CSIE 2344, Spring 2019 — Final Exam

Name:	SID:	Email:	
1 Mult	${ m ciple-Choice~Questions~(4pts)}$		
Pick ONE o	of the choices for each question. No explan-	ation is required.	
1.	amount of IC products of its own design	ry" is a company that does not offer a signification, but instead operates semiconductor fabrication companies. Regarding the market share in the pure-play semiconductor foundry is	ion
	1. Globalfoundries.		
	2. Intel.		
	3. Samsung.		
	4. TSMC.		
2.	(1pt) "IC Compiler II" is a product of S	ynopsys. It is	
	1. Document.		
	2. Hardware.		
	3. Software.		
3.	(1pt) Regarding the business model, which	ch of the following descriptions is the most precis	se?
	1. MediaTek pays to Synopsys, and I	MediaTek pays to TSMC.	
	2. MediaTek pays to Synopsys, and T	ΓSMC pays to MediaTek.	
	3. Synopsys pays to MediaTek, and I	MediaTek pays to TSMC.	
	4. Synopsys pays to MediaTek, and	ΓSMC pays to MediaTek.	
4.	(1pt) Which one of the following routing	g results for two netlists is NOT feasible?	
2	1. 2.	3.	

2 Programmable Logic Array (8pts)

 $F_1 = ABD + BC'D'$ has been implemented below. Implement $F_2 = B'C + A'BD$ and $F_3 = AC + BD$ by adding " \bullet " below (adding lines is not allowed). No explanation is required.

3 Latch (8pts)

Given the latch, complete the following truth table. No explanation is required.

A	В	Q	$Q^{\scriptscriptstyle +}$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

4 Counter (28pts)

Design a 3-bit counter which counts CBA in the sequence: 001, 100, 101, 111, 110, 010, 011, and repeats. No explanation is required.

- 1. (4pts) Complete the following truth table.
- 2. (4pts) Complete the following Karnaugh map for C^+ .
- 3. (4pts) Complete the following Karnaugh map for B^+ .
- 4. (4pts) Use a J-K flip-flop and complete the following Karnaugh map for J_C .
- 5. (4pts) Use an S-R flip-flop and complete the following Karnaugh map for S_B .

C	В	A	C^{+}	B^+	A^+
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

- 6. (4pts) Derive a minimum sum-of-products expression for J_C . $J_C =$
- 7. (4pts) Derive a minimum sum-of-products expression for S_B . $S_B = \underline{\hspace{1cm}}$

5 Circuit Analysis (12pts)

Given the circuit including one D flop-flop and one T flop-flop. No explanation is required.

- 1. (8pts) Complete the following transition table.
- 2. (4pts) Complete the following state graph where S_{ij} represents the state (A, B) = (i, j).

AB	A^+	A^+B^+ Z	(S_1)	
AD	X=0	X=1	Z	
00				S_{01}
01				
11				
10				$\left(\frac{S_{00}}{S_{00}}\right)$

6 State Graph (8pts)

A detector detects a 101 sequence and a sequence starting by 0, ending by 0, having no 0 between the two 0's, and having a positive number of 1's between the two 0's, i.e., 010, 0110, 01110, 011110, The following is example inputs and outputs:

X = 0110001101110Z = 0001000011001

Draw a Mealy machine for the detector.

7 Circuit Equivalence (8pts)

Given the state tables of two circuits, determine whether the two circuits are equivalent. If yes, list all equivalent states (e.g., $S_0 \equiv A$); otherwise, list all states (in both state tables) which have no equivalent state (e.g., S_0 in the first state table and A in the second state table). You can use the empty table, but it is not required.

	Next State		Z
	X = 0	X=1	Z
S_0	S_3	S_1	0
S_1	S_0	S_1	0
S_2	S_0	S_2	0
S_3	S_0	S_3	0

	Next	7	
	X = 0	X=1	Z
A	E	A	1
В	F	В	1
C	E	D	0
D	E	C	0
E	В	D	0
F	В	C	0

8 Rules Derivation (8pts)

Given the truth table of a new flip-flop: Y flip-flop.

- 1. (6pts) Complete the following table by deriving its rules from a next state map to an input map.
- 2. (2pts) Does this flip-flop have any limitation in counter design?

Y	Q	$Q^{\scriptscriptstyle +}$
0	0	0
0	1	0
1	0	1
1	1	0

Type	Lauret	Rules from Next State Map to Input Map		
Type of FF	Input	Q = 0 Half of Map	Q = 1 Half of Map	
D	D	No change	No change	
Т	T	No change	Complement	
Y	Y			

9 Dynamic Hazard (16pts)

Given the circuit.

1. (8pts) The transition (A, B, C, D) from (1, 1, 0, 0) to (1, 1, 1, 0) has a potential dynamic hazard, depending on the propagation delays of the gates. Assuming 5, 10, w, x, y, z are the propagation delays of the corresponding gates, what is the necessary and sufficient condition of w, x, y, z that there is no dynamic hazard for the transition?

2. (8pts) Assuming x = y, what is the necessary and sufficient condition of w, x, y, z that there is no dynamic hazard for the circuit (all transitions)? Justify your answer.