Лекція 2

Лінійні системи зі сталими коефіцієнтами

Зміст

1.	Експонента матриці	1
2.	Фундаментальна матриця	4
3.	Алгоритм побудови експоненти e^{tA}	5
4.	Реалізація алгоритму	7

Об'єктом нашого дослідження буде частковий, але важливий, випадок лінійних систем

$$\dot{x} = A x + b(t), \qquad t \in \mathbb{R},\tag{1}$$

коли матриця A ϵ сталою, незалежною від часу. Цю систему називатимемо лінійною неоднорідною системою зі сталими коефіцієнтами, а систему

$$\dot{x} = A x, \qquad t \in \mathbb{R},\tag{2}$$

відповідною однорідною.

Зрозуміло, що всі результати теорії лінійних систем із змінними коефіцієнтами залишаються справедливими і у цьому випадку. Однак, звуження об'єкту дослідження зазвичай дає змогу глибше і детальніше його описати. Основна мета розділу — показати, що кожна система зі сталими коефіцієнтами має фундаментальну матрицю в класі елементарних функцій. Більш того, цей клас обмежується поліномами, експонентами та їх добутками.

1. Експонента матриці

Мотивацією до побудов цього параграфу будуть два спостереження. Поперше, матриці порядку 1 — це числа. Тому матриці вищих порядків можна трактувати як узагальнення поняття числа. Але для чисел, дійсних чи комплексних, будується відповідна теорія функцій дійсної чи комплексної змінної. І хоча множина матриць $M(n,\mathbb{C})$ при n>1 не є полем, а лише некомутативним кільцем з одиницею, побудується теорія функцій матричного аргументу.

По-друге, лінійне рівняння $\dot{x}=ax$ зі сталим коефіцієнтом a має розв'язок $x(t)=e^{at}$. Узагальненням цього рівняння в кільці матриць є система (2), точніше матричне рівняння 1.11 зі сталою A. Це інспірує до побудови математичного об'єкту e^{tA} , де A — матриця, і аргументації, що він має безпосередній стосунок до системи (2).

1

Нехай A — квадратна матриця порядку n з комплексними коефіцієнтами. Як відомо, множина $M(n,\mathbb{C})$ є лінійним нормованим простором з нормою

$$||A|| = \sup_{\|y\|=1} (Ay, y).$$

Тут (\cdot,\cdot) – ермітовий скалярним добуток в \mathbb{C}^n , а верхня грань береться за всіма одиничними векторами $y\in\mathbb{C}^n$.

Означення 1. Матриці $A \in M(n, \mathbb{C})$ поставимо у відповідність елемент простору $M(n, \mathbb{C})$, який є сумою матричного ряду

$$e^A = I + A + \frac{1}{2!}A^2 + \dots + \frac{1}{k!}A^k + \dots$$
 (3)

Матриця e^A називається *матричною експонентою*.

Очевидно, що для нульової матриці $e^O=I$, а для одиничної — $e^I=eI$. Справді, для кожного числа α

$$e^{\alpha I} = \left(\sum_{k=0}^{\infty} \frac{\alpha^k}{k!}\right) I = e^{\alpha} I. \tag{4}$$

Означення матричної експоненти вимагає доведення його коректності, а саме, перевірки збіжності ряду. Однак, ряд (3) є збіжним, оскільки він мажорується збіжним числовим рядом:

$$||I + A + \frac{1}{2!}A^2 + \dots + \frac{1}{k!}A^k|| \le 1 + ||A|| + \frac{1}{2!}||A||^2 + \dots + \frac{1}{k!}||A||^k \le e^{||A||}$$

для кожного натурального k. Такий ряд називають також абсолютно збіжним[†]. Вивчимо властивості матричної експоненти.

Властивість 1. Для кожної матриці $A \in M(n,\mathbb{C})$ справедлива рівність

$$e^{A} = \lim_{m \to \infty} \left(I + \frac{1}{m} A \right)^{m}. \tag{5}$$

Доведення. Формулу (5) можна трактувати як ще одне означення експоненти матриці. А саме доведення є демонстрацією еквівалентності цих двох означень. Відомо, що $(1+\frac{a}{m})^m \to e^a$, коли $m \to \infty$, для кожного дійсного числа a, а також

$$\left(1 + \frac{a}{m}\right)^m = \sum_{k=0}^m C_m^k \left(\frac{a}{m}\right)^k.$$

Розглянемо матричний ряд

$$e^{A} - \left(I + \frac{1}{m}A\right)^{m} = \sum_{k=0}^{\infty} \left(\frac{1}{k!} - C_{m}^{k} \frac{1}{m^{k}}\right) A^{k},$$
 (6)

де $C_m^k = 0$ при k > m. Цей ряд очевидно є збіжним, бо відрізняється від збіжного ряду e^A лише на поліном стосовно A. Крім того, всі числові коефіцієнти ряду (6) є невід'ємні, бо

$$\frac{1}{k!}\geqslant \frac{m}{m}\cdot \frac{m-1}{m}\cdot \cdot \cdot \frac{m-k+1}{m}\cdot \frac{1}{k!}=C_m^k\frac{1}{m^k}.$$

Нехай тепер a = ||A||, тоді

$$||e^A - (I + \frac{1}{m}A)^m|| \le \sum_{k=0}^{\infty} (\frac{1}{k!} - C_{m}^k \frac{1}{m^k}) a^k = e^a - (1 + \frac{a}{m})^m \to 0$$

 $^{^{\}dagger}$ Кажуть, що ряд з елементів нормованого простору *абсолютно збігається*, якщо збігається числовий ряд, складений з норм цих елементів

при $m \to \infty$, що завершує доведення.

