Question 1. Week 3 (1b)

Show that there is no no-trivial chain $\gamma \in C_2(\mathcal{S}(E), \mathbb{Z})$ whose boundary is in A.

Proof. Assume γ has boundary completely in A. Then $\partial(\gamma) = \sum_{i < 4} k_i [v_i, v_{i+1 \pmod{4}}]$.

We claim $\gamma(\sigma_i) = 0$ for $4 \le i < 8$. This can be verified by observing that giving the faces $\sigma_4, \ldots, \sigma_7$ nonzero value in γ results in non-zero boundary values for the edges on the inner square.

Next, we observe that since the values for the 45° degree diagonals $[v_i, v_{i+4}]$ (i < 4) in the boundary of γ are each 0, that the two faces at each edge, $\sigma_0:\sigma_7$, $\sigma_1:\sigma_3$, etc., must be inversely included in γ . Thus $\gamma(\sigma_0) = -\gamma(\sigma_7) = 0$, $\gamma(\sigma_1) = -\gamma(\sigma_4) = 0$, etc.

Therefore
$$\gamma(\sigma_i) = 0$$
 for $0 \le i < 8$.