Module 4: Statistical inference (I)

Jianhui Gao

July 11, 2025

Outline

This module we will review

- Basics of probability
- Fundamental concepts in inference

Probability distributions

- In statistics, we try to draw conclusions about a larger population from a sample of observations.
- We use mathematical models to capture probabilistic behavior of a population.
- This behavior is modeled using probability distributions.

Density/Distribution functions

Definition (Cumulative Distribution Function)

$$F_X(x) = P(X \le x) \quad \forall x \in \mathbb{R}$$

Density/Distribution functions (cont'd)

Definition (Probability Mass Function)

For a discrete RV, the probability mass function (PMF) is:

$$f_X(x) = P(X = x) \quad \forall x \in \mathbb{R}$$

Definition (Probability Density Function)

For a continuous RV , the probability density function (PDF) is:

$$f_X(x) = \frac{\partial}{\partial t} F(t) \Big|_{t=x}$$

So $F_X(x) = \int_{-\infty}^x f_X(t) dt \forall x \in \mathbb{R}$.

Note that $f_X \ge 0$ for $\forall x$, and thus F_X is an increasing function.

Expectation and Variance

Definition (Expectation)

A measure of central tendancy (a weighted average of the values of X)

$$E[X] = \sum_{x \in S} xP(X = x)$$
 for discrete RV taking values from S

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx \text{ for continuous RV}$$

Definition (Variance)

A measure of the spread of a distribution

$$Var(X) = \sum_{x \in S} (x - E[X])^2 P(X = x)$$
 for discrete RV

$$Var(X) = \int_{-\infty}^{\infty} (x - E[X])^2 f_X(x) dx$$
 for continuous RV

Discreate random variable

A discrete random variable has a countable number of possible values.

Bernoulli and Binomial random variable

- Consider the event of flipping a (possibly unfair) coin.
- $Y \in \{0,1\}$ represents success and failure.
- Suppose we only flip the coin once,
 - We can express P(Y = 1) = p and P(Y = 0) = 1 p
- Bernoulli distribution

$$P(Y = y) = p^{y}(1-p)^{1-y}$$
 for $y = 0, 1$

- If we flip the coin *n* times,
- Binomial distribution

$$P(Y = y) = {n \choose y} p^y (1-p)^{n-y}$$
 for $y = 0, 1, \dots, n$

Binomial distributions with different values of n and p

If $Y \sim \text{Binomial}(n, p)$, then E(Y) = np and $SD(Y) = \sqrt{np(1-p)}$.

Figure 1: Binomial distributions with different values of n and p.

How to generate in R?

All common distributions have four functions in R:

Densitydbinom(x, size, prob)

- Distribution functionpbinom(q, size, prob)
- Quantile functionqbinom(p, size, prob)
- Random generation
 rbinom(n, size, prob)

Not sure? Using ? with any of the four functions, e.g. ?qbinom

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Answer: Knowing that the student randomly selected her answers, we assume she has a 25% chance of a correct response.

$$P(Y = 2) = {10 \choose 2} (.25)^2 (.75)^8 = 0.282$$

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Answer: Knowing that the student randomly selected her answers, we assume she has a 25% chance of a correct response.

$$P(Y=2) = {10 \choose 2} (.25)^2 (.75)^8 = 0.282$$

R computing:

$$dbinom(2, size = 10, prob = .25)$$

[1] 0.2815676

Continuous random variable

A continuous random variable can take on an uncountably infinite number of values. Given a pdf f(y),

$$P(a \le Y \le b) = \int_a^b f(y) dy$$

Properties:

- $\int_{-\infty}^{\infty} f(y) dy = 1$.
- For any value y, $P(Y = y) = \int_y^y f(y)dy = 0$. $P(y < Y) = P(y \le Y)$.

Example of Continuous Distribution (Normal)

- The normal distribution is a very important distribution because:
 - A lot of things look normal
 - Analytically tractable
 - Central limit theorem
- $\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$
- Characterized by mean, μ , and variance, σ^2 .

How to Generate Samples from Normal Distribution

The following commands are for a normal random variable with mean μ and variance σ^2 , that is, $X \sim N(\mu, \sigma^2)$,

- To calculate the probability density function at a value x, dnorm(x,mu,sigma)
- To calculate the cumulative distribution function at a value x, pnorm(x,mu,sigma)
- To generate a size m sample from the normal distribution, rnorm(m,mu,sigma)
- Note that the third argument is the **square root of the variance**, this is because the R function for normal distribution asks for the standard deviation, which is defined as the square root of the variance

Some probability distributions in R

Continuous

- Normal (?rnorm)
- Uniform (?runif)
- Beta (?rbeta)
- Chi-sq (?rchisq)
- Exponential (?rexp)
- t (rt)
- F (?rf)
- Logistic (?rlogis)
- Lognormal (?rlnorm)

Discrete

- Poisson (?rpois)
- Binomial (?rbinom)
- Geometric (?rgeom)
- Negative Binomial (?rnbinom)
- Multinomial (?rmultinom)

Empirical vs. Theoretical CDF

In statistics, an empirical distribution function is the distribution function associated with the empirical measure of a sample.

