\mathcal{P} ráctica \mathcal{G} eneral \mathcal{T} ransformaciones \mathcal{L} ineales

- 1. Sean \mathcal{V} y \mathcal{W} espacios vectoriales reales y sea $\mathcal{T}_0: \mathcal{V} \to \mathcal{W}$ una función tal que $\mathcal{T}_0(v) = 0$, $\forall v \in \mathcal{V}$. Demuestre que \mathcal{T}_0 es una transformación lineal. Esta transformación es conocida como transformación cero.
- 2. Sea \mathcal{V} un espacio vectorial real y sea $\mathcal{I}: \mathcal{V} \to \mathcal{V}$ la aplicación definida por $\mathcal{I}(v) = v, \ \forall v \in \mathcal{V}$. Demuestre que \mathcal{I} es una transformación lineal. \mathcal{I} se conoce como transformación identidad sobre \mathcal{V} .
- 3. En cada uno de los casos siguientes, \mathcal{F} es una función de \mathbb{R}^2 en \mathbb{R}^2 ; determine si \mathcal{F} es una aplicación lineal o no lo es.
 - (a) $\mathcal{F}(x,y) = (x,y+3)$
 - (b) $\mathcal{F}(x,y) = (2x y, x y)$
 - (c) $\mathcal{F}(x,y) = (y^2, 3x)$
 - (d) $\mathcal{F}(x,y) = (2x + y, 3y 4x)$
- 4. Para cada una de las funciones $\mathcal{T}: \mathcal{V} \to \mathcal{W}$ que se enuncian, realice lo siguiente:
 - i. Verifique que \mathcal{T} es transformación lineal y determine dim(V)
 - ii. Determine $Nucl(\mathcal{T})$, una base de $Nucl(\mathcal{T})$ y $n(\mathcal{T})$
 - iii. Determine $r(\mathcal{T})$, una base de $Im(\mathcal{T})$ e $Im(\mathcal{T})$
 - (a) $\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$, con $\mathcal{T}(a,b) = (a,-b)$
 - (b) $\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^3$, con $\mathcal{T}(a,b) = (a,a+b,a-b)$
 - (c) $\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$, con $\mathcal{T}(a,b) = (2a, a+b)$
 - (d) $\mathcal{T}: \mathcal{P}_2 \to \mathcal{P}_2$, con $\mathcal{T}(ax^2 + bx + c) = a(x+2)^2 + b(x+2) + c$
 - (e) Para B, alguna matriz fija de tamaño 2×3 ,

$$\mathcal{T}: \mathcal{M}_{2\times 2} \to \mathcal{M}_{2\times 3}, \text{ con } \mathcal{T}(X) = XB$$

- (f) $\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$, con $\mathcal{T}(a,b) = (2a+b,a)$
- (g) $\mathcal{T}: \mathbb{R}^3 \to \mathbb{R}^4$, con $\mathcal{T}(a, b, c) = (a + b + c, b + c, 3a + b, 2b + c)$

(h) Para $\lambda \in \mathbb{R}$,

$$\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
, con $\mathcal{T}(a,b) = (a + \lambda b, -b)$

(i)
$$\mathcal{T}: \mathcal{P}_2 \to \mathcal{P}_1$$
, con $\mathcal{T}(ax^2 + bx + c) = (b + 2c)x + a + c$

(j)
$$\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
, con $\mathcal{T}(a,b) = (a-b,a+b)$

(k)
$$\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
, con $\mathcal{T}(a,b) = (a+b,a-b)$

(1)
$$\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$$
, con $\mathcal{T}(a,b) = (2a+b, a-2b)$

(m)
$$\mathcal{T}: \mathcal{P}_2 \to \mathcal{P}_3$$
, con $\mathcal{T}(ax^2 + bx + c) = ax^3 + bx^2 + cx$

(n)
$$\mathcal{T}: \mathcal{P}_3 \to \mathcal{P}_2$$
, con $\mathcal{T}(ax^3 + bx^2 + cx + d) = 3ax^2 + 2bx + c$

