1. Действия с матрицами

Определение 1. Матрицей размера $n \times k$ называется таблица с n строками и k столбцами

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} = (a_{ij}).$$

У нас в курсе в роли a_{ij} будут чаще всего выступать числа. Однако, в некоторых случаях бывает нужно рассматривать и матрицы, заполненные многочленами или другими объектами.

Определение 2. Пусть $A = (a_{ij})$, $B = (b_{ij})$ — матрицы одного и того же размера. Тогда *сумма* этих матриц есть матрица $C = (c_{ij}) = (a_{ij} + b_{ij})$.

Определение 3. Пусть A — матрица и b — число. Произведением матрицы A на число b называется матрица $C = (c_{ij}) = (b \cdot a_{ij})$. При этом размер матрицы C совпадает с размером матрицы A.

Обратим внимание на несколько свойств матричных операций.

Свойство 1. *Ассоциативность*: (A + B) + C = A + (B + C).

Свойство 2. *Коммутативность*: A + B = B + A.

Свойство 3. Существует нулевая матрица 0, со всеми элементами равными нулю, которая обладает следующими свойствами:

- 1) для любой матрицы выполняется A+0=A;
- 2) для любой матрицы A существует обратная матрица -A, такая что A+(-A)=0.

Кроме сложения матриц и умножения матрицы на число мы определим правило *умножения двух матриц*.

Пусть A — строка (матрица размера $1 \times k$), $A = (a_i)$, B — столбец (матрица размера $k \times 1$), $B = (b_i)$.

Тогда, по нашему определению, $A \cdot B = \sum_{i=1}^k a_i \cdot b_i$, то есть линейная комбинация a_i и b_i .

Результат произведения $A \cdot B$ есть матрица размера 1×1 (в некотором смысле — просто одно число.)

Пусть A — матрица размера $n \times k$,

B — матрица размера $k \times l$.

Тогда $A \cdot B = C = (c_{ij})$ есть матрица размера $n \times l$, в которой

$$c_{ij} = \sum_{t=1}^{k} a_{it} \cdot b_{tj}.$$

Для упрощения нашего изложения введём следующие обозначения:

- a_{i*} i-я строка матрицы A;
- $a_{*j} j$ -й столбец матрицы A.

Тогда можно выразить произведение матриц через произведение строк и столбцов следующим образом:

$$A \cdot B = (a_{i*} \cdot b_{*j}).$$

Остановимся на свойствах, которыми обладает матричное умножение.

Свойство 4. Accoquamusность: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.

Свойство 5. Некоммутативность: в общем случае для матриц неверно, что AB = BA. Читателю предлагается самостоятельно придумать контрпример.

Свойство 6. Дистрибутивность: $A \cdot (B+C) = (B+C) \cdot A = A \cdot B + A \cdot C$.

Свойство 7. Существование единичной матрицы: Для любого натурального числа $n \ge 1$ существует единичная матрица

$$E = E_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix},$$

такая что для любой матрицы A размера $n \times k$ выполнено равенство $AE_k = E_n A = A$.

Еще одна операция, которая определена над матрицами — это операция *транспонирования матрицы*. Пусть $A=(a_{ij})$ — матрица (необязательно квадратная). Тогда *транспонированная матрица* есть $A^T=(a_{ji})$, т. е. это просто матрица A, элементы которой отражены относительно главной диагонали. Здесь *главной диагональю* мы называем диагональ с элементами $a_{11}, a_{22}, \ldots, a_{kk}$.

Отметим свойства операции транспонирования:

- 1) $(\lambda A)^T = \lambda A^T$
- 2) $(A+B)^T = A^T + B^T$
- $3) (AB)^T = B^T \cdot A^T$
- 4) $(B^T A^T)_{ji} = \sum_t b_{tj} \cdot a_{it}$

2. Геометрия на плоскости и в пространстве

1. Векторы

 P_{1}, P_{2}, P_{3} - прямая, плоскость и пространство соответственно.

Определение 4. \vec{XY} - направленный отрезок (Означает, что мы различаем концы отрезков) $\vec{XY} = \vec{ZT}$, если |XY| = |ZT| и они сонаправлены.

Определение 5. Beкmop - это класс всех равных направленных отрезков.

Операции с векторами

- 1) Сложение векторов $\vec{a} + \vec{b} = \vec{c}$
- 2) Умножение векторов $\alpha \vec{a}$

Определение 6. Линейная комбинация векторов $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}$ с коэффициэнтами a_1, a_2, \dots, a_n - $\sum_i a_i \vec{v_i}$ Линейная комбинация называется тривиальной, если все коэффициэнты равны 0. Иначе она называется нетривиальной.

Определение 7. Система векторов $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}$ линейно зависимая, если существует их нетривиальная линейная комбинация, равная нулю. Иначе она линейно независима.

Теорема 1. Система векторов V линейно зависимая тогда и только тогда, когда (хотя бы) один из них является линейной комбинацией остальных.

Доказательство очевидно и тривиально.

Пример 1. Рассмотрим неколлинеарные векторы a и b. Не трудно доказать, что система их этих двух векторов линейно независима. Тогда система (a,a,b) линейно зависима, несмотря на то, что b не выражается через остальные векторы.

Введем обозначение: множество векторов на прямой, в плоскости, в пространстве будем обозначать V_1, V_2, V_3 .

Введем аббревиатуры: лз - линейно зависима, лнз - линейно независима.

Утверждение. Если система векторов линейно независима, то и подсистема линейно независима. Если какая-то подсистема векторов лнз, то и система лнз.

Доказательство. Если система лз, то один из её векторов выражается через остальные. Тогда и для все системы это верно. \Box

Лемма 1. 1) Пусть есть ненулевой вектор \vec{a} и вектор $\vec{b}||\vec{a}$. Тогда \vec{b} выражается через \vec{a}

- 2) Пусть есть a_1, a_2 неколлинеарные векторы, но b, a_1, a_2 компланарны. Тогда b выражсается через a_1, a_2
- 3) Пусть a_1, a_2, a_3 некомпланарны. Тогда любой вектор $b \in V_3$ выражается через них.

Доказательство. 1) $\lambda = \frac{|\vec{b}|}{|\vec{a}|}$. Если $a \uparrow \uparrow b$, то $b = \lambda x$, иначе $b = -\lambda x$

- 2) Отложим от некоторой точки О векторы $\vec{a_1}$ и $\vec{a_2}$ и \vec{OM} , равный \vec{b} . Рассмотрим проекции B_1 и B_2 точки M на прямые, соответствующие векторам. Тогда $b = OB_1 + OB_2$. Но OB_1 коллинеарен с a_1 , а $OB_2 c$ a_2 , а значит они выражаются через a_1 и a_2 : $OB_1 = \lambda_1 \vec{a_1}, OB_2 = \lambda_2 \vec{a_2}$. Тогда $\vec{OM} = \vec{OB_1} + \vec{OB_2} = \lambda_1 \vec{a_1} + \lambda_2 \vec{a_2}$, следовательно он выражается через $\vec{a_1}$ и $\vec{a_2}$.
- 3) Доказывается аналогично предыдущему пункту.

Теорема 2. 1) Система из одного вектора линейно зависима тогда и только тогда, когда он равен 0.

- 2) Система из двух векторов линейно зависима тогда и только тогда, когда они коллинеарны.
- 3) Система из трех векторов линейно зависима тогда и только тогда, когда они компланарны.
- 4) Система из четырех векторов линейно зависима всегда.

Доказательство. 1) Если $\alpha \vec{a} = 0, \alpha \neq 0$, то $\vec{a} = \vec{0}$.

2)

- 3) Если a_1 и a_2 коллинеарны, то они (и система) ЛЗ. Если не же нет, то по лемме Если система ЛЗ, то один из векторов (для определенности a_3) выражается через другие. Пусть α плоскость параллельная a_1 и a_2 . Тогда $\alpha||(a_1+a_2)=>\alpha||a_3|$. Следовательно они все компланарны.
- 4) Если a_1, a_2, a_3 линейно независимы (в противном случае все очевидно), то a_4 выражается через a_1, a_2, a_3 по лемме.

2. Базис

Определение 8. Пусть V - некоторое пространство векторов. Система векторов этого пространства называется базисом, если выполняются следующие условия:

- 1) Она линейно независима
- 2) Через векторы этой системы можно выразить любые векторы этого пространства.

Теорема 3. Если система (a_1, \ldots, a_n) лнз, то любой вектор раскладывается по ней не более чем одним способом.

Доказательство. Пусть это не так.

$$\vec{b} = \sum_{i} \alpha_i a_i$$

$$\vec{b} = \sum_{i} \beta_i a_i$$

Хотя бы для одного коэффициента j $\alpha_j \neq \beta_j$

$$\vec{0} = \vec{b} - vb = \sum_{i} (\beta_i - \alpha_i) va_i$$

. Получили противоречие

Определение 9. Пусть $E = (\vec{e_1}, \dots, \vec{e_n})$ - базис пространства V. Любой вектор b раскладывается по базису: $b = \sum_i \beta_i \vec{e_i}$. Тогда β_1, \dots, β_n - координаты вектора b.

$$ec{b}=E\cdotegin{pmatrix}eta_1\\eta_2\\\ldots\\eta_n\end{pmatrix}$$
, где $egin{pmatrix}eta_1\\eta_2\\\ldots\\eta_n\end{pmatrix}$. — координатный столбец

Опишем все базисы в V_1, V_2, V_3

- 1) в V_1 это любой ненулевой вектор
- 2) в V_2 это любые два неколлинеарных вектора
- 3) в V_3 это любые три некомпланарных вектора

Доказательство. Докажем последний пункт, остальные будут доказываться аналогично. Пусть есть система из трех некомпланарных векторов e_1, e_2, e_2 .

- 1) Она линейно независима (по теореме).
- 2) Любой вектор b выражается через эту систему (по лемме).

В базисе не более 3 векторов, так как любые 4 вектора линейно зависимы. Также в векторе не менее 3 векторов, так как через 2 вектора всё выразить нельзя. \Box

Определение 10. Пусть $E = (e_1, \ldots, e_n)$ и $E' = (e'_1, \ldots, e'_n)$ — два базиса пространства V. Тогда разложим вектора из базиса E' по базису E. $e'_i = \sum_j s_{ij}e_j$. Обозначим $S = (s_{ij})$. Тогда S называется матрицей перехода от E к E' и выполняется следующее свойство: $E' = S \cdot E$

Теорема 4. Теорема о замене базиса

Пусть E, E' — базисы в V, $\vec{b} \in V$. $\vec{b} = E\beta = E'\beta'$ (β , β' — координатные столбиы), S - матрица перехода от E к E'. Тогда $\beta = S\beta'$

Доказательство. $E' = E \cdot S$, $b = E'\beta' = ES\beta'$. Справа записано разложение вектора b по базису E, и $S\beta'$ — координатный столбец. Так как разложение единственно, то $S\beta' = \beta$. Что и требовалось доказать.

Теорема 5. Пусть E, E', E'' - три базиса в V. R - матрица переходов от $E \kappa E', S$ - от $E' \kappa E''$. Тогда матрица перехода от $E \kappa E'' - R \cdot S$.

Доказательство.
$$E'' = E' \cdot S = (E \cdot R) \cdot S = E \cdot (R \cdot S)$$
.

Пример 2. Пусть E и E' — базисы. R и S — матрицы перехода от E к E' и наоборот соответственно. Тогда RS = e = RS, так как RS — матрица перехода от E к ней же самой.

Определение 11. Базис называется *ортогональным*, если любые два его вектора ортогональны друг другу. Базис называется *ортопормированным*, если он ортогонален и любой его вектор имеет единичную длину.

Пример 3. Рассмотрим два базиса в P_2 . $Q_1=(e_1,e_2)$ — ортонормированный базис. $Q_2=(e_1',e_2')$ — базис, полученный из Q_1 на угол ϕ против часовой стрелки.

$$E' = (e'_1, e'_2) = (e_1, e_2) \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

Определение 12. Рассмотрим пространство точек P_i . Пусть $O \in P_i$, E — базис в V_i . Тогда пара (O, E) называется декартовой системой координат - ДСК. ДСК называется прямоугольной, если базис *ортонормированный*.

Если $A \in P_i$, то \vec{OA} раскладывается по базису с коэффициентами $\alpha_1, \dots, \alpha_n$. Тогда говорят, что точка A имеет координаты $\alpha_1, \dots, \alpha_n$ в этой декартовой системе координат.

Пусть есть некоторая декартова система координат (0, E) в некотором пространстве точек и точки A и B с координатным столбцами α и β соответственно. Тогда \overrightarrow{AB} имеет координаты $E(\beta - \alpha)$

Доказательство.

$$\vec{AB} = \vec{OB} - \vec{OA} = E\beta - E\alpha = E(\beta - \alpha)$$

Утверждение. Пусть есть точки A и B с координатными столбцами α и β . Тогда для любой точки C на прямой AB: $\gamma = \mu\beta + (1-\mu)\alpha$, где γ — координатный столбец C.

Доказательство.
$$\vec{OC} = \vec{OA} + \mu \vec{AB} = E\alpha + \mu E(\beta - \alpha) = E(\mu\beta + (1 - \mu)\alpha)$$

Теорема 6. Пусть (O, E) и (O', E') — две ДСК в одном и том же пространстве, S — матрица перехода от E к E', $\overrightarrow{OO'} = E\gamma$. Тогда, если $A \to_{(O,E)} \alpha$ и $A \to_{(O',E')} \alpha'$, то $\alpha = S\alpha' + \gamma$

Доказательство.

$$\vec{OA} = \vec{OO'} + \vec{O'A} = E\gamma + \vec{OA}$$

$$\vec{O'A} = E'\alpha' = ES\alpha'$$

$$\vec{OA} = E\gamma + ES\alpha = E(\gamma + S\alpha')$$

3. Произведение векторов

Скалярное произведение векторов

Определение 13. Пусть $\vec{a}, \vec{b} \in V$. Тогда $(\vec{a}, \vec{b}) = |\vec{a}| \cdot |\vec{b}| \cos \alpha$, где α — угол между векторами, \vec{a} и \vec{b} — ненулевые векторы. Если $\vec{a} = \vec{0}$ или $\vec{b} = \vec{0}$, то $(\vec{a}, \vec{b}) = 0$

Замечание.

$$(\vec{a},\lambda\vec{a})=\lambda|\vec{a}|^2$$
 $\vec{a}\perp\vec{b}\Leftrightarrow(\vec{a},\vec{b})=0$, считаем, что $\forall\vec{a}:\vec{a}\perp\vec{0}$

Определение 14. Пусть $\vec{a}, \vec{b} \in V, \vec{b} \neq \vec{0}$. Тогда *проекцию* вектора a на вектор b мы обозначаем $\operatorname{pr}_{\vec{b}}\vec{a}$.

