Part I: Theory of LoFT

To be released soon

Section I Overview:

Section II Modelling of floating offshore wind farms

- A. Low-order modelling of turbines
- B. Wind farm flow dynamics
- C. Ocean waves and currents
- D. Grid integration

Section III Controllers

Local controller
Centralized energy management system
Centralized/Distributed wind farm flow control

Section IV Validations

Section V Conclusions and future development plan

Part II: Community Tools for Floating Wind Turbines

LoFT (Low-Order modelling of floating wind turbines For Training) draws on the work of other open-source repositories. Below we give a list of them and collect their links and key features. Hope that this list will help beginners and developers.

Table 1. A list of open-source repositories for beginners in the area of floating wind turbines

Repository(link)	Key features	Main Purpose	Developers
OpenFast/Fast.Farm	Individual turbine or wind-farm	Model	NREL
	model (with a limited number of		
	wind turbines) written in Fortran;		
	can simulate steady or turbulent		
	inflow, regular or irregular waves;		
	and conduct structural/fatigue		
	analysis. The resulted are		
	validated by scaled experiments.		
WEC-Sim	Wave Energy Converter	Model	NREL
	Simulator (WEC-Sim), an open-		
	source code for simulating wave		
	energy converters. The code		
	implementations for		
	hydrodynamics and mooring		
	dynamics are similar and helpful		
	for modelling of floating wind		
	turbines.		
<u>RAFT</u>	RAFT - Response Amplitudes of	Design	NREL
	Floating Turbines, python codes		
	for frequency-domain analysis of		
	floating wind turbines. It presents		
	a design-oriented modelling of		
	floating wind turbines		
WISDEM	The Wind-Plant Integrated	Design	NREL
	System Design and Engineering		
	Model (WISDEM) is a set of		
	models for assessing overall wind		
	plant cost of energy (COE).		
	Helpful for design and economic		
	assessment of floating wind		
	turbines		
ROSCO	Reference open-source controller	Control	CU Boulder
	that can be used in OpenFAST;		/NREL
	when compiled, produces a		
	libdiscon.so controller that uses a		

	101 1 570 0 01		1
	specified DISCON.IN file. The		
	controller for floating wind		
	turbines features floating		
	feedback, peak saturation and		
	detuned natural frequency.		
<u>Floris</u>	FLORIS is a controls-focused	Control	NREL
	wind farm simulation software		
	incorporating steady-state		
	engineering wake models into a		
	performance-focused Python		
	framework.		
MoorPy	MoorPy is a design-oriented	Design	NREL
	mooring system library for		
	Python based around a quasi-		
	static modeling approach.		
<u>HydroChrono</u>	HydroChrono is an emerging	Model	NREL
	hydrodynamics simulation tool		
	designed to model complex ocean		
	systems. Seamlessly integrated		
	with the Project Chrono physics		
	engine, it offers a powerful C++		
	API for a wide range of		
	simulations.		
QBlade	Built on the Project Chrono	Model	
42	physics engine.	1110 001	
MOST (link1, link2)	Modelling floating turbines based	Model	MOREnergyLab
	on Simscape multibody.	1.10401	ino icinoi gy Eddo
TurboPark	TurbOPark is a parametric wake	Model	DTU
1 STOOT WILL	model developed by Ørsted and	1.10401	
	was validated on 19 offshore		
	wind farms coupled with a		
	blockage and a flow model.		
LoET	_	Control	XJTU
<u>LoFT</u>	Low-order modelling of floating wind turbines for reinforcement	Control	AJIU
	learning training.		

Part III: Open-source Data Base for Floating Wind Turbines

To be released soon