$Exercices\ MP/MP^*$ $R\'eduction\ des\ endomorphismes$

Exercice 1. Soit $E = \mathcal{M}_n(\mathbb{C})$ et pour $(A, B) \in E^2$ et

$$f: E \to E$$

$$M \mapsto AM$$

et

$$\begin{array}{cccc} g: & E & \to & E \\ & M & \mapsto & MB \end{array}$$

 $et h = f \circ g.$

- 1. Montrer que f (respectivement g) est diagonalisable si et seulement si A (respectivement B) l'est.
- 2. Soient (X_1, \ldots, X_n) et (Y_1, \ldots, Y_n) deux bases de $\mathbb{C}^n = \mathcal{M}_{n,1}(\mathbb{C})$. Montrer que $(X_iY_i^{\mathsf{T}})_{1 \leq i,j \leq n}$ est une base de E.
- 3. On suppose que A et B sont diagonalisables. Montrer que h l'est. A-t-on la réciproque?

Exercice 2 (Lemme des noyaux généralisé). Soit $(P,Q) \in \mathbb{K}[X]^2$ unitaires. Soient $D = P \wedge Q$, $M = P \vee Q$ et $f \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel. Montrer les différentes assertions suivantes :

- 1. $\ker D(f) = \ker P(f) \cap \ker Q(f)$.
- 2. $\ker M(f) = \ker P(f) + \ker Q(f)$.
- 3. $\operatorname{Im} D(f) = \operatorname{Im} P(f) + \operatorname{Im} Q(f)$.
- 4. $\operatorname{Im} M(f) = \operatorname{Im} P(f) \cap \operatorname{Im} Q(f)$.

Exercice 3. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 - 4A + 5I_n = 0$. A est-elle inversible? Que dire de A? Que dire de n? Calculer les puissances de A?

Exercice 4. Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ est dite stochastique si et seulement si

$$\begin{cases} \forall (i,j) \in \{1,\dots,n\}^2, \ a_{i,j} \geqslant 0 \\ \forall i \in \{1,\dots,n\}, \ \sum_{j=1}^n a_{i,j} = 1 \end{cases}$$

- 1. Montrer que $1 \in \mathrm{Sp}_{\mathbb{R}}(A)$.
- 2. Soit $\lambda \in \mathrm{Sp}_{\mathbb{C}}(A)$, montrer que $|\lambda| \leqslant 1$.
- 3. Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ et x un vecteur propre associé. Montrer que si pour tout $i \in \{1, \ldots, n\}, a_{i,i} > 0$ alors $\lambda = 1$.
- 4. Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ telle que $|\lambda| = 1$. Montrer que λ est une racine de l'unité.
- 5. Reconnaître les matrices stochastiques dont toutes les valeurs sont de module 1.

Exercice 5. Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ et

$$\Phi_{A,B}: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$$

$$M \mapsto AM - MB$$

- 1. Déterminer $Sp(\Phi_{A,B})$ en fonction de Sp(A) et Sp(B).
- 2. Montrer que si A et B sont diagonalisables, $\Phi_{A,B}$ l'est aussi.

Exercice 6. Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $\theta \in \mathbb{C}$. Soit $F = \{M \in \mathcal{M}_n(\mathbb{C}) \mid AM = \theta MA\}$.

- 1. Montrer que pour tout $P \in \mathbb{C}[X]$, pour tout $M \in F$, on a $P(A)M = MP(\theta A)$. Établir une relation analogue portant sur P(M).
- 2. On suppose A diagonalisable. Quelle est l'action de F sur les sous-espaces propres de A? Donner une condition nécessaire et suffisante sur $\operatorname{Sp}_{\mathbb{C}}(A)$ pour que $F = \{0\}$.
- 3. De même dans le cas général (raisonner sur $\ker(A \lambda I_n)^k$).

Exercice 7. Réduire sur \mathbb{C}

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

Exercice 8. Soit $0 < a_1 < \cdots < a_n$ et $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ telle que pour tout $i \in \{1,\ldots,n\}, \ a_{i,i} = 0 \ \text{et si } i \neq j, \ a_{i,j} = a_j.$

1. Montrer que $\lambda \in \operatorname{Sp}_{\mathbb{R}}(A)$ si et seulement si

$$\sum_{k=i}^{n} \frac{a_k}{\lambda + a_k} = 1$$

2. A est-elle diagonalisable?

Exercice 9. Soit G le sous-groupe de $GL_n(\mathbb{R})$ engendré par les matrices diagonalisables inversibles. Montrer que $G = GL_n(\mathbb{R})$.

