## IBA Introduction to Text Analytics 96110 / 96111

Assignment Title: Sentiment Analysis with Various Approaches

Group Members:

Syed Muhammad Irtiza Zaidi Muhammad Usman Azizullah Khan

#### Contributions:

- 1. Lexicon-based approach: Azizullah Khan 24931
- 2. Classical ML approach and word embeddings: Irtiza Zaidi 23973
- 3. Fine tuning PLMs: Muhammad Usman 24454

## Table of Contents

| Τa | able of Contents                                | 2  |
|----|-------------------------------------------------|----|
| 1. | Objective                                       | 3  |
| 2. | Dataset                                         | 3  |
| 3. | Tasks                                           | 3  |
|    | 3.1. Lexicon-based Approach:                    | 3  |
|    | Lexicon-based Models Evaluation Results:        | 3  |
|    | 3.2. Classical Machine Learning Approaches:     | 4  |
|    | Findings:                                       | 7  |
| 3. | 3 Customized Word Embeddings                    | 7  |
|    | 3.3.1. Word2Vec Embeddings                      | 7  |
|    | Observations:                                   | 9  |
|    | Conclusion:                                     | 9  |
|    | 3.3.2. GloVe Embeddings                         | 10 |
|    | 3.3.3. FASTTEXT                                 | 10 |
|    | 3.3.4. GOOGLE WORD2VEC                          | 11 |
|    | Findings:                                       | 11 |
|    | 3.3.5. Paragraph embedding                      | 11 |
|    | Findings:                                       | 12 |
|    | 3.3.6. Custom embedding                         | 13 |
| 4. | Fine-tuning Pre-trained Language Models (PLMs): | 13 |
|    | Methodology:                                    | 13 |
|    | Results:                                        | 13 |
|    | Hyperparamters of Roberta:                      | 14 |
|    | Findings:                                       | 14 |
| Ri | ibliography                                     | 15 |

## 1. Objective

The objective of this assignment is to explore and compare various methods for text classification and sentiment analysis, ranging from traditional lexicon-based approaches to modern pre-trained Large Language Models (LLMs).

#### 2. Dataset

Worked with the IMDb movie reviews dataset, containing a large collection of movie reviews labeled as positive or negative sentiment. There are two files: training and testing. We used the training dataset (or portion of it) to train your machine learning model, learn customized Word2Vec or finetune PLMs (RoBERTa, DistillBERT, GPT2). The test data was used for evaluation purposes.

#### 3. Tasks

#### 3.1. Lexicon-based Approach:

In this approach, we conducted sentiment analysis on the IMDb movie reviews test dataset directly using lexicon-based methods. The lexicon libraires used are:

- AFINN
- SentiWordNet
- General Inquirer.
- Opinionfinder
- TEXTBLOB

The analysis focused on measuring the time taken for sentiment predictions with each lexicon and evaluating the models' performance through key metrics, including accuracy, precision, recall, and F1 score. The results offer insights into the efficiency and effectiveness of these lexicon-based approaches for sentiment classification, contributing to a nuanced understanding of their practical applicability in sentiment analysis tasks.

Lexicon-based Models Evaluation Results:

| Model Name       | Accuracy | Precision | Recall | F1 Score | Time               |
|------------------|----------|-----------|--------|----------|--------------------|
| AFINN            | 0.85     | 0.87      | 0.82   | 0.84     | 429.5s             |
| SentiWordNet     | 0.78     | 0.75      | 0.80   | 0.77     | 228.5s             |
| General Inquirer |          |           |        |          | Took too much time |
| TEXTBLOB         | 0.69     | 0.63      | 0.95   | 0.76     | 42.2s              |

| Oninianfindan |     |     |     |     | Took too  |
|---------------|-----|-----|-----|-----|-----------|
| Opinionfinder | ••• | ••• | ••• | ••• | much time |

The results shows that AFFIN was the best choice for lexicon approach if we prioritize accuracy however it took the most time among the other models.

## 3.2. Classical Machine Learning Approaches:

In initial exploration of basic machine learning approaches, a default run was conducted. The process unfolded as follows:

- 1. Text data preprocessing: This involved cleaning the text data and removing stop words.
- 2. Vectorization: The preprocessed text was vectorized using default settings of either TF-IDF or CountVectorizer.
- 3. Model training and evaluation: Several machine learning models were trained and evaluated using the preprocessed and vectorized data.

