Esercizio 1 (3 punti): Dati i numeri:

a) 000111

effettuarne la somma binaria usando la rappresentazione in base 2 per numeri senza segno ed usando la codifica in complemento a 2 per i numeri relativi. In entrambi i casi, specificare il numero decimale corrispondente agli addendi ed al

X Esercizio 2 (3 punti):

Considerando la codifica nello standard IEEE 754 in precisione singola dire quale tra i numeri

è il minore.

4 entisse 111

Numero: 1, 111

Montisse: 11

Numaro: 1,11

Dimostrare la verità o meno della proprietà distributiva dell'OR rispetto allo XOR

A OR (B XOR C) = (A OR B) XOR (A OR C)

sando la tabella di verità presente nel modulo risposte

Non distibutivo To +FA

A	B	C	B LOD C	to	A OR B	A OR C	FI
0	0	0	0	0	0	0	0
0	0	1	1	K	0	1	Л
Q	1	0	Я	J	λ	0	1
0	٨	Y	0	Θ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \))	Ð
1	0	\Box	0	1		L	Ø
		,	9			\	0

Esercizio 4 (3 punti):

Disegnare la rete logica che realizza il circuito combinatorio comparatore di 2 ingressi a 3 bit

Esercizio 5 (3 punti):

Con riferimento all'interprete micro-programmato Mic-1, quali delle seguenti affermazioni sono

A. Durante l'esecuzione della micro-istruzione Main1 viene sempre richiesto il fetch dell'argomento dell'istruzione in esecuzione;

B. Durante l'esecuzione della micro-istruzione Main1 può essere richiesto il fetch del codice operativo della prossima micro-istruzione;

C. Durante l'esecuzione di una micro-istruzione che contenga che richieda una lettura dalla memoria (rd), nessuna altra lettura dalla memoria o scrittura verso la memoria deve essere già in

D. Il valore dei flag N e Z dell'ALU non sono alterati dalla micro-istruzione MDR=TOS;

Esercizio 7 (3 punti):

Nell'ambito dell'architettura MIC-1 si descriva la relazione fra gli indirizzi nel control store delle due micro-istruzioni raggiungibili come destinazioni alternative di una istruzione di tipo jump (JAMN e/o JAMZ uguali ad 1).

La relazione tra i due indirizzi è, se ad esempio prendiamo un indirizzo base 0x32, per saltare dall'altra parte della tabella lo mettiamo in OR con 0x100 (256)

Esercizio 9 - laboratorio (4 punti)

Utilizzando il linguaggio assemblativo nel formato JAS visto in laboratorio, scrivere un metodo COMP1 con 3 parametri formali (chiamateli X, Y e K) che restituisca al chiamante il piu' grande tra X e Y se l'espressione 2X+Y-K è negativa, oppure, in caso contrario, che restituisca il piu' piccolo tra X e Y. Scrivere anche il main contenente il codice che realizzi la chiamata di tale metodo con parametri attuali rispettivamente -10, 4, 3 (in notazione decimale) e che scriva il risultato restituito dal metodo in una sua variabile locale chiamata value. Si limiti al minimo l'introduzione di variabili inutili.

Var

. emblan

1 LOBD Y

1 SUB

JLOAD X
DUP
IHDD
ILOAD Y
I ADD
ILOAD K
IJUB
ILOAD K
IJUB
ILOAD X

120 AD Y 1 RETURN

LZ: (10BD X

LA : 160AD X

160AD Y

180B

1717 L3 / 2 X < Y

160AD X

L3: ILOAD Y L3: TURN

Esercizio 10 - laboratorio (4 punti)

Scrivere il microcodice MIC1 dell'istruzione senza operandi LOCAND, che scrive sulla cima dello stack il risultato dell'AND bit-a-bit tra le due variabili locali con scostamento 1 e 2 da LV, assumendo che tale microcodice vada a modificare il microinterprete. Si descrivano quindi anche quali modifiche devono essere fatte al file di configurazione dell'emulatore Mic1MMV e al codice del microinterprete stesso affinché l'emulatore possa eseguire un programma IJVM (.jas) contenente l'istruzione LOCAND.

