Asignatura	Datos del alumno	Fecha	
Cálculo y Métodos	Apellidos: González Pradas	02/06/2020	
Numéricos	Nombre: Ernesto	02/00/2020	

Actividades

Laboratorio: Cálculo de raíces de manera iterativa

Objetivos

A través de esta actividad comprender las limitaciones inherentes al cálculo analítico y deducir la necesidad del uso de técnicas de aproximación para la resolución de ecuaciones del ámbito ingenieril. Para realizarla, puedes emplear la calculadora online WIRIS (https://calcme.com/a), Matlab (https://matlab.mathworks.com/) o Microsoft Excel.

Descripción

En este ejercicio debes encontrar los intervalos de convergencia de los cuatro ceros de una función dada y aplicar los métodos iterativos: bisección, punto fijo y Newton-Raphson para calcular con precisión $5*10^{-3}$ la raíz positiva más pequeña. La función es: $f(x) = x^4 - 2x^3 - 4x^2 + 4x + 4$

Extensión máxima de la actividad: 5 páginas.

Resolución

Para empezar, representamos nuestra función con Wiris y poder ver en que puntos corta la función al eje de las x:

Asignatura	Datos del alumno	Fecha	
Cálculo y Métodos	Apellidos: González Pradas	02/06/2020	
Numéricos	Nombre: Ernesto	02/06/2020	

A continuación, vamos a utilizar los métodos de Bisección, Punto fijo y Newton-Rahpson para hallar los puntos de corte.

Bisección:

<u>Para el intervalo [1, 2]</u>, comprobamos que la función cumple el Corolario del Teorema del Valor Intermedio, que nos dice, que si f pertenece a C[a,b] asume valores de signo opuesto en los extremos del intervalo [a,b], es decir, f(a)f(b) < o, entonces el intervalo contendrá al menos una raíz de la ecuación f(x) = o.

Sustituimos los puntos del intervalo en nuestra f(x):

$$f(1) = 4$$
 $f(2) = -4$

Efectivamente encontraremos un punto entre los extremos que sea f(x)=0. Realizamos la siguiente tabla para encontrarlo:

N=Iteración

 a_n = extremo izquierdo

 b_n = extremo derecho

P_n = aproximación

f(P_{n)} = valor de f en la aproximación

N	an	bn	Pn	J(Pin)	Pn-Pnal	P2-P1 1125-165
1	1	2	1,5	-0,6875		P2 1- 1.25
2	1	19	1.25	1,2852	0,2	1,345-1,251
3	1,75	1,5	1,375	0,31274	0,0909091	(1,375)
14	1385	105	1,4375	-0,18651	0,04347	1,4375-1,3751
18	1,345	1, 41375	1,40625	0,06364	0,02	(1,4345)
6	1,40625	1,4375	1,4718	-0,0613	0,0169890	
7	1,40625	1,47188	1.414062	0,001708	5,574.10	

En la Iteración N=7, obtenemos $P_7 = 1.4140625$

Asignatura	Datos del alumno	Fecha	
Cálculo y Métodos	Apellidos: González Pradas	02/06/2020	
Numéricos	Nombre: Ernesto	02/00/2020	

<u>Para el intervalo [2, 3]</u>, realizamos las mismas comprobaciones y operaciones que para el punto anterior. Sustituimos los puntos del intervalo en nuestra f(x):

$$f(2)=-4$$
 $f(3)=7$

Efectivamente encontraremos un punto entre los extremos que sea f(x)=0. Realizamos la siguiente tabla para encontrarlo:

En la Iteración N=6, obtenemos $P_6 = 2.734375$

<u>Para el intervalo [-1, 0]</u>, realizamos las mismas comprobaciones y operaciones que para el punto anterior. Sustituimos los puntos del intervalo en nuestra f(x):

$$f(-1)=-1$$
 $f(0)=4$

Efectivamente encontraremos un punto entre los extremos que sea f(x)=0. Realizamos la siguiente tabla para encontrarlo:

Asignatura	Datos del alumno	Fecha	
Cálculo y Métodos	Apellidos: González Pradas	02/06/2020	
Numéricos	Nombre: Ernesto	02/06/2020	

In	an	bn	Pn	1(Pn)	(Pn - Pn-a)
1	-1	0	-0,5	1,3125	
2	-1	-0,5	-0,75	-0,089844	0.3
3	-0,75	-015	-0,675	0,57837	0.2
CI	-0,75	-0,675	-0,6875	0.23268	0,090909091
5	-0,75	-0,6875	-0,71815	0.068086	0,04347826
6	-0,75	-0,71875	0,73434	-0,011468	0.021776895
7	-0,734375	0,21875	-0,776561	0.07746	0.010453583
8	*O,734375	-0776562	-0,730462	0,0080342	5.3.10-3

