Passport Classification with Gitcoin

Gitcoin Passport Data Science Take Home Problem

Overview

- Understanding the Challenge
- Data Management & Insights
- Feature Engineering & Model Building
- Advanced Techniques & Reflection
- Forward Thinking & Continuous Learning
- Q&A

Defining the Sybil Challenge: Understanding Business and Product Needs

- Objective: Sybil detection for blockchain-based applications
- Different Use-Cases: Airdrops vs. Grant Programs
- Sybil Detection Metrics: What's an acceptable sybil detection rate? Is there an industry standard or baseline?
- Assumption based on dataset: Predominantly airdrop-like requirements
- Business Implications:
 - High accuracy in human detection crucial
 - Misclassifications can lead to reputation damage and financial losses
 - High volume of airdrop applicants intensifies cost of errors
- Model Approach: Binary classification Human vs. Sybil

Key Performance Metrics: Selecting What Truly Matters

- Choosing the Right Metrics:
 - Understand stakeholder objectives and constraints.
 - Prioritize simple, observable, attributable metrics.
- Metric Considerations:
 - Macro Average F1 score for avoiding class imbalance pitfalls.
 - o Emphasis on precision and recall for nuance.
- Optimizing Performance:
 - Satisficing with secondary metrics.
 - Example: Optimize precision at ≥0.95 recall.
 - Ensures minimal human misses.
 - Maximizes correct sibil detections.

Data Deep Dive: Unlocking the Potential of Our Sources

- Quality Matters: A model's performance is tied to its data. "Garbage in, garbage out."
- Beyond Fixed Datasets: Real-world scenarios offer flexibility in data choices.
- Potential Data Enhancements:
 - Leverage on-chain wallet data.
 - Request additional user data during verification.
 - Scrape relevant data from online platforms.
 - Explore data augmentation techniques.

Exploratory Data Analysis: Visualizing and Interpreting the Data Landscape

Datasets Loaded:

- Human dataset with 127 entries and 3 columns: publicaddress, Confidence Score, and passport.
- Sybil dataset with 6,936 entries and 2 columns: publicaddress and passport.

Passport Data Structure:

- type: Credential type.
- proof: Details about the proof.
- issuer: Credential issuer.
- o @context, issuanceDate, expirationDate: Credential metadata.
- credentialSubject: Contains subject data such as id, hash, and provider.

Exploratory Data Analysis: Visualizing and Interpreting the Data Landscape

Data Integrity: Cleaning and Preparing for Modelling

Key Observations from EDA:

- The passport column is rich in JSON-encoded data detailing various credentials.
- Preliminary analysis on the relationship between Confidence Score and Number of Credentials shows no clear correlation.
- Decision: Drop the Confidence Score for model simplicity.

Crafting Features: Tailoring Data for Optimal Performance

- Feature Engineering Highlights:
 - Extracted the number of credentials in each passport.
 - One-hot encoded providers, turning each unique provider into a separate feature.

Choosing the Right Model: Selection Criteria and Rationale

- Factors to Consider in Model Selection:
 - Speed: Both in training and prediction.
 - Budget: Cost implications of deploying and running the model.
 - Data Volume & Dimensionality: Size and complexity of the dataset.
 - Feature Types: Handling categorical vs. numerical features.
 - Explainability: Ability to interpret and explain model decisions.

Reasons for Choosing Random Forest:

- Out-of-the-Box Efficiency: Typically performs well without extensive tuning.
- Some Explainability: Offers insights into feature importances.
- Avoids Assumptions: Doesn't require confirming assumptions like linear relationships, as in logistic regression.
- Time-Efficiency: For the sake of time, a straightforward model like Random Forest was optimal.

Training Insights: Evaluating Model Performance and Outcomes

Model & Training:

Training: 5,650 samples (80%); Test:1,413 samples (20%).

Evaluation Metrics:

- Accuracy: 98.87%; ROC-AUC: 0.97.
- Macro F1-Score: 0.72.
- Human Recall: 44%; Sybil Precision: 99%.

