# CS 381 - Spring 2021

Week 1, Lecture 2
Part 2

# What are the essentials parts of a program?

- Input/output
- Variables
- Operations on variables
- Conditionals
- Repetition in the form of loops

Understanding the asymptotic performance of nested loops is part of the analysis of algorithms.



```
while n > 1 do
for i = 1 to n do
F(i,n)
n = n/4
```



```
while n > 1 do

for i = 1 to n do

F(i,n)

n = n/4
```

- How many times is the while loop executed?
- How many times isF(i,n) called for each n?





Total number of times F is called is...?





Total number of times F is called is:

$$n + n/4 + n/16 + n/64 + ... + 4 + 1$$

### **Review: Geometric Series**

Suppose 
$$0 < x < 1$$
. Then  $\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$ 

Proof: 
$$\sum_{i=0}^{\infty} x^{i} = \frac{1-x}{1-x} \sum_{i=0}^{\infty} x^{i}$$
  
 $= \frac{1}{1-x} \left( \sum_{i=0}^{\infty} x^{i} - \sum_{i=0}^{\infty} x^{i+1} \right)$   
 $= \frac{1}{1-x} \left( \sum_{i=0}^{\infty} x^{i} - \sum_{i=1}^{\infty} x^{i} \right) = \frac{1}{1-x}$ 

For 
$$x = \frac{1}{4}$$
, we have  $\sum_{i=0}^{\infty} \left(\frac{1}{4}\right)^{-i} = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}$ 



while 
$$n > 1$$
 do  
for  $i = 1$  to n do  
 $F(i,n)$   
 $n = n/4$ 

Total number of times F is called is:

$$n + n/4 + n/16 + n/64 + \dots + 4 + 1 = n \cdot \sum_{i=0}^{\log_4 n} \left(\frac{1}{4^i}\right) < \frac{4n}{3}$$

```
while n > 1 do
for i = 1 to n do
F(i,n)
n = n/4
```

```
\begin{array}{ll} O(n \ log \ n) & \pmb{\Theta}(n \ log \ n) \\ O(n^2) & \pmb{\Theta}(n^2) \\ O(n) & \pmb{\Theta}(n) \\ O(\log n) & \pmb{\Theta}(\log n) \end{array}
```



```
while n > 1 do
for i = 1 to n do
F(i,n)
n = n/4
```

```
O(n log n) \frac{\Theta(n \log n)}{\Theta(n^2)}
O(n<sup>2</sup>) \frac{\Theta(n^2)}{\Theta(n)}
O(n) \frac{\Theta(n)}{\Theta(\log n)}
```

#### **Exercises**

Is 
$$\sqrt{n (\log n)^2} = O(n/\log n)$$
?  
Is  $(\log n)^2 = O(\sqrt{n/\log n})$ ?

What is the relationship between  $(\log n)^3$  and  $n^{1/2}$ ?

Using definition and working with inequalities works in many situations, but not in all.

 $(\log n)^2$  is typically written as  $\log^2 n$   $\log n^2$  is  $\log (n^2)$ 

### Review L'Hopital's rule (if needed)

Suppose we are trying to analyze the behavior of a function such as

$$F(x) = \frac{\ln x}{x - 1}$$

- Although F is not defined when x = 1, we need to know how F behaves near 1.
- In particular, we would like to know the value of the limit  $\lim_{x\to 1} \frac{\ln x}{x-1}$
- In computing this limit, we can't apply the usual law of limits because the limit of the denominator is 0.

### Review L'Hopital's rule

• In general, if we have a limit of the form  $\lim_{x\to a} \frac{J(x)}{g(x)}$ 

where both  $f(x) \to 0$  and  $g(x) \to 0$  as  $x \to a$ , then this limit may or may not exist.

• It is called an indeterminate form of type  $\frac{0}{0}$ .

### Review L'Hopital's rule

• Another situation in which a limit is not obvious occurs when we look for a horizontal asymptote of *F* and need to evaluate the limit

$$\lim_{x \to \infty} \frac{\ln x}{x - 1}$$

• It isn't obvious how to evaluate this limit because both numerator and denominator become large as  $x \to \infty$ .

- There is a struggle between the two.
  - If the numerator wins, the limit will be  $\infty$ .
  - If the denominator wins, the answer will be 0.
  - Alternatively, there may be some compromise— the answer may be some finite positive number.

