Ontology Languages DL to FOL

Objectives

Objective
Explain the semantics
of ALC via translation
to FOL

Introduction

Translation of ALC statements to FOL statements

- shows that ALC (and DLs in general) are subsets of FOL
- provides us with an alternative semantics for DLs.

A function π translates any axiom of an ALC knowledge base into an FOL statement

Resulting FOL statement will contain a

- unary predicate for each concept name
- binary predicate for each role name in the ALC axiom.

Translating ALC Concepts into FOL

Viewing role names as binary relations and concept names as unary relations, we define two translation functions, π_x and π_y , that inductively map ALC-concepts into first order formulae with one free variable, x or y:

$$\pi_{x}(A) = A(x)$$

$$\pi_{x}(\neg C) = \neg \pi_{x}(C)$$

$$\pi_{x}(C \sqcap D) = \pi_{x}(C) \land \pi_{x}(D)$$

$$\pi_{x}(C \sqcup D) = \pi_{x}(C) \lor \pi_{x}(D)$$

$$\pi_{x}(\forall r. C) = \forall y(r(x, y) \rightarrow \pi_{y}(C))$$

$$\pi_{x}(\exists r. C) = \exists y(r(x, y) \land \pi_{y}(C))$$

$$\pi_{y}(A) = A(y)$$

$$\pi_{y}(\neg C) = \neg \pi_{y}(C)$$

$$\pi_{y}(C \sqcap D) = \pi_{y}(C) \land \pi_{y}(D)$$

$$\pi_{y}(C \sqcup D) = \pi_{y}(C) \lor \pi_{y}(D)$$

$$\pi_{y}(\forall r. C) = \forall x(r(y, x) \to \pi_{x}(C))$$

$$\pi_{y}(\exists r. C) = \exists x(r(y, x) \land \pi_{x}(C))$$

Translating TBox and Abox into FOL

We can translate a TBox T and an ABox A as follows, where $\psi[x/a]$ denotes the formula obtained from ψ by replacing all free occurrences of x with a:

$$\pi(T) = \bigwedge_{C \sqsubseteq D \in T} \forall x (\pi_x(C) \to \pi_x(D)),$$

$$\pi(A) = \bigwedge_{C(a) \in A} \pi_x(C)[x/a] \land \bigwedge_{r(a,b) \in A} r(a,b).$$

Example 1

The FOL expression for concept inclusion

Male $\sqsubseteq \neg$ Female

is

$$\forall_{x} (T_{x}(Male) \rightarrow T_{x}(\neg Female))$$

$$\Rightarrow \forall_{x} (Male(x) \rightarrow \neg T_{x}(Female))$$

$$\Leftrightarrow \forall_{x} (Male(x) \rightarrow \neg Female(x))$$

$$\Leftrightarrow \forall_{x} (Female(x) \rightarrow \neg Male(x))$$

$$\Leftrightarrow Female = \neg Male$$

Example 2

```
\pi_{x}(Man(a) \sqcap \exists hasChild.Female) =
\pi_{x}(Man(a)) \land \pi_{x}(\exists hasChild.Female)
\Leftrightarrow Man(a) \land \exists y (hasChild(x, y) \land \pi_{y}(Female))
\Leftrightarrow Man(a) \land \exists y (hasChild(x, y) \land Female(y))
```

Example 3

 π (HappyFather \sqsubseteq Man $\sqcap \exists$ hasChild.Female) =

Wrap-Up

