只限教師參閱 FOR TEACHERS' USE ONLY

香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九八年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1998

附加數學 試卷二 ADDITIONAL MATHEMATICS PAPER II

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成 閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對, 但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取 此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致 但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考 試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上 述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。 After the examinations, marking schemes will be available for reference at the Teachers' Centres.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1998

98-CE-A MATHS II-1

只限教師參閱 FOR TEACHERS' USE ONLY

只限教師參閱 FOR TEACHERS' USE ONLY

GENERAL INSTRUCTIONS TO MARKERS

1.	many c Marker	ry important that all markers should adhere as closely as possible to the marking scheme. In ases, however, candidates would use alternative methods not specified in the marking scheme. In school be patient in marking these alternative solutions. In general, a correct alternative merits all the marks allocated to that part, unless a particular method is specified in the n.
2.	In the n	narking scheme, marks are classified as follows:
	'M' ma	rks - awarded for knowing a correct method of solution and attempting to apply it;
	'A' mai	rks - awarded for the accuracy of the answer;
	Marks	without 'M' or 'A' - awarded for correctly completing a proof or arriving at an answer given in the question.
3.	In mark	cing candidates' work, the benefit of doubt should be given in the candidates' favour.
4.		mbol (pp-1) should be used to denote marks deducted for poor presentation (p.p.). Note the ng points:
	(a)	At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.
	(b)	For similar p.p., deduct only 1 mark for the first time that it occurs, i.e. do not penalise candidates twice in the whole paper for the same p.p.
	(c)	In any case, do not deduct any marks for p.p. in those steps where candidates could not score any marks.
	(d)	Some cases in which marks should be deducted for p.p. are specified in the marking scheme. However, the lists are by no means exhaustive. Markers should exercise their professional judgement to give p.p.s in other situations.
5.	The syr	mbol (u-1) should be used to denote marks deducted for wrong/no units in the final answers (if
	applical	ble). Note the following points:
	(a)	At most deduct 1 mark for wrong/no units for the whole paper.
	(b)	Do not deduct any marks for wrong/no units in case candidate's answer was already wrong.
6.		entered in the Page Total Box should be the net total score on that page.
7.	In the N	Marking Scheme, steps which can be omitted are enclosed by dotted rectangles ,
	wherea	s alternative answers are enclosed by solid rectangles
8.	Unless accepte	otherwise specified in the question, numerical answers not given in exact values should not be ed.
9.		otherwise specified in the question, use of notations different from those in the marking scheme not be penalised.
10.	Unless	the form of answer is specified in the question, alternative simplified forms of answers different

from those in the marking scheme should be accepted if they were correct.

998	HKCE Add. Math 只限教師參閱	FOR	FOR TEACHERS' USE ONLY			
	Solution		Marks	Remarks		
	General term = ${}_{6}C_{r}(x)^{6-r}(\frac{-2}{x})^{r}$		2A			
	$= {}_{6}C_{r} (-2)^{r} x^{6-2r}$ $6-2r=2$		1M			
	r = 2					
	$\therefore \text{ coefficient of } x^2 = {}_6C_2 (-2)^2$					
	= 60		1A	1		
	Alternative solution			<u> </u>		
	$\left(x-\frac{2}{x}\right)^6 = \left[x^6 + {}_6C_1 x^5(-\frac{2}{x}) + {}_6C_2 x^4\right]$	$\left(-\frac{2}{x}\right)^2 + \dots$	1A	For ${}_{6}C_{2} x^{4} (-\frac{2}{x})^{2}$		
	·'		1A	For other terms (can be omitted)		
	Coefficient of $x^2 = {}_{6}C_2 (-2)^2$		1M	Omit dots (pp-1) For choosing the correct term		
	Coefficient of $x = 6C_2(-2)$					
	= 60		1A			
			4			
	(a) The centre is (2, -5).					
	Distance = $\left \frac{2 - 7(-5) + 3}{\sqrt{1^2 + (-7)^2}} \right $		1M	Accept omitting absolute sign		
	$=4\sqrt{2}$		1A	Accept equivalent forms		
	(b) If L is a tangent to C ,					
	$4\sqrt{2}=\sqrt{a}$		1M			
-	a=32.		1A			
	Alternative solution Substitute $x = 7y - 3$ into C .					
	$(7y-3-2)^2 + (y+5)^2 = a$			OR		
	$50y^2 - 60y + (50 - a) = 0$			$50x^2 - 120x + (1640 - 49a) = 0$		
	$\Delta = (-60)^2 - 4(50)(50 - a) = 0$		1M 1A	$\Delta = (-120)^2 - 4(50)(1640 - 49a) = 0$		
	a=32.		IA	H		
			4			
			1	1		

