J. - 16 8

PATENT ABSTRACTS OF JAPAN

(I1)Publication number:

04-371146

(43)Date of publication of application: 24.12.1992

61) htC l

A61C 8/00 A61L 27/00

Q1)Application number: 03-242899

(22)Date of filing:

18.06.1991

(71)Applicant:

ADVANCE CO LTD

(72) Inventor:

AOKIH DEKI AKAO MASARU HATA M HARU HAYASHIYASUSHI

YOSH ZAWA MASAH KO

64) MANUFACTURE OF MPLANT

67)Abstract:

PURPOSE: To provide a method for manufacturing in a short time and with certainty an implant comprising an apatite type ceram ics covering byer formed on the surface of a core.

CONSTITUTION: A method for manufacturing an implant includes the steps of covering a core with a calcium phosphate type compound, and converting the covering layer into an apatite type ceramics layer through hydrothermal treatments.

.EGAL STATUS

[Date of request for exam nation]

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of

rejection or application converted registration]

Date of final disposal for application]

Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

.

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平4-371146

(43)公開日 平成4年(1992)12月24日

(51) Int.Cl.5

識別記号 庁内整理番号

技術表示箇所

A 6 1 C 8/00

Z 7108-4C

A61L 27/00 J 7038-4C

審査請求 未請求 請求項の数1(全 3 頁)

特曆平3-242899	(71)出願人	000126757
		株式会社アドバンス
(22)出願日 平成3年(1991)6月18日		東京都中央区日本橋小舟町5番7号
	(72)発明者	青木 秀希
		東京都品川区東五反田3-16-24 島津山
		ホームズ
	(72)発明者	赤尾膀
		神奈川県川崎市幸区戸手本町1-137
	(72)発明者	秦 美治
		東京都東村山市富士見町1-2-54富士見
		台4-207
		最終頁に続く
		平成3年(1991)6月18日 (72)発明者 (72)発明者

(54) 【発明の名称】 インプラントの製造方法

(57)【要約】

[目的] 芯材表面にアパタイト系セラミックス被優層 を形成したインプラントを短時間で確実に製造する方法 を提供する。

[構成] 芯材をリン酸カルシウム系化合物で被覆し、 水熱処理により該被覆層をアパタイト系セラミックス層 に変換することを特徴とするインプラントの製造方法。

1

【特許請求の範囲】

٠ ، ٠٠ , ٨٠

【請求項1】芯材をリン酸カルシウム系化合物で被覆 し、水熱処理により該被程層をアパタイト系セラミック ス層に変換することを特徴とするインプラントの製造方

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はインプラントの製造方法 に関する。

[0002]

【従来の技術】金属基材上に水酸アパタイトをコーティ ングする方法としては、

①水酸アパタイトを原料としたプラズマ溶射法。特公昭 58-39533号、特開昭62-34566号公報な

②カルシウム塩とリン酸塩とを主体とする粉末を原料と し、プラズマ溶射法により皮膜を形成し、水蒸気雰囲気 中、あるいは水中に浸漬することで水酸アパタイトに変 換する方法。特開昭63-93851号広報

機溶媒強布液を、金属基材表面に塗布し過熱焼成するこ とで、水酸アパタイト皮膜を形成する方法(熱分解 法)。特開昭64-86975などが上げられる。

[0003]

【発明が解決しようとする課題】前記①②のブラズマ溶 射法により水酸アパタイト被膜(被覆)を金属基板上に 形成する方法はプラズマ溶射の原理上、高温冷却の行程 を経るため分解傾向となり、

- ・酸化カルシウム、リン酸4カルシウムといったアルカ リ成分が残留すること
- ・非晶質層が生成すること
- ・上記アルカリ成分、非晶質層は溶解性が高く、ハイド ロキシアパタイト(HAP)被膜層そのものが溶解し易 くなり、生体内での長期安定性に問題があること、また 溶解の過程で脆弱化してしまうこと、さらに生体内にお いて局所的にpHが上昇する恐れがあり、生体親和性の 点で問題があること
- ・HAP層について言えば、HAP層を剥離粉砕の後の IR吸収スペクトルは水酸基に由来する吸収ピークが観 察されず、化学量論的水酸アパタイトとは言えない為、 化学的安定性に問題があることなどの問題がある。前記 ③の熱分解法に関する問題点は、
- ・基材そのものを大気中で焼成する為、基材とHAP被 膜層の間に酸化被膜層が存在し、焼成条件によってはそ の酸化被膜層は脆く、生体中でHAP被膜層が完全に溶 解された後戯出した場合、マクロファージや異物巨細胞 を誘起し異物反応の原因となる可能性があることであ る。

