Pays : CamerounAnnée : 2015Session : ChimieSérie : BAC, Séries C-DDurée : 3 hCoefficient : 2

EXERCICE 1 : CHIMIE ORGANIQUE (6 points)

1. Choisir la bonne réponse parmi celles proposées ci-dessous :

1.1. La réaction d'un alcool avec un chlorure d'acyle est une réaction :

a) athermique

b) limitée

c) rapide.

1.2. Une amine primaire R – NH₂ est un réactif :

a) électrophile

b) nucléophile

c) acide.

1.3. La réaction de saponification est :

a) totale

b) limitée

c) rapide.

- 2. Un acide carboxylique à chaîne carbonée saturée a une masse molaire de 102 g.mol⁻¹.
 - 2.1. Déterminer sa formule brute.
 - **2.2.** Donner les formules semi-développées de tous les isomères de cet acide.

Nommer chacun de ces isomères.

2.3. L'un de ces isomères est une molécule chirale. De quel isomère s'agit-il ? Justifier.

Donner une représentation en perspective de ses deux énantiomères.

- **2.4.** On fait réagir sur l'acide 2-méthylbutanoïque un agent chlorurant puissant, le pentachlorure de phosphore PCL₅ pour former un composé organique B.
 - 2.4.1. Écrire l'équation-bilan de la réaction qui se produit.

Nommer le composé organique B formé.

2.4.2. Le composé B précédent est traité à froid par une solution de 2,3-diméthylbutan-2-ol.

Écrire l'équation-bilan de la réaction et préciser le type de réaction concerné.

Nommer le produit organique formé.

2.4.3. Le même composé B est traité à froid par l'ammoniac.

Donner la formule semi-développée et le nom du produit organique formé.

2.5. On fait maintenant agir sur l'acide 2-méthylbutanoïque un agent déshydratant puissant, l'oxyde de phosphore P₄O₁₀.

Donner la formule semi-développée et le nom du produit formé.

A quelle famille de produits appartient-il?

Données: Masses molaires atomiques (en g.mol⁻¹): C: 12; H: 1; O: 16.

EXERCICE 2 : CHIMIE GÉNÉRALE (4 points)

On veut étudier la cinétique de la réaction entre la solution aqueuse de thiosulfate de sodium $(2Na^+ + S_2O_3^{2-})$ et la solution aqueuse d'acide chlorhydrique $(H_3O^+ + Cl^-)$.

Pour cela, on verse 10 mL de solution d'acide chlorhydrique de concentration $C_0 = 5 \text{ mol.L}^{-1}$ dans 40 mL d'une solution de thiosulfate de sodium de concentration $C_1 = 0.5 \text{ mol.L}^{-1}$. Il se dégage du dioxyde de soufre (SO_2), et le mélange blanchit progressivement par la formation du soufre solide.

- 1. Écrire l'équation-bilan de la réaction qui se produit.
- **2.** L'étude de l'évolution de la formation du soufre en fonction du temps conduit à la courbe ci-dessous, où n_s représente la quantité de matière de soufre formé.

- 2.1. Déterminer la valeur limite de n_s.
 - Quel est le réactif en excès ?
- **2.2.** Définir la vitesse moyenne de formation du soufre, et calculer sa valeur entre les instants $t_0 = 0$ et $t_1 = 1,5$ min.
- **2.3.** Calculer la vitesse instantanée de formation du soufre à la date t_1 = 1,5 min.
- **2.4.** A partir de la courbe ci-dessus, donner l'allure de la courbe de disparition du thiosulfate de sodium.
- **3.** On reprend l'expérience précédente avec une nouvelle solution d'acide chlorhydrique de concentration molaire C₂ = 3 mol.L⁻¹, tout en conservant les mêmes volumes de réactifs et la concentration molaire de la solution de thiosulfate de sodium.
 - 3.1. Dire, en justifiant la réponse, si la valeur limite n_s trouvée à la question 2.1 est modifiée.
 - 3.2. La vitesse de formation du soufre est-elle également modifiée ?

