Programación Orientada a Objetos

Práctica 0: Clases, objetos y excepciones Implementación de clases de utilidad para la gestión de la librería

Curso 2016-17

- 1. Se trata de hacer una clase para trabajar con fechas, en español. Esta clase se llamará Fecha y sus atributos serán 3 enteros que representarán, por este orden, día, mes y año. Una Fecha se podrá construir:
 - a) Con 3 parámetros, que serán, por este orden: el día, el mes y el año.

```
Fecha a(18, 7, 1936); // 18 de julio de 1936
```

b) Con 2 parámetros; que serán, por este orden: el día y el mes, siendo el año el de la fecha del sistema.

```
Fecha b(17, 7); // 17 de julio del año en curso
```

c) Con un parámetro, el día, tomándose el mes y el año de la fecha del sistema. Pero no se permitirá la conversión implícita de un entero a una Fecha.

```
Fecha c(1);  // Primer día del mes en curso del año en curso
Fecha d = 1;  // ERROR, conversión int -> Fecha no permitida
void fuu(const Fecha& f);
fuu(5);  // ERROR, conversión de int a Fecha no permitida
fuu(Fecha(5));  // OK, conversión explícita de 5 a Fecha(5)
```

d) Sin parámetros, tomando los valores de la fecha del sistema.

```
Fecha hoy; // La fecha del sistema, de hoy
```

e) A partir de otra Fecha.

```
Fecha d(c);  // 1 del mes y año en curso
Fecha e = b;  // Igual, e vale 17 de julio de este año
```

f) A partir de una cadena de caracteres de bajo nivel en el formato "dd/mm/aaaa", siendo dd el día expresado con 1 o 2 dígitos, mm el mes expresado con 1 o 2 dígitos y aaaa el año expresado con 4 dígitos (todos los dígitos en base 10). Se permiten conversiones de una cadena de caracteres en este formato a una Fecha. Si hay más caracteres no numéricos después del último número, simplemente se descartarán.

```
Fecha f("11/9/2001"); // 11 de septiembre de 2001

Fecha g("1/12/1998"); // 1 de diciembre de 1998

Fecha h("1/01/2000"); // 1 de enero de 2000
```

```
Fecha i("11/12/1973"); // 11 de diciembre de 1973

Fecha j("22/03"); // MAL: falta el /año

Fecha k("22-03-1965"); // MAL: - en vez de /

Fecha j("02/2/2002)&"); // OK, 2 de febrero de 2002, se descartan )&
```

Un valor 0 para día, mes o año no será considerado incorrecto, sino que en ese caso se tomará el valor correspondiente de la fecha del sistema. Ejemplos:

```
Fecha 1(3, 0, 2012); // 3 del mes en curso de 2012

Fecha m(0, 0, 0); // Como 'Fecha m;': la fecha del sistema de hoy

Fecha n("00/0/000"); // Ídem, "hoy". Da igual el n.º de ceros

Fecha o("0/0/2011"); // Día y mes del sistema del año 2011

Fecha p(0, 1); // Como (0, 1, 0): este día de enero de este año
```

Los constructores deben comprobar que las fechas que se van a construir sean correctas, es decir:

- a) Que el día esté comprendido entre 1 y el número de días del mes, y
- b) que el mes esté comprendido entre 1 y 12, y
- c) que el año esté comprendido entre dos constantes que se definirán con los nombres Fecha::AnnoMinimo y Fecha::AnnoMaximo con valores respectivos 1902 y 2037. Estas dos constantes serán públicas.

```
Fecha q(31, 4);  // MAL: abril solo tiene 30 días Fecha r(31, 13);  // MAL: solo hay 12 meses Fecha s(12, 12, 2048);  // MAL: 2048 > Fecha::AnnoMaximo Fecha t("2/5/1808");  // MAL: 1808 < Fecha::AnnoMinimo
```

En caso de que esto no suceda, el constructor correspondiente elevará una excepción del tipo Fecha::Invalida, que llevará información de porqué ha ocurrido el fallo en forma de una cadena de caracteres de bajo nivel que se le pasará como parámetro al construirla, y que devolverá con un método público llamado por_que .

```
try { Fecha t("02/05/1808"); }
catch(Fecha::Invalida e) { std::cerr << e.por_que() << std::endl; }</pre>
```

