2024 - 2025



## TD4 - Intégrales de fractions rationnelles

**Exercice 1.** Déterminer la forme de la décomposition en éléments simples dans  $\mathbb{R}(X)$  des fractions rationnelles suivantes (on ne demande pas de calculer les coefficients).

1. 
$$F_1(X) := \frac{X^3 + 1}{(X - 1)(X - 2)(X - 3)}$$
.

**2.** 
$$F_2(X) := \frac{1}{(X+3)(X-2)^2}$$
.

**3.** 
$$F_3(X) := \frac{1}{(X+3)^2(X-2)^2}$$
.

**4.** 
$$F_4(X) := \frac{X^3 + 1}{(X^2 + 1)(X - 3)}$$
.

**5.** 
$$F_5(X) := \frac{X^2}{X^4 + 2X^3 - 2X - 1}$$
.

**6.** 
$$F_6(X) := \frac{X^3 + 1}{(X^2 - 1)^2}$$
.

7. 
$$F_7(X) := \frac{1}{(X^2 + X + 2)(X^2 + 2X + 1)}$$
.

**8.** 
$$F_8(X) := \frac{X^3 + 1}{X^5 + X}$$

**Exercice 2.** Déterminer la décomposition en éléments simples dans  $\mathbb{R}(X)$  des fractions rationnelles suivantes.

1. 
$$F_1(X) := \frac{X^2 + 1}{(X - 1)(X - 2)(X - 3)}$$
. 3.  $F_3(X) := \frac{X^7 + 1}{X^2 + 1}$ .  
2.  $F_2(X) := \frac{1}{X(X + 1)^2}$ . 4.  $F_4(X) := \frac{X^2}{(X - 1)^3}$ .

**3.** 
$$F_3(X) := \frac{X^7 + 1}{X^2 + 1}$$
.

**5.** 
$$F_5(X) := \frac{2X^3 + 3X^2 + 5}{X^2 + X + 1}$$
.

**2.** 
$$F_2(X) := \frac{1}{X(X+1)^2}$$

**4.** 
$$F_4(X) := \frac{X^2}{(X-1)^3}$$
.

**6.** 
$$F_6(X) := \frac{1}{X^4 + X^2 + 1}$$
.

Exercice 3. Déterminer les primitives des fonctions suivantes.

1. 
$$f_1(x) := \frac{1}{x^2 - 4x + 2}$$

**4.** 
$$f_4(x) := \frac{2x-3}{(x^2-1)(2x+3)}$$
  
**5.**  $f_5(x) := \frac{x^3}{x^4+3x^2+2}$ 

7. 
$$f_7(x) := \frac{x+1}{x^4(x^2+x+1)}$$

**2.** 
$$f_2(x) := \frac{x^3 - 2}{x^3 - x^2}$$

5. 
$$f_5(x) := \frac{x^3}{x^4 + 3x^2 + 2}$$
6.  $f_6(x) := \frac{x^2(x^2 + 1)}{x^2 + 4}$ 

**8.** 
$$f_8(x) := \frac{x}{(x-1)^5(x^2+1)}$$

**3.** 
$$f_3(x) := \frac{x}{x^2 + x + 1}$$

**6.** 
$$f_6(x) := \frac{x^2(x^2+1)}{x^2+4}$$

**9.** 
$$f_9(x) := \frac{1}{x^6 - 1}$$

## Exercice 4.

1. En développant  $\cos(\frac{x}{2} + \frac{x}{2})$ ,  $\sin(\frac{x}{2} + \frac{x}{2})$  et  $\tan(\frac{x}{2} + \frac{x}{2})$ , montrer que si  $t = \tan(\frac{x}{2})$  alors :

$$\cos(x) = \frac{1 - t^2}{1 + t^2}, \quad \sin(x) = \frac{2t}{1 + t^2}, \quad \tan(x) = \frac{2t}{1 - t^2}.$$

**2.** À l'aide du changement de variable  $t = \tan(\frac{x}{2})$ , calculer les primitives des fonctions suivantes :

**a.** 
$$f_1(x) := \frac{1}{\sin x}$$

**b.** 
$$f_2(x) := \frac{1}{1 + \cos x}$$

**c.** 
$$f_3(x) := \frac{1 - \tan x}{1 + \tan x}$$

Remarque : des changements de variables plus simples sont parfois possibles, voir les règles de Bioche.