# Continuous Mathematics Partial Differential Equations

Continuous Mathematics HT16

Stephen Cameron

University of Oxford Department of Computer Science

Cont. Maths HT16-8.1

# Leibniz integral rule

• We need this for the next example:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_a^b f(x,t) \, \mathrm{d}x = \int_a^b f_t(x,t) \, \mathrm{d}x$$

provided that f and  $f_t$  are continuous

• Outline proof; we have the general limits

$$\frac{\mathrm{d}g(t)}{\mathrm{d}t} = \lim_{h_1 \to 0} \frac{g(t+h_1) - g(t)}{h_1} \quad \int_a^b k(x) \, \mathrm{d}x = \lim_{h_2 \to 0} \sum_{a \le x_i \le b} h_2 \, k(x_i)$$

and so

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{a}^{b} f(x,t) \, \mathrm{d}x = \lim_{h_{1} \to 0} \frac{1}{h_{1}} \lim_{h_{2} \to 0} \sum_{a \le x_{i} \le b} h_{2} \left( f(x_{i}, t + h_{1}) - f(x_{i}, t) \right)$$

$$= \lim_{h_{2} \to 0} \lim_{h_{1} \to 0} \sum_{a \le x_{i} \le b} h_{2} \left( \frac{f(x_{i}, t + h_{1}) - f(x_{i}, t)}{h_{1}} \right)$$

Cont. Maths HT16-8.3

#### **PDEs**

- Ordinary differential equations are differential equations that only depend on total derivatives, e.g.  $\frac{dy}{dx}$ ,  $\frac{d^2y}{dx^2}$
- Partial differential equations are differential equations that depend on partial derivatives, for example

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = x + u$$

$$\frac{\partial}{\partial x} \left( \frac{u}{1+u} \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left( \frac{3u}{1+u} \frac{\partial u}{\partial y} \right) = e^{u}$$

Cont. Maths HT16-8.2

## Leibniz integral rule, continued

$$= \lim_{h_2 \to 0} \sum_{a \le x_i \le b} h_2 \lim_{h_1 \to 0} \left( \frac{f(x_i, t + h_1) - f(x_i, t)}{h_1} \right)$$
$$= \int_a^b f_t(x, t) dx$$

• There is a generalisation of this rule that we can use if a and b are functions of t which we quote without further proof:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{a(t)}^{b(t)} f(x,t) \, \mathrm{d}x = \int_{a(t)}^{b(t)} f_t(x,t) \, \mathrm{d}x + f(x,b(t)) \times b'(t) - f(x,a(t)) \times a'(t)$$

## **Example**

We have

$$\int_0^\infty e^{-tx} dx = \frac{1}{t}$$

Differentiate both sides a few times wrt t:

$$-\int_0^\infty x e^{-tx} dx = -\frac{1}{t^2}$$

$$\int_0^\infty x^2 e^{-tx} dx = \frac{2}{t^3}$$
...
$$(-1)^n \int_0^\infty x^n e^{-tx} dx = (-1)^n \frac{n!}{t^n}$$

$$\Rightarrow \int_0^\infty x^n e^{-x} dx = n!$$

Partial Differentia

Stephen Cameron

Cont. Maths HT16-8.5

#### The heat equation

Suppose a metal bar occupies the region 0 < x < L.</li>
 Assuming the temperature Θ(x, t) is uniform across the bar's cross section, the temperature in the bar is given by

$$\frac{\partial\Theta}{\partial t}=D\frac{\partial^2\Theta}{\partial x^2}+f(x,t)$$

where D > 0 is the *thermal diffusivity* and f(x, t) is an internal heat source (if one exists)

• We assume that we know the initial temperature

$$\Theta(x,0) = \Theta_0(x)$$

for some given function  $\Theta_0(x)$ 

• We also require boundary conditions for  $\Theta$  or  $\frac{\partial \Theta}{\partial x}$  at x=0 and x=L for all times t>0

