CS 201, Summer 2015 Homework Assignment 2

Analysis Of Different Algorithms In Terms Of Time Complexity

Name: Gülsüm

Surname: Güdükbay

Student ID: 21401148

1. Specifications Of The Computer

The experimental execution time data of this homework assignment was obtained in a MacBook Pro, OS X Yosemite, Version 10.10.2, with a 2.2 GHz Intel Core i7 processor, 4 GB 1333 MHz DDR3 memory and AMD Radeon HD 6750 M 1024 MB graphics.

2. Data Collection For All Algorithms

	Solution 1		Solution 2		Solution 3	
	Input Array Size (n)	Execution Time (milliseconds)	Input Array Size (n)	Execution Time (milliseconds)	Input Array Size (n)	Execution Time (milliseconds)
1	1000	1.381	1000	4.861	1000	0.174
2	2000	4.207	2000	5.17	2000	0.235
3	3000	6.987	3000	5.254	3000	0.346
4	4000	9.66	4000	5.424	4000	0.439
5	5000	12.219	5000	5.708	5000	0.551
6	6000	15.171	6000	6.364	6000	0.542
7	7000	17.744	7000	6.162	7000	0.893
8	8000	19.971	8000	6.309	8000	0.935
9	9000	22.911	9000	6.492	9000	1.017
0	10000	32.064	10000	7.16	10000	1.067
1	11000	29.187	11000	6.975	11000	1.174
2	12000	38.397	12000	9.714	12000	1.365
3	13000	39.867	13000	10.474	13000	1.747
4	14000	39.739	14000	9.972	14000	2.432
5	15000	41.167	15000	7.872	15000	1.849
6	16000	44.463	16000	8.479	16000	1.92
7	17000	44.583	17000	10.735	17000	3.505
8	18000	49.438	18000	9.117	18000	2.002
9	19000	48.908	19000	11.97	19000	2.088
20	20000	54.325	20000	9.687	20000	2.157
21	21000	55.564	21000	13.982	21000	2.241
22	22000	62.855	22000	10.168	22000	4.755
23	23000	69.969	23000	10.603	23000	2.379
24	24000	67.089	24000	10.887	24000	2.292
25	25000	73.848	25000	13.932	25000	2.305
26	26000	79.89	26000	14.761	26000	2.4
27	27000	70.141	27000	16.567	27000	3.748
28	28000	73.205	28000	18.385	28000	2.933
29	29000	83.836	29000	13.138	29000	2.66
80	30000	85.542	30000	17.69	30000	2.583
31	31000	91,344	31000	13.72	31000	2.844
32	32000	93.072	32000	16.965	32000	4.138
33	33000	97.573	33000	14.628	33000	4.212
34	34000	95.682	34000	14.951	34000	8.445
35	35000	103.692	35000	19.607	35000	4.689
36	36000	110.809		22.076		4.297
37	37000	95.953		23.134		4.519
88	38000	116.032	38000	17.396		6.785
9	39000	115.532	39000	20.527	39000	4.544
10	40000	127.939		22.836		4.55
11	41000	112.281	41000	18.196		4.779
12	42000	130.767	42000	19.816		4.837
3	43000	122,463	43000	23.616		5.323
14	44000	131.136		20.598	44000	4.871
15	45000	140.929		20.599		5.027

