Analysis Questions:

1. Comparing the results of your basic and vectorized implementations at N=16384, which code has better performance in terms of MFLOP/s, and by how much? Which code has better memory system utilization, and by how much?

Assuming I am answering this correctly, it seems to be basic for both questions? It is by a fair bit for both questions, too. Especially vectorized.

2. Comparing the results of your basic and OpenMP 8-way parallel implementation at N=16384, which code has better performance in terms of MFLOP/s and by how much? Which code has better memory system utilization, and by how much?

Once again, it seems to be basic? The numbers for it are less, so I assume it is faster then, yes? It is better by a fair bit for both questions.

3. Looking at the results of your OpenMP implementation at N=16384, what is the **speedup** of this code going from 1 to 4 threads, from 1 to 16 threads, and from 1 to 64 threads? Use your runtime data to compute these speedup metrics.

Runtime (s)								
Problem size	Blas	Basic	Vectorize d	omp-1	omp-4	omp-16	omp-64	
1024	0.00015	0.00362	0.00028	0.00101	0.00046	0.00049	0.00045	
2048	0.00072	0.01516	0.00139	0.00410	0.00242	0.00182	0.00202	
4096	0.00428	0.05870	0.00572	0.01659	0.00519	0.00538	0.00447	
8192	0.01857	0.23640	0.02393	0.07297	0.02050	0.01779	0.01667	
16384	0.07634	0.98851	0.08755	0.26837	0.07859	0.07037	0.06970	

MFLOPs							
Problem size	Blas	Basic	Vectorize d	omp-1	omp-4	omp-16	omp-64
1024	14352.06 198	579.7510 4	7603.749 03	2070.852 18	4512.459 47	4253.685 45	4646.058 89

Omar Dajani Novemeber 14th, 2023

2048	11667.373	553.1900	6052.395	2043.872	3466.859	4614.746	4159.600
	22	0	46	83	75	64	45
4096	7832.367	571.6014	5868.460	2022.634	6459.151	6241.613	7501.026
	00	1	66	85	31	21	53
8192	7227.283	567.7448	5607.901	1839.326	6548.712	7546.208	8049.665
	78	9	60	56	45	69	27
16384	7032.780 82	543.11278	6131.999 16	2000.464 07	6831.281 42	7629.625 06	7702.666 31

Memory Bandwidth (% memory bandwidth utilized)								
Problem size	Blas	Basic	Vectorize d	omp-1	omp-4	omp-16	omp-64	
1024	0.02737	0.00111	0.01450	0.00395	0.00861	0.00811	0.00886	
2048	0.01113	0.00053	0.00577	0.00195	0.00331	0.00440	0.00397	
4096	0.00373	0.00027	0.00280	0.00096	0.00308	0.00298	0.00358	
8192	0.00172	0.00014	0.00280	0.00044	0.00156	0.00180	0.00192	
16384	0.00084	0.00006	0.00073	0.00024	0.00081	0.00091	0.00092	

