Integration & Acceptance Test THD Analyzer

Bob Cordell's article (part 3) describes this as "Intermediate Check-Out" (page 57) and "Test and Calibration" (page 58-59). The system itself is tested slightly different from Bob's tests. This is because we use the μ C board (PCB4) to control all switches.

Date test conducted:	18-2-125		
PCB1, PCB2, PCB3 hardware version:	V0.30 V0.21 V0.21		
End-result of test	OK / NOW		

Intermediate Check-Out

Nr.	Description		, , ,		
	Entry-criteria: - a tested and working μC control-board (PCB4) is needed for these tests Unit-tests for PCB1, PCB2 and PCB3 boards have been done and no errors were found Flat-cables (4) are connected between: • PCB1 and PCB4, PCB2 and PCB4 and between PCB3 and PCB4 • PCB2 and PCB3 inter-connect - Function-generator, oscilloscope, true-RMS multimeter.				
0	- Function-generator, oscilloscope, true-RNIS multimeter For PCB1, PCB2, PCB3 and PCB4: Connect ±15 V and GND to +15 V, GND and -15 V.				
	Description	Result	Result		
		Expected	Measured	OK?	
1.1	- Connect MAIN.OUT (PCB1) to the Input on PCB2. - Use the Level potmeter on PCB1 to set PCB2 input- voltage to 1 V _{rms} . Use a true-RMS multimeter to measure this value as accurate as possible. - Set Frequency to 2 kHz. \$ - Set Output-level to 5V. \$ - Set Input-level to 3V. \$ - Set Sensitivity to 0.3%. \$ - Adjust R59 (freq.) and R62 (ampl.) as necessary	- Analyzer has locked itself - E8 between -1V and -4V - E22 between -1V and -4V - E23 between -1V and -4V - No oscillations	-3.65 V -2.72 V -3.34 V	OK/MOK,	
1.2	 Inject a distortion signal (6 kHz, 150 mV_{rms}) from a 2nd function-generator through a 62 kΩ into PCB2 input. Calibrate the 0.3% Sensitivity setting as follows: UART: type 'c11' and write down the value. c11_new = (x * c11) / (y * z), with: x = 150 mV_{rms} (2nd function-generator output) y = PCB1 output-value in mV_{rms} z = value on SSD4 (e.g. 0.15) Enter this new value by typing 'c11 c11_new', with c11_new being the number calculated. Check that SSD4 now displays 0.150 %. 	- Distortion is 0.15 %, SSD4 reading should be close to this value Check signal at E40 (DIST.OUT), this should be a clean 6 kHz signal \$ c11_new = 0.315113	0.152 % c11 = 0.320 120 mVpp	OK/MOKY	
1.3	- Set Sensitivity to 1.0 %. - Inject a distortion signal (6 kHz , 500 mV _{rms}) from a 2 nd function-generator through a 62 kΩ into PCB2 input. - Calibrate the 1.0% Sensitivity setting as follows: • UART: type 'c10' and write down the value. • c10_new = (x * c10) / (y * z), with: • x = 500 mV _{rms} (2 nd function-generator output) • y = PCB1 output-value in mV _{rms} • z = value on SSD4 (e.g. 0.500) - Enter this new value by typing 'c10 c10_new', with c10_new being the number calculated. - Check that SSD4 now displays 0.500 %.	- Distortion is 0.5 %, SSD4 reading should be close to this value Check signal at E40 (DIST.OUT), this should be a clean 6 kHz signal & c10_new = 1.043566	0.465 % c10 = 0.97	OK/1004	