Властивість 2. Якщо матриці A та B комутують, тобто AB = BA, то $e^{A+B} = e^A \cdot e^B = e^B \cdot e^A$.

Доведення. Ця властивість перевіряється безпосереднім множенням абсолютно збіжних рядів, яке є коректним. Справді,

$$e^{A} \cdot e^{B} = \left(I + A + \frac{1}{2!}A^{2} + \cdots\right) \cdot \left(I + B + \frac{1}{2!}B^{2} + \cdots\right)$$
$$= I + (A + B) + \frac{1}{2!}(A^{2} + 2AB + B^{2}) + \cdots,$$
(7)

$$e^{A+B} = I + (A+B) + \frac{1}{2!}(A+B)^2 + \dots + \frac{1}{k!}(A+B)^k + \dots$$
 (8)

Якщо матриці комутують, то всі коефіцієнти рядів (7) та (8) збігаються, а також очевидно, що тоді матриці e^A та e^B комутують. Якщо ж A та B не комутують, то вже треті доданки рядів відрізняються, бо

$$(A+B)^2 = A^2 + AB + BA + B^2 \neq A^2 + 2AB + B^2.$$

Bracmusicm 3. det $e^A = e^{\operatorname{tr} A}$.

Доведення. Скориставшись властивістю 1 та неперервністю визначника, отримаємо

$$\det e^{A} = \det \left(\lim_{m \to \infty} \left(I + \frac{1}{m} A \right)^{m} \right) = \lim_{m \to \infty} \det \left(I + \frac{1}{m} A \right)^{m}$$

Тепер покладемо $\varepsilon = \frac{1}{m}$ в лемі 1.3:

$$\det e^A = \lim_{m \to \infty} \left(1 + \frac{\operatorname{tr} A}{m} + O(m^{-2}) \right)^m = \lim_{m \to \infty} \left(1 + \frac{\operatorname{tr} A}{m} \right)^m = e^{\operatorname{tr} A}.$$

Отже, експонента e^A є завжди невиродженою матрицею.

Властивість 4. $(e^A)^{-1} = e^{-A}$.

Доведення. Зрозуміло, що матриці
$$A$$
 та $-A$ комутують. Згідно властивості 2 маємо $e^A \cdot e^{-A} = e^{-A} \cdot e^A = e^{A-A} = e^O = I$.

Доведені вище властивості засвідчують природність такого узагальнення експоненти, оскільки воно успадковує основні властивості числової експоненти. Зауважимо також, що *експонента дійної матриці також буде дійсною матрицею*.

Властивість 5. Експоненти подібних матриць є подібними матрицями, а саме, якщо $A = H^{-1}BH$, то $e^A = H^{-1}e^BH$.

Доведення. Спершу зауважимо, що

$$(H^{-1}BH)^k = \underbrace{(H^{-1}BH)(H^{-1}BH)\dots(H^{-1}BH)}_{k \text{ pas}} = H^{-1}B^kH.$$

A тому, коли матриці A та B подібні, маємо

$$e^A = e^{H^{-1}BH} = \sum_{k=0}^{\infty} \frac{1}{k!} (H^{-1}BH)^k = H^{-1} \left(\sum_{k=0}^{\infty} \frac{1}{k!} B^k\right) H = H^{-1} e^B H.$$

Властивість 6. Для кожної невиродженої матриці B існує така матриця $A \in M(n,\mathbb{C})$, що $B = e^A$. Матрицю A називають логарифмом матриці B і пишуть $A = \ln B$.

Зауваження 1. Цю властивість ми залишаємо без доведення, але зауважимо, що логарифм матриці визначений неоднозначно і не кожна дійсна матриця має дійсний логарифм. І справа тут не у специфіці матриць. Просто матричний логарифм успадковує "погані риси" комплексного логарифма $\operatorname{Ln} z$. Як відомо, ця функція є багатозначна і не всяке дійсне число має дійсний логарифм. Так $\operatorname{Ln}(-1)$ приймає будь-яке із значень $\{(2k+1)\pi i, k\in \mathbb{Z}\}$, оскільки $e^{(2k+1)\pi i}=-1$, і серед цих значень — жодного дійсного. Правда, додатні числа x таки мають дійсний логарифм $\operatorname{ln} x$. Одна з достатніх умов існування дійсного логарифма для дійсної матриці: усі власні значення цієї матриці повинні бути додатними.

2. ФУНДАМЕНТАЛЬНА МАТРИЦЯ

Повернемося до вивчення лінійних систем зі сталими коефіцієнтами.

Теорема 2.1. Матриця $X(t) = e^{tA}$ є фундаментальною матрицею лінійної однорідної системи $\dot{x} = A x$.

