Implementación de un Banco de 4 registros de 32 bits

Operación Lectura (por nivel)

- LBreg = "1"
- Dir1 y Dir 2
 ✓ direcciones de los registros a leer
- Dato1 y Dato2 muestran el contenido de los registros

Operación Escritura

(por flanco)

- EBreg = "flanco de subida"
- En el registro Dir3 se escribe el dato Dato3

Banco de Registros (ejem. Solo 4 reg.)

Registro tipo D (Ejem. 4 bits)

Ejemplo: Registro de almacenamiento de 4 bits activo

por flanco de subida

- Circuito combinacional muy utilizados en los caminos que sigue la información en los sistemas informáticos
- Las líneas de selección indican qué entrada se obtendrá en la salida

¿Y si las entradas son de n bits?

FCO

- Se colocarán "n" multiplexores
 - Ejemplo: MUX de 8 entradas de datos de 4 bits

Multiplexor típico que selecciona entre dos caminos de entrada

Multiplexor típico que selecciona entre tres caminos de entrada

Decodificadores binarios (i)

Decodificador binario

Si la entrada /CS = "0" la salida es:

ENTRADAS		SALIDAS			
В	Α	S3	S2	S1	SO
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Si /CS = "1" todas las salidas son cero.