

I swear upon the deity of self-referential humour, that all output shown below was produced by running the code listed at the end of this document, without undue assistance from others.

- Benjamin Yi

## Question 1

$$f(s) = 5 * \left| \frac{\sum_{i=1}^{n} w(s_i) y_i}{\sum_{i=1}^{n} w_i} \right| + \left| \frac{\sum_{i=1}^{n} w(s_i) x_i}{\sum_{i=1}^{n} w_i} \right|$$

## Question 2

$$t(s,a,b) = (s_1,s_2,\ldots,s_{a-1},s_b,s_{a+1},\ldots,s_{b-1},s_a,s_{b+1},\ldots,s_{120})$$
 if  $b>a$  
$$= (s_1,s_2,\ldots,s_{b-1},s_a,s_{b+1},\ldots,s_{a-1},s_b,s_{a+1},\ldots,s_{120})$$
 if  $a>b$  if  $a=b$ 

### Question 3

We move the container in position a to the empty location b, leaving position a empty.

## Question 4

| $b = a + 60 \longrightarrow t(s, a, a + 60)$ | Swapping containers vertically does not change anything       |
|----------------------------------------------|---------------------------------------------------------------|
| $a = b + 60 \longrightarrow t(s, b + 60, b)$ | Swapping containers vertically does not change anything       |
| $w(s_a) = w(s_b)$                            | Swapping a container with an identical container does nothing |

Note that as we assume uniquely weighted containers, the third scenario reduces down to  $s_a = s_b$  i.e. swapping a container with itself, or swapping empty containers.

## Question 5

$$N(s) = \left\{ t(s, a, b) \text{ for } a = 1, 2, \dots, 119; b = a + 1, a + 2, \dots, 120; b \neq a + 60; w(s_a) \neq w(s_b) \right\}$$

## Question 6

We store extra intermediate variables which correspond to the centre of masses:

$$zy(s) = \sum_{i=1}^{n} w(s_i)y_i$$
$$zx(s) = \sum_{i=1}^{n} w(s_i)x_i$$

To update these on each evaluation:

$$zy(s_{\text{new}}) = zy(s_{\text{old}}) - w(s_{\text{old},a})y_a + w(s_{\text{old},b})y_a - w(s_{\text{old},b})y_b + w(s_{\text{old},a})y_b$$
$$zx(s_{\text{new}}) = zx(s_{\text{old}}) - w(s_{\text{old},a})x_a + w(s_{\text{old},b})x_a - w(s_{\text{old},b})x_b + w(s_{\text{old},a})x_b$$

where a, b are equal to the position index swapped for this evaluation. The new objective function is then given by:

$$f(s) = 5 * \left| \frac{\text{zy}(s)}{w_T} \right| + \left| \frac{\text{zx}(s)}{w_T} \right|$$

where  $w_T$  is the sum of the weights of all containers. Note that in implementation, division by  $w_T$  can be left until the end as it is constant and positive.

## Question 7

Create an array of size n, one element for each container. Initialise the array with some arbitrary value < -h. Whenever a container is swapped, update the corresponding array element to be equal to the iteration count. A container would then be considered banned if (current iteration count - array element value) < h. This requires an array element lookup per container considered each iteration, up to a maximum of 119 \* 120 lookups each iteration.

## Question 8

Instead of recording movement of containers, we could record container positions swapped. This would mean recording a, b instead of s[a], s[b].

