Università degli studi di Udine Dipartimento di Matematica e Informatica Laurea specialistica in Informatica

Un pacchetto R: BETAREG

Applied statistics and data analysis

Riouak Idriss Marta Rotari

9 Gennaio 2018

Riferimenti Bibliografici

- Cribari-Neto Francisco, Achim Zeileis *Beta Regression in R* (2006).
- Ferrari SLP, Cribari-Neto Francisco Beta Regression for Modelling Rates and Proportions (2004).
- Simas AB, BarretoSouza W, Rocha AV Improved Estimators for a General Class of Beta Regression Models (2010)
- Paolo Vidoni *Towards multiple linear regression and logistic regression* 2017-2018. Lecture 5. Applied Statistics and Data Analysis.

Introduzione: modello di regressione

Un modello di regressione ha lo scopo di studiare le relazioni tra una variabile (y) detta variabile di risposta, e una o più variabili regressori (x). Inoltre permette di effettuare predizioni dato un nuovo valore per la variabile x.

Introduzione: modello di regressione

Un modello di regressione ha lo scopo di studiare le relazioni tra una variabile (y) detta variabile di risposta, e una o più variabili regressori (x). Inoltre permette di effettuare predizioni dato un nuovo valore per la variabile x.

Nel 2004 viene definito il Modello di regressione con variabile risposta Beta [2] per variabili continue con valori in (0, 1), come possono essere *proporzioni* e *tassi*, assumendo che la variabile risposta sia beta-distribuita.

Introduzione: modello di regressione

Un modello di regressione ha lo scopo di studiare le relazioni tra una variabile (y) detta variabile di risposta, e una o più variabili regressori (x). Inoltre permette di effettuare predizioni dato un nuovo valore per la variabile x.

Nel 2004 viene definito il Modello di regressione con variabile risposta Beta [2] per variabili continue con valori in (0, 1), come possono essere *proporzioni* e tassi, assumendo che la variabile risposta sia beta-distribuita.

Successivamente nel 2006, nell'articolo «Beta Regression in $R \gg [1]$ ne viene fornita un'implementazione in R.

Distribuzione Beta

La variabile di risposta y ha una funzione di distribuzione di probabilità continua definita da due parametri sull'intervallo (0,1).

$$f(y; \mu, \phi) = \frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi-1} (1-y)^{(1-\mu)\phi-1}$$

con 0 < y < 1 dove 0 <
$$\mu$$
 < 1, ϕ > 0 e $\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt$.

Denoteremo $y \sim \mathcal{B}(\mu, \phi)$ la variabile casuale con parametri μ e ϕ (detto parametro di precisione):

$$E(y) = \mu \ e \ V(y) = \frac{\mu(1-\mu)}{1+\phi}$$

Figura: Rappresentazione grafica della distribuzione Beta

Sia $y_1, y_2, ..., y_n$ un campione casuale tale che $y_i \sim \mathcal{B}(\mu_i, \phi)$ il modello di regressione con variabile di risposta beta distribuita è

$$g(\mu_i) = x_i^t \beta = \eta_i$$

Sia $y_1, y_2, ..., y_n$ un campione casuale tale che $y_i \sim \mathcal{B}(\mu_i, \phi)$ il modello di regressione con variabile di risposta beta distribuita è

$$g(\mu_i) = x_i^t \beta = \eta_i$$

- $\rightarrow \beta = (\beta_1, \beta_2, ..., \beta_k)^t$, con k < n, vettore dei coefficienti,
- $x_i = (x_{i1}, x_{i2}, ..., x_{ik})^t$, per convenzione $x_{i1} = 1$,

Sia $y_1, y_2, ..., y_n$ un campione casuale tale che $y_i \sim \mathcal{B}(\mu_i, \phi)$ il modello di regressione con variabile di risposta beta distribuita è

$$g(\mu_i) = x_i^t \beta = \eta_i$$

- $\rightarrow \beta = (\beta_1, \beta_2, ..., \beta_k)^t$, con k < n, vettore dei coefficienti,
- ► $x_i = (x_{i1}, x_{i2}, ..., x_{ik})^t$, per convenzione $x_{i1} = 1$,
- $\eta_i = \beta_1 x_{i1} + ... + \beta_k x_{ik}$ predittore lineare,

