EE5907/EE5027 Lecture 2 MLE - MAP

Robby T. Tan

National University of Singapore

Probability Review

What is a random variable?

- A random variable x is a quantity that is uncertain
- May be result of experiment (e.g., flipping a coin) or real world measurement (e.g., measuring temperature)
- If observe x multiple times, we get different values
- Some values occur more than others; this information captured by probability distribution p(x)
- If x is discrete, then "p" is "probability mass function" (or pmf). If x is continuous, then "p" is "probability distribution function" (or pdf).

Discrete Random Variable x

Take on discrete values

Discrete Random Variable x

Take on finite or countably infinite values

Continuous Random Variable

Famous Discrete Random Variables

- Bernoulli: http://en.wikipedia.org/wiki/Bernoulli_distribution
- Categorical: http://en.wikipedia.org/wiki/Categorical_distribution
- Binomial: http://en.wikipedia.org/wiki/Binomial distribution
- Geometric: http://en.wikipedia.org/wiki/Geometric_distribution
- Poisson: http://en.wikipedia.org/wiki/Poisson_distribution

• ...

Bernoulli distribution describes situation where only two possible outcomes x = 0 / x = 1 (e.g. failure/success)

$$Pr(x = 0) = 1 - \lambda$$

 $Pr(x = 1) = \lambda$.

Bernoulli distribution describes situation where only two possible outcomes x = 0 / x = 1 (e.g. failure/success)

$$Pr(x=0) = 1 - \lambda$$

$$Pr(x=1) = \lambda.$$
 or
$$Pr(x) = \lambda^x (1 - \lambda)^{1-x}$$

Bernoulli distribution describes situation where only two possible outcomes x = 0 / x = 1 (e.g. failure/success)

$$Pr(x=0) = 1 - \lambda$$

$$Pr(x=1) = \lambda.$$

or

$$Pr(x) = \lambda^x (1 - \lambda)^{1 - x}$$

For short we write:

$$p(x) = Ber(x|\lambda)$$

Bernoulli distribution describes situation where only two possible outcomes x = 0 / x = 1 (e.g. failure/success)

Categorical distribution describes situation where K possible outcomes x = 1, ..., x = k, ..., x = K.

Takes K parameters $\ \lambda_k \in [0,1]$ where $\ \sum p(X=k) = \sum \lambda_k = 1$ $\lambda = \{\lambda_1, \cdots, \lambda_K\}$

$$\sum_{k=1}^{N} p(X=k) = \sum_{k=1}^{N} \lambda_k = 1$$

12

$$P r(x = k) = \lambda_k$$

Categorical distribution describes situation where K possible outcomes x = 1, ..., x = k, ..., x = K.

Takes K parameters $\ \lambda_k \in [0,1]$ where $\ \sum p(X=k) = \sum \lambda_k = 1$ $\lambda = \{\lambda_1, \cdots, \lambda_K\}$

$$\sum_{k=1}^{K} p(X = k) = \sum_{k=1}^{K} \lambda_k = 1$$

13

$$P r(x = k) = \lambda_k$$

or can think of data as vector with all elements zero except k^{th} e.g. $\mathbf{e}_4 = [0,0,0,1,0]$

$$Pr(x = \mathbf{e}_k) = \prod_{j=1}^{K} \lambda_j^{\mathbf{e}_{kj}} = \lambda_k$$

where \mathbf{e}_{kj} is the j-th element of \mathbf{e}_k

Categorical distribution describes situation where K possible outcomes x = 1, ..., x = k, ..., x = K.

Takes K parameters $\ \lambda_k \in [0,1]$ where $\ \sum p(X=k) = \sum \lambda_k = 1$ $\lambda = \{\lambda_1, \cdots, \lambda_K\}$

$$\sum_{k=1}^{K} p(X = k) = \sum_{k=1}^{K} \lambda_k = 1$$

$$P r(x = k) = \lambda_k$$

or can think of data as vector with all elements zero except k^{th} e.g. $\mathbf{e}_4 = [0,0,0,1,0]$

$$Pr(x = \mathbf{e}_k) = \prod_{j=1}^{K} \lambda_j^{\mathbf{e}_{kj}} = \lambda_k$$

where \mathbf{e}_{kj} is the j-th element of \mathbf{e}_k

For short we write:
$$p(x) = \operatorname{Cat}(x|\lambda)$$

Categorical distribution describes situation where K possible outcomes x = 1, ..., x = k, ..., x = K.

