

### Formação Desenvolvedor Moderno Módulo: Banco de Dados

Capítulo: Modelo conceitual - nível de análise

https://devsuperior.com.br

1

### Sinônimos

- Modelo de dados/domínio em nível conceitual
- Modelo de dados/domínio em nível de análise
- Modelo conceitual

# **Modelo Conceitual Conceitos e atributos**

3

### Agenda

- Definição de modelo conceitual
- Conceitos
- Atributos
- Representação UML de conceitos e atributos

### Modelo Conceitual

Pedido

- <<ol>
 - <<iol>
 - 
 - data : Date
 - estado : EstadoDoPedido
 - ltemPedido
 - preco : Double
 - quantidade : Integer
 - preco : Double

 - preco : Double
- quantidade : Integer
- preco : Double

- **Definição 1:** é um modelo que descreve a estrutura das informações que o sistema vai gerenciar (Wazlawick)
- Definição 2: é o Modelo de Domínio em nível de Análise:
  - Pertence ao escopo do problema e não ao escopo da solução
  - Independente de paradigma
  - Independente de tecnologia

Modelo de domínio: modelo que descreve as entidades do domínio, bem como as interrelações entre elas.

- Para representar o Modelo Conceitual, vamos utilizar a ferramenta:
  - Diagrama de Classes da UML

5

### O Modelo Conceitual descreve:

Conceitos

Atributos

Associações



### Conceitos

- Um conceito pode ser qualquer entidade que tenha um **significado** para o sistema e que tenha uma necessidade de **armazenamento de dados**.
  - Exemplos: cliente, pedido, produto, fornecedor, etc.
- Um conceito deve ser uma unidade coesa.

Não se deve misturar informações de várias coisas distintas em um mesmo conceito



?

7

### **Atributos**

- Informações alfanuméricas simples, como números, textos, datas, etc. contidas em cada conceito.
  - Produto: descrição, preço
  - Cliente: nome, email, telefone, CPF, dataNascimento
- Notas (1FN):
  - Não pode ser multivalorado
    - RUIM: telefones ("3736-3938, 9988-3346, 3210-3939")
  - Não pode ser composto
    - RUIM: endereço ("Rua Floriano Peixoto, nº 250, apto 302, Bairro Copacabana, CEP 38410-384")
    - BOM: logradouro, numero, complemento, bairro, cep

# Usando diagrama de classes da UML para representar conceitos e atributos

#### Produto

- codProduto: Integer
- nome : String
- descricao : String
- preco : Double

Embora usamos os tipos da linguagem Java (por causa da ferramenta CASE usada), modelagem conceitual é uma modelagem <u>essencial</u>

#### **REGRAS BÁSICAS:**

- Um conceito é representado por um retângulo dividido em três seções
- A primeira seção contém o nome do conceito
- A segunda seção contém os atributos
- Cada atributo é representado por:
  - nome : tipo
- O tipo é opcional no MC
- A terceira seção não é usada no MC

9

# Usando diagrama de classes da UML para representar conceitos e atributos

#### Pedido

- <<oid>> codPedido : Integer
- data : Date
- observacao : String
- valorBruto : Double
- desconto : Double = 0
- / valorLiquido : Double = valorBruto desconto

#### **OUTRAS REGRAS:**

- Atributo identificador: estereótipo <<oid>>
- Pode haver valor inicial
- · Pode haver atributos derivados (read only)

### Resumo da aula

- O que é modelo conceitual
  - Modelo que descreve a estrutura das informações gerenciadas pelo sistema
  - Modelo de domínio em nível de análise
  - Pertence ao escopo do problema
- Conceitos
  - algo que tenha significado para o negócio e necessidade de armazenamento
    unidade coesa do negócio
- Atributos
  - informações alfanuméricas simples
  - não pode ser multivalorado (1FN)
  - não pode ser composto (1FN)
- Representação de conceitos e atributos com diagrama de classes da UML
  - nome:tipo
  - Atributo identificador
  - Valor inicial
  - · Atributo derivado

#### Pedido

- <<oid>> codPedido : Integer
- data : Date
- observacao : String valorBruto : Double desconto : Double = 0
- /valorLiquido: Double = valorBruto desconto

