Regression Analysis

```
In [25]:
import os
#os.environ['KMP DUPLICATE LIB OK']='True'
import pandas as pd
import numpy as np
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.stats.outliers influence import variance inflation factor as vi
f
import scipy.stats as stats
import matplotlib.cm as cm
from IPython.display import display
from mpl toolkits.mplot3d import Axes3D
from sklearn.feature selection import f regression
from statsmodels.stats.anova import anova lm
import matplotlib.pyplot as plt
In [26]:
mileage = pd.read csv('data reshaped.csv')
gdp=pd.read csv('GDP.csv')
US EMP = pd.read csv('US EMP RATE.csv')
In [27]:
US EMP = US EMP.iloc[:-1,:]
US_EMP.columns = ['date1','EMP']
US POP = pd.read csv('US POP.csv')
US POP = US POP.iloc[:-1,:]
US POP.columns = ['date2','POP']
In [28]:
len(mileage) == len(gdp) == len(US EMP) == len(US POP) == 60
Out[28]:
True
In [29]:
data = pd.concat([mileage,gdp,US EMP,US POP],axis=1)
data = data.drop(columns = ['DATE', 'date2', 'date1', 'quarter'])
```

See relationship between the response and predictors

features = data.drop(columns = ['GDP'])

In [30]:

```
plt.figure(figsize=(20, 3))
for i,col in enumerate(features.columns):
    plt.subplot(1,len(features.columns),i+1)
    plt.scatter(features[col],data.GDP)
    plt.title(col)
```


Correlation between the response and predictors

In [31]:

```
import seaborn as sns
correlation_matrix = data.corr().round(2)
# annot = True to print the values inside the square
plt.figure(figsize = (16,5))
sns.heatmap(data=correlation_matrix, annot=True)
```

Out[31]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c2383ab00>

Full Model

In [33]:

Out[33]:

OLS Regression Results

Dep. Variable: **GDP** 0.997 R-squared: OLS Model: Adj. R-squared: 0.997 Method: Least Squares 2505. F-statistic: Date: Sun, 13 Oct 2019 Prob (F-statistic): 2.26e-63 Time: 20:17:20 Log-Likelihood: -372.29 No. Observations: 60 AIC: 762.6 781.4 51 **Df Residuals:** BIC: 8 **Df Model: Covariance Type:** nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.011e+05	1.66e+04	-6.075	0.000	-1.34e+05	-6.77e+04
avg_miles_rollingsum_12m	-0.1009	0.048	-2.120	0.039	-0.196	-0.005
perc_north_central	1.061e+04	1.85e+04	0.572	0.570	-2.66e+04	4.78e+04
perc_north_east	5112.3242	3.05e+04	0.168	0.867	-5.6e+04	6.63e+04
perc_south_atlantic	5.525e+04	1.96e+04	2.822	0.007	1.59e+04	9.46e+04
perc_west	6.735e+04	3.37e+04	1.999	0.051	-303.523	1.35e+05
perc_urban	-1.833e+04	9329.298	-1.964	0.055	-3.71e+04	403.630
EMP	297.2237	27.069	10.980	0.000	242.880	351.568
POP	0.2645	0.021	12.881	0.000	0.223	0.306

 Omnibus:
 0.424
 Durbin-Watson:
 0.811

 Prob(Omnibus):
 0.809
 Jarque-Bera (JB):
 0.575

 Skew:
 -0.159
 Prob(JB):
 0.750

 Kurtosis:
 2.642
 Cond. No.
 8.01e+08

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.01e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Reduced Model

```
In [34]:
```

```
features2 = features.drop(columns=['perc_north_east','perc_north_east'])
```

```
In [35]:
```

In [36]:

```
reg_M2.summary()
```

Out[36]:

OLS Regression Results

Dep. Variable:	GDP	R-squared:	0.997
Model:	OLS	Adj. R-squared:	0.997
Method:	Least Squares	F-statistic:	3448.
Date:	Sun, 13 Oct 2019	Prob (F-statistic):	7.72e-67
Time:	20:17:27	Log-Likelihood:	-372.49
No. Observations:	60	AIC:	759.0
Df Residuals:	53	BIC:	773.6
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-9.522e+04	7259.016	-13.118	0.000	-1.1e+05	-8.07e+04
avg_miles_rollingsum_12m	-0.0959	0.045	-2.136	0.037	-0.186	-0.006
perc_south_atlantic	5.21e+04	1.79e+04	2.914	0.005	1.62e+04	8.8e+04
perc_west	6.689e+04	3.24e+04	2.068	0.044	1999.845	1.32e+05
perc_urban	-2.034e+04	5129.333	-3.964	0.000	-3.06e+04	-1e+04
EMP	288.0799	19.587	14.708	0.000	248.794	327.366
POP	0.2626	0.008	33.602	0.000	0.247	0.278

 Omnibus:
 1.073
 Durbin-Watson:
 0.803

 Prob(Omnibus):
 0.585
 Jarque-Bera (JB):
 1.100

 Skew:
 -0.216
 Prob(JB):
 0.577

 Kurtosis:
 2.497
 Cond. No.
 6.99e+08

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.99e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Multicollinearity

```
In [37]:
```

```
[vif(np.array(features2),i) for i in range(1,len(features2.columns))]
```

Out[37]:

```
[29003.525591546262,
18901.71434688995,
101389.48686298347,
49777.60035428292,
7869.024549142253,
23646.53179038305]
```

In [38]:

```
from statsmodels.stats.diagnostic import het_breuschpagan
bp_test = het_breuschpagan(reg_M2.resid, reg_M2.model.exog)
labels = ['LM Statistic', 'LM-Test p-value', 'F-Statistic', 'F-Test p-value']
print(dict(zip(labels, bp_test)))
```

```
{'LM Statistic': 12.04268347554496, 'LM-Test p-value': 0.06102333452 9280264, 'F-Statistic': 2.218160753699983, 'F-Test p-value': 0.05543 935852191886}
```

Serial Correlation

In [39]:

```
bg_test=sm.stats.diagnostic.acorr_breusch_godfrey(reg_M2)
labels = ['LM Statistic', 'LM-Test p-value', 'F-Statistic', 'F-Test p-value']
print(dict(zip(labels, bg_test)))
```

```
{'LM Statistic': 28.239651583435375, 'LM-Test p-value': 0.0016524026 139669256, 'F-Statistic': 3.8233365773028156, 'F-Test p-value': 0.00 09555603321952383}
```

Normality Check

In [40]:

```
infl = reg_M2.get_influence()
```

In [41]:

```
plt.plot(data.index,infl.resid studentized external)
```

Out[41]:

[<matplotlib.lines.Line2D at 0x1c21554470>]

Influential Points

```
In [42]:
```

```
n = len(data)
p = len(features2.columns) + 1
```

In [43]:

```
inflsum = infl.summary_frame()
reg_dffits=inflsum.dffits
dffits_thresh = 2*np.sqrt((p+1)/(n-p-1))
atyp_dffits = np.abs(reg_dffits) > dffits_thresh
a_dffits_ind = set(data.index[atyp_dffits])
a_dffits_ind
```

Out[43]:

{0, 23, 58}

F-Test

In [58]:

```
## F-test : reduced vs full model
## reg_M2 : reduced model (i.e. null hypothesis), reg_M1 : full model (ie altern
ate hypothesis)
F_stat = ((reg_M2.ssr - reg_M1.ssr) / (reg_M2.df_resid - reg_M1.df_resid) / (reg_M1.ssr / reg_M1.df_resid))
F_stat
```

Out[58]:

0.16600064173028078

In [61]:

```
## p - value is 0.15 >> 0.05, hence we donot have enough information to reject t
he null hypothesis
## hence we accept the reduced model
import scipy.stats as stats
alpha = 0.05
p_value = stats.f.cdf(F_stat, reg_M2.df_resid - reg_M1.df_resid, reg_M1.df_resid)
)
p_value
```

Out[61]:

0.1524984894387115