Takes K parameters $\ \lambda_k \in [0,1]$ where $\ \sum p(X=k) = \sum \lambda_k = 1$ $\lambda = \{\lambda_1, \cdots, \lambda_K\}$

$$\sum_{k=1}^{K} p(X = k) = \sum_{k=1}^{K} \lambda_k = 1$$

15

Famous Continuous Random Variables

- Gaussian: http://en.wikipedia.org/wiki/Normal distribution
- Uniform: http://en.wikipedia.org/wiki/Uniform distribution (continuous)
- Exponential: http://en.wikipedia.org/wiki/Exponential-distribution
- Beta: http://en.wikipedia.org/wiki/Beta distribution

• ...

Gaussian/Normal Distribution

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

2 parameters mean μ and variance $\sigma^2 > 0$

Gaussian/Normal Distribution

2 parameters mean μ and variance $\sigma^2 > 0$

Questions?

Joint Probability

 If we observe two random variables x & y multiple times, then some combinations of outcomes more likely than others

This information captured by joint probability distribution

 Written as p(x, y), which is read as "joint probability distribution of x and y"

Joint Probability p(x, y)

$$\sum_{y} \sum_{x} p(x, y) = 1$$

Joint Probability p(x, y)

Joint Probability p(x, y)

Adapted from S. Prince

Questions?

Marginalization / Law of Total Probability / Sum Rule

Marginalization / Law of Total Probability

We can recover probability distribution of any variable in a joint distribution by integrating (or summing) over the other variable(s). This is called marginalization. Pr(x)

$$p(x) = \sum_{y} p(x,y)$$

$$p(y) = \sum_{x} p(x,y)$$

Marginalization / Law of Total Probability

We can recover probability distribution of any variable in a joint distribution by integrating (or summing) over the other variable(s). This is called marginalization. Pr(x)

$$p(x) = \int_{y} p(x, y) dy$$

$$p(y) = \int_{x} p(x, y) dx \quad \text{Tense of } x$$

Adapted from S. Prince

p(x, y)		X	
_		0	2.5
_	-3	0	1/2
У	-1	1/8	1/4
	2	1/8	0

$$p(x, y) \qquad x \qquad p(y) = \sum_{x} p(x, y)$$

$$-3 \qquad 0 \qquad 1/2$$

$$y \quad -1 \qquad 1/8 \qquad 1/4$$

$$2 \qquad 1/8 \qquad 0$$

$$p(x)? \quad 1/4 \qquad 3/4$$

$$(x) = \sum_{x} p(x, y)$$

$$p(x, y) \qquad x \qquad p(y) = \sum_{x} p(x, y)$$

$$-3 \qquad 0 \qquad 1/2 \qquad 1/2$$

$$y \quad -1 \qquad 1/8 \qquad 1/4 \qquad 3/8$$

$$2 \qquad 1/8 \qquad 0 \qquad 1/8$$

$$p(x)? \quad 1/4 \qquad 3/4$$

$$(x) = \sum_{x} p(x, y)$$

Questions?

- Suppose we observe y to be y_1 , then $p(x | y = y_1)$ is how likely x will take on various values given this observation
- $p(x | y = y_1)$ read as "conditional probability of X given Y is equal to y_1 "

Conditional probability can be computed from joint probability

slice of joint distribution

$$p(x|y = y^*) = \frac{p(x, y = y^*)}{p(y = y^*)}$$

 \boldsymbol{x}

Conditional probability can be computed from joint probability

slice of joint distribution

$$p(x|y=y^*) = \frac{p(x,y=y^*)}{p(y=y^*)} = \frac{p(x,y=y^*)}{\int p(x,y=y^*)dx}$$

