REAL ANALYSIS

LECTURE NOTES

ABSTRACT. The Notes indicate what we do in the lectures, but are not a complete replacement of the book and lectures. The text is from two books of *Real Analysis*:

- [1] Xingwei Zhou & Wenchang Sun: Real Variable Analysis, the third edition, Science Press, 2014.
- [2] E. Stein & R. Shakarchi: Real Analysis, Princeton University Press, 2005.

L^p Spaces

We shall give an introduction for the space L^p space, where $1 \leq p < \infty$, given by

$$L^p(E) = \{ f : f \text{ is measurable on } E, |f|^p \in L^1(E) \},$$

where E is a measurable set in \mathbb{R}^n (in particular one can take $E = \mathbb{R}^n$). We will see that $L^p(E)$ is a normed space with the norm $\|\cdot\|$ defined by

$$||f||_p = ||f||_{L^p} = ||f||_{L^p(E)} = \left(\int_E |f|^p\right)^{\frac{1}{p}},$$

and is complete (w.r.t. the metric $d_p(f,g) = ||f - g||_p$) and separable ¹. Also, L^p convergence implies the convergence in measure (hence Riesz theorem can be used).

We will also define the normed space

$$L^{\infty}(E) = \{ f : f \text{ is measurable on } E, \|f\|_{\infty} < \infty \},$$

where E is a measurable set in \mathbb{R}^n (can be taken as $E = \mathbb{R}^n$), and

$$||f||_{\infty} = ||f||_{L^{\infty}} = ||f||_{L^{\infty}(E)} = \inf\{M : |f(x)| \le M \text{ a.e. } x \in E\}.$$

The norm $\|\cdot\|_{\infty}$ is also called the essential sup norm. This space is complete (w.r.t. the metric $d_{\infty}(f,g) = \|f-g\|_{\infty}$), and L^{∞} convergence implies the uniform convergence (outside a zero measure set). But $L^{\infty}(E)$ is not separable when m(E) > 0.

¹We say a metric space (X, d) is separable, if there exists a countable collection $\{f_k\}$ of elements in X such that their linear combinations are dense in X.

1. Some elementary properties

Lemma 1.1 (Young's inequality). Let a, b, p, q be positive real numbers, and 1/p+1/q = 1. Then

$$(1.1) ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

The equality holds if and only if $a^p = b^q$. Case p = q = 2 is known as Cauchy's inequality.

Proof. Consider the function $\phi(t) = t^{\frac{1}{p}}$, $t \ge 0$. It is obviously concave. Therefore

$$t^{\frac{1}{p}} = \phi(t) \le \phi'(1)(t-1) + \phi(1) = \frac{1}{p}t + \frac{1}{q}, \quad \forall \ t \ge 0,$$

with equality holding if and only if t = 1. Inserting $t = a^p/b^q$ in the inequality and then multiplying b^q at both sides, we infer that

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q.$$

The equality holds if and only if $a^p = b^q$.

Lemma 1.2 (Hölder's inequality). Let E be a measurable set of \mathbb{R}^n . Suppose $f \in L^p(E)$ and $g \in L^q(E)$, where 1 and <math>1/p + 1/q = 1. Then $fg \in L^1(E)$ and

$$||fg||_1 \le ||f||_p ||g||_q.$$

The equality holds if and only if there is a constant $\lambda \geq 0$ such that $|f(x)|^p = \lambda |g(x)|^q$ for a.e. $x \in E$. Case p = q = 2 is known as Schwarz inequality.

Proof. If $||f||_p = 0$ then f(x) = 0 for a.e. $x \in E$. Then (1.2) holds. Similar result applies to $||g||_q = 0$.

