Notes on Drinfeld Modules and Explicit CFT for Function Fields

March 5, 2025

Pre-date: March 10! It is close!

- 1) Give a 30min (strict limit !!!) talk. Ideally more like 25min + 5 min for questions. The talks will be in March. I will try to reserve a room, and will give a more precise time/date when possible.
- 2) Write an "extended summary" (meaning around 5 pages NOT!!! >=10) of you article. It should summarise the article and its main ideas and be accessible to advanced Master students (i.e., the other students in this group).

1 Review on CFT

Let F be a global field, $C_F = \mathbb{A}_F^{\times}/F^{\times}$ be its idele class group, and F^{ab} be its maximal abelian extension inside a fixed algebraic closure \bar{F} . The class field theory asserts that the Artin map

$$\theta_F: C_F \to \operatorname{Gal}(F^{\mathrm{ab}}/F)$$

is a continuous group homomorphism with dense image, establishing a bijection

 $\{\text{finite abelian extensions of } F\} \longleftrightarrow \{\text{finite index open subgroups of } C_F\}.$

The direction " \rightarrow " is computable: for a finite abelian L/F, the composition $C_F \stackrel{\theta_F}{\to} \operatorname{Gal}(F^{\operatorname{ab}}/F) \to \operatorname{Gal}(L/F)$ is surjective, and its kernel $U = N_{L/F}(C_L)$ is the corresponding open subgroup of C_F , where $N_{L/F}: C_L \to C_F$ is the norm map¹. But the other direction " \leftarrow " is not known in general. The goal of explicit class field theory is to find this inverse, or equivalently, the inverse of the Artin map.

2 Drinfeld Modules

Let F be a global function field with a fixed place ∞ , and with field of constants $k = \mathbb{F}_q$. If λ is a place of F, we denote by F_{λ} the completion at λ , by $\mathcal{O}_{\lambda} \subset F_{\lambda}$ the valuation ring, by $\mathbb{F}_{\lambda} := \mathcal{O}_{\lambda}/\mathfrak{m}_{\lambda}$ the residue field at λ , and by $N(\lambda) := \#\mathbb{F}_{\lambda}$ its cardinality. Since we are working with function fields, the Teichmüller lifting $\mathbb{F}_{\lambda} \hookrightarrow \mathcal{O}_{\lambda}$ is a field homomorphism (Check this!); we regard $\mathbb{F}_{\lambda} \subset \mathcal{O}_{\lambda} \subset F_{\lambda}$ as a subfield via this embedding. Let L be an arbitrary extension of k with a fixed algebraic closure \bar{L} .

Function fields: holomorphy ring

Let S be a non-empty set of (not all the) places of F. Define

$$\mathcal{O}_S := \bigcap_{\lambda \notin S} \mathcal{O}_\lambda = \{ x \in F \mid \operatorname{ord}_\lambda(x) \ge 0, \ \forall \lambda \notin S \}$$

¹The norm for a idele is just the multiplication of the norm at every places.

to be the subring of F consisting of elements regular away from S. A holomorphy ring is a ring of this form. For example, our $A = \mathcal{O}_{\{\infty\}}$ is a holomorphy ring.

Proposition 2.1. Consider a holomorphy ring \mathcal{O}_S .

- (1) $\operatorname{Frac}(\mathcal{O}_S) = F$.
- (2) \mathcal{O}_S is a Dedekind domain.
- (3) There is a bijection

$$\{\text{place of } F \text{ not in } S\} \longleftrightarrow \text{MaxSpec } \mathcal{O}_S$$

giving by $\lambda \mapsto \mathfrak{m}_{\lambda} \cap \mathcal{O}_S$, which induces isomorphisms

$$\mathbb{F}_{\lambda} = \mathcal{O}_{\lambda}/\mathfrak{m}_{\lambda} \simeq \mathcal{O}_{S}/(\mathfrak{m}_{\lambda} \cap \mathcal{O}_{S})$$

So we can regard λ as a maximal ideal of A.

2.1 Definition

2.1.1 Endomorphisms of the additive group

Consider the additive group $\mathbb{G}_{\mathbf{a}/L}$ over L, which is not only a group scheme, but also a k-vector space scheme, and we consider the ring $\operatorname{End}_k(\mathbb{G}_{\mathbf{a}/L})$ of all k-linear endomorphism.

Proposition 2.2. End_k($\mathbb{G}_{a/L}$) = $L[\tau]$, where τ is the Frobenius-q endomorphism.

