Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 84.06

Figure 1: Outline of path 1

2.1.1 HWE olefination

Substrates:

- 1. diethylphosphono-2 butanoate de methyle
- 2. 4-Methoxyphenylglyoxal hydrate available at Sigma-Aldrich

Products:

1. CC/C(=C/C(=O)c1ccc(OC)cc1)C(=O)OC

Typical conditions: 1.Base 2.RCHO

Protections: none

Reference: 10.3109/1061186X.2014.928718 and 10.1016/S0968-0896(03)00373-0 and 10.1016/j.bmcl.2011.04.076 and 10.1016/j.tetlet.2012.04.044 and 10.1021/ja0581604

Retrosynthesis ID: 14764

2.1.2 Allylic Oxidation of Alkenes

Substrates:

1. CC/C(=C/C(=O)c1ccc(OC)cc1)C(=O)OC

Products:

1. $COC(=O)/C(=C\setminus C(=O)c1ccc(OC)cc1)C(C)=O$

Typical conditions: tBuOOH.Pd(OH)2/C or PhI(OAc)2 or SeO2

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and 10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.1.3 Acid catalyzed transesterification

Substrates:

- 1. $COC(=O)/C(=C\setminus C(=O)c1ccc(OC)cc1)C(C)=O$
- 2. Sorbic alcohol available at Sigma-Aldrich

Products:

 $1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C) = O$

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

2.1.4 Diels-Alder

Substrates:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C) = O$$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.2 Path 2

Score: 106.04

Figure 2: Outline of path 2

2.2.1 Homogenous Reduction of C=C Double Bond

${\bf Substrates:}$

1. 4-vinyl-5h-furan-2-one

Products:

1. 4-ethyl-5h-furan-2-one

Typical conditions: H2.Pd/C or Pd(OH)2/C

Protections: none

Reference: DOI: 10.1021/ja044280k and 10.1021/jo980128n and

10.1021/ja00213a006

2.2.2 Ring opening of lactones with organolithium reagents

Substrates:

1. 4-Iodoanisole - available at Sigma-Aldrich

2. 4-ethyl-5h-furan-2-one

Products:

1. CC/C(=C/C(=O)c1ccc(OC)cc1)CO

Typical conditions: BuLi.ether.-78C

Protections: none

Reference: 10.1002/jhet.233 and 10.1021/ol070572p and 10.1002/ejoc.200801000

and 10.1021/ja905843e (SI) and 10.1016/j.tet.2009.05.007

2.2.3 Allylic Oxidation of Alkenes

${\bf Substrates:}$

1. CC/C(=C/C(=O)c1ccc(OC)cc1)CO

Products:

1. $COc1ccc(C(=O)/C=C(\setminus CO)C(C)=O)cc1$

Typical conditions: ${\rm tBuOOH.Pd(OH)2/C}$ or ${\rm PhI(OAc)2}$ or ${\rm SeO2}$

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

2.2.4 Jones Oxidation

${\bf Substrates:}$

1. $COc1ccc(C(=O)/C=C(\setminus CO)C(C)=O)cc1$

Products:

1. COc1ccc(C(=O)/C=C(/C(C)=O)C(=O)O)cc1

 ${\bf Typical\ conditions:}\ {\bf cromate.sulfate. H2O. acetone}$

Protections: none

Reference: 10.1002/9780470638859.conrr349 and 10.1021/jm00270a004

2.2.5 Synthesis of esters from alkyl chlorides and carboxylic acids or thioacids

Substrates:

- 1. COc1ccc(C(=O)/C=C(/C(C)=O)C(=O)O)cc1
- 2. 2,4-hexadienyl bromide

Products:

 $1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C) = O$

Typical conditions: K2CO3.DMF

Protections: none

Reference: 10.1016/j.bmcl.2005.08.026 AND 10.1021/ol034655r (SI) AND

10.1039/C3RA41967C AND 10.1016/j.bmcl.2012.03.093

2.2.6 Diels-Alder

Substrates:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C) = O$$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.3 Path 3

Score: 146.61

Figure 3: Outline of path 3

2.3.1 Jones Oxidation

Substrates:

 $1. \ (z) \hbox{-} 2 \hbox{-} iodomethylene-pent-} 4\hbox{-} en-} 1\hbox{-} ol$

Products:

1.
$$C=CC/C(=C/I)C(=O)O$$

 ${\bf Typical\ conditions:}\ {\bf cromate.sulfate. H2O. acetone}$

Protections: none

Reference: 10.1002/9780470638859.conrr349 and 10.1021/jm00270a004

Retrosynthesis ID: 11160

2.3.2 Steglich Esterification

Substrates:

1. C=CC/C(=C/I)C(=O)O

2. Sorbic alcohol - available at Sigma-Aldrich

Products:

1. C=CC/C(=C/I)C(=O)OC/C=C/C=C/C

Typical conditions: alcohol.DCC.DMAP.DCM or thiol.DCC.DMAP.DCM

Protections: none

Reference: 10.1002/anie.197805221

Retrosynthesis ID: 10171

2.3.3 Rh(I) catalyzed hydroboration

Substrates:

1.
$$C=CC/C(=C/I)C(=O)OC/C=C/C=C/C$$

Products:

1. $C/C=C/C=C/COC(=O)/C(=C\setminus I)CCCO$

 $\textbf{Typical conditions:} \ \ \textbf{Wilkinson's catalyst.} cateholborane. THF. MeOH. NaOH. H2O2$

Protections: none

Reference: DOI: 10.1021/ja00043a009

2.3.4 Jones Oxidation

Substrates:

$$1.~C/C{=}C/C{=}C/COC({=}O)/C({=}C\backslash I)CCCO$$

Products:

$$1. \ C/C=C/C=C/COC(=O)/C(=C\setminus I)CCC(=O)O$$

 ${\bf Typical\ conditions:}\ {\bf cromate.sulfate. H2O. acetone}$

Protections: none

Reference: 10.1002/9780470638859.conrr349 and 10.1021/jm00270a004

2.3.5 Stille Carbonylative Cross-Coupling

Substrates:

1. Tributyl(4-methoxyphenyl)stannane - available at Sigma-Aldrich

2. CORM-2 - available at Sigma-Aldrich

3. $C/C=C/C=C/COC(=O)/C(=C\setminus I)CCC(=O)O$

Products:

1. $C/C=C/C=C/COC(=O)/C(=C\setminus C(=O)c1ccc(OC)cc1)CCC(=O)O$

Typical conditions: Pd(0) complex

Protections: none

Reference: DOI: 10.1002/anie.198605081

2.3.6 Diels-Alder

Substrates:

 $1. \ \ C/C=C/C=C/COC(=O)/C(=C\backslash C(=O)c1ccc(OC)cc1)CCC(=O)O$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32CCC(=O)O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

 $ANIE1668{>}3.0.CO; 2\text{-}Z\ AND 10.1021/ja062508t$

${\bf 2.3.7} \quad {\bf Catalytic\ dehydrogenative\ decarboxyole fination\ of\ carboxylic\ acids}$

Substrates:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32CCC(=O)O)cc1$

Products:

 $1. \ \ C = C[C@]12C(=O)OC[C@H]1C = C[C@@H](C)[C@H]2C(=O)c1ccc(OC)cc1$

 $\begin{tabular}{ll} \textbf{Typical} & \textbf{conditions:} & & & & & & & & & \\ \textbf{Col-catalyst.Cs2CO3.DME/H2O.blue.light.rt} & & & & & & & \\ \end{tabular}$

Protections: none

Reference: 10.1038/s41557-018-0142-4 and 10.1021/acscatal.8b03282 and 10.1021/acs.joc.9b00167

Retrosynthesis ID: 10032311

2.3.8 Wacker-Tsuji Olefin oxidation

Substrates:

 $1. \ \ C = C[C@]12C(=O)OC[C@H]1C = C[C@@H](C)[C@H]2C(=O)c1ccc(OC)cc1$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)=O)cc1$

Typical conditions: PdCl2.CuCl2.H2O.DMSO.O2

Protections: none

Reference: 10.1021/ja043203m and 10.1002/anie.200502886 and 10.1021/acs.joc.6b00137 and 10.1016/j.tet.2013.07.048 and 10.1002/1521-3773(20011001)40:19<3675::AID-ANIE3675>3.0.CO;2-G and 10.1002/cctc.201500241 and 10.1016/j.tetlet.2013.01.082

Retrosynthesis ID: 26291

2.4 Path 4

Score: 164.14

Figure 4: Outline of path 4

2.4.1 Acid hydrolysis of nitriles to carboxylic acids

Substrates:

1. 3-dimethylamino-2-acetyl propenenitrile

Products:

1. CC(=O)/C(=C/N(C)C)C(=O)O

Typical conditions: Hcl.heating.H2O

Protections: none

Reference: 10.1021/jm301796k and 10.1016/j.bmcl.2007.06.054 and

 $10.1021/\mathrm{jm}801532e$

Retrosynthesis ID: 16027

2.4.2 Steglich Esterification

Substrates:

1. CC(=O)/C(=C/N(C)C)C(=O)O

2. Sorbic alcohol - available at Sigma-Aldrich

Products:

1. $C/C=C/C=C/COC(=O)/C(=C\setminus N(C)C)C(C)=O$

Typical conditions: alcohol.DCC.DMAP.DCM or thiol.DCC.DMAP.DCM

Protections: none

Reference: 10.1002/anie.197805221

Retrosynthesis ID: 10171

2.4.3 Stannylation of enamines

Substrates:

