Тригонометрические уравнения и неравенства

Тригонометрические уравнения и неравенства.

<u>Решение простейших тригонометрических</u> <u>уравнений</u>

Простейшими тригонометрическими уравнениями называют уравнения $\cos x = a$, $\sin x = a$, tg x = a, ctg x = a.

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

Уравнение $\cos x = a$

Примеры решения задач

Задача 1 Решите уравнение $\cos x = -\frac{1}{2}$.

Решение

$$x = \pm \arccos\left(-\frac{1}{2}\right) + 2\pi n, \quad n \in \mathbb{Z},$$

$$x = \pm \left(\pi - \frac{\pi}{3}\right) + 2\pi n,$$

$$x = \pm \frac{2\pi}{3} + 2\pi n.$$

Omsem: $\pm \frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$.

Комментарий

Поскольку $\left|-\frac{1}{2}\right| < 1$, то данное уравнение вида $\cos x = a$ имеет корни, которые можно найти по формуле (1).

Для вычисления $\arccos\left(-\frac{1}{2}\right)$ можно воспользоваться формулой: $\arccos\left(-a\right) = \pi - \arccos a.$

 $arccos\left(-\frac{1}{2}\right) = \pi - arccos\left(\frac{1}{2}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$.

Задача 2 Решите уравнение $\cos x = \sqrt{2}$.

Решение

ightharpoonup Поскольку $\left| \sqrt{2} \right| > 1$, то корней нет.

Ответ: корней нет. <

Комментарий

Поскольку $|\sqrt{2}| > 1$, то данное уравнение не имеет корней (то есть формулу (1) нельзя применить).

Задача 3 Решите уравнение $\cos 4x = \frac{1}{3}$.

Решение

$$x = \pm \frac{1}{4} \arccos \frac{1}{3} + \frac{\pi n}{2}, \quad n \in \mathbb{Z}.$$

Ответ:

$$\pm \frac{1}{4} \arccos \frac{1}{3} + \frac{\pi n}{2}, \ n \in \mathbb{Z}. \triangleleft$$

Комментарий

Поскольку $\left|\frac{1}{3}\right| < 1$, то можно воспользоваться формулой (1).

Учитывая, что $\arccos \frac{1}{3}$ не является табличным значением, для получения ответа достаточно после нахождения 4x по формуле (1) обе части последнего уравнения разделить на 4.

1. Графическая иллюстрация и решение уравнения $\sin x = a$

Графическая иллюстрация

Примеры
$$1. \triangleright \sin x = \frac{1}{2},$$

$$x = (-1)^n \arcsin \frac{1}{2} + \pi n, \quad n \in \mathbf{Z}.$$

$$x = (-1)^n \frac{\pi}{6} + \pi n, \ n \in \mathbb{Z}. \triangleleft$$

Корней нет, так как $\sqrt{3} > 1$. \triangleleft

$$\sin x = 0 \quad x = \pi k, \, k \in \mathbf{Z}$$

$$\sin x = 1 \quad x = \frac{\pi}{2} + 2\pi k, \ k \in \mathbf{Z}$$

$$\sin x = -1 \ x = -\frac{\pi}{2} + 2\pi k, \ k \in \mathbf{Z}$$

Примеры решения задач

Решите уравнение $\sin x = -\frac{\sqrt{3}}{2}$. Задача 1

Решение

$$x = (-1)^n \arcsin\left(-\frac{\sqrt{3}}{2}\right) + \pi n, \quad n \in \mathbf{Z}.$$

$$x = (-1)^n \left(-\frac{\pi}{3}\right) + \pi n, \quad n \in \mathbf{Z}.$$

Omsem:
$$(-1)^n \left(-\frac{\pi}{3}\right) + \pi n, n \in \mathbb{Z}. \triangleleft$$

Комментарий

 $m x = (-1)^n rcsin \left(-rac{\sqrt{3}}{2}
ight) + \pi n, \ n \in {m Z}.$ Поскольку $\left|-rac{\sqrt{3}}{2}
ight| < 1$, то данное $x=(-1)^n\left(-rac{\pi}{3}
ight)+\pi n,\ n\in {f Z}.$ уравнение вида $\sin x=a$ имеет корни, которые можно найти по формуле (3).

