

AVD623: Communication Systems-II Vineeth B. S.

Lecture 2

Dept. of Avionics

Recall: Digital transmission system

- Source of digital information characterized by bit duration T_b (or bit rate)
- ▶ Converted into a line code whose levels are represented by a_k (say -A and +A)
- ► Further transformation of *a_k* to "match" the signal to the channel (what if the channel were bandpass?)
- lacktriangle We obtain a continuous time signal s(t) which is transmitted over the channel
- \blacktriangleright At the receiver need to convert it into a digital signal so synchronized sampling, usually at rate T_b
- A decision device decides whether 0 or 1 was transmitted
- Let us think about a baseband digital transmission system

An effective pulse shape p(t)

- Note that all filters and the channel are assumed to be LTI
- ▶ Let us think about a_k -s as an impulse train
- ▶ Then $s(t) = \sum_{k=-\infty}^{\infty} a_k g(t kT_b)$ since we are transmitting every T_b secs.
- $y(t) = x(t) \star q(t)$
- $ightharpoonup y(t) = \sum_{k=-\infty}^{\infty} a_k p(t-kT_b)$, where $p(t) = g(t) \star h(t) \star q(t)$
- P(f) = G(f)H(f)Q(f)

An effective pulse shape p(t)

▶
$$y(t) = \sum_{k=-\infty}^{\infty} a_k p(t - kT_b)$$
, where $p(t) = g(t) * h(t) * q(t)$

Intersymbol interference problem

- At the sampling instants $y(iT_b)$ we have $y(iT_b) = \sum_{k=-\infty}^{\infty} a_k p((i-k)T_b)$ (notation: pulse is centered at zero)
- ▶ Suppose $y_i = y(iT_b)$ and $p_i = p(iT_b)$
- $ightharpoonup y_i = \sum_{k=-\infty}^{\infty} a_k p_{i-k}$
- ▶ We need $y_i = p_0 a_i$ for all i. Let us say that $p_0 = \sqrt{E}$
- What we have is $y_i = \sqrt{E}a_i + \sum_{k \neq i} a_k p_{i-k}$

Mitigation of intersymbol interference

- We have to design p(t) such that $y_i = \sqrt{E}a_i$
- \triangleright p(t) has to be designed so that P(f) has minimum bandwidth
- ▶ Designing p(t) is called pulse shaping

Nyquist channel

▶ If $y_i = p_0 a_i$ for every i then we require that

$$p_n = \begin{cases} \sqrt{E}, & \text{for } n = 0, \\ 0, & \text{otherwise.} \end{cases}$$

- Note that $p_n = p(nT_b)$
- ▶ Is it possible to get P(f)? Assuming that P(f) is bandlimited
- ▶ Consider the choice of $p(t) = sinc\left(\frac{t}{T_b}\right)$
- ▶ With $B_0 = \frac{1}{2T_b}$ we have the following optimal pulse shape $p_{opt}(t)$

- ▶ The PAM system with $P_{opt}(f)$ is called the Nyquist channel
- ► The bandwidth B₀ is called the Nyquist bandwidth

Nyquist channel pulse shaping - issues

- ▶ The transfer function P(f) is not realizable
- ▶ Issue of timing jitter

Suppose sampling instants at which decoding is done has a jitter. Then is correct decoding possible?

Raised cosine pulse shaping

- ▶ The problem with sinc pulses $\frac{1}{t}$ decay
- ► How to increase the decay rate?

Raised cosine pulse shaping

- ▶ The problem with sinc pulses $\frac{1}{t}$ decay
- ► How to increase the decay rate?
- ▶ Damp the sinc pulse using a window function
- ► Raised cosine pulse shape (actually damped sinc pulse shape)

$$p(t) = \sqrt{E} sinc(2B_0t) \frac{cos(2\pi\alpha B_0t)}{1 - (4\alpha B_0t)^2}$$

Raised cosine pulse shaping

▶ The F.T of p(t) is

$$P(f) = \begin{cases} \frac{\sqrt{E}}{2B_0}, \text{ for } |f| \leq f_1, \\ \frac{\sqrt{E}}{4B_0} \left[1 + \cos\left\{\frac{\pi(|f| - f_1)}{2(B_0 - f_1)}\right\} \right], \text{ for } f_1 < |f| < 2B_0 - f_1, \\ 0, \text{ o/w}. \end{cases}$$

- $\alpha = 1 \frac{f_1}{B_0}$. α is the roll-off factor.
- ▶ Bandwidth of the pulse is $2B_0 f_1$ or $B_0(1 + \alpha)$

Comparison

$$\blacktriangleright \text{ Let } r_b = \frac{1}{T_b}$$

Scheme	Bandwidth	Power	Rate	Timing Jitter
Rectangular	r_b	95%	r _b	Robust
Sinc	$\frac{r_b}{2}$	100%	r_b	Weak
Raised cosine	$\frac{r_b}{2}(1+\alpha)$	100%	r _b	less than Rect

► Read about square root raised cosing pulse shaping