Generative Modeling

Normalizing flows

Denis Derkach, Artem Ryzhikov, Sergei Popov

Laboratory for methods of big data analysis

In this Lecture

- Normalizing flows problem statement.
- Block schemes for Normalizing flows.
- MAF/IAF duality

Motivation

Motivation

$$x_i \sim p_x(x)$$

$$p_{\chi}(x)$$
 - ?

$$z = f(x)$$

$$x = T(z)$$

$$z_i \sim p_z(z)$$

$p_z(z)$ - known

- Generative model:
 - Likelihood evaluation;
 - Sampling procedure.
- Use deterministic map to known distribution.

Change of variables

For $p_z(z)$ some pdf and z = f(x) known then $p_x(x)$:

$$p_{x}(x_{i}) = \mathbf{p_{z}}(\mathbf{f}(x_{i})) \left| \det \frac{\partial \mathbf{f}(x_{i})}{\partial x_{i}} \right|,$$

Ratio of volume ∂z to new volume ∂x

1st derivative matrix:

$$\frac{\partial f(x_i)}{\partial x_i} = \begin{pmatrix} \frac{\partial f(x_i)_1}{\partial x_{i1}} & \cdots & \frac{\partial f(x_i)_1}{\partial x_{in}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(x_i)_m}{\partial x_{i1}} & \cdots & \frac{\partial f(x_i)_m}{\partial x_{in}} \end{pmatrix}.$$

$$z = f(x) = 0.5x - 2.5$$

$$x_i \sim p_x(x)$$

$$p_{x}(x)$$
 - ?

$$z_i \sim p_z(z)$$

$$p_z(z) = \mathcal{N}(0, 1)$$

For function f(x):

$$z = f(x) = 0.5x - 2.5$$

Jacobi matrix:

$$\frac{\partial \mathbf{f}(x_i)}{\partial x_i} = (0.5)$$

Jacobian:

$$\left| \det \frac{\partial \boldsymbol{f}(x_i)}{\partial x_i} \right| = 0.5$$

Change of variables formulas:

$$p_{x}(x_{i}) = \mathbf{p_{z}}(\mathbf{f}(x_{i})) \left| \det \frac{\partial \mathbf{f}(x_{i})}{\partial x_{i}} \right|,$$

Using normal distribution definition:

$$p_{z}(z_{i}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(z_{i})^{2}}{2}}$$

$$p_{x}(x_{i}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(0.5x_{i}-2.5)^{2}}{2}} * 0.5$$

$$= \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x_{i}-5)^{2}}{2*2^{2}}} = \mathcal{N}(5,2)$$

$$z = f(x) = 0.5x - 2.5$$

$$z_i \sim p_z(z)$$

$$p_z(z) = \mathcal{N}(0, 1)$$

$$f(x) = \begin{cases} z_1 = \ln x_1 \\ z_2 = x_2 - 2 \ln x_1 \end{cases}$$

$$z_i \sim p_z(z)$$

$$p_z(z) = \frac{1}{2\pi} e^{-\frac{z_1^2 + z_2^2}{2}}$$

$$x_i \sim p_x(x)$$

$$p_{\chi}(\chi)$$
 - ?

For function:

$$z = f(x) = \begin{cases} z_1 = \ln x_1 \\ z_2 = x_2 - 2 \ln x_1 \end{cases}$$

Linear derivatives are:

$$\frac{\partial f(x)}{\partial x} = \begin{pmatrix} 1/x_1 & 0\\ -2/x_{x1} & 1 \end{pmatrix}$$

Jacobian:

$$\left| \det \frac{\partial f(x)}{\partial x} \right| = \frac{1}{x_1}$$

Change of variables:

$$p_{x}(x_{i}) = p_{z}(f(x_{i})) \left| \det \frac{\partial f(x_{i})}{\partial x_{i}} \right|,$$

Insert known shapes:

$$p_{\mathbf{z}}(z_i) = \frac{1}{2\pi} e^{-\frac{z_1^2 + z_2^2}{2}}$$

$$p_{\mathbf{z}}(x_i) = \frac{1}{2\pi} e^{-\frac{(\ln x_1)^2 + (x_2 - 2\ln x_1)^2}{2}} * \frac{1}{x_1}$$

Theory

Motivation recap

Use deterministic map to known distribution:

$$z = f(x)$$
.

In this case, change of variables formula:

$$p_{x}(x) = p_{z}(f(x)) \left| \det \frac{\partial f(x)}{\partial x} \right|.$$

Inverse map:

$$x = T(z)$$
.

