Academia Sabatina de Jóvenes Talento

Colinealidad y Concurrencia Clase #6

Encuentro: 20 Nivel: 5

Curso: Colinealidad y Concurrencia

Fecha: 26 de agosto de 2023

Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

Unidad II: Homotecia

Contenido: Definición de Homotecia

La homotecia constituye otra herramienta de amplia utilidad para resolver problemas de concurrencia y colinealidad. La homotecia puede ser aplicada tanto a polígonos (triángulos, por lo general) como a circunferencias. Dicho esto, en esta sexta sesión de clase brindaremos algunas definciones y propiedades fundamentales.

1. Desarrollo

1.1. Homotecia en polígonos

Definición 1.1 (Homotecia).

La homotecia es una transformación geométrica la que, dado un punto P en el plano y un número real $k \neq 0$, traslada cada punto Q del plano a un punto Q' de modo que

- \blacksquare Los punto $P,\,Q$ y Q' son colineaes, y

El punto P se llama **centro de homotecia**, k es la **razón de homotecia** y los punto Q y Q' son nombrados **elementos homólogos**.

Si k es un número real positivo, diremos que la homotecia es **directa**; en este caso, los elementos homólogos yacen a un mismo lado del centro de homotecia P; en contraste, la homotecia es **inversa** si k es negativo, en la que los elementos homólogos yacen en lados opuestos con respecto a P.

En caso de aplicar una homotecia con centro P y razón k a n puntos P_1, P_2, \dots, P_n y obtener los puntos homólogos P'_1, P'_2, \dots, P'_n , se dice que los polígonos, no necesariamente convexos, $P_1P_2\cdots P_n$ y $P'_1P'_2\cdots P'_n$ son **homotéticos**. En esta situación todos los elementos correspondientes (tales como lados, diagonales, etc) también son elementos homólgos.

Figura 1: Una homotecia directa envía $\triangle ABC$ a $\triangle A'B'C'$ y una inversa manda $\triangle ABC$ a $\triangle A''B''C''$.

Observación 1.

Para una mayor fomalidad, usaremos la siguiente notación;

$$H(O,\pm k): P \to P'$$

La cual se lee "La homotecia directa/inversa con centro O y razón k, envía P a P'."

Utilizando la notación, para describir la figura 1, quedaría como:

$$H(P, k_1) : \triangle ABC \to \triangle A'B'C'$$
 y $H(P, -k_2) : \triangle ABC \to \triangle A''B''C''$.

1.1.1. Propiedades

Entre las propiedades más importantes de la homotecia tenemos:

- Los lados correspondientes de dos figuras homotéticas son paralelos.
- La razón de las áreas de dos figuras homotéticas es igual al cuadrado de la razón de homotecia.
- Los puntos notables de figuras homotéticas son siempre colineales con el centro de homotecia.
- La homotecia perserva ángulo y por ende tangencias.

1.1.2. Ejemplos

Ejemplo 1.1 (La recta de Euler).

Dado un triángulo cualquiera el circuncentro, ortocentro y baricentro son colineales.

Solución. Sea $\triangle ABC$ el triángulo, H y O su ortocentro y circuncentro; D y E pies de alturas desde A y B; L y M puntos medios de BC y AC, respectivamente.

Claramente $H(G, -2): \triangle ABH \rightarrow \triangle LMO$, es decir los triángulos $\triangle ABH$ y $\triangle LMO$ son homotéticos, pues sus lados son paralelos y

$$k = \frac{AB}{LM} = -2.$$

Luego, AL, BM y HO son concurrentes en el baricentro G.

Figura 2: La Lecta de Euler.

Ejemplo 1.2 (La circunferencia de los nueve puntos).

Dado un triángulo cualquiera, los pies de las alturas, los puntos medios de los lados, y los puntos medios de los segmentos que van del vértice al ortocentro están en una misma circunferencia.

Solución. Sea $\triangle ABC$ el triángulo, D, E y F pies de alturas, X, Y y Z intersecciones de las alturas con el circuncírculo, L, M y N puntos medios, A', B' y C puntos diametralmente opuestos, y P, Q y R puntos medios de AH, BH y CH, respectivamente. El centro de esta circunferencia se ubica sobre la recta que va del ortocentro al circuncentro.

Recordemos que D, E y F son puntos medios de HX, HY y HX, respectivamente. Y también que L, M y N son puntos medios de HA', HB' y HC', respectivamente.

De este modo el eneágono AC'ZBXA'CB'Y es homotético a PNFQDLRME con razón 1/2 y centro H, y como el primero es cíclico, el segundo también debe serlo.

Figura 3: Circunferencia de los nueve puntos.

Pero como el centro de homotecia es H y la razón $\frac{1}{2}$, el centro del círculo de los nueve puntos debe ser el punto medio de OH.

