

"නැණ සයුර" අධාාපනික වැඩසටහන-2022 සරසවි පිවිසුම් අත්වැල උතුරු මැද පළාත් අධාාපන දෙපාතර්මේන්තුව

සංයුක්ත ගණිතය - l පතුය

13 ශේණිය

කාලය - පැය 03 මිනිත්තු 10

නම :

උපදෙස් :

- * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;
- * \pmb{A} කොටස (පුශ්න 1-10) සහ \pmb{B} කොටස (පුශ්න 11-17)
- * A කොටස :

සියලු ම පුශ්න වලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු , සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස :

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්ත අංකය	ලකුණු
	1	
	2	
	3	
	4	A 8
A	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණ

ඉලක්කමෙන්	
අකුරින්	

1)	ගණිත අභාූහන මූලධර්මය භාවිතයෙන් , සියලු $n\in\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n rac{1}{(2r-1)(2r+1)} = rac{n}{2n+1}$ බව පෙන්වන්න.
0	1 2 4 4 6
4	AAL COLDADERS OROUD!
21	And the expression $v = 3v \pm 4 $ on $v = v^2$ to endenote an exposed effects of model and and
2)	එකම රූප සටහනක $y= 3x+4 $ හා $y=x^2$ හි පුස්තාරවල දළ සටහන් අදින්න. ඒ නයින් හෝ අන් අයුරකින් හෝ $ 3x+4 \le (x-1)^2$ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.
2)	
2)	
2)	
2)	
2)	
2)	අයුරකින් හෝ , $ 3x+4 \leq (x-1)^2$ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.
2)	අයුරකින් හෝ , $ 3x+4 \leq (x-1)^2$ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.
2)	අයුරකින් හෝ , $ 3x+4 \leq (x-1)^2$ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.
2)	අයුරකින් හෝ , $ 3x+4 \leq (x-1)^2$ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.
2)	අයුරකින් හෝ , $ 3x+4 \leq (x-1)^2$ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.
2)	අයුරකින් හෝ , $ 3x+4 \leq (x-1)^2$ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.
2)	අයුරකින් හෝ , $ 3x+4 \leq (x-1)^2$ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.
2)	අයුරකින් හෝ , $ 3x+4 \leq (x-1)^2$ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.
2)	අයුරකින් හෝ , $ 3x+4 \leq (x-1)^2$ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.

3)	අාගන්ඩ් සටහනක $ z-2i =1$ සපුරාලන z සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂාවල පථයෙහි දළ			
	සටහනක් අඳින්න. ඒ නයින් හෝ අන් අයුරකින් හෝ , $ z $ හි අවම අගය හා උපරිම අගයද $\arg(z)$ හි අවම			
	අගය හා උපරිම අගයද සොයන්න.			
0				
	7 A/I 225 I nangre groun			
4)	$(1+kx)^6$ හි පුසාරණයේ k යනු නියතයකි. x^3 හි සංගුණකය , x^2 හි සංගුණකයට වඩා දෙගුණයකින් වැඩිය. k			
4)	$(1+kx)^6$ හි පුසාරණයේ k යනු නියතයකි. x^3 හි සංගුණකය , x^2 හි සංගුණකයට වඩා දෙගුණයකින් වැඩිය. k හි අගය සොයන්න.			
4)				
4)				
4)				
4)	හි අගය සොයන්න.			
4)				
4)	හි අගය සොයන්න.			
4)	හි අගය සොයන්න.			
4)	හි අගය සොයන්න.			
4)	හි අගය සොයන්න.			
4)	හි අගය සොයන්න.			
4)	හි අගය සොයන්න.			
4)	හි අගය සොයන්න.			
4)	හි අගය සොයන්න.			
4)	හි අගය සොයන්න.			
4)	හි අගය සොයන්න.			
4)	හි අගය සොයන්න.			
4)	හි අගය සොයන්න.			
4)	S අගය සොයන්න.			
4)	S අගය සොයන්න.			

5)	$\lim_{x\to 0} \frac{\sqrt{9+x^3}-\sqrt{9-x^3}}{(1-\cos 4x)[(x+\sqrt{3})^4-9]} = \frac{1}{288\sqrt{3}} \ \mathrm{බ}\mathrm{D} \ \mathrm{e}$ පන්වන්න.
0	0 4 /1 40 1 2 4 1 1
	z A/L GO i babeis group i
6)	$y=\sqrt{rac{e^x+e^{-x}}{e^x-e^{-x}}}$, x අක්ෂයෙන් ද $x=\ln{rac{3}{2}}$ හා $x=\ln{2}$ මගින් ආවෘත වර්ගඵලය x අක්ෂය වටා රේඩියන් 2π වලින් හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\pi\ln{rac{9}{5}}$ බව පෙන්වන්න.
6)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6)	වලින් හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\pi \ln \frac{9}{5}$ බව පෙන්වන්න.
6)	වලින් හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\pi \ln \frac{9}{5}$ බව පෙන්වන්න.
6)	වලින් හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\pi \ln \frac{9}{5}$ බව පෙන්වන්න.
6)	වලින් හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\pi \ln \frac{9}{5}$ බව පෙන්වන්න.
6)	වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව π ln $\frac{9}{5}$ බව පෙන්වන්න.
6)	වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\pi \ln \frac{9}{5}$ බව පෙන්වන්න.
6)	වලින් හුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව π ln $\frac{9}{5}$ බව පෙන්වන්න.
6)	වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $\pi \ln \frac{9}{5}$ බව පෙන්වන්න.

