1_{NT} – dealing with interference

Krystyna Gasińska, Bartek Słupik January 30, 2024

$$1NT - (2 - ?)$$

$$2 \clubsuit = \clubsuit$$

• \times = Stayman

SYSTEM ON

$$1NT - (2^{A}) - ?$$

$$2 = 5/4$$

- $\times = 8+$
- $2 \checkmark$, $2 \spadesuit$, $3 \spadesuit$ = to play
- 2NT = minors

$$1NT - (2^{\bullet}) - ?$$

$2 \blacklozenge = \blacklozenge$

- \times = negative
- $2 \checkmark$, $2 \spadesuit$ = to play
- 2NT = Lebensohl
- $3 = 5 + \forall$, INV^+
- $3 \blacklozenge = 1 \blacklozenge$, \mathbf{INV}^+
- 3 = 5 + 4, INV^+

- 3 = 5 + 4, INV^+
- 3NT = no stopper
- $4 \blacklozenge$, $4 \blacktriangledown = \text{Texas}$

$$1NT - (2 \stackrel{\wedge}{\diamond}{}^{A}) - ?$$

$$2 > 6 +$$

- $\times = 8+$
- $2 \checkmark$, $2 \spadesuit$ = to play
- 2NT = Lebensohl
- $3 \clubsuit = 5 + \blacklozenge$, INV^+
- $3 \stackrel{\bullet}{\bullet} = 5 + \stackrel{\blacktriangledown}{\blacktriangledown}, INV^+$
- 3 = 5 + 4, INV^+
- $3 \spadesuit = 5/5 \spadesuit$
- 3NT = to play
- $4 \blacklozenge$, $4 \blacktriangledown = \text{Texas}$

1NT - (2) - ?

- \times = negative
- $2 \spadesuit = \text{to play}$
- 2NT = Lebensohl
- $3 \clubsuit = 5 + •$, INV^+
- 3 = 5 + •, INV^+
- $3 = 1 V, INV^+$
- 3 = 55 , GF
- 3NT = no stopper
- 4 = Texas

1NT - (2 - ?)

- \times = negative
- 2NT = Lebensohl
- $3 \clubsuit = 5 + •$, INV^+
- $3 \stackrel{\bullet}{\bullet} = 5 + \stackrel{\blacktriangledown}{\blacktriangledown}$, INV^+
- $3 \lor = 55 . GF$
- $3 = 1 1 \cdot 100$
- 3nt = no ♠ stopper
- $4 \blacklozenge = \text{Texas}$

$$1NT - (2NT^{A}) - ?$$

$$2nt = \clubsuit$$

- $\times = 10+$
- 3 = Stayman
- $3 \stackrel{\bullet}{\bullet} = 5 + \stackrel{\blacktriangledown}{\blacktriangledown}, INV^+$
- 3 = 5 + 4, INV^+

1NT - (3.) - ?

- \times = negative
- $3 \stackrel{\bullet}{\bullet} = 5 + \stackrel{\blacktriangledown}{\blacktriangledown}$, INV^+
- $3 \lor = 5 + \spadesuit$, INV^+
- $3 = 5 + , INV^+$
- 3NT = to play

1NT - (3) - ?

- \times = negative
- 3 = 5 + 4, INV^+
- 3♠ = 5+♥, **GF**
- 3NT = to play

$$1NT - (\times^{A}) - ?$$

× artificial SYSTEM ON

$$1NT - (\times) - ?$$

- \times = penalty
 - PASS = forces $\times \times$
 - $\times \times = \text{forces } 2 \clubsuit$
 - $2\mathbf{x} = \text{forces } \mathbf{x+1}$

$$\begin{aligned} &1NT-\left(\times \right) -P^{\textcolor{red}{A}}-\left(P\right) \\ &\times\times-\left(P\right) -? \end{aligned}$$

- PASS = penalty
- 2 = 4 + 4x or 4333 or any other edge case
- $2 \blacklozenge = 4 \blacklozenge + 4 \maltese$
- $2 \checkmark = 4 \checkmark + 4 \spadesuit$