§ 17. Элементы теории относительности

17.1. При какой относительной скорости ν движения релятивистское сокращение длины движущегося тела составляет 25%?

Решение:

Имеем
$$l = l_0 \sqrt{1 - \frac{v^2}{c^2}}$$
 — (1). По условию $\frac{l_0 - l}{l_0} = 1 - \frac{l}{l_0} = 0,25$, отсюда $l = 0,75l_0$ — (2). Подставляя (2) в (1), получим $\sqrt{1 - \frac{v^2}{c^2}} = 0,75$; $1 - \frac{v^2}{c^2} = 0.5625$; $v = \sqrt{c^2(1 - 0,5625)} = 1,98 \cdot 10^8$ м/с.

17.2. Какую скорость *v* должно иметь движущееся тело, что-**бы ег**о предельные размеры уменьшились в 2 раза?

Решение:

Пусть тело движется с постоянной скоростью v относительно инерциальной системы K' . Поскольку в системе

$$K'$$
 длина тела $I = I_0 \sqrt{1 - \frac{u^2}{c^2}}$, а по условию задачи $I_0 = 2I$,

то
$$l = 2l\sqrt{1 - \frac{u^2}{c^2}}$$
. Отсюда $\frac{1}{4} = 1 - \frac{v^2}{c^2}$, следовательно, $v = c\sqrt{1 - \frac{1}{4}} = 2.6 \cdot 10^8 \,\mathrm{m/c}$.

17.3. Мезоны космических лучей достигают поверхности Земли с самыми разпообразными скоростями. Найти релятивистское сокращение размеров мезона, скорость которого равна 95% скорости света.

Решение:

Т. к. поперечные размеры тела при его движении не меняются, то изменение объема тела определяется лорен цовым сокращением продольного размера, определяемого

формулой $l = l_0 \sqrt{1 - \frac{u^2}{c^2}}$. Следовательно, объем тела сокра

щается по аналогичной формуле $V=V_0\sqrt{1-\frac{u^2}{c^2}}$. Подставляя числовые данные, получим $V=0.312V_0$. Тогда относительное изменение объема $\delta=\frac{V_0-V}{V_0}\cdot 100\%=68.8\%$.

17.4. Во сколько раз увеличивается продолжительность существования нестабильной частицы по часам неподвижного наблюдателя, если она начинает двигаться со скоростью, составляющей 99% скорости света?

Решение:

Промежуток времени $\Delta \tau$ в системе, движущейся со скоростью v по отношению к наблюдателю, связан с промежутком времени $\Delta \tau_0$ в неподвижной для наблюдателя

системе соотношением
$$\Delta \tau = \frac{\Delta \tau_0}{\sqrt{1-\beta^2}}$$
 — (1), где $\beta = \frac{v}{c}$

(2) — относительная скорость, c — скорость света. По условию $\beta = 99\% = 0.99$. Из формулы (1) получаем

$$\frac{\Delta \tau}{\Delta \tau_0} = \frac{1}{\sqrt{1 - \beta^2}} = 7,08 \text{ pasa.}$$

17.5. Мезон, входящий в состав космических лучей, движется со скоростью, составляющей 95% скорости света. Какой промежуток времени $\Delta \tau$ по часам неподвижного наблюдателя соответствует одной секупде «собственного времени» мезона?

Решение:

Промежуток времени по часам неподвижного наблюдателя (см. задачу 17.4) составляет $\Delta \tau = \frac{\Delta \tau_0}{\sqrt{1-\beta^2}}$ — (1), где

 $\Delta \tau_0 = 1$ с — «собственное время» мезона, $\beta = 95\% = 0.95$. Подставляя числовые данные, получим $\Delta \tau = 3.2$ с.

17.6. На сколько увеличится масса α -частицы при ускорении ее от начальной скорости, равной нулю, до скорости, равной 0,9 скорости света?