In this case, change of variables formula:

$$p_{\mathbf{z}}(\mathbf{z}) = p_{\mathbf{x}}(\mathbf{T}(\mathbf{z})) \left| \det \frac{\partial \mathbf{T}(\mathbf{z})}{\partial \mathbf{z}} \right|.$$

Motivation

$$x_i \sim p_x(x)$$

$$p_{\chi}(x)$$
 - ?

Sampling
$$x = T(z)$$
Likelihood
evaluation
$$z = f(x)$$

$$z_i \sim p_z(z)$$
 $p_z(z)$ - known

Can we have invertible function?

Motivation recap

Use deterministic map to known distribution:

$$z = f(x)$$
.

In this case, change of variables formula:

$$p_{x}(x) = p_{z}(f(x)) \left| \det \frac{\partial f(x)}{\partial x} \right|.$$

Inverse map:

$$x = T(z) = f^{-1}(z).$$

In this case, change of variables formula:

$$\mathbf{p}_{\mathbf{z}}(\mathbf{z}) = p_{x}(f^{-1}(\mathbf{z})) \left| \det \frac{\partial f^{-1}(z)}{\partial z} \right| = p_{x}(f^{-1}(z)) \left| \det \frac{\partial f(z)}{\partial z} \right|^{-1}.$$

f

- Invertible.
- Differentiable.

Normalizing flows

Problem Statement

$$x_i \sim p_x(x) - \text{data}$$

$$p_{x}(x) - ?$$
Feature Space

 $x = -4$
 $y = -6$
 $y = -6$

$$z = f(x) - ?$$

$$x = f^{-1}(z)$$
 - ?

$$z_i \sim p_z(z)$$

$p_z(z)$ known

- We have: real objects $\{x_i\}$
- Task: find invertible and differentiable $f: z_i = f(x_i)$, such that $z_i \sim p_z(z)$. For some known: $p_z(z)$.

Loss function

Use log-likelihood:

$$\log \mathcal{L} = -\frac{1}{n} \sum_{i=1}^{n} \log p_{x}(x_{i})$$

Change of variables:

$$p_x(x_i) = \mathbf{p_z}(\mathbf{f}(x_i)) \left| \det \frac{\partial \mathbf{f}(x_i)}{\partial x_i} \right|$$

Thus:

$$\log \mathcal{L} = -\frac{1}{n} \sum_{i=1}^{n} \left(\log \mathbf{p_z}(\mathbf{f}(x_i)) + \log \left| \det \frac{\partial \mathbf{f}(x_i)}{\partial x_i} \right| \right)$$

Training Algorithm

for number of training iterations do:

- Sample m of real objects $\{x_1, x_2, ..., x_m\}$.
- Calculate loss function:

$$L = -\frac{1}{m} \sum_{i=1}^{m} \left(\log \mathbf{p_z}(\mathbf{f}(x_i)) + \log \left| \det \frac{\partial \mathbf{f}(x_i)}{\partial x_i} \right| \right)$$

▶ Update parameters of the function $z_i = f(x_i)$:

$$\theta_f = \theta_f - \nabla_{\theta_f} L$$

Generation Algorithm

- Sample m objects $\{z_1, z_2, ..., z_m\}$.
- Generate new objects using the learned function:

$$x_i = f^{-1}(z_i)$$

Planar flows

Transformation:

$$x = f_{\theta}^{-1}(z) = z + uh(w^{T}z + b),$$

 $\theta = (w \in \mathbb{R}^D, u \in \mathbb{R}^D, b \in \mathbb{R})$ – parameters, h(.) – elementwise nonlinearity.

Linear derivative matrix:

$$\frac{\partial f_{\theta}^{-1}}{\partial z} = I + uh'(w^T z + b)w^T.$$

Jacobian:

$$\det \frac{\partial f_{\theta}^{-1}}{\partial z} = 1 + h'(w^T z + b) w^T u.$$

Is it invertible? For $h(.) = \tanh(.)$ need $w^T u > -1$.

Planar flows: grid behavior

$$x = f_{\theta}^{-1}(z) = z + uh(w^{T}z + b)$$

$$w = [5; 0]^{T}$$

$$u = [1; 0]^{T}$$

$$b = 0$$

$$h(x) = \tanh(x)$$

$$x = f_{\theta}^{-1}(z) = \begin{cases} z_1 + \tanh(5z_1) \\ z_2 \end{cases}$$

Grid will be pushed away from zero.

