CLAIMS

What is claimed is:

- 1. A method of preparing an arylretinamide comprising:
 - a) reacting hexachloroacetone with a solvent-suspended resin-bound triphenylphosphine to provide a suspension comprising an activated chlorinating reagent;
 - b) reacting retinoic acid with the activated chlorinating reagent to provide retinoyl chloride;
 - c) adding pyridine and a select arylamine to the reaction mixture and stirring the resulting mixture for a time and at a temperature sufficient for the arylamine to react with the retinoyl chloride and provide the arylretinamide.
- 2. The method of claim 1 further comprising the step of purifying the arylretinamide from the suspension.
- 3. The method of claim 2 wherein purification is accomplished by treatment of the reaction mixture with solid phase reagents to remove unreacted starting materials followed by chromatography.
- 4. The method of claim 1 wherein step (a) is performed at a temperature ranging from about 0°C to room temperature.
- 5. An arylretinamide for inducing apoptosis in a cancer cell, said arylretinamide having Structure A, B, or C below:

Structure A

wherein

R₂ is H, OH, NO₂, CH₂ OH, a halide, or an alkyl comprising 1-4 carbon atoms,

R₃ is H, OH, NO₂, CO₂CH₃, CO₂CH₂CH₃, CO₂(CH₂)₂CH₃, CO₂(CH₂)₃CH₃, CO₂H, CH₂OH, a halide, or an alkyl comprising 1-4 carbon atoms;

R₄ is H, OH, OCH₃, OCH₂CH₃, O(CH₂)₂CH₃, O(CH₂)₃CH₃, SO₂CH₃, SO₂CH₂CH₃, SO₂(CH₂)₂CH₃, SO₂(CH₂)₃CH₃, NH₂, NHCOCH₃, NHCOCH₂CH₃, NHCO(CH₂)₂CH₃, NHCO(CH₂)₃CH₃, NHCOCF₃, N₃, NCS, a halide, an alkyl comprising 1-4 carbon atoms, or NHCOCH₂X, wherein X is a halide;

R₅ is H, NO₂, C(CH₃)₃, C(CH₂CH₃)₃, C((CH₂)₂CH₃)₃, C((CH₂)₃CH₃)₃, CO₂CH₃, CO₂CH₂CH₃, CO₂(CH₂)₂CH₃, CO₂(CH₂)₃CH₃, a halide, or an alkyl comprising 1-4 carbon atoms, and R₆ is H, CO₂H, CO₂CH₃, CO₂CH₂CH₃, CO₂(CH₂)₂CH₃, CO₂(CH₂)₃CH₃, a halide or an alkyl comprising 1-4 carbon atoms;

provided however that when R₂, R₃, R₄, R₅, and R₆ are all H, R₄ is not OH or OCH₂CH₃; and also provided that when R₃, R₅, and R₆ are all H, and R₂ is OH, R₄ is not CO₂CH₃.

Structure B

wherein the OH group is at position 2,4, or 5 when the retinamido group is at linked to position 1, and the OH group is at position 3 when the rentinamido group is linked to position 2.

Structure C

wherein R_7 is C_1 to C_4 alkyl.

- 6. The arylretinamide of claim 5 wherein the arylretinamide is a halohydroxyphenyl retinamides which comprises a phenyl moiety that is optionally substituted with an alkyl group.
 - 7. The arylrentiamide of claim 6 wherein the phenyl moiety is substituted with a methyl group.
 - 8. The arylreninamide of claim 6 wherein the halo group is an iodo group.
 - 9. The arylretinamide of claim 5 wherein the arylretinamide is a hydroxy-alkylphenyl retinamides or hydroxy-alkoxyphenyl retinamide, wherein the alkyl groups attached to the phenyl moiety comprise from 1 to 4 carbon atoms.
 - 10. The arylretinamide of claim 9 wherein the arylretinamide is a hydroxy-methylphenyl or hydroxy-methoxyphenyl retinamide.
 - 11. The arylretinamide of claim 5 is a hydroxy-nitrophenyl retinamides or alkylsulfonyl-hydroxy retinamides.
 - 12. The arylretinamide of claim 11 wherein the arylretinamide is an ethylsulfonyl-hydroxy, retinamides.
 - 13. The arylretinamide of claim 5 wherein the arylretinamide is a hydroxy-napthylphenyl retinamide.

