

EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018

MATEMATYKA

POZIOM PODSTAWOWY

FORMUŁA DO 2014

("STARA MATURA")

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P1

Zadania zamknięte

Punkt przyznaje się za wskazanie poprawnej odpowiedzi (zaznaczenie właściwego pola na karcie odpowiedzi).

Zadanie 1. (0-1)

Wymagania ogólne	Wymagania szczegółowe	-	awna (1 p.)
II. Wykorzystanie i interpretowanie	1. Liczby rzeczywiste. Zdający zna definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu	Wersja I	Wersja II
reprezentacji.	i logarytm potęgi o wykładniku naturalnym (1.h).	В	D

Zadanie 2. (0-1)

II. Wykorzystanie i interpretowanie	Liczby rzeczywiste. Zdający planuje i wykonuje obliczenia na liczbach rzeczywistych; w szczególności oblicza	Wersja I	Wersja II
reprezentacji.	pierwiastki (1.a).	C	A

Zadanie 3. (0–1)

II. Wykorzystanie i interpretowanie	Liczby rzeczywiste. Zdający oblicza potęgi	Wersja	Wersja
	o wykładnikach wymiernych oraz stosuje	I	II
reprezentacji.	prawa działań na potęgach o wykładnikach wymiernych i rzeczywistych (1.g).	C	D

Zadanie 4. (0-1)

III. Modelowanie	Liczby rzeczywiste. Zdający stosuje pojęcie procentu i punktu procentowego w	Wersja I	Wersja II
matematyczne.	obliczeniach (1.d).	C	A

Zadanie 5. (0-1)

	2. Wyrażenia algebraiczne. Zdający dodaje, odejmuje, mnoży i dzieli wyrażenia wymierne (2.f).	Wersja I	Wersja II
I. Wykorzystanie i tworzenie informacji	1. Liczby rzeczywiste. Zdający posługuje się pojęciem osi liczbowej i przedziału liczbowego; zaznacza przedziały na osi liczbowej (1.e).	A	C

Zadanie 6. (0-1)

= = =	4. Funkcje. Zdający wyznacza miejsca zerowe	Wersja I	Wersja II	
i tworzenie informacji	funkcji kwadratowej (4.j).	C	D]

Zadanie 7. (0-1)

I. Wykorzystanie	Wykorzystanie rozwiązuje proste równania wymierne,	Wersja I	Wersja II
3	prowadzące do równań liniowych lub kwadratowych (3.e).	D	В

Zadanie 8. (0-1)

I. Wykorzystanie i tworzenie informacji.	4. Funkcje. Zdający sporządza wykresy funkcji liniowych (4.e).	Wersja I	Wersja II
i tworzenie informacji.	Tulikeji lililowycii (4.e).	D	В

Zadanie 9. (0-1)

T interpretow/ante	4. Funkcje. Zdający sporządza wykresy	Wersja I	Wersja II
reprezentacji.	funkcji kwadratowych (4.h).	C	D

Zadanie 10. (0-1)

I. Wykorzystanie	4. Funkcje. Zdający wyznacza wzór funkcji	Wersja I	Wersja II	
i tworzenie informacji	Illilowej (4.1).	D	A	

Zadanie 11. (0-1)

III. Modelowanie	5. Ciągi liczbowe. Zdający bada, czy dany ciąg jest arytmetyczny lub geometryczny	Wersja I	Wersja II
matematyczne.	(5.b).	A	В

Zadanie 12. (0-1)

	5. Ciągi liczbowe. Zdający stosuje wzory na	Wersja	Wersja
	n-ty wyraz i sumę n początkowych wyrazów	I	II
matematyczne.	ciągu arytmetycznego i ciągu geometrycznego (5.c).	A	C

Zadanie 13. (0-1)

III. Modelowanie	5. Ciągi liczbowe. Zdający stosuje wzory na	Wersja	Wersja
	n-ty wyraz i sumę n początkowych wyrazów	I	II
matematyczne.	ciągu arytmetycznego i ciągu geometrycznego (5.c).	В	A

Zadanie 14. (0-1)

II. Wykorzystanie i interpretowanie	6. Trygonometria. Zdający wykorzystuje definicje i wyznacza wartości funkcji	Wersja I	Wersja II	
reprezentacji.	trygonometrycznych dla kątów ostrych (6.a).	C	D	

Zadanie 15. (0-1)

I. Wykorzystanie	7. Planimetria. Zdający wykorzystuje własności figur podobnych w zadaniach,	Wersja I	Wersja II
i tworzenie informacji.	w tym umieszczonych w kontekście praktycznym (7.b).	A	C

Zadanie 16. (0-1)

IV. Użycie i tworzenie	7. Planimetria. Zdający korzysta ze związków między kątem środkowym, kątem wpisanym	Wersja I	Wersja II
strategii.	i kątem między styczną a cięciwą okręgu (7.a).	A	В

Zadanie 17. (0-1)

III. Modelowanie matematyczne.	7. Planimetria. Zdający znajduje związki miarowe w figurach płaskich, także	Wersja I	Wersja II
	z zastosowaniem trygonometrii, również w zadaniach umieszczonych w kontekście praktycznym (7.c).	В	D

Zadanie 18. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający posługuje się równaniem okręgu	I	II
reprezentacji.	$(x-a)^2 + (y-b)^2 = r^2$ (8.g).	В	A

Zadanie 19. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający bada równoległość i prostopadłość	I	II
reprezentacji.	prostych na podstawie ich równań kierunkowych (8.c).	В	C

Zadanie 20. (0-1)

II. Wykorzystanie i interpretowanie	9. Stereometria. Zdający wskazuje i oblicza kąty między ścianami wielościanu, między ścianami i odcinkami oraz między odcinkami	Wersja I	Wersja II
reprezentacji.	takimi jak krawędzie, przekątne, wysokości (9.a).	D	A

Zadanie 21. (0-1)

II. Wykorzystanie i interpretowanie	9. Stereometria. Zdający wskazuje i oblicza kąty między ścianami wielościanu, między ścianami i odcinkami oraz między odcinkami	Wersja I	Wersja II
reprezentacji.	takimi jak krawędzie, przekątne, wysokości (9.a).	A	C

Zadanie 22. (0-1)

