### TRIBHUVAN UNIVERSITY

### INSTITUTE OF SCIENCE AND TECHNOLOGY

## SCHOOL OF MATHEMATICAL SCIENCES

## First Assessment 2078

Subject: Mathematics for Data Science

Course No.: MDS 504

Level: Master in Data Science/I Semester

Full Marks: 45
Pass Marks: 22.5

Time: 2:00 hr

Attempt ALL questions. Write your answer in detail as far as possible.

### Group A $[3 \times 5 = 15]$

### 1. Show that

- (a) The line  $x_2 = ax_1$  (in usual notations, y = ax) is a subspace  $\mathbb{R}^2$ .
- (b) The line  $x_2 = ax_1 + b$  (perhaps more familiar as y = ax + b) is not a subspace  $\mathbb{R}^2$  for  $b \neq 0$ .
- 2. Show that any vector in  $\mathbb{R}^3$  can be expressed as a linear combination of the three unit basis vectors in  $\mathbb{R}^3$ . Also, show that a linear combination of the three unit basis vectors in  $\mathbb{R}^3$  equals to 0 if and only if all coefficients in the linear combination are zeros.
- 3. What is the parallel coordinates method? Explain with explain with an example. What is the use of this method in data science?
- 4. Find a basis for the solution space of the equation x + y z = 0.
- 5. Let  $u_1 = (1, 2, 2, -1)$ ,  $u_2 = (1, 1, -1, 1)$ ,  $u_3 = (-1, 1, -1, -1)$  and  $B = \{u_1, u_2, u_3\}$  an orthogonal basis for  $V = \text{span}(u_1, u_2, u_3)$ . Find the projection of w = (0, 1, 2, 3) onto V.

### **Group B** $[6 \times 5 = 30]$

- 6. (a) By showing that the  $L_{\infty}$ -norm satisfies each of the conditions in the definition of a norm prove this is a vector norm for  $\mathbb{R}^n$ .
  - (b) Let  $x = (x_1, ..., x_n) \in \mathbb{R}^n$  be a vector with  $x_i = i^{-1}$ . Compute the 1-norm, the 2-norm, and the  $\infty$ -norm of x.

OR

Prove that if x and y are vectors in  $\mathbb{R}^n$ , then

(a)  $|x \cdot y| \le ||x||_2 ||y||_2$ .

- (b) Equality holds iff  $x = \alpha y$  for  $\alpha \in \mathbb{R}$
- Define Madamard product of matrices and Matrix multiplication with examples. Prove that if A is an m x n matrix, B an n x p matrix, and C a p x q matrix, so that (AB)C and A(BC) are defined, then (AB)C = A(BC).
- Let v<sub>1</sub>,...,v<sub>n</sub> be vectors in a vector space V and v<sub>n+1</sub> a linear combination of the vectors v<sub>1</sub>,...,v<sub>n</sub>.
   Prove that

span 
$$(v_1, ..., v_k) = \text{span}(v_1, ..., v_k, V_{k+1})$$

$$H v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} v_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ and } v_4 = \begin{pmatrix} 1.5 \\ 5 \\ -2 \end{pmatrix} \text{ show that span} (v_4, v_2, v_3) = \text{span} (v_1, v_2, v_3, v_4).$$

9. Prove that if  $B = \{v_1, v_2, ..., v_k\}$  be an orthogonal basis for a vector space V, then for any vector  $w \in V$ ,  $w \in V$ ,  $w \in V$ ,  $w \in V$ ,

$$\mathbf{z} r = \frac{\mathbf{z} r \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_2} \mathbf{v}_1 + \frac{\mathbf{z} r \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 + \dots + \frac{\mathbf{w} \cdot \mathbf{v}_k}{\mathbf{v}_k \cdot \mathbf{v}_k} \mathbf{v}_k.$$

and moreover, if B is an orthonormal basis for a vector space V, then for any vector  $\kappa \in V$ .

