Prof. Eanes Torres Pereira

FMCC2

4. Homomorfismo

Roteiro

- 1. Introdução
- 2. Subgrupos
- 3. Grupos Cíclicos
- 3. Grupos de Permutação
- 4. Homomorfismo

Grupos - Introdução

- ▶ **Definição 1**. Um conjunto não-vazio G sobre o qual uma operação o é definida é chamado de grupo em relação a essa operação desde que, para valores arbitrários $a, b, c \in G$, as seguintes propriedades sejam válidas:
 - 1. $(a \circ b) \circ c = a \circ (b \circ c)$.
 - 2. Existe $u \in G$ tal que $a \circ u = u \circ a = a$ para todo $a \in G$.
 - 3. Para cada $a \in G$ existe $a^{-1} \in G$ tal que $a \circ a^{-1} = a^{-1} \circ a = u$.
- ▶ Exemplo 1. O conjunto Z de todos os inteiros forma um grupo em relação à adição?

Grupos - Introdução

- ▶ Definição 1. Um conjunto não-vazio G sobre o qual uma operação o é definida é chamado de grupo em relação a essa operação desde que, para valores arbitrários $a, b, c \in G$, as seguintes propriedades sejam válidas:
 - 1. $(a \circ b) \circ c = a \circ (b \circ c)$.
 - 2. Existe $u \in G$ tal que $a \circ u = u \circ a = a$ para todo $a \in G$.
 - 3. Para cada $a \in G$ existe $a^{-1} \in G$ tal que $a \circ a^{-1} = a^{-1} \circ a = u$.
- ▶ Exemplo 1. O conjunto Z de todos os inteiros forma um grupo em relação à adição?
 - **Solução**. Sim, o elemento identidade é o 0 e o inverso de $a \in \mathbb{Z}$ é -a. Portanto, podemos falar do grupo aditivo \mathbb{Z} .
- ► Exemplo 2. O conjunto Z de todos os inteiros forma um grupo em relação à multiplicação?

Grupos - Introdução

1. Introdução

- ▶ **Definição 1**. Um conjunto não-vazio G sobre o qual uma operação \circ é definida é chamado de grupo em relação a essa operação desde que, para valores arbitrários $a, b, c \in G$, as seguintes propriedades sejam válidas:
 - 1. $(a \circ b) \circ c = a \circ (b \circ c)$.
 - 2. Existe $u \in G$ tal que $a \circ u = u \circ a = a$ para todo $a \in G$.
 - 3. Para cada $a \in G$ existe $a^{-1} \in G$ tal que $a \circ a^{-1} = a^{-1} \circ a = u$.
- ► Exemplo 1. O conjunto Z de todos os inteiros forma um grupo em relação à adição?
 - **Solução**. Sim, o elemento identidade é o 0 e o inverso de $a \in \mathbb{Z}$ é -a. Portanto, podemos falar do grupo aditivo \mathbb{Z} .
- ► Exemplo 2. O conjunto Z de todos os inteiros forma um grupo em relação à multiplicação?
 - **Solução**. Não, pois, por exemplo, nem 0 nem 2 tem inverso multiplicativo.

UFCG CEEL

Prof. Eanes Torres Pereira 2 / 20

Grupos - Propriedades

1. Introdução

- 1. **Teorema 1**. Se a, b, $c \in G$, então $a \circ b = a \circ c$ implica b = c.
- 2. **Teorema 2**. Para a, $b \in G$, cada uma das equações $a \circ x = b$ e $y \circ a = b$ tem uma solução única.
- 3. **Teorema 3**. Para todo $a \in G$, o inverso do inverso de $a \in a$, isto é, $(a^{-1})^{-1} = a$.
- 4. **Teorema 4**. Para todo $a, b \in G, (a \circ b)^{-1} = b^{-1} \circ a^{-1}$.
- 5. **Teorema 5**. Para todo $a, b, ..., p, q \in G$, $(a \circ b \circ ... \circ p \circ q)^{-1} = q^{-1} \circ q^{-1} \circ ... \circ b^{-1} \circ a^{-1}$.

Para qualquer $q \in G$ e $m \in \mathbb{Z}^+$, definimos:

 $a^m = a \circ a \circ a \circ \ldots \circ$, com m fatores.

