10-4-1 [OQA] A refrigerator uses R-134a as the working fluid and operates on an ideal vapor compression refrigeration cycle between 0.15 MPa and 1 MPa. A temperature difference of 5°C is maintained for effective heat exchange between the refrigerant and its surroundings at the evaporator and condenser. The atmospheric conditions are 100 kPa and 25°C. If the mass flow rate is 0.04 kg/s, (a) perform an exergy inventory on a rate (kW) basis for the entire cycle complete with an exergy flow diagram. Determine the (b) exergetic efficiency and (c) COP of the system. (d) Identify the device with the highest rate of exergy destruction.

SOLUTION:

Dead State: p0 = 100 kPa and T0 = 25 °C (298 K)

Table 1 Properties at various state points in the refrigeration plant.

	p kPa	T K	$\dot{\Psi} = \dot{m}\psi$ MW	s $kJ/(kg \cdot K)$	h kJ/kg
State 0	100	298	0	1.10207	275.31
State 1	150	256	0.49330	0.93818	238.78
State 2	1000	320	2.07838	0.93818	278.41
State 3	1000	312	1.75836	0.38878	106.60
State 4	150	256	1.36828	0.42149	106.60

 Table 2 Device-specific Analysis

				The Children	4	
Plant	Device	$ \Delta\dot{\Psi} $	$ \dot{W_u} $	Exergy	İ	Exergetic
Component		kW	kW	Supplied	kW	Efficiency
			A Wes strill	to/from		%
			.xe9 80 411/68	Reservoir		
			July Regilder Cin	kW		
Compressor	A	1.58508	1.58508	0	0	100
Condenser	В	0.32002	See the Othe	0	0.32002	0
Expansion	C	0.39008	att of the office of the offic	0	0.39008	0
Evaporator	D Trip	0.87498	0	0.74951	0.12546	85.66
Total Plant		in sindesi	1.58508	0.74951	0.83557	47.29

$$\dot{Q}_{in} = \dot{m}(h_1 - h_4) = 5.28715 \text{ kW}$$

(b) Rate of exergy supplied by the refrigerant to cold medium at 261 K (exergy flows in the opposite direction of heat flow because $T_C < T_0$),

$$-\dot{Q}_{\rm in}\left(1-\frac{T_0}{T_C}\right) = -5.28715\left(1-\frac{298}{261}\right) = 0.749519 \text{ kW}$$

To calculate the exergetic efficiency, η_{II} ,

$$\dot{W}_{net} = 1.58508 \text{ kW}$$

$$\eta_{II} = \frac{-\dot{Q}_{in} \left(1 - \frac{T_0}{T_C} \right)}{\dot{W}_{net}} = \frac{0.7495}{1.5851} = 0.4729 = 47.29\%$$

(c) To calculate COP the Cycle Panel from TEST was used.

$$\dot{W}_{net} = 1.58508 \text{ kW}$$

$$COP = \frac{\dot{Q}_{in}}{\dot{W}_{net}} = \frac{5.28715 \text{ kW}}{1.58508 \text{ kW}} = 3.33$$

(d) Referring to table 2, expansion coil is device with the highest rate of exergy destruction. 24.6 % of exergy is destroyed in expansion device.

Exergy diagram for the vapor compression refrigeration system (on kW basis)

10-4-2 [OCP] A vapor-compression refrigeration system circulates R-134a at a rate (m) of 10 kg/min. The refrigerant enters the compressor at -10°C, 1.2 bar and exits at 7 bar. The isentropic compressor efficiency is 68%. There are no significant pressure drops as the refrigerant flows through the condenser and evaporator. The refrigerant leaves the condenser at 7 bar and 24°C. Ignoring the heat transfer between the compressor and its surroundings, determine (a) the coefficient of performance (COP_R), (b) the refrigerating capacity in tons and (c) the irreversibility rates of the compressor and expansion valve each in kW for an ambient temperature of 20°C.

SOLUTION:

Use the manual approach or the PC refrigeration cycle daemon to evaluate the enthalpy for each state as tabulated below.

