ANNEX 1

			Analysis	
Component (reference)	Mode of isolation	Réf.	Identification/ Quantification	Ref.
	Amino compo	unds	13	•
alanine; (8,16,23,28,45,46,47,48,50)	IE, RE	16,53	AAA, GCMS, SP	16,23,34,53,54, 56
asparagine; (8,16,23,28,46,50)	1E	16	AAA, SP	16,23,28
leucine/isoleucine; (8,16,23,28,46,47,48,50)	IE, RE	16,47	AAA, SP, GCMS	16,23,28,47,48, 50
valine; (8,16,23,28,46,47,50)	IE, RE	16	AAA, SP, GC	16,23,28,50
glutamine; (8,16,23,28,46,50)	ΙE	16	AAA, ŠP	16,23,28
serine/homoserine; (8,16,23,28,46,47,50)	IE, RE	16,47	AAA, SP, GC	16,23,28,47,50
glycine; (8,16,23,22,28,46,47,50)	IE, RE	16,47	ΛΑΑ, SP, GC	16,23,28,47,50
phenylalanine; (8,16,18,23,46,47,48)	IE, RE	16,47	HPLC, AAA, GC	16,18,23,47,50
threonine; (8,16,23,46,47)	IE, RE	16,47	AAA	16,23,47
tyrosine; (8,16,18,26,46,47,50)	Œ, RE	16,47	HPLC, AAA. GC	16,18,26,47,50
lysine; (8,16,23,22,28,46,47,50)	IE, RE	16,47	AAA, SP, GC	16,23,28,47,50
proline; (8,16,23,46,50)	1E	16	AAA, GC	16,23,50
methionine; (8,16,23,46,50)	Œ	16	AAA, GC	16,23,50
cystathionine; (8,46)				
ornithine; (8,16,23,46,50)	TE	16	ΛΛΑ, ĢC	16,23,50
citrulline; (23,16)	IF.	16	AAA	16,23
arginine; (8,11,16,28,46)	IE	16	AAA, SP	16,23,28
glutamate; (47,48,50)	RE, IE	47	GCMS, AAA	47,48,50
aspartate; (47,48,23,50)	RE, IE	47	GCMS, AAA	47,48,50
tryptophan; (8,18)			HPLC	18
histidine; (8,23,16,46,47)	IE, RE	16,47	AAA	16,23,47
cysteic acid; (8,46)		1	Í	·
aspartic acid; (8,16,23,28,46)	TE:	16	AAA, SP	16,28
glutamic acid; (8,16,23,22,28,46)	IE:	16	AAA, SP	16,23,28
-amino butyric acid; (8,16,28,46)	IE	16	AAA, SP	16,28
amino adipic acid; (16)	IE	16	AAA	16
ethanolamine; (16)	IE	16	AAA	16
2,4-dihydroxy-1,4-benzoxazin-3-one; (34)	XAD-4	34	HPLC, GC	34
ammonium; (37)			Biotronic	37
ammonia; (8)				
cystine; (16,46)	IE	16	AAA	16
benzoxanolin-2-one; (34)	XAD-4	34	HPLC, GC	34
6-methoxybenzolin-2-one; (34)	XAD-4	34	HPLC, GC	34
2,4-dihydroxy-7-methoxy-1,4-benzoazin-3-one;			1	·····
(34)	XAD-4	34	HPLC, GC	34
	Organic acid	5		
oxalic acid; (8,37,46,47)	RE, IE	47	UV/Vis, HPLC	37,47
malic acid; (8,21,22,24,25,28,28,30,37,46,47)	RE, IE	30,47	UV/Vis, GC HPLC, IC, MS	24,28,28,30,37, 47
acetic acid; (8,46)				
propionoic acid; (8,46)			1	
butyric acid; (8,46)	1	1	<u> </u>	1
valeric acid; (8,46)	 			†
citric acid; (8,11,21,22,24,25,26,28,28,30,37,46,47) RE, IE	30,47	QEA, Xspec,UV/Vis, IC, HPLC, GC,MS	8,24,28, 28,30,37,47
succinic acid; (8,24,28,28,30,37,46,47)	RE, IE	28,30 47	UV/Vis, GC HPLC, IC, MS	24,28,28,30,37, 47

·				
fumaric acid; (8,28,29,37,47)	RE, IE	47	UV/Vis, GC HPLC, MS	28,29,37,47
glycolic acid; (8,46)				
deoxymugineic acid; (1)		1		
malonic acid; (8)				
2-ketogluconic acid; (38)	TE "	38	GC, TLC, Xdif, SR, AA	38
