第五章 多元函数微分学及其应用

习 题 5.1

(A)

1. 设 $\{x_k\}$ 为 Rⁿ 中的点列, $a \in \mathbb{R}^n$, $\lim_{k \to \infty} x_k = a$, 证明 $\lim_{k \to \infty} \|x_k\| = \|a\|$.

证明 由 $\lim_{k\to\infty} x_k = a$ 知对 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+$,使对 $\forall k > N$,恒有 $\|x_k - a\| < \varepsilon$. 又 $\|\|x_k\| - \|a\|\| \le \|x_k - a\|$,从而 $\lim_{k\to\infty} \|x_k\| = \|a\|$.

3. 证明定理 1.2 中的(2),(4).

定理 1.2 设 $|x_i| \subseteq \mathbb{R}^n$ 是收敛点列,则

- (2) {x_k} 是有界点列;
- (4) 若 $\{x_i\}$ 收敛于 a,则其任一子列也收敛于 a.

证明(2) 设 $\lim_{k\to\infty} x_k = a$,则对 $\varepsilon_0 = 1$, $\exists N_0 \in \mathbb{N}_+$,使对 $\forall k > N_0$,恒有 $\|x_k - a\|$ < 1. 从而 $\|x_k\| \le 1 + \|a\|$,对 $\forall k > N_0$.

令 $M = \max\{ \| \mathbf{a} \| + 1, \| \mathbf{x}_1 \|, \| \mathbf{x}_2 \|, \dots, \| \mathbf{x}_{N_0} \| \},$ 则对 $\forall k \in \mathbb{N}_+, \| \mathbf{x}_k \|$ ≤ M, 即 $\{\mathbf{x}_k\}$ 为有界点列.

(4) 由 $\lim_{k\to\infty} x_k = a$ 知对 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+$, 使 $\forall k > N$, 恒有 $\|x_k - a\| < \varepsilon$, 则子列 $\{x_{k_j}\}$ 中所有下标 $k_j > N$ 的项 x_{k_j} 均有 $\|x_{k_j} - a\| < \varepsilon$, 故 $\lim_{t\to\infty} x_{k_j} = a$.

(B)

- 1. 设 $A \subseteq \mathbb{R}^n$ 是一个点集,证明:
- (1) Å与 ext A 是开集;

证明 4 是开集

对 $\forall x_0 \in \mathring{A}$,由内点的定义 $\exists \delta > 0$,使 $U(x_0, \delta) \subseteq A$. 而对 $\forall y_0 \in U(x_0, \delta)$,令 $\delta_1 = \|y_0 - x_0\| < \delta, \delta' \leq \min \{\delta - \delta_1, \delta_1\}$,则 $U(y_0, \delta'/2) \subseteq U(x_0, \delta) \subseteq A$. 则 $y_0 \in \mathring{A}$,于是 $U(x_0, \delta) \subseteq \mathring{A}$,即 \mathring{A} 为开集.

ext A 为开集

对 $\forall x_0 \in \text{ext } A, \exists \delta > 0$, 使 $U(x_0, \delta) \cap A = \emptyset$. 而对 $\forall y_0 \in U(x_0, \delta)$, 令 $\delta_1 = \emptyset$

 $\|y_0 - x_0\| < \delta, \delta' \leq \min\left\{\frac{1}{2}\delta_1, \frac{1}{2}(\delta - \delta_1)\right\}, 则 \ U(y_0, \delta') \subseteq U(x_0, \delta), 从而 \ U(y_0, \delta')$ $\cap A = \emptyset$, 即 x_0 的邻域 $U(x_0, \delta)$ 中所有的点均为 A 的外点, 即 $U(x_0, \delta) \subseteq \text{ext } A$. 于是ext A为开集.

(2) A', ∂A 是闭集;

先证 A'是闭集. 即证 A'的任一个聚点 $\mathbf{x}_0 \in A'$. 由于 \mathbf{x}_0 为 A'的聚点,则存在 A'中的点列 $\{\mathbf{x}_k\}$ $\{k=1,2,\cdots,\mathbf{L} \ \mathbf{x}_k \neq \mathbf{x}_0\}$ 使 $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{x}_0$,即对 \mathbf{x}_0 的任一邻域 $\mathring{U}(\mathbf{x}_0,\varepsilon)$, $\exists N \in \mathbb{N}_+$,使对 $\forall k > N$,恒有 $\mathbf{x}_k \in \mathring{U}(\mathbf{x}_0,\varepsilon)$. 又由 $\mathring{U}(\mathbf{x}_0,\varepsilon)$ 是开集,则对 $\forall k > N$, $\exists \mathbf{x}_k$ 的邻域 $U(\mathbf{x}_k) \subseteq \mathring{U}(\mathbf{x}_0,\varepsilon)$,又由 $\mathbf{x}_k \in A'$,则 $U(\mathbf{x}_k) \cap A \neq \varnothing$,即 $\mathring{U}(\mathbf{x}_0,\varepsilon) \cap A \neq \varnothing$,即在 \mathbf{x}_0 的任何去心邻域中均含有 A 的点,由定理 1.5 知 $\mathbf{x}_0 \in A'$.

∂A 为闭集.

由于 $\mathbf{R}^n = \mathring{A} \cup \text{ext } A \cup \partial A$,则 $\partial A = (\mathring{A} \cup \text{ext } A)^c$. 由本题(1)及定理 1.7 知 $\mathring{A} \cup \text{ext } A$ 为开集. 由定理 1.6, ∂A 为闭集.

(3) A 为开集 $\Leftrightarrow A \cap \partial A = \emptyset$.

先证 A 为开集 $\Rightarrow A \cap \partial A = \emptyset$.

由 A 为开集,则 $A = \mathring{A}$,从而 $A \cap \partial A = \mathring{A} \cap \partial A = \emptyset$.

再证 $A \cap \partial A = \emptyset \Rightarrow A$ 为开集.

由 $A \cap \partial A = \emptyset$ 且 $A \cap \text{ext } A = \emptyset$, 而 $\mathring{A} = (\partial A \cup \text{ext } A)^c$.

从而 $A \subseteq \mathring{A}$,故 $A = \mathring{A}$.即 A 为开集.

2. 以 n=2 为例证明聚点原理: \mathbb{R}^n 中的有界无限点集至少有一个聚点.

证明 设 $A = \{(x_{\alpha}, y_{\alpha}) \in \mathbb{R}^2 \mid \alpha \in I, I$ 为实数集} 为有界无限点集. 则 $\{x_{\alpha}\} \subseteq \mathbb{R}$ \mathbb{R} , $\{y_{\alpha}\} \subseteq \mathbb{R}$ $\{\alpha \in I\}$ 均为有界无限集. 由数集的 Weierstrass 定理 $\{\beta - \hat{\pi}\}$ 定理 $\{\alpha \in I\}$ 均为有界无限集. 由数集的 Weierstrass 定理 $\{\beta - \hat{\pi}\}$ 定理 $\{\alpha \in I\}$ 为有 $\{\alpha_{\alpha}\}$ 必有收敛的子列. 不妨设为 $\{x_{\alpha_k}\}$,且 $\lim_{k \to \infty} x_{\alpha_k} = x_0$. 在 $\{y_{\alpha}\}$ ($\alpha \in I$) 中选取与 $\{\alpha_{\alpha_k}\}$ 对应的 $\{y_{\alpha_k}\}$ 以同 $\{y_{\alpha_k}\}$,则 $\{y_{\alpha_k}\}$,则 $\{y_{\alpha_k}\}$ ($\{\alpha \in I\}$ 为有界无限数列,必有收敛的子数列. 设为 $\{y_{\alpha_k}\}$,且 $\{y_{\alpha_k}\}$,且 $\{y_{\alpha_k}\}$ 对应的 $\{\alpha_{\alpha_k}\}$ 的子列 $\{\alpha_{\alpha_k}\}$ ($\{\alpha_{\alpha_k}\}$, $\{\alpha_{\alpha_k}\}$ 也收敛于 $\{\alpha_{\alpha_k}\}$,从而 $\{\alpha_{\alpha_k}\}$ 中存在收敛于 $\{\alpha_{\alpha_k}\}$ 的点列 $\{\alpha_{\alpha_k}\}$ 。

习 题 5.2

(A)

3. 用定义证明下列二重极限.

(1)
$$\lim_{(x,y)\to(0,0)} xy \sin \frac{x}{x^2+y^2} = 0$$
;

解 由于
$$\left| xy\sin \frac{x}{x^2 + y^2} \right| \le |xy| \le \frac{1}{2} (x^2 + y^2)$$
. 所以对 $\forall \varepsilon > 0$, 取 $\delta = \sqrt{2\varepsilon}$,

当 $\|(x,y)-(0,0)\| = \sqrt{x^2+y^2} < \delta$ 时,就有:

$$\left|xy\sin\frac{x}{x^2+y^2}-0\right|<\varepsilon. \text{ if } \lim_{(x,y)\to(0,0)}xy\sin\frac{x}{x^2+y^2}=0.$$

(2)
$$\lim_{(x,y)\to(1,1)} (x^2 + y^2) = 2;$$

解 不妨设 || (x,y) - (1,1) || <1,则 |x+1 | <3, |y+1 | <3, 于是 ∀ε>

故
$$\lim_{(x,y)\to(1,1)}(x^2+y^2)=2.$$

(4)
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{xy+1}-1}{xy} = \frac{1}{2}$$
.

解
$$\forall \varepsilon > 0$$
,取 $\delta = \sqrt{\varepsilon}$,当 $0 < \| (x,y) - (0,0) \| = \sqrt{x^2 + y^2} < \delta$ 时,恒有

$$\left| \frac{\sqrt{xy+1}-1}{xy} - \frac{1}{2} \right| = \frac{1}{2} \frac{|xy|}{(\sqrt{xy+1}+1)^2} \le \frac{1}{2} |xy| \le x^2 + y^2 < \varepsilon.$$

故
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{xy+1}-1}{xy} = \frac{1}{2}$$
.

4. 证明: (1)
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$$
不存在; (2) $\lim_{(x,y)\to(0,0)} \frac{xy}{x+y}$ 不存在.

证明 (1) 由于
$$\lim_{\substack{x\to 0\\y=kx}} \frac{x+y}{x-y} = \frac{1+k}{1-k} (k \neq -1)$$
,故 $\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$ 不存在.

(2) 由于
$$\lim_{\substack{x\to 0\\x=y}}\frac{xy}{x+y}=0$$
; $\lim_{\substack{x=y^2-y\\y\to 0}}\frac{xy}{x+y}=-1$, 故 $\lim_{\substack{(x,y)\to(0,0)}}\frac{xy}{x+y}$ 不存在.

6. 讨论下列函数的连续性.

(2)
$$f(x,y) = \frac{x-y}{x+y}$$
; (4) $f(x,y) = \begin{cases} \frac{\sin(xy)}{x^2+y^2}, & x^2+y^2 \neq 0, \\ 0, & x^2+y^2 = 0. \end{cases}$

解 (2)
$$f(x,y)$$
 的定义域 $D = \mathbb{R}^2 \setminus \{(x,y) \mid x+y=0\}$.

由于x-y,x+y均为 \mathbb{R}^2 上的连续函数.

故 f(x,y) 在 D 上连续, x+y=0 为其间断线.

(4) 当 $x^2 + y^2 \neq 0$ 时 f(x,y) 连续. 又由于 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在. 故 f(x,y) 在 $\mathbf{R}^2 \setminus \{(0,0)\}$ 上连续. (0,0) 为其间断点 $\Big(\lim_{\substack{x\to 0\\y=kx}} f(x,y) = \lim_{\substack{x\to 0\\y=kx}} \Big(\frac{\sin kx^2}{kx^2} \cdot \frac{k}{1+k^2}\Big) = \frac{k}{1+k^2}\Big)$.

7. 设 $f(x,y) = \frac{1}{xy}$, $r = \sqrt{x^2 + y^2}$, $D_1 = \{(x,y) \in \mathbb{R}^2 \mid \frac{x}{k} \le y \le kx, k > 1$ 为常数}, $D_2 = \{(x,y) \in \mathbb{R}^2 \mid x > 0, y > 0\}$.

- (1) $\lim_{\substack{r \to +\infty \\ (x,y) \in D_1}} f(x,y)$ 是否存在? 为什么?
- (2) $\lim_{\substack{r \to +\infty \\ (x,y) \in D_2}} f(x,y)$ 是否存在? 为什么?

解 (1) 存在. 当(x,y) $\in D_1$ 时,xy > 0 且 x > 0 时, $\frac{1}{kx^2} \le \frac{1}{xy} \le \frac{k}{x^2}$; 当 x < 0 时, $\frac{k}{x^2} \le \frac{1}{xy} \le \frac{1}{kx^2}$. $\lim_{x \to \infty} \frac{1}{x^2} = 0$, 由函数极限的夹逼准则知 $\lim_{x \to +\infty} \frac{1}{xy} = 0$.

(2) 不存在. 由于
$$(x,y) \in D_2$$
,所以 $\lim_{\substack{r \to +\infty \\ y = \frac{1}{kr}}} \frac{1}{xy} = \lim_{x \to +\infty} k = k$.

故 $\lim_{x \to +\infty} \frac{1}{xy}$ 不存在.

8. 设函数
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$

证明 当(x,y)沿过点(0,0)的每一条射线 $x = t\cos\alpha, y = t\sin\alpha(0 < t < + \infty)$ 趋于点(0,0)时,f(x,y)的极限等于f(0,0),即 $\lim_{t\to 0} f(t\cos\alpha, t\sin\alpha) = f(0,0)$,但f(x,y)在点(0,0)不连续.

证明
$$\lim_{t\to 0} f(t\cos\alpha, t\sin\alpha) = \lim_{t\to 0} \frac{t\cos^2\alpha\sin\alpha}{t^2\cos^4\alpha + \sin^2\alpha} = 0 = f(0,0)$$

 $\lim_{x\to 0} f(x,y) = \lim_{x\to 0} \frac{k}{1+k^2} = \frac{k}{1+k^2} \neq 0$,

故 f(x,y)在(0,0)不连续.

9. 设 $f:D\subseteq \mathbb{R}^2 \to \mathbb{R}$,若f(x,y)在区域 D 内对变量 x 连续,对变量 y 满足

Lipchitz条件. 即对 D 内任意两点(x,y'),(x,y'')有: $|f(x,y') - f(x,y'')| \le L|y' - y''|$,其中 L 为常数,证明:f(x,y)在 D 内连续.

证明 $\forall (x_0, y_0) \in D \ \mathbb{D} \ \forall \varepsilon > 0$,由于 f(x, y) 在 D 内对 x 连续,必 $\exists \delta_1 > 0$, 使当 $(x, y) \in U((x_0, y), \delta_1) \cap D$ 时,恒有

$$|f(x,y) - f(x_0,y)| < \frac{\varepsilon}{2}.$$

取 $\delta = \min \left\{ \delta_1, \frac{\varepsilon}{2L} \right\}$. 那么当 $(x, y) \in U((x_0, y_0), \delta) \cap D$ 时,恒有

$$|f(x,y) - f(x_0,y_0)| \le |f(x,y) - f(x_0,y)| + |f(x_0,y) - f(x_0,y_0)|$$

$$<\frac{\varepsilon}{2}+L\mid y-y_0\mid \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2L}\cdot L=\varepsilon.$$

即 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$,故 f(x,y) 在 (x_0,y_0) 连续. 由 (x_0,y_0) 的任意性知 f(x,y) 在 D 内连续.

10. 设 $A \subseteq \mathbb{R}^n$ 为一点集, $f: A \to \mathbb{R}^m$ 为 n 元向量值函数,证明 f 在 A 上连续等价于它的每个分量在 A 上连续.

证明 设 $f(x) = (f_1(x_1, \dots, x_n), f_2(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n))^T, x = (x_1, \dots, x_n).$

 $\forall x_0 = (x_{01}, \dots, x_{0n}) \in A, f(x)$ 在 x_0 处连续,即 $\lim_{x \to x_0} f(x) = f(x_0)$,则 $\forall i \in \{1, 2, \dots, m\}$,恒有

$$|f_i(\mathbf{x}) - f_i(\mathbf{x}_0)| \le \sqrt{\sum_{i=1}^m (f_i(\mathbf{x}) - f_i(\mathbf{x}_0))^2}$$

$$= ||f(\mathbf{x}) - f(\mathbf{x}_0)||.$$

$$\lim_{\mathbf{x} \to \mathbf{x}_0} f_i(\mathbf{x}) = f_i(\mathbf{x}_0) \quad (i = 1, 2, \dots, m).$$

从而

反过来,设 $\lim_{x\to x_0} f_i(x) = f_i(x_0), i = 1, 2, \cdots, m, 则 \forall \varepsilon > 0, \exists \delta_i > 0, 使当 x \in U(x_0, \delta_i)$ 时,恒有

$$|f_i(\mathbf{x}) - f_i(\mathbf{x}_0)| < \frac{\varepsilon}{\sqrt{m}} \quad (i = 1, 2, \dots, m).$$

令 $\delta = \min\{\delta_1, \delta_2, \dots, \delta_m\}$,则当 $x \in U(x_0, \delta)$ 时,恒有

$$||f(x) - f(x_0)|| = \sqrt{\sum_{i=1}^{m} |f_i(x) - f_i(x_0)|^2}$$

$$<\sqrt{m\cdot\frac{\varepsilon^2}{m}}=\varepsilon.$$

故 $\lim_{x\to x_0} f(x) = f(x_0)$,即f(x)在 x_0 连续,从而在A上连续.

11. 设f是集合 $A \subseteq \mathbb{R}^n$ 上的 n 元向量值函数,证明: f 在 $x_0 \in A$ 连续⇔对于 A 中任何收敛于 x_0 的点列 $\{x_k\}$,都有 $\lim_{n \to \infty} f(x_k) = f(x_0)$.

证明 设 $\mathbf{f} = (f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_m(\mathbf{x}))^{\mathsf{T}}, \mathbf{x} \in A \subseteq \mathbf{R}^n, \text{则} f_i(\mathbf{x})$ 为 n 元数量值函数, $i = 1, 2, \cdots, m$. 由上题知: \mathbf{f} 在 $\mathbf{x}_0 \in A$ 上连续 $\Leftrightarrow f_i(\mathbf{x})$ 在 \mathbf{x}_0 处连续, $i = 1, 2, \cdots, m$. 由数量值函数的 Heine 定理: $f_i(\mathbf{x})$ 在 \mathbf{x}_0 处连续 \Leftrightarrow 对于 A 中任何收敛于 \mathbf{x}_0 的点列 $\{\mathbf{x}_k\}$,都有 $\lim_{\mathbf{x} \to \mathbf{x}_0} f_i(\mathbf{x}) = f_i(\mathbf{x}_0)$. 故本题得证.