II. Wykorzystanie i interpretowanie	9. Stereometria. Zdający wyznacza związki miarowe w wielościanach i bryłach	Wersja I	Wersja II	
reprezentacji.	obrotowych (9.b).	A	C	

Zadanie 23. (0-1)

II. Wykorzystanie	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Zdający oblicza średnią arytmetyczną, średnią	Wersja I	Wersja II
i interpretowanie reprezentacji.	ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych (10.a).	В	D

Zadanie 24. (0-1)

III. Modelowanie	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Zdający zlicza obiekty w prostych sytuacjach	Wersja I	Wersja II
matematyczne.	kombinatorycznych, niewymagających użycia wzorów kombinatorycznych; stosuje zasadę mnożenia (10.b).	D	В

Zadanie 25. (0-1)

III. Modalowania	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka.	Wersja I	Wersja II
III. Modelowanie matematyczne.	Zdający wykorzystuje własności prawdopodobieństwa i stosuje twierdzenie znane jako klasyczna definicja prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń (10.d).	D	В

Ogólne zasady oceniania zadań otwartych

Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania.

Zadanie 26. (0-2)

II. Wykorzystanie	3. Równania i nierówności. Zdający rozwiązuje równania
i interpretowanie	i nierówności kwadratowe; zapisuje rozwiązanie w postaci sumy
reprezentacji.	przedziałów (3.a).

Przykładowe rozwiazanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap to wyznaczenie pierwiastków trójmianu kwadratowego $2x^2 - 3x - 5$.

Drugi etap to zapisanie zbioru rozwiązań nierówności kwadratowej.

Pierwszy etap rozwiązania może zostać zrealizowany następująco:

- zapisujemy nierówność w postaci $2x^2 3x 5 > 0$ i obliczamy pierwiastki trójmianu kwadratowego $2x^2 3x 5$
 - o obliczamy wyróżnik tego trójmianu:

$$\Delta = 9 - 4 \cdot 2 \cdot (-5) = 49$$
 i stąd $x_1 = \frac{3-7}{4} = -1$ oraz $x_2 = \frac{3+7}{4} = \frac{5}{2}$

albo

o stosujemy wzory Viète'a:

$$x_1 \cdot x_2 = -\frac{5}{2}$$
 oraz $x_1 + x_2 = \frac{3}{2}$, stąd $x_1 = -1$ oraz $x_2 = \frac{5}{2}$.

Drugi etap rozwiązania: podajemy zbiór rozwiązań nierówności: $(-\infty, -1) \cup (\frac{5}{2}, +\infty)$ lub $x \in (-\infty, -1) \cup (\frac{5}{2}, +\infty)$.

Schemat punktowania

- zrealizuje pierwszy etap rozwiązania i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności, np.
 - o obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = -1$ i $x_2 = \frac{5}{2}$ i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności,
 - o zaznaczy na wykresie miejsca zerowe funkcji $f(x) = 2x^2 3x 5$ i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności

albo

• realizując pierwszy etap popełni błędy, ale otrzyma nierówność, w której po jednej stronie występuje <u>pełny</u> trójmian kwadratowy posiadający dwa różne pierwiastki i konsekwentnie do popełnionych błędów wyznaczy zbiór rozwiązań nierówności.

• poda zbiór rozwiązań nierówności: $(-\infty, -1) \cup (\frac{5}{2}, +\infty)$ lub $x \in (-\infty, -1) \cup (\frac{5}{2}, +\infty)$, lub $x < -1 \lor x > \frac{5}{2}$

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Uwagi

- 1. Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy obliczony wyróżnik Δ jest ujemny, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający podaje pierwiastki bez związku z trójmianem kwadratowym z zadania, to oznacza, że nie podjął realizacji 1. etapu rozwiązania i w konsekwencji otrzymuje **0 punktów** za całe rozwiązanie.
- 3. Akceptujemy zapisanie odpowiedzi w postaci: x < -1 i $x > \frac{5}{2}$, x < -1 oraz $x > \frac{5}{2}$, itp.
- 4. Jeżeli zdający poprawnie obliczy pierwiastki trójmianu $x_1 = -1$, $x_2 = \frac{5}{2}$ i błędnie zapisze odpowiedź, np. $x \in (-\infty, 1) \cup (\frac{5}{2}, +\infty)$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to otrzymuje **2 punkty**.
- 5. Jeżeli zdający po poprawnym rozwiązaniu nierówności zapisuje w odpowiedzi, jako zbiór rozwiązań, zbiór, zawierający elementy nienależące do zbioru $(-\infty, -1) \cup (\frac{5}{2}, +\infty)$ lub zbiór pusty, to otrzymuje **1 punkt**. Zapisanie w miejscu przeznaczonym na odpowiedź pierwiastków trójmianu kwadratowego nie jest traktowane jak opis zbioru rozwiązań.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $\left(-\infty,\frac{5}{2}\right)\cup\left(-1,+\infty\right)$, $\left(+\infty,\frac{5}{2}\right)\cup\left(-1,-\infty\right)$, to przyznajemy **2 punkty**.

Zadanie 27. (0-2)

I. Wykorzystanie	3. Równania i nierówności. Zdający rozwiązuje równania
i tworzenie informacji.	wielomianowe metodą rozkładu na czynniki (3.d).

Przykładowe rozwiązania

I sposób

Zapisujemy lewą stronę równania w postaci iloczynowej, stosując metodę grupowania wyrazów

$$x^{2}(x-7)-4(x-7)=0$$
 lub $x(x^{2}-4)-7(x^{2}-4)=0$
Stad $(x^{2}-4)(x-7)=0$, czyli $(x-2)(x+2)(x-7)=0$.
Zatem $x=2$ lub $x=-2$, lub $x=7$.

II sposób

Stwierdzamy, że liczba 7 jest pierwiastkiem wielomianu $x^3 - 7x^2 - 4x + 28$. Dzielimy wielomian przez dwumian x - 7. Otrzymujemy iloraz $x^2 - 4$. Zapisujemy równanie w postaci $(x-7)(x^2-4)=0$. Stąd (x-7)(x-2)(x+2)=0, czyli x=2 lub x=-2, lub x=7.