St.	Given	h (kJ/kg)	St.	Given	h (kJ/kg)
1	$p_1 = 1.2 \text{bar}$	245 71	4	$p_4 = p_3$	04.22
	$T_1 = -10^{\circ} C$	245.71	n On: 21.	$p_4 = p_3$ $T_4 = 24^{\circ} C$	84.23
2	$p_2 = 7 \mathrm{bar}$	284.45	5 Hill Stead Ringill	$p_5 = p_1$	84.23
	$s_2 = s_1$	204.43 	Shipte Diego Jour Hey	$h_5 = h_4$	04.23
3	$p_3 = p_2$	State of	Salino, the bey		
	$h_3 = h_1 + \frac{(h_2 - h_1)}{0.68}$	302.69	uding is it		
	0.68	101, the stilling			

The refrigeration capacity is:

The refrigeration capacity is:
$$\dot{Q}_C = \dot{m}(h_1 - h_5) += 0.167(345.71 - 84.23) \Rightarrow \dot{Q}_C = 26.91 \text{kW}$$

$$\Rightarrow \dot{Q}_C = 7.65 \text{ tons } (\because 1 \text{ kW} = 0.284 \text{ tons})$$

The work input to the compressor:

$$\dot{W}_{net} = \dot{m}(h_3 - h_1) = 0.167(302.69 - 245.71) = 9.496 \,\text{kW}$$

$$COP_R = \frac{\dot{Q}_C}{\dot{W}_{net}} = \frac{26.91}{9.496} = 2.83$$

Irreversibility rate in kW during compression:

$$=\dot{S}_{\text{gen}}T_0 = \dot{m}(s_3 - s_1)T_0 = 0.1667(0.0554)293 = 2.704 \text{ kW}$$

Irreversibility rate in kW during compression:

$$= \dot{S}_{gen} T_0 = \dot{m} (s_5 - s_4) T_0 = 0.1667 (0.0227) 293 = 1.108 \text{ kW}$$

10-4-3 [OQP] A vapor-compression refrigeration system circulates R-134a at a rate (*m*) of 10 kg/min. The refrigerant enters the compressor at -10°C, 1.2 bar and exits at 7 bar. The isentropic efficiency of the adiabatic compressor is 68%. There are no significant pressure drops as the refrigerant flows through the condenser and evaporator. The refrigerant leaves the condenser at 7 bar and 24°C. A temperature difference of 5°C is maintained for effective heat exchange between the refrigerant and its surroundings at the evaporator and condenser. The atmospheric conditions are 100 kPa and 25°C. (a) Perform an exergy inventory on a rate (kW) basis for the entire cycle complete with an exergy flow diagram. Determine (b) the exergetic efficiency and (c) COP of the system. (d) Identify the device with the highest rate of exergy destruction.

SOLUTION:

Table 1 Properties at various state points in the refrigeration plant.

1	p kPa	Totilde se	$\dot{\Psi} = \dot{m}\psi$ MW	s $kJ/(kg \cdot K)$	h kJ/kg
State 0	100	298	0	1.10207	275.31
State 1	120 15 NO 10	263	1.03502	0.98194	245.70
State 3	700 of their sa	338	7.77819	1.0373	302.68
State 4	700	297	7.20213	1.3025	84.23
State 5	120	251	6.07456	0.33893	84.23

Table 2 Device-specific Analysis

Plant Component	Device	ΔΨ΄ kW	$ \dot{W_u} $ kW	Exergy Supplied to/from Reservoir kW	<i>İ</i> kW	Exergetic Efficiency %
Compressor	A	6.74317	9.49627	0	2.7531	71

Condenser	В	0.57597	0	0	0.57597	0
Expansion	C	1.12757	0	0	1.12757	0
Evaporator	D	5.03954	0	5.689	1.32174	73.77
Total Plant			9.49627	5.689	5.77838	39.15

$$\dot{Q}_{\rm in} = \dot{m}(h_1 - h_4) = 26.913 \text{ kW}$$

(b) Rate of exergy supplied by the refrigerant to cold medium at 256 K (exergy flows in the opposite direction of heat flow because $T_C < T_0$),

$$-\dot{Q}_{\rm in} \left(1 - \frac{T_0}{T_C} \right) = -26.913 \left(1 - \frac{298}{256} \right) = 4.415 \text{ kW}$$

To calculate the exergetic efficiency, $\eta_{\scriptscriptstyle II}$,

$$\dot{W}_{net} = 9.49627 \text{ kW}$$

$$\eta_{II} = \frac{-\dot{Q}_{in} \left(1 - \frac{T_0}{T_C} \right)}{\dot{W}_{net}} = \frac{4.415}{9.4962} = 0.465 = 46.5\%$$

(c) To calculate COP the Cycle Panel from TEST was used.

$$\dot{W}_{net} = 9.49627 \text{ kW}$$

$$COP_R = \frac{\dot{Q}_{in}}{\dot{W}_{net}} = \frac{26.91269 \text{ kW}}{9.49627 \text{ kW}} = 2.83$$

(d) Referring to table 2, compressor is device with the highest rate of exergy destruction. 28.99% of exergy is destroyed in compressor.

