Apport des approches phylogénétiques pour expliquer l'origine des génomes mosaïques, exemple chez le Riz

Charles-Elie Rabier

Vincent Berry, Fabio Pardi et Céline Scornavacca

ISEM, Institut des Sciences de l'Evolution de Montpellier LIRMM, Laboratoire d'informatique, de Robotique et de Microélectronique Genome Harvest

Jean-Christophe Glaszmann, Joao Santos

AGAP, Amélioration Génétique et Adaptation des Plantes, CIRAD

Quelques thèses sur la domestication

 Huang et al. (Nature, 2012) : japonica domestiqué à partir d'un riz sauvage dans le sud de la Chine, puis croisé à un sauvage dans le sud est de l'Asie, générant indica

Quelques thèses sur la domestication

 Choi et al. (MBE, 2017) soutiennent aussi un seul évènement de domestication (japonica). Introgression par hybridation de japonica et proto-indica et proto-aus, générant indica et aus

Quelques thèses sur la domestication

 Civan et al. (Nature Plants, 2015) : indica, japonica et aus domestiqués séparément dans différentes parties d'Asie

Notre approche méthodologique

On s'intéresse à un modèle qui, outre le tri de lignées, considère explicitement les mutations et hybridation. Modélisation Bayésienne plus fine.

Nos pistes:

Inférence d'arbres d'espèces + arbres résumés en réseaux phylogénétiques

SNAPP (Bryant et al. 2012, MBE) + SplitsTree

Inférence directe de réseaux

Extension de SNAPP aux réseaux

Inférence indirecte Inférence directe End Données ré

Logiciel SNAPP pour l'inférence Bayésienne d'arbres (Bryant et al. 2012, MBE)

- Marqueurs bialléliques (SNPs) indépendants sachant l'arbre d'espèces
- Modélisation de l'arbre de locus (backward)
 - Processus de coalescence évoluant à l'intérieur d'un arbre d'espèces (MultiSpecies Coalescent)
 - Processus autorisant la discordance entre arbres de locus et arbres d'espèces (tri de lignées incomplet)

Les mutations interviennent au cours du temps

- Modélisation des séquences (forward)

- V.a.: rRoot, nRoot, rA, rB, rC
- o pas d'aléa dans nA, nB, nC
- Data=(rA, rB, rC)
- Vraisemblance :ℙ(Data | S)

Calcul de vraisemblance dans un arbre

• $\mathbb{P}(n_{root} = i \mid Count)$ calculé récursivement en remontant dans le temps (postorder)

Tavaré (Theor Pop Biol, 1984), Watterson (Theor Pop Biol, 1984), Takahata and Nei (Genetics, 1985) ...

• $\mathbb{P}(Data \mid Count, n_{root} = i, r_{root} = i)$ calculé récursivement en remontant dans le temps (postorder)

Slatkin (Genetics, 1996) vs. Griffiths and Tavaré (Springer, 1997)

- $\mathbb{P}(r_{root} = i \mid n_{root} = i)$ calculé par
 - la loi Binomiale : $\mathbb{P}(r_{root} = i \mid n_{root} = i) = C_i^j p^j (1-p)^{i-j}$
 - la loi $\beta(\theta, \theta)$ sur le paramètre p de la Binomiale : $\mathbb{P}\left(\mathbf{r}_{root} = \mathbf{j} \mid n_{root} = \mathbf{i}\right) = C_{i}^{j}B(\mathbf{j} + \theta, \mathbf{i} - \mathbf{j} + \theta)/B(\theta, \theta)$
- Astuces afin de raccourcir les calculs : Vraisemblances partielles...

