

Iran Team Selection Test 2012

_	Exam 1
Day 1	
1	Find all positive integers $n \geq 2$ such that for all integers i, j that $0 \leq i, j \leq n$, $i+j$ and $\binom{n}{i}+\binom{n}{j}$ have same parity. Proposed by $Mr.Etesami$
2	Consider ω is circumcircle of an acute triangle ABC . D is midpoint of arc BAC and I is incenter of triangle ABC . Let DI intersect BC in E and ω for second time in F . Let P be a point on line AF such that PE is parallel to AI . Prove that PE is bisector of angle BPC . Proposed by $Mr.Etesami$
	· · · · · · · · · · · · · · · · · · ·
3	Let n be a positive integer. Let S be a subset of points on the plane with these conditions:
	i) There does not exist n lines in the plane such that every element of S be on at least one of them.
	ii) for all $X \in S$ there exists n lines in the plane such that every element of $S - X$ be on at least one of them.
	Find maximum of $ S $.
	Proposed by Erfan Salavati
Day 2	
1	Consider $m+1$ horizontal and $n+1$ vertical lines $(m,n \geq 4)$ in the plane forming an $m \times n$ table. Cosider a closed path on the segments of this table such that it does not intersect itself and also it passes through all $(m-1)(n-1)$ interior vertices (each vertex is an intersection point of two lines) and it doesn't pass through any of outer vertices. Suppose A is the number of vertices such that the path passes through them straight forward, B number of the table squares that only their two opposite sides are used in the path, and C number of the table squares that none of their sides is used in the path. Prove that
	A = B - C + m + n - 1.
	Proposed by Ali Khezeli

www.artofproblemsolving.com/community/c5388

Contributors: goldeneagle, goodar2006

2	The function $f: \mathbb{R}^{\geq 0} \longrightarrow \mathbb{R}^{\geq 0}$ satisfies the following properties for all $a, b \in \mathbb{R}^{\geq 0}$:
	$\mathbf{a)} \ f(a) = 0 \Leftrightarrow a = 0$
	$\mathbf{b)} \ f(ab) = f(a)f(b)$
	c) $f(a+b) \le 2 \max\{f(a), f(b)\}.$
	Prove that for all $a, b \in \mathbb{R}^{\geq 0}$ we have $f(a+b) \leq f(a) + f(b)$.
	Proposed by Masoud Shafaei
3	The pentagon $ABCDE$ is inscirbed in a circle w . Suppose that w_a, w_b, w_c, w_d, w_e are reflections of w with respect to sides AB, BC, CD, DE, EA respectively. Let A' be the second intersection point of w_a, w_e and define B', C', D', E' similarly. Prove that $2 \leq \frac{S_{A'B'C'D'E'}}{S_{ABCDE}} \leq 3,$
	where S_X denotes the surface of figure X .
	Proposed by Morteza Saghafian, Ali khezeli
_	Exam 2
Day 1	
1	Is it possible to put $\binom{n}{2}$ consecutive natural numbers on the edges of a complete graph with n vertices in a way that for every path (or cycle) of length 3 where the numbers a, b and c are written on its edges (edge b is between edges c and a), b is divisible by the greatest common divisor of the numbers a and c ?
	Proposed by Morteza Saghafian
2	Let $g(x)$ be a polynomial of degree at least 2 with all of its coefficients positive. Find all functions $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ such that
	$f(f(x) + g(x) + 2y) = f(x) + g(x) + 2f(y) \forall x, y \in \mathbb{R}^+.$
	Proposed by Mohammad Jafari
3	Suppose $ABCD$ is a parallelogram. Consider circles w_1 and w_2 such that w_1 is tangent to segments AB and AD and w_2 is tangent to segments BC and CD . Suppose that there exists a circle which is tangent to lines AD and DC and externally tangent to w_1 and w_2 . Prove that there exists a circle which is tangent to lines AB and BC and also externally tangent to circles w_1 and w_2 .

www.artofproblemsolving.com/community/c5388 Contributors: goldeneagle, goodar2006

