

Lecture 11: Fisher Information, Asymptotic Normality of MLE;

课程 □ Unit 3 Methods of Estimation □ Method of Moments

9. Properties of the Generalized ☐ Method of Moments Estimator

## 9. Properties of the Generalized Method of Moments Estimator

Plus Minus 1 - Method of Moments

3/3 points (graded)

Let X be a random variable that takes on values -1 and +1 with probabilities p and 1-p, respectively. Let  $\widehat{m}_1$  be the sample average of n i.i.d. observations of X.

What is the method of moments estimator  $\hat{p}_n^{ ext{MM}}$ ?

Use **hatm\_1** for  $\widehat{m}_1$ .

(1 - hatm\_1)/2

☐ **Answer:** (1-hatm\_1)/2

Assume that we observe k instances of -1 out of n outcomes. What is the ML estimator  $\hat{p}_n^{\text{MLE}}$ ?

k/n

☐ **Answer:** k/n

 $\underline{k}$ 

Are the two estimators for the  $\pm 1$  random variable equal?

● Yes □

No

**STANDARD NOTATION** 

#### **Solution:**

The expected value of X is 1-2p.

Therefore,  $\hat{p}_n^{ ext{MM}} = rac{1-\widehat{m}_1}{2}$ 

The ML estimator of p is  $\hat{p}_n^{\mathrm{MLE}} = k/n$ .

The two estimators are equal because of the following:

$$egin{array}{ll} \widehat{p}_n^{ ext{MM}} &= rac{1-\widehat{m}_1}{2} \ &= rac{1-rac{(k)\cdot -1+(n-k)\cdot 1}{n}}{2} \ &= rac{k}{n} \end{array}$$

提交

你已经尝试了1次(总共可以尝试3次)

## Method of Moments - Multiple Estimators

2/2 points (graded)

Let X be a non-zero uniform random variable that we model using the distribution  $\mathsf{Unif}[0,\theta]$ , where  $\{\theta\mid\theta>0\}=\Theta$ . Our objective is to estimate  $\theta$  using a moments estimator constructed out of n i.i.d. samples  $X_1,X_2,\ldots,X_n$ .

For a random variable  $X \sim \mathsf{Unif}\,[0, heta]$ ,

$$\mathbb{E}\left[X
ight] \ = rac{ heta}{2},$$

$$\mathbb{E}\left[X^2
ight] \; \equiv rac{ heta^2}{3}.$$

We have only one parameter to estimate here, and there are two invertible moment functions that we can use to estimate the parameter. Let  $\widehat{m}_1$  be the sample average  $\frac{\sum_{i=1}^n X_i}{n}$  and let  $\widehat{m}_2$  denote  $\frac{\sum_{i=1}^n X_i^2}{n}$ . By the law of large numbers,  $\widehat{m}_1 \to \mathbb{E}\left[X\right]$  and  $\widehat{m}_2 \to \mathbb{E}\left[X^2\right]$  as  $n \to \infty$ .

To enter your answers to the following, use **hatm\_1** for  $\widehat{m}_1$ , **hatm\_2** for  $\widehat{m}_2$ .

What is the method of moments estimator  $\hat{ heta}_{n,1}^{ ext{MM}}$  based on  $\widehat{m}_1$ ?

2\*hatm\_1

☐ **Answer:** 2\*hatm\_1 + 0\*hatm\_2

What is the method of moments estimator  $\hat{ heta}_{n,2}^{ ext{MM}}$  based on  $\widehat{m}_2$ ?

sqrt(3\*hatm\_2)

☐ **Answer:** sqrt(3\*hatm\_2) + 0\*hatm\_1

**STANDARD NOTATION** 

#### **Solution:**

Note that both  $\mathbb{E}\left[X
ight]=m_1\left( heta
ight)$  and  $\mathbb{E}\left[X^2
ight]=m_2\left( heta
ight)$  are one-to-one and invertible in  $\Theta$ . Therefore,

$$egin{aligned} \widehat{theta}_{n,1}^{ ext{MM}} &= 2\widehat{m}_1, \ \hat{ heta}_{n,2}^{ ext{MM}} &= \sqrt{3\widehat{m}_2}. \end{aligned}$$

提交

你已经尝试了2次(总共可以尝试3次)

☐ Answers are displayed within the problem

# **Generalized Method of Moments Estimator: Statistical Analysis**

All right, so what are the properties of this thing?

