

I키포인트

- 중심극한정리 (CLT: Central Limit Theorem).
- 표준오차.

장순용 강사.

• 동전을 $\overline{}$ 번씩 던져서 평균을 구해본다. 즉, 크기 n=2인 표본을 여러번 추출한다.

$$\overline{x_1}$$
, $\overline{x_2}$, $\overline{x_3}$, ...

i	표본	$\overline{x_i}$
1	1,1	1
2	0,1	0.5
3	1,0	0.5
4	0,0	0
:	:	:

• 동전을 세 번씩 던져서 평균을 구해본다. 즉, 크기 n = 3인 표본을 여러번 추출한다.

$$\overline{x_1}$$
, $\overline{x_2}$, $\overline{x_3}$, ...

i	표본 <u>x</u> i	
1	1,0,1	2/3
2	0,1,0	1/3
3	1,0,0	1/3
4	0,0,0	0
	:	:

표본평균의 히스토그램. 표본크기 n은 각각 2, 5, 10, 50이다.

- 임의의 크기 n에 해당하는 표본평균 \bar{x} 는 확률적으로 분포되어 있다.
- 그러므로 X (대문자)를 새로운 확률변수로 취급하여 이것의 평균과 분산을 계산한다.
 - \rightarrow 평균 : $E[\bar{X}] = \mu$
 - \rightarrow 분산 : $Var(\overline{X}) = \sigma_{\overline{X}}^2 = \frac{\sigma^2}{n} = \frac{p(1-p)}{n} = \frac{0.25}{n}$
 - ightarrow 표준편차 : $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{\sqrt{p(1-p)}}{\sqrt{n}} = \frac{0.5}{\sqrt{n}}$
- μ 는 모평균이고 σ^2 는 모분산임에 주의한다.
- 또한 $\sigma_{\overline{\chi}}^2$ 는 표본평균 \overline{X} 의 분산이고 s^2 는 단 하나의 표본 안의 분산이다.

FAST CAMPLE 준편차 $\sigma_{\bar{X}}$ 는 모평균 μ 를 추정할 때 발생하는 오차이며 표준오차라고 부른

- 모집단의 확률분포는 베르누이의 특별 케이스 (p=0.5) 이다.
- 그런데 \bar{X} 의 확률분포는 근사적으로 정규분포인 것을 알수 있다. 특히 표본의 크기가 커질수록 폭이 좁아짐과 동시에 정규분포와 더욱 비슷해 진다.
- $Z = \frac{\bar{X} \mu}{\sigma_{\overline{X}}} = \frac{\bar{X} \mu}{\sigma_{/\sqrt{n}}}$ 를 적용한 표준화로 일정한 구간을 유지시키면 시각 화에 유리하다.
- 위에서 정의된 통계량은 표준정규분포를 따른다: $\frac{X-\mu}{\sigma_{\overline{X}}} \sim N(0,1)$

표준화된 결과이다:
$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$$
.

I 연속균등분포 실험

표준화된 결과이다:
$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$$
.

l 정규분포 실험

표준화된 결과이다:
$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$$
.

I 표본평균의 중심극한정리 결론

- 중심극한정리는 모집단의 확률분포와 무관하게 성립된다.
- 표본크기 n이 충분히 크다면 표본평균 \bar{X} 의 분포는 근사적으로 정규분포이다.
- 보통 n > 30이면 중심극한정리가 성립된다고 인정함.
- 모집단의 확률분포가 정규분포이면 표본평균 \bar{X} 의 분포는 정확하게 정규분포이다. 표본크기와 무관하게 성립된다.
 - → 정규확률변수의 합은 또다른 정규확률변수이기 때문.

I 현실적 고려

- 현실에서는 표본은 단 한개이고 표본평균도 단 한개임.
- 하지만, CLT를 믿고 표본평균이 근사적으로 정규분포에 의해서 생성되었음을 전제한다.
- 그러면 정규분포의 특성을 응용하여 추정을 할 수 있다.

I표준화

• 표본의 크기 n이 충분히 크다면 \bar{X} 를 표준화할 수 있다.

⇒ Z통계량: 근사적으로 표준정규분포를 따른다.

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$$

• 만약에 모표준편차 σ 를 모른다면, 대신해서 s를 사용한다.

