L'ecture 9

Conditional Distributions

Recall that Prob. of A given another event B event

$$\frac{P(A|B) = P(A \cap B)}{P(B)} = \frac{P(A,B)}{P(B)}$$
Conditional

Conditional probability.

(CDF)
CONDITIONAL DISTRIBUTION of a random variable X given an event M

$$F_{X}(x|M) = P(X \le x|M) = P(X \le x, M)$$

$$P(M)$$

Conditional Density

$$f_{x}(x|m) = \frac{dF_{x}(x|m)}{dx}$$

Eg1: We are interested in finding the Conditional distribution of a r.v. X given that X≤a $F_{\times}(x \mid x \leq a) = P(x \leq x \mid x \leq a)$ $= P(X \le x, X \le a) - \Re$ P(X ≤a) To further simplify (consider two cases xza ⇒ {x ≤x, x ≤a} $\Rightarrow \{x \leq x, x \leq a \leq x\}$ = { x < x? = fx < a } $\Rightarrow P(X \le x, X \le a) = P(X \le a)$ Hence, $F_{X}(x|X \leq a) = \frac{P(X \leq x)}{P(X \leq a)}$ > Fx(x | X ≤ a) = P(x ≤ a) = 1 $= F_{x}(x)$ Fx(a) $F_{\times}(x \mid x \leq a) = \begin{cases} \frac{f_{\times}(x)}{F_{\times}(a)} & \text{if } x < a \end{cases}$ Fx(xe)x≤a) 1 4 Fx(x)

$$F_{\chi}(x \mid a \leq x \leq b) = P(x \leq x \mid a \leq x \leq b)$$

$$= P(x \leq x, a \leq x \leq b)$$

$$= P(x \leq x, a \leq x \leq b)$$

$$P(a \leq x \leq b)$$

$$P(a \leq x \leq b) = F_{\chi}(b) - F_{\chi}(a)$$
What is $P(a \leq x \leq b) = F_{\chi}(b) - F_{\chi}(a)$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b) = F_{\chi}(a)$$

$$P(x \leq x, a \leq x \leq b)$$

$$P(x \leq x, a \leq x \leq$$

What about the conditional PDF?

$$f_{X}(x|a \leq X \leq b) = \begin{cases} f_{X}(x) \\ F_{X}(b) - F_{X}(a) \end{cases} \quad a \leq x < b$$

o otherwise

Since we are given that the event a \le x \le b has occurred.

Ceg	Note: Recall, in the past, we showed the 5 "memoryless" property of exponential distribution 3: Memoryless Property of a Geometric R.V. Geometric R.V. P(X=k) = (1-p).p for k=1,2,3,
	Memoryless Property: P(x>m+n x>m) = P(x>n) Check yourself
	Total Probability & Bayes' Theorem
	$P(X \le oc) = P(X \le oc \mid A_1) P(A_1) +$ $\cdots + P(X \le oc \mid A_n) P(A_n)$ for $A_1, A_2,, A_n$ being a partition of Sample space.
an	$F_{X}(x) = F_{X}(x A_{1}) \cdot P(A_{1}) + F_{X}(x A_{2}) P(A_{2}) + \cdots$ $\cdot \cdot \cdot + F_{X}(x A_{n}) \cdot$
	$f_{x}(x) = f_{x}(x A_{1})P(A_{1}) + + f_{x}(x A_{n})P(A_{n}).$

		Applications of Conditional distribution (8)
	8	Prob. of heads in a coin-tossing Experiment is a v.v. P with density $f_p(p)$. What is Prob. of Heads?
O.		Prob{H P=P3 = P
	=)	Prob{H} = \int Prob{H P=P} fp(P)dP
		P = O
		= \int P \int P \text{(P) dP}.
		J P JPCP or.
		0
	29	elet P(H) = p represent the prob. of obtaining a head in a toss.
	\rightarrow	P can take any value in (0,1)
	->	we can treat P as a random variable.
	\rightarrow	without any information about the coin,
		we assume the a priori pdf to be uniform.
		ie fp(P) ~ uniform(0,1)
	>	Me conduct an experiment -> toss & coin n times & observe k heads
		1 times & observe R heads
	Q.	> How should me update fp(p)??

