Answers-Hints Tutorial Sheet - 11 Spring 2017

MATHEMATICS-II (MA10002)

January 4, 2017

- 1. (a) Hint: Find acceleration $\frac{d^2\vec{r}}{dt^2}$, which is constant.
 - (b) Hint: Write non-constant vector \vec{u} as $|\vec{u}|^2 = \vec{u} \cdot \vec{u}$ and apply vector differentiation.
- 2. Answers:

(a)
$$\lim_{t \to 1} \vec{r}(t) = \hat{i} + \hat{j} + \hat{k}$$
.

(b)
$$\lim_{t \to 2} \vec{r}(t) = \frac{1 - e^4}{8} \hat{i} + \hat{j} + 16\hat{k}$$
.

(c)
$$\lim_{t \to 1} \vec{r}(t) = \hat{i} + 3\hat{j} + e^2\hat{k}$$
.

- 3. Answer: $\vec{r}(t) = (1-t)(x_1, y_1, z_1) + t(x_2, y_2, z_2)$, where $0 \le t \le 1$.
- 4. Answers:
 - (a) Gradient = $4\hat{i} + \hat{j} \hat{k}$ and unit normal vector = $\frac{4\hat{i} + \hat{j} \hat{k}}{3\sqrt{2}}$.
 - (b) Gradient = $2\sqrt{10} \hat{i}$ and unit normal vector = \hat{i} .
 - (c) Gradient = $-2\hat{i} + 4\hat{j} + 4\hat{k}$ and unit normal vector = $\frac{-\hat{i} + 2\hat{j} + 2\hat{k}}{3}$.

Hints: For above (a), (b) and (c) use the definition of gradient and unit normal vector.

5. Answers:

(a)
$$-\frac{1}{\sqrt{5}}$$

(b)
$$\frac{e}{\sqrt{3}}$$

(c)
$$-\frac{1}{16\sqrt{6}}$$

Hints: For above (a), (b) and (c) use the definition of directional derivative.

6. Answer: $-\frac{1}{2}$

Hint: Compute $\hat{n} = \cos 30^{\circ} \hat{i} + \sin 30^{\circ} \hat{j}$ and use the definition of directional derivative.

- 7. (a) Answer: $4\hat{i} 6\hat{j} + 2\hat{k}$ and Maximum magnitude = $2\sqrt{14}$.
 - (b) Answer: a = 6, b = 24 and c = -8.

Hints: For above (a) and (b) use the definition of directional derivative.

8. Hint: Use the definition of ∇ operator.

- 9. Answers:
 - (a) $3xy^2z\hat{i} (y^3z 4xz\hat{j}).$
 - (b) $-x^3y^3z\hat{i} + 2x^2y^4z\hat{j} + 2(x^2z^2 y)x\hat{k}$.
 - (c) $x^2(4yz^2+1)$.

Hints: For above (a), (b) and (c) use the definition of ∇ operator and curl.

- 10. Hint: Use the definition of curl, div and ∇ operator.
- 11. Hint: Use the definition and properties of ∇ operator.
- 12. Answers:
 - (a) Conservative vector field.
 - (b) Conservative vector field and potential function = $x^2y + xz^3$

Hints: For above (a) and (b) use the definition of conservative vector field.

- 13. (a) Answer: a = 4, b = 2 and c = -1, Hint: Use definition of irrotational vector.
 - (b) For the constant a = -2, Hint: Use definition of solenoidal vector.
- 14. Answer: 0

Hint: Use definition of curl and div.

15. Answer: $\frac{-3}{\sqrt{6}}(4+e^{\pi})$

Hint: Compute $\nabla \phi \cdot \vec{u}$.

16. Answers: Normal vector $= -\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j} + \hat{k}$ and tangent plane $= x + y - \sqrt{2}z = 0$. Hint: $\nabla \phi$ is the normal and use definition to compute tangent plane.