TD-TP Modélisation numérique : éléments finis

Exercice 1 : les fonctions d'interpolation.

But : comprendre comment les fonctions d'interpolations linéaires par morceaux interpolent linéairement une fonction quelconque

- 1.1 Montrer que la superposition des fonctions de formes linéaires définies en cours et appliquées à la fonction y=f(x) entre x_j et x_{j+1} , donne bien l'équation d'une droite passant par (x_j,y_j) et (x_{j+1},y_{j+1}) .
- 1.2 Créer une fonction d'interpolation linéaire ($y_{interp} = lin_interp(x, etc)$), voir exo1_trou.m) utilisant les fonctions d'interpolations phi_0 et phi_1 vues en cours, et permettant de calculer y = f(x), pour y variant linéairement entre (x_0, y_0) et (x_1, y_1) .
- 1.3 En utilisant cette fonction d'interpolation et 5 éléments de même longueur, interpoler la fonction suivante : $f(x)=x\sin(x)$ entre 0 et 5. Prendre des pas de 0.1.
- 1.4 Calculer l'erreur $\sum_{i=1}^{N} |y_{interp}^{i} y^{i}|$, où N est le nombre de points de calculs c'est à dire la différence entre la fonction f(x) et la fonction l'interpolant par morceaux. Commencer par 5 éléments, puis passer à 10. Comment évolue l'erreur ?

Exercice 2 : Fonctions de formes et éléments finis

Soit une barre de section S, encastrée en x=0 est soumise à son propre poids. On supposera que L = 5 m, $\rho=1000$ kg/m3, E = 10e6 Pa, g=9.8 kg/m3, S=0.3 m 2 et on considérera les 2 cas de conditions limites suivantes :

Illustration 1: Poutre encastrée a) extrémité libre en x = L. b) Force en x=L

- 1. Dériver l'équation aux dérivées partielles pour les déplacement de la poutre. La poutre est soumise à son poids. On écrira l'équilibre d'une petite tranche de poutre d'épaisseur dx, de section S, soumise à une force selon x, comme $F(x) = S\sigma_{xx} = SE\frac{du_x}{dx}$, où σ_{xx} est la contrainte selon x, u_x est le déplacement selon x, x est le module d'Young. On considérera 2 cas a) la poutre est libre en x = x = x F(b) = 0; b) Une force s'exerce en x = x
- 2. Dériver la solution analytique $u_x(x)$ pour ces 2 cas (Figure 1), la programmer et la dessiner.

- 3. Écrire la forme faible
- 4. Afin de discrétiser le problème, utiliser des fonctions de forme linéaires par morceaux. On supposera dans un premier temps qu'on a 3 éléments.
- 5. Ecrire l'approximation éléments finies de Galerkine. Écrire les matrices de raideur locales. On notera l = L/3.
- 6. Ecrire la matrice de raideur globale. Réduire le système sachant que u(0) = 0.
- 7. Programmer la solution analytique pour le cas F(1) = 0 et F(L) = b.
- 8. Programmer une fonction assemble_loc permettant le calcul de la matrice de raideur élémentaire et de la matrice de masse élémentaire .
- 9. Programmer le code éléments finis permettant de comparer le calcul analytique et numérique des déplacements de la barre à l'aide d'un script (exo2_trou.m) utilisant la fonction assemble_loc et une boucle « for » pour sommer la contribution de chaque élément aux matrices de raideur et de masse globales.

Commandes matlab à utiliser :

clear all

clc

Définition des vecteurs $v = [1 \ 2 \ 3]$ ou $v = [1 \ ; 2 \ ; 3]$ ou v = 1:1:3 ;

Adressage de l'élément de la ligne i et colonne j de la matrice A(i,j)

fonctions

Boucle: for

Résolution de systèmes linéaire Ax=B, pour trouver x on fait $x = A \setminus B$

Impression figure 2D: plot

10. Passer à 10 éléments. On notera l = L/10.

Que remarque t'on?