PHOTOCATALYST GLASS AND ITS PRODUCTION

Patent Number:

JP11060281

Publication date:

1999-03-02

Inventor(s):

YAMAZAKI SEIJI; NISHIDA YOSHIHIRO; HONJO KEIJI

Applicant(s):

CENTRAL GLASS CO LTD;; NISSAN MOTOR CO LTD

Requested Patent:

JP11060281

Application Number: JP19970224796 19970821

Priority Number(s):

IPC Classification:

C03C17/34; A47G1/00; B01J21/06; B01J35/02; B60J1/00

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To obtain a photocatalyst glass prevented in the diffusion of Na ions from the glass, capable of sufficiently exhibiting the function of the photocatalyst and capable of persisting duration properties such as hot warm water, moisture, alkali and warm salt water resistances over a long period by forming a SiO2 coating film containing Al2 O3 and subsequently a coating film containing TiO2 as a main component on the surface of a soda lime glass substrate.

SOLUTION: This photocatalyst glass is obtained by forming a SiO2 coating film containing Al2 O3 preferably in an amount of 1-80 wt.% and subsequently a coating film containing TiO2 as a main component preferably in a TiO2 content of 10-100 wt. % and preferably further containing one or more kinds of metal oxides selected from SiO2 , Al2 O3 , P2 O5 , B2 O3 , ZrO2 , SnO2 and Ta2 O5 on the surface of a soda lime glass substrate. The glass can be produced by applying a coating solution comprising a SiO2 solution containing AI on the surface of a soda lime glass substrate, applying a solution comprising a mixture sol containing a TiO2 precursor and/or TiO2 on the coating film, drying the coating films and subsequently baking the dried coating films.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-60281

(43)公開日 平成11年(1999)3月2日

(51) Int.Cl. ⁶	識別記号	FI				
C 0 3 C 17/3	14	C 0 3 C 17/34	Z			
A47G 1/0	00	A 4 7 G 1/00	1/00 A			
B 0 1 J 21/0	06	B 0 1 J 21/06	M			
35/0	2	35/02	J			
B60J 1/0	00	B60J 1/00	Н			
		審查請求 未請求	請求項の数9 OL (全 6 頁)			
(21)出願番号	特願平9-224796	(71)出頃人 0000022	(71)出頃人 000002200			
		セントラ	がル硝子株式会社			
(22) 出順日	平成9年(1997)8月21日	山口県宇部市大字神宇部5253番地 (71)出願人 000003997				
		日産自動	市本式会社			
		神奈川県横浜市神奈川区宝町2番地				
		(72)発明者 山崎 誠司				
		三重県村	松阪市大口町1510 セントラル硝子			
	·	株式会社	上硝子研究所内			
		(72)発明者 西田 信	國			
		三重県村	松阪市大口町1510 セントラル硝子			
		株式会社	上硝子研究所内			
		(74)代理人 弁理士	西 義之			
			・最終頁に続く			

(54) 【発明の名称】 光触媒ガラス及びその製造方法

(57)【要約】

【課題】光触媒膜の耐温水性、耐湿性、耐アルカリ性、耐温塩水性等の耐久性を向上するとともに、ガラスからのナトリウムイオンの光触媒膜への拡散を防ぎ、光触媒機能を充分に発揮する。

【解決手段】ソーダライムガラス基板の表面に、第1層 として Al_2O_3 を含む SiO_2 膜を成膜し、その上に第2 層として TiO_2 を主成分とした膜を成膜した光触媒ガラス。

【特許請求の範囲】

【請求項1】ソーダライムガラス基板の表面に、第1層 として $A1_2O_3$ を含む SiO_2 膜を成膜し、その上に第2 層として TiO_2 を主成分とした膜を成膜した光触媒ガラス。

【請求項2】第1層中のAl2O3の含有量が1~80重量%である請求項1記載の光触媒ガラス。

【請求項3】第2層中の TiO_2 の含有量が $10\sim100$ 重量%である請求項1記載の光触媒ガラス。

【請求項4】第2層中の TiO_2 以外の成分は、 SiO_2 、 Al_2O_3 、 P_2O_5 、 B_2O_3 、 ZrO_2 、 SnO_2 、 Ta_2O_5 の内の少なくとも1種の金属酸化物である請求項3記載の光触媒ガラス。