 $a^0 = u$, o elemento identidade.

$$a^{-m} = (a^{-1})^m = a^{-1} \circ a^{-1} \circ a^{-1} \dots \circ a^{-1}$$
, a m fatores.

6. **Teorema 6**. Para qualquer $a \in G$, (i) $a^m \circ a^n = a^{m+n}$ e $(a^m)^n = a^{mn}$, em que m, $n \in \mathbb{Z}$.

4 □ > 4 圊 > 4 불 > 를 - ∽Q C

4. Homomorfismo

Grupos - Exercícios

- 1. Prove o Teorema 1.
- 2. Prove o Teorema 2.
- 3. Prove o Teorema 3.

- ► **Definição**. A ordem de um grupo é definida pela quantidade de elementos do grupo.
- ► Exemplo 3. Qual é a ordem do grupo aditivo Z?

- ▶ **Definição**. A ordem de um grupo é definida pela quantidade de elementos do grupo.
- ► Exemplo 3. Qual é a ordem do grupo aditivo Z? Resposta: É de ordem infinita.
- **Exemplo 4**. O conjunto $A = \{1, -1, i, -i\}$, em relação à multiplicação no conjunto dos números complexos, forma um grupo?

1. Introdução

- ▶ **Definição**. A ordem de um grupo é definida pela quantidade de elementos do grupo.
- ► Exemplo 3. Qual é a ordem do grupo aditivo Z? Resposta: É de ordem infinita.
- **Exemplo 4**. O conjunto $A = \{1, -1, i, -i\}$, em relação à multiplicação no conjunto dos números complexos, forma um grupo?

Resposta: Sim.

► Exemplo 5. Qual é a ordem do grupo do Exemplo 4?

Prof Fanes Torres Pereira

1. Introdução

- ► **Definição**. A ordem de um grupo é definida pela quantidade de elementos do grupo.
- ► Exemplo 3. Qual é a ordem do grupo aditivo Z? Resposta: É de ordem infinita.
- ▶ Exemplo 4. O conjunto $A = \{1, -1, i, -i\}$, em relação à multiplicação no conjunto dos números complexos, forma um grupo?

Resposta: Sim.

► Exemplo 5. Qual é a ordem do grupo do Exemplo 4? Resposta: 4.

- ▶ **Definição**. A *ordem de um elemento a* \in G é o menor inteiro positivo n, se existir, para o qual $a^n = u$, o elemento identidade de G.
- ▶ **Definição**. Se $a \neq 0$ é um elemento do grupo aditivo Z, então $na \neq 0$ para todo n > 0 e a é definido como sendo de ordem infinita.
- ► Exemplo 6. Qual é a ordem do elemento −1 do exemplo 4?

▶ **Definição**. A *ordem de um elemento a* \in G é o menor inteiro positivo n, se existir, para o qual $a^n = u$, o elemento identidade de G

3. Grupos de Permutaçãos

- ▶ **Definição**. Se $a \neq 0$ é um elemento do grupo aditivo Z, então $na \neq 0$ para todo n > 0 e a é definido como sendo de ordem infinita.
- ► Exemplo 6. Qual é a ordem do elemento −1 do exemplo 4? Resposta. A ordem é 2 já que $(-1)^2 = 1$.
- ► Exemplo 7. Qual é a ordem do elemento i do exemplo 4?

1. Introdução

- ▶ **Definição**. A *ordem de um elemento a* \in G é o menor inteiro positivo n, se existir, para o qual $a^n = u$, o elemento identidade de G.
- ▶ **Definição**. Se $a \neq 0$ é um elemento do grupo aditivo Z, então $na \neq 0$ para todo n > 0 e a é definido como sendo de ordem infinita.
- ► Exemplo 6. Qual é a ordem do elemento −1 do exemplo 4? Resposta. A ordem é 2 já que $(-1)^2 = 1$.
- ► Exemplo 7. Qual é a ordem do elemento i do exemplo 4? Resposta. A ordem é 4 já que $i^2 = -1$, $i^3 = -i$ e $i^4 = 1$.

