ECE/MATH 520, Spring 2008

Exam 2: Due Session 26

Solutions (version: April 29, 2008, 8:45)

75 mins.; Total 50 pts.

1. (16 pts.) The purpose of this question is to derive a recursive least-squares algorithm where we *remove* (instead of add) a data point. To formulate the algorithm, suppose we are given matrices A_0 and A_1 such that

$$m{A}_0 = egin{bmatrix} m{A}_1 \\ m{a}_1^T \end{bmatrix},$$

where $a_1 \in \mathbb{R}^n$. Similarly, suppose vectors $b^{(0)}$ and $b^{(1)}$ satisfy

$$m{b}^{(0)} = egin{bmatrix} m{b}^{(1)} \\ b_1 \end{bmatrix},$$

where $b_1 \in \mathbb{R}$. Let $\boldsymbol{x}^{(0)}$ be the least-squares solution associated with $(\boldsymbol{A}_0, \boldsymbol{b}^{(0)})$, and $\boldsymbol{x}^{(1)}$ the least-squares solution associated with $(\boldsymbol{A}_1, \boldsymbol{b}^{(1)})$. Our goal is to write $\boldsymbol{x}^{(1)}$ in terms of $\boldsymbol{x}^{(0)}$ and the "removed" data point (\boldsymbol{a}_1, b_1) . As usual, let \boldsymbol{G}_0 and \boldsymbol{G}_1 be the Grammians associated with $\boldsymbol{x}^{(0)}$ and $\boldsymbol{x}^{(1)}$, respectively.

- a. Write down expressions for the least-squares solutions $x^{(0)}$ and $x^{(1)}$ in terms of A_0 , $b^{(0)}$, A_1 , and $b^{(1)}$.
- b. Derive a formula for G_1 in terms of G_0 and a_1 .
- c. Let $P_0 = G_0^{-1}$ and $P_1 = G_1^{-1}$. Derive a formula for P_1 in terms of P_0 and a_1 . (The formula must not contain any matrix inversions.)
- d. Derive a formula for $A_0^T b^{(0)}$ in terms of G_1 , $x^{(0)}$, and a_1 .
- e. Finally, derive a formula for $x^{(1)}$ in terms of $x^{(0)}$, P_1 , a_1 , and b_1 . Use this and part c to write a recursive algorithm associated with successive removals of rows from $(A_k, b^{(k)})$.

Ans.: a. We have

$$\boldsymbol{x}^{(0)} = (\boldsymbol{A}_0^T \boldsymbol{A}_0)^{-1} \boldsymbol{A}_0^T \boldsymbol{b}^{(0)} = \boldsymbol{G}_0^{-1} \boldsymbol{A}_0^T \boldsymbol{b}^{(0)}.$$

Similarly,

$$\boldsymbol{x}^{(1)} = (\boldsymbol{A}_1^T \boldsymbol{A}_1)^{-1} \boldsymbol{A}_1^T \boldsymbol{b}^{(1)} = \boldsymbol{G}_1^{-1} \boldsymbol{A}_1^T \boldsymbol{b}^{(1)}.$$

b. Now,

Hence,

$$\boldsymbol{G}_1 = \boldsymbol{G}_0 - \boldsymbol{a}_1 \boldsymbol{a}_1^T.$$

c. Using the Sherman-Morrison formula,

$$egin{array}{lcl} m{P}_1 &=& m{G}_1^{-1} \ &=& (m{G}_0 - m{a}_1 m{a}_1^T)^{-1} \ &=& m{G}_0^{-1} - rac{m{G}_0^{-1} (-m{a}_1) m{a}_1^T m{G}_0^{-1}}{1 + (-m{a}_1)^T m{G}_0^{-1} m{a}_1} \ &=& m{P}_0 + rac{m{P}_0 m{a}_1 m{a}_1^T m{P}_0}{1 - m{a}_1^T m{P}_0 m{a}_1}. \end{array}$$

d. We have

$$egin{array}{lcl} m{A}_0^T m{b}^{(0)} & = & m{G}_0 m{G}_0^{-1} m{A}_0^T m{b}^{(0)} \ & = & m{G}_0 m{x}^{(0)} \ & = & (m{G}_1 + m{a}_1 m{a}_1^T) m{x}^{(0)} \ & = & m{G}_1 m{x}^{(0)} + m{a}_1 m{a}_1^T m{x}^{(0)}. \end{array}$$

e. Finally,

$$egin{array}{lll} m{x}^{(1)} &=& m{G}_1^{-1} m{A}_1^T m{b}^{(1)} \ &=& m{G}_1^{-1} m{A}_1^T m{b}^{(1)} + m{a}_1 b_1 - m{a}_1 b_1 m{)} \ &=& m{G}_1^{-1} m{A}_0^T m{b}^{(0)} - m{a}_1 b_1 m{)} \ &=& m{G}_1^{-1} m{G}_1 m{x}^{(0)} + m{a}_1 m{a}_1^T m{x}^{(0)} - m{a}_1 b_1 m{)} \ &=& m{x}^{(0)} - m{G}_1^{-1} m{a}_1 m{b}_1 - m{a}_1^T m{x}^{(0)} m{)} \ &=& m{x}^{(0)} - m{P}_1 m{a}_1 m{b}_1 - m{a}_1^T m{x}^{(0)} m{)} \,. \end{array}$$

The general RLS algorithm for removals of rows is:

$$egin{array}{lcl} m{P}^{(k+1)} & = & m{P}_k + rac{m{P}_k m{a}_{k+1} m{a}_{k+1}^T m{P}_k}{1 - m{a}_{k+1}^T m{P}_k m{a}_{k+1}} \ m{x}^{(k+1)} & = & m{x}^{(k)} - m{P}_{k+1} m{a}_{k+1} \left(b_{k+1} - m{a}_{k+1}^T m{x}^{(k)}
ight). \end{array}$$

2. (10 pts.) Use the penalty method to solve the following problem analytically:

minimize
$$x_1^2 + 2x_2^2$$

subject to $x_1 + x_2 = 3$.

