BÀI GIẢNG GIẢI TÍCH

Giảng viên: TS. Phùng Minh Đức

Bộ môn Toán Lý - Trường ĐH Công nghệ Thông tin

Chương 6: Phương trình vi phân

- 6.1 Khái niệm phương trình vi phân
- 6.2 Phương trình vi phân cấp 1
- 6.3 Phương trình vi phân cấp 2

Chương 6: Phương trình vi phân

- 6.1 Khái niệm phương trình vi phân
- 6.2 Phương trình vi phân cấp 1
- 6.3 Phương trình vi phân cấp 2

6.1: Khái niệm phương trình vi phân

$$F(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$$
(6.1)

được gọi là một $phương\ trình\ vi\ phân$. Biến x gọi là biến độc lập, y(x) gọi là biến phụ thuộc.

$$F(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$$
(6.1)

được gọi là một $phương\ trình\ vi\ phân$. Biến x gọi là biến độc lập, y(x) gọi là biến phụ thuộc.

 \bullet Cấp cao nhất của đạo hàm của y(x) có mặt trong phương trình (6.1) gọi là $c \hat{a} p$ của phương trình.

$$F(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$$
(6.1)

được gọi là một $phương\ trình\ vi\ phân$. Biến x gọi là biến độc lập, y(x) gọi là biến phụ thuộc.

- \bullet Cấp cao nhất của đạo hàm của y(x) có mặt trong phương trình (6.1) gọi là $c \hat{a} p$ của phương trình.
- ullet Một hàm y(x) xác định trên miền $I\subset\mathbb{R}$ thỏa mãn (6.1) với mọi $x\in I$ được gọi là một nghiệm hay một đường tích phân của phương trình.

Tập tất cả các nghiệm của (6.1) gọi là nghiệm tổng quát của phương trình.

$$F(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$$
(6.1)

được gọi là một $phương\ trình\ vi\ phân$. Biến x gọi là biến độc lập, y(x) gọi là biến phụ thuộc.

- \bullet Cấp cao nhất của đạo hàm của y(x) có mặt trong phương trình (6.1) gọi là $c \hat{a} p$ của phương trình.
- ullet Một hàm y(x) xác định trên miền $I\subset\mathbb{R}$ thỏa mãn (6.1) với mọi $x\in I$ được gọi là một nghiệm hay một dường tích phân của phương trình.

Tập tất cả các nghiệm của (6.1) gọi là *nghiệm tổng quát* của phương trình. Nghiệm của một phương trình vi phân có thể cho dưới dang tham số:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} (t \in I).$$

$$F(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$$
(6.1)

được gọi là một $phương\ trình\ vi\ phân$. Biến x gọi là biến độc lập, y(x) gọi là biến phụ thuộc.

- \bullet Cấp cao nhất của đạo hàm của y(x) có mặt trong phương trình (6.1) gọi là $c \hat{a} p$ của phương trình.
- ullet Một hàm y(x) xác định trên miền $I\subset\mathbb{R}$ thỏa mãn (6.1) với mọi $x\in I$ được gọi là một nghiệm hay một đường tích phân của phương trình.

Tập tất cả các nghiệm của (6.1) gọi là *nghiệm tổng quát* của phương trình. Nghiệm của một phương trình vi phân có thể cho dưới dang tham số:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad (t \in I).$$

• Giải một phương trình vi phân là đi tìm nghiệm tổng quát của nó.

6.2: Phương trình vi phân cấp 1

- 6.2.1 Các khái niệm
- 6.2.2 Phương trình khuyết
- 6.2.3 Phương trình với biến số phân ly-Phương trình thuần nhất
- 6.2.4 Phương trình tuyến tính
- 6.2.5 Phương trình Bernoulli
- 6.2.6 Phương trình vi phân toàn phần

• Dạng tổng quát của phương trình vi phân cấp 1:

$$F(x, y(x), y'(x)) = 0$$
 (viết đơn giản là $F(x, y, y') = 0$). (6.2)

• Dạng tổng quát của phương trình vi phân cấp 1:

$$F(x, y(x), y'(x)) = 0$$
 (viết đơn giản là $F(x, y, y') = 0$). (6.2)

• Dạng chuẩn tắc của phương trình vi phân cấp 1:

$$y' = f(x, y). ag{6.3}$$

• Dạng tổng quát của phương trình vi phân cấp 1:

$$F(x, y(x), y'(x)) = 0$$
 (viết đơn giản là $F(x, y, y') = 0$). (6.2)

• Dạng chuẩn tắc của phương trình vi phân cấp 1:

$$y' = f(x, y). (6.3)$$

• Nếu cho trước điều kiện $y(x_0)=y_0$ thì đó được gọi là điều kiện ban đầu của phương trình (6.3), có thể được viết là $y|_{x=x_0}=y_0$. Bài toán giải phương trình (6.3) với điều kiên ban đầu gọi là bài toán Cauchy.

 \bullet Nghiệm tổng quát của phương trình (6.3) có thể cho dạng ẩn

$$\Phi(x, y, C) = 0$$

với C là hằng số tùy ý. Hệ thức đó còn được gọi là một tích phân tổng quát của phương trình (6.3).

• Nghiệm tổng quát của phương trình (6.3) có thể cho dạng ẩn

$$\Phi(x, y, C) = 0$$

với C là hằng số tùy ý. Hệ thức đó còn được gọi là một tích phân tổng quát của phương trình (6.3).

• Nghiệm tổng quát dạng hiển của phương trình (6.3) là

$$y = \psi(x, C).$$

 \bullet Ứng với mỗi điều kiện ban đầu $y(x_0)=y_0$ ta tìm được một $C_0.$

• Nghiệm tổng quát của phương trình (6.3) có thể cho dạng ẩn

$$\Phi(x, y, C) = 0$$

với C là hằng số tùy ý. Hệ thức đó còn được gọi là một tích phân tổng quát của phương trình (6.3).

• Nghiệm tổng quát dạng hiển của phương trình (6.3) là

$$y = \psi(x, C).$$

• Úng với mỗi điều kiện ban đầu $y(x_0)=y_0$ ta tìm được một C_0 . Khi đó, nghiệm $y=\psi(x,C_0)$ gọi là một nghiệm riêng và hệ thức $\Phi(x,y,C_0)=0$ gọi là một tích phân riêng của phương trình (6.3).

• Nghiệm tổng quát của phương trình (6.3) có thể cho dạng ẩn

$$\Phi(x, y, C) = 0$$

với C là hằng số tùy ý. Hệ thức đó còn được gọi là một tích phân tổng quát của phương trình (6.3).

• Nghiệm tổng quát dạng hiển của phương trình (6.3) là

$$y = \psi(x, C).$$

- Úng với mỗi điều kiện ban đầu $y(x_0)=y_0$ ta tìm được một C_0 . Khi đó, nghiệm $y=\psi(x,C_0)$ gọi là một nghiệm riêng và hệ thức $\Phi(x,y,C_0)=0$ gọi là một tích phân riêng của phương trình (6.3).
- Phương trình (6.3) có thể có những nghiệm không nằm trong họ nghiệm tổng quát, gọi là các nghiệm *kỳ dị*.

