Лекции по математическому анализу.

Contents

История математического анализа	1
1. Множества и действия над ними. Точные грани числовых множеств	. 1
1.1. Алгебра высказываний	1
1.2. Аксиомы множеств	2
2. Понятие отображения, образ и прообраз множества при	
отображении, суперпозиция отображений, сужение отображения,	
график отображения. Сюрьективные, инъективные и биективные	
отображения. Обратное отображение.	2
2.1. Аксиомы Пеано	3
2.2. Точные грани числовых множеств.	5
2.3. Иррациональные числа	6
2.4. Показателная функция	7
2.5. Логарифмы.	7
2.6. Свойства полноты множества действительных чисел	7
3. Счетные и не счетные множества.	8

История математического анализа

Definition. Математический анализ-область науки, где изучается переменная величина своеобразными методами иследования (анализом посредствам б.м. или посредствам предельных переходов.

Предшествинеками были: метод исчерпования и метод неделимового.

Definition. Метод исчерпования - античныйметоддля исследования площадей или объёмов тела. Для нахождения некоторой фигуры вписывалась монотоная последовательность других фигур и доказывалось, что их площадь неограничено приближается к площади искомой фигуры. Затем вычислялся предел и выдвагалась гипотиза , что этот предмет равен R , доказывалось, что обратное приводит к противоречию.

Definition. Метод неделимового -совокупность предметов для вычесления площадей геометрических тел. Идея метода для плоских фигур: разделить их на фигуры нулевой ширины, потом собирать без изменения длины , площадь которых известна.

1. Множества и действия над ними. Точные грани числовых множеств.

1.1. Алгебра высказываний.

(1) $p \wedge q$ -конъюкция (логическое произведение)

- (2) $p \lor q$ -дизъюнкция (логическое или)
- (3) $p \to q$ -импликация с посылкой р (если..., то...)
- (4) $p \equiv q$ -эквиваленция (тогда и только тогда)
- (5) \overline{q} -отрицание
- (6) V произвольное истиное
- (7) F произвольное ложное
- (8) ∃ квантер существования
- (9) ∀-квантор всеобщности

р,q,r - произвольные высказывания

Definition. Множество -совокупность неупорядоченных неповторяющихся объектов

1.2. Аксиомы множеств.

- (1) Аксиома объемности -если множества A и B состоят из одних и тех же элементов, то они совпадают. A=B
- (2) Аксиома суммы для произвольных множеств A и B существует множество, элементы которого являются элементами множества A и все элементы множества B. $A \cup B$
- (3) Аксиома разности -для произвольного множества A и B существует множество, элементами кторого являются те и только те элементы множества A, которые не являются элементами множеста B. $A \setminus B$
- (4) Существет по крайней мере одно множество
 - (a) Произведение - $A\cap B$ множеств A и B -это общая часть сомножетелей: $\forall x\in A\cap B\equiv (x\in A)(x\in B)$
 - (b) Симметричная разность -разность двух множеств A и B определяется как : $A \triangle B \equiv (A \setminus B) \cup (B \setminus A)$

Definition. Включение -множества A называется подмножеством B, если каждый элемент множества A принадлежит множеству B. $A \subset B$

Definition. $C_M A$ -дополненое множества A в M. $C_m = A \setminus B$

2. Понятие отображения, образ и прообраз множества при отображении, суперпозиция отображений, сужение отображения, график отображения. Сюрьективные, инъективные и биективные отображения. Обратное отображение.

Definition. Прямое(декартовое) произведение множеств X и Y называется множество всех упорядочных пар(x,y): $x \in X$, $x \in Y$, $X \times Y \neq Y \times X$

Definition. Отображение -правило f, по которому каждому элементу $x \in X$ ставится в соответсвие опредленый, и при этом единственный, элемент $y \in Y$. (отображение множества X в множества Y). X- область значения. Y-область определения.

Definition. Отображение $f: N \to Y$ множества N в произвольное множество Y будем называть последовательностью (в Y). Числовой последовательностью же мы будем называть : $\{x_n\}_{i=1}^{\infty}$

Definition. График функции - $\Gamma_f = \{(x, y) \in X \times Y \mid y = f(x)\}$

Definition. Образ множества A при отображение f называется множество $f(A) = \{y \in Y \mid \exists x \in A : y = f(x)\}$

Definition. Прообраз множества В при отображение $f: X \to Y \ (B \subset Y)$ называется множество $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$

Definition. Транзитивность - $f: X \to Y$ $g: Y \to Z \Rightarrow h: X \to Z$ $h(x) = g(f(x)) \forall x \in X$, где g(f(x))-суперпозиция отображения.

