ЛАБОРАТОРНАЯ РАБОТА №7

ОПРЕДЕЛЕНИЕ ЗАВИСИМОСТИ ЧУВСТВИТЕЛЬНОСТИ СЕЛЕНОВОГО ЭЛЕМЕНТА ОТ ДЛИНЫ ВОЛНЫ

Поляков Даниил, 19.Б23-фз

Цель работы: определить зависимость дифференциальной чувствительности селенового фотоэлемента от длины волны.

Схема установки

1 — ртутная лампа/лампа накаливания;

2 — осветительная линза;

3 — входная щель монохроматора;

4 — объектив коллиматора;

5 — диспергирующая призма;

6 — выходной объектив монохроматора;

7 — выходная щель монохроматора;

8 — окуляр/термоэлемент/фотоэлемент.

Расчётные формулы

8

• Энергия излучения, падающего на термоэлемент:

$$\Phi = \frac{U}{\varepsilon}$$

U — напряжение термоэлемента; $\varepsilon = 0.37~\mathrm{B/BT}$ — чувствительность термоэлемента.

• Чувствительность фотоэлемента:

$$K = \frac{I}{\Phi}$$

I — фототок;

1

 Φ — энергия падающего излучения.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность косвенных измерений:

$$\begin{split} & \Delta_{f(x_{1},x_{2},\ldots)} = \sqrt{\left(\frac{\partial f}{\partial x_{1}} \cdot \Delta_{x_{1}}\right)^{2} + \left(\frac{\partial f}{\partial x_{2}} \cdot \Delta_{x_{2}}\right)^{2} + \ldots} \\ & \circ & \Delta_{\Phi} = \left|\frac{\partial \Phi}{\partial U} \cdot \Delta_{U}\right| = \left|\frac{\Delta_{U}}{\varepsilon}\right| \\ & \circ & \Delta_{K} = \sqrt{\left(\frac{\partial K}{\partial I} \cdot \Delta_{I}\right)^{2} + \left(\frac{\partial K}{\partial \Phi} \cdot \Delta_{\Phi}\right)^{2}} = |K| \sqrt{\left(\frac{\Delta_{I}}{I}\right)^{2} + \left(\frac{\Delta_{\Phi}}{\Phi}\right)^{2}} \end{split}$$

Порядок измерений

- 1. Сначала необходимо провести градуировку монохроматора, сопоставить значения длин волн делениям барабанчика монохроматора. Устанавливаем ртутную лампу, имеющую линейчатый спектр, перед входной щелью монохроматора. Устанавливаем линзу между лампой и щелью и фокусируем изображение лампы на щели, перемещая линзу. Наблюдая изображение линий в окуляре, примерно устанавливаем нормальную ширину входной щели. Убеждаемся, что полученный спектр соответствует указанному в атласе спектра ртути. Вращая барабанчик, спектральную линию на центр выходной щели. Уточняем её положение, сузив выходную щель до размера линии. Снимаем отсчёт ϕ со шкалы барабанчика и соответствующее ему значение длины волны λ для наблюдаемой спектральной линии, указанное В атласе. Выполняем аналогичные измерения для всех линий из атласа.
- 2. Выключаем ртутную лампу и убираем линзу. Устанавливаем лампу накаливания перед входной щелью. Широко открываем входную и выходную щели. Снимаем окуляр с монохроматора и устанавливаем термоэлемент вплотную к выходной щели. Необходимо, чтобы как можно больше выходящего света падало только на одну из его пластин. Для этого, вращая соответствующий винт, перемещаем термоэлемент по горизонтали, добиваясь максимума напряжения на подключенном к нему вольтметре. Накрываем термоэлемент и щель плотной тканью для уменьшения влияния внешнего освещения. Вращая барабанчик в пределах полученной градуировки, снимаем отсчёты φ с его шкалы и соответствующие значения напряжения U с вольтметра.
- 3. Убираем термоэлемент и на его место устанавливаем фотоэлемент. Вращая барабанчик, снимаем отсчёты φ с его шкалы и соответствующие значения тока I с подключенного к фотоэлементу гальванометра при тех же делениях барабанчика, рассмотренных в случае термоэлемента.

