正向传播

反向传播 (不妨假设N=1) 约定"表示对它相采,"义表示任间海法,"是示(偏)微分

dloss = $d(sum(y-y_pred)^2) = sum[2(y_pred-y)\cdot d(y_pred)] = 2(y_pred-y) \times d(y_pred)^T$ = $2(y_pred-y) \times d(W_1) \times h_pred^T$

记 lly_pred-y)=a, h_relu=B. Dla, B均为行向量.

dloss= d×d(WLT)×Bi=sum[(di×B)·d(WLT)]=sum[(Bixd)·d(W2)]
故w的横度的为pixd=h_relu*x2(y_pred-y)

$$dloss = \bigcup_{\alpha} \times \bigcup_{dW_{2}^{T}} \times \bigcup_{\beta^{T} \times d} \cdot \bigcup_{W_{2}} \cdot \int_{W_{2}} sum()$$

同理有

dloss = 2(y_pred-y) xd(y_pred) = 2(y_pred - y) x W2x d(h_relu)

= 2(Y_pred-y)×WzTx diag(h>o)xd(hT)=2(Y_pred-y)xWzTx diag(h>o)xd(W,T)x XT
同理可得W,的構度为xTx2(Y_pred-y)xWzTx diag(h>o)=xTx(k(Y_pred-y)xWt).(h>o)

校② W.-= grad_W. learning_rate 即完成一次梯度下降过程 W_-= grad_W. learning_rate