Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

> Отчёт по лабораторной работе №7 по дисциплине «Математическая статистика»

> > Выполнил студент: Самутичев Евгений Романович группа: 3630102/70201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1	Постановка задачи	2				
2	Теория	3				
	2.1 Точечное оценивание	3				
	2.1.1 Основные понятия	3				
	2.1.2 Метод максимального правдоподобия	3				
	2.2 Критерий согласия χ^2	3				
3	Реализация	5				
4	4 Результаты					
5	б Обсуждение					
6	Приложения	8				

Список иллюстраций

1 Постановка задачи

Сгенерировать выборку объёмом 100 элементов для нормального распределения N(0,1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 будем считать, что сгенерированное распределение имеет вид $N(\widehat{\mu},\widehat{\sigma})$. Проверить основную гипотезу, используя критерий согласия χ^2 . В качестве уровня значимости взять $\alpha=0.05$. Привести таблицу вычислений χ^2 .

Дополнительное исследование: для проверки самого критерия, сгенерировать выборки объема 20, 100 для нормального распределения U(-1,1), после чего проверить их на «нормальность».

2 Теория

2.1 Точечное оценивание

2.1.1 Основные понятия

Пусть имеется выборка $\{x_i\}_{i=1}^n$ из генеральной совокупности с плотностью распределения $f(x,\theta)$. Предполагается что функциональный вид зависимости задан с точностью до неизвестного параметра θ . Требуется по выборке наблюдений $\{x_i\}_{i=1}^n$ определить число $\widehat{\theta}_n$ которое можно принять за значение параметра θ . Точечной оценкой неизвестного параметра θ распределения называется борелевская функция наблюдений $\widehat{\theta}_n = \widehat{\theta}_n(x_1,...,x_n)$, приближенно равная θ . Следует заметить что параметр может быть векторным, к примеру $\theta = (\mu,\sigma)$ для нормального распределения.

2.1.2 Метод максимального правдоподобия

Рассмотрим один общий метод построения точечных оценок. Для начала введем важное понятие, функцией правдоподобия ($\Phi\Pi$) называется совместная плотность вероятности распределения n независимых с.в. $x_1, ..., x_n$:

$$L(x_1, \dots, x_n, \theta) = f(x_1, \theta) f(x_2, \theta) \dots f(x_n, \theta)$$
(1)

Оценкой максимального правдоподобия (о. м. п.) будем называть такое значение $\widehat{\theta}_{\text{мп}}$ из множества допустимых значений параметра θ , для которого $\Phi\Pi$ принимает наибольшее значение при заданных $x_1,...,x_n$:

$$\widehat{\theta}_{\text{MII}} = \arg \max_{\theta} L(x_1, \dots, x_n, \theta)$$
(2)

Легко обобщается на случай векторного параметра $\theta = (\theta_1, ..., \theta_m)$:

$$\widehat{\theta}_{\text{MII}} = \arg \max_{\theta_1, \dots, \theta_m} L(x_1, \dots, x_n, \theta_1, \dots, \theta_m)$$
(3)

Известно [1, стр. 444] что о. м. п. нормального распределения являются выборочное среднее и выборочная дисперсия:

$$\widehat{\mu}_{\text{MII}} = \bar{x} \quad \widehat{\sigma}_{\text{MII}} = \sqrt{s^2} \tag{4}$$

$\mathbf{2.2}$ Критерий согласия χ^2

Для проверки гипотезы о законе распределения применяются различные критерии согласия. В данный работе рассматривается наиболее обоснованный и наиболее часто используемый в практике - критерий χ^2 [1, стр. 482]. И так, выдвинута гипотеза H_0 о генеральном законе распределения с функцией распределения F(x). Под конкурирующей гипотезой H_1 понимается гипотеза о справедливости одного из конкурирующих распределений.

Разобьем множество значений изучаемой случайной величины X на k непересекающихся подмножеств $\Delta_1, ..., \Delta_k$ и пусть $p_i = \mathbf{P}(X \in \Delta_k)$. Если множество значений представляет вещественную ось, то подмножества имеют вид:

$$\Delta_i = (a_{i-1}, a_i], i = 2, ..., k - 1 \quad \Delta_1 = (-\infty, a_1] \quad \Delta_k = (a_{k-1}, +\infty)$$
 (5)

Пусть $n_1,...,n_k$ - частоты попадания выборочных элементов в подмножества $\Delta_1,...,\Delta_k$ соответственно. В случае справедливости гипотезы относительные частоты $\frac{n_i}{n}$ должны быть

близки к p_i при i=1,...,k. Поэтому за меру отклонения было предолжено (К. Пирсоном) [1, стр. 483] выбрать значение

$$\chi_B^2 = \sum_{i=1}^k \frac{n}{p_i} \left(\frac{n_i}{n} - p_i \right)^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$
 (6)

Существует **теорема**: *статистика критерия* χ^2 *асимптотически распределена по закону* χ^2 *с* k-1 *степенями свободы*. На основе этой теоремы формируется правило проверки гипотезы о законе распределения по методу χ^2 : можно принять гипотезу H_0 на уровне значимости α если $\chi^2_B < \chi^2_{1-\alpha}$, в противном случае она отвергается.