Решение:

Завнеимость массы m тела от скорости его движения дается уравнением $m=\frac{m_0}{\sqrt{1-v^2/c^2}}$, где $m_0=6.6\cdot 10^{-27}$ кг — масса покоя α -частицы. По условию $v=0.9\cdot c$, тогда $m=\frac{m_0}{\sqrt{1-0.81c^2/c^2}}=2.3m_0$. Отсюда $\Delta m=2.3m_0-m_0=1.3m_0=8.6\cdot 10^{-27}$ кг.

17.7. Найти отношение $\frac{e}{m}$ заряда электрона к его массе для скоростей; а) v << c; б) $v = 2 \cdot 10^8$ м/с; в) $v = 2.2 \cdot 10^8$ м/с; г) $v = 2.4 \cdot 10^8$ м/с; д) $v = 2.6 \cdot 10^8$ м/с; е) $v = 2.8 \cdot 10^8$ м/с. Составить таблицу и построить графики зависимостей m и $\frac{e}{m}$ от величины $\beta = \frac{v}{c}$ для указанных скоростей.

Решение:

Зависимость массы электрона m от скорости его движения ν дается уравнением $m = \frac{m_0}{\sqrt{1-\beta^2}}$ — (1), где $m_0 = 9,11 \times$

 $\times 10^{-31}$ кг — масса покоя электрона, $\beta = \frac{v}{c}$ — (2) — относительная скорость.

Элементарный заряд электрона $e = 1,6 \cdot 10^{-19}$ Кл. Составим таблицу и построим графики зависимостей m и $\frac{e}{n}$ от величины β для указанных скоростей.

v, 10 ⁸ м/с	v< <c< th=""><th>2</th><th>2,2</th><th>2,4</th><th>2,6</th><th>2,8</th></c<>	2	2,2	2,4	2,6	2,8
β	0	0,67	0,73	0,8	0,87	0,93
<i>m</i> , 10 ⁻³¹ кг	9,11	12,22	13,4	15,18	18,26	25,38
e/m, 10 ^П Кл/кг	1,76	1,31	1,19	1,05	0,876	0,631

17.8. При какой скорости *v* масса движущегося электрона вляое больше его массы покоя?

Решение:

Масса движущегося электрона (см. задачу 17.7) дается уравнением $m = \frac{m_0}{\sqrt{1-\beta^2}}$ — (1), где $\beta = \frac{v}{c}$ — (2) — отно-

сительная скорость. Из (1) имеем
$$\frac{m_0}{m} = \sqrt{1 - \beta^2}$$
 — (3).

Подставляя (2) в (3), получаем
$$\frac{m_0}{m} = \sqrt{1 - \frac{v^2}{c^2}}$$
 — (4). По

условию $\frac{m_0}{m} = \frac{1}{2}$ — (5). Приравнивая правые части со-

отношений (4) и (5), получаем
$$\frac{1}{2} = \sqrt{1 - \frac{v^2}{c^2}}$$
, откуда нахо-

дим искомую скорость электрона $v = \frac{c\sqrt{3}}{2} = 2,6 \cdot 10^8$ м/с.

17.9. До какой энергии W_{κ} можно ускорить частицы в циклотроне, если относительное увеличение массы частицы не должно превышать 5%? Задачи решить для: а) электронов; б) протонов; в) дейтонов.

Решение:

Имеем
$$W_{\kappa} = m_0 c^2 \left(\frac{1}{\sqrt{1 - v^2/c^2}} - 1 \right) = c^2 \left(\frac{m_0}{\sqrt{1 - v^2/c^2}} - m_0 \right);$$

$$W_{\kappa}=c^2ig(m-m_0ig)$$
, откуда $\frac{W_{\kappa}}{m_0}=c^2\frac{m-m_0}{m_0}$ — (1). По условию

$$\frac{m-m_0}{m_0}=0.05$$
, тогда из (1) получим $W_{\kappa}=0.05m_0c^2$. Под-

ставляя числовые данные, получим: а) $W_{\kappa} = 25.6 \cdot 10^3 \text{ эВ};$ б) $W_{\kappa} = 47 \cdot 10^6 \text{ эВ};$ в) $W_{\kappa} = 94 \cdot 10^6 \text{ эВ}.$

17.10. Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы его скорость составляла 95% скорости света?