LOCAND1 MAR = LV + 1; rd LOCAND2 MAR = LV + 2; rd LOCAND3 H = MDR; LOCAND4 MAR = SP = SP +1 LOCAND5 MDR = H AND MDR; wr; goto Main1 Esercizio 9 - laboratorio (4 punti)

Utilizzando il linguaggio assemblativo nel formato JAS visto in laboratorio, scrivere un programma che dati due numeri interi positivi e maggiori di zero X e Y scrive sullo stack i numeri ottenuti dalla progressiva sottrazione di Y da X, fino a quando X non assume un valore negativo (la serie inizia sempre con X). Il programma deve implementare l'esecuzione dell'esercizio con i dati di esempio X=9, Y=2. In questo caso, alla fine dell'esecuzione lo stack dovrebbe contenere:

1 ← SP 3 5

BIPUSH 9 ILOAD x
ISTORE x ILOAD y
BIPUSH 2 ISUB
ISTORE y DUP
ISTORE x
Sub: Goto Sub
ILOAD x End:
IFLT end halt

XEsercizio 1 (3 punti): Dati i numeri:

a) 10011100

e

b) 10011101

Dire quale dei due è maggiore nel caso in cui si usi la rappresentazione in base 2 per numeri senza segno e nel caso in cui si usi la codifica in complemento a 2 per i numeri relativi. Motivare la risposta con spiegazioni, passaggi e calcoli. Il solo risultato finale non sarà considerato sufficiente in fase di valutazione.

1 001 1100 7 87 16 +3 v+ 128 = 18 h

1001 1101 7 1+ h+2 + 16+ 128 = 157

Ju population ben 2 per mini smò signo è

meggar 10011100

1001 1100 jempanita 2 7 - 100

01100 100 100 jenpanita 2 7 - 100

1001 1100 jenpanita 2 9 9

1432 11

In Emplimento a 2 è più garde 1001,101

XEsercizio 2 (3 punti):
Calcolare la codifica nello standard IEEE 754 in precisione singola del numero -1,75

$$\lambda_{10} = 1$$
 $0.75 | \lambda_{0} | 1$

1,75=1,11

segno: - (1)

[Sponente: 0+127=127 ([Sponte in ocass a 2 -1)

0117 1111

Montion 11

Numero:

1011 1111 1110 0000 0000 0000 0000 0000

XEsercizio 3 (3 punti):

Scrivere in forma normale disgiuntiva ed in forma normale congiuntiva la seguente funzione booleana

F = (JAMN AND N) OR (JAMZ AND Z)

usando la tabella di verità presente nel modulo risposte.

Ritaglio schermata acquisito: 31/05/2019 18:33

TBMI	AC V	n2 N 2	JAMN AND Y	10N5 BN	pz/F
0	O	00	0	0	
0	0	6 1	0	\circ	
0	0	1 0	0	0	9
۵	٥	11	0	0	0
Ó	1	0 0	6	0	0
0	1	0 1	6	1	1
0				0	0
	1	1 0	0	,	1
0	1	1 1	٥	7	0
Л	0	9 0	O	0	U
4	0	L C	9	0	0

tunt 2?

Ritaglio schermata acquisito: 31/05/2019 18:44

$$Q_1 = C = AB + Q_1 + Q_2$$
 $Q_1 = B$

Esercizio 9 - laboratorio (4 punti)

Utilizzando il linguaggio assemblativo nel formato JAS visto in laboratorio, scrivere un metodo di nome MINFACTOR con 2 parametri formali (chiamateli X e Y), entrambi interi positivi, che restituisca al chiamante il più piccolo intero K tale che K·X > Y. Scrivere anche il main contenente il codice che realizzi la chiamata di tale metodo con parametri attuali rispettivamente 5 e 10 (in notazione decimale) e che scriva il risultato restituito dal metodo in una variabile locale chiamata value (coi valori di esempio, il risultato è 3). Si limiti al minimo l'introduzione di variabili inutili.

