Matr.Nr.

SV

Analytisch 3.1 (6 Punkte)

Abbildung 1: Pol-Nullstellen Diagramm von X(z).

Gegeben sei das in Abbildung 1 dargestellte Pol-Nullstellen Diagramm von X(z), der z-Transformierten der kausalen Sequenz x[n]. Weiters seien folgende Zusammenhänge definiert:

- $y_i[n] = (x * h_i)[n]$
- $h_i[n] \stackrel{\mathcal{Z}}{\leftrightarrow} H_i(z)$
- $y_i[n] \stackrel{\mathcal{Z}}{\leftrightarrow} Y_i(z)$

Die Sequenz $h_i[n]$ mit Subindex i = 1...5 sei ebenfalls kausal.

- (a) [1 Punkt(e)] $H_1(z)$ sei durch das Pol-Nullstellen Diagramm in Abbildung 2 beschrieben. Ermitteln und zeichnen Sie das Pol-Nullstellen Diagramm von $Y_1(z)$. Ist $y_1[n]$ reellwertig? Begründen Sie Ihre Antwort!
- (b) [1 Punkt(e)] $H_2(z)$ sei durch das Pol-Nullstellen Diagramm in Abbildung 3 beschrieben. Finden Sie $y_2[n]$ als Funktion von x[n]! (**Hinweis:** Verwenden Sie hierfür die Formelsammlung.)
- (c) [1 Punkt(e)] $H_3(z)$ sei nun durch das Pol-Nullstellen Diagramm in Abbildung 4 beschrieben Ermitteln und zeichnen Sie das Pol-Nullstellen Diagramm von $Y_3(z)$. Ist $Y_3(z)$ minimalphasig? Begründen Sie Ihre Antwort!
- (d) [1 Punkt(e)] Nun sei $Y_4(z)$ durch das Pol-Nullstellen Diagramm in Abbildung 5 beschrieben. Ermitteln und zeichnen Sie das Pol-Nullstellen Diagramm von $H_4(z)$. Ist $H_4(z)$ in diesem Fall stabil? Begründen Sie Ihre Antwort!
- (e) [1 Punkt(e)] Zeichnen Sie das Pol-Nullstellen Diagramm eines Systems $H_5(z)$, welches bewirkt dass die Inverse von $Y_5(z)$ (d.h. $Y_{5,inv} = \frac{1}{Y_5(z)}$) stabil ist.
- (f) [1 Punkt(e)] Skizzieren Sie qualitativ den Absolutbetrag von X(z) am Einheitskreis (i.e. $X(z)|_{z=e^{j\theta}}$ mit $\theta \in [0, 2\pi[)$.

Abbildung 2: PN-Diagramm, $H_1(z)$.

Abbildung 3: PN-Diagramm, $H_2(z)$.

Abbildung 4: PN-Diagramm, $H_3(z)$.

Abbildung 5: PN-Diagramm, $Y_4(z)$.