Conjuntos: noções básicas - III

Thaís Jordão*

March 12, 2020

"Operações"

O1. A **união** de dois conjuntos A e B é:

$$\{x: x \in A \text{ ou } x \in B\}.$$

Notação: $A \cup B$.

O2. A **intersecção** de dois conjuntos *A* e *B* é:

$$\{x: x \in A \text{ e } x \in B\}.$$

Notação: $A \cap B$.

Se $A \cap B = \emptyset$, então dizemos que A é **disjunto** de B.

"Operações"

O3. A **diferença** de dois conjuntos A e B é:

$$\{x: x \in A \text{ e } x \notin B\}.$$

Notação: $A \setminus B$ ou A - B (A menos B).

O4. Se $B \subset A$, então o **complementar** de B em A é A - B.

Propriedades

Sejam
$$B, C \subset A$$
.

P11.
$$(A - B) \cap B = \emptyset$$
 e $(A - B) \cup B = A$;

P12.
$$A - A = \emptyset$$
 e $A - \emptyset = A$;

P13.
$$A - (A - B) = B$$
;

P14.
$$A - (B \cap C) = (A - B) \cup (A - C)$$

Propriedades

Sejam $B, C \subset A$.

P11.
$$(A - B) \cap B = \emptyset$$
 e $(A - B) \cup B = A$;

P12.
$$A - A = \emptyset$$
 e $A - \emptyset = A$;

P13.
$$A - (A - B) = B$$
;

P14.
$$A - (B \cap C) = (A - B) \cup (A - C)$$

P15.
$$A - (B \cup C) = (A - B) \cap (A - C)$$

"Operações"

O5. O **produto cartesiano** de dois conjuntos A e B não vazios é:

$$A \times B = \{(x, y) : x \in A \in y \in B\}.$$

"Operações"

O5. O **produto cartesiano** de dois conjuntos *A* e *B* não vazios é:

$$A \times B = \{(x,y) : x \in A \text{ e } y \in B\}.$$

$$A \times \emptyset = \emptyset \times B = \emptyset.$$

 $N. \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R};$

 \mathbb{N} . $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$;

C. $\mathbb{N} \times \mathbb{N}$, $\mathbb{R} \times \mathbb{R}$, \mathbb{R}^n ;

- \mathbb{N} . \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ;
- C. $\mathbb{N} \times \mathbb{N}$, $\mathbb{R} \times \mathbb{R}$, \mathbb{R}^n ;

D. Divisores: Escrevemos a|b (e lemos: a divide b) se b é múltiplo de a, equivalentemente,

$$b = an$$
,

para algum $n \in \mathbb{Z}$.

- \mathbb{N} . \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ;
- C. $\mathbb{N} \times \mathbb{N}$, $\mathbb{R} \times \mathbb{R}$, \mathbb{R}^n ;
- D. Divisores: Escrevemos a|b (e lemos: a divide b) se b é múltiplo de a, equivalentemente,

$$b = an$$
,

para algum $n \in \mathbb{Z}$.

Caso contrário, escrevemos a /b.

1. $2\mathbb{Z} := \{n \in \mathbb{Z} : 2|n\};$

1.
$$2\mathbb{Z} := \{n \in \mathbb{Z} : 2|n\};$$

2.
$$3\mathbb{Z} \cap 2\mathbb{Z} = ??$$
;

1.
$$2\mathbb{Z} := \{n \in \mathbb{Z} : 2|n\};$$

2.
$$3\mathbb{Z} \cap 2\mathbb{Z} = ??$$
;

3.
$$5\mathbb{Z} := \{n \in \mathbb{Z} : 5|n\};$$

1.
$$2\mathbb{Z} := \{n \in \mathbb{Z} : 2|n\};$$

2.
$$3\mathbb{Z} \cap 2\mathbb{Z} = ??$$
;

3.
$$5\mathbb{Z} := \{n \in \mathbb{Z} : 5|n\};$$

$$\left\{-\frac{n^3}{6} + \frac{3n^2}{2} - \frac{7n}{3} + 3 : n \in \mathbb{N}\right\}$$

PIF: Princípio da indução finita

Para proposições aplicáveis a $\mathbb{N}.$

PIF: Princípio da indução finita

Para proposições aplicáveis a N.

PIF. Uma proposição P(n) é verdadeira para todo $n \geq n_0, n \in \mathbb{N}$, se

1. $P(n_0)$ é verdadeira;

PIF: Princípio da indução finita

Para proposições aplicáveis a \mathbb{N} .

PIF. Uma proposição P(n) é verdadeira para todo $n \ge n_0$, $n \in \mathbb{N}$, se

- 1. $P(n_0)$ é verdadeira;
- 2. Se P(k), com $k \ge n_0$, é verdadeira, então P(k+1) é verdadeira.

PIF: exemplos

1.
$$n^2 = 1 + 3 + \ldots + (2n - 1), n \ge 1;$$

PIF: exemplos

1.
$$n^2 = 1 + 3 + \ldots + (2n - 1), n \ge 1$$
;

2.
$$1+2+\ldots+n=n(n+1)/2, n \in \mathbb{N};$$

PIF: exemplos

1.
$$n^2 = 1 + 3 + \ldots + (2n - 1), n \ge 1$$
;

2.
$$1+2+\ldots+n=n(n+1)/2, n \in \mathbb{N};$$