Ciągi liczbowe

Nieskończonym **ciągiem liczbowym** (a_n) nazywamy funkcję odwzorowującą zbiór liczb naturalnych $\mathbb N$ w zbiór liczb rzeczywistych $\mathbb R$. Wartość tej funkcji dla liczby n nazywamy n-tym wyrazem ciągu i oznaczamy go przez a_n .

Nieskończonym **ciągiem liczbowym** (a_n) nazywamy funkcję odwzorowującą zbiór liczb naturalnych \mathbb{N} w zbiór liczb rzeczywistych \mathbb{R} . Wartość tej funkcji dla liczby n nazywamy n-tym wyrazem ciągu i oznaczamy go przez a_n .

oznaczenia

$$(a_1, a_2, a_3, \dots, a_n, \dots)$$
 $(a_n)_{n=1}^{\infty}$ (a_n) $\{a_n\}$

Nieskończonym **ciągiem liczbowym** (a_n) nazywamy funkcję odwzorowującą zbiór liczb naturalnych \mathbb{N} w zbiór liczb rzeczywistych \mathbb{R} . Wartość tej funkcji dla liczby n nazywamy n-**tym wyrazem ciągu** i oznaczamy go przez a_n .

oznaczenia

$$(a_1, a_2, a_3, \dots, a_n, \dots)$$
 $(a_n)_{n=1}^{\infty}$ (a_n) $\{a_n\}$

 ciąg można określić przy pomocy jawnego wzoru na n-ty wyraz ciągu

$$f: \mathbb{N} \longrightarrow \mathbb{R}, \quad a_n = f(n)$$

Nieskończonym **ciągiem liczbowym** (a_n) nazywamy funkcję odwzorowującą zbiór liczb naturalnych \mathbb{N} w zbiór liczb rzeczywistych \mathbb{R} . Wartość tej funkcji dla liczby n nazywamy n-**tym wyrazem ciągu** i oznaczamy go przez a_n .

oznaczenia

$$(a_1, a_2, a_3, \dots, a_n, \dots)$$
 $(a_n)_{n=1}^{\infty}$ (a_n) $\{a_n\}$

 ciąg można określić przy pomocy jawnego wzoru na n-ty wyraz ciągu

$$f: \mathbb{N} \longrightarrow \mathbb{R}, \quad a_n = f(n)$$

lub **rekurencyjnie**, czyli podając pierwszy wyraz (lub kilka początkowych wyrazów) i wzór na a_{n+1} w zależności od poprzednich wyrazów

$$a_{n+1} = g(a_n, a_{n-1}, \dots)$$

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

Możemy go zdefiniować na dwa sposoby

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

Możemy go zdefiniować na dwa sposoby

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

Możemy go zdefiniować na dwa sposoby

$$a_2 = a_1 + 3$$
, $a_3 = a_2 + 3$, $a_4 = a_3 + 3$, itd.

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

Możemy go zdefiniować na dwa sposoby

$$a_2 = a_1 + 3$$
, $a_3 = a_2 + 3$, $a_4 = a_3 + 3$, itd.

ogólnie:
$$a_1 = 1$$
,

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

Możemy go zdefiniować na dwa sposoby

$$a_2 = a_1 + 3$$
, $a_3 = a_2 + 3$, $a_4 = a_3 + 3$, itd.

ogólnie:
$$a_1 = 1$$
, $a_{n+1} = a_n + 3$, dla $n = 1, 2, 3, ...$

$$\{1,4,7,10,13,16,\dots\}$$

Możemy go zdefiniować na dwa sposoby

• reguła: każdy wyraz ciągu jest o 3 większy od porzedniego

$$a_2 = a_1 + 3$$
, $a_3 = a_2 + 3$, $a_4 = a_3 + 3$, itd.

ogólnie:
$$a_1 = 1$$
, $a_{n+1} = a_n + 3$, dla $n = 1, 2, 3, \dots$

To jest wzór **rekurencyjny**

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

Możemy go zdefiniować na dwa sposoby

• reguła: każdy wyraz ciągu jest o 3 większy od porzedniego

$$a_2 = a_1 + 3$$
, $a_3 = a_2 + 3$, $a_4 = a_3 + 3$, itd.

