# **Business Case: SQL**

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
  - 1. Data type of columns in a table
  - 2. Time period for which the data is given
  - 3. Cities and States covered in the dataset

### Solution:

• Data type of columns in a table

```
SELECT column_name, data_type
FROM `<CompanySchema>.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name="customers";
```

| Row | column_name              | data_type |
|-----|--------------------------|-----------|
| 1   | customer_id              | STRING    |
| 2   | customer_unique_id       | STRING    |
| 3   | customer_zip_code_prefix | INT64     |
| 4   | customer_city            | STRING    |
| 5   | customer_state           | STRING    |

```
SELECT column_name, data_type
FROM `<CompanySchema>.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name="orders";
```

| Row | column_name                   | data_type |
|-----|-------------------------------|-----------|
| 1   | order_id                      | STRING    |
| 2   | customer_id                   | STRING    |
| 3   | order_status                  | STRING    |
| 4   | order_purchase_timestamp      | TIMESTAMP |
| 5   | order_approved_at             | TIMESTAMP |
| 6   | order_delivered_carrier_date  | TIMESTAMP |
| 7   | order_delivered_customer_date | TIMESTAMP |
| 8   | order_estimated_delivery_date | TIMESTAMP |

Time period for which the data is given

select distinct EXTRACT(YEAR from order\_purchase\_timestamp) YEAR, EXTRACT(MONTH from order\_purchase\_timestamp) MONTH from <CompanySchema>.orders order by YEAR,MONTH;



\*\* Data Time Period : Sept,2016 to Oct,2018

Cities and States covered in the dataset

 ${\tt select\ distinct\ geolocation\_state, geolocation\_city\ from\ {\tt CompanySchema}. geolocation}$ 

order by geolocation\_state;



select distinct geolocation\_state,
count(geolocation\_city) as city\_count from <CompanySchema>.geolocation
group by geolocation\_state
order by geolocation\_state;



### 2. In-depth Exploration:

- 1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?
- 2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

### Solution:

• Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
select *,
No_of_Order-
LAG(No_of_Order,1) over(partition by ORDER_YEAR order by ORDER_MONTH asc) as gro
wth_over_year,
dense_rank() over(partition by ORDER_YEAR order by No_of_Order desc) as rank_ord
erValue,
from
(select ORDER_YEAR,ORDER_MONTH,count(order_id) No_of_Order from
(select distinct order_id,EXTRACT(YEAR from order_purchase_timestamp) as ORDER_
YEAR,
EXTRACT(MONTH from order_purchase_timestamp) AS ORDER_MONTH
from <CompanySchema>.orders) t
group by ORDER_YEAR,ORDER_MONTH
ORDER_BY ORDER_YEAR,ORDER_MONTH) t2
```

## ORDER BY ORDER\_YEAR,ORDER\_MONTH;

getting increased over month.

| Row | ORDER_YEAR | ORDER_MONTH | No_of_Order | growth_over_year | rank_orderValue |
|-----|------------|-------------|-------------|------------------|-----------------|
| 1   | 2016       | 9           | 4           | nuli             | 2               |
| 2   | 2016       | 10          | 324         | 320              | 1               |
| 3   | 2016       | 12          | 1           | -323             | 3               |
| 4   | 2017       | 1           | 800         | nuli             | 12              |
| 5   | 2017       | 2           | 1780        | 980              | 11              |
| 6   | 2017       | 3           | 2682        | 902              | 9               |
| 7   | 2017       | 4           | 2404        | -278             | 10              |

Results per page:

\*\* No. of orders is surely increasing over months with some exceptional dips for few months in between. Positive growth\_over\_year shows No. of Orders

50 ▼

|<

1 - 25 of 25

Checking the rank of No. of orders for each month gives us an idea that order has been on peak around September to November month every year, though for 2018 it's not the same because it looks like data is not complete for 2018 end of the month in this dataset.

 What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
select * from
(select EXTRACT(HOUR from order_purchase_timestamp) as ORDER_HOUR,
count(distinct order_id) as No_of_Orders
from <CompanySchema>.orders
group by EXTRACT(HOUR from order_purchase_timestamp))
order by No_of_Orders desc;
```

| Row | ORDER_HO | No_of_Orders |
|-----|----------|--------------|
| 1   | 16       | 6675         |
| 2   | 11       | 6578         |
| 3   | 14       | 6569         |
| 4   | 13       | 6518         |
| 5   | 15       | 6454         |
| 6   | 21       | 6217         |
| 7   | 20       | 6193         |
| 8   | 10       | 6177         |
| 9   | 17       | 6150         |

\*\* No. of Orders is highest at around 16:00 hour which is Afternoon time, however, No. of orders pick up at around 10 in the morning and till 22:00 - 23:00 hour the volume of order is high.

