Résumé de cours : Semaine 29, du 16 mai au 20.

1 Propriétés des sommes directes (suite)

1.1 Formules dimensionnelles (suite)

Remarque. Ainsi, lorsque E est de dimension finie, si F et G sont deux sous-espaces vectoriels de E, ils sont supplémentaires dans E si et seulement si E = F + G et $\dim(E) = \dim(F) + \dim(G)$.

Formule de Grassmann : $\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$. Il faut savoir le démontrer.

1.2 Associativité des sommes directes

Propriété. Associativité d'une somme directe. Si $(I_i)_{1 \leq i \leq p}$ est une partition de $\{1, \ldots, k\}$, alors E_1, \ldots, E_k forment une somme directe si et seulement si $\forall i \in \{1, \ldots, p\}, (E_j)_{j \in I_i}$ forment une somme directe et $\left(\bigoplus_{j \in I_i} E_j\right)_{i \in \{1, \ldots, p\}}$ forment une somme directe.

Théorème. Soient k un entier supérieur ou égal à 2, et $(E_i)_{1 \le i \le k}$ une famille de k sous-espaces vectoriels de E. E_1, \ldots, E_k sont en somme directe si et seulement si $\forall i \in \{2, \ldots, k\}$ $E_i \cap \sum_{j=1}^{i-1} E_j = \{0\}$.

1.3 Base adaptée à une décomposition en somme directe

Théorème. Soit E un \mathbb{K} -espace vectoriel muni d'une base $(e_i)_{i\in I}$. Soit $(I_k)_{1\leq k\leq n}$ une partition de I. Pour tout $k\in\{1,\ldots,n\}$, on pose $E_k=\mathrm{Vect}(e_i)_{i\in I_k}$. Alors $E=\bigoplus_{k=1}^n E_k$.

Théorème réciproque. Soit $(E_k)_{1 \le k \le n}$ une famille de sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E tels que $E = \bigoplus_{k=1}^n E_k$. Pour tout $k \in \{1, \dots, n\}$, on suppose que E_k admet une base b_k . Alors la concaténation des bases $(b_k)_{1 \le k \le n}$, notée b, est une base de E. On dit que b est une base adaptée à la décomposition en somme directe $E = \bigoplus_{k=1}^n E_k$.

Définition. Lorsque F est un sous-espace vectoriel de E, on appelle **base de** E **adaptée** à F toute base obtenue en complétant une base de F.

2 Les projecteurs

Définition. $p \in L(E)$ est un **projecteur** si et seulement si $p^2 = p$.

Propriété. Soient F et G deux sous-espaces vectoriels supplémentaires de E.

Pour $x \in E$, on note (p(x), q(x)) l'unique couple de $F \times G$ tel que x = p(x) + q(x). p et q sont des projecteurs.

p est appelé le projecteur sur F parallèlement à G, et q le **projecteur associé** à p. On vérifie que $p + q = Id_E$ et pq = qp = 0.

Il faut savoir le démontrer.

Propriété réciproque. Soit p un projecteur de E. Alors p est le projecteur sur Im(p) parallèlement à Ker(p). La décomposition de $x \in E$ selon la somme directe $E = \text{Im}(p) \oplus \text{Ker}(p)$ est x = p(x) + (x - p(x)), avec $p(x) \in F = \text{Im}(p)$ et $x - p(x) \in G = \text{Ker}(p)$.

Pour tout $x \in E$, $x = p(x) \iff x \in F$: $x \in F$:

Définition. $s \in L(E)$ est une **symétrie** si et seulement si $s^2 = Id_E$.

Propriété. Soient F et G deux sous-espaces vectoriels supplémentaires de E.

L'unique application s de E dans E telle que, pour tout $f, g \in F \times G$, s(f+g) = f-g est une symétrie, appelée symétrie par rapport à F parallèlement à G. Si l'on note p le projecteur sur F parallèlement à G, et q le projecteur associé à p, alors $s = p - q = 2p - Id_E$.

