В.И. Ухандеев, М.И. Собченко, А.С. Корявина

Методические указания к лабораторным работам по курсу «Интерфейсы вычислительных систем»

Утверждено редакционно-издательским советом университета

Москва 2022

Рецензент канд. техн. наук Д.В. Вертянов

Ухандеев В.И., Собченко М.И., Корявина А.С.

Методические указания к лабораторным работам по курсу «Интерфейсы вычислительных систем». М.: МИЭТ, 2022. 28 с.: ил.

Состоят из двух лабораторных работ, посвященных изучению принципов работы интерфейсов и кодирования информации на канальном уровне. Включают в себя необходимые теоретические сведения по предмету «Интерфейсы вычислительных систем».

Для студентов 3-го курса Института МПСУ, обучающихся по специальности 09.03.01 «Информатика и вычислительная техника».

Предисловие

Проектирование любого устройства вычислительной техники неразрывно связано с реализацией взаимодействия между его составными частями и с другими устройствами посредством интерфейсов. Причем на разном уровне конструкторской иерархии это могут быть интерфейсы различного назначения и сложности. При проектировании устройства на уровне ячеек и модулей в первую очередь применяются межкомпонентные интерфейсы - интерфейсы между микросхемами в пределах печатной платы, длина линий связи которых не превышает десятков сантиметров. Для связи с внешними устройствами применяют периферийные интерфейсы, длина линий связи которых составляет единицы-десятки метров. Это интерфейсы с последовательным принципом передачи информации, в которых для решения задачи битовой и кадровой синхронизации применяют различные способы представления и кодирования логических сигналов. Общая тенденция совершенствования различных по функциональному назначению интерфейсов сегодняшнего дня - переход на последовательные принципы передачи информации с повышением пропускной способности.

Значимость интерфейсов передачи информации подтверждает тот факт, что в федеральную программу подготовки студентов по направлению 09.03.01 «Информатика и вычислительная техника» введена обязательная учебная дисциплина «Интерфейсы вычислительных систем».

Система автоматизированного проектирования (САПР) для программируемых логических интегральных схем (ПЛИС) является наглядным инструментом для работы с цифровыми сигналами и визуализацией временных диаграмм реализации кодирования, протоколов информационного обмена по интерфейсам.

В лабораторных работах настоящих методических указаний закрепляются знания обучающихся по кодам, применяемым в последовательных асинхронных интерфейсах, и по последовательным синхронным межкомпонентным интерфейсам на примере интерфейсов I^2C и SPI. Программно-аппаратная реализация позволяет визуализировать временные диаграммы информационных сигналов и на практике реализовать и применить интерфейсы.

Работы выполняются с применением САПР для ПЛИС на языках высокого уровня Verilog и VHDL.

Лабораторная работа № 1

Изучение и реализация процедур арифметического кодирования. Функциональное тестирование

Цель работы: изучение, реализация и функциональное тестирование методов битового кодирования информации.

Продолжительность работы: 3 часа.

Теоретические сведения

Интерфейс вычислительной системы - совокупность программных, аппаратных и конструкторских средств, реализующих алгоритмы взаимодействия устройств. Одним из таких средств является кодирование информации при ее передаче. Кодирование представляет собой набор правил изменения информационной последовательности для передачи в канале. Использование кодирования при передаче информации дает следующие преимущества:

- повышение скорости передачи информации;
- отсутствие необходимости в дополнительном синхросигнале имеется собственная битовая синхронизация кодера и декодера;
 - уменьшение полосы занимаемых сигналом частот (спектра);
- удаление постоянной составляющей спектра частот передаваемого сигнала - гальваническая развязка устройств (обязательна в цифровой телефонии);
 - возможность обнаружения ошибок передачи информации;
 - простота аппаратуры для кодирования;
- сглаживание до равномерного спектра сигнала уменьшение электромагнитных помех.

Физические методы кодирования информации основаны на изменении характеристик передаваемого сигнала - амплитуды, частоты и фазы

напряжения. В настоящей лабораторной работе рассмотрим подсемейство физических кодов.