- S : arbre d'espèces (topologie, longueurs de branches, tailles de populations)
- X_i: alignements pour le locus i
- G_i : arbre de locus pour le locus i
- m loci

$$\mathbb{P}(S|X_1,\ldots,X_m) \propto \left(\prod_{i=1}^m \int_{\psi} \mathbb{P}(X_i|G_i)\mathbb{P}(G_i|S)dG_i\right)P(S)$$

$$\propto \mathbb{P}\left(\underset{\longrightarrow}{Data} \mid S\right)P(S)$$

SNAPP intègre sur tous les arbres de locus

Calcul de la prior P(S) par le processus de naissances

 \Rightarrow Markov Chain Monte Carlo (MCMC) afin d'estimer la distribution à posteriori de $\mathbb{P}(S|X_1,\ldots,X_m)$

Implémenté dans BEAST

Chromosome 6 (données J. Santos, J-C. Glaszmann)

Conservation de 1550 SNPs (un SNP tous les 500)

Inférence indirecte Inférence directe End Données réelles Données simulées

Chromosome 10 (données J. Santos, J-C. Glaszmann)

Conservation de 1089 SNPs (un SNP tous les 500)

• JDD2 (1er SNP= 50ème SNP du chromosome 10)

H1000

Inférence indirecte Inférence directe End

Simulateur basé sur un réseau (Genome Harvest)

SNAPPSimNet construit sur la base du simulateur SNAPPSim de Bryant et al. (2012)

 Génération d'arbres de locus évoluant à l'intérieur d'un réseau selon un processus de coalescence

Snapp est fortement attiré par un scénario sous-jacent au réseau

Piste 2 : une méthode Bayésienne directe d'inférence de réseaux

Data_z: proportion de rouge/vert dans les espèces sous la branche Data_v: proportion de rouge/vert dans les espèces sous la branche V

 $Data_{z^T}$ et $Data_{v^T}$ ne sont plus indépendantes...

Data_z^T et Data_y^T comprennent les allèles rouges et verts de l'espèce hybride B!!!

On ne peut plus effectuer le produit des probabilités

$$\mathbb{P}\left(Data_{z^T}\right) \times \mathbb{P}\left(Data_{v^T}\right) ! ! !$$

Notre algorithme: calcul des lois jointes

Quantités calculées successivement

(1)
$$\mathbb{P}\left(Data_{u^T} \mid n_{u^T}, r_{u^T}\right)$$

(2)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{x}^B} \mathsf{Data}_{\mathsf{w}^B} \mid \mathsf{n}_{\mathsf{x}^B}, \mathsf{r}_{\mathsf{x}^B}, \mathsf{n}_{\mathsf{w}^B}, \mathsf{r}_{\mathsf{w}^B} \right)$$

(3)
$$\mathbb{P}\left(Data_{x^T}Data_{w^B} \mid n_{x^T}, r_{x^T}, n_{w^B}, r_{w^B}\right)$$

(4)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{x}^\mathsf{T}}}{\mathsf{Data}_{\mathsf{w}^\mathsf{T}}} \mid n_{\mathsf{x}^\mathsf{T}}, r_{\mathsf{x}^\mathsf{T}}, n_{\mathsf{w}^\mathsf{T}}, r_{\mathsf{w}^\mathsf{T}}\right)$$

(5)
$$\mathbb{P}\left(\frac{Data_{v^T}}{n_{v^T}}, r_{v^T}\right)$$

(6)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^B} \mathsf{Data}_{\mathsf{W}^T} \mid \mathsf{n}_{\mathsf{V}^B}, \mathsf{r}_{\mathsf{V}^B}, \mathsf{n}_{\mathsf{W}^T}, \mathsf{r}_{\mathsf{W}^T} \right)$$

(7)
$$\mathbb{P}\left(Data_{t^T} \mid n_{t^T}, r_{t^T}\right)$$

(8)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{V}^{\mathsf{B}}} \mathsf{Data}_{\mathsf{Z}^{\mathsf{B}}} \mid \mathsf{n}_{\mathsf{V}^{\mathsf{B}}}, \mathsf{r}_{\mathsf{V}^{\mathsf{B}}}, \mathsf{n}_{\mathsf{Z}^{\mathsf{B}}}, \mathsf{r}_{\mathsf{Z}^{\mathsf{B}}} \right)$$

