Задание 1. Вынужденное движение.

Дана система 2-го порядка, представленная в форме Вход-Выход

$$\ddot{y} + a_1 \dot{y} + a_0 y = u.$$

Самостоятельно придумайте три набора коэффициентов (a_0, a_1) , соответствующих приведенным ниже парам мод. Номера возьмите из таблицы 1 в соответствии со своим вариантом.

- 1. двум устойчивыми апериодическим модам;
- 2. устойчивой и неустойчивой апериодическим модам;
- 3. нейтральной и устойчивой апериодической модам;
- 4. нейтральной и неустойчивой апериодической модам;
- 5. нейтральной и пропорциональной времени t моде;
- 6. паре консервативных мод;
- 7. паре устойчивых колебательных мод;
- 8. паре неустойчивых колебательных мод.

Для каждого входного воздействия u(t) осуществите моделирование вынужденного движения системы при $t \geq 0$ с начальными условиями y(0) = -1; 0; 1 и $\dot{y}(0) = 0$. Входные сигналы u(t) возьмите из таблицы 2 в соответствии со своим вариантом. В отчёте приведите графики выходных сигналов y(t). Сделайте выводы.

(Подсказка: для повышения наглядности рекомендуем для каждой системы и каждого входного воздействия построить графики выхода с различными начальными условиями на одних координатных осях. Всего должно получиться по 3 изображения для каждой системы, на каждом из которых будет 3 траектории выхода, полученные для разных начальных условий).

Задание 2. Качество переходных процессов. Дана передаточная функция:

$$W(s) = \frac{1}{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)}.$$

Проведите исследование зависимости качества переходной характеристики функции (реакции на 1(t) при нулевых начальных условиях) от выбора **полюсов** (корней полинома знаменателя).* Передаточную функцию считать минимальнофазовой (т.е. действительная часть всех полюсов — отрицательная). В исследовании для оценки качества

^{*} В **MATLAB** для построения переходной характеристики существует функция step(). На полученном таким образом графике переходной характеристики встроенными средствами можно отметить необходимые качественные параметры переходного процесса.

предлагается использовать такие параметры, как перерегулирование и время переходного процесса. Рекомендуется рассмотреть случаи не только вещественных, но и комплексных корней, а также случаи как ненулевого, так и нулевого перерегулирования. Привести в отчет для каждого набора корней их расположение на комплексной плоскости, график переходного процесса, значения качественных показателей и выводы.

Задание 3. (Необязательное) Свертка, как произведение образов Лапласа.

Кроме линейности, преобразование Лапласа обладает также поистине удивительным свойством, которое может быть записано следующим образом:

$$F(s) \cdot G(s) = \mathcal{L}\{(f * g)(t)\},\$$

где оператор «*» обозначает «свертку» функций *времени* f(t) и g(t), которая, в свою очередь, определяется следующим образом:

$$(f * g)(t) = \int_0^t f(t - \tau) \cdot g(\tau) d\tau$$

Это свойство преобразования Лапласа вам и предстоит проверить в настоящем задании.

Дана система 4-го порядка, записанная через передаточную функцию:

$$Y(s) = W(s)U(s), W(s) = \frac{6}{(s+2)^4}.$$

Входное воздействие $u(t) = \mathcal{L}^{-1}\{U(s)\}$ возьмите в соответствии с вашим вариантом из таблицы 3.

Рассмотрите три величины:

- 1. Приближенный расчет (на основании определения как интеграла) выхода системы как свертки.*
- 2. Моделирование системы «в лоб» с использованием входного воздействия u(t) и передаточной функции W(s).
- 3. Моделирование системы как произведения двух передаточных функций U(s) и W(s) с $\delta(t)$ в качестве входного воздействия.

Для моделирования $impulse\ response\$ (реакции системы на $\delta(t)$) можно использовать impulse() в **MATLAB** или приближенно задать $\delta(t)$ в **Simulink** в виде суммы двух ступенчатых воздействий (блок «Step») с параметрами, указанными в таблице 4 (таким образом площадь под графиком импульса будет в точности равна 1)**.

Сравните все три полученных результата. Сделайте выводы.

^{*} Для численного вычисления интеграла в MATLAB существует функция integral().