Доведення. Оскільки експонента e^{tA} є невиродженою матрицею, до достатньо довести, що вона задовольняє матричне рівняння

$$\frac{d}{dt}e^{tA} = A e^{tA}. (9)$$

Зауважимо, що ряд

$$e^{tA} = I + tA + \frac{t^2}{2!}A^2 + \dots + \frac{t^k}{k!}A^k + \dots$$
 (10)

 ϵ рівномірно збіжний за змінною t на кожній обмеженій множині [-b,b]. Скористаємося ознакою Вейєрштраса. Справді, для кожного натурального k маємо

$$||I + tA + \frac{t^2}{2!}A^2 + \dots + \frac{t^k}{k!}A^k|| \le 1 + |t| ||A|| + \frac{|t|^2}{2!} ||A||^2 + \dots + \frac{|t|^k}{k!} ||A||^k \le$$

$$\le 1 + b ||A|| + \frac{b^2}{2!} ||A||^2 + \dots + \frac{b^k}{k!} ||A||^k \le e^{b||A||}.$$

Продиференціюємо почленно ряд (10):

$$\begin{split} \frac{d}{dt}e^{\,tA} &= A + t\,A^2 + \frac{t^2}{2!}\,A^3 + \dots + \frac{t^{k-1}}{(k-1)!}\,A^k + \dots = \\ &= A(I + t\,A + \frac{t^2}{2!}\,A^2 + \dots + \frac{t^{k-1}}{(k-1)!}\,A^{k-1} + \dots) = A\,e^{\,tA}. \end{split}$$

Оскільки продиференційований ряд також рівномірно збіжний на кожній обмежені множині, то формула (9) доведена.

Тоді оператор Коші матиме вигляд $U(t,\tau) = e^{(t-\tau)A}$, оскільки

$$U(t,\tau) = X(t)X^{-1}(\tau) = e^{tA}e^{-\tau A} = e^{(t-\tau)A}.$$

Очевидно, що всі матриці вигляду e^{t_1A} , e^{t_2A} комутують. Результати попереднього розділу для систем зі сталими коефіцієнтами тепер можна конкретизувати.

Теорема 2.2. (i) Загальний розв'язок однорідної системи $\dot{x} = A\,x$ має вигляд

$$x(t) = e^{tA} c$$
,

 $\partial e \ c - \partial o в i л b н u \ddot{u} \ в e \kappa m o p \ 3 \ \mathbb{C}^n$, а формула

$$\varphi(t) = e^{(t-t_0)A} x_0,$$

дає розв'язок задачі Коші $\dot{x} = A x$, $x(t_0) = x_0$.

(іі) Частковий розв'язок неоднорідної системи знаходиться за формулою

$$\psi(t) = \int_{t_{-}}^{t} e^{(t-s)A} b(s) ds,$$

а формула розв'язку задачі Коші $\dot{x} = A \, x + b(t), \; x(t_0) = x_0 \; \epsilon \; m$ акою

$$\varphi(t) = e^{(t-t_0)A} x_0 + \int_{t_0}^t e^{(t-s)A} b(s) ds.$$

Для кожного $t \in \mathbb{R}$ оператор $U(t,0) = e^{tA}$ з дійсною матрицею A є невиродженим перетворенням простору \mathbb{R}^n , що описує еволюцію станів системи вздовж її траєкторій за час t.

Лема 1. Сім'я експонент $\mathcal{E} = \{e^{tA}\}_{t \in \mathbb{R}}$ є однопараметричною комутативною групою перетворень простору \mathbb{R}^n .

Доведення. Ми вже бачили вище, дві експоненти e^{tA} , e^{sA} комутують. Тоді їх композиція $e^{tA}e^{sA}=e^{(t+s)A}$ знову належить до $\mathcal E$. Одиницею групи $\mathcal E$ є тотожний оператор $I=e^{0A}$, а також завжди існує обернене перетворення $\left(e^{tA}\right)^{-1}=e^{-tA}$.

Зауваження 2. Не лише лінійні систем породжують однопараметричні групи перетворень. Ця так звана *групова властивість* притаманна і широкому класу нелінійних систем — динамічним системам. Однопараметричні групи є ефективним апаратом дослідження багатьох задач.

Зауваження 3. Експонента $e^{\,tA}$ – це фундаментальна матриця системи (2), нормована в нулі. Якщо Ψ деяка інша фундаментальна матриця системи, то експонента знаходиться за формулою

$$e^{tA} = \Psi(t)\Psi^{-1}(0). \tag{11}$$

Зокрема, експоненту матриці A можна знайти так: $e^A=\Psi(1)\Psi^{-1}(0)=U(1,0).$ У деяких книгах формулу $e^A=U(1,0)$ приймають за означення експоненти матриці.

3. Алгоритм побудови експоненти $e^{\,tA}$

Зараз ми запропонує алгоритм знаходження фундаментальної матриці системи (2) і доведемо основну тезу цього розділу, що таку матрицю завжди можна отримати в класі елементарних функцій. Побудова експоненти e^A матриці A чи сім'ї експонент e^{tA} опирається на алгебраїчну інформацію про цю матрицю. Зараз A доречно трактувати як матрицю деякого лінійного оператора $A\colon \mathbb{C}^n \to \mathbb{C}^n$ в стандартній базі. В інших базах цьому оператору відповідають інші матриці, подібні одна одній. Однак, власні значення, а також їх алгебраїчна та геометрична кратності, які ми визначимо далі, не залежать від вибору бази, ще кажуть, є інваріантами оператора. Вся потрібна нам інформація про A міститься в його так званій нормальній формі — матриці оператора у деякій спеціально вибраній базі.

