

Χρονοδρομολόγηση ΚΜΕ

(==Χρονοπρογραμματισμός)

Λειτουργικά Συστήματα Υπολογιστών 6ο Εξάμηνο, 2019-2020

Σκελετός Παρουσίασης

- Μοντέλο Διαμοιρασμού χρόνου και Συμπεριφορά Διεργασιών
- Χρονοδρομολογητής
- Αλγόριθμοι Χρονοδρομολόγησης
- Χρονοδρομολόγηση σε Συστήματα Πολλαπλών Επεξεργαστών

Μοντέλο Διαμοιρασμού Χρόνου

- Πολλαπλές διεργασίες (P₀,P₁,P₂, ...)
- Οι διεργασίες έχουν την (ψευδ-)αίσθηση ότι χρησιμοποιούν αποκλειστικά τον επεξεργαστή
- Ο χρονοδρομολογητής (ΧΔ) αναλαμβάνει:
 - Την επιλογή της διεργασίας που θα χρησιμοποιήσει τον επεξεργαστή
 - Την αλλαγή της διεργασίας που εκτελείται στον επεξεργαστή (context switch)

Διαμοιρασμός χρόνου με διακοπές χρονιστή

Εναλλαγή Περιβάλλοντος Λειτουργίας (1)

Context Switch Η ΚΜΕ αλλάζει από διεργασία σε διεργασία:

- Αποθήκευση κατάστασης παλιάς (στο PCB της)
- Επαναφορά νέας διεργασίας (από το PCB της)
- Πόσο διαρκεί;
 Είναι χαμένος χρόνος για τη CPU
- Πόσο συχνά;
 το σύστημα πρέπει να είναι αποκρίσιμο

Εναλλαγή Περιβάλλοντος Λειτουργίας (2)

• Τι ποσοστό του χρόνου χάνεται στο context switch;

interrupt User Kernel

Λειτουργίες Διεργασιών

- Χρήση επεξεργαστή για Υπολογισμούς (computation)
- Αιτήσεις Ε/Ε μέσω του ΛΣ
 - Οι χρόνοι απόκρισης των μονάδων Ε/Ε είναι τάξεις μεγέθους μεγαλύτεροι από τους αντίστοιχους χρόνους του επεξεργαστή και της μνήμης.
 - Πρόσβαση στην L1: 1-2 κύκλοι
 - Πρόσβαση στη μνήμη: 100-200 κύκλοι
 - Πρόσβαση στο δίσκο: > 10.000.000 κύκλοι
 - Στα σύγχρονα συστήματα οι διαδικασίες Ε/Ε μπορούν να διεκπεραιωθούν χωρίς να απασχολείται ο επεξεργαστής. (πχ μέσω μηχανών DMA)

Συμπεριφορά Διεργασιών

- Ξεσπάσματα ΚΜΕ
- Ξεσπάσματα Ε/Ε

Ιστόγραμμα ξεσπασπασμάτων ΚΜΕ

Καταστάσεις Διεργασίας

Κύκλος Ζωής μιας Διεργασίας

Χρονοδρομολογητής

<u>Ρόλος</u>

- Επιλογή διεργασίας (πολιτική)
- Αλλαγή περιβάλλοντος λειτουργίας dispatching (μηχανισμός)

Στόχος:

Ανάθεση της (των) ΚΜΕ στις διεργασίες ώστε:

- Να μην χάνεται χρόνος στην ΚΜΕ εν αναμονή ολοκλήρωσης λειτουργιών Ε/Ε
- Διαμοιρασμός της ΚΜΕ στις διεργασίες, ώστε η απόκριση του συστήματος να είναι η "επιθυμητή"

Πότε εκτελείται ο χρονοδρομολογητής;

- Χωρίς διακοπές (non-preemptive) ή συνεργατικός (cooperative)
 - Όταν μια διεργασία μεταβεί σε κατάσταση αναμονής
 - Όταν μια διεργασία τερματίσει
- Διακοπτός (preemptive)
 - Όταν μια διεργασία μεταβεί σε κατάσταση εκτέλεσης (πχ ο ΧΔ ελέγχει αν η νέα διεργασία πρέπει να αντικαταστήσει την τρέχουσα)
 - Όταν πραγματοποιηθεί μια διακοπή χρονιστή

