Cluster realization of Weyl groups and *q*-characters of quantum affine algebras

Rei Inoue (Chiba)

arXiv:2003.04491

Plan

- §1 Prelimininaries
- §2 Cluster realization of Weyl groups
- §3 Application to q-characters of $U_q(\hat{g})$
- $\S4$ Application to $\mathfrak{g}\text{-Toda}$ field equation

§1 Prelimininaries

• Cluster mutation [Fomin-Zelevinsky 00]

A seed
$$t = (\varepsilon, \mathbf{A}, \mathbf{X})$$
:

$$\varepsilon = (\varepsilon_{ij})_{i,j} \in \operatorname{Mat}_N(\mathbb{Z})$$
: a skew-symmetrizable matrix $\exists d = \operatorname{diag}(d_i)_i, \ d_i \in \mathbb{Z}_{>0} \text{ s.t. } \varepsilon d \text{ is skew-symmetric } (\text{with } \operatorname{gcd}\{d_i\}_i = 1)$

$$\mathbf{A} = (A_1, \dots, A_N)$$
: cluster variables (A-var.)

$$\boldsymbol{X} = (X_1, \dots, X_N)$$
: coefficients (X-var.)

The mutation $\mu_k(\varepsilon, \mathbf{A}, \mathbf{X}) = (\widetilde{\varepsilon}, \widetilde{\mathbf{A}}, \widetilde{\mathbf{X}})$ at $k \in \{1, \dots, N\}$:

$$\widetilde{X}_{i} = \begin{cases} X_{k}^{-1} & i = k \\ X_{i} \left(1 + X_{k}^{-\operatorname{sgn}(\varepsilon_{ik})} \right)^{-\varepsilon_{ik}} & i \neq k \end{cases} \quad \widetilde{A}_{i} = \begin{cases} \frac{\prod_{j:\varepsilon_{kj}>0} A_{j}^{\varepsilon_{kj}} + \prod_{j:\varepsilon_{kj}<0} A_{j}^{-\varepsilon_{kj}}}{A_{k}} & i = k \\ A_{i} & \text{for } i \neq k \end{cases}$$

$$\widetilde{\varepsilon}_{ij} = \begin{cases} -\varepsilon_{ij} & i = k \text{ or } j = k \\ \varepsilon_{ij} + \frac{|\varepsilon_{ik}|\varepsilon_{kj} + \varepsilon_{ik}|\varepsilon_{kj}|}{2} & \text{ow} \end{cases}$$
 (*d* is the same.)

Remark

$$\overbrace{(\varepsilon, d)}^{1:1} \longleftrightarrow \text{a weighted quiver } Q = (\sigma, d) \\
\text{wt}(i) = d_i, \ \sigma_{ij} = \varepsilon_{ij} \frac{\gcd(d_i, d_j)}{d_i} \\
\sigma_{ij} = \#\{\text{arrows from } i \text{ to } i\} - \pi$$

$$\sigma_{ij} = \#\{\text{arrows from } i \text{ to } j\} - \#\{\text{arrows from } j \text{ to } i\}$$

$$(Ex) \xrightarrow{1} \xrightarrow{2} \xrightarrow{\mu_1} \xrightarrow{1} \xrightarrow{2} \xrightarrow{\mu_2} \xrightarrow{1} \xrightarrow{2} \xrightarrow{(1+A_2)/A_1} := A'_1 \qquad \begin{pmatrix} A'_1 \\ A_2 \end{pmatrix} \qquad \begin{pmatrix} A'_1 \\ A_2 \end{pmatrix} \qquad \begin{pmatrix} A'_1 \\ A_2 \end{pmatrix} \qquad \begin{pmatrix} A'_1 \\ (1+A'_1)/A_2 \end{pmatrix} \qquad \begin{pmatrix} A'_1 \\ (1+A'_1)/A_2 \end{pmatrix} \qquad \begin{pmatrix} A'_1 \\ (1+A'_2)/X_1 \\ (1+X'_2) \end{pmatrix}$$

• Cluster modular group

$$\Gamma_{\varepsilon} := \left\{ \gamma = s \circ \mu_{i_1} \cdots \mu_{i_\ell} \mid s \in \mathfrak{S}_N, \ \gamma(\varepsilon) = \varepsilon \right\} / \left\{ \gamma \mid \gamma(t) = t \right\}$$

$$(\mathsf{Ex}) \stackrel{1}{\longleftarrow} \stackrel{2}{\longrightarrow} : \mu_2 \mu_1, (1,2) \mu_1, (1,2) \mu_1 \mu_2 \mu_1 \mu_2 \mu_1 = \mathsf{id} \in \Gamma_{\varepsilon}$$

• Poisson structure on $\mathbb{C}(X)$

$$\varepsilon \rightsquigarrow \{X_i, X_j\} = \varepsilon_{ij} d_j X_i X_j$$

$$\gamma \in \Gamma_{\varepsilon} \Rightarrow \gamma^* \curvearrowright \mathbb{C}(X)$$
 preserving the Poisson structure.

