Package 'deepC'

August 31, 2020

R topics documented:

binInteractionValues
calcInsulationScoreChange
callInsulationBoundaries
ConvertBinToPos
custom_ceil
custom_floor
custom_round
deduplicate
FormatBp
getBinnedChrom
GetBinsEnd
GetBinsStart
getBinSubMatrixfunction
getDiffDeepC
GetDifferenceMatrix
getDistanceWindow
getVerticalWindowInteractions
getZigZagWindowInteractionsPerl
getZigZagWindowInteractionsPerlMemoryFriendly
ImportHicproMatrix
IntersectBedDataframe
leftHandNotate
MakeAnnotationDataFrame
MakeBedGraphDataFrameForSignal
makeGaussianMask
MakeMirrorMatrix
MakeTriangleMatrix
medianImputeZerosDataFrame
PlotAnnotation
plotDiffDeepC
plotGaussianMask
PlotSignalTrack
PlotSquareMatrix
PlotTriangleMatrix
PruneHicproMatrix
pyramidBin
readDeepcInputHicRed 26

2 binInteraction Values

Index		36
	virtual4C	34
	vec_custom_round	
	vec_custom_floor	
	vec_custom_ceil	
	trimHicRange	32
	trimHicCoords	31
	triangularize	31
	Sobeln	30
	SetValueRange	29
	readHicDataBins	29
	readDeepcVariantFileNoHeader	28
	readDeepcVariantFile	27

binInteractionValues binInteractionValues

Description

Take hic interactions and bin them into [bins] distinct classes equally split will reserve one bin for true 0s.

Usage

```
binInteractionValues(hic, bins = 9)
```

Arguments

hic hic object (list) as imported.

bins number of to split values into. Will add +1 bin for zeros.

Value

hic object with values binned.

```
## Not run:
binInteractionValues(hic, bins=9)
## End(Not run)
```

```
calcInsulationScoreChange
```

calcInsulationScoreChange

Description

Calculate changes in the interaction score that pass the diagonals starting from the variant bin —> insulation score changes. The "ins" snsulation score change. Also calculate changes in the score that do not pass the diagonal but are pot. affected by the centre of a domain. The "cont" containment score change.

Usage

```
calcInsulationScoreChange(diff.df, bin.size = 10000)
```

Arguments

diff.df differential data frame as from getDiffDeepC.

bin.size Bin size in bp. default = 10000

Value

List of length two with the .\$ins change and the .\$cont change

Examples

```
## Not run:
calcInsulationScoreChange(diff.df, bin.size = 5000)
## End(Not run)
```

callInsulationBoundaries

callInsulationBoundaries

Description

Call insulation score based TAD boundaries on a deepC data frame. Calculate the insulation score and approximations of the first and second order derivative. Select minima in the insulation score by looking for zero crossings in teh first order derivative "delta". Choose minima based on neighborhood and filter them on based on their sharpness "delta2". Requires a deepC like data frame (HiC, Skeleton, Prediction) ins.distance - distance from sliding center position in which to calculate the insulation score. For predictions 25 kb works great for HiC need larger distance. Delta2 threshold for local minima to be classed as boundaries.

```
callInsulationBoundaries(d, ins.dist = 25000, delta2.thresh = 5)
```

4 ConvertBinToPos

Arguments

d deepc interaction data frame

ins.dist Genomic distance window based on which which to calculate the insulation.

Default 25000 Default in Crane et al. is 250 k.

delta2.thresh Threshold of the delta2 score, the sharpness, (second order derivative approx-

imation) based on which to filter boundaries. Keep above threshold default =

5

Value

Returns a dataframe based on the HiC/deepC position (bin == 1) with new columns for insulationscore, delta and delta2 (frst and second derivative approximations and a 0/1 flag if called as minimum also a vector of local minima positions. List("df.ins" = df.ins, "boundaries")

Examples

```
## Not run:
callInsulationBoundaries(df, ins.dist = 25000, delta2.thresh = 5)
## End(Not run)
```

ConvertBinToPos

Convert Bin IDs/Numbers to Genomic Position

Description

Converts bin identifiers / counts to genomic positions, given the bin size and fgenomic starting position.

Usage

```
ConvertBinToPos(x, bin.size, start.pos, start.id = 1)
```

Arguments

x Genomic bin id/countbin.size Size of bins in bpstart.pos Starting positionstart.id Number of first bin id

Value

Genomic position of provided bin ID.

```
ConvertBinToPos(12, bin.size = 5000, start.pos = 1000000, start.id = 1)
```

custom_ceil 5

custom_ceil	custom_cei	l
-------------	------------	---

Description

Ceiling round to a custom base (nearest base)

Usage

```
custom_ceil(x, base)
```

Arguments

x Input number to round

base Base to round to (base=1 for ordinary ceiling rounding)

extra Character vector specifying which columns to extract interactions etc. from.

