

رزه دانسکده علوم ریاضی و آمار

مدرس: دکتر مجتبی رفیعی اصول سیستمهای عامل

جلسه ۵

نگارنده: شروین دخت میهنخواه

۲۴ بهمن ۱۴۰۰

فهرست مطالب

١	ى															زو	برخی نکات در رابطه با سازمان سیستم کامپیوتری													١									
۲																																					ءها	وقف	١
۲																			 																	ک مثال	,	1.7	
٢																			 																	نمای کلی	د	۲.۲	
٣																			 																	چالشها ً .		٣.٢	
۴																			 																4	مُكانيزُم باي	,	4.7	

۱ برخی نکات در رابطه با سازمان سیستم کامپیوتری

وجود یک گذرگاه سیستم ۱ مشترک بین تمامی مولفهها که در سیستم کامپیوتری پایه مورد استفاده قرار میگرفت، چالشهایی همچون موارد زیر را در بر میگرفت:

- هماهنگی دستگاههای مختلف برای در اختیار گرفتن گذرگاه که میتوانست یک تنگنا تلقی شده و سبب ایجاد تاخیر و کاهش بهرهوری سیستم می شود.
 - انتظار برای در اختیار قرار گرفتن گذرگاه.

¹System Bus

• تفاوت نرخ نیاز به دسترسی گذرگاه برای دستگاههای مختلف و همجنین تفاوت سرعت کلاک ۲ دستگاههای مختلف.

در ادامه با تکیه بر سه جنبه کلیدی:

- وقفهها ^٣،
- ۲. ساختار ذخیرهسازی۴،
 - ۳. ساختار ۱/۵،۵

به تشریح نحوهٔ عملکرد یک سیستم کامپیوتری میپردازیم.

۲ وقفهها

۱.۲ ىک مثال

روی یک سیستم کامپیوتری، برنامهای را در نظر بگیرید که در حال اجراست و نیاز به یک عمل I/O پیدا میکند. برای این کار فرایند زیر دنبال می شود:

- ۱. برای شروع عمل Device Controller رجیسترهای مناسب در Device Controller را برحسب نیازمندی پیش آمده، مقداردهی میکند.
- در مرحله بعدی DC اقدام به بررسی محتوای رجیسترها برای آگاهی از عمل مورد تقاضا مینماید. این عمل به عنوان مثال میتواند خواندن یک کاراکتر از صفحه کلید باشد.
 - ۳. در ادامه، DC شروع به انتقال داده از دستگاه به بافرمحلی $^{\Lambda}$ خود می کند.
 - ۴. هنگامی که انتقال داده پایان یافت، ${
 m DC}$ این اتمام را به ${
 m DD}$ اطلاع میدهد.
- ۵. در پایان، DD ممکن است برای مثال اگر درخواست I/O به سبب خواندن از صفحه کلید بود، داده گردآوری شده را برگرداند. لازم به ذکر است که DD ممکن است با وضعیتهای مختلف دیگری مثل:
 - * اشغال دستگاه I/O مورد نظر
 - * نوشتن موفقیت آمیز

یا موارد مشابه نیز مواجه شود.

نکته: مرحله ۴ فرایند فوق، یعنی آگاه کردن DD توسط DC، از طریق وقفه ۹ انجام میشود.

۲.۲ نمای کلی

- * وقفهها بخش كليدي تعامل سيستمعامل و سختافزار را تشكيل ميدهند.
- * دستگاهها ۱۰ در هر زمان با ارسال سیگنال به CPU از طریق گذرگاه سیستم میتوانند وقفهای را راهاندازی کنند.
 - * نمای کلی از شروع تا اتمام یک وقفه:

 $^{^2}$ Clock Speed

³Interrupts

⁴Storage Structure

⁵I/O Structure

 $^{^{6}\}mathrm{DD}$

 $^{^7 \}mathrm{DC}$

⁸Local Buffer

 $^{^9 {\}rm Interrupt}$

 $^{^{10}}$ Devices

- (آ) ارسال وقفه از Device به CPU
- (ب) توقف اجراي برنامه (بعد از اجراي دستورالعمل جاري CPU)
 - (ج) اجرای روتین وقفه درخواستی
- (د) پس از اتمام روتین وقفه میبایست محاسبات قطعشده از سر گرفتهشود.

شکل زیر خط زمانی وقفه برای یک برنامه در حال اجرا را نشان میدهد:

شكل ١: خطزماني وقفه هنگام خروجي گرفتن از يک برنامه

٣.٢ چالشها

چالشهایی که در ارسال سیگنال وقفه و هندل کردن آن وجوددارد:

- * هر طراحی سیستم کامپیوتری و (مولفههای آن) مکانیزم وقفه مخصوص به خود دارد و بالطبع هر وقفه ایجادشده، هدف خاصی را دنبال میکند. پس هر وقفه صرفا یک سیگنال ساده و فاقد اطلاعات نیست.
- * فرکانس تولید وقفهها در یک سیستم کامپیوتری بالاست و به همین دلیل برای عملکرد صحیح یک سیستم کامپیوتری نیاز است که خیلی سریع هندل شوند.
 - * پیدا کردن یک روال۱۱ برای هندلکردن هر وقفه ۱۲
 - * پیداکردن یک ساختار داده برای شناسایی روال مربوط به هر وقفه درخواستی۱۳
 - * باید مکانیزمی داشتهباشیم که اگر برنامه در حال اجرایی وقفه داده شد، پس از وقفه بتوان ادامه آن را از سرگرفت.

¹¹Routine

¹²Interrupt handler routine

¹³Interrupt Vector

۴.۲ مکانیزم پایه

مکانیزم پایه وقفه که مشترک بین تمامی سیستمهای کامپیوتری است، به صورت زیر عمل میکند:

- ۱. سختافزار CPU یک سیم۱۴ به نام خط درخواست وقفه۱۵ دارد که بعد از اجرای هر دستورالعمل آن را چک میکند.
- ۲. اگر CPU تشخیصدهد که وقفهای صورت گرفتهاست، شماره وقفه را خوانده و روال هندلکننده وقفه را اجرا میکند.
- ۳. روال هندلکننده وقفه با توجه به شماره وقفه، روال مربوط به آن را اجرا میکند. لازم به ذکر است که این روال وظایفی نظیر: ثبت وضعیتها، دلیل وقفه، برخی پردازشهای ضروری، بازیابی وضغیت، بازگشت از وقفه به اجرای برنامه متوقفشده و بسیاری دیگر موارد مشابه را به عهده دارد.

شکل زیر چرخه I/O مبتنی بر وقفه را بر پایه مطالب ذکر شده قبلی به تصویر میکشد:

شكل ٢: چرخه I/O وقفه

 $^{^{14}}$ Wire

 $^{^{15}}$ Interrupt request line