WHAT IS CLAIMED:

A composition for inhibiting growth of chondrosarcoma cells comprising an
effective amount of a peptide of formula I and a pharmaceutically acceptable
carrier:

5

$$Xaa_1-Xaa_2-Xaa_3-Xaa_4-Xaa_5-Xaa_6 Xaa_7-Xaa_8-Xaa_9$$
 (I)

wherein:

Xaa₁, Xaa₄, and Xaa₆ are separately each apolar amino acids;

10 Xaa₂ is a basic amino acid;

Xaa₃ is a cysteine-like amino acid;

Xaa₅ is a polar or aliphatic amino acid;

Xaa₇ is an acidic amino acid;

Xaa₈ is an aliphatic or polar amino acid; and

- 15 Xaa₉ is an aliphatic, apolar or basic amino acid.
 - A composition for inhibiting growth of chondrosarcoma cells comprising an
 effective amount of a peptide of formula II and a pharmaceutically acceptable
 carrier:
- 20 Xaa_{10} - Xaa_{11} - Xaa_{12} Xaa_{13} - Xaa_{14} - Xaa_{15} - Xaa_{16} - Xaa_{17} - Xaa_{18} - Xaa_{19} (II) wherein:

Xaa₁₀ is a polar, acidic, basic or apolar amino acid;

Xaa11 is a polar or aromatic amino acid;

Xaa₁₂ is a polar, basic, aliphatic or apolar amino acid;

25 Xaa₁₃ is an aromatic, aliphatic, polar or acidic amino acid;

Xaa₁₄ is an aromatic, apolar or polar amino acid;

Xaa₁₅ is an apolar or acidic amino acid;

Xaa₁₆ is a basic, a polar or an apolar amino acid;

Xaa₁₇ is a basic, a polar, an aliphatic, an apolar or an acidic amino acid;

30 Xaa₁₈ is an apolar or an aliphatic amino acid; and

Xaa₁₉ is a basic or an aliphatic amino acid.

10

A composition for inhibiting growth of chondrosarcoma cells comprising an
effective amount of a peptide of formula III and a pharmaceutically acceptable
carrier;

 Xaa_{1} - Xaa_{2} - Xaa_{3} - Xaa_{4} - Xaa_{5} - Xaa_{6} - Xaa_{7} - Xaa_{8} - Xaa_{9} - Xaa_{10} - Xaa_{11} - Xaa_{12} - Xaa_{13} - Xaa_{15} - Xaa_{15} - Xaa_{16} - Xaa_{17} - Xaa_{18} - Xaa_{19} (III)

wherein

Xaa₁, Xaa₄, and Xaa₆ are separately each apolar amino acids;

Xaa2 is a basic amino acid;

Xaa3 is a cysteine-like amino acid;

Xaa₅ is a polar or aliphatic amino acid;

Xaa₇ is an acidic amino acid;

Xaa₈ is an aliphatic or polar amino acid;

Xaa₉ is an aliphatic, apolar or basic amino acid;

Xaa₁₀ is a polar, acidic, basic or apolar amino acid;

15 Xaa₁₁ is a polar or aromatic amino acid;

Xaa₁₂ is a polar, basic, aliphatic or apolar amino acid;

Xaa₁₃ is an aromatic, aliphatic, polar or acidic amino acid;

Xaa₁₄ is an aromatic, apolar or polar amino acid;

Xaa₁₅ is an apolar or acidic amino acid;

20 Xaa₁₆ is a basic, a polar or an apolar amino acid;

Xaa₁₇ is a basic, a polar, an aliphatic, an apolar or an acidic amino acid;

Xaa₁₈ is an apolar or an aliphatic amino acid; and

Xaa₁₉ is a basic or an aliphatic amino acid.