Exercice 10. Soit $u \in \mathcal{L}(\mathbb{C})$ et $p \geq 2$. Montrer que u^p est diagonalisable si et seulement si u est diagonalisable et $\ker(u) = \ker(u^2)$.

Exercice 11 (Matrice circulante). Soit $n \ge 1$, $(a_0, \ldots, a_{n-1}) \in \mathbb{C}^n$ et

$$A(a_0, \dots, a_{n-1}) = \begin{pmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & \ddots & \ddots & \ddots & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_1 & \dots & \dots & a_{n-1} & a_0 \end{pmatrix}$$

Donner les éléments propres de $A(a_0, \ldots, a_{n-1})$. Est-elle diagonalisable? Calculer son déterminant.

Exercice 12. Soit E un \mathbb{K} -espace vectoriel de dimension $n \geqslant 1$. Soit $f \in \mathcal{L}(E)$ nilpotent tel que $\dim(\ker(f)) = 1$. Montrer que $f^{n-1} \neq 0$ et qu'il existe $x \in E \setminus \{0\}$, $(x, f(x), \ldots, f^{n-1}(x))$ est une base de E.

Exercice 13 (Endomorphisme cyclique). Soit V un \mathbb{C} -espace vectoriel de dimension finie n. Soit $u \in \mathcal{L}(V)$. Montrer qu'il existe $x \in V$ tel que $(x, u(x), \ldots, u^{n-1}(x))$ soit une base de V si et seulement si les sous-espaces propres de u sont de dimension 1.

Exercice 14. Soit V un \mathbb{C} -espace vectoriel de dimension d.

- 1. Pour $f \in \mathcal{L}(V)$, montrer qu'il existe $r(f) = \lim_{n \to +\infty} \operatorname{rg}(f^n)$.
- 2. Si f et g commutent, montrer que $r(f+g) \leq r(f) + r(g)$. Et si f et g ne commutent pas ?
- 3. Exprimer r(f) en fonction du degré du polynôme caractéristique de f.

Exercice 15. Soit $q \in \mathbb{N}^*$ et $\mathcal{G}_q = \{A \in \mathcal{M}_n(\mathbb{C}) \mid A^q = I_n\}$. Quels sont les points isolés de \mathcal{G}_q ?

Exercice 16. Soit

$$M = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Soit $u \in \mathcal{L}(\mathbb{R}^3)$ canoniquement associée à M. Trouver tous les sous-espaces de \mathbb{R}^3 stables par u.

Exercice 17. Soit

$$A = \begin{pmatrix} I_n & & a_1 \\ & I_n & & \vdots \\ & & a_n \\ \hline a_1 & \dots & a_n & 1 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R})$$

- 1. A est-elle diagonalisable?
- 2. Donner ses éléments propres.

Exercice 18. Soit G un sous-groupe borné de $\mathcal{M}_n(\mathbb{C})$. Montrer que pour tout $M \in G$, $\operatorname{Sp}_{\mathbb{C}}(M) \subset \mathbb{U}$ et M est diagonalisable. Montrer qu'il existe $\alpha > 0$ tel que si $||M - I_n|| < \alpha$ alors $G = \{I_n\}$.

Exercice 19. Soit

$$A = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

et $u \in \mathcal{L}(\mathbb{R}^3)$ canoniquement associée à A.

- 1. Trouver tous les sous-espaces de \mathbb{R}^3 stables par u.
- 2. Existe-t-il $B \in \mathcal{M}_3(\mathbb{R})$ telle que $B^2 = A$?

Exercice 20. Soit $A \in \mathcal{M}_3(\mathbb{R})$ tel que $A^3 + A^2 + A + I_3 = 0$ et $A \neq -I_3$. Montrer que A est semblable à

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Exercice 21. Soit E un \mathbb{K} -espace vectoriel de dimension $n, f \in \mathcal{L}(E)$ et $x \in E$.

- 1. Montrer qu'il existe un unique P_x unitaire tel que pour tout $A \in P_x \mathbb{K}$, A(f)(x) = 0.
- 2. Montrer que μ_f (polynôme minimal de f) est égal à

$$\mu_f = \underset{x \in E}{\vee} P_x$$

- 3. Soit $(x,y) \in E^2$, montrer que si $P_x \vee P_y = 1$ alors $P_{x+y} = P_x P_y$.
- 4. Montrer qu'il existe $x \in E$ tel que $P_x = \mu_f$.
- 5. Montrer qu'il existe $v \in E$, tel que $(v, f(v), \dots f^{n-1}(v))$ est une base de E si et seulement si $\deg(\mu_f) = n$ (donc le polynôme minimal est égal au polynôme caractéristique).

