3.3V
HEX0[6]	PIN_AH28	Seven Segment Digit 0[6]	3.3V
HEX1[0]	PIN_AJ29	Seven Segment Digit 1[0]	3.3V
HEX1[1]	PIN_AH29	Seven Segment Digit 1[1]	3.3V
HEX1[2]	PIN_AH30	Seven Segment Digit 1[2]	3.3V
HEX1[3]	PIN_AG30	Seven Segment Digit 1[3]	3.3V
HEX1[4]	PIN_AF29	Seven Segment Digit 1[4]	3.3V
HEX1[5]	PIN_AF30	Seven Segment Digit 1[5]	3.3V
HEX1[6]	PIN_AD27	Seven Segment Digit 1[6]	3.3V
HEX2[0]	PIN_AB23	Seven Segment Digit 2[0]	3.3V
HEX2[1]	PIN_AE29	Seven Segment Digit 2[1]	3.3V
HEX2[2]	PIN_AD29	Seven Segment Digit 2[2]	3.3V
HEX2[3]	PIN_AC28	Seven Segment Digit 2[3]	3.3V
HEX2[4]	PIN_AD30	Seven Segment Digit 2[4]	3.3V
HEX2[5]	PIN_AC29	Seven Segment Digit 2[5]	3.3V
HEX2[6]	PIN_AC30	Seven Segment Digit 2[6]	3.3V
HEX3[0]	PIN_AD26	Seven Segment Digit 3[0]	3.3V
HEX3[1]	PIN_AC27	Seven Segment Digit 3[1]	3.3V
HEX3[2]	PIN_AD25	Seven Segment Digit 3[2]	3.3V
HEX3[3]	PIN_AC25	Seven Segment Digit 3[3]	3.3V
HEX3[4]	PIN_AB28	Seven Segment Digit 3[4]	3.3V
HEX3[5]	PIN_AB25	Seven Segment Digit 3[5]	3.3V
HEX3[6]	PIN_AB22	Seven Segment Digit 3[6]	3.3V
HEX4[0]	PIN_AA24	Seven Segment Digit 4[0]	3.3V
HEX4[1]	PIN_Y23	Seven Segment Digit 4[1]	3.3V
HEX4[2]	PIN_Y24	Seven Segment Digit 4[2]	3.3V
HEX4[3]	PIN_W22	Seven Segment Digit 4[3]	3.3V
HEX4[4]	PIN_W24	Seven Segment Digit 4[4]	3.3V
HEX4[5]	PIN_V23	Seven Segment Digit 4[5]	3.3V
HEX4[6]	PIN_W25	Seven Segment Digit 4[6]	3.3V
HEX5[0]	PIN_V25	Seven Segment Digit 5[0]	3.3V
HEX5[1]	PIN_AA28	Seven Segment Digit 5[1]	3.3V
HEX5[2]	PIN_Y27	Seven Segment Digit 5[2]	3.3V
HEX5[3]	PIN_AB27	Seven Segment Digit 5[3]	3.3V
HEX5[4]	PIN_AB26	Seven Segment Digit 5[4]	3.3V
HEX5[5]	PIN_AA26	Seven Segment Digit 5[5]	3.3V
HEX5[6]	PIN_AA25	Seven Segment Digit 5[6]	3.3V

3.6.3 2x20 GPIO Expansion Headers

The board has two 40-pin expansion headers. Each header has 36 user pins connected directly to the Cyclone V SoC FPGA. It also comes with DC +5V (VCC5), DC +3.3V (VCC3P3), and two GND pins. The maximum power consumption allowed for a daughter card connected to one or two GPIO ports is shown in **Table 3-10**.

Table 3-10 Voltage and Max. Current Limit of Expansion Header(s)

Supplied Voltage	Max. Current Limit
5V	1A
3.3V	1.5A

Each pin on the expansion headers is connected to two diodes and a resistor for protection against high or low voltage level. **Figure 3-19** shows the protection circuitry applied to all 2x36 data pins. **Table 3-11** shows the pin assignment of two GPIO headers.

Figure 3-19 Connections between the GPIO header and Cyclone V SoC FPGA

Table 3-11 Pin Assignment of Expansion Headers

Signal Name	FPGA Pin No.	Description	I/O Standard
GPIO_0[0]	PIN_AC18	GPIO Connection 0[0]	3.3V
GPIO_0 [1]	PIN_Y17	GPIO Connection 0[1]	3.3V
GPIO_0 [2]	PIN_AD17	GPIO Connection 0[2]	3.3V
GPIO_0 [3]	PIN_Y18	GPIO Connection 0[3]	3.3V

