Matrizes, Determinantes e Sistemas lineares

uma apostila para o ensino médio

Sumário

I Matrizes

	I	Ρá	gi	na
Capítulo 1 - Introdução				3
I. Um pouco de contexto				. 3
II. Definição				. 3
a. Representação				. 3
Capítulo 2 - Matrizes Notáveis				5
I. Matriz Quadrada				. 5
a. Diagonal principal				
b. Diagonal secundária				. 5
II. Matriz identidade				. 5
III. Matriz nula				. 6
IV. Matriz linha/coluna				. 6
V. Matriz triangular				. 6
a. Superior				. 6
b. Inferior				. 6
VI. Matriz diagonal				. 7
VII. Matriz de Vandermonde				. 7
Capítulo 3 - Operações com matrizes				9
I. Transposta				. 9
II. Igualdade				. 9
III. Adição				. 9
IV. Oposta				10
V. Subtração				10
VI. Multiplicação por constante				10
Capítulo 4 - Multiplicação de matrizes				11
I. Definição:				11
a. Condição de existência				11
b. Formato				11
c. Cálculo				11
d. Ilustrado				12
II. Na prática.				12
a. Usando a definição				13
b. Uma visão alternativa				13

Capítulo 5 -	N	Λĺ	at:	ri	Z	in	V	er	sa	L							15
I. Definição .																	15
II. Na prática.																	15

II Determinantes

	Pá	gina
Capítulo 1 - Introdução		19
I. Um pouco de contexto		19
II. Definição e resolução para $n\leqslant 3$		19
a. Caso $n = 1$		
b. Caso $n=2$		20
c. Caso $n=3$		20
Capítulo 2 - Cofator		21
I. Definição		21
II. Na prática		
Capítulo 3 - Teorema de Laplace		23
I. Introdução		
II. Passo a passo		
•		
Capítulo 4 - Teorema de Jacobi		25
I. Introdução		25
II. Aplicação		25
Capítulo 5 - Regra de Chió (abaixamento de gr	rau)	27
I. Introdução		27
II. Aplicação (com variáveis)		27
III. Uma visão alternativa		28
Capítulo 6 - Casos interessantes		29
I. Matriz transposta		29
II. Fila nula		
III. Multiplicação de uma fila por uma constante		
IV. Multiplicação da matriz inteira por uma constante		
V. Troca de filas paralelas		30
VI. Filas paralelas iguais ou proporcionais		30
VII. Matriz inversa		
VIII. Matriz triangular		31
IX. Matriz identidade		
X. Multiplicação de matrizes		
XI. Matriz de Vandermonde		31

III Sistemas lineares

		Pá	gina
Capítulo 1 - Introdução			35
I. Definição			35
Capítulo 2 - Forma matricial			37
I. Passo a passo			37
Capítulo 3 - Soluções de um sistema linear			39
I. O que são?			39
Capítulo 4 - Teorema de Cramer			41
I. O que é?			41
II. Passo a passo	•		41
III. Encontrando a única solução possível	•		41
Capítulo 5 - Escalonamento			43
I. Introdução			43
II. Algoritmo (ou receita)			43
Capítulo 6 - Classificação dos sistemas lineares	S		47
I. Introdução			47
II. Classificação			47
III. Resolvendo sistemas S.P.I. e S.I. com variáveis a e b			48

Parte I Matrizes

Capítulo 1 – Introdução

I. Um pouco de contexto

Historicamente, as matrizes foram utilizadas para a resolução de sistemas lineares (a Part III é inteiramente dedicada a este tópico) que são, basicamente, conjuntos de equações com uma ou mais incógnitas.

Eram conhecidas como tabelas (do francês tableau), nome (aparentemente) dado por Cauchy, em 1826. O nome matriz (derivado do latim mater - mãe, que também tem a conotação de útero) surgiu depois, em 1850, quando o matemático inglês James Joseph Sylvester veio a nomeá-las com a ideia de que matrizes seriam úteros de determinantes (ele estava se referindo aos cofatores, que serão discutidos no chapter 2 da Part II), pois "dariam luz" à vários desses.

Quem primeiro deu vida às matrizes como entidades matemáticas independentes foi *Arthur Cayley*, que definiu operações básicas com matrizes (que serão discutidas nos Capítulos 3 e 4). Antes de *Cayley* as matrizes eram meros ingredientes dos determinantes (que serão discutidos na Part II), que eram o tópico de estudo até então.

No início do século passado, as matrizes se estabeleceram como ferramentas fundamentais para o estudo da álgebra linear (que é um ramo da matemática que estuda os sistemas de equações lineares).

II. Definição

Uma matriz consiste em uma estrutura organizada em **linhas** e **colunas**, composta de elementos que podem ser **números**, **símbolos** ou **expressões**. Representamos o **tamanho** da matriz por $m \times n$, onde m se refere ao número de **linhas** e n ao número de **colunas**.

Podemos ver na matriz ao lado o uso de **índices** para indicar a *posição* de seus elementos.

O índice mn de um elemento a da matriz A indica que o elemento a se encontra na linha m e na coluna n. Esse índice abstrato pode ser dado por quaisquer letras de escolha, um caso comum é usarmos as letras i e j para indicar linha e coluna respectivamente.

$$A_{2\times 2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} A_0^{a} \lim_{n \to \infty} h_n$$

representação de uma matriz 2×2

Nota: Geralmente usamos alguma letra maiúscula do nosso alfabeto para representar uma matriz $(A, B, C, \dots Z)$.

a. Representação

Uma matriz qualquer pode ser representada por:

$$A_{m\times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Repare que para a indicação de matriz podemos usar tanto:

(I) parênteses:
$$A_{m\times n} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{mn} \end{pmatrix}$$

quanto:

(II) colchetes:
$$A_{m\times n} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{mn} \end{bmatrix}$$

Capítulo 2 – Matrizes Notáveis

Temos alguns tipos de matrizes com propriedades especiais, as quais vamos destacar nesta seção.

I. Matriz Quadrada

Denominamos quadrada uma matriz onde o **número de linhas** é **igual** ao **número de colunas**. Nesse caso, ao invés de denotar seu tamanho pelos comprimentos $m \times n$ usamos somente uma de suas dimensões (dizemos então que a matriz é quadrada $de \ ordem \ m$).

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Uma matriz 2×2 é quadrada, dizemos então que ela é quadrada de ordem 2. Em toda matriz quadrada teremos duas **diagonais especiais**, chamadas principal e secundária.

a. Diagonal principal

A diagonal principal será formada pelos elementos a_{mn} onde m=n.

$$C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}$$

b. Diagonal secundária

A secundária será formada pelos elementos a_{mn} tais que $m+n=\mathcal{O}+1$ onde \mathcal{O} é a ordem da matriz quadrada.

$$C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}$$

Podemos ver a diagonal secundária grifada, onde os elementos obedecem a relação m+n=3+1 ($\mathcal{O}=3$)

II. Matriz identidade

As matrizes identidade são outro tipo especial que consiste em uma matriz quadrada que possui 1's em sua diagonal principal e 0's em todas as outras posições. Denominamos matriz identidade de ordem n (denotada por I_n) uma matriz quadrada dessa ordem que satisfaz essas condições.

Veremos mais a frente que essa matriz será equivalente ao número 1 na operação de multiplicação de matrizes.

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

A matriz acima é uma matriz identidade de ordem 2

III. Matriz nula

Temos também as matrizes denominadas nulas, as quais possuem todos os seus elementos igualando 0 (nulos).

