Groupe IPESUP Année 2022-2023

Examen n°1

(Temps: 4 heures)

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. Les étudiants sont invités à encadrer dans la mesure du possible les résultats de leurs calculs. Les réponses doivent toutes être soigneusement justifiées. Les calculatrices sont interdites.

Barème indicatif :		
• Exercice 1		
• Exercice 2		
• Exercice 3	5 points	

Groupe IPESUP Année 2022-2023

Exercice 1. (Temps: 1 heure et 30 minutes)

- 1. Étudier le sens de variation de la fonction g définie pour tout t de \mathbb{R} par : $g(t) = e^t t 1$.
- 2. Quel est le minimum de la fonction g sur \mathbb{R} ?
- 3. En déduire les inégalités suivantes :
 - (a) pour tout réel t:

$$e^t \ge 1 + t \qquad \qquad e^t > t \qquad \qquad -te^{-t} > -1$$

(b) pour tout réel t tel que t > -1:

$$\ln(1+t) \le t$$

(c) pour tout réel x:

$$\ln(1 - xe^{-x}) \le -xe^{-x}$$

4. On considère la fonction f définie par la relation :

$$f(x) = x^2 - 2\ln(e^x - x)$$

- (a) Montrer que f est définie sur \mathbb{R} et que pour tout $x \in \mathbb{R}$, $f(x) = x^2 2x 2\ln(1 xe^{-x})$.
- (b) En déduire la limite de f en $+\infty$.
- (c) Montrer que pour tout x < 0: $f(x) = x^2 \left(1 2 \frac{\ln(-x)}{(-x)^2} \right) 2 \ln \left(1 \frac{e^x}{x} \right)$
- (d) En déduire la limite de f en $-\infty$.
- (e) Justifier que f est dérivable sur \mathbb{R} et calculer f'. Montrer que pour tout réel x:

$$f'(x) = \frac{2(x-1)(e^x - x - 1)}{e^x - x}$$

Dresser le tableau de variation de la fonction f.

- (f) On considère la parabole (\mathscr{P}) d'équation $y = x^2 2x$ et (\mathscr{C}) la courbe représentative de f. Tracer dans un même repère orthonormal (unité : 3cm) l'allure des courbes (\mathscr{P}) et (\mathscr{C}) et les tangentes horizontales (\mathscr{D}) et (\mathscr{D}') à (\mathscr{C}).
- (g) Montrer que (\mathscr{P}) et (\mathscr{C}) sont asymptotes en $+\infty$, c'est-à-dire que la limite en $+\infty$ de $f(x)-x^2-2x$ est nulle. Étudier les positions relatives des courbes (\mathscr{P}) et (\mathscr{C}) .
- 5. Soit n un entier naturel, on pose :

$$u_n = \int_0^n x e^{-x} dx$$

- (a) Démontrer que la suite $(u_n)_{n\geq 0}$ est croissante.
- (b) Calculer u_n pour tout $n \in \mathbb{N}$. On pourra d'abord calculer la dérivée de $h: x \longmapsto -(x+1)e^{-x}$.
- (c) Déterminer la limite de la suite u.
- 6. L'aire du domaine (en unités d'aire) limité par les droites d'équation x = 0, x = n, entre la parabole (\mathscr{P}) et la courbe (\mathscr{C}) est définie par :

$$I_n = -2\int_0^n \ln(1 - xe^{-x}) dx$$

Groupe IPESUP Année 2022-2023

- (a) Montrer en utilisant certaines des questions précédentes que $I_n \geq 2u_n$.
- (b) On admet que la suite (I_n) converge vers une limite l. Montrer que : $l \geq 2$.

Exercice 2. (Temps: 1 heure et 20 minutes)

On définit la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ par $F_0=0,\,F_1=1$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ F_{n+2} = F_{n+1} + F_n$$

- 1. Déterminer la liste des 10 premiers nombres de Fibonacci (de F_1 à F_{10}).
- 2. Montrer que : $\forall n \in \mathbb{N}, n \geq 6 \Rightarrow F_n > n$. Que peut-on en déduire pour la suite $(F_n)_{n \in \mathbb{N}}$?
- 3. Montrer que : $\forall n \in \mathbb{N}, \ n \geq 2 \Rightarrow F_n < F_{n+1} \leq 2F_n$.
- 4. Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=1}^n F_k = F_{n+2} 1$
- 5. Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=1}^n F_k^2 = F_n F_{n+1}$
- 6. Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=1}^{2n-1} F_k F_{k+1} = F_{2n}^2$
- 7. Montrer que : $\forall n \in \mathbb{N}^*, F_{2n} = F_{n+1}^2 F_{n-1}^2$ et $F_{2n+1} = F_{n+1}^2 + F_n^2$.
- 8. Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=0}^n \binom{2n-k}{k} = F_{2n+1}$ et $\sum_{k=0}^n \binom{2n+1-k}{k} = F_{2n+2}$
- 9. Montrer que si l'on pose : $\varphi = \frac{1+\sqrt{5}}{2}$: $\forall n \in \mathbb{N}^*, F_{n-1} + \varphi F_n = \varphi^n$.
- 10. Montrer que si l'on pose : $\overline{\varphi} = \frac{1 \sqrt{5}}{2}$: $\forall n \in \mathbb{N}, F_n = \frac{\varphi^n \overline{\varphi}^n}{\varphi \overline{\varphi}}$.

Exercice 3. (Temps: 1 heure et 10 minutes)

1. Résoudre dans \mathbb{R} :

(a)
$$\sqrt{x-9} + \sqrt{x-24} = x$$

(b)
$$x - 1 < \sqrt{x^2 - 2}$$

(c)
$$|(x-3)(x-5)| > x-3$$

(d)
$$|x| + |x - 1| + |x - 2| \le 6$$

2. En raisonnant par équivalences, résoudre les inéquations :

(a)
$$|1 - x| \le \frac{x}{2 - x}$$

(b)
$$x + 1 \le \sqrt{x + 2}$$

- 3. (a) Montrer que toute fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ peut s'écrire comme la somme d'une fonction polynomiale de degré au plus 2 et d'une fonction s'annulant en -1, 0 et 1. Y a-t-il unicité?
 - (b) Montrer que toute fonction continue $f:[0,1] \longrightarrow \mathbb{R}$ est la somme d'une fonction linéaire $(x \longmapsto ax)$ et d'une fonction d'intégrale nulle sur [0,1]. Y a-t-il unicité?