MAT327: Introduction to Topology. Solutions to the Big List Problems

Anmol Bhullar

 $\begin{tabular}{ll} Undergraduate Student University of Toronto, Scarborough E-mail $address$: anmol.bhullar@mail.utoronto.ca \end{tabular}$

Thank you to my instructor Ivan Khatchatourian for providing these wonderful problems.

Contents

Chapter 1.	Preface	ix
Chapter 2.	Topologies	1
Chapter 3.	Bases of Topologies	Ę

Preface

I attempt to answer and LATEXall of the solutions to the big list of problems posted by my instructor Ivan Khatchatourian for MAT327: Introduction to Topology. The problems are separated into difficulties which are labelled via asterisks. One asterisk being the lowest difficulty and 3 being the highest. Especially hard problems are marked via a cross. This is the format my instructor uses and I'm merely copying it for consistency's sake.

Topologies

* **Ex.** 1 — Fix $a < b \in \mathbb{R}$. Show explicitly that the open interval (a, b) is open in \mathbb{R}_{usual} . Show explicitly that the interval [a, b) is not open in \mathbb{R}_{usual}

Answer (Ex. 1) — First, we show that (a,b) is open in \mathbb{R}_{usual} . To do this: we have to show that for any point $x \in (a,b)$, there exists a neigbourhood $N(x,\epsilon) \subseteq (a,b)$.

Thus, choose a point $x \in (a, b)$. By density of \mathbb{R} , there exists $x_1 \in (a, x)$ and $x_2 \in (x, b)$. Let $\epsilon = \min(x_1, x_2)$. Then $N(x, \epsilon) \subseteq (a, b)$.

Next, we show that [a,b) is not open. To do this, we show that \exists no $\epsilon > 0$ such that $N(a,\epsilon) \subseteq [a,b)$. Note that any $x \in (a-\epsilon,a]$ would not be in (a,b) for any $\epsilon > 0$, so $N(a,\epsilon) \not\subseteq [a,b)$.

* Ex. 2 — Let X be a set and $\mathcal{B} = \{\{x\} : x \in X\}$. Show that the only topology on X that contains \mathcal{B} as a subset is the discrete topology.

Answer (Ex. 2) — To show that only X_{discrete} has the property $\mathcal{B} \subseteq X_{\text{discrete}}$, consider the set:

$$\mathcal{T} := \{ \{x\} : x \in X \}$$

For \mathcal{T} to be a topology, it must be closed under finite intersections so we must put \emptyset in \mathcal{T} . Furthermore, \mathcal{T} must be closed under the union of an arbitrary collection elements of X. If this is to be true, then \mathcal{T} must contain every subset of X since any arbitrary subset can be written as the union of all of its elements. Thus an arbitrary subset $A \subseteq X$ must be in \mathcal{T} . This implies $\mathcal{T} = X_{\text{discrete}}$.

* Ex. 4 — Let $(X, \mathcal{T}_{\text{co-countable}})$ be an infinite set with the co-countable topology. Show that $\mathcal{T}_{\text{co-countable}}$ is closed under countable intersections but not necessairly arbitrary ones.

2. Topologies

Answer (Ex. 4) — Given a countable indexing set I, we have to show

$$\bigcap_{\alpha \in I} U_{\alpha} \in \mathcal{T}_{\text{co-countable}}$$

Equivalently, we can show $X \setminus (\cap U_{\alpha})$ is countable. By DeMorgan's Law: $X \setminus (\cap_{\alpha}) = \bigcup (X \setminus U_{\alpha})$. Since the right hand side is the countable union of countable sets, it is countable. Thus, $\cap U_{\alpha} \in \mathcal{T}_{\text{co-countable}}$. To show that an arbitrary intersection of elements is not open, it suffices to state that the intersection of arbitrary many elements does not necessairly form a countable set.

* **Ex.** 5 — Let (X, \mathcal{T}) be a topological space, and let $A \subseteq X$ be a set with the property that for all $x \in A$, \exists an open set $U_x \in \mathcal{T}$ such that $x \in U_x \subseteq A$. Show that A is open.

