Group Assingment

Reece Wooten, Kyle Katzen and Daxi Cheng
12/2/2017

Question 1(20 pts) Select variables in a parsimonious regression model to estimate the value of lagged 1 Question 2 (20 pts) Using only the variables that you identified in the question above, develop and

Contents

##

##

Question 3
Question 1(20 pts) Select variables in a parsimonious regression model to estimate the value of lagged
effects of "Consumer Packs" and "Dealer Allowances" on "Case Shipments" for Treat. Limit your analysis to lags of zero, one and two months.
<pre>case_data<-read.csv('Case Shipments.csv') seas_data<-read.csv('Seasonality Index.csv')</pre>
y<-ts(case_data["Case.Shipments"]) y_tr <- window(y, start=c(13),end=c(48)) y_te <- window(y, start=c(49), end=c(60)) y_reg <-case_data[13:60, "Case.Shipments"]
<pre>case_data['lag.cp1']<-slide(case_data, Var = "Consumer.Packs", slideBy = -1,NewVar = 'lag.cp1')['lag.cp</pre>
<pre>## ## Remember to put case_data in time order before running. ## ## Lagging Consumer.Packs by 1 time units.</pre>
<pre>case_data['lag.cp2']<-slide(case_data, Var = "Consumer.Packs", slideBy = -2,NewVar = 'lag.cp2')['lag.cp</pre>
##

case_data['lag.da1']<-slide(case_data, Var = "Dealer.Allowance", slideBy = -1,NewVar = 'lag.da1')['lag.

case_data['lag.da2']<-slide(case_data, Var = "Dealer.Allowance", slideBy = -2,NewVar = 'lag.da2')['lag.

Remember to put case_data in time order before running.
##

Remember to put case_data in time order before running.

 $\mbox{\tt \#\#}$ Lagging Dealer.Allowance by 1 time units.

Lagging Consumer.Packs by 2 time units.

##

Remember to put case_data in time order before running.

```
##
## Lagging Dealer.Allowance by 2 time units.
X_tr <- as.matrix(case_data[13:48,3:8])</pre>
X_te <- as.matrix(case_data[49:60,3:8])</pre>
X<- as.matrix(case_data[13:60,3:8])</pre>
mod1_cv<-cv.glmnet(x = X,y = y_reg,nfolds = 10)</pre>
best_lam<-mod1_cv$lambda.min
mod1_cv.coef=predict(mod1_cv,type='coefficients',s=best_lam)
predict(mod1_cv,type='coefficients',s=best_lam)
## 7 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                     3.001182e+05
## Consumer.Packs
                     5.670763e-01
## Dealer.Allowance 8.581826e-02
## lag.cp1
                    -1.857882e-01
## lag.cp2
## lag.da1
                     1.143673e-02
## lag.da2
                    -9.616145e-03
x_red<-X[,c('Consumer.Packs','Dealer.Allowance','lag.cp1','lag.da1','lag.da2')]</pre>
mod2_lm<-lm(y_reg~x_red)
summary(mod2_lm)
##
## Call:
## lm(formula = y_reg ~ x_red)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -148759 -28423
                       906
                             31731 185129
##
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                          2.976e+05 1.831e+04 16.256 < 2e-16 ***
## x_redConsumer.Packs
                          5.926e-01 6.979e-02
                                               8.491 1.17e-10 ***
## x_redDealer.Allowance 8.835e-02 1.029e-02
                                                8.585 8.66e-11 ***
## x_redlag.cp1
                         -1.966e-01 6.818e-02 -2.884 0.00617 **
                         1.387e-02 1.037e-02
## x_redlag.da1
                                                 1.337 0.18857
## x_redlag.da2
                         -1.261e-02 1.038e-02 -1.215 0.23126
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 61560 on 42 degrees of freedom
## Multiple R-squared: 0.7693, Adjusted R-squared: 0.7419
## F-statistic: 28.01 on 5 and 42 DF, p-value: 2.284e-12
x_red_tr<-X_tr[,c('Consumer.Packs','Dealer.Allowance','lag.cp1')]</pre>
x_red_te<-X_te[,c('Consumer.Packs','Dealer.Allowance','lag.cp1')]</pre>
```

Question 2 (20 pts) Using only the variables that you identified in the question above, develop and justify a

regression model with ARIMA errors to forecast monthly demand for treat twelve months into the future. To accomplish this make the following assumptions:

Figure 2.0

Training set error measures:

ME

ACF1

RMSE

##

##

MAE

Training set 4456.495 55047.3 44286.31 -0.8617088 13.26598 0.3086417

MPE

MAPE

MASE

Training set -0.001466898

Figure 2.1

tsdiag(mod3)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Figure 2.2

tsdisplay(mod3\$residuals)

mod3\$residuals

Figure 2.3

```
for2<-forecast(mod3,xreg =x_red_te,h=12 )
plot(for2)
lines(y_te,col='red')</pre>
```