Утверждение.

$$(\vec{a}, \vec{b}) = (\operatorname{pr}_{\vec{b}} \vec{a}, \vec{b})$$

Доказательство. Пусть $\alpha < \frac{\pi}{2}$. Пусть $\vec{a'} = \operatorname{pr}_{\vec{b}} \vec{a}$. Тогда $\vec{a'} \uparrow \uparrow \vec{b}$, $\vec{a'} = \vec{a} \cos \alpha$. Значит, $(\vec{a}, \vec{b}) = |\vec{a'}| |\vec{b}| \cos \alpha = (\vec{a'}, \vec{b})$. Для случая $\alpha > \frac{\pi}{2}$ доказательство аналогично.

Утверждение. $pr_{ec{b}}\vec{a}=rac{(ec{a},ec{b})}{|ec{b}|^2}ec{b}$

Доказательство.

$$\frac{(\vec{a}, \vec{b})}{\left|\vec{b}\right|^2} = \frac{(\vec{a'}, \vec{b})}{\left|\vec{b}\right|^2} \vec{b} \uparrow \uparrow \vec{a'}$$

$$\frac{\left|(\vec{a}, \vec{b})\right|}{\left|\vec{b}\right|^2}$$

Свойства скалярного произведения

- $(\vec{a}, \vec{a}) > 0$ при $\vec{a} \neq 0$
- $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$ симмметричность
- $(\alpha \vec{a}, \beta \vec{b}) = \alpha \beta(\vec{a}, \vec{b})$ линейность по обоим аргументам.
- $(\vec{a_1} + \vec{a_2}, \vec{b}) = (\vec{a_1}, \vec{b}) + (\vec{a_2}, \vec{b})$

Доказательство. Докажем, что $(\vec{a_1} + \vec{a_2}, \vec{b}) = (\vec{a_1}, \vec{b}) + (\vec{a_2}, \vec{b})$

$$(\vec{a_1} + \vec{a_2}, \vec{b}) = (\operatorname{pr}_{\vec{b}}(\vec{a_1}, \vec{a_2}), \vec{b}) = (\operatorname{pr}_{\vec{b}} \vec{a_1} + \operatorname{pr}_{\vec{b}} \vec{a_2}, \vec{b}) = (\operatorname{pr}_{\vec{b}} \vec{a_2}, \vec{b}) + (\operatorname{pr}_{\vec{b}} \vec{a_1}, \vec{b}) = (\vec{a_1}, \vec{b}) + (\vec{a_2}, \vec{b})$$

Следствие 1. Пусть E- ортонормированный базис в V_3 . $\vec{a}=E\alpha$, а $\vec{b}=E\beta$, где α и $\beta-$ координатные столбцы. Тогда $(\vec{a},\vec{b})=\alpha_1\beta_1+\alpha_2\beta_2+\alpha_3\beta_3$

 \mathcal{A} оказательство. Пусть \vec{a} раскладывает по базису как $\sum_i \alpha_i \vec{e_i}$, а \vec{b} — как $\sum_j \beta_j \vec{e_j}$.

$$(\vec{a}, \vec{b}) = (\sum_{i} \alpha_i \vec{e_i}, \sum_{j} \beta_j \vec{e_j}) = \sum_{i} \sum_{j} (\alpha_i \vec{e_i}, \beta_j \vec{e_j}) = \sum_{i} \sum_{j} \alpha_i \beta_j (e_i, e_j) = \sum_{i} \alpha_i \beta_i$$

Доказательство. $(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b} = (E\alpha)^T \cdot E\beta = \alpha^T E^T E\beta = \alpha^T \beta$, так как в ортонормированном базисе $E^T E = 1$

Упражнение 1. Понять, где недоговоренность в предыдущем доказательстве.

Следствие 2. Пусть E — ортонормированный базис,

$$\vec{a} = E\alpha = E \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{pmatrix}$$

. Тогда $\alpha_i = (\vec{a_i}, \vec{e_i})$

Доказательство.

$$\vec{e_i} = E \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Пользуемся ортонормированностью базиса:

$$(\vec{\alpha_i}, \vec{e_i}) = \sum_{i} 0 \cdot \alpha_j + \alpha_i \cdot 1 = \alpha_i, j \neq i$$

Определение 15. Рассмотрим $P_2 \subset P_3$. P_2 делит P_3 на два полупространства. Выделим одно из двух полупространств, и назовем него положительным. Базис (\vec{a}, \vec{b}) в V_2 положительно ориентирован, если выполнено следущее свойство. Пусть α — угол, на который надо повернуть, чтобы \vec{a} стал сонаправлен \vec{b} . Тогда базис (\vec{a}, \vec{b}) положительно ориентирован, если $\alpha > \pi$.

Утверждение. Базисы (\vec{a}, \vec{b}) и (\vec{b}, \vec{a}) ориентированы по разному.

Определение 16. Пусть $(\vec{a}, \vec{b}, \vec{c})$ — базис. Проведем плоскость, через $\vec{a}\vec{b}$. Назовем положительным пространство, в которое смотрит вектор c. Тогда (\vec{a}, \vec{b}) — базис в плоскости, и у него есть ориентация. Ориентацией нашего базиса $(\vec{a}, \vec{b}, \vec{b})$ и будет ориентация базиса (\vec{a}, \vec{b}) при \vec{c} , смотрящем в положительное полупространство.

Утверждение. Базисы $(\vec{a}, \vec{b}, \vec{c}), (\vec{b}, \vec{c}, \vec{a}), (\vec{c}, \vec{a}, \vec{b})$ ориентированы одинаково. Остальные три перестановки ориентированы по-другому.

Определение 17. Пусть есть три вектора $\vec{a}, \vec{b}, \vec{c} \in V_3$. Отложим их от одной точки и рассмотрим параллелипипед, тремя ребрами которого являются три полученных отрезка. Будем называть этот параллелипипед натянутым на эту тройку векторов. *Ориентированный объем* — это объем нашего параллелипипеда, взятый со знаком +, если $(\vec{a}, \vec{b}, \vec{c})$ — правый базис, и со знаком -, если базис левый.

Ориетированный объем обозначается как $V(\vec{a}, \vec{b}, \vec{c})$ или просто $(\vec{a}, \vec{b}, \vec{c})$; он часто называется *смешанным произведением* векторов $\vec{a}, \vec{b}, \vec{c}$.

3амечание. $V(\vec{a}, \vec{b}, \vec{c}) = 0 \Leftrightarrow$ компланарны.

Замечание. Если базис ортонормирован, то $V(\vec{a}, \vec{b}, \vec{c}) = \pm 1$, в зависимости от ориентации базиса.

Аналогично определяется ориентированная площадь параллелограмма, натянутого на $\vec{a}, \vec{b} \in V_2$ (Обозначается $S(\vec{a}, \vec{b})$).

3амечание. $V(\vec{a}, \vec{b}, \vec{c}) = 0 \Leftrightarrow (\vec{a}, \vec{b}, \vec{c})$ коллинеарны.

 $\it Замечание.$ Если базис ортонормирован, то $\it S(\vec{a},\vec{b})=\pm 1,$ в зависимости от ориентации базиса.

Теорема 7. 1)
$$V(\vec{a}, \vec{b}, \vec{c}) = V(\vec{c}, \vec{a}, \vec{b}) = V(\vec{b}, \vec{c}, \vec{a})$$

2)
$$V(\vec{a}, \vec{b}, \lambda \vec{c}) = \lambda V(\vec{a}, \vec{b}, \vec{c})$$

3)
$$V(\vec{a}, \vec{b}, \vec{c} + \vec{d}) = V(\vec{a}, \vec{b}, \vec{c}) + V(\vec{a}, \vec{b}, \vec{d})$$

Доказательство. • Первое свойство следует из свойств ориентации.

• Если \vec{a} и \vec{b} коллинеарны, то все очевидно. Рассмотрим \vec{e} , такой что $\vec{e} \perp \vec{a}, \vec{e} \perp \vec{b}, (\vec{a}, \vec{b}, \vec{e})$ — правая тройка. Тогда $V(\vec{a}, \vec{b}, \vec{c}) = \left| S(vecta, \vec{b}) \right| \cdot (\pm h)$, где $\pm h$ — алгебраическая длина проекции \vec{c} на \vec{e} , т.е (\vec{c}, \vec{e}) . Тогда $V(\vec{a}, \vec{b}, \vec{c}) = \left| S(\vec{a}, \vec{b}) \right| \cdot (\vec{c}, \vec{e})$ Тогда пункты (2) и (3) следуют из линейности скалярного произведения.

Теорема 8. 1)
$$V(\vec{a}, \vec{b}) = V(\vec{b}, \vec{a})$$

2)
$$V(\vec{a}, \lambda \vec{b}) = \lambda V(\vec{a}, \vec{b})$$

3)
$$V(\vec{a}, \vec{b} + c) = V(\vec{a}, \vec{b} + V(\vec{a}, \vec{c}))$$

Доказательство. Доказательство аналогично доказательству для V_2 . \square

Теорема 9. Пусть \vec{E} — базис в V_3 , \vec{a} = $E\alpha$, \vec{b} = $E\beta$, \vec{c} = $E\gamma$. Обозначим $A=(\alpha\beta\gamma)$. Тогда $V(\vec{a},\vec{b},\vec{c})=\det A\cdot V(\vec{e_1},\vec{e_2},\vec{e_3})$

Доказательство. $A=(a_{ij})\ V(\vec{a},\vec{b},\vec{c})=V(\sum\limits_{i=1}^{3}a_{1i}\vec{e_{i}},\sum\limits_{i=1}^{3}a_{2j}\vec{e_{i}},\sum\limits_{i=1}^{3}a_{3j}\vec{e_{i}})=\sum\limits_{i}\sum\limits_{j}\sum\limits_{k}a_{i1}a_{j2}a_{k3}\vec{e_{i}}\vec{e_{j}}\vec{e_{k}}$ (выделим ненулевые слагаемые) = $V(\vec{e_{1}},vecte_{2},vecte_{2})\cdot$ $(a_{11}a_{22}a_{33}+a_{21}a_{32}a_{13}+a_{31}a_{12}a_{23}-a_{21}a_{12}a_{33}-a_{11}a_{32}a_{23}-a_{31}a_{22}a_{13})=V(\vec{e_{1}},\vec{e_{2}},\vec{e_{3}})\cdot$ det A

Следствие 3. Eсли $E- opтoнopмированный базис, то <math>V(\vec{a},\vec{b},\vec{b}) = \det A$

Теорема 10. Пусть $E=(\vec{e_1},\vec{e_2})-$ базис в $V_2,~(\vec{a},\vec{b})=\det A.$ Тогда $S(\vec{a},\vec{b})=\det A\cdot (\vec{e_1},\vec{e_2}),$ где $\det A=a_{11}a_{22}-a_{12}a_{21}$

Теорема 11. Правило Крамера Пусть есть базис $E = (\vec{e_1}, \vec{e_2}, \vec{e_3})$ в V_3 .

$$\vec{a} = E \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$$

.
$$Tor \partial a \ \alpha_1 = \frac{(\vec{a}, \vec{e_2}, \vec{e_3})}{(\vec{e_1}, \vec{e_2}, \vec{e_3})}, \ \alpha_2 = \frac{(\vec{e_1}, \vec{a}, \vec{e_3})}{(\vec{e_1}, \vec{e_2}, \vec{e_3})} \ u \ \alpha_3 = \frac{(\vec{e_1}, \vec{e_2}, \vec{a})}{(\vec{e_1}, \vec{e_2}, \vec{e_3})}$$

Доказательство. Заметим, что знаменатель не равен нулю, так как $(\vec{e_1}, \vec{e_2}, \vec{e_3})$ — базис. Выведем для разнообразия второе свойство. $(\vec{e_1}, \vec{a}, \vec{e_3}) = (\vec{e_1}, \sum_i \alpha_i \vec{e_i}, \vec{e_3}) =$

$$\sum_{i} \alpha_{i}(\vec{e_{1}}, \vec{e_{i}}, \vec{e_{3}}) = \alpha_{2}(\vec{e_{1}}, vecte_{2}, vecte_{3}) \Leftarrow \alpha_{2} = \frac{(\vec{e_{1}}, \vec{a}, \vec{e_{3}})}{(\vec{e_{1}}, \vec{e_{2}}, \vec{e_{3}})}$$

Использование. Пусть есть система уравнений:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

$$A = (a_{ij}), X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

<u>Применимо</u>, когда $(\vec{v_1}, \vec{v_2}, \vec{v_3})$ — базис, т.е. они некомпланарны, т.е. det $A \neq 0$. В этом случае решение системы существует и единственно.

Определение 18. Пусть \vec{a}, \vec{b} лежат в V_3 . Тогда векторным произведением называется такой вектор, что:

- 1) $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$
- $2) \ \left| \vec{c} \right| = \left| S(\vec{a}, \vec{b}) \right|$
- 3) $(\vec{a}, \vec{b}, \vec{c})$ правая тройка, если \vec{a}, \vec{b} неколлинеарны.

Обозначение: $\vec{c} = [\vec{a}, \vec{b}] = \vec{a} \times \vec{b}$

3амечание. Вектор \vec{c} однозначно определен.

Теорема 12. Пусть $\vec{a}, \vec{b}, \vec{c} \in V_3$. Тогда $V(\vec{a}, \vec{b}, \vec{c}) = ([\vec{a}, \vec{b}], \vec{c})$

Доказательство. При доказательстве теоремы (X) было получено, что $V(\vec{a}, \vec{b}, \vec{c}) = \left| S\vec{a}, \vec{b} \right| (\vec{c}, \vec{e})$, где $\vec{e} \perp \vec{a}, \vec{e} \perp \vec{b}$. Тогда $V(\vec{a}, \vec{b}, \vec{c}) = (\vec{c}, \left| S(\vec{a}, \vec{b}) \right| \vec{e}) = (\vec{c}, \left| \vec{a}, \vec{b} \right|)$

Лемма 2. Пусть $\vec{a}, \vec{b} \in V_3$ таковы, что $(\vec{a}, \vec{x}) = (\vec{b}, \vec{x})$ для любого $x \in V_3$. Тогда $\vec{a} = \vec{b}$.

Доказательство. По линейности: $(\vec{a}-\vec{b},\vec{x})=0$. В частности: $\left|\vec{a}-\vec{b}\right|^2=(\vec{a}-vectb,\vec{a}-\vec{b})=0 \Leftarrow \vec{a}-\vec{b}=\vec{0}$

Следствие 4. Пусть $\vec{a}, \vec{b}, \vec{d} \in V_3$: $(\vec{a}, \vec{b}, \vec{c}) = (\vec{d}, \vec{c})$ для любого $\vec{c} \in V_3$. Тогда $\vec{d} = [\vec{a}, \vec{b}]$.

