# Mathematical Foundations of Data Science Week 2 Workshop

Max Glonek

School of Mathematical Sciences, University of Adelaide

Trimester 1, 2023

#### What is a Function?

$$f(x) = x^2$$
? A graph?



$$f(t) = t^2$$
 is the same as  $f(x) = x^2$ .

A function is a rule that takes a number and does something to it.

#### Domain of a Function

Every function has a domain,  $\mathcal{D}$ .

The domain is the numbers we are allowed to apply our rule to.

Suppose 
$$f(x) = x^2$$
. What is  $\mathcal{D}(f)$ ?  $\mathcal{D}(f) = \mathbb{R}$ .

The domain can be smaller, e.g.  $f(t) = t^2$ ,  $t \ge 0$ .

Suppose 
$$g(x) = \frac{1}{x}$$
. What is  $\mathcal{D}(g)$ ?  $\mathcal{D}(g) = \mathbb{R} \setminus \{0\}$ .

If no domain is given, assume  ${\cal D}$  is as large as possible.

#### Range of a Function

Every function also has a range, R.

The range is the numbers we can get if we apply our function to  $\mathcal{D}$ .

Suppose 
$$f(x) = x^2$$
. What is  $\mathcal{R}(f)$ ?  $\mathcal{R}(f) = \{y \in \mathbb{R} \mid y \ge 0\}$ .

Suppose 
$$g(x) = x + 1$$
. What is  $\mathcal{R}(g)$ ?  $\mathcal{R}(g) = \mathbb{R}$ 

### Relationship Between ${\mathcal D}$ and ${\mathcal R}$

A graph can be a useful way of visualising the relationship between a function's domain and range.

Consider 
$$f(x) = x^2$$
.  $\mathcal{D}(f) = \mathbb{R}$ ,  $\mathcal{R}(f) = \{ y \in \mathbb{R} \mid y \ge 0 \}$ .



### Relationship Between ${\mathcal D}$ and ${\mathcal R}$

A graph can be a useful way of visualising the relationship between a function's domain and range.

Consider 
$$g(x) = x + 1$$
.  $\mathcal{D}(g) = \mathbb{R}$ ,  $\mathcal{R}(g) = \mathbb{R}$ .



#### Domain of a Function - Examples

Find  $\mathcal{D}$  for the following functions:

(a) 
$$f(x) = \frac{\sqrt{x-2}}{x+1}$$
 What values are not allowed on the numerator?  $x < 2$  What values are not allowed on the denominator?  $x = -1$  Thus,  $\mathcal{D}(f) = [2, \infty)$ , or  $\{x \in \mathbb{R} \mid x \geq 2\}$ .

(b) 
$$g(x) = \frac{\sqrt{x+1}}{x-2}$$
 What values are not allowed on the numerator?  $x < -1$  What values are not allowed on the denominator?  $x = 2$  Thus,  $\mathcal{D}(g) = [-1,2) \cup (2,\infty)$ 

#### The Floor Function

- |x| is the greatest integer function or floor function.
- $\lfloor x \rfloor$  rounds x to the largest integer less than or equal to x.

e.g., 
$$|2.7| = 2$$
,  $|0.45| = 0$ ,  $|-1.2| = -2$ ,  $|8| = 8$ .

If f(x) = |x|, then:

- $ightharpoonup \mathcal{D}(f) = \mathbb{R}$
- $ightharpoonup \mathcal{R}(f) = \mathbb{Z}$

Consider 
$$g_1(x) = 2\lfloor x \rfloor$$
.

|x| always returns an integer, then 2 doubles it.

$$\mathcal{D}(g_1) = \mathbb{R}$$
 (same as  $f$ ). What about  $\mathcal{R}(g_1)$ ?

$$\mathcal{R}(g_1) = \{2n \mid n \in \mathbb{Z}\}$$
 (the *even* integers).

Consider 
$$g_2(x) = \lfloor \frac{1}{2}x \rfloor$$
.

 $\frac{1}{2}$  halves x, then  $\lfloor * \rfloor$  returns an integer.