【請求項5】第1層及び第2層の膜厚は、それぞれ50~500nmである請求項1記載の光触媒ガラス。

【請求項6】ソーダライムガラス基板の表面に、第1層 としてA1を含む SiO_2 溶液よりなる塗布液を被覆した 後、 TiO_2 前駆体及び/または TiO_2 を含有する混合ゾルよりなる第2層用溶液を塗布し、乾燥・焼成してなる 光触媒ガラスの製造方法。

【請求項7】第1層用塗布液は、AI元素の硝酸塩、有機酸塩、アセチルアセトナート化合物、アルコキシド化合物を含んだアルコキシシラン化合物の加水分解物よりなる請求項6記載の光触媒ガラスの製造方法。

【請求項8】第2層中のTiO₂の出発原料が結晶性微粒子である場合、第2層中のTiO₂の含有量は10~90 重量%である請求項6項記載の光触媒ガラスの製造方法。

【請求項9】第2層中の TiO_2 が溶液を出発原料とする場合、第2層中の TiO_2 の含有量は $50\sim100$ 重量%である請求項6項記載の光触媒ガラス製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、建築用、自動車用等の窓材、さらには鏡等の各種の分野のガラス物品において用いられる光触媒ガラスおよびその製造方法に関する。

[0002]

【従来の技術】最近、防汚・消臭・抗菌・親水等のためにガラスの表面に光触媒機能を有する被膜を形成することが行われている。例えば、特開平5-253544号公報に記載のアナターゼ型TiO2を主体とする光触媒微粉末をその一部がバインダ層表面から露出するようにした板状部材、特開平7-232080号公報に記載の光触媒微粒子がTiO2、ZnO、SrTiO2、Fe2O3、WO3、FeTiO2、Bi2O3、SnO2等であり、光触媒粒子の間隙充填粒子がSn、Ti、Ag、Cu、Zn、Fe、Pt、Co、Niの金属または酸化物である光触媒機能を有する多機能材、特開平9-59042号公報記載の光触媒性の平均結晶粒子径が約0.1μm以下のTiO2の粒子

を含有する防曇性被膜で覆われた透明基材等が知られている。

【0003】また従来、ガラス表面に各種の機能性膜を被覆するに際し、ガラスから機能性膜へのナトリウムイオンの拡散を防止するために、該機能性膜の下層にアンダーコート膜を形成する事が知られている。例えば、特開平4-18237号公報記載のZnOを含有した紫外線吸収膜の下層に SiO_2 を主成分とする金属酸化物被膜を設けた表面処理ガラス、特開平7-315880号公報記載のガラス板表面に SiO_2 を主成分とする薄膜、 TiO_2 を主成分とする薄膜、 SnO_2 を主成分とする薄膜を順次被覆させた透明導電膜付きガラス板、特開平8-19088号公報記載のガラス基板からのアルカリ金属イオンの拡散を防止する金属酸化物の障壁層と該障壁層の上層の金属含有被覆からなるガラス物品等が知られている

[0004]

【発明が解決しようとする課題】上記従来の光触媒膜をガラス上に形成した光触媒ガラスにおいては、該光触媒膜をガラス表面に直接被覆する場合、高温で処理するとガラス中に含まれるナトリウムイオンが該光触媒膜に拡散し、光触媒膜のTiO2の酸化作用を促進する電子を中和してしまい、上述の光触媒機能が損なわれてしまう欠点があった。

【0005】また、光触媒膜の下層に、アンダーコート層としての SiO_2 膜を被覆した場合には光触媒膜と該 SiO_2 膜との密着性が充分でなく、耐久性評価試験で光触媒膜が剥離してしまう欠点が生じた。

[0006]

