# **★**Quantization of atomic vibrations

Restrictions on k-numbers because of boundary conditions; phonon density of states (DOS) as a function of k and  $\omega_i n$  3D

July 1, 2021

1

## **Boundary conditions**

We can impose **periodic** boundary conditions or **finite** boundary conditions Periodic boundary conditions

$$u_s = u_{N+s}$$
  $\Rightarrow K = 0, \quad \pm \frac{2\pi}{L}, \pm \frac{4\pi}{L}, \pm \frac{6\pi}{L}, \dots, \frac{N\pi}{L}$ 

Finite boundary conditions

$$u_0 = u_N = 0$$
  $\Rightarrow K = \frac{\pi}{L}, \quad \frac{2\pi}{L}, \quad \frac{3\pi}{L}, \cdots, \quad \frac{(N-1)\pi}{L}$ 

We have different spacing but the density of states is the same

$$N_{periodic}(k) = 2 \frac{k}{\left(\frac{2\pi}{L}\right)} = \frac{kL}{\pi}$$
  $\rightarrow$   $DOS(k) = \frac{L}{\pi}$ 

$$N_{fixed}(k) = \frac{k}{\left(\frac{\pi}{L}\right)} = \frac{kL}{\pi}$$
  $\rightarrow$   $DOS(k) = \frac{L}{\pi}$ 

,

#### **Boundary conditions**

Figure 4 Consider N particles constrained to slide on a circular ring. The particles can oscillate if connected by elastic springs. In a normal mode the displacement  $u_s$  of atom s will be of the form  $\sin sKa$  or  $\cos sKa$ : these are independent modes. By the geometrical periodicity of the ring the boundary condition is that  $u_{N+s} = u_s$  for all s, so that NKa must be an integral multiple of  $2\pi$ . For N=8 the allowed independent values of K are 0,  $2\pi/8a$ ,  $4\pi/8a$ ,  $6\pi/8a$ , and  $8\pi/8a$ . The value K = 0 is meaningless for the sine form, because  $\sin s0a = 0$ . The value  $8\pi/8a$  has a meaning only for the cosine form, because  $\sin (s8\pi a/8a) = \sin s\pi = 0$ . The three other values of K are allowed for both the sine and cosine modes, giving a total of eight allowed modes for the eight particles. Thus the periodic boundary condition leads to one allowed mode per particle, exactly as for the fixed-end boundary condition of Fig. 3. If we had taken the modes in the complex form exp(isKa), the periodic boundary condition would lead to the eight modes with K = 0,  $\pm 2\pi/Na$ ,  $\pm 4\pi/Na$ ,  $\pm 6\pi/Na$ , and  $8\pi/Na$ , as in Eq. (14).





Figure 5 Allowed values of wavevector K for periodic boundary conditions applied to a linear lattice of periodicity N=8 atoms on a line of length L. The K=0 solution is the uniform mode. The special points  $\pm N\pi/L$  represent only a single solution because  $\exp(i\pi s)$  is identical to  $\exp(-i\pi s)$ ; thus there are eight allowed modes, with displacements of the sth atom proportional to 1,  $\exp(\pm i\pi s)/4$ ,  $\exp(\pm i\pi s)/4$ .

### **Boundary conditions**



Figure 2 Elastic line of N+1 atoms, with N=10, for boundary conditions that the end atoms s=0 and s=10 are fixed. The particle displacements in the normal modes for either longitudinal or transverse displacements are of the form  $u_s \propto \sin s K a$ . This form is automatically zero at the atom at the end s=0, and we choose K to make the displacement zero at the end s=10.



Figure 3 The boundary condition  $\sin sKa = 0$  for s = 10 can be satisfied by choosing  $K = \pi/10a$ ,  $2\pi/10a$ , ...,  $9\pi/10a$ , where 10a is the length L of the line. The present figure is in K space. The dots are not atoms but are the allowed values of K. Of the N+1 particles on the line, only N-1 are allowed to move, and their most general motion can be expressed in terms of the N-1 allowed values of K. This quantization of K has nothing to do with quantum mechanics but follows classically from the boundary conditions that the end atoms be fixed.

### Phonons density of states in 3D

In 3D the density of states for periodic boundary conditions the number of modes is

$$N(k) = \frac{\frac{4}{3}\pi k^3}{\left(\frac{2\pi}{L}\right)^3} \longrightarrow DOS(k) = \frac{k^2 L^3}{2\pi^2}$$



Figure 1: Reciprocal lattice points allowed for phonons in 3D with periodic boundary conditions

5

### Quantization of phonons

By analogy with the photons, elastic waves have energies

$$E_n = (n + 1/2)\hbar\omega$$

where n indicates the number of quasiparticles (phonons) involved



Figure 2: Phonons energy

Each phonon has energy  $\hbar\omega$  but  $\omega=\omega(k)$  and k is limited by boundary conditions. The total number of phonons is limited by the number of degrees of freedom in the system

6