The economic impact of regional industrial policies

Roberto Gabriele¹ Marco Zamarian¹ Enrico Zaninotto¹

1

DISA (Department of Management and Computer Science)
University of Trento

IECER, February 28-March 4, 2007 - Montpellier

Outline

Motivation

Motivation

The framework of the study
The provincial laws (LP) 4/81 and 6/99
Data

methodology Methodological remarks

Results 1

Conclusions and Future analysis

Motivation of the study

Understand how does public policy determine aggregate system performances and provide "recipes" for future policies

Research question 1

Is it possible to single out effects of direct firms subsidies policies (FSP) at aggregate level? in particular:

Research question 2

Is competitivity of firms and employment level at local level affected by FSP? And, which are indicators we should look at?

Temporary effects

Motivation

Bergstrom, 1998; Becchetti 1998: short run effects on productivity and employment level

Effects on additional investments and employment Faini and Schiantarelli, 1986; Schalk and Untied, 2000

Results for Italy

Pellegrini and Centra, (2006); Bronzini and De Blasio, 2006

Motivation

The framework of the study
The provincial laws (LP) 4/81 and 6/99
Data

methodology

Methodological remarks

Results 1

Conclusions and Future analysis

Main characteristics of the Provincial laws 1

Intervention tools of PAT

- LP 4/81 inspiring principles
- aims
- modus operandi
- the adoption of LP 6/99:
 - simplification and more efficiency in the procedures
 - reorganization of access criteria (easier)

Some issues:

- Modifications along the time window under analysis
- Interactions/overlapping with other level legislations (EU)
- Constraints imposed by EU

Definition of intervention "Priority" classes:

- 1. new initiatives and restructurations
- 2. investments that guarantee a 20% employment gain
- 3. investments that lead to higher environmental protection
- 4. investments in less developed areas
- tecnology tranfers, high tech capital, recapitalization of firms
- 6. other investments

Main characteristics of the Provincial laws 3

Magnitude of interventions:

The structure of the maximum amount of money firms can receive for the investments proposed:

' ·	•	
class of intervention	small firms	bigger firms
restructuring activity	30%+ de minimis	25%+ de minimis
restructuring activity	30 /o+ de minimo	25 /o+ ue minimo
Leasing mobiliare (LM)	15%+ de minimis	15%+ de minimis
LM (with employment constraint)	20%+ de minimis	20%+ de minimis
Re-capitalization	15%+ de minimis	15%+ de minimis

Outline of the talk

•00

The framework of the study

The provincial laws (LP) 4/81 and 6/99 Data

Methodological remarks

Results 1

Data description 1

The PINC8199 database

We build the dataset starting by:

- Source: Pitagora (balance sheets for population of companies with share capital in Trentino)
- data about firms subsidies (LP 4/81 and LP 6/99)

Main features:

Motivation

- Level of analysis: firm level observations
- Coverage: the population of Trentino firms
- Time coverage:1998 2003
- Sectoral coverage: all the industrial sectors involved in the public subsidies program.

000

Data description 2

Observations available

year	1995	1996	1997	1998	1999	2000	2001	2002	2003
Pitagora L 4/81 L6/99	129	104	188	1742 155	1799 231	1802 152	1948 203	1961 263	1859 202
L6/99					_0.	6	290	399	241

The balanced panel 1 (for years 1998-2001) contains 1292 obs.

Conclusions and Future analysis

Methods used in the analysis 1

Our aim: try to evaluate differences in performances of two different group of firms performances (subsidized vs non-subsidized)

1 - Propensity score matching approach:

the method allows us to conduct a counterfactual study

- The need of a counterfactual: non experimental setting (self selection, sample selection bias)
- Why do we need of propensity score estimation? Other methods (Diff-Diff, OLS, ...)
- Panel structure of data: some issues (advantages of panel structure)

Some details on the methodology:

The counterfactual problem

The starting problem:

$$Y_i = Y_i(1)D_i + (1 - D_i)Y_i(0), (1)$$

in which Y is the variable under observation.

The Causal effect we would investigate:

$$\Delta Y_i = Y_i(1) - Y_i(0), \tag{2}$$

$$\tau = E[Y_i(1) - Y_i(0)]. \tag{3}$$

$$\tau = E\{Y_i(1) - Y_i(0)\} =$$

$$= E\{Y|D_i = 1\} - E\{Y|D_i = 0\},$$
(4)

When is the last expression meaningful?

Some details on the methodology:

The PSM approach

The definition of the Propensity score:

$$P(x) = Prob(D = 1|X = x). \tag{5}$$

Two key assumptions:

- Balancing property: $D \perp X|P(x)$; it ensures that given the propensity score the treatment and the observables are independent:
- Unconfoundedness property: if Y(1), $Y(0) \perp D|X$ then $Y(1), Y(0) \perp D|P(X)$; it ensures that given the propensity score the treatment and the potential outcomes are independent.

Methods used in the analysis

Technical steps of the procedure:

- decide dependent and independent variables
- estimate a propensity score
- create strata based on propensity score
- test for balancing property
- estimate average treatment effect on treated (ATT) using different estimators
- interpret the results obtained for different objective variables

Outline of the talk

The provincial laws (LP) 4/81 and 6/99

methodology Methodological remarks

Results 1

Some methodological remarks

Base assumptions

we look at concessions instead of payments: hp on expectations of firms

Accounting issues

Different ways of registering subsidies in the balance sheet lead to different outcomes in terms of relevant indicators (labor productivity, profitbility, etc.)