ogólnie:
$$a_1 = 1$$
, $a_{n+1} = a_n + 3$, dla $n = 1, 2, 3, \dots$

To jest wzór **rekurencyjny**

określa pierwszy wyraz

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

Możemy go zdefiniować na dwa sposoby

• reguła: każdy wyraz ciągu jest o 3 większy od porzedniego

$$a_2 = a_1 + 3$$
, $a_3 = a_2 + 3$, $a_4 = a_3 + 3$, itd.

ogólnie:
$$a_1 = 1$$
, $a_{n+1} = a_n + 3$, dla $n = 1, 2, 3, ...$

To jest wzór **rekurencyjny**

- określa pierwszy wyraz
- podaje wzór na a_{n+1} przy pomocy poprzedniego wyrazu

$$\{1,4,7,10,13,16,\dots\}$$

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

$$a_1 = 1 + 3 \cdot 0$$
, $a_2 = 1 + 3 \cdot 1$, $a_3 = 1 + 3 \cdot 2$, $a_4 = 1 + 3 \cdot 3$

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

$$a_1 = 1 + 3 \cdot 0$$
, $a_2 = 1 + 3 \cdot 1$, $a_3 = 1 + 3 \cdot 2$, $a_4 = 1 + 3 \cdot 3$

$$a_n =$$

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

$$a_1 = 1 + 3 \cdot 0$$
, $a_2 = 1 + 3 \cdot 1$, $a_3 = 1 + 3 \cdot 2$, $a_4 = 1 + 3 \cdot 3$

$$a_n = 1 + 3 \cdot (n - 1) =$$

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

$$a_1 = 1 + 3 \cdot 0$$
, $a_2 = 1 + 3 \cdot 1$, $a_3 = 1 + 3 \cdot 2$, $a_4 = 1 + 3 \cdot 3$

$$a_n = 1 + 3 \cdot (n - 1) = 3n - 2$$
 dla $n = 1, 2, 3, \dots$

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

szukamy wzoru

$$a_1 = 1 + 3 \cdot 0$$
, $a_2 = 1 + 3 \cdot 1$, $a_3 = 1 + 3 \cdot 2$, $a_4 = 1 + 3 \cdot 3$

$$a_n = 1 + 3 \cdot (n - 1) = 3n - 2$$
 dla $n = 1, 2, 3, \dots$

To jest wzór jawny

$$\{1, 4, 7, 10, 13, 16, \dots\}$$

2 szukamy wzoru

$$a_1 = 1 + 3 \cdot 0$$
, $a_2 = 1 + 3 \cdot 1$, $a_3 = 1 + 3 \cdot 2$, $a_4 = 1 + 3 \cdot 3$

$$a_n = 1 + 3 \cdot (n - 1) = 3n - 2$$
 dla $n = 1, 2, 3, \dots$

To jest wzór jawny

 \bullet n-ty wyraz ciągu może być obliczony przy pomocy tylko n.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ りゅ@

Przykład

Skoro (a_n) jest funkcją, to można narysować jej wykres

$$\bullet \ a_n = \frac{1}{2^n}$$

•
$$a_n = (-1)^n \frac{n}{n^2 + 1}$$

Przykład

Skoro (a_n) jest funkcją, to można narysować jej wykres

•
$$a_n = \frac{1}{2^n}$$

•
$$a_n = (-1)^n \frac{n}{n^2 + 1}$$

Skoro (a_n) jest funkcją, to można narysować jej wykres

•
$$a_n = \frac{1}{2^n}$$

•
$$a_n = (-1)^n \frac{n}{n^2+1}$$

Ciąg	arytmetyczny	geometryczny
wzór rekurencyjny	$a_n = a_{n-1} + r$	$a_n = q \cdot a_{n-1}$

Ciąg	arytmetyczny	geometryczny
wzór rekurencyjny	$a_n = a_{n-1} + r$	$a_n = q \cdot a_{n-1}$
wzór jawny	$a_n = a_1 + (n-1)r$	$a_n = q^{n-1} \cdot a_1$

