In [1]:

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [3]: ▶

import tkinter as TK
from tkinter.filedialog import askopenfilename

In [7]: ▶

mpg = pd.read_csv("C:/Users/HP/OneDrive/Desktop/DataSciece/auto-mpg.csv")

In [8]: ▶

mpg.head()

Out[8]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

In [13]:

#part(a)
#Identify the Dimentions of data
mpg.shape

Out[13]:

(398, 9)

In [14]: ▶

```
#part(a)
#Identify the structure of data
mpg.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	398 non-null	object
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model year	398 non-null	int64
7	origin	398 non-null	int64
8	car name	398 non-null	object
dtyp	es: float64(3)	, int64(4), obje	ct(2)

dtypes: float64(3), int
memory usage: 28.1+ KB

In [15]:

```
#part(a)
#Identify the summary of data
mpg.describe()
```

Out[15]:

	mpg	cylinders	displacement	weight	acceleration	model year	ori
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.0000
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	76.010050	1.5728
std	7.815984	1.701004	104.269838	846.841774	2.757689	3.697627	0.8020
min	9.000000	3.000000	68.000000	1613.000000	8.000000	70.000000	1.0000
25%	17.500000	4.000000	104.250000	2223.750000	13.825000	73.000000	1.0000
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	76.000000	1.0000
75%	29.000000	8.000000	262.000000	3608.000000	17.175000	79.000000	2.0000
max	46.600000	8.000000	455.000000	5140.000000	24.800000	82.000000	3.0000
4							

In [16]: ▶

#part(b)
mpg.isnull().sum()

Out[16]:

mpg 0 cylinders 0 displacement 0 horsepower 0 weight 0 0 acceleration model year 0 0 origin car name 0 dtype: int64

In [17]:

mpg.dropna()

Out[17]:

ca nam	origin	model year	acceleration	weight	horsepower	displacement	cylinders	mpg	
chevrole chevell malib	1	70	12.0	3504	130	307.0	8	18.0	0
buic skylar 32	1	70	11.5	3693	165	350.0	8	15.0	1
plymout satellit	1	70	11.0	3436	150	318.0	8	18.0	2
am rebel ss	1	70	12.0	3433	150	304.0	8	16.0	3
for torin	1	70	10.5	3449	140	302.0	8	17.0	4
for mustan ç	1	82	15.6	2790	86	140.0	4	27.0	393
v\ picku	2	82	24.6	2130	52	97.0	4	44.0	394
dodg rampag	1	82	11.6	2295	84	135.0	4	32.0	395
for range	1	82	18.6	2625	79	120.0	4	28.0	396
chevy s	1	82	19.4	2720	82	119.0	4	31.0	397

398 rows × 9 columns

In [31]:

#part(c)

#to convert certain numerical into categorical variable for visualisation of data #Some advantages of using categorical data include:

#Memory efficiency: Categorical data can be more memory-efficient than storing the same a #This is because categorical data is internally represented as integers, and the mapping #is stored separately.

mpg['acceleration']=pd.Categorical(mpg['acceleration'])

In [30]: ▶

```
#plot histogram for continous variable
plt.hist(mpg['displacement'])
```

Out[30]:

In [21]: ▶

```
plt.hist(mpg['acceleration'])
```

Out[21]:

In [24]: ▶

```
#part(d) plot violin plot for numerical variable
sns.violinplot(mpg['cylinders'])
```

Out[24]:

<Axes: >


```
M
In [50]:
#part(e)
sns.boxplot(mpg['model year'])
Out[50]:
<Axes: >
 82
 80
 78
 76
 74
 72
 70
                                      0
In [ ]:
                                                                                          H
#part(f)
In [ ]:
                                                                                          H
In [51]:
                                                                                          H
#part(g)
#standardize the dataset for numerical attributes
nums = list(mpg.select_dtypes(exclude=['object']).columns)
nums
       # to show output
Out[51]:
['mpg',
 'cylinders',
 'displacement',
 'weight',
 'acceleration',
 'model year',
```

'origin']

In [53]: H

```
from sklearn import preprocessing
min_max_scaler=preprocessing.MinMaxScaler()
mpg[['mpg',
   'cylinders',
 'displacement',
 'weight',
 'acceleration',
 'model year',
 'origin']]
mpg.head()
```

Out[53]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino
In	[]:								

H