We explain the notation in the proof.

Proof. An endomorphism $\mathbb{G}_a \to \mathbb{G}_a$ of schemes over L is given by an L-algebra homomorphism $\Phi : L[X] \to L[X]$, hence it is determined by the image $\varphi(X) = \Phi(X)^2$ of X. It respects the group-scheme structure if it commutes with the co-multiplication map (also an L-algebra homomorphism)

$$\Delta: F[X] \to F[X] \otimes_L F[X], \quad X \mapsto X \otimes 1 + 1 \otimes X.$$

which amounts to

$$(\Phi \otimes \Phi)(\Delta(X)) = (\Phi \otimes \Phi)(X \otimes 1 + 1 \otimes X) = \Phi(X) \otimes 1 + 1 \otimes \Phi(X) = \varphi(X) \otimes 1 + 1 \otimes \varphi(X)$$

equals

$$\Delta(\Phi(X)) = \Delta(\varphi(X)) = \varphi(\Delta(X)) = \varphi(X \otimes 1 + 1 \otimes X).$$

This is to say that³ φ is additive, i.e. $\varphi(X+Y)=\varphi(X)+\varphi(Y)$.

$$\varphi(f(X)) = a_n f(X)^n + \dots + a_0$$

and

$$\Phi(f(X)) = f(\Phi(X)) = f(\varphi(X))$$

are different in general.

³Recall that the multiplicative structure on $B \otimes_A C$ is given by

$$(b \otimes b') \cdot (c \otimes c') = bb' \otimes cc'.$$

²Note that if $\varphi(X) = a_n X^n + \dots + a_0$, then

We require furthur that Φ respects the "co-k-scalar multiplication", which I don't have the formula right now. So let's use the functor point of view. Take $c \in k$. Youeda tells us that

$$\operatorname{Hom}_{[k\text{-}\operatorname{Alg}^{\operatorname{op}},\operatorname{Grp}]}(\mathbb{G}_{\operatorname{a}},\mathbb{G}_{\operatorname{a}}) \simeq \mathbb{G}_{\operatorname{a}}(L[X]), \quad \phi \mapsto \phi(\operatorname{id}_{L[X]}),$$

so the co-c-multiplication is given by $X \mapsto cX$. Therefore Φ respects this map if $\varphi(cX) = c\varphi(X)$. In conclusion,

$$\begin{split} \operatorname{End}_k(\mathbb{G}_{\mathbf{a}/L}) &= \left\{ k\text{-linear polynomials in } L[X] \right\} \\ &= \left\{ \sum_i a_i X^{p^i} \middle| a_i \in L, \ \sum a_i c X^{p^i} &= \sum a_i c^{p^i} X^{p^i}, \forall c \in k = \mathbb{F}_q \right\} \\ &= \left\{ \sum_i a_i X^{q^i} \middle| a_i \in L \right\} &= \left\{ \left(\sum_i a_i \tau^i \right) (X) \middle| a_i \in L \right\}, \end{split}$$

where $\tau(X) := X^q$.

Note that $\tau: L[X] \to L[X]$ is additive, but doesn't commutes with elements in L:

$$\tau a = a^q \tau, \quad \forall a \in L.$$

Therefore $L[\tau]$ is a non-commutative subring of $\operatorname{End}(L[X])$, where multiplication is composition; it is a ring of **twisted polynomials**. And we have $\operatorname{End}_k(\mathbb{G}_{a/L}) \simeq L[\tau]$.

Remark. τ corresponds to the Frobenius-q endomorphism of $\mathbb{G}_{\mathbf{a}/L}$. (What is this? $\mathbb{G}_{\mathbf{a}/L}$ is NOT over $\mathbb{F}_q = k$.)

2.1.2 Drinfeld modules and isogenies

Let A be a k-algebra. A **Drinfeld** A-module⁴ over L is a homomorphism

$$\phi: A \to L[\tau] \quad x \mapsto \phi(x) =: \phi_x$$

of k-algebras such that $\phi(A)$ is not contained in $L \subset L[\tau]$.

Let ϕ and ϕ' be two Drinfeld modules $A \to L[\tau]$. An **isogeny** over L from ϕ to ϕ' is an $f \in L[\tau] \setminus \{0\}$ such that

$$f\phi_a = \phi'_a f, \quad \forall a \in A.$$

An **isomorphism** over L from ϕ to ϕ' is an invertible isogeny, namely an isogeny $f \in L[\tau]^{\times}$. If M/L is an extension, then a Drinfeld module over L induces naturally a Drinfeld module over M, and we can talk about isogenies over M for Drinfeld modules over L.