 \boldsymbol{x}

Conditional Probability

$$p(x|y=y^*) = \frac{p(x,y=y^*)}{p(y=y^*)} = \frac{p(x,y=y^*)}{\int p(x,y=y^*)dx}$$

More usually written in compact form

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

Conditional Probability

$$p(x|y=y^*) = \frac{p(x,y=y^*)}{p(y=y^*)} = \frac{p(x,y=y^*)}{\int p(x,y=y^*)dx}$$

More usually written in compact form

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

Can be re-arranged to give

$$p(x,y) = p(y)p(x|y)$$
$$p(x,y) = p(x)p(y|x)$$

X					
		0 0 1/8 1/8	2.5	p(y)	
•	-3	0	1/2	1/2	$p(x y = -1) = \frac{p(x, y = -1)}{p(y = -1)}$
У	-1	1/8	1/4	3/8	p(x y-1) - p(y=-1)
	2	1/8	0	1/8	
•		1/4		-	

	X							
		0	2.5	p(y)				
•	-3	0	1/2	1/2				
У	-1	1/8	1/4	3/8				
	2	1/8	0	1/8				
'	p(x)	1/4	3/4					

$$p(x|y = -1) = \frac{p(x, y = -1)}{p(y = -1)}$$

$$p(x=0|y=-1) =$$

$$p(x = 2.5|y = -1) =$$

$$p(x = 0|y = -1) = \frac{p(x = 0, y = -1)}{p(y = -1)}$$

$$p(x = 2.5|y = -1) =$$

$$p(x = 0|y = -1) = \frac{p(x = 0, y = -1)}{p(y = -1)} = \frac{1/8}{3/8} = \frac{1}{3}$$

$$p(x = 2.5|y = -1) =$$

$$p(x = 0|y = -1) = \frac{p(x = 0, y = -1)}{p(y = -1)} = \frac{1/8}{3/8} = \frac{1}{3}$$

$$p(x = 2.5|y = -1) = \frac{p(x = 2.5, y = -1)}{p(y = -1)} = \frac{1/4}{3/8} = \frac{2}{3}$$

Questions?

Bayes' Rule

From before:

$$\begin{aligned} p(x,y) &= p(y)p(x|y) \\ p(x,y) &= p(x)p(y|x) \end{aligned} \qquad \text{Equate RHS}$$

From before:

$$p(x,y) = p(y)p(x|y)$$
$$p(x,y) = p(x)p(y|x)$$

$$p(x,y) = p(x)p(y|x)$$

Combining:

$$p(y)p(x|y) = p(x)p(y|x)$$

Equate RHS

From before:

$$p(x,y) = p(y)p(x|y)$$
$$p(x,y) = p(x)p(y|x)$$

$$p(x,y) = p(x)p(y|x)$$

Combining:

$$p(y)p(x|y) = p(x)p(y|x)$$

Equate RHS

$$p(y|x) = \frac{p(y)p(x|y)}{p(x)}$$

From before:

$$p(x,y) = p(y)p(x|y)$$

$$p(x,y) = p(x)p(y|x)$$

Combining:

$$p(y)p(x|y) = p(x)p(y|x)$$

Equate RHS

$$p(y|x) = \frac{p(y)p(x|y)}{p(x)}$$

$$= \frac{p(y)p(x|y)}{\int p(x,y)dy}$$

$$p(x) = \int p(x,y)dy$$

From before:

$$p(x,y) = p(y)p(x|y)$$
$$p(x,y) = p(x)p(y|x)$$

Combining:

$$p(y)p(x|y) = p(x)p(y|x)$$

Equate RHS

$$\begin{split} p(y|x) &= \frac{p(y)p(x|y)}{p(x)} \\ &= \frac{p(y)p(x|y)}{\int p(x,y)dy} \\ &= \frac{p(y)p(x|y)}{\int p(y)p(x|y)} \\ &= \frac{p(y)p(x|y)}{\int p(y)p(x|y)dy} \end{split} \qquad \text{$p(x) = \int p(x,y)dy$} \\ &= \frac{p(y)p(x|y)}{\int p(y)p(x|y)dy} \end{aligned} \qquad \text{Adapted from S. Prince}$$

