Solutions Notebook for The Real Numbers and Real Analysis by Ethan D. Bloch

Jose Fernando Lopez Fernandez

22 March, 2020 - March 22, 2020

Contents

1	Construction of the Real Numbers	1
2	Properties of the Real Numbers	3
3	Limits and Continuity	5
4	Differentiation 4.2 The Derivative 4.2.1 Exercises	7 7 7
5	Integration	9
6	Limits to Infinity	11
7	Transcendental Functions	13
8	Sequences	15
9	Series	17
10	Sequences and Series of Functions	19

iv CONTENTS

Construction of the Real Numbers

Properties of the Real Numbers

Limits and Continuity

Differentiation

4.2 The Derivative

Definition 4.2.1. Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$, and let $f: I \to \mathbb{R}$ be a function.

1. The function f is **differentiable** at c if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \tag{4.1}$$

exists; if this limit exists, it is called the **derivative** of f at c, and it is denoted f'(c).

2. The function f is **differentiable** if it is differentiable at every number in I. If f is differentiable, the **derivative** of f is the function $f': I \to \mathbb{R}$ whose value at x is f'(x) for all $x \in I$.

Lemma 4.2.2. Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$, and let $f : I \to \mathbb{R}$ be a function. Then f is differentiable at c if and only if

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \tag{4.2}$$

exists, and if this limit exists it equals f'(c).

4.2.1 Exercises

Exercise 4.2.1. Using only the definition of derivatives and Lemma 4.2.2, find the derivative of each of the following functions.

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x 8 for all $x \in \mathbb{R}$.
- 2. Let $g: \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = x^3$ for all $x \in \mathbb{R}$.

Integration

Chapter 6 Limits to Infinity

Transcendental Functions

Sequences

Series

Sequences and Series of Functions