Unit 2.3 — Instantaneous Velocity (Guided Notes)

I. Race Context — Changing Velocity
 In a sprint, the runner starts from (v = 0) in the blocks. They quickly increase during the drive phase. A well-trained athlete maintains near velocity through the finish.
II. Instantaneous Velocity — Definition
 Instantaneous velocity: the velocity at one specific in time. In 1D, include direction via (e.g., + right/east, - left/west). Units: meters per (m/s).
III. Average vs. Instantaneous vs. Constant Velocity
 Average velocity over an interval:
IV. Position–Time (x–t) Graphs: Slope Means Velocity
 On x-t, vertical change is (Δx); horizontal change is (Δt). The slope (rise/run) equals Δx/Δt, which is the velocity. Larger positive slope → larger positive; zero slope → v = 0; negative slope → negative velocity.
V. Constant Velocity on x–t
 Constant velocity → line on x-t (same slope everywhere). Example: slope = + m/s means the object moves that many meters each second. For this motion, instantaneous velocity = average velocity = + m/s at all times.
VI. Changing Velocity (Acceleration) on x–t
 Accelerated motion produces a (nonlinear) x-t graph. The slope now changes with time, so changes with time.
VII. Average vs. Instantaneous from x–t
Average velocity on an interval = slope of the line across the interval.

• Instantaneous velocity at time t = slope of the line at that point.
 VIII. Estimating a Tangent Slope (No Calculus) Place a so it just touches the curve at the point of interest. Choose two readable on the straightedge and read (t, x). Compute slope ≈ Δx/Δt → instantaneous velocity estimate.
IX. Worked Tangent Estimate (Example)
 Suppose the tangent near t = 4.0 s rises ~ m over a run of 4.0 s. Then v_inst ≈ (rise/run) = / 4.0 s ≈ m/s (≈ 43 m/s). Interpretation: the instantaneous velocity at that moment is about + m/s.
X. Signs, Directions, and Common Pitfalls
 Positive slope → motion in +x; negative slope → motion in -x. Flat segments (slope = 0) indicate the object is Don't mix up speed (no sign) with velocity (has sign). Always include (m, s, m/s) and sign/direction when appropriate.
XI. From x-t to v-t
 Constant velocity: x-t is straight; v-t is a line at that value. Constant acceleration: x-t is curved; v-t is a straight line. "Speed up then cruise": x-t curve then becomes linear; v-t rises the
XII. Reading Plateaus and Downhill Segments
 Plateau on x-t → v = during that interval. "Downhill" on x-t (x decreases) → velocity (negative slope).
XIII. Units and Slope Checks
 Slope units on x-t: (meters)/(seconds) = /→ matches velocity units. If your slope comes out in just meters or just seconds, you the axes. Use convenient grid points; avoid extremely runs.
XIV. Quick Strategy for Graph Questions
 Identify the interval; read x at endpoints. Compute Δx and Δt; include

 3. Report v̄ = Δx/Δt with units. 4. For v_inst at a point: draw/visualize a line and estimate its slope.
XV. Summary
 The slope of x-t is Constant velocity → straight x-t; instantaneous, average, and constant velocities are
With acceleration, use a to estimate instantaneous velocity at a point.
Guided Examples (Unit 2.3)
Ex 1 — Draw v–t for constant velocity Prompt: Draw a velocity–time graph for an object with constant velocity 15 m/s for the first 5.0 s.
 Constant velocity means v does not with time. On v-t, draw a line at v = +15 m/s from t = 0 to t = 5.0 s. Conclusion: v-t is flat at + m/s for 0-5 s.
Ex 2 — Average velocity on x–t (1 to 3 s)
 v̄ = Δx/Δt between t = 1 s and 3 s. Read x(1) and x(3) → Δx = x(3) - x(1). Compute v̄ = Δx / (3 - 1) = Δx / Conclusion: The segment is rising → v̄ is (e.g., +20 m/s).
Ex 3 — Average velocity on x-t (3 to 4 s)
 v̄ = Δx/Δt between t = 3 s and 4 s. The segment is → Δx = 0. v̄ = 0 / 1 = m/s.
Ex 4 — Average velocity on x–t (5 to 6 s)
 v̄ = Δx/Δt between t = 5 s and 6 s. The segment slopes (x decreases) → Δx is Compute using the two points; v̄ should be (negative).