高等演算法 HW1

許博翔

April 11, 2024

Notation 1. N(v) :=the neighborhood of v.

Problem 1.

Equivalent ILP:

$$\min \sum_{v \in V} w_v x_v.$$
subject
to $: x_u + x_v \ge 1, \ \forall uv \in E.$
$$x_v \in \{0, 1\}, \ \forall v \in V.$$

LP relaxation:

$$\begin{aligned} &\min \sum_{v \in V} w_v x_v.\\ &\text{subjectto} : &x_u + x_v \geq 1, \ \forall uv \in E.\\ &x_v \geq 0, \ \forall v \in V. \end{aligned}$$

Dual LP:

$$\max \sum_{e \in E} \alpha_e.$$
 subject
to:
$$\sum_{u \in N(v)} \alpha_{uv} \le w_v, \ \forall v \in V.$$

$$\alpha_e \ge 0, \ \forall e \in E.$$

The rephrased algorithm:

- 1. Initially, the residual weight $r_v = w_v$ for every vertex v. The vertex cover S is empty. All variables x_v, α_e are 0.
- 2. Repeat until all edges are covered by S:
 - (a) Pick any edge e = uv that is not covered by S.
 - (b) Set α_{uv} to min (r_u, r_v) , and reduce the residual weights r_u and r_v by α_{uv} .

(c) Add all vertices v with 0 residual weights to S, and set x_v to 1.

We want to prove that:

1.
$$x_u + x_v \ge 1$$
, $\forall uv \in E$.

$$2. \sum_{u \in N(v)} \alpha_{uv} \le w_v, \ \forall v \in V.$$

3.
$$x_u + x_v \le 2 \text{ or } \alpha_{uv} = 0, \ \forall uv \in E.$$

4.
$$\sum_{u \in N(v)} \alpha_{uv} \ge w_v \text{ or } x_v = 0, \ \forall v \in V.$$

Proof of 1.:

If
$$x_u + x_v < 1$$
, then $x_u = x_v = 0$.

 \Rightarrow neither u nor v is in S.

 $\Rightarrow uv$ is not covered by S, contradiction.

$$\therefore x_u + x_v \ge 1.$$

Proof of 2.:

By 2(b) of the algorithm, the amount of change of r_v is the amount of α_e for e connected to v.

$$\therefore \sum_{u \in N(v)} \alpha_{uv} = \text{the amount of change of } r_v = w_v - r_v \le w_v.$$

Proof of 3.:

$$x_u + x_v \le 1 + 1 \le 2$$
.

Proof of 4.:

If $x_v \neq 0$, then r_v is set to 0 by 2(c).

$$\Rightarrow \sum_{u \in N(v)} \alpha_{uv} = w_v - r_v = w_v.$$

Since the complementary slackness conditions 3. 4. are satisfied, this is a 2-approximation.

Problem 2. Run phase 1 in class.

Let K denote the given k in the problem description (since k is frequently used in this proof).

Let
$$S_j := \{i : \alpha_j > c_{ij}\}, \ T_j := \{i : \alpha_j = c_{ij}\}, \ U_j := \begin{cases} S_j, \text{ if } S_j \neq \emptyset \\ T_j, \text{ otherwise} \end{cases}$$
.

Since the algorithm in phase 1 guaranteed that all clients are connected.

$$\therefore S_j \cup T_j \neq \emptyset, \ \forall j.$$

In another word, $U_j \neq \emptyset$, $\forall j$.

Let's modify the phase 2 in class.

Let I := the set of all temporarily facilities, and serve client j with an arbitrary element $p_j \in U_j$.

Let
$$B_i := \{j : p_j = i\}$$
.
 $\forall i \in I, \sum_{j \in B_i} (\alpha_j - c_{ij}) \leq \sum_{j : i \in U_j} (\alpha_j - c_{ij}) \stackrel{\alpha_j = c_{ij} \text{ for } i \in T_j}{=} \sum_{j : i \in U_j \cap S_j} (\alpha_j - c_{ij}) \stackrel{\text{by the definition of } U_j}{=}$

$$\sum_{j : i \in S_j} (\alpha_j - c_{ij}) \stackrel{\text{by phase } 1}{=} f_i.$$

$$\Rightarrow \sum_{j \in B_i} \alpha_j \leq \sum_{j \in B_i} c_{ij} + f_i.$$

$$f_i + \sum_{j \in B_i} c_{ij} \leq f_i + \sum_{j : i \in U_j} c_{ij} = \sum_{j : i \in U_j} \alpha_j.$$

$$\Rightarrow \sum_{i \in I} \left(f_i + \sum_{j \in B_i} c_{ij} \right) \leq \sum_{i \in I} \sum_{j : i \in U_j} \alpha_j = \sum_{j} |U_j| \alpha_j \leq \sum_{j} k \alpha_j \text{ (since if } c_{ij} = \infty, \text{ then } \alpha_j < c_{ij}).$$

Also, if
$$i \notin I$$
, $x_i = 0$.

$$\therefore \sum_{i} x_i \left(\sum_{j} \beta_{ij} c_{ij} + f_i \right) = \sum_{i \in I} \left(\sum_{j \in B_i} c_{ij} + f_i \right) \leq \sum_{j} k \alpha_j.$$

$$\therefore \text{ this is a } k\text{-approximation.}$$

Problem 3. Let K denote the given k in the problem description (since k is frequently used in this proof).