Для вычисления можно воспользоваться формулой: $\arcsin(-a) = -\arcsin a$.

$$\arcsin\left(-\frac{\sqrt{3}}{2}\right) = -\arcsin\frac{\sqrt{3}}{2} = -\frac{\pi}{3}.$$

Замечание. Ответ к задаче 1 часто записывают в виде $x = (-1)^{n+1} \frac{\pi}{3} + \pi n$, $n \in \mathbf{Z}$, но такая запись не является обязательной.

Решите уравнение $\sin x = \frac{\pi}{2}$. Задача 2

Решение

Ответ: корней нет. <

Комментарий

ullet Поскольку $\left|\frac{\pi}{2}\right| > 1$, то корней нет. Поскольку $\left|\frac{\pi}{2}\right| > 1$, то данное уравнение не имеет корней (то есть формулой (3) нельзя воспользоваться).

Уравнение tg x = a u ctg x = a

Формула

$$tg x = a$$

$$x = arctg a + \pi n, n \in Z$$

$$tg x = 1$$

Частный случай

$$x = \operatorname{arctg} 1 + \pi n, n \in \mathbb{Z}.$$

$$x=\frac{\pi}{4}+\pi n, n \in \mathbb{Z}. \triangleleft$$

2. Графическая иллюстрация и решения уравнения ${
m ctg}\ x=a$

Формула

Пример

$$ctg x = a
x = arcctg a + \pi n, n \in Z$$

$$\operatorname{ctg} x = 7$$

Частный случай

$$x = \operatorname{arcctg} 7 + \pi n, n \in \mathbb{Z}. \triangleleft$$

$$\operatorname{ctg} x = 0$$

$$x = \frac{\pi}{2} + \pi n, \ n \in Z$$

Задача 1 Решите уравнение $\operatorname{tg} x = -\sqrt{3}$.

Решение

$$x = \arctan\left(-\sqrt{3}\right) + \pi n, \quad n \in \mathbf{Z}.$$

$$x = -\frac{\pi}{3} + \pi n, \quad n \in \mathbf{Z}.$$

Omsem:
$$-\frac{\pi}{3} + \pi n$$
, $n \in \mathbb{Z}$.

Комментарий

Уравнение tg x = a имеет корни при любом значении a, поэтому всегда можно воспользоваться формулой (1):

$$x = \operatorname{arctg} a + \pi n, n \in \mathbb{Z}.$$

Для нахождения $\arctan\left(-\sqrt{3}\right)$ можно применить формулу

$$arctg(-a) = -arctg a.$$
 Тогда

$$arctg(-\sqrt{3}) = -arctg\sqrt{3} = -\frac{\pi}{3}$$
.

Задача 2 Решите уравнение $\operatorname{tg}\left(\frac{x}{2} - \frac{\pi}{4}\right) = 1$.

Решение

$$\frac{x}{2} - \frac{\pi}{4} = \frac{\pi}{4} + \pi n, \ x = \pi + 2\pi n, \ n \in \mathbf{Z}.$$

Omeem: $\pi + 2\pi n$, $n \in \mathbb{Z}$.

Комментарий

Сначала по формуле (1) найдем значение выражения $\frac{x}{2} - \frac{\pi}{4}$, а потом из полученного линейного уравнения найдем значение переменной x.

Задача 3 Решите уравнение $\operatorname{ctg} x = 5$.

Решение

x =arcetg $5 + \pi n, n \in Z$. *Omsem:* arcetg $5 + \pi n, n \in Z$.

Комментарий

Уравнение $\operatorname{ctg} x = a$ имеет корни при любом значении a, поэтому всегда можно воспользоваться формулой (2):

 $x = \operatorname{arcctg} a + \pi n, n \in \mathbb{Z}.$

Учитывая, что arcctg 5 не является табличным значением (см. табл. 19, приведенную на с. 156), полученная формула дает окончательный ответ.

Решение тригонометрических уравнений, отличающихся от простейших

Как правило, решение тригонометрических уравнений сводится к решению простейших уравнений с помощью преобразований тригонометрических выражений, разложения на множители и замены переменных.

Замена переменных при решении тригонометрических уравнений

Если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).

Задача 1

Решите уравнение $2\sin^2 x - 7\sin x + 3 = 0$.

Решение

 \mathbf{P} Пусть $\sin x = t$, тогда получаем: $2t^2 - 7t + 3 = 0$.

Отсюда
$$t_1 = 3$$
; $t_2 = \frac{1}{2}$.