Алфавитный код - это код, в котором исходной битовой последовательности (символу) ставится в соответствие другая битовая последовательность (необязательно той же длины). При ограниченном наборе передаваемых символов длину каждого символа сокращают, это повышает скорость передачи. Кроме того, алфавитный код легко декодируем. Недостаток данного кода - при большом объеме передаваемой информации она становится несжимаемой, и всем устройствам необходима таблица перевода символов, что требует больших затрат памяти.

Униполярный NRZ-код

Униполярный код без возвращения к нулю (nonreturn to zero) образуется из двоичной последовательности по таким правилам:

- логический «0» передается уровнем 0 В в течение битового интервала (длительностью в 1 бит);
- логическая «1» передается уровнем +U В в течение битового интервала (рис.1).

Рис. 1. Униполярный NRZ-код

Достоинства униполярного NRZ-кода: простота реализации: уровень $0 B = \ll 1$ », уровень $+U B = \ll 0$ ». Недостатки униполярного NRZ-кода:

- при передаче последовательностей из одинаковых символов в канале нарастает паразитная емкость (постоянная составляющая). Это увеличивает время и ухудшает качество работы устройств и канала без помех, а также не обеспечивает гальваническую развязку устройства;
- при передаче последовательностей из одинаковых символов устройства рассинхронизируются, так как долго нет фронтов сигнала;
 - нет возможности обнаружить ошибку передачи.

Сам по себе униполярный NRZ-код используется редко, однако он применяется в простом интерфейсе RS-232.

Биполярный NRZ-код

Биполярный код без возвращения к нулю образуется из двоичной последовательности по таким правилам:

- логический «0» передается уровнем -U В в течение битового интервала;
- логическая «1» передается уровнем +U В в течение битового интервала (рис.2).

Puc.2. Биполярный NRZ-код

Данный метод кодирования выгодно отличается от предыдущего уменьшением в 2 раза мощности, рассеиваемой при передаче. Остальные достоинства и недостатки биполярного и униполярного NRZ-кодов совпадают.

Униполярный RZ-код

Униполярный код с возвращением к нулю (return-to-zero) образуется из двоичной последовательности по таким правилам:

- логический «0» передается уровнем 0 В в течение битового интервала;
- логическая «1» передается уровнем +U В в течение первой половины битового интервала и уровнем 0 В в течение второй половины битового интервала (рис.3).

Рис. 3. Униполярный RZ-код

Достоинства униполярного RZ-кода:

- фронт в середине битового интервала обеспечивает частичную синхронизацию;
 - простота реализации.

Недостатки униполярного RZ-кода:

- присутствует постоянная составляющая;
- при передаче последовательностей из логических нулей устройства рассинхронизируются;
 - нет обнаружения ошибок.

Биполярный RZ-код

Биполярный код с возвращением к нулю образуется из двоичной последовательности по таким правилам:

- логический «0» передается уровнем -U В в течение первой половины битового интервала и уровнем 0 В в течение второй половины битового интервала;
- логическая «1» передается уровнем +U В в течение первой половины битового интервала и уровнем 0 В в течение второй половины битового интервала (рис.4).

Рис.4. Биполярный RZ-код

Достоинства биполярного RZ-кода:

- полная синхронизация (фронт для синхронизации присутствует в каждом битовом интервале);
- уменьшение количества низкочастотных компонентов в аппаратуре.

Недостатки биполярного RZ-кода:

- присутствует постоянная составляющая;
- нет обнаружения ошибок.

NRZI-код

Для кода без возвращения к нулю и с инверсией (Non Return to Zero with ones Inverted, NRZI) различают два противоположных варианта правил формирования сигнала.

Вариант № 1:

- логическая «1» передается сменой полярности напряжения в канале связи;
- при поступлении логического «0» уровень напряжения в линии связи постоянный (рис.5).

Рис.5. Вариант № 1 правил формирования сигнала NRZI-кода

Вариант № 2:

- логический «0» передается сменой полярности напряжения в канале связи;
- при поступлении логической «1» уровень напряжения в линии связи не меняется (рис.6).