12. 设f为集合 $A \subseteq \mathbb{R}^n$ 上的 n 元数量值函数,证明: 若f 在 $x_0 \in A$ 连续,且 $f(x_0) > 0$,则存在正常数 q,使得:

$$\exists \delta > 0, \forall x \in U(x_0, \delta) \cap A,$$
都有 $f(x) \geq q > 0.$

证明 由于 n 元数量值函数 f(x) 在 $x_0 \in A$ 连续. 且 $f(x_0) > 0$,则对 $\varepsilon = \frac{f(x_0)}{2} > 0$, $\exists \delta > 0$,使得 $\forall x \in U(x_0, \delta) \cap A$,恒有 $|f(x) - f(x_0)| < \frac{f(x_0)}{2}$,即

$$f(x_0) - \frac{f(x_0)}{2} < f(x) < f(x_0) + \frac{1}{2}f(x_0)$$
. $\mathbb{R} q = \frac{1}{2}f(x_0) > 0$

则 $f(\mathbf{x}) \geqslant q > 0$.

(B)

- 1. 设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是 n 元向量值函数,试用邻域的语言表述f 在 $x_0 \in \mathbb{R}^n$ 处连续的定义,并证明下列命题等价:
 - (1) f 在 R" 上连续;
- (2) $W \subseteq \mathbb{R}^m$ 是开集,则 W 关于 f 的原象 $f^{-1}(W) = \{x \in \mathbb{R}^n \mid f(x) \in W\}$ 是 \mathbb{R}^n 中的开集;
 - (3) W⊆R" 是闭集,则 W 关于f的原象f -1(W)是 R" 中的闭集.

证明 $f \in X_0 \in \mathbb{R}^n$ 处连续,如果 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得当 $x \in U(x_0, \delta)$ 时恒有 $f(x) \in U(f(x_0), \varepsilon)$.

 $(1) \Rightarrow (2)$

如 $f^{-1}(W) = \emptyset$,则 $f^{-1}(W)$ 为开集. 如 $f^{-1}(W) \neq \emptyset$,那么 $\forall x_0 \in f^{-1}(W)$,则 $f(x_0) \in W$. 由 W 是开集可知, $\exists \varepsilon > 0$,使 $U(f(x_0), \varepsilon) \subseteq W$. 由 f(x) 在 x_0 处连续知:对上述的 $\varepsilon > 0$, $\exists \delta > 0$,使 $\forall x \in U(x_0, \delta)$,恒有 $f(x) \in U(f(x_0), \varepsilon) \subseteq W$.

即 $f(U(x_0,\delta)) \subseteq U(f(x_0),\varepsilon) \subseteq W$,则 $U(x_0,\delta) \subseteq f^{-1}(W)$,即 x_0 为 $f^{-1}(W)$ 的 内点. 由 x_0 的任意性知 $f^{-1}(W)$ 为开集.

$$(2) \Rightarrow (1)$$

 $\forall x_0 \in \mathbb{R}^n$ 及 $\forall \varepsilon > 0$,则 $W = U(f(x_0), \varepsilon)$ 为开集,则 $f^{-1}(W)$ 也是开集,且 $x_0 \in f^{-1}(W)$. 进而 $\exists \delta > 0$,使 $U(x_0, \delta) \subseteq f^{-1}(W)$. 即 $\forall x \in U(x_0, \delta)$, $f(x) \in W = U(f(x_0), \varepsilon)$. 故 f(x) 在 x_0 处连续. 从而 f(x) 在 \mathbb{R}^n 上连续.

故(1)⇔(2).

下证(2)⇔(3). 为此先证 $f^{-1}(W^c) = [f^{-1}(W)]^c$. $\forall x \in f^{-1}(W^c)$, 有 $f(x) \in W^c$, 即 $f(x) \notin W$, 从而 $x \in [f^{-1}(W)]^c$. 故 $f^{-1}(w^c) \subseteq [f^{-1}(W)]^c$.

又 $\forall x \in [f^{-1}(W)]^c$, 有 $x \notin f^{-1}(W)$, 从而 $f(x) \notin W$, 即 $f(x) \in W^c$, 从而 $x \in f^{-1}(W^c)$. 故 $f^{-1}(W^c) \supseteq [f^{-1}(W)]^c$.

因此
$$f^{-1}(\mathbf{W}^c) = [f^{-1}(\mathbf{W})]^c$$

 $(2) \Rightarrow (3)$

如果 $\mathbf{W} \subseteq \mathbf{R}^m$ 为闭集,则 $\mathbf{W}^c \subseteq \mathbf{R}^m$ 为开集.由(2)知 $\mathbf{f}^{-1}(\mathbf{W}^c) = [\mathbf{f}^{-1}(\mathbf{W})]^c$ 为开集,即 $\mathbf{f}^{-1}(\mathbf{W})$ 为闭集.则(2)⇒(3).

$$(3) \Rightarrow (2)$$

如果 $W \subseteq \mathbb{R}^m$ 是开集,则 $W^c \subseteq \mathbb{R}^m$ 为闭集.则由(3), $f^{-1}(W^c) = [f^{-1}(W)]^c$ 为闭集,即 $f^{-1}(W)$ 是开集,则(3) \Rightarrow (2).

故(2)⇔(3). 从而(1)⇔(2)⇔(3).

2. 设有二元函数
$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2}, & x^2+y^2 \neq 0, \\ 0, & x^2+y^2 = 0. \end{cases}$$

证明 f(x,y) 在 \mathbb{R}^2 上不一致连续.

证明 对 $\forall \varepsilon > 0$, 取 $\delta = 2\sqrt{\varepsilon}$, 当 $(x,y) \in U((0,0),\delta)$ 时, 恒有 $\left| \frac{x^2y^2}{x^2+y^2} - 0 \right|$

 $\leq \frac{1}{4}(x^2+y^2) < \varepsilon$. 故 $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$. 由连续函数的性质 f(x,y) 在 \mathbb{R}^2 上连续.

取 $P_n = \left(n + \frac{1}{n}, n + \frac{1}{n}\right), Q_n = (n, n)$,则当 $n \to \infty$ 时 $\|P_n - Q_n\| \to 0$. 因此,对 $\varepsilon = \frac{1}{2}$ 及任何 $\delta > 0$,都存在 $P_n, Q_n \in \mathbb{R}^2$,满足当 $\|P_n - Q_n\| < \delta$ 时有

$$|f(P_n) - f(Q_n)| = 1 + \frac{1}{2n^2} > 1 > \varepsilon,$$

故f(x,y)在 \mathbf{R}^2 上不一致连续.

3. 设f是集 $A \subseteq \mathbb{R}^n$ 上的n元向量值函数,并且满足 Lipschitz 条件,即存在常数 $L \ge 0$,使对所有 $x,y \in A$,均有 $\|f(x) - f(y)\| \le L \|x - y\|$,证明f在A上一致连续.

证明 $\forall \varepsilon > 0$,取 $\delta = \frac{\varepsilon}{L}$.则对 $\forall x,y \in A$,当 $\|x - y\| < \delta$ 时,由于 f 在 A 上满足 Lipschitz 条件,则有

 $||f(x)-f(y)|| \leq L||x-y|| < \varepsilon$,故f在A上一致连续.

- 4. 设 $f: \mathbb{R}^n \to \mathbb{R}$ 是 n 元数量值连续函数, $c \in \mathbb{R}$ 是一个常数,证明
- (1) $\{x \in \mathbb{R}^n \mid f(x) > c\}$ 与 $\{x \in \mathbb{R}^n \mid f(x) < c\}$ 均为开集;
- $(2) \{x \in \mathbb{R}^n \mid f(x) \ge c\} \mid f(x) \le c \mid b \mid f(x) \le c \mid f(x) \le c$
- $(3) |x \in \mathbb{R}^n | f(x) = c | 是闭集.$

证明 (1) 令 $W_1 = (c, +\infty), W_2 = (-\infty, c)$ 均为 \mathbb{R} 中的开集,而 $\{x \in \mathbb{R}^n \mid f(x) > c\} = f^{-1}(W_1), \{x \in \mathbb{R}^n \mid f(x) < c\} = f^{-1}(W_2).$ 由于 $f \in \mathbb{R}^n$ 上的连续函数,则由本习题(B)的第一题知 $f^{-1}(W_1)$ 与 $f^{-1}(W_2)$ 均为开集.

类似的方法可知(2)中两集合均为闭集.

(3) 由于 $\{x \in \mathbb{R}^n \mid f(x) = c\} = \{x \in \mathbb{R}^n \mid f(x) \ge c\} \cap \{x \in \mathbb{R}^n \mid f(x) \le c\}$,由本题(2)知 $\{x \in \mathbb{R}^n \mid f(x) = c\}$ 为两闭集的交.则由定理性质知其为闭集.

习 题 5.3

(A)

解
$$f_x(x,1) = \frac{\mathrm{d}}{\mathrm{d}x} f(x,1) = \frac{\mathrm{d}}{\mathrm{d}x}(x) = 1$$
 或

$$f_{x}(x,1) = \frac{\partial}{\partial x} f(x,y) \bigg|_{(x,1)} = 1 + (y-1) \frac{1}{\sqrt{1 - \frac{x}{y}}} \cdot \frac{1}{y} \cdot \frac{1}{2\sqrt{\frac{x}{y}}} \bigg|_{(x,1)} = 1.$$

$$(2) f(x,y) = \frac{\cos(x-2y)}{\cos(x+y)}, \Re f_y \left(\pi, \frac{\pi}{4}\right).$$

$$\mathbf{M} \quad f_{y}\left(\pi, \frac{\pi}{4}\right) = \frac{\mathrm{d}}{\mathrm{d}y} f(\pi, y) \left|_{y = \frac{\pi}{4}} = \frac{\mathrm{d}}{\mathrm{d}y} \left(\frac{\cos(\pi - 2y)}{\cos(\pi + y)}\right) \right|_{y = \frac{\pi}{4}} = -2\sqrt{2}.$$

3. 求曲线 $\begin{cases} z = \frac{1}{4}(x^2 + y^2), \\ y = 4 \end{cases}$ 在点(2,4,5)处的切线与 z 轴正向所成的倾角.

解 设所求倾角为 α . 由偏导数的几何意义知 $\tan \alpha$ 即为二元函数 $z = \frac{1}{4}(x^2 + y^2)$ 在 (2,4) 处 x 的偏导 $\frac{\partial z}{\partial x}\Big|_{(2,4)}$. 即 $\tan \alpha = \frac{\partial z}{\partial x}\Big|_{(2,4)} = 1$, 故 $\alpha = \frac{\pi}{4}$.

4. (1) 研究
$$f(x,y) = \begin{cases} x \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ & \text{在点}(0,0)$$
是否存在偏导 $0, & x^2 + y^2 = 0 \end{cases}$

数 $f_x(0,0)$ 及 $f_y(0,0)$;

解 (1)
$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x, 0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \sin \frac{1}{\Delta x^2}$$
不存在. $f_y(0,0)$

$$= \lim_{\Delta y \to 0} \frac{f(0, 0 + \Delta y) - f(0, 0)}{\Delta y} = 0.$$

(2) 设函数 f(x,y) = |x-y|g(x,y), 其中函数 g(x,y) 在点(0,0)的某邻域内连续. 试问 g(0,0) 为何值时,f 在点(0,0)的两个偏导数均存在? g(0,0) 为何值时,f 在点(0,0)处可微?

$$\mathbf{f}(2) f_{x}(0,0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x, 0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x} g(\Delta x, 0).$$

要使 $f_x(0,0)$ 存在,则g(0,0)=0,此时 $f_x(0,0)=0$.

 $f_{y}(0,0) = \lim_{\Delta y \to 0} \frac{|\Delta y|}{\Delta y} g(0,\Delta y),$ 当且仅当 g(0,0) = 0 时存在,且 $f_{y}(0,0) = 0$. 故当 g(0,0) = 0 时, f(x,y) 可偏导.

$$Z = \int (\Delta x, \Delta y) - f(0,0) - f_x(0,0) \Delta x - f_y(0,0) \Delta y$$
$$= |\Delta x - \Delta y| g(\Delta x, \Delta y),$$

令 $\rho = \sqrt{\Delta x^2 + \Delta y^2}$, 如 $g(0,0) \neq 0$, 则一定不可微. 而 g(0,0) = 0 时, $\lim_{\rho \to 0} \frac{|\Delta x - \Delta y|}{\rho} \quad \text{不存在.} \quad \frac{|\Delta x - \Delta y|}{\rho} \leq \frac{|\Delta x| + |\Delta y|}{\rho} \leq 2 \quad \text{有界, 则}$ $\lim_{\rho \to 0} \frac{|\Delta x - \Delta y| g(\Delta x, \Delta y)}{\rho} = 0. \text{ 即当 } g(0,0) = 0 \text{ 时 } f(x,y) \text{ 在}(0,0) \text{ 处可微.}$

6. 设 $f(x,y) = (xy)^{\frac{1}{3}}$. 证明(1) f(x,y) 在点(0,0) 只有沿两个坐标轴的正负方向上存在方向导数;(2) f(x,y) 在点(0,0) 连续.

证明 (1) 设
$$l = \{\cos \alpha, \sin \alpha\}$$
, 则 $\frac{\partial f}{\partial l}\Big|_{(0,0)} = \lim_{t \to 0} \frac{f(t\cos \alpha, t\sin \alpha) - f(0,0)}{t}$

 $=\lim_{t\to 0}\frac{\sin^{\frac{1}{3}}\alpha\cos^{\frac{1}{3}}\alpha}{t^{\frac{1}{3}}}.$ 当且仅当 $\sin\alpha=0$ 或 $\cos\alpha=0$ 时存在,且其值为零.即 f(x,y) 在(0,0) 只有沿 x 轴正负向 $(\alpha=0,\pi)$ 和 y 轴正负向 $(\alpha=\frac{\pi}{2},\frac{3\pi}{2})$ 的方向导数存在.

又由 $|f(x,y)-f(0,0)| = |xy|^{\frac{1}{3}} \le \left(\frac{1}{2}\right)^{\frac{1}{3}} (x^2+y^2)^{\frac{1}{3}}$, 易知 f 在 (0,0) 处连续.

9. 设 du = 2xdx - 3ydy, 求函数 u(x,y).

解 由于 du = 2xdx - 3ydy, 所以 $\frac{\partial u}{\partial x} = 2x$, $\frac{\partial u}{\partial y} = -3y$. 由 $\frac{\partial u}{\partial x} = 2x$ 得 $u(x,y) = x^2 + \varphi(y)$. 由 $\frac{\partial u}{\partial y} = -3y$ 可得 $\varphi'(y) = -3y$. 则 $\varphi(y) = -\frac{3}{2}y^2 + c$, 故 $u(x,y) = x^2 - \frac{3}{2}y^2 + c$.

10. 试说明二元函数 z = f(x,y) 在 $P_0(x_0,y_0)$ 连续,偏导数存在. 沿任一方向 l 的方向导数存在、可微及一阶偏导数连续几个概念之间的关系.

解 其相互关系可表示如下:

其中①表示定理 3.1; ②表示定理 3.2; ③~⑧为反例.

③ $f(x,y) = \sqrt{x^2 + y^2}$ 在(0,0)处连续. 但 $f_x(0,0), f_y(0,0)$ 均不存在.

$$(4) f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$
 $f_x(0,0) = f_y(0,0) = 0, \text{ (a.6)}$

连续.

⑤
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$
 f 在(0,0)连续、可偏导,且 $f_x(0,0) = 0$

 $f_{y}(0,0) = 0$,但不可微.

⑥
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$
 f 在 $(0,0)$ 连续. 可偏导, f 在

(0,0)处可微,但 $f_x(x,y)$ 与 $f_y(x,y)$ 在(0,0)处间断. (由f在(0,0)可微知:f在(0,0)沿任一方向的方向导数存在.)

$$\widehat{T} f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$

在(0,0)处沿任何方向的方向导数存在,但f在(0,0)处不连续,从而不可微.

- ⑧ $f(x,y) = (xy)^{\frac{1}{3}}$ 在(0,0)连续. 但仅沿 x,y 轴正、负向的方向导数存在.
- 11. 设f(x,y)在区域D内具有一阶连续偏导数且恒有 $f_x=0$ 及 $f_y=0$,证明f在D内为一常数.

证明 由定理 3.2 知 f 在 D 内任一点(x,y) 处可微,且 $df(x,y) = f_x dx + f_y dy$ $\equiv 0$. 从而 $f(x,y) = 常数((x,y) \in D)$.

12. 设 x, y 的绝对值都很小时, 利用全微分概念推出下列各式的近似计算 公式

(1)
$$(1+x)^m (1+y)^n$$
; (2) $\arctan \frac{x+y}{1+xy}$.

解 (1) 令 $f(x,y) = (1+x)^m (1+y)^n$. 当 x,y 绝对值很小时.

$$f(x,y) - f(0,0) \approx f_{*}(0,0)(x-0) + f_{y}(0,0)(y-0) = mx + ny.$$

故

$$f(x,y) \approx f(0,0) + mx + ny = 1 + mx + ny.$$

(2)
$$\diamondsuit f(x,y) = \arctan \frac{x+y}{1+xy}$$
. 当 $|x|$, $|y|$ 很小时,

$$f(x,y) \approx f(0,0) + f_x(0,0)(x-0) + f_y(0,0)(y-0) = x + y.$$

20. 设 $u = \ln\left(\frac{1}{r}\right)$,其中 $r = \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2}$,求 ∇u ;并指出在空间哪些点处成立 || ∇u || =1?

$$\mathbf{W}u = \frac{\mathrm{d}}{\mathrm{d}r} \left(\ln \frac{1}{r} \right) \left\{ \frac{x-a}{r}, \frac{y-b}{r}, \frac{z-c}{r} \right\} = -\frac{1}{r^2} \left\{ x-a, x-b, x-c \right\},$$

$$\| \nabla u \| = \frac{1}{r^2} \left[(x-a)^2 + (y-b)^2 + (z-c)^2 \right]^{\frac{1}{2}} = \frac{1}{r},$$

故在 r=1 即球面 $(x-a)^2 + (y-b)^2 + (z-c)^2 = 1$ 上所有的点处 $\|\nabla u\| = 1$.

21. 设 $u = \frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2}$, 问 u 在点(a,b,c)处沿哪个方向增大最快?沿哪个方向减小最快?沿哪个方向变化率为零?