Suppose both $||f||_p$ and $||g||_q$ are positive. Inserting

$$a = \frac{|f(x)|}{\|f\|_p}$$
 and $b = \frac{|g(x)|}{\|g\|_q}$

in (1.1) gives the following pointwise estimate

$$\frac{|f(x)|}{\|f\|_p} \frac{|g(x)|}{\|g\|_q} \le \frac{1}{p} \frac{|f(x)|^p}{\|f\|_p^p} + \frac{1}{q} \frac{|g(x)|^q}{\|g\|_q^q}.$$

Integrating over E yields

$$\int_{E} |fg| \le ||f||_p ||g||_q$$

as desired. The equality holds if and only if, by Lemma 1.1,

$$\frac{|f(x)|^p}{\|f\|_p^p} = \frac{|g(x)|^q}{\|g\|_q^q}, \text{ for a.e.} x \in E.$$

Namely, $|f(x)|^p = \lambda |g(x)|^q$ for a.e. $x \in E$ and for some constant $\lambda \ge 0$.

Lemma 1.3 (Minkowski inequality). Let E be a measurable set of \mathbb{R}^n . Suppose $f, g \in L^p(E)$, $1 \leq p < \infty$. Then $f + g \in L^p(E)$ and

$$||f + g||_p \le ||f||_p + ||g||_p.$$

The equality then holds if and only if $|f| = \lambda |g|$ a.e. for some $\lambda \geq 0$.

Proof. It is readily seen that (1.3) holds when p=1, by using the pointwise triangle inequality. The equality then holds if and only if $|f| = \lambda |g|$ a.e.

Consider the case p > 1. We have

$$||f+g||_p^p \leq \int_E |f||f+g|^{p-1} + \int_E |g||f+g|^{p-1}$$

$$\leq ||f||_p \Big(\int_E |f+g|^p\Big)^{1-\frac{1}{p}} + ||g||_p \Big(\int_E |f+g|^p\Big)^{1-\frac{1}{p}}.$$

The equality holds if and only if $|f| = \lambda g$ a.e. Dividing $||f + g||_p^{p-1}$ at both sides gives the desired result.

Lemma 1.4. Let E be a measurable set in \mathbb{R}^n . If $f, g \in L^{\infty}(E)$, then

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

The equality holds if and only if $|f| = \lambda |g|$ a.e. for some constant $\lambda \geq 0$.

Proof. It is direct to see this by the definition.

We now state the main result of this section.

Theorem 1.1. Let E be a measurable set of \mathbb{R}^n and $1 \leq p \leq \infty$. Then $L^p(E)$ is a normed linear space.

Proof. Suppose $a, b \in \mathbb{R}$, $f, g \in L^p(E)$. It is not hard to see $af + bg \in L^p(E)$.

We can also verify

- (i) $||f||_p = 0$ if and only if f(x) = 0 for a.e. $x \in E$;
- (ii) $\|\lambda f\|_p = |\lambda| \|f\|_p$;
- (iii) $||f + g|| \le ||f||_p + ||g||_p$.

These are consequences of Lemmas 1.3 and 1.4.

Remark 1.1. The L^p space can be defined for complex-valued functions, with some minor but needed changes. We also see that such space is a normed (complex) linear space. In this notes, we consider real-valued functions. But the results also hold for complex-valued functions.

Some other observations are in order.

One may have occasion to use a generalisation of Hölder's inequality to m functions f_1, \ldots, f_m , lying respectively in spaces L^{p_1}, \ldots, L^{p_m} , where

$$\frac{1}{p_1} + \dots + \frac{1}{p_m} = 1.$$

The resulting inequality, obtainable from the case m=2 by an induction argument, is the following.

Proposition 1.1. Suppose $p_i > 0$, $1 \le i \le m$, and $\sum_{i=1}^m p_i^{-1} = 1$. Let E be a measurable set in \mathbb{R}^n and $f_i \in L^{p_i}(E)$, $1 \le i \le m$. Then

$$\int_{E} f_{1} \cdots f_{m} \leq ||f_{1}||_{p_{1}} \cdots ||f_{m}||_{p_{m}}.$$

As a simple consequence of Hölder inequality, we have the following.

Proposition 1.2. Let E be measurable set in \mathbb{R}^n and $0 . Suppose <math>\lambda \in [0, 1]$ is such that $1/\sigma = \lambda/p + (1-\lambda)/r$. Then

$$||f||_{\sigma} \le ||f||_{r}^{\lambda} ||f||_{r}^{1-\lambda}.$$

As a consequence, $L^p(E) \cap L^r(E) \subseteq L^{\sigma}(E)$.

Proof. This is an exercise.

