

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

TARGET: JEE (M + A): 2026

CLASS: IIT-NURTURE (ELITE) PHASE - I & II

TEST TYPE: OFFLINE DATE: 13.07.2026 PATTERN: JEE ADVANCED

Time: 3 Hours INTERNAL TEST - 04 Maximum Marks: 198

Student's Name :

INSTRUCTIONS

READ THE INSTRUCTIONS CAREFULLY

QUESTION PAPER FORMAT AND MARKING SCHEME

- 1. The question paper has three parts: PHYSICS, CHEMISTRY and MATHEMATICS. Each part has THREE SECTIONS.
- 2. Carefully read the instructions given at the beginning of each section.
- 3. Section I(i): This section contains SIX (06) questions. Each question has Four options (A), (B), (C) and (D). ONLY ONE of these four options is correct. SINGLE CHOICE QUESTIONS

Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.

3. Section I(ii): This section contains SIX (06) questions. The Answer to each question is a ONE OR MORE THAN ONE CORRECT OPTIONS (MCQ)

Marking scheme: +4 for correct answer, 0 if not attempted and -2 in all other cases.

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct options.

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

5. Section II: This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.

Marking scheme: +4 If ONLY the correct numerical value is entered. 0 In all other cases.

ALLEN South India Campuses

Bengaluru Campuses

Jayanagar I Koramangala I Marathahalli I Banaswadi I Hebbal I Hsr Layout I Bannerghatta Basaveshwara Nagar I Sarjapura I Jalahalli Indiranagar I Whitefield

Mysuru Campus

Saraswathipuram Campus
B.M. Arcade, No-2923, 1st Main, 5th Cross,
Saraswathipuram, Opp. SVC Bank, Mysuru-570009
Tel: 0821-4526818, 9945588588

Mangaluru Campus

B1 Vikaas Pre-University College Vikas Group of institutions, Airport Road, Mary Hill Mangaluru, Karnataka-575008 Tel: 9900090058

Chennai Campuses

Ashok Nagar Campus (HO)
No. 346 & 347, Next to Kasi Theater,
Jafferkhanpettai, Ashok Nagar, Chennai-600083
Tel: 9116687301/302

Jayanagar Campus (HO)

No. .36, 15th Cross, 3rd Block, Near Southend Circle,

Opp. City Central Library, Jayanagar, Bengaluru-560011

Tel: 080-46704000

Madipakkam Campus

Pathima Markaz Building, Plot Nos. 14 & 19 and 15 & 18, Madipakkam velachery Main Road, Near Nakshatra Restaurent, Ram Nagar, Madipakkam, Chennai - 600091, **Tel : 9116687303/304**

Anna Nagar West Campus

Newry Square, No. 99, 13th Main Road, 6th Avenue, 1st Block, Anna Nagar West, Chennai-600040 Tel : 6366366903/904

Adyar Campus

No. 7, City Tower, 2nd Floor, 3rd Cross Street, Kasthuribai Nagar, Adyar, Chennai-600020 Tel: 9116687307/308

Sholinganallur Campus

S.M.J. Tower, Door No.16, IT Expressway, Beside Novotel, Old Mahabalipuram Road, Sholinganallur, Chennai-600119 Tel: 6366366901/902

Anna Nagar East Campus

New No. 80, Old No. 419, Kilpauk Garden Road, Anna Nagar East, Chennai-600010 Tel: 9116687305/306

Paavai Campus

Paavai Vidya Nagar Puduchatram, Service Road Paavai Tamil Nadu-637018 Tel.: 9611994455, 9566404272

Kochi Campuses

Palarivattom Campus (HO) RK Commercial, PJ Antony Cross Road, Palarivattom, Kochi-682025 Tel: 9116687309/310

M.G. Road Campus

Primero Plaza, AK Sheshadiri Road, Near Maharajas College Ground, Kochi - 682011 Tel: 9116687309/310

Puducherry Campuses

Vedam Campus (HO)
No. 372 & 374, Bharathi Street,
Puducherry-605001
Tel: 9900804950, 9741303080