3 лінійної алгебри відомо, що кожна матриця $A\in M(n,\mathbb{C})$ подібна блочнодіагональній матриці

$$\mathcal{J} = \begin{pmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_s \end{pmatrix} \tag{12}$$

де кожен блок $J_p, p = 1, \ldots, s$, має вигляд

$$J(\lambda, m) = \begin{pmatrix} \lambda & 1 & & 0 \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{pmatrix}$$
 (13)

з одним із власних значень λ матриці A на головній діагоналі та одиничною наддіагоналлю. Решта елементів блоку є нульовими, а m – порядок цього блоку. Матриця $J(\lambda, m)$ називається елементарною жордановою кліткою, а \mathcal{J} — жордановою нормальною формою матриці A. Зауважимо, що кожне власне значення обов'язково присутнє хоча б в одному блоці, але йому можуть відповідати і декілька блоків. Для блочно-діагональних матриць на кшталт \mathcal{J} будемо використовувати компактний запис $\mathcal{J} = \operatorname{diag} \{J_1, J_2, \ldots, J_s\}$.

Отже, існує така невироджена матриця H, що $A=H^{-1}\mathcal{J}H$. Зрозуміло, що тоді $tA=H^{-1}(t\mathcal{J})H$ для кожного t, а згідно властивості $\mathfrak 5$ експоненти матриці матимемо

$$e^{tA} = H^{-1}e^{t\mathcal{J}}H. \tag{14}$$

Степені блочно-діагональної матриці ${\mathcal J}$ також ϵ блочно-діагональні

$$\mathcal{J}^k = \operatorname{diag}\left\{J_1^k, J_2^k, \dots, J_s^k\right\}.$$

3 цієї причини експонента матриці $t\mathcal{J}$ матиме вигляд

$$e^{t\mathcal{J}} = \operatorname{diag}\left\{e^{tJ_1}, e^{tJ_2}, \dots, e^{tJ_s}\right\}.$$
 (15)

Отже, достатньо показати як побудувати експоненту однієї жорданової клітки. Жорданову клітку $J(\lambda, m)$ можна записати як суму

$$J(\lambda, m) = \lambda I + N$$
,

де матриця N=J(0,m) має одиничну наддіагональ, а решта її елементів — нулі. Тоді

$$e^{tJ(\lambda,m)} = e^{\lambda tI + tN} = e^{\lambda tI}e^{tN} = e^{\lambda t}e^{tN}$$

оскільки $e^{\lambda tI}=e^{\lambda t}I$ згідно (4). Матриця N є нільпотентною, тобто її степені, починаючи з деякого номера, є нульовими матрицями. А саме, легко переконатися, що для степенів k, менших за m, маємо

$$N^k = egin{pmatrix} 0 & \dots & 1 & \dots & 0 \ 0 & & \ddots & \vdots \ & & \ddots & & 1 \ & & & 0 & \vdots \ 0 & & & 0 \end{pmatrix}
ightarrow (m-k)$$
-й рядок

Тобто матриця N^k має коротку одиничну діагональ, яка зсувається в бік правого верхнього кута з ростом k. Зокрема, N^{m-1} має єдиний ненульовий елемент – одиницю у правому верхньому куті. Коли ж $k\geqslant m$, то $N^k=O$. Це означає, що експонентою матриці tN є матричний полін:

$$e^{tN} = I + tN + \frac{t^2}{2!} N^2 + \dots + \frac{t^{m-1}}{(m-1)!} N^{m-1}.$$

Остаточно, матимемо

$$e^{tJ(\lambda,m)} = e^{\lambda t} \begin{pmatrix} 1 & t & \frac{t^21}{2!} & \dots & \frac{t^{m-1}}{(m-1)!} \\ & 1 & t & \ddots & \vdots \\ & & \ddots & \ddots & \frac{t^2}{2!} \\ & & & 1 & t \\ 0 & & & 1 \end{pmatrix}.$$
 (16)

Отже, елементами матриці $e^{tJ(\lambda,m)}$ є добутки експоненти $e^{\lambda t}$ та поліномів, найвищий степінь яких на одиницю менший розміру жорданової клітки.

Взявши до уваги формули (12)-(16), можемо підсумувати все пророблене више.

Теорема 2.3. Нехай $\{\lambda_p\}_{p=1}^r$ — різні власні значення матриці $A, r \leq n$. Тоді елементами фундаментальної матриці e^{tA} е лінійні комбінації функцій $t^s e^{\lambda_p t}$, а найвищий степінь полінома, який міститимуть ці елементи, дорівнює зменшеному на одиницю найбільшому розміру кліток J_1, J_2, \ldots, J_s у жордановій структурі матриці A.

Запропонований алгоритм ϵ досить елегантним з теоретичної точки зору. Однак, на практиці виникає технічна проблема — знаходження матриці H. Насправді, щоб побудувати фундаментальну матрицю, достатньо лише знайти базу, в якій оператор має жорданову нормальну форму, але ні матриці H, ні нормальної форми $\mathcal J$ отримувати у явному вигляді не конче.

4. РЕАЛІЗАЦІЯ АЛГОРИТМУ

Для цілісності викладу нагадаємо читачеві деякі факти з лінійної алгебри. Хоча вище ми не раз користувалися поняттям власного значення, почнемо саме з його означення.

 ${\it O}$ значення 2. Число $\lambda \in \mathbb{C}$ називається ${\it власним}$ значенням матриці A, якщо алгебраїчна система

$$Ah = \lambda h \tag{17}$$

має нетривіальний розв'язок h. Цей розв'язок називається власним вектором матриці A, що відповідає власному значенню λ .

