

SIM8905A_User Manual_ V1.00

Compliance Information:

FCC Compliance Statement: This device complies with Part 15 of the FCC Rules . Operation is subject to the following two conditions: 1. This device may not cause harmful interference, and 2. This device must accept any interference received, including interference that may cause undesired operation. This device must accept any interference received, including interference that may cause undesired operation. Product that is a radio transmitter is labeled with FCC ID.

FCC Caution:

- (1)Exposure to Radio Frequency Radiation. This equipment must be installed and operated in accordance with provided instructions and the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be collocated or operating in conjunction with any other antenna or transmitter. End-users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance.
- (2)Any changes or modifications not expressly approved by the grantee of this device could void the user's authority to operate the equipment.
- (3) This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- (4) Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user authority to operate the equipment.
- (5) the modules FCC ID is not visible when installed in the host, if the host is marketed so that end users do not have straight forward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module: Contains Transmitter Module FCC ID: 2AJYU-8PSA301 or Contains FCC ID: 2AJYU-8PSA301.

The following statement must be included with all versions of this document supplied to an OEM or integrator, but should not be distributed to the end user.

This device is intended for OEM integrators only.

Please See the full Grant of Equipment document for other restrictions.

1. SIM8905A Description

1.1. Summarize

SIM8905A is a smart module, which is based on Qualcomm MSM8909 platform. It includes baseband, memory, RF front end and required circuitry to support LTE-FDD.

1.2. Feature

Feature	Implementation
	Quad ARM Cortex-A7 cores up to 1.1 GHz
Application Processor	32 kB L1, 512 kB L2 cache
	ARMv7 32-bit architecture
Memory	8Gb LPDDR3 up to 533Mhz; (SIM8905AH: 16Gb LPDDR3 RAM)
	8GB eMMC NAND flash
External memory via SD	SD3.0; Support SD flash devices up to 32GB
Operating System	Android OS 5.1/7.1/8
Power supply	3.4V ~4.4V
Charge management	Integrated 1.44 A linear charger for single-cell lithium-ion batteries
Display	4-lane MIPI_DSI, 1.5Gbps each
	HD(720P), 60fps
Camera	Primary camera: 2-lane MIPI_CSI, 8MP
	Secondary camera: 1-lane MIPI_CSI, 5MP
Video performance	Encode:
	H.264 BP/MP –720p, 30fps
	MPEG-4 SP / H.263 P0 –WVGA, 30fps
	VP8 –WVGA, 30fps
	Decode:
	H.264 BP/MP/HP - 1080p, 30 fps
	MPEG-4 SP/ASP - 1080p, 30 fps
	DivX 4x/5x/6x - 1080p, 30 fps
	H.263 P0 - WVGA, 30 fps
	VP8 - 1080p, 30 fps
	(HEVC) H.265 MP 8 bit - 1080p, 30 fps
Audio	Two inputs that support single-ended configurations
	Three outputs: earpiece, stereo headphones, and mono class-D speaker driver

	Voice codec support: G711; Raw PCM; QCELP; EVRC, -B, -WB; AMR-NB, -WB; GSM-EFR, -FR, -HR; Audio codec support: MP3; AAC+, eAAC; AMR-NB, -WB, G711, WMA 9/10 Pro
USIM card	Dual cards dual standby
Transmission rate	 LTE Category 4 - 150 Mbps (DL) LTE Category 4 - 50 Mbps (UL)
Temperature range	Operating temperature: $-25^{\circ}\text{C} \sim +75^{\circ}\text{C}$ Storage temperature: $-40^{\circ}\text{C} \sim +90^{\circ}\text{C}$
Physical dimension	Dimension: 40.5*40.5*2.8mm Weight: 10.6g

1.3. Pin

1.4. Picture

Figure 1: Top and Bottom view of SIM8905A

1.5. Dimension 40.50±0.15 0.95 0.95 D 0.38 1.45 <u>wwwww</u> 1.00 PITCH DETAIL A 0.60 DETAIL 2/1 1.00 PITCH 2.75 0.38 0.60 0.65 1.00 PITCH 1.20 DETAIL DETAIL B 2/1 2.75 1.20 2.80±0.20 1.00 PITCH 3.00 PITCH 1.50 | 2.25 6,75 2.75 0.50 3.00 PITCH DETAIL C 2/1 3.00 H 2.65 DETAIL ·o -b-o -i-o -o -o 1.40 6.75 3.00 PITCH 6.75 9.75

Figure 2: Dimention

2. Detail Block Diagram

Figure 3: Block diagram of SIM8905A

3. Interface Application

Power Supply

The power supply pins of SIM8905A include VBAT_RF and VBAT_BB. VBAT_RF directly supplies the power to RF PA; VBAT_BB supplies the power to the baseband system. The power supply of SIM8905A ranges from 3.4V to 4.4V, and 3.9V is recommended. It must be able to provide sufficient current up to 3A for the high-power transmitting.

If the DC input voltage is +5V and customers do not care about the power efficiency, a high-current low-dropout regulator is recommended. Figure 4 is the reference design.

