# Equivariant Graph Neural Networks

Kfir Eliyahu Ben Eliav Jonathan Kouchly

December 22, 2024

## Outline

Motivation

2 Mathematical Backoground

3 Deep Sets

2 Mathematical Backoground

3 Deep Sets

• Our neural networks can operate on data of many types.

- Our neural networks can operate on data of many types.
- We often work with images, text, audio, graphs and more.

- Our neural networks can operate on data of many types.
- We often work with images, text, audio, graphs and more.
- These data types have different structures and qualities, and we would like to build architectures that best suit them.

- Our neural networks can operate on data of many types.
- We often work with images, text, audio, graphs and more.
- These data types have different structures and qualities, and we would like to build architectures that best suit them.



• A cat is a cat no matter how you look at it.



A cat is a cat no matter how you look at it.



• It is acceptable to assume that being invariant to the rotation of the cat is a good property for a classification network.

• Our focus today is on sets and graph data.



Simple graph

|   | Α | В | С | D |
|---|---|---|---|---|
| Α | 0 | 1 | 1 | 1 |
| В | 1 | 0 | 0 | 0 |
| C | 1 | 0 | 0 | 1 |
| D | 1 | 0 | 1 | 0 |



## Construction of an Equivariant Neural Network

 When contructing an equivariant neural network, two things should always be considered:

## Construction of an Equivariant Neural Network

- When contructing an equivariant neural network, two things should always be considered:
  - The symmetries of the data: What inherent structure should our model be oblivious to?

# Construction of an Equivariant Neural Network

- When contructing an equivariant neural network, two things should always be considered:
  - The symmetries of the data: What inherent structure should our model be oblivious to?
  - ② The space of functions learnable by the network:

    Are we fully utilizing the space of functions that are equivariant

2 Mathematical Backoground

3 Deep Sets

# The Permutation Group $S_n$

- The permutation group  $S_n$  is the group of all permutations of n elements.
- It has n! elements, representing the n! ways to order n elements.
- Given a set  $X = \{x_1, x_2, \dots, x_n\}$ , a permutation  $\pi \in S_n$  is a bijection  $\pi : X \to X$
- e.g.  $x=(x_1,x_2,x_3)$ , and  $\pi=(1,2,3)\in S_3$  is the permutation that maps  $1\to 2,\ 2\to 3$  and  $3\to 1$ .
- We denote the **action** of  $\pi$  on x as  $\pi x = (x_3, x_1, x_2)$ .

### Permutation Invariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

### Permutation Invariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

•  $f: \mathbb{R}^n \to \mathbb{R}$  is permutation invariant if  $f(x) = f(\pi x)$  for all  $\pi \in H$ .

### Permutation Invariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

•  $f: \mathbb{R}^n \to \mathbb{R}$  is permutation invariant if  $f(x) = f(\pi x)$  for all  $\pi \in H$ .

$$f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ] = [0.15 \ 0.1 \ 0.05 \ \mathbf{0.8} ]$$

$$f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ] = [0.15 \ 0.1 \ 0.05 \ \mathbf{0.8} ]$$

# Permutation Equivariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

# Permutation Equivariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

•  $f: \mathbb{R}^n \to \mathbb{R}^n$  is permutation invariant if  $\pi f(x) = f(\pi x)$  for all  $\pi \in H$ .

# Permutation Equivariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

•  $f: \mathbb{R}^n \to \mathbb{R}^n$  is permutation invariant if  $\pi f(x) = f(\pi x)$  for all  $\pi \in H$ .

$$f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ] = [0.15 \ 0.1 \ 0.05 \ 0.8]$$
  
 $f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ] = [0.15 \ 0.1 \ 0.8 \ 0.05]$ 

• Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .

- Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .
- We can represent X as a matrix  $X \in \mathbb{R}^{n \times d}$ .

- Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .
- We can represent X as a matrix  $X \in \mathbb{R}^{n \times d}$ .
- Any permutation  $g \in S_n$  can be represented as a permutation matrix  $P \in \mathbb{R}^{n \times n}$ ,

- Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .
- We can represent X as a matrix  $X \in \mathbb{R}^{n \times d}$ .
- Any permutation  $g \in S_n$  can be represented as a permutation matrix  $P \in \mathbb{R}^{n \times n}$ ,
- The action of g on X is then PX.

- Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .
- We can represent X as a matrix  $X \in \mathbb{R}^{n \times d}$ .
- Any permutation  $g \in S_n$  can be represented as a permutation matrix  $P \in \mathbb{R}^{n \times n}$ ,
- The action of g on X is then PX.
- An invariant neural network is a function  $f: \mathbb{R}^{n \times d} \to \mathbb{R}^{d'}$  such that f(X) = f(PX).

- Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .
- We can represent X as a matrix  $X \in \mathbb{R}^{n \times d}$ .
- Any permutation  $g \in S_n$  can be represented as a permutation matrix  $P \in \mathbb{R}^{n \times n}$ ,
- The action of g on X is then PX.
- An invariant neural network is a function  $f: \mathbb{R}^{n \times d} \to \mathbb{R}^{d'}$  such that f(X) = f(PX).
- An equivariant neural network is a function  $f: \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d'}$  such that Pf(X) = f(PX).



## Permutation of a Graph

• Our data is now a graph adjacency matric  $A \in \mathbb{R}^{n \times n}$ .

# Permutation of a Graph

• Our data is now a graph adjacency matric  $A \in \mathbb{R}^{n \times n}$ .

• A permutation matrix  $P \in \mathbb{R}^{n \times n}$  acts on the adjacency matrix A and the feature matrix X.

#### Theorem

Let L be a linear equivariant layer, and let f be a neural network constructed be stacking L and non-linearities  $\sigma$ . Then f is permutation equivariant.

#### Theorem

Let L be a linear equivariant layer, and let f be a neural network constructed be stacking L and non-linearities  $\sigma$ . Then f is permutation equivariant.

#### Proof.

#### Theorem

Let L be a linear equivariant layer, and let f be a neural network constructed be stacking L and non-linearities  $\sigma$ . Then f is permutation equivariant.

#### Proof.

$$f(gx) = L(\sigma(L(\sigma(\ldots L(gx)\ldots)))) = L(\sigma(L(\ldots g\sigma(L(x))\ldots))) = \ldots$$

#### Theorem

Let L be a linear equivariant layer, and let f be a neural network constructed be stacking L and non-linearities  $\sigma$ . Then f is permutation equivariant.

#### Proof.

$$f(gx) = L(\sigma(L(\sigma(\ldots L(gx)\ldots)))) = L(\sigma(L(\ldots g\sigma(L(x))\ldots))) = \ldots$$

$$gL(\sigma(L(\sigma(\ldots L(x)\ldots)))) = gf(x)$$



#### Theorem 1

Let f be an equivariant neural network and let  $\phi$  be a permutation invariant function. Then  $h = \phi(f(x))$  is a permutation invariant neural network.

#### Theorem

Let f be an equivariant neural network and let  $\phi$  be a permutation invariant function. Then  $h = \phi(f(x))$  is a permutation invariant neural network.

#### Proof.

#### Theorem

Let f be an equivariant neural network and let  $\phi$  be a permutation invariant function. Then  $h = \phi(f(x))$  is a permutation invariant neural network.

#### Proof.

$$h(gx) = \phi(f(gx)) = \phi(gf(x)) = \phi(f(x)) = h(x)$$



Motivation

2 Mathematical Backoground

• A seminal work in the field of equivariant neural networks.

- A seminal work in the field of equivariant neural networks.
- Recall the two properties we mentioned earlier (symmetries of the data and the space of functions learnable by the network).

- A seminal work in the field of equivariant neural networks.
- Recall the two properties we mentioned earlier (symmetries of the data and the space of functions learnable by the network).
- DeepSets is an architecture that is equivariant to set permutations and is maximmally expressive in the space of permutation equivariant functions.

- A seminal work in the field of equivariant neural networks.
- Recall the two properties we mentioned earlier (symmetries of the data and the space of functions learnable by the network).
- DeepSets is an architecture that is equivariant to set permutations and is maximmally expressive in the space of permutation equivariant functions.
- We are going to see the construction and prove it satisfies equivariance and expressiveness.

