# Week 11: Classification, Final Review

DSUA111: Data Science for Everyone, NYU, Fall 2020

#### TA Jeff, jpj251@nyu.edu

- This slideshow: <a href="https://jjacobs.me/dsua111-sections/week-11">https://jjacobs.me/dsua111-sections/week-11</a> (<a href="https://jjacobs.me/dsua111-sections/week-11">https://jjacobs.me/dsua111-sections/week-11</a>)
- All materials: <a href="https://github.com/jpowerj/dsua111-sections">https://github.com/jpowerj/dsua111-sections</a> (<a href="https://github.com/jpowerj/dsua111-sections">https://github.com/jpowerj/dsua111-sections</a>)

### **Outline**

- I. Classification
  - 1. The K-Nearest Neighbors Algorithm
  - 2. Evaluating KNN
- II. Final Review
  - 1. Big Picture Ideas
  - 2. Math/Programming Details

Part I: Classification

## The K-Nearest Neighbors Algorithm

- Recall from last time:
  - **Statistics** is generally about *explanation*
  - Machine Learning is generally about prediction
- Binary Classification: Given a set of information ("features") about an observation ( X), predict a yes/no outcome ( $y \in \{0,1\}$ ) for this observation
  - lacktriangle Example: Given a count of words in an email, classify it as spam (y=1) or not spam (y=0)
- Multiclass classification: Classify the observation into one of N categories (  $y \in \{0,1,\ldots,N\}$ )
  - Example: Given a handwritten symbol, classify it as a digit (  $y = \{0, 1, \dots, 9\}$ )
- ullet K-Nearest Neighbors Intuition: Find the K most similar observations that we've seen before, and have them "majority vote" on the outcome.

## K-Nearest Neighbors Example

- The problem: Given a student's GPA, predict whether or not they will graduate
- Many different potential approaches!
- K-Nearest Neighbor Approach:
  - Get a dataset of previous years, students' GPAs and whether or not they graduated
  - Find the K=5 students with GPA closest to the student of interest
  - If a majority of them graduated, predict that the student will graduate.
     Otherwise, predict that they will not.

## **Binary Classification with 2 Features**



(from <a href="https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn">https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn</a>))

## **Evaluating KNN**

- For **binary** classification: Seemingly easy, could just compute # correct, # incorrect
- We generally **DON'T WANT TO DO THIS** (why?)
- ullet Instead, in actual machine learning projects, we use F-score:

$$F_1=rac{tp}{tp+rac{1}{2}(tp+fn)}$$

- Don't worry about the details, the point is that what we **really** want to do is maximize accuracy (tp) subject to a penalty for false positives/negatives.
- ullet This generalizes to multiclass classification: each category has its own F-score

**Part II: Final Review** 

## **Common Misperceptions**

**0.** True or False: The p-value is the probability that the null hypothesis is true.

**False**. It's the probability that we would obtain a test statistic value this "extreme" if the null hypothesis was true.

| <b>1.</b> True or False: A 95% confidence interval means we're 95% confident that the true value of the parameter is between these two values.                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>False</b> . It's just an interval computed in such a way that if we re-performed the experiment many many times, on average we'd expect the computed interval to contain the true value of the parameter about 95% of the time. |
|                                                                                                                                                                                                                                    |

| <b>2.</b> True or False: If our p-value is not low enough to meet our significance threshold (say, it's not below 0.05), then we reject the alternative hypothesis and accept the null hypothesis. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| False. We never "accept" any hypotheses.                                                                                                                                                           |
|                                                                                                                                                                                                    |
|                                                                                                                                                                                                    |
|                                                                                                                                                                                                    |

**3.** True or False: For pd.read\_csv("dataset.csv") to work correctly, the dataset.csv file must be in the same folder as our notebook.

**True**. Otherwise, we have to specify how to "get to" the .csv file from the notebook's folder

4. What about pd.read\_csv("../dataset.csv")?

This tells Pandas to look one level above the folder containing the notebook, in the computer's directory tree. (So, if the notebook was located at /home/data\_science\_projects/my\_notebook.ipynb, the above code would look for dataset.csv within the /home folder.