Table 1 – Data Collection of the execution times for all algorithms

	Solution		Solutio	F2	Solutio	
	Input Array Size (n)	Execution Time (milliseconds)	Input Array Size (n)	Execution Time (milliseconds)	Input Array Size (n)	Execution Tim (milliseconds)
16	46000	(miniseconds)	46000	(miniseconds)	46000	(miniseconds)
7						
8	47000	145.657	47000	21.378	47000	4.9
9	48000	138.473	48000	24.563	48000	4.9
0	49000	155.115	49000	22.372	49000	5.1
1	50000	162,428	50000	27.13	50000	4.9
2	51000	156.335	51000	36.456	51000	6.7
3	52000	149.165	52000	29.648	52000	6.6
4	53000	150.457	53000	25.53 26.841	53000	5.1
5	54000	156.569	54000		54000	5.3
6	55000	140.883	55000	26,413	55000	9.0
7	56000	164.086	56000	26.659	56000	5.7
8	57000	161.463	57000	28.075	57000	
9	58000	152.076	58000	28.57	58000	5.5
0	59000	174.038	59000	37.314	59000	9.9
1	60000	177.279	60000	29.591	60000	
2	61000	178,475	61000	37.395	61000	5.8
3	62000	169.96	62000	40.871	62000	9.8
4	63000	193.704	63000	38.163	63000	8.0
	64000	182.304	64000	32.821	64000	8.6
5	65000	181.837	65000	40.601	65000	12
6	66000	184.708	66000	34.607	66000	12.4
7	67000	197.768	67000	41.969	67000	8.3
8	68000	188.03	68000	51.765	68000	8.9
9	69000	227.904	69000	42.7	69000	8.9
0	70000	217.374	70000	37.609	70000	8.6
1	71000	196.426	71000	38.063	71000	8.8
2	72000	189.608	72000	45.511	72000	8.8
3	73000	218.899	73000	46.106	73000	8.5
4	74000	233.461	74000	46.721	74000	11
5	75000	215.148	75000	49.921	75000	9.3
6	76000	221.483	76000	41.812	76000	15.6
7	77000	214.355	77000	55.819	77000	10.9
8	78000	219.197	78000	50.723	78000	9
9	79000	211.233	79000	45.514	79000	9.4
0	80000	236.062	80000	48.992	80000	13.1
1	81000	235.694	81000	55.056	81000	10.5
2	82000	245.048	82000	60.734	82000	9.5
3	83000	242.328	83000	48.354	83000	14.6
4	84000	231.018	84000	55.897	84000	9.0
15	85000	244.623	85000	59.402	85000	9
6	86000	252.862	86000	51.553	86000	9.5
7	87000	235.115	87000	55.476	87000	12.5
8	88000	267.228	88000	72.532	88000	9.9
9	89000	252.461	89000	66.98	89000	9.5
0	90000	251.825	90000	62.315	90000	9.5
1	91000	268.058	91000	68.98	91000	9.8
2	92000	270.55	92000	70.44	92000	9.8
3	93000	278.38	93000	73.483	93000	12.0
4	94000	273.977	94000	69.549	94000	17.5
5	95000	267.612	95000	60.335	95000	10.0
6	96000	277.888	96000	69.658	96000	15.8
7	97000	276.563	97000	80.75	97000	13.6
8	98000	281.888	98000	69.631	98000	15.1
9	99000	298.034	99000	87.795	99000	13

Table 1(continued) – Data Collection of the execution times for all algorithms

Graph 1 – Graph of the comparison of the execution times for all three algorithms, for different input array sizes

The graph above shows that different algorithms can have different execution times and growth rates of execution times for different input array sizes, for the problem of selecting the k largest numbers in an array of n integers. For Solution 1, the best line of fit was found to be a linear one, since the rate of change of execution times for different input sizes is constant, so the time complexity can be shown by the function O(n).

For Solution 2, the growth rate of the execution times were clearly fitted by the time complexity O(nlogn), since the growth rate isn't constant for increasing n and it increases faster when we move toward the maximum n specified.

The graph of Solution 3 was actually not clear as the other solutions, since the best fit line is both fitting with a linear fit and the function t = nlogn, where t is the execution time. However, if we zoom in, and if we compare the linear fit with the nlogn curve of fit, we can realize that the curve nlogn is much more closer to all the data points obtained. Therefore the time complexity of Solution 3 is found to be O(nlogn).

3. Experimental vs. Theoretic Graphs

i. Solution 1

Input Size (n)	Experimental Execution Time (ms)	Theoretic Execution Time (ms)
1000	1.381	3.206
5000	12.219	16.032
10000	32.064	32.064
50000	162.428	160.320
100000	285.008	320.640

Table 2 – Table of the Comparison of Theoretic Execution Times and Experimental Execution Times for Solution 1

Graph 2 – Graph of the Comparison of Theoretic Execution Times and Experimental Execution Times for Solution 1

The graph and the table above shows how does increasing the input array's size effects the execution time for the algorithm of Solution 1 and does a comparison between the theoretic and the experimental execution times.

Since the swap method that is called in Solution 1 has a constant time complexity O(1) and the for loop inside Solution 1 traverses all the elements in the input array at least once as the worst case, indicating n iterations, the overall theoretic time complexity of the first algorithm is O(n). Other assignments and declarations are not considered, since they take constant unit time O(1). Therefore, to calculate the theoretic execution time, n = 10000 was taken as a sample. By doing cross multiplication, the other theoretic execution times were calculated (e.g. for n = 1000, the theoretic execution time was calculated as 32.064 / 10).

As the input array's size increases, the experimental execution time also increases linearly, showing that the first algorithm's time complexity is O(kn), where k is the output size and n is the input size. k, here, is treated as a constant of gradient.