Exercice 22. Soit $S = \mathbb{R}^{\mathbb{N}^*}$, pour $s = (s_n)_{n \geq 1} \in S$, on définit

$$s^* = \left(\frac{1}{n} \sum_{k=1}^n s_k\right)_{n \ge 1}$$

1. Montrer que

$$\varphi: S \to S \\ s \mapsto s^*$$

est un automorphisme.

2. Déterminer les éléments propres de φ .

Exercice 23 (Disques de Gershgorin). Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$. On note, pour tout $1 \leq i,j \leq n$, $L_i = \sum_{k \neq i} |a_{i,k}|$ et $C_j = \sum_{k \neq j} |a_{k,j}|$. Soit $D_i = \{z \in \mathbb{C} \mid |z - a_{i,i}| \leq L_i\}$ et $S_j = \{z \in \mathbb{C} \mid |z - a_{j,j}| \leq C_j\}$.

- 1. Montrer que $\operatorname{Sp}_{\mathbb{C}}(A) \subset \left[\left(\bigcup_{i=1}^{n} D_{i} \right) \cap \left(\bigcup_{j=1}^{n} S_{j} \right) \right]$
- 2. Montrer que si $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, il existe $i_1 \neq i_2 \in \{1, \dots, n\}^2$ tels que

$$|\lambda - a_{i_1,i_1}| \times |\lambda - a_{i_2,i_2}| \leqslant L_{i_1} \times L_{i_2}$$

Exercice 24. Soit

$$A = \begin{pmatrix} & & & | & a_1 \\ & 0_n & & \vdots \\ & & & | & a_n \\ \hline a_1 & \dots & a_n & | & 0 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R})$$

 $R\'{e}duire A.$

Exercice 25. Soient f et g dans $\mathcal{L}(\mathbb{K}^n)$ diagonalisables. Montrer que f et g ont les mêmes sous-espaces propres si et seulement s'il existe $(P,Q) \in \mathbb{K}_{n-1}[X]$ tels que f = P(g) et g = Q(f).

Exercice 26. Soit G un sous-groupe fini abélien de $GL_2(\mathbb{Z})$. Montrer que

$$|G| \in \{1, 2, 3, 4, 6\},\$$

et donner un exemple d'un tel sous-groupe dans chaque cas.

Exercice 27. Soit E un \mathbb{C} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Montrer que u est diagonalisable si et seulement si tout sous-espace stable admet un supplémentaire stable.

Exercice 28. Soit

$$A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

et

$$M = \begin{pmatrix} 0 & 0 & A \\ 0 & A & 0 \\ A & 0 & 0 \end{pmatrix}$$

M est-elle diagonalisable?

Exercice 29. Soit $n \ge 1$ et $(x_1, \ldots, x_n) \in \mathbb{C}^n$.

1.

$$A = \begin{pmatrix} 0 & \dots & 0 & x_n \\ \vdots & & x_{n-1} & 0 \\ 0 & \ddots & & \vdots \\ x_1 & 0 & \dots & 0 \end{pmatrix}$$

est-elle diagonalisable?

2. La suite $(A^p)_{p\in\mathbb{N}}$ converge-t-elle?

Exercice 30.

1. Donner les valeurs propres et vecteurs propres de

$$\varphi: \ \mathbb{R}_n[X] \to \ \mathbb{R}_n[X]$$

$$P \mapsto XP' - nP$$

2. Donner les valeurs propres et vecteurs propres de

$$\varphi: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$

$$P \mapsto XP' - nP''$$

Exercice 31. Soit

$$A = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$

avec a + b + c = 1 pour $(a, b, c) \in \mathbb{R}^3_+$.

- 1. Donner le $\mathrm{Sp}_{\mathbb{C}}(A)$.
- 2. La suite $(A^n)_{n\in\mathbb{N}}$ converge-t-elle?

Exercice 32. Soit $(n_1, n_2) \in (\mathbb{N}^*)^2$ et

$$A = \begin{pmatrix} B & C \\ 0_{n_2,n_1} & D \end{pmatrix}$$

avec $B \in \mathcal{M}_{n_1}(\mathbb{C}), C \in \mathcal{M}_{n_1,n_2} \in \mathcal{M}_n(\mathbb{C})^2$ et $D \in \mathcal{M}_{n_2}(\mathbb{C})$.