Uma matriz $m \times n$ que satisfaça essa condição é denotada por $0_{m \times n}$. Caso essa matriz seja quadrada podemos denotá-la por 0_n , onde n é a ordem da matriz (a qual vamos chamar de matriz nula de ordem n).

$$0_{3\times2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Acima temos uma matriz nula 3×2

IV. Matriz linha/coluna

Podemos ter também matrizes *linha* ou *coluna*, as quais são matrizes que se resumem a uma **linha** ou **coluna**, respectivamente.

$$A = \begin{bmatrix} a & b \end{bmatrix} \qquad \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}$$

A matriz A é uma $matriz\ linha$, pois todos os seus elementos se encontram em uma única linha, já a matriz B é uma $matriz\ coluna$

V. Matriz triangular

Dizemos que uma matriz é *triangular* se esta, além de se quadrada, tiver todos os elementos acima ou abaixo da diagonal principal **nulos**.

a. Superior

Uma matriz triangular é dita *superior* se a parte **abaixo** da diagonal principal for nula.

$$A_3 = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}$$

A matriz acima é triangular superior de ordem 3, pois todos os elementos abaixo da diagonal principal são nulos

b. Inferior

Uma matriz triangular é dita *inferior* se a parte **acima** da diagonal principal for nula.

$$A_3 = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

A matriz acima é triangular superior de ordem 3, pois todos os elementos abaixo da diagonal principal são nulos

VI. Matriz diagonal

Chamamos de diagonal uma matriz quadrada onde todos os elementos que não pertencem à diagonal principal são nulos.

$$A_4 = \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

A matriz acima é diagonal de ordem 4

Nota: Repare que se uma matriz triangular for **simultaneamente** superior e inferior, esta será uma matriz chamada *diagonal*.

VII. Matriz de Vandermonde

Vamos analisar um pequeno exemplo:

$$\begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 2 \\ 9 & 25 & 4 \end{bmatrix}$$

Repare como a matriz acima pode ser escrita como:

$$\begin{bmatrix} 3^0 & 5^0 & 2^0 \\ 3^1 & 5^1 & 2^1 \\ 3^2 & 5^2 & 2^2 \end{bmatrix}$$

As matrizes que têm essa propriedade são chamadas matrizes de Vandermonde.

Definição: A matriz de *Vandermonde* é aquela onde cada **linha** ou **coluna** representa um **termo** de uma **progressão geométrica** de base a_n .

A matriz de *Vandermonde* ao lado possui PG's em suas **linhas**. Podemos ver que os expoentes começam em 0 e vão até n-1, aumentando para a direita.

$$V_{m\times n} = \begin{bmatrix} a_1^0 & a_1^1 & \cdots & a_1^{n-1} \\ a_2^0 & a_2^1 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_m^0 & a_m^1 & \cdots & a_m^{n-1} \end{bmatrix} \leftarrow \text{PG de base } a_1$$
 \Lorentz PG de base a_2

A matriz de Vandermonde ao lado possui PG's em suas **colunas**. Podemos ver que os expoentes começam em 0 e vão até n-1, aumentando para baixo.

$$V_{n\times m} = \begin{bmatrix} \text{PG de base } a_2 \\ a_1 & \text{PG de base } a_m \\ a_1^0 & a_2^0 & \cdots & a_m^0 \\ a_1^1 & a_2^1 & \cdots & a_m^1 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_m^{n-1} \end{bmatrix}$$

Capítulo 3 – Operações com matrizes

I. Transposta

Definição Dada a matriz A, a matriz transposta de A (dentoada por A^t) é a matriz que encontramos trocando as **linhas** da matriz A por suas **colunas** e viceversa (ordenadamente).

Exemplo 1

Se
$$A = \begin{bmatrix} 1 & 0 & -3 \\ -1 & 7 & 2 \end{bmatrix} \Rightarrow A^t = \begin{bmatrix} 1 & -1 \\ 0 & 7 \\ -3 & 2 \end{bmatrix}$$

II. Igualdade

Definição: Dadas duas matrizes A e B, dizemos que A = B se, e somente se, A e B possuírem as **mesmas dimensões** e se, para todo elemento a_{mn} da matriz A tivermos um elemento b_{mn} da matriz B tal que $a_{mn} = b_{mn}$.

Exemplo 1

Dados
$$A=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix}$$
 e $B=\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}$, se $A=B$ segue que:
$$a_{11}=b_{11}$$

$$a_{12}=b_{12}$$

$$a_{21}=b_{21}$$

$$a_{22}=b_{22}$$

Exemplo 2

Se
$$A=B$$
, então, se $A=\begin{bmatrix} -1 & 3 \\ 5 & 4 \end{bmatrix}$ sabemos que $B=\begin{bmatrix} -1 & 3 \\ 5 & 4 \end{bmatrix}$ também.

Repare que todos os elementos são iguais, em suas respectivas posições

III. Adição

Definição: A adição de matrizes é a operação onde, dadas duas matrizes A e B com as mesmas dimensões, conseguimos uma matriz soma (A+B) que será a matriz obtida adicionando-se os elementos correspondentes das matrizes A e B.

Exemplo 1

Dadas
$$A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 e $B=\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$, a matriz $A+B$ será dada por:
$$A+B=\begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22} \end{bmatrix}$$

Exemplo 2

Se
$$A = \begin{bmatrix} -1 & 3 \\ -4 & 7 \end{bmatrix}$$
 e $B = \begin{bmatrix} 9 & 2 \\ -4 & 5 \end{bmatrix}$, segue que
$$A + B = \begin{bmatrix} -1+9 & 3+2 \\ -4-4 & 7+5 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -8 & 12 \end{bmatrix}$$

A soma de matrizes pode ser realizada em qualquer ordem (A + B = B + A) ou "A ordem dos tratores não altera o viaduto"), pode também ser realizada sem prioridade específica (A + (B + C) = (A + B) + C) ou "tanto faz somar A com B e depois com C ou fazer B com C primeiro").

IV. Oposta

Definição: Dada uma matriz A, sua matriz oposta X é a que satisfaz a condição:

$$X + A = 0 \Rightarrow X = -A$$

Encontramos a *oposta* de A (denotada por -A) **trocando os sinais de todos os elementos** da matriz A original.

Exemplo 1

Se
$$A = \begin{bmatrix} -1 & 3 \\ 5 & 8 \\ -5 & -2 \end{bmatrix} \Rightarrow -A = \begin{bmatrix} 1 & -3 \\ -5 & -8 \\ 5 & 2 \end{bmatrix}$$

V. Subtração

A subtração de matrizes funciona de forma similar a adição, bastando apenas **trocar** os sinais da matriz que estamos subtraindo.

Dadas
$$A=\begin{bmatrix}-1&7\\-3&2\end{bmatrix}$$
 e $B=\begin{bmatrix}5&-5\\-2&3\end{bmatrix}$, a matriz $A-B$ será dada por
$$A-B=\begin{bmatrix}-1-5&7-(-5)\\-3-(-2)&2-3\end{bmatrix}=\begin{bmatrix}-6&12\\-1&-1\end{bmatrix}$$

Repare que primeiro trocamos os sinais dos elementos da matriz B para depois somá-los.

VI. Multiplicação por constante

Na multiplicação de uma matriz por um número real basta multiplicarmos cada um de seus elementos pelo número.

Dada a matriz
$$A = \begin{bmatrix} 3 & 2 \\ -1 & 6 \end{bmatrix} \Rightarrow 2A = \begin{bmatrix} 2 \cdot 3 & 2 \cdot 2 \\ 2 \cdot (-1) & 2 \cdot 6 \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ -2 & 12 \end{bmatrix}$$

Capítulo 4 – Multiplicação de matrizes

I. Definição:

Dadas duas matrizes $A_{(m \times n)}$ e $B_{(n \times j)}$, a multiplicação de A por B, escrita como $A \cdot B$ vai se dar em algumas etapas:

a. Condição de existência

A multiplicação de matrizes só vai ser possível se o número de colunas da primeira for igual ao número de linhas da segunda $(A_{(m\times n)} \in B_{(n\times j)})$.

b. Formato

Após checada a condição de existência podemos prosseguir para o cálculo da multiplicação. O resultado dessa multiplicação terá dimensões $m \times j$, ou seja, terá tantas linhas quanto a matriz A e tantas colunas quanto a matriz B.

c. Cálculo

A matriz $C = A \cdot B$ terá seus elementos c_{ik} obtidos tomando-se a **linha** i da matriz A e a **coluna** k da matriz B **multiplicando-se** seus elementos **respectivos** (1° com 1°, 2° com 2°, em diante...) e **somando os produtos**.

Nota: A matriz $A \cdot B$ será diferente da matriz $B \cdot A$, não só por conta da condição de existência e do formato, mas também porque o cálculo de $A \cdot B$ tomará as linhas de A e as colunas de B, e o cálculo de $B \cdot A$ tomará as linhas de B e as colunas de A, o que é um processo completamente diferente.