tartaric acid; (8,29,37,47)	RE,IE	47	UV/Vis, GC, HPLC	29,37,47
isocitric acid; (37)			HPLC,UV/Vis	37
acolnitic acid; (29,47)	RE, IE	47	UV/Vis, HPLC	47
3-phenyl propionoic acid; (56)	XAD-4	56	GCMS	56
p-hydroxybenzoic acid; (4,9,41,54,56)	XAD-4	41,56	HPLC,GCMS	4,41,56
2,5-dihydroxybenzoic acid; (56)	XAD-4	56	GCMS	56
myristic acid; (56)	XAD-4	56	GCMS	56
p-hydroxycinnamic acid; (52,56)	XAD-4	56	GCMS	56
	_			
palmitic acid; (8,56)	XAD-4	56	GCMS	56
aconitic acid; (29)	[GC	29
stearic acid; (8,56)	XAD-4	56	GCMS	56
oxalocetic acid; (29)	concentration	29	GC	29
uronic acid; (38)	<u> </u>	<u> </u>		
glutaric acid; (29)	concentration	29	GC	29
glyoxylic acid; (29)	concentration	29	GC	29
pentadecanoic acid; (52)	XAD-4	52	GCMS	52
	Carbohydrates		·	
glucose; (8,16,29,38,46,47,48,50)	IE, RE, MF	47,50	GCMS, HPLC UV/Vis	16,29,47,48,50
fructose; (8,16,29,38,46,47,48,50)	IE, RE, MF	47,50	GCMS, HPLC UV/Vis	16,29,47,48,50
maltose; (8,46)				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
galactose; (8,46,47)	IE, RE	47	UV/Vis, HPLC	47
ribose; (8,46,47,48)	IE, RE	47		47,48
xylose; (8,38,46,47)	IE, RE	47		47
rhamnose; (8,46)	112, 142	 	1	
arabinose; (8,29,46,47)	IE., RE	47	UV/Vis, GC, HPLC	29,47
raffinose; (8,46)	IL., ICL	7,	DV/VIS, CC, III EC	£2,47
oligosaccharides; (8,46)	 			
	DAT.	j je o	COME IIDI O	
myo-inositol; (50)	MF	50	GCMS, HPLC	50
deoxyribose; (8)] 'Ean L'Enloye'		00040 3777 0 777444	
sucrose; (8,16,29,47,48,50)	IE, RE, MF	47,50	GCMS, HPLC UV/Vis	16,29,47,48,50
deoxysugars; (8)	<u>l</u>			
	enolic compound			
salicylic acid; (54)	XAD-4	54		54
p-hydroxybenzoic acid; (4,9,41,54)	XAD-4	41,54		4,41,54
vanillie acid; (4,41,54)	XAD-4	,	,	4,41,54
syringic acid; (4,15,52,54)	XAD-4, XAD-2	15,52, 54	GCMS, MNR, SP, HPLC	4,15,52,54
4-methoxyindole-3-acetonitrile; (54)	XAD-4	54	MNR, SP	54
pyrocatechol; (54)	XAD-4	54	MNR, ŠP	54
coumesterol; (9, 43,44)				18
caffeic acid; (18,26)				18
p-thiocyantophonol; (56)	XAD-4	56		56
2-hydroxybenzothiazole; (56)	XAD-4	56		56
3,4-dimethylbenzoic acid; (52)	XAD-4	52		52
	XAD-4 XAD-4			
benzoic acid; (18,29,52,56)				18,29,52,56
phenylacetic acid; (52)		52		52
2-methoxyphenol; (52)		52		52
hydrocinnamic acid; (52)	XAD-4	52		52
cinnamic acid; (18,52,56)	XAD-4			18,52,56
2-methoxy phenylacetic acid; (52)	XAD-4	52		52
3-hydroxy hydrocinnamic acid; (52)	XAD-4	52	GCMS :	52

· · · · · · · · · · · · · · · · · · ·				
4-hydroxy-3-methoxy hydrocinnamic acid; (52)	XAD-4	52	GCMS	52
4-hydroxy-2-methoxycinnamic acid; (52)	XAD-4	52	GCM\$	52
ferulic acid; (4,6,14,18,52)	XAD-4	52	HPLC, GCMS	4,18,52
cyclopropyl-p-benzoquinone (14)				
2,6-dimethoxy-p-benzonquinone (14)	J]
tetrafluorbenzoquinone (14)				
benzoquinone (14)				
SXSg (14)		1	Î .	
