ECE 884 Deep Learning

Lecture 22: GAN

04/15/2021

Review of last lecture

- Autoregressive Model
- Autoencoder
- Variational Autoencoder

Today's lecture

Generative Adversarial Networks (GANs)

GAN: Main Idea

- Generator: generates fake images to fool the discriminator.
- Discriminator: tries to distinguish between real and fake images.

- Train them against each other.
- Finally, the discriminator cannot distinguish between real and fake.
- It means the fake images look like real.

GAN: Main Idea

- Generator: a forger who wants to create a fake Picasso painting.
- **Discriminator**: an art dealer.

Which is real?

GAN: Main Idea

- Generator: a forger who wants to create a fake Picasso painting.
- **Discriminator**: an art dealer.

- Train them against each other.
 - Forger mixes his fake with authentic paintings and ask art dealer to assess them.
 - Art dealer gives feedback about what makes a Picasso look like a Picasso.
 - Forger improves his competence at imitating the style of Picasso.
 - Art dealer improves his competence at distinguishing real and fake Picasso.
- Finally, the art dealer cannot distinguish between realand fake.

GAN: Model Overview

Training of GAN

Alternating minimization

Repeat the 2 steps:

- 1. Update the discriminator network;
- 2. Update the generator network.

Update the Discriminator

Train a classifier

- 1. Generate a batch of fake images by the generator;
- 2. Randomly sample a batch of real images;
- 3. Inputs: X = [real_images, fake_images];
- 4. Targets: $y = [True, \dots, True, False, \dots, False];$
- 5. Update the discriminator network using X and y.

Connect the generator and discriminator (freeze discriminator's parameters).

Connect the generator and discriminator (freeze discriminator's parameters).

Minimize Loss = Dist(True, f) w.r.t. generator. (Encourage f be **True.**)

W_G: parameters in the generator.

• Gradient:
$$Grad = \frac{\partial Loss}{\partial W_G}$$
.

- W_G: parameters in the generator.
- Gradient: Grad = $\frac{\partial \text{ Loss}}{\partial \text{ W}_G}$.
- Gradient descent: $W_G \leftarrow W_G \alpha \cdot Grad$.

Difficulties in Training GAN

Discriminator Shouldn't Be Too Good

- Generator: a forger who wants to create a fake Picasso painting.
- Discriminator: an art dealer providing feedbacks.

What if the artdealer is 100% correct at judging Picasso painting?

Discriminator Shouldn't Be Too Good

- Generator: a forger who wants to create a fake Picasso painting.
- Discriminator: an art dealer providing feedbacks.

What if the artdealer is 100% correct at judging Picasso painting?

- Whatever forged painting sent to the art dealer is recognized as fake.
- The forger cannot learn anything from the feedback.
 - No positive case to follow.
- The forger need some success.
 - So he will know what kind of fake painting can fool the dealer.

Discriminator Shouldn't Be Too Good

Explanation: vanishing gradient

- Suppose the discriminator is perfect.
- Whatever the generators forged is recognized fake by the discriminator.
- The gradient is near zero.

Discriminator Shouldn't Be Too Bad

- Generator: a forger who wants to create a fake Picasso painting.
- Discriminator: an art dealer providing feedbacks.

What if the art dealer cannot distinguish between real and fake paintings?

- The art dealer's judgement is almost random guess.
- The forger cannot learn anything from the feedback.
- When the forger's skill is good, getting amateurish art dealer's feedback is a not helpful.

Useful Tricks

Carefully tune the learning rates.

- If the discriminator improves too fast,
 - classification accuracy can be 100%,
 - vanishing gradient,
 - the generator is dead.
- If the discriminator improves too slowly,
 - the discriminator cannot provide useful feedback,
 - the generator has to wait for the discriminator,
 - slow convergence.

Useful Tricks

Many other tricks...

- Further reading:
- https://github.com/soumith/ganhacks

Generative Adversarial Networks: DC-GAN

Progressive growing of GANs

Image Super-Resolution: Low-Res to High-Res

bicubic (21.59dB/0.6423)

SRResNet (23.53dB/0.7832)

SRGAN (21.15dB/0.6868)

original

Ledig et al, "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network", CVPR2017

Image-to-Image Translation: Pix2Pix

Unpaired Image-to-Image Translation: CycleGAN

Any Question?