(9)
$$\mathbb{P}\left(\frac{\mathsf{Data}_{\mathsf{y}^\mathsf{T}}\mathsf{Data}_{\mathsf{z}^\mathsf{B}}\mid n_{\mathsf{y}^\mathsf{T}}, r_{\mathsf{y}^\mathsf{T}}, n_{\mathsf{z}^\mathsf{B}}, r_{\mathsf{z}^\mathsf{B}}\right)$$

(10)
$$\mathbb{P}\left(\mathsf{Data}_{\mathsf{y}^\mathsf{T}} \mathsf{Data}_{\mathsf{z}^\mathsf{T}} \mid \mathsf{n}_{\mathsf{y}^\mathsf{T}}, \mathsf{r}_{\mathsf{y}^\mathsf{T}}, \mathsf{n}_{\mathsf{z}^\mathsf{T}}, \mathsf{r}_{\mathsf{z}^\mathsf{T}} \right)$$

(11)
$$\mathbb{P}(Data \mid n_{root}, r_{root})$$

 Optimisation combinatoire des calculs en cours (dimension des matrices)

- Implémentation de la méthode Bayésienne pour les réseaux
- L'inférence de réseau est un sujet compétitif: Tanja Stadler (ETH Zurich), Luay Nakhleh (Rice University, USA). Notre approche devrait être plus performante sur des réseaux aux nombreuses hybridations
- Afin de comprendre l'histoire des riz cultivés, nécessité de disposer de riz sauvages, à l'instar de Choi et al. (MBE, 2017), Wang et al (Genome Research, 2017) ...

Les données de riz

- Données disponibles à l'état brut sur le site de l'IRRI
- Prétraitement de Joao (données manquantes ...)
- 3023 variétés avec 895 977 marqueurs disponibles sur le chromosome 6 (Merci Joao!)
- 2 ieux de données proposés par JC Glazmann (core collections)
 - 20 variétés
 - 50 variétés (7 aromatic, 7 aus, 13 indica, 17 japonica, 4 indéterminés)

- Conservation de 1550 SNPs (un SNP tous les 500)
 - JDD1 (1er SNP= 1er SNP du chromosome 6)
 - JDD2 (1er SNP= 50e SNP du chromosome 6)
- Conservation de 7749 SNPs (un SNP tous les 100)
 - JDD3 (1er SNP= 1er SNP du chromosome 6)
 - JDD4 (1er SNP= 50e SNP du chromosome 6)

Analyse des chromosomes 2 et 10

Chromosome 2:

- 1 129 426 marqueurs
- Conservation de 2026 SNPs (un SNP tous les 500)
 - JDD1 (1er SNP= 1er SNP du chromosome 2)
 - JDD2 (1er SNP= 50e SNP du chromosome 2)

Chromosome 10:

- 635 037 marqueurs
- Conservation de 1089 SNPs (un SNP tous les 500)
 - JDD1 (1er SNP= 1er SNP du chromosome 10)
 - JDD2 (1er SNP= 50e SNP du chromosome 10)

Chromosome 2 (données J. Santos, J-C. Glaszmann)

Conservation de 2026 SNPs (un SNP tous les 500)

• JDD1 (1er SNP= 1er SNP du chromosome 2)

Chromosome 10 (données J. Santos, J-C. Glaszmann)

Conservation de 1089 SNPs (un SNP tous les 500)

JDD1 (1er SNP= 1er SNP du chromosome 10)

Calcul de vraisemblance dans un arbre

Où se situe l'aléatoire dans le modèle?

- Modèle de coalescence → pas d'aléatoire dans le nombre de lignées (Count) dans chaque espèce!
- L'aléatoire réside dans la répartition d'allèles rouges et verts dans chaque espèce

```
\mathbb{P}(Data) \\
= \sum_{i} \sum_{j} \mathbb{P}(Data \mid Count, n_{root} = i, r_{root} = j) \mathbb{P}(n_{root} = i, r_{root} = j \mid Count) \\
= \sum_{i} \sum_{j} \mathbb{P}(Data \mid Count, n_{root} = i, r_{root} = j) \mathbb{P}(r_{root} = j \mid n_{root} = i) \\
\times \mathbb{P}(n_{root} = i \mid Count)
```