Uwaga

Zdający może ustalić, że pierwiastkiem wielomianu jest:

- liczba 2 i zapisać równanie w postaci $(x-2)(x^2-5x-14)=0$;
- liczba –2 i zapisać równanie w postaci $(x+2)(x^2-9x+14)=0$.

Schemat punktowania

- podzieli wielomian $x^3 7x^2 4x + 28$ przez dwumian x 7, otrzyma iloraz $x^2 4$ albo
 - podzieli wielomian $x^3 7x^2 4x + 28$ przez dwumian x 2, otrzyma iloraz $x^2 5x 14$,

albo

• podzieli wielomian $x^3 - 7x^2 - 4x + 28$ przez dwumian x + 2, otrzyma iloraz $x^2 - 9x + 14$,

albo

• zapisze lewą stronę równania w postaci iloczynu: $(x^2-4)(x-7)=0$ lub (x-2)(x+2)(x-7)=0

i na tym zakończy lub dalej popełni błędy.

Uwaga

Jeżeli zdający w trakcie doprowadzania lewej strony równania do postaci iloczynu popełni więcej niż jedną usterkę, to za całe rozwiązanie otrzymuje **0 punktów**.

Zadanie 28. (0-2)

	2. Wyrażenia algebraiczne. Zdający posługuje się wzorami skróconego mnożenia (2.a).	

Przykładowe rozwiazania

I sposób

Nierówność możemy przekształcić równoważnie

$$\frac{a+b}{2ab} \ge \frac{2}{a+b}$$

Ponieważ liczby a i b są dodatnie, więc a+b>0 i 2ab>0. Mnożąc obie strony nierówności przez 2ab(a+b), otrzymujemy

$$(a+b)^{2} \ge 4ab,$$

$$a^{2} + 2ab + b^{2} \ge 4ab,$$

$$a^{2} - 2ab + b^{2} \ge 0,$$

$$(a-b)^{2} \ge 0.$$

Ta nierówność jest prawdziwa dla dowolnych liczb rzeczywistych *a* i *b*, więc w szczególności również dla liczb dodatnich. To kończy dowód.

<u>II sposób</u>

Nierówność możemy przekształcić równoważnie

$$\frac{a+b}{2ab} - \frac{2}{a+b} \ge 0,$$
$$\frac{(a+b)^2 - 4ab}{2ab(a+b)} \ge 0.$$

Ponieważ liczby a i b są dodatnie, więc a+b>0 i 2ab>0. Mnożąc obie strony nierówności przez 2ab(a+b), otrzymujemy

$$(a+b)^{2} - 4ab \ge 0,$$

$$a^{2} + 2ab + b^{2} - 4ab \ge 0,$$

$$a^{2} - 2ab + b^{2} \ge 0,$$

$$(a-b)^{2} \ge 0.$$

Ta nierówność jest prawdziwa dla dowolnych liczb rzeczywistych *a* i *b*, więc w szczególności również dla liczb dodatnich. To kończy dowód.

Schemat punktowania

$$\frac{(a+b)^2 - 4ab}{2ab(a+b)} \ge 0$$
 i na tym zakończy lub dalej popełni błędy.

Uwagi

- 1. Jeżeli zdający sprawdza prawdziwość nierówności jedynie dla wybranych wartości *a* i *b*, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający zakończy rozumowanie, zapisując nierówność $a^2 + b^2 \ge 2ab$ i nie powoła się na stosowne twierdzenie, to otrzymuje **1 punkt**.
- 3. Jeżeli zdający przeprowadzi poprawne rozumowanie, które zakończy zapisaniem nierówności $(a-b)^2 \ge 0$, to otrzymuje **2 punkty**.

Zadanie 29. (0-4)

V. Rozumowanie i argumentacja.	7. Planimetria. Zdający znajduje związki miarowe w figurach płaskich, także z zastosowaniem trygonometrii, również w
i argamentaeja.	zadaniach umieszczonych w kontekście praktycznym (7.c).

Przykładowe rozwiązania

I sposób

Przyjmijmy oznaczenia jak na rysunku.

Wtedy $|AS| = 2\sqrt{2}$ oraz |AE| = 2. Zatem

$$|SE| = 2\sqrt{2} - 2.$$

Średnica okręgu o środku B i promieniu r jest krótsza od odcinka SE, więc

$$2r < 2\sqrt{2} - 2$$
, czyli $r < \sqrt{2} - 1$.

Co kończy dowód.

II sposób

Przyjmijmy oznaczenia jak na rysunku.

Wtedy $|AS| = 2\sqrt{2}$, $|BS| = r\sqrt{2}$ oraz |AE| = 2.

Ponieważ |AS| = |BS| + |BE| + |AE|, więc otrzymujemy

$$2\sqrt{2} = r\sqrt{2} + r + 2$$
,
 $r(\sqrt{2} + 1) = 2\sqrt{2} - 2$.

Stąd mnożąc obie strony tego równania przez $\sqrt{2}$ –1 otrzymujemy

$$r(\sqrt{2}+1)(\sqrt{2}-1) = 2(\sqrt{2}-1)(\sqrt{2}-1),$$

 $r = 2(\sqrt{2}-1)^2,$
 $r = 2(2-2\sqrt{2}+1),$
 $r = 2(3-2\sqrt{2}).$

Sprawdźmy, czy $2(3-2\sqrt{2}) < \sqrt{2}-1$.

Przekształcamy tę nierówność równoważnie.

$$6 - 4\sqrt{2} < \sqrt{2} - 1$$
$$7 < 5\sqrt{2}$$

Ponieważ $\sqrt{2} \approx 1,41 > 1,4$, więc $5\sqrt{2} > 7$. Oznacza to, że $r < \sqrt{2} - 1$.

Schemat punktowania

• obliczy $|SE| = 2\sqrt{2} - 2$

albo

• zapisze równość $2\sqrt{2} = r\sqrt{2} + r + 2$.

i na tym zakończy lub dalej popełni błędy.

Uwagi

1. Jeżeli zdający poprawnie obliczy r i zapisze wynik w postaci ułamka, w którym w mianowniku występuje liczba niewymierna, np. $r = \frac{2\sqrt{2}-2}{\sqrt{2}+1}$, i błędnie szacuje tę liczbę,

np. stosując takie same przybliżenia z niedomiarem $\sqrt{2}$ w liczniku i w mianowniku, to otrzymuje **1 punkt**.

