

Cell Broadband Engine

Raytracing on the Cell Broadband Engine

A quick overview

Agenda

- Introduction
- Objectives of the work
- Cell Processor
- Ray Tracing Application Architecture
- Summary

Introduction

What is Raytracing?

- Method to create photo-realistic images on a computer
- Rays are casted through an imaginary camera into a virtual world
- Raytracing mathematically models the light rays as they bounce in the virtual world
- Advanced optical effects
- Accurate simulations of reflection and refraction
- Rendering time differs from seconds to many days
- The waiting is worth while -> Impressive results

Introduction

Why Raytracing?

- Vector arithmetic
- Nearly only floating-point calculation
- Highly parallelizable
- Every one of the rays is independent from each other
- It's up to the developer how much work to distribute
- The smallest amount of work can be a
 - Single ray
 - Raypacket (2x2, 4x4 ...)
 - Tile ...

Objectives of the work

Solution to an increasing demand of computational power

Manufactures take multi-core chip design into consideration

Consequences

- A paradigm shift is to take place
- To solve a specific task entirely new approaches have to be developed
- The tasks have to be adapted to the new architecture
- A variety of approaches have to be taken into account to solve a given problem
- With respect to its performance and adaptability each approach has to be tested to determine the best solution

Objectives of the work

Diploma thesis

- The problem that yields out of that situation will be examined for a Raytracer which will be adapted to the CBE architecture
- Different approaches are supposed to be introduced
- The single approaches are examined with its respect to performance and its capability for Raytracing
- Goal of the work is to develop an optimal architecture for Raytracing for the CBE with focus on performance
- Result of the work will be a Raytracer that can render medium sized scenes at acceptable rates

Cell Processor

- Joint Venture of Sony Toshiba and IBM also known as STI, formally started 2001
- Cell Processor first incarnation of a new family of microprocessors conforming the Cell Broadband Engine Architecture
- Initially attended for applications in game consoles and media-rich consumer-electronic devices
 - Sony Playstation 3, HDTV, Developer Boards, Cell Blades
- A much broader use of the architecutre envisioned
 - Cell designed to enable fundamental advances in processor performance

Cell Processor Highlights

- 9 Multi-Core microprocessor
 - 1 PowerPC Processing Element
 - 8 Synergetic Processing Elements
- 3.2 Ghz clock frequency
- 10x performance for many applications

64 -bit Power Architecture w/VMX for Traditional Computation

Previous Work

- Raytracer based upon the recursive ray tracing algorithm
 - Featured reflection but no refraction
 - Performance as a Pentium 4
- Streaming programming model
 - Data-Flow not optimal
- Drawbacks
 - Poor performance
 - Shader, Illumination modell not easily extensible
 - Poor use of the hardware architecture

Targeting the CBE

General work flow

- Porting to the PPE
- Application partitioning, Programming model
- Offloading parts to the SPE's
- Using SPU C/C++ Language Extensions to achieve maximum performance
- Tuning data access and flow with double-buffering and prefetching
- SIMD vectorization

Ray Tracing Application Architecture (CBE view)

Shared memory programming model

- Access to main memory reduced
- Communication overhead minimized
- PPE needed just for initialization
- 4 -Way Set Associative Cache
- Load Balancing

Ray Tracing Application Architecture (SPE view)

Every SPE a little Ray Tracer

- Raytracing acceleration techniques
- Input camera, objects
- Output rendered tile, access to main memory reduced
- PPE completely ignored
- Output is double-buffered into a SDL Surface
- Communication between the SPE's not needed

Ray Tracing Application Architecture (SPU view)

Data Flow and SIMD vectorization

- Double buffering and prefetching
- Loop vectorization
- Ray packets, simultainously perform calculation on 4 rays
- Caching of often used objects

Ray Tracing Application Architecture

- Shared memory programming model
 - Reducing the access to main memory
 - Shader pluggable
- Cache management
 - 4 Way Set Associative Cache
- Load Balancing
 - Dimension Exchange method (Work Stealing)

Summary

Raytracing Application Architecture

- Outperformed the last implementation
- Shader easily pluggable
- Options for further improvements

•CBE

- Fast , powerful
- Unleashing the power, needs knowledge about the hardware