

*** CUIDADO CRÍTICO *** TERAPIA NUTRICIONAL TOTAL

CUIDADO CRÍTICO

Consideraciones
Nutricionales
Durante La
Enfermedad Crítica

Objetivos

Al final de esta sesión los participantes serán capaces de:

- Describir cómo el estrés metabólico altera el uso normal de proteínas, hidratos de carbono y lípidos.
- Comparar los efectos del ayuno y del estrés hipermetabólico sobre el metabolismo y la composición corporal. Explicar los efectos a largo plazo de la enfermedad crítica sobre la condición física y la calidad de vida.
- Utilizar esta información para planear una terapia de nutrición

Metabolismo de macronutrientes

- Necesarias para la biosíntesis de la masa corporal magra
- 4 kcal/g
- Energía
- 4 kcal/g
- Ácidos grasos esenciales
- Energía
- 9 kcal/gLos macronutrientes —

proteínas, hidratos de carbono y grasas proveen al cuerpo de energía y bloques estructurales.

Composición y función

- 20 aminoácidos para el anabolismo
 - 9 esenciales
 - Requeridos en la dieta
 - 11 no esenciales
 - Biosintetizados a partir de aminoácidos esenciales
- Glutamina y Arginina son aminoácidos condicionalmente esenciales

Young LS, et al. Protein. In The A.S.P.E.N. Nutrition Support Core Curriculum. A Case-Based Approach: The Adult Patient. Silver Spring, MD, A.S.P.E.N., 2007:71-87.

Composición y función

Masa corporal magra = tejido funcional

- Masa muscular
- Tejido conectivo
- Proteínas circulantes (o hepáticas)
- Células inmunológicas (p. ej. linfocitos, macrófagos, neutrófilos)
- Células sanguíneas
- Hormonas
- Factores de crecimiento
- Otros

Demling RH. Eplasty 2009;9:e9.

Composición y función

Hidratos de carbono simples: 1 - 2 unidades de glucosa Hidratos de carbono complejos: unidades múltiples de glucosa

- Hidratos de carbono digeridos a monosacáridos y disacáridos
- La glucosa produce energía en las células
- La glucólisis aeróbica produce 7 ATP
- La glucólisis anaeróbica produce 2 ATP

Ling P-R, et al. Carbohydrates. In The A.S.P.E.N. Nutrition Support Core Curriculum. A Case-Based Approach: The Adult Patient. Silver Spring, MD, A.S.P.E.N., 2007:33-47.

Gluconeogénesis: produce glucosa a partir de fuentes diferentes a los hidratos de carbono

© Charles E. Ophardt. Used with permission Ophardt CE. Virtual Chembook. http://www.elmhurst.edu/~chm/vchembook/index.html

G L I C E R O L

Ácido graso 1

Ácido graso 2

(lípidos)

Ácido graso 3

- Compuesto de 3 ácidos grasos enlazados a un núcleo de glicerol
- Proporciona 9 kcal/g

Young LS, et al. Protein. In The A.S.P.E.N. Nutrition Support Core Curriculum. A Case-Based Approach: The Adult Patient. Silver Spring, MD, A.S.P.E.N., 2007:71-87.

Metabolismo de los ácidos grasos

Advisory Faculty: Correia MITD, Hegazi R, Llido L, Rugeles S, Sriram K. TNT 3.0. Total Nutrition Therapy. An Integrated Approach to Patient Care. Chicago: Abbott Nutrition Health Institute. 2011.

La I-carnitina ayuda al metabolismo de las grasas

- Derivada de la lisina
- Esencial para el metabolismo intermediario de ácidos grasos
- Fundamental para la beta oxidación de los ácidos grasos de cadena larga en la mitocondria
- Puede presentarse su deficiencia durante la enfermedad crítica

Evangeliou A, et al. Curr Pharm Biotechnol 2003;4:211-219.