11

### **Como identificar conceitos**

### Agenda

- Onde buscar informações
- Orientações para identificação de conceitos
- Exemplos

13

### Onde buscar informações

# Analista de sistemas

#### DEVE-SE BUSCAR INFORMAÇÕES EM:

- Documentos produzidos pela análise de requisitos do sistema:
  - Visão geral do sistema
  - Casos de uso



- · Processos de negócio
- Regulamentos / normas / leis
- Documentos de registro
- Papéis e atribuições
- Práticas e ritos estabelecidos
- · Conhecimento tácito (entrevistas)
- Outros

**Visão geral do sistema**: documento de formato livre que especifica, em linhas gerais, os requisitos do sistema.

#### Sistema de Controle Escolar

Deseja-se construir um sistema acadêmico. Para isso, são registrados os cursos disponíveis, onde cada um possui um nome, carga horária e valor. Quando um curso vai ser oferecido, é registrada uma turma, informando os seguintes dados: número da turma, data de início e número de vagas. Uma matrícula de um aluno em uma turma consiste na data de matrícula e no número de prestações em que o aluno vai pagar o curso. Para cada aluno, é necessário cadastrar seu nome, cpf, e data de nascimento.

Cada aluno passa por várias avaliações durante o desenrolar do curso que está cursando. Uma avaliação possui nota e data. Depois que a avaliação ocorre, é registrado resultado de cada aluno da turma (a nota que ele tirou). Um aluno é aprovado em um curso se sua nota total for pelo menos 70% da nota prevista do curso.

É importante saber a porcentagem de aprovação por turma e por curso (considerando somente as turmas que já finalizadas). Deseja-se saber também a nota final de um aluno em um curso que ele cursou, e se ele foi aprovado ou não no curso. Além disso, o sistema deve ser capaz de saber os alunos aprovados e reprovados em uma turma, bem como o aluno com melhor desempenho da turma (pode haver empates).

15

**Caso de uso**: documento estruturado que especifica uma funcionalidade do sistema por meio da **troca de informações** entre usuários (atores de sistema) e o sistema.

#### Comprar Livros

#### Cenário principal

- 1. [IN] O comprador informa sua identificação.
- 2. [OUT] O **sistema** informa os livros disponíveis para venda (título, capa e preço) e o conteúdo atual do carrinho de compras.
- 3. [IN] O comprador seleciona os livros que deseja comprar.
- 4. O comprador decide se finaliza a compra ou se guarda o carrinho:
- 4.1 Variante: Finalizar a compra.
- 4.2 Variante: Guardar carrinho.

#### Variante 4.1: Finalizar a compra

- 4.1.1. [OUT] O **sistema** informa o valor total dos livros e apresenta as opções de endereço cadastradas.
- 4.1.2. [IN] O comprador seleciona um endereço para entrega.
- 4.1.3. [OUT] O **sistema** informa o valor de frete e total geral, bem como a lista de cartões de crédito já cadastrados para pagamento. 4.1.4. [IN] O **comprador** seleciona um cartão de crédito.
- 4.1.5. [OUT] O **sistema** envia os dados do cartão e valor da venda para a operadora.

4.1.6. [IN] A **operadora** informa o código de autorização. 4.1.7. [OUT] O **sistema** informa o prazo de entrega.

#### Variante 4.1: Guardar carrinho

 $4.2.1.\ [OUT]\ O$  sistema informa o prazo (dias) em que o carrinho será mantido.

#### Exceção 1a: Comprador não cadastrado

1a.1 [IN] O comprador informa seu CPF, nome, endereço e telefone.

#### Exceção 4.1.2a: Endereço consta como inválido

4.1.2a.1 [IN] O **comprador** atualiza o endereço. Vai para 4.1.2.

#### Exceção 4.1.6a: A operadora não autoriza a venda

4.1.6a.1 [OUT] O sistema apresenta outras opções de cartão ao comprador.

4.1.6a.2 [IN] O comprador seleciona outro cartão. Vai para 4.1.5.

(Wazlawick, 2011)

### Orientações para identificação de conceitos



Com base nas informações, identificar conceitos relevantes para o negócio e com necessidade de armazenamento.