strigol (14)		ĺ		
resorcinol (14)	Í	1		
dihydroquinone (14)	1	1		
sinapic acid; (15,52)	XAD-4, XAD-2	15.52	GCMS, HPLC	15,52
2-(3',5'-dihydroxyphenyl)-5,6-dihydroxy-			HPLC, MS, NMR,	<u> </u>
benzofuran; (34)	XAD-4	34	UV/Vis	34
<u> </u>	Flavonoids	<u> </u>	<u> </u>	
kievitone; (26)			HPLC	26
-	XAD-2,CF,	9 15 3	HPLC, MS, NMR, EP,	
4'.7-dihydroxyflavone; (9.12,15,19,35.36,44)	HPLC	6	UV/Vis	9,12,15.35 44
	1	-	HPLC, MS, NMR,	1
4',7-dihydroxyflavanone; (9,12,15,19,35,36,44)	CF, HPLC	36	UV/Vis	35,36
formononetin-4',7-dihydroxyflavonone;			HPLC, MS, NMR,	
(9,19,35,36,44)	CF, HPLC	36	UV/Vis	35,36
4',5,7-dihydroxyflavonone; [apigenin] (9,18,26,43)			HPLC	18,26
apigen-7-0-glucoside; (9,15)	XAD-2	15	MS, HPLC, EP	15
genistein; (15,17,18,43)	XAD-2	15	HPLC, MS, EP	15,18
3',4',5,7-tetrahydroxyflavone; [leuteolin]			HPLC, EP, MS NMR,	
(9.15,18.15,26,42,43)	XAD-2	15	UV/Vis	15,18,26,42
4',7-dihydroxyisoflavone; [daidzein]	XAD-2,CF,	9,15,1	EP,HPLC, MS, UV/Vis	1
(9,15,17,18,43,44)	HPLC	7,44	NMR	9,15,17, 18,44
3,4',5,7-tetrahydroxy flavone; [kaempferol] (9,15,18.26,43)	XAD-2	15	HPLC,EP, MS NMR, UV/Vis	15,18,26,43
coumestrol; (9,43,44)	HPLC	9	HPLC, UV/Vis	9
formononetin-7-0-(6"-0-malonylglucoside); (9,10)	CF, HPLC	10	MS, NMR, UV/Vis	10
			HPLC, NMR, MS,	
formononetin; (9,14,18,36,44)	CF, HPLC	36,44	UV/Vis	9,18,36,44
3',4',7-trihydroxyflavone; (9,15)	HPLC	9	UV/Vis	9
4'7-dihydroxy-3'methoxflavone; [geraldone]	HPLC	9,44	HPLC, NMR, UV/Vis	9,12,44
(9,12,44)	HPLC	9,44	HPLC, NMR, UV/VIS	9,12,44
4'-hydroxy-7-methoxyflavone; (9,44)	HPLC	44	HPLC, NMR	9,44
xenognosin A & B (14)				
Enzymes,	Nucleotides & C	halcon	ės	
invertase; (46,8)				
amylase; (46,8)				
protease: (46,8)				
guanine; (46,8)	1			
adenine; (46,8)				
polygalacturonase; (8)				
				7
phosphatase; (7,8)				ļ <i>'</i>
uridine/cytidine; (8)	 		*****	<u> </u>
4,4'-dihydroxy-2'-methoxychalcone; (10,19,35,36)	CF, HPLC	36	HPLC, MS, NMR,UV/Vis	10,35,36
Fat	y acids and stéro	ols		
cholesterol; (8)				
palmitic acid; (8)				
-sitosterol; (8,50)	EP, TLC	50	GCMS	50
stigmasterol; (8,50)		50	GCMS	50
campesterol; (50,8)			GCMS	50
			G-0.410	
stearic acid, (8)	l i			

oleic acid; (8)	<u> </u>	1		1
linoleic acid; (8)	-}		-	
Acides gras 18:1; 18:2; 18:3; 20:0; 22:0; 24:0; (50	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-1	GCMS, HPLC	50
Acides glas 16.1, 18.2, 18.3, 20.0, 22.0, 24.0, (30	Others	журо	JOCMS, RPLC	50
epi-3-hydroxy-mugineic acid; (2,45,53)	HPLC	53	MPLC	Lea .
[8-methy sulfiny octyl isothiocyanate [histurin];	riruc	33	MPLC	53
(54)	XAD-4	54	nmr, sp	54
benzyl isothiocyanate; (51,54)	XAD-4	5 I	GC	5 1
auxins; (8,32)				
scopoletin; (8,41)	XAD-4	41	HPLC	41
fluorescent substances; (8)	1			1
vitamins; (8)				·
hydrocyanic acid; (8)				
glycosides; (8)			1	
saponines; (8)			1	
Composés organiques phosphorés; (8)		i		
nematode cyst or egg hatching factors; (8,46)		1	·	
nematode attractants/nematocides; (8,46)				