Exemplo 1

Dados
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 e $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$, seja $C = A \cdot B$

Calculamos C fazendo:

$$C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}, \text{ onde}$$

$$c_{11} = a_{11} \cdot b_{11} + a_{12} \cdot b_{21}$$

$$c_{12} = a_{11} \cdot b_{12} + a_{12} \cdot b_{22}$$

$$c_{21} = a_{21} \cdot b_{11} + a_{22} \cdot b_{21}$$

$$c_{22} = a_{21} \cdot b_{12} + a_{22} \cdot b_{22}$$
 resultando em
$$C = \begin{bmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{21} & a_{11} \cdot b_{12} + a_{12} \cdot b_{22} \\ a_{21} \cdot b_{11} + a_{22} \cdot b_{21} & a_{21} \cdot b_{12} + a_{22} \cdot b_{22} \end{bmatrix}$$

d. Ilustrado

II. Na prática

Dadas as matrizes
$$A=\begin{bmatrix}1&-5&7\\12&3&-9\end{bmatrix}$$
 e $B=\begin{bmatrix}4&-2\\-3&1\\2&7\end{bmatrix}$ calculamos $C=A\cdot B$ pelos seguinte passos:

1. Primeiro devemos checar a condição de existência do produto:

Podemos ver que $A_{2\times 3}\cdot B_{3\times 2}$ obedece à condição de existência.

2. Agora vamos determinar as dimensões do produto $A \cdot B$:

Tomando a quantidade de linhas de A (2) e a quantidade de colunas de B (2) temos $C_{2\times 2}$.

3. Agora preencheremos a matriz resultante:

a. Usando a definição

$$A = \begin{bmatrix} 1 & -5 & 7 \\ 12 & 3 & -9 \end{bmatrix} \text{ e } B = \begin{bmatrix} 4 & -2 \\ -3 & 1 \\ 2 & 7 \end{bmatrix}, \text{ logo } C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}, \text{ onde}$$

$$c_{11} = 1 \cdot 4 + (-5) \cdot (-3) + 7 \cdot 2$$

$$c_{12} = 1 \cdot (-2) + (-5) \cdot 1 + 7 \cdot 7$$

$$c_{21} = 12 \cdot 4 + 3 \cdot (-3) + (-9) \cdot 2$$

$$c_{22} = 12 \cdot (-2) + 3 \cdot 1 + (-9) \cdot 7$$
 resultando em
$$C = \begin{bmatrix} 4 + 15 + 14 & (-2) + (-5) + 49 \\ 48 + (-9) + (-18) & (-24) + 3 + (-63) \end{bmatrix} = \begin{bmatrix} 34 & 42 \\ 21 & -80 \end{bmatrix}$$

b. Uma visão alternativa

Vamos preencher a matriz C num ziguezague, conforme a figura abaixo.

$$C = \begin{bmatrix} c_{11}^{-1} \stackrel{?}{\downarrow} c_{12} \\ c_{21} \stackrel{?}{\downarrow} c_{22} \\ c_{3} \stackrel{?}{\downarrow} \end{bmatrix}$$

Começamos, então, pelo elemento c_{11} . O digito vermelho se refere ao número da **linha** da primeira matriz e o digito azul ao número da **coluna** da segunda matriz.

Nesse caso pegaremos a primeira **linha** da matriz B e a primeira **coluna** da matriz A e vamos multiplicá-las.

$$c_{11} = \begin{bmatrix} 1 & -5 & 7 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix}$$

Agora podemos ter uma visão mais clara do processo. Se fizermos a transposta da linha de B ficamos com:

$$c_{11} = \begin{bmatrix} 1 \\ -5 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix}$$

A operação pode, então, ser feita facilmente agora. Vamos multiplicar os elementos correspondentes e somar todos no final, conforme é mostrado abaixo:

$$c_{11} = \underbrace{\begin{array}{c} 1 \cdot 4 \\ (-5) \cdot (-3) \\ + 7 \cdot 2 \\ \hline 33 \end{array}}$$
 OU
$$c_{11} = 1 \cdot 4 + (-5) \cdot (-3) + 7 \cdot 2$$
$$= 4 + 15 + 14 = 33$$

encher o primeiro elemento do diagrama: elementos da matriz C:

Essa operação seria o equivalente a pre- Podemos fazer o mesmo com os outros

$$\begin{split} c_{12} &= 1 \cdot (-2) + (-5) \cdot 1 + 7 \cdot 7 = 42 \\ c_{21} &= 12 \cdot 4 + 3 \cdot (-3) + (-9) \cdot 2 = 21 \\ c_{22} &= 12 \cdot (-2) + 3 \cdot 1 + (-9) \cdot 7 = -84 \end{split}$$

Preenchendo a matriz C, temos:

$$C = \begin{bmatrix} 33 & 42 \\ 21 & -84 \end{bmatrix}$$

$$a_{11} \ b_{11} \ a_{12} \ b_{12} \ a_{13} \ b_{13}$$

Capítulo 5 – Matriz inversa

I. Definição

Dada uma matriz quadrada A, chamamos de inversa de A (escreve-se A^{-1}) a matriz que obedece a relação:

 $A\cdot A^{-1}=I_n$ onde né a dimensão da matriz quadrada A.

II. Na prática

Exemplo 1

Dada a matriz $A = \begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix}$, acharemos sua inversa resolvendo: $\begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix} \cdot A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Sabemos que A^{-1} será **quadrada também** (com as mesmas dimensões da matriz original A), sabemos que ela terá quatro elementos, aos quais vamos denominar $a, b, c \in d$.

Nota: Os nomes de escolha pouco importam.

Ficamos, então, com a equação:

$$\begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Sabemos, por multiplicação de matrizes, que o produto $A \cdot A^{-1}$ resultará em:

$$\begin{bmatrix} 2 \cdot a + 3 \cdot c & 2 \cdot b + 3 \cdot d \\ (-2) \cdot a + 1 \cdot c & (-2) \cdot b + 1 \cdot d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

E, por igualdade de matrizes, ficamos com:

$$2 \cdot a + 3 \cdot c = 1 \tag{5.1}$$

$$2 \cdot b + 3 \cdot d = 0 \tag{5.2}$$

$$(-2) \cdot a + 1 \cdot c = 0 \tag{5.3}$$

$$(-2) \cdot b + 1 \cdot d = 1 \tag{5.4}$$

Agora basta resolver o sistema de equações para encontrar os valores de A^{-1} . De 5.3 temos que c=2a, substituindo em 5.1 temos que:

$$2a + 3 \cdot (2a) = 1 \Rightarrow 2a + 6a = 1 \Rightarrow a = \frac{1}{8}$$

Como $a = \frac{1}{8}$ segue que:

$$c = 2 \cdot \frac{1}{8} = \frac{1}{4}$$

Podemos encontrar b e d de forma similar:

De 5.2 temos que:

$$2b = -3d \Rightarrow b = -\frac{3d}{2}$$

substituindo em 5.4 temos:

$$-2\cdot\left(-\frac{3d}{2}\right)+d=1\Rightarrow 3d+d=1\Rightarrow d=\frac{1}{4}$$

voltando a 5.2 temos que:

$$b = -\frac{3}{2} \left(\frac{1}{4} \right) \Rightarrow b = -\frac{3}{8}$$

Substituindo na matriz ${\cal A}^{-1}$ temos:

$$A^{-1} = \begin{bmatrix} 1/8 & -3/8 \\ 1/4 & 1/4 \end{bmatrix}$$

Parte II Determinantes

Capítulo 1 – Introdução

I. Um pouco de contexto

Historicamente, os determinantes eram usados muito anteriormente em relação às matrizes, e eram considerados uma propriedade dos sistemas lineares (abordados na Part III). Os determinantes "determinam" se um sistema linear qualquer tem ou não solução única.

O japonês $Seki\ Takakazu$ () leva o crédito da descoberta da resultante e do determinante (1683-1710) e, na Europa, depois que Leibniz introduziu o estudo dos determinantes, $Gabriel\ Cramer$ expandiu a teoria relacionando-a à conjuntos de equações.

Vandermonde foi o primeiro a tratar os determinantes como funções independentes de sistemas lineares e Laplace contribuiu com o método geral para escrever um determinante através de seus cofatores. Lagrange e Gauss, utilizando os determinantes na teoria dos números, fizeram avanços importantes na teoria, e Gauss foi o primeiro a usar o nome determinante, embora não no sentido atual.