998	HKCE Add. Math 只限教師參閱 FOR	TEACHERS' USE ONLY		
	Solution	Marks	Remarks	
	For $n = 1$, LHS = $1 \times 2 = 2$.			
	$RHS = 2^1 \times 1 = 2 = LHS.$	1		
	\therefore the statement is true for $n = 1$.			
	Assume $1 \times 2 + 2 \times 3 + 2^2 \times 4 + + 2^{k-1} (k+1) = 2^k (k)$	1		
	for some +ve integer k .			
	for some +ve integer k. Then $1 \times 2 + 2 \times 3 + 2^2 \times 4 + + 2^{k-1} (k+1) + 2^k (k+2)$			
	$= 2^{k}(k) + 2^{k}(k+2)$	1		
	$=2^{k}(k+k+2)$	-		
	$=2^{k+1}(k+1)$	1	;	
		-		
	The statement is also true for $n = k + 1$ if it is true for $n = k$.			
	By the principle of mathematical induction,			
	the statement is true for all positive integers n .	_1		
		5		
			•	
	dy2			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos^2 x$	·	•	
	$y = \int \cos^2 x \mathrm{d}x$	1A	Withhold this mark if "y =" is	
			omitted Omit dx (pp-1)	
	$= \int \frac{1}{2} \left(1 + \cos 2x \right) dx$	IA	, , ,	
	$= \frac{x}{2} + \frac{\sin 2x}{4} + c$ c is a constant.	1A	Assumed as a second of the sec	
	$\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}$	IA	Awarded even if c is omitted	
	Put $x = \frac{\pi}{2}$, $y = \pi$. $\pi = \frac{\pi}{4} + \frac{\sin \pi}{4} + c$	134	F 6 1'	
		1 M	For finding c	
	$c=\frac{3\pi}{4}.$	1A		
	$\therefore \text{ the equation of the curve is } y = \frac{x}{2} + \frac{\sin 2x}{4} + \frac{3\pi}{4}.$			
	2 4 4			

HK	CE A	dd. M	lath只成教師參閱	FUK I		NO UOL ONLI
			Solution		Marks	Remarks
(a)	The ea (2x +	quation is $(k = 1) = 0$) [1A	QR $(2+k)x+(1-3k)y-(3-k)=$
(b)	(i)	Substitute (0, 0) into the equation in $-3 + k$ (1) = 0	(a).	1M	
			k = 3 \therefore the equation of L is			
			2x + y - 3 + 3(x - 3y + 1) = 0 5x - 8y = 0.			
			3x - 8y = 0.		1A	
	((ii)	Slope of $L = \frac{5}{8}$.		} 1A	For either one of them
			Slope of $L_1 = -2$. Let θ be the acute angle between L	and I		Tot ettilet one of them
			1 - 1	and L_1 .		
			$\tan \theta = \frac{\frac{5}{8} - (-2)}{1 + (\frac{5}{8})(-2)}$		1M	Accept omitting absolute sign
			$=\left -\frac{21}{2}\right $			
			θ = 85° (correct to the nearest degre	e)	1A	ė
Γ				 		
A	Alterna	tive so	olution (1)			•
(a) (.	x - 3y	$(\lambda + 1) + \lambda (2x + y - 3) = 0$ (λ is real	al)	1A	$OR (1+2\lambda)x-(3-\lambda)y+(1-3\lambda)=$
0	b) (i		estitute (0, 0) into the equation in (a). λ (-3) = 0		1M	
			$\lambda = \frac{1}{3}$:	
			e equation of L is			
		(x	$-3y+1)+\frac{1}{3}(2x+y-3)=0$			
			x - 8y = 0. ame as above		1A	
_		(11) 3	attic as above			
Æ	Alterna	tive so	plution (2)			
6	a) {:	2x + y	-3 = 0 $y + 1 = 0$			
ľ						
			the 2 equations, $x = \frac{8}{7}, y = \frac{5}{7}$.			
			coordinates of P are $(\frac{8}{7}, \frac{5}{7})$.			
	T	ne equ	nation of the family of straight lines th	rough P is		
	у х	$\frac{-\frac{5}{7}}{-\frac{8}{7}} =$	= m (m is real)		1A	
			7y+5-8m=0.			
					1	1

