Übung 6: Rauchen und Schwangerschaft Musterlösungen

- Analyse der Daten:
- i. Wie viele Frauen sind in der Stichprobe enthalten?1388 Beobachtungen

iii. Wie hoch ist der durchschnittliche Zigarettenkonsum pro Tag? Ist dieser Durchschnittswert repräsentativ für die typische Frau aus der Stichprobe?

	arith. Mittel	Median	Minimum	Maximum
faminc	29,027	27,500	0,50000	65,000
motheduc	12,936	12,000	2,0000	18,000
cigs	2,0872	0,00000	0,00000	50,000
	Std. Abw.	Var'koeff.	Schiefe	Überwölbung
faminc	18,739	0,64559	0,61762	-0,52660
motheduc	2,3767	0,18373	-0,032120	0,64824
cigs	5,9727	2,8616	3,5604	14,934

gretl: Ansicht / Grundlegende Statistiken/ Variablen wählen

Der durchschnittliche Zigarettenkonsum beträgt 2.09 und beinhaltet auch die 1176 Nicht-Raucherinnen in der Stichprobe → In diesem Fall kann man sagen, dass die typische Frau während der Schwangerschaft nicht raucht.

iv. Wie viele Frauen Rauchen während der Schwangerschaft? Was ist der Anteil von Raucherinnen in der Stichprobe?

gretl Hauptfenster: Stichprobe/Restringiere durch Bedingung/ Boolsche Bedingung: cigs > 0

→ Teilmenge der Raucherinnen → 212 (=1388 -1176) Frauen haben einen positiven

Zigarettenkonsum (cigs > 0) was 15% der Frauen in der Stichprobe entspricht.

v. Wie hoch ist der durchschnittliche Zigarettenkonsum pro Tag unter den Raucherinnen?

Der durchschnittliche Zigarettenkonsum unter den Raucherinnen beträgt 13.7, was wesentlich höher als der Durchschnitt über die gesamte Stichprobe ist.

arith. Mittel	Median	Minimum	Maximum
20,917	18,500	0,50000	65,000
11,637	12,000	6,0000	18,000
13,665	10,000	1,0000	50,000
Std. Abw.	Var'koeff.	Schiefe	Überwölbung
15,142	0,72392	1,0458	0,95217
1,7753	0,15256	0,15604	1,6180
8,6909	0,63599	1,3020	2,5502
	20,917 11,637 13,665 Std. Abw. 15,142 1,7753	20,917 18,500 11,637 12,000 13,665 10,000 Std. Abw. Var'koeff. 15,142 0,72392 1,7753 0,15256	20,917 18,500 0,50000 11,637 12,000 6,0000 13,665 10,000 1,0000 Std. Abw. Var'koeff. Schiefe 15,142 0,72392 1,0458 1,7753 0,15256 0,15604

vi. Wie hoch ist der durchschnittliche Familieneinkommen? Vergleichen Sie zwischen der Stichprobe und Teilmenge der Raucherinnen

Das durchschnittliche Familieneinkommen beträgt \$29'027 über die gesamte Stichprobe. Interessanterweise beträgt es unter den Raucherinnen nur \$20'917.

vii. Wie viele Neugeborene sind in der Stichprobe weiss?

299 Beobachtungen wurden entfernt \rightarrow 1089 = (1388 -299) Neugeborene sind weiss, was 78.45% der Stichprobe darstellt.

2. Welchen Einfluss erwarten Sie für die Variablen cigs und faminc (Familieneinkommen) auf das Geburtsgewicht des Neugeborenen (Vorzeichen für β_2 und β_3)? Begründen Sie Ihre Antwort.

 β_{cias} < 0 \rightarrow je mehr geraucht wird, desto geringer das Geburtsgewicht des Neugeborenen

 $\beta_{faminc} > 0 \rightarrow reichere$ Familien werden sich mehr Gesundheitsvorsorge für das Ungeborene leisten können und dadurch das Geburtsgewicht positiv beeinflusst

3. Schätzen Sie das Modell 1: bwght = $\beta_1 + \beta_2$ cigs + u

	Koeffizient	Stdfehler	t-Quotient	p-Wert	
const cigs	119,772 -0,513772	0,572341 0,0904909	209,3 -5,678	0,0000 1,66e-08	***
	abh. Var. quad. Res.	561551,3 Stdf	ow. d. abh. Va ehler d. Regre igiertes R-Qua	ess. 20,	35396 12858 22024

4. Welche Korrelation erwarten Sie zwischen den Variablen *cigs* und *faminc* (Familieneinkommen)? Erklären Sie, warum die Korrelation positiv oder negativ sein könnte.

reichere Mütter in der Schwangerschaft eher nicht oder weniger rauchen)

Das Vorzeichen der Korrelation zwischen *cigs* und *faminc* ist a priori nicht eindeutig: Positive Korrelation: Reichere haben mehr Geld für Luxusgüter wie Zigaretten übrig Negative Korrelation: Reichere haben ein höheres Gesundheitsbewusstsein (weswegen

5. Analysieren Sie die Korrelationsstruktur zwischen den Variablen bwght, cigs und faminc.

gretl Hauptfenster: Ansicht/Korrelationsmatrix → Variablen bwght, cigs und faminc auswählen

Die Korrelation zwischen cigs und faminc ist negativ \rightarrow Reichere Frauen haben im Durchschnitt ein höheres Gesundheitsbewusstsein und rauchen weniger.