Results per page:

50 ▼

1 - 24 of 24

- 3. Evolution of E-commerce orders in the Brazil region:
  - 1. Get month on month orders by region, states

2. How are customers distributed in Brazil

## Solution:

Get month on month orders by region, states

```
select distinct customer_state, customer_city, ORDER_YEAR, ORDER_MONTH,
count(distinct order_id) over(partition by customer_state, customer_city,
ORDER_YEAR,ORDER_MONTH) No_of_Orders FROM
(select c.customer_state, c.customer_city, order_id,
EXTRACT(YEAR from order_purchase_timestamp) as ORDER_YEAR,
EXTRACT(MONTH from order_purchase_timestamp) AS ORDER_MONTH
from <CompanySchema>.customers c
left join <CompanySchema>.orders o
on c.customer_id=o.customer_id)
order by customer_state,ORDER_YEAR,ORDER_MONTH,customer_city;
```

| Row | customer_state | customer_city // | ORDER_YEAR     | ORDER_MO    | No_of_Orders        |
|-----|----------------|------------------|----------------|-------------|---------------------|
| 1   | AC             | rio branco       | 2017           | 1           | 2                   |
| 2   | AC             | brasileia        | 2017           | 2           | 1                   |
| 3   | AC             | rio branco       | 2017           | 2           | 2                   |
| 4   | AC             | rio branco       | 2017           | 3           | 2                   |
| 5   | AC             | porto acre       | 2017           | 4           | 1                   |
| 6   | AC             | rio branco       | 2017           | 4           | 4                   |
| 7   | AC             | rio branco       | 2017           | 5           | 8                   |
|     |                | Res              | ults per page: | 50 ▼ 1 - 50 | 0 of 21698 <b> </b> |

How are customers distributed in Brazil

```
select customer_state,customer_city,
count(distinct customer_id) No_of_Customers
from <CompanySchema>.customers
group by customer_state,customer_city
order by customer_state,No_of_Customers desc;
```

| Row / | customer_state | customer_city    | No_of_Customers |
|-------|----------------|------------------|-----------------|
| 1     | AC             | rio branco       | 70              |
| 2     | AC             | cruzeiro do sul  | 3               |
| 3     | AC             | xapuri           | 2               |
| 4     | AC             | senador guiomard | 2               |
| 5     | AC             | brasileia        | 1               |
| 6     | AC             | porto acre       | 1               |
| 7     | AC             | manoel urbano    | 1               |

- 4. Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.
  - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

2. Mean & Sum of price and freight value by customer state

### Solution:

 Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
select ORDER_YEAR, sum(Order_cost) OrderCostSum_overYear,
(sum(Order_cost)-
LAG(sum(Order_cost)) over(order by sum(Order_cost)))*100/LAG(sum(Order_cost))
  over(order by sum(Order_cost)) PercentValue_diff
from
(select distinct order_id,
EXTRACT(YEAR from shipping_limit_date) ORDER_YEAR, price as Order_cost
from <CompanySchema>.order_items
where EXTRACT(MONTH from shipping_limit_date) between 1 and 8
and EXTRACT(YEAR from shipping_limit_date) in (2017,2018))
group by ORDER_YEAR
order by ORDER_YEAR;
```

| Row | ORDER_YEAR | OrderCostSum_overYear | PercentValue_diff |
|-----|------------|-----------------------|-------------------|
| 1   | 2017       | 2788254.509999183     | null              |
| 2   | 2018       | 6992256.3200066015    | 150.7753971142559 |

<sup>\*\*</sup> For the months between Jan to July, % increase in sum of cost of orders from 2017 to 2018 is around 150%.

Mean & Sum of price and freight value by customer state

