מבנה הבחינה:

- . יש לענות על 4 מתוך 5 השאלות.
 - . 25% משקל כל שאלה *
- אם תשיב/י על יותר מ- 4 שאלות, יחושב הציון לפי + התשובות הראשונות. +

משך המבחן: 3 שעות.

חומר עזר: כל חומר עזר מותר, כולל מחשבון.

שימו לב:

- * יש לנמק כל תשובה, גם אם זה לא נדרש בפירוש בגוף השאלה, אלא אם נאמר בשאלה שאין צורך לנמק.
 - * מותר להסתמך על כל טענה המופיעה בספרי הלימוד של הקורס, כולל התשובות לשאלות שבספרי הלימוד וכולל החוברת "אוסף תרגילים פתורים". אפשר להסתמך גם על הפתרונות שפורסמו למטלות של הסמסטר הנוכחי.
 - * אם ברצונך להסתמך על טענות ממפגשי הנחיה, כולל מפגשי אופק, עליך לחזור ולהוכיחן.
 - * בפתרון סעיף של שאלה מותר להסתמך על סעיפים קודמים של אותה שאלה, גם אם לא פתרת אותם.

אין צורך להחזיר את השאלון בתום הבחינה

אנא קרא/י בתשומת-לב את כל ההנחיות שבעמוד הקודם!

שאלה 1

. (תזכורת: בקורס הוא מספר טבעי). אפס הוא מספר טבעיים ${f N}$

. $\mathbf{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$: היא קבוצת המספרים השלמים

בכל סעיף קבעו אם היחס (הרלציה) שהוגדר בו הוא יחס שקילות. הוכיחו את תשובותיכם.

 $: \mathbf{N}$ א. היחס J המוגדר מעל (6 נקי)

. x-y=3n כך ש- $n\in \mathbb{N}$ אםם קיים $(x,y)\in J$

 \mathbf{Z} : ב. היחס K המוגדר מעל ב. (6 נקי)

. x-y=3n כך ש- $n\in \mathbb{Z}$ אסס קייס $(x,y)\in K$

 \mathbf{Z} ג. היחס M המוגדר מעל (6 נקי)

. x+y=3n כך ש- $n\in {\bf Z}$ אסס קיים $(x,y)\in M$

 $: \mathbf{Z}$ המוגדר מעל L היחס ד. היחס ד.

x-y=5n -ע כך ש- $n\in \mathbb{Z}$ או שקיים $n\in \mathbb{Z}$ כך ש- $n\in \mathbb{Z}$ אם קיים $n\in \mathbb{Z}$

שאלה 2

טענה

. $k+m \leq k \cdot m$ אז אינסופיות, או (סופיות או אינסופיות אדולות מ- k,m אם אם א

הנה התחלה של הוכחה לטענה

m קבוצה שעוצמתה k, ותהי k קבוצה k (י), שעוצמתה k קבוצה שעוצמתה k קבוצות כאלה, משיקולים כללים שהוזכרו בפרק 5 בתורת הקבוצות).

 $a_1 \in B$ ייהי $a_1 \in A$ ויהי אפוא אינן ריקות. אינן בפרט ש- A,B נובע בפרט אינן על

 $A:A\cup B\to A imes B$ נבנה פונקציה

המשיכו את ההוכחה מנקודה זו (ולא בדרך אחרת).

אין צורך להעתיק את החלק שרשום כאן.

במהלך החוכחה שימו לב לבעיה בחד-תד-ערכיות שעשויה להיווצר, ותנו לבעיה מענה ע"י שיפוץ במהלך החוכחה שימו לב לבעיה בחד-תד-ערכיות שעשויה להיווצר, ותנו לבעיה מענה ע"י שיפוץ קטן בפונקציה שאתם בונים. שימו לב שנתון כי $k,m\geq 2$

שאלה 3

בידינו 7 כדורים: 4 כדורים לבנים **זהים** וכדור כחול אחד, כדור אדום אחד וכדור ירוק אחד. בכל סעיף, מצאו בכמה דרכים ניתן לחלק את כל 7 הכדורים לתאים, לפי המפורט בסעיף.

- (4 נקי) א. יש 7 תאים, לשים בדיוק כדור אחד בכל תא.
- (7 נקי) ב. יש 5 תאים, אפשר לשים כמה כדורים בתא, ייתכנו תאים ריקים.
- (7 נקי) ג. יש 5 תאים, אפשר לשים כמה כדורים בתא, ייתכנו תאים ריקים, בכל תא יהיה לכל היותר כדור לבן אחד.
- (7 נקי) ד. יש 5 תאים, אפשר לשים כמה כדורים בתא, ייתכנו תאים ריקים, בכל תא יהיה לכל היותר כדור צבעוני אחד.

בכל סעיפי השאלה: התאים נחשבים שונים זה מזה. אין חשיבות לסדר הכדורים בתוך תא. כדור צבעוני הוא כדור שאינו לבן. יש להגיע לתשובה סופית מספרית.

שאלה 4

, $\{0,1,2\}$ מספר הסדרות באורך , שאיבריהן שייכים לקבוצה a_n יהי

. (מותרת הופעה של 00 ואין בהן הופעה של 11 (מותרת הופעה של 10).

דוגמאות לסדרות **מותרות** באורך 5: 12211, 11110.

דוגמאות לסדרות **אסורות** באורך 5: 11100, 11100.

- - . a_n ב. פתרי את יחס הנסיגה וקבלי נוסחה מפורשת עבור (15) ב. ביטויים כגון $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ יש להשאיר כפי שהם . $\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}$ ביטויים כגון $\sqrt{12}$ יש להעביר לצורה ביטויים כגון

שאלה 5 - מעבר לדף.

שאלה 5

:מוגדר כך מוגדר כך

. $\{1,2,3,4,5,6,7\}$ הצמתים של 3 הם הקבוצות בנות הקבוצות הם G

G אומת צומת $\{1,4,7\}$ היא אומת של

 $|A\cap B|=1$ בין שני צמתים שונים A,B יש קשת אם ורק אם

. {2,3,4} למשל יש קשת בין

- . א. הוכח ש- G קשיר. הדרכה: הפרד למקרים לפי גודל החיתוך בין שני צמתים. G
 - הוכח. G י ב. מהי דרגת כל צומת ב- G י הוכח.
 - . ג. כמה קשתות יש ב- G י הוכח.
 - . ד. הוכח ש- G הוא המילטוני.

!กทร์วิกล