Definition. $f \circ g$ - суперпозиция $f: X \to Y \ g: Y \to Z \Rightarrow h: X \to Z$

Claim.
$$g \circ (f \circ g) = (h \circ g) \circ f \ \forall x \in X$$

$$Proof. \ \left[h \circ (g \circ f)\right] = h\left(\left(g \circ f\right)(x)\right) = h\left(g\left(f\left(x\right)\right)\right) = \left(h \circ g\right)\left(f\left(x\right)\right) = \left[\left(h \circ g\right) \circ f\right](x)$$

Definition. $f: X \to Y$ отображение f от X в Y называется

- ullet сюръективным или отображением "на" f(X) = Y
- инъективным или взаимно однозначным отображение "в" $\forall x_1, x_2 \in X$ $x_1 \neq x_2 \ f(x_1) \neq f(x_2)$, $x_1 = x_2 \ f(x_1) = f(x_2)$
- биективным или взаимно однозначным отображением "на" (одновременно и сюръективно и инъективно

Путь наше отображение биективно ⇒можно установить новое отображение:

$$g:Y\to X\ (y\in Y,g(x)=x\in X)\ (g(y)=x)\Leftrightarrow (f(x)=y)\ g=f^{-1}$$

- (1) обратное отображение биективно
- (2) Имеет место равенства:
 - (a) $f^{-1}(f(x)) = x \ \forall x \in X$
 - (b) $f\left(f^{-1}\left(y\right)\right) = y \,\forall x \in Y$
- (3) $f^{-1}: Y \to X, f: X \to Y \Rightarrow (f^{-1})^{-1} = f$

//дописать

Example. Отображение. Иьъективное не сюръективное.//вставить картинку.

Example. Отображение. Не инъективное, сюръективное.

Example. Отображение. Инъективное, сюръективное ⇒биективное

2.1. Аксиомы Пеано.

- (1) l -натуральное число
- (2) Для каждого натурального числа n есть однозначно определенное следующее число $\rho(n)$
- (3) Не существует такого натурального числа n , для которого $\rho(n) = l$
- (4) Если n_1 и n_2 -различные натуральные числа, то то $\rho(n_1) \neq \rho(n_2)$
- (5) (Аксиома индукции) Пусть P -некоторое свойство, которым может обладать натуральное число; таким образом P(n)-верно, если натуральное число п обладает свойством P и ложно в противном случае. Тогда если P(1) истино и для любого наторального числа из $P(n) \Rightarrow P(\rho(n)) \Rightarrow P(n)$ выполняется для любого натурального п.

Definition. P(1) -база индукции

$$P(n) \to P(S(n))$$
 -шаг индукции

N-множество натуральных чисел

Z-множество целых чисел

Q-множество рациональных чисел R-множество вещественных чисел

Определение действительных чисел.

- (1) Действительное (вещественные) число a записывается в виде бесконечной десятичной дроби $a=\pm a_0,...a_n$, где a_0 -неотрицательное целое число , а каждое $a_n\in N_+$
- (2) Бесконечная десятичноая дробь называется переодической и записывается в ввиде $a=\pm a_0,...a_n$ ($\beta_1,...\beta_n$), если после некоторое десятичного разряда группе цифр ($\beta_1,...\beta_n$) Бесконечные переодические числа являются рациональными числами $\frac{p}{q}$, где $p\in Z,\,q\in N$
- (3) Переход от записи рационального числа $a=\pm a_0,...a_n$ к виду $\frac{p}{q}$ производится по формуле // написать формулу
- (4) Число $\alpha_0, ..., \alpha_n$ -абсолютная величина (модулем) числа

$$|\alpha| = \begin{cases} \alpha & \alpha > 0 \\ 0 & \alpha = 0 \\ -\alpha & \alpha < 0 \end{cases}$$

(5) Бесконечная десятичная дробь называется допустимой, если она не содержит периода, состоит только из цифр 9. Любое действиетельное число может быть записано в виде допустимой бесконечной дроби.