#### Two next-descents code

```
# Benjamin Yi
# byi649
# 925302651
import random
import matplotlib.pyplot as plt
import math
import numpy as np
# Input data
with open("ProbA.txt", 'r') as f:
    w = [line.strip() for line in f.readlines()]
n = int(w[0])
w = [0] + [float(x) for x in w[1:]]
with open("Positions.txt", 'r') as f:
    pos = [line.strip() for line in f.readlines()[1:]]
x = [float(tup.split()[1]) for tup in pos]
y = [float(tup.split()[2]) for tup in pos]
# Do two next-descent on problem A
zArray = []
bestzArray = []
for k in range(2):
    # Generate random starting solutions
    s = list(range(1, n+1)) + [0]*(120-n)
    for i in range(119):
        j = random.randint(i+1, 119)
        s[i], s[j] = s[j], s[i]
    # Iterate next-descent
    zx = sum([w[s[i]]*x[i] for i in range(120)])
    zy = sum([w[s[i]]*y[i] for i in range(120)])
    z = 5 * abs(zy) + abs(zx)
    zArray.append(z)
    bestzArray.append(z)
    converged = False
    last_swap = (0, 0)
    while(not converged):
        for a in range(119):
            for b in range(a + 1, 120):
                # Stop if the neighbourhood surrounding the last swap

→ has been searched

                if (a, b) == last_swap:
                    converged = True
                    break
                else:
                    if b != a + 60 and w[s[a]] != w[s[b]]:
                         zy_new = zy - w[s[a]]*y[a] + w[s[b]]*y[a] - w[s[
                            \hookrightarrow b]]*y[b] + w[s[a]]*y[b]
                         zx_new = zx - w[s[a]]*x[a] + w[s[b]]*x[a] - w[s[
                            → b]]*x[b] + w[s[a]]*x[b]
                         z_new = 5 * abs(zy_new) + abs(zx_new)
                         zArray.append(z_new) # For plot
                         if z_new < z:
```

```
# Update and swap
z, zy, zx = z_new, zy_new, zx_new
s[a], s[b] = s[b], s[a]
                                          last_swap = (a, b)
                                    bestzArray.append(z)
                        # In the extremely rare case the shuffle gave us a local
                             \hookrightarrow minima
                        if last_swap == (0, 0) and (a, b) == (119, 120):
                              converged = True
                  if converged:
                        break
      bestzArray.append(np.nan) # To create a vertical break between
           → descents
      totalweight = sum(w)
print("dY =", zy/totalweight)
print("dX =", zx/totalweight)
print("z =", z/totalweight)
plt.scatter(x=range(len(zArray)), y=[x/totalweight for x in zArray],
     \hookrightarrow marker='x', alpha=0.5, s=1)
plt.plot([x/totalweight for x in bestzArray], 'r')
plt.xlabel("Function evaluation count")
plt.ylabel("Solution quality (log scale)")
plt.yscale('log')
plt.title("Next descent local search")
plt.show()
with open("Results.txt", 'w') as f:
      f.write(str(z/totalweight)+"\n")
      f.write("\n".join([str(x) for x in s]))
```

## Two next-descents plot



#### 200 iterations code

```
# Benjamin Yi
# byi649
# 925302651
import random
import matplotlib.pyplot as plt
import math
import numpy as np
# Input data
with open("ProbA.txt", 'r') as f:
    w = [line.strip() for line in f.readlines()]
n = int(w[0])
w = [0] + [float(x) for x in w[1:]]
with open("Positions.txt", 'r') as f:
    pos = [line.strip() for line in f.readlines()[1:]]
x = [float(tup.split()[1]) for tup in pos]
y = [float(tup.split()[2]) for tup in pos]
bestZ = float("inf")
for k in range(200):
    # Generate random starting solutions
    s = list(range(1, n+1)) + [0]*(120-n)
    for i in range (119):
        j = random.randint(i+1, 119)
        s[i], s[j] = s[j], s[i]
    # Iterate next-descent
    zx = sum([w[s[i]]*x[i] for i in range(120)])
    zy = sum([w[s[i]]*y[i] for i in range(120)])
    z = 5 * abs(zy) + abs(zx)
    converged = False
    last_swap = (0, 0)
    while(not converged):
        for a in range(119):
             for b in range(a + 1, 120):
                 # Stop if the neighbourhood surrounding the last swap
                     → has been searched
                 if (a, b) == last_swap:
                     converged = True
                     break
                 else:
                      if b != a + 60 and w[s[a]] != w[s[b]]:
                          zy_{new} = zy - w[s[a]]*y[a] + w[s[b]]*y[a] - w[s[
                             \hookrightarrow b]]*y[b] + w[s[a]]*y[b]
                          zx_new = zx - w[s[a]]*x[a] + w[s[b]]*x[a] - w[s[
                             \hookrightarrow b]]*x[b] + w[s[a]]*x[b]
                          z_{new} = 5 * abs(zy_{new}) + abs(zx_{new})
                          if z_new < z:
                              # Update and swap z, zy, zx = z_new, zy_new, zx_new
                              s[a], s[b] = s[b], s[a]
                              last_swap = (a, b)
                 # In the extremely rare case the shuffle gave us a local
                     → minima
```

