Neuronale Verarbeitung

Neuronale Verschaltung (Lichtempfindlichkeit)

 Höhere Lichtempfindlichkeit bei Stäbchen durch Konvergenz = Verschaltung von Neuronen

Stäbchen links, Zapfen rechts

Neuronale Verschaltung (Detailgenauigkeit)

- Detailliertes Sehen (Scharfsehen) in der Fovea (Zapfen)
- Bei Stäbchen (links) kein Hinweis, ob ein, zwei oder mehr Lichtreize, da immer nur eine Antwort

Stäbchen jeweils links, Zapfen jeweils rechts

Neuronale Verschaltung

Divergente Verarbeitung: Keine Veränderung in der Feuerrate bei Hinzunahme von Neuronen

Konvergente
Verarbeitung: Anstieg
der Feuerrate bei
Hinzunahme von
Neuronen

Laterale Inhibition (Hemmung)

- Hemmende Neurotransmitter beeinflussen die Erregungsstärke
- Untersuchung Pfeilschwanzkrebs (Henry Wagner, Floyd Ratliff (1956))

Laterale Inhibition (Hemmung)

 Inhibitorische Verarbeitung: Erregungsstärke hemmender und erregender Neuronen wird aufgerechnet (beim Sehen z.B. Horizontalzellen und Amakrinzelle)

Herman-Gitter

Ludimar Hermann, 1870

Herman-Gitter

- Kreuzungspunkte umgeben von hellen Flächen, deren Rezeptoren stark hemmend wirken, so das ausgehende Erregung stärker gehemmt werden (bei ON-Zentrum-Ganglienzellen)
- Die wahrgenommene Helligkeit der Kreuzungspunkte ist deshalb niedriger wie an den Streifen, wo der hemmende Rand nicht so stark gereizt wird.

Mach'sche Bänder

Werden Flächen unterschiedlicher Graufärbung nebeneinander abgebildet, sieht man an den Übergängen Mach'sche Streifen, d.h. der Kontrast an den Grenzen wird verstärkt

Simultankontrast

- Felder in der Mitte haben dieselbe Helligkeit, Wahrnehmung: oben dunkler, unten heller
- Der Effekt ähnelt dem der Mach-Bänder, allerdings verändert sich die Helligkeit des gesamten Objekts
- Daher läßt sich der Simultankontrast schlecht mit lateraler Inhibition erklären

Rezeptive Felder

- Ein rezeptives Feld beschreibt die Gruppe von Photorezeptoren, die Informationen über Interneurone (z.B Bipolarzellen) an eine Ganglienzelle weitergeben
- Derartige rezeptive Felder weisen eine Zentrum-Umfeld-Struktur auf (On-Zentrum-Neuronen, Off-Zentrum-Neuronen)

Zelltypen

- Neuronen im Kortex, genauer im CLG (Corpus Geniculatum Laterale) besitzen ähnliche rezeptive Felder wie die auf der Retina (Hubel und Wiesel, 1959)
- Einfache Kortexzellen: Erregende und hemmende Arealen, die nebeneinander angeordnet sind. Spezialisiert auf Richtung von Linien (optimal auf genau eine Ausrichtung einer Linie)
- Komplexe Zellen: Bestimmte Ausrichtung von Linien, allerdings nur, wenn diese auch in Bewegung sind
- Endinhibitierte Zellen: Reagieren auf Linien einer bestimmten Länge oder auf Ecken, die sich in eine bestimmte Richtung fortbewegen.

Merkmalsdetektoren

Zellen können durch ihre Reaktionen auf spezifische Reize als Merkmalsdetektoren bezeichnet werden

Selektive Adaptation

- Neuronen feuern auf einen bestimmten Reiz, adaptieren sich aber nach längerer Betrachtung
- Feuerrate nimmt ab
- Bei sofortiger erneuter Darbietung geringere Feuerrate
- Nur die reizspezifischen Neuronen (Neuronen für Linien einer bestimmten Ausrichtung) adaptieren, die anderen nicht
- Nachweis durch Experiment

Kontrastsensibilität
Orientierung
Größe und größensensitive
Neuronen

: Adaptationsstimulus

Selektive Aufzucht

- Merkmalsdetektoren sind verantwortlich dafür wie wir unsere Umwelt wahrnehmen
- Neuronen passen sich der Umwelt an -> Neuronale Plastizität
- Katzenjunges täglich 5 Stunden im Zylinder mit vertikalen oder horizontalen Linien, sonst dunkel, 5 Monate
- Katzen nahmen danach nur die bekannten Linien aus dem Zylinder wahr

Colin Blakemore and Grahame Cooper (1970)

Fragen!...