Respuestas a la autoevaluación

I) F II) V III) F IV) F V) V VI) V VII) V

PROBLEMAS 5.5

De los problemas 1 al 14 determine si el conjunto dado es una base para el espacio vectorial a que se refiere.

1. En
$$P_2$$
: $-6 - 2x + 3x^2$, $-8 - x + 6x^2$, $-4 - x + 5x^2$, $1 - x + x^2$

2. En
$$P_2$$
: $1 - x^2$, x

3. En
$$P_2$$
: 5 – x + 8 x^2 , 1 + x , 1 + 2 x^2

4. En
$$P_2$$
: $1 + 3x + 7x^2$, $5 + 12x + 35x^2$, $8 + 5x - 12x^2$

5. En
$$P_2$$
: $x^2 - 1$, $x^2 - 2$, $x^2 - 3$

6. En
$$P_3$$
: x , $1 + x$, $x + 2x^2$, $x + 3x^3$

7. En
$$P_2$$
: $10 - x - 10x^2$, $-23 + 14x + 53x^2$, $-1 + 4x + 11x^2$

8. En
$$P_3$$
: 3, $x^3 - 4x + 6$, x^2

9. En
$$M_{22}$$
: $\begin{pmatrix} 6 & 10 \\ 1 & -10 \end{pmatrix}$, $\begin{pmatrix} 6 & 11 \\ -7 & 10 \end{pmatrix}$, $\begin{pmatrix} -9 & 8 \\ -2 & -4 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 8 & -20 \end{pmatrix}$

10. En
$$M_{22}$$
: $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$, donde $abcd \neq 0$

11. En
$$M_{22}$$
: $\begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix}$, $\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$, $\begin{pmatrix} -6 & 1 \\ 5 & 8 \end{pmatrix}$, $\begin{pmatrix} 7 & -2 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

12.
$$H = \{(x, y) \in \mathbb{R}^2 : x - y = 0\}; (1, 1), (4, 4)$$

13. En
$$H = \{(x, y) \in \mathbb{R}^2 : 2x + 3y = 0\}; (6, -4)$$

14.
$$H = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}; (1, -1), (-3, 3)$$

- 15. Encuentre una base en \mathbb{R}^3 para el conjunto de vectores en el plano 3x 2y + 5z = 0.
- 16. Encuentre una base en \mathbb{R}^3 para el conjunto de vectores perpendiculares a la recta x=2y=3z.
- 17. Encuentre una base en \mathbb{R}^3 para el conjunto de vectores en la recta x=2, y=-2t, z=3t.
- 18. Encuentre una base en \mathbb{R}^3 para el conjunto de vectores en la recta x=2y=3z.
- 19. Demuestre que los únicos subespacios propios en \mathbb{R}^2 son rectas que pasan por el origen.
- **20.** En \mathbb{R}^4 sea $H = \{(x, y, z, w): ax + by + cz + dw = 0\}$, donde $a, b, c, d \neq 0$.
 - a) Demuestre que H es un subespacio de \mathbb{R}^4 .
 - b) Encuentre una base para H.
 - c) ¿Cuánto vale dim H?

Hiperplano

21. En \mathbb{R}^n un **hiperplano** que contiene a $\mathbf{0}$ es un subespacio de dimensión n-1. Si H es un hiperplano en \mathbb{R}^n que contiene a $\mathbf{0}$, demuestre que