7)	$t \neq 0$ සඳහා $x=3t$ හා $y=rac{3}{t}$ මගින් පරාමිතිකව දෙනු ලබන C වකුයට $\left(3t,rac{3}{t} ight)$ ලක්ෂායේදී වූ අභිලම්බයෙහි
	සමීකරණය $t^3x-ty+3-3t^4=0$ බව පෙන්වන්න. $p\equiv\left(6,rac{3}{2} ight)$ ලක්ෂායෙහි දි C වකුයට ඇඳි අභිලම්බය
	S = 2
	නැවත $Q\equiv\left(3T$, $rac{3}{T} ight)$ ලක්ෂායෙහිදි C වකුය හමුවේ නම්, $8T^2-15T-2=0$ බව පෙන්වන්න.
2	2 A/I ass I nanore group I
	- A - G - Papers Group
9)	3x + 4y + 5 = 0 හා $12x - 5y - 3 = 0$ යන සරල රේඛා දෙක අතර , මූල ලක්ෂාය හරහා යන කෝණ
0)	සමච්ජේදකයෙහි සමීකරණය සොයන්න.

x-y=0 සහ $7x-y=0$ සරල රේඛා දෙකම ස්පර්ශ වන සේ පළමු වෘත්ත පාදයෙහි පිහිටන අරය ඒකක
$2\sqrt{2}$ වන වෘත්තයෙහි සමීකරණය සොයන්න.
2 A/L de la papere group
x හි සියලු තාත්වික අගයන් සඳහා , $\cos 4x + 3\sin 2x - 2 = a\sin^2 2x + b\sin 2x + c$ වන සේ a,b,c
x හි සියලු තාත්වික අගයන් සඳහා , $\cos 4x + 3\sin 2x - 2 = a\sin^2 2x + b\sin 2x + c$ වන සේ a,b,c නිඛිල සොයන්න. ඒ නයින් $\cos 4x + 3\sin 2x = 2$ සමීකරණය විසඳන්න.
නිඛල සොයන්න. ඒ නයින් $\cos 4x + 3 \sin 2x = 2$ සමීකරණය විසඳන්න.
නිඛල සොයන්න. ඒ නයින් $\cos 4x + 3 \sin 2x = 2$ සමීකරණය විසඳන්න.
නිඛල සොයන්න. ඒ නයින් $\cos 4x + 3 \sin 2x = 2$ සමීකරණය විසඳන්න.
නිඛල සොයන්න. ඒ නයින් $\cos 4x + 3 \sin 2x = 2$ සමීකරණය විසඳන්න.
නිඛල සොයන්න. ඒ නයින් $\cos 4x + 3 \sin 2x = 2$ සමීකරණය විසඳන්න.
නිඛිල සොයන්න. ඒ නයින් $\cos 4x + 3 \sin 2x = 2$ සමීකරණය විසඳන්න.
නිඛල සොයන්න. ඒ නයින් $\cos 4x + 3 \sin 2x = 2$ සමීකරණය විසඳන්න.
නිඛිල සොයන්න. ඒ නයින් $\cos 4x + 3 \sin 2x = 2$ සමීකරණය විසඳන්න.
නිඛල සොයන්න. ඒ නයින් $\cos 4x + 3\sin 2x = 2$ සමීකරණය විසඳන්න.
නිඛල සොයන්න. ඒ නයින් $\cos 4x + 3 \sin 2x = 2$ සමීකරණය විසඳන්න.
නිඛල සොයන්න. ඒ නයින් $\cos 4x + 3 \sin 2x = 2$ සමීකරණය විසඳන්න.

a) $k \in \mathbb{R}^+$ විට $f(x) = kx^2 + (k-1)x + 1 - 2k$ යැයි ගනිමු. f(x) = 0 සමීකරණයට තාත්වික මුල ඇති බව පෙන්වන්න.

f(x)=0 සමීකරණයේ මූල lpha හා eta නම්, k ඇසුරෙන් lpha+eta හා lphaeta ලියා දක්වා ,මූල දෙකම ධන වන පරිදි වූ k හි අගයන් සොයන්න.

තවද $lpha^2$ හා eta^2 මූල වන වර්ගජ සමීකරණය සොයන්න.

f(x)=0 සමීකරණයේ එක් මූලයක් අනෙක් මූලය මෙන් තුන් ගුණයක් වේනම්, එවිට k සඳහා ගත හැකි අගයන් සොයන්න.

b) $g(x) = ax^3 + bx^2 + cx - 4$ යැයි ගනිමු. මෙහි $a,b,c \in \mathbb{R}$ වේ. $(x^2 - 4)$, g(x) හි සාධක වේනම්, b හි අගය සොයන්න.

 $g(x), 2x^2-kx$ මගින් බෙදූ විට ශේෂය 8x-4k වේ. මෙහි $k\in\mathbb{R}$ වේ. k,a හා c හි අගයන් සොයන්න.

තව ද a,b,c මෙම අගයන් ගන්නා විට g(x), ඒකජ සාධක වල ගුණිතයක් ලෙස ලියන්න.

22 A/L අපි [papers group

12.

a) "BOOKKEEPER" යන වචනයේ අකුරු සියල්ලම ගෙන සෑදිය හැකි වෙනස් වචන ගණන කීයද? ඕනෑම අකුරු 4 ක් තෝරා ගත හැකි නම්, සෑදිය හැකි වෙනස් වචන ගණන සොයන්න.

b) $r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{r+4}{r(r+1)(r+2)}$ වේ.

 $U_r=2\ V_r-V_{r+1}$ වන පරිදි k සොයන්න. මෙහි $V_r=rac{k}{r(r+1)}$; හා $k\in\mathbb{R}$ වේ.

$$\sum_{r=1}^n rac{U_r}{2^{r+1}} = rac{1}{4} - rac{1}{2^{n+1}(n+1)(n+2)}$$
 බව පෙන්වන්න.

 $\sum_{r=1}^{\infty}rac{u_r}{2^{r+1}}$ අපරිමිත ශේුණිය අභිසාරී බව අපෝහනය කර එහි ඓකාඃ සොයන්න.

13.

a) $A=\begin{pmatrix}1&-1\\2&3\\-1&2\end{pmatrix}$, $B=\begin{pmatrix}6&2\\a&0\\b&1\end{pmatrix}$, $P=\begin{pmatrix}3&5\\2&c\end{pmatrix}$ යැයි ගනිමු. මෙහි $a,b,c\in\mathbb{R}$ වේ.

