Time Series HW3

B082040005 高念慈

2023-03-10

1. y

Consider the daily stock returns of Apple from January 2020 to February 2023. The price data can be obtained by using R package quantmod.

```
# from 正常·to 少一天
getSymbols("AAPL",from="2020-01-01",to='2023-03-01')
```

[1] "AAPL"

head(AAPL)

```
##
             AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
               74.0600
                         75.1500 73.7975
                                            75.0875
                                                                    73.44940
## 2020-01-02
                                                      135480400
             74.2875
## 2020-01-03
                        75.1450 74.1250
                                            74.3575
                                                      146322800
                                                                    72.73533
## 2020-01-06
               73.4475
                        74.9900 73.1875
                                            74.9500
                                                      118387200
                                                                    73.31488
## 2020-01-07
             74.9600
                        75.2250 74.3700
                                            74.5975
                                                     108872000
                                                                    72.97008
## 2020-01-08
             74.2900
                        76.1100 74.2900
                                            75.7975
                                                     132079200
                                                                    74.14390
## 2020-01-09
              76.8100
                        77.6075 76.5500
                                            77.4075
                                                     170108400
                                                                    75.71877
```

取出 adjust price

```
AAPL_adjust = AAPL$AAPL.Adjusted
```

- a. Compute the sample mean, standard deviation, skewness and excess kurtosis of the log returns r_t .
- $r_t = ln(R_t + 1)$
- $r_t = ln(P_t) ln(P_{t-1})$

$Log Return : r_t = ln(P_t) - ln(P_{t-1})$

```
AAPL_log_return = diff(log(AAPL_adjust))
head(AAPL log return)
```

```
## AAPL.Adjusted

## 2020-01-02 NA

## 2020-01-03 -0.009769539

## 2020-01-06 0.007936367

## 2020-01-07 -0.004714027

## 2020-01-08 0.015958210

## 2020-01-09 0.021018349
```

- · sample mean
- · standard deviation
- skewness
- · excess kurtosis

```
basicStats(AAPL_log_return)
```

```
##
               AAPL.Adjusted
              795.000000
## nobs
## NAs
                   1.000000
## Minimum
## Maximum
                  -0.137708
                   0.113158
## 1. Quartile -0.010684
## 3. Quartile 0.014041
## Mean
                   0.000877
## Median
                  0.000746
0.696621
## Sum
## SE Mean 0.000815
## LCL Mean -0.000722
## UCL Mean
                   0.002477
## Variance
                   0.000527
## Stdev
                    0.022961
## Skewness
                  -0.126218
## Kurtosis
                    4.122750
mean(AAPL_log_return,na.rm=T)
                                    # 0.0008773567
## [1] 0.0008773565
sqrt(var(AAPL_log_return,na.rm=T)) # 0.02296092
                  AAPL.Adjusted
## AAPL.Adjusted
                     0.02296093
skewness(AAPL_log_return,na.rm=T) # -0.1262185
## [1] -0.1262181
## attr(,"method")
## [1] "moment"
kurtosis(AAPL_log_return,na.rm=T) # 4.122718/
## [1] 4.12275
## attr(,"method")
## [1] "excess"
```

b. Estimate the mean and standard deviation of the simple return R_t by assuming the log returns r_t follow a normal distribution $r_t \sim N(\mu, \sigma^2)$.

```
\bullet \ R_t = \frac{P_{t} - P_{t-1}}{P_{t-1}}
```

•
$$R_t = e^{r_t} - 1$$

-
$$r_t \sim N(\mu_{r_t}, \sigma_{r_t}^2)$$
 · then $e^{r_t} \sim lognormal(\mu_{r_t}, \sigma_{r_t}^2)$

•
$$E(e^{rt})=e^{\mu_{rt}+rac{\sigma_{rt}^2}{2}}$$

•
$$E(e^{rt}-1)=E(R_t)=e^{\mu_{rt}+rac{\sigma_{rt}^2}{2}}-1$$

•
$$Var(e^{rt})=e^{2\mu+\sigma^2}[e^{\sigma^2}-1]$$

•
$$Var(e^{rt}) = Var(e^{rt}-1) = Var(R_t)$$

```
## AAPL.Adjusted
## AAPL.Adjusted 0.00114161
```

```
# standard deviation of the simple return
sd_R_t = sqrt(exp(2*mu+va)*(exp(va)-1))
sd_R_t  # 0.02299017
```

```
## AAPL.Adjusted
## AAPL.Adjusted 0.02299017
```

