	# SSignment 2
	MACHINE LEADY
	- Abhishek Agamish
0.2	MACHINE LEARNING - Abhishek Agaswal (2016126)
Q.2	The RBF bon.
	He from
	K (24 - 20 1/2)
	The RBF kernel is of the form: $K(x_1, x_2) = e^{-x x_1 - x_2 ^2}$ Where $x x_1 - x_2 ^2$
	where 8/1/24-1/2 represents the equared luctidean distance b) we the two datapoints 24. and 25
	distance blue the survey of the squared environ
	distance b)w the two datapoints ry and no
	100 300110 00 10
	distance between the paids a dependent on the
	If the distance is him i
	and if the points are immi and if
	1 value 10 las 10 wards
	the dimension to intich the man in more
	of toaining samples.
	However & also plays a role in determining and the
	of toweres, & also plays a sole in determining overfitting of the data.
	Hernel function tends to zero for every (1, 12) with xy 1=12 and it tends to I for every
	Kesnel function tends to zero for every (7, 4)
<u> </u>	with my 1= 1/2 and it tends to 1. for every
	(γ_1, γ_2) which $\gamma_1 = \gamma_2$
	Continue Continue to account of
1	Thus, the knowed matrix obtained is of the form.
	(100
(1)	(100 ·· · · · · · · · · · · · · · · · ·
	(1) or .)
W	luich a the identity matrix.

Hence, every point gets mapped to its own dimension, and we have a total of inum_toaining-samples) dimensions This is the case of overfitting as train occuracy will be 100%. Whereas on test set, poor results will be obtained whereas if we choose a gamma which has
a very low value.
In this case, the kesnel function will tend Thus, the kernel matrix obtained will be like: · * and hence, every point se getting inapped to the same point.

This is the case of renderfitting i we should choose an apper priate value of 8 to avoid over under fit of data.

f[Am + (1-1)m2] < Af(m) + (1-1)f(m2) Now, assume that f and g are I convex functions T.P.: f+g is a convex function i.e. we have to prove that (f+g) (124+ (1-1)2) * 1(f+g)(21) + (1-1)(f+g)(22) Convexity of $f \Rightarrow$ $f \left[An_1 + (1-A)n_2 \right] \in Af(n_1) + (1-A)f(n_2)$ Convexity of $g \Rightarrow$ $g[\lambda y + (1-\lambda)y_2] \leq \lambda g(y_1) + (1-\lambda)g(y_2)$ Adding the egn 1) and 12 $(f+g)[\Lambda n_4 + (1-\Lambda)n_2] \leq (\Lambda(f+g)(n_4) + (1-\Lambda)(f+g)(n_2)$ = Which is what we required to proble (ii) loss function for 4 à convex function. $= \sum_{\text{over all gamples}} (y_i - f(x_i, \omega))^2 + \sum_{\text{over all gamples}} (y_i)^2$ Now, since we know from the graph, that quadratic function is a convex function