Gurugram Campus

VIP Nagar, Villianur Main Road, Arumparthapuram, Puducherry-605110 Tel: 9900804950. 9741018090

Tirupati Campuses

AIR Road Campus
#170, First Floor, Above MGB Bajaj, New Balaji
Colony AIR bypass road, Tirupati - 517501
Tel.: 9900070050

Residential Campus D.No. 162, Vedanthapura Agraharam, NR Layout. R.C. Road. Tirupati -517507

Tel.: 9900070050

 7th street Tatabad, Gandhipuram Coimbatore - 641012,
 Tel: 9606071654, 9900963850

Coimbatore Campus

South Regional Office : B1 Building #36, 15th Cross, 3rd Block, Near Southend Circle, Opp City Central Library Jayanagar Bengaluru-560011

Tel.: 080-46704000 | Email: bengaluru@allen.ac.in | Web: www.allen.ac.in/bengaluru

Corporate Office: "SANKALP", CP-6, Indra Vihar, Kota (Rajasthan)-324005 Tel.: +91-744-2757575, +91-744-3556677 E-mail: info@allen.ac.in | Web: www.allen.ac.in

SOME USEFUL CONSTANTS

Atomic No. H = 1, B = 5, C = 6, N = 7, O = 8, F = 9, AI = 13,

P = 15, S = 16, CI = 17, Br = 35, Xe = 54, Ce = 58,

Atomic masses: H = 1, Li = 7, B = 11, C = 12, N = 14, O = 16,

F = 19, Na = 23, Mg = 24, AI = 27, P = 31, S = 32, CI = 35.5,

Ca = 40, Fe = 56, Br = 80, I = 127, Xe = 131, Ba = 137,

Ce = 140,

Boltzmann constant

 $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$

Coulomb's law constant

 $\frac{1}{4\pi\varepsilon_{\bullet}} = 9 \times 10^{9}$

Universal gravitational constant

 $G = 6.67259 \times 10^{-11} N-m^2 kg^{-2}$

• Speed of light in vacuum

 $c = 3 \times 10^8 \, \text{ms}^{-1}$

• Stefan-Boltzmann constant

 σ = 5.67 × 10⁻⁸ Wm⁻²–K⁻⁴ b = 2.89 × 10⁻³ m–K

Wien's displacement law constantPermeability of vacuum

 $\mu_0 = 4\pi \times 10^{-7} \text{ NA}^{-2}$

Permittivity of vacuum

$$\epsilon_0 = \frac{1}{11.6^2}$$

Planck constant

 $h = 6.63 \times 10^{-34} J-s$

INTERNAL TEST - 04 IIT-NURTURE (ELITE) PHASE 1 & 2

PATTERN: JEE ADVANCED		DATE: 13.07.2026	
SYLLABUS			
PHYSICS :	Mathematical Tools & Vector Projectile Motion, Relative Mo	,	
CHEMISTRY:	Atomic Structure And Some	Basic Concept Of Chemistry.	
MATHS :	Basic Mathematics Including limits).	Logarithm (Except trig. Formula &	

HAVE CONTROL → HAVE PATIENCE → HAVE CONFIDENCE ⇒ 100% SUCCESS

BEWARE OF NEGATIVE MARKING

PHYSICS

SECTION-I(i): (Maximum Marks: 18)

- This section contains **SIX (06)** questions.
- Each question has Four options (A), (B), (C) and (D). **ONLY ONE** of these four options is correct.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered)

Negative Marks: -1 In all other cases

- 1. A man walks 30 m towards north, then 20 m towards east and in the last $30\sqrt{2}$ m towards south-west. The displacement from origin is:
 - (A) 10m towards east

(B) 10 m towards west

(C) $60\sqrt{2}$ m towards north west

- (D) $60\sqrt{2}$ m towards east north
- 2. A trolley is moving horizontally with a constant velocity of v m/s w.r.t. earth. A man starts running from one end of the trolley with a velocity 1.5v m/s w.r.t. to trolley. After reaching the opposite end, the man turn back and continues running with a velocity of 1.5 v m/s w.r.t. the trolley in the backward direction. If the length of the trolley is L then the displacement of the man with respect to earth during the time he reaches to starting point?