解 $\nabla u(a,b,c) = \left\{ -\frac{2}{a}, -\frac{2}{b}, \frac{2}{c} \right\}$. 故 u 在 (a,b,c) 点沿 $\nabla u(a,b,c)$ 增加 最快;沿 $-\nabla u(a,b,c) = \left\{ \frac{2}{a}, \frac{2}{b}, \frac{-2}{c} \right\}$ 方向减小最快;沿与 $\nabla u(a,b,c)$ 垂直的方向 $\{l,m,n\}$ 变化率为零,其中 l,m,n 满足 $\frac{1}{a}l + \frac{1}{b}m - \frac{1}{c}n = 0$. 即沿 $k_1 \{a,-b,0\} + k_2 \{a,0,c\}$ 方向变化率为零,其中 k_1,k_2 为任意实数.

25. 证明如果函数 u = f(x,y)满足

$$A\frac{\partial^2 u}{\partial x^2} + 2B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} = 0,$$

式中A,B,C 都是常数,且f(x,y)具有连续的三阶偏导数,那么函数 $\frac{\partial u}{\partial x}$ 和 $\frac{\partial u}{\partial y}$ 也满足这个方程.

证明 由于f具有连续的三阶偏导数,则三阶偏导数与求导次序无关,从而 $\frac{\partial^3 u}{\partial y^2 \partial x} = \frac{\partial^3 u}{\partial x \partial y^2} = \frac{\partial}{\partial x} \left(\frac{\partial^2 u}{\partial y^2} \right),进而$

$$A \frac{\partial^{2}}{\partial x^{2}} \left(\frac{\partial u}{\partial x} \right) + 2B \frac{\partial}{\partial x \partial y} \left(\frac{\partial u}{\partial x} \right) + C \frac{\partial}{\partial y^{2}} \left(\frac{\partial u}{\partial x} \right)$$

$$= A \frac{\partial}{\partial x} \left(\frac{\partial^{2} u}{\partial x^{2}} \right) + 2B \frac{\partial}{\partial x} \left(\frac{\partial^{2} u}{\partial y \partial x} \right) + C \frac{\partial^{3} u}{\partial x \partial y^{2}}$$

$$= \frac{\partial}{\partial x} \left(A \frac{\partial^{2} u}{\partial x^{2}} \right) + \frac{\partial}{\partial x} \left(2B \frac{\partial^{2} u}{\partial x \partial y} \right) + \frac{\partial}{\partial x} \left(C \frac{\partial^{2} u}{\partial y^{2}} \right)$$

$$= \frac{\partial}{\partial x} \left(A \frac{\partial^{2} u}{\partial x^{2}} + 2B \frac{\partial^{2} u}{\partial x \partial y} + C \frac{\partial^{2} u}{\partial y^{2}} \right) = 0.$$

故函数 $\frac{\partial u}{\partial x}$ 满足题中方程. 同理可证此结论对函数 $\frac{\partial u}{\partial y}$ 也成立.

- 26. 求下列函数的高阶偏导数(假定函数f具有二阶连续偏导数或二阶连续导数,函数g具二阶连续导数).
 - (3) $z = f(xy^2, x^2y)$ 所有二阶偏导数;

$$\mathbf{R} = \frac{\partial z}{\partial x} = f_1 \cdot y^2 + 2xyf_2, \frac{\partial z}{\partial y} = 2xyf_1 + x^2f_2,$$

$$\frac{\partial^{2} z}{\partial x^{2}} = \frac{\partial}{\partial x} (y^{2} f_{1} + 2xy f_{2}) = y^{2} \frac{\partial f_{1}}{\partial x} + 2y f_{2} + 2xy \frac{\partial f_{2}}{\partial x}$$

$$= y^{2} (y^{2} f_{11} + 2xy f_{12}) + 2y f_{2} + 2xy (y^{2} f_{21} + 2xy f_{22})$$

$$= y^{4} f_{11} + 4xy^{3} f_{12} + 4x^{2}y^{2} f_{22} + 2y f_{2};$$

$$\frac{\partial^{2} z}{\partial y \partial x} = \frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial}{\partial y} (y^{2} f_{1} + 2xy f_{2})$$

$$= 2y f_{1} + y^{2} \frac{\partial f_{1}}{\partial y} + 2x f_{2} + 2xy \frac{\partial f_{2}}{\partial y}$$

$$= 2y f_{1} + 2x f_{2} + y^{2} (2xy f_{11} + x^{2} f_{12}) + 2xy (2xy f_{21} + x^{2} f_{22})$$

$$= 2y f_{1} + 2x f_{2} + 2xy^{3} f_{11} + 5x^{2}y^{2} f_{12} + 2x^{3}y f_{22};$$

$$\frac{\partial^{2} z}{\partial y^{2}} = \frac{\partial}{\partial y} (\frac{\partial z}{\partial y}) = 2x f_{1} + 2xy \frac{\partial f_{1}}{\partial y} + x^{2} \frac{\partial f_{2}}{\partial y}$$

$$= 2x f_{1} + 2xy (2xy f_{11} + x^{2} f_{12}) + x^{2} (2xy f_{21} + x^{2} f_{22})$$

$$= 2x f_{1} + 4x^{2}y^{2} f_{11} + 4x^{3}y f_{12} + x^{4} f_{22}.$$
(5)
$$z = f \left(xy, \frac{x}{y}\right) + g\left(\frac{y}{x}\right), \frac{\partial^{2} z}{\partial x \partial y}.$$

$$\mathbf{MF} \quad \frac{\partial z}{\partial y} = x f_{1} - \frac{x}{y^{2}} f_{2} + \frac{1}{x} g'\left(\frac{y}{x}\right), \mathbf{j}. \mathbf{j}. \mathbf{m} \mathbf{m}$$

$$\frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial y}\right) = \frac{\partial}{\partial x} \left(x f_{1} - \frac{x}{y^{3}} f_{2} + \frac{1}{x} g'\left(\frac{y}{x}\right)\right)$$

$$= f_{1} + x \left(y f_{11} + \frac{1}{y} f_{12}\right) - \frac{1}{y^{2}} f_{2} - \frac{x}{y^{2}} \left(y f_{21} + \frac{1}{y} f_{22}\right)$$

$$- \frac{1}{x^{2}} g'\left(\frac{y}{x}\right) + \frac{1}{x} \left(\frac{-y}{x^{2}}\right) g''\left(\frac{y}{x}\right)$$

$$= f_{1} - \frac{1}{y^{2}} f_{2} + xy f_{11} - \frac{x}{y^{3}} f_{22} - \frac{1}{z^{2}} g'\left(\frac{y}{y}\right) - \frac{y}{z^{3}} g''\left(\frac{y}{x}\right).$$

27. 设 f(x,y) 具有一阶连续偏导数,且 $f(1,1)=1,f_1(1,1)=a,f_2(1,1)=b$,又函数 F(x)=f[x,f(x,f(x,x))],求 F(1),F'(1).

$$F(1) = f[1, f(1, f(1, 1))] = f[1, f(1, 1)] = f[1, 1] = 1,$$

$$F'(1) = f_1[1, f(1, f(1, 1))] + f_2[1, f(1, f(1, 1))] \cdot \frac{df(x, f(x, x))}{dx} \Big|_{x=1}$$

$$= f_1[1, f(1, 1)] + f_2[1, f(1, 1)] \left[f_1(1, f(1, 1)) + f_2(1, f(1, 1)) \right]$$

$$+ f_2(1, f(1, 1)) \frac{df(x, x)}{dx} \Big|_{x=1}$$

$$= f_1(1, 1) + f_2(1, 1) \left[f_1(1, 1) + f_2(1, 1) (f_1(1, 1) + f_2(1, 1)) \right]$$

$$= a + b \left[a + b(a + b) \right].$$

28. 设函数 u = u(x,y) 具有二阶连续偏导数,试求常数 a 和 b,使在变换 $\xi = x + ay$, $\eta = x + by$ 之下,可将方程 $\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 3 \frac{\partial^2 u}{\partial y^2} = 0$ 化为 $\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$.

解 如果 a=b,则 $\xi=\eta=x+ay$.则 $a\neq b$. 从而 $x=\frac{1}{a-b}(a\eta-b\xi)$, $y=\frac{1}{a-b}(\xi-\eta)$,则

$$\frac{\partial u}{\partial \eta} = \frac{\partial u}{\partial x} \cdot \frac{a}{a - b} + \frac{\partial u}{\partial y} \cdot \frac{-1}{a - b} = \frac{1}{a - b} \left(a \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} \right),$$

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = \frac{\partial}{\partial \xi} \left(\frac{1}{a - b} \left(a \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} \right) \right) = \frac{1}{a - b} \left[a \left(\frac{\partial^2 u}{\partial x^2} - \frac{b}{a - b} \right) + \frac{\partial^2 u}{\partial y \partial x} \frac{1}{a - b} \right) - \left(\frac{\partial^2 u}{\partial x \partial y} - \frac{b}{a - b} + \frac{\partial^2 u}{\partial y^2} \cdot \frac{1}{a - b} \right) \right]$$

$$= \frac{-ab}{(a - b)^2} \left[\frac{1}{ab} \frac{\partial^2 u}{\partial y^2} - \frac{a + b}{ab} \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial x^2} \right].$$

令 $ab = \frac{1}{3}, \frac{a+b}{ab} = -4$,则 $a = -1, b = -\frac{1}{3}$ 或 $b = -1, a = -\frac{1}{3}$ 时满足题设要求.

29. 已知方程 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ 有形如 $u = \varphi\left(\frac{y}{x}\right)$ 的解,试求出这个解来.

解 如果 $u = \varphi(t)$, $t = \frac{y}{x}$, 则 $\frac{\partial u}{\partial x} = -\frac{y}{x^2}\varphi'(t)$, $\frac{\partial u}{\partial y} = \frac{1}{x}\varphi'(t)$, $\frac{\partial^2 u}{\partial x^2} = \frac{2y}{x^3}\varphi'(t)$ + $\frac{y^2}{x^4}\varphi''(t)$, $\frac{\partial^2 u}{\partial y^2} = \frac{1}{x^2}\varphi''(t)$. 从 而 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{x^2}[(1+t^2)\varphi''(t) + 2t\varphi'(t)]$.

又由方程 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ 有形 如 $u = \varphi\left(\frac{y}{x}\right)$ 的解可得, $\varphi(t)$ 满足方程: $(1+t^2)\varphi''(t) + 2t\varphi'(t) = 0$. 解此可降阶的二阶微分方程可得 $\varphi(t) = C_1 \arctan t + C_2$, C_1 , C_2 为相互独立的两个任意常数. 则 $\varphi\left(\frac{y}{x}\right) = C_1 \arctan \frac{y}{x} + C_2$.

30. 利用一阶全微分形式不变性和微分运算法则,求下列函数的全微分和偏导数(φ 与f均可微).

$$(1) z = \varphi(xy) + \varphi\left(\frac{x}{y}\right); \quad (4) u = f(x^2 - y^2, e^{xy}, z).$$

$$\mathbf{ff} \qquad (1) dz = d\varphi(xy) + d\varphi\left(\frac{x}{y}\right) = \varphi'(xy) d(xy) + \varphi'\left(\frac{x}{y}\right) d\left(\frac{x}{y}\right)$$

$$= \varphi'(xy) \left(y dx + x dy\right) + \varphi'\left(\frac{x}{y}\right) \left(\frac{1}{y} dx + \frac{-x}{y^2} dy\right)$$

$$= \left[y\varphi'(xy) + \frac{1}{y}\varphi'\left(\frac{x}{y}\right)\right] dx + \left[x\varphi'(xy) - \frac{x}{y^2}\varphi'\left(\frac{x}{y}\right)\right] dy,$$

$$\mathbb{E}\frac{\partial z}{\partial x} = y\varphi'(xy) + \frac{1}{y}\varphi'\left(\frac{x}{y}\right); \frac{\partial z}{\partial y} = x\varphi'(xy) - \frac{x}{y^2}\varphi'\left(\frac{x}{y}\right).$$

$$(4) du = f_1 \cdot d(x^2 - y^2) + f_2 \cdot de^{xy} + f_3 dz$$

$$= (2xdx - 2ydy)f_1 + e^{xy}(xdy + ydx)f_2 + f_3 dz$$

$$= (2xf_1 + ye^{xy}f_2)dx + (-2yf_1 + xe^{xy}f_2)dy + f_3 dz.$$

从而
$$\frac{\partial u}{\partial x} = 2xf_1 + ye^{xy}f_2$$
, $\frac{\partial u}{\partial y} = -2yf_1 + xe^{xy}f_2$, $\frac{\partial u}{\partial z} = f_3$.

32. 求下列方程所确定的隐函数 z 的一阶与二阶偏导数.

(1)
$$\frac{x}{z} = \ln \frac{z}{y}$$
; (2) $x^2 - 2y^2 + z^2 - 4x + 2z - 5 = 0$.

解 (1) 由一阶全微分形式不变性可得 d $\frac{x}{z}$ = dln z - dln y,即

$$\frac{1}{z}dx + \frac{-x}{z^2}dz = \frac{1}{z}dz - \frac{1}{y}dy,$$
$$\left(\frac{1}{z} + \frac{x}{z^2}\right)dz = \frac{1}{z}dx + \frac{1}{y}dy.$$

于是

$$\frac{\partial z}{\partial x} = \frac{z}{z+x}, \ \frac{\partial z}{\partial y} = \frac{z^2}{y(x+z)}.$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{z}{z+x}\right) = \frac{(x+z)\frac{\partial z}{\partial x} - z\left(1+\frac{\partial z}{\partial x}\right)}{(x+z)^2} = -\frac{z^2}{(x+z)^3};$$

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{z^2}{y(x+z)}\right) = \frac{2z\frac{\partial z}{\partial y}y(x+z) - z^2(x+z) - z^2y\frac{\partial z}{\partial y}}{y^2(x+z)^2} = -\frac{x^2z^2}{y^2(x+z)^3};$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{xz^2}{y(x+z)^3}.$$

$$F(x,y,z) = \frac{x}{z} - \ln \frac{z}{y} = \frac{x}{z} - \ln z + \ln y.$$

则

$$F_x = \frac{1}{z}, F_y = \frac{1}{y}, F_z = -\frac{x}{z^2} - \frac{1}{z}.$$

于是

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{z}{x+z}, \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{z^2}{y(x+z)}.$$

(2)由一阶全微分形式不变性可得

$$2xdx - 4ydy + 2zdz - 4dx + 2dz = 0,$$

即

$$(2x - 4) dx - 4y dy + 2(z + 1) dz = 0.$$

$$\frac{\partial z}{\partial x} = \frac{-(2x-4)}{2(z+1)} = \frac{2-x}{1+z}, \frac{\partial z}{\partial y} = -\frac{-4y}{2(1+z)} = \frac{2y}{1+z}.$$

或令 $F(x,y,z) = x^2 - 2y^2 + z^2 - 4x + 2z - 5$,则

$$F_x = 2x - 4$$
, $F_y = -4y$, $F_z = 2z + 2$.

于是

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{2-x}{1+z}, \ \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{2y}{1+z}.$$

$$\frac{\partial^{2} z}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{2 - x}{1 + z} \right) = \frac{-(1 + z) - (2 - x) \frac{\partial z}{\partial x}}{(1 + z)^{2}} = -\frac{(1 + z)^{2} + (x - 2)^{2}}{(1 + z)^{3}};$$

$$\frac{\partial^{2} z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{2 - x}{1 + z} \right) = \frac{x - 2}{(1 + z)^{2}} \cdot \frac{\partial z}{\partial y} = \frac{2y(x - 2)}{(1 + z)^{3}};$$

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{2y}{1+z} \right) = \frac{2(1+z) - 2y \frac{\partial z}{\partial y}}{(1+z)^2} = \frac{2(1+z)^2 - 4y^2}{(1+z)^3}.$$

34. 已知方程 F(x+y,y+z)=1 确定了隐函数 z=z(x,y),其中函数 F 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial y \partial x}$.

解 令 G(x,y,z) = F(x+y,y+z) - 1,则 $G_y = F_1 + F_2$. $G_z = F_1$, $G_z = F_2$,

于是

$$\frac{\partial z}{\partial x} = -\frac{F_1}{F_2}, \ \frac{\partial z}{\partial y} = -\frac{F_1 + F_2}{F_2}.$$

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(-\frac{F_1}{F_2} \right) = -\frac{1}{F_2^2} \left(F_2 \frac{\partial F_1}{\partial y} - F_1 \frac{\partial F_2}{\partial y} \right)$$

$$= -\frac{1}{F_2^2} \left\{ F_2 \left[F_{11} + F_{12} \left(1 + \frac{\partial z}{\partial y} \right) \right] - F_1 \left[F_{21} + F_{22} \left(1 + \frac{\partial z}{\partial y} \right) \right] \right\}$$

$$= -\frac{1}{F_2^2} \left\{ F_2 \left(F_{11} + F_{12} - \frac{F_1}{F_2} \right) - F_1 \left(F_{21} + F_{22} \cdot \frac{-F_1}{F_2} \right) \right\}$$

$$= -\frac{F_2^2 F_{11} - 2F_1 F_2 F_{12} + F_1^2 F_{22}}{F_2^3}$$

35. 设
$$f(x,y,z) = xy^2z^3$$
,又 x,y,z 满足方程 $x^2 + y^2 + z^2 - 3xyz = 0$.(*)

- (1) 在 z = z(x,y) 是由方程(*) 所确定的隐函数时,求 $f_x(1,1,1)$;
- (2) 在 y = y(x,z) 是由方程(*) 所确定的隐函数时,求 $f_{x}(1,1,1)$.

 \mathbf{m} (1) z=z(x,y) 是由(*)所确定的隐函数.则

$$\frac{\partial z}{\partial x} = \frac{2x - 3yz}{-2z + 3xy}, \mathbb{Z} \left| \frac{\partial z}{\partial x} \right|_{(1,1,1)} = -1,$$

于是

$$f_x(1,1,1) = \left(y^2z^3 + 3xy^2z^2 \frac{\partial z}{\partial x}\right)\Big|_{(1,1,1)} = 1 - 3 = -2.$$

(2) y = y(x,z) 是由(*)所确定的隐函数,则

$$\frac{\partial y}{\partial x}\Big|_{(1,1,1)} = -\frac{2x-3yz}{2y-3xz}\Big|_{(1,1,1)} = -1,$$

于是

$$f_x(1,1,1) = \left(y^2z^3 + 2xyz^3 \frac{\partial y}{\partial x}\right)\Big|_{(1,1,1)} = -1.$$

36. 求由下列方程所确定的隐函数 z 的全微分. 其中 F 具一阶连续偏导数, f 连续可导.

(1)
$$F(x-az,y-bz)=0$$
; (2) $x^2+y^2+z^2=yf(\frac{z}{y})$.

