Q.1 Which of the following wavefunction(s) is/are eigen-function(s) of the operator $i\frac{d}{dx}$

OPTIONS=

- A. x^3
- B. e^{-9ix}
- C. tan(ax)
- D. $e^{-ix} + e^{-i7x}$
- E. e^{-ix^2}
- F. This question is incorrect

Q.2 True or false: Operator \hat{A} is a non-linear operator, where \hat{A} is given by

$$\hat{A} = \frac{d^2}{dx^2} + x$$

OPTIONS=

- A. True
- B. False
- C. This question is incorrect

Q.3 Consider the following wavefunction for a particle in 1-D:

$$\phi(x) = 0$$
 for $x \le 0$

$$\phi(x) = Ce^{-4x}(1 - e^{-4x})$$
 for $x \ge 0$

Where C = normalisation constant. The most probable position (x) for the particle is

OPTIONS=

A.
$$x = 0$$

$$\mathbf{B.} \quad x = \frac{1}{4}ln(2)$$

C.
$$x = \frac{1}{4}ln(6)$$

D.
$$x = \frac{1}{4}ln(10)$$

E. This question is incorrect

Q.4 For the following xz-projection of a hydrogenic orbital, the values of n and l are (no radial nodes beyond the region shown):

OPTIONS=

A. n=3, 1=2

B. n = 4, 1 = 3

C. n = 7, 1 = 6

D. n = 5, 1 = 3

E. This question is incorrect

Q.5 For a particle in a 1-D box (box length = L), ψ_n denotes the acceptable eigenfunctions in the form of $v_n = \sqrt{\frac{2}{L}} sin \frac{n\pi x}{L}$ and $E_n = \frac{n^2h^2}{8mL^2}$, where n can be 1,2,3 ... A new wavefunction ϕ is constructed as $\phi = c_1\psi_3 + c_2\psi_4 + c_3\psi_5$ where c_1 , c_2 and c_3 are real, $c_1^2 + c_2^2 + c_3^2 = 1$ and $c_3 > c_2 > c_1$.

Identify *all* the correct *statement(s)*:

OPTIONS=

- A. ψ_2 is orthogonal to ϕ .
- B. ϕ is an eigenfunction of the particle in a 1-D box Hamiltonian operator.
- C. ϕ is normalised.
- D. E_4 will be the most probable value of energy that will be obtained for a large number of measurements with the state ϕ .
- E. This question is incorrect

Q.6 A 1.0 gm particle is constrained inside an one dimensional box of length L = 100.0 cm. What is the closest quantum number (n) if the energy of the particle is 10^{-3} Joules.

Given: $h = 6.6 \times 10^{-34} kgm^2 s^{-1}$

OPTIONS=

A. 4×10^{33}

B.
$$4 \times 10^{30}$$

C.
$$4 \times 10^{16}$$

D.
$$4 \times 10^{0}$$

Q.7 Which of the following *is/are* acceptable *wavefunction(s)* for a particle confined on a ring:

OPTIONS=

$$A \cdot \frac{1}{\sqrt{2\pi}}e^{-5i\phi}$$

B.
$$\frac{1}{\sqrt{2\pi}}e^{-5\phi}$$

C.
$$\frac{1}{\sqrt{2\pi}}e^{-i\phi/2}$$

D.
$$\frac{1}{\sqrt{2\pi}}$$

Q.8 Consider the spherical harmonics as given below;
$$Y(\theta,\phi) = \frac{1}{8} \sqrt{\frac{21}{\pi}} sin\theta (1 - 5cos^2\theta) e^{i\phi}$$

Determine the angle (in degrees) that the angular momentum vector makes with z-axis.

Ans:

Q.9 For Li^{+2} , the energy difference between the ground state

$$(n_1 = 1, l_1 = 0, m_1 = 0)$$
 and an excited state $(n_2 = 7, l_2 = 4, m_2 = 2)$ depends on

OPTIONS=

A. only
$$n_1$$
 and n_2

B. only
$$l_1$$
 and l_2

C.
$$n_1, l_1 \text{ and } n_2, l_2$$

D.
$$n_1, l_1, m_1 \text{ and } n_2, l_2, m_2$$

Q.10 What is the integral
$$\int \psi_{(2,1,1)}^* \psi_{(3,0,0)} d au$$
 ?

Here $d\tau$ is the volume element. $\psi_{(n,l,m)}$ is the hydrogenic eigenfunction with quantum numbers n, l, m.

 $\psi_{(3,0,0)} = \frac{1}{243} \sqrt{\frac{3}{\pi a_0^3}} (27 - 18 \frac{r}{a_0} + 2 (\frac{r}{a_0})^2) e^{-(r/3a_0)} \quad \psi_{(2,1,1)} = \frac{1}{8} \sqrt{\frac{1}{\pi a_0^3}} (\frac{r}{a_0}) e^{-(r/2a_0)} \sin \theta e^{i\phi}$ Given

OPTIONS=

- A. $\frac{1}{\pi}$
- B. $\frac{1}{2\pi}$
- C. π
- D. 0
- E. This question is incorrect.

Q.11 For a quantum particle on a ring, how many distinct transitions are possible if you consider $m = 0, \pm 1, \pm 2$ and if all transitions are allowed?

OPTIONS=

- A. 8
- B. 2
- C. 3
- D. 5
- E. This question is incorrect.

Q.12 Which of the following pairs of hydrogenic atomic orbitals have the *same radial distribution functions*?