- c. Compute the sample mean and the sample standard deviation of the simple return R_t . Compare the results of (b) and (c).
- $R_t = \frac{P_t P_{t-1}}{P_{t-1}}$
- $R_t = e^{rt} 1$

simple return

```
AAPL_simple_return = exp(AAPL_log_return) - 1
head(AAPL_simple_return)
```

```
## AAPL.Adjusted

## 2020-01-02 NA

## 2020-01-03 -0.009721972

## 2020-01-06 0.007967944

## 2020-01-07 -0.004702933

## 2020-01-08 0.016086222

## 2020-01-09 0.021240790
```

```
AAPL_simple_return2 = diff(AAPL_adjust)/lag(AAPL_adjust) # Lag 幫助往前除一天 head(AAPL_simple_return2)
```

```
## AAPL.Adjusted

## 2020-01-02 NA

## 2020-01-03 -0.009721972

## 2020-01-06 0.007967944

## 2020-01-07 -0.004702933

## 2020-01-08 0.016086222

## 2020-01-09 0.021240790
```

the sample mean and the sample standard deviation

```
mean(AAPL_simple_return, na.rm = T) # 0.00114107

## [1] 0.00114107

sqrt(var(AAPL_simple_return, na.rm = T)) # 0.02297127

## AAPL.Adjusted
## AAPL.Adjusted
0.02297128
```

Estimate

- mean_R_t = 0.00114161
- $sd_R_t = 0.02299017$

Compute

- mean = 0.00114107
- sd = 0.02297127
- 兩者結果幾乎一樣 r_t 可能真的符合常態假設
- d. Find the kernel density estimator and normal density estimator for the log return r_t and the simple return R_t respectively. Compare the empirical kernel density and normal density for r_t and R_t Plot the two estimated densities on the same graph. (see Page 21 Figure 1.4 in the textbook)

the log return

log return of Apple

the simple return

Simple return of Apple

Compare the empirical kernel density and normal density for r_t and R_t

常態假設對 APPLE 股票的日回報是有問題的。經驗密度函數在其均值附近有一個更高的峰值,但尾部比相應的正態分佈更厚。

- In other words, the empirical density function is taller and skinnier
- but with a wider support than the corresponding normal density

2.

Consider the daily stock returns of Taiwan Semiconductor Manufacturing from January 2020 to February 2023. The price data can be obtained by using R package quantmod.

```
# from 正常·to 少一天
getSymbols("TSM",from="2020-01-01",to='2023-03-01')
```

```
## [1] "TSM"
```

head(TSM)

```
##
              TSM.Open TSM.High TSM.Low TSM.Close TSM.Volume TSM.Adjusted
## 2020-01-02
                 59.60
                          60.12
                                  59.60
                                             60.04
                                                      8432600
                                                                   56.35028
## 2020-01-03
                 58.97
                          58.98
                                  58.04
                                             58.06
                                                     10546400
                                                                   54.49196
## 2020-01-06
                                  57.13
                 57.60
                          57.69
                                             57.39
                                                      8897200
                                                                   53.86313
## 2020-01-07
                 57.45
                          58.60
                                  56.74
                                             58.32
                                                      7444300
                                                                   54.73599
## 2020-01-08
                 58.19
                          58.98
                                  58.11
                                             58.75
                                                      5381500
                                                                   55.13955
## 2020-01-09
                 59.69
                          59.71
                                  58.70
                                             59.23
                                                      5112700
                                                                   55.59006
```

取出 adjust price

```
TSM_adjust = TSM$TSM.Adjusted
```

- a. Compute the sample mean, standard deviation, skewness and excess kurtosis of the log returns r_t .
- $r_t = ln(R_t + 1)$
- $r_t = ln(P_t) ln(P_{t-1})$

Log Return : $r_t = ln(P_t) - ln(P_{t-1})$

```
TSM_log_return = diff(log(TSM_adjust))
head(TSM_log_return)
```

```
## TSM.Adjusted

## 2020-01-02 NA

## 2020-01-03 -0.033534023

## 2020-01-06 -0.011606968

## 2020-01-07 0.016075191

## 2020-01-08 0.007345872

## 2020-01-09 0.008137055
```