【課題を解決するための手段】本発明は、従来のかかる 課題に鑑みてなしたものであって、アンダーコート層の 組成を種々検討した結果、アンダーコート膜中にAl₂O ₃を含有させることにより、膜の緻密性が高まる。その 結果、耐温水性、耐塩温水性等の耐久試験において、膜 中のSiO₂分の溶解を防ぎ、アルカリバリアー性を保持 したまま、アンダーコート層と光触媒膜間の接着強度が 著しく向上するとともに、成膜後ガラスを熱加工等の高 温処理を施してもアルカリバリアー性が低下しないこと を見出した。

【0007】本発明は、ソーダライムガラス基板の表面に、第1層として $A1_2O_3$ を含む SiO_2 膜を成膜し、その上に第2層として TiO_2 を主成分とした膜を成膜した光触媒ガラスに関する。

【0008】なお、第1層中の Al_2O_3 の含有量は、 $1\sim80$ 重量%であることが好ましく $5\sim60$ 重量%がより好ましい。

【0009】さらに、第2層中の TiO_2 の含有量が10~100重量%であることが好ましい。さらに、第2層中の TiO_2 以外の成分は、 SiO_2 、 Al_2O_3 、 P_2O_5 、 B_2O_3 、 ZrO_2 、 SnO_2 、 Ta_2O_5 の内の少なくとも1

種の金属酸化物であることが好ましい。これらの金属酸化物の内、 SiO_2 、 Al_2O_3 、 P_2O_5 、 B_2O_3 を用いた場合は、網目形成酸化物として機能し、 ZrO_2 、 SnO_2 、 Ta_2O_5 を用いた場合は、膜の緻密性が高くなり、その結果膜強度が向上する。さらに、 ZrO_2 は耐アルカリ性に優れ、 SnO_2 は膜に導電性を持たせることが可能となり、 Ta_2O_5 は TiO_2 の光励起には関与しない28Onm付近の紫外線をカットすることができる等の利点がある。

【0010】さらにまた、第1層及び第2層の膜厚は、それぞれ $50\sim500$ nmであることが適する。また、本発明は、ソーダライムガラス基板の表面に、第1層としてA1を含む SiO_2 溶液よりなる塗布液を被覆した後、 TiO_2 前駆体及び/または TiO_2 を含有する混合ゾルよりなる第2層用溶液を塗布し、乾燥・焼成してなる光触媒ガラスの製造方法に関する。

【0011】なお、第1層用塗布液は、A1元素の硝酸塩、有機酸塩、アセチルアセトナート化合物、アルコキシド化合物を含んだアルコキシシラン化合物の加水分解物よりなることが好ましい。

【0012】さらに、第2層中の TiO_2 の出発原料が結晶性微粒子である場合、第2層中の TiO_2 の含有量は $10\sim90$ 重量%であることが好ましく、 $20\sim80$ 重量%がより好ましい。

【0013】さらに、第2層中の TiO_2 が溶液を出発原料とする場合、第2層中の TiO_2 の含有量は $50\sim10$ 0重量%であることが好ましく、 $70\sim100$ 重量%がより好ましい。

[0014]

【発明の実施の形態】ガラス表面に形成する、アンダー コートとしての第1層、光触媒機能としての第2層より なる光触媒ガラスは次のようにして得る。

【0015】ソーダライムガラス基板としては、自動車用ならびに建築用ガラス等に通常用いられている普通板ガラス、所謂フロート板ガラスなどであり、クリアをはじめグリーン、ブロンズ等各種着色ガラスや各種機能性ガラス、強化ガラスやそれに類するガラス、合せガラスのほか複層ガラス等、さらに平板あるいは曲げ板等各種板ガラス製品として使用できることは言うまでもない。また板厚としては例えば約1.0mm程度以上約10mm程度以下が好ましく、自動車用としては約2.0m程度以下が好ましく、より好ましくは約2.0m程度以上約5.0m程度以下のガラスである。

【0016】また、第1圏の SiO_2 膜、第2圏の TiO_2 膜の主な原料としては、前記金属アルコキド類であるが、具体例としては、Siアルコキシド類が、テトラエトキシシラン、テトラメトキシシラン、モノメチルトリエトキシシラン、モノメチルトリメトキシシラン、ジメ

