Aufgabe 1 (4 Punkte). Sei $(B_t)_{t\geq 0}$ eine Standard Brown'sche Bewegung. Finden Sie Funktionen $a, b \colon \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$, sodass der Prozess X gegeben durch

$$X_t = X_0 + \int_0^t a(s, B_s) ds + \int_0^t b(s, B_s) dB_s$$

folgende Darstellungen besitzt:

(i)
$$X_t = B_t^3$$
.

Wir gehen wie in Aufgabe 1 von Blatt 10 vor. Die Itô-Formel sagt uns $f(B_t,t) = X_0 + \int_0^t \partial_x f(B_s,s) dB_s + \tfrac{1}{2} \int_0^t \partial_x f(B_s,s) d\langle B_s \rangle + \int_0^t \partial_t f(B_s,s) ds.$ Mit $\langle B_t \rangle = t$ und Koeffizientenvergleich ergibt sich $a(x,t) = \tfrac{1}{2} \partial_x^2 f + \partial_t f$ und $b(x,t) = \partial_x f$.

Sei $f(x,t)=x^3$, dann ist $\partial_x f=3x^2$, $\partial_x^2 f=6x$ und $\partial_t f=0$. Somit ist $a(B_t,t)=3B_t$ und $b(B_t,t)=3B_t^2$.

(ii) e^{B_t} .

Sei $f(x,t) = e^x$. Dann gilt $\partial_x f = \partial_x^2 f = e^x$ und $\partial_t f = 0$, sodass $a = \frac{1}{2}e^{B_t}$ und $b = e^{B_t}$.

(iii) $tB_t^2 e^{B_t}$.

Sei $f(x,t) = tx^2 e^x$. Dann gilt $\partial_x f = t(2x + x^2)e^x$, $\partial_x^2 f = t[(2+2x)e^x + (2x+x^2)e^x] = t(x^2+4x+2)e^x$ und $\partial_t f = x^2 e^x$, sodass $a = e^{B_t} \left(\frac{1}{2}B_t^2 t + 2B_t t + t + B_t^2\right)$ und $b = t(2B_t + B_t^2)e^{B_t}$.

Aufgabe 3 (Binomiales Modell; 6 Punkte). Sei (Ω, \mathscr{F}, P) ein Wahrscheinlichkeitsraum, so dass $\Omega = \{\omega_u, \omega_d\}, \mathscr{F} = 2^{\Omega} \text{ und } P[\omega_u] = p = 1 - P[\omega_d].$ Die gehandelten Vermögenswerte werden durch den zweidimensionalen Prozess $S = (S^0, S^1)$ gegeben, mit

$$S_0^0 \equiv 1$$
, $S_1^0 \equiv 1 + r$, $S_0^1 \equiv s_0$, $S_1^1(\omega_u) = s_0(1 + u)$, $S_1^1(\omega_d) = s_0(1 + d)$. (1)

i) Zeige, dass es ein Maß $Q \sim P$ auf (Ω, \mathscr{F}) gibt, so dass der diskontierte Preisprozess ein Martingal ist. Ist dieses Marktmodell arbitragefrei?

Wir folgen der Argumentation von Beispiel 3.3.1 in [DS06]. Der diskontierte Prozess $X_t=(1,S_t^1/S_t^0)$ ergibt sich zu

$$X_0^0 \equiv 1$$
, $X_1^0 \equiv 1$, $X_0^1 \equiv s_0$, $X_1^1(\omega_u) = s_0(1+\tilde{u})$, $X_1^1 = s_0(1+\tilde{d})$,

mit $1 + \tilde{u} = \frac{1+u}{1+r}$ und $1 + \tilde{d} = \frac{1+d}{1+r}$. Damit X ein Martingal unter Q ist, muss gelten $E_Q[X_1^i] = X_0^i$, also $Q[\omega_u] + Q[\omega_d] = 1$ und $s_0(1+\tilde{u})Q[\omega_u] + s_0(1+\tilde{d})Q[\omega_d] = s_0$. Schreiben wir $Q[\omega_u] = q$ gilt nach der ersten Gleichung $Q[\omega_d] = 1 - q$. Wenn wir das in die zweite Gleichung einsetzen ergibt sich $(1+\tilde{u})q + (1+\tilde{d})(1-q) = 1$, sodass $Q[\omega_u] = q = \frac{\tilde{d}}{\tilde{d}-u} = \frac{r-d}{u-d}$ und $Q[\omega_d] = 1 - q = \frac{\tilde{u}}{\tilde{u}-\tilde{d}} = \frac{u-r}{u-d}$. Da Q(A) = 0 nur für $A = \emptyset$ gilt ist $Q \sim P$, sodass Q ein äquivalentes Martingalmaß ist. Nach dem Fundamental Theorem of Asset Pricing ist dieses Marktmodell arbitragefrei.

ii) Angenommen, p=0.7, $s_0=100$, r=0, 1+d=0.8 und 1+u=1.2. Was ist das entsprechende risikoneutrale Maß? Zeige, dass $E_P[(S_1-100)^+]$ kein arbitragefreier Preis für $H=(S_1-100)^+$ (Kaufoption mit Ausübungspreis K=100) ist.

Das risikoneutrale Maß ist das Martingalmaß Q aus Teilaufgabe (i). Durch Einsetzen der Werte erhalten wir d=0.8-1=-0.2 und u=1.2-1=0.2, sodass $Q[\omega_u]=\frac{r-d}{u-d}=\frac{-(-0.2)}{0.4}=\frac{1}{2}=1-Q[\omega_d]=Q[\omega_d]$. Das Maß P gegeben durch $P[\omega_u]=0.7$ und $P[\omega_d]=0.3$ ist kein äquivalentes Martingalmaß für H. Durch Einsetzen erhalten wir nämlich $S_1(\omega_u)=s_0(1+u)=120$ und $S_1(\omega_d)=80$, sodass $H(\omega_u)=20$ und $H(\omega_d)=0$ und damit $E_P[H]=0.7\cdot 20+0.3\cdot 0=14\neq S_0^1=100$. Nach dem Fundamental Theorem of Asset Pricing ist der Preis damit auch nicht arbitragefrei.

iii) Finden Sie einen Wert ξ_1 , so dass $x+\xi_1(S_1-S_0)=H$. Was ist der anfängliche Preis x? Berechnen Sie $E_Q[H]$. Diskutieren Sie Ihre Ergebnisse.

Um ξ_1 und x herauszufinden, lösen wir das lineare Gleichungssystem gegeben durch $x+\xi_1(S_1(\omega_u)-s_0)=H(\omega_u)$ und $x+\xi_1(S_1(\omega_d)-s_0)=H(\omega_d)$. Durch Einsetzen erhalten wir $x+20\xi_1=20$ und $x-20\xi_1=0$. Durch addieren der beiden Gleichungen erhalten wir 2x=20, sodass x=10 und durch abziehen der zweiten Gleichung von der ersten $40\xi_1=20$, sodass $\xi_1=\frac{1}{2}$. Schließlich berechnen wir durch Einsetzen $E_Q[H]=0.5\cdot 20+0.5\cdot 0=10$. Damit ist Q ein risikoneutrales Maß für die Kaufoption mit Ausübungspreis K=100, falls der anfängliche Preis x=10 ist. In der Tat ist $E_Q[H]=10$ dann ein arbitragefreier Preis für H.

References

[DS06] Delbaen, Freddy; Schachermayer, Walter: The Mathematics of Arbitrage. Springer Berlin Heidelberg, 2006