Willkommen in der guten Stube :D

Aufgabe

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Man zeige die Gültigkeit der Abschätzung:

$$e^x \ge 1 + x$$
.

Bernoulli-Ungleichung

Für alle $x \in \mathbb{R}$ mit $x \ge -1$ und alle $n \in \mathbb{N}_0$ gilt die Abschätzung:

$$(1+x)^n \ge 1 + n \cdot x.$$

Bernoulli-Ungleichung

Für alle $x \in \mathbb{R}$ mit $x \ge -1$ und alle $n \in \mathbb{N}_0$ gilt die Abschätzung:

$$(1+x)^n \ge 1 + n \cdot x.$$

Weiter gilt für alle $x \in \mathbb{R}$ die folgende Grenzwert-Darstellung der Exponentialfunktion:

Bernoulli-Ungleichung

Für alle $x \in \mathbb{R}$ mit $x \ge -1$ und alle $n \in \mathbb{N}_0$ gilt die Abschätzung:

$$(1+x)^n \ge 1 + n \cdot x.$$

Weiter gilt für alle $x \in \mathbb{R}$ die folgende Grenzwert-Darstellung der Exponentialfunktion:

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n}.$$

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl.

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Es gilt:

$$\lim_{n\to\infty}\frac{x}{n}=0.$$

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Es gilt:

$$\lim_{n\to\infty}\frac{x}{n}=0.$$

Hieraus folgt die Existenz einer natürlichen Zahl $n_0(x) \in \mathbb{N}$, so dass für jedes $n \in \mathbb{N}$ mit $n \ge n_0(x)$ gilt:

$$\frac{x}{n} \geq -1$$
.

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Es gilt:

$$\lim_{n\to\infty}\frac{x}{n}=0.$$

Hieraus folgt die Existenz einer natürlichen Zahl $n_0(x) \in \mathbb{N}$, so dass für jedes $n \in \mathbb{N}$ mit $n \ge n_0(x)$ gilt:

$$\frac{x}{n} \geq -1$$
.

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Es gilt:

$$\lim_{n\to\infty}\frac{x}{n}=0.$$

Hieraus folgt die Existenz einer natürlichen Zahl $n_0(x) \in \mathbb{N}$, so dass für jedes $n \in \mathbb{N}$ mit $n \ge n_0(x)$ gilt:

$$\frac{x}{n} \geq -1$$
.

$$\left(1+\frac{x}{n}\right)^n$$

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Es gilt:

$$\lim_{n\to\infty}\frac{x}{n}=0.$$

Hieraus folgt die Existenz einer natürlichen Zahl $n_0(x) \in \mathbb{N}$, so dass für jedes $n \in \mathbb{N}$ mit $n \ge n_0(x)$ gilt:

$$\frac{x}{n} \geq -1$$
.

$$\left(1+\frac{x}{n}\right)^n \ge 1+n\cdot\frac{x}{n}$$

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Es gilt:

$$\lim_{n\to\infty}\frac{x}{n}=0.$$

Hieraus folgt die Existenz einer natürlichen Zahl $n_0(x) \in \mathbb{N}$, so dass für jedes $n \in \mathbb{N}$ mit $n \ge n_0(x)$ gilt:

$$\frac{x}{n} \geq -1$$
.

$$\left(1 + \frac{x}{n}\right)^n \ge 1 + n \cdot \frac{x}{n}$$
$$= 1 + x.$$

Aus der Betrachtung $n \to \infty$ folgt:

 e^{x}

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n}$$

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n}$$
$$\geq \lim_{n \to \infty} \left(1 + x \right)$$

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n}$$
$$\ge \lim_{n \to \infty} \left(1 + x \right)$$
$$= 1 + x.$$