Honors Mathematics IV RC 7

CHEN Xiwen

UM-SJTU Joint Institute

November 18, 2018

Table of contents

Transforms
The Fourier Transform

Exercises

Transforms

The Fourier Transform

Exercises

The Fourier Transform

Definition. The *Fourier transform* of a function $f: \mathbb{R} \to \mathbb{C}$ is given by

$$\widehat{f}(\xi) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\xi x} dx.$$

 \widehat{f} exists for all $\xi \in \mathbb{R}$ if

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty.$$

Derivatives

1.
$$\widehat{f}'(\xi) = i\xi \cdot \widehat{f}(\xi)$$
.

2.
$$\frac{d}{d\xi}\widehat{f}(\xi) = \widehat{(-ix)}f(\xi).$$

Properties of Fourier Transform

Properties of Fourier transform for continuous functions .

f(t)	$\widehat{f}(\xi) = F(\xi)$
$f(at+b), a \neq 0$	$\frac{1}{ a }e^{i\xi b/a}F\left(\frac{\xi}{a}\right)$
$f(t-t_0)$	$F(\xi)e^{-i\xi t_0}$
f(-t)	$F(-\xi)$
$f(at), a \neq 0$	$\frac{1}{ a }F\left(\frac{\xi}{a}\right)$
$f_1(t) * f_2(t)$	$\sqrt{2\pi}F_1(\xi)\cdot F_2(\xi)$

Properties of Fourier Transform

Properties of Fourier transform for continuous functions (continued).

f(t)	$\widehat{f}(\xi) = F(\xi)$
$f_1(t) \cdot f_2(t)$	$\frac{1}{\sqrt{2\pi}}F_1(\xi)*F_2(\xi)$
$f(t)e^{i\xi_0t}$	$F(\xi-\xi_0)$
$f(t)\cos(\xi_0 t)$	$\frac{F(\xi-\xi_0)+F(\xi+\xi_0)}{2}$
$\frac{d^n}{dt^n}f(t)$	$(i\xi)^n F(\xi)$
$(-it)^n f(t)$	$\frac{d^n}{d\xi^n}F(\xi)$

Common Fourier Transform Pairs

Table of Fourier transform pairs.

f(t)	$\sqrt{2\pi}\cdot\widehat{f}(\xi)$
$\frac{1}{b^2 + t^2}$ $e^{-b t }$	$\frac{\frac{\pi}{b}e^{-b \xi }}{\frac{2b}{b^2+\xi^2}}$
$e^{i\xi_0t}$	$2\pi\delta(\xi-\xi_0)$
e^{-bt^2}	$\sqrt{\pi/b}e^{-\xi^2/(4b)}$

Common Fourier Transform Pairs

Table of Fourier transform pairs (continued).

f(t)	$\sqrt{2\pi}\cdot\widehat{f}(\xi)$
$\delta(t)$	1
1	$\sqrt{2\pi}\delta\left(\xi ight)$
$\cos(\xi_0 t)$	$\pi\delta(\xi-\xi_0)+\pi\delta(\xi+\xi_0)$
$\sin(\xi_0 t)$	$\frac{\pi}{i}\delta(\xi-\xi_0)-\frac{\pi}{i}\delta(\xi+\xi_0)$

Fourier Transform

Example 1. Calculate the Fourier transform of the function $f: \mathbb{R} \to \mathbb{R}, f(x) = 1/(1+x^2)^2$.

$$\widehat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{-ix\xi}}{(1+x^2)^2} dx.$$

Decay Behavior at Infinity

Definition. Let $\Omega \subset \mathbb{R}$ be bounded and $f : \mathbb{R} \setminus \Omega \to \mathbb{C}$.

► Polynomial decay.

$$f(x) = O(x^{-n})$$
 as $|x| \to \infty$ for some $n > 0$.

► Faster-than-polynomial decay.

$$f(x) = O(x^{-n})$$
 as $|x| \to \infty$ for all $n > 0$.

Exponential decay.

$$f(x) = O(e^{-b|x|})$$
 as $|x| \to \infty$ for some $b > 0$.

Analytic Theory of the Fourier Transform

- 2.7.4. Definition. Let a>0 be some constant. The set \mathcal{F}_a of functions $f:S_a\to\mathbb{C}$ where $S_a=\{z\in\mathbb{C}:|\mathrm{Im}\,z|< a\}$ such that
 - 1. f is analytic on S_A and
 - 2. there exists a constant A > 0 such that

$$|f(x+iy)| \le \frac{A}{1+x^2}$$
 for all $x \in \mathbb{R}$ and $|y| < a$.

2.7.6. Theorem. Let $f \in \mathcal{F}_a$ for some a > 0. Then for any $0 \le b < a$ there exists a constant B > 0 such that

$$|\hat{f}(\xi)| \le Be^{-b|\xi|}$$
 for all $\xi \in \mathbb{R}$.

Thus, complex analyticity of f implies exponential decay of \hat{f} .

Fourier Inversion Theorem

Definition.

$$\mathcal{F} = \{ f : \mathbb{C} \to \mathbb{C}, \exists a > 0, f \in \mathcal{F}_a \}.$$

2.7.8. Fourier Inversion Theorem. If $f \in \mathcal{F}$, then \hat{f} exists and

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{i\xi x} d\xi$$
 for all $x \in \mathbb{R}$.

The Complex Fourier Transform

Definition. The Fourier transform of $f:\mathbb{C}\to\mathbb{C}$ at $\xi+i\eta\in\mathbb{C}$ if given by

$$\widehat{f}(\xi+i\eta):=rac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-i(\xi+i\eta)x}dx,$$

where in the integral f is evaluated on the real axis only.

The existence of the complex Fourier transform. Let $f: \mathbb{R} \to \mathbb{R}$ satisfy $f(x) = O(e^{-b|x|})$ as $|x| \to \infty$ for some b > 0. Then \hat{f} exists and is analytic in the strip

$$S_b = \{z \in \mathbb{C} : |\mathrm{Im}\, z| < b\}.$$

The Fourier Inversion Formula

2.7.10. Fourier inversion theorem. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is absolutely integrable and satisfies the following condition: there exists a set of numbers $\{a_1, \ldots, a_n\}, n \in \mathbb{N}$, such that f is continuously differentiable on the intervals (a_k, a_{k+1}) , where we set $a_0 = \infty, a_{n+1} = \infty$, and such that the one-sided limits of f and f' at a_1, \ldots, a_n exists. Then \hat{f} exists and for all $x \in \mathbb{R}$,

$$\frac{f(x^+)+f(x^-)}{2}=\frac{1}{\sqrt{2\pi}}\lim_{R\to\infty}\int_{-R}^R\widehat{f}(\xi)e^{ix\xi}d\xi,$$

where the limit on the right exists for all $x \in \mathbb{R}$ and

$$f(x^+) := \lim_{y \searrow x} f(y), \qquad f(x^-) := \lim_{y \nearrow x} f(y).$$

Exercises

Exercise 1. Show, by contour integration, that if a>0 and $\xi\in\mathbb{R}$ then

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a}{a^2 + x^2} e^{-2\pi i x \xi} dx = e^{-2\pi a |\xi|}.$$

Thanks for your attention!