SaE 22 Mesurer et caractériser un signal ou un système

UCA / IUT / BUT R&T 1ère année

Organisation

- 1 séance de cours (N. Fortino)
- 3 * 3h de TP (N. Fortino, F. Payan, J. Roqui)
- 12h de projet (travail personnel/en groupe)

Objectifs de la SaE22

S'appuie sur les ressources :

- R104 (Elec),
- R205, R206 (Elec/Télécom)
- R113, R114, R213, et R214 (Maths du signal)

Les objectifs de cette SaE sont donc multiples :

- Analyser des signaux en temps et en fréquence
- Caractériser un système de transmission
- Présenter les résultats obtenus

Livrables de la SaE22

- Un rapport écrit
 - compte rendu des heures de projets
 - compte rendu des Travaux Pratiques encadrés

_

Chaine de transmission numérique

Système d'émission :

- microphone : ondes acoustiques => signaux électriques analogiques,
- échantillonneur-bloqueur : signal analogique => signal analogique temps discret (marche d'escalier)
- CAN (convertisseur analogique-numérique) : signal analogique => signal numérique binaire,
- émetteur numérique : codage et modulation numérique.

Chaine de transmission numérique

Transportent les signaux contenant l'information. Les principaux sont :

- l'espace libre de propagation (communications hyperfréquences),
- les fibres optiques (communications optiques),
- les câbles coaxiaux, les paires torsadées (signaux électriques).

Chaine de transmission numérique

Système de réception :

- récepteur numérique : démodulation numérique et de décodage,
- CNA (convertisseur numérique-analogique) : signal numérique binaire => signal analogique,
- haut parleur : signal électrique => onde acoustique

En simulation (M. Payan)

Sous Python:

- Caractérisation d'un système inconnu « black box »

- Etude de l'influence de la numérisation (quantification/échantillonnage)

- « Débruitage » d'un signal audio

Mesure (2): LoRaWAN (Fortino / Roqui)

Long-Range Wide-Area Network: « réseau étendu à longue portée »

En mesure (M. Roqui - Fortino)

En utilisant les cartes LoRa UCA en émission et réception :

- Déterminer un cahier de charges personnel
- Etude de faisabilité lors des séances de préparation
 - portée
 - consommation
 - débit
- Validation lors des séances encadrées
- Rapport d'étude critique de votre projet

Le spectre des fréquences

Question clicker

Selon vous la bande de fréquence utilisée a un influence :

- 1 sur le bilan de liaison
- 2 sur la taille des antennes
- 3 sur aucun des deux
- 4 sur les deux

Le spectre des fréquences

Longue portée
Antennes de grande dimensions

Les fréquences « sous licence » et « sans licence »

Une partie du **spectre radio** appartient à des **opérateurs de transmission radio privés** (téléphones cellulaire, TV, etc...)

Certaines parties du spectre peuvent être utilisée gratuitement : les fréquences ISM (Industrial, Scientific, and Medical) qui sont réservées à des opérations sans licence

Dans les bandes de fréquences ISM, des règles doivent être respectées afin de limiter les interférences entre utilisateurs

Question clicker

Selon vous lesquel(le)s de ces applications/équipements utilisent les fréquences ISM :

- 1 TV Satellite
- 2 WiFi
- 3 GSM
- 4 Four Micro-onde
- 5 TNT
- 6 LoRa
- -7 LTE (4G)

Les fréquences ISM dans le monde

Pour LoRaWAN en Europe (868 MHz)

Règle d'utilisation: temps d'occupation limitée du canal radio (Duty cycle 0,1 %, 1%, 10%)

Avantages/inconvénients des diverses ISM

Sous le GHz:

- bandes non uniformisées dans le monde
- restriction du « duty cycle »
- bande passante limitée

De 2,4 à 2,48 GHz

- sans licence dans la plupart des pays
- grande BP, gros débits
- Courte portée

De 5 à 6 GHz

- Disponible partout dans le monde
- Très large BP
- Plus courte portée

De 57 à 64 GHz

- Disponible partout dans le monde
- Enorme BP et énorme débits
- Très courte portée

Les compromis conso / débit / portée

Les compromis conso / débit / portée

Techno	Net. Type	Freq	Range	Data Rate	Power
Wifi	Star	2.4- 5GHz	100m	100Mb/s	1W
BLE	P2P, mesh	2.4- 5GHz	100m	1Mb/s	10mW
Zigbee	P2P, mesh	2.4- 5GHz	250m	250kb/s	100mW
RFID	P2P	900MHz	7m	500kb/s	2W
NFC	P2P	13.56MHz	0.1m	500kb/s	100mW
EDGE	GERAN	900MHz	15 km	384kb/s	2W
UMTS	UTRAN	2100MHz	10 km	10Mb/s	2W
LTE	UTRAN	700 MHz	10 km	100Mb/s	2W
SigFox	Star	900MHz	15km	100b/s	25mW
LoRa	Star	900MHz	15km	290b/s- 5kb/s	25mw

Equipement IOT : les cartes UCA