Deriving Bayes' Rule (y discrete)

From before:

$$p(x,y) = p(y)p(x|y)$$
$$p(x,y) = p(x)p(y|x)$$

Combining:

$$p(y)p(x|y) = p(x)p(y|x)$$

Equate RHS

$$\begin{split} p(y|x) &= \frac{p(y)p(x|y)}{p(x)} \\ &= \frac{p(y)p(x|y)}{\sum_y p(x,y)} \\ &= \frac{p(y)p(x|y)}{\sum_y p(y)p(x|y)} \\ \end{pmatrix} p(x) = \sum_y p(x,y) \\ p(x,y) &= p(y)p(x|y) \\ &= \frac{p(y)p(x|y)}{\sum_y p(y)p(x|y)} \\ \end{split}$$
 Adapted from S. Prince

Bayes' Rule

Prior – what we know about y BEFORE seeing x

Likelihood – propensity for observing a certain value of x given a certain value of y

$$p(y|x) = \frac{p(y)p(x|y)}{p(x)} = \frac{p(y)p(x|y)}{\sum_{y} p(y)p(x|y)}$$

Posterior – what we know about y AFTER seeing x

Evidence – a constant to ensure that the left hand side is a valid distribution

Example: 40 year old woman doing mammogram

• Let x = 1 if mammogram positive, y = 1 if breast cancer

- Let x = 1 if mammogram positive, y = 1 if breast cancer
- Suppose test is positive, what is cancer probability p(y=1|x=1)

- Let x = 1 if mammogram positive, y = 1 if breast cancer
- Suppose test is positive, what is cancer probability p(y=1|x=1)
- Suppose sensitivity p(x = 1|y = 1) = 0.8, false positive p(x = 1|y = 0) = 0.1, prior p(y = 1) = 0.004

- Let x = 1 if mammogram positive, y = 1 if breast cancer
- Suppose test is positive, what is cancer probability p(y=1|x=1)
- Suppose sensitivity p(x = 1|y = 1) = 0.8, false positive p(x = 1|y = 0) = 0.1, prior p(y = 1) = 0.004

$$p(y=1|x=1) = \frac{p(y=1)p(x=1|y=1)}{p(y=1)p(x=1|y=1) + p(y=0)p(x=1|y=0)}$$

- Let x = 1 if mammogram positive, y = 1 if breast cancer
- Suppose test is positive, what is cancer probability p(y=1|x=1)
- Suppose sensitivity p(x = 1|y = 1) = 0.8, false positive p(x = 1|y = 0) = 0.1, prior p(y = 1) = 0.004

$$p(y=1|x=1) = \frac{p(y=1)p(x=1|y=1)}{p(y=1)p(x=1|y=1) + p(y=0)p(x=1|y=0)}$$
$$= \frac{0.004 \times 0.8}{0.004 \times 0.8 + 0.996 \times 0.1} = 0.031$$

Example: 40 year old woman doing mammogram

- Let x = 1 if mammogram positive, y = 1 if breast cancer
- Suppose test is positive, what is cancer probability p(y=1|x=1)
- Suppose sensitivity p(x = 1|y = 1) = 0.8, false positive p(x = 1|y = 0) = 0.1, prior p(y = 1) = 0.004

$$p(y=1|x=1) = \frac{p(y=1)p(x=1|y=1)}{p(y=1)p(x=1|y=1) + p(y=0)p(x=1|y=0)}$$
$$= \frac{0.004 \times 0.8}{0.004 \times 0.8 + 0.996 \times 0.1} = 0.031$$

• US government no longer recommend mammogram for women in 40s

Questions?