Доказательство.
$$(\vec{d}, \vec{c}) = ([\vec{a}, \vec{b}], \vec{c})$$

Замечание.

Теорема 13. Свойства векторного проиведения

- $[\vec{a}, \vec{b}] = -[\vec{b}, \vec{a}]$
- $[\vec{a}, \lambda \vec{b}] = \lambda [\vec{a}, \vec{b}]$
- $[\vec{a}, \vec{b_1} + \vec{b_2}] = [\vec{a}, \vec{b_1}] + [\vec{a}, \vec{b_2}]$

Доказательство. Первые два свойства следуют из определения. Третье свойство более интересно:

$$\vec{d} = [\vec{a}, \vec{b_1}] + [\vec{a}, \vec{b_2}]$$

$$\forall c \in V_3 : (\vec{d}, \vec{c}) = ([\vec{a}, \vec{b_1}], \vec{c}) + ([\vec{a}, \vec{b_2}], \vec{c}) = (\vec{a}, \vec{b_1}, vectc) + (\vec{a}, \vec{b_2}, \vec{c}) = (\vec{a}, \vec{b_1} + \vec{b_2}, \vec{c}) = ([\vec{a}, \vec{b_1} + \vec{b_2}], \vec{c}) \iff \vec{d} = [\vec{a}, \vec{b_1} + \vec{b_2}]$$

Следствие 5. Пусть $\vec{e_1}, \vec{e_2}, \vec{e_3}$ — правый ортонормированный базис. Тогда $[\vec{e_1}, \vec{e_2}] = \vec{e_3}, \ [\vec{e_2}, \vec{e_3}] = \vec{e_1}, \ [\vec{e_3}, \vec{e_1}] = \vec{e_2}$

Теорема 14. Пусть есть $\mathcal{E} = (\vec{e_1}, \vec{e_2}, \vec{e_3}) - n$ равый ортонормираванный базис в V_3 . Пусть $\vec{a} = \mathcal{E} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}, \ \vec{b} = \mathcal{E} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$. Тогда $[a,b] = |\ | = \vec{d}$

Доказательство. Достаточно проверить: $\forall c: (\vec{d}, \vec{c}) = ([\vec{d}a), \vec{b}], \vec{c}) = (\vec{a}, \vec{b}, \vec{c})$ Пусть c раскладывается по нашему базису с коэффициентами $\gamma_1, \gamma_2, \gamma_3$. Тогда: $(\vec{d}, \vec{c}) = det \begin{vmatrix} \gamma_1 & \gamma_2 & \gamma_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \\ \beta_1 & \beta_2 & \beta_3 \end{vmatrix} = (\vec{c}, \vec{a}, \vec{b}) = (\vec{a}, \vec{b}, \vec{c})$

Упражнение 2. Пусть \mathcal{E} — произвольный базис. Доказать, что $[\vec{a}, \vec{b}] = \begin{vmatrix} \vec{e_2}, \vec{e_3} & \vec{e_1}, \vec{e_1} & \vec{e_1}, \vec{e_2} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{vmatrix}$

Теорема 15. Пусть $\vec{a}, \vec{b}, \vec{c} \in V_3$. Тогда $[\vec{a}, [\vec{b}, \vec{c}]] = \vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b})$

Доказательство. Запишем векторы в каком - нибудь хорошем (правом ортонормированном) базисе $\mathcal{E}=(\vec{e_1},\vec{e_2},\vec{e_3})$, таком что $\vec{e_1}\parallel\vec{b},\vec{e_2}$ компланарен с \vec{b} и \vec{c} . В этом базисе векторы имеют координаты: $\vec{b}=\begin{pmatrix} \beta \\ 0 \end{pmatrix},\vec{c}=\begin{pmatrix} \gamma_1 \\ \gamma_2 \\ 0 \end{pmatrix},\vec{a}=\begin{pmatrix} \alpha_1 \\ \alpha_3 \\ \alpha_3 \end{pmatrix}$.

Тогда:
$$[\vec{b}, \vec{c}] = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ \beta & 0 & 0 \\ \gamma_1 & \gamma_2 & 0 \end{vmatrix} = \mathcal{E} \begin{bmatrix} \vec{o} \\ 0 \\ \beta \gamma_2 \end{bmatrix} \begin{bmatrix} \vec{a}, [\vec{b}, \vec{c}] \end{bmatrix} = \mathcal{E} \begin{bmatrix} \alpha_2 \beta \gamma_2 \\ -\alpha_1 \beta \gamma_2 \end{bmatrix} \begin{bmatrix} \alpha_2 \beta \gamma_2 \\ -\alpha_1 \beta \gamma_2 \end{bmatrix} = -\alpha_1 \beta \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} + (\alpha_1 \gamma_1 + \alpha_2 \gamma_2) \begin{bmatrix} \beta \\ 0 \end{bmatrix} = -(\vec{a}, \vec{b}) \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} + (\vec{a}, \vec{c}) \begin{bmatrix} \beta \\ 0 \end{bmatrix}$$

3. Множества на плоскости

1. Прямые и плоскости

Прямая на плоскости

Пусть на плоскости зафиксирована ДСК на плоскости.

Способы задания

- Каждой точке на плоскости мы можем сопоставить радиус вектор \vec{r} . Прямую мы можем задать как точку с радиус-вектором \vec{r}_0 и направляющим ветором \vec{a} . Тогда радиус вектор любой точки \vec{r} может быть выражен как $\vec{r}_0 + t\vec{a}, t \in \mathbb{R}$, так как $\vec{a} \parallel \vec{ax}$. Это уравнение называется векторно-параметрическим.
- Распишем векторно-параметрическое уравнение прямой. $x = x_0 + ta$, $y = y_0 + yt$. Выразим t и приравняем. Получим: $\frac{x-x_0}{a} = \frac{y-y_0}{b}$ каноническое уравнение прямой. Понимаем:

$$-a = 0 \Rightarrow x - x_0 = 0$$

$$-b = 0 \Rightarrow y - y_0 = 0$$

- a=b=0 $\Rightarrow~$ это какое-то неправильное уравнение, и оно задает неправильную п

• Если приведем обе части канонического уравнения прямой к общему знаменателю, то получим: Ax + By + C = 0 — общее уравнение прямой.

Переход от общего уравнения к каноническому Пусть $A \neq 0$. Тогда $By = -A(x + \frac{C}{A}) \Leftrightarrow \frac{x + \frac{C}{A}}{B} = \frac{y}{-A}$

Утверждение. Вектор \vec{b} с координатами α_1, α_2 парамлелен прямой, заданный прямой Ax + By + C = 0, когда $A\alpha_1 + B\alpha_2 = 0$

Доказательство. Рассмотрим точку K с координатами (x_0, y_0) , лежащую на прямой. Рассмотрим точку L, полученную из K сдвигом на вектор \vec{b} . У L координаты $(x_0 + \alpha_1, y_0 + \alpha_2)$. \vec{b} параллелен прямой тогда и только тогда, когда L лежит на прямой. $0 = A(x_0 + \alpha_1) + B(y_0 + \alpha_2) + C = (Ax_0 + By_0 + C) + (A\alpha_1 + B\alpha_2) \Leftrightarrow (A\alpha_1 + B\alpha_2) = 0$

Взаимное расположение прямых на плоскости

- Прямые пересекаются: направляющие векторы неколлинеарны.
- Прямые параллельны или совпадают: направляющие векторы коллинеарны. Проверяем путем выбора точки на одной прямой и проверяем, принадлежит ли она второй.

Прямые совпадают, если
$$(a,b) \parallel (a',b')$$
, т.е. $\begin{vmatrix} a & a' \\ b & b' \end{vmatrix} = 0$ и $\frac{x_0 - x_0'}{a'} = \frac{y - y_0'}{b'}$, т.е. $\begin{vmatrix} x_0 - x_0' & y_0 - y_0' \\ a' & b' \end{vmatrix}$

Задание полуплоскостей Рассмотрим неравенство Ax + By + C > 0. Уравнение Ax + By + C = 0 задает прямую, которая делит плоскость на две полуплоскости. Утверждается, что неравенство задает одну из этих полуплоскостей. Пусть B > 0. Рассмотрим произвольную прямую паралельную $\overrightarrow{e_2}$ с уравнением $x = x_0$. Тогда неравество равносильно неравенству $y > \frac{-(Ax_0 + C)}{B}$

Пучок прямых

Определение 19. Пучок пересекающихся прямых — множество всех прямых, проходящих через одну точку.

Определение 20. Пучок параллельных прямых — множество всех прямых, параллельных ненулевому вектору.

Замечание. Любые две прямые принадлежат ровно одному пучку.

Теорема 16. Пусть e_1 и $e_2 - \partial в e$ прямые с уравнениями $A_i x + B_i y + C_i = 0$. Тогда все прямые из пучка P, $e_1 \in P$, $e_2 \in P$, имеют уравнения вида $\alpha(A_1 x + B_1 y + C_1) + \beta(A_2 x + B_2 y + C_2)$

Доказательство. Надо доказать, что $l \in P \Leftrightarrow l$ задается таким уравнением

- 1) Пусть e_1 и e_2 пересекаются в точке $X(x_0, y_0)$, то $A_i x_0 + B_i y_0 + C_i = 0$, значит при подстановке (x_0, y_0) в уравнение вышеозначенного вида уравнение обращается в равенство, значит любая прямая, задаваемая таким уравнением лежит в пучке
- 2) $e_1\parallel e_2\parallel a(\alpha_1,\alpha_2)$. Тогда $A_i\alpha+B_i\beta=0\Rightarrow \alpha(A_1\alpha_1+B_1\alpha_2)+\beta(A_2\alpha_1+B_2\alpha_2)=0$

1) l_1 и l_2 пересекаются в $X, X \in l$. Пусть $A \in l, A \neq X, A(u, v)$. Тогда $\exists \alpha, \beta, \alpha^2 + \beta^2 \neq 0$: $\alpha(A_1u + B_1v + C_1) + \beta(A_2u + B_2v + C_2) = 0$. Утверждается, что α и β —нужные коэффициенты.

2) Аналогично!

Метрические свойства прямой

Замечание. С этого момента считаем ДСК прямоугольной.

Пусть \vec{n} — нормальный вектор нашей прямой. Тогда она задается уравнением $X \in l \Leftrightarrow \vec{AX} \perp \vec{n} \Leftrightarrow (\vec{h}, \vec{r} - \vec{r_0}) = 0$, или $(\vec{h}, \vec{r}) = (\vec{n}, \vec{r_0}) = \alpha$ — нормальное уравнение прямой.

Утверждение. Пусть прямая в ПДСК имеет уравнение Ax+By+C=0. Тогда $\vec{n}=(\frac{A}{B})$ — нормальный вектр к этой прямой.

Доказательство. Уравнение переписывается в виде Ax+By=-C, или $(\vec{r},\vec{n})=-C$, что и значит, что \vec{n} — нормальный вектор к нашей прямой.

Утверждение. Пусть прямые заданы уравнениями $(\vec{r}, \vec{n_1}) = a_1 \ u \ (\vec{r}, \vec{n_2}) = a_2$. Тогда угол между прямыми равен уголу между векторами $\vec{n_1} \ u \ \vec{n_2}$ или между $\vec{n_1} \ u - \vec{n_2}$

Утверждение. Пусть есть точка с координатами (x_0, y_0) , а прямая l задана уравнением Ax + By + C = 0 в ПДСК. Тогда расстояние от X до l равно $\frac{Ax_0 + By_0 + C}{\sqrt{A^2 + B^2}}$

Доказательство. Уравнение прямой переписывается в виде $(\vec{r}, \vec{n}) = (\vec{r_0}, \vec{n}),$ где $\vec{r_0}$ — радиус-вектор некоторой точки на прямой. Пусть \vec{x} — радиус-вектор точки X. $\rho(X,l) = \operatorname{pr}_{\vec{n}} \vec{A} \vec{X} = \left| \frac{(\vec{A} \vec{X}, \vec{n})}{\left| \vec{n} \right|^2 \vec{n}} = \frac{\left| (\vec{x} - \vec{r_0}, \vec{n}) \right|}{\left| \vec{n} \right|} \right| = \frac{(\vec{x}, \vec{n}) - (\vec{r_0}, \vec{n})}{\left| \vec{n} \right|} = \frac{Ax_0 + Bx_0 + C}{\sqrt{A^2 + B^2}}$

Следствие 6. Угол между прямыми заданными в ПДСК уравнениями $A_i x + B_i x + C_i = 0$, равен $\alpha = \arccos \frac{|A_1 A_2 + B_1 B_2|}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}$

Плоскость в пространстве

Способы задания Пусть есть точка A с радиус-вектором $\vec{r_0}$ и две несовпадающие прямые проходящие через A и лежащие в плоскости. Тогда \vec{v}, \vec{u} — направляющие векторы прямой — неколлинеарны. Тогда векторы \vec{v} и \vec{u} задают базис в плоскости и тогда любая точка на плоскости раскладывается по базису: $\vec{r} = \vec{r_0} + t\vec{u} + s\vec{v}$, где $s,t \in \mathbb{R}$.

$$X \in \alpha \Leftrightarrow \vec{r} - \vec{r_0}, \vec{u}, \vec{v}$$
 компланарны $\Leftrightarrow (\vec{r} - \vec{r_0}, \vec{u}, \vec{v}) = 0 \Leftrightarrow (\vec{r}, \vec{u}, \vec{v}) = a = (\vec{r_0}, \vec{u}, \vec{v}) \Leftrightarrow \begin{vmatrix} x & y & z \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = a \Leftrightarrow Ax + By + Cz + D = 0$

Утверждение. Вектор $\vec{w} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ парамлелен плоскости тогда и только тогда, когда Aa + Bb + Cc + D = 0.

Доказательство. Пусть $X\begin{pmatrix} x_0\\y_0\\z_0\end{pmatrix}$ — точка в плоскости, отложим $\vec{XY}=\vec{w}$. Тогда $\vec{w}\parallel\alpha\Leftrightarrow Y\in\alpha$. То есть: $A(x_0+a)+B(y_0+b)+C(z_0+c)=0\Leftrightarrow (Ax_0+By_0+Cz_0+d)+(Aa+Bb+Cc)=0\Leftrightarrow (Aa+Bb+Cc)=0$

Следствие 7. Значит по уравнению Ax + By + Cz + D = 0 легко можно найти два неколлинеаных вектора, лежащих на прямой. Пусть $A \neq 0$. Тогда это — векторы $\vec{u} \begin{pmatrix} B \\ -A \end{pmatrix} u \ \vec{v} \begin{pmatrix} C \\ 0 \\ -A \end{pmatrix}$

Теорема 17. Пусть α_1 и α_2 — плоскости, заданные в ДСК уравнениями $A_i x + B_i x + C_i z + D = 0$ параллельны или совпадают тогда и только тогда, когда векторы $\begin{pmatrix} A_1 \\ B_1 \\ C_1 \end{pmatrix}$ и $\begin{pmatrix} A_2 \\ B_2 \\ C_2 \end{pmatrix}$ коллинеарны.

