Gene theory on Prime topological spaces

Shigeo Hattori

December 14, 2019

bayship.org@gmail.com

https://github.com/bayship-org/mathematics

Introduction 1

Although this article is not about knot theory, at first I give a conjecture in words of elementary knot theory. Then I, step by step, depict how the conjecture leads readers to a new frame work fundamental to topology and mathematics.

2

5

7

8

12

14

18

A notable thing is that this article somehow can be compared to biology, namely genomics whereas classical mathematics is somehow classical biology. Classical mathematics researches defined objects whereas this article mainly researches genes of objects, i.e., definitions of objects.

Currently, all proofs are abstract because almost all formal proofs of theory are expected to require computer-assisted proofs; all definitions of objects must be input into computer programs.

Having said that, it is still true that the new theory is contributing multiples of new fundamental notions to mathematics.

1.1 **Notations**

Blue texts indicate the words are new for readers; the words will be formally defined soon later. For example, prime topological space.

" $x \quad and \land y$ " is almost equivalent to " $x \land y$ " except that it is not promised 17 to be commutative.

" $x \quad or \lor y$ " is almost equivalent to " $x \lor y$ " except that it is not promised to be commutative.

1.2 Conjecture	21
Conjecture 1.1. The following claim has no ¹ disproof.	22
Take $\forall k_u$ as an ² unknot.	23
$K := \{k \mid (k_u, k) \text{ are of a same ambient isotopy class}\}.$	24
$K_f := \{ k \in K \mid f(k_u) = f(k) \}.$	25
Take $\forall (k_0, k_1) :\in K_f^2$.	26
There exists $\exists F$ as an ambient isotopy on $\mathbb{R}^3 * [0,1]$ such that as follows.	27
$F[1]$ ³ takes K_0 to K_1 .	28
Take $\forall x :\in [0,1], \forall k_x$ such that $F[x]$ takes k_0 to k_x . Then $k_x \in K_f$.	29
	30
Sub definitions with K as the domain:	31
$\bullet \ j1(k) := \{j \mid$	32
j is an orthogonal $^4\mathrm{projection}$ of k onto some infinite plane $\}$.	33
$\bullet \ j2(k) := \{j \in j1(k) \mid$	34
$\neg (\exists p \ _{and} \land \ p \in \mathrm{image}(j) \ _{and} \land \mid j^{-1}(p) \mid > 2) \}.$	35
• $j3(k) := \{n \mid$	36
$\exists j and \land j \in j2(k) and \land n \text{ is the number of } 5 \text{ double points on } j \}.$	37
\bullet $f(k) := \{m \mid$	38
m is the maximal number from $j3(k)$ }.	39
	40

2 Subtext and definition

Take $\forall d$ as a logical expression. To study d, ideally d must be minimum by the text length. Though it is difficult to prove such a condition.

41

Meanwhile all d with some words removed is said a **subtext** of d. More 44 formally, d must be expressed as a tree of logical operations. For example, $((x \wedge y) \vee ((\neg z) \vee (v \wedge w)))$ where variables also represent trees of logical operations. 46 And removing a word corresponds to changing one term of a binary operation 47

¹Probably it has no proof too.

²It can be any knot class.

³In other words, F takes K_0 to K_1 .

 $^{^4}$ Hence, j is a function from k to an infinite plane.

⁵That is, the inverse image of a double point has exactly 2 distinct points of k; no matter the double point is a crossing or a tangent point.