fungal mycelium stimulants and inhibitors; (5,8,13)			
zoospore attractants; (5,8,33,46)		_		
spore and aclerotium germination stimulants and	<u> </u>			
inhibitors; (5,8,39)			•	
parasitic weed germination stimulants; (8,39)	XAD-4	39	HPLC	39
medicarpins; (8,10,34)	CF, HPLC	10	MS, NMR, UV/Vis	10
medicarpin-3-0-glycoside; (8,10)	CF, HPLC	10	MS, NMR, UV/Vis	10
umbelliferone; (9,43,44)	1		HPLC, NMR	9,44
coumarins; (4,9,41,43)	XAD-4	41	HPLC	4,41
nodulation gene inducers; (8,43)	7			
assorted allelopathic compounds; (6,8,55)	XAD-4	55	J	
metal chelators; (8)				
ethanol; (47)			GC	48
methanol; (8)				
formaldehyde; (8)				
acetaldeliyde; (8,48)				
ргоionaldehyde; (8)				
acetone; (8)	1	\neg		
ethylene: (8)		1		
propylene; (8)				1
various volatiles; (3,5)				
gibberellins; (8, 18)	1	\neg	HPLC	18
cytokinins; (8)	1			

IE=ion exchange trap; GC=gas chromatography; HPLC=high performance liquid chromatography; MS=mass spectrometry; RE=rinse & evaporation; AAA=automatic amino-acid analyzer; NMR=nuclear magnetic resonance, CF=centrifugation; EP=electrophoresis; SP=spectrophotometry; MF=membrane filtering; TLC=thin layer chromatography; Xdiff= X-ray diffraction

References

- Award F, Römheld V, Marschner H (1994) Effect of root exudates on mobilization in the rhizosphere and uptake of iron by wheat. Plant and Soil 165;213-218
- 2) Bar-Ness E, Hadar Y, Chen Y, Romheld V, Marschner H. (1992) Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol. 100:451-456
- Bécard G, Piché Y (1989) Fungal growth stimulation by CO₂ and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl. Environ. Microbiol. 55(9):2320-2325
- 4) Ben-Hammouda M, Kremer RJ, Minor HC, Sarwar M. (1995) A chemical basis for differential allelopathic potential of sorghum hybrids on wheat. J. Chem. Ecol. 21(6):775-786
- Benizri E, Courtade A, Guckert A (1995) Fate of two microorganisms in maize simulated rhizosphere under hydroponic and sterile conditions. Soil Biol. Biochem. 27(1):71-77

- 6) Blum U, Dalton BR (1985) Effects of ferulic acid, an allelopathic compound, on leaf expansion of cucumber seedlings grown in nutrient culture. J Chem. Ecol. 11(3):279-301
- Cumming JR, Weinstein LH (1990) Utilization of AlPO₄ as a phosphorous source by ectomycorrhizal Pinus rigida Mill. seedlings. New Phytol. 116:99-106
- 8) Curl EA, Truelove B (1986) The Rhizosphere. Springer-Verlag, Berlin, pp288
- d'Arcy-Lameta A (1986) Study of soybean and lentil root exudates II. Identification of some polyphenolic compounds, relation with plantlet physiology. Plant and Soil 92:113-123
- Dakora FD, Joseph CM, Phillips DA (1993) Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol. 101:819-824
- 11) Dinkelaker B, Römheld V, Marschiner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ. 12:285-292
