Lenguajes de Programación y Procesadores de Lenguajes

4. Análisis Semántico

4.1. Formalismo de especificación Semántica

- > Representación: Gramáticas de Atributos
- > Interpretación: orden de evaluación
- ➤ Gramáticas: S-Atribuidas y L-Atribuidas
- > Esquemas de Traducción Dirigidos por la Sintaxis

4.2. Comprobaciones semánticas estáticas

- > Comprobaciones del ámbito (alcance) de las variables
- ➤ Comprobaciones (estáticas) de tipo
- > Comprobaciones de tipo: un caso de estudio

José Miguel Benedí (2022-2023)

Lenguajes de Programación y Procesadores de Lenguajes / Análisis Semántico 1

GRAMÁTICAS DE ATRIBUTOS

Representación: Gramáticas de Atributos GA = (G, A, R).

Siendo $G = (\Sigma, N, S, P)$ una gramática incontextual; \mathcal{A} un conjunto de atributos: v \mathcal{R} un conjunto de reglas o acciones semánticas.

- > Los atributos se asocian a los símbolos de la gramática: $\forall X \in (N \cup \Sigma), \ \mathcal{A}(X) = \{a_1, a_2, \dots, a_n\}$; es el conjunto de atributos de X y se representan por: $X.a_1, X.a_2, \ldots, X.a_n$
- > Las acciones semánticas evalúan los atributos y se asocian a las reglas de G: $\forall (k: X^0 \to X^1 X^2 \dots X^m) \in P$; el conjunto de acciones semánticas asociadas con la regla k es:

$$\begin{split} \mathcal{R}(k) &= \{(X^i.a = f(X^r.b, \dots, X^s.c) \mid \\ &\quad a \in \mathcal{A}(X^i), \ b \in \mathcal{A}(X^r), \ c \in \mathcal{A}(X^s); \ \text{con} \ 0 \leq i, r, \dots, s \leq m \ \} \end{split}$$

José Miguel Benedí (2022-2023)

Lenguajes de Programación y Procesadores de Lenguajes / Análisis Semántico 2

GRAMÁTICAS DE ATRIBUTOS

> Atributos asociados a los símbolos:

Dada una regla $(k: X^0 \to X^1 X^2 \dots X^m) \in P$, para la que existe una acción semántica $(X^i.a = f(X^r.b, \dots, X^s.c) \in \mathcal{R}(k)$, se pueden definir dos tipos de atributos:

> Sintetizados

El atributo X^{i} . a corresponde a un atributo de la parte izquierda de la regal, k. v todas las acciones semánticas que lo modifican cumplen:

$$(i=0) \land (1 \le r, \dots, s \le m)$$

> Heredados

El atributo $X^{i}.a$ corresponde a un atributo de un símbolo de la parte derecha de la regla, k, y todas las acciones semánticas que lo modifican cumplen:

$$(i>0) \land (0 \le r, \dots, s \le m)$$

EJEMPLO DE GA CON ATRIBUTOS SINTETIZADOS

E' ⇒ E	E'.val:=E.val
$E \Rightarrow E + T$	$E.val:=E_1.val+T.val$
$E \Rightarrow T$	E.val:=T.val
$T \Rightarrow T * F$	$T.val:=T_1.val*F.val$
$T \Rightarrow F$	T.val:=F.val
$F \Rightarrow (E)$	F.val:=E.val
F ⇒ cte ′	F.val:=LEXVAL(cte)

EJEMPLO DE GA CON ATRIBUTOS HEREDADOS

$D \Rightarrow L T$	L.tipo:=T.tipo
$T \Rightarrow entero$	T.tipo := tentero
$T \Rightarrow real$	T.tipo := treal
$L \;\; \Rightarrow \; L \;$, id	L_1 .tipo:=L.tipo
	id.tipo:=L.tipo
$L \Rightarrow id$	id.tipo:=L.tipo

