```
# do the same thing, but use scikitlearn randomforest classifier
!pip install scikit-learn==1.3.0 --upgrade
!pip install --upgrade xgboost
     Requirement already satisfied: scikit-learn==1.3.0 in /usr/local/lib/python3.11/dist-packages (1.3.0)
     Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.11/dist-packages (from scikit-l
     Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.11/dist-packages (from scikit-le
     Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from scikit-l
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from s
     Requirement already satisfied: xgboost in /usr/local/lib/python3.11/dist-packages (2.1.4)
     Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.26.4
     Requirement already satisfied: nvidia-nccl-cu12 in /usr/local/lib/python3.11/dist-packages (from xgboo
     Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.13.1
#classify with cycle features including alignment
import pandas as pd
# import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.metrics import classification_report
import xgboost as xgb
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc curve
import seaborn as sns
from matplotlib import pyplot as plt
import numpy as np
from IPython import get_ipython
from IPython.display import display
from sklearn.impute import SimpleImputer # Import SimpleImputer for imputation
import shap
shap.initjs()
\rightarrow
Set up
df = pd.read_csv('/content/cycle_and_HMM_features_false_bw-3-0_dataset_48days.csv')
df.head()
```

•		hub_id	pat_cat_map	cycle_min	cycle_max	cycle_median	cycle_mean	cycle_range	cycle_s
	0	U303F6B17404145	PCOS	17	43	33.0	33.0625	26	7.35272
	1	U2FC1C617263332	nonPCOS- nonBaseline	21	27	23.0	23.6000	6	2.4083
	2	U2F65CA17170226	PCOS	27	45	36.0	35.3000	18	6.34297
	3	U2F65AE17170162	Baseline	30	39	31.0	32.7500	9	4.27200
	4	UD5E9E4230202	PCOS	29	29	29.0	29.0000	0	Nε

```
# LOOK AT LAUREN'S GITHUB FOR CODE
# try w xgboost
# try w subset of features
# explanatory tools to see which variables are important (SHAP values)
df = df.loc[df['pat_cat_map'].isin(['Baseline','PCOS'])]
df['label_01'] = df['pat_cat_map'].map({'Baseline':0, 'PCOS':1})
<ipython-input-792-1fe60784182b>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing</a>
        df['label_01'] = df['pat_cat_map'].map({'Baseline':0, 'PCOS':1})
df = df.replace(-np.inf, np.nan)
df.columns
Index(['hub_id', 'pat_cat_map', 'cycle_min', 'cycle_max', 'cycle_median',
             'cycle_mean', 'cycle_range', 'cycle_std', 'num_cycles',
             'viterbi_logprob_mean', 'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std', 'viterbi_logprob_median',
             'complete_logprob_mean', 'complete_logprob_min', 'complete_logprob_max',
             'complete_logprob_std', 'complete_logprob_median', 'label_01'],
            dtype='object')
HMM_features = [ 'viterbi_logprob_mean',
        'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
        'viterbi_logprob_median', 'complete_logprob_mean',
        'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
        'complete_logprob_median']
cycle_features = ['cycle_min', 'cycle_max', 'cycle_median',
        'cycle_mean', 'cycle_range', 'cycle_std']
target = 'label_01'
```

All features

accuracy

macro avg

weighted avg

0.59

0.82

0.65

0.73

```
print('Performance with all features')
X_train_all, X_test_all, y_train_all, y_test_all = train_test_split(df[HMM_features+cycle_features], df[ta
                                                    shuffle=True, random_state=51)
Performance with all features
clf = xgb.XGBClassifier(random_state=51)
clf.fit(X_train_all, y_train_all)
y_pred_all = clf.predict(X_test_all)
y_score_all = clf.predict_proba(X_test_all)
print(confusion_matrix(y_test_all, y_pred_all, normalize='true'))
    [[0.27142857 0.72857143]
      [0.09139785 0.90860215]]
print(classification_report(y_pred_all, y_test_all))
₹
                   precision
                                recall f1-score
                                                   support
                0
                        0.27
                                  0.53
                                            0.36
                                                        36
                        0.91
                                  0.77
                                            0.83
                                                       220
```

fpr_full, tpr_full, thresholds_full = roc_curve(y_test_all, y_score_all[:,1])#, pos_label='PCOS')
sns.lineplot(x=fpr_full, y=tpr_full, label='Cycle + HMM features - False Missigness 0-3 Days', errorbar=Non#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_full_features.pdf')