Αλλαγή διεργασίας (Dispatcher)

- Δίνει τη ΚΜΕ σε άλλη διεργασία:
 - Εναλλαγή περιβάλλοντος λειτουργίας (πχ αποκατάσταση τιμών καταχωρητών)
 - Εναλλαγή σε τρόπο λειτουργίας χρήστη (user-mode)
 - Μετάβαση στη σωστή θέση του προγράμματος (program counter register)
- Καθυστέρηση αλλαγής (dispatch latency)

Κριτήρια Αξιολόγησης

- Χρησιμοποίηση Επεξεργαστή (cpu utilization) ποσοστό χρόνου που είναι απασχολημένη η ΚΜΕ
- Ρυθμός Διεκπεραίωσης (throughput)
 διεργασίες που ολοκληρώνονται στη μονάδα χρόνου
- Χρόνος Ολοκλήρωσης (turnaround time) χρόνος ολοκλήρωσης διεργασίας
- Χρόνος Αναμονής (waiting time)
 χρόνος που η διεργασία βρίσκεται σε κατάσταση αναμονής
- Χρόνος Απόκρισης (response time) χρόνος από την υποβολή ενός αιτήματος μέχρι να παραχθεί η πρώτη απόκριση

Επιλογή Κριτηρίων Χρονοδρομολόγησης

Εξαρτάται από τις απαιτήσεις του συστήματος

- Γενικά:
 - Μεγιστοποίηση:
 - Χρησιμοποίησης ΚΜΕ
 - Ρυθμού διεκπεραίωσης
 - Ελαχιστοποίηση Χρόνου
 - Ολοκλήρωσης
 - Αναμονής
 - Απόκρισης
- Ελάχιστες, μέγιστες, μέσες τιμές, variance
- Απαιτούνται συμβιβασμοί!

Παράδειγματα Κριτήριων ΧΔ

- Οικιακή χρήση (Desktop)
 - Ο χρήστης θέλει να έχει την αίσθηση ότι οι εφαρμογές του τρέχουν ταυτόχρονα
 - Το σύστημα θα πρέπει να είναι αποκρίσιμο στις πράξεις του χρήστη (π.χ. πληκτρολόγηση)
 - Γενικά απαιτείται χαμηλός χρόνος απόκρισης
- Κόμβος Υπολογισμών (Worker Node)
 - Μεγιστοποίηση ρυθμού διεκπεραίωσης
 - Ελαχιστοποίηση χρόνου ολοκλήρωσης

Με βάση τη σειρά άφιξης (First Come First Served – FCFS)

Χρόνοι Ξεσπάσματος ΚΜΕ

P1 24 P2 3 3

P3

Σειρά Άφιξης:

P1, P2, P3

Μέσος Χρόνος Αναμονής: (0+24+27)/3 = 17

Φαινόμενο Φάλαγγας (*convoy):* όταν μικρές διεργασίες είναι πίσω από μεγάλες

Με βάση τη σειρά άφιξης (First Come First Served – FCFS)

Χρόνοι Ξεσπάσματος ΚΜΕ

Σειρά Άφιξης:

24

P2, P3, P1

P2 3

P3 3

Μέσος Χρόνος Αναμονής: (6+0+3)/3 = 3

Καλύτερη από προηγούμενη περίπτωση λόγω σειράς άφιξης

Με βάση τη μικρότερη Διάρκεια Εκτέλεσης (Shortest Job First - SJF)

- Επιλέγεται η διεργασία με το **μικρότερο** χρόνο ξεσπάσματος ΚΜΕ.
- Βέλτιστος: επιτυγχάνει **ελάχιστο** μέσο χρόνο αναμονής

Ωστόσο:

- Το μήκος του επόμενου ξεσπάσματος ΚΜΕ δεν είναι (γενικά) γνωστό
- Προσέγγιση με βάση προηγούμενες τιμές

Παράδειγμα SJF

Χρόνος Ξεσπάσματος
6
8
7
3

	P4	P1	P3	P2
0		3	9 10	5 24

Χρονοδρομολόγηση: P4, P1, P3, P2

Μέσος χρόνος αναμονής: (0 + 3 + 9 + 16) / 4 = 7

SJF: Προσέγγιση διάρκειας επόμενου ξεσπάσματος

- Γενικά δεν είναι γνωστή η διάρκεια του επόμενου ξεσπάσματος κάθε διεργασίας
- Προσέγγιση: **Εκθετικός μέσος όρος**:
- $\tau_{n+1} = \alpha t_n + (1-\alpha)\tau_n$
 - τ: πρόβλεψη
 - t: πραγματική τιμή
 - α στο [0,1] : σχετικό βάρος t και τ
 - α=0: Οι μετρήσεις πραγματικών τιμών καθυστέρησης δεν επηρεάζουν
 - α=1: Μόνο η τελευταία πραγματική καθυστέρηση μετράει

Παράδειγμα Προσέγγισης διάρκειας επόμενου ξεσπάσματος

SJF: διακοπτός/μη-διακοπτός

• Μη-διακοπτός

Όταν παραχωρηθεί η ΚΜΕ σε μία διεργασία, η διεργασία αυτή θα πρέπει να ολοκληρώσει τη χρήση της ΚΜΕ, έως ότου παρθεί νέα απόφαση χρονοδρομολόγησης

• Διακοπτός

Αν εισέλθει στην ουρά έτοιμων διεργασιών μια νέα διεργασία με μικρότερο αναμενόμενο χρόνο εκτέλεσης από τον εναπομείναντα της τρέχουσας, η τρέχουσα θα αντικατασταθεί (Shortest Remaining Time First - SRTF)

SJF Παράδειγμα (χωρίς διακοπές)

Διεργασία	Άφιξη	Διάρκεια
P1	0	7
P2	2	4
P3	4	1
P4	5	4

		P1		P3	P2	P4	
0	2	4 5	7 8		12	16	

Μέσος χρόνος αναμονής: (0 + (8-2) + (7-4) + (12-5)) / 4 = 4

SJF Παράδειγμα (με διακοπές)

Διεργασία	Άφιξη	Διάρκεια
P1	0	7
P2	2	4
P3	4	1
P4	5	4

t	Γεγονός	Διεργασίες	Επιλογή
0-2	Άφιξη Ρ1	(P1,7)	P1
2-4	Άφιξη Ρ2	(P1,5) (P2,4)	P2
4-5	Άφιξη Ρ3	(P1,5) (P2,2) (P3,1)	P3
5-7	Άφιξη Ρ4 / Ολοκλήρωση Ρ3	(P1,5) (P2,2) (P4,4)	P2
7-11	Ολοκλήρωση Ρ2	(P1,5) (P4,4)	P4
11-16	Ολοκλήρωση Ρ4	(P1,5)	P1

Μέσος Χρόνος αναμονής: ((11-2) + (5-4) + (4-4) + (7-5))/4 = 3

Χρονοδρομολόγηση με Προτεραιότητες (priority scheduling)

- Σε κάθε διεργασία αντιστοιχίζεται μια *προτεραίοτητα*
- Σε κάθε απόφαση ΧΔ, επιλέγεται η διεργασία με την υψηλότερη προτεραιότητα
 - Διακοπτή ΧΔ
 - Μη-διακοπτή ΧΔ
- SJF Ειδική περίπτωση ΧΔ με προτεραιότητες
- Πρόβλημα **Λιμοκτονίας** Διεργασίες με χαμηλή προτεραιότητα μπορεί να μην εκτελσθούν ποτέ
- Λύση μέσω Γήρανσης
 Με την πάροδο του χρόνου μεγαλώνει η προτεραιότητα των διεργασιών που δεν εκτελούνται

