Laboratorium 7 – Weryfikacja hipotez statystycznych

1. Wiadomości ogólne

Wnioskowanie o populacji generalnej na podstawie próby losowej poprzez ocenę spełnienia hipotez – zdań określających własności cech (zmiennych losowych) populacji.

Zbiór Hipotez Dopuszczalnych *ZHD* – zbiór zdań semantycznie i syntaktycznie poprawnych dotyczących właściwości rozważanych cech populacji generalnej.

Hipoteza zerowa H_0 – hipoteza podlegająca weryfikacji.

Hipoteza alternatywna H_1 – zaprzeczenie hipotezy H_0 (być może ZHD \ $\{H_0\}$?).

Hipoteza parametryczna – hipoteza dotycząca wartości parametrów rozkładu populacji.

Hipoteza nieparametryczna – hipoteza dotycząca innych cech populacji.

Test statystyczny – algorytm decyzyjny prowadzący do przyjęcia lub odrzucenia hipotezy.

Bład I rodzaju – odrzucenie prawdziwej hipotezy H_0 . Pr(bład I rodzaju) = α .

Bład II rodzaju – przyjęcie fałszywej hipotezy H_0 . Pr(bład II rodzaju) = β .

Test istotności – test w którym kontroluje się prawdopodobieństwo popełnienia błędu I rodzaju. W testach tych zakłada się górne ograniczenie na prawdopodobieństwo α zwane **poziomem istotności**.

Test zgodności – prowadzony jest dla hipotez nieparametrycznych.

Moc testu –im test jest mocniejszy test tym wielkość $(1 - \beta)$ jest większa.

Test nieobciażony spełnia $(1 - \beta) \ge \alpha$.

2. Algorytm testu istotności

- 1) Sformułuj hipotezy H_0 i H_1 oraz przyjmij poziom istotności α .
- 2) Wybierz typ testu odpowiedni dla przyjętych hipotez. Należy pamiętać, że testy parametryczne mają zwykle większą moc niż nieparametryczne.
- 3) Wybierz statystykę testową i ustal obszary (przedziały) krytyczne dla H_0 . Statystyka jest zmienną losową o znanym rozkładzie. **Obszar krytyczny** (zbiór krytyczny) jest podzbiorem wartości tej zmiennej, takim, że prawdopodobieństwo znalezienia się statystyki w tym zbiorze jest równe α . Postać obszaru krytycznego zależy od hipotezy H_1 .
- 4) H_0 jest odrzucana, jeżeli obliczona wartość statystyki wpada w obszar krytyczny. Wtedy przyjmowana jest hipoteza H_1 . Gdy obliczona wartość statystyki jest poza obszarem krytycznym H_0 jest przyjmowana.

3. Parametryczne testy istotności

$statystyka \ testowa = \frac{wartość \ statystyki \ z \ próby - wartość \ empiryczna}{odchylenie \ standardowe}$

3.1 Testy istotności dla średniej

W testach tych weryfikujemy hipotezę H_0 ; $m=m_0$ przy założonej wartości m_0 . Hipotezy alternatywne są następujące:

- (a) H_1 ; $m < m_0$ hipoteza lewostronna,
- (b) H_1 ; $m > m_0$ hipoteza prawostronna,
- (c) H_1 ; $m \neq m_0$ hipoteza dwustronna.

Model I. Zakładamy, że cecha populacji ma rozkład $N(m, \sigma)$ przy nieznanej średniej m i znanym σ . Losujemy z tej populacji próbę n – elementowa. Przyjmujemy statystykę testowa

$$t = \frac{\bar{x} - m_0}{\sigma} \sqrt{n}$$

która w przypadku prawdziwości H_0 ma rozkład N(0,1). Zbiory krytyczne są następujące:

 $C = (-\infty, -z_{1-\alpha}]$ dla H_1 lewostronnej typu (a),

 $C = [z_{1-\alpha}, +\infty)$ dla H_1 lewostronnej typu (b),

 $C=(-\infty,-z_{1-\frac{\alpha}{2}}]\cup [z_{1-\frac{\alpha}{2}},+\infty)$ dla H_1 dwustronnej typu (c).

gdzie $z_{1-\alpha}, z_{1-\frac{\alpha}{2}}$ są kwantylami rozkładu N(0,1) odpowiednio rzędów $1-\alpha$, $1-\frac{\alpha}{2}$.

Zadanie 1. Rozkład pomiarów głębokości morza w pewnym rejonie jest normalny, przy nieznanym m i $\sigma=5$ m. Dokonano 5 niezależnych pomiarów głębokości o wynikach; 862, 870, 876, 866, 871. Na poziomie istotności $\alpha=0.05$ zweryfikować hipotezę, że średnia głębokość morza jest równa 870 m.

