Metode pentru Derivarea Numerică

Valentin-Ioan VINTILĂ

Facultatea de Automatică și Calculatoare - CTI Universitatea POLITEHNICA București

09 mai 2023 (Lab. 10)

Diferențe finite (1)

Derivata de ordin I

Derivata de ordin n

Bibliografie

Extrapolarea Richardson

Cuprins

G & (a)

Introducere

Matematic, ce înțelegem prin derivare?

Pentru o funcție $f:[a,b]\to\mathbb{R}$, cu $f\in C^1$, avem:

$$\boxed{f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}, \ \forall x \in [a, b]$$

Pentru a putea găsi aproximări numerice pertinente, vom introduce conceptul diferențelor finite.

- Derivate continue, matematice;
- Diferențe finite discrete, inginerești.

Diferențe finite (2)

Fie $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ o funcție continuă. Suplimentar, considerăm constanta $h \in \mathbb{R}$, de obicei aleasă astfel încât |h| o 0.

Se definesc următoarele trei tipuri de diferențe finite:

Diferența finită înainte (diferența directă):

$$\Delta_h[f](x) = f(x+h) - f(x)$$

Diferența finită înapoi (diferența inversă):

$$\overline{|\nabla_h[f](x) = f(x) - f(x-h)|} = \Delta_h[f](x-h)$$

Diferența finită centrată:

$$\delta_h[f](x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right) = \Delta_{h/2}[f](x) + \nabla_{h/2}[f](x)$$

Derivata de ordin I – metoda simplă (1)

Cunoaștem deja următoarea aproximare firească:

$$\boxed{f'(x) \approx \frac{f(x+h) - f(x)}{h}}, \ \forall x \in [a,b]$$

Scrisă cu ajutorul diferențelor finite, devine:

$$f'(x) \approx \frac{\Delta_h[f](x)}{h}, \ \forall x \in [a, b]$$

Ce facem dacă nu știm f? Interpolăm Lagrange punctele pe care le cunoaștem și aplicăm formula de mai sus!

Derivata de ordin I – metoda simplă (2)

Ne așteptăm să obținem o eroare de aproximare a derivatei:

$$\boxed{\varepsilon(x) = \frac{f''(x)}{2}h + O(h^2)}, \ \forall x \in [a, b]$$

Demonstrația la tablă...

Derivata de ordin I – metoda în 3 puncte (1)

Am plecat de la următoarea aproximare:

$$\boxed{f'(x) \approx \frac{f(x+h) - f(x)}{h}}, \ \forall x \in [a,b]$$

Dar dacă facem trecerea $h \rightarrow -h$? Obținem o nouă ecuație:

$$\boxed{f'(x) \approx \frac{f(x) - f(x - h)}{h}}, \ \forall x \in [a, b]$$

Derivata de ordin I – metoda în 3 puncte (2)

Însumăm ecuațiile și obținem:

$$2f'(x) \approx \frac{f(x+h) - f(x-h)}{h} \Rightarrow \boxed{f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}}$$

Echivalent, prin scrierea cu diferențe finite:

$$f'(x) \approx \frac{\delta_{2h}[f](x)}{2h}$$

Derivata de ordin I - metoda în 3 puncte (3)

Ne așteptăm să obținem o eroare de aproximare a derivatei:

$$\varepsilon(x) = \frac{-f^{(3)}(x)}{6}h + O(h^4), \ \forall x \in [a, b]$$

Demonstrația la tablă...

Extrapolarea (1)

Imagine simbolică, ce înțelegem prin extrapolare?

Extrapolarea (2)

Prin extrapolare se înțelege acțiunea de a estima o informație inițial necunoscută în baza altor informații deja cunoscute.

Lewis Fry Richardson

Lewis Fry Richardson (1881-1953)

Extrapolarea Richardson este o metodă de a îmbunătăți o soluție fără a

Extrapolarea Richardson (2)

Avem o valoare exactă, $\Psi^* \in \mathbb{R}$, pe care vrem să o aproximăm.

Vom nota aproximația noastră cu $\Psi(h)$, unde $\Psi: \mathbb{R} \to \mathbb{R}$.

Garantat, se poate face scrierea:

Valentin-Ioan VINTILĂ

$$\boxed{ \begin{aligned} & \Psi^* = \Psi(h) + K_0 h^{\lambda_0} + K_1 h^{\lambda_1} + K_2 h^{\lambda_2} + \dots \\ & = \Psi(h) + \sum_{i \geq 0} K_i h^{\lambda_i} \end{aligned}}$$

Unde considerăm constante valorile K_i și $\lambda_i,\, \forall i\in\mathbb{N}$, cu proprietatea că $h^{\lambda_i} > h^{\lambda_{i+1}}$ (vrem să conveargă seria).

Extrapolarea Richardson (3)

Extrapolarea Richardson (1)

cunoaște informații suplimentare.

Poate fi gândită drept un "black box".

