Shin 2001B

A Class of Graphs with χ^* Close to $\chi - 1$

Peter C.B. Lam, Jiazhuang Liu, Wai Chee Shiu and Zeng Min Song^{2,4}

Abstract

The star chromatic number $\chi^*(G)$ of a graph G, a natural generalization of the chromatic number $\chi(G)$ of G, was introduced by Vince in 1988. It has been shown that $\chi(G) - 1 < \chi^*(G) \le \chi(G)$. In this paper, we give a class of graphs G with $\chi^*(G)$ determined. Moreover, this class of graphs may be arbitrarily close to $\chi(G) - 1$.

Key words: star chromatic number, critical graph.

AMS 1991 Subject Classifications: 05c15, 05c78

1. Introduction

1

In this paper, we consider only finite and simple graphs. Our terminology is standard as in [1]. We repeat the most important definitions. A k-coloring of G is a function $\phi \colon V \to \{0,1,2,\cdots,k-1\}$ such that if $xy \in E$ then $\phi(x) \neq \phi(y)$.

The chromatic number of G, denoted by $\chi(G)$, is the minimum k such that G has a k-coloring. If $\chi(G) = k$, then G is said to be k-chromatic. For $k \geq 2$, G is said to be k-critical if it is k-chromatic but every proper subgraph of G has a (k-1)-coloring.

In [2], Vince introduced a generalization of the notion of chromatic number in which one allows for possibility of using more than $\chi(G)$ colors but one asks whether the colors assigned to adjacent vertices can be, in some sence, far apart. Let k and d be two positive integers satisfying $2 \le 2d \le k$, a (k,d)-coloring of G is a function $\phi \colon V \to \{0,1,2,\cdots,k-1\}$ such that if $xy \in E$ then $d \le |\phi(x) - \phi(y)| \le k - d$. The star chromatic number of G is defined as

$$\chi^*(G) = \inf\{k/d : \text{ there is a } (k,d)\text{-coloring of } G\}$$

Thus a (k,1)-coloring of G is just an ordinary k-coloring of G.

¹Research is partially supported by Research Grant Council, Hong Kong and by Nateral Science Foundation of China.

²Department of Mathematics, Hong Kong Baptist University, Hong Kong, China

³Institute of Math., Shandong University, Jinan, 250100, P. R. China

⁴Department of Applied Mathematics, Southeast University, Nanjing, China

On the relation between the star chromatic number and the chromatic number, it was proved that $\chi(G)-1<\chi^*(G)\leq\chi(G)$ in [2,3]. One extremal case, $\chi^*(G)=\chi(G)$, was investigated in [2,4-8]. Another extremal case is $\chi^*(G)$ being close to the lower bound $\chi(G)-1$. Note that the star chromatic number of G maybe viewed as a refinement of the chromatic number. If G is uniquely k-colorable, then there is no room to "save" any color, and $\chi^*(G)=\chi(G)$. On the other hand, if G is k-critical, then the k-th color is barely needed. It seems that in this case there will be room for saving colors. It was shown by Guichard [5] that if G is k-critical, and has girth at least k+1, then $\chi^*(G)<\chi(G)$. Steffen and Zhu reveals a quantitative relation between the girth and the star chromatic number of a k-critical graph in [6]. In this paper, we give a class of graphs G with $\chi^*(G)$ close to $\chi(G)-1$ and determines $\chi^*(G)$ of G by proving the following theorem.

Theorem 1 For any $m \ge 1$ and $n \ge 1$ there exists a graph G_m^n which is (2m+1)-critical such that

$$\chi^*(G_m^n) = 2m + \frac{1}{n} = \chi(G_m^n) - 1 + \frac{1}{n}.$$

2. The construction of G_m^n and some of its properties

If H_1, H_2, \dots, H_p are p vertex disjoint graphs, then we use $H_1 * H_2 * \dots * H_p$ to denote the graph obtained from H_1, H_2, \dots, H_p by joining every vertex of H_i to every vertex of H_{i+1} for $1 \le i < p$. We now construct the graph G_m^n . Let H be a trivial graph with $V(H) = \{v\}$, and

$$G_m^n = H * K_m^1 * K_m^2 * \cdots * K_m^{2n} + E^*,$$

where K_m^j is the jth complete graph on m vertices $v_1^j, v_2^j, \cdots, v_m^j$, $1 \le j \le 2n$ and $E^* = \{vv_1^{2n}, vv_2^{2n}, \cdots, vv_m^{2n}\}$. We shall now establish some properties of G_m^n .

Property 1 $\alpha(G_m^n) = n$. Where $\alpha(G)$ denotes the independence number of G.

Property 2
$$\chi(G_m^n) = 2m + 1$$
.