## Problem A

| 100   63   83   64   79     100   3   62   14   33     100   3   62   14   33     100   47   65   28   10     11   1   65   28   10     12   72   35   4   29     13   75   24     14   33   31     15   15   15   24     16   16   16   16     17   17   17   17     18   18   18   18     18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 5 | 88 2/ 69 | 2 2 | 02 | 20  | 06 | 77 51 38 | 20 85 78 | 92 | 3 0 |   | 30 58 81 | 3 |                    | 1113.65921 484.216683 | 2 / 32.124516 1539.09/36 944.88//96 | 1285 14473 1457 06086 | 866.539274 878.933774 | 796.392365 1824.777 | 36 5985.16129 6784.83551 6738.93428 |          | g<br>B    | Objective Calculation Workings Check Containers | Š        | -33 7.5 TRUE | TRUE     | -33 1.5 TRUE | ဂို ဗို         | -33 -7.5 TRUE | 7.5 TRUE | -27 | -27            | -27       | -27 | -21      | -21     | -21      | -21 -1.5 TRUE | -21 -4.5 TRUE | 77.5 TRUE TRUE TRUE |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----|----|-----|----|----------|----------|----|-----|---|----------|---|--------------------|-----------------------|-------------------------------------|-----------------------|-----------------------|---------------------|-------------------------------------|----------|-----------|-------------------------------------------------|----------|--------------|----------|--------------|-----------------|---------------|----------|-----|----------------|-----------|-----|----------|---------|----------|---------------|---------------|---------------------|-----|
| in each Loading Positions - Solution Quality Container Container ProbA  Number of Containers - Solutions - 100  Number of Positions - 100  Solutions - 100 | and the second s | +    | +        |     |    |     |    |          |          |    |     | + | +        |   |                    |                       | -                                   | _                     | _                     |                     | 30.07269 6620.3953                  |          |           | Objective                                       | Weights  |              |          |              | 37 5087         |               |          |     |                | 40.22808  |     | 127.9442 | 148.794 | 207.7648 | 101.3493      | 263.75        | 802.0752            | 000 |
| in each Loading Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second s | 64   | 3/       | 43  | 28 | 7.5 | 67 | 92       | 100      | 45 | 48  | , | 16       | 2 | 10000 1011         | 1495.08227            | 478.1996/4<br>400E 4872E            | 1339 60903            | 972.6507              | 866,679052          | 22 6657.70796 74                    |          | amer Data | er Container<br>Weight                          | 6        | 2            | •        |              |                 |               |          |     |                |           |     |          |         |          |               |               | J)                  |     |
| in each Loading Position    0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second s | +    |          | ł   |    |     |    |          |          |    | +   | + | +        | - |                    |                       | _                                   | _                     | -                     |                     | 842.96188 9218.677                  | d        | Cons      | Contain                                         |          |              |          |              |                 |               |          |     |                |           |     |          |         |          |               |               |                     |     |
| in each Loading Pc    0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the second s | 0    | 0        | 8   | 0  | c   | 0  | 84       | 0        | c  | 0 0 |   | 0 14     | - | 000                | 32.9/31088            |                                     | _                     | 0                     | 394.774074          | 9 467.975261 3                      | <u>:</u> | n Quality |                                                 | 6.15E-06 | -1.2E-06     | 1.19E-05 |              | of Containers - | 100           |          |     | of Positions - | 120       | _   |          |         |          |               | · 60          |                     | _   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Weight  Total Weight  100  Index of  Index of  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0    |          | 0   | 49 |     |    | 0        | 0        | C  |     |   | 25       | 3 | in each Loading Pc |                       |                                     | 0                     | 37.50877195           | 59.16333354         | 96.67210549                         | 9        | onnios    | ProbA                                           | =Xp      | =Ap          | Obj Fn=  |              | - Nimber        | Containers    |          |     | - Number       | Positions | 2   | 1.5      | -       | 0.5      | -             | 1-            | 7                   |     |