$$w = (w \cdot v_1)v_1 * (w \cdot v_2)v_2 * ... * (w \cdot v_k)v_k$$

- 19. Let  $u_1 = (1, 2, 2, -1), u_2 = (1, 1, -1, 1), u_3 = (-1, 1, -1, -1), u_4 = (-2, 1, 1, 2)$ 
  - (a) Obtain an orthonormal set 5' relative to orthogonal set 5
  - (5c) to 50 am orthonormal boxes for 2.11 factify your answer

OR

Use Graen-Schmidt Process to transform the basis ((2, 1, 0, 0), (-1, 0, 0, 1), (2, 0, -1, 1), (0, 0, 1, 1)) for  $\mathbb{R}^4$  to an orthonormal basis.



# Tribhuvan University Institute of Science and Technology 2078



Master Level / 1 Year /First Semester/ Science Data Science (MDS 504) (Mathematics for Data Science)

Full Marks: 45 Pass Marks: 22.5 Time: 2 hours

Attempt All Questions. Write your answer in detail as far as possible.

### Group A

 $(3 \times 5 = 15)$ 

- Show that
  - a. The line  $x_2 = ax_1$  is a subspace  $\mathbb{R}^2$ .
  - b. The set of points that is the union of two lines through the origin is not a subspace.
- 2. Let

$$v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Show that  $B = \{v_1, v_2\}$  is an orthonormal basis for  $\mathbb{R}^2$ . Find a vector  $x \in \mathbb{R}^2$  with respect to the basis B.

3. Without calculation, find one eigenvalue and two linearly independent eigenvectors of

$$A = \begin{pmatrix} 4 & 4 & -4 \\ 4 & 4 & -4 \\ 4 & 4 & -4 \end{pmatrix}.$$

Justify your answer.

- 4. Let  $Q(x) = 3x_1^2 + 9x_2^2 + 8x_1x_2$ . Find (a) the maximum value of Q(x) subject to the constraint  $x^Tx = 1$ , (b) a unit vector u where this maximum is attained, and (c) the maximum of Q(x) subject to the constraints  $x^Tx = 1$  and  $x^Tu = 0$ .
- 5. Describe and compare the solution sets of  $x_1 + 9x_2 4x_3 = 0$  and  $x_1 + 9x_2 4x_3 = 2$

### Group B

 $(6 \times 5 = 30)$ 

6. Give a geometric description of span (v) and span (u, v). Consider the vectors  $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$  and

$$v = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

- a. Write the vector  $\binom{3}{2}$  in terms of the vectors u and v.
- b. Show that the vectors u and v span  $\mathbb{R}^2$ .

1

IOST,TU

### MDS504-2078 X

- 7. Let  $u_1 = (2 \ 0 \ 0)^T$ ,  $u_2 = (0 \ 1 \ 1)^T$  and  $u_3 = (0 \ 1 \ -1)^T$ . Find the orthonormal set associated with the Prove that an orthogonal set of nonzero vectors in a vector space is linearly independent.
- 8. consider the matrix:  $A = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$ . What can you say about the action of A on an arbitary vector?

What are examples of eigenvalues/eigenvectors of this matrix? What does this discussion for this

Let  $v_1, v_2$  be the eigenvectors associated with the eigenvalues  $\lambda_1, \lambda_2$  of a 2×2 symmetric matrix Arespectively. Prove that  $A = \lambda_1 v_1 v_1^T + \lambda_2 v_2 v_2^T$ .

9. Prove that if B is a symmetric bilinear function on  $\mathbb{R}^n$ , then it is of the form  $B = B_A(v, w) = v^T A w$ , for some unique symmetric matrix A.

Express the quadratic form  $Q(x) = x_1x_2 - x_1x_3 + x_2x_3$  as a sum of squares.

10. Find the SVD of  $A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$ . If A an invertible  $n \times n$  matrix, what is the relationship between the singular values of A and  $A^{-1}$ ?