Projet P8 OC DS : Déployez un modèle dans le cloud

Candidat : David Capelle Date de soutenance : 04/02/2022

Evaluateur: Emmanuel Haback Li

Mentor: Nicolas Michel

Plan de la soutenance

- Présentation du projet
- Présentation du jeu de données
- Présentation générale du Big Data et Apache Spark
- Panorama de l'architecture Big Data AWS pour le machine learning
- Présentation des composants AWS utilisées dans le projet
- Présentation de la chaîne de traitement
- Conclusion et recommandations

Présentation du projet

Contexte:

- la société **Fruits!** propose des solutions innovantes pour la récolte des fruits (comme des robots cueilleurs)
- volonté de proposer une application mobile permettant de reconnaître les fruits à partir d'une photo

Objectifs:

- développement d'une chaîne de traitement (couvrant pre-processing et réduction de dimensions) dans un environnement Big Data sur le cloud permettant :
 - la prise en compte des considérations de scaling
 - la mise à disposition de configurations serveurs à la demande

Présentation du jeu de données

Données en chiffres sur la base de données « Fruits 360 » :

- 90483 images représentant des fruits et légumes, répartis en 131 catégories
- jeu de données d'entraînement avec 67692 images et
 22688 pour le jeu de test
- Caractéristiques des images :

- images au format jpeg, classées par catégories
- présence de plusieurs variétés par fruit/légume
- Rotation du fruit sur 3 axes, à 360°

Pourquoi le Big Data?

- Définition: stratégies et technologies mises en œuvre pour rassembler, organiser, stocker et analyser de vastes ensembles de données.
- Utilité du Big Data: à partir du moment où la quantité de données excède la faculté d'une machine à les stocker et les analyser en un temps acceptable.
- Outre le stockage des données, nécessité de distribuer les calculs d'analyse sur plusieurs machines avec ses problématiques (stratégies de distribution des données, maîtrise des coûts de l'architecture,...).

Big Data - Les enjeux des 3V

- Volume (volume de données) : la quantité de données générées est en constante augmentation. L'architecture Big Data doit être capable de traiter un nombre conséquent de données et d'informations.
- Vélocité (traitement en temps réel): les données sont générées plus rapidement et dans des temps beaucoup plus courts. Les entreprises sont obligées de les collecter et de les partager en temps réel.
- Variété (hétérogénéité des données): les types de données et leurs sources sont de plus en plus diversifiés (géolocalisation, réseaux sociaux, texte, web, images, vidéos, tweets, audio,...) avec des données structurées/non structurées.

Nécessité de de mettre en place des outils de stockage/base de données appropriés.

Apache Spark Spark

- Framework de traitement distribué open source utilisé pour les traitements Big Data
- Utilisation de la mise en cache en mémoire et l'exécution optimisée des requêtes
- API de développement en Java, Scala, Python (PySpark), R et l'accès à différents module (workloads)

Architecture Big Data AWS pour ML

Composants Big Data AWS du projet

AWS IAM (Identity and Access Management)

- Permet de gérer les services AWS accessibles à un compte IAM (utilisateur).
- Distinction utilisateur racine / utilisateur IAM
- Création de rôles à partir de stratégies d'autorisations
- Possibilité de donner des droits très fins à l'utilisateur pour l'accès à une ressource AWS.
- Ce que n'est pas IAM :
 - Ne permet pas de gérer les permissions des applications (application web ou de ML,...)
 - N'est pas un OS de management d'identités type LDAP ou active directory

AWS Sagemaker

- Service AWS pour la préparation, la création, l'entraînement et le déploiement de modèles ML.
- Composants:
 - préparation des données (Data wrangler, Ground Truth, Feature Store,...)
 - développement de modèles (Studio, notebook Jupyter,...)
 - entraînement de modèles (Debugger, bibliothèque d'entraînement distribué,...)
 - déploiement (Pipeline, Model monitor,...)
- Avantages:
 - facilité d'industrialisation
 - modèles pré-packagés AWS et customisation
 - scalabilité des modèles
 - monitoring de modèles en production,...