- Phương trình khuyết y: F(x, y') = 0.
 - 1. Trường hợp (đẹp nhất) giải ra được: y'=f(x). Khi đó $y(x)=\int f(x)dx.$

- Phương trình khuyết y: F(x, y') = 0.
 - 1. Trường hợp (đẹp nhất) giải ra được: y'=f(x). Khi đó $y(x)=\int f(x)dx.$
 - **2.** Trường hợp giải ra được: x = f(y').
 - Nếu tìm được $y'=f^{-1}(x)$ thì giải như trường hợp 1.

- Phương trình khuyết y: F(x, y') = 0.
 - 1. Trường hợp (đẹp nhất) giải ra được: y'=f(x). Khi đó $y(x)=\int f(x)dx.$
 - **2.** Trường hợp giải ra được: x = f(y').
 - Nếu tìm được $y' = f^{-1}(x)$ thì giải như trường hợp 1.
 - Nếu không: đặt $\frac{dy}{dx} = y'(x) = t \Rightarrow dy = tdx$. Ngoài ra

- Phương trình khuyết y: F(x, y') = 0.
 - 1. Trường hợp (đẹp nhất) giải ra được: y'=f(x). Khi đó $y(x)=\int f(x)dx.$
 - **2.** Trường hợp giải ra được: x = f(y').
 - Nếu tìm được $y' = f^{-1}(x)$ thì giải như trường hợp 1.
 - Nếu không: đặt $\frac{dy}{dx}=y'(x)=t\Rightarrow dy=tdx$. Ngoài ra $x=f(y')=f(t)\Rightarrow dx=f'(t)dt.$

- Phương trình khuyết y: F(x, y') = 0.
 - 1. Trường hợp (đẹp nhất) giải ra được: y'=f(x). Khi đó $y(x)=\int f(x)dx.$
 - **2.** Trường hợp giải ra được: x = f(y').
 - Nếu tìm được $y' = f^{-1}(x)$ thì giải như trường hợp 1.
 - Nếu không: đặt $\frac{dy}{dx}=y'(x)=t\Rightarrow dy=tdx$. Ngoài ra $x=f(y')=f(t)\Rightarrow dx=f'(t)dt.$

Do đó

$$dy = tf'(t)dt \Rightarrow y = \int tf'(t)dt.$$

- Phương trình khuyết y: F(x, y') = 0.
 - 1. Trường hợp (đẹp nhất) giải ra được: y'=f(x). Khi đó $y(x)=\int f(x)dx.$
 - **2.** Trường hợp giải ra được: x = f(y').
 - Nếu tìm được $y' = f^{-1}(x)$ thì giải như trường hợp 1.
 - Nếu không: đặt $\frac{dy}{dx}=y'(x)=t\Rightarrow dy=tdx$. Ngoài ra $x=f(y')=f(t)\Rightarrow dx=f'(t)dt$.

Do đó

$$dy = tf'(t)dt \Rightarrow y = \int tf'(t)dt.$$

Ta được dang tham số của đường tích phân là

$$x = f(t), y = \int tf'(t)dt.$$

- Phương trình khuyết y: F(x, y') = 0.
 - 3. Phương trình có thể tham số hóa: x=f(t), y'=g(t). Giống trường hợp 2, ta có

- Phương trình khuyết y: F(x, y') = 0.
 - 3. Phương trình có thể tham số hóa: x=f(t), y'=g(t). Giống trường hợp 2, ta có $dy=g(t)f'(t)dt \Rightarrow y=\int g(t)f'(t)dt.$

- Phương trình khuyết y: F(x, y') = 0.
 - 3. Phương trình có thể tham số hóa: x=f(t), y'=g(t). Giống trường hợp 2, ta có $dy=g(t)f'(t)dt \Rightarrow y=\int g(t)f'(t)dt.$

Ta được dạng tham số của đường tích phân là

$$x = f(t), y = \int g(t)f'(t)dt.$$

- Phương trình khuyết y: F(x, y') = 0.
 - 3. Phương trình có thể tham số hóa: x=f(t), y'=g(t). Giống trường hợp 2, ta có $dy=g(t)f'(t)dt \Rightarrow y=\int g(t)f'(t)dt.$

Ta được dạng tham số của đường tích phân là

$$x = f(t), y = \int g(t)f'(t)dt.$$

Ví dụ 6.1

- Phương trình khuyết x: F(y, y') = 0.
 - 1. Trường hợp giải ra được: y' = f(y). Khi đó

$$dx = \frac{dy}{f(y)} \Rightarrow x = \int \frac{dy}{f(y)} \Rightarrow \Phi(x, y, C) = x - \int \frac{dy}{f(y)} = 0.$$

- Phương trình khuyết x: F(y, y') = 0.
 - 1. Trường hợp giải ra được: y' = f(y). Khi đó

$$dx = \frac{dy}{f(y)} \Rightarrow x = \int \frac{dy}{f(y)} \Rightarrow \Phi(x, y, C) = x - \int \frac{dy}{f(y)} = 0.$$

- **2.** Trường hợp giải ra được: y = f(y').
 - Nếu tìm được $y' = f^{-1}(y)$ thì giải như trường hợp 1.

- Phương trình khuyết x: F(y, y') = 0.
 - 1. Trường hợp giải ra được: y' = f(y). Khi đó

$$dx = \frac{dy}{f(y)} \Rightarrow x = \int \frac{dy}{f(y)} \Rightarrow \Phi(x, y, C) = x - \int \frac{dy}{f(y)} = 0.$$

- **2.** Trường hợp giải ra được: y = f(y').
 - Nếu tìm được $y' = f^{-1}(y)$ thì giải như trường hợp 1.
 - Nếu không: đặt $y'=t\Rightarrow dy=tdx$. Ngoài ra

- Phương trình khuyết x: F(y, y') = 0.
 - 1. Trường hợp giải ra được: y' = f(y). Khi đó

$$dx = \frac{dy}{f(y)} \Rightarrow x = \int \frac{dy}{f(y)} \Rightarrow \Phi(x, y, C) = x - \int \frac{dy}{f(y)} = 0.$$

- **2.** Trường hợp giải ra được: y = f(y').
 - Nếu tìm được $y' = f^{-1}(y)$ thì giải như trường hợp 1.
 - Nếu không: đặt $y'=t\Rightarrow dy=tdx$. Ngoài ra

$$y = f(y') = f(t) \Rightarrow dy = f'(t)dt.$$

- Phương trình khuyết x: F(y, y') = 0.
 - 1. Trường hợp giải ra được: y' = f(y). Khi đó

$$dx = \frac{dy}{f(y)} \Rightarrow x = \int \frac{dy}{f(y)} \Rightarrow \Phi(x, y, C) = x - \int \frac{dy}{f(y)} = 0.$$

- **2.** Trường hợp giải ra được: y = f(y').
 - Nếu tìm được $y' = f^{-1}(y)$ thì giải như trường hợp 1.
 - Nếu không: đặt $y'=t\Rightarrow dy=tdx$. Ngoài ra

$$y = f(y') = f(t) \Rightarrow dy = f'(t)dt.$$

Do đó:
$$dx = \frac{f'(t)}{t}dt \Rightarrow x = \int \frac{f'(t)}{t}dt.$$

- Phương trình khuyết x: F(y, y') = 0.
 - 1. Trường hợp giải ra được: y' = f(y). Khi đó

$$dx = \frac{dy}{f(y)} \Rightarrow x = \int \frac{dy}{f(y)} \Rightarrow \Phi(x, y, C) = x - \int \frac{dy}{f(y)} = 0.$$

