3000788 Intro to Comp Molec Biol

Lecture 5: Processing of DNA sequencing data

August 31, 2023

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Quality control

FASTQ format

- Header: Location of cluster on Illumina's flow cell
- Sequence
- Quality score

FASTQ for paired-end sequencing

Same order

- Two FASTQ files
 - SAMPLE1_R1.fastq / SAMPLE1_R2.fastq
- Merged into a single FASTQ files
 - Forward & reverse reads must overlap
 - 300bp paired-end 16S rRNA sequencing

https://drive5.com/usearch/manual8.1/merge_pair.html

Phred score

```
ASCII BASE=33 Illumina, Ion Torrent, PacBio and Sanger
Q P error ASCII
                        Q P error ASCII
                                                                         P error ASCII
                                                 P error
                                                           ASCII
                                     44 ,
   1.00000
             33 !
                          0.07943
                                                  0.00631
                                                            55 7
                                                                         0.00050
                                                                                   66 B
                                   45 -
                                                                                   67 C
   0.79433
             34 "
                          0.06310
                                                 0.00501
                                                            56 8
                                                                         0.00040
             35 #
                                   46 .
                                                            57 9
   0.63096
                      13
                          0.05012
                                              24 0.00398
                                                                         0.00032
                                                                                   68 D
   0.50119
             36 $
                          0.03981
                                     47 /
                                                  0.00316
                                                            58:
                                                                        0.00025
                                                                                   69 E
   0.39811
             37 %
                          0.03162
                                     48 0
                                                  0.00251
                                                            59:
                                                                         0.00020
                                                                                   70 F
   0.31623
             38 €
                       16 0.02512
                                     49 1
                                              27 0.00200
                                                            60 <
                                                                         0.00016
                                                                                   71 G
   0.25119
              39 '
                       17
                          0.01995
                                     50 2
                                              28 0.00158
                                                            61 =
                                                                         0.00013
                                                                                   72 H
   0.19953
              40 (
                      18
                          0.01585
                                     51 3
                                              29 0.00126
                                                            62 >
                                                                         0.00010
                                                                                   73 I
   0.15849
             41 )
                      19
                          0.01259
                                     52 4
                                                 0.00100
                                                            63 ?
                                                                     41 0.00008
                                                                                   74 J
   0.12589
             42 *
                          0.01000
                                     53 5
                                              31 0.00079
                                                            64 @
                                                                     42 0.00006
                                                                                   75 K
  0.10000
                       21 0.00794
                                     54 6
                                              32 0.00063
                                                            65 A
              43 +
```

https://www.drive5.com/usearch/manual/quality_score.html

- Q score = 10 x Log₁₀ (base call error rate)
- Base call error of $10\% \rightarrow Q$ score = ?
- Base call error of $0.0001 \rightarrow Q$ score = ?

Expected error at the ends of read

```
@ERR000589.41 EAS139_45:5:1:2:111/1
CTTTCCTCCCTGCTTTCCTGGCCCCACCATTTCCAGGGAACATCTTGTCAT
+
3!!!!!!!!!!!>1!!!FF9BG08E001%IG+&?(4)%00646.C1#&(
```

ASC	II_BASE=3	3 Illumina	a, Io	n Torrent	, PacBio	and S	anger				
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

FastQC tool

Measure	Value
Filename	small_rna.fastq.gz
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	250000
Sequences flagged as poor quality	0
Sequence length	100
%GC	45

Summary

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Adapter Content

Base calling quality

Per base sequence quality

Duplicated reads

3 Sequence Duplication Levels

Possible adapter read-through

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
${\tt TGAGGTAGATTGTATAGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	10865	4.346	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TAGCTTATCAGACTGATGTTGACAGATCGGAAGAGCACACGTCTGAACTC}$	10845	4.338	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
${\tt TCTTTGGTTATCTAGCTGTATGAGATCGGAAGAGCACACGTCTGAACTCC}$	7062	2.8247999999999998	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TCTTTGGTTATCTAGCTGTATGAAGATCGGAAGAGCACACGTCTGAACTC}$	4056	1.622399999999998	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
${\tt TGAGGTAGTAGTTTGTGCTGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	3737	1.4948	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TGAGGTAGTAGTTTGTACAGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	3549	1.4196	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TGAGGTAGTAGGTTGTATGGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	2931	1.1724	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt AACCCGTAGATCCGATCTTGTAGATCGGAAGAGCACACGTCTGAACTCCA}$	1910	0.764	Illumina Multiplexing PCR Primer 2.01 (100% over 29bp)
${\tt CGCGACCTCAGATCAGACGTAGATCGGAAGAGCACACGTCTGAACTCCAG}$	1749	0.6996	Illumina Multiplexing PCR Primer 2.01 (100% over 30bp)
${\tt TGAGGTAGTAGGTTGTATAGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	1647	0.6588	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TCTTTGGTTATCTAGCTGTATAGATCGGAAGAGCACACGTCTGAACTCCA}$	1622	0.6487999999999999	Illumina Multiplexing PCR Primer 2.01 (100% over 29bp)
${\tt TAGCTTATCAGACTGATGTTGATAGATCGGAAGAGCACACGTCTGAACTC}$	1328	0.5312	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
${\tt TTCAAGTAATCCAGGATAGGCTAGATCGGAAGAGCACACGTCTGAACTCC}$	1248	0.4992	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt AGCAGCATTGTACAGGGCTATGAAGATCGGAAGAGCACACGTCTGAACTC}$	1248	0.4992	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)

