Feuille 6

Formules de Taylor et développements limités

Notation de Landau. Soit $f, g: I \longrightarrow \mathbb{R}$ deux fonctions et $a \in I$. On suppose que g est non nulle dans un intervalle ouvert contenant a sauf éventuellement en a.

- 1. On dit que f est un petit o de g en a ce que l'on note $f(x) = \mathop{o}\limits_{x \to a}(g(x))$ si $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$. Si le contexte est clair, on écrit f(x) = o(g(x)).
- 2. On dit que f est un grand O de g en a ce que l'on note f(x) = O(g(x)) si $\lim_{x \to a} \frac{f(x)}{g(x)} = K$ avec $K \neq 0$. Si le contexte est clair, on écrit f(x) = O(g(x)).
- 3. On dit que f est équivalent à g en a ce que l'on note $f(x) \sim_{x \to a} g(x)$ si $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$. Si le contexte est clair, on écrit $f(x) \sim g(x)$.

Exercice 1. Comparer les fonctions f et g définies ci-dessous lorsque x tend vers 0 du point de vu des notations de Landau.

1.
$$f(x) = x^{7/3}$$
 et $g(x) = x^2$

3.
$$f(x) = 1 - \cos(x)$$
 et $g(x) = x$

2.
$$f(x) = \ln(1+x)$$
 et $g(x) = x$

4.
$$f(x) = \sin(x)$$
 et $g(x) = x$

Exercice 2. En utilisant la formule de Taylor-Lagrange, montrer les affirmations suivantes.

1.
$$\forall x \in \mathbb{R}, \ 1 - \frac{x^2}{2} \le \cos(x) \le 1 - \frac{x^2}{2} + \frac{x^4}{24}$$
 4. $\forall x \ge 0, \ x - \frac{x^2}{2} \le \ln(1+x) \le x$

4.
$$\forall x \ge 0, \ x - \frac{x^2}{2} \le \ln(1+x) \le x$$

2.
$$\forall x \ge 0, \ x - \frac{x^3}{6} \le \sin(x) \le x - \frac{x^3}{6} + \frac{x^5}{120}$$
 5. $\forall x \in \mathbb{R}, \ \ln(1 + x^2) \le |x|$

5.
$$\forall x \in \mathbb{R}$$
, $\ln(1+x^2) \le |x|$

3.
$$\forall x \in \left[0; \frac{\pi}{2}\right[, \tan(x) \ge x + \frac{x^3}{3}\right]$$

6.
$$\forall x \in]-\pi; \pi[, \ln(1+\cos(x)) \le \ln(2) - \frac{x^2}{4}$$

Exercice 3. Soit f une fonction deux fois dérivable sur \mathbb{R} . On suppose que pour tout $x \in \mathbb{R}$, $|f(x)| \le 1$ et $|f''(x)| \le 1$. Montrer que pour tout $x \in \mathbb{R}$, $|f'(x)| \le 2$.

Indication: Utiliser la formule de Taylor-Lagrange entre x et x + 2.

Exercice 4. Soit $f:[0;1] \longrightarrow \mathbb{R}$ de classe \mathscr{C}^2 vérifiant f(0)=f'(0)=f'(1)=0 et f(1)=1.

- 1. Montrer qu'il existe $\theta \in [0; 1]$ tel que $|f''(\theta)| \ge 4$.
- 2. Déterminer la fonction polynomiale f de degré 3 qui vérifie les conditions ci-dessus.

Exercice 5. Soit $f, g: \mathbb{R}_+ \longrightarrow \mathbb{R}$ les fonctions définies par $f(x) = \sqrt{x}$ et $g(x) = e^{\sqrt{x}}$. Donner les développements limités de f et g en 1 à l'ordre 3.

Exercice 6. Trouver $a, b \in \mathbb{R}$ tels que la fonction $x \longmapsto \cos(x) - \frac{1 + ax^2}{1 + bx^2}$ soit un $o(x^n)$ en 0 avec n maximal.

Exercice 7. Donner le développement limité en 0 des fonctions suivantes.

1. $x \mapsto \cos(x) \exp(x)$ à l'ordre 4

6. $x \mapsto \sin(x)\cos(2x)$ à l'ordre 6

2. $x \mapsto (\ln(1+x))^2$ à l'ordre 4

7. $x \longmapsto \arcsin(\ln(1+x^2))$ à l'ordre 6

3. $x \mapsto \exp(\sin(x))$ à l'ordre 4

8. $x \mapsto \sqrt{1-x} + \sqrt{1+x}$ à l'ordre 4

4. $x \mapsto \sin^6(x)$ à l'ordre 9

9. $x \mapsto (x^3 + 1)\sqrt{1 - x}$ à l'ordre 4

5. $x \longmapsto \frac{1}{\cos(x)}$ à l'ordre 4

10. $x \mapsto \frac{1}{1-x} - e^x$ à l'ordre 4

Exercice 8 (Extremum).

1. Montrer que la fonction $f: \left] - \frac{\pi}{2}; \frac{\pi}{2} \right[\longrightarrow \mathbb{R}$ définie par $f(x) = \ln(\cos(x))$ présente un point critique en x=0. Étudier la nature de ce point critique en calculant le développement limité de f autour de ce point.

2. Montrer que la fonction $f: x \longmapsto \sqrt{x^2 - x + 1}$ possède un unique point critique et étudier sa nature en calculant le développement limité de f autour de ce point.