チルジメトキシシラン、ジメチルジエトキシシラン、その他のテトラアルコキシシラン化合物、その他のアルキルアルコキシシラン化合物、またTiアルコキシド類は、テトライソプロポキシチタン、テトラノルマルブトキシチタン、トリイソプロポキシチタンモノアセチルアセトナート等が使用できる。

【0017】さらに、第1層に添加するA1元素は、金属アルコキシド類、アセチルアセトナート類、硝酸塩、有機酸塩のうちの少なくとも1種を用いることができ、上記第1層のSiO₂の原料であるアルコキシシラン類の加水分解物と混合して用いる。

【0018】また、希釈溶媒としては、アルコール系溶媒が好ましく、具体例としては、メタノール、エタノール、エタノール、アロパノール、ブタノール、エチレングリコール、へキシレングリコール、さらには酢酸エチル、酢酸ブチル、酢酸アミルなどのエステル類、さらにはメチルセロソルブ、エチルセロソルブ、ブチルセロソルブはなどのセロソルブ類及びこれらを混合した溶媒、さらには増粘剤としてボリエチレングリコール(平均分子量200)、ポリプロピレングリコール(平均分子量400)等を加えても良いし、レベリング剤としてジメチルシリコーンなどのメチルシリコーン類やフッ素系レベリング剤を適量加えても良い。本来溶液中に含まれるアルコール系やセロソルブ系のもの単独または混合物を、該溶液の蒸発速度や被膜粘度を勘案して選択すればよい。

【0019】さらに、第1層中の Al_2O_3 含有率が $1\sim 80$ 重量%が好ましく、、80重量%以上であれば、第1層のアンダーコート膜のNaイオンのバリアー効果が低減することにより光活性が著しく低下し、さらに、耐アルカリ性も著しく低下してしまう。また、1重量%以下では光触媒膜の密着性が低下してしまう。

【0020】なお、第2層の TiO_2 前駆体としては、前記Tiアルコキシド類に安定化剤を加えた溶液や TiO_2 セチルアセトナート類に水を加えて加水分解した TiO_2 ゾル、或いは、Tiアセチルアセトナート類、 $TiCl_4$ 、 $Ti(SO_4)_2$ 等を各種溶媒に溶解させた溶液等である。【0021】また、 TiO_2 を含有する混合ゾルは、前記 TiO_2 前駆体を TiO_2 以外の SiO_2 、 Al_2O_3 、 P_2O_5 、 B_2O_3 、 ZrO_2 、 SnO_2 、 Ta_2O_5 等の金属酸化物の内の少なくとも1種に混合したもの、或いは予め TiO_2 の結晶性又は非晶質性の TiO_2 微粒子を前記金属酸化物ゾルに分散剤等を用いて分散させた TiO_2 混合ゾル等である。

【0022】第2層中の TiO_2 の含有量は、 $10\sim10$ 0重量%が好ましく、 TiO_2 以外の酸化物としては、 SiO_2 、 Al_2O_3 、 P_2O_5 、 B_2O_3 、 ZrO_2 、 SnO_2 、 Ta_2O_5 等を用いることができ、特に、 SiO_2 は膜強度の点より好ましい。

【0023】なお、第2層中のTiO2が結晶性微粒子で

ある場合、該 TiO_2 の含有量は $10\sim90$ 重量%であることが好ましく、10%以下では光活性が著しく低下し、90%以上では膜強度及び成膜性が低下するためである。

【0024】さらに、第2層中の TiO_2 が溶液を出発とする場合、該 TiO_2 の含有量は $50\sim100$ 重量%であることが好ましく、50%以下では光活性が著しく低下するためである。

【0025】また、塗布法としては、特に限定されるものではないが、生産性などの面からは例えばスピンコート法あるいはディップコート法、またリバースコート法、フレキソ印刷法、その他のロールコート法であり、さらにはノズルコート法、スプレーコート法、スクリーン印刷法などが適宜採用し得るものである。これら塗布法で塗布成膜する際の塗布液中の固形分濃度としては約1~30重量%程度で、塗布液粘度としては1~100 cP 程度が好ましい。

