Analisi Sintattica

Maria Rita Di Berardini¹

¹Dipartimento di Matematica e Informatica Universitá di Camerino mariarita diberardini@unicam.it

Ruolo dell'analisi sintattica

Tipologie di parsing

- Parsing Universali: consentono di effettuare il parsing di una qualsiasi grammatica (piuttosto inefficienti)
- Top-Down Parsing: costruiscono il parse tree dall'alto (radice) verso il basso (foglie)
- Bottom-Up Parsing: costruiscono il parse tree dal basso verso l'alto
- Top-Down e Bottom-Up Parsing
 - funzionano solo per specifiche sottoclassi di grammatiche (LL e LR)
 - sono sufficientemente espressivi per descrivere la maggior parte dei costrutti dei linguaggi di programmazione
 - per le grammatiche LR esistono dei generatori automatici
 - sono più efficienti

Part I

Grammatiche Libere da Contesto

Grammatiche libere da contesto: definizione

Una grammatica libera da contesto è una tupla $G = \langle \Sigma, V, S, P \rangle$ dove:

- **1** Σ è un **alfabeto** finito di simboli (detti simboli **terminali**)
- V è un alfabeto finito di simboli che rappresentano categorie sintattiche (detti anche simboli non terminali)
- \circ $S \in V$ è il simbolo non terminale iniziale
- P è un insieme finito di produzioni, i.e. regole delle forma

$$A \rightarrow X_1 X_2 \dots X_n$$

dove:

- A è un simbolo non terminale $(A \in V)$ detto la **testa** o **parte sinistra** della produzione
- per ogni $j = 1, 2, ..., n, X_i \in (V \cup \Sigma)$
- la stringa $X_1X_2...X_n \in (V \cup \Sigma)^*$ è detta **corpo** o **parte destra** della produzione; può anche essere la stringa vuota $(A \to \varepsilon)$

Notazioni

- Terminali
 - lettere minuscole dell'alfabeto: $a, b, c, \ldots, a', b', c, \ldots$
 - simboli di operatori: +, -, *, . . .
 - simboli di punteggiatura
 - cifre 0...9
 - stringhe in grassetto: if, id, . . .
- Non terminali: lettere maiuscole A, B, C, ..., X, Y, Z
- Stringhe in Σ^* : lettere minuscole u, v, w, x, y, z, ...
- Stringhe in $(V \cup \Sigma)^*$: lettere minuscole $\alpha, \beta, \gamma, \ldots, \alpha_1, \beta_1, \gamma_1, \ldots$
- Se $A \to \alpha_1$, $A \to \alpha_2, \dots, A \to \alpha_n$ sono tutte le produzioni per un dato non terminale A possiamo usare la notazione equivalente

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n$$

Alberi di derivazione

Sia $G = \langle \Sigma, V, S, P \rangle$ una grammatica libera da contesto

- Un albero di derivazione (**parse tree**) di G è un albero i cui nodi sono etichettati con simboli in $V \cup \Sigma$ e tale che:
 - la radice è etichettata con il simbolo S (simbolo iniziale di G)
 - ogni foglia è etichettata con un terminale
 - ogni nodo interno è etichettato con un non terminale A ed i suoi figli, presi da sinistra verso destra, sono etichettati con i simboli X_1, X_2, \ldots, X_k della parte destra di una qualche produzione $A \to X_1 X_2 \ldots X_k$ per A
- La stringa che si ottiene concatenando i simboli associati alle foglie è detta stringa associata all'albero di derivazione
- Un albero è un albero di derivazione per una stringa w se w è la sua stringa associata

Un esempio

Sia $G = \langle \Sigma = \{+, *, (,), -, id\}, V = \{E\}, S = E, P \rangle$ dove l'insieme P delle produzioni è definito da:

$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$$

Il seguente è un albero di derivazione della stringa è $w = \mathbf{id} + \mathbf{id} * \mathbf{id}$

Linguaggio generato: definizione

Sia $G = \langle \Sigma, V =, S, P \rangle$ una grammatica libera da contesto:

