考试科目: <u>矩阵理论</u> 考试形式: <u>闭卷</u> 考试日期: <u>2017 年秋</u> 考试时长: <u>2 小时</u>	
一. 判断题(正确的打 " \checkmark ",错误的打 " X ",每题 3 分,共 15 分) 1. 矩阵序列 $\{A^{(k)}\}$ 收敛于 A 的充分必要条件是以任意范数 $\lim_{k\to\infty} A^{(k)} = A $ 2. 若 n 阶方阵 A 的存在某矩阵范数 $ \bullet $ 使得 $ A < 1$,则 A 为收敛矩阵. 3. 设 u 为 n 维单位列向量, E 为单位矩阵, $A = E - 2uu^H$:若 $Aa = b$,则 $ a _2 = b _2$, (a,b)	$(_{ })$ $(_{ })$ $(_{ })$ $() = (b, a).$ $(_{ })$
4. 若 $A = (a_{ij})$ 是 n 阶正定矩阵,则有 $\det(A) \leq a_{11}a_{22} \dots a_{nn}$.	()
5. A 为正规矩阵,则 $A^+A = AA^+$.	()
二. 选择题 (每题 3 分, 共 15 分)	
1. 设 A 为 n 阶可逆矩阵, $r(A)$ 是其谱半径, $ • $ 为自相容矩阵范数,则必有	()
2. 下列命题错误的是	()
3. 下列命题错误的是	()
A. 矩阵 A 的每个行盖尔圆盘不一定包含 A 的特征值. B. 严格对角占优的矩阵一定是可逆矩阵. C. 若 n 阶实矩阵 A 的 n 个圆盘两两互不相交,则 A 一定相似于对角矩阵. D. 若 A 为 $Hermite$ 矩阵,则 A 的特征值都为非负实数.	
4. 下列结论"错误"的是	()
5. 设 σ_i 为矩阵 A 的奇异值,下列结论" <u>正确</u> "的是	
A. $(AB)^+ = B^+A^+$ B. $ A^+ _F^2 = \sum_n^{i=1} \sigma_i^2$ C. $rank(A) = rank(A^+)$ D. $(A^-)^- = rank(A)$	A

三. 计算和证明题(共70分)

1. (10 分) 设 $||A||_a$ 是 $C^{n\times m}$ 上的矩阵范数,D 为 n 阶可逆矩阵,证明:对任意 $A\in C^{n\times n}$, $||A||_b=||D^{-1}AD||_a$ 为 $C^{n\times n}$ 上的矩阵范数.

.

2. (10 分) 设 $A \in C^{n \times n}$ 是单纯矩阵,则 A 可分解为一系列幂等矩阵 A_i 的加权和,即 $A = \sum_{i=1}^n \lambda_i A_i$,其中 $\lambda_i (i=1,2,\ldots,n)$ 是 A 的特征值.

3. (10 分) (Rayleigh-Ritz 定理) 设 $A \in C^{n \times n}$ 为 Hermite 矩阵,证明: A 的最小特征值 $\lambda_{\min} = \min_{x^H x = 1} x^H A x$.

4. (10 分) 设 $A = \begin{pmatrix} 1 & -2 \\ -8 & 1 \end{pmatrix}$, $B = \frac{1}{6}A$, 完成下列计算: $(1) \sum_{k=0}^{\infty} B^k$; $(2) \sin(At)$.

5. $(15 \, \, \, \, \, \, \,)$ 设矩阵 $A = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ (1)$ 求矩阵 A 的最大秩分解;(2)求矩阵 A 的 M - P 逆 A^+ ;(3)判断方程组 Ax = b 是否有解;(4)求方程组 Ax = b 的通解及最小范数解或最

小二乘解通解及其最佳逼近解(指出所求的是哪种解).

6. (9 分) 设 $A \in C^{n \times n}$ 为正规矩阵,(1)证明: A 的奇异值等于 A 的特征值的模;(2)证明: A^+ 为正规矩阵.