 $1. \ C/C = C/C = C/COC(=O)/C(=C\backslash N(C)C)C(C) = O$

2. C12H27LiSn

Products:

 $1. \ \ C/C = C/C = C/COC(=O)/C(=C \setminus [Sn](CCCC)(CCCC)CCCC)C(C) = O$

Typical conditions: Bu3SnLi.THF.MeI

Protections: none

Reference: DOI: 10.1021/ol8020435

Retrosynthesis ID: 1780

2.4.4 Stille Carbonylative Cross-Coupling

Substrates:

1. CORM-2 - available at Sigma-Aldrich

2. 4-Iodoanisole - available at Sigma-Aldrich

 $3. \ \ C/C=C/C=C/COC(=O)/C(=C\backslash[Sn](CCCC)(CCCC)CCCC)C(C)=O$

Products:

1. $C/C=C/C=C/COC(=O)/C(=C\setminus C(=O)c1ccc(OC)cc1)C(C)=O$

Typical conditions: Pd(0) complex

Protections: none

Reference: DOI: 10.1002/anie.198605081

2.4.5 Diels-Alder

Substrates:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C) = O$$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.5 Path 5

Score: 166.61

Figure 5: Outline of path 5

2.5.1 Ring opening of lactones with organometallic reagents

Substrates:

- 1. 4-Methoxyphenylmagnesium bromide solution available at Sigma-Aldrich
- 2. 4-Bromofuran-2-one available at Sigma-Aldrich

Products:

1. COc1ccc(C(=O)/C=C(/Br)CO)cc1

 ${\bf Typical\ conditions:\ ether.-78C}$

Protections: none

Reference: 10.1002/jhet.233 and 10.1002/ejoc.200801000 and

10.1271/bbb.67.1744

2.5.2 Tandem oxidation-esterification

Substrates:

1. COc1ccc(C(=O)/C=C(/Br)CO)cc1

Products:

1. $COC(=O)/C(Br)=C\setminus C(=O)c1ccc(OC)cc1$

 $\textbf{Typical conditions:} \ \ \text{Oxidant (eg. I2.K2CO3 or Ca(OCl)2).MeOH}$

Protections: none

Reference: 10.1016/S0040-4039(00)73550-7 and 10.1016/j.tet.2005.03.097 and

10.1021/ol062940f

2.5.3 Sonogashira-type coupling of alkynes with vinyl Bromides

Substrates:

1. Calcium carbide - available at Sigma-Aldrich

2. $COC(=O)/C(Br)=C\setminus C(=O)c1ccc(OC)cc1$

Products:

1. C#C/C(=C/C(=O)c1ccc(OC)cc1)C(=O)OC

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.CuI.base.solvent}$

Protections: none

Reference: US2003/236423 and 10.1055/s-0031-1290502 and 10.1021/ja510635k (SI) and 10.1021/ol0508173 and 10.1021/ol0508173

2.5.4 Acid catalyzed transesterification

Substrates:

- 1. C#C/C(=C/C(=O)c1ccc(OC)cc1)C(=O)OC
- 2. Sorbic alcohol available at Sigma-Aldrich

Products:

1. C#C/C(=C/C(=O)c1ccc(OC)cc1)C(=O)OC/C=C/C=C/C

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

2.5.5 Diels-Alder

Substrates:

1. C#C/C(=C/C(=O)c1ccc(OC)cc1)C(=O)OC/C=C/C=C/C

Products:

 $1. \ \ C\#C[C@]12C(=O)OC[C@H]1C=C[C@@H](C)[C@H]2C(=O)c1ccc(OC)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z AND <math>10.1021/ja062508t

Retrosynthesis ID: 18116

2.5.6 Silver-catalyzed hydroazidation of terminal alkynes

Substrates:

 $1. \ C\#C[C@]12C(=O)OC[C@H]1C=C[C@@H](C)[C@H]2C(=O)c1ccc(OC)cc1$

2. Trimethylsilyl azide - available at Sigma-Aldrich

Products:

 $1. \ \ C = C(N = [N +] = [N -])[C@] \\ 12C(=O)OC[C@H] \\ 1C = C[C@@H](C)[C@H] \\ 2C(=O)c1ccc(OC)cc1$

Typical conditions: Ag2CO3. H2O. DMSO. 80C

Protections: none

Reference: DOI: 10.1021/ol501661k

Retrosynthesis ID: 1409

2.5.7 Synthesis of alpha - amino ketones from 2 - azidoallyl amines

Substrates:

 $1. \ \ C = C(N = [N +] = [N -])[C@] \\ 12C(=O)OC[C@H] \\ 1C = C[C@@H](C)[C@H] \\ 2C(=O)c1ccc(OC)cc1$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)=O)cc1$

Typical conditions: BF3 * Et2O. Ch2Cl2. rt

Protections: none

Reference: DOI: 10.1021/ol501661k