EXERCICE 3 : ACIDES ET BASES (6 points)

- 1. Choisir la bonne réponse parmi celles proposées ci-dessous :
 - **1.1.** Dans le couple H₂O / HO⁻, l'eau est un acide :
 - a) fort
- **b)** faible

- c) indifférent.
- **1.2.** Entre deux acides faibles, le plus fort est celui qui a :
 - a) le plus grand pKa
- b) le plus petit Ka
- c) le plus petit pKa.
- 2. A 25°C, on prépare 100 mL d'une solution S, en diluant 10 fois un volume de vinaigre (dont l'acide éthanoïque est l'élément essentiel). On dose ensuite 10 mL de la solution S par une solution décimolaire d'hydroxyde de sodium. Les valeurs du pH de la solution sont données par un pH-mètre. La courbe de variation du pH de la solution en fonction du volume V de la solution basique versée est donnée ci-dessous.

- 2.1. Écrire l'équation-bilan de la réaction de dosage.
- 2.2. Définir l'équivalence acido-basique.
 - **2.2.1.** Déterminer, par la méthode des tangentes, les coordonnées du point d'équivalence.
 - 2.2.2. A l'équivalence :
 - Quelles sont les espèces chimiques majoritaires ?
 - La solution est-elle acide ou basique ? Justifier.
- **2.3.** Déterminer la concentration molaire C en acide éthanoïque de la solution S.

En déduire la concentration molaire C₀ en acide éthanoïque du vinaigre.

- **2.4.** Déterminer graphiquement le pH de la solution à la demi-équivalence du dosage.
 - Donner trois propriétés particulières de la solution à la demi-équivalence.

Comment appelle-t-on ce type de solution?

- **2.5.** Si le dosage précédent avait été colorimétrique, quel serait l'indicateur coloré approprié choisi dans la liste ci-dessous ; indiquer l'évolution de la teinte lors du virage :
- Hélianthine : rouge [3,1-4,4] jaune ;
- Bleu de bromothymol : jaune [6,0-7,6] bleu ;
- Phénolphtaléine: incolore [8,2-10,0] rouge violacé.
- **2.6.** Montrer comment préparer 100 mL de solution de pH = 4,8 à partir d'une solution d'hydroxyde de sodium de concentration molaire C_b = 1,0.10⁻¹ mol.L⁻¹ et d'une solution d'acide éthanoïque de même concentration. Préciser le volume de chaque solution.

Données: pK_a (CH₃COOH / CH₃COO $\overline{}$) = 4,8.

EXERCICE 4: TYPE EXPÉRIMENTAL (4 points)

On introduit dans un ballon 12,2 g d'acide benzoïque, 40 mL de méthanol, 3 mL d'acide sulfurique concentré et quelques grains de pierre ponce. On réalise ensuite un montage à reflux sous la hotte et on chauffe doucement pendant une heure.

- 1. Écrire l'équation-bilan de la réaction qui a lieu, et donner deux de ses caractéristiques.
- 2. Dans cette expérience, quel est le rôle de chacun des éléments suivants :
 - a) Montage à reflux
- **b)** Hotte
- c) Acide sulfurique
- d) Pierre ponce.

- 3. Montrer que l'un des réactifs est en excès.
 Quel intérêt y a-t-il à utiliser un réactif en excès ?
- **4.** Après refroidissement, on verse le contenu du ballon dans une ampoule à décanter contenant 50 mL d'eau distillée froide. On obtient alors deux phases. Celle qui contient le produit a une masse m = 10,2 g.
 - **4.1.** Faire le schéma d'une ampoule à décanter avec les deux phases ci-dessus que l'on précisera.
 - **4.2.** Quelle serait la masse d'ester obtenue si la réaction était totale ? En déduire le rendement de la réaction.

Données : Tableau de solubilité dans l'eau et des masses volumiques des composés.

Composé	Masse volumique (en g.cm ⁻³)	Solubilité dans l'eau	Masse molaire (en g.mol ⁻¹)
Acide benzoïque	1,3	Peu soluble	122
Méthanol	0,8	Soluble	32
Benzoate de méthyle	1,1	Insoluble	136

Données: Masses molaires atomiques (en g.mol⁻¹): C: 12; H: 1; O: 16.