O caso da Tech4all

Competências Transferíveis 2 - Investigação Operacional

João Figueiredo (98506) Tiago Leitão (108387) Gabriel Monteiro (107987) Tomás Nunes (94545) André Ferreira (103659) André Gonçalves (107231) Neuza Pinto (107386)

Professor do módulo CT2-IO: Carlos Ferreira

Conteúdo

1	Intr	odução	3
2	Res	olução	4
	2.1	A) Formulação do problema em programação linear	4
		2.1.1 Variáveis de decisão	4
		2.1.2 Função Objetivo	4
		2.1.3 Restrições	4
	2.2	B) Resolução com o solver do excel	5
	2.3	C) Análise e descrição da solução obtida	6
	2.4	D) Formulação do problema dual	7
	2.5	E) Análise e descrição obtida para o modelo dual - valorizações	
		internas (preços sombra/custos de oportunidade)	8
	2.6	F) Análise de sensibilidade	10
		2.6.1 Quanto aos termos independentes (disponibilidade das li-	
		nhas de produção, montagem e de embalagem e as limi-	
		tações de produção diária de cada produto)	10
		2.6.2 Quanto aos coefecientes da função objetivo (lucros unitá-	
		rios de cada produto) $\dots \dots \dots \dots \dots$	12

Lista de Figuras

1.1	Tabela da tech4all	;
2.1	Tabela do excel	,
2.2	Tabela de conversão para o dual	,
2.3	Relatório de sensibilidade sobre as restrições	8
2.4	Relatorio de sensibilidade sobre os coefecientes da FO	12

Capítulo 1

Introdução

A Tech4All é uma empresa que fabrica quatro tipos de produtos (P1, P2, P3 e P4) utilizando uma linha de produção, uma linha de montagem e uma linha de embalagem. A disponibilidade máxima diária de cada linha, os coeficientes tecnológicos (consumos unitários em cada linha) e os lucros unitários ($\mathfrak C$) para os quatro produtos, apresentam-se na tabela seguinte:

Linha de	Tempo (h	Disponibilidade máxima diária			
	P1	P2	Р3	P4	maxima diana
Produção	3	2	2	4	450 horas
Montagem	1	1	2	3	400 horas
Embalagem	2	1	2	1	400 horas
					1
Lucro unitário (€)	60	40	60	80	

Figura 1.1: Tabela da tech4all

A Tech4All tem compromissos com alguns clientes, que obrigam a uma produção diária de pelo menos 50 unidades de P1; também devem ser produzidos diariamente, em conjunto, pelo menos 100 unidades de P2 e P3; por outro lado prevê-se uma limitação superior de 25 unidades para a quantidade do produto P4 a fabricar diariamente. O objetivo da Tech4All é maximizar o lucro total diário, que advém da venda dos produtos fabricados. Utilizando como metodologia a Programação Linear, resolva este problema e forneça à Tech4All indicações de gestão úteis para esta situação.

Capítulo 2

Resolução

2.1 A) Formulação do problema em programação linear

Para conseguirmos formular o problema, existem 3 aspetos que teremos de definir: a função objetivo, as variáveis de decisão e restrições existentes.

2.1.1 Variáveis de decisão

De acordo com a tabela fornecida, conseguimos determinar 4 variáveis de decisão:

- x_1 Quantidade produzida do produto p1;
- x_2 Quantidade produzida do produto p2;
- x_3 Quantidade produzida do produto p3;
- x_4 Quantidade produzida do produto p4.

2.1.2 Função Objetivo

O objetivo da Tech4all é maximizar o lucro diário, portanto podemos determinar a função objetivo como:

$$MAX(Z) = 60x_1 + 40x_2 + 60x_3 + 80x_4$$

2.1.3 Restrições

Analisando a tabela e o contexto fornecido no enunciado, é possível identificar 6 restrições:

R1: $3x_1+2x_2+2x_3+4x_4 \le 450$ (Disponibilidade máxima na linha de produção)

R2: = $1x_1 + 1x_2 + 2x_3 + 3x_4 \le 400$ (Disponibilidade máxima na linha de montagem)

R3: = $2x_1 + 1x_2 + 2x_3 + 1x_4 \le 400$ (Disponibilidade máxima na linha de embalagem)

R4: $= x_1 + 0x_2 + 0x_3 + 0x_4 \ge 50$ (Limite mínimo de produção P1)

R5: = $0x_1 + x_2 + x_3 + 0x_4 \ge 100$ (Limite mínimo de produção de P2+P3)

R6: = $0x_1 + 0x_2 + 0x_3 + x_4 \le 25$ (Limite máximo de produção de P4)

CNN: $x_1, x_2, x_3, x_4 \ge 0$ (Condições de não negatividade)

2.2 B) Resolução com o solver do excel

Através do excel, utilizá-mos o solver para nos encontrar uma solução ótima e gerar os relatórios de sensibilidade, resposta e limites.

