Intelligence of Dogs

Kimberly Cable

05-21-2022

Final Project - Step 2

How to import and clean my data

```
##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

Load and read each of the datasets:

$\bullet \ \ dog_intelligence.csv$

##		Breed	Classifica	ation	obey	reps_lower	reps_upper
##	1	Border Collie	Brightest	Dogs	95%	1	4
##	2	Poodle	Brightest	Dogs	95%	1	4
##	3	German Shepherd	Brightest	Dogs	95%	1	4
##	4	Golden Retriever	Brightest	Dogs	95%	1	4
##	5	Doberman Pinscher	Brightest	Dogs	95%	1	4
##	6	Shetland Sheepdog	Brightest	Dogs	95%	1	4

• AKC Breed Info.csv

##	Breed	height_low_inches	height_high_inches	weight_low_lbs
## 1	Akita	26	28	80
## 2	Anatolian Sheepdog	27	29	100
## 3	Bernese Mountain Dog	23	27	85
## 4	Bloodhound	24	26	80
## 5	Borzoi	26	28	70
## 6	Bullmastiff	25	27	100
##	weight_high_lbs			
## 1	120			
## 2	150			
## 3	110			

```
## 4 120
## 5 100
## 6 130
```

$\bullet \ \, {\bf Table_4_Heterozygosity_85_breeds.csv}$

##		Population	Heterozygosity
##	1	Bedlington Terrier	0.312842
##	2	Miniature Bull Terrier	0.321619
##	3	Boxer	0.343151
##	4	Clumber Spaniel	0.363595
##	5	Greater Swiss Mountain Dog	0.364943
##	6	Airedale Terrier	0.372793

$\bullet \ \, Table_5_Expected_Heterozygosity_60_breeds.csv$

##		Breed	${\tt Heterozygosity_x10_4}$
##	1	Scottish Deerhound	2.0683
##	2	Field Spaniel	2.3165
##	3	Flat-coated Retriever	2.6474
##	4	Bernese Mountain Dog	2.8129
##	5	Standard Schnauzer	2.8129
##	6	Boxer	3.0611

Create New Dataframe from the Intelligence data

##		Breed	Classifica	tion	obey	reps_lower	reps_upper
##	1	Border Collie	Brightest	Dogs	95%	1	4
##	2	Poodle	Brightest	Dogs	95%	1	4
##	3	German Shepherd	Brightest	Dogs	95%	1	4
##	4	Golden Retriever	Brightest	Dogs	95%	1	4
##	5	Doberman Pinscher	Brightest	Dogs	95%	1	4
##	6	Shetland Sheepdog	Brightest	Dogs	95%	1	4

Inner Join Breed data to new combined df on key Breed

##		Breed	Classification	obey	reps_lower r	eps_upper
##	1	Border Collie	Brightest Dogs	95%	1	4
##	2	Golden Retriever	Brightest Dogs	95%	1	4
##	3	Doberman Pinscher	Brightest Dogs	95%	1	4
##	4	Labrador Retriever	Brightest Dogs	95%	1	4
##	5	Papillon	Brightest Dogs	95%	1	4
##	6	Rottweiler	Brightest Dogs	95%	1	4
##		height_low_inches h	neight_high_ind	hes we	eight_low_lbs	weight_high_lbs
##	1	19		21	40	40
##	2	21		24	55	75
##	3	26		28	60	100
##	4	21		24	55	80
##	5	8		11	5	10
	_	•				

Inner Join Heterozygosity 4 to new combined df on key Breed = Population