- Documentos (ordem de serviço, orçamento)
- Pessoas (cliente, fornecedor)
- Estruturas organizacionais (departamento)
- Eventos (venda, reserva, atendimento)

17

### Orientações para identificação de conceitos

# Analista de sistemas negócio + requisitos do sistema

#### Atenção! Procure por:

Substantivos (pessoa, compra, produto, pagamento)

Expressões que denotem substantivos (autorização de pagamento)

Verbos que indiquem um possível conceito (comprar, pagar)

### Exemplo 1 (especificação estilo "visão geral do sistema")

Deseja-se fazer um sistema para manter um cadastro dos funcionários de uma empresa. Deseja-se poder consultar o email e salário dos funcionários, bem como o telefone de seu departamento.

#### Funcionario

- <<oid>> codFuncionario : Integer
- nome : String
- email: String
- salario : Double
- departamento : String
- telefoneDepartamento: String

#### Funcionario

- <<oid>> codFuncionario : Integer
- nome : String
- email: String salario: Double

#### Departamento

- <<oid>> codDepartamento : Integer
- nome : String
- telefone : String

#### **CORRETO**

#### **ERRADO**

### Exemplo 2 ("caso de uso")

#### **Comprar Livros**

#### Cenário principal

- 1. [IN] O comprador informa sua identificação.
- 2. [OUT] O sistema informa os livros disponíveis para venda (título, capa e preço) e o conteúdo atual do carrinho de compras.
- 3. [IN] O comprador seleciona os livros que deseja comprar.
- 4. O comprador decide se finaliza a compra ou se guarda o carrinho:
- 4.1 Variante: Finalizar a compra.
- 4.2 Variante: Guardar carrinho.

#### Variante 4.1: Finalizar a compra

- 4.1.1. [OUT] O sistema informa o valor total dos livros e apresenta as opções de endereço cadastradas.
- 4.1.2. [IN] O comprador seleciona um endereço para entrega.
- 4.1.3. [OUT] O sistema informa o valor de frete e total geral, bem como a lista de cartões de crédito já cadastrados para pagamento. 4.1.4. [IN] O comprador seleciona um cartão de crédito.
- 4.1.5. [OUT] O sistema envia os dados do cartão e valor da venda para a operadora.

4.1.6. [IN] A operadora informa o código de autorização.

4.1.7. [OUT] O sistema informa o prazo de entrega.

#### Variante 4.1: Guardar carrinho

4.2.1. [OUT] O sistema informa o prazo (dias) em que o carrinho será mantido.

#### Exceção 1a: Comprador não cadastrado

1a.1 [IN] O comprador informa seu CPF, nome, endereço e telefone.

#### Exceção 4.1.2a: Endereço consta como inválido

4.1.2a.1 [IN] O comprador atualiza o endereço. Vai para 4.1.2.

#### Exceção 4.1.6a: A operadora não autoriza a venda

- 4.1.6a.1 [OUT] O sistema apresenta outras opções de cartão ao comprador.
- 4.1.6a.2 [IN] O comprador seleciona outro cartão.

Vai para 4.1.5.

20

### Exemplo 2 ("caso de uso")

#### **Comprar Livros**

#### Cenário principal

- 1. [IN] O comprador informa sua identificação.
- 2. [OUT] O sistema informa os <u>livros</u> disponíveis para <u>venda</u> (<u>título,</u> capa e preço) e o conteúdo atual do <u>carrinho de compras.</u>
- 3. [IN] O comprador seleciona os livros que deseja comprar.
- O comprador decide se finaliza a compra ou se guarda o carrinho:
   Variante: Finalizar a compra.
- 4.2 Variante: Guardar carrinho.

#### Variante 4.1: Finalizar a compra

- 4.1.1. [OUT] O sistema informa o valor total dos livros e apresenta as opcões de endereco cadastradas.
- 4.1.2. [IN] O comprador seleciona um endereço para entrega.
- 4.1.3. [OUT] O sistema informa o valor de frete e total geral, bem como a lista de cartões de crédito já cadastrados para pagamento.
  4.1.4. [IN] O comprador seleciona um cartão de crédito.
- 4.1.5. [OUT] O sistema envia os dados do cartão e valor da venda para a operadora.

4.1.6. [IN] A **operadora** informa o código de autorização.

