Lecture 6: Partial Derivatives

October 17, 2018

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Recall that in the last lecture for the function

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

We have obtained $f_x(0,0) = 0 = f_y(0,0)$. Also, we have seen that f is not continuous at (0,0). So existence of partial derivatives at a point does not imply the continuity at that point.

Example 6.1 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the norm function given by $f(x,y) := \sqrt{x^2 + y^2}$. Then both the partial derivatives of f exist at every point of \mathbb{R}^2 except the origin; in fact, for any $(x_0, y_0) \neq (0, 0)$,

$$f_x(x_0, y_0) = \frac{x_0}{\sqrt{x_0^2 + y_0^2}}$$
 and $f_y(x_0, y_0) = \frac{y_0}{\sqrt{x_0^2 + y_0^2}}$

To examine whether any of the partial derivatives exist at (0,0), we look at $f(x,0) = \sqrt{x^2} = |x|$. We know that it is not differentiable at x = 0. Hence $f_x(0,0)$ does not exists. Similarly, to find $f_y(0,0)$ look at $f(0,y) = \sqrt{y^2} = |y|$, which is again not differentiable at 0.

Question: Is f continuous at (0,0)? **Answer:** Yes. We give two methods.

- 1. Note that $g(x,y) = x^2 + y^2 \ge 0$ is a polynomial function hence continuous everywhere. Also $h(t) = \sqrt{t}$ is a continuous function for all $t \ge 0$. Hence composition $f(x,y) = (h \circ g)(x,y)$ is continuous everywhere on the plane. So in particular, f is continuous at (0,0).
- 2. Note that $g(x,y) = x^2 + y^2 \ge 0$ is a polynomial function hence continuous everywhere, therefore $\lim_{(x,y)\to(0,0)} g(x,y) = 0 = g(0,0)$. Now applying the "root rule" of limits of functions of two variable,

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \sqrt{g(x,y)} = \sqrt{0} = 0 = f(0,0)$$

Hence f is continuous at (0,0).

This example tells us continuity does not imply existence of partial derivatives.

The set $B_r(x_0, y_0) = \{(x, y) \in \mathbb{R}^2 : \sqrt{(x - x_0)^2 + (y - y_0)^2} < r\}$ is called an open disk of radius r centered at (x_0, y_0) . Suppose f is a real-valued function of two variables such that it's domain contains $B_r(x_0, y_0)$. We say f is bounded on $B_r(x_0, y_0)$ if there exists a positive constant K > 0 such that

$$|f(x,y)| \le K, \quad \forall (x,y) \in B_r(x_0,y_0).$$

Theorem 6.2 If both the first-order partial derivatives of f(x, y) exist throughout $B_r(x_0, y_0)$ for some r > 0 and if either f_x or f_y is bounded on the disk $B_r(x_0, y_0)$ then f is continuous at (x_0, y_0) .

Example 6.3 For the function

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

we have

$$f_x(x,y) = \begin{cases} \frac{y^3 - x^2y}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}, \quad f_y(x,y) = \begin{cases} \frac{x^3 - y^2x}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Claim 6.4 For any r > 0, f_x and f_y are not bounded on the disk $B_r(0,0)$.

To see this, suppose r > 0 is given. Then there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n} < r$ for all $n \ge n_0$. Hence for all $n \ge n_0$, points $\left(\frac{1}{n}, 0\right), \left(0, \frac{1}{n}\right)$ belongs to $B_r(0, 0)$. But

$$f_x\left(0,\frac{1}{n}\right) = n, f_y\left(\frac{1}{n},0\right) = n.$$

Hence for any K > 0, we can find $n \ge \max\{n_0, K\}$ such that

$$f_x\left(0,\frac{1}{n}\right) = n \ge K, f_y\left(\frac{1}{n},0\right) = n \ge K.$$

This completes the proof of the claim.

Claim 6.5 For each $(x_0, y_0) \neq (0, 0)$, there exists r > 0 such that both f_x and f_y are bounded on $B_r(x_0, y_0)$.