6. Ermitteln Sie die Korrelation zwischen *cigs* und *faminc* (Familieneinkommen) mittels Regression. Einmal für die gesamte Stichprobe, einmal für die Gruppe der Raucherinnen. Wie ändert sich diese Korrelation für diese Teilmenge aus der Stichprobe?

Regression für die gesamte Stichprobe

Korrelation wird aufgrund der Korrelationsmatrix aus Frage 5 negativ geschätzt:

$$\rho = -\sqrt{0.03} \cong -0.173 \rightarrow \text{entspricht der Korrelation aus Korrelationsmatrix (-0.173 gretl)}$$

Regression für die Gruppe der Raucherinnen

gretl: Stichprobe/Restringiere durch Bedingung/cigs > 0

Abhängige	Variable: fami	inc					
	Koeffizient	t Stdfe	ehler	t-Quotient	p-W	ert	
const cigs	23,8077 -0,211509	1,9314 0,1193		12,33 -1,772	1,26 0,07	e-026 78	***
Mittel d. Summe d. o R-Quadrat	abh. Var. quad. Res.	20,91745 47668,34 0,014736	Stdfe	ow. d. abh. ehler d. Reg igiertes R-Q	ress.	15,14 15,06 0,010	626

Korrelation wird negativ geschätzt: $\rho = -\sqrt{0.0147} \cong -0.121$

Korrelation beträgt -0.121 (gretl)

→ gretl: Ansicht/Korrelationsmatrix, da sich der Stichprobenbereich auf die Raucherinnen reduziert hat.

bwght	faminc	cigs	
1,0000	0,1361	-0,1006	bwght
	1,0000	-0,1214	faminc
		1,0000	cigs

Die Korrelation hat sich nur leicht reduziert, wenn nur die Teilprobe der Raucherinnen analysiert wurde.

Hinweis: Die Berechnung der Korrelation über "Wurzel aus R-Quadrat" funktioniert nur bei einer Einfachregression (nur eine erklärende Variable, hier cigs).

7. Welchen Effekt hat vermutlich die Hinzunahme von *faminc* auf den geschätzten Regressionskoeffizienten b_{cigs}?

Hinweis: Benutzen Sie Ihr Ergebnis aus Frage 6

ρ₁₂: Korrelation zwischen Variablen x₁ und x₂

 \widetilde{b}_{i} : unterspezifiziertes Modell: Modell 1
ohne faminc

	$\rho_{12} > 0$	$\rho_{12} < 0$
$b_2 > 0$	$E(\widetilde{b}_{\scriptscriptstyle 2}) > b_{\scriptscriptstyle 2}$	$E(\widetilde{b}_{\scriptscriptstyle 2}) < b_{\scriptscriptstyle 2}$
b ₂ < 0	$E(\widetilde{b}_2) < b_2$	$E(\widetilde{b}_2) > b_2$

Unterspezifiziertes Modell: $bwght = \tilde{b}_1 + \tilde{b}_2 cigs$

"Korrekteres" Modell: bwght = $b_1 + b_2$ cigs + b_3 faminc

 ρ_{12} = Korrelation(*cigs*, *faminc*) < 0 und b_{cigs} < 0 (Modell 1)

 \Rightarrow Im unterspezifizierten Modell ist damit zu rechnen, dass \widetilde{b}_2 zu klein geschätzt wird. Bei Berücksichtigung von *faminc* wird sich \widetilde{b}_2 voraussichtlich vergrössern \to b₂ > \widetilde{b}_2 .

Standardfehler: Kein grosser Effekt, da die Variablen (mit ρ_{12} = -0.173) nur schwach korrelieren.

8. Schätzen Sie das Modell 2: bwght = $\beta_1 + \beta_2$ cigs + β_3 faminc + u

Unterspezifiziertes Modell: bwght = 119.772 - 0.513cigs

"Korrekteres Modell": bwght = 116.97 - 0.463 cigs + 0.0927faminc

 \widetilde{b}_2 = -0.513 < b₂ =-0.463 $\rightarrow \widetilde{b}_2$ hat sich vergrössert!