• If x & y are independent, then knowing x tells us nothing about y (and vice versa):

$$p(x|y) = p(x)$$

$$p(y|x) = p(y)$$

• If x & y are independent, then knowing x tells us nothing about y (and vice versa):

$$p(x|y) = p(x)$$
$$p(y|x) = p(y)$$

 If x & y are independent, then joint distribution factorizes into product of marginal distributions:

$$p(x,y) = p(x)p(y|x)$$
$$= p(x)p(y)$$

 If x & y are independent, then knowing x tells us nothing about y (and vice versa):

$$p(x|y) = p(x)$$
$$p(y|x) = p(y)$$

 If x & y are independent, then joint distribution factorizes into product of marginal distributions:

$$p(x,y) = p(x)p(y|x)$$
$$= p(x)p(y)$$

 Conversely, if joint distribution can be factorized into product of marginal distributions, then x & y are independent

Questions?

N Random Variables

Have focused on 2 random variables x and y

- Have focused on 2 random variables x and y
- In real applications, usually more than 2 variables (e.g., photo has > 1M pixels)

- Have focused on 2 random variables x and y
- In real applications, usually more than 2 variables (e.g., photo has > 1M pixels)
- If we observe $x_1, x_2, ..., x_N$ multiple times, some combinations of outcomes more likely than others

- Have focused on 2 random variables x and y
- In real applications, usually more than 2 variables (e.g., photo has > 1M pixels)
- If we observe $x_1, x_2, ..., x_N$ multiple times, some combinations of outcomes more likely than others
- This information captured by joint probability distribution function

- Have focused on 2 random variables x and y
- In real applications, usually more than 2 variables (e.g., photo has > 1M pixels)
- If we observe $x_1, x_2, ..., x_N$ multiple times, some combinations of outcomes more likely than others
- This information captured by joint probability distribution function
- Written as $p(x_1, x_2, ..., x_N)$, read as probability distribution of x_1 to x_N
- If $x_1, x_2, ..., x_N$ continuous, then p refers to joint probability distribution function (pdf). If discrete, then refers to joint probability mass function (pmf)

- Have focused on 2 random variables x and y
- In real applications, usually more than 2 variables (e.g., photo has > 1M pixels)
- If we observe $x_1, x_2, ..., x_N$ multiple times, some combinations of outcomes more likely than others
- This information captured by joint probability distribution function
- Written as $p(x_1, x_2, ..., x_N)$, read as probability distribution of x_1 to x_N
- If $x_1, x_2, ..., x_N$ continuous, then p refers to joint probability distribution function (pdf). If discrete, then refers to joint probability mass function (pmf)
- Many properties for two random variables generalize naturally to more variables

Marginalization / Law of Total Probability

We can recover probability distribution of any variable in a joint distribution by integrating (or summing) over the other variables

$$Pr(x) = \int Pr(x,y) dy$$

$$Pr(y) = \int Pr(x,y) dx$$

Marginalization / Law of Total Probability

We can recover probability distribution of any variable in a joint distribution by integrating (or summing) over the other variables

$$Pr(x) = \int Pr(x, y) dy$$

$$Pr(y) = \int Pr(x,y) dx$$

Works in higher dimensions as well – leaves joint distribution between whatever variables are left

$$Pr(x,y) = \sum_{w} \int Pr(w,x,y,z) dz$$

Conditional Probability

Two variables

$$p(x,y) = p(x)p(y|x)$$

Conditional Probability

Two variables

$$p(x,y) = p(x)p(y|x)$$

Three variables

$$p(a, b, c) = p(a)p(b, c|a) = p(a)p(b|a)p(c|a, b)$$

Conditional Probability

Two variables

$$p(x,y) = p(x)p(y|x)$$

Three variables

$$p(a,b,c) = p(a)p(b,c|a) = p(a)p(b|a)p(c|a,b)$$

N variables

$$p(x_1, \dots, x_N) = p(x_1)p(x_2, \dots, x_N|x_1)$$

$$= p(x_1)p(x_2|x_1)p(x_3, \dots, x_N|x_1, x_2)$$

$$= p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \cdots p(x_N|x_1, \dots, x_{N-1})$$

Independence

• If x_1, \dots, x_N are independent, then knowing any subset of x's tells us nothing about the remaining x's

