

PERSONAL DATA AND PRIVACY IN A NETWORKED WORLD

Kristina Lerman
USC Information Sciences Institute
DSCI 552 – Spring 2021
March 31, 2021

"We've lost control of our personal data"

"The current business model for many websites offers free content in exchange for personal data. Many of us agree to this albeit often by accepting long and confusing terms and conditions documents – but fundamentally we do not mind some information being collected in exchange for free services. But, we're missing a trick. As our data is then held in proprietary silos, out of sight to us, we lose out on the benefits we could realise if we had direct control over this data, and chose when and with whom to share it. What's more, we often do not have any way of feeding back to companies what data we'd rather not share – especially with third parties – the T&Cs are all or nothing..."

-- Sir Tim Berners-Lee in "Three challenges for the web, according to its inventor," March 12, 2017

Keeping up with privacy policies

^{*}https://www.eff.org/deeplinks/2010/04/facebook-timeline

Personal information on the web

- People reveal private information online
 - Your online profile
 - Birthdate, home town, education, religion, marital status
 - Your Likes and tastes
 - Favorite tv shows, movies, music, food
 - Your status updates
- People reveal private information through their social connections
 - The friends who may reveal private information
 - The groups people join

Privacy in social networks

- Beyond identity and attribute disclosure
 - Link re-identification [Zheleva & Getoor'07]
- Anonymization by removing the profile attributes not enough
 - Structural re-identification [Backstrom et al.'07]
 - Structural anonymization [Hay et al.'08]
 - Re-identification across networks [Narayanan & Shmatikov'09]
- Differentially-private analysis of graphs
 - [Task & Clifton'14, Raskhodnikova & Smith'15]

Privacy in social networks

- Understanding privacy risks
 - Inferring information in social networks [Zheleva'09]
 - Privacy scores [Liu & Terzi'10]
 - Information-sharing models [Kleinberg & Ligett'10]
 - Re-identification through online activity [Kosinski et al, 2014]
- Connecting privacy and fairness
 - FairTest: unwarranted associations framework [Tramer et al.'17]

What is private information?

- People may choose not to reveal certain pieces of information about their lives
 - Private information includes
 - Sexual orientation, age, income, ...
 - Political affiliation
 - Intelligence
 - Personality
 - "the combination of characteristics or qualities that form an individual's distinctive character."
 - This information might be predicted
 - From unrelated publicly disclosed information

Big 5 Personality Traits

Openness to Experience/Intellect

 High scorers tend to be original, creative, curious, complex; Low scorers tend to be conventional, down to earth, narrow interests, uncreative.

Conscientiousness

 High scorers tend to be reliable, well-organized, self-disciplined, careful; Low scorers tend to be disorganized, undependable, negligent.

Extraversion

 High scorers tend to be sociable, friendly, fun loving, talkative; Low scorers tend to be introverted, reserved, inhibited, quiet.

Big 5 Personality Traits

Agreeableness

 High scorers tend to be good natured, sympathetic, forgiving, courteous; Low scorers tend to be critical, rude, harsh, callous.

Neuroticism

 High scorers tend to be nervous, high-strung, insecure, worrying; Low scorers tend to be calm, relaxed, secure, hardy.

The Big 6 Personality Test

https://www.truity.com/test/big-five-personality-test

Is talkative							
Strongly Disagree	1 •	2 🔍	3 🔾	4 •	5 🔾	Strongly Agree	
Tends to find fau	ılt with	others					
Strongly Disagree	1 •	2 🔾	3 •	4 🔍	5 🔾	Strongly Agree	
Does a thorough	job						
Strongly Disagree	1 •	2 🔾	3 🔾	4 0	5 •	Strongly Agree	
4Is depressed, blue							
Strongly Disagree	1 •	2 •	3 🔾	4 🔍	5 🔾	Strongly Agree	
5Is original, comes up with new ideas							
Strongly Disagree	1 💿	2 0	3 🔘	4 💮	5 💿	Strongly Agree	

Big 5 Personality Traits

https://www.truity.com/test/big-five-personality-test

Predicting personality traits with social media

- Can a user's personality be predicted from his/her publicly available social media profile information?
 - Through self-description, status updates, interests etc. much of the user's personality is reflected
- This paper describes the type of data collected, their methods of analysis and the results of predicting personality traits through machine learning
- Implications to social media design, interface design and other applications such as online marketing and advertising

[Golbeck et al (2011) "Predicting Personality Traits with Social Media", in CHI.]

