

planetmath.org

Math for the people, by the people.

finite and countable discrete spaces

 ${\bf Canonical\ name} \quad {\bf Finite And Countable Discrete Spaces}$

Date of creation 2013-03-22 15:17:11 Last modified on 2013-03-22 15:17:11

Owner matte (1858) Last modified by matte (1858)

Numerical id 9

Author matte (1858) Entry type Theorem Classification msc 54-00 **Theorem 1.** Suppose $X \neq \emptyset$ is equipped with the discrete topology.

- 1. If X if finite, then X is homeomorphic to $\{1, \ldots, n\}$ for some $n \geq 1$.
- 2. If X if countable, then X is homeomorphic to \mathbb{Z} .

Here, $\{1, \ldots, n\}$ and \mathbb{Z} are endowed with the discrete topology (or, equivalently, the subspace topology from \mathbb{R}).

Proof. The first claim will be proven. If

$$X = \{a_1, \dots, a_n\}$$

let $\Phi \colon \{1, \dots, n\} \to X$ be

$$\Phi(i) = a_i, \quad i = 1, \dots, n.$$

Since Φ is a bijection, it is a homeomorphism.

The proof of the second claim is to that of the first.