

Q3-Class HiperFET[™] Power MOSFET

IXFN62N80Q3

N-Channel Enhancement Mode Fast Intrinsic Rectifier Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	800	V	
V_{DGR}	$T_J = 25$ °C to 150°C, $R_{gs} = 1M\Omega$	800	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _c = 25°C	49	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	180	Α	
I _A E _{AS}	$T_c = 25^{\circ}C$ $T_c = 25^{\circ}C$	62 5	A J	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	50	V/ns	
P_{D}	T _c = 25°C	960	W	
T		-55 +150	°C	
T _{.IM}		150 -55 +150	°C °C	
T _{stg}	50/60 Hz, RMS, $t = 1$ minute $I_{ISOL} \le 1$ mA, $t = 1$ s	2500 3000		
$\overline{\mathbf{M}_{d}}$	Mounting Torque for Base Plate Terminal Connection Torque	1.5/13 1.3/11.5	Nm/lb.in. Nm/lb.in.	
Weight		30	g	

		Chara Min.	haracteristic Values in.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = 3mA$	800		V	
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 8mA$	3.5		6.5 V	
I _{GSS}	$V_{GS} = \pm 30V$, $V_{DS} = 0V$			±200 nA	
I _{DSS}	$V_{DS} = 0.8 \cdot V_{DSS}, V_{GS} = 0V$ $T_{J} = 125$	5°C		50 μA 4 mA	
R _{DS(on)}	V _{GS} = 10V, I _D = 31A, Note 1			140 mΩ	

 $\begin{array}{lll} \textbf{V}_{\text{DSS}} & = & 800 \textbf{V} \\ \textbf{I}_{\text{D25}} & = & 49 \textbf{A} \\ \textbf{R}_{\text{DS(on)}} & \leq & 140 \textbf{m} \Omega \\ \textbf{t}_{\text{rr}} & \leq & 300 \textbf{ns} \end{array}$

G = Gate S = Source

D = Drain

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

Features

- International Standard Package
- Low Intrinsic Gate Resistance
- miniBLOC with Aluminum Nitride Isolation
- Avalanche Rated
- Low Package Inductance
- Fast Intrinsic Rectifier
- Low $R_{DS(on)}$ and Q_{G}

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- Temperature and Lighting Controls

Symbol	Test Conditions	Charac	haracteristic Values		
$(T_J = 25^{\circ}C)$	Jnless Otherwise Specified)	Min.	Тур.	Max.	
g _{fs}	$V_{DS} = 20V, I_{D} = 31A, Note 1$	28	48	S	
C _{iss}			13.6	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1260	pF	
C _{rss}			100	pF	
R _{Gi}	Gate Input Resistance		0.13	Ω	
t _{d(on)}	Resistive Switching Times		54	ns	
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 31A$		20	ns	
t _{d(off)}	200 2		62	ns	
t _f	$\int R_{\rm G} = 1\Omega \text{ (External)}$		11	ns	
$Q_{g(on)}$			270	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 31A$		90	nC	
Q _{gd}			120	nC	
R _{thJC}				0.13 °C/W	
R _{thCS}			0.05	°C/W	

Source-Drain Diode

			acteristic Values		
$(1_{J} = 25^{\circ}C)$	Unless Otherwise Specified)	Min.	Тур.	Max.	
Is	$V_{GS} = 0V$			62	Α
I _{sm}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			250	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_F = 31A$, -di/dt = 100A/ μ s $V_R = 100V$, $V_{GS} = 0V$		1.6 13.4	300	ns μC Α

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

120 Vgs = 10V 100 9V 9V 40 40 40 40 6V

V_{DS} - Volts

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C 8V ID - Amperes 7V 6V 5V V_{DS} - Volts

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

IXFN62N80Q3

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.