Should this Drug be Approved? A Bayesian's Answer with Stan

Konstantinos Vamvourellis¹ Marianne Corvellec²

¹Department of Statistics at LSE

²IGDORE

SciPy (Austin, TX) July 11, 2018

Another Introduction to Bayesian Inference

1. Build a Bayesian statistical model

2. Compute expectations

$$\mathbb{E}[a] = \int a(\theta) p(\theta|\mathcal{D}) d\theta$$

Another Introduction to Bayesian Inference

1. Build a Bayesian statistical model

2. Compute expectations

(HMC, etc.)

$$\mathbb{E}[a] = \int a(\theta) p(\theta|\mathcal{D}) \mathrm{d}\theta$$

Clinical Trial Data

Subject ID	Group Type	Glucose	Dyspepsia	Nausea
123	Control	-3.42	1	0
231	Treatment	-4.41	1	0
221	Control	1.2	1	1
222	Treatment	-0.2	0	1
322	Treatment	-2.7	0	0

Clinical Trial Data

Subject ID	Group Type	Glucose	Dyspepsia	Nausea
123	Control	-3.42	1	0
231	Treatment	-4.41	1	0
221	Control	1.2	1	1
222	Treatment	-0.2	0	1
322	Treatment	-2.7	0	0

Clinical Trial Data

Subject ID	Group Type	Glucose	Dyspepsia	Nausea
123	Control	-3.42	1	0
231	Treatment	-4.41	1	0
221	Control	1.2	1	1
222	Treatment	-0.2	0	1
322	Treatment	-2.7	0	0

Split data in two groups

$$Y_C = \begin{bmatrix} -3.42 & 1 & 0 \\ 1.2 & 1 & 1 \\ & \dots & \end{bmatrix}, \ Y_T = \begin{bmatrix} -4.41 & 1 & 0 \\ -0.2 & 0 & 1 \\ & \dots & \end{bmatrix}$$

$$p(\theta_C|Y_C)$$
, $p(\theta_T|Y_T)$
 $p(\{\mu, \sigma, R\}_C|Y_C)$, $p(\{\mu, \sigma, R\}_T|Y_T)$

Split data in two groups

$$Y_C = \begin{bmatrix} -3.42 & 1 & 0 \\ 1.2 & 1 & 1 \\ & \dots & \end{bmatrix}, \ Y_T = \begin{bmatrix} -4.41 & 1 & 0 \\ -0.2 & 0 & 1 \\ & \dots & \end{bmatrix}$$

$$p(\theta_C|Y_C)$$
, $p(\theta_T|Y_T)$ $p(\{\mu, \sigma, R\}_C|Y_C)$, $p(\{\mu, \sigma, R\}_T|Y_T)$

Split data in two groups

$$Y_C = \begin{bmatrix} -3.42 & 1 & 0 \\ 1.2 & 1 & 1 \\ & \dots & \end{bmatrix}, \ Y_T = \begin{bmatrix} -4.41 & 1 & 0 \\ -0.2 & 0 & 1 \\ & \dots & \end{bmatrix}$$

$$p(\theta_C|Y_C)$$
, $p(\theta_T|Y_T)$

$$p(\{\mu, \sigma, R\}_C | Y_C)$$
, $p(\{\mu, \sigma, R\}_T | Y_T)$

Split data in two groups

$$Y_C = \begin{bmatrix} -3.42 & 1 & 0 \\ 1.2 & 1 & 1 \\ & \dots & \end{bmatrix}, \ Y_T = \begin{bmatrix} -4.41 & 1 & 0 \\ -0.2 & 0 & 1 \\ & \dots & \end{bmatrix}$$

$$p(\theta_C|Y_C)$$
, $p(\theta_T|Y_T)$
 $p(\{\mu, \sigma, R\}_C|Y_C)$, $p(\{\mu, \sigma, R\}_T|Y_T)$

Bayes' rule

$$p(heta|\mathcal{D}) = rac{p(\mathcal{D}| heta)p(heta)}{p(\mathcal{D})}$$

Bayes' rule

$$p(\theta|\mathcal{D}) = \frac{\ell(\theta|\mathcal{D})p(\theta)}{p(\mathcal{D})}$$

Bayes' rule

$$p(heta|\mathcal{D}) = rac{p(\mathcal{D}| heta)p(heta)}{p(\mathcal{D})}$$

Bayes' rule

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta}$$

Bayes' rule

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta}$$

Bayes' rule

$$p(heta|\mathcal{D}) = rac{p(\mathcal{D}| heta)p(heta)}{p(\mathcal{D})}$$

Bayes' rule

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

ties together the ingredients of statistical inference and allows information to flow from the data to the parameters

