Tutorial 1: Complexity

- 1. Reorder the following efficiencies from the smallest to the largest:
 - a. 2ⁿ
 - b. n!
 - c. n⁵
 - d. 15,000
 - e. $nlog_2(n)$
- 2. Reorder the following efficiencies from the smallest to the largest:
 - a. $nlog_2(n)$
 - b. $n + n^2 + n^3$
 - c. 10^{5}
 - d. n^{0.5}
- 3. Determine the big-O notation for the following:
 - a. $5n^{5/2} + 11n^{2/5}$
 - b. $9\log_2(n) + 6n$
 - $c. 3n^4 + 8nlog_2(n)$
 - d. $5n^2 + n^{3/2} + 3n^{5/3}$
- 4. Calculate the run-time efficiency of the following program segment:
 - 1 i = 1
 - 2 loop (i <= n)
 - 1 print (i)
 - 2 i = i + 1
 - 3 end loop
- 5. Calculate the run-time efficiency of the following program segment:
 - 1 i = 1
 - $2 loop (i \ll n)$
 - 1 j = 1
 - 2 loop (j <= n)
 - 1 k = 1
 - 2 loop (k <= n)
 - 1 print(i,j,k)
 - 2 k = k + 1
 - 3 end loop
 - 4 j = j + 1
 - 3 end loop
 - 4 i = i + 1
 - 3 end loop
- 6. If the algorithm dolt has an efficiency factor of 7n, calculate the run time efficiency of the following program segment.
 - 1 i = 1
 - 2 loop (i <= n)
 - 1 doIt(...)
 - 2 i = i + 1
 - 3 end loop
- 7. If the efficiency of the algorithm doIt can be expressed as $O(n) = n^2$, calculate the efficiency of the following program segment.

```
1 i = 1
2 loop (i <= n)
1 j = 1
2 loop (j < n)
    1 doIt(...)
2 j = j + 1
3 end loop
4 i = i + 1
3 end loop</pre>
```

8. If the efficiency of the algorithm doIt can be expressed as $O(n) = n^2$, calculate the efficiency of the following program segment.

```
1 i = 1
2 loop (i < n)
    1 doIt(...)
    2 i = i * 2
3 end loop</pre>
```

- 9. Given that the efficiency of an algorithm is $5n^2$, if a step in this algorithm takes 1 nanosecond (10^{-9}), how long does it take the algorithm to process an input of size 10000?
- 10. Given that the efficiency of an algorithm is $3n^3$, if a step in this algorithm takes 1 nanosecond (10^{-9}), how long does it take the algorithm to process an input of size 10000?
- 11. Given that the efficiency of an algorithm is $3nlog_2(n)$, if a step in this algorithm takes 1 nanosecond (10^{-9}), how long does it take the algorithm to process an input of size 8000?