Guia_3 Guia 1

Projeto de Circuitos Fotônicos em Silício

Atividade - Anel ressonante

Erick Cândido Sousa

E-mail: erick.sousa@ee.ufcq.edu.br

GitHub: https://github.com/EriCand-Ss

Centro de Competência Embrapii em Hardware Inteligente para a Indústria

Primeira etapa - Cálculo de Lr teórico.

- Nesta etapa é utilizado o solver FDE, visto a facilidade para se obter o índice de grupo e índice efetivo para um dado comprimento de onda específico;
- n_{eff} obtido é igual a 2.35370 e n_g obtido é 4.33629, para $\lambda = 1550$ nm; Obtém-se **Lr** igual a 554.045 µm, 55.404 µm e 27.702 µm;

Segunda etapa - Caso Ideal.

 O acoplador direcional fornecido por padrão, não possui dimensão, servindo apenas para provocar a diferença de acoplamento entre as saídas, logo, cada guia retangular possui Lr/2 de comprimento.

WIRTUS CC EMBRAPII

Segunda etapa - Caso Ideal.

Terceira etapa – PDK SciPIC para 1nm e 10 nm.

- A topologia utilizada é mostrada na Figura abaixo, onde o raio do DC é fixo em 5 μm e o comprimento de acoplamento foi fixo em 9 μm.
- Diferente do que foi observado no dispositivo ideal, o comprimento do acoplador direcional será considerado para realizar o cálculo da dimensão dos guias retangulares. Além disso, para atingir a FSR de 1 nm e 10 nm, foi necessário um Lr total igual a 581.856 µm e 64.896 µm;

Terceira etapa – PDK SciPIC para 1nm e 10 nm.

• As transmissões são ilustradas abaixo, para cada projeto.

Quarta etapa - PDK SciPIC para 20 nm.

O comprimento teórico, Lr, deveria ser 27.702 μm para atingir a FSR de 20nm, porém, mesmo considerando um comprimento de acoplamento nulo, e fixando o raio DC em 5 μm, Lr já ultrapassa o comprimento estipulado. Assim sendo, é feito dois anéis ressoantes, um com FSR 10 nm e outro com FSR igual a 6.67 nm. A topologia é mostrada abaixo.

- O Lr para FSR de 10 nm, como visto, é igual a 64.896 μm. Já para FSR de 6.67 nm, Lr é igual a 93.956 μm.
- O anel superior é para FSR de 6.67 nm e o inferior é para FSR de 10 nm. Note que os três DC's possuem comprimentos de acoplamento distintos e iguais a 9.93 μm, 3.97 μm e 14.37 μm.

Quinta etapa - Comparação de FSR's.

• A transmissão é ilustrada abaixo.

Quinta etapa - Comparação de FSR's.

 A comparação entre as FSR's considerando os dispositivos ideais fornecidos e os dispositivos PDK fornecidos é ilustrada nas Figuras abaixo.

Quinta etapa - Comparação de FSR's.

Sexta etapa – KLayout.