Uwagi: Dla wyznaczenia kwantylu $z_{1-\frac{\alpha}{2}}$ u żyć odpowiedniej funkcji pakietu R.

Wynik obliczeń można zweryfikować funkcją R rozwiązującą z . test z pakietu PASWR.

z.test(x, y = NULL, alternative = "two.sided", mu = 0, sigma.x = NULL, sigma.y = NULL, conf.level =
$$0.95$$
)

Parametry:

x – wektor numeryczny próby, długość próby n jest zliczana, y – (opcjonalny, y = NULL jest liczony test dla jednej próby) wektor numeryczny drugiej próby, alternative = "greater", "less", "two.sided" – string określający typ hipotezy alternatywnej, mu – średnia z hipotezy zerowej dla testu z jednej populacji, dla testu z dwóch populacji jest założoną różnicą średnich tych populacji, sigma.x, sigma.y są opcjonalnymi wartościami odchyleń standardowych populacji, conf.level – poziom ufności.

Wyjście:

statistic – statystyka z-statistics z nazwą atrybutu "z",

p. value – wartość p dla testu,

conf.int - wektor długości 1 lub 2, zawierający średnie próby (prób) albo średnią różnic (?), null.value - jest wartością średniej lub różnicą średnich z hipotezy zerowej, jest równe mu, alternative - jest przepisanym parametrem wejściowym, data.name - nazwa danych x (i y).

Model II. Zakładamy, że cecha populacji ma rozkład $N(m, \sigma)$ przy nieznanym σ . Przyjmujemy statystykę testową

$$t = \frac{\bar{x} - m_0}{s} \sqrt{n - 1} = \frac{\bar{x} - m_0}{\hat{s}} \sqrt{n}$$

Jeżeli H_0 ; $m=m_0$ jest prawdziwa, to t ma rozkład t-Studenta o (n-1) stopniach swobody. Zbiory krytyczne są następujące:

 $C = (-\infty, -t_{1-\alpha}]$ dla H_1 lewostronnej typu (a),

 $C = [t_{1-\alpha}, +\infty)$ dla H_1 lewostronnej typu (b),

 $\mathcal{C}=(-\infty,-t_{1-\frac{\alpha}{2}}]\cup [t_{1-\frac{\alpha}{2}},+\infty$) dla H_1 dwustronnej typu (c).

gdzie $t_{1-\alpha}$, $t_{1-\frac{\alpha}{2}}$ są kwantylami rozkładu t-Studenta o n-1 stopniach swobody odpowiednio rzędów $1-\alpha$, $1-\frac{\alpha}{2}$.

Zadanie 2. Automat produkuje blaszki o nominalnej grubości 0.04 mm. Wylosowana próba 25 blaszek ma średnią grubość 0.037 mm oraz odchylenie standardowe s = 0.005 mm. Czy można twierdzić, że blaszki są cieńsze niż 0.04 mm? Przyjmujemy rozkład normalny grubości blaszek oraz poziom ufności $\alpha = 0.01$.

Uwagi: Dla wyznaczenia kwantylu $t_{1-\alpha}$ użyć odpowiedniej funkcji pakietu R.

Wynik obliczeń można zweryfikować funkcją R tsum. test z pakietu PASWR.

tsum.test(mean.x, s.x = NULL, n.x = NULL, mean.y = NULL, s.y =
NULL, n.y = NULL, alternative = "two.sided", mu = 0, var.equal =
FALSE, conf.level = 0.95)

Parametry:

mean.x-liczba reprezentująca średnią z próby, s.x-liczba reprezentująca standartowe odchylenie próby, n.x-liczność próby x, mean.y, s.y, n.y-podobnie dla próby y, alternative – specyfikacja próby alternatywnej "greater", "less", "two.sided". mu – wartość hipotezy zerowej, var.equal – TRUE gdy wariancje x i y są równe, Wyjście:

statistic – statystyka z-statistics z nazwą atrybutu "t",

parameters – stopnie swobody rozkładu t-Studenta z atrybutem "df",

p. value – wartość p dla testu,

conf.int – wektor długości 1 lub 2, zawierający średnie próby (prób)albo średnią różnic (?),

estimate – wektor 1 lub 2 elementowy zawierający średnie,
null.value – średnia hipotezy zerowej
null.value – jest wartością średniej lub różnicą średnich z hipotezy zerowej, jest równe mu,
alternative – jest przepisanym parametrem wejściowym,
data.name – nazwa danych x (i y).