В данной работе k и длины $\Delta_1, ..., \Delta_k$ выбирались по правилам, которые обычно используют при построении гистограмм [2]. Правило Райса для числа интервалов:

$$k = \lceil 1.72\sqrt[3]{n} \rceil \tag{7}$$

и правило Фридмена-Дайсона для ширины (считаем все интервалы кроме крайних одинаковой ширины)

$$a_i = \text{med } N(\widehat{\mu}, \widehat{\sigma}) + \left(i - \frac{k-1}{2}\right)h,$$
где $h = 2\frac{\text{IQR}(x_1, ..., x_n)}{\sqrt[3]{n}}, i = 2, ..., k-1$ (8)

, где $IQR(x_1,...,x_n)$ - выборочная интерквартильная широта, $med N(\widehat{\mu},\widehat{\sigma})$ - медиана гипотетического распределения (т.к. предполагается что именно в окрестности медианы будет большая часть элементов выборки).

3 Реализация

Работа выполнена с использованием языка **Python** в интегрированной среде разработки **PyCharm**, были задействованы библиотеки:

- ullet NumPy векторизация вычислений, работа с массивами данных, вычисление выборочных характеристик
- SciPy модуль stats для генерации данных, работы с распределениями, оценки методом максимального правдоподобия

Исходный код работы приведен в приложении.

4 Результаты

Оценки:

$$\widehat{\mu} = 0.03 \ \widehat{\sigma} = 1.01 \tag{9}$$

Число промежутков: $k = \left[1.72 \cdot \sqrt[3]{100} \right] = 8$

Таблица вычислений χ^2 :

i	Δ_i	n_i	p_i	$n_i - np_i$
1	$(-\infty, -1.79]$	2	0.0366	-1.6609
2	[-1.79, -1.27]	7	0.0637	0.627
3	(-1.27, -0.75]	12	0.121	-0.0972
4	(-0.75, -0.23]	22	0.1777	4.2306
5	(-0.23, 0.29]	22	0.202	1.8009
6	(0.29, 0.81]	15	0.1777	-2.7694
7	(0.81, 1.33]	8	0.121	-4.0972
8	$(1.33, +\infty)$	12	0.1003	1.9661

Таблица 1: Таблица вычислений χ^2

При $\alpha=0.05$: $\chi^2_{1-\alpha}(k-1)\approx 14.0671$, а вычисленное $\chi^2_{\rm B}=4.1883$, видно что $\chi^2_{\rm B}<\chi^2_{1-\alpha}(k-1)$

В результате доп. исследования, было получено что при n=20 критерий дает вывод что генеральное распределение является нормальным N(0.024,0.59), в результате вычислений $\chi_B^2=4.8612<4.8784=\chi_{1-\alpha}^2$, а при n=100 уже $\chi_B^2=19.2086\geq 8.3834=\chi_{1-\alpha}^2$ т.е. установлено что генеральное распределение не является нормальным (и это соответствует тому что оно задано как равномерное)

5 Обсуждение

Согласно результатам эксперимента, заданное по оценкам (9) распределение $N(\widehat{\mu},\widehat{\sigma})$ является генеральным законом по которому построена выборка с уровнем значимости 0.05. Теоретически это обосновывается тем что оценки максимального правдоподобия состоятельны. Было установлено что при небольших объемах выборки уверенности в полученных результатах нет, ведь статистика критерия χ^2 лишь асимптотически распределена по закону $\chi^2(k-1)$ т.е. n предполагается достаточно большим.

6 Приложения

1. Исходный код лабораторной https://github.com/zhenyatos/statlabs/tree/master/Lab7

Список литературы

- [1] **Вероятностные разделы математики.** Учебник для бакалавров технических направлений. // Под ред. Максимова Ю.Д. СПб «Иван Федоров», 2001. 592 с., илл
- [2] Wikipedia contributors. (2020, March 19). Histogram. In Wikipedia, The Free Encyclopedia. Retrieved 18:27, May 14, 2020, from https://en.wikipedia.org/w/index.php?title=Histogram&oldid=946321806