Nipun Batra

IIT Gandhinagar

July 31, 2025

#### Outline

1. Introduction to Subgradients

2. Visualizing Subgradients

**Challenge:** What happens when we can't compute gradients?

**Challenge:** What happens when we can't compute gradients?

**Challenge:** What happens when we can't compute gradients?

#### Common Examples in ML

• L1 regularization: f(x) = |x| (not differentiable at x = 0)

**Challenge:** What happens when we can't compute gradients?

- L1 regularization: f(x) = |x| (not differentiable at x = 0)
- **Hinge loss:**  $f(x) = \max(0, 1 x)$  (kink at x = 1)

**Challenge:** What happens when we can't compute gradients?

- L1 regularization: f(x) = |x| (not differentiable at x = 0)
- **Hinge loss:**  $f(x) = \max(0, 1 x)$  (kink at x = 1)
- **ReLU activation:**  $f(x) = \max(0, x)$  (corner at x = 0)

**Challenge:** What happens when we can't compute gradients?

- L1 regularization: f(x) = |x| (not differentiable at x = 0)
- **Hinge loss:**  $f(x) = \max(0, 1 x)$  (kink at x = 1)
- **ReLU activation:**  $f(x) = \max(0, x)$  (corner at x = 0)

**Challenge:** What happens when we can't compute gradients?

#### Common Examples in ML

- L1 regularization: f(x) = |x| (not differentiable at x = 0)
- **Hinge loss:**  $f(x) = \max(0, 1 x)$  (kink at x = 1)
- **ReLU activation:**  $f(x) = \max(0, x)$  (corner at x = 0)

#### Solution: Subgradients

**Subgradients** generalize gradients to convex but non-differentiable functions

**Key Insight:** Even when derivatives don't exist, we can still do optimization!

**Key Insight:** Even when derivatives don't exist, we can still do optimization!

#### What is a Subgradient?

For convex function f at point  $x_0$ , vector g is a **subgradient** if:

$$f(x) \ge f(x_0) + g^{\mathsf{T}}(x - x_0) \quad \forall x$$

**Key Insight:** Even when derivatives don't exist, we can still do optimization!

#### What is a Subgradient?

For convex function f at point  $x_0$ , vector g is a **subgradient** if:

$$f(x) \ge f(x_0) + g^{\mathsf{T}}(x - x_0) \quad \forall x$$

**Key Insight:** Even when derivatives don't exist, we can still do optimization!

## What is a Subgradient?

For convex function f at point  $x_0$ , vector g is a subgradient if:

$$f(x) \ge f(x_0) + g^{\mathsf{T}}(x - x_0) \quad \forall x$$

**Intuition:** g defines a linear lower bound that touches f at  $x_0$ 

# The Classic Example: f(x) = |x|

**Challenge:** Find "derivative" of f(x) = |x| at x = 0



Non-differentiable function at x = 0

# The Classic Example: f(x) = |x|

**Challenge:** Find "derivative" of f(x) = |x| at x = 0



Non-differentiable function at x = 0

Classical calculus: Derivative doesn't exist at x = 0Subgradient calculus: We can find a set of valid subgradients!

# Pop Quiz: Subgradient Intuition

#### **Quick Quiz 1**

For f(x) = |x| at x = 0, which values could be subgradients?

a) Only g = 0

**Answer:** b) Any value in [-1,1] satisfies the subgradient condition!

6/9

# Pop Quiz: Subgradient Intuition

#### **Quick Quiz 1**

For f(x) = |x| at x = 0, which values could be subgradients?

- a) Only g = 0
- b) Any  $g \in [-1, 1]$

**Answer:** b) Any value in [-1,1] satisfies the subgradient condition!

# Pop Quiz: Subgradient Intuition

#### **Quick Quiz 1**

For f(x) = |x| at x = 0, which values could be subgradients?

- a) Only g = 0
- b) Any  $g \in [-1, 1]$
- c) Only g = 1 or g = -1

**Answer:** b) Any value in [-1,1] satisfies the subgradient condition!

- Construct a differentiable g(x)

- Construct a differentiable g(x)
  - Intersecting f(x) at  $x = x_0$

- Construct a differentiable g(x)
  - Intersecting f(x) at  $x = x_0$

- Construct a differentiable g(x)
  - Intersecting f(x) at  $x = x_0$
  - Below or on f(x) for all x



• Compute slope of g(x) at  $x = x_0$ 



# Another Example: f(x) = |x|

• Subgradient of f(x) belongs to [-1,1]

