Test task (Data Scientist) Yushkevich Natallia

CV:

https://drive.google.com/file/d/1qmeZXf1taQ8C_zPMA_upfHYp1zQlURjg/view?usp=sharing

Project:

https://github.com/YushkevichNV/A1-tasks

- Using historical data, build a time series model.
- Predict the daily behavior of the series in the next 3 months.
- Explain the choice of the forecasting method.
- Give an estimate of the forecast quality.

The data is displayed as a time series, where the x-axis is the day and the y-axis is the quantity.

Fig. 1.1 - Time series

The graph does not show any trend or seasonality (fig. 1.2). This suggests that the time series is stationary.

Fig. 1.2 - Components of the time series

Fig. 1.3 - ACF, PACF

The Dickey-Fuller test showed that p-value = 0,000002.

p-value < 0.05, so the time series is stationary.

The PACF (fig. 1.3b) plot has a significant spike at lag 1 and less significant at p = [2; 8]. The ACF (fig. 1.3a) plot fades more smoothly. This may suggest an ARIMA(p, d, 0) model, where p can be taken from 1 to 8.

Since the series is stationary, d = 0.

Split the data into training and validation data:

- train_df = df[:'2019-03-31']
- test_df = df['2019-04-01':]

We trained the model ARIMA(8, 0, 0).

<u>Metrics</u>: MAPE = 12,77%, MAE = 414,17, MSE = 312250,57.

Fig. 1.4 - Training, validaation and prediction

Fig. 1.5 - Finaly result

- Predict the values of the Target variable for the data set on the "Validate" sheet.
- Explain the choice of method.
- Give estimates of accuracy and quality of the predictive model.
- Construct an ROC-curve.
- Name the three most important predictors.

Preliminary analysis.

- Training datase has 10 000 rows.
- Validation dataset has 20 000 rows.
- No duplicate rows.
- All data is of type 'float64' or 'int64'.
- No uninformative data.
- There is no accompanying documentation for the data, so the column values remain unclear.
- Target has values 0 or 1 (binary classification).
- There is no class imbalance.

Missing values:

- P2 14.92 %
- P3 14.85 %
- P8 15.11 %

Missing values:

- P16 15.09 %
- P25 15.08 %
- P29 15.15 %

Missing values:

- We can say that the shapes of the histograms for the different target variables are similar.
- All distributions have offsets, so it is better not to replace the mean of the omissions.
- Replace the missing values with the median.

Correlating features:

- $P1 \rightarrow P5$
- $P17 \rightarrow P25$
- $P22 \rightarrow P23$
- Delete the column P5, because P1 more informative.
- We leave the other columns in the dataset.

Model building:

- Use QuantileTransformer to make the data more even.
- We solve the problem of binary classification (classes are balanced).
- Binary classification approaches are usually similar to logistic regression models. We can also use the method of gradient descent.
- To evaluate the quality of the model we will use ROC-AUC (area under the error curve).

<u>Baseline model</u> CatBoostClassifier():

- accuracy = 0.688
- precision = 0.687
- recall = 0.692
- f1= 0.689
- roc-auc = 0.749

Selection of model parameters.

For the selection of model parameters we used GridSearchCV.

The best parameters:

- depth = 7,
- iterations = 1000,
- 12_leaf_reg = 2,
- learning_rate = 0.01

CatBoostClassifier(depth = 7, iterations = 1000, I2_leaf_reg = 2,

learning_rate = 0.01):

• accuracy = 0.690

• precision = 0.686

- recall = 0.698
- f1= 0.692
- roc-auc = 0.750

All metrics have improved.

The three most important predictors.

We used 'SHAP' to find the most important features. The SHAP library calculates Shapley values to estimate the importance of a feature. To estimate the importance of a feature, the predictions of the model with and without the feature are evaluated.

Top 3 predictors with a coefficient of significance:

- P16 0.314024
- P10 0.203953
- P23 0.187523

Let's train the model CatBoostClassifier(depth = 7, iterations = 1000, l2_leaf_reg = 2, learning_rate = 0.01) with features with a significance coefficient greater than 0.02.

- accuracy = 0.692
- precision = 0.692
- recall = 0.690
- f1= 0.691
- roc-auc = 0.751

All metrics (except f1) have improved.

Final model:

• CatBoostClassifier(depth = 7, iterations = 1000, I2_leaf_reg = 2, learning_rate = 0.01)

• Features with a significance coefficient greater than 0.02.

1. Directions for tariff plan changes.

Tariffs from which were switched and numbers of transitions:

1: 2059

• 2:609

• 3: 2800

• 4: 662

• 5: 276

Fig. 3.1 - From which tariff plans there were transfers.