Propriété réciproque. On suppose que $car(\mathbb{K}) \neq 2$.

Pour toute symétrie s de E, il existe deux sous-espaces vectoriels supplémentaires F et G tels que s est la symétrie par rapport à F parallèlement à G. Il s'agit de $F = \text{Ker}(Id_E - s)$ et de $G = \text{Ker}(Id_E + s)$.

3 Sous-espaces propres

Notation. On fixe un \mathbb{K} -espace vectoriel E et $u \in L(E)$.

Définition. $\lambda \in \mathbb{K}$ est une *valeur propre* de u si et seulement s'il existe un vecteur x non nul de E tel que $u(x) = \lambda x$. Dans ce cas, tout vecteur y non nul tel que $u(y) = \lambda y$ est appelé un **vecteur propre** de u associé à la valeur propre λ .

De plus, toujours lorsque λ est une valeur propre de u, $Ker(\lambda Id_E - u)$ est appelé le **sous-espace propre** de u associé à la valeur propre λ . Il est noté E_{λ} , ou E_{λ}^u en cas d'ambiguïté.

Remarque. Si λ est une valeur propre de u, l'ensemble des vecteurs propres de u pour la valeur propre λ est $E_{\lambda} \setminus \{0\}$.

Remarque. Même lorsque λ n'est pas une valeur propre de u, on note parfois $E_{\lambda} = Ker(\lambda Id_E - u)$, mais dans ce cas, $E_{\lambda} = \{0\}$.

Définition. Soient $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{K})$: Les **éléments propres** de M (c'est-à-dire les valeurs propres, les vecteurs propres et les sous-espaces propres) sont les éléments propres de l'endomorphisme canoniquement associé à M.

Propriété.

 $\lambda \in \mathbb{K}$ est une valeur propre de u si et seulement si $\lambda Id_E - u$ n'est pas injective. En particulier, u est injectif si et seulement si 0 n'est pas une valeur propre de u.

Définition. On appelle **spectre** de u l'ensemble des valeurs propres de u. Il est noté Sp(u).

Théorème.

La somme d'un nombre fini de sous-espaces propres de u est toujours directe.

Il faut savoir le démontrer.

Corollaire. Si $(x_i)_{i \in I}$ est une famille de vecteurs propres de u associés à des valeurs propres deux à deux distinctes, alors cette famille est libre.

Exemple. Supposons que $E \neq \{0\}$.

Soient F et G deux sous-espaces vectoriels supplémentaires non nuls dans E.

- Si u est une homothétie de rapport λ , où $\lambda \in \mathbb{K}$, $Sp(u) = {\lambda}$ et $E_{\lambda} = E$.
- Si u est le projecteur sur F parallèlement à G, $Sp(u) = \{0, 1\}$, $E_1 = F$ et $E_0 = G$.
- Si u est la symétrie par rapport à F parallèlement à G, $Sp(u) = \{1, -1\}$, $E_1 = F$ et $E_{-1} = G$.

Propriété.

Si $v \in L(E)$ commute avec u, les sous-espaces propres de u sont stables par v. Il faut savoir le démontrer.

4 Changement de base

Notation. On fixe un \mathbb{K} -espace vectoriel E de dimension finie égale à $n \in \mathbb{N}^*$.

Propriété. Soit $e = (e_1, \ldots, e_n)$ une base de E et $f = (f_j)_{1 \le j \le n} \in E^n$ une famille de n vecteurs de E. Pour tout $j \in \mathbb{N}_n$, on pose $p_{i,j} = e_i^*(f_j)$: c'est la $i^{\text{ème}}$ coordonnée dans la base e du $j^{\text{ème}}$ vecteur de la famille f. Alors f est une base si et seulement si la matrice $P = (p_{i,j})$ est inversible. Dans ce cas, P est noté P_e^f (ou bien $P_{e \to f}$) et on dit que $P_e^f = (p_{i,j})$ est la **matrice de passage** de la base e vers la base f.