Figure 4: LDO power supply reference circuit

Note: To ensure a proper behavior of the regulator under light load, an extra minimum load (R103 in Figure 4) is required, because the current SIM8905A consumed is very small in sleep mode and power off mode. For more details about minimum load, please refer to specification of MIC29302.

To increase power efficiency, the switching mode DC-DC converter is preferable, especially when DC input voltage is quite high. The following figure is the reference design, and it is recommended to reserve a proper ferrite bead (FB101 in Figure 5) in series for EMI suppression.

Figure 5: DC-DC power supply reference circuit

For battery-powered application, the 3.7V lithium battery can be connected to SIM8905A VBAT pins directly, but other types of battery must be used carefully, since their maximum voltage may rise over the absolute maximum voltage of the module. When battery is used, the total impedance between battery and VBAT pins should be less than $150 \text{m}\Omega$.

In any case mentioned above, at the VBAT input pins side, please take Figure 6 as a reference:

Figure 6: VBAT input reference circuit

Where C101 is a 100uF tantalum capacitor with low ESR; C105 is a 220uF tantalum capacitor with low ESR; 33pF and 10pF capacitors are used for eliminating the high frequency interference; 5.1V/500mW zener diode can protect the module against voltage surge.

All of these components should be placed as close to VBAT pins as possible.

Table 1: Recommended zener diode

	Vendor	Part number	Power(watts)	Packages
1	On semi	MMSZ5231BT1G	500mW	SOD123
2	Prisemi	PZ3D4V2H	500mW	SOD323
3	Vishay	MMSZ4689-V	500mW	SOD123

4 Crownpo CDZ55C5V1SM 500mW 0805

Power on/off

Power on

Users can power on SIM8905A by pulling down the PWRKEY pin for more than 2 second then release. This pin is already pulled up to 1.8V internally, so external pull up is not necessary. Reference circuits are shown as below:

Figure 7: Powered on/down module using transistor

Figure 8: Powered on/down module using button

The power on sequence is illustrated in Figure 9

Figure9: Timing of power on module

Power off

Users can power off SIM8905A by pulling down the PWRKEY pin for more than 8 seconds.

VRTC

VRTC is the power supply for RTC circuit and charger output for coin cell or backup battery. If RTC support is needed when the battery is removed, a qualified coin cell or keep-alive capacitor is required on the VRTC pin. When VBAT is present and valid, coin cell charging is enabled through software control and powered from VBAT.

Reference circuits are shown as below:

Keep-alive capacitor:

Figure 10: Keep-alive capacitor

Non-rechargeable battery:

Figure 11: Non-rechargeable battery

Rechargeable battery:

Figure 12: Rechargeable battery

VRTC typical voltage is 3.0V, and the current consumption is about 5uA when VBAT is absence. For electrical characteristics, please refer to Table 23: VRTC characteristic.

Output Power Management

Table 2: Output power management summary

Pin Name	Pin#	Specified range (V)	Rated current (mA)	Expected use
LDO5_1V8	111	1.8	50	Force USB boot
LDO6_1V8	125	1.8	200	Display, camera, sensors
SD_LDO11	38	2.95	600	SD/MMC card
SD_LDO12	32	1.8/2.95	50	For SD signals pull-up
USIM1_VDD	26	1.8/2.95	50	USIM 1
USIM2_VDD	21	1.8/2.95	50	USIM 2
LDO17_2V85	129	2.85	420	Display, camera, sensors

USB Interface

SIM8905A provides one High-speed USB 2.0 interface, used for software upgrading, debugging, charging, etc.

Figure 13: USB reference circuit

In addition, SIM8905A supports OTG function, but external 5V power supply is required.

Figure 14: USB_OTG reference circuit

Linear Battery Charger

SIM8905A module integrates a 1.44A linear battery charger for single-cell lithium-ion batteries.

Charging Control

Battery charging is controlled by a PMIC state-machine. The first step in the automated charging process determines if trickle charging is needed. Charging of a severely depleted battery must begin with trickle charging to limit the current, avoid pulling VDD down, and protect the battery from more charging current than it can handle. Once a minimum battery voltage is established using trickle charging, constant-current charging is enabled to charge the battery quickly – this mode is sometimes called fast charging. Once the battery approaches its target voltage, the charge is completed using constant-voltage charging.

Figure 15: Charging control diagram

Table 3: Linear battery charger performance specifications

Parameter Comments Min Typ Max Units

I _{TRKL-A}	Trickle-A Charging current	81	90	99	mA
I _{TRKL-B}	Trickle-B Charging current	405	450	495	mA
V_{TRKL}	Trickle-B threshold voltage range Programmable, 15.62 mV steps	2.5	2.796	2.984	V
V_{WEAK}	Weak battery threshold range Programmable, 18.75 mV steps	3.0	3.206	3.581	V
V_{BAT_MAX}	Maximum battery voltage Programmable, 25 mV steps	4	4.2	4.775	V
I_{BAT_MAX}	Fast charging current range Programmable, 90mA steps	90		1440	mA

VBAT_SNS

VBAT_SNS is used for battery voltage sensing, the typical input range is 2.5V~4.5V.