José Miguel Benedí (2022-2023)

Lenguajes de Programación y Procesadores de Lenguajes / Análisis Semántico 5

José Miguel Benedí (2022-2023)

Lenguajes de Programación y Procesadores de Lenguajes / Análisis Semántico 6

GRAMÁTICAS DE ATRIBUTOS

> Orden de evaluación semántico

Grafo de Dependencias

Para cada regla $(k: X^0 \to X^1 X^2 \dots X^m) \in P$, y para cada acción semántica $(X^i.a = f(X^r.b, \dots, X^s.c) \in \mathcal{R}(k): 0 \le i, r, \dots, s \le m$ se construye el grafo:

- a) crear un nodo para cada atributo de cada símbolo de la producción.
- b) crear un arco desde cada uno de los nodos asociados con los atributos $X^r.b,\ldots,X^s.c$ (argumentos de la acción semántica) hasta el nodo asociado con $X^i.a$, expresando así su dependencia.

Orden topológico

Si no hay ciclos, cualquier orden topológico del Grafo de Dependencias proporciona un adecuado orden de evaluación de los atributos.

GRAMÁTICAS DE ATRIBUTOS

> Interpretación:

Todos los atributos deben ser evaluados antes de ser utilizados

Problema: Orden de evaluación de los atributos **Solución**:

- > Orden de evaluación semántico
- > Orden de evaluación dirigido por la sintaxis

Gramáticas S-Atribuidas y L-Atribuidas

> Orden de evaluación dirigido por la sintaxis: Representación

Gramática S-atribuida

Una gramática de atributos $GA = (G, \mathcal{A}, \mathcal{R})$ es **S-atribuida**, si todos los atributos empleados en todas las acciones semánticas son sintetizados.

Gramática L-atribuida

Una gramática de atributos $GA=(G,\mathcal{A},\mathcal{R})$ es **L-atribuida**, si $\forall (k:X^0\to X^1X^2\dots X^m)\in P$, los atributos heredados, $X^i.a$ $(1\leq i\leq m \ \land \ a\in \mathcal{A}(X^i))$ con $(X^i.a=f(X^r.b,\dots,X^s.c))\in \mathcal{R}(k)$, son evaluados en términos de:

- ightharpoonup atributos de X^1, X^2, \dots, X^{i-1}
- ightharpoonup atributos heredados de X^0

Gramáticas S-Atribuidas y L-Atribuidas

> Orden de evaluación dirigido por la sintaxis: Interpretación

Esquemas de Traducción Dirigidos por la Sintaxis (ETDS)

Un ETDS es una GA con información explícita del orden de evaluación de sus atributos.

Restricciones de diseño de un ETDS

- ➤ Para una GA S-Atribuida (todos sus atributos son sintetizados) las acciones semánticas se deben situar DESPUÉS del análisis de todos los símbolos de la parte derecha de la regla.
- ➤ Para una GA L-Atribuida
- 1. Las acciones semánticas que evalúan los *atributos sintetizados* se deben situar DESPUÉS del análisis de todos los símbolos de la parte derecha de la regla.
- 2. Las acciones semánticas que evalúan los atributos heredados de un símbolo X, se deben situar ANTES del análisis del símbolo X.

EJEMPLO DE GRAMÁTICA L-ATRIBUIDA

$D \Rightarrow T$	L.tipo:=T.tipo
L	
$T \Rightarrow entero$	T.tipo := tentero
$T \Rightarrow real$	T.tipo:=treal
L ⇒	L_1 .tipo:=L.tipo
L , id	id.tipo:=L.tipo
$L \Rightarrow id$	id.tipo:=L.tipo

José Miguel Benedí (2022-2023)

Lenguajes de Programación y Procesadores de Lenguajes / Análisis Semántico 9

José Miguel Benedí (2022-2023)

Lenguajes de Programación y Procesadores de Lenguajes / Análisis Semántico 10