

METÓDA KONEČNÝCH PRVKOV V PROGRAME FREEFEM

Patrícia Lukoťková

Úvod

Mnoho problémov vo fyzike, inžinierstve či v bankovníctve je modelovaných práve jednou alebo viacerými diferenciálnymi rovnicami. Avšak tieto rovnice vedia byť natoľko zložité, že ich nemožno analyticky riešiť. Z toho vzišla potreba vyvinúť numerické metódy ktorými by sa vypočítalo približné riešenie s dostatočne malou chybou. Medzi takéto metódy patrí napríklad metóda konečných prvkov (MKP).

Hlavou myšlienkou tejto metódy je diskretizácia oblasti na viacero geometricky jednoduchších oblastí - konečných prvkov (elementov). Na každom konečnom prvku sa následne neznáma funkcia aproximuje lineárnou kombináciou elementových aproximačných funkcií a približných uzlových hodnôt neznámej funkcie, ktoré sa hľadajú tak, aby spĺňali slabú formuláciu.

V dnešnej dobe sú numerické metódy implementované v rôznych softvéroch. Softvér FreeFEM využíva pre riešenie problémov práve metódu konečných prvkov, jeho hlavnou myšlienkou je riešenie problému založené na definovaní slabej formulácie, čo z neho robí silný softvér, pretože nie je nutné programovať jednotlivé kroky MKP, ktoré môžu byť veľakrát značne komplikované.

S jedným z inžinierskych problémov sa možno stretnúť aj pri fyzikálnej geodézií. Poruchový potenciál spĺňa Laplaceovu rovnicu mimo oblasti Zeme a spolu s okrajovými podmienkami tvorí geodetickú okrajovú úlohu.

Poruchový potenciál

Zem podľa Newtonových zákonov nad svojim povrchom vytvára gravitačné pole. Rotáciou gravitačného poľa dochádza k vytvoreniu tiažového poľa Zeme, ktoré možno popísať veličinou, ktorá sa nazýva (skutočný) tiažový potenciál W, ktorý je tvorený gravitačným W_a a odstredivým W_o potenciálom.

$$W(X) = W_g(X) + W_o(X) \qquad X \in \mathbb{R}^3$$

Zemský povrch je tvorený rovinami, horstvami, moriami či ostrovmi a preto sa kvôli svojej zložitosti využívajú jeho geometrické aproximácie. Najčastejšie sa jedná o referenčný elipsoid, ktorému sú pridelené geometrické a fyzikálne vlastnosti Zeme.

Potenciál generovaný referenčným elipsoidom sa označí ako normálový tiažový potenciál *U*, ktorý je zostrojený podobne ako skutočný tiažový potenciál.

$$U(X) = U_g(X) + U_o(X) \qquad X \in \mathbb{R}^3$$

Odčítaním skutočného W a normálneho U poruchového potenciálu vznikne poruchový potenciál T.

$$T(X) = W(X) - U(X)$$
 $X \in \mathbb{R}^3$

Zanedbaním atmosféry je poruchový potenciál T harmonická funkcia, ktorá v priestore mimo Zeme spĺňa Laplaceovu rovnicu.

$$\triangle T(X) = 0 \qquad X \in \mathbb{R}^3$$

Geodetická okrajová úloha

Geodetická okrajová úloha s pevnou hranicou na oblasti Ω je definovaná nasledovne:

$$\triangle T(X) = 0 \qquad X \in \Omega \tag{1}$$

S okrajovými podmienkami:

$$T(X) = T_S(X)$$
 $X \in \partial \Omega - \Gamma$

$$\frac{\partial T(X)}{\vec{n}} = \delta g^*(X) \qquad X \in \Gamma$$

Kde $\frac{\partial y}{\partial x} = \delta g(X) * \cos(\theta) = \delta g^*(X)$, pričom θ je uhol medzi vonkajším normálovým vektorom \vec{n} na Γ a vektorom smeru normálneho tiažového zrýchlenia \vec{s} . Ďalej T_S označuje hodnotu poruchového potenciálu získaného z meraní satelitov, oblasť Ω je ohraničená zvnútra hranicou Γ , ktorá predstavuje povrch Zeme a zvonka umelo vytvorenou hranicou $\partial \Omega - \Gamma$ vo výške satelitu.

