第1章 随机事件及其概率

(1) 排列组合 公式	$P_m^n = \frac{m!}{(m-n)!}$ 从 m 个人中挑出 n 个人进行排列的可能数。 $C_m^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。
(2) 加 法 和 乘 法原理	加法原理 (两种方法均能完成此事): m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理 (两个步骤分别不能完成这件事): m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。
(3) 一些常见 排列	重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题
(4) 随机试验 和随机事 件	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。
(5) 基本事件、 样 本 空 间 和事件	在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ω 来表示。 基本事件的全体,称为试验的样本空间,用 Ω 表示。 一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A , B , C , …表示事件,它们是 Ω 的子集。 Ω 为必然事件, \emptyset 为不可能事件。 不可能事件(\emptyset)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6) 事件的关 系与运算	①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A发生必有事件 B发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A=B$ 。 A 、 B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 $A-B$,也可表示为 $A-AB$ 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 A 、 B 同时发生: $A \cap B$,或者 AB 。 $A \cap B=\Phi$,则表示 $A \cap B$ 不可能同时发生,称事件 $A \cap B$ 与事件 $B \cap B$ 互不相容或者互斥。基本事件是互不相容的。

	7
	Ω -A 称为事件 A 的逆事件,或称 A 的对立事件,记为 \overline{A} 。它表示 A 不发生
	的事件。互斥未必对立。
	②运算: - 体 文字
	结合率: A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率: (AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
	が 自己 年: (AD) C C - (A C C) TT (B C C) (A C B) TT C - (AC) C (B C)
	德摩根率: $\bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \overline{A_i}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$
	设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 $P(A)$,若满
	足下列三个条件: 1° 0≤P(A)≤1,
	$ \begin{array}{ccc} 1 & 0 \leqslant f(A) \leqslant 1, \\ 2^{\circ} & P(\Omega) = 1 \end{array} $
(7)	3° 对于两两互不相容的事件 A_1 , A_2 , …有
概率的公	$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i})$
理化定 义	$P\left(\bigcup_{i=1}^{Ai}Ai\right) = \sum_{i=1}^{Ai}P(Ai)$
	常称为可列(完全)可加性。
	则称 $P(A)$ 为事件 A 的概率。
	$1^{\circ} \Omega = \{\omega_1, \omega_2 \cdots \omega_n\},$
	$2^{\circ} P(\omega_1) = P(\omega_2) = \cdots P(\omega_n) = \frac{1}{n} .$
(8)	设任一事件 A ,它是由 $\omega_{\scriptscriptstyle 1}, \omega_{\scriptscriptstyle 2} \cdots \omega_{\scriptscriptstyle m}$ 组成的,则有
古典概型	$P(A) = P\{(\omega_1) \cup (\omega_2) \cup \cdots \cup (\omega_m)\} = P(\omega_1) + P(\omega_2) + \cdots + P(\omega_m)$
	$=\frac{m}{n}=A$ 所包含的基本事件数 基本事件总数
	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空
(9)	间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何
7年11月6年	$P(A) = \frac{L(A)}{L(\Omega)}$ 。其中 L 为几何度量(长度、面积、体积)。
	· /
(10)	P(A+B) = P(A) + P(B) - P(AB)
加法公式	当 P(AB) = 0 时, P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)
(11) 减法公式	当 B ⊂ A 时, P (A-B)=P (A) -P (B)
	_
	当 A=Ω时, P(B)=1- P(B)
(12)	定义 设 A、B 是两个事件,且 P(A)>0,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,事
条件概率	件 B 发生的条件概率,记为 $P(B/A) = \frac{P(AB)}{P(A)}$ 。

	条件概率是概率的一种,所有概率的性质都适合于条件概率。
	例如: $P(\Omega/B)=1 \Rightarrow P(\overline{B}/A)=1-P(B/A)$
	乘法公式: $P(AB) = P(A)P(B/A) = P(B)P(A/B)$
(13)	更一般地,对事件 A ₁ , A ₂ , ···A _n , 若 P(A ₁ A ₂ ···A _{n-1})>0,则有
乘法公式	$P(A_1A_2A_n) = P(A_1)P(A_2 A_1)P(A_3 A_1A_2)P(A_n A_1A_2$
	A_{n-1})
	①两个事件的独立性
	设事件 $A \setminus B$ 满足 $P(AB) = P(A)P(B)$,则称事件 $A \setminus B$ 是相互独立的。
	若事件 A 、 B 相互独立,且 $P(A) > 0$,则有
	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$
(14)	若事件 A , B 相互独立,则可得到 \overline{A} 与 B , A 与 \overline{B} , \overline{A} 与 \overline{B} 也都相互独立。
独立性	│
74-7-11	□ 与任何事件都互斥。
	②多个事件的独立性
	设 A, B, C 是三个事件,如果满足两两独立的条件,
	P(AB) = P(A) P(B); P(BC) = P(B) P(C); P(CA) = P(C) P(A)
	并且同时满足 P(ABC)=P(A)P(B)P(C)
	那么A、B、C相互独立。
	对于 n 个事件类似。
	设事件 B_1, B_2, \cdots, B_n 满足
(15)	1° B_1, B_2, \cdots, B_n 两两互不相容, $P(B_i) > 0 (i = 1, 2, \cdots, n)$,
全概率公	$A \subset \bigcup_{i=1}^n B_i$
式	,
	则有 $P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \dots + P(B_n)P(A \mid B_n)$ 。
	_
	设事件 B_1 , B_2 ,, B_n 及 A 满足
	1° B_1 , B_2 ,, B_n 两页不相容, $P(Bi)_{>0}$, $i = 1, 2,, n$,
	$A \subset \bigcup_{i=1}^n B_i$ $P(A) > 0$
(16)	$\sum_{i=1}^{\infty}$, $\underline{\text{H}}^{1}(M) = 0$,
贝叶斯公	
式	$P(B_i)P(A/B_i)$
(用于求 <mark>后验概率</mark>)	$P(B_i / A) = \frac{P(B_i)P(A/B_i)}{\sum_{i=1}^{n} P(B_j)P(A/B_j)}, i=1, 2, \dots n_o$
VIII VIII V	<i>J</i> =1
	此公式即为贝叶斯公式。 $p(R) (i=1, 2, \dots, n) \text{ 通常叫件 N 概要 } p(R/A) (i=1, 2, \dots, n)$
	$P(B_i)$, $(i=1, 2,, n)$, 通常叫先验概率。 $P(B_i/A)$, $(i=1, 2,, n)$
	n),通常称为后验概率。贝叶斯公式反映了"因果"的概率规律,并作出了"由果溯因"的推断。
	山木切 即分性例。