Independence

- If x_1, \dots, x_N are independent, then knowing any subset of x's tells us nothing about the remaining x's
- If x_1, \dots, x_N are independent if and only if the joint distribution factorizes into product of marginal distributions:

$$p(x_1, \cdots, x_N) = p(x_1)p(x_2)\cdots p(x_N) \stackrel{\triangle}{=} \prod_{n=1}^N p(x_n)$$

Independence

- If x_1, \dots, x_N are independent, then knowing any subset of x's tells us nothing about the remaining x's
- If x_1, \dots, x_N are independent if and only if the joint distribution factorizes into product of marginal distributions:

$$p(x_1, \cdots, x_N) = p(x_1)p(x_2)\cdots p(x_N) \stackrel{\triangle}{=} \prod_{n=1}^N p(x_n)$$

• x_1, \dots, x_N are independently and identically distributed (i.i.d.) if they are independent and $p(x_1) = p(x_2) = \dots = p(x_N)$

Conditional Independence

• x_1 and x_2 are conditionally independent given x_3 if and only if

$$p(x_1, x_2|x_3) = p(x_1|x_3)p(x_2|x_3)$$

Knowing x_2 tells us nothing about x_1 (and vice versa) if we already know x_3

Maximum-A-Posterior (MAP) and Maximum Likelihood (ML) Estimation

• $\operatorname{argmax}_{x} f(x)$ is value of x where f(x) is biggest

- $\operatorname{argmax}_{x} f(x)$ is value of x where f(x) is biggest
- $\operatorname{argmin}_{x} f(x)$ is value of x where f(x) is smallest

- $\operatorname{argmax}_{x} f(x)$ is value of x where f(x) is biggest
- $\operatorname{argmin}_{x} f(x)$ is value of x where f(x) is smallest

•
$$f(x) = \begin{cases} |\sin(4x)^2 + x| \exp(-x) + x^2 + 0.1, & -0.95 \le x \le 0.95 \\ 0 & \text{otherwise} \end{cases}$$

- $\operatorname{argmax}_{x} f(x)$ is value of x where f(x) is biggest
- $\operatorname{argmin}_{x} f(x)$ is value of x where f(x) is smallest

•
$$f(x) = \begin{cases} |\sin(4x)^2 + x| \exp(-x) + x^2 + 0.1, & -0.95 \le x \le 0.95 \\ 0 & \text{otherwise} \end{cases}$$

- Generally easier to evaluate f(x) than find maximum or minimum

- $\operatorname{argmax}_{x} f(x)$ is value of x where f(x) is biggest
- $\operatorname{argmin}_{x} f(x)$ is value of x where f(x) is smallest

•
$$f(x) = \begin{cases} |\sin(4x)^2 + x| \exp(-x) + x^2 + 0.1, & -0.95 \le x \le 0.95 \\ 0 & \text{otherwise} \end{cases}$$

- Generally easier to evaluate f(x) than find maximum or minimum

- $\operatorname{argmax}_{x} f(x)$ is value of x where f(x) is biggest
- $\operatorname{argmin}_{x} f(x)$ is value of x where f(x) is smallest

•
$$f(x) = \begin{cases} |\sin(4x)^2 + x| \exp(-x) + x^2 + 0.1, & -0.95 \le x \le 0.95 \\ 0 & \text{otherwise} \end{cases}$$

- Generally easier to evaluate f(x) than find maximum or minimum
- Real problems: may have to live with local maximum or minimum

$$y_{MAP} \stackrel{\triangle}{=} \underset{y}{\operatorname{argmax}} p(y|x)$$

$$y_{MAP} \stackrel{\triangle}{=} \underset{y}{\operatorname{argmax}} p(y|x)$$

$$= \underset{y}{\operatorname{argmax}} \frac{p(y)p(x|y)}{p(x)}$$
Bayes' rule

$$y_{MAP} \stackrel{\triangle}{=} \underset{y}{\operatorname{argmax}} p(y|x)$$
 Bayes' rule
$$= \underset{y}{\operatorname{argmax}} \frac{p(y)p(x|y)}{p(x)}$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