その他スパッタリング、CVD法などは結晶性の良いリ

的にまだ確立されていない。

[0004]

【課題を解決するための手段】上記に鑑み本発明は、芯 材(基材)にプラズマ溶射法、熱分解法、スパッタリン グ法等により、該被覆層を形成した後、水熱処理を施す ことによって、最外層もしくは被覆層が確実で且つ安定 した化学量論的水酸アパタイトおよびアパタイト系セラ ミックス層を有するインプラントを得ることを実現し た。尚、本発明では、被覆と被膜とコーティングとを同 10 義的に使用した。

2

【0005】本発明の特徴

芯材(基材)にプラズマ溶射法、熱分解法、スパッタリ ング法等にてリン酸カルシウム被覆層を形成した後、該 被覆層をカルシウムイオン、リン酸イオンの共存する水 溶液あるいは、リン酸カルシウム水溶液あるいは蒸留水 中で80~200℃、0.5~100Hrの条件で水熱 処理を行った材料は、水酸アパタイトへと結晶構造が移 転し、X線回折法によると非常に結晶性の高い水酸アパ タイト単一層が得られ、IR吸光度法、ラマン分光法に ③有機カルシウム化合物、有機リン化合物を溶解した有 20 よると水酸基による吸収が明らかに観察された。また、 このようにして得られた被覆層は生理食塩液、疑似体液 に対する溶解性が同程度の表面積を有する化学量論的水 酸アパタイト焼結体と比べほば同程度となり、化学的に 極めて安定なものが得られた。さらに上記各手法によっ て形成されたリン酸カルシウム被覆層をアルカリ金属ア ルカリ土類金属イオンなどの金属イオンと炭酸、硝酸、 硫酸、ほう酸、ハロゲンイオンなどの陰イオンが共存す る、あるいはこれらのイオンが単独に存在する溶液中で 同様に水熟処理を行った材料は、各種イオンを含有する 30 アパタイト構造となり、新規のインプラント材が得られ た。

【0006】インプラント材の説明

本発明でインプラントとは、人工歯根、人工骨、骨プレ ート等生体硬組織に対する代替、補綴、補強物等を示 す。芯材とは、上記インプラントによって形状が異なる が別名で基材と称することもある。材質としては、Ti 系合金、SUSの基板あるいは芯材、セラミックス等を 示す。リン酸カルシウム系化合物とはα又はβリン酸三 カルシウム(TCP)、リン酸八カルシウム、非晶質リ 40 ン酸カルシウム等の単独、あるいは複数からなるものを 示す。リン酸カルシウム被覆層の形成手段は、プラズマ 溶射法、焼付法、熱分解法、スパッタリング法、CV D、PVD法などが上げられる。尚、特定の被覆手段に 限定されるものではない。水熱処理とは、カルシウムイ オン、リン酸イオンが共存する水溶液等の水中にリン酸 カルシウム被覆インプラント材を浸漬、密封し、加熱す る事であり、本方法にて被罹層をより化学量論的水酸ア パタイトとすることを示すものである。尚、目的とする アパタイト層によって、条件および水熱処理溶液が異な ン酸カルシウムを得ることが非常に困難である為、技術 50 るが、主に水酸アパタイト単一層を得るためにはカルシ .2

ウムイオン、リン酸イオンの存在する溶液、あるいはリ ン酸カルシウム水溶液、あるいは蒸留水中とし、温度は 200℃以内、時間は100Hr以内とすることが望ま しい。本発明の場合、水熱処理溶液の成分の調整、処理 温度、処理時間の設定が容易となるため、これら水熱処 理上の数値は総じて環境と称するものとする。アパタイ ト系セラミックスとは、上述した水熱処理の水溶液等の 成分を操作することにより、Ca以外の金属イオンとP O₄ 以外の陰イオンを一部置換したアパタイト系セラミ ックス層を示す。また、被覆層を水酸アパタイト以外の 10 ゲル $pH5.5 \sim 12.5$ 中に浸漬させ、密封し、80アパタイト系セラミックス層とする場合もある。