Ciąg	arytmetyczny	geometryczny
wzór rekurencyjny	$a_n = a_{n-1} + r$	$a_n = q \cdot a_{n-1}$
wzór jawny	$a_n = a_1 + (n-1)r$	$a_n = q^{n-1} \cdot a_1$
$S_n = a_1 + \dots + a_n =$	$= \frac{n(a_1 + a_n)}{2}$	$= \begin{cases} na_1 & , q = 1\\ \frac{a_1(1 - q^n)}{1 - q} & , q \neq 1 \end{cases}$

Ciąg	arytmetyczny	geometryczny
wzór rekurencyjny	$a_n = a_{n-1} + r$	$a_n = q \cdot a_{n-1}$
wzór jawny	$a_n = a_1 + (n-1)r$	$a_n = q^{n-1} \cdot a_1$
$S_n = a_1 + \dots + a_n =$	$=\frac{n(a_1+a_n)}{2}$	$= \begin{cases} na_1 & , q = 1\\ \frac{a_1(1 - q^n)}{1 - q} & , q \neq 1 \end{cases}$
suma nieskończonego ciągu		$S = a_1 + a_2 + \dots = \frac{a_1}{1-q}$
		q < 1

 \bullet Jeżeli rozważymy wyrazy ciągu dla coraz większych wartości n

$$a_{100}, \ldots, a_{100000}, \ldots, a_{10000000}, \ldots$$

jak one się zachowują?

 \bullet Jeżeli rozważymy wyrazy ciągu dla coraz większych wartości n

```
a_{100},\ldots,a_{100000},\ldots,a_{10000000},\ldots
```

jak one się zachowują?

- czy zbliżają sie do konkretnej wartości?
- jeżeli tak, to do jakiej?
- czy rosną (maleją) nieograniczenie ?
- a może nie wychodzą powyżej (poniżej) jakiejś wartości ?
- czy wędrują bez celu ?

 \bullet Jeżeli rozważymy wyrazy ciągu dla coraz większych wartości n

```
a_{100},\ldots,a_{100000},\ldots,a_{10000000},\ldots
```

jak one się zachowują?

- czy zbliżają sie do konkretnej wartości?
- jeżeli tak, to do jakiej?
- czy rosną (maleją) nieograniczenie ?
- a może nie wychodzą powyżej (poniżej) jakiejś wartości ?
- czy wędrują bez celu ?
- Zachowanie ciągu w nieskończoności opisujemy przez jego monotoniczność, ograniczoność i granicę.

Example

Jak zachowują się ciągi ? Rosną, maleją do jakiejś wartości, są ograniczone ?

$$\bullet \left(\frac{(-1)^n}{n^2+1}\right)_{n=1}^{\infty}$$

- $\bullet \ (\cos{(n\pi)})_{n=1}^{\infty}$
- $a_{n+1} = -2a_n$, $a_1 = 1$
- $\bullet \ \left(\frac{n}{n+1}\right)_{n=1}^{\infty}$

Example

Jak zachowują się ciągi ? Rosną, maleją do jakiejś wartości, są ograniczone ?

$$\bullet \left(\frac{(-1)^n}{n^2+1}\right)_{n=1}^{\infty}$$

- $\bullet \ (\cos{(n\pi)})_{n=1}^{\infty}$
- $\bullet \ a_{n+1} = -2a_n, \quad a_1 = 1$
- $\bullet \left(\frac{n}{n+1}\right)_{n=1}^{\infty}$

$$\bullet \ \left(\frac{(-1)^n}{n^2+1}\right)_{n=1}^{\infty}$$

- $\bullet \ (\cos{(n\pi)})_{n=1}^{\infty}$
- $\bullet \ a_{n+1} = -2a_n, \quad a_1 = 1$
- $\bullet \ \left(\frac{n}{n+1}\right)_{n=1}^{\infty}$

Jak zachowują się ciągi ? Rosną, maleją do jakiejś wartości, są ograniczone ?