It is also of interest to study the L^p norm as a function of p. Let E be a measurable in \mathbb{R}^n of finite measure. Given a measurable function f, write

$$\Phi_f(p) = \left(\oint_E |f|^p \right)^{\frac{1}{p}} = [m(E)]^{-\frac{1}{p}} ||f||_p.$$

Proposition 1.3. Suppose E is of finite measure in \mathbb{R}^n . Let $\Phi_f(p)$ be as above. Then

- (i) $\Phi_f(p)$ is non-decreasing in p;
- (ii) $\Phi_f(p)$ is logarithmically convex in p^{-1} .

As a consequence $L^p(E) \subseteq L^{p'}(E)$ if $p > p' \ge 1$.

Proof. By virtue of Hölder inequality, we have

$$\int_{E} |f|^{p'} = \int_{E} 1 \cdot |f|^{p'} \le [m(E)]^{1 - \frac{1}{\lambda}} \left(\int_{E} |f|^{p'\lambda} \right)^{\frac{1}{\lambda}}, \quad \forall \ \lambda > 1.$$

Taking $\lambda = p/p'$, we see that

$$\int_{E} |f|^{p'} \le [m(E)]^{1 - \frac{p'}{p}} \left(\int_{E} |f|^{p} \right)^{\frac{p'}{p}}.$$

This shows (i).

Conclusion (ii) is a consequence of (1.4) which implies

$$\log \Phi_f(\sigma) \le \lambda \log \Phi_f(p) + (1 - \lambda) \log \Phi_f(r).$$

By (i), if $f \in L^p(E)$, then $||f||_{p'} \le [m(E)]^{1/p'-1/p} ||f||_p < \infty$. Hence $f \in L^{p'}(E)$.

Proposition 1.4. Let E be a set of finite measure in \mathbb{R}^n . Then

- (i) $L^{\infty}(E) \subseteq L^p(E)$ for all p > 0, and $\lim_{p \to \infty} \Phi_f(p) = ||f||_{\infty}$.
- (ii) $\lim_{p\to 0} \Phi_f(p) = \exp\left[\int_E \log|f|\right]$, if $\log|f| \in L^1(E)$.

Proof. We prove (i) for $0 < ||f||_{\infty} < \infty$. It is not hard to see that $\Phi_f(p) \le ||f||_{\infty}$. We show the opposite inequality. For a small $\delta > 0$, let

$$S_{\delta} = \{ x \in E : |f(x)| > ||f||_{\infty} - \delta \}$$

By the definition of $\|\cdot\|_{\infty}$, $m(S_{\delta}) > 0$. We find

$$\Phi_f(p) \ge \left(\frac{1}{m(E)} \int_{S_{\delta}} |f|^p \right)^{\frac{1}{p}} \ge (\|f\|_{\infty} - \delta) [m(S_{\delta})/m(E)]^{\frac{1}{p}} \to \|f\|_{\infty} - \delta.$$

This shows that $\lim_{p\to\infty} \Phi_f(p) \ge ||f||_{\infty}$.

We next show (ii). Firstly, assume $f_E \log |f| > -\infty$. Let

$$g(p) = \frac{1}{p} \log \oint_{E} |f|^{p} - \oint_{E} \log |f|.$$

Since $t \mapsto \log t$ is concave, we have by Jensen inequality

$$g(p) \ge 0$$
.

Using the inequality $ln(1+t) \leq t$, we see that

$$0 \le g(p) \le \frac{1}{p} \Big(\oint_E |f|^p - 1 \Big) - \oint_E \log|f| =: h(p).$$

We next show that $\lim_{p\to 0} h(p) = 0$. For this end, we take a sequence p_j which converges to 0 and let

$$f_j(x) = \frac{|f(x)|^{p_j} - 1}{p_j} - \log|f(x)|.$$

Observe that $f_j \to 0$ a.e. If $|f_j|$ is bounded by an integrable function, then we get the conclusion by dominated convergence theorem.

