Math 113, Fall 2019

Lecture 7, Thursday, 9/19/2019

Topics Today:

- Cyclic groups (continued)
- Greatest common divisor
- More!!! on Cyclic groups
- Generating sets (time permitting)

1 Clicker Questions

1. How many of the following groups are cyclic?

 $U, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$

Answer: 1, only \mathbb{Z} .

2. Which of the following are NOT cyclic?

 \mathbb{Z}_3 , the trivial group, $U_7, \tilde{\mathbb{Z}}_5$.

Answer: All of the above.

2 Theorems on Cyclic Groups

Vojta notes there are three theorems regarding cyclic groups.

Theorem 2.1. Let G be a cyclic group.

- (a) If G is infinite then $G \cong \mathbb{Z}$.
- (b) If G is finite, then $G \cong \mathbb{Z}_n$, where n := |G|.

Moreover (not in the textbook), if G is finite and is generated by an element a, then n is the smallest positive integer such that $a^n = e$, and $G = \{e, a, a^2, \ldots, a^{n-1}\}$ (without repetition).

Further, $a^j = a^k \iff j \equiv k \pmod{n}$.

Proof. Let $a \in G$ be a cyclic generator. Define $f : \mathbb{Z} \to G$ by $f(m) = a^m$. By definition of cyclic generator, this is onto.

Case 1. If f is injective, then it is bijective. Also,

$$f(n+m) = a^{n+m} = a^n a^m = f(n)f(m),$$

so f has the homomorphism property and therefore defines an isomorphism between G and \mathbb{Z} . That is, $G \stackrel{f^{-1}}{\cong} \mathbb{Z}$.

Case 2. If f is NOT injective, then by the lemma from last lecture (7.1.a), there exists $n \in \mathbb{Z}^+$ with $a^n = e$.

Pick the **smallest** such n. Define $\varphi : \mathbb{Z}_n \to G$ by $\varphi(k) = a^k$. Notice this has the homomorphism property because

$$\varphi(j +_n k) = \varphi(j + k \text{ or } j + k - n)$$

$$= a^{j+k} \text{ or } a^{j+k-n}$$

$$= a^j a^k \text{ or } a^j a^k \underbrace{(a^n)^{-1}}_{e}$$

$$= a^j a^k \text{ (in either case)}$$

$$= \varphi(j)\varphi(k)$$

Also, φ is injective because if $0 \le j < k < n$ and $\varphi(j) = \varphi(k)$ then $a^k = a^j$, so $a^{k-j} = e$. However, 0 < k-j < n, and this contradicts the choice of n as the smallest such number.

Now, φ is onto because taking any $x \in \langle a \rangle = G$ equals a^m for some $m \in \mathbb{Z}$. Write m = qn + r for some $q, r \in \mathbb{Z}$ and $0 \le r < n$ (via the division algorithm). Hence $r \in \mathbb{Z}_n$ (integer in the right range), and

$$a^{m} = a^{qn+r} = (a^{n})^{q} a^{r} = e^{q} a^{r} = a^{r} = \varphi(r)$$

Hence x is in the image of φ , so φ is onto, one-to-one, and has the homomorphism property, so φ specifies the isomorphism $G \stackrel{\varphi}{\cong} \mathbb{Z}_n$.

Now we consider the two disjoint cases:

Case 1. G is infinite and $G \cong \mathbb{Z}$.

Case 2. G is finite and $G \cong \mathbb{Z}_n$.

(a) Now if G is infinite, then we fall under Case 1, so $G \cong \mathbb{Z}$.

(b) Similarly, if G is finite, then we fall under Case 2, and hence $G \cong \mathbb{Z}_n$. The remaining parts follow from the proof of case 2.

Now we have our second theorem:

Theorem 2.2. A subgroup of a cyclic group is cyclic.

Proof. Let G be a cyclic group generated by a, and let $H \leq G$.

Case 1. *H* is trivial. Then $H = \{e\} = \langle e \rangle$ is cyclic.

Case 2. H is nontrivial. Then H contains some element $x \neq e$, say $x = a^m$ for some $m \in \mathbb{Z}$. Then $m \neq 0$. If m > 0 then $m \in \mathbb{Z}^+$ and $a^m \in H$. On the other hand, if m < 0, then $-m \in \mathbb{Z}^+$ and $a^{-m} = x^{-1} \in H$. In either case, $\exists_{n \in \mathbb{Z}^+} : a^n \in H$. Pick the smallest such n.

Now we claim that $H = \langle a^n \rangle$. To see this, let $S := \{k \in \mathbb{Z} \mid a^k \in H\}$. Then $n \in S$, and also notice $jn \in S, \forall_{j \in \mathbb{Z}}$, which is because

$$a^{jn} = (a^n)^j = x^j \in H, \forall_{j \in \mathbb{Z}}.$$

Hence $S \supseteq n\mathbb{Z}$ (recall that $n\mathbb{Z} := \{nj \mid j \in \mathbb{Z}\}$).

Now suppose $S \neq n\mathbb{Z}$. Then there exists $m \in S$ with $m \notin n\mathbb{Z}$. So m is not a multiple of n.

So m is between two consecutive multiples of n:

$$jn < m < (j+1)n$$
.

Then 0 < m - jn < n and

$$a^{m-jn} = a^m (a^n)^{-j} = a^m x^{-j} \in H$$
,

because $a^m, x \in H$. However, this contradicts the choice of n. Hence $S = n\mathbb{Z}$.