Marks	Remarks
1M	
1A	
6	
_ 1A	
1A	For the integrand Omit du(pp-1)
1A	For the integrand
1A+1A	1A for the primitive function, 1A for limits
_1A _6	
	1A 1A 1A 1A+1A

Solution	Marks	Remarks
$\sin\left(3x+\frac{\pi}{4}\right)\cos\left(3x-\frac{\pi}{4}\right)$		
$= \frac{1}{2} \left\{ \sin \left[\left(3x + \frac{\pi}{4} \right) + \left(3x - \frac{\pi}{4} \right) \right] + \sin \left[\left(3x + \frac{\pi}{4} \right) - \left(3x - \frac{\pi}{4} \right) \right] \right\}$	1A	
$=\frac{1}{2}(\sin 6x + \sin \frac{\pi}{2})$	1A	
$=\frac{1}{2}(1+\sin 6x)$	1	
Alternative solution		
$\sin\left(3x+\frac{\pi}{4}\right)\cos\left(3x-\frac{\pi}{4}\right)$		
$= (\sin 3x \cos \frac{\pi}{4} + \sin \frac{\pi}{4} \cos 3x) (\cos 3x \cos \frac{\pi}{4} + \sin 3x \sin \frac{\pi}{4})$	1A	
$= \frac{\sqrt{2}}{2} (\cos 3x + \sin 3x) \frac{\sqrt{2}}{2} (\cos 3x + \sin 3x)$	1A	
$= \frac{1}{2}(\cos^2 3x + 2\sin 3x \cos 3x + \sin^2 3x)$	1	
$=\frac{1}{2}(1+\sin 6x)$	1	
$\sin\left(3x + \frac{\pi}{4}\right)\cos\left(3x - \frac{\pi}{4}\right) = \frac{3}{4}$		
$\frac{1}{2}(1+\sin 6x)=\frac{3}{4}$		
$\sin 6x = \frac{1}{2}$	1A	
$6x = n\pi + (-1)^n \frac{\pi}{6}$ n is an integer	1M	For $6x = n\pi + (-1)^n \alpha$
$x = \frac{n\pi}{6} + (-1)^n \frac{\pi}{36}$ (OR $x = 30 n^\circ + (-1)^n 5^\circ$)	_1A	$\frac{n\pi}{6} + (-1)^n 5^{\circ}$ etc. $(u-1)$
	_6	
(a) $S_1 = \int_1^2 (3x - 2 - x^2) dx$	1M+1A	1M for area = $\int_{a}^{b} (y_1 - y_2) dx$,
. 2 2		1A for limits Omit dx(pp-1)
$= \left[\frac{3x^2}{2} - 2x - \frac{x^3}{3}\right]_1^2$	1A	For primitive function only
$= (6-4-\frac{8}{3})-(\frac{3}{2}-2-\frac{1}{3})$		
$=\frac{1}{6}$	1A	
Alternative solution		CP
$S_{1} = \int_{1}^{4} (y^{\frac{1}{2}} - \frac{y+2}{3}) \mathrm{d}y$	1M+1A	1M for area = $\int_{a}^{b} (x_1 - x_2) dy$, 1A for limits
$= \left[\frac{2}{3}y^{\frac{3}{2}} - \frac{1}{6}y^2 - \frac{2}{3}y\right]_1^4$	1A	Omit dy (pp-1) For primitive function only
$=\frac{1}{6}$	1A	or primitive function only
(b) Expressions (II) and (III) represent the total area	1A+1A	Deduct 1 mark for each wrong
$S_1 + S_2$.	6	answer, up to zero
E-A MATHS II–7		

