Synchronous Artificial Neural Networks with Runtime Enforcement for Safety Critical Systems

Partha S. Roop, Hammond A. Pearce, Keyan Monadjem

September ??, 2018

Introduction

Background

Existing Solutions for Safety-Critical Al Systems

Solution: Utilising Synchronous Semantics

What is Artificial Intelligence? [1]

The aim for machines to intelligently decide the best course of action to meet their respective goals.

Machine-based...

- Acquisition and Manipulation of Knowledge
- Generation and Achievement of Goals

Are they useful?

Image/Pattern Recognition

There are many kinds of AI

(Some) Types

- Symbolic Al
- ► Statistical Learning
- ► Sub-symbolic
 - Evolutionary Computation
 - Probabilistic Modelling
 - Neural Networks

Al is reactive...

Reactive Safety-Critical Systems

Al Controllers?

The Problem: Post-verified ANNs for safety critical systems

Safety critical ANNs

- ► Software / Systems based on ML can be very complex.
- ▶ Not suitable for safety critical systems without validation/verification.
- Existing techniques to verify/validate ANNs for safety critical environments (proactive): not always ideal.
- ► Few solutions for *reactive* safety critical ANNs.
- ▶ When is an ANN *safe* to use?
- Functional Analysis?
- Runtime Enforcement (reactive)?

Our proposal

A formal approach for reactive safety-critical Al systems

- Synchronous semantics
 - Similar Capture/Process/Emit lifecycle
- Compositionality
- Synchronous Runtime Enforcement

Introduction

Background

Existing Solutions for Safety-Critical Al Systems

Solution: Utilising Synchronous Semantics

A brief overview of ML

- Make programs that learn from data without being explicitly programmed to do so
- Decision trees
 - ► Neural Networks deep learning
 - ► Reinforcement learning

A brief overview of NN

- Type of machine learning
- Originally designed to model the brain
- ► One neural network is a group of interconnected nodes, called artificial neurons, which pass signals among themselves
- Many different network structures
- Many different ways to allow neural networks to learn

Why are Current Implementations bad?

Complicating Static Analysis

- ▶ Not verified for safety-critical systems.
- Difficult to quantify an ANN.
- How to make ANNs safe?

Introduction

Background

Existing Solutions for Safety-Critical AI Systems

Solution: Utilising Synchronous Semantics

Current Al in safety-critical applications

- Process to determine ANN safety during creation validation/verification.
 - Unit testing
 - ► Rule extraction
 - ► Strict guidelines
- Safety Critical Artificial Neural Networks (SCANNs)
 - Fuzzy Self-Organising Maps (FSOMs)
 - ► Rule extraction + insertion
 - Safety cases

Introduction

Background

Existing Solutions for Safety-Critical Al Systems

Solution: Utilising Synchronous Semantics

Introduction to Synchronous Semantics

- No chance of deadlocks occurring during runtime.
- Loops are bounded.
- Causality is maintained.
- Resource use is monitored.
- Consistent function output.
- Runtime enforcement
- Easier to analyse WCET.

Runtime Enforcement

- ► Input-to-output functions
- ► Input/output checking
- ► Training guiding
- Inter-layer enforcement

Running example: ?

Introduction

Background

Existing Solutions for Safety-Critical Al Systems

Solution: Utilising Synchronous Semantics

References

 A. Sloman, "What is artificial intelligence?," The University of Birmingham, Computer Science Department (junio, 9, 1998). http://www.cs. bham. ac. uk/~ axs/misc/oxford/whatsai. openday. pdf, 1998.

Source code access