Class 18: Outline

Hour 1:

Levitation

Experiment 8: Magnetic Forces

Hour 2:

Ampere's Law

Review: Right Hand Rules

- 1. Torque: Thumb = torque, fingers show rotation
- 2. Feel: Thumb = I, Fingers = B, Palm = F
- 3. Create: Thumb = I, Fingers (curl) = B
- 4. Moment: Fingers (curl) = I, Thumb = Moment

Last Time: Dipoles

Magnetic Dipole Moments

$$\vec{\mu} \equiv IA\hat{\mathbf{n}} \equiv IA$$

Generate:

Feel:
$$U_{Dipole} = -\vec{\mu} \cdot \vec{B}$$

- 1) Torque to align with external field
- 2) Forces as for bar magnets (seek field)

Some Fun: Magnetic Levitation

Put a Frog in a 16 T Magnet...

For details: http://www.hfml.sci.kun.nl/levitate.html

How does that work? First a BRIEF intro to magnetic materials

Para/Ferromagnetism

Applied external field B₀ tends to align the atomic magnetic moments (unpaired electrons)

Diamagnetism

Everything is slightly diamagnetic. Why? More later.

If no magnetic moments (unpaired electrons) then this effect dominates.

Back to Levitation

Levitating a Diamagnet

- 1) Create a strong field (with a field gradient!)
- 2) Looks like a dipole field
- 3) Toss in a frog (diamagnet)
- 4) Looks like a bar magnet pointing *opposite* the field
- 5) Seeks *lower* field (force *up*) which balances gravity

Most importantly, its stable:

Restoring force always towards the center

Using ∇**B to Levitate**

- Frog
- Strawberry
- Water Droplets
- Tomatoes
- Crickets

For details: http://www.hfml.ru.nl/levitation-movies.html

Demonstrating: Levitating Magnet over Superconductor

Perfect Diamagnetism: "Magnetic Mirrors"

Perfect Diamagnetism: "Magnetic Mirrors"

No matter what the angle, it floats -- STABILITY

Using ∇**B** to Levitate

A Sumo Wrestler

For details: http://www.hfml.sci.kun.nl/levitate.html

Two PRS Questions Related to Experiment 8: Magnetic Forces

Experiment 8: Magnetic Forces (Calculating μ_0)

http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/magnetostatics/16-MagneticForceRepel/16-MagForceRepel f65 320.html

Experiment Summary: Currents feel fields Currents also create fields

Recall... Biot-Savart

The Biot-Savart Law

Current element of length *ds* carrying current *l* produces a magnetic field:

$$\mathbf{d\vec{B}} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{\mathbf{s}} \times \hat{\mathbf{r}}}{r^2}$$

Today: 3rd Maxwell Equation: Ampere's Law

Analogous (in use) to Gauss's Law

Gauss's Law - The Idea

The total "flux" of field lines penetrating any of these surfaces is the same and depends only on the amount of charge inside

Ampere's Law: The Idea

In order to have a B field around a loop, there must be current punching through the loop

Ampere's Law: The Equation

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{enc}$$

The line integral is around any closed contour bounding an open surface *S.*

 I_{enc} is current through S:

$$I_{enc} = \int_{S} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}}$$

PRS Question: Ampere's Law

Biot-Savart vs. Ampere

Biot-Savart Law

$$\vec{\mathbf{B}} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{\mathbf{s}} \times \hat{\mathbf{r}}}{r^2}$$

general
current source
ex: finite wire
wire loop

Ampere's law

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{enc}$$

symmetric current source

ex: infinite wire infinite current sheet

Applying Ampere's Law

- Identify regions in which to calculate B field Get B direction by right hand rule
- 2. Choose Amperian Loops S: Symmetry B is 0 or constant on the loop!
- 3. Calculate $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}}$
- 4. Calculate current enclosed by loop S
- 5. Apply Ampere's Law to solve for B

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{enc}$$

Always True, Occasionally Useful

Like Gauss's Law,

Ampere's Law is always true

However, it is only useful for calculation in certain specific situations, involving highly symmetric currents.

Here are examples...