Cont. Maths HT16-8.6

## Separable solutions to the heat equation

• Example: Find  $\Theta(x, t)$  that satisfies

$$\frac{\partial \Theta}{\partial t} = D \frac{\partial^2 \Theta}{\partial x^2} \qquad 0 < x < L$$

with initial conditions

$$\Theta(x,0) = 3\sin\frac{\pi x}{I}$$

with boundary conditions  $\Theta = 0$  at x = 0, L

- We will assume throughout these examples that D > 0
- We will first show that if we can find a solution then it is unique
- Suppose there are two solutions,  $\Theta_1$  and  $\Theta_2$ ; Let  $\Delta = \Theta_1 \Theta_2$
- It then follows by substituting  $\Delta$  into the equation and boundary conditions that

$$\frac{\partial \Delta}{\partial t} = D \frac{\partial^2 \Delta}{\partial x^2} \qquad 0 < x < L$$

with initial conditions and boundary conditions

$$\Delta(x,0)=0$$
  $\Delta=0$  at  $x=0,L$ 

Partial Differentia Equations

Stephen Camero

Cont. Maths HT16-8.7

#### Example, continued

• We define E(t) by

$$E(t) = \int_0^L [\Delta(x,t)]^2 dx \quad \Rightarrow \quad E(0) = 0, \qquad E(t) \ge 0$$

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_0^L \left[ \Delta(x,t) \right]^2 \, \mathrm{d}x = \int_0^L \frac{\partial}{\partial t} \left[ \Delta(x,t) \right]^2 \, \mathrm{d}x$$

$$= \int_0^L 2\Delta \frac{\partial \Delta}{\partial t} \, \mathrm{d}x = \int_0^L 2\Delta D \frac{\partial^2 \Delta}{\partial x^2} \, \mathrm{d}x$$

$$= \left[ 2\Delta D \frac{\partial \Delta}{\partial x} \right]_0^L - \int_0^L 2D \left( \frac{\partial \Delta}{\partial x} \right)^2 \, \mathrm{d}x$$

$$= -\int_0^L 2D \left( \frac{\partial \Delta}{\partial x} \right)^2 \, \mathrm{d}x \le 0$$

• Hence E(t) is a decreasing function; the only way all the conditions on E(t) can be met is if E(t) = 0 at all times t

$$\Rightarrow \qquad \Theta_1 = \Theta_2$$

Partial Differential Equations

Stephen Cameron

#### **Example, continued**

- We look for a separable solution  $\Theta(x,t) = X(x)S(t)$ . If we find a solution then we know by uniqueness that it will be the only solution
- We have

$$\frac{\partial \Theta}{\partial t} = X(x)S'(t)$$
  $\frac{\partial^2 \Theta}{\partial x^2} = X''(x)S(t)$ 

• We may write the governing equation as

$$X(x)S'(t) = DX''(x)S(t)$$
  
equivalently  $\frac{S'(t)}{DS(t)} = \frac{X''(x)}{X(x)}$ 

- The right-hand side of the last equation is a function only of x and not of t
- The left–hand–side is a function only of t and not of x
- The only way this can simultaneously be true is if both sides are equal to a constant, i.e.

$$\frac{S'(t)}{DS(t)} = \frac{X''(x)}{X(x)} = \lambda$$

Partial Differentia

Stephen Camero

# Example, continued

- We now think about boundary conditions
- We have  $\Theta(0,t)=0$  and  $\Theta(L,t)=0$
- As  $\Theta(x, t) = X(x)S(t)$  we must have

$$X(0)S(t)=0,$$
  $X(L)S(t)=0$ 

- We don't want S(t) = 0 for all times t this would give  $\Theta(x,t) = 0$
- We therefore have boundary conditions on X given by X(0) = 0 and X(L) = 0