Trimming

Quality trimming

- Remove bases from the end until a minimum quality is reached
- May lose reads but lead to better results in downstream analysis

Mohsen, A. et al. BMC Bioinformatics 20:581 (2019)

Adapter trimming

https://www.ecseq.com/support/ngs/trimming-adapter-sequences-is-it-necessary

Trimmomatic code

- Using 4 CPU threads
- Process 3 sets of paired end FASTQ
- Remove adapters listed in SRR_adapters.fa
- Check quality in a sliding window

```
header
              >PrefixNX/1
sequence 2
              AGATGTGTATAAGAGACAG
                                    FASTA format
header
              >PrefixNX/2
              AGATGTGTATAAGAGACAG
sequence 4
              >Trans1
              TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG
              >Trans1 rc
              CTGTCTCTTATACACATCTGACGCTGCCGACGA
              >Trans2
              GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG
              >Trans2_rc
```

CTGTCTCTTATACACATCTCCGAGCCCACGAGAC

Alignment

Sequence alignment is a form of search

Indexing with Burrows-Wheeler transform

BWT is reversible!

Efficient search on BWT index

- BWT index provides information on all short segments of the genome
- 20x smaller memory than straightforward indexing of human genome
- 30x faster search speed

Dynamic programming

- Dynamic programming build the solution of complex problem using on the solutions of simpler ones
- There is a pile of 20 rocks. Two players take turns by removing 1 or 2 rocks from the pile. Whoever removes the last rock(s) win. Who is the winner?

Dynamic programming for sequence alignment

Dynamic programming matrix:

- The best alignments for long sequences depend on the best alignments of shorter sequences
- The best alignment for TTCATA vs TGCTCGTA is either
 - T/T + best alignment for TCATA vs GCTCGTA
 - T/- + best alignment for TCATA vs TGCTCGTA
 - -/T + best alignment for TTCATA vs GCTCGTA

Optimum alignment scores 11:

Bowtie2 command

Usage:

```
bowtie-build [options]* <reference_in> <ebwt_base>
Usage:
```

```
bowtie \ [options]* -x < ebwt> \ \{-1 < m1> -2 < m2> \ | \ --12 < r> \ | \ --interleaved < i> \ | < s>\} \ [< hit>]
```

- Use bowtie-build to index a genome database (FASTA file)
 - bowtie-build GRCh38_v1.fasta GRCh38_v1
- Use bowtie to perform alignment
 - bowtie -x GRCh38_v1 -1 sample1_R1.fastq -2 sample1_R2.fastq -sam --threads 8 sample1.sam

SAM/BAM manipulation

Sequence Alignment Map (SAM)

```
Sort Order = by genomic coordinate
                           SN = reference sequence's name (FASTA header)
QHD VN:1.6 SO:coordinate
                           LN = reference sequence's length
@SQ SN:ref LN:45
r001
      99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA
r003 0 ref 9 30 5S6M
                              * O GCCTAAGCTAA
                                                         * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M
                              * O O ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                          * 0
                                     O TAGGC
                                                         * SA:Z:ref,9,+,5S6M,30,1;
     147 ref 37 30 9M
                              = 7 -39 CAGCGGCAT
r001
                                                         * NM:i:1
```

- r001 = read name (from sequencing FASTQ)
- ref = reference sequence name (from genomic FASTA)
- 7 = first position on the reference sequence
- $30 = Mapping quality score = -10 x Log_{10}(error)$
- 8M2I4M1D3M = CIGAR string = matches, insertion, deletion information

SAM manipulation with samtools

Samtools

Samtools is a suite of programs for interacting with high-throughput sequencing data. It consists of three separate repositories:

Samtools Reading/writing/editing/indexing/viewing SAM/BAM/CRAM format

BCFtools Reading/writing BCF2/VCF/gVCF files and calling/filtering/summarising SNP and short indel sequence variants

HTSlib A C library for reading/writing high-throughput sequencing data

- By default, SAM output from aligner is unsorted
- Also, SAM is large
- BAM is a zipped version of SAM
- Use samtools to convert SAM→BAM and sort