to a unit term. For example, removing x from $(x \wedge y)$ results y through $(\top \wedge y)$; removing y from $(x \vee y)$ results x through $(x \vee \bot)$. The original d is said **non redundant** if all its subtext is not equivalent to d. Especially, if d is a definition then d is said **non redundant** if all its subtext **52** does not define any equivalent entity as d. In the rest, logical expressions are expected to be non redundant fundamentally, still practically preserving human readability. 3 Prime topological space I claim that the conjecture is special because Euclidean spaces are prime topological spaces. 58 **Definition 3.1** (Prime topological space). Take $\forall X$ as a topological space. Then X is said **prime** if: *1 $_{and} \wedge$ *2. 1. Let d be the definition of X. Take $\forall Y$ such that the definition of Y is a sub definition of d. If X is homeomorphic to some sub space of Y then (X,Y)62 are homeomorphic. **2.** Take $\forall y$ as a non empty open set of X. Then y is not a countable set. 65 **Proposition 1** (Prime topological space). Take $\forall (n, R^n)$ such that $(n \ge 1)$ 66 $and \wedge R^n$ is a Euclidean space of n-dimension). Then R^n is a prime topological 68 space. *Proof.* Refer to the definition of prime topological space. As **Assumption1**, this proposition fails. Hence (*1 $_{and} \wedge$ *2) of the definition fails with \mathbb{R}^n in 70 place of X. Though it holds as follows. Hence Assumption 1 is false. 71 72 Consider *1 with \mathbb{R}^n in place of X. It simply holds because we can find some definition d of \mathbb{R}^n in accepted research papers of topology theory such that *1 74 holds for (d, R^n) in place of (d, X). In our favor, d is not referenced elsewhere **75** in the definition. Consider *2 with \mathbb{R}^n in place of X. It simply holds as an accepted fact of 77 elementary topology theory. If some non empty open set $\exists y$ of \mathbb{R}^n is countable,

then the well known formula fails. Namely, take $\forall p_1 :\in y$, then $\exists e :> 0$ such that: Take $\forall p_2 :\in \operatorname{Space}(X)$, then $(\operatorname{distance}(p_1, p_2) < e) \to (p_2 \in y)$. The

formula fails because all open ball $\forall b$ with e as the radius is not countable in	81
terms of $Space(b)$.	82
"Space(X)", that is, the set of all points of X .	83
4 Preliminary definitions	91
4 1 Tellimiary delimitions	84
4.1 Isomorphism of memBers	85
Take $\forall m$. Then m is said a memBer if m is a member of some set.	86
Take $\forall \{c_i\}_{i\in[1,n]\subset\mathbb{N}}$ as a chain such that $c_i\in c_{i+1}$ if the indices are in the	87
index set. Take $\forall i :\in [1, n]$, then c_i is said a deep member of c_n denoted as	88
$c_i \in ^{deep} c_n$. ⁶ Be careful.	89
Take $\forall m$ as a memBer, then $\operatorname{Space}(m)$ denotes the set of all points $(p$ as	90
each) such that $p \in d^{eep} m$.	91
And m is said a constant-memBer if Space $(m) = \emptyset$; especially m is said	92
an empty constant-memBer if all deep member of m is a set. Importantly,	93
all number is a constant-memBer.	94
The deep graph of m is defined as the directed graph (V, E) on the set V	95
of all deep members of m such that $E = \{(v1, v2) \in V * V \mid v1 \in v2\}.$	96
Ultimately, two memBers are said isomorphic by f if: (Their deep graphs	97
are isomorphic by $\exists f$ as a graph isomorphism $and \land \text{relate-constant-memBer}(f)$).	
That is, take $\forall L$ as a binary relation, then it is written as relate-constant -	99
memBer (L) if: Take $\forall (x,y) :\in L$ such that either x or y is a constant-memBer,	100
then $x = y$.	101
	102
, , , , , , , , , , , , , , , , , , , ,	103
omorphism of topological spaces is an isomorphism of memBers.	104
Link to the proof: All homeomorphism is an isomorphism of memBers.	105
4.2 Specifiable	106
Definition 4.1 (Specifiable relatively to). Take $\forall (x,y)$ such that the definition	107
of y entirely depends on x , then y is said specifiable relatively to x if it	108
holds as follows.	109
Let d_x be the definition of x ; let d_{y1} be the definition of y excluding d_x ; let	110
d_{y2} be a copy of d_{y1} . For $d_x+d_{y1}+d_{y2}$ as a concatenated text, y of d_{y1} and y of	
d_{y2} are identical.	112

⁶There possibly exist multiple chains of set membership between (c_1, c_n) .

