

DATABASE 개요 (Oracle)

Data란?

관찰의 결과로 나타난 정량적 혹은 정성적인 실제 값을 의미한다.

Data와 정보

정보란 데이터를 기반으로 하여 의미를 부여한 것이다.

예) 에베레스트의 높이 : 8848m (Data) 에베레스트는 세계에서 가장 높은 산이다. (정보)

Database란?

한 조직에 필요한 정보를 여러 응용 시스템에서 공용할 수 있도록 논리적으로 연관된 데이터를 모으고, 중복되는 데이터를 최소화하여 구조적으로 통합/저장해 놓은 것이다.

Database의 정의

- 1. <mark>운영 데이터</mark> (Operational Data) : 조직의 목적을 위해 사용되는 데이터
- 2._ <mark>공용데이터</mark> (Shared Data) : 공동으로 사용되는 데이터를 의미
- 3. <mark>통합 데이터</mark> (Integrated Data) : 중복을 최소화하여 중복으로 인한 데이터 불일치 현상 제거
- 3. 저장 데이터 (Stored Data): 컴퓨터 저장장치에 저장된 데이터를 의미

Database의 특징

- 1. 실시간 접근성(real time accessibility)
 - 사용자가 데이터를 요청하면 실시간으로 결과를 서비스한다.
- 2. 계속적인 변화(continuous change)
 - 데이터 값은 시간에 따라 항상 바뀐다.
- 3. <mark>동시 공유</mark>(concurrent sharing)
 - 데이터베이스는 서로 다른 업무 또는 여러 사용자에게 동시 공유된다.
- 4. <mark>내용에 따른 참조</mark>(reference by content)
 - 데이터베이스에 저장된 데이터는 데이터의 물리적 위치가 아니라 데이터 값에 따라 참조된다.

DBMS(DataBase Managenent System) 란?

데이터베이스에서 데이터를 추출, 조작, 정의, 제어 등을 할 수 있게 해주는데이터베이스 전용 관리 프로그램이다.

DBMS의 기능

<mark>데이터 추출</mark> (Retrieval)	사용자가 조회하는 데이터 혹은 응용 프로그램의 데이터를 추출함
<mark>데이터</mark> 조작	데이터를 조작하는 소프트웨어(응용 프로그램)가 요청하는 데이터의
(Manipulation)	삽입, 수정, 삭제 작업을 지원함
<mark>데이터 정의</mark>	데이터의 구조를 정의하고 데이터 구조에 대한 삭제 및 변경 기능을
(Definition)	수행함
데이터 제어	데이터베이스 사용자를 생성하고 모니터링하며 접근을 제어함.
(Control)	백업과 회복, 동시성 제어 등의 기능을 지원함

DBMS의 종류와 특징

	Access	SQL Server	Oracle	MySQL	DB2	SQLite
제조사	MS	MS	Oracle	Oracle	IBM	리처드 힙 (오픈소스)
운영체제 기반	윈도우	윈도우	윈도우 유닉스 리눅스	윈도우 유닉스 리눅스	유닉스	모바일OS (안드로이드, iOS등)
용도	개인용	윈도우기반 기업용	대용량 데이터베이스	소용량 데이터베이스	대용량 데이터베이스	모바일전용 데이테베이스

DBMS의 사용 이점

주요 이점	내 용				
데이터 독립화	- 데이터와 응용 프로그램을 분리시킴으로써 상호 영향 정도를 줄일 수 있다.				
데이터 중복 최소화 데이터 무결성 보장	 중복되는 데이터를 최소화 시키면 데이터 무결성이 손상될 가능성이 줄어든다. 중복되는 데이터를 최소화시키면 필요한 저장공간의 낭비를 줄일수 있다. 				
데이터 보안 향상	 응용프로그램은 DBMS를 통해 DBMS가 허용하는 데이터에만 접근할 수 있다. 권한에 맞게 데이터 접근을 제한하거나 데이터를 암호화시켜 저장할 수 있다. 				
관리 편의성 향상	다양한 방법으로 데이터를 백업할 수 있다.장애 발생 시 데이터를 복구할 수 있다.				

Database의 변천 과정

데이터 모델 제품 종류	1960년대 이전	1970년대	1980년대	1990년대	2000년대	2010년대
파일시스템						
계층 데이터 모델						
네트워크 데이터 모델						
· 관계 데이터 모델						
객체 데이터 모델						
객체-관계 데이터 모델						

>talle加料至

Database의 유형

Database의 유형

Database의 유형

객체-관계형 데이터베이스

1. 사용자 정의 타입을 지원한다.

- 사용자가 임의로 정한 데이터 유형을 말하며, 기본형 데이터 타입을 뛰어 넘어 다양한 형태의 데이터를 다룰 수 있다.

2. 참조(reference)타입을 지원한다.

- 객체들로 이루어진 객체 테이블의 경우, 하나의 레코드가 다른 레코드를 참조할 수 있는 것을 말한다.

3. 중첩 테이블을 지원한다.

- 테이블을 구성하는 로우(Row)자체가 또 다른 테이블로 구성되는 테이블을 지원하여 조금 더 복잡하고 복합적인 정보 표현이 가능하다.

4. 대단위 객체의 저장, 추출이 가능하다.

- 이미지, 오디오, 비디오 등 을 저장하기 위한 대단위 객체(LOB)를 지원한다.

5. 객체간의 상속관계를 지원한다.

- 오라클의 경우 OBJECT 타입을 지원함으로써 상속기능을 구현하고 있다.