We show it is this case. If t > 1, 0 , then

$$\left| \frac{t^p - 1}{p} \right| = \int_1^t s^{p-1} ds \le t - 1.$$

Since $s \mapsto s^{p-1}$ is decreasing, and if 0 < t < 1

$$\left| \frac{t^p - 1}{p} \right| = \int_t^1 s^{p-1} ds \le \int_t^1 s^{-1} ds = -\log t.$$

Now denote $A = \{x \in E : |f(x)| \ge 1\}$. Then

$$|f_j(x)| \le (|f(x)| - 1)\chi_A(x) - \log|f(x)|\chi_{E\setminus A}(x) \in L^1.$$

When E is measurable, not necessarily of finite measure, we have the following.

Proposition 1.5. Let E be a measurable set in \mathbb{R}^n and f is measurable. If $f \in L^r(E)$ for some r > 0, then

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

Moreover $L^{\infty}(E) \cap L^{r}(E) \subseteq L^{p}(E)$ for all p > 0.

Proof. Observe that if $||f||_{\infty} = 0$ or respectively $||f||_{\infty} = \infty$, then $||f||_p = 0$ or respectively $||f||_p = 0$. Hence we only prove the conclusion for $0 < ||f||_{\infty} < \infty$.

As in the proof of part (i) in Proposition 1.4, we take $S_{\delta,R} = S_{\delta} \cap B_R$ where $B_R = \{x \in \mathbb{R}^n : |x| < R\}$. Then $m(S_{\delta,R}) \in (0, m(B_R))$ for some large R. Hence

$$||f||_p \ge (||f||_{\infty} - \delta)[m(S_{\delta,R})]^{\frac{1}{p}} \to ||f||_{\infty} - \delta \text{ as } p \to \infty.$$

This yields $\lim_{p\to\infty} ||f||_p \ge ||f||_{\infty}$.

On the contrary, it follows by the Hölder inequality,

(1.5)
$$||f||_{p} = \left(\int_{E} |f|^{p-r} |f|^{r} \right)^{\frac{1}{p}} \leq ||f||_{\infty}^{\frac{p-r}{p}} ||f||_{r}^{\frac{r}{p}}$$

$$\rightarrow ||f||_{\infty} \text{ as } p \to \infty.$$

Hence $||f||_{\infty} \ge \lim_{p\to\infty} ||f||_p$.

Note that (1.5) implies $L^{\infty}(E) \cap L^{r}(E) \subseteq L^{p}(E)$ for all p. The conclusions is proved.

2. Completeness, approximation and separability

Let us recall some notions.

Definition 2.1. A sequence $\{f_j\}$ in a linear space X that is normed by $\|\cdot\|$ is said to converge to f in X provided

$$\lim_{j \to \infty} ||f_j - f|| = 0.$$

We write

$$f_j \to f$$
 in X or $\lim_{i \to \infty} f_j = f$ in X

to mean that each f_j and f belong to X and $\lim_{j\to\infty} ||f-f_j|| = 0$.

Since the essential supremum of a function in $L^{\infty}(E)$ is an essential upper bound, for a sequence f_j and function f in $L^{\infty}(E)$, $f_j \to f$ in $L^{\infty}(E)$ if and only if $f_j \to f$ uniformly on the complement of a set of measure zero.

For a sequence f_j and f in $L^p(E)$, $1 \le p < \infty$, $f_j \to f$ in $L^p(E)$ if and only if

$$\lim_{j \to \infty} \int_E |f_j - f|^p = 0.$$

Completeness of L^p space for $1 \le p \le \infty$

Definition 2.2. A sequence f_j in a linear space X that is normed by $\|\cdot\|$ is said to be Cauchy in X provided for each $\varepsilon > 0$, there is N such that

$$||f_j - f_k|| < \varepsilon$$
 for all $j, k \ge N$.

A normed linear space X is said to be complete provided every Cauchy sequence in X converges to a function in X. A complete normed linear space is called a Banach space.

Theorem 2.1 (Riesz-Fischer). Let E be a measurable set of \mathbb{R}^n and $1 \leq p \leq \infty$. Then $L^p(E)$ is a Banach space. Moreover, if f_j converge to f in L^p , then there is a subsequence of f_j converge pointwise a.e. on E to f.

We first show the following theorem.