Оскільки однорідна система $(A-\lambda I)h=0$ має ненульовий розв'язок тоді і лише тоді, коли матриця $A-\lambda I$ є виродженою, то всі власні значення є коренями так званого xapaкmepucmuчного рівняння

$$\det(A - \lambda I) = 0. \tag{18}$$

Цей визначник є поліном за змінною λ степеня n, а тому згідно основної теореми алгебри кожна матриця має не більше n різних власних значень.

Означення 3. Нехай λ – власне значення матриці A. Кратність λ як кореня характеристичного рівняння (18) називається алгебраїчною кратністю власного значення λ . Максимальна кількість лінійно незалежних власних векторів, що відповідають λ , називається геометричною кратністю цього власного значення. Ці кратності позначатимемо відповідно $m_a(\lambda)$ та $m_g(\lambda)$.

Зауваження 4. Ця ж основна теорема алгебри каже, що сума алгебраїчних кратностей усіх власних значень дорівнює n — розміру матриці A. Себто характеристичне рівняння (18) допускає факторизацію

$$(\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_s)^{m_s} = 0,$$

де $m_1 + \cdots + m_s = n$. Тут $m_k = m_a(\lambda_k)$.

Для $B \in M(n,\mathbb{C})$ вимірність підпростору $\ker B$ називають також $\partial e \phi e \kappa mom$ матриці B. Дефект d(B) обчислюється за формулою $d(B) = n - \operatorname{rank} B$. Тому геометрична кратність $m_g(\lambda)$ власного значення λ дорівнює дефекту матриці $A - \lambda I$, тобто

$$m_q(\lambda) = n - \operatorname{rank}(A - \lambda I).$$

Відомо також, що для геометричної кратності виконується нерівність

$$1 \leqslant m_q(\lambda) \leqslant m_a(\lambda)$$
.

Якщо h – власний вектор, то і кожен вектор ch, де c – ненульове число, також є власним вектором. Тому можна говорити про власні підпростори матриці A.

Означення 4. Усі власні вектори із власним значенням λ утворюють лінійний підпростір $V(\lambda)$ в \mathbb{C}^n , який називається власним підпростором матриці A. Зрозуміло, що dim $V(\lambda) = m_q(\lambda)$.

Приклад 1. Розглянемо дві матриці — одиничну матрицю I та жорданову клітку J(1,n) розміру n з одиницями на головній діагоналі. Обидві матриці мають те ж саме характеристичне рівняння $(\lambda-1)^n=0$. Отже, ці матриці володіють лише одним власним значенням $\lambda=1$ алгебраїчної кратності $m_a(1)=n$. Однак, $\mathrm{rank}(I-I)=\mathrm{rank}\,O=0$, а $\mathrm{rank}(J(1,n)-I)=\mathrm{rank}\,J(0,n)=n-1$. Тому для одиничної матриці геометрична кратність $m_g(1)$ дорівнює n і збігається з алгебраїчною, а для жорданової клітки — $m_g(1)=1$.

Якщо геометричні кратності всіх власних значень матриці збігаються з їх алгебраїчними, то матриця є подібна діагональній. У протилежному випадку, в нормальній формі виникають нетривіальні жорданові клітки — клітки розміру 2 та більше.

Пема 2. Нехай λ ϵ власним значенням матриці A з власним вектором h. Тоді вектор-функція $\psi(t) = e^{\lambda t} h$ ϵ розв'язком однорідної системи (2).

Доведення. Безпосередньо переконуємося, що

$$\dot{\psi} = \frac{d}{dt}(e^{\lambda t}h) = e^{\lambda t}\lambda h \stackrel{(17)}{=} e^{\lambda t}Ah = A(e^{\lambda t}h) = A\psi.$$

У цьому параграфі нам зручніше формулювати результати на мові фундаментальних систем розв'язків. Нас навіть не турбуватиме питання, чи відповідна фундаментальна матриця буде експонентою e^{tA} , оскільки при потребі її можна знайти за формулою (11). І розпочнемо ми з найпростішого випадку, коли матриця подібна діагональній. Нехай

$$\lambda_1, \lambda_2, \dots, \lambda_n$$
 (19)

— власні значення матриці $A \in M(n, \mathbb{C})$, перенумеровані із врахуванням їх кратності. Це означає, що наприклад, трикратне власне значення у послідовності (19) з'явиться тричі з різними номерами.

Теорема 2.4. Якщо для матриці A можна знайти n лінійно незалежних власних векторів h_1, \ldots, h_n , що відповідають власним значенням (19), то загальний розв'язок однорідної системи (2) матиме вигляд

$$x(t) = c_1 e^{\lambda_1 t} h_1 + c_2 e^{\lambda_2 t} h_2 + \dots + c_n e^{\lambda_n t} h_n, \tag{20}$$

 $\partial e \ c_1, c_2, \ldots, c_n$ – $\partial o e i л b h i комплексн i стал i.$

Доведения. Фактично, треба довести, що вектори $\varphi_k = e^{\lambda_k t} h_k$, $k = 1, \dots, n$, утворюють фундаментальну систему розв'язків. Те, що кожен з них є розв'язком системи, гарантує лема 2. Крім того, за умовою теореми при t = 0 вектори $\varphi_k(0) = h_k$ утворюють базу в \mathbb{C}^n . Отже, $\{\varphi_k\}_{k=1}^n$ — фундаментальна система розв'язків згідно критерію фундаментальності (теорема 1.6).