- Il **linguaggio generato** da G denotato da L(G) è l'insieme di tutte le stringhe di terminali $w \in \Sigma^*$ tali che esiste un albero di derivazione la cui stringa associata è w
- Possiamo dare una definizione alternativa introducendo il concetto di derivazione di una stringa a partire da una categoria sintattica
- Intuitivamente, una derivazione è una sequenza (eventualmente vuota) di passi di derivazione
- Un passo di derivazione, denotato con \Rightarrow_G , consiste nella riscrittura di un qualche non terminale A con la parte destra di una produzione per A
- Formalmente, sia $\alpha \in (V \cup \Sigma)^*$ contenente <u>almeno</u> un non terminale A ed $A \rightarrow X_1 X_2 \dots X_k \in P$, allora possiamo riscrivere la stringa:

$$\alpha = \beta A \gamma \Rightarrow_{\mathsf{G}} \beta X_1 X_2 \dots X_k \gamma$$

Linguaggio generato: definizione

Sia $G = \langle \Sigma, V =, S, P \rangle$ una grammatica libera da contesto:

• Una derivazione di una stringa $w \in \Sigma^*$ a partire dal simbolo iniziale S è una sequenza

$$S = \alpha_0 \Rightarrow_G \alpha_1 \Rightarrow_G \alpha_2 \dots \Rightarrow_G \alpha_n = w$$

dove, per ogni $j=0,\ldots,n-1$, $\alpha_j\Rightarrow_G\alpha_{j+1}$ è un passo di derivazione

- Se j < n, allora $\alpha_j \in (\Sigma \cup V)^*$ generata a partire da S mediante un certo numero di passi di derivazione (forma sentenziale)
- ullet Se n=0, allora la derivazione è composta dal solo simbolo S
- $S \stackrel{*}{\Rightarrow}_G \alpha$: la stringa α è derivata da S mediante zero o più passi di derivazione
- $S \stackrel{+}{\Rightarrow}_G \alpha$: la stringa α è derivata da S mediante uno o più passi di derivazione

Linguaggio generato: definizione

Sia $G = \langle \Sigma, V =, S, P \rangle$ una grammatica libera da contesto:

ullet Il **linguaggio generato** da G è definito come l'insieme

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow}_G w \}$$

- L'insieme delle stringhe ottenute tramite derivazioni ùguale a quello definito tramite alberi di derivazione
- Ad ogni derivazione possiamo associare un albero di derivazione e viceversa

Un esempio

Sia G la grammatica definita da:

$$E \rightarrow E + E$$
 (1) | $E * E$ (2) | (E) (3) | $- E$ (4) | **id** (5)

e consideriamo la seguente derivazione

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$$

Un esempio

Sia G la grammatica definita da:

$$E \rightarrow E + E$$
 (1) | $E * E$ (2) | (E) (3) | $- E$ (4) | id (5)

e consideriamo la seguente derivazione

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$$

Derivazioni leftmost e rightmost

- Per effettuare un passo di derivazione $\alpha \Rightarrow \alpha'$ dobbiamo:
 - individuare un non terminale A in α , partizionare $\alpha = \beta A \gamma$
 - scegliere una produzione della forma $A \to \delta$ ed effettuare la riscrittura $\alpha = \beta A \gamma \Rightarrow \beta \delta \gamma = \alpha'$
- Possiamo fissare quale non terminale riscrivere di volta in volta
- Derivazioni leftmost: riscriviamo sempre il non terminale più a sinista
- Forma sentenziale sinistra: una qualsiasi forma sentenziale ottenuta durante una derivazione leftmost
- $\bullet \Rightarrow_{lm}$: passo di derivazione leftmost
- ^{*}
 _{lm}: zero o più passi di derivazione leftmost
- \Rightarrow_{lm} : uno o più passi di derivazione leftmost

Derivazioni leftmost e rightmost

- Derivazioni rightmost: riscriviamo sempre il non terminale più a destra
- Forma sentenziale destra: una qualsiasi forma sentenziale ottenuta durante una derivazione rightmost
- ⇒_{rm}: passo di derivazione leftmost
- $\stackrel{*}{\Rightarrow}_{rm}$: zero o più passi di derivazione rightmost
- ⇒_{rm}: uno o più passi di derivazione rightmost

Un esempio

• Sia *G* la grammatica definita da:

$$E \rightarrow E + E \mid E * E \mid (E) \mid - E \mid id$$

• Una possibile derivazione leftmost della stringa $w = i\mathbf{d} + i\mathbf{d} * i\mathbf{d}$:

$$E \Rightarrow_{lm} E + E \Rightarrow_{lm} id + E \Rightarrow_{lm} id + E * E \Rightarrow_{lm} id + id * E \Rightarrow_{lm} id + id * id$$

