CSE 3162: Network-on-Chip

Programme: B.Tech (CSE) Year: 3rd Semester: 6th

Course: Program Elective Credits: 3 Hours: 40

Course Context and Overview (100 words):

In the field of interconnection networks, there is a growing interest and amount of research in the on-chip domain. The integrated circuit technology has evolved to accommodate a multiprocessing device capable of high-performance computation. As a result of the high integration scale in the deep sub-micron domain and the increasing number of connecting elements, Network-on-Chip (NoC) has become a need and will influence the performance of the final system. Therefore, any gain in the efficiency of the on-chip interconnection layer will be highly beneficial.

In this course, we will cover the fundamentals of NoC- topology, routing, flow-control, microarchitecture, and network interfaces. The course will also focus on state-of-the-art research and case studies in the field of NoC along with hand-on experience of NoC simulator.

Prerequisites Courses:

Computer Networks

Course outcomes (COs):

On completion of this course, the students will have the ability to:

CO1: Understand the basic principles of Network-on-Chip.

CO2: Understand the various techniques of NoC topologies.

CO3: Understand the switching, flow control, routing techniques and router microarchitecture.

CO4: Carry out experiments, analyze results and to make necessary conclusions using NoC simulator.

Course Topics:

Contents	Lecture Hours	Unit Hours
UNIT – 1: Introduction to Network-on-chip (NoC)		
1. Introduction of Network-on-Chip.	1	6
2. NoC Building Blocks: Topology, Routing, Flow Control, Router	2	O
Microarchitecture		

3.	Network Design Considerations.			
4.	NoC for Chip Multiprocessors (CMPs)	2		
5.	Performance Parameters	1		
UNIT - 2: Topology Exploration				
1.	Topology Basics: Metrics For Comparing Topologies	1		
2.	Direct Topologies	2		
3.	Indirect Topologies	2	7	
4.	Irregular Topologies	1		
5.	Case Study on various topologies: Hands-on experiments in exploring	1		
	various NoC topologies using NoC simulator.			
Uì	NIT-3: Flow Control			
1.	Messages, Packets, Flits and Phits	1		
2.	Message Based Flow Control: Circuit Switching	1		
3.	Packet Based Flow Control: Store and Forward, Virtual Cut Through	2	10	
4.	Flit Based Flow Control: Wormhole	1	10	
5.	Virtual Channels	1		
6.	Deadlock Free Flow Control: Escape VCs	1		
7.	Buffer Management and Backpressure	3		
UNIT-4: Routing Algorithms and Implementation Mechanisms				
1.	Routing Basics, Taxonomy of Routing Algorithms	2		
2.	Deadlock, Livelock and Starvation			
3.	Deterministic Routing Algorithms	2		
4.	Adaptive Routing Algorithms	2	12	
5.	Topology Agnostic Routing Algorithms	1	- -	
6.	Table-Based Routing: Source Routing, Node-Table Routing	2		
7.	Algorithmic Routing	1		
8.	Logic-Based Distributed Routing	2		

UNIT-5: Application Mapping and Performance Analysis		
Application Mapping Strategies for NoC	2	
2. Measures of On-Chip Interconnection Network Performance	1	5
3. Network workloads	1	3
4. Hands on experiments on comparison of Routing Techniques/ Switch	hing 1	
Techniques using NoC simulator.		

Text Books:

- Principles and Practices of Interconnection Networks by William Dally and Brian Towles. Morgan Kaufmann, 2003.
- 2. Interconnection Networks: An Engineering Approach by Jose Duato, Sudhakar Yalamanchili, Lionel M. N. Morgan Kaufmann, 2002.

Reference Books:

- 1. On-chip Networks by Natalie Enright Jerger, Tushar Krishna, Li-Shiuan Peh, Morgan and Claypool Publishers, Second edition, 2017.
- 2. Networks on Chip by Axel Jantsch, and Hannu Tenhunen. Kluwer Acadmic Publishers, 2003.
- 3. Designing Network On-Chip Architectures in the Nanoscale Era by Jose Flich, Davide Bertozzi. Chapman and Hall/CRC, 2010.

Additional Resources (Video Lectures, Web resources etc.):

Evaluation Methods:

Component	Weightage (%)
Quiz (3)	30%
Assignment/Term paper (2)	20%
Mid-Term	20%
End Term	30%