Let
$$S_j := \{i : \alpha_j > c_{ij}\}, \ T_j := \{i : \alpha_j = c_{ij}\}, \ U_j := \begin{cases} S_j, \text{ if } S_j \neq \emptyset \\ T_j, \text{ otherwise} \end{cases}$$
.

Since the algorithm in phase 1 guaranteed that all clients are connected.

$$\therefore S_j \cup T_j \neq \emptyset, \ \forall j.$$

In another word, $U_j \neq \emptyset$, $\forall j$.

Algorithm in phase 2:

- 1. $I := \emptyset, J :=$ the set of all temporarily open facilities, $S := \emptyset$.
- 2. while $J \neq \emptyset$

- (a) Let $i \in J$ s.t. $q_i := \sum_{j \notin S: i \in U_i} \alpha_j$ is maximized, and let $S^{(i)} := S^c$.
- (b) Let A_i denote all facilities in J that are conflict with i.
- (c) Remove $A_i \cup \{i\}$ from J, add i to I.
- (d) for all $j \notin S$ with $i \in U_j$, serve j with i, and add j to S.
- 3. for all $j \notin S$, select an arbitrary $i \in U_j$, it must be in some A_k for some k by 2(b), serve j with k.

The maximality of I is guaranteed by the condition of the while loop.

Let p_j denote the facility that serves j in the above algorithm, and $B_i := \{j : p_j = i\}$. By the definition of temporarily open and that no two facilities in I are confict with each other, $\forall i \in I, \{j : i \in S_i\} \subseteq B_i$.

$$\Rightarrow \forall i \in I, \ \sum_{j \in S \cap B_i} (\alpha_j - c_{ij}) = f_i.$$

$$\Rightarrow \forall i \in I, \ f_i + \sum_{j \in S \cap B_i} c_{ij} = \sum_{j \in S \cap B_i} c_{ij}$$

$$\Rightarrow \forall i \in I, \ f_i + \sum_{j \in S \cap B_i} c_{ij} = \sum_{j \in S \cap B_i} \alpha_j.$$

 $\forall j \notin S$, by 3., there's $i \in U_j$ s.t. i conflicts with p_j . By the definition of conflict, $\exists k$ s.t. $\alpha_k - c_{ik} > 0$ and $\alpha_k - c_{p_j k} > 0$.

$$\Rightarrow c_{p_j j} \leq c_{ij} + c_{ik} + c_{p_j k} < c_{ij} + 2\alpha_k \stackrel{::i \in U_j}{\leq} \alpha_j + 2\alpha_k \leq 3\alpha_j.$$

The last inequality above is because α_k = the time that k is connected = the time that i is temporarily open \leq the time that j is connected = α_j .

 $\forall i \in I$:

$$\begin{split} &\sum_{j \in S \cap B_i} \alpha_j \overset{2(\mathrm{d})}{=} \sum_{j \in S^{(i)}} \alpha_j = q_i. \\ &\sum_{j \in B_i \backslash S} \alpha_j \overset{\text{there's } k \in U_j \text{ s.t. } k \in A_i}{\leq} \sum_{k \in A_i} \sum_{j \in B_i \backslash S: k \in U_j} \alpha_j \leq \sum_{k \in A_i} \sum_{j \in S^{(i)}} \alpha_j = \sum_{k \in A_i} q_k \overset{2(\mathrm{a})}{\leq} \sum_{k \in A_i} q_i = \\ &|A_i|q_i \leq (K-1)q_i. \\ \Rightarrow \sum_{j \in B_i \backslash S} \alpha_j = q_i = \frac{1}{K} (1+K-1)q_i \geq \frac{1}{K} \left(\sum_{j \in S} \alpha_j + \sum_{j \in S} \alpha_j\right) = \frac{1}{K} \sum_{j \in S} \alpha_j. \end{split}$$

$$\Rightarrow \sum_{j \in S \cap B_i} \alpha_j = q_i = \frac{1}{K} (1 + K - 1) q_i \ge \frac{1}{K} \left(\sum_{j \in S \cap B_i} \alpha_j + \sum_{j \in B_i \setminus S} \alpha_j \right) = \frac{1}{K} \sum_{j \in B_i} \alpha_j.$$

$$\therefore \sum_{j \in B_i} c_{ij} + f_i = \sum_{j \in S \cap B_i} \alpha_j + \sum_{j \in B_i \setminus S} c_{ij} \le \sum_{j \in S \cap B_i} \alpha_j + 3 \sum_{j \in B_i \setminus S} \alpha_j = 3 \sum_{j \in B_i} \alpha_j - 2 \sum_{j \in S \cap B_i} \alpha_j \le (3 - \frac{2}{K}) \sum_{j \in B_i} \alpha_j.$$

Also, $\forall i \notin I$, $x_i = 0$.

 \therefore this is a $(3 - \frac{2}{K})$ -approximation.

Problem 4.

Problem 5.