What is claimed is:

1	1. A simulated steering assembly comprising:
2	a flexible polymer steering column shaft having a fixed end and
3	a free rotational end; and
4	a control feature in communication with said free rotational end.
1	2. A simulated steering assembly as described in claim 1
2	wherein said control feature is a steering wheel.
1	3. A simulated steering assembly as described in claim 1
2	further comprising:
3	an electroactive assembly in communication with said flexible
4	polymer steering column shaft; and
5	a control module in electronic communication with said
6	electroactive assembly.
1	4. A simulated steering system assembly as described in
2	claim 3 wherein said electroactive assembly comprises at least one sensor.
1	5. A simulated steering system assembly as described in
2	claim 3 wherein said electroactive assembly comprises at least one
3	piezoceramic device.
1	6. A simulated steering assembly as described in claim 3
2	wherein said electroactive assembly can adjust the modulus of said flexible
3	polymer steering column shaft.
1	7. A simulated steering assembly as described in claim 3
2	wherein said electroactive assembly imparts road feel on said flexible polymer
3	steering column shaft.
1	8. A simulated steering assembly as described in claim 3
2	wherein said electroactive assembly is embedded in said flexible polymer
3	steering column shaft.

1	9. A simulated steering assembly comprising:
2	a flexible polymer steering column shaft having a fixed end and
3	a rotationally free end;
4	a steering wheel in communication with said rotationally free
5	end; and
6	an electroactive assembly in communication with said flexible
7	polymer steering column shaft.
1	10. A simulated steering assembly as described in claim 9
2	further comprising:
3	steering mechanisms; and
4	a control module in electronic communication with said
5	electroactive assembly and controlling said steering mechanisms in response to
6	signals from said electroactive assembly.
1	11. A simulated steering assembly as described in claim 9
2	wherein said electroactive assembly comprises at least one sensor.
1	12. A simulated steering assembly as described in claim 9
2	wherein said electroactive assembly comprises at least one piezoceramic device.
1	13. A simulated steering assembly as described in claim 9
2	further comprising:
3	at least one guide element in communication with said flexible
4	polymer steering column shaft and minimizing non-rotational deflections of
5	said flexible polymer steering column shaft.
1	14. A simulated steering assembly as described in claim 9
2	wherein said electroactive assembly can adjust the modulus of said flexible
3	polymer steering column shaft.
4	

1	15. A simulated steering assembly as described in claim 9
2	wherein said at least one sensor element senses a degree of twist of said flexible
3	polymer steering column shaft.
1	16. A simulated steering assembly as described in claim 9
2	wherein said electroactive assembly imparts road feel on said flexible polymer
3	steering column shaft.
1	17 A method of controlling a steer-by-wire assembly
2	utilizing a control feature and a flexible polymer steering column shaft having a
3	fixed end and a free rotational end comprising;
4	rotating the free rotational end in response to a driver moving
5	said control feature;
6	measuring the rotation of the flexible polymer steering column
7	shaft using an electroactive assembly in communication with said flexible
8	polymer steering column shaft; and
9	activating a steering mechanism in response to said electroactive
10	assembly.
1	18. A method as described in claim 17 further comprising:
2	adjusting the modulus of said flexible polymer steering column
3	shaft utilizing said electroactive assembly to provide feedback to said driver.
1	19. A method as described in claim 17 further comprising:
2	removing modal resonances of said flexible polymer steering
3	column shaft utilizing said electroactive assembly.
1	20. A method as described in claim 17 wherein said
2	electroactive assembly includes a solid polymer composite bundle embedded in
3	said flexible polymer steering column shaft.