Model accuracy on the test data is summarized in the table:

| Model                  | Accuracy            |
|------------------------|---------------------|
| Naive Bayes(default)   | <mark>0.8619</mark> |
| Random Forest(default) | 0.8520              |
| KNN (default)          | 0.7720              |

The same process was undertaken, but this time it involved the removal of stop words in the preprocessing stage:

| Model                  | Accuracy |
|------------------------|----------|
| Naive Bayes(default)   | 0.8602   |
| Random Forest(default) | 0.8406   |
| KNN (default)          | 0.6851   |

After incorporating the removal of stop words in the preprocessing stage, the accuracy of default models decreased. However, these initial results provide a baseline understanding and serve as a foundation for further analysis and optimization in the upcoming stages of the project.

In the subsequent training stages, we will adhere to the following preprocessing steps consistently:

- 1. Preprocessing of text data with the exclusion of stop words.
- 2. Vectorization of preprocessed text using default settings of TF-IDF or CountVectorizer.
- 3. Training and evaluation of various machine learning models using the preprocessed and vectorized data.

By following this approach, we aim to improve the accuracy and efficiency of our models in the future.

We then experimented with different variations of machine learning models to improve their fit. The variations were defined for each model:

| Model               | n_estimators | learning_rate | max_depth | min_child_samples | min_samples_split | min_samples_leaf | hidden_layer_sizes | alpha | activation | solver |
|---------------------|--------------|---------------|-----------|-------------------|-------------------|------------------|--------------------|-------|------------|--------|
| Naive Bayes         |              |               |           |                   |                   |                  |                    |       |            |        |
| Random Forest       |              |               | 4         |                   | 5                 |                  |                    |       |            |        |
| Gradient Boosting   | 500          | 0.1           | 5         |                   | 5                 |                  |                    |       |            |        |
| LightGBM            | 1000         | 0.1           | 4         | 4                 |                   |                  |                    |       |            |        |
| Neural Network      |              |               |           |                   |                   |                  | 100                | 0.1   |            | adam   |
| Naive Bayes#1       |              |               |           |                   |                   |                  |                    |       |            |        |
| LightGBM#1          | 500          | 0.1           | 5         | 5                 |                   |                  |                    |       |            |        |
| LightGBM#2          | 1000         | 0.1           | 4         | 4                 |                   |                  |                    |       |            |        |
| Gradient Boosting#1 | 500          | 0.1           | 5         |                   | 5                 |                  |                    |       |            |        |
| Gradient Boosting#2 | 1000         | 0.1           | 4         |                   | 5                 |                  |                    |       |            |        |
| Random Forest#1     | 500          |               | 4         |                   | 5                 |                  |                    |       |            |        |
| Random Forest#2     | 1000         |               | 7         |                   | 4                 | 2                |                    |       |            |        |
| Neural Network#1    |              |               |           |                   |                   |                  | 100                | 0.1   |            | adam   |
| Neural Network#2    |              |               |           |                   |                   |                  | 100,50             | 0.1   | tanh       | adam   |
| Neural Network#3    |              |               |           |                   |                   |                  | 50,50              | 0.1   | logistic   | adam   |

Utilizing the same default preprocessing and vectorization procedures, we executed the modified machine learning models. The resulting benchmarks were as follows:

|                          |                 |                   | Ngran                                              | n Range: (1, 2)   | Ngram               | Range: (1, 3) | Ngran                     | n Range: (1, 3)   | Ngram          | Range: (1, 3) | Ngrar                   | n Range: (1, 4)   |
|--------------------------|-----------------|-------------------|----------------------------------------------------|-------------------|---------------------|---------------|---------------------------|-------------------|----------------|---------------|-------------------------|-------------------|
| model/parameters         | ameters Default |                   | Maximum Features:5000<br>Sublinear Term Frequency: |                   | Maximum             | Features:5000 | Maximum Features:7000     |                   | Maximum        |               | Maximu                  | m Features:5000   |
| mode/parameters          |                 |                   |                                                    |                   | Smooth Inverse      |               | Sublinear Term Frequency: |                   | Features:10000 |               | Smooth Inverse Document |                   |
|                          |                 |                   | True                                               |                   | Document Frequency: |               | True                      |                   | Smooth Inverse |               | Frequency: True         |                   |
| Model                    | Accuracy        | Training Time (s) | Accuracy                                           | Training Time (s) | Accuracy            | Training Time | Accuracy                  | Training Time (s) | Accuracy       | Training Time | Accuracy                | Training Time (s) |
| Naive Bayes              | 0.86185         | 0.10321           | 0.86095                                            | 0.05122           | 0.86795             | 0.10463       | 0.8626                    | 0.04535           | 0.86405        | 0.04895       | 0.85765                 | 0.05026           |
| Random Forest            | 0.8538          | 106.23125         | 0.8524                                             | 74.08296          | 0.85845             | 91.19682      | 0.8538                    | 73.99569          | 0.85495        | 71.32173      | 0.85295                 | 91.24178          |
| <b>Gradient Boosting</b> | 0.81445         | 140.13324         | 0.817                                              | 106.32915         | 0.816               | 141.76691     | 0.81475                   | 106.22161         | 0.8166         | 115.45152     | 0.81785                 | Not Available     |
| LightGBM                 | 0.85495         | 55.96297          | 0.85965                                            | 20.28297          | 0.8613              | 82.31538      | 0.8592                    | 38.81535          | 0.86045        | 30.20604      | 0.859                   | 50.00488          |
| Neural Network           | 0.88225         | 514.89441         | 0.8644                                             | 169.01804         | 0.86865             | 319.24255     | 0.85675                   | 165.03389         | 0.8543         | 206.61027     | 0.86405                 | 210.66834         |
| Naive Bayes#1            | 0.86185         | 0.06411           | 0.86095                                            | 0.04876           | 0.86795             | 0.05406       | 0.8626                    | 0.08536           | 0.86405        | 0.04808       | 0.85765                 | 0.04535           |
| LightGBM#1               | 0.8647          | 123.43748         | 0.86765                                            | 33.68337          | 0.8691              | 135.09792     | 0.8676                    | 63.91763          | 0.8683         | 48.07481      | 0.8685                  | 80.6095           |
| LightGBM#2               | 0.87215         | 180.75068         | 0.8743                                             | 44.9809           | 0.87505             | 191.66809     | 0.8751                    | 84.41437          | 0.8756         | 62.66392      | 0.8764                  | 108.54124         |
| Gradient Boosting#1      | 0.8608          | 1181.17172        | 0.8315                                             | 9.90384           | 0.8365              | 8.93834       | 0.86555                   | 871.42061         | 0.8313         | 8.45947       | 0.8289                  | 10.95057          |
| Gradient Boosting#2      | 0.86805         | 1810.2214         | 0.8345                                             | 33.75749          | 0.841               | 29.04692      | 0.8732                    | 1643.47058        | 0.841          | 28.46131      | 0.83125                 | 37.92568          |
| Random Forest#1          | 0.84185         | 5.82299           | 0.86665                                            | 878.26025         | 0.86785             | 1173.61309    | 0.8296                    | 10.1878           | 0.86675        | 969.77331     | 0.8666                  | 1000.09142        |
| Random Forest#2          | 0.8469          | 20.11162          | 0.8736                                             | 1403.65374        | 0.8742              | 1856.63098    | 0.83435                   | 34.6264           | 0.8723         | 1545.34157    | 0.87315                 | 1570.63248        |
| Neural Network#1         | 0.87475         | 2402.30288        | 0.88515                                            | 70.57317          | 0.8899              | 208.6413      | 0.8855                    | 56.67385          | 0.8864         | 107.68243     | 0.8822                  | 55.60122          |
| Neural Network#2         | 0.87315         | 5078.92767        | 0.86655                                            | 111.36222         | 0.86845             | 379.45617     | 0.85                      | 302.53694         | 0.85295        | 127.79568     | 0.86745                 | 193.94654         |
| Neural Network#3         | 0.8917          | 2797.29417        | 0.88635                                            | 133.20806         | 0.89275             | 882.68432     | 0.88195                   | 279.20213         | 0.8902         | 297.96224     | 0.8874                  | 168.17284         |
|                          |                 |                   |                                                    |                   |                     |               |                           |                   |                |               |                         |                   |
| Maximum                  | 0.8917          | 5078.92767        | 0.88635                                            | 1403.65374        | 0.89275             | 1856.63098    | 0.8855                    | 1643.47058        | 0.8902         | 1545.34157    | 0.8874                  | 1570.63248        |
| Minimum                  | 0.81445         | 0.06411           | 0.817                                              | 0.04876           | 0.816               | 0.05406       | 0.81475                   | 0.04535           | 0.8166         | 0.04808       | 0.81785                 | 0.04535           |

(The values have been rounded to 5 decimal places)

Based on the benchmark results and data of all models, here are some insightful visualizations:





These visualizations provide a clear understanding of the performance and accuracy of each model, allowing for easier comparison and analysis. They can also help identify patterns and trends in the data, aiding in the selection of the most suitable model for the task at hand.

The bar graphs above illustrate the relationship between maximum features and accuracy, with the n-gram range fixed at (1,3). Additionally, another set of bar graphs depicts the relationship between n-grams and accuracy, while maintaining a constant maximum feature value of 5000.