7. (6 分) 设 $A \in C_r^{m \times n}$, E 为 n 阶单位矩阵, 证明: $rank(E - A^+A) = n - r$.

PDF 制作人: Xovee, 个人网站: https://www.xovee.cn

uestc-course 仓库,您可以在这里找到更多复习资源: https://github.com/Xovee/uestc-course

电子科技大学研究生试卷

(考试时间: 10:00-12:00 共: 2 小时)

课程名称: <u>矩阵理论</u> 教师: <u>刘福体</u> 学时: <u>60</u> 学分: <u>3</u>

教学方式: <u>堂上教学</u> 考试日期: <u>2014</u>年 <u>12</u>月 <u>31</u>日 成绩: ___

考核方式:(一、 选择题(每题			
1、若 A 、 B 为 n 阶方阵	,下列结论 <u>错误</u> 的是	······································	()
$A. \ (A \otimes B)^H = A^H \otimes I$	3^{H}	B. $\det(\mathbf{A} \otimes B) = \det(\mathbf{A})$) det(B)
$C. tr(A \otimes B) = tr(A)tr$	·(B)	$D. (A \otimes B)^+ = A^+ \otimes B$; +
2 . <i>A</i> 是正规矩阵,则门	下列说法 <u>错误</u> 的是		()
A . <i>A</i> 的不同特征值对 D	立的特征向量正交	B. <i>A</i> ⁺ 是正规矩阵	
C. <i>A</i> 的特征值为 <i>A</i> 的	5异值	D. 若 A 的特征值为 λ_i ,则	$ A _F^2 = \sum_{i=1}^n \lambda_i ^2$
3. 下列命题错误的是…			()
$A. AB = AC \Leftrightarrow A^+AB$	$=A^{+}AC$		
B. $rank(AB) = rank(AB)$	$A) , \square R(AB) = R(AB)$	A) 。	
C. A 正规,则 A 的特	征向量也是 A^H 的特征	正向量。	
D. $A^2 = A$, $A = BC$	C , $\bigcup CB = E$ ($\not= f$	立矩阵)。	
4. 设 $A = \begin{bmatrix} c & 0 \\ c & \frac{1}{2} \end{bmatrix}$,差	旨 $\sum_{k=0}^{\infty}A^{k}$ 收敛,则 c 为	J	()
$A. c \ge \frac{1}{2}$	$B.\left c\right \geq1$	c. c ≤1	D. $ c < 1$
5.下列结论正确的是			()
A. $(AB)^+ = B^+A^+$		B. $ A _F^2 = \sum_{i=1}^n \sigma_i$	2
C. $rank(A) = rank(A)$	+)	D. $(A^{-})^{-} = A$	

- 二、计算和证明(共80分)
- 1、(9分) 设A、 $B \in C^{n \times n}$,证明: $\|AB\|_{m2} \le \|A\|_{m2} \|B\|_{m2}$

2、(9分)设 $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ 既是正规矩阵,又是上三角矩阵,证明:A一定是对角矩阵。

3、(8分) 求矩阵 $A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$ 的谱分解。

4、(8分)设 $A = (a_{ij}) \in \mathbb{C}^{n \times n}$,证明:A的任一特征值 $\lambda \in S = \bigcup_{i=1}^{n} S_{i}$,其中 $S_{i} = \{z \in \mathbb{C} : |z - a_{ii}| < R_{i} = \sum_{j \neq i} |a_{ij}|\}$.

5.
$$(8 分)$$
 若 $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$, 计算 $sin(A)$.

6. (8分)设A是秩为1的n阶矩阵,tr(A)为A的迹。证明: $A^n = (trA)^{n-1}A$.

7. (8分) 设 $A \in C^{m \times n}$, 证明: $\|A^+A\|_{m2}^2 = m$.

8. (15 分) 已知
$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$.

