Link between curves and M theoretical distributions

(Duane will cover this part I think) Partition the mass and accretion time into M combinations of \mathcal{M}, \mathcal{T} where

Sat. stellar mass:
$$\bigcup \mathcal{M}_j = [0, 10^9] M_{\bigodot}$$

Accretion time: $\bigcup \mathcal{T}_j = [0, 14] \mathsf{Gyr}$

$$f_j(x,y) = P(x,y|\mathsf{Mass} \in \mathcal{M}_j, \mathsf{Accretion} \ \mathsf{time} \in \mathcal{T}_j)$$

Each observation is generated from one of these M theoretical distributions

$$\left[\frac{Fe}{H}, \frac{\alpha}{Fe}\right]_{j=1}^{N} \text{i.i.d} \sim F(x, y) = \sum_{j=1}^{M} \pi_{j} f_{j}(x, y)$$

Finding the mixing proportions π

Standard maximum likelihood estimates of π won't work

$$\log L(\pi) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} \pi_{j} f_{j}(x_{i}, y_{i}) \right)$$

Suppose we knew which f_j each observation came from:

$$z_{ij} = 1$$
 if $(x_i, y_i) \sim f_j$
0 otherwise

Then

$$\log L(\pi) = \sum_{i=1}^{n} \sum_{j=1}^{m} z_{ij} \log \left\{ \pi_j f_j(x_i, y_i) \right\}$$
 (1)

Finding $\hat{\pi}$ using expectation maximization

- ▶ Find the expected value of the log likelihood, given the data
- Find the $\operatorname{argmax}_{\pi}$ of this expectation
- Repeat until $\log L(\pi)$ stabilizes

Find the expected value of the log likelihood, given the data

$$\mathsf{E}_{\pi} \Big[\log L(\pi) \big| \mathbf{x}, \mathbf{y} \Big] = \sum_{i=1}^{n} \sum_{j=1}^{m} \mathsf{E}_{\pi} \Big[z_{ij} \big| x_i, y_i \Big] \Big\{ \log f_j(x_i, y_i) + \log \pi_j \Big\}$$

$$\hat{w}_{ij}^{(t)} = \mathsf{E}_{\pi} \Big[z_{ij} \big| x_i, y_i \Big]$$

$$= \mathsf{Pr}_{\pi} (z_{ij} \big| x_i, y_i)$$

$$egin{aligned} &= \mathsf{Pr}_{\pi}(z_{ij}|x_i,y_i) \ &= rac{p(x_i,y_i|z_{ij}=1)p(z_{ij}=1)}{p(x_i,y_i)} \ &= rac{\pi_j f_j(x_i,y_i)}{\sum_{j=1}^m \pi_j f_j(x_i,y_j)} \end{aligned}$$

Find the $\operatorname{argmax}_{\pi}$ of this expectation

$$\hat{\pi}^{(t)} = \operatorname*{argmax}_{\boldsymbol{\pi}} \mathsf{E} \Big[\log \mathit{L}(\boldsymbol{\pi}) \big| \mathbf{x}, \mathbf{y}, \hat{\pi}^{(t-1)} \Big]$$

Accounting for the m-1 free parameters of π , differentiation proceeds, for $k=1,\ldots,m-1$, as:

$$\frac{\partial}{\partial \pi_k} \mathsf{E}\Big[\log L(\boldsymbol{\pi})\big|\mathbf{x},\mathbf{y}\Big] = \sum_{i=1}^n \Big\{ w_{ik}^{(t-1)} \frac{1}{\pi_k} - w_{im}^{(t-1)} \frac{1}{1 - \pi_1 - \ldots - \pi_{m-1}} \Big\}$$

$$\frac{1}{\pi_k} \sum_{i=1}^n w_{ik}^{(t-1)} = \frac{1}{1 - \pi_1 - \dots - \pi_{m-1}} \sum_{i=1}^n w_{im}^{(t-1)}$$

Consequently

$$\hat{\pi}_{k}^{(t)} = \frac{\sum_{i=1}^{n} w_{ij}^{(t-1)}}{n}$$

$$\hat{\pi}_{m}^{(t)} = 1 - \pi_{1} - \dots - \pi_{m-1}$$

We used a 5x5 and a 2x2 set of theoretical distributions

Simulation results

Works starting at about 1,000 observations, although larger π values are found with smaller data sets.

Confidence intervals

Correlation between π

Conclusion

Worked

- ▶ 2x2
- EM
- ▶ 5x5 in a few cases
- M-of-n bootstrapped errors

Did not work

- ▶ 5x5
- Parametric bootstrapped errors

Future improvements

- Non-arbitrary gridding
- ► Smoothing of f_i