Exercise 7

The situation

There is a virus sweeping the globe (Ha! Like that would ever happen! But let's pretend...). You have data on the mutation rates of 4 different strains of the virus (in mutations per generation x 10e-5). You need to determine if the 4 strains mutate at generally the same rate, and can thus be treated as one in epidemiological models, or if they are different enough that they must be modeled separately.

	Strain	Mutation_rate				
0	st_alpha	10.612005				
1	st_alpha	12.586371				
2	st_alpha	8.997583				
3	st_alpha	11.681775				
4	st_alpha	14.408237				
•••						
163	st_delta	2.716249				
164	st_delta	2.467378				
165	st_delta	2.119801				
166	st_delta	1.316537				
167	st_delta	2.060472				

168 rows × 2 columns

Histogram of the mutation rates of the 4 strains

```
In [15]: sns.displot(myData, x="Mutation_rate", hue="Strain", kind="hist", alpha=0.3)
Out[15]: <seaborn.axisgrid.FacetGrid at 0x143927cab80>
```


KDE plot

```
In [17]: sns.displot(myData, x="Mutation_rate", hue="Strain", kind="kde", fill=True, alpha=0.2)
```

Out[17]: <seaborn.axisgrid.FacetGrid at 0x14392bc2fd0>

Violin plot

```
In [27]: sns.violinplot(data=myData, x="Mutation_rate", y="Strain")
Out[27]: <AxesSubplot:xlabel='Mutation_rate', ylabel='Strain'>
```


Boxplot

```
In [28]: sns.boxplot(data=myData, x="Mutation_rate", y="Strain")
```

Out[28]: <AxesSubplot:xlabel='Mutation_rate', ylabel='Strain'>

Boxplot with overlaid strip chart

```
In [48]:
    plot = sns.boxplot(data=myData, x="Mutation_rate", y="Strain")
    sns.stripplot(data=myData, x="Mutation_rate", y="Strain", alpha=0.4)
    plot.set(xlabel="Mutation Rate")
    plot.set_title("Mutation Rates of Virus Strains")
    plot.set_yticklabels(["Alpha", "Beta", "Gamma", "Delta"])

Out[48]:

[Text(0, 0, 'Alpha'),
    Text(0, 1, 'Beta'),
    Text(0, 2, 'Gamma'),
    Text(0, 3, 'Delta')]
```


Summary statistics

```
In [22]: myData.groupby("Strain").describe()
```

Out[22]:	: Mut								
		count	mean	std	min	25%	50%	75%	max
	Strain								
	st_alpha	42.0	9.938535	1.563850	6.437518	8.884385	9.871964	10.926445	14.408237
	st_beta	42.0	5.074079	1.089212	1.783542	4.591669	5.225036	5.824638	7.337440
	st_delta	42.0	1.839395	0.508917	0.688354	1.513231	1.868183	2.180814	2.730632
	st gamma	42.0	0.974370	0.214968	0.577240	0.775191	0.962160	1.159783	1.510792

Boxplot to show Fauci

Each of the strains seems to mutate slightly different, so I would not recommend treating the strains as one epidemiological model. Looking at the boxplot above, the Alpha strain mutates the fastest. The Beta strain was the second fastest to mutate. Delta has the 3rd fastest mutation rate, and the Gamma strain has the slowest mutation.