```
select customer_state,sum(price+freight_value) sum_CostValue,
avg(price+freight_value) mean_CostValue from
(select distinct customer_state,oi.order_id,price,freight_value from
<CompanySchema>.customers c inner join <CompanySchema>.orders o
on c.customer_id=o.customer_id
inner join <CompanySchema>.order_items oi
on o.order_id=oi.order_id)
group by customer_state
order by customer_state;
```

| Row | customer_state | sum_CostValue | mean_CostValue  |
|-----|----------------|---------------|-----------------|
| 1   | AC             | 18467.42      | 225.2124390243  |
| 2   | AL             | 92161.589999  | 219.9560620525  |
| 3   | AM             | 25996.269999  | 173.3084666666  |
| 4   | AP             | 14307.939999  | 204.3991428571  |
| 5   | BA             | 564227.94000  | 163.4969400173  |
| 6   | CE             | 258358.22999  | 190.8111004431  |
| 7   | DF             | 332700.69000  | 152.2657620137  |
| 0   | EC             | 202011 22000  | 1.45.6010004770 |

Results per page:  $50 \checkmark 1 - 27 \text{ of } 27$ 

\*\* For different customer states, sum and mean value for Cost (Price + Freight value) is calculated as above.

- 5. Analysis on sales, freight and delivery time
  - 1. Calculate days between purchasing, delivering and estimated delivery
  - 2. Create columns:
    - time to delivery = order purchase timestamp-order delivered customer date
    - diff\_estimated\_delivery = order\_estimated\_delivery\_dateorder\_delivered\_customer\_date
  - Group data by state, take mean of freight\_value, time\_to\_delivery, diff\_estimated\_delivery
  - 4. Sort the data to get the following:
    - 1. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
    - 2. Top 5 states with highest/lowest average time to delivery
    - 3. Top 5 states where delivery is really fast/ not so fast compared to estimated date

#### Solution:

 Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

```
select customer state, avg(time to delivery) mean time to delivery,
avg(diff_estimated_delivery) mean_diff_estimated_delivery,
avg(freight_value) mean_freight_value from
(select distinct t.*,freight_value from
(select distinct customer_state,o.order_id,order_purchase_timestamp,order_es
timated_delivery_date,order_delivered_customer_date,
TIMESTAMP_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) t
ime_to_delivery,
TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_customer_date,D
AY) diff_estimated_delivery
from <CompanySchema>.orders o
join <CompanySchema>.customers c
on o.customer_id=c.customer_id) t
join <CompanySchema>.order_items oi
on t.order_id=oi.order_id)
group by customer_state
order by mean_freight_value
limit 5;
```

| Row // | customer_state // | mean_time_to_delivery | mean_diff_estimated_delivery | mean_freight_value |
|--------|-------------------|-----------------------|------------------------------|--------------------|
| 1      | SP                | 8.2754811634749483    | 10.210674834788589           | 15.268667910359618 |
| 2      | PR                | 11.485065710872155    | 12.445838311429666           | 20.462014910731735 |
| 3      | MG                | 11.514929868341719    | 12.350055933224315           | 20.778585456700316 |
| 4      | RJ                | 14.788677751385613    | 10.977751385589881           | 21.099942493482605 |
| 5      | DF                | 12.4335992491788      | 11.229938995776596           | 21.321245404411741 |

<sup>\*\*</sup> Mean time to delivery is calculated as average of 'order delivered to customer' date minus 'order purchase date' over different customer state.

Mean difference of estimated delivery is calculated as average of 'order estimated delivery date' minus 'order delivered customer date' over different customer state.

Also, Mean Freight value is calculated over each customer state and is ordered by the same in ascending and data limited to count 5.

Top 5 states with highest/lowest average time to delivery

```
select customer_state, avg(time_to_delivery) mean_time_to_delivery,
avg(diff_estimated_delivery) mean_diff_estimated_delivery,avg(freight_value)
mean_freight_value from
(select distinct t.*,freight_value from
(select distinct customer_state,o.order_id,order_purchase_timestamp,order_es
timated_delivery_date,order_delivered_customer_date,
TIMESTAMP_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) t
ime to delivery,
TIMESTAMP DIFF(order estimated delivery date, order delivered customer date, D
AY) diff estimated delivery
from <CompanySchema>.orders o
join <CompanySchema>.customers c
on o.customer_id=c.customer_id) t
join <CompanySchema>.order_items oi
on t.order_id=oi.order_id)
group by customer_state
order by mean_time_to_delivery desc
limit 5;
```

| Row | customer_state | mean_time_to_delivery | mean_diff_estimated_delivery | mean_freight_value |
|-----|----------------|-----------------------|------------------------------|--------------------|
| 1   | RR             | 28.975609756097562    | 16.414634146341463           | 42.255434782608695 |
| 2   | AP             | 26.705882352941178    | 18.573529411764714           | 34.975652173913055 |
| 3   | AM             | 26.0                  | 18.578231292517017           | 33.16986577181207  |
| 4   | AL             | 23.848635235732       | 8.1066997518610329           | 36.150863309352538 |
| 5   | PA             | 23.385093167701836    | 13.207039337474134           | 35.926347124117086 |

 Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
select customer_state, avg(time_to_delivery) mean_time_to_delivery,
avg(diff estimated delivery) mean diff estimated delivery,
avg(freight value) mean freight value from
(select distinct t.*,freight_value from
(select distinct customer_state,o.order_id,order_purchase_timestamp,order_es
timated_delivery_date,order_delivered_customer_date,
TIMESTAMP_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) t
ime_to_delivery,
TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_customer_date,D
AY) diff_estimated_delivery
from <CompanySchema>.orders o
join <CompanySchema>.customers c
on o.customer_id=c.customer_id) t
join <CompanySchema>.order items oi
on t.order_id=oi.order_id)
group by customer_state
order by mean_diff_estimated_delivery
limit 5;
```

