EE5184 Machine Learning Syllabus 2021 Fall

Instructors: Pei-Yuan Wu, Hung-Yi Lee, Tsungnan Lin National Taiwan University

General Information

Class Time and place: 09:10-13:10, Friday, Fuli Building 113

Contact Hours: 4hours per week, with a total of 16 weeks, equivalent to 64 hours Course Website(PPT Slides/ Course Videos): https://ntueeml.github.io/ml-website

Facebook group: Machine Learning (2021, Fall):

https://www.facebook.com/groups/1029900681122058

Instructors

- Major Instructor: Pei-Yuan Wu

Office: EE2-234

- Email: peiyuanwu@ntu.edu.tw

- Phone: (02)3366-4687

Office Hours: 14:00 - 15:30 FridayOther instructors: Hung-Yi Lee

Tsungnan Lin

Taching Assistants

- Ji-Chang Lee r08922a27@ntu.edu.tw

- Zong-Lun Lee b06901188@ntu.edu.tw

- Yan-Ru Lee <u>b07901075@ntu.edu.tw</u>

- Hung-Yu Shu r09943021@ntu.edu.tw

Grading(Tentative)

- Programming Assignments 7% x 5
- Written Assignments 3% x 5
- Final Project 20%
- Final Exam 30%

Intended Learning Outcome:

This course aims to introduce the basic machine learning theories, methods and tools that machine learning users should know. It is hoped that through this course, students will have a more systematic understanding of machine learning technologies and have the skills to implement these technologies. And students can acquire basic capabilities, with a view to applying these technologies to their respective fields of expertise in the future.

Course Outline:

- 1. Regression; Bias and Variance Errors
- 2. Probabilistic Generative Model; Logistic Regression
- 3. Dimensionality Reduction: Principle Component Analysis; Auto-Encoder; Neighbor Embedding
- 4. Semi-Supervised Learning
- 5. Neural Network Introduction: Gradient Decent; Back Propogation
- 6. Convolutional/Recurrent Neural Network
- 7. Ensemble

- 8. Support Vector Machine; Lagrange Duality
- 9. Expectation Maximization
- 10. Probability Approximately Correct Learning

Reference Books:

- Introduction to Machine Learning, Ethem Alpaydin, 2009, MIT Press
- Pattern Recognition and Machine Learning, Christopher M. Bishop, 2006, Springer
- Foundations of Machine Learning, M. Mohri, A. Rostamizadeh, and A. Talwalkar, MI

Schedule (Tentative)			
Week	Date	Lecture	Assignments
1	09/24	Introduction; Regression; Bias and Variance Errors	
2	10/01	Linear Model Classification: Probabilistic Generative Model, Logistic Regression	
3	10/08	Neural Networks: Introduction, Gradient Decent and Back Propagation, Tips, Implementation	HW1 out
4	10/15	Convolutional Neural Network (CNN) Dimensionality Reduction: Principle Component Analysis	HW1 due HW2 out
5	10/22	Auto encoder, Neighbor Embedding	
6	10/29	Ensemble: Random forest, AdaBoost	HW2 due HW3 out
7	11/05	Recurrent Neural Network	Final Project out
8	11/12	Expectation Maximization	HW3 due HW4 out
9	11/19	Semi-Supervised Learning	
10	11/26	Variational Auto-Encoder Support Vector Machine - Introduction	Final Proposal due
11	12/03	PE day - Class Suspend	
12	12/10	Support Vector Machine - Optimization and Kernel Duality Theory of Constrained Optimization - Introduction	HW4 due HW5 out
13	12/17	Strong Duality Theorem Support Vector Machine: Formal dual form	
14	12/24	Probably Approximately Correct Learning	HW5 due
15	12/31	Holiday - Class Suspend	
16	01/07	Final Exam	
17	01/14	Final Project presentation	
18	01/21	Guest Lecture	