

Problème de révision

Loi khi-deux χ^2 Énoncé

On rappelle que la fonction Γ , définie par $x \longmapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$ sur \mathbb{R}_+^* , vérifie les relations

• $\forall x \in \mathbb{R}_+^*$: $\Gamma(x+1) = x\Gamma(x)$

• $\forall n \in \mathbb{N}^*$: $\Gamma(n) = (n-1)!$

• $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

Partie I: Loi Gamma et loi du χ^2

Dans toute cette partie, les variables aléatoires réelles, définies sur le même espace probabilisé (Ω, T, P) .

On rappelle que si X est une variable aléatoire définie sur un espace probabilisé, alors sa fonction de répartition est la fonction F_X définie pour tout réel x par $F_X(x) = P(X \leq x)$.

Cette fonction de répartition caractérise la loi de la variable aléatoire réelle X.

On dit qu'une variable aléatoire X à valeurs réelles admet une densité f si sa fonction de répartition peut s'écrire sous la forme $F_X(x) = \int_{-\infty}^x f(t) \, \mathrm{d}t$ où f est une fonction à valeurs réelles positives ayant un nombre fini de points de discontinuité et telle que $\int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t = 1$

Une variable aléatoire Y suit une loi de Poisson de paramètre $\lambda > 0$, lorsqu'elle est déterminée pour tout entier naturel k par $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$.

 $k \ par \ P\left(X=k\right) = e^{-\lambda} \frac{1}{k!}.$ Une variable aléatoire suit une loi normale de paramètres m et σ , lorsqu'elle admet une densité de probabilité définie pour tout réel x par $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}$

1. b et p sont deux paramètres réels strictement positifs. On considère l'application f définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, f(x) = \begin{cases} \frac{x^{p-1}e^{-\frac{x}{b}}}{b^p\Gamma(p)} & \text{si } x > 0\\ 0 & \text{si } x \leqslant 0 \end{cases}$$

Dans le cas où b=1, donner les différentes allures du graphe de f suivant la position du paramètre p par rapport à 1 et à 2. On précisera les éventuelles demi-tangentes en 0.

- 2. Prouver que f est une densité de probabilité. Si une variable aléatoire X admet cette densité, on dit que X suit la loi Γ(b, p)
- 3. Soit X une variable aléatoire suivant la loi $\Gamma(b,p)$. Montrer que X admet une espérance et une variance et les calculer.
- 4. Dans le cas particulier où p=1, reconnaître la loi de X et exprimer sa fonction de répartition.

On admet que si X et Y sont 2 variables aléatoires indépendantes de densités respectives f et g, alors la variable X+Y possède une densité h telle que $h:x\longmapsto \int_{-\infty}^{+\infty}f(x-t)g(t)\,\mathrm{d}t$

- 5. Soient X_1 et X_2 , deux variables aléatoires réelles indépendantes, suivant les lois respectives $\Gamma(b, p_1)$ et $\Gamma(b, p_2)$. Soit $x, y \in \mathbb{R}_+^*$, X et Y deux variables indépendantes telles que $X \hookrightarrow \Gamma(x, 1)$ et $Y \hookrightarrow \Gamma(y, 1)$. Posons $S = X_1 + X_2$ et soit f_S sa fonction densité.
 - (a) Soit $s \in \mathbb{R}_+^*$, montrer que $\int_0^s t^{x-1} (s-t)^{y-1} dt = \beta(p_1, p_2) s^{p_1+p_2-1}$;
 - (b) Montrer que:

$$\forall s \in \mathbb{R}, \quad f_S(s) = \begin{cases} \frac{\beta(p_1, p_2)}{b^{p_1 + p_2} \Gamma(p_1) \Gamma(p_2)} s^{p_1 + p_2 - 1} e^{-\frac{s}{b}} & \text{si } s > 0\\ 0 & \text{si } s \leqslant 0 \end{cases}$$

Problème de révision

Loi khi-deux χ^2 Énoncé

- (c) En déduire que $\beta(p_1,p_2) = \frac{\Gamma(p_1)\Gamma(p_2)}{\Gamma(p_1+p_2)}$, puis déduire $X_1 + X_2 \hookrightarrow \Gamma\left(b,p_1+p_2\right)$
- 6. Soient $n \in \mathbb{N}^*$, X_1, \dots, X_n variables aléatoires réelles mutuellement indépendantes, suivant les lois respectives $\Gamma(b, p_i)$ pour tout $i \in [1, n]$

Déterminer la loi de la variable aléatoire $\sum_{i=1}^{n} X_{i}$

Soit s un entier strictement positif; on appelle loi du χ^2 à s degrés de liberté ou loi $\chi^2(s)$ la loi $\Gamma(2,\frac{s}{2})$

