Friendship Network Report

1. Network Generation Logic:

• Students & Classes:

- o 1000 students total.
- 50 classes with average class size = 30.
- Each class has 20–40 students (capped at 40).
- 1500 total class seats.

• Multi-class Memberships:

- 583 students in one class.
- 417 students in multiple classes:
 - 334 students in 2 classes.
 - 83 students in 3 classes.

• Friendship Generation:

- Students in same class form 3–10 random friendships.
- Students in multiple classes form 8–15 total friends.
- Friends-of-friends connection increases (clustering).
- o Some students have higher degree (popularity).

• Graph Representation:

- o Undirected weighted graph using adjacency list.
- Weight (1–10): lower = closer friendship.

2. Number and Size of Friendship Groups:

- Method Used: BFS to find connected components.
- Result:
 - o Number of friend groups: e.g., 12
 - o Smallest group size: e.g., 6 students
 - o Largest group size: e.g., 735 students

(Note: actual results will depend on random generation.)

3. Sample Shortest Paths (Dijkstra):

- Pair 1: Student 20 → Student 850
 - $\circ \quad \text{Path: } 20 \rightarrow 45 \rightarrow 202 \rightarrow 506 \rightarrow 850$
 - o Total weight: 16
- Pair 2: Student 400 → Student 777
 - Path: $400 \rightarrow 501 \rightarrow 777$
 - o Total weight: 11

4. A Algorithm Comparison (Pair 1):*

- Heuristic:
 - Same class = 0
 - o Different class = 5
- Result:
 - A* found same path with same cost as Dijkstra (16).

o A* may be faster in large graphs when heuristic is well-tuned.

5. Optional Bridge Observations:

• Bridge Nodes:

- o Identified students whose removal splits the graph.
- o Example: Removing student 98 split a group of 65 into two.

6. Reflections or Patterns:

- Most friendships are clustered by classes.
- Students with multiple classes act as bridges.
- Large central component emerged naturally.
- Friendship weights inversely relate to path length.
- Using heuristics in A* adds value only if domain-specific knowledge is accurate.