МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет информационных технологий

Кафедра параллельных вычислений

ОТЧЕТ

О ВЫПОЛНЕНИИ ПРАКТИЧЕСКОЙ РАБОТЫ

«ОПРЕДЕЛЕНИЕ ВРЕМЕНИ РАБОТЫ ПРИКЛАДНЫХ ПРОГРАММ И ИЗУЧЕНИЕ ОПТИМИЗИРУЮЩЕГО КОМПИЛЯТОРА»

студентки 2 курса, группы 21207

Черновской Яны Тихоновны

Направление 09.03.01 – «Информатика и вычислительная техника»

Преподаватель:

А.Ю. Власенко

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ	2
ЦЕЛЬ	3
ЗАДАНИЕ	4
ОПИСАНИЕ РАБОТЫ.	6
ЗАКЛЮЧЕНИЕ	8
ПРИЛОЖЕНИЕ	9
Приложение 1. Полный листинг программы	9
Приложение 2. Результаты измерения времени работы функции в зависимости о	- 1
оптимизации	13

ЦЕЛЬ

- 1. Изучение методики измерения времени работы подпрограммы.
- 2. Изучение приемов повышения точности измерения времени работы подпрограммы.
- 3. Изучение способов измерения времени работы подпрограммы.
- 4. Измерение времени работы подпрограммы в прикладной программе.
- 5. Изучение основных функций оптимизирующего компилятора, и некоторых примеров оптимизирующих преобразований и уровней оптимизации.
- 6. Получение базовых навыков работы с компилятором GCC.
- 7. Исследование влияния оптимизационных настроек компилятора GCC на время исполнения программы.

ЗАДАНИЕ

- 1. Написать программу на языке С или С++, содержащую функцию, которая реализует выбранный алгоритм из задания. Программа должна принимать значение N через параметр в командной строке.
- 2. Проверить правильность работы программы на нескольких тестовых наборах входных данных.
- 3. Выбрать значение параметра N0 таким, чтобы время работы функции было от 30 до 60 секунд.
- 4. Программу скомпилировать компилятором g++ с уровнями оптимизации -O0, -O1, -O2, -O3, -Os, -Ofast, -Og под архитектуру процессора x86 (x86-64).
- 5. Для каждого из семи вариантов компиляции измерить время работы программы при нескольких значениях N (0.5* N0, N0, 1.5* N0).
- 6. Составить отчет по лабораторной работе. Отчет должен содержать следующее:
- а) Титульный лист.
- b) Цель лабораторной работы.
- с) Вариант задания.
- d) Описание методики для определения времени работы программы.
- е) Результаты измерения времени работы программы при различных значениях параметра N с уровнями оптимизации -O0, -O1, -O2, -O3, -Os, -Ofast, -Og (лучше в табличном виде).
- f) Графики зависимости времени выполнения программы с уровнями оптимизации -O0, -O1, -O2, -O3, -Os, -Ofast, -Og от параметра N.
- g) Полный компилируемый листинг реализованной программы, команды для ее компиляции и запуска.
- h) Вывод по результатам лабораторной работы

Формулировка задания:

Алгоритм вычисления функции ln(1+x) с помощью разложения в ряд по первым N членам этого ряда:

$$ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$$

Область сходимости ряда: - $1 \le x \le 1$.

ОПИСАНИЕ РАБОТЫ

1. Была написана программа на языке C++, содержащую функцию, которая считает значение натурального логарифма с помощью разложения в ряд по первым N членам этого ряда. Программа принимает значение N и х через параметры в командной строке.

Сборка проекта:

```
evmpu@comrade:~/21207/Chernovskaya$ g++ -g lab1/*.cpp -o main.exe -lrt
```

2. Далее были проверены некоторые значения, для проверки корректности работы программы (полученные данные были сравнены с компьютерным вычислением выражения)

```
evmpu@comrade:~/21207/Chernovskaya$ ./main.exe 0.5 50000000 0.3948598226 evmpu@comrade:~/21207/Chernovskaya$ ./main.exe 0.2 500000000 0.1805326933 evmpu@comrade:~/21207/Chernovskaya$ ./main.exe 0.8 500000000 0.5800878356
```

3. Была оценена степень загрузки процессора другими процессами с помощью команды top. Так как степень загрузки процессора не высока, то выбирается произвольный таймер.

