Securitatea Sistemelor Informati

- Curs 5.1 -

Scheme de criptare CPA-sigure bazate pe PRF

Adela Georgescu

Facultatea de Matematică și Informatică Universitatea din București Anul universitar 2022-2023, semestrul I

Sisteme de criptare bloc - observații

➤ Sistemele de criptare bloc sunt instanțieri sigure ale PRP Pentru *n* suficient de mare, un PRP este indistinctibil de un PRF

Sisteme de criptare bloc - observații

- Sistemele de criptare bloc sunt instanțieri sigure ale PRP Pentru n suficient de mare, un PRP este indistinctibil de un PRF
- reamintim că pentru PRP avem nevoie și de invertibilitate, dar pentru un n suficient de mare, un PRP este și un PRF

Sisteme de criptare bloc - observații

- ► Sistemele de criptare bloc sunt instanțieri sigure ale PRP Pentru *n* suficient de mare, un PRP este indistinctibil de un PRF
- reamintim că pentru PRP avem nevoie și de invertibilitate, dar pentru un n suficient de mare, un PRP este și un PRF
- în practică, sistemele de criptare bloc sunt și PRF bune, nu doar PRP-uri bune, deci le putem folosi oricând avem nevoie de una din cele două construcții

► Sistemele de criptare bloc sunt instanțieri sigure ale PRP

► Sistemele de criptare bloc sunt instanțieri sigure ale PRP

ightharpoonup Fie F_k o funcție cu cheie

Sistemele de criptare bloc sunt instanţieri sigure ale PRP

- Fie F_k o funcție cu cheie
- ▶ Gen(1ⁿ): alege uniform cheie $k \in \{0,1\}^n$

Sistemele de criptare bloc sunt instanţieri sigure ale PRP

- ightharpoonup Fie F_k o funcție cu cheie
- ▶ Gen(1ⁿ): alege uniform cheie $k \in \{0,1\}^n$
- ightharpoonup $\operatorname{Enc_k}(\mathbf{m})$: pentru |m|=|k|, alege r uniform în $\{0,1\}^n$

$$Enc_k(m) = (r, F_k(r) \oplus m)$$

Sistemele de criptare bloc sunt instanţieri sigure ale PRP

- ightharpoonup Fie F_k o funcție cu cheie
- ▶ Gen(1ⁿ): alege uniform cheie $k \in \{0,1\}^n$
- ightharpoonup $\operatorname{Enc_k}(\mathbf{m})$: pentru |m|=|k|, alege r uniform în $\{0,1\}^n$

$$Enc_k(m) = (r, F_k(r) \oplus m)$$

Observații

▶ cheia este la fel de lungă precum mesajul - la fel ca la OTP

Observații

- ▶ cheia este la fel de lungă precum mesajul la fel ca la OTP
- dar, spre deosebire de OTP, se pot cripta mai multe mesaje cu aceeași cheie în siguranță

Teoremă

Dacă F este PRF, construcția anterioară este o schemă de criptare CPA-sigură pentru mesaje de lungime n.

Schiţa demonstraţiei

Considerăm ($\overline{\Pi} = \overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}}$) care se obține din schema anterioară ($\Pi = \mathrm{Gen}, \mathrm{Enc}, \mathrm{Dec}$) unde F_k - PRF este înlocuită cu f aleatoare.

Teoremă

Dacă F este PRF, construcția anterioară este o schemă de criptare CPA-sigură pentru mesaje de lungime n.

Schiţa demonstraţiei

Considerăm ($\overline{\Pi} = \overline{\operatorname{Gen}}, \overline{\operatorname{Enc}}, \overline{\operatorname{Dec}}$) care se obține din schema anterioară ($\Pi = \operatorname{Gen}, \operatorname{Enc}, \operatorname{Dec}$) unde F_k - PRF este înlocuită cu f aleatoare. Fie $\mathcal A$ - adversar PPTsi q(n) numărul maxim de interogări ale oracolului de criptare efectuate de $\mathcal A$. Arătăm:

Teoremă

Dacă F este PRF, construcția anterioară este o schemă de criptare CPA-sigură pentru mesaje de lungime n.

Schița demonstrației

Considerăm ($\overline{\Pi} = \overline{\mathrm{Gen}}, \overline{\mathrm{Enc}}, \overline{\mathrm{Dec}}$) care se obține din schema anterioară ($\Pi = \mathrm{Gen}, \mathrm{Enc}, \mathrm{Dec}$) unde F_k - PRF este înlocuită cu f aleatoare. Fie $\mathcal A$ - adversar PPTsi q(n) numărul maxim de interogări ale oracolului de criptare efectuate de $\mathcal A$. Arătăm:

1. A nu poate distinge între Π si $\overline{\Pi}$ decât cu probabilitate neglijabilă adică: există o funcție neglijabilă negl așa încât:

$$|\mathit{Pr}[\mathit{Priv}_{\mathcal{A},\pi}^{\mathit{cpa}}(n) = 1] - \mathit{Pr}[\mathit{Priv}_{\mathcal{A},\overline{\pi}}^{\mathit{cpa}}(n) = 1]| \leq \mathtt{negl}(n)$$

- 2. $Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^n}$.
 - ▶ la fiecare criptare a lui m interogare la oracol sau ca provocare de la Challenger se alege $r \in \{0,1\}^n$ iar $c = (r, f(r) \oplus m)$.