Una Fecha podrá incrementarse o decrementarse en 1 día mediante los operadores de incremento o decremento prefijos y sufijos, con la semántica habitual de dichos operadores.

```
Fecha q = ++hoy; // q vale: "hoy, no; ¡mañana!"; y hoy es mañana Fecha r = q--; // r vale mañana, pero q vuelve a hoy
```

A una Fecha podrá sumársele o restársele un número cualquiera de días mediante los operadores de suma y resta de Fecha y entero. Estos operadores devolverán otra Fecha que será el resultado de la original más o menos el número de días especificado por el operando entero.

```
Fecha s = hoy + 7; // s es 1 semana a partir de hoy
Fecha t = hoy - 30; // t es 1 mes (30 días) antes de hoy
```

Una Fecha podrá incrementarse o decrementarse un número cualquiera de días mediante los operadores suma o resta de Fecha y entero con asignación.

En los operadores antedichos, habrá que comprobar que la fecha resultante de la operación sea válida, ya que podría sobrepasarse el rango de años. Por ejemplo:

Dos objetos *Fecha* podrán restarse uno de otro, devolviendo el número de días entre las dos fechas como un entero largo con signo.

```
unsigned dd = t - hoy; // dd = -60
dd = u - hoy; // dd = +14
dd = hoy - Fecha(); // dd = 0
```

Una Fecha podrá asignarse a otra.

```
o = p; // Ahora o vale el día actual de enero del año en curso
```

Una Fecha poseerá métodos observadores que devolverán los atributos. Estos métodos se llamarán dia, mes y anno.

```
int dia = hoy.dia();
int mes = hoy.mes();
int año = hoy.anno();
```

Una Fecha podrá convertirse implícitamente a una cadena de caracteres en el formato "DIASEM DD de MES de AAAA", donde DIASEM es el nombre del día de la semana en español, DD es el día del mes con 1 o 2 dígitos, MES es el nombre del mes en español y AAAA es el año expresado con 4 dígitos. Ejemplo: miércoles 12 de septiembre de 2001. Obsérvese que en español los nombres de los días de la semana y de los meses se escriben en minúscula, debe colocarse la tilde donde corresponda y los números de los años no llevan separador de miles, de forma que el ejemplo anterior estaría mal expresado como Miercoles 12 de Setiembre de 2.001. En el caso de septiembre, debe usarse esta forma y no «setiembre». Esto es importante para que se pasen las pruebas automáticas. En el siguiente ejemplo, la Fecha f se convierte automáticamente a const char*, y de esa forma ya puede imprimirse en la salida estándar martes 11 de septiembre de 2001.

```
std::cout << f << std::endl; // Imprime en la salida estándar
```

Dos fechas podrán compararse mediante los operadores habituales de igualdad, desigualdad, mayor, menor, mayor o igual, y menor o igual, que devolverán un valor booleano con el significado lógico de «menor = antes» y «mayor = después».

2. Se trata de hacer una clase general para trabajar con cadenas de caracteres (char), como una paupérrima imitación de string de la biblioteca estándar. Esta clase se llamará Cadena y sus atributos serán un puntero a caracteres de tipo char y un entero sin signo que representará el tamaño de la cadena o número de caracteres en cada momento. El puntero antedicho apuntará a una cadena de caracteres acabada en el carácter terminador NUL o '\0', como las cadenas de C, lo que hace la implementación mucho más fácil. El atributo de tamaño no contará este terminador; dicho de otra forma, la Cadena formada por los caracteres 'h', 'o', 'l' y 'a', tiene de tamaño 4 y ocupa 5 bytes de memoria, 1 más que el tamaño por el terminador.

No debería ser obligatorio, pero para que funcionen las pruebas automáticas y las comprobaciones de código, los atributos antedichos deben ir en el orden en el que se han descrito (primero el puntero, después el entero) y llamarse s_- y tam_- .