Zadanie 3. (anulowane)

Model III. Badana cecha ma dowolny rozkład o nieznanej wartości oczekiwanej i i nieznanej, skończonej wariancji. Przyjmuje się liczność próby $n \geq 30$ (duża próba). Do weryfikacji stosuje się statystykę z modelu II. Dla dużych prób można przybliżać rozkład t-Studenta rozkładem N(0,1), zatem kwantyle $t_{1-\alpha}$, $t_{1-\frac{\alpha}{2}}$ można zastąpić poprzez $z_{1-\alpha}$, $z_{1-\frac{\alpha}{2}}$.

Zadanie 4. Dany jest szereg rozdzielczy:

Czas dojazdu (min)	0-20	20-40	40-60	60-80	80-100
Liczba pracowników	9	26	30	21	14

Należy zbadać, czy czas dojazdu do pracy pracowników przekracza 45 min dla poziomy istotności $\alpha=0.05$.

Uwaga: Dla wyznaczenia kwantylu $t_{1-\alpha}$ należy użyć odpowiedniej funkcji środowiska R.

Zadanie 5. Rozwiąż poprzednie zadanie przy pomocy kodu w R.

Uwaga: Należy użyć funkcji R stats::qt.

3.2. Testy istotności dla wariancji

W testach tych weryfikujemy hipotezę H_0 ; $\sigma^2=\sigma_0^2$ przy założonej wartości σ_0 . Hipotezy alternatywne są następujące:

- (a) H_1 ; $\sigma^2 = \sigma_1^2 < \sigma_0^2$ hipoteza lewostronna,
- (b) H_1 ; $\sigma^2 = \sigma_1^2 > \sigma_0^2$ hipoteza prawostronna,
- (c) H_1 ; $\sigma^2 = \sigma_1^2 \neq \sigma_0^2$ hipoteza dwustronna.

Model I. Przyjmujemy, że populacja ma rozkład $N(m, \sigma)$ o nieznanych parametrach. Stosujemy statystykę

$$\chi^2 = \frac{n S^2}{\sigma_0^2}$$

która przy prawdziwości hipotezy H_0 ma rozkład χ^2 o n - 1 stopniach swobody. Zbiory krytyczne są następujące:

 $C = (0, \chi_{\alpha}^2]$ dla H_1 lewostronnej typu (a),

 $C = [\chi^2_{1-\alpha}, +\infty)$ dla H_1 prawostronnej typu (b),

 $C=(0,\chi_{\frac{\alpha}{2}}^2] \cup [\chi_{1-\frac{\alpha}{2}}^2,+\infty)$ dla H_1 dwustronnej typu (c).

gdzie χ^2_{α} , $\chi^2_{1-\alpha}$, $\chi^2_{\frac{\alpha}{2}}$, $\chi^2_{1-\frac{\alpha}{2}}$ są kwantylami rozkładu chi-kwadrat o n-1 stopniach swobody odpowiednio rzędów α , $1-\alpha$, $\frac{\alpha}{2}$ oraz $1-\frac{\alpha}{2}$.

Zadanie 6. Maksymalna liczba punktów z testu wynosi 100. Zakładamy, że rozkład ilości uzyskanych punktów jest normalny. Pobrano próbę n = 28 prac testowych i uzyskano odchylenie standardowe s = 10.5. Na poziomie istotności 0.05 zweryfikować hipotezę, że odchylenie standardowe wyniku testu jest różne od 12 punktów.

Uwaga: Dla obliczenia kwantyli $\chi_{\frac{\alpha}{2}}^2$, $\chi_{1-\frac{\alpha}{2}}^2$ rozkładu o n - 1 stopniach swobody użyć odpowiedniej funkcji pakietu R.

Model II. Badana cecha ma dowolny rozkład o nieznanej wartości oczekiwanej i wariancji (niezerowej i skończonej). Zakładamy dużą próbę $n \ge 30$. Przyjmujemy statystykę

$$Z = \frac{\frac{n}{n-1}S^2 - \sigma_0^2}{\sigma_0^2} \sqrt{\frac{n}{2}}$$

która ma dla dużych n w przybliżeniu rozkład N(0,1). Zbiory krytyczne są następujące:

 $C = (-\infty, -z_{1-\alpha}]$ dla H_1 lewostronnej typu (a),

 $C = [z_{1-\alpha}, +\infty)$ dla H_1 prawostronnej typu (b),

 $\mathcal{C}=(-\infty,-z_{1-\frac{\alpha}{2}}]\cup[z_{1-\frac{\alpha}{2}},+\infty)$ dla H_1 dwustronnej typu (c).

