WF4113-Fisheries Science

Lecture 8: Recruitment & Survival

Last class

1. Recruitment

This class

1. Mortality

Housekeeping

- Lab this afternoon!
- Exam I is Wednesday February 15th.

What exactly is mortality

The rate at which individuals are lost from the population

Represents the number of individuals that die during a certain time interval

Basic mortality computations

Need to know:

• Number at beginning N_t

• Number at end N_{t+dt}

• Time interval dt

Worked example

Suppose we had 1000 fish on June 1

12 months later there are 700

The time interval is 12 months

Mortality over the interval is 1000-700 = 300

Interval morality rate is 300/1000 = 0.3

Exponential Decay and mortality

- So if we have 1000 age 0 fish the number of fish in the next year, age 1 fish would be 1000*0.9 = 900.
- In the next year, there would be 900*0.9=810 age 2 fish
- Assumes mortality rate is constant

Mortality types

Total Mortality (*Z*) is comprised of:

- Natural (M)
 - 1. Predation
 - 2. Disease
 - 3. Senescence
- Fishing (F)

Total mortality is M+F

Lets talk about rates

- Instantaneous
- Finite

$$\frac{Abundance}{dt} = r \cdot Abundance - M \cdot Abundance$$

$$\frac{dN}{dt} = -Z \cdot N$$

Types of rates: Instantaneous

Instantaneous mortality rates are used in many fisheries models. They represent the rate of change over a time period. So, if you could chop up a year into very small increments the instantaneous rate would get applied to that very small time step. In essence the time step would be 0.

Types of rates: Finite

<u>Finite mortality rates</u> are the fraction of fish stock that dies in timeframe (e.g., a year).

Example: annual total mortality rate (A) of 0.2 means that 20% of the fish stock dies over one year. So if we have 100 fish 20 of those fish would die and 80 would survive.

Worked example

In our previous example we found morality to be 0.3 over a 12 month period

Suppose we wanted to know what the morality rate was at 4 & 8 months.

To determine this we need to know instantaneous mortality

Worked example

First we convert our finite morality rate to an instantaneous rate

$$Z = -\log_e(1 - [N_t - N_{t+dt}]) / N_t)$$

$$Z = -\log_{e}(1 - [1000 - 700]/1000)$$

$$Z = -\log_{e}(1-0.3)$$

$$Z = 0.356$$

Worked example

One of the nice properties of instantaneous rates is that we can simply divide them by time to get varying interval rates. For example

$$Z_{4months} = \frac{0.356}{4}$$

$$Z_{4months} = 0.119$$

$$A_{4months} = 1 - e^{-0.119}$$

$$A_{4months} = 0.112$$

Worked example

Similarly we can do the same thing for an 8 month interval

$$Z_{4months} = \frac{0.356}{8}$$

$$Z_{4months} = 0.238$$

$$A_{4months} = 1 - e^{-0.238}$$

$$A_{4months} = 0.212$$

A worked example

So at 4 months past June 1 we would expect the population abundance to be:

$$N_{_{4months}} = 1000 - (1000 \cdot 0.112)$$

$$N_{4months} = 888$$

And for 8 months

$$N_{8months} = 1000 - (1000 \cdot 0.212)$$

$$N_{8months} = 788$$

So there was 112 death in the first 4 months and 100 in the second 4 months

When would these rates make sense?

- Finite?
- · Instantaneous?

Thinking in terms of fish year class

$$\frac{dN}{dt} = -Z \cdot N$$

 N_{t+dt} = number alive at time t

 N_t = number alive at time t Z = instantaneous total mortality rate

$$\frac{N_{t+dt} - N_t}{dt} = -Z \cdot N_t$$

$$N_{t+dt} - N_t = -Z \cdot N_t \cdot dt$$

$$N_{t+dt} = N_t + (-Z \cdot N_t \cdot dt)$$

Cohort: definition

- 1. In a stock, a group of fish generated during the same spawning season and born during the same time period;
- 2. In cold and temperate areas, where fish are long-lived, a cohort corresponds usually to fish born during the same year (a year class). For instance, the 1987 cohort would refer to fish that are age 0 in 1987, age 1 in 1988, and so on. In the tropics, where fish tend to be short lived, cohorts may refer to shorter time intervals (e.g. spring cohort, autumn cohort, monthly cohorts).

Source: https://www.st.nmfs.noaa.gov/st4/documents/FishGlossary.pdf

Year Class: definition

Fish in a stock born in the same year. For example, the 1987 year class of cod includes all cod born in 1987. This year class would be age 1 in 1988, age 2 in 1989, and so on. Occasionally, a stock produces a very small or very large year class that can be pivotal in determining stock abundance in later years.

Source: https://www.st.nmfs.noaa.gov/st4/documents/FishGlossary.pdf

Year class dynamics

Z = 0.25 $A=1-e^{-Z}$ $A = 1 - e^{-0.25}$ A = 0.22

Year	Abundance
2015	10000
2016	
2017	
2018	
2019	
2020	
2021	
2022	
2023	<u>.</u>
2024	<u>.</u>
2025	

Year class dynamics

Year	Abundance
2015	10000
2016	10000-2200
2017	
2018	
2019	
2020	
2021	
2022	
2023	
2024	
2025	

Year class dynamics

Year	Abundance
2015	10000
2016	7800
2017	7800-1716
2018	
2019	
2020	
2021	
2022	
2023	
2024	
2025	

Year class dynamics

Year	Abundance
2015	10000
2016	7800
2017	6084
2018	6084-1338
2019	
2020	
2021	
2022	
2023	
2024	
2025	

Year class dynamics

Year	Abundance
2015	10000
2016	7800
2017	6084
2018	4745
2019	3701
2020	2887
2021	2252
2022	1757
2023	1370
2024	1069
2025	833