- **2.** Trường hợp giải ra được: y = f(y').
 - Nếu tìm được $y' = f^{-1}(y)$ thì giải như trường hợp 1.
 - Nếu không: đặt $y'=t \Rightarrow dy=t dx$. Ngoài ra

$$y = f(y') = f(t) \Rightarrow dy = f'(t)dt.$$

Do đó:
$$dx = \frac{f'(t)}{t}dt \Rightarrow x = \int \frac{f'(t)}{t}dt.$$

Ta được dang tham số của đường tích phân:

$$x = \int \frac{f'(t)}{t} dt, y = f(t).$$

- Phương trình khuyết x: F(y, y') = 0.
 - 3. Phương trình có thể tham số hóa: y=f(t), y'=g(t). Giống trường hợp 2, ta có

$$dx = \frac{f'(t)}{g(t)}dt \Rightarrow x = \int \frac{f'(t)}{g(t)}dt.$$

Ta được dạng tham số của đường tích phân:

$$x = \int \frac{f'(t)}{g(t)} dt, y = f(t).$$

- Phương trình khuyết x: F(y, y') = 0.
 - 3. Phương trình có thể tham số hóa: y = f(t), y' = g(t). Giống trường hợp 2, ta có

$$dx = \frac{f'(t)}{g(t)}dt \Rightarrow x = \int \frac{f'(t)}{g(t)}dt.$$

Ta được dạng tham số của đường tích phân:

$$x = \int \frac{f'(t)}{g(t)} dt, y = f(t).$$

Ví du 6.2

6.2.3 Phương trình với biến số phân ly-Phương trình thuần nhất

• Phương trình với biến số phân ly: là phương trình có dạng:

$$f(x)dx = g(y)dy.$$

• Phương trình với biến số phân ly: là phương trình có dạng:

$$f(x)dx = g(y)dy.$$

Lấy tích phân hai vế, ta được

$$\int f(x)dx = \int g(y)dy \Rightarrow \Phi(x, y, C) = \int f(x)dx - \int g(y)dy = 0.$$

6.2.3 Phương trình với biến số phân ly-Phương trình thuần nhất • Phương trình thuần nhất (đẳng cấp): phương trình có dạng $y' = f(\frac{y}{x})$.

• Phương trình thuần nhất (đẳng cấp): phương trình có dạng $y'=f(rac{y}{x})$.

Đặt
$$\frac{y}{x} = u \Rightarrow y = xu \Rightarrow y' = u + xu' = f(u) \Rightarrow x \frac{du}{dx} = f(u) - u.$$

ullet Phương trình thuần nhất (đẳng cấp): phương trình có dạng $y'=f(rac{y}{x}).$

Đặt
$$\frac{y}{x}=u\Rightarrow y=xu\Rightarrow y'=u+xu'=f(u)\Rightarrow x\frac{du}{dx}=f(u)-u.$$

1. Nếu $f(u) \neq u$, ta rút ra: $\frac{du}{f(u)-u} = \frac{dx}{x}$. Lây tích phân 2 vế, ta được

$$\int \frac{du}{f(u) - u} du = \ln|x| + \ln|C|.$$

• Phương trình thuần nhất (đẳng cấp): phương trình có dạng $y'=f(\frac{y}{x})$.

Đặt
$$\frac{y}{x}=u\Rightarrow y=xu\Rightarrow y'=u+xu'=f(u)\Rightarrow x\frac{du}{dx}=f(u)-u.$$

1. Nếu $f(u) \neq u$, ta rút ra: $\frac{du}{f(u)-u} = \frac{dx}{x}$. Lây tích phân 2 vế, ta được

$$\int \frac{du}{f(u) - u} du = \ln|x| + \ln|C|.$$

2. Nếu f(u)=u, ta rút ra $y'=\frac{y}{x}\Rightarrow \frac{dy}{y}=\frac{dx}{x}$. Lấy tích phân 2 vế, ta được

$$ln |y| = ln |x| + ln |C| \Rightarrow y = Cx.$$

ullet Phương trình thuần nhất (đẳng cấp): phương trình có dạng $y'=f(rac{y}{x}).$

Đặt
$$\frac{y}{x}=u\Rightarrow y=xu\Rightarrow y'=u+xu'=f(u)\Rightarrow x\frac{du}{dx}=f(u)-u.$$

1. Nếu $f(u) \neq u$, ta rút ra: $\frac{du}{f(u)-u} = \frac{dx}{x}$. Lây tích phân 2 vế, ta được

$$\int \frac{du}{f(u) - u} du = \ln|x| + \ln|C|.$$

2. Nếu f(u)=u, ta rút ra $y'=\frac{y}{x}\Rightarrow \frac{dy}{y}=\frac{dx}{x}$. Lấy tích phân 2 vế, ta được

$$ln |y| = ln |x| + ln |C| \Rightarrow y = Cx.$$

Ví dụ 6.3

Phương trình có dạng:

$$y' + p(x)y = q(x)$$

trong đó p(x),q(x) là những hàm số liên tục.

Phương trình có dạng:

$$y' + p(x)y = q(x)$$

trong đó p(x), q(x) là những hàm số liên tục.

- ▶ Trường hợp q(x) = 0 thì phương trình gọi là *tuyến tính thuần nhất*;
- Nếu $q(x) \neq 0$ thì phương trình gọi là *tuyến tính không thuần nhất*.

 \bullet Xét trường hợp phương trình thuần nhất: y'+p(x)y=0.

- Xét trường hợp phương trình thuần nhất: y' + p(x)y = 0.
 - 1. Nếu $y \neq 0$, ta rút ra: $\frac{dy}{y} = -p(x)dx$. Tích phân 2 vế ta được:

$$\ln|y| = -\int p(x)dx + \ln|C| \Longrightarrow y = Ce^{-\int p(x)dx}.$$

2. y=0 cũng là một nghiệm của phương trình ứng với C=0.

- Xét trường hợp phương trình thuần nhất: y' + p(x)y = 0.
 - 1. Nếu $y \neq 0$, ta rút ra: $\frac{dy}{y} = -p(x)dx$. Tích phân 2 vế ta được:

$$\ln|y| = -\int p(x)dx + \ln|C| \Longrightarrow y = Ce^{-\int p(x)dx}.$$

2. y=0 cũng là một nghiệm của phương trình ứng với C=0. Như vây nghiệm tổng quát của phương trình thuần nhất là

$$y = Ce^{-\int p(x)dx} \tag{6.4}$$

với C là hằng số tùy ý.

- ullet Xét trường hợp phương trình thuần nhất: y'+p(x)y=0.
 - 1. Nếu $y \neq 0$, ta rút ra: $\frac{dy}{y} = -p(x)dx$. Tích phân 2 vế ta được:

$$\ln|y| = -\int p(x)dx + \ln|C| \Longrightarrow y = Ce^{-\int p(x)dx}.$$

2. y=0 cũng là một nghiệm của phương trình ứng với C=0. Như vây nghiệm tổng quát của phương trình thuần nhất là

$$y = Ce^{-\int p(x)dx} \tag{6.4}$$

với C là hằng số tùy ý.