Hint: Use the penalty function $P(x) = (x_1 + x_2 - 3)^2$. The solution you find must be exact, not approximate.

Ans.: First, we construct the unconstrained objective function with penalty parameter γ :

$$f(\mathbf{x}) = x_1^2 + 2x_2^2 + \gamma(x_1 + x_2 - 3)^2.$$

Because f is a quadratic with positive definite quadratic term, it is easy to find its minimizer:

$$x_{\gamma} = \frac{1}{1 + 2/(3\gamma)} \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

For example, we can obtain the above by solving the FONC:

$$2(1+\gamma)x_1 + 2\gamma x_2 - 6\gamma = 0$$

$$2\gamma x_1 + 2(2+\gamma)x_2 - 6\gamma = 0.$$

Now letting $\gamma \to \infty$, we obtain

$$\boldsymbol{x}^* = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
.

(It is easy to verify, using other means, that this is indeed the correct solution.)

3. (12 pts.) Consider a standard form LP problem. Suppose we start with an initial basic feasible solution $x^{(0)}$ and we apply one iteration of the simplex algorithm to obtain $x^{(1)}$.

As pointed out in class, it turns out that we can express $x^{(1)}$ in terms of $x^{(0)}$ as

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \alpha_0 \mathbf{d}^{(0)},$$

where α_0 minimizes $\phi(\alpha) = f(\boldsymbol{x}^{(0)} + \alpha \boldsymbol{d}^{(0)})$ over all $\alpha > 0$ such that $\boldsymbol{x}^{(0)} + \alpha \boldsymbol{d}^{(0)}$ is feasible.

- a. Show that $d^{(0)} \in \mathcal{N}(A)$.
- b. As usual, assume that the initial basis is the first m columns of \boldsymbol{A} , and the first iteration involves inserting \boldsymbol{a}_q into the basis, where q>m. Let the qth column of the canonical augmented matrix be $\boldsymbol{y}_q=[y_{1q},\ldots,y_{mq}]^T$.

Express $d^{(0)}$ in terms of y_a .

c. Show that $d^{(0)}$ is a descent direction if and only if $r_q < 0$.

Ans.: a. We have

$$Ad^{(0)} = A(x^{(1)} - x^{(0)})/\alpha_0 = (b - b)/\alpha_0 = 0.$$

Hence, $d^{(0)} \in \mathcal{N}(A)$.

b. From our discussion of moving from one BFS to an adjacent BFS, we deduce that

$$oldsymbol{d}^{(0)} = egin{bmatrix} -oldsymbol{y}_q \ oldsymbol{e}_{q-m} \end{bmatrix}.$$

In other words, the first m components of $\mathbf{d}^{(0)}$ are $-y_{1q}, \ldots, -y_{mq}$, and all the other components are 0 except the qth component, which is 1.

c. Now, we know that $d^{(0)}$ is a descent direction if and only if $c^T d^{(0)} < 0$. So it remains to show that $c^T d^{(0)} < 0$ if and only if $r_q < 0$. From part b, $c^T d^{(0)} = c_q - \sum_{i=1}^m c_i y_{iq} = r_q$, and the desired result follows.

4. (12 pts.) Suppose we are given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$ such that $b \geq 0$. We are interested in an algorithm that, given this A and b, is guaranteed to produce one of following two outputs: (1) If there exists x such that $Ax \geq b$, then the algorithm produces one such x. (2) If no such x exists, then the algorithm produces an output to declare so.

Describe in detail how to design this algorithm based on the simplex method.

Ans.: First, we convert the inequality constraint $Ax \ge b$ into standard form. To do this, we introduce a variable $w \in \mathbb{R}^m$ of surplus variables to convert the inequality constraint into the following equivalent constraint:

$$[oldsymbol{A}, -oldsymbol{I}]egin{bmatrix} oldsymbol{x} \ oldsymbol{w} \end{bmatrix} = oldsymbol{b}, \quad oldsymbol{w} \geq oldsymbol{0}.$$

Next, we introduce variables $u, v \in \mathbb{R}^n$ to replace the free variable x by u - v. We then obtain the following equivalent constraint:

$$egin{aligned} [oldsymbol{A},-oldsymbol{A},-oldsymbol{I}]egin{aligned} oldsymbol{u}\ oldsymbol{v} \end{bmatrix} = oldsymbol{b}, \quad oldsymbol{u},oldsymbol{v},oldsymbol{w} \geq oldsymbol{0}. \end{aligned}$$

This form of the constraint is now in standard form. So we can now use Phase I from the simplex method to implement an algorithm to find a vectors u, v, and w satisfying the above constraint, if one exists, or to declare that none exists. If one exists, we output x = u - v; otherwise, we declare that no x exists such that $Ax \ge b$. By construction, this algorithm is guaranteed to behave in the way specified by the question.