Biol-360 Bioinformatics

Follow-up From last class

The Nucleic

The Structure of DNA and RNA DNA → mRNA → Protein

Back to the mystery guestion

DNA & RNA Review Zvelebil Ch. 1

Lec'02'slides

Follow-up

The Nucleic
Acid World
The Structure of DNA and RNA

The Structure of DNA and RNA DNA → mRNA → Protein Gene Structure and Control

mystery question

Background:

- 1 Received a prostate tissue sample from a healthy person
- 2 Extracted DNA from the sample
- 3 Used next-generation sequencing on DNA sample
- 4 Looked closely at the androgen receptor (AR) DNA sequence

Strange results: Found multiple AR DNA sequences!!!

Not just vanilla heterozygosity with two alleles from the parents, but **Many** AR variants in this tissue sample!!!

Think carefully & write on paper:

- How does this contradict Intro-Bio idea of somatic cells?
- What's going on?
- How did it happen?
- If this is common, how would that affect disease treatment?

Follow-up from last class

The Nucleic Acid World The Structure of

DNA and RNA
DNA → mRNA
→ Protein
Gene Structure
and Control

Back to th mystery question 2 The Nucleic Acid World
The Structure of DNA and RNA

Gene Structure and Contro

Building blocks of DNA & RNA

Follow-up

The Nucleic Acid World

The Structure of DNA and RNA
DNA → mRNA
→ Protein
Gene Structure and Control

DNA double helical structure

Follow-up

The Nucleic

The Structure of DNA and RNA DNA \rightarrow mRNA \rightarrow Protein Gene Structure and Control

DNA replication needs a template and primer

Follow-up

he Nucleic Icid World

The Structure of DNA and RNA
DNA → mRNA
→ Protein

→ Protein Gene Structure and Control

Back to the mystery question

templated polymerization of new strand

Figure 1-2c Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA replication is semi-conservative

Follow-up

The Nucleic Acid World

The Structure of DNA and RNA
DNA → mRNA
→ Protein
Gene Structure

Back to the mystery question

Typical error rate: 1 base in 10⁹ nucleotides. So where does genetic diversity come from?

RNA can fold back on itself

Follow-up from last class

The Nucleic Acid World The Structure of

DNA and RNA
DNA → mRNA
→ Protein
Gene Structure

Back to the mystery question How could we predict RNA folding? Why would we care?

(B)

Figure 1-6 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Outline

Follow-up from last class

The Nucleic
Acid World
The Structure of

DNA → mRNA → Protein Gene Structure and Control

Back to th mystery question The Nucleic Acid World
The Structure of DNA and R
DNA → mRNA → Protein

Central dogma of molecular biology

Follow-up from last class

Acid World

 $\begin{array}{c} \mathsf{DNA} \to \mathsf{mRNA} \\ \to \mathsf{Protein} \\ \mathsf{Gene} \ \mathsf{Structure} \end{array}$

Gene Structurand Control

mystery question

Standard triplet genetic code

Follow-up from last class

The Nucleic

DNA and RNA
DNA → mRN.
→ Protein
Gene Structure
and Control

Back to th mystery question

TTT TTC	Phe Phe	TCT TCC	Ser Ser	TAT TAC	Tyr Tyr	TGT TGC	Cys Cys
TTA	Leu	TCA	Ser	TAA	stop	TGA	stop
TTG	Leu	TCG	Ser	TAG	stop	TGG	Trp
CTT	Leu	CCT	Pro	CAT	His	CGT	Arg
CTC	Leu	CCC	Pro	CAC	His	CGC	Arg
CTA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
CTG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
ATT	lle	ACT	Thr	AAT	Asn	AGT	Ser
ATC	lle	ACC	Thr	AAC	Asn	AGC	Ser
ATA	lle	ACA	Thr	AAA	Lys	AGA	Arg
ATG	Met	ACG	Thr	AAG	Lys	AGG	Arg
GTT	Val	GCT	Ala	GAT	Asp	GGT	Gly
GTC	Val	GCC	Ala	GAC	Asp	GGC	Gly
GTA	Val	GCA	Ala	GAA	Glu	GGA	Gly
GTG	Val	GCG	Ala	GAG	Glu	GGG	Gly

Key: polar nonpolar acid base

RNA polymerase transcribes DNA \rightarrow mRNA

Follow-up from last class

The Nucleic
Acid World

The Structure of DNA and RNA
DNA → mRNA
→ Protein
Gene Structure and Control

Back to the mystery question

Which DNA strand is the template?