Ví du 6.4

 \bullet Phương trình không thuần nhất: y'+p(x)y=q(x).

 \bullet Phương trình không thuần nhất: y'+p(x)y=q(x). Để giải phương trình không thuần nhất, ta thực hiện theo các bước sau:

- \bullet Phương trình không thuần nhất: y'+p(x)y=q(x). Để giải phương trình không thuần nhất, ta thực hiện theo các bước sau:
 - 1. Giải phương trình thuần nhất tương ứng tìm được nghiệm $y = Ce^{-\int p(x)dx}$;

- Phương trình không thuần nhất: y' + p(x)y = q(x).
- Để giải phương trình không thuần nhất, ta thực hiện theo các bước sau:
 - 1. Giải phương trình thuần nhất tương ứng tìm được nghiệm $y = Ce^{-\int p(x)dx}$;
 - 2. Xét $y=C(x)e^{-\int p(x)dx}$ và thay vào phương trình không thuần nhất, biến đổi và rút gọn, ta được:

$$C'(x) = q(x)e^{\int p(x)dx} \Longrightarrow C(x) = \int q(x)e^{\int p(x)dx}dx + K,$$

với K là hằng số tùy ý.

- Phương trình không thuần nhất: y' + p(x)y = q(x).
- Để giải phương trình không thuần nhất, ta thực hiện theo các bước sau:
 - 1. Giải phương trình thuần nhất tương ứng tìm được nghiệm $y = Ce^{-\int p(x)dx}$;
 - 2. Xét $y=C(x)e^{-\int p(x)dx}$ và thay vào phương trình không thuần nhất, biến đổi và rút gọn, ta được:

$$C'(x) = q(x)e^{\int p(x)dx} \Longrightarrow C(x) = \int q(x)e^{\int p(x)dx}dx + K,$$

với K là hằng số tùy ý.

Từ đó ta được nghiệm tổng quát của phương trình không thuần nhất là:

$$y = \left(\int q(x)e^{\int p(x)dx}dx + K\right)e^{-\int p(x)dx}.$$
 (6.5)

- Phương trình không thuần nhất: y' + p(x)y = q(x).
- Để giải phương trình không thuần nhất, ta thực hiện theo các bước sau:
 - 1. Giải phương trình thuần nhất tương ứng tìm được nghiệm $y = Ce^{-\int p(x)dx}$;
 - 2. Xét $y=C(x)e^{-\int p(x)dx}$ và thay vào phương trình không thuần nhất, biến đổi và rút gọn, ta được:

$$C'(x) = q(x)e^{\int p(x)dx} \Longrightarrow C(x) = \int q(x)e^{\int p(x)dx}dx + K,$$

với K là hằng số tùy ý.

Từ đó ta được nghiệm tổng quát của phương trình không thuần nhất là:

$$y = \left(\int q(x)e^{\int p(x)dx}dx + K\right)e^{-\int p(x)dx}.$$
 (6.5)

Phương pháp tìm nghiệm của phương trình không thuần nhất như trên gọi là *phương* pháp biến thiên hằng số.

- Quy trình tìm nghiệm của phương trình tuyến tính cấp 1:
 - 1. Tính $\int p(x)dx$, suy ra nghiệm của phương trình thuần nhất theo công thức (6.4);

- Quy trình tìm nghiệm của phương trình tuyến tính cấp 1:
 - 1. Tính $\int p(x)dx$, suy ra nghiệm của phương trình thuần nhất theo công thức (6.4);
 - 2. Tính $\int q(x)e^{\int p(x)dx}dx$, suy ra nghiệm của phương trình không thuần nhất theo công thức (6.5).

- Quy trình tìm nghiệm của phương trình tuyến tính cấp 1:
 - 1. Tính $\int p(x)dx$, suy ra nghiệm của phương trình thuần nhất theo công thức (6.4);
 - 2. Tính $\int q(x)e^{\int p(x)dx}dx$, suy ra nghiệm của phương trình không thuần nhất theo công thức (6.5).

Ví dụ 6.5

Phương trình có dạng:

$$y' + p(x)y = q(x)y^{\alpha}$$
,

trong đó p(x), q(x) là những hàm số liên tục, $\alpha \in \mathbb{R} \setminus \{0, 1\}$.

Phương trình có dạng:

$$y' + p(x)y = q(x)y^{\alpha},$$

trong đó p(x),q(x) là những hàm số liên tục, $\alpha\in\mathbb{R}\setminus\{0,1\}.$ Với $y\neq 0$, chia 2 vế của phương trình cho y^{α} , ta được

$$y^{-\alpha}y' + p(x)y^{1-\alpha} = q(x).$$

Phương trình có dạng:

$$y' + p(x)y = q(x)y^{\alpha}$$
,

trong đó p(x),q(x) là những hàm số liên tục, $\alpha\in\mathbb{R}\setminus\{0,1\}.$ Với $y\neq 0$, chia 2 vế của phương trình cho y^{α} , ta được

$$y^{-\alpha}y' + p(x)y^{1-\alpha} = q(x).$$

Đặt $z=y^{1-\alpha}\Rightarrow z'=(1-\alpha)y^{-\alpha}y'$, phương trình trên trở thành

$$z' + (1 - \alpha)p(x)z = (1 - \alpha)q(x),$$

ta được 1 phương trình tuyến tính cấp 1 đối với z.

Phương trình có dạng:

$$y' + p(x)y = q(x)y^{\alpha}$$
,

trong đó p(x),q(x) là những hàm số liên tục, $\alpha\in\mathbb{R}\setminus\{0,1\}.$ Với $y\neq 0$, chia 2 vế của phương trình cho y^{α} , ta được

$$y^{-\alpha}y' + p(x)y^{1-\alpha} = q(x).$$

Đặt $z=y^{1-\alpha}\Rightarrow z'=(1-\alpha)y^{-\alpha}y'$, phương trình trên trở thành

$$z' + (1 - \alpha)p(x)z = (1 - \alpha)q(x),$$

ta được 1 phương trình tuyến tính cấp 1 đối với z.

Ví du 6.6

Phương trình dạng

$$P(x,y)dx + Q(x,y)dy = 0, (6.6)$$

ở đó P,Q là những hàm số cùng với các đạo hàm riêng của chúng liên tục trong một miền đơn liên D và có

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}. (6.7)$$

Phương trình dạng

$$P(x,y)dx + Q(x,y)dy = 0, (6.6)$$

ở đó P,Q là những hàm số cùng với các đạo hàm riêng của chúng liên tục trong một miền đơn liên D và có

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}. (6.7)$$

Từ điều kiện (6.7), suy ra Pdx + Qdy là vi phân toàn phần của hàm u(x,y) nào đó.