## Problem B

|              |     |     |     | •   |     |    |     |     |     |     |     |                                       |                        |             |             |             |             |                                              |                                                         | W. Cristian        | Diniicate All       | S                              | SK OK     | TRUE TRUE | TRUE TRUE |            | TRUE                   |            |          |          |                       | TRUE TRUE |          |           |          | TRUE TRUE |
|--------------|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|---------------------------------------|------------------------|-------------|-------------|-------------|-------------|----------------------------------------------|---------------------------------------------------------|--------------------|---------------------|--------------------------------|-----------|-----------|-----------|------------|------------------------|------------|----------|----------|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|----------|-----------|
| 87           | 20  | 6   | 73  | 116 | 77  | 94 | 82  | 69  | 117 | 107 | 97  |                                       | 389.72757              | 98.6557077  | 83.9715463  | 336.217052  | 241.125135  | 400.721921                                   | 1550.41893                                              |                    | _                   |                                |           | •         |           |            |                        |            |          |          |                       |           |           |           |           |           |           |           |           |          |           |          |           |
| 3            | 68  | 21  | 37  | 99  | 86  | 29 | 53  | 62  | 09  | 52  | 35  |                                       | 161.577258             | 212.587807  | 64.5710179  | 190.67455   | 50.5236607  | 108.161285 400.721921                        | 905.022267 1156.84908 1191.07855 788.095579 1550.41893  |                    |                     | Vorkings                       | Data Y    | 7.5       | 4.5       | ري.<br>د ب |                        | 7.5        | 7.5      | 4.5      | 1.5                   | -1.5      | -4.5      | -7.5      | 7.5       | 4.5       | 1.5       | -1.5      | -4.5      | -7.5     | رن<br>7 م | У п      | •         |
| 63           | 17  | 49  | 83  | 23  | 12  | 22 | 101 | 15  | 72  | 45  | 48  |                                       | 95.4666947             | 191.585677  | 35.5263137  | 179.818818  | 82.0531062  |                                              | 1191.07855                                              | Morking            | 56111000            | Objective Calculation Workings | Data X    | -33       | -33       | <u>د</u>   | ٠<br>٢<br>٢            | , ,        | -27      | -27      | -27                   | -27       | -27       | -27       | -21       | -21       | -21       | -21       | -21       | -21      | ر<br>د ر  | 0 4      |           |
| 82           | 06  | 29  | 5   | 105 | 111 | 25 | 33  | 46  | 7   | 24  | 36  |                                       | 356.968359             | 66.3951876  | 64.2069438  | 162.386714  | 244.381229  | 153.977248 262.510647 606.627937             | 1156.84908                                              |                    |                     | Objective C                    | Weights   | 0.105823  | 0.508907  | 0.770666   | 0.7 17003              | 0.245666   | 0.959409 | 1.662801 | 2.358016              | 2.424872  | 2.625794  | 5.244997  | 3.919351  | 5.398177  | 7.007721  | 7.130167  | 8.972342  | 19.43479 | 391.0193  | 230.0032 |           |
| 80           | 43  | 70  | 109 | 115 | 47  | 41 | 92  | 84  | 100 | 89  | 1   |                                       | 179.955102             | 101.510343  | 184.083909  | 177.691271  | 107.804395  | 153.977248                                   | 905.022267                                              |                    | _                   |                                |           | _         |           |            |                        |            |          |          |                       |           |           |           |           |           |           |           |           |          |           |          |           |
| 81           | 19  | 74  | 102 | 120 | 65  | 79 | 39  | 22  | 106 | 88  | 61  |                                       | 347.07809              | 169.481822  | 162.901066  | 122.340661  | 184.190724  |                                              |                                                         | 400                | Container           | Weight                         | 0         | 87.51651  | 0.87015   | 61.58868   | 0.745000               | 2 884038   | 81.78999 | 5.483662 | 37.46672              | 12.91584  | 67.36751  | 248.008   | 79.73182  | 0.717683  | 10.34096  | 2.424872  | 27.63356  | 5.244997 | 99.16572  | 7.49000  |           |