• Maximum-A-Posteriori (MAP) estimation:

$$y_{MAP} \stackrel{\triangle}{=} rgmax p(y|x)$$
 y Bayes' rule
$$= rgmax \frac{p(y)p(x|y)}{p(x)}$$
 $p(x)$ not function of y
$$= rgmax p(y)p(x|y)$$

• Example: p(y = chair|x = photo) = 0.6, p(y = human|x = photo) = 0.3, $p(y = \text{cat}|x = \text{photo}) = 0.1 \implies y_{MAP} = \text{chair}$

$$y_{MAP} \stackrel{\triangle}{=} rgmax p(y|x)$$
 y Bayes' rule
$$= rgmax \frac{p(y)p(x|y)}{p(x)}$$
 $p(x)$ not function of y
$$= rgmax p(y)p(x|y)$$

- Example: p(y = chair|x = photo) = 0.6, p(y = human|x = photo) = 0.3, $p(y = \text{cat}|x = \text{photo}) = 0.1 \implies y_{MAP} = \text{chair}$
- Example: $p(y=\text{chair}|x=\text{photo}) \propto 1.2, \ p(y=\text{human}|x=\text{photo}) \propto 0.6, \ p(y=\text{cat}|x=\text{photo}) \propto 0.2$

$$y_{MAP} \stackrel{\triangle}{=} \underset{y}{\operatorname{argmax}} p(y|x)$$
 Bayes' rule
$$= \underset{y}{\operatorname{argmax}} \frac{p(y)p(x|y)}{p(x)}$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

- Example: p(y = chair|x = photo) = 0.6, p(y = human|x = photo) = 0.3, $p(y = \text{cat}|x = \text{photo}) = 0.1 \implies y_{MAP} = \text{chair}$
- Example: $p(y = \text{chair}|x = \text{photo}) \propto 1.2$, $p(y = \text{human}|x = \text{photo}) \propto 0.6$, $p(y = \text{cat}|x = \text{photo}) \propto 0.2$
 - Notice 1.2 + 0.6 + 0.2 = 2, so not a valid probability distribution, which is why we use " \propto " rather than "=" but y_{MAP} still the same (chair)

$$y_{MAP} \stackrel{\triangle}{=} \underset{y}{\operatorname{argmax}} p(y|x)$$
 Bayes' rule
$$= \underset{y}{\operatorname{argmax}} \frac{p(y)p(x|y)}{p(x)}$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

- Example: p(y = chair|x = photo) = 0.6, p(y = human|x = photo) = 0.3, $p(y = \text{cat}|x = \text{photo}) = 0.1 \implies y_{MAP} = \text{chair}$
- Example: $p(y = \text{chair}|x = \text{photo}) \propto 1.2$, $p(y = \text{human}|x = \text{photo}) \propto 0.6$, $p(y = \text{cat}|x = \text{photo}) \propto 0.2$
 - Notice 1.2 + 0.6 + 0.2 = 2, so not a valid probability distribution, which is why we use " \propto " rather than "=" but y_{MAP} still the same (chair)
 - If we want proper distribution, c = 1.2 + 0.6 + 0.2 = 2, so we can normalize to become proper distribution: p(y = chair|x = photo) = 1.2/c = 0.6, p(y = human|x = photo) = 0.6/c = 0.3, p(y = cat|x = photo) = 0.2/c = 0.1

• Maximum-A-Posteriori (MAP) estimation:

$$y_{MAP} \stackrel{\triangle}{=} \underset{y}{\operatorname{argmax}} p(y|x)$$
 Bayes' rule
$$= \underset{y}{\operatorname{argmax}} \frac{p(y)p(x|y)}{p(x)}$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

• Prior p(y) is constant (uniform) \implies maximum likelihood (ML) estimate

$$y_{MAP} = \operatorname*{argmax}_{y} p(x|y) \stackrel{\triangle}{=} y_{ML}$$

• Maximum-A-Posteriori (MAP) estimation:

$$y_{MAP} \stackrel{\triangle}{=} \underset{y}{\operatorname{argmax}} p(y|x)$$
 Bayes' rule
$$= \underset{y}{\operatorname{argmax}} \frac{p(y)p(x|y)}{p(x)}$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