Eсли $\alpha_1 \not \mid \alpha_2$, то направляющий вектор прямой их пересечения имеет

координаты
$$\begin{pmatrix} \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \\ \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \\ A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Доказательство. Первое утверждение очевидно и тривиально.

Заметим, что $\binom{a}{b} \neq \vec{0}$, иначе векторы $\binom{A_1}{B_1}$ и $\binom{A_2}{B_2}$ коллинеарны (из предыдущего пункта), а значит $\alpha_1 \parallel \alpha_2$, что противоречит условию. Осталось показать, что $\vec{v} \parallel \alpha_1$, $\vec{v} \parallel \alpha_1$. $A_1a + B_1b + C_1c = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix} = 0$, т.е. $\vec{v} \parallel \alpha_1$. Аналогично для α_2 .

Утверждение. Пусть есть плоскость α в ДСК с уравнением Ax + By + Cz + D = 0. Тогда неравенство Ax + By + Cz + D > 0 определяет одну из полупространств.

Определение 21. Пучок пересекающихся плоскостей — множество всех плоскостей, проходящих через данную прямую.

Определение 22. Пучок пересекающихся плоскостей — множество всех плоскостей, параллельных данной плоскости.

Замечание. Любые две различные плоскости лежат ровно в одном пучке.

Теорема 18. Пусть плоскости α_1, α_2 имеют уравнения $A_i x + B_i x + C_i z + D = 0$. Тогда плоскости, лежащие в пучке с ними имеют уравнения вида $\alpha(A_1 x + B_1 y + C_1 z + D) + \beta(A_2 x + B_2 y + C_2 z + D) = 0$

Доказательство. Доказательство аналогично доказательству для пучка прямых. \Box

Упражнение 3. Пусть $\alpha_1, \alpha_2, \alpha_3$ — три плоскости, не лежащих в одном пучке. Пусть их уравнения $A_ix + B_iy + C_iz + D = 0$. Связка плоскостей, определенная плоскостями $\alpha_1, \alpha_2, \alpha_3$ есть все плоскости, задаваемые уравнениями вида: $\sum_i \gamma_i (A_ix + B_iy + C_iz + D) = 0$. Описать плоскости геометрически.

Утверждение. Пусть плоскость α задана в ПДСК уравнением Ax + By + Cz + D = 0. Тогда $\vec{n} = \begin{pmatrix} A \\ B \end{pmatrix} -$ нормальный вектор к плоскости.

Утверждение. Пусть $\alpha_1, \alpha_2 - n$ лоскости, заданные в ПДСК уравнениями $A_i x + B_i y + C_i z + D = 0$. Тогда угол между плоскостями α_1 и α_2 равен $\varphi = \arccos \frac{|A_1 A_2 + B_1 B_2 + C_1 C_2|}{sqrtA_1^2 + B_1^2 + C_1^2 sqrtA_2^2 + B_2^2 + C_2^2}$.

 \mathcal{A} оказательство. Угол между α_1 и α_2 — угол между векторами $\vec{n_1}$ и $\vec{n_2}$. Т.е. $\cos \varphi = \frac{|(\vec{n_1},\vec{n_2})|}{|\vec{n_1}|\cdot|\vec{n_2}|}$

Утверждение. Пусть плоскость α задана уравнением $A_i x + B_i y + C_i z + D = 0$, а точка A имеет координаты $\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$ в ПДСК. Тогда раастояние от точки до плоскости равно $\frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$

Доказательство.
$$\vec{n} = \begin{pmatrix} A \\ B \\ C \end{pmatrix}$$

$$\rho(A,\alpha) = |\operatorname{pr}_{\vec{n}}|\vec{XA}|| = \frac{|\vec{r} - \vec{r_0}, \vec{n}||}{|\vec{n}|} = \frac{(\vec{r}, \vec{n}) - (vectr_0, \vec{n})}{|\vec{n}|}$$

Прямая в пространстве

Мы можем записать уравнение прямой в параметрическом виде: $\vec{r} = r_0 + \vec{a}t$. Оно же расписанное по координатам: $x = x_0 + a_1t$, $y = y_0 + a_2t = z_0 + a_3t$. Выразив и прирявняв t получим каноническое уравнение прямой: $\frac{x-x_0}{a_1} = \frac{y-y_0}{a_2} = \frac{z-z_0}{a_3}$

Позиционные задачи Пусть l_1 , l_2 —прямые заданные уравнениями $\vec{r}=\vec{r_1}+\vec{a_1}t,\ \vec{r}=\vec{r_2}+\vec{a_2}t.$ Какие есть способы взаимного расположения этих прямых?

$$\vec{r} = \vec{r_1} + \vec{a_1}t_1 = \vec{r_2} + vecta_2t_2$$

Пусть наши плоскости компланарны, т.е. лежат в плоскости α . Тогда $\vec{a_1} \parallel \alpha, \vec{a_2} \parallel \alpha, \vec{A_2A_1} = \vec{r_2} - \vec{r_1} \parallel \alpha$. это необходимое и достаточное условия. То есть если векторы $\vec{a_1}, \vec{a_2}, \vec{r_2} - \vec{r_1}$ компланарны, то прямые лежат в одной плоскости.

Утверждение. Прямые l_1 и l_2 компланарны тогда и только тогда, когда $(\vec{a_1},\vec{a_2},\vec{r_2}-\vec{r_1})=0$.

Следствие 8. Прямые скрещиваются, если $(\vec{a_1}, \vec{a_2}, \vec{r_2} - \vec{r_1}) \neq 0$.

Утверждение. Прямые пересекаются, если они компланарны $u \ \vec{a_1} \ \| \ \vec{a_2}$, $u \ параллельны или совпадают, если <math>\vec{a_1} \ \| \ \vec{a_2}$

Точка с радиус-вектором \vec{r} лежит на прямой тогда и только тогда, когда $|S(\vec{r},\vec{a})|=$ const, где \vec{a} — направляющий вектор прямой. Направление $[\vec{r},\vec{a}]$ ортогонально плоскости, проходяющую через 0 и прямую. Ориентация пары \vec{r},\vec{a} постоянна, значит векторное произведение $[\vec{r},\vec{a}]$ постоянно. Таким образом, прямая задается уравнением $[\vec{r},\vec{a}]=\vec{b}=[\vec{r_0},\vec{a}]$

Еще один способ задания прямой — задание прямой как пересечения двух плоскостей: $(\vec{r},\vec{n_1})=d_1,\,(\vec{r},\vec{n_2})=d_2,\,$ причем $[\vec{n_1},\vec{n_2}]\neq 0$

Метрические задачи

- 1) Угол между прямыми угол между их направляющими векторами.
- 2) Расстояние то точки до прямой. Пусть X точка с радиус-вектором \vec{r} , l прямая, заданная уравнением $\vec{r} = \vec{r_0} + \vec{at}$. Тогда $\rho(x,l) = \frac{|S(\vec{AX},\vec{a})|}{|\vec{a}|} = \frac{|\vec{|r-r_0,\vec{a}|}|}{|\vec{a}|} = \frac{|\vec{|r_0,\vec{a}|}-|\vec{r},\vec{a}|}{|vecta|}$

3) Расстояние между скрещивающимися прямыми $\vec{r} = \vec{r_1} + \vec{a_1}t$ $\vec{r} = \vec{r_2} + \vec{a_2}t$ Проведем плоскости через них две параллельных плоскости: $\vec{a_1} : \vec{r} = \vec{r_1} + \vec{a_1}t + \vec{a_2}s$ $\vec{a_1} : \vec{r} = \vec{r_1} + \vec{a_1}t + \vec{a_2}s$ Тогла $\vec{a_1} : \vec{a_2} : \vec{a_3} : \vec{a_4} : \vec{a_5} : \vec{a_1} : \vec{a_4} : \vec{a_5} : \vec{a$

проведем плоскости через них две параллельных плоскости: α_1 : $\vec{r} = \vec{r_1} + \vec{a_1}t + \vec{a_2}s$ α_1 : $\vec{r} = \vec{r_1} + \vec{a_1}t + \vec{a_2}s$ Тогда $\rho(l_1, l_2) = \rho(\alpha_1, \alpha_2)$ — это высота параллелипипеда построенного на векторах $\vec{a_1}, \vec{a_2}, \vec{AA_1} = \vec{r_2} - \vec{r_1}$. $\rho = \frac{|V(\vec{a_1}, \vec{a_2}, \vec{AA_1})|}{|S(\vec{a_1}, \vec{a})|} = \frac{(\vec{a_1}, \vec{a_2}, \vec{r_2} - \vec{r_1})}{[\vec{a_1}, \vec{a_2}]}$

2. Кривые второго порядка

Определение 23. Моном(одночлен) от переменных x_1, \ldots, x_n — это функция вида $f(x_1, \ldots, x_n) = x_1^{i_1} \cdot \ldots \cdot x_n^{i_n}$, где i_j — целые неотрицательные числа.

Определение 24. Многочлен от n переменных — некоторая линейная комбинация мономов.

Определение 25. Несократимая запись многочлена— его запись в виде линейной комбинации различных мономов с различными коэффициентами.

Замечание.

Утверждение. Рассмотрим произвольный многочлен в его несократимой записи $P(x,y,z) = \sum_t a_i x^{i_t} y^{i_t} z^{i_t}$, содержащей хотя бы одно слагаемое. Тогда будет существовать точка, в которой многочлен отличен от нуля.

Доказательство. Доказательство индукцией по количеству переменных. Пусть n=1. Многочлен $P(x)=a_kx_k+\ldots a_0$, причем у него хотя бы один коэффициент ненулевой. Тогда у p не более k корней, следовательно существует точка, в которой он не ноль.

Рассмотрим прерход только от одной переменной в двум. Переход: $p(x,y) = y_k \varphi_k(x) + y_{k-1} \varphi_{k-1}(x) + \ldots + y_0 \varphi_0(x)$. Хотя бы один из многочленов $\varphi(x)$ — ненулевой (пусть это, без ограничения общности, $\varphi_k(x)$), значит есть x_0 , такое, что $\varphi_k(x_0) \neq 0$. Значит $P(x_0,y) = \sum_i Q_i(x_0) y^i$ — ненулевой, а значит, согласно предположению индукции, есть такое y_0 , что $P(x_0,y_0) \neq 0$

Следствие 9. Несократимая запись многочлена единственна.

Доказательство. Пусть $P(x,y,z)=\sum_t=\sum_s$ — две различные несократимые записи.

Замечание. $deg(0) = -\infty$

Утверждение. $deg(P+Q) \leq max(deg P, deg Q)$

Доказательство. Рассмотрим несократимые записи P и Q. Несократимая запись P+Q получится приведением слагаемых. Следовательно, любой моном, присутсвующий в P+Q должен присутствовать в P или Q. Следовательно степень P+Q не превосходит степени P и степени Q.

Упражнение 4. deg(PQ) = deg P deg Q

Теорема 19. Если некоротая функция f(x, y, z) — многочлен в некоторой ДСК, то она продолжает оставаться многочленом в любой ДСК и степень многочлена не зависит от ДСК.

Доказательство. Формула для перехода к новой системе координат: $\begin{vmatrix} x \\ y \\ z \end{vmatrix} = S \begin{vmatrix} x' \\ y' \\ z' \end{vmatrix} + \begin{vmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{vmatrix}$. Теперь если f(x,y,z) — многочлен, то $g = f(s_{11}x' + s_{12}y' + s_{13}z' + \gamma_1, \ldots)$ — тоже многочлен. Пусть degf = n, то он является линейной комбинацией мономов вида $x^i y^j z^k$, при подстановке и раскрытии скобок получатся мономы от переменных x', y', z', со степенью, не превосходящей n. То есть мы получили, что степень g не превосходит f. Рассмотрим обратный переход из второй ДСК в первую. Тогда: $\begin{vmatrix} x' \\ y' \\ z' \end{vmatrix} = T \begin{vmatrix} x \\ y \\ z \end{vmatrix} + \begin{vmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{vmatrix}$. Тогда аналогично мы можем сказать, что степень g не превосходит степени f.

Определение 26. Алгебраическая кривая в P_2 (алгебраическая поверхность в P_3) — это множество точек, задаваемых уравнением p=0, где p — многочлен в некоторой ДСК.

Определение 27. Порядок кривой — наименьшая степень многочлена, задающего эту кривую.

Замечание. Кривые первого порядка—прямая. Поверхность первого порядка—плоскость.

3амечание. Алгебраическое множество P_1 — множество из n точек.

Утверждение. Объединение и пересечение двух алгебраических кривых (поверхностей) — тоже алгебраическая кривая (поверхность).

Доказательство. Пусть кривые (поверхности) заданы уравнениями $p_1=0, p_2=0.$ Тогда объединение задается уравнением $p_1p_2=0,$ а пересечение — уравнением $p_1^2+p_2^2=0$

Доказательство. Сечение алгебраической проверхности плоскостью — алгебраическая кривая с порядком, не превосходящим порядка поверхности. \Box

Доказательство. Выберем систему координат так, чтобы плоскость сечения задавалась уравнением z=0. Теперь, если у нас есть многочлен nной степени, задающий нашу поверхность, то многочлен, задающий кривую можно получить, подставив в уравнение z=0. То есть f(x,y,0)=0— уравнение сечения. Очевидно, что $\deg f(x,y,0) \leq \deg f$

Общее уравнение кривой второго порядка: $Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0, |A| + |B| + |C| \neq 0$

Эллипс

Определение 28. Эллипс — это кривая, задаваемая в некоторой ПДСК уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ a \ge b > 0.$

Вершины эллипса — $(\pm a,0), (0,\pm b)$ Фокусным расстоянием эллипса называется величина $c=\sqrt{a^2-b^2}$. Точки $F_1(c,0), F_2(-c,0)$ — фокусы эллипса. $\varepsilon=\frac{c}{a}$ — эксцентриситет, для эллипса: $\varepsilon\in[0,1)$

Теорема 20. Если есть точка X с координатами (x, y) на эллипсе, то $XF_1 = a - \varepsilon x, XF_2 = a + \varepsilon x$

Доказательство. Заметим, что $a\pm\varepsilon x>0$, значит мы можем проверить равенство квадратов выражений. $XF_1^2=(x-c)^2+y^2=x^2-2xc+c^2+b^2(1-\frac{x^2}{a^2})=x^2(1-\frac{b^2}{a^2})-2xc+(c^2+b^2))=x\frac{c^2}{a^2}-2xc+a^2=(a-x\frac{c}{a})^2=(a-\varepsilon x)^2$

a — большая полуось эллипса b — большая полуось эллипса

Теорема 21. Эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ — множеество точек, для которых $XF_1 + XF_2 = 2a$

Доказательство. Если X лежит на эллипсе, то пользуемся предыдущим свойством. $XF_1+XF_2=a+\varepsilon x+a-\varepsilon x=2a$. В обратную сторону: пусть $XF_1+XF_2=2a$. Тогда:

- Если $x \ge a$, то (x, y) = (a, 0)
- Если $x \le -a$, то аналогично (x, y) = (-a, 0)
- Пусть |x| < a. Рассмотрим функцию $f(t) = \rho(F_1, (x, t)) + \rho(F_2, (x, t))$. Эта функция монотонно возрастает, при $t \ge 0$. Значит она не более, чем в одной точке равна 2a. Такая точка эта точка эллипса с абсциссой x. Значит, если $y \ge 0$, то X лежит на эллипсе. Аналогично для $y \le 0$.

