MATH 265 HW4

Hanzhang Yin

Sep/18/2024

Question 1

Proof. Given w is a lower bound of S, by definition:

$$w \le s, \quad \forall s \in S.$$

Since $w \in S$, there exists a $s \in S$ s.t. s = w. Then,

$$w \le s = w \implies w = s$$
.

Suppose there exists another lower bound $v \in \mathbb{R}$ of S such that v > w. However, since $w \in S$, it must satisfy:

$$v \leq w$$
.

we derived a contradiction. Therefore, no such v exists, and w must be the g.l.b. of S

Question 2

Proof. First, we want to show $\inf(A) = m$ is an upper bound of -A. Let $\inf(A) = m$, by definition of infimum, $m \le a$ for all $a \in A$.

$$\Rightarrow -m \ge -a, \forall a \in A$$

By our definition of set -A, this means -m (i.e. $\inf(A)$) is an upper bound of -A.

Following that, now we can show $-\inf(A)$ is the l.u.b of -A:

Assume there exists an upper bound $u \in -A$ s.t. $u < -\inf(A) = -m$. Then:

$$u < -m \rightarrow -u > m$$

Since $\inf(A) = m$, for $\epsilon = -u - m > 0$, there exists $a_{\epsilon} \in A$ s.t.

$$a_{\epsilon} < m + \epsilon = m + (-u - m) = -u \Rightarrow -a_{\epsilon} > u$$

Hence, u is NOT an upper bound of -A, and $-m \le u$ always. This shows that $-\inf(A) = \sup(-A)$.

Question 3

(a)

Proof. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, any upper bound of A or B is also an upper bound of $A \cap B$.

Let $\sup A = u$. By definition, u is the least upper bound of A, hence u is an upper bound for $A \cap B$. Similarly, let $\sup B = w$. Then w is an upper bound for $A \cap B$.

Since $\sup(A \cap B)$ is the least upper bound of $A \cap B$, it must satisfy:

$$\sup(A \cap B) \le u = \sup A$$
 and $\sup(A \cap B) \le w = \sup B$.

Therefore,

$$\sup A, \sup B \ge \sup (A \cap B).$$

(b)