1. Problema computacional

- a. Entradas
- b. Saídas
- c. Especificação (como as entradas estão relacionadas com a saída)
 - i. "Promessa" do desenvolvedor
 - ii. O que o usuário quer

2. Problema: Achar um valor aproximado de uma função com informações de derivadas

- a. Entradas: uma valor x, um valor a, "informações das derivadas em a", M (maior valor da n-derivada no intervalo)
- b. Saída: um valor y e um valor E
- c. Especificação: |y f(x)|<= E
- d. Algoritmos:
 - i. Taylor de ordem 0
 - ii. Taylor de ordem 1
 - iii. Taylor de ordem 2
 - iv. Taylor de ordem n

3. Problema: Encontrar raíz aproximadamente (Resolver equações não-lineares) (uma variável e uma equação)

- a. Entrada: uma função f, erro, um intervalo
- b. Saída: um número real x ou aviso que não teve troca de sinal no intervalo
- c. Especificação: f(r)=0 e |x-r| <= erro
- d. Algoritmos
 - i. Bisseção
 - ii. Newton (não fez análise de erro) (não precisa se preocupar com o erro)

4. Problema: Interpolação Polinomial

- a. Entrada: n pontos: (x_0,y_0) ... (x_n,y_n)
- b. Saída: um polinômio F(x) com grau no máximo n
- c. Especificação: Para todo 1<=i<=n, F(x_i)=y_i
- d. Algoritmos
 - i. Vandermonde (retorna os coeficientes ou retorna a função F(x))
 - ii. Polinômio de Lagrange (retorna a função F(x))

5. Problema: Regressão Polinomial ("Interpolação aproximada")

- a. Entrada: n pontos: (x 0,y 0) ... (x n,y n) e um natural k
- b. Saída: um polinômio F(x) com grau no máximo k
- c. Especificação: Para todo 1<=i<=n, F(x_i) aproximadamente y_i
- d. Algoritmo
 - i. Vandermonde + Mínimos quadrados

- 6. Problema: Regressão com coeficiente lineares (generalização do problema anterior)
 - a. Entrada: n pontos: (x_0,y_0) ... (x_n,y_n) , e k funções $f_1(x)$, $f_2(x)$,..., $f_k(x)$ (um vetor de funções)
 - b. Saída: uma função $F(x) = c_1 f_1(x) + ... + c_k f_k(x)$ ou coeficientes
 - c. Especificação: Para todo 1<=i<=n, F(x i) aproximadamente y i
 - d. Algoritmo
 - i. Vandermonde (Matriz n+1 por k) + Mínimos quadrados
- 7. Problema: Regressão com coeficientes não lineares. Regressão com o modelo exponencial, potência e geométrica (mencionado na aula 24) (uma função para cada modelo)
 - a. Entrada: n pontos: (x 0,y 0) ... (x n,y n)
 - b. Saída: modelo escolhido com o coeficientes ou coeficientes
 - c. Especificação: Para todo 1<=i<=n, F(x i) aproximadamente y i
 - d. Algoritmo
 - Troca de variável (dicionário ou linerização)+ Vandermonde + Mínimos quadrados + troca de variável
- 8. Problema: Interpolação 2D
 - a. Entrada: x_0, x_1 ,y_0,y_1, z_00,z_01, z_10, z_11
 - b. Saída: um polinômio de grau 2 de duas variáveis
 - c. Especificação: Para todo 1<=i<=n, F(x_i,y_j)=zij
 - d. Algoritmo
 - i. Langrange 2D
- 9. Calcular a norma de um vetor v
 - a. Entrada: um vetor v e um vetor
 - b. Saída: um número z
 - c. Especificação z= sqrt(v_1^2 +v_2^2 + ... + v_n^2)
- 10. Problema: Resolver um sistema linear denso aproximadamente (Mínimos Quadrados) (resolver n equações lineares com n variáveis)
 - a. Entrada: Uma matriz densa nxn A e um vetor b
 - b. Saída: Um vetor x* nx1
 - c. Especificação: Ax* aproximadamente b (x*=argmin ||Ax-b||)
 - d. Algoritmo: Resolve o sistema A^tAx=A^tb
- 11. Problema: Resolver exatamente uma sistema linear denso
 - a. Entrada: Uma matriz densa nxn A e um vetor b
 - b. Saída: Um vetor x nx1
 - c. Especificação: Ax=b
 - d. Algoritmo: Resolver com LU O(n^3)
- 12. Problema: Resolver um sistema triangular superior
 - a. Entrada: Uma matriz triangular superior nxn U e um vetor b
 - b. Saída: Um vetor x nx1
 - c. Especificação: Ux=b

d. Algoritmo: Substituição Reversa O(n^2)