- 14. The arylretinamide of claim 5 wherein the arylretinamide is an N-alkyl(hydroxyphenyl) retinamides.
- 15. The arylretinamide of claim 5 wherein the arylretinamide is an aminophenyl retinamides.
- 16. The arylretinamide of claim 5 wherein the arylretinamdie is an alkylhydroxyphenyl retinamides.
- 17. The arylretinamide of claim 5 wherein the arylretinamide is a carboxy-hydroxyphenyl retinamides selected from the group consisting of N-(2'-hydroxy-3'-carboxymethylphenyl)retinamide, N-(2'-hydroxy-6'-carboxyphenyl)retinamide, N-(2'-hydroxy-6'-carboxyphenyl)retinamide, N-(3'-hydroxy-4'-carboxyphenyl)retinamide, N-(2'-hydroxy-5'-carboxymethylphenyl)retinamide, N-(2'-hydroxy-4'-carboxyphenyl)retinamide, N-(2'-hydroxy-5'-carboxyphenyl)retinamide, N-(4'-hydroxy-3'-carboxyphenyl)retinamide, N-(4'-hydroxy-3'-carboxyphenyl)retinamide.
- 18. An arylretinamide having Structure A below

Structure A

wherein

R₂ is H, OH, NO₂, CH₂ OH, a halide, or an alkyl comprising 1-4 carbon atoms,

R₃ is H, OH, NO₂, CO₂CH₃, CO₂CH₂CH₃, CO₂(CH₂)₂CH₃, CO₂(CH₂)₃CH₃, CO₂H, CH₂OH, a halide, or an alkyl comprising 1-4 carbon atoms;

R₄ is H, OH, OCH₃, OCH₂CH₃, O(CH₂)₂CH₃, O(CH₂)₃CH₃, SO₂CH₃, SO₂CH₂CH₃, SO₂(CH₂)₂CH₃, SO₂(CH₂)₃CH₃, NH₂, NHCOCH₃, NHCOCH₂CH₃, NHCO(CH₂)₂CH₃, NHCO(CH₂)₃CH₃, NHCOCF₃, N₃, NCS, a halide, an alkyl comprising 1-4 carbon atoms, or NHCOCH₂X, wherein X is a halide;

R₅ is H, NO₂, C(CH₃)₃, C(CH₂CH₃)₃, C((CH₂)₂CH₃)₃, C((CH₂)₃CH₃)₃, CO₂CH₃, CO₂CH₂CH₃, CO₂(CH₂)₂CH₃, CO₂(CH₂)₃CH₃, a halide, or an alkyl comprising 1-4 carbon atoms, and R₆ is H, CO₂H, CO₂CH₃, CO₂CH₂CH₃, CO₂(CH₂)₂CH₃, CO₂(CH₂)₃CH₃, a halide, or an alkyl comprising 1-4 carbon atoms;

provided that when R_2 , R_3 , R_4 , R_5 , and R_6 are all H, R_4 is not OH OCH₃, OCH₂CH₃, or O(CH₂)₂CH₃; and also

provided that when R₃, R₅, and R₆ are all H, and R₂ is OH, R₄ is not CO₂CH₃ or CO₂CH₂CH₃.

- 19. A method of inducing apoptosis in a cancer cell comprising contacting the cancer cell with an arylretinamide of claim 1.
- 20. A method of treating cancer in a subject in need of said treatment, comprising administering one or more arylretinamides of claim 1 to the subject.
- 21. The method of claim 20 wherein said method further comprises administering calcium glucarate to the subject.