(o)
$$\mathcal{T}: \mathcal{P}_2 \to \mathcal{P}_2$$
, con $\mathcal{T}(ax^2 + bx + c) = a(2x + 1)^2 + b(2x + 1) + c$

(p)
$$\mathcal{T}: \mathcal{P}_2 \to \mathcal{P}_1$$
, con $\mathcal{T}(ax^2 + bx + c) = bx + c$

(q)
$$\mathcal{T}: \mathcal{M}_{2\times 2} \to \mathbb{R}$$
, con $\mathcal{T}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 2a + 3b + c - d$

(r)
$$\mathcal{T}: \mathcal{M}_{2\times 2} \to \mathbb{R}$$
, con $\mathcal{T}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 3a - 2b - c + 4d - 3$

(s)
$$\mathcal{T}: \mathcal{P}_1 \to \mathcal{P}_1$$
, con $\mathcal{T}(ax+b) = a(x+3) + b$

(t) Para
$$C_{[0,1]} = \{ f : [0,1] \to \mathbb{R} / f \text{ es función continua} \},$$

 $\mathcal{T}: C_{[0,1]} \to \mathbb{R}, \text{ con } \mathcal{T}(f) = \int_0^1 f(t)g(t) dt, \text{ donde } g \text{ es una función fija en } C_{[0,1]}$

(u)
$$\mathcal{T}: \mathbb{R}^3 \to \mathbb{R}^3$$
, con $\mathcal{T}(a, b, c) = (c - b, c - a, a + b)$

- 5. Si \mathcal{V} y \mathcal{W} son espacios vectoriales reales y $\mathcal{T}: \mathcal{V} \to \mathcal{W}$ es una transformación lineal, demuestre que $\mathcal{T}(u-v) = \mathcal{T}(u) \mathcal{T}(v)$, $\forall u, v \in \mathcal{V}$.
- 6. Considere la función $\mathcal{T}: \mathcal{P}_2 \to \mathcal{M}_{2\times 1}$, tal que $\mathcal{T}\Big(p(x)\Big) = \begin{pmatrix} p(0) \\ p(0) \end{pmatrix}$
 - (a) Demuestre que \mathcal{T} es una transformación lineal.
 - (b) Determine el núcleo de la transformación y una base de $Im(\mathcal{T})$
- 7. Sean \mathcal{V} y \mathcal{W} espacios vectoriales reales y sea $\mathcal{T}: \mathcal{V} \to \mathcal{W}$ una transformación lineal. Demuestre que si \mathcal{W}_1 es un subespacio vectorial de \mathcal{W} entonces $\mathcal{T}^{-1}(\mathcal{W}_1)$ es un subespacio vectorial de \mathcal{V} , con $\mathcal{T}^{-1}(\mathcal{W}_1) = \left\{v \in \mathcal{V} \middle/ \mathcal{T}(v) \in \mathcal{W}_1\right\}$
- 8. Suponga que $\mathcal{T}: \mathcal{V} \to \mathcal{W}$ es una transformación lineal, tal que $Nucl(\mathcal{T}) = \{0\}$ Demuestre que si $\{v_1, v_2, \dots, v_n\}$ es linealmente independiente en \mathcal{V} , entonces $\{\mathcal{T}(v_1), \mathcal{T}(v_2), \dots, \mathcal{T}(v_n)\}$ es linealmente independiente en \mathcal{W} .