	Solution	版教即参阅 FUR	Marks	Remarks
. (a)	(i) Let $x = -$	у.	1A	
	$\mathrm{d}x = -\mathrm{d}y$,		
	٥ م	ر ه		
	$\int_{-a}^{a} f(x) dx$	$x = \int_{a}^{0} f(-y)(-dy)$		
		$= \int_0^a f(-y) dy = \int_0^a f(-x) dx$	1	
		J_0		
	(ii) $\int_{1}^{a} f(x)dx$	$f = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx$	1A	
	\mathbf{J}_{-a}			
		$= \int_0^a f(-x)dx + \int_0^a f(x)dx \text{ (using (i))}$	1A	For the 1st term
	ļ -	ra ra	+-;	
	!	$= \int_0^a f(x)dx + \int_0^a f(x)dx \cdot f(x) = f(-x)$		
	'- -	$=2\int_{0}^{a}f(x)dx$	<u> </u>	
		\mathbf{J}_0	_5	
	.			i
(b)	$dt = \frac{\sqrt{3}}{3} \sec^2 t$			
	$\int_{0}^{1} \frac{dt}{1+3t^{2}} =$	$\int_0^{\pi} \frac{\sqrt{3}}{3} \frac{\sec^2 \theta d\theta}{(1 + \tan^2 \theta)}$	1A+1A	1 A for integrand,
		π		1A for limits
		$\frac{\sqrt{3}}{3} \int_0^{\frac{\pi}{3}} d\theta$		
	=	$=\frac{\sqrt{3}\pi}{2}$		
		9	_3	
(c)	(i) (1)	$I_1 + 4I_2 = \int_0^1 \frac{1 - t^2}{1 + 3t^2} dt + 4 \int_0^1 \frac{t^2}{1 + 3t^2} dt$		
		$=\int_{1}^{1}dt$		
		J ₀ = 1	1	
		ر ام		
	(2)	$I_1 + I_2 = \int_0^1 \frac{1}{1 + 3t^2} \mathrm{d}t$		
		$=\frac{\sqrt{3}\pi}{9}$ (by result of (b))	1A	
	(ii)	$\begin{cases} I_1 + 4I_2 = 1 & (1) \end{cases}$		
	ζ/	$\begin{cases} I_1 + 4I_2 = 1 & (1) \\ I_1 + I_2 = \frac{\sqrt{3}\pi}{9} & (2) \end{cases}$		
		$(1) - (2) 3I_2 = 1 - \frac{\sqrt{3}\pi}{9}$	1M	For eliminating I_1
		•		
		$I_2 = \frac{1}{3}(1 - \frac{\sqrt{3}\pi}{9})$	1A	
98-CE-A M.	ATHS II-8			
			ì	į

只限教師參閱

FOR TEACHERS' USE ONLY by dse.life

Solution	Marks	Remarks
Alternative solution		
$I_2 = \int_0^1 \frac{t^2}{1+3t^2} \mathrm{d}t$		
$= \int_0^1 \frac{1}{3} \left(\frac{1+3t^2-1}{1+3t^2} \right) dt$		
$= \frac{1}{3} \int_0^1 dt - \frac{1}{3} \int_0^1 \frac{1}{1+3t^2} dt$	t IM	
$= \frac{1}{3} - \frac{1}{3} \left(\frac{\sqrt{3}\pi}{9} \right) = \frac{1}{3} - \frac{\sqrt{3}\pi}{27}$	IA	
	4	
(d) $\int_{-1}^{1} \frac{1+t^2}{1+3t^2} dt = 2 \int_{0}^{1} \frac{1+t^2}{1+3t^2} dt \qquad \frac{1+t^2}{1+3t^2} = \frac{1+t^2}{1+3t^2}$	$\frac{(-t)^2}{3(-t)^2} \text{ for all } t$	For using (a) (ii)
$=2\int_0^1 \frac{1}{1+3t^2} dt + 2\int_0^1 \frac{t^2}{1+3t^2} dt$	1M+1A	
$=2(\frac{\sqrt{3}\pi}{9})+2(\frac{1}{3})(1-\frac{\sqrt{3}\pi}{9})$		
$=\frac{2}{3}+\frac{4\sqrt{3}\pi}{27}$	1A	
Alternative solution $\int_{-1}^{1} \frac{1+t^2}{1+3t^2} dt = \int_{-1}^{1} (1 - \frac{2t^2}{1+3t^2}) dt$		
$= \int_{-1}^{1} dt - 2 \int_{-1}^{1} \frac{t^2}{1 + 3t^2} dt$	lM	
$= 2 - 4 \int_0^1 \frac{t^2}{1 + 3t^2} \mathrm{d}t$	IM+1A	1M for using (a) (ii)
$\frac{t^2}{1+3t^2} = \frac{(-t)^2}{1+3(-t)}$	$\frac{1}{2}$ for all t	
$=2-4(\frac{1}{3})(1-\frac{\sqrt{3}\pi}{9})$		
$=\frac{2}{3}+\frac{4\sqrt{3}\pi}{27}$	1A	
	4	

