Pendolo reversibile - Caduta libera analisi dei dati

Ali Matteo, Broggi Diana, Cantarini Giulia

Pendolo reversibile di Kater

La posizione di m_A è stata tenuta costante:

distanza di m_A dal coltello 2 in metri

0.159	0.16	0.159	0.159	0.16

Riportiamo le diverse distanze di m_B dal coltello 2 in metri, e i relativi periodi in secondi:

distanza 1:

d (m) 0.294 0.294 0.293 0.294 0.295

Periodo 1	1.9485	1.9483	1.9488	1.9489	1.9483	1.9484	1.9487	1.9487	1.9482	
Periodo 2	1.8306	1.83	1.8295	1.8286	1.8292	1.8298	1.8288	1.8287	1.829	1.8289

distanza 2:

d (m)	0.235	0.235	0.235	0.236	0.234	

Periodo1	1.9637	1.9638	1.9636	1.9636	1.9635	1.9633	1.9632	1.963	1.9634	
Periodo2	1.8614	1.8612	1.861	1.8612	1.8608	1.8606	1.8608	1.8611	1.8612	1.8612

distanza 3:

d (m)	0.168	0.169	0.168	0.168	0.168	

Periodo1	1.9827	1.9824	1.9826	1.9822	1.9828	1.9825	1.9826	1.9828	1.9825	
Periodo2	1.9264	1.9274	1.9264	1.9263	1.927	1.9258	1.9258	1.9257	1.9271	1.927

 ${\rm distanza}\ 4:$

d (m)	0.158	0.159	0.158	0.158	0.159	

Periodo1	1.9884	1.9887	1.9879	1.9877	1.9877	1.9876	1.9876	1.9876	1.988	
Periodo2	1.9378	1.9381	1.9369	1.9379	1.9366	1.9386	1.9374	1.9357	1.9357	1.9367

distanza 5:

d(m)	0.102	0.103	0.102	0.102	0.103	

Periodo1	2.0279	2.0265	2.0271	2.0256	2.0244	2.0251	2.0241	2.0232	2.0226	2.0226
Periodo2	2.0075	2.0074	2.0071	2.0061	2.0065	2.0063	2.0065	2.0061	2.0061	

${\it distanza} \ 6:$

d (m)	0.063	0.062	0.064	0.062	0.063

Periodo1	2.0227	2.0222	2.0221	2.0228	2.0221	2.0217	2.0218	2.0217	2.0217	
Periodo2	2.1072	2.1046	2.1035	2.1046	2.1032	2.1034	2.1043	2.1025	2.1039	2.1024

dist $m_A {=}\ 0.159$ metri

dist m_B (m)	Periodo 1 (s)	Perido 2 (s)
1: 0.2940	1.949	1.82931
2: 0.2350	1.963	1.86105
3: 0.1682	1.983	1.92649
4: 0.1584	1.988	1.93714
5: 0.1024	2.007	2.02491
6: 0.0628	2.022	2.10396

calcolo di g

Selezioniamo la distanza 4 e la distanza 5 per il calcolo di T^* :

$$T^* = \frac{T_2(x_4)T_1(x_5) - T_1(x_4)T_2(x_5)}{T_1(x_5) - T_2(x_5) - T_1(x_4) + T_2(x_4)}$$

$$\sigma_{T^*} = \sqrt{\left(\frac{\partial T^*}{\partial T_2(x_4)}\right)^2 \sigma_{T_2(x_4)}^2 + \left(\frac{\partial T^*}{\partial T_2(x_5)}\right)^2 \sigma_{T_2(x_5)}^2 + \left(\frac{\partial T^*}{\partial T_1(x_4)}\right)^2 \sigma_{T_1(x_4)}^2 + \left(\frac{\partial T^*}{\partial T_1(x_5)}\right)^2 \sigma_{T_1(x_5)}^2}$$

$$\to T^* = 2.0017 \pm 0.0002s$$

attraverso questo risultato abbiamo calcolato una prima stima di g:

$$g = \frac{4\pi^2 D}{(T^*)^2}$$
 $\sigma_g = \frac{4\pi^2 D}{(T^*)^3} \sigma_T$ $g = 9.794 \pm 0.002 m/s^2$

