TP 18 Comment suivre l'évolution d'un système chimique?

Problème posé: Au cours d'une transformation chimique, tous les réactifs sont ils toujours consommés?

<u>Document n°1: matériel disponible:</u> bécher, Solution S_1 de diiode à C_1 =1,0×10⁻²mol.L⁻¹, solution S_2 de thiosulfate de sodium à C_2 =1,0×10⁻²mol.L⁻¹, burette graduée, tubes à essais, éprouvette graduée, verre à pied, agitateur magnétique

Document n°2: à propos de la transformation chimique étudiée

Le diiode I_2 réagit avec les ions thiosulfate $S_2O_3^{2-}$ et les produits de cette transformation chimique sont des ions iodure I^- et des ions tétrathionate $S_4O_6^{2-}$.

Le diiode est de couleur orangée alors que les 3 autres espèces sont incolores.

Document n°3: les volumes de solution à introduire

Le bécher contient initialement 20,0mL de solution S2. Puis on lui rajoutera petit à petit de la solution S1.

n° du rajout de S1	1	2	3	4	5	6	7
Volume total de S ₁ ajouté (en mL)	7,0	8,0	9,0	10,0	11,0	12,0	13,0
Couleur de la solution							
Réactifs limitant							
Réactif en excès							

Document n°4: le tableau d'avancement semi complété

Pour le tube $n^{\circ}1$, le tableau d'avancement ci-dessous présente l'équation de la réaction, ainsi que trois états de ce système chimique, caractérisés par leur avancement noté x.

Les cases correspondant aux quantités de matière à l'état initial, exprimées en mol, ont été complétées.

équation chimique		I_2 + $S_2O_3^{2-}$ \longrightarrow I^- + $S_4O_6^{2-}$					
état du système	avancement x (en mol)	$n(I_2)$	n(S ₂ O ₃ ²⁻)	n(I ⁻)	n(S ₄ O ₆ ²⁻)		
état initial	<i>x</i> =0	7,0×10 ⁻⁵ mol	2,0×10 ⁻⁴ mol	0 mol	0 mol		
état intermédiaire	x		2,0×10 ⁻⁴ - 2 × x		0 + 1× <i>x</i>		
état final	X max						

L'état intermédiaire montre que lorsque $(2 \times x)$ mol de $S_2O_3^{2^-}$ est consommé, il se forme $(0 + 1 \times x)$ mol de $S_4O_6^{2^-}$. Remarque: le nombre stœchiométrique « 1 » n'est pas écrit, il est sous-entendu.

Partie 1 : S'approprier : à effectuer au préalable

- 1) Equilibrer l'équation de la réaction dans le document 4, en complétant les nombres stoéchiométriques.
- 2) Retrouver, par le calcul, les valeurs des quantités de matière de diiode et d'ions thiosulfate, introduite dans l'état initial du tableau d'avancement.

3) Introduction à la notion d'avancement, raisonnons sur la fabrication des BN : Pour faire **un** BN, il faut **deux** galettes et **une** plaque de chocolat. Remplir les tableaux suivants en essayant de détailler vos calculs à partir des valeurs données :

fabrication du BN	2 galettes +	1 plaque de chocolat	 1 BN
Quantités initiales en début de chaîne	104	60	0
Quantités finales en fin de chaîne			

Quel est le <u>réactif limitant</u>, c'est-à-dire celui qui *empêche que la réaction puisse continuer à se faire* : galette ou chocolat ? Et quel est le réactif en excès ?

fabrication du BN	galettes +	1 plaque de chocolat	─	1 BN
Quantités i nitiales en début de chaîne	84	42		0
Quantités finales en fin de chaîne				

Y a-t-il un réactif en excès ? Dans lequel de ces deux cas pourrait on dire que les ingrédients ont bien été introduits dans les proportions stœchiométriques de cette transformation ?

Partie 2 : Réaliser

À l'aide d'une pipette jaugée, verser dans un bécher un volume V_2 = 20,0mL de solution de thiosulfate S_2 . Placer ce bécher sur l'agitateur magnétique en plaçant une feuille blanche au dessous.

À l'aide d'une burette, et d'après le tableau du Document $n^{\circ}3$, ajouter 7,0mL de solution de diiode S_1 . Noter la couleur de la solution dans le Document $n^{\circ}3$.

Rajouter, 1mL par 1mL, pour obtenir les volumes V_1 indiqués dans le Document n°3 en précisant la couleur.

<u>Partie 3 : Analyser et Valider</u>

- 4) Pourquoi peut-on affirmer qu'une réaction chimique a eu lieu dès le 1er rajout?
- 5) Pour chacun des rajouts, déduire de la couleur obtenue à l'état final, la nature du réactif limitant?

 Justifier (compléter la dernière ligne du tableau). Quelle est alors la quantité de matière de ce
 réactif dans le bécher?
- 6) Quelle particularité révèle la transformation réalisée lors du 5^e rajout?
- 7) Compléter l'état intermédiaire du tableau d'avancement du document 3 pour le 1er ajout en fonction de x.
- 8) Déterminer la valeur de l'avancement maximal x_{max} de la réaction pour le 1^{er} rajout.
- 9) Calculer les quantités finales des réactifs et des produits lorsque la réaction est terminée après le 1^{er} rajout et compléter la dernière ligne du tableau.

Partie 4 : Communiquer : Répondre au problème posé de façon argumentée.