AWS S3 (Simple Storage Service)

- Service de stockage des données
- Organisation des données (images, fichiers texte, ...) sous forme d'objets dans des buckets (compartiments)
- Gestion des accès aux buckets
- Différents types de stockage (standard, Standard accès peu fréquent, Glacier,...)
- Avantages:
 - gestion fine des droits d'accès aux objets du bucket.
 - versioning des objets
 - élasticité (pas de limite en termes de capacité de stockage)
 - disponibilité (réduction du risque de pannes)

Etapes de la chaîne de traitement

Pré-requis - Création d'un utilisateur IAM

- Création d'un utilisateur IAM (david_oc) à partir de l'utilisateur racine
- Création d'un rôle IAM pour l'accès à S3 depuis Sagemaker basé sur la stratégie « AmazonSageMakerFullAccess »
- Récupération de la clé d'accès AWS et de la clé secrète.

Etapes de la chaîne de traitement Pré-requis - Création d'un bucket S3

- Création d'un bucket S3 (p8-mldl-s3-bucket)
- Chargement des images depuis un répertoire en local

Etapes de la chaîne de traitement Pré-requis - Création instance notebook Jupyter - Sagemaker

- Création d'une instance notebook Jupyter dans Sagemaker de type ml.t2.xlarge reliée à S3
- Autorisations : application du rôle créé dans IAM pour accès S3 depuis Sagemaker

Etapes de la chaîne de traitement

Schéma du traitement des images dans notebook Jupyter

Etapes de la chaîne de traitement Création d'une instance SparkSession

- Point d'entrée vers Spark pour travailler avec RDD, Dataframe et Dataset
- Chargement des fichiers Sagemaker Jar, extraction des clés d'identification par botocore pour accès S3

```
session = botocore.session.get_session()
credentials = session.get_credentials()

conf = (SparkConf()
    .set("spark.driver.extraClassPath", ":".join(sagemaker_pyspark.classpath_jars())))

spark = (
    SparkSession
    .builder
    .config(conf=conf) \
    .config('fs.s3a.access.key', credentials.access_key) \
    .config('fs.s3a.secret.key', credentials.secret_key) \
    .config("spark.driver.memory", "15g") \
    .master('local[*]') \
    .appName('P8_OC_dc') \
    .getOrCreate()
)

sc = spark.sparkContext
```

```
Entrée [14]: # Affichage du contexte pyspark

SparkContext

Spark UI

Version

v2.4.0

Master

local[*]

AppName

P8_OC_dc
```

Etapes de la chaîne de traitement Chargement des images à partir du bucket S3

- Création d'une dataframe Spark pour récupérer les images et leurs chemins
- Ajout des colonnes catégorie, des caractéristiques de l'image (largeur, hauteur, nombre canaux), vecteur initial de l'image

```
# Fonction pour le chargement des données
def load data(path img):
    '''Chargement des dataframes:
    Entrée:
    - path image: répertoire qui contient les sous répertoires contenant les images
    Retour:
    df img: un spark dataframe contenant les images et le nom des fruits associés
    # Compteur
    start = time.time()
    # Chargement dataframe spark avec les images
    df img = spark.read.format("image").load(path img, inferschema=True)
    print('Chargement des images effectué')
    df_img = df_img.withColumn("fileName", regexp_replace('image.origin', 'dbfs:/mnt/images/', ''))
    split_col =split(df_img['fileName'], '/')
    df img = df img.withColumn('categorie', split col.getItem(3))
    df img disp = df img.select('image', 'image.origin', "image.height", "image.width", "image.nChannels", "image.mode", "image.data
    df img trait = df img.select('image.origin', "image.height", "image.width", "image.nChannels", "image.mode", "image.data", 'cate
    print('Temps de chargement des images : {} secondes'.format(time.strftime('%S', time.gmtime(time.time()-start))))
    return df img trait, df img disp
```

```
: # Affichage des 20 premières images
  images trait.show(20)
                origin|height|width|nChannels|mode|
  |s3a://p8-mldl-s3-...|
  |s3a://p8-mldl-s3-...|
  |s3a://p8-mldl-s3-...|
                                                                           pear 1
                         527 411
  |s3a://p8-mldl-s3-...|
                                                                            pear 1
  |s3a://p8-mldl-s3-...| 435| 538|
                          527 421
  |s3a://p8-mldl-s3-...|
  |s3a://p8-mldl-s3-...|
                                                                           pear 1
  |s3a://p8-mldl-s3-...|
                               537
                                                                            pear 1
  |s3a://p8-mldl-s3-...|
                          527 417
                                                                            pear 1
  |s3a://p8-mldl-s3-...|
  |s3a://p8-mldl-s3-...|
  |s3a://p8-mldl-s3-...|
                                               16|[FF FF FF FF FF F...|cucumber 1
  |s3a://p8-mldl-s3-...|
                          434
                                534
                               325 İ
  |s3a://p8-mldl-s3-...|
                          803 l
                                               16|[FF FF FF FF FF F...|cucumber 1
  |s3a://p8-mldl-s3-...|
                          527
  |s3a://p8-mldl-s3-...|
                          526
                                                                            pear 1
                          433
                               554
  |s3a://p8-mldl-s3-...|
                                                                           pear 1
  |s3a://p8-mldl-s3-...|
                          434
                                                                           pear 1
  |s3a://p8-mldl-s3-...|
                          798
  |s3a://p8-mldl-s3-...|
                          435 541
  only showing top 20 rows
```

