

Pattern recognition in the PANDA experiment with neural networks

Arvi Jonnarth & Adam Hedkvist

Introduction

- Straw tube tracker (STT)
- Decay reaction

Problem description

- Identify specific particle tracks
- Extract physical observables
- Are neural networks a viable option?

Neural networks

Method

- Two neural networks:
 - Pattern recognition
 - Momentum regression
- Trained on simulated data
- Implemented in Matlab

Method – Pattern recognition

- Identify the track of a specified particle
- Input: Raw STT signals (tube hits)
- Output: Specific particle track
- Four hidden layers

Method – Post processing

- Thresholding
- Filtering

Method – Momentum regression

- Extract the momentum of a specified particle
- Input: Specific particle track
- Output: 2D momentum vector
- Six hidden layers

Results – Pattern recognition

Results – Momentum regression

Results – Multiple networks

- 10 networks combined
- Slight accuracy increase, longer computational time

Pattern recognition

Momentum regression

Visualization – Easy case

Visualization – Hard case

Visualization – Failure case

Input:

Output:

Discussion and conclusions

- Finding good parameters can be difficult
- Large networks require large data sets
- One network for each particle
- Requires sufficient hardware
- Is machine learning a viable option?

Future improvements

- Include other detectors
- Include different decay reactions
- Study different network structures
- Optimize hyperparameters with different optimization methods

Thank you for listening!