#### Findings:

- Neural networks emerged as top performers among classical models, showcasing superior accuracy despite longer training times.
- Naïve Bayes, with a faster training pace, still delivered commendable accuracy.
- Gradient Boosting offered a balanced trade-off between accuracy and training time, outperforming Naïve Bayes but requiring more training time.

The optimal choice depends on specific task requirements, considering factors like computational resources, time constraints, and desired accuracy levels.

#### 3.3 Customized Word Embeddings

In this section, we implemented a traditional approach with a unique modification - the incorporation of customized word embeddings. Word embeddings provide dense representations of words in a continuous vector space, capturing complex semantic relationships.

#### 3.3.1. Word2Vec Embeddings

Word embeddings provide dense representations of words within a continuous vector space, encapsulating intricate semantic relationships.

Here are the steps we followed:

- 1. Utilize the Word2Vec model from the Gensim library.
- 2. Create a custom function to calculate the average word vectors for each review, based on the Word2Vec model.
- 3. Use the word embeddings generated by Word2Vec as feature representations for both the training and test sets.
- 4. Train various machine learning models using these word embeddings.
- 5. Evaluate the performance of each model and store them in a models dictionary.
- 6. Calculate and display key performance metrics for each model.

The following machine learning models were employed in these variations:

| Model                 | solver  | n_estimators | learning_rate | max_depth | min_child_samples | min_samples_split | min_samples_leaf | hidden_layer_sizes | alpha | activation |
|-----------------------|---------|--------------|---------------|-----------|-------------------|-------------------|------------------|--------------------|-------|------------|
| Logistic Regression   | Default |              |               |           |                   |                   |                  |                    |       |            |
| Logistic Regression#1 | 'lbfgs' |              |               |           |                   |                   |                  |                    |       |            |
| Random Forest         | Default |              |               |           |                   |                   |                  |                    |       |            |
| Gradient Boosting     | Default |              |               |           |                   |                   |                  |                    |       |            |
| LightGBM              | Default |              |               |           |                   |                   |                  |                    |       |            |
| Neural Network        | 'adam'  |              |               |           |                   |                   |                  | 25                 | 0.1   |            |
| LightGBM#1            |         | 500          | 0.1           | 5         | 5                 |                   |                  |                    |       |            |
| LightGBM#2            |         | 1000         | 0.1           | 4         | 4                 |                   |                  |                    |       |            |
| Random Forest#1       |         | 500          |               | 4         |                   | 5                 |                  |                    |       |            |
| Random Forest#2       |         | 1000         |               | 7         |                   | 4                 | 2                |                    |       |            |
| Gradient Boosting#1   |         | 500          | 0.1           | 5         |                   | 5                 |                  |                    |       |            |
| Gradient Boosting#2   |         | 1000         | 0.1           | 4         |                   | 5                 |                  |                    |       |            |
| Neural Network#1      | 'adam'  |              |               |           |                   |                   |                  | 25                 | 0.1   |            |
| Neural Network#2      | 'adam'  |              |               |           |                   |                   |                  | 50,25              | 0.1   | tanh       |
| Neural Network#3      | 'adam'  |              |               |           |                   |                   |                  | 50,50              | 0.1   | logistic   |

# \*If a model is not included in the result table, it indicates that the training process for that model exceeded a duration of two hours and was consequently canceled.