Inertia of economic variables and noise

Some variables react with a delay to perturbation and there is a lot of noise together with original reactions

Results

Outline of the talk

Motivation

The framework of the study

The provincial laws (LP) 4/81 and 6/99 Data

methodology

Methodological remarks

Results

Results 1

Conclusions and Future analysis

1

Structure of the models 1

Relevant aspects to study: profitability, labor productivity, capacity of growth, capital intensity.

independent variables:

Motivation

EBITDAxempl(t), ROI(t), ROE(t), Dempl(t), Kxempl(t)

dependents variables:

sectors, ROI(t-k)=EBITDA(t-k)/(Capital), EBITDAxempl(t-k), TSxempl(t-k), DEB(t-k)=(total debt)/(capital), empl(t-k)

Estimated models

We grouped treatements: "if the firm i received a treatment in years t, t+1, t+2 then T=1"

id of the model	indipendent variable	treatment
1	Y(98)	T(95/97)
2	Y(99)	T(96/98)
3	Y(00)	T(97/99)
4	Y(01)	T(98/00)
5	Y(00)	T(96/98)
6	Y(01)	T(97/99)

We use the procedures of Becker and Ichino (2003): PS estimation; definition of strata and test of balancing property *independent variable: T*(97-99)

Variable	Coefficient	(Std. Err.)
add98du	-1.206	(0.207)
roesq98	-0.024	(0.020)
add98cub	0.000	(0.000)
addroi98	0.026	(0.009)
roe98	-0.040	(0.074)
roi98	-0.326	(0.288)
kxadd98	0.000	(0.000)
at1dd	0.218	(0.117)
at1df	-0.023	(0.137)
Intercept	-1.048	(0.100)

Motivation

We use the procedures of Becker and Ichino (2003): PS estimation; definition of strata and test of balancing property *independent variable: T*(97-99)

Variable	Coefficient	(Std. Err.)
add98du	-1.206	(0.207)
roesq98	-0.024	(0.020)
add98cub	0.000	(0.000)
addroi98	0.026	(0.009)
	-0.040	(0.074)
roi98	-0.326	(0.288)
kxadd98	0.000	(0.000)
at1dd	0.218	(0.117)
at1df	-0.023	(0.137)
Intercept	-1.048	(0.100)

We use the procedures of Becker and Ichino (2003): PS estimation; definition of strata and test of balancing property independent variable: T(97-99)

Variable	Coefficient	(Std. Err.)
add98du	-1.206	(0.207)
roesq98	-0.024	(0.020)
add98cub	0.000	(0.000)
addroi98	0.026	(0.009)
roe98	-0.040	(0.074)
roi98	-0.326	(0.288)
kxadd98	0.000	(0.000)
at1dd	0.218	(0.117)
at1df	-0.023	(0.137)
Intercept	-1.048	(0.100)

We use the procedures of Becker and Ichino (2003): PS estimation; definition of strata and test of balancing property independent variable: T(97-99)

Variable	Coefficient	(Std. Err.)
add98du	-1.206	(0.207)
roesq98	-0.024	(0.020)
add98cub	0.000	(0.000)
addroi98	0.026	(0.009)
roe98	-0.040	(0.074)
roi98	-0.326	(0.288)
kxadd98	0.000	(0.000)
at1dd	0.218	(0.117)
at1df	-0.023	(0.137)
Intercept	-1.048	(0.100)

Proepensity score estimation results 2

Other results from the estimation:

- Number of obs. used = 1209
- LR chi2(9) = 88.52, Prob > chi2 = 0.0000
- Log likelihood = -444.87098; Pseudo R2 = 0.0905
- Optimal block number: 12

Effects on LABOR PRODUCTIVITY:

Motivation

Short run

Year	year control vars X	ATT	
1998	1998	4.956*	
1999	1998	25.095	
2000	1998	8.23	
2001	1998	43.881*	
	long run		
2000	1998	-11.26	
2001	1998	7.125	
*: pr<.10; **: pr<.05; **: pr<.0.01			

Effects on GROWTH RATE OF FIRMS:

Motivation

	Snort run	
Year	year control vars	
1999	1998	

1999	1998	8.649*
2000	1998	1.938*
2001	1998	1.516*
	long run	
2000	1998	-9.223
2001	1998	-1.031
*: pr<.1	0; **: pr<.05; *	*: pr<.0.01

Results of the analysis

Main findings that can be obtained from the estimated models:

indicator:	Short run	Long run
Labor Productivity	Х	
growth rate	X	
ROE and ROI	X	X
Capital intensity	-	-

x: positive significant effect;

Motivation

-: negative significant effect.

Conclusions

General conclusion:

There exists a "transient" effect of direct regional public policies on key aspects of industry dynamics: growth rate, labor productivity, profitability

In particular, there are some qualifications to the above:

Causal effects

- Accounting issues introduce a substantial bias in the results
- There exist transient effects on variables related to competitivity of firms
- There are permanent modifications in the capital intensity of firms: undercapitalization?

Future analysis

Effect on TFP

Motivation

Do subsidies modify TFP? (role of: intangibles, knowledge, etc.)

Competing interventions

deepen the EHA performed taking into account competing events:

- multiple treatment within the framework of local Laws
- interactions among different level laws (local, national, EU)

Spatial comparisons

Is it possible to find out a reasonable comparable setting?

thank you for your attention!

Comments and suggestions are welcome

Authors e-mail addresses:

rgabriel@economia.unitn.it marco.zamarian@economia.unitn.it enrico.zaninotto@economia.unitn.it

For Further Reading I

a selection of the literature

