and Theorem 11.12 shows that

$$\operatorname{rk}(f) = \operatorname{rk}(f^{\top}).$$

It is instructive to translate these relations in terms of matrices (actually, certain linear algebra books make a big deal about this!). If $\dim(E) = n$ and $\dim(F) = m$, given any basis (u_1, \ldots, u_n) of E and a basis (v_1, \ldots, v_m) of F, we know that f is represented by an $m \times n$ matrix $A = (a_{ij})$, where the jth column of A is equal to $f(u_j)$ over the basis (v_1, \ldots, v_m) . Furthermore, the transpose map f^{\top} is represented by the $n \times m$ matrix A^{\top} (with respect to the dual bases). Consequently, the four fundamental spaces

$$\operatorname{Im} f$$
, $\operatorname{Im} f^{\top}$, $\operatorname{Ker} f$, $\operatorname{Ker} f^{\top}$

correspond to

- (1) The *column space* of A, denoted by Im A or $\mathcal{R}(A)$; this is the subspace of \mathbb{R}^m spanned by the columns of A, which corresponds to the image Im f of f.
- (2) The kernel or nullspace of A, denoted by Ker A or $\mathcal{N}(A)$; this is the subspace of \mathbb{R}^n consisting of all vectors $x \in \mathbb{R}^n$ such that Ax = 0.
- (3) The row space of A, denoted by $\operatorname{Im} A^{\top}$ or $\mathcal{R}(A^{\top})$; this is the subspace of \mathbb{R}^n spanned by the rows of A, or equivalently, spanned by the columns of A^{\top} , which corresponds to the image $\operatorname{Im} f^{\top}$ of f^{\top} .
- (4) The left kernel or left nullspace of A denoted by $\operatorname{Ker} A^{\top}$ or $\mathcal{N}(A^{\top})$; this is the kernel (nullspace) of A^{\top} , the subspace of \mathbb{R}^m consisting of all vectors $y \in \mathbb{R}^m$ such that $A^{\top}y = 0$, or equivalently, $y^{\top}A = 0$.

Recall that the dimension r of $\operatorname{Im} f$, which is also equal to the dimension of the column space $\operatorname{Im} A = \mathcal{R}(A)$, is the rank of A (and f). Then, some our previous results can be reformulated as follows:

- 1. The column space $\mathcal{R}(A)$ of A has dimension r.
- 2. The nullspace $\mathcal{N}(A)$ of A has dimension n-r.
- 3. The row space $\mathcal{R}(A^{\top})$ has dimension r.
- 4. The left nullspace $\mathcal{N}(A^{\top})$ of A has dimension m-r.

The above statements constitute what Strang calls the Fundamental Theorem of Linear Algebra, Part I (see Strang [170]).

The two statements

$$\operatorname{Ker} f = (\operatorname{Im} f^{\top})^{0}$$
$$\operatorname{Ker} f^{\top} = (\operatorname{Im} f)^{0}$$

translate to