План на 3 модуль (или 2 сем...)

- 1. Множества
- 2. ЧУМ
- 3. Исчисление высказываний
- 4. Исчисление предикатов
- 5. Теория кодирования

Почитать можно А. Х. Шеня

Множества

- 1. $x \in A$; $y \notin A$
- 2. Арифметика множеств: \bigcup , \bigcap , \setminus , \triangle
- 3. Ø
- 4. $A = \{a, b, c\}; B = \{d\} \bigcup A$
- 5. $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$

Remark 0.1.

Чисто синтаксически вот такой бред: $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$ имеет смысл

X – множество: $X \neq \emptyset$. Рассмотрим $x \in X$

Term(x) – проблема, потому что мы не знаем, к каким характеристикам обращаемся и вообще не понятно, что мы выбрали

Спасают аксиомы ZFC

Definition 0.1. Равномощность

A,B – равномощны $\Leftrightarrow \exists f:A \to B$ – биекция

А что с бесконечностями? Давайте возьмем функцию $f:N \to 2N$

Хотя множество четных чисел – подмножество всех, но они равномощны, т.к. f – биекция

Definition 0.2. Характеристическая функция

$$X$$
 – множество. Есть $\chi:X\to\{0,1\},$ т.е. $\chi(x)=\begin{cases} 1,\ x\in X\\ 0,\ x\not\in X \end{cases}$ – характеристическая функция

А пусть $X\subset Y$

- произведение характеристических функций X и Y это характеристическая функция $X \cap Y$
- 1 $\chi(x)$ характеристическая функция дополнения X
- $max(\chi_X(x),\chi_Y(x))$ характеристическая функция $X\bigcup Y$

•
$$|X| = \sum_{x \in Y} \chi_X(x)$$

Example 0.1.

Возьмем 2^N ; $B = \{0,1\}$ и B^{∞}

Равномощны ли они? Берем $x \in 2^N$, теперь $b_i = \begin{cases} 1, & i \in x \\ 0, & i \notin x \end{cases}$

Definition 0.3. Счетное множество

X – счетное, если X равномощно N

Example 0.2.

Например, множество целых чисел счетно, т.к. $x \in Z \Rightarrow \begin{cases} 2x, & x \geq 0 \\ -2x+1, & x < 0 \end{cases}$

Proposition 0.1.

- 1. X счетно и $Y \subset X \Rightarrow Y$ или счетно, или конечно
- 2. X бесконечно. Тогда $\exists Y$ счетное: $Y \subset X$
- 3. $X_1, \ldots X_n \ldots$ конечные или счетные. Тогда $\bigcup X_i$ конечное или счетное

Доказательство:

1. X — счетно, т.е. соответствует последовательности $\{x_1,\ldots x_n\ldots\}=\xi$ Возьмем $\xi\cdot\chi(Y)$. Т.е. что-то типа $\{0,0\ldots x_{i_1},0\ldots x_{i_2},0\ldots\}$ который равносилен $y_1,y_2,\ldots y_n\ldots=Y$

В свою очередь эта штука либо конечна, либо счетна, т.к. счетен X

- 2. Просто выбираем по 1 элементу из X. Если они кончатся на каком-то шаге X не бесконечно
- 3. Рисуем табличку. Берем элемент (1, 1), потом (1, 2), потом (2, 1), потом (1, 3) и так далее. То есть по диагоналям. Так переберем вообще все элементы (если не понятно, погуглите метод Кантора)

Exercise 0.1.

В качестве следствия попробуйте построить явную биекцию между множеством рациональных чисел и натуральных

Theorem 0.1.

A — бесконечно, B — нбчс, т.е. B — конечно или счетно $A \mid JB$ равномощно A

Доказательство:

 $\exists Y \subset A$ — счетное

Y и $Y \cup B$ — равномощны

 $A \bigcup B = (A \backslash Y) \bigcup (Y \bigcup B)$

$$A = Y \bigcup (A \backslash Y)$$

Биекция между Y и $Y \cup B$ сущесвтует, значит A и $A \cup B$ равномощны

Example 0.3.