- (1) 求矩阵 A 的最大秩分解;
- (2) 求 A^+ ;
- (3) 判断方程组 Ax = b 是否有解;
- (4) 求方程组 Ax = b 的最小范数解及通解或最小二乘解通解及最佳范数解?(指出所求的是哪种解)

9.若 $A \in C^{m \times n}$, A^- 是 A 的广义逆矩阵,则 A^- 是 A 的自反广义逆矩阵的充要条件是 $rank(A) = rank(A^-) \ \ .$

孙

存名

李

电子科技大学研究生试卷

(考试时间: <u>16:20</u> 至 <u>18:20</u>, 共 2 小时)

教学方式 课堂讲授 考核日期 <u>2013</u>年 12 月 27 日 成绩 考核方式: (学生填写) **符号说明:** E 表示单位矩阵,Vec(A)表示矩阵 A 向量化算符, λ_i 和 σ_i 分别表示矩阵的第 i个特征值和奇异值, N(A) 和 R(A) 分别表示矩阵 A 的核和值域, rank(A)表示矩阵 A 的秩。 一. 判断题,对的打√,错得打×。(每题4分,共20分) 4. 设 *A*, *B* 为任意矩阵,则 (*A*⊗*B*)⁺ = *A*⁺⊗*B*⁺。......(5. 设 $A \in C^{n \times n}$,其奇异值为 $\sigma_1 \ge \cdots \ge \sigma_n$,特征值为 $\lambda_1, \cdots, \lambda_n$,则 $\sigma_n \le \left| \lambda_i \right| \le \sigma_1 \circ \cdots$. 二. 选择题(每题4分,共20分) 1. 若 $A ∈ C^{n × n}$ 是幂等矩阵,则下列说法**错误**的是......() A. rank(A)等于非零特征值的个数. B. 矩阵 A 可对角化. D. $C^n = R(A) \oplus N(A)$. C. N(A)=R(E-A).A. $\operatorname{tr}(A \otimes B) = \operatorname{tr}(A)\operatorname{tr}(B)$. B. $\operatorname{rank}(A \otimes B) = \operatorname{rank}(A)\operatorname{rank}(B)$. C. $\mathbf{Vec}(AXB) = (B \otimes A)\mathbf{Vec}(X)$. D. 若 $\mathrm{rank}(AB) = \mathrm{rank}(A)$, 则 R(A) = R(AB).

3.下列结论 <i>错误</i> 的是()
A. n 阶矩阵 A 的 n 个盖尔圆两两互不相交,则 A 为单纯矩阵.
B. λ 为 n 阶酉矩阵 U 的特征值,则 $ \lambda =1$.
C. 正规矩阵的特征值与奇异值相同.
D. n 阶方阵 A 有零特征值,则 A 不是严格对角占优矩阵.
4. 下列结论 <u>正确</u> 的是()
A. A 为 n 阶方阵,则 $r(A^HA) \ge A _1 \cdot A _{\infty}$.
B. 设 A 为正定 Hermite 矩阵,则 $A = R^H R$ 分解唯一,其中 R 为正线上三角复矩阵.
C. 若 n 阶方阵 A 满足 $A^H = A$, 则 $\sqrt{x^H A x}$ 为 C^n 上的向量范数.
D. $A 为 n 方阵,则 (A^2)^+ = (A^+)^2$.
5.关于收敛矩阵 A 等价 说法 <i>错误</i> 的是
A. $\ A\ _{2} < 1$. B. 谱半径 $r(A) < 1$. C. $\sum_{k=0}^{\infty} A^{k}$ 收敛. D. $\lim_{k \to 0} A^{k} = O$.
三. 计算和证明(共60分)
1. 设 $A \in P^{m \times n}$, 证明: 从属于向量 2 范数 $\ x\ _2$ 的算子范数为 $\ A\ _2 = \sqrt{r(A^H A)}$, 其中 $r(A^H A)$ 是
矩阵 $A^H A$ 的谱半径. (10 分)