Тепер розглянемо спеціальний випадок, коли різниця між алгебраїчною і геометричною кратностями є найбільшою. Нехай відомо, що матриця A подібна жордановій клітці $J(\lambda,n)$. Оскільки у подібних матриць однакові власні значення разом з їх кратностями, то A має одне власне значення λ з кратностями $m_a(\lambda)=n$ та $m_g(\lambda)=1$, як показано у прикладі 1. Отже, у матриці A лише один власний вектор h_1 (з точністю до числового множника). Розглянемо набір лінійних алгебраїчних систем

$$Ah_1 = \lambda h_1,$$

$$Ah_2 = \lambda h_2 + h_1,$$

$$\dots \dots \dots$$

$$Ah_n = \lambda h_n + h_{n-1}.$$
(21)

3 лінійної алгебри відомо, що їх можна послідовно розв'язати, починаючи із знаходження власного вектора h_1 .

Означення 5. Розв'язки h_2, \ldots, h_n неоднорідних систем (21) називаються приєднаними векторами і разом з власним вектором h_1 утворюють так званий ланцюг $h_1 \mapsto h_2 \mapsto \ldots \mapsto h_n$ власного та приєднаних векторів, що відповідають власному значенню λ .

Вектори цього ланцюга утворюють базу в \mathbb{C}^n . Саме у цій базі наш лінійний оператор (з матрицею A у стандартній базі) має жорданову нормальну форму, що видно із структури правих частин систем (21). Зауважимо, що для вибраного власного вектора h_1 приєднані вектори h_2, \ldots, h_n знаходять неоднозначно, але це є несуттєвим для нашого дослідження.

Пема 3. Якщо матриця A подібна жордановій клітці $J(\lambda, n)$, то фундаментальна система розв'язків однорідної системи (2) має вигля д

$$\psi_{1}(t) = e^{\lambda t} h_{1},
\psi_{2}(t) = e^{\lambda t} (t h_{1} + h_{2}),
\psi_{3}(t) = e^{\lambda t} (\frac{t^{2}}{2!} h_{1} + t h_{2} + h_{3}),
\dots
\psi_{n}(t) = e^{\lambda t} (\frac{t^{n-1}}{(n-1)!} h_{1} + \frac{t^{n-2}}{(n-2)!} h_{2} + \dots + \frac{t}{1!} h_{n-1} + h_{n}),$$
(22)

 $de\ h_1\mapsto h_2\mapsto\ldots\mapsto h_n$ – ланиюг власного та приеднаних векторів для власного значення λ .

Доведення. Введемо векторні поліноми

$$q_k(t) = \frac{t^{k-1}}{(k-1)!} h_1 + \frac{t^{k-2}}{(k-2)!} h_2 + \dots + \frac{t}{1!} h_{k-1} + h_k, \qquad k = 1, 2, \dots, n.$$

Вони при $k \geqslant 2$ володіють такими властивостями

$$\dot{q}_k = q_{k-1},\tag{23}$$

$$(A - \lambda I) q_k = q_{k-1}, \tag{24}$$

перша з яких є очевидною. Але оскільки $(A-\lambda I)h_1=0$, а для решти елементів ланцюга — $(A-\lambda I)h_j=h_{j-1}$, то

$$(A - \lambda I) q_k = \sum_{j=1}^k \frac{t^{k-j}}{(k-j)!} (A - \lambda I) h_j = \sum_{j=2}^k \frac{t^{k-j}}{(k-j)!} h_{j-1} = \sum_{i=1}^{k-1} \frac{t^{k-1-i}}{(k-1-i)!} h_i = q_{k-1}.$$

Вектор ψ_1 є розв'язком системи згідно леми 2. Щодо решти функцій із (22), то

$$\dot{\psi}_{k} = \frac{d}{dt}(e^{\lambda t}q_{k}) = e^{\lambda t}(\lambda q_{k} + \dot{q}_{k}) =$$

$$\stackrel{(23)}{=} e^{\lambda t}(\lambda q_{k} + q_{k-1}) \stackrel{(24)}{=} e^{\lambda t}(\lambda q_{k} + (A - \lambda I) q_{k}) = e^{\lambda t} A q_{k} = A\psi_{k},$$

тобто всі функції (22) є розв'язками. З другого боку, вектори $\psi_k(0) = h_k$ утворюють базу в \mathbb{C}^n . Отже, набір (22) є фундаментальною системою.

Тепер зрозуміло як отримати фундаментальну систему розв'язків для довільної матриці A: знайти власні значення, знайти їх алгебраїчні та геометричні кратності, побудувати всі ланцюги власних та приєднаних векторів, для кожного ланцюга довжини ℓ записати ℓ розв'язків за формулами (22).

Зауваження 5. Однак, для великих розмірностей зреалізувати цей алгоритм є досить складною задачею, і не лише тому, що завжди треба розв'язати n лінійних алгебраїчних систем порядку n. Річ у тім, що число $m_g(\lambda)$ – це кількість ланцюгів (жорданових кліток) для λ , а $m_a(\lambda)$ – це сумарна довжина цих ланцюгів. А от питання про довжину кожного ланцюга, а також з якого саме власного вектора він починається, потребує додаткового дослідження.

Нехай, наприклад, матриця має власне значення алгебраїчної кратності 7 і геометричної — 3. Тоді такому власному значенню обов'язково відповідають 3 ланцюги. Якщо їх довжини позначити через ℓ_1 , ℓ_2 та ℓ_3 , то можливі всі випадки, при яких $\ell_1 + \ell_2 + \ell_3 = 7$ і $\ell_1 \geqslant \ell_2 \geqslant \ell_3 \geqslant 1$. Домовимось, що ланцюг довжини 1 складається лише з власного вектора. Тоді таких випадків (з точністю до перестановки ланцюгів однакової довжини) є чотири: 5+1+1, 4+2+1, 3+3+1, 3+2+2.

