Практична робота № 2 Варіант 13

Попередня обробка та контрольована

Класифікація даних

Mema: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідити попередню обробку та класифікацію даних.

Хід роботи:

Завдання 2.1: Класифікація за допомогою машин опорних векторів (SVM).

Створіть класифікатор у вигляді машини опорних векторів, призначений для прогнозування меж доходу заданої фізичної особи на основі 14 ознак (атрибутів). Випишіть у звіт всі 14 ознак з набору даних — їх назви та що вони позначають та вид (числові чи категоріальні):

- Вік чисельна
- Тип працевлаштування
 - категоріальна
- Рівень освіти категоріальна
- Безперервність освіти чисельна
- Сімейний стан категоріальна
- Професія категоріальна
- Відносини категоріальна

- Раса категоріальна
- Стать категоріальна
- Приріст капіталу чисельна
- Витрати чисельна
- Кількість годин роботи на тиждень
 - чисельна
- Країна наордження категоріальна
- Досвід роботи чисельна

					ДУ «Житомирська політехніка».22.121.13.000 — Лр02						
Змн.	Арк.	№ докум.	Підпис	Дата							
Розр	об. Маковська О.Ю					/lim.	Арк.	Аркушів			
Пере	вір.	Пулеко I. B.			Звіт з		1	10			
Kepit	Вник										
Н. ко	нтр.				лабораторної роботи	рноі роботи ϕ /КТ Γ р. $I\Pi 3$ –19					
Зав.	καφ.					,					

Лістинг файлу task-1.py

```
X.append(data)
X = np.array(X)
label encoder = []
X encoded = np.empty(X.shape)
X = X encoded[:, :-1].astype(int)
y = X encoded[:, -1].astype(int)
classifier = OneVsOneClassifier(LinearSVC(random state=0))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
classifier.fit(X train, y train)
accuracy = cross_val_score(classifier, X, y, scoring='accuracy', cv=3)
precision = cross_val_score(classifier, X, y, scoring='precision_weighted', cv=3)
recall = cross_val_score(classifier, X, y, scoring='recall_weighted', cv=3)
f1 = cross_val_score(classifier, X, y, scoring='f1_weighted', cv=3)
def predict(input data):
label encoder[count].transform([input data[index]])[0]
predict(input_data)
```

		Маковська О.Ю.		
		Пулеко І. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
Accuracy: 62.64%

Precision: 75.88%

Recall: 62.64%

F1 score: 56.15%

Input data: ['48', 'State-gov', '102628', 'Doctorate', '19', 'Married-civ-spouse', 'Prof-specialty', Predicted class: <=50K
```

Рис.2.1. task-1.py

Завдання 2.2: Порівняння якості класифікаторів SVM з нелінійними ядрами. Порівнювати між собою будемо поліномінальне, гаусове, сигмоїдальне ядра.

Фрагмент лістингу файлу task-2_1.py (поліномінальне ядро)

```
Accuracy: 76.02%
Precision: 64.96%
Recall: 76.02%
F1 score: 66.49%
Input data: ['48', 'State-gov', '102628', 'Doctorate', '19', 'Married-civ-spouse Predicted class: <=50K
```

Рис.2.2. task-2_1.py

Фрагмент лістингу файлу task-2_2.py (гаусове ядро)

```
classifier = OneVsOneClassifier(SVC(kernel='rbf'))
```

```
Accuracy: 77.48%

Precision: 82.13%

Recall: 77.48%

F1 score: 69.59%

Input data: ['48', 'State-gov', '102628', 'Doctorate', '19', 'Married-civ-spouse', Predicted class: <=50K
```

Рис.2.2. task-2_2.py

		Маковська О.Ю.			
		Пулеко I. B.			
Змн.	Арк.	№ докум.	Підпис	Дата	

Лістинг файлу task-2_3.py (сигмоїдальне ядро)

```
classifier = OneVsOneClassifier(SVC(kernel='sigmoid'))
```

```
Accuracy: 64.26%
Precision: 63.95%
Recall: 64.26%
F1 score: 64.1%
Input data: ['48', 'State-gov', '102628', 'Doctorate', '19', 'Married-civ-spouse', 'Prof-specialty', Predicted class: <=50K
```

Рис.2.2. task-2_3.py

Завдання 2.3: Порівняння якості класифікаторів на прикладі класифікації сортів ірисів. Необхідно класифікувати сорти ірисів за деякими їх характеристиками: довжина та ширина пелюсток, а також довжина та ширина чашолистків.

Також, в наявності ϵ вимірювання цих же характеристик ірисів, які раніше дозволили досвідченому експерту віднести їх до сортів: setosa, versicolor і virginica.

Лістинг файлу task-2_4.py

```
from sklearn.datasets import load_iris
iris_dataset = load_iris()

print(f"Iris_dataset keys: \n{iris_dataset.keys()}")
print(iris_dataset['DESCR'][:193] + "\n...")

print(f"Response names: {iris_dataset['target_names']}")
print(f"Feature names: {iris_dataset['feature_names']}")
print(f"Data type: {type(iris dataset['data'])}")
print(f"Data size: {iris_dataset['data'].shape}")
print(f"The first five lines of data:\n{iris_dataset['data'][:5]}")
print(f"Response array type: {type(iris_dataset['target'])}")
print(f"Size of response array: {iris_dataset['target'].shape}")
print(f"Answers:\n{iris_dataset['target']}")
```

		Маковська О.Ю.		
		Пулеко І. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис.2.2. task-2_4.py

Лістинг файлу task-2_5.py