Foi Cauchy quem primeiro introduziu o termo determinante no sentido aceito atualmente, num trabalho publicado em 1812, anteriormente o termo resultante havia sido utilizado por Laplace.

Quem mais contribuiu para a teoria de determinantes foi Carl G. J. Jacobi (1804-1851). A simplicidade atual da apresentação dessa teoria se deve a ele.

II. Definição e resolução para $n \leq 3$

Podemos dizer que o *determinante* de uma matriz quadrada é o seu **valor numé**rico.

Denotamos o determinante de uma matriz quadrada qualquer A por

(I)
$$\det A$$
, ou (II) $|A|$

Exemplo 1

Seja a matriz
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, denotamos seu determinante por $\det A = \det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$

a. Caso n=1

Quando temos uma matriz com um único elemento seu determinante será esse elemento.

Exemplo 2

Dada a matriz
$$A = [-2], \ \det A = -2$$

b. Caso
$$n=2$$

Quando temos uma matriz quadrada de ordem 2 basta tomar o produto dos elementos da diagonal principal e subtraí-lo pelo produto dos elementos da diagonal secundária.

Exemplo 3

Dada a matriz
$$A = \begin{bmatrix} 2 & 3 \\ -3 & 1 \end{bmatrix}$$
, $\det A = 2 \cdot 1 - 3 \cdot (-3) \Rightarrow \det A = 2 + 9 = 11$

c. Caso n=3

Com uma matriz quadrada de grau 3 o processo é bastante similar ao do grau 2 (descrito logo acima).

Primeiro devemos **repetir** a primeira e a segunda colunas da matriz à sua direita (como mostrado em vermelho):

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow$$

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix}$$

Em seguida devemos calcular o **produto** das diagonais formadas:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{bmatrix}$$

Ficamos com:

$$\det A =$$

$$a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32}$$

$$-a_{13} \cdot a_{22} \cdot a_{31} - a_{22} \cdot a_{23} \cdot a_{32} - a_{31} \cdot a_{21} \cdot a_{33}$$

Note que as diagonais na direção da principal devem ser **somadas** e as contrárias devem ser **subtraídas**.

Nota: Esse método é chamado de Regra de Sarrus.

Capítulo 2 – Cofator

I. Definição

Dada uma matriz quadrada A, o cofator de A_{ij} é definido como o determinante (com sinal característico) da matriz A obtido **suprimindo-se** a linha i e a coluna j da matriz original A.

Basicamente, um cofator é definido como o **determinante** de um *recorte* da matriz original, com um sinal específico.

II. Na prática

Esse recorte se dá da seguinte forma:

Se
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, fazendo o recorte do cofator A_{11} ficamos com

$$A_{11} = \det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow A_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

Agora que o recorte está feito, basta tirar o determinante da matriz que sobrou e colocar um sinal nele para conseguir o cofator.

O sinal será explicado em detalhe no próximo capítulo, mas consiste em multiplicar o determinante por $(-1)^{i+j}$ onde i e j são o número da linha e da coluna que suprimimos.

Capítulo 3 – Teorema de Laplace

I. Introdução

Podemos encontrar o determinante de uma matriz quadrada de **qualquer** grau através desse teorema. Primeiro vamos escolher uma **coluna** ou **fileira** dessa matriz, uma boa prática é escolher baseando-se na que possuir **mais zeros** (veremos a razão para isso mais a frente).

Exemplo 1

$$\text{Dada a matriz } A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

seu determinante pode ser obtido pela fórmula:

$$\det A = a_{k1} \cdot A_{k1} + a_{k2} \cdot A_{k2} + \dots + a_{kn} \cdot A_{kn}$$
 OU

$$\det A = a_{1k} \cdot A_{1k} + a_{2k} \cdot A_{2k} + \dots + a_{nk} \cdot A_{nk}$$

onde k é uma linha ou coluna qualquer da matriz A.

II. Passo a passo

- 1. Usando a coluna/fileira escolhida como referência (no exemplo vamos usar a 1ª coluna), multiplicar os elementos dessa fileira/coluna pelos cofatores da sua posição.
- 2. Em seguida devemos somá-los ou subtraí-los dependendo da soma i+j, caso seja par, somamos, caso seja ímpar devemos subtrair. (Isso vem da definição do cofator).

Exemplo 1

Dada a matriz
$$A = \begin{bmatrix} 4 & 3 & -5 & 4 \\ 2 & 1 & 7 & 14 \\ 1 & -9 & 6 & 9 \\ 7 & 2 & -12 & -1 \end{bmatrix}$$
 tomamos sua 1ª coluna:
$$\begin{bmatrix} 4 \\ 2 \\ 1 \\ 7 \end{bmatrix}$$

Pegamos elemento a elemento e **multiplicamos** pelo *cofator* de sua posição. O primeiro elemento da coluna é o 4, sua posição é 11, então fazemos:

$$4 \cdot A_{11}$$

Repetimos isso para todos os elementos dessa fileira:

$$2\cdot A_{11} \hspace{1.5cm} 1\cdot A_{31} \hspace{1.5cm} 7\cdot A_{41}$$

Agora devemos determinar o **sinal** de cada um desses produtos. A regra diz, se a soma dos dígitos da posição for **par**, o sinal vai ser **positivo** e se for **ímpar** o sinal deverá ser **negativo**.

Para o elemento a_{11} (4) ficamos com $+4 \cdot A_{11}$, pois 1+1=2 que é **par**. Somando todos os elementos conseguimos o determinante:

$$\det A = + \text{``}4 \cdot A_{11} - 2 \cdot A_{11} + 1 \cdot A_{31} - 7 \cdot A_{41}$$

Para encontrar os cofatores podemos aplicar o método **novamente** (isso se chama **recursão**).

Como cada cofator é multiplicado por um elemento da matriz, no caso de algum desses elementos ser 0 não precisaremos calcular esse cofator. Por isso é boa prática selecionar a coluna/fileira com a **maior quantidade de zeros**.

Capítulo 4 – Teorema de Jacobi

I. Introdução

O teorema diz que, se tomarmos uma matriz quadrada qualquer A podemos **somar** uma coluna c dessa matriz à uma outra coluna c' qualquer (também da matriz) multiplicada por uma **constante** k de escolha, e esse processo **não altera** o valor do determinante dessa matriz.

Exemplo 1

Dada a matriz
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
, podemos fazer
$$\begin{bmatrix} a_{11} & a_{12} + k \cdot a_{11} \\ a_{21} & a_{22} + k \cdot a_{22} \end{bmatrix}$$
, onde $\det B = \det A$

II. Aplicação

A utilidade desse teorema não é clara à primeira vista, mas vamos discorrer uma técnica que esclarece seu uso:

1. Primeiro devemos tomar uma **coluna de referência**, vamos usar a primeira coluna (em **vermelho**).

$$A = \begin{bmatrix} 4 & -2 & 8 \\ 3 & 7 & -2 \\ 5 & 1 & -1 \end{bmatrix}$$

2. Agora temos que escolher uma linha. Para o exemplo vamos usar a primeira (em verde).

$$\begin{bmatrix} -2 & 8 \\ 7 & -2 \\ 1 & -1 \end{bmatrix}$$

3. Vamos aplicar o teorema de Jacobi de modo a **zerar** essa linha. Para facilitar podemos usar uma equação. Para zerar o -2 podemos fazer:

$$-2+4\cdot k_1=0\Rightarrow k_1={}^1\!/_2$$

- 4. Repare o que ocorre:
 - (a) Pegamos a coluna de referência e vamos usá-la com *Jacobi* nas duas outras.
 - (b) Escolhemos alguma linha e vamos usar o teorema com o objetivo de zerá-la.
- 5. Continuando. Para zerar o 8 segue:

$$8 + 4 \cdot k_2 = 0 \Rightarrow k_2 = -2$$

Nota: Repare que para cada coluna podemos usar uma constante **diferente** $(k_1$ e k_2 nesse caso).

