МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Президентский физико-математический лицей № 239

Отчёт по годовому проекту

Ученик: Берхман Евгений Юрьевич Преподаватель: Клюнин Алексей Олегович

Класс: 10-3

Содержание

1	Постановка задачи			
2	Алгоритм решения задачи			
	2.1	Базовые структуры данных	3	
		Построение алгоритма	3	

1 Постановка задачи

На плоскости заданно множество точек. Выбрать из них такие три точки, не лежащие на одной прямой, которые составляют треугольник наименьшей площади.

Рис. 1: Множество(Set) из шести точек(Dot), где точки A, B и C-искомые, образуют треугольник наименьшей площади.

2 Алгоритм решения задачи

2.1 Базовые структуры данных

Класс \mathbf{Dot} описывает точку, состоит из двух полей $\mathbf{x_n}$ и $\mathbf{y_n}$ типа double, задающих координаты точки на плоскости.

Класс Set описывает множество точек, состоит из двух полей: \mathbf{k} типа int(задает количество точек в множестве, чаще всего равна 3) и массив состоящий из \mathbf{k} экзепляров класса \mathbf{Dot} .

2.2 Построение алгоритма

Будем решать задачу в системе координат. С клавиатуры на вход подаётся число ${\bf n}$ типа int, количество данных точек(${\bf n}\geqslant {\bf 3}$). Также введем переменную ${\bf min}$, которой будет присваиваться наименьшее значение площади. Для каждого из ${\bf n}$ экземпляров класса ${\bf Dot}$ случайным образом определяются значения переменных ${\bf x_n}$ и ${\bf y_n}$, координаты точек на плоскости. Создадим ${\bf C_n^3}$ (${\bf C_n^3}=\frac{{\bf n}!}{{\bf 3!*({\bf n}-{\bf 3})!}}$) экземпляров класса ${\bf Set}$, состоящих из ${\bf 3}$ -х точек(${\bf Dot}$). С помощью метода square получим значение площади для каждого из цэ треугольников, т.е. для каждого из ${\bf Set}$ 'ов. Опишем метод: будем считать ${\bf 3}$ расстояния для каждого экземпляра: от точки ${\bf D_a}$ до точки ${\bf D_b}$, от точки ${\bf D_b}$ до точки ${\bf D_c}$ и от точки ${\bf D_c}$ до точки ${\bf D_a}$. Получив

данные значения длины трех сторон по формуле $L = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}$, посчитаем значение площади треугольника по формуле Герона: $S = \sqrt{p(p-a)(p-b)(p-c)}$. Будем каждый раз сравнивать значение площади **Set**.square со значением переменной **min** (с самого начала присвоим **min** значение площади первого **Set**'a), и если новое значение меньше, то будем присваивать его переменной **min**. Проверив все C_n^3 вариантов получим конечное значение **min**. 3 точки, образующие треугольник, соответствующий данному значению переменной **min**, и будут искомыми.

Примечания: В каждом \mathbf{Set} 'е не должны совпадать все три значения $\mathbf{x_n}$ или $\mathbf{y_n}$, иначе данный \mathbf{Set} противоречит условию, т.е. кол-во вариантов уменьшается на $\mathbf{1}$. (В таком случае кол-во перебираемых вар-тов становится равным $\mathbf{C_n^3} - \mathbf{q}$, где \mathbf{q} - кол-во таких \mathbf{Set} 'ов).