Рис. 6. Вариант № 2 правил формирования сигнала NRZI-кода

Достоинства и недостатки NRZI-кода такие же, как достоинства и недостатки униполярного NRZ-кода. Модифицированный вариант NRZI-кода используется в интерфейсе FDDI.

Для некоторых сред передачи, например оптических кабелей, введение трех уровней напряжения (+U,0,-U) нежелательно, так как они предназначены для двухуровневой передачи (различают состояния: носитель заряда, отсутствие носителя). В этом случае предпочтительнее использование двухуровневых кодов.

Kod AMI

AMI (alternative mark inversion) - код, предложенный Э. Баркером для цифровой передачи речевых сигналов (1962 г.). Код формируется по таким правилам:

- логический «0» передается нулевым уровнем напряжения в течение битового интервала;
- логическая «1» передается импульсом напряжения либо +U В, либо -U В (текущая полярность напряжения противоположна предыдущей при логической «1»).

Импульс напряжения длительностью $T_{\rm вx.~6ut}/2$ расположен в середине битового интервала (рис.7).

Puc.7. Код *AMI*

Достоинства кода АМІ:

- частичная синхронизация;
- нет постоянной составляющей возможна гальваническая развязка;
- обнаружение ошибок при нарушении правил следования единичных импульсов;
 - меньшая полоса частот, чем у NRZ-кода.

Недостатки кода *АМІ*:

- усложнение реализации по сравнению с двухуровневыми кодами;
- при передаче последовательностей логических нулей устройства рассинхронизируются, в связи с чем на практике код Баркера сам по себе не используется.

В линиях цифровой телефонии применяется модифицированный код AMI: код биполярный с замещением четырех нулей (Bipolar with 4-Zero Substitution - B4ZS) или код высокой плотности биполярный порядка 3 (High Density Bipolar 3 - HDB3).

Модификация АМІ (HDB3)

В непрерывной последовательности, состоящей из четырех и более логических нулей, первая тетрада (0000) заменяется двоичной последовательностью 000V, где V - логическая «1». При этом нарушается правило кодирования AMI (HDB3). Полярность напряжения не меняется при появлении следующего единичного импульса. Вторая и последующие тетрады, состоящие только из нулей, заменяются двоичной последовательностью B00V, где B - логическая «1» с соблюдением правил кодирования AMI, т.е. импульс с изменением полярности предшествующей логической «1», а V - логическая «1» с нарушением правил кодирования AMI, т.е. импульс с сохранением полярности предшествующей логической «1» (рис.8).

Puc.8. Код HDB3

Код Манчестер-2

Данный код представляет собой разновидность модуляционного кода. Полярность напряжения в середине каждого битового интервала в этом коде изменяется на противоположную. Например, в интерфейсе МИК (ГОСТ Р 52070-2003) действуют следующие правила формирования сигнала:

- логический «0» передается сменой уровня напряжения -U В на уровень +U В;
- логическая «1» передается сменой уровня напряжения +U В на уровень -U В (рис.9).

Рис. 9. Код Манчестер-2 (МИК)

Возможно и инверсное представление такого кодирования, например, как в ЛВС Ethernet (технологии 10Base-2, 10Base-5, 10Base-TX).

Достоинства кода Манчестер-2:

- полная синхронизация;
- нет постоянной составляющей возможна гальваническая развязка;
 - обнаружение ошибок;
- хорошая помехозащищенность за счет двух выделенных частот в спектре сигнала.

Недостатки кода Манчестер-2:

- необходима большая полоса частот;
- высокие требования к точности измерения времени (для определения половины интервала).

Код Манчестер-2 широко применяется в медных и оптоволоконных кабелях, используется протоколом локальной вычислительной сети (ЛВС) Ethernet 10~Mбит/c.

Частотно-модуляционный код

В данном коде уровень напряжения в начале каждого такта изменяется на противоположный, а также действуют такие правила:

- при передаче логического «0» не изменяется уровень напряжения в середине битового интервала;
- при передаче логической «1» добавляется изменение уровня напряжения в середине битового интервала (рис.10).