Свойства действительных чисел:

- (1) Операции сложения $\forall a, b$ существет сумма a + b:
 - (a) Для любой пары числе $a, b \ a + b = b + a$ (коммутативность)
 - (b) $\forall a, b, c \ a + (b + c) = (a + b) + c$ (ассоциативность)
 - (c) $\forall a \ a + 0 = a$ (существует нейтральный элемент)
 - (d) $\forall a \ \exists (-a): \ a + (-a) = 0$ (существует противоположный элемент)
- (2) Операция умножения $\forall a, b$ определяет и при том однозначным образом число, называющиеся их призведение a*b
 - (a) a * b = b * a
 - (b) a * (b * c) = (a * b * c)
 - (c) a * 1 = a
 - (d) $a \neq 0 \; \exists \frac{1}{a}, a^{-1} : a^{-1} * a = 1$
- (3) Связь операций сложения и умножения $\forall a,b,c \ (a+b)*c = ac+bc$ (дистрибутивность)
- (4) Упорядоченность a > 0, a = 0, a > 0
 - (a) a + b > 0, если a > 0 ^ b > 0
 - (b) a*b>0, если a>0 $\hat{b}>0$

Сравнение действиетельных чисел.

- (1) Сравнение неотрицательных чисел $\alpha = \alpha_1,...,\alpha_n$ $\beta = \beta_1,...,\beta_n$ $\beta_n = \alpha_n \, \forall n = 0,1...$ Если неотрицательное действительное число записать в виде допустимой бесконечной дроби, то говорят, что $\alpha < \beta$, если $\alpha_0 \leq \beta_0$ и существует
- такое номер n, что $\alpha_n = \beta_n \ \forall n = 0, 1, ..., n-1$, а $\alpha_n < \beta_n$ (2) Сравнение произвольных действительных чисел. Если a-неотрицательное,b-отрицательное $\Rightarrow a > b$. Если $a \le 0 \ \hat{b} \le 0 \Rightarrow |a| = |b|$
- (3) Неравенство содержащие знак модуля. $|a+b| \le |a| + |b|, |a+b| \ge |a| |b|$ (неравенство треугольника)

Действительные числа обладают свойством непрерывности.

Definition. Нетривиальное множество элементов, обладающих выше перечислеными свойствами, называют множеством дейстительных чисел.

Definition. Расширенная числовая прямая-дополним множество элементов следующими симвалами: $+\infty, -\infty$. Обозначим \overline{R}

Definition. $\forall a, b \in R, a \leq b$ можно соотнести множество:

- (1) $[a,b] \triangle \{x \in R | a \le x \le b\}$ -отрезок или сегмент
- (2) $(a,b)\overline{\triangle}$ $\{x \in R | a < x < b\}$ -интервал
- (3) [a,b) $\triangle \{x \in R | a \le x < b\}$ -полуинтервал

2.2. Точные грани числовых множеств.

Conjecture. Множеесство $E \subset R$ называется

- \bullet ограниченным сверху, если существует такое число $M \in R,$ что $x \leq M$ $\forall x \in E$
- \bullet ограниченым снизу, если существует такое число $m \in R,$ что $m \leq x$ $\forall x \in E$
- ограниченным, если оно ограниченно сверху и снизу.

Lemma. Для того чтобы множесво $E \subset R$ было ограничено необходимо и достаточно, чтобы $\exists C \in R$,что $|x| \leq C \ \forall x \in E$

Ргооf. Необходимость ⇒ Пусть множество $E \subset R \Rightarrow m \in R \ M \in R \Rightarrow m \le x \le M, \forall x \in E \Rightarrow -C \le x \le C \ \forall x \in E \ C = max \{|m|, |M|\} \ C \ge |m| \ge -m \Rightarrow -C \le m \ M \le |M| \le C$ По свойству абсолютной величины $x \le C \ \forall x \in E(4)$ □

Proof. Достаточноть. $\Leftarrow \exists C \in R$ Если выполняется условие $-c \le x \le c$, то $M \le |M| \le C \Rightarrow$ множество ограниченно.

Definition. Если множесво $E \subset R$ ограничено сверху, то всякое такое число $M \in R$, что $x \leq M \ \forall x \in E$, будем называть верхней гранью этого множества. Аналогично , если множесво $E \subset R$ ограничено снизу, то всякое такое число $m \in R$, что $M \leq x \ \forall x \in E$ будем называть нижней гранью этого множества.

Definition. Наименьшая из верхних граней множесва $E\subset R$ называется точной верхней гранью supE -supremum этого множества, а наибольшая из его нижних граней называется называется точной нижней infE -infimum .

