Агностические нейронные сети: метрики и ген. алгоритмы

Д. Скачков, М. Содиков

Московский физико-технический институт Консультант: Р.Г.Нейчев Научный руководитель: д.ф.-м.н. В.В.Стрижов

2020

WANN

Weight Agnostic Neural Network (WANN) или Агностическая нейронная сеть - нейронная сеть, у которой веса всех связей одинаковы. В данной статье рассмотрены WANN'ы двух типов:

WANN \mathbb{N}^{1} - неполносвязная нейронная сеть прямого распространения, нейроны могут быть соединены только если они расположены в соседних слоях.

WANN \mathbb{N}^2 - нейронная сеть, у которой пристутствуют только входной и выходной слои, остальные нейроны могут быть соединены как угодно, главное, чтобы не было направленных циклов.

WANN: примеры

Puc.: WANN №1

Puc.: WANN №2

Постановка задачи

- (X,y), $X \in \mathbb{R}^{n \times m}$, $y \in \mathbb{R}^{n \times k}$, строки матриц X и y находятся в некоторой неизвестной функциональной зависимости
- В множество функций активации
- $\mathfrak{F}_{\mathfrak{G}}$ множество агностических нейронных сетей, у которых функции активации содержатся в \mathfrak{G}
- $(f,w)=\arg\min_{\substack{(f,w)\in\mathfrak{F}_{\mathfrak{G}} imes\mathbb{W}}}S(f^w(x),y)$, где S функция ошибки, f агностическая неронная сеть, f^w функция, которую она задает при значении параметра равном w
- ullet в данной работе $S(y_{pred},y_{true}) = \|y_{pred}-y_{true}\|_2$

Классический генетический алгоритм

Algorithm 1 Basic genetic algorithm

Require: grammar \mathfrak{G} , required value α of MAP

Ensure: superposition f of elements from G with MAP $\leq \alpha$;

create a set of initial, random superpositions \mathfrak{M}_0 ,

repeat

- crossover random pairs of stored superpositions M,
- mutate random superpositions from the population M,
- consider these generated superpositions and the ones stored in M. Select the best of them according to MAP,
- store the best generated superpositions in the population M and pass it to the next iteration,

until the required value of MAP is reached;

Детектирование стагнаций

Algorithm 2 Modified genetic algorithm

Require: grammar \mathfrak{G} , required value α of MAP

Ensure: superposition f of elements from G with MAP $\leq \alpha$;

create a set of initial, random superpositions \mathfrak{M}_0 ,

repeat

- crossover random pairs of stored superpositions M,
- mutate random superpositions from the population M,
- consider these generated superpositions and the ones stored in M. Select the best of them according to the quality function S (2),
- store the best superpositions in a population M' and pass it to the next iteration,
- if d_e(M') < Thresh then
 evolutionary stagnation is detected and we replace the worst superpositions from the
 population M' by random superpositions,
- end if
- M = M'.

until the required value of MAP is reached;

Детектирование стагнаций по значению ошибки

```
Result: WANN
generate population();
while error > \varepsilon or iteration < max iterations do
    mutate();
    crossover(); //for WANN №1;
    select();
    if \frac{error[iteration-I]}{error[iteration]} \geq \delta then
        for wann in population \left[\frac{n}{2}\right] do
            regenerate(wann);
         end
    end
end
```

return population[0];

Algorithm 1: Генетический алгоритм с детектированием стагнаций по значению ошибки

Генетический алгоритм с кластеризацией

```
Result: WANN
generate population();
while error > \varepsilon or iteration < max iterations do
   mutate():
   crossover(); //for WANN №1;
   select();
   if \frac{error[iteration-I]}{error[iteration]} \geq \delta then
       clusters := cluster(population);
       for cluster in clusters do
           for wann in cluster \ {best in cluster} do
               wann.regenerate();
           end
        end
   end
end
return population[0];
       Algorithm 2: Генетический алгоритм с кластеризацией
```

Генетический алгоритм: отбор

Используются 3 различных функции ошибки, по значению которых происходит отбор в конце каждой эпохи:

- $\bullet \min_{w \in \mathbb{W}'} S(f^w(x), y)$
- $\frac{1}{|\mathbb{W}'|} \sum_{w \in \mathbb{W}'} S(f^w(x), y)$
- $\bullet \max_{w \in \mathbb{W}'} S(f^w(x), y)$

Здесь \mathbb{W}' - некоторое небольшое множество возможных значений параметра (в данной работе $\{-2, -1, -0.5, 0.5, 1, 2\}$). В конце работы ген. алгоритма полученный WANN оптимизируется по параметру.

Эталонные метрики

Эталонные метрики - метрики, задаваемые из некоторых эмпирических соображений.