Результаты

Примечание: построение графиков и интерполяция зависимостей выполнены с помощью ПО MATLAB.

1. Градуировка монохроматора

Таблица 1. Градуировка монохроматора

	•				
φ, °	λ, Å	Цвет			
366	4048	фиолет.			
430	4079				
492	4109				
894	4340				
908	4349	синий.			
924	4360				
1590	4917				
1630	4958	голубой			
2008	5461	зелёный			
2184	5771				
2196	5792	жёлтый			
2330	_				
2354	6125	оранж.			
2400	6236				
2570	6718				
2630	6909	красный			
2678	7084				

Градуировочная кривая монохроматора

Градуировочная кривая получена интерполированием экспериментальных точек кубическим сплайном.

2. Зависимость чувствительности селенового фотоэлемента от длины волны

Погрешность измерения напряжения и фототока примем равной половине цены деления приборов. В ходе измерений изменялся диапазон измерения приборов, поэтому погрешность величин не постоянна. Следует отметить, что указанная погрешность не учитывает систематические ошибки. Например, мы предполагаем, что на пластину термоэлемента и фотоэлемент падает одинаковое по мощности излучение, что может быть далеко от правды.

Таблица 2. Зависимость чувствительности селенового фотоэлемента от длины волны

φ, °	λ, Å	<i>U</i> , мкВ	Ф, мкВт	<i>I</i> , мкА	<i>K</i> , А/Вт
400	4065	2.40 ± 0.03	6.49 ± 0.07	0.80 ± 0.05	0.123 ± 0.008
450	4089	2.55 ± 0.03	6.89 ± 0.07	1.00 ± 0.05	0.145 ± 0.007
500	4113	2.75 ± 0.03	7.43 ± 0.07	1.20 ± 0.05	0.161 ± 0.007
550	4139	2.90 ± 0.03	7.84 ± 0.07	1.40 ± 0.05	0.179 ± 0.007
600	4165	3.10 ± 0.03	8.38 ± 0.07	1.65 ± 0.05	0.197 ± 0.006
650	4193	3.35 ± 0.03	9.05 ± 0.07	1.95 ± 0.05	0.215 ± 0.006
700	4222	3.60 ± 0.03	9.73 ± 0.07	2.30 ± 0.05	0.236 ± 0.005
750	4251	3.90 ± 0.03	10.54 ± 0.07	2.70 ± 0.05	0.256 ± 0.005
800	4281	4.20 ± 0.05	11.35 ± 0.14	3.10 ± 0.05	0.273 ± 0.005
850	4312	4.50 ± 0.05	12.16 ± 0.14	3.55 ± 0.05	0.292 ± 0.005
900	4344	4.90 ± 0.05	13.24 ± 0.14	4.10 ± 0.05	0.310 ± 0.005
950	4378	5.30 ± 0.05	14.32 ± 0.14	4.70 ± 0.05	0.328 ± 0.005
1000	4414	5.70 ± 0.05	15.41 ± 0.14	5.50 ± 0.10	0.357 ± 0.007
1050	4451	6.30 ± 0.05	17.03 ± 0.14	6.30 ± 0.10	0.370 ± 0.007
1100	4488	6.90 ± 0.05	18.65 ± 0.14	7.20 ± 0.10	0.386 ± 0.006
1150	4527	7.50 ± 0.05	20.27 ± 0.14	8.30 ± 0.10	0.409 ± 0.006
1200	4566	8.30 ± 0.05	22.43 ± 0.14	9.40 ± 0.10	0.419 ± 0.005
1250	4607	9.20 ± 0.05	24.86 ± 0.14	11.0 ± 0.5	0.44 ± 0.02
1300	4649	10.00 ± 0.10	27.0 ± 0.3	13.0 ± 0.5	0.48 ± 0.02
1350	4692	11.10 ± 0.10	30.0 ± 0.3	14.5 ± 0.5	0.48 ± 0.02
1400	4736	12.20 ± 0.10	33.0 ± 0.3	16.5 ± 0.5	0.50 ± 0.02
1450	4782	13.50 ± 0.10	36.5 ± 0.3	19.0 ± 0.5	0.521 ± 0.014
1500	4829	15.00 ± 0.10	40.5 ± 0.3	21.0 ± 0.5	0.518 ± 0.013
1550	4877	16.40 ± 0.10	44.3 ± 0.3	24.0 ± 0.5	0.541 ± 0.012
1600	4927	18.20 ± 0.10	49.2 ± 0.3	27.0 ± 0.5	0.549 ± 0.011
1650	4979	20.00 ± 0.10	54.1 ± 0.3	30.5 ± 0.5	0.564 ± 0.010
1700	5034	22.0 ± 0.2	59.5 ± 0.7	34.5 ± 0.5	0.580 ± 0.011
1750	5093	24.5 ± 0.2	66.2 ± 0.7	39.0 ± 0.5	0.589 ± 0.010

