

Non-contact Thickness Measuring Device for Coating Process in Battery Manufacturing

Sponsor: Guangrong XIA, CIML

Instructor: Prof. Jigang WU

VE/VM450 Group 4

Yuenong LING, Jiajin WU, Zhiyang CHEN, Zefang LI

Team Members

Yuenong Ling - Mechanical Analysis

ME + Engineering Physics

Jiajin Wu - Mechanical Design
ME

Zhiyang Chen - Software Development

ECE + Computer Science

Zefang Li (Leader) - Logistics, Fabrication

ME

Background

- Coating is omnipresent in our daily life
- Manufacturing of electrode sheet for Li-battery
- Potential damage of battery failure
- Need a reliable quality control process!

^{1.} https://www.hotmelt.com/blogs/blog/complete-run-down-roll-coaters

^{2.} https://m.sohu.com/a/420613358 607810/?pvid=000115 3w a

Needs

Real-time, continuous thickness measurement of electrode sheets (~155µm).

Requirements:

- 1. Low cost: < 100,000 RMB
- 2. Small-sized: less than 1.5 m × 1 m × 2 m
- 3. High precision: $\pm 0.5 \mu m$
- 4. Good stability: pass measurement system assessment (MSA)

Solution

Measuring principle: Confocal Displacement

- Optical, compare the wavelength of the reflected light
- Sensors on both sides of electrode

Sensor diagram [1].

Hardware design: Stationary Sensor

Sensors installed on a maneuverable, rigid frame

Software design: Graphical User Interface

Acquire, filter & visualize measurement data

Concept Generation

Concept Selection-Sensor

Working Principle		Confoc	al Light	Ultra	sonic	Magnetic		
Criteria	Weight	Score	Rating	Score	Rating	Score	Rating	
Range	0.10	3	0.30	5	0.50	5	0.50	
Resolution	0.20	5	1.00	4	0.80	2	0.40	
Linearity	0.20	4	0.80	4	0.80	2	0.80	
Cost	0.20	3	0.60	1	0.20	5	1.00	
Non-contact	0.20	5	1.00	5	1.00	1	0.20	
Frequency	0.10	4	0.40	3	0.40	1	0.40	
Total		4.10 🗸		3.	.70	3.30		

Concept Selection-Mov Mech

Туре		Maneu	verable	Stati	onary	Fixed		
Criteria	Weight	Score	Rating	Score	Rating	Score	Rating	
Stability	0.25	2	0.50	3	0.75	4	1.00	
Accuracy	0.12	3	0.36	3	0.36	3	0.36	
Ease	0.10	1	0.10	3	0.30	4	0.40	
Cost	0.25	2	0.50	3	0.75	2	0.50	
Reliability	0.08	1	0.08	4	0.32	2	0.16	
Size	0.20	3	0.60	4	0.80	1	0.20	
Total		2.06		3.2	8 🗸	2.62		

Final Design Concept

Final Design (Rendering)

Animation (Overview)

Animation (C-shaped Frame)

Animation (Baseboard)

Operation

Hardware

Software

Validation Results

No experiments needed

Recall Our Specifications:

- 1. Low cost: < 100,000 RMB
- 2. Small-sized: less than 1.5 m × 1 m × 2 m
- 3. High precision: ± 0.5 µm
- 4. Good stability: pass measurement system assessment (MSA)

Experiments:

- 1. Static measurement system assessment -> 4 (pass MSA)
- 2. Static measurements -> 3 (vibration $< \pm 0.5 \mu m$)
- 3. Dynamic measurements -> 3 (periodic pattern)

Measurement System Assessment

MSA (Measurement System Assessment): an experimental and mathematical method of quantifying

- Accuracy
- Precision
- Stability
- 3 appraisers
- 4 positions (3 trials each)

Result: %GRR = 9.91% < 10% (Pass the test!)

Validation Results (Static)

Measure the thickness of a single point

Vibration < ± 0.5µm after filtering

Validation Results (Dynamic)

Scan along the horizontal direction

A periodic pattern is observed!

