Bölüm 8: Çok İşlemcili Sistemler

İşletim Sistemleri

Çok İşlemcili Sistemler

(a) Paylaşımlı bellek çok işlemcisi. (b) Mesaj ileten çoklu bilgisayar. (c)
 Geniş alan dağıtılmış bir sistem.

Veri Yolu Tabanlı Mimariler

• Üç çeşit veri yolu tabanlı UMA (Uniform Memory Access) çoklu işlemci sistem. (a) Önbelleksiz (cache). (b) Önbelleğe alma ile. (c) Önbelleğe alma ve özel bellek.

Çapraz Çubuk Anahtarları Kullanan UMA Çok İşlemcileri

• (a) 8 × 8 çapraz çubuk anahtarı. (b) Açık bir kesişme noktası. (c) Kapalı

bir kesişme noktası.

Çok Aşamalı Anahtarlama Ağlarını Kullanan UMA Çok İşlemcileri

• (a) A ve B olmak üzere iki giriş hattına ve X ve Y olmak üzere iki çıkış hattına sahip bir 2 × 2 anahtarı. (b) Bir mesaj formatı.

Bir Omega Anahtarlama Ağı

3 Stages **CPUs** Memories 000 000 ЗА 1A b 001 001 010 010 2B ЗΒ 1B 011 011 100 100 2C 3C 101 101 110 110 2D 3D 1D 111 111

NUMA Çok İşlemcileri

NUMA makinelerinin özellikleri:

- Tüm CPU'lar tarafından görülebilen tek bir adres alanı vardır.
- Uzak belleğe erişim LOAD ve STORE komutları ile yapılır.
- Uzak belleğe erişim, yerel belleğe erişimden daha yavaştır.

NUMA Çok İşlemcileri

• (a) 256 düğümlü dizin tabanlı çok işlemci.

NUMA Çok İşlemcileri

• (b) 32 bitlik bir bellek adresinin alanlara bölünmesi. (c) 36. düğümdeki dizin.

Her CPU'nun Kendi İşletim Sistemi Vardır

 Belleği dört CPU arasında bölünür, ancak işletim sistemi kodunun tek bir kopyası paylaşılır. Veri olarak işaretlenen kutular, işletim sisteminin her CPU için özel verileridir.

Ana - Bağımlı Çok İşlemcili Model

•

Simetrik Çoklu İşlemciler

SMP çok işlemcili model

Çok İşlemcili Senkronizasyon

 Veri yolu kilitlenemezse TSL komutu başarısız olabilir. Bu dört adım, başarısızlığın gösterildiği bir olaylar dizisini gösterir.

Çok İşlemcili Senkronizasyon

• Önbelleğin çöp olmasını önlemek için çoklu kilit kullanımı

Zaman Paylaşımı

• Çok işlemcili zamanlama için tek bir veri yapısı kullanma.

Alan Paylaşımı

• 32 CPU kümesi, iki CPU boşta olmak üzere dört bölüme ayrılmıştır.

Gang Çizelgeleme

• Aşaması biten A iş parçacığına ait iki iş parçacığı arasındaki iletişim.

Gang Çizelgeleme

• Çete çizelgelemesinin üç bölümü:

- İlgili iş parçacığı grupları bir birim, bir çete olarak planlanır.
- Bir çetenin tüm üyeleri, farklı zaman-paylaşımlı CPU'larda aynı anda çalışır.
- Tüm çete üyeleri zaman dilimlerini birlikte başlatır ve bitirir.

Gang Çizelgeleme

CPU 5 2 3 0 B_0 В₁ B_2 D_2 D^3 D_4 D_0 D_1 E, E_2 E^3 E_4 E_5 E_6 3 Time slot A_0 A_3 A_5 B₁ B_0 B_2 5 D_0 6 E_2 E_5 E₁ E_3 E_4

Arabağlantı Teknolojisi

• Çeşitli ara bağlantı topolojileri. (a) Tek anahtar. (b) yüzük. (c) ızgara.