UART/SPI/I2C

SIM8905A provides several sets of GPIOs which are available as BLSP (BAM-enabled low-speed peripheral) interfaces that can be configured to support various interface combinations, as shown in the following table. The operation voltage is 1.8V

Table 4: UART/SPI/I2C functional assignments

Pin Name	Pin#	Expected or Default Function	Alternative Function 1	Alternative Function 2
UART2_TXD	94	BLSP1_UART_TX	BLSP1_SPI_MOSI	
UART2_RXD	93	BLSP1_UART_RX	BLSP1_SPI_MISO	
SENSOR_I2C_SDA	92	BLSP1_I2C_SDA	BLSP1_SPI_CS_N	BLSP1_UART_CTS
SENSOR_I2C_SCL	91	BLSP1_I2C_SCL	BLSP1_SPI_CLK	BLSP1_UART_RTS
GPIO_8	119	GPIO	BLSP6_SPI_MOSI	
GPIO_9	118	GPIO	BLSP6_SPI_MISO	
GPIO_10	117	GPIO	BLSP6_SPI_CS_N	BLSP6_I2C_SDA
GPIO_11	116	GPIO	BLSP6_SPI_CLK	BLSP6_I2C_SCL
GPIO_16	123	GPIO	BLSP5_SPI_MOSI	
GPIO_17	124	GPIO	BLSP5_SPI_MISO	
TP_I2C_SDA	48	BLSP5_I2C_SDA	BLSP5_SPI_CS_N	
TP_I2C_SCL	47	BLSP5_I2C_SCL	BLSP5_SPI_CLK	
UART1_TXD	34	BLSP2_UART_TX	BLSP2_SPI_MOSI	
UART1_RXD	35	BLSP2_UART_RX	BLSP2_SPI_MISO	
UART1_CTS	36	BLSP2_UART_CTS	BLSP2_SPI_CS_N	BLSP2_I2C_SDA
UART1_RTS	37	BLSP2_UART_RTS	BLSP2_SPI_CLK	BLSP2_I2C_SCL
CAM_I2C_SDA	84	BLSP3_I2C_SDA		
CAM_I2C_SCL	83	BLSP3_I2C_SCL		

Note:

- 1. UART: can be used as a diagnostic port, up to 4 Mbps;
- 2. I2C: supports master-only mode; up to 3.4 MHz, 2.2Kohm pull-up resistors are needed externally;

3. SPI: supports master-only mode; up to 52 MHz.

Secure Digital Interface

SIM8905A provides one 4-bit secure digital interface, which supports the following standards:

- SD Specifications Part 1 Physical Layer Specification Version 3.00
- Part A2 SD Host Controller Standard Specification Version 3.00
- Part E1 SDIO Specification Version 3.00

Figure 17: SD card reference circuit

Display Interface

SIM8905A provides a 4-lane MIPI_DSI, with 1.5 Gbps per lane high-speed mode bandwidth, to support 720p HD display.

PWM is used as PWM control for external WLED driver.

Table 5: Display interface pin definitions

Pin Name	Pin#	Type	Description
PWM	29	О	PWM control for external WLED driver
LCD_RST_N	49	0	LCD reset
LCD_TE	50	I	LCD tear effect
MIPI_DSI_CLK_M	52	0	
MIPI_DSI_CLK_P	53	0	
MIPI_DSI_LANE0M	54	O	MIPI display serial interface
MIPI_DSI_LANE0P	55	О	
MIPI_DSI_LANE1M	56	O	
MIPI_DSI_LANE1P	57	O	

MIPI_DSI_LANE2M	58	0
MIPI_DSI_LANE2P	59	О
MIPI_DSI_LANE3M	60	O
MIPI_DSI_LANE3P	61	0

If only 2-lane MIPI_DSI is needed, just leave LANE2 and LANE3 floating.

Figure 18: Display reference circuit

Touch Screen Interface

Table 6: Touch screen interface pin definitions

Pin Name	Pin#	Type	Description
TP_I2C_SDA	48	I/O	Touch screen I2C data
TP_I2C_SCL	47	0	Touch screen I2C clock
TP_INT_N	30	I	Touch screen interrupt
TP_RST_N	31	0	Touch screen reset

Note:

1. TP_I2C: supports master-only mode; 2.2Kohm pull-up resistors are needed externally;

Camera Interface

SIM8905A supports two cameras: 2-lane MIPI_CSI primary camera up to 8MP resolution and 1-lane MIPI_CSI secondary camera up to 5MP resolution.

