```
In [1]: import os
    import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt
    %matplotlib inline

In [2]: os.getcwd()

Out[2]: 'C:\\Users\\Mahesh\\OneDrive\\Desktop\\DATA SET")

In [4]: os.getcwd()

Out[4]: 'C:\\Users\\Mahesh\\OneDrive\\Desktop\\DATA SET'

In [5]: os.chdir("C:\\Users\\Mahesh\\OneDrive\\Desktop\\DATA SET")
```

Out[6]:

|     | STATE/UT              | CRIME<br>HEAD                       | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   | 2(             |
|-----|-----------------------|-------------------------------------|--------|--------|--------|--------|--------|--------|--------|----------------|
| 0   | ANDHRA<br>PRADESH     | RAPE                                | 1150   | 1340   | 1237   | 1443   | 1415   | 1360   | 1436   | 18             |
| 1   | ARUNACHAL<br>PRADESH  | RAPE                                | 51     | 61     | 35     | 56     | 38     | 40     | 57     |                |
| 2   | ASSAM                 | RAPE                                | 928    | 1019   | 1188   | 1233   | 1406   | 1290   | 1477   | 14             |
| 3   | BIHAR                 | RAPE                                | 1400   | 1304   | 1120   | 1157   | 1455   | 1451   | 1816   | 14             |
| 4   | CHHATTISGARH          | RAPE                                | 1134   | 1214   | 1020   | 1144   | 1107   | 1211   | 1146   | 11             |
|     |                       |                                     |        |        |        |        |        |        |        |                |
| 451 | DELHI                 | TOTAL<br>CRIMES<br>AGAINST<br>WOMEN | 3124   | 3080   | 4789   | 5196   | 5853   | 6207   | 5648   | 3 <sup>.</sup> |
| 452 | LAKSHADWEEP           | TOTAL<br>CRIMES<br>AGAINST<br>WOMEN | 0      | 3      | 3      | 1      | 0      | 1      | 2      |                |
| 453 | PUDUCHERRY            | TOTAL<br>CRIMES<br>AGAINST<br>WOMEN | 223    | 246    | 221    | 173    | 191    | 260    | 337    | ,              |
| 454 | TOTAL (UTs)           | TOTAL<br>CRIMES<br>AGAINST<br>WOMEN | 3621   | 3588   | 5289   | 5792   | 6434   | 6922   | 6435   | 37             |
| 455 | TOTAL (ALL-<br>INDIA) | TOTAL<br>CRIMES<br>AGAINST<br>WOMEN | 243589 | 247981 | 239200 | 261322 | 266955 | 279823 | 310808 | 323!           |

456 rows × 14 columns

4

In [7]: d.head()

Out[7]:

|   | STATE/UT             | CRIME<br>HEAD | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
|---|----------------------|---------------|------|------|------|------|------|------|------|------|------|------|------|
| 0 | ANDHRA<br>PRADESH    | RAPE          | 1150 | 1340 | 1237 | 1443 | 1415 | 1360 | 1436 | 1531 | 1487 | 1761 | 1758 |
| 1 | ARUNACHAL<br>PRADESH | RAPE          | 51   | 61   | 35   | 56   | 38   | 40   | 57   | 37   | 60   | 49   | 47   |
| 2 | ASSAM                | RAPE          | 928  | 1019 | 1188 | 1233 | 1406 | 1290 | 1477 | 1445 | 1644 | 1629 | 1470 |
| 3 | BIHAR                | RAPE          | 1400 | 1304 | 1120 | 1157 | 1455 | 1451 | 1816 | 1464 | 1086 | 892  | 1185 |
| 4 | CHHATTISGARH         | RAPE          | 1134 | 1214 | 1020 | 1144 | 1107 | 1211 | 1146 | 1108 | 1128 | 1198 | 1257 |
| 4 |                      |               |      |      |      |      |      |      |      |      |      |      | •    |