$$\bullet \left(\frac{(-1)^n}{n^2+1}\right)_{n=1}^{\infty}$$

 $\bullet \ (\cos{(n\pi)})_{n=1}^{\infty}$

$$\bullet \ a_{n+1} = -2a_n, \quad a_1 = 1$$

$$\bullet \ \left(\frac{n}{n+1}\right)_{n=1}^{\infty}$$

$$\left(\frac{(-1)^n}{n^2+1}\right)_{n=1}^{\infty}$$

$$\bullet \ (\cos{(n\pi)})_{n=1}^{\infty}$$

$$\bullet \ a_{n+1} = -2a_n, \quad a_1 = 1$$

$$\bullet \ \left(\frac{n}{n+1}\right)_{n=1}^{\infty}$$

$$\bullet \left(\frac{(-1)^n}{n^2+1}\right)_{n=1}^{\infty}$$

$$\bullet \left(\cos(n\pi)\right)_{n=1}^{\infty}$$

$$\bullet \ a_{n+1} = -2a_n, \quad a_1 = 1$$

$$\bullet \left(\frac{n}{n+1}\right)_{n=1}^{\infty}$$

$$\bullet \left(\frac{(-1)^n}{n^2+1}\right)_{n=1}^{\infty}$$

$$\bullet \left(\cos\left(n\pi\right)\right)_{n=1}^{\infty}$$

•
$$a_{n+1} = -2a_n$$
, $a_1 = 1$

$$\bullet \ \left(\frac{n}{n+1}\right)_{n=1}^{\infty}$$

$$\bullet \left(\frac{(-1)^n}{n^2+1}\right)_{n=1}^{\infty}$$

$$\bullet \left(\cos(n\pi)\right)_{n=1}^{\infty}$$

•
$$a_{n+1} = -2a_n$$
, $a_1 = 1$

$$\bullet \ \left(\frac{n}{n+1}\right)_{n=1}^{\infty}$$

Ciąg (a_n) nazywamy

• rosnącym, jeżeli $a_n < a_{n+1}, \qquad n \in \mathbb{N}$

e.g.
$$\left(1 - \frac{1}{n}\right) = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\}$$

Ciąg (a_n) nazywamy

• rosnącym, jeżeli $a_n < a_{n+1}, \qquad n \in \mathbb{N}$

e.g.
$$\left(1 - \frac{1}{n}\right) = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\}$$

• malejącym, jeżeli $a_n > a_{n+1}, \qquad n \in \mathbb{N}$

Ciąg (a_n) nazywamy

• rosnącym, jeżeli $a_n < a_{n+1}, \qquad n \in \mathbb{N}$

e.g.
$$\left(1 - \frac{1}{n}\right) = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\}$$

- malejącym, jeżeli $a_n > a_{n+1}, \qquad n \in \mathbb{N}$
- niemalejącym, jeżeli $a_n \leq a_{n+1}, \qquad n \in \mathbb{N}$
- nierosnącym, jeżeli $a_n \geq a_{n+1}, \qquad n \in \mathbb{N}$

e.g.
$$\left(\frac{2^n}{n!}\right) = \left\{2, 2, \frac{4}{3}, \frac{2}{3}, \dots\right\}$$

Ciąg (a_n) nazywamy

• rosnacym, jeżeli $a_n < a_{n+1}$, $n \in \mathbb{N}$

e.g.
$$\left(1 - \frac{1}{n}\right) = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\}$$

- malejącym, jeżeli $a_n > a_{n+1}$, $n \in \mathbb{N}$
- niemalejącym, jeżeli $a_n \leq a_{n+1}$, $n \in \mathbb{N}$
- nierosnącym, jeżeli $a_n \geq a_{n+1}$, $n \in \mathbb{N}$

e.g.
$$\left(\frac{2^n}{n!}\right) = \left\{2, 2, \frac{4}{3}, \frac{2}{3}, \dots\right\}$$

• stałym, jeżeli $a_n = a_{n+1} = const$, $n \in \mathbb{N}$

Ustalanie monotoniczności

• badamy znak różnicy

$$a_{n+1} - a_n$$

• porównujemy iloraz do 1

$$\frac{b_{n+1}}{b_n}$$

(tylko dla ciągów o wyrazach o stałym znaku)