Default c("value"). Optional length

Value

Number x rounded to nearest base ceiling.

Examples

```
custom_ceil(1503, 500)
```

custom_floor

custom_floor

Description

Floor round to a custom base (nearest base)

Usage

```
custom_floor(x, base)
```

Arguments

x Input number to round

Base to round to (base=1 for ordinary floor rounding)

extra Character vector specifying which columns to extract interactions etc. from.

Default c("value"). Optional length

Value

Number x rounded to nearest base floor.

```
custom_floor(1503, 500)
```

6 deduplicate

custom_round

custom_round

Description

Round to a custom base (nearest base) round(x/base)*base

Usage

```
custom_round(x, base)
```

Arguments

x Input number to round

Base to round to (base=1 for ordinary rounding)

extra Character vector specifying which columns to extract interactions etc. from.

Default c("value"). Optional length

Value

Number x rounded to nearest base.

Examples

```
custom_round(1503, 500)
```

deduplicate

deduplicate

Description

Remove duplicated rows from a tibble/data frame. "Unique" on tibbles works better and faster

Usage

```
deduplicate(df)
```

Arguments

df

data frame / tibble

Value

data frame with duplicate rows removed.

```
## Not run:
deduplicate(df)
## End(Not run)
```

FormatBp 7

FormatBp

Format basepairs

Description

Format a single bp position to kilo (k) or Mega (M) given type=k/M

Usage

```
FormatBp(bp, type = "M")
```

Arguments

bp Size of bins in bp

type Type of formating into kilo 'k' or Mega 'M' (default='M')

Value

Basepairs formated in kilo or mega.

Examples

```
FormatBp(1000, type = "k")
```

getBinnedChrom

getBinnedChrom

Description

helper function to get a binned genome using bedtools (requires bedtools available) Will Run bedtools on your default shell saving temporary files in your working directory. Create a binned genome data frame on the specified chromosome from start to end positions in window.sized bins and step sized steps. See "bedtools makewindows" which is the fucntion invoked.

```
getBinnedChrom(
   chr = "chr1",
   start = 0,
   end = 10000,
   window = 1000,
   step = 500,
   timestamp = paste0(gsub("\\s+", "_", Sys.time()), "_", runif(n = 1))
)
```

8 GetBinsEnd

Arguments

chr chromosome start start position end end postion

window size of the window / bins

step The step size between windows/bins. The increment.

timestamp automatically produces a timestamp to uniquely identify temporary files defaut

= paste0(gsub("\s+", "_", Sys.time()), "_", runif(n=1))

Value

data frame with genomic bins

Examples

```
## Not run:
getBinnedChrom(chr='chr1', start=0, end=10000, window=1000, step=500)
## End(Not run)
```

GetBinsEnd

GetBinsEnd

Description

Helper function to retrieve the end (right most position) of the last bin of a hic object

Usage

```
GetBinsEnd(hic)
```

Arguments

hic hic object

Value

End position (right most) of the last bin of the hic object

```
## Not run:
GetBinsEnd(my.hic)
## End(Not run)
```

GetBinsStart 9

GetBinsStart

GetBinsStart

Description

Helper function to retrieve the start (left most position) of the first bin of a hic object

Usage

```
GetBinsStart(hic)
```

Arguments

hic

hic object

Value

Start position (left most) of the first bin of the hic object

Examples

```
## Not run:
GetBinsStart(my.hic)
## End(Not run)
```

```
{\tt getBinSubMatrixfunction}
```

getBinSubMatrix function

Description

Get A pruned submatrix from hic object given a region of interest as well as an interaction data frame.

```
getBinSubMatrixfunction(
  hic.obj,
  chr = "chr1",
  start = 0,
  end = 20000,
  bin.size = 10000
)
```

10 getDiffDeepC

Arguments

chr	chromosome
start	start position
end	end postion

bin.size Bin size in bp default = 10000 defaut = paste0(gsub("\s+", "_", Sys.time()), "_",

runif(n=1))

step The step size between windows/bins. The increment.

Value

List with two elements "hicp" the pruned Hic object and "idf" the interaction data frame.

Examples

```
## Not run:
getBinSubMatrixfunction(chr='chr1', start=0, end=10000, bin.size = 5000)
## End(Not run)
```

getDiffDeepC

getDiffDeepC

Description

Calcualte difference between two hic/deepc data frames (df1 - df2). e.g reference - variant

Usage

```
getDiffDeepC(df1, df2)
```

Arguments

df1 Interaction data frame (reference)
df2 Interaction data frame (variant)

Value

data frame of (predicted) interaction difference

```
## Not run:
getDiffDeepC(df1, df2)
## End(Not run)
```

GetDifferenceMatrix 11

GetDifferenceMatrix GetDifferenceMatrix

Description

Helper function to unify and caluclate the difference of two matrices Matrices should be normalised towards each other, this function won't take care of normalisation.