```
##
                  Breed
                                 Classification obey reps_lower reps_upper
## 1
          Border Collie
                                 Brightest Dogs 95%
                                                  95%
                                                                1
                                                                           4
## 2
       Golden Retriever
                                 Brightest Dogs
## 3 Doberman Pinscher
                                 Brightest Dogs
                                                                1
                                                                           4
                                                  95%
## 4 Labrador Retriever
                                 Brightest Dogs
                                                  95%
                                                                1
                                                                           4
## 5
             Rottweiler
                                 Brightest Dogs 95%
                                                                1
                                                                           4
## 6
             Schipperke Excellent Working Dogs 85%
                                                                          15
    height_low_inches height_high_inches weight_low_lbs weight_high_lbs
##
## 1
                                         21
## 2
                    21
                                        24
                                                        55
                                                                         75
## 3
                    26
                                        28
                                                        60
                                                                        100
                    21
                                        24
                                                        55
                                                                         80
## 4
## 5
                    22
                                        27
                                                        90
                                                                        110
## 6
                                        13
                                                        12
                    10
                                                                         18
##
     {\tt Heterozygosity}
## 1
           0.549583
## 2
           0.517779
## 3
           0.383763
## 4
           0.560590
## 5
           0.456510
## 6
           0.445437
```

Inner Join Heterozygosity 5 to new combined df on key Breed

##		Bre	ed C	lassifica	ation	obey	reps_lower	reps_upper
##	1	Golden Retriev	er B	rightest	Dogs	95%	1	4
##	2	Labrador Retriev	er B	rightest	Dogs	95%	1	4
##	3	Rottweil	er B	rightest	Dogs	95%	1	4
##	4	German Shorthaired Point	er Excellent	Working	Dogs	85%	5	15
##	5	Standard Schnauz	er Excellent	Working	Dogs	85%	5	15
##	6	Bernese Mountain D	og Excellent	Working	Dogs	85%	5	15
##		height_low_inches height	_high_inches	weight_	low_lb	s we:	ight_high_lk	os
##	1	21	24		5	5	7	7 5
##	2	21	24		5	5	8	30
##	3	22	27		9	0	11	LO
##	4	20	27		5	0	8	30
##	5	17	19		3	3	3	33
##	6	23	27		8	5	11	LO
##		Heterozygosity Heterozyg	osity_x10_4					
##	1	0.517779	7.0323					
##	2	0.560590	8.4388					
##	3	0.456510	4.9640					
##	4	0.538761	6.6186					
##	5	0.450041	2.8129					
##	6	0.399599	2.8129					

Convert n/a or na to empty cell

Convert obey to numeric

Convert height and weight to numeric

What does the final data set look like?

Breed Classification obey reps_lower reps_upper

##	1	Golden Retriever	Br	rightest	Dogs 0	. 95 1	4
##	2	Labrador Retriever	Br	rightest	Dogs 0	. 95 1	4
##	3	Rottweiler	Br	rightest	Dogs 0	. 95 1	4
##	4	German Shorthaired Pointer	Excellent	Working	Dogs 0	.85 5	15
##	5	Standard Schnauzer	Excellent	Working	Dogs 0	.85 5	15
##	6	Bernese Mountain Dog	Excellent	Working	Dogs 0	.85 5	15
##		height_low_inches height_h	igh_inches	weight_l	Low_lbs	weight_high_lb	s
##	1	21	24		55	7	5
##	2	21	24		55	8	0
##	3	22	27		90	11	0
##	4	20	27		50	8	0
##	5	17	19		33	3	3
##	6	23	27		85	11	0
##		Heterozygosity Heterozygos	ity_x10_4				
##	1	0.517779	7.0323				
##	2	0.560590	8.4388				
##	3	0.456510	4.9640				
##	4	0.538761	6.6186				
##	5	0.450041	2.8129				
##	6	0.399599	2.8129				

What information is not self-evident?

• Initially I do not know exactly what Heterozygosity and Heterozygosity (x10-4) are and the difference between the two columns.

What are different ways you could look at this data?

One could strictly look at the obey percentage without looking at the number of reps a dog can do. You can also just look at the upper and lower reps versus taking the average number of reps a dog can do. Same problem with height and weight if I were to look at if intelligence is strictly by the weight of a breed or how tall a breed is.

How do you plan to slice and dice the data?

• Add average weight and height to dataframe

##		Breed	Classification o	bey reps_lower	reps_upper
##	1	Golden Retriever	Brightest Dogs O).95 1	4
##	2	Labrador Retriever	Brightest Dogs O).95 1	4
##	3	Rottweiler	Brightest Dogs O).95	4
##	4	German Shorthaired Pointer	Excellent Working Dogs 0).85 5	15
##	5	Standard Schnauzer	Excellent Working Dogs 0).85 5	15
##	6	Bernese Mountain Dog	Excellent Working Dogs 0).85 5	15
##		height_low_inches height_h:	gh_inches weight_low_lbs	weight_high_l	os
##	1	21	24 55	5	75
##	2	21	24 55	5	30
##	3	22	27 90	1:	LO
##	4	20	27 50)	30
##	5	17	19 33	3	33
##	6	23	27 85	5 1:	10
##		Heterozygosity Heterozygos	ty_x10_4 avg.weight avg.	height	

##	1	0.517779	7.0323	65.0	22.5
##	2	0.560590	8.4388	67.5	22.5
##	3	0.456510	4.9640	100.0	24.5
##	4	0.538761	6.6186	65.0	23.5
##	5	0.450041	2.8129	33.0	18.0
##	6	0.399599	2.8129	97.5	25.0

How could you summarize your data to answer key questions?