Рис. 10. Частотно-модуляционный код

 $extbf{\emph{Частотно-модуляционный код}}$ (ЧМ-код) в основном используется при записи на магнитные носители.

Kod RLL

Другое название кода - RLL-код с ограничением длины поля записи (Run Length Limit - RLL). Это семейство методов кодирования. Отличия внутри семейства определяются двумя параметрами: run length - мини-мальное количество битовых интервалов межеду сменами полярности напряжения, и run limit - максимальное количество битовых интервалов без смены полярности. Рассмотрим популярный вариант RLL (рис.11): RLL (2,7). Для него составляется словарь кодирования (табл.1).

Puc.11. Вариант кода RLL (2,7)

Таблица 1

Словарь кодирования RLL (2,7)

Битовая последова-	Кодированная по-	Количество	Вероятность
тельность	следовательность	смен поляр-	встречи в слу-
		ности на бит	чайном потоке
			данных, %
11	RNNN	1/2	25
10	NRNN	1/2	25
011	NNRNNN	1/3	12,5
010	RNNRNN	2/3	12,5
000	NNNRNN	1/3	12,5
0010	NNRNNRNN	2/4	6,25
0011	NNNNRNNN	1/4	6,25

Примечание: R - смена полярности в начале полутакта; N - полярность не меняется.

Код биполярный трехуровневый

Сигнал формируется по таким правилам:

- логическая «1» передается нулевым уровнем напряжения;
- логический «0» передается уровнем напряжения +U В или -U В, причем полярность меняется на противоположную всегда, когда перед логическим «0» следует нечетное количество логических «1» (рис.12).

Рис. 12. Код биполярный трехуровневый

Код Миллера

Сигнал формируется по таким правилам:

- логическая «1» передается сменой полярности импульса в середине битового интервала;
- при передаче логического «0» нет смены полярности, если предыдущий бит был логической «1»;
- при передаче логического «0» происходит смена полярности в конце битового интервала, если предыдущий бит был логическим «0» (рис.13).

Рис.13. Код Миллера

Достоинства кода Миллера:

- полная синхронизация;
- обнаружение ошибок;
- полоса частот меньше, чем полоса частот, требуемая для кода Манчестер-2.

Недостатки кода Миллера:

- есть постоянная составляющая;
- высокие требования к точности измерения времени.

Kod 4B5S

Исходная логическая последовательность разбивается на тетрады. Каждой двоичной тетраде ставится в соответствие двоичный код из 5 бит по таблице кодирования (табл.2). В этом случае можно закодировать 32 различные кодовые комбинации. Для передачи данных используют только содержащие не менее двух единиц комбинации, остальные зарезервированы.

Таблица 2 Словарь кодирования 4B5S

Исходный	Результирующий	Исходный	Результирую-
код	код	код	щий код
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Достоинства кода 4B5S:

- битовая синхронизация;
- дополнительные возможности управления за счет назначения сервисных команд зарезервированным комбинациям.

Недостатки кода 4B5S:

- необходима таблица кодирования;
- уменьшение скорости передачи или повышение тактовой частоты передачи по сравнению с исходной последовательностью.

Код *4В5S* используется при передаче информации по оптоволокну в ЛВС FDDI или по витой паре в сети 100Base-TX.

Kod MLT-3

Код MLТ-3 (Multi Level Transmission - 3), или **код трехуровневой передачи**, использует три уровня напряжения: +U, 0, -U. Сигнал формируется по следующим правилам:

- логический «0» передается отсутствием изменения уровня напряжения в линии;
- логическая «1» передается циклическим изменением уровня напряжения: +U, 0, -U, 0, +U (рис.14).

Puc.14. Код MLT-3

Достоинства кода *MLT-3*:

- частичная синхронизация;
- нет постоянной составляющей возможна гальваническая развязка;
- обнаружение ошибок при нарушении правил следования единичных импульсов;
 - меньшая полоса частот, чем у NRZ-кода.

Недостатки кода *MLT-3*:

- усложнение реализации по сравнению с NRZ-кодом;
- если необходимо передать тетраду «1111» за один такт (т.е. обеспечить четыре перехода уровня за один такт), то частоту передачи придется сделать в 4 раза меньше максимальной частоты среды;
- ullet при передаче последовательностей логических «0» устройства рассинхронизируются.

