PLSC 504

Scaling and Item Response Theory

November 11, 2020

The Plan

- Scaling Overview
- Unidimensional Scaling
- Scale Reliability
- Multidimensional Scaling
- Item Response Theory

Some Terms

- Always $i \in \{1, 2, ...N\}$ observations on $k \in \{1, 2, ...K\}$ indicators.
- Z or $Z_1, Z_2, ...$ will indicate the underlying / latent trait(s) / phenomena
- $D_1, D_2, ...D_K$ are dichotomous indicators
- $Y_1, Y_2, ... Y_K$ are *continuous* indicators

Scaling, In General

Characteristics:

- Comparative vs. Non-Comparative Scaling
- Subject-centered vs. Stimulus-centered
- Metric vs. Non-Metric
- Unidimensional vs. Multidimensional

(Unidimensional) Scaling: History

Thurstone (1927, 1929)

- Non-comparative, subject-centered
- "Law of Comparative Judgment": The degree to which any two stimuli can be discriminated is a direct function of the difference in their status as regards the attribute in question.
- Methods: paired comparisons, successive intervals, and equal-appearing intervals.

Likert (1932)

- Non-comparative, subject-centered
- ullet Summative + unidimensional o item construction & selection are key

Guttman (1944, 1950) ("scalogram analysis")

- Comparative: both subject- and stimulus-centered
- The response to each item is a simple function of the sum score

See McIver and Carmines (1981) for more...

Scaling: Dissimilarities and Distances

Dissimilarities matrix:

$$\Delta_{K \times K} = \begin{bmatrix} 0 & \delta_{21} & \delta_{31} & \dots & \delta_{K1} \\ \delta_{12} & 0 & \delta_{32} & \dots & \delta_{K2} \\ \delta_{13} & \delta_{23} & 0 & \dots & \delta_{K3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \delta_{1K} & \delta_{2K} & \delta_{3K} & \dots & 0 \end{bmatrix}$$

where

$$\delta_{ij} = f(\mathbf{Y}_i - \mathbf{Y}_j)$$

Distance Examples Redux

Euclidean ("L2") Distance:

$$\delta_{ij} = \sqrt{(Y_{i1} - Y_{j1})^2 + (Y_{i2} - Y_{j2})^2 + ...(Y_{iN} - Y_{jN})^2}$$

Manhattan ("L1") Distance:

$$\delta_{ij} = |Y_{i1} - Y_{j1}| + |Y_{i2} - Y_{j2}| + ... |Y_{iN} - Y_{jN}|$$

Minkowski Order-p (" L^p ") Distance:

$$\delta_{ij} = \left(\sum_{\ell=1}^{N} |Y_{i\ell} - Y_{j\ell}|^p\right)^{1/p}$$

Goal: Locate N points in a low (p)-dimensional space p << N such that the (say) Euclidean distances between them approximate Δ .

That is, find a set of $N \times P$ points **D** such that $d_{ij}(\mathbf{D}) \approx \delta_{ij} \ \forall i, j$, where

$$d_{ij}(\mathbf{D}) = \sqrt{\sum_{p=1}^{P} (Y_{ip} - Y_{jp})^2}$$

and $p = \{1, 2, ... P\}$ denotes the dimensionality of the space.

For a $K \times K$ dissimilarity matrix Δ , the *stress* associated with a given set of coordinates D is:

$$\sigma(\mathbf{D}) = \sum_{i < j} w_{ij} [\delta_{ij} - d_{ij}(\mathbf{D})]^2$$

with weights

$$\mathbf{W} = \begin{bmatrix} 0 & w_{21} & w_{31} & \dots & w_{K1} \\ w_{12} & 0 & w_{32} & \dots & w_{K2} \\ w_{13} & w_{23} & 0 & \dots & w_{K3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ w_{1K} & w_{2K} & w_{3K} & \dots & 0 \end{bmatrix}$$

with the constraint that

$$\sum_{i < j} w_{ij} \delta_{ij}^2 = \frac{N(N-1)}{2}.$$

Scaling Types

Key: Transformations of the dissimilarities.