Определение 29. Директирисы эллипса — это прямые с уравнениями $x=\pm \frac{a}{\varepsilon}$

Расстояние от точки (x,y) до директрисы $x=\frac{a}{\varepsilon}$ равно $\left|x-\frac{a}{\varepsilon}\right|=\frac{|a-\varepsilon x|}{\varepsilon}$ Теорема 22. Эллипс — множество точек, таких, что $\frac{XF_1}{\rho(x,d_1)}=\varepsilon$

Доказательство. Если X лежит на эллипсе, то $XF_1=a-\varepsilon x=\varepsilon \rho(x,d_1)$. Наоборот, если $XF_1=\varepsilon \rho(x,d_1)$, то $(x-c)^2+y^2=\varepsilon^2(x-\frac{a}{\varepsilon})^2=(a-\varepsilon x)^2$. $x^2(1-\varepsilon^2)+(c^2-a^2)+y^2=0$ $x^2\frac{b^2}{a^2}+y^2-b^2=0$ —получили уравнение эллипса.

То есть эллипс можно определять, как ГМТ точек, отношение расстояний от фокуса до директрисы постоянно и меньше единицы: $\frac{XF_1}{\rho(x,d_1)}=\varepsilon<1$

Гипербола

Определение 30. Гипербола — кривая, которая в некоторой ПДСК задается уравнением $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, a,b>0. ПДСК в которой уравнение сохраняет вид называется канонической для данной гиперболы. a называется действительной полуосью b называется мнимой полуосью

Очевидно, что $|x| \ge a$. Рассмотрим уравнение $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$. $(\frac{x}{a} - \frac{y}{b})(\frac{x}{a} + \frac{y}{b}) = 0$.

Определение 31. Прямые $\frac{x}{a} \pm \frac{y}{b} = 0$ называются асимптотами гиперболы

Утверждение. Пусть (x_0,y_0) — точка гиперболы. Тогда произведение расстояний от точки до асимптот постоянно и равно $\frac{a^2b^2}{a^2+b^2}$.

Доказательство.
$$\rho(X, l_1) = \frac{\frac{x_0 - y_0}{a}}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}}, \, \rho(X, l_2) = \frac{\frac{x_0 + y_0}{a}}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}}$$

$$\rho(X, l_1)\rho(X, l_2) = \frac{\frac{x_0 - y_0}{a}}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \cdot \frac{\frac{x_0}{a} + \frac{y_0}{b}}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} = \frac{\frac{x_0^2}{a^2} - \frac{y_0^2}{b^2}}{\frac{1}{a^2} + \frac{1}{b^2}} = \Box$$

Следствие 10. Пусть точка X движется по гиперболе, так что $OX \to \infty$. Тогда расстояние от X до одной из асимптот стремится к нулю.

Доказательство. Если точка находится достаточно далеко до начала координат, то расстояние до одной из асимптот также достаточно велико (Рассмотрим ту асимпототу, которая не проходит через ту четверть, в которой лежит точка). Так как произведение расстояний постоянно, то расстояние до второй асимптоты стремится к нулю. □

Определение 32. Фокусным расстоянием гиперболы называется $c = \sqrt{a^2 + b^2}$.

Определение 33. Фокусами гиперболы называются точки $F_1(c,0)$ и $F_2(-c,0)$

Определение 34. Эксцентриситетом гиперболы называется $\varepsilon = \frac{c}{a} > 1$

Утверждение. Пусть X точка на гиперболе с координатами (x_0, y_0) . Тогда $XF_1 = |\varepsilon x - a|, XF_2 = |\varepsilon x + a|$

Доказательство.
$$XF_1^2=(x-c)^2+y^2=(x-c)^2+x^2\frac{b^2}{a^2}-b^2=x^2(1+\frac{b^2}{a^2})-2cx+(c^2-b^2)=x^2\frac{c^2}{a^2}-2cx+a^2=(\varepsilon x-a)^2$$
. Для второго фокуса вычисления аналогичны.

Если X лежит на правой ветви гиперболы, то $\varepsilon x-a>x-a\geq 0,$ $\varepsilon x+a>0$ На левой ветви: $\varepsilon x-a<0,$ $\varepsilon x+a\leq 0$

Теорема 23. Гипербола $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ есть ГМТ точек X таких, что $|XF_1 - XF_2| = 2a$

Доказательство. Если точка X лежит на правой ветви, то $XF_1-XF_2=(\varepsilon x-a)+(\varepsilon x+a)=-2a$

Если точка X лежит на левой ветви, то $XF_1-XF_2=(a-\varepsilon x)+(a+\varepsilon x)=2a)$

Осталось проверить то, что это условие не задает лишних точек. Пусть $XF_1-XF_2=2a$. То есть $XF_1=XF_2\pm a$. $XF_1^2=XF_2^2+4a^2\pm 4a\cdot XF_2$ $(x-c)^2+y^2=(x+c)^2+y^2+4a^2\pm XF_2\mp 4aXF_2=4a+18xc\Leftrightarrow \mp XF_2=a+4x\frac{c}{a}\Leftrightarrow (x+c)^2+y^2=a^2=x^2\frac{c^2}{a^2}+2xc\Leftrightarrow x^2(\frac{c^2}{a^2}-1)-y^2+(a^2-c^2)=0\Leftrightarrow x^2\frac{b^2}{a^2}-y^2=b^2\Leftrightarrow \frac{x^2}{a^2}-\frac{y^2}{b^2}=1.$

И так, гипербола это множество точек, разность расстояний от фокусов до которых $\hfill \Box$

Определение 35. Директрисы гиперболы это прямые $x=\pm \frac{a}{\varepsilon}$

Утверждение. Гипербола — это ГМТ таких точек, что отношение расстояний до фокуса и директрисы, равно эксцентриситету.

Доказательство. $XF_1 = |\varepsilon x - a| = |x - \frac{a}{\varepsilon}|\varepsilon = |x - c|\varepsilon = \rho(X, d_1)\varepsilon$. В обратную сторону рассуждения аналогичны рассуждениям для эллипса.

Парабола

Определение 36. Параболой называется кривая, которая в некоторой ПДСК задается уравнением $y^2 = 2px$

Определение 37. Фокусом гиперболы называется точка $F(\frac{p}{2},0)$

Определение 38. Директрисой параболы называется прямая $d: x = -\frac{p}{2}$

Теорема 24. Парабола $y = 2px - \Gamma MT$ равноудаленных от фокуса и директрисы.

Доказательство. Пусть
$$XF=\rho(x,d)$$
, то есть $\sqrt{((x-\frac{p}{2})^2+y^2)}=|x+\frac{p}{2}|\Leftrightarrow x^2-px+\frac{p^2}{4}=x+px+\frac{p^2}{4}\Leftrightarrow y^2=2px$

Определение 39. Эксцентриситет параболы равен единице.

Упражнение 5. Доказать, что $y = \frac{k}{x}$ — гипербола.

Теорема 25. Рассмотрим эллипс, параболу или гиперболу. Рассмотрим семейство параллельных прямых, каждая из которых пересекает прямую в двух точках. Тогда середины получившихся хорд лежат на одной прямой l. Причем в случае эллипса и гиперболы l проходит через центр симметрии кривой, а в случае параболы l перпендикулярна директрисе параболы ()

Доказательство. Рассмотрим гиперболу. Она имеет уравнение $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Пусть $\binom{\alpha}{\beta}$ — направляющий вектор семейства прямых Рассмотрим, когда точка (x_0,y_0) — середина высекаемой хорды. Прямая: $x=x_0+\alpha t$, $y=y_0+\beta t$. Подставив в уравнение гиперболы, получим: $t^2(\frac{\alpha^2}{a^2}-\frac{\beta^2}{b^2})+2t(\frac{\alpha x_0}{a^2}-\frac{\beta y_0}{b^2})+\ldots=0$. Корни этого уравнения — точки пересечения. Точка (x_0,y_0) — середина хорды тогда и только тогда, когда $t=t_1+t_2=0$. По теореме Виета это равносильно $\frac{\alpha x_0}{a^2}-\frac{\beta y_0}{b^2}=0$. То есть (x_0,y_0) лежит на прямой $\frac{\alpha x}{a^2}-\frac{\beta y}{b^2}=0$.

В случае параболы и эллипса все аналогично.

Замечание. То, что прямая пересекает кривую ровно в двух точках говорит нам о том, что уравнение именно квадратное.

Замечание. Прямая, которую мы получили, называется диаметром кривой, сопряженным направлению $\binom{\alpha}{\beta}$. Оно имеет вид $\frac{\alpha x}{a^2}-\frac{\beta y}{b^2}=0$ для гиперболы, $\frac{\alpha x}{a^2}+\frac{\beta x}{b^2}=0$ для эллипса и $\beta y-\alpha p=0$

Уравнения касательных

Утверждение. Рассмотрим направление $\binom{\alpha}{\beta}$ и сопряженный с ним диаметр. Тогда точки пересечения диаметра с кривой это те точки в которых касательная принимает направление (α, β) .

Рассмотрим произвольную точку (x_0,y_0) лежащую на гиперболе. Диаметр, проходящий через эту точку имеет уравнение вида xy_0-yx_0 . Но с другой стороны, он сопряжен касательной в точке (x_0,y_0) , а значит $\frac{x\alpha}{a^2}-\frac{y\beta}{b^2}=0$, где (α,β) — направляющий вектор прямой. Значит, $\alpha=a^2y_0$, $\beta=b^2x_0$. Значит уравнение касательной имеет вид: $\frac{x-x_0}{a^2y_0}=\frac{y-y_0}{b^2x_0}$ или $\frac{xx_0}{a^2}-\frac{yy_0}{b^2}=\frac{x_0^2}{a^2}-\frac{y_0^2}{b^2}=1$

Пусть (x_0,y_0) — точка на параболе. Диаметр через неё: $y-y_0=0$. $\alpha=\frac{y}{p},$ $\beta=1$. Уравнение касательной имеет вид

3. Общее уравнение второго порядка

Общее уравнение второго порядка имеет вид: $Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$, причем $|A| + |B| + |C| \neq 0$

С помощью замены системы координат будем приводить уравнение к хорошему виду.

Этап 1: Избавимся от параметра B. Для этого повернем систему координат на угол φ . Матрица перехода к новому базису - $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$. Формулы перехода имеют вид: $x = x'\cos \varphi - y'\sin \varphi$, $y = x'\sin \varphi + y'\cos \varphi$. У нас цель - обнулить B. ПОэтому рассмотрим только коэффициент при x'y'. Он равен $-2A\cos \varphi\sin \varphi + 2C\sin \varphi\cos \varphi + 2B(\cos^2 \varphi - \sin^2 \varphi)$. Приравняем его к нулю. $-2A\cos \varphi\sin \varphi + 2C\sin \varphi\cos \varphi + 2B(\cos^2 \varphi - \sin^2 \varphi) = 0 \Leftrightarrow (C-A)\sin 2\varphi + 2B\cos 2\varphi \Leftrightarrow$ tg $2\varphi = \frac{2B}{A-C} \Rightarrow \varphi = \frac{1}{2}arctg 2BA - C$.

Итак, если $A\neq C$, то можно повернуть на $\varphi=\frac{1}{2}arctg2BA-C$. Если A=C, то повернем на $\varphi_0=\frac{\pi}{4}$. В обоих случаях это уравнение будет иметь вид $A'x'^2+C'y'^2+2D'x'+2E'y'+F'=0$

Этап 2: Пусть $A'\neq 0$. Тогда сдвинем начало координат вдоль оси OX' так, чтобы D' обнулился. Перепишем уравнение $A'(x'^2+\frac{2D'}{A'}x'+\frac{D'^2}{A'^2})+C'y'^2+2E'y'+F'-\frac{D'^2}{A'^2}=0$. Значит, можно сделать замену $x''=x'+\frac{D'}{A'}$ и D'' обнулится. Стоит заметить, что если A' и C' оба ненулевые, то можно обнулить одновременно и D' и E'.

Итак, у нас есть уравнение вида $A''x^2 + C''y^2 + 2D''x + 2E''y + F'' = 0$, причем A'' и C'' одновременно не равны нулю и ровно один из пары коэффициентов A'' и D'' равен нулю. Так же для C'' и E''. То есть есть не более трех ненулевых кожффициентов.

С этого момента считаем, что кривая изначально была задана в полученной ПДСК(будем писать все без штрихов).

1)
$$A \neq 0$$
, $C \neq 0$, $AC > 0$. Можно считать, что $A > 0$, $C > 0$ $Ax^2 + Cy^2 + F = 0$ $Ax^2 + Cy^2 = -F$.

Если F > 0, решений нет.

Если F=0, то уравнение имеет вид $Ax^2+By^2=0$, и это точка.

Если F<0, то уравнение можно написать в виде $\frac{A}{-F}x^2+\frac{B'}{F}y^2=1,$ и это эллипс.

2)
$$A \neq 0, C \neq 0$$
, $AC < 0$. Можно считать, что $A > 0, C < 0$ $Ax^2 + Cy^2 + F = 0$

$$Ax^2 + Cy^2 = -F.$$

Если F=0, то уравнение имеет вид $A'x^2-B'y^2=0, A'>0, B'>0,$ и это две прямые.

Если $F \neq 0$, то уравнение имеет вид $A'x^2 - B'y^2 = 1, A' > 0, B' > 0$, и это гипербола

- 3) AC = 0. Можем считать, что A = 0. $Cy^2 + 2Dx + F = 0$.
 - $D \neq 0$. $Cy^2 + 2D(x + \frac{F}{2D}) = 0$. $x' = x + \frac{F}{2D} \Rightarrow Cy^2 + 2Dx' = 0 \Rightarrow y^2 = -2\frac{D}{C}x'$. Это парабола.
 - D = 0 $Cy^2 = -F \Leftrightarrow y^2 = -\frac{F}{C}$. Это получается либо прямая, либо пустое множество.