256

256

256

0.73

0.60

0.77


```
#overall accuracy:
print((y_pred_all==y_test_all).sum()/len(y_pred_all))

→ 0.734375
```

Cycle features only

0

1

0.14

0.89

0.32

0.73

```
#PERFORMANCE WITH CYCLE FEATURES ONLY
print('Performance with cycle features only')
X_train_cycle, X_test_cycle, y_train_cycle, y_test_cycle = train_test_split(df[cycle_features], df[target]
                                                     shuffle=True, random_state=51)
    Performance with cycle features only
clf = xgb.XGBClassifier(random_state=51)
clf.fit(X_train_cycle, y_train_cycle)
y_pred_cycle = clf.predict(X_test_cycle)
y_score_cycle = clf.predict_proba(X_test_cycle)
print(confusion_matrix(y_test_cycle, y_pred_cycle, normalize='true'))
    [[0.14285714 0.85714286]
      [0.11290323 0.88709677]]
print(classification_report(y_pred_cycle, y_test_cycle))
\overline{2}
                   precision
                                recall f1-score
                                                    support
```

0.20

0.80

31

225

accuracy			0.68	256
macro avg	0.51	0.53	0.50	256
weighted avg	0.80	0.68	0.73	256

fpr_cycle, tpr_cycle, thresholds_cycle = roc_curve(y_test_cycle, y_score_cycle[:,1])#, pos_label='PCOS')
sns.lineplot(x=fpr_cycle, y=tpr_cycle, label='Cycle features only', errorbar=None)
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_cycle_features_only.pdf'

#overall accuracy:
print((y_pred_cycle==y_test_cycle).sum()/len(y_pred_cycle))

→ 0.68359375

HMM Features only

```
clf = RFC(random_state=101)
clf.fit(X_train_hmm, y_train_hmm)
y_pred_hmm = clf.predict(X_test_hmm)
y_score_hmm = clf.predict_proba(X_test_hmm)
print(confusion_matrix(y_test_hmm, y_pred_hmm, normalize='true'))
fpr_hmm, tpr_hmm, thresholds_hmm = roc_curve(y_test_hmm, y_score_hmm[:,1])#, pos_label='PCOS')
sns.lineplot(x=fpr_hmm, y=tpr_hmm, label='HMM features only', errorbar=None)
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_hmm_features_only.pdf')
```

[[0.24285714 0.75714286] [0.09139785 0.90860215]]

<Axes: >

print(classification_report(y_pred_cycle, y_test_cycle))

⋺	precision	recall	f1-score	support
0	0.14	0.32	0.20	31
1	0.89	0.73	0.80	225
accuracy			0.68	256
macro avg	0.51	0.53	0.50	256
weighted avg	0.80	0.68	0.73	256

```
#overall accuracy:
print((y_pred_cycle==y_test_cycle).sum()/len(y_pred_cycle))
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

→ 0.68359375

```
#make kdeplots of all features
for feature in HMM_features+cycle_features:
    sns.kdeplot(data=df, x=feature, hue='pat_cat_map', common_norm=False)
```

#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_kdeplots_feature_dis
plt.clf()

→ <Figure size 640x480 with 0 Axes>

ROC Curves