In [8]: d.isnull().sum()

dtype: int64

```
d.info()
 In [9]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 456 entries, 0 to 455
         Data columns (total 14 columns):
                           Non-Null Count Dtype
              Column
              ____
                           -----
                                           ____
          0
               STATE/UT
                           456 non-null
                                           object
              CRIME HEAD
                          456 non-null
          1
                                           object
          2
              2001
                           456 non-null
                                           int64
           3
              2002
                           456 non-null
                                           int64
          4
              2003
                           456 non-null
                                           int64
          5
              2004
                           456 non-null
                                           int64
          6
              2005
                           456 non-null
                                           int64
          7
              2006
                           456 non-null
                                           int64
          8
              2007
                           456 non-null
                                           int64
          9
              2008
                           456 non-null
                                           int64
          10 2009
                           456 non-null
                                           int64
          11 2010
                           456 non-null
                                           int64
          12 2011
                           456 non-null
                                           int64
          13 2012
                           456 non-null
                                           int64
         dtypes: int64(12), object(2)
         memory usage: 50.0+ KB
         years_title=[str(i) for i in range(2001,2013)]
In [10]:
         years_title
Out[10]: ['2001',
           '2002',
           '2003',
           '2004',
           '2005',
           '2006',
           '2007'
           '2008',
           '2009',
           '2010',
           '2011',
           '2012']
         STATES_OF_INDIA=d['STATE/UT'].unique()
In [11]:
         STATES_OF_INDIA=STATES_OF_INDIA[:-4]
         STATES_OF_INDIA
Out[11]: array(['ANDHRA PRADESH', 'ARUNACHAL PRADESH', 'ASSAM', 'BIHAR',
                 'CHHATTISGARH', 'GOA', 'GUJARAT', 'HARYANA', 'HIMACHAL PRADESH',
                 'JAMMU & KASHMIR', 'JHARKHAND', 'KARNATAKA', 'KERALA',
                 'MADHYA PRADESH', 'MAHARASHTRA', 'MANIPUR', 'MEGHALAYA', 'MIZORAM',
                 'NAGALAND', 'ODISHA', 'PUNJAB', 'RAJASTHAN', 'SIKKIM',
                 'TAMIL NADU', 'TRIPURA', 'UTTAR PRADESH', 'UTTARAKHAND',
                 'WEST BENGAL', 'TOTAL (STATES)', 'A & N ISLANDS', 'CHANDIGARH',
                 'D & N HAVELI', 'DAMAN & DIU', 'DELHI'], dtype=object)
```

```
TYPES OF CASES=d['CRIME HEAD'].unique()
In [12]:
          TYPES_OF_CASES=TYPES_OF_CASES[:-1]
          TYPES_OF_CASES
Out[12]: array(['RAPE', 'KIDNAPPING AND ABDUCTION', 'DOWRY DEATHS',
                  'ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY',
                  'INSULT TO THE MODESTY OF WOMEN',
                  'CRUELTY BY HUSBAND OR HIS RELATIVES (IPC SECTION 498A)',
                  'IMPORTATION OF GIRLS FROM FOREIGN COUNTRY',
                  'IMMORAL TRAFFIC (P) ACT', 'DOWRY PROHIBITION ACT',
                  'INDECENT REPRESENTATION OF WOMEN (P) ACT',
                  'COMMISSION OF SATI (P) ACT'], dtype=object)
In [13]: for state in STATES OF INDIA:
              fig=plt.figure(figsize=(12,8),dpi=80,facecolor='w',edgecolor='k')
              plt.title(state)
              plt.xlabel('Years')
              plt.ylabel('No of Cases')
              for case in TYPES OF CASES:
                  temp_df=d[(d['STATE/UT']==state)&(d['CRIME HEAD']==case)]
                  N cases=[temp df[c].values[0] for c in years title]
                  plt.plot(years_title,N_cases)
                  plt.legend(TYPES_OF_CASES)
          C:\Users\Mahesh\AppData\Local\Temp/ipykernel 19336/600561387.py:2: Runtim
          eWarning: More than 20 figures have been opened. Figures created through
          the pyplot interface (`matplotlib.pyplot.figure`) are retained until expl
          icitly closed and may consume too much memory. (To control this warning,
          see the rcParam `figure.max_open_warning`).
            fig=plt.figure(figsize=(12,8),dpi=80,facecolor='w',edgecolor='k')
                                               ANDHRA PRADESH
            20000
            15000
                                                     KIDNAPPING AND ABDUCTION
                                                     DOWRY DEATHS
                                                     ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY
                                                     INSULT TO THE MODESTY OF WOMEN
                                                     CRUELTY BY HUSBAND OR HIS RELATIVES (IPC SECTION 498A)
                                                     IMPORTATION OF GIRLS FROM FOREIGN COUNTRY
            10000
                                                     IMMORAL TRAFFIC (P) ACT
```

```
In [14]: fig=plt.figure(figsize=(20,10),dpi=80,facecolor='w',edgecolor='k')
    plt.title('Total crime year wise')
    plt.xlabel('years')
    plt.ylabel('number of cases')
    for state in STATES_OF_INDIA:
        temp_df=d[(d['STATE/UT']==state)&(d['CRIME HEAD']=='TOTAL CRIMES AGAINST Work of the component of the compone
```



```
In [15]: print('Dataset:')
    for col_name in d.columns:
        if (d[col_name].dtypes)=='object':
            unique_cat=len(d[col_name].unique())
            print("Feature {col_name} has {unique_cat}".format(col_name=col_name, col_name).
```