Los lípidos son benéficos y ejercen efectos terapéuticos (I)

- Proveen energía
- Fuente de ácidos grasos esenciales
- Preservan la masa celular magra
- Combustible preferido del músculo, corazón e hígado
- Reducen la hiperglicemia (menor aporte de glucosa para generar energía)

Insel P, Ross D, McMahon K, Bernstein M.. In Nutrition. Sudbury, MA, Jones & Bartlett Publishing, 2011:335-386.

Los lípidos son benéficos y ejercen efectos terapéuticos (I)

- Disminuyen la producción de CO₂ (al aportarse menos glucosa)
- Reducen el hígado graso y la esteatosis hepática (lipogénesis hepática)
- Disminuyen la osmolaridad (importante para uso venoso periférico)
- Reguladores importantes de la transcripción genética
- Esenciales para la proliferación celular y la función de las membranas celulares
- Modulan la lesión celular (falla orgánica) y la reparación tisular (resolución de la enfermedad)
 - Inflamación y daño oxidativo

Riediger ND, et al. J Am Diet Assoc 2009;109:668-679. Position of the American Dietetic Association and Dietitians of Canada: Dietary Fatty Acids. J Am Diet Assoc. 2007;107:1599-1611.

Comparación de los ácidos grasos omega 3 y omega 6

Riediger ND, et al. J.Am Assoc 2009: 109 668-679.

Los ácidos grasos omega 3 son precursores de mediadores para la resolución de la respuesta inflamatoria

Componentes peso corporal en porcentajes

Demling RH. Eplasty 2009;9:e9.

El tejido graso es metabólicamente activo

- Secreta mediadores inflamatorios o compuestos hormonalmente activos
- Produce especies reactivas de oxígeno
- Estrés oxidativo

Nishimura S, et al. Discov Med 2009;8:55-60.

ÓRGANO	% del gasto metabólico en reposo
Hígado	29 (Lípidos)
Cerebro	19 (Glucosa)
Músculo esquelético	18 (Lípidos)
Corazón	10 (Lípidos)
Riñón	7 (Glucosa)
Resto(e): hueso, grasa	17

Insel P, Ross D, McMahon K, Bernstein M.. In Nutrition. Sudbury, MA, Jones & Bartlett Publishing, 2011:335-386.

Metabolismo durante el ayuno

Walker RN, et al. Respir Care. 2009;54:509-521.

Metabolismo durante el ayuno

- 1. El gasto energético en reposo disminuye
- 2. Las grasas almacenadas son la fuente principal de energía
- 3. La masa corporal magra se conserva

Cahill GF. Ann Rev Nutr. 2006;26:1-22.

Long CL, Schaffel N, Geiger JW, et al. JPEN J Parent Ent Nutr 1979;3:452-456.

Metabolismo en la enfermedad crítica

- El organismo tiene dificultad para utilizar la glucosa en estado crítico
- La mayoría de las calorías se derivan de la grasa en forma de triglicéridos (resistencia insulínica)
- Carbohidratos utilizados de manera mínima para el sistema nervioso central (SNC), sangre, riñón y heridas

Capacidad limitada de oxidación de la glucosa

Wiener M et al. Crit Care Clin 1987;3:25-56.

Metabolismo durante el estado crítico

La semi-inanición con estrés provoca cambios patológicos

El estrés metabólico eleva el gasto de energía en reposo e incrementa el catabolismo proteico de la masa corporal magra

Metabolismo durante el estado crítico

Cambios fisiopatológicos en el estrés

- 1. Incremento del gasto energético en reposo
- 2. Las hormonas del estrés limitan la lipólisis y estimulan el catabolismo de la masa corporal magra
- 3. Se produce combustible a través de la gluconeogénesis hepática
- La masa corporal magra
 NO se conserva

Energía + CO Proteina de los músculo **Aminoácidos** Cerebro Energia + CO Aminoacidos Acidos grasos Proteinas de

Wolfe RR. Circ Shock 1981; 8:105-115.

Metabolismo durante el estado crítico

Long CL, et al. JPEN J Parenter Enteral Nutr 1979;3:452-456.

¡Los pacientes con enfermedades críticas pueden perder hasta 1 kg de masa corporal magra en 3 días!