Remark. С учетом определиния 2 и 3 определение точной верхней грани в развернутой форме можно сформулировать так: Число $C \in R$ называется точной нижней граню множества , если

- $(1) \ x \le E \ \forall x \in E$
- (2) $\forall \varepsilon > 0 \ \exists x_{\varepsilon} \in E : C \varepsilon < x$ (никакое число меньше C верхних граний множесва E никакоей верхней гранью не является)

Remark. С учетом определиний точной нижней грани в развернутой форме можно сформулировать так: Число $C \in R$ называется точной верхней граню множества , если

(1) $x \le C \ \forall x \in E$

- (2) $\forall \varepsilon > 0$ Никакое число меньше С верхней гранью множества E не является
- $(3) \ \exists x_{\varepsilon} \in E : C \varepsilon < x_{\varepsilon}$

Remark. Число $C \in R$ называется точной верхней граню множества , если

- (1) $C \le x \ \forall x \in E$
- (2) $\forall \varepsilon > 0$ Никакое число большей С нижней гранью множества E не является
- (3) $\exists x_{\varepsilon} \in E : x_{\varepsilon} < C + \varepsilon$

Definition. Не всякое числовое множество имеет наибольшей или наименьший элемент.

Наибольший элемент(maxE) множества $E \subset R$ $M(M \in E)$ $x \leq M$ $\forall x \in E$ Наименьший элемент(minE) множества $E \subset R$ $m(m \in E)$ $x \geq M$ $\forall x \in E$

Definition. Всякое непустое, ограниченное сверху числовое множесвто имеет точную верхнюю грань, а всякое непустое, ограниченное снизу числое множество имеет точную нижную грань.

Proof. (1) Пусть множество $E \subset R$ не пусто, тогда оно обязанно иметь хотя бы одну грань. \Rightarrow множество всех верхних граней не пусто(F). $x \leq y \ \forall x \in E \ \forall y \in F$. По аксиоме непрерывности $\Rightarrow \exists c \in R \ x \leq c \leq y \ \forall x \in E \ \forall y \in F \Rightarrow$ с-верхняя грань $E \Rightarrow$ с наименьшее из всех граней $\Rightarrow c = supE$ (точная верхняя грань)

Если неограниено сверху $supE = +\infty$, неограничену снизу $infE = -\infty$

Theorem. Принцип Архимеда -каково бы ни было действительное число a, \exists такое натуральное число n, что n > a: $\forall a \in R \ \exists n \in N \ n > a$

Proof. (от противного)Допустим, что принцип Архимеда не выполняется. $\exists a \in R, \forall n \in N \ n \leq a \Rightarrow$ число а ограничевает сверху множество натуральных чисел. Множество натуральных чисел как всякое непустое ограниченное непустое множество имеет конечную верхную грань. $\beta = \sup N \ \beta - 1 < \beta \Rightarrow$ Согласно свойству верхних граней $\exists n > \beta - 1 \Rightarrow n + 1 > \beta \ n + 1 \in N$ □

Следствие. Каковы бы ни были числа а и b: 0 < a < b существет такое натуральное число n , что na > b

Example. $\frac{1}{n}, n=1,2,\dots$ найдём supX найдём infX. Возьмем $c>0\Rightarrow \exists n:\frac{1}{n}< c\ \forall c$ уже не ограничевает $X\Rightarrow inf\left\{\frac{1}{n}\right\}=0$ $\frac{1}{n}\in (0,1]$

2.3. Иррациональные числа.

Definition. Иррациональные числа. (Дедекинд). Расмотрим разбиения множества всех рациональных чисел на два не пустых подмножества A и \acute{A} назовём такое разбиение сечением если выполняются 2 условия:

- (1) каждое рациональное число попадает в одно из множества A или \acute{A}
- (2) каждое число a множества A меньше каждого числа \acute{a} множества \acute{A}

А: А -нижний класс сечения

А-верхний класс сечения

Definition. Три вида сечения

- (1) в нижнем классе нет наибольшего числа, а в верхнем классе есть наименьшее чило
- (2) в нижнем классе имеется наибольшеее число, а в верхнем класее нет наибольшего
- (3) ни в нижнем классе нет наибольшего числа, ни в верхнем классе наименьшего

в первых двух случаях говорят что сечение призводиться рациональным числом r которое явлеятся пограничным между множеством A и \acute{A} . r- определяет сечение.