Ograniczoność

Ciąg (a_n) jest

• ograniczony z dołu, jeżeli istnieje $m \in \mathbb{R}$ takie, że

$$m \le a_n, \quad n \in \mathbb{N}$$

• ograniczony z góry, jeżeli istnieje $M \in \mathbb{R}$ takie, że

$$a_n \leq M, \quad n \in \mathbb{N}$$

• ograniczony, jeżeli istnieją $m, M \in \mathbb{R}$ takie, że

$$m \le a_n \le M, \quad n \in \mathbb{N}$$

Ciąg (a_n) jest zbieżny do **granicy właściwej** $g \in \mathbb{R}$, co zapisujemy

$$\lim_{n \to \infty} a_n = g$$

wtedy i tylko wtedy gdy dla dowolnego $\varepsilon > 0$ istnieje takie $n_0 \in \mathbb{N}$, że dla każdego $n > n_0$ spełniona jest nierówność

$$|a_n - g| < \varepsilon$$

Ciąg (a_n) jest zbieżny do **granicy właściwej** $g \in \mathbb{R}$, co zapisujemy

$$\lim_{n \to \infty} a_n = g$$

wtedy i tylko wtedy gdy dla dowolnego $\varepsilon > 0$ istnieje takie $n_0 \in \mathbb{N}$, że dla każdego $n > n_0$ spełniona jest nierówność

$$|a_n - g| < \varepsilon$$

Jeżeli (a_n) jest ciągiem liczbowym i (n_k) jest rosnącym ciągiem liczb naturalnych, to ciąg (a_{n_k}) nazywamy **podciągiem ciągu** (a_n) .

Jeżeli (a_n) jest ciągiem liczbowym i (n_k) jest rosnącym ciągiem liczb naturalnych, to ciąg (a_{n_k}) nazywamy **podciągiem ciągu** (a_n) .

Twierdzenie

Każdy podciąg ciągu zbieżnego jest zbieżny do tej samej granicy.

Jeżeli (a_n) jest ciągiem liczbowym i (n_k) jest rosnącym ciągiem liczb naturalnych, to ciąg (a_{n_k}) nazywamy **podciągiem ciągu** (a_n) .

Twierdzenie

Każdy podciąg ciągu zbieżnego jest zbieżny do tej samej granicy.

Konsekwencja twierdzenia

Jeżeli istnieją dwa podciągi ciągu (a_n) zbieżne do różnych granic, to ciąg (a_n) jest rozbieżny.

Jeżeli ciąg jest zbieżny do granicy właściwej, to jest ograniczony.

Jeżeli ciąg jest zbieżny do granicy właściwej, to jest ograniczony.

Uwaga

Twierdzenie odwrotne nie jest prawdziwe (ograniczoność nie gwarantuje zbieżności).

Jeżeli ciąg jest zbieżny do granicy właściwej, to jest ograniczony.

Uwaga

Twierdzenie odwrotne nie jest prawdziwe (ograniczoność nie gwarantuje zbieżności).

Twierdzenie

Jeżeli ciąg jest ograniczony i monotoniczny, to jest zbieżny.

Jeżeli ciąg jest zbieżny do granicy właściwej, to jest ograniczony.

Uwaga

Twierdzenie odwrotne nie jest prawdziwe (ograniczoność nie gwarantuje zbieżności).

Twierdzenie

Jeżeli ciąg jest ograniczony i monotoniczny, to jest zbieżny.

Pytanie

Czy prawdziwa jest implikacja "zbieżny ⇒ monotoniczny"?

Jeżeli ciąg jest zbieżny do granicy właściwej, to jest ograniczony.

Uwaga

Twierdzenie odwrotne nie jest prawdziwe (ograniczoność nie gwarantuje zbieżności).

Twierdzenie

Jeżeli ciąg jest ograniczony i monotoniczny, to jest zbieżny.

Pytanie

Czy prawdziwa jest implikacja "zbieżny ⇒ monotoniczny"?

Twierdzenie

Iloczyn ciagu zbieżnego do zera i ciagu ograniczonego jest ciagiem zbieżnym do zera.