(17)

我们作了n次试验,且满足

- ◆ 每次试验只有两种可能结果, A 发生或A 不发生;
- ◆ n 次试验是重复进行的,即 A 发生的概率每次均一样;
- ◆ 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否是互不影响的。

这种试验称为伯努利概型,或称为n 重伯努利试验。

用 p 表示每次试验 A 发生的概率,则 $^{-A}$ 发生的概率为 $^{1-p=q}$,用 $^{P_{n}(k)}$ 表

伯努利概 型

示n 重伯努利试验中A 出现 $k(0 \le k \le n)$ 次的概率,

$$P_n(k) = C_n^k p^k q^{n-k}, \quad k = 0,1,2,\dots,n$$

第二章 随机变量及其分布

 $P(X=X^k) = 0$

设离散型随机变量 X 的可能取值为 X_k (k=1, 2, ···) 且取各个值的概率,即事件 (X= X_k) 的概率为

 $P(X=x_k)=p_k, k=1, 2, \dots,$

(1) 离散型随 机变量的 分布律 则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:

$$\frac{X}{P(X=x_k)} \left| \frac{x_1, x_2, \dots, x_k, \dots}{p_1, p_2, \dots, p_k, \dots} \right|$$

显然分布律应满足下列条件:

(1)
$$p_k \ge 0$$
, $k = 1, 2, \cdots$, (2) $\sum_{k=1}^{\infty} p_k = 1$

设F(x)是随机变量X的分布函数,<mark>若</mark>存在非负函数f(x),对任意实数x,有

$$F(x) = \int_{-\infty}^{x} f(x) dx$$

(2) 连续型随 机变量的 分布密度 则称X为连续型随机变量。f(x)称为X的概率密度函数或密度函数,简称概率密度。

密度函数具有下面4个性质:

$$f(x) \ge 0,$$

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

3°
$$P(\chi_1 < X \le \chi_2) = \int_{\chi_2}^{\chi_2} f(x) dx$$
,

 4° 若f(x)在点x处连续,则有F'(x) = f(x) 。

(3) 离散与连	$P(X = x) \approx P(x < X \le x + dx) \approx f(x)dx$			
续型随机 变量的关	积分元 $f(x)dx$ 在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离			
系	散型随机变量理论中所起的作用相类似。			
	设 X 为随机变量, x 是任意实数,则函数			
	$F(x) = P(X \le x)$			
	称为随机变量 X 的分布函数,本质上是一个累积函数。			
	$P(a < X \le b) = F(b) - F(a)$ 可以得到 X 落入区间 $(a,b]$ 的概率。分布			
	函数 $F(x)$ 表示随机变量落入区间(- ∞ , x]的概率。			
	分布函数具有如下性质:			
	1° $0 \le F(x) \le 1$, $-\infty < x < +\infty$;			
(4) 分布函数	2° $F(x)$ 是单调不减的函数,即 $x_1 < x_2$ 时,有 $F(x_1) \le F(x_2)$;			
	3° $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$;			
	4° $F(x+0) = F(x)$,即 $F(x)$ 是右连续的;			
	5° $P(X = x) = F(x) - F(x - 0)$.			
	对于离散型随机变量, $F(x) = \sum_{x_k \le x} p_k$;			
	对于连续型随机变量, $F(x) = \int_{-\infty}^{x} f(x)dx$ 。			
	0-1 分布 P(X=1)=p, P(X=0)=q			
	即 B(1, p)			

		在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生
		的次数是随机变量,设为 X ,则 X 可能取值为 $0,1,2,\cdots,n$ 。
(5)		$P(X=k) = P_n(k) = C_n^k p^k q^{n-k} , \qquad \sharp \qquad \dagger$
八大分布	二项分布 即 B(n, p)	$q = 1 - p, 0$
	_	则称随机变量 X 服从参数为 n , p 的二项分布。记为
		$X \sim B(n, p)$.
		当 $n = 1$ 时, $P(X = k) = p^k q^{1-k}$, $k = 0.1$,这就是 $0-1$ 分布,
		所以 0-1 分布是二项分布的特例。
		设随机变量 X 的分布律为
		$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0, 1, 2 \dots,$
	泊松分布 即 P(λ)	则称随机变量 X 服从参数为 λ 的 <mark>泊松分布</mark> ,记为 $X \sim \pi(\lambda)$ 或
		者 P(λ)。 <mark>泊松分布</mark> 是二项分布的 <mark>极限分布</mark> (np=λ, n→∞)。
	超几何分布	$P(X = k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, 2 \cdots, l$ $l = \min(M, n)$
		随机变量 X 服从参数为 n, N, M 的超几何分布,记为 H(n, N, M)。
	几何分布	$P(X = k) = q^{k-1}p, k = 1,2,3,\dots$,其中 p≥0,q=1-p。
		随机变量 X 服从参数为 p 的几何分布,记为 G(p)。

		设随机变量 X 的值只落在 $[a, b]$ 内,其密度函数 $f(x)$ 在 $[a, b]$ 上为常数 $\frac{1}{b-a}$,即
		$f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \sharp \ell \ell, \end{cases}$
均匀	分布	则称随机变量 X 在 [a, b] 上服从均匀分布,记为 X~U(a, b)。 分布函数为
		$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b. \end{cases}$
		当 a \leq x ₁ $<$ x ₂ \leq b 时, X 落在区间(x_1, x_2)内的概率为 $P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a}$ 。
指数	(分布	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$ $\downarrow p \lambda > 0, m MM M M M M M M M M M M M M M M M M M$
		$\int_{0}^{\infty} \frac{dx - h}{dx}$