Exergy diagram for the vapor compression refrigeration system (on kW basis)

10-4-4 [OQK] A heat pump which operates on the vapor-compression cycle uses R-134a as the working fluid. Refrigerant enters the compressor at 20 lbf/in², 10°F and is compressed adiabatically to 200 lbf/in², 180°F. Saturated liquid enters the expansion valve at 200 lbf/in², 100°F and exits at 20 lbf/in². The atmosphere temperature is 20°F. (a) Perform an exergy inventory on a rate (Btu/min) basis for the entire cycle complete with an exergy flow diagram. Determine (b) the exergetic efficiency and (c) COP of the system. (d) Identify the device with the highest rate of exergy destruction.

SOLUTION:

Dead State: p0 = 1 atm (101 kPa) and T0 = 77 °F (298 K)

Table 1 Properties at various state points in the refrigeration plant.

	<i>p</i> kPa	T K	$\dot{\Psi} = \dot{m}\psi$ MW	s $kJ/(kg \cdot K)$	<i>h</i> kJ/kg
State 0	101	298	0	1.1010	275.29
State 1	138	261	1.4279	0.9622	243.37
State 3	1379	355	9.3544	1.0120	310.70
State 4	1379	325	6.8329	0.4480	125.69
State 5	138	254	4.5064	0.4990	125.69

Table 2 Device-specific Analysis

vote. Diae quan	uncs are g	51 V CII alla	orack quartit	ies are earean	atog using 11	201.
able 2 Device-	-specific A	analysis	es de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	ioly laws elimesticity lide		
Plant	Device	$ \Delta\dot{\Psi} $	$ \dot{W} ^{\mathcal{G}}$	Exergy	j	Exergetic
Component		kW	AM CONTRACTOR	Supplied	kW	Efficiency
_		KW	Miter 12 19 19 CH	to/from		%
		6	of the est live	Reservoir		
		iec'ie	His session the m	kW		
Compressor	A	7.926	10.18	0	2.254	77.8
Condenser	В	2.521	balling 0	0.161	2.36	6.38
Expansion	C	2.327	0	0	2.327	0
Evaporator	D	3.078	0	0	3.078	73.77
Total Plant			10.18	0.161	10.02	1.58

Although heat is transferred from the cold medium to the refrigerant in the evaporator, the exergy flows in the opposite direction if $T_C < T_0$. However, if we assume $T_C = T_0$, there is no exergy transfer.

$$-\dot{Q}_{\rm in}\left(1-\frac{T_0}{T_C}\right) = -\dot{Q}_{\rm in}\left(1-\frac{T_0}{T_0}\right) = 0 \text{ kW}$$

The rate of heat transfer from the condenser into the warm medium can be calculated as: $\dot{Q}_{\text{out}} = \dot{m}(h_3 - h_4) = 27.97 \text{ kW}$

Rate of exergy supplied by the refrigerant to warm medium at 100° F = 311 K,

$$\dot{Q}_{\text{out}} \left(1 - \frac{T_0}{T_H} \right) = 27.97 \left(1 - \frac{261}{311} \right) = 0.161 \text{ kW}$$

To calculate the exergetic efficiency, η_{II} ,

$$\dot{W}_{\text{net}} = \dot{m}(h_3 - h_1) = 10.18 \text{ kW}$$

$$\eta_{II} = \frac{\dot{Q}_{\text{out}} \left(1 - \frac{T_o}{T_H} \right)}{\dot{W}_{net}} = \frac{0.161}{10.18} = 0.0158 = 1.58\%$$

(c) The COP can be calculated as.

$$COP_{HP} = \frac{\dot{Q}_{out}}{\dot{W}_{net}} = \frac{27.97}{10.18} = 2.75$$

(d) Referring to table 2, the condenser is the device with the highest rate of exergy destruction.