4. A composition for inhibiting growth of chondrosarcoma cells comprising an effective amount of a peptide of formula IV (SEQ ID NO:18) and a pharmaceutically acceptable carrier:

Xaa_a-Xaa_b-Xaa_c-Xaa_d-Xaa_e-Xaa_f-Xaa_g-Xaa_h-Xaa_i-Xaa_j-Xaa_k-Xaa_L
Xaa_m-Xaa_n-Xaa_o-Xaa_p- Xaa₁-Xaa₂-Xaa₃-Xaa₄-Xaa₅-Xaa₆
Xaa₇-Xaa₈-Xaa₉-Xaa₁₀-Xaa₁₁-Xaa₁₂-Xaa₁₃-Xaa₁₄
Xaa₁₅-Xaa₁₆-Xaa₁₇-Xaa₁₈-Xaa₁₉ (IV)

Xaa_a is proline;

Xaa_b is glutamine or glutamic acid;

Xaa_c is threonine;

5 Xaa_d is glycine;

Xaa_e is aspartic acid or glutamic acid;

Xaa_f is leucine;

Xaag is aspartic acid;

Xaa_h is glutamine or serine;

10 Xaa_i is asparagine or alanine;

Xaa_i is threonine;

Xaa_k is isoleucine or leucine;

Xaa_L is glutamic acid or lysine;

Xaa_m is threonine or alanine;

15 Xaa_n is methionine;

Xaa_o is arginine;

Xaa_p is lysine or threonine;

Xaa₁₇ is lysine or aspartic acid;

Xaa₁₉ is lysine.

Xaa₁ is proline;

Xaa2 is arginine;

Xaa₃ is cysteine;

Xaa4 is glycine;

Xaa₅ is valine or asparagine;

Xaa₆ is proline;

Xaa₇ is aspartic acid;

Xaa₈ is valine or leucine;

Xaa₉ is alanine or glycine;

Xaa₁₀ is asparagine or arginine;

Xaa₁₁ is tyrosine or phenylalanine;

Xaa₁₂ is asparagine or glutamine;

Xaa₁₃ is phenylalanine or threonine;

Xaa₁₄ is phenylalanine;

Xaa₁₅ is proline or glutamic acid;

Xaa₁₆ is arginine or glycine;

Xaa₁₈ is proline or leucine; and

20

- 5. The composition of any one of claims 1-4, wherein an apolar amino acid is methionine, glycine or proline.
- 6. The composition of any one of claims 1-4, wherein a basic amino acid is histidine, lysine, arginine, 2,3-diaminopropionic acid, ornithine, homoarginine, ?-aminophenylalanine, and 2,4-diaminobutyric acid. The composition of any one of claims 1-4, wherein a cysteine-like amino acid is cysteine, homocysteine, penicillamine, or β-methyl cysteine.
- The composition of any one of claims 1-4, wherein an aliphatic amino acid is alanine, valine, leucine, isoleucine, t-butylalanine, t-butylalanine, N-methylisoleucine, norleucine, N-methylvaline, cyclohexylalanine, β-alanine, N-methylglycine, or a-aminoisobutyric acid.

- 8. The composition of any one of claims 1-4, wherein an acidic amino acid is aspartic acid or glutamic acid.
- 5 9. The composition of any one of claims 1-4, wherein a polar amino acid is asparagine, glutamine, serine, threonine, tyrosine, citrulline, N-acetyl lysine, methionine sulfoxide, or homoserine, or an apolar amino acid such as methionine, glycine or proline.
- 10. The composition of any one of claims 1-4, wherein an aromatic amino acid is phenylalanine, tyrosine, tryptophan, phenylglycine, naphthylalanine, \$\beta\$-2-thienylalanine, \$1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid, 4-chlorophenylalanine, 2-fluorophenylalanine, 3-fluorophenylalanine, 4-fluorophenylalanine, pyridylalanine, or 3-benzothienyl alanine.

20

25

- 11. The composition of any one of claims 1-4 wherein the peptide inhibits proteinase activity of matrix metalloproteinase-1, matrix metalloproteinase-2, matrix metalloproteinase-3, matrix metalloproteinase-4, matrix metalloproteinase-5, matrix metalloproteinase-6, matrix metalloproteinase-7, matrix metalloproteinase-8, and matrix metalloproteinase-9, matrix metalloproteinase-10, matrix metalloproteinase-11, matrix metalloproteinase-12, or matrix metalloproteinase-13.
- 12. The composition of any one of claims 1-4 wherein inhibiting growth of chondrosarcoma inhibits growth of conventional chondrosarcoma, myxoid chondrosarcoma, mesenchymal chondrosarcoma, clear cell chondrosarcoma, or dedifferentiated (spindle cell) chondrosarcoma.
 - 13. The composition of any one of claims 1-4 wherein inhibiting growth of chondrosarcoma cells inhibits growth of a bone tumor.

