Here we represent a formal statement and proof d Weak Law of Large Numbers.

Theorem 1 (Weak Law of Large Numbers).

$$\lim_{n \to \infty} P\left[\left| \frac{\sum_{i=1}^{n} X_i}{n} - \mu \right| > \varepsilon \right] = 0$$

Proof will be based on Chebyshev's inequality which encode in Lean as meas_ge_le_variance_div_sq Lemma 2 (Chebyshev's inequality).

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

The proof of Chebyshev's inequality we skip to be able to show the core of the Problem.

Proof. Apply Chebyshev's inequality to statement of a theorem and a random variable $Y_n = \frac{S_n}{n}$ with expected value μ_n and variance σ_n^2 we have

$$P\left[|Y_n - \mu_n| > \varepsilon\right] \le \frac{\sigma_n^2}{\varepsilon^2} \tag{0.1}$$

Re-write μ_n and n in terms of μ and σ_n^2

$$\mu_n = E[Y_n] = E\left[\frac{S_n}{n}\right] = E\left[\frac{X_1 + \dots + X_n}{n}\right] =$$

$$= E\left[\sum_{i=1}^n \frac{X_i}{n}\right] = \sum_{i=1}^n E\left[\frac{X_i}{n}\right] = \sum_{i=1}^n \frac{E[X_i]}{n} = \sum_{i=1}^n \frac{\mu}{n} = \mu$$

So $\mu_n = \mu$. Re-write σ_n^2 using the following fact about independent random variables which encode in Lean as $indep_fun.variance_sum$

Lemma 3 (Variance of independent Random Variables). For pairwise random variables X_1, \ldots, X_n the following holds

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

so using the above fact we have

$$\sigma_n^2 = \operatorname{Var}(Y_n) = \operatorname{Var}\left(\frac{S_n}{n}\right) = \operatorname{Var}\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{\operatorname{Var}\left(\sum_{i=1}^n X_i\right)}{n^2}$$
$$= \sum_{i=1}^n \frac{\operatorname{Var}(X_i)}{n^2} = \sum_{i=1}^n \frac{\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Re-write σ_n, μ_n into (0.1) we have

$$P[|Y_n - \mu| > \varepsilon] \le \frac{\frac{\sigma^2}{n}}{\varepsilon^2}$$

Which can be presented as

2

$$P\left[|Y_n - \mu| > \varepsilon\right] \le \frac{\sigma^2}{n\varepsilon^2}$$

so the theorem is proved.