Aplicando o teorema na segunda coluna (em azul) ficamos com:

$$A = \begin{bmatrix} 4 & -2 + \frac{1}{2} \cdot 4 & 8\\ 3 & 7 + \frac{1}{2} \cdot 3 & -2\\ 5 & 1 + \frac{1}{2} \cdot 5 & -1 \end{bmatrix}$$

A coluna de referência é **multiplicada** pela **constante** e **somada** à segunda coluna, realizando a operação ficamos com:

$$A = \begin{bmatrix} 4 & -2+2 & 8 \\ 3 & 7+3/2 & -2 \\ 5 & 1+5/2 & -1 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 4 & 0 & 8 \\ 3 & 17/2 & -2 \\ 5 & 7/2 & -1 \end{bmatrix}$$

Agora vamos aplicar o teorema à terceira coluna usando a outra constante (-2):

$$A = \begin{bmatrix} 4 & 0 & 8 + (-2) \cdot 4 \\ 3 & \frac{17}{2} & -2 + (-2) \cdot 3 \\ 5 & \frac{7}{2} & -1 + (-2) \cdot 5 \end{bmatrix} \Rightarrow$$

$$A = \begin{bmatrix} 4 & 0 & 8 - 8 \\ 3 & \frac{17}{2} & -2 - 6 \\ 5 & \frac{7}{2} & -1 - 10 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 4 & 0 & 0 \\ 3 & \frac{17}{2} & -8 \\ 5 & \frac{7}{2} & -11 \end{bmatrix}$$

Agora podemos ver como esse teorema pode ser útil, se quisermos usar o teorema de Laplace para encontrar o determinante da matriz A faremos pouquíssimas operações pois temos uma fileira quase toda zerada.

Capítulo 5 – Regra de Chió (abaixamento de grau)

I. Introdução

A regra de Chió tem como base os teoremas de Laplace e Jacobi. Basicamente, quando uma matriz tem seu elemento $a_{11} = 1$, usando a **primeira coluna** como referência e aplicando o teorema de Jacobi sucessivamente poderemos usar Laplace facilmente.

II. Aplicação (com variáveis)

$$A = \begin{bmatrix} 1 & -3 & 12 & 5 \\ 5 & 9 & -1 & 2 \\ -2 & 4 & 4 & -1 \\ 7 & 1 & 2 & 0 \end{bmatrix}$$

Repare que o elemento a_{11} (em azul claro) tem valor 1, como desejamos. Usaremos a **primeira coluna** (em **vermelho**) como **referência** para aplicar o teorema de Jacobi, com o objetivo de **zerar** a **primeira linha** (em verde). Fazendo o passo a passo para o teorema de Jacobi podemos notar que por conta do elemento $a_{11}=1$ as constantes vão ser o **oposto** dos números da primeira linha. Por exemplo:

$$-3 + 1 \cdot k_1 = 0 \Rightarrow k_1 = 3$$

Que é o oposto de -3. Aplicando Jacobi, temos:

Agora podemos aplicar o teorema de Laplace usando a **primeira linha** da matriz A (em azul):

$$\det A = 1 \cdot A_{11} - 0 \cdot_{12} - 0 \cdot A_{13} - 0 \cdot A_{14} \Rightarrow \det A = A_{11}$$

Podemos ver que utilizando o método descrito podemos reduzir o determinante de uma matriz à apenas **um** de seus cofatores.

III. Uma visão alternativa

Outra forma de ver esse método é memorizando a seguinte receita:

Dada a matriz
$$A = \begin{bmatrix} 1 & -3 & 12 & 5 \\ 5 & 9 & -1 & 2 \\ -2 & 4 & 4 & -1 \\ 7 & 1 & 2 & 0 \end{bmatrix}$$

- 1. Verificamos se o primeiro elemento da matriz (a_{11}) é igual à 1.
- 2. Prosseguimos com o seguinte método:

Pegamos os elementos da **primeira linha** e da **primeira coluna**, multiplicamos eles **ordenadamente** um pelo outro e **subtraímos** do elemento que se encontra na junção deles.

No exemplo abaixo nós vamos começar multiplicando -3 (2° elemento da 1^{a} linha) por 5 (2° elemento da 1^{a} coluna) e, então, vamos subtrair de 9 (que é o elemento que encontramos seguindo as linhas laranjas).

$$A = \begin{bmatrix} 1 & -3 & 12 & 5 \\ -5 & -9 & -1 & 2 \\ -2 & 4 & 4 & -1 \\ 7 & 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 12 & 5 \\ 5 & 9 - (-3) \cdot 5 & -1 & 2 \\ -2 & 4 & 4 & -1 \\ 7 & 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 12 & 5 \\ 5 & 24 & -1 & 2 \\ -2 & 4 & 4 & -1 \\ 7 & 1 & 2 & 0 \end{bmatrix}$$

Agora realizamos o mesmo procedimento para os outros elementos da matriz:

$$A = \begin{bmatrix} 1 & -3 & 12 & 5 \\ -5 & -24 & -1 & 2 \\ -2 & 4 & 4 & -1 \\ -7 & 1 & 2 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -3 & 12 & 5 \\ 5 & 24 & -1 - 12 \cdot 5 & 2 - 5 \cdot 5 \\ -2 & 4 - (-3) \cdot (-2) & 4 - 12 \cdot (-2) & -1 - 5 \cdot (-2) \\ 7 & 1 - (-3) \cdot 7 & 2 - 12 \cdot 7 & 0 - 5 \cdot 7 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 12 & 5 \\ 5 & 24 & -61 & -23 \\ -2 & -2 & 28 & 9 \\ 7 & 22 & -82 & -35 \end{bmatrix}$$

A regra de Chió nos diz que, após aplicar a receita descrita, o cofator A_{11} é **igual** ao determinante da matriz A.

$$A_{11} = \begin{vmatrix} 24 & -61 & -23 \\ -2 & 28 & 9 \\ 22 & -82 & -35 \end{vmatrix} = \det A$$

Capítulo 6 – Casos interessantes

I. Matriz transposta

O determinante de uma matriz quadrada qualquer A_n será **igual** ao determinante de sua **transposta**.

$$\det A_n = \det A_n^t$$

II. Fila nula

Caso haja qualquer linha ou coluna nula em uma matriz seu determinante será zero.

$$\text{Dada a matriz } A_n = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & a_{1n} \\ a_{21} & a_{22} & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & 0 & \cdots & a_{mn} \end{bmatrix}, \text{ det } A_n = 0 \text{ pois sua } 3^{\text{a}} \text{ coluna \'e nula}.$$

III. Multiplicação de uma fila por uma constante

Se toda uma linha ou coluna de uma matriz quadrada qualquer A_n for multiplicada por um valor, podemos reescrever o determinante como sendo multiplicado por aquele valor (e retirá-lo da matriz).

Exemplo 1

$$\text{Dado o } \det A_n = \begin{vmatrix} a_{11} & a_{12} & k \cdot a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & k \cdot a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & k \cdot a_{n3} & \cdots & a_{nn} \end{vmatrix}$$

podemos reescrever esse determinante como

$$k \cdot \det A_n = k \cdot \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix}$$

Exemplo 2

Dada a matriz
$$A = \begin{bmatrix} 1 & 3 & 8 \\ 7 & -9 & 1 \\ -2 & 4 & -6 \end{bmatrix}$$
, que pode ser reescrita como:
$$A = \begin{bmatrix} 1 & 3 & 8 \\ 7 & -9 & 1 \\ -1 \cdot 2 & 2 \cdot 2 & -3 \cdot 2 \end{bmatrix} \text{ temos que } \det A = 2 \cdot \begin{vmatrix} 1 & 3 & 8 \\ 7 & -9 & 1 \\ -1 & 2 & -3 \end{vmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 8 \\ 7 & -9 & 1 \\ -1 \cdot 2 & 2 \cdot 2 & -3 \cdot 2 \end{bmatrix} \text{ temos que } \det A = 2 \cdot \begin{bmatrix} 1 & 3 & 8 \\ 7 & -9 & 1 \\ -1 & 2 & -3 \end{bmatrix}$$

IV. Multiplicação da matriz inteira por uma constante

Se uma matriz quadrada A_n inteira for multiplicada por uma constante k podemos retirá-la da matriz e seu determinante será igual a constante elevada a ordem da matriz (k^n) multiplicado pelo determinante da matriz sem a constante.

$$\text{Se } k \cdot A_n = \begin{bmatrix} k \cdot a_{11} & k \cdot a_{12} & \cdots & k \cdot a_{1n} \\ k \cdot a_{21} & k \cdot a_{22} & \cdots & k \cdot a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ k \cdot a_{m1} & k \cdot a_{m2} & \cdots & k \cdot a_{mn} \end{bmatrix}, \text{ então, segue que}$$

$$\det(k \cdot A_n) = k^n \cdot \det A_n$$

Exemplo 1

V. Troca de filas paralelas

Caso **troquemos** duas **linhas** ou duas **colunas distintas** de uma matriz quadrada A_n , criamos uma nova matriz B_n tal que:

$$\det B_n = -\det A_n$$

Exemplo 1

Dada a matriz
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

trocando a 1ª coluna pela 2ª coluna temos uma nova matriz \boldsymbol{B} tal que:

$$B = \begin{bmatrix} b & a \\ d & c \end{bmatrix} \text{ onde } \det B = -\det A$$

VI. Filas paralelas iguais ou proporcionais

Caso duas linhas ou colunas distintas sejam múltiplas uma da outra em uma matriz quadrada A_n seu determinante será igual a 0.