Решение:

Согласно закону сохранения энергии
$$mc^2 + eU = \frac{mc^2}{\sqrt{1-v^2/c^2}}$$
 или $eU = mc^2 \left(\frac{1}{\sqrt{1-v^2/c^2}} - 1\right)$ — (1). Подставляя в (1) значение $v = 0.95 \cdot c$, получим $eU = 2.2mc^2$, откуда $U = \frac{2.2mc^2}{e} = 1.1 \cdot 10^6 \, \mathrm{B}.$

17.11. Какую ускоряющую разность потенциалов U должен пройти протон, чтобы его продольные размеры стали меньше в 2 раза?

Решение:

Потенциальная энергия протона, прошедшего ускоряющую разность потенциалов U, равна $W_{\rm n}=eU$. Зависимость кинетической энергии протона от скорости его дви-

жения
$$\nu$$
 дается уравнением $W_{\kappa} = m_0 c^2 \left(\frac{1}{\sqrt{1-eta^2}} - 1 \right)$, где

$$m_0 = 1,67 \cdot 10^{-27}$$
 — масса покоя протона, $\beta = \frac{v}{c}$ — отно-

сительная скорость. Работа, совершенная полем при перемещении протона, равна приобретенной им кинетической

энергии, т. е.
$$eU = W_{\kappa} = m_0 c^2 \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right)$$
 или $U = \frac{m_0 c^2}{e} \times$

$$\times \left(\frac{1}{\sqrt{1-\beta^2}}-1\right)$$
 — (1). Продольные размеры протона l ,

движущегося со скоростью ν относительно некоторой

системы отсчета, связаны с продольными размерами протона l_0 , неподвижного в этой системе, соотношением $l=l_0\sqrt{1-\beta^2}$, откуда $\frac{l}{l_0}=\sqrt{1-\beta^2}$ — (2). Подставляя (2) в (1), окончательно получаем $U=\frac{m_0c^2}{c}\left(\frac{l_0}{l}-1\right)=940\,\mathrm{MB}.$

17.12. Найти скорость *v* мезона, если его полная энергия в 10 раз больше энергии покоя.

Решение:

Полная энергия мезона W складывается из его кинеической энергии W_k и энергии покоя W_0 . Поскольку

$$W_{\kappa} = m_0 c^2 \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right), \quad a \quad W_0 = m_0 c^2, \quad \text{to} \quad W = W_{\kappa} + W_0 = 0$$

$$\frac{m_0c^2}{\sqrt{1-\beta^2}}$$
. По условию $\frac{W}{W_0} = 10$, т. е. $\frac{1}{\sqrt{1-\beta^2}} = 10$. От-

жода
$$\beta = \frac{v}{c} = 0.995$$
; $v = \beta c = 2.985 \cdot 10^8$ м/с.

17.13. Какую долю β скорости света должна составлять скорость частицы, чтобы ее кинетическая энергия была равна ее энергии покоя?

Решение:

Кинетическая энергия частицы
$$W = mc^2 \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right)$$
, где

$$\beta = \frac{v}{c}$$
 и есть искомая величина. По условию $W = W_0 = mc^2$.

Тогда
$$mc^2 = mc^2 \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right)$$
, откуда $\frac{1}{\sqrt{1-\beta^2}} = 2$; $\beta = 0.866 \cdot 100\% = 86.6\%$.

17.14. Синхрофазотрон дает пучок протонов с кинетической энергией $W_{\kappa} = 10$ ГэВ. Какую долю β скорости света состав зяет скорость протонов в этом пучке?

