1

Sistemas Distribuídos

Distributed Systems

Corpo Docente

- José Alves Marques
 - Responsável Teóricas Alameda
- Miguel Pardal
 - Laboratórios Alameda

- Naércio Magaia
 - Laboratórios Alameda

leic-sod@disciplinas.tecnico.ulisboa.pt

- Responsável Teóricas Taguspark
- João Coelho Garcia
 - Laboratórios Taguspark

- Miguel Coimbra
 - Laboratórios Taguspark

David R. Matos

O que é um sistema distribuído?

Sistema Distribuído

Sistema de componentes software/hardware localizados em computadores ligados em rede que comunicam e coordenam as suas ações através de troca de mensagens.

Consequências?

- Concorrência
 - Diferentes nós do sistema distribuído executam-se em concorrência
 - Bom ou mau?
- Não há relógio global
 - Relógios locais não estão necessariamente iguais
 - Única forma de coordenação é por troca de mensagens

Consequências?

- Falhas independentes
 - Qualquer componente pode falhar de forma independente das outras
 - Bom ou mau?
- Segurança
 - Intrusos podem ler mensagens em trânsito, injectar novas mensagens
 - Não existe controlo sobre o software sistema e aplicações remotas

Alguns exemplos de Sistemas Distribuídos

Motores de pesquisa na Web

Redes Sociais Abertas

facebook DEVELOPERS

Documentation Community Resources Tools News

Build and Grow with Facebook

Bring identity and connections to your site or application.

Start building for your site

What would you like to do?

- ▶ Integrate Facebook into your site using Connect
- ▶ Build Facebook-enabled iPhone apps
- ▶ Create an application that runs inside Facebook
- ▶ Promote your app on Facebook

Where is the latest information about Platform?

- ▶ Developer Roadmap
- ▶ Platform Live Status
- ▶ Principles and Policies

Jogos em Rede

Sistemas automáticos de *trading* financeiro

Tendências actuais em sistemas distribuídos

A Internet moderna

Computação em nuvem

15

Computação móvel e ubíqua

Objectivos

- O objectivo principal é analisar as arquitecturas e as soluções técnicas que permitem desenvolver aplicações distribuídas, garantindo os requisitos não funcionais como a reconfigurabilidade, segurança, tolerância a faltas e escalabilidade.
 - Para tal é necessário analisar os problemas que se colocam nos sistemas distribuídos e quais são as soluções para os ultrapassar.

Objectivos

- O objetivo global subdivide-se:
 - na caracterização dos sistemas distribuídos;
 - arquiteturas de referência;
 - políticas e mecanismos de suporte à comunicação distribuída: troca de mensagens, procedimentos remotos;
 - gestão de nomes distribuída;
 - politicas e mecanismos de segurança
 - tolerância a faltas.
- Para todas as tecnologias abordadas procura-se relacioná-las com os ambientes de desenvolvimento de aplicações e com as diversas plataformas de middleware e de suporte a sistemas distribuídos existentes no mercado.

Programa

- 1. Redes de dados e programação da comunicação distribuída (revisão)
- 2. RPC (Remote Procedure Call), RMI (Remote Method Invocation), Web Services
- 3. Gestão de Nomes
- 4. Segurança
 Canais seguros
 Autenticação
 Autorização
- 5. Tolerância a FaltasReplicaçãoTransacções

Bibliografia principal

Distributed Systems: Concepts and Design George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair. Addison Wesley/Pearson Education. 5th Edition, 2011.

Bibliografia principal para a parte prática

 Java Web Services: Up and Running Martin Kalin
 O'Reilly Media; Second Edition, 2013

Bibliografia secundária

- Tecnologia de Sistemas Distribuídos, José Alves Marques e Paulo Guedes, FCA Editora de Informática, 2ª edição, 1999.
- Distributed Systems: Principles and Paradigms (2nd Edition), Andrew Tanenbaum, Maarten Van Steen, Prentice Hall, 2006
- Concurrency Control and Recovery in Database Systems, Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman Addison-Wesley Publishing,

Outras referências:

- Java Web Services Architecture, J McGovern, S. Tyagi, M. Stevens, S. Mathew, Morgan Kaufmann, 2003
- Web Services, Concepts, Architectures and Applications, G Alonso, F Casati, H Kuno, V Machiraju, Springer Verlag, 2004
- Distributed Systems, S. Mullender. Addison-Wesley. 1993.
- Transaction Processing: Concepts and Techniques, J. Gray & A. Reuter. Morgan Kaufmann. 1993.

Avaliação

Avaliação de conhecimentos

- Avaliação da disciplina tem 3 componentes: contínua (5%), projeto (50%) e teórica (45%)
 - A nota mínima para aprovação à cadeira é de 10 (dez) valores
 - No cálculo da média dos testes e da nota final não são feitos arredondamentos das notas parcelares

• Para informação detalhada, consultar o site da cadeira!

