

Universidade Federal de Viçosa Campus Rio Paranaíba Instituto de Ciências Exatas e Tecnológicas

SIN 343 Desafios de Programação

João Batista Ribeiro

joao42lbatista@gmail.com

Slides baseados no material do prof. Guilherme C. Pena

Universidade Federal de Viçosa Campus Rio Paranaíba Instituto de Ciências Exatas e Tecnológicas

Aula de Hoje

Teoria de Grafos

Fluxo Máximo

Uma aplicação muito comum de grafos são as "*redes* de fluxo".

Fluxo em rede pode significar literalmente fluxo de algum líquido (óleo ou água) por uma rede ou sistema de tubulações. Ou também significar:

- Correntes que passam por redes elétricas,
- Informações transmitidas por redes de comunicação,
- Mensagens de e-mail,
- Bens transportados por rotas de veículos,
- Peças que percorrem linhas de montagem ...

Uma **rede de fluxo** é um grafo direcionado G = (V, E) no qual cada aresta (u, v) tem uma capacidade **não-negativa** c(u, v) >= 0.

s - origem (fonte)

t - destino (sorvedouro)

Por conveniência, considera-se que cada vértice da rede se encontra em um caminho da origem ao destino $s \sim v \sim t$, logo, o grafo é conexo.

s - origem (fonte)

t - destino (sorvedouro)

Notação:

Seja v um vértice qualquer de uma rede N:

- *Out(v)* é o conjunto de arcos que saem de v
- In(v) é o conjunto de arcos que chegam em v

$$Out(s) = \{(s, a), (s, b)\}$$
$$In(s) = \emptyset$$

$$Out(b) = \{(b, t)\}$$

 $In(b) = \{(s, b), (a, b), (c, b)\}$

Um *fluxo (viável)* numa rede capacitada N é uma função $f: A_N \rightarrow R^+$ que associa a cada arco a um valor não negativo f(a) tal que:

- (capacidade) $0 \le f(a) \le c(a)$, para todo arco **a** de N
- (conservação do fluxo) Exceto a fonte e sorvedouro, a taxa pela qual o fluxo entra num vértice deve ser igual à taxa pela qual ele sai do vértice.

$$\sum_{a \in In(v)} f(a) = \sum_{a \in Out(v)} f(a)$$
, para todo $a \neq s, t$

- São indicados *c(a)*, *f(a)*
- arco(s, a): c(s, a) = 5, f(s, a) = 3
- arco(a, b): c(a, b) = 3, f(a, b) = 1

Considere uma rede de distribuição de água

- a restrição de capacidade estabelece que o fluxo numa tubulação não pode ultrapassar sua capacidade
- a restrição de conservação estabelece que o fluxo total que chega em uma junção (vértice) deve ser igual ao fluxo que sai dessa junção.
- Em outras palavras, o fluxo deve fluir pela rede, da origem ao destino, ele não é produzido nem consumido pela rede (a não ser nos vértices origem e destino)

O *valor do fluxo* f em uma rede capacitada N, denotado por val(f), é o total de fluxo que sai da origem, ou seja, $val(f) = \sum_{a \in Out(s)} f(a)$

Por causa da *conservação de fluxo*, esse é exatamente o mesmo valor que chega no destino, $val(f) = \sum_{a \in ln(t)} f(a)$

O **fluxo máximo f*** em uma rede capacitada N é o fluxo viável de maior valor, ou seja, tal que $val(f^*) \ge val(f)$ para todo fluxo viável f em N.

val(f) = 6 não é o fluxo máximo

Considere f(s,b) = 4 e f(b,t) = 6

Esse novo fluxo tem val(f) = 7, maior que o mostrado

Caminhos Direcionados:

Considere um fluxo f numa rede N

Caminhos Direcionados:

• Suponha um caminho direcionado s-t em N: $P = s, a_1, v_1, a_2, \ldots, a_k, t$, tal que $f(a_i) < c(a_i), \forall i = 1, \ldots, k$

P = s, (s, b), b, (b, t), t

Caminhos Direcionados:

 Considerando cada arco isoladamente, pode-se aumentar c(a_i) – f(a_i) no fluxo de a_i

pode-se aumentar 4 em (s,b) e 1 em (b,t)

Caminhos Direcionados:

- Mas, para manter a conservação de fluxo nos vértices, o aumento em cada arco deve ser igual
- Para atender a restrição de capacidade, tal valor deve ser $\Delta_p = min\{c(a_i) f(a_i)\}$

$$\Delta_{p} = min\{4, 1\} = 1$$

Caminhos Direcionados:

- Não há mais caminho direcionado que aumente o fluxo
- Mas o fluxo ainda pode ser aumentado!