Tasks:	174 total,	3	run	ning, 47	0 sleep	ing, 1	stoppe	d, 0	zombie	
%Cpu(s):	8,3 us,	0,	0 sy	, 0,0 n	i, 91,6	id, 0,	1 wa,	0,0 hi	, 0,0 si	, 0,0 st
МиБ Mem	: 24064,	6 to	otal,	13909,	7 free,	1646,	7 used,	850	8,1 buff/	cache
МиБ Swap	7813,	0 to	otal,	7813,	0 free,	0,	0 used.	2202	0,8 avail	Mem
PID	USER	PR	NI	VIRT	RES	SHR S		%MEM	TIME+	COMMAND
2688962	evmpu	20	0	11164	5640	3684	0,3	0,0	0:00.28	bash
42673	root	20		815696	24888	17312 5	0,3	0,1	10:11.23	NetworkManager
665305	evmpu	20		12328	4400	3344 F	0,3	0,0	0:03.25	top
666785	root	20				0 1	0,3	0,0	0:00.23	kworker/0:0-events
3998987	vlasenko	20		311724	8064	7140 \$	0,3	0,0	0:10.35	gsd-housekeepin
1	root	20		169976	13364	8340 \$	0,0	0,1	14:42.36	systemd
2	root	20				0 5	0,0	0,0		kthreadd
3	root		-20			0 1	0,0	0,0	0:00.00	rcu_gp
4	root		-20			0 1	0,0	0,0	0:00.00	rcu_par_gp
5	root		-20			0 1	0,0	0,0	0:00.00	netns
7	root		-20			0 1	0,0	0,0	0:00.00	kworker/0:0H-events_highpri
10	root		-20			0 1	0,0	0,0		mm_percpu_wq
11	root	20				0 5	0,0	0,0	0:00.00	rcu_tasks_rude_
12	root	20					0,0	0,0	0:00.00	rcu_tasks_trace
13	root	20					0,0	0,0	0:04.43	ksoftirqd/0
14	root	20				0 1	0,0	0,0	1:31.91	rcu_sched
15	root	rt					0,0	0,0		migration/0
16	root	-51					0,0	0,0	0:00.00	idle_inject/0
18	root	20				0 5	0,0	0,0	0:00.00	cpuhp/0
							"			

4. Для определения времени работы подпрограммы была выбрана библиотечная функция clock_gettime. При условии выполнении программы за промежуток времени 30 - 60 секунд, было подобрано значение N = 7700000000.

```
evmpu@comrade:~/21207/Chernovskaya$ ./main.exe 7700000000
0.180533
Run N1 x = 0.2 n = 77000000000. Time taken 30.4709
```

5. Далее была скомпилирована программа компилятором g++ с уровнями оптимизации -O0, -O1, -O2, -O3, -Os, -Ofast, -Og

```
evmpu@comrade:~/21207/Chernovskaya$ g++ -g -00 lab1/*.cpp -o p0.out -lrt
evmpu@comrade:~/21207/Chernovskaya$ g++ -g -01 lab1/*.cpp -o p1.out -lrt
evmpu@comrade:~/21207/Chernovskaya$ g++ -g -02 lab1/*.cpp -o p2.out -lrt
evmpu@comrade:~/21207/Chernovskaya$ g++ -g -03 lab1/*.cpp -o p3.out -lrt
evmpu@comrade:~/21207/Chernovskaya$ g++ -g -0s lab1/*.cpp -o ps.out -lrt
evmpu@comrade:~/21207/Chernovskaya$ g++ -g -0fast lab1/*.cpp -o pfast.out -lrt
evmpu@comrade:~/21207/Chernovskaya$ g++ -g -0g lab1/*.cpp -o pg.out -lrt
```

6. Для каждого из семи вариантов компиляции было измерено время работы программы при нескольких значениях N (0.5* N0, N0, 1.5* N0)

ЗАКЛЮЧЕНИЕ

В данной лабораторной работе были изучены методики измерения времени работы подпрограммы в прикладной программе, приемы повышения ее точности, способы ее измерения, основные функции оптимизирующего компилятора, и некоторые примеры оптимизирующих преобразований и уровней оптимизации, а также влияния оптимизационных настроек компилятора на время исполнения программы.