|                       |           | r Size: 100<br>ow Size: 5 |                                                | r Size: 100<br>ow Size: 7 |          | Size: 400<br>ow Size: 5 |                                                | r Size: 400<br>ow Size: 7 |           | r Size: 400<br>ow Size: 10      |                                                | or Size: 700<br>dow Size: 5 |
|-----------------------|-----------|---------------------------|------------------------------------------------|---------------------------|----------|-------------------------|------------------------------------------------|---------------------------|-----------|---------------------------------|------------------------------------------------|-----------------------------|
| model/parameters      | Minimum V | Word Count: 1             | Minimum Word Count: 1<br>Number of workers : 4 |                           |          |                         | Minimum Word Count: 1<br>Number of workers : 4 |                           | Minimum ' | Word Count: 1<br>of workers : 4 | Minimum Word Count: 1<br>Number of workers : 4 |                             |
| Model                 | Accuracy  | Training Time             | Accuracy                                       | Training Time             | Accuracy | Training Time           |                                                | Training Time             | Accuracy  | Training Time                   | Accuracy                                       | Training Time               |
| Logistic Regression   | 0.84945   | 4.34616                   | 0.85005                                        | 4.13501                   | 0.8584   | 19.1542                 | 0.86135                                        | 17.37677                  | 0.8626    | 19.25628                        | 0.8557                                         | 32.49012                    |
| Logistic Regression#1 | 0.84965   | 0.57226                   | 0.85045                                        | 0.72289                   | 0.8573   | 1.22185                 | 0.86015                                        | 1.9281                    | 0.86245   | 2.1801                          | 0.85515                                        | 1.92499                     |
| Random Forest         | 0.81105   | 31.28532                  | 0.8112                                         | 38.39308                  | 0.81905  | 63.03436                | 0.825                                          | 77.67354                  | 0.8246    | 82.35201                        | 0.8202                                         | 83.15036                    |
| Gradient Boosting     | 0.81155   | 110.38702                 | 0.8122                                         | 134.63199                 | 0.82695  | 449.79385               | 0.8374                                         | 570.54636                 | 0.83585   | 597.03796                       | 0.831                                          | 782.09666                   |
| LightGBM              | 0.82795   | 3.1633                    | 0.8299                                         | 3.80029                   | 0.8366   | 12.57444                | 0.8444                                         | 16.90488                  | 0.84795   | 19.29697                        | 0.8427                                         | 22.95572                    |
| Neural Network        | 0.8506    | 95.33654                  | 0.8518                                         | 71.55212                  | 0.85665  | 235.92953               | 0.8588                                         | 246.91646                 | 0.85935   | 256.05625                       | 0.8478                                         | 449.06059                   |
| LightGBM#1            | 0.8426    | 8.79742                   | 0.84095                                        | 10.60129                  | 0.845    | 35.18515                | 0.85045                                        | 46.99048                  | 0.8546    | 50.53566                        | 0.8493                                         | 64.5583                     |
| LightGBM#2            | 0.8434    | 13.38678                  | 0.84505                                        | 14.31238                  | 0.84525  | 55.87564                | 0.85395                                        | 60.21709                  | 0.85575   | 66.31137                        | 0.8503                                         | 93.29426                    |
| Random Forest#1       | 0.7663    | 52.63709                  | 0.76145                                        | 62.96355                  | 0.77665  | 111.37776               | 0.78825                                        | 129.10137                 | 0.78245   | 137.3025                        | 0.7755                                         | 135.16774                   |
| Random Forest#2       | 0.7886    | 167.48554                 | 0.78815                                        | 202.14406                 | 0.80225  | 331.57042               | 0.8109                                         | 421.1015                  | 0.80945   | 441.66335                       | 0.80415                                        | 433.74606                   |
| Gradient Boosting#1   | 0.8403    | 900.2742                  | 0.8396                                         | 1094.45106                |          |                         |                                                | Took too                  | much time |                                 |                                                |                             |
| Gradient Boosting#2   | 0.84115   | 1478.91855                | 0.84285                                        | 1811.22976                |          |                         |                                                | 1 00K 100                 | much time |                                 |                                                |                             |
| Neural Network#1      | 0.8527    | 16.65883                  | 0.85445                                        | 27.15138                  | 0.85675  | 15.42282                | 0.8626                                         | 31.44824                  | 0.8648    | 60.57322                        | 0.8568                                         | 26.47466                    |
| Neural Network#2      | 0.84945   | 14.98636                  | 0.8524                                         | 42.55616                  | 0.8529   | 17.92619                | 0.85935                                        | 35.79421                  | 0.86295   | 55.45148                        | 0.85635                                        | 52.35299                    |
| Neural Network#3      | 0.8425    | 21.31429                  | 0.84555                                        | 19.74318                  | 0.8533   | 30.91832                | 0.85845                                        | 49.60375                  | 0.85575   | 60.40345                        | 0.8524                                         | 30.28563                    |
|                       |           |                           |                                                |                           |          |                         |                                                |                           |           |                                 |                                                |                             |
| Maximum               | 0.8527    | 1478.91855                | 0.85445                                        | 1811.22976                | 0.8584   | 449.79385               | 0.8626                                         | 570.54636                 | 0.8648    | 597.03796                       | 0.8568                                         | 782.09666                   |
| Minimum               | 0.7663    | 0.57226                   | 0.76145                                        | 0.72289                   | 0.77665  | 1.22185                 | 0.78825                                        | 1.9281                    | 0.78245   | 2.1801                          | 0.7755                                         | 1.92499                     |

#### Here are two visualizations:

Visualization 1: Changing window size and keeping vector size constant.







#### Observations:

- In the word2vec context, the neural network emerged as the top-performing model, closely followed by logistic regression, which required significantly less training time.
- Random forest and gradient boost models exhibited longer training times with less satisfactory results.
- Logistic regression proved to be a balanced choice in terms of efficiency and performance, while neural networks stood out as the top-performing model.
- Increasing vector size did not consistently improve accuracy, and in fact, accuracy decreased when the vector size was increased from 400 to 700.
- Increasing the window size from 5 to 7 consistently led to improved accuracy across all cases, although this improvement is not guaranteed in every scenario.

