Sampling theorem

Let x be continuous signal bandlimited by frequency ω_{max} . We sample x with a period of T_s .

Given the discrete samples, we can try reconstructing the original signal f through sinc-interpolation where $\Phi(t) = \mathrm{sinc}\left(\frac{t}{T_s}\right)$

$$\hat{x}(t) = \sum_{n=-\infty}^{\infty} x[n]\Phi(t - nT_s)$$

We define the **sampling frequency** as $\omega_s = \frac{2\pi}{T_s}$. The Sampling Theorem says if $\omega_{max} < \frac{\pi}{T_s}$, or $\omega_s > 2\omega_{max}$, then we are able to recover the original signal, i.e. $x = \hat{x}$.

1 Sampling Theorem basics

Consider the following signal, x(t) defined as,

$$x(t) = \cos(2\pi t). \tag{1}$$

a) Sketch the signal x(t), for $t \in [0, 4]s$.

Answer

Figure 1

- b) Sketch discrete samples of x(t) is the signal is sampled at a period of
 - i) $\frac{1}{4}$ s
 - ii) $\frac{1}{2}$ s
 - iii) 1s
 - iv) 2s

How would you reconstruct a continuous signal $\hat{x}(t)$ if you only had the discrete samples for reconstruction?

Answer

Figure 2: Discretizing the continuous time signal x(t) with different sampling periods.

c) What is the maximum frequency, ω_{max} , in radians per second? In Hertz?

Answer

 $\omega_{\rm max}$ = 2π in radians per second, which is 1 Hertz.

d) If I sample every *T* seconds, what is the sampling frequency?

Answer

$$\omega_s = \frac{2\pi}{T}$$
.

e) What is the smallest sampling period *T* that would result in an imperfect reconstruction?

Answer

From the sampling theorem, we know that T has an upperbound of $\frac{\pi}{\omega_{max}}$ for perfect reconstruction. Hence the smallest T for which we cannot reconstruct our signal is,

$$T = \frac{\pi}{2\pi} = \frac{1}{2}$$

f) Repeat part (b), for the signal

$$y(t) = \sin(2\pi t) \tag{2}$$

Answer

Figure 3: Comparing discretization of continuous-time signals (a) x(t) and (b) y(t) at the Nyquist frequency.

2 Aliasing

Consider the signal $x(t) = \sin(0.2\pi t)$.

a) At what period T should we sample so that sinc interpolation recovers a function that is identically zero?

Answer

We want to sample such that our resultant discrete time signal is all zeros. To do this, we can sample at t = 5k, for integral values of k. Hence, T = 5.

We could also do this graphically by plotting $x(t) = \sin(0.2\pi t)$ and x(t) = 0 on the same plot and seeing where they interesect.

b) At what period T can we sample at so that sinc interpolation recovers the function $f(t) = -\sin\left(\frac{\pi}{15}t\right)$?

Answer

$$T = 7.5$$

$$x[n] = \sin(0.2\pi nT)$$
 sampling x(t)
 $= -\sin(-0.2\pi nT)$ sin(t) is odd
 $= -\sin(-0.2\pi nT + 2\pi n)$ For $n \in \mathbb{Z}$ since $\sin(t)$ is periodic.
 $= -\sin\left(\frac{\pi}{15}nT\right)$

As a result,

$$2\pi - 0.2\pi T = \frac{\pi}{15}T$$
$$T = 7.5$$

As with part (a), we could also do this graphically by plotting $x(t) = \sin(0.2\pi t)$ and $x(t) = -\sin(\frac{\pi}{15}t)$ on the same plot and looking at the intersection points.