Теорема 26. Любое уравнение 2 порядка заменой ПДСК можно привести к одному из видов, представленных выше. Доказательство выше.

Определение 40. Пусть $\Phi(x,y) = 0$ — уравнение второго порядка, задающее некоторую кривую. Точка (x_0, y_0) центр это кривой, если $\Phi(x_0 - x, y_0 - y) = \Phi(x_0 + x, y_0 + y)$ при любых x, y.

Найдем центр кривой $Ax^2+2Bxy+Cy^2+2Dx+2Ey+F=0$. $\varPhi(x_0-x,y_0-y)=\varPhi(x_0+x,y_0-y)$. Распишем: $G(x,y)=-2Axx_0-2B(x_0y+y_0x)-2Cyy_0-2Dx-2Ey=-G(x,y)$. Значит x_0,y_0 — центр, если G(x,y)=0 при всех x,y. $G(x,y)=0\Leftrightarrow x(Ax_0+By_0+D)+y(Bx_0+Cy_0+E)=0$. Для того, чтобы G(x,y)=0 выполнялось для всех x,y, надо, чтобы $Ax_0+By_0+D=0$ и $Bx_0+Cy_0+E=0$. Очевидно, что (x_0,y_0) — центр тогда и только тогда, когда он—решение этой системы.

Утверждение. Центр кривой является центром симметрии этой кривой.

В случае непустой кривой эллиптического или гиперболического типов кривой центр — начало канонической системы координат.

Упражнение 6. Если X — центр симметрии непустой кривой 2-го порядка, то X — её центр.

4. Линейное пространство

1. Абелева группа

Определение 41. Пусть на некотором множестве есть A операция +, сопоставляющая каждым двум элементам из A сопоставляет элемент из $A. + : A \times A \to A$

Тогда (A, +) называется абелевой группой, если для любых $a, b, c \in A$:

- ассоциативность: a + (b + c) = (a + b) + c
- наличие нейтрального элемента 0_A : $\exists 0 \in A : \forall a \in A \ a+0 = 0+a = a$
- наличие обратного элемента: $\exists (-a), (-a) + a = 0$
- коммуникативность: a + b = b + c

Свойство. Результат операции не зависит от порядка их следования и порядка слагаемых.

Свойство. Нейтральный элемент единственен.

Доказательство. Пусть есть два нейтральных элемента 0_1 и 0_2 . Рассмотрим их сумму: $0_1 + 0_2 = 0_1$ (по определению). Но $0_1 + 0_2 = 0_2 + 0_1 = 0_1$

Свойство. Обратный элемент единственен.

Доказательство. Пусть у элемента a есть два обратных элемента b_1 и b_2 . Тогда $b_1+a+b_2=b_1+(a+b_2)=b_1+0+b_1$. Но $b_1+a+b_2=(b_1+a)+b_2=0+b_2=b_2$. То есть $b_1=b_2$

Замечание. Если убрать условие коммутативности, то получится определение группы.

Определение 42. Векторное (линейное) пространство это абелева группа (V, +), в которой определена операция умножения на действительное число. $\forall \alpha \in \mathbb{R}, vinV : \alpha \cdot v \in V$ со следующими свойствами:

- $\alpha(u+v) = \alpha u + \alpha v$
- $(\alpha + \beta)u = \alpha u + \beta u$
- $\alpha \beta u = \alpha(\beta u)$

• $1 \cdot u = u$

Элементы группы V называют векторами, а элементы α и β — векторами.

Свойство. $0 \cdot v = 0_V$

Доказательство.
$$0v = (0+0)v = 0v + 0v \Rightarrow 0v = (0v - 0v) = 0_V$$

Свойство. $(-1) \cdot v = -v$

Доказательство.
$$v+(-1)v=1v+(-1)v=v(1+(-1))=0\Rightarrow (-1)\cdot v=-v$$

Определение 43. Система векторов $v_1, \ldots, v_n \in V$ называется линейно зависимой, если $\exists \alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$, не равных одновременно нулю, такая что $\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0$. И она называется линейно независимой в противном случае.

Свойство 8. Система векторов линейно зависима тогда и только тогда, когда один их этих векторов является линейной комбинацией других.

Определение 44. Пусть V — векторное пространство. Подмножество $W \subset V$ называется подпространством, если:

- $\forall a, b \in W : a + b \in W$
- $\forall \alpha \in \mathbb{R}, a \in W : \alpha a \in W$

Иначе говоря, W замкнуто относительно операций.

Следствие. Любое подпространство линейного пространства является линейным пространством.

Пусть $A\subseteq V$. Обозначим $\langle A\rangle=$ всех конечных линейных комбинаций векторов из $\sum\limits_{i=1}^n \alpha_i a_i, \alpha_i\in \mathbb{R}, \alpha_i\in A$

Определение 45. $\langle A \rangle$ — линейная оболочка A.

Утверждение. $\langle A \rangle$ — подпространство в A. Более того, для любого подпространства W, содержащего A верно, что $W \supseteq \langle A \rangle$

Доказательство. Очевидно, что $\langle A \rangle$ замкнуто. $a_1, \ldots, a_n \in A \Rightarrow a_1, \ldots, a_n \in W \Rightarrow \sum_{i=1}^n \alpha_i a_i \in W \Rightarrow \langle A \rangle \subseteq W$.

Определение 46. Множество A порождает пространство V, если $\langle A \rangle = V$. Пространство V называется конечнопорожденным, если существует конечное порождающее множество.

Определение 47. Пусть V — векторное пространство, $A \subseteq V$ — система векторов. Рангом A назовем размер наибольшей независимой подсистемы в A назовем минимальный размер линейно независимой подсистемы в A. Если в A есть линейно независимые системы из бескончено большого числа векторов, то её ранг бесконечен.

Обозначение. Pанг A обозначается $\operatorname{rk} A$

Определение 48. Размерностью пространства A называется её ранг. $\dim V = \operatorname{rk} V$

Утверждение. $A \subseteq B \to \operatorname{rk} A \le \operatorname{rk} B$

Лемма 3. Пусть $\operatorname{rk} A = k \ u \ \{v_1, v_2, \dots, v_n\}$ — линейно независимая подсистема. Тогда $\forall v \in A$ является линейной комбинацией этой системы.

Лемма 4. Пусть $\operatorname{rk} A = r$, а вектор b есть линейная комбинация некоторых векторов из A. Тогда $\operatorname{rk}(A \cup \{b\}) = r$

Доказательство. При добавлении вектора к системе ранг уменьшится не может. Остальнось доказать что ранг не больше, чем r. Пусть ранг больше чем r. Тогда в $A \cup \{B\}$ есть r+1 независимый вектор a_1, a_2, \cdots, a_r, b . Векторы a_1, a_2, \ldots, a_r- линейно независимые, и по предыдущей лемме все векторы из A выражаются через них. Таким образом, так как b линейная комбинация каких - то векторов из A, то b выражается через a_1, a_2, \ldots, a_r .

Теорема 27. Пусть A - cucmeма векторов. Тогда $\operatorname{rk} A = \operatorname{rk}\langle A \rangle = \dim \langle A \rangle$.

Доказательство. $A \subseteq \langle A \rangle \Rightarrow \operatorname{rk} A \leq \langle A \rangle$

Пусть $\operatorname{rk} A = r$. Предположим, что в $\langle A \rangle$ нашлись линейно независимые векторы $b_1, b_2, \ldots, b_{r+1}$. Добавим их к A по одному. Так как они — линейная комбинация векторов A, то на каждом шаге ранг не изменился. Тогда $\operatorname{rk}(A \cup \{b_1, b_2, \ldots, b_{r+1}\} = r \Rightarrow \operatorname{rk}\{b_1, b_2, \ldots, b_{r+1}\} \leq r$. Но $\{b_1, b_2, \ldots, b_r, b_{r+1}\}$ линейно независим, а значит $\operatorname{rk}\{b_1, b_2, \ldots, b_r, b_{r+1}\} = r + 1$. Противоречие.

Следствие 11. Пусть V — линейное пространство, (v_1, v_2, \ldots, v_n) — набор векторов через которые выражаются все элементы V (то есть $V = \langle v_1, \ldots, v_n \rangle$). Тогда $k \geq \dim V$

Теорема 28. Пусть A — система векторов, u $\operatorname{rk} A = k$. Пусть $v_1, \ldots, v_n \in A$ — линейно независимые векторы. Тогда (v_1, \ldots, v_n) можно дополнить вектором из A до линейно независимой системы (v_1, \ldots, v_k) из k векторов.

Доказательство. Надо доказать следующую вещь: если n < k, то $\exists v_{n+1} \in A: (v_1, \ldots, v_{n+1}) - \exists x_n \in A$.

Пусть это не так. Тогда $\forall v_{n+1} \in A: (v_1,\ldots,v_n,v_{n+1})-\Pi 3$, то есть $v_{n+1} \in \langle v_1,\ldots,v_n \rangle \Rightarrow A \subseteq \langle v_1,\ldots,v_n \rangle \Rightarrow \operatorname{rk} A \leq \operatorname{rk} \langle v_1,\ldots,v_n \rangle \Rightarrow k = \operatorname{rk} A = \operatorname{rk} \langle v_1,\ldots,v_n \rangle = \operatorname{rk} \{v_1,\ldots,v_n\} = n$. Противоречие.

Пример 4. $\dim M_{n\times m} = nk$. Рассмотрим $n \times m$ матриц, у которых на месте (i,j) стоит 1, в остальных — 0. Они линейно независимые и пространство ими порождается. Значит $\dim M_{n\times m} = \operatorname{rk} \{E_{ij}\} = nk$

Пример 5. P_n — пространство многочленов от одной переменной со степенью не более n. dim $P_n = n + 1$. $P_n = \langle 1, x, x^2, \dots, x^n \rangle$.

Определение 49. Пусть V — линейное пространство. Набор векторов $v_1,\ldots,v_n\in V$ называется базисом, если $\{v_1,v_2,\ldots,v_n\}$ линейно независимы и $V=\langle v_1,\ldots,v_n\rangle$

Утверждение. Пусть V — линейное пространство, v_1, \ldots, v_n — базис. Тогда $\dim V = n$.

Утверждение. $B\ V\ cyществует\ базис\ тогда\ u\ только\ тогда,\ когда\ V\ конечнопорождено.$

Доказательство. Если в V есть базис , то $V = \langle v_1, \ldots, v_n \rangle$ конечно порождено. Если V конечнопорождено, то $V = \langle v_1, \ldots, v_n \rangle$, то $\dim V = \operatorname{rk} \{v_1, \ldots, v_n\} = k \leq n$. Среди v_1, \ldots, v_n есть максимальная система линейно независимых векторов, пусть это v_1, \ldots, v_k без ограничения общности. Тогда любой вектор из $\{v_1, \ldots, v_n\}$ выражается через v_1, \ldots, v_k . Тогда $V = \langle v_1, \ldots, v_k \rangle$. Значит v_1, \ldots, v_n базис в v_n, \ldots, v_n

Определение 50. Базис пространства V — линейно независимая подсистема $(v_1, \ldots, v_n) \subset V$, где $n = \dim V$.

Определение 51. Базис пространства V — это система $(v_1, \ldots, v_n) \subset V$, такая что $n = \dim V$ и $V = \langle v_1, \ldots, v_n \rangle$

Утверждение. Все три определения базиса равносильны.

Доказательство. • (1) \Rightarrow (3). $V = \langle v_1, \dots, v_n \rangle, n = \dim V$. По предыдущему утверждению.

- $(2) \Rightarrow (1). v_1, \ldots, v_n$
- (3) \Rightarrow (2). $n = \dim V, V = \langle v_1, \dots, v_n \rangle$. Пусть (v_1, \dots, v_n) линейно зависима. Тогда без ограничения общности v_n выражается через v_1, \dots, v_n . Но тогда $V = \langle v_1, \dots, v_{n-1} \rangle$

Определение 52. Пусть V — конечномерное (конечнопорожденное) пространство, e_1, \ldots, e_n — базис в $V, v \in V, v = \sum_{i=1}^n \alpha_i e_i$. Тогда $\alpha_1, \ldots, \alpha_n$ — координаты вектора v в базисе $\mathcal{E} = (e_1, \ldots, e_n)$, столбец $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$ — координатный столбец v в базисе \mathcal{E} . Тогда $v = \mathcal{E} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$.

Замечание. Координаты вектора определяются однозначно. Действительно, если $v = \mathcal{E}\alpha = \mathcal{E}\beta$, то $\mathcal{E}(\alpha - \beta) = 0 \Rightarrow \alpha = \beta$

Утверждение. Пусть $\alpha, \beta - \kappa$ оординатные столбцы векторов $u\ u\ v\ в$ базисе \mathcal{E} . Тогда $\alpha + \beta - \kappa$ оординатный столбец u + v. Если $x \in \mathbb{R}$, то $x\alpha - \kappa$ оординатный столбец вектора $x\alpha$.

Доказательство. $u = \mathcal{E}\alpha, v = \mathcal{E}\beta$, тогда $u + v = \mathcal{E}(\alpha + \beta)$, а $xu = x\mathcal{E}\alpha = \mathcal{E}(x\alpha)$.

Определение 53. Пусть V и U — линейные пространства. Они называются изоморфными, если существует биекция $\varphi:U\mapsto V$, такая что $\varphi(u_1+u_2)=\varphi(u_1)+\varphi(u_2)$ и $\varphi(\lambda u)=\lambda\varphi(u)$. Говорят, что такая биекция сохраняет операции и называется изоморфизмом между u и v.

Теорема 29. Пусть $V - \kappa$ онечномерное линейное пространство, $\dim V = n$. Тогда V изоморфно $M_{n\times 1}$.

Доказательство. Выберем в V произвольный базис \mathcal{E} и для $\forall x \in V$ определим $\varphi(x)$ как координатный столбец x в базисе \mathcal{E} . Очевидно, что каждому столбцу соответствует хотя бы один вектор, а значит φ — сюръекция, и очевидно, что при $u \neq v \ \varphi(u) \neq \varphi(v)$. И, наконец, $\varphi(u+v) = \varphi(u) + \varphi(v)$. А значит φ — изоморфизм.

Упражнение 7. Доказать, что при $n \neq k M_{n \times 1}$ неизоморфно $M_{k \times 1}$.

Обозначение. $U \cong V$, если U изоморфно V.