Χρονοδρομολόγηση εκ Περιτροπής (Round Robin - RR)

- Ο ΧΔ διατηρεί μια ουρά (FIFO) για τις διεργασίες
- Διεργασίες λαμβάνουν ένα μικρό κλάσμα του χρόνου της ΚΜΕ (κβάντο χρόνου ΚΧ – time quantum)
- Με το πέρας του ΚΧ η διεργασία διακόπτεται και τοποθετείται στο τέλος της ουράς
- Επιλέγεται η διεργασία που βρίσκεται στην αρχή της ουράς

RR: Παράδειγμα

Διεργασία	Ξέσπασμα ΚΜΕ
P1	53
P2	17
P3	68
P4	24

Γενικά, μεγαλύτερος χρόνος ολοκλήρωσης από τον SJF, αλλά καλύτερος χρόνος απόκρισης

RR - Κβάντο Χρόνου

- Το Κβάντο χρόνου (ΚΧ) γενικά κυμαίνεται από 10 έως 100 ms
- Αν υπάρχουν Ν διεργασίες στην ουρά και q το ΚΧ, καμία διεργασία δεν περιμένει παραπάνω από (Ν-1)q χρόνο.
- Κβάντο Χρόνου
 - Μεγάλο: FCFS
 - Μικρό: Το σύστημα αναλώνεται σε context switches

RR – ΚΧ και χρόνος εναλλαγής περιβάλλοντος λειτουργίας

Το ΚΧ πρέπει να είναι (σημαντικά) μεγαλύτερο από τον χρόνο εναλλαγής λειτουργίας

- Γενικά:
 - Χρόνος εναλλαγής < 10μs
 - KX: 10 έως 100 ms

RR – ΚΧ και χρόνος ολοκλήρωσης

process	time
P_1	6
P_2	3
P_3	1
P_4	7

- Ο χρόνος ολοκλήρωσης εξαρτάται από το ΚΧ
- Δεν είναι απαραίτητο ότι για μεγάλο ΚΧ, αυξάνεται ο χρόνος ολοκλήρωσης

Χρονοδρομολόγηση Πολυεπίπεδων Ουρών

Διαφορετικές κλάσεις διεργασιών (ως προς τη χρονοδρομολόγηση):

- Διεργασίες συστήματος (υψηλή προτεραιότητα)
- Διεργασίες μαζικής επεξεργασίας (batch)
- Αλληλεπιδραστικές διεργασίες (interactive)
 (σημαντικές για την εμπειρία του χρήστη)
- Διεργασίες χαμηλής προτεραιότητας (μόνο όταν το σύστημα είναι άδειο πχ SETI@home)

Χρονοδρομολόγηση Πολυεπίπεδων Ουρών

- Η ουρά με τις έτοιμες διεργασίες χωρίζεται σε πολλαπλές ουρές, ανάλογα με την κλάση
- Κάθε ουρά έχει τον δικό της αλγόριθμο ΧΔ
- Παράδειγμα
 - Ουρά προσκηνίου (interactive), RR
 - Ουρά παρασκηνίου (batch), FCFS
- ΧΔ μεταξύ των ουρών
 - Προτεραιότητες (πιθανότητα λιμοκτονίας)
 - Κάθε ουρά λαμβάνει ποσοστό χρήσης της ΚΜΕ

Χρονοδρομολόγηση Πολυεπίπεδων Ουρών

Πολυεπίπεδες Ουρές με Ανατροφοδότηση

- Ανατροφοδότηση: μετακίνηση διεργασιών μεταξύ διαφορετικών ουρών (μπορεί πχ να χρησιμοποιηθεί για υλοποίηση γήρανσης)
- ΧΔ Πολυεπίπεδων Ουρών με Ανατροφοδότηση
 - Πλήθος ουρών
 - Τύπος ΧΔ για κάθε ουρά
 - Μέθοδοι αναβάθμισης/υποβάθμισης διεργασιών
 - Μέθοδος επιλογής ουράς για νέες διεργασίες

