Formulário / formulary

24 de Março de 2015

Conteúdo

1	Ópt	tica / Optics	2
2	Las	${ m ers}\ { m e}\ { m guias}\ { m de}\ { m onda}\ /\ {\it lasers}\ {\it and}\ {\it waveguides}$	3
3	Inte	eracção Luz-Tecidos / $light$ - $tissue\ interaction$	4
	3.1	Difusão/Scattering	5
	3.2	características do olho humano / human eye main characterístics	6
	3.3	propriedades características térmicas e ópticas de tecidos biológicos / thermal and optical characterístic properties of biológical tissues	6
	3.4	propriedades da água / water properties	7
	3.5	plasma e efeitos mecânicos / plasma and mechanical effects	8
4	Tra	${f nsporte}\ /\ {\it transport}$	8
5	Dar	$oxed{nos}$ e Segurança / $safety$ and $damages$	9

1 Óptica / Optics

- formação de imagem / image formation
 - interface esférica

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$

- lentes finas / thin lenses

$$\frac{1}{f} = \frac{1}{s_o} + \frac{1}{s_i}$$

$$\frac{1}{f} = \frac{n_2 - n_1}{n_1} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = P$$

- lentes espessas / thick lenses

$$\frac{1}{f} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n_l - 1) d}{n_l R_1 R_2} \right) = P$$

$$h_1 = -\frac{f(n_l - 1) d}{R_2 n_l}$$

$$h_2 = -\frac{f(n_l - 1) d}{R_1 n_l}$$

-combinação de lentes / $lens\ combination$

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

ullet número-f / f number

$$f/\# = \frac{f}{D}$$

- difracção / diffraction
 - 1 abertura de largura b / one aperture of width b

$$I(\theta) = 4I_0 \frac{\sin^2(k \, b \, \theta/2)}{(k \, b \, \theta/2)^2}$$

- 2 aberturas verticais / 2 vertical apertures

$$I = 2I_0 \frac{\sin^2(k \, b \, \theta/2)}{(k \, b \, \theta/2)^2} \left[1 + \cos(k \, \Delta + k \, d \, \theta) \right]$$

• disco de Airy / Airy disk

$$r_{Airy} = 1.22 \,\lambda \times \left(\frac{f}{D}\right)$$

• Equações de Fresnel / Fresnel equations

$$(s \equiv \perp) \quad r_{\perp} = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2} \qquad t_{\perp} = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

$$(p \equiv \parallel) \quad r_{\parallel} = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_1 \cos \theta_2 + n_2 \cos \theta_1} \qquad t_{\parallel} = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_2 + n_2 \cos \theta_1}$$

$$T_{\perp/\parallel} = \frac{n_2 \cos \theta_2}{n_1 \cos \theta_1} t_{\perp/\parallel}^2$$

 \bullet Fluxo de Energia, Intensidade (W/m²) / energy flux

$$I_0 = \frac{1}{2} \epsilon_0 c E_0^2$$

Fig. 2.3. Reflectances in s- and p-plane for water (n=1.33)

• Doppler

$$f = f_0 + \Delta f$$
$$f = f_0 \frac{\mathbf{v} \pm v_{obs}}{\mathbf{v} \mp v_{fonte}}$$

2 Lasers e guias de onda / lasers and waveguides

ullet feixe Gaussiano (CW) / gaussian beam

$$I\left(r\right) = I_0 \exp\left(-\frac{2r^2}{w_0^2}\right)$$

 \bullet feixe Gaussiano (pulsado, duração $\tau)$ / pulsed gaussian beam, duration τ

$$I(r) = I_0 \exp\left(-\frac{2r^2}{w_0^2}\right) \exp\left(-\frac{8t^2}{\tau^2}\right)$$

• feixe / beam top-hat

$$I(r) = \frac{1}{1 + \left|\frac{r}{w}\right|^M} \qquad (M \gg 2)$$

 \bullet divergência de feixe α / beam divergence

$$\alpha = \frac{\Delta w}{\Delta z} = \frac{\lambda}{\pi \omega_0}$$

$$z_R = \frac{\pi \omega_0^2}{\lambda}$$

$$w^2 = w_0^2 \left(1 + \left(\frac{z}{z_R} \right)^2 \right)$$

$$D.O.F. = 2 \times \left(\frac{4\lambda}{\pi} \right) \left(\frac{f}{D} \right)^2$$

 $\bullet\,$ campo evanescente / $evansecent\ wave$

$$d_{\rm p} = \frac{E_z = E_0 e^{-\frac{z}{d_p}}}{2\pi n_1 \sqrt{\sin^2 \theta - \left(\frac{n_2}{n_1}\right)^2}}$$

3 Interacção Luz-Tecidos / light-tissue interaction

Fig. 3.1. Map of laser—tissue interactions. The circles give only a rough estimate of the associated laser parameters. Modified from Boulnois (1986)

