

LPBAM – Low Power Background Autonomous Mode

Manuel Marcias – South EMEA Field Application Engineer – Microntroller Products

LPBAM Theory

Cut MCU power consumption by 10

Low Power Background Autonomous Mode (LPBAM)

Typical Scenario (w/o LPBAM): Switch between STOP and ACTIVE mode to save power

LPBAM:

- Allows peripherals to be functional and autonomous in STOP0/1/2 modes
- Peripherals works in STOP mode thanks to their own independent clock request capability
- The peripheral bus clock is automatically switched ON/OFF by the peripheral

/\VNET SILICA

LPBAM: Use Cases

I2C Slave/Master transfer - SPI or UART RX/TX

LPBAM: Use Cases

ADC Conversion triggered by a Low Power Timer

LPBAM: Use Cases

DAC Conversion in Sample&Hold

/\VNET SILICA

LPBAM: Use Cases

Voice Activity Detection with Audio Digital Filter

GPDMA

LPDMA

GPDMA & LPDMA

A new DMA IP:

- Single DMA driver
- 2 HW instances
- LPDMA
- GPDMA
- Integrated DMAMUX features
- Improved autonomy
- Own clock request management
- Flexible intra-channel and inter-channel input/output control

/\VNET silica

Smart Run Domain

SmartRun Domain (SRD) relies on DMA allowing autonomous operation during low power modes down to STOP2 with LPDMA.

2xMasters:

- AHB Bus Matrix
- LPDMA1 (low-power DMA)

2xSlaves

- AHB3 & APB3 peripherals
- SRAM4 (16KB)

Clock Distribution in SRD

The LPBAM avoids waking up the Cortex-M33 core every time we collect data from the peripherals, resulting in energy savings

Peripherals supporting LPBAM

- Autonomous Peripherals = they have clock request capability and support DMA transfer in STOP
- Passive Peripherals= Can only be reconfigured or used as trigger. Do not support DMA nor clock request

Category	LPBAM Category	Functional down to STOP0/1	Functional Down to STOP2
SRAMs	Passive	SRAM1/2/3/4+BKPSRAM	SRAM4
DMA	Autonomous	GPDMA1,LPDMA1	LPDMA1
Communication peripherals	Autonomous	I2C1/2/3/4 SPI1/2/3 USART1-5 , LPUART1	I2C3 SPI3 LPUART1
Timers	Autonomous Passive	LPTIM1/2/3/4 RTC	LPTIM1/3 RTC
Application peripherals	Autonomous	MDF1,ADF1	ADF1
Analog peripherals	Autonomous Passive	ADC4,DAC1 Comparator,OPAMP,Vrefbus	ADC4,DAC1 Comparator,OPAMP,Vrefbus
I/Os	Passive	GPIO/LPGPIO	LPGPIO

ISR generated by Autonomous Peripheral or Passive Peripherals can wake up STM32U5 from STOP0/1/2 mode

Linked List Recap

/\VNET SILICA

LPBAM Bases

/\VNET SILICA

Linked list mode

Handson Overview

/\VNET SILICA

LPBAM Handson Application

/\VNET silica

Queue 1

LPDMA1 ch0

One channel One Queue with three functions
LPTIM1 used as a trigger for ADC channel
PWM duty cycle changed by function 2 and 3

/\VNET SILICA

Queue 2

LPDMA1 ch1

One channel One function only

ADC4 will start conversion of 320 samples

MCU will be awaken by DMA IT TC

Generated Code

LPBAM Application Project tree

STM32CubeU5

LPBAM Utility Layer

Utilities Folder

LPBAM Utility contains a set of indipendent modules and each module is a pair of basic and advanced files

Each module manages configurability and data trasnfer for a given peripheral

LPBAM application has a single entry points which includes all basic, advanced and common functionalities

LPBAM Utility Layer

LPBAM Application folder

LPBAM User Sequence

This is typical order of function calls in main.c to start LPBAM Application

LL LPBAM Layer

This is how we move from application to the LL Layers via Advanced and Basic Layers:

LPBAM Configurator

How to start LPBAM Application?

