Licenciatura em Engenharia Informática (LEI) 2024/2025

Análise Matemática (AMATA)

CAPÍTULO 5

Séries.

EXERCÍCIOS

SÉRIES NUMÉRICAS

1. Estude a natureza das seguintes séries geométricas e, em caso de convergência, calcule a respectiva soma:

$$1.1 \sum_{n=1}^{\infty} 5^{-2n+1}$$

$$1.2 \sum_{n=1}^{\infty} \frac{5^n}{2^{3n+1}}$$

$$1.3\sum_{n=1}^{\infty} \frac{4^{2n-1}}{3^{3n+1}}$$

$$1.4 \sum_{n=1}^{\infty} \frac{\pi^n}{3^n}$$

2. Analise se as seguintes séries são convergentes:

$$2.1 \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^5}}$$

$$2.1 \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^5}} \qquad 2.2 \sum_{n=1}^{\infty} \frac{n}{2n+3} \qquad 2.3 \sum_{n=1}^{\infty} \frac{n^2}{5+7n}$$

$$2.3 \sum_{n=1}^{\infty} \frac{n^2}{5 + 7n}$$

$$2.4 \sum_{n=1}^{\infty} 7$$

$$2.5 \sum_{n=1}^{\infty} \frac{n^2}{n^2+1}$$

$$2.4 \sum_{n=1}^{\infty} 7 \qquad 2.5 \sum_{n=1}^{\infty} \frac{n^2}{n^2 + 1} \qquad 2.6 \sum_{n=1}^{\infty} \left(\frac{1}{\sqrt[5]{n^6}} + \frac{5}{n^2} \right)$$

3. Classifique as seguintes séries alternadas quanto à convergência:

$$3.1 \sum_{n=1}^{\infty} (-1)^n \frac{2^n}{3^{2n-1}} \qquad 3.2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$

$$3.2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$

4. Considere a sucessão de termo geral $u_n = \frac{k^n}{2^{2+2n}}, k \in \mathbb{R}$.

Diga para que valores de k, a série $\sum_{n=1}^{\infty} u_n$ é convergente.

5. Estude a natureza das seguintes séries:

$$5.1 \sum_{n=1}^{\infty} \frac{n(-1)^n}{2n^3 + 1}$$

$$5.2 \sum_{n=1}^{\infty} \frac{9^n}{3+10^n}$$

$$5.3 \sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}} \qquad 5.4 \sum_{n=1}^{\infty} \frac{4^{n+1}}{3^n - 2}$$

$$5.4 \sum_{n=1}^{\infty} \frac{4^{n+1}}{3^n - 2}$$

$$5.5 \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$$

$$5.6 \sum_{n=1}^{\infty} \frac{\sqrt{n+2}}{2n^2 + n + 1}$$

$$5.7 \sum_{n=1}^{\infty} \frac{\sqrt{n^4 + 1}}{n^3 + n^2}$$

$$5.8 \sum_{n=1}^{\infty} \frac{1}{n!}$$

6. Sejam
$$a_n = \frac{3^{2-2n}}{2^{2-n}} e b_n = \frac{(-1)^n}{\sqrt{n}}.$$

6.1 Mostre que
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{2} \left(\frac{2}{9}\right)^{n-1}$$
.

- 6.2 Calcule, se possível, a soma da série $\sum_{n=0}^{\infty} a_n$, justificando convenientemente a sua resposta.
- 6.3 Classifique a série $\sum_{n=0}^{\infty} (a_n + b_n)$. Justifique convenientemente.