Die Vermutung hat sich bestätigt: b_{cigs} steigt von -0.51 auf -0.46 (das ist ein Anstieg!) Auch: Der Standardfehler hat sich leicht erhöht: $0.0904 \rightarrow 0.0915$.

Es soll nun die Dummy-Variable *male* als zusätzlicher Regressor hinzugefügt werden (Wert 1, wenn das Neugeborene männlich ist, 0 für weiblich).

9. Vermuten Sie, dass die Berücksichtigung dieser Dummy-Variable einen deutlichen Effekt auf b_{cigs} und b_{faminc} oder deren Standardfehler hat? Warum bzw. warum nicht? Überprüfen Sie Ihre Vermutung anschliessend.

Das Geschlecht des Kindes, legt die Natur normalerweise 'rein zufällig' bei der Zeugung fest. Es sollte weder mit dem Zigarettenkonsum der Mutter in der Schwangerschaft cigs noch mit dem Familieneinkommen faminc korrelieren noch mit sonstigen ökonomischen Grössen (dies könnte sich jedoch ändern bei "künstlicher Befruchtung", welche sich fast nur einkommensstarke Familien leisten können) \Rightarrow Dummy-Variable male ist keine ausgelassene Variable und sollte fast keinen Effekt auf b_{cigs} , b_{faminc} haben.

10. Schätzen Sie das Modell 3: bwght = $\beta_1 + \beta_2$ cigs + β_3 faminc + β_4 male + u

bwght = 115.228 - 0. 461 cigs + 0.09687 faminc + 3.114 male

	b _{cigs}	se()	b_{faminc}	se()
Modell 2	-0.4634	0.0915	0.0927	0.0913
Modell 3	-0.4610	0.0292	0.0968	0.0291

- ⇒ Das Hinzufügen von *male* hat fast keinen Effekt auf deren Koeffizienten und Standardfehler gehabt.
- 11. Interpretieren Sie b_{faminc} im Modell 3.

$$b_{faminc} = 0.096880 \approx +0.1 \text{ Unzen}$$

Bei zusätzlichem Familieneinkommen um \$1000 ist eine Gewichtszunahme des Neugeborenen um 0.1 Unzen (= 0.1 x 28.35gr = 2.8 Gramm) zu erwarten, ceteris paribus (geschätzt auf Basis der Stichprobe).

12. Schätzen Sie das Modell 4 mit dem Geburtsgewicht des Neugeborenen in Gramm ausgedrückt.

Modell 4:
$$bwghtgr = \beta_1^* + \beta_2^* cigs + \beta_3^* fa \min c + \beta_4^* male + u$$

Hinweis: 1 Unze = 28.35 Gramm \rightarrow Variable bwghtgr = bwght x 28.35 gretl Hauptfenster: Hinzufügen / Definiere neue Variable/ bwghtgr = bwght x 28.35

Abhängige Var	riable: bwgh	tgr				
	Koeffizient	Stdfe	hler	t-Quotient	p-Wert	
const	3266,71	34,243	34	95,40	0,0000	***
cigs	-13,0706	2,589	43	-5,048	5,07e-0	7 ***
faminc	2,74654	0,826	268	3,324	0,0009	***
male	88,2810	30,515	8	2,893	0,0039	***
Mittel d. abi	n. Var.	3365,133	Stdak	ow. d. abh. Va	ar. 57	7,0349
Summe d. quad	i. Res.	4,45e+08	Stdfe	hler d. Regre	ess. 56	7,2737
R-Quadrat		0,035636	Korri	igiertes R-Qua	adrat 0,	03354
F(3, 1384)		17,04780	P-Wei	ct(F)	7,	10e-11

13. Wie ist die Beziehung zwischen den Koeffizienten aus Modell 3 und 4.

Beziehung:
$$b_i^* = b_i \times 28.35$$

Beispiel:
$$b_{cigs}^* = -13.07 = b_{cigs} \times 28.35 = -0.461 \times 28.35$$

14. Interpretieren Sie den Koeffizienten b_{faminc}

Bei 1000\$ mehr Familieneinkommen ist eine Gewichtszunahme des Neugeborenen um ca. 2.74 Gramm (= 0.1 Unzen) zu erwarten (geschätzt auf Basis der Stichprobe, ceteris paribus)

- 15. Folgende Modelle wurden geschätzt. Interpretieren Sie jeweils den Koeffizienten b₃.
- i. bwght = 112.138 0.465cigs + 1.927 In(faminc) + 3.096 male
 lin-log Spezifikation: Steigt das Familieneinkommen (faminc) um 1%, erhöht sich das Geburtsgewicht im Durchschnitt um 0.01 x 1.927 = 0.02 Unzen, ceteris paribus
 Interpretation einer lin-log Spezifikation: Eine Zunahme von x um 1% führt c.p. zu einer Änderung von y um 0.01 x b₃ Einheiten.
- ii. In(bwght = 4.703 0.00406cigs + 0.0169 In(faminc) + 0.0258 male
 log-log Spezifikation: Steigt das Familieneinkommen (faminc) um 1%, erhöht sich das Geburtsgewicht (bwght) im Durchschnitt um 0.017%, ceteris paribus.