Nếu $D=\mathbb{R}^2$ thì

$$u(x,y) = \int_{x_0}^{x} P(x,y_0)dx + \int_{y_0}^{y} Q(x,y)dy + K,$$

(hoặc:
$$u(x,y) = \int_{x_0}^x P(x,y) dx + \int_{y_0}^y Q(x_0,y) dy + K.$$
)

Nếu $D=\mathbb{R}^2$ thì

$$u(x,y) = \int_{x_0}^{x} P(x,y_0)dx + \int_{y_0}^{y} Q(x,y)dy + K,$$

(hoặc:
$$u(x,y) = \int_{x_0}^x P(x,y) dx + \int_{y_0}^y Q(x_0,y) dy + K.$$
)

Khi đó, phương trình (6.6) trở thành du = 0 và có nghiệm tống quát là:

$$u(x,y) = C.$$

Nếu $D=\mathbb{R}^2$ thì

$$u(x,y) = \int_{x_0}^{x} P(x,y_0)dx + \int_{y_0}^{y} Q(x,y)dy + K,$$

(hoặc:
$$u(x,y) = \int_{x_0}^x P(x,y) dx + \int_{y_0}^y Q(x_0,y) dy + K.$$
)

Khi đó, phương trình (6.6) trở thành du=0 và có nghiệm tống quát là:

$$u(x,y) = C.$$

Ví du 6.7

 $\mathit{Ch\'u}$ ý: Nếu điều kiện (6.7) không thỏa mãn, ta có thể tìm một hàm $\alpha(x,y)$ sao cho

$$\frac{\partial(\alpha P)}{\partial u} = \frac{\partial(\alpha Q)}{\partial x}. (6.8)$$

Chú ý: Nếu điều kiện (6.7) không thỏa mãn, ta có thể tìm một hàm $\alpha(x,y)$ sao cho

$$\frac{\partial(\alpha P)}{\partial y} = \frac{\partial(\alpha Q)}{\partial x}. (6.8)$$

Khi đó, $\alpha Pdx + \alpha Qdy$ là vi phân toàn phần của hàm u(x,y) cho bởi

$$u(x,y) = \int_{x_0}^{x} \alpha(x,y_0) P(x,y_0) dx + \int_{y_0}^{y} \alpha(x,y) Q(x,y) dy + K,$$

hoặc

$$u(x,y) = \int_{x_0}^x \alpha(x,y) P(x,y) dx + \int_{y_0}^y \alpha(x_0,y) Q(x_0,y) dy + K.$$

và nghiệm của (6.6) cũng là

$$u(x, y) = C.$$

6.3: Phương trình vi phân cấp 2

- 6.3.1 Các khái niệm
- 6.3.2 Phương trình khuyết
- 6.3.3 Phương trình tuyến tính

6.3.1 Các khái niệm

• Dạng tổng quát của phương trình vi phân cấp 2:

$$F(x, y, y', y'') = 0). (6.9)$$

6.3.1 Các khái niệm

• Dạng tổng quát của phương trình vi phân cấp 2:

$$F(x, y, y', y'') = 0). (6.9)$$

• Dạng chuẩn tắc của phương trình vi phân cấp 2:

$$y'' = f(x, y, y'). (6.10)$$

6.3.1 Các khái niệm

• Dạng tổng quát của phương trình vi phân cấp 2:

$$F(x, y, y', y'') = 0). (6.9)$$

• Dạng chuẩn tắc của phương trình vi phân cấp 2:

$$y'' = f(x, y, y'). (6.10)$$

• Nếu cho trước điều kiện $y(x_0)=y_0, y'(x_0)=z_0$ thì đó gọi là điều kiện ban đầu của phương trình (6.10). Bài toán giải phương trình (6.10) với điều kiện ban đầu gọi là bài toán Cauchy.

6.3.1 Các khái niệm

 \bullet Nghiệm tổng quát của phương trình (6.10) có thể cho dạng ẩn

$$\Phi(x, y, C_1, C_2) = 0$$

với C_1, C_2 là các hằng số tùy ý. Hệ thức đó còn được gọi là một *tích phân tổng quát* của phương trình (6.10).

6.3.1 Các khái niệm

 \bullet Nghiệm tổng quát của phương trình (6.10) có thể cho dạng ẩn

$$\Phi(x, y, C_1, C_2) = 0$$

với C_1, C_2 là các hằng số tùy ý. Hệ thức đó còn được gọi là một *tích phân tổng quát* của phương trình (6.10).

• Nghiệm tổng quát dạng hiển của phương trình (6.10) là

$$y = \psi(x, C_1, C_2).$$

ullet Ứng với mỗi điều kiện ban đầu $y(x_0)=y_0, y'(x_0)=z_0$ ta tìm được $C_1^0, C_2^0.$

6.3.1 Các khái niệm

ullet Nghiệm tổng quát của phương trình (6.10) có thể cho dạng ẩn

$$\Phi(x, y, C_1, C_2) = 0$$

với C_1, C_2 là các hằng số tùy ý. Hệ thức đó còn được gọi là một *tích phân tổng quát* của phương trình (6.10).

• Nghiệm tổng quát dạng hiển của phương trình (6.10) là

$$y = \psi(x, C_1, C_2).$$

- ullet Úng với mỗi điều kiện ban đầu $y(x_0)=y_0, y'(x_0)=z_0$ ta tìm được C_1^0, C_2^0 .
 - ▶ nghiệm $y = \psi(x, C_1^0, C_2^0)$ gọi là một *nghiệm riêng* của phương trình (6.10),
 - hệ thức $\Phi(x, y, C_1^0, C_2^0) = 0$ gọi là một *tích phân riêng* của phương trình (6.10).

6.3.2 Phương trình khuyết

• Phương trình khuyết $y,y'\colon F(x,y'')=0$ Đặt z=y', ta được phương trình cấp 1 đối với z là: F(x,z')=0. Giả sử $z=f(x,C_1)$ là nghiệm tổng quát của phương trình đó thì

$$y = \int f(x, C_1) dx + C_2$$

là nghiệm của phương trình ban đầu, với C_1,C_2 là các hằng số tùy ý.

6.3.2 Phương trình khuyết

• Phương trình khuyết $y,y'\colon F(x,y'')=0$ Đặt z=y', ta được phương trình cấp 1 đối với z là: F(x,z')=0. Giả sử $z=f(x,C_1)$ là nghiệm tổng quát của phương trình đó thì

$$y = \int f(x, C_1) dx + C_2$$

là nghiệm của phương trình ban đầu, với C_1,C_2 là các hằng số tùy ý.

• Phương trình khuyết y: F(x, y', y'') = 0

Đặt z=y', ta được phương trình cấp 1 đối với z là: F(x,z,z')=0.

6.3.2 Phương trình khuyết

• Phương trình khuyết $y,y'\colon F(x,y'')=0$ Đặt z=y', ta được phương trình cấp 1 đối với z là: F(x,z')=0. Giả sử $z=f(x,C_1)$ là nghiệm tổng quát của phương trình đó thì

$$y = \int f(x, C_1) dx + C_2$$

là nghiệm của phương trình ban đầu, với C_1,C_2 là các hằng số tùy ý.

- Phương trình khuyết y: F(x, y', y'') = 0Đặt z = y', ta được phương trình cấp 1 đối với z là: F(x, z, z') = 0.
- Phương trình khuyết x: F(y, y', y'') = 0

Đặt $z=y'\Rightarrow y''=z\frac{dz}{dy}$, ta được phương trình cấp 1 đối với z theo biến y là

$$F(y, z, z\frac{dz}{dy}) = 0.$$

6.3.3 Phương trình tuyến tính

Phương trình có dạng:

$$y'' + p(x)y' + q(x)y = f(x)$$

trong đó p(x), q(x), f(x) là những hàm số liên tục.