Код MLT-3 используется в ЛВС Ethernet 100 Мбит (100Base-TX).

Порядок выполнения лабораторной работы

- 1. Разработать в любой цифровой среде граф состояний процедуры битового кодирования.
 - 2. Реализовать кодер (варианты в табл.3) на языке Verilog.
 - 3. Разработать test bench для проверки модулей.
- 4. Проверить работу кодера на временной диаграмме, где входная последовательность номер студенческого билета (например, $8110318_{10} = 111001001000011001111_2$).
 - 5. Разработать граф состояний декодера.
- 6. Реализовать декодер с возможностью распознавания ошибок передачи на языке Verilog.
- 7. Проверить работу декодера на временной диаграмме, на которой входная последовательность выходная для кодера.
 - 8. (Дополнительное задание.) Реализовать кодер на языке VHDL.
 - 9. Ответить на контрольные вопросы.

Таблица 3

Варианты заданий

Номер варианта	Задание
1, 9, 17, 25	NRZI-код (два варианта, мультиплексирование
	кодера)
2, 10, 18, 26	Код АМІ
3, 11, 19, 27	Код «Манчестер-2» (мультиплексирование кодера)
4, 12, 20, 28	ЧМ-код (мультиплексирование кодера)
5, 13, 21, 29	Код <i>RLL</i> (2,7)
6, 14, 22, 30	Код биполярный трехуровневый
7, 15, 23, 31	Код Миллера (мультиплексирование кодера)
8, 16, 24, 32	Код <i>MLT-3</i>

Контрольные вопросы

- 1. Где и в каких случаях применяется кодирование информации?
- 2. В чем заключаются преимущества и недостатки алфавитных кодов?
 - 3. Как происходит кодирование информации методом NRZ?
 - 4. Достоинства и недостатки кода NRZ.
 - 5. Как происходит кодирование информации методом RZ?

- 6. Перечислите достоинства и недостатки кода RZ.
- 7. Опишите способ кодирования информации методом NRZI.
- 8. Опишите способ кодирования информации методом АМІ.
- 9. Перечислите достоинства и недостатки кода АМІ.
- 10. Опишите способ кодирования информации методом Манчестер-2.
 - 11. Перечислите достоинства и недостатки кода Манчестер-2.
- 12. Опишите способ кодирования информации частотно-модуляционным методом.
 - 13. Связь частотно-модуляционного и RLL-кодов.
 - 14. Как происходит кодирование информации методом Миллера?
 - 15. В чем заключаются достоинства и недостатки кода Миллера?
 - 16. Каковы преимущества и недостатки избыточного кода?
- 17. Опишите способ кодирования информации методом биполярным трехуровневым.
 - 18. Опишите способ кодирования информации методом МLТ-3.
 - 19. Каковы достоинства и недостатки кода МLТ-3?
 - 20. Какой код называется двухуровневым?
 - 21. Какой код называется трехуровневым?
 - 22. Перечислите примеры двухуровневых кодов.
 - 23. Перечислите примеры трехуровневых кодов.
- 24. В чем заключаются преимущества и недостатки многоуровневых кодов?

Лабораторная работа № 2

Изучение и реализация интерфейсов I²C, SPI

Цель работы: изучить интерфейсы I^2C и SPI. **Продолжительность работы:** 3 часа.

Теоретические сведения

Интерфейс I²C

 I^2C (Inter-Integrated Circuit) - межкомпонентный двухпроводной интерфейс, представляющий собой синхронную последовательную шину, которая обеспечивает двустороннюю передачу данных между подключенными устройствами. Интерфейс I^2C состоит из двух однобитных сигнальных линий:

- 1) данные (Serial Data, SDA);
- 2) синхронизация (Serial Clock, SCL).

На рис.1 представлен пример соединения устройств по шине I^2C : один ведущий (Master) микроконтроллер и три ведомых (Slave) устройства (АЦП, ЦАП, МК).

