Exkurs: Weitere Verwendung von Graphen

Mit Hilfe von Graphen können wir endliche Automaten (EA) darstellen.

- EA modellieren ein Verhalten, das als Zustände und Übergänge beschrieben ist
- Übergänge sind vom Eingang abhängig

Beispiel: eine Leselampe

Exkurs: Weitere Verwendung von Graphen

Mit Hilfe von Graphen können wir endliche Automaten (EA) darstellen.

- EA modellieren ein Verhalten, das als Zustände und Übergänge beschrieben ist
- Übergänge sind vom Eingang abhängig

Akzeptoren:

- akzeptieren und erkennen die Eingabe, signalisieren durch ihren Zustand das Ergebnis
- z.B. String Matching, Regular Expression Matching

Transduktoren:

- generieren Ausgaben in Abhängigkeit von Zustand und Eingabe mit Hilfe von Aktionen
- z.B. Prozesssteuerung

Endliche Automaten als Graphen

Zustandsmenge (endlicher Menge Q) Eingabealphabet (endlicher Menge Σ) Übergangsaktionen (Funktion $\delta : Q \times \Sigma \rightarrow Q$)

+ Startzustand und Akzeptierende Zustände

z.B. Erkennung von "aa" mit Alphabet {a, b, c}

Endliche Automaten als Graphen

Zustandsmenge (endlicher Menge Q) Eingabealphabet (endlicher Menge Σ) Übergangsaktionen (Funktion $\delta : Q \times \Sigma \rightarrow Q$)

+ Startzustand und Akzeptierende Zustände

z.B. Erkennung von "aa" mit Alphabet {a, b, c}

Zustand	Eingabe : a	Eingabe : b	Eingabe : c
0 (start)	1	0	0
1	2	0	0
2 (akzept.)	2	2	2

Endliche Automaten als Graphen

Graphalgorithmen können auf EAs verwendet werden für:

Erreichbarkeit von Knoten

 z.B., um festzustellen von einem bestimmten Startzustand ob der akzeptierende Zustand erreichbar ist, z. B. für eine Teilmenge von Eingaben

Kürzester Weg

 Wie viele Übergänge sind mindestens zwischen einem Startzustand und einem akzeptierenden Zustand erforderlich?

High-Level-Struktur finden

- SCCs können uns Informationen über "Meta-Zustände" liefern.
- •