En la Iteración N=8, obtenemos $P_8 = -0.7304685$

<u>Para el intervalo [-2, -1]</u>, realizamos las mismas comprobaciones y operaciones que para el punto anterior. Sustituimos los puntos del intervalo en nuestra f(x):

Efectivamente encontraremos un punto entre los extremos que sea f(x)=0. Realizamos la siguiente tabla para encontrarlo:

n	an	bn	Pn	1(Pn)	Ilm-Pnal
1	- 7	-1	-1,5	0.8175	
7	-1.5		-1,25	-0,78882	00000000
3	-115	-1,25	-1,375	-0, (888C	00401011
4	-1,5	-11375	-140676	-0.06766¥	0,02
5	-1,4375	-1,579	-1.47187	0,067765	0,010988010
6	-1,4375	1,40679	-1,414062	9-0,0017081	6.5.10-3
1	-1.45-1842	3(1,000			

En la Iteración N=7, obtenemos $\underline{P}_7 = -1.4140625$

Asignatura	Datos del alumno	Fecha	
Cálculo y Métodos	Apellidos: González Pradas	02/06/2020	
Numéricos	Nombre: Ernesto	02/00/2020	

Punto Fijo:

Para calcular los puntos por el método del punto fijo, primero tenemos que sacar todas las g(x) posibles de nuestra f(x):

Una vez que tenemos todas las posibles g(x), miramos cual es la más apta. Para ello derivamos cada g(x):

Asignatura	Datos del alumno	Fecha	
Cálculo y Métodos	Apellidos: González Pradas	02/06/2020	
Numéricos	Nombre: Ernesto	02/00/2020	

Ahora reemplazamos el punto medio de cada intervalo en nuestras g'(x) y la más apta será $-1 \le g'(x) \le 1$.

Para el intervalo de confianza [1, 2], el punto medio es 1.5. Sustituimos:

En la Iteración N=3 -> 1.4167

Para el intervalo de confianza [2, 3], el punto medio es 2.5. Sustituimos:

9 (2,5):	1,25 No	apta
92(2,5)=	1,553 No	apta
91(2.5)	13377 No	apta
9 (7,9)=	0,80709	Apta
mx	G(x)	G(x)-x
7 7,5495	2,5898	0,0397
3 2,5892	2,6708	0,0816
4 2,6708	2,6457	0,0349
5 2,6492	2,6804	0,0192
7 26804	7,6972	0,0118
8. 26922	7,7013	7.1.103
10 2,70 84	7,7138	814.10-3
1177138	7,718	4,210-3

En la Iteración N=11 -> 2.718

Asignatura	Datos del alumno	Fecha	
Cálculo y Métodos	Apellidos: González Pradas	02/06/2020	
Numéricos	Nombre: Ernesto	02/00/2020	

Para el intervalo de confianza [-1, 0], el punto medio es -0.5. Sustituimos:

Para el intervalo de confianza [-2, -1], el punto medio es -1.5. Sustituimos:

En la Iteración N=3 -> -1.4166

Asignatura	Datos del alumno	Fecha	
Cálculo y Métodos	Apellidos: González Pradas	00/06/0000	
Numéricos	Nombre: Ernesto	02/06/2020	

Newton-Raphson:

Para averiguar los puntos que hacen o la f(x) utilizando este método, primero, tenemos que hallar la f'(x):

$$f'(x) = 4x^3 - 6x^2 - 8x + 4$$

Teniendo la derivada de la función y la siguiente expresión podemos empezar a calcular los puntos:

Necesitamos una buena aproximación inicial, para el primer punto hemos elegido $x_1 = 1$:

El resultado es 1.414213.

Para el segundo punto hemos elegido $x_1 = 2.5$:

Asignatura	Datos del alumno	Fecha
Cálculo y Métodos Numéricos	Apellidos: González Pradas	00/06/0000
	Nombre: Ernesto	02/06/2020

El resultado es 2.732358.

Para el segundo punto hemos elegido $x_1 = -0.5$:

El resultado es -0.731931.

Para el segundo punto hemos elegido $x_1 = -1.5$:

El resultado es -1.414495.

Asignatura	Datos del alumno	Fecha
Cálculo y Métodos Numéricos	Apellidos: González Pradas	02/06/2020
	Nombre: Ernesto	

¿Qué método es más rápido?

En mi opinión si tenemos un buen punto de partida el método más rápido para aproximar raíces es Newton-Raphson.

Rúbrica

Cálculo de raíces de manera iterativa (valor real: 5 puntos)	Descripción	Puntuación máxima (puntos)	Peso %
Criterio 1	4 intervalos correctos	1	10 %
Criterio 2	Bisección	3	30 %
Criterio 3	Punto fijo	3	30 %
Criterio 4	Newton-Raphson	3	30 %
		10	100 %