Ratio:

- \cdot $\hat{d}_{ij} = \delta_{ij}$ (no transformation)
- · A special case of metric scaling

Interval:

- $\cdot \ \hat{d}_{ij} = a + b(\delta_{ij})$ (linear transformation)
- · Also *metric*; "the ratio of differences of distances should be equal to the corresponding ratio of differences in the data"

Nonlinear:

- \cdot $\hat{d}_{ij} = g(\delta_{ij})$ (e.g., splines)
- · Also metric

Ordinal:

- $\hat{d}_{ij} = f(\delta_{ij})$ such that $\delta_{ij} < \delta_{i'j'} \Rightarrow f(\delta_{ij}) < f(\delta_{i'j'})$
- · Monotone / rank-preserving transformations
- · Nonmetric

Unidimensional Scaling: The Sum Score

Simplest approach: the sum score:

$$\hat{Z}_i = \sum_{k=1}^K Y_{ik}$$

or

$$\hat{Z}_i = \frac{\sum_{k=1}^{K_i} Y_{ik}}{K_i}.$$

Requires:

- $Var(Y_i) = Var(Y_k) \forall j \neq k$
- $Cov(Y_j, Z) = Cov(Y_k, Z) \forall j \neq k$

Unidimensional Scaling

For p = 1, the stress

$$\sigma(\mathbf{D}) = \sum_{i < i} w_{ij} [\delta_{ij} - d_{ij}(\mathbf{D})]^2$$

can be shown to be a function of the orders of the rank orders of the items (see Mair and deLeeuw 2014 for details). This means:

- No need to chose among distances / similarities.
- Solution is via combinatorics.

Example: Cities

> Cities[,c(1,4)]

				city	longitude
New	York	1	Vew	York	-74.00594
Los	Angeles	Los	Ang	geles	-118.24368
Chic	cago	Chicago			-87.62980
Houston		Houston			-95.36980
Phil	Ladelphia	${\tt Philadelphia}$			-75.16522
Phoenix			Pho	enix	-112.07404
San	Antonio	San	Ant	conio	-98.49363
San	Diego	Sa	an I)iego	-117.16108
Dall	Las		Da	allas	-96.79699
San	Jose	S	San	Jose	-121.88633

Cities: Euclidean Distance Matrix (Δ)

```
> CityLong <- data.frame(t(Cities$longitude)) # longitudes in a row
> colnames(CityLong) <- t(Cities$city) # names
> D1long <- dist(t(CityLong)) # distance object
> D1long
             New York Los Angeles Chicago Houston Philadelphia Phoenix San Antonio San Diego Dallas
Los Angeles
                 44.2
Chicago
                 13.6
                             30.6
Houston
                 21.4
                             22.9
                                      7.7
Philadelphia
                 1.2
                             43.1
                                     12.5
                                             20.2
Phoenix
                 38.1
                              6.2
                                     24.4
                                             16.7
                                                          36.9
San Antonio
                24.5
                             19.8
                                     10.9
                                              3.1
                                                          23.3
                                                                  13.6
San Diego
                 43.2
                             1.1
                                     29.5
                                             21.8
                                                          42.0
                                                                   5.1
                                                                              18.7
Dallas
                 22.8
                             21.4
                                      9.2
                                             1.4
                                                          21.6
                                                                  15.3
                                                                               1.7
                                                                                        20.4
San Jose
                 47.9
                              3.6
                                     34.3
                                             26.5
                                                          46.7
                                                                   9.8
                                                                              23.4
                                                                                         4.7
                                                                                               25.1
```

Unidimensional Scaling

```
> library(smacof)
> UDS <- uniscale(D1long)
> UDS
Call: uniscale(delta = D1long)
Final stress value: 4.1e-16
Number of accepted permutations: 180836
Number of possible permutations: 3628800
Number of objects: 10
> UDS$conf
   New York Los Angeles
                              Chicago
                                          Houston Philadelphia
   -1.04236
                 0.75350
                             -0.48929
                                         -0.17508
                                                      -0.99530
    Phoenix San Antonio
                            San Diego
                                           Dallas San Jose
    0.50304
                -0.04827
                              0.70955
                                         -0.11715
                                                      0.90137
```

Cities: UDS Coordinates

East-West Locations for the Ten Largest U.S. Cities via UDS

PRINA Verkhia	Chicago	Houston Dallas San Antonio	• Phoenix	San Pieges	San Jose

Another Example: SCOTUS Votes

> head(SCOTUS)

id	Rehnquist	Stevens	OConnor	Scalia	Kennedy	Souter	Thomas	Ginsburg	Breyer
1	0	1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1
5	0	1	0	0	1	1	0	1	1
7	1	1	1	0	1	1	0	- 1	- 1

