MATH 22A: Vector Calculus and Linear Algebra

Eigenvalues and Eigenvectors — 1 November 2023

Pset Due: November 8, 2023 Denny Cao

Administrivia

- Practice Midterm: 4-5:30 PM at Science Center Lecture Hall B
- Review Session 7-9 PM at Jefferson 250 (Today)

§1 Review

Theorem 1.1

Let $\mathcal{B} = \{b_1, \dots, b_n\}$ and $\mathcal{C} = \{c_1, \dots, c_n\}$ be bases of a vector space V. Then \exists a unique $n \times n$ matrix $P \mid [x]_{\mathcal{C}} = [x]_{\mathcal{B}}$.

• P is the change of coordinate matrix from \mathcal{B} to \mathcal{C} .

$$P = [[b_1]_{\mathcal{C}}, [b_n]_{\mathcal{C}}]$$

Also P^{-1} is the change of coordinates matrix from \mathcal{C} to \mathcal{B} .

• Let V be a vector space w/basis $\mathcal{B} = \{b_1, \ldots, b_n\}$ and W be a vector space with basis $\mathcal{C} = \{c_1, \ldots, c_n\}$. With transformation $T: V \to W$, we want an $m \times n$ matrix M s.t. $[T(x)]_{\mathcal{C}} = M[x]_{\mathcal{B}} \forall x \in V$. M is the **matrix of** T **relative to bases** \mathcal{B} **and** \mathcal{C} .

$$M = [[T(b_1)]_{\mathcal{C}}, \dots, [T(b_n)]_{\mathcal{C}}]$$

Theorem 1.2 (Diagonal Representation Theorem)

Suppose $A = PDP^{-1}$ where D is a diagonal matrix and T(x) = Ax. If \mathcal{B} is the basis for \mathbb{R}^n formed by columns of P, then D is the matrix of T relative to \mathcal{B} .

• If $A \wedge B$ are $n \times n$ matrices, then A is **similar** to B if \exists an invertible matrix P s.t. $A = PBP^{-1}$.

Definition 1.3 (Eigenvalue, Eigenvector). If A is an $n \times n$ matrix, then $\lambda \in \mathbb{R}$ is an **eigenvalue** of A if \exists a non-zero vector v, called an **eigenvector** corresponding to λ , such that

$$Av = \lambda v$$

Example 1.4

Let $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$ and $v = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Determine if v is an eigenvector of A and find the corresponding eigenvalue.

Solution. $A\mathbf{v} = \lambda \mathbf{v}$. In this case, $\lambda = -2$.

Definition 1.5 (Eigenspace). If λ is an eigenvalue of an $n \times n$ matrix A, then the set of all solutions v to $Av = \lambda v$ is the **eigenspace** of A corresponding to λ .

• Eigenspace is $ker(A - \lambda I_n)$.

Example 1.6

Let
$$A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$
, then $\lambda = 2$ is an eignvalue. Find the corresponding eigenspace.

Solution.

• $\dim A = 1 \implies 1$ vector

• $\dim A = 2 \implies 2$ linearly independent eigenvectors

• $\dim A = 3 \implies 3$ linearly independent eigenvectors

$$A\mathbf{v} - \lambda \mathbf{v} = \mathbf{0}$$

$$\begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix} \boldsymbol{v} = \mathbf{0}$$

Thus, $\begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$.

Theorem 1.7

The eigenvalues of a triangular matrix are the diagonal entries.

Proof. Eigenspace is $\ker(A - \lambda I_n)$. Let $\lambda = a_{ii}$, which is an entry in the diagonal. Then, $(A - a_{ii}I_n) = \mathbf{v} = \mathbf{0}$. All diagonal entries will be subtracted by a_{ii} and thus the entry at i'th column and i'th row will be 0. Thus, $\det(A - a_{ii}I) = 0$, as determinant of triangular matrix is product of diagonal.

Theorem 1.8

If v_1, \ldots, v_p are eigenvectors corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_p$ of an $n \times n$ matrix A, then v_1, \ldots, v_p are linearly independent.

Proof.