Exemplo 1

Dada a matriz
$$A = \begin{bmatrix} 1 & -4 & 1 \\ 2 & 5 & 2 \\ 3 & 12 & 3 \end{bmatrix}$$

Como a primeira coluna é múltipla da terceira (multiplicada por 1):

$$\det A = 0$$

Exemplo 2

Dada a matriz
$$A = \begin{bmatrix} 2 & 1 & -5 \\ 7 & 0 & 0 \\ 0 & -3 & 15 \end{bmatrix}$$

Como a segunda coluna é múltipla da terceira (multiplicada por -5):

$$\det A = 0$$

VII. Matriz inversa

Dada uma matriz quadrada A_n , o determinante de sua **inversa** obedece à relação:

$$\det A_n^{-1} = \frac{1}{\det A_n}$$

VIII. Matriz triangular

O determinante de uma matriz triangular A_n onde n é a ordem dessa matriz será o produto dos elementos de sua diagonal principal. Isso é válido para todo n.

Exemplo 1

$$\det A = \begin{vmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot a_{22} \cdot a_{33}$$

IX. Matriz identidade

O determinante de uma matriz identidade I_n onde n é a ordem dessa matriz será igual a 1 para qualquer valor possível de n.

$$\det I_n = 1$$

Nota: Repare que a matriz identidade é meramente um caso específico de uma matriz triangular, e, portanto, como o determinante de uma matriz triangular qualquer será o produto de sua diagonal principal, segue que det $I_n = 1 \cdot 1 \cdot 1 \dots 1 = 1$ sempre.

X. Multiplicação de matrizes

O determinante de uma matriz $C = A \cdot B$ vai ser igual ao produto dos determinantes das matrizes $A \in B$.

$$\det C = \det(A \cdot B) = \det A \cdot \det B$$

XI. Matriz de Vandermonde

O determinante de uma matriz de Vandermonde quadrada V_n de ordem n será dado pelo produto de todas as diferenças possíveis entre os elementos da linha/coluna onde estão as bases das PG's da matriz. As diferenças devem ser de um elemento

qualquer (que não será o primeiro da linha/coluna) subtraído de algum que vem antes dele (e que não será o último da linha/coluna).

Exemplo 1

Dada a matriz de
$$V$$
 andermonde $V = \begin{bmatrix} 1 & 4 & 16 \\ 1 & 9 & 81 \\ 1 & 5 & 25 \end{bmatrix}$

vamos, primeiro, isolar a coluna dessa matriz onde estão as bases das PG's:

$$\begin{bmatrix} 4 \\ 9 \\ 5 \end{bmatrix}$$

as diferenças possíveis entre dois elementos dessa coluna que respeitam a condição de o *minuendo* (termo que vem primeiro, da qual se subtrai) estar em uma posição posterior ao *subtraendo* (termo que vem depois, que é subtraído) são:

$$9 - 4$$

$$5 - 4$$

$$5 - 9$$

podemos calcular o determinante de V fazendo:

$$\det V = (5-9) \cdot (9-4) \cdot (5-4) = (-4) \cdot 5 \cdot 1 = -20$$

Parte III Sistemas lineares

Capítulo 1 – Introdução

Os sistemas lineares tem sua história emendada aos determinantes e às matrizes, sendo um tópico amplamente estudado e desenvolvido no ramo da álgebra linear, do qual é base e parte fundamental.

I. Definição

Um sistema linear consiste em um tipo de equação onde temos diferentes incógnitas (x, y, z ...), multiplicadas por valores reais (chamados coeficientes) e igualados à um número que não multiplica nenhuma incógnita (chamado termo independente) e que também é real.

Exemplo 1

Repare que o mesmo sistema pode ser reescrito como:

$$2x + 3y - 4 = 0$$

Se alguma das incógnitas estiver sendo multiplicada por **outra coisa** que **não seja** um número real, nosso sistema **não será** mais linear e, portanto, não nos interessa mais.

Exemplo 2

- 1. O sistema $x^2 + 2y = 0$ não é linear, pois $x \cdot x$ foge da nossa definição.
- 2. O sistema $x \cdot y + y = 3$ não é linear, pois $x \cdot y$ foge da nossa definição.
- 3. O sistema $x+\sqrt{y}=2$ não é linear, pois \sqrt{y} foge da nossa definição.

Para resolver um sistema linear dispomos de alguns métodos já estudados previamente, como, por exemplo:

- (I) Substituição
- (II) Adição
- (III) Escalonamento

Aqui focaremos no terceiro método, juntamente de outros que nos permitem classificar um sistema de forma útil.

Capítulo 2 – Forma matricial

Todo sistema linear pode ser escrito na forma matricial, realizando alguns passos...

I. Passo a passo

- 1. É necessário avaliar se nosso sistema é ou não linear.
- 2. É necessário organizar o sistema de forma adequada.

Exemplo 1

Dado o sistema
$$S_1$$
 $\begin{cases} 2x+3y-4=0\\ -y+x=2 \end{cases}$, podemos reescrevê-lo como:
$$S_1 \begin{cases} 2x+3y=4\\ x+(-y)=2 \end{cases}$$

Note que:

- (a) **Separamos** as incógnitas (junto com seus coeficientes) do **termo independente**.
- (b) Colocamos incógnitas **correspondentes** na mesma **coluna** (verde em baixo de verde e vermelho em baixo de vermelho).
- 3. Vamos identificar os coeficientes e escrevê-los:

Exemplo 2

Dado o sistema
$$S_2$$
 $\begin{cases} x-3y+2z=2\\ 2y-z=1 \end{cases}$, podemos reescrevê-lo como:
$$S_2 \begin{cases} 1x-3y+2z=2\\ 0x+2y-z=1 \end{cases}$$

O passo a passo pode ser descrito como:

- (a) **Identificamos** quais são as incógnitas (no caso, $x, y \in z$).
- (b) Reescrevemos a equação (similar ao passo anterior), mas agora colocando os coeficientes explicitamente (sem omitir 0's ou 1's).
- 4. Vamos escrever os **coeficientes** em **colunas** de uma matriz (cada sistema será **uma linha**).

Exemplo 3

$$S_{3} \begin{cases} 2x - 1y + 1z = 0 \\ 0x + 1y - 1z = 3 \\ 5x + 2y - 3z = -2 \end{cases}$$

$$\begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & -1 \\ 5 & 2 & -3 \end{bmatrix}$$

5. Vamos reescrever a matriz do passo anterior sendo **multiplicada** por uma matriz com as incógnitas.

A partir do último exemplo:

$$\begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & -1 \\ 5 & 2 & -3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Repare que elas estão escritas na mesma ordem, porém de cima pra baixo.

 $6.\ Por\ fim,\ basta\ {\bf igualar}$ esse produto aos termos independentes, também em forma de matriz.

Continuando o exemplo dos passos anteriores:

$$\begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & -1 \\ 5 & 2 & -3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 3 & -2 \end{bmatrix}$$

Capítulo 3 – Soluções de um sistema linear

I. O que são?

As **soluções** para um dado sistema linear devem ser escritas organizadamente em uma **ênupla** (coordenada com n posições, a palavra vem de n-upla) **ordenada** (pois tem uma ordem específica) **de reais**. Uma solução de um sistema linear consiste em uma série de valores que deverá resolver o sistema de igualdades proposto.