4.1.7. [OUT] O **sistema** informa o prazo de entrega.

#### Variante 4.1: Guardar carrinho

4.2.1. [OUT] O **sistema** informa o pr<u>azo (di</u>as) em que o carri<u>nho será</u> mantido.

#### Exceção 1a: Comprador não cadastrado

1a.1 [IN] O **comprador** informa seu CPF, nome, endereço e telefone.

#### Exceção 4.1.2a: Endereço consta como inválido

4.1.2a.1 [IN] O comprador atualiza o endereço. Vai para 4.1.2.

#### Exceção 4.1.6a: A operadora não autoriza a venda

4.1.6a.1 [OUT] O **sistema** apresenta outras opções de <u>cartão</u> ao <u>comprador.</u>

4.1.6a.2 [IN] O **comprador** seleciona outro <u>cartão</u>. Vai para 4.1.5.



### Resumo da aula

- Onde buscar informações
  - Documentos da análise de requisitos
    - Visão geral do sistema
    - Casos de uso
  - Processos, regulamentos, entrevistas, etc.
- Orientação:
  - Procurar conceitos com necessidade de armazenamento
  - Conceitos são substantivos
- Exemplos

23

### **Associações**

### Agenda

- Instâncias
- O que são associações
- Exemplo inicial

25

### Instâncias

#### Exemplo:

Desejo criar um sistema para armazenar informações de pessoas e carros.

#### Conceitos:

- Pessoa
- Carro

### Cada ocorrência dos meus conceitos recebe o nome de INSTÂNCIA ou OBJETO





### O que são associações

Associação é um relacionamento estático entre dois conceitos.

#### Exemplo:

Desejo criar um sistema para armazenar informações de pessoas e carros.

Mas eu não tenho simplesmente a necessidade de saber quais são as pessoas e quais são os carros:

Também desejo saber quem é o dono de cada carro!









Resumo da aula

• Associação é um relacionamento estático entre dois conceitos



• Não confunda com Modelo Relacional

### Multiplicidade

33

### Agenda

- O que é multiplicidade?
- Como encontrar as multiplicidades?
- Associações comuns
  - Um para muitos
  - Um para um
  - Muitos para muitos

### O que é multiplicidade?

É a quantidade mínima e máxima de objetos que uma associação permite em cada um de seus papéis.

Exemplo: um carro pode ter quantos donos?

Mínimo: 1 Máximo: 1







Como encontrar as multiplicidades?



#### Multiplicidades possíveis "," significa "ou" ".." significa "a" "\*" significa "vários" (sem limite específico) a) 1 exatamente um 2 b) exatamente dois c) 0..1 zero a um d) 0..\* zero ou mais e) zero ou mais f) 1..\* um ou mais 2..\* dois ou mais g) 2..5 de dois a cinco h) i) 2,5 dois ou cinco 2,5..8 j) dois ou cinco a oito

### Associações comuns

41

### Um para muitos

Exemplo: quem é dono de cada carro?





- Em um dos lados o máximo é 1
- No outro lado o máximo é "vários"

### Um para um

Exemplo: quem é o responsável por cada carro?



- 1 carro <u>pode ter</u> quantos responsáveis?
- **1** pessoa <u>pode ser responsável por</u> quantos carros?



• Em ambos os lados o máximo é 1

43



Exemplo: quem dirige cada carro?



- $1 \ \mathsf{carro} \ \underline{\mathsf{pode} \ \mathsf{ter}} \ \mathsf{quantos} \ \mathsf{motoristas?}$
- 1 pessoa <u>pode dirigir</u> quantos carros?



Em ambos os lados o máximo é "vários"

### Resumo da aula

- Multiplicidade é a quantidade **mínima** e **máxima** de objetos que uma associação permite em cada um de seus papéis.
- Como encontrar as multiplicidades?
  - Pergunte para os dois lados: 1 < conceito > pode ter quantos < papel > ?
- Multiplicidades possíveis
- Associações comuns
  - Um para muitos
  - Um para um
  - · Muitos para muitos

45

### Conceito dependente Associações obrigatórias, múltiplas e autoassociações

### Agenda

- Associação obrigatória
- Conceito dependente
- Associações múltiplas
- Autoassociações

47

Associação obrigatória

### Definição

Uma associação é obrigatória se o conceito associado desempenha um papel de multiplicidade mínima maior que zero



- A associação de uma pessoa com carros não é obrigatória.
- A associação de um carro com dono é obrigatória.



