Exercise 1.4.7: Finish the proof of Theorem 1.4.5 by showing that the assumption $\alpha^2 > 2$ contradicts the assumption that $\alpha = \sup A$.

Proof. Consider the set,

$$A = \{a \in \mathbb{R} : a^2 < 2\}.$$

Let $\alpha = \sup A$. Suppose to the contrary that $\alpha^2 > 2$. Consider an element of A that os larger smaller than α .

$$(\alpha - \frac{1}{n})^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2},$$

$$> \alpha^2 - \frac{2\alpha}{n},$$

$$> \alpha^2 - (\alpha^2 - 2),$$

$$= 2.$$

Thus we have shown that $(\alpha - \frac{1}{n})$ is greater than a for all $a \in A$ and therefore $(\alpha - \frac{1}{n})^2$ is an upper bound. Since $(\alpha - \frac{1}{n}) < \alpha$ we have contradicted $\alpha = \sup A$.

Exercise Supplemental 1: Give a from-scratch proof of the following facts:

- (a) If $f: A \to B$ has an inverse function g, then f is injective.
- (b) If $f: A \to B$ has an inverse function g, then f is surjective.

$$Proof(a)$$
.

Exercise Supplemental 2: Show that the sets [0, 1) and (0, 1) have the same cardinality.

Exercise 1.5.10 (a) (c): (Wait until after Wednesday to start this one)

- (a) Let $C \subseteq [0, 1]$ be uncountable. Show that there exists $a \in (0, 1)$ such that $C \cap [a, 1]$ is uncountable.
- (c) Determine, with proof, if the same statement remains true replacing uncountable with infinite.

$$Proof(a)$$
.

Exercise Supplemental 3: (Wait until after Wednesday to start this one) Suppose for each $k \in \mathbb{N}$ that A_k is at most countable. Use the fact that $\mathbb{N} \times \mathbb{N}$ is countably infinite to show that $\bigcup_{k=1}^{\infty} A_k$ is at most countable. Hint: take advantage of surjections.

Proof.