Training Insights: Evaluating Model Performance and Outcomes

- Challenges:
 - Low recall for Human class.
 - Imbalanced data.
- Recommendation:
 - Oversampling or synthetic data methods.
- Business Implications:
 - Aim: Reduce false negatives (Humans misclassified).
 - High applicant volume intensifies impact of errors.
 - Align model with business priorities for reputation safeguarding.

Boosting Human Recall: Sampling Strategies Explored

- Techniques Used:
 - Oversampling with SMOTE.
 - Undersampling.
 - No resampling (baseline).
- Results:
 - Oversampling (SMOTE):
 - F1: 74%.
 - Human Recall: Improved, but misclassified 14 as Sybil.
 - Sybil Precision: 99%.
 - Undersampling:
 - F1 (on undersampled test set): 92%.
 - F1 (on original test set): 94%.
 - Human Recall: Good; only 1 misclassified.
 - Sybil Precision: Decreased with 121 misclassified.

Boosting Human Recall: Sampling Strategies Explored

- Undersampling Observations:
 - Best performance among techniques.
 - However, not utilizing all available Sybil data might be a missed opportunity for model learning.
- Sybil Misclassifications:
 - Increase in Sybil misclassification rate with undersampling.
 - o Important to align with client's tolerance level: Is it acceptable?
- Recommendation:
 - Consider a two-model approach:
 - One model focused on accurately classifying Humans.
 - Another model focused on Sybils.
 - This allows for specialized models that can optimize for the unique characteristics and importance of each class.

Key Takeaways: Reflecting on Our Discoveries

Data Insights:

- Imbalanced class distribution.
- Rich yet complex passport data.

Feature Observations:

- No clear correlation between Confidence Score and number of credentials.
- passport features like number of credentials and provider specific information proved valuable.

• Model Insights:

- Random Forest showcased robust performance.
- Sampling Techniques:
 - Undersampling improved Human recall but with trade-offs.
- Business Considerations:
 - Model performance directly impacts user experience.
 - Alignment with business goals is paramount.

Key Takeaways: Reflecting on Our Discoveries

- Top 5 Features: All are on-chain event providers.
 - Signifies their critical role in defining users.
- Implications:
 - These features should have higher weightage in the Passport Score.
 - Can be key differentiators between Humans and Sybils.
- Product Recommendations:
 - Integrate more of such on-chain event providers in Gitcoin Passport.
 - Examples for future integration:
 - More staking integrations.
 - Aave supplier/borrower integration.

Continuous Learning: Iteration and Model Refinement

Continuous Evolution:

- Recognize that deploying a model is not the conclusion of the ML journey.
- Models often require periodic updates and refinements.

Shifting Business Objectives:

- As company goals evolve, the criteria for model success may shift.
- Stay aligned with business priorities to ensure the model remains relevant.

Evaluation Metrics:

- Periodically reassess the model using updated metrics to maintain optimal performance.
- Consider using tools like A/B testing to compare the efficacy of old vs. new models.

Data Dynamics:

- Data sources and features can change over time.
- Regularly check for data drift or anomalies that might impact model performance.

Horizon Scanning: A Glimpse into Future Improvements

Model Robustness:

- Implement a Train-Test-Validation split for better evaluation.
- Utilize cross-validation for more robust model assessments.

Model Exploration:

- Iterate on different models to evaluate performance variations.
- Consider a two-model approach:
 - One focusing on accurate Human classification.
 - Another emphasizing Sybil detection.

Complexity:

- Experiment with more intricate models like Gradient Boosted Trees, Neural Networks, or Ensemble methods.
- Anomaly Detection: Instead of supervised learning, consider unsupervised anomaly detection techniques to identify unusual or suspicious behavior.

Customization for Users:

- Develop adjustable models:
 - Allow clients to prioritize recall or precision based on their needs.
 - Offer the capability to select from a suite of models based on specific requirements.

Questions & Answers