(A) 1.5 L

(B) 2.5 L

(C) $\frac{4L}{3}$

- (D) $\frac{5L}{3}$
- **3.** A girl is walking on a road with velocity of 8 kph. Suddenly rain starts falling at 10 kph in vertically downward direction. The velocity of rain w.r.t to girl is:
 - (A) $\sqrt{7}$ kph

(B) $\sqrt{13}$ kph

(C) $\sqrt{164}$ kph

- (D) $\sqrt{6}$ kph
- **4.** With what speed should a body the thrown upwards so that the distances travelled in 5th second and 6th second are equal?
 - (A) 58.4 m/s

(B) 49 m/s

(C) 98 m/s

(D) $\sqrt{98} \text{ m/s}$

6201CJA11ELITE24010

- 5. A ball thrown up in vacuum returns after 12 sec. Its position after five seconds will be same as after
 - (A) 7 sec

(B) 3 sec

(C) 3.5 sec

- (D) 4 sec
- 6. A ball is projected from point A with a velocity 10 m/s perpendicular to the inclined plane as shown in figure. Range of the ball on the inclined plane is:

(A) $\frac{20}{13}$ m (C) $\frac{40}{3}$ m

SECTION-I(ii): (Maximum Marks: 24)

This section contains **SIX (06)** questions.

Each question has **FOUR** options. **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).

For each question, choose the option(s) corresponding to (all) the correct answer(s)

Answer to each question will be evaluated according to the following marking scheme:

Full Marks If only (all) the correct option(s) is (are) chosen. +4

Partial Marks If all the four options are correct but ONLY three options are chosen. +3

If three or more options are correct but ONLY two options are chosen and Partial Marks +2

both of which are correct.

Partial Marks +1If two or more options are correct but ONLY one option is chosen and it is a

correct option.

Zero Marks 0 If none of the options is chosen (i.e. the question is unanswered).

In all other cases. Negative Marks : -2

- For Example: If first, third and fourth are the ONLY three correct options for a question with second option being an incorrect option; selecting only all the three correct options will result in +4 marks. Selecting only two of the three correct options (e.g. the first and fourth options), without selecting any incorrect option (second option in this case), will result in +2 marks. Selecting only one of the three correct options (either first or third or fourth option), without selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option(s) (second option in this case), with or without selection of any correct option(s) will result in -2 marks.
- If $\vec{A} = 2\hat{i} + \hat{j} + \hat{k}$ & $\vec{B} = \hat{i} + \hat{j} + \hat{k}$ are two vectors, then the unit vector 7.
 - (A) Perpendicular to \vec{A} is $\frac{-\hat{j} + \hat{k}}{\sqrt{2}}$.
- (B) Parallel to \vec{A} is $\frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{2}}$.
- (C) Perpendicular to \vec{B} is $\left(\frac{-\hat{j}+\hat{k}}{\sqrt{2}}\right)$. (D) Parallel to \vec{A} is $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}}$.

5/16

- 8. A force of $\sqrt{3}N$ makes equal angles with X-axis, Y-axis and Z-axis. The possible value of force are
 - (A) $(\hat{i} + \hat{i} + \hat{k})N$

(B) $(-\hat{i} + \hat{j} - \hat{k})N$

(C) $(-\hat{i} - \hat{i} - \hat{k})N$

- (D) $(-\hat{i} + \hat{j} + \hat{k})N$
- 9. Check up the only correct statements in the following
 - (A) A body having a constant velocity still can have varying speed.
 - (B) A body having a constant speed can have varying velocity.
 - (C) A body having constant speed can have an acceleration.
 - (D) If velocity and acceleration are in the same direction, then distance is equal to displacements.

6201CJA11ELITE24010

- 10. A particle moves along a straight line and its velocity depends on time as $v = 4t t^2$. Then for first 5 seconds.
 - (A) Average velocity is $\frac{25}{3}$ m/s.

(B) Average speed is 10 m/s.

(C) Average velocity is $\frac{5}{3}$ m/s.

