DYNAMIC PRICING ALGORITHM

Outline

- Introduction & Background
- Related Work
- Data Collection
- Our proposed method
 - Result & conclusion

Outline

- Introduction & Background
 - Related Work
- Data Collection
- Our proposed method
 - Result & conclusion

Introduction & Background

- Drivers often spend much time in parking and could have frustrated experiences.
- Related topics (M. Tsai & C. Chu, 2012) can be categorized in 3 aspects:
 - Parking search
 - (W. Lam et al, 2006) considers temporal and spatial interactions between traffic and parking congestion.
 - Parking Reservation
 - (Teodorovic & Lucic, 2006) decides to accept/reject parking request by inventory control and revenue management.
 - Parking Pricing
 - (D' Acierno et al., 2006) works on destination parking and origin-destination parking

Outline

- Introduction & Background
 - Related Work
 - Data Collection
- Our proposed method
- Result & conclusion

Related Work

- (D' Acierno et al., 2006)
 - Destination parking policy
 - Only consider the parking lot price
 - Origin-destination parking policy
 - Consider about the traffic situation like highways, rail systems
 - The objection function depends on the society global cost, including
 - Operational net costs of transit system
 - Local administration parking revenue
 - User cost (monetary and temporal)
 - Extra cost like air/noise pollution
 - It is purely theoretical and only based on mathematical assumptions

Related Work

- (Tian et al., 2018)
 - Reservation-based revenue management
 - Objective function is to maximize the total profit gain given reservation time
 - Its demand function is based on price, which can be linear or exponential
 - Model parking request through Poisson process
 - Accept request as long as there is available spots
 - It is a purely mathematical model based on mathematical assumptions

Motivation

- Revenue, utilization, convenient
- Real parking dataset from Seattle
- Curve fitting
- Priced-based and time-based demand function

Reservation-based Model

Tian, Q., Yang, L., Wang, C., & Huang, H. J. (2018). Dynamic pricing for reservation-based parking system: A revenue management method. *Transport Policy*, 71, 36-44.

$$V(X^{t}, t) = \max_{P^{t}} \{Q_{0}V(X^{t}, t - \Delta t) + Q_{1}[\sum_{i=u}^{v} P_{i}^{t} + V(X^{t} - e_{[u,v]}, t - \Delta t)]\}$$

$$Q_1 = \Lambda(X^t, P^t)\Delta t$$

$$\Lambda(X^t, P^t) = \sum_{u=1}^{N} \sum_{v=u}^{\min\{N, u+n\}} \lambda_{[u,v]}^t(X^t, P^t).$$

Outline

- Introduction & Background
 - Related Work
 - **Data Collection**
 - Our proposed method
- Result & conclusion

- 62,577,106 records from 2012 2017
- 5.21 GB

Table 1: Data Format for On-street Parking Data in Seattle

Name	Type	Description				
TransactionId	integer	Unique identifier number for a record				
TransactionDateTime	timestamp	Date and time of the record				
TransactionDate	timestamp	Record date				
timeStart	string	Parking starting time				
timeExpired	string	Parking ending time				
Duration_mins	integer	Length of parking in minutes Payment amount in dollars				
Amount	double					
PaymentMean	string	Payment in credit card, coin, phone, etc.				
MeterCode	integer	Pay station identifier				
ElementKey integer		Street segment identifier				

 Define parking demand as number of parking requests within a time range

	А	В	С	D	Е	F	G	Н	I	J
1	TransactionId	TransactionDateTime	TransactionDate	timeStart	timeExpired	Duration_mins	Amount	PaymentMean	MeterCode	ElementKey
2	13968676	2012-01-01T22:07:59Z	1/1/2012	22:07	23:22	75	2.5	COINS	10015002	25706
3	13968818	2012-01-01T23:30:59Z	1/1/2012	23:30	1:30	120	4	CREDIT CARD	10023002	25710
4	13968824	2012-01-01T22:45:59Z	1/1/2012	22:45	0:45	120	4	CREDIT CARD	10096002	9357
5	13968660	2012-01-01T22:51:59Z	1/1/2012	22:51	0:51	120	4	CREDIT CARD	10210002	25718
6	13968821	2012-01-01T23:28:59Z	1/1/2012	23:28	0:38	70	2.25	CREDIT CARD	10223002	2789
7	13968820	2012-01-01T23:50:59Z	1/1/2012	23:50	1:50	120	3	CREDIT CARD	12093002	39393

Hourly Parking Demand

Daily Parking Demand

Weekly (free on Sunday at Seattle)

Monthly Parking Demand

Length of Stay

Data fitting

Data fitting

Data fitting: time-based demand function

- Data fitting for Months Dm(t) (coefficient)
- Data fitting for Weeks Dw(t) (coefficient)
- Data fitting for Hours Dh(t)
- Final time-based demand function

$$D(t)=Dw(t)^*Dw(t)^*Dh(t)$$

Outline

- Introduction & Background
 - Related Work
 - Data Collection
 - Our proposed method
- Result & conclusion

Multi-modules based method

The whole day is divided into several

parts

Peak Time

Adjustable Time

Free Time

Multi-modules based method

Adjustable time:

Decrease the price Increase the user

Peak time:

Increase the price Decrease the user

Time-based demand function

$$D_t(t) = a * t^6 + b * t^5 + c * t^4 + d * t^3 + e * t^2 + f * t^1 + g$$

Price based demand function

Peak Time

$$D_p(p) = C * \left(\left(1 - \frac{p}{Max \{P\}} \right)^K - 1 \right) + D$$

Adjustable Time

$$D_{p}(p) = -C * \left(\left(\frac{p}{Max \{P\}} \right)^{K} - 1 \right) + D$$

Modified by the price based demand function

$$TS - \Delta \le D_p(p) * D_t(t) \le TS + \Delta$$
$$Max \left\{ \int_t^T D_p(p) * D_t(t) d_t \right\}$$

Peak Time

$$TS \leq D_p(p) * D_t(t)$$

$$Max\left\{ \int_{t}^{T}D_{p}\left(p\right) \ast D_{t}\left(t\right) d_{t}\right\}$$

Adjustable Time

Peak Time

Outline

- Introduction & Background
 - Related Work
 - Data Collection
 - Our proposed method
- Result & conclusion

Final price

Final benefits

Conclusion

 We design a multi-module based dynamic pricing system

- Adjust the number of user.
- Increase the final benefit.

Work with the system