CDIO 0 [4]	DIN AV46	CDIO Connection 0[4]	2 2 4
GPIO_0 [4]	PIN_AK16	GPIO Connection 0[4]	3.3V
GPIO_0 [5]	PIN_AK18	GPIO Connection 0[5]	3.3V
GPIO_0 [6]	PIN_AK19	GPIO Connection 0[6]	3.3V
GPIO_0 [7]	PIN_AJ19	GPIO Connection 0[7]	3.3V
GPIO_0 [8]	PIN_AJ17	GPIO Connection 0[8]	3.3V
GPIO_0 [9]	PIN_AJ16	GPIO Connection 0[9]	3.3V
GPIO_0 [10]	PIN_AH18	GPIO Connection 0[10]	3.3V
GPIO_0 [11]	PIN_AH17	GPIO Connection 0[11]	3.3V
GPIO_0 [12]	PIN_AG16	GPIO Connection 0[12]	3.3V
GPIO_0 [13]	PIN_AE16	GPIO Connection 0[13]	3.3V
GPIO_0 [14]	PIN_AF16	GPIO Connection 0[14]	3.3V
GPIO_0 [15]	PIN_AG17	GPIO Connection 0[15]	3.3V
GPIO_0 [16]	PIN_AA18	GPIO Connection 0[16]	3.3V
GPIO_0 [17]	PIN_AA19	GPIO Connection 0[17]	3.3V
GPIO_0 [18]	PIN_AE17	GPIO Connection 0[18]	3.3V
GPIO_0 [19]	PIN_AC20	GPIO Connection 0[19]	3.3V
GPIO_0 [20]	PIN_AH19	GPIO Connection 0[20]	3.3V
GPIO_0 [21]	PIN_AJ20	GPIO Connection 0[21]	3.3V
GPIO_0 [22]	PIN_AH20	GPIO Connection 0[22]	3.3V
GPIO_0 [23]	PIN_AK21	GPIO Connection 0[23]	3.3V
GPIO_0 [24]	PIN_AD19	GPIO Connection 0[24]	3.3V
GPIO_0 [25]	PIN_AD20	GPIO Connection 0[25]	3.3V
GPIO_0 [26]	PIN_AE18	GPIO Connection 0[26]	3.3V
GPIO_0 [27]	PIN_AE19	GPIO Connection 0[27]	3.3V
GPIO_0 [28]	PIN_AF20	GPIO Connection 0[28]	3.3V
GPIO_0 [29]	PIN_AF21	GPIO Connection 0[29]	3.3V
GPIO_0 [30]	PIN_AF19	GPIO Connection 0[30]	3.3V
GPIO_0 [31]	PIN_AG21	GPIO Connection 0[31]	3.3V
GPIO_0 [32]	PIN_AF18	GPIO Connection 0[32]	3.3V
GPIO_0 [33]	PIN_AG20	GPIO Connection 0[33]	3.3V
GPIO_0 [34]	PIN_AG18	GPIO Connection 0[34]	3.3V
GPIO_0 [35]	PIN AJ21	GPIO Connection 0[35]	3.3V
GPIO_1[0]	PIN_AB17	GPIO Connection 1[0]	3.3V
GPIO_1[1]	PIN_AA21	GPIO Connection 1[1]	3.3V
GPIO_1 [2]	PIN_AB21	GPIO Connection 1[2]	3.3V
GPIO_1 [3]	PIN_AC23	GPIO Connection 1[3]	3.3V
GPIO_1 [4]	PIN AD24	GPIO Connection 1[4]	3.3V
GPIO_1 [5]	PIN_AE23	GPIO Connection 1[5]	3.3V
GPIO_1 [6]	PIN_AE24	GPIO Connection 1[6]	3.3V
GPIO_1 [7]	PIN_AF25	GPIO Connection 1[7]	3.3V
GPIO_1 [7]	PIN_AF26	GPIO Connection 1[8]	3.3V
	PIN_AG25	GPIO Connection 1[9]	3.3V
GPIO_1 [9]		GPIO Connection 1[9]	
GPIO_1[10]	PIN_AG26		3.3V
GPIO_1 [11]	PIN_AH24	GPIO Connection 1[11]	3.3V

GPIO_1 [12] PIN_AH27 GPIO Connection 1[12] 3.3V GPIO_1 [13] PIN_AJ27 GPIO Connection 1[13] 3.3V GPIO_1 [14] PIN_AK29 GPIO Connection 1[14] 3.3V GPIO_1 [15] PIN_AK28 GPIO Connection 1[15] 3.3V GPIO_1 [16] PIN_AK27 GPIO Connection 1[16] 3.3V GPIO_1 [17] PIN_AJ26 GPIO Connection 1[17] 3.3V GPIO_1 [18] PIN_AK26 GPIO Connection 1[18] 3.3V GPIO_1 [19] PIN_AH25 GPIO Connection 1[19] 3.3V GPIO_1 [20] PIN_AJ25 GPIO Connection 1[20] 3.3V GPIO_1 [21] PIN_AJ24 GPIO Connection 1[21] 3.3V GPIO_1 [22] PIN_AK24 GPIO Connection 1[22] 3.3V	
GPIO_1 [14] PIN_AK29 GPIO Connection 1[14] 3.3V GPIO_1 [15] PIN_AK28 GPIO Connection 1[15] 3.3V GPIO_1 [16] PIN_AK27 GPIO Connection 1[16] 3.3V GPIO_1 [17] PIN_AJ26 GPIO Connection 1[17] 3.3V GPIO_1 [18] PIN_AK26 GPIO Connection 1[18] 3.3V GPIO_1 [19] PIN_AH25 GPIO Connection 1[19] 3.3V GPIO_1 [20] PIN_AJ25 GPIO Connection 1[20] 3.3V GPIO_1 [21] PIN_AJ24 GPIO Connection 1[21] 3.3V	
GPIO_1 [15] PIN_AK28 GPIO Connection 1[15] 3.3V GPIO_1 [16] PIN_AK27 GPIO Connection 1[16] 3.3V GPIO_1 [17] PIN_AJ26 GPIO Connection 1[17] 3.3V GPIO_1 [18] PIN_AK26 GPIO Connection 1[18] 3.3V GPIO_1 [19] PIN_AH25 GPIO Connection 1[19] 3.3V GPIO_1 [20] PIN_AJ25 GPIO Connection 1[20] 3.3V GPIO_1 [21] PIN_AJ24 GPIO Connection 1[21] 3.3V	
GPIO_1 [16] PIN_AK27 GPIO Connection 1[16] 3.3V GPIO_1 [17] PIN_AJ26 GPIO Connection 1[17] 3.3V GPIO_1 [18] PIN_AK26 GPIO Connection 1[18] 3.3V GPIO_1 [19] PIN_AH25 GPIO Connection 1[19] 3.3V GPIO_1 [20] PIN_AJ25 GPIO Connection 1[20] 3.3V GPIO_1 [21] PIN_AJ24 GPIO Connection 1[21] 3.3V	
GPIO_1 [17] PIN_AJ26 GPIO Connection 1[17] 3.3V GPIO_1 [18] PIN_AK26 GPIO Connection 1[18] 3.3V GPIO_1 [19] PIN_AH25 GPIO Connection 1[19] 3.3V GPIO_1 [20] PIN_AJ25 GPIO Connection 1[20] 3.3V GPIO_1 [21] PIN_AJ24 GPIO Connection 1[21] 3.3V	
GPIO_1 [18] PIN_AK26 GPIO Connection 1[18] 3.3V GPIO_1 [19] PIN_AH25 GPIO Connection 1[19] 3.3V GPIO_1 [20] PIN_AJ25 GPIO Connection 1[20] 3.3V GPIO_1 [21] PIN_AJ24 GPIO Connection 1[21] 3.3V	
GPIO_1 [19] PIN_AH25 GPIO Connection 1[19] 3.3V GPIO_1 [20] PIN_AJ25 GPIO Connection 1[20] 3.3V GPIO_1 [21] PIN_AJ24 GPIO Connection 1[21] 3.3V	
GPIO_1 [20] PIN_AJ25 GPIO Connection 1[20] 3.3V GPIO_1 [21] PIN_AJ24 GPIO Connection 1[21] 3.3V	
GPIO_1 [21] PIN_AJ24 GPIO Connection 1[21] 3.3V	
GPIO 1 [22] PIN AK24 GPIO Connection 1[22] 3 3V	
GFIO_1 [22] FIN_AR24 GFIO COIIIIection 1[22] 5.5V	
GPIO_1 [23] PIN_AG23 GPIO Connection 1[23] 3.3V	
GPIO_1 [24] PIN_AK23 GPIO Connection 1[24] 3.3V	
GPIO_1 [25] PIN_AH23 GPIO Connection 1[25] 3.3V	
GPIO_1 [26] PIN_AK22 GPIO Connection 1[26] 3.3V	
GPIO_1 [27] PIN_AJ22 GPIO Connection 1[27] 3.3V	
GPIO_1 [28] PIN_AH22 GPIO Connection 1[28] 3.3V	
GPIO_1 [29] PIN_AG22 GPIO Connection 1[29] 3.3V	
GPIO_1 [30] PIN_AF24 GPIO Connection 1[30] 3.3V	
GPIO_1 [31] PIN_AF23 GPIO Connection 1[31] 3.3V	
GPIO_1 [32] PIN_AE22 GPIO Connection 1[32] 3.3V	
GPIO_1 [33] PIN_AD21 GPIO Connection 1[33] 3.3V	
GPIO_1 [34] PIN_AA20 GPIO Connection 1[34] 3.3V	
GPIO_1 [35] PIN_AC22 GPIO Connection 1[35] 3.3V	

