卷积神经网络

给机器一双慧眼

预备知识

参考教材

Deep Learning

http://www.deeplearningbook.org/

https://github.com/HFTrader/DeepLearningBook

卷积神经网络(CNN)

卷积的本质

f(t) - 原始信号(输入); g(t) - 激励信号(特征模板)

卷积是根据激励信号对原始信号进行处理(滤波)的运算!

图像的卷积

1	1,	1 _{×0}	0 _{×1}	0
0	1,0	1,	1,0	0
0	0 _{×1}	1 _{×0}	1,	1
0	0	1	1	0
0	1	1	0	0

Image

4	თ	

Convolved Feature

CNN的本质

图像处理中的大部分滤波函数都是卷积操作

Kernel

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

传统机器学习 – 人工构造滤波器进行图像特征的提取 卷积神经网络 – 机器自动学习出对特定问题最有效的滤波器

卷积层

cs231n.github.io

下采样层 (Pooling Layer)

7
9

Convolved Layer

Pooled Layer

Polling的意义

Max Pooling

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \rightarrow 4$$

Average Pooling

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \rightarrow 2.5$$

- · Polling是将小邻域内的特征点整合得到新特征的过程。
- · Polling能够抵抗图像中的噪声,包括平移、伸缩等。
- 这里的Polling无法抵抗图像旋转噪声!

著名的CNN结构

CNN的应用

真枪实弹

TensorFlow Tutorial

https://www.tensorflow.org/versions/r0.11/tutorials/mnist/pros/index.html

Next Class - 递归神经网络

参考教材

Deep Learning

http://www.deeplearningbook.org/

https://github.com/HFTrader/DeepLearningBook

