SEQUENCE LISTING

<110>	EXONHIT THERAPEUTICS SA	
<120>	Compositions a,d methods to inhibit the production of Abeta peptid	e
<130>	B0229wo	
<150>	us 60/517,401	
<151>	2003-11-06	
<160>	32	
<170>	PatentIn version 3.1	
<210>	1	
<211>	1368	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<221>	CDS	
<222>	(1)(1368)	
<223>		
<400>	1 caa gee etg eee tog ete etg etg tog atg gge geg gga gtg 48	
Met Al	caa gcc ctg ccc tgg ctc ctg ctg tgg atg ggc gcg gga gtg 48 Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val 5 10 15	
1 sta ss	gcc cac ggc acc cag cac ggc atc cgg ctg ccc ctg cgc agc 96	
Leu Pr	Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30	
aac ct		
Gly Le	ggg ggc gcc ccc ctg ggg ctg cgg ctg ccc cgg gag acc gac 144 Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 45	
naa na	ccc gag gag ccc ggc cgg agg ggc agc ttt gtg gag atg gtg 192	
Glu Gl 50	Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val	
50	33	

gac Asp 65	aac Asn	ctg Leu	agg Arg	ggc Gly	aag Lys 70	tcg Ser	ggg Gly	cag Gln	ggc Gly	tac Tyr 75	tac Tyr	gtg Val	gag Glu	atg Met	acc Thr 80	240
gtg Va l	ggc Gly	agc Ser	ccc Pro	ccg Pro 85	cag Gln	acg Thr	ctc Leu	aac Asn	atc Ile 90	ctg Leu	gtg Val	gat Asp	aca Thr	ggc Gly 95	agc Ser	288
agt Ser	aac Asn	ttt Phe	gca Ala 100	gtg Val	ggt Gly	gct Ala	gcc Ala	ccc Pro 105	cac His	ccc Pro	ttc Phe	ctg Leu	cat His 110	cgc Arg	tac Tyr	336
					tcc Ser											384
tat Tyr	gtg Val 130	ccc Pro	tac Tyr	acc Thr	cag Gln	ggc Gly 135	aag Lys	tgg Trp	gaa Glu	ggg Gly	gag Glu 140	ctg Leu	ggc Gly	acc Thr	gac Asp	432
ctg Leu 145	gta Val	agc Ser	atc Ile	ccc Pro	cat His 150	ggc Gly	ccc Pro	aac Asn	gtc Val	act Thr 155	gtg Val	cgt Arg	gcc Ala	aac Asn	att Ile 160	480
gct Ala	gcc Ala	atc Ile	act Thr	gaa Glu 165	tca Ser	gac Asp	aag Lys	ttc Phe	ttc Phe 170	atc Ile	aac Asn	ggc Gly	tcc Ser	aac Asn 175	tgg Trp	528
gaa Glu	ggc Gly	atc Ile	ctg Leu 180	ggg Gly	ctg Leu	gcc Ala	tat Tyr	gct Ala 185	gag Glu	att Ile	gcc Ala	agg Arg	atc Ile 190	att Ile	gga Gly	576
ggt Gly	atc Ile	gac Asp 195	cac His	tcg Ser	ctg Leu	tac Tyr	aca Thr 200	ggc Gly	agt Ser	ctc Leu	tgg Trp	tat Tyr 205	aca Thr	ccc Pro	atc Ile	624
cgg Arg	cgg Arg 210	gag Glu	tgg Trp	tat Tyr	tat Tyr	gag Glu 215	gtc Val	atc Ile	att Ile	gtg Val	cgg Arg 220	gtg Val	gag Glu	atc Ile	aat Asn	672
gga Gly 225	cag Gln	gat Asp	ctg Leu	aaa Lys	atg Met 230	gac Asp	tgc Cys	aag Lys	gag Glu	tac Tyr 235	aac Asn	tat Tyr	gac Asp	aag Lys	agc ser 240	720
att Ile	gtg Val	gac Asp	agt Ser	ggc Gly 245	acc Thr	acc Thr	aac Asn	ctt Leu	cgt Arg 250	ttg Leu	ccc Pro	aag Lys	aaa Lys	gtg Val 255	ttt Phe	768
gaa Glu	gct Ala	gca Ala	gtc Val 260	aaa Lys	tcc Ser	atc Ile	aag Lys	gca Ala 265	gcc Ala	tcc Ser	tcc Ser	acg Thr	gag Glu 270	aag Lys	ttc Phe	816
cct Pro	gat Asp	ggt Gly 275	ttc Phe	tgg Trp	cta Leu	gga Gly	gag Glu 280	cag Gln	ctg Leu	gtg Val	tgc Cys	tgg Trp 285	caa Gln	gca Ala	ggc Gly	864
acc Thr	acc Thr 290	cct Pro	tgg Trp	aac Asn	att Ile	ttc Phe 295	cca Pro	gtc Val	atc Ile	tca Ser	ctc Leu 300	tac Tyr	cta Leu	atg Met	ggt Gly	912
gag Glu 305	gtt Val	acc Thr	aac Asn	cag Gln	tcc Ser 310	ttc Phe	cgc Arg	atc Ile	acc Thr	atc Ile 315	ctt Leu	ccg Pro	cag Gln	caa Gln	tac Tyr 320	960
ctg Leu	cgg Arg	cca Pro	gtg Val	gaa Glu 325	gat Asp	gtg Val	gcc Ala	acg Thr	tcc Ser 330	caa Gln	gac Asp	gac Asp	tgt Cys	tac Tyr 335	aag Lys	1008