 $t=\frac{|g_{osservata}-g_{attesa}|}{\sigma_g}=4,$ un valore di
t sopra al 2 indica che la stima da noi raggiunta è probabilmente affetta da errori sistematici.

stima dell'errore sistematico

Correzione di T^* per angoli di oscillazione finiti: $T_1^*=2\pi\sqrt{\frac{D}{g}}(1+\frac{\theta^2}{16})$ con $\theta=0.0861\pm0.0008rad.$

$$g_1 = \frac{4\pi^2 D}{T^{*2}} \left(1 + \frac{\theta^2}{16} \right)^2 \pm \sqrt{\left(\frac{\partial g}{\partial T} \right)^2 \sigma_T^2 + \left(\frac{\partial g}{\partial \theta} \right)^2 \sigma_\theta^2} = 9.803 \pm 0.002 m/s^2$$

 $t=\frac{|g_{1osservata}-g_{attesa}|}{\sigma_g}=\frac{|9.803-9.807|}{0.002}=2$, il confronto con g
 attesa porta a un risultato migliore del precedente.

L'errore sistematico sulla prima misura di g era pari a $|g - g_1| = 0.009m/s^2$, dello stesso ordine di grandezza di quello casuale \rightarrow non trascurabile.

L'errore sistematico su g_1 sarà meno notevole:

$$T_2^* = 2\pi\sqrt{\frac{D}{g}}\left(1 + \frac{\theta^2}{16} + \frac{9\theta^4}{1024} + \frac{25\theta^6}{16384}\right)$$

 $\sigma_{g1} = |g_2 - g_1| = 9 \cdot 10^{-6} m/s^2$ è l'errore sistematico sulla stima di g_1 , trascurabile rispetto a quello casuale. Non prevediamo di aver commesso altri errori sistematici rilevanti, concludiamo che la nostra stima per l'accelerazione di gravità è $g = g_1 = 9.803 \pm 0.002 m/s^2$.

Caduta libera

Riportiamo le diverse altezze,in metri, da cui abbiamo fatto cadere la pallina ed i relativi tempi di caduta in secondi:

altezza 1:

n (m) 0.000 0.002 0.000	h (m)	0.603	0.602	0.602	0.603
-------------------------------	-------	-------	-------	-------	-------

Δt (s)	0.316	0.307	0.320	0.315	0.323	0.318	0.315	0.308	0.310	0.318

altezza 2:

h (m)	0.584	0.583	0.583	0.584

Δt (s) 0.310 0.323 0.307 0.311 0.317 0.311 0.309 0.308 0.294 0.303	Δt (s)	0.310	0.323	0.307	0.311	0.317	0.311	0.309	0.308	0.294	0.303
--	----------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------

altezza 3:

h (m) 0.556 0.557 0.558 0.557

Δt (s)	0.296	0.304	0.299	0.304	0.289	0.275	0.301	0.294	0.294	0.297

altezza 4:

h (m)	0.504	0.505	0.504	0.505

Δt (s)	0.290	0.287	0.298	0.290	0.280	0.290	0.278	0.289	0.281	0.291

altezza 5:

h (m)	0.450	0.451	0.450	0.451

$\Delta t (s) 0.267$	0.263	0.281	0.279	0.280	0.262	0.268	0.268	0.261	0.272

altezza 6:

h (m)	0.395	0.396	0.397	0.395

Δt (s)	0.257	0.238	0.253	0.243	0.249	0.249	0.258	0.249	0.240	0.245

 ${\bf Tabella 1}$

altezza (m)	tempo di caduta (s)
1: 0.603 ± 0.0003	0.315 ± 0.002
$2: 0.584 \pm 0.0003$	0.309 ± 0.002
$3: 0.557 \pm 0.0004$	0.295 ± 0.003
4: 0.505 ± 0.0003	0.287 ± 0.002
$5:0.451 \pm 0.0003$	0.270 ± 0.002
$6: 0.396 \pm 0.0005$	0.248 ± 0.002