(D) Acceleration velocity is $4m/s^2$ at t = 0.

- **11.** Mark the correct statement(s):
 - (A) A particle can have zero displacement and non-zero average velocity.
 - (B) A particle can have zero displacement and non-zero velocity.
 - (C) A particle can have zero acceleration and non-zero velocity.
 - (D) A particle can have zero velocity and non-zero acceleration
- 12. Two balloons are simultaneously released from two buildings A and B. Balloon from A rises with constant velocity 10 m/s, While the other one rises with constant velocity of 20 m/s. Due to wind the balloons gather horizontal velocity $V_x = 0.5$ y, where y is the height from the point of release. The buildings are at a distance of 250 m and after some time t the balloons collide. Choose the correct option(s):

- (A) t = 5 seconds
- (B) difference in height of buildings is 100 m.
- (C) difference in height of buildings is 500 m.
- (D) t = 10 seconds

SECTION-II: (Maximum Marks: 24)

- This section contains **SIX (06)** questions. The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value of the answer in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **Two** decimal places; e.g. 6.25, 7.00, −0.33, −.30, 30.27, −127.30, if answer is 11.36777..... then both 11.36 and 11.37 will be correct)

• Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct numerical value is entered.

Zero Marks: 0 In all other cases.

- 1. A particle is projected vertically up with initially velocity 45 m/s. Distance travelled in 5^{th} second $(g = 10 \text{ m/s}^2) = \text{n/2}$. Then the value of n is
- 2. A particle is moving in XY-plane. It starts to move from origin O at an angle α with X-axis.

It has a constant acceleration in negative Y-direction. After some time it passes through a point B in a direction making angle β with the X-axis. If OB makes $\theta = 45^{\circ}$ angle with the X-axis, find the value of tan $\alpha + \tan \beta$.

3. A stone is projected from top of a vertical pole of height 3 m with initial velocity 10 m/s. The maximum range on the ground is $x\sqrt{10}$ m. Find the value of x is _____. (g = 10 m/s²)

6201CJA11ELITE24010 7/16

4. A particle starts from point A and moves under the action of some forces that lead it to have an acceleration of 6 m/s² until it reaches B after which it is in free fall. It finally strikes point P after travelling some distance in air. If $x_0 = \frac{36}{n}$ m. Find the value of n is_____. (g = 10 m/s²)

- 5. In a square cut, the speed of the cricket ball changes from 30 m/s to 40m/s during the time of its contact $\Delta t = 0.01s$ with the bat. If the ball is deflected by the bat through an angle of $\theta = 90^{\circ}$. The magnitude of the average acceleration of the ball is $n \times 10^3$ m/s². Then the value of n is _____.
- 6. A particle is projected up an inclined plane of inclination β at an elevation α to the horizontal. Find the ratio between tan α and tan β , if the particle strikes the plane horizontally.

CHEMISTRY

SECTION-I(i): (Maximum Marks: 18)

- This section contains **SIX (06)** questions.
- Each question has Four options (A), (B), (C) and (D). **ONLY ONE** of these four options is correct.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered)

Negative Marks: -1 In all other cases

- 1. The dissociation energy of H₂ is 430.53 kJ/mol. If H₂ is dissociated by illumination with radiation of wavelength 253.7 nm. The fraction of the radiant energy which will be converted into K.E is given by:
 - (A) 8.86 %

(B) 2.33 %

(C) 1.3 %

- (D) 90%
- 2. 1.61 gm of Na₂SO₄.10H₂O contains same number of oxygen atoms as present in
 - (A) $0.98 \text{ gm H}_2\text{SO}_4$

(B) 0.08 gm SO_3

(C) $1.78 \text{ gm H}_2\text{S}_2\text{O}_7$

- (D) 0.05 gm CaCO₃
- 3. The wavelength of the first Lyman lines of hydrogen, He^+ and Li^{2+} ions are λ_1 , λ_2 , λ_3 . The ratio of these wavelengths is :
 - (A) 1:4:9

(B) 9:4:1

(C) 36:9:4

- (D) 6:3:2
- 4. Diborane tetrachloride was treated with NaOH and the following reaction occurred

$$B_2Cl_4 + NaOH \longrightarrow NaBO_2 + H_2O + H_2 + NaCl.$$

If 1362 ml of hydrogen gas is formed at STP, how much amount of B₂Cl₄ was consumed?