Example of SAM manipulation

- samtools view –Sb converts SAM to BAM
- samtools sort sorts the BAM file
- | is the pipe command which passes output from one software to another
- > is the redirect command which writes output of a software to a file

Pileup format

Sequence	Position	Reference Base	Read Count	Read Results	Quality
seq1	272	Т	24	,.\$,+.	<<<+;<<<<<<<<<<<<<<<<<<
seq1	273	Т	23	,A	<<<;<<<<<+
seq1	274	Т	23	,.\$,	7<7;<;<<<<<<<<<<
seq1	275	А	23	,\$,1.	<+;9*<<<<<<=<<:;<<<<
seq1	276	G	22	Т,,.,,.,,,,,	33;+<<7=7<<7<&<<1;<<6<
seq1	277	Т	22	,	+7<;<<<<<&<=<<:;<<&<
seq1	278	G	23	,^k.	%38*<<;<7<<7<=<<<;
seq1	279	С	23	AT,,.,,.,,,,,	75&<<<<<<<<<<<<

Image from wikipedia

- Focus on each reference base pair position
 - Whether each read matches the reference or not

Sequence assembly

De novo assembly

CTGTGTGTT GACGTCACT
GTGTCCTGA CTG...
...ACTGT TGTCCTGAC CACTG...
ACTGTGTGT CTGGCGTCA
GTGTGTCCT ACGTCACTG

...ACTGTGTGTCCTGACGTCACTG...

Chandra Varma Bogaraju, S. Int J Embed Syst 9:74 (2017)

Image from wikipedia

Assembly via de Bruijn graph

ATGGCGT

Each directed path in a de Bruijn graph represents a possible contiguous segment of the genome

CGTGCAA

TGCAATG

GGCGTGC

A. Short read to k-mers (k=4)

B. Eulerian de Bruijn graph

C. Hamiltonian de Bruijn graph

ATGGCGT

CAATGGC

Contig and scaffold

Deduplication

Duplicated = derived from the same molecule

- Similar sequences coming from nearby coordinates in Illumina flow cells
- Reads with the same start and end
 - Highly unlikely to generate the exact same
 DNA molecules by chance
- Lead to incorrect frequency estimates

Mark duplicate command examples

```
java -jar picard.jar MarkDuplicates \
    I=input.bam \
    O=marked_duplicates.bam \
    M=marked_dup_metrics.txt
```

samtools markdup positionsort.bam markdup.bam

```
@SIM:1:FCX:1:15:6329:1045:GATTACT+GTCTTAAC 1:N:0:ATCCGA
TCGCACTCAACGCCCTGCATATGACAAGACAGAATC
+
<>;##=><9=AAAAAAAAAAAAA**;<#<;????#=</pre>
```

- Require just the sorted alignment output
 - Illumina flow cell (x, y) coordinate is in the read name
 - Mapped chromosome position is in the SAM/BAM

Variant calling

Type of variants

Translocation

Image from wikipedia

Not all differences are true variants

- Errors are random
 - High depth of sequencing can provide the correct consensus
 - Filter using read depth + allele frequency

Variant calling strategy

- Small-scale variants, such as SNV and short indel
 - Consider only aligned reads
 - Identify differences and assess significance
- Copy number variations
 - Consider only aligned reads
 - Look for loci with high or low frequencies compared to others
- Chromosomal translocation and inversion
 - Consider reads whose forward and reverse sequences map to different regions
 - De novo assembly

Small-scaled variant calling

https://gatk.broadinstitute.org/hc/en-us/articles/360035531412-HaplotypeCaller-in-a-nutshell

Germline vs somatic variants

- Germline mutations = inherited and appear in every cell of the offspring
 - Compare DNA from normal tissues to reference genomes
 - Fixed ploidy
- Somatic mutations = occur during lifetime
 - Compare DNA from disease tissues to normal tissues
 - Also compare to DNA from other healthy individuals
 - Allow variation in ploidy (different disease cells can have different mutations)

Germline vs somatic variants

Genome Analysis Toolkit (GATK) somatic workflow

- Inclusion of matched normal (N), panels of healthy individual (Panels of Normals), and allele frequency in the general population (G Pop Freqs)
- Also estimate contamination = normal cells in disease sample

Copy number variations

Look for loci with high or low frequencies compared to others

Utilizing multiple callers

Chen, J. et al. Scientific Reports 9:9345 (2019)