Sia $y_1, y_2, ..., y_n$ un campione casuale tale che $y_i \sim \mathcal{B}(\mu_i, \phi)$ il modello di regressione con variabile di risposta beta distribuita è

$$g(\mu_i) = x_i^t \beta = \eta_i$$

- $\rightarrow \beta = (\beta_1, \beta_2, ..., \beta_k)^t$, con k < n, vettore dei coefficienti,
- $x_i = (x_{i1}, x_{i2}, ..., x_{ik})^t$, per convenzione $x_{i1} = 1$,
- $\eta_i = \beta_1 x_{i1} + ... + \beta_k x_{ik}$ predittore lineare,
- ▶ $g(\cdot):(0,1)\to\mathbb{R}$ è una funzione \mathcal{C}^2 , detta funzione di collegamento, avente derivata seconda costante.

Funzioni di collegamento

Le funzioni di collegamento più utilizzate sono:

- ▶ logit: $g(\mu) = log(\frac{\mu}{(1-\mu)})$
- ▶ **probit**: $g(\mu) = \Phi^{-1}(\mu)$, dove $\Phi(\cdot)$ è la funzioni di distribuzione normale standard.
- ► log-log complementare:
- $g(\mu) = \log(-\log(1-\mu))$
- ▶ log-log: $g(\mu) = \log(-\log(\mu))$
- ► Cauchy: $g(\mu) = \tan(\pi(\mu 0.5))$

Dispersione

Nel 2010 è stata formulata un'estensione del modello in modello di regressione beta a dispersione variabile che considera il parametro di precisione non più costante.

Le osservazioni $y_i \sim \mathcal{B}(\mu_i, \phi_i)$ indipendenti con

$$g_1(\mu_i) = \eta_{1i} = x_i^T \beta,$$

 $g_2(\phi_i) = \eta_{2i} = z_i^T \gamma,$

dove $\beta = (\beta_1, ..., \beta_k)^T$ e $\gamma = (\gamma_1, .., \gamma_h)^T$ con k + h < n insiemi dei coefficienti di regressione, x_i e z_i vettori di reggressori e η_{1i} e η_{2i} predittori lineari.

Pacchetto: betareg

- Il pacchetto betareg è una collezione di funzioni implementate in "R ", con il quale è possibile modellare variabili dipendenti beta distribuite.
- ► Le versioni dalla 1.0 alla 1.2 sono state implementate da *Simas* e *Rocha* fino al 2006. Dalla versione 2.0, il principale contribuente è stato *Achim Zeileis* coautore dell'articolo
- ► La main-function betareg() è stata progettata e implementata per essere il più simile possibile alla funzione standard glm() (General Linear Model).

```
betareg(formula, data, subset, na.action, weights,
offset, link = "logit", link.phi = NULL, control =
   betareg.control(...), model = TRUE, y = TRUE, x =
   FALSE, ...)
```

ightharpoonup formula: descrizione simbolica del modello, e.g.: y \sim x+z

```
betareg(formula, data, subset, na.action, weights,
offset, link = "logit", link.phi = NULL, control =
   betareg.control(...), model = TRUE, y = TRUE, x =
   FALSE, ...)
```

- ightharpoonup formula: descrizione simbolica del modello, e.g.: y \sim x+z
- ▶ data, subset: sorgente dei dati.

```
betareg(formula, data, subset, na.action, weights,
offset, link = "logit", link.phi = NULL, control =
   betareg.control(...), model = TRUE, y = TRUE, x =
   FALSE, ...)
```

- ightharpoonup formula: descrizione simbolica del modello, e.g.: y \sim x+z
- ▶ data, subset: sorgente dei dati.
- na.action: funzione che descrive come comportarsi dinnanzi a elementi NA.

```
betareg(formula, data, subset, na.action, weights,
offset, link = "logit", link.phi = NULL, control =
   betareg.control(...), model = TRUE, y = TRUE, x =
   FALSE, ...)
```