3.6.4 24-bit Audio CODEC

The DE1-SoC board offers high-quality 24-bit audio via the Wolfson WM8731 audio CODEC (Encoder/Decoder). This chip supports microphone-in, line-in, and line-out ports, with adjustable sample rate from 8 kHz to 96 kHz. The WM8731 is controlled via serial I2C bus, which is connected to HPS or Cyclone V SoC FPGA through an I2C multiplexer. The connection of the audio circuitry to the FPGA is shown in **Figure 3-20**, and the associated pin assignment to the FPGA is listed in **Table 3-12**. More information about the WM8731 codec is available in its datasheet, which can be found on the manufacturer's website, or in the directory \DE1_SOC_datasheets\Audio CODEC of DE1-SoC System CD.

Figure 3-20 Connections between the FPGA and audio CODEC

Table 3-12 Pin Assignment of Audio CODEC

Signal Name	FPGA Pin No.	Description	I/O Standard
AUD_ADCLRCK	PIN_K8	Audio CODEC ADC LR Clock	3.3V
AUD_ADCDAT	PIN_K7	Audio CODEC ADC Data	3.3V
AUD_DACLRCK	PIN_H8	Audio CODEC DAC LR Clock	3.3V
AUD_DACDAT	PIN_J7	Audio CODEC DAC Data	3.3V
AUD_XCK	PIN_G7	Audio CODEC Chip Clock	3.3V
AUD_BCLK	PIN_H7	Audio CODEC Bit-stream Clock	3.3V
I2C_SCLK	PIN_J12 or PIN_E23	I2C Clock	3.3V
I2C_SDAT	PIN_K12 or PIN_C24	I2C Data	3.3V

3.6.5 I2C Multiplexer

The DE1-SoC board implements an I2C multiplexer for HPS to access the I2C bus originally owned by FPGA. **Figure 3-21** shows the connection of I2C multiplexer to the FPGA and HPS. HPS can access Audio CODEC and TV Decoder if and only if the HPS_I2C_CONTROL signal is set to high. The pin assignment of I2C bus is listed in **Table 3-13**.

Figure 3-21 Control mechanism for the I2C multiplexer

Table 3-13 Pin Assignment of I2C Bus

Signal Name	FPGA Pin No.	Description	I/O Standard
FPGA_I2C_SCLK	PIN_J12	FPGA I2C Clock	3.3V
FPGA_I2C_SDAT	PIN_K12	FPGA I2C Data	3.3V
HPS_I2C1_SCLK	PIN_E23	I2C Clock of the first HPS I2C concontroller	3.3V
HPS_I2C1_SDAT	PIN_C24	I2C Data of the first HPS I2C concontroller	3.3V
HPS_I2C2_SCLK	PIN_H23	I2C Clock of the second HPS I2C concontroller	3.3V
HPS_I2C2_SDAT	PIN_A25	I2C Data of the second HPS I2C concontroller	3.3V

3.6.6 VGA

The DE1-SoC board has a 15-pin D-SUB connector populated for VGA output. The VGA synchronization signals are generated directly from the Cyclone V SoC FPGA, and the Analog Devices ADV7123 triple 10-bit high-speed video DAC (only the higher 8-bits are used) transforms signals from digital to analog to represent three fundamental colors (red, green, and blue). It can support up to SXGA standard (1280*1024) with signals transmitted at 100MHz. **Figure 3-22** shows the signals connected between the FPGA and VGA.

Figure 3-22 Connections between the FPGA and VGA

The timing specification for VGA synchronization and RGB (red, green, blue) data can be easily found on website nowadays. Figure 3-22 illustrates the basic timing requirements for each row (horizontal) displayed on a VGA monitor. An active-low pulse of specific duration is applied to the horizontal synchronization (hsync) input of the monitor, which signifies the end of one row of data and the start of the next. The data (RGB) output to the monitor must be off (driven to 0 V) for a time period called the back porch (b) after the hsync pulse occurs, which is followed by the display interval (c). During the data display interval the RGB data drives each pixel in turn across the row being displayed. Finally, there is a time period called the front porch (d) where the RGB signals must again be off before the next hsync pulse can occur. The timing of vertical synchronization (vsync) is similar to the one shown in Figure 3-23, except that a vsync pulse signifies the end of one frame and the start of the next, and the data refers to the set of rows in the frame (horizontal timing). Table 3-14 and Table 3-15 show different resolutions and durations of time period a, b, c, and d for both horizontal and vertical timing.