WO 2005/045021 PCT/IB2004/003897

ttt Phe	gcc Ala	atc Ile	tca Ser 340	cag Gln	tca Ser	tcc Ser	acg Thr	ggc Gly 345	act Thr	gtt Val	atg Met	gga Gly	gct Ala 350	gtt Val	atc Ile	1056
	gag Glu		ttc Phe	tac Tyr	gtt Val	gtc Val	ttt Phe 360	gat Asp	cgg Arg	gcc Ala	cga Arg	aaa Lys 365	cga Arg	att Ile	ggc Gly	1104
ttt Phe	gct Ala 370	gtc Val	agc Ser	gct Ala	tgc Cys	cat His 375	gtg Val	cac His	gat Asp	gag Glu	ttc Phe 380	agg Arg	acg Thr	gca Ala	gcg Ala	1152
gtg Val 385	gaa Glu	ggc Gly	cct Pro	ttt Phe	gtc Val 390	acc Thr	ttg Leu	gac Asp	atg Met	gaa Glu 395	gac Asp	tgt Cys	ggc Gly	tac Tyr	aac Asn 400	1200
att Ile	cca Pro	cag Gln	aca Thr	gat Asp 405	gag Glu	tca Ser	acc Thr	ctc Leu	atg Met 410	acc Thr	ata Ile	gcc Ala	tat Tyr	gtc Val 415	atg Met	1248
gct Ala	gcc Ala	atc Ile	tgc Cys 420	gcc Ala	ctc Leu	ttc Phe	atg Met	ctg Leu 425	cca Pro	ctc Leu	tgc Cys	ctc Leu	atg Met 430	gtg Val		1296
cag Gln	tgg Trp	cgc Arg 435	tgc Cys	ctc Leu	cgc Arg	tgc Cys	ctg Leu 440	cgc Arg	cag Gln	cag Gln	cat His	gat Asp 445	gac Asp	ttt Phe	gct Ala	1344
gat Asp	gac Asp 450	atc Ile	tcc Ser	ctg Leu	ctg Leu	aag Lys 455	tga									1368

<210> 2

<211> 455

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val 10 15 Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val 50 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 65 70 75 80

val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser

85

90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 100 105 110 Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 115 120 125 Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 135 Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 145 150 155 160 Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175 Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Ile Ile Gly 180 185 190 Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile 195 200 205 Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn 210 220 Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser 235 235 Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe 245 250 255 Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe 260 265 270 Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly 275 280 285 Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly 290 295 300 Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr 305 310 315 320 Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys 325 330 335 Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile 340 345 350