Arabağlantı Teknolojisi

• Ara bağlantı topolojileri. (d) Çift simit (torus). (e) küp. (f) 4D hiperküp.

Arabağlantı Teknolojisi

• Depola ve ilet (store and forward) paket anahtarlama.

Ağ Arayüzleri

• Bir çoklu bilgisayarda ağ arayüz kartlarının konumu.

Engelleyen ve Engellemeyen Çağrılar

• (a) Engelleyen (blocking) gönder çağrısı.

Engelleyen ve Engellemeyen Çağrılar

• (b) Engellemeyen (non-blocking) gönder çağrısı.

Engelleyen ve Engellemeyen Çağrılar

Gönderen taraftaki seçenekler:

- Engellemeli (blocking) gönderme (mesaj iletimi sırasında CPU boşta bekler).
- Engellemesiz (non-blocking) kopya ile gönderme (fazladan kopya için CPU zamanı boşa harcanır).
- Kesme ile engellemesiz gönderme (programlamayı zorlaştırır).
- Yazarken kopyalayın (sonunda muhtemelen fazladan kopya gerekir).

Uzaktan Prosedür Çağrısı

 Uzaktan prosedür çağrısı (remote procedur call) yapma adımları. Stub: Program geliştirme sürecinde daha sonra aslıyla değiştirilmek üzere geçici olarak tutulan yürütülebilir program.

 Paylaşılan belleğin uygulanabileceği çeşitli katmanlar. (a) Donanım.

 Paylaşılan belleğin uygulanabileceği çeşitli katmanlar. (b) İşletim sistemi.

1/20/2023

 Paylaşılan belleğin uygulanabileceği çeşitli katmanlar. (c) Kullanıcı yazılımı.

• (a) Dört makine arasında dağıtılan adres alanının sayfaları.

• (b) CPU 1 sayfa 10'a referans verdikten ve sayfa oraya taşındıktan sonraki durum.

• (c) Sayfa 10 salt okunursa ve kopyalayarak çoğaltma (replication) kullanılıyorsa durum.

Yanlış Paylaşım (false sharing)

• İki alakasız değişken içeren bir sayfanın yanlış paylaşımı.

Bir Çizge-Teorik Deterministik Algoritma

• Dokuz süreci üç düğüme atamanın iki yolu.

Gönderici Tarafından Başlatılan Dağıtık Sezgisel Algoritma

• (a) Süreçleri devretmek için hafif yüklü bir düğüm arayan aşırı yüklenmiş düğüm. (b) Yapacak iş arayan boş bir düğüm.

Tip 1 Hipervizörler

• Sanal makinedeki işletim sistemi çekirdeğe yönelik bir komut yürüttüğünde, sanallaştırma teknolojisi mevcutsa hiper yöneticiye iletir (trap).

Yarı Sanallaştırma (paravirtualization)

 Hem gerçek sanallaştırmayı hem de sanallaştırmayı destekleyen bir hipervizör.

Yarı Sanallaştırma (paravirtualization)

• (a) çıplak donanım (b) VMware (c) Xen üzerinde çalışan VMI Linux.

Dağıtık Sistemler

• Üç tür çoklu CPU sisteminin karşılaştırılması.

Item	Multiprocessor	Multicomputer	Distributed System
Node configuration	CPU	CPU, RAM, net interface	Complete computer
Node peripherals	All shared	Shared exc. maybe disk	Full set per node
Location	Same rack	Same room	Possibly worldwide
Internode communication	Shared RAM	Dedicated interconnect	Traditional network
Operating systems	One, shared	Multiple, same	Possibly all different
File systems	One, shared	One, shared	Each node has own
Administration	One organization	One organization	Many organizations

Dağıtık Sistemler

• Dağıtılmış bir sistemde ara yazılımın konumlandırılması.

Ethernet

• (a) Klasik Ethernet. (b) Anahtarlamalı Ethernet.

Internet

•

Ağ Protokolleri

• Altı farklı ağ hizmeti türü.