Rachunek granic właściwych

Rachunek granic właściwych

Jeżeli ciągi (a_n) and (b_n) są zbieżne do granic właściwych A i B, to

• $\lim_{n\to\infty}(a_n\pm b_n)=A\pm B$

Rachunek granic właściwych

- $\lim_{n\to\infty}(a_n\pm b_n)=A\pm B$
- $\lim_{n\to\infty} c \cdot a_n = c \cdot A$, $c \in \mathbb{R}$

Rachunek granic właściwych

- \bullet $\lim_{n\to\infty}(a_n\pm b_n)=A\pm B$
- $\lim_{n\to\infty} c \cdot a_n = c \cdot A$, $c \in \mathbb{R}$
- \bullet $\lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$

Rachunek granic właściwych

- \bullet $\lim_{n\to\infty}(a_n\pm b_n)=A\pm B$
- $\bullet \lim_{n\to\infty} c \cdot a_n = c \cdot A, \quad c \in \mathbb{R}$
- $\bullet \lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$
- $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{A}{B}$, o ile $B\neq 0$

Rachunek granic właściwych

- $\lim_{n\to\infty}(a_n\pm b_n)=A\pm B$
- $\lim_{n\to\infty} c \cdot a_n = c \cdot A$, $c \in \mathbb{R}$
- $\lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$, o ile $B\neq 0$
- $\lim_{n\to\infty} (a_n)^{b_n} = A^B$, o ile działania są wykonalne

Rachunek granic właściwych

- $\lim_{n\to\infty}(a_n\pm b_n)=A\pm B$
- $\lim_{n\to\infty} c \cdot a_n = c \cdot A$, $c \in \mathbb{R}$
- $\lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$, o ile $B\neq 0$
- $\lim_{n\to\infty} (a_n)^{b_n} = A^B$, o ile działania są wykonalne
- $\lim_{n\to\infty} \sqrt[k]{a_n} = \sqrt[k]{A}, \quad k \in \mathbb{N}$

Definicje

• Ciąg (a_n) jest zbieżny do **granicy niewłaściwej** ∞ , co zapisujemy

$$\lim_{n \to \infty} a_n = \infty$$

wtedy i tylko wtedy gdy dla każdego M > 0 istnieje takie $n_0 \in \mathbb{N}$, że dla każdego $n > n_0$ spełniona jest nierówność

$$a_n > M$$

• Ciąg (a_n) jest zbieżny do **granicy niewłaściwej** $-\infty$, co zapisujemy

$$\lim_{n \to \infty} a_n = -\infty$$

wtedy i tylko wtedy gdy dla każdego M < 0 istnieje takie $n_0 \in \mathbb{N}$, że dla każdego $n > n_0$ spełniona jest nierówność

$$a_n < M$$

•
$$g + \infty = \infty$$

- $g + \infty = \infty$
- $g \cdot \infty = \infty$

- $g + \infty = \infty$
- $g \cdot \infty = \infty$
- $\bullet \ \frac{g}{\infty} = 0$

- $g + \infty = \infty$
- $g \cdot \infty = \infty$
- $\frac{g}{0} = \infty$, dla g > 0

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\bullet \ \frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$q^{\infty} = 0$$
, dla $0 < q < 1$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\bullet \ \frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\bullet \ \frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $g > 0$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\bullet \ \frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $g > 0$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\bullet \ \frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $g > 0$

$$[\infty - \infty]$$
,

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\bullet \ \frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $g > 0$

$$[\infty - \infty], \quad [0 \cdot \infty],$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $g > 0$

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left[\frac{0}{0}\right],$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $g > 0$

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right],$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $g > 0$

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}],$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $g > 0$

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left[\frac{0}{0}\right], \quad \left[\frac{\infty}{\infty}\right], \quad [1^{\infty}], \quad \left[\infty^{0}\right],$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $g > 0$

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad \left[\infty^{0} \right], \quad \left[0^{0} \right]$$

$$\left[\frac{\infty}{\infty}\right]$$
,

$$[1^{\infty}]$$

$$\left[\infty^0
ight]$$
 .

