Numerical Methods

Lauren Hayward
PSI Start Online School

Continued from last time

Numerical Methods, Lecture 3:

Fitting data and 2D Ising Model

PSI Start Online School 2023

June 1, 2023

Lauren Hayward

In this notebook, we will study

- 1. how to perform fits to data corresponding to random walks in one dimension, and
- 2. how to calculate properties of a two-dimensional Ising model.

Today's objective is to learn now to perform fits when given numerical data, and to become familiar with the two-dimensional Ising model (which we will revisit in Lecture 4).

Note: Exercises 1 and 2 originally appeared in Lecture 2, but most students did not have enough time to complete them.

1. Fitting data

Outline

- Statistical physics and the Ising model
- Monte Carlo methods in statistical physics

Statistical physics

Goal: to study phenomena such as phase transitions for systems of N interacting particles when N is large.

Example: Ising model

$$E = -J \sum_{\langle ij \rangle} s_i \, s_j$$

$$S_i = +1 \text{ or } -1$$

$$(\blacksquare \text{ or } \Box)$$

$$E = -J \sum_{\langle ij \rangle} s_i s_j \qquad s_i = +1 \text{ or } -1$$

$$(\blacksquare \text{ or } \square)$$

When J > 0, which of the following spin configurations minimizes the energy E?

$$E = -J \sum_{\langle ij \rangle} s_i s_j$$
 $s_i = +1 \text{ or } -1$ $(\blacksquare \text{ or } \square)$

When J > 0, which of the following spin configurations minimizes the energy E?

$$E_{\min} = -J\sum_{\langle ij\rangle} 1 = -J(2N) = -2JL^2$$

Consider an Ising model on a two-dimensional lattice with periodic boundaries.

The configuration of the system can be stored in a two-dimensional array called "spins".

For the example here with L=3:

spins =
$$\begin{bmatrix} -1 & +1 & -1 \\ +1 & +1 & -1 \\ -1 & +1 & +1 \end{bmatrix}$$

Breakout room activities

2. Ising model in two dimensions

Let us consider a classical nearest-neighbour Ising model on a two-dimensional lattice with periodic boundary conditions. The energy of a given spin configuration is given by

$$E = -J \sum_{\langle ij \rangle} s_i s_j,$$

where J>0 is a coupling strength, $s_i=\pm 1$, and $\sum_{\langle ij\rangle}$ denotes a sum over nearest neighbours. We assume that the spins s_i live on the sites of a square $L\times L$ lattice. The total number of spins is then $N=L^2$.

As discussed in the lecture slides, the spins can be stored in a two-dimensional array called spins.

Consider the following configuration for L=3:

$$s_i = +1 \text{ or } -1$$