```
# put 3 ROC curves on one axis (cycle, hmm, all)
# # Create subplots
# fig, axes = plt.subplots(1, 3, figsize=(15, 5)) # 1 row, 3 columns
# Plot Cycle + HMM features
sns.lineplot(x=fpr_full, y=tpr_full, label='Cycle + HMM features', errorbar=None)
# axes[0].set_title("Cycle + HMM ROC Curve")
# Plot Cycle features only
sns.lineplot(x=fpr_cycle, y=tpr_cycle, label='Cycle features only', errorbar=None)
# axes[1].set_title("Cycle Only ROC Curve")
# Plot HMM features only
sns.lineplot(x=fpr_hmm, y=tpr_hmm, label='HMM features only', errorbar=None)
# axes[2].set_title("HMM Only ROC Curve")
# Adjust layout
# plt.tight_layout()
plt.show()
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_roc_curves.pdf')
```


use HMM features and take one out to see if any features are important (leave one out version)

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
without viterbi_logprob_mean
HMM_features = [
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_mean ')
X_train_without_viterbi_logprob_mean, X_test_without_viterbi_logprob_mean, y_train_without_viterbi_logprob_u
                                                    shuffle=True, random_state=51)
Performance with HMM features _without_viterbi_logprob_mean
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_mean = imputer.fit_transform(X_train_without_viterbi_logprob_mean)
X_test_without_viterbi_logprob_mean = imputer.transform(X_test_without_viterbi_logprob_mean)
clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_mean, y_train_without_viterbi_logprob_mean)
y pred without viterbi logprob mean = clf.predict(X test without viterbi logprob mean)
y_score_without_viterbi_logprob_mean = clf.predict_proba(X_test_without_viterbi_logprob_mean)
print(confusion_matrix(y_test_without_viterbi_logprob_mean, y_pred_without_viterbi_logprob_mean, normalize=
fpr_without_viterbi_logprob_mean, tpr_without_viterbi_logprob_mean, thresholds_without_viterbi_logprob_mean
sns.lineplot(x=fpr_without_viterbi_logprob_mean, y=tpr_without_viterbi_logprob_mean, label='HMM features wi
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_wi
```

```
[[0.24285714 0.75714286]
[0.07526882 0.92473118]]
```

<Axes: >

print(classification_report(y_pred_without_viterbi_logprob_mean, y_test_without_viterbi_logprob_mean))

₹	precision	recall	f1-score	support
0	0.24	0.55	0.34	31
1	0.92	0.76	0.84	225
accuracy			0.74	256
macro avg	0.58	0.66	0.59	256
weighted avg	0.84	0.74	0.78	256

```
#overall accuracy:
```

```
print((y_pred_without_viterbi_logprob_mean==y_test_without_viterbi_logprob_mean).sum()/len(y_pred_without_
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

→ 0.73828125

without viterbi_logprob_min

Performance with HMM features _without_viterbi_logprob_min

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_min = imputer.fit_transform(X_train_without_viterbi_logprob_min)
X_test_without_viterbi_logprob_min = imputer.transform(X_test_without_viterbi_logprob_min)

clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_min, y_train_without_viterbi_logprob_min)
y_pred_without_viterbi_logprob_min = clf.predict(X_test_without_viterbi_logprob_min)
y_score_without_viterbi_logprob_min = clf.predict_proba(X_test_without_viterbi_logprob_min)
print(confusion_matrix(y_test_without_viterbi_logprob_min, y_pred_without_viterbi_logprob_min, normalize='
fpr_without_viterbi_logprob_min, tpr_without_viterbi_logprob_min, thresholds_without_viterbi_logprob_min =
sns.lineplot(x=fpr_without_viterbi_logprob_min, y=tpr_without_viterbi_logprob_min, label='HMM features wit
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.25714286 0.74285714] [0.08064516 0.91935484]] <Axes: >

print(classification_report(y_pred_without_viterbi_logprob_min, y_test_without_viterbi_logprob_min))

precision	recall	f1-score	support
0.26	0.55	0.35	33
0.92	0.77	0.84	223
		0.74	256
0.59 0.83	0.66 0.74	0.59 0.77	256 256
	0.26 0.92 0.59	0.26 0.55 0.92 0.77 0.59 0.66	0.26 0.55 0.35 0.92 0.77 0.84 0.59 0.66 0.59

```
#overall accuracy:
print((y_pred_without_viterbi_logprob_min==y_test_without_viterbi_logprob_min).sum()/len(y_pred_without_vi
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.73828125
```

without viterbi_logprob_max