- 12) Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1987) Clovers secrete specific phenolic coumpounds which either stimulate or repress nod gene expression in *Rhizobjum trifolii*. EMBO J. 6(5):1173-1179
- Elias KS, Safir GR (1987) Hyphal elongation of Glomus fasciculatus in response to root exudates. Appl. Environ. Microbiol. 53:1928-1933
- 14) Estabrook EM, Yoder JI. (1998) Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol. 116:1-7
- 15) Firmin JL, Wilson KE, Rossen L, Johnston AWB (1986) Flavonoid activation of nodulation gencs in Rhizobium reversed by other compounds present in plants. Nature 324:90-92
- 16) Gamliel A, Katan J (1992) Influence of seed and root exudates on fluorescent pseudomonads and fungi in solarized soil. Phytopathology 82:320-327
- 17) Graham TL (1991) Flavonoid and isoflavonoid distribution in developing soybean seedling tissue and in seed and root exudates. Plant Physiol. 95:594-603
- 18) Graham TL (1991) A rapid, high resolution high performance liquid chromatography profiling procedure for plant and microbial aromatic secondary metabolites. Plant Physiol. 95:584-593
- 19) Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (1989) Interactions among flavonoid nod gene inducers released from alfalfa seeds and roots. Plant Physiol. 91:1138-1142
- 20) Hausenbuiller RL (1985) Soil Science: Principles & Practices 3rd Edition. Wm. C. Brown Company Publisher, Dubuque, Iowa, p. 378-381
- 21) Hoffland E (1992) Quantitative evaluation of the role of organic acid exudates in the mobilization of rock phosphate by rape. Plant and Soil 140:279-289
- 22) Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape II. Local root exudation of organic acids as a response to P-starvation. Plant and Soil 113:161-165
- Ivarson KC, Sowden FJ, Mack AR (1970) Amino-acid composition of rhizosphere as affected by soil temperature, fertility and growth stage. Can. J. Soil sci. 50:183-189
- 24) Johnson JF, Allan DL, Vance CP, Weiblen G (1996) Root carbon dioxide fixation by phosphorus-deficient *Lupinus* albus: contribution to organic acid exudation by proteoid roots. Plant Physiol. 112:19-30
- Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizoshpere. Plant and Soil 166:247-257
- 26) Jones DL, Edwards AC, Donachie K, Darrah PR (1994) Role of proteinaceous amino acids released in root exudates in nutrient acquisition from the rhizosphere. Plant and Soil 158:183-192Kapulnik Y, Joseph CM, Phillips DA (1987) Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol. 84:1193-1196
- 27) Kloss M, Iwannek KH, Fendrik I, Niemann EG (1984) Organic acids in the root exudates of *Diplachne fusca* (Linn.) Beauv. Environmental and Experimental Botany 24(2):179-188
- 28) Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol. Biochem. 16(4):315-322
- 29) Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol. 85:315-317
- 30) Lynch JM (1990) The Rhizosphere, John Wiley & Sons, Chichester, England, pp. 458.