Variant Call Format (VCF)

```
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
               TD
                         REF
                                ALT
                                         QUAL FILTER INFO
                                                                                        FORMAT
                                                                                                    NA00001
                                                                                                                    NA00002
               rs6054257 G
                                              PASS
                                                                                        GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51
20
       14370
                                 Α
                                                     NS=3:DP=14:AF=0.5:DB:H2
                                         3
                                              q10
20
       17330
                                                     NS=3:DP=11:AF=0.017
                                                                                        GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
       1110696 rs6040355 A
20
                                G,T
                                         67
                                              PASS
                                                     NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
20
       1230237 .
                                         47
                                              PASS
                                                     NS=3;DP=13;AA=T
                                                                                        GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51
20
       1234567 microsat1 GTC
                                G,GTCT
                                              PASS
                                                     NS=3;DP=9;AA=G
                                                                                        GT:GQ:DP
                                                                                                    0/1:35:4
                                                                                                                    0/2:17:2
```

Variant filtering

```
gatk VariantFiltration \
    -V snps.vcf.gz \
                              Quality score normalized by read depth
    -filter "QD < 2.0" --filter-name "QD2" \
                                                 Ouality score
    -filter "QUAL < 30.0" --filter-name "QUAL30" \
    -filter "SOR > 3.0" --filter-name "SOR3" \
                                                 Strand bias scores
    -filter "FS > 60.0" --filter-name "FS60"
    -filter "MQ < 40.0" --filter-name "MQ40" \
                                                    Mapping quality scores
    -filter "MQRankSum < -12.5" --filter-name "MQRankSum-12.5" \
    -filter "ReadPosRankSum < -8.0" --filter-name "ReadPosRankSum-8" \
    -O snps filtered.vcf.gz
```

- Mostly follow guideline from software developer or publications
 - But take note of the thresholds just in case of unusual outputs

Variant annotation

Understanding the importance of a variant

- Impact on sequence
 - Non-synonymous, splice site, frameshift, regulatory element
- Is it known: allele frequency
 - Genome Aggregation Database: gnomAD
 - dbSNP
- Clinical implication: observed in patients, treatment response, drug target
 - ClinVar, COSMIC, PharmGKB
- Variant effect predictor (VEP)
- Funcotator/Oncotator

ClinVar

NM_007294.3(BRCA1):c.*6207C>T

Interpretation: Benign

Review status: ★★★☆ reviewed by expert panel

Submissions:

 First in ClinVar:
 Sep 29, 2015

 Most recent Submission:
 Sep 29, 2015

 Last evaluated:
 Jan 12, 2015

 Accession:
 VCV000209219.3

Variation ID: 209219

Description: single nucleotide variant

NM_007294.3(BRCA1):c.*6207C>T

Allele ID: 206177

Variant type: single nucleotide variant

Variant length: 1 bp

Cytogenetic location: 17q21.31

 Genomic location:
 17: 43039471 (GRCh38)
 GRCh38 UCSC

 17: 41191488 (GRCh37)
 GRCh37 UCSC

HGVS:

Nucleotide	Protein	Molecular consequence
NC_000017.11:g.43039471G>A		
NC_000017.10:g.41191488G>A		
NG_005905.2:g.178513C>T		

... more HGVS

Protein change:

Other names: 11918 C>T

Functional consequence: -

Global minor allele 0.00679 (A)

frequency (GMAF):

Allele frequency: Trans-Omics for Precision Medicine (TOPMed) 0.00211

Catalog of Somatic Mutations in Cancer (COSMIC)

Sample A name	Gene name ∳	Transcript $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Primary \(\psi \) Tissue	Tissue Subtype 1	Primary Histology	Histology Subtype 1	Pubmed ID
<u>1011-mel</u>	BRAF	ENST00000646891.1 ₺	<u>NS</u>	NS	Malignant melanoma	NS	15467732
1022043	BRAF	ENST00000646891.1 ₺	<u>NS</u>	NS	Malignant melanoma	NS	16007203

Pharmocogenomics knowledgebase

VARIANT ♦	LITERATURE	DRUGS ♦	GENES ♦	ASSOCIATION
<u>rs2069502</u>	PMCID: <u>PMC3959225</u>	somatropin recombinant	CDK4	Genotype CC is associated with decreased respo to somatropin recombinant in children with Tun Syndrome as compared to genotypes CT + TT.

VARIANT ♦	SIGNIFICANCE \$	P- VALUE ⊕	# OF CASES ♣	# OF CONTROLS ♦	BIOGEOGRAPHICAL GROUPS ♦	PHENOTYPE CATEGORIES ♦
rs2069502	yes	< 0.05	147	0	Unknown	• Efficacy

Visualization

Integrated Genomics Viewer (IGV)

Thorvaldsdottir, H. et al. Briefings in Bioinformatics (2012)

Genomics data processing workflow summary

- Check quality of FASTQ files
- Trimming
- Alignment and/or assembly
- Deduplicate
- Variant calling
 - Germline or Somatic
 - Copy number variation
 - Translocation
- Variant filtering
- Variant annotation

Any question?

- See you on September 4