		设随机变量 X 的密度函数为
		$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty,$
		其中 μ 、 $\sigma > 0$ 为常数,则称随机变量 X 服从参数为 μ 、 σ 的
		正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。
		f(x) 具有如下性质:
		1° $f(x)$ 的图形是关于 $x = \mu$ 对称的;
		2° 当 $x = \mu$ 时, $f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$ 为最大值;
		$_{{\scriptstyle au}}X\sim N(\mu,\sigma^2)$,则 X 的分布函数为
		$F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$
	正态分布	$\delta \mathfrak{Z}^{\mu=0}$ 、 $\sigma=1$ 时的正态分布称为标准正态分布,记为
		$X \sim N(0,1)$,其密度函数记为
		$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < +\infty,$
		分布函数为
		$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$
		$\Phi(x)$ 是不可积函数,其函数值,已编制成表可供查用。
		$\Phi (-x) = 1 - \Phi (x)$ \coprod $\Phi (0) = 1/2$
		如果 $X \sim N(\mu, \sigma^2)$,则 $\frac{X - \mu}{\sigma} \sim N(0,1)$ 。
		$P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right).$
(6)	下分位表: <i>F</i>	$C(X \le \mu_{\alpha}) = \alpha$;
分位数	 上分位表: <i>F</i>	$P(X > \mu_{\alpha}) = \alpha$
		已知 X 的分布列为
		$\frac{X}{P(X=x_i)} \left \frac{x_1, x_2, \cdots, x_n, \cdots}{p_1, p_2, \cdots, p_n, \cdots} \right ,$
(7)	离散型	$P(X=x_i) p_1, p_2, \cdots, p_n, \cdots$
函数分布	. 414/4-1	$Y = g(X)$ 的分布列 ($y_i = g(x_i)$ 互不相等)如下:
		$\left \frac{Y}{P(Y=y_i)}\right \frac{g(x_1), g(x_2), \cdots, g(x_n), \cdots}{p_1, p_2, \cdots, p_n, \cdots},$
		$ P(Y=y_i) p_1, p_2, \cdots, p_n, \cdots$
		若有某些 $g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的概率。

2011-1-1

连续型

先利用 X 的概率密度 $f_{\mathbf{x}}(x)$ 写出 Y 的分布函数 $F_{\mathbf{y}}(y) = P(g(X) \leq y)$,再利用变上下限积分的求导公式求出 $f_{\mathbf{y}}(y)$ 。

第三章 二维随机变量及其分布

如果二维随机向量 ξ =(X,Y)的所有可能取值为至多可列

个有序对 (x,y),则称 ξ 为离散型随机向量。

设 $\xi = (X, Y)$ 的所有可能取值为 $(x_i, y_i)(i, j = 1, 2, \cdots)$,

且事件 $\{\xi = (x_i, y_i)\}$ 的概率为 $p_{i,i}$,称

 $P\{(X,Y)=(x_i,y_j)\}=p_{ij}(i,j=1,2,\cdots)$

(1) 联合分布

离散型

为 $\xi = (X, Y)$ 的分布律或称为 X 和 Y 的联合分布律。联合分布有时也用下面的概率分布表来表示:

V					
X	<i>Y</i> 1	\mathcal{Y}_2	•••	y_j	•••
X_I	p_{II}	p_{12}	•••	p_{Ij}	•••
X_2	p_{21}	p_{22}	•	p_{2j}	••
:	÷	:		:	÷
X_i	p_{i1}		•••	p_{ij}	•••
÷	:	::		::	:

这里 pij具有下面两个性质:

(1) $p_{ij} \ge 0$ (i, j=1, 2, ···);

(2)
$$\sum_{i} \sum_{j} p_{ij} = 1$$
.

		对于二维随机向量 $\xi = (X,Y)$, 如果存在非负函数	
	连续型	$f(x,y)(-\infty < x < +\infty, -\infty < y < +\infty)$,使对任意一个其邻边	
		分别平行于坐标轴的矩形区域 D, 即 D={(X, Y) a⟨x⟨b, c⟨y⟨d}	
		有 $P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy,$	
		则称 ξ 为 连续型 随机向量;并称 $f(x,y)$ 为 $\xi = (X,Y)$ 的分布	
		密度或称为 X 和 Y 的 <mark>联合分布密度</mark> 。 分布密度 f(x,y)具有下面两个性质: (1) f(x,y)≥0;	
		(2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1.$	
(2) 二维随机 变量的本 质	$\xi(X = x, Y = y) = \xi(X = x \cap Y = y)$		
	设 (X, Y) 为	二维随机向量,对于任意实数 x, y, 二元函数	
	$F(x,y) = P\{X \le x, Y \le y\}$		
	称为二维随机向量(X,Y)的分布函数,或称为随机变量 X 和 Y 的联合分布函数。		
	分布函数是一个以全平面为其定义域,以事件		
	$\{(\omega_1,\omega_2) -\infty < X(\omega_1) \le x,-\infty < Y(\omega_2) \le y\}$ 的概率为函数值的一个实值函		
(2)	数。联合分布函数 F(x, y) 具有以下的基本性质:		
(3) 联合分布	(1) $0 \le F(x, y) \le 1$;		
函数	 (2) F(x,y) 分别对 x 和 y 是非减的,即 当 x₂>x₁时,有 F(x₂,y) ≥ F(x₁,y); 当 y₂>y₁时,有 F(x,y₂) ≥ F(x,y₁); (3) F(x,y) 分别对 x 和 y 是<mark>右连续</mark>的,即 		
		F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);	
	(4) F(-∞,-	$-\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$	
	(5) 对于 x_1	$< x_2, y_1 < y_2,$	
	$F(x_2, y_2) -$	$F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$	