More information about the ADV7123 video DAC is available in its datasheet, which can be found on the manufacturer's website, or in the directory \Datasheets\VIDEO DAC of DE1-SoC System CD. The pin assignment between the Cyclone V SoC FPGA and the ADV7123 is listed in **Table 3-16.**

Figure 3-23 VGA horizontal timing specification

Table 3-14 VGA Horizontal Timing Specification

VGA mode	Horizo	Horizontal Timing Spec				
Configuration	Resolution(HxV)	a(us)	b(us)	c(us)	d(us)	Pixel clock(MHz)
VGA(60Hz)	640x480	3.8	1.9	25.4	0.6	25
VGA(85Hz)	640x480	1.6	2.2	17.8	1.6	36
SVGA(60Hz)	800x600	3.2	2.2	20	1	40
SVGA(75Hz)	800x600	1.6	3.2	16.2	0.3	49
SVGA(85Hz)	800x600	1.1	2.7	14.2	0.6	56
XGA(60Hz)	1024x768	2.1	2.5	15.8	0.4	65
XGA(70Hz)	1024x768	1.8	1.9	13.7	0.3	75
XGA(85Hz)	1024x768	1.0	2.2	10.8	0.5	95
1280x1024(60Hz)	1280x1024	1.0	2.3	11.9	0.4	108

Table 3-15 VGA Vertical Timing Specification

Table 6 16 + 611 + 61 version 1 mm g permeation						
VGA mode	Vertical Timing Spec					
Configuration	Resolution(HxV)	a(lines)	b(lines)	c(lines)	d(lines)	Pixel clock(MHz)
VGA(60Hz)	640x480	2	33	480	10	25
VGA(85Hz)	640x480	3	25	480	1	36
SVGA(60Hz)	800x600	4	23	600	1	40
SVGA(75Hz)	800x600	3	21	600	1	49
SVGA(85Hz)	800x600	3	27	600	1	56
XGA(60Hz)	1024x768	6	29	768	3	65
XGA(70Hz)	1024x768	6	29	768	3	75
XGA(85Hz)	1024x768	3	36	768	1	95
1280x1024(60Hz)	1280x1024	3	38	1024	1	108

Table 3-16 Pin Assignment of VGA

Signal Name	FPGA Pin No.	Description	I/O Standard
VGA_R[0]	PIN_A13	VGA Red[0]	3.3V
VGA_R[1]	PIN_C13	VGA Red[1]	3.3V
VGA_R[2]	PIN_E13	VGA Red[2]	3.3V
VGA_R[3]	PIN_B12	VGA Red[3]	3.3V
VGA_R[4]	PIN_C12	VGA Red[4]	3.3V
VGA_R[5]	PIN_D12	VGA Red[5]	3.3V
VGA_R[6]	PIN_E12	VGA Red[6]	3.3V
VGA_R[7]	PIN_F13	VGA Red[7]	3.3V
VGA_G[0]	PIN_J9	VGA Green[0]	3.3V
VGA_G[1]	PIN_J10	VGA Green[1]	3.3V
VGA_G[2]	PIN_H12	VGA Green[2]	3.3V
VGA_G[3]	PIN_G10	VGA Green[3]	3.3V
VGA_G[4]	PIN_G11	VGA Green[4]	3.3V
VGA_G[5]	PIN_G12	VGA Green[5]	3.3V
VGA_G[6]	PIN_F11	VGA Green[6]	3.3V
VGA_G[7]	PIN_E11	VGA Green[7]	3.3V
VGA_B[0]	PIN_B13	VGA Blue[0]	3.3V
VGA_B[1]	PIN_G13	VGA Blue[1]	3.3V
VGA_B[2]	PIN_H13	VGA Blue[2]	3.3V
VGA_B[3]	PIN_F14	VGA Blue[3]	3.3V
VGA_B[4]	PIN_H14	VGA Blue[4]	3.3V
VGA_B[5]	PIN_F15	VGA Blue[5]	3.3V
VGA_B[6]	PIN_G15	VGA Blue[6]	3.3V
VGA_B[7]	PIN_J14	VGA Blue[7]	3.3V
VGA_CLK	PIN_A11	VGA Clock	3.3V
VGA_BLANK_N	PIN_F10	VGA BLANK	3.3V
VGA_HS	PIN_B11	VGA H_SYNC	3.3V
VGA_VS	PIN_D11	VGA V_SYNC	3.3V
VGA_SYNC_N	PIN_C10	VGA SYNC	3.3V

3.6.7 TV Decoder

The DE1-SoC board is equipped with an Analog Device ADV7180 TV decoder chip. The ADV7180 is an integrated video decoder which automatically detects and converts a standard analog baseband television signals (NTSC, PAL, and SECAM) into 4:2:2 component video data, which is compatible with the 8-bit ITU-R BT.656 interface standard. The ADV7180 is compatible with wide range of video devices, including DVD players, tape-based sources, broadcast sources, and security/surveillance cameras.

The registers in the TV decoder can be accessed and set through serial I2C bus by the Cyclone V SoC FPGA or HPS. Note that the I2C address W/R of the TV decoder (U4) is 0x40/0x41. The pin assignment of TV decoder is listed in **Table 3-17**. More information about the ADV7180 is available on the manufacturer's website, or in the directory \DE1_SOC_datasheets\Video Decoder of DE1-SoC System CD.

Figure 3-24 Connections between the FPGA and TV Decoder

Table 3-17 Pin Assignment of TV Decoder

Signal Name	FPGA Pin No.	Description	I/O Standard
TD_DATA [0]	PIN_D2	TV Decoder Data[0]	3.3V
TD_DATA [1]	PIN_B1	TV Decoder Data[1]	3.3V
TD_DATA [2]	PIN_E2	TV Decoder Data[2]	3.3V
TD_DATA [3]	PIN_B2	TV Decoder Data[3]	3.3V
TD_DATA [4]	PIN_D1	TV Decoder Data[4]	3.3V
TD_DATA [5]	PIN_E1	TV Decoder Data[5]	3.3V
TD_DATA [6]	PIN_C2	TV Decoder Data[6]	3.3V
TD_DATA [7]	PIN_B3	TV Decoder Data[7]	3.3V
TD_HS	PIN_A5	TV Decoder H_SYNC	3.3V
TD_VS	PIN_A3	TV Decoder V_SYNC	3.3V
TD_CLK27	PIN_H15	TV Decoder Clock Input.	3.3V
TD_RESET_N	PIN_F6	TV Decoder Reset	3.3V
I2C_SCLK	PIN_J12 or PIN_E23	I2C Clock	3.3V
I2C_SDAT	PIN_K12 or PIN_C24	I2C Data	3.3V

3.6.8 IR Receiver

The board comes with an infrared remote-control receiver module (model: IRM-V538/TR1), whose datasheet is provided in the directory \Datasheets\ IR Receiver and Emitter of DE1-SoC system CD. The remote control, which is optional and can be ordered from the website, has an encoding chip (uPD6121G) built-in for generating infrared signals. **Figure 3-25** shows the connection of IR receiver to the FPGA. **Table 3-18** shows the pin assignment of IR receiver to the FPGA.

Figure 3-25 Connection between the FPGA and IR Receiver

Table 3-18 Pin Assignment of IR Receiver

Signal Name	FPGA Pin No.	Description	I/O Standard
IRDA_RXD	PIN_ AA30	IR Receiver	3.3V

3.6.9 IR Emitter LED

The board has an IR emitter LED for IR communication, which is widely used for operating television device wirelessly from a short line-of-sight distance. It can also be used to communicate with other systems by matching this IR emitter LED with another IR receiver on the other side.