3.1 Difusão/Scattering

• Rayleigh $(\delta, despolarização da luz)$

$$\sigma_r(\lambda) = \frac{128\pi^5 \alpha^2}{3 \lambda^4} \frac{6+3\delta}{6-7\delta} \qquad \alpha = \frac{n-1}{2\pi N_0} \sim \frac{\left(n^2-1\right)}{4\pi N_0}$$
$$\sigma_r(\lambda) \stackrel{n \to 1}{=} \frac{8\pi^3}{3} \frac{\left(n^2-1\right)^2}{\lambda^4 N_0^2}$$

• funções de fase / phase functions

Henyey-Greenstein
$$p(\theta) = \frac{1}{4\pi} \left[\beta + (1 - \beta) \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{3/2}} \right]$$

$$\delta\text{-Eddington} \qquad p(\theta) = \frac{1}{4\pi} \left\{ 2f \times \delta \left(1 - \cos\theta \right) + (1 - f) \left[1 + 3g\cos\theta \right] \right\}$$

• factor geométrico / geometric factor

$$g = \langle \cos \theta \rangle = \int p(\theta) \cos \theta dw$$

• livre percurso médio / mean free path

$$mfp = \frac{1}{\alpha + \alpha_s}$$

• coeficiente de atenuação reduzido / reduced extinction coefficient

$$\alpha_t' = \alpha + (1 - g) \, \alpha_s$$

• coeficiente de extinçao efectivo / effective extinction coefficient

$$\alpha_{eff} = \sqrt{3\alpha \, \alpha_t'}$$

• comprimento de difusão effectivo / effective diffusion length

$$L_{eff} = \frac{1}{\sqrt{3\alpha\alpha_t'}}$$

• difusão de 1ª ordem

$$I(z) = I_0 \exp\left[-\left(\alpha + \alpha_s\right)z\right]$$

• difusão / diffusion aproximation

$$I = I_c + I_d = Ae^{-\alpha_t z} + Be^{-\alpha_{eff} z}, \qquad A + B = I_0$$

3.2 características do olho humano / human eye main characterístics

- cornea,
 - $-e \sim 0.5 \, mm$
 - -n = 1.377
- ullet câmara anterior / anterior chamber
 - $-e \sim 3.04 \, mm$
 - -n = 1.336
- cristalino / lens, $n \sim 1.4$
- vítreo / vitreous, $n \sim 1.336$

3.3 propriedades características térmicas e ópticas de tecidos biológicos / thermal and optical characterístic properties of biological tissues

- \bullet similaridade com água / water similitude: $n \sim n_{\acute{a}gua}$
- Bausch&Lomb:

$$W = \frac{m_{H_2O}}{m_{total}} \qquad n_{632.8nm} = 1.53 - 0.2W$$

 $a_6 = 0,900704920$

$$\frac{n^2 - 1}{n^2 + 2} \frac{1}{\bar{\rho}} = a_0 + a_1 \bar{\rho} + a_2 \bar{T} + a_3 \bar{\lambda}^2 \bar{T} + \frac{a_4}{\bar{\lambda}^2} + \frac{a_5}{\bar{\lambda}^2 - \lambda_{UV}^2} + \frac{a_6}{\bar{\lambda}^2 - \lambda_{IR}^2} + a_7 \bar{\rho}^2$$

• capacidade calorífica específica / specific thermal capacity @ $37 \,^{\circ}$ C, $c \, (kJ \, kg^{-1} \, K^{-1})$

-1,66626219E-2

$$c \approx \left(1,55+2,8\frac{\rho_w}{\rho}\right)$$

 \bullet condutividade calorífica / thermal conductivity @ 37 °C, k (W m^-1 K^-1)

$$k \approx \left(0,06+0,57\frac{\rho_w}{\rho}\right)$$

 \bullet difusão térmica / temperature conductivity or diffusion @ 37 °C, $\mathbf{k}~(\mathrm{m^2\,s^{-1}})$

$$\mathbf{k} \approx \frac{k}{\rho c}$$

 $\mathbf{k} = 1.4 \times 10^{-7}\,\mathrm{m\,s^{-2}}$ (maioria dos tecidos biológicos (most biological tissues) a 37 °C)

3.4 propriedades da água / water properties

• índice de refracção: n=1.330

• densidade: $\rho_{40^{\circ}C} \sim 0.992 \text{ g/cm}^3$

• viscosidade: $\eta_{20^{\circ}C} = 0.001 \text{ Pa.s}$

•		0° C, 1atm	25° C, 1atm	37° C, 1atm
	capacidade calorífica $[J/(g.K)]$	~ 4.2176	~ 4.1814	~ 4.1785

•		$37^{\circ}C$	$100^{\circ}{\rm C}$
	$\lambda_{100^{\circ}C}^{vap}$, calor latente de vaporização[kJ/(mol)]	~ 43.5	~ 40.657