Applications of Γ_{ε}

- rational maps, integrable systems
 Somos 4,5, T-systems, Y-systems, discrete Painlevé eq...
- · Dilogarithm identity [Kashaev-Nakanishi 11] $s \circ \mu_{i_1} \cdots \mu_{i_\ell} = \mathrm{id} \in \Gamma_{\varepsilon} \Rightarrow \ell$ -term identity for dilog. fcn.
- \cdot (higher) Teichmüller theory of a marked surface <code>[Foch-Goncharov 03]</code> mapping class group $\subset \Gamma_{\varepsilon}$

. . . .

§2 Cluster realization of Weyl groups

• Lie algebras

$$\mathfrak{g}$$
: a fin. dim. irr. Lie alg. of rank ℓ , $\mathcal{S}:=\{1,2,\ldots,\ell\}$

$$\mathbf{C} = (C_{ij})_{i,j \in S}$$
: the Cartan matrix; $C_{ij} = \frac{2(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}$

$$\mathbf{D} = \operatorname{diag}(D_i)_{i \in \mathcal{S}}; D_i = \frac{(\alpha_i, \alpha_i)}{2}$$
 (**DC** is symmetric)

Quivers

Def (quiver $Q'_m(\mathfrak{g})$) [I-Ishibashi-Oya19]

$$\varepsilon = (\varepsilon_{ij})_{i,j \in S}; \, \varepsilon_{ij} = \begin{cases} -C_{ji} \ (i > j) \\ C_{ji} \ (i < j) \end{cases}, \, \operatorname{wt}(i) = d_i$$

 $\rightarrow Q'_m(\mathfrak{g}); I = \{v_n^i; i \in S, n \in \mathbb{Z}/m\mathbb{Z}\}$

For m > 1,

Dynkin quiver
$$\times m$$

(Ex)
$$g = A_{\ell}$$
; wt(i) = 1 ($i \in S$)

$$g = C_{\ell}; wt(i) = \begin{cases} 1 & i \in S \setminus \{\ell\} \\ 2 & i = \ell \end{cases}$$

For
$$i \in S$$
,

 P_i : an oriented circle $v_1^i \rightarrow v_2^i \rightarrow \cdots \rightarrow v_m^i \rightarrow v_1^i$

Def (quiver $Q_m(\mathfrak{g})$) [I 20] (Cf. [Hernandez-Leclerc16])

g is simply-laced: $Q_m(\mathfrak{g}) = Q'_m(\mathfrak{g})$

g is non-simply-laced ($\mathbf{D} \neq \mathbb{I}_{\ell}$):

$$Q_m(\mathfrak{g}); I = \{v_n^i; i \in S, n \in D\mathbb{Z}/D'm\mathbb{Z}\}$$

$$D := \min(D_i)_{i \in \ell}, \ D' := \max(D_i)_{i \in \ell}, \operatorname{wt}(v_n^i) = 1$$

For $i \in S$ and $\gamma_i = 1, 2, ..., D_i/D$, P_{i,γ_i} : an oriented circle in $Q_m(\mathfrak{g})$

For g, Q(g); $I = \{v_n^i; i \in S, n \in D\mathbb{Z}\}$: an infinite quiver

$Q(C_4)$:

• Weyl group action

Def

For an oriented circle P; $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_p \rightarrow v_1$,

$$M(P; \mathbf{v}_1) := \mu_{p-2} \cdots \mu_2 \mu_1$$

$$R(P; v_1) := M(P; v_1)^{-1} \circ (v_{\rho-1}, v_{\rho}) \circ \mu_{\rho} \mu_{\rho-1} \circ M(P; v_1)$$

 $\sim R(P_i, v_{\rho}^i) \text{ for } Q'_m(\mathfrak{g})$

$$R(P_i, V_n)$$
 for $Q_m(\mathfrak{g})$
 $R(P_{i,\gamma_i}, V_n^i)$ for $Q_m(\mathfrak{g}); V_n^i \in P_{i,\gamma_i}$

Remark

 $R(P, v_n)$ appeared in [Bucher 14], in studying green sequence.

Thm 1 [IIO 19]

(i)
$$R(P_i, v_n^i) \in \Gamma_{Q'_m(\mathfrak{g})}$$
.

