МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ»

Факультет інформатики

Кафедра математики

ЛАБОРАТОРНА РОБОТА №2

з курсу «Математичні методи машинного навчання»

Варіант 2

Виконала:

студентка 3 р.н.

БП «Прикладна математика»

Гак Софія Володимирівна

Мета:

Провести декомпозицію зеленого каналу вихідних зображень методом головних компонент.

Змоделювати зелений канал заданих зображень за допомогою марківських ланцюгів першого порядку.

Частка виконаної роботи:

Повністю виконана (п. 1-4).

1) Сформувати тестову вибірку зображень з вихідного пакету;

Вибірку було сформовано аналогічно до першої лабораторної роботи.

2) Провести декомпозицію каналу зеленого кольору тестових зображень з використанням методу головних компонент (PCA):

Для реалізації методу головних компонент застосувала бібліотеку sklearn. у функції нижче створюєтьє об'єкт PCA(), в якому важливим аргументом є n_components, що позначає відсоток або кількість головних компонент, які хочемо отримати (якщо None, тоді з документації n_components == min(n_samples, n_features) - 1, тобто в нашому випадку, декомпозуючи картинку, за кількість компонент вибирається або її ширина, або висота - залежно від того, що менше). Саму ж сингулярну декомпозицію забезпечує метод fit_transform(), який знаходить сингулярні вектори (вони ж - головні компоненти), відповідні їм сингулярні числа, дисперсія значень яскравості пікселів зеленого каналу і т.п. Для реконструкції зображення застосовується метод inverse transform.

Частка поясненої дисперсії (%) кожної з компонент (виведені перші 10)

а) Впорядкувати отримані компоненти вихідного зображення в порядку зменшення значень сингулярних чисел (від найбільшого s_{max} до найменшого s_{min} значення);

За замовченням сингулярні числа вже відсортовані в порядку зменшення.

Найбільше з них - 1.32332115e+04.

b) Провести реконструкцію зображення при використанні лише частки (α %) компонентів розкладу, що характеризуються відмінними від нуля сингулярними числами ($s_i \neq 0$). Розглянути випадок, коли α змінюється від $\alpha_{min} = 10$ % до $\alpha_{max} = 100$ % з кроком $\Delta_{\alpha} = 10$ %.

Візуальні результати реконструкції одного з тестових зображень залежно від частки використаних головних компонент.

c) Порівняти вихідне та реконструйоване зображення за показником середньоквадратичного відхилення (MSE).

d) Побудувати графіки залежності $\overline{MSE}(\alpha)$, де \overline{MSE} — значення середньоквадратичного відхилення між вихідним та реконструйованим зображеннями, усереднені по тестовому пакету;

 Mean MSE
 1697.948712
 1682.171739
 1597.620534
 1444.325154
 1267.735455
 1081.515872
 852.842967
 591.520586
 307.047362
 4.798322e-26

- 3) Провести моделювання каналу зеленого кольору тестових зображень з використанням марківських ланцюгів першого порядку M_1 :
 - **а)** Отримати стохастичну матрицю для каналу зеленого кольору при обробці пікселів (згідно номеру студента в списку групи, за модулем кількості варіантів):
 - і) По горизонталі, зліва направо $M_1^{\rightarrow}(I_{x,y}, I_{x+1,y})$;
 - іі) По горизонталі, справа наліво $M_1^{\leftarrow}(I_{x,y}, I_{x-1,y})$;
 - ііі) По вертикалі, зверху вниз $M_1^{\downarrow}(I_{x,y}, I_{x,y+1})$;
 - iv) По вертикалі, знизу вгору $M_1^{\uparrow}(I_{x,y}, I_{x,y-1})$;
 - v) По головній діагоналі $M_1^{\searrow}(I_{x,y}, I_{x+1,y+1});$
 - vi) По головній діагоналі $M_1^{\land}(I_{x,y}, I_{x-1,y-1});$
 - vii) По побічній діагоналі $M_1^{\checkmark}(I_{x,y}, I_{x-1,y+1})$;
 - viii) По побічній діагоналі $M_1^{\gamma}(I_{x,y}, I_{x+1,y-1});$

b) В протоколі роботи графічно показати вид марківського ланцюга для діапазону яскравості пікселів $I_{x,y} \in [i; i \times 10]$, де i — номеру студента в списку групи;

Із матриці переходу Q було відібрано діапазон таких станів - [2;20]. І цю підматрицю було відображено у вихідному коді лабораторної у вигляді «кольорової» матриці, кожна клітинка якої має свою інтенсивність кольору в залежності від ймовірності переходу, що лежить в ній. Що вища інтенсивність, то вища ймовірність.

c) Для отриманих марківських ланцюгів перевірити виконання властивості регулярності та рекурентності після проходження 5 ітерацій роботи.

Марківський ланцюг ϵ *регулярним*, якщо його матриця переходів ϵ регулярною. Матриця переходів ϵ регулярною, якщо деякий її степінь містить лише додатні елементи.

Марківський ланцюг є рекурентним, якщо кожен його стан рекурентний, тобто вийшовши з деякого стану, ми колись до нього повернемося. Це можна перевірити за матрицею переходу: на певному кроці (в нашому випадку - на 5) її діагональні елементи мають бути ненульовими.

Перевірка побудованого ланцюга показала, що він володіє властивостями рекурентності і регулярності.