2. 设 $A \in C^{n \times n}$, $A^H = A$, $f(x) = x^H A x$, $x \in C^n$, 证明: $a \|x\|_2 = 1$ 的情况下f(x) 有界,并求出最大值和最小值。(即证明 Rayleigh-Ritz 定理)。 (10 分)

缈

- 3. 已知矩阵 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,
- (1) 求矩阵 A 的最大秩分解; (2) 求 A^+ ; (3)判断方程组 Ax = b 是否有解?
- (4) 求方程组 Ax = b 的最小范数解及通解或最小二乘解通解及其最佳逼近解?(指出 所求的是哪种解).(15 分)

4. 设 $A \in C_r^{m \times n}$ (r > 0)的正奇异值为 $\sigma_1 \ge \cdots \ge \sigma_r$, $B = \left[A^+, A^+\right]$ 的正奇异值为

$$\eta_1 \geq \cdots \geq \eta_r$$
,证明: $\sum_{i=1}^r \eta_i^2 = 2\sum_{i=1}^r \frac{1}{\sigma_i^2}$ 。(10 分)

5. 设 d_i 为m个非零常数, $P = (\alpha_1, \alpha_2, \dots, \alpha_m) \in C^{n \times m}$,

$$A = d_1 \alpha_1 \alpha_1^H + d_2 \alpha_2 \alpha_2^H + \dots + d_m \alpha_m \alpha_m^H,$$

证明: 矩阵 P 列满秩的**充要条件**是 rank(A) =m. (10 分)

6. 设
$$A \in C^{n \times n}$$
,且 $\|A\|_2 < 1$,证明: $(E+A)$ 可逆,且 $\|(E+A)^{-1}\|_2 \le \frac{1}{1-\|A\|_2}$ (5分)

电子科技大学研究生试卷

(考试时间: <u>14:00</u>至<u>16:00</u>,共 2 小时)

_____ 考核日期<u>2011</u>年<u>12</u>月<u>22</u>日 成绩_ 考核方式: (学生填写) 一. 选择题 (每题 4 分, 共 20 分) 1. 设A为n阶可逆矩阵,r(A)是其谱半径, $\|\bullet\|$ 是一种相容矩阵范数,则必有....(A. $||A^{-1}|| \le 1/||A||$. B. $||A^n|| \le ||A||^n$. C. $||A^n|| \ge ||A||^n$. D. $||A|| \ge r(A^H A)$. 2. 设 $A \in C^{m \times n}$,U为n阶酉矩阵,下列说法 $\underline{\textit{#G}}$ 的是......() $A. \quad \|A\|_{F} = \|AU\|_{F}$ B. A 和 AU 的特征值相同 C. A 和 AU 的正奇异值相同 D. rank(A) = rank(AU)3. 下列命题*错误*的是......(A. 任何矩阵范数都存在与之相容的向量范数. B. 正规矩阵一定是单纯矩阵. C. 设 $A \in C_r^{m \times n}$ 的一个广义逆矩阵为G, A=BD为A的最大秩分解,则rank(DGB)=r. D. 若存在某种算子范数 $\|\bullet\|$ 使得 $\|A\|$ <1,则A为收敛矩阵,其中A为n阶方阵. B. $\begin{vmatrix} \frac{4}{9} & 0 \\ 0 & \frac{1}{4} \end{vmatrix}$ C. $\begin{bmatrix} \frac{16}{9} & 0 \\ 0 & 4 \end{bmatrix}$ D. $\begin{bmatrix} \frac{8}{9} & 0 \\ 0 & 2 \end{bmatrix}$ 5. 设A为n阶单纯矩阵,则下列结论 \mathbf{L} 确的是.....) $B. \quad \left\| A \right\|_{m_2}^2 = \sum_{i=1}^n \left| \lambda_i \right|^2$ A. A有n个正交的特征向量 C. $A^H = A$ D.A 的特征值的几何重数之和为 n.