(A) 9.97 g

(B) 9.84 g

(C) 0.0968 g

- (D) 23.57 g
- 5. For which orbit in He^+ ion, the circumference is 26.5\AA ?
 - (A) 2

(B) 4

(C) 3

- (D) 16
- 6. The mass composition of universe may be given as 90% H₂ and 10% He. The average molecular mass of universe should be :
 - (A) 2.20

(B) 2.10

(C) 3.80

(D) 3.64

SECTION-I(ii): (Maximum Marks: 24)

• This section contains **SIX (06)** questions.

• Each question has **FOUR** options. **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).

• For each question, choose the option(s) corresponding to (all) the correct answer(s)

• Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen and

both of which are correct.

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a

correct option.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks : -2 In all other cases.

- For Example: If first, third and fourth are the ONLY three correct options for a question with second option being an incorrect option; selecting only all the three correct options will result in +4 marks. Selecting only two of the three correct options (e.g. the first and fourth options), without selecting any incorrect option (second option in this case), will result in +2 marks. Selecting only one of the three correct options (either first or third or fourth option), without selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option(s) (second option in this case), with or without selection of any correct option(s) will result in −2 marks.
- 7. The density of a liquid 1.2 gm/mL. There are 25 drops in 2 mL. The number of molecules in one drop is: [Given molecular mass of liquid = 50 amu]

(A)
$$\frac{6}{5} \times \frac{1}{(25)^2} N_A$$

(B)
$$\left(\frac{1}{25}\right)^2 N_A$$

(C)
$$\frac{1.2}{(25)^2}$$
N_A

(D)
$$1.2 \times 25 \text{ N}_{A}$$

- 8. Which of the following statements is/are correct regarding an oxide of iron, in which the mass per cent of iron and oxygen are 69.9 and 30.1, respectively? (Fe = 56 g/mol)
 - (A) The minimum molecular mass of the compound is 160.
 - (B) The minimum molecular mass of the compound is 272
 - (C) If all O¹⁶ atoms are replaced by O¹⁸, the new mass per cent of O is 32.5%
 - (D) If all O^{16} atoms are replaced by O^{18} , the new mass per cent of O is 28.9%

(C) Frequency of revolution increases

9.	In a H-like sample electrons make transition from 4^{th} excited state to 2^{nd} state then :		
	(A) 10 different spectral lines are observed		
	(B) 6 different spectral lines are observed.		
	(C) Number of lines belonging to the balmer series is 3.		
	(D) Number of lines belonging to paschen series is 2.		
10.	Calculate mass % and mole % of H ₂ in a mixture of H ₂ and O ₂ if average molecular mass of the mixture is 14		
	(A) 50% by mole	(B) 60% by mole	
	(C) 8.57% by mass	(D) 10% by mass	
11.	Which of the following is/are correct statement(s)?		
	(A) 3s orbital is spherically symmetrical with two nodes.		
	(B) $d_x^2-y^2$ orbitals has lobes of electron density in XY-plane along X and Y-axis.		
	(C) The radial probability curve RPDF vs. r of 1s, 3p and 5d have one, two and three maxima.		
	(D) $3d_{z^2}$ has zero electron density in XY-plane.		
12.	As an electron jumps from the fourth orbit to the second orbit in Be^{3+} ion, its :		
	(A) K.E increases	(B) Speed increases	

(D) |PE| decreases

6201CJA11ELITE24010 11/16

SECTION-II: (Maximum Marks: 24)

- This section contains **SIX (06)** questions. The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value of the answer in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **Two** decimal places; e.g. 6.25, 7.00, -0.33, -.30, 30.27, -127.30, if answer is 11.36777..... then both 11.36 and 11.37 will be correct)

• Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct numerical value is entered.

Zero Marks : 0 In all other cases.