 A^TB යනු කුටික සමමිතික නාහසයක් නම්, a=-1 හා b=4 බව පෙන්වන්න. B^TAP යනු සමමිතික නාහසයක් නම්, c සොයන්න.

 P^{-1} පවතින බව පෙන්වා එය ලියා දක්වන්න.

a,b,c සඳහා මෙම අගයන් සහිතව , $PD=A^TBP$ වන පරිදි D සොයන්න.

- b) Z_1,Z_2,Z_3 , $Z_4\in\mathbb{C}$ ලෙස ගනිමු.
 - l. $Z\bar{Z}=|Z|^2$ බව පෙන්වන්න
 - II. ඒ නයින් $|Z_1+Z_2+Z_3|=1$ නම්, $|Z_1|=|Z_2|=|Z_3|$ සහ $\left|\frac{1}{Z_1}+\frac{1}{Z_2}+\frac{1}{Z_3}\right|=1$ බව අපෝහනය කරන්න.
 - III. $|Z_1Z_2|=|Z_1||Z_2|$ බව පෙන්වා $\arg(Z_1Z_2)=\arg(Z_1)+\arg(Z_2)$ බව සාධනය කරන්න. ඒ නයින් $|Z^2|=|Z|^2$ හා $\arg(Z^2)=2\arg(Z)$ බව අපෝහනය කරන්න.
- c) $z=\cos\theta+i\sin\theta$ නම්,ද මුවාවර් පුමේයය භාවිතයෙන් z^n හා $\frac{1}{z^n}$ සඳහා පුකාශන ලියා දක්වන්න. $z^n+\frac{1}{z^n}=2\cos n\theta$ බව පෙන්වන්න. මෙහි $n\in\mathbb{Z}^+$ වේ.

ඒ නයින් හෝ අන් අයුරකින් හෝ , $\cos 5\theta=16\cos^5\theta-20\cos^3\theta+5\cos\theta$ බව පෙන්වන්න. $\cos 5\theta=0$ සමීකරණයේ මූල සලකා $4\cos\frac{\pi}{10}\cos\frac{3\pi}{10}=\sqrt{5}$ බව පෙන්වන්න.

ඒ නයින් $\cos\frac{\pi}{10}=\frac{\sqrt{5+\sqrt{5}}}{8}$ බව පෙන්වන්න.

22 A/L අපි [papers group]

14.

a) $x \neq -1$ සඳහා $f(x) = \frac{x(x+3)}{(x+1)^2}$ යැයි ගනිමු.

f(x) හි පළමු වනුත්පන්නය වූ f'(x) යන්න $f'(x) = \frac{3-x}{(x+1)^3}$ මඟින් දෙනු ලබන බව පෙන්වන්න. ඒ නයින්, f(x) වැඩිවන පුාන්තරය හා f(x)අඩුවන පුාන්තරය සොයන්න.

තව ද f(x) හි දෙවන වහුත්පන්නය වූ f''(x) යන්න $f''(x)=\frac{2(x-5)}{(x+1)^4}$ මඟින් දෙනු ලබන බවත් පෙන්වන්න.

ස්පර්ශෝන්මුඛ ,y අන්තඃඛණ්ඩය ,හැරුම් ලක්ෂා හා නතිවර්තන ලක්ෂා දක්වමින් y=f(x) පුස්තාරයේ දළ සටහනක් අදින්න.

b) දිග a වන කම්බියක් කොටස් දෙකකට කපා ඒවා පිළිවෙලින් සමචතුරසුයක හා වෘත්තයක හැඩයට නමා තිබේ. එසේ සෑදෙන වස්තු වල වර්ගඵලයන්ගේ ඓකායේ අඩුනම අගය $\frac{a^2}{4(\pi+4)}$ වන බව පෙන්වන්න.

a) සියලු $x \in \mathbb{R}$ සඳහා $x^3 + 5x^2 + 14x + 29 = A(x+2)(x^2+9) + (2x+b)(x+2) + (x^2+9)$ වන පරිදි A හා B නියත පවතින පරිදි දී ඇත.

A හා B හි අගයන් සොයන්න.

ඒ නයින් $\frac{x^3+5x^2+14x+29}{(x+2)(x^2+9)}$ යන්න භින්න භාග වලින් ලියා දක්වා,

$$\int \frac{x^3 + 5x^2 + 14x + 29}{(x+2)(x^2+9)} \ dx$$
 මෙසායන්න.

- b) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int_0^{\pi\over 3} 2 \, sinx \ln(secx) \, dx$ අගයන්න.
- c) $0 \le \theta \le \frac{\pi}{4}$ සඳහා $x = 2\cos 2\theta$ ආදේශය භාවිතයෙන් $\int_0^2 \sqrt{\frac{2-x}{2+x}} \, dx = \pi 2$ බව පෙන්වන්න.

ඒ නයින් $\int_0^{\sqrt{2}} x \sqrt{\frac{2-x^2}{2+x^2}} \, dx$ හි අගය අපෝහනය කරන්න.

22 A/L අපි [papers group]

a) ABCD යනු ඍජුකෝණාසුයකි.AB පාදය y=mx රේඛාවට සමාන්තර වේ. A,B හා D ශීර්ෂ පිළිවෙලින් y=a , x=b හා x=-b රේඛා මත පිහිටයි. C ශීර්ෂයේ පථය,

$$(m^2-1)x-my+am+(m^2+1)b=0$$
 සරල රේඛාව බව සාධනය කරන්න.

b) $2g_1g_2 + 2f_1f_2 = c_1 + c_2$ නම්, $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ හා $x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$ වෘත්ත දෙක පුලම්බව ඡේදනය වන බව සාධනය කරන්න.

කේන්දුය y=x+1 රේඛාව මත පිහිටන සේ (3,7) ලක්ෂාය හරහා යන එක එකක අරය ඒකක 3 ක් වන වෘත්ත දෙකක් ඇඳිය හැකි බව පෙන්වන්න.