### Conceito dependente



### Nota

A UML tem um símbolo que denota dependência de um modo geral, mas que não acrescenta valor prático à modelagem conceitual:



"Carro depende de pessoa"

53

### Associações múltiplas

Pode haver mais de uma associação entre dois conceitos?





### Autoassociações

57

### Autoassociações

Quando um conceito é associado com ele próprio.



- 1 usuário <u>pode ter</u> quantos seguidores?
- 1 usuário pode ter quantos seguidos?

### Resumo da aula

- Associação obrigatória
  - Conceito associado desempenha um papel de multiplicidade mínima maior que zero
- Conceito dependente
  - Possui pelo menos uma associação obrigatória
    - Só pode existir se o outro existir
    - Se o outro deixar de existir, o objeto dependente também deixa de existir
- Associações múltiplas
  - Ok. Nomes de papel únicos.
- Autoassociações

59

# Associações todo-parte: agregação e composição

### Agenda

- Agregação
- Composição
- Ressalvas

61

### Associações todo-parte

Quando um conceito é parte de outro que representa um todo, desenhamos um diamante no lado do todo.



- estado - cidades - cidad

Diamante branco: "Agregação" O conceito parte não é exclusivo Diamante preto: "Composição" O conceito parte é **exclusivo** 

### Exclusividade: 1 ou 0..1

Como a composição (diamante preto) é uma relação exclusiva, a multiplicidade no lado do diamante sempre será 1 ou 0..1







### Agregação - exemplo 3



65

### Ressalva 1

O diamante (seja branco, seja preto) deve ser usado **somente em casos em que realmente se trata de uma relação todo-parte** 



### Ressalva 2

Algumas pessoas confundem o diamante preto (composição) como se fosse uma forma de indicar a deleção em cascata dos objetos dependentes. Na verdade o que indica isso é a multiplicidade.



67

### Resumo da aula

- Associações todo-parte
  - Agregação diamante branco mais fraca
  - Composição diamante preto mais forte exclusiva (1 ou 0..1)
- Ressalvas
  - Use diamante somente quando realmente for uma associação todo-parte
  - Não é a composição que indica deleção em cascata

### Classe de associação

69

### Agenda

- Exemplo motivador
- Classe de associação em associações muitos-para-muitos
- Classe de associação vs. Classe comum

### Exemplo motivador

Deseja-se fazer um sistema para manter um cadastro de filmes e artistas (atores/atrizes), bem como a informação de qual artista atuou em cada filme.









1003, Kate Winslet
1004, Sylvester Stallone

8012, Divergent, 2014, Jeanine





# Então como representar um modelo no qual um mesmo artista pode representar mais de um personagem em um mesmo filme?









79

## Enumerações e Tipos Primitivos

## Enumerações

Uma enumeração pode ser considerada um "meio termo" entre um conceito e um atributo.

Uma enumeração representa um conceito que possui um número finito de valores possíveis, valores estes que, para o negócio, valem a pena ser descritos.







<<oid>> id : Integer Pedido - clientes - pedido - nome : String - telefone : Telefone - email : String - nascimento : Data <<oid>> id : Integer data : Data dia: Integer mes: Integer Posicao x: Double y: Double Telefone codigoDoPais:Integer Tabuleiro - ddd : Integer - numero : String - tabuleiro qteMovimentos : Integer - colunas : Integer posicao: Posicao

### Ressalva

Em linguagens modernas, a data (ou data-hora) não é armazenada internamente por meio de um número inteiro para cada campo (dia, mês, ano, hora, segundo, milissegundo).