$$[0^0]$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

•
$$\frac{g}{x} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad [\infty^{0}], \quad [0^{0}]$$

$$\left[\frac{\infty}{\infty}\right], \quad [1^{\infty}], \quad \left[\infty^{0}\right],$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad [\infty^{0}], \quad [0^{0}]$$

$$\left[\frac{\infty}{\infty}\right], \quad [1^{\infty}],$$

$$\infty^0$$
, $[0^0]$

•
$$\lim_{n\to\infty} \frac{n^2}{n} =$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad [\infty^{0}], \quad [0^{0}]$$

$$\left[\frac{\infty}{\infty}\right], \quad [1^{\infty}],$$

$$\left[\infty^{0}
ight] ,\quad \left[
ight.$$

•
$$\lim_{n\to\infty} \frac{n^2}{n} = \left[\frac{\infty}{\infty}\right] =$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left[\frac{0}{0}\right], \quad \left[\frac{\infty}{\infty}\right], \quad [1^{\infty}], \quad \left[\infty^{0}\right], \quad \left[0^{0}\right]$$

•
$$\lim_{n\to\infty} \frac{n^2}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} n =$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$q^{\infty} = \infty$$
, dla $q > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$\left[\infty - \infty\right], \quad \left[0 \cdot \infty\right], \quad \left[\frac{0}{0}\right], \quad \left[\frac{\infty}{\infty}\right], \quad \left[1^{\infty}\right], \quad \left[\infty^{0}\right], \quad \left[0^{0}\right]$$

•
$$\lim_{n\to\infty} \frac{n^2}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} n = \infty$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$q^{\infty} = \infty$$
, dla $q > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $g > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left| \frac{\infty}{\infty} \right|$$

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad [\infty^{0}], \quad [0^{0}]$$

•
$$\lim_{n\to\infty} \frac{n^2}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} n = \infty$$

•
$$\lim_{n\to\infty} \frac{n}{n^2} =$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$q^{\infty} = \infty$$
, dla $q > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad [\infty^{0}], \quad [0^{0}]$$

$$\frac{\infty}{\infty}$$
, $[1^{\infty}]$, $[\infty^0]$

•
$$\lim_{n\to\infty} \frac{n^2}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} n = \infty$$

•
$$\lim_{n\to\infty} \frac{n}{n^2} = \left[\frac{\infty}{\infty}\right] =$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad \left[\infty^{0} \right], \quad \left[0^{0} \right]$$

•
$$\lim_{n\to\infty} \frac{n^2}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} n = \infty$$

•
$$\lim_{n\to\infty} \frac{n}{n^2} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} \frac{1}{n} =$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad \left[\infty^{0} \right], \quad \left[0^{0} \right]$$

•
$$\lim_{n\to\infty} \frac{n^2}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} n = \infty$$

•
$$\lim_{n\to\infty} \frac{n}{n^2} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} \frac{1}{n} = 0$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$q^{\infty} = \infty$$
, dla $q > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad \left[\infty^{0} \right], \quad \left[0^{0} \right]$$

$$\left[\frac{\infty}{\infty}\right],$$

$$[1^{\infty}]$$
,

$$\left[\infty^0\right]$$

$$[0_0]$$

•
$$\lim_{n\to\infty} \frac{n^2}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} n = \infty$$

•
$$\lim_{n\to\infty} \frac{n}{n^2} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} \frac{1}{n} = 0$$

•
$$\lim_{n\to\infty}\frac{4n}{n}=$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad \left[\infty^{0} \right], \quad \left[0^{0} \right]$$

$$\left[\frac{\infty}{\infty}\right]$$

$$\left[\begin{array}{c} \infty \\ \infty \end{array}\right], \quad \left[\begin{array}{c} 1 \end{array}\right]$$

$$\left[\infty^0\right]$$

$$[0_0]$$

•
$$\lim_{n\to\infty} \frac{n^2}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} n = \infty$$

•
$$\lim_{n\to\infty} \frac{n}{n^2} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} \frac{1}{n} = 0$$

•
$$\lim_{n\to\infty} \frac{4n}{n} = \left[\frac{\infty}{\infty}\right] =$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad \left[\infty^{0} \right], \quad \left[0^{0} \right]$$

$$\left[\frac{0}{0}\right]$$
,

$$\left[\frac{\infty}{\infty}\right]$$

$$[1^{\infty}]$$

$$[\infty^0]$$

$$[0^0]$$

•
$$\lim_{n\to\infty} \frac{n^2}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} n = \infty$$

•
$$\lim_{n\to\infty} \frac{n}{n^2} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} \frac{1}{n} = 0$$