Una Cadena se construirá:

a) Con 2 parámetros, que serán por este orden: un tamaño inicial y un carácter de relleno.

```
Cadena a(3, 'X'); // tamaño y relleno: "XXX"
```

b) Con 1 parámetro, que será un tamaño inicial; en este caso la cadena se rellenará con espacios. No se permitirá la conversión implícita de un entero a una Cadena.

```
Cadena b(5);  // tamaño y espacios: " " (5 espacios)
Cadena bb = 5;  // ERROR, conversión no permitida
void foo(const Cadena& c);
foo(7);  // ERROR, conversión no permitida
foo(Cadena(7));  // OK, conversión explícita
```

c) Sin parámetros: se creará una Cadena vacía, de tamaño 0.

```
Cadena c; // Cadena vacía, tamaño 0: ""
```

d) Por copia de otra Cadena.

```
Cadena d(a); // copia de Cadena: "XXX"
```

e) A partir de una cadena de caracteres de bajo nivel, permitiéndose las conversiones desde const char* a Cadena.

```
Cadena f("OLA K ASE?"); // copia de cadena de C: "OLA K ASE?"
```

f) Con los n primeros caracteres de una cadena de bajo nivel. Si n fuera mayor que la longitud de la cadena, se tomará completa. Si n = 0, se construye la Cadena vacía.

```
Cadena g("OLA K ASE?", 3); // 3 primeros caracteres: "OLA"
```

g) Por copia de otra sub-Cadena; el primer parámetro será la Cadena a copiar parcialmente, el segundo será la posición inicial a partir de la cual se empieza a copiar (0 es el primer carácter) y el tercero será la longitud a copiar en número de caracteres. Si se omite, se tomará la constante Cadena::npos, de tipo size_t, que tendrá que definir adecuadamente, y que valdrá el entero sin signo más grande (truco: -1). Este valor significará aquí: «hasta el final de la cadena». Si la posición inicial es mayor que la longitud de la Cadena, se lanzará la excepción estándar std::out_of_range. Si la longitud a copiar excede el tamaño de la Cadena desde el índice, no se lanzará ninguna excepción, sino que se tomarán los caracteres hasta el final, como en el caso de npos. Si la longitud a copiar es 0, el resultado es la Cadena vacía.

Una Cadena podrá asignarse a otra. Una cadena de bajo nivel también podrá asignarse directamente a una Cadena. La original se destruye.

```
a = f; // Ya no existe a = "XXX", ahora a = "OLA K ASE?" a = "C++11"; // Ahora a = "C++11" (y f sigue valiendo "OLA K ASE?")
```

Una *Cadena* podrá convertirse automáticamente a una cadena de bajo nivel (const char*). En el ejemplo siguiente, *puts* es una función de la biblioteca estándar de C (y C++) que recibe un *const char** e imprime los caracteres a los que apunta hasta su terminador en la salida estándar, seguido de un salto de línea.

```
puts(f); // Imprime "OLA K ASE?\n" en la salida estándar
```

La función observadora length devolverá el número de caracteres de una Cadena.

```
size_t longitud_de_saludo = f.length(); // longitud_de_saludo = 10
```

A una Cadena podrá concatenársele otra, añadiéndose esta al final, mediante el operador de suma con asignación.

```
g += e; // g = "OLALA", e sigue igual: "LA"
```

Dos Cadena podrán concatenarse mediante el operador de suma, resultando una nueva Cadena que será la concatenación de ambas.

```
c = g + e; // asignación a c de la Cadena "OLALALA"; c = "OLALALA"
```

Dos *Cadena* podrán compararse con los operadores lógicos habituales: igualdad, desigualdad, mayor que, menor que, mayor o igual y menor o igual. El resultado será un valor lógico (booleano). Que una *Cadena* sea menor que otra significa que está antes en el sistema de ordenación alfabético según los códigos de caracteres. Si son iguales, es que tienen los mismos caracteres en el mismo orden y son de igual longitud. Observe que uno cualquiera de los 2 operandos podría ser una cadena de bajo nivel que se convirtiera automáticamente a *Cadena* con el constructor de conversión que se ha pedido anteriormente.

