Al Deep Learning: Convolutional Neural Networks (II) Deep Learning with Big Data

Thuan L Nguyen, PhD

- 1. Al Deep Learning: Convolutional Neural Networks Overview
- 2. Al Deep Learning: Properties of Images
- 3. Al Deep Learning: Convolution Layers in Convolutional Neural Networks
- 4. Al Deep Learning: Pooling Layers in Convolutional Neural Networks
- 5. Al Deep Learning: Convolutional Neural Networks: Architectures: Overview
- 6. Al Deep Learning: Convolutional Neural Networks: Architectures: Layers
- 7. Al Deep Learning: Build and Train Convolutional Neural Networks

CNN: Convolution(al) Operation, Feature Maps, and Receptive Fields

- The convolution operation is performed by sliding the filter over the input.
- At every location, element-wise matrix multiplication is done and the results are summed.
- The sum goes into the feature map.
- The green area where the convolution operation takes place is called the receptive field.
 - Due to the size of the filter, the receptive field is also 3x3.

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

Input x Filter

Feature Map

CNN: Examples of Convolution(al) Operation

This was an example convolution operation shown in 2D using a 3x3 filter:

Convolutional filter 1

1	0	1
0	1	0
1	0	1

CNN: Examples of Convolution(al) Operation

This was an example convolution operation shown in 2D using a 3x3 filter:

Original image

Convolutional filter 1

1	0	1
0	1	0
1	0	1

CNN: Examples of Convolution(al) Operation

This was an example convolution operation shown in 2D using a 3x3 filter:

Convolutional filter 1

1	0	1
0	1	0
1	0	1

CNN: Convolution(al) Operations & Final Outputs

- In previous slides is an example convolution operation shown in 2D using a 3x3 filter.
- In reality:
 - An image is represented as a 3D matrix with dimensions of height, width and depth,
 - Where depth corresponds to color channels (RGB).
- A 2D convolutional layer → 2D filter has a specific height and width, like 3x3 or 5x5,
- With actual convolution operations:
 - Multiple convolutions are performed on an input:
 - Each using a different filter and resulting in a distinct feature map.
- We then stack all these feature maps together.
 - To create the **final output** of the **convolution layer**.

CNN: Convolution(al) Operations & Final Outputs

- Convolution operations result in a set of feature maps.
- All these feature maps are stacked together to create the final output of the convolution layer.

CNN: Convolution(al) Operations: Stride

- In convolution operations, stride specifies how much we move the convolution filter at each step.
- By default, the value is 1, as you can see in the figure below.

CNN: Convolution(al) Operations: Stride

- It is possible to use bigger strides
 - That makes the resulting feature map **smaller**
 - It's likely to skip over potential locations.
 - That results in less overlap between the receptive fields.
- The following figure demonstrates a stride of 2.

CNN: Convolution(al) Operations: Padding

- So, the size of the feature map is smaller than the input:
 - Because the convolution filter needs to be contained in the input.
- It's GOOD!
 - Convolution operations reduce dimensionality.
 - Fewer dimensions, simpler & faster computation.

CNN: Convolution(al) Operations: Padding

- BUT!
 - It's also a big problem. What?
 - The image inputs get smaller and smaller
 - → Details are lost → recognition accuracy drops
 - → Run out of "latent pixels"
 - → Convolutional neural networks: not too deep architectures

- If we want to maintain the same dimensionality:
 - Use padding to surround the input with zeros.

CNN: Convolution(al) Operations: Padding

Stride 1 with Padding

Feature Map

- The gray area around the input is the padding.
- We either pad with zeros or the values on the edge.
 - Padding makes the dimensionality of the feature map match the input.
- Padding is commonly used in convolutional neural networks to preserve the size of the feature maps.
 - Otherwise, the size of feature maps would shrink at each layer, which is not desirable.

CNN: Convolution(al) Operations: Zero Padding

- HOWTO calculate how many layers of values for padding?
 - Given **h_filter**: height of the filter; **w_filter**: width of the filter
 - Number of layers of values for padding = (h_filter 1) / 2 OR (w_filter 1) / 2
 - For example, with h_filter = 3 and w_filter = 3, layer of padding = 1

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	0	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

	0	0	1	
*	0	1	1	=
	1	1	1	

1	1	2	0	0
0	1	1	1	0
0	0	1	2	1
1	0	2	1	0
0	1	1	3	0

CNN: Convolution(al) Operations: Suggested Best Practices

- Image size:
 - Resize the image to have a size in the power of 2, e.g., 32x32, 256x256
- Convolution filter:
 - A filter of $(h, w) = 3 \times 3$ should work well with deep neural networks
- Stride:
 - Use the default stride: s = 1
- Padding:
 - Add 1 layer of zero padding

CNN: Convolution(al) Operations: An Example of 3D Filters

First, to be simple, a convolution using a single filter.