Benchmark

Results discussion

INVINET SILICA

Power consumption Estimation

Curves show the benefit of LPBAM in Stop2 vs waking up from Stop2 mode at each update Event ISR

10

100

Test Scenario:

- ADC4 clocked by MSIK triggered by LPTIM clocked by LSI
- LPTIM changes it's PWM frequency two times
- ADC4 sampling time is 1.5clock cycles

Sampling Freq	Run/Stop @ 4MHz	LPBAM @4Mhz
256Hz/64Hz	~20uA	~4.5uA
2.56KHz/640Hz	~100uA	~10uA

LPBAM@ 4MHz	LPBAM @24Mhz	
~4.1uA	~4.3uA	

LPBAM Benefit is much larger when increasing the sampling frequency and consumptions are linear with clk freq

0.01

0.1

ADC trigger period (ms)

0.001

INVINET SILICA

Power consumption Estimation

Curves show the benefit of LPBAM in Stop2 vs waking up from Stop2 mode at each update Event ISR

Test Scenario:

- ADC4 clocked by MSIK triggered by LPTIM clocked by LSI
- LPTIM changes it's PWM frequency two times
- ADC4 sampling time is 1.5clock cycles

Sampling Freq	LPBAM Consumption saving vs Run/Stop @ 24MHz
1Khz	90%
100Hz	60%
10Hz	20%

LPBAM Benefit is much larger when increasing the sampling frequency and consumptions are linear with clk freq

NVNET SILICA

Important findings

- MSIK frequency has a limited impact on average consumption as the phase in which Smart Run Domain is active varies linearly with kernel clock frequency
- LPBAM Benefit is much larger when increasing the sampling frequency

LPBAM in Stop 2 proves large consumption benefits which grow significantly in the 50 Hz to 10 kHz sampling range

Wrap Up

INVINET SILICA

LPBAM Tool

- Abstracts linked list complexity
- User friendly interface
- Reduces LPBAM applications development time / effort.
- Provides granularity configuration
- Hardware agnostic firmware.
- Portability inter family/devices.

Thanks to LPBAM Configurator user can easily implement LPBAM scenario with reduced Time to Market

Main Steps handled by STM32CubeMx

- Configure ICACHE in 1-way mode, enable flash prefetch
- Power down unused flash banks
- Power down unused SRAM
- Switch off bus clock is peripherals are not used
- Select oscillators and analog peripherals in the lowest possible power mode allowed by the application
- Select wakeup from Stop oscillators depending on the application consumption and wakeup time

LPBAM Clock strategies

In LPBAM dynamic consumption is linear with clock frequency and DRUN duration linearly decreases with sys clock frequency therefore there is a clear benefit vs Stop/Run approach which increases significantly with sampling frequency.

LSI and LSE are recommended as kernel clocks to get lowest possible power consumption

INVINET SILICA

Low power background autonomous mode (LPBAM)

No need for CPU – all is based on DMA (LPDMA & GPDMA)

Peripheral's configuration & activity can be chained thanks to **DMA linked-list**, down to Stop 2 mode.

Power gain:

Peripherals can operate in STOP2 mode without any need to wake up

Bus and Kernel clocks are **provided to IP** only when necessary in Stop mode

Analog peripherals/oscillators are poweredon only when needed

Reference Links

INVINET SILICA

Reference Links

- [1] Reference manual STM32U575xx and STM32U585xx advanced Arm-based 32-bit MCUs RM0456
- [2] Datasheets for STM32U575xx (DS13737) and STM32U585xx <u>DS13086</u>
- [3] Application note STM32 microcontroller GPIO configuration for hardware settings and low-power consumption AN4899
- [4] Application note STM32U575/585 power optimization AN5652
- [5] Application note STM32U5 Series power optimization using LPBAM AN5645
- [6] On-demand webinar New STM32CubeMX feature for Low-Power Background Autonomous Mode configuration with STM32U5 <u>Link</u>

NVNET SILICA

LPBAM Glossary

- LPBAM = Low Power Background Autonomous Mode
- LPBAM Node = Elementary entity of DMA transfer. Node configuration is stored in SRAM
- LPBAM Queue = A set of DMA transfer nodes linked to each other.
- LPBAM Linked List= DMA modality of usage which allows the DMA peripheral to chain a list of DMA transfers.
- LPBAM Function = A set of DMA nodes chained together to perform a specific task

Our technology starts with You

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

