

Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 3: Populating models - effectiveness 3.2: Key concepts

Objectives

- Appreciate the complementary roles of evidence synthesis and decision modelling.
- Understand the general principles of evidence synthesis including the role of observational data.

Why evidence synthesis and decision modelling?

- A single source is unlikely to provide evidence on final endpoints required for decision making (e.g. lifetime QALYs and costs) for all comparators
- Evidence synthesis and modelling allows:
 - Inclusion of all relevant comparators
 - Combining relevant sources of evidence
 - Linkage of short-term outcomes to longer term impact (extrapolation)
 - Generalisability to population/setting of interest
 - Assessment of how uncertainty in relationships and evidence translates to uncertainty in decision
 - Scientific and value judgments to be made explicit

Evidence synthesis to inform decision models

- Pooling results from multiple studies to inform parameter(s) inputs to decision model
 - Typically used for relative treatment effects
 - Can also be used for baseline outcomes (for reference treatment)
- Why pool?
 - To reduce problems of interpretation due to sampling variation
 - To facilitate synthesis of results from multiple studies
 - To quantify effect sizes and their uncertainty
- Evidence should be identified using systematic literature review
 - e.g. https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf

General principles of evidence synthesis

- 1. Inclusion/exclusion criteria should reflect target population for decision
 - Population (subgroups), Intervention, Comparators, Outcomes
- Relevance of data sources to decision problem must be discussed/explored
 - Differences in trial populations (severity, previous treatments etc.)
 - Differences in treatment regimens/doses
 - Differences in controls (Best supportive care, placebo, older ineffective treatments)
 - Differences in outcomes (definitions, measures, treatment switching)
 - Any adjustments made

General principles of evidence synthesis (cont)

- 3. Statistical heterogeneity should be taken into account
 - Assessing heterogeneity Q statistics, I², between studies variance, compare fit of fixed and random effects models
 - Assess inconsistency in network meta-analysis
 - Subgroup-analysis, meta-regression
- The origin and rationale for the parameter values used in the model should be described and justified
 - Clear description of data sources, rationale for selection
 - Description of synthesis methods (model and code, model fit)
 - Justification of assumptions made (and sensitivity analysis)
 - Results of synthesis
 - Source of baseline used to get absolute effects for decision model

Role of observational data

- 1. OK for defining the baseline
- OK for mapping from shorter-term RCT outcomes to longer term clinical outcomes or QALYs (e.g. informing extrapolation of survival curves)
- 3. Not usually OK for estimating relative treatment effects
- Unless
 - No RCT, or if RCT data sparse
 - Potential bias should be taken into account and integrated into analysis by valid methods, including sensitivity analysis

Summary

- Evidence synthesis can provide important information on relative effectiveness (and potentially baseline outcomes)
- Potentially for all relevant compactors
- Bringing together multiple relevant data sources
- But
 - Is not the sole source of evidence considered important to a decision
 - Will not give estimates of costs or QALYs over an appropriate time horizon
- Decision modelling brings together all forms of evidence
 - Provides outputs required for decision making