Theorem 2.2. Let $p \in [1, \infty]$, E be a measurable set of \mathbb{R}^n , and $f_k, f \in L^p(E)$. Suppose $f_k \to f$ fast in the sense that $\sum_{k \ge 1} \|f_k - f\|_p < \infty$. Then

$$f_k \to f \text{ a.e. and } ||f_k - f||_p \to 0.$$

Proof. Case $p = \infty$ is immediate from the definition. We focus on the case $p \in [1, \infty)$. Let us divide the proof into several steps.

Step 1. Write

(2.1)
$$f_k(x) = f_1(x) + \sum_{l=2}^k (f_l(x) - f_{l-1}(x)),$$

and let

(2.2)
$$g_k(x) = |f_1|(x) + \sum_{l=2}^k |f_l(x) - f_{l-1}(x)|,$$
$$g(x) = |f_1|(x) + \sum_{l=2}^\infty |f_l(x) - f_{l-1}(x)|.$$

Then $g_k \nearrow g$, where possibly $g(x) = \infty$. By the MCT,

(2.3)
$$\int_{E} g^{p} = \lim_{k \to \infty} \int_{E} g_{k}^{p}.$$

Step 2. By assumption, $K := \sum_{k \geq 1} \int \|f - f_k\|_p < \infty$. The Minkowski inequality implies

$$||g_k||_p \le ||f_1||_p + \sum_{l=2}^k ||f_l - f_{l-1}||_p \le ||f_1||_p + 2K,$$

which is independent of k. This together with (2.3) implies $g \in L^p(E)$. Therefore g(x) is finite a.e. In particular, $\lim_k g_k(x)$ exists for a.e. x.

Step 3. Let x be such that $g(x) < \infty$. Then $\{f_k(x)\}$ is a Cauchy sequence of \mathbb{R} . Therefore f_k converges a.e. to

$$h(x) = f_1(x) + \sum_{l=2}^{\infty} (f_l(x) - f_{l-1}(x)).$$

Observe that $|f_k - h|^p \to 0$ a.e. and

$$|f_k(x) - h(x)|^p \le [2\max\{|f_k(x)|, |h(x)|\}]^p \le 2^p g^p(x) \in L^1(E).$$

By dominated convergence theorem, $h \in L^p(E)$ and

$$\int_{E} |f_k - h|^p \to 0 \text{ as } k \to \infty.$$

Step 4. It remains to show f = h a.e. This is a consequence the Minkowski inequality

$$||f - h||_p \le ||f - f_k||_p + ||f_k - h||_p \to 0.$$

Therefore f = h a.e.

It is the position for showing the completeness of L^p space, $p \in [1, \infty]$.

Proof of Theorem 2.1. We divide the proof into several steps.

Step 1. We select a subsequence $\{f_{j_k}\}$ such that $||f_{j_{k+1}} - f_{j_k}||_p \leq 2^{-k}$. In particular $\sum_{k\geq 1} ||f_{j_{k+1}} - f_{j_k}||_p < \infty$. Let

$$f(x) := f_{j_1}(x) + \sum_{k=1}^{\infty} (f_{j_{k+1}}(x) - f_{j_k}(x)),$$

and

$$g(x) := |f_{j_1}(x)| + \sum_{k=1}^{\infty} |f_{j_{k+1}}(x) - f_{j_k}(x)|.$$

By Theorem 2.2, $f_{j_k} \to f$ a.e., and

$$||f_{j_k} - f||_p \to 0 \text{ as } k \to \infty.$$

Step 2. We next show $f_k \to f$ in the L^p . By Minkowski inequality,

$$||f_k - f||_p \le ||f_k - f_{j_l}||_p + ||f_{j_l} - f||_p.$$

Given $\varepsilon > 0$, use the fact that $\{f_k\}$ is L^p -Cauchy to choose N_{ε} so the first term on RHS is $< \varepsilon/2$ for all $k, j_l > N_{\varepsilon}$. Then choose j_l so the second term is $< \varepsilon/2$,

this being permissible since $f_{j_l} \to f$ in the L^p sense. Then $k > N_{\varepsilon}$ implies $||f_k - f||_p < \varepsilon$, which yields the result.