- We saw a general structure of an invariant and equivariant network.
- To fill in the details, we need to define the equivariant layer L and the invariant function  $\phi$ .

- We saw a general structure of an invariant and equivariant network.
- To fill in the details, we need to define the equivariant layer L and the invariant function  $\phi$ .

#### Definition

Consider a set  $x = \{x_1, x_2, \dots, x_n\}$ , where  $x_i \in \mathbb{R}$ .

A *DeepSets* layer is defined as

$$L(x) = \lambda I x + x \mathbf{1}$$

### Definition

Consider a set  $x = \{x_1, x_2, \dots, x_n\}$ , where  $x_i \in \mathbb{R}$ .

A DeepSets layer is defined as

$$L(x) = \lambda I x + x \mathbf{1}$$

### Definition

Consider a set  $x = \{x_1, x_2, \dots, x_n\}$ , where  $x_i \in \mathbb{R}$ .

A DeepSets layer is defined as

$$L(x) = \lambda I x + x 1$$

#### Theorem

A DeepSets layer is permutation equivariant.

### Definition

Consider a set  $x = \{x_1, x_2, \dots, x_n\}$ , where  $x_i \in \mathbb{R}$ .

A DeepSets layer is defined as

$$L(x) = \lambda Ix + x1$$

Theorem

A DeepSets layer is permutation equivariant.

#### Proof.

Let x be a set of n elements, and let  $g \in S_n$  be a permutation.

### Definition

Consider a set  $x = \{x_1, x_2, \dots, x_n\}$ , where  $x_i \in \mathbb{R}$ .

A DeepSets layer is defined as

$$L(x) = \lambda I x + x \mathbf{1}$$

#### Theorem

A DeepSets layer is permutation equivariant.

#### Proof.

Let x be a set of n elements, and let  $g \in S_n$  be a permutation.

$$L(gx) = \lambda I(gx) + (gx)\mathbf{1} = g(\lambda Ix) + x\mathbf{1} = gL(x)$$



• We have an initial layer L, which we proved is equivariant.

- We have an initial layer L, which we proved is equivariant.
- A deep sets invariant network is now constructed as:

$$f(x) = \phi(L\sigma(L\sigma(...L\sigma(L(x))...)))$$
 where  $\phi(x) = \sum_{i=1}^{n} x_i$ 

- We have an initial layer L, which we proved is equivariant.
- A deep sets invariant network is now constructed as:

$$f(x) = \phi(L\sigma(L\sigma(...L\sigma(L(x))...)))$$
 where  $\phi(x) = \sum_{i=1}^{n} x_i$ 

- ullet It is easy to see that  $\phi$  is permutation invariant, and thus f is permutation invariant.
- For a classification network, take some classification module  $\rho$  (e.g. an MLP), and define the final network as:

$$h(x) = \rho(f(x))$$



ullet Notice that the network is only defined for sets with elements in  $\mathbb{R}$ .

• We can extend this to a set  $X \in \mathbb{R}^{n \times d}$  by defining L as:

$$L(x) = \mathbf{X} W_1 + \mathbf{1} \mathbf{1}^T \mathbf{X} W_2$$

 Ths keeps the general structure of the layer: a linear transformation of the distinct elements of the set summed with the mean of the set.

- We have shown that the *DeepSets* network is permutation invariant.
- We now want to show that it is maximally expressive in the space of permutation invariant functions.

- We have shown that the *DeepSets* network is permutation invariant.
- We now want to show that it is maximally expressive in the space of permutation invariant functions.

#### Theorem

A DeepSets network is maximally expressive in the space of permutation invariant functions.

- We have shown that the *DeepSets* network is permutation invariant.
- We now want to show that it is maximally expressive in the space of permutation invariant functions.

#### Theorem

A DeepSets network is maximally expressive in the space of permutation invariant functions.

#### Proof.

- We have shown that the *DeepSets* network is permutation invariant.
- We now want to show that it is maximally expressive in the space of permutation invariant functions.

#### Theorem

A DeepSets network is maximally expressive in the space of permutation invariant functions.

#### Proof.

H.W. (using standard results from approximation theory).

### Conclusion

end

# Thank You!