Lección 1: Introducción y Generalidades

Laboratorio de Bio-Robótica

Dr. Jesús Savage Carmona

Facultad de Ingeniería, UNAM

biorobotics.fi-p.unam.mx

CONTENIDO

- Introducción
- Modelos Tradicionales
- Modelos Reactivos
- Modelos Probabilísticos
- Modelos Híbridos

Introducción

- Los robots de servicio son sistemas de software y hardware, autónomos o semiautónomos, que se encuentran en ambientes dinámicos y complejos.
- Su autonomía consiste en la habilidad de tomar decisiones basadas en una representación interna del mundo.
- Los robots efectúan cambios en el medio ambiente mediante la ejecución de acciones.
- Han surgido de áreas de investigación como son la Inteligencia Artificial, el Procesamiento de Señales y la Teoría de Control

Capacidades de los robots de servicio

Para cumplir con tareas difíciles, los robots necesitan las siguientes capacidades básicas:

 Deben ser reactivos, es decir, reaccionar oportuna y apropiadamente a eventos imprevistos.

 Deben ser capaces de resolver tareas por medio de planes.

Capacidades de los robots de servicio

- Deben de resolver sus tareas eficazmente, haciendo uso de procedimientos probados en situaciones rutinarias
- Deben de tratar con interacciones, positivas y negativas, con otros robots y humanos
- Los robots necesitan adaptarse a cambios en las condiciones del medio ambiente.

ROBOTS DE SERVICIO

A Robot in Every Home: Overview/The Robotic Future. Bill Gates, Scientific American (2007)

Modelos Tradicionales

Características:

Se tiene representación del medio ambiente, con una representación simbólica de los objetos en cada cuarto.

Éstos se representan por medio de poligonos en donde se tienen su vertices Xi, Yi, ordenados en el sentido al de las manceillas del reloj. Estos poligonos separan el espacio ocupado y el espacio libre en donde puede navegar el robot.

Modelos

Tradicionales

Características:

Se planean los movimientos y las acciones usando técnicas de inteligencia artificial tradicionales de busquedas en redes topológicas.

Caminos Locales para cada cuarto

Camino Global

Planeador de Movimientos

El problema básico de búsqueda:

Dados:

Punto inicial (nodo)

Punto meta (nodo)

Un mapa topológico del lugar (nodos y conexiones)

Metas:

Encontrar alguna ruta o encontrar "la mejor" ruta (puede ser la más corta)

Atravesar la ruta

Planeador de Movimientos

Del mapa topológico se construye un árbol.

Planeador de Movimientos

Algoritmos de Busqueda

Puede buscarse:

Alguna ruta La ruta óptima

Modelos Tradicionales

Características:

Se tiene una organización serial, si un modulo falla todo el sistema falla.

Este tipo de sistemas no es adecuado para entornos dinámicos ni para robots que presentan errores en el movimiento y sensado.

Características:

- Basado en el comportamiento de los insectos.
- No es necesaria una representación del medio ambiente.
- No utiliza planeación de acciones ni de movimientos.
- Es adecuado para entornos dinámicos y con errores en el sensado.
- Esta basado en comportamientos funcionando en paralelo.

Características:

Los comportamientos se representan usando diagramas estimulo- respuesta o ER.

La salida de cada comportamiento debe ser instantánea a partir del momento que hay una entrada.

Los comportamientos son independientes entre si.

Características:

Los comportamientos se pueden diseñar usando máquinas de estados, campos potenciales, redes neuronales, etc.

Características:

Los ER se pueden combinar en diferentes estructuras conectandolos en paralelo sumando la salida de cada uno de ellos o seleccionando una de las salidas utilizando un arbitro.

Modelos Probabilísticos

Características:

Esta basado en el concepto que tanto el sensado del medio ambiente que hace el robot, así como el sus movimientos son dependientes de variables aleatorias, las cuales pueden ser manipuladas utilizando conceptos probabilísticos.

Modelos Probabilísticos

Errores en el sensado

Errores en el movimiento

Se puede obtener la estadística de éstos errores para usar modelos que los corrijan.

Modelos Probabilísticos

Características:

Se utilizan cadenas de Markov Ocultas (HMM), Filtros de Particulas, Procesos de Decisión de Markov, etc.

Modelos Híbridos

Características:

Se combinan las arquitecturas tradicionales, reactivas y probabilisticas para suplir las deficiencias de cada una de ellos.

Modelos Híbridos Sistema ViRBot