For example, let x be a Euclidean space of 1-dimension; take $\forall y :\in \operatorname{Space}(x)$. 114 For this case, $d_x + d_{y1} + d_{y2}$ is that: let x be a Euclidean space of 1-dimension; 115 take $\forall y :\in \operatorname{Space}(x); take \forall y :\in \operatorname{Space}(x)$. For this case, needless to say, y of d_{y1} 116 and y of d_{y2} are not said identical; for some case they are identical and for some 117 case they are not. So this y is not specifiable relatively to x. 118 For example, let x be a Euclidean space of 1-dimension; take $\forall y$ such that 119

For example, let x be a Euclidean space of 1-dimension; take $\forall y$ such that 119 $y := \{(z1, z2) \mid (z1, z2) \in \operatorname{Space}(x)^2 \}$. For this case, $d_x + d_{y1} + d_{y2}$ is that: let x 120 be a Euclidean space of 1-dimension; take $\forall y$ such that $y := \{(z1, z2) \mid (z1, z2) \in \operatorname{Space}(x)^2 \}$; take $\forall y$ such that $y := \{(z1, z2) \mid (z1, z2) \in \operatorname{Space}(x)^2 \}$. For this 122 case, needless to say, y of d_{y1} and y of d_{y2} are identical. So this y is specifiable 123 relatively to x.

4.3 Factor proposition

Definition 4.2 (Factor proposition). Take $\forall p$ as a predicate written in a form 126 of a finite sequence of **non redundant logical conjunctions**. Then all non 127 empty sub sequence of p is said a **factor proposition** of p.

```
For example:
   Let p(y) :\equiv (y = \{1, 2\} \land y \in 2^{\mathbb{N}}).
   Then p has no factor proposition because it is redundant.
For example:
   Let p(y) :\equiv (y = \{1, 2\}).
   Let q(y) :\equiv (y \ni 1 \land y \ni 2 \land |y| = 2).
   It is trivial that p(y) \equiv q(y).
   For example, (y \ni 1 \land y \ni 2) is a factor proposition of q(y).
                                                                                           138
   In a broader sense, (y \ni 1 \land y \ni 2) is a factor proposition of p(y).
Other examples of factor propositions of (y = \{1, 2\}):
    (y \ni 1 \land y \ni 2 \land |y| = 2)
   ( y \ni 1 \land y \ni 2 \land |y| = 2).
    (y \to 1 \land y \to 2 \land |y| = 2).
                                                                                           145
    (y \ni 1 \land y \ni 2 \land |y| = 2).
```

4.4 Prime function	147
Definition 4.3 (Prime function). Take $\forall f$ as a function. Then f is said a prime function if: (*1 $_{and} \land \dots _{and} \land \ ^*3$).	148 149
1. The image of f is a set of non empty constant-memBers.	150
2. Take $\forall g$ such that (*s1 $_{and} \land{and} \land *s6$)).	151
3. Then (*s7 $and \wedge$ $and \wedge *s9$) holds.	152
	153
s1. The definition of g is a sub definition of the definition of f .	154
s2. g is specifiable relatively to f .	155
s3. $\exists (x1, x2, x3) :\in \text{domain}(g)^3.$	156
s4. $x1$ is a non empty constant-memBer.	157
s5. $x2 \neq x3$.	158
s6. $g(x2) = g(x3)$.	159
	160
s7. Let $p1(x) :\equiv (x = x2)$.	161
s8. Let $p2(x) :\equiv (g(x) = g(x2))$.	162
s9. $p2$ is a factor proposition of $p1$.	163
·	164
	165
For example, let $f(x:\in \mathbb{R}):=$ if $(x<0 \text{ or } \forall x>1)$ then \top else \bot . Then *1 of	166
the definition holds for f in place of f . Though this f is not a prime function.	167
Because, for f , *2 holds whereas *3 dose not hold. Let us more formally define	168
f as follows.	169
$g1(x :\in \mathbb{R}) := (x, (\text{if } x < 0)).$	170
$g2((x,b) :\in \text{image}(g1)) := (b \lor (\text{if } x > 1)).$	171
$f(x:\in\mathbb{R}):=g2\circ g1(x).$	172
That is, $f(x) = \{g2(z) \mid z \in g1(x) \}.$	173
	174
For the new definition, *2 holds for $g2$ in place of g ; for example, $g2(-1,\top)=g2(2,\bot)$)1.75