- ightharpoonup formula: descrizione simbolica del modello, e.g.: y \sim x+z
- ▶ data, subset: sorgente dei dati.
- na.action: funzione che descrive come comportarsi dinnanzi a elementi NA.
- ► weights: vettore di pesi.

```
betareg(formula, data, subset, na.action, weights,
offset, link = "logit", link.phi = NULL, control =
   betareg.control(...), model = TRUE, y = TRUE, x =
   FALSE, ...)
```

- ightharpoonup formula: descrizione simbolica del modello, e.g.: y \sim x+z
- ▶ data, subset: sorgente dei dati.
- na.action: funzione che descrive come comportarsi dinnanzi a elementi NA.
- ► weights: vettore di pesi.
- ► link: specifica la funzione di collegamento. Il valore di default è logit. Le possibili scelte sono: probit, cloglog, cauchit, log, loglog


```
betareg(formula, data, subset, na.action, weights,
offset, link = "logit", link.phi = NULL, control =
   betareg.control(...), model = TRUE, y = TRUE, x =
   FALSE, ...)
```

▶ link.phi: specifica la funzione di collegamento per il parametro di precisione ϕ La scelte possibili sono:


```
betareg(formula, data, subset, na.action, weights,
offset, link = "logit", link.phi = NULL, control =
   betareg.control(...), model = TRUE, y = TRUE, x =
   FALSE, ...)
```

- ► link.phi: specifica la funzione di collegamento per il parametro di precisione φ La scelte possibili sono:
 - ▶ sqrt


```
betareg(formula, data, subset, na.action, weights,
offset, link = "logit", link.phi = NULL, control =
   betareg.control(...), model = TRUE, y = TRUE, x =
   FALSE, ...)
```

- ► link.phi: specifica la funzione di collegamento per il parametro di precisione φ La scelte possibili sono:
 - ► sqrt
 - ► log


```
betareg(formula, data, subset, na.action, weights,
offset, link = "logit", link.phi = NULL, control =
   betareg.control(...), model = TRUE, y = TRUE, x =
   FALSE, ...)
```

- ► link.phi: specifica la funzione di collegamento per il parametro di precisione φ La scelte possibili sono:
 - ► sqrt
 - ► log
- ► control: prende come parametro un oggetto di tipo betareg.control.


```
betareg(formula, data, subset, na.action, weights,
offset, link = "logit", link.phi = NULL, control =
   betareg.control(...), model = TRUE, y = TRUE, x =
   FALSE, ...)
```

- ► link.phi: specifica la funzione di collegamento per il parametro di precisione φ La scelte possibili sono:
 - ► sqrt
 - ► log
- ► control: prende come parametro un oggetto di tipo betareg.control.
- ► model, x, y: argomenti di tipo logico (TRUE, FALSE). Se impostati a TRUE, vengono restituiti il model.frame, model matrix e il vettore della variabile risposta rispettivamente.

Esempi su Shiny

Oggetto betareg.control

Lopzione control prende come parametro un oggetto di tipo betareg.control. Tali oggetti servono per controllare la modalità con la quale veogno stimati i coefcienti del modello.

```
betareg.control(phi = TRUE, method = "BFGS", maxit =
5000, hessian = FALSE, trace = FALSE, start = NULL
, fsmaxit = 200, fstol = 1e-8, ...)
```

- ightharpoonup phi: valore booleano. Indica se il parametro ϕ deve essere trattato come un parametro del modello o come un parametro di disturbo.
- ▶ method: specifica quale metodo numerico viene utilizzato per stimare i coefficienti. Il valore di default è BFGS.
- ► maxit: indica il numero massimo di iterate da eseguire.

Oggetto betareg.control

- trace: valore booleno. Indica se deve essere mantenuta traccia delle iterazioni effettuate durante la stima dei coefficienti.
- hessian: valore booleano. Indica se deve essere utilizzato l'Hessiano per stimare la matrice delle covariate. L'opzione di default è FALSE.
- start: un vettore di valori opzionali che indica quali sono in punti di partenza per stimare i coefficienti del modello. Si veda la sezione III.i.
- ► fsmaxit: valore intero. Indica il numero massimo delle iterazioni del *punteggio di Fisher*.
- fstol: valore numerico. Indica la tolleranza dell'errore per raggiungere la convergenza.