【0026】またさらに、第1層及び第2層の塗布後の 乾燥処理としては、乾燥温度が常温~300℃程度で乾燥時間が0.5~60分間程度が好ましく、より好ましくは前記乾燥温度が100~250℃程度で乾燥時間が1~30分間程度である。また、第2層の乾燥後の焼成処理としては、焼成温度が400~700℃程度で焼成時間が1~30分間程度が好ましく、さらに前記ガラスの熱強化または/および熱曲げ加工時に同時に行うことがよく、前記ガラスの熱強化または/および熱曲げ加工は、温度が550~700℃程度で時間が0.5~10分間程度行うことがより好ましい。

【0027】なお、本発明の膜組成は、前記のような550℃以上の高温での熱強化および/または熱曲げ加工を行っても、ガラスからのアルカリの拡散がなく、アルカリバリアー性が低下しない利点を有する。

【0028】第1層の膜厚は、約50~500nm 程度であり、50nm未満であれば、ガラス基板からのNaイオンの影響で第2層の光触媒機能が低下し、500nmを超えると経済的にも無駄であり、クラックの発現の要因となるためである。さらに好ましくは約70~130nm 程度である。

【0029】第2層の膜厚は、 TiO_2 の含有量にもよるが、約 $50\sim500$ m程度が好ましい。さらに好ましくは $70\sim150$ nmである。なお、50nm以下では充分な光活性が得られず、500nm以上では光活性の向上は得られず、膜強度は低下し、且つクラック発生の要因となるためである。さらに好ましくは $70\sim150$ nmである。

【0030】前記のように、木発明の膜組成では、膜厚が薄くてもアルカリバリアー性および光活性の各機能を充分に発揮する利点を有する。第2層の光触媒膜の下層に、 Al_2O_3 を含有する SiO_2 膜を第1層として設けることにより、ソーダライムガラス基板からのナトリウム

イオンの膜中への拡散を防止し、光触媒機能を十分に発揮させるとともに、第1層と第2層の膜間の密着強度が強固になり、耐温水性、耐湿性、耐アルカリ性、耐温塩水性等の耐久性を向上させ、厳しい環境での長期使用に耐え、より確実でかつ安定した品質の光触媒ガラスとなる。

[0031]

【実施例】以下、実施例により本発明を具体的に説明する。但し本発明はこれらの実施例に限定されるものではない。

[0032]

【実施例1】テトラエトキシシラン2g、硝酸アルミニ ウム9水和物1g(SiO₂/Al₂O₃=80/20 重量比)、加水 分解用の水0.7g、触媒としての60%硝酸0.06g、および 希釈溶媒としてエタノール40gを混合撹拌し、コーテ ィング溶液とした。これを10cm□で厚さ2mmのソー ダライムシリカガラス基板にスピンコーターで成膜し、 250℃で5分間乾燥して室温まで冷却した後、第2層 目を同じくスピンコーターにより成膜した。第2層目の コーティング溶液は、チタニアゾル:アトロンNTi-500 (日本曹達製) 8gとシリカゾル溶液CSG-D I-0600(チッソ製)3.3gを混合し(TiO₂/Si $0_2 = 80/20$ 重量比)、エタノールで4倍に希釈したもの を用いた。第2層目を成膜した後250℃で5分間乾燥 し、500℃で5分間仮焼成を行った後、680℃で本 焼成を行うことにより、第1層、第2層の膜厚がともに 100 nmの光触媒膜を得た。

[0033]

【実施例2】第2層目のコーティング溶液をチタニアゾル:アトロンNTi-500 10gをエタノールで4倍希釈したものを用いたこと以外は実施例1と同様とした。得られた第2層目のTiO $_2$ 膜の膜厚は、90nmであった。

[0034]

【実施例3】テトラエトキシシラン1.3g、硝酸アルミニウム9水和物2.8g ($SiO_2/Al_2O_3=50/50$ 重量比)、加水分解用の水0.7g、触媒としての60%硝酸0.06g、及び希釈溶媒としてエタノール4.6gを混合・撹拌したものを第1層の被覆溶液とした以外は、実施例1と同様とした。得られた第1層目の膜厚は、1.00nmであった。

[0035]