φ, °	λ, Å	U , мк $\mathrm B$	Ф, мкВт	<i>I</i> , мкА	<i>K</i> , А/Вт
1800	5155	27.2 ± 0.2	73.6 ± 0.7	43.0 ± 0.5	0.584 ± 0.009
1850	5221	30.0 ± 0.2	81.1 ± 0.7	48.0 ± 0.5	0.592 ± 0.008
1900	5292	33.0 ± 0.2	89.2 ± 0.7	54.0 ± 1.0	0.605 ± 0.012
1950	5367	36.0 ± 0.2	97.3 ± 0.7	60.0 ± 1.0	0.617 ± 0.011
2000	5448	39.5 ± 0.2	106.8 ± 0.7	66.0 ± 1.0	0.618 ± 0.010
2050	5533	44.0 ± 0.2	118.9 ± 0.7	72.0 ± 1.0	0.605 ± 0.009
2100	5622	48.8 ± 0.2	131.8 ± 0.7	78.0 ± 1.0	0.592 ± 0.008
2150	5711	52.0 ± 0.5	140.5 ± 1.4	84.0 ± 1.0	0.598 ± 0.009
2200	5799	57.0 ± 0.5	154.1 ± 1.4	89.0 ± 1.0	0.578 ± 0.008
2250	5895	62.0 ± 0.5	167.6 ± 1.4	94.0 ± 1.0	0.561 ± 0.007
2300	6001	68.0 ± 0.5	183.8 ± 1.4	96.0 ± 1.0	0.522 ± 0.007
2350	6116	74.0 ± 0.5	200.0 ± 1.4	95.0 ± 1.0	0.475 ± 0.006
2400	6236	82.0 ± 0.5	221.6 ± 1.4	90.0 ± 1.0	0.406 ± 0.005
2450	6367	90.0 ± 0.5	243.2 ± 1.4	80.0 ± 1.0	0.329 ± 0.004
2500	6508	98.0 ± 1.0	265 ± 3	64.0 ± 1.0	0.242 ± 0.005
2550	6657	108.0 ± 1.0	292 ± 3	47.0 ± 0.5	0.161 ± 0.002
2600	6811	121.0 ± 1.0	327 ± 3	29.5 ± 0.5	0.090 ± 0.002
2650	6979	135.0 ± 1.0	365 ± 3	16.0 ± 0.5	0.0439 ± 0.0014

График 2. Нормированные зависимости энергии падающего излучения, фототока и чувствительности фотоэлемента от длины волны

На полученном графике энергии не наблюдается максимума, потому что он находится за пределами рассмотренного диапазона длин волн. Максимум фототока наблюдается при длине волны около 6000 Å. Максимум чувствительности фотоэлемента приходится примерно на 5400 Å (зелёный цвет).

Выводы

Рабочий диапазон фотоэлемента зависит от его типа, материала и других свойств. В ходе работы была получена спектральная чувствительность вентильного селенового фотоэлемента. Рабочий диапазон исследованного фотоэлемента лежит в области видимого излучения, а максимум чувствительности приходится на зелёный цвет.