.constant objref 0xCAFE .end-constant .main .var .end-var Ldc w objref **BIPUSH 5 BIPUSH 10**

INVOKEVIRTUAL minfactor halt

.end-main .method minfactor(x,y) .var

k var factor .end-var L1:

ILOAD var IFEQ L2 ILOAD x **ILOAD** factor IADD

ISTORE factor IINC var -1 goto L1 L2:

// controlla se il risultato > y

ILOAD y **ILOAD** factor **ISUB** IINC k 1 ILOAD k ISTORE var IFLT L3 goto L1 L3: ILOAD k **IRETURN** .end-method

Esercizio 1 (3 punti):

Dati i numeri:

a.100111

e

a.001101

effettuarne la somma binaria usando la rappresentazione in base 2 per numeri senza segno ed usando la codifica in complemento a 2 per i numeri relativi. In entrambi i casi, specificare il numero decimale corrispondente agli addendi ed al risultato.

Ritaglio schermata acquisito: 31/05/2019 22:56

Esercizio 2 (3 punti):

Dato il numero -3.125 ricavare la sua codifica secondo lo standard IEEE 754 in precisione singola.

Ritaglio schermata acquisito: 31/05/2019 22:59

$$3 = 11$$
 $0.125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$
 $0.1125 | 0.5000 : -(1)$

1100 0000 0100 0000

X Esercizio 3 (3 punti):

Dimostrare la verità o la falsità della seguente identità :

(NOT(A) NOR NOT(B)) AND C = (A AND B) OR C

usando la tabella di verità presente nel modulo risposte o altri metodi.

Д	3	C	7 A NOR 7B	1	12
0	0	0	0	0	0
Ð	D	1	D	0	1
0	1	0	δ	0	O
O	λ	1	D	0	1
1	0	0	0	0	0
J	0	٨	0	0	1
1	Λ	D		0	1
1	1	1	1	1	1

Le due espressioni sono diverse, come si nota dalla tabella di verità

Esercizio 4 (3 punti):

Disegnare la rete logica che ne realizza il circuito sommatore completo (full adder) a 4 bit utilizzando come componente elementare il sommatore completo a 1 bit.

711

Esercizio 10 - laboratorio (4 punti)

Scrivere il codice MIC1 di una nuova istruzione SWAPLOC12 che scambi tra loro i valori contenuti nelle prime due variabili locali.

Descrivere brevemente le modifiche da apportare alla configurazione dell'emulatore per aggiungere la suddetta istruzione.

MAR = LV +1; rdMAR = LV+2; rdH = MDROPC = MDR

MDR = H; wr

MAR = LV+1

MDR = OPC; wr; goto Main1

Esercizio 2 (3 punti):

Se esistesse il formato IEEE 754 in precisione pessima con 1 bit di segno, 3 bit di esponente e 3 bit di mantissa quale sarebbe il più grande numero normalizzato rappresentabile?

Il numero più grande rappresentabile sarebbe 1,000 * 2^3 = 8

Esercizio 3 (3 punti):

Si dimostri che

 $\overline{A+BC} = (\overline{A} \overline{B}) + (\overline{A} \overline{C})$

utilizzando l'algebra di Boole e mostrando tutti i passaggi.

COMMUTATIVA

A+B=B+A; AB=BA;

ASSOCIATIVA

(A+B)+C=A+(B+C)=A+B+C; (AB)C=A(BC)=ABC

DISTRIBUTIVA

A(B+C)=(AB)+(AC); A+BC=(A+B)(A+C)

AND	AND	Nome	OR
Annullamento	A0=0	Identità	A+0=A
Identità	A1=A	Annullamento	A+1=1
Idempotenza	AA=A	Idempotenza	A+A=A
Inverso	A!A=0	Inverso	A+!A=1
Assorbimento	A(A+B)=A	Assorbimento	A+AB=A
DeMorgan	!(AB)=!A+!B	DeMorgan	!(A+B)=!A!B

IMPARALE A MEMORIA

 $\overline{A} + \overline{B}C = (\overline{A}\overline{B}) + (\overline{A}\overline{C})$ De Hogen $\overline{A} \cdot \overline{BC} = (\overline{A}\overline{B}) + (\overline{A}\overline{C})$ De Hogen A. (B+i) = (AB)+(AC) Distribution (ĀĒ)+(AC).(Ā\$)(AE)

Esercizio 1 (3 punti):

Data la sequenza 111,111 quale codifica per i numeri relativi tra modulo e segno, complemento a 1, complemento a 2 rappresenta il numero decimale più piccolo?