(4) 离散型与 连续型的 关系	$P(X = x, Y = y) \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dx dy$		
(5) 边缘分布 密度	离散型	X 的边缘分布为 $P_{i\bullet} = P(X = x_i) = \sum_j p_{ij} (i, j = 1, 2, \cdots);$ Y 的边缘分布为 $P_{\bullet j} = P(Y = y_j) = \sum_i p_{ij} (i, j = 1, 2, \cdots).$	
	连续型	X 的边缘分布密度为 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy;$ Y 的边缘分布密度为 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx.$	
(6) 条件分布	离散型	在已知 $X=x_i$ 的条件下,Y 取值的条件分布为 $P(Y=y_j \mid X=x_i) = \frac{p_{ij}}{p_{i\bullet}};$ 在已知 $Y=y_j$ 的条件下,X 取值的条件分布为 $P(X=x_i \mid Y=y_j) = \frac{p_{ij}}{p_{\bullet j}},$	
	连续型	在已知 Y=y 的条件下,X 的条件分布密度为 $f(x \mid y) = \frac{f(x,y)}{f_Y(y)};$ 在已知 X=x 的条件下,Y 的条件分布密度为 $f(y \mid x) = \frac{f(x,y)}{f_X(x)}$	
	一般型	$F(X, Y) = F_X(X) F_Y(y)$	
(7) 独立性	离散型	$p_{ij} = p_{iullet} p_{ullet j}$ 有零不独立	
	连续型	f(x,y)=f _x (x)f _Y (y) 直接判断,充要条件: ①联合概率密度函数可分离变量。 ②正概率密度区间为矩形。	

		2011-1-1		
	二维正			
	随机变量的函数	若 X ₁ , X ₂ , ··· X _m , X _{m+1} , ··· X _n 相互独立, h, g 为连续函数,则: h (X ₁ , X ₂ , ··· X _m) 和 g (X _{m+1} , ··· X _n) 相互独立。 特例: 若 X 与 Y 独立,则: h (X) 和 g (Y) 独立。 例如: 若 X 与 Y 独立,则: 3X+1 和 5Y-2 独立。 Y X (如分东家庭逐渐为)		
	设随机向量(X, Y)的分布密度函数为 $f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$			
(8)二维均匀分布	U(D)。 例如图 3.1、 y ↑ 1	(D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~ 图 3.2 和图 3.3。		
	图 3. 1 y 1 D ₂ 0 1 图 3. 2	2 x		
	y ♠ d			

 D_3

图 3.3

	设随机向量(X, Y)的分布密度函数为			
	$f(x,y) = \frac{1}{2\pi}$	$\frac{1}{\sigma_1 \sigma_2 \sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1} \right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1 \sigma_2} + \left(\frac{y-\mu_2}{\sigma_2} \right)^2 \right]},$		
	$ $ 其中 $\mu_{\scriptscriptstyle 1},\mu_{\scriptscriptstyle 2,}\sigma$	$\sigma_1 > 0, \sigma_2 > 0, \rho < 1$ 是 5 个参数,则称(X, Y)服从二维正态分		
(9) 二维	布,			
正态分布	记为 (X, Y)	\sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, ho$).		
	由边缘密度的	计算公式,可以推出二维正态分布的两个边缘分布仍为正态分		
	即 X \sim N(μ_1, σ_1^2), $Y \sim N(\mu_2, \sigma_2^2)$.			
	但是,若 $X \sim \mathbb{N}$ (μ_1, σ_1^2), $Y \sim N(\mu_2, \sigma_2^2)$, (X, Y) 未必是二维正态分布。			
		根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$		
	Z=X+Y	对于连续型, $f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$		
		两个独立的正态分布的和仍为正态分布($\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$)。		
		n 个相互独立的正态分布的线性组合, 仍服从正态分布。		
(10) 关于随机		$\mu = \sum_i C_i \mu_i$, $\sigma^2 = \sum_i C_i^2 \sigma_i^2$		
变量的函数的分布		若 $X_1, X_2 \cdots X_n$ 相 互 独 立 , 其 分 布 函 数 分 别 为		
	Z=max,min($X_1,X_2,\cdots X_n$)	$F_{x_1}(x)$, $F_{x_2}(x)\cdots F_{x_n}(x)$,则 Z=max, $\min(X_1,X_2,\cdots X_n)$ 的分布		
		函数为:		
		$F_{\max}(x) = F_{x_1}(x) \cdot F_{x_2}(x) \cdots F_{x_n}(x)$		
		$F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \cdot [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$		

设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分布,可以证明它们的平方和

$$W = \sum_{i=1}^{n} X_i^2$$

的分布密度为

$$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} u^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$$

 χ^2 分布

我们称随机变量 \mathbb{W} 服从自由度为 \mathbb{N} 的 χ^2 分布, 记为 $\mathbb{W} \sim \chi^2(n)$, 其中

$$\Gamma\left(\frac{n}{2}\right) = \int_0^{+\infty} x^{\frac{n}{2}-1} e^{-x} dx.$$

所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。

 χ^2 分布满足可加性: 设

$$Y_i - \chi^2(n_i),$$

则

$$Z = \sum_{i=1}^{k} Y_i \sim \chi^2 (n_1 + n_2 + \dots + n_k).$$

_		
		设 X, Y 是两个相互独立的随机变量,且
		$X \sim N(0,1), Y \sim \chi^2(n),$
		 可以证明函数
		$T = \frac{X}{\sqrt{Y/n}}$
	t 分布	的概率密度为
		$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$
		我们称随机变量 T 服从自由度为 n 的 t 分布,记为 T~t(n)。
		$t_{1-\alpha}(n) = -t_{\alpha}(n)$
		设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$, 且 X 与 Y 独立, 可以证明
		$F = \frac{X/n_1}{Y/n_2}$ 的概率密度函数为
	F 分布	$f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2}-1} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1+n_2}{2}}, y \ge 0\\ 0, y < 0 \end{cases}$
		我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布,记为 $F \sim f$ (n_1, n_2) .
		$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

第四章 随机变量的数字特征

		न्द्रा #८ मत	\+ \+ mi
		离散型	连续型
	期望 (期望就是平均值)	设 X 是离散型随机变量,其分布 律 为 $P(X = x_k) = p_k$, $k=1,2,\cdots,n$, $E(X) = \sum_{k=1}^{n} x_k p_k$ (要求绝对收敛)	设 X 是连续型随机变量,其概率密度为 $f(x)$, $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$ (要求绝对收敛)
(1)	一维随机变量的函数的期望	$Y=g(X)$ $E(Y) = \sum_{k=1}^{n} g(x_k) p_k$	$Y=g(X)$ $E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx$
一随变的字征维机量数特	方差 $D(X) = E[X - E(X)]^2$,标准差 $\sigma(X) = \sqrt{D(X)}$,	$D(X) = \sum_{k} [x_k - E(X)]^2 p_k$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$
	矩	①对于正整数 k,称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩,记为 v_k ,即 v_k =E (X^k) = $\sum_i x_i^k p_i$, k =1, 2, ····. ②对于正整数 k,称随机变量 X 与 E (X) 差的 k 次幂的数学期 望为 X 的 k 阶中心矩,记为 μ_k ,即 $\mu_k = E(X - E(X))^k$ · · = $\sum_i (x_i - E(X))^k p_i$, k =1, 2, ····.	①对于正整数 k,称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩,记为 v_k ,即 $v_k=E(X^k)=\int_{-\infty}^{+\infty}x^kf(x)dx$, $k=1,2,\cdots$. ②对于正整数 k,称随机变量 X 与 $E(X)$ 差的 k 次幂的数学期望为 X 的 k 阶中心矩,记为 μ_k ,即 $\mu_k=E(X-E(X))^k$ · $=\int_{-\infty}^{+\infty}(x-E(X))^kf(x)dx$ k=1,2,