13. Problema: Resolver um sistema triangular inferior

- a. Entrada: Uma matriz triangular inferior nxn L e um vetor b
- b. Saída: Um vetor x nx1
- c. Especificação: Lx=b
- d. Algoritmo: Substituição Direta O(n^2)

14. Problema: Resolver um sistema diagonal

- a. Entrada: Uma matriz triangular diagonal nxn D e um vetor b
- b. Saída: Um vetor x nx1
- c. Especificação: Dx=b
- d. Algortimo: Só fazer n divisões O(n)

15. Problema: achar a inversa de uma matriz

- a. Entrada: uma matrix inversível A nxn (não-singular)
- b. Saída: uma matrix B nxn
- c. Especificação: A*B=B*A=I
- d. Algoritmos
 - i. Resolver com LU

16. Problema: Decomposição LU

- a. Entrada: uma matrix A nxn
- b. Saída: uma matrix triangular inferior L e um matriz triangular superior U
- c. Especificação: A=LU

17. Problema: PVC (Problema de Valores no Contorno) (só vamos resolver

- a. Problema específico: $y''(x)=c_1+c_2y(x)+c_3y'(x)$, $y(a)=y_a e y(b)=y_b$
- b. Entrada: a,b,y_a,y_b, n (natural), c_1,c_2,c_3
- c. Saída: vetor de y_2, y_3,...,y_(n+1) (temos escolhas aqui)
- d. Especificação: "y(x i) aproximadamente y i"
- e. Algoritmo: Criar uma matriz com diferenças finitas e resolver um sistema linear

18. Problema: Integração Numérica (com o número de intervalos)

- Entrada: uma função f (de uma variável), um natural n (número de intervalos), float a, float b
- b. Saída:
- c. Espeficação:
- d. Algoritmo: Método do Trapézio

19. Problema: Integração Numérica (com o erro)

- a. Entrada: uma função f (de uma variável), erro máximo, float a, float b, *M=maior valor de f"(x) no intervalo*
- b. Saída: um número S
- c. Espeficação: |(integral de f no intervalor a,b)- S| <= erro_máximo
- d. Algoritmo:
 - i. Soma de Riemann (Método do retângulo interpolação constante) (não precisa fazer na biblioteca)
 - ii. Método do Trapézio (interpolação linear)
 - iii. Método de Simpson (interpolação quadrática) (não fizemos e não precisa fazer na biblioteca)

- 20. Bônus: Problema: Integração Dupla
- 21. Derivada Numérica com uma função contínua
 - a. Entrada: uma função f (de uma variável), x, h
 - **b.** Saída: uma função z(x), (erro máximo como bonus)
 - c. Espeficação: z(x) aproximadamente y'(x)
 - d. Algoritmo:
 - i. Diferenças "para frente"
 - ii. Diferenças "para trás"
 - iii. Diferenças "centradas"

22. Derivada Numérica com uma função discreta

- **a.** Entrada: um vetor f com valores da função e um vetor x com os valores discretos de x
- **b.** Saída: um vetor y_linha (primeira ou segunda derivada)
- c. Espeficação: y linha aproximadamente y'
- d. Algoritmo:
 - i. Diferenças "para frente"
 - ii. Diferenças "para trás"
 - iii. Diferenças "centradas"

3 exemplos por função!!!!! Plots são bons exemplos

- 23. Problema: Resolver um sistema linear (métodos iterativos) (Não precisa implementar)
 - a. Algoritmos
 - i. Gauss-Seidel
 - ii. Gauss-Jacobi