^{**} Убедитесь, что шаг моделирования достаточно мал, а величина а достаточно велика.

Таблица 1: Исходные данные для задания 1

Вариант	Пары мод	Вариант	Пары мод	Вариант	Пары мод
1	1, 3, 8	11	3, 5, 7	21	1, 3, 4
2	3, 5, 7	12	5, 6, 7	22	3, 7, 8
3	1, 4, 6	13	2, 3, 7	23	2, 6, 7
4	1, 5, 6	14	1, 5, 6	24	3, 7, 8
5	3, 4, 7	15	4, 6, 7	25	1, 2, 6
6	1, 3, 8	16	5, 6, 7	26	1, 6, 8
7	2, 3, 7	17	1, 6, 8	27	4, 6, 7
8	6, 7, 8	18	1, 3, 5	28	1, 3, 5
9	2, 6, 7	19	3, 4, 7	29	6, 7, 8
10	1, 3, 4	20	1, 4, 6	30	1, 2, 3

Таблица 2: Исходные данные для задания 1

Вариант	Входной сигнал			Вариант	Входной сигнал		
1	1	0.5t	$\sin t$	16	2.5	0.5t	$\cos t$
2	0.5	0.8t	$\sin 2t$	17	0.5	0.8t	$\cos 2t$
3	2	0.7t	$\sin 3t$	18	1.5	0.6t	$\cos 3t$
4	2.5	0.6t	$\sin 4t$	19	2	0.7t	$\cos 4t$
5	1	0.5t	$\sin 5t$	20	2.5	0.8t	$\cos 5t$
6	1.5	0.6t	$\sin 6t$	21	1	0.5t	$\cos 6t$
7	2	0.7t	$\sin 7t$	22	1.5	0.6t	$\cos 7t$
8	2.5	0.8t	$\sin 8t$	23	2	0.7t	$\cos 8t$
9	1	0.5t	$\sin 7t$	24	2.5	0.8t	$\cos 7t$
10	1.5	0.6t	$\sin 6t$	25	1	0.5t	$\cos 6t$
11	2	0.7t	$\sin 5t$	26	1.5	0.6t	$\cos 5t$
12	2.5	0.8t	$\sin 4t$	27	2	0.7t	$\cos 4t$
13	1	0.5t	$\sin 3t$	28	2.5	0.8t	$\cos 3t$
14	1.5	0.6t	$\sin 2t$	29	1	0.5t	$\cos 2t$
15	2	0.7t	$\sin t$	30	1.5	0.6t	$\cos t$

Таблица 3: Исходные данные для задания 3

Вариант	u(t)	Вариант	u(t)	Вариант	u(t)
1	3sin(2t) + 0.5cos(t)	11	$0.01t^2 + 4\cos(t)$	21	3sin(2t) - 0.5cos(t)
2	2sin(t) + cos(t)	12	$3\cos(2t) - 0.5\sin(t)$	22	2sin(t) - cos(t)
3	-sin(3t) - 2sin(4t)	13	5sin(2t) + 0.5t	23	$\cos(2t) + 2\cos(3t)$
4	4sin(2t) - 0.5cos(3t)	14	$0.05t^2 + 5sin(t)$	24	2sin(t) - 0.5sin(2t)
5	t + 2sin(4t)	15	2sin(t) + 0.5sin(2t)	25	t - 2sin(4t)
6	$4\cos(2t) + 0.5t$	16	cos(2t) - 2cos(3t)	26	$3\cos(2t) - 0.5t$
7	t - 3cos(3t)	17	sin(t) + cos(4t)	27	t + 3cos(3t)
8	3sin(2t) + 0.5t	18	3sin(2t) + 0.5cos(t)	28	4sin(2t) - 0.5t
9	sin(3t) - cos(t)	19	-sin(t) - 3cos(2t)	29	sin(3t) + cos(t)
10	3sin(t) + 2cos(3t)	20	2sin(t) + 2cos(3t)	30	3sin(t) - 2cos(3t)

Таблица 4: Параметры блоков «Step» для задания 3

	Step time	Initial value	Final value
Step1	0	0	10^{a}
Step2	10^{-a}	0	-10^{a}