Решение:

Зависимость кинетической энергии протонов от скорости их движения дается уравнением $W_{\kappa} = m_0 c^2 \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right)$. Отсюда доля скорости протонов от скорости света

$$\beta = \sqrt{1 - \frac{m_0^2 c^4}{\left(W_{\kappa} + m_0 c^2\right)^2}} = 0,996 \cdot 100\% = 99,6\%.$$

17.15. Найти релятивистское сокращение размеров протонов в условиях предыдущей задачи.

Решение:

Диаметр протона d, движущегося со скоростью v относительно некоторой системы отсчета, связан с диаметром протона d_0 , неподвижного в этой системе, соотношением $d=d_0\sqrt{1-\beta^2}$ — (1). Из задачи 17.14 доля скорости протонов от скорости света $\beta=99.6\%=0.996$. Релятивистское сокращение размеров протона из формулы (1) равно $\frac{d_0-d}{d_0}=1-\sqrt{1-\beta^2}=0.911\cdot100\%=91.1\%$.

17.16. Циклотрон дает пучок электронов с электрической энергией $W_{\rm k}=0.67\,{\rm MpB}$. Какую долю β скорости света составляет скорость электронов в этом пучке?

Решение:

Доля скорости электронов от скорости света (см. задачу

17.14) равна
$$\beta = \sqrt{1 - \frac{m_0^2 c^4}{\left(W_{\kappa} + m_0 c^2\right)^2}} = 0.899 \cdot 100\% = 89.9\%$$
.

17.17. Составить для электронов и протонов таблицу зависимости их кинетической энергии W_{κ} от скорости ν (в долях скоростей света) для значений β , равных: 0,1; 0,5; 0,6; 0,7; 0,8; 0,9; 0,95; 0,999.

Решение:

Зависимость кинетической энергии электронов и протонов от скорости их движения дается уравнением $W_{\kappa} = m_0 c^2 \times$

$$\times \left(\frac{1}{\sqrt{1-\beta^2}}-1\right)$$
 — (1), где масса покоя электрона $m_{0(e)}=9,11\times$

 $\approx 10^{-31}$ кг, масса покоя протона $m_{0(p)} = 1.67 \cdot 10^{-27}$ кг. Подставляя в уравнение (1) значения β , заполняем таблицу:

β	0,1	0,5	0.6	0,7
<i>W</i> _{к(e)} , Дж	9.2·10 ⁻¹⁷	1.26-10 ⁻¹⁶	2.04.10-16	$3,28 \cdot 10^{-16}$
$W_{\kappa(p)}$, Дж	$1.5 \cdot 10^{-12}$	1.74-10-11	3.76.10-11	6,01.10-11

Продолжение

β	0.8	0,9	0.95	0.999
W _{к(e)} , Дж	5.46·10 ⁻¹⁶	1.06-10-15	1.81-10-15	1.75.10-14
$W_{\kappa(p)}$, Дж	1.01-10-10	1.95·10 ⁻¹⁰	3.31.10 ⁻¹⁰	3.21.10-9

17.18. Масса движущегося электрона вдвое больше его массы вокоя. Найти кинетическую энергию W_{κ} электрона.

Решение:

Масса движущегося электрона (см. задачу 17.7) дается уравнением $m = \frac{m_0}{\sqrt{1-R^2}}$ — (1), где $m_0 = 9.11 \cdot 10^{-31} \, \text{kg}$ —

его масса покоя. Кинетическая энергия движущегося элек

трона
$$W_{\kappa} = m_0 c^2 \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right)$$
 — (2). Из уравнения (1) нме ем $\frac{m}{m_0} = \frac{1}{\sqrt{1-\beta^2}}$ — (3). Подставляя (3) в (2), получаех

$$W_{\kappa} = m_0 c^2 \left(\frac{m}{m_0} - 1 \right) = 8.2 \cdot 10^{-14} \text{ Дж.}$$

17.19. Какому изменению массы Δm соответствуе изменение энергии на $\Delta W = 4.19 \, \text{Дж}$?

