NYC Taxi Trip Duration

Kaggle Competition Case Study

Allan Dieguez

Introduction

Case Objective

Predict the total duration, in seconds, of a taxi trip in NYC.

Available Measurements:

- Vendor ID
- Passenger Count
- ☐ Store & Forward Flag (system)
- □ Pickup Date/Time
- ☐ Pickup Point (latitude / longitude)
- Dropoff Point (latitude / longitude)

Development Tools

Data Exploration

Trip Duration (Dependent Feature)

Observations:

- ☐ 4 trips with duration > 1 day (22 to 40)
- □ ~99% trips under 1 hour
- □ ~0.8% trips between 1 and 10 hours
- □ ~0.1% trips between 10 and 24 hours

Cuts:

- ☐ Trip Duration < 3 minutes
- ☐ Trip Duration > 15 hours
- ☐ Keep: 97.96 % of the training data

Trip Duration histogram X-axis in log10 scale

Vendor ID & "Store and Forward" Flag

Vendor IDs:

- 2 Vendors / Taxi Companies
- Shares:

- Vendor 1: 46.5 %
- □ Vendor 2: 53.5 %
- No cuts performed

"Store & Fwd" Flag:

- Only available for Vendor 1
- ☐ Share: 1.18 % of all Vendor 1 trips
- ☐ Trip Duration distribution slightly higher for "Y"
- No cuts performed

Trip Duration (in seconds) distribution by ${\bf Store}$ & ${\bf Fwd}$ flag values ${\bf Y}$ and ${\bf N}$ (Vendor 1).

Passenger Count

Observations:

- 60 trips with zero passengers
 - 42 lasted less than 1 minute
 - □ 17 lasted less than 1 hour and more than 1 minute
 - ☐ 1 lasted more than 23 hours
 - Vendor IDs:
 - ☐ Vendor 1: 31 trips
 - Vendor 2: 29 trips
- ☐ 126,425 trips with more than 4 passengers
 - ☐ 4 of them had more than 6 people

Cuts:

- zero passenger trips
 - Too noisy
 - Not that representative

Feature Engineering:

- Feature is Categorical
- ☐ Classes 1 to 9 (ignore 0)

Pickup Date/Time

Observations:

- No inconsistency on Trip Duration Vs Pickup to Dropoff timestamps
- → All trips happened between January and June of 2016
- ☐ Trip counts:
 - ☐ High on the middle of the week
 - ☐ Low from Saturday to Monday

Cuts:

■ No cuts performed

Features Engineering:

- ☐ Hour
- Week Day
- Month

Pickup & Dropoff Distance

Observations:

- Method: Vincenty Distance
- Strange Trips outside NYC:
 - Canada
 - □ San Jose
 - ☐ Atlantic Ocean

Cuts:

- ☐ Trip Distance < 100 m
- ☐ Trip Distance > 100 km
- Latitude between 40 and 42
- □ Longitude between -74.5 and -73.5
- ☐ Keep: 99 % of the training data

Trip Distance histogram X-axis in log10 scale

Feature Engineering

Pickup & Dropoff Points

Observations:

- ☐ Latitude and Longitude are **lousy features**: they are unique globally
- ☐ Feature engineering is required to leverage the potential of the feature

Feature Engineering:

- □ Direct distance between Pickup and Dropoff points
- ☐ Local Projection, e.g. UTM (easting, northing)
- Distance from known Control Points in the city:
 - Domain knowledge of the city
 - ☐ Airports, Ferry, Railroads, Bus Stations
 - Landmarks, Tourism
 - Economic Centers
 - ☐ Automatic discovery: Clusters!!!

Coordinate Embedding Example

			diatamaa
cluster	p_x	p_y	distance
0	-2377.885565	3607.939127	4321.060577
1	-755.140228	-2850.952545	2949.265532
2	-20221.077076	-3878.751157	20589.722403
3	-999.514160	2057.553115	2287.477514
4	-4797.905809	-2974.375511	5645.069515
5	-6264.539381	5694.434074	8465.874620
6	1109.488131	-3459.550444	3633.105172
7	-2086.670278	5757.588498	6124.052430
8	5352.696850	-9618.242088	11007.358649
9	-21.320613	-593.153911	593.536967

Pickup Clusters

Dropoff Clusters

Feature Engineering

Model Training & Evaluation

Strategy

Gradient Boosted Trees

- → Motivation:
 - Mainstream in Competitions
 - Pretty Fast Training
- ☐ Implementation:
 - Sci-Kit Learn
- Validation Strategy:
 - ☐ Train Data: 90% (~1.2M)
 - □ Test Data: 10% (~120K)
- ☐ Hyper Params Selection:
 - ☐ Cross-Valdation w/ 3-Fold
 - RandomSearchCV

Artificial Neural Network

- Motivation:
 - Recent Developments
 - Personal Favorite
- ☐ Implementation:
 - □ Keras + TensorFlow
- Validation Strategy:
 - ☐ Train Data: 80% (~1M)
 - □ Validation Data: 10% (~120K)
 - ☐ Test Data: 10% (~120K)
- Hyper Params Selection:
 - Manual Settings based on convergence