It's a pretty sensible method, hopefully.

Are there any questions about why I would want to do this?

It's pretty clear, right?

I just try to find relationships between my parameter

and my moments.

If you-- I can estimate the moments,



so I'm hoping that this will uniquely determine my parameter. So what are the properties?

视频

下载视频文件

字幕

下载 SubRip (.srt) file 下载 Text (.txt) file

## Method of Moments Concept Question II

1/1 point (graded)

Let  $(E,\{\mathbf{P}_{ heta}\}_{ heta\in\Theta})$  denote a statistical model associated to a statistical experiment  $X_1,\ldots,X_n\stackrel{iid}{\sim}\mathbf{P}_{ heta^*}$  where  $heta^*\in\Theta$  is the true parameter. Assume that  $\Theta\subset\mathbb{R}^d$  for some  $d\geq 1$ . Let  $m_k\left( heta
ight):=\mathbb{E}\left[X^k
ight]$  where  $X\sim\mathbf{P}_{ heta}$ .  $m_k\left( heta
ight)$  is referred to as the k-th moment of  $\mathbf{P}_{m{ heta}}$  . Also define the moments map:

$$egin{aligned} \psi:\Theta &
ightarrow \mathbb{R}^d \ heta & \mapsto \left(m_1\left( heta
ight),m_2\left( heta
ight),\ldots,m_d\left( heta
ight)
ight). \end{aligned}$$

What conditions on  $\psi$  do we have to assume so that the method of moments produces a consistent and asymptotically normal estimator? (Choose all that apply.)

Recall that the method of moments estimator is

$$\hat{ heta}_n^{ ext{MM}} := \psi^{-1} \left( rac{1}{n} \sum_{k=1}^n X_i, rac{1}{n} \sum_{k=1}^n X_i^2, \ldots, rac{1}{n} \sum_{k=1}^n X_i^d 
ight)$$

| $^{lacktrel{arphi}}$ The function $oldsymbol{\psi}$ is one-to-one. $\Box$ |  |  |
|---------------------------------------------------------------------------|--|--|
|                                                                           |  |  |

 $^ullet$  The function  $oldsymbol{\psi}$  has a differentiable inverse that is continuous.  $\Box$ 

 $\;\;\;\;\;\; oldsymbol{\psi}$  is a polynomial in the entries of  $oldsymbol{ heta}.$ 

 $\psi^{-1}$  is a polynomial in d variables.

None of the above.

### **Solution:**

We handle the choices in order.

• "The function  $\psi$  is one-to-one." and "The function  $\psi$  has a differentiable inverse that is continuous." are assumptions included on the theorem regarding the convergence of the method of moments estimator. If  $\psi$  is not one-to-one, then we cannot even define  $\psi^{-1}$ . Also, the asymptotic covariance matrix is in terms of the inverse of the gradient of  $\psi$ , so the second assumption is certainly necessary.

| • " $\psi$ is a polynomial in the entries of $\theta$ ." and " $\psi^{-1}$ is a polynomial in $d$ variables." are incorrect. There are no specific assumption needed on the form that $\psi$ must take. However, for practical purposes, to be able to perform the method of moments, we neto be (efficiently) computable. |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 提交 你已经尝试了1次(总共可以尝试3次)                                                                                                                                                                                                                                                                                                      |      |
| □ Answers are displayed within the problem                                                                                                                                                                                                                                                                                 |      |
| 过论<br>主题: Unit 3 Methods of Estimation:Lecture 11: Fisher Information, Asymptotic Normality of MLE;<br>Method of Moments / 9. Properties of the Generalized Method of Moments Estimator                                                                                                                                    | 显示讨论 |

© 保留所有权利