Figure 3-26 shows the connection of IR emitter LED to the FPGA. Table 3-19 shows the pin assignment of IR emitter LED to the FPGA.

Figure 3-26 Connection between the FPGA and IR emitter LED

Table 3-19 Pin Assignment of IR Emitter LED

Signal Name	FPGA Pin No.	Description	I/O Standard
IRDA_TXD	PIN_ AB30	IR Emitter	3.3V

3.6.10 SDRAM Memory

The board features 64MB of SDRAM with a single 64MB (32Mx16) SDRAM chip. The chip consists of 16-bit data line, control line, and address line connected to the FPGA. This chip uses the 3.3V LVCMOS signaling standard. Connections between the FPGA and SDRAM are shown in **Figure 3-27**, and the pin assignment is listed in **Table 3-20**.

Figure 3-27 Connections between the FPGA and SDRAM

Table 3-20 Pin Assignment of SDRAM

Signal Name	FPGA Pin No.	Description	I/O Standard
DRAM_ADDR[0]	PIN_AK14	SDRAM Address[0]	3.3V
DRAM_ADDR[1]	PIN_AH14	SDRAM Address[1]	3.3V
DRAM_ADDR[2]	PIN_AG15	SDRAM Address[2]	3.3V
DRAM_ADDR[3]	PIN_AE14	SDRAM Address[3]	3.3V
DRAM_ADDR[4]	PIN_AB15	SDRAM Address[4]	3.3V
DRAM_ADDR[5]	PIN_AC14	SDRAM Address[5]	3.3V
DRAM_ADDR[6]	PIN_AD14	SDRAM Address[6]	3.3V
DRAM_ADDR[7]	PIN_AF15	SDRAM Address[7]	3.3V
DRAM_ADDR[8]	PIN_AH15	SDRAM Address[8]	3.3V
DRAM_ADDR[9]	PIN_AG13	SDRAM Address[9]	3.3V
DRAM_ADDR[10]	PIN_AG12	SDRAM Address[10]	3.3V
DRAM_ADDR[11]	PIN_AH13	SDRAM Address[11]	3.3V
DRAM_ADDR[12]	PIN_AJ14	SDRAM Address[12]	3.3V
DRAM_DQ[0]	PIN_AK6	SDRAM Data[0]	3.3V
DRAM_DQ[1]	PIN_AJ7	SDRAM Data[1]	3.3V
DRAM_DQ[2]	PIN_AK7	SDRAM Data[2]	3.3V
DRAM_DQ[3]	PIN_AK8	SDRAM Data[3]	3.3V
DRAM_DQ[4]	PIN_AK9	SDRAM Data[4]	3.3V
DRAM_DQ[5]	PIN_AG10	SDRAM Data[5]	3.3V

DRAM_DQ[6]	PIN_AK11	SDRAM Data[6]	3.3V
DRAM_DQ[7]	PIN_AJ11	SDRAM Data[7]	3.3V
DRAM_DQ[8]	PIN_AH10	SDRAM Data[8]	3.3V
DRAM_DQ[9]	PIN_AJ10	SDRAM Data[9]	3.3V
DRAM_DQ[10]	PIN_AJ9	SDRAM Data[10]	3.3V
DRAM_DQ[11]	PIN_AH9	SDRAM Data[11]	3.3V
DRAM_DQ[12]	PIN_AH8	SDRAM Data[12]	3.3V
DRAM_DQ[13]	PIN_AH7	SDRAM Data[13]	3.3V
DRAM_DQ[14]	PIN_AJ6	SDRAM Data[14]	3.3V
DRAM_DQ[15]	PIN_AJ5	SDRAM Data[15]	3.3V
DRAM_BA[0]	PIN_AF13	SDRAM Bank Address[0]	3.3V
DRAM_BA[1]	PIN_AJ12	SDRAM Bank Address[1]	3.3V
DRAM_LDQM	PIN_AB13	SDRAM byte Data Mask[0]	3.3V
DRAM_UDQM	PIN_AK12	SDRAM byte Data Mask[1]	3.3V
DRAM_RAS_N	PIN_AE13	SDRAM Row Address Strobe	3.3V
DRAM_CAS_N	PIN_AF11	SDRAM Column Address Strobe	3.3V
DRAM_CKE	PIN_AK13	SDRAM Clock Enable	3.3V
DRAM_CLK	PIN_AH12	SDRAM Clock	3.3V
DRAM_WE_N	PIN_AA13	SDRAM Write Enable	3.3V
DRAM_CS_N	PIN_AG11	SDRAM Chip Select	3.3V

3.6.11 PS/2 Serial Port

The DE1-SoC board comes with a standard PS/2 interface and a connector for a PS/2 keyboard or mouse. **Figure 3-28** shows the connection of PS/2 circuit to the FPGA. Users can use the PS/2 keyboard and mouse on the DE1-SoC board simultaneously by a PS/2 Y-Cable, as shown in **Figure 3-29**. Instructions on how to use PS/2 mouse and/or keyboard can be found on various educational websites. The pin assignment associated to this interface is shown in **Table 3-21**.

should be "PS2_CLK" and "PS2_DAT".

Figure 3-28 Connections between the FPGA and PS/2

Figure 3-29 Y-Cable for using keyboard and mouse simultaneously

Table 3-21 Pin Assignment of PS/2

Signal Name	FPGA Pin No.	Description	I/O Standard
PS2_CLK	PIN_AD7	PS/2 Clock	3.3V
PS2_DAT	PIN_AE7	PS/2 Data	3.3V
PS2_CLK2	PIN_AD9	PS/2 Clock (reserved for second PS/2 device)	3.3V
PS2_DAT2	PIN_AE9	PS/2 Data (reserved for second PS/2 device)	3.3V

3.6.12 A/D Converter and 2x5 Header

The DE1-SoC has an analog-to-digital converter (LTC2308), which features low noise, eight-channel CMOS 12-bit. This ADC offers conversion throughput rate up to 500KSPS. The analog input range for all input channels can be 0 V to 4.096V. The internal conversion clock allows the external serial output data clock (SCLK) to operate at any frequency up to 40MHz. It can be configured to accept eight input signals at inputs ADC_IN0 through ADC_IN7. These eight input signals are connected to a 2x5 header, as shown in **Figure 3-30**.