Answer (Ex. 5) — Let I be a set which indexes the elements of A. Then:

$$\bigcup_{\alpha \in I} \{x_{\alpha}\} = A$$

Similarly, since $x_{\alpha} \in U_{x_{\alpha}}$ and $U_{x_{\alpha}} \subseteq A$, then:

$$\bigcup_{\alpha \in I} U_{x_{\alpha}} = A$$

Since this is the union of arbitrary elements of \mathcal{T} , then $A \in \mathcal{T}$.

* Ex. 6 — Let (X, \mathcal{T}) be a topological space, and let $f: X \to Y$ be injective. Is $\mathcal{T}_f := \{f(U): U \in \mathcal{T}\}$ a topology on Y? Is it necessairly a topology on the range of f?

Answer (Ex. 6) — Lost solution : (

* Ex. 7 — Let X be a set and let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on X. Is $\mathcal{T}_1 \cup \mathcal{T}_2$ a topology on X? What about $\mathcal{T}_1 \cap \mathcal{T}_2$? Is yes, prove it. If not, provide a counterexample.

Answer (Ex. 7) — Let $\mathcal{T}_1 := \mathcal{T}_{usual}, \, \mathcal{T}_2 := \mathcal{T}_7 \text{ on } \mathbb{R}$. Consider:

$$(6,7) \cap [6.5,7]$$
 both in $\mathcal{T}_1 \cup \mathcal{T}_2$)

but this intersection yields the interval: [6.5,7) which is not open in either \mathcal{T}_1 or \mathcal{T}_2 . So $\mathcal{T}_1 \cup \mathcal{T}_2$ is not necessairly a topology. Now, we show that $\mathcal{T}_1 \cap \mathcal{T}_2$ is a topology:

$$\emptyset \in \mathcal{T}_1, \emptyset \in \mathcal{T}_2 \implies \emptyset \in \mathcal{T}_1 \cap \mathcal{T}_2$$

 $X \in \mathcal{T}_1, X \in \mathcal{T}_2 \implies X \in \mathcal{T}_1 \cap \mathcal{T}_2$

Furthermore, given, $U, V \in \mathcal{T}_1, \mathcal{T}_2$. Then $U \cap V$ is in both \mathcal{T}_1 and \mathcal{T}_2 so it follows $U, V \in \mathcal{T}_1 \cap \mathcal{T}_2$ and that since $U, V \in \mathcal{T}_1$, then $U \cap V \in \mathcal{T}_1$. Similarly for \mathcal{T}_2 so then $U \cap V \in \mathcal{T}_1 \cap \mathcal{T}_2$. Thus, the finite intersection of open sets in $\mathcal{T}_1 \cap \mathcal{T}_2$ is in $\mathcal{T}_1 \cap \mathcal{T}_2$. Now it is left to show that $\bigcup_{\alpha \in I} V_{\alpha} \in \mathcal{T}_1 \cap \mathcal{T}_2$ given that for all $\alpha \in I$, $V_{\alpha} \in \mathcal{T}_1 \cap \mathcal{T}_2$.

2. Topologies 3

If every $V_{\alpha} \in \mathcal{T}_1 \cap \mathcal{T}_2$, then it follows $\cup V_{\alpha} \in \mathcal{T}_1$ and similarly for \mathcal{T}_2 . Thus $\mathcal{T}_1 \cap \mathcal{T}_2$ is a topology.