Paddon-Jones D. et al. J Clin Endocrinol Metab. 2006:91:4836-4841.

La pérdida de masa corporal magra se acelera durante las enfermedades críticas y es más acentuado en el adulto mayor.

La pérdida de masa corporal magra incrementa el riesgo de complicaciones y mortalidad

Pérdida de masa	Complicaciones	Riesgo de mortalidad
10%	Inmunidad reducida, aumento de infecciones	10%
20%	Disminución de la cicatrización y fuerza, aumento de infecciones	30%
30%	Demasiado débil para sentarse, úlceras por presión, neumonía, falta de cicatrización, recuperación retardada	50%
40%	Muerte, usualmente por neumonía	100%

Demling RH. Eplasty 2009;9:e9.

Respuesta metabólica al ayuno y al estrés metabólico

	Ayuno	Estrés metabólico
Tasa metabólica	1	11
Reservas corporales	Se conservan	Se pierden
Proteína corporal	Se conserva	Se pierde
Nitrógeno urinario	↓	

Popp MB, Brennan MF. In: Fischer JF, ed. Surgical Nutrition. Boston: Little, Brown and Company, 1983:423-478.

Evolución de la terapia nutricional en cuidados intensivos

Soporte nutricional	Terapia de nutrición
 1970 – 1990 Cuidado adyuvante Conservar la masa corporal magra Mantener la función inmunológica Evitar las complicaciones 	 2000 – a la actualidad Estrategia terapéutica proactiva Reduce la gravedad de la enfermedad Disminuye las complicaciones Reduce el tiempo de estancia en la unidad de cuidados intensivos Mejora los resultados clínicos del paciente

McClave SA, et al. JPEN J Parenter Enteral Nutr 2009; 33:277-316.

¿Quiénes son candidatos para la terapia de nutrición?

Diagnóstico: enfermedades agudas/malnutrición relacionada con lesiones

McClave SA, et al. JPEN J Parenter Enteral Nutr 2009; 33:277-316.

Síndrome de malnutrición e inflamación

Malnutrición

Malnutrición/desnutrición

- Inanición crónica sin inflamación
- Enfermedad crónica con inflamación
- Enfermedad aguda/lesión con inflamación grave

Jensen GL, et al. JPEN J. Parenter Enteral Nutr 2010;34:156-160.

Síndrome de malnutrición e inflamación

Jensen GL, et al. JPEN J. Parenter Enteral Nutr 2010;34:156-160 Advisory Faculty: Correia MITD, Hegazi R, Llido L, Rugeles S, Sriram K. TNT 3.0. Total Nutrition Therapy. An Integrated Approach to Patient Care. Chicago: Abbott Nutrition Health Institute. 2011.

Síndrome de malnutrición e inflamación

Buford TW, et al. Ageing Res Rew 2010;dol:10.1016/j.arr.2010.03.04. Advisory Faculty: Correia MITD, Hegazi R, Llido L, Rugeles S, Sriram K. TNT 3.0. Total Nutrition Therapy. An Integrated Approach to Patient Care. Chicago: Abbott Nutrition Health Institute. 2011.

NIH Pub. No. 98-4083 National Institutes of Health, 1998 Advisory Faculty: Correia MITD, Hegazi R, Llido L, Rugeles S, Sriram K. TNT 3.0. Total Nutrition Therapy. An Integrated Approach to Patient Care. Chicago: Abbott Nutrition Health Institute. 2011.

NIH Pub. No. 98-4083 National Institutes of Health, 1998. Advisory Faculty: Correia MITD, Hegazi R, Llido L, Rugeles S, Sriram K. TNT 3.0. Total Nutrition Therapy. An Integrated Approach to Patient Care. Chicago: Abbott Nutrition Health Institute. 2011.

Advisory Faculty: Correia MITD, Hegazi R, Llido L, Rugeles S, Sriram K. TNT 3.0. Total Nutrition Therapy. An Integrated Approach to Patient Care. Chicago: Abbott Nutrition Health Institute. 2011.