- f(x) = 0 thì phương trình gọi là tuyến tính thuần nhất;
- $f(x) \neq 0$ thì phương trình gọi là tuyến tính không thuần nhất.

Xét phương trình tuyến tính thuần nhất:

$$y'' + p(x)y' + q(x)y = 0 (6.11)$$

với p(x), q(x) là những hàm số liên tục.

Xét phương trình tuyến tính thuần nhất:

$$y'' + p(x)y' + q(x)y = 0 (6.11)$$

với p(x),q(x) là những hàm số liên tục.

Định lý 6.1

Nếu $y_1(x), y_2(x)$ là các nghiệm của phương trình (6.11) thì $C_1y_1(x) + C_2y_2(x)$ cũng là nghiệm của (6.11), với C_1, C_2 là các hằng số tùy ý.

Định nghĩa 6.1

Hai hàm số $y_1(x),y_2(x)$ được gọi là phụ thuộc tuyến tính trên đoạn [a,b] nếu

$$\frac{y_1(x)}{y_2(x)} = c, \quad \forall x \in [a, b].$$

Hai hàm số $y_1(x), y_2(x)$ không phụ thuộc tuyến tính thì gọi là độc lập tuyến tính.

Dinh nghĩa 6.1

Hai hàm số $y_1(x),y_2(x)$ được gọi là phụ thuộc tuyến tính trên đoạn [a,b] nếu

$$\frac{y_1(x)}{y_2(x)} = c, \quad \forall x \in [a, b].$$

Hai hàm số $y_1(x), y_2(x)$ không phụ thuộc tuyến tính thì gọi là độc lập tuyến tính.

Định nghĩa 6.2

Cho hai hàm số $y_1(x), y_2(x)$. Đinh thức

$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$$

gọi là định thức Wronsky của y_1, y_2 , ký hiệu là $W(y_1, y_2)$.

Định lý 6.2

Nếu hai hàm số $y_1(x),y_2(x)$ phụ thuộc tuyến tính trên đoạn [a,b] thì $W(y_1,y_2)\equiv 0$ trên đoạn đó.

Định lý 6.2

Nếu hai hàm số $y_1(x),y_2(x)$ phụ thuộc tuyến tính trên đoạn [a,b] thì $W(y_1,y_2)\equiv 0$ trên đoạn đó.

Định lý 6.3

Giả sử $y_1(x), y_2(x)$ là hai nghiệm của phương trình (6.11) và $x_0 \in [a, b]$.

- Nếu $W(y_1, y_2)|_{x=x_0} \neq 0$ thì $W(y_1, y_2) \neq 0, \forall x \in [a, b].$
- Nếu $W(y_1, y_2)|_{x=x_0} = 0$ thì $W(y_1, y_2) = 0, \forall x \in [a, b].$

Định lý 6.2

Nếu hai hàm số $y_1(x),y_2(x)$ phụ thuộc tuyến tính trên đoạn [a,b] thì $W(y_1,y_2)\equiv 0$ trên đoạn đó.

Định lý 6.3

Giả sử $y_1(x), y_2(x)$ là hai nghiệm của phương trình (6.11) và $x_0 \in [a,b]$.

- Nếu $W(y_1, y_2)|_{x=x_0} \neq 0$ thì $W(y_1, y_2) \neq 0, \forall x \in [a, b].$
- Nếu $W(y_1, y_2)|_{x=x_0} = 0$ thì $W(y_1, y_2) = 0, \forall x \in [a, b].$

Định lý 6.4

Cho $y_1(x), y_2(x)$ là hai nghiệm của phương trình (6.11) độc lập tuyến tính trên đoạn [a,b]. Khi đó $W(y_1,y_2) \neq 0, \forall x \in [a,b]$.

Định lý 6.5

Cho $y_1(x), y_2(x)$ là hai nghiệm **độc lập tuyến tính** của phương trình (6.11). Khi đó nghiệm tổng quát của phương trình (6.11) là

$$y = C_1 y_1(x) + C_2 y_2(x) (6.12)$$

với C_1, C_2 là các hằng số tùy ý.

Định lý 6.5

Cho $y_1(x), y_2(x)$ là hai nghiệm **độc lập tuyến tính** của phương trình (6.11). Khi đó nghiệm tổng quát của phương trình (6.11) là

$$y = C_1 y_1(x) + C_2 y_2(x) (6.12)$$

với C_1, C_2 là các hằng số tùy ý.

Dinh lý 6.6

Nếu $y_1(x) \neq 0$ là một nghiệm riêng của phương trình (6.11) thì

$$y_2(x) = y_1(x) \int \frac{1}{[y_1(x)]^2} e^{-\int p(x)dx} dx$$
 (6.13)

cũng là một nghiệm của (6.11) và y_1,y_2 độc lập tuyến tính. TS. Phùng Minh Đức (BMTL)

Xét phương trình tuyến tính không thuần nhất:

$$y'' + p(x)y' + q(x)y = f(x)$$
(6.14)

Phương pháp biến thiên hằng số:

1. Tìm 2 nghiệm riêng $y_1(x), y_2(x)$ độc lập tuyến tính của phương trình tuyến tính thuần nhất (6.11).

Xét phương trình tuyến tính không thuần nhất:

$$y'' + p(x)y' + q(x)y = f(x)$$
(6.14)

Phương pháp biến thiên hằng số:

- 1. Tìm 2 nghiệm riêng $y_1(x), y_2(x)$ độc lập tuyến tính của phương trình tuyến tính thuần nhất (6.11).
- **2.** Chọn $C_1(x), C_2(x)$ sao cho:
 - $C_1'(x)y_1(x) + C_2'(x)y_2(x) = 0$
 - $y = C_1(x)y_1(x) + C_2(x)y_2(x)$ là nghiệm của (6.14).

Từ hệ điều kiện đó, ta rút ra:

$$\begin{cases} C'_1(x)y_1(x) + C'_2(x)y_2(x) = 0 \\ C'_1(x)y'_1(x) + C'_2(x)y'_2(x) = f(x) \end{cases}$$

Từ hệ điều kiện đó, ta rút ra:

$$\begin{cases} C'_1(x)y_1(x) + C'_2(x)y_2(x) = 0 \\ C'_1(x)y'_1(x) + C'_2(x)y'_2(x) = f(x) \end{cases}$$

Giải hệ ta được
$$C_1'(x)=\psi_1(x), C_2'(x)=\psi_2(x)$$
, suy ra

$$C_1(x) = \int \psi_1(x) dx, C_2(x) = \int \psi_2(x) dx.$$

Từ hệ điều kiện đó, ta rút ra:

$$\begin{cases} C_1'(x)y_1(x) + C_2'(x)y_2(x) = 0 \\ C_1'(x)y_1'(x) + C_2'(x)y_2'(x) = f(x) \end{cases}$$

Giải hệ ta được $C_1'(x)=\psi_1(x), C_2'(x)=\psi_2(x)$, suy ra

$$C_1(x) = \int \psi_1(x) dx, C_2(x) = \int \psi_2(x) dx.$$

Từ đó ta được nghiệm của phương trình tuyến tính không thuần nhất (6.14) là

$$y = y_1 \int \psi_1(x) dx + y_2 \int \psi_2(x) dx.$$
 (6.15)

Xét phương trình tuyến tính thuần nhất:

$$y'' + py' + qy = 0 ag{6.16}$$

với p,q là những hằng số.