1. For a 3s-orbital

$$\psi(3s) = \frac{1}{9\sqrt{3}} \left(\frac{1}{a_0}\right)^{3/2} (6 - 6\sigma + \sigma^2) e^{-\sigma/2}$$

where;
$$\sigma = \frac{2rz}{3a_0}$$

the maximum distance of radial node from nucleus is $\frac{A}{B}\frac{(C+\sqrt{3})}{z}a_0$

Calculate
$$\frac{(A+B)^2 - C^2}{4}$$

- 2. Calculate minimum uncertainty involved in the location of a particle whose de Broglie wavelength is $\sqrt{150\pi}$ A with an uncertainty of 0.01 π A. Express answer in nm.
- Specific charges of two particles A and B are in ratio 2 : 3. If their mass ratio m_A : m_B is 2 : 3, then the value of $\frac{18}{8} \times \left(\frac{q_A}{q_B}\right)$ is ____.
- **4.** What is the quantity of water (in g) that should be added to 16 g methanol to make the mole fraction of methanol as 0.25?
- 5. Not considering the electronic spin the degeneracy of the second excited state of H-atom is 9, while the degeneracy of the second excited state of Li⁺ is ____.
- **6.** Calculate the mass of urea (NH₂CONH₂) containing 1 gram-atom H.

MATHEMATICS

SECTION-I(i): (Maximum Marks: 18)

- This section contains **SIX (06)** questions.
- Each question has Four options (A), (B), (C) and (D). **ONLY ONE** of these four options is correct.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +3 If ONLY the correct option is chosen.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered)

Negative Marks: -1 In all other cases

- 1. Number of solution(s) of the equation $\log_2(x^2+3) = \frac{1}{2}\log_{1/3}\left(x+\frac{1}{x}\right)$, x>0 is:
 - (A) 0

(B) 1

(C) 2

- (D) Infinite
- 2. Check whether following statements are True or False and mark the correct order:

$$S_1: 3^{\sqrt{\log_3 7}} = 7^{\sqrt{\log_7 3}}$$

 S_2 : Number of solution to the equation $x^{log_{10}2x} = 5$ is 2.

 S_3 : Solution set of $\frac{(x-2)}{(x-4)} \le 0$ is $x \in [2, 4]$.

 $S_4: \text{Solution set of the inequality } \left(\frac{1}{3}\right)^{\log_{1/9}\left(x^2-\frac{10}{3}x+1\right)}\leqslant 1 \text{ is } x\leqslant \frac{10}{3}.$

- (A) TFFT
- (B) T T F F
- (C) T T T F
- (D) F T T F
- 3. $N = \frac{81^{\frac{1}{\log_5 9}} + 3^{\frac{3}{\log_5 6^3}}}{409} \left(\left(\sqrt{7} \right)^{\frac{2}{\log_2 5^7}} (125)^{\log_{25} 6} \right), \text{ then } \log_2 N \text{ has the value}$
 - (A) (

(B)

(C) -1

- (D) None of these
- **4.** Solution set of the inequality $\log_{10}^2 x 3(\log_{10} x)(\log_{10}(x-2)) + 2\log_{10}^2(x-2) < 0$, is:
 - (A) (0, 4)
- (B) $(-\infty, 1)$
- (C) $(4, \infty)$
- (D) (2.4
- **5.** Product of all values of x satisfying the equation $\sqrt{2^x \sqrt[3]{4^x (0.125)^{1/x}}} = 4 (\sqrt[3]{2})$ is :
 - (A) $\frac{14}{5}$

(B) 3

(C) $-\frac{1}{5}$

- (D) $-\frac{3}{5}$
- **6.** The product of all values of x satisfying the equation $|x-1|^{\log_3 x^2 2\log_x 9} = (x-1)^7$, is:
 - (A) 162

(B) 81

(C) $\frac{162}{\sqrt{3}}$

(D) $\frac{81}{\sqrt{3}}$

SECTION-I(ii): (Maximum Marks: 24)

• This section contains **SIX (06)** questions.

● Each question has **FOUR** options. **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).

