1. 下列四个函数,在x=0处取得极值的函数是 ()

 $@y = x^3$; $@y = x^2 + 1$; @y = |x|; $@y = 2^x$.

- A. 12
- B. 23
- C. 34
- D. 13
- 2. 已知函数 $f(x) = x^3 3x + m$ 只有一个零点,则实数m的取值范围是()
- A. [-2, 2]
- B. $(-\infty, -2) \cup (2, +\infty)$
- C. (-2,2)
- D. $(-\infty, -2] \cup [2, +\infty)$
- 3.

已知直线 y = a 与函数 $f(x) = \frac{1}{3}x^3 - x^2 - 3x + 1$ 的

图象相切,则实数 a 的值为

A.
$$-26$$
 或 $\frac{8}{3}$

C.8 或
$$\frac{8}{3}$$

D.
$$-8$$
 或 $\frac{8}{3}$

- 4. 若x = -2是函数 $f(x) = (x^2 + ax 1)e^{x-1}$ 的极值点,则f(x)的极小值为()。
 - A: -1
 - B: $-2e^{-3}$
 - $C: 5e^{-3}$
 - D: 1

5. $(2019 \cdot 浙江省五校联考) 若函数 f(x) = \frac{x^3}{3} - \frac{a}{2}x^2 + x + 1$ 在区间 $(\frac{1}{3}, 4)$ 上有极值点,则实数 a 的取值范围为_____.

6.

已知函数
$$f(x) = \frac{1}{3}x^3 - \frac{1}{2}ax^2, a \in$$

R. 设函数 $g(x) = f(x) + (x-a)\cos x - \sin x$, 讨论 g(x) 的单调性并判断有无极值, 有极值时求出极值.

- 【例 1】设函数 $f(x) = \ln(x+1) + a(x^2 x)$,其中 $a \in \mathbb{R}$. 讨论函数 f(x) 极值点的个数,并说明理由.
- 7. 设函数 $f(x) = [ax^2 (4a+1)x + 4a+3]e^x$. (1) 若曲线 y = f(x) 在点(1, f(1)) 处的切线与 x 轴平行, 求 a;
 - (2)若 f(x)在 x=2 处取得极小值,求 a 的取值范围.
- 9. 已知函数 $f(x)=ax^3+x^2(a\in R)$ 在 $x=-\frac{4}{3}$ 处取得极值。
 - (1)确定a的值。
 - (2)若 $g(x)=f(x)e^x$, 讨论 g(x)的单调性。

- 1. 4. $(2016 \cdot 全国卷 I)$ 已知函数 $f(x) = (x-2)e^x + a(x-1)^2$ 有两个零点.
 - (I)求 a 的取值范围;
 - (II)设 x_1, x_2 是f(x)的两个零点,证明: $x_1+x_2<2$.

2. 【例 27】已知函数 $f(x) = x \ln x$ 与直线 y = m 交于 $A(x_1, y_1), B(x_2, y_2)$ 两点.

求证: $0 < x_1 \cdot x_2 < \frac{1}{e^2}$.

10.

6. 已知函数
$$f(x) = \frac{1}{x} - x + a \ln x$$
.

- (1)讨论 f(x)的单调性;
- (2) 若 f(x) 存在两个极值点 x_1, x_2 ,证明:

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} < a - 2.$$

11. 若函数
$$f(x) = x^3 - 3bx + 3b$$
在区间 $(0,1)$ 内有极小值,则()

- A. b > 0
- В. **b < 1**
- C. $b < \frac{1}{2}$
- D. 0 < b < 1

12. 若函数
$$f(x) = x^2 lnx(x > 0)$$
 的极值点为 α ,函数 $g(x) = x lnx^2(x > 0)$ 的极值点为 β ,则有()

- A. $\alpha > \beta$
- B. $\alpha < \beta$
- C. $\alpha = \beta$
- D. α 与 β 的大小不确定
- $^{13.}$ 设函数f(x)=1- $x\sin x$ 在 $x=x_0$ 处取得极值,则 $(1+x_0^2)(1+\cos 2x_0)$ -1的值为___.