The Spillover Effects of Medicare Managed Care: Medicare Advantage and Hospital Utilization

Baicker, K., Chernew, M. E., & Robbins, J. A. (2013) *Journal of Health Economics*, 32(6), 1289-1300.

Presented by Nada Boualam 09/29/2020

Motivation

- Changes in care induced by MA program may spill over to care delivered to TM enrollees & others
 - e.g. standard of care
 - Spillovers could be significant

Sparse MA spillovers literature

Potential spillovers could have implications on MA program design

Research Question

- What is the effect of changes induced by MA payment changes on the care received by other patients?
 - Hospitalization rates,
 - Quality of care,
 - Costs for TM & commercial enrollees

Medicare Overview

Medicare Enrollees

27%

Traditional Medicare (TM)

- Parts A & B
- Defined benefit structure
- Few utilization controls
- FFS

Medicare Advantage (MA)

- TM + lower cost sharing
- Additional benefits
- Monthly payment/beneficiary
- HMO/PPO negotiated rates based on benchmark computed using:
 - 1. Floor payment
 - 2. TM costs
 - 3. Growth in TM costs
 - 4. Previous year payment

Potential Spillover Pathways

MA influence on:

- 1. Physician practice styles broadly
 - Utilization control strategies
- 2. Investment & adoption of technology
- 3. Prices & competition
- 4. Induced demand

Preview of findings

- When more seniors enroll in MA, hospital costs decline for all seniors and for commercially insured younger populations.
- Greater managed care penetration is not associated with fewer hospitalizations, but is associated with lower costs and shorter stays per hospitalization.
- These spillovers are substantial offsetting more than 10% of increased payments to MA plans.

Data

• Focus on Florida, New York, California, Arizona, and Massachusetts

Source	Variable
CMS	Payment rates 1999-2009 Plan characteristics 1999-2009
Medicare Rate Book & State/County/Plan Database	County-level payment rates
Healthcare Cost and Utilization Project's (HCUP) State Inpatient Databases (SID)	Insurance provider Type of plan Total inpatient facility charges
Medical cost reports	Hospital cost-to-charge
Computed	Costs Patient Safety Indicators (hospital QoC) Prevention Quality Indicators

MA Payment Rates Over Time

Fig. 3. Distribution of MA Payment Rates

Identification Strategy

- IV methodology
- Exploit exogenous changes in MA penetration over time to isolate the causal effect of MA penetration on system-wide healthcare use
 - Balanced Budget Act
 - Medicare Modernization and Improvement Act

Identification Strategy

$$Y_{ijt} = \beta_i + \beta_I MA \ Penetration_{i,t-1} + X_{it}\beta_2 + Year_t\beta_3 + X_{it}^* Year_t\beta_4 + Z_{ijt}\beta_5 + \varepsilon_{ijt}$$

Where:

- Y_{ijt} is a measure of spending, utilization, or other outcome for individual j in area i in year t
- MA Penetration_{it-1} is the MA HMO + PPO penetration in area i at year t-1
- X_{it} is a vector of area-time varying characteristics (demographic & economic conditions)
- Year, is a vector of year dummies
- $Z_{ijt:}$ is a vector of individual characteristics

Identification Strategy

$$MA\ Penetration_{it} = \gamma_i, +\gamma_1 Payment_{it} + X_{it}\beta_2 + Year_t\beta_3 + X_{it}^* Year_t\beta_4$$

$$MA\ Penetration_{it} = \gamma_i, +Payment_{it}^* Year_t\Gamma + X_{it}\beta_2 + Year_t\beta_3 + X_{it}^* Year_t\beta_4$$

$$MA\ Penetration_{it} = \gamma_i, +\gamma_1 Simulated\ Benchmark_{it} + X_{it}\beta_2 + Year_t\beta_3 + X_{it}^* Year_t\beta_4$$

Where:

- Y_{iit} is a measure of spending, utilization, or other outcome for individual j in area i in year t
- MA Penetration_{it-1} is the MA penetration in area i at year t-1
- X_{it} is a vector of area-time varying characteristics (demographic & economic conditions)
- Year, is a vector of year dummies
- Z_{iit:} is a vector of individual characteristics
- Payment_{it} is the benchmark payment rate, used as instrument for penetration
- Simulated Benchmark is the benchmark without TM component

Summary Statistics

Table 1 Summary statistics.