Usage

```
GetDifferenceMatrix(a, b)
```

Arguments

a hic matrix in long formatb hic matrix in long format

Value

Hi-C matrix with delta = a - b column

Examples

```
## Not run:
GetDifferenceMatrix(hic.wt, hic.variant)
## End(Not run)
```

getDistanceWindow

getDistanceWindow

Description

Helper fuction to pick a distance window with the same distance from center position from a hic/deepC data frame

Usage

```
getDistanceWindow(d, center, distance)
```

Arguments

d hic data frame / tibble

center center position of region of interest distance distance from center to extract

Value

Hic/deepc data frame from region of interest

Examples

```
## Not run:
getDistanceWindow(d, center = 1000000, distance = 500000)
## End(Not run)
```

getVerticalWindowInteractions

getVerticalWindowInteractions

Description

Extract desired vertical center pole of interactions over the center of every window of window.size. Older non zig zag encoding.

Usage

```
getVerticalWindowInteractions(hic.obj, bin.df, window, bin)
```

Arguments

hic.obj hic object including bin coordinates and an interaction matrix

bin.df Binned genome / genomic segment data frame as from getBinnedChrom

window window size in bp of interest usually 1 Mb + 1x bin size

bin Bin size in bp defaut = paste0(gsub("\s+", "_", Sys.time()), "_", runif(n=1))

Value

Dataframe/tibble of interactions encoded in a vertical pole over the center of the window.

Examples

```
## Not run:
getVerticalWindowInteractions(hic, binned.genome, window=1e6+5000, bin = 5000)
## End(Not run)
```

 ${\tt getZigZagWindowInteractionsPerl}$

 ${\it getZigZagWindowInteractionsPerl}$

Description

Extract desired vertical zigzag pole of interactions over the center of every window of window.size. Uses helper perl script for faster processing. First creates a query data frame, then saves the dquery and the hic data frame in temporary files in the working directory. Then uses the helper perl script to query and match and read the output file into R again. REQUIRES: perl installed and available in your default shell. #'

Usage

```
getZigZagWindowInteractionsPerl(
   hic.obj,
   bin.df,
   window,
   bin,

   query.pl = "~/fusessh/scripts/machine_learning/epigenome_nets/deepC/match_query_table.pl",
   timestamp = paste0(gsub("\\s+", "_", Sys.time()), "_", runif(n = 1))
)
```

Arguments

hic object including bin coordinates and an interaction matrix

bin.df Binned genome / genomic segment data frame as from getBinnedChrom

window window size in bp of interest usually 1 Mb + 1x bin size

bin Bin size in bp

query.pl path to helper perl script as distributed with the deepC repository "match_query_tabel.pl"

timestamp automatically produces a timestamp to uniquely identify temporary files defaut

= paste0(gsub("\s+", "_", Sys.time()), "_", runif(n=1))

Value

Dataframe/tibble of interactions encoded in a vertical pole over the center of the window.

Examples

```
## Not run:
getZigZagWindowInteractionsPerl(hic, binned.genome, window=1e6+5000, bin = 5000, query.pl = '~/myscripts/deep
## End(Not run)
```

```
\label{lem:getZigZagWindowInteractionsPerlMemoryFriendly} getZigZagWindowInteractionsPerlMemoryFriendly
```

Description

Extract desired vertical zigzag pole of interactions over the center of every window of window.size. Uses helper perl script for faster processing. First creates a query data frame, then saves the dquery and the hic data frame in temporary files in the working directory. Then uses the helper perl script to query and match and read the output file into R again. REQUIRES: perl installed and available in your default shell. Memory friendly version that uses a second perl helper script for query preparation. Slower then default version.

Usage

```
getZigZagWindowInteractionsPerlMemoryFriendly(
   hic.obj,
   bin.df,
   window,
   bin,

   query.pl = "~/fusessh/scripts/machine_learning/epigenome_nets/deepC/match_query_table.pl",
   prepare.pl = "~/fusessh/scripts/machine_learning/epigenome_nets/deepC/prepare_query_table.pl",
   timestamp = paste0(gsub("\\s+", "_", Sys.time()), "_", runif(n = 1))
)
```

Arguments

hic.obj	hic object including bin coordinates and an interaction matrix
bin.df	Binned genome / genomic segment data frame as from getBinnedChrom
window	window size in bp of interest usually 1 Mb + 1x bin size
bin	Bin size in bp
query.pl	path to helper perl script as distributed with the deepC repository "match_query_tabel.pl"
prepare.pl	path to helper perl script as distributed with the deepC repository "prepare_query_tabel.pl"
timestamp	automatically produces a timestamp to uniquely identify temporary files defaut = paste0(gsub("\s+", "_", Sys.time()), "_", runif(n=1))

Value

Dataframe/tibble of interactions encoded in a vertical pole over the center of the window.