මෙම වෘත්ත වල සමීකරණ සොයා ඒවා පුලම්බ ලෙස එකිනෙක ඡේදනය වන බව පෙන්වන්න.

a) $f(x)=11\cos^2x+16\cos x\sin x-\sin^2x$ යන්න $a+b\cos(2x-\alpha)$ ආකාරයෙන් පුකාශ කරන්න.

a,b,lpha යනු නිර්ණය කළ යුතු නියත වේ.

ඒ නයින් $0 \le x \le \pi$ සඳහා $f(x) = 11\cos^2 x + 16\cos x \sin x - \sin^2 x$ හි පුස්තාරයේ දළ සටහනක් අඳින්න.

 $0 \le x \le \pi$ තුළ f(x) = 0 සමීකරණයෙහි විසඳුම් සොයන්න.

b) ඕනෑම තිුකෝණයක් සඳහා කෝසයින් නීතිය පුකාශ කර සාධනය කරන්න.

ABC තිකෝණයේ BC,CA,AB පාදවල දිග පිළිවෙලින් a , a+d , a+2d වේ. $Cos\ C=rac{1}{2}-rac{3d}{2a}$ බව සාධනය කරන්න.

ඒ නයින් $\frac{2\pi}{3} < C < \pi$ සඳහා $\frac{d}{a}$ ට තිබිය යුතු අගය පරාසය සොයන්න.

c) $\tan^{-1}(5 \tan^2 x) + \tan^{-1}(\cos^2 x) = \frac{\pi}{4}$ සමීකරණය විසඳන්න.

22 A/L අපි [papers group]

"නැණ සයුර" අධාාපනික වැඩසටහන-2022 සරසවි පිවිසුම් අත්වැල උතුරු මැද පළාත් අධාාපන දෙපාතර්මේන්තුව

සංයුක්ත ගණිතය - II පතුය

13 ලේණිය

කාලය - පැය 03 මිනිත්තු 10

	- 2	
257(9)	•	
200		

උපදෙස් :

- * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;
- * $m{A}$ කොටස (පුශ්න 1-10) සහ $m{B}$ කොටස (පුශ්න 11-17)
- * A කොටස :

සියලු ම පුශ්න වලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු , සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා චේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* *B* කොටස :

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණිතය			
කොටස	පුශ්න අංකය	ලකුණු	
	1		
	2		
	3		
	A 4 / I		
A	5	CP	
A	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
В	14		
	15		
	16		
	17	2 22222222222	
	එකතුව		

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	
-0-0-0-0-1	

අවසාන ලකුණු

ඉලක්කමෙන්		
අකුරින්		

1)	සමාන අරයන් සහිත ස්කන්ධ m හා $5m$ වන සුමට A , B ගෝල දෙකක් සරල රේඛීයව එකම දිශාවට සුමට තලයක් මත u හා λu , $(0<\lambda<1)$ පුවේග වලින් චලිත වෙමින් සරලව ගැටේ. ගැටුම නිසා A ගෝලය නිසල
	වේ. ගෝල අතර පුතාාගති සංගුණකය $\frac{5\lambda+1}{5(1-\lambda)}$ බව පෙන්වන්න.
	$5(1-\lambda)$
2	2A/L &8 [papers group]
2)	කාටිසියානු ඛණ්ඩාංක තලයේ මූල ලක්ෂායේ සිට තිරසට θ කෝණයකින් ආනතව u වේගයෙන් අංශුවක් පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x\tan\theta-\frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්, $tanlpha+\tan\theta=\frac{2y}{x}$ බව ද පෙන්වන්න.
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x \tan \theta - \frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්,
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x \tan \theta - \frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්,
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x \tan \theta - \frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්,
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x \tan \theta - \frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්,
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x \tan \theta - \frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්,
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x\tan\theta-\frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්, $\tan\alpha+\tan\theta=\frac{2y}{x}$ බව ද පෙන්වන්න.
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x\tan\theta-\frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්, $\tan\alpha+\tan\theta=\frac{2y}{x}$ බව ද පෙන්වන්න.
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x\tan\theta-\frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්, $tanlpha+\tan\theta=\frac{2y}{x}$ බව ද පෙන්වන්න.
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x\tan\theta-\frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්, $tanlpha+\tan\theta=\frac{2y}{x}$ බව ද පෙන්වන්න.
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x\tan\theta-\frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්, $tanlpha+\tan\theta=\frac{2y}{x}$ බව ද පෙන්වන්න.
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x\tan\theta-\frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්, $tanlpha+\tan\theta=\frac{2y}{x}$ බව ද පෙන්වන්න.
2)	පුක්ෂේපණය කෙරේ. අංශුව ඕනෑම $P=(x,y)$ ලක්ෂායක පිහිටන විට $y=x\tan\theta-\frac{gx^2sec^2\theta}{2u^2}$ බව පෙන්වන්න. එනයින් හෝ අන් අයුරකින් හෝ P හි දී අංශුවේ ගමන් දිශාව තිරසට α ආනත නම්, $tanlpha+\tan\theta=\frac{2y}{x}$ බව ද පෙන්වන්න.