More information about the A/D converter chip is available in its datasheet. It can be found on manufacturer's website or in the directory \datasheet of De1-SoC system CD.

Figure 3-30 Signals of the 2x5 Header

Figure 3-31 shows the connections between the FPGA, 2x5 header, and the A/D converter.

Figure 3-31 Connections between the FPGA, 2x5 header, and the A/D converter

Table 3-22 Pin Assignment of ADC

Signal Name	FPGA Pin No.	Description	I/O Standard
ADC_CS_N	PIN_AJ4	Chip select	3.3V
ADC_DOUT	PIN_AK3	Digital data input	3.3V
ADC_DIN	PIN_AK4	Digital data output	3.3V
ADC SCLK	PIN AK2	Digital clock input	3.3V

3.7 Peripherals Connected to Hard Processor System (HPS)

This section introduces the interfaces connected to the HPS section of the Cyclone V SoC FPGA. Users can access these interfaces via the HPS processor.

3.7.1 User Push-buttons and LEDs

Similar to the FPGA, the HPS also has its set of switches, buttons, LEDs, and other interfaces connected exclusively. Users can control these interfaces to monitor the status of HPS.

43

Table 3-23 gives the pin assignment of all the LEDs, switches, and push-buttons.

Table 3-23 Pin Assignment of LEDs, Switches and Push-buttons

Signal Name	HPS GPIO	Register/bit	Function
HPS_KEY	GPIO54	GPIO1[25]	I/O
HPS_LED	GPIO53	GPIO1[24]	I/O

3.7.2 Gigabit Ethernet

The board supports Gigabit Ethernet transfer by an external Micrel KSZ9021RN PHY chip and HPS Ethernet MAC function. The KSZ9021RN chip with integrated 10/100/1000 Mbps Gigabit Ethernet transceiver also supports RGMII MAC interface. **Figure 3-32** shows the connections between the HPS, Gigabit Ethernet PHY, and RJ-45 connector.

The pin assignment associated to Gigabit Ethernet interface is listed in **Table 3-24**. More information about the KSZ9021RN PHY chip and its datasheet, as well as the application notes, which are available on the manufacturer's website.

Figure 3-32 Connections between the HPS and Gigabit Ethernet

Table 3-24 Pin Assignment of Gigabit Ethernet PHY

Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_ENET_TX_EN	PIN_A20	GMII and MII transmit enable	3.3V
HPS_ENET_TX_DATA[0]	PIN_F20	MII transmit data[0]	3.3V
HPS_ENET_TX_DATA[1]	PIN_J19	MII transmit data[1]	3.3V
HPS_ENET_TX_DATA[2]	PIN_F21	MII transmit data[2]	3.3V
HPS_ENET_TX_DATA[3]	PIN_F19	MII transmit data[3]	3.3V
HPS_ENET_RX_DV	PIN_K17	GMII and MII receive data valid	3.3V
HPS_ENET_RX_DATA[0]	PIN_A21	GMII and MII receive data[0]	3.3V
HPS_ENET_RX_DATA[1]	PIN_B20	GMII and MII receive data[1]	3.3V
HPS_ENET_RX_DATA[2]	PIN_B18	GMII and MII receive data[2]	3.3V
HPS_ENET_RX_DATA[3]	PIN_D21	GMII and MII receive data[3]	3.3V
HPS_ENET_RX_CLK	PIN_G20	GMII and MII receive clock	3.3V
HPS_ENET_RESET_N	PIN_E18	Hardware Reset Signal	3.3V
HPS_ENET_MDIO	PIN_E21	Management Data	3.3V
HPS_ENET_MDC	PIN_B21	Management Data Clock Reference	3.3V
HPS_ENET_INT_N	PIN_C19	Interrupt Open Drain Output	3.3V
HPS_ENET_GTX_CLK	PIN_H19	GMII Transmit Clock	3.3V

There are two LEDs, green LED (LEDG) and yellow LED (LEDY), which represent the status of Ethernet PHY (KSZ9021RNI). The LED control signals are connected to the LEDs on the RJ45 connector. The state and definition of LEDG and LEDY are listed in **Table 3-25**. For instance, the connection from board to Gigabit Ethernet is established once the LEDG lights on.

Table 3-25 State and Definition of LED Mode Pins

LED (State)		LED (Defini	ition)	Link /Activity
LEDG	LEDY	LEDG	LEDY	
Н	Н	OFF	OFF	Link off
L	Н	ON	OFF	1000 Link / No Activity
Toggle	Н	Blinking	OFF	1000 Link / Activity (RX, TX)
Н	L	OFF	ON	100 Link / No Activity
Н	Toggle	OFF	Blinking	100 Link / Activity (RX, TX)
L	L	ON	ON	10 Link/ No Activity
Toggle	Toggle	Blinking	Blinking	10 Link / Activity (RX, TX)

3.7.3 **UART**

The board has one UART interface connected for communication with the HPS. This interface doesn't support HW flow control signals. The physical interface is implemented by UART-USB onboard bridge from a FT232R chip to the host with an USB Mini-B connector. More information about the chip is available on the manufacturer's website, or in the directory \Datasheets\UART TO

USB of DE1-SoC system CD. **Figure 3-33** shows the connections between the HPS, FT232R chip, and the USB Mini-B connector. **Table 3-26** lists the pin assignment of UART interface connected to the HPS.

Figure 3-33 Connections between the HPS and FT232R Chip

Table 3-26 Pin Assignment of UART Interface

Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_UART_RX	PIN_B25	HPS UART Receiver	3.3V
HPS_UART_TX	PIN_C25	HPS UART Transmitter	3.3V
HPS_CONV_USB_N	PIN_B15	Reserve	3.3V

3.7.4 DDR3 Memory

The board supports 1GB of DDR3 SDRAM comprising of two x16 bit DDR3 devices on HPS side. The signals are connected to the dedicated Hard Memory Controller for HPS I/O banks and the target speed is 400 MHz. **Table 3-27** lists the pin assignment of DDR3 and its description with I/O standard.