Ritaglio schermata acquisito: 01/06/2019 11:51

Essendo de 11/1/1 appresent l'ultimo dels negotivo il mira har sopple trapel internal

Esercizio 10 - laboratorio (4 punti)

Scrivere il microcodice MIC1 dell'istruzione ADDOP byte, che sostituisce la parola in cima alla stack con la somma tra la stessa e il valore intero con segno rappresentato in byte, assumendo che tale microcodice vada a modificare il microinterprete. Si descrivano quindi anche quali modifiche devono essere fatte al file di configurazione dell'emulatore Mic1MMV e al codice del microinterprete stesso affinché l'emulatore possa eseguire un programma IJVM (.jas) contenente

TC=PC+1; fetch HEYBR UBR = SP MDR = TOS+ H ; WZ ; got Min 1

Escretzio y - taboratorio (4 punti)
Si supponga che, all'interno di un programma scritto nel linguaggio assemblativo JAS visto in laboratorio (per l'architettura MICI), sia definita la costante intera positiva N e una funzione F(X) che, ricevuto un valore tax compreso tra 0 e N (estremi inclusi), restituisce un valore intero anch'esso compreso tra 0 e N (estremi inclusi), scrivere un metodo "invmin" che riceve come parametro un intero Y, e che trova il più piccolo intero X, compreso tra 0 e N (estremi inclusi), tale che F(X) = Y. Se tale valore intero non viene trovato, la funzione deve ritornare il valore -1. Scrivere anche la definizione della costante N e il main contenente il codice che realizzi la chiamata del metodo invmin, usando dei valori a scelta per N e per Y. Come esempio (particolare!) di funzione F, assumere che nel programma sia già presente il codice seguente:

nethod F(X)
LDC_W N
ILOAD X
ISUB
IRETURN

to IEEE 754 in precisione infima con 1 bit per il segno, 4 bit per l'e e rappresentato dalla sequenza 1 1101 10?

OLLGILL Sagno: - (1) Decodifice ESP: 1101 -> 13-2-1=15-7=+6

OLIL: 22: them

Num: 1,10.2 = 1100000 = 96 = -96

Esercizio 1 (3 punti):

Dimostrare usando le tabelle di verità se la seguente uguaglianza è verificata

X XOR (Y NAND Z) = (X NAND Y) XOR (X NOR Z)

Scrivete la tabella di verità disponendo in ordine crescente i numeri X Y Z, come esemplificato nel modulo risposte.

f, + F2

XYZ	Y NAND Z	7,	X NNNO Y	X Non 2	T 2
900	1	7	1	Λ	0
001	7	1	1	0	4
0 10		1	1	1	
	1	1	1	0	J
٥ 0 ر	1	0	1	0	1
101	1	0	Л	۵	Л
1 1 0	1	0	D	0	6
1 1 1	2	1		(C	6

Esercizio 2 (3 punti):

Dato il grafo di transizione dell'automa a stati finiti che riconosce le sequenze 1000

- si completi la tabella di transizione riportata nel foglio delle risposte;
 si codifichino i valori dello stato X, Y, Z, W (quanti bit sono necessari?);
 si scrivano le espressioni booleane per Out e Prossimo Stato in qualunque forma si desideri
 Cosa si dovrebbe modificare e come per far riconoscere all'automa la sequenza 1001?

Д	B	In	1 63	ant	X = 00)
۵	0	0	00	U	- y = 01 62 bit
0	0	Λ	40	ا ا	2:10
0	Λ	D	11 1	\Diamond	W = 1 1
0	1	1	1 U	0	
1	O	0	00	1	
1	O	1	01	b	
1	4	U	10	0	
1	1	И	01	10	

Esercizio 3 (3 punti):

Sia A il numero relativo la cui rappresentazione binaria in complemento a 2 vale 1001 e B il numero relativo la cui rappresentazione binaria in modulo e segno vale 1101.

- a) Qual è il minore tra A e B?
- b) Quanto vale, in complemento a 2, la somma A+A su 4 bit?

Motivare la risposta con spiegazioni, passaggi e calcoli. Il solo risultato finale non sarà considerato sufficiente in fase di valutazione.

TP who minon i A

Esercizio 1 (3 punti).