Tariffs to which the transition was madeand numbers of

transitions:

• 1: 165

• 2:41

• 3: 224

• 4:958

• 5: 4952

Fig. 3.2 - To which tariff plans the transition was made.

Fig. 3.3 - Transitions

Fig. 3.4 - Number of transitions

- From the diagrams in fig. 3.3, 3.4 we can see that more often transitions were from tariffs with a smaller id to a tariff with a larger id.
- From this we can conclude that each successive plan is better than the previous one.
- The least number of conversions was from tariff 5 (fig. 3.2).
- From tariff 3 and 1 there were the most number of transitions (fig.3.1).
- There are transitions to the same plan (fig. 3.3). This indicates that the subscriber stopped using the services, but then came back.
- The most often transitions are: $3 \rightarrow 5$ (2372), $1 \rightarrow 5$ (1613), $4 \rightarrow 5$ (528).

2. How much the average monthly bill of subscribers has changed?

Fig. 3.5 - How much has changed in the average monthly bill of subscribers.

1 to 1	-1.591583
1 to 2	-1.139267
1 to 3	-1.260509
1 to 4	-1.852773
1 to 5	-2.070950
2 to 1	-0.946949
2 to 3	-3.348283
2 to 4	-1.753408
2 to 5	-1.634030
3 to 1	-0.898202
3 to 2	2.793472
3 to 3	-0.984714

3 to 4	-2.412072
3 to 5	-2.176663
4 to 1	0.760396
4 to 2	0.801367
4 to 3	-0.093776
4 to 4	0.093167
4 to 5	-0.366195
5 to 1	-0.775825
5 to 2	1.023000
5 to 3	0.231436
5 to 4	-2.191085
5 to 5	-0.869030

Table 1. Changes in average bill over a three-month period

- The directions of tariff plan changes, which are characterized by an increase in the average bill in the three-month period: $3 \rightarrow 2$, $5 \rightarrow 2$, $4 \rightarrow 2$, $4 \rightarrow 1$, $5 \rightarrow 3$.
- The directions of tariff plan changes, which are characterized by an reduction in the average bill in the three-month period: $2 \rightarrow 3$, $3 \rightarrow 4$, $5 \rightarrow 4$, $3 \rightarrow 5$, $1 \rightarrow 5$, $1 \rightarrow 4$, $2 \rightarrow 4$, $2 \rightarrow 5$, $1 \rightarrow 3$, $1 \rightarrow 2$, $2 \rightarrow 1$, $3 \rightarrow 1$, $5 \rightarrow 1$, $4 \rightarrow 5$, $4 \rightarrow 3$.
- The most expensive plan is 2.
- The most cheep plan is 4.

- Subscribers usually switched to a tariff plan with a smaller bill.
- Some people prefere to a more expensive tariff plan (3 \rightarrow 2). Maybe the plan 2 includes more services then 3.
- From the fig. 3.3 we can see that a small number of people prefere more expensive tariff plan.
- Total bill change: -1.826

3. Changing the blocking frequency

Fig. 3.5 - Changing the blocking frequency

1 to 2	0.4
1 to 3	-0.01818182
1 to 4	-0.01587302
1 to 5	-0.02107874
2 to 1	0.30769231
2 to 3	0
2 to 4	0.15189873
2 to 5	0.03597122
3 to 1	0.10714286
3 to 2	-0.75

3 to 4	0.07084469
3 to 5	-0.03794266
4 to 1	0.05405405
4 to 2	0.05
4 to 3	0.07142857
4 to 5	0.04545455
5 to 1	0.07407407
5 to 2	0
5 to 3	0.10666667
5 to 4	0.10204082

- The number of blockages has increased: $1 \rightarrow 2$, $2 \rightarrow 1$, $2 \rightarrow 4$, $5 \rightarrow 3$, $5 \rightarrow 4$, $5 \rightarrow 1$, $4 \rightarrow 1$, $2 \rightarrow 5$
- The number of blockages has decreased: $3 \rightarrow 2$, $3 \rightarrow 1$, $4 \rightarrow 3$, $3 \rightarrow 4$, $4 \rightarrow 2$, $4 \rightarrow 5$, $3 \rightarrow 5$, $1 \rightarrow 5$, $1 \rightarrow 3$, $1 \rightarrow 4$.
- The number of blockages has not changed: $5 \rightarrow 2$, $2 \rightarrow 3$.
- General average change in the level of blockages -0.021.
- We can say that the number of blockages has not changed significantly.