Cont. Maths HT16-8.10

## **Example, contined**

• Suppose  $\lambda > 0$ . Then we can write  $\lambda = k^2$ , and so

$$\frac{\mathrm{d}^2 X}{\mathrm{d} x^2} - k^2 X = 0$$

- This has general solution  $X = Ae^{kx} + Be^{-kx}$
- The boundary conditions then give A = B = 0, and so X(x) = 0, and then  $\Theta(x, t) = 0$ . This isn't what we want the assumption  $\lambda > 0$  must be false
- Suppose now that  $\lambda = 0$
- We then have

$$\frac{X''(x)}{X(x)}=0$$

together with boundary conditions X(0) = 0 and X(L) = 0

- Again, this only has solution X(x) = 0
- We must have  $\lambda < 0$

Partial Differentia Equations

Cont. Maths HT16-8.9

Stephen Camero

Cont. Maths HT16-8.11

## **Example, continued**

• We therefore write

$$\frac{X''(x)}{X(x)} = -k^2$$

• This equation has general solution

$$X(x) = A \sin kx + B \cos kx$$

• We now fit the boundary conditions

$$X(0) \Rightarrow B = 0$$
  $X(L) = 0 \Rightarrow A \sin kL = 0$ 

- If A = 0 we would have the trivial solution X(x) = 0, and so  $\Theta(x, t) = 0$  which violates the initial conditions
- Instead,  $\sin kL = 0$  and so  $kL = n\pi$  where n = 1, 2, 3, ...

Partial Differenti Equations

Stephen Cameron

## **Example, continued**

• When  $kL = n\pi$  the equation for S(t) is

$$S'(t) = -rac{{\it Dn}^2\pi^2}{L^2}S(t) \quad \Rightarrow \quad S(t) = C{
m e}^{-{\it Dn}^2\pi^2t/L^2}$$

• Combining the solutions for X(x) and S(t), we see that

$$E_n \sin \frac{n\pi x}{l} e^{-Dn^2\pi^2t/L^2}$$
 where  $E_n = AC$ 

is a solution that satisfies the boundary conditions for any n = 1, 2, 3

• The general solution is the sum of these solutions:

$$\Theta(x,t) = \sum_{i=1}^{N} E_n \sin \frac{n\pi x}{L} e^{-Dn^2\pi^2 t/L^2}$$

where  $E_n$ , n = 1, 2, 3, ... are constants that are fitted from the initial conditions

• In this case,  $E_1 = 3$  and  $E_n = 0$  for  $n = 2, 3, 4, \dots$  and so

$$\Theta(x,t) = 3\sin\frac{n\pi x}{L}e^{-Dn^2\pi^2t/L^2}$$

Partial Differentia

Stephen Cameror

Cont. Maths HT16-8 13

#### Partial Differentia Equations

Stephen Cameron

#### **Another Example**

Consider the PDE

$$\frac{\partial \Theta}{\partial t} = D \frac{\partial^2 \Theta}{\partial x^2}, \qquad 0 < x < L$$

with boundary conditions  $\frac{\partial \Theta}{\partial x} = 0$  at x = 0, and  $\Theta = 0$  at x = L, and initial conditions

$$\Theta(x,0) = L^2 - x^2$$

- We again proceed by seeking a separable solution  $\Theta(x,t) = X(x)S(t)$
- Boundary conditions give X'(0) = 0 and X(L) = 0
- As with the previous example we may write

$$\frac{X''(x)}{X(x)} = \frac{S'(t)}{D S(t)} = -k^2$$

from which we may deduce that

$$X(x) = A \sin kx + B \cos kx$$

Cont. Maths HT16-8.15

### **Example, continued**

- Note that the *only* Fourier solution to  $f(x) = 0 \ \forall x$  is  $a_m = b_n = 0$
- We see that initially the bar has a positive temperature inside the bar
- The ends of the bar are maintained at a temperature  $\Theta=0$ , and so we would expect that this would cool the bar down
- This is evident from the solution; as  $t \to \infty$  we see that  $\Theta(x,t) \to 0$  for all values of x
- This use of 'common sense' is standard in solving equations that deal with physical systems
- The equations are in fact reversible wrt time; but we know that 'hot things get cooler' (in the absence of a heat source)

artial Differential

Stephen Camero

Cont. Maths HT16-8.14

## Another Example, continued

- The boundary condition X'(0) = 0 implies A = 0
- The boundary condition X(L) = 0 gives  $B \cos kL = 0$
- For a non–trivial solution we require  $kL = (n + \frac{1}{2})\pi$ , n = 0, 1, 2, ...
- We therefore have, for  $n = 0, 1, 2, \dots$