```
##
       Breed
                        Classification
                                                 obey
                                                              reps_lower
##
                                            {\tt Min.}
                                                    :0.30
                                                            Min. : 1.00
    Length:29
                        Length:29
    Class : character
                        Class : character
                                            1st Qu.:0.50
                                                            1st Qu.:16.00
##
                                            Median:0.50
                                                            Median :26.00
    Mode :character
                        Mode :character
##
                                            Mean
                                                   :0.58
                                                            Mean
                                                                   :30.38
##
                                            3rd Qu.:0.70
                                                            3rd Qu.:41.00
##
                                            Max.
                                                    :0.95
                                                                   :81.00
                                                            Max.
##
                                            NA's
                                                    :4
##
      reps_upper
                      height_low_inches height_high_inches weight_low_lbs
                            : 7.00
##
    Min.
          : 4.00
                      Min.
                                         Min.
                                                :10.00
                                                             Min.
                                                                   : 6.00
    1st Qu.: 25.00
                      1st Qu.:14.00
                                         1st Qu.:16.00
                                                             1st Qu.: 19.50
   Median : 40.00
                      Median :21.00
                                         Median :24.50
                                                             Median: 46.00
##
                                                :22.12
##
    Mean
           : 47.31
                             :19.05
                                         Mean
                                                                    : 53.04
                      Mean
                                                             Mean
##
    3rd Qu.: 80.00
                      3rd Qu.:25.00
                                         3rd Qu.:28.00
                                                             3rd Qu.: 72.50
##
    Max.
           :100.00
                      Max.
                             :27.00
                                         Max.
                                                :30.00
                                                             Max.
                                                                    :175.00
                                         NA's
##
                      NA's
                             :1
                                                :1
                                                             NA's
                                                                    :1
##
                     Heterozygosity
                                        Heterozygosity_x10_4
                                                                avg.weight
    weight_high_lbs
##
          : 10.00
                      Min.
                             :0.3128
                                        Min.
                                               :2.813
                                                              Min.
                                                                     : 8.00
   1st Qu.: 31.50
                                        1st Qu.:4.550
                                                              1st Qu.: 24.75
##
                      1st Qu.:0.4500
##
   Median : 70.00
                      Median :0.4879
                                        Median :5.543
                                                              Median: 58.75
                                                                     : 62.84
##
   Mean
           : 72.64
                      Mean
                             :0.4789
                                        Mean
                                               :5.312
                                                              Mean
##
    3rd Qu.:102.50
                      3rd Qu.:0.5178
                                        3rd Qu.:6.040
                                                              3rd Qu.: 88.12
##
   Max.
           :190.00
                             :0.5630
                                        Max.
                                               :8.439
                                                              Max.
                                                                     :182.50
                      Max.
##
    NA's
           :1
                                                              NA's
                                                                     :1
##
      avg.height
           : 8.50
   Min.
##
   1st Qu.:15.25
   Median :22.75
##
##
   Mean
           :20.59
   3rd Qu.:26.00
## Max.
           :28.50
## NA's
           :1
```

What types of plots and tables will help you illustrate the findings to your questions?

Warning: Removed 4 rows containing non-finite values (stat_bin).

Warning: Removed 1 rows containing non-finite values (stat_bin).

Warning: Removed 1 rows containing non-finite values (stat_bin).

• Scatter Plot of obey and avg.weight

- ## 'geom_smooth()' using formula 'y ~ x'
- ## Warning: Removed 5 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 5 rows containing missing values (geom_point).

^{*} Scatter Plot of obey and Heterozygosity_x10_4