Interprétation tabulaire : Avec les notations précédentes,

$$P_e^f = \begin{pmatrix} f_1 & \cdots & f_n \\ p_{1,1} & \cdots & p_{1,n} \\ \vdots & & \vdots \\ p_{n,1} & \cdots & p_{n,n} \end{pmatrix} \quad \begin{array}{c} e_1 \\ \vdots \\ e_n \end{array}.$$

Remarque. Si $f = (f_j)_{1 \leq j \leq p}$ est une famille de p vecteurs de E, on pose $\operatorname{mat}_e^f \stackrel{\Delta}{=} (e_i^*(f_j))_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \in \mathcal{M}_{n,p}(\mathbb{K})$. Alors $\operatorname{rg}(\operatorname{mat}_e^f) = \operatorname{rg}(f)$.

Propriété. Soit e une base de E:

Pour toute matrice P inversible d'ordre n, il existe une unique base f de E telle que $P = P_e^f$.

Propriété. Soit e et e' deux bases de E. Alors $P_e^{e'} = \max(Id_E, e', e) = \max(Id_E)_e^{e'}$. Il faut savoir le démontrer.

Formule de changement de base pour les vecteurs :

Soit e et e' deux bases de E. Soit $x \in E$. On pose $X \stackrel{\triangle}{=} \max(x)_e$ le vecteur colonne des coordonnées de x dans la base e. De même on pose $X' = \max(x)_{e'}$.

Alors, $X = P_e^{e'} X'$, ou encore $mat(x)_e = P_e^{e'} mat(x)_{e'}$.

Il faut savoir le démontrer.

Formule. Si
$$e, e'$$
 et e'' sont trois bases de E , $P_e^{e^n} = P_e^{e'} P_{e'}^{e^n}$ et $(P_e^{e'})^{-1} = P_{e'}^{e}$.

Formule de changement de bases pour les applications linéaires :

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies.

On suppose que e et e' sont deux bases de E et que f et f' sont deux bases de F.

Soit
$$u \in L(E, F)$$
. Notons $M = \max(u)_f^e$, $M' = \max(u)_{f'}^{e'}$, $P = P_e^{e'}$ et $Q = Q_f^{f'}$.

Alors,
$$M' = Q^{-1}MP$$
 c'est-à-dire $\operatorname{mat}(u)_{f'}^{e'} = P_{f'}^f \times \operatorname{mat}(u)_f^e \times P_e^{e'}$.

Il faut savoir le démontrer.

Formule de changement de bases pour les endomorphismes :

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in L(E)$. On suppose que e et e' sont deux bases de E. Notons $M = \max(u, e)$, $M' = \max(u, e')$ et $P = P_e^{e'}$. Alors, $M' = P^{-1}MP$.

5 Diagonalisation et trigonalisation

Définition. Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et $u \in L(E)$.

On dit que u est diagonalisable si et seulement si il vérifie l'une des propriétés suivantes :

- i) Il existe une base e de E telle que mat(u, e) est diagonale.
- ii) Il existe une base de E constituée de vecteurs propres de u.

iii)
$$E = \bigoplus_{\lambda \in Sp_{\mathbb{K}}(u)} E^u_{\lambda}.$$
iv)
$$n = \sum_{\lambda \in Sp_{\mathbb{K}}(u)} \dim(E^u_{\lambda}).$$

Il faut savoir le démontrer.

Propriété. les homothéties, les projecteurs et les symétries sont diagonalisables.

Définition. Soit $M \in \mathcal{M}_n(\mathbb{K})$. On dit que M est diagonalisable si et seulement si son endomorphisme canoniquement associé est diagonalisable.

Propriété. $M \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable si et seulement si il existe $P \in GL_n(\mathbb{K})$ telle que $P^{-1}MP$ est une matrice diagonale.

Il faut savoir le démontrer.

Définition. Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonalisable. "diagonaliser" M, c'est déterminer une matrice diagonale D et une matrice inversible P telles que $M = PDP^{-1}$.