 $\mathcal{D}(g_2)=\mathbb{R}$  (same as f and  $g_1$ ). What about  $\mathcal{R}(g_2)$ ?

e.g., 
$$g_2(0) = \lfloor 0 \rfloor = 0$$
,  $g_2(1) = \lfloor \frac{1}{2} \rfloor = 0$ ,  $g_2(2) = \lfloor 1 \rfloor = 1$ ,  $g_2(3) = \lfloor \frac{3}{2} \rfloor = 1$ , ...

So 
$$\mathcal{R}(g_2) = \mathbb{Z}$$
.

$$f(x) = \lfloor x \rfloor$$







It can be helpful to think of a function as a machine or a process.

- ▶ What can you put in  $(\mathcal{D})$ ?
- ▶ What can you get out  $(\mathcal{R})$ ?

Consider  $h(x) = 2\lfloor \frac{1}{2}x \rfloor$  (composing  $g_1$  and  $g_2$ ).

e.g., 
$$h(0) = 2\lfloor 0 \rfloor = 0$$
,  $h(1) = 2\lfloor \frac{1}{2} \rfloor = 0$ ,  $h(2) = 2\lfloor 1 \rfloor = 2$ ,  $h(3) = 2\lfloor \frac{3}{2} \rfloor = 2$ , ...

Compared to  $f(x) = \lfloor x \rfloor$ , h(x) is stretched horizontally and vertically.





Can you "undo" a function?

Consider f(x) = 2x. f takes a value  $x \in \mathbb{R}$  and doubles it.

For which values of x does f(x) = 10? x = 5.

Can we "undo" this? Can we find a function  $f^{-1}(x)$ ?

$$f^{-1}(x) = \frac{x}{2}; \quad f^{-1}(10) = \frac{10}{2} = 5.$$

Consider  $g_1(x) = 2x + 1$ .

What are the steps of this function?

First, double x. Then, add 1.

Consider  $g_2(x) = 2(x + 1)$ .

What are the steps of this function?

First, add 1 to x. Then, double the result.

 $g_1$  and  $g_2$  look similar, but they are different, and will have different inverses.

To "undo" or *invert* a function, we need to retrace our steps in reverse.

Take the last thing you did, and undo that thing first.

e.g., 
$$g_1(x) = 2x + 1$$
, so  $g_1^{-1}(x) = \frac{x - 1}{2}$ .

Subtract 1 from x, then halve the result.

e.g. 
$$g_2(x) = 2(x+1)$$
, so  $g_2^{-1}(x) = \frac{x}{2} - 1$ .

Halve x, then subtract 1.

We can compose functions and their inverses.

e.g., 
$$g_1(x) = 2x + 1$$
,  $g_1^{-1}(x) = \frac{x - 1}{2}$ .

Then 
$$g_1^{-1}(g_1(x)) = \frac{(2x+1)-1}{2} = \frac{2x}{2} = x$$
.

e.g., 
$$g_2(x) = 2(x+1)$$
,  $g_2^{-1}(x) = \frac{x}{2} - 1$ .

Then 
$$g_2^{-1}(g_2(x)) = \frac{2(x+1)}{2} - 1 = (x+1) - 1 = x$$
.

We can use inverses to answer questions, e.g., "find x such that f(x) = 10" is really just " $f^{-1}(10)$ ".

Do inverse functions always exist?

Consider  $f(x) = x^2$ . Can we find  $f^{-1}(x)$ ?

What values of x give f(x) = 1? x = -1, 1.

But, a function must take 1 input and return 1 output.

We cannot have  $f^{-1}(1) = -1, 1$ .

 $f^{-1}(x)$  exists if and only if f(x) is one-to-one.

What can we do about this problem?

Restrict the domain of your function to make it 1-1.

e.g., 
$$f(x) = x^2$$
 has  $\mathcal{D}(f) = \mathbb{R}$ , but  $f$  is not 1-1 on this domain.

Consider 
$$f_1(x) = x^2$$
,  $x \ge 0$ . Then  $\mathcal{D}(f_1) = \{x \in \mathbb{R} \mid x \ge 0\}$ .

Now  $f_1$  is 1-1, so we can invert it.

$$f_1^{-1}(x) = \sqrt(x).$$