Projecto de Laboratórios de Informática II

ILLUMINATUS

2011/2012

O projecto deste ano consiste em implementar na linguagem de programação C no sistema operativo Linux (disponibilizado na máquina virtual) uma aplicação para resolver um tipo de puzzle chamado ILLUMINATUS. O objectivo deste puzzle é iluminar todas as casas desbloqueadas dum quadriculado.

Uma casa é iluminada se:

- Tiver uma lâmpada;
- Tiver uma lâmpada na mesma linha ou coluna e não existir nenhuma casa bloqueada entre a casa e a que contém a lâmpada.

Quando uma casa está bloqueada esta pode conter um número. Neste caso, o número obriga a que existam esse número de lâmpadas nas casas livres adjacentes (só contam as casas ortogonais e não as diagonais).

Existe uma restrição para a colocação de lâmpadas: uma lâmpada não pode iluminar outra lâmpada, isto é, não podem existir duas lâmpadas na mesma linha ou coluna a não ser que entre elas esteja pelo menos uma casa bloqueada.

Há várias estratégias para a resolução destes puzzles:

- 1. Se uma casa com um número n tem exactamente n casas vizinhas onde possam existir lâmpadas então todas essas casas vizinhas tem que conter lâmpadas;
- 2. Se uma casa contém uma lâmpada pode-se sombrear todas as casas na mesma linha e coluna que não estejam bloqueadas;
- 3. Podem-se colocar marcas numa casa quando se têm a certeza que esta casa não pode conter uma lâmpada; isto pode acontecer nas casas vizinhas dum 0 ou em casas onde colocar uma lâmpada criaria uma contradição (por exemplo não se pode colocar uma lâmpada numa casa que seja vizinha diagonalmente de uma casa com um 4);
- 4. Nos casos em que hajam dois números numa diagonal, por exemplo 1 e 3 temos a certeza que as duas casas partilhadas não podem ser as duas iluminadas ao mesmo tempo; logo as outras duas casas têm que conter ambas lâmpadas;
- 5. Uma técnica mais avançada consiste em verificar se uma casa não iluminada só pode ser iluminada se uma dada casa tiver uma lâmpada (devido a outras restrições).

Exemplo

Segue-se um exemplo de resolução. Veja o quadro seguinte e tente encontrar uma solução.

Repare que podemos marcar as três casas vizinhas do 0 porque não podem conter lâmpadas.

•				
0	•			3
•				
1				
		1		

Repare a casa que se assinalou agora como não podendo conter uma lâmpada. Se essa casa tivesse uma lâmpada não era possível fazer o 1 da linha de baixo já que nenhuma das casas vizinhas desse 1 podia conter uma lâmpada.

•				
0	•			3
•				
1	•			
		1		

Podemos agora colocar as lâmpadas à volta do 3 e iluminar as casas nas mesmas linhas e colunas que essas lâmpadas.

•				
0				3
1	•			
		1		

Só existe uma maneira de iluminar o canto superior esquerdo: colocar uma lâmpada à sua direita.

0			3
1			
	1		

Agora temos mais uma aplicação da regra básica que nos permite colocar mais uma lâmpada.

0			3
1			
	1		

Ficamos agora com duas casas que só podem ser iluminadas se colocarmos uma lâmpada nessa casa.

0			3
1			
	1		

Resta-nos uma hipótese já que uma casa com um 1 só pode ter uma lâmpada vizinha.

Calendarização

Etapa	Data de Entrega
1 ^a etapa	25-03-2012
2 ^a etapa	13-05-2012
$3^{\rm a}$ etapa	3-06-2012

Tarefas

As tarefas são classificadas de A a E (sendo o A a dificuldade mínima e o E a mais avançada). Cada tarefa vale 1 ponto se for efectuada na etapa planeada e menos se for acabada em etapas seguintes de acordo com a tabela seguinte:

Etapa planeada	Feita na 1ª etapa	Feita na 2ª etapa	Feita na 3ª etapa
1	1	0.8	0.5
2	1	1	0.8
3	1	1	1

Para obter aprovação à disciplina é necessário obter a classificação de 10 valores. Segue-se a lista das tarefas:

Etapa 1

- $\overset{1}{2}{}_{(A)}$. Interpretador de comandos; $\overset{2}{2}{}_{(A)}$. Ler o estado do puzzle de ficheiro e escrever o estado do puzzle em ficheiro; $\overset{3}{3}{}_{(A)}$. Colocar/remover uma lâmpada numa casa; $\overset{4}{4}{}_{(A)}$. Implementar a estratégia 1; $\overset{5}{5}{}_{(A)}$. Implementar a estratégia 2;