Cunoaștem $\Psi^* = \Psi(h) + K_0 h^{\lambda_0} + K_1 h^{\lambda_1} + K_2 h^{\lambda_2} + \ldots$; echivalent, putem renunța la termenii de după $K_0 h^{\lambda_0}$:

$$\boxed{\Psi^* = \Psi(h) + K_0 h^{\lambda_0} + O(h^{\lambda_1})}$$

Dar dacă facem trecerea $h \to \frac{h}{t}$, unde t e o constantă?

$$\Psi^* = \Psi\left(\frac{h}{t}\right) + \mathcal{K}_0\left(\frac{h}{t}\right)^{\lambda_0} + \mathcal{O}(h^{\lambda_1})$$

Rearanjăm puțin termenii:

$$t^{\lambda_0}\Psi^* = t^{\lambda_0}\Psi\left(\frac{h}{t}\right) + K_0h^{\lambda_0} + t^{\lambda_0}O(h^{\lambda_1})$$

Extrapolarea Richardson (4)

Scădem ecuațiile:

$$t^{\lambda_0}\Psi^* - \Psi^* = t^{\lambda_0}\Psi\left(\frac{h}{t}\right) - \Psi(h) + O(h^{\lambda_1})$$

Echivalent, după rearanjare, obținem:

$$\boxed{\Psi^* = rac{t^{\lambda_0}\Psi\left(rac{h}{t}
ight) - \Psi(h)}{t^{\lambda_0} - 1}} + O(h^{\lambda_1})$$

Avem deci o aproximare mai bun

Extrapolarea Richardson (5)

Am trecut de la $O(h^{\lambda_0})$ la $O(h^{\lambda_1})$, ceea ce este impresionant pentru că am plecat de la ipoteza că $h^{\lambda_0} > h^{\lambda_1}!$

Ne-a interesat cine e Ψ^* ? NU, de aceea putem considera metoda un "black box" foarte elegant!

Extrapolarea Richardson (6)

Având în vedere ultima formulă întâlnită, putem simplifica și mai mult calculele și intuiția prin următoarea formulă de recurență:

$$\boxed{ \Psi_i(h) = \frac{t^{\lambda_{i-1}} \Psi_{i-1} \left(\frac{h}{t}\right) - \Psi_{i-1}(h)}{t^{\lambda_{i-1}} - 1}}, \ \forall i \in \mathbb{N}^*$$

În acest context, aproximările vor fi de ordinul

$$\Psi^* = \Psi_i(h) + O(h^{\lambda_{i+1}})$$

Extrapolarea Richardson + derivarea numerică (1)

Amintim următoarea formulă ce a apărut în demonstratia derivării numerice folosind metoda celor trei puncte:

$$\boxed{f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{f^{(3)}(x)}{3!}h^2 - \frac{f^{(5)}(x)}{5!}h^4 - \dots}, \ \forall x \in \mathbb{R}$$

Identificăm următoarele

- $\Psi_0(h) = \frac{f(x+h) f(x-h)}{2h}$; Surplusul $-\frac{f^{(3)}(x)}{3!}h^2 + O(h^4)$

Scădem și simplificăm:

 $3\Psi^* = 4\Psi_0\left(\frac{h}{2}\right) - \Psi_0(h) - 3O(h^4)$

 $f'(x) = \frac{8f(x + \frac{h}{2}) + f(x - h) - f(x + h) - 8f(x - \frac{h}{2})}{6h} + O(h^4)$

Extrapolarea Richardson + derivarea numerică (3)

Dacă înlocuim Ψ^* și Ψ_0 cu formulele lor, obținem

Sau, cu diferențe finite: $f'(x) \approx \frac{8\delta_h[f](x) - \delta_{2h}[f](x)}{6h}$

Extrapolarea Richardson + derivarea numerică (2)

Putem aplica direct recurența considerând $t=\lambda_0=2$, dar preferăm să facem calculele mai natural.

Facem înlocuirea $h \to \frac{h}{2}$ și obținem:

$$\Psi^* = \Psi_0\left(\frac{h}{2}\right) - \frac{f^{(3)}(x_0)}{3!} \left(\frac{h}{2}\right)^2 - O(h^4)$$

Echivalent, ne pregătim de scădere rearanjând:

$$4\Psi^* = 4\Psi_0\left(\frac{h}{2}\right) - \frac{f^{(3)}(x_0)}{3!}h^2 - 4O(h^4)$$

6 4 0

6 4 0

Derivata de ordin II

ordin II:

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

Demonstrația la tablă...

G & @

Diferențe finite de ordin superior

Fie $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ o funcție de clasă C^{n-1} . Suplimentar, considerăm constanta $h \in \mathbb{R}$, de obicei aleasă astfel încât |h| o 0.

Se definesc următoarele trei tipuri de diferențe finite de ordin <math>n:

Diferența finită înainte:

$$\Delta_h^n[f](x) = \Delta_h \left[\Delta_h^{n-1}[f] \right](x) = \sum_{k=0}^n (-1)^{n-k} \cdot C_n^k \cdot f(x+kh)$$

Diferența finită înapoi:

$$\nabla_h^n[f](x) = \nabla_h \left[\nabla_h^{n-1}[f] \right](x) = \sum_{k=0}^n (-1)^k \cdot C_n^k \cdot f(x - kh)$$

Diferenta finită centrată:

$$\delta_h^n[f](x) = \delta_h \left[\delta_h^{n-1}[f] \right](x) = \sum_{k=0}^n (-1)^k \cdot C_h^k \cdot f\left(x + \left(\frac{n}{2} - k \right) h \right)$$

Derivata de ordin n

Pentru a calcula o derivată de orice ordin, se pot utiliza formulele:

$$\frac{d^n f}{dx^n}(x) = \begin{cases} \frac{\Delta_h^n[f](x)}{h^n} + O(h) \\ \\ \frac{\nabla_h^n[f](x)}{h^n} + O(h) \end{cases}, \forall x \in [a, b]$$
$$\frac{\delta_h^n[f](x)}{h^n} + O(h^2)$$

Bibliografie

descrierea cu care a venit atașată această prezentare.

Sfârșit

Multumesc frumos pentru atenție!

Vă rog frumos să completați formularul de feedback!