 $_{
m ccrosa@fc.up.pt}$

3.5 plasma e efeitos mecânicos / plasma and mechanical effects

• frequência plasma

$$\omega_{pl}^2 = \frac{N \, e^2}{\epsilon_0 m_e}$$

• absorção plasma

$$\alpha_{pl} = \frac{\nu_{ei}}{nc} \left(\frac{\omega_{pl}}{\omega}\right)^2$$

• ondas de choque / shock waves

$$p_1(r) = p_0(r) + \frac{\rho_0 c_1}{b} \frac{1}{r^2}$$

 $E_S \simeq (p_1 - p_0) A_s \Delta r$

• cavitação / cavitation

$$r_{max} = \frac{t_c}{0.916\sqrt{\frac{\rho}{p_{estat} - p_{vapor}}}}$$

4 Transporte / transport

• calor / heat

$$\frac{\partial T}{\partial t} = \mathbf{k} \nabla^2 T + \frac{S}{\rho c}$$

- solução homogénea:

$$T(r, z, t) = T_0 + \frac{A}{(4\pi kt)^{3/2}} e^{-\frac{r^2 + z^2}{4kt}}$$

- solução impulsional:

$$T(z - z_0, t - t_0) = G(z - z_0, t - t_0) = \frac{1}{\sqrt{4\pi \mathbf{k}(t - t_0)}} e^{-\frac{z^2}{4\mathbf{k}(t - t_0)}}$$

- solução equação não homogénea

$$T\left(z,t\right) = \frac{1}{\rho c} \int_{0}^{t} \int_{-\infty}^{+\infty} S\left(z',t'\right) G\left(z-z',t-t'\right) dz' dt'$$

extensão espacial

$$z_{therm}(t) = \sqrt{4kt}$$

• Difusão

$$\vec{j}^{N} = -D \nabla n$$

$$\nabla \cdot \vec{j}^{N} + \frac{\partial n}{\partial t} = 0$$

$$x_{D} \approx \sqrt{4Dt}$$

5 Danos e Segurança / safety and damages

• equação Arrhenius

$$\ln c(t) - \ln c_0 = -A \int_0^t e^{-\frac{\Delta E}{RT(t')}} dt' \equiv -\Omega$$
$$A \simeq \frac{KT}{h} e^{\frac{\Delta S}{R}}$$

• grau de dano / damage degree

$$D_d = \frac{c_0 - c(t)}{c_0} = 1 - e^{-\Omega}$$

• densidade óptica / optical density

$$OD(\lambda) = \log \frac{H_0}{MPE}$$

• MPE olho / eye

Fig. 5.2. Visible and near-IR MPE values for direct ocular exposure. Note that the correction factors (C) vary by wavelength. $C_A=10^{2(\lambda-0.700)}$ for $0.700-1.050~\mu m$. $C_A=5$ for $1.050-1.400~\mu m$. $C_B=1$ for $0.400-0.550~\mu m$. $C_B=10^{15(\lambda-0.550)}$ for $0.550-0.700~\mu m$. $C_C=1$ for $1.050-1.150~\mu m$. $C_C=10^{18(\lambda-1.150)}$ for $1.150-1.200~\mu m$. $C_C=8$ for $1.200-1.400~\mu m$

• protecção ocular - lasers pulsados

Table 5.3. Simplified method for selecting laser eye protection intrabeam viewing for wavelengths between 400 nm and 1400 nm. Data from American National Standards Institute's (ANSI) Z136.1 (1993)

Q-switched l (1 ns to 0.1 n		Non-Q-switched lasers (0.4 ms to 10 ms)		Attenuation	
Maximum output energy (J)	$\begin{array}{c} \text{Maximum} \\ \text{radiant} \\ \text{exposure} \\ (\text{J/cm}^2) \end{array}$	Maximum output energy (J)	$\begin{array}{c} \text{Maximum} \\ \text{radiant} \\ \text{exposure} \\ \text{(J/cm}^2) \end{array}$	Attenuation factor	OD
10	20	100	200	10 ⁸	8
1	2	10	20	10 ⁷	7
10^{-1}	2×10^{-1}	1	2	10^{6}	6
10^{-2}	2×10^{-2}	10^{-1}	2×10^{-1}	10 ⁵	5
10^{-3}	2×10^{-3}	10^{-2}	2×10^{-2}	10 ⁴	4
10^{-4}	2×10^{-4}	10^{-3}	2×10^{-3}	10^{3}	3
10^{-5}	2×10^{-5}	10^{-4}	2×10^{-4}	10^{2}	2
10^{-6}	2×10^{-6}	10^{-5}	2×10^{-5}	10 ¹	1

 $\bullet\,$ protecção ocular/eye proteccion - lasers CW

CW lasers momentary (0.25s to 10	s)	CW lasers long-term sta (greater than		Attenuation		
Maximum output power	Maximum irradiance	Maximum output power	Maximum irradiance	Attenuation factor	OD	
(W)	(W/cm^2)	(W)	(W/cm^2)			
NR	NR	NR	NR	NR	NR	
NR	NR	NR	NR	NR	NR	
NR	NR	1	2	10 ⁶	6	
NR	NR	10^{-1}	2×10^{-1}	10 ⁵	5	
10	20	10^{-2}	2×10^{-2}	10 ⁴	4	
1	2	10^{-3}	2×10^{-3}	10^{3}	3	
10-1	2×10^{-1}	10^{-4}	2×10^{-4}	10^{2}	2	
10^{-2}	2×10^{-2}	10^{-5}	2×10^{-5}	10 ¹	1	

OD: optical density.
NR: not recommended.

10