

Capstone Project Appliances Energy Prediction

G. V. Kapeesh Varma

CONTENTS

Sr. No.	Topic
1)	PROBLEM STATEMENT
2)	APPROACH
3)	DATA SUMMARY
4)	DATA VISUALIZATIONS
5)	REGRESSION MODELLING
6)	CONCLUSIONS

PROBLEM STATEMENT

In this time of global uncertainty world needs energy and in increasing quantities to support economic and social progress and build a better quality of life, in particular in developing countries. But even today there are many regions which face constant power outages. These outages are primarily caused due to excess load consumed by home appliances. Hence, the ability to predict energy consumption can not only save a lot of money for the end user but also helps to avoid such power outages.

The aim of this project is to analyze data from various sensors and predict the Energy consumption through various Regression models.

APPROACH

In this project, I performed Regression analysis in order to predict Appliance energy usage based on data collected from various sensors. Initially, I imported and analyzed various features of the Appliance Energy dataset through data exploration and visualizations.

In the next part, appropriate Dependent & Independent variables have been picked for Regression. The Data is then preprocessed in order to transform categorical variables. Regression is then performed through Linear Regression, Ridge Regression, Random Forest Regression etc., and the performance metrics of these models have been calculated to find the best fit.

DATA SUMMARY

U	#	Column	Non-Null (ount	Dtype
₽			10775	11	
	0	date	19735 non-		object
	1	Appliances	19735 non-		int64
	2	lights		-null	int64
	3	T1		null	float64
	4	RH_1	19735 non-		float64
	5	T2	19735 non-	null	float64
	6	RH_2	19735 non-	·null	float64
	7	T3	19735 non-	null	float64
	8	RH_3	19735 non-	null	float64
	9	T4	19735 non-	null	float64
	10	RH_4	19735 non-	-null	float64
	11	T5	19735 non-	-null	float64
	12	RH_5	19735 non-	-null	float64
	13	T6	19735 non-	null	float64
	14	RH_6	19735 non-	null	float64
	15	T7	19735 non-	null	float64
	16	RH_7	19735 non-	null	float64
	17	T8	19735 non-	null	float64
	18	RH_8	19735 non-	null	float64
	19	T9	19735 non-	null	float64
	20	RH_9	19735 non-	null	float64
	21	T out	19735 non-	null	float64
	22	Press_mm_hg	19735 non-	null	float64
	23	RH out	19735 non-	null	float64
	24	Windspeed	19735 non-	null	float64
	25	Visibility	19735 non-	null	float64
	26	Tdewpoint	19735 non-	-null	float64
	27	rv1	19735 non-	-null	float64
	28	rv2	19735 non-	null	float64
	dtyp	es: float64(2	6), int64(2	2), ob	ject(1)

	date	Appliances	lights	T1	RH_1	T2	RH_2	Т3	RH_3	T4	RH_4	T5	RH_5	T6
19730	2016- 05-27 17:20:00	100	0	25.566667	46.560000	25.890000	42.025714	27.200000	41.163333	24.7	45.590000	23.20	52.400000	24.796667
19731	2016- 05-27 17:30:00	90	0	25.500000	46.500000	25.754000	42.080000	27.133333	41.223333	24.7	45.590000	23.23	52.326667	24.196667
19732	2016- 05-27 17:40:00	270	10	25.500000	46.596667	25.628571	42.768571	27.050000	41.690000	24.7	45.730000	23.23	52.266667	23.626667
19733	2016- 05-27 17:50:00	420	10	25.500000	46.990000	25.414000	43.036000	26.890000	41.290000	24.7	45.790000	23.20	52.200000	22.433333
19734	2016- 05-27 18:00:00	430	10	25.500000	46.600000	25.264286	42.971429	26.823333	41.156667	24.7	45.963333	23.20	52.200000	21.026667

Appliance Energy DataFrame

T5

19735.000000

19.592106

1.844623

15.330000

18.277500

19.390000

20.619643

25.795000

RH 2

19735.000000

40.420420

4.069813

20.463333

37.900000

40.500000

43.260000

56.026667

Descriptive Statistics

T3

19735.000000

22.267611

2.006111

17.200000

20.790000

22.100000

23.290000

29.236000

RH 3

19735.000000

39.242500

3.254576

28.766667

36.900000

38.530000

41.760000

50.163333

T4

19735.000000

20.855335

2.042884

15.100000

19.530000

20.666667

22.100000

26.200000

RH 4

19735.000000

39.026904

4.341321

27.660000

35.530000

38.400000

42.156667

51.090000

T2

19735.000000

20.341219

2.192974

16.100000

18.790000

20.000000

21.500000

29.856667

Appliances

19735.000000

97.694958

102.524891

10.000000

50.000000

60.000000

100.000000

1080.000000

count

mean

std

min

25%

50%

75%

max

lights

3.801875

7.935988

0.000000

0.000000

0.000000

0.000000

70.000000

19735.000000

T1

19735.000000

21.686571

1.606066

16.790000

20.760000

21.600000

22.600000

26.260000

RH 1

19735.000000

40.259739

3.979299

27.023333

37.333333

39.656667

43.066667

63.360000

DATA VISUALIZATIONS

Distribution of Energy Consumption of Appliances

REGRESSION MODELLING

PERFORMANCE METRICS FOR LINEAR REGRESSION

MSE: 305.9395537435371

R2_Score: 0.8982294119683846

PERFORMANCE METRICS FOR RIDGE REGRESSION

Best Alpha value for Ridge Regression: {'alpha': 5}

MSE: 298.55207446862335

R2_Score: 0.9006868520106408

PERFORMANCE METRICS FOR REGRESSION WITH EXTREME GRADIENT BOOST

MSE: 140.76694659472426 R2_Score: 0.953173969318236

Best Number of Estimators for Random Forest Regression: {'n_estimators': 100}

MSE: 22.245189918352818

R2_Score: 0.9926001524446116

CONCLUSIONS

- 1. The "lights" column has been dropped as it is of least importance in this model.
- 2. "Hours" is the most influencing data column i.e.; it has the highest correlation with Appliance Energy consumption.
- 3. Weekends (Saturdays and Sundays) are observed to have higher Energy consumption than Weekdays.
- 4. Energy consumption is higher during evenings.
- 5. Random Forest Regressor (with n_estimators = 100) has the most efficient performance metrics (MSE = 22.24, R2_Score = 0.99) among the different models used in this prediction.