Prof Fanes Torres Pereira

4. Homomorfismo

Roteiro

- 1. Introdução
- 2. Subgrupos

- 4. Homomorfismo

- ▶ **Definição**. Seja $G = \{a, b, c, ...\}$ um grupo com relação a \circ . Qualquer subconjunto G' de G é chamado de subgrupo de G se G' é um grupo em relação a \circ .
- ▶ **Definição**. *Subgrupo impróprio*: $G' = \{u\}$. Todos os outros subgrupos, se existirem, são chamados de subgrupos próprios.
- ► Exemplo 8. Um subgrupo próprio do grupo $G = \{1, -1, i, -i\} \text{ \'e } G' = \{1, -1\}.$
- ► Teorema 7. Um subconjunto não-vazio G' de um grupo G é um subgrupo de G se, e somente se: (i) G' é fechado em relação a o, (ii) G' contém o inverso de cada um de seus elementos.

Prova. Suponha que G' é um subgrupo de G. Se $a, b \in G'$, então $a^{-1} \in G'$ e, pela Lei do Fechamento, $a^{-1} \circ b \in G'$.

▶ Teorema 8. Um subconjunto não-vazio G' de um grupo G é um subgrupo de G se, e somente se, para todo a, $b \in G'$,

- ► **Teorema 9**. Seja *a* um elemento de um grupo *G*. O conjunto $G' = \{a^n : n \in Z\}$ de todas as potências inteiras de a é um subgrupo de G.
- ► **Teorema 10**. Se *S* é qualquer conjunto de subgrupos de G, a interseção desses subgrupos também é um subgrupo de G.
- ► Exercício. Prove o Teorema 8.

 $a^{-1} \circ h \in G'$

► Exercício. Prove o Teorema 10.

4. Homomorfismo

Roteiro

- 1. Introdução
- 3. Grupos Cíclicos
- 4. Homomorfismo

Grupos Cíclicos

- ▶ **Definição**. Um grupo G é chamado de *cíclico* se, para algum $a \in G$, todo $x \in G$ é da forma a^m , em que $m \in Z$. O elemento a é, então, chamado de um gerador de G.
- **Exemplo 9**. O grupo aditivo Z é cíclico com gerador a = 1?

- ▶ **Definição**. Um grupo G é chamado de *cíclico* se, para algum $a \in G$, todo $x \in G$ é da forma a^m , em que $m \in Z$. O elemento a é, então, chamado de um gerador de G.
- **Exemplo 9**. O grupo aditivo Z é cíclico com gerador a = 1? Reposta. Sim, pois para todo $m \in \mathbb{Z}$, $a^m = ma = m$. Obs.: ver Teorema 5.
- **Exemplo 10**. O grupo $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ sob adição módulo 8 é cíclico?

- ▶ **Definição**. Um grupo G é chamado de *cíclico* se, para algum $a \in G$, todo $x \in G$ é da forma a^m , em que $m \in Z$. O elemento a é, então, chamado de um gerador de G.
- **Exemplo 9**. O grupo aditivo Z é cíclico com gerador a = 1? Reposta. Sim, pois para todo $m \in \mathbb{Z}$, $a^m = ma = m$. Obs.: ver Teorema 5.
- **Exemplo 10**. O grupo $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ sob adição módulo 8 é cíclico? Resposta. Sim, este grupo pode ser gerado por 1, 3, 5 ou 7.
- ► Exercício. Prove que 1, 3, 5 ou 7 são geradores do grupo do exemplo 10, mas 2, 4 e 6 não são geradores.

Prof Fanes Torres Pereira 9/20 UFCG CEEL

- ▶ **Teorema 11**. Qualquer elemento a^t de um grupo G cíclico finito de ordem n é um gerador de G se, e somente se, mdc(n, t) = 1.
- ► **Teorema 12**. Todo subgrupo de um grupo cíclico é um grupo cíclico.
- ► Exercício. Prove o Teorema 12.

Prof Fanes Torres Pereira

4. Homomorfismo

Roteiro

- 1. Introdução

- 3. Grupos de Permutação
- 4. Homomorfismo

- ▶ Seja $S = \{1, 2, 3, ..., n\}$ e considere o conjunto S_n das n!permutações desses símbolos.
- ▶ Uma permutação de um conjunto S é uam função injetora de S em S.
- ▶ Sejam $i_1, i_2, i_3, \ldots, i_n$ uma disposição de elementos de S. Usamos a seguinte notação de duas linhas:

$$\alpha = \left(\begin{array}{ccccc} 1 & 2 & 3 & \dots & n \\ i_1 & i_2 & i_3 & \dots & i_n \end{array}\right)$$

