Baidu-ULTR: a large-scale dataset for Unbiased Learning to Rank

Haitao Mao²

Joint work with Lixin Zou¹, Xiaokai Chu¹, Jiliang Tang², Shuaiqiang Wang¹, Wenwen Ye¹, Dawei Yin¹.

- 1. Baidu Inc
- Michigan State University

Brief Introduction

Learning to Rank
 rank the document with higher
 relevance to query higher position

Unbiased Learning to Rank
Learn an ideal relevance model with biased click model

Document d_1

Document d_2

Document d_3

Document d_4

Document d_5

What we want toward an ideal dataset

☐ The dataset more like the real-world scenario

☐ The training and evaluation procedure similar with the real-world scenario

☐ The dataset can allow us utilize the advanced techniques

Dataset more like real-world scenario

- Previous datasets only provides position, the only one page presentation feature.
- The new modern search engine can provide more page presentation features

(a) Rich Page Presentation Information in Baidu-ULTR

Go beyond simple ULTR

More user behavior: Click may not be the only signal for ULTR

(b) Rich User Behaviors in Baidu-ULTR

Practical train and evaluation prototype

Table 1: Characteristics of publicly available datasets for unbiased learning to rank

		Training Implicit Feedback Data					Validation & Test Data					
Dataset	# Query	# Doc	# User Feedback	# Display-info	# Session	# Query	# Doc	# Label	# Feature	Pub-Year		
Yahoo Set1	19,944	473,134	1 (Simulated click)	1 (Position)	-	9,976	236,743	5	519	2010		
Yahoo Set2	1,266	34,815	1 (Simulated click)	1 (Position)	-	5,064	138,005	5	596	2010		
Microsoft	≈18,900	≈2,261,000	1 (Simulated click)	1 (Position)	-	≈12,600	\approx 1,509,000	5	136	2010		
Istella	23,219	7,325,625	1 (Simulated click)	1 (Position)	-	1,559	550,337	5	220	2016		
Tiangong	3,449	333,813	1 (Real Click)	1 (Position)	3,268,177	100	10,000	5	33	2018		
Baidu	383,429,526	1,287,710,306	18 (Real Feedback)	8 (Display Info)	1,210,257,130	7,008	367,262	5	ori-text	2022		

- Pipeline: (1) click data for training (2) annotation data for evaluation
- Existing datasets utilize synthetic data for training, and small annotation set
- Provide real-world click data and a fairly large testset

Utilize more advanced techniques

- Large-scale pretrain model, e.g., BERT, ERNIE, are common utilized in Natural Language Processing.
- Existing datasets provide only provide preprocess features, e.g., tf-idf, BM25
- Baidu-ULTR provides raw tokens after desensitization.
- The dataset size is 20 times larger than existing datasets.

Primary Experiments

Table 4: Comparison of unbiased learning to rank (ULTR) algorithms with different learning paradigms on Baidu-ULTR using cross-encoder as ranking models. The best performance is highlighted in bold

	DCG@1	ERR@1	DCG@3	ERR@3	DCG@5	ERR@5	DCG@10	ERR@10
Naive	1.235±0.029	0.077 ± 0.002	2.743 ± 0.072	0.133 ± 0.003	3.889 ± 0.087	0.156 ± 0.003	6.170 ± 0.124	0.178 ± 0.003
IPW	1.239 ± 0.038	$0.077{\pm}0.002$	$2.742 {\pm} 0.076$	$0.133{\pm}0.003$	$3.896{\pm}0.100$	$0.156{\pm}0.004$	$6.194 {\pm} 0.115$	0.178 ± 0.003
REM	1.230 ± 0.042	$0.077{\pm}0.003$	$2.740{\pm}0.079$	$0.132{\pm}0.003$	$3.891 {\pm} 0.099$	$0.156{\pm}0.004$	$6.177 {\pm} 0.126$	0.178 ± 0.004
PairD	1.243 ± 0.037	$0.078 {\pm} 0.002$	$2.760 {\pm} 0.078$	$0.133{\pm}0.003$	$3.910{\pm}0.092$	$0.156{\pm}0.003$	$6.214 {\pm} 0.114$	0.179 ± 0.003
DLA	1.293 ±0.015	$0.081 {\pm} 0.001$	2.839 ±0.011	$0.137 {\pm} 0.001$	3.976 ± 0.007	$0.160 {\pm} 0.001$	$6.236 {\pm} 0.017$	$0.181 {\pm} 0.001$

- No algorithm shows much better result than the naïve algorithm
- DLA perform best across all methods

Performance on query with different frequency

Table 5: Performance comparison of evaluation ULTR algorithms versus different search frequencies. The best performance is highlighted in boldface.

Model	DCG@3				DCG@5		DCG@10			
	High	Mid	Tail	High	Mid	Tail	High	Mid	Tail	
Naive	3.960 ± 0.058	2.992 ± 0.119	1.742 ± 0.079	5.596 ± 0.098	$4.254{\pm}0.142$	2.474 ±0.092	8.812 ± 0.140	6.777 ±0.173	3.942 ± 0.121	
IPW	4.017±0.132	2.976 ± 0.111	1.722 ± 0.061	5.699 ± 0.145	$4.235{\pm}0.140$	2.447 ± 0.090	8.969 ± 0.146	$6.762 {\pm} 0.163$	3.925 ± 0.109	
REM	3.994 ± 0.114	$2.982 {\pm} 0.124$	1.723 ± 0.067	5.665 ± 0.128	$4.237{\pm}0.158$	$2.454{\pm}0.074$	8.904 ± 0.147	$6.755{\pm}0.183$	3.927 ± 0.104	
PairD	4.018 ± 0.102	2.993 ± 0.110	1.750 ±0.079	5.662 ± 0.120	$4.267 {\pm} 0.129$	2.474 ± 0.088	8.924 ± 0.145	$6.804{\pm}0.153$	3.961 ±0.119	
DLA	4.226 ±0.042	3.073 ±0.022	1.750 ±0.016	5.894 ±0.030	4.300 ±0.020	2.472 ± 0.009	9.147 ±0.044	6.767 ± 0.027	3.920 ± 0.009	

- All algorithms performance drop from high to tail
- Naïve algorithm shows good performance in Tail query

Discussion

-- Challenge & Opportunity

Challenge

☐ Biases in Real-World User feedback

□ Long-tail Phenomenon

- ☐ Mismatch between Training and Test
 - □ In training stage, only top-10 documents recorded.
 - □ In test stage, top-30 documents and further documents samples

Opportunity

☐ Pretraining models for Ranking

☐ Causal Discovery

■ Multi-task Learning

Thanks!