		E Add. Maths 共收及教師参阅 FUR Solution	Marks	Remarks
). (a	ı)	Coordinates of A are $(2p,0)$. Coordinates of B are $(0,2)$.	1A	
		Since $BC: CA = 1: p^2$, $x_0 = \frac{2p+0}{1+p^2} = \frac{2p}{1+p^2}$	1M+1A .	IM for division formula
		$y_0 = \frac{2p^2 + 0}{1 + p^2} = \frac{2p^2}{1 + p^2}$	_1A	
		$v_0 = 2n^2/n^2 + 1$		
(t)	$\frac{y_0}{x_0} = \frac{2p^2/p^2 + 1}{2p/p^2 + 1} = p$	1	
		Put $p = \frac{y_0}{x_0}$,		
		$x_0 = \frac{2\left(\frac{y_0}{x_0}\right)}{\left(\frac{y_0}{x_0}\right)^2 + 1} \qquad \boxed{OR y_0 = \frac{2\left(\frac{y_0}{x_0}\right)^2}{\left(\frac{y_0}{x_0}\right)^2 + 1}}$	2M	$\underline{OR} x_0 + (\frac{y_0}{x_0})y_0 - 2(\frac{y_0}{x_0}) = 0$
		$x_0^2 + y_0^2 - 2y_0 = 0$	1A	•
		the equation of the locus of D is $x^2 + y^2 - 2y = 0$.		
		B \$ 7	•••	
		$x^{2}+y^{2}-2y=0$		
		(0,1)	2A .	Accept including O and B
		<u>o</u> x	_1A	(Circle: 1A only) For labelling the centre (pp-1) for not labelling the axes
(0	c)	Area $S = \frac{1}{2}(2)(x_0)$	1A	(pp 1) to not about a atom
		Area of $\triangle OBC$ is greatest when $x_0 = 1$.	1M	
		$\therefore \frac{2p}{p^2+1}=1$	1M	
		$(p-1)^2=0$		
		$p = 1$ \therefore the coordinates of A are (2, 0).	1A 1A	
	(Alternative solution	_	
		Area $S = \frac{1}{2}(2)(x_0)$	IA	
		$=\frac{2p}{p^2+1}$		
		$\frac{dS}{dp} = \frac{2(p^2 + 1) - 2p(2p)}{(p^2 + 1)^2}$	IM	OR differentiating x_0
		$=\frac{2(1-p^2)}{(p^2+1)^2}$		
		$\frac{dS}{dp} = 0 \text{ when } p = 1.$	1A	
	i	As $\frac{dS}{dp} > 0$ when $p < 1$ and $\frac{dS}{dp} < 0$ when $p > 1$,	1M	For checking
		 ∴ S is greatest at p = 1. ∴ the coordinates of A are (2, 0). 	1A	Withhold this mark if checking was omitted.