Meanwhile *3 fails for g2.

5 Prime set of sub spaces	177
I claim that the conjecture is special because all sets of sub spaces defined in the conjecture are prime sets of sub spaces of a prime topological space. Namely (K,K_f) .	
Definition 5.1 (Prime set of sub spaces). Take $\forall X$ as a prime topological space. Let $K_0:=$ (the set of all sub spaces of X). Take $\forall f$ as a prime function on K_0 such that f is specifiable relatively to X . Take $\forall K$ such that: $K \subset \text{domain}(f)$ $_{and} \land \exists x1 :\in \text{domain}(f)$ $_{and} \land \text{ take}$ $\forall x :\in \text{domain}(f)$ $_{and} \land (x \in K) \equiv (f(x) = f(x1))$. Then K is said a prime set of sub spaces of X . In addition, take $\forall [1,n] \subset \mathbb{N}_1$, take $\forall \{K_i\}_{i\in[1,n]}$ as a set of prime sets of sub spaces of X .	182 183 184 185 186
Proposition 2. Refer to the conjecture. (K, K_f) of the conjecture are prime sets of sub spaces of \mathbb{R}^3 .	189 190
$\label{eq:proof_for_K} Proof for K. \ \ \text{Refer to the conjecture. Let Def(prime set) denote the definition titled as "prime set of sub spaces".}$	191 192
• $X := R^3$.	193
• $K_0 :=$ (the set of all sub spaces of X).	194
K cam be redefined as follows.	195 196
• $S_F :=$ (the set of all ambient isotopy on $X * [0,1]$).	197
• $S_F := \{ F[1] \mid F \in S_F \}.$	198
• $S_F := \text{take } \forall h \text{ as a bijection from*to } \mathbb{R} * S_F.$	199
• $g1(k :\in K_0) := \{k\} * S_F.$	200
• $g2((k, r, F) :\in \bigcup \text{ image}(g1)) := (r, \text{ if } (F \text{ takes } k_u \text{ to } k)).$	201
• $g3((r,b) :\in \text{image}(g2)) := b.$	202
• $g4(k :\in K_0) := (g3 \circ g2) \stackrel{\epsilon}{\circ} g1(k).$	203

 8 Footnote on the new symbol.

204

⁷That is, \top or \bot .

 $^{{}^{8}\}mathrm{That}\ \mathrm{is,}\ (y=\mathrm{fun2}\ \stackrel{\in}{\circ}\ \mathrm{fun1}(x))\equiv (y=\{\mathrm{fun2}(z)\ |\ \exists z\in\mathrm{fun1}(x)\ \}).$