### Review L'Hopital's rule

• In general, if we have a limit of the form  $\lim_{x\to a} \frac{f(x)}{g(x)}$ 

where both  $f(x) \to \infty$  (or  $-\infty$ ) and  $g(x) \to \infty$  (or  $-\infty$ ), then the limit may or may not exist.

• It is called an indeterminate form of type  $\infty/\infty$ .

### L'Hopital's rule

- Suppose f and g are differentiable and  $g'(x) \neq 0$  on an open interval I that contains a (except possibly at a).
- Suppose  $\lim_{x\to a} f(x) = 0$  and  $\lim_{x\to a} g(x) = 0$

or that

$$\lim_{x \to a} f(x) = \pm \infty$$
 and  $\lim_{x \to a} g(x) = \pm \infty$ 

In other words, we have an indeterminate form of type  $\frac{0}{0}$  or  $\infty/\infty$ .

- Then,  $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$
- if the limit on the right exists (or is  $\infty$  or  $\infty$ ).

#### Back to our exercises

- Is  $\sqrt{n (\log n)^2} = O(n/\log n)$ ?
- Is  $(\log n)^2 = O(\sqrt{n/\log n})$ ?

What is the relationship between  $(\log n)^3$  and  $n^{1/2}$ ?

Take limits and use L'Hopital's rule

#### What the limit tells us:

- $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ , then f(n) = O(g(n)); g(n) grows faster than f(n) and  $f(n) = \Theta(g(n))$  does not hold
- $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ , for a constant c>0, then  $f(n) = \Theta(g(n))$
- $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$ , then f(n) is of a higher order than g(n)

Finding the limits can be easier than working with the definitions!

Claim:  $\sqrt{n} (\log n)^2 = O(n/\log n)$ 

$$\lim_{n\to\infty} \frac{\sqrt{n} (\log n)^2}{\frac{n}{\log n}} = \lim_{n\to\infty} \frac{((\log n)^3)'}{(\sqrt{n})'} =$$

$$\frac{3 (\log n)^2 (\log n)'}{\frac{1}{2 \sqrt{n}}} = 6 \log e \log n^2 \sqrt{n} \frac{1}{n} = \frac{c(\log n)^2}{\sqrt{n}} = \dots = 0$$

**Note:**  $\log_2 n = \ln n * \log_2 e$  and  $(\ln n)' = 1/n$ 

#### **Conclusion:**

- n/log n grows faster and the claim follows
- $\sqrt{n}$  grows faster than  $\log^3 n$

### Common complexity classes

O(1) – constant

O(log n) – logarithmic (any base; base 2 if no base indicated)

 $O(\log^k n) - \text{poly log}$ 

O(n) – linear

 $O(n \log n)$ 

 $O(n^2)$  – quadratic;  $O(n^3)$  – cubic

O(n<sup>k</sup>) – polynomial, k is a positive constant

 $O(c^n)$  – exponential, c is a constant > 1

- O(2<sup>n</sup>) is not  $\Theta(3^n)$
- O(n!) factorial
- $O(n^n), O(n^{2n}), ...$

**Table 2.1** The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10<sup>25</sup> years, we simply record the algorithm as taking a very long time.

|               | n       | n log <sub>2</sub> n | $n^2$   | $n^3$        | 1.5 <sup>n</sup> | 2 <sup>n</sup>         | n!                     |
|---------------|---------|----------------------|---------|--------------|------------------|------------------------|------------------------|
| n = 10        | < 1 sec | < 1 sec              | < 1 sec | < 1 sec      | < 1 sec          | < 1 sec                | 4 sec                  |
| n = 30        | < 1 sec | < 1 sec              | < 1 sec | < 1 sec      | < 1 sec          | 18 min                 | 10 <sup>25</sup> years |
| n = 50        | < 1 sec | < 1 sec              | < 1 sec | < 1 sec      | 11 min           | 36 years               | very long              |
| n = 100       | < 1 sec | < 1 sec              | < 1 sec | 1 sec        | 12,892 years     | 10 <sup>17</sup> years | very long              |
| n = 1,000     | < 1 sec | < 1 sec              | 1 sec   | 18 min       | very long        | very long              | very long              |
| n = 10,000    | < 1 sec | < 1 sec              | 2 min   | 12 days      | very long        | very long              | very long              |
| n = 100,000   | < 1 sec | 2 sec                | 3 hours | 32 years     | very long        | very long              | very long              |
| n = 1,000,000 | 1 sec   | 20 sec               | 12 days | 31,710 years | very long        | very long              | very long              |