Pantalla de cristal líquido no gráfica (Lcd: liquid crystal display)

• En la comunicación del μC con el Lcd se utilizan 2 tipos de señales:

señales de control: RS, R/W, E

señales de datos: D7, D6, D5, D4, D3, D2, D1, D0

- Lo habitual es que no nos interese saber lo que está representando el Lcd (ya lo sabemos), y que sólo nos interese enviarle los caracteres a representar \Rightarrow R/W = 0
- Los datos a representar en el *Lcd* se pueden enviar utilizando un bus de datos de 4 bits (D4, D3, D2, D1, D0) o bien utilizando un bus de datos de 8 bits (D7, D6, D5, D4, D3, D2, D1, D0). Nosotros vamos a utilizar siempre un bus de datos de 4 bits.

• En este curso se va a utilizar una pantalla de 32 caracteres, repartidos en 2 filas de 16 caracteres cada una (2 filas × 16 columnas).

Componente ISIS: LM016

• El compilador *MikroC PRO* dispone de una herramienta que permite crear un máximo de 8 caracteres. Se accede a dicha herramienta en:

 $Tools \rightarrow LCD$ custom character

(no la vamos a utilizar en este curso)

• El compilador dispone de una serie de funciones que facilitan la programación de la comunicación del μC con el Lcd. Para poder utilizar dichas funciones es necesario indicar los terminales del μC que están conectados al Lcd mediante la declaración de una serie de variables globales. A continuación se muestra un ejemplo que corresponde a la conexión del Lcd a varios terminales del puerto D:

- Para inicializar el circuito controlador del *Lcd*, en la función *main*() hay que ejecutar la siguiente función: *Lcd_Init* ();
- Para representar caracteres en el *Lcd* se dispone de las siguientes funciones:

```
» Representación de un carácter: Lcd_Chr (fila, columna, carácter); Ejemplos:
```

Lcd_Chr (1, 5, 'r'); //se representa el carácter r en la fila 1, columna 5

char alfa = 48;

Lcd Chr (2, 14, alfa); //se representa el carácter 0 en la fila 2, columna 14

 Lcd_Chr_CP (71); //se representa el carácter G en la posición en la que se encuentre el cursor en el momento en el que se ejecute esta función.

Nota: las funciones para manejar el *Lcd* interpretan los valores a representar en ASCII

» Representación de una cadena de caracteres: Lcd_Out (fila, columna, cadena de caracteres);
Ejemplos:

Lcd_Out (1, 1, "Hola"); se representa la cadena de caracteres Hola a partir de la fila 1, columna 1
unsigned char beta [] = {"adios"};
o bien
unsigned char beta [] = {'a', 'd', 'i', 'o', 's', '\0'};
...
Lcd Out (2, 1, beta); se representa la cadena adios a partir de la fila 2, columna 1

 Lcd_Out_CP ("bueno"); se representa la cadena de caracteres bueno a partir de la posición actual en la que se encuentre el cursor en el momento en el que se ejecute esta función ($CP \equiv current\ position$).

» Representación de cantidades (números): para representar en el *Lcd* números con más de 1 dígito es necesario convertirlos en primer lugar a una cadena de caracteres. En la biblioteca de funciones del compilador hay varias funciones que, de acuerdo con el tipo y el tamaño del número a representar, permiten realizar esta tarea de forma sencilla:

Representación de un número de 8 bits sin signo (unsigned char ó unsigned short)_{0,255}

```
Ejemplo:

unsigned short aux = 12;

char txt [4];

...

ByteToStr (aux, txt);

...

Lcd_out(1,1, txt); //en la pantalla aparece un espacio en blanco a la izquierda del 12
```

```
Representación de un número de 8 bits con signo (signed char ó signed short)<sub>-128,+127</sub>
Ejemplo:
signed short aux = -23;
char txt [5];
ShortToStr (aux, txt);
Lcd out(1,1, txt); //en la pantalla aparece un espacio en blanco a la izquierda del -23
Representación de un número de 16 bits sin signo (unsigned int)<sub>65535</sub>
Ejemplo:
unsigned int aux = 527;
char txt [6];
WordToStr (aux, txt);
Lcd_out(1,1, txt); //en la pantalla aparecen dos espacios en blanco a la izquierda de 527
                                                                                            8
```

```
Representación de un número de 16 bits con signo (signed int)_32768.+32767
Ejemplo:
signed int aux = -1752;
char txt [7];
IntToStr (aux, txt);
Lcd out(1,1, txt); //en la pantalla aparece un espacio en blanco a la izquierda del -1752
Representación de un número de 32 bits en coma flotante (float)
Ejemplo:
float aux = -783.45;
                                  Nota: el formato de representación de un float es el siguiente:
char txt [14];
                                  (un máximo de 7 dígitos parte entera + parte fraccionaria)·en
                                  donde en indica 10^n.
FloatToStr (aux, txt);
```

Lcd_out(1,1, txt); //en la pantalla aparecen seis espacios en blanco a la izquierda de -783.45

```
Hay comandos que permiten:
_ mover el cursor, apagarlo, ...
_ borrar la pantalla
_ desplazar el valor representado en la pantalla
_ etc. (consulta la ayuda del compilador para ver todos los comandos disponibles)
para enviar un comando se utiliza la función: Lcd\_Cmd();
Ejemplos:
Lcd_Cmd(_LCD_CLEAR); //borra la pantalla
Lcd_Cmd(_LCD_CURSOR_OFF); //apaga el cursor
```