iii. ln(bwght) = 4.729 - 0.0401 cigs + 0.000878 faminc + 0.0259 male

log-lin Spezifikation: Steigt das Familieneinkommen (faminc) um \$1000 (=1 Einheit), erhöht sich das Geburtsgewicht (bwght) im Durchschnitt um $0.0009 \times 100\% = 0.09\%$, ceteris paribus.

Interpretation einer log-lin Spezifikation: Eine Zunahme von \mathbf{x} um 1 Einheit führt c.p. zu einer Änderung von \mathbf{y} um 100% x b₃ Einheiten

16. Erstellen Sie ein Histogramm von In(bwght) und bwght. Welcher Unterschied ist zu vermerken?

Die Logarithmierung des Geburtsgewichtes reduziert die Normalität der Daten

- 17. Der Regressor *faminc* wurde durch *fatheduc* (Ausbildungsdauer des Vaters gemessen in Jahren) ersetzt. Interpretieren Sie jeweils den Koeffizienten b₃:
 - i. bwght = 113.260 0.571cigs + 0.411 fatheduc + 3.568 male lin-lin Modell Steigt die Ausbildungsdauer des Vaters (*fatheduc*) um 1 Jahr, erhöht sich das Geburtsgewicht (*bwght*) im Durchschnitt um 0.4 Unzen (= 11.3 Gramm cp.)
- ii. bwght = 106.528 0.574cigs + 4.772 ln(fatheduc) + 3.524 male lin-log Modell Steigt die Ausbildungsdauer des Vaters (*fatheduc*) um 1%, erhöht sich *bwght* im Durchschnitt um ca 4.77/100 = 0.048 Unzen (=1.36 Gramm) cp.
- iii. ln(bwght) = 4.664 0.005cigs + 0.0372 ln(fatheduc) + 0.0313 male log-log Modell Steigt die Ausbildungsdauer des Vaters (*fatheduc*) um 1%, erhöht sich das Geburtsgewicht (*bwght*) im Durchschnitt um 0.037%, cp.

iv. ln(bwght) = 4.716 -0.0049cigs + 0.0033 fatheduc + 0.0317 male log-lin Modell

Steigt die Ausbildungsdauer des Vaters (*fatheduc*) um 1 Jahr, erhöht sich das Geburtsgewicht (*bwght*) im Durchschnitt um 0.003×100% = 0.3%, cp.

18. Schätzen Sie das Modell 5

Modell 5: bwght = $\beta_1 + \beta_2$ cigs + β_3 parity + β_4 faminc + β_5 motheduc + β_6 fatheduc + u

Die Variable *parity* stellt die Reihenfolge des Neugeborenen unter den Familienkindern dar. Wenn *parity* = 3 bedeutet es, dass das erfasste Neugeborene das dritte Kind der Frau ist.

Fehlende ode	r unvollständi	.ge Beoba	htungen (entfernt:	197		
Abhängige Va	riable: bwght						
	Koeffizient	Stdfel	nler t-	Quotient	p-We	ert	
const	114,524	3,72845	5	30,72	6,876	e-153	***
cigs	-0,595936	0,11034	18 .	-5,401	8,026	e-08	***
parity	1,78760	0,65940)6	2,711	0,000	68	***
faminc	0,0560414	0,03656	516	1,533	0,12	56	
motheduc	-0,370450	0,31985	55	-1,158	0,24	70	
fatheduc	0,472394	0,2826	13	1,671	0,094	49	*
Mittel d. ab	h. Var. 11	9,5298	Stdabw.	d. abh. Va	ar.	20,14	124
Summe d. qua	d. Res. 46	4041,1	Stdfehle	r d. Regre	33.	19,78	8878
R-Quadrat	0,	038748	Korrigie:	rtes R-Qua	adrat	0,034	1692
F(5, 1185)	9,	553500	P-Wert(F)		5,996	-09
Log-Likeliho	od -52	42,220	Akaike-K	riterium		10496	5,44
Schwarz-Krit	erium 10	526,94	Hannan-Q	uinn-Krite	rium	10507	7,93

i. Interpretieren Sie den Wert parity = 3.

Das bedeutet, dass das erfasste Neugeborene das dritte Kind der Frau ist.

ii. Warum reduziert gretl hier jeweils die Zahl der einbezogenen Familien? Könnte das Konsequenzen über die Repräsentativität der "selektierten" Familien haben?