OPTIONS=

- A. $2p_z$ and $2p_x$
- B. $2p_z$ and $3d_{z^2}$
- C. 2s and 3s
- D. $3d_{z^2}$ and $3d_{x^2-y^2}$
- E. The question is incorrect

al. operator id A: z^3 $i\frac{d}{dz}(z^3) = i(3z^2).$ $i\frac{d}{dz}(x^3) = i(3z^2).$ 8. e^{-qix} $i\frac{d}{dx}(e^{-qix}) = -9i(i)e^{-qix}$ +9e - 9ix 1:YES ligen value - 9 c. tan(dx) $i\frac{d}{dx}(tandx) = i sec^{2}(dx)$. D. e + e + e $i\frac{d}{dx}\left[\bar{e}^{ix} + e^{-i7x}\right] = e^{-ix} + 7e^{-i7x}$ 1: No] E. e^{-ix^2} $\frac{id}{dx} \left[e^{-ix^2} \right] = \frac{2x \cdot e^{-ix^2}}{4 \text{ Eigen Value not Constant}}$ $\frac{1}{1 \cdot i \cdot No \cdot 1}$ For a sperator \hat{A} to be linear it should satisfy $\hat{A}(u+v) = \hat{A}(u) + \hat{A}(v) - (1)$ R $\hat{A}(cu) = c \hat{A}(u) - (2)$ Where u & v are eigen functions.

& the operator $\int \frac{d^2}{dx^2} + x \int solisfies (1)$ of it is linear

0.4 n-l-1 = 0 No nadial modes [8], n=4, l=3 03 4 = Ce 4x (1-e) Most probable x $\frac{d\rho}{dx} = 0$ $\frac{d(4^2dx)}{dx} = 0$ Here maximing 4 to get most probable xd(e4x(1-e4x) =0 d(e-47-e-8x) =0 $-4e^{-4x} + 8e^{-8x} = 0$ -4e [1-2e-42] =0 $2e^{-4x} = \frac{1}{2}$ or $e^{4x} = 2$ Taking In both sides 4x= ln(2) x= 1 ln(2)

5)
$$\phi = c_1 \psi_3 + c_2 \psi_4 + c_3 \psi_5$$

A. $\langle \psi_1 | \phi \rangle = c_1 \langle \psi_2 | \psi_3^2 \rangle + c_2 \langle \psi_1 | \psi_4^2 \rangle + c_3 \langle \psi_2 | \psi_5^2 \rangle$

correct -

(A,C)

B. Ĥ = C, E3 43 + C2 E4 44 + C3 E 45 = E[C, 43 + C2 44 + C3 45]

Incorrect

 $\frac{C.}{=1} < \phi | \phi \rangle = c_1^2 + c_2^2 + c_3^2$

Correct

D. Most probable energy = ϕ_i with maximum $|c_i|^2$ Since $c_3 > c_3 > c_1$, $v = E_5$ is most probable energy Incorrect

$$E = \frac{n^{2}h^{2}}{8mL^{2}}$$

$$T = \sqrt{\frac{8mL^{2}E}{h^{2}}}$$

$$= \sqrt{\frac{8 \times (10^{-3} \text{ kg}) \times (0^{\frac{3}{2}} \text{ m})^{2} \times 10^{-3} \text{ J}}{(6.6 \times 10^{-34} \text{ kgm})^{2}}}$$

$$= 4 \times 10^{30}$$

B

7) A.
$$\frac{1}{16}e^{-5i\phi}$$
 $\sqrt{(needs i)}$ Acceptable wavefunction

B. $\frac{1}{16}e^{-5i\phi}$ \times $\frac{1}{16}e^{-5i\phi}$ \times

8)
$$Y = \frac{1}{8} \sqrt{\frac{21}{11}} \sin \theta \left[1 - 5\cos^2 \theta\right] e^{i\theta}$$

cubic $\Rightarrow 0 = 3$
 $m=1$

$$h_{2} = mh = h$$

$$|L| = \sqrt{\varrho(\varrho t)} \quad h = \sqrt{|R|} \quad h$$

$$|L| = \sqrt{\varrho(\varrho t)} \quad h = \sqrt{|R|} \quad h$$

$$= \cos^{-1} \left[\frac{h}{\sqrt{R}} \right]$$

$$= \cos^{-1} \left[\frac{h}{\sqrt{R}} \right]$$

$$= \sqrt{2} \cdot \frac{1}{\sqrt{R}} \quad h$$

and any excited state (like $n_2=7$, $l_2=2$, $m_2=0$) with for Li²⁺ atom viiu and n_2 only depend on (A) n_1 and n_2 or Ans This is true for an isolated Lit in absence of any enternal field.

8.10 The integral \ \ \\ \(\paralle{2}\), (2,1,1) \(\paralle{2}\), (3,0,0) &\(\paralle{2}\) = 0 \(= \text{Ans}\) where dt is the volume element, Y (n, l, m) is the hydrogenic eigenfunction with quantum number n, l, m. "These hydrogenic eigenfunction must be orthogonal to each other!

For a quantum particle on a ring, $n=\pm 2$ the energy is given as $E_n = \frac{n^2 t^2}{2 L}$ $\Delta E = 4 \beta$ $\Delta E = 4 \beta$ where $\beta = \frac{\hbar^2}{2I}$ = $n^2\beta$ $n = \pm 1$ $E_{\pm 1} = \beta$ where $n = 0, \pm 1, \pm 2$ n = 0 $E_{\delta} = 0$ Total (3) distinct transitions are possible.

18.12 Hydrogenic orbitals with same principal g. no and (e) values will have the same radial distribution functions. For enample: (A) 2/2 and 2/2 V

(D) 3dz2 and 3dx2-y2 V

(B) 2 p2 and 3 d2 2 X (C) 25 and 35 X