SCOTUS: Sum Scores and Distances

```
> SumScores <- colSums(SCOTUS[,2:10],na.rm=TRUE) / nrow(SCOTUS)
> SumScores
Rehnquist Stevens
                    OConnor
                              Scalia
                                      Kennedy
                                                 Souter
                                                          Thomas Ginsburg Brever
  0.2838
           0.6906
                     0.4023
                              0.2648
                                       0.3672
                                                 0.6094
                                                          0.2451
                                                                   0.6130 0.5772
> D1SCOTUS <- dist(t(SCOTUS[,2:10]))
> D1SCOTUS
        Rehnquist Stevens OConnor Scalia Kennedy Souter Thomas Ginsburg
Stevens
            25.61
           15.94
OConnor
                   22.32
Scalia
           13.49
                   26.80
                         18.38
Kennedy
           13.27
                   23.62
                         16.31 15.62
            22.52 15.39
Souter
                         18 73 23 56
                                        20.57
Thomas
           13.45 26.81 18.36 10.15
                                       16.03 23.96
Ginsburg
           22.72 15.10 19.65 24.00
                                       20.88 11.27
                                                     24.64
            22.29 16.09 18.25 24.02
                                       20.66 13.42 24.78
                                                            12.69
Brever
```

SCOTUS: UDS

- > SCOTUS.UDS <- uniscale(D1SCOTUS)</pre>
- > SCOTUS.UDS

Call: uniscale(delta = D1SCOTUS)

Final stress value: 0.317

Number of accepted permutations: 347136 Number of possible permutations: 362880

Number of objects: 9

Sum Scores and UDS

Sum Scores

UDS Results

Reliability: Cronbach's α

For a scale S that is a sum of K separate items $Y_1, Y_2, ... Y_K$,

$$\alpha = \frac{K}{K - 1} \left(1 - \frac{\sum_{k=1}^{K} \sigma_{Y_k}^2}{\sigma_{S}^2} \right)$$

where

- $\sigma_{Y_k}^2$ is the variance of item k and
- σ_S^2 is the variance of the scale S.

 α : "The expected correlation of two tests that measure the same construct."

Cronbach's α (continued)

 α :

- A *lower bound* to reliability.
- If $S = D_1 + D_2 + ... + D_K$, then $\sigma_{Y_k}^2 = P_k(1 P_k)$.
- $\alpha \in [0,1]$ (theoretically)
- Rule of thumb: $\alpha \geq 0.7$ is "adequate"

Limitations (from Sijtsma 2009):

- Requires equal item variances, equal item covariances, and unidimensionality
- Among the "lower bounds," it's among the smallest
- A better one is the "greatest lower bound" (*glb*), but even it has problems...

Reliability: SCOTUS Data

```
> SCOTUSAlpha <- alpha(SCOTUS[.2:10],check.kevs=TRUE)
> SCOTUSAlpha
Reliability analysis
Call: alpha(x = SCOTUS[, 2:10], check.keys = TRUE)
 raw_alpha std.alpha G6(smc) average_r S/N
                                         ase mean
                                                   sd
      0.9
               0.9
                    0.93
                              0.49 8.6 0.0044 0.45 0.35
lower alpha upper
                   95% confidence boundaries
0.89 0.9 0.9
Reliability if an item is dropped:
        raw_alpha std.alpha G6(smc) average_r S/N alpha se
Rehnquist
             0.88
                      0.88
                            0.91
                                      0.48 7.4 0.0049
                           0.92
Stevens
             0.89
                      0.89
                                      0.51 8.4 0.0045
                          0.92
OConnor
            0.88
                     0.88
                                      0.48 7.3 0.0051
                     0.89 0.91
Scalia
           0.89
                                      0.50 7.9 0.0046
Kennedy
           0.88
                      0.88
                           0.92
                                      0.48 7.3 0.0051
                           0.91
Souter
           0.88
                     0.88
                                      0.47 7.2 0.0051
Thomas
           0.89
                      0.89
                           0.91
                                     0.50 8.0 0.0046
Ginsburg
           0.88
                      0.88
                           0.91
                                      0.48 7.4 0.0051
Breyer
            0.88
                      0.88
                           0.91
                                      0.49 7.5 0.0050
```

Multidimensional Scaling

Types...

- Metric Inputs are interval/ratio-level measures; transformations from δ_{ij} to d_{ij} are cardinal-valued.
- **Non-Metric** Inputs are binary or ordinal-level; transformations are rank-preserving *only*.

General steps:

- Generate a dissimilarity matrix Δ (chosing distance metric)
- Choose the dimensionality *p*
- Choose the type of scaling
- Fit model + interpret the results
- Assess model fit + conduct diagnostics

MDS: Model Fit / Diagnostics

Recall: Stress is:

$$\sigma(\mathbf{D}) = \sum_{i < j} w_{ij} [\delta_{ij} - d_{ij}(\mathbf{D})]^2$$

Kruskal's rule of thumb for stress:

- $\sigma(\mathbf{D}) = 0.20 \rightarrow$ "poor"
- $\sigma(\mathbf{D}) = 0.10 \rightarrow$ "fair"
- $\sigma(\mathbf{D}) = 0.05 \rightarrow \text{"good"}$
- $\sigma(\mathbf{D}) = 0.025 \rightarrow$ "excellent"
- $\sigma(\mathbf{D}) = 0 \rightarrow$ "perfect"

Key diagnostic: **Shepard plot**: a scatterplot of δ_{ij} vs. \hat{d}_{ij} ...

