2022-31-06

On fait un changement de géométrie

$$g_{ij} \to \alpha g_i j$$

Comment les autres quantité se transforment elles?

$$g^{ij} = \alpha^{-1}g_{ij}$$

$$\Gamma^{i}_{jk} \to \Gamma^{i}_{jk}$$

$$R^{i}_{jkl} \to R^{i}_{jkl}$$

$$R_{ik} \to R_{ik}$$

$$R \to \alpha^{-1}R$$

Si on fait plutôt un changement de coordonnées

 $x^i o \sqrt{\alpha} x^i$

On obtiens

$$g^{ij} \to \alpha^{-1} g^{ij}$$

$$\Gamma^{i}_{jk} \to \alpha^{\frac{1}{2}} \Gamma^{i}_{jk}$$

$$R^{i}_{jkl} \to \alpha R^{i}_{jkl}$$

$$R_{ik} \to \alpha R_{ik}$$

$$R \to R$$

Si on fait le changement de coordonnées

isométrie (même métrique)
$$\begin{cases} x \to x'(x) \\ g'_{ij}(x) = g_{ij}(x) \end{cases}$$

transformation infinitésimale

$$x'^{i}(x) = x^{i} + \epsilon \xi^{i}(x)$$

sous cette transfromation là, on a un isométrie ssi

$$g_{ik}\partial_j \xi^k + g_{jk}\partial_i \xi^k + \xi^k \partial_k g_{ij} = 0$$

$$\nabla \xi_k + \nabla_{ji} = 0$$

$$\nabla_i \xi_j = \partial_i \xi_j - \Gamma_{jk}{}^k \xi_k$$