| Row | customer_state | mean_time_to_delivery | mean_diff_estimated_delivery | mean_freight_value |
|-----|----------------|-----------------------|------------------------------|--------------------|
| 1   | AL             | 23.848635235732       | 8.1066997518610329           | 36.150863309352538 |
| 2   | MA             | 21.000000000000028    | 8.93587994542975             | 37.940423280423282 |
| 3   | SE             | 20.979411764705866    | 9.1970588235294155           | 36.69999999999982  |
| 4   | ES             | 15.24706457925638     | 9.704011741682999            | 22.111571084337335 |
| 5   | BA             | 18.8210843373494      | 10.025903614457841           | 26.273661601402772 |

 $^{**}$  AL customer state has least mean difference of delivered order from estimated order.

- 6. Payment type analysis:
  - 1. Month over Month count of orders for different payment types
  - 2. Distribution of payment installments and count of orders

### Solution:

Month over Month count of orders for different payment types

```
select Order_Year,Order_Month,payment_type,count(order_id) count_orders from
(select distinct
EXTRACT(YEAR from order_purchase_timestamp) Order_Year,EXTRACT(MONTH from or
der_purchase_timestamp) Order_Month,payment_type,o.order_id
from <CompanySchema>.orders o
inner join <CompanySchema>.payments p
on o.order_id=p.order_id)
group by Order_Year,Order_Month,payment_type
order by Order_Year,Order_Month;
```

| Row | Order_Year | Order_Month | payment_type | count_orders // |
|-----|------------|-------------|--------------|-----------------|
| 1   | 2016       | 9           | credit_card  | 3               |
| 2   | 2016       | 10          | credit_card  | 253             |
| 3   | 2016       | 10          | voucher      | 11              |
| 4   | 2016       | 10          | debit_card   | 2               |
| 5   | 2016       | 10          | UPI          | 63              |
| 6   | 2016       | 12          | credit_card  | 1               |
| 7   | 2017       | 1           | voucher      | 33              |
| 8   | 2017       | 1           | UPI          | 197             |
| 9   | 2017       | 1           | credit_card  | 582             |

Results per page: 50 ▼ 1 − 50 of 90

- \*\* From above analysis, we can see that for different payment type over different month of 2016 year and onwards, the count of orders are varying.
- Distribution of payment installments and count of orders

```
select payment_installments, count(order_id) count_orders
from <CompanySchema>.payments
group by payment_installments
order by payment_installments;
```

| Row | payment_installments | count_orders // |
|-----|----------------------|-----------------|
| 1   | 0                    | 2               |
| 2   | 1                    | 52546           |
| 3   | 2                    | 12413           |
| 4   | 3                    | 10461           |
| 5   | 4                    | 7098            |
| 6   | 5                    | 5239            |
| 7   | 6                    | 3920            |
| 8   | 7                    | 1626            |
| 9   | 8                    | 4268            |

Results per page: 50 ▼ 1 - 24 of 24

## 7. Actionable Insights

- As we can see that more orders are placed at around 16:00 hour afternoon, so we need to make sure products are available in plenty and should not go out of stock
- Focus on states where time of delivery is more to bring down the No. of days to be taken to deliver the product
- Increase delivery frequency/agents to bring down estimated time of delivery for orders
- For the states, where average freight value is more, we need to further break down the cost to be bear by customers and bring it down
- Based on the review score, improve the service and quality of products and delivery experience for customers

## 8. Recommendations

- Around September to November of every year, the customer engagement is more, so we can provide benefits like discounts, vouchers, offers, etc to retain the customers and attract more customers
- Credit card seems to be used of more often as payment mode, so we can come up with good offers on credit card payments.
- Also, we can collaborate with more credit card banks for allow payments for customers
- Looking at number of customers for different cities each state, we can see the engagement and focus on bringing more customers for other cities
- Looking into count of sellers per city for different states, we can bring in more sellers to better meet demand-supply

\*\*\*\*\* End of Document \*\*\*\*\*

<sup>\*\*</sup> Count of orders calculation for different payment installments.