3)	අවල කප්පියක් වටා යැවූ සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් තිරස් බිමක් මත වූ $3m$ ස්කන්ධයකට ද අනෙක් කෙළවර m ස්කන්ධයකට ද ගැටගසා m ,තිරස් බිමෙහි සිට l උසකින් එල්ලෙමින් පවතී. දැන් m ස්කන්ධය තිරස් බිමෙහි සිට $4l$ උසකින් තබා නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. කප්පිය හා නොගැටෙන තන්තු කොටස් සියල්ල සිරස් වේ. ආවේගයෙන් මොහොතකට පසු m ස්කන්ධයේ පුවේගය සොයන්න.
2	22 A/L අ8 [papers group]
4)	තිරසට $lpha$ කෝණයකින් ආනත පාරක් දිගේ ළමයෙක් $5~ms^{-1}$ වූ උපරිම වේගයෙන් බයිසිකලයක් පැදගෙන යයි. ළමයාගේ හා බයිසිකලයේ මුළු ස්කන්ධය $60~kg$ වේ. ළමයාගේ ක්ෂමතාවය $400~w$ වන අතර චලිතයට
	පුතිරෝධය $10~N$ කි . $sinlpha=rac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම නතර කළ විට , එය නිශ්චල වීමට ගන්නා කාලය සොයන්න. $(g=10~ms^{-1})$
	පුතිරෝධය $10~N$ කි . $sinlpha=rac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම
	පුතිරෝධය $10~N$ කි . $sinlpha=rac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම නතර කළ විට , එය නිශ්චල වීමට ගන්නා කාලය සොයන්න. $(g=10~ms^{-1})$
	පුතිරෝධය $10~N$ කි . $sinlpha=rac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම
	පුතිරෝධය $10~N$ කි . $sinlpha=rac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම නතර කළ විට , එය නිශ්චල වීමට ගන්නා කාලය සොයන්න. $(g=10~ms^{-1})$
	පුතිරෝධය $10~N$ කි . $sinlpha=rac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම නතර කළ විට , එය නිශ්චල වීමට ගන්නා කාලය සොයන්න. $(g=10~ms^{-1})$
	පුතිරෝධය $10~N$ කි . $sinlpha=rac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම නතර කළ විට , එය නිශ්චල වීමට ගන්නා කාලය සොයන්න. $(g=10~ms^{-1})$
	පුතිරෝධය $10~N$ කි . $sin \alpha = \frac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම නතර කළ විට , එය නිශ්චල වීමට ගන්නා කාලය සොයන්න. $(g=10~ms^{-1})$
	පුතිරෝධය $10~N$ කි . $sin \alpha = \frac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම නතර කළ විට , එය නිශ්චල වීමට ගන්නා කාලය සොයන්න. $(g=10~ms^{-1})$
	පුතිරෝධය $10~N$ කි . $sin \alpha = \frac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම නතර කළ විට , එය නිශ්චල වීමට ගන්නා කාලය සොයන්න. $(g=10~ms^{-1})$
	පුතිරෝධය $10~N$ කි . $sinlpha=rac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම නතර කළ විට , එය නිශ්චල වීමට ගන්නා කාලය සොයන්න. $(g=10~ms^{-1})$
	පුතිරෝධය $10~N$ කි . $sin \alpha = \frac{7}{60}$ බව පෙන්වන්න. පුතිරෝධය එලෙසම පවතී නම්, බයිසිකලය පෙඩල් කිරීම නතර කළ විට , එය නිශ්චල වීමට ගන්නා කාලය සොයන්න. $(g=10~ms^{-1})$

	ලෑල්ල චලනය වන පුවේගයත් මැඩියා ලෑල්ල මත ඇතිකරන ආවේගයත් සොයන්න.
)	2 A/L q6 [papers group
	$\underline{a}=2\underline{i}+3\underline{j}$ ද $\underline{b}=\lambda\underline{i}+\mu\underline{j}$ ද වේ. මෙහි λ , μ තාත්වික නියත ද $\mu>0$ ද \underline{i} හා \underline{j} යනු සුපුරුදු ඒකක ගේ
	$\underline{a}=2\underline{i}+3\underline{j}$ ද $\underline{b}=\lambda\underline{i}+\mu\underline{j}$ ද වේ. මෙහි λ , μ තාත්වික නියත ද $\mu>0$ ද \underline{i} හා \underline{j} යනු සුපුරුදු ඒකක දෙ වේ. $ b =1$ හා \underline{a} හා \underline{b} දෛශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.
	ද වේ. $ b =1$ හා \underline{a} හා \underline{b} වෛදශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.
	ද වේ. $ b =1$ හා \underline{a} හා \underline{b} වෛදශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.
	ද වේ. $ b =1$ හා \underline{a} හා \underline{b} වෛදශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.
	ද වේ. $ b =1$ හා \underline{a} හා \underline{b} වෛදශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.
	ද වේ. $ b =1$ හා \underline{a} හා \underline{b} වෛදශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.
	ද වේ. $ b =1$ හා \underline{a} හා \underline{b} වෛදශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.
	ද වේ. $ b =1$ හා \underline{a} හා \underline{b} වෛදශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.
	ද වේ. $ b =1$ හා \underline{a} හා \underline{b} වෛදශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.
	ද වේ. $ b =1$ හා \underline{a} හා \underline{b} වේදශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.
	ද වේ. $ b =1$ හා \underline{a} හා \underline{b} වේදශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.
	ද වේ. $ b =1$ හා \underline{a} හා \underline{b} වේදශික එකිනෙකට ලම්බක නම්, λ හා μ සොයන්න.

7)	සුමට ඒකාකාර AB දණ්ඩක දිග $3a$ හා බර W වේ. $AC=4a$ වේ.මෙය A හි දී අසව්කර ඇත්තේ, සිරස් තලයේ භුමණය විය හැකි වන පරිදි වේ. සැහැල්ලු සුමට D මුදුවකට දණ්ඩ මත සර්පණය විය හැක. D මුදුවට ඈදා ඇති අවිතනා තන්තුව C නාදැත්ත උඩින් දමා $2w$ බර අංශුවකට සවිකර ඇත. $2w$ සිරස්ව එල්ලෙමින් පද්ධතිය සමතුලිතව තිබේ. i. CD තන්තුව AB දණ්ඩට ලම්බක බව පෙන්වන්න. ii. දණ්ඩ සිරසට ආනත කෝණය θ නම්, $3W \tan \theta = 16 \ w$ බව පෙන්වන්න
2	2 A/L æ8 [papers group]
8)	බර w වූ අංශුවක් තිරසට $lpha$ කෝණයක් ආනත රළු තලයක් මත තබා ඇත. මෙහි μ ($< an lpha$) යනු අංශුව හා තලය අතර ඝර්ෂණ සංගුණකයයි. අංශුව සමතුලිතතාවයේ රඳවා ඇත්තේ තිරස්ව අංශුටට යෙදූ P බලයක් මගිනි. $ \frac{w(\sin \theta - \mu \cos \theta)}{\cos \theta + \mu \sin \theta} \leq P \leq \frac{w(\mu \cos \theta + \sin \theta)}{\cos \theta - \mu \sin \theta}$ බව පෙන්වන්න.