⇒ t 통계량: 자유도 = n-1 인 스튜던트 t 분포를 근사적으로 따른다.

$$t = \frac{\bar{X} - \mu}{s / \sqrt{n}}$$

I 표본비율의 분포

- 동전은 베르누이 확률분포의 특별 케이스이다 (p = 0.5).
- 모집단이 일반적인 베르누이 확률분포를 따르는 경우를 전제해 본다.
- 성공확률이 p인 모집단을 전제하면 표본평균 \bar{X} 의 기대값과 오차는 다음과 같다.

$$\rightarrow$$
 평균 : $E[\bar{X}] = p$

FAST CAMPUS \rightarrow 표준오차 : $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{p(1-p)}{n}}$

I 표본비율의 분포

- 이 경우 \bar{X} 를 표본비율 이라고 부르며 \hat{P} 와 같이 표기한다:
 - $ightarrow \sigma_{ar{X}}$ 을 $\sigma_{\hat{P}}$ 와 같이 표기하기로 한다.
- 보통 np > 10 and n(1-p) > 10이면 $\widehat{P} \sim N(p, \frac{p(1-p)}{n})$ 으로 간주한다.
 - ← 중심극한정리에 의함.
- 즉, 다음 통계량이 표준정규분포를 따른다:

$$\frac{\widehat{P}-p}{\sigma_{\widehat{P}}} \sim N(0,1)$$

I통계량 사이의 차이 또는 합의 분포

- 두개의 모집단을 가정한다 (1과 2).
- 각각 모집단에서 크기가 n_1 과 n_2 인 표본을 추출한다.
- 각각의 표본평균 사이의 차이에는 다음과 같은 특성이 있다.

$$\rightarrow$$
 평균 : $E[\overline{X_1} - \overline{X_2}] = E[\overline{X_1}] - E[\overline{X_2}] = \mu_1 - \mu_2$

$$\rightarrow$$
 표준오차 : $\sigma_{\overline{X_1}-\overline{X_2}} = \sqrt{\sigma_{\overline{X_1}}^2 + \sigma_{\overline{X_2}}^2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

I통계량 사이의 차이 또는 합의 분포

• 다음 통계량은 근사적으로 표준정규분포를 따른다:

$$\frac{\overline{X_1} - \overline{X_2} - (\mu_1 - \mu_2)}{\sigma_{\overline{X_1} - \overline{X_2}}} \sim N(0,1)$$

• 표본평균의 합에도 유사한 규칙이 적용됨:

$$\frac{\overline{X_1} + \overline{X_2} - (\mu_1 + \mu_2)}{\sigma_{\overline{X_1} + \overline{X_2}}} \sim N(0,1)$$

• 이외의 통계량에도 유사한 규칙이 적용됨 (+ 또는 -).

I 통계량과 표준오차

통계량	표준오차	설명
평균	$\frac{\sigma}{\sqrt{n}}$	n ≥ 30이면 표본평균은 근사적으로 정규분포를 따른다.
비율	$\sqrt{\frac{p(1-p)}{n}}$	보통 $n p > 10$ and $n(1-p) > 10$ 이면 표본비율은 근사적으로 정규분포 를 따른다.
중앙값	$\sigma\sqrt{\frac{\pi}{2n}}$	n ≥ 30이면 표본중앙값은 근사적으로 정규분포를 따른다.
표준편차	a). $\frac{\sigma}{\sqrt{2n}}$ b). $\sqrt{\frac{\mu_4 - \sigma^4}{4n\sigma^2}}$	a). 는 모집단이 정규분포를 따르는 경우, b)는 아닌 경우. $n \geq 30$ 이면 표본표준편차는 근사적으로 정규분포를 따른다.
분산	a). $\sigma^2 \sqrt{\frac{2}{n}}$ b). $\sqrt{\frac{\mu_4 - \sigma^2}{n}}$	a). 는 모집단이 정규분포를 따르는 경우, b)는 아닌 경우. 표본분산은 카 이제곱 분포를 따른다.
상관계수	$\sqrt{\frac{1-r^2}{n-2}}$	r은 표본으로 계산한 상관계수. 근사적 정규분포.

FAST CAMPUS ONLINE

장순용 강사.

Fast campus

감사합니다.

