Introduction

Transformers and Multi-features Time2Vec for Financial Prediction

Bui Nguyen Kim Hai, Nguyen Duy Chien

TDK CONFERENCE - IT SCIENCE SECTION, 2024 SPRING

Budapest, Hungary May 29, 2024

Results and Conclusion

Outline

Introduction

- Introduction
 - Motivation
 - Related work
- Proposed model and techniques
 - Data collection
 - Preprocessing data
 - Model architecture
 - Decoding engineering
- Results and Conclusion
- Summary

Outline

Introduction 00000

- Introduction
 - Motivation
 - Related work
- - Data collection
 - Preprocessing data
 - Model architecture
 - Decoding engineering

Introduction

00000

Motivation: Cross-correlation to NASDAQ

Motivation: Cross-correlation to Exxon Mobil

Motivation

Introduction

By other works

- Researchers try to combine Time2Vec with CNN, RNN, LSTM, and Attention mechanism
- For instances:
 - Aeroengine Risk Assessment
 - Predicting Production in Shale and Sandstone Gas Reservoirs
 - Stock Price Forecasting

In finance area

Studies primarily rely on one dataset

By observing trends

- Stock's trend is a Markov process
- Historical data offers limited foresight
- Stocks having similar trend is more promising

Related work

ARIMA

Making one-step-ahead predictions

RNN

Handling temporal problems in sequential data and time-series analysis.

LSTM

Using gates, LSTM enables network to learn long-term dependencies and prevent the vanishing gradient problem.

Transformer

The SOTA architecture that works well in many area such as NLP, and time-series

Time2Vec

Use to embed the time-series data to vector

Outline

- Introduction
 - Motivation
 - Related work
- Proposed model and techniques
 - Data collection
 - Preprocessing data
 - Model architecture
 - Decoding engineering
- Results and Conclusion
- 4 Summary

Proposed model and techniques

0000000

Data collection

Introduction

Where to collect?

Yahoo Finance

What will be collected?

Date, Open, High, Low, Close, Volume columns

How many datasets should we collect?

Two, three, four ..., as long as they are highly correlated to each other

Collected datasets

- Group1: NASDAQ, S&P500, DJI, DAX
- Group2: Exxon Mobil, Chervon

Preprocessing data: The pipeline

The preprocessing data pipeline.

Techniques

Introduction

- Fill-forward: Filling missing data in dataset
- Moving Average: Smoothing dataset by averaging data
- Percentage Change: Compute the difference in the data
- Min-Max Normalization: Normalizing dataset
- Geometry Mean Not NaN (GMNN): Combining multiple datasets

Model architecture: Proposed model

Model architecture: Role of layers

Roles

- Time2Vec
 - Linear: Capturing linear trends
 - Sine, Cosine: Encoding positions and capturing periodic behaviors
 - Concat: Concatenating above three layers
- Attention Layers
 - To study the trend from different aspects, positions

Model architecture: Role of layers

Roles

Introduction

- Time2Vec: Catch continuous attribute of time
- Concat: Apply Residual Connection
- Attention: Deep understanding trend movements
- Pooling: Reducing dimension
- Dropout: Prevent over-fitting
- Dense: Apply activation functions (ReLU)

Results and Conclusion

Decoding engineering

The decoding pipeline.

Techniques

Introduction

- De-normalized
- De-percentage change
- De-moving average

Why don't we use De-GMNN step?

- Output is normalized (Invariant)
- Target is **one** dataset, output only reflects that one

Outline

- - Motivation
 - Related work
- - Data collection
 - Preprocessing data
 - Model architecture
 - Decoding engineering
- Results and Conclusion

Results and Conclusion

000

Conclusion

Introduction

Conclusion

By leveraging multiple criteria to evaluate the proposed model such as

- MAE, MAPE, RMSE, MSE, R2-score (price prediction task)
- Accuracy (trend forecasting task)

We can proudly say that, the multi-feature model

- Outperforms the single-feature one in most cases and they are **extremely close** to each other in other scenarios.
- Usually yields **better** result than the SOTA in almost every contexts.

Results

Outline

Introduction

- - Motivation
 - Related work
- - Data collection
 - Preprocessing data
 - Model architecture
 - Decoding engineering
- Summary

Summary

Summary

- We explore deep learning for challenging stock price prediction
- Paving the way for new feature studies and applications in various deep learning models
- Demonstrates correlation-based features and innovative neural networks improve stock price prediction

Further Research

- Fine-tuning the architecture
- Continuing improving processing methods
- Comparing to other SOTA neural networks like KAN
- Applying the architecture to other areas

Thank you for your attention!

But... What is GMNN?

Introduction

GMean Not NaN Example

GMNN Attributes

- Union: Handling length difference when combining datasets
- Invariant: Keeping the data stays normalized
- Representation: The output reflects the whole datasets

A simple sample of applying GMNN transformation

But... What is Time2Vec¹?

Time2Vec

An approach providing a model – agnostic vector representation for time

Time2Vec Function

$$\mathbf{t2v}(\tau)[i] = \left\{ \begin{array}{ll} w_i \tau + \varphi_i & \text{if } i = 0 \\ F\left(w_i \tau + \varphi_i\right), & \text{if } 1 \leq i \leq k \end{array} \right.$$

 w, φ : learnable parameters τ : time F: periodic activation function (eg. \sin, \cos)

Time2Vec Attributes

- Capturing both periodic and non periodic patterns
- Being invariant to time re-scaling
- Being simple enough so it can be combined with many models

¹Seyed Mehran Kazemi et al. "Time2Vec: Learning a Vector Representation of Time" (2019)

Applications

Can it be used in production?

Of course, but to be more accurate and precise, the architecture must be fine-tuned to fit the expectation

Is it easy to set up and use in production?

Yes it is, developer just need to find the appropriate datasets and train the model

Can it be used in other areas?

Yes it can be used in other areas, we just need to find the dimension sizes and appropriate hyper-parameters to fit the area expectation

Can it predict the tomorrow stock price?

Yes it can, but we need to apply some more techniques to decode back to real values