		设随机变量 X 的数学期望 $E(X) = \mu$,方差 $D(X) = \sigma^2$,则对于任意正数 ϵ ,有下列切比雪夫不等式				
	切比雪夫不等式	$P(X - \mu \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$				
	777B = 777 177	切比雪夫不等式给出了在未知 X	的分布的情况下, 对概率			
		P(X	$-\mu \geq \varepsilon$)			
		的一种估计,它在理论上有重要意义。				
	(1) E(C) = C					
(2)	(2) E(CX) = CE(X)					
期望的性质	(3) $E(X+Y)=E(X)+E(Y)$, $E(\sum_{i=1}^{n} C_{i}X_{i}) = \sum_{i=1}^{n} C_{i}E(X_{i})$				
	(4) E(XY) = E(X) E(Y),	充分条件: X 和 Y 独立; 充要条件: X 和 Y 不相关。				
	(1) $D(C)=0$; $E(C)=C$					
	(2) $D(aX)=a^2D(X)$;					
(3)		; $E(aX+b)=aE(X)+b$				
方差	(4) $D(X) = E(X^2) - E^2(X)$					
的性	(5) D(X±Y)=D(X)+D(Y), 充分条件: X 和 Y 独立;					
质	充要条件: X 和 Y 不相关。 D(X±Y)=D(X)+D(Y)±2E[(X-E(X))(Y-E(Y))], 无条件成立。					
	ー					
		期望	方差			
	0-1 分布 B(l, p)	p	p(1-p)			
	二项分布 $B(n,p)$	пр	np(1-p)			
(4)	泊松分布 $P(\lambda)$	λ	λ			
常分的望方差	几何分布 $G(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$			
	超几何分布 $H(n,M,N)$	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$			
	均匀分布 $U(a,b)$	$\frac{a+b}{2} \qquad \qquad \frac{(b-a)^2}{12}$				
	指数分布 $e(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$			

	正态分布 $N(\mu, \sigma^2)$	μ	σ^2
	χ ² 分布	n	2n
	t 分布	0	$\frac{n}{n-2} \text{ (n>2)}$
	期望	$E(X) = \sum_{i=1}^{n} x_i p_{i\bullet}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$
		$E(Y) = \sum_{j=1}^{n} y_{j} p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$
(5)	二维随机变量的函数 的期望	$E[G(X,Y)] = \sum_{i} \sum_{j} G(x_{i}, y_{j}) p_{ij}$	$E[G(X,Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x,y)f(x,y)dxdy$
随变的字征	方差	$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$ $D(Y) = \sum_{j} [x_j - E(Y)]^2 p_{\bullet j}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$ $D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$
	协方差	对于随机变量 X 与 Y ,称它们的二阶混合中心矩 μ_{11} 为 X 与 Y 的 <mark>协方差</mark> 或相关矩,记为 σ_{XY} 或 $cov(X,Y)$,即 $\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(Y))].= E(XY) - E(X)E(Y)$ 与记号 σ_{XY} 相对应, X 与 Y 的方差 $D(X)$ 与 $D(Y)$ 也可分 别记为 σ_{XX} 与 σ_{YY} 。	

		对于随机变量 X 与 Y, 如果 D (X) >0, D(Y)>0, 则称	
		$\rho_{XY} = \frac{\sigma_{XY}}{\sqrt{D(X)}\sqrt{D(Y)}}$	
		为 X 与 Y 的相关系数, $ ho_{XY}$ 有时可简记为 $ ho$,且 $ ho $ \leqslant $1。$	
		当 $ \rho =1$ 时,称 X 与 Y 完全相关: $P(X=aY+b)=1$	
	相关系数	完全相关 $\left\{ \begin{array}{ll} \mathbb{E}[a] = 1 & (a > 0), \\ \mathbb{E}[a] = -1 & (a < 0), \end{array} \right.$	
		而当 $\rho=0$ 时,称 X 与 Y 不相关。	
		以下五个命题是等价的:	
		③ $E(XY) = E(X) E(Y)$; ④ $D(X+Y) = D(X) + D(Y)$;	
	协方差矩阵	$egin{pmatrix} \sigma_{_{X\!X}} & \sigma_{_{X\!Y}} \ \sigma_{_{Y\!X}} & \sigma_{_{Y\!Y}} \end{pmatrix}$	
		对于随机变量 X 与 Y ,如果有 $E(X^kY^l)$ 存在,则称之为 X	
	混合矩	与 Y 的 $k+1$ 阶混合原点矩,记为 v_{kl} ; $k+1$ 阶混合中心矩记	
		为:	
		$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}]$	
(6)	$\begin{array}{cccc} (i) & cov & (X, & Y) = cc \\ (& & & \\ & & & \\ \end{array}$		
协 方 差 的	(ii) $cov(aX, bY) = a$ (iii) $cov(X_1+X_2, Y) =$	$cov(X_1, Y)$; $cov(X_1, Y) + cov(X_2, Y)$;	
性质	(iv) $cov(X, Y) = E(X)$		
(7) 独立	(i) 若随机变量 X 与 Y	相互独立,则 $\rho_{XY}=0$; 反之不成立。	
和不相关	(ii) 若 (X, Y) \sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$),		
	则 X 与 Y 相互独立	等价于 X 和 Y 不相关。	