Exercice 9 (Limites). A l'aide des développements limités, calculer les limites suivantes.

$$\lim_{x \to 0} \frac{\cos(x) - \sqrt{1 - x^2}}{x^4}$$

$$\lim_{x \to 0} \frac{\cos(x) - \sqrt{1 - x^2}}{x^4} \qquad \lim_{x \to 0} \frac{\ln(1 + x) - \sin(x)}{x} \qquad \lim_{x \to 0} \frac{e^{x^2} - \cos(x)}{x^2}$$

$$\lim_{x \to 0} \frac{e^{x^2} - \cos(x)}{x^2}$$

Exercice 10 (Limites). Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x) = \frac{\sqrt{1+x^2}}{1+x+\sqrt{1+x^2}} .$$

1. Donner un développement limité à l'ordre 2 de f en 0.

2. En déduire un développement limité de f à l'ordre 2 en $+\infty$. Calculer $\lim_{x\to +\infty} f(x)$.

3. Calculer un développement limité de f à l'ordre 1 en $-\infty$. En déduire $\lim_{x\to -\infty} f(x)$.

Exercice 11 (Limites de suites). Calculer les limites des suites $(u_n)_n$.

1.
$$u_n = n \sin\left(\frac{1}{n}\right)$$

3.
$$u_n = n\left(1 - \cos\left(\frac{1}{n}\right)\right)$$
 5. $u_n = \left(1 + \frac{a}{n}\right)^n$, $a \in \mathbb{R}$

2

5.
$$u_n = \left(1 + \frac{a}{n}\right)^n$$
, $a \in \mathbb{R}$

$$2. \ u_n = n \cos\left(\frac{1}{n}\right)$$

4.
$$u_n = n \tan \left(\frac{1}{n}\right)$$

4.
$$u_n = n \tan\left(\frac{1}{n}\right)$$
 6. $u_n = \arccos\left(\frac{n-1}{n}\right)$

Exercice 12 (Formules de Taylor). Soient $n \in \mathbb{N}$, I un intervalle ouvert de \mathbb{R} contenant un point a et $f: I \longrightarrow \mathbb{R}$ une fonction de classe \mathscr{C}^{n+1} . Pour tout $p \in \{0, \ldots, n\}$ et tout $x \in I$, on pose

$$R_p(x) = \int_a^x \frac{(x-t)^p}{p!} f^{(p+1)}(t) dt.$$

1. Formule de Taylor avec reste intégrale. Montrer que pour tout $p \in \{0, ..., n\}$ et tout $x \in I$,

$$f(x) = \sum_{k=0}^{p} \frac{f^{(k)}(a)}{k!} (x - a)^k + R_p(x) .$$
 (1)

Pour tout $p \in \{1, ..., n\}$, établir une relation entre $R_p(x)$ et $R_{p-1}(x)$.

- **2. Formule de Taylor-Lagrange.** On suppose que $x \neq a$.
 - a) Montrer qu'il existe ξ strictement compris entre a et x tel que $R_0(x) = (x-a)f'(\xi)$.
 - b) Montrer que $R_p(x) = \frac{(x-a)^{p+1}}{p!} \int_0^1 (1-u)^p f^{(p+1)}((1-u)a + ux) du$.
 - c) On suppose que $p \ge 1$. Soit $A \in \mathbb{R}$ tel que $R_p(x) = \frac{(x-a)^{p+1}A}{(p+1)!}$. En étudiant la fonction F définie entre a et x par

$$F(\lambda) = \int_{\lambda}^{x} \frac{(x-t)^{p-1}}{(p-1)!} f^{(p)}(t) dt - \frac{(x-\lambda)^{p} f^{(p)}(\lambda)}{p!} - \frac{(x-\lambda)^{p+1} A}{(p+1)!} ,$$

montrer qu'il existe ξ strictement compris entre a et x tel que $A=f^{(p+1)}(\xi)$.

d) En déduire pour tout $x \in I \setminus \{a\}$, il existe ξ strictement compris antre a et x tel que

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1} .$$
 (2)

3. Série entière. Soit $(a_n)_n$ une suite de réels et $(S_n)_n$ la suite définie par $S_n = \sum_{k=0}^n a_k$. Si la suite $(S_n)_n$ admet une limite, on pose

$$\lim_{n \to \infty} S_n = \sum_{n=0}^{+\infty} a_n .$$

Soit f une fonction de classe \mathscr{C}^{∞} sur I.

a) On suppose que pour tout $x \in I$, $\lim_{n \to \infty} R_n(x) = 0$. Montrer que pour tout $x \in I$,

$$f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k .$$

b) On suppose qu'il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, $\sup_{x \in I} |f^{(n)}(x)| \leq M$. Montrer que pour tout $x \in I$,

$$f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k.$$

Exercice 13 (Développement de l'exponentielle).

1. Soit $R \in \mathbb{R}_+^*$. Montrer que pour tout $n \in \mathbb{N}$ et tout $x \in \,]-R\,;\,R[\,,$

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{R^{n+1} e^R}{(n+1)!} . \tag{3}$$

2. Déterminer la limite de la suite (u_n) définie par $u_n = \frac{R^{n+1} e^R}{(n+1)!}$. En déduire que pour tout $x \in]-R; R[$,

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} .$$

Conclure en donnant l'expression de e^x pour tout $x \in \mathbb{R}$.

3. Montrer que

$$\left| e - \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{7!} + \frac{1}{8!} \right) \right| \le \frac{3}{9!} \ .$$

En déduire une valeur approchée de $\,e\,$ à $\,10^{-5}\,$ près.

4. Montrer que pour tout $x \in \mathbb{R}$,

$$\cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} \quad \text{et} \quad \sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} \ .$$