1. 某序列检测器,输入为 data,输出为 Q。当检测到 1010 时,Q 输出 1 个周期的 1,否则 Q 输出 0。给出状态机次态逻辑表达式和 Q 的逻辑表达式。注意:{1010} 为独立检测,不与后续序列拼接,即{101010} 视为 1 次匹配成功。答案:假设寄存器 D2D1D0 的编码 000、001、010、011 及 100 分别对应 S0 至 S4。由于 Q 输出宽度以周期为单位,因此 Q 只能是状态的函数,即该状态机是摩尔型状态机。

输入	现态			次态			
data	Q2	Q1	Q0	D2	D1	D0	Q
0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0
0	0	0	1	0	1	0	0
1	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0
1	0	1	0	0	1	1	0
0	0	1	1	1	0	0	0
1	0	1	1	0	0	1	0
0	1	0	0	0	0	0	1
1	1	0	0	0	0	1	1

 $D2 = \overline{Q2} \cdot Q1 \cdot Q0 \cdot \overline{data}$

 $D1 = \overline{Q2} \cdot \overline{Q1} \cdot Q0 \cdot \overline{data} + \overline{Q2} \cdot Q1 \cdot \overline{Q0} \cdot data$

 $D0 = \overline{Q2} \cdot data + \overline{Q1} \cdot \overline{Q0} \cdot data$

 $Q = Q2 \cdot \overline{Q1} \cdot \overline{Q0}$

2. 状态机如下图所示。构造次态逻辑表达式和输出表达式,写出状态转换及输出表,画出状态图,分析状态机类型。

答案:

Moore 型状态机,因为F只与状态寄存器相关。

 $Q1 = \overline{Q1} \cdot X$

批注[高1]:修正答案了

$$\mathrm{Q}0=Q1+\overline{Q0}$$

F = Q1 + Q0

Q1	Q0	Χ	Q1 ⁿ	Q0 ⁿ	F	现态	Χ	次态
0	0	0	0	1	0	S0	0	S1
0	0	1	1	1	0	S0	1	S3
0	1	0	0	0	1	S1	0	S0
0	1	1	1	0	1	S1	1	S2
1	0	0	0	1	1	S2	0	S1
1	0	1	0	1	1	S2	1	S1
1	1	0	0	1	1	S3	0	S1
1	1	1	0	1	1	S3	1	S1

- 3. 对于如下电路,假设每个与门的延迟均为 T,连线延迟、寄存器固有延迟等均为 0。
 - a) 计算关键路径的延迟以及寄存器的最大时钟频率。
 - b) 重构电路以提高时钟频率,并计算提高比例。

答案:

a) 关键路径为 3 个 AND 门的串接, 延迟为 3T。最大时钟频率为 1/3T。

b) 优化后为 2 层 AND,延迟为 2T。最大时钟频率为 1/2T,比原设计频率提高 50%。

4. 《数字设计和计算机体系结构》: 第3.20题。

答案:

- 1) 由于输出与输入相关,因此这是一个 Meely 型状态机。
- 2) 2个寄存器 Q1 和 Q0,编码值分别为: S0=0b00; S1=0b01; S2=0b10
- 3) 根据状态图得到如下真值表。关键要点在于对 S2 转 S0 的分析(表中绿

色部分。无论是否对于化简有用,都一定先补全!)

1					
	现态	A	В	次态	F
	S1S0			S1S0	
	00	0	X	00	0
	00	1	X	01	O
	01	X	0	00	0
	01	X	1	10	0
	10	1	1	10	1
	10	0	0	00	0
	10	0	1	00	0
	10	1	0	00	0

4) 表达式如下:

 $S1 = \overline{S1} \cdot S0 \cdot B + S1 \cdot \overline{S0} \cdot A \cdot B$

 $S0 = \overline{S1} \cdot \overline{S0} \cdot A$

 $F = S1 \cdot \overline{S0} \cdot A \cdot B$

- 5) 功能: 检测 A 和 B 先后输入为 1, 此后 AB 同时为 1。
- 5. 用 D 触发器为核心,设计一个支持使能(En 若为 0,则寄存器值不变)、预置

批注 [高2]: 修正答案了

批注 [高3]: 修正答案了

(Ld 为 1,则寄存器值为 1)、清除(Rst 为 1,则寄存器被清除)功能的寄存器。寄存器输入信号为 D,输出为 Q。所有控制信号都是<u>同步</u>控制信号。3 个信号的优先级从高到低为:Rst、Ld、En。

答案:

1) 因为 3 个控制信号都是同步控制信号,所以 D 触发器的输入端是 3 个控制信号及 D 的函数。

Rst	Ld	En	D	Q	D触发器输入
1	v	V	v	v	0
1	Λ	A V	Λ V	Λ V	1
U	I I	X	X	X	1
0	0	0	X	Q	Q
0	0	1	0	X	0
0	O	1	1	X	1

2) 电路结构如下图