5/13

Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly 355 360 365

Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala 370 375 380

Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn 385 390 395 400

Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met 405 410 415

Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys 420 425 430

Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala 435 440 445

Asp Asp Ile Ser Leu Leu Lys 450 455

<210> 3

<211> 6

<212> PRT

<213> artificial sequence

<220>

<223> distinctive fragment

<400> 3

Ile Ala Arg Ile Ile Gly
1

<210> 4

<211> 7

<212> PRT

<213> artificial sequence

<220>

<223> distinctive fragment

<400> 4

Glu Ile Ala Arg Ile Ile Gly
1

```
<210> 5
```

<211> 8

<212> PRT

<213> artificial sequence

<220>

<223> distinctive fragment

<400> 5

Glu Ile Ala Arg Ile Ile Gly Gly 1

<210> 6

<211> 8

<212> PRT

<213> artificial sequence

<220>

<223> distinctive fragment

<400> 6

Ala Glu Ile Ala Arg Ile Ile Gly
1

<210> 7

<211> 9

<212> PRT

<213> artificial sequence

<220>

<223> distinctive fragment

<400> 7

Ala Glu Ile Ala Arg Ile Ile Gly Gly
1 5

<210> 8

<211> 10

<212> PRT

<213> artificial sequence

<220>

<223> distinctive fragment

<400> 8

Ala Glu Ile Ala Arg Ile Ile Gly Gly Ile 1 5 10

<210> 9

<211> 9

<212> PRT

<213> artificial sequence

<220>

<223> distinctive fragment

<400> 9

Tyr Ala Glu Ile Ala Arg Ile Ile Gly
1

<210> 10

<211> 10

<212> PRT

<213> artificial sequence

<220>

<223> distinctive fragment

<400> 10

Tyr Ala Glu Ile Ala Arg Ile Ile Gly Gly
1 5 10

<210> 11

<211> 11

<212> PRT

<213> artificial sequence

<220>

<223> distinctive fragment

10

<400> 11

Tyr Ala Glu Ile Ala Arg Ile Ile Gly Gly Ile 1 5 10

<210> 12

<211> 18

<212> DNA

<213> artificial sequence

<220>

<223> Probe

<400> 12

attgccagga tcattgga 18

<210> 13

<211> 10

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 13 aggcatcctg

-55-44-1-15

<210> 14

<211> 10

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 14

gggctggcct 10

<210> 15

<211> 10

<212> DNA

PCT/IB2004/003897 WO 2005/045021

<213> artificial sequence

<220>

<223> primer

<400> 15

atgctgagat

10

6

10

<210> 16

<211> 6

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 16 tgccag

6

<210> 17

<211> 6

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 17 gatcat

<210> 18

<211> 10

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 18 tggaggtatc

<210> 19

<211> 10

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 19

10 gaccactcgc

<210> 20

<211> 10

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 20 tgtacacagg

10

<210> 21

<211> 10

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 21

10 cagtctctgg

<210> 22

<211> 6

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> caggat	22	6
<210>	23	
<211>	8	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<400> ccagga	23 tc	8
<210>	24	
<211>	10	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<400> gccagga	24 atca	10
<210>	25	
<211>	18	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<400> attgcc	25 agga tcattgga	18
<210>	26	
<211>	21	
<212>	DNA	
<213>	artificial sequence	

<220>	·	
<223>	primer	
<400> tgactg	26 ggaa caccccataa c	21
<210>	27	
<211>	19	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<400> agttgt	27 gcat gggagcgag	19
<210>	28	
<211>	19	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<400> cccgca	28 gacg ctcaacatc	19
<210>	29	
<211>	21	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<400> cagcga	29 gtgg tcgatacctc c	21
<210>	30	
<211>	24	

<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<400> gcggat	30 cccac catggcccaa gccc	24
<210>	31	
<211>	33	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	primer	
<400> ggggaa	31 attca cttcagcagg gagatgtcat cag	33
<210>	32	
<211>	10	
<212>	PRT	
<213>	artificial sequence	
<220>		
<223>	fluorogenic APP-based peptide MCA	
<220>		
<221>	MOD_RES	
<222>	(10)(10)	
<223>	AMIDATION	
Ser Gl	lu Val Asn Leu Asp Ala Glu Phe Lys 5 10	