Simply Typed Lambda Calculus

From Untyped to Simply Typed Lambda Calculus

Sven Tennie

November 16, 2018

Dream IT
https://dreamit.de

Untyped Lambda Calculus

We can boil down computation to a tiny calculus

We can boil down computation to a tiny calculus

All we need is:

- Function Definition / Abstraction ($\lambda x.e$)
- Function Application (e e)
- Parameters / Variables (x)

We can boil down computation to a tiny calculus

All we need is:

- Function Definition / Abstraction ($\lambda x.e$)
- Function Application (e e)
- Parameters / Variables (x)

Then we get:

- Booleans
- Numerals
- Data Structures
- Control Flow
- ...

We can boil down computation to a tiny calculus

All we need is:

- Function Definition / Abstraction ($\lambda x.e$)
- Function Application (e e)
- Parameters / Variables (x)

Then we get:

- **Booleans**
- Numerals
- Data Structures
- Control Flow

Turing Completeness

 If it can be computed, it can be computed in Lambda Calculus!

$$(\lambda p. \quad \lambda q.p$$
) a b

- $\lambda p.\lambda q.p$ Is a function that returns a function $(\lambda q.p)$
 - a, b Some variables (defined somewhere else)
 - p Is a variable that is bound to the parameter with the same name

$$(\lambda p. \quad \lambda q.p \quad) \quad a \quad b \quad \text{Substitute } p \mapsto a$$

- $\lambda p.\lambda q.p$ Is a function that returns a function $(\lambda q.p)$
 - a, b Some variables (defined somewhere else)
 - p Is a variable that is bound to the parameter with the same name

$$(\lambda p. \quad \lambda q.p$$
) a b Substitute $p \mapsto a$

- $\lambda p.\lambda q.p$ Is a function that returns a function $(\lambda q.p)$
 - a, b Some variables (defined somewhere else)
 - p Is a variable that is bound to the parameter with the same name

$$(\lambda p. \quad \lambda q.p \quad) \quad a \quad b \quad \text{Substitute } p \mapsto a$$
 $(\quad \lambda q.a \quad) \quad b \quad$

- $\lambda p.\lambda q.p$ Is a function that returns a function $(\lambda q.p)$
 - a, b Some variables (defined somewhere else)
 - p Is a variable that is bound to the parameter with the same name

```
(\lambda p. \quad \lambda q. p \quad ) \quad a \quad b \quad \text{Substitute } p \mapsto a ( \quad \lambda q. a \quad ) \quad b \quad \text{Substitute } q \mapsto b
```

- $\lambda p.\lambda q.p$ Is a function that returns a function $(\lambda q.p)$
 - a, b Some variables (defined somewhere else)
 - p Is a variable that is bound to the parameter with the same name

```
(\lambda p. \quad \lambda q.p \quad ) \quad a \quad b \quad \text{Substitute } p \mapsto a (\quad \lambda q.a \quad ) \quad b \quad \text{Substitute } q \mapsto b
```

- $\lambda p.\lambda q.p$ Is a function that returns a function $(\lambda q.p)$
 - a, b Some variables (defined somewhere else)
 - p Is a variable that is bound to the parameter with the same name

- $\lambda p.\lambda q.p$ Is a function that returns a function $(\lambda q.p)$
 - a, b Some variables (defined somewhere else)
 - p Is a variable that is bound to the parameter with the same name

Build an Interpreter

Let's build an interpreter

- Deepen our intiution
- Later move on to the Simply Typed Lambda Calculus
 - Why do we need types?
 - How does a type checker work?
 - How does it restrict the programs we might write?
- We'll do Math Driven Development
 - Look at the concepts in math first, then translate them to Haskell

Structure

$$e ::=$$
 Expressions: x Variable $\lambda x.e$ Abstraction $e \ e$ Application

 $\lambda x.e$ Function Definition e e Function Application (Function Call)

Abstract Syntax Tree

Meaning:

• Identity function $(\lambda x.x)$ is applied to a variable (y)

Interpreter - Syntax

```
module UntypedSyntax where
type Name = String
                                           Expressions:
data Expr
                             -- e ::=
                                            Variable
  = Var Name
                                     X
                                      \lambda x.e
                                              Abstraction
  Lambda Name
           Expr
  App Expr
                                              Application
                                      e e
        Expr
  deriving (Eq, Show)
```

Interpreter - Syntax - Examples

Interpreter - Syntax - Examples

```
module UntypedSyntaxExamples where

import UntypedSyntax

-- id = \( \lambda \times x \)

id :: Expr

id = Lambda "x" $ Var "x"
```

```
-- true \equiv \lambda p.\lambda q.p

true :: Expr

true = Lambda "p" (Lambda "q" (Var "p"))

-- false \equiv \lambda p.\lambda q.q

false :: Expr

false = Lambda "p" (Lambda "q" (Var "q"))
```

Interpreter - Syntax - Examples

```
-- and \equiv \lambda p.\lambda q.p \ q \ p and :: Expr and = Lambda "p" $ Lambda "q" $ App (App (Var "p") (Var "q")) (Var "p")
```

Natural Deduction

Notation

$$\overline{Axiom}$$
 (A1)

$$\frac{Antecedent}{Conclusion} \tag{A2}$$

Meaning:

Axiom Rule without Precondition

Antecedent Precondition - if it's fulfilled this rule applies.

Conclusion What follows from this rule.

A1, A2 Names for the rules

Proof: 2 is a Natural Number

$$\frac{}{0:Nat}$$
 (A1)

$$\frac{n: Nat}{succ(n): Nat}$$
 (A2)

- **A1** 0 is a natural number (by definition)
- **A2** The successor of a natural number is a natural number

Proof: 2 is a Natural Number

$$\frac{n : \text{Nat}}{\text{succ}(n) : \text{Nat}} \qquad \text{(A1)} \qquad \frac{\frac{0 : \text{Nat}}{\text{Succ}(0) : \text{Nat}}}{\text{Succ}(\text{succ}(0)) : \text{Nat}} \qquad \text{(A2)}$$

- **A1** 0 is a natural number (by definition)
- **A2** The successor of a natural number is a natural number
- \rightarrow Thus the successor of the successor of 0 (2) must be a natural number

Evaluation Rules

Evaluation Rules - Call by Value - E-App1

$$\frac{e_1 \rightarrow e_1'}{e_1e_2 \rightarrow e_1'e_2}$$

E-App1

Meaning:

• Under the condition that e_1 can be reduced further, do it.

Evaluation Rules - Call by Value - E-App2

$$\frac{e_2 \rightarrow e_2'}{v_1 e_2 \rightarrow v_1 e_2'}$$
 E-App2

- Under the condition that e_2 can be reduced further and v_1 is a value, do it.
- "Bare" Untyped Lambda Calculus:
 - Only Lambdas (functions) are values.
 - But you can add Ints, Booleans, etc. ("Enriched Untyped Lambda Calculus")

Evaluation Rules - Call by Value - E-AppLam

$$(\lambda x.e)v \rightarrow [x/v]e$$

E-AppLam

- If a lambda (function) is applied to a value, substitute that value for it's parameter.
- "substitute": replace it for every occurence in the lambda's body

Interpreter - Evaluation

```
module UntypedEval where
import UntypedSyntax

eval :: Expr -> Expr
-- No rule for variables
eval variable@(Var _) = variable
-- No rule for lambdas
eval lambda@(Lambda _ _) = lambda
```

Interpreter - Evaluation

```
eval (App e1 e2)
-- \frac{e_1 \rightarrow e_1'}{e_1 e_2 \rightarrow e_1' e_2} (E - App1)
 =
   let e1' = eval e1
-- \frac{e_2 \rightarrow e_2'}{v_1 e_2 \rightarrow v_1 e_2'} (E - App2)
    in let e2' = eval e2
          in case e1'
                        of
-- (\lambda x.e)v \rightarrow [x/v]e \quad (E - AppLam)
                   (Lambda name e1'_body) -> eval $ substitute name e2' e1'_body
                  e1' -> App e1' e2'
```

Interpreter - Substitution

```
substitute :: Name -> Expr -> Expr -> Expr
-- If the Name matches: Substitute this Var by it's substitution
-- Otherwise: Leave it as is
substitute name substitution var@(Var varName)
  | name == varName = substitution
  otherwise = var
-- Recursively substitute in both parts of Applications
substitute name substitution (App term1 term2) =
 App (substitute name substitution term1) (substitute name substitution term2)
```

Interpreter - Substitution

```
-- Only substitute in Lambda's body, if the parameter doesn't
-- redefine the Name in it's scope
-- substitute name substitution (Lambda varName term) =
   if name == varName
        then Lambda varName term
        else Lambda varName (substitute name substitution term)
```

Tests

```
module UntypedEvalExamplesSpec where
import NaiveUntypedEval
import Prelude hiding (and)
import Test.Hspec
import UntypedSyntax
import UntypedSyntaxExamples
main :: IO ()
main = hspec spec
spec :: Spec
spec =
  describe "eval" $
    it "should evaluate these terms" $ do
-- a \rightarrow a
      eval (Var "a") `shouldBe` Var "a"
```

Tests

```
-- true \equiv \lambda p.\lambda q.p
-- true \ ab \rightarrow a
-- eval (App (App true (Var "a")) (Var "b")) `shouldBe` Var "a"
```

```
-- false \equiv \lambda p.\lambda q.q -- and \equiv \lambda p.\lambda q.p \ q \ p -- and true \ false \rightarrow false -- and \ true \ false \rightarrow false -- and \ true \ false \rightarrow false -- and \ true \ false \rightarrow false 'shouldBe' Lambda "p" (Lambda "q" (Var "q"))
```

Simply Typed Lambda Calculus

Structure

$$e ::=$$
 Expressions: x Variable $\lambda x : \tau.e$ Abstraction $e \ e$ Application

- au Type of the parameter x
 - Bool, Int, ...

What's a Type?

A Type is a set of values that an expression may return:

Bool True, False

Int
$$[-2^{29}..2^{29}-1]$$
 (in Haskell, 'Data.Int')

Simple types don't have parameters, no polymorphism:

Bool, Int have no parameters \rightarrow simple types

Maybe a takes a type parameter $(a) \rightarrow$ not a simple type

a -> a is polymorphic \rightarrow not a simple type

Type Safety = Progress + Preservation

Progress: If an expression is well typed then either it is a value, or it can be further evaluated by an available evaluation rule.

A well typed (typable) program never gets "stuck".

Type Safety = Progress + Preservation

Progress: If an expression is well typed then either it is a value, or it can be further evaluated by an available evaluation rule.

A well typed (typable) program never gets "stuck".

Preservation : If an expression e has type τ , and is evaluated to e', then e' has type τ .

• $e \equiv (\lambda x : Int.x)1$ and $e' \equiv 1$ have both the same type: Int

Not all meaningful Programs can be type checked

```
id :: a -> a
id a = a
```

- It strongly depends on the type system if this is allowed or not.
- In Simply Typed Lambda Calculus it's not!
 - No polymorphic types ...

Evaluation

Evalution rules stay the same!

Type checking is done upfront

Typing Rules - Variables

$$\frac{x:\sigma\in\Gamma}{\Gamma\vdash x:\sigma}$$

T-Var

Meaning

 Γ The Typing Environment, a list of (Variable: Type) pairs (associations)

 $x : \sigma \in \Gamma$ If (x, σ) is in the Typing Environment

 $\Gamma \vdash x : \sigma \ x \text{ has type } \sigma$

Typing Rules - Constants

$$\Gamma \vdash n : \mathsf{Int}$$

$$\Gamma \vdash \mathsf{True} : \mathsf{Bool}$$

$$\Gamma \vdash \mathsf{False} : \mathsf{Bool}$$

T-False

Meaning

```
True, False literals / constants are of type Bool

n number literals / constants are of Int
```

Why do we need Γ here?

- We handle Type Constructors like variables
- Think: $\Gamma \equiv \emptyset$, True: Bool, False: Bool, 0: Int, 1: Int, ...

Typing Rules - Lambdas

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \to \tau_2}$$

T-Lam

Meaning

Condition With $x : \tau_1$ in the Typing Environment, e has type τ_2

Conclusion $\lambda x : \tau_1.e$ has type $\tau_1 \to \tau_2$

Because e has type τ_2 if x has type τ_1

Typing Rules - Applications

$$\frac{\Gamma \vdash e_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash e_1 e_2 : \tau_2} \qquad \text{T-App}$$

Meaning

Condition If e_1 is a function of type $\tau_1 \to \tau_2$ and e_2 has type τ_2 **Conclusion** Then the type of e_1e_2 (function application) is τ_2

Typing Rules - Applications

$$\frac{\Gamma \vdash e_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash e_1 e_2 : \tau_2}$$
 T-App

Meaning

Condition If e_1 is a function of type $\tau_1 \to \tau_2$ and e_2 has type τ_2 **Conclusion** Then the type of e_1e_2 (function application) is τ_2

```
id' :: Int -> Int
id' i = i

1 :: Int
(id' 1) :: Int
```

Type Checker - Expressions

```
module TypedSyntax where
import qualified Data. Map. Strict as Map
type Name = String
type Error = String
                                                    Expressions:
data Expr
                             -- e ::=
                             -- [-2^{29}..2^{29}-1] Integer Literal
 = IntValue Int
                            -- True | False
                                                          Boolean Literal
  | BoolValue Bool
  | Var Name
                                                          Variable
                             -- X
  App Expr
                             -- e e
                                                           Application
       Expr
  Lambda Name
                             -- \lambda x: \tau . e
                                                          Abstraction
           Type
           Expr
 deriving (Eq, Show)
```

Type Checker - Types

Type Checker - Literals

```
module TypedCheck where
import Data. Either. Extra
import qualified Data. Map. Strict as Map
import TypedSyntax
check :: Environment -> Expr -> Either Error Type
--\Gamma \vdash n: Int (T-Int)
check _ (IntValue _) = Right TInt
-- Γ \vdash True : Bool (T-True)
check _ (BoolValue True) = Right TBool
-- Γ \vdash False : Bool (T-False)
check _ (BoolValue False) = Right TBool
```

Type Checker - Lambda Abstraction

```
-- \frac{\Gamma, x: \tau_1 \vdash e: \tau_2}{\Gamma \vdash \lambda x: \tau_1 \cdot e: \tau_1 \rightarrow \tau_2} \qquad (T\text{-}Lam)
-- check env (Lambda name atype e) = do
t <- check (Map.insert name atype env) e
return $ TArr atype t
```

Type Checker - Application

```
-- \frac{\Gamma \vdash e_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash e_1 : e_2 : \tau_2} \quad (T-App)
check env (App e1 e2) = do
  t1 <- check env e1
  case t1 of
     (TArr ta1 ta2) -> do
       t2 <- check env e2
        if ta1 == t2
         then Right ta2
          else Left $ "Expected " ++ (show ta1) ++ " but got : " ++ (show t2)
     _ -> Left $ "Expected TArr but got : " ++ (show t1)
```

Type Checker - Variables

```
-- x:σ∈Γ (T-Var)
-- check env (Var name) = find env name

find :: Environment -> Name -> Either Name Type
find env name = maybeToEither "Var not found!" (Map.lookup name env)
```

Tests

```
module TypedCheckExamplesSpec where
import Test.Hspec
import TypedCheck
import TypedSyntax
import qualified Data.Map.Strict as Map
main :: IO ()
main = hspec spec
```

Tests

```
--
-- Does not type check: (λx: Bool.x) 42
--
check Map.empty (App (Lambda "x" TInt (Var "x")) (IntValue 5))
`shouldBe` Right TInt
```

Tests

```
-- Does not type check: 42 False
-- check Map.empty (App (IntValue 42) (BoolValue False)) `shouldBe`
Left "Expected TArr but got : TInt"
```

End

Thanks

- Hope you enjoyed this talk and learned something new.
- Hope it wasn't too much math and dusty formulas ... :)

Good Math

A Geek's Guide to the Beauty of Numbers, Logic, and Computation

Easy to understand

Types and Programming Languages

- Types systems explained by building interpreters / checkers and proving properties
- Very "mathematical", but very complete and self-contained

Write you a Haskell

Building a modern functional compiler from first principles.

- Starts with the Lambda Calculus and goes all the way down to a full Haskell compiler
- Available for free Not finished, yet