Table 7: Camera interface pin definitions

Pin Name	Pin#	Туре	Description
MIPI_CSI0_CLK_M	63	I	
MIPI_CSI0_CLK_P	64	I	
MIPI_CSI0_LN0_M	65	I	
MIPI_CSI0_LN0_P	66	I	Primary camera serial interface
MIPI_CSI0_LN1_M	67	I	
MIPI_CSI0_LN1_P	68	I	
MIPI_CSI1_CLK_M	70	I	
MIPI_CSI1_CLK_P	71	I	
MIPI_CSI1_LN0_M	72	I	Secondary camera serial interface
MIPI_CSI1_LN0_P	73	I	
CAM0_MCLK	74	0	Primary Camera master clock
CAM1_MCLK	75	0	Secondary Camera master clock
CAM0_RST_N	79	0	Primary Camera reset
CAM0_PWDN	80	0	Primary Camera power down
CAM1_RST_N	81	0	Secondary Camera reset
CAM1_PWDN	82	0	Secondary Camera power down
CAM_I2C_SCL	83	0	Camera I2C clock
CAM_I2C_SDA	84	I/O	Camera I2C data

Figure 19: Primary camera reference circuit

Audio

SIM8905A provides two microphone inputs and three outputs including earpiece, stereo headphones, and mono class-D speaker driver.

Table 8: Audio interface pin definitions

Pin Name	Pin#	Туре	Description
EAR_P	8	O	Earpiece output, positive
EAR_M	9	O	Earpiece output, negative
HPH_R	136	O	Headphone output, right channel
HPH_GND	137	I	Headphone ground reference
HPH_L	138	O	Headphone output, left channel
HS_DET	139	I	Headset detection
GND_MIC	5	P	Microphone input 2 ground reference
MIC2P	6	I	Microphone input 2, positive
MIC1P	4	I	Microphone input 1, positive
SPK_M	11	0	Speaker driver output, negative
SPK_P	10	0	Speaker driver output, positive
MIC_BIAS1	194	0	Microphone bias 1
MIC_BIAS2	210	0	Microphone bias 2

Microphone

Figure 20: Microphone reference circuit

Note:

- 1. Internal MIC_BIAS pull-up is used to reduce BOM cost and PCB routing.
- 2. Single-ended capless input is the only supported configuration, but differential routing is recommended.

Table 9: Analog microphone input performance

Parameter	Test conditions	Min	Тур	Max	Units				
Microphone amplifier ga	Microphone amplifier gain = 0 dB (minimum gain)								
Input referred noise	Single-ended, A-weighted, capless	-	19.3	25.1	μVrms				
Signal-to-noise ratio	Single-ended, A-weighted, capless	92.0	94.0	-	dB				
THD+N ratio Analog input = -1 dBV	f = 1.02 kHz; single-ended input; 200 Hz to 20 kHz bandwidth; capless	-	-86.0	-70.0	dB				
Microphone amplifier ga	in = 6 dB								
Input referred noise	Single-ended, A-weighted, capless	-	5.9	7.1	μVrms				
Signal-to-noise ratio	Single-ended, A-weighted, capless	91.0	92.5	-	dB				
THD+N ratio	f = 1.02 kHz; single-ended input;	-	-85.0	-70	dB				
Analog input = -1 dBV	200 Hz to 20 kHz bandwidth; capless								
Microphone amplifier ga	in = 24 dB (maximum gain)								
Input referred noise	Single-ended, A-weighted, capless	-	3.4	4.2	μVrms				
Signal-to-noise ratio	Single-ended, A-weighted, capless	84.2	85.4	-	dB				
THD+N ratio	f = 1.02 kHz; single-ended input;	-	-82.4	-76.0	dB				
Analog input = -1 dBV	200 Hz to 20 kHz bandwidth; capless								
General requirements									

Full-scale input voltage	Single-ended 1 kHz input. Input signal level required to get 0 dBFS digital output	-0.5	0	0.5	dBV
Input impedance					
Capless input		1.0	-	-	$M\Omega$
Input disabled		3.0	-	-	ΜΩ
Input capacitance	Capless input	-	-	15	pF

Headset

Stereo class-AB headphone supports 16 Ω , 32 Ω , and up to 50 K Ω loads. Its typical output power at 1.02 KHz and THD + N \leq 1% is:

- \square 21.5 mW with 16 Ω loads, 0 dBFS and -4.5 dB gain
- \square 30.8 mW with 32 Ω loads, 0 dBFS and 0 dB gain

A $100 \mathrm{K}\Omega$ pull-down resistor is integrated at HPH_L pin, which could be used for mechanical insertion or removal detection through HS_DET pin. Figure 22 shows the reference circuit for normally-closed (NC) type headset jack.

Figure 21: Headset reference circuit

Note:

- 1. SIM8905A also supports NO/NC type headset jack with detect pin on HPH_L or GND.
- 2. HPH has a negative swing and requires a bi-directional TVS diode.

Table 10: Headphone output performance specifications

Parameter	Test conditions	Min	Тур	Max	Units
Output power	16 Ω load f = 1.02 kHz, 0 dB FS; VDD_CP* = 1.95 V	15.6	21.5	25.5	mW
output power	32 Ω load f = 1.02 kHz, 0 dB FS; VDD_CP* = 1.95 V	27.0	30.8	32.0	mW
Full-scale	$16 \Omega \text{ load } f = 1.02 \text{ kHz}, 0 \text{ dB FS}; \text{VDD_CP*} = 1.95 \text{ V}$	0.50	0.59	0.64	Vrms
output Voltage	32 Ω load f = 1.02 kHz, 0 dB FS; VDD_CP* = 1.95 V	0.96	0.99	1.00	Vrms
Output load		13.0	16/32	-	Ω

Disabled output impedance	Measured externally, with amplifier disabled	1.0	-	-	ΜΩ
impedance					

Note: The VDD_CP is internal Voltage of module.