	Solution	Marks	Remarks
(a)	(i) Since S lies on E, $\frac{a^2}{4} + \frac{b^2}{3} = 1$ $3a^2 + 4b^2 = 12$	1	
	(ii) $\frac{x^2}{4} + \frac{y^2}{3} = 1$ Differentiating w.r.t. x , $\frac{x}{2} + \frac{2y}{3} \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{-3x}{4y}$	IM	
	$m_1 = -\frac{3a}{4b}$	1A	
	$m_2 = -\frac{1}{m_1} = \frac{4b}{3a}$	1A	
	Alternative solution]
	Using the formula $\frac{xx_1}{4} + \frac{yy_1}{3} = 1$, equation of tangent		
	to E at S is $\frac{a}{4}x + \frac{b}{3}y = 1$ $3ax + 4by = 12$ $m_1 = -\frac{3a}{4b}$	lA	
	$m_1 = -\frac{3a}{4b}$	1A	
	$m_2 = -\frac{1}{m_1} = \frac{4b}{3a}$	1A	
		4	
(b)	(i) Substituting $y = mx + \frac{c}{m}$ into P ,		$OR_x = \frac{y^2}{4c}$ $y = m(\frac{y^2}{4c}) + \frac{c}{m}$ $m^2 y^2 - 4mcy + 4c^2 = 0$ $\Delta = (4mc)^2 - 4m^2(4c^2)$ $= 0$
	$(mx + \frac{c}{m})^2 = 4 cx$ $m^2 x^2 - 2cx + \frac{c^2}{m^2} = 0$	IM	$y = m(\frac{y^2}{4c}) + \frac{c}{m}$
			$m^2y^2 - 4mcy + 4c^2 = 0$
	$\Delta = (2c)^2 - 4m^2 \left(\frac{c^2}{m^2}\right)$ = 0	1M	$\Delta = (4mc)^2 - 4m^2(4c^2)$ = 0
	$\therefore y = mx + \frac{c}{m} \text{ is a tangent to } P.$	1	
	(ii) If $y = mx + \frac{c}{m}$ passes through S,		
	$b = m a + \frac{c}{m}$ $a m^2 - b m + c = 0 (*)$	1	

	Solution	Marks	Remarks	
(iii) (1)	m_1 , m_2 are the roots of the equation (*) $\therefore m_1 + m_2 = \frac{b}{a}$	1.4		
		1A		
	$m_1 m_2 = \frac{c}{a}$	1A		
	From (a) (ii), $m_1 = -\frac{3a}{4b}$, $m_2 = \frac{4b}{3a}$.			
	$\frac{-3a}{4b} + \frac{4b}{3a} = \frac{b}{a}$	iM		
	$\frac{-9a^2 + 16b^2}{12ab} = \frac{b}{a}$			
	$-9a^2 + 16b^2 = 12b^2$			
ę.	$9a^2 = 4b^2$	1		
	Since L_1 and L_2 are perpendicular,			
	$m_1 m_2 = \frac{c}{a} = -1$			
	$\therefore c = -a$	1		
(2)	$\begin{cases} 3a^2 + 4b^2 = 12 \\ 9a^2 = 4b^2 \end{cases}$			
(2)	$\int g a^2 = 4b^2$			
	$3a^2 + 4(\frac{9a^2}{4}) = 12$	1M	For eliminating <i>b</i>	
	$12a^2 = 12$			
	$a=-1\ (\because\ a<0)$	1A		
	$\therefore c = -a = 1$			
	\therefore the equation of P is $y^2 = 4x$.	<u>IA</u>		

