

Univerzite u Novom Sadu
Fakultet Tehničkih Nauka
Katedra za računarsku tehniku i međuračunarske komunikacije



## Algoritmi i arhitekture DSP I

ULAZNO IZLAZNI PODSISTEM



#### ULAZNO IZLAZNI PODSISTEM

- Sprega DSP jezgra sa okruženjem se realizuje preko jedne magistrale
- Od strane spoljnih U/I jedinica (A/D, D/A, CODEC) omogućeno je generisanje prekida
- Periferne jedinice i periferni sprežni sistem su veoma važni kod razmatranja koji DSP treba izabrati



# SERIJSKI SPREŽNI SISTEM

- Svi Digitalni Signal Procesori sadrže neku varijantu seriske komunikacione sprege, radi povezivanja DSP-ja sa širokom spektrom komunikacionih uređaja
  - ❖ AD/DA konvertori
  - CODEC
- Standardni prolaz čine četiri voda:
  - takt,
  - signal sinhronizacije okvira (FSYNC),
  - prijem i
  - predaja podataka







#### VREMENSKI DIJAGRAMI SERIJSKOG SPREŽNOG SISTEMA

- Svi serijski sprežni sistemi pretpostavljaju da predajnik menja podatke na jednoj ivici takta (rastuća ili opadajuća) a podaci su stabilni (ne menjaju se na drugoj ivici)
- Većina pretpostavlja da pozitivan napon na liniji podataka (3.3/5.0 V) označava 1, niži napon 0
- Redosled prenosa bita: LSB/MSB
- \* Različite dužine reči, najčešće 8 ili 16
- Signal sinhronizacije okvira (frame sync). ukazuje prijemniku poziciju prvog bita reči podatka na serijskoj liniji podataka. Na bazi dužine bita, ili reči





## SINHRONIZACIJA NA NIVOU OKVIRA





#### GENERISANJE SERIJSKOG TAKTA

- Serjski prolaz na DSP-u se najčešće sastoji od prijemnog i predajnog dela. Mogu biti nezavisni (takt i FSYNC) ili uvezani.
- Povezani uređaji moraju da se dogovore odakle dolazi takt
- DSP imaju kola za generisanje serijskog bit-takta u serijskom sprežnom sistemu (prijemni, predajni, spoljni, višestruki)
- Serijski generatori takta obično proizvode takt serijskih bita deljenjem glavnog takta DSP nekom vrednošću
- U opštem slučaju, serijski genetarot takta u kaskadi formira presklaler (deli brojač) i programabilni brojač (obično broji naniže)



# PARALELNI SPREŽNI SISTEM

- Nasuprot serijskoj komunikacionoj sprezi kod paralelnih prolaza biti se šalju i primaju paralelno u tipičnom slučaju 8, 16 ili 32 bita istovremeno.
- Serijski prolaz nije tako brz kao paralelni, ali traži manje izvoda!





# PARALELNI SPREŽNI SISTEM

Primer interne strukture bloka za paralelni sprežni sistem





#### MULTIPLEKSU SA VREMENSKIM DELJENJEM (TDM)

Sinhroni serijski sprežni sistem se ponekad koriste za spajanje više od dva DSP procesora: u datom vremenskom odsečku jedan procesor može da salje, drugi osluškuju



b)



#### MULTIPLEKSU SA VREMENSKIM DELJENJEM (TDM)

- Komunikacija preko trožične magistrale: podaci, takt i sinhronizacija
- Jedan procesor odgovoran za generisanja signala takta i sinhronizacije (FRAME SYNC)
- \* FRAME SYNC: početak novog skupa vremenskih odsečaka
- Svaki procesor mora da vodi računa o broju tekućeg odsečka (kada predaje!)
- Prenošena reč može da sadrži broj odredišnog DSP-a, ili druga linija podataka radi prenosa adrese
- Kada ne predaje DSP mora da postavi svoj izvod u stanje visoke impedanse
- Najčešće DSP prima sve podatke, ili posebna podrška



## KOLA ZA VREMENSKU KONTROLU

- Kola za vremensku kontrolu se koriste za brojanje događaja i generisanje odgovarajućih prekida
- Izvori periodičnih prekida
- Izlazni kvadratni impuls (kontrolisani oscilator)
- Izvor takta: glavni DPS-ov takt ili spoljni izvor
- Skaler smanjuje freq izvora, generisanje dužih perioda!





## A/D i D/A KONVERTORI U KUĆIŠTU

- Brzinu odabiranja odrežuje Šenon-Nikvistova teorema odabiranja fs>2\*F
- A/D i D/A konverzija diskretizacija po vremenu i amplitudi







#### REKONSTRUKCIJA SIGNALA

 Izlaz D/A konvertora mora biti filtriran (NF filtar, granična učestanost fs)





## A/D KONVERTORI



- ❖Fleš A/D konvertori
  - Brza konverzija
  - Velika kompleksnost
  - (za veći broj bita)
  - ❖Zavisnost od uparenosti otporničke mreže





## POVEĆANJE TAČNOSTI A/D KONVERTORA

- ❖ Greška usled kvantizacije je SNR=1.76+6.02\*B
- U spektru odmerenog signala postoje i viši harmonici
- \* REŠENJE
  - Odmeravanje N puta većom brzinom, a potom filtriranje unutar DSP-a







#### SIGMA-DELTA A/D KONVERTORI

- Ovaj konvertor je u osnovi 1-bitni A/D konvertor (komparator) sa veoma velikom brzinom odmeravanja + digitalnim filtriranjem i decimacijom
- Dalja poboljšanja performanse se postižu filtriranjem koje podržava model šuma





## D/A KONVERTORI

- Pored konverzije i digitalnog domena u domen diskretnih naponskih nivoa, koristi se kolo za zadržavanje nultog reda, kako bi se zadržao naponski nivo do sledećeg odmerka
- Kako bi se izglačao rekonstruisani signal postavlja se izlazni filter koji zadovoljava kriterijume teoreme odabiranja





#### D/A KONVERTOR KAO OTPORNIČKI RAZDELNIK

- ❖Isti problemi kaokod Fleš A/D konvertora❖Uparenost R
  - ❖ Veliki gabariti za velik broj bita
  - Temperaturna zavisnost





# SIGMA-DELTA D/A KONVERTOR

- Prvi element u sigma-delta D/A konverziji je proces interpolacije, koji ubacuje nule između ulaznih odmeraka
- Sigma-delta modulator obavlja funkciju oblikovanja kvantizacionog šuma, tako da se u krajnjem rekonstruisanom izlaznom signalu većina kvantizacionog šuma nalazi van interesantnog (od 0 do fs/2) propusnog opsega





#### A/D + D/A = CODEC?

- CODEC-i su uređaji u okviru kojih su integrisani i A/D i D/A konvertori.
- Najčešće se integrišu višekanalni konvertori, audio primena 2,4 i 6 kanalni konvertori

#### Sprega sa DSP-om serijska sinhronamagistrala TDM