Podrá obtenerse un carácter determinado de una Cadena mediante su índice en ella, para lo que se redefinirá o sobrecargará el operador de índice (corchetes) y una función at. La diferencia es que el operador índice no comprobará si el número que se le pasa como operando está dentro del rango de tamaño de la Cadena, y la función at sí lo hará. En este caso, si el parámetro de at no está dentro del rango 0..length() - 1, lanzará la excepción estándar std::out_of_range. Estas funciones de índice podrán funcionar para Cadena definidas const, y tanto para asignación como para observación. Es decir, por ejemplo:

```
const Cadena cc("hola");
Cadena c("ola");
cc[0] = ', ';
              // ERROR, cc es const
char h = cc[0]; // OK, h = 'h'
c[0] = 'a'; // OK, c = "ala"
h = c[1];
              // OK, h = '1'
cc.at(0) = 'z'; // ERROR, cc es const
h = cc.at(0);
              // OK, h = 'h'
c.at(0) = 'o'; // OK, c = "ola" de nuevo
               // OK, h = '1'
h = c.at(1);
cc[7];
               // ERROR FATAL NO CONTROLADO DURANTE LA EJECUCIÓN
cc.at(7);
               // Error controlado, se lanza out_of_range
```

Cuando una *Cadena* salga fuera de ámbito o se destruya, deberá liberarse la memoria dinámica que pudiera tener reservada.

La función miembro *substr* recibirá dos parámetros enteros sin signo: un índice y un tamaño, y devolverá una *Cadena* formada por tantos caracteres como indique el tamaño a partir del índice. Por ejemplo:

```
Cadena grande("NIHIL NOVVM SVB SOLEM"); // «Nada nuevo bajo el Sol»
Cadena nuevo = grande.substr(6, 5); // nuevo <- "NOVVM"</pre>
```

La función substr deberá lanzar una excepción std::out_of_range cuando se proporcione una posición inicial después del último carácter, o cuando la subcadena pedida se salga de los límites de la cadena. Por ejemplo:

```
Cadena s("hola hola");
s.substr(9, 1); // lanza std::out_of_range (9 está fuera del rango 0..8)
s.substr(6, 10); // idem: después del indice 6 no hay 10 caracteres
```

Obviamente, ya que se está haciendo una imitación de *string*, está prohibido usar dicha clase de la biblioteca estándar, aunque pueden usarse otras funciones de la biblioteca estándar de C++ (que incluye la de C) que se estimen necesarias o convenientes. Tampoco debe usarse *string* en *Fecha*, sino cadenas de caracteres de bajo nivel, como en C. En las prácticas sucesivas, donde hubiera que emplear *string* se usará *Cadena* en su lugar.

Se suministra el código de dos programas de prueba: test-P0-consola.cpp, y el de las pruebas automáticas en el directorio Tests-auto (V. más adelante). Conviene estudiar el código del primero para comprender mejor lo que se pide en este enunciado. Las clases Fecha y Cadena deben compilarse y enlazarse contra ellos para producir los ejecutables.

3. Deberá hacer el Makefile necesario para la compilación con make.

La primera regla, cuyo objetivo se llamará *all*, construirá los 2 programas de prueba (1 automáticas, 1 semiautomáticas, para *Cadena* y *Fecha*), de nombres *test-P0-auto* y *test-P0-consola*.

La última regla, cuyo objetivo se llamará *clean*, borrará del directorio todos los ficheros sobrantes o que puedan ser regenerados: módulos objeto, ejecutables, etc.

Deberá ser posible cambiar el compilador de C++ y sus opciones mediante la variable (macro) adecuada. Se recomienda usar siempre las opciones siguientes:

- -g Necesaria para poder depurar el programa.
- -Wall Avisos extra; por si hay algo que puede dar problemas a la hora de la ejecución.
- -std=ESTÁNDAR El estándar a seguir. ESTÁNDAR debe ser: c++11 o c++14, ya que los tests proporcionados necesitan y usan el estándar C++11 al menos, por lo que no funcionarán con un estándar menor, como c++98 o c++03 (equivalentes a la opción -ansi). Si su compilador es antiguo, puede que tenga que poner c++0x en vez de c++11. Algunos compiladores ya admiten también la opción c++17, aunque el soporte no es completo.
- -pedantic Para que el lenguaje se ajuste fielmente al estándar escogido, de forma que lo que sea incompatible con él produzca un error.

