Mathématiques I

Fonctions de deux variables définitions & représentations graphiques

Dr. Mucyo Karemera (enseignant), Prof. Stéphane Guerrier

Matériel disponible en ligne: https://math1-gsi.netlify.app

Licence: CC BY-NC-SA 4.0

Fonctions de deux variables - définition

On considère désormais des fonctions du type suivant.

Définition

Une fonction f deux variables à valeurs réelles est la donnée

- 1) d'un ensemble $A \subset \mathbb{R}^2$,
- 2) d'un ensemble $B \subset \mathbb{R}$,
- 3) d'une formule qui assigne à chaque couple $(x, y) \in A$ une **unique** valeur $z \in B$.

On écrit donc

$$f: A \rightarrow B$$

 $(x,y) \mapsto z = f(x,y).$

Fonctions de deux variables - exemples

• La fonction "moyenne" faisant correspondre à un couple $(x,y) \in \mathbb{R}^2$ le nombre $z = 1/2(x+y) \in \mathbb{R}$. Autrement dit,

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto z = f(x,y) = \frac{1}{2}(x+y).$

La fonction

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto z = f(x,y) = 2x + x^2y^3.$

La fonction

$$f: \mathbb{R}_{+}^{*} \times \mathbb{R} \to \mathbb{R}$$

 $(x,y) \mapsto z = f(x,y) = \frac{4y^{2}}{x^{1.5}} = 4x^{-1.5}y^{2}.$

 L'altitude d'un point sur terre en fonction de la latitude et de la longitude correspond à une fonction de deux variables. Dans ce cas, on a

$$A = \{(x, y) \in \mathbb{R}^2 \mid -90 \leqslant x \leqslant 90, -180 \leqslant y \leqslant 180\},\$$

$$B = \{z \in \mathbb{R} \mid 0 \leqslant z \leqslant 8'848\}.$$

Fonctions de deux variables - "non-exemples"

Les équations suivantes ne correspondent pas à des fonctions z = f(x, y).

- $x^2 + y^2 = z^2$. En effet, il y a deux valeurs de $z \in \mathbb{R}$ possibles pour chaque couple $(x, y) \in \mathbb{R}^2$.
- x = 3. Ici, il n'y a aucune "prescription" pour une valeur z. En d'autres termes, le couple (3,2) peut être associé à z = 1 ou z = 0.
- y = -4. Idem.

Domaine de définition

Le domaine de définition d'une fonction à deux variables est, par définition, un sous-ensemble de \mathbb{R}^2 .

Exemples: Le domaine de définition de

•
$$z = f(x, y) = 2x + x^2y^3$$
 est $\mathcal{D}_f = \mathbb{R}^2$,

•
$$z = f(x, y) = 4x^{-1.5}y^2$$
 est $\mathcal{D}_f = \mathbb{R}_+^* \times \mathbb{R}$,

•
$$z = f(x, y) = \frac{x + y}{\sqrt{x^2 + y^2 - 4}}$$
 est $\mathcal{D}_f = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 > 4\},$

•
$$z = f(x, y) = \ln(xy)$$
 est $\mathcal{D}_f = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y > 0\} \cup \{(x, y) \in \mathbb{R}^2 \mid x < 0, y < 0\}$

Continuité des fonctions de deux variables

La notion de continuité s'étend naturellement aux fonctions à deux variables. Intuitivement, et de façon analogue au cas à une variable, une fonction f de deux variables est continue en un point (x_0,y_0) si de petites variations en x et/ou en y ne produisent que de petits changements en l'image z. Autrement dit, si f est continue en (x_0,y_0) alors, pour $h_1,h_2\in\mathbb{R}$ "petits", on a

$$f(x_0, y_0) \approx f(x_0 + h_1, y_0 + h_2).$$

Bien qu'il y ait une définition précise et formelle de la continuité de fonctions à deux variables, on peut généralement déterminer la continuité de tels fonctions grâce aux principes suivants:

- 1) Une fonction continue d'une variable reste continue lorsqu'elle est considérée comme fonction de deux variables: par exemple, f(x) = x est continue sur \mathbb{R} donc f(x,y) = x est continue sur \mathbb{R}^2 .
- 2) Les opérations élémentaires $+,-,\times,\div$ ainsi que la composition préservent la continuité (sur \mathcal{D}_f): par exemple, f(x,y)=x et g(x,y)=y sont continues sur \mathbb{R}^2 donc $\frac{f}{g}(x,y)=\frac{x}{y}$ est continue sur $\mathbb{R}\times\mathbb{R}^*$.

Graphe de fonctions de deux variables - l'espace \mathbb{R}^3

Le graphe d'une fonction de deux variables f(x,y) peut se représenter dans l'espace à 3 dimensions \mathbb{R}^3 , souvent appelé l'espace Euclidien de dimension 3. Chaque triplet de nombres (x,y,z) correspond à un point de \mathbb{R}^3 .

L'axe vertical correspond (généralement) à l'axe des z.

Graphe de fonctions de deux variables

Le **graphe d'une fonction** z = f(x, y) correspond à une surface dans \mathbb{R}^3 . Cette surface est par définition l'ensemble $\{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y)\}$.

Important!!

 $(x_0, y_0, z_0) \in \mathbb{R}^3$ est sur la surface de $f \Leftrightarrow$ l'égalité $z_0 = f(x_0, y_0)$ est satisfaite.

Graphe de fonctions de deux variables

Il est important de remarquer que, puisque pour chaque valeur $(x,y) \in A$ ne correspond qu'une seule image $z \in B$, une droite verticale ne coupe jamais le graphique d'une fonction en plus d'un point.

$$x^2 + y^2 = z^2$$

$$x = 2$$

$$y = 2$$

Graphe de fonctions de deux variables - courbes de niveau

Une fonction f(x, y) peut aussi se représenter sur un plan grâce aux courbes de niveau. Ce sont typiquement les représentations que l'on a sur les cartes topographiques pour nous donner une idée du relief.

Dr. Mucyo Karemera

¹images provenant de google map et de ce site

Graphe de fonctions de deux variables - courbes de niveau Définition

Soit $c \in \mathbb{R}$ et une fonction f(x, y). Une **courbe de niveau** c **de** f correspond à la courbe donnée par l'ensemble suivant

$$N_c = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = c\}.$$

Graphe de fonctions de deux variables - courbes de niveau Remarque

L'ensemble N_c peut

- 1) être vide, ou être réduit à un seul point (p.ex. $f(x,y) = x^2 + y^2$ si $c \le 0$),
- 2) ne correspondre à aucune fonction d'une variable y = f(x) ou x = f(y) (p.ex. $f(x,y) = x^2 + y^2$ si c > 0).

fonction constante z = 2

Les fonctions du type f(x,y) = ax + by + c, où $a,b \in \mathbb{R}$ et $c \in \mathbb{R}^*$, correspondent à des plans dans \mathbb{R}^3 .

$$z = f(x, y) = -0.2x + 0.8y - 1$$

Courbes de niveau

$$z = f(x, y) = -0.2x + 0.8y - 1$$

$$z = f(x, y) = \frac{1}{2}(x^2 - y^2)$$

Courbes de niveau de

$$z = f(x, y) = \frac{1}{2}(x^2 - y^2)$$