[0;1] и B^{∞} . Равномощны ли? Да. Последовательность единиц и нулей – это бинпоиск числа

Проблема: 0, (9) = 1, (0)

 $b_1 \dots b_k, 1, 1, 1, 1, (1)$

 $(b_1 \dots b_k) + 1$

 $R \bigcup [0,1] \sim B^{\infty}$ и $R \bigcup [0,1] \sim [0,1] \Rightarrow [0,1] \sim B^{\infty}$

Example 0.4.

 $[0,1] \sim [0,1] \times [0,1]$

 $0, a_1 a_2 \dots a_k \dots$

 $0, a_1 a_3 a_5 \dots$ и $0, a_2 a_4 a_6 \dots$

Exercise 0.2.

Проблема та же, что и в прошлом примере, но число уязвимых моментов кратно больше. Почините

Theorem 0.2. Кантор-Бернштейн

 $A, B; A_1 \subset A; B_1 \subset B$ $A_1 \sim B, B_1 \sim A \Rightarrow A \sim B$

Доказательство:

A имеет мощность не больше B. Существует какое-то отображение. Нужна его биективность. А где-то по пути может докажем еще и полный порядок

 $f:A o B_1$ – биекция

 $g:B o A_1$ – еще одна биекция

Заметим, что $g(f(A)) = A_2$ – биекция, более того этот процесс можно продолжить до бесконечности

То есть имеем $A\supset A_1\supset A_2\dots$ и $A\sim A_2\sim A_4\dots$ и $A_1\sim A_3\sim A_5\sim\dots$

Возьмем просто много вложенных C-шек таких, что $C \to C_2 \to C_4 \dots$ и $C_1 \to C_3 \dots$ при какой-то биекции h

Как построить биекцию из C_6 в C_7 ? Положим $D_i=C_i\setminus C_{i+1}$. Тогда $C_0=D_0\bigcup D_1\bigcup D_2\dots$

При этом $C_1 = D_1 \bigcup D_2 \bigcup D_3 \dots$

 $D_2=C_2\setminus C_3;\ D_0=C_0\setminus C_1.$ Ну тогда $C_2=D_2\bigcup C_3$ и $C_0=D_0\bigcup C_1$

При этом биекция h все еще существует. Можем сопоставить $D_{2k} \to D_{2(k+1)}$, а $D_{2k+1} \to D_{2k+1}$, т.е. построить биекцию между C_0 и C_1 . Победа

3

Явная биекция: $q(x) = \begin{cases} x, x \in D_{2i+1} \\ h(x), x \in D_{2i} \end{cases}$

Theorem 0.3. Теорема Кантора

$$B^{\inf}$$
 – не счетно

Доказательство:

Построили последовательность типа

- 1. $a_1, a_2 \dots$
- 2. $b_1, b_2 \dots$
- 3. $c_1, c_2 \dots$

Ну возьмем еще одну последовательность $a_1, b_2, c_3 \dots$ – она будет отличаться от всех предыдущих как минимум в одном элементе. Значит B^{\inf} не счетно

Theorem 0.4. Обобщенная теорема Кантора

$$\forall X,\ X\not\sim 2^X$$

Доказательство:

Пусть $\exists \varphi: X \to 2^X$ – биекция

 $Z = \{x | x \notin \varphi(x)\}$

 $Z \subset X$

 $\not\exists z: \varphi(z) = Z \Rightarrow z \not\in Z \Rightarrow z \in Z$

Theorem 0.5. Следствие

$$|2^X| > |X|$$

 $\mathbb{N}, 2^{\mathbb{N}}, 2^{2^{\mathbb{N}}}, \dots$
 $\aleph_0, \aleph_1, \dots$

Remark 0.2.

Почему не существует множества всех множеств?

Пусть существует и называется U

Посмотрим на U и 2^U

По Кантору-Бернштейну $U \sim 2^U$, но по теореме Кантора $|U| < |2^U|$?????