- 7. (a) Donner l'espérance et la variance d'une variable aléatoire suivant la loi $\chi^2(s)$.
 - (b) Soit $n \in \mathbb{N}^*$. Si pour tout $i \in [1, n]$, Les X_i sont des variables mutuellement indépendantes, X_i suivant la loi $\chi^2(s)$, donner la loi de $\sum_{i=1}^n X_i$
- 8. Pour x > 0 et $n \in \mathbb{N}^*$, Justifier la formule : $e^x = \sum_{k=0}^{n-1} \frac{x^k}{k!} + \int_0^x e^{x-t} \frac{t^{n-1}}{(n-1)!} dt$
- 9. Soient X_{2n} une variable aléatoire suivant la loi $\chi^2(2n)$ et λ un réel strictement positif. Démontrer que $P(X_{2n} > 2\lambda) = P(Y_{\lambda} < n)$ où Y_{λ} désigne une variable aléatoire suivant la loi de Poisson de paramètre λ
- 10. (a) Soit X une variable aléatoire suivant une loi normale centrée réduite. Montrer que X^2 suit la loi du χ^2 à un degré de liberté.
 - (b) X_1, \dots, X_n variables aléatoires réelles mutuellement indépendantes, suivant la loi normale centrée réduite. Quelle est la loi de $\sum_{i=1}^{n} X_i^2$

Partie II: De l'urne au χ^2

Une urne contient des boules de couleurs C_1, \dots, C_k où $k \in \mathbb{N}$ et $k \geqslant 2$. Les boules de couleur C_i sont en proportion p_i non nulle avec $\sum_{i=1}^n p_i = 1$. Étant donné n entier naturel non nul, on tire successivement dans l'urne n boules, avec remise après chaque tirage.

Pour $i \in [1, k]$, on appelle X_i la variable aléatoire désignant le nombre de boules de couleur C_i obtenues lors du tirage. X_i suit par conséquent une loi binomiale de paramètres n et p_i .

- 11. (a) Déterminer l'espérance et la variance de X_i
 - (b) Pour $i \neq j$, déterminer la loi de $X_i + X_j$ et en déduire que $cov(X_i, X_j) = -np_ip_j$
- 12. Soit k entier supérieur ou égal à 2. On pose $Y_i = \frac{X_i np_i}{\sqrt{np_i}}$ et on note M la matrice de covariance des variables aléatoires Y_1, \dots, Y_k définie par $M = (\text{cov}(Y_i, Y_j))_{1 \le i, j \le k}$
 - (a) Montrer que pour $i \neq j$, $\operatorname{cov}(Y_i, Y_j) = -\sqrt{p_i p_j}$ et que $\operatorname{cov}(Y_i, Y_i) = 1 p_i$. En déduire l'expression de la matrice M. Dans la suite, $M_{n,p}(\mathbb{R})$ désigne l'ensemble des matrices à n lignes et p colonnes à coefficients réels. On notera I_k la matrice unite de $M_k(\mathbb{R})$
 - (b) Préciser la matrice P telle que $M=I_k-P$, puis la matrice $C\in M_{k,1}(\mathbb{R})$ vérifiant $P=C^tC$, où tC désigne la transposée de la matrice C.
 - (c) Déterminer le rang de P.
 - (d) Calculer P^2 . Préciser les valeurs propres de P et leur multiplicité.

Problème de révision

Loi khi-deux χ^2 Énoncé

- 13. Soit $J \in M_k(\mathbb{R})$ dont les coefficients $a_{i,j}$ vérifient: $a_{i,j} = \begin{cases} 1 & \text{si } i = j \leqslant k-1 \\ 0 & \text{sinon} \end{cases}$.

 Justifier l'existence d'une matrice $S \in M_k(\mathbb{R})$ vérifiant: ${}^tSS = I_k$ et ${}^tSMS = J$
- 14. On définit les variables aléatoires $Z_1,\,Z_2,\cdots,Z_k$ par la relation :

$$\begin{pmatrix} Z_1 \\ \vdots \\ Z_k \end{pmatrix} = {}^t S \begin{pmatrix} Y_1 \\ \vdots \\ Y_k \end{pmatrix}$$

et on pose $S = (s_{ij})_{1 \leqslant i,j \leqslant k}$

- (a) Prouver que, pour tout entier i entre 1 et k, Z_i est centrée.
- (b) Déterminer la matrice de covariance de Z_1, Z_2, \dots, Z_k . En déduire que Z_k est la variable certaine égale à zéro.
- (c) On pose $Q = \sum_{i=1}^{k} Y_i^2$. Calculer Q en fonction de Z_1, Z_2, \dots, Z_k .
- (d) On suppose que n est grand, que les variables $Z_1, Z_2, \cdots, Z_{k-1}$ sont mutuellement indépendantes et qu'elles suivent des lois normales centrées réduites. Justifier le fait que Q suit la loi du χ^2 à (k-1) degrés de liberté.