

M3Net: Efficient Time-Frequency Integration Network with Mirror Attention for Audio Classification on Edge

Presenter: Xuanming Jiang 2025 | Pennsylvania, USA

Xuanming Jiang^{1,3}, Baoyi An^{2,3}, Guoshuai Zhao^{1,4*}, Xueming Qian^{1,4}

¹School of Software Engineering, Xi'an Jiaotong University, Xi'an, China ²School of Physical Science and Technology, Lanzhou University, Lanzhou, China ³Xi'an Jiyun Technology Co., Ltd., Xi'an, China ⁴Shaanxi Yulan Jiuzhou Intelligent Optoelectronic Technology Co., Ltd., Xi'an, China jiangxm24@stu.xjtu.edu.cn, anby20@lzu.edu.cn, {guoshuai.zhao, qianxm}@mail.xjtu.edu.cn

1 Introduction

2 Methodology

Experimental Results

4 Conclusion & Discussion

Introduction: Research Background

Applications:

- > Human-machine interaction
- > Intelligent robotic
- ➤ Wise information technology of med

Requirement

High Real-Time Performance

Move the data processing procedure from the cloud to the edge for reducing latency

Challenges:

- ➤ Place higher demands on model performance
- ➤ Impose greater computation cost on MCUs with limited resources

Higher Model Complexity

Better Performance

Challenges:

- ➤ SOTA methods currently struggle to achieve a required balance between performance and complexity
- ➤ CNNs are originally designed for image-based tasks, which may limit the performance of audio classification models based on CNNs

Existing Methods:

- ➤ Model compression and pruning
- ➤ Multiple attention mechanisms
- > Transfer learning

2 Methodology

Methodology: Emulation of Human Counterintuitive Learning

Mini Mirror Multi-View Network (M3Net)

Methodology: Time-Frequency Integration

(1) Define feature element:

$$X = \{X(w, h, c) | w \in [0, W-1], h \in [0, H-1], c \in [0, C-1]\}$$

Mirror Attention

$$X_{MA}(w,h,c)=X_{MFP}(w,h,c)\odot X_{DFP}(w,h,c)$$

(2) Time-domain transformation:

$$X_{T,c\in[0,C-1]}(w,h)=M_{HMF}\begin{bmatrix} w\\h\\\theta \end{bmatrix}, \quad M_{HMF}=\begin{bmatrix} -1 & 0 & W\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} -$$

Mirror features between time and frequency

(3) Frequency-domain transformation:

$$X_{F,c\in[0,C-1]}(w,h)=M_{VMF}\begin{bmatrix} w\\h\\\theta \end{bmatrix}, \quad M_{VMF}=\begin{bmatrix} 1 & 0 & 0\\0 & -1 & H\\0 & 0 & 1 \end{bmatrix}$$

$$X_{MFP} = F_M(M_{HMF}X, M_{VMF}X), X \in \mathbb{R}^{W \times H \times C}$$

(4) Time-frequency decomposition:

$$X_{D,c\in[0,C-1]}(w,h) = M_{CSF} \begin{bmatrix} w \\ h \\ \theta \end{bmatrix}, \quad M_{CSF} = \begin{bmatrix} -1 & 0 & W \\ 0 & -1 & H \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow X_{DFP} = F_D(M_{CSF}X) = F_D(M_{HMF}M_{VMF}X)$$

Separated time and frequency features

$$\longrightarrow X_{DFP} = F_D(M_{CSF}X) = F_D(M_{HMF}M_{VMF}X)$$

Methodology: Time-Frequency Integration

(1) Define feature element:

$$X = \{X(w, h, c) | w \in [0, W-1], h \in [0, H-1], a \in [0, C-1]\}$$

Mirror Attention

$$-X_{MA}(w,h,c) = X_{MFP}(w,h,c) \odot X_{DFP}(w,h,c)$$

(2) Time-domain transformation:

$$X_{T,c\in[0,C-1]}(w,h)=M_{HMF}\begin{bmatrix} w\\h\\ \theta \end{bmatrix}, \quad M_{HMF}=\begin{bmatrix} 1 & 0 & W\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Mirror features between time and frequency

$$X_{F,c\in[0,C-1]}(w,h)=M_{VMF}\begin{bmatrix} w \\ h \\ \theta \end{bmatrix}, \quad M_{VMF}=\begin{bmatrix} 0 & 0 \\ 0 & -1 & H \\ 0 & 1 \end{bmatrix}$$

$$X_{MFP} = F_M(M_{HMF}X, M_{VMF}X), \quad X \in \mathbb{R}^{W \times H \times C}$$

