HAOTIAN HANG

April, 2022

PERSONAL INFO

Birth Year: 1997

Citizenship: People's Republic of China

E-mail: haotianh@usc.edu

Social media: Github LinkedIn ResearchGate

Address: 1247 W 30 St, Los Angeles, CA 90007

Mobile: (213)462-5919 Webpage: Personal Website

EDUCATION

2020 - University of Southern California, Los Angeles, CA

Ph.D. Student, Mechanical Engineering

Master of Science, Mechanical Engineering, December 2021

2015 - 2019 Shanghai Jiao Tong University, Shanghai, China

B.S. Aeronautics and Astronautics Engineering, June 2019 (Average Score: 89.22/100)

EMPLOYMENT

2020 - Research Assistant, Bio-Inspired Motion Lab at USC, PI: Prof. Eva Kanso

2019 Intern Algorithmic Engineer, Shanghai Hongpu Information Technology Co., Ltd.

Conduct flaw detection on images of photovoltaic cell using Faster R-CNN and yolov3

2016 - 2019 Research Assistant, J.C.Wu Center for Aerodynamics, PI: Prof. Hong Liu

PUBLICATIONS

3. Hang, H., Heydari, S., Costello, J., & Kanso, E. (2022). Active tail flexion in concert with passive hydrodynamic forces improves swimming speed and efficiency. Journal of Fluid Mechanics, 932, A35.

2021 2. Xiang, Y., Hang, H., Qin, S., and Liu, H. (2021). Scaling analysis of the circulation growth of leading-edge vortex in flapping flight. Acta Mech. Sin.

2020 1. Hang, H., Yu, B., Xiang, Y., Zhang, B., and Liu, H. (2020). An objective-adaptive refinement criterion based on modified ridge extraction method for finite-time Lyapunov exponent (FTLE) calculation. Journal of Visualization, 23(1), 81-95.

RESEARCH INTERESTS/EXPERIENCE

2020 - Learning to blindly follow hydrodynamic trails, supervised by Prof. Eva Kanso

joint with Sina Heydari, Yusheng Jiao, Feng Ling

Employ reinforcement learning to follow vortical wakes based on local flow sensory

Find traveling wave characteristic of wakes is important for source seeking and our controller is stable in locating source

Compare performance between mechano- and chemo- sensing, and different sensory cues

2020 - Flexion in fish swimming, supervised by Prof. Eva Kanso, Prof. John H. Costello

joint with Sina Heydari

Analyze the role of active and passive flexion on swimming speed and efficiency of a self-propelling pitching plate using vortex sheet method

Parametric study on effects of flexion phase, flexion angle and flexion ratio on swimming performance

2016 - 2019 Mechanisms of high generation in insects flight, supervised by Prof. Hong Liu and Dr. Yang

Xiang and Dr. Suyang Qing

Conduct experimental study using robotic flapping wing models in glycerin with Reynolds number similar to insects

Measure flow field using particle image velocimetry (PIV) and measure force and torque using 6-axis force sensor, analogue filter and NI data acquisition system

Study difference in formation of leading edge vortex(LEV) for different kinematic modes, and find advanced rotation can generate a lager LEV because of wake capture

Find a scaling law between passive rotation and active translation in flapping wing model

2016 - 2019 AMR for FTLE calculation, supervised by Prof. Hong Liu, Prof. Bin Zhang, Bin Yu and Dr. Yang

Xianq

Develop a physics-based adaptive refinement method for finite-time Lyapunov exponent calculation

2015 - 2016 **VTOL pitch-changed quadrotor**, supported by National Students' Platform for Innovation and Entrepreneurship Training, supervised by *Prof. Junqi Wu*

joint with Dongming Ding, Jihong Huang, Chaoqun Li, Zhikang Qiu

Lead a team to make a quad rotor and fulfilled of pitch-changed technique and VTOL technique in terms of both mechanical and control

TALKS/PRESENTATIONS

2021	APS Division of Fluid Dynamics Meeting, Active tail flexion in concert with passive hydrodynamic
	forces improves swimming speed and efficiency
2020	APS Division of Fluid Dynamics Meeting, Flowtaxis in the wakes of oscillating airfoils
2018	APS Division of Fluid Dynamics Meeting, Passive rotation of a flapping wing with an inhomoge-
	neous mass distribution

TEACHING EXPERIENCE

at University of Southern California

2021 Spring **Teaching Assistant**, AME-526, Introduction to mathematical methods in engineering II, *Prof. Niema*

Pahlevan

2020 Fall **Teaching Assistant**, AME-404, Computational Solutions to Engineering Problems, *Prof. Takahiro*

Sakai

GRADUATE COURSEWORK

	at University of Southern California
2021	PHYS-516, Methods of Computational Physics, A , Prof. Aiichiro Nakano
	EE-556, Stochastic Systems and Reinforcement Learning, A , Prof. Rahul Jain
	CSCI-570, Analysis of Algorithms, B+ , Prof. Victor Adamchik
	AME-508, Machine Learning and Computational Physics, A, Prof. Assad Oberai
	CSCI-596, Scientific Computing and Visualization, A, Prof. Aiichiro Nakano
	class project: a C++ parallel reinforcement learning implementation Github Link
2020	AME-525, Engineering Analysis, A-, Prof. Eva Kanso
	AME-526, Introduction to Mathematical Methods in Engineering II, A, Prof. Niema Pahlevan
	AME-511, Compressible Gas Dynamics, A , Prof. Iván Bermejo-Moreno
	PHYS-760, Selected Topics in Computational Physics, P , Prof. Satish Kumar Thittamaranahalli
	AME-451, Linear Control Systems I, A, Prof. Henryk Flashner
	AME-541, Linear Control Systems II, A-, Prof. Néstor O. Pérez-Arancibia
	AME-535A, Introduction to Computational Fluid Mechanics, A, Prof. Alejandra Uranga
	AME-530A, Dynamics of Incompressible Fluids, B+, Prof. Carlos Pantano

HONOR/AWARDS

2017-2018	Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment of SJTU
2016	Honeywell Star Project
	Second Place , Parts of the National College Students Physics Competition
	Third Place , Chinese College Students' Mathematics Competition
2014	First Place, Chinese Chemistry Olympiad
	First Place, Shanghai Adolescents Science and Technology Innovation Contest

ONLINE COURSEWORK

	at Udacity
2022	C++ Nanodegree
	at Coursera
2021	Build a Modern Computer from First Principles: From Nand to Tetris (Project-Centered Course),
	Hebrew University of Jerusalem
2019	Specialization, DeepLearning.AI TensorFlow Developer , DeepLearning.AI (containing 4 courses)
	Specialization, Deep Learning, DeepLearning.AI (containing 5 courses)
	Machine Learning, Stanford University,
2014	General Chemistry, Peking University

TECHNICAL SKILLS

Programming Language: Python, Matlab, Fortran, C/C++ (from more familiar to less, same

below)

Machine learning framework: Pytorch, Tensorflow

Hardware: Arduino, Raspberry Pi, Pixhawk