

2N7000

0.2A , 60V , $R_{DS(ON)}\,5\Omega$ N-Channel Enhancement Mode Power MOSFET

RoHS Compliant Product A suffix of "-C" specifies halogen & lead-free

FEATURES

- High density cell design for low R_{DS(ON)}
- Voltage controlled small signal switch
- Rugged and reliable
- High saturation current capability

APPLICATIONS

- Load switch for portable devices
- DC/DC converter

MARKING

2N 7000 021

REF.	Millimeter		REF.	Millimeter		
	Min.	Max.	KLI.	Min.	Max.	
Α	4.40	4.70	F	0.30	0.51	
В	4.30	4.70	G	1.27 TYP.		
С	12.70	14.5	Н	1.10	1.40	
D	3.30	3.81	J	2.42	2.66	
F	0.36	0.56				

ABSOLUTE MAXIMUM RATINGS (T_A=25°C unless otherwise specified)

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V _{DS}	60	V
Continuous Drain Current	I _D	0.2	Α
Power Dissipation	P _D	0.625	W
Thermal Resistance from Junction to Ambient	$R_{\theta JA}$	200	°C / W
Operating Junction and Storage Temperature Range	T _J , T _{STG}	150, -55~150	°C

ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	60	-	-	V	V _{GS} =0, I _D =10μA	
Gate Threshold Voltage ¹	V _{GS(th)}	0.8	-	3	V	V _{DS} =V _{GS} , I _D =1mA	
Gate-Source Leakage Current	I _{GSS}	-	-	±10	nA	V _{DS} =0, V _{GS} = ±15V	
Drain-Source Leakage Current	I _{DSS}	-	-	1	μΑ	V _{DS} =60V, V _{GS} =0	
On-State Drain Current	I _{D(ON)}	75	-	-	mA	V _{DS} =10V, V _{GS} =4.5V	
Static Drain-Source On-Resistance ¹	В	-	-	6	Ω	V _{GS} =4.5V, I _D =75mA	
Static Diain-Source On-Resistance	R _{DS(ON)}	-	-	5		V _{GS} =10V, I _D =500mA	
Forward Transconductance ¹	g _{fs}	100	-	-	mS	V _{DS} =10V, I _D =200mA	
Drain-Source On-Voltage ¹	V _{DS(ON)}	-	-	0.45	V	V _{GS} =4.5V, I _D =75mA	
Drain-Source On-Voltage		-	-	2.5		V _{GS} =10V, I _D =500mA	
Input Capacitance ²	C _{iss}	-	60	-		V _{GS} =0	
Output Capacitance ²	Coss	-	25	-		V _{DS} =25V f=1MHz	
Reverse Transfer Capacitance ²	C _{rss}	-	5	-			
Turn-on Delay Time ²	$T_{d(off)}$	-	10	-		V_{DD} =15V, V_{GEN} =10V R _L =30 Ω , R _G =25 Ω , I _D =500mA	
Turn-off Delay Time ²		-	10	-			

Notes:

- 1. Pulse Test.
- 2. These parameters have no way to be verified.

Any changes of specification will not be informed individually.

http://www.SeCoSGmbH.com/

10-Nov-2015 Rev. B Page 1 of 2

2N7000

0.2A , 60V , $R_{DS(ON)}\,5\Omega$ N-Channel Enhancement Mode Power MOSFET

CHARACTERISTIC CURVES

Any changes of specification will not be informed individually.