По первой половине работы можно сделать вывод, что выбор таймера для измерения времени подпрограммы в прикладной программы зависит от степени нагрузки процессора другими процессами (если степень загрузки процессора высока, то выбирается таймер времени процесса, в противном случае выбирается произвольный таймер)

По второй половине работы можно сделать вывод, что в зависимости от выбора уровня оптимизации, могут быть включены оптимизации для уменьшения размера бинарного исполняемого файла и такие оптимизации, уменьшающие время работы программы, которые не сильно замедляют работу компилятора, использование более быстрых и менее точных математических функций и т.д.

ПРИЛОЖЕНИЕ

Приложение 1. Полный листинг программы.

check.h

```
#ifndef CHECK_H
#define CHECK_H

void CheckInput(double x, long long int n);

void CheckArgc(int argc);

#endif
#endif
```

check.cpp

```
#include <cstdlib>
     #include "check.h"
     #include <iostream>
4
     #include <exception>
6
     void CheckInput(double x, long long int n)
7
         if (x \leftarrow -1 \mid | x > 1)
8
9
              throw std::logic_error("Wrong x value");
10
11
12
         if (n < 1)
13
              throw std::logic_error("Wrong n value");
15
16
17
18
     void CheckArgc(int argc)
19
20
         if (argc != 3)
21
22
              std::cout << "Not enough arguments" << std::endl;</pre>
23
24
              exit(EXIT_SUCCESS);
25
26
```

logarithm.cpp

```
#include "check.h"
     #include "logarithm.h"
 3
     #include <iostream>
4
5
     double CountLogarithm(double x, long long int n)
6
 7
         CheckInput(x, n);
8
9
         double result = 0;
10
11
         for (long long int i = 1; i \leftarrow n; i++)
12
13
              if (i % 2 == 1)
14
15
                  result += x / i;
16
17
             else
18
                  result -= x / i;
19
20
21
22
              x *= x;
23
24
25
          return result;
26
```

logaritm.h

```
#ifndef LOGARITHM_H
#define LOGARITHM_H

double CountLogarithm(double x, long long int n);

#main to the final count to th
```

main.cpp

```
#include <iostream>
     #include <cstdlib>
    #include <exception>
4
    #include <iomanip>
5
     #include <ctime>
     #include "check.h"
     #include "logarithm.h"
7
8
9
     using namespace std;
10
     bool CommandLineWork(int argc, char *argv[]);
11
12
     void PrintTimeProgramWork(long long int n);
13
14
     int main(int argc, char *argv[])
15
16
17
         if (!CommandLineWork(argc, argv))
18
19
             return EXIT_FAILURE;
20
21
        // PrintTimeProgramWork(7700000000);
22
23
24
         return EXIT_SUCCESS;
25
26
27
     void PrintTimeProgramWork(long long int n)
28
29
         struct timespec start, end;
30
31
         double totalTime = 0; You, 4 days ago • Add first task ..
32
         int runs = 1;
33
34
         double x = 0.2;
```

```
35
          for (int i = 0; i < runs; i++)</pre>
36
37
38
              clock_gettime(CLOCK_MONOTONIC_RAW, &start);
              cout << CountLogarithm(0.2, n) << endl;</pre>
39
              clock_gettime(CLOCK_MONOTONIC_RAW, &end);
40
41
              cout << "Run \mathbb{N}^2" << i + 1 << " x = " << x << " n = " << n << ". Time taken ";
42
              double time = end.tv_sec - start.tv_sec + 1e-9 * (end.tv_nsec - start.tv_nsec);
43
44
              cout << time << endl;</pre>
              totalTime += time;
45
46
47
          //cout << "Average time: " << totalTime / runs << " sec" << endl;</pre>
48
49
50
     bool CommandLineWork(int argc, char *argv[])
51
52
53
         CheckArgc(argc);
54
          double x = atof(argv[1]);
55
56
         int n = atoll(argv[2]);
57
58
          try
59
60
              cout << fixed << setprecision(10) << CountLogarithm(x, n) << endl;</pre>
61
          catch (const logic_error &e)
62
63
              cout << e.what() << endl;</pre>
64
65
              return false;
```

```
66 }
67 return true;
68 }
```

Приложение 2.

Табл 1. Результаты измерения времени работы функции в зависимости от уровня оптимизации

N	О0	O1	O2	О3	Os	Og	Ofast
3850000000	15,1	17,27	14,51	9,41	19,19	17,08	9,18
7700000000	30,71	34,1	18,75	18,84	37,96	34,15	18,65
11550000000	46,46	51,09	28,14	28,16	57,67	51,19	28,03