Bayesian Inference gives us the joint distribution $p(\theta|D)$

Bayes' rule

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

ties together the ingredients of statistical inference and allows information to flow from the data to the parameters

Bayesian Inference gives us the joint distribution $p(\theta|D)$

Bayes' rule

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

- ▶ data $\mathcal{D} = Y$
- parameters $\theta = (\mu, \sigma, R)$

Bayes' rule

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

- ▶ data $\mathcal{D} = Y$
- ▶ parameters $\theta = (\mu, \sigma, R)$

Bayes' rule

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

- ▶ likelihood $p(\mathcal{D}|\theta) = p(Y|Z, \mu, R, \sigma)$
- ▶ prior $p(\theta)$

Bayes' rule

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

ties together the ingredients of statistical inference and allows information to flow from the data to the parameters

▶ likelihood $p(\mathcal{D}|\theta) = p(Y|Z, \mu, R, \sigma)$

$$\begin{split} p(Y|Z,\mu,\sigma,R) &= f(Y|Z) \cdot \pi(Z|\mu,\Sigma) \\ &= [\prod_{j \in J_b} \prod_{i=1}^N h_j^{-1}(Z_{ij})^{Y_{ij}} (1 - h_j^{-1}(Z_{ij}))^{(1 - Y_{ij})}] \cdot p(Z|\mu,\Sigma) \\ &= [\prod_{j \in J_b} \prod_{i=1}^N h_j^{-1}(Z_{ij})^{Y_{ij}} (1 - h_j^{-1}(Z_{ij}))^{(1 - Y_{ij})}] \cdot N(Z;\mu,\Sigma) \end{split}$$

where $\Sigma = \operatorname{diag}(\sigma) R \operatorname{diag}(\sigma)$

Bayes' rule

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

- ▶ likelihood $p(\mathcal{D}|\theta) = p(Y|Z, \mu, R, \sigma)$
- prior $p(\theta)$

Bayes' rule

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

- ▶ likelihood $p(\mathcal{D}|\theta) = p(Y|Z, \mu, R, \sigma)$
- prior $p(\theta) = p(\mu)p(\sigma)p(R)$

Bayes' rule

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

- ▶ likelihood $p(\mathcal{D}|\theta) = p(Y|Z, \mu, R, \sigma)$
- prior $p(\theta) = p(\mu)p(\sigma)p(R)$

$$\mu \sim N(0, 10)$$
 $R \sim \text{LKJ(2)}$
 $\sigma \sim \text{Half-Cauchy(0, 2)}$

Prediction

What is Stan?

- ► C++ compiled language for Bayesian Statistical Inference
- Automates the " $p(\theta|\mathcal{D})$ " part
- ▶ You give the ingredients $\{p(\mathcal{D}|\theta), p(\theta)\}$, it gives you the posterior $p(\theta|\mathcal{D})$

How to use Stan in practice?

- Python interface: PyStan
- Stan resources online
 - Stan Manual mc-stan.org/users/documentation/
 - ► Case Studies mc-stan.org/users/documentation/case-studies
 - Forum discourse.mc-stan.org
- ► See SciPy Proceedings paper: "A Bayesian's journey to a better research workflow
- ► Similar tool: PyMC3

What is Stan?

- C++ compiled language for Bayesian Statistical Inference
- Automates the " $p(\theta|\mathcal{D})$ " part
- ▶ You give the ingredients $\{p(\mathcal{D}|\theta), p(\theta)\}$, it gives you the posterior $p(\theta|\mathcal{D})$

How to use Stan in practice?

- Python interface: PyStan
- Stan resources online
 - Stan Manual mc-stan.org/users/documentation/
 - Case Studies mc-stan.org/users/documentation/case-studies
 - Forum discourse.mc-stan.org
- See SciPy Proceedings paper:
 - "A Bayesian's journey to a better research workflow"
- Similar tool: PyMC3

Our Journey towards Reproducibility

- ▶ Definition: recovering results using the *same* materials
- Motivations and aspirations
- Key practices
 - project organization
 - documentation
 - automation
- Interactions with the community
 - porting software
 - sharing data

Thank you!

Scipy Proceedings Paper: "A Bayesian's journey to a better research workflow"

Konstantinos Vamvourellis Department of Statistics k.vamvourellis@lse.ac.uk github.com/bayesways personal.lse.ac.uk/vamourel