- Given a 32x32x3 image and a filter of size 5x5x3
 - NOTES: the depth of the convolution filter matches the depth of the image, both being 3.
- When the filter is at a particular location, it covers a small volume of the input, and the convolution operation is performed as above.
- In this convolution operation, the sum of matrix multiply in 3D instead of 2D is done; the result is still a scalar.
- Slide the filter over the input as above and perform the convolution at every location aggregating the result in a feature map.
- This feature map is of size 32x32x1, shown as the red slice on the right.

CNN: Convolution(al) Operations: An Example of 3D Filters

- If we used 10 different filters we would have 10 feature maps of size 32x32x1:
 - Stacking them along the depth dimension produces the final output of the convolution layer:
 - a volume of size 32x32x10, shown as the large blue box on the right.

CNN: Convolution(al) Operations: An Example of 3D Filters

- NOTES:
 - The height and width of the feature map are unchanged and still 32 due to padding.
- To help with visualization:
 - Slide the filter over the input as shown in the simple scenario of the 2D filter.
 - At each location, a scalar is calculated.
 - The set of all these scalars make the feature map.
- The figures show the sliding operation at 4 locations.
 - However, in reality, the convolution operation is performed over the entire input, i.e., all over the blue rectangle to the left.

CNN: Convolution(al) Operations: An Example of 3D Filters

- Let' see how two feature maps are stacked along the depth dimension:
 - The convolution operation for each filter is performed independently.
 - The resulting feature maps are separated.

- After a convolution operation we usually perform pooling to reduce the dimensionality.
 - This enables us to reduce the number of parameters
 - That helps both shorten the **training time** and combat **overfitting**.
- Pooling layers down-sample each feature map independently.
 - That **reduces** the height and width, **keeping** the depth intact.
- The most common type of pooling is max pooling.
 - That just takes the **max value** in the pooling window.
- Different from the convolution operation, pooling has no parameters.
 - It slides a window over its input, and simply takes the max or the average value in the window.
 - Similar to a convolution, we specify the window size and stride.

CNN: Pooling: Why?

- Pooling aggregates multiple values into a single value.
- Pooling: Invariance to small transformations
- Pooling reduces the size of the layer output/input to next layer.
 - So, faster computations
- Pooling keeps most important information for the next layer

CNN: Pooling: Max Pooling vs. Average Pooling

- Max pooling:
 - Keep the max value in the window

1	4	3	6	
2	1	0	9	
2	2	7	7	
5	3	3	6	

- Average pooling:
 - Calculate the average of all the values in the window and keep it.

CNN: Pooling: An Example with Max Pooling

- Here is the result of max pooling using a 2x2 window and stride 2
 - Each color denotes a different window.
 - Since both the window size and stride are 2, the windows are not overlapping.
- This window and stride configuration halves the size of the feature map.
 - This is the **main use case of pooling**, down-sampling the feature map while keeping the important information.

1	1	2	4	mov pool with 2v2		
5	6	7	8	max pool with 2x2 window and stride 2	6	8
3	2	1	0		3	4
1	2	3	4			

- Consider the feature map dimensions before and after pooling:
 - If the input to the pooling layer has the dimensionality 32x32x10, using the same pooling parameters described above, the result will be a 16x16x10 feature map.
 - Both the height and width of the feature map are halved, but the depth is not changed because pooling works independently on each depth slice the input.

- By halving the height and the width, we reduced the number of weights to 1/4 of the input.
- Consider that to train a deep learning model, it is typical to deal with millions of weights in CNN architectures, this reduction is a big deal.

- In convolutional neural network architectures:
 - Convolution is done with 3x3 windows, stride 1 and with padding.
 - Pooling is typically performed with 2x2 windows, stride 2 and no padding.

- Here is the result of max pooling using a 2x2 window and stride 2
 - Each color denotes a different window.
 - Since both the window size and stride are 2, the windows are not overlapping.
- This window and stride configuration halves the size of the feature map.
 - This is the main use case of pooling, downsampling the feature map while keeping the important information.