▶ De modo similar, se j_1 , j_2 , j_3 , ..., j_n é outro arranjo de elementos de S, escrevemos:

$$\beta = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ i_1 & i_2 & i_3 & \dots & i_n \end{pmatrix}$$

Prof. Eanes Torres Pereira

► Exemplo 11. Sejam:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} \qquad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 5 & 4 \end{pmatrix}$$
$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 5 & 3 \end{pmatrix}$$

- ▶ 3 das 5! permutações no conjunto S₅ de todas as permutações em $S = \{1, 2, 3, 4, 5\}.$
- ▶ ∘ é a operação *permutação*.
- Como a ordem dos elementos da permutação não importa. $\beta \circ \alpha$:

$$lackbox{ Ou seja, } eta \circ lpha(1) = eta(lpha(1)) = eta(2) = 3$$

Prof. Eanes Torres Pereira 12/20 UFCG CEEL

4. Homomorfismo

Grupos de Permutação

1. Introdução

 \blacktriangleright Se reescrevermos α como:

$$\left(\begin{array}{ccccccc} 1 & 3 & 2 & 5 & 4 \\ 2 & 4 & 3 & 1 & 5 \end{array}\right)$$

obtemos:

$$\alpha \circ \beta = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 1 & 5 \end{array}\right)$$

- ▶ Portanto o não é comutativo.
- **Exercício**. Escrevendo γ como

$$\begin{pmatrix} 3 & 2 & 5 & 4 & 1 \\ 4 & 2 & 3 & 5 & 1 \end{pmatrix}$$

determine se a operação o é associativa fazendo:

$$(\gamma \circ \beta) \circ \alpha = \gamma \circ (\beta \circ \alpha)$$

Prof. Eanes Torres Pereira

► Exercício. Mostre que I é a permutação identidade de o, fazendo $I \circ \alpha = \alpha \circ I = \alpha$.

$$I = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{array}\right)$$

Exercício. Mostre que alternar as linhas de α gera α^{-1} , fazendo $\alpha \circ \alpha^{-1} = \alpha^{-1} \circ \alpha = I$.

$$\alpha = \left(\begin{array}{ccccc} 2 & 3 & 4 & 5 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{array}\right)$$

$$\alpha^{-1} = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{array}\right)$$

Grupos de Permutação

- α do exemplo da página 12 pode ser escrito em notação cíclica como (12345) em que o ciclo (12345) é interpretado como: 1 é substituído por 2, 2 é substituído por 3, 3 é substituído por 4, 4 é substituído por 5 e 5 é substituído por 1.
- ▶ Uma permutação como (12), (25), ... que envolve a troca de apenas dois dos n símbolos de $S = \{1, 2, 3, 4, ..., n\}$ é chamada de transposição.
- ▶ Exemplo 12. Expresse a permutação (23) em $S_n = \{1, 2, 3, 4, 5\}$ como produtos de transposições.

Prof. Eanes Torres Pereira

2. Subgrupos

1. Introdução

- \triangleright α do exemplo da página 12 pode ser escrito em notação *cíclica* como (12345) em que o ciclo (12345) é interpretado como: 1 é substituído por 2, 2 é substituído por 3, 3 é substituído por 4, 4 é substituído por 5 e 5 é substituído por 1.
- ► Uma permutação como (12), (25), ... que envolve a troca de apenas dois dos n símbolos de $S = \{1, 2, 3, 4, \dots, n\}$ é chamada de transposição.
- ► Exemplo 12. Expresse a permutação (23) em $S_n = \{1, 2, 3, 4, 5\}$ como produtos de transposições. Solução. Se $\alpha=(12), \beta=(23), \gamma=(13), \text{ então}$ $(23) = \alpha \circ \beta \circ \gamma$. Pois $\alpha \circ \beta = (123)$ e $(\alpha \circ \beta) \circ \gamma = (23)$.

UFCG CEEL

- Qualquer permutação pode ser expressa, mas não unicamente, como um produto de transposições.
- **Exemplo 13**. Mostre que $(23) = (12) \circ (13) \circ (12)$.
- \triangleright S_n é um grupo em relação às operações de permutação \circ .
- ▶ S_n não é um grupo abeliano, pois \circ não é comutativo.
- $ightharpoonup S_n$ é chamado de grupo simétrico de n símbolos.
- ▶ Qualquer subgrupo de S_n é chamado de grupo de permutação em n símbolos.

