数学物理方法(上)第四次作业参考答案

鲍雷栋*1, 王思越^{†1}, and 禹凯耀^{‡1}

1北京大学物理学院

2025年3月20日

- 题 1. 考虑一个定常不可压缩无旋流体,从无穷远区域流入一个由两个平面夹成的 角形区域,见图 1. 假设该角形区域的夹角为 α (满足 $0 < \alpha < \pi$).
 - 1. 求出描述该流动的复势函数,要求流函数仅在物理边界处为常数.
 - 2. 根据所求得的复势函数, 绘制对应的流线图, 展示流体在角形区域内的流动特性.

图 1: 题 1 区域示意图

解. 1. 取单值分支 $0 < \arg z < \alpha$,有 $f(z) = z^{\frac{\pi}{\alpha}}$ 将该角形区域共形映射到上半平面. 设 w = f(z),角形区域和上半平面的复势函数分别为 Φ_z 和 Φ_w ,则有

$$\Phi_z(z) = \Phi_w(w) = \Phi_w \circ f(z).$$

由于 Φ_w 在上半平面解析且在实轴上取实值,可以设多项式解

$$\Phi_w = \sum_{k=0}^n a_k w^k, \quad a_k \in \mathbb{R}, a_n \neq 0,$$

设 $w = Re^{i\varphi}$,要求下列方程对任意 R > 0 只有平凡解 $\varphi = 0$ 和 $\varphi = \pi$

$$\operatorname{Im} \Phi_w = \sum_{k=1}^n a_k R^k \sin k \varphi = 0.$$

^{*2100011330@}stu.pku.edu.cn

^{†2100016344@}stu.pku.edu.cn

 $^{^{\}ddagger}2301110114@stu.pku.edu.cn$

对于 n=1 情况成立. 对于 $n \ge 2$ 情况,不妨设 $a_n > 0$,可以取充分大的 R 使得

$$\left| \sum_{k=1}^{n-1} a_k R^k \sin k\varphi \right| \leqslant \sum_{k=1}^{n-1} |a_k| R^k < \frac{1}{2} a_n R^n,$$

此时可以得到估计

$$-\frac{1}{2}a_nR^n + a_nR^n\sin n\varphi < \sum_{k=1}^n a_kR^k\sin k\varphi < \frac{1}{2}a_nR^n + a_nR^n\sin n\varphi,$$

于是当 $\varphi=\frac{\pi}{2n}$ 时,有 $\operatorname{Im}\Phi_w>\frac{1}{2}a_nR^n$;当 $\varphi=\frac{3\pi}{2n}$ 时,有 $\operatorname{Im}\Phi_w<-\frac{1}{2}a_nR^n$, 根据介值定理,方程在 $\frac{\pi}{2n} < \varphi < \frac{3\pi}{2n}$ 区间存在非平凡解,因此这种情况不成立.

$$\Phi_z(z) = a_0 + a_1 z^{\frac{\pi}{\alpha}}, \quad a_0, a_1 \in \mathbb{R}, a_1 \neq 0.$$

2. 设 $z = re^{i\theta}$,根据流线族方程 $Im \Phi_z(z) = C$ 有

$$a_1 r^{\frac{\pi}{\alpha}} \sin\left(\frac{\pi}{\alpha}\theta\right) = C,$$

于是可以得到方程的极坐标形式

$$r = \frac{a}{\left[\sin\left(\frac{\pi}{\alpha}\theta\right)\right]^{\frac{\alpha}{\pi}}}, \quad a > 0,$$

根据方程绘制的流线图如图 2 所示.

图 2: 题 1 区域流线示意图

题 2. 证明对于下列函数项级数在 $x \in \mathbb{R}$ 上一致收敛.

$$\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}.\tag{1}$$

证明. 根据均值不等式 $1 + nx^2 \ge 2\sqrt{n}|x|$ 可以得到

$$\left| \frac{x}{n(1+nx^2)} \right| \le \frac{1}{2n\sqrt{n}}, \quad \forall x \in \mathbb{R},$$

由于
$$\sum_{n=1}^{\infty} \frac{1}{2n\sqrt{n}}$$
 收敛,根据 M 判别法有 $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ 在 \mathbb{R} 上一致收敛.

题 3. 求下列级数的收敛半径:

$$\sum_{n=1}^{\infty} n! z^n, \quad \sum_{n=1}^{\infty} q^{n^2} z^n, (|q| < 1), \quad \sum_{n=1}^{\infty} z^{n!}.$$
 (2)

解. 1. 根据 $c_n = n!$ 有

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

2. 根据 $c_n = q^{n^2}$ 有

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} |q|^{-2n-1} = \infty.$$

3. 根据

$$c_n = \begin{cases} 1, & n = k!, k \in \mathbb{Z}, \\ 0, & \text{otherwise,} \end{cases}$$

有

$$R = \frac{1}{\overline{\lim}_{n \to \infty} |c_n|^{\frac{1}{n}}} = \frac{1}{1} = 1.$$

题 4. 设 $\sum_{n=0}^{\infty} a_n z^n$ 的收敛半径为 R,求 $\sum_{n=0}^{\infty} a_n z^{2n}$ 和 $\sum_{n=0}^{\infty} a_{2n} z^n$ 的收敛半径.

