Determinants

A general way to compute it is,

If If A is an $n \times n$ matrix where n = 1,

$$\det(A) = a_{1,1}$$

If A is an $n \times n$ matrix where n > 1,

$$\det(A) = a_{1,1} \det{(A_{1,1})} - a_{1,2} \det{(A_{1,2})} + \dots + (-1)^{n+1} a_{1,n} \det{(A_{1,n})}$$

 $a_{i,j}$ means the element at the $i^{
m th}$ row and the $j^{
m th}$ column.

 $A_{i,j}$ means the Matrix if you drop (get rid of) the $i^{
m th}$ row and the $j^{
m th}$ column.

Deriving it for a 2×2

Say we have
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\det(A) = (a_{1,1})(\det(A_{1,1})) - (a_{1,2})(\det(A_{1,2}))$$

 $\det(A) = (a)(d) - (b)(c)$

$$\det(A) = ad - bc$$