

a heat radiation shield coating film formed by applying a coating composition to said substrate,

said coating composition containing a black pigment which exhibits a reflectance of not below 8.0 % relative to a solar radiation in the 780 - 2,100 nm wavelength region, a binder component, a curing agent, and a solvent.

2. The heat radiation shield plate of claim 1, wherein said black pigment exhibits a reflectance of not higher than 15 % relative to a radiation at any wavelength in the 400 - 700 nm visible region.

3. The heat radiation shield plate of claim 1, wherein said black pigment is a calcined pigment which contains Fe₂O₃ and also Cr₂O₃ and/ or Mn₂O₃ in the total amount of 20 - 100 % by weight.

4. The heat radiation shield plate of claim 1, wherein said black pigment is contained in the amount of not less than 0.1 % by weight.

5. The heat radiation shield plate of claim 1, wherein said black pigment is contained in the amount of not less than 0.5 %, based on the total weight of all pigments.

6. The heat radiation shield plate of claim 1, wherein said coating composition contains a polyester, acrylic, fluoro or chloro resin as said binder component.

7. The heat radiation shield plate of claim 6, wherein said

coating composition contains a melamine resin and/ or blocked isocyanate as said curing agent.

Kindly add new claims 9-18 as follows:

9. A heat radiation shield coating composition comprising:
0.1 wt% or more black pigment, said black pigment comprising
20 - 100 wt% of a calcined pigment comprising Fe_2O_3 and Cr_2O_3
which exhibits a reflectance of not below 8.0 % relative to a
solar radiation in the 780 - 2,100 nm wavelength region;
a binder component, and
a curing agent.
10. The heat radiation shield coating composition of claim
9, wherein the binder component is selected from the group
consisting of polyester, acrylic, fluoro or chloro resins.
11. The heat radiation shield coating composition of claim
10, wherein the curing agent consists essentially of melamine
resin, isocyanate and blocked isocyanate.
12. The heat radiation shield coating composition of claim
11, further comprising a filler.
13. The heat radiation shield coating composition of claim
12, wherein said filler comprises fine particles, said fine
particles consisting essentially of SiO_2 , TiO_2 , Al_2O_3 , Cr_2O_3 ,

ZrO₂, Al₂O₃·SiO₂, 3Al₂O₃·2SiO₂, zirconia silicate and finely divided fibrous or particulate glass.

14. The heat radiation shield coating composition of claim 9, wherein said black pigment exhibits a reflectance of between 8.0% and 15.0% relative to a solar radiation in the 780 - 2,100 nm wavelength region.

15. The heat radiation shield coating composition of claim 14, wherein said calcined pigment comprises 30-100 wt% of the black pigment.

16. The heat radiation shield coating composition of claim 15, wherein said black pigment comprises at least 0.5 wt% based on a total weight of all pigment components.

17. The heat radiation shield coating composition of claim 9, wherein the black pigment comprises 15-75 wt% of Fe₂O₃ and 25-60 wt% of Cr₂O₃.

18. The heat radiation shield coating composition of claim 17, wherein said black pigment further comprises 15-20 wt% of Mn₂O₃.

19. The heat radiation shield coating composition of claim 9, further comprising a solvent selected from the group consisting of toluene, xylene, SOLVESSO 100, SOLVESSO 150, ethyl acetate, butyl acetate, methylethyl ketone, methylisobutyl ketone, cyclohexanone, isophorone and water.