Álgebra Linear

Gleberson Antunes

26 de Outubro de 2023

Compilado de todas as minhas soluções, da parte de Álgebra Linear, das Provas de Admissão ao Mestrado em Matemática na UFSM. As resoluções são despretensiosas e são sujeitas à erros.

Sugestões e correções são bem-vindas e podem ser enviadas para glebersonset@gmail.com. Outras soluções podem ser encontradas em minha página Gleberson Antunes.

Sumário

Sumário					•	•	•	1
1	Prova de Seleção para o Mestrado em Matemática 2009.1							2
2	Prova de Seleção para o Mestrado em Matemática 2010.1							8
3	Prova de Seleção para o Mestrado em Matemática 2013.1							14

1 Prova de Seleção para o Mestrado em Matemática 2009.1

26 de Outubro de 2023

Exercício 1. Sejam V e W espaços vetoriais de dimensão finita e T uma transformação linear de V em W.

- (a) Mostre que o núcleo de T e a imagem de T são subespaços de V e W, respectivamente.
- (b) Dado o vetor unitário $(a_1, a_2, a_3) \in \mathbb{R}^3$. Seja $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ o operador linear definido por $T(v) = \frac{\langle u, v \rangle}{\langle u, u \rangle} u$, projeção ortogonal de v sobre o eixo u. Mostre que $T^2(v) = T(v)$, determine o núcleo de T, a matriz de T e a matriz H = I 2T na base canônica.

Demonstração.

- (a) Trivial.
- (b) Seja $v \in \mathbb{R}^3$. Então

$$T^{2}(v) = T(T(v))$$

$$= T\left(\frac{\langle u, v \rangle}{\langle u, u \rangle} u\right)$$

$$= \frac{\langle u, v \rangle}{\langle u, u \rangle} T(u)$$

$$= \frac{\langle u, v \rangle}{\langle u, u \rangle} \left(\frac{\langle u, u \rangle}{\langle u, u \rangle} u\right)$$

$$= \frac{\langle u, v \rangle}{\langle u, u \rangle} u.$$

Note que

$$T(v) = 0 \Leftrightarrow \frac{\langle u, v \rangle}{\langle u, u \rangle} u = 0$$
$$\Leftrightarrow \langle u, v \rangle = 0$$
$$\Leftrightarrow v \in \langle u \rangle^{\perp}$$
$$\Rightarrow \text{Ker } T = \langle u \rangle^{\perp}.$$

Consideremos então o produto interno usual. Então

$$T(1,0,0) = \frac{a_1}{a_1^2 + a_2^2 + a_3^2} u.$$

$$T(0,1,0) = \frac{a_2}{a_1^2 + a_2^2 + a_3^2} u.$$

$$T(0,0,1) = \frac{a_3}{a_1^2 + a_2^2 + a_3^2} u.$$

Seja α a base canônica do \mathbb{R}^3 . Então

$$[T]_{\alpha} = \frac{1}{a_1^2 + a_2^2 + a_3^2} \begin{bmatrix} a_1^2 & a_2 a_1 & a_3 a_1 \\ a_1 a_2 & a_2^2 & a_3 a_2 \\ a_1 a_3 & a_2 a_3 & a_3^2 \end{bmatrix}.$$

Além disso

$$[H]_{\alpha} \ = \begin{bmatrix} 1 - \frac{2a_1^2}{a_1^2 + a_2^2 + a_3^2} & \frac{2a_2a_1}{a_1^2 + a_2^2 + a_3^2} & \frac{2a_3a_1}{a_1^2 + a_2^2 + a_3^2} \\ \frac{2a_1a_2}{a_1^2 + a_2^2 + a_3^2} & 1 - \frac{2a_2^2}{a_1^2 + a_2^2 + a_3^2} & \frac{2a_3a_2}{a_1^2 + a_2^2 + a_3^2} \\ \frac{2a_1a_3}{a_1^2 + a_2^2 + a_3^2} & \frac{2a_2a_3}{a_1^2 + a_2^2 + a_3^2} & 1 - \frac{2a_3^2}{a_1^2 + a_2^2 + a_3^2} \end{bmatrix}.$$

Exercício 2. Seja V um espaço vetorial de dimensão finita sobre um corpo F.

(a) Mostre que os autovalores de um operador nilpotente são todos nulos.