Exergy diagram for the vapor compression refrigeration system (on kW basis)

10-4-5 [OQI] An ideal vapor-compression refrigeration cycle uses R-134a as a working fluid and operates between 0.1 MPa and 1.5 MPa. The refrigerant leaves the condenser at 30°C and the heat exchanger at 10°C. The refrigerant is then throttled to the evaporator pressure. Refrigerant leaves the evaporator as a saturated vapor and goes to the heat exchanger. The mass flow rate (*m*) is 1 kg/s. A temperature difference of 5°C is maintained for effective heat exchange between the refrigerant and its surroundings at the evaporator and condenser. The atmospheric conditions are 100 kPa and 25°C. (a) Perform an exergy inventory on a rate (kW) basis for the entire cycle complete with an exergy flow diagram. Determine (b) the cooling capacity, (c) exergetic efficiency and (d) COP of the system.

SOLUTION:

Dead State: p0 = 100 kPa and $T0 = 25 \,^{\circ}\text{C} (298 \text{ K})$

Table 1 Properties at various state points in the refrigeration plant.

	p kPa	T K	$\dot{\Psi} = \dot{m}\psi$ MW	s $kJ/(kg \cdot K)$	h kJ/kg
State 0	100	298	0	1.1020	275.31
State 1	100	281	0.42924	1.0524	260.96
State 2	1500	372	66.9424	1.0524	327.47
State 3	1500	303	43.9481	0.3446	93.42
State 4	1500	283	44.3683	0.2494	65.46
State 5	100	246	39.081	0.2671	65.46
State 6	100	246	4.06143	0.9465	232.99

Table 2 Device-specific Analysis

Plant Component	Device	ΔΨ̈ kW	$ \dot{W}_u $ $\langle \dot{W}_u \dot{W}_u \rangle$	Exergy Supplied to/from Reservoir kW	İ kW	Exergetic Efficiency %
HX		ze ^{čje} o	See this office). V AA		
Evaporator side HX Condenser Side	A	3.63219 0.4202	ost of the state o	0	3.2119	11.57
Compressor	В	66.5131	66.5131	0	0	100
Condenser	C	22.9943	0	0	22.9943	0
Expansion	D	5.2873	0	0	5.2873	0
Evaporator	E	35.0195	0	31.3713	3.648	0
Total Plant			66.5131	31.3713	35.1418	47.17

⁽b) Cooling Capacity: $\dot{Q}_{in} = \dot{m}(h_6 - h_5) = 167 \text{ kW}$

$$-\dot{Q}_{\rm in}\left(1-\frac{T_0}{T_C}\right) = 167.53 \times \left(1-\frac{298}{251}\right) = 31.37 \text{ kW}$$

⁽c) Rate of exergy supplied by the refrigerant to cold medium at 261 K (exergy flows in the opposite direction of heat flow because $T_{\rm C} < T_{\rm 0}$),

To calculate the exergetic efficiency, η_{II} ,

$$\dot{W}_{\text{net}} = \dot{m}(h_2 - h_1) = 66.5131 \text{ kW}$$

$$\eta_{II} = \frac{\dot{Q}_{in} \left(1 - \frac{T_0}{T_C} \right)}{\dot{W}_{net}} = \frac{31.3713 \text{ kW}}{66.5131 \text{ kW}} = 0.4717 = 47.17\%$$

(d) To calculate COP.

$$COP_R = \frac{\dot{Q}_{in}}{\dot{W}_{net}} = \frac{167.536 \text{ kW}}{66.5131 \text{ kW}} = 2.518$$

(e) Referring to table 2, condenser is device with the highest rate of exergy destruction. 34.57 % of exergy is destroyed in condenser.

This how is the life of any the life of the hold of the life of th

Exergy diagram for the vapor compression refrigeration system (on kW basis)

10-4-6 [OQL] Repeat problem 10-4-5 [OQI] with the heat exchanger removed.