```
HMM_features = ['viterbi_logprob_mean',
                'viterbi_logprob_min', 'viterbi_logprob_std',
                'viterbi_logprob_median', 'complete_logprob_mean',
                'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
                'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_max ')
X_train_without_viterbi_logprob_max, X_test_without_viterbi_logprob_max, y_train_without_viterbi_logprob_max
                                                                                                                      shuffle=True, random_state=51)
         Performance with HMM features _without_viterbi_logprob_max
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_max = imputer.fit_transform(X_train_without_viterbi_logprob_max)
X_test_without_viterbi_logprob_max = imputer.transform(X_test_without_viterbi_logprob_max)
clf = RFC(random_state=101)
clf.fit(X train without viterbi logprob max, y train without viterbi logprob max)
y_pred_without_viterbi_logprob_max = clf.predict(X_test_without_viterbi_logprob_max)
y_score_without_viterbi_logprob_max = clf.predict_proba(X_test_without_viterbi_logprob_max)
print(confusion_matrix(y_test_without_viterbi_logprob_max, y_pred_without_viterbi_logprob_max, normalize='transportations' and the confusion of the confusion o
fpr_without_viterbi_logprob_max, tpr_without_viterbi_logprob_max, thresholds_without_viterbi_logprob_max = |
sns.lineplot(x=fpr_without_viterbi_logprob_max, y=tpr_without_viterbi_logprob_max, label='HMM features with
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_wi
```

```
[[0.27142857 0.72857143]
 [0.07526882 0.92473118]]
<Axes: >
```


print(classification_report(y_pred_without_viterbi_logprob_max, y_test_without_viterbi_logprob_max))

→	precision	recall	f1-score	support
0	0.27	0.58	0.37	33
1	0.92	0.77	0.84	223
accuracy			0.75	256
macro avg	0.60	0.67	0.61	256
weighted avg	0.84	0.75	0.78	256

```
#overall accuracy:
```

print((y_pred_without_viterbi_logprob_max==y_test_without_viterbi_logprob_max).sum()/len(y_pred_without_vi #fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS') #sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

0.74609375

without viterbi_logprob_std

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_std ')
X_train_without_viterbi_logprob_std, X_test_without_viterbi_logprob_std, y_train_without_viterbi_logprob_stc
```

Performance with HMM features _without_viterbi_logprob_std

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_std = imputer.fit_transform(X_train_without_viterbi_logprob_std)
X_test_without_viterbi_logprob_std = imputer.transform(X_test_without_viterbi_logprob_std)

clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_std, y_train_without_viterbi_logprob_std)
y_pred_without_viterbi_logprob_std = clf.predict(X_test_without_viterbi_logprob_std)
y_score_without_viterbi_logprob_std = clf.predict_proba(X_test_without_viterbi_logprob_std)
print(confusion_matrix(y_test_without_viterbi_logprob_std, y_pred_without_viterbi_logprob_std, normalize='
fpr_without_viterbi_logprob_std, tpr_without_viterbi_logprob_std, thresholds_without_viterbi_logprob_std =
sns.lineplot(x=fpr_without_viterbi_logprob_std, y=tpr_without_viterbi_logprob_std, label='HMM features wit
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.24285714 0.75714286] [0.08064516 0.91935484]] <Axes: >

print(classification_report(y_pred_without_viterbi_logprob_std, y_test_without_viterbi_logprob_std))

→		precision	recall	f1-score	support
	0	0.24	0.53	0.33	32
	1	0.92	0.76	0.83	224
	accuracy			0.73	256
	macro avg weighted avg	0.58 0.83	0.65 0.73	0.58 0.77	256 256

#overall accuracy:

print((y_pred_without_viterbi_logprob_std==y_test_without_viterbi_logprob_std).sum()/len(y_pred_without_vi

```
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

    0.734375
```

without viterbi_logprob_median

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_median ')
X_train_without_viterbi_logprob_median, X_test_without_viterbi_logprob_median, y_train_without_viterbi_log
                                                    shuffle=True, random_state=51)
→ Performance with HMM features _without_viterbi_logprob_median
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_median = imputer.fit_transform(X_train_without_viterbi_logprob_median)
X_test_without_viterbi_logprob_median = imputer.transform(X_test_without_viterbi_logprob_median)
clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_median, y_train_without_viterbi_logprob_median)
y_pred_without_viterbi_logprob_median = clf.predict(X_test_without_viterbi_logprob_median)
y_score_without_viterbi_logprob_median = clf.predict_proba(X_test_without_viterbi_logprob_median)
print(confusion_matrix(y_test_without_viterbi_logprob_median, y_pred_without_viterbi_logprob_median, norma
fpr_without_viterbi_logprob_median, tpr_without_viterbi_logprob_median, thresholds_without_viterbi_logprob
sns.lineplot(x=fpr_without_viterbi_logprob_median, y=tpr_without_viterbi_logprob_median, label='HMM featur
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

```
→ [[0.27142857 0.72857143]
     [0.08602151 0.91397849]]
```