Planar flows: one step

$$x = f_{\theta}^{-1}(z) = \begin{cases} z_1 + \tanh(5z_1) \\ z_2 \end{cases}$$

$$x = f^{-1}(z)$$

We can obtain a more complicated figure.

Planar flows: more steps

$$x = f_{\theta}^{-1}(z) = z + uh(w^{T}z + b)$$

Change transformation parameters at each step K for any prior distribution.

Stack more layers

- We take several transformations consecutively.
- At each layer we have new function.

Layers in Flows

$$\mathbf{z}_0 = f_1^{-1}(z_0)$$

$$\mathbf{z}_0 \sim p_0(\mathbf{z}_0)$$

Let
$$z_0 = f_1(z_1), z_1 = f_2(x)$$
.

Then:

$$p_x(x) = p_y(f_2(x)) \left| \det \frac{\partial f_2(x)}{\partial x} \right|$$

$$p_{z_1}(z_1) = \mathbf{p_{z_0}}(\mathbf{f_1}(z_1)) \left| \det \frac{\partial \mathbf{f_1}(z_1)}{\partial z_1} \right|$$

Which means:

$$p_{x}(x) = \mathbf{p}_{z_{0}}\left(\mathbf{f_{2}}(\mathbf{f_{1}}(x))\right) \left| \det \frac{\partial \mathbf{f_{1}}(z_{1})}{\partial z_{1}} \right| \left| \det \frac{\partial \mathbf{f_{2}}(x)}{\partial x} \right|$$

Layers in Flows

$$f_1^{-1}(z_0)$$
 \mathbf{z}_0
 \mathbf{z}_0
 \mathbf{z}_0

Let $z_0 = f_1(z_1), z_1 = f_2(x)$.

Then:

$$p_x(x) = p_y(f_2(x)) \left| \det \frac{\partial f_2(x)}{\partial x} \right|$$

$$p_{z_1}(z_1) = \mathbf{p_{z_0}}(\mathbf{f_1}(z_1)) \left| \det \frac{\partial \mathbf{f_1}(z_1)}{\partial z_1} \right|$$

Which means:

$$p_{x}(x) = \mathbf{p}_{z_{0}}\left(\mathbf{f_{2}}(\mathbf{f_{1}}(x))\right) \left| \det \frac{\partial \mathbf{f_{1}}(z_{1})}{\partial z_{1}} \right| \left| \det \frac{\partial \mathbf{f_{2}}(x)}{\partial x} \right|$$

Flow discussion

- It is possible to obtain $p_x(x)$ consecutively changing observables.
- ▶ The overall transformation is invertible if individual layers are invertible.
- Dimensions of each observable is the same.
- ► Fit is performed using ML estimate.
- Need to calculate determinant.

Jacobian Problems

$$\frac{\partial f(x_i)}{\partial x_i} = \begin{pmatrix} \frac{\partial f(x_i)_1}{\partial x_{i1}} & \cdots & \frac{\partial f(x_i)_1}{\partial x_{in}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(x_i)_m}{\partial x_{i1}} & \cdots & \frac{\partial f(x_i)_m}{\partial x_{in}} \end{pmatrix}$$

- dxd determinant is **too expensive** to compute with $O(d^3)$ computations.
- ▶ Idea: take only transformations with triangular matrix, in this case O(d) computations.
- Bogachev theorem: There always exists a unique (up to ordering) increasing triangular map that transforms a source density to a target density.

We came to autoregressive models.

Block models

Block matrix for Jacobian

$$\frac{\partial f(x)}{\partial x} = \begin{pmatrix} \mathbb{I}_d & 0\\ \frac{\partial z_{d+1:D}}{\partial x_{d+1:D}} & S \end{pmatrix}$$

- Randomly choose d such that we have two disjoint subsets of observables: $z_{1:d}$ and $z_{d+1:D}$.
- Insert a block transform.
- Repeat for several layers.
- If needed insert scaling layers.
- Fit simultaneously.

Non-linear Independent Components Estimation

$$z = f(x) = \begin{cases} z_{1:d} = x_{1:d} \\ z_{d+1:D} = x_{d+1:D} - m(x_{1:d}) \end{cases}$$

- $m(x_{1:d})$ neural networks with d inputs and D-d outputs;
- easy to invert;
- ightharpoonup scaling layer $x_i = s_i z_i$ can be added.
- Based on NADE autoregressive model.