Earpiece

Class AB earpiece driver supports 10.67 Ω , 16 Ω , 32 Ω , and up to 50 K Ω loads. Its typical output power at 1.02 KHz, 6 dB gain, and THD + N \leq 1% is:

 \square 119 mW with 32 Ω loads

 \square 243 mW with 16 Ω loads

 \square 320 mW with 10.67 Ω loads

Figure 22: Earpiece reference circuit

Table 11: Earpiece output performance specifications

Parameter	Test conditions	Min	Тур	Max	Units
Output power	32 Ω load f = 1.02 kHz, 6 dB gain THD+N < 1%	120.0	124.5	-	mW
o unput po mor	16 Ω load f = 1.02 kHz, 6 dB gain THD+N < 1%	235.0	243.0	-	mW
Full-scale	6 dB gain mode f = 1.02 kHz	1.8	2.0	2.1	Vrms
output Voltage	1.5 dB gain mode f = 1.02 kHz	1.0	1.2	1.3	Vrms
Output load		10.7	32	-	Ω
Disabled output impedance	Measured externally, amplifier disabled	1.0	-	-	ΜΩ

Speaker

Class-D mono differential loud speaker driver supports 4 Ω and 8 Ω loads. The driver is powered from VBAT, and does not support external 5 V Boost Option. Its typical output power at 1.02 KHz, 12 dB gain, and THD + N \leq 1% is:

□950 mW with 8 Ωloads, VDD_SPKR=VBAT= 4.2 V

 \square 692 mW with 8 Ω loads, VDD_SPKR=VBAT= 3.6 V

 \square 1063 mW with 4 Ω loads, VDD_SPKR=VBAT= 3.6 V

Figure 23: Speaker reference circuit

Table 12: speaker driver output performance specifications

Parameter	Test conditions	Min	Тур	Max	Units
	15 μ H + 8 Ω + 15 μ H, Vdd = 3.6 V	584	631	-	mW
Output power (Pout) (f = 1 kHz, gain = 12 dB,	15 μ H + 4 Ω + 15 μ H, Vdd = 3.6 V	862	953	-	mW
THD+N \leq 1%)	15 μ H + 8 Ω + 15 μ H, Vdd = 3.8 V	662	710	-	mW
	15 μ H + 8 Ω + 15 μ H, Vdd = 4.2 V	819	879	-	mW
	1 W Pout, VDD_SPKR = 4.2 V	-	-85.0	-75.0	dB
THD+N	800 mW Pout, VDD_SPKR = 4.2 V	-	-75.0	-45.0	dB
(1 kHz)	600 mW Pout, VDD_SPKR = 3.8 V	-	-75.0	-70.0	dB
	500 mW Pout, VDD_SPKR = 3.6 V	-	-76.0	-71.0	dB
Efficiency	500 mW Pout, 15 μ H + 8 Ω + 15 μ H	82.0	84.0	-	%
(Vdd = 3.7 V)	1 W Pout, 15 μ H + 4 Ω + 15 μ H	73.0	78.0	-	%
output impedance	Disabled	25	-	-	kΩ
Shutdown	current	-	0.1	1.0	μΑ
Turn on time		-	0.2	10.0	ms

Microphone bias

SIM8905A provides two microphone bias outputs: MIC_BIAS1 and MIC_BIAS2.

The microphone bias cannot be used for ECM-type microphone. MIC_BIAS1 and MIC_BIAS2 could be used for External MEMS microphone as power supply.

The microphone bias output performance specifications are shown in the following table:

Table 13: Microphone bias output performance specifications

Parameter	Test conditions	Min	Typ	Max	Unite	ı
FALAIHEIEF	TEST COMMITTIONS			VIZIX		46

Output voltage	No load	1.60	-	2.85	V
Output voltage error	No load	-3.00	0.00	3.00	%
Output current	2 microphone loads of 1.0 to 1.5 mA each	2.0	3.0	-	mA
Output switch to ground	On resistance	-	-	20	Ω
output switch to ground	Sink current	2.0	-	-	mA
Output noise	0.1 μF bypass	0.0	2.0	4.0	μVrms
	at 20 Hz	80	-	-	dB
DODD D	at 200 Hz to 1 kHz	80	-	-	dB
PSRR- Power supply rejection ratio	at 5 kHz	80	-	-	dB
	at 10 kHz	80	-	-	dB
	at 20 kHz	75	-	-	dB
Output capacitor value		0.1	0.1	0.5	μF

USIM Interface

SIM8905A supports dual cards dual standby, and card presence detection.

Note: The standard software provided by SIMCom only supports single USIM1 card configuration.