- 1. Donner une formule pour A^p pour $p \in \mathbb{N}$.
- 2. Comparer, du point de vue de la divisibilité, μ_A , $\mu_B \vee \mu_D$ et $\mu_B \times \mu_D$ (polynômes minimaux).
- 3. Que dire si C = 0?
- 4. Que dire si B = D et $C = I_{n_1}$?
- 5. Trouver une matrice A telle que $\mu_A \neq \mu_B \vee \mu_D$ et $\mu_A \neq \mu_B \times \mu_D$.

Exercice 33. Soit E un \mathbb{C} -espace vectoriel de dimension quelconque et $f \in \mathcal{L}(E)$ et $P \in \mathbb{C}[X]$. On pose g = P(f). Soit $\lambda \in \mathbb{C}$ tel que $g - \lambda id_E$ n'est pas inversible. Montrer qu'il existe $\mu \in \mathbb{C}$ tel que $\lambda = P(\mu)$ et $f - \mu id_E$ n'est pas inversible. Si $\lambda \in \operatorname{Sp}(g)$, montrer qu'il existe $\mu \in \mathbb{C}$ tel que $\lambda = P(\mu)$ et $\mu \in \operatorname{Sp}(f)$.

Exercice 34. Soit E un \mathbb{K} -espace vectoriel de dimension finie, V un sous-espace vectoriel de $\mathcal{L}(E)$ tel que $V\{0\} \subset GL(E)$.

- 1. Montrer que $\dim(V) \leqslant \dim(E)$.
- 2. Trouver tous les V possibles pour $\mathbb{K} = \mathbb{C}$.
- 3. Trouver tous les V possibles pour $\mathbb{K} = \mathbb{R}$ et $E = \mathbb{R}^2$.
- 4. Si $\mathbb{K} = \mathbb{R}$ et dim $(V) \geqslant 2$, montrer qu'il existe $(f,g) \in V^2$ tel que si \mathcal{B} est une base de E, $A = \text{mat}(f, \mathcal{B})$ et $B = \text{mat}(g, \mathcal{B})$ alors $i \in \text{Sp}_{\mathbb{C}}(AB^{-1})$.

Exercice 35. Soit \mathbb{K} un corps quelconque, $n \ge 1$ et $A \in \mathcal{M}_n(\mathbb{K})$. On a $\chi_A = a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} + X^n$ (polynôme caractéristique).

- 1. Montrer qu'il existe $(M_0, \ldots, M_{n-1}) \in \mathcal{M}_n(\mathbb{K})^n$ tel que pour tout $\lambda \in \mathbb{K}$, com $(\lambda I_n A)^\mathsf{T} = M_0 + \lambda M_1 + \cdots + \lambda^{n-1} M_{n-1}$ (où com indique la comatrice.)
- 2. En formant $(\lambda I_n A) \operatorname{com}(\lambda I_n A)^\mathsf{T}$, calculer (M_0, \ldots, M_{n-1}) en fonction de A, A^2, \ldots, A^n . En déduire le théorème de Cayley-Hamilton.
- 3. Pour les questions suivantes, on suppose que la caractéristique de \mathbb{K} est 0. Montrer que pour tout $\lambda \in \mathbb{K}$, $\chi'_A(\lambda) = \operatorname{Tr}(\operatorname{com}(\lambda I_n A)^{\mathsf{T}})$.
- 4. En déduire qu'il existe $f: \mathbb{K}^n \to \mathbb{K}^n$ telle que pour tout $A \in \mathcal{M}_n(\mathbb{K})$, $(a_0, \dots, a_{n-1}) = f(\operatorname{Tr}(A), \dots, \operatorname{Tr}(A^n))$.
- 5. Soit $B \in \mathcal{M}_n(\mathbb{K})$, montrer que si pour tout $k \in \{1, ..., n\}$, $\operatorname{Tr}(A^k) = \operatorname{Tr}(B^k)$ alors $\chi_A = \chi_B$.

Exercice 36. On admet que si $P \in \mathbb{K}[X]$ (avec \mathbb{K} un corps), il existe \mathbb{L} sur-corps de \mathbb{K} tel que P soit scindé sur \mathbb{L} avec la caractéristique de \mathbb{L} égale à la caractéristique de \mathbb{K} . Soit $A \in \mathcal{M}_n(\mathbb{Z})$ et p premier, montrer que $\operatorname{Tr}(A^p) \equiv \operatorname{Tr}(A)[p]$.

Exercice 37. Soit E un \mathbb{C} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On note $\rho(u) = \max_{\lambda \in \operatorname{Sp}(u)} |\lambda|$. Montrer l'équivalence

- (i) il existe une norme sur E telle que ||u|| < 1,
- (ii) $\rho(u) < 1$,
- (iii) $\lim_{p \to +\infty} u^p = 0$.

