Corrigé TD1 - Compléments sur l'étude des fonctions

Corrigé de l'exercice 2

1)

$$f(x) = x^4 - 2x^3 - 36x^2 + 11x - 3.$$

La fonction f est un polynôme, qui est donc de classe $\mathcal{C}^{\infty}(\mathbb{R})$. Elle est en particulier continue et infiniment dérivable. Ainsi, on peut calculer :

$$f'(x) = 4x^3 - 6x^2 - 72x + 11,$$

et,

$$f''(x) = 12x^2 - 12x - 72.$$

On a donc f'' qui est un polynôme du second degré. Pour étudier la convexité de f, il faut trouver les solutions de f''(x) = 0. Pour se faire, on calcule le déterminant :

$$\Delta = (-12)^2 - 4 \times 12 \times (-72)$$
= 144 + 3456
= 3600
$$\Rightarrow \sqrt{\Delta} = 60$$

Puisque $\Delta > 0$, on a deux solutions, qui sont données par :

$$x_1 = \frac{-(-12) - \sqrt{\Delta}}{2 \times 12}$$
$$= \frac{12 - 60}{24}$$
$$= \boxed{-2}$$

et,

$$x_2 = \frac{-(-12) + \sqrt{\Delta}}{2 \times 12}$$
$$= \frac{12 + 60}{24}$$
$$= \boxed{3}$$

De plus, on a $f''(0) = 12 \times 0^2 - 12 \times 0 - 72 = -72$, ce qui nous donne le signe du polynôme de part et d'autre des solutions. On peut donc résumer ces informations dans le tableau ci-dessous :

x	$-\infty$		-2		3		$+\infty$
f''(x)		+	0	_	0	+	
f est		convexe		concave		convexe	

2) L'équation de la tangeante d'une fonction f en un point a s'écrit sous la forme :

$$y = f'(a)(x - a) + f(a).$$

Ainsi, on peut déduire les équations de tangeantes aux points d'inflexions comme étant :

$$y_1 = f'(-2)(x - (-2)) + f(-2)$$

= 99(x + 2) - 137
= $99x + 61$,

et,

$$y_2 = f'(3)(x-3) + f(3)$$

= -151(x-3) - 267
= \bigc| -151x + 186 \bigc|.

Corrigé de l'exercice 3

$$f(x) = x \times 0.5^x = xe^{x\ln(0.5)}$$

• On sait que $x \mapsto x$ est $\mathcal{C}^{\infty}(\mathbb{R})$ et $x \mapsto e^x$ est $\mathcal{C}^{\infty}(\mathbb{R})$, donc par stabilité du produit, f est également $\mathcal{C}^{\infty}(\mathbb{R})$. La fonction f est donc continue et infiniment dérivable. Ainsi, on peut calculer :

$$f'(x) = e^{x \ln(0.5)} + x \ln(0.5)e^{x \ln(0.5)}$$
$$= (1 + x \ln(0.5))e^{x \ln(0.5)},$$

et,

$$f''(x) = \ln(0.5)e^{x\ln(0.5)} + x\ln(0.5)^2 e^{x\ln(0.5)} + \ln(0.5)e^{x\ln(0.5)}$$
$$= (2 + x\ln(0.5))\ln(0.5)e^{x\ln(0.5)}.$$

• Pour trouver d'éventuels extrema, on résout :

$$f'(x) = 0 \Rightarrow (1 + x \ln(0.5))e^{x \ln(0.5)} = 0$$

$$\Rightarrow (1 + x \ln(0.5)) = 0 \quad \text{ou} \quad \underbrace{e^{x \ln(0.5)} = 0}_{\text{impossible, car } e^x > 0}$$

$$\Rightarrow x \ln(0.5) = -1$$

$$\Rightarrow x \ln(0.5) = -1$$

Or, on a également f'(0) = 1, et $f'(2) = (1 + 2\ln(0.5))0.5^2 \simeq -0.10$, ce qui veut dire que la dérivée change de signe de part et d'autre du point critique x_1 . Ainsi, on a bien un extremum en x_1 , plus

spécifiquement, il s'agit d'un maximum car on passe d'une dérivée positive à négative (càd que la fonction est croissante puis décroissante).

• Pour étudier la convexité de f, on résout :

$$f''(x) = 0 \Rightarrow (2 + x \ln(0.5)) \ln(0.5)e^{x \ln(0.5)} = 0$$

$$\Rightarrow x_2 = -\frac{2}{\ln(0.5)} \approx 2.89$$

De plus, $f''(0) \simeq -0.70$, et $f''(3) \simeq 0.007$. La fonction est donc concave avant x_2 et convexe après.