$p(A) = \frac{1}{4} , p(A B) =$	$= \frac{1}{4} \operatorname{so} p(A B) = \frac{1}{2} \operatorname{a}$					
						••••••
•••••						
•••••						
<u> </u>	2025	no	nor	0 /	ara	LID
-	- 40	[pa	UCI	0	710	up
					249	
					••••••	•••••
) ධන නිඛිලමය නිරීක්ෂ එකම මාතය 11 වේ ප			හස්ථය පිළිණෙ	ටලින් 7 හ	ා 9 වේ. නිරී	ක්ෂණ වල
) ධන නිබිලමය නිරීක්ෂ එකම මාතය 11 වේ අ			ාස්ථය පිළිණෙ	වලින් 7 හ	ා 9 වේ. නිරී	ක්ෂණ වල
			හස්ථය පිළිණෙ	ටලින් 7 හ	ා 9 වේ. නිරී	ක්ෂණ වල
			හස්ථය පිළිණෙ)ලින් 7 හ	ා 9 වේ. නිරී	ක්ෂණ වල
	බම්, නිරීක්ෂණ පහ et	3ායන්න.				
එකම මාතය 11 වේ ප	බම්, නිරීක්ෂණ පහ et	3ායන්න.				
එකම මාතය 11 වේ ප	බම්, නිරීක්ෂණ පහ et	3ායන්න.				
එකම මාතය 11 වේ ප	බම්, නිරීක්ෂණ පහ et	3ායන්න.				
එකම මාතය 11 වේ ප	බම්, නිරීක්ෂණ පහ et	3ායන්න.				
එකම මාතය 11 වේ ප	බම්, නිරීක්ෂණ පහ et	30යන්න.				
එකම මාතය 11 වේ ප	බම්, නිරීක්ෂණ පහ et	30යන්න.				
එකම මාතය 11 වේ අ	බම්, නිරීක්ෂණ පහ et	30යන්න.				
එකම මාතය 11 වේ ප	බම්, නිරීක්ෂණ පහ et	30යන්න.				
එකම මාතය 11 වේ අ	බම්, නිරීක්ෂණ පහ ee	3ායන්න.				
එකම මාතය 11 වේ ප	බම්, නිරීක්ෂණ පහ ee	3ායන්න.				
එකම මාතය 11 වේ ප	තම්, නිරීක්ෂණ පහ ee	3ායන්න.				
එකම මාතය 11 වේ ජ	තම්, නිරීක්ෂණ පහ et	3ායන්න.				
එකම මාතය 11 වේ ජ	තම්, නිරීක්ෂණ පහ et	3ායන්න.				

B කොටස

11.

- a) සෘජු මාර්ගයක් ඔස්සේ ධාවනය වන බස් රථයක රියදුරෙක් එයට ඉදිරියෙන් ඇති H බස් නැවතුම් පොළෙහි බස් රථයට ගොඩ වීමට සිටින මගියෙකු දකියි. $AH=a\ (m)$ වන පරිදි වූ A නම් ලක්ෂායකට එළඹෙන විට , බස් රථයේ පුවේගය $u\ ms^{-1}$ විය. H හි දී බස් රථය නවතින පරිදි AB=BC=CH වන සේ වූ A , B , C ලක්ෂාය වලදී රියදුරා පිට පිටම තිරිංග යොදයි. AB , BC , CH පුාන්තර වල දී බස් රථයේ මන්දන පිළිවෙලින් f , 2f හා 3f වේ.
 - i. බස් රථයේ චලිතය සඳහා පුවේග කාල වකුයක් අඳින්න. ඒ **නයින්** $f=rac{u^2}{4a}$ බව පෙන්වන්න.
 - ii. B හා $\mathcal C$ වෙත පැමිණීමේදී බස් රථයේ පුවේග u ඇසුරෙන් සොයන්න.
 - iii. A සිට H තෙක් යාමට ගතවන මුළු කාලය $\frac{4a}{u}\Big(1-\frac{\sqrt{30}+\sqrt{2}}{12}\Big)$ බව පෙන්වන්න.
- b) නැවක් සෘජු මුහුදු ගමන් මගක $u\ km^{-1}$ ඒකාකාර වේගයෙන් නැගෙනහිරට යාතුා කරයි. වරායක් එහි ගමන් මගට දකුණෙන් ඇත. වරායේ සිට එම ගමන් මගෙහි ආසන්නම ලක්ෂාය වන A ට ඇති දුර $a\ km$ වේ. A ලක්ෂායට ලගාවීමට පෙර වරායේ සිට $b\ (>a)km$ දුරින් නැව ඇති විට , එය අල්ලා ගැනීම සඳහා බෝට්ටුවක් වරායෙන් පිටත් වෙයි. බෝට්ටුවේ වේගය $v\ x$ නම්, $\left(u>v>\frac{au}{b}\right)$ නිශ්චිත ස්ථාන දෙකක්දී නැව අල්ලා ගැනීමට එයට හැකි බවත් ඒ සඳහා ගතවන කාල පැය $\frac{2\sqrt{b^2v^2-a^2u^2}}{u^2-v^2}$ කින් වෙනස් වන බවත් පෙන්වන්න.

12.

a) රූපයේ දැක්වෙන ආකාරයට සුමට කප්පියක් උඩින් ගොස් සිරස් ලෙස එල්ලෙන M ස්කන්ධයක් රැගත් තන්තුවක් මගින් සුමට , තිරස් මේසයක් දිගේ තිරස් ලෙස අදිනු _ ලබන 2M ස්කන්ධයක් ඇති සුමට කුඤ්ඤයක තිරසට 45° ආනත මුහුණත මත m ස්කන්ධයක් ඇති අංශුවක් තබනු ලැබේ. චලිත සියල්ලම වැඩිතම බෑවුම් රේඛාවක් හරහා යන සිරස් තලයක වෙයි. කුඤ්ඤයට සාපේක්ෂව

m හි ත්වරණය $rac{\sqrt{2}g(4M+m)}{6M+m}$ බව පෙන්වන්න.