Let

$$\partial: L[\tau] \to L \quad \sum_i a_i \tau^i \mapsto a_0$$

be the homomorphism of taking the constant term. We say that a Drinfeld module $\phi:A\to L[\tau]$ has generic characteristic, if

$$\partial \circ \phi : A \to L[\tau] \twoheadrightarrow L$$

is *injective*. This implies that ϕ is injective.

⁴There is more general definition, but this one suffices.

2.2 The Drinfeld modules we need

In what follows, we take $A := \mathcal{O}_{\{\infty\}} \subset F$ to be the subring of F consisting of functions that are regular away from ∞ , and we assume that every Drinfeld modules $\phi : A \to L[\tau]$ is of generic characteristic, so that $\partial \circ \phi : A \hookrightarrow L$ is injective and it extends to an embedding

$$F \hookrightarrow L$$
.

Through the latter, we view F as a subfield of L.

Let L^{perf} be the purely inseperable closure of L in \bar{L} , then $L^{\text{perf}}((\tau^{-1}))$ is a well-defined skew-field⁵, containing $L[\tau]$ as a subring.

Under our assumption, $\phi: A \hookrightarrow L[\tau]$ is injective, so it extends to a unique embedding

$$\phi: F \hookrightarrow L^{\mathrm{perf}}((\tau^{-1})).$$

The function

$$v_{\phi}: F \to \mathbb{Z} \cup \{\infty\} \quad x \mapsto \operatorname{ord}_{\tau^{-1}}(\phi_x)$$

is a nontrivial⁶ valuation, and $v_{\phi}(x) \leq 0$ for all $x \in A \setminus \{0\}$. Therefore v_{ϕ} is equivalent to the valuation ord_{\infty} attached to the place \infty. We define the **rank of** ϕ to be the rational number $r \in \mathbb{Q}$ such that

$$\operatorname{ord}_{\tau^{-1}}(\phi_x) = rd_{\infty} \operatorname{ord}_{\infty}(x), \quad \forall x \in F,$$

where $d_{\infty} = [\mathbb{F}_{\infty} : k]$ is the inertia degree of F at ∞ . The tank r is always an integer (by a proposition we may encounter later). Since $L^{\mathrm{perf}}((\tau^{-1}))$ is complete under $\mathrm{ord}_{\tau^{-1}}$, the homomorphism $\phi : F \to L^{\mathrm{perf}}((\tau^{-1}))$ gives rise to a unique homomorphism

$$\phi: F_{\infty} \to L^{\operatorname{perf}}((\tau^{-1}))$$

such that $\operatorname{ord}_{\tau^{-1}}(\phi_x) = rd_{\infty} \operatorname{ord}_{\infty}(x)$ for all $x \in F_{\infty}$.

Now the map ϕ restricts to a homomorphism

$$\phi: \mathbb{F}_{\infty} \subset \mathcal{O}_{\infty} \to L^{\mathrm{perf}} \llbracket \tau^{-1} \rrbracket.$$

Composing with $\partial: L^{\text{perf}}[\![\tau^{-1}]\!] \to L^{\text{perf}}$ of taking constant term, we obtain an embedding

$$\partial \circ \phi|_{\mathbb{F}_{\infty}} : \mathbb{F}_{\infty} \hookrightarrow L^{\mathrm{perf}},$$

whose image lies in L (why?).

2.3 ε -normalized Drinfeld modules

Let $\phi: A \to L[\tau]$ be a Drinfeld module of rank r, extending to an embedding $\phi: F \to L^{\operatorname{perf}}((\tau^{-1}))$. For $x \in F_{\infty}^{\times}$, we define

 $\mu_{\phi}(x) := \text{first non-zero coefficient of } \phi_x \text{ as a Laurent series in } \tau^{-1},$

so that $\mu_{\phi}(x) \in (L^{\text{perf}})^{\times}$, and the first term, i.e. the term with highest τ -order, of ϕ_x is

$$\mu_{\phi}(x)\tau^{-rd_{\infty}\operatorname{ord}_{\infty}(x)}.$$

⁵We need to have all p-th root, so that $\tau^{-1}a = a^{1/q}\tau$ is always valid.

