Workshop session 3 (September 2024)

Double integrals

Exercice 29. Compute the following double integrals by two integrations

(1)
$$\int_{y=0}^{1} \int_{x=0}^{2} x^{2} dx dy$$
 and $\int_{y=0}^{1} \int_{x=0}^{2} y^{2} dx dy$ (3) $\int_{0}^{\pi/2} \int_{0}^{\pi/4} \sin(x+y) dx dy$ and $\int_{1}^{2} \int_{0}^{2} \frac{dx dy}{(x+y)^{2}}$

(2)
$$\int_{y=2}^{2e} \int_{x=1}^{e} 2xy \, dx \, dy$$
 and $\int_{y=2}^{2e} \int_{x=1}^{e} \frac{dx \, dy}{xy}$ (4) $\int_{0}^{1} \int_{1}^{2} y \, e^{xy} \, dx \, dy$ and $\int_{-1}^{1} \int_{0}^{3} \frac{dy \, dx}{\sqrt{3+2x+y}}$

Exercice 30. Draw the region and compute the area. Then invert the order of integration (mind the boundaries) and compute again the resulting area.

(1)
$$\int_{x=1}^{2} \int_{y=1}^{2x} dy \, dx$$

(3)
$$\int_0^\infty \int_{e^{-2x}}^{e^{-x}} dy \, dx$$
 (5) $\int_{-1}^1 \int_{y^2}^1 dx \, dy$

$$(5) \int_{-1}^{1} \int_{y^2}^{1} dx \, dy$$

(2)
$$\int_0^1 \int_{x^3}^x dy \, dx$$

(4)
$$\int_{-1}^{1} \int_{x^2-1}^{1-x^2} dy \, dx$$
 (6) $\int_{-1}^{1} \int_{x=y}^{|y|} dx \, dy$

(6)
$$\int_{-1}^{1} \int_{x=y}^{|y|} dx \, dy$$

Exercice 31. Compute the following integrals

(1)
$$\int_0^b \int_0^a \frac{\partial^2 f}{\partial x \partial y} \, dx \, dy$$

(2)
$$\int_0^b \int_0^a \frac{\partial f}{\partial x} dx dy$$

CHANGE OF VARIABLES

Exercice 11. The domain R is a disk share with: $0 \le r \le 1$ and $\pi/4 \le \theta \le 3\pi/4$.

- (1) What is the area of R? Verify by integration in polar coordinates.
- (2) Find bounds on $\iint dy dx$ to get area of ?? R, and integrate. Extra: Find the limits on $\iint dx dy$.
- (3) The equation (2.1) with $\alpha = \pi/4$ rotates R in the region uv. We then have $S = \underline{\hspace{1cm}}$. Find bounds on $\iint du \, dv$.
- (4) Calculate the height of the centroid \overline{y} of R by changing $\iint y \, dx \, dy$ to polar coordinates. Divide by the area of R.
- (5) The region R is characterized by $\overline{x} = 0$ because _____. After the rotation of $\alpha = \pi/4$, the center of gravity $(\overline{x}, \overline{y})$ of R becomes the center of gravity located in _____ of S.
- (6) Find the center of any corner $0 \le r \le A$, $0 \le \theta \le b$.

Exercice 13. Using polar coordinates, find the volume below the surface of equation $z = x^2 + y^2$ above the unit disk $x^2 + y^2 \le 1$.