A solução do solver está identificada pelos números destacados a vermelho.

	P1	P2	P3	P4			disponibilidade maxim	a diaria
	50	0	150	0	TOTAL			
PRODUÇÃO	3	2	2	4	450	<=	450	
MONTAGEM	1	1	2	3	350	<=	400	
EMBALAGEM	2	1	2	1	400	<=	400	
LUCRO	60	40	60	80	12000			

Figura 2.1: Tabela do excel

2.3 C) Análise e descrição da solução obtida

Portanto, analisando a solução obtida conseguimos determinar o seguinte:

- A solução ótima é atingida com a produção de 50 unidades de P1, 0 de P2, 150 de P3 e 0 de P4;
- O valor da função objetivo é igual a 12000 euros, o que representa o lucro diário total maximizado;
- Para esta solução ótima, foram consumidas todas as horas disponíveis nas linhas de produção e embalagem, sobrando 50 na linha de montagem (análise de variáveis de folga):
 - As linhas de produção e embalagem foram totalmente consumidas, logo são recursos escassos;
 - A linha de montagem não foi totalmente consumida, sobrando 50 horas, portanto é um recursos abundante;

2.4 D) Formulação do problema dual

Para formular o problema dual, teremos que fazer a conversão do primal (obtido na alínea a)). Esta conversão sguirá as seguintes regras:

PROBLEMA DE MAXIMIZAÇÃO	Passagem 	ao dual →	PROBLEMA DE MINIMIZAÇÃO	
restrição i	≤ ≥ =	≥ 0 ≤ 0 livre	variável i	
variável j	≥ 0 ≤ 0 livre	≥ ≤ =	restrição j	
matriz A			$matriz\ \boldsymbol{A}^T$	
coeficientes da	FO	termos independentes		
termos independ	lentes	coe	eficientes da FO	

Figura 2.2: Tabela de conversão para o dual

Como no modelo primal temos 4 variáveis e 6 restrições, no modelo dual teremos 6 variáveis e 4 restrições. Eis o modelo dual:

$$\mathbf{MIN(W)} = 450y_1 + 400y_2 + 400y_3 + 50y_4 + 100y_5 + 25y_6$$

R1:
$$3y_1 + 1y_2 + 2y_3 + 1y_4 + 0y_5 + 0y_6 \ge 60$$

R2:
$$2y_1 + 1y_2 + 1y_3 + 0y_4 + 1y_5 + 0y_6 \ge 40$$

R3:
$$2y_1 + 2y_2 + 2y_3 + 0y_4 + 1y_5 + 0y_6 \ge 60$$

R4:
$$4y_1 + 3y_2 + 1y_3 + 0y_4 + 0y_5 + 1y_6 \ge 80$$

CNN: $y_1, y_2, y_3, y_6 \ge 0$

CNP: $y_4, y_5 \le 0$

2.5 E) Análise e descrição obtida para o modelo dual - valorizações internas (preços sombra/custos de oportunidade)

Para podermos analisar as valorizações internas (preços-sombra/custos de oportunidade), teremos que analisar o relatório de sensibilidade devolvido pelo solver do excel.

		Final	Sombra	Restrição	Permissível	Permissível
Célula	Nome	Valor	Preço	Lado Direito	Aumentar	Diminuir
\$D\$2	(R)p4	0	0	25	1E+30	25
\$E\$2	(R)p1	50	-16,66666667	50	0	30
\$H\$2	(R)p2+p3	150	0	100	50	1E+30
\$Q\$3	PRODUÇÃO TOTAL	450	16,66666667	450	75	0
\$Q\$4	MONTAGEM TOTAL	350	0	400	1E+30	50
\$Q\$5	EMBALAGEM TOTAL	400	13,33333333	400	0	75