Πολυεπίπεδες Ουρές με Ανατροφοδότηση: Παράδειγμα

- 3 Ουρές:
 - Q0: RR με KX=8ms
 - Q1: RR με KX=16ms
 - Q2: FCFS
- Χρονοδρομολόγηση:
 - Νέα διεργασία εισέρχεται στην Q0
 - Αν δεν ολοκληρωθεί σε 8ms μεταφέρεται στην Q1
 - Αν δεν ολοκληρωθεί σε 16ms (8+16=24) μεταφέρεται στην Q2

Πολυεπίπεδες Ουρές με Ανατροφοδότηση: Παράδειγμα

Συστήματα Πολλαπλών Επεξεργαστών / Νημάτων

- Επεξεργαστές
 - Πολλαπλοί πυρήνες
 - Φυσικές ΚΜΕ
 - Μοιράζονται μέρος ιεραρχίας μνήμης
 - Πολλαπλά νήματα σε έναν πυρήνα
 - Λογικές ΚΜΕ
 - Μοιράζονται μονάδες (πχ ALU)
- Συστήματα πολλαπλών επεξεργαστών μοιραζόμενης μνήμης
 - Ίδια ταχύτητα πρόσβασης στη μνήμη για κάθε ΚΜΕ
 - Διαφορετική ταχύτητα πρόσβασης στη μνήμη για κάθε ΚΜΕ (NUMA)

Χρονοδρομολόγηση σε Συστήματα Πολλαπλών Επεξεργαστών

- Ασύμμετρη
 - Ο ΧΔ τρέχει σε έναν επεξεργαστή
 - Οι υπόλοιποι χρησιμοποιούνται για εκτέλεση κώδικα χρήστη
- Συμμετρική
 - Ο ΧΔ τρέχει σε όλους τους επεξεργαστές
 - Κάθε ΧΔ επιλέγει διεργασία προς εκτέλεση στον αντίστοιχο επεξεργαστή
 - Απαιτείται συγχρονισμός

Ζητήματα σε ΧΔ σε Συστήματα Πολλαπλών Επεξεργαστών

- Προσκόλληση σε Επεξεργαστή (processor affinity)
 - Επίδοση κρυφής μνήμης
- Εξισορρόπηση Φόρτου (load balancing)
 - Απαιτεί μετακίνηση διεργασιών
 - Μετακίνηση ώθησης (push migration)
 - Μετακίνηση έλξης (pull migration)
- Γνώση φυσικής τοπολογίας συστήματος
 - Πχ NUMA, SMT

Χρονοδρομολόγηση Νημάτων

- Νήματα χώρου πυρήνα
 - Χρονοδρομολογούνται από ΛΣ
 - Υψηλό (σχετικά) κόστος διαχείρισης
 - Απλούστερη Υλοποίηση
- Νήματα χώρου χρήστη
 - Χρονοδρομολόγηση προσαρμοσμένη στην εφαρμογή
 - Χαμηλό (σχετικά) κόστος διαχείρισης
 - Διακοπτή / συνεργατική χρονοδρομολόγηση
 - Ζητήματα:
 - Τι γίνεται με κλήσεις συστήματος που προκαλούν αναστολή εκτέλεσης (πχ read())
 - Εκμετάλλευση πολλαπλών επεξεργαστών

Συστήματα Πραγματικού Χρόνου (Real-Time systems)

- Αυστηρά (hard real-time systems)
 - Πρέπει να είναι σε θέση να ολοκληρώσουν μια διεργασία σε αυστηρά χρονικά περιθώρια
 - Χρησιμοποιούν δέσμευση πόρων
 - Δύσκολο να υλοποιηθούν
 - Συστήματα ειδικού σκοπού (Ιατρικές εφαρμογές)
- Χαλαρά (soft real-time systems)
 - Δίνουν προτεραιότητα στις κρίσιμες (real-time) διεργασίες, έναντι των υπολοίπων
 - Πχ εφαρμογές πολυμέσων σε συστήματα γενικού σκοπού