- 1. При t = 3 имеем $\sin x = 3$ уравнение не имеет корней, поскольку |3| > 1.
- 2. При $t = \frac{1}{2}$ имеем $\sin x = \frac{1}{2}$,

тогда
$$x = (-1)^n \arcsin \frac{1}{2} + \pi n$$
,

$$x = (-1)^n \frac{\pi}{6} + \pi n, \ n \in \mathbb{Z}.$$

Omsem: $(-1)^n \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$.

Комментарий

Анализируя вид этого уравнения, замечаем, что в его запись входит только одна тригонометрическая функция $\sin x$. Поэтому удобно ввести новую переменную $\sin x = t$.

После решения квадратного уравнения необходимо выполнить обратную замену и решить полученные простейшие тригонометрические уравнения.

Замечание. Записывая решения задачи 1, можно при введении замены $\sin x = t$ учесть, что $|\sin x| \le 1$, и записать ограничения $|t| \le 1$, а далее заметить, что один из корней t=3 не удовлетворяет условию $|t| \le 1$, и после этого обратную замену выполнять только для $t=\frac{1}{2}$.

При поиске плана решения более сложных тригонометрических уравнений можно воспользоваться таким ориентиром:

- 1. Пробуем привести все тригонометрические функции к одному аргументу.
- 2. Если удалось привести к одному аргументу, то пробуем все тригонометрические выражения привести к одной функции.
- 3. Если к одному аргументу удалось привести, а к одной функции нет, тогда пробуем привести уравнение к однородному.
- 4. В других случаях переносим все члены в одну сторону и пробуем получить произведение ил используем специальные приемы решения.

Решение тригонометрических уравнений приведением к одной функции

Задача

Решите уравнение tg x + 2 ctg x = 3.

Решение

 $\mathbf{tg} x + \frac{2}{\mathbf{tg} x} = 3$. Samena $\mathbf{tg} x = t$

дает уравнение $t + \frac{2}{t} = 3$.

При $t \neq 0$ получаем равносильное уравнение $t^2 - 3t + 2 = 0$.

Отсюда $t_1 = 1$, $t_2 = 2$.

Выполняем обратную замену:

1. При t=1 имеем $\operatorname{tg}\ x=1$, тогда $x=\operatorname{arctg}\ 1+\pi n$,

$$x = -\frac{\pi}{4} + \pi n, \ n \in Z.$$

2. При t=2 имеем ${\rm tg}\ x=2$, тогда $x={\rm arctg}\ 2+\pi m,\ m\in {\bf Z}.$

Omsem:
$$\frac{\pi}{4} + \pi n$$
, $n \in \mathbb{Z}$;
arctg $2 + \pi m$, $m \in \mathbb{Z}$.

Комментарий

Все аргументы уже одинаковые (x), поэтому приводим все тригонометрические выражения к одной функции $tg\ x$ (учитываем, что

$$\operatorname{ctg} x = \frac{1}{\operatorname{tg} x}.$$

В полученное уравнение переменная входит в одном и том же виде $tg\ x$, поэтому удобно выполнить замену $tg\ x = t$.

<u>Решение простейших тригонометрических</u> <u>неравенств</u>

Способы решения более сложных тригонометрических неравенств

- а) Использование равносильных преобразований и, в частности, сведение тригонометрического неравенства к алгебраическому неравенству по схеме: 1) к одному аргументу, 2) к одной функции, 3) замена переменной (аналогично схеме решения тригонометрических уравнений, приведенной на с. 249) и последующее решение полученных простейших тригонометрических неравенств.
- б) Использование метода интервалов (после сведения неравенства κ виду $f(x) \ge 0$) по схеме:
 - 1) Найти ОДЗ неравенства.
 - **2)** Найти общий период (если он существует) для всех функций, входящих в неравенство, то есть период функции f(x).
 - 3) Найти нули функции: f(x) = 0.
 - 4) Отметить нули функции на ОДЗ на одном периоде и найти знак функции f(x) в каждом из промежутков, на которые разбивается ОДЗ (на одном периоде).
 - **5)** Записать ответ, учитывая знак заданного неравенства и период функции f(x).

