			Lo	qo	rit	ħm	C	T	Gri	c	Q	ua	sim a	·ps				
						Q	QQ	òίΜ	S	has	ì							
Le	Ł's	th	in	٤ (a bo	mt	CU	r ve	ß	in	pr	ું •	div	e 81	pace	(کرم	. 1
H	en	G	ne	3	P	ers	pe	ctiv	B	•		Ĭ						
			Vi		_													
		2)	Vic	A (the 1.	P	arai C	net	risa	kîo	n			.				
		ارد	(L,	w.	1	Jipin U	7	line	. 60	y OLY	LX	, Sec	Cions)			
کور	Sm								h	ot 1	real	اي د	ary	d	fere	nce	٠,	
	8											,	,					
Bu	ıt i	in	th	V	vor	ld	of.		nocl	lem	C	un	R (COL	ntine			
fr	y	Di	r	d	He	rent	'	41	ma	بعل	3							

The modern curve counting machine: "Space of curves in X" smooth proj. varidy invariants " curve counts M(x) needs to be ii) (virtually) snooth 1) -> Donaldson - Thomas Theory 2) my Granor - Witten Theory Man (X,B) 3) - Quesimap Theory Qgin (X,B) g --> genus B my degree n -> # markings

Quasimup Summary [CFKM]	openerially:					
 X a rice GIT quotient ⇒ ∃ Q₂, (×, 15) proper PM stack Q₃, (×, 16) admits a virtual doss 						
· Quasimay invariants easier to compute	so the space of cures in X tangent to 0 w/ the					
· wall crossing formulas GW in to Quarinap invariants	so the space of cures in X tangent to 0 m/ the oppropriate contact orders at the markings is not compact!					
Mirror may	in the Gramor-Witten setting there have been many iterations of sol'n.					
Relative Counting	Most general due to: Abramonich-Chen-Gross-Siebert					
Fix not just X but also D = X divisor.	using logarithmic structures					
Now think about curves in X w/ fixed tangency to D	extra data on curve and target so you can measure					
(e.g. conics in 1P2 tangent to a line)	"tangency" even if the curve falls into D.					
How do you build an appropriate modeli space?						
what's the problem?						

Logarithmic Quasinaps	For quasinaps there is no map but we
Simpler solution [Battistella-Nabijou] Sollowing [Coultmann].	For quasiners there is no map but we still have (20, up) on the curve
Take the closure of locus my correct transpencies in ordinary	so tangeny is ora, up
Take the closure of locus by correct transpencies in ordinary quantinary moduli space. (restrictive, 9=0, 0 smoots & v. angle)	(same problem in the limit; up = 0 & so ord, up= 00)
Instead want to utilise the modern solution in GW Theory.	want to endow C & X w/ lagarthmic structures (extra data) to leave track of this
What is targency?	but there is no may s.c->X
f: (C,p) -> (X,D) (so (local eqn) for D)	Fact/Analogy
tungency at p = order of vanishing of f so at p.	C - A' - regular Swetton
E.g. f. (18, [6:1]) -> (18, {x=0}) (fx=20) [zo: zi]	C -> [A'/Gh] <-> line bundle / Section pair (L,u)
	•

Theorem: I perfect obs theory on Quantum to a virtual fundamental class. now we have an actual map to put this extra data on ... The invariants agree of [B-N] in g.O, D snudt v. comple. Def=: a logarithmic quasimap to 19" | H The logarthmic relative quasinap spaces are also simpler than their GW counterparts. is (C, p., -p, L, uo, -, un) + a logaritime enhancent of the map C (2,40) [A'/CIn] # boundary divisors st. this map has the correct largery orders. Theorem: Let X snooth proj. toric variety, D only sn.c dissor, gin integers, B curve class on X & (ai); contact order data s.t. Zxi) = 0; B. Then 3 moduli space Qq, x(x10,16) parametrising log quasimaps which is proper DM stack.

What is this good for? 1 Relative/logarithmic wall crossing 2 Local/logarithmic correspondence D[FTY show a generating function for relative GW innormals (9:0) can be obtained via a change of variables (mirror map) from a relative I-function" [Battistelly - Natojon] show this relative I-function is a generating function for relative questions invariants Evidence For wall-crossing in the relative/ logarithmic selling ...

(2) [vGGR] show that maximal contacts log/relative invariants coincide w/ local invariants (x10,8)]"=(-1)".d.[M., (G,(-0), B)]" and conjectured a generalisation when D=0,+...+0r. Although this holds in cases [BBVG] The analogue of 100 is not true. [NK] The correction term involves components of the moduli space of rational tails (not allowed in quarimop teory) possible the analogue of (x) is true in the quasimap setting.