Discussion – Strengths

Cheap

High resolution

User friendly

Long manufacturing time

- Manufacturing tolerance/errors
- Influence of temperature

Inconsistent hardware/software timestamps

Problem 1: Uncertain manufacturing tolerances

Problem 1: Uncertain manufacturing tolerances

Proposed Solution:

- Bend the upper beam of the C-shaped frame upward
- 2. Increase the dimension between the two beams in our design

Problem 2: Inconsistent Hardware/Software timestamps

No way to fetch hardware timestamps

Software system time is not accurate enough

Problem 2: Inconsistent Hardware/Software timestamps

Proposed Solution:

- Extend the measuring time and approximate sampling frequency
- Request the sensor supplier to implement such features

Conclusions

Objective: non-contact thickness measuring system

- Low cost
- Small size
- High Precision

Design Solution:

- An I-beam reinforced C-shaped frame with movable mechanisms
- Two confocal displacement sensors
- Software to acquire, filter, and visualize data

Conclusions

Major Achievements:

- Pass MSA test
- Observe periodic pattern when scanning along the horizontal direction

Lessons Learned:

- Think a step further about the procedures after your design
- Testing, testing and testing!
- Slight differences can result in severe results

Q & A

Supplementary Information

Operation (roller)

MSA Results - Raw Data

评价人/	² 价人/ 零件						77 H- H:					
测量次数	1	2	3	4	5	6	7	8	9	10		平均值
A 1	170.7369	164.8084	158.8633	169.0813							A ₁	165.87246
2	169.9468	164.1022	158.7248	170.0763							A_2	165.71256
3	170.5299	165.5337	158.969	169.0988							A_3	166.03284
平均值	170.40453	164.81477	158.85236	169.41881							\overline{X}_A	165.87262
极差	0.79006	1.43145	0.24418	0.99505							\overline{R}_A	0.86518
B 1	169.5293	164.7674	158.2856	168.4746							B ₁	165.26421
2	169.5293	164.7982	158.6239	168.4888							B ₂	165.36004
3	168.372	164.4889	158.7469	169.0447							B ₃	165.16313
平均值	169.14351	164.68485	158.55215	168.66933							\overline{X}_{B}	165.26246
极差	1.15732	0.30929	0.46129	0.57013							\overline{R}_{B}	0.62451
C 1	168.8754	164.1	158.7663	168.6929							C ₁	165.10865
2	169.7772	164.7424	158.4052	169.4025							C ₂	165.58181
3	169.7772	165.7476	158.2463	169.9802							C ₃	165.93779
平均值	169.47657	164.86332	158.4726	169.35852							$\overline{X}_{\mathbb{C}}$	165.54275
极差	0.90173	1.64758	0.52002	1.28727							\overline{R}_C	1.08915
零件平均值	169.6749	164.7876	158.6257	169.1489	<i>*</i>						₹ _P =	165.55928
零件平均值	极差										R _P =	11.04917
<u></u> =	$(R_A + R_B + F_B)$	R _c)/ Apprais	er = (0.86518	+	0.62451	+	1.08915) /	3	=	0.85962
	$[Max (\overline{X})_{ABC}]$		$\overline{(X)}_{ABC}$] =	165.87262	_	165.26246					=	0.61016
UCL _R =		×	*D ₄ =	0.85962	×	2.575					=	2.21351
UCL _{xbar} =		+	A2	×	₹ =	165.559	+	1.0230	×	0.8596	=	166.43866
LCL _{Xbar} =	₹p	_	A2	×	R =	165.559	_	1.0230	×	0.8596	=	164.67989

MSA Results - Report

测量单元分析		总变差% (TV) ——基于零件变差					
重复性—设备变差(EV)							
$EV = \overline{\mathbb{R}} * K_1$					% EV =	100[EV/TV]	
= 0.50786	Trial#	K ₁			=	8.74%	
	3	0.5908					
再现性—评价人变差(AV)							
$AV = \sqrt{(\overline{X_{DIFF}} * K_2)^2 - (EV^2 / (nr))}$					% AV =	100[AV/TV]	
= 0.27058	Appraiser	K ₂			=	4.66%	
(n =Parts, r =Trials)	3	0.5231					
重复性和再现性(GRR)							
$GRR = \sqrt{(EV^2 + AV^2)}$					% GRR =	100[GRR/TV]	
= 0.57544					=	9 9.91%	
零件变差(PV)							
PV= $R_P * K_3$ (PV= $\sqrt{TV^2-GRR^2}$)	Part #	K_3			% PV =	100[PV/TV]	
= 5.77982	3	0.5231			=	99.51%	
总变差 (TV)			区别分类数	(ndc)			
$TV = \sqrt{(GRR^2 + PV^2)}$ (TV = Total	al Tolerance	/6)			ndc=	1.41*PV/GRR	
= 5.808395006					=	14	

Design Analysis (details)

Use Finite Element Analysis to simulate the vibration (left) and the maximum stress (right) for previous and current versions of design.

For current design compared with previous one:

- Faster decaying vibration amplitude, better stability;
- Smaller maximum stress, better reliability;
- Total vibration < 0.x μ m (target resolution) after 0.025 s.