- Illustrates model "fit"
- Also illustrates the transformation of the δ_{ij} s

Also permutation tests for model fit...

Example: 2016 ANES Thermometer Scores

MDS using cmdscale

```
> MDS2.alt <- cmdscale(ThermDist,k=2)</pre>
> head(MDS2.alt)
                            \lceil .1 \rceil \quad \lceil .2 \rceil
Asian-Americans
                         309.90 -709.9
                         387.51 -627.6
Hispanics
Blacks
                         407.03 -580.7
                         501.74 866.3
Illegal Immigrants
Whites
                          14.72 -821.5
Dem. Pres. Candidate 1054.53 1053.2
```

MDS Plot, using cmdscale

MDS using mds (ratio scaling)

```
> MDS2 <- mds(ThermDist, ndim=2)
> MDS2

Call:
mds(delta = ThermDist, ndim = 2)

Model: Symmetric SMACOF
Number of objects: 32
Stress-1 value: 0.221
```

Number of iterations: 87

cmdscale and mds Comparison

Alternatives: Interval and Ratio Scaling

```
> MDS2.int <- mds(ThermDist, ndim=2, type="interval")
> MDS2.int
Call:
mds(delta = ThermDist, ndim = 2, type = "interval")
Model: Symmetric SMACOF
Number of objects: 32
Stress-1 value: 0.087
Number of iterations: 17
> # Ordinal:
> MDS2.ord <- mds(ThermDist, ndim=2, type="ordinal")
> MDS2 ord
Call:
mds(delta = ThermDist, ndim = 2, type = "ordinal")
Model: Symmetric SMACOF
Number of objects: 32
Stress-1 value: 0.071
Number of iterations: 22
```

Ratio-Interval-Ordinal Comparison

SCOTUS Redux (p = 2)

```
> SCR <- mds(D1SCOTUS, ndim=2, type="ratio")
> SCR

Call:
mds(delta = D1SCOTUS, ndim = 2, type = "ratio")

Model: Symmetric SMACOF
Number of objects: 9
Stress-1 value: 0.184
Number of iterations: 73
```

SCOTUS MDS Plot

Ratio-Interval-Ordinal Comparison

Useful References

- Kruskal, J.B., and M. Wish 1978. Multidimensional Scaling. Sage.
- McIver, John, and Edward C. and Carmines. 1981. *Unidimensional Scaling*. Sage Publications.
- Davison, Mark L. Multidimensional Scaling. 1983. New York: Wiley.
- Cox, Trevor F. and Michael A. A. Cox. 2000. Multidimensional Scaling, 2nd Ed. New York: Chapman & Hall.
- Borg, Ingwer, and Groenen, Patrick. 2005. Modern
 Multidimensional Scaling: Theory and Applications, 2nd Ed. Berlin:
 Springer-Verlag.
- Borg, Ingwer, Patrick Groenen, and Patrick Mair. 2013. Applied Multidimensional Scaling. Berlin: Springer-Verlag.

Useful R Packages and Routines

Distances, Proximities, etc.

- dist function (base R)
- distances package
- proxy package

Scaling

- stats::cmdscale (classical MDS, in base R)
- smacof (state-of-the-art MDS package)
- vegan (ecology package; has some good MDS routines)
- Others...

Useful Links

- smacof documentation.
- Seven ways to do MDS in R.
- Jan De Leeuw's website.

Item Response Theory (IRT)

Item Response Theory ("IRT")

- Origins in psychometrics / testing
- Measurement model (typically) no X
- Unidimensional
- Discrete responses Y
- Equally descriptive and inferential

Basic Setup

$$Y^* =$$
 latent trait ("ability")

Y =observed measures

- $i \in \{1, 2...N\}$ indexes *subjects* / *units*, and
- $j \in \{1, 2, ...J\}$ indexes *items* / *measures*.

$$Y_{ij} = \begin{cases} 0 & \text{if subject } i \text{ gets item } j \text{ "incorrect,"} \\ 1 & \text{if subject } i \text{ gets item } j \text{ "correct."} \end{cases}$$