• $f4(k :\in K_0) := if (g4(k) = g4(k_u)).$	205
$^9{ m Footnote}.$	206
• $K := \{k \in K_0 \mid \top = f4(k) \}.$	207
	208
The antecedent of Def(prime set) holds for $(R^3, K_0, f4, K)$ in place of (X, K_0, f, K)	2 09
as follows.	210
	211
Requirement for X : To be a prime topological space.	212
In the previous proposition, \mathbb{R}^n is said to be so.	213
	214
Requirement for K_0 : $K_0 := $ (the set of all sub spaces of X).	215
K_0 is defined to be so.	216
	217
Requirement for f : f is a prime function on K_0 such that f is specifiable	218
relatively to X .	219
In the definition of $f4$, it is clear that: $f4$ is a function on K_0 and is speci-	220
fiable relatively to X , although some sub functions are not specifiable relatively to X .	221
f4 is a prime function as follows. Let Def(prime function) denote the defi-	222
nition titled as "Prime function".	223
*1 of Def(prime function) holds for $f4$. Namely image($f4$) = $\{\top, \bot\}$.	224
Let us search for functions defined either explicitly or implicitly in the	225
definition of $f4$ such that *2 of Def(prime function) holds with it in place of	226
g. Be careful that *s2 of *2 of Def(prime function) says g must be specifiable	227
relatively to X .	22 8
As you can see in the definition of $f4$, there exists no such sub definition.	229
	230
Requirement for $K: K \subset \text{domain}(f)$ $and \land \exists x1 :\in \text{domain}(f)$ $and \land \text{take}$	231
$\forall x :\in \text{domain}(f) and \land \ (x \in K) \equiv (f(x) = f(x1)).$	232
Recall k_u defined in the conjecture. Needless to say, $f4(k_u) = \top$.	233
In fact, $K \subset \text{domain}(f4)$ $and \land \exists k_u :\in \text{domain}(f4)$ $and \land$	234
take $\forall x :\in \text{domain}(f4)$ and $(x \in K) \equiv (f4(x) = f4(k_u))$.	235
_	236

Proof for K_f . Refer to the conjecture. Let Def(prime set) denote the definition titled as "prime set of sub spaces". K_f can be redefined as follows.

 $^{{}^{9}}g4(k_u) = \{\top, \bot\}.$

• $j1(k :\in K_0) := \{j \mid j \text{ is an orthogonal } {}^{10}\text{projection of } k \text{ onto some infinite plane } \exists P \}$.	239240
• $j2(j :\in \bigcup \text{image}(j1)) := \{j\}^*\text{image}(j).$	241
• $j3((j,p):\in\bigcup \operatorname{image}(j2)):=\{x\in\operatorname{domain}(j)\mid j(x)=p\ \}.$	242
• $j4 := (lambda(x : x) \circ collect(S : S = 2) \circ j3 \stackrel{\in}{\circ} j2) \stackrel{\in}{\circ} j1.$	243
• That is, $lambda(y : w(y)) \circ t(x) := w(t(x))$.	244
• That is, $\operatorname{collect}(y:w(y)) \circ t(x) := \{y:\in t(x) \mid w(y) \equiv \top \}.$	2 45
• $f4 := \text{lambda}(S: \text{ the maximum number from } S) \circ j4.$	2 46
• $K_f := \{k \in K_0 \mid f4(k) = f4(k_u) \}.$	247
The antecedent of Def(prime set) holds for $(R^3, K_0, f4, K)$ in place of (X, K_0, f, K) as follows.	25 0
Requirement for X : Omitted.	251252253
Requirement for K_0 : Omitted.	253254
Requirement for f : f is a prime function on K_0 such that f is specifiable relatively to X .	255256257
In the definition of $f4$, it is clear that: $f4$ is a function on K_0 and is specifiable relatively to X .	258 259
f4 is a prime function as follows. Let Def(prime function) denote the definition titled as "Prime function".	261
*1 of Def(prime function) holds for $f4$. Namely image($f4$) $\subset \mathbb{N}$. Let us search for functions defined either explicitly or implicitly in the definition of $f4$ such that *2 of Def(prime function) holds with it in place of g . Be careful that *s2 of *2 of Def(prime function) says g must be specifiable	264
relatively to X . As you can see in the definition of $f4$, there exists exactly one such sub definition. Namely the latter term of the composition of $f4$; lambda(S : the maximum	266 267
number from S). For example, for two distinct inputs ($\{9,10\}, \{8,9,10\}$) of the	269

 $^{11}\mathrm{lambda}$ function, the outputs are equal.