Data Collection

• Created a Facebook application to administer "Big Five" personality survey to 279 users. Collected their profile statistics:

1.Structural Features

User's ego-centric network size, density

2.Personal Information

- user name
- gender
- birthday
- relationship status
- religion
- education
- hometown

Data Collection (cont.)

1. Activities and Preferences

lists of favorite, such as movies, music etc.

2. Language Features

- This all the text that the users shared through
 - "About Me", "blurb" text and status updates.
- Of the 279 users, only 167 had enough words to be actually used in this data set.
- Used LIWC to analyze the text producing statistics on 81 different features of text in the 5 categories.

Personalityfeatures correlation

Table 2: Pearson correlation values between feature scores and personality scores. Significant correlations are shown in bold fo p < 0.05. Only features that correlate significantly with at least one personality trait are shown.

	Open.	Consc.	Extra.	Agree.	Neuro.	
Linguistic Features						
Swear Words	0.006	-0.171	0.032	-0.084	-0.120	
Social Processes (e.g. Mate, talk, they, child)	0.010	0.264	0.091	-0.022	-0.142	
Human Words (e.g. baby, man)	0.078	0.203	0.070	-0.050	-0.062	
Affective Processes (e.g. Happy, cried, abandon)	0.105	-0.009	0.136	0.203	0.038	
Positive Emotions (e.g. Love, nice, sweet)	0.052	0.045	0.117	0.167	-0.013	
Anxiety Words (e.g. Worried, fearful, nervous)	0.044	-0.150	0.008	0.101	0.192	
Perceptual Processes (e.g. Observing, heard, feeling)	-0.040	-0.195	-0.163	-0.027	0.096	
Seeing Words (e.g. View, saw, seen)	0.060	-0.227	-0.112	0.013	0.067	
Biological Processes (e.g. Eat, blood, pain)	-0.014	0.042	0.038	0.154	0.067	
Ingestion Words (e.g. Dish, eat, pizza)	-0.098	-0.050	0.029	0.031	0.207	
Work Words (e.g. Job, majors, xerox)	0.134	0.096	0.154	0.048	-0.044	
Money Words(e.g. Audit, cash, owe)	-0.161	0.024	0.012	-0.006	0.029	
Structural Features						
Number of Friends	-0.094	-0.078	0.186	0.013	-0.069	
Egocentric Network Density	-0.152	0.050	-0.224	0.059	0.032	
Activities and Preferences						
Activities (char length)	0.115	0.095	0.188	0.066	-0.145	
Favorite Books (char length)	0.158	-0.093	0.019	0.082	0.028	
Personal Information						
Relationship Status (none listed, single, not single)	0.093	0.071	0.194	0.040	-0.036	
Last Name length in characters	0.012	-0.111	0.000	-0.044	0.184	

Personality and Social Media Profile

Weak correlations between user's profile and personality scores:

- Conscientiousness
 - negatively correlated with the frequency of swear words as well as words that described perceptual processes.
 - positively correlated with words concerning social processes.
- Agreeableness correlated positively with words describing feelings and
- Neuroticism correlated positively with words describing anxiety
- Length of the reported activities and interests correlated with extraversion and openness

Personality and Social Media Profile

- Extroverts
 - Larger networks (more friends)
 - Less dense network structure.
- Correlation between neuroticism and length of the user's last name.

- Woman were more conscientious, agreeable and neurotic than men.
- Users who chose to share a URL to an external website were more open than those who didn't.