To see this, suppose $(x_0, y_0) \neq (0, 0)$ be given. Then $d := \sqrt{x_0^2 + y_0^2} > 0$ is the distance of point (x_0, y_0) from the origin (0, 0). Choose $r = \frac{d}{2} > 0$. Then $(0, 0) \notin B_r(x_0, y_0)$. Now for every point $(x, y) \in B_r(x_0, y_0)$ we have

$$|x| - |x_0| \le ||x| - |x_0|| \le |x - x_0| \le \sqrt{(x - x_0)^2 + (y - y_0)^2} < r \implies |x| < r + |x_0|$$

$$|y| - |y_0| \le ||y| - |y_0|| \le |y - y_0| \le \sqrt{(x - x_0)^2 + (y - y_0)^2} < r \implies |y| < r + |y_0|$$

Sum of length two sides of any triangle is \geq the sum of the length of rest two sides. Hence

$$\sqrt{x^2 + y^2} + r > \sqrt{x^2 + y^2} + \sqrt{(x - x_0)^2 + (y - y_0)^2} \ge \sqrt{x_0^2 + y_0^2} = d,$$

$$\implies \sqrt{x^2 + y^2} > d - r = r > 0.$$

Hence for all $(x,y) \in B_r(x_0,y_0)$ we have,

$$|f_x(x,y)| = \left| \frac{y^3 - x^2 y}{(x^2 + y^2)^2} \right| = |y| \frac{|y^2 - x^2|}{(x^2 + y^2)^2} \le (r + |y_0|) \frac{|y|^2 + |x|^2}{r^4} \le (r + |y_0|) \frac{(r + |y_0|)^2 + (r + |x_0|)^2}{r^4},$$

$$|f_y(x,y)| = \left| \frac{x^3 - y^2 x}{(x^2 + y^2)^2} \right| = |x| \frac{|x^2 - y^2|}{(x^2 + y^2)^2} \le (r + |x_0|) \frac{|y|^2 + |x|^2}{r^4} \le (r + |x_0|) \frac{(r + |y_0|)^2 + (r + |x_0|)^2}{r^4}.$$

Higher-Order Partial Derivatives

Let $f: B_r(x_0, y_0) \to \mathbb{R}$ be a function such that such that $f_x(x_0, y_0)$ exists at every $(x_0, y_0) \in B_r(x_0, y_0)$, then we obtain a function from $B_r(x_0, y_0)$ to \mathbb{R} given by $(x, y) \longmapsto f_x(x, y)$. It is denoted by f_x and called the partial derivative of f with respect to x on $B_r(x_0, y_0)$. In case f_x is defined on $B_r(x_0, y_0)$, we can consider its partial derivatives at any point of $B_r(x_0, y_0)$. The partial derivative of $f_x: \mathbb{R}^2 \to \mathbb{R}$ with respect to x at (x_0, y_0) , if it exists, is denoted by $f_{xx}(x_0, y_0)$. Also, the partial derivative of f_x with respect to f_x at $f_x(x_0, y_0)$, if it exists, is denoted by $f_x(x_0, y_0)$. We can similarly define $f_y(x_0, y_0)$ and $f_y(x_0, y_0)$. Collectively, these are referred to as the second-order partial derivatives or simply the second partials of f at $f_x(x_0, y_0)$. Among these, $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ are called the mixed (second-order) partial derivatives of f, or simply the mixed partials of f.

Example 6.6 Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) := \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$.

Solution: Note that

$$f_{xy}(0,0) = \lim_{k \to 0} \frac{f_x(0,0+k) - f_x(0,0)}{k}, \quad f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(h,0) - f_y(0,0)}{h}$$

Hence it suffices to calculate f_x and f_y only along y-axis and x-axis, respectively. For any $y_0 \in \mathbb{R}$ we have

$$f_x(0,y_0) = \lim_{h \to 0} \frac{f(0+h,y_0) - f(0,y_0)}{h} = \lim_{h \to 0} \frac{hy_0 \frac{h^2 - y_0^2}{h^2 + y_0^2} - 0}{h} = \lim_{h \to 0} y_0 \frac{h^2 - y_0^2}{h^2 + y_0^2} = -y_0$$
Hence $f_{xy}(0,0) = \lim_{k \to 0} \frac{-k - 0}{k} = -1$

Similarly for any $x_0 \in \mathbb{R}$ we have

$$f_y(x_0,0) = \lim_{k \to 0} \frac{f(x_0,0+k) - f(x_0,0)}{k} = \lim_{k \to 0} \frac{x_0 k \frac{x_0^2 - k^2}{x_0^2 + k^2} - 0}{k} = \lim_{k \to 0} x_0 \frac{x_0^2 - k^2}{x_0^2 + k^2} = x_0$$
Hence
$$f_{yx}(0,0) = \lim_{k \to 0} \frac{h - 0}{h} = 1$$

Theorem 6.7 (Mixed Partials Theorem) Let f and its partial derivatives f_x , f_y , f_{xy} and f_{yx} are defined in some open disk with center (x_0, y_0) . If either f_{xy} or f_{yx} are continuous at (x_0, y_0) , then $f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$.

Using above theorem, we can say that for function f in Example 6.6, none of f_{yx} and f_{xy} is continuous at (0,0).