Examenul de bacalaureat național 2015

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(2-3i)(2+3i) = 4-9i^2 =$	3p
	=13	2p
2.	f(3) = 5	2p
	f(f(3)) = f(5) = 9	3 p
3.	$x^2 + 17 = 81 \Leftrightarrow x^2 = 64$	2p
	$x_1 = -8$ și $x_2 = 8$, care verifică ecuația	3 p
4.	Sunt 90 numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 18 numere naturale de două cifre, divizibile cu 5, deci sunt 18 cazuri favorabile	2p
	n_ nr. cazuri favorabile _ 18 _ 1	2
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{18}{90} = \frac{1}{5}$	2p
5.	$m_{AB} = \frac{2-a}{2} \text{ și } m_{BC} = 1$	2p
	$m_{AB} = m_{BC} \Leftrightarrow a = 0$	3 p
6.	$E\left(\frac{\pi}{2}\right) = \sin\frac{\pi}{6} + \cos\frac{\pi}{4} =$	2p
	$= \frac{1}{2} + \frac{\sqrt{2}}{2} = \frac{1 + \sqrt{2}}{2}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \ A(-1) = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}, \ A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$	3p
	$A(1) + A(-1) = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} = 2A(0)$	2 p
b)	$\det(A(a)) = \begin{vmatrix} 1 & 2a \\ 2a & 4 \end{vmatrix} = 4 - 4a^2$	3p
	$4 - 4a^2 = 0 \Leftrightarrow a_1 = -1 \text{ si } a_2 = 1$	2 p
c)	$A(2) = \begin{pmatrix} 1 & 4 \\ 4 & 4 \end{pmatrix}, \det(A(2)) = -12 \neq 0 \Rightarrow (A(2))^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{12} \end{pmatrix}$	3 p
	$X = (A(2))^{-1} \cdot A(8) \Rightarrow X = \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{12} \end{pmatrix} \begin{pmatrix} 1 & 16 \\ 16 & 4 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 5 & -4 \\ -1 & 5 \end{pmatrix}$	2 p

Probă scrisă la matematică M_st-nat

Barem de evaluare și de notare

2.a)	$(-3) \circ 3 = 2 \cdot (-3) \cdot 3 - 6 \cdot (-3) - 6 \cdot 3 + 21 =$	3 p
	=-18+18-18+21=3	2p
b)	$x \circ y = 2xy - 6x - 6y + 18 + 3 =$	2p
	=2x(y-3)-6(y-3)+3=2(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
c)	$x \circ 3 = 3$ şi $3 \circ y = 3$, pentru x şi y numere reale	2p
	$1 \circ \sqrt{2} \circ \sqrt{3} \circ \dots \circ \sqrt{2015} = \left(1 \circ \sqrt{2} \circ \sqrt{3} \circ \dots \circ \sqrt{8}\right) \circ 3 \circ \left(\sqrt{10} \circ \sqrt{11} \circ \dots \circ \sqrt{2015}\right) =$ $= 3 \circ \left(\sqrt{10} \circ \sqrt{11} \circ \dots \circ \sqrt{2015}\right) = 3$	3р

(30 de puncte) **SUBIECTUL al III-lea**

1.a)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0)$	2p
	$f'(x) = 3e^x + 2x$ şi $f'(0) = 3 \Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 3$	3р
b)	f(0)=3, f'(0)=3	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0) \Rightarrow y = 3x + 3$	3 p
c)	$f''(x) = 3e^x + 2, \ x \in \mathbb{R}$	2p
	$f''(x) > 0$, pentru orice număr real x , deci f este convexă pe \mathbb{R}	3 p
2.a)	$\int_{1}^{3} \left(f(x) - \frac{1}{x} \right) dx = \int_{1}^{3} x dx = \frac{1}{2} x^{2} \Big _{1}^{3} =$	3p
	$=\frac{1}{2}(9-1)=4$	2p
b)	$\int_{1}^{2} \left(f(x) - \frac{1}{x} \right) e^{x} dx = \int_{1}^{2} x e^{x} dx = x e^{x} \Big _{1}^{2} - \int_{1}^{2} e^{x} dx =$	3p
	$=2e^2-e-e^x\begin{vmatrix} 2\\1 = e^2 \end{vmatrix}$	2p
c)	$\mathcal{A} = \int_{1}^{a} f(x) dx = \int_{1}^{a} \left(x + \frac{1}{x} \right) dx = \left(\frac{x^{2}}{2} + \ln x \right) \Big _{1}^{a} = \frac{a^{2} - 1}{2} + \ln a$	3 p
	$\frac{a^2 - 1}{2} + \ln a = 4 + \ln a \Leftrightarrow a^2 = 9 \text{ si cum } a > 1, \text{ obținem } a = 3$	2p