Залишаючи сучасним комп'ютерам пошук розв'язків для систем великих розмірів † , ми проаналізуємо детально випадки n=2 та n=3.

 $^{^{\}dagger}$ ε кілька потужних пакетів символьних математичних обчислень, наприклад, «Mathematica» чи DERIVE. Але найбільшою популярністю як у математиків-професіоналів, так і студентів, користується пакет Марle, розроблений в університеті Ватерлоо (Канада).

Задача на площині є простою, оскільки матриця A з простору $M(2,\mathbb{C})$ має одну з трьох нормальних форм

P1:
$$\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \qquad m_a(\lambda) = m_a(\mu) = 1,$$

P2:
$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \qquad m_a(\lambda) = m_g(\lambda) = 2 \qquad \text{rank}(A - \lambda I) = 0,$$

P3:
$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \qquad m_a(\lambda) = 2, \, m_g(\lambda) = 1 \qquad \text{rank}(A - \lambda I) = 1.$$

У випадках Р1, Р2 матриця A подібна діагональній, а тому фундаментальна система розв'язків будується так, як в теоремі 2.4. В третьому випадку матриця подібна жордановій клітці розміру 2 і треба скористатися формулами (22) з леми 3, попередньо знайшовши власний та приєднаний вектори. Випадки Р2 та Р3 кратного власного значення розрізняє ранг матриці $A - \lambda I$.

Зауваження 6. Рівність ${\rm rank}(A-\lambda I)=0$ означає, що $A=\lambda I$. Справді, клас матриць, подібних до λI , складається з однієї матриці: $H^{-1}(\lambda I)H=\lambda H^{-1}H=\lambda I$. Тому проблеми, як розпізнати випадки P2 і P3, не виникає — нормальну форму P2 має лише система $\dot{x}_1=\lambda x_1,\,\dot{x}_2=\lambda x_2$. Та й розв'язати її можна безпосередньо, бо рівняння не пов'язані: $x_1(t)=c_1e^{\lambda t},\,x_2(t)=c_2e^{\lambda t}$.

Для матриці A з простору $M(3,\mathbb{C})$ жорданових нормальних форм вже більше:

S1:
$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \nu \end{pmatrix} \qquad m_a(\lambda) = m_a(\mu) = m_a(\nu) = 1,$$

S2:
$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \mu \end{pmatrix} \qquad m_a(\lambda) = 1 \\ m_a(\mu) = 2, \ m_g(\mu) = 2,$$

S3:
$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 1 \\ 0 & 0 & \mu \end{pmatrix} \qquad m_a(\lambda) = 1 \\ m_a(\mu) = 2, \ m_g(\mu) = 1,$$

S4:
$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \qquad m_a(\lambda) = 3, \ m_g(\lambda) = 3 \qquad \operatorname{rank}(A - \lambda I) = 0,$$

S5:
$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} \qquad m_a(\lambda) = 3, \ m_g(\lambda) = 2 \qquad \operatorname{rank}(A - \lambda I) = 1,$$

S6:
$$\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} \qquad m_a(\lambda) = 3, \ m_g(\lambda) = 1 \qquad \operatorname{rank}(A - \lambda I) = 2.$$

Базу простору \mathbb{C}^3 з власних векторів матриці A можна побудувати у випадках S1, S2 та S4. Знайшовши три лінійно незалежні власні вектори, загальний

розв'язок системи (2) будуємо за формулою (20). До речі, все сказане у зауваженні 6 стосується також випадку S4.

Випадок S6 цілком описує лема 3. Розв'язавши послідовно три алгебраїчні системи $Ah_1 = \lambda h_1$, $Ah_2 = \lambda h_2 + h_1$ та $Ah_3 = \lambda h_3 + h_2$, знайдемо ланцюг $h_1 \mapsto h_2 \mapsto h_3$. Тоді фундаментальна система розв'язків матиме вигляд

$$\varphi_1 = e^{\lambda t} h_1, \quad \varphi_2 = e^{\lambda t} (th_1 + h_2), \quad \varphi_3 = e^{\lambda t} (\frac{t^2}{2!} h_1 + th_2 + h_3).$$

У випадках S2 та S3 характеристичне рівняння має простий корінь λ і двократний — μ . Щоб розпізнати їх, треба обчислити ранг матриці $A - \mu I$. Коли $\lambda \neq 0$, то він дорівнює одиниці для S2 і двійці для S3. Коли ж $\lambda = 0$, то ці ранги відповідно менші на одиницю. Розпізнавши S3, обчислюємо власний вектор h_1 для λ і ланцюг $h_2 \mapsto h_3$ для μ . Отже,

$$\varphi_1 = e^{\lambda t} h_1, \quad \varphi_2 = e^{\mu t} h_2, \quad \varphi_3 = e^{\mu t} (t h_2 + h_3).$$
(25)

Що ж до випадку S5, то він вимагає додаткового дослідження, про яке йшлося у зауваженні 5. Зрозуміло, розв'язки теж матимуть вигляд (25) з $\mu = \lambda$. Проблема полягає у правильному виборі власного вектора h_2 , з якого починається ланцюг $h_2 \mapsto h_3$, оскільки власному значенню λ відповідає двовимірний власний підпростір $V(\lambda)$. Виявляється, що на площині $V(\lambda)$ є лише одна пряма з такою властивістю: до власного вектора можна побудувати приєднаний тоді і лише тоді, коли він лежить на цій прямій.

