Raport - Ćwiczenie nr 1

Grzegorz Janysek

27 marca 2022

1

Z wykorzystaniem udostępnionej instrukcji Zapoznano się działaniem generatora sygnałowego AFG3000 i oscyloskopu cyfrowego MSO3000. Zrealizowano punkty:

- Obserwacja sygnałów z generatora na oscyloskopie
- Pomiar częstotliwości przy użyciu kursorów
- Pomiar amplitudy przy użyciu kursorów
- Pomiar różnicy faz dwóch sygnałów
- Uśrednianie przebiegów
- Pomiary automatyczne
- Tryb X-Y
- Sumowanie dwóch sygnałów
- Zapisywanie wyników na pendrive'a

Z wykorzystaniem trybu X-Y zaobserwowano krzywe Lissajous dla jednakowych i różnych częstotliwości, dla różnych przesunięć fazowych.

Rysunek 1: Krzywa Lissajous dla częstotliwości $f_1=f_2=1 \mathrm{kHz}$ i fazie $\phi=0^\circ$

Rysunek 2: Krzywa Lissajous dla częstotliwości $f_1=f_2=1 \mathrm{kHz}$ i fazie $\phi=45^\circ$

Rysunek 3: Krzywa Lissajous dla częstotliwości $f_1=f_2=1 \mathrm{kHz}$ i fazie $\phi=90^\circ$

Rysunek 4: Krzywa Lissajous dla częstotliwości $f_1=2\mathrm{kHz},\,f_2=3\mathrm{kHz}$ i fazie $\phi=0^\circ$

Rysunek 5: Krzywa Lissajous dla częstotliwości $f_1=2\mathrm{kHz},\,f_2=3\mathrm{kHz}$ i fazie $\phi=45^\circ$

Wykonano sumowanie dwóch sygnałów sinusoidalnych o częstotliwościach $f_1 = 1000$ Hz i $f_2 = 1050$ Hz i jednakowych amplitudach A.

$$v_1 = Asin(\omega_1 t), \qquad v_2 = Asin(\omega_2 t)$$
 (1)

$$v = v_1 + v_2 = 2A \sin(\omega_1 t) + \sin(\omega_2 t) \tag{2}$$

$$v = 2A \cos\left(\frac{\omega_1 t - \omega_2 t}{2}\right) \sin\left(\frac{\omega_1 t + \omega_2 t}{2}\right)$$
 (3)

niech pulsacja dudnień:
$$\omega_d = \frac{\omega_1 t - \omega_2 t}{2} \tag{4}$$

natomiast pulsacja wypadkowa:
$$\omega_w = \frac{\omega_1 t + \omega_2 t}{2}$$
 (5)

otrzymujemy:
$$v = a(t) \sin(\omega_w t)$$
 gdzie $a(t) = 2A \cos(\omega_d t)$ (6)

Podstawiając f_1 i f_2 otrzymujemy $f_d = 25$ Hz. Na rysunku poniżej zmierzono czas odpowiadający połowie okresu dudnień, otrzymano w ten sposób dwa razy większą częstotliwość tj. 50Hz. Wynik zgadza się z obliczeniami teoretycznymi.

Rysunek 6: Pomiar połowy okresu oscylacji amplitudy dudnień

4

Zbudowano dzielnik napięcia składający się z dwóch rezystorów R_1 i R_2 . Wykonano pomiary rezystancji R_1 i R_2 oraz pomiary U_{wy} dla zadanych wartości $U_{we}=1V,2V,...,10V$ przy ustalonej częstotliwości f=6kHz. Zmierzone wartości przedstawiono na wykresie, dokonano regresji liniowej celem znalezienia współczynnika proporcjonalności i porównano go z obliczonym teoretycznie.

$$U_{wy} = \frac{R_2}{R_1 + R_2} U_{we} = a U_{we}$$
 gdzie *a* to współczynnik proporcjonalności: (7)

Rysunek 7: Schemat dzielnika napięcia

	Znamionowa $[k\Omega]$	Zmierzona [k Ω]
R_1	0.620	0.625
R_2	3.600	3.525

Tabela 1: Wartości rezystancji

Zadane U_{we} [V]	Zmierzone U_{we} [V]	Zmierzone U_{wy} [V]
1	0.993	0.844
2	1.981	1.680
3	2.940	2.504
4	3.920	3.320
5	4.881	4.149
6	5.846	4.960
7	6.908	5.823
8	7.920	6.642
9	8.880	7.520
10	9.840	8.400

Tabela 2: Pomiar napięcia wejściowego oraz wyjściowego dzielnika dla zadanego za pomocą generatora napięcia wejściowego

Rysunek 8: Pomiar napięcia wejściowego oraz wyjściowego dzielnika dla zadanego $U_{we}=10V$. Analogiczne zostały przeprowadzone dla pozostałych wartości U_we

Rysunek 9: Porównanie punktów pomiarowych z dopasowaną do nich prostą f(x) = ax

Wartości współczynnika proporcjonalności a:

teoretyczny dla rezystancji znamionowej:
$$a = 0.853$$
 (8)

teoretyczny dla rezystancji zmierzonej:
$$a = 0.849$$
 (9)

z regresji liniowej:
$$a = 0.847$$
 (10)

Największy błąd można zaobserwować odnosząc się do wartości znamionowej rezystancji R_1 i R_2 , wiąże się on głównie z niedokładności wykonania tych elementów. Niewielka różnica pomiędzy a bazującym na rezystancji zmierzonej i a uzyskanym z regresji liniowej może wynikać z niepewności pomiarowych omomierza oraz oscyloskopu, jak i z pasożytniczej reaktancji rezystorów. Jako że pomiary te zostały wykonane dla różnych częstotliwości napięcia wejściowego.

5

Używając oscyloskopu i rezystora nastawnego umieszczonego na płytce montażowej wykonano pomiar rezystancji wewnętrznej (wyjściowej) generatora funkcyjnego.

Generator funkcyjny ustawiono tak aby na wyjściu generował napięcie sinusoidalne o amplitudzie 20V. Zmierzono następnie amplitudę odniesienia za pomocą oscyloskopu, wyniosła ona $U_{od}=19.9{\rm V}.$

Rysunek 10: Pomiar amplitudy odniesienia

W kolejnym kroku obciążono wyjście generatora za pomocą rezystora nastawnego, który umożliwiał nastawę wartości oporu odpowiadającej znamionowemu oporowi wyjściowego generatora. Następnie dostosowano nastawę rezystora R_l tak aby amplituda napięcia odczytywana w dalszym ciągu na oscyloskopie zmalała około o połowę, do $U=10.20\mathrm{V}$.

Rysunek 11: Opór rezystora nastawnego dobrany tak aby amplituda zmalała o połowę względem amplitudy odniesienia

Zmierzono następnie nastawę rezystora za pomocą omomierza, wyniosła ona 60.7 Ω . Korzystając z prawa Ohma i zakładając nieskończenie dużą rezystancję wejściową oscyloskopu, rezystancja wyjściowa (wewnętrzna) generatora R_w jest równa:

$$R_w = \left(\frac{U_{od}}{U} - 1\right) R_l = \left(\frac{19.90V}{10.20V} - 1\right) 60.7\Omega = 57.7\Omega \tag{11}$$

Odstępstwo od nominalnej wartości 50Ω może wynikać z niedokładności elementów wchodzących w skład generatora, niedokładności pomiaru oporu rezystora nastawnego lub skończonej rezystancji wejściowej oscyloskopu.