(SOUS-)ESPACES VECTORIELS ET COMBINAISONS LINÉAIRES

- - $^{\circ}$
 - 1) Dans \mathbb{R}^3 , à quelle condition nécessaire et suffisante sur $a \in \mathbb{R}$ le vecteur (1,-a,1) est-il combinaison linéaire de (1,1,1) et (a,0,2)?
 - 2) Dans $\mathbb{R}^{\mathbb{R}}$, $x \longmapsto \cos^2 x$ est-elle combinaison linéaire de $x \longmapsto 1$ et $x \longmapsto \cos(2x)$?
 - 3) Dans $\mathbb{R}^{\mathbb{R}}$, $x \mapsto \sin(2x)$ est-elle combinaison linéaire des fonctions sinus et cosinus ?
 - **4)** Montrer que pour tout $A \in \mathcal{M}_2(\mathbb{K})$, A^2 est combinaison linéaire de I_2 et A.
- Les ensembles suivants sont-ils des sous-espaces vectoriels?
 - 1) $\{(x,y) \in \mathbb{R}^2_+ \mid x=y\}.$
 - 2) $\{(x,y) \in \mathbb{R}^2 \mid 2x 5y 1 = 0\}.$
 - 3) $\{(x,2x,3x) \mid x \in \mathbb{R}\}.$
 - 4) $\{(x,y) \in \mathbb{R}^2 \mid x^3 + x + y^2 = 0\}.$
 - 5) $\{(x, y, z) \in \mathbb{R}^3 \mid x = y \text{ et } 3y 2z = 0\}.$
 - 6) $\{P \in \mathbb{R}[X] \mid \deg(P) \ge 2\}.$
 - 7) ${P \in \mathbb{R}[X] \mid P(X^2) = P' + X^4 P}$.
 - 8) $\{f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \mid f(0) + f(1) = f'(0)\}.$
- - 1) L'ensemble des fonctions 1-périodiques.
 - 2) L'ensemble des fonctions croissantes.
 - 3) L'ensemble des fonctions monotones.
 - **4)** L'ensemble des fonctions qui sont la somme d'une fonction croissante et d'une fonction décroissante.
 - 5) L'ensemble des fonctions majorées.
 - 6) L'ensemble des fonctions bornées.
- $\bigcirc \bigcirc \bigcirc \bigcirc$ Soit *E* un \mathbb{K} -espace vectoriel.
 - 1) Soient F et G deux sous-espaces vectoriels de E. Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.
 - 2) Soit $(F_i)_{i \in I}$ une suite *filtrante* de sous-espaces vectoriels de E, i.e. pour laquelle :

 $\forall i, j \in I, \quad \exists k \in I, \quad F_i \cup F_j \subset F_k.$

Montrer que $\bigcup_{i \in I} F_i$ est un sous-espace vectoriel de E.

- 5 Montrer que les ensembles suivants sont des sous-espaces affines :
 - 1) $\{(x,y,z) \in \mathbb{R}^3 \mid x-y+z=2 \text{ et } 2x+y+2z=1\}.$
 - $2) \quad \Big\{ M \in \mathscr{M}_n(\mathbb{K}) \mid \operatorname{tr}(M) = 1 \Big\}.$
 - 3) $\{ f \in \mathcal{C}(\mathbb{R}, \mathbb{R}) \mid f(0) = 2 \text{ et } f(1) = -3 \}.$
 - 4) $\left\{ y \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \mid \forall x \in \mathbb{R}, e^{x^2} y'(x) + y(x) = 1 \right\}$.

- Montrer par des opérations sur les Vect l'égalité : $\mathbb{R}_2[X] = \text{Vect}((X-1)^2, (X-1)(X+1), (X+1)^2).$

FAMILLES LIBRES ET BASES

- 8 Montrer que les fonctions $x \mapsto \sin x$, $x \mapsto \cos x$, $x \mapsto x \sin x$ et $x \mapsto x \cos x$ sont linéairement indépendantes dans $\mathbb{R}^{\mathbb{R}}$.
- Montrer que $(x \mapsto e^x, x \mapsto e^{2x}, x \mapsto e^{x^2})$ est libre dans $\mathbb{R}^{\mathbb{R}}$:
 - 1) par une technique d'évaluation.
 - 2) par une étude asymptotique en $+\infty$.
- \bigcirc Montrer de deux manières différentes que les suites $(1)_{n\in\mathbb{N}}$, $(n^2)_{n\in\mathbb{N}}$ et $(2^n)_{n\in\mathbb{N}}$ sont linéairement indépendantes dans $\mathbb{R}^{\mathbb{N}}$.
- 11 \bigcirc \bigcirc Montrer que les suites $(n^k)_{n\in\mathbb{N}}$, k décrivant \mathbb{N} , sont linéairement indépendantes dans $\mathbb{R}^{\mathbb{N}}$.
- On pose $P_0 = 1$ et pour tout $k \in \mathbb{N}^*$: $P_k = X(X-1)(X-2)...(X-k+1).$

Montrer de deux manières différentes que la famille $(P_k)_{k\in\mathbb{N}}$ est libre.