Dataset:

Feature STATE/UT has 38
Feature CRIME HEAD has 12

In [16]: d

Out[16]:

|     | STATE/UT              | CRIME<br>HEAD                       | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   | 2(             |
|-----|-----------------------|-------------------------------------|--------|--------|--------|--------|--------|--------|--------|----------------|
| 0   | ANDHRA<br>PRADESH     | RAPE                                | 1150   | 1340   | 1237   | 1443   | 1415   | 1360   | 1436   | 18             |
| 1   | ARUNACHAL<br>PRADESH  | RAPE                                | 51     | 61     | 35     | 56     | 38     | 40     | 57     |                |
| 2   | ASSAM                 | RAPE                                | 928    | 1019   | 1188   | 1233   | 1406   | 1290   | 1477   | 14             |
| 3   | BIHAR                 | RAPE                                | 1400   | 1304   | 1120   | 1157   | 1455   | 1451   | 1816   | 14             |
| 4   | CHHATTISGARH          | RAPE                                | 1134   | 1214   | 1020   | 1144   | 1107   | 1211   | 1146   | 1′             |
|     |                       |                                     |        |        |        |        |        |        |        |                |
| 451 | DELHI                 | TOTAL<br>CRIMES<br>AGAINST<br>WOMEN | 3124   | 3080   | 4789   | 5196   | 5853   | 6207   | 5648   | 3 <sup>.</sup> |
| 452 | LAKSHADWEEP           | TOTAL<br>CRIMES<br>AGAINST<br>WOMEN | 0      | 3      | 3      | 1      | 0      | 1      | 2      |                |
| 453 | PUDUCHERRY            | TOTAL<br>CRIMES<br>AGAINST<br>WOMEN | 223    | 246    | 221    | 173    | 191    | 260    | 337    |                |
| 454 | TOTAL (UTs)           | TOTAL<br>CRIMES<br>AGAINST<br>WOMEN | 3621   | 3588   | 5289   | 5792   | 6434   | 6922   | 6435   | 37             |
| 455 | TOTAL (ALL-<br>INDIA) | TOTAL<br>CRIMES<br>AGAINST<br>WOMEN | 243589 | 247981 | 239200 | 261322 | 266955 | 279823 | 310808 | 323            |