Dense subsets of L^p space

We recall the following notion.

Definition 2.3. Let X be a normed linear space with norm $\|\cdot\|$. Given two subsets \mathcal{F} and \mathcal{G} of X with $F \subset G$, we say that \mathcal{F} is dense in \mathcal{G} , provided for each function g in \mathcal{G} and $\varepsilon > 0$, there is a f in \mathcal{F} for which $\|f - g\| < \varepsilon$.

The main conclusion of this portion is the following theorem. It says that some subsets of $L^p(E)$ with nice property are indeed dense.

Theorem 2.3. Let $p \in [1, \infty)$, E be a measurable set of \mathbb{R}^n and $f \in L^p(E)$. Then

(i) there exists a sequence of simple functions $\{\phi_k\}$ such that

$$\|\phi_k - f\|_p \to 0$$
 and $\phi_k \to f$ a.e.

(ii) there exists a sequence of step functions $\{\psi_k\}$ such that

$$\|\psi_k - f\|_p \to 0$$
 and $\psi_k \to f$ a.e.

(iii) there is a sequence of continuous functions with compact support $\{g_k\}$ such that

$$||g_k - f||_p \to 0 \text{ and } g_k \to f \text{ a.e.}$$

(iv) there is a sequence of smooth functions with compact support $\{g_k\}$ such that

$$||g_k - f||_p \to 0 \text{ and } g_k \to f \text{ a.e.}$$

Proof. It suffices to show the convergence in norm. This is because L^p $(1 \le p < \infty)$ convergence implies convergence in measure, since

$$||f - g||_p^p \ge \int_{\{|f - g| \ge \varepsilon\}} |f - g|^p \ge m(\{|f - g| \ge \varepsilon\})\varepsilon^p.$$

Hence a.e. convergence for subsequence is a consequence of Riesz theorem. While by definition L^{∞} convergence is uniform convergence outside a set of measure zero.

Conclusions (i)-(iii) are obtained in a similar fashion of those for L^1 case. We give a proof of (i) below as an example. By a zero extension outside E, let us suppose

 $f \in L^p(\mathbb{R}^n)$. It is known that there exists a sequence $\{\phi_i\}_{i=1}^{\infty}$ of simple functions such that

(i) $\phi_i \to f$ a.e.

(ii)
$$0 \le |\phi_1| \le |\phi_2| \le \dots \le |\phi_k| \le \dots \le |f|$$
.

Hence $|\phi_k - f| \to 0$ a.e., and

$$|\phi_k - f|^p \le (|\phi_k| + |f|)^p \le 2^p |f|^p \in L^1.$$

By dominated convergence theorem, we have $\|\phi_k - f\|_p \to 0$ when $1 \le p < \infty$.

One can use the regularisation method to show that $C_c^{\infty}(E)$ is dense in $L^p(E)$. The argument is very similar to that for L^1 case, which is left as an exercise.

Separability of L^p space

Definition 2.4. A normed linear space X is said to be separable if there is a countable subset that is dense in X.

Theorem 2.4. Let $1 \leq p < \infty$ and E be a measurable set in \mathbb{R}^n . Then $L^p(E)$ is separable.

Proof. This is because step functions with rational values and supported on rectangles with rational vertices, are dense in the L^p norm.

We comment that $L^{\infty}(E)$ is not separable if m(E) > 0.

Consider e.g. $L^{\infty}([0,1])$. The uncountable functions $\{\chi_{[0,\lambda]}\}_{0<\lambda<1}$ satisfies

$$\|\chi_{[0,\lambda_1]} - \chi_{[0,\lambda_2]}\|_{\infty} = 1$$

for every $\lambda_1 \neq \lambda_2$ (no matter how close λ_1 and λ_2 are). This implies that $\{\chi_{[0,\lambda]}\}_{0<\lambda<1}$ cannot lie in a small neighbourhood of any countable may elements of $L^{\infty}[0,1]$. Note that for any $1 \leq p < \infty$,

$$\|\chi_{[0,\lambda_1]} - \chi_{[0,\lambda_2]}\|_p = |\lambda_1 - \lambda_2|^{1/p} \to 0$$

when λ_2 and λ_2 become very close.