7. Sejam
$$u_n = \frac{5}{2^{2n-1}} e v_n = (-1)^{n+1} 3n^{-2}$$
.

7.1 Caracterize a série $\sum_{n=0}^{\infty} u_n$ e mostre que é convergente.

7.2 Analise o comportamento da série $\sum_{n=1}^{\infty} v_n$. Justifique convenientemente a sua resposta.

- 8. Sejam $u_n = \frac{2^{-3n-1}}{7^{-n+1}}, v_n = \frac{1}{\sqrt{n^{\alpha-1}}} e w_n = 9, \alpha \in \mathbb{R}.$
 - 8.1 Verifique se a série $\sum_{n=1}^{\infty} u_n$ é convergente e, se possível, calcule a sua soma.
 - 8.2 Determine α de modo que a série $\sum_{n=1}^{3} (-1)^n v_n$ seja absolutamente convergente. Justifique convenientemente a sua resposta.
 - 8.3 Analise o comportamento da série $\sum_{n=1}^{\infty} (u_n + w_n)$ quanto à convergência. Justifique convenientemente a sua resposta.
- 9. Considere-se $\sum_{n=1}^{\infty} u_n$ uma série geométrica convergente. Sabese que o primeiro termo é a=5 e que a sua soma é S=10. Determine a expressão do termo geral u_n .
- 10. Considere as sucessões $u_n = \frac{7^{5-n}5^{\frac{n-3}{2}}}{9^{2n+2}}$ e $v_n = \sqrt[4]{n^{-\frac{a+1}{2}}}$ ($a \in \mathbb{R}$) e a série convergente desconhecida $\sum_{n=1}^{\infty} b_n \ (b_n > 0)$.

10.1 Estude a convergência da série $\sum_{n=1}^{\infty} u_n$.

- 10.2 Determine o valor de a para que a série $\sum_{n=1}^{\infty} v_n$ seja divergente.
- 10.3 Indique, justificando, o valor lógico da seguinte afirmação "A série $\sum_{n=1}^{\infty} (-1)^n b_n$ é absolutamente convergente".
- 11. Estude a natureza das seguintes séries:

11.1
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^2}}{2n^2 + 1}$$
 11.2 $\sum_{n=1}^{\infty} \frac{\sqrt{\sqrt{n}}}{\sqrt[4]{n^3 + 4}}$

11.3
$$\sum_{n=1}^{\infty} \frac{2n^2 + 1}{3n - 1}$$
 11.4 $\sum_{n=1}^{\infty} \frac{n}{(2n + 3)!}$

12. Considere a sucessão $u_n = \frac{k^{2n-1}}{2^{1-n}}$, $k \in \mathbb{R}$. Determine o valor de k de modo que a série $\sum_{n=1}^{\infty} u_n$ tenha soma.

CONVERGÊNCIA DE SÉRIES DE POTÊNCIAS

13. Indique o centro de convergência e determine o raio e o intervalo de convergência para cada uma das séries de potências:

13.1
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$$

13.2
$$\sum_{n=0}^{\infty} \frac{3^n x^n}{(n+1)!}$$

13.3
$$\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^3} (x+2)^n$$

13.4
$$\sum_{n=0}^{\infty} \frac{n+1}{10^n} (x-4)^n$$

13.5
$$\sum_{n=0}^{\infty} \frac{n^2}{2^{3n}} (x+4)^n$$

13.6
$$\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$$

13.7
$$\sum_{n=0}^{\infty} (-1)^n \frac{3^n}{n!} (x-4)^n$$

13.8
$$\sum_{n=1}^{\infty} \frac{(-2)^n x^n}{\sqrt[4]{n}}$$

DESENVOLVIMENTO de FUNÇÕES em SÉRIES de TAYLOR e de MACLAURIN. POLINÓMIOS de TAYLOR e de MACLAURIN

14. Determine a série de Maclaurin representativa de cada uma das seguintes funções. Para cada função está indicado o respetivo intervalo de convergência.

14.1
$$f(x) = e^{5x}$$
. $(\forall x \in \mathbb{R})$
14.2 $f(x) = \ln(1 - 10x)$. $(x \in \left[-\frac{1}{10}, \frac{1}{10}\right])$

15. Determine a série de Taylor representativa de cada uma das seguintes funções, no ponto a indicado. Para cada função está indicado o respetivo intervalo de convergência.

15.1
$$f(x) = e^{3x}$$
, $a = -2$. $(\forall x \in \mathbb{R})$
15.2 $f(x) = \frac{1}{(1+x)^2}$, $a = 1$. $(x \in]-1,3[)$

16. Determine a expressão dos polinómios $P_n(x)$ para cada uma das seguintes funções, em torno dos pontos indicados:

16.1
$$f(x) = \sqrt{x}$$
, $n = 2$ e $a = 4$.
16.2 $f(x) = \frac{1}{(x-1)^2}$, $n = 5$ e $a = 0$.