解 (1)由一阶全微分形式不变性可得

$$F_1 d(x - az) + F_2 d(y - bz) = 0,$$

即

$$F_1 dx - aF_1 dz + F_2 dy - bF_2 dz = 0.$$

于是

$$\mathrm{d}z = \frac{F_1 \,\mathrm{d}x + F_2 \,\mathrm{d}y}{aF_1 + bF_2}.$$

(2)
$$2x dx + 2y dy + 2z dz = f\left(\frac{z}{y}\right) dy + y f'\left(\frac{z}{y}\right) d\frac{z}{y},$$

$$2x dx + \left[2y - f\left(\frac{z}{y}\right) + \frac{z}{y} f'\left(\frac{z}{y}\right)\right] dy = \left(f'\left(\frac{z}{y}\right) - 2z\right) dz.$$

$$dz = \frac{1}{f'\left(\frac{z}{y}\right) - 2z} \left\{2x dx + \left[2y - f\left(\frac{z}{y}\right) + \frac{z}{y} f'\left(\frac{z}{y}\right)\right] dy\right\}.$$

37. 设 y = f(x,t), 而 t 是由方程 F(x,y,t) = 0 所确定的 x,y 的函数,其中 F,f 都具有一阶连续偏导数,证明

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\partial f}{\partial x} \frac{\partial F}{\partial t} - \frac{\partial f}{\partial t} \frac{\partial F}{\partial x}}{\frac{\partial f}{\partial t} \frac{\partial F}{\partial y} + \frac{\partial F}{\partial t}}.$$

证明 由一阶全微形式不变性可知,

$$dy = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial t}dt, \qquad (1)$$

$$\frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy + \frac{\partial F}{\partial t} dt = 0.$$

又因为 t 是由方程 F(x,y,t) = 0 所确定的 x,y 的函数,则 $\frac{\partial F}{\partial t} \neq 0$,则由②可

得
$$dt = -\left(\frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy\right) / \frac{\partial F}{\partial t}$$
. 代人①式得

$$dy = \frac{\partial f}{\partial x} dx - \frac{\partial f}{\partial t} \frac{\frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy}{\frac{\partial F}{\partial t}}.$$
整理可得

$$\left(\frac{\partial F}{\partial t} + \frac{\partial f}{\partial t}\frac{\partial F}{\partial y}\right)\mathrm{d}y \;=\; \left(\frac{\partial f}{\partial x}\;\frac{\partial F}{\partial t} - \frac{\partial f}{\partial t}\;\frac{\partial F}{\partial x}\right)\mathrm{d}x\,,$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\partial f}{\partial x} \frac{\partial F}{\partial t} - \frac{\partial f}{\partial t} \frac{\partial F}{\partial x}}{\frac{\partial f}{\partial t} \frac{\partial F}{\partial y} + \frac{\partial F}{\partial t}}.$$

(B)

故

$$\begin{split} 1. \quad & \text{if } f(x,y) \triangleq P_0 \text{ or } & \text{if } l_1 = \left\{\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\}, l_2 = \left\{-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\}, \frac{\partial f(P_0)}{\partial l_1} = 1, \\ & \frac{\partial f(P_0)}{\partial l_2} = 0. \text{ if } \text{if } \frac{\partial f(P_0)}{\partial l} = \frac{7}{5\sqrt{2}}. \end{split}$$

解
$$l_1$$
 与 l_2 均为单位向量,由 $\frac{\partial f(P_0)}{\partial l_1} = 1$ 及 $\frac{\partial f(P_0)}{\partial l_2} = 0$ 可得

$$\frac{\partial f(P_0)}{\partial x} \frac{1}{\sqrt{2}} + \frac{\partial f(P_0)}{\partial y} \frac{1}{\sqrt{2}} = 1, \frac{\partial f}{\partial x} \left(-\frac{1}{\sqrt{2}} \right) + \frac{\partial f(P_0)}{\partial y} \frac{1}{\sqrt{2}} = 0.$$

解之得
$$\frac{\partial f(P_0)}{\partial x} = \frac{\partial f(P_0)}{\partial y} = \frac{1}{\sqrt{2}}$$
.

设 l 的两个方向余弦分别为 $\cos \alpha$, $\cos \beta = \sin \alpha$, 则由 $\frac{\partial f(P_0)}{\partial l} = \frac{7}{5\sqrt{2}}$ 可知 $\cos \alpha + \sin \alpha = \frac{7}{5}$. 两边平方可得 $\sin \alpha \cos \alpha = \frac{12}{25}$. 故 $\sin \alpha = \frac{4}{5}$, $\cos \alpha = \frac{3}{5}$ 或 $\sin \alpha = \frac{3}{5}$, $\cos \alpha = \frac{4}{5}$. 即 $l = \left\{\frac{3}{5}, \frac{4}{5}\right\}$ 或 $l = \left\{\frac{4}{5}, \frac{3}{5}\right\}$.

3. 设二元函数f在点 P_0 的某邻域 $U(P_0)$ 内的偏导数 f_* 与 f_y 都有界.证明f在 $U(P_0)$ 内连续.

证明 因为 f_x , f_y 在点 P_0 的某邻域 $U(P_0)$ 内都有界. 即 $\forall (x,y) \in U(P_0)$, $\exists M > 0$, 使 $|f_x(x,y)| \leq M$, $|f_y(x,y)| \leq M$. 设 $(x + \Delta x, y + \Delta y) \in U(P_0)$, 则由 Lagrange 定理可知, $\exists \theta_1, \theta_2 \in [0,1)$, 使

$$|f(x + \Delta x, y + \Delta y) - f(x, y)| \leq |f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y)|$$

$$+ |f(x, y + \Delta y) - f(x, y)|$$

$$= |f_x(x + \theta_1 \Delta x, y + \Delta y)| |\Delta x|$$

$$+ |f_y(x, y + \theta_2 \Delta y)| |\Delta y|$$

$$\leq M(|\Delta x| + |\Delta y|) \leq 2M \sqrt{\Delta x^2 + \Delta y^2},$$

则 $f \in U(P_0)$ 的任一点连续,即 $f \in U(P_0)$ 上连续.

4. 设n元函数f在x。连续,n元函数g在点x。可微且g(x。) = 0,证明 f(x)g(x)在点x。可微,且有

$$d(f(\boldsymbol{x})g(\boldsymbol{x})) \mid_{\boldsymbol{x}=\boldsymbol{x}_0} = f(\boldsymbol{x}_0) dg(\boldsymbol{x}_0).$$

证明 由于f在 x_0 连续,则 $f(x_0 + \Delta x) - f(x_0) = \alpha(\rho)$,其中 $\rho = \|\Delta x\|$, $\alpha(\rho)$ 为当 $\rho \rightarrow 0$ 时的无穷小量,又由g在 x_0 处可微可知 $g(x_0 + \Delta x) - g(x_0) = dg(x_0) + O_1(\rho) \frac{O_1(\rho)}{\rho}$ 为当 $\rho \rightarrow 0$ 时无穷小量. 注意到 $g(x_0) = 0$,可得

又由于
$$\frac{\mathrm{d}g(x_0)}{\rho} = \left| \frac{\sum\limits_{i=1}^n \frac{\partial g(x_0)}{\partial x_i} \Delta x_i}{\rho} \right| \leq \left| \sum\limits_{i=1}^n \frac{\partial g(x_0)}{\partial x_i} \right|, \alpha(\rho)$$
是无穷小量 (ρ)

 $\to 0$),所以 $\lim_{\rho \to 0} \alpha(\rho) \frac{\mathrm{d}g(x_0)}{\rho} = 0$. 又 $O_1(\rho)$ 是 $\rho \to 0$ 时的高阶无穷小,且 $\lim_{\rho \to 0} [f(x_0) + \alpha(\rho)] = f(x_0)$,则 β 是 $\rho \to 0$ 的高阶无穷小量,又 $f(x_0)$ 为常数,则 $f(x_0)$ d $g(x_0)$ 关于 Δx 是线性的. 即 f(x)g(x) 在 x_0 可微,且 d $f(x_0)g(x_0) = f(x_0)$ d $g(x_0)$.

5. 设 $f_x(x,y)$ 在 (x_0,y_0) 的某邻域内存在且在 (x_0,y_0) 处连续,又 $f_y(x,y)$ 存在,证明f(x,y)在点 (x_0,y_0) 处可微.

证明 z = f(x,y) 在 (x_0, y_0) 处的改变量为

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

$$= [f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y)] + [f(x_0, y_0 + \Delta y) - f(x_0, y_0)],$$

上式右端中每一方括号内都是一元函数的改变量. 由 lagrange 微分中值公式,存在 $\theta(0 < \theta < 1)$,使得

 $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) = f_x(x_0 + \theta \Delta x, y_0 + \Delta y) \Delta x.$ 由于 $f_x(x, y)$ 在 (x_0, y_0) 处连续,有

$$f_x(x_0 + \theta \Delta x, y_0 + \Delta y) = f_x(x_0, y_0) + \alpha_1(\rho),$$

其中 $\alpha_1(\rho)$ 是当 $\rho = \sqrt{\Delta x^2 + \Delta y^2} \rightarrow 0$ 时的无穷小.

又由
$$f_{y}(x,y)$$
在 (x_{0},y_{0}) 处存在可知 $\lim_{\Delta y \to 0} \frac{f(x_{0},y_{0} + \Delta y) - f(x_{0},y_{0})}{\Delta y} = f_{y}(x_{0},y_{0}),$

于是
$$\lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0) - f_y(x_0, y_0) \Delta y}{\Delta y} = 0.$$
即 $f(x_0, y_0 + \Delta y) - f(x_0, y_0)$

 $-f_{1}(x_{0},y_{0})\Delta y = \alpha_{2}(\Delta y)\Delta y$,其中 $\alpha_{2}(\Delta y)$ 是当 $\Delta y \rightarrow 0$ 时的无穷小量. 从而

$$\Delta z = [f_x(x_0, y_0) + \alpha_1(\rho)] \Delta x + [f_y(x_0, y_0) + \alpha_2(\Delta y)] \Delta y,$$

即 $\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \alpha$,其中 $\alpha = \alpha_1(\rho) \Delta x + \alpha_2(\Delta y) \Delta y$.

由于
$$\frac{|\Delta x|}{\rho} \le 1$$
, $\frac{|\Delta y|}{\rho} \le 1$, 且 $\lim_{\rho \to 0} \alpha_2(\Delta y) = \lim_{\Delta y \to 0} \alpha_2(\Delta y) = 0$, 所以 $\lim_{\rho \to 0} \frac{\alpha}{\rho} = 0$.

故f(x,y)在 (x_0,y_0) 处的改变量可表示为

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + o(\rho),$$

即f在 (x_0, y_0) 处可微.

- 6. 设 $u = x \sin y$,
- (1) 当 x,y 为自变量时,求二阶全微分 d²u;
- (2) 当 $x = \varphi(s,t), y = \psi(s,t)$ 时,求二阶全微分 d^2u ;
- (3) $\varphi \neq a_1 s + b_1 t + c_1$, $\psi \neq a_2 s + b_2 t + c_2$ 时, 说明(2)中的 $d^2 u$ 与(1)中的 $d^2 u$ 不同.

解 (1) $du = \sin y dx + x \cos y dy$, $d^2 u = d(\sin y dx + x \cos y dy) = 2\cos y dx dy - x \sin y dy^2$.

(2) 由一阶全微分形式不变性可知

$$du = \sin y dx + x \cos y dy$$

(3) 要使(1)与(2)中的 d^2u 相等,则 $d^2x = 0$, $d^2y = 0$. 即 $d^2\varphi(s,t) = 0$, $d^2\psi(s,t) = 0$. 即函数 φ 与 ψ 必须关于 s,t 都是线性的,即 $\varphi(s,t) = a_1s + b_1t + c_1$, $\psi(s,t) = a_2s + b_2t + c_2$.

习 颞 5.4

(A)

3. 求 $f(x,y) = x^y$ 在点(1,4)的二阶 Taylor 公式,并利用它计算(1.08)^{3.96}的 近似值.

$$\begin{aligned} & \not F_x(1,4) = yx^{y-1} \mid_{(1,4)} = 4, f_y(1,4) = x^y \ln x \mid_{(1,4)} = 0, \\ & f_{xx}(1,4) = y(y-1)x^{y-2} \mid_{(1,4)} = 12, \\ & f_{xy}(1,4) = (yx^{y-1} \ln x + x^{y-1}) \mid_{(1,4)} = 1, \\ & f_{yy}(1,4) = x^y (\ln x)^2 \mid_{(1,4)} = 0. \end{aligned}$$

f(x,y)在(1,4)带 Peano 余项的 Taylor 公式为

$$f(x,y) = 1 + 4(x-1) + \frac{1}{2!}(x-1,y-4) \binom{12}{1} \binom{1}{0} \binom{x-1}{y-4} + o(\rho^2)$$

= 1 + 4(x-1) + 6(x-1)² + (x-1)(y-4) + o(\rho^2),
$$\rho = \sqrt{(x-1)^2 + (y-4)^2}.$$

其中

取 x = 1.08, y = 3.96. 由上面的 Taylor 公式可得

$$(1.08)^{3.96} \approx 1 + 4(1.08 - 1) + 6(1.08 - 1)^2 + (1.08 - 1)(3.96 - 4)$$

= 1.355 2.

4. 求下列函数的极值.

(1)
$$z = x^2(y-1)^2$$
; (2) $z = (x^2 + y^2 - 1)^2$; (3) $z = xy(a-x-y)$.

解 (1) 由
$$\begin{cases} z_x = 2x(y-1)^2 = 0, \\ z_y = 2x^2(y-1) = 0, \end{cases}$$
 求出 z 的驻点有

 $M_{\alpha}(\alpha,1)$ 及 $M_{\beta}(0,\beta)$,其中 $\alpha,\beta \in \mathbb{R}$. 再求二阶偏导数,得

$$z_{xx} = 2(y-1)^2, z_{xy} = 4x(y-1), z_{yy} = 2x^2.$$

$$(0 \quad 0) \quad (2(\beta-1) \quad 0)$$

$$H_{z}(M_{\alpha}) = \begin{pmatrix} 0 & 0 \\ 0 & 2\alpha^{2} \end{pmatrix}, H_{z}(M_{\beta}) = \begin{pmatrix} 2(\beta-1) & 0 \\ 0 & 0 \end{pmatrix}.$$

由于 $H_z(M_\alpha)$ 与 $H_z(M_\beta)$ 的行列式为零,所以 M_α, M_β 是不是极值点需进一步讨论. 事实上, $\forall (x,y) \in \mathbb{R}^2$, 均有 $z \ge 0$, 而 $z \mid_{M_\beta} = z \mid_{M_\alpha} = 0$, 故 M_α 与 M_β 均为极小值点, 极小值为 0.

(2) 由
$$\begin{cases} z_x = 4x(x^2 + y^2 - 1) = 0, \\ z_y = 4y(x^2 + y^2 - 1) = 0 \end{cases}$$
 可知 z 有下列驻点

 $M_1(0,0)$ 及圆周 $x^2+y^2=1$ 上所有的点. 由 $z_{xx}=4(x^2+y^2-1)+8x^2, z_{xy}=8xy, z_{yy}=4(x^2+y^2-1)+8y^2$ 知 $H_1(M_1)=\begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix}, H_1(x^2+y^2=1)=8\begin{pmatrix} x^2 & xy \\ xy & y^2 \end{pmatrix}$. 显然 $H_1(M_1)$ 负定,函数在 M_1 处取得极大值 $z\mid_{M_1}=1$,而 $H_1(x^2+y^2-1)$ 一1)行列式为零(且其是半正定的),则 $x^2+y^2=1$ 上的点是否是极值点需进一步讨论. 由于 $\forall (x,y) \in \mathbb{R}^2, z \geq 0$,且 $z\mid_{x^2+y^2=1}=0$,故 z 在 $x^2+y^2=1$ 上的每一点均取得极小值 0.

(3) 由
$$\begin{cases} z_x = y(a - 2x - y) = 0 \\ z_y = x(a - x - 2y) = 0 \end{cases}$$
,求得函数有 4 个驻点

$$M_1(0,0)$$
, $M_2(a,0)$, $M_3(0,a)$, $M_4(\frac{1}{3}a,\frac{1}{3}a)$.

由 $z_{xx} = -2y$, $z_{xy} = a - 2x - 2y$, $z_{yy} = -2x$ 可知

$$H_{z}(M_{1}) = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix}, H_{z}(M_{2}) = \begin{pmatrix} 0 & -a \\ -a & -2a \end{pmatrix},$$

$$H_{z}(M_{3}) = \begin{pmatrix} -2a & -a \\ -a & 0 \end{pmatrix}, H_{z}(M_{4}) = \begin{pmatrix} -\frac{2}{3}a & -\frac{a}{3} \\ -\frac{a}{3} & -\frac{2}{3}a \end{pmatrix}.$$

 $H_{z}(M_{i})(i=1,2,3)$ 均不定,即 $M_{i}(i=1,2,3)$ 均非极值点. 当 a>0 时, $H_{z}(M_{4})$ 负定,z 在 M_{4} 处取得极大值 $z \mid_{M_{4}} = \frac{a^{3}}{27}$;当 a<0 时, $H_{z}(M_{4})$ 正定,z 在 M_{4} 处取得极小值 $z \mid_{M_{4}} = \frac{a^{3}}{27}$;当 a=0 时, $H_{z}(M_{4})$ 行列式为零, M_{4} 是否极值点需另行判定. 事

实上,由于 $a=0,M_4=(0,0)$,而在(0,0) 的任意小的邻域内存在x>0,y>0 的点使z=-xy(x+y)<0,存在x<0,y>0 且 y>-x 的点使z=-xy(x+y)>0. 故 a=0 时, M_4 非极值点.

5. 求下列函数在指定区域 D 上的最大值与最小值.

(3)
$$z = x^2 + y^2 - 12x + 16y$$
, $D = \{(x,y) \mid x^2 + y^2 \le 25\}$.

解 由
$$\begin{cases} z_x = 2x - 12 = 0, \\ z_y = 2y + 16 = 0, \end{cases}$$
可求出函数在 D 内无驻点.

在边界 $L_1: y = \sqrt{25 - x^2}$ 及 $L_2: y = -\sqrt{25 - x^2}$ 上,函数 z 分别变为 x 的一元函数

$$f_1 = 16 \sqrt{25 - x^2} - 12x + 25, \quad |x| \le 5,$$

$$f_2 = -16 \sqrt{25 - x^2} - 12x + 25, \quad |x| \le 5.$$

$$\max_{|x| \le 5} f_1(x) = f(-3) = 125, \min_{|x| \le 5} f_1(x) = f(5) = -35,$$

$$\max_{|x| \le 5} f_2(x) = f(-5) = 85, \min_{|x| \le 5} f_2(x) = f(3) = -75.$$

故 z 在(-3,4)处取得最大值 125,在(3,-4)处取得最小值-75.

