HMC with Normalizing Flows

Sam Foreman¹

¹Argonne National Laboratory

Normalizing Flows

For a random variable z with a given distribution $z \sim r(z)$, and an invertible function x = f(z) with $z = f^{-1}(x)$, we can use the change of variables formula to write

$$p(x) = r(z) \left| \det \frac{\partial z}{\partial x} \right| = r(f^{-1}(x)) \left| \det \frac{\partial f^{-1}}{\partial x} \right|$$
 (1)

Where r(z) is the (simple) prior density, and our goal is to generate independent samples from the (difficult) target distribution p(x). This can be done using *normalizing flows* to construct a model density q(x) that approximates the target distribution, i.e. $q(\cdot) \approx p(\cdot)$ for a suitably-chosen flow f.

Figure 1. Using a Flow to generate data x'. Image adapted from [5]

We can construct a normalizing flow by composing multiple invertible functions f_i so that $x \equiv [f_1 \circ f_2 \circ \cdots \circ f_K](z)$. In practice, the functions f_i are usually implemented as *coupling layers*, which update an "active" subset of the variables, conditioned on the complimentary "frozen" variables.

Affine Coupling Layers

A particularly useful template function for constructing our normalizing flow is the affine coupling layer which is defined as

$$f(x_1, x_2) = \left(e^{s(x_2)}x_1 + t(x_2), x_2\right), \quad \text{with} \quad \log J(x) = \sum_{k} [s(x_2)]_k$$
 (2)

$$f^{-1}(x_1', x_2') = \left((x_1' - t(x_2'))e^{-s(x_2')}, x_2' \right) \quad \text{with} \quad \log J(x') = \sum_{l=1}^{n} -[s(x_2')]_k$$
 (3)

where $s(x_2)$ and $t(x_2)$ are of the same dimensionality as x_1 and the functions act elementwise on the inputs.

In order to effectively draw samples from the correct target distribution $p(\cdot)$, our goal is to minimize the error introduced by approximating $q(\cdot) \approx p(\cdot)$. To do so, we use the (reverse) Kullback-Leibler (KL) divergence from Eq. 4, which is minimized when p=q.

$$D_{\mathrm{KL}}(q||p) \equiv \int dy \, q(y) [\log q(y) - \log p(y)] \approx \frac{1}{N} \sum_{i=1}^{N} [\log q(y_i) - \log p(y_i)] \quad \text{where} \quad y_i \sim q. \tag{4}$$

Hamiltonian Monte Carlo (HMC)

1. Introduce $v \sim \mathcal{N}(0, \mathbb{I}_n) \in \mathbb{R}^n$ and write the joint distribution:

$$p(x,v) = p(x)p(v) \propto e^{-S(x)}e^{-\frac{1}{2}v^{T}v} = e^{-H(x,v)}.$$
 (5)

- 2. Evolve the joint system $\xi \equiv (\dot{x}, \dot{v})$ using Hamilton's equations along H = const.
- 3. Accept or reject the proposal configuration using the Metropolis-Hastings test.

Leapfrog Integrator:

1.
$$\tilde{v} \leftarrow v - \frac{\varepsilon}{2} \partial_x S(x)$$

2.
$$x' \leftarrow x + \varepsilon \tilde{v}$$

3.
$$v' \leftarrow \tilde{v} - \frac{\varepsilon}{2} \partial_x S(x')$$

Metropolis-Hastings:

$$x_{i+1} = \begin{cases} x' & \text{w/prob.} \quad A(\xi'|\xi) \equiv \min\left\{1, \frac{p(\xi')}{p(\xi)} \left| \frac{\partial \xi'}{\partial \xi^T} \right| \right\} \\ x & \text{w/prob.} \quad 1 - A(\xi'|\xi). \end{cases}$$

Trivializing Map

Figure 2. Normalizing Flow with inner HMC block.