In der Stichprobe gibt es Beobachtungen ohne Angaben über die Ausbildung des Vaters. Das ist 197/1388 = 14.2% der Stichprobe, was nicht gravierend ist.

Es ist hier unklar warum diese Angaben über Ausbildungsjahre des Vaters nicht vorhanden sind. Eine Möglichkeit wäre, dass die Identität des Vaters unbekannt ist!

Wenn wir davon ausgehen, dass Mütter mit tieferem Ausbildungsniveau eher davon betroffen werden, gibt es eine Verzerrung für die Repräsentativität der selektierten Familien.

iii. Spielt die Reihenfolge des Neugeborenen eine Rolle für das Geburtsgewicht? Interpretieren Sie den Koeffizienten b_{parity}.

Der Koeffizient von *parity* ist statistisch signifikant auf dem 1%-Signifikanzniveau. Die Reihenfolge des Neugeborenen spielt eine Rolle zur Bestimmung des Geburtsgewichtes.

Das Geburtsgewicht erhöht sich um 1.78 Unzen (= $1.78 \times 28.35 = 50.5$ gr) pro zusätzliches Kind, ceteris paribus.

iv. Sind alle Steigungskoeffizienten gemeinsam signifikant (Modell 5)? Wie lautet die Nullhypothese?

Nullhypothese: H_0 : $\beta_2 = ... = \beta_6 = 0$

Der p-Wert von F-Test ist gleich $0 \Rightarrow$ die Nullhypothese wird abgelehnt.

Mindestens eine erklärende Variable ist von null verschieden. Die ausgewählten Regressoren erklären gemeinsam einen Teil der Varianz von *bwght*.

- 19. Testen Sie die Nullhypothese im Modell 5, dass die Elternausbildung keinen Effekt auf das Geburtsgewicht des Neugeborenen hat.
 - Mittels gretl Test

gretl: Tests / Variable weglassen → Schätze reduziertes Modell → interpretieren Sie den p-

$$H_0$$
: $\beta_5 = \beta_6 = 0 \Leftrightarrow \beta_{\text{motheduc}} = \beta_{\text{fatheduc}} = 0$

```
Nullhypothese: Die Regressionskoeffizienten sind Null für die Variablen
 motheduc, fatheduc
Teststatistik: F(2, 1185) = 1,43727, p-Wert 0,23799
```

```
Modell 14: KQ, benutze die Beobachtungen 1-1191
Abhängige Variable: bwght
                                  Koeffizient Std.-fehler t-Quotient p-Wert

    const
    115,470
    1,65590
    69,73
    0,0000
    ***

    cigs
    -0,597852
    0,108770
    -5,496
    4,74e-08
    ***

    parity
    1,83227
    0,657540
    2,787
    0,0054
    ***

    faminc
    0,0670618
    0,0323938
    2,070
    0,0386
    **

Mittel d. abh. Var. 119,5298 Stdabw. d. abh. Var. 20,14124
Summe d. quad. Res. 465166,8 Stdfehler d. Regress. 19,79607
R-Quadrat 0,036416 Korrigiertes R-Quadrat 0,033981
F(3, 1187) 14,95330 P-Wert(F) 1,47e-09
Log-Likelihood -5243,663 Akaike-Kriterium 10495,33
Schwarz-Kriterium 10515,66 Hannan-Quinn-Kriterium 10502,99
```

Schlussfolgerung: p-Wert = $0.23 > \alpha = 5\%$ H₀ kann nicht verworfen werden.

Beide Koeffizienten sind simultan gleich null → die Elternausbildung leisten gemeinsam kaum einen Erklärungsbeitrag für das Geburtsgewicht!

ii. Bestimmen Sie den kritischen Wert F_c mittels gretl. Was ist Ihre Schlussfolgerung?

gretl Hauptfenster: Werkzeuge / Statistische Tabellen / F / rechtsseitige Wahrscheinlichkeit = 0.05

$$Z\ddot{a}hler-FG = N-K = 1191-6 = 1185, K = 6$$

Kritischer Wert $F_c(0.95, 2, 1185) = 3$

Das unrestringierte Modell wurde mit N =1388 -197 = 1'191 Daten geschätzt, da nicht alle Beobachtungen Informationen über fatheduc enthalten.

 $F_e = 1.43 < F_c \Rightarrow H_0$ kann nicht verworfen werden \rightarrow motheduc und fatheduc sind gemeinsam nicht von null verschieden! Sie leisten gemeinsam kaum einen Erklärungsbeitrag für das Geburtsgewicht!

p-Wert =
$$0.23 > \alpha = 5\% \Rightarrow H_0$$
 nicht verwerfen

iii. Berechnen Sie den F-Wert mittels Bestimmtheitsmass R² durch eigene Schätzung des restringierten Modells.