• Una possibile derivazione rightmost della stringa $w = i\mathbf{d} + i\mathbf{d} * i\mathbf{d}$:

$$E \Rightarrow_{rm} E + E \Rightarrow_{rm} E + E * E \Rightarrow_{rm} E + E * id \Rightarrow_{rm} E + id * id \Rightarrow_{rm} id + id * id$$

Grammatiche Ambigue

- Grammatica è la definizione di un algoritmo (ricorsivo) per generare le stringhe di un linguaggio; questo algoritmo usa per produzioni per costruire l'albero di derivazione per una certa stringa
- Una grammatica si dice ambigua se le sue produzioni permettono di seguire due strade differenti per generare una data stringa
- Esistono due alberi di derivazioni distinti per la stessa stringa o, in maniera alternativa, due derivazioni leftmost o rightmost distinte
- Sia G la grammatica: $E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$
- ullet G ammette due diverse derivazioni leftmost per la stringa $\mathbf{id} + \mathbf{id} * \mathbf{id}$

$$E \Rightarrow_{lm} E + E \Rightarrow_{lm} id + E \Rightarrow_{lm} id + E * E \Rightarrow_{lm} id + id * E \Rightarrow_{lm} id + id * id$$

$$\stackrel{\textbf{E}}{=} \Rightarrow_{lm} \stackrel{\textbf{E}}{=} *E \Rightarrow_{lm} \stackrel{\textbf{E}}{=} +E *E \Rightarrow_{lm} \text{id} + \stackrel{\textbf{E}}{=} *E \Rightarrow_{lm} \text{id} + \text{id} *\stackrel{\textbf{E}}{=} \Rightarrow_{lm} \text{id} + \text{id} *\text{id}$$

Grammatiche Ambigue

• I due alberi di derivazioni corrispondenti alle due derivazioni leftmost dell'esempio precedente

Eliminare l'ambiguità

- Per dimostrare che un grammatica è ambigua basta individuare una stringa w per quale esistono due distinti alberi di derivazione la cui stringa associata è w
- Per dimostrare che una grammatica non è ambigua bisogna provare l'unicità dell'albero di derivazione per ogni stringa generata dalla grammatica
- Indicatori di ambiguità:
 - doppia ricorsione: la testa della produzione compare almeno due volte nel corpo della produzione, es $E \to E + E$
 - ullet soprattutto in presenza di operatori binari, come nel caso del +
- L'ambiguità deve essere eliminata
 - molti algoritmi di parsing falliscono se la grammatica è ambigua
 - riscrittura delle produzioni che lascia inalterato il linguaggio generato

Un costrutto ambiguo: dangling else

```
stmt \rightarrow \mathbf{if} \ expr \ \mathbf{then} \ stmt | \mathbf{if} \ expr \ \mathbf{then} \ stmt \ \mathbf{else} \ stmt | \mathbf{other}
```

Possiamo scrivere un comando del tipo **if** E_1 **then if** E_2 **then** C_1 **else** C_2 , ma, a quale then associare l'else???

- primo then: **if** E_1 **then** (**if** E_2 **then** C_1) **else** C_2
- secondo then if E_1 then (if E_2 then C_1 else C_2)

Caso (1)

Caso (2): quello buono

La nuova grammatica

Modifichiamo la grammatica dei comandi come segue:

```
stmt → matched | unmatched

matched → if expr then matched else matched | other

unmatched → if expr then stmt | if expr then matched else unmatched
```

Un solo albero di derivazione

Associatività e precedenze degli operatori

Consideriamo la grammatica $E \to E + E \mid E * E \mid (E) \mid -E \mid \mathbf{id}$ ed i due seguenti alberi di derivazione per la stringa $w = \mathbf{id} + \mathbf{id} * \mathbf{id}$