2. Jeżeli zdający błędnie przyjmie, że długość odcinka, którego jednym końcem jest punkt styczności okręgów, a drugim wierzchołek kąta prostego, jest równa długości średnicy mniejszego okręgu i nie wycofa się z tego założenia oraz nie obliczy długości wspomnianego odcinka, to otrzymuje **0 punktów**.

Zadanie 30. (0-2)

	4. Funkcje. Zdający sporządza wykresy funkcji wykładniczych
II. Wykorzystanie	dla różnych podstaw i rozwiązuje zadania umieszczone
i interpretowanie	w kontekście praktycznym (4.n). Zdający potrafi na podstawie
reprezentacji.	wykresu funkcji $y = f(x)$ naszkicować wykresy funkcji $y = f(x + a)$,
	y = f(x) + a, y = -f(x), y = f(-x) (4.d).

Przykładowe rozwiązanie

Ponieważ punkt P leży na wykresie funkcji f, więc możemy zapisać:

$$9 = a^2$$
, gdzie $a > 0$.

Stad a = 3.

Zbiorem wartości funkcji wykładniczej f jest przedział $(0, +\infty)$. Wykres funkcji g powstaje przez przesunięcie wykresu funkcji f o 2 jednostki w dół. Zatem zbiorem wartości funkcji g jest przedział $(-2, +\infty)$.

Schemat punktowania

• obliczy a: a = 3

albo

zapisze zbiór wartości funkcji g: (-2, +∞)

i na tym zakończy lub dalej popełni błędy.

Uwaga

Opis zbioru wartości uznaje się za poprawny, jeśli zbiór ten jest przedstawiony graficznie w sposób jednoznacznie wskazujący, że liczba –2 nie należy do tego zbioru, lub zbiór ten jest opisany słownie, lub jakąkolwiek poprawną nierównością.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór wartości funkcji w postaci $(+\infty, -2)$, to przyznajemy **2 punkty**, o ile obliczy a = 3.

Zadanie 31. (0-2)

	5. Ciągi liczbowe. Zdający stosuje wzory na <i>n</i> -ty wyraz i sumę <i>n</i>
III. Modelowanie	początkowych wyrazów ciągu arytmetycznego i ciągu
matematyczne.	geometrycznego, również umieszczone w kontekście
	praktycznym (5.c).

Przykładowe rozwiązania

I sposób

Korzystamy ze wzoru na n-ty wyraz ciągu arytmetycznego i zapisujemy wzór na a_{12} :

$$a_{12} = a_1 + (12-1) \cdot r$$
.

Korzystamy ze wzoru na sumę n początkowych wyrazów ciągu arytmetycznego i zapisujemy wzór na S_{12} :

$$S_{12} = \frac{2a_1 + (12 - 1) \cdot r}{2} \cdot 12$$
.

Otrzymujemy układ równań

$$30 = a_1 + 11r \text{ i } 162 = 12a_1 + 66r.$$

Stad otrzymujemy

$$a_1 = -3$$
.

II sposób

Korzystamy ze wzoru na sumę n początkowych wyrazów ciągu arytmetycznego i zapisujemy wzór na S_{12} :

$$S_{12} = \frac{a_1 + a_{12}}{2} \cdot 12 \ .$$

Otrzymujemy równanie

$$162 = \frac{a_1 + 30}{2} \cdot 12$$

Stad otrzymujemy

$$a_1 = -3$$
.

Schemat punktowania

 zapisze dwa równania z niewiadomymi a₁ i r wynikające z zastosowania poprawnych wzorów na n-ty wyraz ciągu arytmetycznego i sumę n początkowych wyrazów ciągu arytmetycznego:

np.:
$$30 = a_1 + 11r$$
 i $162 = \frac{2a_1 + 11 \cdot r}{2} \cdot 12$

albo

• zapisze równanie z jedną niewiadomą a_1 wynikające z zastosowania poprawnego wzoru na sumę n początkowych wyrazów ciągu arytmetycznego bez wykorzystywania różnicy ciągu:

np.:
$$162 = \frac{a_1 + 30}{2} \cdot 12$$

i na tym zakończy lub dalej popełni błędy.

Uwagi

- 1. Jeżeli zdający, stosując metodę prób i błędów, zapisze poprawny ciąg poprzez wypisanie 12 początkowych kolejnych wyrazów i ustali, że $a_1 = -3$, to otrzymuje **2 punkty**.
- 2. Jeżeli zdający, stosując metodę prób i błędów, wypisze co najmniej trzy kolejne wyrazy i ustali, że $a_1 = -3$, ale nie zapisze wszystkich 12 początkowych wyrazów ciągu, to otrzymuje **1 punkt**.
- 3. Jeżeli zdający zapisze tylko $a_1 = -3$ lub $a_1 = -3$ i r = 3, to otrzymuje **0 punktów**.

Zadanie 32. (0-5)

	8. Geometria na płaszczyźnie kartezjańskiej. Zdający podaje
	równanie prostej w postaci $Ax + By + C = 0$ lub $y = ax + b$,
IV. Użycie i tworzenie	mając dane dwa jej punkty lub jeden punkt i współczynnik a
strategii.	w równaniu kierunkowym (8.b). Zdający interpretuje
	geometrycznie układ dwóch równań liniowych z dwiema
	niewiadomymi (8.d).

Przykładowe rozwiązania

<u>I sposób</u> – *proste prostopadle*

Obliczamy współczynnik kierunkowy prostej AB

$$a_{AB} = \frac{1}{3}.$$

Ponieważ kąt prosty w trójkącie ABC jest przy wierzchołku B, więc wyznaczamy równanie prostej prostopadłej do prostej AB i przechodzącej przez punkt B

$$y = -3x + 35$$
.

Obliczamy współrzędne punktu C, który jest punktem wspólnym prostych określonych równaniami y = 2x + 3 i y = -3x + 35:

$$\begin{cases} y = 2x + 3 \\ y = -3x + 35 \end{cases}$$

Stąd po rozwiązaniu układu równań otrzymujemy parę $x = \frac{32}{5}$ i $y = \frac{79}{5}$.