998 HKC	E Add. Math只限教師參閱	FOR TEACHE	RS' USE ONLY
	Solution	Marks	Remarks
2. (a)	$Volume = \int_{-\pi}^{k} \pi x^2 dy$	1M	For $V = \pi \int_a^b x^2 dy$
• • • • • • • • • • • • • • • • • • • •	J_{-k}		1
	$\int_{0}^{k} (x^{2} y^{2}) dx$		Omit dy(pp-1) $ \underline{OR} = 2 \int_0^k 4\pi (1 - \frac{y^2}{a^2}) dy $
	$= \int_{-k}^{k} 4\pi \left(1 - \frac{y^2}{a^2}\right) \mathrm{d}y$	IA	$QR = 2 \int_0^{\infty} 4\pi (1 - \frac{y}{a^2}) dy$
	$=4\pi\left[y-\frac{y^3}{3a^2}\right]_{-k}^k$	1A	For primitive function only
	$= 4\pi \left[k - \frac{k^3}{3a^2} + k - \frac{k^3}{3a^2} \right]$		
	$=8k\left(1-\frac{k^2}{3a^2}\right)\pi$	_1	
	54	_4	
(b)	(i) Put $x = 1$, $y = k$ into $\frac{x^2}{4} + \frac{y^2}{a^2} = 1$.		OR Put x = -1, y = k.
	$\frac{1}{4} + \frac{k^2}{a^2} = 1$	1A	
	$k^2 = \frac{3a^2}{4}$		
	$k = \frac{\sqrt{3} a}{2}$	1A	$k = \pm \frac{\sqrt{3} a}{2} \text{ (pp-1)}$
	2		2
	Height of $S_1 = 2k$		
	$=\sqrt{3} a$	1	
	(ii) Put $k = \frac{\sqrt{3} a}{2}$,	•	
	Volume of $S_1 = 8(\frac{\sqrt{3} a}{2}) \left[1 - \frac{1}{3a^2}(\frac{\sqrt{3} a}{2})\right]$	² -) ²]π 1M	
	$=3\sqrt{3} \ a\pi \ .$	_1A	
(c)	(i) Height of S₂	_5	
(0)	$= 2 + \sqrt{2^2 - 1^2}$		$\left(2\Lambda \right)$
	•		7.11
	$=2+\sqrt{3}$	1A	
	$\therefore \text{ height of toy } \sqrt{3} a + 2 + \sqrt{3} = 2 + (a)$	$+1)\sqrt{3}$ 1	
	(ii) The ellipse becomes a circle of radius 2 Using (b) (ii) and put $a = 2$,	when $a=2$	
	Volume of portion of the sphere from	$y = -\sqrt{3}$	
	to $y = \sqrt{3}$		
	$= 3\sqrt{3}(2)\pi$	1M+1A	
	$=6\sqrt{3} \pi$		
-CE-A M	ATHS II–13		

Add. Math 与设存X 同中 宣 兒		
Solution	Marks	Remarks
Volume of $S_2 = \frac{1}{2} (\frac{4}{3}\pi(2)^3) + \frac{1}{2} (6\sqrt{3})\pi$	IM	$\Omega R = \frac{4}{3}\pi(2)^3 - \frac{1}{2}\left[\frac{4}{3}\pi(2)^3 - 6\sqrt{3}\pi\right]$
$=\frac{16\pi}{3}+3\sqrt{3}\pi$	1A	
Alternative solution (1)		
Volume of S_2		
$= \pi \int_{-\sqrt{3}}^{2} x^{2} dy \text{ , where } x^{2} + y^{2} = 4$	IM+1A	1M for $V = \int_a^b \pi x^2 dy$ 1A for $x^2 + y^2 = 4$
$= \pi \int_{-\sqrt{3}}^{2} (4 - y^2) \mathrm{d}y$	1A	y ,
$=\pi\left[4y-\frac{y^3}{3}\right]_{-\sqrt{3}}^2$		0 1
$= \pi \left(8 - \frac{8}{3} + 4\sqrt{3} - \sqrt{3}\right)$		
$=\pi \left(\frac{16}{3}+3\sqrt{3}\right)$	1A	
Alternative solution (2)		
Volume of S_2		
$= \frac{2}{3}\pi(2)^3 + \pi \int_{-\sqrt{3}}^{0} x^2 dy, \text{ where } x^2 + y^2 = 4$	1M+1A	IM for $V = \int_a^b \pi x^2 dy$ 1A for $x^2 + y^2 = 4$
$= \frac{16\pi}{3} + \pi \int_{-\sqrt{3}}^{0} (4 - y^2) dy$	1A	
$=\frac{16\pi}{3}+\pi\left[4y-\frac{y^3}{3}\right]_{-\sqrt{3}}^0$		
$=\frac{16\pi}{3}+\pi\left(4\sqrt{3}-\sqrt{3}\right)$		
$=\frac{16\pi}{3}+3\sqrt{3}\pi$	1A	
Volume of toy = Volume of S_1 + Volume of S_2		
$=3\sqrt{3}a\pi+(\frac{16\pi}{3}+3\sqrt{3})\pi$		
$= \frac{16\pi}{3} + 3\sqrt{3} (a+1)\pi$	_1A	
	7	

