

In the name of Allah, the Most Merciful, the Most Kind

Date: 08-11-2021

BCS 103 Digital Logic & Computer Architecture

Lecture 27 and 28

IN THE LAST LECTURE

We have discussed

Adders

- Half Adder
- Full Adder

n-bit Ripple Carry Adder

IN THE TODAY'S LECTURE

Today we will discuss about:

Subtractor

- Half Subtractor
- Full Subtractor

Parallel Binary Subtractor

TYPES OF BINARY SUBTRACTOR

- Half Subtractor
- Full Subtractor

Half Subtractor:

- •It is a combinational circuit with two inputs and two outputs.
- •Two inputs are A (minuend), B (subtrahend) and two outputs are D (difference) and B_o(borrow out).
- •It is used to perform subtraction of two bits.

RULES FOR BINARY SUBTRACTION

$$0 - 0 = 0$$
 $0 - 1 = 1$ (with borrow 1)
 $1 - 0 = 1$
 $1 - 1 = 0$

NOTE: In the second case (0-1) it is necessary to borrow a 1.

TRUTH TABLE OF HALF-SUBTRACTOR

INPUTS		OUTPUTS	
Minuend (A)	Subtrahend (B)	Difference (D)	Borrow (B _o)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

TRUTH TABLE OF HALF-SUBTRACTOR

INPUTS		OUTPUTS	
Minuend (A)	Minuend (A) Subtrahend (B)		Borrow (B _o)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

K-Map for difference (D)

K-Map for Borrow Output (B_o)

A^{B}	0	1	
0	0	1)*	AB
1	0	0	

From K-maps

$$D = \overline{A}B + A\overline{B}$$

$$B = \overline{A}B$$

HALF SUBTRACTOR USING BASIC GATES:

From K-maps

$$D = \overline{A}B + A\overline{B}$$

$$B = \overline{A}B$$

LOGIC DIAGRAM

LOGIC DIAGRAM:

BLOCK DIAGRAM:

Disadvantage of Half Subtractor:

Half subtractor can only perform the subtraction of two binary bits. But while performing the subtraction, it does not take into account the borrow of the lower significant stage.

- Full subtractor is a combinational circuit.
- It performs subtraction involving three bits (inputs)
 - 1. Minuend bit (X)
 - 2. Subtrahend bit (Y)
 - 3. Borrow from the previous stage (B_{in})
- It has two outputs
 - 1. Difference (D)
 - 2. Borrow out B_{out}.

TRUTH TABLE:

INPUTS			OUTPUTS	
X	Y	B _{in}	D	Bont
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

TRUTH TABLE:

INPUTS		OUTPUTS		
X	Y	B _{in}	D	Bont
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

K-Map For Difference Output (D)

$$D = \overline{X}\overline{Y}B_{\rm in} + \overline{X}Y\overline{B_{\rm in}} + X\overline{Y}\overline{B_{\rm in}} + XYB_{\rm in}$$

TRUTH TABLE:

INPUTS		OUTPUTS		
X	Y	B _{in}	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

K-Maps For Borrow Output (Bout)

$$B_{out} = \overline{XY} + \overline{X}B_{in} + YB_{in}$$

$$D = \overline{XYB}_{in} + \overline{XYB}_{in} + X\overline{YB}_{in} + XYB_{in}$$

$$D = (\overline{XY} + XY)B_{in} + (\overline{XY} + X\overline{Y})\overline{B}_{in}$$

$$D = (\overline{X} \oplus Y)B_{in} + (X \oplus Y)\overline{B}_{in}$$

$$D = X \oplus Y \oplus B_{in}$$

RELIZATION OF FULL SUBTRACTOR:

Parallel Binary Subtractor

Parallel binary subtractor can be implemented by cascading several full-subtractors.

Next slide shows the block level representation of a 4-bit parallel binary subtractor, which subtracts 4-bit $b_3b_2b_1b_0$ from 4-bit $a_3a_2a_1a_0$. It has 4-bit difference output $D_3D_2D_1D_0$ with borrow output B(out).

Parallel Binary Subtractor

Thanks