Definition. Всякое сечение вида 3 определяет некоторе иррациональное число a

Definition. Иррациональное число -вещественное число, которе не является рациональным Q. Иррациональные числа можно представить в виде бесконечной не периодической дроби.

- 2.4. Показателная функция. a^r ,a > 0 $r \in Q$
 - (1) $r_1 < r_2 \ a > 1 \ a^{r_1} < a^{r_2}$, если $a < 1 \ a^{r_1} > a^{r_2}$
 - (2) $a^{r_1}a^{r_2} = a^{r_1+r_2}$
 - $(3) (a^{r_1})^{r_2} = a^{r_1 r_2}$
 - $(4) \ a^{-r} = \frac{1}{a^r}$

Определим теперь степень α^{β} для любого действительного β и $\alpha>0$ α^b $b, \acute{b}\in Q$ $b<\beta< b$ $\alpha>1$ α^{β} назывестя некторое число γ : $\alpha^b<\gamma<\alpha^b$ $\left\{a^b\right\}$ ограниченное сверху: $\alpha^{\acute{\beta}}$ $\gamma=\sup_{b<\beta}\left\{\alpha\right\}^{\beta}$ $\alpha^{\beta}<\gamma<\alpha^{\acute{\beta}}$

2.5. **Логарифмы.** Задача: установить существование логарифма любого вещественного числа $\gamma \in N$ $\alpha > 1$. Если $\exists r$ $\alpha^r = \gamma$, то r-искомый логарифм

Proof. Предоложим что нет r . Тогда проведем сечение по следущему правилу B/\acute{B} . В классе B заменим все b: $\alpha^b < \gamma$,а в классе \acute{B} все \acute{b} : $\alpha^{\acute{b}} > \gamma$. Эти члены B и \acute{B} не пустые. В силу неравенства Бернули.

$$\alpha^{n} > 1 + n(\alpha - 1) > n(\alpha - 1), n > \frac{\gamma}{(\alpha - 1)}, \alpha^{n} > \gamma \Rightarrow n \in B$$

$$\alpha^{-n} = \frac{1}{\alpha^{n}} < \frac{1}{n(\alpha - 1)}, n > \frac{1}{\gamma(\alpha - 1)}, \alpha^{-n} < \gamma - n \in B$$

Таким образом построенное сечение определяет число вещественное которое является пограничным между этими плоскостями.

По определению степени $\alpha^b < \alpha^\beta < \alpha^{\acute{b}}$ причем α^β -единственное удовлетворяющее всех подобным неравенствам. Для самого числа $b < \beta < \acute{b}$ $\alpha^\beta < \gamma < \alpha^\beta \Rightarrow \alpha^\beta = \gamma \ \beta = log_\alpha \gamma$

2.6. Свойства полноты множества действительных чисел. Принцип вложенных отрезком.(принцип Коши-Кантора)

Conjecture. Система числовых отрезков

 $[a_1,b_1],[a_2,b_1],...,\ [a_nb,_n],...a_n\in R,b\in R_n,n=1,2...$ называется системой вложенных отрезков, если

$$a_1 \le a_2 \dots \le a_n \le b_n \le \dots \le b_2 \le b_1$$

m.e. если каждый следующий отрезок $[a_{n+1},b_{n+1}]\subset [a_n,b_n]$: $[a_n,b_n]\subset [a_{n-1},b_{n-1}]\subset ...\subset [a_1,b_1]$

Theorem. (Теорема Кантора). Для всякой системы вложенных отрезков существует хотя бы одно число, которе принадлежит всем отрезкам данной системы.

Proof. // рисунок

$$A$$
-множество всех концов a_n B -множество всех правых концов b_m . $\forall m,n: a_m \leq b_n \; \exists \xi \; a_m < \xi < b_n \Rightarrow \xi \in [a_n,b_m]$

Definition. Пусть задана система отрезков $[a_n,b_n]$, $a_n,b_n \in R$. Будем говорить, что длина b_n-a_m отрезков этой системы стремится к нулю, если $\forall \varepsilon>0$ существует такое номер n_ε , что для всех номеров выполняется неравенство $b_n-a_m<\varepsilon\ \forall n,m$.

Theorem. (Теорема Кантора 2). Для всякой системы, вложенных отрезков с длинами, стремящимися к нулю, существует единственная точка, принадлежащая всем отрезкам данной системы, причем для всякой системы, вложенных открезков с длинами, стремящимися к нулю, \exists ! точка, придлежащая всем отрезкам данной системы, причем

$$\xi = \sup_{n \in \mathbb{N}} \{a_n\} = \inf_{n \in \mathbb{N}} \{b_n\}$$

Proof. Пусть длина отрезком стремится к нулю. Покажем, что существет только одна точка приндалежащая всем отрезкам.