Forecasts from Regression with ARIMA(1,2,2) errors

Question 3

```
X0=seas data['Seasonality.Index']
X1 <- rbind(X0,X0)</pre>
X1 <- rbind(X1,X0)</pre>
X1 <- rbind(X1,X0)</pre>
X1 \leftarrow rbind(X1,X0)
y_adj1<-case_data['Case.Shipments']/X1</pre>
y_adj<-ts(case_data['Case.Shipments']/X1)</pre>
y_tr_adj <- window(y_adj, start=c(13),end=c(48))</pre>
y_te_adj <- window(y_adj, start=c(49), end=c(60))</pre>
y_reg_adj <-y_adj1[13:60, "Case.Shipments"]</pre>
mod2_cv<-cv.glmnet(x = X,y = y_reg_adj,nfolds = 10)</pre>
best_lam2<-mod2_cv$lambda.min
mod2_cv.coef=predict(mod2_cv,type='coefficients',s=best_lam2)
predict(mod2_cv,type='coefficients',s=best_lam2)
## 7 x 1 sparse Matrix of class "dgCMatrix"
##
                                 1
## (Intercept)
                     3.152382e+03
## Consumer.Packs
                     4.146839e-03
## Dealer.Allowance 6.983026e-04
## lag.cp1
                    -1.575064e-03
## lag.cp2
                     1.423401e-04
                     1.095228e-04
## lag.da1
## lag.da2
                    -1.034004e-04
x_red<-X[,c('Consumer.Packs','Dealer.Allowance','lag.cp1','lag.cp2','lag.da1','lag.da2')]</pre>
mod3_lm<-lm(y_reg_adj~x_red)</pre>
summary(mod3_lm)
##
## Call:
## lm(formula = y_reg_adj ~ x_red)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -736.60 -234.47
                     -1.83 207.83 940.90
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           3.141e+03 1.200e+02 26.178 < 2e-16 ***
## x_redConsumer.Packs
                          4.228e-03 4.199e-04 10.068 1.20e-12 ***
## x_redDealer.Allowance 7.044e-04 6.385e-05 11.032 7.61e-14 ***
## x_redlag.cp1
                         -1.605e-03 4.083e-04 -3.932 0.000317 ***
## x_redlag.cp2
                         1.799e-04 4.219e-04 0.426 0.671976
## x redlag.da1
                         1.177e-04 6.270e-05 1.877 0.067696 .
## x_redlag.da2
                         -1.114e-04 6.308e-05 -1.766 0.084903 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 367.9 on 41 degrees of freedom
## Multiple R-squared: 0.8496, Adjusted R-squared: 0.8276
```

```
## F-statistic: 38.61 on 6 and 41 DF, p-value: 2.401e-15

x_red_tr<-X_tr[,c('Consumer.Packs','Dealer.Allowance','lag.cp1')]
x_red_te<-X_te[,c('Consumer.Packs','Dealer.Allowance','lag.cp1')]</pre>
```

Figure 3.0

```
tsdisplay(y_tr_adj)
```

y_tr_adj


```
mod3<-Arima(y_tr_adj,order = c(2,2,1),xreg = x_red_tr)
summary(mod3)</pre>
```

```
## Series: y_tr_adj
## Regression with ARIMA(2,2,1) errors
##
## Coefficients:
                                    Consumer.Packs Dealer.Allowance
##
                      ar2
                               ma1
                                                                       lag.cp1
         -0.8313
                                            0.0041
##
                  -0.1126
                           -1.000
                                                                1e-03
                                                                       -0.0012
          0.1857
                   0.1812
                             0.099
                                            0.0004
                                                                3e-04
                                                                        0.0004
##
##
## sigma^2 estimated as 137170: log likelihood=-248.88
                AICc=516.07
## AIC=511.77
                              BIC=522.45
##
## Training set error measures:
##
                      ME
                             RMSE
                                        MAE
                                                  MPE
                                                          MAPE
## Training set 33.12051 326.6314 230.7431 0.3435914 6.359915 0.2319289
## Training set -0.04948407
```

Figure 3.1

tsdiag(mod3)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Figure 3.2

tsdisplay(mod3\$residuals)

mod3\$residuals

[1] NA NA

Figure 3.2

```
for2<-forecast(mod3,xreg =x_red_te,h=12)
plot(for2)
lines(y_te_adj,col='red')</pre>
```

Forecasts from Regression with ARIMA(2,2,1) errors