If we are to compare the theoretic and the experimental times of execution of the first algorithm, the graph of experimental times had a smaller gradient, showing that the theoretic execution times were less as input size increased. This indicates a faster execution time because of the random initialization of the array, since the indices of some maximum values were closer to the beginning of input array, so a fewer amount of iterations were performed.

ii. Solution 2

Input Size (n)	Experimental Execution	Theoretic Execution
	Time (ms)	Time (ms)
1000	4.861	0.216
5000	5.708	2.502
10000	7.16	7.16
50000	27.13	83.125
100000	81.718	166.35

Table 3 – Table of the Comparison of Theoretic Execution Times and Experimental Execution Times for Solution 2

Graph 3 – Graph of the Comparison of Theoretic Execution Times and Experimental Execution Times for Solution 2

The graph and the table above shows how does increasing the input array's size effects the execution time for the algorithm of Solution 2 and does a comparison between the theoretic and the experimental execution times.

Since the quickSort algorithm is called in Solution 2 and quickSort is a recursive sorting algorithm with $O(nlog_2n)$ time complexity, considering that the other assignments and declarations are not necessary to take into consideration in the theoretical time complexity calculations, the overall time complexity of Solution 2 is the time complexity of quickSort, which is $O(nlog_2n)$. Therefore, to calculate the theoretic execution time, n = 10000 was taken as a sample. By doing a ratio calculation, the other theoretic execution times were calculated (e.g. for n = 1000, the theoretical execution time was calculated as $7.17 / (10*log_2(10))$).

As the input array's size increases, the experimental execution time also increases but in the pattern of the function t = nlogn, showing that the second algorithm's time complexity is O(nlogn), where n is the input size.

If we are to compare the theoretic and the experimental times of execution of the second algorithm, the rate of change of experimental times was less, showing that the theoretic execution times increased faster. This indicates better execution time because of the random initialization of the array, since the indices of some maximum values were closer to the end while sorting the input array.

iii. Solution 3

Input Size (n)	Experimental Execution Time (ms)	Theoretic Execution Time (ms)
1000	0.174	0.032
5000	0.551	0.373
10000	1.067	1.067
50000	4.975	12.329
100000	12.293	35.279

Table 4 – Table of the Comparison of Theoretic Execution Times and Experimental Execution Times for Solution 3

Graph 4 – Graph of the Comparison of Theoretic Execution Times and Experimental Execution Times for Solution 3

The graph and the table above shows how does increasing the input array's size effects the execution time for the algorithm of Solution 3 and does a comparison between the theoretic and the experimental execution times.

The quickSort algorithm is called in select method and quickSort is a recursive sorting algorithm with $O(nlog_2n)$ time complexity. However, rather than sorting the whole array, if we sort a portion of it, it is much more efficient. This is less efficient than simple selecting, since it takes O(n + klogk) (where n is the input array size and k is the output array size), but it is, as stated before, much more efficient than sorting the entire array. It also partitions the array as sorted and unsorted with the partition method. Therefore the overall mode time complexity of the third solution is O(nlogn), however it would be better to keep in consideration that the worst case time complexity(which wasn't seen so frequently) is O(n). Therefore, to calculate the theoretic execution time, n = 10000 was taken as a sample. By doing a ratio calculation, the other theoretic execution times were calculated (e.g. for n = 1000, the theoretical execution time was calculated as $1.067 / (10*log_2(10))$). The average case time complexity function was used, since worst case is seen very rarely with this algorithm.

As the input array's size increases, the experimental execution time also increases but in the pattern of the function t = nlogn, showing that the third algorithm's time complexity is O(nlogn), where n is the input size.

If we are to compare the theoretic and the experimental times of execution of the third algorithm, the rate of change of experimental times was less, showing that the theoretic execution times increased faster. This indicates better execution time because of the random initialization of the array, since the indices of some maximum values were closer to the end while sorting the input array and that mostly, the worst case O(n) wasn't reached during the selection by sorting process.

4. Conclusion

Finally, it would be beneficial to state that even though the first and second algorithms were easier and shorter to write and understand, the third algorithm was the quickest algorithm based on the experimental execution time for different input sizes. Even though the third algorithm's worst case time complexity was O(n), generally, the average case time complexity was observed, which is O(nlogn). Besides the time complexity, the growth rate of the graph of the execution times for different input times of Solution 3 was very small compared to the other two solutions. If we are to compare the first and the second solutions, the second algorithm used quickSort, which is a recursive sorting algorithm with time complexity O(nlogn), which dominated the time complexity of the whole algorithm. So considering the fact that the time complexity of the first solution was O(n), which is linear, the growth rate of the first solution was much larger than the second solution, so the order of the algorithms, starting with the worst time complexity is Solution 1, Solution 2, then Solution 3, being the best algorithm.