SOLUTION:

Dead State: p0 = 100 kPa and $T0 = 25 \,^{\circ}\text{C}$ (298 K)

Table 1 Properties at various state points in the refrigeration plant.

	p kPa	T K	$\dot{\Psi} = \dot{m}\psi$ MW	s kJ/ $(kg \cdot K)$	<i>h</i> kJ/kg
State 0	100	298	0	1.1020	275.31
State 1	100	246	4.06143	0.9465	232.99
State 2	1500	339	60.95501	0.9465	289.89
State 3	1500	303	43.94814	0.3446	93.42
State 4	1500	303	43.94814	0.3446	93.42
State 5	100	246	33.23584	0.3805	94.42
State 6	100	246	4.06143	0.9465	232.99

Table 2 Device-specific Analysis

ote. Dide quan	innes are	given and	mack qualiti	ies are carcura	ited using 11	201.
able 2 Device-	-specific A	Analysis	United States in sit.	and is not bey		
Plant Component	Device	ΔΨ δ kW	Wu kW	Exergy Supplied to/from Reservoir kW	<i>İ</i> kW	Exergetic Efficiency %
HX Evaporator side HX	A	N/A	N/A	N/A	N/A	N/A
Condenser side Compressor	В	N/A 56.8935	56.8935	0	0	100
Condenser	C	17.0068	0	0	17.0068	0
Expansion	D	10.7123	0	0	10.7123	0
Evaporator	E	29.1744	0	26.1351	3.039	0
Total Plant			56.8935	26.1351	30.7584	45.94

(b) Cooling Capacity: $\dot{Q}_{in} = \dot{m}(h_6 - h_5) = 139.6 \text{ kW}$

(c) Rate of exergy supplied by the refrigerant to cold medium at 261 K (exergy flows in the opposite direction of heat flow because $T_C < T_0$),

$$-\dot{Q}_{in}\left(1-\frac{T_0}{T_C}\right) = 139.6 \times \left(1-\frac{298}{251}\right) = 26.13 \text{ kW}$$

To calculate the exergetic efficiency, η_{II} ,

$$\dot{W}_{\text{net}} = \dot{m}(h_2 - h_1) = 56.89 \text{ kW}$$

$$\eta_{II} = \frac{\dot{Q}_{in} \left(1 - \frac{T_0}{T_C} \right)}{\dot{W}_{net}} = \frac{26.13}{56.89} = 0.4594 = 45.94\%$$

(d) To calculate COP.

$$COP_R = \frac{\dot{Q}_{in}}{\dot{W}_{net}} = \frac{139.6}{56.89} = 2.453$$

(e) Referring to table 2, condenser is device with the highest rate of exergy destruction. 29.89 % of exergy is destroyed in condenser. In addition, exergetic efficiency of system dropped from 47.17% to 45.94% due to removal of heat exchanger.

Exergy diagram for the vapor compression refrigeration system (on kW basis)

10-4-7 [OQG] A heat pump which operates on the ideal vapor-compression cycle with R-134a is used to transfer heat at a rate of 20 kW to a space maintained at 50°C from outside atmosphere at 0°C. A temperature difference of 5°C is maintained for effective heat exchange between the refrigerant and its surroundings at the evaporator. The atmospheric conditions are 100 kPa and 0°C. (a) Perform an exergy inventory on a rate (kW) basis for the entire cycle complete with an exergy flow diagram. Determine (b) the power consumption rate, (c) the exergetic efficiency and (d) the COP of the system.

SOLUTION:

Dead State: p0 = 100 kPa and $T0 = 0 ^{\circ}\text{C} (273 \text{ K})$

Table 1 Properties at various state points in the refrigeration plant.

	<i>p</i> kPa	$^T_{ m K}$	$\dot{\Psi} = \dot{m}\psi$ MW	s $kJ/(kg \cdot K)$	h kJ/kg
State 0	100	273	0	1.02897	254.42
State 1	244	268	2.48498	0.9297	246.36
State 2	1492	334	7.40637	0.9297	284.09
State 3	1492	328	4.03878	0.4628	130.74
State 4	244	268	2.76443	0.33893	130.74

Table 2 Device-specific Analysis

Plant Component	Device	ΔΨ̈ kW	$ \dot{W}_u $ $ \dot{W}_u $	Exergy Supplied to/from Reservoir	<i>i</i> kW	Exergetic Efficiency %
		8/6	y the eff the	kW		
Compressor	A	4.92139	4.92139	0	0	100
Condenser	В	3.36759		3.09597	0.27161	91.93
Expansion	CIHIS	1.27434	0	0	1.27434	0
Evaporator	D	0.27945	0	0	0.27945	0
Total Plant		Mi	4.92139	3.09597	1.82542	62.9

(b)

The mass flow rate can be calculated from:

$$\dot{Q}_{\text{out}} = \dot{m} (h_2 - h_3) = 20 \text{ kW}$$

 $\Rightarrow \dot{m} = 0.1304 \frac{\text{kg}}{\text{s}}$

Power consumption rate: $\dot{W}_{\text{net}} = \dot{m}(h_2 - h_1) = 4.92 \text{ kW}$

(c)

Although heat is transferred from the cold medium to the refrigerant in the evaporator, the exergy flows in the opposite direction because $T_C < T_0$. However, exergy transferred to the cold medium (which is the ambient atmosphere) is not utilized and is completely destroyed.