L'oggetto restituito dal modello stimato della classe betareg è una lista simile a quella restituita dagli oggetti glm, dove troviamo coefficients e terms. E' possibile interrogare gli oggetti della classe betareg attraverso la funzione summary(). Nella seguente tabella è stata riporta una lista dei metodi e delle funzioni offerte dagli oggetti della classe betareg.

FUNZIONE	DESCRIZIONE
print()	Stampa su standard output i coefficienti stimati.
summary()	Stampa su standard output la stima dei coefficienti, l'errore standard e il test parziale di Wald. Restituisce un oggetto della classe
	summary.betareg.

coef()	Restituisce tutti i coefficienti del model-
	lo, compresi intercetta e coefficiente di
	precisione.
vcoef()	Restituisce la matrice della covarianza.
<pre>predict()</pre>	Funzione di predizione del valor atteso, dei
	predittori lineari, del parametro di precisione
	e delle varianze.
fitted()	Valori attesi stimati per un nuovo vettore di
	osservazioni.
residual()	Restituisce il vettore dei residui.
terms()	Restituisce i componenti del modello.
model.matrix()	Restituisce la <i>Matrice del Modello</i>
model.frame()	Restituisce l'intero frame di dati del modello.
loglik()	Restituisce la stima di log-verosimiglianza.

plot()	Stampa sul device grafico i plot dei residui,	
	delle predizioni, dei punti di leva etc.	
hatvalues	Restituisce un vettore di elementi rappresen-	
	tanti la diagonale della matrice <i>hat</i> .	
cocks.distance	Restituisce un'approssimazione della distanza	
	di Cook.	
glevarage()	Restituisce un vettore di elementi con	
	rappresentanti il valore di leva di ogni punto.	

coeftest()	Test parziale di Wald dei coefficienti.
waldtest()	Test di Wald per modelli annidati.
<pre>linear.hypotesis()</pre>	Test di Wald per ipotesi lineari.
AIC()	Calcola l'Aikaike Information Criteria
	(AIC) e altri Information Criteria come
	il BIC.

Funzione Predict


```
predict(object, newdata = NULL, type = c("response", "
    link", "precision", "variance", "quantile"), na.
    action = na.pass, at = 0.5, ...)
```

- ► object: fitted model object della classe betareg
- newdata: opzionale, un data frame nel quale cercare delle variabili con le quali fare predizione. Se omesso, vengono usate le osservazioni originali
- ► type: character che indica il tipo di predizione:
 - ► response: fitted means of response,
 - ► link:corresponding linear predictor,
 - ▶ precisionfitted precision parameter phi,
 - variancefitted variances of response,
 - ▶ quantilefitted quantile(s) of the response distribution

Funzione Predict

► at: vettore numerico che indica il livello al quale i quantili vengono predetti se nel parametro textbftype="quantile" di default è assegnata la mediana at=0.5

Intervallo di confidenza

E' possibile determinare un intervallo di confidenza $(1 - \alpha)100\%$ per i coefficienti $\hat{\beta}_j$, con j = 1, ..., k. Tale intervallo è:

$$\left[\hat{\beta}_j \pm \Phi^{-1} \left(1 - \frac{\alpha}{2} SE(\hat{\beta}_j) \right) \right],$$

dove $\Phi(\cdot)$ è la f.d.p di una normale standard. Analogamente per il parametro $\hat{\phi}$ è il seguente

$$\left[\hat{\phi} \pm \Phi^{-1} \bigg(1 - \frac{\alpha}{2} SE(\hat{\phi}) \bigg) \right]$$

dove
$$SE(\hat{\phi}) = \sqrt{tr(D) - \phi^{-1}c^tT^tX(X^tWX)^{-1}X^tTc} = \sqrt{\hat{\gamma}}$$
.