[0007]

أحظم بخريم

【実施例】本発明の一実施例を示す製造方法を次に示 す。リン酸カルシウム被覆層の形成方法をプラズマ溶射 法とし、溶射原料粉をTCP粉末として金属基材、ある いは芯材にプラズマ溶射を施すと、TCP-金属の複合 材が得られる。このようにして得られた複合材をpH6 ~12のCa²⁺、PO₄³⁻イオンが共存する溶液、 あるいはリン酸カルシウム水溶液 p H 5. 5~12.5 を行う。処理時間は100Hr以内、以上の水熱処理の 後、TCP層はHAP層へと結晶構造が転位し、より化 学量論的で化学的に安定なHAP層が得られる。

【0008】次に他の実施例について説明する。リン酸 カルシウム被覆層の形成方法を熱分解法とする。ただし 焼成温度を金属基材の酸化が激しくない500℃とし、 5Hrの焼成により炭素源を完全に焼成させる。このよ うにして得られた複合材をpH6~12のCa²⁺、P ○4 3 - イオンが共存する溶液、あるいはリン酸カルシ ウム水溶液ゲルpH5、5~12、5中に浸漬させ、密 30 がアパタイト系セラミックス層であってもよい。 封し、80~200℃に置き水熱処理を行う。処理時間 は100H r 以内、以上の水熱処理により、より化学量 論的で化学的に安定なHAP層が得られる。

【0009】次に他の実験例について説明する。リン酸 カルシウム被覆層の形成方法をプラズマ溶射法とし、溶 射原料粉をTCP粉末として金属基材、あるいは芯材に プラズマ溶射を施すと、TCP-金属の複合材が得られ る。このようにして得られた複合材を炭酸カルシウムゲ ル中で水熱処理を行う。処理温度は80~200℃、処 理時間は100Hr以内とする。以上の処理で水酸アパ タイト構造の水酸基の位置に、炭酸が一部置換したアパ タイト被覆層と金属基材との複合材が得られる。

【0010】次に他の実験例について説明する。溶射原 料を α -TCPあるいは β -TCP粉末として金属基 材、あるいは芯材にプラズマ溶射を施すと、α-TCP 溶射層-金属の複合材が得られる。このようにして得ら れた複合材をpH6~12のCa²⁺、PO₄³⁻イオ ンが共存する水溶液、あるいはリン酸カルシウム水溶液 ~200℃に置き水熱処理を行う。処理時間は100H r以内、以上の水熱処理の後、α-TCP層はHAP層 へと結晶構造が変換し、より化学量論的で化学的に安定 なHAP層が得られる。水熱処理時間の制御により(例 えばpH6~12のCa²⁺、PO₄³⁻イオンの共存 水溶液中120℃1、5Hr)表面がHAPへ転化した 複合材が得られる。

【0011】次に他の実験例について説明する。人工歯 根を目的としたTiペースの表面をサンドプラスト、あ 中に浸漬させ、密封し、 $80\sim200$ ℃に置き水熱処理 20 るいはビーズプラスト、あるいは酸処理等により表面を 粗し、粒度分布が30~60μmのβ-TCP粉末を原 料としてプラズマ溶射を行うとコーティング層が α-T CPとなる。その後、湿式法により合成したHAPを水 に溶解させたHAPゲル中にHAP粒子が人工歯根に直 接触れる事のないように浸渍させ、120℃で30Hr 水熱処理を行うと、コーティング層がα-ΤCP層から HAP層へと変換した複合材が得られる。尚、水熱処理 を施して生成したアパタイト系セラミックス層は、少な くとも最外層に形成されればよいが、勿論、被覆層全体

[0012]

【発明の効果】以上詳述の如く本発明は、リン酸カルシ ウム被憂層の形成方法を問わず、化学的に安定な水酸ア パタイト層等に示されるアパタイト系セラミックス層が 得られ、水熱処理の環境を変えることで、金属イオン、 陰イオンが一部置換したアパタイト系セラミックス層の 形成が可能となる。しかも極短時間のうちに且つ確実に 変換が行われることから、量産上重要な効果を奏出す る.

フロントページの続き

(72)発明者 林 靖

東京都府中市白糸台1-9-11 アテナ白 糸台102号

(72)発明者 吉澤 雅彦 神奈川県相模原市二本松4-19-10