(ii) For
$$n \neq k$$
, $R(P_i, v_n^i) = R(P_i, v_k^i)$ as elements in $\Gamma_{Q'_m(g)}$.
 $\sim R(i) := R(P_i, v_n^i)$.

(iii) R(i) ($i \in S$) generate the $W(\mathfrak{g})$ -action on $\mathbb{C}(X)$ and $\mathbb{C}(A)$; the R(i) satisfy $(R(i)R(j))^{m_{ij}} = 1$, where $m_{ii} = 1$ and for $i \neq j$

$C_{ij}C_{ji}$	0	1	2	3
m _{ij}	2	3	4	6

Remark

- \cdot For $\mathfrak{g}=A_{\ell},$ Thm 1 appeared in [I-Lam-Pylyavskyy 16].
- $p: \mathbb{C}(X) \to \mathbb{C}(A); X_v \mapsto \prod_{v' \in I} A_{v'}^{\varepsilon_{v,v'}}$: the positive map $p \mapsto R(i)^* p(X_p^i) = p(X_p^i)$ for $V_p^i \in I$.

(Ex)
$$Q_3(A_3)$$
 and $Q_3(C_3)$

$$d = \mathbf{D} = \text{diag}(1, 1, 1/2), \quad C(A_3/C_3) = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1/-2 \\ 0 & -1 & 2 \end{pmatrix},$$

$$R(2)^*(A_1^1, A_1^2, A_1^3) = \left(A_1^1, \frac{A_2^1 A_3^2 A_1^3 + A_3^1 A_1^2 A_2^3 + A_1^1 A_2^2 A_3^3}{A_2^2 A_3^2}, A_1^3\right)$$

$$R(3)^*(A_1^1, A_1^2, A_1^3) = \left(A_1^1, A_1^2, \frac{(A_2^2)^{1/2} A_3^3 + (A_3^2)^{1/2} A_1^3 + (A_1^2)^{1/2} A_2^3}{A_2^3 A_3^3}\right)$$

$$\begin{split} R(2)^*(X_1^1,X_1^2,X_1^3) &= \left(X_1^1 X_3^2 \frac{1 + X_2^2 + X_2^2 X_1^2}{1 + X_3^2 + X_3^2 X_2^2}, \frac{1 + X_1^2 + X_1^2 X_3^2}{X_3^2 (1 + X_2^2 + X_2^2 X_1^2)}, X_1^3 \left(X_1^2 \frac{1 + X_3^2 + X_3^2 X_2^2}{1 + X_1^2 + X_1^2 X_3^2} \right)^{1/2} \right) \\ R(3)^*(X_1^1,X_1^2,X_1^3) &= \left(X_1^1,X_1^2 X_3^3 \frac{1 + X_2^3 + X_2^3 X_1^3}{1 + X_3^3 + X_3^3 X_3^3}, \frac{1 + X_1^3 + X_1^3 X_3^3}{X_3^3 (1 + X_3^3 + X_3^3 X_3^3)} \right) \end{split}$$

Thm 2 [1 20]

- (i) $R(P_{i,v_i}, v_n^i) \in \Gamma_{Q_m(\mathfrak{q})}$.

- (ii) For $n \neq k$, $R(P_{i,v_i}, v_n^i) = R(P_{i,v_i}, v_k^i) \in \Gamma_{Q_m(n)}$.

 $v_i=1,\cdots,D_i/D$

the R_i satisfy $(R_i R_i)^{m_{ij}} = 1$.

- $ightharpoonup R_i := \prod R(P_{i,\gamma_i}, v_n^i).$

(iii) R_i ($i \in S$) generate the $W(\mathfrak{g})$ -action on $\mathbb{C}(X)$ and $\mathbb{C}(A)$;

- $R(P_{i,\gamma_i}, v_n^i); \gamma_i = 1, \dots, D_i/D$ are commutative.

For P; $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_p \rightarrow v_1$, $f_X(P; v_n) := 1 + \sum_{i=1}^{p-1} X_n X_{n-1} \cdots X_{n-k}$ When $D_i \geq D_i$:

$$R_{i}^{*}(X_{n}^{j}) = \begin{cases} \frac{f_{X}(i,n)}{X_{n-D_{i}}^{j}} f_{X}(i,n-2D_{i}) & i = j, \\ X_{n}^{j} \frac{X_{n-D_{i}}^{j} f_{X}(i,n-2D_{i})}{f_{X}(i,n-D_{i})} & v_{n}^{j} \leftarrow v_{n}^{j}, \\ X_{n}^{j} \frac{X_{n}^{j} f_{X}(i,n-D_{i})}{f_{X}(i,n)} & v_{n}^{j} \rightarrow v_{n}^{j}, & \text{except for } (i,j) = \begin{cases} (\ell-1,\ell); \ B_{\ell}, \\ X_{n}^{j} & \text{o/w} \end{cases}$$