- ① ② Soient E un \mathbb{K} -espace vectoriel et $u_1, \ldots, u_n \in E$. Pour tout $k \in [1, n]$, on pose $v_k = u_1 + \ldots + u_k$.
 - 1) Montrer que la famille $(u_1, ..., u_n)$ est libre si et seulement si la famille $(v_1, ..., v_n)$ l'est.
 - **2)** Montrer que $(u_1, ..., u_n)$ engendre E si et seulement si $(v_1, ..., v_n)$ engendre E.
- $\mathbb{C} \oplus \mathbb{C}$ Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice à diagonale strictement dominante, i.e. pour laquelle pour tout $i \in [1, n]$:

$$\sum_{\substack{1 \leq j \leq n \\ i \neq i}} |a_{ij}| < |a_{ii}|.$$

Soit $X \in \mathbb{C}^n$ une colonne pour laquelle AX = 0. Montrer que X = 0 en exploitant le réel max $\{|x_1|, \dots, |x_n|\}$. Qu'en déduit-on sur A?

- $\mathbb{C} \oplus \mathbb{C}$ Soit $n \in \mathbb{N}$. On veut montrer que la famille $\left((X+k)^n\right)_{0 \le k \le n} \det \mathbb{R}[X]$ est libre. Soient $\lambda_0,\dots,\lambda_n \in \mathbb{R}$. On suppose que $\sum_{k=0}^n \lambda_k (X+k)^n = 0$.
- 1) Montrer que pour tout $p \in [0, n]$:

 a) $\sum_{k=0}^{n} \lambda_k (X+k)^p = 0$.

 b) $\sum_{k=0}^{n} \lambda_k k^p = 0$.

 2) Conclure en utilisant des polynômes de Lagrange.
- Montrer que la famille $(x \mapsto e^{\lambda x})_{\lambda \in \mathbb{R}}$ de $\mathscr{C}(\mathbb{R}, \mathbb{R})$ est
 - 1) (b) en s'intéressant au comportement asymptotique des exponentielles.
 - 2) (B) (B) en utilisant des polynômes de Lagrange.
- B B B Montrer que la famille $(x \longmapsto \sin(\lambda x))_{\lambda \in \mathbb{R}_+^*}$ de $\mathscr{C}(\mathbb{R}, \mathbb{R})$ est libre en utilisant des polynômes de Lagrange.
- (P) (P) (P)
 - 1) Bien comprendre l'affirmation : « \mathbb{R} est un \mathbb{Q} espace vectoriel. »
 - **2) a)** Montrer que la famille $(\ln p)_{p\in\mathbb{P}}$ est \mathbb{Q} -libre, i.e. libre dans le \mathbb{Q} -espace vectoriel \mathbb{R} .
 - **b)** En déduire que ln p est rationnel pour au plus un nombre premier p.

On peut montrer que $\ln r$ est irrationnel pour tout $r \in \mathbb{Q}_+^* \setminus \{1\}$, mais c'est autrement plus compliqué.

- 3) a) Montrer que la famille $(1, \sqrt{p})$ est \mathbb{Q} -libre pour tout $p \in \mathbb{P}$.
 - **b)** En déduire que la famille $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ est Q-libre.

BASES ET DIMENSION

- Énoncer proprement en termes linéaires le résultat du cours sur les suites récurrentes linéaires homogènes d'ordre 2 (sous-espace vectoriel, base, dimension...).
- 1) Montrer que ((-1,1,1),(1,-1,1),(1,1,-1)) est une base de \mathbb{R}^3 et déterminer les coordonnées du vecteur (8, 4, 2) dans cette base.
 - 2) Montrer que la famille :

$$(X^3 + X^2 - X - 1, X^3 - X^2 + 1, X^3 - X^2 + X, X^3 + 2X + 1)$$

est une base de $\mathbb{R}_3[X]$ et déterminer les coordonnées de X^2 dans cette base.

- P Pour tout $k \in [1, n]$, on pose : 22 $u_k = (k, k-1, \ldots, 2, 1, 0, \ldots, 0) \in \mathbb{R}^n$. Montrer que la famille (u_1, \ldots, u_n) est une base de \mathbb{R}^n .
- \bigcirc Montrer pour tout $n \in \mathbb{N}$ que la famille : 23 $(1+X,X+X^2,...,X^{n-1}+X^n,X^n)$ est une base de $\mathbb{R}_n[X]$.
- P Soient $x_1, \ldots, x_n \in \mathbb{K}$. On appelle matrice de *Vandermonde de* $x_1, ..., x_n$ la matrice :

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}.$$

Montrer que *V* est inversible si et seulement si x_1, \ldots, x_n sont distincts.