270

 $^{^{10}}$ Hence, j is a function from k to an infinite plane. 11 I do not claim that it is a lambda function in the formal sense.

Refer to *s7 to *s9 of *3 of Def(prime function).	271
Call the lambda function as $j5$.	272
Let $p1(x) :\equiv (x = x2)$.	27 3
Let $p2(x) :\equiv (j5(x) = j5(x2)).$	274
Then $p2$ is a factor proposition of $p1$.	275
	27 6
	277
Requirement for $K: K \subset \text{domain}(f)$ $and \land \exists x1 :\in \text{domain}(f)$ $and \land \text{take}$	27 8
$\forall x :\in \text{domain}(f) and \land (x \in K) \equiv (f(x) = f(x1)).$	27 9
Recall k_u defined in the conjecture.	280
In fact, $K \subset \text{domain}(f4)$ $and \land \exists k_u :\in \text{domain}(f4)$ $and \land$	2 81
take $\forall x :\in \text{domain}(f4)$ and $(x \in K) \equiv (f4(x) = f4(k_u))$.	282
	283
6 To project symmetry	1 01
o to project symmetry	284
I claim that the conjecture is special because we now can replace the words	285
"ambient isotopy" with the new words "to project symmetry" so that the new	286
conjecture implies the first conjecture. And the new notion is far more funda-	287
mental than the notion of ambient isotopy.	288
	289
	290
D-6-:4: C.1 (T	001
	291
Then $m2$ is said to project the symmetry to $m1$ if *1 implies *2.	292
1 Take $\forall (d1, d2, d3)$ as deep members of $m1$ such that	293
((m2, d1, d3), (m2, d2, d3)) are isomorphic).	294
0 // 0 1 11 10\ / 0 1 10 10\\	005
2 $((m2, m1, d1, d3), (m2, m1, d2, d3))$ are isomorphic.	295
	2 96
	297
Now the first conjecture can be generalized as follows.	298
Conjecture 6.1.	299
Take $\forall (X, K)$ such that K is a prime set of sub spaces of a prime topological	300
	301
	302

Pr	roposition 3. Conjecture 6.1 implies Conjecture 1.1.	303
		304
	coof. Assume this proposition fails. Hence Conjecture 1.1 fails with an assumption that Conjecture 6.1 holds. First of all, by a previous proposition,	
the	e assumption of Conjecture 6.1 holds for (R^3, K_f) in place of (X, K) . Let X note R^3 of Conjecture 1.1. There exists a counterexample of Conjecture 1.1.	307
	amely, $\exists (k1, k2) :\in K_f^2$ such that $(*1 \text{ and} \land *2)$.	309
1.	Take $\forall F$ as an ambient isotopy on $X^*[0,1]$ such that $F[1]$ takes $k1$ to $k2$. Then for some time point $\exists t : \in [0,1], F[t]$ takes $k1$ to $\exists k : \notin K_f$.	310 311
2.	(k1, k2) are disjoint.	312
	Meanwhile there exists $\exists k3 :\in K_f$ such that (*3 $_{and} \land$ *4).	313
3.	*1 fails for $(k1, k3)$ in place of $(k1, k2)$.	314
4.	(k1, k2, k3) are pairwise disjoint.	315
		316
	call K of Conjecture 1.1. That $(k1, k2, k3) \in K^3$ implies that $(X, k2)$ and $(X, k3)$ are isomorphic. Hence $(X, k2, k1)$ and $(X, k3, k1)$ are also isomorphic.	
	Conjecture 6.1 says that X projects the symmetry to K_f . Hence $(X, K_f, k2, k1)$	
	d $(X, K_f, k3, k1)$ are isomorphic. It contradicts to (*1 $_{and} \land$ $_{and} \land *4$). Ence the main assumption is false.	320 321