Xét phương trình tuyến tính thuần nhất:

$$y'' + py' + qy = 0 ag{6.16}$$

với p,q là những hằng số.

Ta tìm nghiệm riêng của (6.16) dạng $y=e^{kx}$. Thay vào phương trinh (6.16) ta được

$$e^{kx}(k^2 + pk + q) = 0 \Leftrightarrow k^2 + pk + q = 0.$$
 (6.17)

Phương trình (6.17) gọi là phương trình đặc trưng của (6.16).

Đặt $\Delta=p^2-4q$, có những trường hợp sau:

Đặt $\Delta=p^2-4q$, có những trường hợp sau:

• $\Delta>0$: Phương trình (6.17) có 2 nghiệm thực phân biệt $k_1\neq k_2$, khi đó phương trình (6.16) có 2 nghiệm riêng tương ứng là

$$y_1 = e^{k_1 x}$$
 và $y_2 = e^{k_2 x}$.

Đặt $\Delta=p^2-4q$, có những trường hợp sau:

• $\Delta>0$: Phương trình (6.17) có 2 nghiệm thực phân biệt $k_1\neq k_2$, khi đó phương trình (6.16) có 2 nghiệm riêng tương ứng là

$$y_1 = e^{k_1 x}$$
 và $y_2 = e^{k_2 x}$.

Hai nghiệm này độc lập tuyến tính, do đó nghiệm tổng quát của (6.16) là

$$y = C_1 y_1 + C_2 y_2 = C_1 e^{k_1 x} + C_2 e^{k_2 x}.$$

• $\Delta=0$: Phương trình (6.17) có nghiệm kép $k_1=k_2=-\frac{p}{2}$, khi đó phương trình (6.16) có 2 nghiệm riêng độc lập tuyến tính là

$$y_1 = e^{-rac{p}{2}x}$$
 và $y_2 = y_1 \int rac{1}{(y_1)^2} e^{-\int p dx} dx = x e^{-rac{p}{2}x}.$

• $\Delta=0$: Phương trình (6.17) có nghiệm kép $k_1=k_2=-\frac{p}{2}$, khi đó phương trình (6.16) có 2 nghiệm riêng độc lập tuyến tính là

$$y_1 = e^{-rac{p}{2}x}$$
 và $y_2 = y_1 \int rac{1}{(y_1)^2} e^{-\int p dx} dx = x e^{-rac{p}{2}x}.$

Do đó nghiệm tổng quát của (6.16) trong trường hợp này là

$$y = C_1 y_1 + C_2 y_2 = e^{-\frac{p}{2}x} (C_1 + C_2 x).$$

 \bullet $\Delta<0$: Phương trình (6.17) có 2 nghiệm phức $k_1=a+ib, k_2=a-ib$, khi đó (6.16) có 2 nghiệm riêng là

$$\bar{y}_1 = e^{ax}(\cos bx + i\sin bx); \quad \bar{y}_2 = e^{ax}(\cos bx - i\sin bx)$$

 \bullet $\Delta<0$: Phương trình (6.17) có 2 nghiệm phức $k_1=a+ib, k_2=a-ib$, khi đó (6.16) có 2 nghiệm riêng là

$$\bar{y}_1 = e^{ax}(\cos bx + i\sin bx); \quad \bar{y}_2 = e^{ax}(\cos bx - i\sin bx)$$

Đặt:
$$y_1 = \frac{\bar{y_1} + \bar{y_2}}{2} = e^{ax} \cos bx; \quad y_2 = \frac{\bar{y_1} - \bar{y_2}}{2i} = e^{ax} \sin bx$$

thì y_1,y_2 cũng là 2 nghiệm riêng độc lập tuyến tính của (6.16), do đó nghiệm tổng quát của (6.16) là

$$y = C_1 y_1 + C_2 y_2 = e^{ax} (C_1 \cos bx + C_2 \sin bx).$$

Xét phương trình tuyến tính thuần nhất:

$$y'' + py' + qy = f(x) ag{6.18}$$

với p,q là những hằng số.

Xét phương trình tuyến tính thuần nhất:

$$y'' + py' + qy = f(x) (6.18)$$

với p,q là những hằng số.

- Phương pháp biến thiên hằng số: ta tìm nghiệm của (6.18) theo các bước sau:
 - 1. Tìm 2 nghiệm riêng y_1, y_2 độc lập tuyến tính của pttt thuần nhất (6.16).

2. Tìm
$$C_1(x), C_2(x)$$
 thỏa mãn hệ
$$\begin{cases} C_1'(x)y_1(x) + C_2'(x)y_2(x) = 0 \\ C_1'(x)y_1'(x) + C_2'(x)y_2'(x) = f(x) \end{cases}$$
 Giải hệ ta được $C_1'(x) = \psi_1(x), C_2'(x) = \psi_2(x)$, suy ra
$$C_1(x) = \int \psi_1(x) dx, C_2(x) = \int \psi_2(x) dx.$$

Từ đó ta được nghiệm tổng quát của phương trình (6.18) là

$$y = y_1 \int \psi_1(x) dx + y_2 \int \psi_2(x) dx.$$

Định lý 6.7

Nếu Y_1 là nghiệm tổng quát của phương trình tuyến tính thuần nhất (6.11) và Y_2 là một nghiệm riêng của phương trình tuyến tính không thuần nhất (6.14) thì nghiệm tổng quát của (6.14) là

$$y = Y_1 + Y_2.$$

Dinh lý 6.7

Nếu Y_1 là nghiệm tổng quát của phương trình tuyến tính thuần nhất (6.11) và Y_2 là một nghiệm riêng của phương trình tuyến tính không thuần nhất (6.14) thì nghiệm tổng quát của (6.14) là

$$y = Y_1 + Y_2.$$

Ta sẽ áp dụng kết quả trên để tìm nghiệm của phương trình tuyến tính với hệ số hằng (6.18) có hàm f(x) ở các dạng đặc biệt sau:

- **1.** $f(x) = e^{ax} P_n(x)$, với $a \in \mathbb{R}$ và $P_n(x)$ là một đa thức bậc n.
- 2. $f(x)=P_m(x)\cos bx+P_n(x)\sin bx$, với $b\in\mathbb{R}$ và $P_m(x),P_n(x)$ là các đa thức bậc m và n tương ứng.

Giả sử đã tìm được nghiệm tổng quát Y_1 của phương trình thuần nhất (6.16). Ta tìm một nghiệm riêng Y_2 của (6.18) theo phương pháp $h\hat{e}$ số bất định như sau.

- Trường hợp 1: $f(x)=e^{ax}P_n(x)$, với $a\in\mathbb{R}$ và $P_n(x)=\sum_{k=0}^n a_kx^k$ là một đa thức bậc n.
 - 1. Nếu a không là nghiệm của phương trình đặc trưng (6.17):

$$Y_2 = e^{ax}Q_n(x)$$
, với $Q_n(x) = \sum_{k=0}^n b_k x^k$ là một đa thức bậc n .

Thay vào phương trình (6.18) rồi đồng nhất hệ số, ta tìm được $Q_n(x)$.