$$X(x) = B\cos\frac{(2n+1)\pi x}{2L}, \qquad k = \frac{(2n+1)\pi}{2L}$$

• Associated with this X(x) is the equation for S(t):

$$S'(t) = -\frac{(2n+1)^2 \pi^2 D}{4L^2} S(t)$$

with solution

$$S(t) = Ce^{-(2n+1)^2\pi^2Dt/(4L^2)}$$

Partial Differenti Equations

Stephen Camero

## **Another Example, continued**

• For n = 1, 2, 3, ... the following is a solution of the PDE:

$$P_n \cos \frac{(2n+1)\pi x}{2I} e^{-(2n+1)^2\pi^2 Dt/(4L^2)}$$

where  $P_n$  is a constant

• A general solution is a linear sum of these solutions:

$$\Theta(x,t) = \sum_{n=1}^{\infty} P_n \cos \frac{(2n+1)\pi x}{2L} e^{-(2n+1)^2 \pi^2 Dt/(4L^2)}$$

- The constants  $P_n$  are determined by the initial conditions  $\Theta(x,0) = L^2 x^2$
- Setting t = 0 in the infinite sum and equating to the initial conditions gives

$$L^2 - x^2 = \sum_{n=1}^{\infty} P_n \cos \frac{(2n+1)\pi x}{2L}$$

Partial Differential

Stephen Cameron

Cont. Maths HT16–8 17

## **Another Example, continued**

· We also have

$$\int_0^L \cos^2 \frac{(2n+1)\pi x}{2L} dx = \frac{1}{2} \int_0^L 1 + \cos \frac{(2n+1)\pi x}{L} dx$$
$$= \frac{L}{2}$$

• The constants  $P_n$  are therefore given by

$$P_n = \frac{2}{L} \int_0^L (L^2 - x^2) \cos \frac{(2n+1)\pi x}{2L} dx$$

which can be evaluated by integration by parts; I get

$$P_n = (-1)^n \frac{32L^2}{(2n+1)^3 \pi^3}$$

Partial Differential Equations

Stephen Cameron

Cont. Maths HT16-8.19

### **Another Example, continued**

- We now use an approach similar to that used for Fourier series to determine the constants P<sub>n</sub>
- Assuming we may interchange the order of the infinite summation and integration gives

$$\int_0^L (L^2 - x^2) \cos \frac{(2m+1)\pi x}{2L} \, \mathrm{d}x = \sum_{n=1}^\infty P_n \int_0^L \cos \frac{(2m+1)\pi x}{2L} \cos \frac{(2n+1)\pi x}{2L} \, \mathrm{d}x$$

• Remembering that  $\cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B))$  we have, for integers  $m \neq n$ :

$$\int_{0}^{L} \cos \frac{(2m+1)\pi x}{2L} \cos \frac{(2n+1)\pi x}{2L} dx$$

$$= \frac{1}{2} \int_{0}^{L} \cos \frac{(n+m+1)\pi x}{L} + \cos \frac{(n-m)\pi x}{L} dx$$

$$= \frac{1}{2} \left[ \frac{L}{(n+m+1)\pi} \sin \frac{(n+m+1)\pi x}{L} + \frac{L}{(n-m)\pi} \sin \frac{(n-m)\pi x}{L} \right]_{0}^{L} = 0$$

Cont. Maths HT16-8 18

#### **Yet Another Example**

Solve

$$\frac{\partial \Theta}{\partial t} = \frac{\partial^2 \Theta}{\partial x^2}, \qquad 0 < x < 1, \qquad t > 0$$

with boundary conditions

$$\Theta = 2$$
 at  $x = 0$ . and  $\Theta = 4$  at  $x = 1$ 

and initial conditions

$$\Theta(x,0)=2+2x+3\sin\pi x$$

- All the boundary conditions we have considered before are of the form  $\Theta=0$  or  $\frac{\partial \Theta}{\partial x}=0$ , which are known as homogeneous boundary conditions
- This allows us to find non-trivial sine and cosine solutions in the x variable
- At first sight, we can't do this for the non homogeneous boundary conditions for this problem.
- But there is a way around it write  $U = \Theta (2 + 2x)$

