Probabilités

Définition. Une **expérience aléatoire** est une expérience dont les issues sont connues sans que l'on puisse déterminer laquelle sera réalisée.

Définition. L'univers d'une expérience aléatoire est l'ensemble des issues possibles. On le note Ω .

Exemple. On lance une pièce de monnaie et on regarde de quel côté elle tombe. Les résultats sont Pile et Face.

C'est une expérience aléatoire dont l'univers est $\Omega = \{\text{Pile, Face}\}.$

Définition. Donner **une loi de probabilité** associée à une expérience aléatoire, c'est donner une probabilité (un nombre entre 0 et 1) à chaque issue, de sorte que la somme des probabilités soit égale à 1.

On représente une loi de probabilité avec un tableau à deux lignes (issues et probabilités).

Exemple. Une étude menée sur la répartition des groupes sanguins en France a montré que 45 % de la population est du groupe A, 9 % du groupe B, 4 % du groupe AB et 42 % du groupe O.

On choisit au hasard une personne en France et on note son groupe sanguin.

La loi de probabilité est :

Issue	Α	В	AB	0
Probabilité	0,45	0,09	0,04	0,42

Définition. Une loi est dite **équirépartie** (ou **équiprobable**) lorsque chaque issue a la même probabilité de se réaliser, qui est alors $\frac{1}{n}$ où n est le nombre total d'issues.

Exemple. On lance un dé cubique <u>équilibré</u> et on observe le résultat. Chaque issue a une chance sur 6 de se réaliser.

Définition. **Un événement** est un ensemble d'issues. Un événement est souvent décrit par une phrase.

Exemple. On lance un dé cubique équilibré et on observe le résultat.

Alors l'univers est $\Omega = \{1; 2; 3; 4; 5; 6\}$. L'événement A: « Obtenir un nombre pair » est $A = \{2; 4; 6\}$

Définition. La probabilité d'un événement A est égale à la somme des probabilités <u>des issues</u> qui réalisent cet événement. Elle se note P(A) si on parle d'un événement noté A.

Exemple. Dans le cas précédent, $P("obtenir un nombre pair") = <math>P("2") + P("4") + P("6") = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6} = \frac{1}{2}$

Exemple. Dans le cas de la répartition des groupes sanguins, la probabilité qu'une personne en France ait un groupe sanguin différent de A est égale à : P(B) + P(AB) + P(O) = 0.09 + 0.04 + 0.42 = 0.55.

Propriété. Dans une situation d'équiprobabilité, où il y a *n* issues,

la probabilité d'un événement A réalisé par k issues est alors : $P(A) = \frac{k}{n}$

Exemple. Si A = « Obtenir un nombre pair » pour un lancé de dé équilibré à 6 faces alors $P(A) = \frac{3}{6} = \frac{1}{2}$

Définition. L'événement contraire d'un événement A, noté \overline{A} , est l'ensemble des issues qui ne réalisent pas A, autrement dit A est réalisé par les issues de Ω qui ne sont pas dans A. $\overline{A} = \Omega \setminus A$.

Propriété. $P(\bar{A}) = 1 - P(A)$.

Exemple. $P(\text{``alpha} \text{Obtenir un nombre impair''}) = P(\bar{A}) = 1 - \frac{1}{2} = \frac{1}{2}$

Définition. Soit A et B deux événements.

L'événement $A \cup B$ (se lit « A union B ») est l'ensemble des issues qui réalisent A \underline{ou} B.

L'événement $A \cap B$ (se lit « A inter B ») est l'ensemble des issues qui réalisent A \underline{et} B

Exemple. On lance un dé à 6 faces et on considère les événements A: « Obtenir un nombre pair » et B: « Obtenir un multiple de 3 ». $A = \{2; 4; 6\}$ et $B = \{3; 6\}$. Alors $A \cap B = \{6\}$ et $A \cup B = \{2; 3; 4; 6\}$.

Propriété. $P(A) + P(B) = P(A \cap B) + P(A \cup B)$ En particulier $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Exemple. Dans l'exemple précédent, $P(A) = \frac{3}{6}$; $P(B) = \frac{2}{6}$; $P(A \cap B) = \frac{1}{6}$. Donc $P(A \cup B) = \frac{3}{6} + \frac{2}{6} - \frac{1}{6} = \frac{4}{6}$

Définition. Deux événements A et B sont **disjoints** ssi $A \cap B = \emptyset$

Propriété. Etant donné 2 événements A et B disjoints, $P(A \cup B) = P(A) + P(B)$