where $f_X(i, n) := f_X(P_{i,\gamma_i}; v_n^i)$ for $v_n^i \in P_{i,\gamma_i}$. When $D_i < D_i$: $R_{i}^{*}(X_{n}^{j}) = \begin{cases} X_{n}^{i} \frac{X_{n-\frac{1}{2}}^{i} X_{n}^{i} f_{X}(i, n-1)}{f_{X}(i, n)} & (i, j) = \begin{cases} (\ell, \ell-1); \ B_{\ell}, \\ (3, 2); \ F_{4}, \end{cases} \\ X_{n}^{\ell} \frac{X_{n}^{\ell-1} X_{n+1}^{\ell-1} f_{X}(\ell-1, n-1)}{f_{X}(\ell-1, n+1)} & (i, j) = (\ell-1, \ell); \ C_{\ell}, \\ X_{n}^{2} \frac{X_{n}^{1} X_{n+1}^{1} X_{n+2}^{1} f_{X}(1, n-1)}{f_{V}(1, n+2)} & (i, j) = (1, 2); \ G_{2}. \end{cases}$

$$R(P_{i,\gamma_i})^*(A_n^j) = \begin{cases} f_A(i,\gamma_i)A_n^j & i=j, \ v_n^i \in P_{i,\gamma_i} \\ A_n^j & \text{o/w} \end{cases}$$
 where $(j \lhd i \text{ means that } j < i \text{ and } C_{ij} \neq 0)$

$$f_{A}(i,\gamma_{i}) = \sum_{n:v_{n}^{i} \in P_{i,\gamma_{i}}} \frac{1}{A_{n}^{i}A_{n+d_{i}}^{i}} \prod_{j:i \prec j} A_{n}^{j} \cdot \prod_{j:i \succ j} A_{n+d_{i}}^{j}$$

for all cases, except for:

$$f_{A}(i, \gamma_{i}) = \sum_{n: v_{n}^{i} \in P_{i, \gamma_{i}}} \frac{A_{n}^{i} A_{n+1}^{i}}{A_{n}^{i} A_{n+1}^{i}} \quad i = \ell, B_{\ell}, i = 2, T_{4}$$

$$f_{A}(i, 1) = \begin{cases} \sum_{n: v_{n}^{\ell} \in P_{\ell}} \frac{A_{n+\frac{1}{2}}^{i-1} A_{n}^{i-1} A_{n}^{i+1}}{A_{n}^{i} A_{n+\frac{1}{2}}^{i}} & i = \ell; B_{\ell}, i = 3; F_{4} \end{cases}$$

$$f_{A}(i, 1) = \begin{cases} \sum_{n: v_{n}^{\ell} \in P_{\ell}} \frac{A_{n+1}^{\ell-1} A_{n}^{\ell} A_{n-1}^{\ell}}{A_{n}^{\ell-1} A_{n+1}^{\ell-1}} & i = \ell - 1; C_{\ell} \end{cases}$$

$$\sum_{n: v_{n}^{1} \in P_{1}} \frac{A_{n}^{2} A_{n-1}^{2} A_{n-2}^{2}}{A_{n}^{1} A_{n+1}^{1}} & i = 1; G_{2}$$

 $f_A(i,\gamma_i) = \sum_{n,i,j,p} \frac{A_{n+\frac{1}{2}}^{i+1}A_{n+1}^{i-1}}{A_n^iA_{n+1}^i} \quad i = \ell-1; \ B_\ell, \ i = 2; \ F_4$

Remarks

- $\cdot f_X(i,n)$ corresponds to the *F*-polynomial at v_{n+1}^i for R(i) and $v_{n+D_i}^i$ for R_i .
- · In both cases of $Q_m'(\mathfrak{g})$ and $Q_m(\mathfrak{g})$, the Weyl group action on X-var is analogous to that on simple roots α_j . In fact, the induced action on $\mathbb{X}_j := \prod_{n \in \mathbb{Z}/m\mathbb{Z}} X_n^j$ or $\mathbb{X}_j := \prod_{n \in D'\mathbb{Z}/Dm\mathbb{Z}} X_n^j$ is

$$(R(i) \text{ or } R_i)^*(\mathbb{X}_j) = \begin{cases} \mathbb{X}_i^{-1} & j = i, \\ \mathbb{X}_j \mathbb{X}_i^{-C_{ij}} & j \neq i \end{cases}$$