(4) Time-frequency decomposition:

$$X_{D,c\in[0,C-1]}(w,h) = M_{CSF}\begin{bmatrix} w \\ h \\ \theta \end{bmatrix}, \quad M_{CSF} = \begin{bmatrix} -1 & 0 & W \\ -1 & H \\ 0 & 1 \end{bmatrix} \longrightarrow X_{DFP} = F_D(M_{CSF}X) = F_D(M_{HMF}M_{VMF}X)$$

Separated time and frequency features

$$\longrightarrow X_{DFP} = F_D(M_{CSF}X) = F_D(M_{HMF}M_{VMF}X)$$

3 — Experimental — Results

Experimental Results: SOTA Comparison

UrbanSound 8K

Volume: ~8,700 audio clips **Content:** Typical urban noises **Duration:** <4s

Details: 10 classes in total, including air conditioners, car horns, children playing, dogs barking, drilling, engine idling, gunshots, jackhammers, sirens, and street music.

Dataset: UrbanSound8K		Accuracy	# Param	Wilcoxon	Data	Pre-training
Methods	Features	(%)	$(\times 10^6)$	p-value	augmentation	
AemNet-DW	Log-Mel	82.25	0.9	< 5.0e-2		\checkmark
ULSED	Log-Mel	83.5	0.34	< 5.0e-2	\checkmark	
2D CNN	GFCC	89	1.8	< 5.0e-2	\checkmark	
PhiNets M40	Mel-Spectrogram	76.3	0.027	< 5.0e-2	\checkmark	
SE-TCAM 1D CNN	Raw audio	94.04	0.81	< 5.0e-2		
M3Net (Ours)	Mel-Spectrogram	97.44	0.029	baseline		

Experimental Results: SOTA Comparison

SpeechCommands V2

Details: 35 classes in total, including verbal directives such as "yes", "no", "up", "down", numeric commands ranging from "zero" to "nine", miscellaneous terms like "bed", "bird", "cat", "dog".

Dataset: SpeechCommandsV2 Methods Features		Accuracy (%)	# Param (×10 ⁶)	Wilcoxon p-value	Data augmentation	Pre-training
DeLoRes M	Log-Mel	89.7	5.3	< 5.0e-2	√	√
AdaptFormer	Log-Mel	92.3	1.43	< 5.0e-2		\checkmark
DCLS-Delays	Mel-Spectrogram	95.35	2.5	< 5.0e-2	\checkmark	
SeqBoat	Raw audio	97.35	0.293	2.2e-1		
EAT-S-GMME	Raw audio	97.88	1.54	1.0e-1	\checkmark	
M3Net (Ours)	Mel-Spectrogram	97.03	0.031	baseline		

Experimental Results: Ablation Study

Dataset	M3Net w	o MA	M3Net w/o SFP		
	Accuracy (%)	Wilcoxon	Accuracy (%)	Wilcoxon	
US8K	75.29	< 5.0° 3	87.31	< 5.0e-2	
	(-22.15)	< 5.0e-2	(-10.13)		
SCV2	68.13	< 5.0° 3	84.26	< 5.0e-2	
	(-28.90)	< 5.0e-2	(-12.77)		

Ablation target		1	2	3	4
ECA			✓	✓	✓
CSF				\checkmark	\checkmark
VMF					\checkmark
HMF					
US8K	Accuracy	93.88	94.56	95.36	94.82
	(%)	(-3.56)	(-2.88)	(-2.08)	(-2.62)
	Wilcoxon	< 5.0e-2	< 5.0e-2	< 5.0e-2	< 5.0e-2
SCV2	Accuracy	94.00	94.20	94.89	91.82
	(%)	(-3.03)	(-2.76)	(-2.14)	(-5.21)
	Wilcoxon	< 5.0e-2	< 5.0e-2	< 5.0e-2	< 5.0e-2

4 — Conclusion — & Discussion — —

Conclusion & Discussion

- ① With the advancement of AI, edge devices are taking on increasing responsibilities
- ② As IC enter the post-Moore's Law era, edge devices' performance limitations become increasingly significant
- 3 Edge devices need to meet societal demands from both hardware and algorithmic perspectives

Background

- ① An time-frequency separation method for audio learning
- ② An mirror attention mechanism for extending pattern set
- ③ The **M3Net** with high-performance but lightweight

Contributions

M3Net transcends the conventional emulation of human auditory perception by CNNs and ventures into the field of replicating human counterintuitive supervised cognitive processes.

Methodology

M3Net:

- (1) Achieving comparable performance to SOTAs with less than 10% of the parameters
- 2 Adapting to different kinds of audio contents
- 3 More sensitive to complex and dynamic audio

Achievements

Thank you

2025 | PHILADELPHA, USA