Álgebra Linear — Aula 15

Josefran de Oliveira Bastos

Universidade Federal do Ceará

A atividade deverá ser entregue em um prazo de no máximo 20 min após início da aula. Lembrando que m_i é o i-ésimo dígito a partir da esquerda da sua matrícula.

Atividade 12

Considere o vetor $\overrightarrow{v} = (m_1, m_5, m_6)$. Faça o que se pede:

- 1. Calcule a norma de \overrightarrow{v} .
- 2. Normalize \overrightarrow{v} .
- 3. Escreva \overrightarrow{v} como combinação linear dos vetores canônicos.

Gabarito

- 1. $\|\overrightarrow{v}\| = \sqrt{m_1^2 + m_5^2 + m_6^2}$.
- $2. \ \overrightarrow{v}' = \frac{1}{\|\overrightarrow{v}\|} \overrightarrow{v}.$
- 3. $\overrightarrow{v} = m_1 e_1 + m_5 e_2 + m_6 e_3$.

Distância entre pontos Vs Norma de vetores

Sejam A e B pontos do \mathbb{R}^n . A distância d(A, B) entre os pontos A e B é definida como a norma do vetor \overrightarrow{AB} .

Distância entre pontos Vs Norma de vetores

Sejam A e B pontos do \mathbb{R}^n . A distância $\underline{d(A, B)}$ entre os pontos A e B é definida como a norma do vetor \overline{AB} .

Distância entre pontos

Temos que

$$d(A, B) = \sqrt{(B_1 - A_1)^2 + \dots + (B_n - A_n)^2}.$$

Calcule o ângulo entre os vetores $\overrightarrow{v}=(1,2)$ e $\overrightarrow{w}=(2,0)$.

Calcule o ângulo entre os vetores $\overrightarrow{v} = (1,2)$ e $\overrightarrow{w} = (2,0)$.

Exemplo 6

Calcule o ângulo entre os vetores $\overrightarrow{v}=(v_1,v_2)$ e $\overrightarrow{w}=(w_1,w_2)$.

Produto Interno entre Vetores

Sejam \overrightarrow{u} e \overrightarrow{v} vetores em \mathbb{R}^n . O produto interno entre \overrightarrow{u} e \overrightarrow{v} é definido como

$$\overrightarrow{u} \cdot \overrightarrow{v} = ||u|| ||v|| \cos \theta = u_1 v_1 + \dots + u_n v_n.$$

Calcule

- 1. (1,1) $\cdot (1,-1)$;
- 2. $(1,2) \cdot (-1,-2)$
- 3. $(1,2) \cdot \overrightarrow{\alpha(1,2)}$ para um escalar $\alpha \neq 0$.

Teorema (3.2.2)

Sejam $\overrightarrow{u},\overrightarrow{v}$ e \overrightarrow{w} vetores em \mathbb{R}^n e α um escalar.

- 1. $||v|| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}};$
- 2. $\overrightarrow{v} \cdot \overrightarrow{u} = \overrightarrow{u} \cdot \overrightarrow{v}$;
- 3. $\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w};$
- 4. $\alpha(\overrightarrow{u} \cdot \overrightarrow{v}) = (\alpha \overrightarrow{u}) \cdot \overrightarrow{v}$;
- 5. $\overrightarrow{v} \cdot \overrightarrow{v} \ge 0$, sendo $\overrightarrow{v} \cdot \overrightarrow{v} = 0$ se e somente se $\overrightarrow{v} = \overrightarrow{0}$.

Ângulo entre vetores

Dados vetores \overrightarrow{u} e \overrightarrow{v} em \mathbb{R}^n , se

$$-\|\overrightarrow{u}\|\|\overrightarrow{v}\| \leq \overrightarrow{u} \cdot \overrightarrow{v} \leq \|\overrightarrow{u}\|\|\overrightarrow{v}\|$$

então ângulo θ entre \overrightarrow{u} e \overrightarrow{v} pode ser calculado como

$$\theta = \arccos\left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}\right).$$

Ângulo entre vetores

Dados vetores \overrightarrow{u} e \overrightarrow{v} em \mathbb{R}^n , se

$$-\|\overrightarrow{u}\|\|\overrightarrow{v}\| \leq \overrightarrow{u} \cdot \overrightarrow{v} \leq \|\overrightarrow{u}\|\|\overrightarrow{v}\|$$

então ângulo θ entre \overrightarrow{u} e \overrightarrow{v} pode ser calculado como

$$\theta = \arccos\left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}\right).$$

Desigualdade de Cauchy-Schwarz

Sejam \overrightarrow{u} e \overrightarrow{v} vetores em \mathbb{R}^n . Temos que

$$|\overrightarrow{u}\cdot\overrightarrow{v}|\leq \|\overrightarrow{u}\|\|\overrightarrow{v}\|.$$

Teorema (3.2.5)

Se $\overrightarrow{u},\overrightarrow{v}$ e \overrightarrow{w} forem vetores do \mathbb{R}^n então