<Axes: >

print(classification_report(y_pred_without_viterbi_logprob_median, y_test_without_viterbi_logprob_median))

→	precision	recall	f1-score	support
0	0.27	0.54	0.36	35
1	0.91	0.77	0.84	221
accuracy			0.74	256
macro avg	0.59	0.66	0.60	256
weighted avg	0.83	0.74	0.77	256

```
#overall accuracy:
```

print((y_pred_without_viterbi_logprob_median==y_test_without_viterbi_logprob_median).sum()/len(y_pred_with #fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS') #sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

0.73828125

without complete_logprob_mean

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_complete_logprob_mean ')
```

Performance with HMM features _without_complete_logprob_mean

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_mean = imputer.fit_transform(X_train_without_complete_logprob_mean)
X_test_without_complete_logprob_mean = imputer.transform(X_test_without_complete_logprob_mean)

clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_mean, y_train_without_complete_logprob_mean)
y_pred_without_complete_logprob_mean = clf.predict(X_test_without_complete_logprob_mean)
y_score_without_complete_logprob_mean = clf.predict_proba(X_test_without_complete_logprob_mean)
print(confusion_matrix(y_test_without_complete_logprob_mean, y_pred_without_complete_logprob_mean, normali
fpr_without_complete_logprob_mean, tpr_without_complete_logprob_mean, thresholds_without_complete_logprob_
sns.lineplot(x=fpr_without_complete_logprob_mean, y=tpr_without_complete_logprob_mean, label='HMM features
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.24285714 0.75714286] [0.09677419 0.90322581]] <Axes: >

print(classification_report(y_pred_without_complete_logprob_mean, y_test_without_complete_logprob_mean))

₹		precision	recall	f1-score	support
	0	0.24	0.49	0.32	35
	1	0.90	0.76	0.83	221
	accuracy			0.72	256
	macro avg	0.57	0.62	0.57	256
	weighted avg	0.81	0.72	0.76	256

```
#overall accuracy:

print((y_pred_without_complete_logprob_mean==y_test_without_complete_logprob_mean).sum()/len(y_pred_withou

#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')

#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.72265625
```

without complete_logprob_min

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_complete_logprob_min ')
X_train_without_complete_logprob_min, X_test_without_complete_logprob_min, y_train_without_complete_logpro
                                                    shuffle=True, random_state=51)
    Performance with HMM features _without_complete_logprob_min
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_min = imputer.fit_transform(X_train_without_complete_logprob_min)
X_test_without_complete_logprob_min = imputer.transform(X_test_without_complete_logprob_min)
clf = RFC(random_state=101)
clf.fit(X train without complete logprob min, y train without complete logprob min)
y_pred_without_complete_logprob_min = clf.predict(X_test_without_complete_logprob_min)
y_score_without_complete_logprob_min = clf.predict_proba(X_test_without_complete_logprob_min)
print(confusion_matrix(y_test_without_complete_logprob_min, y_pred_without_complete_logprob_min, normalize
fpr_without_complete_logprob_min, tpr_without_complete_logprob_min, thresholds_without_complete_logprob_mi
sns.lineplot(x=fpr_without_complete_logprob_min, y=tpr_without_complete_logprob_min, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

```
[[0.27142857 0.72857143]
[0.07526882 0.92473118]]
```

<Axes: >

print(classification_report(y_pred_without_complete_logprob_min, y_test_without_complete_logprob_min))

	precision	recall	f1-score	support
0	0.27	0.58	0.37	33
1	0.92	0.77	0.84	223
accuracy			0.75	256
macro avg	0.60	0.67	0.61	256
weighted avg	0.84	0.75	0.78	256