Zadanie 7. Testy prędkości samochodów dały wyniki

Pródkość (km/h)	70-80 80-90		90-100	100-110	110-120	120-130	
Liczba samochodów	7	30	40	69	48	6	

Należy zbadać, czy dla poziomy istotności $\alpha = 0.01$ odchylenie standardowe wariancji jest większe niż 10 km/h.

Uwaga: Rozwiązanie można wesprzeć kodem w R wykorzystującym funkcję stats::gnorm.

3.3. Testy istotności dla frakcji

Przyjmujemy, że badana cecha ma rozkład dwupunktowy z parametrem p. Chcemy zweryfikować hipotezę H_0 ; $p = p_0$ wobec możliwych hipotez alternatywnych:

- (a) H_1 ; $p = p_1 < p_0$ hipoteza lewostronna,
- (b) H_1 ; $p = p_1 > p_0$ hipoteza prawostronna,
- (c) H_1 ; $p = p_1 \neq p_0$ hipoteza dwustronna.

Model I. Test proporcji (*one proportion test*) opieramy na wskaźniku struktury $\bar{p} = \frac{m}{n}$

$$\bar{p} = \frac{m}{n}$$

gdzie m oznacza ilość wyróżnionych elementów, n - liczebność próby. Przy założeniu, że n p oraz n(1-p) są większe do 5, przyjmujemy statystykę testową

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

która w przypadku prawdziwości H_0 ma rozkład N(0,1). Zbiory krytyczne są następujące:

 $C = (-\infty, -z_{1-\alpha}]$ dla H_1 lewostronnej typu (a),

 $\mathcal{C} = [z_{1-\alpha}, +\infty)$ dla H_1 lewostronnej typu (b),

 $\mathcal{C}=(-\infty,-z_{1-\frac{\alpha}{2}}]\cup[z_{1-\frac{\alpha}{2}},+\infty$) dla H_{1} dwustronnej typu (c).

gdzie $z_{1-\alpha}, z_{1-\frac{\alpha}{2}}$ są kwantylami rozkładu N(0,1) odpowiednio rzędów $1-\alpha$, $1-\frac{\alpha}{2}$.

Zadanie 8. W mieszance nasiennej, według normy udział żyta powinien wynosić 60%. Na podstawie próby o liczności n = 120 stwierdzono, że udział ten jest rzędu 48%. Na poziomie istotności $\alpha = 0.01$ zweryfikuj hipotezę, że udział ten jest równy normatywnemu.

Uwaga: Dla obliczenia kwantyla $z_{1-\frac{\alpha}{2}}$ wykorzystaj odpowiednia funkcję pakietu R. Wynik obliczenia można zweryfikować funkcją stats::prop pakietu R.

```
stats::prop.test(x, n, p = NULL, alternative = c(",two.sided",
"less", "greater"), conf.level = 0.95, correct = TRUE)
```

x – wektor liczby sukcesów (pojedyncza wartość dla jednej popoulacji), n – wektor liczności prób, p – wektor prawdopodobieństw sukcesu (grupowa hipoteza zerowa); w przypadku jednej populacji jest to wartość hipotezy serowej, w przypadku wielu parametr może być pominięty i oznacza to hipotezę o równości frakcji, alternative – string określający typ hipotezy alternatywnej, conf.level - poziom istotności, correct - zmienna logiczna determinująca użycie poprawki na ciągłość.

Wyjście:

statistics – wartość statystyki Pearsona, parameter – ilość stopni swobody przybliżonego rozkładu chi-kwadrat testu, p. value – wartość prawdopodobieństwa testu, estimste – wektor proporcji w próbach, null. value – wartość p jeżeli jest podana, lub NULL w p.p.,

alternative - wariant hipotezy alternatywnej, metod - znak informujący, czy poprawka Yates'a na ciągłość była stosowana, data.name - string podające nazwy danych.

Model II. Możemy wykonać dokładny test dwumianowy (*binomial test*) . Obliczamy prawdopodobieństwo odpowiedniego zdarzenia, które zaszło w trakcie obserwacji (pobierania próby) korzystając z rozkładu Bernoulliego. W przypadku alternatywnych hipotez dwustronnych hipotezę H_0 odrzucamy, gdy obliczone prawdopodobieństwo jest mniejsze bądź równe $\frac{\alpha}{2}$. W przypadku hipotez jednostronnych hipotezę H_0 odrzucamy, gdy obliczone prawdopodobieństwo jest mniejsze bądź równe α i hipoteza jest "zwrócona" w stronę którą sugerują wyniki.

Zadanie 10. Przy 10 rzutach monetą uzyskano 8 orłów. Czy na poziomie istotności 0.05 może to być podstawą do stwierdzenia, że moneta jest niesymetryczna?