• Pour finir, on peut calculer la valeur de notre maximum : $f(x_1) = -\frac{1}{\ln(0.5)}e^{-1} = -\frac{1}{\ln(0.5)e}$. Il est également facile de voir que $\lim_{x\to-\infty} f(x) = -\infty$ et $\lim_{x\to+\infty} f(x) = 0$. On a donc une asymptote horizontale d'équation y = 0.

Finalement, il est possible de résumer toutes ces informations dans le tableau ci-dessous :

x	$-\infty$	$\frac{-1}{ln(0.5)}$	$\frac{-2}{ln(0.5)}$	$+\infty$
f'(x)	+	0	_	
f(x)	$-\infty$	$\frac{-1}{\ln(0.5)e}$		0
f''(x)		_	0 -	+
f est		concave	convexe	

Corrigé de l'exercice 4

$$g(x) = \frac{\ln(4x)}{r}$$

La fonction $x \mapsto \ln(x)$ est $\mathcal{C}^{\infty}(\mathbb{R}_{*}^{+})$ et $x \mapsto \frac{1}{x}$ est $\mathcal{C}^{\infty}(\mathbb{R}^{+})$, donc en tant que produit de fonctions, g est $\mathcal{C}^{\infty}(\mathbb{R}_{*}^{+})$. On peut donc en particulier la dériver deux fois sur son ensemble de définition $\mathcal{D}_{g} = \mathbb{R}^{*+}$:

$$g'(x) = \frac{4}{4x} \times \frac{1}{x} + \ln(4x) \times \left(-\frac{1}{x^2}\right)$$
$$= \left\lceil \frac{1 - \ln(4x)}{x^2} \right\rceil,$$

et,

$$g''(x) = -\frac{4}{4x} \times \frac{1}{x^2} + (1 - \ln(4x)) \times \left(-\frac{2x}{x^4}\right)$$
$$= -\frac{1}{x^3} + (1 - \ln(4x)) \times \left(-\frac{2}{x^3}\right)$$
$$= \left[\frac{2\ln(4x) - 3}{x^3}\right].$$

• Pour trouver d'éventuels extrema, on résout :

$$g'(x) = 0 \Rightarrow \frac{1 - \ln(4x)}{x^2} = 0$$
$$\Rightarrow 1 - \ln(4x) = 0$$
$$\Rightarrow \ln(4x) = 1$$
$$\Rightarrow 4x = e^1$$
$$\Rightarrow x = \frac{e}{4} \approx 0.68$$

De plus, on a
$$g'(\frac{e}{8}) = \frac{1 - \ln(4 \times \frac{e}{8})}{(\frac{e}{8})^2} = \frac{1 - \ln(e) + \ln(2)}{(\frac{e}{8})^2} = \frac{\ln(2)}{(\frac{e}{8})^2} > 0$$
 et $g'(\frac{e}{2}) = \frac{1 - \ln(4 \times \frac{e}{2})}{(\frac{e}{8})^2} = \frac{\ln(2)}{(\frac{e}{8})^2} < 0$. La dérivée étant croissante puis décroissante, g admet un maximum en $x_0 = \frac{e}{4}$.

 \bullet Pour étudier la convexité de f, on résout :

$$g''(x) = 0 \Rightarrow \frac{2\ln(4x) - 3}{x^3} = 0$$
$$\Rightarrow 2\ln(4x) - 3 = 0$$
$$\Rightarrow \ln(4x) = \frac{3}{2}$$
$$\Rightarrow 4x = e^{\frac{3}{2}}$$
$$\Rightarrow \left[x = \frac{e^{\frac{3}{2}}}{4} \approx 1.12\right]$$

Or, on voit que
$$g''(\frac{e}{4}) = \frac{2\ln(4\times\frac{e}{4}) - 3}{(\frac{e}{4})^3} = \frac{-1}{(\frac{e}{4})^3} < 0$$
 et $g''(\frac{e^2}{4}) = \frac{2\ln(4\times\frac{e^2}{4}) - 3}{(\frac{e^2}{4})^3} = \frac{1}{(\frac{e^2}{4})^3} > 0$.

