ISSUES AND DIRECTIONS IN IR DETECTOR READOUT ELECTRONICS

Eric R. Fossum

Department of Electrical Engineering
Columbia University
New York, NY 10027

Abstract

An introduction to the major issues encountered in the read out of imaging detector arrays in the infrared will be presented. These include circuit issues such as multiplexing, buffering, and noise, as well as materials issues.

Future directions in infrared readout electronics will also be discussed. These include on-chip signal processing and advanced hybridization schemes. Finally, recent work at Columbia on 2DEG-CCDs for IR detector multiplexing will be described.

Issues in FPA Readout Electronics

Eric R. Fossum

Dept. of Electrical Engineering

Columbia University

NY NY 10027

FRF

Outline

- 1. Present Imager Readout Architectures
- 2. Special Problems in LWIR Readout
- 3. GaAs CCD Readout
- 4. On-chip Signal Processing

ERF

4-PHASE CHARGE TRANSFER

Schematic illustration of a charge-coupled device (CCD) imager read-out structure.

COMMERCIALLY-AVAILABLE CCDS

MANUFACTURER	DEVICE	FORMAT	STRUCTURE	PIXEL SIZE, μm	DIMENSIONS, mm	<u>G</u>	GATES/PIXEL	
EG&G Reticon (US)	RA0256B	256x256	Full Frame	40×40	10.2x10.2	4		
Fairchild (US)	CCD222	488x380	Interline	30x18	8.8x11.4	2		
Photometrics (US)		516x516	Full Frame	20x20	10.3x10.3	4		
Tektronix (US)	TK512M	512x512	Full Frame	27x27	13.8x13.8	3	Thinned	
	TK2048M	2048x2048	Full Frame	27x27	55.3x55.3	3	Thinned, Develop.	
Videk (US)	Megaplus	1320x1035	Full Frame	6.8x6.8	9.0x7.0	2	,	
Amperex (Holland)	NKA1010	604x294	Frame Transfer	10x15.6	•	4/3	}	
Dalsa (Canada)	IA-D1-0256	256x256	Frame Transfer	16x16	4.1x4.1			
Eng. Elec. Valve (UK)	P-86131	576x385	Full Frame	22x22	12.8x8.5			
Sanyo (Japan)		572x485						
		640x480						
Texas Inst. (Japan)	T1241	754x488	Frame Transfer	11.5x27		1	•	
	TC215	1024x1024	Full Frame	12x12	12.3x12.3	1		
	TC217	1134x486	Frame Transfer	7.8x13.6		1		
Thomson CSF (France)	TNX31156	1024x1024	Full Frame	19x19	19.5x19.5	4	Develop.	
	TNX7863	576x384	Full Frame	23x23		4	•	
Toshiba (Japan)		1920x1036						

INTEGRATING INPUTS

1. DIRECT INJECTION

2. GATE MODULATION

Fig. 5. Pixel cross section of 256 × 256 element IR-CCD image sensor.

Fig. 3. Schematic diagram of 256×256 element IR-CCD image sensor.

Kimata, et al. Opt. Eng 26(3) 211 (1987).

Fig. 2. Various detector readout structures: (a) gate readout (GRO); (b) gate-coupled readout (GCRO) to CCD; (c) direct-injection (DI) current readout; (d) direct-injection ancillary current (DIAC) readout; (e) direct-injection bipolar (DIB) current readout; (f) direct-injection bipolar ancillary current (DIBAC) readout; (g) buffered direct-injection (BDI) current readout.

Bluzer and Jensen Opt. Eng. 26(3) 241 (1987).

Fig. 8. Backside-Illuminated hybrid FPA.

VURAL

Fig. 6. Direct-injection input circuit schematic for 64 x 64 multiplexer.

Schematic illustration of a MOS-CCD imager read-out structure.

Bucket Voltage

10

Fig. 5. Reset integrator input circuit: (a) functional block diagram, (b) MOSFET implementation.

Fig. 6. Buffered common gate input circuit: (a) functional block diagram, (b) MOSFET implementation.

Lockwood and Parrish, Opt. Eng 26(3) 228 (1987).

Fig. 2. Simplified schematic of the direct readout circuit used for this array.

Fig. 5. Representation of the voltage across a single pixel during an integration interval at the detector node.

Fig. 8. Carrier modulation scheme used to upconvert detect signals to higher frequencies where MOSFET noise is low.

Fig. 9. Buffered common gate readout input circuit using chops stabilization to reduce detector bias offsets and amplifier 1/f nois

Fig. 10. Projected chopper-stabilized InSb focal plane perfemance.

Lockwood and Parrish, Opt. Eng 26(3) 228 (1987).

IMAGE ACQUISITION

+ IMAGE PROCESSING

FOCAL PLANE IMAGE PROCESSING

WHY

NOISE YIELD

DISTORTION CHIP SIZE

POWER COOLING

SIZE NON-UNIFORMITY CORRECTION

WHY NOT

RELIABILITY

COST

NON-UNIFORMITY CORRECTION

Fig. 2. Photograph of (a) serial recursive circuit and (b) single stage of pipeline circuit.

Fig. 3. Oscilloscope photograph showing analog output of pipeline programmable gain control circuit in response to a digital ramp (upper trace) and MSB of digital control word (lower trace).

Fig. 4. Differential linearity error of pipeline circuit. Note that 1 LSB tic mark corresponds to 1/1024 of full scale.

