Заняття 6. Принципи термодинаміки.

Аудиторне заняття

- 1. Знайти середні кінетичні енергії обертального, поступального та коливного рухів однієї молекули кисню при температурі T, а також кінетичну енергію E_k руху всіх молекул кисню масою m.
- 2. [2.18] В циліндрі об'ємом V під поршнем знаходиться газ при температурі T. Знайти роботу розширення газу при нагріванні його на ΔT . Маса поршня m, площа S, атмосферний тиск p_0 .
- 3. [Приклад 2.13] В двох теплоізольованих циліндрах об'ємами $V_1 = 3$ л і $V_2 = 5$ л знаходяться однакові гази, які мають тиски $p_1 = 100$ кПа і $p_2 = 150$ кПа та температури $T_1 = 300$ К і $T_2 = 320$ К , відповідно. Циліндри сполучені трубкою з краном. Кран відкривають і гази змішуються. Яка температура T і який тиск p встановляться в циліндрах після змішування? Об'ємом трубки знехтувати.
- 4. [2.56] Кисень займає об'єм V_I і знаходиться під тиском P_1 . Газ спочатку нагрівають при сталому тиску до об'єму V_2 , а потім при сталому об'ємі до тиску P_3 . Знайти зміну ΔU внутрішньої енергії газу, виконану ним роботу A і передану газу кількість теплоти Q.
- 5. [\sim Приклад 2.11] Азот об'ємом V, що знаходиться при тиску p_1 стискують до p_2 . Визначити роботу газу при адіабатичному стисненні.
- 6. [2.59] Ідеальний газ із показником адіабати γ розширили за законом $P = \alpha V$, де α стала. Початковий об'єм газу V_0 . У результаті розширення об'єм газу збільшився в η разів. Знайти зміну внутрішньої енергії ΔU , роботу розширення газу A, молярну теплоємність газу C_M

Домашнє завдання

- 1. Знайти молярні теплоємності C_p та C_v ідеального трьохатомного газу. Розглянути всі можливі випадки.
- 2. В циліндрі під поршнем знаходиться деяка маса водню при температурі T, яка займає об'єм V і має тиск p. Як змінилась температура водню, якщо при незмінному тиску його об'єм зменшився настільки, що при цьому була виконана робота A.
- 3. [2.55] Якщо над ідеальним газом здійснюють процес A-B-C (див. рис.), то газу надають кількість теплоти Q. Яку кількість теплоти надають газу при здійснені процесу A-D-C? Величини P_l , P_2 , V_1 і V_2 відомі.
- 4. [2.58] Кисень масою m виконує замкнений процес див.рис. Температура газу в станах 1, 2, 3, і 4 дорівнює T_1 , T_2 , T_3 , T_4 , відповідно. Яка робота A виконана газом за цикл? Яка кількість теплоти Q передана газу при цьому? Як змінилася внутрішня енергія газу при переході зі стану 1 у стан 3?