which corresponds to

$$r_i \alpha_j = \alpha_j - C_{ij} \alpha_i; i, j \in S.$$

• Green sequenses

Q: a weighted quiver, *I*: the vertex set, $\mathbf{u} = (u_i)_{i \in I}$ Consider the tropical *X*-var in the tropical semifield:

$$\mathbb{P}_{\text{trop}}(\boldsymbol{u}) = (\{\prod_{i \in I} u_i^{m_i}; m_i \in \mathbb{Z}\}, \cdot, \oplus);$$

$$\prod_{i} u_i^{m_i} \oplus \prod_{i} u_i^{n_i} = \prod_{i} u_i^{\min(m_i, n_i)}, \quad \prod_{i} u_i^{m_i} \cdot \prod_{i} u_i^{n_i} = \prod_{i} u_i^{m_i + n_i}.$$

Fact (sign coherence) [Fomin-Zelevinsky 07]

For any sequence i in I, consider $\mu_i(Q, \mathbf{u}) = (Q', \mathbf{X}')$.

$$ightharpoonup$$
 each X -variable $X_i' = \prod_j u_j^{m_j}$ satisfies $(m_i)_{i \in I} \in (\mathbb{Z}_{\geq 0})^{|I|} (X_i' > 0)$ or $(m_i)_{i \in I} \in (\mathbb{Z}_{\leq 0})^{|I|} (X_i' < 0)$.

Def [Keller 11]

For a sequence of tropical *X*-seeds of $\mathbf{i} = (i_1, \dots, i_p)$ in *I*:

$$(Q[0], \boldsymbol{X}[0]) := (Q, \boldsymbol{u}) \stackrel{\mu_{i_1}}{\longmapsto} (Q[1], \boldsymbol{X}[1]) \stackrel{\mu_{i_2}}{\longmapsto} \cdots \stackrel{\mu_{i_p}}{\longmapsto} (Q[p], \boldsymbol{X}[p]).$$

i is green $\stackrel{\text{def}}{\Longleftrightarrow} X[k]_{i_{k+1}} > 0$ for all $k = 0, 1, \dots, p-1$.

i is maximal green $\stackrel{\text{def}}{\Longleftrightarrow}$ *i* is green and $X[p]_i < 0$ for all $i \in I$.

(Ex)
$$Q_3(A_1)$$
, $R(1) = \mu_1(2,3)\mu_3\mu_2\mu_1$

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \quad \begin{pmatrix} u_1^{-1} \\ u_2(1 \oplus u_1) \\ u_3(1 \oplus u_1^{-1})^{-1} \end{pmatrix} = \begin{pmatrix} u_1^{-1} \\ u_2 \\ u_1 u_3 \end{pmatrix} \quad \begin{pmatrix} u_1^{-1} \\ u_2^{-1} \\ u_1 u_3 \end{pmatrix} \quad \begin{pmatrix} u_3 \\ u_2^{-1} \\ u_1 u_3 \end{pmatrix} \quad \begin{pmatrix} u_3^{-1} \\ u_1^{-1} \\ u_1^{-1} \end{pmatrix}$$

 $\Rightarrow R(1)$ is maximal green.

Thm 3 [IIO 19], [I 20]

$$\cdot Q = Q'_m(\mathfrak{g})$$
:

(i)
$$R(i)$$
; $i \in S$ is green. (Cf. [Bucher 14])

(ii) For
$$w \in W(\mathfrak{g})$$
 of a reduced expression $w = r_{i_1} r_{i_2} \cdots r_{i_k}$, $R(w) := R(i_1)R(i_2)\cdots R(i_k)$ is green.

When w is the longest element $w_0 \in W(g)$, $R(w_0)$ is maximal green.

$$\cdot Q = Q_m(\mathfrak{g})$$
: with R_i ; $i \in S$, (i) and (ii) hold.

(Ex)
$$Q'_m(A_2)(=Q_m(A_2))$$
 and $w_0=r_1r_2r_1$

$$(u_i^1, u_i^2)_{i \in \mathbb{Z}_m} \overset{R(1)}{\mapsto} ((u_{i-1}^1)^{-1}, u_i^1 u_i^2)_{i \in \mathbb{Z}_m}$$

$$\overset{R(2)}{\mapsto} \big(u_{i-1}^2,\, \big(u_{i-1}^1u_{i-1}^2\big)^{-1}\big)_{i\in\mathbb{Z}_m} \overset{R(1)}{\mapsto} \big(\big(u_{i-2}^2\big)^{-1},\, \big(u_{i-1}^1\big)^{-1}\big)_{i\in\mathbb{Z}_m}$$

§3 Application to *q*-characters

• *q*-characters for $U_{\alpha}(\hat{\mathfrak{g}})$ [Frenkel-Reshetikhin 90s]