Exemplo 1

No sistema

$$S_1 \begin{cases} 2x + y = 1 \\ 2x - y = 3 \end{cases}$$

temos como solução a ênupla (1,-1), pois se substituirmos x e y por esses números respectivamente, teremos as igualdades

$$S_1 \begin{cases} 2 \cdot 1 + (-1) = 1 \\ 2 \cdot 1 - (-1) = 3 \end{cases}$$

Repare que na ênupla o primeiro número substitui a incógnita x e o segundo, y. A posição de cada valor na ênupla nos dirá qual incógnita cada valor deverá substituir (daí vem o termo ordenada).

Capítulo 4 – Teorema de Cramer

I. O que é?

Esse teorema nos diz que, dado um sistema linear S que tenha o **mesmo número** de incógnitas e expressões, se o colocarmos na forma matricial poderemos tomar seu determinante D, e, caso esse seja diferente de 0, poderemos **determinar** os valores da **única solução possível** desse sistema.

II. Passo a passo

Dado o sistema
$$S_1 \begin{cases} 2x - 3y = 0 \\ x + 2y = 2 \end{cases}$$

1. Primeiro devemos checar se o número de **incógnitas** é **igual** ao número de **expressões**.

No sistema acima isso é verdadeiro, pois temos x e y (duas incógnitas) e temos duas expressões (duas linhas).

Nota: Caso o sistema tenha mais expressões do que incógnitas podemos ignorar algumas das expressões a fim de realizar os cálculos necessários com esse sistema.

2. Agora podemos escrever o sistema em *forma matricial*, para a realização desse teorema basta escrever a **primeira parte**, formada pelos **coeficientes**. Chamaremos essa matriz de A.

$$A = \begin{bmatrix} 2 & -3 \\ 1 & 2 \end{bmatrix}$$

3. Devemos, então, tomar o **determinante** desse sistema.

Chamaremos esse determinante de D.

$$D = \det A = 2 \cdot 2 - (-3) \cdot 1 \Rightarrow D = 4 + 3 = 7$$

4. Se o determinante D for **diferente** de zero, podemos prosseguir com o teorema.

No sistema que estamos utilizando isso se verifica.

III. Encontrando a única solução possível

1. Para encontrar o valor de uma incógnita i qualquer (valor esse que resolverá o sistema) devemos repetir a matriz dos coeficientes (A) e trocar a coluna representada por essa incógnita de escolha por uma coluna feita a partir dos termos independentes. O determinante da nova matriz será chamado D_i .

Continuando com o mesmo exemplo, vamos resolver para x:

$$D_x = \begin{vmatrix} 0 & -3 \\ 2 & 2 \end{vmatrix} \Rightarrow D_x = 0 \cdot 2 - (-3) \cdot 2 = 6$$

Repare que substituímos os termos da coluna que representa os coeficientes de x por uma coluna formada pelos termos independentes (em verde), que devem estar na **mesma ordem** do sistema.

2. O valor solução α_i da incógnita escolhida (i) será encontrado pela equação:

$$\alpha_i = \frac{D_i}{D}$$

Seguindo com o exemplo, fazemos:

Substituíndo $\alpha_x = \frac{D_x}{D}$ pelos valores que possuímos, encontramos $\alpha_x = \frac{6}{7}$

3. Agora devemos repetir o processo para as outras incógnitas.

Fazendo para y temos:

$$D_y = \begin{vmatrix} 2 & 0 \\ 1 & 2 \end{vmatrix} \Rightarrow D_y = 2 \cdot 2 - 0 \cdot 2 = 4$$
$$\alpha_y = \frac{D_y}{D} \Rightarrow \alpha_y = \frac{4}{7}$$

4. Por fim, escrevemos a solução encontrada em forma de ênupla.

5. (Extra) Caso ache necessário, basta substituir os valores da ênupla nas expressões do sistema para testar a solução.

$$S_1 \begin{cases} 2 \cdot \frac{6}{7} - 3 \cdot \frac{4}{7} = 0 \\ \frac{6}{7} + 2 \cdot \frac{4}{7} = 2 \end{cases} \Rightarrow S_1 \begin{cases} \frac{12 - 12}{7} = 0 \\ \frac{6 + 8}{7} = 2 \end{cases} \Rightarrow S_1 \begin{cases} \frac{0}{7} = 0 \\ \frac{14}{7} = 2 \end{cases}$$

Capítulo 5 – Escalonamento

I. Introdução

Para resolver e diferenciar os sistemas lineares dispomos da técnica chamada escalonamento. Essa técnica consiste em um algoritmo (outra palavra para receita) onde vamos, através de soma e multiplicação, zerar coeficientes das expressões de um sistema linear, um por um.

II. Algoritmo (ou receita)

1. Devemos escolher alguma das expressões de um sistema para usar como referência. É boa prática escolher uma expressão onde os coeficientes são menores. Exemplo 1

$$S_1 \begin{cases} x + y - z = 2 \\ 3x - 4y + 2z = 1 \\ 5x + 2y - z = 7 \end{cases}$$

Vamos usar a primeira expressão (em vermelho). Vamos chamá-la de S_a .

2. Agora vamos escolher alguma incógnita com o objetivo de zerar seu coeficiente. Nessa etapa podemos organizar as expressões colocando a escolhida em cima das outras.

Continuação:

$$S_{1} \begin{cases} x + y - z = 2 & (S_{a}) \\ 3x - 4y + 2z = 1 & (S_{b}) \\ 5x + 2y - z = 7 & (S_{b}) \end{cases}$$

$$S_1 \left\{ 3x - 4y + 2z = 1 \right. \tag{S_b}$$

$$\int 5x + 2y - z = 7 \tag{S_c}$$

A expressão referência se encontra **acima** das que pretendemos mexer (S_a) acima de S_b e S_c).

3. Através de equação podemos encontrar valores que, multiplicados à primeira equação, vão zerar o coeficiente da incógnita de escolha nas outras.

A expressão S_a multiplicada por uma constante k_1 e somada à expressão S_b deverá zerar o coeficiente que multiplica x:

$$S_a \times k_1 + S_b = 0$$

Porém, como é **absurdo** fazer contas para n valores ao mesmo tempo, vamos focar no que nos interessa, o valor de x nas expressões S_a e S_b . Para isso basta substituir as expressões S_a e S_b por seus respectivos coeficientes de x:

$$1 \cdot k_1 + 3 = 0$$

Resolvendo, temos:

$$1 \cdot k_1 + 3 = 0 \Rightarrow k = -3$$

Fazendo o mesmo para S_a e S_c , temos:

$$S_a \times k_2 + S_c \Rightarrow 1 \cdot k_2 + 5 = 0 \Rightarrow k = -5$$

Nota: O valor k_1 (que zera o coeficiente de x em S_b) não necessariamente é o mesmo que k_2 (que zera o coeficiente de x em S_c).

4. Agora basta **multiplicar** a expressão de **referência** pelo valor encontrado e **somar** às outras expressões.

Como os valores que zeram cada uma são **diferentes**, executamos esse passo **independentemente**.

Sabemos que $k_1 = -3$ zera a expressão S_b , então faremos:

$$\begin{split} (x+y-z=2) \times (-3) + S_b &\Rightarrow \\ (-3x-3y+3z=-6) + S_b &\Rightarrow \\ -3x-3y+3z=-6 \\ &+ 3x-4y+2z=2 \\ \hline 0x-7y+5z=-4 \end{split}$$

Colocando a nova expressão no lugar de S_b , ficamos com:

$$S_1 \begin{cases} x + y - z = 2 \\ 0x - 7y + 5z = -4 \\ 5x + 2y - z = 7 \end{cases}$$

Nota: a expressão de referência (S_a) não se altera, e nem a expressão S_c . No escalonamento só alteramos uma expressão de cada vez.

Vamos fazer a mesma coisa para S_a e S_c . Sabemos que k=-5 zera a expressão S_c , então fazemos:

$$\begin{split} (x+y-z=2) \times (-5) + S_c &\Rightarrow \\ (-5x-5y+5z=-10) + S_c &\Rightarrow \\ -5x-5y+5z=-10 \\ &+ 5x+2y-z=7 \\ \hline 0x-3y+4z=-3 \end{split}$$

Colocando a nova expressão no lugar de S_c , temos:

$$S_1 \begin{cases} x + y - z = 2 \\ 0x - 7y + 5z = -4 \\ 0x - 3y + 4z = -3 \end{cases}$$

5. Por fim, devemos repetir os passos 1 a 4 escolhendo **outra incógnita** para "zerar" e outra expressão como referência, **sem mexer** na referência anterior.