Etapes de la chaîne de traitement Extraction des features par modèle pré-entraîné VGG16

- Initialisation d'un modèle VGG16 pré-entraîné sur un base Imagenet
- Chargement, redimensionnement image 224*224 pixels, conversion image en array, preprocess et extraction features (fonction predict)

```
model = VGG16(include top=False, weights='imagenet', pooling='max',input shape=(224, 224, 3))
model.summarv()
# Récupération des ressources sur le service AWS S3
s3 client = boto3.client("s3")
s3 = boto3.resource('s3')
bucket = s3.Bucket(bucket name)
vgg16 features=[]
for my bucket object in bucket.objects.all():
    if my bucket object.key.endswith('jpg'):
        file byte string = s3 client.get object(Bucket=bucket name, Key=my bucket object.key)['Body'].read()
        # Charaement de l'imaae
        img = Image.open(BytesIO(file byte string))
        # Redimensionnement de l'image en 224*224 pixels
        img redim = img.resize((224, 224))
        # Conversion de l'image en array
        img array = image.img to array(img redim).reshape((-1,224,224,3))
        img array = np.array(img array)
        # Pre-processina des images
        img array = preprocess input(img array)
        # Extraction de features pour un image
        feature = model.predict(img array).ravel().tolist()
```

origin	height	width	nChannels	mode						data	categorie	feature
s3a://p8-mldl-s3	435	540	3	16	[FF	FF	FF	FF	FF	F	pear_1	[60.2613334655761
s3a://p8-mldl-s3	434	532	3	16	[FF	FF	FF	FF	FF	F	pear_1	[70.5976409912109
s3a://p8-mldl-s3	526	421	3	16	[FF	FF	FF	FF	FF	F	pear_1	[56.7357063293457
s3a://p8-mldl-s3	527	411	3	16	[FF	FF	FF	FF	FF	F	pear_1	[56.5463790893554
s3a://p8-mldl-s3	435	538	3	16	[FF	FF	FF	FF	FF	F	pear_1	[56.8080062866210
s3a://p8-mldl-s3	527	421	3	16	[FF	FF	FF	FF	FF	F	pear_1	[59.5471496582031
s3a://p8-mldl-s3	434	538	3	16	[FF	FF	FF	FF	FF	F	pear_1	[46.6975746154785
s3a://p8-mldl-s3	435	537	3	16	[FF	FF	FF	FF	FF	F	pear_1	[47.8209075927734
s3a://p8-mldl-s3	527	417	3	16	[FF	FF	FF	FF	FF	F	pear_1	[53.1864929199218
s3a://p8-mldl-s3	433	525	3	16	[FF	FF	FF	FF	FF	F	pear_1	[52.2564659118652
3a://p8-mldl-s3	435	539	3	16	[FF	FF	FF	FF	FF	F	pear_1	[51.8170127868652
s3a://p8-mldl-s3	798	323	3	16	[FF	FF	FF	FF	FF	F	cucumber_1	[48.6805343627929
s3a://p8-mldl-s3	434	534	3	16	[FF	FF	FF	FF	FF	F	pear_1	[61.0049324035644
s3a://p8-mldl-s3	803	325	3	16	[FF	FF	FF	FF	FF	F	cucumber_1	[50.0950622558593
s3a://p8-mldl-s3	527	418	3	16	[FF	FF	FF	FF	FF	F	pear_1	[55.3948707580566
s3a://p8-mldl-s3	526	435	3	16	[FF	FF	FF	FF	FF	F	pear_1	[55.1200256347656
s3a://p8-mldl-s3	433	554	3	16	[FF	FF	FF	FF	FF	F	pear_1	[55.2945518493652
s3a://p8-mldl-s3	434	535	3	16	[FF	FF	FF	FF	FF	F	pear_1	[46.9456710815429
s3a://p8-mldl-s3	798	324	3	16	[FF	FF	FF	FF	FF	F	cucumber_1	[51.0811386108398
s3a://p8-mldl-s3	435	541	3	16	[FF	FF	FF	FF	FF	F	pear_1	[43.2085037231445