Определение 54. Пусть V — конечномерное пространство. Пусть \mathcal{E} и \mathcal{E}' — два базиса, $\mathcal{E} = (e_1, e_2, \dots, e_n)$, $\mathcal{E}' = (e'_1, e'_2, \dots, e'_n)$, где n — размерность пространства. Разложим вектора e'_i по базису \mathcal{E} . $e'_i = \sum_{k=1}^n s_{ki} e_k$. Матрица $S = (s_{ki})$ называется матрицей перехода от \mathcal{E} к \mathcal{E}' . Тогда $\mathcal{E}' = E \cdot S$

Утверждение. Пусть $v \in V$, $v = \mathcal{E}\alpha = \mathcal{E}'\alpha'$. Тогда $\alpha = S\alpha'$

Доказательство. $\mathcal{E}\alpha=\mathcal{E}'\alpha'=\mathcal{E}S\alpha'\Rightarrow\alpha=S\alpha',$ так как разложение v по базису \mathcal{E} единственно.

Утверждение. Пусть \mathcal{E} , \mathcal{E}' , \mathcal{E}'' — базисы, S — матрица перехода от \mathcal{E} κ \mathcal{E}' , T — матрица перехода от \mathcal{E}' κ \mathcal{E}'' . Тогда матрица перехода от \mathcal{E} κ \mathcal{E}'' — это ST.

Доказательство.
$$\mathcal{E}'' = \mathcal{E}'T = (ES)T = E(ST)$$

Следствие 12. Матрица перехода обратима.

 \mathcal{A} оказательство. Пусть S — матрица перехода от \mathcal{E} к \mathcal{E}' , T — матрица перехода от \mathcal{E}' к \mathcal{E} . Тогда ST — матрица перехода от \mathcal{E} к \mathcal{E} , TS — матрица перехода от \mathcal{E}' к \mathcal{E}' .

Утверждение. Пусть V — линейное пространство, \mathcal{E} — базис, а S — какая-то обратимая матрица порядка n. Тогда ES — базис в V.

Доказательство. Пусть $\mathcal{E}' = \mathcal{E}S$. В \mathcal{E}' n элементов. Осталось доказать, что любой вектор из V можно выразить через \mathcal{E}' . Достаточно доказать, что все векторы \mathcal{E} выражаются через \mathcal{E}' . Но S обратима, поэтому $\mathcal{E}'S^{-1} = \mathcal{E}SS^{-1} = \mathcal{E}$. Значит элементы \mathcal{E} выражаются через \mathcal{E}' .

Замечание. Мы пользовались только тем, что $SS^{-1}=E$, и получили $S^{-1}S=SS^{-1}=E$. То есть если матрица обратима справа $(\exists T:ST=E)$, то она обратима (ST=TS=E).

 $M_{n \times 1} \ni v_1, \dots, v_k$, $\dim \langle v_1, \dots, v_k \rangle = \operatorname{rk} v_1, \dots, v_k$ Составим из v_1, v_2, \dots, v_k матрицы A размера $n \times k$.

Утверждение. Столбцовый ранг матрицы $A \operatorname{rk}_c A$ — ранг системы столбцов. **Утверждение.** Строковый ранг матрицы $A \operatorname{rk}_r A$ — ранг системы строк. **Утверждение.** $\operatorname{rk}_r AB \leq \operatorname{rk}_r B$, $\operatorname{rk}_c AB \leq \operatorname{rk}_c A$

Доказательство. Первый столбец AB это Ab_{*1} , то есть $a_{*1}*b_{*1}+\ldots+a_{*k}b_{*k}$, то есть $Ab_{*1}\in V$. Аналогично все столбцы матрицы AB лежат в V.Значит среди них не более $\mathrm{rk}_c\,A$ независимых столбцов. То есть $\mathrm{rk}_c\,AB\leq\mathrm{rk}_c\,AB$

Теорема 30. Теорема о ранге матрицы $\operatorname{rk}_c A = \operatorname{rk}_r A$

Доказательство. Докажем, что $\mathrm{rk}_r A \leq \mathrm{rk}_c A$. Пусть $r = \mathrm{rk}_c A$. Значит есть r столбцов, через которые все выражается. Пусть это столбцы c_1,\ldots,c_r . $a_{*i}=\sum_{s=1}^n=d_{si}c_s$. Рассмотрим матрицу $C=(c_1,\ldots,c_r)$. Рассмотрим матрицу $D=(d_{si})$. Тогда $CD=(a_{*1},\ldots,a_{*k})=A$. Таким образом $\mathrm{rk}_r CD \leq \mathrm{rk}_r D$. Но в матрице D r строк, значит $\mathrm{rk}_r D \leq r$, откуда $\mathrm{rk}_r A \leq r = \mathrm{rk}_c A$.

Замечание. Пусть A имеет размер $n \times k$ и r — минимальное число, такое что A можно разложить в произведение C размера $n \times r$, D размера $r \times k$. По утверждению $\operatorname{rk} A \leq \operatorname{rk} C$, $\operatorname{rk} A \leq \operatorname{rk} D$. Но A = CD, следовательно $\operatorname{rk} A = \operatorname{rk} C = \operatorname{rk} D$, то есть $\operatorname{rk} A \leq r$. Но $r = \operatorname{rk} A$ возможно.

Упражнение 8. Пусть столбцы матрицы A линейно независимы. Тогда $\forall B: \operatorname{rk} AB = \operatorname{rk} B$

Определение 55. Элементарное преобразование матрицы A это преобразование следующего вида:

• Пусть
$$i \neq j$$
, $\alpha \in \mathbb{R}$. Тогда $\begin{pmatrix} a_{1*} \\ \vdots \\ a_{i*} \\ \vdots \\ a_{k*} \end{pmatrix} \rightarrow \begin{pmatrix} a_{1*} \\ \vdots \\ a_{i*} + \alpha a_{j*} \\ \vdots \\ a_{k*} \end{pmatrix}$

• Пусть
$$\lambda \in \mathbb{R}$$
. Тогда $\begin{pmatrix} a_{1*} \\ \vdots \\ a_{i*} \\ \vdots \\ a_{k*} \end{pmatrix} \rightarrow \begin{pmatrix} a_{1*} \\ \vdots \\ \lambda a_{i*} \\ \vdots \\ a_{k*} \end{pmatrix}$

• Пусть
$$i < j$$
. Тогда $\begin{pmatrix} a_{1*} \\ \vdots \\ a_{i*} \\ \vdots \\ a_{j*} \end{pmatrix} \rightarrow \begin{pmatrix} a_{1*} \\ \vdots \\ a_{j*} \\ \vdots \\ a_{i*} \\ \vdots \\ a_{k*} \end{pmatrix}$

Обозначение. E_{ij} — матрица, в которой в позиции (i, j) стоит единица, а в остальных — нули.

Определение 56. Элементарные преобразования:

•
$$A \to (E + \alpha E_{ij})A = D_{ij}(\alpha)A$$

•
$$A \rightarrow (E - E_{ii} + \lambda E_{ii})A = T_i(\lambda)A$$

•
$$A \rightarrow (E - Eii - Ejj + Eji + Eij)A = P_{ij}A$$

Все эти матрицы называются элементарными.

Утверждение. Элементарные матрицы обратимы, и обратные κ ним элементарны.

Доказательство.

- $(D_{ij}(\alpha))^{-1} = D_{ij}(-\alpha)$
- $(T_i(\lambda))^{-1} = T_i(\frac{1}{\lambda})$
- $\bullet P_i j^{-1} = P_{ij}$

Утверждение. При элементарных преобразованиях строк матрицы A её ранг не меняется. Более того, не меняются линейные зависимости между столбцами.

Доказательство. Пусть в матрице A столбцы зависимы с какими то коэффициентами $\alpha_1,\alpha_2,\dots,\alpha_k$, то есть $\sum\limits_i \alpha_i a_{*i} = 0$ или $A\left(\begin{array}{c} \alpha_1 \\ \vdots \\ \alpha_k \end{array} \right) = 0.$

После элементарного преобразования $A \to FA$, то есть $FA\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix} = 0$. Наоборот, если в FA столбцы зависимы с коэффициентами $\alpha_1, \dots, \alpha_k$, то и в $A = F^{-1}(FA)$ они зависимы с теми же коэффициентами.

Определение 57. Матрица A имеет ступечатый вид, если номера первых ненулевых элементов в строках строго возрастают.

Определение 58. Первые ненулевые элементы в строках называются главными элементами строк, столбцы в которых они находятся— главные столбцы.

Теорема 31. Любая матрица элементарными преобразованиями приводится κ ступенчатому виду.

Доказательство. Докажем индукцией по количеству строк. База индукции: матрица из 0 строк.

Заметим, что если матрица нулевая, то она уже приведена к ступенчатому виду. В противном случае выберем первый столбец, содержащий ненулевые числа. Пусть это столбец i. Переставим строки так, чтобы a_{1i} был ненулевым. При каждом j>1 вычтем из j-й строки первую, умноженную на $\frac{a_{ji}}{a_{1i}}$. Тогда весь i-й столбец, кроме a_{1i} обнулился. Применив предположение индукции, для матрицы $n-1\times m-1$, получим, что все ок.

Утверждение. Ранг ступенчатой матрицы равен числу её ненулевых строк.

Доказательство. Пусть r — количество непустых строк. Тогда $\mathrm{rk}\ A \leq r$. Осталось оказать, что это строки линейно независимы. Предположим, что $\sum_i \lambda_i a_{i*} = 0$, и какой-то $\lambda_i \neq 0$. Выберем минимальную такую строку i, пусть a_{ij} главный её элемент. Но тогда $\sum_i \lambda_i a_{ij} = \lambda_i a_{ij} \neq 0$. А значит, что $\sum_i \lambda_i a_{i*} \neq 0$

Упражнение 9. Покажите, что при элементарных преобразованиях строк строчный ранг не меняется.

Определение 59. Ступечатая матрица называется упрощенной, если все главные элементы равны 1, а все остальные равны 0.

Теорема 32. Элементарными преобразованиями любая матрица приводится к упрощенному виду.

Доказательство. Первого условия добиться просто— надо разделить каждую строку на её главный элемент, получим, что все главные элементы единичны.

Рассмотрим все строки, упорядоченные по возрастанию номеров. Пусть a_{ij} — главный элемент, равный 1. Вычтем из каждой строки $k, k \neq i$ строку i умноженную на aij

Определение 60. Матрица $n \times n$ нызвается невырожденной, если её ранг равен n. Упрощенный вид такой матрицы — E_n

Теорема 33. Пусть $A - \kappa \epsilon a \partial p a m + a s$ матрица. Тогда следующее равносильно.

- A- невырожеденная матрица.
- элементарными преобразованиями приводится κ E.
- А есть произведение элементарных матриц.
- A oбратима.
- А обратима слева или справа.

Замечание. Произведение обратимых матриц обратимо.

Доказательство.

- (1) \Rightarrow (2). Упрощенный вид A есть E.
- $(2) \Rightarrow (3)$. $K_1 K_2 \dots K_r A = E \Rightarrow A = K_t^{-1} \dots K_1^{-1}$
- (3) \Rightarrow (4). Матрица A обратима, так как элементарные обратимы и произведение обратимый обратимо.
- ullet (4) \Rightarrow (5). Если матрица обратима, то она обратима и справа, и
- (5) \Rightarrow (1). Пусть матрица A обратима справа, то есть AB = n. $n = \operatorname{rk} E = \operatorname{rk} AB \le \operatorname{rk} A \le n \Rightarrow \operatorname{rk} A = n$

2. Системы линейных уравнений

$$a_{11}x + \ldots + a_{1k}x_k = b_1 \tag{1}$$

$$\vdots \tag{2}$$

$$(2)$$

$$a_{n1}x + \ldots + a_{nk}x_k = b_n \tag{3}$$

(4)

B матричном виде: Ax = b. OCЛУ: Ax = 0.

Утверждение. Множество всех решений есть линейное подпространство в $M_{k\times 1}$. Достаточно найти базис.

Утверждение. При элементарных преобразованиях множество решений системы Ax = 0 не извеменяется.

Замечание. Если k — количество переменных, а $r = \operatorname{rk} A$, то тогда фундаментальная матрица имеет размер $k \times (k-r)$.

Следствие 13. Пусть k — количество переменных в системе, $\operatorname{rk} A = r$. Тогда пространство решений системы Ax = 0 имеет размерность r - k

Следствие 14. Если в ОСЛУ уравнений меньше, чем неизвестных, то она всегда имеет нетривиальное решение.

Доказательство. $\operatorname{rk} A \leq \operatorname{количество}$ строк в $\operatorname{A} \leq k$

Неоднородные СЛУ

Ax = b

Утверждение. Пусть x_0 — решение системы Ax = b, V — пространство решений ОСЛУ Ax = 0. Тогда решения неоднородной системы — в точности столбцы вида $x_0 + v$, $v \in V$

Доказательство. Пусть Ax = b. Тогда $Ax = Ax_0$, откуда следует $A(x - x_0) = 0$. То есть $x - x_0 = v, v \in V \Rightarrow x = x_0 + v, v \in V$

Метод решения:

Рассмотрим расширенную матрицу нашей системы: (A|b). Приведем её к упрощенному виду (от этого СЛУ не меняется). Матрица A при этом приведется к упрощенному виду. Получим два случая.

1) Столбец b оказался главным столбцом. Тогда решений нет.

2) Если этого не произошло, то матрица всегда имеет реше-

ние, т.е
$$x_0=\begin{pmatrix} \overset{c_1}{\vdots} \\ \overset{c_r}{c_r} \\ 0 \overset{\vdots}{\vdots} \end{pmatrix}$$
, $x=x_0+\varPhi d$, где d — произвольная

Теорема 34. Теорема Кронекера-Капелли Система Ax = b совместна тогда и только тогда, когда $\operatorname{rk} A = \operatorname{rk}(A|B)$

Доказательство. Ax — столбец, являющийся линейной комбинацией столбцов матрицы A: $Ax = a_{*1}x_1 + a_{*2}x_2 + \ldots + a_{*k}x_k$. Значит, решить систему Ax = b — выразить вектор b как линейную комбинацию векторов a_{*1}, \ldots, a_{*k} . А это возможно тогда и только тогда, когда $b \in \langle a_{*1}, \ldots, a_{*k} \rangle$. А это равносильно $\operatorname{rk} A = \operatorname{rk}(A|b)$

3. Лекция 100500. Линейные пространства наносят ответный удар

Определение 62. Пусть A — абелева группа. Пусть $B, C \subseteq A$. Суммой множеств B и C назовем $B + C = \{b + c : b \in B, c \in C\}$. Иногда оно называется *суммой Минковского*.

Суммы и пересечения подпространств

V — линейное пространство, U_1, U_2 — его подпространства.

Утверждение. $U_1 \cap U_2$ и $U_1 + U_2 - nodnpocmpaнсmea$ в V.