- 2. $Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^n}$.
 - ▶ la fiecare criptare a lui m interogare la oracol sau ca provocare de la Challenger se alege $r \in \{0,1\}^n$ iar $c = (r, f(r) \oplus m)$.
 - fie $(\tilde{r}, f(\tilde{r}) \oplus m_b)$ provocarea primită de A. Există 2 variante:

- 2. $Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^n}$.
 - ▶ la fiecare criptare a lui m interogare la oracol sau ca provocare de la Challenger se alege $r \in \{0,1\}^n$ iar $c = (r, f(r) \oplus m)$.
 - ▶ fie $(\tilde{r}, f(\tilde{r}) \oplus m_b)$ provocarea primită de A. Există 2 variante:
 - 1. valoarea \tilde{r} nu este folosită niciodată ca răspuns de către oracolul de criptare $\Rightarrow Pr[Priv_{A,\overline{\pi}}^{cpa}(n)=1]=\frac{1}{2}$

- 2. $Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^n}$.
 - ▶ la fiecare criptare a lui m interogare la oracol sau ca provocare de la Challenger se alege $r \in \{0,1\}^n$ iar $c = (r, f(r) \oplus m)$.
 - ▶ fie $(\tilde{r}, f(\tilde{r}) \oplus m_b)$ provocarea primită de A. Există 2 variante:
 - 1. valoarea \tilde{r} nu este folosită niciodată ca răspuns de către oracolul de criptare $\Rightarrow Pr[Priv_{A,\overline{\pi}}^{cpa}(n)=1]=\frac{1}{2}$
 - 2. valoarea \tilde{r} este folosită cel puțin o dată ca răspuns la interogările oracolului de criptare $\Rightarrow \mathcal{A}$ poate calcula m_b . El primește răspuns de la oracolul de criptare $Enc(m)=(\tilde{r},s)$ și calculează $f(\tilde{r})=s\oplus m$. $Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n)=1]\leq \frac{q(n)}{2^n}$.

- 2. $Pr[Priv_{A,\overline{\pi}}^{cpa}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^n}$.
 - ▶ la fiecare criptare a lui m interogare la oracol sau ca provocare de la Challenger se alege $r \in \{0,1\}^n$ iar $c = (r, f(r) \oplus m)$.
 - ▶ fie $(\tilde{r}, f(\tilde{r}) \oplus m_b)$ provocarea primită de A. Există 2 variante:
 - 1. valoarea \tilde{r} nu este folosită niciodată ca răspuns de către oracolul de criptare $\Rightarrow Pr[Priv_{A,\overline{\pi}}^{cpa}(n)=1]=\frac{1}{2}$
 - 2. valoarea \tilde{r} este folosită cel puțin o dată ca răspuns la interogările oracolului de criptare $\Rightarrow \mathcal{A}$ poate calcula m_b . El primește răspuns de la oracolul de criptare $Enc(m)=(\tilde{r},s)$ și calculează $f(\tilde{r})=s\oplus m$. $Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n)=1]\leq \frac{q(n)}{2^n}$.
 - Notăm cu Ev evenimentul de la 2. și cu $\neg Ev$ evenimentul de la 1. Atunci: $Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n)=1]=$ $= Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n)=1] \land Ev + Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n)=1] \land \neg Ev$ $\leq \frac{q(n)}{2^n} + \frac{1}{2}$

Am obținut că $Pr[Priv_{A,\overline{\pi}}^{cpa}(n)=1] \leq \frac{q(n)}{2^n} + \frac{1}{2}$.

- Am obținut că $Pr[Priv_{A,\overline{\pi}}^{cpa}(n)=1] \leq \frac{q(n)}{2^n} + \frac{1}{2}$.
- Am stabilit de asemenea că $|Pr[Priv_{\mathcal{A},\pi}^{cpa}(n)=1] Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n)=1]| \leq \operatorname{negl}(n)$

- Am obținut că $Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n)=1] \leq \frac{q(n)}{2^n} + \frac{1}{2}$.
- Am stabilit de asemenea că $|Pr[Priv_{\mathcal{A},\pi}^{cpa}(n)=1]-Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n)=1]| \leq \mathtt{negl}(\mathtt{n})$
- ▶ Din ambele relații avem $Pr[Priv_{\mathcal{A},\overline{\pi}}^{cpa}(n)=1] \leq \frac{q(n)}{2^n} + \frac{1}{2} + \mathrm{negl}(n)$, ceea ce încheie demonstrația.