7. 如图所示,横放着的半圆柱形无盖容器(其轴截面 *ABCD* 为水平面),其表面积等于 *S*,当其尺寸如何时,此容器有最大的容积?

解 设底面半径为 R, 高为 H. 则问题就转化为求目标函数 $V = \frac{1}{2}\pi R^2 H$ 在约束条件 $S = \pi R^2 + \pi R H$ 下的最小值. 应用 Lagrange 乘数法,令

$$L = \frac{1}{2}\pi R^2 H + \lambda (S - \pi R^2 - \pi R H).$$

由
$$\begin{cases} L_R = \pi R H - \lambda \left(2 \pi R + \pi H \right) = 0 \,, \\ L_H = \frac{1}{2} \pi R^2 - \pi R \lambda = 0 \,, \\ L_A = S - \left(\pi R^2 + \pi R H \right) = 0 \end{cases}$$
 得唯一驻点 $M \left(R^*, 2R^*, \frac{1}{2} R^* \right), R^* = 0$

 $\sqrt{\frac{S}{3\pi}}$. 由于表面积一定,当底面半径很小时,容器细长,容积很小,随着 R 增大,

容积逐渐变大,但当R很大时,容器很扁,容积变小,则最大容积是存在的.故当 $H=2R=2\sqrt{\frac{S}{3\pi}}$ 时,即高等于底半径的 2 倍时,容积最大.

9. 在 xOy 平面上求一点, 使它到平面上 n 个已知点

$$(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$$

的距离的平方和为最小.

解 设 $(a,b) \in \mathbb{R}^2$,则问题转化为求 $S = \sum_{i=1}^n \left[(a - x_i)^2 + (b - y_i)^2 \right]$ 的最小值.

由
$$\begin{cases} S_a = 2 \sum_{i=1}^n (a - x_i) = 0, \\ S_b = 2 \sum_{i=1}^n (b - y_i) = 0 \end{cases}$$
 得唯一驻点
$$\begin{cases} a = \frac{1}{n} \sum_{i=1}^n x_i, \\ b = \frac{1}{n} \sum_{i=1}^n y_i. \end{cases}$$

由 $S_{aa} = 2n$, $S_{ab} = 0$, $S_{bb} = 2n$ 知

$$H_s\left(\frac{1}{n}\sum_{i=1}^n x_i, \frac{1}{n}\sum_{i=1}^n y_i\right) = \begin{pmatrix} 2n & 0\\ 0 & 2n \end{pmatrix}$$
正定,则 $\left(\frac{1}{n}\sum_{i=1}^n x_i, \frac{1}{n}\sum_{i=1}^n y_i\right)$

为极小值点,故其为最小值点.

10. 求原点到曲线 $\begin{cases} x^2 + y^2 = z, \\ x + y + z = 1 \end{cases}$ 的最长和最短距离.

解 依题意,问题为求目标函数

 $S=x^2+y^2+z^2$ 在约束条件 $x^2+y^2=z$ 及 x+y+z=1 下的最值. 用 Lagrange 乘数法,令

$$L = x^{2} + y^{2} + z^{2} + \lambda (x^{2} + y^{2} - z) + \mu (x + y + z - 1).$$

$$L_{x} = 2x + 2x\lambda + \mu = 0,$$

$$L_{y} = 2y + 2y\lambda + \mu = 0,$$

$$L_{z} = 2z - \lambda + \mu = 0, \quad \text{if } M_{1}\left(\frac{-1 + \sqrt{3}}{2}, \frac{-1 + \sqrt{3}}{2}, 2 - \sqrt{3}\right),$$

$$L_{x} = x^{2} + y^{2} - z = 0,$$

$$L_{\mu} = x + y + z - 1 = 0$$

 $M_2\left(\frac{-1-\sqrt{3}}{2},\frac{-1-\sqrt{3}}{2},2+\sqrt{3}\right)$. 而且此实际问题有解, $S(M_1)=9-5\sqrt{3}$, $S(M_2)=9+5\sqrt{3}$. 故原点到所给曲线的最长距离为 $\sqrt{9+5\sqrt{3}}$,最短距离 $\sqrt{9-5\sqrt{3}}$.

11. 有一下部为圆柱形,上部为圆锥形的帐篷,它的容积为常数 k. 今要使所用的布最少,试证帐篷尺寸间应有关系式为 $R = \sqrt{5}H, h = 2H$ (其中 R, H 分别为圆柱形的底半径及高,h 为圆锥形的高).

解 问题为求目标函数 $S=2\pi RH+\frac{1}{2}\cdot 2\pi R\cdot \sqrt{R^2+h^2}$ 在约束条件 $\pi R^2H+\frac{1}{3}\pi R^2h=k$ 下的最小值. 用 Lagrange 乘数法,令

$$L = 2\pi RH + \pi R \sqrt{R^2 + h^2} + \lambda \left(\pi R^2 H + \frac{1}{3}\pi R^2 h - k\right).$$

$$\left\{ L_R = 2\pi H + \pi \sqrt{R^2 + h^2} + \frac{2\pi R^2}{2\sqrt{R^2 + h^2}} + \lambda \left(2\pi RH + \frac{2}{3}\pi Rh\right) = 0, \right.$$

$$\left\{ L_H = 2\pi R + \lambda \pi R^2 = 0, \right.$$

$$\left\{ L_H = \frac{2\pi Rh}{2\sqrt{R^2 + h^2}} + \lambda \cdot \frac{1}{3}\pi R^2 = 0, \right.$$

$$\left\{ L_A = \pi R^2 \left(H + \frac{1}{3}h\right) - k = 0 \right.$$

$$\left. \stackrel{?}{R} \stackrel{?}{H} = \frac{1}{3} \frac{\pi R^2}{25\pi} + \frac{\pi R^2}{25\pi} + \frac{\pi R^2}{25\pi} \right\}$$

而此实际问题有解,故此驻点为最小值点. 即当 $R = \sqrt{5}H$, h = 2H 时, 所用布料最省.

13. 求椭圆 $x^2 + 3y^2 = 12$ 的内接等腰三角形,使其底边平行于椭圆的长轴,而且面积最大?

解 由椭圆和等腰三角形的对称性可知等腰三角形顶点必在 $(0,\pm 2)$ 处. 只需研究顶点在(0,2)的情形. 设另外两顶点分别为(-x,y)和(x,y). 则其面积为

$$S = \frac{1}{2} \cdot 2x \cdot (2 - y) = x(2 - y).$$

于是问题转化为求目标函数.

S = x(2-y) 在约束条件 $x^2 + 3y^2 = 12(0 \le x \le 2\sqrt{3}, -2 \le y \le 0)$ 下的最大值. 应用 Lagrange 乘数法,令

可求得唯一的驻点 $M(3,-1,-\frac{1}{2})$. 而此实际问题有解.

故当等腰三角形的三个顶点分别为(0,2),(3,-1)及(-3,-1)或(0,-2),(3,1)及(-3,1)时面积最大.

(B)

1. 证明对任意正数 a,b,c 有 $abc^3 \leq 27\left(\frac{a+b+c}{5}\right)^5$.

证明 将正数 a,b,c 的和记为 S. 则只要证明目标函数 $f(a,b,c)=abc^3$ 在区域

$$D = \{(a,b,c) \mid 0 < a,b,c < S\}$$

及约束条件 a+b+c=S 上的最大值为 $27\left(\frac{S}{5}\right)^5$ 即可. 应用 Lagrange 乘数法,令

$$L = abc^3 + \lambda(a + b + c - S).$$

由
$$\begin{cases} L_a = bc^3 + \lambda = 0, \\ L_b = ac^3 + \lambda = 0, \\ L_c = 3abc^2 + \lambda = 0, \\ L_\lambda = a + b + c - S = 0 \end{cases}$$
 可求得唯一的驻点 $M\left(\frac{S}{5}, \frac{S}{5}, \frac{3S}{5}, \frac{-27S^3}{5^4}\right)$. 又因为 f

在 \overline{D} 连续,故f在 \overline{D} 上有最大值,显然在 \overline{D} 的边界上的值恒为零,而在D 内部的值大于零,故f在 \overline{D} 的最大值必在D 的内部取得.又由于M 为f在D 内唯一的驻点,且f在D 内无不可偏导的点.故f(M) 为f在 \overline{D} 上的最大值,也是D 上的最大值,即

$$\max_{(a,b,c)\in D} f(a,b,c) = 27\left(\frac{S}{5}\right)^5.$$

2. 求 $f(x_1, \dots, x_n) = x_1 x_2 \dots x_n$ 在条件 $\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} = \frac{1}{a} (x_i > 0, i = 1, 2, \dots, n, a > 0)$ 之下的极值. 并证明当 $a_i > 0 (i = 1, \dots, n)$ 时, 成立

$$n\left(\frac{1}{a_1} + \cdots + \frac{1}{a_n}\right)^{-1} \le (a_1 a_2 \cdots a_n)^{\frac{1}{a}}.$$

解 取 Lagrange 函数为

$$L = x_1 x_2 \cdots x_n + \lambda \left(\frac{1}{x_1} + \frac{1}{x_{\bullet}} + \cdots + \frac{1}{x_n} - \frac{1}{a} \right).$$

解得 M (na, na, \cdots , na) 为 区 域 D 内 唯 - 的 驻 点,其 中 D = $\left\{(x_1, \cdots, x_n) \mid x_i > 0, \frac{1}{x_i} < \frac{1}{a}, a > 0, i = 1, 2, \cdots, n\right\}$. 由于在 \overline{D} 上连续函数 f 必有最小值,且在其边界上 f 为无穷大. 其内部为有限数,从而最小值必在 \overline{D} 的内部取得. 而 M 为其内部唯一的驻点. f 在 D 内可偏导,故 f(M) 必为 f 在 \overline{D} 上的最小值,即 D 上的最小值. 故

$$\min_{(x_1,\cdots,x_n)\in D} f(x_1,\cdots,x_n) = (na)^n.$$

即对任意的 n 个正数 a_i , $(i=1,\cdots,n)$ 恒有 $f(a_1,\cdots,a_n)=a_1a_2\cdots a_n \ge \left[n\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\right)^{-1}\right]^n$. 即

$$n\left(\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}\right)^{-1} \leqslant (a_1 a_2 \cdots a_n)^{\frac{1}{n}}.$$

- 3. 设 D 是 \mathbb{R}^2 内的有界闭区域,函数 u(x,y) 在 D 有定义,在 D 的内部成立 $u_{xx}+u_{yy}+cu=0$,其中 c<0 为常数,证明
 - (1) $u \in D$ 上的正最大值(负最小值)不能在 D 的内部取得;
 - (2) 若 u 在 D 上连续,且在 D 的边界上 u=0,则在 D 上 u=0.

证明 (1) 用反证法 设 u 在 D 上正的最大值在 D 内部取得. 即 $\exists (x_0, y_0) \in \mathring{D}$,使 $u(x_0, y_0) = \max_{(x,y) \in D} u(x,y) > 0$. 于是 (x_0, y_0) 必是 u(x,y) 的极大值点. 且 $u_{xx} \leq 0$, $u_{yy} \leq 0$ (否则 (x_0, y_0) 非极大值点),从而 $u_{xx} + u_{yy} \mid_{(x_0, y_0)} \leq 0$,由等式 $u_{xx} + u_{yy} + cu = 0$ (c < 0) 知 $u(x_0, y_0) \leq 0$ 与假设矛盾. 故假设错误,即 u 在 D 上的正的最大值不能在 D 内取得. 同理可证 u 在 D 上负的最小值不能在 D 的内部取得.

- (2) **用反证法** 设 $u \neq 0$,则 $\exists (x_0, y_0) \in D$,使 $u(x_0, y_0) \neq 0$. 不妨设 $u(x_0, y_0) > 0$,由于在 D 的边界上 u = 0,所以 $(x_0, y_0) \in \mathring{D}$. 又 u 在有界闭区域 D 上连续,必有最大值,且由于 $u(x_0, y_0) > 0$,则 u 在 D 上的最大值为正,且在 \mathring{D} 取得.这与(1)矛盾. 故 $u \equiv 0$, $\forall (x, y) \in D$.
- 4. 设有一小山,取它的底面所在的平面为 xOy 坐标面,其底部所占的区域为 $D = \{(x,y) \mid x^2 + y^2 xy \le 75\}$,小山的高度函数为 $h(x,y) = 75 x^2 y^2 + xy$.

- (1) 设 $M(x_0, y_0)$ 为区域 D 上的一个点,问 h(x, y) 在该点沿平面上什么方向的方向导数最大? 若记此方向导数的最大值为 $g(x_0, y_0)$,试写出 $g(x_0, y_0)$ 的表达式;
- (2) 现欲利用此小山开展攀岩活动,为此需在山脚寻找一上山坡度最大的 点作为攀登的起点,试确定攀登起点的位置.
- 解 (1) 由方向导数及梯度的概念可知 h(x,y)在 $M(x_0,y_0)$ 处沿grad $h(x_0,y_0)$ = $\{-2x_0+y_0,-2y_0+x_0\}$ 的方向导数最大,且此最大的方向导数 $g(x_0,y_0)$ = $\| \operatorname{grad} h(x_0,y_0) \| = \sqrt{5x_0^2+5y_0^2-8x_0y_0}$.
- (2) 也就是求 $[g(x,y)]^2 = 5x^2 + 5y^2 8xy$ 在 D 内满足约束条件 $x^2 + y^2 xy =$ 75 的最大值点. 构造 Lagrange 函数,令 $L = 5x^2 + 5y^2 8xy + \lambda(x^2 + y^2 xy -$ 75).由

$$\begin{cases} L_x = 10x - 8y + \lambda(2x - y) = 0, \\ L_y = 10y - 8x + \lambda(2y - x) = 0, \\ L_\lambda = x^2 + y^2 - xy - 75 = 0 \end{cases}$$

可得驻点 $M_1(5,-5)$, $M_2(-5,5)$, $M_3(5\sqrt{3},5\sqrt{3})$. $M_4(-5\sqrt{3},-5\sqrt{3})$. 而 $g^2|_{M_1}=g^2|_{M_2}=450$, $g^2|_{M_3}=g^2|_{M_4}=150$. 故攀登起点为 $M_1(5,-5)$ 或 $M_2(-5,5)$.

习 题 5.5

(A)

- 1. 用导数定义求下列向量值函数的导数.
- (1) f: Rⁿ→R^m是常向量;
- (2) f(x) = Ax + a,其中 $(a_{ii})_{m \times n}$ 为常矩阵, $a \in \mathbb{R}^m$ 为常向量.

解 (1) $\forall x \in \mathbb{R}^n$, f(x) 为常向量,则 $\mathrm{d}f(x) = (a_{ij})_{m \times n} \mathrm{d}x$,其中 $a_{ij} = 0$, $i = 1, 2, \dots, m, j = 1, 2, \dots, n$. 故 $Df(x) = (a_{ij})_{m \times n}$.

(2)
$$\text{th } d\mathbf{f}(\mathbf{x}) = d(\mathbf{A}\mathbf{x} + \mathbf{a}) = \left(d\left(\sum_{j=1}^{n} a_{1j}x_{j} + a_{1}\right), d\left(\sum_{j=1}^{n} a_{2j}x_{j} + a_{2}\right),$$

$$\cdots, d\left(\sum_{j=1}^{n} a_{mj}x_{j} + a_{m}\right)\right)^{\mathsf{T}}$$

$$= \left(\sum_{j=1}^{n} a_{1j}dx_{j}, \sum_{j=1}^{n} a_{2j}dx_{j}, \cdots, \sum_{j=1}^{n} a_{mj}dx_{j}\right)^{\mathsf{T}} = (a_{ij})_{m \times n}dx$$

$$= \mathbf{A} d\mathbf{x},$$

其中 a_1, a_2, \dots, a_m 为 a 的 m 个分量, $dx = (dx_1, dx_2, \dots, dx_n)^T$. 故 Df(x) = A.

3. 求下列向量值函数在给定点的导数.

(2)
$$f(x,y) = (\arctan x, e^{xy})^T$$
,在(1,0)^T处;

(4)
$$f(x,y,z) = \left(\sin(x^2-y^2), \ln(x^2+z^2), \frac{1}{\sqrt{y^2+z^2}}\right)^T$$
, $\hat{\pi}(1,1,1)^T$ \text{\psi}.

$$\mathbf{A} \qquad (2) \ \mathbf{D} f(1,0) = \begin{pmatrix} \frac{1}{1+x^2} & 0 \\ y e^{xy} & x e^{xy} \end{pmatrix} \bigg|_{\substack{x=1 \\ y = 0}} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}.$$

$$(4) Df(1,1,1) = \begin{cases} 2x\cos(x^2 - y^2) & -2y\cos(x^2 - y^2) & 0\\ \frac{2x}{x^2 + z^2} & 0 & \frac{2z}{x^2 + z^2} \\ 0 & -y(y^2 + z^2)^{-\frac{3}{2}} & -z(y^2 + z^2)^{-\frac{3}{2}} \end{pmatrix}_{\substack{x=1\\y=1\\y=1\\y=1}}^{x=1}$$

$$= \begin{pmatrix} 2 & -2 & 0\\ 1 & 0 & 1\\ 0 & -\frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} \end{pmatrix}.$$

$$4 \quad \text{iff } x = x(z) \text{ if } x \neq x(z) \text$$

4. 设 $\mathbf{r} = \mathbf{r}(t)$ 为空间 \mathbf{R}^3 中动点 $(\mathbf{z}(t), \mathbf{y}(t), \mathbf{z}(t))^{\mathsf{T}}$ 的向径,证明 $\|\mathbf{r}(t)\| = C(C)$ 为常数) $\Leftrightarrow \langle \mathbf{r}'(t), \mathbf{r}(t) \rangle = 0$.

证明 $\| \mathbf{r}(t) \| = C \Leftrightarrow \| \mathbf{r}(t) \|^2 = C^2 \Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}t} \| \mathbf{r}(t) \|^2 = 0 \Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}t} \langle \mathbf{r}(t), \mathbf{r}(t) \rangle =$

$$0 \stackrel{\text{\tiny \mathbb{R}}^{25.2(2)}}{\longleftrightarrow} 2\langle r(t), r'(t)\rangle = 0 \Leftrightarrow \langle r(t), r'(t)\rangle = 0.$$

或 由 $\mathbf{r}(t) = \{x(t), y(t), z(t)\}$ 知 $\mathbf{r}'(t) = \{x'(t), y'(t), z'(t)\}$, 于是 $\langle \mathbf{r}(t), \mathbf{r}'(t) \rangle = x(t)x'(t) + y(t)y'(t) + z(t)z'(t)$.