Avaliação de Conhecimentos: Avaliação Contínua (5%)

- Avalia os 3 primeiros trabalhos das aulas de laboratório
- Cada aula inclui problema a resolver em grupos de 3
 - Enunciado base do problema é conhecido desde a semana anterior
 - Alínea secreta é apresentada a cada grupo na própria aula
- Solução é apresentada ao docente de laboratório até ao final da aula de laboratório

Avaliação de Conhecimentos: Projecto (50%)

- O projecto realizar-se-á em duas fases
 - Cada fase corresponde a um ponto intercalar de avaliação que permitirá aferir os grupos que estão a realizar o trabalho de uma forma que lhes permita concluir o projecto com aprovação.
- Nota mínima: 9 valores
- Não existe projeto conjunto com a disciplina de Engenharia de Software

Avaliação de Conhecimentos: Avaliação Teórica (45%)

- Nota mínima de 9,0 valores
- Constituída por 2 subcomponentes:
 - Avaliação por Exames/Testes escritos (85%)
 - Dois percursos possíveis:
 - 1º teste, 2º teste, repescagem de um dos testes ou, caso não tenha obtido nota mínima, pode optar por fazer o 2º exame
 - 1º exame, 2º exame
 - Nota da repescagem e do 2º exame só contam se melhorarem
 - Avaliação por mini-testes nas aulas teóricas (15%)
 - 2 mini-testes curtos em aulas teóricas a anunciar
 - Mini-testes só contam se melhorarem a nota da teórica
 - Se média dos 2 mini-testes for inferior à nota da subcomponente exame/testes, mini-testes são ignorados e a avaliação teórica passa a ser dada 100% pela nota da componente exame/testes

Avaliação de Conhecimentos: Outros casos

- Alunos repetentes
 - A nota do par (projecto, avaliação contínua) do ano lectivo anterior pode ser aproveitada este ano, mas só se for positiva (>=10)
- Alunos com direito a época especial
 - Permitido realizar exame (50%) e projecto (50%) em época especial
 - Mais detalhes no site

Datas

Avaliação Teórica:

- 1º teste 1 de Abril às 18h
- 2º Teste / 1º Exame 14 de Junho às 11h 30m
- Repescagens / 2º Exame 28 de Junho às 11h 30m

Projecto:

- 1º Entrega 15 Abril 23h 59
- 2ª Entrega 13 Maio 23h 59
- Discussão do projecto: 16 a 27 de Maio

Avaliação Contínua:

- Inscrições a partir de hoje
- Aulas de laboratório começam na 2º feira
- Trabalhos de avaliação contínua nas semanas seguintes (conferir calendário na página dos laboratórios)

Inscrições em Laboratórios

- As inscrições para os laboratórios abrem hoje 16:30
 - Apesar de aparecerem nos horários, os seguintes turnos não irão funcionar:
 - SDis151113L05 (Qua. 09:30 11:00 0 14)
 - SDis151113L09 (Sex. 08:30 10:00 1 29)
- Alunos sem grupo ou outras dúvidas sobre inscrições, enviar mail para Miguel Coimbra <miguel.e.coimbra@tecnico.ulisboa.pt>

Sugestões

Teóricas de SD

- Muito sincronizadas com laboratórios e projeto
- Apareçam de forma ativa
 - Não deixem passar partes que não tenham percebido
 - Não há perguntas estúpidas
- Sugestão de leitura após cada aula
 - Aula seguinte fazemos exercícios sobre o material lido em casa
 - Menos exposição de matéria, mais teórico-prática

Façam <u>já</u> um horário semanal <u>realista</u> para todas as cadeiras

- Sistemas distribuídos:
 - Aulas
 - 1,5h para preparar cada laboratório
 - 5 primeiras semanas
 - 1h para complementar cada aula teórica
- Durante projetos:
 - Carga semanal deve manter-se
 - Gerir bem os picos de carga

Laboratórios de SD

- Guia de cada aula sai na semana anterior
 - Resolvam-no antes da aula!
- Matéria de cada laboratório é analisada nas teóricas
 - Grande vantagem para resolver e perceber o laboratório

Projeto

- Muito ligado à matéria teórica
- Componente base: aplicar técnicas aprendidas na teórica
- Componente avançada: inventar nova técnica
 - Exige forte domínio da matéria teórica

Horários de dúvidas

- Vejam horários no site (em breve)
- Apareçam!

Próxima aula

TED Talk by Danny Hillis The Internet could crash. We need a Plan B

http://www.ted.com/talks/danny hillis the internet could crash we need a plan b

- Quais são os desafios da distribuição mencionados no video?
 - Discussão na próxima aula