⁶Because φ(A) ⊄ L.

In particular, if $x \in A$, $\mu_{\phi}(x)$ is the leading coefficient of $\phi_x \in L[\tau]$, which is what we used before to define reduction type.

By definition, for $x, y \in F_{\infty}^{\times}$,

$$\mu_{\phi}(xy) = \mu_{\phi}(x)\mu_{\phi}(y)^{1/q^{rd_{\infty} \operatorname{ord}_{\infty}(x)}}.$$

Recall that ϕ gives us an embedding

$$\partial \circ \phi|_{\mathbb{F}_{\infty}} : \mathbb{F}_{\infty} \hookrightarrow L$$

With respect to this embedding, why?

$$\mu_{\phi}(x) = x, \quad \forall x \in \mathbb{F}_{\infty}$$

Definition 1. A sign function for F_{∞} is a group homomorphism $F_{\infty}^{\times} \to \mathbb{F}_{\infty}^{\times}$ such that $\varepsilon|_{\mathbb{F}_{\infty}^{\times}} = \mathrm{id}_{\mathbb{F}_{\infty}^{\times}}$. Note that a sign function ε is trivial on $1 + \mathfrak{m}_{\infty}$, so it is determined by $\varepsilon(\pi)$ for a uniformizer $\pi \in \mathfrak{m}_{\infty}$.

Let $\varepsilon: F_{\infty} \to \mathbb{F}_{\infty}$ be a sign function for F_{∞} . We say that ϕ is

• normalized, if

$$\mu_{\phi}(x) \in \mathbb{F}_{\infty}, \quad \forall x \in F_{\infty},$$

• ε -normalized, if

$$\exists \sigma \in \operatorname{Aut}_k(\mathbb{F}_{\infty}), \quad \phi = \sigma \circ \varepsilon.$$

Lemma 2.1. Let ε be a sign function for F_{∞} . Any Drinfeld module over L is isomorphic over \bar{L} to some ε -normalized Drinfeld module.

2.4 The action of an ideal on a Drinfeld module

Let $\phi: A \to L[\tau]$ be a Drinfeld module. For an ideal $\mathfrak a$ of A, Define

$$I_{\mathfrak{a},\phi} := \text{ ideal of } L[\tau] \text{ generated by } \{\phi_a \mid a \in \mathfrak{a}\}.$$

Every *left*-ideal of $L[\tau]$ is principal, ⁷ so

$$I_{\mathfrak{q},\phi} = L[\tau]\phi_{\mathfrak{q}}$$

for a unique monic $\phi_{\mathfrak{a}} \in L[\tau]$. It is a plain to verify that for every $x \in A$, $I_{\mathfrak{a},\phi}$ absorb ϕ_x also from the right, i.e. $I_{\mathfrak{a},\phi}\phi_x \subset I_{\mathfrak{a},\phi}$, and therefore gives us a unique Drinfeld module

$$\mathfrak{a} * \phi : A \to L[\tau] \quad x \mapsto (\mathfrak{a} * \phi)_x,$$

which is characterized by

$$\phi_{\mathfrak{a}} \cdot \phi_x = (\mathfrak{a} * \phi)_x \cdot \phi_{\mathfrak{a}},$$

namely that $\phi_{\mathfrak{a}}$ is an isogeny from ϕ to $\mathfrak{a} * \phi$.

Lemma 2.2. Let \mathfrak{a} and \mathfrak{b} be non-zero ideals of A, then

$$\phi_{\mathfrak{a}\mathfrak{b}} = (\mathfrak{b} * \phi)_{\mathfrak{a}} \cdot \phi_{\mathfrak{b}},$$

$$\mathfrak{ab} * \phi = \mathfrak{a} * (\mathfrak{b} * \phi).$$

⁷By an argument similar to L[X], probably.

Lemma 2.3. Let $\mathfrak{a} = (w) \neq 0$ be a principal ideal of A, then

$$\phi_{(w)} = \mu_{\phi}(w)^{-1} \cdot \phi_w,$$

$$((w) * \phi)_x = \mu_{\phi}(w)^{-1} \cdot \phi_x \cdot \mu_{\phi}(w), \ \forall x \in A.$$

In particular, $\phi \simeq (w) * \phi$ (not given by $\phi_{(w)}$).