456 rows × 14 columns

4

In [18]: from sklearn import preprocessing
lab=preprocessing.LabelEncoder()
d['CRIME HEAD']=lab.fit\_transform(d['CRIME HEAD'])
d

## Out[18]:

|     | STATE/UT              | CRIME<br>HEAD | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   | 2008   |
|-----|-----------------------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0   | ANDHRA<br>PRADESH     | 10            | 1150   | 1340   | 1237   | 1443   | 1415   | 1360   | 1436   | 1531   |
| 1   | ARUNACHAL<br>PRADESH  | 10            | 51     | 61     | 35     | 56     | 38     | 40     | 57     | 37     |
| 2   | ASSAM                 | 10            | 928    | 1019   | 1188   | 1233   | 1406   | 1290   | 1477   | 1445   |
| 3   | BIHAR                 | 10            | 1400   | 1304   | 1120   | 1157   | 1455   | 1451   | 1816   | 146∠   |
| 4   | CHHATTISGARH          | 10            | 1134   | 1214   | 1020   | 1144   | 1107   | 1211   | 1146   | 1108   |
|     |                       |               |        |        |        |        |        |        |        | ••     |
| 451 | DELHI                 | 11            | 3124   | 3080   | 4789   | 5196   | 5853   | 6207   | 5648   | 3115   |
| 452 | LAKSHADWEEP           | 11            | 0      | 3      | 3      | 1      | 0      | 1      | 2      | 2      |
| 453 | PUDUCHERRY            | 11            | 223    | 246    | 221    | 173    | 191    | 260    | 337    | 191    |
| 454 | TOTAL (UTs)           | 11            | 3621   | 3588   | 5289   | 5792   | 6434   | 6922   | 6435   | 3724   |
| 455 | TOTAL (ALL-<br>INDIA) | 11            | 243589 | 247981 | 239200 | 261322 | 266955 | 279823 | 310808 | 32351( |

456 rows × 14 columns

In [19]: from sklearn.cluster import KMeans
kmeans=KMeans(n\_clusters=9)
kmeans.fit(d.iloc[:,1:])

Out[19]: KMeans(n\_clusters=9)