Figura 2.3: Relatório de sensibilidade sobre as restrições

Analisando a coluna, "Preço Sombra", podemos concluir o seguinte quanto a cada restrição:

• Restrição do limite máximo de P4

- Preço sombra é nulo
- Portanto, a solução ótima não é afetada (de forma alguma) por variações à restrição do lado direito

• Restrição do limite mínimo de P1

- Preço sombra é negativo (-16.6667)
- Portanto, se a restrição do lado direito variar irá haver um impacto na solução ótima
- Interpretação económica: Se a restrição do lado direito aumentar em 1 unidade, o valor da função objetivo (lucro) diminui em 16.6667 euros
- Restrição vinculativa

• Restrição do limite mínimo de P2+P3

- Preço sombra é nulo
- Portanto, a solução ótima não é afetada (de forma alguma) por variações à restrição do lado direito

Restrição do limite máximo de horas disponíveis para a linha de produção

- Preço sombra é positivo (16.6667)
- Portanto, se a restrição do lado direito variar irá haver um impacto na solução ótima
- Interpretação económica: Se a restrição do lado direito aumentar em 1 unidade, o valor da função objetivo (lucro) aumenta em 16.6667 euros
- Restrição vinculativa

Restrição do limite máximo de horas disponíveis para a linha de montagem

- Preço sombra é nulo
- Portanto, se a restrição do lado direito variar não irá haver um impacto na solução ótima
- Interpretação económica: não é um fator limitante para a maximização ou minimização da função objetivo

Restrição do limite máximo de horas disponíveis para a linha de embalagem

- Preço sombra é positivo (13.33333)
- Portanto, se a restrição do lado direito variar irá haver um impacto na solução ótima
- Interpretação económica: Se a restrição do lado direito aumentar em 1 unidade, o valor da função objetivo (lucro) aumenta em 13.3333 euros
- Restrição vinculativa

2.6 F) Análise de sensibilidade

2.6.1 Quanto aos termos independentes (disponibilidade das linhas de produção, montagem e de embalagem e as limitações de produção diária de cada produto)

Para analisar as restrições do lado direito e sua influência na solução ótima, é necessário observar a tabela presente na figura 2.3 e as colunas "Restrição do lado direito", "Permissível Aumentar"e "Permissível Diminuir". Através desses valores, é possível determinar em que medida as restrições do lado direito podem variar sem afetar a solução ótima. Em resumo, podemos concluir o seguinte para cada uma das restrições:

• Restrição do limite máximo de P4

- Restrição do lado direito = 25
- Aumento possível = $+\infty$
- Diminuição possível = 25
- Conjunto de valores que a restrição de lado pode assumir = $[0, +\infty)$
- O valor ótimo sofre alterações proporcionais ao preço sombra, ou seja, neste caso não sofre. O preço sombra é nulo

• Restrição do limite mínimo de P1

- Restrição do lado direito = 50
- Aumento possível = 0
- Diminuição possível = 30
- Conjunto de valores que a restrição de lado pode assumir = [20, 50)
- O valor ótimo sofre alterações proporcionais ao preço sombra. O preço sombra é negativo

• Restrição do limite mínimo de P2+P3

- Restrição do lado direito =100
- Aumento possível = 50
- Diminuição possível $= \infty$
- Conjunto de valores que a restrição de lado pode assumir = $[-\infty, 150]$
- O valor ótimo sofre alterações proporcionais ao preço sombra, ou seja, neste caso não sofre. O preço sombra é nulo

Restrição do limite máximo de horas disponíveis para a linha de produção

- Restrição do lado direito = 450
- Aumento possível = 75
- Diminuição possível = 0
- Conjunto de valores que a restrição de lado pode assumir = [450, 525]
- O valor ótimo sofre alterações proporcionais ao preço sombra. O preço sombra é positivo

Restrição do limite máximo de horas disponíveis para a linha de montagem

- Restrição do lado direito = 400
- Aumento possível = ∞
- Diminuição possível = 50
- Conjunto de valores que a restrição de lado pode assumir $= [350, \infty]$
- O valor ótimo sofre alterações proporcionais ao preço sombra. Neste caso não existem alterações pois o preço sombra é nulo

Restrição do limite máximo de horas disponíveis para a linha de embalagem

- Restrição do lado direito =400
- Aumento possível = 0
- Diminuição possível = 75
- Conjunto de valores que a restrição de lado pode assumir = [325, 400]
- O valor ótimo sofre alterações proporcionais ao preço sombra. O preço sombra é positivo

Nota: Em certas restrições podem haver aumentos/diminições de quantidades bastante elevadas, praticamente infinitas. Esses numeros derivam da análise matemática que o solver do excel realiza. Num cenário real não existirão custos negativos nem quantidade negativas a produzir.