Lemma 2.4. Let $\sigma: L \hookrightarrow M$ be a field extension, inducing a Drinfeld module

$$\sigma(\phi): A \to M[\tau], \ x \mapsto \sigma(\phi)_x = \sigma(\phi_x).$$

Then

$$\sigma(\mathfrak{a} * \phi) = \mathfrak{a} * \sigma(\phi),$$

$$\sigma(\phi_{\mathfrak{a}}) = \sigma(\phi)_{\mathfrak{a}}.$$

Example 2.1. The trivial ideal A = (1) fixes ϕ and $\phi_A = \phi_1 = 1$.

Now we can extend the action of ideals to

• \mathcal{I}_A , the group of fractional ideals of A

More precisely, for $w \in A \setminus \{0\}$, Lemma 2.3 suggests us to define

$$((w^{-1}) * \phi)_x := \mu_{\phi}(w) \cdot \phi_x \cdot \mu_{\phi}(w)^{-1}.$$

For a general fractional ideal $w^{-1}\mathfrak{a}$ where \mathfrak{a} is an integral ideal of A, we set

$$(w^{-1}\mathfrak{a}) * \phi := w^{-1} * (\mathfrak{a} * \phi) : x \mapsto \mu_{\phi}(w) \cdot (\mathfrak{a} * \phi)_x \cdot \mu_{\phi}(w)^{-1}.$$

Lemma 2.2 shows that these formulae define an action of \mathcal{I}_A on the set of Drinfeld modules $A \to L[\tau]$.

2.4.1 Sign functions

Fix a sign function $\varepsilon: F_{\infty} \to \mathbb{F}_{\infty}$ for F_{∞} . Consider

- \mathcal{P}_A^+ , a subgroup of the group \mathcal{P} of principal fractional ideals of A, which is generated by $x \in F^\times$ with $\varepsilon(x) = 1$, and
- the narrow class group $\operatorname{Pic}^+(A) := \mathcal{I}_A/\mathcal{P}_A^+$.

If, in addition, ϕ is ε -normalized, then \mathcal{P}^+ fixes ϕ by Lemma 2.3, giving an action of Pic⁺(A).

2.5 Torsion submodule

A Drinfeld module $\phi: A \to L[\tau]$ defines an A-module structure on \bar{L} by

$$x \cdot b := \phi_x(b), \quad \forall x \in A, b \in \bar{L}.$$

All ϕ_x has coefficient in L, so ϕ , in particular, gives an A-module structure on L^{sep} .

For an ideal \mathfrak{a} of A, we define

$$\phi[\mathfrak{a}] := \left\{ b \in \bar{L} \mid \phi_{\mathfrak{a}}(b) = 0 \right\} = \left\{ b \in \bar{L} \mid \phi_{x}(b) = 0, \forall x \in \mathfrak{a} \right\},$$

an A/\mathfrak{a} -module and an A-submodule of \bar{L} with A-module structure induced by ϕ .

$$\phi_x(b) = \sum_i \tau^i(b) = \sum_i b^{q^i}.$$

At least I think so!

⁸Note that if $\phi_x = \sum_{a_i \tau^i}$, then

Proposition 2.3. Let ϕ be a Drinfeld module of rank r, \mathfrak{a} an ideal of A. Then $\phi[\mathfrak{a}]$ is a free A/\mathfrak{a} -module of rank r, and it is contained in F^{sep} .

Proof. Every ϕ_x acts by a polynomial of the form

$$\phi_x(T) = a_0 T + a_1 T^q + \dots + a_n T^{q^n},$$

which is separable, because $x \mapsto \phi_x \mapsto a_0$ is injective, which implies that $\phi'_x(T) = a_0 \neq 0$ if $\phi_x \neq 0$.

For the other claim, we use the structure of modules over Dedekind domains.

2.6 Hayes modules

Let \mathbb{C}_{∞} be a completion of an algebraic closure of F_{∞} . It is ∞ -adically complete and algebraically closed.

Fix a sign function $\varepsilon: F_{\infty} \to \mathbb{F}_{\infty}$ for F_{∞} . A **Hayes module for** ε is a Drinfeld module $\phi: A \to \mathbb{C}_{\infty}[\tau]$ over \mathbb{C}_{∞} , such that

- it is of rank 1,
- it is ε -normalized,
- $\partial \circ \phi : A \hookrightarrow \mathbb{C}_{\infty}$ is the inclusion $A \subset F \subset F_{\infty} \subset \mathbb{C}_{\infty}$.