 $U_q(\hat{\mathfrak{g}})$: an affine quantum group; $q \in \mathbb{C}^{\times}$ (not a root of unity)

$$\chi_q: \mathsf{Rep}\ \mathcal{U}_q(\hat{\mathfrak{g}}) o \mathbf{Y} := \mathbb{Z}[Y_{i,a_i}^{\pm 1}]_{i \in \mathcal{S}, a_i \in \mathbb{C}^{\times}}: q\text{-character}$$

Thm [Frenkel-Reshetikhin 99]

$$\operatorname{Im} \chi_q = \bigcap_{i \in S} \left(\mathbb{Z}[Y_{j,a}^{\pm 1}]_{j \neq i, a \in \mathbb{C}^{\times}} \otimes \mathbb{Z}[Y_{i,b}(1 + A_{i,bq_i}^{-1})]_{b \in \mathbb{C}^{\times}} \right)$$

where $q_i = q^{D_i}$ and

$$A_{i,a} = Y_{i,aq_i} Y_{i,aq_i^{-1}} \prod_{j:C_{ij}=-1} Y_{j,a}^{-1} \prod_{j:C_{ij}=-2} Y_{j,aq_j}^{-1} Y_{j,aq_j^{-1}}^{-1} \prod_{j:C_{ij}=-3} Y_{j,aq_j^2}^{-1} Y_{j,a}^{-1} Y_{j,aq_j^{-2}}^{-1}.$$

Fix $a \in \mathbb{C}^{\times}/q^{D\mathbb{Z}}$, and define $(n(i) = i - 1 \text{ for 'many' } i \in S)$

$$\mathbf{Y}_a := \mathbb{C}(Y_{i,aq^{2n+n(i)}}; i \in S, n \in D\mathbb{Z}),$$

$$\mathbf{A}_a := \mathbb{C}(A_{i.ao^{2n+n(i)+D_i}}; i \in S, n \in D\mathbb{Z}) \subset \mathbf{Y}_a.$$

• q-characters on the lattice

Def

 $I = \{v_n^i; i \in S, n \in D\mathbb{Z}\}$: the vertex set of $Q(\mathfrak{g})$

$$\phi_a: \mathbf{Y}_a \to \mathbb{C}(y) := \mathbb{C}(y_i(n); v_n^i \in I); \ Y_{i,aq^{2n+n(i)}} \mapsto y_i(n)$$
$$\beta: \mathbb{C}(\mathbf{X}) \hookrightarrow \mathbb{C}(y); \ X_n^i \mapsto \phi_a(A_{i,aq^{2n+n(i)+D_i}}^{-1})$$

 $\rightsquigarrow \phi_a(\operatorname{Im}\chi_q \cap \mathbf{Y}_a)$ is

$$\underline{\boldsymbol{\mathcal{Y}}_{\chi_q}} := \bigcap_{i=0}^{\infty} \mathbb{Z}[y_j(n)^{\pm}; j \neq i, n \in D\mathbb{Z}] \otimes \mathbb{Z}[y_i(n)(1+X_n^i); n \in D\mathbb{Z}].$$

Prop. [1 20]

 β is Poisson map; the Poisson structure on $\mathbb{C}(\mathbf{X})$ (for $Q(\mathfrak{g})$) is compatible with that on \mathbf{Y}_a .

• Weyl group action on $\mathbb{C}(y)$

Fact [Frenkel-Mukhin 01]

When q is the root of unity ε , χ_q gives the character map

$$\chi_{\varepsilon}: \operatorname{\mathsf{Rep}} U^{\operatorname{res}}_{\varepsilon}(\hat{\mathfrak{g}}) o \mathbf{Y} := \mathbb{Z}[Y^{\pm 1}_{i,a_i}]_{i \in S, a_i \in \mathbb{C}^{\times}}$$
 by setting q equal to ε .

Set $\varepsilon^{2D'm} = 1$ and consider $Q_m(\mathfrak{g})$. $\mathcal{Y}_{\chi_{\varepsilon}} := \phi_a(\operatorname{Im}\chi_{\varepsilon} \cap \mathbf{Y}_{a,\varepsilon})$ is

$$\bigcap_{i \in \mathcal{O}} \mathbb{Z}[y_j(n)^\pm; j \neq i, n \in D\mathbb{Z}/D'm\mathbb{Z}] \otimes \mathbb{Z}[y_i(n)(1+X_n^i); n \in D\mathbb{Z}/D'm\mathbb{Z}].$$

Def

For $i \in S$ and $y_i(n) \in \mathbb{C}(y)$, define $r_i \curvearrowright \mathbb{C}(y)$ by

$$r_i(y_j(n)) = \begin{cases} y_i(n)X_{n-D_i}^i \frac{f_X(i, n-2D_i)}{f_X(i, n-D_i)} & j=i, \\ y_j(n) & j\neq i. \end{cases}$$

