Study of WZ + Heavy Flavor Production in the Fully Leptonic Channel

Aaron Webb University of Texas at Austin

Abstract

A measurement of WZ produced with an associated heavy flavor jet is performed using $140~fb^{-1}$ of proton-proton collision data at $\sqrt{s}=13~\text{TeV}$ from the ATLAS experiment at the LHC. The measurement is performed in the fully leptonic decay mode, $WZ \to l\nu ll$. Events are separated into inclusive 1-jet and 2-jet categories, and regions formed based on pseudo-continuous b-tag spectrum of the associated jets are fit to data.

Introduction

- WZ + heavy flavor is a difficult process to simulate accurately, introducing a large uncertainty for analyses that include it as a background
- Many major analyses include WZ + b as a background, motivating an accurate measurement of this process
- The continuous b-tagging spectrum of the jets is used to separate out WZ + b from WZ + light, forming regions which are fit to data.

Figure 1: WZ + b and WZ + c production

Figure 2: Distribution of DL1r score for b-, c-, and light jets

Fitting Procedure

- MC predictions are fit to the full 2015 and 2016 dataset, 36.1 fb⁻¹ of $\sqrt{s}=13$ TeV data
- Truth jets are binned based on the b-jet efficiency working points of the DL1r algorithm
- The jets are separated by flavor into three templates, which are fit to data
- The fraction of each template is shifted to provide a best fit value, and the shape of the templates are allowed to vary within MCstat errors

Event Selection:

- Exactly three, tight, isolated leptons with $p_T > 20$ GeV, $|\eta| < 2.47$
- $M_{l^+l^-}$ of a pair of oppositely charged, same flavor leptons within 10 GeV of 91.2 GeV
- Require jet $p_T > 25$ GeV, $|\eta| < 2.5$

Figure 3: Continuous b-tagging spectrum of the diboson enriched region.

Figure 4: Continuous b-tagging spectrum based on DL1r working points by flavor, before and after fitting to data

Figure 5: Number of jets by truth flavor as a function of nJets, before and after fit

Results

Flavor	Prefit/Postfit Yield
Truth b Jets	1.18 ± 0.14
Truth c Jets	2.21 ± 0.31
Truth light Jets	0.88 ± 0.06

Figure 6: Ratio of pre-fit and post-fit yields of each jet flavor

Covariance Matrix:

Flavor	B-Jets	Charm-Jets	Light-Jets
B-Jets	1	0.37	-0.19
Charm-Jets	0.37	1	-0.76
Light-Jets	-0.19	-0.76	1

Figure 7: Matrix showing the covariance between the templates in the fit

- Good agreement is acheived between post-fit results and data.
- While a large shift in the charm jet contribution is observed, this is strongly correctly with the light jet contribution, as shown in figure 7.
- The best fit result shifts the b-jet contribution by around 20%, suggesting that WZ+b can be predicted with greater accuracy.

Future Work

- Apply systematic uncertainties
- Repeat the fit applying constraints on WZ+c and WZ+l based on recent calibration studies
- Make a measurement of WZ+b, and apply corresponding uncertainty to $t\bar{t}H$ analysis.