Do rozwiązania możemy wykorzystać funkcję R

binom.test(x = $\langle sukcesów \rangle$, n = $\langle próby \rangle$, p)

3.4. Testy istotności dla dwóch wariancji

Przyjmijmy, że mamy dwie próby losowe o licznościach n_1 , n_2 z populacji w których badana cecha ma rozkłady normalne $N(m_i, \sigma_i)$ i=1,2. Weryfikujemy hipotezę H_0 ; $\sigma_1^2=\sigma_2^2$ przy założonej wartości m_0 . Hipotezy alternatywne są następujące:

- (a) H_1 ; $\sigma_1^2 < \sigma_2^2$ hipoteza lewostronna,
- (b) H_1 ; $\sigma_1^2 > \sigma_2^2$ hipoteza prawostronna,
- (c) H_1 ; $\sigma_1^2 \neq \sigma_2^2$ hipoteza dwustronna.

W przypadku hipotezy prawostronnej (b) stosujemy statystykę

$$F = \frac{\frac{n_1}{n_1 - 1} S_1^2}{\frac{n_2}{n_2 - 1} S_2^2}$$

która przy prawdziwości H_0 ma rozkład F- Snedecora z parametrami n_1, n_2 . Zbiór krytyczny jest wtedy równy

$$C = [f_{1-\alpha}, +\infty)$$

gdzie $f_{1-\alpha}$ cjest kwantylem rzędu $1-\alpha$, rozkładu F- Snedecora z parametrami n_1-1,n_2-1 W przypadku hipotezy lewostronnej (a) stosujemy statystykę

 $\frac{1}{F}$

a zbiór krytyczny jest równy

$$C = [f_{1-\alpha}, +\infty)$$

gdzie obecnie $f_{1-\alpha}$ jest kwantylem rzędu $1-\alpha$, rozkładu F- Snedecora z parametrami n_2-1,n_1-1 .

Gdy mamy hipotezę dwustronna trypu (c) stosujemy statystykę

$$F'' = \frac{\max\left(\frac{n_1}{n_1 - 1}S_1^2, \frac{n_2}{n_2 - 1}S_2^2\right)}{\min\left(\frac{n_1}{n_1 - 1}S_1^2, \frac{n_2}{n_2 - 1}S_2^2\right)}$$

Zbiór krytyczny jest równy obecnie

$$C = [f_{1-\alpha}, +\infty)$$

gdzie $f_{1-\alpha}$ jest kwantylem rzędu $1-\alpha$, rozkładu F- Snedecora z parametrami n_1-1 , n_m-1 natomiast n_m jest licznością próby dla której obliczany jest mianownik.

Zadanie 11. Zbadano wzrost 13 mężczyzn i 12 kobiet uzyskując wyniki:

 $Mężczyźni = \{171,176,179,189,176,182,173,179,184,186,189,167,177\}$

Kobiety = {161,162,163,162,166,164,168,165,168,157,161,172}

Zakładając, że w obu populacjach rozkład wzrostu jest normalny, sprawdzić na poziomie istotności $\alpha = 0.1$, że zmienność wzrostu wśród mężczyzn jest większa niż u kobiet.

Uwagi: Kwantyle rozkładu *F*- Snedecora można obliczyć funkcją R:

```
stats::qf(p, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
```

Zmienne: p – wektor wartości (argument, rząd kwantyla), df1, df2 – stopnie swobody (Inf dopuszczalne), lower.tail – jeżeli TRUE, to Pr $(X \le x)$, w przeciwnym razie Pr (X > x),

Wynik obliczeń można zweryfikować przy pomocy funkcji R:

```
stats::var.test(x, y, ratio = 1, alternative =
c("two.sided", "greater", "less"), conf.level = 0.95)
```

Zmienne:

x, y - wektory danych, próby, ratio - hipotetyczna wartość proporcji wariancji x i y, alternative - typ hipotezy alternatywnej, conf.level - poziom ufności.

3.5. Testy istotności dla dwóch średnich

Przyjmijmy, że mamy dwie próby losowe o licznościach n_1 , n_2 z populacji w których badana cecha ma rozkłady normalne $N(m_i, \sigma_i)i = 1,2$. Weryfikujemy hipotezę H_0 ; $m_1 = m_2$ przy założonej wartości m_0 . Hipotezy alternatywne są następujące:

- (a) H_1 ; $m_1 < m_2$ hipoteza lewostronna,
- (b) H_1 ; $m_1 > m_2$ hipoteza prawostronna,
- (c) H_1 ; $m_1 \neq m_2$ hipoteza dwustronna.