In [21]: kmeans.cluster\_centers\_

```
Out[21]: array([[6.73684211e+00, 9.45142105e+03, 9.53452632e+03, 9.55673684e+03,
                 9.86721053e+03, 1.01694737e+04, 1.04397895e+04, 1.12898421e+04,
                 1.16063158e+04, 1.16904737e+04, 1.20100526e+04, 1.27533158e+04,
                 1.42036842e+04],
                 [1.10000000e+01, 2.41778500e+05, 2.46187000e+05, 2.36555500e+05,
                 2.58426000e+05, 2.63738000e+05, 2.76362000e+05, 3.07590500e+05,
                 3.21648000e+05, 3.33711500e+05, 3.43533000e+05, 3.61820500e+05,
                 3.92121000e+05],
                 [5.43163539e+00, 1.78694370e+02, 1.93235925e+02, 1.85713137e+02,
                 2.00646113e+02, 2.17603217e+02, 2.23085791e+02, 2.31351206e+02,
                 2.16801609e+02, 2.17672922e+02, 2.29128686e+02, 2.32343164e+02,
                 2.51718499e+02],
                 [2.00000000e+00, 1.08837000e+05, 1.12495000e+05, 1.09259500e+05,
                 1.24357000e+05, 1.26188000e+05, 1.35427500e+05, 1.54949000e+05,
                 1.64423500e+05, 1.74021000e+05, 1.79944500e+05, 1.80242500e+05,
                 1.97194500e+05],
                 [1.10000000e+01, 2.64090000e+04, 2.83665000e+04, 2.92185000e+04,
                 2.97040000e+04, 3.26460000e+04, 3.34285000e+04, 3.55805000e+04,
                 3.71105000e+04, 3.87800000e+04, 3.94735000e+04, 3.87045000e+04,
                 4.01680000e+041,
                 [3.66666667e+00, 4.19986667e+04, 4.03643333e+04, 3.58513333e+04,
                 3.97473333e+04, 3.94793333e+04, 4.13096667e+04, 4.76406667e+04,
                 5.15140000e+04, 5.27316667e+04, 5.24770000e+04, 5.95680000e+04,
                 6.34590000e+04],
                 [4.93023256e+00, 2.83067442e+03, 2.87346512e+03, 2.94300000e+03,
                 3.10574419e+03, 3.10460465e+03, 3.21341860e+03, 3.44416279e+03,
                 3.35686047e+03, 3.46253488e+03, 3.55058140e+03, 3.73739535e+03,
                 4.04137209e+03],
                 [7.00000000e+00, 1.76028889e+04, 1.80794444e+04, 1.80136667e+04,
                 1.94847778e+04, 1.97697778e+04, 2.09772222e+04, 2.29368889e+04,
                 2.36123333e+04, 2.40187778e+04, 2.49384444e+04, 2.54742222e+04,
                 2.72938889e+04],
                 [6.66666667e+00, 1.83713333e+04, 1.77296667e+04, 1.26860000e+04,
                 1.74960000e+04, 1.74453333e+04, 1.86780000e+04, 2.34513333e+04,
                 2.73036667e+04, 3.08090000e+04, 3.26413333e+04, 4.12066667e+04,
                 4.45736667e+04]])
```

```
labels=kmeans.labels
In [22]:
      labels
Out[22]: array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 2, 2,
          2, 2, 2, 6, 2, 6, 7, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 6, 6,
                                                  2, 2,
          8, 2, 2, 2, 2, 2, 2, 2, 8, 2, 2, 6, 2, 2, 2, 2, 2, 2,
          2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 7, 2, 2, 2, 2,
          2, 2, 2, 7, 6, 2, 2, 2, 6, 2, 2, 2, 6, 2, 6, 6, 0, 6, 2, 2, 2,
           2, 6, 2, 6, 2, 6, 2, 6, 5, 2, 2, 2, 2, 2, 2, 2,
                                              2, 5,
          2, 6, 2,
                  0, 2, 2, 2, 2, 2, 2, 2, 0, 7, 2, 6, 6, 6, 2,
                2,
          2, 2, 2, 6, 6, 0, 7, 2, 2, 2, 2, 6, 6, 0, 2, 6, 2, 8, 2, 0, 3, 2,
          2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2,
          2, 2, 2, 6,
                  2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2,
          2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
          4, 2, 0, 0, 6, 2, 7, 6, 2, 6, 6, 0, 0, 7, 4, 2, 2, 2, 2, 0, 6, 0,
          2, 0, 2, 5, 6, 7, 1, 2, 2, 2, 2, 6, 2, 2, 6, 1])
In [24]:
      import numpy as np
      unique,counts=np.unique(kmeans.labels_,return_counts=True)
      dict_data=dict(zip(unique,counts))
      dict_data
Out[24]: {0: 19, 1: 2, 2: 373, 3: 2, 4: 2, 5: 3, 6: 43, 7: 9, 8: 3}
```

```
localhost:8888/notebooks/Crime_project.ipynb
```

