Problem Set #58

Jayden Li

April 3, 2024

Problem 4

It is known from Problem 3 that f'(x) = 2x - 8. The slope at (3, -6) is f'(3) = 6 - 8 = -2. The tangent line is y + 6 = -2(x - 3).

Problem 5

Proof. If
$$f$$
 is continuous, then $\lim_{x \to a} f(x) = f(a) \iff \lim_{x \to a} f(x) - f(a) = 0 \iff \lim_{x \to a} \left[f(x) - f(a) \right] = 0.$

$$\lim_{x \to a} \left[f(x) - f(a) \right] = \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \cdot (x - a) \right] = \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \right] \cdot \lim_{x \to a} \left[x - a \right] = f'(x) \cdot 0 = 0$$

 \odot

Problem 7

$$\begin{aligned} \text{velocity} &= \lim_{h \to 0} \frac{40(2+h) - 16(2+h)^2 - (40(2) - 16(2)^2)}{h} \\ &= \lim_{h \to 0} \frac{80 + 40h - 16(4 + 4h + h^2) - 80 + 64}{h} \\ &= \lim_{h \to 0} \frac{80 + 40h - 64 - 64h - 16h^2 - 80 + 64}{h} \\ &= \lim_{h \to 0} \frac{-24h - 16h^2}{h} \\ &= \lim_{h \to 0} \left[-24 - 16h \right] \\ &= \left[-24 \right] \end{aligned}$$

Problem 8

$$\frac{ds}{dt} = \lim_{h \to 0} \frac{\frac{1}{(t+h)^2} - \frac{1}{t^2}}{h}$$
$$= \lim_{h \to 0} \frac{t^2 - (t+h)^2}{ht^2(t+h)^2}$$

$$= \lim_{h \to 0} \frac{t^2 - 2th - h^2 - t^2}{ht^2(t+h)^2}$$

$$= \lim_{h \to 0} \frac{-2t - h}{t^2(t+h)^2}$$

$$= \lim_{h \to 0} [-2t - h]$$

$$= \frac{\lim_{h \to 0} [t^2(t+h)^2]}{\lim_{h \to 0} [t^2(t+h)^2]}$$

$$= \frac{-2t}{t^4}$$

$$= -\frac{2}{t^3}$$

evaluated at t = a: $-2/t^2$ evaluated at t = 1: -2evaluated at t = 2: -1/4evaluated at t = 3: -2/27

Problem 10

(b)

$$f'(a) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{a+h+2}} - \frac{1}{\sqrt{a+2}}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{a+2} - \sqrt{a+h+2}}{h\sqrt{a+h+2}\sqrt{a+2}}$$

$$= \lim_{h \to 0} \frac{a+2-a-h-2}{h\sqrt{a+h+2}\sqrt{a+2}\left(\sqrt{a+2} + \sqrt{a+h+2}\right)}$$

$$= \lim_{h \to 0} \frac{-1}{\sqrt{a+h+2}\sqrt{a+2}\left(\sqrt{a+2} + \sqrt{a+h+2}\right)}$$

$$= \frac{-1}{(a+2)\left(\sqrt{a+2} + \sqrt{a+2}\right)}$$

$$= \frac{-1}{2(a+2)\sqrt{a+2}} \cdot \frac{\sqrt{a+2}}{\sqrt{a+2}}$$

$$= \left[\frac{-\sqrt{a+2}}{2(a+2)^2}\right]$$

Problem 12

- (a) The rate of change of the price of producing x ounces of gold. Units are dollars per ounce per ounce or dollars per square ounce ($\$/oz^2$)
- (b) The rate of change at 800 ounces is 17 dollars per square ounces.
- (c) It depends.

If there is a large amount of gold, then f'(x) will decrease over the long term as the mine can utilize economies of scale.

If there is not a large amount of gold, then f'(x) will increase over the long term since the cost of producing more gold as the gold runs out is higher.

Problem 13

T'(10) is the rate at which the temperature changes in the neighborhood of 100 Fahrenheit. I estimate T'(10) = 9 because the average of T(10) - T(9) and T(11) - T(10) is 9.

Problem 14

- (a) The rate of change of solubility in the neighborhood around a certain temperature. Units are milligrams per liter per degree Celsius (mg/L/ $^{\circ}$ C)
- (b) Approximately -1/3? In the neighborhood around 16°C, the rate of change of solubility is $-1/3 \,\text{mg/L/°C}$.

Problem 16

Proof.

$$f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h}$$

$$= \lim_{h \to 0} \frac{f(-(x-h)) - f(-x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x-h) - f(x)}{h}$$

$$= -\lim_{h \to 0} \frac{f(x) - f(x-h)}{h}$$

$$= -f'(x)$$