(b) Seja T um operador linear sobre V, tal que posto (T) = 1. Usando o item a), mostre que se T não é nilpotente, então T é diagonalizável.

Demonstração.

(a) Seja $T:V\longrightarrow V$ um operador nilpotente. Suponhamos que T admite algum autovalor $\alpha\in F$ não nulo. Então existe $v\in V$ não nulo tal que

$$T(v) = \alpha v.$$

Como T é nilpotente, existe m natural tal que $T^m = 0$. Seja n o menor natural (que existe pelo **Princípio da Boa Ordenação**) tal que $T^n = 0$. Então

$$T^{n}(v) = \alpha^{n}v = 0$$
$$\Rightarrow \alpha = 0.$$

o que é absurdo por hipótese. Logo os autovalores de T devem ser todos iguais a zero.

(b) Seja $n=\dim V.$ Suponhamos que T não é um operador linear nilpotente. Segue do **Teorema do Núcleo e da Imagem** que

$$\dim \operatorname{Ker} T = n - 1$$

$$= \dim E_0,$$

o autoespaço associado ao autovalor 0. Como o posto (T)=1, então a imagem de T é uma reta. Seja $v\in V$ – Ker T não nulo tal que $\langle v\rangle=Im(T)$. Então $T(v)=\alpha v$ para algum $\alpha\in F$ não nulo. Segue dai que o operador T é diagonalizável, uma vez que as multiplicidades algébricas e geométricas dos autoespaços A_0 e A_λ coincidem.

Exercício 3. Nos itens abaixo, considere A, B, K e I matrizes $n \times n$, onde I é matriz identidade.

- (a) Seja K uma matriz anti-simétrica, isto é, $K^T=-K$. Suponha que I-K é não-singular. Mostre que I+K é não singular. Se $B=(I+K)(I-K)^{-1}$, mostre que $B^TB=BB^T=I$.
- (b) Se M é uma matriz anti-simétrica então I+M e I-M são não-singulares. Demonstre esta afirmação nos casos em que M é uma matriz de ordem 2×2 e 3×3 .
- (c) Mostre que se A, B e A+B possuem inversas, então o mesmo acontece com $(A^{-1}+B^{-1}) \text{ e } (A^{-1}+B^{-1})^{-1} = A(A+B)^{-1}B = B(A+B)^{-1}A.$

Demonstração.

(a) Sabemos que se P uma matriz inversível, então det $P = \det P^T$. Suponhamos que I - K é uma matriz não-singular, i.e, inversível. Então

$$\det I - K = \det (I - K)^{T}$$

$$= \det I - (-K)$$

$$= \det I + K$$

$$\neq 0.$$

Logo I + K é não-singular.

Notemos que

$$B^{T} = ((I - K)^{-1})^{T} (I - K)$$
$$= ((I - K)^{T})^{-1} (I - K)$$
$$= (I + K)^{-1} (I - K).$$

Além disso

$$(I+K)(I-K) = (I-K)(I+K)$$

= $I-K^2$.

Logo

$$B^{T}B = (I+K)^{-1}(I-K)(I+K)(I-K)^{-1}$$
$$= (I+K)^{-1}(I+K)(I-K)(I-K)^{-1}$$
$$= I^{2}$$
$$= I.$$

Como $B^TB=I$ e estamos falando de matrizes quadradas, vale $BB^T=I$, uma vez que a inversa quando existe é única.

(b) Seja

$$M = \begin{bmatrix} 0 & -a \\ a & 0 \end{bmatrix}$$

uma matriz anti-simétrica arbitrária. Então

$$\det 1 + M = \det \begin{vmatrix} 1 & -a \\ a & 1 \end{vmatrix}$$
$$= 1 + a^2$$
$$\neq 0.$$

Da mesma maneira

$$\det 1 + M = \det \begin{vmatrix} 1 & a \\ -a & 1 \end{vmatrix}$$
$$= 1 + a^2$$
$$\neq 0.$$

Logo I+M e I-M são inversíveis quando possuem ordem 2. Seja agora

$$M = \begin{bmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{bmatrix}$$

uma matriz anti-simétrica arbitrária. Então

$$\det 1 + M = \det \begin{vmatrix} 1 & -a & -b \\ a & 1 & -c \\ b & c & 1 \end{vmatrix}$$
$$= 1 + a^2 + b^2 + c^2$$
$$\neq 0.$$

Da mesma maneira

$$\det 1 - M = \det \begin{vmatrix} 1 & a & b \\ -a & 1 & c \\ -b & -c & 1 \end{vmatrix}$$
$$= 1 + a^2 + b^2 + c^2$$
$$\neq 0.$$

Logo I + M e I - M são inversíveis quando possuem ordem 3.