Data

> head(SCOTUS,10)

	id	Rehnquist	Stevens	OConnor	Scalia	Kennedy	Souter	Thomas	Ginsburg	Breyer
1	1	- 0	1	0	0	0	0	0	Ō	0
2	2	0	0	0	0	0	0	0	0	0
3	3	0	0	0	0	0	0	0	0	0
4	4	1	1	1	1	1	1	1	1	1
5	5	0	1	0	0	1	1	0	1	1
6	6	0	0	0	0	0	0	NA	0	0
7	7	1	1	1	0	1	1	0	1	1
8	8	0	1	0	0	0	0	0	NA	0
9	9	0	0	0	0	0	0	0	0	0
10	10	1	1	1	1	1	1	1	1	1

One-Parameter Logistic Model ("1PLM")

$$Pr(Y_{ij} = 1) = \frac{exp(\theta_i - \beta_j)}{1 + exp(\theta_i - \beta_j)}$$

Here,

- θ_i = respondent *i*'s *ability*,
- β_j = item j's difficulty.
- ullet $eta_j \equiv$ value of Y^* where $\Pr(Y_{ij}=1)=0.50$

1PLM

- a.k.a. "Rasch" model (Rasch 1960)
- Implicit "slope" = 1.0
- Implies items are equally "discriminating"
- If not...

Two-Parameter Logistic Model ("2PLM")

$$Pr(Y_{ij} = 1) = \frac{\exp[\alpha_j(\theta_i - \beta_j)]}{1 + \exp[\alpha_j(\theta_i - \beta_j)]}$$

- θ_i = respondent *i*'s *ability*,
- β_j = item j's difficulty,
- $\alpha_j = \text{item } j$'s discrimination.

Identical Difficulty, Different Discrimination

Different Difficulty & Discrimination

2PLM

- Due to Birnbaum (1968)
- Similar to "typical" logit...
- Nests the 1PLM as a special case $(\alpha_j = 1 \forall j)$

Three-Parameter Logistic Model ("3PLM")

$$\Pr(Y_{ij} = 1) = \delta_j + (1 - \delta_j) \left\{ \frac{\exp[\alpha_j(\theta_i - \beta_j)]}{1 + \exp[\alpha_j(\theta_i - \beta_j)]} \right\}$$

- θ_i = respondent *i*'s *ability*,
- β_i = item j's difficulty,
- α_i = item j's discrimination.
- $\delta_j = lower \ asymptote \ of \ \Pr(Y_{ij} = 1)$ (incorrectly: "guessing" parameter).

3PLM, Constant α & β , Varying δ

The Two Big Assumptions

- Unidimensionality
- Local Item Independence ("No LID"):

$$Cov(Y_{ij}, Y_{ik}|\theta_i) = 0 \ \forall \ j \neq k$$

Estimation: Notation

$$P_{ij} = \operatorname{Pr}(Y_{ij} = 1),$$
 $Q_{ij} = \operatorname{Pr}(Y_{ij} = 0)$
 $= 1 - \operatorname{Pr}(Y_{ij} = 1),$
 $\Psi = \begin{pmatrix} eta_1 \\ \vdots \\ eta_J \\ lpha_1 \\ \vdots \\ lpha_J \\ \delta_1 \\ \vdots \\ lpha_J \\ \vdots \\ lpha_J \\ \delta_1 \\ \vdots \\ lpha_J \\ \vdots \\ lpha_J \\ \delta_1 \\ \vdots \\ lpha_J \\ \vdots \\ lpha_J \\ \delta_1 \\ \vdots \\ lpha_J \\ \delta_2 \\ \vdots \\ \alpha_J \\ \delta_1 \\ \vdots \\ \alpha_J \\ \delta_J \\ \vdots \\ \alpha_J \\ \vdots \\ \alpha_J \\ \delta_J \\ \vdots \\ \alpha_J \\ \vdots \\ \vdots \\ \alpha_J \\ \vdots \\ \vdots$

Estimation: Likelihoods

Known $\Psi = \alpha$, β , δ :

$$L(\mathbf{Y}|\Psi) = \prod_{i=1}^J P_{ij}^{Y_{ij}} Q_{ij}^{1-Y_{ij}}.$$

Known θ :

$$L(\mathbf{Y}|\theta) = \prod_{i=1}^{N} P_{ij}^{Y_{ij}} Q_{ij}^{1-Y_{ij}}.$$

Estimation: Likelihoods

$$\begin{split} L(\mathbf{Y}|\Psi,\theta) &= \prod_{i=1}^N \prod_{j=1}^J P_{ij}^{Y_{ij}} Q_{ij}^{1-Y_{ij}} \\ \ln L(\mathbf{Y}|\Psi,\theta) &= \sum_{i=1}^N \sum_{i=1}^J Y_{ij} \ln P_{ij} + (1-Y_{ij}) Q_{ij}. \end{split}$$

Parameterization

- N + J parameters in the 1PLM,
- N + 2J parameters in the 2PLM,
- N + 3J parameters in the 3PLM.

