RBE 500 Homework #2

Arjan Gupta

Problem 3.5

Consider the three-link articulated robot of Figure 3.16. Derive the forward kinematic equations using the DH convention.

Figure 3.16: Three-link articulated robot.

Solution

First we assign coordinate frames 0 through 3 (links 0 through 3). This is done as per the following figure.

Now, we create a table for quantities $\alpha_i, a_i, \theta_i, d_i$ for links 1 through 3.

Link	α_i	a_i	θ_i	d_i
1	-90°	0	θ_1	d_1
2	0	a_2	θ_2	0
3	0	a_3	θ_3	0

Next, we use the matrix obtained from equation 3.10 of the textbook to calculate A_1, A_2, A_3 .

$$A_{1} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1}\cos(-90^{\circ}) & \sin\theta_{1}\sin(-90^{\circ}) & 0\cdot\cos\theta_{1} \\ \sin\theta_{1} & \cos\theta_{1}\cos(-90^{\circ}) & -\cos\theta_{1}\sin(-90^{\circ}) & 0\cdot\sin\theta_{1} \\ 0 & \sin(-90^{\circ}) & \cos(-90^{\circ}) & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Where $s_1 = \sin \theta_1$ and $c_1 = \cos \theta_1$. Similarly,

$$A_2 = \begin{bmatrix} c_2 & -s_2 & 0 & a_2c_2 \\ s_2 & c_2 & 0 & a_2s_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_3 = \begin{bmatrix} c_3 & -s_3 & 0 & a_3c_3 \\ s_3 & c_3 & 0 & a_3s_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Now we can find $T_3^0 = A_1 A_2 A_3$. We use the following MATLAB code to compute this.

```
1 % Calculation code for problem 3.5 of the RBE500 textbook (HW 2)
2
3 clear; close all; clc;
4
5 syms cl sl dl c2 s2 a2 c3 s3 a3;
6 Al = [cl 0 -sl dl; sl 0 cl 0; 0 -l 0 dl; 0 -l 0 dl; 0 0 0 l];
7 A2 = [c2 -s2 0 a2*c2; s2 c2 0 a2*s2; 0 0 l 0; 0 0 0 l];
8 A3 = [c3 -s3 0 a3*c3; s3 c3 0 a3*s3; 0 0 l 0; 0 0 0 l];
9
10 T = Al*A2*A3;
11
12 % Show output matrix
13 disp(T)
14
15 % Generate LaTex code
16 latex(T)
```

Therefore,

$$T_3^0 = \begin{bmatrix} c_1 \, c_2 \, c_3 - c_1 \, s_2 \, s_3 & -c_1 \, c_2 \, s_3 - c_1 \, c_3 \, s_2 & -s_1 & d_1 + a_2 \, c_1 \, c_2 - a_3 \, c_1 \, s_2 \, s_3 + a_3 \, c_1 \, c_2 \, c_3 \\ c_2 \, c_3 \, s_1 - s_1 \, s_2 \, s_3 & -c_2 \, s_1 \, s_3 - c_3 \, s_1 \, s_2 & c_1 & a_2 \, c_2 \, s_1 - a_3 \, s_1 \, s_2 \, s_3 + a_3 \, c_2 \, c_3 \, s_1 \\ -c_2 \, s_3 - c_3 \, s_2 & s_2 \, s_3 - c_2 \, c_3 & 0 & d_1 - a_2 \, s_2 - a_3 \, c_2 \, s_3 - a_3 \, c_3 \, s_2 \\ -c_2 \, s_3 - c_3 \, s_2 & s_2 \, s_3 - c_2 \, c_3 & 0 & d_1 - a_2 \, s_2 - a_3 \, c_2 \, s_3 - a_3 \, c_3 \, s_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This gives the configuration of frame 3 with respect to the base frame (frame 0).

Problem 3.6

Consider the three-link Cartesian manipulator of Figure 3.17. Derive the forward kinematic equations using the DH convention.

Figure 3.17: Three-link Cartesian robot.

Solution

First we assign coordinate frames 0 through 3 (links 0 through 3). This is done as per the following figure.

Now, we create a table for quantities $\alpha_i, a_i, \theta_i, d_i$ for links 1 through 3.

Link	α_i	a_i	θ_i	d_i
1	90°	0	0	d_1
2	90°	0	90°	d_2
3	0	0	0	d_3

Next, we use the matrix obtained from equation 3.10 of the textbook to calculate A_1, A_2, A_3 .

$$A_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Now we can find $T_3^0 = A_1 A_2 A_3$. We use the following MATLAB code to compute this.

```
1  % Calculation code for problem 3.6 of the RBE500 textbook (HW 2)
2
3  clear; close all; clc;
4
5  syms d1 d2 d3;
6  A1 = [1 0 0 0; 0 0 -1 0; 0 1 0 d1; 0 0 0 1];
7  A2 = [0 0 1 0; 1 0 0 0; 0 1 0 d2; 0 0 0 1];
8  A3 = [1 0 0 0; 0 1 0 0; 0 0 1 d3; 0 0 0 1];
9
10  T = A1*A2*A3;
11
12  % Show output matrix
13  disp(T)
14
15  % Generate LaTex code
16  latex(T)
```

Therefore,

$$T_3^0 = \begin{bmatrix} 0 & 0 & 1 & d_3 \\ 0 & -1 & 0 & -d_2 \\ 1 & 0 & 0 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This gives the configuration of frame 3 with respect to the base frame (frame 0).

Problem 5.3

Prompt

Problem 5.6

Suppose we would like to fit a straight line through the origin.

Report for ROS2 Portion