故
$$\| \mathbf{r}(t) \| = C \Leftrightarrow x^2(t) + y^2(t) + z^2(t) = C^2$$

$$\Leftrightarrow 2x(t)x'(t) + 2y(t)y'(t) + 2z(t)z'(t) = 0$$

$$\Leftrightarrow \langle r(t), r'(t) \rangle = 0.$$

5. 求由下列方程组所确定的隐函数的导数.

(1)
$$\begin{cases} xu + yv = 0, & \frac{\partial u}{\partial x}, \frac{\partial v}{\partial y}; \\ yu + xv = 0, & \frac{\partial u}{\partial x}, \frac{\partial v}{\partial y}; \end{cases}$$

(2)
$$\begin{cases} u + v + w = x, \\ uv + vw + wu = y, \\ x \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}. \end{cases}$$

解 (1) 将 u,v 看作 x,y 的隐函数,两端分别对 x 求导,得

$$\begin{cases} u + xu_x + yv_x = 0, \\ yu_x + v + xv_x = 0, \end{cases}$$
解之得 $u_x = \frac{\partial u}{\partial x} = \frac{-ux + yv}{x^2 - y^2}.$

原方程组两端对 y 求偏导得 $\begin{cases} xu_y + yv_y + v = 0, \\ yu_y + xv_y + u = 0, \end{cases}$ 解之得 $v_y = \frac{\partial v}{\partial y} = \frac{-ux + yv}{x^2 - y^2}.$

(2) 方程两端求全微分,

得

$$\begin{cases} du + dv + dw = dx, \\ (u + w) dv + (v + w) du + (v + u) dw = dy, \\ vwdu + uwdv + uvdw = dz. \end{cases}$$

解之得
$$\begin{cases} du = \frac{v - w}{J} [u^2 dx - u dy + dz], \\ dv = \frac{u - w}{J} [-v^2 dx + v dy - dz], \\ dw = \frac{u - v}{J} (w^2 dx - w dy + dz). \end{cases}$$

$$\dot{\partial} \frac{\partial u}{\partial x} = \frac{u^2}{(u - v)(u - w)}, \frac{\partial u}{\partial y} = \frac{-u}{(u - v)(u - w)}, \frac{\partial u}{\partial z} = \frac{1}{(u - v)(u - w)}.$$

其中 J = (u - v)(u - w)(v - w).

6. 设函数 u = u(x) 由方程组 u = f(x, y, z), $\varphi(x^2, e^y, z) = 0$, $y = \sin x$ 确定, 其中 f, φ 都具有连续的一阶偏导数,且 $\frac{\partial \varphi}{\partial z} \neq 0$,求 $\frac{\mathrm{d}u}{\mathrm{d}x}$.

解 由一阶全微分形式不变性可得

$$\begin{cases} du = f_x dx + f_y dy + f_z dz, \\ \varphi_1 dx^2 + \varphi_2 de^y + \varphi_3 dz = 2x\varphi_1 dx + e^y \varphi_2 dy + \varphi_3 dz = 0, \\ dy = d\sin x. \end{cases}$$

将第③式代入第②式可得 dz. 再将 dy 与 dz 的表达式代入第①式可得

$$du = \left[f_1 + \cos x \cdot f_2 - \frac{f_3}{\varphi_3} (2x\varphi_1 + e^y \varphi_2 \cos x) \right] dx$$

$$\frac{du}{dx} = f_1 + f_2 \cos x - \frac{f_3}{\varphi_2} (2x\varphi_1 + e^y \varphi_2 \cos x).$$

所以

8. 设方程组 F(y-x,y-z)=0, $G\left(xy,\frac{z}{y}\right)=0$ 确定隐函数 x=x(y), z=z(y), 其中 F, G 都具有一阶连续偏导数, 求 $\frac{\mathrm{d}x}{\mathrm{d}y}$.

解 利用一阶全微分形式不变性得

$$\begin{cases} F_1 d(y - x) + F_2 d(y - z) = 0, \\ G_1 dxy + G_2 d\frac{z}{y} = 0. \end{cases}$$

$$\begin{cases} (F_1 + F_2) dy - F_1 dx - F_2 dz = 0, \\ \left(xG_1 - \frac{zG_2}{y^2}\right) dy + yG_1 dx + \frac{1}{y}G_2 dz = 0. \end{cases}$$

即

解之得

$$dx = \frac{\frac{1}{y}F_{1}G_{2} + xF_{2}G_{1} + \frac{1}{y}\left(1 - \frac{z}{y}\right)F_{2}G_{2}}{\frac{1}{y}F_{1}G_{2} - yG_{1}F_{2}}dy$$

9. 设 $\mathbf{f} = (f_1, f_2)^{\mathsf{T}}, f_1(x_1, x_2, x_3, y_1, y_2) = 2e^{x_1} + x_1y_2 - 4x_2 + 3, f_2(x_1, x_2, x_3, y_1, y_2) = y_2 \cos y_1 - 6y_1 + 2x_1 - x_3, x_0 = (3, 2, 7)^{\mathsf{T}}, y_0 = (0, 1)^{\mathsf{T}}.$ 求由向量方程 $\mathbf{f}(\mathbf{x}, \mathbf{y}) = 0$ 所确定的隐函数 $\mathbf{y} = \mathbf{g}(\mathbf{x}_0)$ 在 \mathbf{x}_0 处的导数,其中 $\mathbf{x} = (x_1, x_2, x_3)^{\mathsf{T}}, \mathbf{y} = (y_1, y_2)^{\mathsf{T}}.$

解:向量方程两边求微分得

$$\begin{pmatrix} y_2 & -4 & 0 & 2e^{y_1} & x_1 \\ 2 & 0 & -1 & -6 - y_2 \sin y_1 & \cos y_1 \end{pmatrix} \begin{pmatrix} dx_1 \\ dx_2 \\ dx_3 \\ dy_1 \\ dy_2 \end{pmatrix} = 0.$$

在 $x_0 = (3,2,7)^T, y_0 = (0,1)^T$ 有

$$\begin{pmatrix} 1 & -4 & 0 & 2 & 3 \\ 2 & 0 & -1 & -6 & 1 \end{pmatrix} \begin{pmatrix} dx_1 & dx_2 & dx_3 & dy_1 & dy_2 \end{pmatrix}^{\mathsf{T}} = 0.$$

解之得

$$dy = \begin{pmatrix} dy_1 \\ dy_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{5} & -\frac{3}{20} \\ -\frac{1}{2} & \frac{6}{5} & \frac{1}{10} \end{pmatrix} \begin{pmatrix} dx_1 \\ dx_2 \\ dx_3 \end{pmatrix}$$

故

$$Dg(x_0) = \begin{pmatrix} \frac{1}{4} & \frac{1}{5} & -\frac{3}{20} \\ -\frac{1}{2} & \frac{6}{5} & \frac{1}{10} \end{pmatrix}.$$

(B)

1. 设 \mathbf{f} : $U(\mathbf{x}_0) \subseteq \mathbf{R}^n \to \mathbf{R}^m$, 其中 $\mathbf{f} = (f_1, \dots, f_m)^\mathsf{T}$, $\mathbf{x}_0 \in \mathbf{R}^n$, $\mathbf{x} = (x_1, \dots, x_n)^\mathsf{T} \in \mathbf{R}^n$, 若 $\frac{\partial f_i(\mathbf{x}_0)}{\partial x_j}$ $(i=1,2,\dots,m,j=1,\dots,n)$ 在 \mathbf{x}_0 的某邻域内存在,且在 \mathbf{x}_0 处连续,证明 \mathbf{f} 在 \mathbf{x}_0 处可微.

证明 由于 $\frac{\partial f_i(x_0)}{\partial x_j}$ $i=1,2,\cdots,m,j=1,2,\cdots,n$ 在 x_0 的某邻域内存在,且在 x_0 处连续,由定理 3.2 知数量值函数 $f_i(x)$ 在 x_0 处可微, $i=1,2,\cdots,m$. 即向量值 函数的每一个分量 $f_i(x)$ ($i=1,\cdots,m$) 在 x_0 处可微,由向量值函数可微的定义知 f(x) 在 x_0 处可微.

3. 设 $x_0, y_0 \in \mathbb{R}^n$, S 是联结 x_0, y_0 的线段, Ω 是包含 S 的区域, $f = (f_1, \dots, f_m)^T : \Omega \to \mathbb{R}^m$ 连续, f 在 S 上 $(x_0, y_0$ 可以除外)可微,则存在 $\xi_1 \dots, \xi_m \in S$ 使

$$f(\mathbf{y}_0) - f(\mathbf{x}_0) = \left(\frac{\partial f_i(\boldsymbol{\xi}_i)}{\partial \mathbf{x}_i}\right)_{m \times n} (\mathbf{y}_0 - \mathbf{x}_0)$$

证明 令 $\Delta x = y_0 - x_0$. 首先证明对 f 的每个分量 (n 元数量值函数 $)f_i(x)$,存在 $\xi_i \in S, i = 1, 2, \dots, m$, 使

$$f_i(\mathbf{y}_0) - f_i(\mathbf{x}_0) = f_i(\mathbf{x}_0 + \Delta \mathbf{x}) - f_i(\mathbf{x}_0) = \langle \nabla f_i(\boldsymbol{\xi}_i), \Delta \mathbf{x} \rangle.$$

为此考虑一元函数 $\varphi_i(t) = f_i(x_0 + t\Delta x), 0 \le t \le 1.$

则
$$\varphi_i(1) = f_i(\mathbf{x}_0 + \Delta \mathbf{x}) = f_i(\mathbf{y}_0), \varphi_i(0) = f_i(\mathbf{x}_0).$$

由于f在S上可微,从而复合函数 $\varphi_i(t) = f_i(x_0 + t\Delta x)$ 在[0,1]对t 可导,由一元函数的 Lagrange 公式知,存在 $\eta_i \in (0,1)$,使 $\varphi_i(1) - \varphi_i(0) = \frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} \Big|_{t=\eta_i}$.

$$f_i(\mathbf{x}_0 + \Delta \mathbf{x}) - f_i(\mathbf{x}_0) = \sum_{j=1}^n \frac{\partial f_i(\mathbf{x}_0 + \boldsymbol{\eta}_i \Delta \mathbf{x})}{\partial \mathbf{x}_j} \Delta \mathbf{x}_j = \langle \nabla f_i(\mathbf{x}_0 + \boldsymbol{\eta}_i \Delta \mathbf{x}), \Delta \mathbf{x} \rangle.$$

令 $\xi_i = x_0 + \eta_i \Delta x$,由于 $\eta_i \in (0,1)$,则 $\xi_i \in S$,其中

$$(\Delta x_1, \Delta x_2, \cdots, \Delta x_n)^{\mathrm{T}} = \Delta x = y_0 - x_0, i = 1, 2, \cdots, m.$$

故 $\exists \xi_1, \xi_2, \dots, \xi_n \in S$, 使

$$f(x_0 + \Delta x) - f(x_0) = \begin{pmatrix} f_1(x_0 + \Delta x) - f_1(x_0) \\ \vdots \\ f_m(x_0 + \Delta x) - f_m(x_0) \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n \frac{\partial f_1(\xi_1)}{\partial x_j} \Delta x_j \\ \vdots \\ \sum_{j=1}^n \frac{\partial f_m(\xi_m)}{\partial x_j} \Delta x_j \end{pmatrix}$$
$$= \begin{pmatrix} \frac{\partial f_i(\xi_1)}{\partial x_i} \\ \frac{\partial f_m(\xi_m)}{\partial x_j} \Delta x_j \end{pmatrix}$$

注意到 $y_0 = x_0 + \Delta x$, $\Delta x = y_0 - x_0$, 本题得证.

习 题 5.6

(A)

2. 求曲线 $r = (t, -t^2, t^3)$ 上的与平面 x + 2y + z = 4 平行的切线方程.

解 设曲线上 $\mathbf{r}_0 = (t_0, -t_0^2, t_0^3)$ 的切线与平面 x + 2y + z = 4 平行,则 \mathbf{r}_0 处的切向量 $\dot{\mathbf{r}}_0 = (1, -2t_0, 3t_0^2)$ 与平面的法向量 (1, 2, 1) 垂直,即 $1 - 4t_0 + 3t_0^2 = 0$.解 之得 $t_0 = 1$ 或 $t_0 = \frac{1}{3}$.则所求切线过 $\mathbf{r}_0 = (1, -1, 1)$ 或 $\mathbf{r}_0 = \left(\frac{1}{3}, -\frac{1}{9}, \frac{1}{27}\right)$. 所求切线为

$$\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-1}{3} \pi \frac{x-\frac{1}{3}}{1} = \frac{y+\frac{1}{9}}{-\frac{2}{3}} = \frac{z-\frac{1}{27}}{\frac{1}{3}}.$$

3. 证明螺线 $\mathbf{r} = (a\cos\theta, a\sin\theta, k\theta)$ 上任一点的切线与 Oz 轴交成定角.

证明 $P_0(x_0, y_0, z_0)$ 为螺线上任一点,则 $x_0 = a\cos\theta_0$, $y_0 = a\sin\theta_0$, $z_0 = k\theta_0$. P_0 处的切向量为 $r' = (-a\sin\theta, a\cos\theta, k)$ 与 z 轴夹角为 α , 则 $\cos\alpha = \frac{\langle r', k \rangle}{\|r'\| \cdot \|k\|} = \frac{k}{\sqrt{a^2 + k^2}}$, 其中 k = (0, 0, 1)为 z 轴正向的单位向量. 即 α 与 P_0 无关的常数. 本题得证.

4. 求下列平面曲线的弧长.

(2)
$$x = x(t) = \int_0^{t^2} \sqrt{1 + u} du, y = y(t) = \int_0^{t^2} \sqrt{1 - u} du, 0 \le t \le 1;$$

$$\mathbf{FF} \quad S = \int_0^1 \sqrt{\left[\dot{x}(t)\right]^2 + \left[\dot{y}(t)\right]^2} dt$$

$$= \int_0^1 \left[(2t \sqrt{1+t^2})^2 + (2t \sqrt{1-t^2})^2 \right]^{\frac{1}{2}} dt = \sqrt{2}.$$

(3) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ (a>0)的全长;

解 其参数方程为 $x = a\cos^3 \theta, y = a\sin^3 \theta, 0 \le \theta \le 2\pi$.

故由对称性全长为 $S = 4S_1 = 4 \int_0^{\frac{\pi}{2}} \sqrt{[x'(\theta)]^2 + [y'(\theta)]^2} d\theta = 6a$.

(6) 极坐标系中的曲线 $\rho = a(1 + \cos \theta)$ 的全长;

解 其参数方程为 $x = a(1 + \cos \theta)\cos \theta$, $y = a(1 + \cos \theta)\sin \theta$, $0 \le \theta \le 2\pi$. 由心形线 $\rho = a(1 + \cos \theta)$ 的对称性知,其全长

$$S = 2 \int_0^{\pi} \sqrt{\left[x'(\theta)\right]^2 + \left[y'(\theta)\right]^2} d\theta = 2 \int_0^{\pi} a \sqrt{2(1 + \cos \theta)} d\theta$$
$$= 4a \int_0^{\pi} \cos \frac{\theta}{2} d\theta = 8a.$$

(8) 曲线
$$y(x) = \int_{-\sqrt{3}}^{x} \sqrt{3-t^2} dt$$
 的全长.

解 其切向量
$$\tau = \{1, y'(x)\} = \{1, \sqrt{3-x^2}\}$$
 且 $|x| \le \sqrt{3}$. 故弧长
$$S = \int_{-\sqrt{3}}^{\sqrt{3}} \left[1 + (\sqrt{3-x^2})^2\right]^{\frac{1}{2}} dx = \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{4-x^2} dx = \frac{4}{3}\pi + \sqrt{3}.$$

5. 求下列空间曲线的弧长.

(3)
$$\begin{cases} x^2 = 3y, \\ 2xy = 9z, \end{cases}$$
 $\text{介于点}(0,0,0)$ 与点(3,3,2)之间的弧段.

解 曲线方程为 $\mathbf{r}(x) = \left\{x, \frac{1}{3}x^2, \frac{2}{27}x^3\right\}, 0 \le x \le 3$. 则切向量 $\mathbf{r}' = \left\{1, \frac{2}{3}x, \frac{2}{9}x^2\right\}$,则所求弧长为

$$S = \int_0^3 \sqrt{1 + \frac{4}{9}x^2 + \frac{4}{81}x^4} dx = \int_0^3 \left(1 + \frac{2}{9}x^2\right) dx = 5.$$

6. 两条曲线的交角,是指它们在交点处的切线的交角.证明曲线 $r = \{ae^i\cos t, ae^i\sin t, ae^i\}$ 与圆锥面 $x^2 + y^2 = z^2$ 的各母线相交的角度相同.

证明 设曲线与圆锥面的交点为 $P_0(ae^{t_0}\cos t_0, ae^{t_0}\sin t_0, ae^{t_0}), t_0 \in \mathbb{R}$,则曲线在 P_0 处的切向量为

$$r' = \{\cos t_0 - \sin t_0, \sin t_0 + \cos t_0, 1\}.$$

圆锥面 $x^2 + y^2 = z^2$ 过 P_0 点的母线为直线 $\frac{x}{\cos t_0} = \frac{y}{\sin t_0} = \frac{z}{1}$ (即直线 OP_0),其方向

向量为 $S = \{\cos t_0, \sin t_0, 1\}.$

设α为所求夹角,则

$$\cos \alpha = \frac{\langle r', S \rangle}{\parallel r' \parallel \parallel S \parallel}$$

$$= \frac{(\cos t_0 - \sin t_0) \cos t_0 + (\sin t_0 + \cos t_0) \sin t_0 + 1}{\sqrt{(\cos t_0 - \sin t_0)^2 + (\sin t_0 + \cos t_0)^2 + 1} \sqrt{\cos^2 t_0 + \sin^2 t_0 + 1}}$$

$$= \frac{2}{\sqrt{6}}$$

与 t₀ 无关. 故命题得证.

8. 求 xOz 坐标面内的曲线 $\begin{cases} x = f(v), \\ z = g(v), \end{cases}$ $a \le v \le b$ 绕 Oz 轴旋转一周所得旋转面的参数方程,其中 f(v) > 0.

解 曲面的水平截面为圆,圆心在z轴上,半径为f(v).

故曲面上 P(x,y,z) 满足 $x^2 + y^2 = f^2(v), z = g(v)$.

P 在 xOy 的投影点为 P',取由 x 轴逆时针旋转到 OP'的角为 θ ,则曲面的参数方程为

$$x = f(v)\cos\theta, y = f(v)\sin\theta, z = g(v),$$
 其中 $0 \le \theta \le 2\pi, a \le v \le b.$

9. 写出曲面 r=r(u,v)上点 $r(u_0,v_0)$ 处的切面与法线的参数方程.

