Technische Universität Berlin Fakultät II – Institut für Mathematik Bärwolff, Neitzel, Penn-Karras

SS 2011 14.10.2011

${\bf Oktober-Klausur}$ Analysis II für Ingenieure

Name:	Vorname:				
MatrNr.:	Studiengang:		• • • • • •		
Neben einem handbeschriebenen A4 Blatt mit	Notizen sind keine	Hilfsmi	ttel zug	elassen.	
Die Lösungen sind in Reinschrift auf A4 Blätt ren können nicht gewertet werden.	ern abzugeben. Mi	t Bleist:	ift gesch	riebene	Klausu-
Geben Sie im Rechenteil immer den vollständ nichts anderes gesagt ist, immer eine kurze Be	-	g und ir	n Verst	ändniste	il, wenn
Die Bearbeitungszeit beträgt 90 Minuten.					
Die Gesamtklausur ist mit 30 von 60 Punkter Klausur mindestens 10 von 30 Punkten erreicht		in jede	m der l	oeiden T	Teile der
Korrektur					
		1	2	3	Σ
	[4	5	6	Σ

Rechenteil

1. Aufgabe 10 Punkte

Gegeben sei $f(x, y) = x \ln(xy)$.

- a) Bestimmen und skizzieren Sie den maximalen Definitionsbereich $D \subset \mathbb{R}^2$ von f.
- b) Geben Sie den Gradienten von f, die Hessematrix von f, und Δf an.
- c) Berechnen Sie die Richtungsableitung von f an der Stelle (1,1) in Richtung $\vec{v} = \frac{1}{\sqrt{5}}(1,2)^T$.
- d) Bestimmen Sie mit Hilfe des Taylorpolynoms 2. Grades von f im Entwicklungspunkt (1,1) näherungsweise $f(\frac{9}{10},\frac{11}{10})$.

2. Aufgabe 10 Punkte

Gegeben sei die Kurve

$$ec{c} \colon [0,1] o \mathbb{R}^3, \quad ec{c}(t) = \left(egin{array}{c} t \sin t \ t \cos t \ t \end{array}
ight),$$

das Vektorfeld

$$ec{v}\colon \mathbb{R}^3 o \mathbb{R}^3, \quad ec{v}(x,y,z) = \left(egin{array}{c} x \ y \ z^2 \end{array}
ight),$$

und die Funktion

$$u \colon \mathbb{R}^3 o \mathbb{R}, \quad u(x, y, z) = z\sqrt{x^2 + y^2 + 2}.$$

a) Weisen Sie nach, dass das skalare Streckenelement ds gegeben ist durch

$$ds = \sqrt{t^2 + 2}dt$$

und berechnene Sie

$$\int\limits_{ec c} u\,ds.$$

b) Berechnen Sie $\int\limits_{\vec{c}} \vec{v} \cdot d\vec{s}$.

3. Aufgabe 10 Punkte

Gegeben sei die Funktion

$$f \colon D \to \mathbb{R}, \qquad f(x,y) = e^{x+y}$$

mit Definitionsbereich

$$D = \{(x, y) \in \mathbb{R}^2 \mid (x - 1)^2 + y^2 \le 2\}.$$

Untersuchen Sie f im Inneren von D auf lokale Extrema und auf ganz D auf globale Extrema.

4. Aufgabe 10 Punkte

Der Bereich $B \subset \mathbb{R}^2$ sei beschrieben durch $B = \{(x,y) \in \mathbb{R}^2 \mid 4 \le x^2 + y^2 \le 9, \quad x \ge 0\}.$

- a) Skizzieren Sie B.
- b) Beschreiben Sie B in Polarkoordinaten.
- c) Berechnen Sie das Integral

$$\iint\limits_{B} \frac{x}{x^2 + y^2} dx dy.$$

5. Aufgabe 10 Punkte

Gegeben sei die Einheitskugel $E = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \leq 1\}$, eine Parametrisierung der Sphäre $S = \partial E$ mit nach außen gerichteten Normalen, sowie das Vektorfeld $\vec{v} : \mathbb{R}^3 \to \mathbb{R}^3$,

$$ec{v}(x,y,z) = \left(egin{array}{c} -y \ -z \ -x \end{array}
ight).$$

a) Zeigen Sie, dass das Vektorfeld $\vec{w}\colon\mathbb{R}^3\to\mathbb{R}^3$ ein Vektorpotential von \vec{v} ist, wobei

$$ec{w}(x,y,z) = \left(egin{array}{c} xy \ yz \ xz \end{array}
ight).$$

b) Begründen oder widerlegen Sie:

$$\iint\limits_{S} \vec{v} \cdot d\vec{O} = 0.$$

c) Besitzt \vec{v} ein Potential?

6. Aufgabe 10 Punkte

- a) Geben Sie (ohne Begründung) Teilmengen $A,B,C,D\subset\mathbb{R}^2$ mit folgenden Eigenschaften an
 - i) A enthält keine Randpunkte.
 - ii) B besteht nur aus Randpunkten.
 - iii) C ist weder offen noch abgeschlossen
- b) Untersuchen Sie die Folgen $(\vec{a}_n)_{n\in\mathbb{N}}$ und $\left(\vec{b}_n\right)_{n\in\mathbb{N}}$ mit

$$ec{a}_n := \left(rac{1}{n^2} \arctan(n), \left(rac{-1}{3}
ight)^n
ight), \quad ec{b}_n := \left(rac{\ln(n)}{n}, \cos(n\pi)
ight)$$

auf Konvergenz. Begründen Sie Ihre Aussagen.

- c) Eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei in (x_0, y_0) partiell differenzierbar aber nicht total differenzierbar. Geben Sie (ohne Begründung) für jede der folgenden Aussagen an, ob diese aus den Voraussetzungen gefolgert werden kann oder nicht.
 - i) f ist an der Stelle (x_0, y_0) nicht stetig.
 - ii) Nicht alle partiellen Ableitungen von f sind an der Stelle (x_0, y_0) stetig.
 - iii) f ist an der Stelle (x_0,y_0) in Richtung $\vec{v}=\frac{1}{\sqrt{2}}(1,1)^T$ differenzierbar.