```
#overall accuracy:
```

print((y_pred_without_complete_logprob_min==y_test_without_complete_logprob_min).sum()/len(y_pred_without_
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.74609375

without complete_logprob_max

Performance with HMM features _without_complete_logprob_max

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_max = imputer.fit_transform(X_train_without_complete_logprob_max)
X_test_without_complete_logprob_max = imputer.transform(X_test_without_complete_logprob_max)

clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_max, y_train_without_complete_logprob_max)
y_pred_without_complete_logprob_max = clf.predict(X_test_without_complete_logprob_max)
y_score_without_complete_logprob_max = clf.predict_proba(X_test_without_complete_logprob_max)
print(confusion_matrix(y_test_without_complete_logprob_max, y_pred_without_complete_logprob_max, normalize
fpr_without_complete_logprob_max, tpr_without_complete_logprob_max, thresholds_without_complete_logprob_ma
sns.lineplot(x=fpr_without_complete_logprob_max, y=tpr_without_complete_logprob_max, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.27142857 0.72857143] [0.08602151 0.91397849]] <Axes: >

print(classification_report(y_pred_without_complete_logprob_max, y_test_without_complete_logprob_max))

⇒	precision	recall	f1-score	support
0 1	0.27 0.91	0.54 0.77	0.36 0.84	35 221
accuracy macro avg weighted avg	0.59 0.83	0.66 0.74	0.74 0.60 0.77	256 256 256

```
#overall accuracy:
print((y_pred_without_complete_logprob_max==y_test_without_complete_logprob_max).sum()/len(y_pred_without_
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

     0.73828125
```

without complete_logprob_std

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max',
       'complete_logprob_median']
print('Performance with HMM features _without_complete_logprob_std ')
X_train_without_complete_logprob_std, X_test_without_complete_logprob_std, y_train_without_complete_logpro
                                                    shuffle=True, random_state=51)
    Performance with HMM features _without_complete_logprob_std
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_std = imputer.fit_transform(X_train_without_complete_logprob_std)
X_test_without_complete_logprob_std = imputer.transform(X_test_without_complete_logprob_std)
clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_std, y_train_without_complete_logprob_std)
y_pred_without_complete_logprob_std = clf.predict(X_test_without_complete_logprob_std)
y_score_without_complete_logprob_std = clf.predict_proba(X_test_without_complete_logprob_std)
print(confusion_matrix(y_test_without_complete_logprob_std, y_pred_without_complete_logprob_std, normalize
fpr_without_complete_logprob_std, tpr_without_complete_logprob_std, thresholds_without_complete_logprob_st
sns.lineplot(x=fpr_without_complete_logprob_std, y=tpr_without_complete_logprob_std, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

[[0.24285714 0.75714286] [0.07526882 0.92473118]] <Axes: >

print(classification_report(y_pred_without_complete_logprob_std, y_test_without_complete_logprob_std))

₹		precision	recall	f1-score	support
	0	0.24	0.55	0.34	31
	1	0.92	0.76	0.84	225
	accuracy			0.74	256
	macro avg	0.58	0.66	0.59	256
	weighted avg	0.84	0.74	0.78	256

```
#overall accuracy:
```

print((y_pred_without_complete_logprob_std==y_test_without_complete_logprob_std).sum()/len(y_pred_without_ #fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS') #sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

0.73828125

without complete_logprob_median

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std']
```

print('Performance with HMM features without viterbi logprob median ')

X train without viterbi logprob median. X test without viterbi logprob median. v train without viterbi log
Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X train without viterbi logprob median = imputer.fit transform(X train without viterbi logprob median)

X_test_without_viterbi_logprob_median = imputer.transform(X_test_without_viterbi_logprob median)

clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_median, y_train_without_viterbi_logprob_median)
y_pred_without_viterbi_logprob_median = clf.predict(X_test_without_viterbi_logprob_median)
y_score_without_viterbi_logprob_median = clf.predict_proba(X_test_without_viterbi_logprob_median)
print(confusion_matrix(y_test_without_viterbi_logprob_median, y_pred_without_viterbi_logprob_median, norma
fpr_without_viterbi_logprob_median, tpr_without_viterbi_logprob_median, thresholds_without_viterbi_logprob
sns.lineplot(x=fpr_without_viterbi_logprob_median, y=tpr_without_viterbi_logprob_median, label='HMM featur
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.22857143 0.77142857] [0.06989247 0.93010753]] <Axes: >

print(classification_report(y_pred_without_viterbi_logprob_median, y_test_without_viterbi_logprob_median))

→		precision	recall	f1-score	support
	0	0.23	0.55	0.32	29
	1	0.93	0.76	0.84	227
	accuracy			0.74	256
	macro avg	0.58	0.66	0.58	256
	weighted avg	0.85	0.74	0.78	256