•
$$\eta_1(f_1, f_2) = \frac{1}{n|W|} \sum_{w \in W} \sum_{i=1}^n ||f_1^w(x_i) - f_2^w(x_i)||_2$$

•
$$\eta_2(f_1, f_2) = \max_{w_1, w_2 \in W} \frac{1}{n} \sum_{i=1}^n \| (f_1^{w_1}(x_i) - f_2^{w_2}(x_i)) \|_2$$

f_j - WANN

 f_j^w - функция, задаваемая WANN при значении параметра равном w

Сравнение метрик

Пусть известны значения метрик μ и η на $T \times T$, T - некоторое конечное множество. Методы сравнения метрик:

- Коэффициент корреляции Пирсона
- $u(\mu(t_1,t_2)<\mu(t_1,t_3)\wedge\eta(t_1,t_2)>\eta(t_1,t_3)),\ \nu(A)$ частота события А
 - $\frac{\inf \frac{\mu(t_1, t_2)}{\eta(t_1, t_2)}}{\sup \frac{\mu(t_1, t_2)}{\eta(t_1, t_2)}}$
- ullet $\|v_{\mu}-v_{\eta}\|_{2}$, где v_{μ},v_{η} векторизованные нормализованные
- матрицы попарных расстояний

Структурные метрики

Структурная метрика - метрика, зависящая только от структуры модели. В идеале как можно ближе к эталонной (с точки зрения каждого из предложенных способов сравнения метрик на любом конечном множестве).

Представление WANN в виде матрицы

Γ	sin	cos	exp
sin	0	1	0
cos	2	0	2
exp	0	1	0
<i>x</i> ₁	0	1	0
X_2	0	1	0

Структурная метрика №1

Пусть f_1, f_2 - агностические нейронные сети, M_1, M_2 - построенные по ним матрицы. Тогда

$$\mu_1(f_1, f_2) = ||v_1 - v_2||_2$$

 v_1, v_2 - векторизованные M_1, M_2 .

Обобщение

Пусть дана пара $(f_1,f_2)\in\mathfrak{F}_\mathfrak{G} imes\mathfrak{F}_\mathfrak{G}$. Скажем, что $v_{(f_1,f_2)}=abs(v_1-v_2)$, где v_1,v_2 из предыдущего слайда, abs - покомпонентный модуль, - признаковое описание объекта (f_1,f_2) .

Цель: найти $g:\{v_{(f,f')}|f,f'\in\mathfrak{F}_{\mathfrak{G}}\}\longrightarrow\mathbb{R}_{\geq0}$, которое как можно лучше согласовывается с эталонной метрикой.

В структурной метрике $\mathbb{N} 1 g(v) = \|v\|_2$

Вопрос: можно ли лучше?

Структурная метрика №2

Для ответа на поставленный вопрос подходящая функция g ищется с помощью обычной полносвязной нейростети с несколькими скрытыми слоями, которая по входному вектору признаков учится предсказывать одну из эталонных метрик.

Эксперимент: структурная метрика №2

Нейросеть net_i^j обучалась предсказывать эталонную метрику ј для WANN \mathbb{N}_i .

С помощью каждого из четырех способов сравнения метрик была выбрана метрика, наиболее близкая к эталонным.

	1 способ	2 способ	3 способ	4 способ
standart 1	structural 1	structural 1	net 1_1	structural 1
standart 2	structural 1	structural 1	net ²	net ²

Таблица: Соотстветсвие между эталонными и структурными метриками для WANN №1

	1 способ	2 способ	3 способ	4 способ
standart 1	structural 1	structural 1/net ¹ ₂	_	net_2^1
standart 2	structural 1	_	net ²	structural 1

Таблица: Соотстветствие между эталонными и структурными метриками для WANN №2

Постановка эксперимента: генетические алгоритмы

Все 4 модификации гентического алгоритма была запущены по 100 раз с каждой из трех функций ошибки со следующими параметрами:

- 100 эпох
- размер популяции 10
- количество мутаций за одну эпоху 5/10 (WANN №1/WANN №2)
- количество скрещиваний 5/0 (WANN №1/WANN №2)

Результат усреднялся по всем 100 экспериментам.

Результаты эксперимента: генетические алгоритмы

error	min	mean	max
classic	0.70	0.37	0.33
diameter	0.70	0.36	0.33
error	0.57	0.39	0.32
clustering	0.61	0.37	0.33

Таблица: Accuracies for WANN №1

error	min	mean	max
classic	0.88	0.77	0.64
diameter	0.87	0.77	0.63
error	0.88	0.81	0.62
clustering	0.88	0.80	0.65

Таблица: Accuracies for WANN №2

Заключение

Улучшить результаты классического генетического алгоритма не удалось. Напротив, замена половины популяции в случае стагнаций на случайные WANN'ы в большинстве случаев даже ухудшило результат.