解. 设 $\sum_{n=0}^{\infty} a_n z^{2n}$ 和 $\sum_{n=0}^{\infty} a_{2n} z^n$ 的收敛半径分别为 R_1 和 R_2 ,有

$$R_{1} = \frac{1}{\overline{\lim_{n \to \infty}} |a_{n}|^{\frac{1}{2n}}} = \left(\frac{1}{\overline{\lim_{n \to \infty}} |a_{n}|^{\frac{1}{n}}}\right)^{1/2} = \sqrt{R},$$

$$R_{2} = \frac{1}{\overline{\lim_{n \to \infty}} |a_{2n}|^{\frac{1}{n}}} = \left(\frac{1}{\overline{\lim_{n \to \infty}} |a_{2n}|^{\frac{1}{2n}}}\right)^{2} = R^{2}.$$

题 5. 求 $\frac{1}{1+z^2}$ 在 $z_0 = a$ 处的 Taylor 展开通式, 其中 a 是实数.

解. 根据因式分解 $1 + z^2 = (z + i)(z - i)$ 有

$$\begin{split} \frac{1}{1+z^2} &= \frac{1}{2\mathrm{i}} \frac{1}{z-\mathrm{i}} - \frac{1}{2\mathrm{i}} \frac{1}{z+\mathrm{i}} \\ &= \frac{1}{2\mathrm{i}(a-\mathrm{i})} \frac{1}{1+\frac{z-a}{a-\mathrm{i}}} - \frac{1}{2\mathrm{i}(a+\mathrm{i})} \frac{1}{1+\frac{z-a}{a+\mathrm{i}}} \\ &= \frac{1}{2\mathrm{i}(a-\mathrm{i})} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z-a}{a-\mathrm{i}}\right)^n - \frac{1}{2\mathrm{i}(a+\mathrm{i})} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z-a}{a+\mathrm{i}}\right)^n \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n}{2\mathrm{i}} \left[\frac{1}{(a-\mathrm{i})^{n+1}} - \frac{1}{(a+\mathrm{i})^{n+1}} \right] (z-a)^n, \quad |z-a| < \sqrt{1+a^2}. \end{split}$$

制 記京大学物理学院 fui 数学物理方法 (上) 第四次作业参考答案

题 6. Legendre 多项式是如下生成函数在原点处的 Taylor 展开系数

$$\frac{1}{\sqrt{1 - 2\alpha z + z^2}} = 1 + P_1(\alpha)z + P_2(\alpha)z^2 + \cdots, \quad |z| < \min|\alpha \pm \sqrt{\alpha^2 - 1}|, \quad (3)$$

求出 $P_1(\alpha), P_2(\alpha), P_3(\alpha), P_4(\alpha)$.

解. 根据幂函数的 Taylor 展开可以得到

$$\frac{1}{\sqrt{1-2\alpha z+z^2}} = \frac{1}{\sqrt{(1-z)^2-2(\alpha-1)z}} = \frac{1}{1-z} \left[1 - \frac{2(\alpha-1)z}{(1-z)^2} \right]^{-1/2}$$

$$= \frac{1}{1-z} \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \cdots \left(\frac{1}{2} - k \right) \left[-\frac{2(\alpha-1)z}{(1-z)^2} \right]^k$$

$$= \sum_{k=0}^{\infty} \frac{(2k-1)!!}{k!} (\alpha-1)^k z^k (1-z)^{-2k-1}$$

$$= \sum_{k=0}^{\infty} \frac{(2k)!}{2^k k! k!} (\alpha-1)^k z^k \sum_{n=0}^{\infty} \frac{(2k+n)!}{n!(2k)!} z^n,$$

设 l=n+k, 由 $n\geqslant 0$ 有 k 的求和范围变为 $0\leqslant k\leqslant l$, 于是得到

$$\frac{1}{\sqrt{1 - 2\alpha z + z^2}} = \sum_{l=0}^{\infty} \sum_{k=0}^{l} \frac{(l+k)!}{k!k!(l-k)!} \left(\frac{\alpha - 1}{2}\right)^k z^l, \quad |z| < \min|\alpha \pm \sqrt{\alpha^2 - 1}|,$$

根据 Legendre 多项式的表达式

$$P_l(\alpha) = \sum_{k=0}^{l} \frac{(l+k)!}{k!k!(l-k)!} \left(\frac{\alpha-1}{2}\right)^k,$$

直接计算即可得到

$$P_1(\alpha) = \alpha,$$
 $P_2(\alpha) = \frac{1}{2}(3\alpha^2 - 1),$ $P_3(\alpha) = \frac{1}{2}(5\alpha^3 - 3\alpha),$ $P_4(\alpha) = \frac{1}{8}(35\alpha^4 - 30\alpha^2 + 3).$