Differences between subpopulations

Value	Open.	Consc.	Extra.	Agree.	Neur.
Male	3.841	3.313	3.145	3.638	2.680
Female	3.671	3.582	3.476	3.806	2.996
р	0.101	0.018	0.018	0.095	0.018
No Website	3.710	3.495	3.264	3.697	2.900
Website	4.010	3.498	3.508	3.773	2.770
p	0.003	0.978	0.071	0.382	0.275

Predicting Personality

- Predicted personality trait score based on 74 user features
 - using regression with 10-fold cross-validation
 - The Mean Absolute Prediction Error around 11%

Factor	M5 ['] Rules	Gaussian	M5'Rules	Gaussian
	MAE		Correlation	Coefficient
Open.	0.099	0.117	0.653	0.179
Consc.	0.104	0.117	0.595	0.094
Extra.	0.138	0.124	0.553	0.050
Agree.	0.109	0.117	0.482	0.150
Neuro.	0.127	0.117	0.531	0.106

Predicting private traits from digital records of human behavior

[Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. *PNAS*]

- Facebook users employ 'likes' to express their positive attitudes towards online content and entities
 - Publicly available
 - Similar to Web search queries, Web browsing history, and credit card purchases.
- Statistical method to automatically and accurately estimate personal attributes from Facebook 'likes'

Simon's Likes on Sports

Add Teams

Choose from your suggestions or search for teams you like.

What kinds of sports does Simon like?

a - Ohea

Simon's Likes on Music

Can you guess Simon's music tastes?

Get the Citi Mobile® App banking.citibank.com With Citi Mobile, you can pay people, deposit checks and

Musician/Band

Musician/Band

Musician/Band

Moniker

Musician/Band

Add Music

Choose from your suggestions or search by artist.

Bands & Musicians

Marriott Rewards faster creditcards.chase.com Plus earn 5 points per \$1 spent at Marriott(R) locations worldwide. Learn more.

제이레빗 (J Rabbit)

Musician/Band

Facebook Likes → (?) Personal Traits (Digital Fingerprinting)

Likes in Facebook can be used to automatically and accurately predict with high probability for the highly sensitive personal attributes such as

Main Questions

- Can we *automatically* estimate a wide range of personal attributes that people would typically consider to be private?
- Can we accurately estimate a wide range of personal attributes that people would typically assume to be private?
- Can we use only Facebook Likes?

Design of User Study

- Step1. Selected the private and intrusive attributes
 - sexual orientation, ethnic origin, political views, religion
 - personality, intelligence, satisfaction with life (SWL), substance use (alcohol, drugs, cigarettes), whether an individual's parents stayed together until the individual was 21 years old
 - basic demographic attributes such as age, gender, relationship status, and size and density of the friendship network

Design of User Study

• Step2. Data Collections

They obtained data set from 58,000 volunteers who share their 10M Facebook Likes, profiles, and took psychometric surveys.

Methodology/Models

Truncated SVD for computation and data analysis

Used top 30~100 SVD components, depending on the attributes.

Logistic/linear regression model for Prediction

• Gender =
$$\alpha_{Gender} + \beta_1 C_1 + \beta_2 C_2 + ... + \beta_i C_i + ... + \beta_{30} C_{30}$$

• Age =
$$\alpha_{Age}$$
 + $\beta_1 C_1 + \beta_2 C_2 + ... + \beta_i C_i + ... + \beta_{100} C_{100}$

Evaluations

• Pearson product—moment correlation coefficient between the actual and predicted values to measure the accuracy of prediction.

Prediction with Facebook likes

ROC Curve

Classification accuracy for binary personal attributes

Prediction accuracy vs volume of data (#likes)

Prediction accuracy vs #SVD components

	High	Low
g	The Godfather	Sephora
_	Mozart	I Love Being A Mom
	Lord Of The Rings	Harley Davidson
	Outgoing & Active	Shy & Reserved
on	Beerpong	Video Games
īSi	Dancing	Programming
Extraversion	Cheerleading	Role Playing Games
×tr	Chris Tuker	Manga
ш	Theatre	Minecraft
S	Liberal & Artistic	Conservative
ies	Oscar Wilde	NASCAR
Openness	Leonardo Da Vinci	ESPN2
ď	Leonard Cohen	The Bachelor
	Bauhaus	Justin Moore