1.4	- Set Sensitivity to 3.0 %.	- Distortion is 1.5 %, SSD4	0.4	OK/NOK
	- Inject a distortion signal (6 kHz, 1.5 V _{rms}) from a 2 nd	reading should be close to	1.401%	/
	function-generator through a 62 kΩ into PCB2 input.	this value.	1.03	
	- Calibrate the 3.0% Sensitivity setting as follows:	- Check signal at E40		
	 UART: type 'c9' and write down the value. 	(DIST.OUT), this should be		
	• c9_new = (x * c9) / (y * z), with:	a clean 6 kHz signal	c9 = 2.932	551
	 x = 1500 V_{rms} (2nd function-generator output) 		,	
	 y = PCB1 output-value in mV_{rms} 	c9_new = 3,155554		
	• z = value on SSD4 (e.g. 1.500)	TAHLALLY ADJUSTED	1500 x 2.932	551
	- Enter this new value by typing 'c9 c9_new', with	7777777	995年 1.40	1.5
	c9_new being the number calculated.	TO 3.14 - 1,500%		
	- Check that SSD4 now displays 1.500 %.			2
1.5	- Set Sensitivity to 10.0 %.	- Distortion is 5.0 %, SSD4	4/=00/	OK/INDIK
	- Inject a distortion signal (6 kHz, 5 V _{rms}) from a 2 nd	reading should be close to	4.652% VARIES TO	VARIAT
	function-generator through a 62 kΩ into PCB2 input.	this value.		A BIT
	- Calibrate the 10.0% Sensitivity setting as follows:	- Check signal at E40	4.72 %	
	UART: type 'c8' and write down the value.	(DIST.OUT), this should be		писн.
	• c8_new = (x * c8) / (y * z), with:	a clean 6 kHz signal	c8 = 9. 7791	94
	• x = 5000 V _{rms} (2 nd function-generator output)	124 mVpp	1. 1711	, ,
	• y = PCB1 output-value in mV _{rms}	c8_new = 10.6/2312	Treatment of the	
	• z = value on SSD4 (e.g. 5.000)	The second of the second	5000 € 9.77	7194
	- Enter this new value by typing 'c8 c8_new', with		984 # 4.	33
	c8_new being the number calculated.	- /0/	907 kg 1.	
	- Check that SSD4 now displays 5.000 %.	5.06%		
1.6	- Set Sensitivity to 0.1 %.	- Distortion is 0.05 %, SSD4	0.046%	OK/MOK
	- Inject a distortion signal (6 kHz, 50 mV _{rms}) from a 2 nd	reading should be close to	0.090 %	
	function-generator through a 62 k Ω into PCB2 input.	this value.	equipment of the	
	- Calibrate the 0.1% Sensitivity setting as follows:	- Check signal at E40	Typen near this	
	 UART: type 'c12' and write down the value. 	(DIST.OUT), this should be	c12 = 0. 097	752
	• c12_new = (x * c12) / (y * z), with:	a clean 6 kHz signal	11	
	 x = 50 mV_{rms} (2nd function-generator output) 	120mVpp		
	 y = PCB1 output-value in mV_{rms} 	c12_new = 0.107652	50 \$ 0.09 77	52
	 z = value on SSD4 (e.g. 0.05) 			
	- Enter this new value by typing 'c12 c12_new', with	a memor device	987 x 0,0	46
	c12_new being the number calculated.	0.051%		
	- Check that SSD4 now displays 0.050 %.			
1.7	- Set Sensitivity to 300 ppm , increase Input-level to	- Distortion is 200 ppm,	198.4 ppm	OK/NØK
	10V and use the Level potmeter on PCB1 to increase	SSD4 reading should be	., 1	
	the PCB1 output-voltage to 4.5 V _{rms} . Use a true-RMS	close to this value.		
	multimeter to measure this value as accurate as	MADE SALE	= = -	
	possible. 3	- Check signal at E40	c13 = 3,185	32
	- Inject a distortion signal (6 kHz, 90 mV _{rms}) from a 2 nd	(DIST.OUT), this should be		
	function-generator through a 62 $k\Omega$ into PCB2 input.	a clean 6 kHz signal		
	- Calibrate the 300 ppm Sensitivity setting as follows:	±150 mVpp		
	UART: type 'c13' and write down the value.	c13_new = 3, 2 j		
	• c13_new = (x * c13) / (y * z), with: * 10	4.50 Vans	00 \$ 3,18513	2 4
	 x = 90 mV_{rms} (2nd function-generator output) 	1110 1/1113	90 × 3,18513	- ₹10
	 y = PCB1 output-value in mV_{rms} 		4500 # 190.	1
	 z = value on SSD4 (e.g. 200 ppm) 			
	- Enter this new value by typing 'c13 c13_new', with			
	c13_new being the number calculated.	200.3 ppv7		
	- Check that SSD4 now displays 200 ppm .	~		

1.8	- Set Sensitivity to 100 ppm.	- Distortion is 66.7 ppm,	6, ppm	OK/NOK
	- Inject a distortion signal (6 kHz, 30 mV _{rms}) from a 2 nd	SSD4 reading should be	0111	
	function-generator through a 62 k Ω into PCB2 input.	close to this value.		
	- Calibrate the 100 ppm Sensitivity setting as follows:	- Check signal at E40		
	UART: type 'c14' and write down the value.	(DIST.OUT), this should be	c14 = 0.931	5
	• c14_new = (x * c14 * 1E+4) / (y * z), with:	a clean 6 kHz signal		
	• x = 30 mV _{rms} (2 nd function-generator output)	±120mVpp, SHAKY		
	 y = PCB1 output-value in mV_{rms} 	c14_new = 1,018		
	 z = value on SSD4 (e.g. 67 ppm) 		30 \$ 0.9315	4
	- Enter this new value by typing 'c14 c14_new', with		30 \$ 0,9315	AC 10
	c14_new being the number calculated.		7500 3.01	7.5
	- Check that SSD4 now displays 66.7 ppm .	± 66.5 ppv7		
1.9	- Set Sensitivity to 30 ppm.	- Distortion is 26.7 ppm,	21 ppv1	OK/NOR
	- Inject a distortion signal (6 kHz, 12 mV _{rms}) from a 2 nd	SSD4 reading should be	′ ′	
	function-generator through a 62 k Ω into PCB2 input.	close to this value.		
	- Calibrate the 30 ppm Sensitivity setting as follows:	- Check signal at E40		
	 UART: type 'c15' and write down the value. 	(DIST.OUT), this should be	c15 = 0.24 6	840
	• c15_new = (x * c15 * 1E+4) / (y * z), with:	a clean 6 kHz signal		
	 x = 12 mV_{rms} (2nd function-generator output) 	SHONY, BUT STILL GKHZ		
	 y = PCB1 output-value in mV_{rms} 	c15_new = 0.31346	12 + 0 26/5	4.0
	 z = value on SSD4 (e.g. 20 ppm) 		12 * 0. 2468	40
	- Enter this new value by typing 'c15 c15_new', with		1300 12	1
	c15_new being the number calculated.	-/		
	- Check that SSD4 now displays 26.7 ppm .	26.7 pp 07		
1				

WITHOUT 2 HD FUN CTION- 9 GRENATOR;

2 KHZ; 11 PPV7, 0.0011 %, -99.2 dB

NOTE: Bug RANGE 2 (2.5 KHZ - 20 KHZ): DOES NOT LOCK! (FMigh).