1.2. Homotecia en circunferencias

Dadas dos circunferencias de radios finitos y no concéntricas, siempre existen dos homotecias que transforman una circunferencia en la otra.

Definición 1.2 (Exsimilicentro e insimilicentro).

Sean dos circunferencias Ω_1 y Ω_2 con centros O_1 y O_2 y radios r_1 y r_2 , respectivamente. Consideremos los puntos P y Q tales que

$$H\left(P, \frac{r_1}{r_2}\right) : \Omega_1 \to \Omega_2 \quad \text{y} \quad H\left(Q, -\frac{r_1}{r_2}\right) : \Omega_1 \to \Omega_2.$$

Entonces P y Q son el **exsimilicentro** e **insimilicentro** de Ω_1 y Ω_2 , respectivamente. Además, son puntos únicos.

¿Cómo construir el exsimilicentro y el insimilicentro? Un método general es el siguiente: Trazamos dos diámetros AB y CD en Ω_1 y Ω_2 , respectivamente, tales que AB||CD. Luego, $P = AD \cap BD$ y $Q = AD \cap BD$.

Figura 4: Trazado general del exsimilicentro e insimilicentro de dos circunferencias.

Una situación particular y muy frecuente en competiciones matemáticas sucede cuando Ω_1 y Ω_2 están en "posición general", es decir, no son cocéntricas, sus radios poseen distinta longitud positiva y no poseen puntos comunes. En este contexto, podemos obtener el exsimilicentro P como el punto común de las tangentes externas de Ω_1 y Ω_2 , mientras tanto, Q sería el punto de intersección de las tangentes internas de Ω_1 y Ω_2 , de aquí los prefijos ex- e in-, como se muestra en la figura 5.

Figura 5: El exsimilicentro P e insimilicentro Q de Ω_1 y Ω_2 .

Teorema 1.1 (Monge).

Sean Ω_1 , Ω_2 y Ω_3 tres circunferencias. Los exsimilicentros P_1 de Ω_1 y Ω_2 ; P_2 de Ω_2 y Ω_3 , y P_3 de Ω_3 y Ω_1 son colineales.

Demostración. Sea O_1 el circuncentro de Ω_1 y r_1 el radio. Se definen de manera análoga O_2 , O_3 , r_2 y r_3 .

Figura 6: Teorema de Monge.

Por el teorema de Menelao aplicado al $\triangle O_1 O_2 O_3$, es suficiente probar que

$$\frac{O_3 P_3}{P_3 O_1} \cdot \frac{O_1 P_1}{P_1 O_2} \cdot \frac{O_2 P_2}{P_2 O_3} = 1,$$

pero por definción, tenemos que

$$\frac{O_3 P_3}{P_3 O_1} \cdot \frac{O_1 P_1}{P_1 O_2} \cdot \frac{O_2 P_2}{P_2 O_3} = \frac{r_3}{r_1} \cdot \frac{r_1}{r_2} \cdot \frac{r_2}{r_3} = 1$$

la conclusión es inmedianta.

Teorema 1.2 (Monge D'Alembert).

Sean Ω_1 , Ω_2 y Ω_3 tres circunferencias. El exsimilicentro de Ω_1 y Ω_2 , el insimilicentro de Ω_2 y Ω_3 , y el insimilicentro de Ω_3 y Ω_1 son colineales.

Demostración. Similar a la prueba del **Teorema 1.1**. Esta demostración se deja como ejercicio al lector. ■

Figura 7: Teorema de Monge D'Alembert.

1.2.1. Estrategias

La homotecia en circunferencias resulta útil cuando:

- Hay tangentes comunes.
- Hay circunferencias tangentes, interna o externamente.
- Hay cuerdas paralelas.

1.2.2. Ejemplos

Ejemplo 1.3.

Dos circunferencias iguales C_1 y C_2 son tangentes internamente a un circunferencia C_3 en dos puntos A y B, respectivamente. Sea C un punto en C_3 . Si D y E son las intersecciones de AC y BC con C_1 y C_2 , respectivamente, pruebe que AB||DE.

Solución. Rápidamente nos damos cuenta de $H(A,k):C_1\to C_3$ y $H(B,k):C_2\to C_3$.

En la homotecia se tiene que $D \to C$ y $E \to C$, y cómo los radios son iguales la razón de homotecia es la misma, en este caso k, entonces

$$\frac{AD}{AC} = \frac{BE}{BC} = k \quad \implies \quad AB||DE. \quad \blacksquare$$

Ejemplo 1.4.

Sea ABCD un cuadrilátero convexo ex-inscrible^a tal que D es el más cercano a la circunferencia exinscrita. Sean E y F las intersecciones de AB con CD y BC con AD, respectivamente, y sean K y L las intersecciones de las bisectrices de $\angle DAE$ con DE y de $\angle DCF$ con DF, respectivamente. Demostrar que AC, KL y la bisectriz del ángulo $\angle ADE$ concurren.