Caminhos de aumento:

- +1 no arco (s, b)
- -1 no arco (c, b)
- +1 no arco (c, t)

Note que esses arcos formam um caminho s-t (não direcionado)

• o efeito é redirecionar o fluxo que chega em c

Caminhos de Aumento:

Considere um fluxo f numa rede N

Caminhos de Aumento:

• Suponha um caminho (possivelmente não direcionado) s-t Q = s, a_1 , v_1 , a_2 , . . . , a_k , t, tal que: $f(a_i) < c(a_i)$, se a_i está no mesmo sentido do caminho $f(a_i) > 0$, se a_i está no sentido contrário ao do caminho

Q = s, (s, b), b, (b, c), c, (c, t), t

Caminhos de Aumento:

• Considerando cada arco isoladamente, seja $\Delta_a = c(a_i) - f(a_i), \text{ se } a_i \text{ está no mesmo sentido}$ $\Delta_a = f(a_i), \text{ se } a_i \text{ está no sentido contrário}$

$$\Delta(s, b) = 3,$$

$$\Delta(b, c) = 1$$
,

$$\Delta(c, t) = 1$$

Caminhos de Aumento:

• Para manter conservação de fluxo e capacidade,

$$\Delta_{o} = min\{\Delta_{a}\}$$

$$\Delta_o = 1$$

Caminhos de Aumento:

• Para arco do caminho Q $f(a_i) = f(a_i) + \Delta_Q$, se a_i está no mesmo sentido $f(a_i) = f(a_i) - \Delta_Q$, se a_i está no sentido contrário

$$val(f) = 10$$

Tal caminho é chamado caminho de aumento (de fluxo).

Augmenting Path Algorithm - FFEK

Para cada arco a de N, faça f(a) = 0Enquanto houver caminho de aumento em N Seja Q um caminho de aumento qualquer em N Calcule $\Delta_Q = \min_{a \in Q} \{\Delta_a\}$ Para cada arco a de Q Se a está no sentido de Q, faça $f(a) += \Delta_Q$ Se a está no contrário de Q, faça $f(a) -= \Delta_Q$

Augmenting Path Algorithm - FFEK (Exemplo)

Augmenting Path Algorithm - FFEK (Exemplo)

Augmenting Path Algorithm - FFEK

Sem um bom método para encontrar caminho de aumento o algoritmo poderá ficar muito lento

Augmenting Path Algorithm - FFEK

Sem um bom método para encontrar caminho de aumento o algoritmo poderá ficar muito lento

Nesse exemplo, a complexidade seria O(|A|f*) no pior caso

O fluxo encontrado tem valor val(f) = 10

Esse é o fluxo máximo na rede

Para comprovar isto, considere as partições $X = \{s, a, b, c\} e Y = \{t\}$

Os arcos de X a Y não permitem fluxo > 10

Esse conjunto de arcos é um corte s-t na rede

Definição:

Seja N uma rede e V_s e V_T partição de V_N tal que $s \in V_s$ e t $\in V_T$. O conjunto de arcos direcionados de vértices de V_s a vértices de V_N é um **corte s-t**.

Corte de valor 10.

Corte de valor 13.

Teorema max-flow min-cut:

O fluxo máximo numa rede s-t é igual ao corte mínimo s-t

No fluxo máximo, os fluxos nos arcos do corte mínimo correspondem à capacidade desses arcos.

E o fluxo nos arcos contrários ao corte é 0.

Teorema max-flow min-cut (Exemplo):

O fluxo máximo numa rede s-t é igual ao corte mínimo s-t

Teorema max-flow min-cut (Exemplo):

O fluxo máximo numa rede s-t é igual ao corte mínimo s-t

Referência Bibliográfica

- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: teoria e prática. Tradução da 2. ed. Americana. Rio de Janeiro: Campus, 2002.

Referência Bibliográfica

- SKIENA, S.S. REVILLA, M. A. Programming challenges: the programming contest training manual. Springer, 2003.