In [25]: d['cluster']=kmeans.labels\_
d

## Out[25]:

|     | STATE/UT              | CRIME<br>HEAD | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   | 2008   |
|-----|-----------------------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0   | ANDHRA<br>PRADESH     | 10            | 1150   | 1340   | 1237   | 1443   | 1415   | 1360   | 1436   | 1531   |
| 1   | ARUNACHAL<br>PRADESH  | 10            | 51     | 61     | 35     | 56     | 38     | 40     | 57     | 37     |
| 2   | ASSAM                 | 10            | 928    | 1019   | 1188   | 1233   | 1406   | 1290   | 1477   | 1445   |
| 3   | BIHAR                 | 10            | 1400   | 1304   | 1120   | 1157   | 1455   | 1451   | 1816   | 146∠   |
| 4   | CHHATTISGARH          | 10            | 1134   | 1214   | 1020   | 1144   | 1107   | 1211   | 1146   | 1108   |
|     |                       |               |        |        |        |        |        |        |        | ••     |
| 451 | DELHI                 | 11            | 3124   | 3080   | 4789   | 5196   | 5853   | 6207   | 5648   | 3115   |
| 452 | LAKSHADWEEP           | 11            | 0      | 3      | 3      | 1      | 0      | 1      | 2      | 2      |
| 453 | PUDUCHERRY            | 11            | 223    | 246    | 221    | 173    | 191    | 260    | 337    | 191    |
| 454 | TOTAL (UTs)           | 11            | 3621   | 3588   | 5289   | 5792   | 6434   | 6922   | 6435   | 3724   |
| 455 | TOTAL (ALL-<br>INDIA) | 11            | 243589 | 247981 | 239200 | 261322 | 266955 | 279823 | 310808 | 32351( |

456 rows × 15 columns

4

In [27]: import seaborn as sns
sns.lmplot('2011','2012',data=d,hue='cluster',palette='coolwarm',size=5,aspect

C:\Users\Mahesh\anaconda3\lib\site-packages\seaborn\\_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

C:\Users\Mahesh\anaconda3\lib\site-packages\seaborn\regression.py:581: UserW arning: The `size` parameter has been renamed to `height`; please update you r code.

warnings.warn(msg, UserWarning)

Out[27]: <seaborn.axisgrid.FacetGrid at 0x1efbd7b1fa0>



In [28]: kmeans.inertia\_

Out[28]: 7376543830.351573

In [29]: kmeans.score

Out[29]: <bound method KMeans.score of KMeans(n\_clusters=9)>

In [30]: d

Out[30]:

|     | STATE/UT              | CRIME<br>HEAD | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   | 2008   |
|-----|-----------------------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0   | ANDHRA<br>PRADESH     | 10            | 1150   | 1340   | 1237   | 1443   | 1415   | 1360   | 1436   | 1531   |
| 1   | ARUNACHAL<br>PRADESH  | 10            | 51     | 61     | 35     | 56     | 38     | 40     | 57     | 37     |
| 2   | ASSAM                 | 10            | 928    | 1019   | 1188   | 1233   | 1406   | 1290   | 1477   | 1445   |
| 3   | BIHAR                 | 10            | 1400   | 1304   | 1120   | 1157   | 1455   | 1451   | 1816   | 146₄   |
| 4   | CHHATTISGARH          | 10            | 1134   | 1214   | 1020   | 1144   | 1107   | 1211   | 1146   | 1108   |
|     |                       |               |        |        |        |        |        |        |        |        |
| 451 | DELHI                 | 11            | 3124   | 3080   | 4789   | 5196   | 5853   | 6207   | 5648   | 3115   |
| 452 | LAKSHADWEEP           | 11            | 0      | 3      | 3      | 1      | 0      | 1      | 2      | 2      |
| 453 | PUDUCHERRY            | 11            | 223    | 246    | 221    | 173    | 191    | 260    | 337    | 191    |
| 454 | TOTAL (UTs)           | 11            | 3621   | 3588   | 5289   | 5792   | 6434   | 6922   | 6435   | 3724   |
| 455 | TOTAL (ALL-<br>INDIA) | 11            | 243589 | 247981 | 239200 | 261322 | 266955 | 279823 | 310808 | 32351( |

456 rows × 15 columns

**→** 

In [31]: cust=[[10,1150,1340,1237,1443,1415,1360,1436,1531,1487,1761,1758,1664]]
kmeans.predict(cust)[0]

