AMATH 514 Assignment 6

Tyler Chen

AMATH 514 Chen 2

Problem 8.8

Let A be a totally unimodular matrix. Show that the columns of A can be split into two classes such that the sum of the columns in one class, minus the sum of the columns in the other class, gives a vector with entries 0, +1, and -1 only.

Let e be the vector of all ones. Let $b = \lfloor \frac{1}{2}(Ae+1) \rfloor$ and $b' = \lfloor \frac{1}{2}(1-Ae) \rfloor$. Define a polytope,

$$P = \left\{ x : \begin{bmatrix} A \\ -A \\ I \\ -I \end{bmatrix} x \le \begin{bmatrix} b \\ b' \\ 1 \\ 0 \end{bmatrix} \right\}$$

Then P is bounded as $x_i \in [0,1]$ for all i. Moreover, for all integers, 2k, 2k+1,

$$\lfloor ((2k)+1)/2 \rfloor = \lfloor k+1/2 \rfloor = k \geq (2k)/2, \quad \lfloor ((2k+1)+1)/2 \rfloor = \lfloor k+1 \rfloor = k+1 \geq (2k+1)/2, \\ \lfloor (1-(2k))/2 \rfloor = \lfloor 1/2-k \rfloor = -k \geq -(2k)/2, \qquad \lfloor (1-(2k+1))/2 \rfloor = \lfloor -k \rfloor = -k \geq -(2k+1)/2,$$

Therefore, since Ae is an integer, $\frac{1}{2}e \in P$.

Since P is nonempty and bounded P has a vertex v. The matrix [A; -A; I; -I] is totally unimodular since A is totally unimodular meaning v is integer. In particular, this means $v_i \in \{0, 1\}$ for all i and, since $v \in P$,

$$Av \le b = \left\lfloor \frac{1}{2}(Ae+1) \right\rfloor \le \frac{1}{2}(Ae+1) \qquad \Longrightarrow \qquad Ae - 2Av \ge -1$$
$$-Av \le b' = \left\lfloor \frac{1}{2}(1-Ae) \right\rfloor \le \frac{1}{2}(1-Ae) \qquad \Longrightarrow \qquad Ae - 2Av \le 1$$

Now define z = 1 - 2v. Clearly z is integer with entries in $\{-1, 1\}$. Therefore Az is integer as A and z are each integer. Moreover, since Az = A(e - 2v) = Ae - 2Av, by above we have, $-1 \le Az \le 1$. Together these mean Az has entries in $\{-1, 0, 1\}$.

Finally take one class as the rows corresponding to 1 entries in z and the other class corresponding to -1 entries in z. Then the result is proved.

I got a hint online to use these floor functions, but derived the proof without more.

AMATH 514 Chen 3

Problem 8.9

Let A be a totally unimodular matrix and let b be an integer vector. Let x be an integer vector satisfying $x \ge 0$; $Ax \le 2b$. Show that there exists integer vectors $x' \ge 0$ and $x'' \ge 0$ such that $Ax' \le b$, $Ax'' \le b$ and x = x' + x''.

Define,

$$P = \left\{ z : \begin{bmatrix} A \\ I \\ -I \\ -A \end{bmatrix} z \le \begin{bmatrix} b \\ x \\ 0 \\ b - Ax \end{bmatrix} \right\}$$

Clearly P is bounded. We have $A(x/2)=(Ax)/2\leq 2b/2=b$. Then $A(x-x/2)\leq b$ so $-A(x/2)\leq Ax-b$. Clearly $0\leq x/2\leq x$. Therefore $x/2\in P$.

Since P is nonempty and bounded P has a vertex x'. The matrix [A; I; -I; -A] is totally unimodular since A is totally unimodular meaning x' is integer.

Define x'' = x - x'. Since $x' \in P$ and x is integer we have x'' integer with $0 \le x'' \le x$. Moreover, since $-Ax' \le b - Ax$ we have $Ax - Ax' \le b$ so that $Ax'' = A(x - x') \le b$.

AMATH 514 Chen 4

Problem 4.15

Let D=(V,A) be a directed graph, and let $f:A\to\mathbb{R}_+$. Let $\mathcal C$ be the collection of directed circuits in D. For each directed circuit C in D let χ^C be the incidence vector of C. That is, $\chi^C:A\to\{0,1\}$, with $\chi^C(a)=1$ if C transverses a and $\chi^C(a)=0$ otherwise.

Show that f is a non-negative circulation if and only if there exists a function $\lambda: \mathcal{C} \to \mathbb{R}_+$ such that,

$$f = \sum_{C \in \mathcal{C}} \lambda(C) \chi^C$$

That is, the non-negative circulations form the code generated by $\{\chi^C : C \in \mathcal{C}\}$.

Fix $\lambda: A \to \mathbb{R}_+$ and let $f = \sum_{C \in \mathcal{C}} \lambda(C) \chi^C$. Consider the flux into and out of a vertex $v \in V$. We have,

$$\sum_{a \in \delta^{\text{out}}(v)} f(a) - \sum_{a \in \delta^{\text{in}(a)}} f(a) = \sum_{a \in \delta^{\text{out}}(v)} \sum_{C \in \mathcal{C}} \lambda(C) \chi^{C}(a) - \sum_{a \in \delta^{\text{in}(a)}} \sum_{C \in \mathcal{C}} \lambda(c) \chi^{C}(a)$$

$$= \sum_{C \in \mathcal{C}} \left[\sum_{a \in \delta^{\text{out}}(v)} \lambda(C) \chi^{C}(a) - \sum_{a \in \delta^{\text{in}(a)}} \lambda(C) \chi^{C}(a) \right]$$

Fix $C \in \mathcal{C}$. If C does not pass through v then $\chi^C(a) = 0$ for all $a \in \delta^{\text{in}}(v) \cup \delta^{\text{out}}(v)$. If C does pass through v, then $\chi^C(a) = 1$ for exactly one $a \in \delta^{\text{in}}(v)$ and exactly one $a \in \delta^{\text{out}}(v)$. Moreover, since $\lambda(C)$ is constant (if C is fixed), then the term $\lambda(C)\chi^C(a)$ appears in both sums.

Therefore the difference of the two sums is zero. This proves f is a circulation.

We provide an algorithm to find $\lambda: A \to \mathbb{R}_+$ such that $f = \sum_{C \in \mathcal{C}} \lambda(C) \chi^C$ for a non-negative circulation f.

At the k-th step, start with a circulation $f^{[k-1]}$. If the circulation on each edge of every directed circuit in D is zero then terminate.

Otherwise, at step k find a directed circuit C_k with $f(a) \neq 0$ for all $a \in C_k$. Define,

$$\lambda(C_k) = \min_{a \in C_k} f(a)$$

Now, define a new circulation $f^{[k]}: A \to \mathbb{R}_+$ by,

$$f^{[k]}(a) = \begin{cases} f^{[k-1]}(a) - \lambda(C_k) & a \in C_k \\ f^{[k-1]}(a) & \text{otherwise} \end{cases}$$

Then clearly $f^{[k]}$ is a circulation. Moreover, $f^{[k]}$ has at least one fewer non-zero edge than $f^{[k-1]}$ since $f^{[k-1]}(a) = \lambda(C_k)$ for some $a \in C_k$. Since $|A| < \infty$ this means the algorithm will terminate (in less than |A| steps).

Then, starting with $f^{[0]} = f$ the algorithm will terminate and give us $\lambda(C_k)$ such that,

$$f = \sum_{k} \lambda(C_k) \chi^{C_k}(a)$$