# Computer Vision - CS452





Introduced by

Dr. Ebtsam Adel

Associate professor at IS Dept.

Faculty of computers and information

Damanhour university



# Quiz

❖ A 4x4 image is given by:

(6G)

| 100 | 120 | 160 | 120 |
|-----|-----|-----|-----|
| 80  | 90  | 100 | 100 |
| 90  | 90  | 50  | 120 |
| 40  | 100 | 19  | 150 |

- Filter the image using a **median filter** (padding with zeros), use 3x3 filter mask.
- Apply the fitter to all pixels in the image.



# Chapter 11: Representation and Description



Introduced by **Dr. Ebtsam Adel** 











#### **Image Representation and Description**

□ After an image has been segmented into regions, the resulting aggregate of segmented pixels usually is represented and described in a form suitable for further computer processing.





#### **Image Representation and Description**

#### Objective:

To represent and describe information embedded in an image in other forms that are more suitable than the image itself.

#### ☐ Benefits:

- Easier to understand
- Require fewer memory, faster to be processed
- More "ready to be used"

#### What kind of information we can use?

- Boundary, shape
- Region
- Relation between regions

#### **Image Representation & Description**

- Basically, <u>representing</u> a region involves two choices:
- 1. We can represent the region in terms of its **external characteristics** (its boundary) [such as numbers & letters],
- 2. we can represent it in terms of its **internal characteristics** (the pixels comprising the region).

➤ The next task is to **describe** the region based on the chosen representation. For example, a region may be represented by its boundary, and the boundary described by **features** such as its length, the orientation of the straight line joining its extreme points, and other features.

#### **Image Representation and Description**

- □ An **external representation** is chosen when the primary focus is on shape characteristics.
- □ An **internal representation** is selected when the primary focus is on regional properties, such as color and texture.

□ Sometimes it may be necessary to use both types of representation.

# **Common Representation**

#### Common external representation methods are:

- Chain codes
- Polygonal Approximations
- Boundary Segments
- Skeletons

# Chain Code

- Chain code represents boundary.
- Why we focus on a boundary?

The boundary is a good representation of an object shape and also requires a few memory.

□ **Chain codes:** represent an object boundary by a connected sequence of straight line segments of specified length and direction.













 A boundary code formed as a sequence of such directional numbers is referred to as a Freeman chain code.

This method generally is unacceptable for two principal reasons:

- 1. The resulting chain tends to be quite long "long chain code".
- 2. any small trouble along the boundary due to **noise** or imperfect segmentation cause changes in the code that may not be related to the principal shape features of the boundary.





#### solution

- □ An approach frequently used to overcome these problems is to resample the boundary by selecting a larger grid spacing.
- ☐ Then, as the boundary is traversed, a boundary point is assigned to each node of the large grid, depending on the proximity of the original boundary to that node.

- The nearest neighbor regarding to the grid.
- Less noise.
- Less chain code long.
- Trade off: loss of some data.

# Resampling for Chain Codes

Object boundary (resampling)





Boundary vertices

4-directional chain code





8-directional chain code

#### Shape Representation by Using Chain Codes - Grid spacing



- > As might be expected, the accuracy of the resulting code representation depends on the spacing of the sampling grid.
- Depend on The starting point.
- > Depend on The rotation "i.e. rotation variant".



#### Chain Codes- Normalization for starting point

- ☐ The chain code of a boundary depends on the starting point.

  However, the code can be **normalized with respect to the starting point** by a straightforward procedure.
- ☐ We simply treat the chain code as a circular sequence of direction numbers and redefine the starting point so that the resulting sequence of numbers forms an integer of **minimum magnitude**.
- E.g. 101003333222 is **normalized** to 003333222101.



#### Chain Codes- normalization for starting point

Treat the chain code as a circular sequence of direction numbers and redefine the starting point so that the resulting sequence of numbers forms an integer of **minimum magnitude**.





#### Normalization for Chain Codes- normalization for rotation

- ☐ We can normalize also for **rotation** (in angles that are integer multiples of the directions) by using the **First Difference** (**FD**) of the chain code instead of the code.
- ☐ This difference is obtained by counting the number of direction changes (in a **counterclockwise** direction).
- ☐ For instance, the first difference of the 4-direction chain code 10103322 is 3133030.



#### The First Difference of a Chain Codes

☐ The first difference of a chain code: counting the number of direction change (in counterclockwise) between 2 adjacent elements of the code.

# Example: Chain code: The first difference $0 \rightarrow 1 \qquad 1$ $1 \qquad 0 \rightarrow 2 \qquad 2$ $0 \rightarrow 3 \qquad 3$ $2 \rightarrow 3 \qquad 1$ $2 \rightarrow 0 \qquad 2 \rightarrow 0$ $2 \rightarrow 1 \qquad 3$

#### Example:

- a chain code: 10103322
- The first difference = 3133030
- Treating a chain code as a circular sequence, we get the first difference = 33133030

**Counter clockwise** 

The first difference is rotational invariant.

# **Example on Chain Code**





| Chain code                              | 774411 | 005533 |
|-----------------------------------------|--------|--------|
| Normalization for <b>rotation</b> (FD)  | 050506 | 050605 |
| Normalization for <b>starting point</b> | 050506 | 050506 |





**FIGURE 11.5** (a) Noisy image of size  $570 \times 570$  pixels. (b) Image smoothed with a  $9 \times 9$  box kernel. (c) Smoothed image, thresholded using Otsu's method. (d) Longest outer boundary of (c). (e) Subsampled boundary (the points are shown enlarged for clarity). (f) Connected points from (e).

#### Chain Code

The 8-directional Freeman chain code of the simplified boundary is:

00006066666666444444242222202202

 The integer of minimum magnitude of the code happens in this case to be the same as the chain code:

00006066666666444444242222202202

## PRACTICAL PART

# Practical part

Generate image matrix from freeman chain code.

- import numpy as np
- import matplotlib.pyplot as plt