(c) Se $(A^{-1} + B^{-1})^{-1} = A(A+B)^{-1}B$, então $(A^{-1} + B^{-1}) = B^{-1}(A+B)A^{-1}$. Segue dai que

$$\det (A^{-1} + B^{-1}) = \det B^{-1}(A + B)A^{-1}$$
$$= \det B^{-1} \cdot \det (A + B) \cdot \det A^{-1}$$
$$\neq 0.$$

Logo $(A^{-1}+B^{-1})$ é inversível.

2 Prova de Seleção para o Mestrado em Matemática 2010.1

27 de Outubro de 2023

Exercício 1. Considere o operador linear P que projeta o vetor $(x, y, z, t, w) \in \mathbb{R}^5$, no plano

$$\pi : \begin{cases} z = ax + by, \text{ onde } a, b \in \mathbb{R} \\ t = 0 \\ w = 0, \end{cases}$$

isto é, P(x, y, z, t, w) = (x, y, ax + by, 0, 0).

- (a) Calcule a dimensão do núcleo e a dimensão da imagem de P e exiba uma base para cada um deles.
- (b) Encontre o polinômio característico de P.
- (c) Mostre que P é diagonalizável.

Demonstração.

(a)

$$x = 0$$

$$P(x, y, z, t, w) = 0 \Leftrightarrow y = 0$$

$$ax + by = 0$$

Logo

Ker
$$P = \langle (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1) \rangle$$
.

Seja então α a base canônica do \mathbb{R}^5 . Então

Desse modo

$$Im(P) = \langle (1,0,a,0,0), (0,1,b,0,0) \rangle.$$

(b) Notemos inicialmente que

$$P(1,0,a,0,0) = (1,0,a,0,0)$$

$$P(0,1,b,0,0) = (0,1,b,0,0)$$

Logo (1,0,a,0,0) e (0,1,b,0,0) são autovetores associados ao autovalor $\lambda=1$. Como o outro autovalor é 0, temos que

$$p_P(\lambda = \lambda^3(\lambda - 1)^2.$$

(c) Claramente P é diagonalizável. Basta notar que as multiplicidades algébricas e geométricas do autoespaço associado ao autovalor 0 e do autoespaço associado ao autovalor 1 coincidem.

Exercício 2. Seja V o espaço vetorial real dado pelas funções contínuas no intervalo $[0, 2\pi]$.

- (a) Mostre que $\langle f,g\rangle=\int_0^{2\pi}f(x)g(x)dx$ é um produto interno em V.
- (b) Exiba dois vetores não nulos ortogonais em relação ao produto interno dado em (a).
- (c) Considere $[f,g] = \int_0^{2\pi} f(x)g(2\pi x)dx$. Então [f,g] define um produto interno em V?

Demonstração.

(a) Sejam $f, g, h \in V$. Então

$$\langle f + h, g \rangle = \int_0^{2\pi} (f(x) + h(x))g(x)dx$$

$$= \int_0^{2\pi} f(x)g(x) + h(x)g(x)dx$$

$$= \int_0^{2\pi} f(x)g(x)dx + \int_0^{2\pi} h(x)g(x)dx$$

$$= \langle f, g \rangle + \langle h, g \rangle.$$

$$\langle f, g + h \rangle = \int_0^{2\pi} f(x)(g(x) + h(x))dx$$

$$= \int_0^{2\pi} f(x)g(x) + f(x)h(x)dx$$

$$= \int_0^{2\pi} f(x)g(x)dx + \int_0^{2\pi} f(x)h(x)dx$$

$$= \langle f, g \rangle + \langle f, h \rangle.$$

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx$$

= $\int_0^{2\pi} g(x)f(x)dx$
= $\langle g, f \rangle$.

