МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Определение удельной теплоёмкости воздуха при постоянном давлении

Автор: Шахматов Андрей Юрьевич Б02-304

Аннотация

Исследована зависимость.

Содержание

1	Введение	1
2	Методика	1
3	Результаты и их обсуждение	2
4	Выводы	3
5	Использованная литература	3
6	Приложения	3
	6.1 Параметры установки и погрешности приборов	3
	6.2 Данные результатов измерений	4

1 Введение

Цель настоящей работы заключалась в определении удельной теплоёмкости воздуха при постоянном давлении c_p .

2 Методика

3 Результаты и их обсуждение

Измерения проводились для 3 различных расходов воздуха Q (Таблица 1). Для каждого из расходов воздуха при помощи термопары измерялась зависимость разности температур входящего и выходящего потока воздуха от подводимой мощности на нагрузке N (Таблицы 2, 3, 4). Перевод из ЭДС на концах термопары в разность температур производился при измерении с переводным коэффициентом из приложения 6.1. Построены графики зависимости разности температуры T от мощности N (Рис. 1). Полученные кривые хорошо аппроксимируются прямыми линиями вида Q = kT, что подтверждает линейность зависимости мощности потерь N_{pot} от разности температур T в исследуемом диапазоне температур.

Рис. 1: Зависимость разности температур газа на торцах установки T от подводимой мощности N при различных массовых расходах воздуха (Таблица 1): 2 - Q_1 , 3 - Q_2 , 4 - Q_3 , цифрой 1 обозначениа точка (0,0) - теоретическая точка, принадлежащая всем графикам. Кресты погрешности малы по сравнению с масштабом графика и потому не были нанесены.

Из графиков определены коэффициенты наклона $k=\frac{dN}{dT}=\alpha+c_pq$ (Таблица. 5). Построены графики зависимости коэффициентов k от массового расхода воздуха Q (Рис. 2). Построив сглаживающую прямую определены коэффициенты $\alpha=(5.5\pm0.6)\cdot10^{-2},\frac{\mathrm{BT}}{^{\circ}\mathrm{C}}$ и $c_p=(1.05\pm0.07)\cdot10^3,\frac{\mathrm{J}\#}{^{\mathrm{Kr}^{\circ}\mathrm{C}}}.$ Полученное значение удельной теплоёмкости при постоянном давлении совпадает с теоретическим [2] $c_{pt}=1006$ $\frac{\mathrm{J}\#}{^{\mathrm{Kr}^{\circ}\mathrm{C}}}$ в пределах погрешности.

Рис. 2: Зависимость коэффициента $k=\frac{dN}{dT}$ от массового расхода Q.

4 Выводы

Подтверждена линейная зависимость потерь от разности температур. Определена удельная теплоёмкость воздуха при атмосферном давлении $c_p = (1.05 \pm 0.07) \cdot 10^3 \, \frac{\text{Дж}}{\text{кг}^{\circ}\text{C}}$. Полученное значение совпало с табличным [2] $c_{p_t} = 1006 \, \frac{\text{Дж}}{\text{кг}^{\circ}\text{C}}$ в пределах погрешности.

5 Использованная литература

Список литературы

- [1] Лабораторный практикум по общей физике, Том 1, под редакцией А. Д. Гладуна
- $[2] \ http://thermalinfo.ru/svojstva-gazov/gazovye-smesi/fizicheskie-svojstva-vozduha-plotnost-vyazkost-teploemkost-entropiya$

6 Приложения

6.1 Параметры установки и погрешности приборов

При проведении эксперимента в помещении была температура $T_0 = (2.300 \pm 0.010) \cdot 10^1$, °C; давление $p_0 = (1.00520 \pm 0.00010) \cdot 10^3$, hPa; влажность $q_0 = (1.860 \pm 0.010) \cdot 10^1$ %. Коэффициент

пропорциональности $\beta=(40.7\pm0), \frac{^{\circ}{\text{С}}}{_{\text{МКВ}}},$ в дальнейшем во всех таблицах будут даны температуры сразу посчитанные по формуле $T=\beta E,$ где E - разность ЭДС на концах термопары.

6.2 Данные результатов измерений

$Q_1, \frac{\pi}{\text{Muh}}$	$Q_2, \frac{\pi}{\text{Muh}}$	$Q_3, \frac{\pi}{\text{Muh}}$
8.57	5.66	2.08

Таблица 1: Массовые расходы Q при которых проводились измерения.

	U, B	I, A	$N, B_{\rm T}$	T, °C
0	3.573	0.116	0.414	1.572
1	4.957	0.163	0.808	3.194
2	5.965	0.197	1.176	4.742
3	6.349	0.219	1.383	5.897

Таблица 2: Результаты измерений разности температур газа T в зависимости от мощности N выделяемой на нагрузке при массовом расходе воздуха Q_1, U - напряжение на нагрузке, I - сила тока на нагрузке.

	U, B	I, A	$N, B_{\rm T}$	T, °C
0	2.601	0.0904	0.235	1.327
1	4.021	0.1397	0.562	3.170
2	4.867	0.1692	0.823	4.816
3	5.772	0.2005	1.157	6.855

Таблица 3: Результаты измерений разности температур газа T в зависимости от мощности N выделяемой на нагрузке при массовом расходе воздуха Q_2 , U - напряжение на нагрузке, I - сила тока на нагрузке.

	U, B	I, A	$N, B_{\rm T}$	T, °C
0	1.715	0.0599	0.103	1.106
1	2.565	0.0894	0.229	2.260
2	3.43	0.1194	0.410	3.956
3	4.262	0.1484	0.632	6.486

Таблица 4: Результаты измерений разности температур газа T в зависимости от мощности N выделяемой на нагрузке при массовом расходе воздуха Q_3 , U - напряжение на нагрузке, I - сила тока на нагрузке.

	$k, \frac{B_T}{C}$	$Q, \frac{\Gamma}{c}$	$\sigma k, \frac{B_T}{^{\circ}C}$	$\sigma Q, \frac{\Gamma}{c}$
0	0.243	0.169	0.005	0.001
1	0.171	0.112	0.002	0.001
2	0.099	0.041	0.002	0.001

Таблица 5: Коэффициенты $k=\frac{dN}{dT}$ в зависимости от массового расхода Q.