- Montrer que les ensembles suivants sont des sousespaces vectoriels et déterminer une base de chacun d'eux:
 - $\{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0\}.$
 - $\{P \in \mathbb{R}_3[X] \mid P(X^2) = (X^3 + 1)P\}.$
 - $\begin{cases} (x, y, z, t) \in \mathbb{R}^4 \mid & x + y = z + t \\ & \text{et } 2x y z + t = 0 \end{cases}.$
 - $\{P \in \mathbb{R}_4[X] \mid P(0) = P(1) = P(2)\}.$
- ① On note A la matrice $\begin{pmatrix} 3 & -1 \\ 7 & 1 \end{pmatrix}$ et $\mathscr C$ l'ensemble des matrices de $\mathcal{M}_2(\mathbb{R})$ qui commutent à A. Montrer que \mathscr{C} est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ et en déterminer une base.
- (b) (c) Montrer que l'ensemble des matrices de trace nulle de $\mathcal{M}_n(\mathbb{K})$ est en un sous-espace vectoriel et déterminer sa dimension.
- (P) (P) Montrer que l'ensemble des fonctions : 28 $x \longmapsto A\sin(x+\varphi),$ A et φ décrivant \mathbb{R} , est un sous-espace vectoriel de $\mathscr{C}(\mathbb{R},\mathbb{R})$ et déterminer sa dimension.
- P P Soit $M \in \mathcal{M}_n(\mathbb{K})$. 29
 - 1) Déterminer un entier $d \in \mathbb{N}$ pour lequel la famille $(I_n, M, M^2, \dots, M^d)$ est liée.
 - 2) En déduire que M possède un polynôme annulateur non nul à coefficients dans K.
- P Soient $A,B \in \mathcal{M}_n(\mathbb{K})$ deux matrices pour lesquelles $AB = A^2 + A + I_n$. Montrer que AB = BA.

- Soient $A \in \mathcal{M}_p(\mathbb{K})$, $B \in \mathcal{M}_q(\mathbb{K})$ et $X \in \mathcal{M}_{p,q}(\mathbb{K})$. Montrer que la matrice par blocs $\begin{pmatrix} A & X \\ 0_{q,p} & B \end{pmatrix}$ est inversible si et seulement si A et B le sont. Que vaut son inverse dans ce cas ?
- Soient $a, b, c \in \mathbb{R}$. Montrer que les trois fonctions $x \mapsto \sin(x+a), x \mapsto \sin(x+b)$ et $x \mapsto \sin(x+c)$ sont linéairement dépendantes dans $\mathbb{R}^{\mathbb{R}}$.
- ③3 ⑤ Soient E un \mathbb{K} -espace vectoriel, $x_1, \ldots, x_n \in E$ et $y_1, \ldots, y_n \in E$. On suppose que les vecteurs $x_1 + y_1, \ldots, x_n + y_n$ sont linéairement indépendants. Montrer que $\operatorname{rg}(x_1, \ldots, x_n, y_1, \ldots, y_n) \ge n$.
- 1) Montrer que la famille : $\left(X^3 + X + 1, X^3 2X + 2, X^2 + 3X\right)$ est libre et la compléter en une base de $\mathbb{R}_4[X]$.
 - 2) Montrer que la famille ((8,4,1,2),(1,3,0,5)) est libre et la compléter en une base de \mathbb{R}^4 .
 - 3) Soient E un \mathbb{R} -espace vectoriel de dimension 3 et (e_1,e_2,e_3) une base de E. On pose $\varepsilon_1=e_1+2e_2+e_3$ et $\varepsilon_2=e_2-e_3$. Montrer que $(\varepsilon_1,\varepsilon_2)$ est libre et la compléter en une base de E.
- ① Déterminer la dimension de : Vect(1,2,1,0),(4,-2,1,1),(7,2,4,2),(1,0,1,1).

MATRICE D'UNE FAMILLE DE VECTEURS DANS UNE BASE

- 36 Les familles suivantes sont-elles des bases?

 1) $((2,0,\alpha),(2,\alpha,2),(\alpha,0,2))$ $(\alpha \in \mathbb{R})$.

 2) ((1,0,2,1),(0,1,1,2),(2,0,1,1),(2,1,0,1)).
- \mathbb{S} Soient $P_0,\ldots,P_n\in\mathbb{K}[X]$ des polynômes pour lesquels $\deg(P_i)=i$ pour tout $i\in[0,n]$. Montrer par une technique matricielle que la famille $(P_i)_{0\leqslant i\leqslant n}$ est une base de $\mathbb{K}_n[X]$. Comment montrer ce résultat sans matrices?
- Soient E un \mathbb{K} -espace vectoriel et (u_1, \dots, u_{2n+1}) une famille libre de E. Montrer que la famille : $\left(u_1 + u_2, u_2 + u_3, \dots, u_{2n} + u_{2n+1}, u_{2n+1} + u_1\right)$

est également libre par une technique matricielle.