But...

- NJ observations,
- Asymptotics as $N \to \infty$, $J \to \infty$...

Estimation: Conditional Likelihood

Total score is:

$$T_i = \sum_{i=1}^J Y_{ij} \in \{0, 1, ...J\}$$

$$L = \prod_{i=1}^{N} \frac{\exp[\alpha_j(\theta_t - \beta_j)]}{1 + \exp[\alpha_j(\theta_t - \beta_j)]}$$

 θ_t are "score-group" parameters corresponding to the J+1 possible values of T.

Estimation: Conditional Likelihood

• Equivalent to fitting a conditional logit model:

$$\Pr(Y_{ij} = 1) = \frac{\exp(\mathbf{Z}_{ij}\gamma)}{\sum_{i=1}^{J} \exp(\mathbf{Z}_{ij}\gamma)}$$

with $\mathbf{Z}_{ij} =$ "item dummies."

• Useful only for 1PLM (since T_i is a sufficient statistic for θ_i).

Estimation: Marginal Likelihood

$$L(\mathbf{Y}|\Psi,\theta) = \prod_{i=1}^{N} \left[\int_{-\infty}^{\infty} \prod_{j=1}^{J} P_{ij}^{Y_{ij}} Q_{ij}^{1-Y_{ij}} d\theta \right]$$

- Analogous to "random effects" ...
- Eliminates inconsistency as $N \to \infty$, but
- Requires *strong* exogeneity of θ and Ψ .

Estimation: Bayesian Approaches

- Place priors on θ , Ψ ;
- Estimate via sampling from posteriors, via MCMC.
- Eliminates problems with $\hat{\alpha}$, $\hat{\beta}$, $\hat{\theta} = \infty$ (see below).
- Easily extensible to other circumstances (hierarchical/multilevel, etc.)

Identification

Two Issues:

- Scale invariance: $L(\hat{\Psi}) = L(\hat{\Psi} + c)$
- Rotational invariance: $L(\hat{\Psi}) = L(-\hat{\Psi})$

Fixes:

- Set one (arbitrary) $\beta_j = 0$, and another (arbitrary) $\beta_k > 0$, or
- Fix two θ_i s at specific values.

Further (Potential) Concerns

- $Y_{ij} = 0/1 \ \forall \ i \rightarrow \beta_i = \pm \infty$.
- $Y_{ij} = 0/1 \ \forall j \rightarrow \theta_i = \pm \infty$.
- Separation / "empty cells" $\rightarrow \alpha_i = \pm \infty$.
- Problematic for joint and conditional approaches; more easily dealt with in the Bayesian framework.

Results

- Estimates of $\hat{\alpha}$ s, $\hat{\beta}$ s, and/or $\hat{\delta}$ s, plus $\hat{\theta}$ s
- Associated s.e.s / c.i.s
- "Scale-free" quantities of interest...

IRT Models in R

- Library 1tm (marginal estimation)
 - rasch (1PLM)
 - 1tm (2PLM)
 - tpm (3PLM)
- Library MCMCpack (Bayesian estimation)
 - 1 and 2PLM
 - Standard, hierarchical, dyamic, multidimensional
- ideal (in library pscl) (Bayesian estimation)
 - 1 and 2PLM
 - k-dimensional
 - takes a rollcall object
- Other packages: eRm, irtoys, irtProb, MiscPsycho, etc.

Example: SCOTUS Voting, 1994-2004

> summary(SCOTUS)

id	Rehnquist	Stevens	OConnor	Scalia
Min. : 1	Min. :0.00	Min. :0.00	Min. :0.0	Min. :0.00
1st Qu.: 377	1st Qu.:0.00	1st Qu.:0.00	1st Qu.:0.0	1st Qu.:0.00
Median : 753	Median:0.00	Median :1.00	Median :0.0	Median:0.00
Mean : 753	Mean :0.28	Mean :0.69	Mean :0.4	Mean :0.27
3rd Qu.:1129	3rd Qu.:1.00	3rd Qu.:1.00	3rd Qu.:1.0	3rd Qu.:1.00
Max. :1505	Max. :1.00	Max. :1.00	Max. :1.0	Max. :1.00
	NA's :49	NA's :51	NA's :55	NA's :41
Kennedy	Souter	Thomas	Ginsburg	Breyer
Min. :0.00	Min. :0.0	Min. :0.00	Min. :0.00	Min. :0.00
1st Qu.:0.00	1st Qu.:0.0	1st Qu.:0.00	1st Qu.:0.00	1st Qu.:0.00
Median :0.00	Median :1.0	Median:0.00	Median :1.00	Median :1.00
Mean :0.37	Mean :0.6	Mean :0.25	Mean :0.61	Mean :0.57
3rd Qu.:1.00	3rd Qu.:1.0	3rd Qu.:0.00	3rd Qu.:1.00	3rd Qu.:1.00
Max. :1.00	Max. :1.0	Max. :1.00	Max. :1.00	Max. :1.00
NA's :32	NA's :37	NA's :44	NA's :39	NA's :61