Exercice 38. Soit $(A, B) \in \mathcal{M}_n(C)^2$ avec A diagonalisable sur \mathbb{C} . Montrer l'équivalence

- (i) $\forall Y \in \mathbb{C}^n \setminus \{0\}, \exists h \in \{0, \dots, n-1\}, BA^kY \neq 0,$
- (ii) $\forall Y$ vecteur propre de A, $BY \neq 0$,
- (iii) $\forall Y \in \mathbb{C}^n\{0\},$

$$\varphi: \mathbb{R} \to \mathbb{C}^n$$

$$t \mapsto B \exp(tA)Y$$

n'est pas l'application nulle.

Exercice 39. Soit $A \in \mathcal{M}_2(\mathbb{C})$, que dire de $\left(\|A^p\|^{\frac{1}{p}}\right)_{p \in \mathbb{N}^*}$ où $\|\cdot\|$ est une norme quelconque sur $\mathcal{M}_2(\mathbb{C})$? Et si $A \in \mathcal{M}_n(\mathbb{C})$?

Exercice 40. Soit $(a_0, ..., a_{n-1}) \in \mathbb{K}^n$ et $P = \sum_{i=0}^{n-1} a_i X^i + X^n \in \mathbb{K}[X]$. Soit $M = (m_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ telle que $m_{n,j} = -a_{j-1}$, i,i+1 = 1 et $m_{i,j} = 0$ sinon.

- 1. Calculer χ_M , évaluer la dimension de sous-espaces propres. Donner une condition nécessaire et suffisante sur P pour que M soit diagonalisable sur \mathbb{K} .
- 2. Soit $y^{(3)} = y'' + y' y$, la mettre sous une forme équivalente à Y' = AY et résoudre.

Exercice 41. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ telle qu'il existe $\mathcal{B} = (x, f(x), f^2(x))$ base de \mathbb{R}^3 et il existe $n \in \mathbb{N}^*$ tel que $f^n = \mathrm{id}_{\mathbb{R}^3}$.

- 1. Montrer que $\operatorname{mat}(f, \mathcal{B}) = \begin{pmatrix} 0 & 0 & a \\ 1 & 0 & b \\ 0 & 1 & c \end{pmatrix} := M.$
- 2. Montrer que $P := X^3 cX^2 bX a \mid X^n 1$. Quel est le polynôme minimal de f? f est-elle diagonalisable sur \mathbb{R} ? Sur \mathbb{C} ?
- 3. Montrer que f est inversible, et exprimer f^{-1} en fonction de f et a, b, c.
- 4. Montrer que $\operatorname{Sp}_{\mathbb{R}} M = \{\lambda\}$.
- 5. On suppose que $\det(f) > 0$ (respectivement < 0). Que vaut λ ? Si $\rho e^{i\theta} \in \operatorname{Sp}_{\mathbb{C}}(M)$ avec $\theta \in]0, \pi[$ et $\rho > 0$, donner b et c en fonction de θ .

Exercice 42.

1. Réduire

$$J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

- 2. Soit $M \in \mathcal{S}_n(\mathbb{R})$ telle que
 - i) Sur chaque ligne, g coefficients valent 1 et les autres 0
 - $ii) \ \forall i \in [1,], \ m_{ii} = 0$
 - iii) $\forall i \neq j$, si $m_{ij} = 1$ alors $\exists !k \in [1, n]$, $m_{ki} = m_{kj} = 1$. Si $m_{ij} = 0$ alors il n'y a pas de tel indice.

Évaluer MJ, JM et M^2 en fonction de M, J, I_n . Montrer que d=0 ou d=2 et $\text{Im} J \subset \ker(M-dI_n)$.

Exercice 43. Soit $(A, B, C) \in \mathcal{M}_n(\mathbb{C})^3$ telles que CA = BC et $\operatorname{rg}(C) = r$. Soit

$$\{\lambda_1,\ldots,\lambda_s\}=\mathrm{Sp}_{\mathbb{C}}(A)\cap\mathrm{Sp}_{\mathbb{C}}(B),$$

avec $\lambda_1, \ldots, \lambda_s$ deux à deux distincts, et

$$\chi_A = (X - \lambda_1)^{m_1} \dots (X - \lambda_s)^{m_s} Q(X),$$

$$\chi_B = (X - \lambda_1)^{n_1} \dots (X - \lambda_s)^{n_s} R(X),$$

avec pour tout $i \in [1, s]$, $Q(\lambda_i) \neq 0$ et $R(\lambda_i) \neq 0$. Montrer que $r \leqslant \sum_{i=1}^s \min(m_i, n_i)$.