Associatività e precedenze degli operatori

- Gli operatori aritmetici hanno delle precedenze: 3 + 5 * 7 = 3 + (5 * 7) e non (3 + 5) * 7
- In base alle regole semantiche il secondo albero è sbagliato
- Associatività degli operatori: si consideri l'espressione 3 + 5 + 7
 - a quale + associamo il 5?
 - se il + associa a sinistra, allora il 5 viene associato con il + alla sua sinistra, e quindi 3 + 5 + 7 = (3 + 5) + 7
 - se il + associa a destra: il 5 viene associato con il + alla sua destra, e quindi 3+5+7=3+(5+7)
- Nel caso dell'espressione 2 1 + 3
 - associatività a sinistra: 2 1 + 3 = (2 1) + 3 = 4
 - associatività a destra: 2 1 + 3 = 2 (1 + 3) = -2

◆ロト ◆御 ▶ ◆ 恵 ▶ ◆ 恵 ● 釣 へ ○

Associatività e precedenze degli operatori

- Come facciamo ad assegnare precedenze ed associatività fra operatori binari attraverso le produzioni della grammatica
 - definire vari livelli di precedenza degli operatori e per ogni livello si crea un simbolo non terminale
 - per ogni livello si indica se l'associatività e a destra o a sinistra
- Per la grammatica che genera il linguaggio delle espressioni fra naturali abbiamo quattro operatori (+, -, *e/) e tre livelli di precedenza:
 - (F): gli operandi, livello di precedenza di precedenza più alto
 - termini (T): operatori * and /, livello di precedenza inferiore a quello dei fattori, associatività a sinistra
 - espressioni (E): operatori + and -, livello di precedenza inferiore a quello dei termine e dei fattori, associatività a sinistra

Una grammatica non ambigua per i numeri naturali

$$F \rightarrow 0 \mid 1 \mid \dots \mid 9 \mid (E)$$

$$T \rightarrow T * F \mid T/F \mid F$$

$$E \rightarrow E + T \mid E - T \mid T$$

Una grammatica non ambigua per i numeri naturali

$$F \rightarrow 0 \mid 1 \mid \dots \mid 9 \mid (E)$$

$$T \rightarrow T * F \mid T/F \mid F$$

$$E \rightarrow E + T \mid E - T \mid T$$

Ricorsione a sinistra

- Una grammatica si dice **ricorsiva a sinistra** se esiste un non terminale A tale che $A \stackrel{+}{\Rightarrow} A\alpha$ per qualche stringa di simboli α
- ullet A si riscrive in uno o più passi nella stringa Alpha
- Ricorsione immediata: esistono produzioni della forma

$$A \rightarrow A\alpha \mid \beta$$

• Dal non terminale A riusciamo a derivare stringhe della forma

$$A \Rightarrow A\alpha \Rightarrow A\alpha\alpha \Rightarrow A\alpha\alpha\alpha \dots \Rightarrow A\alpha \dots \alpha\alpha\alpha \Rightarrow \beta\alpha \dots \alpha\alpha\alpha$$

• Il primo passo genera l'ultima α , il secondo la penultima e così via; l'ultimo genera la β

Eliminare la ricorsione a sinistra

 Riscrivere le produzioni per il non terminale A lasciando inalterato il linguaggio generato

$$A \rightarrow A \alpha \mid \beta$$
 $A \rightarrow \beta A'$
 $A' \rightarrow \alpha A' \mid \varepsilon$

$$E \rightarrow E + T \mid T$$
 $\alpha = +T, \beta = T$ $E \rightarrow TE'$ $E' \rightarrow +TE' \mid \varepsilon$ $T \rightarrow T * F \mid F$ $\alpha = *F, \beta = F$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \varepsilon$ $F \rightarrow (E) \mid id$ $F \rightarrow (E) \mid id$

Eliminare la ricorsione a sinistra

In generale, possiamo avere un insieme di produzioni della forma:

$$A \rightarrow A \alpha_1 \mid A \alpha_2 \mid \ldots \mid A \alpha_m \mid \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$$

dove nessun β_j inizia per A ed ogni $\alpha_i \neq \varepsilon$

Queste produzioni vengono sostituite con

$$A \to \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \varepsilon$$

Questo elimina la ricorsione sinistra immediata

Ricorsione a sinistra non immediata

Consideriamo la seguente grammatica

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid c$

- Ricorsione immediata: $A \rightarrow Ac \mid c$
- Ricorsione non immediata: $S \Rightarrow Aa \Rightarrow Sda$
- Algoritmo per eliminare sistematicamente la ricorsione a sinistra (immediata o meno)
- È garantito funzionare per grammatiche che non hanno:
 - cicli: situazioni del tipo $A \stackrel{+}{\Rightarrow} A$
 - ε -produzioni: produzioni del tipo $A \to \varepsilon$