第 1

页

平如

- 二. 判断题,对的打√,错得打×。(每题4分,共20分)
- 1. 设 $A \in C_n^{n \times n}$,且方程组(A+B)x=0 有非零解,则对 $C^{n \times n}$ 中任意算子范数都有 $\left\|A^{-1}B\right\| \le 1$ 。...()
- 2. 设 $A \in C_n^{m \times n}$, $\| \bullet \|$ 是 $C_n^{m \times n}$ 上某种相容矩阵范数,若 $\| A \| < 1$,则 $\| A^+ \| > 1$ 。……………()

3.
$$abla A = \begin{bmatrix} \pi & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \quad \beta \cos A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- 4. 设 $A \in C^{m \times n}$ 是左可逆矩阵, A_L^{-1} 是 A 的一个左逆矩阵,则 $R(A) = N(E_m AA_L^{-1})$ 。……(
- 5. $abla A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, $abla \|A^{+}A\|_{2} = 1$
- 三. 计算和证明(共60分)
- 1. 设 $A = (a_{ij}) \in P^{m \times n}$,证明: $\|A\| = (m+n) \max_{i,j} \{ |a_{ij}| \}, (1 \le i \le m, 1 \le j \le n)$ 是矩阵范数,并且证明当 m = n 时是相容矩阵范数。(10 分)

2. 证明: 矩阵
$$A = \begin{pmatrix} 2 & \frac{1}{2} & \frac{1}{2^2} & \frac{1}{2^3} & \frac{1}{2^4} \\ -\frac{2}{3} & 4 & \frac{2}{3^2} & \frac{2}{3^3} & \frac{2}{3^4} \\ -\frac{3}{4} & -\frac{3}{4^2} & 6 & \frac{3}{4^3} & \frac{3}{4^4} \\ -\frac{4}{5} & -\frac{4}{5^2} & -\frac{4}{5^3} & 8 & \frac{4}{5^4} \\ -\frac{5}{6} & -\frac{5}{6^2} & -\frac{5}{6^3} & -\frac{5}{6^4} & 10 \end{pmatrix}$$
 的特征值为两两不相等的正实数. (10 分)

缈

- 3. 已知矩阵 $A = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
- (1) 求矩阵 A 的最大秩分解; (2) 求 A^+ ; (3)判断方程组 Ax = b 是否有解?
- (4) 求方程组 Ax = b 的最小范数解及通解或最小二乘解通解及其最佳逼近解?(指出所求的是哪种解). (15 分)

4. 设 $A \in C_r^{m \times n}$ (r > 0)的正奇异值为 $\sigma_1 \ge \cdots \ge \sigma_r$, $B = \left[A^+, A^+\right]$ 的正奇异值为

$$\eta_1 \ge \dots \ge \eta_r, \text{ 证明: } \sum_{i=1}^r \eta_i^2 = 2 \sum_{i=1}^r \frac{1}{\sigma_i^2} \circ (10 \, \text{分})$$

5. 设 $A \in C^{n \times n}$, $A \in A$ 个相异特征值 $\lambda_1, \lambda_2, \dots, \lambda_k$, 证明: A 是正规矩阵的充要条件是存在 k 个矩阵 A_i 使其满足(1) $A_i A_j = O(i \neq j)$, $A_i A_i = A_i$; (2) $\sum_{i=1}^k A_i = E_n$; (3) $A = \sum_{i=1}^k \lambda_i A_i$; (4) $A_i^H = A_i$. $(i = 1, \dots k)$ 。 (10 分)

6. 设 $A \in C_r^{m \times n}$, $Y \in C^{n \times r}$, $Z \in C^{r \times m}$,且 $ZAY = E_r$,证明: G = YZ 是 A 的自反广义逆矩阵. (5 分)