Table 14: USIM interface pin definitions

Pin Name	Pin#	Type	Description
USIM2_DET	17	I	USIM2 presence detection
USIM2_RST	18	O	USIM2 reset
USIM2_CLK	19	O	USIM2 clock
USIM2_DAT	20	I/O	USIM2 data
USIM2_VDD	21	P	LDO 15 output for USIM2, 1.8V/2.95V
USIM1_DET	22	I	USIM1 presence detection
USIM1_RST	23	O	USIM1 reset
USIM1_CLK	24	O	USIM1 clock
USIM1_DAT	25	I/O	USIM1 data
USIM1_VDD	26	P	LDO 14 output for USIM1, 1.8V/2.95V

Figure 1: USIM card reference circuit

Note:

USIM_DAT has been pulled up with a 10kohm resistor to USIM_VDD in module. A 220nF shut capacitor on USIM_VDD is used to reduce interference.

ADC

SIM8905A provides one 16bits ADC. Its performance parameters are shown as the following table.

Table 15: ADC performance parameters

Parameter	Comments	Min	Тур	Max	Unit
Input voltage range	Programmable	0.1	-	1.7	V
		0.3	-	4.5	
Resolution		-	16	-	bits
Analog input bandwidth		-	100	-	kHz
Sample rate	XO/8	-	2.4	-	MHz
INL	15-bit output	-	-	±8	LSB
DNL	15-bit output	-	-	±4	LSB
Offset error	Relative to full-scale	-	-	±1	%
Gain error	Relative to full-scale	-	-	±1	%

Vibrator

SIM8905A supports silent incoming-call alarms with its vibration motor driver. The vibration driver is a programmable voltage output that is referenced to VBAT; when off, its output voltage is VBAT. The motor is connected between VBAT and the VIB_DRV_N pin. The programmable motor voltage ranges from 1.2 to 3.1 V in 100 mV steps.

Figure 25: Vibrator reference circuit

Antenna Interface

SIM8905A provides two antenna interfaces including MAIN antenna and DRX antenna. To ensure good RF performance, users should meet the following requirements:

- Keep the RF traces at 50Ω .
- Maintain a complete and continuous reference ground plane from antenna pin to the RF connector.
- The RF traces should be away from any other noisy traces.
- Keep the RF traces as short as possible.

MAIN Antenna reference circuit

The recommended circuit is shown as below:

Figure 26: MAIN antenna recommended circuit

R1, C1 and C2 are antenna matching components in Figure 27, the value of these components are determined according to the antenna tuning results. By default, R1 is 0Ω, C1 and C2 are reserved. The RF connector in Figure 27 is used to ensure the accuracy and convenience of the conduction testing, so SIMCOM suggest keeping it. If considering Low-Cost BOM, user can cancel the connector.

DRX Antenna reference circuit

The recommended circuit is shown as below:

Figure 27: DRX antenna recommended circuit

R1, C1 and C2 are antenna matching components in Figure 28, the value of these components are determined according to the antenna tuning results. By default, R1 is 0Ω , C1 and C2 are reserved. The RF connector in Figure 28 is used to ensure the accuracy and convenience of the conduction testing, so SIMCOM suggest keeping it. If considering Low-Cost BOM, user can cancel the connector.

PCB Layout

This section provides PCB layout guidelines for SIM8905A users to ensure their production against lots of issues, and achieve the optimum performance.

Stack-up Options

At least, 4-layer through-hole PCB should be chosen for good impedance control and signal shielding.

General Placement Guidelines

- Locate SIM8905A module in the center of PCB, rather than in the corner.
- Digital devices and traces should not be placed near sensitive signals like RF and clock.
- Keep SPKR and MIC away from sensitive RF lines.

PCB Layout Guideline Details

RF Trace

- RF connector should be placed close to the module's antenna pin.
- Antenna matching circuit should be placed close to the antenna.
- Keep the RF traces at 50Ω .
- Maintain a complete and continuous reference ground plane from antenna pin to the RF connector.
- The RF traces should be far away from any other noisy traces.
- Keep the RF traces as short as possible.
- If using a coaxial RF cable to connect the antenna, please avoid spanning on USIM cards, power circuits and high-speed digital circuits to minimize the impact of each other.

Power/GND

- Both VBAT and return path should be as short and wide as possible to minimize the IR drop
- The VBAT current should go through Zener diode, capacitors, then VBAT pins
- Must have a solid ground plane throughout the board as the primary reference plane for most signals

USIM Card

Ensure USIM card holder is far way from antenna or RF signal

- ESD component and bypass caps should be placed closed to USIM Card
- USIM card signals should be far away from other high-speed signal

MIPI_DSI/CSI

- Protect MIPI_DSI/CSI signals from noisy signals (clocks, SMPS, etc.)
- Differential pairs, 100Ω nominal, $\pm 10\%$
- Total routing length < 305 mm
- Intra-pair length matching < 5 ps (0.67 mm)
- Inter-pair length matching < 10 ps (1.3 mm)
- Lane-to-lane trace spacing = 3x line width
- Spacing to all other signals = 4x line width
- Maintain a solid ground reference for clocks to provide a low-impedance path for return currents
- Each trace needs to be next to a ground plane
- Minimize the number of via on the trace

Refer to the following table for the length of MIPI traces inside the module.