Usando S_b como referência para zerar o coeficiente y em S_c temos:

$$S_b \times k_3 + S_c = 0 \Rightarrow -7 \cdot k + (-3) = 0 \Rightarrow k_3 = \frac{3}{7}$$

Como não devemos alterar as referências anteriores (expressão S_a), basta encontrar o valor k_3 para zerar o coeficiente y em S_c .

Fazendo a conta ficamos com:

$$\begin{split} (-7+5z &= -4) \times \left(^{-3} / 7 \right) + S_c \Rightarrow \\ \left(3y - \frac{15}{7} &= -\frac{12}{7} \right) + S_c \Rightarrow \\ 3y - \frac{15}{7} &= -\frac{12}{7} \\ + &- 3y + 4z = -3 \\ 0y + \frac{13}{7}z &= -\frac{33}{7} \end{split}$$

Colocando a nova expressão no lugar de ${\cal S}_c$ temos:

$$S_1 \begin{cases} x+y-z=2 \\ 0x-7y+5z=-4 \\ 0x+0y+\frac{13}{7}=-\frac{33}{7} \end{cases}$$

Podemos ver que a cada vez que **repetimos** o algoritmo zeramos os coeficientes de **outra incógnita**.

Agora que não há mais expressões para mexer, pois devemos ter pelo menos uma nova referência e uma outra expressão para mexer (e no momento só teríamos uma referência e mais nada), podemos, então, interromper o algoritmo.

Capítulo 6 – Classificação dos sistemas lineares

I. Introdução

A partir do teorema de *Cramer* e da técnica do *escalonamento* podemos **classificar** os sistemas lineares em **três** tipos:

- (I) S.P.D. ⇒ Sistema Possível Determinado
- (II) S.P.I. ⇒ Sistema Possível Indeterminado
- (III) S.I. \Rightarrow Sistema Impossível

O primeiro já foi abordado anteriormente (veja o chapter 4). Todo sistema onde o determinante dos coeficientes (chamado D) for diferente de 0 será S.P.D.

O segundo e terceiro tipos ocorrerão quando D = 0. No segundo teremos infinitas soluções possíveis e no terceiro, nenhuma (daí o nome *impossível*).

II. Classificação

No exemplo do chapter 5 usamos um sistema onde $D \neq 0$ e, então, caímos no caso S.P.D., porém se fosse o caso D = 0 a classificação em S.P.I. ou S.I. se faria necessária.

- (I) O caso **S.P.I.** ocorre quando:
 - (a) após o escalonamento, ocorrer uma expressão do tipo:

$$0a + 0b + 0c + \cdots + 0z = 0$$
 onde (a, b, c, \ldots, z) representam incógnitas.

Repare que nesse caso temos **incógnitas** do sistema com coeficiente **igual à 0 igualadas à 0**.

- (b) os determinantes D_i para as incógnitas do sistema forem iguais à zero.
- (II) O caso **S.I.** ocorre quando:
 - (a) após o escalonamento ocorrer uma expressão do tipo:

$$0a + 0b + 0c + \cdots + 0z \neq 0$$
 onde (a, b, c, \ldots, z) representam incógnitas.

Repare que nesse caso temos incógnitas do sistema com coeficientes iguais à $\mathbf{0}$, porém igualadas à um valor diferente de $\mathbf{0}$, o que é impossível, afinal $\mathbf{0}\mathbf{x} = \mathbf{0}$ para qualquer valor de \mathbf{x} , e o contrário disso é absurdo!

(b) os determinantes D_i para as incógnitas do sistema forem diferentes de zero.

Nota: Os dois casos para S.I. e S.P.I. são equivalentes, portanto podemos testá-los tanto por determinantes quanto por escalonamento.

III. Resolvendo sistemas S.P.I. e S.I. com variáveis a e b

Podemos nos deparar com sistemas lineares onde algum ou alguns de seus coeficientes são representados por uma variável a, e talvez algum de seus termos independentes seja representado por outra variável, b.

Nota: as variáveis não necessariamente tem que ser representadas por $a \in b$, podendo ser quaisquer letras de escolha (frequentemente são $m \in k$).

Para resolver esse tipo de sistema devemos dividi-lo em **casos**. O enunciado geralmente pede para que *discutamos* o sistema.

Seja o sistema
$$S_1 \begin{cases} 2x + y = 1 \\ 2x - ay = -3 \end{cases}$$

Podemos começar resolvendo-o pelo teorema de Cramer:

$$D = \begin{vmatrix} 2 & 1 \\ 2 & -a \end{vmatrix} \Rightarrow D = 2 \cdot (-a) - 1 \cdot 2 \Rightarrow D = -2 \cdot a - 2$$

Para que o sistema seja S.P.D. devemos ter $D \neq 0$, então, para que **não** seja S.P.D. devemos ter D = 0, ou, substituindo:

$$-2 \cdot a - 2 = 0 \Rightarrow a = -1$$

Agora que achamos o valor de a para que o sistema não seja S.P.D., basta descobrirmos se ele será S.P.I. ou S.I.

Vamos substituir a por -1 no sistema.

$$S_1 \begin{cases} 2x + y = 1 \\ 2x - (-1)y = -3 \end{cases} \Rightarrow \begin{cases} 2x + y = 1 \\ 2x + y = -3 \end{cases}$$

Usando a primeira expressão como referência, por escalonamento temos:

$$S_a \times k + S_b = 0$$

Para zerar o coeficiente de x na segunda expressão temos:

$$2 \cdot k + 2 = 0 \Rightarrow k = -1$$

Multiplicando a primeira expressão por -1 e somando à segunda, temos:

$$\begin{split} (2x+y=1)\times(-1)+S_b \Rightarrow \\ -2x-y=-1+S_b \Rightarrow \\ -2x-y=-1 \\ \frac{+\ 2x+y=-3}{0x+0y=-4} \end{split}$$

Claramente, para D = 0 o sistema é **impossível**.

A discussão desse sistema, então, será:

Caso (I) quando $a \neq -1$ teremos $D \neq 0$ e o sistema será S.P.D.

Caso (II) quando a = -1 o sistema será S.I.

Outra possibilidade de sistema é:

$$S_2 \begin{cases} x - y = 2 \\ 2x + ay = b \end{cases}$$

Onde temos as variáveis a e b.

Novamente, dividiremos em casos, começando pela aplicação do teorema de Cramer.

$$D = \begin{vmatrix} 1 & -1 \\ 2 & a \end{vmatrix} \Rightarrow D = 1 \cdot a - (-1) \cdot 2 \Rightarrow D = a + 2$$

Para que o sistema seja S.P.D. segue que $D \neq 0$, substituindo, temos:

$$a+2 \neq 0 \Rightarrow a \neq -2$$

Para que o sistema não seja S.P.D. temos que D=0, ou, substituindo, a=-2. Substituindo a no sistema ficamos com

$$S_2 \begin{cases} x-y=2 \\ 2x+(-2)y=b \end{cases} \Rightarrow S_2 \begin{cases} x-y=2 \\ 2x-2y=b \end{cases}$$

Usando a primeira expressão como referência, por escalonamento, temos:

$$S_a \times k + S_b = 0$$

Para zerar o coeficiente de x na segunda expressão temos

$$1 \cdot k + 2 = 0 \Rightarrow k = -2$$

Multiplicando a primeira expressão por -2 e somando à segunda, temos

$$\begin{split} (x-y=2)\times(-2)+S_b \Rightarrow \\ -2x+2y=-4+S_b \Rightarrow \\ -2x+2y=-4 \\ + & \frac{2x-2y=b}{0x+0y=b-4} \end{split}$$

Agora temos dois casos, um onde o termo independente é igual a zero e, portanto, o sistema será S.P.I. e outro onde o termo independente é diferente de zero e o sistema será S.I.

Basta, por fim, discuti-los junto ao caso $D \neq 0$.

Caso (I) quando $a \neq -2$ teremos $D \neq 0$ e o sistema será S.P.D.

Caso (II) quando a=-2 e b-4=0 (portanto, b=4) segue que o sistema será S.P.I

Caso (III) quando a=-2 e $b-4\neq 0$ (logo $b\neq 4$) segue que o sistema será S.I