Da die Ausbildungsangaben für die Mütter immer vorhanden sind, selektieren Sie im Hauptfenster die Variable fatheduc und dann das Menü auswählen: Stichprobe / Entferne Beobachtungen mit Fehlwerten (nicht dauerhaft).

$$R^2 = 0.0387$$
 (Modell 5) und $R_r^2 = 0.0364$ (restringiertes Modell)

$$F = \frac{\left(R^2 - R_r^2\right) / L}{\left(1 - R^2\right) / \left(N - K\right)} = \frac{\left(0.0387 - 0.0364\right)}{\left(1 - 0.0387\right)} \frac{1191 - 6}{2} = 1.43$$

```
Modell 17: KQ, benutze die Beobachtungen 1-1191
Abhängige Variable: bwght

Koeffizient Std.-fehler t-Quotient p-Wert

const 114,524 3,72845 30,72 6,87e-153 ***
cigs -0,595936 0,110348 -5,401 8,02e-08 ***
parity 1,78760 0,659406 2,711 0,0068 ***
faminc 0,0560414 0,0365616 1,533 0,1256
motheduc -0,370450 0,319855 -1,158 0,2470
fatheduc 0,472394 0,282643 1,671 0,0949 *

Mittel d. abh. Var. 119,5298 Stdabw. d. abh. Var. 20,14124
Summe d. quad. Res. 464041,1 Stdfehler d. Regress. 19,78878
R-Quadrat 0,038748 Korrigiertes R-Quadrat 0,034692
```

Unter Berücksichtigung aller Beobachtungen ist das R² anders! Deshalb ist die Benutzung der Proxy-Variable wichtig.

	KQ, benutze d ariable: bwgh		tungen	1-1388			
	Koeffizient	Stdfe	hler	t-Quotient	-		
const	114,214	1,4693	0		0,00		***
cigs	-0,477154	0,0915	180	-5,214	2,13	e-07	***
parity	1,61637	0,6039	55	2,676	0,00	75	***
faminc	0,0979201	0,0291	868	3,355	0,00	80	***
Mittel d. al	bh. Var.	118,6996	Stdab	w. d. abh. V	ar.	20,	3539
Summe d. qua	ad. Res.	554615,2	Stdfe	hler d. Regr	ess.	20,	0183
R-Quadrat		0,034800	Korri	giertes R-Qu	adrat	0,0	3270
F(3, 1384)		16,63327	P-Wer	t(F)		1,2	Be-1
Log-Likelih	ood -	6126,832	Akaik	e-Kriterium		122	61,6
Schwarz-Kri	terium	12282,61	Hanna	n-Quinn-Krit	erium	122	69,5

bwght = 114.214 - 0. 477 cigs + 1.6163 parity + 0.0979 faminc

20. Schätzen Sie das Modell 6:

 $ln(bwght) = \beta_1 + \beta_2 cigs + \beta_3 ln(faminc) + \beta_4 parity + \beta_5 male + \beta_6 white + u$

	KQ, benutze die ariable: l_bwgh		tungen	1-1388		
	Koeffizient	Stdfe	hler	t-Quotient	p-Wert	
const	4,65771	0,02216	53	210,1	0,0000	***
cigs	-0,00435015	0,00085	1842	-5,107	3,73e-07	***
1 faminc	0,00927740	0,00593	081	1,564	0,1180	
parity	0,0159828	0,00563	877	2,834	0,0047	***
male	0,0265458	0,01002	95	2,647	0,0082	***
white	0,0547875	0,01305	18	4,198	2,87e-05	***
Mittel d. al	oh. Var. 4,	760031	Stdab	w. d. abh. Va	ar. 0,1	90662
Summe d. qua	ad. Res. 48	,04116	Stdfe	hler d. Regre	ess. 0,1	86446
R-Quadrat	0,	047187	Korri	giertes R-Qua	adrat 0,0	43740
F(5, 1382)	13	,68835	P-Wer	t(F)	4,5	8e-13
Log-Likelih	ood 36	4,8246	Akaik	e-Kriterium	-717	,6492
Schwarz-Krit	terium -68	86,2355	Hanna	n-Quinn-Krite	erium -705	,9010

 Was ist der Effekt auf das Geburtsgewicht, wenn die Mutter 10 Zigaretten pro Tag mehr raucht? Δ cigs = 10

 $\Delta I_bwght = -0.00435(10) = -0.0435 \rightarrow ca. 4.4\%$ weniger Geburtsgewicht

ii. Wie viel mehr Geburtsgewicht weist ein männliches Neugeborenes gegenüber einem Weiblichen auf, ceteris paribus? Ist der Koeffizient β₅ signifikant auf 5%-Niveau?

Ein männliches Neugeborenes wiegt ca. 2.6% mehr gegenüber der Referenzgruppe (=weibliches Neugeborenes), ceteris paribus.