Thm 4 [I 20]

(i) For $i \in S$, we have a commuting diagram:

$$\mathbb{C}(\mathbf{X}) \xrightarrow{\beta} \mathbb{C}(y)$$

$$\downarrow_{R_{i}^{*}} \qquad \downarrow_{r_{i}}$$

$$\mathbb{C}(\mathbf{X}) \xrightarrow{\beta} \mathbb{C}(y)$$

Especially, the r_i ($i \in S$) generate $W(\mathfrak{g})$ -action on $\mathbb{C}(y)$. (ii) $\mathcal{Y}_{Y_{\mathfrak{g}}}$ is invariant under the action of $W(\mathfrak{g})$. Extension of the action

For generic q, define 'an infinite version' of $f_X(i, n)$:

$$\hat{f}_{X}(i,n) = 1 + \sum_{k=0}^{\infty} X_{n}^{i} X_{n-D_{i}}^{i} \cdots X_{n-kD_{i}}^{i} \in \mathbb{C}[[\mathbf{X}]]$$

 $\underline{\mathsf{Def}}$ For $i \in S$ and $y_i(n) \in \mathbb{C}(y)$, define $\hat{r}_i : \mathbb{C}(y) \to \widehat{\mathbb{C}}_X(y)$ by

$$\hat{\tau}_i(y_j(n)) = \begin{cases} y_i(n) X_{n-D_i}^i \frac{\hat{f}_X(i, n-2D_i)}{\hat{f}_X(i, n-D_i)} & j=i, \\ y_j(n) & j \neq i. \end{cases}$$

$$\mathbb{C}[y^{\pm}] := \mathbb{C}[y_i(n), y_i(n)^{-1}; i \in S, n \in D\mathbb{Z}]$$

 I_X : the ideal of $\mathbb{C}[y^{\pm}]$ generated by X_n^i ($i \in S, n \in D\mathbb{Z}$) via β

 $\widehat{\mathbb{C}}_X(y)$: the quot field of the completion of $\mathbb{C}[y^\pm]$ by $\lim_{k \to \infty} (\mathbb{C}[y^\pm]/I_X^k)$

Prop [I 20] \mathcal{Y}_{χ_q} is invariant under \hat{r}_i ($i \in S$).

Remarks

- \hat{r}_i is troublesome! We do not know if \hat{r}_i is realized as a mutation sequence for Q(g), if \hat{r}_i generate W(g).
- · Nevertheless we have 'restricted' $W(\mathfrak{g})$ -action on tropical X-seed induced from that of $Q_m(\mathfrak{g})$:

$$\hat{R}_i^{ ext{trop}\pm}:\mathcal{X}_{Q(\mathfrak{g})}^{i\pm}(\mathbb{P}) o\mathcal{X}_{Q(\mathfrak{g})}^{i\mp}(\mathbb{P})$$

where $\mathcal{X}_{Q(\mathfrak{g})}^{i+}(\mathbb{P}):=\{\mathbf{x}\in\mathbb{P}^{|\mathcal{I}|}; x_n^i>0\},\, \mathcal{X}_{Q(\mathfrak{g})}^{i-}(\mathbb{P}):=\{\mathbf{x}\in\mathbb{P}^{|\mathcal{I}|}; x_n^i<0\}.$

$$ightarrow \hat{R}^{\mathrm{trop}+}(w): \cap_i \mathcal{X}^{i+}_{Q(\mathfrak{g})}(\mathbb{P})
ightarrow \mathcal{X}_{Q(\mathfrak{g})}(\mathbb{P})$$
 is well defined. (as $R(w)$ for $Q_m(\mathfrak{g})$ is green)

(Cf.) Braid grp action on the ℓ -integral root lattice [Chari-Moura 05]

Question

What is the $W(\mathfrak{g})$ -action (in rep-theoretically) ?