Examples

```
## Not run:
getZigZagWindowInteractionsPerlMemoryFriendly(hic,
binned.genome,
window=1e6+5000,
bin = 5000,
query.pl = '~/myscripts/deepC/match_query_table.pl',
prepare.pl = '~/myscripts/deepC/prepare_query_tabel.pl')
## End(Not run)
```

ImportHicproMatrix In

ImportHicproMatrix

Description

Wrapper function for importing a Hi-C matrix and bin coordinates. Built around HiC-Pro data format with long sparse matrix and bed bed file specifying bin coordinates. Import a HiCPro matrix and the according bed coordinates to assign the bin ids. The coordinates bed file is optional if the matrix is encoded as genomic position rather than bin ids This function will handle it accordingly. Add a centric, single coord per bin region. Calculate bin size and extract first id and genomic position. Store as list including a ggplot2 friendly data frame/tibble.

IntersectBedDataframe 15

Usage

```
ImportHicproMatrix(
  matrix,
  coords = "empty",
  chr = "empty",
  bin.size = 0,
  nrow = -1
)
```

Arguments

matrix Path to matrix file. 3 column matrix as result from HiCPro or pruned version

(id.x id.y, interaction). May be coordinates (left most of each bin)

coords Path to bed file specifying the genomic location of genomic bins. 4 column bed

file (chr, start, end, id). If left "empty" will assume coords can be read from the

bins of the matrix and extract it from there

chr Specify a chromosome to add to the matrix object if the coordinates bed file was

left empty.

bin.size Matrix bin size in bp.

nrow Specify number of rows to read in from the matrix. Dont speficy or set to -1 to

read entire matrix.

Value

"HiC object" a list of .\$matrix.df .\$bin.size .\$start.pos .\$start.id

Examples

```
## Not run:
ImportHicproMatrix(path.to.matrix, path.to.bed, bin.size = 5000)
## End(Not run)
```

 $Intersect Bed Data frame \ \ \textit{IntersectBedData frame}$

Description

Wrapper to subset/intersect a given BED format df with a region of interest.

Usage

```
IntersectBedDataframe(df, chr, start, end)
```

Arguments

df Bedlike 4 or more column data fr	ame
-------------------------------------	-----

chr Chromsome of interest start Start coordinate of interest end End coordinate of interest

Value

Bed like data frame with all rows that intersect with the region of interest.

Examples

```
## Not run:
IntersectBedDataframe(df, chr='chr1', start='1000000', end='5000000')
## End(Not run)
```

leftHandNotate

leftHandNotate

Description

Function to change matrix notation to left most base of the bin notation

Usage

```
leftHandNotate(matrix, bin.size = 1000)
```

Arguments

matrix hic matrix data frame

bin.size binsize

Value

hic matrix with bins left hand notated.

Examples

```
## Not run:
leftHandNotate(matrix)
## End(Not run)
```

 ${\tt MakeAnnotationDataFrame}$

MakeAnnotationDataFrame

Description

Adjust a bed like data frame for annotation for ggplot2 like plotting.

```
MakeAnnotationDataFrame(df, name = "annotation", row = "1")
```

Arguments

df Bed like data frame (min 3 columns(chr, start, end, (name)))

name Name for the annotation to appear

row Row in which annotation should appear 1 lowest ++ (default=1)

Value

Adjusted bed like data frame with annotation row, up and down border and annotation name column.

Examples

```
## Not run:
MakeAnnotationDataFrame(gene.df, name="genes", row = "1")
## End(Not run)
```

 ${\tt MakeBedGraphDataFrameForSignal}$

MakeAnnotationDataFrame

Description

Adjust a bed like data frame for annotation for ggplot2 like plotting.

Usage

```
MakeBedGraphDataFrameForSignal(bg)
```

Arguments

bg Bed like data frame with columns chr start end value

Value

Dataframe in bedgraph format.

```
## Not run:
MakeBedGraphDataFrameForSignal(bed.df)
## End(Not run)
```

18 makeGaussianMask

 ${\it make Gaussian Mask}$

make Gaussian Mask

Description

Make Gaussian Mask that weights interactions or interaction differences in the center and the diagonal of a given window. Use plotGaussianMask to visualise it.

Usage

```
makeGaussianMask(
  window.size = 1010000,
  bin.size = 10000,
  diag.sigma.pos = 75000,
  diag.sigma.bin = 25,
  cen.sigma.pos = 2e+05,
  cen.sigma.bin = 40
)
```

Arguments

window.size	Window size in bp normally 1 MB + 1x bin.size
bin.size	Bin size in bp default = 10000
diag.sigma.pos	Sigma parameter for gaussian for the diagonals along postion dimension (e.g. 75000 for a 1010000 window size and diagonal from the center)
diag.sigma.bin	Sigma parameter for gaussian for the diagonals along bin/genomic distance dimension (e.g. 25 for a 1010000 window size and diagonal from the center)
cen.sigma.pos	Sigma parameter for gaussian for the center along postion dimension (e.g. 200000 for a 1010000 window size and diagonal from the center)
cen.sigma.bin	igma parameter for gaussian for the diagonals along bin/genomic distance dimension (e.g. 40 for a 1010000 window size and diagonal from the center)

