Exercise sheet 6

supporting the lecture Mathematical Finance and Stochastic Integration

(Submission of Solutions: June 6th 2016, 12:15 p.m.; Discussion: June 9th 2016)

Exercise 21. (4 points)

Prove the claim made in Remark 4.2 from the lecture notes for deterministic functions: Let $(\pi_n)_n$ be a sequence of nested partitions and $f:[a,b]\to\mathbb{R}$ a right-continuous function. Then it holds

$$V_{[a,b]}^f = \lim_{n \to \infty} \sum_{t_i \in \pi_n} |f(t_{i+1}) - f(t_i)|$$

if $\max\{t_{i+1} - t_i | t_i \in \pi_n\} \to 0$ as $n \to \infty$.

Exercise 22. (4 points)

Let $(\pi_n)_n$ be a sequence of partitions of [0,t] with $\max\{t_{i+1}-t_i|t_i\in\pi_n\}\to 0$ as $n\to\infty$ and $s\mapsto H_s$, $s\mapsto A_s$ be functions on $[0,\infty)$. The *Riemann-Stieltjes integral* is defined by

$$\int_0^t H_s dA_s := \lim_{n \to \infty} \sum_{t_i \in \pi_n} H_{s_i} (A_{t_{i+1}} - A_{t_i})$$

with $s_i \in [t_i, t_{i+1}]$ if this limit exists and does not depend on the choice of $(\pi_n)_n$ and the s_i .

In this exercise you are supposed to examine differences between the Lebesgue-Stieltjes and the Riemann-Stieltjes integral. Let $A_t = \mathbb{1}_{[1,\infty)}(t)$.

a) Is the Riemann-Stieltjes integral

$$\int_0^2 A_s dA_s$$

well defined? If it is, compute its value!

b) What is the minimal condition on the function $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ such that the Riemann-Stieltjes integral

$$\int_0^2 f(s)dA_s$$

is well defined?

c) Determine the measure μ_A which is induced by A. Compute the Lebesgue-Stieltjes integrals

$$\int_0^2 A_s dA_s, \ \int_0^2 A_{s-} dA_s,$$

with $A_{s-} := \lim_{t \nearrow s} A_t$.

Exercise 23. (4 points)

Let $(B_t)_{t\geq 0}$ be a standard Brownian motion and define

$$L_n = \sum_{t_i \in \pi_n} B_{t_i} (B_{t_{i+1}} - B_{t_i})$$

$$R_n = \sum_{t_i \in \pi_n} B_{t_{i+1}} (B_{t_{i+1}} - B_{t_i})$$

for a sequence of nested partitions $(\pi_n)_n$ of [0,t] with $\max\{t_{i+1}-t_i|t_i\in\pi_n\}\to 0$ as $n\to\infty$.

- a) Compute $\lim_{n\to\infty} R_n$ and $\lim_{n\to\infty} L_n$. *Hint:* Compute first $\lim_{n\to\infty} (R_n + L_n)$ and $\lim_{n\to\infty} (R_n - L_n)$.
- b) Use part a) and Remark 4.8(ii) to argue, that

$$\int_0^t B_s dB_s$$

can't be well defined as a Stieltjes integral.

Exercise 24. (4 points)

a) Prove that the predictable σ -algebra \mathcal{P} is also generated by $\{F \times \{0\} | F \in \mathcal{F}_0\}$ together with the set of random intervals $\{(\tau, \infty) : \tau \text{ is stopping time}\}$, i.e.

$$\mathcal{P} = \sigma(\{F \times \{0\} | F \in \mathcal{F}_0\}, \{(\tau, \infty) : \tau \text{ is stopping time}\}).$$

Hint: It might be useful to consider stopping times which are similar to those used in the proof of Theorem 2.12.

b) The optional σ -algebra \mathcal{O} is generated by random intervals of the form $[\tau, \infty)$, where τ is a stopping time. Prove

$$\mathcal{P}\subset\mathcal{O}.$$