#### Conclusion:

Multiple trials are necessary to determine the optimal parameters for the task at hand.

#### 3.3.2. GloVe Embeddings

GloVe, short for Global Vectors for Word Representation, is an unsupervised learning algorithm aimed at producing word embeddings.

In our current task, we leverage GloVe embeddings to enhance sentiment analysis. GloVe's strength lies in its capacity to capture global semantic relationships in word representations, making it an ideal choice for improving sentiment comprehension in the text data utilized for analysis. By employing GloVe embeddings, we aim to achieve more accurate and nuanced sentiment analysis results.

| model/parameters      | nodel/parameters 100-dimensional GloVe mo |               |          | sional GloVe model | 300-dimensional GloVe model |               |  |
|-----------------------|-------------------------------------------|---------------|----------|--------------------|-----------------------------|---------------|--|
| Model                 | Accuracy                                  | Training_Time | Accuracy | Training_Time      | Accuracy                    | Training_Time |  |
| Logistic_Regression   | 0.76055                                   | 1.0528        | 0.7892   | 5.43461            | 0.7998                      | 8.44435       |  |
| Logistic_Regression#1 | 0.7605                                    | 0.63645       | 0.78885  | 0.82152            | 0.7998                      | 1.15702       |  |
| Random_Forest         | 0.7231                                    | 32.38623      | 0.7401   | 45.01067           | 0.73665                     | 54.0396       |  |
| Gradient_Boosting     | 0.73015                                   | 111.31173     | 0.75475  | 222.51448          | 0.75225                     | 335.94614     |  |
| LightGBM              | 0.74565                                   | 3.21289       | 0.76805  | 6.31619            | 0.77305                     | 9.83011       |  |
| Neural_Network        | 0.75565                                   | 139.01023     | 0.79305  | 164.69155          | 0.80395                     | 208.38793     |  |
| LightGBM#1            | 0.75605                                   | 9.18829       | 0.78615  | 18.26381           | 0.7904                      | 28.3527       |  |
| LightGBM#2            | 0.7593                                    | 13.29563      | 0.78555  | 27.07395           | 0.79415                     | 41.26826      |  |
| Random_Forest#1       | 0.6816                                    | 52.55409      | 0.69145  | 73.3228            | 0.6899                      | 89.26775      |  |
| Random_Forest#2       | 0.70095                                   | 168.58667     | 0.716    | 236.16839          | 0.7177                      | 287.11298     |  |
| Neural_Network#1      | 0.76605                                   | 20.928        | 0.79175  | 36.15513           | 0.80515                     | 37.1512       |  |
| Neural_Network#2      | 0.7622                                    | 7.86412       | 0.7892   | 16.83604           | 0.79895                     | 26.7379       |  |
| Neural_Network#3      | 0.7599                                    | 42.64506      | 0.7858   | 39.96212           | 0.79835                     | 34.2797       |  |
|                       |                                           |               |          |                    |                             |               |  |
| Maximum               | 0.76605                                   | 168.58667     | 0.79305  | 236.16839          | 0.80515                     | 335.94614     |  |
| Minimum               | 0.6816                                    | 0.63645       | 0.69145  | 0.82152            | 0.6899                      | 1.15702       |  |

#### 3.3.3. FASTTEXT

Fasttext is an open-source, free, lightweight library that allows users to learn text representations and perform text classification tasks. It was developed by Facebook's AI Research (FAIR) lab.

| Model                 | Accuracy | Training_Time |
|-----------------------|----------|---------------|
| Logistic_Regression   | 0.7866   | 2.38199       |
| Logistic_Regression#1 | 0.7866   | 2.81116       |
| Random_Forest         | 0.75145  | 70.24767      |
| Gradient_Boosting     | 0.7619   | 447.75446     |
| LightGBM              | 0.7812   | 14.79796      |
| Neural_Network        | 0.83115  | 525.14708     |
| LightGBM#1            | 0.8048   | 38.66403      |
| LightGBM#2            | 0.81135  | 51.00005      |
| Random_Forest#1       | 0.71355  | 115.59462     |
| Random_Forest#2       | 0.73925  | 372.70524     |
| Neural_Network#1      | 0.8167   | 18.97893      |
| Neural_Network#2      | 0.8177   | 44.81206      |
| Neural_Network#3      | 0.49675  | 14.78099      |
|                       |          |               |
| Maximum               | 0.83115  | 525.14708     |
| Minimum               | 0.49675  | 2.38199       |