Value

Mask for weighting.

```
## Not run:
makeGaussianMask(window.size = 1010000,
bin.size = 10000,
diag.sigma.pos = 75000,
diag.sigma.bin = 25,
cen.sigma.pos = 200000,
cen.sigma.bin = 40)
## End(Not run)
```

MakeMirrorMatrix 19

MakeMirrorMatrix

MakeMirrorMatrix

Description

Mirror a half full (sparse, HiC-Pro like) data frame formated for ggplot2 to get a full matrix df to plot

Usage

```
MakeMirrorMatrix(df)
```

Arguments

df

Hi-C data frame (sparse, half full)

Value

Full matrix HiC data frame.

Examples

```
## Not run:
MakeMirrorMatrix(hic.df)
## End(Not run)
```

MakeTriangleMatrix

MakeTriangleMatrix

Description

Take a single hic matrix data frame (non mirrored) as input convert it to triangular like polygon df over genomic locus for plotting.

Usage

```
MakeTriangleMatrix(df)
```

Arguments

df

Hi-C data frame (sparse, half full)

Value

Triangularised matrix for plotting as polygons.

```
## Not run:
MakeTriangleMatrix(hic.df)
## End(Not run)
```

20 PlotAnnotation

```
medianImputeZerosDataFrame
```

medianImputeZerosDataFrame

Description

Sets zero values in an interaction matrix of a hic object in the 4th column onwards to the median of a 2xk x 2xk window padded with median of total matrix Smooth replace according to neighborhood (median of neighborhood) With k being the neighborhood size +- k around central position.

Usage

```
medianImputeZerosDataFrame(d, k)
```

Arguments

hic object including bin coordinates and an interaction matrix

k Neighborhood size (kxk)

Value

Hic object with the interaciton matrix median imputed

Examples

```
## Not run:
medianImputeZerosDataFrame(hic, k=5)
## End(Not run)
```

PlotAnnotation

PlotAnnotation

Description

Create an ggplot2 annotation plot, to plot under a triangular HiC plot and for multiplots.

```
PlotAnnotation(
  anno.df,
  xmin,
  xmax,
  break.number = 4,
  format = "s",
  pal = "Set1"
)
```

plotDiffDeepC 21

Arguments

anno.df Annotation version of a bed like data frame (result from MakeAnnotationDataFrame)

xmin minimum x value to plot for limit xmax maximum x value to plot for limit

break.number of breaks to print on x axis default=5

format options to format the genomic postion (s=single, k=in kilo, M=in Mega) de-

fault="s"

pal RColorBrewer palette to use default="YlOrRd"

vector Numeric vector.

Value

GGplot2 plot of annotation.

Examples

```
## Not run:
PlotAnnotation(anno.df, xmin = 1000000, xmax = 5000000, break.number = 4, formart = "M")
## End(Not run)
```

plotDiffDeepC

plotDiffDeepC

Description

Plot difference between two hic/deepc data frames (df1 - df2). e.g reference - variant

Usage

```
plotDiffDeepC(df1, df2, bin.size = 10000, threshold = 0)
```

Arguments

df1 Interaction data frame (reference)
df2 Interaction data frame (variant)
bin.size Bin size in bp. default = 10000

threshold Set every interaction below "threshold" to zero

Value

```
ggplot2 plot of (predicted) interaction difference
```

```
## Not run:
plotDiffDeepC(df1, df2, bin.size = 5000, threshold = 2)
## End(Not run)
```

22 PlotSignalTrack

plotGaussianMask

plotGaussianMask

Description

Plot a Gaussian Mask that weights interactions.

Usage

```
plotGaussianMask(mask, bin.size)
```

Arguments

mask Gaussian amsk as produced by makeGaussianMask

bin.size bin size in bp

Value

ggplot2 plot of Gaussian mask

Examples

```
## Not run:
plotGaussianMask(mask, 5000)
## End(Not run)
```

PlotSignalTrack

PlotSignalTrack

Description

Print a Triangular Matrix over a genomic locus plot given a three column (y, x, value) and graphic options

```
PlotSignalTrack(
  bg.df,
  label = "",
  xlim,
  break.number = 5,
  format = "s",
  color = "black"
```

PlotSquareMatrix 23

Arguments

bg.df data frame of genomic signal. requries "pos" and "value" column.

label Label to name the signal track

xlim Required. Limits of signal on x-axis to plot. Numeric vector with length 2.

break.number number of breaks to plot on x-axis. default = 5

format options to format the genomic postion (s=single, k=in kilo, M=in Mega) de-

fault="s"

color colour for the signal track.

Value

GGplot2 plot of signal 1d coverage.