| 75           | 118 | 51  | 1   | 114 | 93  | 91 | 13  | 110 | 86  | 112 | 104 |                                       | 690.672541             | 318.397034  | 373.786954  | 150.329165  | 368.088813  | 249.869908                                   | 2151.14442                                              | Ctol rogical       | Container Container | Index                          | 0         | -         | 2         | m -        | 4 п                    | ) (C       | ^        | 80       | 0                     | 10        | 7         | 12        | 13        | 14        | 15        | 16        | 17        | <u></u>  | 2 C       | 200      |           |
| 8            | 44  | 108 | 71  | 27  | 52  | 28 | 96  | 113 | 119 | 103 | 96  |                                       | 14.4341165             | 56.9292305  | 81.1770566  | 20.2458726  | 99.3624943  | 98.7870648                                   | 370.935835                                              |                    | _                   |                                |           |           |           |            |                        |            |          |          |                       |           |           |           |           |           |           |           |           |          |           | _        |           |
| 40           | 92  | 42  | 16  | 26  | 18  | 31 | 10  | 26  | 80  | 66  | 58  | ion                                   | 20722                  | 14.5786363  | 12.8145075  | 7.90853459  | 18.6193626  | 76.7844862                                   | 150.367599                                              | , Hilli            | Kdalley             |                                | -1.4E-06  | -3.2E-07  | 3E-06     |            | Containere             | 120        | 071      |          | Positions -           | 120       |           |           |           |           |           |           | 3 8       |          |           |          |           |
| 22           | 38  | 32  | 41  | 2   | 4   | 64 | 78  | 20  | 9   | 69  | 30  | Total Weight in each Loading Position | 15.80798313 19.6620722 | 11.51868956 | 8.269346576 | 3.601720718 | 1.222637606 | 2.103200872 76.7844862 98.7870648 249.869908 | 42.52357846 150.367599 370.935835 2151.14442 1148.37886 | villan Cacitulas   |                     | ProbA                          | =Xp       | dY=       | Obj Fn=   |            | - Number of Containers | Containere |          |          | - Number of Positions | Positions |           | 2 1       | 1.5       | +         | 0.5       | 0         | -7 -2     | } 7      | - 1.5     |          |           |
| 22   40   34 |     |     |     |     |     |    |     |     |     |     |     | ht in each                            |                        |             |             |             |             |                                              | _                                                       |                    |                     |                                |           | _         |           |            |                        |            |          |          |                       |           |           |           |           |           |           |           | -12       |          |           |          |           |
| •            |     |     |     |     | ,   | •  |     |     |     |     | •   | Total Weig                            |                        |             |             |             |             | ,                                            |                                                         | D Number 925302651 | Index of            | Container                      | at Posn   | 22        | 38        | 32         | <u>+</u> °             | 1 4        | 40       | 92       | 42                    | 16        | 26        | 18        | 34        | 44        | 108       | 71        | 27        | 52       | ر5<br>148 | <u> </u> |           |
|              |     |     |     |     |     |    |     |     |     |     |     | •                                     |                        |             |             |             |             |                                              |                                                         | Number             | Chin -              | Loading                        | Positions | 1         | 2         | m •        | <del>1</del> Մ         | ) (C       | o        | <b>∞</b> | 0                     | 10        | 11        | 12        | 13        | 14        | 15        | 16        | 17        | 8 (      | 19        | 2.0      |           |