- · sample mean
- standard deviation
- skewness
- · excess kurtosis

basicStats(TSM_log_return)

```
##
               TSM.Adjusted
                 795.000000
## nobs
## NAs
                   1.000000
                  -0.151219
## Minimum
## Maximum
                  0.119135
## 1. Quartile
                  -0.014314
## 3. Quartile
                 0.014292
## Mean
                   0.000548
## Median
                 -0.000179
## Sum
                  0.435125
## SE Mean
                   0.000889
## LCL Mean
                  -0.001197
## UCL Mean
                   0.002293
## Variance
                   0.000628
## Stdev
                   0.025053
## Skewness
                   0.058385
## Kurtosis
                   2.890400
mean(TSM_log_return,na.rm=T)
                                  # 0.0005480166
## [1] 0.0005480166
sqrt(var(TSM_log_return,na.rm=T)) # 0.02505303
                TSM.Adjusted
##
## TSM.Adjusted
                  0.02505303
skewness(TSM log return,na.rm=T) # 0.05838448
## [1] 0.05838536
## attr(,"method")
## [1] "moment"
kurtosis(TSM_log_return,na.rm=T) # 2.890411
## [1] 2.8904
## attr(,"method")
```

b. Estimate the mean and standard deviation of the simple return R_t by assuming the log returns r_t follow a normal distribution r_t $N(\mu, \sigma^2)$.

•
$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}}$$

[1] "excess"

•
$$R_t=e^{r_t}-1$$

• $r_t \; N(\mu_{rt}, \sigma^2_{rt})$ · then $e^{rt} \; lognormal(\mu_{rt}, \sigma^2_{rt})$

•
$$E(e^{rt})=e^{\mu_{rt}+rac{\sigma_{rt}^2}{2}}$$

^

```
• E(e^{rt}-1)=E(R_t)=e^{\mu_{R_t}+rac{\sigma_{R_t}^2}{2}}-1
```

•
$$Var(e^{rt})=e^{2\mu+\sigma^2}[e^{\sigma^2}-1]$$

•
$$Var(e^{r_t}) = Var(e^{r_t} - 1) = Var(R_t)$$

```
mu2 = mean(TSM_log_return,na.rm=T) # 0.0005480166
va2 = var(TSM_log_return,na.rm=T) # 0.0006276544
# mean of the simple return
mean_R_t2 = exp(mu2+va2/2) - 1
mean_R_t2
                                    # 0.0008622153
```

```
##
                TSM.Adjusted
## TSM.Adjusted 0.0008622152
```

```
# standard deviation of the simple return
sd_R_t2 = sqrt(exp(2*mu2+va2)*(exp(va2)-1))
sd_R_t2
                                    # 0.02507857
```

```
##
                TSM.Adjusted
## TSM.Adjusted
                  0.02507857
```

- c. Compute the sample mean and the sample standard deviation of the simple return R_t . Compare the results of (b) and (c).
- $R_t = \frac{P_t P_{t-1}}{P_{t-1}}$ $R_t = e^{r_t} 1$

simple return

```
TSM_simple_return = exp(TSM_log_return) - 1
head(TSM_simple_return)
```

```
##
              TSM.Adjusted
## 2020-01-02
## 2020-01-03 -0.032977990
## 2020-01-06 -0.011539867
## 2020-01-07 0.016205092
## 2020-01-08 0.007372919
## 2020-01-09 0.008170251
```

```
TSM_simple_return2 = diff(TSM_adjust)/lag(TSM_adjust) # Lag 幫助往前除一天
head(TSM simple return2)
```

```
## TSM.Adjusted

## 2020-01-02 NA

## 2020-01-03 -0.032977990

## 2020-01-06 -0.011539867

## 2020-01-07 0.016205092

## 2020-01-08 0.007372919

## 2020-01-09 0.008170251
```

the sample mean and the sample standard deviation

```
mean(TSM_simple_return, na.rm = T) # 0.00086202

## [1] 0.00086202

sqrt(var(TSM_simple_return, na.rm = T)) # 0.02510999

## TSM.Adjusted
## TSM.Adjusted
0.02510999
```

Estimate

- mean_R_t2 = 0.0008622153
- sd_R_t2 = 0.02507857

Compute

- mean = 0.00086202
- sd = 0.02510999
- 兩者結果幾乎一樣, r_t 可能真的符合常態假設
- d. Find the kernel density estimator and normal density estimator for the log return r_t and the simple return R_t respectively. Compare the empirical kernel density and normal density for r_t and R_t Plot the two estimated densities on the same graph. (see Page 21 Figure 1.4 in the textbook)

the log return

the simple return

Simple return of TSM

Compare the empirical kernel density and normal density for r_t and R_t

常態假設對 TSM 股票的日回報是有問題的。 經驗密度函數在其均值附近有一個更高的峰值, 但尾部比相應的正態分佈更厚。

- · In other words, the empirical density function is taller and skinnier
- but with a wider support than the corresponding normal density