Prof Fanes Torres Pereira

- ► Seja $S_4 = \{(1), (12), (13), (14), (23), (24), (34), \alpha = (123), \alpha^2, \beta = (124), \beta^2, \gamma = (134), \gamma^2, \delta = (234), \delta^2, \theta = (1234), \theta^2, \theta^3, \sigma = (1234), \sigma^2, \sigma^3, \tau = (1324), \tau^2, \tau^3\}$
- ▶ Quais os valores de: δ^2 , θ^2 , σ^2 , σ^3 , τ^2 e τ^3 ?

Grupos de Permutação - Exercícios

- ► Seja $S_4 = \{(1), (12), (13), (14), (23), (24), (34), \alpha = (13), (14)$ $(123), \alpha^2, \beta = (124), \beta^2, \gamma = (134), \gamma^2, \delta = (234), \delta^2, \theta =$ $(1234), \theta^2, \theta^3, \sigma = (1234), \sigma^2, \sigma^3, \tau = (1324), \tau^2, \tau^3$
- ▶ Quais os valores de: δ^2 . θ^2 . σ^2 . σ^3 . τ^2 e τ^3 ? Resp.: $\delta^2 = (243), \ \theta^2 = (13)(24), \ \theta^3 = (1432),$ $\sigma^2 = (14)(23), \ \sigma^3 = (1342), \ \tau^2 = (12)(34), \ \tau^3 = (1423).$

Prof. Eanes Torres Pereira 17 / 20 UFCG CEEL

4. Homomorfismo

Roteiro

- 1. Introdução
- 2. Subgrupos
- 3. Grupos Cíclicos
- 3. Grupos de Permutação
- 4. Homomorfismo

Prof. Eanes Torres Pereira

▶ **Definição**. Seja G, com operação \circ , e G', com operação \square , dois grupos. Um homomorfismo de G em G' é um mapeamento

$$\theta: G \to G'$$

tal que $\theta(g) = g'$ e

- 1. todo $g \in G$ tem uma única imagem $g' \in G$;
- 2. se $\theta(a) = a'$ e $\theta(b) = b'$, então $\theta(a \circ b) = \theta(a) \square \theta(b) = a' \square b'$.
 - se, além disso, o mapeamento satisfaz:
- 3. todo $g' \in G'$ é uma imagem
- nós temos um homomorfismo de G em G' e chamamos G' de uma imagem homomórfica de G.

Homomorfismos

- ► Exemplo 14. Considere o grupo cíclico $G = \{a, a^2, a^3, \dots, a^{12} = u\}$ e seu subgrupo $G'\{a^2, a^4, a^6, \dots, a^{12}\}.$
- ▶ O mapeamento $a^n \rightarrow a^{2n}$ é um homomorfismo de G em G'?

- Exemplo 14. Considere o grupo cíclico $G = \{a, a^2, a^3, \dots, a^{12} = u\}$ e seu subgrupo $G'\{a^2, a^4, a^6, \dots, a^{12}\}.$
- ▶ O mapeamento $a^n \rightarrow a^{2n}$ é um homomorfismo de G em G'? Resposta: sim, pois os critérios (1) e (2) da definição de homomorfismo são atendidos.
- ▶ O mapeamento $a^n \rightarrow a^n$ é um homomorfismo de G' em G?

Prof Fanes Torres Pereira

- Exemplo 14. Considere o grupo cíclico $G = \{a, a^2, a^3, \dots, a^{12} = \mathbf{u}\}$ e seu subgrupo $G'\{a^2, a^4, a^6, \dots, a^{12}\}.$
- ▶ O mapeamento $a^n \rightarrow a^{2n}$ é um homomorfismo de G em G'? Resposta: sim, pois os critérios (1) e (2) da definição de homomorfismo são atendidos.
- ▶ O mapeamento $a^n \rightarrow a^n$ é um homomorfismo de G' em G? Resposta: sim, pois os critérios (1) e (2) da definição de homomorfismo são atendidos.

Prof Fanes Torres Pereira

Referência

1. Introdução

► Theory and Problems in Abstract Algebra - Frank Ayres and Lloyd R. Jaisingh.