Transfer RNA (tRNA) adapts codon to amino acid

Follow-up from last class

The Nucleic Acid World

The Structure of DNA and RNA
DNA → mRNA
→ Protein
Gene Structure and Control

Back to th mystery question

Figure 1-9a Molecular Biology of the Cell 5/e (© Garland Science 2008)

Ribosome translates mRNA + tRNAs \rightarrow protein

Follow-up from last class

The Nucleic

The Structure of DNA and RNA DNA \rightarrow mRNA \rightarrow Protein Gene Structure

mystery question

Figure 1-10a Molecular Biology of the Cell 5/e (© Garland Science 2008)

One sequence with three reading frames

5′ 3′ C U C | A G C | G U U | A C C | A U —Leu — Ser — Val — Thr —

2 C U C A G C G U U A C C A U

— Ser — Ala — Leu — Pro—

How does the ribosome get the correct reading frame?

How would a computer get the correct reading frame?

Follow-up from last class

The Nucleic Acid World The Structure of DNA and RNA

DNA → mRNA → Protein Gene Structure and Control

Back to the mystery

Outline

Follow-up from last class

The Nucleic Acid World The Structure of DNA and RNA

DNA → mRNA → Protein Gene Structure and Control

Back to th mystery question 2 The Nucleic Acid World

The Structure of DNA and RNA DNA \rightarrow mRNA \rightarrow Protein

Gene Structure and Control

Remember this figure? (notice the transcriptional regulation)

Follow-up from last class

The Nucleic
Acid World
The Structure of
DNA and RNA

Gene Structure and Control

Genes are transcriptionally regulated

Follow-up from last class

The Nucleic Acid World

→ Protein

Gene Structure

Back to th

Prokaryotes regulate transcription

Follow-up

The Nucleic Acid World The Structure o

DNA → mRNA → Protein Gene Structure and Control

Eukaryotes have complex transcription control

Follow-up from last class

The Nucleic
Acid World

→ Protein

Gene Structure

Eukaryotic genes have introns and exons

Follow-up

The Nucleic

Acid World The Structure of DNA and RNA DNA → mRNA

Gene Structure and Control

Figure 6-21a Molecular Biology of the Cell 5/e (© Garland Science 2008)

Introns and exons have splice sites

Follow-up from last class

The Nucleic Acid World The Structure o

The Structure of DNA and RNA DNA → mRNA → Protein

Gene Structure and Control

mystery question

Can a computer find splice sites?

mRNA has distinct ribosome translation initiation sites

Follow-up from last class

The Nucleic
Acid World
The Structure of
DNA and RNA

 $\begin{array}{c} {\sf DNA} \, \to \, {\sf mRNA} \\ \to \, {\sf Protein} \\ {\sf Gene \ Structure} \\ {\sf and \ Control} \end{array}$

Back to the mystery guestion

Above is a prokaryote operon.

How does this differ from eukaryotic translation initiation?

Sequencing 6 breast cancer samples reveals androgen receptor sequence differences

Follow-up

The Nucleic

DNA and RNA
DNA → mRN
→ Protein
Gene Structure

Somatic heterozygosity opens big questions

Follow-up from last class

The Nucleic
Acid World
The Structure of
DNA and RNA
DNA → mRNA
→ Protein
Gene Structure

- Next-gen sequencing finds multiple alleles in normal tissue
- If these alleles were produced during early development, then alleles would be selected during growth and adulthood
- Selection would produce majority and minority subpopulations
- If selection really is happening within organs, how might somatic heterozygosity benefit the organism?
- If there is genetic heterozygosity, how would medicine adapt?
- For fascinating paper, see Gottlieb2010 on Blackboard.

Reading for next lecture & iClicker

Follow-up from last class

The Nucleic Acid World The Structure of DNA and RNA DNA → mRNA → Protein

Back to the mystery question

Read:

Bioinformatics and Functional Genomics, 3rd edition by Jonathan Pevsner

Chapter 1
All Sections

Chapter 13

Section "Overview of Protein Structure" to
Section "Protein Data Bank"

Pages	Notes
3–40	Read
589–601	Read