- 17. Sendo dada a função $f(x) = \ln(3x 2)$, representável por um desenvolvimento em série de Taylor para a = 1, cujo intervalo de convergência é $\left[\frac{2}{3}, \frac{4}{3}\right]$, determine:
 - 17.1 Determine a referida série de Taylor.

17.2 Determine um valor aproximado de ln(2) com base no polinómio de Taylor de 5^a ordem em torno a a=1.

- 18. Sendo dada a função $f(x) = \frac{1}{3x+1}$, representável por um desenvolvimento em série de MacLaurin, cujo intervalo de convergência é $\left|-\frac{1}{3},\frac{1}{3}\right|$, determine:
 - 18.1 A expressão da referida série.
 - 18.2 A expressão do polinómio de MacLaurin relativo à função f, considerando n=3.
 - 18.3 Um valor aproximado de $\frac{2}{3}$, com base na alínea anterior.
- 19. Seja dada a função $f(x) = \ln(2x 1)$. representável por um desenvolvimento em série de Taylor, em torno de a = 1. Cujo intervalo de convergência e $\left\lceil \frac{1}{2}, \frac{3}{2} \right\rceil$, determine:
 - 19.1 A expressão da referida série.
 - 19.2 A expressão do polinómio de Taylor relativo à função f, considerando a=1 e n=3.
 - 19.3 $f\left(\frac{5}{4}\right)$, com base na expressão obtida na alínea anterior.
- 20. Seja dada a função $f(x)=2^{2x}$, representável por um desenvolvimento em série de MacLaurin, $\forall x \in \mathbb{R}$, determine:
 - 20.1 A expressão do polinómio de MacLaurin relativo à função f, considerando n=3.

20.2 Um valor aproximado de $\sqrt{2}$, com base na expressão obtida na alínea anterior.

- 21. Seja dada a função $f(x) = \ln\left(\frac{1}{x+2}\right)$, representável por um desenvolvimento em série de MacLaurin, cujo intervalo de convergência é]-2,2]. Determine:
 - 21.1 A expressão do polinómio de MacLaurin para n=3.
 - 21.2 Um valor aproximado de f(1), com base na expressão obtida na alínea anterior.
- 22. Sendo dada a função $f(x) = \frac{1}{x^2}$, representável por um desenvolvimento em série de Taylor, em torno a = 2, cujo intervalo de convergência é]0,4[, determine:
 - 22.1 A expressão da referida série.
 - 22.2 A expressão do polinómio de Taylor relativo à função f, considerando a=2 e n=4.
 - 22.3 Um valor aproximado de $\frac{1}{9}$, com base na alínea anterior.

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

1.1 $r = \frac{1}{25}$, convergente, $S = \frac{5}{24}$; **1.2** $r = \frac{5}{8}$, convergente, $S = \frac{5}{6}$; **1.3** $r = \frac{16}{27}$, convergente, $S = \frac{4}{33}$; **1.4** Divergente;

- 2.1 Convergente; 2.2 Divergente; 2.3 Divergente;
- 2.4 Divergente; 2.5 Divergente; 2.6 Convergente;
- 3.1 Absolutamente convergente; 3.2 Simplesmente convergente;
- **4**. $k \in]-4, 4[$;
- **5.1** Absolutamente convergente; **5.2** Convergente;
- **5.3** Convergente; **5.4** Divergente;
- **5.5** Divergente; **5.6** Convergente; **5.7** Divergente;
- **5.8** Convergente; **6.2** $S = \frac{9}{14}$; **6.3** Convergente;
- **7.1** Série Geométrica com $a = \frac{5}{2}$ e $r = \frac{1}{4}$, convergente;
- **7.2** Absolutamente convergente; **8.1** $r = \frac{7}{8}$, convergente, $S = \frac{1}{2}$;
- **8.2** $\alpha > 3$; **8.3** Divergente;
- **9**. $u_n = 5\left(\frac{1}{2}\right)^{n-1}$; **10**. $r = \frac{\sqrt{5}}{567}$, convergente; **10**. $a \le 7$;
- 10.3 Verdade; 11.1 Convergente; 11.2 Divergente; 11.3 Divergente; **11.4** Convergente; **12**. $k \in \left] -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right[$;
- **13.1** a = 0, R = 1, I.C. =]-1,1]
- **13.2** $a = 0, R = \infty, I.C. =]-\infty, +\infty[$;
- **13.3** a = -2, R = 0, $I.C. = \{-2\}$;
- **13.4** a = 4, R = 10, I.C. =] 6, 14[;
- **13.5** a = -4, R = 8, I.C. =] 12, 4[;
- **13.6** a = 0, R = 1, I.C. = [-1, 1]:
- **13.7** $a = 4, R = \infty, I.C. =]-\infty, +\infty[;$
- **13.8** $a = 0, R = \frac{1}{2}, I.C. = \left[-\frac{1}{2}, \frac{1}{2} \right];$
- **14.1** $e^{5x} = \sum_{n=0}^{\infty} \frac{5^n}{n!} x^n, \forall x \in \mathbb{R};$
- **14.2** $\ln(1-10x) = -\sum_{n=1}^{\infty} \frac{10^n}{n} x^n, x \in \left[-\frac{1}{10}, \frac{1}{10} \right];$
- **15.1** $e^{3x} = \sum_{n=0}^{\infty} \frac{3^n}{e^6 n!} (x+2)^n, x \in \mathbb{R};$