Let X_{ε} be the set of Hayes modules for ε .

If \mathfrak{a} is an ideal of A, and $\phi \in X_{\varepsilon}$ then $\mathfrak{a} * \phi \in X_{\varepsilon}$. By some discussion before, this defines an action of $\operatorname{Pic}^+(A) = \mathcal{I}_A/\mathcal{P}_A^+$ on X_{ε} .

Proposition 2.4. The set X_{ε} is a principal homogeneous space for $\operatorname{Pic}^+(A)$, i.e. $\operatorname{Pic}^+(A)$ acts freely and transitively on X_{ε} .

2.6.1 Galois action on X_{ε}

We define the **normalizing field for** (F, ∞, ε) to be the extension

$$H_A^+ := F \text{ (coefficient of } \phi_x \mid \phi \in X_{\varepsilon}, x \in A)$$

of F in \mathbb{C}_{∞} .

Theorem 1. (1) For any $\phi \in X_{\varepsilon}$ and $x \in A$,

$$H_A^+ = F$$
 (coefficient of ϕ_x)

- (2) Let B be the integral closure of A in H_A^+ . For any $\phi \in X_{\varepsilon}$ and $x \in A$, $\phi_x \in H_A^+[\tau]$ has integral coefficient, i.e. ϕ_x has coefficient in B.
- (3) The extension H_A^+/F is finite abelian, and it is unramified away from ∞ .

By Lemma 2.4, there is a natrual action of $Gal(H_A^+/F)$ on X_{ε} . For a fixed $\phi \in X_{\varepsilon}$, ϕ induces an injective group homomorphism

$$\Psi: \operatorname{Gal}(H_{A}^{+}/F) \hookrightarrow \operatorname{Pic}^{+}(A),$$

such that

$$\sigma(\phi) = \Psi(\sigma) * \phi, \quad \forall \sigma \in \operatorname{Gal}_F.$$

- (4) For each non-zero prime \mathfrak{p} of A, the class of $\Psi(\operatorname{Frob}_{\mathfrak{p}})$ in $\operatorname{Pic}^+(A)$ equals the class of \mathfrak{p} .
- (5) $\Psi : \operatorname{Gal}(H_A^+/F) \to \operatorname{Pic}^+(A)$ is an isomorphism.

2.6.2 Reduction of Hayes modules

Corollary 2.1. Every Hayes module ϕ has good reduction over H_A^+ at every finite place \mathfrak{P} not over ∞ , i.e. the composition of reduction modulo \mathfrak{P} with ϕ is a Drinfeld module of rank 1 over B/\mathfrak{P} .

Proof. after finishing construction of $Artin^{-1}$.

3 Construction of the Inverse to the Artin Map

We fix the tuple (F, ∞, ε) and a Hayes module $\phi \in X_{\varepsilon}$. Let

$$F_{\infty}^+ := \{ x \in F_{\infty}^{\times} \mid \varepsilon(x) = 1 \} = \ker(\varepsilon : F_{\infty} \to \mathbb{F}_{\infty}^{\times}).$$

3.1 λ -adic representation

Let λ be a place of F different from ∞ , and we denote the corresponding maximal ideal of A still by λ . Take $e \geq 1$ and consider $\phi[\lambda^e]$. By Proposition 2.3, $\phi[\lambda^e]$ is an A/λ^e -module of rank 1. Define the λ -adic Tate module to be

$$T_{\lambda}(\phi) := \operatorname{Hom}_{A}(F_{\lambda}/\mathcal{O}_{\lambda}, \ \phi[\lambda^{\infty}]).$$

Proposition 3.1. $T_{\lambda}(\phi)$ is a free \mathcal{O}_{λ} -module of rank 1.

Proof. The ring \mathcal{O}_{λ} is a DVR, so

$$\operatorname{Hom}_A(F_{\lambda}/\mathcal{O}_{\lambda},\ \phi[\lambda^{\infty}]) = \varprojlim_e \operatorname{Hom}_A(\mathcal{O}_{\lambda}/\mathfrak{m}_{\lambda}^e, \phi[\lambda^{\infty}]) = \varprojlim_e \operatorname{Hom}_A(A/\lambda^e, \phi[\lambda^{\infty}]) = \varprojlim_e \operatorname{Hom}_A(A/\lambda^e, \phi[\lambda^e]).$$

Hence

$$V_{\lambda}(\phi) := T_{\lambda}(\phi) \otimes_{\mathcal{O}_{\lambda}} F_{\lambda}$$

is a 1-dimensional F_{λ} -vector space.