Proposed by Ali Khezeli

	Proposed by Ali Khezeli
Day 2	
1	For positive reals a, b and c with $ab + bc + ca = 1$, show that
	$\sqrt{3}(\sqrt{a} + \sqrt{b} + \sqrt{c}) \le \frac{a\sqrt{a}}{bc} + \frac{b\sqrt{b}}{ca} + \frac{c\sqrt{c}}{ab}.$
	Proposed by Morteza Saghafian
2	Points A and B are on a circle ω with center O such that $\frac{\pi}{3} < \angle AOB < \frac{2\pi}{3}$. Let C be the circumcenter of the triangle AOB . Let C be a line passing through C such that the angle between C and the segment C is $\frac{\pi}{3}$. C cuts tangents in C and C and C in C and C are again in C and C respectively. Suppose circumcircles of triangles C and C and C and C are again in C and C respectively and theirselves in C (other than C). Prove that C is C and C are again in C and C respectively and their selves in C and C is C and C and C is C and
	Proposed by Mehdi E'tesami Fard, Ali Khezeli
3	We call a subset B of natural numbers $loyal$ if there exists natural numbers $i \leq j$ such that $B = \{i, i+1,, j\}$. Let Q be the set of all $loyal$ sets.
	Now for every subset $A = \{a_1 < a_2 < < a_k\}$ of $\{1, 2,, n\}$ we set
	$f(A) = \max_{1 \le i \le k-1} a_{i+1} - a_i$, and $g(A) = \max_{B \subseteq A, B \in Q} B $.
	And we define
	$F(n) = \sum_{A \subseteq \{1,2,,n\}} f(A)$ and $G(n) = \sum_{A \subseteq \{1,2,,n\}} g(A)$.
	Prove that there exists $m \in \mathbb{N}$ such that for each natural number $n > m$, we have $F(n) > G(n)$.
	(By $ A $ we mean the number of elements of A and if $ A \leq 1$, we define $f(A)$ to be zero).
	Proposed by Javad Abedi
_	Exam 3
Day 1	
1	Consider a regular 2^k -gon with center O and label its sides clockwise by $l_1, l_2,, l_2$ Reflect O with respect to l_1 , then reflect the resulting point with respect to l_2

	and do this process until the last side. Prove that the distance between the final point and O is less than the perimeter of the 2^k -gon. Proposed by Hesam Rajabzade
2	Do there exist 2000 real numbers (not necessarily distinct) such that all of them are not zero and if we put any group containing 1000 of them as the roots of a monic polynomial of degree 1000, the coefficients of the resulting polynomial (except the coefficient of x^{1000}) be a permutation of the 1000 remaining numbers?
	Proposed by Morteza Saghafian
3	Find all integer numbers x and y such that:
	$(y^3 + xy - 1)(x^2 + x - y) = (x^3 - xy + 1)(y^2 + x - y).$
	Proposed by Mahyar Sefidgaran
Day 2	
1	Suppose p is an odd prime number. We call the polynomial $f(x) = \sum_{j=0}^{n} a_j x^j$ with integer coefficients i -remainder if $\sum_{p-1 j,j>0} a_j \equiv i \pmod{p}$. Prove that the set $\{f(0), f(1),, f(p-1)\}$ is a complete residue system modulo p if and only if polynomials $f(x), (f(x))^2,, (f(x))^{p-2}$ are 0-remainder and the polynomial $(f(x))^{p-1}$ is 1-remainder. Proposed by Yahya Motevassel
2	Let n be a natural number. Suppose A and B are two sets, each containing n points in the plane, such that no three points of a set are collinear. Let $T(A)$ be the number of broken lines, each containing $n-1$ segments, and such that it doesn't intersect itself and its vertices are points of A . Define $T(B)$ similarly. If the points of B are vertices of a convex n -gon (are in $convex\ position$), but the points of A are not, prove that $T(B) < T(A)$. Proposed by Ali Khezeli
3	Let O be the circumcenter of the acute triangle ABC . Suppose points A', B' and C' are on sides BC, CA and AB such that circumcircles of triangles $AB'C', BC'A'$ and $CA'B'$ pass through O . Let ℓ_a be the radical axis of the circle with center B' and radius $B'C$ and circle with center C' and radius $C'B$. Define ℓ_b and ℓ_c similarly. Prove that lines ℓ_a, ℓ_b and ℓ_c form a triangle such that it's orthocenter coincides with orthocenter of triangle ABC .

Proposed by Mehdi E'tesami Fard

www.artofproblemsolving.com/community/c5388 Contributors: goldeneagle, goodar2006