Faustregel: t-Quotient > $2 \rightarrow H_0 \rightarrow$ verwerfen Koeffizient ist statistisch signifikant! p-Wert = $0 \rightarrow$ Diese Dummy-Variable ist statistisch signifikant

iii. Wie viel mehr Geburtsgewicht weist ein weisses Neugeborenes gegenüber der Referenzgruppe auf, ceteris paribus? Ist der Koeffizient β₆ signifikant auf 5%-Niveau?

Ein weisses Neugeborenes wiegt ca. 5.5% mehr gegenüber der Referenzgruppe (= nicht weisses Neugeborenes), ceteris paribus.

p-Wert = 0 →Diese Dummy-Variable ist statistisch signifikant

21. Schätzen Sie das Modell 7:

In(bwght) = β_1 + β_2 cigs + β_3 In(faminc) + β_4 parity + β_5 male + β_6 white + β_7 motheduc + β_8 fatheduc + β_6 uhite + β_7 motheduc + β_8 fatheduc + β_8 f

Modell 13: Fehlende ode			_	-		
Abhängige Va		-	onounge		137	
	Koeffizien	t Stdfe	hler	t-Quotient	p-Wert	
const	4,65267	0,03815	45	121,9	0,0000	***
cigs	-0,0052143	8 0,00102	675	-5,079	4,42e-07	***
1 faminc	0,0110315	0,00854	044	1,292	0,1967	
parity	0,0172014	0,00613	350	2,804	0,0051	***
male	0,0341430	0,01070	22	3,190	0,0015	***
white	0,0453991	0,01508	70	3,009	0,0027	***
motheduc	-0,0029763	3 0,00297	307	-1,001	0,3170	
fatheduc	0,0032763	4 0,00260	843	1,256	0,2093	
Mittel d. ak	oh. Var.	4,767536	Stdabw	. d. abh. V	ar. 0,18	38013
Summe d. qua	d. Res.	39,99114	Stdfeh	ler d. Regr	ess. 0,18	33861
R-Quadrat		0,049303	Korrig	riertes R-Qu	adrat 0,0	13678
F(7, 1183)		8,764331	P-Wert	(F)	1,5	5e-10
Log-Likeliho	ood	331,1061	Akaike	-Kriterium	-646	2122
Schwarz-Krit	erium	-605,5518	Hannan	-Quinn-Krit	erium -630,	8901

Gretl entfernt automatisch Einträge ohne Angaben für motheduc oder fatheduc

i. Was ist die Auswirkung eines zusätzlichen Ausbildungsjahres der Mutter auf das Geburtsgewicht?

Wenn die Mutter ein zusätzliches Ausbildungsjahr hat, wiegt das Neugeborene etwa 100(0.00297) $\cong 0.3\%$ weniger, ceteris paribus.

Hinweis: Diese Interpretation ist mit Vorsicht zu geniessen, da der Koeffizient von null nicht verschieden ist.

22. Schätzen Sie das Modell 8:

bwght = β_1 + β_2 cigs + β_3 ln(faminc) + β_4 parity + β_5 male + β_6 white + β_7 motheduc + β_8 fatheduc + α

Fehlende oder unvollständige Beobachtungen entfernt: 197 Abhängige Variable: bwght								
	Koeffizient	Stdfel	nler 1	t-Quotient	p−W-q	ert		
const	106,538	4,0763)	26,14	3,146	-119	***	
cigs	-0,597376	0,1096	95	-5,446	6,276	e-08	***	
1 faminc	1,22061	0,9124	34	1,338	0,181	12		
parity	1,91752	0,6552	34	2,926	0,003	35	***	
male	3,82465	1,1433	9	3,345	0,000	80	***	
white	4,63746	1,6118	5	2,877	0,004	41	***	
motheduc	-0,336755	0,3176	34	-1,060	0,289	93		
fatheduc	0,415149	0,2786	76	1,490	0,136	66		
Mittel d. ab	h. Var. 1	19,5298	Stdabw	. d. abh. V	7ar.	20,14	4124	
Summe d. quad. Res.		456463,7 Stdfel		hler d. Regress.		19,64	4313	
R-Quadrat	0	,054445	Korrig:	iertes R-Qu	ladrat	0,048	8850	
F(7, 1183)	9	,730940	P-Wert	(F)		7,996	e-12	
Log-Likelihood		5232,416 Akaik		re-Kriterium		10480	0,83	
Schwarz-Kriterium		.0521,49	Hannan-	-Quinn-Krit	cerium	1049	6,15	

i. Wie viel mehr Geburtsgewicht weist ein männliches Neugeborenes gegenüber der Referenzgruppe auf, ceteris paribus? Ist der Koeffizient b₅ signifikant auf dem 5%-Niveau?