Example: Infinite Wire

A cylindrical conductor has radius R and a uniform current density with total current I

Find B everywhere

Two regions:

- (1) outside wire $(r \ge R)$
- (2) inside wire (r < R)

Ampere's Law Example: Infinite Wire

Amperian Loop:

B is Constant & Parallel

I Penetrates

Example: Wire of Radius R

Region 1: Outside wire (r ≥ R)

Cylindrical symmetry →

Amperian Circle

B-field counterclockwise

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = B \oint d\vec{\mathbf{s}} = B(2\pi r)$$
$$= \mu_0 I_{enc} = \mu_0 I$$

$$\vec{\mathbf{B}} = \frac{\mu_0 I}{2\pi r} \text{ counterclockwise}$$

Example: Wire of Radius R

Region 2: Inside wire (r < R)

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = B \oint d\vec{\mathbf{s}} = B (2\pi r)$$

$$= \mu_0 I_{enc} = \mu_0 I \left(\frac{\pi r^2}{\pi R^2} \right)$$

$$\vec{\mathbf{B}} = \frac{\mu_0 Ir}{2\pi R^2}$$
counterclockwise

Could also say:
$$J = \frac{I}{A} = \frac{I}{\pi R^2}$$
; $I_{enc} = JA_{enc} = \frac{I}{\pi R^2} (\pi r^2)$

Example: Wire of Radius R

$$B_{in} = \frac{\mu_0 Ir}{2\pi R^2} \qquad B_{out} = \frac{\mu_0 I}{2\pi r}$$

Group Problem: Non-Uniform Cylindrical Wire

A cylindrical conductor has radius R and a non-uniform current density with total current:

$$\vec{\mathbf{J}} = J_0 \frac{R}{r}$$

Find B everywhere

Applying Ampere's Law

In Choosing Amperian Loop:

- Study & Follow Symmetry
- Determine Field Directions First
- Think About Where Field is Zero
- Loop Must
 - Be Parallel to (Constant) Desired Field
 - Be Perpendicular to Unknown Fields
 - Or Be Located in Zero Field

Other Geometries

Helmholtz Coil

Closer than Helmholtz Coil

Multiple Wire Loops

Multiple Wire Loops – Solenoid

Magnetic Field of Solenoid

loosely wound

tightly wound

For ideal solenoid, B is uniform inside & zero outside

Magnetic Field of Ideal Solenoid

Using Ampere's law: Think!

$$\begin{cases} \vec{\mathbf{B}} \perp d \vec{\mathbf{s}} & \text{along sides 2 and 4} \\ \vec{\mathbf{B}} = 0 & \text{along side 3} \end{cases}$$

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \iint_{1} \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} + \iint_{2} \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} + \iint_{3} \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} + \iint_{4} \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}}$$

$$= Bl + 0 + 0 + 0$$

$$I_{enc} = nlI$$
 n: turn density

$$\oint \vec{\mathbf{B}} \cdot d \, \vec{\mathbf{s}} = Bl = \mu_0 n l I$$

n = N/L: # turns/unit length

$$B = \frac{\mu_0 n II}{l} = \mu_0 n I$$

Demonstration: Long Solenoid

Group Problem: Current Sheet

A sheet of current (infinite in the y & z directions, of thickness 2d in the x direction) carries a uniform current density:

$$\vec{\mathbf{J}}_{s} = J\hat{\mathbf{k}}$$

Find B everywhere

Ampere's Law: Infinite Current Sheet

B is Constant & Parallel OR Perpendicular OR Zero
I Penetrates

Solenoid is Two Current Sheets

Field outside current sheet should be half of solenoid, with the substitution:

$$nI = 2dJ$$

This is current per unit length (equivalent of λ , but we don't have a symbol for it)

Ampere's Law: $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I_{enc}$

Long
Circular
Symmetry

(Infinite) Current Sheet

Solenoid

2 Current Sheets

Torus

Brief Review Thus Far...

Maxwell's Equations (So Far)

Gauss's Law:

$$\iint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q_{in}}{\varepsilon_{0}}$$

Electric charges make diverging Electric Fields

Magnetic Gauss's Law: $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0$

$$\iint_{S} \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0$$

No Magnetic Monopoles! (No diverging B Fields)

Ampere's Law:

$$\oint_C \vec{\mathbf{B}} \cdot d \vec{\mathbf{s}} = \mu_0 I_{enc}$$

Currents make curling Magnetic Fields