^aExiste una circunferencia tangente externamente a AB, BC, CD y DA.

Solución. Sea Γ la circunferencia ex-inscrita a ABCD, y sean Γ_1 y Γ_2 los incírculos de ADE y CDF, respectivamente. Llamemos O, O_1 y O_2 a los centros de Γ , Γ_1 y Γ_2 respectivamente.

Como DE es la tangente común interna a Γ y Γ_1 , y además AO es bisectriz, entonces K es el centro de homotecia interno de Γ y Γ_1 . De manera análoga L es el centro de similitud interno entre Γ y Γ_2 . Pero A y C son los centro de homotecia externa de Γ con Γ_1 y Γ con Γ_2 , respectivamente, entonces por el **Teorema 1.2** AC y KL deben cortarse en el centro de homotecia externo de Γ_1 y Γ_2 , y así la recta O_1O_2 , que es la bisectriz de $\angle ADE$, debe pasar por dicho punto.

1.3. Agregados culturales y preguntas

- La palabra **homotecia** deriva del griego *homo* = semejante, y del *tithénai* = colocar, disponer.
- El triángulo medial es el que se forma con los puntos medios de los lados de un triángulo dado.

- La composición de dos homotecias se logra aplicando una homotecia con un centro dado, y a esa transformación se le aplica otra homotecia con otro centro dado. El resultado vendría siendo algo como una homotecia de la homotecia inicial.
- Existe una transformación llamada **semejanza espiral** o **rotohomotecia**. La cual es una composición de una homotecia y una rotación respecto a un centro dado. Esta transformación es muy útil en la resolución de problemas de mayor dificultad.

2. Ejercicios y Problemas

Sección de ejercicios y problemas para el autoestudio.

Ejercicio 2.1. Da un triángulo $\triangle ABC$ y punto O fuera de él, construye con regla y compas un triángulo $\triangle XYZ$ tal que $H(,O): 2 \rightarrow \triangle ABC \triangle XYZ$.

Problema 2.1. Dado el triángulo $\triangle ABC$ y su circuncírculo Ω , demostrar que el triángulo medial A'B'C' es homotético al triángulo $\triangle ABC$. Encontrar el centro de homotecia y la razón de homotecia.

Problema 2.2. Demostar que si dos circunferencias son tangentes internamente en un punto A y si una secante común interseca a las circunferencias en B', B, C y C', entonces $\angle B'AC = \angle BAC'$.

Problema 2.3. El $\triangle ABC$ tiene inscrita una circunferencia. Supongamos que M es el punto de tangencia de la circunferencia con el lado AC, MK es el diámetro. La recta BK corta AC en el punto N. Demostrar que AM = NC

Problema 2.4. El incírculo de $\triangle ABC$ tiene centro I y toca a BC en E. AD es una altura de $\triangle ABC$, M es el punto medio AD. Sea I_A el A-excentro de $\triangle ABC$. Demostrar que M, E e I_A con colienales.

Problema 2.5. Sea Ω y Γ dos círculos tangentes en D, de forma que Γ yace en el interior de Ω . Se traza una cuerda de AB en Ω de modo que AB es tangente a Γ en C. Probar que DC bisecta al arco \widehat{AB} que no contiene a AD.

3. Problemas propuestos

Recordar que los problemas de esta sección son los asignados como **tarea**. Es el deber del estudiante resolverlos y entregarlos de manera clara y ordenada el próximo encuentro (de ser necesario, también se pueden entregar borradores).

Ejercicio 3.1. Probar que la recta de los nueve puntos biseca cualquier segmento trazado del ortocentro al circuncírculo.

Problema 3.1. Sea O el centro de la circunferencia Ω_1 . Sea l cualquier recta que no pasa por O. Una segunda circunferencia Ω_2 es tangente a Ω_1 en P y también es tangente a l en Q. La perpendicular por O a l corta a Ω_1 en dos puntos, sea R el que está más alejado de l. Demostrar que P, Q y R están alineados.

4. Extra

Problema 4.1. Sea Ω el circuncírculo del triángulo $\triangle ABC$. El círculo ω es tangente a los lados AC y BC, y es tangente internamente al círculo Ω en P. Una recta paralela a AB que pasa por el interior del triángulo $\triangle ABC$ es tangente a ω en Q. Probar que $\angle ACP = \angle QCB$.

Referencias

- [Agu19] Eduardo Aguilar. Estrategias sintéticas en Geometría Euclídea. Editorial, 2019.
- [Bac22] Jafet Baca. Apuntes de Geometría Euclidiana para Competiciones Matemáticas. Independent publication, 2022.
- [Fav16] Favela. Homotecia. Tarea #5. Rumbo al nacional. OMMBC, Octubre 2016.
- [Loz17] Stefan Lozanovski. A beautiful journey through Olympiad Geometry. Independent publication, 2017.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (*Claro*) Correo: joseandanduarte@gmail.com