Descrivere la rappresentazione dei numeri relativi in complemento a due su n bit, specificando:

- a) come si ottiene la codifica dei numeri positivi e negativi;
- b) qual è l'intervallo di rappresentazione;
- c) quali sono i principali vantaggi di questa rappresentazione dei numeri relativi.

Per ottenere la codifica in base 2, se un numero è positivo basta ricopiarlo così com'è.

Se un numero è negativo, bisogna complementarlo a 1 (negarlo) e sommargli 1.

L'intervallo di rappresentazione su n bit è [-2^(n-1); +2^(n-1)-1]

Il principale vantaggio di questa rappresentazione è che si ha una sola rappresentazione dello zero.

Esercizio 2 (3 punti).

Si consideri una rappresentazione binaria di numeri razionali (con segno) in virgola mobile su 8 bit, organizzata con 1 bit di segno, 4 bit di esponente e 3 bit di mantissa (nell'ordine). L' esponente è codificato in eccesso 8. La mantissa m è normalizzata in modo che: $0.5 \le m < 1$ (il bit più significativo del campo della mantissa corrisponde alla potenza 2^{-1}). La configurazione 000 della mantissa è riservata per la codifica del numero zero.

- a) Qual è il massimo numero rappresentabile esattamente?
- b) Qual è il minimo numero positivo (quindi, maggiore di zero) rappresentabile esattamente?
- c) Quante diverse rappresentazioni ci sono per il numero 0?

Esercizio 4 (3 punti).

Si consideri il seguente diagramma di stato relativo ad un automa a stati finiti. Si ricavi la tabella di stato corrispondente e si disegni il circuito sequenziale che la realizza, utilizzando flip-flop di tipo D.

Esercizio 6 (3 punti).

Dire, motivando la risposta, quali delle seguenti sequenze di 36 bit sono microistruzioni Mic-1 che

accedono alla memoria, ma non all'area dei metodi,
prevedono il controllo dei bit di stato dell'ALU,
operano scritture multiple sui registri.

Accedono alla memoria ma non all'area dei metodi:

A,C

Predevono il controllo dei bit di stato dell'ALU:

Operano scritture multiple su registri:

Esercizio 7 (3 punti)

- Quali delle seguenti affermazioni relative all'architettura Mic-2 sono vere:

 a) non è necessario che almeno uno degli operandi dell'ALU debba provenire dal registro H;

 b) il microprogramma del Mic-2 è identico al microprogramma del Mc-1; =

 c) l'IFU recupera dall'area dei metodi 4 byte alla volta;

 d) l'offiset di 2 byte presente nell'istruzione IJVM "GOTO offset" viene prelevato direttamente dal registro MBR2;

 e) utilizza la tecnica del pipelining. 42

Esercizio 9 (4 punti)

Utilizzando il linguaggio assemblativo IJVM, scrivere un metodo prova che prenda in input tre parametri formali i, j e k (numeri interi) e che restituisca il valore (i+k+j) se j =k; i+k altrimenti. Scrivere inoltre il segmento di codice che traduce la chiamata di tale metodo con parametri attuali 2,3 e 4.

.constant Objref 0xCAFE .end-constant .main .var .end-var LDC_W Objref **BIPUSH 2 BIPUSH 3 BIPUSH 4 INVOKEVIRTUAL PROVA**

.end-main

.method PROVA(i,j,k)

.var .end-var ILOAD j ILOAD k IF_ICMPEQ L1: ILOAD i ILOAD k **ISUB IRETURN** L1: ILOAD i ILOAD k ILOAD j IADD **IRETURN** .end-method

Esercizio 10 (4 punti)

La sequenza di istruzioni di livello Mic-1 sotto riportata realizza una nuova istruzione bish8pu x (x è un offset a 8 bit in binario puro). Qual è il significato di tale istruzione?

bish8pu1 MAR=SP bish8pu2 H=TOS << 8

TOS=MDR=MBRU OR H;wr bish8pu3

PC=PC+1; fetch bish8pu4 goto Main1 bish8pu5

Questo metodo combina due byte in modo che i primi 8 bit presi da TOS siano i più significativi, mentre gli altri 8 presi da MBRU siano messi nelle 8 posizioni meno significative. Inoltre aggiorna il TOS e la memoria con questo valore. C'è bisogno di questo metodo perché l'operazione di fetch può prendere in input solo 8 bit alla volta.