Model I. Zakładamy, że znane są odchylenia standardowe σ_i , i=1,2. Przyjmujemy statystykę testową

$$Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

która w przypadku prawdziwości H_0 ma rozkład N(0,1). Zbiory krytyczne są następujące:

 $C = (-\infty, -z_{1-\alpha}]$ dla H_1 lewostronnej typu (a),

 $C = [z_{1-\alpha}, +\infty)$ dla H_1 lewostronnej typu (b),

 $C=(-\infty,-z_{1-\frac{\alpha}{2}}]\cup [z_{1-\frac{\alpha}{2}},+\infty)$ dla H_1 dwustronnej typu (c).

gdzie $z_{1-\alpha}, z_{1-\frac{\alpha}{2}}$ są kwantylami rozkładu N(0,1) odpowiednio rzędów $1-\alpha$, $1-\frac{\alpha}{2}$.

Zadanie 12. Pojemność płuc osób uprawiających sport ma rozkład normalny z odchyleniem standardowym $\sigma_1^2 = 440 \text{ cm}^3$ natomiast nie uprawiających sportu rozkład normalny przy $\sigma_2^2 = 620 \text{ cm}^3$. Wylosowano próby o $n_1 = 20, \bar{x}_1 = 4080 \text{ cm}^3$; $n_2 = 15, \bar{x}_2 = 3610 \text{ cm}^3$. Dla poziomu istotności $\alpha = 0.01$ sprawdzić hipotezę, że uprawianie sportu zwiększa pojemność płuc.

Uwagi: Dla obliczenia $z_{1-\alpha}$ wykorzystaj funkcję R. Wynik obliczeń możemy zweryfikować przy pomocy procedury R:

PASWR::zsum.test(mean.x,sigma.x=NULL,n.x=NULL,mean.y=NULL,sigma.y=NULL,n.y=NULL,alternative="two.sided",mu=0,conf.level=0.95)

Parametry:

mean.x, sigma.x, n.x, mean.y, sigma.y, n.y - średnie, odchylenia standardowe i liczności obu prób, alternative - typ alternatywy: "greater", "less", "two.sided", mu - różnica średnich w hipotezie zerowej dla dwóch populacji, średnia przy jednej populacji, conf.level - poziom istotności

Model II. Zakładamy, że odchylenia standardowe nie są znane, lecz $\sigma_1 = \sigma_2$. Przyjmujemy statystykę testową

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2 - 2}} \frac{n_1 + n_2}{n_1 n_2}}$$

która w przypadku prawdziwości H_0 ma rozkład $t(n_1+n_2-2)$ Studenta. Zbiory krytyczne są następujące:

 $C = (-\infty, -t_{1-\alpha}]$ dla H_1 lewostronnej typu (a),

 $\mathcal{C} = [t_{1-\alpha}, +\infty)$ dla H_1 lewostronnej typu (b),

 $C = (-\infty, -t_{1-\frac{\alpha}{2}}] \cup [t_{1-\frac{\alpha}{2}}, +\infty)$ dla H_1 dwustronnej typu (c).

gdzie $t_{1-\alpha}$, $t_{1-\frac{\alpha}{2}}$ są kwantylami rozkładu $t(n_1+n_2-2)$ Studenta odpowiednio rzędów $1-\alpha$, $1-\frac{\alpha}{2}$.

Zadanie 13. Pobrano próbę $n_1 = 125$ skorupiaków typu A i $n_2 = 80$ skorupiaków typu B. Otrzymano następujące wyniki badania długości ząbków: A: $\bar{x}_1 = 4$, $s_1 = 1.5$; B: $\bar{x}_2 = 5$, $s_2 = 1.8$. Przyjmując rozkład normalny długości ząbków w każdej populacji, przy poziomie istotności $\alpha = 0.01$ zweryfikować hipotezę, czy średnia długość ząbków jest w obu populacjach taka sama.

Uwaga: Dla zastosowani amodelu II należy najpierw zweryfikować pozytywnie na tym samym poziomie istotności hipotezę $\sigma_1^2 = \sigma_2^2$.

3.6. Testy istotności dla dwóch frakcji

Przyjmujemy, że badana cecha ma w dwóch populacjach rozkład dwupunktowy z parametrami p_1, p_1 . Chcemy zweryfikować hipotezę H_0 ; $p_1 = p_2 = p$ wobec możliwych hipotez alternatywnych:

- (a) H_1 ; $p_1 < p_2$ hipoteza lewostronna,
- (b) H_1 ; $p_1 > p_2$ hipoteza prawostronna,
- (c) H_1 ; $p_1 \neq p_2$ hipoteza dwustronna.