•
$$\lim_{n\to\infty} \frac{4n}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} 4 =$$

Rachunek granic niewłaściwych

•
$$g + \infty = \infty$$

•
$$g \cdot \infty = \infty$$

$$\frac{g}{\infty} = 0$$

•
$$\frac{g}{0} = \infty$$
, dla $g > 0$

•
$$g^{\infty} = 0$$
, dla $0 < g < 1$

•
$$g^{\infty} = \infty$$
, dla $g > 1$

•
$$\infty^g = 0$$
, dla $g < 0$

•
$$\infty^g = \infty$$
, dla $q > 0$

Wyrażenia nieoznaczone

$$[\infty - \infty], \quad [0 \cdot \infty], \quad \left| \frac{0}{0} \right|, \quad \left[\frac{\infty}{\infty} \right], \quad [1^{\infty}], \quad \left[\infty^{0} \right], \quad \left[0^{0} \right]$$

$$\left[\frac{\infty}{\infty}\right]$$

$$[1^{\infty}]$$

$$\left[\infty^0\right]$$

$$[0^0]$$

•
$$\lim_{n\to\infty} \frac{n^2}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} n = \infty$$

•
$$\lim_{n\to\infty} \frac{n}{n^2} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} \frac{1}{n} = 0$$

•
$$\lim_{n\to\infty} \frac{4n}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} 4 = 4$$

Wracając do liczby Eulera, e = 2.7182818...

Wracając do liczby Eulera, e = 2.7182818...

Definicja

Podstawa e funkcji wykładniczej $f(x) = e^x$ jest zdefiniowana jako

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Wracajac do liczby Eulera, e = 2.7182818...

Definicja

Podstawa e funkcji wykładniczej $f(x) = e^x$ jest zdefiniowana jako

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Twierdzenie

Jeżeli $\lim_{n\to\infty} b_n = 0$, to

$$e = \lim_{n \to \infty} (1 + b_n)^{\frac{1}{b_n}}$$

Twierdzenie o trzech ciągach

Twierdzenie o trzech ciągach (Twierdzenie o dwóch policjantach i pijaku) Twierdzenie o trzech ciągach (Twierdzenie o dwóch policjantach i pijaku) (Twierdzenie o kanapce)

Twierdzenie o trzech ciagach (Twierdzenie o dwóch policjantach i pijaku) (Twierdzenie o kanapce)

Jeżeli ciągi $(a_n),(b_n)$ i (c_n) spełniają warunki

- $a_n \leq b_n \leq c_n$ dla każdego $n \geq n_0$
- $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = g$

Twierdzenie o trzech ciagach (Twierdzenie o dwóch policjantach i pijaku) (Twierdzenie o kanapce)

Jeżeli ciągi $(a_n),(b_n)$ i (c_n) spełniają warunki

- $a_n \leq b_n \leq c_n$ dla każdego $n \geq n_0$
- \bullet $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = q$

$$\lim_{n\to\infty} b_n = g$$

Twierdzenie o trzech ciągach (Twierdzenie o dwóch policjantach i pijaku) (Twierdzenie o kanapce)

Jeżeli ciągi $(a_n),(b_n)$ i (c_n) spełniają warunki

- $a_n \leq b_n \leq c_n$ dla każdego $n \geq n_0$
- $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = g$

$$\lim_{n \to \infty} b_n = g$$

Przydatne granice

$$\lim_{n \to \infty} \sqrt[n]{a} = 1, \quad a > 0$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

jeżeli
$$\lim_{n\to\infty} a_n = 0$$
 to $\lim_{n\to\infty} \frac{\sin a_n}{a_n} = 1$

Twierdzenie o dwóch ciągach

Twierdzenie o dwóch ciągach

Jeżeli ciągi (a_n) i (b_n) spełniają warunki

- $a_n \leq b_n$ dla każdego $n \geq n_0$
- $\lim_{n\to\infty} a_n = \infty$

Twierdzenie o dwóch ciągach

Jeżeli ciągi (a_n) i (b_n) spełniają warunki

- $a_n \leq b_n$ dla każdego $n \geq n_0$
- $\lim_{n\to\infty} a_n = \infty$

$$\lim_{n\to\infty} b_n = \infty$$