Examples

```
## Not run:
PlotSignalTrack(signal.df, label="CTCF", xlim=c(1000000,5000000), break.number = 5, color="blue")
## End(Not run)
```

PlotSquareMatrix

PlotSquareMatrix

Description

Wrapper function to plot a matrix given a 3 column dataframe as input Print a Square Matrix plot given a three column (y, x, value) and graphic options

Usage

```
PlotSquareMatrix(
  hic,
  break.number = 5,
  square = FALSE,
  format = "s",
  pal = "YlOrRd"
```

Arguments

hic hic object list

break.number number of breaks to print on axis default=5

square FALSE/TRUE default=FALSE indicate if to mirror a triangular matrix to get a

full matrix plot

format options to format the genomic postion (s=single, k=in kilo, M=in Mega) de-

fault="s"

pal RColorBrewer palette to use default="YlOrRd"

24 PlotTriangleMatrix

Value

GGplot2 plot of square Hi-C matrix.

Examples

```
## Not run:
PlotSquareMatrix(hic, break.number = 5, square =TRUE)
## End(Not run)
```

PlotTriangleMatrix

PlotTriangleMatrix

Description

Print a Triangular Matrix over a genomic locus plot given a three column (y, x, value) and graphic options

Usage

```
PlotTriangleMatrix(hic, break.number = 5, format = "s", pal = "YlOrRd")
```

Arguments

hic hic object list

break.number number of breaks to print on axis default=5

format options to format the genomic postion (s=single, k=in kilo, M=in Mega) de-

fault="s"

pal RColorBrewer palette to use default="YlOrRd"

Value

GGplot2 plot of triangular Hi-C matrix.

```
## Not run:
PlotTriangleMatrix(hic, break.number = 5)
## End(Not run)
```

PruneHicproMatrix 25

PruneHicproMatrix MakeTriangleMo	latrix
----------------------------------	--------

Description

Function to prune a matrix to zoom into a region of interest. Take a list object as imported with ImportHicproMatrix and prune it to include only interactions between the genomic coordinates chosen.

Usage

```
PruneHicproMatrix(hics, chrs, starts = 0, ends = 0)
```

Arguments

hics Hi-C list object as imported.

chrs Chromosome. Same formating as matrix.

starts Start position of interest. ends End position of interest.

Value

HiC object pruned to region of interest. (Matix and coords pruned.)

Examples

```
## Not run:
PruneHicproMatrix(hic, chrs='chr1', starts'1000000', ends='5000000')
## End(Not run)
```

pyramidBin pyramidBin

Description

Percentile normalize a deepC matrix into a pyramid scheme of unequal percentiles. First quantile normalize per column with 5 into 2x20 Assumes data frame with with 4th + columns encoding the interactions. Apply quantile normalisation per column of that matrix.

Usage

```
pyramidBin(df, return.means = FALSE)
```

Arguments

df deepC interaction data frame in pos, bin encoding

return.means TRUE/FALSE if to return a data frame with the mean interaction values per

matrix column. default = FALSE

Value

data frame with interaction in pyramid style percentile bins

Examples

```
## Not run:
pyramidBin(hic, return.means=FALSE)
## End(Not run)
```

readDeepcInputHicBed readDeepcInputHicBed

Description

Read in a hic data file with interactions in bins in a comma separated string in the 4th column. Use when coordinates are bin ids rather then genomic poistions/

Usage

```
readDeepcInputHicBed(
   file,
   prediction.bins = 101,
   bin.size = 10000,
   gather = TRUE,
   zigzag = TRUE
)
```

Arguments

file HiC/DeepC file tab separated ("chr", "start", "end", "qbins"). Where qbins are

hic interactions in comma separated string.

prediction.bins

Number of bins/values in the output vector, depends on bin size and context

window. Default = 101

bin.size Bin size in bp. default = 10000

gather TRUE/FALSE if to gather the data in long format for tidyverse/ggplot default

= TRUE.#' @param zigzag TRUE/FALSE if to correc thte positions for zigzag

pole encoding (shifting every second bin position) default = TRUE

Value

Dataframe/tibble of quantized interactions.

```
## Not run:
readDeepcInputHicBed(df, prediction.bins = 201, bin.size = 5000, gather = TRUE, zigzag = TRUE)
## End(Not run)
```

readDeepcVariantFile 27

```
{\tt readDeepcVariantFile} \quad \textit{readDeepcVariantFile}
```

Description

Read in a deepC variant file from deploy net output. Assumes a deepC header in the input file.