## Problem C



#### Tabu search code

```
# Benjamin Yi
# byi649
# 925302651
import matplotlib.pyplot as plt
import math
# Input data
with open("ProbA.txt", 'r') as f:
    w = [line.strip() for line in f.readlines()]
n = int(w[0])
w = [0] + [float(x) for x in w[1:]]
with open("Positions.txt", 'r') as f:
    pos = [line.strip() for line in f.readlines()[1:]]
x = [float(tup.split()[1]) for tup in pos]
y = [float(tup.split()[2]) for tup in pos]
# Do steepest-descent
zArray = []
bestzArray = []
h = min(20, int(float(n)/3.0))
history = [-float('inf')]*120 # Arbitrary value < -h</pre>
# Generate starting solution
s = list(range(1, n+1)) + [0]*(120-n)
# Iterate steepest-descent
zx = sum([w[s[i]]*x[i] for i in range(120)])
zy = sum([w[s[i]]*y[i] for i in range(120)])
z = 5 * abs(zy) + abs(zx)
zArray.append(z)
bestzArray.append(z)
converged = False
iter_count = 0
best_index = float("inf") # Arbitrary value > 0
worsen_count = 0
while(not converged):
    neighbourhood = []
    iter_count += 1
    for a in range (119):
        # Skip tabu swaps
        if (not (iter_count - history[s[a]] < h)):</pre>
            for b in range(a + 1, 120):
                # Skip tabu swaps
                if (not (iter_count - history[s[b]] < h)):</pre>
                     if b != a + 60 and w[s[a]] != w[s[b]]:
                         zy_new = zy - w[s[a]]*y[a] + w[s[b]]*y[a] - w[s[
                            → b]]*y[b] + w[s[a]]*y[b]
                         zx_new = zx - w[s[a]]*x[a] + w[s[b]]*x[a] - w[s[
                            \hookrightarrow b]]*x[b] + w[s[a]]*x[b]
                         z_{new} = 5 * abs(zy_{new}) + abs(zx_{new})
                         zArray.append(z_new) # For plot
                         neighbourhood.append((a, b, z_new, zy_new,

    zx_new))
                         bestzArray.append(z) # For plot
    # Terminate at max iterations or stuck in local minima
```

```
if iter_count > 1e5 or worsen_count > 2*best_index:
        converged = True
    # Best swap minimises z_new
    newSwap = min(neighbourhood, key=lambda t: t[2])
    # If our new solution is worse than the best we know
    if newSwap[2] > min(bestzArray):
        worsen_count += 1
    else:
        # We've found the best solution so far
        worsen\_count = 0
        best_index = iter_count
    (a, b, z, zy, zx) = newSwap
    # Keep a record of recent swaps (not including empty containers)
    if s[a] != 0:
        history[s[a]] = iter_count
    if s[b] != 0:
        history[s[b]] = iter_count
    # Swap positions
    s[a], s[b] = s[b], s[a]
totalweight = sum(w)
z = min(bestzArray)/totalweight
print("z =", z)
plt.scatter(x=range(len(zArray)), y=[x/totalweight for x in zArray],
   \hookrightarrow alpha=0.5, s=0.2)
plt.plot([x/totalweight for x in bestzArray], 'r')
plt.xlabel("Function evaluation count")
plt.ylabel("Solution quality (log scale)")
plt.yscale('log')
plt.title("Tabu search")
plt.show()
```

# Tabu search plot



# Tabu search zoomed in plot

