HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

THUẬT TOÁN ỨNG PHỤNGAN TRÊN ĐỒ THỊ DFS và ứng dụng

ONE LOVE. ONE FUTURE.

NỘI DUNG

Đường đi dài nhất trên cây

Tổng đường đi trên cây

ĐƯỜNG ĐI DÀI NHẤT TRÊN CÂY

• Cho cây T = (V, E), mỗi cạnh (u,v) có trọng số w(u,v). Hãy tìm đường đi có tổng trọng số lớn nhất trên T

- Ký hiệu A[v] là tập các đỉnh kề với đinh v trên T
- Thuật toán dựa trên duyệt theo chiều sâu
- Chọn 1 đỉnh s bất kỳ trên T
- \longrightarrow Thực hiện DFS(s) để tim đỉnh x cách xa s nhất
 - Thực hiện DFS(x) để tìm đỉnh y cách xa x nhất
 - Đường đi từ x đến y tìm được sẽ là đường đi dài nhất trên T

ĐƯỜNG ĐI DÀI NHẤT TRÊN CÂY

```
Init(V, A) {
  for v in V do d[v] }
DFS(u) {
 for x in A[u] do {
    if d[x] < 0 then {
      d[x] = d[u] + w(u,x);
      DFS(x);
                                    W(u,x)
```

```
LongestPathOnTree(V, A){
 Init(V, A);
 s = select a node in V;
 DFS(s);
 x = select u in V such that d[u] is maximal;
 Init(V, A);
 DFS(x);
 y = select u in V such that d[u] is maximal;
 P = unique path between x and y in T;
 return P;
```

ĐƯỜNG ĐI DÀI NHẤT TRÊN CÂY

• Độ phức tạp tính toán O(|V| + |E|)

- Cho cây T = (V, E), mỗi cạnh (u,v) có trọng số w(u,v). Tập đỉnh V gồm n đỉnh
- Ký hiệu:
 - A[v] là tập các đỉnh kề với đỉnh v trên T
 - c(u,v) là độ dài đường đi duy nhất giữa 2 đỉnh u và v trên T
 - f(u): tổng độ dài đường đi từ các đỉnh khác đến u trên T: $f(u) = \sum_{v \in V} c(v, u)$
- Tìm f(u) với mọi $u \in V$

 $\begin{cases}
\sqrt{3} = 1 + 3 + 9 + 5 - 18 \\
\sqrt{3} = 1 + 4 + 10 + 6 = 21
\end{cases}$ $\sqrt{3} = 1 + 3 + 6 + 2 = 15
\end{cases}$ $\sqrt{3} = 1 + 3 + 6 + 2 = 15
\end{cases}$ $\sqrt{3} = 1 + 3 + 6 + 2 = 15
\end{cases}$ $\sqrt{3} = 1 + 3 + 6 + 2 + 8 = 21
\end{cases}$ $\sqrt{3} = 1 + 3 + 6 + 2 + 8 = 21
\end{cases}$

= 0(n+n-1)=0(n)[DFS(u) -> 1[u]

- DFS1(u): duyệt theo chiều sâu ở pha thứ nhất
 - Mục đích: tính d(x) và N(x) với mọi đỉnh x là con cháu của u
 - Khi DFS1(u) thực hiện xong thì d(u) được tính xong và nó sẽ được dùng để tính d(p(u))
 - Thực hiện: với mỗi đỉnh v∈ A[u]:
 - Goi DFS1(v)
 - Cập nhật: d(u) = d(u) + N(v)*d(v)
 - N(u) = N(u) + N(v)
- DFS2(u): duyệt theo chiều sâu ở pha thứ hai
 - Mục đích: Khi DFS2(u) được gọi thì f(u) đã được tính toán xong và ta sẽ tính toán f(v) với mỗi đỉnh v là con của u
 - Thực hiện: với mỗi đinh $v \in A[u]$ mà chưa được thăm
 - F = f(u) (d(v) + w(u,v)*N(v))
 - f(v) = F + d(v) + w(u,v)*(n N(v))
 - Goi DFS2(v)

- DFS1(u): duyệt theo chiều sâu ở pha thứ nhất
 - Mục đích: tính d(x) và N(x) với mọi đỉnh x là con cháu của u
 - Khi DFS1(u) thực hiện xong thì d(u) được tính xong và nó sẽ được dùng để tính d(p(u))
 - Thực hiện: với mỗi đỉnh v∈ A[u]:
 - Gọi DFS1(*v*)
 - Cập nhật: d(u) = d(u) + N(v)*d(v)
 - N(u) = N(u) + N(v)

```
DFS1(u){
  for v in A[u] do {
     if p(v) = 0 then {
        p(v) = u;
        DFS1(v);
        d(u) = d(u) + d(v) + N(v)*w(u,v);
        N(u) = N(\underline{u}) + N(v);
Phase1(){
  for v in V do {
     p(v) = 0; d(v) = 0; N(v) = 1; f(v) = 0;
  p(1) = 1; (DFS1(1);
```

```
DFS2(u){
 for v in A[u] do {
    if p(v) = 0 then { // xet y la con v
       F = f(u) - (d(v) + N(v)*w(u,v));
       f(v) = F + d(v) + w(u,v)*(n - N(v));
       p(v) = u; DFS2(v);
Phase2(){
 for v in V do \{p(v) = 0;\}
 f(1) = d(1); p(1) = 1; DFS2(1);
Main(){
  Phase1(); Phase2();
```

• Độ phức tạp tính toán O(|V| + |E|)

lap lois mattren cay, W[u]trong so une dinh u Tim tap con cai tinh sao cho: · 2 stinh ke man khong curg sture chon · Tong trong so cae stins drive dien - MAX > Dynamic Programming. OSO[u]: Laton tran so tayen max cuá car, dins trên cay goe u S[u] = 1(5501 S[u]= max {So[u], S1[u]} max en cai dis cay got 4 2[05] 8[04] trên cay goi

 $S1[u] = w[u] + \sum_{i=1}^{n} SO[v]$ S[u]= max {So[u], S1[u]}. - Top-down: De cyny có mhó.

HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!