

Project Name	A Novel Method For Handwritten Recognition System
Name	P.Lavanya
Roll no	814219104009
Team ID	PNT2022TMID45883

Importing Package

from google.colab import drive drive.mount('/content/drive')

import pandas as pd import seaborn as snsimport numpy as np from matplotlib import pyplot as ply %matplotlib inline

df =pd.read_csv(''/content/Churn_Modelling.csv'')
df

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenur
0	1	0.275616	Hargrave	619	France	Female	42	
1	2	0.326454	Hill	608	Spain	Female	41	
2	3	0.214421	Onio	502	France	Female	42	
3	4	0.542636	Boni	699	France	Female	39	
4	5	0.688778	Mitchell	8 <i>50</i>	Spain	Female	43	
	9995 999 6	0.162119	Obijiaku	771	France	Male	39	
	9996 999 7	0.016765	Johnstone	516	France	Male	35	
	9997	0.075327	Liu	709	France	Female	36	

999						
8						
9998	0.466637	Sabbatini	772	Germany	Male	42
999						
9						
9999	0.250483	Walker	792	France	Female	28
1000						
0						

10000 rows × 14 columns

Visualization

a) Univariate analysis

sns.displot (df.Gender)

<seaborn.axisgrid.FacetGrid at 0x7fa2127ec990>

b) Bi-Variate

df.plot.line()

c) Multi Variate

 $sns.lmplot("Tenure", "NumOfProducts", fit_reg=False);\\$

$/usr/local/lib/python 3.7/dist-packages/seaborn/_decorators.py: 43: Future Warning Future Warning$

4.0

Perform descriptive statistics on the dataset

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balanc
count	10000.00	10000.0000	10000.0000	10000.0000	10000.0000	10000.0000
	000	00	00	00	00	0
mean	5000.500	0.500980	650.528800	36.533900	5.012800	76485.8892
	00					8
std	2886.895	<i>0</i> .2877 <i>5</i> 7	96.653299	6.473843	2.892174	62397.4052
	68					0
min	1.00000	0.000000	350.000000	20.000000	0.000000	0.00000
25%	2500.750	0.251320	584.000000	©32.000000	3.000000	0.00000
	00		Sho			
50%	5000.500	0.500170	652.000000	37.000000	5.000000	97198.5400
	00		Mo.Ke.			0
7 <i>5</i> %	7500.250	0.750164	718.000000	40.000000	7.000000	127644.240
	00)			00
max	10000.00	1.000000	850.000000	50.000000	10.000000	250898.090
						00

Handle the missing values

$$\label{eq:data} \begin{split} & data = pd.read_csv(''/content/Churn_Modelling.csv'') \\ & pd.isnull(data[''Gender'']) \end{split}$$

- 0 False
- 1 False
- 2 False
- 3 False
- 4 False

sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning FutureWarning

9995 False 9996 False 9997 False 9998 False 9999 False

Name: Gender, Length: 10000, dtype: bool

Find the outliers and replace the outliers

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fa21390b290>

df['Age']=np.where(df['Age']>50,40,df['Age'])df['Age']

0	42
1	41
2	42
3	39
4	43
	••
0005	20
9995	39
9995 9996	39 35
	• •
9996	35
9996 9997	35 36

Name: Age, Length: 10000, dtype: int64

sns.boxplot(df['Age'])

 $/usr/local/lib/python 3.7/dist-packages/seaborn/_decorators.py: 43: Future Warning \\ Future Warning$

<matplotlib.axes._subplots.AxesSubplot at 0x7fa213879fd0>

 $\begin{array}{l} df['Age'] = np.where(df['Age'] < 20,35,df['Age']) \\ df['Age'] \end{array}$

0	42
1	41
2	42
3	39
4	43
	••
9995	39
9995 9996	39 35
,,,,	• •
9996	35

Name: Age, Length: 10000, dtype: int64

Check for categorical Columns and perform encoding

pd.get_dummies(df,columns=["Gender","Age"],prefix=["Age","Gender"]).head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Tenure	Balance	Num(
0	1	0.275616	Hargrave	619	France	2	0.00	
1	2	0.326454	Hill	608	Spain	1	83807.8	
2	3	0.214421	Onio	502	France	8	6 159660. 80	
3	4	0.542636	Boni	699	France	1	0.00	
4	5	0.688778	Mitchell	8 <i>50</i>	Spain	2	125510.	

5 rows × 45 columns

Split the data into dependent and independent Variables

a) Split the data into independent Variables

```
X = df.iloc[:, :-1].values
print(X)
```

[[1 0.2756161271095934 'Hargrave' ... 1 1 101348.88] [2 0.32645436399201344 'Hill' ... 0 1 112542.58] [3 0.21442143454311946 'Onio' ... 1 0 113931.57]

•••

[9998 0.07532731440183227 'Liu' ... 0 1 42085.58] [9999 0.4666365320074064 'Sabbatini' ... 1 0 92888.52] [10000 0.25048302125293276 'Walker' ... 1 0 38190.78]]

b) Split the data into dependent Variables

Y = df.iloc[:, -1].valuesprint (Y)

[1 0 1 ... 1 1 0]

Scale the independent Variables

import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["CustomerId"]]= scaler.fit_transform(df[["CustomerId"]])
print(df)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	\
0	1	0.275616	Hargrave	619	France	Female	42	
1	2	0.326454	Hill	608	Spain	Female	41	
2	3	0.214421	Onio	502	France	Female	42	
3	4	0.542636	Boni	699	France	Female	39	
4	5	0.688778	Mitchell	850	Spain	Female	43	
•••	•••	•••	•••	•••	•••	•••	•••	
9995	9996	0.162119	Obijiaku	771	France	Male	39	
9996	9997	0.016765	Johnstone	516	France	Male	35	
9997	9998	0.075327	Liu	709	France	Female	36	
9998	999 9	0.466637	Sabbatini 🦠	772	Germany	Male	42	
9999	10000	0.250483	Walker	792	France	Female	28	
	Т	Dalamas N	October 19 Action	In a CouCourd — I	. A .4: M 1			

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
0	2	0.00		1	1	
1	1	83807.86	1	0	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	
•••	•••	•••	•••	•••	•••	
9995	5	0.00	2	1	0	
9996	10	57369.61	1	1	1	
9997	7	0.00	1	0	1	
9998	3	75075.31	2	1	0	
9999	4	130142.79	1	1	0	

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
•••	•••	•••
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]

Split the data into training and testing

```
 from sklearn.model\_selection import train\_test\_splittrain\_size=0.8 \\ X = df.drop(columns = ['Tenure']).copy()y \\ = df['Tenure'] \\ X\_train, X\_rem, y\_train, y\_rem = train\_test\_split(X,y, train\_size=0.8)test\_size=0.5 \\ X\_valid, X\_test, y\_valid, y\_test = train\_test\_split(X\_rem,y\_rem,test\_size=0.5)print(X\_train.shape), print(y\_train.shape) \\ print(X\_valid.shape), print(y\_valid.shape) \\ print(X\_test.shape), print(y\_test.shape) \\ \hline (8000, 13) \\ (8000,) \\ (1000, 13) \\ (1000,) \\ (1000, 13) \\ (1000,) \\ (None, None) \\ \hline
```

