

6) a) Para la transformación T: $R^2 \rightarrow R^2$ definida como

$$T\binom{x}{y} = \binom{9x - 12y}{7x - 11y}$$

- i) Encuentre una base del espacio de salida tal que la matriz asociada a T con respecto a dicha base sea diagonal.
- ii) Halle (si existen) los vectores de R², distintos del nulo, que tal que su imagen con respecto a T es múltiplo escalar de ellos.
- iii) Verifique la respuesta obtenida en el ítem anterior.

SOLUCIÓN:

T es una transformación lineal que va de vectores en R² a R²

1°) Calculamos la matriz asociada A_T con respecto a las bases canónicas de ambos espacios:

$$A_T = \begin{pmatrix} 9 & -12 \\ 7 & -11 \end{pmatrix}$$

 $A_T = \begin{pmatrix} 9 & -12 \\ 7 & -11 \end{pmatrix}$ **2°)** calculamos los VAP y VEP de A_T

Para ello calculamos los valores propios del polinomio característico:

$$\begin{vmatrix} 9-\lambda & -12 \\ 7 & -11-\lambda \end{vmatrix} = \lambda^2 + 2\lambda - 15 = (\lambda+5) \cdot (\lambda-3)$$

$$\lambda_1 = -5$$

$$\lambda_2 = 3$$

Luego, calculamos los vectores propios para cada de los valores propios:

$$A - \lambda_1 I = \begin{pmatrix} 14 & -12 \\ 7 & -6 \end{pmatrix}$$

$$\equiv$$

$$Av = \lambda V$$

 $(A - \lambda I) \cdot V =$

Esto es el sistema de ecuaciones lineales, podemos resolver el sistema por eliminación de Gauss:

$$\begin{cases} x_1 & -\frac{6}{7} \cdot x_2 = 0 \end{cases} \tag{1}$$

• De la ecuación 1 del sistema (1) encontramos con la variable x_1 :

$$x_1 = \frac{6}{7} \cdot x_2$$

La respuesta:

$$x_1 = \frac{6}{7} \cdot x_2$$

$$x_2 = x_2$$

La solución general: $X = \begin{pmatrix} \frac{6}{7} \cdot x_2 \\ x_1 \end{pmatrix}$

Luego, una base para E_{λ_1} está dada por $\left\{ \binom{6/7}{1} \right\}$

• E_{λ_2} :

$$A - \lambda_2 I = \begin{pmatrix} 6 & -12 \\ 7 & -14 \end{pmatrix}$$

$$\equiv$$

$$Av = \lambda v$$

$$(A - \lambda I) \cdot v = 0$$

Esto es el sistema de ecuaciones lineales, podemos resolver el sistema por eliminación de Gauss:

$$\begin{pmatrix}
6 & -12 & 0 \\
7 & -14 & 0
\end{pmatrix} \times \begin{pmatrix}
\frac{1}{6}
\end{pmatrix} \xrightarrow{F_1/(6)} \xrightarrow{F_1} \begin{pmatrix}
1 & -2 & 0 \\
7 & -14 & 0
\end{pmatrix} \times (-7) \xrightarrow{F_2} \begin{pmatrix}
1 & -2 & 0 \\
0 & 0 & 0
\end{pmatrix} \xrightarrow{F_2 - 7 \cdot F_1 \to F_2} \begin{pmatrix}
1 & -2 & 0 \\
0 & 0 & 0
\end{pmatrix} \xrightarrow{\Xi} \begin{pmatrix}
1 & -2 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$= \begin{cases}
x_1 & -2 \cdot x_2 & = 0 & (1)
\end{cases}$$

De la ecuación 1 del sistema (1) encontramos con la variable x₁:

$$x_1 = 2x_2$$

La respuesta:

$$x_1 = 2x_2$$

$$x_2 = x_2$$

La solución general:
$$X = \left(\frac{2x_2}{x_2}\right)$$

Luego, una base para E_{λ_2} está dada por $\left\{ {2 \choose 1} \right\}$ Por lo tanto:

• La matriz diagonal D está compuesta por los valores propios $(\lambda_1 y \lambda_2)$:

$$D = \begin{pmatrix} -5 & 0 \\ 0 & 3 \end{pmatrix}$$

• La matriz con los vectores propios $(v_1 y v_2)$ como sus columnas:

$$P = \begin{pmatrix} \frac{6}{7} & 2\\ 1 & 1 \end{pmatrix}$$

Para responder a i), debemos encontrar una base del espacio de salida tal que la matriz asociada a T con respecto a dicha base sea diagonal.

Utilizamos, entonces la base que contiene los VEP de A:

Respuesta i) la base buscada es
$$B = \left\{ \begin{pmatrix} 6/7 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

Para el <u>ítem ii)</u>, hay que calcular (si existen) los vectores \vec{x} de R², distintos del nulo, que tal $T(\vec{x}) = A_T \cdot \vec{x} = \lambda \vec{x}$

Los vectores de R² que verifican * son, justamente, los VEP de A, es decir: * se cumple si $\vec{x} = \binom{6/7}{1}$ ó $\vec{x} = \binom{2}{1}$

En el ítems iii) hay que verificar la respuesta obtenida en el ítem anterior, es decir, hay que comprobar A_T . $\binom{6/7}{1} = -5$. $\binom{6/7}{1}$ y que A_T . $\binom{2}{1} = 3$. $\binom{2}{1}$