Softvér FreeFEM

FreeFEM je softvér na numerické riešenie parciálnych diferenciálnych rovníc pomocou MKP. Jedná sa o bezplatný, voľne stiahnuteľný softvér, ktorý dokáže bežať na operačných systémoch UNIX, Windows alebo MacOS. Jazyk tohto programu je podobný s jazykom C++. Disponuje automatických generátorom sietí cez 2D alebo 3D oblasti, ďalej obsahuje rôzne konečné prvky. Prvky (elementy) v softvéri FreeFEM majú tvar trojuholníkov v 2D a tvar tetraédra v 3D.

Experimenty na 2D oblasti

Pre oblasti Ω zobrazené na obrázkoch vyššie búdu k rovnici (1) prislúchať nasledujúce okrajové podmienky:

Dirichletová okrajová podmienka:

$$T(X) = -\log(r_2)$$
 $X \in \Gamma_2$

Neumannová okrajová podmienka:

$$\frac{\partial T(X)}{\vec{n}} = -\frac{1}{r_1} \qquad X \in \Gamma_1$$

$$\frac{\partial T(X)}{\vec{n}} = 0 \qquad X \in \Gamma_3, \Gamma_4$$

Takto definovaná úloha vypočítaná v programe FreeFEM vyzerá nasledovne. Použité sú lineárne elementy P1, ktoré dávajú riešenie vo vrcholoch jednotlivých elementov.

Vykreslenie riešenie na zjemňujúcej sa sieti

Pre každé vypočítané približné riešenie je v práci zobrazená aj jeho L₂ norma chyby a odhadnutý rad presnosti metódy

<i>n</i> _{Γ1}	n _{r2}	<i>n</i> _{Γ3}	n _{Γ4}	L ₂ norma	L ₂ EOC
3	6	2	2	0.0149868	-
6	12	4	4	0.0033381	2.166
12	24	8	8	0.0008693	1.941
24	48	16	16	0.0002179	1.996
48	96	32	32	0.0000532	2.034
96	192	64	64	0.0000137	1.984

L₂ norma chyby riešenia pre zjemňujúcu sa sieť spolu s experimentálnym radom konvergencie

Softvér FreeFEM umožňuje dáta exportovať napríklad vo formáte .vtk pre následnú vizualizáciu v Paraview, avšak je tu obmedzenie pre výber konečných prvkov, je možné zvoliť len elementy stupňa 0 alebo 1

V prípade 2. experimenty je oblasť Ω tvorená celým medzikružím rovnakými polomermi $r_1 = 1$ a $r_2 = 2$, Dirichletovou okrajovou podmienkou na vonkajšej hrane a Neumannovou okrajovou podmienkou na vnútornej hrane.

Vykreslenie riešenie na zjemňujúcej sa sieti

<i>n</i> _{Γ1}	n _{r2}	L ₂ norma	L ₂ EOC
6	12	0.119585	ı
12	24	0.029214	2.0333
24	48	0.007466	1.9681
48	96	0.001770	2.0759
96	192	0.000438	2.0129
192	384	0.000108	2.0109

L₂ norma chyby riešenia pre zjemňujúcu sa sieť vykreslenú na obrázkoch vyššie spolu s EOC

Experimenty na 3D oblasti

Pre posledný experiment je výpočtová oblasť Ω v 3D priestore tvorená 3 sférami, polomermi $r_1 = 1$ a $r_2 = 2$. K rovnici (1) teraz prislúchajú nasledujúce okrajové podmienky

Vykreslenie riešenie na zjemňujúcej sa sieti

Veľkosť siete	L ₂ norma	L ₂ EOC
1.0000	0.31064	-
0.5000	0.07608	2.02954
0.2500	0.01644	2.21007
0.1250	0.00430	1.93232
0.0625	0.00136	1.65884

L₂ norma chyby riešenia pre zjemňujúcu sa sieť spolu s experimentálnym radom konvergencie

 $X \in \Gamma_2$

 $X \in \Gamma_1$

Študijný program: matematika