MA 54400 - Final Exam Practice Problems Spring 2016 Prof. D. Danielli

1. Suppose that $f \in L^1(\mathbb{R}^n)$, and that x is a point in the Lebesgue set of f. For r > 0, let

$$A(r) = \frac{1}{r^n} \int_{B(0,r)} |f(x-y) - f(x)| \ dy.$$

Show that:

- (a) A(r) is a continuous function of r, and $A(r) \to 0$ as $r \to 0$;
- (b) There exists a constant M > 0 such that $A(r) \leq M$ for all r > 0.
- 2. Let $E \subset \mathbb{R}^n$ be a measurable set, $1 \leq p < \infty$. Assume that $\{f_k\}$ is a sequence in $L^p(E)$ converging pointwise a.e. on E to a function $f \in L^p(E)$. Prove that

$$||f_k - f||_p \to 0 \Leftrightarrow ||f_k||_p \to ||f||_p \text{ as } k \to \infty.$$

- 3. Let $1 , <math>f \in L^p(\mathbb{R}^n)$, $g \in L^{p'}(\mathbb{R}^n)$.
 - (a) Prove that $f * g \in C(\mathbb{R}^n)$.
 - (b) Does this conclusion continue to be valid when p = 1 or $p = \infty$?
- 4. Let $f \in L^1(\mathbb{R})$, and let $F(t) = \int_{\mathbb{R}} f(x) \cos(tx) dx$.
 - (a) Prove that F(t) is continuous for $t \in \mathbb{R}$.
 - (b) Prove the following Riemann-Lebesgue Lemma:

$$\lim_{t \to \infty} F(t) = 0.$$

5. Let f be of bounded variation on [a, b], $-\infty < a < b < \infty$. If f = g + h, with g absolutely continuous and h singular, show that

$$\int_a^b \phi \ df = \int_a^b \phi f' \ dx + \int_a^b \phi \ dh$$

for all functions ϕ continuous on [a, b].