Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермский национальный исследовательский политехнический университет» Электротехнический факультет

Кафедра «Информационные технологии и автоматизированные системы»

Дисциплина: «Организация ЭВМ и систем» Профиль: «Программная инженерия» Семестр 5

ОТЧЕТ

по лабораторной работе №3

Тема: «Учебная ЭВМ»

Вариант №5

Выполнили: студенты группы РИС-19-16
Миннахметов Э.Ю.
Семенихин Д.С.
Проверил: доцент кафедры ИТАС
Погудин А.Л.
Лата

Постановка задачи

- 1. Составить и отладить программу учебной ЭВМ для решения следующей задачи. Три массива в памяти заданы начальными адресами и длинами. Вычислить и вывести на устройство вывода среднее арифметическое параметров этих массивов. Подпрограмма должна возвращать минимальное положительное число.
- 2. Записать программу в мнемокодах, введя ее в поле окна **Текст программы**.
- 3. Сохранить набранную программу в виде текстового файла и произвести ассемблирование мнемокодов.
 - 4. Загрузить в ОЗУ необходимые константы и исходные данные.
 - 5. Отладить программу.

Реализация программы

Рисунок 1 – Алгоритм работы программы

Таблица 1 – Составленная программа с комментариями

Адрес	Команда		Примечание
	Мнемокод	Код	1 1
000	RD #50	211050	A1:=50
001	WR R1	320001	
002	RD #10	211010	K:=10
003	WR R2	320002	
004	CALL M	190022	Ra:=MIN(Ai, Ka)
005	WR R6	320006	
006	RD #60	211060	B1:=60
007	WR R1	320001	
008	RD #10	211010	Kb:=10
009	WR R2	320002	
010	CALL M	190022	Rb:=MIN(Bi, Kb)
011	WR R7	320007	
012	RD #70	211070	C1:=70
013	WR R1	320001	
014	RD #10	211010	Kc:=10
015	WR R2	320002	
016	CALL M	190022	Rc:=MIN(Ci, Kc)
017	ADD R6	330006	R := (Ra + Rb + Rc) / 3
018	ADD R7	330007	
019	DIV #3	261003	
020	OUT	020000	Вывод R
021	HLT	090000	
022	M: RDI #99999	411000 099999	R := 99999
024	WR R3	320003	
025	L2: RD @R1+	315001	
026	WR R4	320004	
027	JS L1	220030	Если Ci < 0, ничего не делать
028	SUB R3	340003	Иначе Если Ci < R, обновить R
029	JNS L1	140032	
030	RD R4	310004	
031	WR R3	320003	
032	L1: JRNZ R2,L2	172025	Пока К не равно 0
033	RD R3	310003	Вернуть R
034	RET	080000	

Результаты выполнения программы

Рисунок 2 — Пример выполнения программы №1. 62 / 3 = 20

Рисунок 3 — Пример выполнения программы №2. 63 / 3 = 21