4 Exercise Solutions: Chapter 4

1. Refer to solutions to Ex. 1.8 for row-reduced matrices. We have $n(A) = \dim$ of soln. space of Ax = 0= no. of "free variables".

(a)
$$A \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow r(A) = 2, \ n(A) = 1.$$

(b)
$$A \sim \begin{bmatrix} 1 & 3 & 4 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & \frac{1}{2} \end{bmatrix} \Rightarrow r(A) = 3, \ n(A) = 1.$$

(c)
$$A \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow r(A) = 3, \ n(A) = 0.$$

(d)
$$A \sim \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow r(A) = 3, \ n(A) = 1.$$

(e)
$$A \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & \frac{3}{4} \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow r(A) = 3, \ n(A) = 0.$$

2. (a) A is
$$4 \times 4$$
: $r(A) \le 4$, $n(A) \ge 0$ since $r(A) + n(A) = 4$.

(b) A is
$$3 \times 5$$
: $r(A) \le 3$, $n(A) \ge 2$ since $r(A) + n(A) = 5$.

(c) A is
$$5 \times 3$$
: $r(A) \le 3$, $n(A) \ge 0$ since $r(A) + n(A) = 3$.

3. See solns to 1.10

(a)
$$r(A) = 2$$
 and number of parameters $= 3 - 2 = 1$

(b)
$$r(A) = 2$$
, $r(A|\mathbf{b}) = 3 \Rightarrow \text{No solution}$.

(c)
$$r(A) = r(A|\mathbf{b}) = 4 \implies$$
 unique soln. exists (No parameters).

(d)
$$r(A) = r(A|\mathbf{b}) = 2 \Rightarrow \text{Soln.}$$
 exists with $4 - 2 = 2$ parameters.

(e)
$$r(A) = r(A|\mathbf{b}) = 3 \Rightarrow \text{Soln.}$$
 exists with $4 - 3 = 1$ parameter.

- 4. (a) $r(A) = r(A|\mathbf{b}) \Rightarrow \text{Consistent. No. params} = 3 r(A) = 3 3 = 0.$
 - (b) $r(A) \neq r(A|\boldsymbol{b}) \Rightarrow$ Inconsistent.
 - (c) $r(A) = r(A|\mathbf{b}) \Rightarrow \text{Consistent. No. params} = 3 r(A) = 3 1 = 2.$
 - (d) $r(A) = r(A|\mathbf{b}) \Rightarrow \text{Consistent. No. params} = 9 r(A) = 9 2 = 7.$
 - (e) $r(A) = r(A|\mathbf{b}) \Rightarrow \text{Consistent. No. params} = 2 r(A) = 2 2 = 0.$
- 5. Use r(A) + n(A) = number of columns in A. Find values of n(A) to be
 - (a) 0, (b) 1, (c) 2, (d) 7, (e) 0