#### **Exemplo:**

Em linguagem Java, o tipo Date, do pacote java.util, armazena uma data-hora na forma de um único número inteiro longo (long), representando a quantidade de milissegundos que se passaram desde 0:00:00 GMT 01/01/1970

#### Teste no compilejava.net:

```
java.text.SimpleDateFormat sdf = new java.text.SimpleDateFormat("dd/MM/yyyy HH:mm:ss
z");
    java.util.Date d1 = new java.util.Date();
    java.util.Date d2 = new java.util.Date(0L);
    System.out.println(d1.getTime() + ": " + sdf.format(d1));
    System.out.println(d2.getTime() + ": " + sdf.format(d2));
```

85

## Resumo da aula

- Enumerações
  - Meio termo conceito/atributo
  - · Conjunto finito de valores



- Tipos primitivos
  - Meio termo conceito/atributo
  - Simples
  - ISBN, CEP, Posicao, Posicao3D, etc.



## Herança

87

## Agenda

- Exemplo motivador
- Dois primeiros questionamentos ao se considerar herança
- Definições importantes
- Ressalvas
- Quando o uso de herança é impróprio?

## Exemplo motivador

Deseja-se manter um cadastro dos clientes de uma empresa, sendo que há dois tipos de clientes: pessoa física e pessoa jurídica (organizações).

#### ClientePessoaFisica

- <<oid>> id : Integer
- nome : String
- telefone : String
- email: String
- dataNascimento : Date
- socialld : String

8010, Greg Junior, 3928-9211, greg@gmail.com, 12/10/1985, 83911290166

#### ClientePessoaJuridica

- <<oid>> id : Integer
- nome : String
- telefone : String
- email: String
- faturamento Anual : Double
- website : String

6165, Arts Inc., 30228-6160, contact@arts.com, 500000.00, www.arts.com

89

#### Questionamentos básicos ao se considerar herança: • Há estrutura comum entre os conceitos? ClientePessoaFisica • id, nome, telefone, email <<oid>> id : Integer nome : String Cliente telefone : String email: String <<oid>> id : Integer - dataNascimento : Date - socialld : String • Há relação É-UM entre os nome : String telefone : String conceitos e um conceito email: String mais genérico que pode representar a estrutura ClientePessoaJuridica comum? <<oid>> id : Integer PessoaJuridica PessoaFisica - nome : String • ClientePessoaFísica é um - telefone : String - faturamento Anual : Double dataNascimento: Date - email : String - faturamentoAnual : Double website : String socialld: String ClientePessoaJurídica é um website: String cliente









## Ressalva 2



- Recomenda-se cautela com <u>herança parcial</u>, dando-se preferência a <u>herança total</u>.
- Herança total: somente instâncias das subclasses (PessoaJuridica e PessoaFisica) são permitidas (não são permitidas instâncias de Cliente).
- Neste caso, defina a superclasse como uma classe <u>abstrata</u> (UML = nome em itálico).

95

## Resumo da aula

- Questionamentos básicos ao considerar herança:
  - 1. Há estrutura comum entre os dois conceitos?
  - 2. Há relação É-UM entre os conceitos e um conceito mais genérico que pode representar a estrutura comum?

#### • Definições:

- Relação É-UM
- Relação generalização / especialização
- Superclasse / subclasse
- Herança / Extensão
- A herança é uma associação de classes



## Resumo da aula

• Ressalva 1: Não use herança se não há dados exclusivos de cada subtipo.





97

## Resumo da aula

• Ressalva 2: Prefira herança total. Faça a superclasse como abstrata (UML = nome em itálico)



## Agenda

- Exemplo motivador
- Dois primeiros questionamentos ao se considerar herança
- Definições importantes
- Ressalvas
- Quando o uso de herança é impróprio?

99

#### Uso impróprio de herança Indicativos de que o uso da herança é impróprio: Pessoa - <<oid>> id : Integer - nome : String Para o conceito da subclasse fazer sentido, ele - telefone : String - email : String estaria associado a outro conceito? Uma mesma pessoa pode ser cliente e também funcionário? Funcionario Cliente salario : Double - limiteDeCredito : Double funcionarios - cliente - pedidos - departamento Departamento Pedido <<oid>> id : Integer <<oid>> id : Integer nome: String data: Date 8012, Greg Junior, 3928-9211, greg@gmail.com, 4000.00





## Resumo da aula

- Indicativos de que o uso da herança é impróprio:
  - 1. Para o conceito da subclasse fazer sentido, ele estaria associado a outro conceito?
  - 2. Um mesmo **<Superclasse>** pode ser **<Conceito1>** e também **<Conceito2>**?