Table 3-27 Pin Assignment of DDR3 Memory

		0	•
Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_DDR3_A[0]	PIN_F26	HPS DDR3 Address[0]	SSTL-15 Class I
HPS_DDR3_A[1]	PIN_G30	HPS DDR3 Address[1]	SSTL-15 Class I
HPS_DDR3_A[2]	PIN_F28	HPS DDR3 Address[2]	SSTL-15 Class I
HPS_DDR3_A[3]	PIN_F30	HPS DDR3 Address[3]	SSTL-15 Class I
HPS_DDR3_A[4]	PIN_J25	HPS DDR3 Address[4]	SSTL-15 Class I
HPS_DDR3_A[5]	PIN_J27	HPS DDR3 Address[5]	SSTL-15 Class I
HPS_DDR3_A[6]	PIN_F29	HPS DDR3 Address[6]	SSTL-15 Class I

HPS_DDR3_A[7]	PIN_E28	HPS DDR3 Address[7]	SSTL-15 Class I
HPS_DDR3_A[8]	PIN_H27	HPS DDR3 Address[8]	SSTL-15 Class I
HPS_DDR3_A[9]	PIN_G26	HPS DDR3 Address[9]	SSTL-15 Class I
HPS_DDR3_A[10]	PIN_D29	HPS DDR3 Address[10]	SSTL-15 Class I
HPS_DDR3_A[11]	PIN_C30	HPS DDR3 Address[11]	SSTL-15 Class I
HPS_DDR3_A[12]	PIN_B30	HPS DDR3 Address[12]	SSTL-15 Class I
HPS_DDR3_A[13]	PIN_C29	HPS DDR3 Address[13]	SSTL-15 Class I
HPS_DDR3_A[14]	PIN_H25	HPS DDR3 Address[14]	SSTL-15 Class I
HPS_DDR3_BA[0]	PIN_E29	HPS DDR3 Bank Address[0]	SSTL-15 Class I
HPS_DDR3_BA[1]	PIN_J24	HPS DDR3 Bank Address[1]	SSTL-15 Class I
HPS_DDR3_BA[2]	PIN_J23	HPS DDR3 Bank Address[2]	SSTL-15 Class I
HPS_DDR3_CAS_n	PIN_E27	DDR3 Column Address Strobe	SSTL-15 Class I
HPS_DDR3_CKE	PIN_L29	HPS DDR3 Clock Enable	SSTL-15 Class I
HPS_DDR3_CK_n	PIN_L23	HPS DDR3 Clock	Differential 1.5-V SSTL Class I
HPS_DDR3_CK_p	PIN_M23	HPS DDR3 Clock p	Differential 1.5-V SSTL Class I
HPS_DDR3_CS_n	PIN_H24	HPS DDR3 Chip Select	SSTL-15 Class I
HPS_DDR3_DM[0]	PIN_K28	HPS DDR3 Data Mask[0]	SSTL-15 Class I
HPS_DDR3_DM[1]	PIN_M28	HPS DDR3 Data Mask[1]	SSTL-15 Class I
HPS_DDR3_DM[2]	PIN_R28	HPS DDR3 Data Mask[2]	SSTL-15 Class I
HPS_DDR3_DM[3]	PIN_W30	HPS DDR3 Data Mask[3]	SSTL-15 Class I
HPS_DDR3_DQ[0]	PIN_K23	HPS DDR3 Data[0]	SSTL-15 Class I
HPS_DDR3_DQ[1]	PIN_K22	HPS DDR3 Data[1]	SSTL-15 Class I
HPS_DDR3_DQ[2]	PIN_H30	HPS DDR3 Data[2]	SSTL-15 Class I
HPS_DDR3_DQ[3]	PIN_G28	HPS DDR3 Data[3]	SSTL-15 Class I
HPS_DDR3_DQ[4]	PIN_L25	HPS DDR3 Data[4]	SSTL-15 Class I
HPS_DDR3_DQ[5]	PIN_L24	HPS DDR3 Data[5]	SSTL-15 Class I
HPS_DDR3_DQ[6]	PIN_J30	HPS DDR3 Data[6]	SSTL-15 Class I
HPS_DDR3_DQ[7]	PIN_J29	HPS DDR3 Data[7]	SSTL-15 Class I
HPS_DDR3_DQ[8]	PIN_K26	HPS DDR3 Data[8]	SSTL-15 Class I
HPS_DDR3_DQ[9]	PIN_L26	HPS DDR3 Data[9]	SSTL-15 Class I
HPS_DDR3_DQ[10]	PIN_K29	HPS DDR3 Data[10]	SSTL-15 Class I
HPS_DDR3_DQ[11]	PIN_K27	HPS DDR3 Data[11]	SSTL-15 Class I
HPS_DDR3_DQ[12]	PIN_M26	HPS DDR3 Data[12]	SSTL-15 Class I
HPS_DDR3_DQ[13]	PIN_M27	HPS DDR3 Data[13]	SSTL-15 Class I
HPS_DDR3_DQ[14]	PIN_L28	HPS DDR3 Data[14]	SSTL-15 Class I
HPS_DDR3_DQ[15]	PIN_M30	HPS DDR3 Data[15]	SSTL-15 Class I
HPS_DDR3_DQ[16]	PIN_U26	HPS DDR3 Data[16]	SSTL-15 Class I
HPS_DDR3_DQ[17]	PIN_T26	HPS DDR3 Data[17]	SSTL-15 Class I
HPS_DDR3_DQ[18]	PIN_N29	HPS DDR3 Data[18]	SSTL-15 Class I
HPS_DDR3_DQ[19]	PIN_N28	HPS DDR3 Data[19]	SSTL-15 Class I
HPS_DDR3_DQ[20]	PIN_P26	HPS DDR3 Data[20]	SSTL-15 Class I
HPS_DDR3_DQ[21]	PIN_P27	HPS DDR3 Data[21]	SSTL-15 Class I
HPS_DDR3_DQ[22]	PIN_N27	HPS DDR3 Data[22]	SSTL-15 Class I
HPS_DDR3_DQ[23]	PIN_R29	HPS DDR3 Data[23]	SSTL-15 Class I