解
$$r = r(u,v)$$
在 $r(u_0,v_0)$ 处的法向量为 $r_u(u_0,v_0) \times r_u(u_0,\theta_0)$.

设 ρ 为点 $r(u_0, v_0)$ 处的切平面上任一点的向径,则 $\rho - r(u_0, v_0)$ 在切平面上,从而 $\rho - r(u_0, v_0)$, $r_u(u_0, v_0)$, $r_v(u_0, v_0)$ 共面. 于是存在 $\lambda, \mu \in \mathbf{R}$ 使 $\rho - r(u_0, v_0) = \lambda r_u(u_0, v_0) + \mu r_v(u_0, v_0)$. 即切平面的方程为

$$\rho = \rho(\lambda, \mu) = r(u_0, v_0) + \lambda r_u(u_0, v_0) + \mu r_v(u_0, v_0),$$

法线方程为 $\rho = \rho(t) = r(u_0, v_0) + t[r_u(u_0, v_0) \times r_v(u_0, v_0)].$

11. 试求平面,使它通过曲线 $\begin{cases} y^2 = x, \\ z = 3(y-1) \end{cases}$ 在 y = 1 处的切线,且与曲面 $x^2 + y^2 = 4z$ 相切.

解 曲线 Γ : $\begin{cases} y^2 = x, \\ z = 3(y-1) \end{cases}$ 上 y = 1 的点为 M(1,1,0). 而且曲面 $y^2 = x$ 在 M 处的切平面 x - 1 - 2(y - 1) = 0 与平面 z = 3(y - 1) 的交线 Γ_1 : $\begin{cases} x - 2y + 1 = 0, \\ z = 3(y - 1) \end{cases}$ 即曲线 Γ 在 M 点的切线.

过 Γ_1 的平面束为 $x-2y+1+\lambda(3y-3-z)=0$.

即 $x + (3\lambda - 2)y - \lambda z + 1 - 3\lambda = 0$ 中与曲面 Σ : $x^2 + y^2 = 4z$ 相切的平面. 设切点为 P_0 (x_0 , y_0 , z_0).则 P_0 应在所求平面 π 及 Σ 上,即 $\begin{cases} x_0 + (3\lambda - 2)y_0 - \lambda z_0 + 1 - 3\lambda = 0, \\ x_0^2 + y_0^2 = 4z_0. \end{cases}$

 Σ 在 P_0 处的法向量 $|2x_0,2y_0,-4|$ 应与平面束垂直,因而

$$2x_0 + 2y_0(3\lambda - 2) + 4\lambda = 0.$$

故 $\lambda = 1$ 或 $\lambda = \frac{5}{6}$. 从而所求平面 π 的方程为

$$x + y - z - 2 = 0$$
 of $6x + 3y - 5z - 9 = 0$.

13. 求曲面 z = xy 的法线,使它与平面 x + 3y + z + 9 = 0 垂直.

解 曲面 z = xy 上 $P_0(x_0, y_0, z_0)$ 处法向量 $n = \{y_0, x_0, -1\}$. 又所求法线 Γ 与 x + 3y + z + 9 = 0 垂直,则 $y_0 = \frac{x_0}{3} = \frac{-1}{1}$. 于是 $x_0 = -3$, $y_0 = -1$, $z_0 = x_0 y_0 = 3$. 故所求法线 Γ 为

$$\frac{x+3}{1} = \frac{y+1}{3} = \frac{z-3}{1}.$$

14. 求曲面 $x^2 + 2y^2 + z^2 = 22$ 的法线,使它与直线 $\begin{cases} x + 3y + z = 3, \\ x + y = 0 \end{cases}$ 平行.

解 设所求直线 L 为曲面上 $P_0(x_0,y_0,z_0)$ 处的法线,则 $x_0^2+2y_0^2+z_0^2=22$,且 L 的方向向量为 $\{2x_0,4y_0,2z_0\}$.

又由于
$$L = \begin{cases} x + 3y + z = 3, \\ x + y = 0 \end{cases}$$
 平行,则 $\{2x_0, 4y_0, 2z_0\}$ 平行于

$$\{1,3,1\} \times \{1,1,0\} = \{-1,1,-2\}, \mathbb{H} \frac{x_0}{-1} = \frac{2y_0}{1} = \frac{z_0}{-2},$$

 $x_0 = -2y_0$, $z_0 = -4y_0$. 代人 $x_0^2 + 2y_0^2 + z_0^2 = 22$ 可得 P_0 为(-2,1, -4) 或(2, -1, 4). 故所求直线为

$$\frac{x+2}{-1} = \frac{y-1}{1} = \frac{z+4}{-2} \stackrel{\bigcirc}{\to} \frac{x-2}{1} = \frac{y+1}{-1} = \frac{z-4}{2}.$$

15. 求曲线 $\begin{cases} 3x^2 + 2y^2 = 12, \\ z = 0 \end{cases}$ 绕 y 轴旋转—周所得旋转面在点 $(0, \sqrt{3}, \sqrt{2})$ 处

由内部指向外部的单位法向量.

解 所得旋转面为椭圆面,其方程为 $3(x^2+z^2)+2y^2=12$,且在 $(0,\sqrt{3},\sqrt{2})$ 处的法向量为 $\{0,2\sqrt{3},3\sqrt{2}\}$ 或 $\{0,-2\sqrt{3},-3\sqrt{2}\}$. 而所求法向量应与此点的向径同向,即为与 $\{0,2\sqrt{3},3\sqrt{2}\}$ 同向的单位向量 $\frac{1}{5}\{0,\sqrt{10},\sqrt{15}\}$.

17. 求锥面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$ 在其上一点 $P_0(x_0, y_0, z_0)$ 处的切平面方程,并证明切平面通过锥面在 P_0 处的母线.

解 由于 $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = \frac{z_0^2}{c^2}$,故锥面在 P_0 处的切平面 π 的方程为 $\frac{x_0}{a^2}x + \frac{y_0}{b^2}y - \frac{z_0}{c^2}z =$

0. 因而元过原点. P_0 点的向径 $\mathbf{r}_0 = \{x_0, y_0, z_0\}$ 与元的法向量 $\left\{\frac{x_0}{a^2}, \frac{y_0}{b^2}, \frac{-z_0}{c^2}\right\}$ 垂直. 故过原点平行向量 \mathbf{r}_0 的直线(即过 P_0 的母线)必在元上.

证法 \blacksquare 由于圆锥面过 P_0 的母线是锥面过 P_0 的直线,其在 P_0 切线(即其自己)必在锥面过 P_0 的切平面上.

18. 证明 曲面 $xyz = a^3(a > 0)$ 上任一点的切平面和三个坐标面所围四面体的体积是一常数.

证明 设 $P_0(x_0,y_0,z_0)$ 为 $xyz=a^3$ 上任一点,则 $x_0y_0z_0=a^3$. 曲面 $xyz=a^3$ 在 P_0 处的切平面 π 方程为

$$y_0 z_0 x + x_0 z_0 \gamma + x_0 \gamma_0 z = 3a^3.$$

由 a>0 知 π 的 截距方程为 $\frac{x}{3x_0}+\frac{y}{3y_0}+\frac{z}{3z_0}=1$. 故 π 与三坐标面所围四面体体积

$$V = |3x_0 \cdot 3y_0 \cdot 3z_0| = 27a^3$$
为一常数与 P_0 无关.

19. 设 a, b 和 c 为常数, 函数 F(u,v) 有连续的一阶偏导数. 证明曲面 $F\left(\frac{x-a}{z-c},\frac{y-b}{z-c}\right)=0$ 上任一点处的切平面均通过定点.

证明 设
$$P_0(x_0, y_0, z_0)$$
 为曲面 $F\left(\frac{x-a}{z-c}, \frac{y-b}{z-c}\right) = 0$ 上一点.

则 $z_0 \neq c$,且曲面在 P_0 处的切平面方程为

$$\frac{F_{\nu}(P_0)}{z_0-c}(x-x_0)+\frac{F_{\nu}(P_0)}{z_0-c}(y-y_0)$$

$$=\frac{F_{u}(P_{0})(x_{0}-a)+F_{v}(P_{0})(y_{0}-b)}{(z_{0}-c)^{2}}(z-z_{0}).$$

 $\mathbb{E} \left[(x-x_0)(z_0-c) - (a-x_0)(z_0-z) \right] F_u(P_0) + \left[(y-y_0)(z_0-c) - (y_0-b)(z-z_0) \right] F_v(P_0) = 0.$

故切平面过(a,b,c)点.

20. 设 a 和 b 为常数,证明曲面 F(x-az,y-bz)=0 上任一点处的切平面均与某定直线平行.

证明 $P_0(x_0, y_0, z_0)$ 为 F(x-az, y-bz)=0 上任一点. 过 P_0 的法向量 $n=\{F_1(P_0), F_2(P_0), -aF_1(P_0) - bF_2(P_0)\}$ 与常向量 $\{a,b,1\}$ 垂直,故过 P_0 的切平面与定直线 ax+by+z=0 平行.

21. 两个曲面在交线上某点的交角是指两曲面在该点的法线的交角. 证明球面 $x^2+y^2+z^2=R^2$ 与锥面 $x^2+y^2=k^2z^2$ 正交 (即交角为 $\frac{\pi}{2}$).

证明 球面与锥面的交点为 $P_0(x_0,y_0,z_0)$,则 $x_0^2+y_0^2+z_0^2=R^2$ 且 $x_0^2+y_0^2=kz_0^2$. 而球面与锥面在 P_0 处的法向量分别为 $n_{**}=\{2x_0,2y_0,2z_0\}$ 和 $n_{**}=\{2x_0,2y_0,2z_0\}$

$$\cos \alpha = \frac{\langle n_{sk}, n_{tk} \rangle}{\| n_{sk} \| \cdot \| n_{tk} \|} = \frac{4(x_0^2 + y_0^2 - kz_0^2)}{\| n_{sk} \| \cdot \| n_{tk} \|} = 0,$$

从而 $\alpha = \frac{\pi}{2}$.

(B)

1. 试证旋转面 $z = f(\sqrt{x^2 + y^2})$ 上任一点的法线与旋转轴相交,其中f'(u)连续且不等于零.

证明 设 $P_0(x_0,y_0,z_0)$ 为 $z=f(\sqrt{x^2+y^2})$ 上任意一点,由于垂直于 z 轴的截面为圆,故 z 轴为旋转轴.由于 f'(u) 连续且不为零,则 $z=f(\sqrt{x^2+y^2})$ 在 P_0 处的法线

$$\frac{x-x_0}{\frac{x_0}{u_0}f'(u_0)}=\frac{y-y_0}{\frac{y_0}{u_0}f'(u_0)}=\frac{z-z_0}{-1},$$

与 z 轴(x = 0,y = 0) 有交点 $\left(0,0,z_0 + \frac{u_0}{f'(u_0)}\right)$, 其中 $u_0 = \sqrt{x_0^2 + y_0^2}$.

2. 设 F(u,v) 是一连续可微的非零向量值函数 $F: \mathbb{R}^2 \to \mathbb{R}^3$. 证明函数 F(u,v) 的长度是常数的充要条件为 $\frac{\partial F}{\partial u} \cdot F \equiv 0$ 及 $\frac{\partial F}{\partial v} \cdot F \equiv 0$.

证明 令
$$F(u,v) = \{f_1(u,v), f_2(u,v), f_3(u,v)\}$$
,

$$\mathbb{P} \| \mathbf{F} \|^{2} = f_{1}^{2}(u,v) + f_{2}^{2}(u,v) + f_{3}^{2}(u,v), \frac{\partial \| \mathbf{F} \|^{2}}{\partial u} = 2\left(\frac{\partial f_{1}}{\partial u}f_{1} + \frac{\partial f_{2}}{\partial u}f_{2} + \frac{\partial f_{3}}{\partial u}f_{3}\right) = 2$$

$$\frac{\partial \mathbf{F}}{\partial u} \cdot \mathbf{F}, \frac{\partial \| \mathbf{F} \|^{2}}{\partial v} = 2\left(\frac{\partial f_{1}}{\partial v}f_{1} + \frac{\partial f_{2}}{\partial v}f_{2} + \frac{\partial f_{3}}{\partial v}f_{3}\right) = 2 \frac{\partial \mathbf{F}}{\partial v} \cdot \mathbf{F}.$$

从而
$$\| \mathbf{F} \|^2 = C$$
 为常数 $\Leftrightarrow \frac{\partial \| \mathbf{F} \|^2}{\partial u} = 0$ 且 $\frac{\partial \| \mathbf{F} \|^2}{\partial v} = 0$ $\frac{\mathbf{F}$ 为连续可微非零向量值函数 $\partial \mathbf{F}$ $\partial \mathbf{$

$$\mathbf{F} \equiv 0 \, \, \mathbf{H} \frac{\partial \mathbf{F}}{\partial v} \cdot \mathbf{F} \equiv 0.$$

3. 证明曲面 Σ 是球面的充要条件为 Σ 的所有法线通过一个定点.

证明 设 Σ 的方程为r=r(u,v).

充分性 设 Σ 的所有法线过定点 P_0 , P_0 的向径为 x_0 , 则 $r(u,v) - x_0$ 及 $n = r_u \times r_v$ 均为 Σ 上向径 r(u,v) 处的法向量,则其互相平行,也即存在数量值函数 f(u,v),使 $r(u,v) - x_0 = f(u,v)n$. 从而

$$\begin{split} & \left[\frac{\partial}{\partial u} (\mathbf{r}(u,v) - \mathbf{x}_0) \right] \cdot [\mathbf{r}(u,v) - \mathbf{x}_0] = \mathbf{r}_u \cdot [f(u,v)\mathbf{n}] \equiv 0, \\ & \left[\frac{\partial}{\partial v} (\mathbf{r}(u,v) - \mathbf{x}_0) \right] \cdot [\mathbf{r}(u,v) - \mathbf{x}_0] = \mathbf{r}_v \cdot [f(u,v)\mathbf{n}] \equiv 0. \end{split}$$

由上题知 $\| \mathbf{r}(u,v) - \mathbf{x}_0 \|$ 为常数,即 \sum 上任一点到定点 \mathbf{x}_0 的距离相等,故 \sum 为球面.

必要性 将充分性逆推即可.

4. 设函数 u = F(x,y,z) 在条件 $\varphi(x,y,z) = 0$ 和 $\psi(x,y,z) = 0$ 下,在点 P_0 (x_0,y_0,z_0) 处取得极值 m. 证明曲面 F(x,y,z) = m; $\varphi(x,y,z) = 0$ 和 $\psi(x,y,z) = 0$ 在点 P_0 的法线共面. 其中函数 F,φ 及 ψ 均有连续的且不同时为零的一阶偏导数.

证明 曲面 $F(x,y,z)=m, \varphi(x,y,z)=0, \psi(x,y,z)=0$ 在 P_0 点处的法向量分别为

$$\mathbf{n}_{F} = \{ F_{x}(P_{0}), F_{y}(P_{0}), F_{z}(P_{0}) \},
\mathbf{n}_{\varphi} = \{ \varphi_{x}(P_{0}), \varphi_{y}(P_{0}), \varphi_{z}(P_{0}) \},
\mathbf{n}_{\psi} = \{ \psi_{x}(P_{0}), \psi_{y}(P_{0}), \psi_{z}(P_{0}) \}.$$

因此只需证明 n_F, n_φ, n_ψ 共面即可.

$$\diamondsuit L(x,y,z,\lambda,\mu) = F(x,y,z) + \lambda \varphi(x,y,z) + \mu \psi(x,y,z).$$

由于 u = F(x,y,z) 在条件 $\varphi(x,y,z) = 0$, $\psi(x,y,z) = 0$ 下在 P_0 处取得极值 m, 且 F, φ , ψ 均有连续的且不同时为零的一阶偏导数知, ∃实数 λ_0 , μ_0 使

$$\begin{split} L_{x}(P_{0},\lambda_{0},\mu_{0}) &= F_{x}(P_{0}) + \lambda_{0}\varphi_{x}(P_{0}) + \mu_{0}\psi_{x}(P_{0}) = 0, \\ L_{y}(P_{0},\lambda_{0},\mu_{0}) &= F_{y}(P_{0}) + \lambda_{0}\varphi_{y}(P_{0}) + \mu_{0}\psi_{y}(P_{0}) = 0, \\ L_{z}(P_{0},\lambda_{0},\mu_{0}) &= F_{z}(P_{0}) + \lambda_{0}\varphi_{z}(P_{0}) + \mu_{0}\psi_{z}(P_{0}) = 0. \end{split}$$

即 $\exists \lambda_o, \mu_o \in R_o$ 使 $n_F = -\lambda_o n_o - \mu_o n_o$. 从而 n_F, n_o, n_o 共面.

习 题 5.7

(A)

1. 如果曲线的方程为 r = r(t)(t) 为一般参数), 试推导标架向量 T, B 的计算公式(7.6)

解 公式(7.6) 即
$$T = \frac{\dot{r}}{\|\dot{r}\|}$$
, $B = \frac{\dot{r} \times \ddot{r}}{\|\dot{r} \times \ddot{r}\|}$.

注意到弧长 s(t) 对 t 的导数 $\frac{\mathrm{d}s}{\mathrm{d}t} = \parallel \dot{r} \parallel$,则由 T = r' ,可知 $T = \frac{\mathrm{d}r}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}S} = \dot{r} \cdot \frac{1}{\frac{\mathrm{d}s}{\mathrm{d}t}} = \frac{\dot{r}}{\parallel \dot{r} \parallel}$. 于是

$$r'' = \frac{d\mathbf{r}'}{ds} = \frac{d\mathbf{T}}{ds} = \frac{d}{ds} \left(\dot{\mathbf{r}} \cdot \frac{dt}{ds} \right) = \frac{d\dot{\mathbf{r}}}{ds} \frac{dt}{ds} + \dot{\mathbf{r}} \frac{d^2t}{ds^2}$$
$$= \ddot{\mathbf{r}} \left(\frac{dt}{ds} \right)^2 + \dot{\mathbf{r}} \frac{d^2t}{ds^2}.$$

从而 $r' \times r'' = (\dot{r} \times \ddot{r}) \left(\frac{\mathrm{d}t}{\mathrm{d}s}\right)^3$,即 $r' \times r''$ 与 $\dot{r} \times \ddot{r}$ 同向,故由 $B = \frac{r' \times r''}{\parallel \dot{r} \times \ddot{r} \parallel}$ 可知 $B = \frac{\dot{r} \times \ddot{r}}{\parallel \dot{r} \times \ddot{r} \parallel}$.