Замечание. Можно определить сумму произвольного числа подпространств. $U_1 + U_2 + \ldots + U_k = u_1 + \ldots + u_k$

Замечание. $U_1 + U_2 = \langle U_1, U_2 \rangle$

Утверждение. Пусть $U_1 = \langle A_1 \rangle, \dots, U_n = \langle A_n \rangle$. Тогда $U_1 + \dots + U_n = \langle A_1 \cup \dots \cup A_n \rangle$

Доказательство. $A_1,\ldots,A_n\subseteq U_1+\ldots+U_n\Rightarrow \langle A_1\cup\ldots\cup A_n\rangle\subseteq U_1+\ldots+U_n$ $u_1+u_2+\ldots+u_n$ — линейная комбинация элементов из $A_1\cup\ldots\cup A_n\Rightarrow\langle A_1\cup\ldots\cup A_n\rangle\supseteq U_1+\ldots+U_n$

Следствие 15. $\dim(U_1 + \ldots + U_n) \leq \dim U_1 + \ldots + \dim U_n$

Доказательство. Пусть A_i — базис U_i . Тогда $U_i = \langle A_i \rangle$. Значит $U_1 + \ldots + U_n = \langle A_1 \cup \ldots \cup A_n \rangle$. $|A_1 \cup \ldots \cup A_n| \leq |A_1| + \ldots + |A_n| = \dim U_1 + \ldots + \dim U_n$

Замечание. $U_1 + U_2 = U_1 + U_3 \not\Rightarrow U_2 = U_3$

Определение 63. Пусть U_1, \ldots, U_n — подпространства в V. Сумма $U_1 + \ldots + U_n$ называется *прямой суммой*, если $\forall u \in U_1 \cup \ldots \cup U_n \exists ! u_1 \in U_1, \ldots, u_n \in U_n : u = u_1 + u_2 + \ldots + u_n$

Обозначение. Прямая сумма обозначается как $u \oplus v$

Утверждение. Сумма подпространств $U_1 + \ldots + U_n - n$ рямая, тогла и только тогда, 0 однозначно раскадывается, в сумму $0 = u_1 + u_2 + \ldots + u_n$, $u_i \in U_i$.

Доказательство. В одну сторону утверждение очевидно верно по определению прямой суммы.

Пусть 0 раскладывается однозначно, но эта сумма не прямая. Тогда $u=u_1+u_2+\ldots+u_n=u'_1+u'_2+\ldots+u'_n$, где $u_i,u'_i\in U_i$. Тогда $0=u-u=u_1+\ldots+u_n-(u'_1+u'_2+\ldots+u'_n)=(u_1-u'_1)+\ldots+(u_n-u'_n)=0+0+\ldots+0,$ $u_i-u'_i\in U_i$, хотя бы одна разность ненулевая. Итак, мы получили две различных разложения нулевого вектора.

Теорема 35. Сумма $U_1 + \ldots + U_n - n$ рямая тогда и только тогда, когда для любого $i = 1, 2, \ldots, n$ $U_i \cap (U_1 + \ldots + U_{i-1} + U_{i+1} + \ldots + U_n) = 0$

Доказательство. Пусть это не так, то есть есть $0 \neq u \in U_i \cap (U_1 + \ldots + U_{i-1} + U_{i+1} + \ldots + U_n)$. $u = u_{i*} (\in U_i) = u_1 + \ldots + u_{i-1} + u_{i+1} + \ldots + u_n, u_i \in U_i$. То есть u раскладывается неоднозначно. То есть сумма не прямая. Пусть сумма не прямая. Тогда по только что доказанному утверждению $0 = u_1 + u_2 + \ldots + u_n, u_i \in U_i$, среди

Упражнение 10. Сумма $U_1 + \ldots + U_n$ — прямая, тогда и только тогда, когда:

$$U_1 \cap U_2 = 0$$

 $(U_1 + U_2) \cap U_3 = 0$
...
 $(U_1 + ... + U_i) \cap U_{i+1}$

Следствие 16. $U_1 + U_2 = U_1 \oplus U_2 \Leftrightarrow U_1 \cap U_2 = 0$

Теорема 36. Следующие утверждения равносильны:

- $U_1 + \ldots + U_n = U_1 \oplus \ldots \oplus U_n$
- dim $U = \sum_{i=1}^{n} \dim U_i$
- Объединение базисов пространств U_i дает базис U.

Доказательство.

- (2) \Leftrightarrow (3) Пусть \mathcal{E}_i базис в U_i . Тогда $U_i = \langle \mathcal{E}_i \rangle$, а значит, $u_1 + \ldots + U_n = \langle \mathcal{E}_1 \cup \mathcal{E}_2 \cup \ldots \cup \mathcal{E}_n \rangle$. Значит, если $\mathcal{E}_1 \cup \ldots \cup \mathcal{E}_n$ независима, то она базис U и $\dim U = \sum_{i=1}^n \dim U_i$. Если эта система линейно зависима, то она не базис. $\operatorname{rk}(\mathcal{E}_1 \cup \ldots \mathcal{E}_n) < \sum_i \dim U_i \Rightarrow \dim U < \sum_i \dim U_i$
- (3) \Rightarrow (1). Рассмотрим $0 = u_1 + \ldots + u_n$, $u_i \in U_i$. Разложим u_i по базису \mathcal{E}_i . Мы получили разложение нуля по базису $(\mathcal{E}_1 \cup \ldots \cup \mathcal{E}_n)$, значит разложение нуля единственно, а значит сумма прямая.
- (1) \Rightarrow (3). Пусть сумма прямая, но $\bigcup_{i} \mathcal{E}_{i}$ не базис в U, то есть 0 раскладывается более, чем одним способом.

Замечание.

Определение 64. Пусть V- пространство, U- его подпространство. Подпространство $W\subseteq U$ называется прямым дополнением к U, если $V=U\oplus W$

Теорема 37. Для любого подпространства U в V существует его прямое дополнение.

Доказательство. Пусть $\mathcal{E}=(e_1,\ldots,e_k)$ —базис в u. Эта система независима. Тогда её можно дополнить (в V) до (e_1,\ldots,e_m) —базиса в V, где $k=\dim U,\ m=\dim V$. Положим $W=\langle e_{k+1},\ldots,e_m\rangle$. Векторы e_{k+1},\ldots,e_m независимы, значит они образуют базис W, и значит объединение базисов U и W—базис V. А это значит, что $U+W=U\oplus W=V$.

Теорема 38. $\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$

Доказательство. $U = U_1 \cap U_2$. Дополним U до U_1 и U_2 . $U_1 = U \oplus W_1$, $U_2 = U \oplus W_2$. Мы утверждает, что $U_1 + U_2 = U \oplus W_1 \oplus W_2$. Если это так, то $\dim(U_1 + U_2) = (\dim U + \dim W_1) + (\dim U + \dim W_2) - \dim U = \dim U_1 + \dim U_2 - \sim U_1 \cap U_2$.

То есть нам осталось доказать, что $U_1+U_2=U\oplus W_1\oplus W_2$. Пусть это неверно. Тогда $0=u+w_1+w_2,\ u\in U,\ w_1\in W_1,\ w_2\in W_2$. Хотя бы два из этих трех векторов ненулевые. Пусть $w_1\neq 0$. Тогда $-w_1=u+w_2\in U_1\cap U_2=U$. То есть $-w_1\in U\cap W=\emptyset$

Определение 65. Пусть $V=U\oplus W.$ Тогда любой $v\in V$ однозначно раскладывается $v=u+w,\,u\in U,w\in W.$ и называется проекцией v на U вдоль

Определение 66. Пусть V — линейное пространство. Функция $f: V \to \mathbb{R}$ называется линейной, если f(u+v) = f(v) + f(u) и $f(\lambda u) = \lambda f(u)$.

Пусть $\mathcal{E}=(e_1,\dots,e_n)$ — базис в $V,\ v=\sum_i \alpha_i e_i=\mathcal{E}\left(egin{array}{c} lpha_1 \\ \vdots \\ \alpha_n \end{array} \right)$. Тогда $f(v)=\sum_i \alpha_i f(e_i)$. Строка $(f(e_1),\dots,f(e_n))$ называется координатной строкой функции f и задает эту функцию.

Утверждение. Все линейные функции на пространстве V образуют линейное пространство.

Доказательство. Если f_1 и f_2 , то любая их линейная комбинация $af_1 + bf_2$ — линейная функция $\forall x, y \in \mathbb{R}$.

Определение 67. Пространство всех линейных функций на V называется сопряженным пространством к V и обозначается V^*

Базисные функции должны иметь координаты (0, ..., 0, 1, 0, ..., 0)

Обозначение. Обозначим базисную функцию, у которой единица стоит на i-м месте как f^i . $\forall j \neq i : f^i(e_j) = 0, \ f^i(e^i) = 0.$

Тогда $f^i(v)$ — координата при e_i в разложении v по базису. $f^i(v)=(0,\dots,0,1,0,\dots,0)$ $\binom{\alpha_1}{\vdots}_{\alpha_n}=\alpha_i$.

Утверждение. Функции f_i – базис пространства V^* .

Доказательство.

- f^i линейно независимы. Пусть $f^1 = \sum_{i=2}^n \alpha_i f^i$. Тогда $f^1(e_1) = \sum_{i=2}^n \alpha_i f^1(e_i) = 0$. Противоречие.
- $\forall f \in V^k \ f = \sum_{i=1}^n f(e_i) f^i$. Действительно, это верно для любого e_i , из линейности следует, что это выполнятеся всегда.

Следствие 17. $\dim V^* = \dim V$, следовательно $V \cong V^*$

Определение 68. Базис $\mathcal{F} = \begin{pmatrix} f^1 \\ \vdots \\ f^n \end{pmatrix}$ в пространстве V^* называется *вза-имным* (биортогональным) к базису \mathcal{E} пространства V.

Утверждение. Пусть $\mathcal{E}, \mathcal{E}' - \partial sa$ базиса в V, $\mathcal{E}' = \mathcal{E}S$. Пусть $\mathcal{F}, \mathcal{F}' - saumhue$ к ним базисы в V^* . Тогда $\mathcal{F}' = S^{-1}\mathcal{F}$

$$\mathcal{A}$$
оказательство. Нам нужно доказать: $\mathcal{F} = S\mathcal{F}'$. Вычислим $f^i(e'_j) = f^i(ES_{*j}) = S_{ij}$. $f^i = \sum S_{ij} f'^j$, т.е. $\mathcal{F} = S\mathcal{F}'$

$$V^{**} = (V^*)^*. \ \forall v \in V : v^{**} \in V^{**}v^{**}(f) = f(v)$$

 v^{**} — действующая линейная функция. $v^{**}(f_1+f_2)=(f_1+f_2)(v)=f_1(v)+f_2(v)=v^{**}(f_1)+v^{**}(f_2)$

Теорема 39. $V^{**} \cong V$, причем $v \to v^{**}$ как раз и реализует этот изоморфизм.

3амечание. Этот изоморфизм называется каноническим изоморфизмом между V и $V^{**}.$

Доказательство. $(v_1 + v_2)^{**} = v_1^{**} + v_2^{**}, (\alpha v_1)^{**} = \alpha v_1^{**},$ то есть наш изоморфизм сохраняет операции.

Далее, если v_1, \ldots, v_k — линейно независимы, то и $v_1^{**}, \ldots, v_k^{**}$. Пусть $\sum_{i=1}^n \alpha_i v_i^{**} =$

0, не все α_i — нули. $0 = \sum_{i=1}^n (f) = \sum_{i=1}^k f(v_i) = f(\sum_{k=1}^n \alpha_i v_i)$ для любой функции f. Но вектор $v = \sum_i \alpha_i v_i \neq 0$. Тогда $\exists f \in V^* : f(v) \neq 0$. Противоречие.

Итак, если $\mathcal{E}=(e_1,\dots,e_n)$ — базис в V, то e_1^{**},\dots,e_n^{**} — линейно независимы в V^{**} . При этом $\dim V^{**}=n$. Значит, e_1^{**},\dots,e_n^{**} — базис V^{**} .

Итак, мы доказали что наше отображение — биекция.

Мы будет отождествлять V и V^{**} .

Определение 69. V — пространство, $U\subseteq V$ — его подпространство. $f_1(u)=0, f_2(u)=0,\ldots, f_k(u)=0$ задает U, если пространство её решений — U, т.е. $U=\{v\in V|f_i(v)=0,i=1,2,\ldots,k\}$

Замечание.

Определение 70. Пусть $W \subseteq V^{**}$. Тогда его *аннулятором* называется подпространство $W^0 = U = \{v \in V | f(v) = 0 \forall f \in W\}$ Пусть $W \subseteq U$. Его аннулятор $W^0 = \{f \in V^* : f(v) = 0 \forall v \in W\}$

Теорема 40. Пусть $W \subseteq V$. Тогда $\dim W + \dim W^0 = \dim V$

Доказательство. Пусть (e_1,\ldots,e_k) — базис в W, дополним его до базиса пространства V $(e_1,e_2,\ldots,e_k,\ldots,e_n)=0$. Пусть $(e_1^*,e_2^*,\ldots,e_n^*)$ — взаимный базис пространства V. Тогда $W^0=\langle e_{k+1}^*,\ldots,e_n^*\rangle$. Действительно, $e_{k+1}^*,\ldots,e_n^*\in W^0$. Если $f=\sum_{i=1}^n\alpha_ie_i^*\in W^0$, то $f(e_i)=0$ при $i=1,2,\ldots,k$, а значит $\alpha_i=0$. Значит, $\dim W+\dim W^0=k+(n-k)=n$.

Следствие 18. $W^{00} = W$

Доказательство. Повторим наши рассуждения из предыдущего доказательства, получаем, что $W^{00} = \langle e_1, \dots, e_k \rangle = W$, так как взаимный базис взаимного базиса — он сам.

Пространство W задается СЛУ, можно взять просто базис пространства W^0

Теорема 41. Пусть $U \subseteq V$, $W \subseteq V$

1)
$$U \subseteq W \Rightarrow W^0 \subseteq U^0$$

2)
$$W = U \Leftrightarrow W^0 = U^0$$

3)
$$(U+W)^0 = U^0 \cap W^0$$

4)
$$(U \cap W)^0 = U^0 + W^0$$

Доказательство.

•
$$f \in W^0 \Rightarrow f(W) = 0 \Rightarrow f(U) = 0 \Rightarrow f \in U_0$$

- $U = W \Rightarrow U^0 = W^0 \Rightarrow U^{00} = W^{00} \Rightarrow U = W$
- $f \in (W+U)^0 \Rightarrow f \in U^0, f \in W^0 \Rightarrow f \in U^0 \cap W^0$ Наоборот если $f \in (U^0 \cap W^0)$, то $\forall u \in U, w \in W f(u) = 0, f(w) = 0,$ f(u+w) = f(u) + f(w) = 0
- Возьмем аннулятор от третьего равенства. Получим $U'+W'=(U'^0+W'^0)^0$. Подставим $U'=U^0,\,W'=W^0$. Получим что надо,