(от противного). Пусть имеется две точки
$$\xi, \acute{\xi} \in [a_n, b_n]$$
. Тогда $\forall n \left| \xi - \acute{\xi} \right| < |b_n - a_n| \ b_n - a_n < \varepsilon$. Возьмем $\varepsilon = \frac{1}{2} \left| \acute{\xi} - \xi \right| \left| \acute{\xi} - \xi \right| < \frac{1}{2} \left| \acute{\xi} - \xi \right| !!!$

3. Счетные и не счетные множества

Definition. Множество X и Y называются эквивалентными или равномощными, если между ними можно установить взаимно-однозначное соответсвие (биекция). $X \sim Y$

Свойства

- (1) (рефлексивность) $X \sim X$ для любого множества X
- (2) (симметричность) $X \sim Y \Rightarrow Y \sim X$
- (3) (транзитивность) $X \sim Y$ и $Y \sim Z \Rightarrow X \sim Z$

Definition. Множество X называется конечным если существует такое натуральное n, что $X \sim [1, n]$. В противном случае оно называется бесконечным.

Definition. Множество X называется счётным, если $X \sim N$

Theorem. Всякое бескоенечное множество содержит счётные подмножества.

Proof. Возьмём множество A и выбирем элемент $a_1: A_1 = A \setminus \{a_1\}$. Так же $a_2: A_2 = A \setminus \{a_1, a_2\}$. Такие элементы не повторяются $\Rightarrow B = \{a_n | n \in N\}$ является счётным подмножеством множества A

Theorem. Всякое бесконечное подмножество счётного множества счётно.

Proof. Пусть X -счетное множество, введём бесконечное подмножество Y. $X = \{x_n | n \in N\}$ Возьмём элемент n_1 -наименьший из тех $N: x_n \in Y$ Выбираем $n_2: n_2 > n_1, \ x_n \in Y$ Пронумеруем $Y \ Y = \{x_{n_k} | k \in N\} \Rightarrow Y$ -счётные множество.

Следствие: Всякое подмоножество не более чем счётного множества не более чем счётно.

Theorem. Объединение счётного числа и счётного множества счётно

 $Proof. \ A_n, n \in N$ -счётные множество

$$A = \bigcup_{n=1}^{x}$$

$$A_n = \{a_{n_1}, a_{n_2}, \ldots\}$$
 $n \in N$ //рисунок

Theorem. Множество всех рациональных чисел счётно.

Proof. Рассмотрим множество:
$$A_1=\{1,2,3...\}$$
 $A_2=\left\{\frac{1}{2},\frac{2}{2},\frac{3}{2},...\right\}$ $A_3=\left\{\frac{1}{3},\frac{2}{3},\frac{3}{3},...\right\}$ Этой матрицей //дописать

Theorem. Множество всех вещественных числе несчётно

Proof. Достаточно доказать, что несчётные множество всех всщественных чисел несчётно. Будем считать, что множество всех

бесконечных доробей можно пересчитать.

т.е
$$x_1, x_2, \dots$$
 (1) $x_1 = a_0^1, a_1^1, a_2^1, \dots x_2 = a_0^2, a_1^2, a_2^2, \dots$

Докажем, что существет $x=b_0,b_1,b_2...$ (2), которое не содержится в последовательности (1), где b_0 -произвольное целове положительное число, остальные цифры b_n ($1 \le b_n \le 8$), $b_n \ne a_n \forall n$

По построению дробь 2 не содержится в плосткости 1. Это противоречит тому, что плоскость 1 содержит все бесконечные положительные дроби.

Definition. Мощность множества -это то общее, что есть у всех эквивалентных между собой подмножеств.

Мощность множества-класс эвивалентных ему множеств.

CardX-мощность Card -кардинальное число

Алеф нуль -кардинальное число, являющееся мощностью счётного множества (не описуемая буква)

CardX > CardY -множество X больше Y

Theorem. (Теоема Кантора-Берштейна)

Пусть A и B -произвольные множества. Если $\exists A_1 \subset A: A_1 \sim B, \ a \ \exists B_1 \subset B: B_1 \sim A \Rightarrow A \sim B$