• Prior p(y) is constant (uniform) \implies maximum likelihood (ML) estimate

$$y_{MAP} = \operatorname*{argmax}_{y} p(x|y) \stackrel{\triangle}{=} y_{ML}$$

• ML often easier to compute; often use when prior is unknown (or do not want to assume priors)

• Maximum-A-Posteriori (MAP) estimation:

$$y_{MAP} \stackrel{\triangle}{=} \underset{y}{\operatorname{argmax}} p(y|x)$$
 Bayes' rule
$$= \underset{y}{\operatorname{argmax}} \frac{p(y)p(x|y)}{p(x)}$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

$$= \underset{y}{\operatorname{argmax}} p(y)p(x|y)$$

• Prior p(y) is constant (uniform) \implies maximum likelihood (ML) estimate

$$y_{MAP} = \operatorname*{argmax}_{y} p(x|y) \stackrel{\triangle}{=} y_{ML}$$

- ML often easier to compute; often use when prior is unknown (or do not want to assume priors)
- If # samples goes to infinity (infinite amount of data), then $\lim_{N\to\infty} y_{MAP} = y_{ML}$

What is hard here?

- ML is a special case of MAP, so let's focus on MAP (for now)
- In previous example of chair, human & cat, I gave you p(y | x = photo), but how to get p(y | x = photo) in the first place?
- Much of machine learning is about how to choose a model for p(y | x) and how to evaluate/optimize model parameters

Questions?

Probabilistic Estimation of Model Parameters

Probabilistic Estimation of Model Parameters

Example:

- p(y = chair | x = photo) = 0.6
- p(y = human | x = photo) = 0.3
- p(y = cat | x = photo) = 0.1
- How can 0.6, 0.3 and 0.1 appear on right side, but not left side of "=" sign?
- We should technically include $\theta = \begin{bmatrix} 0.6 \\ 0.3 \\ 0.1 \end{bmatrix}$ as variable on left hand side
 - $p(y = chair | x = photo, \theta) = \theta_1 = 0.6$
 - $p(y = human | x = photo, \theta) = \theta_2 = 0.3$
 - $p(y = cat \mid x = photo, \theta) = \theta_3 = 0.1$
 - In this example, posterior distribution is categorical distribution with parameter θ
- In general, θ needs to be learned from the training set for both generative models $p(x, y \mid \theta)$ & discriminative models $p(y \mid x, \theta)$
- In first bullet point on this slide: y & x are concrete things (photo, chair, human, cat), but ML/MAP can also be used to estimate "abstract" quantities like θ . In other words, we can also treat parameters of probability distribution as random variables and estimate them using ML/MAP

Parameters of Probability Distribution can themselves be treated as random variables

- Given training set D = $\{x_i, y_i\}_{i=1:N}$, where x = feature, y = target label
- Goal: learn parameters $\boldsymbol{\theta}$ of generative model $p(x, y \mid \boldsymbol{\theta})$ from D, so that given new test data x, can predict y using MAP estimate of posterior by plugging in estimate of $\boldsymbol{\theta}$: $p(y \mid x, \boldsymbol{\theta}) \propto p(x, y \mid \boldsymbol{\theta}) = p(x \mid y, \boldsymbol{\theta})p(y \mid \boldsymbol{\theta})$
- Strategy 1 (Maximum likelihood)
 - Step 1: Estimate θ_{ML} = argmax $_{\theta}$ p(D | θ)
 - Step 2: Plug in θ_{ML} into p(x, y | θ_{ML}) and find MAP estimate of y
- Strategy 2 (Maximum-A-Posteriori)
 - Step 1: Estimate θ_{MAP} = argmax $_{\theta}$ p(θ | D)
 - Step 2: Plug in θ_{MAP} into p(x, y | θ_{MAP}) and find MAP estimate of y
- Since parameters θ of probability distributions are treated as random variables that can be estimated, let's see how this is done for various distributions

Questions?