Usage

```
readDeepcVariantFile(
  file,
  prediction.bins = 101,
  bin.size = 10000,
  gather = TRUE,
  tag.col = FALSE,
  zigzag = TRUE
)
```

Arguments

file	Path to variant output file. Tab separated ("chr", "start", "end", predictions)
prediction.bins	
	Number of bins/values in the output vector, depends on bin size and context window. Default = 101
bin.size	Bin size in bp. default = 10000
gather	TRUE/FALSE if to gather the data in long format for tidyverse/ggplot default = TRUE.
tag.col	TRUE/FALSE if a tagging or id column is present ("chr", "start", "end", "tag", predictions) default = FALSE
zigzag	TRUE/FALSE if to correc thte positions for zigzag pole encoding (shifting every second bin position) default = TRUE

Value

Dataframe/tibble of predicted interactions/

```
## Not run:
readDeepcVariantFile(file, prediction.bins = 201, bin.size = 5000, gather = TRUE, tag.col = FALSE, zigzag = TRUE
## End(Not run)
```

```
{\tt readDeepcVariantFileNoHeader}
```

readDeepcVariantFileNoHeader

Description

Read in a deepC variant file from deploy net output. Assumes a no header present in the input file.

Usage

```
readDeepcVariantFileNoHeader(
   file,
   prediction.bins = 101,
   bin.size = 10000,
   gather = TRUE,
   tag.col = FALSE,
   zigzag = TRUE
)
```

Arguments

file	Path to variant output file. Tab separated ("chr", "start", "end", predictions)
prediction.bins	
	Number of bins/values in the output vector, depends on bin size and context window. Default = 101
bin.size	Bin size in bp. default = 10000
gather	$\label{eq:true-false} TRUE/FALSE \ if to \ gather \ the \ data \ in \ long \ format \ for \ tidyverse/ggplot \ default = TRUE.$
tag.col	TRUE/FALSE if a tagging or id column is present ("chr", "start", "end", "tag", predictions) default = FALSE
zigzag	TRUE/FALSE if to correc thte positions for zigzag pole encoding (shifting every second bin position) default = TRUE

Value

Dataframe/tibble of predicted interactions/

```
## Not run:
readDeepcVariantFileNoHeader(file, prediction.bins = 201, bin.size = 5000, gather = TRUE, tag.col = FALSE, zigz
## End(Not run)
```

readHicDataBins 29

Description

Read in a hic data file with interactions in bins in a comma separated string in the 4th column..use when start and end columns are genomic positions/coordinates.

Usage

```
readHicDataBins(file, prediction.bins = 101, gather = TRUE)
```

Arguments

-		
	file	Path to variant output file. Tab separated ("chr", "start", "end", "qbins"). Where qbins are hic interactions in comma separated string.
	prediction.bins	3
		Number of bins/values in the output vector, depends on bin size and context window. Default = 101
	gather	TRUE/FALSE if to gather the data in long format for tidyverse/ggplot default = TRUE.#' @param zigzag TRUE/FALSE if to correc thte positions for zigzag pole encoding (shifting every second bin position) default = TRUE
	bin.size	Bin size in bp. $default = 10000$

Value

Dataframe/tibble of quantized hic interactions.

Examples

```
## Not run:
readHicDataBins(file, prediction.bins = 50, gather = TRUE)
## End(Not run)
```

SetValueRange SetValueRange

Description

Function to cap the values for a max and min value range Take a vector and a min and max numeric argument as input. Return the vector with every value below min = min and above max = max.

```
SetValueRange(vector, min = -Inf, max = Inf)
```

30 Sobeln

Arguments

vector Numeric vector.

min Maximum (numeric) to cap/prune to.

Value

Capped numeric vector.

Examples

```
## Not run:
SetValueRange(my.vector, min = 0, max = 5)
## End(Not run)
```

Sobeln

Sobeln

Description

Calculate 1st derivative approximation of profile by applying 1D sobel filter

Usage

```
Sobeln(profile)
```

Arguments

profile

vector of values / signal / profile

Value

1st derivative approximation of profile (numeric vector)

```
## Not run:
Sobeln(in)
## End(Not run)
```

triangularize 31

Description

Triangularize a hic/deepc dataframe for polygon style plotting/ Take a df with distance bins (deep-Cregr ZigZag) convert it to triangular like polygon df over genomic locus Specify which extra cloumn names to extract.

Usage

```
triangularize(df, bin = 10000, extra = c("value"))
```

Arguments

df Hic/deepc data frame with interactions/predictions in zig zag encoding via bins

and genomic position.

bin Bin size in bp. default = 10000

extra Character vector specifying which columns to extract interactions etc. from.

Default c("value"). Optional length

Value

Data frame specifying polygon coordinates for HiC ploting.

