Idaho National Laboratory

Experiences with using GNU Radio for Real-time Wireless Signal Classification

Christopher Becker (University of Utah)

Aniqua Baset (University of Utah)

Sneha Kasera (University of Utah)

Kurt Derr (Idaho National Laboratory)

Samuel Ramirez (Idaho National Laboratory)

- **►** Introduction
- ➤ System Overview
- ➤ Challenges and Approaches
- ➢ Setup
- ➤ Evaluation
- ➤ Conclusion

- **►** Introduction
- ➤ System Overview
- ➤ Challenges and Approaches
- Setup
- > Evaluation
- > Conclusion

Real-time Wireless Monitoring in a Variety of Environments

- High-security/control system
 - Power plants
 - Military bases
 - Water treatment plants
- Shared spectrum
 - 3.5 GHz band

Motivation

Safety	Enforcement
Security	Interference Identification and Mitigation

- > Introduction
- ➤ System Overview
- ➤ Challenges and Approaches
- Setup
- > Evaluation
- > Conclusion

System Architecture

Note: For Reference Only; part of a paper under submission

Note: For Reference Only; part of a paper under submission

- > Introduction
- ➤ System Overview
- ➤ Challenges and Approaches
- > Setup
- > Evaluation
- > Conclusion

Message Passing

- Challenges
 - Limited message rate
 - Data encapsulation/unencapsulation expensive
- Approaches
 - Fixed-size formatted data strings
 - Qt Signals and Slots/Message Passing Wrappers

Message Passing Wrapper

- 1. Receive Input
- 2. Process the Input
- 3. Prepare the Output Data
- 4. Generate Message (if needed)
- 5. Forward the Data
- 6. Convert to Internal Format (if needed)
- 7. Update Internal Data
- 8. Request for Data
- 9. Forward Request
- 10. Prepare and Return Data
- 11. Send Output

Overflow and Dropped Packet Detection

- Challenges
 - Run-time performance tuning
 - Timestamps set for recovery from Overflow/Dropped Packet
 - UHD driver sends information to stderror output (not accessible by GNU Radio API)
- Approach
 - Separate program to monitor performance
 - Monitor stderror for overflow/dropped packet indicators
 - Collect information from operating system
 - Send adjustment information to rest of our system

Non-optimized Block Implementations

- Challenge
 - Some of the standard blocks not always optimized correctly (at least for our use cases)
 - Examples: add_cc, Log Power FFT, analog_const_source
- Approaches
 - add_cc and Log Power FFT: use Vector Optimized Library of Kernels (VOLK) to improve speed
 - Log Power FFT and analog_const_source: change interface/internal code to add capabilities and/or reduce overhead for our specific use case

Dynamic Decimation

- Challenge:
 - Dynamically change decimation rates at run-time
 - Pausing and reconfiguring our flowgraph causes errors due to buffer size issues
- Approach
 - Delete and re-initialize the immediately preceding blocks to have buffers re-initialize correctly

Scheduler

- Challenge
 - GNU Radio scheduler thread can become a bottleneck for performance when a large number of blocks (threads) are used
 - Still an open problem
- Current Approach
 - Limit the number of threads
 - Combine functionality of multiple blocks into new blocks
 - Allow more inputs to a single block

GPU Acceleration

- Challenges
 - Limited data buffer sizes
 - Does not lend itself to GPU Acceleration due to memory copying overhead
 - See also: Hitefield & Clancy GRCon 2016, Piscopo GRCon 2017
- Approach
 - Use VOLK whenever possible
 - Use other processing-optimization techniques
 - e.g., heaps and lookup tables

- > Introduction
- ➤ System Overview
- ➤ Challenges and Approaches
- ➤ Setup
- > Evaluation
- > Conclusion

Laptop Configurations

	Development and Testing	Testing and Evaluation
Operating System	Ubuntu 14.04.1	Ubuntu 18.04
UHD Version	3.11.0	3.11.1
GNU Radio Version	3.7.11	3.7.12
VOLK Version	1.3.0	1.4.0

- Dell M4800 Laptops with increased RAM
 - 2.8 GHz 4-core 64-bit Intel i7-4810MQ processors
 - 32 GB of RAM
- Build GNU Radio script (slightly modified for Ubuntu 18.04) used for installing software

X310 Configurations

	Development and Testing	Testing and Evaluation
Hardware Revision	6	8
Firmware Version	5.1	6
FPGA Version	33	35

- 1 Gbps Ethernet Link
 - 25 MHz sample rate

- > Introduction
- ➤ System Overview
- ➤ Challenges and Approaches
- Setup
- ➤ Evaluation
- > Conclusion

Message Passing

- Used wrapped sender and receiver blocks
- 4096 (long) integers via either GNU Radio messages or Qt Signals and Slots
- Ran 100 times

	Median Time (s)
GNU Radio Messages	0.26392602
Qt Signals and Slots	0.00337398

> 78x performance improvement

Non-optimized Implementations

- 4096 Samples
- Ran 100 tests

	Median Time (s)
Standard Complex Add	0.00143647
VOLK Complex Add	0.00141096
Log Power FFT	0.01590848
PSD	0.01587605

Combining Blocks/Adding Inputs (Setup 1)

Combining Blocks/Adding Inputs (Results 1)

Combining Blocks/Adding Inputs (Setup 2)

Separate

Combined

Combining Blocks/Adding Inputs (Results 2)

- > Introduction
- ➤ System Overview
- ➤ Challenges and Approaches
- > Setup
- > Evaluation
- ➤ Conclusion

Conclusion

- Many challenges for using GNU Radio in real-time spectrum monitoring applications
- Many ways to approach these challenges
 - Some provide large performance improvements
 - No one-size fits all solution, however