Partial Differentia

Stephen Camero

## Yet Another Example, continued

Noting that

$$\frac{\partial U}{\partial t} = \frac{\partial \Theta}{\partial t}, \qquad \frac{\partial^2 U}{\partial t^2} = \frac{\partial^2 \Theta}{\partial t^2}$$

we see that U satisfies the PDE

$$\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2}, \qquad 0 < x < 1, \qquad t > 0$$

• The boundary conditions become

$$U=0$$
 at  $x=0$ , and  $U=0$  at  $x=1$ 

and the initial conditions become

$$U(x,0) = 3\sin \pi x$$

- The equation for *U* has homogeneous boundary conditions, so can be solved in the same way as we have solved earlier equations
- The solution for ⊖ can then be recovered by writing

$$\Theta(x, t) = U(x, t) + 2 + 2x$$

Partial Differential

Stephen Cameron

### Similarity solutions to the heat equation

Suppose we want to solve

$$\frac{\partial \Theta}{\partial t} = D \frac{\partial^2 \Theta}{\partial x^2}, \qquad x, t > 0$$

with initial and boundary conditions

$$\Theta(x,0) = 0 \ (x > 0) \quad \Theta(0,t) = U, \Theta(\infty,t) = 0 \ (t > 0)$$

- Physically this corresponds to a semi-infinite bar occupying the region  $0 < x < \infty$ , that is initially at zero temperature. At time t=0 the end at x=0 is raised to temperature U
- Let  $\eta = x/\sqrt{Dt}$ , and let  $\Theta = f(\eta)$
- $\eta$  is known as a *similarity variable*

hen Cameron

Stophon Camero

Cont. Maths HT16-8.22

## Yet Another Example, continued

 On Worksheet 1 you showed that for the heat equation on the previous slide this implies that

$$f''(\eta) + \frac{1}{2}\eta f'(\eta) = 0$$

• Integrating once gives, for arbitrary constant B,

$$f'(\eta) = B\mathrm{e}^{-\eta^2/4}$$

• Integrating once more gives, for arbitrary constant A,

$$f(\eta) = A + B \int_{s-0}^{\eta} e^{-s^2/4} ds$$

- Noting that x > 0, t = 0 corresponds to  $\eta = x/\sqrt{Dt} = \infty$ , the initial condition corresponds to  $f(\infty) = 0$
- Similarly, x = 0, t > 0 corresponds to  $\eta = 0$  and so the first boundary condition corresponds to f(0) = U.

Partial Differentia Equations

Cont. Maths HT16-8.21

Stephen Cameron

Cont. Maths HT16-8.23

## Yet Another Example, continued

- $x = \infty, t > 0$  corresponds to  $\eta = \infty$  the second boundary condition corresponds to  $f(\infty) = 0$ . Note this is consistent with other conditions on f
- Using these conditions on f(0) and  $f(\infty)$  we may determine A and B to give

$$u(x,t) = f(\eta) = U\left(1 - \frac{\int_{s=0}^{\eta} e^{-s^2/4} ds}{\int_{s=0}^{\infty} e^{-s^2/4} ds}\right)$$

Partial Differenti Equations

## **Vibrating String**

 Another standard example. Consider a tensioned string of length L attached its ends. The equation connecting its (small) displacement u as a function of distance along the string x and time t is

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad u(0, t) = u(L, t) = 0$$

· We justify this later. We also want initial conditions

$$u_t(x,0) = 0$$
, and given  $u(x,0) = \begin{cases} \frac{2xd}{L} & 0 < x \le \frac{L}{2} \\ \frac{2(L-x)d}{L} & \frac{L}{2} < x \le L \end{cases}$ 

which is equivalent to the string being plucked in its centre



Cont. Maths HT16-8.25

#### ifferential

Stephen Cameron

#### **Model Justification**

- Can model the string as many discrete masses connected by short springs
- The longitudual tension in the string T is assumed large compared with the transversal forces, so if F(x,t) is the force to the right in the string and Tr(x,t) the transversal component the string

$$T = F(x,t)\cos\theta$$
  $Tr(x,t) = F(x,t)\sin\theta = T\tan\theta = T\frac{\partial u}{\partial x}(x,t)$ 