- 9. Sean \mathcal{V} y \mathcal{W} espacios vectoriales reales y $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ una base de \mathcal{V} . Demuestre que si \mathcal{T}_1 y \mathcal{T}_2 son transformaciones lineales, tales que $\mathcal{T}_1(v_i) = \mathcal{T}_2(v_i)$, $\forall v_i \in \mathcal{B}$, entonces $\mathcal{T}_1(v) = \mathcal{T}_2(v)$, $\forall v \in \mathcal{V}$.
- 10. Determine $Nucl(\mathcal{T})$, $n(\mathcal{T})$, $Im(\mathcal{T})$ y $r(\mathcal{T})$ si $\mathcal{T}: \mathcal{P}_3 \to \mathcal{P}_2$ está definida por $\mathcal{T}(a+bx+cx^2+dx^3)=a+bx+cx^2$
- 11. Sea $\mathcal{B} = \{(1,2,3), (2,5,3), (1,0,10)\}$ una base de \mathbb{R}^3 y $\mathcal{T} : \mathbb{R}^3 \to \mathbb{R}^2$ una transformación lineal, tal que $\mathcal{T}(1,2,3) = (1,0), \ \mathcal{T}(2,5,3) = (1,0)$ y $\mathcal{T}(1,0,10) = (0,1)$. Calcule:
 - (a) $\mathcal{T}(0,0,0)$
 - (b) $\mathcal{T}(1,1,1)$
 - (c) $\mathcal{T}(x, y, z)$, $\forall (x, y, z) \in \mathbb{R}^3$.
- 12. Considere el conjunto $\mathcal{B} = \{2x, x-3\}$
 - (a) Verifique que \mathcal{B} es una base de \mathcal{P}_1
 - (b) Si $\mathcal{T}: \mathcal{P}_1 \to \mathbb{R}^3$ es una transformación lineal, para la que se sabe que $\mathcal{T}(2x) = (2,4,0)$ y $\mathcal{T}(x-3) = (-2,5,0)$, determine $\mathcal{T}(p(x))$, $\forall p(x) \in \mathcal{P}_1$
- 13. Sea $\mathcal{B} = \{(1,0,1),(0,1,1),(1,1,0)\}$ una base de \mathbb{R}^3 y $\mathcal{T} : \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal, tal que $\mathcal{T}(1,0,1) = (3,7,13)$, $\mathcal{T}(0,1,1) = (1,5,7)$ y $\mathcal{T}(1,1,0) = (0,4,4)$. Calcule la matriz de transformación correspondiente a \mathcal{T} y a partir de ella una fórmula para obtener $\mathcal{T}(x,y,z)$, con (x,y,z) un elemento arbitrario en \mathbb{R}^3 .
- 14. Considere el espacio vectorial \mathcal{V} generado por el conjunto l.i. $\mathcal{B} = \left\{ \operatorname{sen} x, \cos x \right\}$ y sea $\mathcal{T} : \mathcal{V} \to \mathcal{V}$ una transformación lineal definida por $\mathcal{T}(f) = f'$
 - (a) Determine el vector $w = \mathcal{T}(3\cos x \sin x)$
 - (b) Escriba el vector w como combinación lineal de los elementos de \mathcal{B} .
- 15. Sea $\mathcal{T}: \mathcal{M}_{3\times 2} \to \mathbb{R}^4$ una transformación lineal definida por:

$$\mathcal{T}\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \\ x_5 & x_6 \end{pmatrix} = \begin{pmatrix} x_1 - x_4, 0, x_2, x_3 \end{pmatrix}$$

- (a) Determine $Nucl(\mathcal{T})$ y su dimensión.
- (b) Determine una base para $Im(\mathcal{T})$

16. Sea $\mathcal{T}: \mathbb{R}^4 \to \mathcal{M}_{2\times 2}$ una transformación lineal, tal que:

$$Nucl(\mathcal{T}) = \left\{ \begin{pmatrix} x, y, 0, x - y \end{pmatrix} \middle/ x, y \in \mathbb{R} \right\}$$
 y, además,
 $Im(\mathcal{T}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2\times 2} \middle/ a - d = 0, \ 2b - c = 0 \right\}$

