Nonstandard Analysis

Renlin Jin

2020年8月10日

目录

1	实数	域和超结构的非标准扩张	2
	1.1	非主超滤子存在性	2
	1.2	实数域的非标准扩张	2
	1.3	超结构的非标准扩张	3
	1.4	exercise	4
2	非标准分析和微积分		4
3	非标	准分析和测度论	4
4	非标	准分析和随机过程	4
5	非标	准分析和组合数论	4

1 实数域和超结构的非标准扩张

设 R 为所有(标准)实数的集合而

$$\mathcal{R} := (\mathbb{R}; +, *, 0, 1, <)$$

表示 (标准) 实数域

1.1 非主超滤子存在性

Definition 1.1. X be an infinite set. $\mathcal{U} \subset \mathcal{P}(X)$. if any finite intersection is infinite, then \mathcal{U} is a 非主滤子基 on X. 非主滤子基 \mathcal{U} is a 非主滤子 on X if

- 1. if $A, B \in \mathcal{U}$, then $A \cap B \in \mathcal{U}$
- 2. if $A \in \mathcal{U}$ and $A \subseteq B \subseteq X$,then $B \in \mathcal{U}$ let $X \setminus A$ be A^C . if 非主滤子再满足
- 3. for any $A \subseteq X$ there is $A \in \mathcal{U}$ or $A^C \in \mathcal{U}$ then \mathcal{U} is 非主超滤子 on X

Proposition 1.2 (Suppose Zorn's Lemma). *Any nonprincipal filter on infinite set X can be extended to a nonprincipal ultrafilter*

1.2 实数域的非标准扩张

By we could fix a nonprincipal ultrafilter \mathcal{U} on ω .

Definition 1.3. For any $\langle x_n \rangle$, $\langle y_n \rangle \in \mathbb{R}^{\omega}$, we define $\langle x_n \rangle \sim \langle y_n \rangle$ iff

$$\{n \in \omega : x_n = y_n\} \in \mathcal{U}$$

In other words, $\langle x_n \rangle$ and $\langle y_n \rangle$ is equivalent iff two sequences equal almost everywhere

Definition 1.4.
$$[\langle x_n \rangle] := \{\langle y_n \rangle \in \mathbb{R}^{\omega} : \langle y_n \rangle \sim \langle x_n \rangle \}$$

$$^*\mathbb{R} := \{ [\langle x_n \rangle] : \langle x_n \rangle \in \mathbb{R}^{\omega} \}$$

Definition 1.5. For any m-ary relation P on \mathbb{R} we define

*
$$P := \{([\langle r_n^{(1)} \rangle], \dots, [\langle r_n^{(m)} \rangle]) : \{n \in \omega : (r_n^{(1)}, \dots, r_n^{(m)}) \in P\} \in \mathcal{U}\}$$

Hence

$$[\langle a_n \rangle] + [\langle b_n \rangle] = [\langle a_n + b_n \rangle]$$
 and $[\langle a_n \rangle] * [\langle b_n \rangle] = [\langle a_n * b_n \rangle]$

since $\{n \in \omega : (a_n, b_n, a_n + b_n) \in P_+\} = \omega$

 ${}^*\mathbb{R} := ({}^*\mathbb{R}; +, *, 0, 1, <)$ is an ordered field

For any $r \in \mathbb{R}$, we have $[\langle r \rangle] \in {}^*\mathbb{R}$ and hence we could regard \mathbb{R} as a subset of ${}^*\mathbb{R}$

if $[\langle r_n \rangle] \in {}^*\mathbb{R}$ is larger than every element of \mathbb{R} , then we call $[\langle r_n \rangle]$ 无穷大, and 无穷小 vice versa

Proposition 1.6. *In* * \mathbb{R} , $[\langle n \rangle]$ 是无穷大, $[\langle 1/n \rangle]$ 是无穷小

1.3 超结构的非标准扩张

Definition 1.7. For any set X, let $V_0 := \mathbb{R} \cup X$. For any $m \in \omega$ define $V_{m+1} := V_m \cup \mathcal{P}(V_m)$. Choose a large enough natural number \mathfrak{n} , define

$$V := \bigcup_{m=0}^{\mathfrak{n}} V_m$$

let ϵ be a 从属关系 on V. Then structure $\mathcal{V} = \boxtimes V$; ϵ is called 超结构. If $a \in V$, $a \in V_m$ but $a \notin V_{m-1}$, then we call $a \mathcal{V}$ 中的第 m 层元素, written l(a) = m

Definition 1.8. Suppose \mathcal{U} is a nonprincipal ultrafilter on ω , $m \leq \mathfrak{n}$

1. For any element sequence $\langle a_n \rangle$, $\langle b_n \rangle \in V_m$, define $\langle a_n \rangle \sim \langle b_n \rangle$ iff

$$\{n\in\omega\,:\,a_n=b_n\}\in\mathcal{U}$$

- 2. For any element sequence $\langle a_n \rangle \in V_m^\omega$, define $[\langle a_n \rangle] := \{\langle b_n \rangle \in V_m^\omega : \langle a_n \rangle \sim \langle b_n \rangle \}$
- 3. $V_m := \{ [\langle a_n \rangle] : \langle a_n \rangle \in V_m^{\omega} \}$

5 非标准分析和组合数论

4. *
$$V := \bigcup_{m=0}^{\mathfrak{n}} {}^*V_m$$

5. for $[\langle a_n \rangle], [\langle A_n \rangle] \in {}^*V$, define $[\langle a_n \rangle]^* \in [\langle A_n \rangle]$ iff

5. for
$$[\langle a_n \rangle]$$
, $[\langle A_n \rangle] \in {}^*V$, define $[\langle a_n \rangle]^* \in [\langle A_n \rangle]$ iff

$$\{n\in\omega\,:\,a_n\in A_n\}\in\mathcal{U}$$

Lemma 1.9. suppose $\varphi(\overline{[\langle a_n \rangle]})$ is a statement on ${}^*\mathcal{V}$

1.4 exercise

Exercise 1.4.1. $A = \{ [\langle 1 \rangle], [\langle 2 \rangle], \dots \}$

- 非标准分析和微积分
- 非标准分析和测度论
- 4 非标准分析和随机过程
- 非标准分析和组合数论