Estrutura Atômica- continuação

VISÃO MODERNA DA ESTRUTURA ATÔMICA

Revisando...

podemos adotar um ponto de vista simples em relação ao átomo porque apenas três partículas subatômicas — prótons, nêutrons e elétrons - são importantes para o entendimento do comportamento químico.

Carga do elétron
$$-1,602 \times 10^{-19}$$
 C Carga do próton $+1,602 \times 10^{-19}$ C

- Mesma magnitude com sinais opostos.
- ** carga elementar
- Cada átomo tem um número igual de elétrons e prótons, portanto átomos são eletricamente neutros.
- Com relação ao seu tamanho, prótons e nêutrons ficam localizados no minúsculo núcleo do átomo. <u>A maior parte do seu volume é o espaço no qual os elétrons estão posicionados</u>

Revisando...

- Forças eletrostáticas mantém os elétrons atraídos pelos prótons do núcleo;
- Os átomos têm massas extremamente pequenas (ordem de grandeza 10-22 g)
 O que torna o átomo de um elemento diferente do átomo de outro elemento?
 Os átomos de cada elemento têm um número característico de prótons → número atômico do elemento.
- Os átomos de um dado elemento podem ter variados números de nêutrons e, consequentemente, massas diferentes → isótopos.

Revisando...

Tabela 2.2 Alguns isótopos do carbono.a

Símbolo	Número de prótons	Número de elétrons	Número de nêutrons
¹¹ C	6	6	5
¹² C	6	6	6
¹³ C	6	6	7
¹⁴ C	6	6	8

^a Quase 99% do carbono encontrado na natureza é do tipo ¹²C.

>> maioria dos elementos químicos é constituída por dois ou mais isótopos presentes na natureza, geralmente em diferentes quantidades.

Semelhanças atômicas

Isótopos

Isóbaros → diferente n° atômico (Z); mesmo número de massa (A)

Isótonos → diferentes n° atômicos (Z) e n° massa (A); mesmo n° de nêutrons

Isoeletrônicos → diferentes Z e A; mesmo n° de elétrons

Isótopos apresentam propriedades química iguais – que dependem da estrutura da eletrosfera- e propriedades físicas diferentes – que dependem da massa do átomo.

Os isóbaros têm propriedades físicas e químicas diferentes.

Os isótonos têm propriedades físicas e químicas diferentes.

Como determinar o número de partículas subatômicas nos átomos?

Quantos prótons, nêutrons e elétrons existem em um átomo de

a)
$$Z = p = 79$$

$$p = 79$$
; $e = 79$

$$A = p + n$$

$$N = A - p$$

 $N = 197 - 79$

$$N = 118$$

b)
$$Z= p = 38$$

 $A= 88$ $A= p + n$
 $e = p = 38$ $88 - 38 = n$
 $n = 50$

O MODELO ATÔMICO DE RUTHERFORD-BOHR

algumas deficiências do modelo de Rutherford

Rutherford foi obrigado a admitir que os elétrons giravam ao redor do núcleo, pois, sem movimento,os elétrons seriam atraídos pelo núcleo; consequentemente, iriam de encontro ao núcleo, e o átomo se "desmontaria"

A Física Clássica diz que toda partícula elétrica em movimento circular (como seria o caso dos <u>elétrons</u>) está constantemente emitindo energia.

sua velocidade de rotação ao redor do núcleo teria de diminuir com o tempo

> Acabaria indo de encontro Ao núcleo

O modelo de Rutherford-Bohr

"pacote de energia" → *quantum*.

- os elétrons se movem ao redor do núcleo em um número limitado de órbitas bem definidas, que são denominadas órbitas estacionárias;
- movendo-se em uma órbita estacionária, o elétron não emite nem absorve energia;
- ao saltar de uma órbita estacionária para outra, o elétron emite ou absorve uma quantidade bem definida de energia, chamada *quantum* de energia (em latim, o plural de *quantum* é *quanta*).

Estudos posteriores...

sete camadas eletrônicas quantidade fixa de energia

estados estacionários ou níveis de energia

Camada	Número máximo de elétrons
Κ	2
L	8
М ——	18
N	32
0 —	32
Р ——	18
Q	2

A todo elétron em movimento está associada uma onda característica (**princípio da dualidade** ou **de De Broglie**).

Não é possível calcular a posição e a velocidade de um elétron, num mesmo instante (princípio da incerteza ou de Heisenberg).

Devido à dificuldade de se prever a posição exata de um elétron na eletrosfera, o cientista Erwin Schrödinger (1926) foi levado a calcular a região onde haveria maior probabilidade de se encontrar o elétron. Essa região do espaço foi denominada orbital.

Orbital é a região do espaço ao redor do núcleo onde é máxima a probalidade de encontrar um determinado elétron.

Quando um avião está com os motores parados, nós vemos as pás das hélices em posições fixas e bem definidas.

Quando os motores estão funcionando, vemos círculos dentro dos quais teremos, em qualquer posição, a probabilidade de "topar" com uma pá da hélice. Esses círculos podem ser chamados de "orbitais" das pás das hélices.

Segundo o modelo atômico de Rutherford-Bohr, o elétron seria uma pequena partícula girando em alta velocidade em uma órbita circular.

Segundo o modelo de orbitais, o elétron é uma partícula-onda que se desloca no espaço, mas estará com maior probabilidade dentro de uma esfera (orbital) concêntrica ao núcleo. Devido à sua velocidade, o elétron fica dentro do orbital, assemelhando-se a uma nuvem eletrônica.

OS ESTADOS ENERGÉTICOS DOS ELÉTRONS

Os elétrons se dispõem ao redor do núcleo atômico, de acordo c<mark>om o diagrama energético abaixo: elétrons se dispõem ao redor do núcleo atômico, de acordo com o diagrama energético abaixo:</mark>