Table 16: Length of MIPI traces inside the module

Pin#	Net Name	Length(mm)
52	MIPI_DSI_CLK_M	8.08
53	MIPI_DSI_CLK_P	9.03
54	MIPI_DSI_LANE0M	9.04
55	MIPI_DSI_LANE0P	8.73
56	MIPI_DSI_LANE1M	9.29
57	MIPI_DSI_LANE1P	9.10
58	MIPI_DSI_LANE2M	8.69
59	MIPI_DSI_LANE2P	8.95
60	MIPI_DSI_LANE3M	9.10
61	MIPI_DSI_LANE3P	9.85
63	MIPI_CSI0_CLK_M	14.04
64	MIPI_CSI0_CLK_P	13.79
65	MIPI_CSI0_LN0_M	13.27
66	MIPI_CSI0_LN0_P	13.23
67	MIPI_CSI0_LN1_M	13.96
68	MIPI_CSI0_LN1_P	14.49
70	MIPI_CSI1_CLK_M	17.21
71	MIPI_CSI1_CLK_P	17.69
72	MIPI_CSI1_LN0_M	16.34
73	MIPI_CSI1_LN0_P	17.25

USB

- 90 Ω differential, \pm 10% trace impedance
- Differential data pair matching < 6.6 mm (50 ps)

- External components should be located near the USB connector.
- Should be routed away from sensitive circuits and signals.
- If there are test points, place them on the trace to keep branches as short as possible
- If USB connector is used as the charger input, USB_VBUS node must be routed to the module using extremely wide traces or sub planes.

Refer to the following table for the length of USB traces inside the module.

Table 17: Length of USB traces inside the module

Pin#	Net Name	Length(mm)
13	USB_DM	30.58
14	USB_DP	30.22

SDC Signal

- Protect other sensitive signals/circuits from SDC corruption.
- Protect SDC signals from noisy signals (clocks, SMPS, etc.).
- Up to 200 MHz clock rate
- 50 Ω nominal, $\pm 10\%$ trace impedance
- CLK to DATA/CMD length matching < 1 mm
- $30-35 \Omega$ termination resistor on clock lines near the module
- Total routing length < 50 mm recommended
- Spacing to all other signals = 2x line width
- Bus capacitance < 15 pF

Refer to the following table for the length of SD traces inside the module.

Table 18: Length of SD traces inside the module

Pin#	Net Name	Length(mm)
39	SD_CLK	14.24
40	SD_CMD	15.19
41	SD_DATA0	14.87
42	SD_DATA1	13.63
43	SD_DATA2	12.90
44	SD_DATA3	13.05

Audio

Analog input

- 4 to 5 mil trace widths; 4 to 5 mil spacing between traces
- Differential route for MIC1P with GND_MIC and MIC2P with GND_MIC;
- Isolate from noise sources, such as antenna, RF signals, SMPS, clocks, and other digital signals with fast

transients

Analog output

- Coplanar ground fill on both sides (of traces or pair as appropriate); in between ground planes grounds above and below
- Isolate from noise sources such as antenna, RF signals, SMPS, clocks, and other digital signals with fast transients.
- EAR output signal route as differential pair with 10 mil trace widths.
- SPK output signals route as differential pair with 20 mil trace widths with 8 Ω load and 25 mil trace widths with 4 Ω load
- HPH output signals not a differential pair; 10 mil trace widths for HPH_L and HPH_R; 15 mil trace widths for HPH_GND
- Connect HPH_GND to the ground pin of the jack connector and route HPH_GND in between HPH_L and HPH_R for best crosstalk minimization

Electrical and Reliability

Absolute Maximum Ratings

Absolute maximum ratings reflect the stress levels that, if exceeded, may cause permanent damage to the device. Functionality and reliability are only guaranteed within the operating conditions.

Table 19: Absolute maximum ratings

Parameter	Min	Max	Unit
VBAT	-0.3	5	V
VBUS	-0.3	7	V
VRTC	-	3.5	V

Temperature Range

Table 20: Temperature range

Parameter	Min	Тур	Max	Unit
Operating temperature	-25		+75	$^{\circ}$ C
Storage temperature	-40		+90	${\mathbb C}$

Operating Voltage

Table 21: Operating voltage

Parameter	Min	Тур	Max	Unit
VBAT	3.4	3.9	4.4	V
VBUS	4.35	5	5.5	V
VRTC	2.0	3.0	3.25	V

Digital-logic Characteristics

Table 22: 1.8 V digital I/O characteristics

Parameter	Description	Min	Тур	Max	Unit
V_{IH}	High-level input voltage	1.17	-	-	V
V_{IL}	Low-level input voltage	-	-	0.63	V
V_{OH}	High-level output voltage	1.35	-	-	V
V_{OL}	Low-level output voltage	-	-	0.45	V