```
from pandas import read_csv
from pandas.plotting import scatter_matrix
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split, cross_val_score,
StratifiedKFold
from sklearn.metrics import classification_report, confusion_matrix,
accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = read_csv(url, names=names)

print(dataset.shape)
print(dataset.head(20))
print(dataset.describe())
print(dataset.groupby('class').size())
dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()
dataset.hist()
plt.show()
```

		Маковська О.Ю.		
		Пулеко І. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
scatter matrix(dataset)
array = dataset.values
X_train, X_validation, Y_train, Y_validation = train_test_split(X, Y,
models = [
names = []
    results.append(cv results)
plt.boxplot(results, labels=names)
plt.title('Алгоритми порівняння')
plt.show()
model = SVC(gamma='auto')
model.fit(X train, Y train)
predictions = model.predict(X validation)
X \text{ new} = [[5.0, 3.6, 1.3, 0.25], [5.9, 3.0, 5.1, 1.8], [6.3, 3.3, 6.0, 2.5], [5.8,
predictions = model.predict(X new)
```


			Маковська О.Ю.		
ı			Пулеко І. В.		
	Змн.	Арк.	№ докум.	Підпис	Дата

		on.exe C:/Use	rs/Ola/Documen	ts/stud/4/AI_	Python/Lr_2/lab-2/task-2_5.py
(15)	9, 5)				
	sepal-length	sepal-width	petal-length	petal-width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa
7	5.0	3.4	1.5	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
9	4.9	3.1	1.5	0.1	Iris-setosa
10	5.4	3.7	1.5	0.2	Iris-setosa
11	4.8	3.4	1.6	0.2	Iris-setosa
12	4.8	3.0	1.4	0.1	Iris-setosa
13	4.3	3.0	1.1	0.1	Iris-setosa
14	5.8	4.0	1.2	0.2	Iris-setosa
15	5.7	4.4	1.5	0.4	Iris-setosa
16	5.4	3.9	1.3	0.4	Iris-setosa
17	5.1	3.5	1.4	0.3	Iris-setosa
18	5.7	3.8	1.7	0.3	Iris-setosa
19	5.1	3.8	1.5	0.3	Iris-setosa

		Маковська О.Ю.		
		Пулеко І. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
sepal-length sepal-width petal-length petal-width
       150.000000 150.000000
                                150.000000
                                           150.000000
count
         5.843333
                     3.054000
                                 3.758667
                                             1.198667
mean
                                 1.764420
                                             0.763161
std
         0.828066
                     0.433594
         4.300000
                    2.000000
                                 1.000000
                                             0.100000
min
         5.100000
25%
                    2.800000
                                 1.600000
                                             0.300000
50%
         5.800000
                    3.000000
                                 4.350000
                                             1.300000
75%
         6.400000 3.300000
                                 5.100000
                                             1.800000
                    4.400000 6.900000
         7.900000
                                             2.500000
max
class
Iris-setosa
                50
Iris-versicolor
                50
Iris-virginica
                50
dtype: int64
LDA: 0.975 (0.03818813079129868)
KNN: 0.9583333333333333 (0.0416666666666666)
CART: 0.9416666666666666666667 (0.05335936864527374)
NB: 0.95 (0.05527707983925667)
SVM: 0.9833333333333333 (0.03333333333333333)
0.96666666666666
[[11 0 0]
 [ 0 12 1]
 [0 0 6]]
```

	precision	recall	f1-score	support								
Iris-setosa	1.00	1.00	1.00	11								
Iris-versicolor	1.00	0.92	0.96	13								
Iris-virginica	0.86	1.00	0.92									
accuracy			0.97	30								
macro avg	0.95	0.97	0.96	30								
weighted avg	0.97	0.97	0.97	30								
X_new: [[5.0, 3.	6, 1.3, 0.25], [5.9,	3.0, 5.1, 1	1.8], [6.3, 3.3,	6.0, 2.5],	[5.8, 2.	7, 5.1,	1.9],	[5.1,	3.5,	1.4, 0	.2]]
Predictions: ['I	ris-setosa'	'Iris-vir	ginica' 'Ir	ris-virginica' '	ris-virgin	ica'						
'Iris-setosa']												

Рис.2.2. task-2 5.py

		Маковська О.Ю.		
		Пулеко І. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

https://github.com/avrorilka/AI_Python

Висновки: в ході виконання лабораторної роботи використовуючи спеціалізовані бібліотеки та мову програмування Python ми дослідити попередню обробку та класифікацію даних.

Класифікацію та кінцевий аналіз даних ми проводили на прикладах класифікатору у вигляді машини опорних векторів, призначений для прогнозування меж доходу заданої фізичної особи на основі 14 атрибутів.

Після чого провели перехресну перевірку, розбивши дані на навчальний та тестовий набори у пропорції 80/20. А для порівняння якостей класифікаторів SVM з нелінійними ядрами ми порівнювали між собою поліномінальне, гаусове та сигмоїдальне ядра.

		Маковська О.Ю.		
		Пулеко І. В.		
Змн.	Арк.	№ докум.	Підпис	Дата