

Scanned by CamScanner

5 sinsx ds $e^{-x} = \int_{-\infty}^{\infty} S \sin sx \, ds$ Put $S=z \Rightarrow ds=dx & then s by m$ $\int_{-\infty}^{\infty} \frac{x \sin mx ds}{x^2+1} = \int_{-\infty}^{\infty} \frac{1}{x^2+1} e^{-m}$ I'm for former transform for lunction is even p of (1) was sx dx = 3(2) -x2) cossndr + (1-x2) sinsx - f -2x sinsx dx $1-2^2$)sinsx $(-x^2)$ sinsx

Scanned by CamScanner

Scanned by CamScanner