m	0.028
k_1	2.130295e - 11
k_2	1.032633e - 6
k_3	5.484560e - 4
Scale	1000
Base	36000
K_{pz}	2
K_{iz}	0.5
K_{pv}	25
K_{iv}	15
K_p	25000
K_i	15000

Table 1: Constantes physiques du Crazyflie

1 Premier système

Soit une commande z_c , le quadricoptère est contrôlé par deux PI. En ajoutant deux nouveaux état u_1 et u_2 représentant respectivement les intégrales $\int (2(z_c-z)+0.5\int (z_c-z)dt-v_z)dt$ et $\int (z_c-z)dt$ et en introduisant les nouvelles constantes $K_p=\operatorname{Scale}*K_{pv}$ et $K_i=\operatorname{Scale}*K_{iv}$ on obtient :

$$\begin{cases} \dot{z} = v_z \\ \dot{v_z} = \frac{4k_1}{m} * PWM^2 + \frac{4k_2}{m} * PWM + \frac{4k_3}{m} - g \\ \dot{u_1} = 2(z_c - z) + 0.5u_2 - v_z \\ \dot{u_2} = z_c - z \\ PWM = K_p \dot{u_1} + K_i u_1 + \text{Base} \end{cases}$$

Afin d'avoir une altitude centrée en zéro, nous allons soustraire z_c à z ($z'=z-z_c$) :

$$\begin{cases} \dot{z}' = v_z \\ \dot{v_z} = \frac{4k_1}{m} * PWM^2 + \frac{4k_2}{m} * PWM + \frac{4k_3}{m} - g \\ \dot{u_1} = -2z' + 0.5u_2 - v_z \\ \dot{u_2} = -z' \\ PWM = K_n \dot{u_1} + K_i u_1 + \text{Base} \end{cases}$$

Je numérise les constantes :

$$\begin{cases} \dot{z'} = v_z \\ \dot{v_z} = 4/0.028(2.130295*10^{-11}PWM^2 + 1.032633*10^{-6}PWM + 5.484560*10^{-4}) - 9.81 \\ \dot{u_1} = -2z' + 0.5u_2 - v_z \\ \dot{u_2} = -z' \\ PWM = 25000\dot{u_1} + 15000u_1 + 36000 \end{cases}$$

C'est donc le premier système.

2 Second système

Afin de linéariser les équations, j'applique l'expansion de Taylor au premier ordre proche de l'équilibre ($\Delta = actuel - \acute{e}quilibre$). On peut supposer que l'altitude à l'équilibre est l'altitude en commande ie

 $z_e = z_c$:

$$\left\{ \begin{array}{l} \Delta \dot{z} = \Delta v_z \\ \Delta \dot{v_z} = \frac{8k_1}{m} * PWM_e * \Delta PWM + \frac{4k_2}{m} * \Delta PWM \\ \Delta \dot{u_1} = -2\Delta z + 0.5\Delta u_2 - \Delta v_z \\ \Delta \dot{u_2} = -\Delta z \\ \Delta PWM = K_p\Delta \dot{u_1} + K_i\Delta u_1 \end{array} \right.$$

Ainsi, en manipulant les équations :

$$\begin{cases} \Delta \dot{z} = \Delta v_z \\ \Delta \dot{v_z} = \left(\frac{8k_1}{m} * PWM_e + \frac{4k_2}{m}\right) * \left(-K_p(2\Delta z - 0.5\Delta u_2 + \Delta v_z) + K_i\Delta u_1\right) \\ \Delta \dot{u_1} = -2\Delta z + 0.5\Delta u_2 - \Delta v_z \\ \Delta \dot{u_2} = -\Delta z \\ \Delta PWM = -K_p(2\Delta z - 0.5\Delta u_2 + \Delta v_z) + K_i\Delta u_1 \end{cases}$$

Si on note x le vecteur $[z \ v_z \ u_1 \ u_2]^t$, $\Delta x = [\Delta z \ \Delta v_z \ \Delta u_1 \ \Delta u_2]^t$ et $\Delta \dot{x} = [\Delta \dot{z} \ \Delta \dot{v_z} \ \Delta \dot{u_1} \ \Delta \dot{u_2}]^t$ alors nous avons :