NFAs

Sipser 1.2 (pages 47–54)

Recall...

- We showed that the class of regular languages is closed under:
 - Complement
 - Union
 - Intersection

Concatenation operation

- Let A and B be languages.
- The concatenation of A and B is $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$.

Example

- Let $A = \{w \mid w \text{ is a string of } 0\text{s and } 1\text{s} \text{ containing an odd number of } 1\text{s} \}$
- Let $B = \{w \mid w \text{ is a string of } 0\text{s and } 1\text{s} \text{ containing an even number of } 1\text{s} \}$
- What are $A \circ B$; $B \circ A$; $A \circ A$; $B \circ B$?
 - Are any of these languages regular?

Concatenation

- Conjecture: The class of regular languages is closed under the concatenation operation.
- Proof idea:

Hmm...

- $A = \{w \mid w \text{ is a string of } 0\text{s and } 1\text{s} \}$ containing an odd number of 1s
- $B = \{w \mid w \text{ is a string of } 0\text{s and } 1\text{s} \}$ containing an even number of 1s
- Create a machine by gluing... how?

We need another approach

The empty symbol ϵ

- Seems like it might work
- Let's try running it...

Relaxing the rules

Deterministic (DFA)

Nondeterministic (NFA)

Running DFA vs NFA

DFA computation (path)

NFA computation (tree)

Mount Holyoke College

Another example

- What language is being recognized?
- Hint: can you start listing strings accepted?

Formally...

- A nondeterministic finite automaton (NFA) is a 5-tuple
 - $(Q, \Sigma, \delta, q_0, F)$, where
 - Q is a finite set called the states
 - $-\Sigma$ is a finite set called the **alphabet**
 - $-\delta: Q \times \Sigma\varepsilon \rightarrow P(Q)$ is the **transition function**
 - $-q_0 = Q$ is the **start state**
 - $-F\subseteq Q$ is a set of **accept states**
- · In-class exercise:

NFA

- A nondeterministic finite automaton (NFA) is a 5-tuple
 - $(Q, \Sigma, \delta, q_0, F)$, where
 - Q is a finite set called the states
 - $-\Sigma$ is a finite set called the **alphabet**
 - $-\delta: Q \times \Sigma\varepsilon \rightarrow P(Q)$ is the **transition function**
 - $-q_0 = Q$ is the **start state**
 - $-F\subseteq Q$ is a set of **accept states**
- In-class exercise:

NFA computation

- Let $N=(Q, \Sigma, \delta, q_0, F)$ be a NFA and let w be a string over the alphabet Σ
- Then N accepts w if
 - w can be written as $w_1 w_2 w_3 ... w_m$ with each $w_i \in \Sigma \varepsilon$ and
 - There exists a sequence of states $s_0, s_1, s_2, ..., s_m$ exists in Q with the following conditions:
 - 1. $s_0 = q_0$
 - 2. $s_{i+1} = \delta(s_i, w_{i+1})$ for i = 0, ..., m-1
 - 3. $s_m \in F$

NFA computation

- Let $N=(Q, \Sigma, \delta, q_0, F)$ be a NFA and let w be a string over the alphabet Σ
- Then N accepts w if
 - w can be written as $w_1 w_2 w_3 ... w_m$ with each $w_i \in \Sigma \varepsilon$ and
 - There exists a sequence of states $s_0, s_1, s_2, ..., s_m$ exists in Q with the following conditions:
 - 1. $s_0 = q_0$
 - 2. $s_{i+1} = \delta(s_i, w_{i+1})$ for i = 0, ..., m-1
 - 3. $s_m \in F$

Nondeterminism makes life easier

• Let's build an NFA that recognizes $B = \{w \mid w \text{ is a string over } \{a,b\} \text{ that starts and ends with the same symbol}\}$

 $C = \{w \mid w \text{ is a string over } \{0,1\} \text{ that contains at least three } 1\text{ 's}\}$

 $D = \{w \mid w \text{ is a string over } \{0,1\} \text{ that contains at least three consecutive } 1's\}$

If at first you don't succeed...

... adjust your goal!

We wanted to prove:

The class of regular languages is *closed* under the *concatenation* operation.

If at first you don't succeed...

... adjust your goal!

Instead, let's prove the theorem:

The class of languages recognized by NFAs is closed under the concatenation operation.

NFA

- A nondeterministic finite automaton (NFA) is a 5-tuple
 - $(Q, \Sigma, \delta, q_0, F)$, where
 - Q is a finite set called the states
 - $-\Sigma$ is a finite set called the **alphabet**
 - $-\delta: Q \times \Sigma\varepsilon \rightarrow P(Q)$ is the **transition function**
 - $-q_0 = Q$ is the **start state**
 - $-F\subseteq Q$ is a set of **accept states**
- In-class exercise:

Proof Let A+B be languages recognized by NFAs HA+VB; $L(N_A)=A+L(N_B)=B$ where $N_A=(Q_A, \Sigma_1S_A, Q_A, F_A)$ and $N_B=(Q_B, \Sigma_1S_B, Q_B, F_B)$.

We construct the NFA $N=(Q_1, \Sigma_1S_1, Q_2, F_3)$, where $Q=Q_1\cup Q_2$

$$8(q,\sigma) = \begin{cases} 8_{8}(q,\sigma) & \text{if } q \in Q_{8} \\ 8_{A}(q,\sigma) & \text{if } q \in Q_{A} \setminus F_{A} \\ 8_{q}8_{3} \cup 8_{A}(q,\sigma) & \text{not accept in } \\ 8_{A}(q,\sigma) & \text{otherwise} \\ 8_{A}(q,\sigma) & \text{otherwise} \\ q \in F_{A} \text{ and } \sigma = \epsilon \end{cases}$$

90 = 90 F = FB

FR Since L(N) = AOB, the class of lang. very by NFAs is closed under o.