Рис.1. Шина I2C

В число I²С-совместимых устройств входят ИС памяти, видеопроцессоров и модулей обработки аудио- и видеосигналов, аналогоцифровых и цифро-аналоговых преобразователей, драйверы ЖК-индикаторов, процессоры со встроенным аппаратным контроллером I²С шины и т.д. Интерфейс I²С позволяет работать и в режиме «мультимастер» - когда на шине имеется несколько Master-устройств.

Перед началом передачи данных на ведущее устройство поступает информация о том, что шина свободна, т.е. сигналы SCL и SDA имеют высокий уровень. После этого Master-устройство формирует условие CTAPT (Start) - перевод сигнала SDA в низкий уровень при сохранении высокого уровня SCL. Завершается передача данных введением ведущим устройством условия СТОП (Stop) - сигнал SDA переводится в высокий уровень при сохранении высокого уровня SCL. На рис.2 изображены условия СТАРТ и СТОП.

Puc.2. Временная диаграмма обмена по шине I2C

На рис.3 и 4 представлены запись и чтение по шине I²C.

Рис.3. Запись по шине I²C

Slave адрес - адрес, указанный в технической документации ведомого устройства. После адреса указывается бит чтения («1») или записи

(«0»). Ответ - АСК («0») или NACK («1»), после битов адреса и бита операции ведомое устройство выставляет ответ АСК, чтобы проинформировать Master-устройство о том, что Slave-устройство работает и готово к обмену. Чтение отличается от записи тем, что после каждого считанного байта ответ на шину выставляет Master-устройство - АСК для продолжения чтения, NACK для остановки.

Рис. 4. Чтение по шине интерфейса I²C

Арбитраж в интерфейсе I²C выполняется на линии SDA при высоком уровне SCL (рис.5). Устройство, которое формирует на линии SDA высокий уровень, в то время как другое передает низкий, теряет право быть ведущим и должно перейти в режим ведомого.

Рис. 5. Арбитраж интерфейса I²C

Достоинства интерфейса I²C:

• требуется только две линии - линия данных (SDA) и линия синхронизации (SCL). Каждое устройство, подключенное к шине, может быть программно-адресовано по уникальному адресу. В каждый момент

времени существует простое отношение ведущий/ведомый: ведущие устройства могут работать как ведущий-передатчик и ведущий-приемник;

- шина позволяет иметь несколько ведущих устройств, предоставляя средства для определения коллизий и арбитраж для предотвращения повреждения данных в ситуации, когда два или более ведущих одновременно начинают передачу данных;
- относительно высокие скорости обмена от 100 Кбит/с до 3,4 Мбит/с, соединение друг с другом устройств с различными напряжениями питания.

Недостатки интерфейса I²C:

- максимально допустимое количество микросхем, подсоединенных к одной шине, ограничивается максимальной емкостью шины 400 пФ;
- трудность локализации неисправности, если одно из подключенных устройств ошибочно устанавливает на шине состояние низкого уровня.

Интерфейс SPI

SPI (Serial Peripheral Interface) - синхронный последовательный периферийный интерфейс.

В SPI используется четыре цифровых сигнала:

- 1) MOSI выход ведущего, вход ведомого (Master Out Slave In). Служит для передачи данных от ведущего устройства ведомому;
- 2) MISO вход ведущего, выход ведомого (Master In Slave Out). Служит для передачи данных от ведомого устройства ведущему;
- 3) SCLK последовательный тактовый сигнал (Serial Clock). Служит для передачи тактового сигнала для ведомых устройств;
- 4) CS или SS выбор микросхемы, выбор ведомого (Chip Select, Slave Select).

Известны следующие варианты подключения нескольких устройств на шине SPI:

- независимое (параллельное) подключение (рис.6);
- каскадное (последовательное) подключение (рис.7).

При параллельном подключении для каждого Slave-устройства выделяется своя линия SS (CS), Master-устройство устанавливает на линии SS выбранного Slave-устройства высокий уровень сигнала для начала сеанса обмена. Очевидно, что добавление каждого нового устройства на шине сопряжено с необходимостью выделения дополнительной линии SS.

