Modelagem de Dados

1. Modelo lógico

O modelo lógico já leva em conta algumas limitações e implementa recursos como adequação de padrão e nomenclatura, define as <u>chaves primárias e estrangeiras</u>, normalização, integridade referencial, entre outras.

Para o modelo lógico deve ser criado levando em conta os exemplos de modelagem de dados criados no modelo conceitual. Exemplo do diagrama de banco de dados gerado no Microsoft Visio.

carrinho		
PK	idltem	
	sessao idProduto produto quantidade preco	

	usuarios	
PK	idUsuario	
	usuario	
	senha	

2. Modelo físico

No modelo físico fazemos a modelagem física do modelo de banco de dados. Neste caso leva-se em conta as limitações impostas pelo SGBD escolhido e deve ser criado sempre com base nos exemplos de modelagem de dados produzidos no item anterior, modelo lógico.

COLUMN NAME	E DATA_TYPE	NULLABLE	DATA_DEFAULT	COLUMN ID O	COMMENTS
1 PRODUCT	VARCHAR2 (256 BYTE		(null)	American States	(null)
2 MARRET	VARCHAR2 (256 BYTE) Yes	(noll)	2.0	(mull)
3 YEAR	VARCHARZ (256 BYTE) Yes	(null)	31	(null)
4 SCENARIO	VARCHARZ (256 BYTE) Yes	(mull)	4.0	(null)
5 SALES	MOMBER (25,0)	Yes	(null)	5	(null)
6 STATENAME	VARCHAR2 (256 BYTE) Yes	(0011)	6	(mall)
7 coss	NUMBER (25,0)	Yes	(au11)	7.0	(mill)
8 MARKETING	MUMBER (25,0)	Yes	(null)	8.6	nulls
9 PAYROLL	NUMBER (24,0)	Yes	(mull)	9	(mull)
10 MISC	NUMBER (23,0)	Yes	(mull)	10	(mull)
11 BEGINV	SUMMER(25,0)	Yes	(null)	11	(null)
12 ADDITIONS	NUMBER (25,0)	Yes	(mull)	12 ((null)

3. O que é SQL?

SQL significa "Structured Query Language", ou "Linguagem de Consulta Estruturada", em português.

Resumidamente, é uma linguagem de programação para lidar com banco de dados relacional (baseado em tabelas).

Foi criado para que vários desenvolvedores pudessem acessar e modificar dados de uma empresa simultaneamente, de maneira descomplicada e unificada.

E se quiser conferir cursos sobre o tema, confira os links abaixo:

KORTH, H.F. e SILBERSCHATZ, A.; Sistemas de Bancos de Dados, Makron Books, 2a. edição revisada, 1994.

DATE, C.J.; Int. a Sistemas de Bancos de Dados, tradução da 4a.edição norteamericana, Editora Campus, 1991.

3.1 Para que serve?

A programação SQL pode ser usada para analisar ou executar tarefas em tabelas, principalmente através dos seguintes comandos: inserir ('insert'), pesquisar ('search'), atualizar ('update') e excluir ('delete'). Porém, isso não significa que o SQL não possa fazer coisas mais avançadas, como escrever queries (comandos de consulta) com múltiplas informações.

3.2 Para que serve?

A programação SQL pode ser usada para analisar ou executar tarefas em tabelas, principalmente através dos seguintes comandos: inserir ('insert'), pesquisar ('search'), atualizar ('update') e excluir ('delete'). Porém, isso não significa que o SQL não possa fazer coisas mais avançadas, como escrever queries (comandos de consulta) com múltiplas informações.

Gerenciamento de tabelas (criação, alteração e exclusão)

Sumário

- Gerenciamento de tabelas
- Criando tabelas com create table
- Alterando tabelas com alter table
- Excluindo tabelas com drop table

Gerenciamento de tabelas (DDL SQL)

Os comandos que permitem o gerenciamento das tabelas em SQL estão na divisão DDL SQL. Os principais comandos são create, alter e drop.

Por exemplo:

- o create table para criar tabelas;
- o alter table para alterar tabelas;
- drop table para excluir tabelas.

Fonte:elaborado pelo professor Imagem 1: divisões da linguagem SQL e os principais comandos -DDL em destaque

Para Criar a 1ª Base de Dados : Utilizamos Create Database;

Criando tabelas com create table

Sintaxe:

```
1 create table nome_da_tabela (
2 coluna1 tipo,
3 coluna2 tipo,
4 coluna3 tipo,
5 ...
6 );
```

Fonte:elaborado pelo professor Imagem 2: sintaxe do comando create table

Criando tabelas com create table

Alguns tipos de campos (PostgreSQL):

- int para inteiros
- decimal(total de digitos, casas decimais)
 para números com casas decimais
- serial para campos do tipo autonumeração
- date para datas
- time para horas
- timestamp para data e hora
- varchar(tamanho) para caracteres
- text para caracteres

Criando tabelas com create table

departamentos (<u>id</u>, nomedepto) funcionarios(id, nomefunc, departamento_id) departamento_id referencia departamentos(id)

Lembrando o modelo logico, podemos criar as tabelas com as chaves primarias e chaves estrangeiras.

Criando tabelas com create table

departamentos (<u>id</u>, nomedepto) funcionarios(id, nomefunc, departamento_id) departamento_id referencia departamentos(id)

```
create table departamentos (
departamento
```

Fonte:elaborado pelo professor Imagem 3: exemplo do comando create table para a tabela departamentos As duas tabelas...criadas podem ser testadas nos ambiente sugeridos

Gerenciamento de tabelas (criação, alteração e exclusão)

Criando tabelas com create table

departamentos (<u>id</u>, nomedepto) funcionarios(id, nomefunc, departamento_id) departamento_id referencia departamentos(id)

```
1 create table funcionarios(
2   id serial,
3   nomefunc varchar(50),
4   departamento_id int,
5   primary key(id),
6   foreign key(departamento_id) references departamentos(id)
7   )
8
```

Fonte:elaborado pelo professor Imagem 4: exemplo do comando create table para a tabela funcionarios

Criando tabelas com create table

```
1 create table departamentos {
2   id serial,
3   nomedepto varchar(50),
4   primary key(id)
5 )
```

```
create table funcionarios(
   id serial,
   nomefunc varchar(50),
   departamento_id int,
   primary key(id),
   foreign key(departamento_id) references departamentos(id)
)
```