Seja $\alpha \in \mathbb{R}$. Então

$$\langle \alpha f, g \rangle = \int_0^{2\pi} \alpha f(x) g(x) dx$$
$$= \alpha \cdot \int_0^{2\pi} f(x) g(x) dx$$
$$= \alpha \cdot \langle f, g \rangle.$$

$$\langle f, \alpha g \rangle = \int_0^{2\pi} f(x) \alpha g(x) dx$$
$$= \alpha \cdot \int_0^{2\pi} f(x) g(x) dx$$
$$= \alpha \cdot \langle f, g \rangle.$$

Seja $f \in V.$ Então $f(x)^2 \geq 0,$ para todo $x \in [0,2\pi].$ Então

$$\langle f, f \rangle = \int_0^{2\pi} f(x)^2 dx$$
$$0 \le \int_0^{2\pi} f(x)^2 dx.$$

(b) Consideremos as funções $x^2 - \frac{4\pi^2}{3}, 1 \in V$. Então

$$\left\langle x^2 - \frac{4\pi^2}{3}, 1 \right\rangle = \int_0^{2\pi} (x^2 - \frac{4\pi^2}{3}) \cdot 1 \, dx$$

$$= \int_0^{2\pi} x^2 - \frac{4\pi^2}{3} \, dx$$

$$= \int_0^{2\pi} x^2 dx - \int_0^{2\pi} \frac{4\pi^2}{3} \, dx$$

$$= \frac{x^3}{3} \Big|_0^{2\pi} - \frac{4\pi^2}{3} x \Big|_0^{2\pi}$$

$$= \frac{8\pi^3}{3} - 0 - \frac{8\pi^3}{3} + 0$$

$$= 0.$$

Logo $x^2 - \frac{4\pi^2}{3}$ e 1 são ortogonais em relação ao produto interno dado.

(c) Consideremos as funções $x,x^2\in V.$ Então

$$[x, x^{2}] = \int_{0}^{2\pi} x(2\pi - x)^{2} dx$$
$$= \int_{0}^{2\pi} 4\pi^{2}x - 4\pi x^{2} + x^{3} dx$$
$$= 12\pi^{4} - \frac{32\pi^{4}}{3}.$$

Por outro lado

$$[x^{2}, x] = \int_{0}^{2\pi} x^{2} (2\pi - x) dx$$
$$= \int_{0}^{2\pi} 2\pi x^{2} - x^{3} dx$$
$$= \frac{16\pi^{4}}{3} - 4\pi^{4}.$$

Logo

$$[x, x^2] \neq [x^2, x].$$

Portanto [f,g] não é um produto interno em V.

Exercício 3. Prove que matrizes semelhantes possuem o mesmo polinômio caracte-

rístico. Use isso para provar que se V é um espaço vetorial de dimensão finita sobre \mathbb{R} e T é um operador linear definido sobre V, então $[T]^{\alpha}_{\alpha}$ e $[T]^{\beta}_{\beta}$ produzem os mesmo autovalores para α e β bases quaisquer.

Demonstração.

1. Sejam A e B matrizes semelhantes. Então existe uma matriz quadrada P inversível tal que

$$A = P^{-1}BP.$$

Sejam $p_A(\lambda)$ e $p_B(\lambda)$ os polinômios característicos de A e B, respectivamente. Note que

$$p_A(\lambda) = \det (A - \lambda I)$$

$$= \det (P^{-1}BP - \lambda I)$$

$$= \det (P^{-1}BP - \lambda P^{-1}PI)$$

$$= \det P^{-1}(B - \lambda I)P$$

$$= \det P^{-1} \cdot \det (B - \lambda I) \cdot \det P$$

$$= \det (B - \lambda I)$$

$$= p_B(\lambda).$$

Logo os polinômios característicos de matrizes semelhantes coincidem.

2. Sejam então $T:V\longrightarrow V$ um operador linear e α e β bases de V. Então

$$[T]^{\alpha}_{\alpha} = [I]^{\beta}_{\alpha}[T]^{\beta}_{\beta}[I]^{\alpha}_{\beta}$$
$$= ([I]^{\alpha}_{\beta})^{-1}[T]^{\beta}_{\beta}[I]^{\alpha}_{\beta}.$$

Como a matriz $[I]^{\alpha}_{\beta}$ é inversível, temos que $[T]^{\alpha}_{\alpha}$ e $[T]^{\beta}_{\beta}$ são semelhantes. Segue do item 1 que $[T]^{\alpha}_{\alpha}$ e $[T]^{\beta}_{\beta}$ possuem o mesmo polinômio característico e, portanto, possuem os mesmos autovalores.

3 Prova de Seleção para o Mestrado em Matemática 2013.1

02 de Novembro de 2023

Exercício 1.