Using the isomophism $\Psi : \operatorname{Gal}(H_A^+/F) \simeq \operatorname{Pic}^+(A)$ from Theorem 1, any ideal $\mathfrak{a} \in \Psi(\sigma)$ of A satisfies that $\sigma(\phi) = \mathfrak{a} * \phi$, and thus we have two isogenies between $\sigma(\phi)$ and ϕ , such that

- σ induces an isomorphism $V_{\lambda}(\sigma): V_{\lambda}(\phi) \simeq V_{\lambda}(\sigma(\phi)),$
- $\phi_{\mathfrak{a}}$ induces an isomorphism⁹ $V_{\lambda}(\phi_{\mathfrak{a}}): V_{\lambda}(\phi) \simeq V_{\lambda}(\mathfrak{a} * \phi).$

So we obtain an element

$$V_{\lambda}(\phi_{\mathfrak{a}})^{-1} \circ V_{\lambda}(\sigma) \in \mathrm{GL}_{F_{\lambda}}(V_{\lambda}(\sigma)) = F_{\lambda}^{\times} \cdot \mathrm{id},$$

corresponding to an element $\rho_{\lambda}^{\mathfrak{a}}(\sigma) \in F_{\lambda}^{\times}$.

Lemma 3.1. Let $\sigma, \gamma \in \operatorname{Gal}_F$ and $\mathfrak{a}, \mathfrak{b}$ be ideals of A.

- (i) If $\sigma(\phi) = \mathfrak{a} * \phi$ and $\gamma(\phi) = \mathfrak{b} * \phi$, then $(\sigma \gamma)(\phi) = (\mathfrak{a}\mathfrak{b}) * \phi$, and $\rho_{\lambda}^{\mathfrak{a}\mathfrak{b}}(\sigma \phi) = \rho_{\lambda}^{\mathfrak{a}}(\sigma)\rho_{\lambda}^{\mathfrak{b}}(\gamma)$.
- (ii) If $\sigma(\phi) = \mathfrak{a} * \phi = \mathfrak{b} * \phi$, then $\mathfrak{b}^{-1}\mathfrak{a}$ is generated by a unique $w \in F_{\infty}^+ \cap F$, and $\rho_{\lambda}^{\mathfrak{a}}(\sigma)\rho_{\lambda}^{\mathfrak{b}}(\sigma)^{-1} = w$.

If $\sigma \in \operatorname{Gal}_{H_A^+}$, then $\sigma(\phi) = \phi = A * \phi$. By Lemma 3.1 (i), we obtain a homomorphism

$$\rho_{\lambda}^{A}: \operatorname{Gal}_{H_{\lambda}^{+}} \to \mathcal{O}_{\lambda}^{\times} \quad \sigma \mapsto \rho_{\lambda}^{A}(\sigma).$$

$$\operatorname{Hom}_{L}(\phi, \phi') \hookrightarrow \operatorname{Hom}_{\mathcal{O}_{\lambda}}(T_{\lambda}(\phi), T_{\lambda}(\phi'))$$

is injective.

⁹Since ϕ has rank 1, it is equivalent to that $V_{\lambda}(\phi_{\mathfrak{a}})$ is non-zero. This is true, because, parallel to elliptic curves, taking Tate module is a faithful functor, i.e. for any two Drinfeld modules ϕ and ϕ' over L, the map

- 3.2 ∞ -adic representation
- 3.3 The inverse of Artin map

4 Example: the Rational Function Field

Let F = k(t). We consider the usual place ∞ and A = k[t], so that $F_{\infty} = ((k))$, $\mathbb{F}_{\infty} = k$, $\mathfrak{m}_{\infty} = t^{-1}k[t^{-1}]$, ord $_{\infty}(t^{-1}) = 1$. Let $\varepsilon : F_{\infty}^{\times} \to k^{\times}$ be the unique sign function such that $\varepsilon(t^{-1}) = 1$, so that $F_{\infty}^{+} = \langle t \rangle (1 + \mathfrak{m}_{\infty})$. The **Carlitz module** ϕ is defined by

$$\phi: A = k[t] \to F[\tau] \quad t \mapsto \phi_t := t + \tau.$$

- 5 Comparision with Elliptic Curves
- 6 Proof of (some) lemmas