- Trường hợp 1: $f(x)=e^{ax}P_n(x)$, với $a\in\mathbb{R}$ và $P_n(x)=\sum_{k=0}^n a_k x^k$ là một đa thức bậc n.
 - 1. Nếu a không là nghiệm của phương trình đặc trưng (6.17):

$$Y_2 = e^{ax}Q_n(x)$$
, với $Q_n(x) = \sum_{k=0}^n b_k x^k$ là một đa thức bậc n .

Thay vào phương trình (6.18) rồi đồng nhất hệ số, ta tìm được $Q_n(x)$.

2. Nếu a là một nghiệm đơn của phương trình đặc trưng (6.17): $Y_2 = xe^{ax}Q_n(x)$.

- Trường hợp 1: $f(x)=e^{ax}P_n(x)$, với $a\in\mathbb{R}$ và $P_n(x)=\sum_{k=0}^n a_kx^k$ là một đa thức bậc n.
 - 1. Nếu a không là nghiệm của phương trình đặc trưng (6.17):

$$Y_2 = e^{ax}Q_n(x)$$
, với $Q_n(x) = \sum_{k=0}^n b_k x^k$ là một đa thức bậc n .

Thay vào phương trình (6.18) rồi đồng nhất hệ số, ta tìm được $Q_n(x)$.

- 2. Nếu a là một nghiệm đơn của phương trình đặc trưng (6.17): $Y_2 = xe^{ax}Q_n(x)$.
- 3. Nếu a là nghiệm kép của phương trình đặc trưng (6.17): $Y_2 = x^2 e^{ax} Q_n(x)$.

- Trường hợp 1: $f(x)=e^{ax}P_n(x)$, với $a\in\mathbb{R}$ và $P_n(x)=\sum_{k=0}^n a_k x^k$ là một đa thức bậc n.
 - 1. Nếu a không là nghiệm của phương trình đặc trưng (6.17):

$$Y_2 = e^{ax}Q_n(x)$$
, với $Q_n(x) = \sum_{k=0}^n b_k x^k$ là một đa thức bậc n .

Thay vào phương trình (6.18) rồi đồng nhất hệ số, ta tìm được $Q_n(x)$.

- 2. Nếu a là một nghiệm đơn của phương trình đặc trưng (6.17): $Y_2 = xe^{ax}Q_n(x)$.
- 3. Nếu a là nghiệm kép của phương trình đặc trưng (6.17): $Y_2 = x^2 e^{ax} Q_n(x)$.
- Trường hợp 2: $f(x) = P_m(x) \cos bx + P_n(x) \sin bx$.
 - 1. Nếu $\pm ib$ không là nghiệm của phương trình đặc trưng (6.17):

$$Y_2 = Q_M(x) \cos bx + R_M(x) \sin bx$$
, với $M = \max\{m, n\}$.

Thay vào phương trình (6.18) rồi đồng nhất hệ số, ta tìm được $Q_M(x), R_M(x)$.

- Trường hợp 1: $f(x)=e^{ax}P_n(x)$, với $a\in\mathbb{R}$ và $P_n(x)=\sum_{k=0}^n a_kx^k$ là một đa thức bậc n.
 - 1. Nếu a không là nghiệm của phương trình đặc trưng (6.17):

$$Y_2 = e^{ax}Q_n(x)$$
, với $Q_n(x) = \sum_{k=0}^n b_k x^k$ là một đa thức bậc n .

Thay vào phương trình (6.18) rồi đồng nhất hệ số, ta tìm được $Q_n(x)$.

- 2. Nếu a là một nghiệm đơn của phương trình đặc trưng (6.17): $Y_2 = xe^{ax}Q_n(x)$.
- 3. Nếu a là nghiệm kép của phương trình đặc trưng (6.17): $Y_2 = x^2 e^{ax} Q_n(x)$.
- Trường hợp 2: $f(x) = P_m(x) \cos bx + P_n(x) \sin bx$.
 - 1. Nếu $\pm ib$ không là nghiệm của phương trình đặc trưng (6.17):

$$Y_2 = Q_M(x) \cos bx + R_M(x) \sin bx$$
, với $M = \max\{m, n\}$.

Thay vào phương trình (6.18) rồi đồng nhất hệ số, ta tìm được $Q_M(x), R_M(x)$.

2. Nếu $\pm ib$ là nghiệm của phương trình đặc trưng (6.17) $\Leftrightarrow p=0, q=b^2$:

$$Y_2 = x[Q_M(x)\cos bx + R_M(x)\sin bx].$$

Chú ý 6.1

1. Nếu y_1, y_2 tương ứng là nghiệm riêng của 2 phương trình

$$y''+py'+qy=f_1(x) \ \ \emph{và} \ y''+py'+qy=f_2(x)$$
 thì $y=y_1+y_2$ là một nghiệm riêng của phương trình
$$y''+py'+qy=f_1(x)+f_2(x).$$

Chú ý 6.1

1. Nếu y_1, y_2 tương ứng là nghiệm riêng của 2 phương trình

$$y'' + py' + qy = f_1(x)$$
 và $y'' + py' + qy = f_2(x)$

thì $y=y_1+y_2$ là một nghiệm riêng của phương trình

$$y'' + py' + qy = f_1(x) + f_2(x).$$

2. Nếu $f(x) = e^{ax}[P_m(x)\cos bx + P_n(x)\sin bx]$ thì bằng cách đặt $y = e^{ax}z$, ta đưa phương trình về dạng trên theo biến z.

Chú ý 6.1

1. Nếu y_1, y_2 tương ứng là nghiệm riêng của 2 phương trình

$$y'' + py' + qy = f_1(x)$$
 và $y'' + py' + qy = f_2(x)$

thì $y=y_1+y_2$ là một nghiệm riêng của phương trình

$$y'' + py' + qy = f_1(x) + f_2(x).$$

- 2. Nếu $f(x) = e^{ax}[P_m(x)\cos bx + P_n(x)\sin bx]$ thì bằng cách đặt $y = e^{ax}z$, ta đưa phương trình về dạng trên theo biến z.
- 3. Có thể áp dụng các phương pháp tìm nghiệm tổng quát của phương trình tuyến tính bậc 2 cho các phương trình tuyến tính có bậc cao hơn.

Chú ý 6.1

1. Nếu y_1, y_2 tương ứng là nghiệm riêng của 2 phương trình

$$y'' + py' + qy = f_1(x)$$
 và $y'' + py' + qy = f_2(x)$

thì $y = y_1 + y_2$ là một nghiệm riêng của phương trình

$$y'' + py' + qy = f_1(x) + f_2(x).$$

- 2. Nếu $f(x) = e^{ax}[P_m(x)\cos bx + P_n(x)\sin bx]$ thì bằng cách đặt $y = e^{ax}z$, ta đưa phương trình về dạng trên theo biến z.
- 3. Có thể áp dụng các phương pháp tìm nghiệm tổng quát của phương trình tuyến tính bậc 2 cho các phương trình tuyến tính có bậc cao hơn.
- Phương trình Euler: phương trình thuần nhất có hệ số biến thiên dạng

$$x^2y'' + axy' + by = 0.$$

T\$. Phùng Minh Đức (BMTL)

Đặt $x=e^t$, ta đưa phương trình về dạng thuần nhất với hệ số hằng Thực hiện bởi Trưởng Đại học Công nghệ Thông tin, ĐHQG-HCM