Stats & Facts

Group Project **Supervised Learning**Car Rentals Analysis

Alfredo Funicello | Amr Rashad | Shihab Hamati

Introduction

Behavior of daily rental rate

Effect of different features

Full Linear Regression

Other Explorations

Dataset & Exploration Path

- Car Rentals data collected from different websites for major US cities, in July 2020
- There are 5581 observations
- Curious about how the different features affect car rental prices (e.g., age of the car, fuel type, ratings, etc.)
- Variables were explored individually and together
- Linear regression was used to generate model

Introduction

Behavior of daily rental rate

Effect of different features

Full Linear Regression

Other Explorations

Understanding the Dependent Variable Distribution

- Variable "rate.daily" suffers from non-linearity
- This can be observed visually from the histogram, confirmed visually by the QQ plot, and tested numerically by the Shapiro test

Transformation of the Dependent Variable

 Daily rental rate is non-zero and positive, so a simple log transformation is applied to achieve a closer-to-normal distribution

Handling outliers

- There are 32 observations that lie beyond 2*IQR away from the Upper Quartile of the log-transformed daily rate
- Upon further exploration, we identify 2 main groups of outliers:
 - classical cars, even if log(rate) is not outlier (16 observations)

1968 - 1965 - 1976 - 1979 - 1980 - 1961 - 1983 - 1995 - 1966 - 1957 - 1966 - 1986 - 1955 - 1965 - 1972 - 1969

mostly prestigious brands with high rates (29 observations)

Tesla · Lamborghini · BMW · Porsche · Ford · Mercedes-Benz · McLaren · Audi · Ferrari · Rolls Royce · Aston Martin · Chevrolet

- Classical cars were dropped (as they have a different market model and insufficient sample size to explore it)
- Outliers of current models were retained

Introduction Behavior of daily rental rate **Effect of different features Full Linear Regression Other Explorations**

Year: Newer cars are more expensive, as expected

Number of reviews: negative correlation (counterintuitive)

- · Counterintuitively, the more reviews the lower the rate
- This is because more reviews are more likely to be older cars
- A quadratic model could better explain the effect of more reviews vs age
- Higher order polynomials are significant up to 6th order, but loose interpretability

Car brand and model required data cleaning

 Since data sources are different, slight variations in spellings of car brands or types existed, and they were reconciled

A data.frame: 54 × 2		
vehicle.make	n	
<fct></fct>	<int></int>	
Acura	50	
Alfa-romeo	9	
Alfa Romeo	21	
Aston Martin	5	
Audi	169	
Bentley	9	
BMW	456	

-		
	vehicle.model	n
1	1 Series	6
2	124 Spider	8
3	1500	11
4	2	3
5	2-Series	1
6	2 Series	17
7	200	12
8	2500	2
9	3	17
10	3-Series	6
11	3 Series	94
12	3 Series Gran Turismo	2
13	300	11
14	3500	4
15	3707	3
16	4-Series	6
17	4 Series	43

Car brand is a significantly explanative feature for the rental rate

Car model is also a significantly explanative feature for the rental rate

Df Sum Sq Mean Sq F value Pr(>F)

0.100

536.3

38.27 <2e-16 ***

The type of fuel, vehicle type, and proximity to airports have significant effects on price (1/2)

- Electric cars are the most expensive on average
- We expect this to be due to a combination of:
 - purchase price level differences for rental companies
 - customer fuel costs increased willingness to pay more on rental and less on fuel to reduce overall cost)

The type of fuel, vehicle type, and proximity to airports have significant effects on price (2/2)

Introduction Behavior of daily rental rate **Effect of different features Full Linear Regression Other Explorations**

The numerical features are not sufficient to produce the optimal linear regression model

```
Call:
lm(formula = log.rate.daily ~ vehicle.year + rating + reviewCount +
   renterTripsTaken, data = carRentals.noClassical)
Residuals:
           10 Median
   Min
                                Max
-1.3662 -0.4545 -0.0631 0.3684 3.2122
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
               -97.151973 5.155530 -18.844 < 2e-16 ***
(Intercept)
vehicle.year
            0.049598 0.002568 19.311 < 2e-16 ***
rating
         reviewCount
            0.007923 0.002120 3.738 0.000188 ***
renterTripsTaken -0.007395 0.001781 -4.153 3.33e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6026 on 5333 degrees of freedom
  (495 observations deleted due to missingness)
Multiple R-squared: 0.0961, Adjusted R-squared: 0.09542
F-statistic: 141.8 on 4 and 5333 DF, p-value: < 2.2e-16
```

The categorical features yield better model's performance*

Call:

lm(formula = log.rate.daily ~ fuelType + vehicle.type + city.has.airport +
 vehicle.make, data = carRentals.noClassical)

Residuals: Min 1Q Median 3Q Max -1.4566 -0.2854 -0.0402 0.2335 3.2805

Residual standard error: 0.4408 on 5774 degrees of freedom
Multiple R-squared: 0.5353, Adjusted R-squared: 0.5306
F-statistic: 114.7 on 58 and 5774 DF, p-value: < 2.2e-16

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                          4.1051163 0.0846072 48.520 < 2e-16 ***
fuelTypeELECTRIC
                                   0.0945423 0.773 0.439276
                          0.0731256
fuelTypeGASOLINE
                          0.0713591 0.0560565 1.273 0.203074
fuelTypeHYBRID
                                    0.0631220 2.444 0.014554 *
                          0.1542717
vehicle.typeminivan
                          0.1798460 0.0334128
                                                5.383 7.63e-08
vehicle.typesuv
                          0.1668522 0.0147690 11.297 < 2e-16
vehicle.typetruck
                                                9.754 < 2e-16 ***
                          0.3492786
                                    0.0358081
vehicle.typevan
                                                7.798 7.42e-15 ***
                          0.4805187 0.0616219
city.has.airportTRUE
                         -0.0863223 0.0116565 -7.406 1.49e-13 ***
vehicle.makeAlfa Romeo
                                              5.051 4.52e-07 ***
                          0.5144162 0.1018362
vehicle.makeAston Martin
                                                9.026 < 2e-16 ***
                          1.8679034 0.2069371
```

^{*} Excluding model type at this point

Overall model (with numeric features): Including car model yields better in-sample fit

- However, this is the effect of grouping observations into more dummy variables (51 brans vs 490 models ~ almost 10 times less per dummy)
- Further exploration of whether this leads to overfitting should be performed if the model is to be used for prediction purposes later on

Thank you