• For each question, choose the option(s) corresponding to (all) the correct answer(s)

• Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen and

both of which are correct.

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a

correct option.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks : -2 In all other cases.

- For Example: If first, third and fourth are the ONLY three correct options for a question with second option being an incorrect option; selecting only all the three correct options will result in +4 marks. Selecting only two of the three correct options (e.g. the first and fourth options), without selecting any incorrect option (second option in this case), will result in +2 marks. Selecting only one of the three correct options (either first or third or fourth option), without selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option(s) (second option in this case), with or without selection of any correct option(s) will result in −2 marks.
- 7. The equation $x^{\frac{3}{4}(\log_2 x)^2 + \log_2 x \frac{5}{4}} = \sqrt{2}$, has
 - (A) at least one real solution
 - (B) exactly three solutions
 - (C) exactly one irrational solution
 - (D) complex roots
- 8. Consider the quadratic equation, $(\log_{10}8)x^2 (\log_{10}5)x = 2(\log_2 10)^{-1} x$. Which of the following quantities are rational?
 - (A) Sum of roots
 - (B) Product of roots
 - (C) (Sum of roots) \times (Product of roots)
 - (D) None of these

- 9. If positive p, q, r satisfy pqr = 1, then for equation $\frac{2px}{pq+p+1} + \frac{2qx}{qr+q+1} + \frac{2rx}{rp+r+1} = 1$, x equals :
 - (A) p + q + r
 - (B) 1
 - (C) Independent of p, q and r
 - (D) 1/2
- 10. Interval containing all the solutions of the equality $7^{x+2} \frac{1}{7} \cdot 7^{x+1} 14 \cdot 7^{x-1} + 2 \cdot 7^x = 48$, is
 - (A) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

(B) (π, π^2)

(C) $(-\pi, \pi)$

(D) (-e, e)

- 11. If $\log_4 5 = x$ and $\log_5 6 = y$, then
 - (A) $log_46 = xy$
 - (B) $\log_6 4 = xy$
 - (C) $\log_3 2 = \frac{1}{2xy 1}$
 - (D) $\log_2 3 = \frac{1}{2xy 1}$
- 12. For the equation $\log_{3\sqrt{x}} x + \log_{3x} \sqrt{x} = 0$, which of the following do not hold good?
 - (A) no real solution
 - (B) one prime solution
 - (C) one integral solution
 - (D) no irrational solution

SECTION-II: (Maximum Marks: 24)

- This section contains **SIX (06)** questions. The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value of the answer in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **Two** decimal places; e.g. 6.25, 7.00, -0.33, -.30, 30.27, -127.30, if answer is 11.36777..... then both 11.36 and 11.37 will be correct)

Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct numerical value is entered.

Zero Marks: 0 In all other cases.

1. The number of negative integral values of x satisfying the inequality

$$\log_{\left(x+\frac{5}{2}\right)} \left(\frac{x-5}{2x-3}\right)^2 < 0 \text{ is:}$$

2. Find x, if

4.

$$\begin{vmatrix} \frac{x}{y} + \frac{y}{x} \\ 4^{\frac{y}{y} + \frac{y}{x}} = 32 \\ \log_3(x - y) + \log_3(x + y) = 1 \end{vmatrix}$$

3. If set of all real values of x satisfying

$$|x^2 - 3x - 1| < |3x^2 + 2x + 1| + |2x^2 + 5x + 2|, x^2 - 3x - 1 \neq 0$$
 is $(-\infty, -a) \cup (-b, \infty)$, then find the value of $a + \log ab$.

If
$$x = \sqrt{\log_{11} 7}$$
, $y = \sqrt{\log_7 11}$, then the value of $e^{y \log_e 7 - x \log_e 11}$.

5. If
$$\log_x \log_{18} \left(\sqrt{2} + \sqrt{8} \right) = \frac{1}{3}$$
, then the value of $32x =$

6. Find the number of real values of x satisfying the equation

$$\log_2 (4^{x+1} + 4) \cdot \log_2 (4^x + 1) = \log_{\frac{1}{\sqrt{2}}} \sqrt{\frac{1}{8}}$$