Linear Programming Iterated Dominance

Computational Game Theory – 2018/2019

(partially adapted from Kevin Leyton-Brown)

Maximize:

$$x_i$$
 produced quantity of product j

total profit $Z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$

Subject to:

 c_i profit per unit of product j

$$\begin{array}{c} a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n\leq b_1\\ \vdots\\ a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n\leq b_m \end{array}$$

 a_{ij} quantity of resource i consumed in the production of one unit of product j

Example:

	Product			
Resource	Regular	Premium	Resource Availability	
Raw gas Production time Storage	7 m ³ /tonne 10 hr/tonne 9 tonnes	11 m ³ /tonne 8 hr/tonne 6 tonnes	77 m³/week 80 hr/week	
Profit	150/tonne	175/tonne		
	$x_I \rightarrow Regular$	$x_2 \rightarrow Premium$	$x_1 \ge 0$ x_2	
Total profit: $150x_1 + 175x_2$		\longrightarrow max 2	$Z = 150x_1 + 175x_2$	
Gas:	$7x_1 + 11x_2$ ———		$\Rightarrow 7x_1 + 11x_2 \le 77$	
Time:	$10x_1 + 8x_2$ ——	$>10x_1 + 8x_2 \le 80$		
Storage:			$x_1 \le 9 \qquad x_2 \le 6$	

Example: Maximize: $Z = 150x_1 + 175x_2$

Subject to: $7x_1 + 11x_2 \le 77$

 $10x_1 + 8x_2 \le 80$

 $x_1 \leq 9$

 $x_2 \le 6$

 $x_1 \ge 0$

 $x_2 \ge 0$

Ex: Maximize: $Z = 150x_1 + 175x_2$

Subject to: $7x_1 + 11x_2 \le 77$ (1)

 $x_1 \le 9$ (3) $x_1 \ge 0$ (5)

 $10x_1 + 8x_2 \le 80$ (2)

 $x_2 \le 6$ (4) $x_2 \ge 0$ (6)

Ex: Maximize: $Z = 150(4.9) + 175(3.9) \approx 1400$

Subject to:
$$7(4.9) + 11(3.9) \approx 77$$
 (1)

$$4.9 \le 9$$
 (3)

$$4.9 \ge 0$$
 (5)

$$10(4.9) + 8(3.9) \approx 80$$
 (2)

$$3.9 \le 6$$
 (4)

$$3.9 \ge 0$$
 (6)

Limiting Constraints!

- Special cases where there is not a unique solution:
 - a) Infinite number of solutions
 - b) Infeasible problem
 - c) Unbounded problem

In general, when there is a bounded feasible region:

- Verify all vertices of the feasible region:
 - Too inefficient!
- Simplex method:
 - Explore a sequence of vertices to find the optimal solution

Convert the problem to the augmented form

Ex: Maximize:
$$Z = 150x_1 + 175x_2$$

Subject to: $7x_1 + 11x_2 \le 77$ $x_1 \le 9$ $x_1 \ge 0$ $10x_1 + 8x_2 \le 80$ $x_2 \le 6$ $x_2 \ge 0$

augmented form:

Maximize:
$$Z = 150x_1 + 175x_2$$

Subject to: $7x_1 + 11x_2 + S_1$ = 77
 $10x_1 + 8x_2$ + S_2 = 80
 x_1 + S_3 = 9
 x_2 + S_4 = 6
 x_1 , x_2 , S_1 , S_2 , S_3 , S_4 \geq 0

augmented form: Maximize:

$$Z = 150x_1 + 175x_2$$

▶ 6 variables

Subject to: $7x_1 + 11x_2 + S_1$ = 77

4 equations

 $10x_1 + 8x_2 + S_2$

= 80

 X_1

 $+ S_3 = 9$

 X_2

 $+ S_4 = 6$

 $x_1, x_2, S_1, S_2, S_3, S_4 \geq 0$

Ex: to obtain point E do $x_1 = S_4 = 0$

<i>x</i> ₂	Redundant
8 — E D	4 F
4 D 1	C ←3

I solution per each pair

of variables equal to 0

Extreme Point	Zero Variables
A	X1, X2
В	x ₂ , S ₂
C	S_1, S_2
D	S_1, S_4
Е	x1, S4
L	X , J4

augmented form: Maximize:

$$Z = 150x_1 + 175x_2$$

▶ 6 variables

Subject to: $7x_1 + 11x_2 + S_1$ = 77

 $10x_1 + 8x_2 + S_2$

= 80

$$x_1 + S_3 = 9$$

 X_2

$$+ S_4 = 6$$

$$x_1, x_2, S_1, S_2, S_3, S_4 \geq 0$$

Ex: to obtain point E do $x_1 = S_4 = 0$

$$11x_2 + S_1 = 77$$

 $8x_2 + S_2 = 80$
 $+ S_3 = 9$
 $x_2 = 6$

whose solution is: $x_2=6$, $S_1=11$, $S_2=32$ e $S_3=9$

Start with a initial feasible solution: A

$$7x_1 + 11x_2 + S_1$$
 = 77
 $10x_1 + 8x_2 + S_2$ = 80
 $x_1 + S_3$ = 9
 $+ S_4$ = 6

$$S_1 = 77$$

$$S_2 = 80$$

 $x_1 = x_2 = 0$

$$S_3 = 9$$

$$S_4 = 6$$

$x_1, x_2, S_1, S_2, S_3, S_4 \geq 0$

Next feasible solution: B

$$x_2 = 0, S_2 = 0$$
 $7x_1 + S_1 = 77$
 $10x_1 = 80$
 $x_1 + S_3 = 9$
 $S_4 = 6$

Domination

Let s_i and s_i' be two strategies for player i, and let S_{-i} be the set of all possible strategy profiles for the other players

 $\triangleright s_i$ strictly dominates s_i' if $\forall_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$

▶ s_i weakly dominates s_i' if $\forall_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$ and $\exists_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$

 $\triangleright s_i$ very weakly dominates s_i' if $\forall_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$

Dominated Strategies

No equilibrium can involve a strictly dominated strategy

- Thus we can remove it, and end up with a strategically equivalent game
- This might allow us to remove another strategy that wasn't dominated before
- Running this process to termination is called iterated removal of dominated strategies.

R is strictly dominated by L

M is dominated by the mixed strategy that selects U and D with equal probability.

No other strategies are dominated.

- ▶ This process preserves Nash equilibria
 - strict dominance: all equilibria preserved
 - weak/very weak dominance: at least one equilibrium preserved
- Can be used as a preprocessing step before computing an equilibrium
 - Some games are solvable using this technique
 - Example: Traveler's Dilemma
- What about the order of removal when there are multiple dominated strategies?
 - strict dominance: doesn't matter
 - weak/very weak dominance: affect which equilibria are preserved

Is s_i strictly dominated by any pure strategy?

```
for all pure strategies a_i \in A_i for player i where a_i \neq s_i do
   dom \leftarrow true
   for all pure strategy profiles a_{-i} \in A_{-i} for the players other than i
   do
      if u_{i}(s_{i}, a_{-i}) \geq u_{i}(a_{i}, a_{-i}) then
         dom \leftarrow false
         break
      end if
   end for
   if dom = true then return true
end for
return false
```

What about mixed strategies?

Is s_i strictly dominated by any mixed strategy?

$$\sum_{j \in A_i} p_j u_i(a_j, a_{-i}) > u_i(s_i, a_{-i}) \qquad \forall a_{-i} \in A_{-i}$$

$$p_j \ge 0 \qquad \forall j \in A_i$$

$$\sum_{j \in A_i} p_j = 1$$

- What's wrong with this program?
 - strict inequality in the first constraint means we don't have an LP

Is s_i strictly dominated by any mixed strategy?

minimize
$$\sum_{j\in A_i} p_j$$
 subject to
$$\sum_{j\in A_i} p_j u_i(a_j,a_{-i}) \geq u_i(s_i,a_{-i}) \qquad \forall a_{-i}\in A_{-i}$$

- ▶ This is clearly an LP. Why is it a solution to our problem?
 - if a solution exists with $\sum_j p_j < 1$ then we can add a positive amount to each p_j and we'll have a dominating mixed strategy (since utility was assumed to be positive everywhere)

- This can be done by repeatedly solving our LPs: solving a polynomial number of LPs is still in P:
 - Checking whether every pure strategy of every player is dominated by any other mixed strategy requires us to solve at worst $\sum_{i \in N} |A_i|$ linear programs.
 - Each step removes one pure strategy for one player, so there can be at most $\sum_{i \in N} (|A_i| 1)$ steps.
 - Thus we need to solve $O((n \times a^*)^2)$ linear programs, where $a^* = max_i |A_i|$