SOMME DE DEUX SOUS-ESPACES VECTORIELS

- \bigcirc Soient E un \mathbb{K} -espace vectoriel de dimension finie et F et G deux sous-espaces vectoriels de E pour lesquels $\dim F + \dim G > \dim E$. Montrer que F et G ont au moins un vecteur non nul en commun.
- Soient E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels de E. Montrer que $F \cup G = F + G$ si et seulement si $F \subset G$ ou $G \subset F$.
- $u = (1, 0, 1, 0), \quad v = (0, 0, 1, 0), \quad b = (1, 1, 0, -1), \quad u = (1, 0, 1, 0), \quad v = (0, 1, -1, 0) \quad \text{et} \quad w = (1, 1, 1, 1), \quad \text{ainsi que} : \quad F = \text{Vect}(a, b) \quad \text{et} \quad G = \text{Vect}(u, v, w).$ Déterminer les dimensions de F, G, F + G et $F \cap G$.
- On pose F = Vect((1,0,0,1),(0,1,1,0)) et : $G = \{(x,y,z,t) \in \mathbb{R}^4 \mid x+y+z=0 \text{ et } y-z+t=0\}.$ Montrer que F et G sont deux sous-espaces vectoriels supplémentaires de \mathbb{R}^4 .
- Soit $\lambda \in \mathbb{R}$. À quelle condition nécessaire et suffisante les sous-espaces vectoriels $\text{Vect}((\lambda, \lambda, 1))$ et $\text{Vect}((1, \lambda, 1), (2, 1, 1))$ sont-ils supplémentaires dans \mathbb{R}^3 ?
- \bigcirc \bigcirc \bigcirc On note F l'ensemble des fonctions constantes sur [0,1] et on pose :

$$G = \left\{ f \in \mathcal{C}\big([0,1],\mathbb{R}\big) \, \middle| \quad \int_0^1 f(t) \, \mathrm{d}t = 0 \right\}.$$

Montrer que F et G sont deux sous-espaces vectoriels supplémentaires de $\mathscr{C}([0,1],\mathbb{R})$.

- Soient E un K-espace vectoriel et F₁, F₂ et G trois sous-espaces vectoriels de E.
 Si F₁ et F₂ sont en somme directe, montrer que
 - 1) Si F_1 et F_2 sont en somme directe, montrer que $F_1 \cap G$ et $F_2 \cap G$ le sont aussi.

2) Si F_1 et F_2 sont supplémentaires dans E, $F_1 \cap G$ et $F_2 \cap G$ le sont-ils dans G?

Déterminer un supplémentaire des sous-espaces

- vectoriels suivants : 1) $\text{Vect}((1,2,1,1),(2,2,1,1)) \text{ dans } \mathbb{R}^4.$
- 2) $\{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + 2z t = 0 \}$ et 2x + y z + t = 0 dans \mathbb{R}^4 .
- 3) $\{P \in \mathbb{R}_4[X] \mid P(-X) = P(X)\}$ dans $\mathbb{R}_4[X]$.
- 4) dans $\mathbb{R}_3[X]$:

$$\{P \in \mathbb{R}_3[X] \mid P' + 3P = P(0)X^3 + P(1)X + P(1)\}.$$

- 5) $\{P \in \mathbb{R}[X] \mid P(1) = P(2) = 0\}$ dans $\mathbb{R}[X]$.
- Pour tout $M = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$, on pose : $M^\circ = \begin{pmatrix} i & h & g \\ f & e & d \\ c & b & a \end{pmatrix},$ puis $E = \{ M \in \mathcal{M}_3(\mathbb{R}) \mid M^\circ = M \}$. Déterminer un supplémentaire de E dans $\mathcal{M}_3(\mathbb{R})$.
- Déterminer un supplémentaire des sous-espaces vectoriels suivants :
 - 1) $\bigcirc \{P \in \mathbb{R}_3[X] \mid P(0) = P'(0) = 0\} \text{ dans } \mathbb{R}_3[X].$
 - 2) 9 9 $\left\{ f \in \mathscr{D}(\mathbb{R}, \mathbb{R}) \mid f(0) = f'(0) = 0 \right\}$ dans $\mathscr{D}(\mathbb{R}, \mathbb{R})$.

Montrer que F est un sous-espace vectoriel de $\mathscr{C}(\mathbb{R},\mathbb{R})$ et en déterminer un supplémentaire dans $\mathscr{C}(\mathbb{R},\mathbb{R})$.