22 A/L & [papers group]

b) කේන්දුය 0 හා අභාන්තර අරය a වන අවල සුමට කුහර ගෝලයක ඇතුළත පහලම ලක්ෂායේ සිට $\sqrt{\frac{7ag}{2}}$ වේගයෙන් ස්කන්ධය m වූ P අංශුවක් තිරස්ව පුක්ෂේපණය කරනු ලැබේ. OP රේඛාව යටි අත් සිරස සමඟ θ කෝණයක් සාදන විට , අංශුවේ වේගය v යන්න $v^2 = \frac{ga}{2}(3+4\cos\theta)$ මගින් දෙනු ලබන බව පෙන්වන්න. එවිට අංශුව මත අභිලම්බ පුතිකිුියාව ද සොයන්න. අංශුව ගෝලයේ පෘෂ්ඨයෙන් ඉවත් වන විට , OP උඩු අත් සිරස සමඟ සාදන කෝණය සොයා , එම අවස්ථාවේ දී අංශුවේ වේගය $\sqrt{\frac{1}{2}ag}$ බව පෙන්වන්න.

අනතුරුව ඇතිවන චලිතයේදී අංශුව පළමු වරට 0 හරහා වන තිරස් තලයට ළඟාවන විට එහි චේගය a හා g ඇසුරෙන් සොයන්න.

22 A/L අපි [papers group]

13. ස්වභාවික දිග a හා පුථාස්ථතා මාපාංකය mg වූ සැහැල්ලු පුතාසුථ තන්තුවක් අවල 0 ලක්ෂාකට සම්බන්ධ කර ඇත. එක එකක ස්කන්ධය m බැගින් වූ අංශු දෙකක් ,තන්තුවේ අනෙක් කෙළවර වූ P ට ඇඳනු ලැබ, පද්ධතිය සමතුලිතව එල්ලෙයි. මෙම පිහිටීමේදී තන්තුවේ විතතිය 2a බව පෙන්වන්න. දැන් අංශුවලින් එක් අංශුවක් ගිලිහී යන අතර ස්කන්ධය m වූ ඉතිරි අංශුව තන්තුවේ කෙළවරට සම්බන්ධව තිබිය දී චලනය වීමට පටන් ගනියි. P හි චලිත සමීකරණය $\ddot{x} + \frac{g}{a}(x-2a) = 0$ ලබා ගන්න.

මෙහිx ($\geq a$) යනු තන්තුවේ දිග වේ.

X=x-2a ලෙස ගැනීමෙන් ඉහත චලිත සමීකරණය $\ddot{X}+\omega^2X=0$ ආකාරයෙන් නැවත ලියන්න. සරල අනුවර්තී චලිතයේ කේන්දුය C හා විස්තාරය සොයන්න.

 ${\cal C}$ ලක්ෂායේදී අංශුවට සිරස් ආවේගයක් දෙනු ලබන්නේ එහි පුවේගය තෙගුණ වන පරිදි ය. තන්තුව ඇදී පවතින තුරු චලිතයේ කේන්දුය එලෙසම පවතින බවත් , මෙම චලිතයේ විස්තාරය 3a වන බවත් පෙන්වන්න.

ඒ නයින් $\sqrt{\frac{a}{g}} \left(\frac{\pi}{2} + \sin^{-1} \frac{1}{3} \right)$ මුළු කාලයකට පසුව තන්තුව බුරුල් වන බව පෙන්වන්න.

තන්තුව බුරුල් වන මොහොතේ දී අංශුවේ පුවේගයද සොයන්න.

14.

a) OAB තිකෝණයක් ද D යනු AB හි මධා ලක්ෂාය යැයි ද ගනිමු. E යනු OD හි මධා ලක්ෂායයි. F ලක්ෂාය OA මත පිහිටා ඇත්තේ OF: FA=1: 2 වන පරිදි ය. O අනුබද්ධයෙන් A හා B හි පිහිටුම් දෙශික පිළිවෙලින් \underline{a} හා \underline{b} නම්, \overline{BE} හා \overline{BF} දෙශික \underline{a} හා \underline{b} ඇසුරෙන් පුකාශ කරන්න.

B , E හා F ඒක රේඛීය බව අපෝහනය කර BE:EF අනුපාතය සොයන්න.

 \overrightarrow{BE} . \overrightarrow{DF} අදිශ ගුණිතය $|\underline{a}|$ හා $|\underline{b}|$ ඇසුරෙන් සොයා $|\underline{a}|=3$ $|\underline{b}|$ නම්, \overrightarrow{BE} යන්න \overrightarrow{DF} ට ලම්බක බව පෙන්වන්න.

b) OXY තලයේ OX හා OY අක්ෂ ඔස්සේ ඒකක දෛශික පිළිවෙලින් \underline{i} හා \underline{j} වේ. ඒකතල බල පද්ධතියක් පහත ආකාරයෙන් OXY තලයේ කිුයා කරයි.

ලක්ෂාය	පිහිටුම් දෛශිකය	බලය
Α	2 <u>i</u> – <u>j</u>	3 <u>i</u> – <u>2j</u>
В	<u>i</u> + <u>j</u>	$P\underline{i} + Q\underline{j}$
С	$-2\underline{i} + \underline{j}$	−5 <u>i</u> − <u>4j</u>
D	$-\underline{i}-\underline{4j}$	$-\underline{i} + 2\underline{j}$

- i. ඉහත බල පද්ධතිය කාටීසීය ඛණ්ඩාංක තලයක දක්වන්න.
- ii. පද්ධතිය යුග්මයකට තුලා නම්, P හා Q නිර්ණය කර , යුග්මයේ විශාලත්වය හා යුග්මය කි්යාකරන අත සොයන්න.
- iii. මෙම පද්ධතියට මූල ලක්ෂායේ දී කිුිිියා කරන $\underline{i} + \underline{j}$ බලයක් එකතු කළහොක් නව පද්ධතියේ සම්පුයුක්තයේ විශාලත්වය හා දිශාව සොයන්න. සම්පුයුක්තයේ කුයා රේඛාවේ සමීකරණය සොයන්න.