	•	Cradle Of Filth Under Armour	That Spider Is More Scared Than U Are Oh Really Did It Tell U That	
Smoking	Yes	Slayer Band Inbox 1 Makes Me Nervous Dimebag Darrell Rob Zombie I Always Accept The Terms And Conditions Without Reading Them I Bottle Everything Up Until I Finally Snap Life Is Better In Summer Screwing Around In Walmart	Honda Move Out Of The Way Children I've Been Waiting 11 Years To See Toy Story 3 FBI Open The Door No Its Cool When You Break In How To Make A Girl Smile <3<3 The Desk Able To Protect You From Fire Earthquakes And Nuclear War When Your Fortune Cookie Knows What's Up Rocky When Little Kids Are Chasing Me I Run Slow So They Think They're Fast I Drop My I-pod Then My Headphones Save Its Life	No

		Cup Of Joe For A Joe	Walt Disney Records		
		Coffee Party Movement	Body By Milk		
Age		Dr Mehmet Oz	Harperteen		
		Fixit And Forgetit	J Bigga		
	ø	The Closer	Because I Am A Girl	Young	
	Old	Joyce Meyer Ministries	I Hate My Id Photo	iun	
		Proud To Be A Mom	293 Things To Do In Class When You	•	
		Freedomworks	Are Bored		
		Small Business Saturday	Dude Wait What		
		Fly The American Flag	JCP Teen		
		Mojo-Jojo	The Dark Knight		
		Biology	In'n'out Burger		
		Dollar General	Hard Rock		
99		Hillary	Honey, Where Is My Supersuit		
Friends	Many	106 & Park	Hating ICP	1	
Tie	Ž	Jennifer Lopez	Minecraft	Few	
<u> </u>		Paid In Full	Iron Maiden		
		Yo Gotti	Walking With Your Friend & Randomly		
		The Dollar You Are Holding Could've	Pushing Them Into Someone/Something		
		Been In A Stripper's Butt Crack	_		

		Compassion International	I Hate Everyone	
Agreeableness	Cooperative	Logan Utah	I Hate You	
		Jon Foreman	I Hate Police	
		Redeeming Love	Friedrich Nietzsche	8
		Pornography Harms	Timmy South Park	qn
		The Book Of Mormon	Atheism / Satanism	eti
		Circles Of Prayer	Prada	Competitive
		Go To Church	Sun Tzu	10
		Christianity	Julius Caesar	
		Marianne Williamson	Knives	
ility	Neurotic	Sometimes I Hate Myself	Business Administration	
		Emo	Getting Money	
		Girl Interrupted	Parkour	2
雪		So So Happy	Track & Field	Calm & Relaxed
Emotional Stability		The Addams Family	Skydiving	&
		Vocaloid	Mountain Biking	Re
		Sixbillionsecrets.com	Soccer	lax
		Vampires Everywhere	Climbing	œd
		Kurt Donald Cobain	Physics / Engineering	_
		Dot Dot Curve	48 Laws Of Power	
		Tr. Canatia	Madam Warfara	

Conclusions

- Many private attributes can be inferred from people's publicly accessible activity, such as Facebook likes
 - Some attributes are remarkably easy to predict...
 even a single like can lead to significant
 improvement over random prediction

 This can have benefits, but also risks with respect to privacy

How Trump Consultants Exploited the Facebook Data of Millions

By Matthew Rosenberg, Nicholas Confessore and Carole Cadwalladr

March 17, 2018

f y 🗷 🖍

Leer en español

(After this story was published, Facebook came under harsh criticism from lawmakers in the United States and Britain. Read the <u>latest</u>.)

LONDON — As the upstart voter-profiling company <u>Cambridge</u> <u>Analytica</u> prepared to wade into the 2014 American midterm elections, it had a problem.

