

Рис. 6. Пусть $k_n = \frac{a_n}{b_n}$. Тогда $k_{n+1} = (k_n)$, где $f(k) = \frac{|1-2k|}{2-k}$. Здесь изображён график этой функции на отрезке $0 \le k \le 1$. При решении задачи мы пользуемся тем, что для любой точки M правой половины графика MQ/MP > 2; если $0 \le k \le \frac{1}{2}$, то $0 \le f(k) \le \frac{1}{2}$, причём f(f(k)) = k, то есть функция f на отрезке $0 \le k \le \frac{1}{2}$ совпадает с обратной к ней функцией и график её симметричен относительно биссектрисы угла между осями координат.

	$-\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{2}$	$-\frac{1}{2}$	
	$\frac{1}{2}$	-1		-1	$\frac{1}{2}$	
	-1	1	1	1	-1	
	$\frac{1}{2}$	-1		-1	$\frac{1}{2}$	
	$-\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{2}$	$-\frac{1}{2}$	

Рис. 7. Во всех незаполненных клетках стоят нули.

Во-вторых, если
$$\frac{a_n}{b_n} > \frac{1}{2}$$
, то
$$\frac{1 - \frac{a_{n+1}}{b_{n+1}}}{1 - \frac{a_n}{b_n}} = \frac{1 - \frac{2a_n - b_n}{2b_n - a_n}}{1 - \frac{a_n}{b_n}} =$$

$$= \frac{3b_n}{2b_n - a_n} > \frac{3b_n}{2b_n - \frac{b_n}{2}} = 2;$$

таким образом, величина $1-\frac{a_n}{b_n}$ при переходе от n к n+1 увеличивается не менее чем в два раза до тех пор, пока мы не придём к прямоугольнику с $\frac{a_n}{b_n} \leq \frac{1}{2}$. Поэтому, каким бы малым ни было $1-\frac{a_1}{b_1}$, всегда после нескольких - не более чем -1- $-log_2(1-\frac{a_1}{b_1})-$ операций мы придём к прямоугольнику второго типа, и дальше в нашей последовательности будут встречаться только такие прямоугольники.

Поэтому мы можем считать, что уже $\frac{a_1}{b_1} < \frac{1}{2}$. При этом $a_3 = b_2 - 2a_2 = 2b_1 - a_1 - 2(b_1 - 2a_1) - 3a_1$, $b_3 = 2b_2 - a_2 = 2(2b_1 - a_1) - (b_1 - 2a_1) = 3b_1$.

Следовательно, вообще $a_{2k+1} = 3^k a_1$ И $b_{2k+1} = 3^k b_1$, причём сумма чисел в этом прямоугольнике $3^k a_1 \times 3^k b_1$ больше $4 + 9^k \epsilon$, то есть, выбрав к достаточно большим, мы можем сделать ее сколько угодно большой. Теперь уже нетрудно получить противоречие: ясно, что любой прямоугольник $Na_1 \times Nb_1$, где a_1 , b_1 и N - целые числа, можно разбить на a_1b_1 квадратов (со стороной N), и поэтому сумма чисел в нем не может превосходить по модулю числа a_1b_1 .

Рисунок 6 поясняет вторую половину доказательства. На рисунке 7 изображён пример, для которого сумма чисел в некотором прямоугольнике равна трём. Таким образом, для c=2 утверждение задачи неверно. Весьма правдоподобно, что точная оценка c=4, но примеров, показывающих, что c>3, мы не знаем.

Н. Б. Васильев