• Prevalencia de malnutrición en adultos hospitalizados:

30% - 50%

• El estado nutricional se deteriora progresivamente con la duración de la hospitalización

Green CJ. Clin Nutr 1999;18(s):3-28.

La deuda calórica es un parámetro de riesgo nutricional

Estancia hospitalaria (p < 0,0001)
Complicaciones (p < 0,0003)
Infecciones (p < 0,0042)
Días de antibiótico (p < 0,0003)
Días de ventilación
mecánica (p < 0,0002)

Villet et al. Clin Nutr (2005) 24, 502 -509.

Métodos para el diagnóstico nutricional de pacientes con enfermedades críticas

- Valoración Global Subjetiva (VGS)
- Guías de práctica de nutrición basada en evidencia para las enfermedades críticas de la Asociación Americana de Dietistas (ADA)
- Guías de la Sociedad Americana de Nutrición Parenteral y Enteral (ASPEN) / Sociedad de Medicina de Cuidados Críticos (SCCM)

Valoración global subjetiva (VGS)

- 1. Cambios en el peso
- 2. Cambios en la ingesta alimentaria
- 3. Síntomas gastrointestinales
- 4. Capacidad funcional
- 5. Relación entre la enfermedad y los requerimientos nutricionales
- 6. Examen físico enfocado en las deficiencias nutricionales

Sungurtekin H, Sungurtekin U, Oner O, Okke D Nutr Clin Pract 2008; 23:635-641.

Valoración global subjetiva A. Historia 5. Enfermedad y su relación con los requerimentos nutricionales Modificación del peso corporal Diagnóstico primario: Pérdida global (últimos 6 meses): Porcentaje de pérdida: Cambio en las últimas 2 semanas: Peso estable Demanda estrés metabólico Reducción Ausente 2. Cambio en la ingestión versus ingestión Baio Moderado No cambio: Cambio: Duración (Semanas) B. Examen físico (Meses) Especificar para cada item 0 = normalTipo: Dieta sólida subóptima 2+ = moderado Sólo dieta liquida $3+ = \alpha raive$ Dieta liquida hipocalórica Pérdida de grasa subcutánea (triceps, torax) Sintomas gastrointestinales Desgaste muscular (persistentes por más de 2 semanas) (cuádriceps, deltoides) Edema maleolar Edema en región sacra Náuseas Vomito Diamea C. Resultado de la valorización Anorexia global subjetiva Capacidad funcional A. Estado nutricional adecuado Ausencia de disfunción B. Malnutrición moderada o Disfunción sospechosa de malnutrición Duración (Semanas) C. Malnutrición grave (Meses) Trabaja en forma suboptima Ambulatorio Postración

TERAPIA NUTRICIONAL TOTAL

NRS 2002 > 3 o NUTRIC score ≥ 5 definen riesgo nutricional elevado

- Evaluar adicionalmente:
 - Funcionalidad del tracto gastrointestinal
 - Riesgo de aspiración pulmonar
 - Comorbilidades

Antropometría y niveles de proteínas viscerales no recomendados

Nutric-Score

VARIABLE	RANGO	PUNTAJE
Edad	<50	0
	50 - <75	1
	≥75	2
Apache III	15 - <20	1
	20-28	2
	>28	3
SOFA	<6	0
	6 - <10	1
	>10	2
Número de Comorbilidades	0-1	0
	<2	1
Dias de estancia hospitalaria previo al ingreso a UTI	0 - <10	0
	≥1	1
IL-6	0-<400	D
	>400	1
	Puntaje total	

Mc Clave et al JPEN(2016) 40, 159 – 211.

Las proteínas viscerales indican un estado metabólico, más que un estado nutricional

Los niveles disminuyen en los pacientes con enfermedades críticas

Jensen GL. JPEN J Parenter Enteral Nutr 2006;30:453-463.