Examples

```
## Not run:
triangularize(df, bin.size = 5000, extra = c("value"))
## End(Not run)
```

trimHicCoords

trimHicRange

Description

Function to trim a hic object to only maintain interactions within start and end coordinate

Usage

```
trimHicCoords(hic.obj, start = 1e+06, end = 2e+06)
```

Arguments

hic.obi	hic object (list) as imported.

start Start position of region of interest to trim to end End position of region of interest to trim to

32 trimHicRange

Value

hic object with interactions trimmed for a region of interest

Examples

```
## Not run:
trimHicCoords(hic, start=1000000, end=5000000)
## End(Not run)
```

trimHicRange

trimHicRange

Description

Function to trim a hic object to only maintain interactions with a maximum interaction range (duplicate from HiC helper scripts) Function to trim a hic object to only maintain interactions with a maximum interaction range

Usage

```
trimHicRange(hic.obj, range = 1e+06)
trimHicRange(hic.obj, range = 1e+06)
```

Arguments

hic.obj hic object (list) as imported.

range maximum linear distance range to maintain interactions

Value

hic object with interactions trimmed for linear disance hic object with interactions trimmed for linear disance

```
## Not run:
trimHicRange(hic, range=1000000)
## End(Not run)
## Not run:
trimHicRange(hic, range=1000000)
## End(Not run)
```

vec_custom_ceil 33

vec_custom_ceil	vec_custom_ceil
-----------------	-----------------

Description

Vectorised custom_ceil CeilingFloor round to a custom base (nearest base)

Usage

```
vec_custom_ceil(x, base)
```

Arguments

x Input number to round

base Base to round to (base=1 for ordinary floor rounding)

extra Character vector specifying which columns to extract interactions etc. from.

Default c("value"). Optional length

Value

Vector x rounded to nearest base ceiling

Examples

```
vec_custom_ceil(c(2505, 1503, 499), 500)
```

Description

Vectorised custom_floor Floor round to a custom base (nearest base)

Usage

```
vec_custom_floor(x, base)
```

Arguments

x Input number to round

Base to round to (base=1 for ordinary floor rounding)

extra Character vector specifying which columns to extract interactions etc. from.

Default c("value"). Optional length

Value

Vector x rounded to nearest base floor

```
vec_custom_floor(c(2505, 1503, 499), 500)
```

34 virtual4C

vec_custom_round

vec_custom_round

Description

Vectorised custom_round Round to a custom base (nearest base) round(x/base)*base

Usage

```
vec_custom_round(x, base)
```

Arguments

x Input number to round

base Base to round to (base=1 for ordinary rounding)

extra Character vector specifying which columns to extract interactions etc. from.

Default c("value"). Optional length

Value

Vector x rounded to nearest base.

Examples

```
vec_custom_round(c(2505, 1503, 499), 500)
```

virtual4C

triangularize

Description

Virtual 4C current implementation. Map to floor and ceiling of nearby bins For downstream interactions map between pos and - bin.size For upstream interactions map between pos and + bin.size

```
virtual4C(
  idf,
  chr,
  pos,
  bin.size,
  window.size = 0,
  pred.start = 0,
  pred.end = 0
)
```

virtual4C 35

Arguments

idf input dataframe in deepC/hic format (bin, pos)

chr chromsome

pos genomic positon of virtual 4C "viewpoint"

bin.size Bin size in bp default = 10000

window.size Window in which to calculate the virtual 4C. Distance from viewpoint. Set

pred.start and pred.window to 0 if using this mode (default)

pred.start Alternatively. leave window.size = 0 and set pred.end as end of region of inter-

ested.

Value

Data frame specifying polygon coordinates for HiC ploting.

```
## Not run:
virtual4C(idf, 'chr16', 1000000, bin.size = 5000, window.size = 2000000)
## End(Not run)
```

Index

```
binInteractionValues, 2
                                                readDeepcInputHicBed, 26
                                                readDeepcVariantFile, 27
calcInsulationScoreChange, 3
                                                readDeepcVariantFileNoHeader, 28
callInsulationBoundaries, 3
                                                readHicDataBins, 29
ConvertBinToPos, 4
                                                SetValueRange, 29
custom_ceil, 5
                                                Sobeln, 30
custom_floor, 5
custom_round, 6
                                                triangularize, 31
deduplicate, 6
                                                trimHicCoords, 31
                                                trimHicRange, 32
FormatBp, 7
                                                vec_custom_ceil, 33
getBinnedChrom, 7
                                                vec_custom_floor, 33
GetBinsEnd, 8
                                                vec_custom_round, 34
GetBinsStart, 9
                                                virtual4C, 34
getBinSubMatrixfunction, 9
getDiffDeepC, 10
GetDifferenceMatrix, 11
getDistanceWindow, 11
getVerticalWindowInteractions, 12
getZigZagWindowInteractionsPerl, 12
{\tt getZigZagWindowInteractionsPerlMemoryFriendly},
        13
ImportHicproMatrix, 14
IntersectBedDataframe, 15
leftHandNotate, 16
MakeAnnotationDataFrame, 16
MakeBedGraphDataFrameForSignal, 17
makeGaussianMask, 18
MakeMirrorMatrix, 19
{\it MakeTriangleMatrix}, 19
medianImputeZerosDataFrame, 20
PlotAnnotation, 20
plotDiffDeepC, 21
plotGaussianMask, 22
PlotSignalTrack, 22
PlotSquareMatrix, 23
PlotTriangleMatrix, 24
PruneHicproMatrix, 25
pyramidBin, 25
```