• Pour finir, on peut calculer la valeur du maximum : $g(\frac{e}{4}) = \frac{\ln(4 \times \frac{e}{4})}{\frac{e}{4}} = \frac{1}{\frac{e}{4}} = \frac{4}{e} \simeq 1.47$. Et voir que $\lim_{x \to -\infty} g(x) = -\infty$ et $\lim_{x \to +\infty} g(x) = 0$ par croissance comparée entre le logarithme et la fonction identitée. Ces résultats sont résumés dans le tableau ci-dessous :

x	$0 \qquad \qquad \frac{e}{4}$	$\frac{e^{\frac{3}{2}}}{4}$	$+\infty$
g'(x)	+ 0	_	
g(x)	$-\infty$ $\frac{4}{e}$		0
g''(x)	_	0 +	
g est	concave	concave convexe	

Corrigé de l'exercice 5

$$f(x) = \frac{1}{1 + e^{-x}}$$

1) La fonction f est $\mathcal{C}^{\infty}(\mathbb{R})$ donc on peut calculer :

$$f'(x) = -\frac{-e^{-x}}{(1+e^{-x})^2}$$
$$= \frac{e^{-x}}{(1+e^{-x})^2},$$

et résoudre

$$f'(x) = 0 \Rightarrow \frac{e^{-x}}{(1 + e^{-x})^2} = 0$$
$$\Rightarrow e^{-x} = 0$$
$$\Rightarrow \text{ impossible car } e^x > 0, \ \forall x \in \mathbb{R}.$$

La fonction est donc strictement croissante et n'admet pas d'extrema. Or, en se rappelant que $\lim_{x\to -\infty} e^{-x} = +\infty$ et $\lim_{x\to +\infty} e^{-x} = 0$, on voit que f admet deux asymptotes horizontales car $\lim_{x\to -\infty} f(x) = 0$ et $\lim_{x\to +\infty} f(x) = 1$. On peut maintenant dresser le tableau de variation :

x	$-\infty$	$+\infty$
f'(x)	+	
f(x)	0	, 1

2) Si on note $u(x) = e^{-x}$ et $v(x) = (1 + e^{-x})^2$, la dérivée seconde de f est donnée par :

$$f''(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$$

$$= \frac{-e^{-x} \times (1 + e^{-x})^2 - e^{-x} \times 2(-e^{-x})(1 + e^{-x})}{(1 + e^{-x})^4}$$

$$= \frac{-e^{-x} \times (1^2 + e^{-2x} + 2e^{-x} - 2e^{-x} - 2e^{-2x})}{(1 + e^{-x})^4}$$

$$= \frac{-e^{-x} \times (1 - e^{-2x})}{(1 + e^{-x})^4}$$

$$= \left[\frac{e^{-3x} - e^{-x}}{(1 + e^{-x})^4}\right].$$

Pour étudier la convexité de f, on résout :

$$f''(x) = 0 \Rightarrow \frac{e^{-3x} - e^{-x}}{(1 + e^{-x})^4} = 0$$
$$\Rightarrow e^{-3x} - e^{-x} = 0$$
$$\Rightarrow e^{-3x} = e^{-x}$$
$$\Rightarrow \boxed{x = 0},$$

car la fonction exponentielle est bijective. De plus, $f(0) = \frac{1}{1+e^0} = \frac{1}{2}$, donc $x_0 = (0, \frac{1}{2})$. La tangente en ce point a pour équation :

$$y = f'(x_0)(x - x_0) + f(x_0)$$
$$= \frac{e^0}{(1 + e^0)^2}(x - 0) + \frac{1}{2}$$
$$= \frac{1}{4}x + \frac{1}{2}.$$

3) Ci-dessous, le graph de la fonction f (en noir) et la tangente en x_0 (en rouge) :

4) On a vu que f est bornée par 1 donc f(x) = 2 n'a pas de solution.

5)

$$f(x) = 0.7 \Rightarrow \frac{1}{1 + e^{-x}} = 0.8$$
$$\Rightarrow 1 + e^{-x} = \frac{5}{4}$$
$$\Rightarrow e^{-x} = \frac{1}{4}$$
$$\Rightarrow -x = \ln(\frac{1}{4})$$
$$\Rightarrow \boxed{x = \ln(4)}.$$

6) On a vu que $\lim_{x \to -\infty} f(x) = 0$ et $\lim_{x \to +\infty} f(x) = 1$. De plus, f est continue et f'(x) > 0, $\forall x \in \mathbb{R}$, c'est à dire f est strictement monotone. Ainsi, f est une bijection entre \mathbb{R} et]0,1[. On pose y = f(x):

$$y = \frac{1}{1 + e^{-x}} \Rightarrow 1 + e^{-x} = \frac{1}{y}$$

$$\Rightarrow e^{-x} = \frac{1}{y} - 1$$

$$\Rightarrow e^{-x} = \frac{1 - y}{y}$$

$$\Rightarrow -x = \ln(\frac{1 - y}{y})$$

$$\Rightarrow x = \ln(\frac{y}{1 - y})$$

$$\Rightarrow f^{-1}(y) = \ln(\frac{y}{1 - y}).$$

 f^{-1} est la fonction réciproque de f, définie sur]0,1[et à valeurs dans \mathbb{R} , dont le graph est donné ci-dessous :

Corrigé TD 2 - Extrema des fonctions à deux variables

Corrigé TD 3 - Intégrales doubles