- * Ex. 8 Let X be an infinite set. Show that there are infinitely many topologies on X.
- **Answer (Ex. 8)** Define $\mathcal{T}_{\text{co-k}} := \{U \subseteq X : |U^c| \le k\}$. Since $\mathcal{T}_{\text{co-k}}$ is a topology for all $k \in \mathbb{N}$, it follows that if $|X| = \infty$, then there are infinite topologies on X.
- * Ex. 9 Let $\{\mathcal{T}_{\alpha} : \alpha \in I\}$ be a collection of topologies on a set X, where I is some indexing set. Prove that there is a unique finest topology that is refined by all the $\mathcal{T}'_{\alpha}s$. That is, prove that there is a topology \mathcal{T} on X such that:
 - $(1)\mathcal{T}_{\alpha}$ refines \mathcal{T} for every $\alpha \in I$
 - (2) If \mathcal{T}' is another topology that fulfills (a), then \mathcal{T} is finer than \mathcal{T}'
- **Answer (Ex. 9)** Claim: $\mathcal{T} = \cap \mathcal{T}_{\alpha}$. By Ex 7, \mathcal{T} is a topology, and \mathcal{T}_{α} refines \mathcal{T} by construction of \mathcal{T} . Suppose T' is another topology of X such that all \mathcal{T}_{α} refine \mathcal{T}' and that \mathcal{T}' refines \mathcal{T} . Then, there exists $x \in \mathcal{T}'$ such that $x \notin \mathcal{T}$. But then $x \notin \cap \mathcal{T}_{\alpha}$ so there exists T_{α_0} such that $x \notin \mathcal{T}_{\alpha_0}$. Thus \mathcal{T} is not refined by \mathcal{T}' and then $\mathcal{T}' = \mathcal{T}$ which implies \mathcal{T} is unique.
- * Ex. 10 This extends exercise 6. Show with examples that the assumption that f is injective is necessary. That is, give an example of a topological space (X, \mathcal{T}) and a non-injective function $f: X \to Y$ such that \mathcal{T}_f is a topology and another example where \mathcal{T}_f is not.
- Answer (Ex. 10) An example of a non-injective function which is not a topology is given by mapping all of the irrationals of \mathbb{R} to themselves but mapping all rationals to 0. Since there is no open set in \mathbb{R} which maps to 0, we arrive that \mathcal{T}_f is not a topology. An example of a non injective function which is a topology is given by:
- *** Ex. 11 Working in \mathbb{R}_{usual} :
 - (1) Show that every non empty open set contains a rational number
 - (2)Show that there is no uncountable collection of pairwise disjoint open subsets of \mathbb{R} .
- **Answer (Ex. 11)** Let U be such a set. For any $x \in U$, $\exists \epsilon > 0$ such that $N(x,\epsilon) \subseteq U$, but this is impossible since by density of \mathbb{Q} , there exists a $y \in (x,x+\epsilon)$. Then, no such U exists. Now, we prove (b). We know the set of all intervals (a,b) where $a,b \in \mathbb{Q}$ is countable. Suppose $\{X_{\alpha} : \alpha \in I\}$ is such a set. If we show $\theta := \{X_{\alpha} : \alpha \in I\}, |\theta| \geq |\{(a,b) : a,b \in \mathbb{Q}\}|$ then we are done. Since we construct a set θ_2 where for every $X_{\alpha} \in \theta$, θ_2 contains two rational open subsets of X_{α} . Then $|\theta| \leq |\theta_2|$ implying that θ_2 is at most countable.

Bases of Topologies

* **Ex. 12** — Show explicitly that $\mathcal{B} = \{(a,b) : a < b, a, b \in \mathbb{R}\}$ is a basis and that it generates the usual topology on \mathbb{R} .

Answer (Ex. 12) — To show that \mathcal{B} generates \mathbb{R}_{usual} , it suffices to construct an arbitrary open set $U \subseteq \mathbb{R}_{usual}$ through the unions of elements of \mathcal{B} . If U is connected, then:

$$U = (x - \epsilon, x + \epsilon)$$

so U is simply an element of \mathcal{B} . If U is not connected, then simply repeat the process for every disconnected subset of U. Thus \mathcal{B} generates \mathbb{R}_{usual} .

* Ex. 13 — Show that the collection $\mathcal{B}_Q := \{(a,b) : a,b \in \mathbb{Q}, a < b\}$ is a basis for the usual topology on \mathbb{R} .

Answer (Ex. 13) — It suffices to show we can construct an open interval from B_Q where U=(d,c) such that $c\in\mathbb{Q}^c$. Let $\overline{a}=\{a_1,a_2a_1,a_3a_2a_1,\ldots\}$ be the sequence of decimal expansion of c where each $a_k\in\mathbb{Q}$. Then $\overline{a}\to c$ and if c' is the floor of c:

$$\bigcup_{k\in\mathbb{N}}(d,c'.a_ka_{k-1}\dots a_1)=(d,c)$$