Puede usar otras opciones del compilador, consulte su manual.

Para el preprocesador de C++ deberá redefinir la variable CPPFLAGS con las opciones siguientes:

-DPO En cada práctica, para que funcionen los tests automáticos, hay que definir una macro del preprocesador llamada como la práctica, en este caso, PO. Esto puede y debe hacerse al preprocesar, mediante la opción -D, que sirve para definir una macro del preprocesador que se pone a continuación (opcionalmente con un valor, que en este caso no hace falta).

-I../Tests-auto -I. Para que el preprocesador encuentre las cabeceras de los programas de prueba automáticos, hay que usar la opción -I, que le indica en qué directorio buscar.

También debe definir en el *Makefile* la variable VPATH, que indica a *make* en qué directorios buscar los ficheros fuente, con el siguiente valor:

```
../Tests-auto:.
```

Puede usar otras variables en el *Makefile*, a su gusto y conveniencia, así como otras reglas. El objetivo y las dependencias de la regla para los tests automáticos será:

```
test-P0-auto: test-caso0-fecha-auto.o test-caso0-cadena-auto.o \
test-auto.o cadena.o fecha.o
```

y para los módulos objeto de los tests automáticos, la regla sería, agrupando los objetivos:

```
test-caso0-fecha-auto.o test-caso0-cadena-auto.o test-auto.o: \
  test-caso0-fecha-auto.cpp test-caso0-cadena-auto.cpp \
  test-auto.cpp test-auto.hpp fecha.hpp cadena.hpp
```

También se podrán suministrar programas que comprueben el código fuente de sus ficheros; serán fecha_check.cpp y cadena_check.cpp, y en ese caso se publicará en el campus virtual la regla checks, y sus dependientes, para su inclusión en el Makefile.

- **4.** Las prácticas de esta asignatura, *Programación orientada a objetos* o, abreviadamente, POO, deben guardarse en directorios con la siguiente disposición:
 - El directorio raíz de las prácticas de POO tendrá el nombre del alumno en el formato Apellido1_Apellido2_Nombre; sin tildes y sin eñes, que se cambiarán por doble ene, y juntando nombres compuestos. Por ejemplo, el hipotético alumno Álvaro José Muñoz de la Minglanilla crearía el directorio Munnoz_delaMinglanilla_AlvaroJose.
 - Bajo el directorio raíz anterior se creará un directorio para cada práctica llamado Pn, siendo n el número de práctica; es decir, los directorios P0, P1, P2, P3 y P4.
 - Esta es la práctica 0, por lo que en P0 tendrá que escribir y tener los ficheros fuentes de la práctica; algunos se le darán a través normalmente del campus virtual, y otros, obviamente, los tiene que hacer el alumno. Para los ficheros fuente seguirá los convenios:
 - Los nombres de los ficheros estarán en minúsculas.
 - Los ficheros de cabecera de C++ tendrán de extensión hpp.
 - Los ficheros fuente en C++ tendrán de extensión cpp.
 - El fichero de descripciones para make se llamará Makefile.
 - Bajo el directorio raíz se pondrán también ficheros comunes a las prácticas. En este caso se pondrá ahí el directorio Tests-auto, que se suministra en el campus virtual y que es el mismo para todas las prácticas, y contiene el código de los programas para las pruebas unitarias automáticas.

Al ser esta la primera práctica, es **muy recomendable** leer y estudiar atentamente la documentación que se proporciona en el campus virtual. Sobre todo el documento en PDF consejos (renombrado irónicamente a NO_LEER_NUNCA), donde se da información general sobre buenas prácticas al escribir programas en C++, y particular sobre cómo hacer diversas cosas de las que se piden en las clases Fecha y Cadena: cómo saber si un año es bisiesto, cómo saber la fecha actual, consejos sobre cómo hacer los operadores, etc.