北京邮电大学 2017—2018 学年第二学期

《大学物理 E(上)》期末考试试卷(卷)

考试课程	大学物理 E(上)			考试时间		2018年6月26日			
题号	-	$\vec{\Box}$	Ξ	四	五.	六	七	八	总分
满分	30	30	10	10	10	10			100
得分									
阅 教师									

一. 选择题: (单选, 每题 3 分, 共 30 分)

1.	一质 点在平面上运动,	己知质	点位置矢量	的表示	式为
	$\vec{r} = at^2\vec{i} + bt^2\vec{j}$ (其中 a 、 b	为常量)	,则该质点作	Γ	7

- (A) 匀速直线运动.
- (B) 变速直线运动.
- (C) 抛物线运动.
- (D)一般曲线运动

- (A) $a_1 = g$, $a_2 = g$.
- (B) $a_1 = 0$, $a_2 = g$.
- (C) $a_1 = g$, $a_2 = 0$.
- (D) $a_1=2 g$, $a_2=0$.

3. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的 绳子一端,从同一高度由初速为零向上爬,任意时刻甲相对绳子的 速率都是乙相对绳子速率的两倍,则到达顶点的情况是[

- (A)甲先到达.
- (B)乙先到达.
- (C)同时到达.
- (D)谁先到达不能确定.

4. 在匀强磁场中,有两个圆形线圈,其半径 $R_1 = 2 R_2$,通有电流 $I_1 = 2$ I_2 ,它们所受的最大磁力矩之比 M_1/M_2 等于 Γ

- (A) 1.
- (B) 2.
- (C) 4.
- (D) 8.

5. 一平行板电容器充电后切断电源, 若使二极板间距离增加, 则电容 器极板间场强和电容变化情况为.

- (A)场强减小, 电容增大. (B)场强不变, 电容减小.
- (C)场强不变, 电容增大.
- (D)场强减小, 电容减小.

一弹簧振子作简谐振动, 当位移为振幅的一半时, 其动能为总能量 的 Γ

- (A) 1/4. (B) 1/2. (C) $1/\sqrt{2}$.
- (D) 3/4.

三. 计算题: (每题 10 分, 共 40 分)

16. 如图 5,两个形状完全相同、质量都为 *M* 的弧形导轨 *A* 和 *B*,相向地放在地板上(设 *A*、*B* 导轨与地面相切),今有一质量为 *m* 的小物体,从静止状态由 *A* 的顶端下滑,*A* 顶端的高度为 *h*₀,所有接触面均光滑. 试求: (1)小物体离开导轨 *A* 时的速率; (2)小物体在导轨 *B* 上上升的最大高度.

17. 如图 6,球心为0的球体内均匀分布着电荷体密度为 ρ 的正电荷,若保持电荷分布不变,在该球体挖去半径为r的一个小球体,球心为0',两球心间距离为d,所示. 求球形空腔内任意位置处电场强度的大小。

图 6

18. 如图 7,有一很长的长方的 U 形导轨,与水平面成 θ 角,裸导线 ab 可在导轨上无摩擦地下滑,导轨位于磁感强度 \overline{B} 竖直向上的均匀磁场中. 设导线 ab 的质量为 m,电阻为 R,长度为 l,导轨的电阻略去不计,abcd 形成电路,t=0 时,v=0. 试求:导线 ab 下滑的速度 v 与时间 t 的函数关系.

19. 由振动频率为 400 Hz 的音叉在两端固定拉紧的弦线上建立驻波. 这个驻波共有三个波腹, 其振幅为 0.30 cm. 波在弦上的速度为 320 m/s. 求: (1)求此弦线的长度. (2)若以弦线中点为坐标原点, 原点处于正向最大位移处时为初始时刻, 试写出弦线上驻波的表达式.