only showing top 20 rows

Etapes de la chaîne de traitement Réduction de dimensions PCA avec SparkMLib

- Transformation des features en vecteurs dense par une fonction utilisateur avec udf
- Réalisation d'une PCA avec 100 composantes principales (SparkMLib)

```
# Fonction pour réduction de dimensions PCA
def reduc dim pca(features):
    '''Réduction des dimensions PCA sur les feature
    Entrée:
   - features de l\'image
    Retour:
    - pca matrix: résultat de la réduction de dimensions
    # Conversion d'un tableau (array) en vecteur dense
    # Création d'un fonction utilisateur avec udf
    vector dense = udf(lambda x: Vectors.dense(x), VectorUDT())
    img vd df = features.select('origin', 'categorie', 'features', vector dense("features").alias("features vd"))
    # PCA
    pca_spark = PCA(inputCol="features_vd", outputCol="features_pca", k=100)
    pca = pca spark.fit(img vd df)
    pca matrix = pca.transform(img vd df)
    return pca, pca matrix
```

Etapes de la chaîne de traitement Résultats - Matrice avec sortie réduction de dimensions

- Production d'une matrice de sortie sous la forme d'une dataframe Spark
- Affichage du diagramme des éboulis (on peut envisager une compression des images d'un facteur 2,5).

Etapes de la chaîne de traitement Sauvegarde des résultats sur un bucket S3

- Création d'un nouveau bucket (p8-mldl-s3-bucket-matrix)
- Transformation d'une dataframe Spark en dataframe Pandas et enregistrement au format csv
- Sauvegarde dans le bucket avec le nom p8_result_with_pca.csv

```
# Fonction pour la sauvegarde d'un fichier csv sur un bucket s3
def save csv bucket s3(pca matrix, file name, bucket name):
    '''Sauvegarde résultats dans bucket S3 sous forme d'un fichier csv
   Entrée:
   - pca matrix
     dataframe pyspark
   - nom du fichier crsv à sauvegarder
      string
   - bucket name: nom du bucket s3
   Retour:
    - N/A
   s3 resource = boto3.resource('s3')
   # Création d'un buffer
   csv buffer = StringIO()
   # Transformation dans un structure dataframe pandas
    pca matrix.toPandas().to csv(csv buffer)
    # Ecriture du fichier csv dans le bucket s3
   s3 resource.Object(bucket name, file name).put(Body=csv buffer.getvalue())
```

Conclusion - Limites

- Le projet a permis de déployer un développement ML sur le cloud en environnement Big Data, en utilisant :
 - Apache Spark et Pyspark pour les traitements distribués
 - AWS IAM pour la gestion des utilisateurs et des autorisations
 - AWS S3 pour le stockage des données
 - AWS Sagemaker pour le développement de modèles
 - avec peu de packages supplémentaires (sauf TensorFlow)
 - le notebook Jupyter permet de travailler directement sur le cloud
- Limites de Sagemaker :
 - outil payant
 - problèmes ponctuels de plantage du notebook Jupyter
 - nécessité d'ajuster le niveau de RAM pour la Java Heap size (Spark session)

Perspectives

- Utilisation des résultats en sortie pour mise en œuvre d'un moteur de classification des images
- Utilisation d'autres services AWS en production :
 - service AWS EMR (clusters) pour le scaling horizontal
 - module Model monitor de SageMaker pour surveiller la qualité de prédictions du modèle (analyse dérive)
- Etude pour maîtriser les coûts de déploiement de de maintenance sur AWS