	1999-2009	2009		1999-2009	2009
Hospitalizations (patient-level)			MA (county-level, unweighted)		
Cost, dollars	11,258	12,422	MA penetration (%)	0.0726	0.147
	(17,906)	(18,653)		(0.106)	(0.116)
Length of stay, days	5.701	5.423	MA HMO penetration (%)	0.0403	0.0459
	(8.821)	(8.422)		(0.0906)	(0.0924)
Died during hospitalization (%)	0.0304	0.0260	Benchmark payment (dollars)	672.4	795.6
	(0.172)	(0.159)		(105.4)	(76.09)
PQI (%)	0.143	0.133	Simulated benchmark	646.3	788.8
	(0.350)	(0.340)	(dollars)	(91.98)	(70.16)
PSI (%)	0.0184	0.0131			
	(0.134)	(0.114)			
Per person, county level			Insurance among hospitalized		
Cost, dollars	1203	1348	% Medicare	0.396	0.375
	(366.0)	(367.1)		(0.489)	(0.484)
Number of hospitalizations	0.119	0.121	% Medicaid	0.129	0.143
•	(0.0312)	(0.0317)		(0.335)	(0.350)
Total days in hospital	0.616	0.650	% commercial Insured	0.281	0.262
	(0.174)	(0.188)		(0.450)	(0.440)
Mortality in hospital (%)	0.00355	0.00306	% self-pay	0.0433	0.0461
	(0.0012)	(0.00104)		(0.203)	(0.210)
PQI (visits)	0.0171	0.0156			
-, ,	(0.0075)	(0.00611)			

Results

 Increase in benchmark payment of \$100 increases penetration by 3–5 percentage points

Table 3
First stage.

Outcome:	Ho spitalization	pitalization level penetration							County level penetration			
	Payment × year	Simulated county bendimk	Simulated state bendimk	Payment	Payment × Year	Simulated county benchmk	Simulated state benchmk	Payment	Payment × Year	Simulated county benchmk	Simulated state benchmk	
Payment Payment	0.032913 ^{***} (0.0112644)	0.0474 (0.0170)	0.0523 ¹¹¹ (0.0142)	0.189 TO (0.002)	0.032913*** (0.00544)	0.0474°° (0.0067)	0.0523"" (0.00773)	0.189 ^{***} (0.0173)	0.0334 ^{***} (0.0107)	0.045 (0.0125)	0.0506 ^{***} (0.0129)	0.1405 (0.0232)
Covariates Hosp FEs County FEs Year FEs Cluster	Yes Yes No Yes County	Yes Yes No Yes County	Yes Yes No Yes County	Yes Yes No Yes County	Yes Yes No Yes Hospital	Yes Yes No Yes Hospital	Yes Yes No Yes Hospital	Yes Yes No Yes Hospital	Yes No Yes Yes County	Yes No Yes Yes County	Yes No Yes Yes County	Yes No Yes Yes County
Obs R-Squared F-stat	13,678,534 0.4825 8.54	13,678,534 0.51 4.03	13,678,534 0.4614 13,66	13,678,534 0.51 24.51	13,678,534 0.4825 36,66	13,678,534 0.51 22.2	13,678,534 0.4614 45.85	13,678,534 0.51 119.5	237 6 0.445 9.7	2376 0.465 4.9	2376 0.465 15.3	2376 0.4921 36.6

Results

 Lower total hospitalization costs for areas with greater MA penetration

Table 7
Effect of MA penetration on population-level hospital use and outcomes.

	Full sample		Over 65		Under 65		
	OLS	IV payment × year	OLS	IV payment × year	OLS	IV payment × year	
Log total costs							
MA managed care penetration	-0.00282""	-0.00678"	-0.00240	-0.00412	-0.00282	-0.00813"	
	(0.000795)	(0.00343)	(0.000785)	(0.00337)	(0.000881)	(0.00356)	
Days in hospital per thousand re	idents						
MA managed care penetration	-0.864"	-4.975°°	-1.714	-8.916	-0.480	-2.469"	
	(0.437)	(1.933)	(1.423)	(5.497)	(0.292)	(1.092)	
Number of hospitalizations per ti	housand residents						
MA managed care penetration	0.0670	-0.0804	0.308	0.748	0.0348	-0.101	
	(0.0592)	(0.229)	(0.194)	(0.795)	(0.0360)	(0.133)	
PQI per thousand residents							
MA managed care penetration	0.0104	-0.0909"	0.0571	0.0546	0.00855	-0.0585"	
	(0.0107)	(0.0446)	(0.0376)	(0.126)	(0.00564)	(0.0261)	

Threats

- Validity of IV approach
- Assumption that payment rates are unrelated to local spending on TM FFS enrollees
 - TM costs are an element of benchmark calculation
 - Previous research finds no evidence for serial correlation in spending growth in TM

Concluding Thoughts

- Any spillover effects of MA plans to others' spending or outcomes have direct implications for payment rates in limiting welfare losses
- Increasing MA penetration results in lower hospitalization costs and shorter LOS system-wide
 - Substantial magnitude of spillovers
 - Suggests higher optimal MA payments
- Future research on other types of utilization & quality of care.

Thank you!

Questions?