HPS_DDR3_DQ[24]	PIN_P24	HPS DDR3 Data[24]	SSTL-15 Class I
HPS_DDR3_DQ[25]	PIN_P25	HPS DDR3 Data[25]	SSTL-15 Class I
HPS_DDR3_DQ[26]	PIN_T29	HPS DDR3 Data[26]	SSTL-15 Class I
HPS_DDR3_DQ[27]	PIN_T28	HPS DDR3 Data[27]	SSTL-15 Class I
HPS_DDR3_DQ[28]	PIN_R27	HPS DDR3 Data[28]	SSTL-15 Class I
HPS_DDR3_DQ[29]	PIN_R26	HPS DDR3 Data[29]	SSTL-15 Class I
HPS_DDR3_DQ[30]	PIN_V30	HPS DDR3 Data[30]	SSTL-15 Class I
HPS_DDR3_DQ[31]	PIN_W29	HPS DDR3 Data[31]	SSTL-15 Class I
HPS_DDR3_DQS_n[0]	PIN_M19	HPS DDR3 Data Strobe n[0]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_n[1]	PIN_N24	HPS DDR3 Data Strobe n[1]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_n[2]	PIN_R18	HPS DDR3 Data Strobe n[2]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_n[3]	PIN_R21	HPS DDR3 Data Strobe n[3]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_p[0]	PIN_N18	HPS DDR3 Data Strobe p[0]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_p[1]	PIN_N25	HPS DDR3 Data Strobe p[1]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_p[2]	PIN_R19	HPS DDR3 Data Strobe p[2]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_p[3]	PIN_R22	HPS DDR3 Data Strobe p[3]	Differential 1.5-V SSTL Class I
HPS_DDR3_ODT	PIN_H28	HPS DDR3 On-die Termination	SSTL-15 Class I
HPS_DDR3_RAS_n	PIN_D30	DDR3 Row Address Strobe	SSTL-15 Class I
HPS_DDR3_RESET_n	PIN_P30	HPS DDR3 Reset	SSTL-15 Class I
HPS_DDR3_WE_n	PIN_C28	HPS DDR3 Write Enable	SSTL-15 Class I
HPS_DDR3_RZQ	PIN_D27	External reference ball for	1.5 V
		output drive calibration	

3.7.5 Micro SD Card Socket

The board supports Micro SD card interface with x4 data lines. It serves not only an external storage for the HPS, but also an alternative boot option for DE1-SoC board. **Figure 3-34** shows signals connected between the HPS and Micro SD card socket.

Table 3-28 lists the pin assignment of Micro SD card socket to the HPS.

Figure 3-34 Connections between the FPGA and SD card socket

Signal Name FPGA Pin No. Description I/O Standard HPS SD CLK **PIN A16 HPS SD Clock** 3.3V HPS_SD_CMD PIN_F18 **HPS SD Command Line** 3.3V HPS_SD_DATA[0] PIN_G18 HPS SD Data[0] 3.3V HPS_SD_DATA[1] PIN_C17 HPS SD Data[1] 3.3V HPS_SD_DATA[2] PIN_D17 HPS SD Data[2] 3.3V HPS SD Data[3] HPS_SD_DATA[3] PIN_B16 3.3V

Table 3-28 Pin Assignment of Micro SD Card Socket

3.7.6 2-port USB Host

The board has two USB 2.0 type-A ports with a SMSC USB3300 controller and a 2-port hub controller. The SMSC USB3300 device in 32-pin QFN package interfaces with the SMSC USB2512B hub controller. This device supports UTMI+ Low Pin Interface (ULPI), which communicates with the USB 2.0 controller in HPS. The PHY operates in Host mode by connecting the ID pin of USB3300 to ground. When operating in Host mode, the device is powered by the two USB type-A ports. **Figure 3-35** shows the connections of USB PTG PHY to the HPS. **Table 3-29** lists the pin assignment of USBOTG PHY to the HPS.

Figure 3-35 Connections between the HPS and USB OTG PHY

Table 3-29 Pin Assignment of USB OTG PHY

Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_USB_CLKOUT	PIN_N16	60MHz Reference Clock Output	3.3V
HPS_USB_DATA[0]	PIN_E16	HPS USB_DATA[0]	3.3V
HPS_USB_DATA[1]	PIN_G16	HPS USB_DATA[1]	3.3V
HPS_USB_DATA[2]	PIN_D16	HPS USB_DATA[2]	3.3V
HPS_USB_DATA[3]	PIN_D14	HPS USB_DATA[3]	3.3V
HPS_USB_DATA[4]	PIN_A15	HPS USB_DATA[4]	3.3V
HPS_USB_DATA[5]	PIN_C14	HPS USB_DATA[5]	3.3V
HPS_USB_DATA[6]	PIN_D15	HPS USB_DATA[6]	3.3V
HPS_USB_DATA[7]	PIN_M17	HPS USB_DATA[7]	3.3V
HPS_USB_DIR	PIN_E14	Direction of the Data Bus	3.3V
HPS_USB_NXT	PIN_A14	Throttle the Data	3.3V
HPS_USB_RESET	PIN_G17	HPS USB PHY Reset	3.3V
HPS_USB_STP	PIN_C15	Stop Data Stream on the Bus	3.3V

3.7.7 G-sensor

The board comes with a digital accelerometer sensor module (ADXL345), commonly known as G-sensor. This G-sensor is a small, thin, ultralow power assumption 3-axis accelerometer with high-resolution measurement. Digitalized output is formatted as 16-bit in two's complement and can be accessed through I2C interface. The I2C address of G-sensor is 0xA6/0xA7. More information about this chip can be found in its datasheet, which is available on manufacturer's website or in the directory \Datasheet folder of DE1-SoC system CD. Figure 3-36 shows the connections between the HPS and G-sensor. Table 3-30 lists the pin assignment of G-senor to the HPS.

Figure 3-36 Connections between Cyclone V SoC FPGA and G-Sensor

Table 3-30 Pin Assignment of G-senor

Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_GSENSOR_INT	PIN_B22	HPS GSENSOR Interrupt Output	3.3V
HPS_I2C1_SCLK	PIN_E23	HPS I2C Clock (share bus with LTC)	3.3V
HPS_I2C1_SDAT	PIN_C24	HPS I2C Data (share bus)	3.3V

3.7.8 LTC Connector

The board has a 14-pin header, which is originally used to communicate with various daughter cards from Linear Technology. It is connected to the SPI Master and I2C ports of HPS. The communication with these two protocols is bi-directional. The 14-pin header can also be used for GPIO, SPI, or I2C based communication with the HPS. Connections between the HPS and LTC connector are shown in **Figure 3-37**, and the pin assignment of LTC connector is listed in **Table 3-31**.

Figure 3-37 Connections between the HPS and LTC connector

Table 3-31 Pin Assignment of LTC Connector

Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_LTC_GPIO	PIN_H17	HPS LTC GPIO	3.3V
HPS_I2C2_SCLK	PIN_H23	HPS I2C2 Clock (share bus with G-Sensor)	3.3V
HPS_I2C2_SDAT	PIN_A25	HPS I2C2 Data (share bus with G-Sensor)	3.3V
HPS_SPIM_CLK	PIN_C23	SPI Clock	3.3V
HPS_SPIM_MISO	PIN_E24	SPI Master Input/Slave Output	3.3V
HPS_SPIM_MOSI	PIN_D22	SPI Master Output /Slave Input	3.3V
HPS_SPIM_SS	PIN_D24	SPI Slave Select	3.3V