Algoritmo per eliminare la ricorsione

- Input: una grammatica senze cicli ed ε -produzioni
- Output: una grammatica equivalente senza ricorsione a sinistra
- ① Ordina i non terminali: A_1, A_2, \ldots, A_n
- 2 for k := 1 to n do begin for i := 1 to k - 1 do begin sostituisci ogni produzione della forma $A_k \rightarrow A_i \gamma$ con le produzioni $A_k \to \delta_1 \gamma \mid \delta_2 \gamma \mid \dots \mid \delta_m \gamma$ dove $A_i \rightarrow \delta_1 \mid \delta_2 \mid \dots \mid \delta_m$ sono le attuali produzioni per il non terminale e A_i end

elimina la ricorsione immediata per il non terminale A_k

end

Un esempio

Consideriamo la seguente grammatica

$$\begin{array}{lll} S \rightarrow Aa \mid b & A_1 \rightarrow A_2a \mid b \\ A \rightarrow Ac \mid Sd \mid c & A_2 \rightarrow A_2c \mid A_1d \mid c \end{array}$$

- primo passo k=1
 - **for** i := 1 **to** 1 1 = 0 il for più interno non viene eseguito
 - A₁ non ha ricorsione immediata
- secondo passo k=2
 - for j:=1 to 2-1=1: cerchiamo produzioni della forma $A_2 \rightarrow A_1 \gamma$
 - abbiamo una sola produzione di quella forma $A_2 \rightarrow A_1 d \ (\gamma = d)$
 - le produzioni correnti per A_1 sono: $A_1 \rightarrow A_2 a \mid b \ (\delta_1 = A_2 a, \delta_2 b)$
 - $A_2 \rightarrow A_1 d$ viene sostituita con le produzioni

$$A_2 \rightarrow A_2 ad(\delta_1 \gamma) \mid bd(\delta_2 \gamma)$$

Dobbiamo eliminare la ricorsione sinistra per A_2

Un esempio

- secondo passo k=2
 - ..
 - eliminare la ricorsione per A_2 : $A_2 \rightarrow A_2 ad \mid bd(\alpha = ad, \beta = bd)$:

$$A_2 \to bdA_2' A_2' \to adA_2' \mid \varepsilon$$

Otteniamo così la seguente grammatica senza ricorsione

$$A_1 \rightarrow A_2 a \mid b$$

$$A_2 \to bdA_2'$$

$$A_2' \to adA_2' \mid \varepsilon$$

Fattorizzazione a sinistra

Supponiamo di avere la seguente grammatica:

$$S \rightarrow \text{if } E \text{ then } S \mid \text{if } E \text{ then } S \text{ else } S \mid \mathbf{a} E \rightarrow \mathbf{b}$$

- e di aver riconosciuto sulla stringa in input il token **if**; quale delle due produzioni usare per espandere S?
- Vorrei poter effettuare questa scelta in maniera predittiva (cioè, senza backtracking)
- La soluzione di questo problema consiste nel "fattorizzare" in base al prefisso comune delle due alternative, cioè **if** *E* **then** *S*

$$S \rightarrow \text{if } E \text{ then } S S' \mid \mathbf{a}$$

 $S' \rightarrow \text{else } S \mid \varepsilon$
 $E \rightarrow \mathbf{b}$

 In questo modo rimandiamo la scelta a quando avremo esaminato abbastanza input da decidere

Fattorizzazione a sinistra: algoritmo

- Input: una grammatica G
- Output: una grammatica equivalente fattorizzata a sinistra
- Per ogni non terminale A:
 - ullet trova il più lungo prefisso lpha per le sue alternative
 - se $\alpha \neq \varepsilon$ rimpiazza

$$A \to \alpha \beta_1 \mid \alpha \beta_2 \mid \ldots \mid \alpha \beta_n \mid \gamma_1 \mid \gamma_2 \mid \ldots \mid \gamma_k$$

con

$$A \to \alpha A' \mid \gamma_1 \mid \gamma_2 \mid \dots \mid \gamma_k$$

$$A' \to \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