Teorema (3.2.5)

Se $\overrightarrow{u}, \overrightarrow{v}$ e \overrightarrow{w} forem vetores do \mathbb{R}^n então

1.
$$\|\overrightarrow{u} + \overrightarrow{v}\| \le \|\overrightarrow{u}\| + \|\overrightarrow{v}\|$$
;

Teorema (3.2.5)

Se \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} forem vetores do \mathbb{R}^n então

- 1. $\|\overrightarrow{u} + \overrightarrow{v}\| \le \|\overrightarrow{u}\| + \|\overrightarrow{v}\|$; 2. $\operatorname{dist}(\overrightarrow{u}, \overrightarrow{v}) \le \operatorname{dist}(\overrightarrow{u}, \overrightarrow{w}) + \operatorname{dist}(\overrightarrow{w}, \overrightarrow{u})$.

Seja P um paralelogramo qualquer de quatro lados. Mostre que a soma dos quadrados das diagonais é igual a soma dos quadrados dos lados.

Seja P um paralelogramo qualquer de quatro lados. Mostre que a soma dos quadrados das diagonais é igual a soma dos quadrados dos lados.

Teorema (3.2.6)

Se \overrightarrow{u} e \overrightarrow{v} forem vetores em \mathbb{R}^n então

$$\|\overrightarrow{u}+\overrightarrow{v}\|^2+\|\overrightarrow{u}-\overrightarrow{v}\|^2=2(\|\overrightarrow{u}\|^2+\|\overrightarrow{v}\|^2).$$

Teorema (3.2.7)

Se \overrightarrow{u} e \overrightarrow{v} forem vetores em \mathbb{R}^n com o produto escalar, então

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{4} ||\overrightarrow{u} + \overrightarrow{v}||^2 - \frac{1}{4} ||\overrightarrow{u} - \overrightarrow{v}||^2.$$

Produto Escalar vs Produto de Matrizes

Forma \overrightarrow{u}	Forma \overrightarrow{v}	Produto Escalar $\overrightarrow{u}\cdot\overrightarrow{v}$
Coluna	Coluna	$\overrightarrow{u}^T\overrightarrow{v} = \overrightarrow{v}^T\overrightarrow{u}$
Coluna	Linha	$\overrightarrow{u}^T\overrightarrow{v}^T = \overrightarrow{v}\overrightarrow{u}$
Linha	Coluna	$\overrightarrow{u}\overrightarrow{v} = \overrightarrow{v}^T\overrightarrow{u}^T$
Linha	Linha	$\overrightarrow{u}\overrightarrow{v}^T = \overrightarrow{v}\overrightarrow{u}^T$

Produto Escalar vs Produto de Matrizes

Forma \overrightarrow{u}	Forma \overrightarrow{v}	Produto Escalar $\overrightarrow{u}\cdot\overrightarrow{v}$
Coluna	Coluna	$\overrightarrow{u}^T\overrightarrow{v} = \overrightarrow{v}^T\overrightarrow{u}$
Coluna	Linha	$\overrightarrow{u}^T\overrightarrow{v}^T = \overrightarrow{v}\overrightarrow{u}$
Linha	Coluna	$\overrightarrow{u}\overrightarrow{v} = \overrightarrow{v}^T\overrightarrow{u}^T$
Linha	Linha	$\overrightarrow{u}\overrightarrow{v}^T = \overrightarrow{v}\overrightarrow{u}^T$

Proposição

Assumindo \overrightarrow{u} e \overrightarrow{v} como vetores coluna em \mathbb{R}^b temos para toda matriz quadrada A de tamanho n

$$A\overrightarrow{u}\cdot\overrightarrow{v}=\overrightarrow{u}\cdot A^T\overrightarrow{v};$$

Produto de Matrizes

Sejam A uma matriz quadrada de tamanho n com vetores linhas $\overrightarrow{a}_1,\ldots,\overrightarrow{a}_n$ e B uma matriz quadrada de tamanho n com vetores colunas $\overrightarrow{b}_1,\ldots,\overrightarrow{b}_n$ temos

$$AB = \begin{bmatrix} \overrightarrow{a}_1 \cdot \overrightarrow{b}_1 & \overrightarrow{a}_1 \cdot \overrightarrow{b}_2 & \cdots & \overrightarrow{a}_1 \cdot \overrightarrow{b}_n \\ \overrightarrow{a}_2 \cdot \overrightarrow{b}_1 & \overrightarrow{a}_2 \cdot \overrightarrow{b}_2 & \cdots & \overrightarrow{a}_2 \cdot \overrightarrow{b}_n \\ \vdots & \vdots & & \vdots \\ \overrightarrow{a}_n \cdot \overrightarrow{b}_n & \overrightarrow{a}_2 \cdot \overrightarrow{b}_2 & \cdots & \overrightarrow{a}_n \cdot \overrightarrow{b}_n \end{bmatrix}$$