CCD Programmable Gain Control Circuit Performance Summary

	<u>Pipeline</u>	Serial	
Technology	3μ m CCD	3μ m CCD	
Circuit Size	0.4 mm ²	0.013 mm ²	
Resolution	10 bits	variable	
Integral Linearity	8 bits	6 bits	
Differential Linearity	8 bits	6 bits	
Clock Voltage	10 volts	10 volts	
Bucket Cap. (electrons)	5×10 ⁶	5x10 ⁶	
Power (10 ³ conv/sec)	2 μ W	2μW	
Max. Conversion Rate	>8x10 ⁶ /sec	>0.5x10 ⁶ /sec	

Spatially Parallel Architecture (SIMD)

FPA CCC POWER CONSIDERATIONS

TO TRANSFER 1 BUCKET (HALF FULL) $\Delta V = 10$ VOLTS

ENERGY = 8 pJ

ARRAY WITH 1500 PEs OPERATING IN PARALLEL

12 nJ

SAY EACH INSTRUCTION REQUIRES 10 TRANSFERS, SAY 100 INSTRUCTIONS PER PIXEL TO PREPROCESS

12 ய PER FRAME

SAY 1000 Hz FRAME RATE*

12 mW CHIP DISSIPATION

ADD IN DRIVERS, PARASITICS, MULTIPLY BY 2

25 mW

FOR 1 kHz REAL TIME PREPROCESSED IMAGERY

* AT 100 nsec/TRANSFER, CAN OPERATE AT 1MHz INSTRUCTION RATE, OR 10 kHz FRAME RATE POSSIBLE

NOISE CONSIDERATIONS

SAY BIAS = 10 V - 8 VOLT BUCKET

~250,000,000 ELECTRONS/HOLES

SAY WANT 8-BIT EQUIVALENT ACCURACY W/ SNR = 4 ON LSB

→ MAXIMUM NOISE ~ 250,000 CARRIERS

NOISE SOURCES:

1) CAPACITIVELY COUPLED CIRCUITS

$$n_{RMS} = \frac{(kTC)^{1/2}}{q} \lesssim 1000 \text{ CARRIERS}$$

2) TRANSFER

3) INTERFACE

$$(1.4 \text{ kTD}_{\text{IT}} \text{A}_{\text{E}})^{1/2} \lesssim 200 \text{ CARRIERS}$$

CCC PROGRAM, SAY 50 TRANSFERS AND 10 FILL & SPILLS

--- RMS 35,000 CARRIERS

WHY GaAs CCDs ?

Features

- High Electron Mobility
 High Transfer Speed
 High ft Transistors
- Wide Bandgap
 Radiation Hard
 Low Noise
- Semi-Insulating Substrate
 Low Parasitic Capacitance
 Mesa Isolation
- Compatibility with III—V Detectors

BAND DIAGRAM OF GaAs CCD

Capacitive—Gate CCD

BAND DIAGRAM OF 2DEG CCD

Without Signal Charge

2DEG RGCCD

Device Structure

Features

- High Electron Mobility
 High Transfer Speed
 High Performance 2DEGFET
- Large Dynamic Range $n_s > 1x10^{12} / cm^2$
- High Sensitivity Input
- Enhanced
 Low Temperature Performance

OPERATION OF 2DEG RGCCDs

Room Temperature

4 Phase Clocking, 32 Stages (128 Transfers)

1 um Electrode Width, 4 um Spacing, 100 um Channel Width

Uniform-Doped 2DEG RGCCD CTE = 0.999 At 1 GHz

Planar-Doped 2DEG RGCCD CTE > 0.999 At 133 KHz

Advances in 2DEG CCDs

Year	Group	Channel Layer Material	Gate Structure	Gap Size	Gate Length x Width (um)	Clock Freq— uency	CTE	Test Condi- tions
1982	Rockwell	AlGaAs /GaAs	Capacitive	2	40 × 400	< 83 KHz	0.98	300 K
1983 Rockwell	AlGaAs /GaAs	Capacitive	1	5 ×	< 83 KHz	< 0.9	300 K	
					V 50 11112	0.989	77 K	
1990	Columbia	AlGaAs /GaAs	Resistive	N/A	5 × 100	13 MHz - 1 GHz	0.999	300 K
1990	Columbia	AlGaAs ∕GaAs (&-Doped)	Resistive	N/A	5 x 100	130 KHz - 1 GHz	> 0.999	300 K
1990	Columbia	InAIAs /InGaAs (&—Doped)	Resistive	N/A	5 x 100			

DIRECT DETECTION

INDIRECT DETECTION

Direct Injection

INDIRECT DETECTION

GaAs CCD MULTIPLEXER DESIGN

- Linear Arrays (32 Stages, RGCCD, CGCCD)
 Direct Detection
 Indirect Detection
 Direct Injection
 Gate modulation
- 2-D Arrays (32x32, RGCCD)
 Direct Detection

RESEARCH ISSUES

- Leakage Current Reduction
 Transport Mechanisms
 Materials Quality
 Structure
- Dynamic Range
 Pinch Off Voltage
 Leakage Current
- New Material System (InAIAs/InGaAs)

Higher Electron Mobility
Larger Dynamic Range

Planar-Doped In Al As / In Ga As RGCCD

- High Mobility (~20,000 cm²/Vs at 77 K)
- Large Sheet Carrier Density
- SWIR Direct Detection
- Compatible with Fiber-optic Integration

Present and Future Issues in Readout Electronics

Hybridization Technology

center-to-center spacing

array size buttabilty reliability

Multiplexer Material

thermal match low 1/f noise devices

On-Chip Signal Processing

random event correction

detector non-uniformity correction image processing

signature recognition

4/15/90 ERF