6.825 Week 4 Exercises

October 3, 2004

1 Quantifiers

1.1 Part 1

• Prove that the following two statements are equivalent (this is the infant-fare ticket example from class in a more general form):

$$- \forall x, y, z \ P(x, z) \land Q(z, y) \land R(y) \rightarrow S(x)$$
$$- \forall x \ (\exists y, z \ P(x, z) \land Q(z, y) \land R(y)) \rightarrow S(x)$$

1.2 Part 2

• Would the two statements still be equivalent if the \rightarrow were replaced by \leftrightarrow in both cases?

2 Resolution-refutation

1. Using resolution refutation, prove the last sentence in each group from the rest of the sentences in the group.

(a)
$$P \to Q$$

 $\neg P \to R$
 $\neg Q \to R$
(b) $(P \to Q) \lor (R \to S)$
 $(P \to S) \lor (R \to Q)$
(c) $\neg (P \land \neg Q) \lor \neg (\neg S \land \neg T)$
 $\neg (T \lor Q)$
 $U \to (\neg T \to (\neg S \land P))$

2. Use resolution refutation to do problem 7.9 from R&N.

3 Unification

For each pair of sentences, give an MGU.

 $\begin{array}{lll} \bullet & \operatorname{Color}(\operatorname{Tweety}, \operatorname{Yellow}) & \operatorname{Color}(x, \, y) \\ \bullet & \operatorname{Color}(\operatorname{Tweety}, \operatorname{Yellow}) & \operatorname{Color}(x, \, x) \\ \bullet & \operatorname{Color}(\operatorname{Hat}(\operatorname{John}), \operatorname{Blue}) & \operatorname{Color}(\operatorname{Hat}(y), \, y) \\ \bullet & \operatorname{R}(\operatorname{F}(x), \, \operatorname{B}) & \operatorname{R}(y, \, z) \\ \bullet & \operatorname{R}(\operatorname{F}(y), \, x) & \operatorname{R}(x, \, \operatorname{F}(\operatorname{B})) \\ \bullet & \operatorname{R}(\operatorname{F}(y), \, y, \, x) & \operatorname{R}(x, \, \operatorname{F}(A), \, \operatorname{F}(v)) \end{array}$

```
 \begin{array}{lll} \bullet & \operatorname{Loves}(x,\,y) & \operatorname{Loves}(y,\,x) \\ \bullet & \operatorname{F}(G(w),\,\operatorname{H}(w,\,\operatorname{J}(x,\,y))) & \operatorname{F}(G(v),\,\operatorname{H}(u,\,v)) \\ \bullet & \operatorname{F}(G(w),\,\operatorname{H}(w,\,\operatorname{J}(x,\,u))) & \operatorname{F}(G(v),\,\operatorname{H}(u,\,v)) \\ \bullet & \operatorname{F}(x,\,\operatorname{F}(u,\,x)) & \operatorname{F}(\operatorname{F}(y,\,A),\,\operatorname{F}(z,\,\operatorname{F}(B,\,z))) \end{array}
```

4 Formalization and Resolution-refutation

4.1 A silly recitation problem

Symbolize the following argument, and then derive the conclusion from the premises using resolution-refutation.

- Nobody who really appreciates Beethoven fails to keep silence while the Moonlight sonata is being played.
- Guinea pigs are hopelessly ignorant of music.
- No one who is hopelessly ignorant of music ever keeps silence while the moonlight sonata is being played.
- Therefore, guinea pigs never really appreciate Beethoven.

(Taken from a book by Lewis Carroll, logician and author of Alice in Wonderland.)

4.2 Another, sillier problem

You don't have to do this one. It's just for fun. Same type as the previous one. Also from Lewis Carroll.

- The only animals in this house are cats
- Every animal that loves to gaze at the moon is suitable for a pet
- When I detest an animal, I avoid it
- No animals are carnivorous unless they prowl at night
- No cat fails to kill mice
- No animals ever like me, except those that are in this house
- Kangaroos are not suitable for pets
- None but carnivorous animals kill mice
- I detest animals that do not like me
- Animals that prowl at night always love to gaze at the moon
- Therefore, I always avoid a kangaroo

5 Add in some paramodulation...

Formalize each group of sentences (using the given function and predicate symbols), then prove the last from the others using resolution and paramodulation.

- 1. (L(x)) = the lover of x; D(x) = x drives a red car)
 - Jane's lover drives a red car
 - Fred is the only person who drives a red car
 - Therefore, Fred is Jane's lover

- 2. (T(x) = the teacher of x; G(x) = x is a good student)
 - Mrs. Abbot only teaches good students
 - John and Mary have the same teacher
 - Mrs. Abbot is Mary's teacher
 - Therefore, John is a good student
- 3. (M(x) = the manufacturer of part x; W(x, y) = part x is stored in the warehouse of company y; T(x) = part x is made of titanium; F(x) = part x is fragile; use a constant for "the part I need")
 - Every part is either made by FooCorp or BarCorp
 - All fragile parts are stored in the warehouse of their manufacturer
 - BarCorp can't manufacture titanium parts
 - The part I need is fragile and made of titanium
 - Therefore, the part I need is the FooCorp's warehouse

6 Entailment

• If $\mathtt{KB} \not\models S$, does this mean $\mathtt{KB} \models \neg S$? If so then prove it, otherwise give a counterexample.