Facebook Halts Ad Targeting Cited in Bias Complaints

By Noam Scheiber and Mike Isaac March 19, 2019

After years of criticism, Facebook announced on Tuesday that it would stop allowing advertisers in key categories to show their messages only to people of a certain race, gender or age group.

The company said that anyone advertising housing, jobs or credit — three areas where federal law prohibits discrimination in ads — would no longer

Facebook and Cambridge Analytica: What You Need to Know as Fallout Widens

By Kevin Granville

March 19, 2018

f y

Leer en español

Cambridge Analytica, a political data firm hired by President Trump's 2016 election campaign, gained access to information on 50 million Facebook users as a way to identify the personalities of American voters and influence their behavior.

Elise Amendola/Associated Press

have the option of explicitly aiming ads at people on the basis of those Information Sciences Institute

Privacy in social networks

[slides courtesy of Elena Zheleva]

Information Sciences Institute

Group affiliations

- Group affiliations often cannot be hidden!
- Hypothesis: you can predict private attributes based on public information

Assumptions:

- An online social network with public AND private profiles
- Social links and group affiliations are always public
- Adversary's goal: to predict attributes in private profiles
- Adversary can build probabilistic models using public data

Social network w/ friendship links

- Large, high-dimensional
- Multi-modal
- Multi-relational

Affiliation network w/ group links

• If an adversary is able to determine the value of a user attribute that the user intended to stay private

Collective classification*

• Given a set of trait labels (e.g., liberal or not), label the other objects in the network accurately

Is

liberal?

No links

Traditional ML: independent traits

Gender	Location	Liberal	
Male	DC	Yes	
Female	DC	?	

Social links

Friends <-> common trait

Interest group links

Affiliation <-> common trait

Latent links

Trait due to common unobserved factor

عبي <u>Phces Institute</u> Collective Classification in Network Data. Sen et al. Al Magazine 2008.

Collective classification

Assume adversary can apply a probabilistic model M to predict the sensitive attribute

- No links: BASIC
 - Majority label
- Social links: AGG, CC, BLOCK, LINK
 - Feature space size: number of users
- Group links: CLIQUE, GROUP, GROUP*
 - Feature space size: number of groups
- Both link types: LINK-GROUP
 - Feature space size: number of users and groups

[Zheleva, Getoor. (2009) To Join or not to Join: the Illusion of Privacy in Social Networks with Mixed Public and Private User Profiles. In WWW.]

Data and experimental setup

- Flickr: snowball sample
 - ~9,000 profiles, I million links, 50,000 groups
 - sensitive: location (55 values)
- Facebook: all freshmen (Harvard)
 - ~1,600 profiles, 86,000 links, 3,000 groups
 - sensitive: gender (2) and political views (6)

- Assign each profile to be public with probability=50%
 - Train model on public profile data (10 different models)
 - Predict on private profiles

Findings

 Affiliation networks have a high potential for leaking private information

- More informative than friendship network
- Homogeneous groups most informative

flickr

Political views

• Predict "gender" in the Facebook dataset

Links as structural statistical dependencies

Features	LR	pMRF	hoMRF-AG	hoMRF-SG	hoMRF-SG-AL
Social links	64.06%	64.31%	69.13%	69.22%	69.22%
Groups	71.67%	71.83%	69.80%	74.12%	74.53%
Both	75.75%	75.84%	69.63%	77.39%	78.37%

[Zheleva, Getoor, Sarawagi (2010) Higher-order Graphical Models for Classification in Social and Affiliation Networks. NIPS Workshop on Networks Across Disciplines.]

Your privacy depends on others

Higher % public profiles -> higher accuracy

Main takeaways

- Increasingly challenging to manage personal information online
 - Probabilistic models can infer hidden information and circumvent privacy preferences of users
 - Groups are most significant carriers of private information
- For privacy-concerned users
 - If possible, set group and friendship lists as private
- For social media businesses
 - Enable greater user control over release of information
- For policy makers
 - Set standards for personal data release practices

Questions?

- Virtual office hour
- https://usc.zoom.us/j/95136500603?pwd=VEJhblhWK25lT2N3RC9FNW k3eTJKQT09