Theoretical CDF

$$F_X(k) = \Pr(X \leq k)$$

Empirical CDF

$$\hat{F}_n(k) = \frac{\text{number of elements in the sample } \leq k}{n} = \frac{1}{n} \sum_{i=1}^{n} I_{X_i \leq k}$$

where X_1, \ldots, X_n make up some random sample from the underlying distribution.

Probability and inference

Probability and inference

- Probability: Given a data generating process, what are the properties of the outcomes?
- Statistical inference: Given the outcomes, what can we say about the process that generated the data?

Parametric vs. Nonparametric models

ullet Statistical model \mathfrak{F} : a set of distributions (or densities or regression functions)

Parametric vs. Nonparametric models

- Statistical model \mathfrak{F} : a set of distributions (or densities or regression functions)
- \bullet Parametric model: a set $\mathfrak F$ that can be parameterized by a finite number of parameters

$$\mathfrak{F} = \{ f(x; \theta) : \theta \in \Theta \}$$

where θ is an unknown parameter (or vector of parameters) that can take values in the parameter space Θ .

ullet e.g. Normal distribution, a 2-parameter model with density as $f(x;\mu,\sigma)$

Parametric vs. Nonparametric models

- \bullet Statistical model $\mathfrak{F}\colon$ a set of distributions (or densities or regression functions)
- \bullet Parametric model: a set $\mathfrak F$ that can be parameterized by a finite number of parameters

$$\mathfrak{F} = \{ f(x; \theta) : \theta \in \Theta \}$$

where θ is an unknown parameter (or vector of parameters) that can take values in the parameter space Θ .

- ullet e.g. Normal distribution, a 2-parameter model with density as $f(x;\mu,\sigma)$
- \bullet Nonparametric model: a set $\mathfrak F$ that cannot be parameterized by a finite number of parameters
 - ullet e.g. $\mathfrak{F}_{\mathrm{ALL}} = \{ \ \mathsf{all} \ \mathrm{CDF}'s \}$ is nonparametric.

Frequentist and Bayesian

- Frequentist: statistical methods with guaranteed frequency behavior
- Bayesian: statistical methods for using data to update beliefs

Point estimation

- Providing a single "best guess" of some quantity of interest
- Notations
 - Parameter θ : fixed, unknown quantity
 - Point estimator $\hat{\theta}$: depends on data, random variable

Point estimation

- Providing a single "best guess" of some quantity of interest
- Notations
 - Parameter θ : fixed, unknown quantity
 - Point estimator $\hat{\theta}$: depends on data, random variable

Definition (Point estimator)

Let X_1, \ldots, X_n be n IID data points from some distribution F. A point estimator $\hat{\theta}_n$ of a parameter θ is some function of X_1, \ldots, X_n :

$$\widehat{\theta}_n = g(X_1, \dots, X_n)$$

• What is a good point estimate?

MSE

Definition:

$$MSE = \mathbb{E}_{\theta} \left(\widehat{\theta}_{n} - \theta \right)^{2}$$

- No uniformly best estimator in terms of MSE
- It is NOT possible to have an estimator that is uniformly the best.

Bias and Variance

Bias

$$\mathsf{bias}\left(\widehat{\theta}_{\textit{n}}\right) = \mathbb{E}_{\theta}\left(\widehat{\theta}_{\textit{n}}\right) - \theta$$

Variance

$$\operatorname{Var}\left(\widehat{\theta}_{n}\right) = \mathbb{E}_{\theta}\left(\widehat{\theta}_{n} - \mathbb{E}\theta\right)^{2}$$

Theorem

$$MSE = bias^2 + Var$$

Unbiasedness

Definition

$$\mathsf{bias}\left(\widehat{\theta}_{n}\right) = \mathbb{E}_{\theta}\left(\widehat{\theta}_{n}\right) - \theta = 0$$

- Unbiasedness is a small sample (finite sample) property
- An unbiased estimator may not exist
- An unbiased estimator is not necessarily a good estimator

Consistency

Definition

$$\widehat{\theta}_n \stackrel{\mathrm{P}}{\longrightarrow} \theta$$

- It is possible to be unbiased but not consistent.
- It is possible to be consistent but not unbiased.

Asypototic unbiasedness

Definition

$$\mathsf{bias}\left(\widehat{\theta}_{\textit{n}}\right) = \mathbb{E}_{\theta}\left(\widehat{\theta}_{\textit{n}}\right) - \theta \to 0, \ \mathsf{as} \ \textit{n} \to \infty$$

- It is possible to be asypototically unbiased but not consistent.
- It is possible to be consistent but NOT asymptotically unbiased.
- Sufficient conditions: $MSE \rightarrow 0$.

Resources

This tutorial is based on

- Havard Biostatistics Summer Pre Course [link]
- "Beyond Multiple Linear Regression" by Paul Roback and Julie Legler [link]