Non-linear Independent Components Estimation

(a) Model trained on MNIST

(b) Model trained on TFD

Real-NVP

$$z = f(x) = \begin{cases} z_{1:d} = x_{1:d} \\ z_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}) \end{cases}$$

- ► $s(x_{1:d})$ и $t(x_{1:d})$ neural networks with d inputs and D-d outputs.
- Invertible.
- $det J_k = \exp \sum_{i=d+1}^{D} (\alpha_{\theta}(z_{1:d}))_i$ for k-th layer.
- Inspired by RNADE.

https://arxiv.org/abs/1605.08803

R-NVP: results

Рис.: https://github.com/laurent-dinh/laurent-dinh.github.io/blob/master/img/real_nvp_fig/celeba_samples.png

Discussion

- Normalizing flows based on block scheme have nice results.
- Block scheme allows for autoregressive model insertion.
- Fairly fast: need only one pass to get the sampling and likelihood evaluation, can run in parallel.
- Autoregressive quality is not conserved in multiple layers.

Masked Autoregressive Flow (MAF)

Masked Autoregressive Flow (MAF)

- $\mu_d(x_{1:d-1})$ и $s_d(x_{1:d-1})$ neural networks.
- MADE architecture inspired.
 - Fast in likelihood evaluation.
 - Slow ancestral sampling.

https://arxiv.org/abs/1705.07057

Masked Autoregressive Flow (MAF): Jacobian

Low-triangular matrix

$$\frac{\partial f(x)}{\partial x} = \begin{pmatrix} \exp(-s_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \frac{\partial z_D}{\partial x_1} & \cdots & \exp(-s_D(x_{1:D-1})) \end{pmatrix}$$

Jacobian:

$$\left| \det \frac{\partial f(x)}{\partial x} \right| = \exp(-\sum_{j=1}^{D} s_d(x_{1:d-1}))$$

MAF sampling

$$x = f^{-1}(z) = \begin{cases} x_1 = z_1 \exp(s_1) + \mu_1 \\ x_d = z_d \exp(s_d(x_{1:d-1})) + \mu_d(x_{1:d-1}) \end{cases}$$

Forward pass:

$$z \sim N(0; 1)$$

 $x_1 = \exp(s_1) z_1 + \mu_1$
 $x_2 = \exp(s_2(x_1)) z_2 + \mu_2(x_1)$

And so on.

Consecutive and slow.

MAF Likelihood evaluation

$$z = f(x) = \begin{cases} z_1 = (x_1 - \mu_1) \exp(-s_1) \\ z_k = (x_k - \mu_k(x_{1:k-1})) \odot \exp(-s_k(x_{1:k-1})) \end{cases}$$

Inverse pass:

compute all μ and s;

evaluate z.

Likelihood evaluation is fast and parallelizable.

Training is fast.

MAF: results

Figure 3: Class-conditional generated and real images from MNIST. Rows are different classes. Generated images are sorted by decreasing log likelihood from left to right.

Inverse Autoregressive Flow (IAF)

$$z = f(x) = \begin{cases} z_1 = (x_1 - \mu_1) \exp(-s_1) \\ z_d = (x_d - \mu_d(z_{1:d-1})) \exp(-s_d(z_{1:d-1})) \end{cases}$$

- $\blacktriangleright \mu_d(z_{1:d-1})$ и $s_d(z_{1:d-1})$ neural networks.
- Similar to MAF but with inverse problems by construction:
 - Fast to sample.
 - Slow to evaluate likelihood.

https://arxiv.org/abs/1606.04934

Inverse Autoregressive Flow (IAF)

$$x = f^{-1}(z) = \begin{cases} x_1 = z_1 \exp(s_1) + \mu_1 \\ x_d = z_d \exp(s_d(z_{1:d-1})) + \mu_d(z_{1:d-1}) \end{cases}$$

Forward pass:
 compute all μ and s;
 evaluate x.

Sampling is fast and parallelizable.

Training is slow.

Probability Density Distillation

- Two-part training with a teacher and student model.
- Teacher (MAF) trained first, then student (IAF) initialized.
- Student, s, is trained to match the teachers' distribution t using KL divergence:

$$KL(p_s||p_t) = H(p_s, p_t) - H(p_s).$$

Which is evaluated using MAF.

https://arxiv.org/pdf/1711.10433.pdf

Conclusions

Conclusions

1. Det Identities

Planar NF Sylvester NF

...

2. Coupling Blocks

NICE Real NVP Glow

...

3. Autoregressive

Inverse AF Neural AF Masked AF

...

(Lower triangular)

4. Unbiased Estimation

FFJORD

Residual Flows

(Arbitrary)