# 1 Lezione del 23-10-24

### 1.1 Divisione

Siano dati X, un naturale in base  $\beta$  su n+m cifre, detto **dividendo**, con  $0 \le X \le \beta^{n+m}-1$ , e Y, un naturale in base  $\beta$  su m cifre, detto **divisore**, con  $0 \le Y \le \beta^m - 1$ . Vogliamo calcolare i due numeri Q ed R tali che:

$$X = Q \cdot Y + R$$

Abbiamo che, con |Y = 0|, la divisione non è fattibile, quindi avremo bisogno di un uscita di **non fattibilità** no\_div.

### 1.1.1 Dimensioni di resti e quozienti

Assumendo Y > 0, si ha che Q sta su n + m cifre (caso peggiore Y = 1), mentre R sta su m cifre, in quanto  $0 \le R \le Y$  dalle proprietà della divisione. Scelgo, per ragioni tecniche, che il quoziente dovrà stare su n cifre, quindi impongo  $Q \le \beta^n - 1$ . Nel caso non si possa rappresentare Q, quindi, userò sempre la stessa uscita  $no_{div}$  di prima.

La decisione fatta riguardo a Q implica che:

$$X = Q \cdot Y + R \le (\beta^n - 1) \cdot Y + (Y - 1) = \beta^n \cdot Y - 1 \Rightarrow X < \beta^n \cdot Y$$

L'ipotesi potrebbe sembrare limitante, ma visto che si può ricavare n che soddisfi la disuguaglianza, possiamo eseguire qualsiasi divisione poste **estensioni** del dividendo e **riserve** di cifre (cioè più delle strettamente necessarie) per il quoziente.

Nel caso il numero di cifre n, m sia dato dal problema, cioè quando si lavora su **campi finiti**, l'ipotesi è restrittiva.

# 1.1.2 Modulo divisore

Vogliamo quindi realizzare un circuito che:

- 1. Verifichi la fattibilità della divisione nelle ipotesi date;
- 2. Se il quoziente sta su n cifre, lo restituisca, altrimenti restituisca no\_div.

La divisione viene svolta, tradizionalmente, prendendo un sottoinsieme delle n cifre più significative del dividendo, tali per cui possiamo trovare quante volta il divisore sta nel sottoinsieme. Formalmente, quindi, prendo il minimo numero di cifre più significative di X per ottenere un  $X' \in [Y, \beta \cdot Y]$  Si nota che m cifre possono non bastare, mentre m+1 bastano sempre (purchè X non abbia zeri in testa).

Calcolo quindi dei quozienti e resti **parziali**, q e R', dalla divisione di X' e Y. Si ha che q sta su una sola cifra, perchè  $X' < \beta \cdot Y$  dall'ipotesi.

Calcolo quindi il nuovo dividendo X' concatenando R' con la cifra più significativa non ancora utilizzata di X. Il nuovo dividendo, date le ipotesi, è ancora  $< \beta \cdot Y$ :

$$R' \le Y - 1$$
,  $\beta \cdot R' + (\beta - 1) \le \beta \cdot Y - \beta + \beta + 1 = \beta \cdot Y$ 

Si itera fino ad esaurimento delle cifre del dividendo. A questo punto il **quoziente** è ottenuto dal concatenamento dei quozienti parziali, e il resto è l'ultimo resto parziale.

Abbiamo che l'unica divisione effettiva è quella di m + 1 per m cifre, mentre tutte le altre sono effettivamente scomposizioni, quindi circuiti di logica a costo nullo.

# 1.1.3 Divisione nei processori Intel x86

Abbiamo visto come nei processori Intel x86, abbiamo a disposizione tre versioni della divisione:

| Dim. sorgente (divisore) | Dim. dividendo | Dividendo | Quoziente | Resto |
|--------------------------|----------------|-----------|-----------|-------|
| 8 bit                    | 16 bit         | AX        | AL        | AH    |
| 16 bit                   | 32 bit         | DX_AX     | AX        | DX    |
| 32 bit                   | 64 bit         | EDX_EAX   | EAX       | EDX   |

Si ha che la **DIV** ammette dividendo su 2n bit e divisore su n bit, con n = 8, 16, 32, e richiede che il quoziente stia su n bit (altrimenti genera un'eccezione). Questo è quello che si otterrebbe ponendo n = m.

#### 1.1.4 Divisione elementare in base 2

Resta quindi da capire come effettuare la divisione elementare fra un numero a m+1 cifre e un altro a m cifre, sotto l'ipotesi  $X \le 2Y = 2^1 \cdot Y$  (siamo in  $\beta = 2$ ).

Abbiamo che Q può valere 0 o 1. Vale 0 se il divisore Y è maggiore del dividendo X, 1 altrimenti. R, invece, è uguale al dividendo X se questo è minore del divisore Y, altrimenti è uguale a X - Y:

$$Q = \begin{cases} 0, & X < Y \\ 1, & X \ge Y \end{cases}, \quad R = \begin{cases} X, & X < Y \\ X - Y, & X \ge Y \end{cases}$$

Per rappresentare questo sistema ci serve un comparatore fra X e Y. Lo realizziamo con un sottrattore (di cui bisognavamo comunque per il calcolo di X — Y), quindi mandando Y complementato (ed opportunamente esteso) al secondo input di un sommatore, ed X al primo. Il sommatore ha  $C_{in} = 0$ .

Fuori dal sommatore, avremo X-Y come risultato, e  $b_{out}$  come discrimnante per X < Y. Mandiamo quindi X e X-Y agli ingressi di un multiplexer con variabile di controllo  $C_{out}$  dal sommatore, cioè discriminiamo fra X e X-Y sulla base di quanto restituito dal comparatore.

A questo punto si ha che b<sub>out</sub> rappresenta Q, mentre l'uscita del multiplexer è R.