Test zgodności (*two proportion test*) opieramy na wskaźnikach struktury $\bar{p}_1 = \frac{m_1}{n_1}$, $\bar{p}_2 = \frac{m_2}{n_2}$. Zakładając prawdziwość hipotezy zerowej oraz $n_1 p \geq 5$, $n_1 (1-p) \geq 5$ możemy użyć statystyki

$$z = \frac{\bar{p}_1 - \bar{p}_2}{\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}}$$
, $\bar{p} = \frac{m_1 + m_2}{n_1 + n_2}$, $n = \frac{n_1 n_2}{n_1 + n_2}$

która w przypadku prawdziwości H_0 ma rozkład N(0,1). Zbiory krytyczne są następujące:

 $C = (-\infty, -z_{1-\alpha}]$ dla H_1 lewostronnej typu (a),

 $C = [z_{1-\alpha}, +\infty)$ dla H_1 lewostronnej typu (b),

 $C=(-\infty,-z_{1-\frac{\alpha}{2}}]\cup [z_{1-\frac{\alpha}{2}},+\infty$) dla H_1 dwustronnej typu (c).

gdzie $z_{1-\alpha}, z_{1-\frac{\alpha}{2}}$ są kwantylami rozkładu N(0,1) odpowiednio rzędów $1-\alpha$, $1-\frac{\alpha}{2}$.

Zadanie 14. Wylosowano po 800 osób korzystających z komunikacji publicznej. W pierwszej próbie 506 osób jest niezadowolona z komunikacji samochodowej, w drugiej próbie 368 osób jest niezadowolona z kolei. Na poziomie istotności $\alpha=0.05$ sprawdzić że frakcja osób niezadowolonych z kolei nie różni się istotnie od frakcji niezadowolonej z autobusów.

Uwagi: Dla obliczenia kwantyla $z_{1-\frac{\alpha}{2}}$ wykorzystać odpowiednią funkcję pakiety R. Wyniki można zweryfikować przy użyciu funkcji R prop.test ()

3.7. Test zgodności chi-kwadrat Pearsona

Celem testu jest porównanie rozkładów dwóch cech w jednej populacji, lub jednej cechy w dwóch populacjach. Test Pearsona (Pearson's χ^2 test of goodness of fit) jest nieparametryczny i porównuje on częstości zdarzeń empirycznych (wyników prób losowych) z rozkładem teoretycznym. Wymaga dużej próby (n > 30). Hipotezy są:

 H_0 ; $X \sim T$ badana cecha X ma rozkład teoretyczny T,

 H_1 ; not($X \sim T$) rozkład cechy X jest różny od T.

Stosujemy statystykę:

$$\chi^{2} = \sum_{i=1}^{r} \frac{(n_{i} - np_{i})^{2}}{np_{i}}$$

gdzie r oznacza liczbę klas, n_i liczebność empiryczną przedziałów (klas), p_i ich częstość teoretyczną. Statystyka ta ma przy prawdziwości hipotezy zerowej asymptotyczny rozkład χ^2 o wartości parametru (r-k-1), gdzie k oznacza liczbę szacowanych z próby parametrów.

Obszar krytyczny ma postać

$$C = [\chi^2_{1-\alpha}, +\infty)$$

gdzie $\chi^2_{1-\alpha}$ jest kwantylem rzędu $1-\alpha$ rozkładu χ^2 dla parametru (r-k-1).

Zadanie 15. Dla sprawdzenia symetrii kostki do gry wykonano 120 rzutów uzyskując wyniki

Liczba oczek	1	2	3	4	5	6
Liczba wyników	11	30	14	10	33	22

Na poziomie istotności $\alpha = 0.05$ zweryfikować hipotezę, że kostka jest symetryczna.

Uwagi: Wartości kwantyli rozkładu chi-kwadrat można uzyskać procedurą R:

Zmienne:

p-rząd kwantyla (prawdopodobieństwo), df-ilość stopni swobody, parametr rozkładu, ncp-niecentralność (przesunięcie w stosunku do zera), lower.tail = TRUE - obliczane jest $\Pr(X \le x)$, $\Pr(X > x)$ w p.p., log.p - dla TRUE prawdopodobieństwo w skali logarytmicznej.

Obliczoną wartość statystyki testu możemy zweryfikować procedurą R:

chisq.test(x, y = NULL, correct = TRUE, p = rep(
$$1/length(x)$$
), rescale.p = FALSE, simulate.p.value = FALSE, B = 2000)

Zmienne: x - wektor numeryczny albo macierz zawierająca kolumny x i y, y - wektor numeryczny danych, correct - włącza korekcję na ciągłość, p - wektor prawdopodobieństw tej

samej długości co x (dyfulth to rozkład jednostajny), simulate.p.value – włącza symulację prawdopodobieństw metoda Monte Carlo, B – ilość replikacji w Monte Carlo.