Therefore, $H \subseteq \{a^{nj} \mid j \in \mathbb{Z}\}$ because if $x \in H$, write $x = a^m$ for some $m \in \mathbb{Z}$. Then $m \in S$, so $m \in nj$, and hence

$$x \in \{a^{nj} \mid j \in \mathbb{Z}\} = \{(a^n)^j \mid j \in \mathbb{Z}\} = \langle a^n \rangle.$$

However, we also have $a^n \in G$, so that $\langle a^n \rangle \subseteq H$. Hence $H = \langle a^n \rangle$ is cyclic, completing the proof.

If $G = \mathbb{Z}$, then we can take a = 1. This brings us to our corollary:

Corollary 2.2.1. The nontrivial subgroups of \mathbb{Z} are exactly $n\mathbb{Z}$ for all $n \in \mathbb{Z}^+$, and these are different.

Proof. Take $G := \mathbb{Z}$ and a = 1, and let H be a nontrivial subgroup of \mathbb{Z} . Then $H = \langle n \rangle = n\mathbb{Z}$ (where n is the smallest positive element of H). Also, for all $n \in \mathbb{Z}^+$, notice $n\mathbb{Z}$ is a subgroup of \mathbb{Z} via our theorem. So we ave a one-to-one correspondence:

 $\mathbb{N} \cong \text{set of subgroups of } \mathbb{Z},$

via the mapping $n \mapsto n\mathbb{Z}$. Note that 0 corresponds to the trivial subgroup.

3 (Greatest Common) Divisors:

Definition: Divide -

Let $a, b \in \mathbb{Z}$ (we allow a = 0 or b = 0 or both). We say that a divides b and write

$$a \mid b$$
,

if aq = b for some $q \in \mathbb{Z}$. If so, then we also say that b is a "multiple" of a, or that a is a divisor of b.

Remark: Suppose $a \neq 0$. Then $a \mid b \iff \frac{b}{a} \in \mathbb{Z}$. If a = 0, then $0 \mid b \iff b = 0$.

Definition: Greatest common divisor (gcd) -

Let $r, s \in \mathbb{Z}$ (where one or both may be zero). Then the set

$$H := \{ nr + ms \mid n, m \in \mathbb{Z} \}$$

is a subgroup of G, so it equals $d\mathbb{Z}$ for some unique $d \in \mathbb{N}$.

Then d is called the **greatest common divisor** of r and s, and we write:

$$d = \gcd(r, s)$$
.

Remark: Notice $r = 1 \cdot r + 0 \cdot s \in H$, so $d \mid r$. Similarly, $d \mid s$, so d is a **common divisor** of r and s. Since $d \in H$, there exist $m, n \in \mathbb{Z}$ such that d = mr + ns. So if $e \mid r$ and $e \mid s$, then $e \mid mr$ and $e \mid ns$, and hence $e \mid (mr + ns)$. Therefore, $e \mid d$, so $e \leq d$ (unless of course d = 0). So every common divisor is less than or equal to d, unless = s = 0.

Also, if $r \neq 0$ or $s \neq 0$, then gcd(r, s) is the smallest positive element of H. As for r = s = 0, then gcd(r, s) = gcd(0, 0) := 0.

4 Clicker Questions Again!!!

- 3. Let $H = 6\mathbb{Z} \cap 10\mathbb{Z}$. Then:
- (A) H is not a subgroup of $\mathbb Z$
- (B) H is a subgroup of \mathbb{Z} , but not a cyclic subgroup.
- (C) $H = 2\mathbb{Z}$
- **(D)** $H = 30\mathbb{Z}$
- (E) None of the above.
- 4. Let $H = 6\mathbb{Z} \cup 10\mathbb{Z}$. Then:
- (A) H is not a subgroup of \mathbb{Z}
- (B) H is a subgroup of \mathbb{Z} , but not a cyclic subgroup.
- (C) $H = 2\mathbb{Z}$
- (D) $H = 30\mathbb{Z}$
- (E) None of the above.

5 Subgroups of the Cyclic Groups

Example: Let $G = U_{10} = \langle \zeta \rangle$, where $\zeta = e^{\frac{2\pi i}{10}}$. We may ask what is $\langle \zeta^4 \rangle$? Let $b := \zeta^4$.

Drawing out a pentagram on the unit circle, we have that $\langle b \rangle$ has 5 elements (so we write |b| = 5). In fact, $\langle b \rangle = U_5 = \langle \zeta^2 \rangle$, where $\zeta^2 = e^{\frac{2\pi i}{5}}$.

5.1 Generalizing

Now in general, let G be a finite cyclic group of order n, generated by a, and let $s \in \mathbb{Z}$. What can we say about the cyclic subgroup $\langle b \rangle$, where $b := a^s$? Let's revisit the proof of the earlier theorem, in that all subgroups of cyclic groups are cyclic. Let $H = \langle b \rangle$. We may ask, for which $m \in \mathbb{Z}$ is $a^m \in H$? We notice:

$$a^m \in H \iff a^m = b^j \text{ for some } j \in \mathbb{Z}$$

 $\iff a^m = a^{sj}$
 $\iff m \equiv js \pmod{n}$
 $\iff m = in + js \text{ for some } i, j \in \mathbb{Z}$
 $\iff m \in \{in + js \mid i, j \in \mathbb{Z}\},$

which is a subgroup of \mathbb{Z} from earlier proof. The smallest positive such $m := \gcd(n, s)$, and H contains

$$a^d, a^{2d}, \dots, a^{\frac{n}{d}d} = a^n = 1,$$

where all of these but the last are not equal to 1. So $H \supseteq \langle a^d \rangle$, and a^b has order $\frac{n}{d}$. To be continued.

Lecture ends here.