Classification and Prediction of Heart Diseases in Patients

Presenter: Setare Hajarolasvadi

DS Flex Program: Phase III Project

Overview

- **≻**Objective
- **≻**Dataset
- ➤ Data Analysis
- ➤ Modeling Approach
- **≻**Results
- **≻**Recommendations
- **≻**Limitations

Objective

- One person dies every 33 seconds from cardiovascular disease.
- The objective of this study is to develop a machine learning model to predict the susceptibility to heart disease in patients.

Dataset

- Three subsets:
 - Cleveland
 - Switzerland
 - Hungary

4 databases: Cleveland, Hungary, Switzerland, and the VA Long Beach

Dataset Characteristics

Multivariate

Feature Type

Categorical, Integer, Real

Subject Area

Health and Medicine

Instances

-303 **720**

Associated Tasks

Classification

Features

-13- 10

Data Analysis – Numerical Features

Data Analysis – Categorical Features

Modeling Approach

Results

Model	Accuracy	Precision	Recall	f1-score
Logistic Regression	0.78	0.85	0.71	0.77
Decision Tree	0.73	0.77	0.67	0.72
Random Forest	0.81	0.84	0.78	0.81

Recommendations

Limitations

Extremely rightskewed distribution

Optimize for recall

Neural Networks K-Means Clustering