Fiche limites de fonctions composées

Exercice 1:

f et g sont deux fonctions dont on donne les tableaux de variations ci-dessous :

x	$-\infty$	2	7	+∞
g(x)	7	-1	5	4

Déterminer les limites suivantes :

$$1) \lim_{x \to +\infty} f(g(x))$$

$$2) \lim_{x \to 4} g(f(x))$$

$$3) \lim_{x \to 2} f(g(x))$$

4)
$$\lim_{x \to +\infty} g(f(x))$$

$$5) \lim_{x \to -\infty} f(f(x))$$

$$6) \lim_{x \to -\infty} g(g(x))$$

Exercice 2:

f et g sont deux fonctions dont on donne les tableaux de variations ci-dessous :

	x	$-\infty$	Ę	5 +∞
•	f(x)	-3	+∞	2

x	-∞	2	7	+∞
g(x)	+∞	-1	6	5

Déterminer les limites suivantes :

$$1) \lim_{x \to -\infty} f(g(x))$$

$$2) \lim_{x \to +\infty} g(f(x))$$

$$3) \lim_{x \to +\infty} f(g(x))$$

4)
$$\lim_{x \to 5^+} g(f(x))$$

5)
$$\lim_{x \to 5^{-}} f(f(x))$$

6)
$$\lim_{x \to -\infty} g(g(x))$$

Solutions

Exercice 1:

1)
$$\lim_{x \to +\infty} g(x) = 4$$

$$\lim_{x \to 4} f(x) = 2$$
 donc, par composition,
$$\lim_{x \to +\infty} f(g(x)) = 2$$

2)
$$\lim_{x \to 4} f(x) = 2$$
 donc, par composition, $\lim_{x \to 4} g(f(x)) = -1$

3)
$$\lim_{x \to 2} g(x) = -1$$

$$\lim_{x \to -1} f(x) = 0$$
 donc, par composition, $\lim_{x \to 2} f(g(x)) = 0$

4)
$$\lim_{x \to +\infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} g(x) = 7$$
 donc, par composition,
$$\lim_{x \to +\infty} g(f(x)) = 7$$

5)
$$\lim_{x \to -\infty} f(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

$$\begin{cases}
\text{donc, par composition, } \lim_{x \to -\infty} f(f(x)) = -\infty
\end{cases}$$

6)
$$\lim_{x \to -\infty} g(x) = 7$$

$$\lim_{x \to 7} g(x) = 5$$

$$\lim_{x \to 7} g(x) = 5$$
donc, par composition,
$$\lim_{x \to -\infty} g(g(x)) = 5$$

Exercice 2:

1)
$$\lim_{x \to -\infty} g(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) = 2$$
 donc, par composition, $\lim_{x \to +\infty} f(g(x)) = 2$

$$\lim_{x \to +\infty} f(x) = 2$$

$$\lim_{x \to +\infty} g(x) = -1$$

$$\lim_{x \to 2} g(x) = -1$$

$$\lim_{x \to 2} g(x) = -1$$

$$\lim_{x \to \infty} g(x) = -1$$

3)
$$\lim_{x \to +\infty} g(x) = 5^{+}$$

$$\lim_{x \to 5^{+}} f(x) = -\infty$$
 donc, par composition,
$$\lim_{x \to +\infty} f(g(x)) = -\infty$$

4)
$$\lim_{x \to 5^{+}} f(x) = -\infty$$

$$\lim_{x \to -\infty} g(x) = +\infty$$

$$\begin{cases} \lim_{x \to -\infty} g(x) = +\infty \end{cases}$$
donc, par composition, $\lim_{x \to 5^{+}} g(f(x)) = +\infty$

5)
$$\lim_{x \to 5^{-}} f(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) = 2$$
donc, par composition, $\lim_{x \to 5^{-}} f(f(x)) = 2$

6)
$$\lim_{x \to -\infty} g(x) = +\infty$$

$$\lim_{x \to +\infty} g(x) = 5$$
 donc, par composition, $\lim_{x \to -\infty} g(g(x)) = 5$