Out[31]: 2

```
In [32]: f,ax=plt.subplots(figsize=(24,16))
    stats=d.sort_values(["cluster","STATE/UT"],ascending=True)
    sns.set_color_codes("pastel")
    sns.barplot(y="STATE/UT",x="2012",data=stats)
    sns.despine(left=True,bottom=True)
```



```
In [37]:
          X=d.iloc[:,1:14]
          y=d.iloc[:,d.columns=='cluster']
          print(X.head())
          print(y.head())
             CRIME HEAD
                           2001
                                 2002
                                        2003
                                               2004
                                                     2005
                                                            2006
                                                                   2007
                                                                         2008
                                                                                2009
                                                                                       2010
          0
                           1150
                                 1340
                                        1237
                                               1443
                                                     1415
                                                            1360
                                                                   1436
                                                                         1531
                                                                                1487
                                                                                       1761
                      10
          1
                      10
                             51
                                    61
                                          35
                                                 56
                                                        38
                                                              40
                                                                     57
                                                                            37
                                                                                  60
                                                                                         49
          2
                      10
                            928
                                                                   1477
                                 1019
                                        1188
                                               1233
                                                     1406
                                                            1290
                                                                         1445
                                                                                1644
                                                                                       1629
          3
                      10
                           1400
                                 1304
                                        1120
                                               1157
                                                     1455
                                                            1451
                                                                   1816
                                                                         1464
                                                                                1086
                                                                                        892
          4
                      10
                           1134
                                 1214
                                        1020
                                               1144
                                                     1107
                                                            1211
                                                                   1146
                                                                         1108
                                                                                1128
                                                                                       1198
```

```
2012
   2011
0
   1758
          1664
1
     47
            47
2
   1470
          1626
3
   1185
          1327
4
   1257
          1214
   cluster
0
          2
1
          2
2
          2
3
          2
          2
4
```

```
In [43]: from sklearn.model_selection import train_test_split
    xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.2,random_state=0)
```

In [45]: from sklearn.ensemble import RandomForestClassifier
 random\_forest=RandomForestClassifier(n\_estimators=100)
 random\_forest.fit(xtrain,ytrain)
 ypred=random\_forest.predict(xtest)
 print(ypred)
 from sklearn.metrics import accuracy\_score,classification\_report
 acc1=accuracy\_score(ypred,ytest)
 print(acc1)
 clf=classification\_report(ypred,ytest)
 print(clf)

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1 00      | 1 00   | 1 00     | 2       |
| 0            | 1.00      | 1.00   | 1.00     | 3       |
| 1            | 1.00      | 1.00   | 1.00     | 1       |
| 2            | 1.00      | 1.00   | 1.00     | 81      |
| 4            | 1.00      | 1.00   | 1.00     | 1       |
| 5            | 1.00      | 1.00   | 1.00     | 1       |
| 6            | 1.00      | 1.00   | 1.00     | 3       |
| 7            | 1.00      | 1.00   | 1.00     | 2       |
|              |           |        | 1 00     | 00      |
| accuracy     |           |        | 1.00     | 92      |
| macro avg    | 1.00      | 1.00   | 1.00     | 92      |
| weighted avg | 1.00      | 1.00   | 1.00     | 92      |

C:\Users\Mahesh\AppData\Local\Temp/ipykernel\_19336/3520882039.py:3: DataConv
ersionWarning: A column-vector y was passed when a 1d array was expected. Pl
ease change the shape of y to (n\_samples,), for example using ravel().
 random\_forest.fit(xtrain,ytrain)

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\utils\validation.py:63:
DataConversionWarning: A column-vector y was passed when a 1d array was expe
cted. Please change the shape of y to (n\_samples, ), for example using ravel
().

return f(\*args, \*\*kwargs)

