

第十五章 量子物理

第十五章 量子物理

15-9 氢原子的量子理论简介

知识点:

三条量子化条件及其对应的三个量子数

二、量子化条件和量子数(以下重点)

(量子力学中的氢原子问题的严格解)

1、能量量子化和主量子数

$$E_n = \frac{E_1}{n^2}$$
, $n = 1, 2, 3, \dots$, n : 主量子数

$$E_1 = -13.6 \text{eV}$$

2、角动量量子化和角量子数

电子绕核运动的(轨道)角动量大小可能值:

$$L = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{l(l+1)} \, \hbar, \quad l = 0, 1, 2, 3, \dots, n-1$$

1: (轨道)角(副)量子数

3、角动量空间量子化和磁量子数

$$L_{z} = m_{l} \hbar, \quad m_{l} = 0, \pm 1, \pm 2, \cdots, \pm l$$

(表征轨道角动量的空间取向)

 m_i : (轨道)磁量子数,

共有(2l+1)个可能取值

第十五章 量子物理

第十五章 量子物理

15-10 多电子原子中的电子分布

知识点:

电子的自旋、原子的壳层结构

一、斯特恩 - 盖拉赫实验 (O.Stern — W.Gerlach,1921年)

1921年,施特恩和盖拉赫为验证电子角动量空间量子化而进行的实验,发现一些处于S 态(l=0)的原子射线束,在非均匀磁场中一束分为两束。

银原子沉积记录屏

(1=0) 银原子无论有无磁场应该都只有一条!

实验结果:不加磁场时底板上呈现一条正对狭缝的原子沉积;加磁场时底板上呈现上下对称分布的两条原子沉积.

二、斯特恩 - 盖拉赫实验 (O.Stern — W.Gerlach, 1921年)

按照经典电磁学理论,磁矩 μ_z 在磁场中受力: $F_z = \mu_z \frac{dB}{dz}$

磁矩和角动量在z轴(外磁场方向)投影 μ ,和L,关系:

$$\mu_z = -\frac{e}{2m_e} L_z = -\frac{e}{2m_e} (m_l \hbar) = -m_l \mu_B$$

$$\mu_B = \frac{e\hbar}{2m}, \quad m_l = 0, \pm 1, \pm 2, \dots, \pm l$$

 F_z 取离散值,

共有(2l+1)可能取值

二、斯特恩 - 盖拉赫实验 (O.Stern — W.Gerlach, 1921年)

二、斯特恩 - 盖拉赫实验 (O.Stern — W.Gerlach, 1921年)

- 1) 证明了空间量子化的存在,原子沉积层不是连续一片, 而是分开的沉积线,说明电子角动量空间量子化的存在。
- 2) 提出了新的矛盾

处于基态的银原子作实验时,由于l=0,故 $m_l=0$,原子束不 应有分裂,应有1条沉积线,实验结果却有两条沉积线。

改用处于基态氢原子束做实验,同样发现原子束分裂成两束。

说明原子仍具有其他磁矩! 这种磁矩显然不是轨道磁矩,它是什么?

三、电子的自旋 Spin of Electron

1925年, G.E.Uhlenbeck 和 S.A.Goudsmit 提出:

不能把电子看成一个简单的点电荷,电子除有绕核转动的 轨道角动量(和轨道磁矩)之外,还有一个与绕核转动无关的、 固有(内禀)的自旋角动量(和自旋磁矩)。 电子还应具有自旋角动量 Spin Angular Momentum

自旋角动量与轨道角动量相似,也是量子化的,类比有:

$$S = \sqrt{s \ (s+1)} \ \hbar$$

$$\hbar$$

$$S_z = m_s \hbar$$

s:自旋角量子数

$$m_s = 0, \pm 1, \pm 2, \dots, \pm s$$

自旋磁量子数: m_c (2s+1) 个取值

2s + 1 = 2, 实验: m_{s} 只能取两个值:

$$s=\frac{1}{2}$$
,

$$m_s = \pm \frac{1}{2}$$

电子自旋角动量的大小

$$S = \sqrt{s(s+1)}\hbar, \quad s = \frac{1}{2}$$

$$S = \sqrt{s(s+1)}\,\hbar = \sqrt{\frac{3}{4}}\,\hbar$$

电子自旋角动量在 z 轴(磁场)的分量

$$S_z = m_s \hbar, \quad m_s = \pm \frac{1}{2}$$

 $S_z = \pm \frac{1}{2}\hbar$

- 1、电子状态由四个量子数 (n, l, m_l, m_s) 决定
 - 1) 主 量 子 数 n , n = 1, 2, 3, ... 大体上决定原子中的电子的能量
 - 2) 轨道角量子数 l, l = 0, 1, 2, ..., (n-1) 决定电子的轨道角动量,对能量也有影响
 - 3) 轨道磁量子数 m_l , $m_l = 0$, ± 1 , ± 2 , ..., $\pm l$ 决定轨道角动量在外磁场方向上的分量
 - 4)自旋磁量子数 m_s , $m_s = \pm 1/2$ 决定电子自旋角动量在外磁场方向上的分量