Zatem punkt C ma współrzędne. $\left(\frac{32}{5}, \frac{79}{5}\right)$

II sposób – twierdzenie Pitagorasa

Ponieważ wierzchołek C trójkąta prostokątnego ABC leży na prostej o równaniu y = 2x + 3, więc jego współrzędne zapisujemy następująco

$$C = (x, 2x+3)$$
.

Punkt B jest wierzchołkiem kąta prostego, zatem z twierdzenia Pitagorasa wynika, że

$$|AC|^2 = |AB|^2 + |BC|^2$$
.

Po podstawieniu współrzędnych punktów A, B i C otrzymujemy równanie

$$(x-4)^2 + (2x+3-3)^2 = (10-4)^2 + (5-3)^2 + (x-10)^2 + (2x+3-5)^2$$

czyli równanie

$$x^2 - 8x + 16 + 4x^2 = 36 + 4 + x^2 - 20x + 100 + 4x^2 - 8x + 4$$

Zatem

$$20x = 128$$
 i dalej $x = \frac{32}{5}$.

Jeśli
$$x = \frac{32}{5}$$
, to $y = \frac{79}{5}$. Zatem $C = \left(\frac{32}{5}, \frac{79}{5}\right)$.

III sposób – iloczyn skalarny

Wektory niezerowe są prostopadłe wtedy i tylko wtedy, gdy ich iloczyn skalarny jest równy 0. W tym przypadku oznacza to, że iloczyn skalarny wektorów \overrightarrow{AB} i \overrightarrow{BC} jest równy 0.

Współrzędne wektora \overrightarrow{AB} są równe $\overrightarrow{AB} = [6, 2]$.

Punkt C ma współrzędne równe C = (x, 2x+3), więc współrzędne wektora \overrightarrow{BC} są równe

$$\overrightarrow{BC} = [x-10, 2x+3-5].$$

Z warunku $\overrightarrow{AB} \circ \overrightarrow{BC} = 0$ otrzymujemy równanie

$$6(x-10)+2(2x-2)=0,$$

$$3x-30+2x-2=0,$$

$$x = \frac{32}{5}.$$

Zatem
$$C = \left(\frac{32}{5}, 2 \cdot \frac{32}{5} + 3\right) = \left(\frac{32}{5}, \frac{79}{5}\right)$$
.

Schemat punktowania

• uzależni obie współrzędne punktu C od jednej zmiennej,

np.:
$$C = (x, 2x+3)$$
 lub $C = (\frac{y-3}{2}, y)$

albo

• zapisze równość $|AC|^2 = |AB|^2 + |BC|^2$ i obliczy długość AB: $|AB| = 2\sqrt{10}$,

albo

• zapisze równość $|AC|^2 = |AB|^2 + |BC|^2$ i zapisze jedną z długości |AC| lub |BC| w zależności od współrzędnych punktu C,

albo

• obliczy współrzędne wektora \overrightarrow{AB} : $\overrightarrow{AB} = [6, 2]$ i zapisze, że $\overrightarrow{AB} \circ \overrightarrow{BC} = 0$,

albo

• wyznaczy współrzędne wektora \overrightarrow{BC} w zależności od współrzędnych punktu C: $\overrightarrow{BC} = [x-10, y-5]$ i zapisze, że $\overrightarrow{AB} \circ \overrightarrow{BC} = 0$,

albo

• wyznaczy współrzędne wektora \overrightarrow{BC} w zależności od jednej współrzędnej punktu C, np.: $\overrightarrow{BC} = [x-10, 2x+3-5]$,

albo

• obliczy współczynnik kierunkowy równania prostej AB:

$$a_{AB} = \frac{1}{3}$$

i na tym zakończy lub dalej popełni błędy.

• wyznaczy współczynnik kierunkowy prostej prostopadłej do prostej AB i przechodzącej przez punkt B: $a_{BC} = -3$

albo

• zapisze równanie z dwiema niewiadomymi, np.: $\left(\sqrt{(x-4)^2 + (y-3)^2} \right)^2 = \left(\sqrt{(10-4)^2 + (5-3)^2} \right)^2 + \left(\sqrt{(x-10)^2 + (y-5)^2} \right)^2,$

albo

• obliczy współrzędne wektora \overrightarrow{AB} : $\overrightarrow{AB} = \begin{bmatrix} 6,2 \end{bmatrix}$, wyznaczy współrzędne wektora \overrightarrow{BC} w zależności od jednej współrzędnej punktu C, np.: $\overrightarrow{BC} = \begin{bmatrix} x-10, 2x+3-5 \end{bmatrix}$ i zapisze, że $\overrightarrow{AB} \circ \overrightarrow{BC} = 0$,

albo

• zapisze równość wynikającą z warunku $\overrightarrow{AB} \circ \overrightarrow{BC} = 0$, w której niewiadomymi są dwie współrzędne punktu C, np.: 6(x-10)+2(y-5)=0

i na tym zakończy lub dalej popełni błędy.

$$2x+3=-3(x-10)+5$$

i na tym zakończy lub dalej popełni błędy.

- obliczy $x = \frac{32}{5}$ albo $y = \frac{79}{5}$ i na tym zakończy lub dalej popełni błędy albo
 - obliczy obie współrzędne punktu C z błędami rachunkowymi.

Uwagi

- 1. Jeżeli zdający realizuje strategię rozwiązania i popełnia jedynie błędy rachunkowe, to może otrzymać **4 punkty**, o ile popełnione błędy nie ułatwiają rozważanego zagadnienia na żadnym etapie rozwiązania.
- 2. Jeżeli zdający realizuje strategię rozwiązania, ale popełnia błąd, który jednak nie ułatwia rozważanego zagadnienia na żadnym etapie rozwiązania i:
 - a) jedynym błędem merytorycznym w rozwiązaniu jest błąd przy wyznaczaniu współczynnika a_{AB} , np. $\frac{x_A-x_B}{y_A-y_B}$ zamiast $\frac{y_A-y_B}{x_A-x_B}$, to zdający otrzymuje co najwyżej

3 punkty;