Tabella2.a

x: altezza (m)	y: tempo di caduta ² (s^2)
1: 0.603 ± 0.0003	0.099 ± 0.001
$2: 0.584 \pm 0.0003$	0.096 ± 0.001
$3: 0.557 \pm 0.0004$	0.087 ± 0.002
4: 0.505 ± 0.0003	0.083 ± 0.001
$5: 0.451 \pm 0.0003$	0.073 ± 0.001
$6: 0.396 \pm 0.0005$	0.062 ± 0.001

$$\sigma_{t^2} = 2t\sigma_t$$

Abbiamo eseguito l'interpolazione lineare dei dati in Tabella 2.a con il metodo dei minimi quadrati pesati (i pesi utilizzati sono $w_i=\frac{1}{\sigma_{ti}^2}$ poichè $\sigma_{ti}>>\sigma_{hi}$)

$$\Delta = \sum (w_i y_i^2) \sum w_i - (\sum w_i y_i)^2$$

$$B = \frac{\sum w_i \sum w_i x_i y_i - \sum w_i x_i \sum w_i y_i}{\Delta} \pm \sqrt{\frac{\sum w_i}{\Delta}} = 0.17 \pm 0.006 m/s^2$$

$$A = \frac{\sum w_i x_i^2 \sum w_i y_i - \sum w_i x_i \sum w_i x_i y_i}{\Delta} \pm \sqrt{\frac{w_i x_i^2}{\Delta}} = -0.008 \pm 0.003 s^2$$

Infine, abbiamo calcolato l'accelerazione di gravità con $g=\frac{2}{B}\pm\frac{2}{B^2}\sigma_B==11.3\pm0.4m/s^2.$

$$t = \frac{|g_{osservata} - g_{attesa}|}{\sigma_g} = 3.7$$

La probabilità che una stima dell'accelerazione di gravità si trovi al di fuori dell'intervallo considerato e del 0.05~%. La stima di g così ottenuta non è particolamente accurata, come ci aspettavamo dal grafico di h_t .

In seguito a considerazioni motivate nella relazione di laboratorio, abbiamo corretto l'equazione del moto nel modo seguente:

la funzione che descrive il fenomeno è stata corretta per $v_0 \neq 0$

Correggiamo i dati per poter eseguire l'interpolazione lineare

Tabella2.b

$\overline{y: altezza-v_0t (m)}$	x: tempo di caduta ² (s^2)
$1: 0.4639 \pm 0.007$	0.099 ± 0.001
$2: 0.4474 \pm 0.007$	0.096 ± 0.001
$3: 0.4270 \pm 0.007$	0.087 ± 0.002
$4: 0.3781 \pm 0.006$	0.083 ± 0.001
$5: 0.3317 \pm 0.006$	0.073 ± 0.001
$\underline{6:\ 0.2865 \pm 0.005}$	0.062 ± 0.001

con
$$v_0 = 0.44 \pm 0.02 \frac{m}{s}$$

Notiamo che $\sigma_{hi} >> \sigma_{ti}$, questa volta consideriamo trascurabile l'incertezza sui tempi al quadrato.

$$B_{corretto} = 4.9 \pm 0.2 m/s^s$$
 $A = -0.02 \pm 0.02 m$

L'interpolazione dei dati che considerano una velocità iniziale diversa da 0 porta ad una stima per g
 pari a: $9.759 \pm 0.348 \frac{m}{s^2}$. $t = \frac{|g_{corretta} - g_{attesa}|}{\sigma_g} = 0.14 \rightarrow \text{probabilità di accuratezza: }89\%$.

L'errore sistematico commesso sulla prima stima per g è stimabile con: $|g_{corretta} - g| = 1.5m/s^2$, decisamente non trascurabile.