

Virtual, October 10-21, 2020

A 1280x960 Dynamic Vision Sensor with a 4.95-µm Pixel Pitch and Motion Artifact Minimization

Yunjae Suh, Seungnam Choi, Masamichi Ito, Jeongseok Kim, Youngho Lee, Jongseok Seo, Heejae Jung, Dong-Hee Yeo, Seol Namgung, Jongwoo Bong, Sehoon Yoo, Seung-Hun Shin, Doowon Kwon, Pilkyu Kang, Seokho Kim, Hoonjoo Na, Kihyun Hwang, Changwoo Shin, Jun-Seok Kim, Paul K. J. Park, Joonseok Kim, Hyunsurk Ryu and Yongin Park

Samsung Electronics, South Korea

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Outline

- ✓ Introduction
- ✓ Pixel Design
- ✓ Motion Artifact Minimization
- ✓ Performance Comparison
- ✓ Summary

Introduction

- **1280x960 (1.2M)** resolution and **4.95um** pixel pitch
- Pixel shrink is achieved by Cu-Cu wafer bonding technology.
- Side effects from scaled-down technology and motion artifacts are solved.

G. Gallego, et al., "Event-based Vision: A Survey," IEEE Trans. Pattern Anal. Mach. Intell, Early Access, Jul. 2020

Pixel Structure w/ Cu-Cu bonding

Pixel is composed of

- Photodiode (PD)
- Log Transimpedance Amplifier (LOGA)
- Source Follower (SF)
- Capacitive Feedback Amplifier (CFA)
- Comparators & Event Storages
- In-pixel Logic Circuitry

Periodic False Event Generation

- Leakage currents flowing into the floating node induces the periodic false event generation.
- GIDL of M_{RESET} is the dominant source of the leakage currents and it is derived from large V_{GS,P} after reset operation finishes.

CFA w/ Conventional Reset Switch

False ON-Event Generation

GIDL Suppression

- GIDL-suppressed reset switch is newly designed to avoid the periodic false event generation.
- The switch adaptively samples its reset voltage pixel-by-pixel and time-to-time.
- Zero V_{GS.P} after the reset operation finishes decreases GIDL, thus suppresses periodic false events.

Motion Artifact Minimization (1/2)

 Sequential Column Readout is employed to avoid the motion artifact which is introduced by the event-handling order of fair arbiter.

Arbitration VS Sequential Readout

Captured Images (Rotating Fan)

Motion Artifact Minimization (2/2)

- Global Event-Holding Function is implemented to avoid a jello effect.
- The cascaded structure of the in-pixel storage secures the sampled event voltage from the channel leakage.

Cascaded Structure of in-pixel Storage

Captured Images (Rotating Fan)

Leakage Prevention

Top Block Diagram & Chip Photo

- Pixel array is divided into the top and the bottom wafers.
- 8.37 x 7.64 mm² sensor was fabricated in a 65 nm/28 nm stack process.

Image from Event Stream

1280x960 high-resolution image captured from event stream

Original studio scene

Performance Comparison

- The highest resolution and the highest event rate were achieved.
- 2.5-Gbps 4-lane MIPI is integrated to transfer 1.3 x 10⁹ events in a second.

		This work	ISSCC 2017 [1]	CVPR 2019 [2]	VLSI 2019 [6]	ISSCC 2020
Process		65 nm 1P6M BSI / 28 nm 1P7M	90 nm 1P5M BSI	65 nm CIS	65 nm 1P9M	90 nm BI CIS / 40 nm CMOS
Resolution		1280x960	640x480	1280x800	132x104	1280x720
Chip Area		8.37x7.64 mm ²	8.0x5.8 mm ²	-	2.0x2.0 mm ²	-
Pixel Pitch		4.95 μm	9 μm	9.8 µm	10 μm	4.86 µm
Fill Factor		22%	-	-	20%	>77%
Supply Voltages		2.8 V, 1.8V, 1.0 V	2.8 V, 1.2 V	-	1.2 V	2.5 V, 1.1 V
Power Consumption	Totala	150 mW ^c	50 mW <mark>d</mark>	400 mW ^c	4.9 mW ^d	84 mW <mark>d</mark>
	per Pixel ^b	122 nW	162 nW	391 nW	357 nW	91 nW
Max Event Rate		1.3 Geps	300 Meps	-	180 Meps	1.066 Geps
Readout		Sequential	Arbitration	-	Sequential	Arbitration
In-Pixel Storage		Yes	No	-	Yes	-
Interface		MIPI	MIPI	MIPI	Parallel	Parallel

a. At max event rate or under high activity condition

c. Including power consumption at MIPI as I/O

b. Normalized by resolution

d. Including power consumption at parallel interface as I/O

Summary

- 1280x960 resolution dynamic vision sensor
- 4.95-µm pixel pitch with in-pixel Cu-Cu bonding technology
- GIDL-suppressed switch
- Sequential column selection
- Global event-holding function
- The highest resolution (1.2Mpixels)
- The highest event rate (1.3 Geps)