§4 Application to lattice g-Toda field

Screening operator

$$\mathbf{Y} = \mathbb{Z}[Y_{j,a_i}^{\pm 1}]_{j \in \mathcal{S}, a_j \in \mathbb{C}^{ imes}}$$

 S_i : screening operator; $i \in S$

$$S_i: \mathbf{Y} \to \mathbf{YS}_i := \bigoplus_{b \in \mathbb{C}^\times} \mathbf{Y} \otimes S_{i,b}; \ Y_{i,a} \mapsto \delta_{i,j} Y_{i,a} S_{i,a}$$
 (Leibniz rule)

 \mathbf{YS}_i' : a quotient of \mathbf{YS}_i with relations $S_{i,aq_i^2} = A_{i,aq_i}S_{i,a}$

 $\underline{\mathsf{Thm}}$ [Frenkel-Mukhin 99] $\mathsf{Im}\,\chi_q = \mathsf{Ker}\,\cap_{i\in\mathcal{S}}\mathcal{S}_i.$

 \rightarrow lattice version on $Q(\mathfrak{g})$

$$\mathbb{C}(s) := \mathbb{C}(s_i(n); \ v_n^i \in I)$$

$$S_i: \mathbb{C}(y) \to \mathbb{C}(y)_i := \bigoplus_{n \in d\mathbb{Z}} \mathbb{C}(y) \otimes s_i(n); \ y_j(n) \mapsto \delta_{i,j} y_i(n) s_i(n)$$

$$\mathbb{C}(y)_i'$$
: a quotient of $\mathbb{C}(y)_i$ with relations $s_i(n+D_i)=(X_n^i)^{-1}s_i(n)$

$$(\mathcal{Y}_{\chi_q} \subset \operatorname{\mathsf{Ker}} \cap_{i \in \mathcal{S}} \mathcal{S}_i)$$

• The lattice Toda field

Def [IH 00]

Poisson structure on $\mathbb{C}(s)$ ($D_{ii} := \min(D_i, D_i)$):

$$\{s_i(n), s_i(m)\} = s_i(n)s_i(m); \ n \equiv m \pmod{D_i}, n < m$$

$$\{s_i(n), s_j(m)\} = -\frac{1}{2}s_i(n)s_j(m); \ C_{ij} \neq 0, \ n \equiv m \pmod{D_{ij}}, n < m$$

$$\{s_i(n), s_j(n)\} = -\frac{1}{2}s_i(n)s_j(n); \ i < j, \ C_{ij} \neq 0$$

$$\mathcal{H}_i := \sum_{n \in \mathbb{N}^{\mathbb{Z}}} s_i(n); i \in S \quad \mathcal{H} := \sum_{i \in S} \mathcal{H}_i$$

Prop [I 02]

$$\overline{(i) \ \sigma} : \mathbb{C}(\mathbf{X}) \to \mathbb{C}(s); \ X_n^i \mapsto \frac{s_i(n)}{s_i(n+D_i)} \text{ is Poisson.}$$

(ii) It holds that
$$S_i \cdot X_n^j = \{\mathcal{H}_i, X_n^j\}$$
.

$$\underline{\underline{\mathsf{Def}}}$$
 [IH 02] $\frac{\partial}{\partial t} \log X_n^i := \{\mathcal{H}, \log X_n^i\}$: lattice g-Toda field equation

$$\frac{\partial}{\partial t} \log X_n^i = \left(\sum_{j:j < i} \sum_{k=1}^{-C_{ji}} s_j(n+kD_{ij})\right) - s_i(n) - s_i(n+d_i)$$

$$+\left(\sum_{i:j>i}\sum_{k=0}^{-C_{ij}-1}s_{j}(n+kD_{ij})\right)$$
: lattice g-Toda field eq

$$\longrightarrow \frac{\partial^2}{\partial t \partial z} \log s_i = \sum_{k \in S} \frac{C_{ji}}{d_i} s_j : g\text{-Toda field eq}$$

with continuous limit as $\log X_n^i \to -d_i \frac{\partial}{\partial z} \log s_i$

Fact

Let $\tau_i(n)$; $v_n^i \in I$ be the τ -function satisfy

$$D_t\tau_i(n)\cdot\tau_i(n+d_i)=\prod_{i}\sum_{j=1}^{-C_{ij}}\tau_j(n+kd_{ij})\cdot\prod_{j}\sum_{i=1}^{-C_{ij}-1}\tau_j(n+kd_{ij})=:T_i(n).$$

Then $s_i(n) = \frac{T_i(n)}{\tau_i(n)\tau_i(n+d_i)}$ satisfy the lattice g-Toda eq.

Prop [I 20]

$$\overline{\phi: \mathbb{C}}(\tau) \to \mathbb{C}(\mathbf{A}); \ \tau_i(n) \mapsto A^i_{n-d_i}
\rho_\tau: \mathbb{C}(\mathbf{X}) \to \mathbb{C}(\tau); \ X^i_n \mapsto \frac{s_i(n)}{s_i(n+D_i)} \quad (\text{with } s_i(n) = \frac{T_i(n)}{\tau_i(n)\tau_i(n+d_i)})$$

Then the following diagram is commutative:

Especially, A-var for $Q(\mathfrak{g})$ are the τ -function for the lattice \mathfrak{g} -Toda eq.

Thank you!