#### 3.3.4. GOOGLE WORD2VEC

Google's Word2Vec is a renowned word embedding model introduced by a team of researchers at Google, led by Tomas Mikolov, in 2013. The primary objective of Word2Vec is to represent words as continuous vector spaces, effectively capturing semantic relationships and similarities between them. Here are some notable features of Google's Word2Vec:

| Model                    | Accuracy | Training_Time |
|--------------------------|----------|---------------|
| Logistic Regression      | 0.8181   | 3.58211       |
| Logistic Regression#1    | 0.81795  | 3.4727        |
| Random Forest            | 0.76605  | 67.6552       |
| <b>Gradient Boosting</b> | 0.7773   | 449.13656     |
| LightGBM                 | 0.7953   | 15.0785       |
| Neural Network           | 0.8222   | 325.74254     |
| LightGBM#1               | 0.81355  | 39.3996       |
| LightGBM#2               | 0.8194   | 51.45763      |
| Random Forest#1          | 0.7285   | 116.60547     |
| Random Forest#2          | 0.7515   | 375.35187     |
| Neural Network#1         | 0.81735  | 42.71166      |
| Neural Network#2         | 0.82405  | 30.23562      |
| Neural Network#3         | 0.8166   | 57.20507      |
|                          |          |               |
| Maximum                  | 0.82405  | 449.13656     |
| Minumim                  | 0.7285   | 3.4727        |

#### Findings:

Across Glove, FastText, and GoogleWord2Vec embedding approaches, overall model performance decreased. Neural networks consistently outperformed other models, with logistic regression remaining a competitive choice, characterized by shorter training times.

#### 3.3.5. Paragraph embedding

Paragraph embeddings involve representing entire paragraphs or documents as continuous vectors, capturing their overall semantic meaning. Unlike word embeddings that focus on individual words, paragraph embeddings provide a holistic understanding of the text. These embeddings are particularly useful in various natural language processing tasks, such as text classification, document clustering, and information retrieval. Here are the steps to generate paragraph embeddings:

#### Steps:

#### 1. Define Functions:

- Create a function to calculate the average word vectors.
- Develop a function to calculate the paragraph embeddings.

#### 2. Preprocess Reviews:

• Clean and preprocess the training and test reviews by removing stop words, punctuation, and applying stemming techniques.

#### 3. Train Word2Vec Model:

• Train a Word2Vec model on the preprocessed reviews.

#### 4. Combine Features:

• Concatenate or average the word vectors and paragraph embeddings for each review to create a comprehensive feature set.

#### 5. Result:

• Utilize the combined features for various NLP tasks, such as text classification or document clustering, to achieve improved performance.

| _                     | vector_size: 200<br>window: 5 |           | vector_size: 300<br>window: 7 |           | vector_size: 100<br>window: 5 |           | vector_size: 200<br>window: 7 |           |
|-----------------------|-------------------------------|-----------|-------------------------------|-----------|-------------------------------|-----------|-------------------------------|-----------|
| model/paramters       | min_count: 1 workers: 4       |           |
| Model                 | Accuracy                      |           |                               |           |                               |           |                               |           |
| Logistic Regression   | 0.85885                       | 16.69147  | 0.86255                       | 28.67242  | 0.8486                        | 9.16007   | 0.85845                       | 19.15381  |
| Logistic_Regression#1 | 0.85685                       | 2.1948    | 0.86255                       | 1.72472   | 0.84825                       | 1.26366   | 0.85815                       | 1.26582   |
| Random_Forest         | 0.81705                       | 80.93265  | 0.8198                        | 79.2486   | 0.80915                       | 54.17364  | 0.82                          | 65.39479  |
| Gradient_Boosting     | 0.82075                       | 591.4976  | 0.82725                       | 715.5936  | 0.81155                       | 309.05073 | 0.82785                       | 463.78666 |
| LightGBM              | 0.8344                        | 19.5023   | 0.8414                        | 19.44444  | 0.82545                       | 9.97484   | 0.8389                        | 13.16874  |
| Neural_Network        | 0.8578                        | 127.14026 | 0.857                         | 163.89313 | 0.8485                        | 74.30302  | 0.84765                       | 121.89225 |
| LightGBM#1            | 0.84805                       | 50.05583  | 0.85125                       | 57.49448  | 0.83735                       | 23.8271   | 0.8467                        | 37.40793  |
| LightGBM#2            | 0.84725                       | 64.13657  | 0.8534                        | 81.96592  | 0.8377                        | 30.3333   | 0.84885                       | 54.9498   |
| Random_Forest#1       | 0.7636                        | 134.43644 | 0.78435                       | 130.98669 | 0.75285                       | 97.04185  | 0.7785                        | 107.75469 |
| Random_Forest#2       | 0.7949                        | 433.27276 | 0.80605                       | 417.95796 | 0.78615                       | 306.09759 | 0.8005                        | 347.59858 |
| Neural_Network#1      | 0.8564                        | 178.06416 | 0.8623                        | 75.54604  | 0.85185                       | 53.72391  | 0.85765                       | 25.57386  |
| Neural_Network#2      | 0.8544                        | 25.9078   | 0.86055                       | 28.41462  | 0.8494                        | 33.42154  | 0.852                         | 39.87366  |
| Neural_Network#3      | 0.85485                       | 26.33476  | 0.8467                        | 36.94417  | 0.84705                       | 26.51324  | 0.8535                        | 31.67174  |
|                       |                               |           |                               |           |                               |           |                               |           |
| Maximum               | 0.85885                       | 591.4976  | 0.86255                       | 715.5936  | 0.85185                       | 309.05073 | 0.85845                       | 463.78666 |
| Minimum               | 0.7636                        | 2.1948    | 0.78435                       | 1.72472   | 0.75285                       | 1.26366   | 0.7785                        | 1.26582   |

