• Variável Aleatória Uniforme em (a, b):

$$\circ f(x) = \begin{cases} \frac{1}{b-a}, & \text{se } a < x < b \\ 0 & \text{caso contrário} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{se } x \le a \\ \frac{x-a}{b-a} & \text{se } a < x < b \\ 1 & \text{se } x \ge b \end{cases}$$

$$\circ EX = \frac{b+a}{2} \quad e \quad Var(X) = \frac{(b-a)^2}{12}.$$

• Variável Aleatória Exponencial

$$\circ f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{se } x \ge 0 \\ 0 & \text{se } x \le 0 \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{se } x \ge 0 \\ 0 & \text{se } x \le 0 \end{cases}$$

$$\circ EX = \frac{1}{\lambda} \quad e \quad Var(X) = 1/\lambda^2$$

• Distribuição condicional. X e Y discretas

$$p_{X|Y}(x \mid y) = P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p(x, y)}{p_Y(y)}$$

X e Y contínuas

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}, \quad f_Y(y) > 0,$$

- Fda condicional. $F_{X\mid Y}(x\mid y) = P(X\leq x\mid Y=y)$
- Esperança condicional discreta

$$E(X \mid Y = y) = \sum_{x} x \, p_{X\mid Y}(x \mid y), \; \text{ se } X \text{ e } Y \text{ são v.a. discretas}$$

• Esperança condicional contínua

$$E(X \mid Y = y) = \int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) dx$$
, se X e Y são v.a. contínuas

• Cálculo de esperanças usando condicionais. $E[E(X \mid Y)] = EX$. Se Y é uma v.a. discreta

$$EX = \sum_{y} E(X \mid Y = y) p_y(y).$$

Se Y é uma v.a. contínua

$$EX = \int_{-\infty}^{\infty} E(X \mid Y = y) f_y(y) dy.$$

- Desig. de Markov Se X não negativa então, $\forall a>0,\ P(X\geq a)\leq \frac{EX}{a}$
- Desig. de Chebyshev Se X média e variância finitas, então, $\forall k>0,\ P(|X-EX|\geq k)\leq \frac{Var(X)}{k^2}$
- Função geradora de momentos.

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x), & \text{se } X \text{ \'e discreta} \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx, & \text{se } X \text{ \'e cont\'nua} \end{cases}$$

• Função geradora de momentos conjunta

$$M(t_n, ..., t_n) = E[e^{t_1 X_1 + ..., t_n X_n}], t_1, ..., t_n \in \mathbb{R}^n$$

• Estatísticas de ordem. Dadas X_1, \ldots, X_n v.a.'s independentes com funções de distribuição F_1, \ldots, F_n respectivamente, a distribuições de $X_{(1)}$ e $X_{(n)}$ são dadas respectivamente por:

$$F_{(1)}(z) = 1 - \prod_{i=1}^{n} [1 - F_{X_i}(z)]$$
 e $F_{(n)}(z) = \prod_{i=1}^{n} F_{X_i}(z)$

• Convergência em probabilidade: $X_n \xrightarrow{\mathbf{P}} X$

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$$

Convergência quase certa: $X_n \xrightarrow{\mathbf{qc}} X$

$$P\left(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right) = 1.$$

Convergência em distribuição: $X_n \xrightarrow{\mathbf{d}} X$ todo ponto x em que F é contínua, vale que

$$\lim_{n \to \infty} F_n(x) = F(x).$$

Lema de Borel Cantelli. Seja A_1, A_2, \ldots uma sequência de eventos.

- (i) Se $\sum_{n=1}^{\infty} P(A_n) < \infty$, então $P(A_n \text{ infinitas vezes}) = 0$
- (ii) Se $\sum_{n=1}^{\infty} P(A_n) = \infty$ e os A_n 's são independentes, então $P(A_n$ infinitas vezes) = 1

Lei fraca dos Grandes Números. Sejam X_1, X_2, \dots v.a. 's independentes, com mesma média $EX_k = \mu < \infty$ e mesma variância $\sigma^2 < \infty$. Então, isto é

$$\frac{S_n}{n} \xrightarrow{P} \mu, \ n \to \infty$$

Lei (fraca) dos Grandes Números de Khintchin. Sejam X_1, X_2, \dots v.a. 's independentes e identicamente distribuídas, com média $EX_k = \mu < \infty$. Então,

$$\frac{S_n}{n} \xrightarrow{P} \mu$$
,

Primeira lei de Kolmogorov. Sejam X_1, X_2 v.a.'s independentes e com média finita (suponha $EX_k = \mu_k$) e suponha que

$$\sum_{n=1}^{\infty} \frac{Var(X_n)}{n^2} < \infty.$$

Então

$$\frac{S_n - \sum \mu_k}{n} \xrightarrow{\mathrm{qc}} 0 \ n \to \infty.$$

Lei forte de Kolmogorov Sejam X_1, X_2 v.a.'s i.i.d com média finita μ , então

$$\frac{S_n}{n} \xrightarrow{\mathrm{qc}} 0, \ n \to \infty.$$

Teorema Central do Limite Sejam X_1, X_2, \ldots v.a. 's i.i.d. com $EX_k = \mu$ e $Var(X_k) = \sigma^2 < \infty$.

$$\lim_{n \to \infty} P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le a\right) = P(Z \le a) = \Phi(a).$$

Isto é, $\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} Z$, quando $n \to \infty$.