Plant breeding through the lens of quantitative genetics

CJ Yang

22 February 2024

About me

- 1. Malaysia
- 2. Indiana (BSc Biotech, Maths)
- 3. Wisconsin (PhD Genetics)
- 4. Freising, DE (Postdoc)
- 5. Edinburgh, UK (Postdoc)

Talk outline

- Introduction
- Project 1: Crop domestication
- Project 2: Genetic diversity and pre-breeding
- Project 3: Novel crop breeding
- Future directions

Introduction

Plant breeding, complex traits and genetic gain

Plant Breeding

- Domestication
- Improvement
- Experimental design
- Marker assisted selection (MAS)
- Genomic/Phenomic selection (GS/PS)
- Biology-Breeding
- Gene editing (GE)
- Functional variants
- Machine learning (ML/AI)

Breeding in major crops

Yield increase is largely driven by genetic improvement.

Green/blue: national yield

Red: variety effect

Success in line breeding

Transgressive segregation: recombination and shuffling of causative genetic loci.

Complex traits

Breeding targets: yield, flowering time, plant architecture, resource use efficiencies.

Quantitative/polygenic traits

Working model:

Genetic Gain

Breeder's equation (Lush 1937)

$$R = h^2 S$$

$$R = \frac{\sigma_g^2}{\sigma_p^2} \sigma_p i$$

$$R = \frac{\sigma_g}{\sigma_p} \, \sigma_g \, i$$

$$R = h\sigma_g i$$

Rate of genetic gain

$$\Delta R = \frac{h\sigma_g i}{t}$$

$$\Delta R = \frac{sel.accuracy \times genetic\ variation \times sel.intensity}{time}$$

Framework for quantitative genetics

Improving ΔR

$$\Delta R = \frac{sel. accuracy \times genetic \ variation \times sel. intensity}{time}$$

- Multiparental population, mutation, pre-breeding.
- MAS, GS, GE, phenomics.
- Larger/efficient trials.
- Rapid cycling, speed breeding (SB/RGA).

Plant breeding: a journey through time

Project 1: crop domestication

Project 2: genetic diversity and pre-breeding

Project 3: novel crop breeding

Domestication

This earliest form of <u>plant breeding</u> is known as <u>domestication</u>, where plants were selected to be more productive, easier to harvest, or more aesthetically or gastronomically pleasing (Flint-Garcia 2013).

Maize-teosinte model

- Tillers
- Lateral branches
- Terminal inflorescence
- Ear length/diameter/number
- Kernel number/size/glume

Hake and Ross-Ibarra (2015)

Study population

50 parents from Palmar Chico – Rio Balsas

Crossing schemes

Field trials

- Homestead, FL, 2013 2017
- 3,000 plants/year, randomized
- 18 domestication traits
- GBS, WGS

Field trials

- Homestead, FL, 2013 2017
- 3,000 plants/year, randomized
- 18 domestication traits
- GBS, WGS

Variance/covariance partitioning

Fitted standard mixed linear model $y = X\beta + a + d + ay + e$

Trait = Fixed + Additive + Dominance + Additive * Year + Residual

$$a \sim N(0, K_A \sigma_A^2)$$

$$d \sim N(0, K_D \sigma_D^2)$$

$$ay \sim N(0, K_{AY}\sigma_{AY}^2)$$

Only the additive term was fitted in the bivariate model.

QG modelling of domestication

Yang et al (2019), Chen et al (2020, 2021)

QG modelling of domestication

Yang et al (2019), Chen et al (2020, 2021)

Plant breeding: a journey through time

Project 1: crop domestication

Project 2: genetic diversity and pre-breeding

Project 3: novel crop breeding

Shuffling genetic diversity

Domestication/Improvement

- Bottleneck
- Selection

Marker assisted selection (MAS)

- Great for oligogenic traits.
- E.g. disease resistance.
- Inefficient for polygenic traits.

Shuffling genetic diversity

Domestication/Improvement

- Bottleneck
- Selection

Polygenic introgression is challenging

Phenotypic/genomic selection

Marker assisted selection (MAS)

- Great for oligogenic traits.
- E.g. disease resistance.
- Inefficient for polygenic traits.