Zadanie 16. W 1000 doświadczeniach fizycznych czas rozbłysku obserwowano jak w tabeli

Czas	0.0 - 0.2	0.2 - 0.4	0.4 - 0.6	0.6 - 0.8	0.8 - 1.0	1.0 - 1.2	1.2 - 1.4
n_i	50	128	245	286	134	90	67

Na poziomie ufności 99% zweryfikować hipotezę, że rozkład czasu rozbłysków jest normalny.

Wskazówki: Dla obliczenia statystyki chi-kwadrat należy wyznaczyć estymatę teoretycznych prawdopodobieństw przedziałów rozdzielczych czasu wykorzystując dwa parametry średnią i wariancję z próby.

Wyniki możemy zweryfikować przy pomocy kodu wykorzystującego funkcję R chisq.test.

3.8. Test serii

Testy tego typu służą do oceny "losowości" pobranej próby. Badają one tzw. serie, czyli podciągi elementów o identycznej, lub podobnej wartości w naturalnie uporządkowanej (według kolejności pobierania) próbie losowej. Badany jest rozkład zmiennej losowej będącej długością takich serii występujących w próbie.

Weryfikowane hipotezy, to

 H_0 ; dobór jednostek próby jest "losowy",

 H_1 ; dobór jednostek próby nie jest losowy.

Test Walda-Wolfowitza dla próby o wartościach numerycznych skalarnych:

- 1. Próba o liczności *n* w uporządkowaniu naturalnym (kolejności pobierania) tworzy ciąg podstawowy.
- 2. Porządkujemy elementy próby rosnąco i wyznaczamy medianę Me.
- 3. W ciągu podstawowym etykietujemy symbolami A i B elementy różne od mediany:
 - a. $x_i < Me$ litera A,
 - b. $x_i > Me$ litera B,
 - c. $x_i = Me$ etykietę pomijamy.
- 4. Obliczamy wartość statystyki testowej K, będącej ilością serii. Podciągi jednakowo etykietowane w ciągu podstawowym będziemy nazywali seriami. Ilość serii oznaczamy przez k, przez n_A , n_B oznaczamy odpowiednio ilość wystąpień etykiet A i B.

Obszar krytyczny testu dla wartości statystyki k jest dwustronny:

- 1. Jeżeli n_A , $n_B \leq 20$ to wartości krytyczne odczytujemy z tablic rozkładu liczby serii, jako: $k_1\left(\frac{\alpha}{2},\,n_A,n_B\right)$, $k_2\left(1-\frac{\alpha}{2},\,n_A,n_B\right)$ gdzie α jest przyjętym poziomem istotności testu. Jeżeli $k\leq k_1$, lub $k\geq k_2$ hipotezę H_0 należy odrzucić na rzecz hipotezy H_1 , inaczej próba nie ma charakteru losowego.
- 2. Jeżeli $n_A, n_B > 20$, to zmienna losowa K ma rozkład normalny $N(E(K), \sqrt{Var(K)})$, gdzie: $E(K) = \frac{2 n_A n_B}{n} + 1$, $Var(K) = \frac{2 n_A n_B (2 n_A n_B n)}{n^2 (n 1)}$. Wykorzystując obliczone parametry tworzymy statystykę standaryzowaną

$$Z = \frac{K - E(K)}{\sqrt{Var(K)}}$$

która ma asymptotyczny rozkład N(0,1). Obliczając wartość standaryzowanej statystyki

$$z = \frac{k - E(K)}{\sqrt{Var(K)}}$$

wyznaczamy dla niej wartości i przedziały krytyczne $\mathcal{C}=(-\infty,-z_{1-\frac{\alpha}{2}}]\cup[z_{1-\frac{\alpha}{2}},+\infty).$

Zadanie 17. Maszyna wycina koła o określonym polu. Pobrano 11 kół i otrzymano pomiary pola

No.	1	2	3	4	5	6	7	8	9	10	11
Pole	0.5	4.1	2.9	1.9	1.4	4.0	0.5	4.4	4.1	4.2	1.1

Przy pomocy testu serii na poziomie istotności $\alpha = 0.05\,$ zweryfikuj hipotezę, że wybór kół był losowy.

Wskazówka: Zadanie możemy rozwiązać przy pomocy funkcji lawstat::runs.test pakietu R:

Zmienne:

y - wektor danych numerycznych, plot.it - (= TRUE) jest rysowana wizualizacja serii, alternative - string określający rodzaj testu, dyfulth "two.sided".