Recommender System Using Apriori

Import library

```
In [1]: import numpy as np
    import pandas as pd
    import warnings
    warnings.filterwarnings("ignore")

%matplotlib inline
```

Data preprocessing

```
In [31]: ds = pd.read_csv('Groceries_dataset.csv')
ds.head()
```

Out[31]:

itemDescription	Date	Member_number	
tropical fruit	21-07-2015	1808	0
whole milk	05-01-2015	2552	1
pip fruit	19-09-2015	2300	2
other vegetables	12-12-2015	1187	3
whole milk	01-02-2015	3037	4

```
In [32]: ds.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 38765 entries, 0 to 38764
         Data columns (total 3 columns):
                               Non-Null Count Dtype
          # Column
              Member_number
                               38765 non-null int64
          1 Date
                               38765 non-null object
          2 itemDescription 38765 non-null object
         dtypes: int64(1), object(2)
         memory usage: 908.7+ KB
In [33]: ds.isna().any()
Out[33]: Member number
                            False
                            False
         Date
         itemDescription
                            False
         dtype: bool
In [34]: ds['customerID'] = ds.groupby(['Member_number','Date']).ngroup()
         ds = ds.sort values('customerID')
         ds.head()
Out[34]:
```

customerID	itemDescription	Date	Member_number	
0	semi-finished bread	15-03-2015	1000	20992
0	whole milk	15-03-2015	1000	8395
0	yogurt	15-03-2015	1000	24544
0	sausage	15-03-2015	1000	4843
1	salty snack	24-06-2014	1000	32851

Create recommender system from the dataset

```
In [65]: from apvori import apriori
         rules = apriori(transactions = transaction, min support = 0.001, min confidence = 0.01, max length = 3)
         results = list(rules)
         results
          RelationRecord(items=frozenset({'yogurt', 'butter milk'}), support=0.0012697988371315912, ordered statistics=[Order
         edStatistic(items base=frozenset({'butter milk'}), items add=frozenset({'yogurt'}), confidence=0.07224334600760456,
          lift=0.8412273823438031), OrderedStatistic(items base=frozenset({'yogurt'}), items add=frozenset({'butter milk'}),
          confidence=0.014785992217898832, lift=0.8412273823438031)]),
          RelationRecord(items=frozenset({'citrus fruit', 'candy'}), support=0.0010024727661565194, ordered statistics=[Order
         edStatistic(items base=frozenset({'candy'}), items add=frozenset({'citrus fruit'}), confidence=0.06976744186046512,
          lift=1.3131197893813076), OrderedStatistic(items base=frozenset({'citrus fruit'}), items add=frozenset({'candy'}),
          confidence=0.018867924528301886, lift=1.3131197893813076)]),
          RelationRecord(items=frozenset({'other vegetables', 'candy'}), support=0.0011361358016440553, ordered statistics=[0
         rderedStatistic(items base=frozenset({'candy'}), items add=frozenset({'other vegetables'}), confidence=0.07906976744
         186046, lift=0.6475757691475413)]),
          RelationRecord(items=frozenset({'rolls/buns', 'candy'}), support=0.0014702933903628951, ordered statistics=[Ordered
         Statistic(items base=frozenset({'candy'}), items add=frozenset({'rolls/buns'}), confidence=0.10232558139534884, lift
         =0.9301929978241826), OrderedStatistic(items base=frozenset({'rolls/buns'}), items add=frozenset({'candy'}), confide
         nce=0.013365735115431349, lift=0.9301929978241826)]),
          RelationRecord(items=frozenset({'soda', 'candy'}), support=0.0012697988371315912, ordered statistics=[OrderedStatis
         tic(items base=frozenset({'candy'}), items add=frozenset({'soda'}), confidence=0.08837209302325581, lift=0.910056178
         8761025), OrderedStatistic(items base=frozenset({'soda'}), items add=frozenset({'candy'}), confidence=0.013076393668
         27254, lift=0.9100561788761025)]),
          RelationRecord(items=frozenset({'whole milk', 'candy'}), support=0.002138608567800575, ordered statistics=[OrderedS
In [66]: def inspect(results):
                         = [tuple(result[0]) for result in results]
             items
                         = [result[1] for result in results]
             supports
             confidences = [result[2][0][2] for result in results]
                         = [result[2][0][3] for result in results]
             lifts
             return list(zip(items, supports, confidences, lifts))
         resultsinDataFrame = pd.DataFrame(inspect(results), columns = ['Items combination', 'Support', 'Confidence', 'Lift'])
```

In [67]: resultsinDataFrame

Out[67]:

	Items combination	Support	Confidence	Lift
0	(UHT-milk,)	0.021386	0.021386	1.000000
1	(beef,)	0.033950	0.033950	1.000000
2	(berries,)	0.021787	0.021787	1.000000
3	(beverages,)	0.016574	0.016574	1.000000
4	(bottled beer,)	0.045312	0.045312	1.000000
660	(rolls/buns, whole milk, sausage)	0.001136	0.010328	1.153275
661	(rolls/buns, whole milk, soda)	0.001002	0.010323	0.739091
662	(rolls/buns, yogurt, whole milk)	0.001337	0.012151	1.088685
663	(whole milk, soda, sausage)	0.001069	0.017719	1.523708
664	(yogurt, whole milk, sausage)	0.001470	0.024363	2.182917

665 rows × 4 columns

```
In [68]: resultsinDataFrame.nlargest(n = 10, columns = 'Lift')
```

Out[68]:

	Items combination	Support	Confidence	Lift
664	(yogurt, whole milk, sausage)	0.001470	0.024363	2.182917
301	(citrus fruit, specialty chocolate)	0.001403	0.026415	1.653762
373	(tropical fruit, flour)	0.001069	0.109589	1.617141
109	(beverages, sausage)	0.001537	0.092742	1.536764
663	(whole milk, soda, sausage)	0.001069	0.017719	1.523708
487	(napkins, pastry)	0.001738	0.078550	1.518529
576	(processed cheese, root vegetables)	0.001069	0.105263	1.513019
439	(hard cheese, pip fruit)	0.001069	0.072727	1.482586
635	(yogurt, soft cheese)	0.001270	0.126667	1.474952
339	(curd, sausage)	0.002941	0.087302	1.446615

```
In [ ]:
```