15.2
$$\frac{1}{(1+x)^2} = \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)}{2^{n+2}} (x-1)^n, x \in]-1, 3[;$$

16.1
$$P_2(x) = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2$$
;

16.1
$$P_2(x) = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2;$$

16.2 $P_5(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5;$

17.1
$$\ln(3x-2) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}3^n}{n} (x-1)^n, \ x \in \left[\frac{2}{3}, \frac{4}{3}\right];$$

17.2
$$\ln(2) = f\left(\frac{4}{3}\right) \approx P_5\left(\frac{4}{3}\right) = \frac{47}{60};$$

18.1
$$\frac{1}{3x+1} = \sum_{n=0}^{\infty} (-1)^n 3^n x^n, \ x \in]-\frac{1}{3}, \frac{1}{3}[;$$

18.2
$$P_3(x) = 1 - 3x + 9x^2 - 27x^3$$
; **18.3** $\frac{2}{3} = f\left(\frac{1}{6}\right) \approx P_3\left(\frac{1}{6}\right) = \frac{5}{8}$;

19.1
$$\ln(2x-1) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}2^n}{n} (x-1)^n, \ x \in]\frac{1}{2}, \frac{3}{2}[;$$

19.2
$$P_3(x) = 2(x-1) - 2(x-1)^2 + \frac{8}{3}(x-1)^3$$
;

19.3
$$f\left(\frac{5}{4}\right) \approx P_3\left(\frac{5}{4}\right) = \frac{5}{12}$$
;

19.3
$$f\left(\frac{5}{4}\right) \approx P_3\left(\frac{5}{4}\right) = \frac{5}{12};$$

20.1 $P_3(x) = 1 + (2\ln 2)x + 2(\ln 2)^2x^2 + \frac{4}{3}(\ln 2)^3x^3;$

20.2
$$\sqrt{2} = f\left(\frac{1}{4}\right) \approx P_3\left(\frac{1}{4}\right) = 1 + \frac{\ln 2}{2} + \frac{(\ln 2)^3}{8} + \frac{(\ln 2)^3}{48};$$

21.1 $P_3(x) = -\ln 2 - \frac{1}{2}x + \frac{1}{8}x^2 - \frac{1}{24}x^3;$

21.1
$$P_3(x) = -\ln 2 - \frac{1}{2}x + \frac{1}{8}x^2 - \frac{1}{24}x^3;$$

21.2
$$f(1) \approx P_3(1) = -\ln 2 - \frac{5}{12};$$

22.1
$$\frac{1}{x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)}{2^{n+2}} (x-2)^n, \ x \in]0, 4[;$$

22.2
$$P_4(x) = \frac{1}{4} - \frac{1}{4}(x-2) + \frac{3}{16}(x-2)^2 - \frac{1}{8}(x-2)^3 + \frac{5}{64}(x-2)^4;$$

22.3 $\frac{1}{9} = f(3) \simeq P_3(3) = \frac{9}{64}.$

22.3
$$\frac{1}{9} = f(3) \simeq P_3(3) = \frac{9}{64}$$
.