### **Regression Questions**

We're going to load a dataset with GDP per capita (in USD) and level of inequality (as measured by Gini coefficient -- higher values = more unequal) for each country in the world. Then we'll perform a regression with GDP per capita as our **independent** variable and level of inequality as our **dependent** variable.

5. Write the equation for our unfitted model in this case

$$Gini_i = eta_0 + eta_1 GDP_i + arepsilon_i$$

**6.** What is the **null hypothesis** that this regression is testing, **in terms of this equation**?

 $H_0:eta_1=0$ 

| 7. What is the <b>null hypothesis</b> that this regression is testi | ng, <b>in words</b> ?      |
|---------------------------------------------------------------------|----------------------------|
| An increase of \$1 in GDP per capita is not associated with         | n any change in inequality |
|                                                                     |                            |
|                                                                     |                            |

**8.** What is the **alternative hypothesis** that this regression is testing, **in terms of our equation**?

 $H_A:eta_1
eq 0$ 



```
In [56]:
         import pandas as pd
In [57]:
         ineq df = pd.read csv("gdp inequality.csv")
In [58]:
         ineq df.rename(columns={'Gini coefficient (World Bank (2016))':'gini',
                                  'Output-side real GDP per capita (gdppc o) (PWT 9.1 (2019))':'gd
         p'},
                         inplace=True)
In [59]:
         ineq df = ineq df[~pd.isna(ineq_df["gini"])].copy()
In [60]:
         ineq df = ineq df[~pd.isna(ineq df["gdp"])].copy()
In [61]:
         final df = ineq df.groupby("Code").last()
In [62]:
         import statsmodels.formula.api as smf
In [63]:
         result = smf.ols('gini ~ gdp', data=final df).fit()
In [64]:
         summ = result.summary(); summ.extra txt = None
```

#### In [65]:

summ

#### Out[65]:

OLS Regression Results

| Dep. Variable:    | gini             | R-squared:          | 0.145    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.139    |
| Method:           | Least Squares    | F-statistic:        | 24.73    |
| Date:             | Thu, 03 Dec 2020 | Prob (F-statistic): | 1.83e-06 |
| Time:             | 17:34:11         | Log-Likelihood:     | -520.62  |
| No. Observations: | 148              | AIC:                | 1045.    |
| Df Residuals:     | 146              | BIC:                | 1051.    |
| Df Model:         | 1                |                     | •        |
| Covariance Type:  | nonrobust        |                     |          |

Covariance Type: nonrobust

|           | coef    | std err  | t      | P> t  | [0.025 | 0.975] |
|-----------|---------|----------|--------|-------|--------|--------|
| Intercept | 42.2291 | 0.932    | 45.329 | 0.000 | 40.388 | 44.070 |
| gdp       | -0.0002 | 4.59e-05 | -4.973 | 0.000 | -0.000 | -0.000 |

| Omnibus:       | 3.685 | Durbin-Watson:    | 1.859    |
|----------------|-------|-------------------|----------|
| Prob(Omnibus): | 0.158 | Jarque-Bera (JB): | 3.256    |
| Skew:          | 0.352 | Prob(JB):         | 0.196    |
| Kurtosis:      | 3.182 | Cond. No.         | 2.80e+04 |

10. What does the -0.0002 in the "coef" column of the "gdp" row mean? An increase of \$1 in GDP per capita is associated with a decrease of 0.0002 in Gini coefficient (inequality)

**11.** Which column do we look at to obtain our p-value?

The column with header P>|t|.

| <b>12.</b> True or False: Since the p-value is so low, we can conclude that increases in GDP cause decreases in inequality |
|----------------------------------------------------------------------------------------------------------------------------|
| <b>False</b> . We should <b>never</b> draw causal conclusions from the results of an OLS regression.                       |
|                                                                                                                            |
|                                                                                                                            |

| 13. Where do we look to obtain the F-statistic for our model?                                 |
|-----------------------------------------------------------------------------------------------|
| Towards the top the third row, right-hand column, lists the F-statistic (in this case, 24.73) |
|                                                                                               |
|                                                                                               |
|                                                                                               |

#### 14. What does this value mean?

This is the **test statistic** for the hypothesis that **all** of the coefficients in our model are 0. With reference to our equation above, the null hypothesis for the F-statistic would be

$$H_0: \beta_0 = 0 \text{ and } \beta_1 = 0$$

and the alternative hypothesis

$$H_A: \beta_0 \neq 0 \text{ or } \beta_1 \neq 0$$

The value 24.73 is high enough that the probability of obtaining an F-statistic as extreme as or more extreme than that is (listed directly underneath the F-statistic in the table) approximately 0. Thus we reject the null hypothesis that all coefficients are zero.

