Computer vision	Section (2)

Section Content:

- Neighboring
- Connectivity
- Image path
- Labeling
- Histogram

Neighboring

Neighboring:

- To identify **objects** in a digital pattern, we **need to locate groups of black pixels** that are "connected" to each other. In other words, the **objects** in each digital pattern are the **connected components** of that pattern.
- Relation between pixels in some way.
- Generally, objects are group of color/gray connected neighbor pixels

Types of Neighboring:

	N_4	
N_4	\times	N_4
	N_4	

N_D		N_D
	\times	
N_D		N_D

 N_4 four

N_D Diagonal

$$N_8$$
 (f (X, Y)) = $\{N_D \cup N_4\}$

Connectivity

Connectivity:

- Pixels are considered connected if and only if:
- They're neighbors "according to some neighboring"
- f (X_1 , Y_1), f (X_2 , Y_2) $\in \xi \rightarrow$ Where ξ is the gray levels connectivity set {....,}.

Example 1: Find the Connectivity

• Giving the connectivity for the pixel f (1,1) giving the connectivity set $\xi = \{3,4,5,6,7,8,9,10\}$ for cases N ₄,N _D,N ₈

2	4	7
6	5	100
13	120	9

Answer Example 1

- In case of, N_4 "5" is connected with F(1,0) = 4 and F(0,1) = 6.
- In case of, N_D "5" is connected with F(2,0) = 7 and F(2,2) = 9.
- In case of, N₈ "5" is connected to F(1,0), F(0,1), F(2,0), $F(2,2) = \{4,6,7,9\}$.

Image Path:

- The Image path is a sequence of connected pixels starts at the first pixel f (x1, y1) and ends at f (xn, yn).
- This Path sometimes doesn't exist as there might be a disconnection in the Gray scale with respect to the connectivity set, could be unique, and could be multiple paths
- Image Path Length: The number of hops

Example 2 Find the Image Path Between f (1,1) and f (3,5)

• Giving the connectivity set $\xi = \{3,4,5,6,7,8,9,10\}$ and neighbor N₄

6	3	8	7	5	4	2
2	2	5	6	9	8	7
4	5	2	3	0	1	2
3	2	1	3	1	2	1
1	1	1	8	0	5	5

8	8	8	6	7	9	8
7	7	7	8	6	7	5

Answer Example 2

Image path = $\{f(1,1), f(2,1), f(3,1), f(3,2), f(3,3), f(3,4), f(3,5)\}$ Image path length =n-1 = 7-1=6

6	3	1	7	5	4	2
2	2	5	6	9	8	7
4	5	2	3	0	1	2
3	2	1	7	1	2	1
1	1	1	8	0	5	5
8	8	8	6	7	9	8
7	7	7	8	6	7	5

Labeling of Connected Regions

- Region: is the group of connected pixels.
- Labeling is a mean to find out the regions that exists within an image matrix
- Image path

Example 3: get the labels for the pixels satisfying the rule of ξ ={ 0-->20} and neighbor N 8

100	100	100	110	120
110	90	5	7	100
5	100	6	110	120
7	100	100	120	10
110	5	70	110	8
111	110	7	10	120

Answer Example 3

100	100	100	110	120
110	90	5	7	100
5	100	6	110	120
7	100	100	120	10
110	5	70	110	8
111	110	7	10	120

Finally, the found labels are L1 and L2

Label 1 =
$$\{f(2,1), f(3,1), f(2,2)\}$$

Label 2 = $\{f(0,2), f(0,3), f(1,4), f(2,5), f(3,5), f(4,3), f(4,4)\}$

Example 3 perform labeling of connected regions using N₈, ξ = {1}

1	1	0	1	1	1	0	1	1	1		2	2	2		3
1	1	0	1	0	1	0	1	1	1		2		2		3
1	1	1	1	0	0	0	1	1	7	1	1				3
0	0	0	0	0	0	0	1								3
1	1	1	1	0	1	0	1	4	4	4	4		5		3
0	0	0	1	0	1	0	1				4		5		3
1	1	1	1	0	0	0	1	6	6	6	4				3
1	1	1	1	0	1	1	1	6	6	6	4		7	7	3
1	1		1	1 1		3		1					T		
1						_	-		_	_		_	_	_	
1	1		1	1		3		\wedge		ш					
1	1	1	1	1		3		1							
	_	1	_	1											
	_	1	_	5	ı	3								ı	
1	1		1	ı		3		4						ı	
1	1		1	5		3									

Histogram

Histogram:

- Histogram: count the number of occurrences per gray/color component value within the image matrix/matrices.
- So, histogram is a table of two columns: gray/color, counts.
- The total number of counts should be equal to M*N pixel counts

Example 1:

Calculate the Following for the following Matrix: Find histogram

$$\begin{pmatrix}
5 & 5 & 4 & 5 \\
10 & 20 & 5 & 4 \\
10 & 20 & 5 & 10 \\
20 & 4 & 5 & 100
\end{pmatrix}$$

Answer:

Gray Value	Count
4	3
5	6
10	3
20	3
100	1
Total count	16

Example 2:

Calculate the Following for the following Matrix: Find histogram

1	2	7	5	6
7	2	3	4	5
0	1	5	7	3
1	2	5	7	3
6	1	0	3	4

Answer:

Gray	Count
0	2
1	4
2	3
3	3
4	2
5	4
6	3
7	4
Total →	25