Définition. Un endomorphisme u est trigonalisable si et seulement s'il existe une base dans laquelle la matrice de u est triangulaire supérieure.

Définition. $M \in \mathcal{M}_n(\mathbb{K})$ est trigonalisable si et seulement si l'endomorphisme canoniquement associé à M est trigonalisable, c'est-à-dire si et seulement si il existe $P \in GL_n(\mathbb{K})$ telle que $P^{-1}MP$ est triangulaire supérieure.

Définition. Soit $M \in \mathcal{M}_n(\mathbb{K})$. "Trigonaliser" M, c'est déterminer si M est trigonalisable, et dans ce cas, c'est calculer $P \in GL_n(\mathbb{K})$ et T triangulaire supérieure telles que $M = PTP^{-1}$.

6 Trace d'un endomorphisme

Définition.

Soit E un \mathbb{K} -espace vectoriel de dimension finie. La quantité $\operatorname{Tr}(\operatorname{mat}(u,e))$ ne dépend pas du choix de la base e de E. On la note $\operatorname{Tr}(u)$. C'est la trace de l'endomorphisme u.

Propriété. Si $u, v \in L(E)$, alors Tr(uv) = Tr(vu).

Propriété. Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Si p est un projecteur de E, alors Tr(p) = rg(p).

Il faut savoir le démontrer.

7 Matrices équivalentes et matrices semblables

7.1 Matrices équivalentes

Définition. Deux matrices M et M' de $\mathcal{M}_{\mathbb{K}}(n,p)$ sont **équivalentes** si et seulement s'il existe $P \in GL_p(\mathbb{K})$ et $Q \in GL_n(\mathbb{K})$ telles que $M' = QMP^{-1}$. On définit ainsi une relation d'équivalence sur $\mathcal{M}_{\mathbb{K}}(n,p)$.

Propriété. Deux matrices sont équivalentes si et seulement si elles représentent une même application linéaire dans des bases différentes, autant pour la base de départ que pour la base d'arrivée.

Propriété. Deux matrices sont équivalentes si et seulement si il est possible de transformer l'une en l'autre par une succession d'opérations élémentaires portant sur les lignes ou sur les colonnes. Il faut savoir le démontrer.

Théorème. Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions respectives p > 0 et n > 0, et soit $u \in L(E,F)$. Notons r le rang de u. Il existe une base e de E et une base f de F telles que $\mathrm{mat}(u,e,f)$ admet la décomposition en blocs suivante : $\mathrm{mat}(u,e,f) = \begin{pmatrix} I_r & 0_{r,p-r} \\ 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix} \stackrel{\Delta}{=} J_{n,p,r}$. Il faut savoir le démontrer.

Propriété. Si $M \in \mathcal{M}_{\mathbb{K}}(n,p)$, M est équivalente à $J_{n,p,r}$, où r désigne le rang de M.

Corollaire. Deux matrices sont équivalentes si et seulement si elles ont le même rang. Il faut savoir le démontrer.

7.2 Propriétés du rang d'une matrice

Propriété. Pour toute matrice $M \in \mathcal{M}_{\mathbb{K}}(n,p)$, $\operatorname{rg}(M) = \operatorname{rg}({}^tM)$. On en déduit que le rang de M est aussi le rang de la famille de ses vecteurs lignes. Il faut savoir le démontrer.

Propriété. Si l'on effectue une série de manipulations élémentaires sur une matrice, on ne modifie pas le rang de cette matrice.

Remarque. Pour déterminer le rang d'une matrice, une méthode consiste donc à transformer cette matrice en une matrice dont on connaît le rang par une succession d'opérations élémentaires portant sur les lignes ou sur les colonnes. On peut en particulier utiliser l'algorithme du pivot.

Propriété. Le rang d'une matrice est égal au nombre d'étapes dans la méthode du pivot global.

Propriété. Soit $M \in \mathcal{M}_{\mathbb{K}}(n,p)$. Si P est une matrice extraite de M, alors $\operatorname{rg}(P) \leq \operatorname{rg}(M)$.