Gradient Boosted Trees

```
model trainer = RandomizedSearchCV
       n iter=3,
       estimator=GradientBoostingRegressor(),
       param distributions={
           "criterion": ["mse"],
           "loss" : ["ls", "lad", "huber", "quantile"],
           "learning rate": [.3],
           "n estimators": [100, 400, 1000],
           "max depth": [3, 5],
           "max features": ["auto", "log2", "sqrt"],
10
           "min samples split": [10, 50, 100],
           "min samples leaf": [10, 50, 100],
13
           "verbose": [1]
14
15
       verbose=True,
       refit=True,
16
17
       cv=3.
18
       n jobs=-1
19
```

Train Data Evaluation (GBT)

Test Data Evaluation (GBT)

Error Analysis on Test Data (GBT)

count	142233.000000
mean	58.161655
std	490.140437
min	-50718.016371
0.1%	-1947.865384
2.3%	-618.262730
15.9%	-169.218073
50%	26.963351
84.1%	281.570376
97.7%	990.189996
99.2%	1303.457544
99.9%	2055.188628
max	29848.400339

Error histogram: y-axis in log scale

Feature Importances (GBT)

	feature_importances
pickup_coords_projection	43.33%
dropoff_coords_projection	41.74%
pickup_datetimehour	5.43%
vincenty_pickup_dropoff	4.72%
pickup_datetimeweekday	2.72%
pickup_datetimemonth	1.41%
vendor_id1	0.30%
passenger_count1	0.25%
store_and_fwd_flagy	0.10%
passenger_countothers	0.00%
TOTAL	100.00%

Artificial Neural Network

```
model = Sequential()
model.add(Dense(300, input dim=X tr.shape[1], kernel initializer="glorot uniform", activation='relu'))
model.add(Dropout(0.05))
model.add(BatchNormalization())
model.add(Dense(50, input dim=300, kernel initializer="glorot uniform", activation='relu'))
model.add(Dropout(0.05))
model.add(Dense(1, kernel initializer="glorot uniform", activation='relu'))
optimizer = RMSprop()
model.compile(loss='mean squared error', optimizer=optimizer)
monitors = [
    EarlyStopping(monitor='val loss', min delta=0.001, patience=500, mode='auto'),
    ModelCheckpoint(filepath=filename, monitor='val loss', mode='auto',
                    save best only=True, save weights only=False)
model.fit(X tr, y tr, batch size=50000, epochs=1000, validation data=(X vl, y vl), callbacks=monitors)
```

Train Data Evaluation (ANN)

Test Data Evaluation (ANN)

Error Analysis on Test Data (ANN)

count	142233.000000
mean	11.578110
std	479.724030
min	-51326.054443
0.1%	-2550.644929
2.3%	-917.822066
15.9%	-237.708192
50%	70.856445
84.1%	276.725690
97.7%	604.337773
99.2%	829.732268
99.9%	1252.383570
max	2985.758301

Error histogram: y-axis in log scale

Execution Times

Submission Dataset

- Dimensions:
 - Rows: **625,134**
 - ☐ Columns:
 - Prev Feat. Eng.: 8
 - ☐ Post Feat. Eng.: **55**

- ☐ Feat. Eng. Execution Time:
 - ☐ CPU time: **7min 32s**
 - □ Wall time: 8min 38s

Artificial Neural Network

- □ Predict Execution Time:
 - ☐ CPU time: **41.3 s**
 - □ Wall time: **48.8 s**

Gradient Boosted Trees

- ☐ Predict Execution Time:
 - ☐ CPU time: **10.5 s**
 - → Wall time: 12.8 s

Kaggle Leader Board

Submission and Description	Private Score	Public Score	Use for Final Score
submission_pred_rna.csv an hour ago by Allan Dieguez	0.49674	0.49473	
Keras: 3 RELU layers Neural Network.			
submission_pred_gbt.csv an hour ago by Allan Dieguez	0.54462	0.54009	
GBX without negative predictions (no time travels this time)			
submission_pred_gbt.csv	NULL	Error 1	
an hour ago by Allan Dieguez			
Scikit-Learnn's Gradient Boosted Trees.			

Next Steps

Feature Engineering

Coordinates Embedding

- ☐ Automate research for number of Clusters
- ☐ Test other Latitude/Longitude projections other than Universal Transverse Mercator (UTM)
 - Military Grid Reference System (MGRS)
 - United States National Grid (USNG)
 - Global Area Reference System (GARS)
 - World Geographic Reference System (GEOREF)
- Embed more than coordinates
 - e.g. date/time features
- Reimplement projection module to use vector operations
 - more RAM needed but way faster

External Data

Routes

- Best/Shorter/Fastest Routes:
 - Open Street Maps
 - ☐ Google Maps / Waze
- Transit Reports:
 - http://www.nyc.gov
 - ☐ Google Maps / Waze

News

■ Google News

Weather Forecast

- http://www.weather.gov/
- ☐ Google Weather

City Events

- www.ticketnetwork.com
- http://www.nyc.gov/events
- https://www.eventbrite.com

Q&A

Thank You