Workshop on Research Tools and Techniques

Overview and Demonstration

Nahiyan Bin Noor, MS

Data Analyst - Intermediate Institute for Digital Health & Innovation

PhD (Part-time), Biomedical Informatics University of Arkansas for Medical Sciences

Masters in Information Sciences Graduate Certificate in Data Science University of Arkansas at Little Rock

nbnoor@uams.edu

Disclaimer

The views and opinions expressed in this presentation are my own.

They do not reflect the views, policies, or positions of my organization.

Workshop on Research Tools and Techniques

- Objective: Familiarizing with various research methodologies and tool sets.
- Types of Research:
 - Qualitative Research: Focuses on understanding underlying reasons, opinions, and motivations through interviews, focus groups, and observation.
 - Understanding consumer behavior and preferences in marketing.
 - Exploring patient experiences in healthcare.
 - Analyzing cultural practices and social norms in anthropology and sociology.
 - Quantitative Research: Emphasizes measurable, numerical data, often using statistical and computational methods for analysis.
 - Measurement of the prevalence of diseases in epidemiology.
 - Analyzing financial trends and risks in economics.
 - Evaluation of educational outcomes and results of standardized tests.

Research Tools for Electrical Engineering

- MATLAB: A high-level language and interactive environment for numerical computation, visualization, and programming.
- **Python:** A general-purpose programming language popular for scientific computing with libraries such as NumPy, SciPy, and pandas.
- Proteus: Software for microprocessor simulation, schematic capture, and printed circuit board (PCB) design.

Popular Machine Learning Tools

- Jupyter Notebook: A web-based interactive computing platform that allows code, equations, and visualizations.
- Google Colab: A free cloud-based Jupyter notebook environment with GPU/TPU support.
- Anaconda: A distribution of Python and R for scientific computing.
- Visual Studio Code: A lightweight but powerful source code editor, supports Python, Jupyter notebooks, and more.

- TensorFlow: An open-source library developed by Google for deep learning and machine learning tasks.
- PyTorch: A popular deep learning framework developed by Facebook's Al Research lab.
- Scikit-learn: A Python module for machine learning built on top of SciPy.
- Keras: A high-level neural networks API running on top of TensorFlow or Theano.
- OpenCV: An open-source computer vision and machine learning software library.

Data Collection Techniques and Tools

- Sensors and IoT: Physical devices that capture real-time data such as temperature, pressure, or biological signals.
- Experimental Data: Data gathered from controlled laboratory or field experiments.
- **Simulation Data:** Synthetic datasets generated by modeling physical processes or systems in software.

Data Management Tools

- Google Scholar: A search engine for scholarly literature across many disciplines.
- ResearchGate: A social networking site for scientists and researchers to share papers and find collaborators.
- Mendeley: A reference manager and academic social network that helps organize research, collaborate, and discover.
- Kaggle: A platform for predictive modeling and analytics competitions, also hosts numerous datasets.

Collaborative Research and Open-Source Tools

 GitHub: A web-based platform for version control using Git. Ideal for sharing and collaborating on code.

Visualization Tools

- Tableau: Commercial software for advanced data analysis and interactive data visualization.
- Python (Matplotlib, Seaborn): Powerful libraries for creating static, animated, and interactive visualizations in Python.

Formatting and Publishing

- Laction TEX (Overleaf): A high-quality typesetting system, widely used for technical and scientific documents.
- Microsoft Word: A word processing application, commonly used for manuscript drafting and formatting.

Personal Journey

Highlights:

- Chittagong, Bangladesh
- CUET EEE (2015-2019)
- MS in Information Sciences, University of Arkansas at Little Rock (2021–2023)
- From EEE to Information Sciences (2022)
- Data Analyst II, University of Arkansas for Medical Sciences (2023–Present)
- PhD (Part-time) in Biomedical Informatics (2024-2027(Expected))
- Why did I start PhD?

Thank You!

Questions or comments?