成 绩

课程名: 概率论与数理统计A 课程号: 01014016 学分: 5 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人	应试人学号	应试人所在院系
-----	-------	---------

题号	_	=	三	四	Ŧi.	六	七	八
得分								

得分	评卷人

- 一、填空题(每格2分, 共20分)
- 1. 袋中有黑球3个, 白球2个. 现每次从袋中任取一个球, 有放回地取两次, 则抽到 是黑白球各一个的概率等于; 若是无放回地取两次, 则抽到黑白球各一 个的概率则是 .
- 2. 设 $X \sim b(n, p)$, F(x)是其分布函数. 则F(1) = ; $F(n) - F(n-1) = \qquad .$
- 3. 设(X,Y)的联合分布函数为F(x,y),则 $P\{Y>y\}=$ $P\{X > x, Y > y\} =$
- 4. 二维正态随机向量 $(X,Y) \sim N(1,2,4,9,-0.5)$, 则E(2X-Y) = 1D(2X - Y) = .
- 5. 设总体的均值与方差分别为 μ , σ^2 , (X_1, X_2, \dots, X_n) 为取自总体的一组简单随 机样本, 并记 \overline{X} 为该样本均值. 则 $E(\overline{X}) = \underline{\qquad}$; $E(\overline{X}^2) = \underline{\qquad}$.

得分	评卷人

二、判别题(请在括号中填入 ✓ 或 🗷 每题2分, 5题共10分)

- 1. 设A, B为两个事件, 且满足 $A\overline{B} = \overline{A}B$, 则A = B. ()
- 2. 若随机变量X的分布函数F(x)在x = c处连续, 则 $P\{X = c\} = 0$. ()
- 3. 设(X,Y)服从二维均匀分布,那么X必服从一维均匀分布.()
- 4. 如果随机变量X与Y互不相关,则X与Y必相互独立. ()
- 5. 如果估计量 $\hat{\theta}$ 是未知参数 θ 的无偏估计量, g(x)是一连续函数, 那么 $g(\hat{\theta})$ 将是 $g(\theta)$ 的 无偏估计量.()

得分	评卷人

三、选择题(每题2分,5题共10分)

- 1. A, B, C为三个事件, 那么事件 $\overline{A} \cup \overline{B} \cup \overline{C}$ 表示这三个事件(

 - (A) 三个都不发生 (B) 不多于两个发生
 - (C) 不多于一个发生 (D) 恰有一个不发生
- 2. 设X的分布函数为 $\Phi(x)$, 那么2 $X+1\sim$ ()
- (A) N(1,2) (B) N(1,3) (C) N(1,4) (D) N(1,5)
- 3. 若X和Y具有相同的方差. 则X + Y与X Y的相关系数等于 ().
- (A) -1 (B) 1 (C) 1/2
- (D) 0
- 4. 设 X_1, X_2, \dots, X_{12} 独立同分布于U(0,1),则与 $\sum_{i=1}^{12} X_i 6$ 的分布最相似的分布 是()

- (A) N(0,1) (B) $b(12,\frac{1}{2})$ (C) $\pi(6)$ (D) U(-6,6)
- 5. 对于假设检验问题: $H_0: \theta \in \Theta_0, H_1: \theta \in \Theta_1, 则一个检验犯"第一类错误"是$ 指().
 - $(A) H_0$ 为假时,接受 H_0
- (B) H_0 为真时, 拒绝 H_0
- (C) H_1 为真时, 拒绝 H_1 (D) H_1 为真时, 接受 H_1

得分 评卷人

四、(10分). 某种仪器由两部分组成. 假设这两个部分的质量

互不影响,且它们的优质品率分别为0.7和0.9. 如果两个部分都是优质品,则组成的 仪器一定合格;如果两个部分中仅有一个是优质品,则组成的仪器不合格率为0.2;如果两个部分均不是优质品,则组成的仪器不合格率降至0.5.

- 1. (6分) 求该种仪器的不合格率;
- 2. (4分) 如果发现一台仪器不合格, 问它有几个部分不是优质品的概率最大.

得分评卷人

五、(15分). 已知随机变量X的概率密度函数为

$$f(x) = \begin{cases} Cx(1-x), & 0 < x < 1 \\ 0, & \sharp \stackrel{\sim}{\Sigma} \end{cases}$$

求:

- 1. (5分) 常数C的值;
- 2. (5分) *X*的分布函数F(x);
- 3. (5分) $P\left\{\frac{1}{4} < X < \frac{1}{2}\right\}$.

得分	评卷人

六、(15分). 设(X,Y)的联合概率密度函数为:

$$f(x,y) = \begin{cases} 3x, & 0 \le y \le x \le 1 \\ 0, & \cancel{\sharp} \stackrel{\sim}{\boxtimes} \end{cases}$$

- 1. (5分) 求 $P\{X+Y \ge 1\};$
- 2. (10分) 计算边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$, 并判断X与Y是否相互独立.

七、(10分). 设样本 X_1, X_2, \cdots, X_n 取自概率密度函数为:

$$f(x;\theta) = \theta x^{\theta-1}, x \in (0,1)$$

的总体. 求:

- 1. (5分) θ 的矩估计量;
- 2. (5分) θ的最大似然估计量.

得分 评卷人

八、(10分). 由于工艺水平的限制,食品添加剂含量在每包食

品中并不是完全相同的(假设服从正态分布), 但根据规定整批食品中添加剂含量的均值不得超过1mg/kg. 现对该批食品进行检测, 从送样中随机抽取25袋, 测得添加剂的平均含量为1.05mg/kg, 样本标准差0.23mg/kg.

- 1. (5分) 在 $\alpha = 0.05$ 显著性水平下, 能否认为这批食品添加剂含量的均值超标?
- 2. (5分) 求该批食品添加剂含量标准差的90%的区间估计.

χ^2 -分布和t-分布分位点表

α	0.975	0.950	0.900	0.100	0.050	0.025
$\chi^2_{\alpha}(24)$	12.4012	13.8484	15.6587	33.1962	36.4150	39.3641
$\chi^2_{\alpha}(25)$	13.1197	14.6114	16.4734	34.3816	37.6525	40.6465
$\chi^2_{\alpha}(26)$	13.8439	15.3792	17.2919	35.5632	38.8851	41.9232
$t_{\alpha}(24)$	-2.0639	-1.7109	-1.3178	1.3178	1.7109	2.0639
$t_{\alpha}(25)$	-2.0595	-1.7081	-1.3163	1.3163	1.7081	2.0595
$t_{\alpha}(26)$	-2.0555	-1.7056	-1.3150	1.3150	1.7056	2.0555
	•					