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\linear\_model\\_logistic.p
y:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max\_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear\_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear\_model.html#logistic-re
gression)

n\_iter\_i = \_check\_optimize\_result(

## 0.43478260869565216

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.33      | 0.06   | 0.10     | 17      |
| 1            | 0.00      | 0.00   | 0.00     | 0       |
| 2            | 0.47      | 1.00   | 0.64     | 38      |
| 3            | 0.00      | 0.00   | 0.00     | 8       |
| 4            | 0.00      | 0.00   | 0.00     | 3       |
| 5            | 0.00      | 0.00   | 0.00     | 9       |
| 6            | 0.33      | 0.12   | 0.18     | 8       |
| 7            | 0.00      | 0.00   | 0.00     | 3       |
| 8            | 0.00      | 0.00   | 0.00     | 6       |
|              |           |        |          |         |
| accuracy     |           |        | 0.43     | 92      |
| macro avg    | 0.13      | 0.13   | 0.10     | 92      |
| weighted avg | 0.28      | 0.43   | 0.30     | 92      |

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero\_division` par ameter to control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Recall and F-score are ill-defined and bein g set to 0.0 in labels with no true samples. Use `zero\_division` parameter t o control this behavior.

warn prf(average, modifier, msg start, len(result))

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero\_division` parameter to control this behavior.

warn prf(average, modifier, msg start, len(result))

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Recall and F-score are ill-defined and bein g set to 0.0 in labels with no true samples. Use `zero\_division` parameter t o control this behavior.

warn prf(average, modifier, msg start, len(result))

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero\_division` parameter to control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Recall and F-score are ill-defined and bein g set to 0.0 in labels with no true samples. Use `zero\_division` parameter t o control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))

In [49]: from sklearn import svm
 sv=svm.LinearSVC()
 sv.fit(xtrain,ytrain)
 pred3=sv.predict(xtest)
 acc3=accuracy\_score(pred3,ytest)
 print(acc3)
 clf3=classification\_report(pred3,ytest)
 print(clf3)

## 0.6956521739130435

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.00      | 0.00   | 0.00     | 0       |
| 1            | 0.00      | 0.00   | 0.00     | 0       |
| 2            | 0.78      | 1.00   | 0.88     | 63      |
| 4            | 1.00      | 0.05   | 0.10     | 19      |
| 5            | 0.00      | 0.00   | 0.00     | 2       |
| 6            | 0.00      | 0.00   | 0.00     | 0       |
| 7            | 0.00      | 0.00   | 0.00     | 0       |
| 8            | 0.00      | 0.00   | 0.00     | 8       |
| accuracy     |           |        | 0.70     | 92      |
| macro avg    | 0.22      | 0.13   | 0.12     | 92      |
| weighted avg | 0.74      | 0.70   | 0.62     | 92      |

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\utils\validation.py:63:
DataConversionWarning: A column-vector y was passed when a 1d array was expe
cted. Please change the shape of y to (n\_samples, ), for example using ravel
().

return f(\*args, \*\*kwargs)

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\svm\\_base.py:985: Conver genceWarning: Liblinear failed to converge, increase the number of iteration s.

warnings.warn("Liblinear failed to converge, increase "

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero\_division` parameter to control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Recall and F-score are ill-defined and bein g set to 0.0 in labels with no true samples. Use `zero\_division` parameter t o control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero\_division` parameter to control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Recall and F-score are ill-defined and bein g set to 0.0 in labels with no true samples. Use `zero\_division` parameter t o control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero\_division` par ameter to control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))

C:\Users\Mahesh\anaconda3\lib\site-packages\sklearn\metrics\\_classification. py:1248: UndefinedMetricWarning: Recall and F-score are ill-defined and bein g set to 0.0 in labels with no true samples. Use `zero\_division` parameter to control this behavior.

\_warn\_prf(average, modifier, msg\_start, len(result))

```
In [50]: from matplotlib import pyplot as plt;plt.rcdefaults()
    objects=('Random Forest','Logistic Regression','Support Vector')
    y_pos=np.arange(len(objects))
    performance=[acc1,acc2,acc3]
    plt.bar(y_pos,performance,align='center',alpha=0.5)
    plt.xticks(y_pos,objects)
    plt.ylabel('Accuracy')
    plt.title('RF vs LR vs SVM')
    plt.show()
```



In [ ]: