CH 13: Logistic Regression

Let's assume that we have access to the underlying candy face off data.

Consider the following model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where y=1 if the i^{th} can dy beats smarties and $y_i=0$ if i^{th} can dy does not beat smarties, x_i is an indicator variable that denotes whether the i^{th} candy has chocolate, and $\epsilon_i \sim N(0,\sigma^2)$.

Q: What issues might we have with this model?

Q: What are some possible solutions?

Logistic regression is a special case of a generalized linear model

Logistic Regression

The logistic function maps an input from the unit range (0,1) to the real line:

$$logit(x) = log\left(\frac{x}{1-x}\right)$$

More importantly, the inverse-logit function maps a continous variable to the unit range (0,1)

$$logit(x)^{-1} = \frac{\exp(x)}{1 + \exp(x)}$$

The qlogis (for logit) and plogis (inverse-logit) functions in R can be used for this calculation. For instance plogis(1) = 0.7310586.

Formally, the inverse-logistic function is used as part of the GLM:

$$y \sim Bernoulli$$
 (1)

$$Pr(y_i = 1) = \pi_i = logit^{-1}(X\beta)$$
(2)

Note there is not an ϵ term in this model. The randomness comes from the Bernoulli distribution.

Recall the beer dataset, but now instead of trying to model consumption, lets consider whether a day is a weekday or weekend.

beer <- read_csv('http://math.montana.edu/ahoegh/Data/Brazil_cerveja.csv') %>% mutate(consumed = consum

```
beer %>% ggplot(aes(y = weekend, x = consumed)) +
  geom_point(alpha = .1) +
  geom_smooth(formula = 'y~x', method = 'lm', se =F) +
  geom_smooth(formula = 'y~x', method = 'loess', color = 'red', se = F) +
  geom_rug() + ggtitle('Weekend vs. Consumption: comparing lm and loess') +
  theme_bw() + xlab('Difference in consumption from average daily consumption (L)')
```

Weekend vs. Consumption: comparing Im and loess

Now how to interpret the model coefficients?

bayes_logistic

```
## stan_glm
## family:
                 binomial [logit]
## formula:
                 weekend ~ consumed
## observations: 365
## predictors:
## -----
##
              Median MAD_SD
## (Intercept) -1.2
                      0.2
                      0.0
## consumed
               0.3
## -----
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
```

summary(freq_logistic)

```
##
## glm(formula = weekend ~ consumed, family = binomial(link = "logit"),
##
      data = beer)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  3Q
                                          Max
## -2.0968 -0.6859 -0.4178 0.7367
                                       2.3624
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.24466 0.15059 -8.265
                                           <2e-16 ***
              0.31791
                          0.03773
                                  8.427
                                           <2e-16 ***
## consumed
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 436.21 on 364 degrees of freedom
## Residual deviance: 333.74 on 363 degrees of freedom
## AIC: 337.74
##
## Number of Fisher Scoring iterations: 5
```

Interpreting the coefficients can be challenging due to the non-linear relationship between the outcome and the predictors.

Predictive interpretation

One way to interpret the coefficients is in a predictive standpoint. For instance, consider an day with average consumption, then the probability of a weekend would be invlogit(-1.2 + 0.3 * 0) = 0.23, where as the probability of a day with 10 more liters of consumption (relative to an average day) would have a weekend probability of invlogit(-1.2 + 0.3 * 10) = 0.86

Of course, we should always think about uncertainty, so we can extract simulations from the model.

```
posterior_linpred was useful with regression
```

```
new_data <- data.frame(consumed = c(0,10))
posterior_sims <- posterior_linpred(bayes_logistic, newdata = new_data)
summary(posterior_sims)</pre>
```

```
##
            :-1.7585
                                :0.917
##
   {	t Min.}
                        \mathtt{Min}.
    1st Qu.:-1.3492
                        1st Qu.:1.728
##
## Median :-1.2448
                        Median :1.950
            :-1.2482
                                :1.960
## Mean
                        Mean
                        3rd Qu.:2.181
##
    3rd Qu.:-1.1436
## Max.
            :-0.7179
                        Max.
                                :3.282
```

This doesn't return probabilities, so we need to consider posterior_epred instead

```
posterior_sims <- posterior_epred(bayes_logistic, newdata = new_data)
summary(posterior_sims)</pre>
```

```
2
##
          1
            :0.1470
                              :0.7144
   \mathtt{Min}.
                      Min.
   1st Qu.:0.2060
                      1st Qu.:0.8492
##
## Median :0.2236
                      Median :0.8754
           :0.2241
## Mean
                      Mean
                              :0.8718
  3rd Qu.:0.2417
                      3rd Qu.:0.8985
##
  Max.
            :0.3279
                      Max.
                              :0.9638
```

It can also be useful to consider predictions of an individual data point. This is how you would conduct posterior predictive checks.

Model Comparison

We can use cross validation in the same manner a standard linear models.

See help('pareto-k-diagnostic') for details.

```
loo(bayes_logistic)
## Computed from 4000 by 365 log-likelihood matrix
##
##
            Estimate
                       SE
## elpd_loo
             -168.9 10.5
                 2.0 0.2
## p_loo
## looic
               337.8 20.9
## Monte Carlo SE of elpd_loo is 0.0.
##
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
temp_model <- stan_glm(weekend~max_tmp, data = beer, refresh=0)</pre>
loo(temp_model)
##
## Computed from 4000 by 365 log-likelihood matrix
##
##
            Estimate
                       SE
## elpd_loo
              -230.0 9.1
                 2.4 0.2
## p_loo
## looic
               460.0 18.3
## ----
## Monte Carlo SE of elpd_loo is 0.0.
## All Pareto k estimates are good (k < 0.5).
```