Rate of exergy supplied by the refrigerant to warm medium at 323 K,

$$\dot{Q}_{\text{out}} \left(1 - \frac{T_0}{T_H} \right) = 20 \left(1 - \frac{273}{323} \right) = 3.0967 \text{ kW}$$

$$\eta_{II} = \frac{\dot{Q}_{\text{out}} \left(1 - \frac{T_0}{T_H} \right)}{\dot{W}_{net}} = \frac{3.096}{4.92} = 0.6290 = 62.90\%$$

(d) To calculate COP the Cycle Panel from TEST was used.

$$COP_{HP} = \frac{\dot{Q}_{out}}{\dot{W}_{net}} = \frac{20}{4.92} = 4.06$$

.

Exergy diagram for the vapor compression refrigeration system (on kW basis)

10-4-8 [OQZ] Repeat problem 10-4-8[OQG] with the outside atmosphere at 100 kPa and -5°C.

SOLUTION:

Dead State: p0 = 100 kPa and $T0 = -5 \,^{\circ}\text{C}$ (268 K)

Table 1 Properties at various state points in the refrigeration plant.

	p kPa	T K	$\dot{\Psi} = \dot{m}\psi$ MW	s $kJ/(kg \cdot K)$	h kJ/kg
State 0	100	268	0	1.0138	250.35
State 1	201	263	1.90070	0.9328	243.3
State 2	1492	335	7.32054	0.9328	285.14
State 3	1492	328	3.64556	0.4628	130.74
State 4	201	263	2.17865	0.5050	130.74

Table 2 Device-specific Analysis

Plant Component	Device	ΔΨ̈ kW	$ \dot{W}_u $ kW	Exergy Supplied to/from Reservoir kW	i kW	Exergetic Efficiency %
Compressor	A	5.41985	5.41985	Thing the Solution	0	100
Condenser	В	3.67498	hite of other	3.405572	0.26940	92.66
Expansion	C	1.46690	A the Oth mot	0	1.46690	0
Evaporator	D	0.27795	25-65-81 10 4 11/6	0	0.27795	0
Total Plant	Nis	Note is rides and	5.41985	3.405572	2.01427	62.83

The mass flow rate can be calculated from:

$$\dot{Q}_{\text{out}} = \dot{m} (h_2 - h_3) = 20 \text{ kW}$$

 $\Rightarrow \dot{m} = 0.1295 \frac{\text{kg}}{\text{s}}$

(b) Power consumption rate:
$$\dot{W}_{\text{net}} = \dot{m}(h_2 - h_1) = 5.42 \text{ kW}$$

(c)

Although heat is transferred from the cold medium to the refrigerant in the evaporator, the exergy flows in the opposite direction because $T_C < T_0$. However, exergy transferred to the cold medium (which is the ambient atmosphere) is not utilized and is completely destroyed.

Rate of exergy supplied by the refrigerant to warm medium at 323 K,

$$\dot{Q}_{\text{out}} \left(1 - \frac{T_0}{T_H} \right) = 20 \left(1 - \frac{268}{323} \right) = 3.406 \text{ kW}$$

To calculate the exergetic efficiency, η_{II} ,

$$\eta_{II} = \frac{\dot{Q}_{\text{out}} \left(1 - \frac{T_0}{T_H} \right)}{\dot{W}_{\text{net}}} = \frac{3.406}{5.420} = 0.6283 = \frac{62.83\%}{62.83\%}$$

(d) To COP can be calculated as:

$$COP_{HP} = \frac{\dot{Q}_{out}}{\dot{W}_{net}} = \frac{20}{5.42} = 3.690$$

.

This not his police and the integral of the fire flow of the fire flow of the fire flow of the fire flow of the fire flow of the fire flow of the fire flow of the fire flow of the fire flow of the fire flow of the fire flow of the fire flow of the flow of the fire flow of the flow

Exergy diagram for the vapor compression refrigeration system (on kW basis)