Puc. 6. Параллельное подключение SPI

Puc. 7. Последовательное подключение SPI

При последовательном подключении используется лишь одна линия SS, но данные поступают поочередно во все Slave-устройства, т.е. первый байт данных предназначается последнему устройству, а последний - первому. Master отправляет большой пакет данных сразу для всех ведомых устройств - первый Slave забирает свою часть данных, а остальные ретранслирует следующему устройству. При таком подключении сдвиговые регистры устройств образуют один большой регистр.

Режим работы интерфейса определяется полярностью (CPOL - Clock Polarity) и фазой (CPHA - Clock Phase) установки данных относительно SCLK. Шина SPI (рис.8) работает в четырех режимах:

• Mode 0 (режим 0): CPOL = 0, CPHA = 0. Тактовая последовательность SCLK начинается с формирования положительного фронта. Считывание данных осуществляется по положительному фронту на линии SCLK. Смена данных по отрицательному фронту;

- Mode 1 (режим 1): CPOL = 0, CPHA = 1. Тактовая последовательность SCLK начинается с формирования отрицательного фронта. Считывание данных осуществляется по отрицательному фронту на линии SCLK. Смена данных по положительному фронту;
- Mode 2 (режим 2): CPOL = 1, CPHA = 0. Тактовая последовательность SCLK начинается с формирования положительного фронта. Считывание данных осуществляется по отрицательному фронту на линии SCLK. Смена данных по положительному фронту;
- Mode 3 (режим 3): CPOL = 1, CPHA = 1. Тактовая последовательность SCLK начинается с формирования отрицательного фронта. Считывание данных осуществляется по положительному фронту на линии SCLK. Смена данных по отрицательному фронту.

Рис. 8. Режимы работы SPI. Пунктиром изображен момент считывания данных В интерфейсе SPI ведомое устройство не может самостоятельно управлять потоком данных: путем управления линией SS Master-устройство принимает решение о том, какой из Slave-устройств посылает информацию в шину SPI в текущий момент, поэтому арбитраж не нужен.

Достоинства интерфейса SPI:

- полнодуплексный обмен;
- скорость обмена выше, чем у I2C;
- все линии шины SPI являются однонаправленными, что существенно упрощает решение задачи преобразования уровней и гальванической изоляции микросхем.

Недостатки интерфейса SPI:

- необходимо больше выводов, чем для интерфейса I²C;
- ведомое устройство не может управлять потоком данных;
- нет подтверждения приема данных со стороны ведомого устройства;
 - нет определенного стандартом протокола обнаружения ошибок;
- отсутствие официального стандарта, что делает невозможным сертификацию устройств.

Порядок выполнения лабораторной работы

- 1. Построить структурную схему взаимодействия устройств со всеми используемыми сигналами.
- 2. Реализовать интерфейс на языке Verilog, согласно варианту задания (I^2C/SPI), без использования IP-core, сторонних библиотек и готовых решений.
- 3. Выполнить задания, указанные в варианте, написать test bench для построения временной диаграммы работы ведущего устройства и симуляции работы ведомых устройств. Информация, принимаемая с датчиков/flash, может быть произвольной, но должна соответствовать диапазону значений, указанному в технической документации.

Вариант № 1. I²C.

Используемые модули: датчик MPU6000, символьный дисплей LCD1602, расширитель порта PCF8574.

Задания для test bench:

- 1. Очистить дисплей LCD 1602.
- 2. На первой строке дисплея вывести название регистра и адрес датчика в виде «'Название регистра'(Пробел) ADDR_XX». Вместо символов XX вывести адрес датчика на шине.
- 3. Вывод информации из регистра FIFO_R_W датчика MPU6000 на LCD 1602A на второй строке экрана с выравниванием по центру.

Вариант № 2. SPI.

Используемые модули: Flash-память W25Q16, 7-сегментный индикатор, сдвиговый регистр 74HC595, датчик MPU6000.

Задания для test bench:

1. Считать 4 байта данных из Flash-памяти W25Q16.