• The overall transversal force on a small piece of string is proportional to the rate of change of Tr(x, t):

$$\frac{\partial^2 u}{\partial t^2}(x,t) \propto \frac{\partial}{\partial x} \frac{\partial u}{\partial x}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t)$$



Cont. Maths HT16-8.26

#### Solution

• Try for a separated solution

$$u(x,t) = X(x)T(t) \Rightarrow XT'' = c^2X''T$$

• Re-organising, and avoiding exponential solutions

$$\frac{T''}{T} = c^2 \frac{X''}{X} = -\lambda^2 \quad \Rightarrow \quad X(x) = A_\lambda \sin \frac{\lambda}{c} x + B_\lambda \cos \frac{\lambda}{c} x$$

- $u(0,t) = 0 \Rightarrow B_{\lambda} = 0$
- $u(L,t)=0 \Rightarrow \lambda=\frac{cn\pi}{L}$
- Now include T(t); we must have

$$X(x) = A_n \sin \frac{n\pi}{L} x$$
  $T(t) = C_n \cos \frac{n\pi}{L} ct + D_n \sin \frac{n\pi}{L} ct$ 

- $u_t(x,0) = 0 \Rightarrow D_n = 0$
- WLOG,  $C_n = 1$  and

$$u(x,t) = \sum_{n} A_{n} \sin(\frac{n\pi}{L}x) \cos(\frac{n\pi}{L}ct)$$

Partial Differentia Equations

Stephen Camero

#### Solution, continued

 Only at this point do we need to match the initial shape of the string. We have the Fourier series for this shape from an example on Worksheet 3;

$$\frac{8d}{\pi^2} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} \sin\left(\frac{(2k+1)\pi x}{L}\right)$$

and so

$$A_n = \begin{cases} \left(\frac{8d}{\pi^2 n^2}\right) \times (-1)^{(n-1)/2} & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$$

- So there is a fundamental frequency, followed by odd harmonics, with harmonic n of magnitude  $\frac{1}{n^2}$  compared to the fundamental.
- The spectrum of the relative size of the harmonics is what makes up the tone of a musical note

Stanban Camarar

Cont. Maths HT16-8.28

## **Standing Waves**

 We had the general solution (before imposing initial shape):

$$u(x,t) = \sum_{n} A_{n} \sin(\frac{n\pi}{L}x) \cos(\frac{n\pi}{L}ct)$$

• Using the identity  $2 \sin X \cos Y = \sin(X + Y) + \sin(X - Y)$  we get

$$u(x,t) = W(x+ct) + W(x-ct)$$
  
where  $W(\theta) = \frac{1}{2} \sum_{n} A_n \sin(\frac{n\pi}{L}\theta)$ 

 This provides another interpretation of the solution, namely as two standing waves travelling in opposite directions with velocity c, and reflecting at the end-points.

Cont. Maths HT16-8.29

Cont. Maths HT16-8.31

# Example

Solve

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} - x^2 - y^2 = 0$$

for  $x^2 + y^2 < 4$ , with boundary condition u = 5 on  $x^2 + y^2 = 4$ 

• Noting that  $x^2 + y^2 = r^2$  we may write this as

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = r^2$$

for r < 2, with boundary condition u = 5 on r = 2

- As there is no dependence on  $\theta$  in the boundary conditions or source term we seek a solution u=u(r), i.e. we neglect the dependence on  $\theta$
- The partial derivatives with respect to r are now total derivatives, and the partial derivatives with respect to  $\theta$  are zero
- The equation therefore becomes

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}u}{\mathrm{d}r}\right) = r^2$$