**15.** True or False: The adjusted  $\mathbb{R}^2$  value is lower than the  $\mathbb{R}^2$  value because GDP does not explain much of the variance in Gini coefficient

False. Adjusted  ${\cal R}^2$  is only lower than  ${\cal R}^2$  because it penalizes you for each new independent variable you introduce into the model.

**16.** How would the interpretation of our coefficient on GDP change if we added another independent variable?

Whereas in the single-variable case we interpret the coefficient as just the effect of GDP on inequality, if we introduced a new independent variable  $X_2$  we would have to reinterpret our coefficient on GDP as the effect of GDP on inequality **holding**  $X_2$  **constant** (or, if we center our variables, like we really should: the effect of GDP on inequality at the average  $X_2$  value)

#### **Some Stats**

17. If we have an observation  $x_5=123.45$  in a dataset, and find that the z-score for this value is  $z_5=2.00$ , what does this tell us about the original observation?

It tells us that 123.45 is almost exactly 2 standard deviations above the mean x value.

**18.** True or False: If the mean of a variable x in our dataset is 50.0 and the standard deviation is 5.0, we know that approximately 68% of the values of x lie within one standard deviation of this mean, i.e., between 45.0 and 55.0.

**False**. This is important. Because the "68% of the data lie within one standard deviation of the mean" property only holds for **normally-distributed** observations. The question never stated that the data was normally distributed, thus we can't assume the "68% rule" here.

# Some Coding

19. What will the following code output?

```
for i in range(100):
    if i % 7 == 0:
        print(i)
```

```
In [92]: for i in range(100):
    if i % 7 == 0:
        print(i)
0
7
14
21
28
35
```

#### **20.** What will this code output?

```
for i in range(100):
    if i / 7 == 0:
        print(i)
```

```
In [93]: for i in range(100):
    if i / 7 == 0:
        print(i)
```

0

**21.** How many times will the following code print `"hello!"?

```
i = 0
while i < 4:
    for j in range(2):
        print("hello!")
    i = i + 1</pre>
```

hello! hello! 22. How many times will the following code print "hello!"?

```
i = 0
while i < 4:
    for j in range(i):
        print("hello!")
    i = i + 1</pre>
```

hello!

hello!

hello!

hello!

hello!

hello!

# Returning to our DataFrame...

In [101]: final\_df.head()

### Out[101]:

|      | Entity    | Year | Total population (Gapminder, HYDE & UN) | Continent | gini  | gdp        | high_gdp |
|------|-----------|------|-----------------------------------------|-----------|-------|------------|----------|
| Code |           |      |                                         |           |       |            |          |
| AGO  | Angola    | 2008 | 21696000.0                              | NaN       | 42.72 | 6080.5405  | 0        |
| ALB  | Albania   | 2012 | 2914000.0                               | NaN       | 28.96 | 10402.6360 | 1        |
| ARG  | Argentina | 2013 | 42196000.0                              | NaN       | 42.28 | 16920.7560 | 1        |
| ARM  | Armenia   | 2013 | 2898000.0                               | NaN       | 31.54 | 9481.5098  | 0        |
| AUS  | Australia | 2010 | 22155000.0                              | NaN       | 34.94 | 44854.9020 | 1        |

**23.** True or False: The following code permanently renames the "Total population" column so it is henceforth named "pop"

In [42]: final\_df.rename(columns={'Total population (Gapminder, HYDE & UN)':'pop'})