1PLM Using rasch

```
> # 1PLM / Rasch Model:
> require(ltm)
> OnePLM<-rasch(SCOTUS[c(2:10)])
> summary(OnePLM)
Model Summary:
log.Lik AIC
               BTC
  -5529 11079 11132
Coefficients:
               value std.err z.vals
Dffclt.Rehnquist 0.46 0.040
                             11.5
Dffclt Stevens
               -0.59
                       0.030 -19.8
Dffclt.OConnor
              0.14
                       0.030
                               4.6
               0.52 0.041 12.5
Dffclt Scalia
Dffclt.Kennedy 0.21 0.032
                             6.5
Dffclt.Souter
              -0.36
                      0.027 -13.1
Dffclt.Thomas
               0.60
                      0.043 13.8
Dffclt.Ginsburg -0.37
                       0.027 -13.4
Dffclt.Breyer
               -0.26 0.027 -9.9
Dscrmn
                3.74
                       0.130 28.9
Integration:
method: Gauss-Hermite
quadrature points: 21
Optimization:
Convergence: 0
```

max(|grad|): 0.0027 quasi-Newton: BFGS

Converted to $Pr(Y_i = 1 | \hat{\theta}_i = 0)$

- > # Convert to probabilities given theta=0
 >
- > coef(OnePLM, prob=TRUE, order=TRUE)

	Dffclt	Dscrmn	P(x=1 z=0)
Stevens	-0.59	3.7	0.900
Ginsburg	-0.37	3.7	0.797
Souter	-0.36	3.7	0.791
Breyer	-0.26	3.7	0.729
OConnor	0.14	3.7	0.373
Kennedy	0.21	3.7	0.311
Rehnquist	0.46	3.7	0.151
Scalia	0.52	3.7	0.126
Thomas	0.60	3.7	0.096

Alternative Model Constraining $\alpha = 1.0$

```
> AltOnePLM<-rasch(IRTData, constraint=cbind(length(IRTData)+1,1))
> summary(AltOnePLM)
Model Summary:
log.Lik
          AIC
                BIC
  -6452 12923 12971
Coefficients:
                value std.err z.vals
                             17.3
Dffclt.Rehnquist 1.26 0.073
Dffclt.Stevens
              -1.07
                       0.071 -15.1
                                8.1
Dffclt.OConnor
              0.56
                       0.069
Dffclt.Scalia
               1.37
                       0.074
                              18.6
Dffclt.Kennedy 0.72
                       0.069
                              10.4
Dffclt.Souter
                -0.58
                       0.068
                               -8.6
Dffclt Thomas
               1.53
                       0.075
                               20.3
Dffclt.Ginsburg -0.61
                       0.068
                              -8.9
Dffclt.Breyer
               -0.40
                       0.068
                               -5.9
Dscrmn
                1.00
                          NA
                                 NΑ
```

Constrained and Unconstrained 1PLM $\hat{\beta} s$

2PLM

```
> TwoPLM<-ltm(IRTData ~ z1)
> summary(TwoPLM)
```

Coefficients:

	value	std.err	z.vals
Dffclt.Rehnquist	0.44	0.035	12.3
Dffclt.Stevens	-0.63	0.038	-16.7
Dffclt.OConnor	0.14	0.026	5.6
Dffclt.Scalia	0.59	0.042	14.1
Dffclt.Kennedy	0.20	0.028	7.2
Dffclt.Souter	-0.27	0.025	-10.7
Dffclt.Thomas	0.68	0.044	15.2
Dffclt.Ginsburg	-0.29	0.025	-11.8
Dffclt.Breyer	-0.24	0.025	-9.6
Dscrmn.Rehnquist	4.77	0.377	12.7
Dscrmn.Stevens	2.46	0.165	14.9
Dscrmn.OConnor	4.14	0.341	12.1
Dscrmn.Scalia	2.82	0.188	15.0
Dscrmn.Kennedy	4.74	0.448	10.6
Dscrmn.Souter	6.69	0.535	12.5
Dscrmn.Thomas	2.84	0.190	14.9
Dscrmn.Ginsburg	5.83	0.439	13.3
Dscrmn.Breyer	3.76	0.253	14.9

2PLM: Probabilities and Testing

> coef(TwoPLM, prob=TRUE, order=TRUE)