Proof: By the definition of G_m^n , $K_m^j * K_m^{j+1}$ is a complete subgraph of order 2m in G_m^n for $j=1,2,\cdots,2n-1$. We shall prove that $\chi(G_m^n) \geq 2m+1$. If not, suppose there exists a 2m-coloring $f:V \to \{1,2,\cdots,2m\}$ of G_m^n . Without loss of generality, let the vertices of K_m^1 and K_m^2 be assigned colors $\{1,2,\cdots,m\}$ and $\{m+1,m+2,\cdots,2m\}$ respectively. Thus $\chi(G_m^n)=2m$ implies that the vertices in K_m^{2j-1} are assigned colors $\{1,2,\cdots,m\}$ and the vertices in K_m^{2j} are assigned colors $\{m+1,m+2,\cdots,2m\}$ for $j=2,3,\cdots,n$. That is, the vertices of K_m^1 and K_m^{2n} receive colors $\{1,2,\cdots,m\}$ and $\{m+1,m+2,\cdots,2m\}$ for m+1 and m+1 receive colors m+1 and m+1 and m+1 receive colors m+1 receive colors m+1 and m+1 receive colors m+1 receiv

 $1, m+2, \cdots, 2m$ respectively. However the vertex u, the vertices in K_m^1 and the vertices in K_m^{2n} must all receive distinct colors, a contradiction. Therefore $\chi(G_m^n) \geq 2m+1$. It is clear that $\chi(G_m^n) \leq 2m+1$, therefore $\chi(G_m^n) = 2m+1$.

Property 3 G_m^n is (2m+1)-critical.

7

Property 4 There exists a (2mn+1, n)-coloring of G_m^n .

Proof: Let v_i^j be *i*th vertex of $K_m^j (i=1,2,\cdots,m;j=1,2,\cdots,2n)$ in G_m^n . We define a mapping f on G_m^n to $\mathbb Z$ as follows:

$$f(v_i^j) = [i-1+(j-1)m]n$$
 for $i = 1, 2, \dots, m; j = 1, 2, \dots, 2n;$
 $f(v) = 2n^2m.$

For each vertex $u \in G_m^n$, we assign the color number $\phi(u)$, where $0 \le \phi(u) \le 2mn$ and $\phi(u) \equiv f(u) \mod 2mn + 1$. The (13,2)-coloring f of G_3^2 is shown in Figure 1.

Figure 1.

For any $x=v_i^j\in V(K_m^j)$ and $x'=v_{i'}^{j+1}\in V(K_m^{j+1})$ $j=1,2,\cdots,2n-1,$ and $1\leq i,i'\leq m,$ we have

$$f(x') - f(x) = [i - 1 + jm]n - [i' - 1 + (j - 1)m]n$$

$$= (m + i - i')n.$$

$$(2mn + 1) - (n + 1) \ge |\phi(x') - \phi(x)| \ge n.$$
(1)

For any $x = v_i^{2n} \in (K_i^{2n})$, $1 \le i \le m$ we have

$$f(v) - f(x) = 2n^{2}m - [i - 1 + (2n - 1)m]n$$

$$= (m - i + 1)n.$$

$$(2mn + 1) - (mn + 1) \ge |\phi(v) - \phi(x)| \ge n.$$
(2)

For any $x = v_i^1 \in V(K_m^1)$, $1 \le i \le m$, we have

$$f(v) - f(x) = 2n^{2}m - [i-1]n$$

$$= (2nm+1)n - in.$$

$$(2nm+1) - n \ge |\phi(v) - \phi(x)| \ge (2nm+1) - mn.$$
 (3)

It follows from (1), (2) and (3) that ϕ is a (2mn+1, n)-coloring of G_m^n .

3. Proof of Theorem 1

By Properties 4 and 2 we have

$$\chi^*(G_m^n) \le \frac{2mn+1}{n} = 2m + \frac{1}{n} = \chi(G_m^n) - 1 + \frac{1}{n}.$$

From Theorem 5 in [7], we have for any graph G,

$$\chi^*(G) \ge \chi(G) - 1 + \frac{1}{\alpha(G)}.$$

Hence by Properties 1 and 2 we have

$$\chi^*(G_m^n) \ge \chi(G_m^n) - 1 + \frac{1}{n} = 2m + \frac{1}{n}.$$

Therefore

$$\chi^*(G_m^n) = 2m + \frac{1}{n} = \chi(G_m^n) - 1 + \frac{1}{n}.$$

By Property 3, G_m^n is (2m+1)-critical and the theorem follows.

References

- [1] J. A. Bondy and U. S. R. Murty, "Graph theory with applications", Macmillan, London (1976).
- [2] A. Vince, Star chromatic number, Journal of Graph Theory, 12 (1988), 551-559.
- [3] J. A. Bondy and P. Hell, A note on the star chromatic number, *Journal of Graph Theory*, 14 (1990), 479-482.
- [4] H. L. Abbott and B. Zhou, The star chromatic number of a graph, *Journal of Graph Theory*, 17 (1993), 349-360.
- [5] D. R. Guichard, Acyclic graph coloring and the complexity of the chromatic number, Journal of Graph Theory, 17 (1993), 129-134.
- [6] E. Steffen and X. Zhu, Star chromatic number of graphs, Combinatorica, 16 (1996), 439-448.
- [7] B. Zhou, Some theorems concerning the star chromatic number of a graph, Journal of Combinatorial Theory, Ser. B, 70 (1997), 245-258.
- [8] X. Zhu, Uniquely H-coloring graphs with large girth, Journal of Graph Theory, 23 (1996), 33-41.