【実施例4】シリカゾル溶液CSG-DI-0600(チッソ社製)18gにあらかじめ調製したアルミナゾル2g($Si0_2/Al_20_3=90/10$ 重量比)を混合撹拌し、エタノールで3倍に希釈したものを第1層目のコーティング溶液としたこと以外は、実施例1と同様とした。アルミナゾルは、イソプロピルアルコール10.5gとアルミニウム-sec-ブトキシド6gにアセト酢酸エチル3gを混合して安定化した後に、加水分解用の H_2O

0.5gを混合撹拌して得た。第1層目の SiO_2-Al_2 O_3 膜は、膜厚100nmのものを得た。

[0036]

【実施例5】シリカゾル溶液 CSG-DI-0600 (チッソ社製) 20gに、硝酸アルミニウム 9水和物 10g ($Si0_2/Al_20_3=30/70$ 重量比)を加え混合・撹拌し、エタノールで 4倍に希釈したものを第 1 層の被覆溶液とし、さらにTiO2微粒子含有シリカバインダー液:ST-K03 (石原テクノ社製) ($Ti0_2/Si0_2=50/50$ 重量比)をエタノールで 5倍に希釈したものを第 2 層の被覆溶液とたこと以外は、実施例 1 と同様とした。得られた第 1 層目の $SiO_2-Al_2O_3$ 膜の膜厚は 100nm であり、第 2 層目の膜厚は 150nmであった。

[0037]

【比較例1】シリカのゾルゲル溶液 $CSG-DI-O6OO(fッソ社製、固形分濃度:6重量%)を第1層目のコーティング溶液としたこと以外は、実施例1と同様とした。得られた第1層目の<math>SiO_2$ 膜は膜厚100nmであった。

[0038]

【比較例2】シリカのゾルゲル溶液CSG-DI-O6OO16gにあらかじめ調製したチタニアゾル4gを混合撹拌し($SiO_2/TiO_2=80/20$ 重量比)、エタノールで3倍希釈したものを第1層目のコーティング溶液としたこと以外は、実施例1と同様とした。チタニアゾルは、イソプロビルアルコール9gとチタンーisoープロポキシド3gにアセチルアセトン1gを混合して安定化した後に、加水分解用の $H_2OO.2g$ を混合撹拌して得た。得られた第1層目の SiO_2-TiO_2 膜の膜厚は、100nmであった。

[0039]

【比較例3】シリカゾル溶液CSG-DI-0600(チッソ社製)16gにあらかじめ調製したジルコニアゾル4g($Si0_2/Zr0_2=80/20$ 重量比)を混合撹拌し、エタノールで3倍に希釈したものを第1層目のコーティング溶液としたこと以外は、実施例1と同様とした。ジルコニアゾルは、イソプロビルアルコール15gとジルコニウム-n-ブトキシド4gにアセチルアセトン1gを混合して安定化した後に、加水分解用の H_2O 0.2gを混合撹拌して得た。得られた第1層目の SiO_2 -Zr02膜の膜厚は、100nmであった。

【0040】得られた光触媒ガラスの評価を下記のように行った。

〔光活性試験〕1重量%オレイン酸アセトン溶液を用いて光触媒膜表面にオレイン酸を均一に付着させ人工的に汚れを形成した。これにブラックライトF15T8BLB(三共電気)で0.5㎡/cm2(365nm)の紫外線を2時間照射した。照射前後の水の接触角変化で光活性を評価した。

〔耐温水性試験〕60℃の温水に10日間浸漬して外

観、膜強度(温水中でガーゼ布で強く擦り膜剥離の有無 を調べる)の変化を評価した。

〔耐湿性試験〕50℃相対湿度98%の蒸気中に30日間放置して外観、膜強度の変化を評価した。

〔耐酸性試験〕0.1%塩酸中に室温下で48時間浸漬して外観、膜強度の変化を評価した。

〔耐アルカリ性試験〕20%炭酸ソーダ水溶液中に室温下で48時間浸漬して外観、膜強度の変化を評価した。 〔耐温塩水性試験〕60℃の3%食塩水に48時間浸漬して外観、膜強度の変化を評価した。