第五章 大数定律和中心极限定理

世 投 随 机 交量 X_1 , X_2 , …相 互 独立,均具有 限 方差,即 D 以上			
雪夫 大 特殊情形: 若 X_i ,			设随机变量 X_1 , X_2 , …相互独立,均具有有限方差,即 D $(X_i) < C(i=1,2,\cdots)$,则对于任意 $\varepsilon > 0$,有
大 特殊情形: 若 X_1 , X_2 , …具有相同的数学期望 $E(X_1) = \mu$, 则上式成为 $\lim_{n \to \infty} P\left(\frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$ 设 μ 是 μ 次独立试验中事件 μ 发生的次数, μ 是事件 μ 在每次试验中发生的概率,则对于任意的正数 μ ,有 $\lim_{n \to \infty} P\left(\frac{\mu}{n} - p\right < \varepsilon\right) = 1.$ 有 μ 有 μ 有 μ 有 μ 为 μ 有 μ		雪	$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right < \varepsilon\right) = 1.$
に は に に に に に に に に に に に に に に に に に に		大	
在每次试验中发生的概率,则对于任意的正数 ε ,有 $\lim_{n\to\infty}P\left(\frac{\mu}{n}-p\right <\varepsilon\right)=1.$		定	
大数定律 $\overline{X} \to \mu$			
$X \to \mu$ 大数 信努利大数定律说明,当试验次数 n 很大时,事件 A 发生的频率与概率有较大判别的可能性很小,即 $\lim_{n \to \infty} P\left(\left \frac{\mu}{n} - p\right \ge \varepsilon\right) = 0.$ 这就以严格的数学形式描述了频率的稳定性。	大数定律	努	$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right <\varepsilon\right)=1.$
は $\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right \ge \varepsilon\right) = 0.$	$X \to \mu$	大数	
辛 设 $X_1, X_2, \dots, X_n, \dots$ 是相互独立同分布的随机变量序列,		1	$\lim_{n\to\infty} P\left(\left \frac{\mu}{n} - p\right \ge \varepsilon\right) = 0.$
辛 设 $X_1, X_2, \dots, X_n, \dots$ 是相互独立同分布的随机变量序列,			 这就以严格的数学形式描述了频率的稳定性。
大数 $\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right <\varepsilon\right)=1.$ 设随机变量 $X_{1},~X_{2},~\cdots$ 相互独立,服从同一分布,且 具 有 相 同 的 数 学 期 望 和 方 差 : $E(X_{k})=\mu, D(X_{k})=\sigma^{2}\neq0(k=1,2,\cdots)$,则随机变量 $Y_{n}=\frac{\sum_{k=1}^{n}X_{k}-n\mu}{\sqrt{n}\sigma}$		-	设 X_1 , X_2 , …, X_n , …是相互独立同分布的随机变量序列,
数 $\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right <\varepsilon\right)=1.$			
定律		数	$\lim_{n \to \infty} P\left(\left \frac{1}{n}\sum_{i=1}^{n} X_{i} - \mu\right < \varepsilon\right) = 1.$
设随机变量 X_1 , X_2 , …相互独立,服从同一分布,且 具 有 相 同 的 数 学 期 望 和 方 差 : $E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \cdots), \text{ 则随机变量}$ 中心极限定理 德 $Y_n = \frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n\sigma}}$			$\langle n \rangle = 1$
(2) 林 中心极限定理 $ Y_n = \frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n\sigma}} $			
中心极限定理			$E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \dots)$,则随机变量
中心极限定理	(2)	++	$\sum_{i=1}^{n} V_{i}$
$\frac{1}{X} \to N(\mu, \frac{\sigma^2}{n})$ 伯 的分布函数 $F_n(x)$ 对任意的实数 x , 有			$Y_n = \frac{\sum_{k=1}^{\infty} X_k - n\mu}{\sqrt{n}}$
$X \to N(\mu, \frac{\circ}{n})$ 格 的分布函数 $F_n(x)$ 对任意的实数 x ,有	$-\sigma^2$	伯	\(\frac{1}{10}\)
	$X \to N(\mu, \frac{\sigma}{n})$	格一	\mid 的分布函数 $F_n(x)$ 对仕意的实数 x ,有
列 (A)			$\left(\sum_{i=1}^{n} V_{i} \right)$
$\left\{ \begin{array}{c} \mathcal{F}_{n} \\ \mathcal{F}_{n} \\ \mathcal{F}_{n} \end{array} \right\} = \lim_{n \to \infty} F_{n}(x) = \lim_{n \to \infty} P\left\{ \frac{\sum_{k=1}^{n} X_{k} - n\mu}{\sqrt{n}\sigma} \le x \right\} = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} dt.$		维 定 理	$\left \lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} P \left\{ \frac{\sum_{k=1}^{\infty} A_k - n\mu}{\sqrt{n\sigma}} \le x \right\} = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$
此定理也称为独立同分布的中心极限定理。			

(3)二项定理	若当 $N \to \infty$ 时, $\frac{M}{N} \to p(n, k$ 不变),则 $ \frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty). $ 超几何分布的极限分布为二项分布。
(4)泊松定理	若当 $n \to \infty$ 时, $np \to \lambda > 0$,则 $C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda} \qquad (n \to \infty).$ 其中 k=0, 1, 2,, n,。 二项分布的极限分布为 <u>泊松分布</u> 。

第六章 样本及抽样分布

	V. / I.	在数理统计中,常把被考察对象的某一个(或多个)指
	总体	标的全体称为总体(或母体)。我们总是把总体看成一
		个具有分布的随机变量(或随机向量)。
	个体	总体中的每一个单元称为样品(或个体)。
		我们把从总体中抽取的部分样品 X_1, X_2, \cdots, X_n 称为样
		本。样本中所含的样品数称为样本容量,一般用 n 表示。
		在一般情况下,总是把样本看成是 n 个相互独立的且与
(1)	样本	总体有相同分布的随机变量,这样的样本称为简单随机
数理统计		样本。在泛指任一次抽取的结果时, X_1, X_2, \dots, X_n 表示
的基本概 念		n 个随机变量(样本); 在具体的一次抽取之后,
		x_1, x_2, \dots, x_n 表示 n 个具体的数值(样本值)。我们称之
		为样本的两重性。
		设 x_1, x_2, \dots, x_n 为总体的一个样本,称
	样本函数 和统计量	$\varphi = \varphi (x_1, x_2, \dots, x_n)$
		为样本函数,其中 φ 为一个连续函数。如果 φ 中 <mark>不含</mark> 任
		何未知参数,则称 φ (x_1, x_2, \dots, x_n) 为一个统计量。