Our goal is to evaluate expectation values of the form

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int dx \, \mathcal{O}(x) e^{-S(x)}.$$
 (6)

. Using a normalizing flow, we can perform a change of variables x=f(z) so Eq. 6 becomes

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int dz \, |\det[J(z)]| \, \mathcal{O}(f(z)) \, e^{-S(f(z))}, \quad \text{where} \quad J(z) = \frac{\partial f(z)}{\partial z}$$

$$= \frac{1}{\mathcal{Z}} \int dz \, \mathcal{O}(f(z)) e^{-S(f(z)) + \log|\det[J(z)]|}.$$
(8)

The Jacobian matrix J(z) must satisfy

- 1. Injective (1-to-1) between domains of integration
- 2. Continuously differentiable (or, differentiable with continuous inverse).

The function f is a trivializing map when $S(f(z)) - \log |\det J(z)| = \text{const.}$, and our expectation value simplifies to

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int dz \, \mathcal{O}(f(z)).$$
 (9)

HMC with Normalizing Flows

We can implement the trivializing map defined above using a normalizing flow model. For conjugate momenta π , we can write the Hamiltonian

$$H(z,\pi) = \frac{1}{2}\pi^2 + S(f(z)) - \log|\det J(f(z))| \tag{10}$$

and the associated equations of motion as

$$\dot{z} = \frac{\partial H}{\partial z} = \pi$$
, and $\dot{\pi} = -\frac{\partial H}{\partial z} = -J(z)S'(f(z)) - \log|\det J(z)|$. (11)

If we introduce a change of variables $\pi = J(z)\rho = J(f^{-1}(x))\rho$ and $z = f^{-1}(x)$, the determinant of the Jacobian matrix reduces to 1 and we obtain the modified Hamiltonian

$$\tilde{H}(x,\rho) = \frac{1}{2}\rho^{\dagger}\rho + S(x) - \log|\det J|. \tag{12}$$

As shown in Fig. 2, we can use $f^{-1}: z \to x$ to perform HMC updates on the transformed variables x, and $f: x \to z$ to recover the physical target distribution.

2D U(1) Gauge Theory

Let $U_{\mu}(n)=e^{ix_{\mu}(n)}\in U(1)$, with $x_{\mu}(n)\in [-\pi,\pi]$ denote the link variables, where $x_{\mu}(n)$ is a link at the site n oriented in the direction $\hat{\mu}$.

We can write our target distribution, p(x), in terms of the Wilson $x_{\nu}(n+\hat{\mu})$ action S(x) as

$$p(x) \propto e^{-S(x)}$$
, where $S(x) \equiv \sum_{P} 1 - \cos x_P$ and (13)

$$x_P = x_{\mu}(n) + x_{\nu}(n + \hat{\mu}) - x_{\mu}(n + \hat{\nu}) - x_{\nu}(n) \tag{1}$$

as shown in Figure. 3. For a given lattice configuration, we can define the topological charge $Q \in \mathbb{Z}$ as

$$Q = \frac{1}{2\pi} \sum_{P} \arg(x_P), \quad \text{where} \quad \arg(x_P) \in [-\pi, \pi]$$
 (1)

References

- [1] Michael S. Albergo, Denis Boyda, Daniel C. Hackett, Gurtej Kanwar, Kyle Cranmer, Sébastien Racanière, Danilo Jimenez Rezende, and Phiala E. Shanahan. Introduction to normalizing flows for lattice field theory, 2021.
- [2] Luigi Del Debbio, Joe Marsh Rossney, and Michael Wilson. Efficient modelling of trivializing maps for lattice ϕ^4 theory using normalizing flows: A first look at scalability, 2021.
- [3] Martin Lüscher. Trivializing maps, the wilson flow and the hmc algorithm. *Communications in Mathematical Physics*, 293(3):899–919,
- [4] Martin Lüscher. Trivializing maps, the wilson flow and the hmc algorithm. *Communications in Mathematical Physics*, 293(3):899–919, Nov 2009
- [5] Lilian Weng. Flow-based deep generative models. lilianweng.github.io/lil-log, 2018.

 $-x_{\nu}(n)$

Figure 3. Plaquette