### Out[42]:

|      | Entity       | Year | рор        | Continent | gini  | gdp        |
|------|--------------|------|------------|-----------|-------|------------|
| Code |              |      |            |           |       |            |
| AGO  | Angola       | 2008 | 21696000.0 | NaN       | 42.72 | 6080.5405  |
| ALB  | Albania      | 2012 | 2914000.0  | NaN       | 28.96 | 10402.6360 |
| ARG  | Argentina    | 2013 | 42196000.0 | NaN       | 42.28 | 16920.7560 |
| ARM  | Armenia      | 2013 | 2898000.0  | NaN       | 31.54 | 9481.5098  |
| AUS  | Australia    | 2010 | 22155000.0 | NaN       | 34.94 | 44854.9020 |
| •••  |              |      |            |           |       | •••        |
| VEN  | Venezuela    | 2006 | 26850000.0 | NaN       | 46.94 | 12223.4100 |
| VNM  | Vietnam      | 2012 | 89802000.0 | NaN       | 38.70 | 4933.5288  |
| YEM  | Yemen        | 2005 | 20107000.0 | NaN       | 35.89 | 3196.2153  |
| ZAF  | South Africa | 2011 | 52004000.0 | NaN       | 63.38 | 11832.0590 |
| ZMB  | Zambia       | 2010 | 13606000.0 | NaN       | 55.62 | 2870.8872  |

148 rows × 6 columns

In [43]: | final\_df.head()

## Out[43]:

|      | Entity    | Year | Total population (Gapminder, HYDE & UN) | Continent | gini  | gdp        |
|------|-----------|------|-----------------------------------------|-----------|-------|------------|
| Code |           |      |                                         |           |       | _          |
| AGO  | Angola    | 2008 | 21696000.0                              | NaN       | 42.72 | 6080.5405  |
| ALB  | Albania   | 2012 | 2914000.0                               | NaN       | 28.96 | 10402.6360 |
| ARG  | Argentina | 2013 | 42196000.0                              | NaN       | 42.28 | 16920.7560 |
| ARM  | Armenia   | 2013 | 2898000.0                               | NaN       | 31.54 | 9481.5098  |
| AUS  | Australia | 2010 | 22155000.0                              | NaN       | 34.94 | 44854.9020 |

In [44]: final\_df.rename(columns={'Total population (Gapminder, HYDE & UN)':'pop'}, inplace=True)

In [45]: final\_df.head()

### Out[45]:

|      | Entity    | Year | рор        | Continent | gini  | gdp        |
|------|-----------|------|------------|-----------|-------|------------|
| Code |           |      |            |           |       |            |
| AGO  | Angola    | 2008 | 21696000.0 | NaN       | 42.72 | 6080.5405  |
| ALB  | Albania   | 2012 | 2914000.0  | NaN       | 28.96 | 10402.6360 |
| ARG  | Argentina | 2013 | 42196000.0 | NaN       | 42.28 | 16920.7560 |
| ARM  | Armenia   | 2013 | 2898000.0  | NaN       | 31.54 | 9481.5098  |
| AUS  | Australia | 2010 | 22155000.0 | NaN       | 34.94 | 44854.9020 |

**24.** Say we make a new variable high\_gdp which is 1 if GDP is greater than \$10000 and 0 otherwise. What type of variable (not data type) is high\_gdp?

It is a [binary] **ordinal** variable, since there is a natural ordering (since we know countries with high\_gdp = 0 have lower GDPs than countries with high\_gdp = 1).

```
In [69]: final_df['high_gdp'] = final_df['gdp'].apply(lambda x: 1 if x > 10000 else 0)
In [105]: final_df.head()
```

#### Out[105]:

|      | Entity    | Year | Total population (Gapminder, HYDE & UN) | Continent | gini  | gdp        | high_gdp |
|------|-----------|------|-----------------------------------------|-----------|-------|------------|----------|
| Code |           |      |                                         |           |       |            |          |
| AGO  | Angola    | 2008 | 21696000.0                              | NaN       | 42.72 | 6080.5405  | 0        |
| ALB  | Albania   | 2012 | 2914000.0                               | NaN       | 28.96 | 10402.6360 | 1        |
| ARG  | Argentina | 2013 | 42196000.0                              | NaN       | 42.28 | 16920.7560 | 1        |
| ARM  | Armenia   | 2013 | 2898000.0                               | NaN       | 31.54 | 9481.5098  | 0        |
| AUS  | Australia | 2010 | 22155000.0                              | NaN       | 34.94 | 44854.9020 | 1        |

**25.** Say we filled in the Continent column, so that e.g. Africa = 0, Asia = 1, South America = 2, North America = 3, Europe = 4, Oceania = 5. What type of variable (not data type) would Continent be in this case?