Решение:

Зависимость кинетической энергии тела от скорости его

движения дается уравнением
$$W_{\kappa} = m_0 c^2 \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right)$$
 —

(1), а зависимость массы тела от скорости его движения -

$$m = \frac{m_0}{\sqrt{1-\beta^2}}$$
 — (2). Изменение массы тела в процессе его

движения $\Delta m = m - m_0$ — (3). Подставляя (2) в (3)

получаем
$$\Delta m = m_0 \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right)$$
 — (4). Поскольку

кинетическая энергия покоя равна нулю, то изменсние кинетической энергии $\Delta W_{\kappa} = W_{\kappa}$ — (5). Подставляя (1) в (5) с учетом (4), получаем $\Delta W_{\kappa} = \Delta m c^2$, откуда изменение массы тела $\Delta m = \frac{\Delta W_{\kappa}}{c^2} = 4.6 \cdot 10^{-17} \, \mathrm{kr}$.

17.20. Найти изменение энергии ΔW , соответствующее изменению массы на $\Delta m=1$ а.е.м.

Решение:

Изменение кинетической энергии тела в процессе его движения (см. задачу 17.19) определяется соотношением $\Delta W_{\star} = \Delta mc^2 = 934 \,\mathrm{Mps}$.

17.21. Найти изменение энергии ΔW , соответствующее изменению массы на $\Delta m = m_e$.

Решение:

Изменение кинетической энергии тела в процессе его движения (см. задачу 17.19) определяется соотношением $\Delta W_{\kappa} = \Delta mc^2$. По условию $\Delta m = m_e = 9,11\cdot 10^{-31}\,\mathrm{kr}$, тогда $\Delta W_{\kappa} = 8,2\cdot 10^{-14}\,\mathrm{Дж}$.

17.22. Найти изменение массы Δm_{μ} , происходящее при образовании $\nu=1$ моль воды, если реакция образования воды такова: $2H_2 + O_2 = 2H_2O + 5.75 \cdot 10^5 \,\text{Дж}$.

Решение:

Имеем
$$\Delta m_{\mu} = \frac{\Delta W}{c^2}$$
 — (1). При образовании двух молей воды освобождается энергия $\Delta W' = 5.75 \cdot 10^5$ Дж, тогда $\Delta W = \frac{\Delta W'}{2} = 2.875 \cdot 10^5$ Дж — (2). Подставляя (2) в (1), получаем $\Delta m_{\mu} = 3.2 \cdot 10^{-9}$ г/моль.

17.23. При делении ядра урана $^{235}_{92}U$ освобождается энергия $W=200~{\rm MpB}$. Найти изменение массы Δm_{μ} при делении $\nu=1~{\rm monb}$ урана.

Решение:

Изменение массы тела в процессе его движения (см. задачу 17.19) определяется соотношением $\Delta m = \frac{\Delta W_{\rm K}}{c^2}$ — (1). При делении ν молей урана освобождается энергия $\Delta W = W \nu N_{\rm A}$ — (2), где W — энергия, освобождаемая при делении одного ядра. Подетавляя (2) в (1), получаем $\Delta m_{\mu} = \frac{W \nu N_{\rm A}}{c^2} = 0.214 \, {\rm г/моль}.$

17.24. Солнце излучает поток энергии $P = 3.9 \cdot 10^{26}$ Вт. За какое время τ масса Солнца уменьшится в 2 раза? Излучение Солнца считать постоянным.

Решение:

Поток энергии, излучаемый Солнцем, определяется соотношением $P=\frac{\Delta W_{\rm K}}{\tau}$ — (1). Изменение энергии Солнца в процессе излучения (см. задачу 17.19) $\Delta W_{\rm K}=\Delta mc^2$ — (2). По условию $\Delta m=\frac{1}{2}m_0$ — (3), где $m_0=1.989\cdot 10^{30}$ — начальная масса Солнца. Подставляя (2) в (1), с учетом (5), получаем $P=\frac{m_0c^2}{2\tau}$, откуда время, за которое масса Солнца уменьшится в 2 раза, равно $\tau=\frac{m_0c^2}{2P}=7.2\cdot 10^{12}$ лет.