

Team 0: Growable Space Habitat
Robert Dye
Justin Blankenhorn
Andrew Yang
Adam Pameron

Sponsor: Dr. John Lusher II, Dr. Hope Rising

TA: Rohith Kumar

Project Overview

- Current space operations require constant resupply

 – Costly (\$20,000 per kg)

 – Inefficient and wasteful
- Long term space missions need a sustainable food source
- Project provides electrical infrastructure for a selfsustaining system capable of recycling agricultural products

System-Level Requirements

- Power Management-
 - Power MCU, Al/Data Processing
 - Charge battery through solar panel
 - Monitor battery pack
- MCU-
 - Control Peripherals
 - 1 of each type of sensor (I2C, Analog, UART, Digital (External clock)
 - Replacing 1 analog with 2 extra others (Temp/Humidity, solenoid)
- Al/Data Processing-
 - Binary Classifying model for tomato leaf as well as oyster mushroom (proxy data)
 - Reliably request data from MCU and send the data to the database
- User Interface-
 - Display data from MCU sensors on an app
 - Graph sensor values over time, Graph health of plant (1-healthy, 0-not)
 - Display camera pictures

Project/Subsystem Block Diagram

Al/Data Processing Accomplishments

Al/Data Processing Subsystem – Train Accuracy 4 Folds

Al/Data Processing SubsystemValidation Accuracy 4 Folds

Al/Data Processing SubsystemValidation Accuracy 4 Folds

Al/Data Processing SubsystemTraining and Validation Accuracy Fold 4

Al/Data Processing Subsystem – Confusion Matrix Fold 4

Al/Data Processing SubsystemPi and PIC32 CO2 Values

Al/Data Processing SubsystemArduino and PIC32 O2 Values

Al/Data Processing Subsystem

Power Management Accomplishments

- BMS PCB
- Charging/discharging/power delivery
- Overcurrent Protection
- Design and solder 4 analog sensor circuits and PCBs with Andew

Power Management

Power Management Previous Graphs

Power ManagementGraphs from video

Microcontroller Accomplishments

Andrew Yang

- Designed and soldered PIC32MZ microcontroller
- Designed and soldered 3 analog sensor circuits and PCBs with Robert
- Wrote firmware to operate water flow, temp/humidity, CO2, O2, water level, water flow sensor, solenoid, and fan with Adam

User Interface Accomplishments

- Display real time sensor data
- Displaying graph's of sensor data of time, with different windows of duration
- Display camera pictures

User Interface – General Format

Justin Blankenhorn

User Interface – Validating edge cases 1

User Interface – Validating edge cases 2

Data Integration

Data Integration

Sensor 1: 20.497204 Expected Range: NA
Sensor 2: 20.387352 Expected Range: NA
Sensor 3: 20.481132 Expected Range: NA
Sensor 4: 20.556638 Expected Range: NA

BACK REFRESH

GRAPH
DATA

System and Validation Results Videos

System and Validation Results Videos

System and Validation Results Videos

System and Validation Results Full Video

Conclusion Requirements

- Power Management-
 - •Built a BMS PCB that can power 2 other systems and charge battery via solar through BMS
 - •Built separate sensor circuits required to run the sensors
- •MCU-
 - Built PCB that can control various peripherals
 - Built separate sensor circuits required to run the sensors
- •AI/Data Processing-
- User Interface-
 - •Created and app and database where data can be displayed, analyzed, and pushed through

Conclusions Learned

- Designing of PCB schematics and boards
- Microchip programming
- Concise reading of datasheets
- Reading convolution and neural networks
- Database/app creation and integration
- Sensor configurations, sensor amplifying techniques
- Microcontroller coding
- Cross team communication
- Project and time management skills
- If it can go wrong, it will go wrong

Conclusion What Went Right and Wrong

- Rights-
 - Al/Data Processing machine learning model classification
 - App/Database Creation
 - Integration of all 4 subsystems went smoothly
 - Powering/Charging
 - Control of different peripherals through both dev board and MCU
- Wrongs:
 - Multiple design errors and other issues caught after PCBs soldered, had to re do designs
 - Monitoring of pack and cell issues (contact with Dr. Lusher and TI) no resolutions
 - Initial approach with mySQL database, changed to firebase for easier integration

Project Mitigation

- Tasks to try to get done by demo
 - Potentially 1 of the Analog sensors to work (replace with 2 others)
 - Potential battery pack monitoring

THANK YOU!