- b) jedynym błędem merytorycznym w rozwiązaniu jest błąd przy wyznaczaniu równania prostej *BC*, to zdający otrzymuje co najwyżej **3 punkty**;
- c) jedynym błędem merytorycznym w rozwiązaniu jest błąd, polegający na tym, że zdający zapisze błędną równość: $|BC|^2 = |AB|^2 + |AC|^2$, to zdający otrzymuje co najwyżej **3 punkty**;
- d) w I sposobie rozwiązania przyjmie, że kąt prosty jest przy wierzchołku A, to otrzymuje co najwyżej **3 punkty**;
- e) jedynym błędem merytorycznym w rozwiązaniu jest błąd przy podstawieniu do wzoru na odległość punktów, nawet trzykrotnie powtórzony, to zdający otrzymuje co najwyżej **3 punkty**;
- f) jedynym błędem merytorycznym w rozwiązaniu jest zamiana miejscami współrzędnych punktu C w początkowym etapie rozwiązania, np.: C = (2x+3,x), to zdający otrzymuje co najwyżej **3 punkty**;
- g) jedynym błędem merytorycznym w rozwiązaniu jest przyjęcie bez obliczeń błędnego współczynnika b w równaniu prostej BC (np. $\frac{5}{3}$), to zdający otrzymuje co najwyżej

3 punkty.

- 3. Jeżeli zdający realizuje pełną strategię rozwiązania, ale popełnia błąd merytoryczny, który jednak nie ułatwia rozważanego zagadnienia na żadnym etapie rozwiązania i tym jedynym błędem merytorycznym jest błąd, polegający na zastosowaniu nieistniejącego wzoru " $\sqrt{a+b} = \sqrt{a} + \sqrt{b}$ ", to zdający otrzymuje co najwyżej **3 punkty**.
- 4. Jeżeli zdający popełnia błąd, polegający na tym, że zapisuje błędną równość: $|AB|^2 = |BC|^2 + |AC|^2$, to otrzymuje co najwyżej **2 punkty**.
- 5. Jeżeli zdający wyznaczy równanie prostej prostopadłej do prostej o równaniu y = 2x + 3, to za rozwiązanie zadania otrzymuje **0 punktów**, o ile w rozwiązaniu nie występują inne zapisy wymienione w schemacie oceniania, za które należy przyznać zdającemu punkty, np.: C = (x, 2x + 3).
- 6. Jeżeli oprócz poprawnego rozwiązania (kąt prosty przy wierzchołku *B*) zdający podaje inne rozwiązanie (np. kąt prosty przy wierzchołku *A*), którego nie odrzuca, to otrzymuje co najwyżej **4 punkty**.
- 7. Jeżeli zdający zapisze równanie prostej *AB* w postaci ogólnej (np. dokona właściwego podstawienia współrzędnych punktów do równania prostej przechodzącej przez 2 punkty) i na tym zakończy lub dalej popełnia błędy, to otrzymuje **1 punkt**.

Zadanie 33. (0-2)

III. Modelowanie matematyczne.	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Zdający wykorzystuje własności prawdopodobieństwa i stosuje twierdzenie znane jako klasyczna definicja prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń (10.d).
--------------------------------	--

Przykładowe rozwiazania

I sposób

Zdarzeniem elementarnym jest uporządkowana para (x, y), gdzie $x \in A$ i $y \in B$. Zatem zbiór wszystkich zdarzeń elementarnych ma postać:

$$\Omega = \{(100,10),(100,11),(100,12),(100,13),(100,14),(100,15),(100,16),\\ (200,10),(200,11),(200,12),(200,13),(200,14),(200,15),(200,16),\\ (300,10),(300,11),(300,12),(300,13),(300,14),(300,15),(300,16),\\ (400,10),(400,11),(400,12),(400,13),(400,14),(400,15),(400,16),\\ (500,10),(500,11),(500,12),(500,13),(500,14),(500,15),(500,16),\\ (600,10),(600,11),(600,12),(600,13),(600,14),(600,15),(600,16),\\ (700,10),(700,11),(700,12),(700,13),(700,14),(700,15),(700,16)\}.$$

Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 7 \cdot 7 = 49$.

Niech A oznacza zdarzenie polegające na tym, że suma wylosowanych liczb będzie podzielna przez 3. Z cechy podzielności liczby całkowitej przez 3 wynika, że suma cyfr otrzymanej liczby x+y musi być podzielna przez 3. Zbiór A ma postać:

$$A = \{(100,11),(100,14),(200,10),(200,13),(200,16),$$

$$(300,12),(300,15),(400,11),(400,14),(500,10),$$

$$(500,13),(500,16),(600,12),(600,15),(700,11),(700,14)\}.$$

Zdarzeniu A sprzyja więc 16 zdarzeń elementarnych, czyli |A| = 16.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{|A|}{|\Omega|} = \frac{16}{49}.$$

Odpowiedź: Prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie liczbą podzielną przez 3, jest równe $\frac{16}{49}$.

Uwaga

Zdający może zapisać zbiór wszystkich zdarzeń elementarnych jako zbiór sum możliwych do utworzenia w wyniku losowania, tzn. może zastosować zapis:

$$\Omega = \{110, 111, 112, 113, 114, 115, 116, \\ 210, 211, 212, 213, 214, 215, 216, \\ 310, 311, 312, 313, 314, 315, 316, \\ 410, 411, 412, 413, 414, 415, 416, \\ 510, 511, 512, 513, 514, 515, 516, \\ 610, 611, 612, 613, 614, 615, 616, \\ 710, 711, 712, 713, 714, 715, 716\}.$$

Wtedy zbiór

$$A = \{111, 114, 210, 213, 216, 312, 315, 411, 414, 510, 513, 516, 612, 615, 711, 714\}.$$

II sposób

Rysujemy tabelę, która przedstawia model rozważanego doświadczenia.

	100	200	300	400	500	600	700
10		×			×		
11	×			×			×
12			×			×	
13		×			×		
14	×			×			×
15			×			×	
16		×			×		

Zdarzeniom elementarnym odpowiadają komórki tej tabeli. Jest ich 49, zatem $|\Omega|$ = 49.

Symbolem \times zaznaczamy te zdarzenia elementarne, które sprzyjają zdarzeniu A, polegającemu na tym, że suma wylosowanych liczb jest podzielna przez 3.

Zdarzeniu A sprzyja więc 16 zdarzeń elementarnych, czyli |A| = 16.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{|A|}{|\Omega|} = \frac{16}{49}.$$

Odpowiedź: Prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie liczbą podzielną przez 3, jest równe $\frac{16}{49}$.