2.6.2 Quanto aos coefecientes da função objetivo (lucros unitários de cada produto)

Para explorar a sensibilidade dos coeficientes, vamos examinar a tabela de variáveis no relatório de sensibilidade gerado pelo Excel.

Células de Variável

			Final	Reduzido	Objetivo	Permissível	Permissível
Célula		Nome	Valor	Custo	Coeficiente	Aumentar	Diminuir
\$M\$2	P1		50	0	60	16,66666667	1E+30
\$N\$2	P2		0	-6,666666667	40	6,666666667	1E+30
\$0\$2	Р3		150	0	60	100	20
\$P\$2	Р4		0	0	80	40	20

Figura 2.4: Relatorio de sensibilidade sobre os coefecientes da FO

Analisando as colunas "Permissivel Aumentar" e "Permissível Diminuir", descobrimos o quanto cada coefeciente pode variar (individualmente, ou seja, apenas esse e não os outros) sem que a solução ótima seja alterada.

Analisando agora em detalhe cada coefeciente:

• Coefeciente de P1 = 60

- Analisando os aumentos e diminuições possíveis, conseguimos concluir, matematicamente, que podemos aumentar o coefeciente em 16.666667 euros ou diminuir de forma infinita, que a solução ótima não seria afetada. Ou seja, as quantidades porduzidas de cada produto seriam as mesmas.
- Mas o solver apenas faz a análise matemática e, obviamente, não possui contexto. Por exemplo, uma diminuição infinita é impossível, não existem custos negativos. Portanto, realisticamente, o coefeciente de P1 pode assumir um valor entre [0; 76.667] e a solução ótima manteria-se igual.
- Apesar da solução ótima permanecer inalterada, o valor da função objetivo poderá alterar consoante o aumento ou redução.

• Coefeciente de P2 = 40

- Analisando os aumentos e diminuições possíveis, conseguimos concluir, matematicamente, que podemos aumentar o coefeciente em 6.666667 euros ou diminuir de forma infinita, que a solução ótima não seria afetada. Ou seja, as quantidades porduzidas de cada produto seriam as mesmas.

– Mas o solver apenas faz a análise matemática e, obviamente, não possui contexto. Por exemplo, uma diminuição infinita é impossível, não existem custos negativos. Portanto, realisticamente, o coefeciente de P2 pode assumir um valor entre [0; 46.667] e a solução ótima manteria-se igual.

• Coefeciente de P3 = 60

- Analisando os aumentos e diminuições possíveis, conseguimos concluir, matematicamente, que podemos aumentar o coefeciente em 100 euros ou diminuir em 20 euros, que a solução ótima não seria afetada. Ou seja, as quantidades porduzidas de cada produto seriam as mesmas.
- Portanto, realisticamente, o coefeciente de P3 pode assumir um valor entre [80; 160] e a solução ótima manteria-se igual.
- Apesar da solução ótima permanecer inalterada, o valor da função objetivo poderá alterar consoante o aumento ou redução.

• Coefeciente de P4 = 80

- Analisando os aumentos e diminuições possíveis, conseguimos concluir, matematicamente, que podemos aumentar o coefeciente em 40 euros ou diminuir em 20 euros, que a solução ótima não seria afetada. Ou seja, as quantidades produzidas de cada produto seriam as mesmas.
- Mas o solver apenas faz a análise matemática e, obviamente, não possui contexto. Por exemplo, um diminuição infinita é impossível, não existem custos negativos. Portanto, realisticamente, o coefeciente de P1 pode assumir um valor entre [60; 120] e solução ótima manteriase igual.
- Apesar da solução ótima permanecer inalterada, o valor da função objetivo poderá alterar consoante o aumento ou redução.

Os únicos coeficientes que afetam o valor da função objetivo são os de P1 e P3, pois seus valores finais são diferentes de zero e positivos. Já os coeficientes de P2 e P4 podem variar dentro dos limites calculados sem afetar a solução ótima, mantendo o valor da função constante.