30

14. The composition of any one of claims 1-4, wherein inhibiting growth of chondrosarcoma cells diminishes a size of a bone tumor.

- The composition of claim 12, 13 or 14, wherein the tumor is metastatic, nonmetastatic, vascularized, non-vascularized, hard or soft.
- The composition of any one of claims 1-4 wherein the peptide comprises SEQ ID
 NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6,
 SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11,
 SEQ ID NO:12, or SEQ ID NO:13.
- 17. An anti-sarcoma composition that comprises a therapeutically effective amount of peptide that comprises SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, or SEQ ID NO:13, and a pharmaceutically acceptable carrier, wherein the peptide is capable of inhibiting growth of chondrosarcoma cells.

18. A method for decreasing growth of chondrosarcoma cells that comprises contacting a chondrosarcoma cell with an effective amount of a peptide of formula I:

$$Xaa_1-Xaa_2-Xaa_3-Xaa_4-Xaa_5-Xaa_6 Xaa_7-Xaa_8-Xaa_9$$
 (I)

20

25

wherein:

Xaa₁, Xaa₄, and Xaa₆ are separately each apolar amino acids;

Xaa2 is a basic amino acid;

Xaa₃ is a cysteine-like amino acid;

Xaa₅ is a polar or aliphatic amino acid;

Xaa₇ is an acidic amino acid;

Xaa₈ is an aliphatic or polar amino acid; and

Xaa₉ is an aliphatic, apolar or basic amino acid.

30 19. A method for decreasing growth of chondrosarcoma cells that comprises contacting a chondrosarcoma cell with an effective amount of a peptide of formula II:

$$Xaa_{10}-Xaa_{11}-Xaa_{12} Xaa_{13}-Xaa_{14}-Xaa_{15}-Xaa_{16}-Xaa_{17}-Xaa_{18}-Xaa_{19}$$
 (II)

wherein:

Xaa₁₀ is a polar, acidic, basic or apolar amino acid;

Xaa11 is a polar or aromatic amino acid;

5 Xaa₁₂ is a polar, basic, aliphatic or apolar amino acid;

Xaa₁₃ is an aromatic, aliphatic, polar or acidic amino acid;

Xaa₁₄ is an aromatic, apolar or polar amino acid;

Xaa₁₅ is an apolar or acidic amino acid;

Xaa₁₆ is a basic, a polar or an apolar amino acid;

10 Xaa₁₇ is a basic, a polar, an aliphatic, an apolar or an acidic amino acid;

Xaa₁₈ is an apolar or an aliphatic amino acid; and

Xaa₁₉ is a basic or an aliphatic amino acid.

20. A method for decreasing growth of chondrosarcoma cells that comprises contacting a chondrosarcoma cell with an effective amount of a peptide of formula III:

$$Xaa_{1}-Xaa_{2}-Xaa_{3}-Xaa_{4}-Xaa_{5}-Xaa_{6}-Xaa_{7}-Xaa_{8}-Xaa_{9}-Xaa_{10}-Xaa_{11}-Xaa_{12}-Xaa_{13}-Xaa_{14}-Xaa_{15}-Xaa_{16}-Xaa_{17}-Xaa_{18}-Xaa_{19}$$
 (III)

wherein:

30

20 Xaa₁, Xaa₄, and Xaa₆ are separately each apolar amino acids;

Xaa2 is a basic amino acid;

Xaa3 is a cysteine-like amino acid;

Xaa₅ is a polar or aliphatic amino acid;

Xaa₇ is an acidic amino acid;

25 Xaa₈ is an aliphatic or polar amino acid;

Xaa₉ is an aliphatic, apolar or basic amino acid;

Xaa₁₀ is a polar, acidic, basic or apolar amino acid;

Xaa11 is a polar or aromatic amino acid;

Xaa₁₂ is a polar, basic, aliphatic or apolar amino acid;

Xaa₁₃ is an aromatic, aliphatic, polar or acidic amino acid;

Xaa₁₄ is an aromatic, apolar or polar amino acid;

Xaa₁₅ is an apolar or acidic amino acid;

Xaa₁₆ is a basic, a polar or an apolar amino acid;

Xaa₁₇ is a basic, a polar, an aliphatic, an apolar or an acidic amino acid; Xaa₁₈ is an apolar or an aliphatic amino acid; and Xaa₁₉ is a basic or an aliphatic amino acid.