Evaluación imagenológica de la masa muscular

TAC Abdominal (L3)

Índice muscular esquelético:

IMC <25: > 43 cm2/m2 IMC ≥ 25: > 41 cm2/m2 (mujer) y > 53 cm2/m2 (hombre)

Ultrasonido (cuádriceps)

	TAC (L3)	Ultrasonido
Validación	++	+
Exactitud	++	+
Disponibilidad y repetibilidad	+	++

Gómez Perez SL Haus JM et al JPEN 2016, 40 (3) 308 – 318. Mourtzakis M, Wishmeyer P. Curr Opin Clin Nutr Metab Care 2014, 17: 389 - 395.

Weycker, et al. Crit Care Med. 2003;31:2316-2323.

Discapacidad funcional 5 años después del SDRA

Funcionalidad y calidad de vida disminuidas

Limitación de actividad física

Secuelas psicológicas incluidos cuidadores

Mayor utilización de recursos en salud

Herridge MS, Tansey CM et al N Engl J Med 2011, 364: 1293 – 304.

Mejorando los resultados a través de la terapia nutricional y la rehabilitación precoz

Consecuencias de la inmovilidad

- Pérdida rápida de masa y fuerza muscular
- Inflamación, necrosis muscular y reemplazo por tejido adiposo y conectivo
- Debilidad muscular en el largo plazo
- Debilidad adquirida en la UCI

Superar la resistencia anabólica combinando la terapia nutricional con rehabilitación precoz

Principios de la terapia nutricional en UCI (I)

- Evaluar el riesgo nutricional al ingreso a UCI.
- Determinar los requerimientos de energía y proteínas estableciéndolos como metas de la terapia nutricional.
- Iniciación temprana (24 48 horas) de nutrición enteral con logro de las metas en la primera semana.
- Nutrición gástrica tomando medidas a necesidad para prevención de aspiración y mejoramiento de la tolerancia (proquinéticos, infusión contínua, enjuague oral con clorhexidina, posición semi-recumbente, avance de sonda enteral a intestino delgado).

Mc Clave SA et al JPEN (2009) 33, 277 – 316. Schlein MS, Peskoe SS NCP (2014) 29, 44 – 55.

Principios de la terapia nutricional en UCI (I)

- Implementación de protocolos de nutrición con estrategias específicas por institución para favorecer la utilización efectiva de nutrición enteral.
- No utilización de residuos gástricos de manera rutinaria para monitorizar la tolerancia a la nutrición enteral.
- Iniciar nutrición parenteral de manera precoz cuando la nutrición enteral no sea posible o sea insuficiente en pacientes de alto riesgo o con malnutrición manifiesta.
- Utilización de fórmulas nutricionales poliméricas estándar excepto en situaciones clínicas específicas con base en la evidencia científica.

Mc Clave et al JPEN(2016) 40, 159 – 211.

La desnutrición hospitalaria y su asociación con resultados clínicos pobres, condujo a varias organizaciones a desarrollar guías de terapia nutricional

- Guías para la provisión y evaluación de la Terapia de Soporte Nutricional en el paciente adulto críticamente enfermo
 - Sociedad Americana de Nutrición Parenteral y Enteral (ASPEN)
 - Sociedad de Medicina de Cuidados Críticos (SCCM)
- Guías sobre Nutrición Enteral en Cuidado Intensivo
 - Sociedad Europea de Nutrición Clínica y Metabolismo (ESPEN)
- Guías Canadienses de práctica clínica Soporte Nutricional en pacientes adultos críticamente enfermos con ventilación mecánica
 - Comité Canadiense de Guías de Práctica Clínica de Cuidado Crítico

Mc Clave et al JPEN(2016) 40, 159 - 211.

Conceptos clave

- El uso de sustratos nutricionales se encuentra afectado de manera diferente por el ayuno y por el estrés metabólico.
- Existen diferencias importantes en el metabolismo durante el ayuno y durante el estrés metabólico.
- Todos los pacientes con enfermedades críticas son candidatos para terapia de nutrición.
- La malnutrición hospitalaria tiene una prevalencia significativa y se asocia invariablemente con malos resultados clínicos en el corto y el largo plazo.
- Los efectos de las enfermedades críticas sobre el estado funcional y sobre la calidad de vida persisten por períodos prolongados después del alta de la unidad de cuidado crítico.