Signature:

EE103: 2022-2023/I (Autumn)

Quiz-2 Digital Electronics So LUTION

December 05. 2022. (Monday)

Marks: 10

Time: 5:30 PM- 6:00 PM

1. The output expression for the K map shown in figure is _____

(1 Mark)

RS PQ	00	01	11	10 📙	~ o.S
00	_	<u></u>	1		C G L OR + PR
01	1	1	1	1	F= S+ QR + PR
11	1	1	1	1	0.5
10			1	1	

2. In the circuit shown below $\beta = 99$ and $V_{CE} = 9$ V. Determine the ratio $\frac{R_b}{R_c}$.

(1 Mark)

$$I = I_{c} + I_{B} \qquad (1)$$

$$I_{c} = \beta I_{B} \qquad (2) \qquad 0.5$$

$$10 - R_{c}I = 9 \Rightarrow I = \frac{1}{R_{c}} \qquad (3)$$

$$9 - R_{b}I_{B} - 0.7 = 0 \Rightarrow I_{B} = \frac{8.3}{R_{c}} \qquad (4)$$

3. Assume that all the outputs are cleared prior to occurrence of first rising edge of the clock determine

the ratio of F_{out}/F_{Clk} .

Where F_{out} is the frequency of output and F_{Clk} is the frequency of the clock.

(1 Mark)

Q Q Q P O Q Q Q P O Q Pout $Fak = \frac{1}{5} \leftarrow 0.5$

The OPAMP shown in the figure are ideal and they are suitably biased. Determine the following

A. V_{out1}. B. V_{out}.

(2 Marks)

In a sequential circuit, the initial state (before the 1^{st} clock pulse) of the circuit is $Q_1Q_0 = 00$. Write down the truth table for the first five clock pulses and therefore what would be the state (Q1Q0) at the end of 33rd clock pulse. Note that $J_0=\overline{Q_1}$, $K_0=Q_1$, $J_1=Q_0$, $K_1=\overline{Q_0}$. (3.5 Marks) Q 2 Q' 0

The digital circuit shown in figure generates a modified clock pulse at the output 'y'. Draw the output waveform on the graph provided to you below. Assume initial Q=1. (1.5 Marks)