- 2. Вывести полученные данные на восемь 7-сегментных индикаторов, подключенных через сдвиговые регистры 74HC595.
- 3. Записать данные в Flash-памяти W25Q16 по любому доступному адресу.
- 4. Считать данные из Flash-памяти W25Q16 по любому доступному адресу, используя команду Fast Read.
 - 5. Вывести полученные данные на 7-сегментные индикаторы.
 - Считать данные из MPU6000 по адресам 114-117.
 - 7. Вывести полученные данные на 7-сегментные индикаторы.

Подключить 7-сегментные индикаторы по последовательной схеме, остальные устройства - по параллельной схеме.

Вариант № 3. I²C.

Используемые модули: PAJ7620, RFID-reader RCC522, ЖКИ 1602A. (Инициализацию экрана проводить не нужно.)

Задания для test bench:

- 1. Считать версию датчика жестов РАЈ7620 (24 бит).
- 2. Записать полученный результат в FIFO буфер RFID-reader RCC522.
 - 3. Очистить экран ЖКИ 1602А.
- 4. Из Interrupt регистра датчика жестов PAJ7620 считать значения двух флагов.
- 5. На первой строке с выравниванием по центру экрана вывести строку «Lab. 2».
- 6. Записать полученную информацию на второй строке ЖКИ 1602A с выравниванием по центру экрана в формате «Flag $0x^{**}(\Pi poбел)0x^{**}$ ».

Вариант № 4. SPI.

Используемые модули: датчик температуры DS1722, АЦП TLA2518, 7-сегментный индикатор, сдвиговый регистр 74HC595.

Задания для test bench:

- 1. Настроить конфигурацию датчика температуры DS1722 на непрерывный режим с 11-битным разрешением измерений.
 - 2. Считать температуру.
- 3. Настроить в ручной режим оцифровки температуры (shutdown mode).
 - 4. Считать обновленные данные температуры.
- 5. Настроить внешний АЦП TLA2518. Считать, что это первая команда после включения устройства. (CPHA = 1, CPOL = 1.)

- 6. Считать регистр системных статусов АЦП TLA2518.
- 7. Вывести полученную информацию на два 7-сегментных индикатора.

Подключение 7-сегментных индикаторов осуществить по последовательной схеме, подключение остальных устройств - по параллельной схеме.

Контрольные вопросы

- 1. Что такое интерфейс?
- 2. Интерфейс I²C. Устройство шины. Ореп-drain выход.
- 3. Интерфейс I²C. Протокол обмена. Временные диаграммы работы.
- 4. Интерфейс I²C. Протокол обмена. Арбитраж.
- 5. Интерфейс I²C. Достоинства и недостатки.
- 6. Интерфейс SPI. Устройство шины. Варианты подключения.
- 7. Интерфейс SPI. Протокол обмена. Временные диаграммы работы.
- 8. Интерфейс SPI. Протокол обмена. Режимы работы интерфейса.
- 9. Интерфейс SPI. Достоинства и недостатки.
- 10. Что такой битовый интервал? Z-состояние? Конечный автомат состояний?

Содержание

Предисловие	3
Лабораторная работа № 1. Изучение и реализация процедур арифметического кодирования. Функциональное тестирование	5
Лабораторная работа № 2. Изучение и реализация интерфейсов I ² C, SPI	9

Учебное издание

Ухандеев Владимир Ильич **Собченко** Максим Иванович **Корявина** Анастасия Сергеевна

Методические указания к лабораторным работам по курсу «Интерфейсы вычислительных систем»

Редактор H.A. Кузнецова. Технический редактор $Л.\Gamma.$ Лосякова. Корректор $Л.\Gamma.$ Лосякова. Верстка авторов.

Подписано в печать с оригинал-макета 25.02.2022. Формат 60×84 1/16. Печать офсетная. Бумага офсетная. Гарнитура Times New Roman. Усл. печ. л. 1,62. Уч.-изд. л. 1,4. Тираж 100 экз. Заказ 11.

Отпечатано в типографии ИПК МИЭТ.

124498, г. Москва, г. Зеленоград, площадь Шокина, дом 1, МИЭТ.