Ein männliches Neugeborenes wiegt ca. 3.82 Unzen (= ca 108.4 Gramm) mehr gegenüber der Referenzgruppe (=weibliches Neugeborenes), ceteris paribus → die anderen Variablen sind gleich!

- 23. Antworten Sie auf diese Fragen mittels einer Regression.
- i. Wie viel wiegt ein weibliches Neugeborenes im Durchschnitt in Kg?

Ein weibliches Neugeborenes wiegt im Durchschnitt 117.16 Unzen (= ca 3.321 Kg)
→Interzept = Geburtsgewicht der Referenzgruppe (=weibliches Neugeborenes).

ii. Wie viel mehr Geburtsgewicht in Gramm weist ein männliches Neugeborenes gegenüber einem Weiblichen auf?

Ein männliches Neugeborenes wiegt ca. 2.94 Unzen (= ca. 83.35 Gramm) mehr gegenüber der Referenzgruppe (=weibliches Neugeborenes) was 120.109 (=117.16+ 2.942) Unzen entspricht→ ein männliches Neugeborenes wiegt im Durchschnitt 3.405 Kg (=120.109 x 28.35 gr).

iii. Bestätigen Sie Ihre Ergebnisse durch das Menü " Grundlegende Statistiken" für die entsprechenden Teilmengen.

Durchschnittliches Geburtsgewicht für die Teilmenge von weiblichen Neugeborenen. Die Stichprobe wurde durch die Bedingung male = 0 restringiert. Dieses Ergebnis untermauert die Antwort ii)

Durchschnittliches Geburtsgewicht für die Teilmenge von weiblichen Neugeborenen. Die Stichprobe wurde durch folgende Bedingung. Dieses Ergebnis untermauert die Antwort ii)

iv. Warum ist der Steigungskoeffizient kleiner als β_{male} im Modell 8?

Im Modell 8 werden die anderen erklärenden Variablen (Ausbildungsniveau der Eltern, parity) kontrolliert, was diesen Unterschied erklärt.

24. Welches Modell würden Sie vorziehen? Begründen Sie ihre Antwort.

Zusammenstellung der zu vergleichenden Modelle

Modell 7:
$$Inbwght = 4.657 - 0.00521 cigs + 0.0172 parity + 0.0117 Infaminc + 0.0341 male + 0.045 white - 0.0029 motheduc + 0.00327 fatheduc$$

Modell 8: bwght = 106.53 - 0.5973cigs + 1.917parity + 1.22lnfaminc + 3.82male + 4.63white - 0.336motheduc + 0.415fatheduc

Modell	2	3	5	6	7	8
--------	---	---	---	---	---	---

Abh. Variable	bwght	bwght	bwght	Inbwght	Inbwght	bwght
#Regressoren	3	4	6	6	8	8
\overline{R}^2	0.028	0.0327	0.0346	0.0437	0.0436	0.0488
Akaike	12266	12261.6	10496	-717.64	-646.21	10480
SIC	12282		10526	-686.2	-605.5	10521

Modelle mit der abhängigen Variable bwght. 2, 3, 5 und 8

Unter diesen konkurrierenden Modellen weist das Regressionsmodell 8 den geringsten Wert für das Akaike und SIC-Informationskriterium und das höchste \overline{R}^2 auf.

Achtung: Die adjustierten \mathbb{R}^2 können nur zwischen Modellen verglichen werden, in denen die abhängige Variable y identisch ist \rightarrow nicht vergleichbar zwischen log-lin und lin-lin oder lin-log Modellen!

Wie bei dem adjustierten Bestimmtheitsmass R² können die Informationskriterien nur zwischen Modellen verglichen werden, welche die gleiche abhängige Variable y besitzen. Deshalb müssen die Modelle 6 und 7 mit *I_bwght* separat betrachtet werden.

Zwischen den beiden Modellen 6 und 7 (abhängige Variable = In_bwght) weist das Modell 6 das geringste Informationskriterium auf. Modell 6 berücksichtigt das Ausbildungsniveau der Eltern nicht, welches auch nicht signifikant ist. Es gibt sicherlich viele andere möglichen Regressionsmodelle, welche zusätzlichen erklärenden Variablen enthalten.

Diese Regressionsmodelle können einen Grossteil der Varianz des Geburtsgewichtes nicht gut erklären, da andere physiologischen Faktoren wie z.B. Gewicht und Grösse der Frau eine bedeutende Rolle spielen.

Modell 6 (log-lin) und Modell 8 (lin) sind Kandidaten. Welches ist zu bervorzugen? Der Vergleich erfolgt über R² (beide haben gleich viele Variablen). Für das log-lin Modell 6 ist die Berechnung von R² über den Stichproben-Korrelationskoeffizienten!