III sposób

Rysujemy drzewko rozważanego doświadczenia.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{3}{7} \cdot \frac{2}{7} + \frac{2}{7} \cdot \frac{3}{7} + \frac{2}{7} \cdot \frac{2}{7} = \frac{16}{49}$$
.

Odpowiedź: Prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie liczbą podzielną przez 3, jest równe $\frac{16}{49}$.

Uwaga

Zdający może narysować drzewo probabilistyczne, w którym na każdym z etapów lub na jednym z etapów rozważa każdą możliwą do wylosowania liczbę oddzielnie. Przykład takiego drzewa znajduje się poniżej.

Prawdopodobieństwo zdarzenia A może być obliczone w następujący sposób:

$$P(A) = 5 \cdot \frac{1}{7} \cdot \frac{2}{7} + 2 \cdot \frac{1}{7} \cdot \frac{3}{7} = \frac{16}{49}$$

Schemat punktowania

• zapisze, że $|\Omega| = 7.7$

albo

• zapisze, że suma cyfr utworzonej sumy wylosowanych liczb musi być podzielna przez 3,

albo

• poda sposób obliczania |A|, np. przyjmie porządek przy wyznaczaniu sum podzielnych przez 3 oraz wyznaczy przynajmniej 4 zdarzenia elementarne sprzyjające zdarzeniu A i nie zaliczy do zbioru A niewłaściwego zdarzenia elementarnego,

albo

• przedstawi graficznie model doświadczenia z 49 zdarzeniami elementarnymi, np. narysuje tabelę z 7 kolumnami i 7 wierszami,

albo

- narysuje drzewko doświadczenia:
 - 1. składające się ze wszystkich 49 gałęzi albo
 - 2. składające się z mniej niż 49 gałęzi, ale wskaże na nim gałęzie odpowiadające wylosowaniu w pierwszym etapie dwóch spośród 7 liczb: 100, 200, 300, 400, 500, 600, 700 oraz wylosowaniu w drugim etapie odpowiednich liczb dających z liczbą wylosowaną w pierwszym etapie sumę podzielną przez 3

i na tym zakończy lub dalej popełni błędy.

- ullet zapisze wszystkie zdarzenia elementarne sprzyjające zdarzeniu A albo
 - zapisze, że $|\Omega| = 7.7$ i zapisze, że suma cyfr utworzonej sumy wylosowanych liczb musi być podzielna przez 3,

albo

• zapisze, że $|\Omega| = 7 \cdot 7$ i poda sposób obliczania |A|, np. przyjmie porządek przy wyznaczaniu sum podzielnych przez 3, wyznaczy przynajmniej 4 zdarzenia elementarne sprzyjające zdarzeniu A, ale nie zaliczy do zbioru A niewłaściwego zdarzenia elementarnego,

albo

• przedstawi graficznie model doświadczenia z 49 zdarzeniami elementarnymi, np. narysuje tabelę z 7 kolumnami i 7 wierszami oraz zapisze, że $|\Omega| = 7 \cdot 7$,

albo

- narysuje drzewko doświadczenia:
 - składające się ze wszystkich 49 gałęzi i zapisze prawdopodobieństwa na co najmniej jednym odcinku każdego z etapów albo
 - 2. składające się z mniej niż 49 gałęzi, ale wskaże na nim gałęzie odpowiadające wylosowaniu w pierwszym etapie dwóch spośród 7 liczb: 100, 200, 300, 400, 500, 600, 700 oraz wylosowaniu w drugim etapie odpowiednich liczb dających z liczbą wylosowaną w pierwszym etapie sumę podzielną przez 3 i zapisze prawdopodobieństwa na co najmniej jednym odcinku każdego z etapów;

albo

 narysuje drzewko doświadczenia, w którym wskaże wszystkie gałęzie odpowiadające zdarzeniu A

i na tym zakończy lub dalej popełni błędy.

• zapisze, że $|\Omega| = 7 \cdot 7$ oraz zapisze wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, ale nie zaliczy do zbioru A niewłaściwego zdarzenia elementarnego

albo

• zapisze, że $|\Omega| = 7.7$ oraz zapisze, że |A| = 16 i przedstawi sposób obliczenia tej liczby, np. zapisze, że suma cyfr utworzonej sumy wylosowanych liczb musi być podzielna przez 3 i wskaże w dowolny sposób przykładowe zdarzenie elementarne lub przyjmie porządek przy wyznaczaniu sum podzielnych przez 3 i wyznaczy przynajmniej 4 zdarzenia elementarne sprzyjające zdarzeniu A, ale nie zaliczy do zbioru A niewłaściwego zdarzenia elementarnego,

albo

• przedstawi graficznie model doświadczenia z 49 zdarzeniami elementarnymi (np. narysuje tabelę z 7 kolumnami i 7 wierszami), zapisze $|\Omega| = 7 \cdot 7$, oraz zaznaczy 16 zdarzeń elementarnych sprzyjających zdarzeniu A i żadnych innych zdarzeń elementarnych nie zaliczy do A,

albo

• narysuje drzewko doświadczenia, w którym wystąpią wszystkie gałęzie odpowiadające zdarzeniu A wraz z prawdopodobieństwami oraz poprawnie zastosuje regułę drzewka do obliczenia prawdopodobieństwa P(A)

i na tym zakończy lub dalej popełni błędy.

Uwagi

1. Jeżeli zdający uzyska w wyniku końcowym liczbę spoza przedziału $\langle 0,1 \rangle$, to może otrzymać co najwyżej **2 punkty**.