a) ඒකක දිගක බර w වන ඒකාකාර දඩු පහක් A,B,C,D හා E හි දී සුමට ලෙස සන්ධි කිරීමෙන් ABCDE පංචාසුය තනා තිබේ.ED=DC=a හා AE=BC=b වේ. තිරස් මේසයක් මත AB සවි කිරීමෙන් සිරස් තලයක රඳවා ඇති මෙම පංචාසුය $E\hat{A}B=A\hat{B}C=120^\circ$ හා $A\hat{E}D=B\hat{C}D=90^\circ$ වන සේ සමතුලිතතාවයේ තබා ඇත්තේ E හා C සන්ධි වලට සම්බන්ධ කර ඇති සැහැල්ලු තන්තුවක් මඟිනි. තන්තුවේ ආතතිය $\frac{w(5a+b)}{2\sqrt{3}}$ බව පෙන්වන්න.

b)

22 A/L අපි [papers group

සැහැල්ලු දඩු පහකින් සමන්විත ABCD රාමු සැකිල්ලක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ තබා ඇත්තේ A හි දී අවල ලක්ෂායකට නිදහස් ලෙස අසව් කිරීමෙනි. AB සිරස් ද BC තිරස් ද වන අතර $A\widehat{D}B = 90^\circ$, $D\widehat{B}C = D\widehat{C}B = 30^\circ$ වේ. C හි දී 100~N හාරයක් එල්ලෙන අතර තිරස් P බලයක් B හි දී CB අතට කියා කරයි.P හි අගය සොයන්න. B , C , D සන්ධි සඳහා පුතාහ බල සටහනක් ඇදීමෙන් දඩු සියල්ලෙහිම පුතාහබල , ආතති ද තෙරපුම් ද ලෙස වෙන්කර දක්වමින් සොයන්න.

.6. උස h වූ ඒකාකාර ඝන ඍජු වෘත්තාකාර කේතුවක ස්කන්ධ කේන්දුය, එහි පතුලේ කේන්දුයේ සිට $\frac{h}{4}$ දුරකින් පිහිටන බව පෙන්වන්න. අරය r වන උස h වූ ඒකාකාර ඍජු සිලින්ඩරයකින් , උස h සහ පතුලේ අරය r වන ඍජු වෘත්තාකාර කේතුවක් ඉවත් කර සාදා ඇති , S සංයුක්ත වස්තුවක් රූපයේ දැක්වේ. S හි ස්කන්ධ කේන්දුය O සිට , $\frac{3h}{8}$ දුරකින් පිහිටන බව පෙන්වන්න.

h S හි ස්කන්ධ කේන්දුය O සිට , $\frac{3h}{8}$ දුරකින් පිහිටන බව පෙන්වන්න. දැන් මෙම S වස්තුව O ඉහලින්ම පිහිටන පරිදි තිරස් තලයක් මත තබා තලය සෙමින් ඇල කරනු ලැබේ. ලිස්සීම වැලැක්වීමට පුමාණවත් සර්ෂණයක් ඇත්නම්, තලය තිරස සමඟ $\tan^{-1}\left(\frac{8r}{5h}\right)$ ට වඩා වැඩි කෝණයක් ඇල කරන විට , මෙම S වස්තුව පෙරලෙන බව පෙන්වන්න.

0

17. a)

 E_1 හා E_2 යනු සසම්භාවී පරීක්ෂණයක Ω නියැදි අවකාශයට අදාල සිද්ධි අවකාශයේ වූ අනෝනා වශයෙන් බහිෂ්කාර සිද්ධි දෙකක් ද D යනු S හි ඕනෑම සිද්ධියක් ද විට ,

$$P(E_1|D) = \frac{P(E_1).P(D|E_1)}{P(E_1).P(D|E_1)+P(E_2).P(D|E_2)}$$
 බව මෙන්වන්න.

පළාත් පාලන ආයතනයකට සභාපති ධූරයට තේරී පත්වීම සඳහා A හා B අපේක්ෂකයන් දෙදෙනෙක් පමණක් තරඟ කරයි. A ජය ගැනීමේ සම්භාවිතාව 0.6 ද B ජය ගැනීමේ සම්භාවිතාව 0.4 ක් ද වේ. A ජයගතහොත් එම ආයතනයට නව ගොඩනැගිල්ලක් ලබා දීමේ සම්භාවිතාව 0.35 ක් ද B ජයගතහොත් එම ආයතනයට නව ගොඩනැගිල්ලක් ලබා දීමේ සම්භාවිතාව 0.85 ක් ද වේ.

- i. ආයතනයට නව ගොඩනැගිල්ලක් ලබා දීමේ සම්භාවිතාව
- ii. ආයතනයට නව ගොඩනැගිල්ලක් ලැබුනේ නම්, A ජය ගැනීමේ සම්භාවිතාව සොයන්න.
- b) එක්තරා පරීක්ෂණයකට පෙනී සිට ඉන් සමත් වූ ශිෂායන් 70 ක් ලබා ගත් ලකුණු වල සමූහිත සංඛ්‍යාත වාහප්තියක පහත වගුවේ දැක්වේ. සමත්වීමේ ලකුණ 30 ක් වේ.

පන්ති	3
ලකුණ	සංඛ්‍යාතය
35	5
45	10
55	15
65	30
75	5
85	5

 $y_i = \frac{1}{10}(x_i - 55)$ යන පරිණාමනය භාවිතයෙන් මෙම ලකුණු වාාාප්තියේ මධානය හා විචලතාවය නිමානය කරන්න.

තමම පරීක්ෂණයට සහභාගි වූ මුළු සිසුන් ගණන 100 ක් වන අතර මධානාය හා සම්මත අපගමනය පිළිවෙලින් 48 හා 21.5 බව දී ඇත. අසමත් සිසුන් තිස් දෙනාගේ මධානාය හා සම්මත අපගමනය තිමානය කරන්න.

22 A/L අපි [papers group]