Виберемо у $V(\lambda)$ деяку базу g_1 , g_2 . Тоді довільний власний вектор має зображення $\theta_1g_1+\theta_2g_2$. Згідно теореми Кронекера-Капелі система

$$(A - \lambda I)h_3 = \theta_1 g_1 + \theta_2 g_2$$

для приєднаного вектора матиме розв'язок тоді і лише тоді, коли ранг матриці системи збігається з рангом розширеної матриці

$$rank(A - \lambda I) = rank(A - \lambda I \mid \theta_1 q_1 + \theta_2 q_2). \tag{26}$$

Остання рівність зв'язує сталі θ_1 та θ_2 лінійним рівнянням $\theta_2=k\theta_1$. Це і є рівняння шуканої прямої у базі $g_1,\ g_2$. Нехай тепер точка (θ_1,θ_2) лежить на цій прямі, покладемо $h_2=\theta_1g_1+\theta_2g_2$ і знайдемо приєднаний вектор h_3 . За h_1 візьмемо будь-який інший вектор з V_λ , лінійно незалежний з h_2 . Наприклад, можна покласти $h_1=\eta_1g_1+\eta_2g_2$, де

$$\begin{vmatrix} \theta_1 & \theta_2 \\ \eta_1 & \eta_2 \end{vmatrix} \neq 0.$$

 $\Pi puknad$ 2. Розв'яжемо лінійну однорідну систему $\dot{x} = A x$ з матрицею

$$A = \begin{pmatrix} 3 & -4 & 1 \\ 2 & -3 & 1 \\ 4 & -8 & 3 \end{pmatrix}$$

Знайдемо спершу власні значення матриці. Нескладні обчислення дають

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -4 & 1 \\ 2 & -3 - \lambda & 1 \\ 4 & -8 & 3 - \lambda \end{vmatrix} = -(\lambda - 1)^3 = 0.$$

Отже, матриця A має трикратне власне значення $\lambda = 1$. Далі

$$rank(A - I) = rank \begin{pmatrix} 2 & -4 & 1 \\ 2 & -4 & 1 \\ 4 & -8 & 2 \end{pmatrix} = 1,$$

бо всі рядки лінійно залежні. А тому $m_g(1)=3-\mathrm{rank}(A-I)=2-\mathrm{ми}$ зустрілись з випадком S5. Знайдемо власні вектори $h=(\theta_1,\theta_2,\theta_3)^{\top}$. Координати кожного розв'язку системи (A-I)h=0 пов'язані умовою $2\theta_1-4\theta_2+\theta_3=0$. Отже, вектори

$$h = \begin{pmatrix} \theta_1 \\ \theta_2 \\ 4\theta_2 - 2\theta_1 \end{pmatrix},$$

де сталі θ_1 і θ_2 є довільними, формують власний підпростір V(1). Виберемо у V(1) базу так, щоб один з її векторів буде початком ланцюга довжини 2.

Приєднаний вектор шукається як розв'язок неоднорідної системи

$$\begin{pmatrix} 2 & -4 & 1 \\ 2 & -4 & 1 \\ 4 & -8 & 2 \end{pmatrix} \begin{pmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{pmatrix} = \begin{pmatrix} \theta_1 \\ \theta_2 \\ 4\theta_2 - 2\theta_1 \end{pmatrix}.$$

Немає потреби рахувати ранги матриць у формулі (26), адже і так видно, що система буде сумісною лише коли є однаковими праві частини першого і другого рівнянь, а права частина третього — вдвічі більша за них. Отже, $\theta_1 = \theta_2$, а базу у V(1) можна вибрати таку

$$h_1 = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, \qquad h_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

$$\theta_1 = 1, \ \theta_2 = 0 \qquad \theta_1 = \theta_2 = 1$$

До другого вектора можна знайти приєднаний:

$$\begin{pmatrix} 2 & -4 & 1 \\ 2 & -4 & 1 \\ 4 & -8 & 2 \end{pmatrix} \begin{pmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \implies 2\tau_1 - 4\tau_2 + \tau_3 = 1 \implies h_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Зауважте, що коли в праву частину системи замість h_2 поставити вектор h_1 , то вона буде несумісна — несумісні перше та друге рівняння. Тепер, скориставшись формулами (25), побудуємо фундаментальну систему розв'язків

$$\varphi_1(t) = e^t \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, \quad \varphi_2(t) = e^t \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \quad \varphi_3(t) = e^t \begin{pmatrix} t \\ t \\ 2t+1 \end{pmatrix}.$$

Отже, загальний розв'язок системи у координатному зображенні є таким:

$$\begin{cases} x_1(t) = (c_3t + c_1 + c_2)e^t, \\ x_2(t) = (c_3t + c_2)e^t, \\ x_3(t) = (2c_3t - 2c_1 + 2c_2 + c_3)e^t, \end{cases}$$

де c_1 , c_2 , c_3 — довільні сталі. Якщо ці сталі є комплексними, то матимемо всі комплексні розв'язки системи, якщо ж сталі дійсні — то всі дійсні.

Однак, питання про дійснозначні розв'язки систем із дійсною матрицею A не завжди вирішується так просто.