【0041】実施例及び比較例における性能評価結果を表-1に示す。光活性試験においては、人工的な汚れとしてオレイン酸を付着させており、光触媒機能が高い程、汚れを分解することが出来る。すなわち、紫外線照射後の接触角が小さい程、光活性が高くなる。実施例1~5及び比較例1は、紫外線照射前の水の接触角が40~55°程度であったものが、照射後2~6°程度に大幅に小さくなった。これらの結果から、実施例1~5及び比較例1は、第1層のアルカリバリアー効果が十分機能しているので、第2層目のTiO2を有する膜が、いずれも良好な光触媒としての光活性機能を有していることが確認できる。一方、比較例2~3では、光活性はあるものの、他の場合に比べて光触媒性能が減少していることが確認できる。

【0042】耐温水性試験について、実施例1~5及び比較例2~3は10日間経過後も外観、膜強度に変化がなかった。比較例1については、2日目に第2層膜が剥離した。

【0043】耐湿性試験については、実施例1~5及び比較例2~3は30日間経過後も変化は認められないのに対し、比較例1は12日目に第2層膜が剥離した。耐酸性試験については、実施例および比較例ともに変化は認められなかった。/

【0044】耐アルカリ性試験については、実施例1~5び比較例2~3は48時間経過後、全く変化はなかった。一方、比較例1は11時間後に第2層膜が剥離した。耐温塩水性試験については、実施例1~5及び比較例2~3は48時間経過後も変化は認められないのに対し、比較例1は5時間後に第2層膜が剥離した。

【0045】なお、表-1において、(○印)は試験後の変化がなく良好な結果が得られたことを示し、(×印)は試験中に膜の剥離を生じたものを示す。以上の評価結果に示すように、本発明の実施例1~5は比較例1~3に比べ、光活性、耐温水性、耐湿性、耐アルカリ性、耐温塩水性の全ての評価項目において極めて優れ、第1層膜と第2層膜の膜間の密着強度が極めて大きく強固であり、しかもアルカリバリアー効果も十分であることが分かった。一方、比較例2~3は、比較例1に比べ、耐温水性、耐湿性、耐アルカリ性、耐温塩水性の耐久試験では良好な結果が得られており、さらに光触媒性能はある

ものの紫外線照射後の接触角が実施例に比べて10~20°程度高いことから光活性が低下しており、実施例よりはアルカリバリアー性が劣っていることが分かる。 【0046】

【発明の効果】光触媒膜の下層にAl₂O₃-SiO₂膜を設けることにより、ソーダライムガラス基板から光触媒膜へのナトリウムイオンの拡散を防止し、光触媒機能を十分に発揮させるとともに、第1層に添加したAl元素が第2層である光触媒膜のTi元素と相互作用を起こすことにより、第1層と第2層の層間の密着強度が強固になり、耐温水性、耐湿性、耐アルカリ性、耐温塩水性等の耐久性を長期に持続し、厳しい環境下において確実で

かつ安定した品質の光触媒ガラスが得られ、建築用、車両用、鏡等のその他の各種ガラス物品に広く用いることができる。

【0047】また、本発明は、成膜後に550℃以上の高温で熱強化および/または熱曲げ加工を行っても、ガラスからのアルカリの拡散がなく、アルカリバリア一性が低下しない利点を有する。

【0048】さらに、本発明は、第1層および第2層の 膜厚が薄くてもアルカリバリアー性および光活性の機能 を充分に発揮する利点も併せ持つ。

[0049]

【表1】

サンプル	光活性	耐温水性	耐湿性	耐酸性	耐 7A加性	耐温塩水性
実施例1	48' → 5'	0	0	0	0	0
実施例2	55° → 2°	0	0	0	0	0
実施例3	45° → 5°	0	0	0	0	0
実施例 4	43' → 6'	0	0	0	0	0
実施例 5	45' → 4'	0	0	0	0	0
比較例 1	54° → 2°	×	×	0	×	×
比較例 2	64' → 19'	0	0	0	0	0
比較例3	51° → 24°	0	0	0	0	0 .

フロントページの続き

(72)発明者 本城 啓司

三重県松阪市大口町1510 セントラル硝子 株式会社硝子研究所内