5 21. A method for decreasing growth of chondrosarcoma cells that comprises contacting a chondrosarcoma cell with an effective amount of a peptide of formula IV (SEQ ID NO:18):

wherein:

25

15 Xaa_a is proline; Xaa₁ is proline; Xaa_b is glutamine or glutamic acid; Xaa₂ is arginine; Xaa_c is threonine; Xaa₃ is cysteine; Xaa_d is glycine; Xaa_e is aspartic acid or glutamic acid; Xaa₅ is valine or asparagine; Xaa_f is leucine; Xaa₆ is proline;

Xaa_g is aspartic acid;
 Xaa_h is glutamine or serine;
 Xaa_k is valine or leucine;
 Xaa_i is asparagine or alanine;
 Xaa_g is alanine or glycine;

Xaa_i is threonine;
 Xaa₁₀ is asparagine or arginine;
 Xaa_k is isoleucine or leucine;
 Xaa₁₁ is tyrosine or phenylalanine;
 Xaa₁₂ is asparagine or glutamine;

Xaa_n is methionine; Xaa₁₄ is phenylalanine;

Xaa₀ is arginine; Xaa₁₅ is proline or glutamic acid;

Xaa_p is lysine or threonine; Xaa₁₆ is arginine or glycine;
 Xaa₁₇ is lysine or aspartic acid; Xaa₁₈ is proline or leucine; and

Xaa₁₉ is lysine.

Xaa_m is threonine or alanine;

Xaa₁₃ is phenylalanine or threonine;

22.	The method of any one of claims 18-21, wherein the peptide comprises SEQ ID
	NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6,
	SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11,
	SEQ ID NO:12, or SEQ ID NO:13.

23. The method of any one of claims 18-21, wherein the peptide comprises SEQ ID NO:11.

10

24. The method of any one of claims 18-21, wherein an apolar amino acid is methionine, glycine or proline.

25. The method of any one of claims 18-21, wherein a basic amino acid is histidine, lysine, arginine, 2,3-diaminopropionic acid, ornithine, homoarginine, ?-aminophenylalanine, and 2,4-diaminobutyric acid.

15

26. The method of any one of claims 18-21, wherein a cysteine-like amino acid is cysteine, homocysteine, penicillamine, or \(\beta\)-methyl cysteine.

20

27. The method of any one of claims 18-21, wherein an aliphatic amino acid is alanine, valine, leucine, isoleucine, t-butylalanine, t-butylalanine, N-methylisoleucine, norleucine, N-methylvaline, cyclohexylalanine, β-alanine, N-methylglycine, or a-aminoisobutyric acid.

25

28. The method of any one of claims 18-21, wherein an acidic amino acid is aspartic acid or glutamic acid.

29. The method of any one of claims 18-21, wherein a polar amino acid is asparagine, glutamine, serine, threonine, tyrosine, citrulline, N-acetyl lysine, methionine sulfoxide, or homoserine, or an apolar amino acid such as methionine, glycine or proline.

30

30. The method of any one of claims 18-21, wherein an aromatic amino acid is phenylalanine, tyrosine, tryptophan, phenylglycine, naphthylalanine, β-2-

thienylalanine, 1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid, 4-chlorophenylalanine, 2-fluorophenylalanine, 3-fluorophenylalanine, 4-fluorophenylalanine, pyridylalanine, or 3-benzothienyl alanine.

- 5 31. The method of any one of claims 18-21, that further comprises locally administering the peptide to a tumor in a mammal.
 - 32. The method of claim 31, wherein the tumor is metastatic, non-metastatic, vascularized, non-vascularized, hard or soft.

10

33. The method of any one of claims 18-21, wherein decreasing growth of chondrosarcoma cells decreases growth of conventional chondrosarcoma, myxoid chondrosarcoma, mesenchymal chondrosarcoma, clear cell chondrosarcoma, or dedifferentiated (spindle cell) chondrosarcoma.