Question 3

Denote Gender as G, Prediction as P and Hyperlipidemia as H.

I used the formula below to calculate the probabilities in Excel:

$$\begin{split} &\mathsf{P}(\mathsf{P} = \mathsf{YES} \mid \mathsf{H} = \mathsf{YES}, \mathsf{G} = \mathsf{Female}) = \frac{P(P = \mathsf{YES}, H = \mathsf{YES}, G = \mathsf{Female})}{P(P = \mathsf{YES}, H = \mathsf{YES}, G = \mathsf{Female}) + P(P = \mathsf{NO}, H = \mathsf{YES}, G = \mathsf{Female})} \\ &\mathsf{P}(\mathsf{P} = \mathsf{YES} \mid \mathsf{H} = \mathsf{YES}) = \frac{\sum_{G} P(P = \mathsf{YES}, H = \mathsf{YES})}{\sum_{P,G} P(H = \mathsf{YES})} \\ &\mathsf{P}(\mathsf{H} = \mathsf{YES} \mid \mathsf{P} = \mathsf{YES}, \mathsf{G} = \mathsf{Female}) = \frac{P(P = \mathsf{YES}, H = \mathsf{YES}, G = \mathsf{Female})}{P(P = \mathsf{YES}, H = \mathsf{YES}, G = \mathsf{Female}) + P(P = \mathsf{YES}, H = \mathsf{NO}, G = \mathsf{Female})} \\ &\mathsf{P}(\mathsf{H} = \mathsf{YES} \mid \mathsf{P} = \mathsf{YES}) = \frac{\sum_{P} P(P = \mathsf{YES}, H = \mathsf{YES})}{\sum_{H,G} P(P = \mathsf{YES})} \end{split}$$

Separated but not Sufficient

Table1			
G (Gender)	Female	Male	
H (Hyperlipidemia)	YYYYYY NNN	YY NN	
P (Prediction)	YYYNNN NNY	NY NN	
Note: Y = YES, N = NO			
Values for P, H, G	Num of Instances	Probability	
('YES', 'YES', 'Female')	3.00	0.23076923	
('YES', 'YES', 'Male')	1.00	0.07692308	
('YES', 'NO', 'Female')	1.00	0.07692308	
('YES', 'NO', 'Male')	0.00	0	
('NO', 'YES', 'Female')	3.00	0.23076923	
('NO', 'YES', 'Male')	1.00	0.07692308	
('NO', 'NO', 'Female')	2.00	0.15384615	
('NO', 'NO', 'Male')	2.00	0.15384615	
Sum	13.00	1	
Separation			
P(P = YES H = YES, G = Fem	nale)	0.50	
P(P =YES H =YES)		0.50	
Sufficiency			
P(H = YES P = YES, G = Fem	nale)	0.75	
P(H =YES P =YES)		0.80	

Sufficient but not Separated

Table2			
G (Gender)	Female	Male	
H (Hyperlipidemia)	YYYNNN NNY	NY NN	
P (Prediction)	YYYYYY NNN	YY NN	
Values for P, H, G	Num of Instances	Probability	
('YES', 'YES', 'Female')	3.00	0.2307692	
('YES', 'YES', 'Male')	1.00	0.0769231	
('YES', 'NO', 'Female')	3.00	0.2307692	
('YES', 'NO', 'Male')	1.00	0.0769231	
('NO', 'YES', 'Female')	1.00	0.0769231	
('NO', 'YES', 'Male')	0.00	0	
('NO', 'NO', 'Female')	2.00	0.1538462	
('NO', 'NO', 'Male')	2.00	0.1538462	
Sum	13.00	1	
Separation			
P(P = YES H = YES, G = Fe	emale)	0.75	
P(P =YES H =YES)		0.80	
Sufficiency			
P(H = YES P = YES, G = Fe	emale)	0.50	
P(H =YES P =YES)		0.50	

Conclusion

Separation and Sufficiency cannot hold together. For example, if we want to modify the values in Table 1 in order to hold sufficiency, the separation property would no longer hold any more. We cannot ensure both properties. Therefore, we can't enforce Sufficiency and Separation at the same time.

Note:

- Example details are shown in the two tables attached.
- ullet Probability is calculated by $rac{num\ of\ instances}{total\ instances}$ for each entry in the joint probability table.