- 2. Jeżeli zdający w swoim rozwiązaniu wypisze 17 zdarzeń elementarnych sprzyjających zdarzeniu A, w tym 16 poprawnych i jedno niepoprawne oraz otrzyma prawdopodobieństwo równe $\frac{17}{49}$, to otrzymuje **2 punkty**.
- 3. Jeżeli zdający w swoim rozwiązaniu wypisze 15 poprawnych zdarzeń elementarnych sprzyjających zdarzeniu A i otrzyma prawdopodobieństwo równe $\frac{15}{49}$, to otrzymuje **2 punkty**.
- 4. Jeżeli zdający w swoim rozwiązaniu przyjmie błędną liczbę wszystkich zdarzeń elementarnych i nie jest to efekt błędu rachunkowego, np. przyjmie $|\Omega| = 7 \cdot 6$, to może otrzymać co najwyżej **2 punkty**.
- 5. Jeżeli zdający w swoim rozwiązaniu zapisze jedynie $|\Omega| = 7 \cdot 7$, |A| = 16 i nie przedstawi czytelnego uzasadnienia liczby zdarzeń elementarnych sprzyjających zdarzeniu A, i obliczy $P(A) = \frac{|A|}{|\Omega|} = \frac{16}{49}$, to otrzymuje **1 punkt**.
- 6. Jeżeli zdający w swoim rozwiązaniu zapisze $|\Omega| = 7 \cdot 7$, |A| = 16 oraz zapisze, że suma cyfr utworzonej sumy wylosowanych liczb musi być podzielna przez 3, ale w przedstawionym rozwiązaniu nie można zidentyfikować żadnego zdarzenia elementarnego, które zdający powinien rozważać, to otrzymuje **2 punkty**, nawet jeśli w rozwiązaniu występuje poprawny wynik końcowy.
- 7. Jeżeli zdający w swoim rozwiązaniu wypisze 16 zdarzeń elementarnych sprzyjających zdarzeniu *A*, w tym 15 poprawnych i jedno niewłaściwe i konsekwentnie rozwiąże zadanie do końca, to otrzymuje **2 punkty**.

Zadanie 34. (0-4)

	9. Stereometria. Zdający wyznacza związki miarowe
IV. Użycie i tworzenie	w wielościanach (9.b).
strategii.	3. Równania i nierówności. Zdający rozwiązuje równania
	i nierówności kwadratowe (3.a).

Przykładowe rozwiązanie

Przyjmijmy oznaczenia jak na rysunku.

Rozważany graniastosłup ma 5 ścian, a każda z nich ma takie samo pole. Obliczamy pole podstawy, a zarazem pole jednej ściany bocznej:

$$45\sqrt{3}:5=9\sqrt{3}.$$

Podstawą graniastosłupa jest trójkąt równoboczny, więc jego pole jest równe

$$P_{ABC} = \frac{a^2 \sqrt{3}}{4} \, .$$

Obliczamy długość krawędzi podstawy:

$$\frac{a^2\sqrt{3}}{4} = 9\sqrt{3},$$

a = 6

Ściana boczna jest prostokątem o bokach długości a i h, więc pole każdej ściany bocznej jest równe

$$P_{ARED} = ah$$
.

Z warunków zadania wynika, że:

$$ah = 9\sqrt{3}$$
.

Znamy długość krawędzi podstawy a, zatem:

$$6h = 9\sqrt{3}$$
.

Obliczamy wysokość graniastosłupa

$$h = \frac{3}{2}\sqrt{3}$$
.

Objętość graniastosłupa jest równa

$$V = P_{ABC} \cdot h = 9\sqrt{3} \cdot \frac{3\sqrt{3}}{2} = \frac{81}{2}$$
.

Schemat punktowania

• zapisze zależność między wielkościami a i h wynikającą z równości pól podstawy i ściany bocznej graniastosłupa: $\frac{a^2\sqrt{3}}{4} = ah$

albo

• obliczy pole jednej ściany graniastosłupa: $45\sqrt{3}:5=9\sqrt{3}$,

albo

• zapisze równanie: $2 \cdot \frac{a^2 \sqrt{3}}{4} + 3ah = 45\sqrt{3}$

albo

• zapisze równania: $2 \cdot \frac{1}{2} a h_p + 3ah = 45\sqrt{3}$ i $\frac{1}{2} a h_p = ah$

i na tym zakończy lub dalej popełni błędy.

- zapisze równanie z jedną niewiadomą, pozwalające na wyznaczenie długości krawędzi podstawy lub wysokości graniastosłupa i na tym zakończy lub dalej popełni błędy albo
- uzależni objętość bryły od jednej zmiennej i na tym zakończy lub dalej popełni błędy.

- obliczy długość krawędzi podstawy i wysokość graniastosłupa: a=6, $h=\frac{3}{2}\sqrt{3}$ albo
 - obliczy długość krawędzi podstawy graniastosłupa: a = 6 i uzależni objętość bryły od jednej zmiennej a lub obliczy wysokość graniastosłupa $h = \frac{3}{2}\sqrt{3}$ i uzależni objętość bryły od jednej zmiennej h

i na tym zakończy lub dalej popełni błędy.

Uwagi

- 1. Jeżeli zdający realizuje strategię rozwiązania, a jedynymi błędami w przedstawionym rozwiązaniu są błędy rachunkowe, to otrzymuje **3 punkty**.
- 2. Jeżeli zdający popełnia błąd polegający na niepoprawnym stosowaniu wzoru na pole trójkąta równobocznego albo wzoru na pole prostokąta, to otrzymuje **2 punkty**, o ile nie popełnia innych błędów i rozwiąże zadanie do końca.
- 3. Jeżeli zdający popełnia błąd, polegający na niewłaściwym określeniu zależności między polem podstawy a polem ściany bocznej i w efekcie rozważa jeden z trzech przypadków: $2P_p = P_{sb}$, $P_p = 3P_{sb}$, $2P_p = 3P_{sb}$, albo błąd, polegający na przyjęciu, że graniastosłup ma trzy ściany boczne i jedną podstawę, to otrzymuje **2 punkty**, o ile nie popełnia innych błędów i rozwiąże zadanie do końca.
- 4. Jeżeli zdający popełnia jeden błąd, opisany w uwagach 2. lub 3., a ponadto popełnia błędy rachunkowe, ale poprawnie obliczy pole jednej ściany albo realizuje strategię rozwiązania, to otrzymuje co najwyżej **1 punkt**.
- 5. Jeżeli zdający popełnia inne niż wymienione w uwagach 2. lub 3. błędy, dotyczące pól ścian bryły, ale poprawnie obliczy pole jednej ściany albo realizuje strategię rozwiązania, to otrzymuje co najwyżej **1 punkt**.
- 6. Jeżeli zdający rozważa graniastosłup trójkątny, który nie jest prawidłowy, to może otrzymać co najwyżej **1 punkt**.