February 7, 2012

Prove that for all integers $n \ge 0$, $3n^2 + 15n + 12$ is even.

Proof by induction:

Let P(n) be the property that $3n^2 + 15n + 12$ is even.

Base Case:

P(0) holds, since $3(0)^2 + 15(0) + 12 = 12$, which is even.

Inductive Hypothesis:

Assume P(k) holds for integer $k \ge 0$. That is, $3k^2 + 15k + 12$ is even.

Inductive Step:

We now prove that P(k+1) holds. By the inductive hypothesis and definition of even, $3k^2 + 15k + 12 = 2m$ for some integer m. Then we have:

$$3(k+1)^2 + 15(k+1) + 12 = 3k^2 + 6k + 3 + 15k + 15 + 12$$

= $(3k^2 + 15k + 12) + (6k + 18)$
= $(2m) + 2(3k + 9)$ by the inductive hypothesis.
= $2(m+3k+9) = 2q$ for $q = m+3k+9$.

Since m, 3k, and 9 are all integers, q is an integer.

Then since $3(k+1)^2 + 15(k+1) + 12 = 2q$, where q is an integer, $3(k+1)^2 + 15(k+1) + 12$ is even and so P(k+1) holds.

Thus, since we have shown that the base case P(0) holds and $P(k) \to P(k+1)$ for integers $k \ge 0$, P(n) is true by induction for all integers $n \ge 0$.