2、原子的壳层结构 (1916, W. Kossel)

在多电子原子中,电子的能量不仅与主量子数 n 有关,也与角量子数 l 有关,按照主量子数 n 和角量子数 l 的不同取值,把电子的可能状态分成若干壳层和支壳层。

主量子数n相同的电子属于同一壳层

壳层: n=1, 2, 3, 4, 5, 6,

用: K, L, M, N, O, P, 表示

同一壳层中(n相同),l相同的电子组成同一分壳层

分(支、次)壳层: l=0, 1, 2, 3, ...,n-1

用: s, p, d, f, \ldots 表示

用 $n \times l$ 标记电子分布——原子组态,若有x个电子处于nl 态,记 $nl \times l$

- 3、原子的壳层结构中电子的填充原则
- 1) 泡利不相容原理 Pauli Exclusion Principle

一个多电子原子系统中,不可能有两个或两个以上的电子具有相同的状态,即不能有两个或两个以上的电子具有相同的(n,l,m_l,m_s)

(1) 主量子数为n 的壳层中最多能容纳电子数 Z_n 为:

$$n$$
 $l = 0, 1, 2, \dots, n-1$
 $m_l = 0, \pm 1, \pm 2, \dots, \pm l$
 $m_s = \pm \frac{1}{2}$

$$Z_n = \sum_{l=0}^{n-1} 2(2l+1) = 2n^2$$

(2) 角量子数为1的支壳层中最多能容纳电子数为:

$$2(2l+1)$$

- 3、原子的壳层结构中电子的填充原则
- 1) 泡利不相容原理 Pauli Exclusion Principle

各壳层最多可容纳的电子数

l	0	1	2	3	4	5	6	7
n	S	p	d	f	g	h	i	Z_n
1 <i>K</i>	2							2
2 L	2	6						8
3 <i>M</i>	2	6	10					18
4 <i>N</i>	2	6	10	14				32
5 <i>0</i>	2	6	10	14	18			50
6 P	2	6	10	14	18	22		72
7 Q	2	6	10	14	18	22	26	98

2) 能量最小原理

基态原子中电子先填满能量小的壳层。

原子处于未激发的正常状态时,在不违背泡利不相容原理的条件下,每个电子都趋向占据可能的最低能级,使原子系统的总能量尽可能的低。

特殊情况: n 小的壳层尚未填满,却在n大的壳层中有电子填入。

■ 例如: 基态钾原子K电子组态(electron configuration)

K原子序数: 19

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d 4s$

2) 能量最小原理

基态原子中电子先填满能量小的壳层。

原子处于未激发的正常状态时,在不违背泡利不相容原理的条件下,每个电子都趋向占据可能的最低能级,使原子系统的总能量尽可能的低。

特殊情况: n 小的壳层尚未填满,却在n大的壳层中有电子填入。

我国科学家徐光宪提出一个经验公式:

(n + 0.7 l)

对原子外层的电子,能级高低由(n + 0.7 l)的大小来确定,其值越大,能级越高。

徐光宪

2) 能量最小原理

基态原子中电子先填满能量小的壳层。

原子处于未激发的正常状态时,在不违背泡利不相容原理 的条件下,每个电子都趋向占据可能的最低能级,使原子 系统的总能量尽可能的低。

特殊情况: n 小的壳层尚未填满,却在n大的壳层中有电子填入。

我国科学家徐光宪提出一个经验公式: (n+0.7l)

外层的电子能级高低由 (n + 0.71) 的大小来确定

徐光宪

例如: 比较4s和3d的能级

4s:
$$(4+0.7\times0)=4$$
, $(4+0.7\times0)=4<(3+0.7\times2)=4.4$

物理系 王

强

3d:
$$(3+0.7\times2)=4.4$$
, 所以, $E_{4s} < E_{3d}$

2) 能量最小原理

基态原子中电子先填满能量小的壳层。

原子处于未激发的正常状态时,在不违背泡利不相容原理的条件下,每个电子都趋向占据可能的最低能级,使原子系统的总能量尽可能的低。

特殊情况: n 小的壳层尚未填满,却在n大的壳层中有电子填入。

我国理论科学家徐光宪提出一个经验公式: (n+0.7l)

外层的电子能级高低由 (n+0.71) 的大小来确定

例如: 比较4s和3d的能级

■基态K电子组态, K原子序数: 19

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$

徐光宪

例 29: 原子内电子的量子态由n, l, m_l , m_s 四个量子数来表征

 $\exists n, l, m_l$ 一定时,不同的量子态数目为2

 $\exists n, l$ 一定时,不同的量子态数目为 2(2l+1)

在主量子数为n、自旋磁量子数 m_s =+1/2的量子态中, 能够填充的最多电子数为 n^2