Решение простей г	ших тригонометрических неравенств в общем виде
Значения а	Решение
	1. Неравенство $\sin x > a$
$-1 \leqslant a < 1$	$rcsin\ a+2\pi k < x < \pi-rcsin\ a+2\pi k,$ где k — любое целое число ($k\in \mathbf{Z}$).
$a\geqslant 1$	Решений нет.
a < -1	х — любое действительное число.
	2. Неравенство $\sin x \geqslant a$
-1 < a < 1	$\arcsin a + 2\pi k \le x \le \pi - \arcsin a + 2\pi k, k \in \mathbf{Z}.$
a > 1	Решений нет.
a = 1	$x=rac{\pi}{2}+2\pi k$, $k\in oldsymbol{Z}$.
$a \leqslant -1$	x — любое действительное число.

	3. Неравенство $\sin x < a$
$-1 < a \leqslant 1$	$-\pi - \arcsin a + 2\pi k < x < \arcsin a + 2\pi k, \ k \in \mathbf{Z}.$
$a \leqslant -1$	Решений нет.
a > 1	x — любое действительное число.
	4. Неравенство $\sin x \le a$
-1 < a < 1	$-\pi - \arcsin a + 2\pi k \le x \le \arcsin a + 2\pi k, k \in \mathbf{Z}.$
a < -1	Решений нет.
a = -1	$x=-rac{\pi}{2}+2\pi k,\;k\in~oldsymbol{Z}.$
$a\geqslant 1$	x — любое действительное число.

5. Неравенство $\cos x > a$		
$-1 \leqslant a < 1$	$-\arccos a + 2\pi k < x < \arccos a + 2\pi k, k \in \mathbf{Z}.$	
$a \geqslant 1$	Решений нет.	
a < -1	x — любое действительное число.	
6. Неравенство $\cos x \geqslant a$		
-1 < a < 1	$-\arccos a + 2\pi k \le x \le \arccos a + 2\pi k, k \in \mathbf{Z}.$	
a > 1	Решений нет.	
a = 1	$x=2\pi k$, $k\in \mathbf{Z}$.	
<u> </u>		

+		
$a \leqslant -1$	x — любое действительное число.	
7. Неравенство $\cos x < a$		
$-1 < a \leqslant 1$	$\arccos a + 2\pi k < x < 2\pi - \arccos a + 2\pi k, \ k \in \mathbf{Z}.$	
a > 1	x — любое действительное число.	
$a \leqslant -1$	Решений нет.	
8. Неравенство $\cos x \leq a$		
-1 < a < 1	$\arccos a + 2\pi k \leqslant x \leqslant 2 \pi - \arccos a + 2\pi k, \ k \in \mathbf{Z}.$	
a < -1	Решений нет.	
a = -1	$x = \pi + 2\pi k, \ k \in \mathbf{Z}.$	
$a\geqslant 1$	x — любое действительное число.	
9. Неравенство $\operatorname{tg} x > a$		
a — любое действительное число ($a \in R$)	$\operatorname{arctg} a + \pi k < x < \frac{\pi}{2} + \pi k, \ k \in \mathbf{Z}.$	

10. Неравенство $\operatorname{tg} x \geq a$	
$a\in extbf{\emph{R}}$	$rctg a + \pi k \leqslant x < \frac{\pi}{2} + \pi k, \ k \in \mathbf{Z}.$
	11. Неравенство $\operatorname{tg} x < a$
$a \in R$	$-\frac{\pi}{2} + \pi k < x < \operatorname{arctg} a + \pi k, \ k \in \mathbf{Z}.$
	12. Неравенство tg $x \leq a$
$a\in {\it I\!\!R}$	$-\frac{\pi}{2} + \pi k < x \leq \operatorname{arctg} a + \pi k, \ k \in \mathbf{Z}.$
	13. Неравенство $\operatorname{ctg} x > a$
$a \in R$	$\pi k < x < \operatorname{arcctg} a + \pi k, \ k \in \mathbb{Z}.$
	14. Неравенство $\operatorname{ctg} x \geqslant a$
$a \in R$	$\pi k < x \leq \operatorname{arcctg} a + \pi k, \ k \in \mathbf{Z}.$

15. Неравенство $\operatorname{ctg} x < a$		
$a \in R$	$arcctg \ a + \pi k < x < \pi + \pi k, \ k \in \mathbf{Z}.$	
16. Неравенство $\operatorname{ctg} x \leqslant a$		
$a \in R$	$arcctg \ a + \pi k \leq x < \pi + \pi k, \ k \in \mathbf{Z}.$	