	常及统工量质	样本均值
(2)	正态分布	$n_{\overline{i=1}}$ 设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数 $u^{\frac{def}{\sigma}} \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$
正态总体 下的四大 分布	t 分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数 $t \stackrel{\text{def}}{=} \frac{x - \mu}{s / \sqrt{n}} \sim t(n-1),$ 其中 $t(n-1)$ 表示自由度为 $n-1$ 的 t 分布。

		7
	χ^2 分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数 $w^{\frac{def}{2}} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$
		其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。
		设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而
		y_1, y_2, \cdots, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本
		函数
	F 分布	$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$
		其中
		$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$
		$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 , 第二自由度为
		$n_2 - 1$ 的 F 分布。
(3) 正态总体 下分布的 性质		\overline{X} 与 S^2 独立。

第七章 参数估计

设总体 X 的分布中包含有未知数 $\theta_1,\theta_2,\cdots,\theta_m$,则其分布函数可以表成 $F(x;\theta_1,\theta_2,\cdots,\theta_m)$. 它的 k 阶原点矩 $v_k=E(X^k)(k=1,2,\cdots,m)$ 中也包含 了未知参数 $\theta_1,\theta_2,\cdots,\theta_m$,即 $v_k=v_k(\theta_1,\theta_2,\cdots,\theta_m)$ 。又设 x_1,x_2,\cdots,x_n 为总体 X 的 n 个样本值,其样本的 k 阶原点矩为

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k}$$
 $(k=1,2,\cdots,m).$

这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩"的原则建立方程,即有

(1) 点估计 矩估计

$$\begin{cases} v_1(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i, \\ v_2(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^2, \\ \dots \\ v_m(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^m. \end{cases}$$

由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1}, \hat{\theta_2}, \cdots, \hat{\theta_m})$ 即为参数 $(\theta_1, \theta_2, \cdots, \theta_m)$ 的矩估计量。

若 $\hat{\theta}$ 为 θ 的矩估计,g(x)为连续函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的矩估计。

		当总体 X 为连续型随机变量时,设其分布密度为
		$f(x; \theta_1, \theta_2, \cdots, \theta_m)$, 其中 $\theta_1, \theta_2, \cdots, \theta_m$ 为未知参数。又设
		x_1, x_2, \dots, x_n 为总体的一个样本,称
		$L(\theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数,简记为 L_n . 当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为
		$P\{X=x\}=p(x;\theta_1,\theta_2,\cdots,\theta_m), $
	 极 大 似 然 估计	$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_m)$
	in ()	为样本的似然函数。
		若似然函数 $L(x_1,x_2,\cdots,x_n;\theta_1,\theta_2,\cdots,\theta_m)$ 在 $\hat{\theta}_1,\hat{\theta}_2,\cdots,\hat{\theta}_m$ 处取
		到最大值,则称 $\hat{\theta}_1,\hat{\theta}_2,\dots,\hat{\theta}_m$ 分别为 $\theta_1,\theta_2,\dots,\theta_m$ 的最大似然估计
		值,相应的统计量称为最大似然估计量。
		$\left. \frac{\partial \ln L_n}{\partial \theta_i} \right _{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \cdots, m$
		\dot{A} 为 θ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的极大似然估计。
		0 设 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为未知参数 θ 的估计量。若 E $(\hat{\theta}) = \theta$,
	无偏性	则称 $\hat{ heta}$ 为 $ heta$ 的无偏估计量。
(2)		$E(\overline{X}) = E(X), E(S^2) = D(X)$
<mark>估计量</mark> 的		设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_{,2}, \dots, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_{,2}, \dots, x_n)$ 是未知参数 θ
评选 标准	有效性	的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。

		设 $\overset{\wedge}{ heta}_n$ 是 $ heta$ 的一串估计量,如果对于任意的正数 $ heta$,都有
		$\lim_{n\to\infty}P(\stackrel{\circ}{\theta}_n-\theta >\varepsilon)=0,$
	一致性	则称 $\hat{m{ heta}}_n$ 为 $m{ heta}$ 的一致估计量(或相合估计量)。
		\ddot{A} 为 θ 的无偏估计,且 $D(\hat{\theta}) \to 0$ ($n \to \infty$),则 $\hat{\theta}$ 为 θ 的一致估计。 只要总体的 $E(X)$ 和 $D(X)$ 存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。
		设总体 X 含有一个待估的未知参数 θ 。如果我们从样本 $x_1, x_{,2}, \cdots, x_n$ 出
		发 , 找 出 两 个 统 计 量 $\theta_1 = \theta_1(x_1, x_{2}, \dots, x_n)$ 与
	男人豆齿	$\theta_2 = \theta_2(x_1, x_{,_2}, \cdots, x_n)$ $(\theta_1 < \theta_2)$, 使 得 区 间 $[\theta_1, \theta_2]$ 以
	置信区间 和 置信度	$1-\alpha(0<\alpha<1)$ 的概率包含这个待估参数 θ ,即
(3)		$P\{\theta_1 \le \theta \le \theta_2\} = 1 - \alpha,$
区间		那么称区间 $[\theta_1, \theta_2]$ 为 θ 的置信区间, $1-\alpha$ 为该区间的置信度(或置信
估计		水平)。
	单正态总 体的期望 和 <mark>方差</mark> 的 区间估计	设 $x_1, x_{,2}, \dots, x_n$ 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,在置信度为
		$1-\alpha$ 下,我们来确定 μ 和 σ^2 的置信区间[$ heta_1, heta_2$]。具体步骤如下:
		(i)选择样本函数; (ii)由置信度1-α,查表找分位数;
		(iii) 导出置信区间 $[heta_1, heta_2]$ 。