In this case Continent would be a **categorical** variable, not an ordinal variable, since there is no natural ordering of the values. We could just as easily have labeled the continents so that Europe = 0, Oceania = 1, Asia = 2, Africa = 3, North America = 4, South America = 5, without losing any information that this variable is supposed to hold.

```
In [72]: sorted_df = final_df.sort_values(by="gini").copy()
In [80]: us_gini = sorted_df.loc["USA"]["gini"]
    us_gini
Out[80]: 41.06
In [84]: import numpy as np
    sorted_df['gini_vs_us'] = sorted_df['gini'] - us_gini
```

In [88]:

sorted\_df.iloc[83:95]

#### Out[88]:

|      |                              | Entity | Year | Total population (Gapminder, HYDE & UN) | Continent | gini  | gdp         | high_gdp | gini_vs_us |
|------|------------------------------|--------|------|-----------------------------------------|-----------|-------|-------------|----------|------------|
| Code |                              |        |      |                                         |           |       |             |          |            |
| TUR  | Turkey                       |        | 2012 | 7.465100e+07                            | NaN       | 40.17 | 20904.22300 | 1        | -0.89      |
| TTO  | Trinidad and Tobago          |        | 1992 | 1.237000e+06                            | NaN       | 40.27 | 9583.64550  | 0        | -0.79      |
| SEN  | Senegal                      |        | 2011 | 1.303400e+07                            | NaN       | 40.28 | 2735.58670  | 0        | -0.78      |
| MDG  | Madagascar                   |        | 2010 | 2.115200e+07                            | NaN       | 40.63 | 1459.91550  | 0        | -0.43      |
| MAR  | Morocco                      |        | 2007 | 3.116400e+07                            | NaN       | 40.72 | 4984.77200  | 0        | -0.34      |
| TKM  | Turkmenistan                 |        | 1998 | 4.413000e+06                            | NaN       | 40.77 | 6358.13180  | 0        | -0.29      |
| USA  | United States                |        | 2013 | 3.164010e+08                            | NaN       | 41.06 | 51547.74600 | 1        | 0.00       |
| RUS  | Russia                       |        | 2012 | 1.439940e+08                            | NaN       | 41.59 | 26074.13100 | 1        | 0.53       |
| URY  | Uruguay                      |        | 2013 | 3.389000e+06                            | NaN       | 41.87 | 18652.68600 | 1        | 0.81       |
| CHN  | China                        |        | 2010 | 1.368811e+09                            | NaN       | 42.06 | 9337.29000  | 0        | 1.00       |
| COD  | Democratic Republic<br>Congo | of     | 2012 | 6.902100e+07                            | NaN       | 42.10 | 740.51245   | 0        | 1.04       |
| GAB  | Gabon                        |        | 2005 | 1.391000e+06                            | NaN       | 42.18 | 15793.24700 | 1        | 1.12       |

**25.** If we only knew the US's gini coefficient (and not its GDP), and we used the K-Nearest Neighbors algorithm with K=5 to try and predict whether it was low or high GDP, which would we predict?

- 1st closest neighbor: Turkmenistan (low GDP)
- 2nd closest neighbor: Morocco (low GDP)
- 3rd closest neighbor: Madagascar (low GDP)
- 4th closest neighbor: Russia (high GDP)
- 5th closest neighbor: Senegal (low GDP)

4 out of 5 are low GDP  $\implies$  we predict low GDP for US

**26.** What about with K=7?

(The above 5 closest neighbors, plus:)

- 6th closest neighbor: Trinidad and Tobago (low GDP)
- 7th closest neighbor: Uruguay (high GDP)

5 out of 7 are low GDP  $\implies$  we predict low GDP for US again

**27.** Why do we always pick odd numbers as values for K? Because we need to take a majority vote of the K neighbors, so odd numbers ensure that we won't encounter any ties.