5. 证明螺旋线 $r = (a\cos t, a\sin t, bt)$ 上任一点的主法线都与 z 轴垂直相交.

证明
$$\dot{r} = (-a\sin t, a\cos t, b), \ddot{r} = (-a\cos t, -a\sin t, 0),$$
从而 $T = \frac{\dot{r}}{\parallel \dot{r} \parallel}$

$$= \frac{1}{\sqrt{a^2 + b^2}} (-a\sin t, a\cos t, b),$$

$$\mathbf{B} = (\dot{\mathbf{r}} \times \ddot{\mathbf{r}}) / \|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}\| = \frac{1}{\sqrt{a^2 + b^2}} (b \sin t, -b \cos t, a),$$

 $N = B \times T = (\cos t, \sin t, 0)$. 故 $N = \lambda \sin t$

即主法线与 z 轴垂直,且螺线上任一点 r(t) 处的主法线方程为 $\rho = \rho(\lambda) = r(t) + \lambda N(t) = (a\cos t, a\sin t, bt) + \lambda (\cos t, \sin t, 0)$. 显然 z 轴上的点 $(0,0,bt) = \rho(-a)$ 在主法线上,故主法线与 z 轴垂直相交,交点为 $\rho(-a)$.

6. 设曲线 Γ 的方程为 r = r(t), 其中 $r \in C^{(2)}$, $P_0(\mathbb{D} r(t_0))$ 及 $P(\mathbb{D} r(t_0 + \Delta t))$ 是 Γ 上两点,且 $\dot{r}(t_0) \times \ddot{r}(t_0) \neq 0$,记 Γ 在 P 处的切线为 l,过 P_0 及 l 的平面为 π' . 证明当 P 沿 Γ 趋于 P_0 时,平面 π' 的极限位置为 Γ 在 P_0 的密切平面.

证明 只需证明 π '的法向量 n 当 P 沿 Γ 趋向 P_0 时,其极限平行于 Γ 在 P_0 处的次法向量 $B(t_0)$ 即可. 于是可取

$$\mathbf{n} = \mathbf{r}(t_0 + \Delta t) \times [\mathbf{r}(t_0 + \Delta t) - \mathbf{r}(t_0)].$$

由于 $r \in C^{(2)}$,所以对 $r(t_0 + \Delta t)$ 与 $r(t_0 + \Delta t) - r(t_0)$ 的各分量分别应用一元函数的 Lagrang 公式及 Taylor 公式可得

$$\dot{r}(t_0 + \Delta t) = \dot{r}(t_0) + \ddot{r}(\eta) \Delta t, \eta \text{ for } t_0 = t_0 + \Delta t \text{ in },$$

$$r(t_0 + \Delta t) - r(t_0) = \dot{r}(t_0) \Delta t + \frac{1}{2} (\ddot{r}(t_0) + \varepsilon) \Delta t^2,$$

其中当 $\Delta t \rightarrow 0$, $\varepsilon \rightarrow 0$. 注意到 $\dot{r}(t_0) \times \dot{r}(t_0) = 0$ 得

$$\boldsymbol{n} = \frac{1}{2} \Delta t^2 [\dot{\boldsymbol{r}}(t_0) \times \ddot{\boldsymbol{r}}(t_0) + 2\ddot{\boldsymbol{r}}(\eta) \times \dot{\boldsymbol{r}}(t_0) + (\ddot{\boldsymbol{r}}(\eta) + \ddot{\boldsymbol{r}}(t_0)) \times \boldsymbol{\varepsilon}].$$

从而 $\frac{2}{\Delta t^2}$ n 也是 π' 的法向量,且 $\lim_{\Delta t \to 0} \frac{2}{\Delta t^2}$ n = $\dot{r}(t_0) \times \ddot{r}(t_0)$ 平行于 $B(t_0)$.

9. 曲线 y = ln x 上哪点的曲率半径最小? 求出该点的曲率半径.

解 曲线 $y = \ln x$ 上任一点 P(x,y) 处的曲率半径为 R,则

$$R = \frac{\left[1 + (y')^2\right]^{\frac{3}{2}}}{|y''|} = \frac{\sqrt{(1 + x^2)^3}}{x} \quad (y = \ln x \, \text{定义域} \, x \in (0, +\infty)).$$

问题转化为求 R 在(0,+∞)上的最小值.

由
$$\frac{dR}{dx} = \frac{1}{x} \cdot \frac{3}{2} (1 + x^2)^{\frac{1}{2}} \cdot 2x - \frac{1}{x^2} \sqrt{(1 + x^2)^3} = 0$$
 可得唯一的驻点 $x_0 = \frac{1}{\sqrt{2}} \cdot \frac{d^2R}{dx^2}\Big|_{x_0} = 4\sqrt{3} > 0$,故此唯一的驻点 $x_0 = \frac{1}{\sqrt{2}}$ 必是 R 的最小值点,且最小值 为 $\frac{3}{2}\sqrt{3}$. 即 $y = \ln x$ 在 $\left(\frac{1}{\sqrt{2}}, \ln \frac{1}{\sqrt{2}}\right)$ 处的曲率半径最小,其值为 $\frac{3}{2}\sqrt{3}$.

10. 求曲线 $y = e^{x} \cdot a(0,1)$ 处曲率圆的方程.

解 在(0,1)处切向量 $T(0) = \frac{1}{\sqrt{2}}(1,1,0), r''(0) = (0,1,0),$ 次法向量 B(0) = (0,0,1), 主法向量 $N(0) = B(0) \times T(0) = \left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right),$ 曲率半径为 $R = 2\sqrt{2}$. 从而曲率中心为 $r_Q = r(0) + RN(0) = (0,1,0) + 2\sqrt{2}\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right) = (-2,3,0)$.

故曲率圆的方程为 $(x+2)^2 + (y-3)^2 = 8$.

11. 一飞机沿抛物线路径 $y = \frac{x^2}{10\ 000}(y$ 轴铅直向上,单位:m)作俯冲飞行,在坐标原点 O 处飞行的速度为 v = 200 m/s,飞行员体重 G = 70 kg. 求飞机俯冲至最低点(即原点 O)处时座椅对飞行员的反作用力.

解 座椅对飞行员的反作用力(在原点0处)等于重力与向心力f之和,方向与y轴相同.

在
$$O$$
 点的曲率半径 $R = \frac{1}{|y''|} [1 + (y')^2]^{\frac{3}{2}} \bigg|_{x=0} = 5\ 000\ \text{m}.$

$$f = \frac{mv^2}{R} \bigg|_{z=0} = \frac{70 \times 200^2}{5000} = 560 \text{ N}.$$

故反作用力等于 $f+G=560+70\times9.8=1246$ N.

13. 证明挠率的计算公式(7.22)

证明 公式(7.22) 即
$$\tau(t) = \frac{[\dot{r}, \ddot{r}, \ddot{r}]}{\|\dot{r} \times \ddot{r}\|^2}$$
.

曲
$$\mathbf{r}' = \dot{\mathbf{r}} \frac{\mathrm{d}t}{\mathrm{d}s}, \mathbf{r}'' = \ddot{\mathbf{r}} \left(\frac{\mathrm{d}t}{\mathrm{d}s}\right)^2 + \dot{\mathbf{r}} \frac{\mathrm{d}^2t}{\mathrm{d}s^2}$$
及 $\dot{\mathbf{r}} \times \dot{\mathbf{r}} = 0$

可得 $\mathbf{r}' \times \mathbf{r}'' = (\dot{\mathbf{r}} \times \ddot{\mathbf{r}}) \left(\frac{\mathrm{d}t}{\mathrm{d}s}\right)^3$.

又由 $\| r' \| = 1$ 知 $r' \perp r''$ 且 $\| r'' \| = \| r' \times r'' \| = \left| \frac{\mathrm{d}t}{\mathrm{d}s} \right|^3 \| \dot{r} \times \ddot{r} \|$.

$$\nabla \mathbf{r}''' = \frac{\mathrm{d}\mathbf{r}''}{\mathrm{d}s} = \mathbf{r} \left(\frac{\mathrm{d}t}{\mathrm{d}s}\right)^3 + 2\frac{\mathrm{d}t}{\mathrm{d}s} \cdot \frac{\mathrm{d}^2t}{\mathrm{d}s^2} \mathbf{r} + \mathbf{r} \frac{\mathrm{d}^2t}{\mathrm{d}s^2} + \mathbf{r} \frac{\mathrm{d}^3t}{\mathrm{d}s^3},$$

故[
$$\mathbf{r}',\mathbf{r}'',\mathbf{r}'''$$
] = $(\mathbf{r}'\times\mathbf{r}'')\cdot\mathbf{r}'''$ = $[(\dot{\mathbf{r}}\cdot\ddot{\mathbf{r}})\cdot\ddot{\mathbf{r}}](\frac{\mathrm{d}t}{\mathrm{d}s})^6$.

将 || r'' || 和 [r',r'',r''']代入公式 $\tau = \frac{[r',r'',r''']}{||r''||^2}$ 即可得公式(7.22).

(B)

1. 求拋物线 $y^2 = 2px$ 的渐屈线方程.

解 其参数方程为
$$\mathbf{r} = \left\{ \frac{1}{2p} y^2, y, 0 \right\}, y \in (-\infty, +\infty).$$

单位切向量
$$T = \sqrt{\frac{p^2}{p^2 + y^2}} \left\{ \frac{y}{p}, 1, 0 \right\}, B = \frac{r' \times r''}{\|r' \times r''\|} = \{0, 0, -1\}, 主法向量$$

$$N = \{0, 0, -1\} \times T = \sqrt{\frac{p^2}{p^2 + y^2}} \left\{ 1, -\frac{y}{p}, 0 \right\}, 曲率半径 R = \frac{1}{p^2} (p^2 + y^2)^{\frac{3}{2}}, 曲率中$$
心向径 $\rho = r + RN = \left\{ \frac{3y^2}{2p} + p, -\frac{y^3}{p^2}, 0 \right\}.$
故新屈线方程为 $\rho = \left\{ \frac{3y^2}{2p} + p, -\frac{y^3}{p^2}, 0 \right\}.$

2. 求螺旋线 $\mathbf{r} = (a\cos t, a\sin t, bt)$ 的渐伸线方程,并证明这些渐伸线都是平面曲线.

解 设 $\mathbf{r}(0)$ 处的弧长为 0 ,则 $\mathbf{r}(t)$ 处的弧长 $\mathbf{s}(t) = \int_0^t \|\dot{\mathbf{r}}\| \, \mathrm{d}\mathbf{s} = \sqrt{a^2 + b^2} \, t$. 于是 t = ws ,其中 $w = \frac{1}{\sqrt{a^2 + b^2}}$. 由此可得螺线的自然参数方程为 $\mathbf{r}(\mathbf{s}) = (a\cos ws, a\sin ws, bws)$, $\mathbf{r}'(\mathbf{s}) = T(\mathbf{s}) = (-aw\sin ws, aw\cos ws, bw)$. 于是渐伸线方程为: $\mathbf{p}(\mathbf{s}) = (a\cos ws, a\sin ws, bws) + (c - s)(-aw\sin ws, aw\cos ws, bw)$,其中 c 为任意常数.

由于 $\rho(s)$ 的第三个分量 z(s) = bws + (c-s)bw = bwc 为常数. 故 $\rho(s)$ 是平面 z = bwc 上的平面曲线.

3. 设 Γ 为曲线 Γ 的曲率中心轨迹.证明在对应点,曲线 Γ 的切线与曲线 Γ 的切线垂直.

证明 设 Γ 的方程为r=r(s),其中s为自然参数.

则 Γ 的方程为 $\rho(s)=r(s)+R(s)N(s)$. 只需证明 $r'\cdot\rho'(s)=0$ 即可. 由 Frenet 公式及 T=r',B',N'为互相垂直的单位向量,则

$$\mathbf{r}' \cdot \boldsymbol{\rho}'(s) = \mathbf{r}'(s) \cdot (\mathbf{r}'(s) + R'(s)N(s) + R(s)N'(s))$$

$$= \|\mathbf{r}'\|^2 + R'(s)[\mathbf{r}'(s) \cdot N(s)] + \mathbf{r}'(s) \cdot R(s)[-\frac{1}{R(s)}\mathbf{T}(s) + \tau(s)\mathbf{B}(s)]$$

$$= 1 + 0 - \mathbf{r}'(s) \cdot \mathbf{T}(s) + R(s)\tau(s)(\mathbf{r}'(s) \cdot \mathbf{B}(s)) = 0.$$

5. 证明

- (1) 若曲线在每一点处的切线都经过一个定点,则该曲线必是一条直线.
- (2) 若曲线在每一点处的密切平面都经过一个定点,则该曲线必是一条平面曲线.

证明 (1) 设曲线的自然参数方程为r=r(s),则r(s)处的切线方程为 $\rho=r(s)+\lambda r'(s)$. 不妨设每一点的切线都过定点 P_0 (向径为 r_0),则 $\forall s\in \mathbf{R}$, $\exists \lambda \in \mathbf{R}$,使 $r_0=r(s)+\lambda r'(s)$. 两边对s 求导,则有 $r'(s)+\lambda r''(s)=0$. (*)

又因为 $\| \mathbf{r}' \| = 1$,所以 $\mathbf{r}'(s) \perp \mathbf{r}''(s)$,故 $\mathbf{r}''(s) = 0$. (如 $\mathbf{r}'(s) = 0$,同样可得 $\mathbf{r}''(s) = 0$). 故曲率 $\| \mathbf{r}''(s) \| = 0$ 的曲线为直线.

(2) 曲线 r = r(s)(s) 为自然参数)的密切平面的方程为

$$\rho = r(s) + \lambda (r' \times r'').$$

因为密切平面都过定点 P_o (向径为常向量 r_o),则 $\exists \lambda \in \mathbf{R}, r_o = r(s) + \lambda(r' \times r'')$. 两边对 s 求导可得

$$0 = \mathbf{r}'(s) + \lambda(\mathbf{r}'' \times \mathbf{r}'' + \mathbf{r}' \times \mathbf{r}'''),$$

即

$$r'(s) + \lambda(r' \times r''') = 0.$$

于是

$$\mathbf{r}''(s) \cdot [\mathbf{r}'(s) + \lambda(\mathbf{r}' \times \mathbf{r}''')] = 0.$$

考虑到 || r' || =1,即 r' \(r', 从而 r' \cdot r' = 0, 可知

$$(r',r'',r''') = -(r',r''',r'') = 0.$$

即任一点处挠率r(s)=0,故曲线为平面曲线.

综合练习题

1. 已知某工厂过去几年的产量与利润的数据如下:

产量 x/千件	40	47	55	70	90	100
利润 y/于元	32	34	43	54	72	85

通过把这些数据 (x_i,y_i) ($i=1,\cdots,6$)所对应的点描在坐标纸上,可以看出这些点的连线接近于一条直线,因此可以认为利润y与产量x的函数关系是线性函数,试利用最小二乘法求出这个线性函数,并估计当产量达到120千件时该工厂的利润是多少?

解 依题意可采用线性函数 y = a + bx 对利润进行拟合. 按照最小二乘法,问题就归结为选择参数 a,b 使得偏差平方和

$$Q(a,b) = \sum_{i=1}^{6} (a + bx_i - y_i)^2$$

为最小. 利用极值的必要条件得

$$\begin{cases} \frac{\partial Q}{\partial a} = 2 \sum_{i=1}^{6} (a + bx_i - y_i) = 0, \\ \frac{\partial Q}{\partial b} = 2 \sum_{i=1}^{6} (a + bx_i - y_i)x_i = 0, \end{cases}$$

解之得 Q(a,b)有唯一驻点

$$\overline{b} \approx 0.884$$
, $\overline{a} \approx -5.881$.

可以证明(a,b)是 Q(a,b)的最小值点. 因此所求利润函数的最佳拟合曲线是 y = 0.884x - 5.881. 且当产量达到 120 千件时,利润 $y = 0.884 \times 120 - 5.881 \approx$ 100.2.

2. 位于坐标原点的我舰向位于点 A(1.0) 处 的敌舰发射鱼雷,已知敌舰以常速度 v_0 沿直线x=1逃窜,鱼雷的速度为 5v_o,试求鱼雷的轨迹曲线方程 y = f(x),并求何时击中敌舰.

解 取过原点与敌舰逃跑方向相同的直线为 γ轴,如图所示.

(第2题)

从我舰发射鱼雷开始(t=0 时刻),t 时刻,敌 舰的位置到达 $R(1,v_0t)$ 点,鱼雷到达 B(x,y). 由于鱼雷在运动的过程中方向始 终指向敌舰,所示直线 BR 与鱼雷的航线 y = f(x) 相切,即

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v_0 t - y}{1 - x}, \frac{\mathrm{d}s}{\mathrm{d}t} = 5v_0.$$

其中 s 为鱼雷的位移. 为了找出 z 与 y 的关系,需设法消去变量 t. 上述第一式两 边对 x 求导得(1-x) $\frac{d^2y}{dx^2} - \frac{dy}{dx} = v_0 \frac{dt}{dx} - \frac{dy}{dx}$. 又 $\frac{dt}{dx} = \frac{dt}{ds} \cdot \frac{ds}{dx} = \frac{1}{5v_0} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ 代人上 式整理可得二阶微分方程的初值问题

$$\begin{cases} (1-x) \frac{d^2 y}{dx^2} = \frac{1}{5} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}, \\ y(0) = 0, y'(0) = 0. \end{cases}$$

令 $p = \frac{\mathrm{d}y}{\mathrm{d}x}$ 代人 (E_1) 可得 $\begin{cases} (1-x)\frac{\mathrm{d}p}{\mathrm{d}x} = \frac{1}{5}\sqrt{1+p^2}, \\ p(0) = 0. \end{cases}$ 解此一阶可分离变量的微分方

程的初值问题可得:

$$p + \sqrt{1 + p^2} = \frac{1}{(1 - x)^{\frac{1}{5}}}.$$
从而
$$-(1 - x)^{\frac{1}{5}} = -\frac{1}{p + \sqrt{1 + p^2}} = p - \sqrt{1 + p^2}.$$
于是
$$\begin{cases} p = \frac{dy}{dx} = \frac{1}{2} \left(\frac{1}{1 - x}\right)^{\frac{1}{5}} - \frac{1}{2} (1 - x)^{\frac{1}{5}}, \\ y(0) = 0. \end{cases}$$

解之得
$$y = f(x) = -\frac{5}{8}(1-x)^{\frac{4}{5}} + \frac{5}{12}(1-x)^{\frac{6}{5}} + \frac{5}{24}$$
.

当鱼雷击中敌舰时 x=1. 从而敌舰逃窜的距离 $y=\frac{5}{24}$. 所用时间 $t=\frac{y}{v_0}$ = $\frac{5}{24v_0}$.