	Service	Example
Connection-oriented	Reliable message stream	Sequence of pages of a book
	Reliable byte stream	Remote login
	Unreliable connection	Digitized voice
Connectionless	Unreliable datagram	Network test packets
	Acknowledged datagram	Registered mail
	Request-reply	Database query

Ağ Protokolleri

• Paket başlıklarının birikmesi.

Belge Tabanlı Ara Yazılım

• Web, belgelerden oluşan yönlendirilmiş büyük bir çizgedir.

Tarayıcı Sayfayı Nasıl Getirir

- Tarayıcı DNS'den www.xxx.org'un IP adresini ister.
- DNS, XX.XXX.XXX.XXX ile yanıt verir.
- Tarayıcı, XX.XXX.XXXI'de 80 nolu porta bir TCP bağlantısı kurar.
- Daha sonra xxx.html dosyasını isteyen bir istek gönderir.
- www.xxx.org sunucusu xxx.html dosyasını gönderir.
- TCP bağlantısı serbest bırakılır.
- Tarayıcı xxx.html içindeki tüm metni görüntüler.
- Tarayıcı xxx.html içindeki tüm resimleri alır ve görüntüler.

Dosya Sistemi Tabanlı Ara Yazılım

• (a) Yükleme/indirme modeli. (b) Uzaktan erişim modeli.

Dizin Hiyerarşisi

• (a) İki dosya sunucusu. Kareler dizinlerdir ve daireler dosyalardır.

Dizin Hiyerarşisi

• (b) Tüm istemcilerin aynı dosya sistemi görünümüne sahip olduğu bir sistem.

Dizin Hiyerarşisi

• (c) Farklı istemcilerin farklı dosya sistemi görünümlerine sahip

olabildiği bir sistem.

Adlandırma Şeffaflığı

Dağıtılmış bir sistemde dosya ve dizin adlandırmaya yönelik üç yaygın yaklaşım:

- makine + yol adlandırma, /makine/yol veya makine:yol gibi
- Uzak dosya sistemlerini yerel dosya hiyerarşisine bağlama
- Tüm makinelerde aynı görünen tek bir ad alanı. (name space)

Dosya Paylaşımının Semantiği

• (a) Sıralı tutarlılık.

Single processor

Dosya Paylaşımının Semantiği

• (b) Önbelleğe alma özelliğine sahip dağıtık bir sistemde, bir dosyayı okumak geçersiz bir değer döndürebilir.

Nesne Tabanlı Ara Yazılım

 CORBA'ya dayalı dağıtık bir sistemin ana unsurları. CORBA parçaları gri renkte.

Eşgüdüm Tabanlı Ara Yazılım

- Linda, coordination based middleware
- İletişim ve senkronizasyon için bir sistem
- Bağımsız süreçler, soyut bir demet alanı (tuple) aracılığıyla iletişim kurar
- Tuple, her biri temel dil tarafından desteklenen bir tip değer olan bir veya daha fazla alandan oluşan bir yapıdır.

```
("abc", 2, 5)
("matrix-1", 1, 6, 3.14)
("family", "is-sister", "Stephany", "Roberta")
```

Eşleşen Demetler (tuples)

Aşağıdaki üç koşul karşılanırsa bir eşleşme oluşur

- Şablon ve demet aynı sayıda alana sahiptir.
- Karşılık gelen alanların tipleri eşittir.
- Şablondaki her sabit veya değişken, demet alanıyla eşleşir.

Yayınla/Abone Ol

• Yayınlama/abone olma mimarisi. (publish/subscribe)

Jini

- Jini istemcileri ve hizmetleri, JavaSpaces kullanarak iletişim kurar ve senkronize olur.
- Bir JavaSpace'te tanımlanan yöntemler:
 - Yaz: JavaSpace'e yeni bir girdi koyar.
 - Oku: JavaSpace'ten şablonla eşleşen bir girdiyi kopyalar.
 - Al: şablonla eşleşen bir girdiyi kopyalar ve JavaSpace'ten kaldırır.
 - Bildir: Eşleşen bir girdi yazıldığında çapıranı bilgilendirir.

SON