Table 23: USIM interface characteristics (USIM_VDD=1.8V/2.95V)

Parameter	Description	Min	Тур	Max	Unit
V_{IH}	High-level input voltage	0.7* USIM_VDD	-	USIM_VDD+0.3	V
V_{IL}	Low-level input voltage	-0.3	-	0.2* USIM_VDD	V
V_{OH}	High-level output voltage	0.8*USIM_VDD	-	USIM_VDD	V
V_{OL}	Low-level output voltage	0	-	0.4	V

Table 24: SD interface characteristics (SD_LDO11 =1.8V)

Parameter	Description	Min	Тур	Max	Unit
V_{IH}	High-level input voltage	1.27	-	2	V
V_{IL}	Low-level input voltage	-0.3	-	0.58	V
V_{OH}	High-level output voltage	1.4	-	-	V
V_{OL}	Low-level output voltage	0	-	0.45	V

Table 25: SD interface characteristics (SD_LDO11 =2.95V)

Parameter	Description	Min	Тур	Max	Unit
V_{IH}	High-level input voltage	0.625* SD_LDO11	-	SD_LDO11+0.3	V
V_{IL}	Low-level input voltage	-0.3	-	0.25* SD_LDO11	V
V_{OH}	High-level output voltage	0.75* SD_LDO11	-	SD_LDO11	V
V_{OL}	Low-level output voltage	0	-	0.125* SD_LDO11	V

PWRKEY Characteristics

Table 26: PWRKEY characteristics

Parameters	Description	Min	Тур	Max	Unit
V_{IH}	High-level input voltage	1.4	-	-	V
V_{IL}	Low-level input voltage	-	-	0.6	V

VRTC Characteristics

Table 27: VRTC characteristic

Parameter	Description	Min	Тур	Max	Unit
VRTC _{-IN}	VRTC input voltage	2.0	3.0	3.25	V
$I_{RTC\text{-}IN}$	VRTC current consumption	-	5	10	uA
VRTC _{-OUT}	VRTC output voltage	2.5	3.1	3.2	V
I _{RTC-OUT}	VRTC output current	-		2	mA

Current Consumption (VBAT=3.9V)

Table 28: Current consumption

Parameter	Conditions	Min	Тур	Max	Unit
Leakage current	Off mode		20		uA
	Flight mode		1.22		mA
	GSM:				
	BS-PA-MFRMS=9		1.65		mA
~	BS-PA-MFRMS=5		1.85		mA
Standby current	BS-PA-MFRMS=2		3.00		mA
	WCDMA, DRX=8		2.48		mA
	LTE-FDD, standby 1.28s		2.11		mA
	LTE-TDD, standby 1.28s		2.56		mA
Peak current				3.0	A

Electro-Static Discharge

Electrostatic discharge (ESD) occurs naturally in laboratory and factory environments. An established

high-voltage potential is always at risk of discharging to a lower potential. If this discharge path is through a semiconductor device, it may result in destructive damage.

SIM8905A must be handled according to the ESD Association standard: ANSI/ESD S20.20-1999, Protection of Electrical and Electronic Parts, Assemblies, and Equipment.

Table 29: ESD performance parameters (Temperature: 25°C, Humidity: 45%)

Pin	Contact discharge	Air discharge
VBAT	±5KV	\pm 10 KV
GND	±5KV	±12KV
Antenna	±5KV	±10KV
PWRKEY	±4KV	±6KV

Module Operating Frequencies

Table 30: Module operating frequencies

Frequency	Receive	Transmit	Physical channel
LTE B2	1930-1990 MHz	1850-1910 MHz	TX: 18600-19199 RX: 600-1199
LTE B4	2110-2155 MHz	1710-1755 MHz	TX: 19950-20399 RX: 1950-2399
LTE B5	869-894 MHz	824-849MHz	TX: 20400-20649 RX: 2400-2649
LTE B12	729-746MHz	699-716MHz	TX: 23010-23179 RX: 5010-5179

Module Output power

Table 31: Conducted transmission power

Frequency	Power	Min.
LTE-FDD B2	23dBm +/-2.7dB	<-40dBm
LTE-FDD B4	23dBm +/-2.7dB	<-40dBm
LTE-FDD B5	23dBm +/-2.7dB	<-40dBm
LTE-FDD B12	23dBm +/-2.7dB	<-40dBm

Module Receiving Sensitivity

Table 32: Reference sensitivity QPSk P_{REFSENS} (LTE)

E-UTRA Band number	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex mode
2	-102.7	-99.7	-98	-95	-93.2	-92	FDD
4	-104.7	-101.7	-100	-97	-95.2	-94	FDD
5	-103.2	-100.2	-98	-95			FDD
12	-101.7	-98.7	-97	-94			FDD

Contact us:

Shanghai SIMCom Wireless Solutions Co.,Ltd.

Address: Building B, SIM Technology Building, No. 633, Jinzhong Road, Shanghai, P. R. China

200335

Tel: + 86 21 3157 5100 Fax: +86 21 3157 5200

URL: http://simcomm2m.com/