Partial Differential

Stephen Cameron

# Poisson's equation

Poisson's equations in two dimensions is the partial differential equation

$$D\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + f(x, y) = 0$$

where D is constant

- This models many time independent diffusion processes e.g. chemical, heat where f(x, y) is a source term
- An exercise on Worksheet 1 was to show that, for cylindrical polar coordinates  $x = r \cos \theta$ ,  $y = r \sin \theta$ ,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

• We may therefore write Poisson's equation as

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} + f(r,\theta) = 0$$

artial Differential

Stephen Camero

Cont. Maths HT16-8.30

## Example, continued

• This has general solution

$$u = \frac{1}{16}r^4 + A\log r + B$$

- We first note that u must be finite at r = 0 as  $\lim_{r\to 0} \log r = -\infty$  this requires A = 0
- The other boundary condition is u = 5 on r = 2 this yields B = 4
- The solution is therefore

$$u = \frac{1}{16}r^4 + 4$$
$$= \frac{1}{16}(x^2 + y^2)^2 + 4$$

Partial Differentia Equations

Stephen Cameror

## Separable solutions to Poisson's equation

• Suppose we want to solve

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad 0 < x, y < 1$$

with boundary conditions

$$u = 0,$$
  $x = 0, x = 1, y = 1$   
 $u = x(1 - x),$   $y = 0$ 

• We seek a separable solution u(x, y) = X(x)Y(y), with boundary conditions

$$X(0) = 0,$$
  $X(1) = 0$   
,  $Y(1) = 0$ 

• Substitution into the given PDE gives X''Y + XY'' = 0 which may be written

$$\frac{X''}{X} = -\frac{Y''}{Y} = -k^2$$

Partial Differential

Stephen Cameror

Cont. Maths HT16-8.33

## Separable solutions, continued

• Solution may be written

$$u(x,y,t) = \sum_{n=1}^{\infty} P_n \left( e^{n\pi y} - e^{n\pi(2-y)} \right) \sin n\pi x$$

• To set u = x(1 - x) on y = 0 we note that

$$x(1-x) = u(x,0)$$

$$= \sum_{n=1}^{\infty} P_n (1 - e^{2n\pi}) \sin n\pi x$$

• We will now follow the Fourier type approach to determine the constants  $P_n$ . Noting that for integers m, n we have

$$\int_0^1 \sin m\pi x \sin n\pi x \, dx = \begin{cases} 0 & m \neq n \\ \frac{1}{2} & m = n \end{cases}$$

we may write

$$P_n = \frac{2}{1 - e^{2n\pi}} \int_0^1 x(1 - x) \sin n\pi x \, dx = \begin{cases} \frac{8}{n^3 \pi^3 (e^{2n\pi} - 1)} & n \text{ even} \\ 0 & n \text{ odd} \end{cases}$$

Partial Differentia Equations

Stephen Cameror

Cont. Maths HT16-8.35

#### Separable solutions, continued

 We have two boundary conditions on X, so start with this equation first:

$$X'' + k^2 X = 0$$

• Boundary conditions give, for arbitrary constant B

$$X(x) = B \sin n\pi x, \qquad n = 1, 2, 3, ...$$

and  $k = n\pi$ .

ODE for Y(y) becomes

$$Y'' - n^2 \pi^2 Y = 0$$

• This has general solution

$$Y(y) = Ce^{n\pi y} + De^{-n\pi y}$$

- Applying the boundary condition Y(1)=0 gives  $D=-C\mathrm{e}^{2n\pi}$
- General solution becomes  $Y(y) = C \left( e^{n\pi y} e^{n\pi(2-y)} \right)$

Partial Differentia

Stenhen Camero

Cont Maths HT16-8 34

## Summary

- We can normally assume that PDEs have a unique solution
- Separation of variable used to construct separate (but linked) ODEs for each variable
- Boundary conditions on one variables can be used to constrain the common constant
- Common sense is also useful. For physical systems quantities can't be infinite, entropy tends to increase with time, etc.
- Tricks are also useful in solving the equations
- Fourier techniques can be used to combine solutions, with the constants established from the boundary conditions

Partial Differenti Equations

Stephen Cameror