定义: n个有区别的球放到m个相同的盒子中,要求无一空盒,其不同的方案数称为第二类Stirling数.

定理: 第二类Stirling数S(n,m)有下列性质:

n '	\ <i>k</i>	0	1	2	3	4	5	6	7	8	9
	0	1									
(a)S(n,0)=0,	1	0	1								
	2	0	1	1							
(b)S(n,1)=1,	3	0	1	3	1						
$(c)S(n,2) = 2^{n-1} - 1,$	4	0	1	7	6	1					
	5	0	1	15	25	10	1				
(d)S(n, n-1) = C(n, 2)	6	0	1	31	90	65	15	1			
(e)S(n,n)=1.	7	0	1	63	301	350	140	21	1		
	8	0	1	127	966	1701	1050	266	28	1	
	9	0	1	255	3025	7770	6951	2646	462	36	1

定理: 第二类Stirling数满足下面的递推关系:

$$S(n,m) = mS(n-1,m) + S(n-1,m-1), \qquad (n > 1, m \ge 1).$$

证明:设有n个有区别的球 $b_1, b_2, ..., b_n$,从中取一个球设为 b_1 .把n个球放到m个盒子无一空盒的方案的全体可分为两类。

- (a) b_1 独占一盒,其方案数显然为S(n-1,m-1)
- (b) b_1 不独占一盒,这相当于先将剩下的n-1个球放到m个盒子,不允许空盒,共有S(n-1,m) 种不同方案,然后将 b_1 球放进其中一盒,方案数为mS(n-1,m) . 根据加法法则有 S(n,m) = S(n-1,m-1) + mS(n-1,m).

- 红、黄、蓝、白、绿五个球放到无区别的两个盒子里。 $S(5,2) = 2S(4,2) + S(4,1) = 2 \times 7 + 1 = 15$
- 故共有15种不同的方案。

先把绿球取走,余下的四个球放到两个盒子。用r, y, b, w分别表示红,黄、蓝、白球、绿球用g表示

	g不独	g独占一盒			
第1盒子	第2盒子	第1盒子	第2盒子	第1盒子	第2盒子
rg	ybw	r	ybwg	g	rybw
yg	rbw	У	rbwg		
bg	ryw	b	rywg		
wg	ryb	W	rybg		
ryg	bw	ry	bwg		
rbg	yw	rb	ywg		
rwg	yb	rw	ybg		

例 第二类Stirling数的展开式义:

$$S(n,m) = \frac{1}{m!} \sum_{k=0}^{m} (-1)^{k} C(m,k) (m-k)^{n}$$

- S(n,m)的组合意义: 将n个有标志的球放入m个无区别的盒子,而且无一空盒的方案数.
- 思路: 先考虑n个有标志的球, 放入m个有区别的盒子, 无一空盒的方案数.

思路: 容斥原理

m: n个有标志的球放入m个有区别的盒子的事件全体为S,

$$|S| = m^n$$

• A_i 表示第i个盒子为空, i=1,2...m; $|A_i| = (m-1)^n$ 共有 C(m,1)个 $|A_i \cap A_i| = (m-2)^n$ 共有 C(m,2)个

• 求无空盒的方案数

*m*个有区别盒子,无空盒的方案数:

$$N = |\overline{A1} \cap \overline{A2}..... \cap \overline{An}|$$

$$= m^{n} - C(m,1)(m-1)^{n} + C(m,2)(m-2)^{n} + ... + (-1)^{m} C(m,m)(m-m)^{n}$$

$$= \sum_{k=0}^{m} (-1)^{k} C(m,k)(m-k)^{n}$$

而第二类Stirling数要求盒子无区别,则:

$$S(n,m) = \frac{1}{m!} \sum_{k=0}^{m} (-1)^{k} C(m,k) (m-k)^{n}$$

推论: 因为
$$S(m,m) = 1$$
,
$$m! = \sum_{k=0}^{m} (-1)^k C(m,k) (m-k)^m$$

思考题: 导弹拦截问题

- 一种导弹拦截系统的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
- 输入导弹依次飞来的高度,计算这套系统最多 能拦截多少导弹。

最长不上升子序列(≥)