Chapter 10 - Problem 5

10.5 Consider a system of fermions at $T \neq 0$. The fermions can be in only one of two levels. The energies of these levels are respectively ε_1 and ε_2 , and the degeneracy of these levels are respectively g_1 and g_2 . Assume that the total number of electrons N is equal to g_1 . Denoting

$$x = \exp(\beta(\varepsilon_1 - \mu)), \beta = 1/(k_B T), g = g_2/g_1, \text{ and } \Delta \varepsilon = \varepsilon_2 - \varepsilon_1.$$

- a) Find x when the system is in thermal equilibrium
- b) Find μ (in eV), if $g_1=2$, $g_2=5$, $\varepsilon_1=0.5$ eV , $\varepsilon_2=1$ eV, $k_BT=26$ meV.

Part A.

$$\label{eq:linear_line$$

The above equations are the two roots of x.

One of which will give you a complex chemical potential. You want the real one.

Part B.

in[132]:= g1 = 2;
g2 = 5;

$$\epsilon$$
1 = 0.5; (* eV *)
 ϵ 2 = 1; (* eV *)
kbT = 0.026; (* eV *)

$$g = \frac{g^2}{g1};$$

$$\beta = \frac{1}{kbT};$$

$$d\epsilon = \epsilon^2 - \epsilon^1;$$

$$x = \text{Exp}[\beta * (\epsilon^1 - \mu)];$$
The chemical potential is

 μ , the chemical potential, is the only unknown.

We have two roots for x.

$$\begin{split} & \ln[141] = \text{ xroot1 } = -\frac{1}{2} \, \text{e}^{-\text{de} \, \beta} \, \left(\mathbf{1} - \text{g} - \sqrt{\mathbf{1} - 2 \, \text{g} + 4 \, \text{e}^{\text{de} \, \beta} \, \text{g} + \text{g}^2} \, \right); \\ & \text{xroot2 } = -\frac{1}{2} \, \text{e}^{-\text{de} \, \beta} \, \left(\mathbf{1} - \text{g} + \sqrt{\mathbf{1} - 2 \, \text{g} + 4 \, \text{e}^{\text{de} \, \beta} \, \text{g} + \text{g}^2} \, \right); \\ & \ln[143] = \text{Solve} [\text{x} = \text{xroot1, } \mu] \\ & \text{Solve} [\text{x} = \text{xroot2, } \mu] \\ & \text{Out}[143] = \, \left\{ \left\{ \mu \to 0.738089 - 0.0816814 \, \dot{\text{i}} \, \right\} \right\} \end{split}$$

Solution

So our solution is $\mu = 0.738087 \text{ eV}$