	Dffclt	Dscrmn	P(x=1 z=0)
Stevens	-0.63	2.5	0.82
Ginsburg	-0.29	5.8	0.85
Souter	-0.27	6.7	0.86
Breyer	-0.24	3.8	0.71
OConnor	0.14	4.1	0.35
Kennedy	0.20	4.7	0.28
Rehnquist	0.44	4.8	0.11
Scalia	0.59	2.8	0.16
Thomas	0.68	2.8	0.13

> anova(OnePLM, TwoPLM)

Likelihood Ratio Table AIC BIC log.Lik LRT df p.value OnePLM 11079 11132 -5529 TwoPLM 10882 10978 -5423 212.7 8 <0.001

3PLM

> ThreePLM<-tpm(IRTData) > summary(ThreePLM)

Coefficients:

	value	std.err	z.vals
Gussng.Rehnquist	0.049	0.008	6.260
Gussng.Stevens	0.000	0.001	0.018
Gussng.OConnor	0.043	0.013	3.415
Gussng.Scalia	0.097	0.011	9.119
Gussng.Kennedy	0.071	0.014	5.162
Gussng.Souter	0.011	0.029	0.386
Gussng.Thomas	0.087	0.010	8.900
Gussng.Ginsburg	0.000	0.000	0.009
Gussng.Breyer	0.000	0.000	0.004
Dffclt.Rehnquist	0.716	0.030	23.511
Dffclt.Stevens	-0.630	0.038	-16.434
Dffclt.OConnor	0.340	0.040	8.537
Dffclt.Scalia	0.759	1.766	0.430
Dffclt.Kennedy	0.500	0.041	12.170
Dffclt.Souter	-0.294	0.063	-4.642
Dffclt.Thomas	0.808	10.610	0.076
Dffclt.Ginsburg	-0.329	0.030	-10.970
Dffclt.Breyer	-0.232	0.031	-7.439
Dscrmn.Rehnquist	8.735	4.259	2.051
Dscrmn.Stevens	2.577	0.181	14.214
Dscrmn.OConnor	3.979	0.439	9.068
Dscrmn.Scalia	26.537	578.889	0.046
Dscrmn.Kennedy	4.408	0.588	7.498
Dscrmn.Souter	6.698	1.416	4.731
Dscrmn.Thomas	34.074	2779.161	0.012
Dscrmn.Ginsburg	5.800	0.509	11.394
Dscrmn.Breyer	3.538	0.231	15.335

3PLM: Testing

> anova(TwoPLM, ThreePLM)

Likelihood Ratio Table

AIC BIC log.Lik LRT df p.value
TwoPLM 10882 10978 -5423
ThreePLM 10737 10881 -5342 162.94 9 <0.001

Cool Plots, I

Cool Plots, II

Cool Plots, III

Presenting Measures: Ladderplots (2PLM)

3PLM Ladderplot (#wtf)

Miscellaneous Things, I: Dimensionality

- Usually, unidimensional
- Sometimes, two-dimensional
- Tests:
 - · Tetrachoric correlations among items
 - DIMTEST (Stout & Zhang, etc.)
 - · Yen's Q_3
 - · 1-D vs. 2-D comparisons (LR tests, etc.)

Miscellaneous Things, II: "DIF"

- Differential item functioning
- Formally,

$$\Pr(Y_{ij}=1) = \Lambda[\alpha_j(\theta_i - \mathbf{X}_i\beta_j)].$$

ullet o violates local item independence

Extensions

- Nominal/Multinomial Y
- Ordinal Y:
 - · Graded response model ("GRM") (Samejima 1969)
 - · Partial credit model (Masters 1982)
 - · Generalized partial credit model (Muraki 1992)
- Models for mixed response types (Thissen and Wainer 2001, 2003)
- Hierarchical IRT models (e.g. Bolt and Kim 2005)
- Models with covariates (e.g., DeBoeck and Wilson 2004)

Further Reading / Useful References

Hambleton, Ronald K., H. Swaminathan, and H. Jane Rogers. 1991. Fundamentals of Item Response Theory. Newbury Park CA: Sage Publications.

Fahrmeier, L., and G. Tutz. 2000. Multivariate Statistical Modelling Based on Generalized Linear Models. Berlin: Springer-Verlag.

De Boeck, Paul, and Mark Wilson, Eds. 2004. Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach. New York: Springer.

de Ayala, R. J. 2008. The Theory and Practice of Item Response Theory. New York: The Guilford Press.

Baker, Frank B., and Seock-Ho Kim. 2017. The Basics of Item Response Theory Using R. New York: Springer.

van der Linden, Wim J., Ed. 2018. *Handbook of Item Response Theory* (3 vol.). New York: Chapman & Hall CRC.