Keys of Imagination

Sarim Aeyzaz and Ehtsham Walidad FAST NUCES

Precise Information about the Proposal

The "Keys of Imagination" project leverages computer vision and deep learning to transform a simple paper drawing of a piano keyboard into an interactive digital piano. The system uses hand-tracking, fingertip detection, and YOLO-based object detection to identify key presses and play corresponding musical notes.

Contributions to Your Work

- Developed a system that integrates MediaPipe and YOLO for robust hand and object detection.
- Implemented motion-based keypress detection with noise reduction through buffer zones and cooldowns.
- Enhanced functionality to support two-hand interactions for a richer user experience.
- Transitioned from screen-based keyboards to real-world object detection using YOLO.

Methodology

The methodology involves six incremental stages of development, starting from basic fingertip detection to integrating YOLO for real-time piano detection. Below is a flow diagram and the corresponding explanation of each stage.

Flow Diagram

Implementation Details

Model Selection

- MediaPipe: Used for hand keypoint detection due to its efficiency and accuracy.
- YOLO (You Only Look Once): Used for detecting the paper piano keyboard, chosen for its real-time performance.

Incremental Stages of Development

- Stage 1: Basic Keypress Detection
 - MediaPipe detected hand keypoints.
 - A keypress was registered if a fingertip (index, middle, ring, or pinky) was below other keypoints.

• Stage 2: On-Screen Keyboard

- Displayed a virtual keyboard on the screen.
- Played a note when a fingertip overlapped with a key.
- Introduced a buffer/deadzone (10%) to reduce misdetections on key boundaries.
- Prevented repeated notes by tracking which finger was on which key.

• Stage 3: Motion-Based Key Detection

- Detected downward motion (y-coordinate increase) for keypress registration.
- Implemented a 0.5-second cooldown to avoid spamming notes.
- Addressed transition issues between keys (fixed in Stage 4).

• Stage 4: Two-Hand Interaction

- Extended functionality to detect keypresses for both hands.
- Fixed a bug where transitions between keys were not played correctly under the new motion logic.

• Stage 5: Contour-Based Bounding Box Detection

 Used contours to create a bounding box around the detected keyboard for more precise key segmentation.

• Stage 6: YOLO Integration

- Integrated YOLO to detect the paper piano keyboard in real-time.
- Ensured the system ignored other objects (e.g., the webcam).

Hyperparameters

- MediaPipe Minimum Detection Confidence: 0.7
- MediaPipe Minimum Tracking Confidence: 0.7
- YOLO Confidence Threshold: 0.2
- Cooldown Time: 0.5 seconds
- Buffer Margin: 10% of key dimensions
- History Length: 5 frames

Results and Analysis

- The system successfully identified key presses and played notes in realtime.
- The YOLO integration significantly improved detection robustness compared to earlier contour-based methods.
- Two-hand interaction allowed simultaneous chord playing, enhancing musical expression.
- Limitations were observed in cases of image occlusion, particularly when hands overlapped the keys.

Strengths of Your Work

- Real-time performance with minimal latency.
- Integration of motion-based detection reduces false positives.
- Support for two-hand interactions enhances usability and realism.
- Modular development allows future extensions (e.g., additional instruments).

Limitations of Your Work

The primary limitation of the system is image occlusion, where overlapping hands or poor lighting conditions can affect detection accuracy.

Conclusion

The "Keys of Imagination" project successfully transforms a simple drawing into an interactive musical instrument. Future work could address occlusion issues by incorporating depth sensors or advanced segmentation techniques.