Math 143 Midterm 2 Review

Topics on Midterm 2

- 1. Multiplying, dividing, differentiating, integrating series.
- 2. Euler's formula: $e^{it} = \cos t + i \sin t$.
- 3. Parametric equations (plotting, derivatives, arclength)
- 4. Polar equations (plotting, derivatives, arclength, polar rectangles, area)
- 5. \mathbb{R}^3 (distance, midpoints, basic plots including spheres and cylinders)
- 6. Vectors in \mathbb{R}^3 (length, unit vectors, dot product, cross product)
- 7. Lines and planes in \mathbb{R}^3

These identities will be given on the midterm: $\cos^2 t = (1 + \cos 2t)/2$, $\sin^2 t = (1 - \cos 2t)/2$.

Sample questions

- **1.** Plot, find the arclength, and find the area enclosed by the polar curve $r = \theta^2$ for $\theta \in [0, 2\pi]$.
- **2.** Find the arclength of the curve described by the parametric equations $\begin{cases} x = 3 + e^{-2t} \\ y = 2 e^{-2t} \end{cases}$ for $t \in [0, 1]$.
- **3.** Graph the parametric equations $\begin{cases} x=2+3\sin t \\ y=1+2\cos t \end{cases} \text{ for } t\in[0,3\pi/2].$
- **4.** Find two vectors of length 2 which are orthogonal to $\langle 2,2,3 \rangle$ and $\langle -1,0,2 \rangle$.
- **5.** Find the equation of the plane which passes through the origin and is perpendicular to both x+y+z=3 and x+2y+3z=3.
- **6.** Find the angle between the planes x + y + z = 1 and x + 2y z = 2.
- **7.** Consider the curve in the plane $\begin{cases} x = \cos t + t \sin t \\ y = \sin t t \cos t \end{cases}$ where $t \in [0, 2\pi]$.
 - a. Find the (x, y) coordinates of all vertical and horizontal tangents.
 - **b.** Find the values of *t* for which this curve is concave down.
 - c. Find the arclength of the curve.

- **8.** Consider the curve given parametrically by $\begin{cases} x=2e^t-t \\ y=e^t-3 \end{cases}$ for $t\in\mathbb{R}$. Find the parametric equations for the line tangent to the curve at t=1.
- **9.** Fix a vector $\mathbf{v} \in \mathbb{R}^3$. Which unit vector \mathbf{w} maximizes the dot product $\mathbf{w} \cdot \mathbf{v}$?
- **10.** If $a,b \in \mathbb{R}$, we let $\operatorname{Re}(a+ib) = a$ and $\operatorname{Im}(a+ib) = b$ denote the real and imaginary parts of the complex number a+bi. Plot the parametric equation $\begin{cases} x = \operatorname{Re}(3e^{2it}), \\ y = \operatorname{Im}(3e^{2it}) \end{cases}$ for $t \in [0,\pi/4]$.

11. Find the area enclosed by the polar curve $r = \sin(4\theta)$.

