Multinomial Logistic Regression

Dr Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia wnarifin@usm.my / wnarifin.github.io

Last update: Jun 24, 2024

Expected outcomes

- Understand the concept of multinomial logistic regression
- Perform multinomial logistic regression
- Perform model assessment
- Present and interpret results

Outlines

- Introduction
- Multinomial logistic regression model
- Model building:
 - Variable selection
 - Variable assessment
 - Interaction term assessment
 - Model fit assessment

- A regression method to model relationship between:
 - Outcome: <u>multinomial</u> categorical variable
 - Independent variables: numerical, categorical variables
- Multinomial i.e. multilevels, > than two levels
- Other names:
 - Discrete choice model; polychotomous/polytomous logistic regression model; baseline logit model

- Multinomial measurement scale
 - Nominal categorical variable
 - No order
 - Examples:
 - Diabetic treatment: Diet control, Oral hypoglycemic agent, Insulin
 - Birth: Spontaneous vaginal delivery, Assisted vaginal delivery, Caesarean delivery
 - Cancer subtypes etc.
- Versus ordinal categorical variable → Ordinal logistic regression

Model the relationship

multinomial outcome = numerical predictors + categorical predictors

• For a three-level outcome (0, 1, 2), it can be split into two binary outcomes:

```
binary outcome 1 = numerical predictors + categorical predictors
```

binary outcome 2 = numerical predictors + categorical predictors

where, treating 0 as reference category

```
binary outcome 1: 1 vs 0
```

binary outcome 2: 2 vs 0

Multinomial Logistic Regression Model

Logit Functions

• Extending binary logistic regression, these are specified as two logit functions g_1 and g_2 :

$$\begin{split} g_1(\boldsymbol{x}) &= ln \bigg[\frac{P(Y = 1 \,|\, \boldsymbol{x})}{P(Y = 0 \,|\, \boldsymbol{x})} \bigg] = ln \bigg(\frac{p_1}{p_0} \bigg) \text{ Compare 1 to 0} \\ &= \beta_{10} + \beta_{11} x_1 + \beta_{12} x_2 + \dots + \beta_{1p} x_p \end{split}$$

$$\begin{split} g_2(\boldsymbol{x}) &= ln \left[\frac{P(Y = 2 \,|\, \boldsymbol{x})}{P(Y = 0 \,|\, \boldsymbol{x})} \right] = ln \left(\frac{p_2}{p_0} \right) \text{ Compare 2 to 0} \\ &= \beta_{20} + \beta_{21} x_1 + \beta_{22} x_2 + \dots + \beta_{2p} x_p \end{split}$$

for a vector \boldsymbol{x} comprising of p covariates and a constant term $x_0 = 1$

Odds Ratios

• Odds ratios for a covariate x_i are calculated as follows:

$$\mathrm{OR}_1(x_i) = e^{eta_{1i}}$$

$$\mathrm{OR}_2(x_i) {=} e^{eta_{2i}}$$

Conditional Probabilities

• The calculation for conditional probabilities is as follows:

$$P(Y = 0 \mid \boldsymbol{x}) = \frac{1}{1 + e^{g_1(\boldsymbol{x})} + e^{g_2(\boldsymbol{x})}}$$

$$P(Y=1 \mid \boldsymbol{x}) = \frac{e^{g_1(\boldsymbol{x})}}{1 + e^{g_1(\boldsymbol{x})} + e^{g_2(\boldsymbol{x})}}$$

$$P(Y=2 \,|\, m{x}) = rac{e^{g_2(m{x})}}{1 + e^{g_1(m{x})} + e^{g_2(m{x})}}$$

Testing Significance

- Wald test, W
- Likelihood ratio test, G

Testing Significance

• Wald test, W:

$$W = \frac{\hat{\beta}}{\widehat{SE}(\hat{\beta})}$$

then, two-tailed P-value is P(|z| > W), as W follows standard normal distribution.

• More suitable for testing a single variable.

Testing Significance

• Likelihood ratio test, G:

L0: Log Likelihood of model withOUT x
variable(s) –
L1: Log Likelihood of model with x variable(s)

$$G\!=\!-2\big(L_0\!-\!L_1\big) \text{OR}$$

$$D = \text{Deviance} =$$
 -2 Log Likelihood of model

then, P-value is $P[\chi^2(df) > G]$, as G follows standard normal distribution, and df = difference in number of parameters between the models.

• Suitable for testing single/many variables.

Model Building

Model-building Steps

- 1. Variable selection
 - Univariable
 - Multivariable
 - → Preliminary main effects model
- 2. Variable assessment
 - Linearity in logit numerical variable, from separate binary logistic models
 - Other numerical issues
 - Small cell counts
 - Multicollinearity
 - → Main effects model

Model-building Steps

- 3. Interaction term assessment
 - Two-way between selected variables clinically sensible
 - → Preliminary final model
- 4. Model fit assessment
 - Goodness-of-fit
 - Multinomial Hosmer-Lemeshow Test
 - Pseudo- R^2
 - Regression diagnostics from separate binary logistic models
 - → Final model