1998	HKCE	EAdd. Math只限教師參閱 F	OR TEACHE	K2. 02F ON
		Solution	Marks	Remarks
13.	(a)	(i) $CM = \frac{1}{2}\sqrt{a^2 + a^2}$		
		$=\frac{\sqrt{2}}{2}a\qquad (\underline{OR} \ \frac{a}{\sqrt{2}})$	1A	
		(ii) The angle between the 2 lines is ∠CMH	1A	(can be omitted)
		$\tan \angle CMH = \frac{CH}{CM}$		
		$=\frac{a}{\sqrt{2}a/2}$	IM	
		= √2		
		$\angle CMH = 55^{\circ}$ (correct to the nearest de	gree) <u>1A</u>	
	(b)	(i) $\sin \angle FVH = \frac{FH}{VH}$		
		$=\frac{\sqrt{2}a}{\sqrt{(2a)^2+(\sqrt{2}a)^2}}$,
		$=\frac{\sqrt{3}}{3}$	1	,
		Perpendicular distance from F to $BVDE$	I	
		$= VF \sin \angle FVH$		
		$=2a(\frac{\sqrt{3}}{3})$	1M	2a
		$=\frac{2\sqrt{3}a}{3} \qquad (\underline{OR} = \frac{2a}{\sqrt{3}})$	1A	f
		Alternative solution		\Box
		Consider area of $\triangle VFH$. Let h be the		
		perpendicular distance.		
		$\frac{1}{2}(VF)(FH) = \frac{1}{2}(VH)h$		
		$\frac{1}{2}(VF)(FH) = \frac{1}{2}(VH)h$ $\frac{1}{2}(2a)(\sqrt{2}a) = \frac{1}{2}(\sqrt{6}a)(h)$ $h = \frac{2\sqrt{3}}{3}a$	1M	
		$h = \frac{2\sqrt{3}}{3}a$	1A	
				T

2a JZα

E Add. Mather N限教師參閱 FC	OR TEACHER	R TEACHERS' USE ONLY		
Solution	Marks	Remarks		
(ii) $BN = \frac{1}{2}BV$ $= \frac{\sqrt{2}a}{2}$ $DN = \sqrt{BD^2 - BN^2}$	1A	V N X		
$= \sqrt{(\sqrt{2}a)^2 - (\frac{\sqrt{2}a}{2})^2}$	1M	В		
$=\frac{\sqrt{6}a}{2}$	1A			
Alternative solution]		
$BD = VD = VB = \sqrt{2} a$ $\therefore \ \angle VBD = 60^{\circ}$	1A			
$DN = \sqrt{2} a \sin 60^{\circ}$	1M			
$=\frac{\sqrt{6}a}{2}$	1A			
(2) The angle between the 2 faces is $\angle AND$	1A	(can be omitted)		
$AN = a \sin 45^\circ = \frac{\sqrt{2} a}{2}$	1A	J <u>ia</u> <u>J<u>6a</u> 2</u>		

 $\cos \angle AND = \frac{(AN)^2 + (ND)^2 - (AD)^2}{2(AN)(ND)}$ $=\frac{(\sqrt{2}a/2)^2+(\sqrt{6}a/2)^2-a^2}{2(\sqrt{2}a/2)(\sqrt{6}a/2)}$ 1M

	2		•
	A	a	•
OR ∠	(AND =	<i>= ∠CMH</i>	

$\angle AND = 55^{\circ}$ (correct to the nearest degree)	1A
Alternative solution	
(2) The angle between the 2 faces is ∠AND	1A
∠ <i>NAD</i> = 90°	1A
$\sin \angle AND = \frac{AD}{ND}$	
$=\frac{a}{\sqrt{6}a/2}$	IM
$=\frac{\sqrt{6}}{3}$,
$\angle AND = 55^{\circ}$ (correct to the nearest degree)	1A

1998 HKCE Add. Math. 只**以**教師參閱

FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
 (iii) As the faces BHD and BVD lie on the same plane and the faces ABGF and BVA lie on the same plane, the angle between the two faces equals to the angle between the faces BVA and BVD, i.e. ∠AND. So the student is correct. 	} 2	'Correct' without explanation - no mark
Alternative solution As BV is a line of intersection of the two faces, and AN and DN are both perpendicular to BV , so the angle between the two faces is $\angle AND$. So the student is correct.	} 2	