Eine Woche, ein Beispiel 6.30 starting functions.

This is a follow-up of [2021.08.15], [2022.02.20] and [2021.05.07]. The combinatorics of starting functions is more intricate than I thought. Therefore, I collect these findings here, and wish somebody can give a rigorous proof for these phenomenons (e.p. the numbers of 1's).

1. folding & starting fcts

1. folding & starting fcts

minuscule rep x: quasi-minuscule rep adjoint rep

E.g. Cs

1 1 1 1 1 1 1 1 1	1 1	1 1 1 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 1 1 1
$egin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 1 1 1	1 2 2 1 2 2 2 2 2 1 2 2 1	non-redo 11 2 2 11 2 2 2 11 2 2 2 11 2 11 2 11	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
E.g. B ₃ D ₄ (unfold)	₽	A _r	C ₃	⇔ G₁
1 1 1 1 2 1 1 1	1 2 1 2 2 1	1 1 2 1 1 2 2 2 1 1 1 1	2 22 4 22 2	3 2 3
1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1	1 2 1 2 2 1	1 1 2 1
1 1 1 1	1 1 2 1	1 1 1 1 2 1 1 1 1	2 2 2 2	1 1 2 1

Ē.g. F4

€ 6	ø—o=o—ø F4	E ₆	%—o=o— ¥ F4
E6 (unfold) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	non-redu 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1	1 1 2 2 2 1 4 3 2 2 4 3 2 1 4 2 2 1 2	1 1 1 1 2 2 2 2 1 1 4 3 3 2 2 2 4 3 3 2 1 1 4 2 2 2 1 1 2	2 2 2 4 2 2 4 6 2 4 6 2 2 4 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 2 1 1 3 2 1 1 2 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 2 2 4 1 2 3 4 1 2 2 2 1 1

Rmk. Adjoint rep is compatible with normal folding. while quasi-minuscule rep Jare compatible with reversed folding minuscule rep

E.p. simply-laced
$$\Leftrightarrow$$
 (quasi-minuscule = adjoint)

For minuscule rep, (→ (**(*)**)

keep

https://mathoverflow.net/questions/111469/dual-versions-of-folding-symmetric-ade-dynkin-diagrams