已知方差,估计	は $u = \frac{\overline{x} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1).$ (ii) 査表找分位数 $P\left(-\lambda \leq \frac{\overline{x} - \mu}{\sigma_0 / \sqrt{n}} \leq \lambda\right) = 1 - \alpha.$ (iii) 导出置信区间 $\left[\overline{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \overline{x} + \lambda \frac{\sigma_0}{\sqrt{n}}\right]$
未知方差,估计	(i) 选择样本函数 $t = \frac{\overline{x} - \mu}{S / \sqrt{n}} \sim t(n-1).$ (ii) 查表找分位数 $P\left(-\lambda \leq \frac{\overline{x} - \mu}{S / \sqrt{n}} \leq \lambda\right) = 1 - \alpha.$ (iii) 导出置信区间 $\left[\overline{x} - \lambda \frac{S}{\sqrt{n}}, \overline{x} + \lambda \frac{S}{\sqrt{n}}\right]$
方差的区间化	(i) 选择样本函数 $ w = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1). $ (ii) 查表找分位数 $ P \left(\lambda_1 \leq \frac{(n-1)S^2}{\sigma^2} \leq \lambda_2 \right) = 1 - \alpha. $ (iii) 导出 σ 的置信区间 $ \left[\sqrt{\frac{n-1}{\lambda_2}} S, \sqrt{\frac{n-1}{\lambda_1}} S \right] $

第八章 假设检验

假设检验的基本思想: 认为<u>小概率事件在一次试验中</u>几乎是<u>不可能</u> 发生的,即小概率原理。

为了检验一个假设 H_0 是否成立。我们先假定 H_0 是成立的。如果根据这个假定导致了一个不合理的事件发生,那就表明原来的假定 H_0 是不正确的,我们<u>拒绝接受 H_0 </u>; 如果由此没有导出不合理的现象,则不能拒绝接受 H_0 ,我们称 H_0 是相容的。与 H_0 相对的假设称为<u>备择假设</u>,用 H_1 表示。

这里所说的小概率事件就是事件 $\{K \in R_{\alpha}\}$ (事件即:统计量 K 的观测值 \hat{K} 落入<u>拒绝(区)域</u> R,R 由给定的显著性水平 α 查相应的分布表确定。)其概率就是检验水平 α ,通常我们取 α =0.05,有时也取 0.01 或 0.10。

假设检验的基本步骤如下:

(i) 提出零假设 H₀;

(ii) 选取统计量 K;

(iii) 对于检验水平 α 查表找分位数 λ ;

(iv) 由样本值 x_1, x_2, \dots, x_n 计算统计量 K 的观测值 \hat{K} ;

比较 \hat{K} 与 λ 的大小,作出判断: 当 $|\hat{K}| > \lambda$ (或 $\hat{K} > \lambda$) 时否定 H_0 ; 否则,认为 H_0 相容。

基

基

本

思

想

生本

步

骤

		当 H ₆ 为真时,而样本值(实际是指由样本值计算出的统计量
	第一类	K 的观测值 \hat{K})却落入了 <u>拒绝域</u> (有 α 的概率),但按照我们规
		定的检验法则,应当 <u>拒绝 H。</u> 。这时,我们把客观上 H。成立判为
		Н₀为不成立(即否定了真实的假设),称这种错误为"以真当假
	错误	$(\mathbf{p}_{\mathbf{q}})$ "的错误或第一类错误,记 α 为犯此类错误的概率,即
两		$P{\{ \overline{\alpha} \in H_0 H_0 为真 \} = \alpha;}$
类		此处的 α 恰好为检验水平。
错		当 H ₆ 为假(即 H ₁ 为真)时,而样本值却落入了 <u>接受域</u> ,按
误		照我们规定的检验法则,应当 <u>接受 H</u> 。这时,我们把客观上 Ho。
		不成立判为 H。成立(即接受了不真实的假设),称这种错误为"以
	第二类	假当真(受假)"的错误或第二类错误,记 β 为犯此类错误的概
	错误	率,即
		$P{接受 H_0 H_1为真}=\beta$ 。
		<mark>拒绝域</mark> 、 <mark>接受域</mark> 都是 <u>针对零假设</u> Ⅰ6而言。
		注:零假设 H ₆ <u>总是有等号</u> (包含大于等于或小于等于)。

	人们当然希望犯两类错误的概率同时都很小。但是,当样本				
	容量 n 一定时, α 变小,则 β 变大;相反地, β 变小,则 α 变大。				
两类	取定α要想使β变小,则必须增加样本容量。				
错误	在实际使用时,通常人们只能控制犯 <mark>弃真</mark> 错误的概率,即				
的	给定显著性水平α。α大小的选取应根据实际情况而定。当我				
关系	们宁可"以假为真"、而不愿"以真当假"时,则应把α取得很				
	小, 如 0.01, 甚至 0.001。反之,则应把 α 取得大些。				

单正态总体均值和方差的假设检验

条件	零假设	统计量	对应样本 函数分布	拒绝域
$oldsymbol{\sigma}^2$ 已知	$H_0: \mu = \mu_0$	$U = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$	N(0, 1)	$ u > u_{\frac{\alpha}{2}}$
	$H_0: \mu \leq \mu_0$			$u > u_{\alpha}$
	$H_0: \mu \ge \mu_0$			$u < -u_{\alpha}$
σ^2 未知	$H_0: \mu = \mu_0$	$T = \frac{\overline{x} - \mu_0}{S / \sqrt{n}}$	<i>t</i> (<i>n</i> – 1)	$\mid t \mid > t_{\frac{\alpha}{2}}(n-1)$
	$H_0: \mu \leq \mu_0$			$t > t_{\alpha}(n-1)$
	$H_0: \mu \ge \mu_0$			$t < -t_{\alpha}(n-1)$

$oldsymbol{\sigma}^2$ 未知	$H_0: \sigma^2 = \sigma^2$	$w = \frac{(n-1)S^2}{\sigma_0^2}$	$\kappa^2(n-1)$	$w > \kappa_{\frac{\alpha}{2}}^{2}(n-1)$ $w < \kappa_{1-\frac{\alpha}{2}}^{2}(n-1)$
	$H_0: \sigma^2 \leq \sigma_0^2$			$w > \kappa_{\alpha}^{2}(n-1)$
	$H_0: \sigma^2 \ge \sigma_0^2$			$w < \kappa_{1-\alpha}^2(n-1)$