```
## 'geom_smooth()' using formula 'y ~ x'
```

Warning: Removed 4 rows containing non-finite values (stat_smooth).

Warning: Removed 4 rows containing missing values (geom_point).

• Correlation between obey percentage and avg.weight

```
##
## Pearson's product-moment correlation
##
## data: combined_df$obey and combined_df$avg.weight
## t = 0.88343, df = 22, p-value = 0.3866
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2359190  0.5476023
## sample estimates:
## cor
## 0.1850928
```

Since the correlation is 0.19 and the p-value is 0.39 we can say that the correlation between the two variables is not significant. Also, the intervals cross 0 so as one goes up the other goes up but then it is reversed.

• Correlation between obey percentage and Heterozygosity_x10_4

```
##
## Pearson's product-moment correlation
##
## data: combined_df$obey and combined_df$Heterozygosity_x10_4
## t = 0.43369, df = 23, p-value = 0.6686
## alternative hypothesis: true correlation is not equal to 0
```

```
## 95 percent confidence interval:
## -0.3163255  0.4685203
## sample estimates:
## cor
## 0.09006233
```

Since the correlation is 0.09 and the p-value is 0.66 we can say that the correlation between the two variables is not significant. Also, the intervals cross 0 so as one goes up the other goes up but then it is reversed.

• Correlation between avg.weight and Heterozygosity_x10_4

```
##
## Pearson's product-moment correlation
##
## data: combined_df$avg.weight and combined_df$Heterozygosity_x10_4
## t = -0.16629, df = 26, p-value = 0.8692
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.4007977  0.3446736
## sample estimates:
## cor
## -0.03259464
```

Do you plan on incorporating any machine learning techniques to answer your research questions? Explain.

```
##
## Call:
  lm(formula = obey ~ avg.weight + avg.height + Heterozygosity_x10_4,
##
       data = combined_df)
##
##
## Residuals:
##
       Min
                  10
                       Median
                                    30
## -0.31265 -0.16426 -0.00432 0.14696 0.34899
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         0.2566674 0.2573047
                                                0.998
                                                          0.330
## avg.weight
                        -0.0008206 0.0020733
                                               -0.396
                                                          0.696
## avg.height
                         0.0142519
                                    0.0129588
                                                1.100
                                                          0.284
## Heterozygosity_x10_4 0.0155575 0.0340134
                                                0.457
                                                          0.652
##
## Residual standard error: 0.2256 on 20 degrees of freedom
     (5 observations deleted due to missingness)
## Multiple R-squared: 0.09806,
                                    Adjusted R-squared:
## F-statistic: 0.7248 on 3 and 20 DF, p-value: 0.549
```

Looking at the Adjusted R-squared of -0.37 and all p-values for the variables are not significant it does not look like any other the variables help with the percentage a dog can obey.

Questions for future steps.

More research would need to be done to find out if any other data can be linked to a dog's intelligence.