### Findings:

Based on our analysis, the naïve bayes algorithm emerged as the clear winner, offering not only superior accuracy but also requiring less time for training and implementation. This efficiency and effectiveness make it an ideal solution for our needs.

Furthermore, we observed that incorporating paragraph embeddings, particularly with a vector size of 100 and a window of 5, led to improved accuracy compared to scenarios where paragraph embeddings were not utilized. This highlights the potential benefits of using paragraph embeddings in enhancing the performance of our model.

#### 3.3.6. Custom embedding

During the document classification task, an attempt was made to create custom embeddings for the training documents. However, the process proved to be computationally intensive and required an extensive amount of time for training the models on the given data. As a result, the process had to be terminated without obtaining the desired custom embeddings.

## 4. Fine-tuning Pre-trained Language Models (PLMs):

In this section, we detail the process of fine-tuning three different PLMs – DistilBERT, RoBERTa, and GPT-2 – for sentiment analysis on the IMDb movie reviews dataset. We describe the methodology, the hyperparameters of the winning model, and comparative analysis of each PLM-based approach.

## Methodology:

All of the fine tuning is done through pytorch and transformers library.

- 1. Load the datasets into the notebook.
- 2. Initialize the model and tokenizer for that model.
- 3. Define the function for computing accuracy of the model.
- 4. Tokenize the datasets.
- 5. Add labels of 1 and 0 to the sentiment column corresponding to 'positive' and 'negative' respectively.
- 6. Define the hyperparameters in the TrainingArguments().
- 7. Define the model, training arguments, labelled datasets, and metric function in the Trainer().
- 8. Train the model and print its accuracy and training time.

#### Results:

| Model                     | Accuracy           | Training time/s | Parameters |
|---------------------------|--------------------|-----------------|------------|
| Distilbert                | 93.2%              | 3176.83853      | 66M        |
| Roberta                   | <mark>94.9%</mark> | 6044.41686      | 125M       |
| GPT2                      | 93.3%              | 5775.63663      | 117M       |
| Distilbert<br>(benchmark) | 83.3%              | -               | 66M        |

#### Hyperparamters of Roberta:

- 1. num\_train\_epochs=3
- 2. per device train batch size=8
- 3. per device eval batch size=8

#### Findings:

- 1. Even though Roberta is the winning PLM, it is worth noting that its training time is almost twice as much as Distilbert, with only around 2% increase in the accuracy. Since all of the three PLMs were trained on the same hyperparameters, the only reason for Roberta's slightly better performance is its larger memory footprint. Therefore, using Distilbert for this task is a much better trade off.
- 2. The reason Distilbert outperformed distilbert-base-uncased-finetuned-sst-2-English is probably because of the hyperparameter tuning. The benchmark version uses a slower learning rate compared to mine which might have caused the model to converge slowly or get stuck in a local minima. Plus, my model uses smaller batches which may have helped it to generalize better and prevent overfitting. In short, my model learned more relevant patterns and features, leading to improved accuracy.

# Bibliography

All Jupyter Notebooks are available at this location: <a href="https://drive.google.com/drive/u/0/folders/1ELc0Q0RPNmHiKK7WjSDohkxEiMxeTVl-">https://drive.google.com/drive/u/0/folders/1ELc0Q0RPNmHiKK7WjSDohkxEiMxeTVl-</a>