- (a) Determine una base para $Nucl(\mathcal{T})$
- (b) Determine $r(\mathcal{T})$
- (c) Determine $\mathcal{T}(x)$, $\forall x \in \mathbb{R}^4$.
- (d) Utilice el resultado anterior y determine $\mathcal{T}(2, -1, 4, 0)$
- 17. Sea $\mathcal{L} = \left\{ \mathcal{T} : \mathcal{V} \to \mathcal{W} \middle/ \mathcal{T} \text{ es tranformación lineal} \right\}$, con \mathcal{V} y \mathcal{W} espacios vectoriales reales. En \mathcal{L} se define una operación "adición (+) de dos elementos de \mathcal{L} " y una operación "multiplicación (·) de un número real por un elemento de \mathcal{L} " de la siguiente manera:
 - (a) $\forall \mathcal{F}, \mathcal{G} \in \mathcal{L}; \ \forall v \in \mathcal{V}, \quad (\mathcal{F} + \mathcal{G})(v) = \mathcal{F}(v) + \mathcal{G}(v)$
 - (b) $\forall \mathcal{F} \in \mathcal{L}; \ \forall \lambda \in \mathbb{R}; \ \forall v \in \mathcal{V}, \quad (\lambda \cdot \mathcal{F})(v) = \lambda \cdot \mathcal{F}(v)$

Demuestre que:

- (a) $(\mathcal{F} + \mathcal{G})$ y $(\lambda \cdot \mathcal{F})$ pertenecen a \mathcal{L} ; es decir, $(\mathcal{F} + \mathcal{G})$ y $(\lambda \cdot \mathcal{F})$ son transformaciones lineales de \mathcal{V} en \mathcal{W} .
- (b) $(\mathcal{L}, +, \cdot \mathbb{R})$ es un espacio vectorial.
- 18. Sean \mathcal{U} , \mathcal{V} y \mathcal{W} espacios vectoriales reales, \mathcal{F} y \mathcal{G} transformaciones lineales de \mathcal{U} en \mathcal{V} , y \mathcal{H} una transformación lineal de \mathcal{V} en \mathcal{W} , demuestre que:

$$\mathcal{H} \circ (\mathcal{F} + \mathcal{G}) = \mathcal{H} \circ \mathcal{F} + \mathcal{H} \circ \mathcal{G}$$

19. Considere la transformación lineal $\mathcal{T}: \mathcal{M}_{3\times 1} \to \mathcal{P}_2$, definida por:

$$\mathcal{T}\begin{pmatrix} a \\ b \\ c \end{pmatrix} = ax^2 + (b - c)x$$

Si se sabe que $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ y $\mathcal{B}' = \left\{ x^2, x, 1 \right\}$ son bases de $\mathcal{M}_{3 \times 1}$

y \mathcal{P}_2 , respectivamente, determine la matriz A que representa la transformación \mathcal{T} utilizando las bases \mathcal{B} y \mathcal{B}' .

20. Considere la matriz A que se enuncia a continuación:

$$A = \left(\begin{array}{rrr} -20 & 27 & 9 \\ -12 & 16 & 6 \\ -6 & 9 & 1 \end{array}\right)$$

- (a) Verifique que $\lambda = 1$ y $\lambda = -2$ son valores propios de A.
- (b) Determine una base para el espacio vectorial asociado con $\lambda=1$
- (c) Determine una base para el espacio vectorial asociado con $\lambda = -2$

21. Para cada una de las siguientes matrices determine sus valores característicos y sus vectores característicos; para cada valor característico λ determine el sub-espacio vectorial E_{λ} asociado a λ .

(a)
$$A = \begin{pmatrix} 6 & -2 \\ -3 & 1 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix}$$

(d)
$$A = \begin{pmatrix} 1 & 2 \\ -4 & 7 \end{pmatrix}$$

(e)
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix}$$

(f)
$$A = \begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

(g)
$$A = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$

(h)
$$A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix}$$

(i)
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 5 & -1 \end{pmatrix}$$

$$(j) A = \begin{pmatrix} 4 & -5 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

(k)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ -8 & 4 & -6 \\ 8 & 1 & 9 \end{pmatrix}$$

(l)
$$A = \begin{pmatrix} 5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{pmatrix}$$

(m)
$$A = \begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$