<u>Projekt zaliczeniowy – Podstawy</u> <u>programowania aplikacji GIS</u>

Przygotowali:

Bartek Koniec

Konrad Florek

Szymon Krawczyński

1. Założenie projektu

Stworzenie działającego narzędzia w Pythonie, które będzie dostępne do zaczytania w ArcGis, za pomocą ArcToolbox, opierające się na danych archiwalnych z IMGW (meteo oraz hydro).

2. Etapy powstawania

- 1) Na początku pobraliśmy odpowiednio interesujące nas dane archiwalne z IMGW(meteo i hydro),
- 2) Wybraliśmy dane miesięczne z lat 2012-2020 w obu przypadkach,
- 3) Potrzebne było odpowiednie odkodowanie danych w plikach(hydro) CSV co zrobiliśmy jak na poniższym obrazku,

A	Α	В	С	D	E	F
1	CHAŁUPKI	Odra (1)	2012	1	102	10.000
2	CHAŁUPKI	Odra (1)	2012	1	109	12.200
3	CHAŁUPKI	Odra (1)	2012	1	117	14.900
4	CHAŁUPKI	Odra (1)	2012	2	101	9.700
5	CHAŁUPKI	Odra (1)	2012	2	111	12.700
6	CHAŁUPKI	Odra (1)	2012	2	118	15.200
7	CHAŁUPKI	Odra (1)	2012	3	111	12.800
8	CHAŁUPKI	Odra (1)	2012	3	149	33.800
9	CHAŁUPKI	Odra (1)	2012	3	190	70.700
10	CHAŁUPKI	Odra (1)	2012	4	117	18.800
11	CHAŁUPKI	Odra (1)	2012	4	145	35.900
12	CHAŁUPKI	Odra (1)	2012	4	290	164.000
13	CHAŁUPKI	Odra (1)	2012	5	158	45.800
14	CHAŁUPKI	Odra (1)	2012	5	187	70.700
15	CHAŁUPKI	Odra (1)	2012	5	274	149.000
16	CHAŁUPKI	Odra (1)	2012	6	129	25.900
17	CHAŁUPKI	Odra (1)	2012	6	156	44.500
18	CHAŁUPKI	Odra (1)	2012	6	216	96.800
19	CHAŁUPKI	Odra (1)	2012	7	100	13.500
20	CHAŁUPKI	Odra (1)	2012	7	126	25.300
21	CHAŁUPKI	Odra (1)	2012	7	170	55.800
22	CHAŁUPKI	Odra (1)	2012	8	101	12.300
23	CHAŁUPKI	Odra (1)	2012	8	135	32.600
24	CHAŁUPKI	Odra (1)	2012	8	282	156.000
25	CHAŁUPKI	Odra (1)	2012	9	89	8.240
26	CHAŁUPKI	Odra (1)	2012	9	102	12.900
27	CHAŁUPKI	Odra (1)	2012	9	134	28.500
28	CHAŁUPKI	Odra (1)	2012	10	86	7.530
29	CHAŁUPKI	Odra (1)	2012	10	97	11.300
- 9	mies_20	12 (+)				

- 4) Odkodowane kolumny od lewej to stacja, rzeka, rok hydrologiczny, miesiąc hydrologiczny, stan wody, przepływ wody,
- 5) Tak samo postąpiliśmy w danych meteo,
- 6) Po zorientowaniu się w odkodowanych danych przeszliśmy do tworzenia kodów,

- 7) Widzimy import odpowiednich bibliotek z sqlite3, a następnie utworzenie połączenia z bazą przechowywaną na dysku,
- 8) Potem następuje utworzenie obiektu kursora oraz stworzenie opisanych tablic różnego typu,
- 9) Dodana została też funkcja zmieniająca polskie znaki, ponieważ ArcMapa znajduje w nich błędy,

```
# funkcja do zamiany znaków

def removeAccents(input_text):
    strange = 'ŮôūBdě ĂἦëĐἆόμ϶ΒΝῖΙάξηἐγἈθἦὶΕϋυτἔΖΟΝἄολΒὧἐ ΈΤὖῖ Ὠομα ἔΕὰωὐκυχ Ἄͼ
    ascii_replacements = 'UoyBdeAieDaoiiZVNiIzeneyAθiiEyyrZθNgulVoeETUi
    translator = str.maketrans(strange, ascii_replacements)

return input_text.translate(translator)
```

 Na koniec pozostało zaczytanie potrzebnych plików CSV oraz ich odpowiednie odkodowanie(tym razem za pomocą kodu) i sformatowanie,

11) To było opracowanie danych meto, jeśli chodzi o dane hydro to są one analogiczne z kilkoma różnicami przy opisaniu tablic i kolejnych wartości oraz przy odczytywaniu i odkodowywaniu danych,

12) Przechodzimy teraz do kluczowego kodu, który będzie zaczytywany do stworzenia naszego narzędzia docelowego,

```
import arcpy
import sqlite3 as sl
    hydro_meteo = arcpy.GetParameterAsText(0)
    baza = arcpy.GetParameterAsText(1)
    data_rok = arcpy.GetParameter(2)
    plik_wy = arcpy.GetParameterAsText(3)
    if ".sqlite" not in plik_wy:
        plik_wy += ".sqlite"
    data_rok = int(data_rok)
    if hydro_meteo == "hydro":
        conn = sl.connect(baza)
        cursor = conn.cursor()
        cursor.execute("select * from hydro")
        con = sl.connect(plik_wy)
        cursor2 = con.cursor()
        cursor2.execute("""
                CREATE TABLE hydro(
```

13) Korzystamy z importu pakietu <u>arcpy</u>, a następnie tworzymy zmienne konfigurujące nasze narzędzie, kolejne kroki to powtórzenie operacji z poprzednich plików,

14) Program kończymy wystąpieniem ewentualnego błędu lub komunikatu o pomyślnym procesie,

```
except:
    arcpy.AddMessage("Wystapil nieoczekiwany blad. Ponow probe, sprawdzajac przy tym poprawnosc danych")
finally:
    arcpy.AddMessage("Proces przebiegl pomyslnie")
```

15) Mając działający skrypt możemy go załadować do Arc Mapy w ArcToolboxie,

16) Narzędzie pozwala nam więc na wybór typu danych(hydro/meteo), wybranie bazy do danych z dysku, roku z którego pochodzą pomiary oraz zapis do pliku wynikowego na dysku,

17) Poniżej potwierdzenie poprawności działania narzędzia z komunikatem ,

18) Na koniec widok tabeli atrybutów po wykonaniu procesu stworzonego narzędzia IMGW.

3. Podsumowanie

Widzimy zatem że wynikiem naszych działań jest odkodowana tabela atrybutów z opisanymi dokładnie kolumnami, w tym przypadku z 2013 roku z bazy danych hydro. Możemy oczywiście wybrać drugą z baz czyli meteo, bądź też dowolnie inny rok pomiarów z lat 2012 – 2020. Mamy zatem całkiem sporą dowolność w tym zakresie w zależności co dokładnie nas interesuje.