- 31) Martinez-Toledo MV, de la Rubia T, Moreno J, Gonzalez-Lopez J (1988) Root exudates of *Zea mays* and production of auxins, gibberellins and cytokinins by *Azotobacter chroococcum*. Plant and Soil 110:149-152
- 32) Martinez-Toledo MV, Moreno J, de la Rubia T, Gonzalez-Lopez J (1988) Root exudates of *Zea mays* and the acetylene-reduction activity of *azotobacter chroococcum*. Soil Biol. Biochem. 20(6):961-962
- 33) Masaoka Y, Kojima M, Sugihara S, Yoshihara T, Koshino M, Ichihara A (1993) Dissolution of ferric phosphate by alfalfa (Medicago sativa L.) root exudates. Plant and Soil 155/156:75-78
- 34) Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (1989) A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol. 91:842-847
- 35) Maxwell CA, Phillips DA (1990) Concurrent synthesis and release of nod-gene-inducing flavonoids from alfalfa roots. Plant Physiol. 93:1552-1558
- 36) Mench M, Martin E (1991) Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant and Soil 132:187-196
- 37) Moghimi A, Tate ME, Oades JM (1978) Characterization of rhizosphere products especially 2-ketogluconic acid. Soil Biol. Biochem. 10:283-287
- 38) Müller S, Van Der Merwe A, Schildknecht H, Visser JH (1993) An automated system for large-scale recovery of germination stimulants and other root exudates. Weed Science 41:138-143

- Pérez FJ, Ormeño-Nuñez J (1991) Root exudates of wild oats: allelopathic effect on spring wheat. Phytochemistry 30(7):2199-2202
- 40) Pérez FJ, Ormeño-Nuñez J (1991) Difference in hydroxamic acid content in roots and root exudates of wheat (Triricum aestivum L.) and rye (Secale cereale L.): possible role in allelopathy. J. Chem. Ecol. 17(6):1037-1043
- Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977-979
- Peters NK, Long SR (1988) Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol. 88:396-400
- Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323(16):632-634
- 44) Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant and Soil 130:127-134
- 45) Rovira AD (1969) Plant root exudates. Bot. Rev. 35:35-57
- 46) Schwab SM, Leonard RT, Menge JA (1984) Quantitative and qualitative comparison of root exudates of mycorrhizal and nonmycorrhizal plant species. Can. J. Bot. 62:1227-1231
- 47) Smucker AJM, Erickson AE (1987) Anaerobic stimulation of root exudates and disease of peas. Plant and Soil 99:423-433
- 48) Son K, Severson RF, Snook ME, Kays SJ. (1991) Root carbohydrate, organic acids, and phenolic chemistry in relation to sweetpotato weevil resistance. HortScience 26(10):1305-1308
- 49) Svenningsson H, Sundin P, Liljenberg C (1990) Lipids, carbohydrates and amino acids exuded from the axenic roots of rape seedlings exposed to water-deficit stress. Plant Cell Environ. 13:155-162
- 50) Tang CS, Takenaka T (1983) Quantitation of a bioactive metabolite in undisturbed rhizosphere-benzyl isothiocyanate from Carica papaya L. J. Chem. Ecol.9(8):1247-1253
- 51) Tang CS, Young CC (1982) Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol. 69:155-160
- 52) Treeby M, Marschner H, Römheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators. Plant and Soil 114:217-226
- 53) Yamane A, Nishimura H, Mizutani J (1992) Allelopathy of yellow fieldcress (Rorippa sylvestris): identification and characterization of phytotoxic constituents. J. Chem. Ecol. 18(5):683-691
- 54) Young CC (1984) Autointoxication in root exudaes of Asparagus officinalis L. Plant and Soil 82:247-253
- 55) Yu JQ, Matsui Y (1994) Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J. Chem. Ecol. 20(1):21-31