Etapa 2

- $\begin{array}{l} 6_{(B)}.$ Implementar a estratégia 3; $7_{(B)}.$ Implementar a estratégia 4; $8_{(C)}.$ Implementar a estratégia 5; $9_{(A)}.$ Fazer um módulo de listas ligadas; $10_{(B)}.$ Fazer um sistema de anulação de comandos;

Etapa 3

- $11_{(D)}$. Resolver um puzzle; $12_{(A)}$. Analisar o código assembly gerado pelo compilador a partir de uma função (em C) e criar a tabela de alocação de registos; $13_{(C)}$. Optimização do código e análise da complexidade do código usando as ferramentas
- gprof e gcov; $14_{(A)}$. Compilar o código no sistema operativo Linux sem avisos (warnings) nem erros com as opções cc -ansi -Wall -Wextra -pedantic -04 -lreadline; 15(E). Gerar um puzzle com uma única solução;

- 19(E). Gerar um puzzle com uma unica solução; 16(C). Interface gráfico. 17(A). Documentação do código (Doxygen); 18(C). Legibilidade do código e tratamento de erros; 19(A). Assiduidade e participação; 20(A). Gestão de Projecto;

Gestão de Projeto

Os grupos de trabalho são compostos por 3 elementos e terão necessáriamente de ser compostos por pessoas do mesmo turno prático. Nos casos em que o número de elementos no turno não seja divisível por 3 aceitam-se 2 grupos de 2 elementos se o resto da divisão do número por 3 for 1 e 1 grupo de 2 elementos se o resto der 2.

Pretende-se que os grupos de trabalho façam a gestão do projecto, utilizando para esse efeito o Redmine, evidenciando desse modo a sua capacidade de organização. Para o efeito será utilizada uma ferramenta de gestão de projectos que permitirá ao grupo planear o desenvolvimento do projecto, definindo subtarefas, fazer a sua atribuição aos elementos da equipa e acompanhar a sua implementação. Deverão também utilizar todas as restantes funcionalidades da ferramenta (e.g. documentação, wiki, etc.). A utilização correcta do sistema de gestão de projeto é obrigatório para a avaliação.

Não serão avaliadas as tarefas que não tenham sido correctamente introduzidas e contabilizadas no sistema.

Material a entregar em cada etapa

- Documentação gerada automáticamente pelo Doxygen;
- Relatório de desempenho do grupo na execução das diversas tarefas utilizando funcionalidades da ferramenta de gestão de projecto (descrição das tarefas incluindo tempo total dispendido e tempo por cada pessoa envolvida);
- Código fonte e respectiva makefile.

Critérios obrigatórios

Os seguintes critérios tem que ser cumpridos ou a entrega não é válida:

- O programa tem compilar sem erros e funcionar na máquina virtual disponibilizada;
- A makefile tem que compilar com as opções -Wall -Wextra -pedantic -ansi -04;
- O nome do executável tem que ser illuminatus;
- O programa tem que ler os comandos do stdin.

Entrega

Deverá ser colocado na opção "Files" do redmine ("Ficheiros" para os alunos que usam a versão portuguesa) um arquivo compactado com o comando tar do qual constem os seguintes ficheiros e pastas:

identificação ficheiro com a identificação dos alunos (nome completo e número);

code pasta com o código fonte e respectiva makefile,

doc com a documentação html¹ gerada pelo doxygen.

A pasta deverá ter o nome $PL< n^o$ do turno $>g< n^o$ do grupo $>-et< n^o$ da etapa>.tar.bz2 Nos casos em que o número do grupo seja só um algarismo este deverá ser precedido de um zero. Exemplos:

- PL6g02-et1.tar.bz2 grupo 2 do turno 6 a entregar a etapa 1
- PL2g11-et2.tar.bz2 grupo 11 do turno 2 a entregar a etapa 2

Para se usar o comando tar da forma correcta

- 1. Abre-se uma consola no Linux
- 2. Usando o comando cd vai-se para a directoria que contém as pastas code e doc
- 3. Escreve-se o comando tar jcf PL2g11-et2.tar.bz2 identificacao code doc

Se não cumprirem alguns destes requisitos, o trabalho não será considerado entregue.

¹i.e., deve conter dentro (e não em subpastas) o ficheiro index.htm ou index.html gerado pelo Doxygen assim como os restants ficheiros nuecessários