Pre-breeding

Seeds of Discovery (SeeD) studies and characterizes maize and wheat genetic diversity for use in breeding programs, which develop wheat varieties and maize hybrids improved through conventional technologies. These hybrids are better adapted to climate change, more resistant to pests and diseases and have higher yield potential.

- Bridging population with elite-exotic crosses.
- Improve in elite-exotic first, then introduce into elite population.

Selection bias in pre-breeding (simulation)

Kinship with elite parents

- Selection within exotic is slower than elite-exotic.
- Selection within elite-exotic reconstitutes the elite parent genome.

Selection bias in pre-breeding (observed)

- Elite 2 x (Elite 1 x Exotic)
- Distribution of exotic parent genome after applying phenotypic selection.
- Validation of simulation outcomes in experimental observation.

Selection bias in pre-breeding (observed)

- Elite 2 x (Elite 1 x Exotic)
- Distribution of exotic parent genome after applying phenotypic selection.
- Validation of simulation outcomes in experimental observation.

Origin specific genomic selection (OSGS)

OSGS: isolate and select on favorable parental contribution.

OSGS in barley NAM (yield)

Partitioning favorable parental contributions.

OSGS in simulated data

- OSGS vs GS.
- Weighted selection in OSGS.
- Comparable breeding values.
- OSGS maintains elite-exotic balance.
- F2 > BC1.

Plant breeding: a journey through time

Project 1: crop domestication

Project 2: genetic diversity and pre-breeding

Project 3: novel crop breeding

Novel crop – purslane (Portulaca oleracea)

Developing a breeding program for purslane

- Env: Vertical farm
- Trait: Omega-3 level

TABLE 2: Plant sources of omega-3 fatty acids (g/100 g).

Category	Fruits/vegetables	Amount (g)
Low	Avocados, California raw	0.1
	Broccoli	0.1
	Strawberries	0.1
	Cauliflower, raw	0.1
	Kale, raw	0.2
	Spinach, raw	0.1
	Peas, garden dry	0.2
	Cowpeas, dry	0.3
	Beans, navy, sprouted, cooked	0.3
	Corn, germ	0.3
Medium	Bean, common dry	0.6
	Leeks, freeze-dried, raw	0.7
	Wheat, germ	0.7
	Spirulina, dried	0.8
	Purslane	0.9
	Oat, germ	1.4
	Beachnuts	1.7
	Soybeans kernels, roasted	1.5
	Soybeans, green	3.2

Uddin et al (2014)

Identify breeding targets.

Survey variation in phenotypes, GxExM.

Engage with stakeholders.

Register varieties.

Create populations and select.

Trial in vertical farms.

Short vs long day

Fluorescent vs LED

Developing a breeding program for purslane

Royal Highland Show

Identify breeding targets.

Survey variation in phenotypes, GxExM.

Engage with stakeholders.

Register varieties.

Create populations and select.

Trial in vertical farms.

Green vs golden purslane

Developing a breeding program for purslane

Identify breeding targets.

Survey variation in phenotypes, GxExM.

Engage with stakeholders.

Register varieties.

Create populations and select.

Trial in vertical farms.

Growth chambers

Hydroponic trials

VF – under construction

What's next?

RUE: resource use efficiency

Summary

- Plant breeding, complex traits and genetic gain.
- Plant breeding: a journey through time:
 - QG-perspective on maize domestication
 - Genetic introgression in pre-breeding
 - Breeding for novel crop
- Interest in RUE and GEM.

- Breeding efficiency
- Sustainability
- Climate resilience

Acknowledgement

Many thanks for the opportunity to present today!

Wisconsin + Others

John Doebley

Ali York

Qiuyue Chen

Wei Xue

Weidong Wang

Mike Tuholski

Natalia de Leon

Claudia Calderón

Jim Holland

L Fernando Samayoa

Ed Buckler

M Cinta Romay

Peter Bradbury

Many more...

SRUC + Collaborators

Ian Mackay

Wayne Powell

Rajiv Sharma

David Marshall

Gregor Gorjanc

Sarah Hearne

Rodney Edmondson

Hans-Peter Piepho

Joanne Russell

Luke Ramsay

Bill Thomas

Funmi Ladejobi

Richard Mott

