Logique et structure discrètes : Exercices LINGI1101

TP 1

1 Rappel

Sémantique des connecteurs logiques :

						$p \Leftrightarrow q$	
Т	Т	F	Т	Т	Τ	Т	F
\mathbf{T}	\mathbf{F}	F	F	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$
F	T	Т	\mathbf{F}	${ m T}$	${ m T}$	T F F	${ m T}$
\mathbf{F}	F	Т	\mathbf{F}	\mathbf{F}	Τ	Τ	\mathbf{F}

Convention de précédances des connecteur logiques :

2 Exercices

Exercice 1.

Expliquez ce qu'est une interprétation et un modèle en logique propositionnelle.

Exercice 2.

Si je vous dit : s'il fait beau alors je vais faire du vélo, dans quelles situations je suis un menteur?

		Menteur?
Il a fait beau	J'ai fait du vélo	
Il a fait beau	Je n'ai pas fait du vélo	
Il n'as pas fait beau	J'ai fait du vélo	
Il n'as pas fait beau	Je n'ai pas fait du vélo	

Comparez ceci avec la table de vérité de $P\Rightarrow Q$:

$$\begin{array}{c|ccc} P & Q & P \Rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

Exercice 3.

Enlevez les parenthèses non nécessaires dans les formules suivantes :

1.
$$(P \lor (\neg Q)) \Rightarrow R$$

2.
$$(\neg P) \Leftrightarrow (Q \Rightarrow R)$$

3.
$$((\neg P) \Leftrightarrow Q) \Rightarrow R$$

4.
$$P \wedge (Q \vee R)$$

5.
$$(Q \wedge P) \vee R$$

Exercice 4.

Ajoutez des parenthèses dans les formules suivantes, de façon à pouvoir les lire sans tenir compte des règles de précédance des connecteurs logiques :

1.
$$\neg P \land \neg Q \Rightarrow \neg R$$

$$2. \neg P \land (Q \Rightarrow R)$$

3.
$$P \Rightarrow Q \lor (R \land \neg S)$$

4.
$$P \land (Q \lor R \Rightarrow S) \lor T \Leftrightarrow U$$

Exercice 5.

Combien de lignes y a-t-il dans la table de vérité d'une proposition avec n propositions primaires?

Exercice 6.

Écrivez la table de vérité des formules suivantes :

- 1. $\neg (P \lor Q)$
- 2. $\neg (P \land Q)$
- 3. $(P \lor Q) \land \neg (P \land Q)$
- 4. $P \lor (Q \land R) \Rightarrow (P \land Q) \lor R$

Exercice 7.

Quel est la différence entre l'utilisation de p et P (majuscule vs minuscule)?

Exercice 8.

Pour chacune des propositions suivantes, dites si c'est une tautologie, une contradiction ou une proposition contingente sans construire leur tables de vérité.

- 1. $P \Rightarrow P$
- 2. $P \wedge \neg P$
- 3. $P \wedge (Q \vee P)$
- 4. $P \land \neg (Q \Rightarrow P)$
- 5. $P \Rightarrow (Q \Rightarrow P)$
- 6. $P \Rightarrow Q \Leftrightarrow \neg P \lor Q$
- 7. $P \Leftrightarrow (\neg P \land Q)$

Exercice 9.

Pour chacune des formules suivantes, écrivez une formule équivalente en utilisant uniquement les connecteurs logiques \neg , \land et \lor .

- 1. $p \Rightarrow q$
- 2. $p \Leftrightarrow q$

Exercice 10.

Pour chacune des formules suivantes, écrivez une formule équivalente en utilisant uniquement les connecteurs logiques \land , et \neg .

- 1. $p \lor q$
- 2. $p \Rightarrow q$
- 3. $p \Leftrightarrow q$

Exercice 11.

Expliquez la différence entre \Rightarrow , \Leftrightarrow et \Rightarrow , respectivement.

Exercice 12.

Pour chacune des formules suivantes, comptez combien de modèles elle possède.

1.
$$(A \land B \land \neg C) \Rightarrow ((D \lor E) \Rightarrow \neg B)$$

2.
$$(((A \Rightarrow B) \Rightarrow C) \Rightarrow D) \Rightarrow E$$

3.
$$(A \land B \Rightarrow \neg C) \Leftrightarrow (D \Rightarrow \neg (E \lor F))$$

Exercice 13.

Soient p et q deux formules propositionells définies sur P_1, \ldots, P_k . Montrez que $p \Rightarrow q$ si et seulement si $p \models q$.