Ínría-

Interval Prediction for Continuous-Time Systems with Parametric Uncertainties

Edouard Leurent^{1,2}, Denis Efimov¹, Tarek Raïssi³, Wilfrid Perruquetti⁴

¹ Inria, Lille, France

² Renault Group, Guyancourt, France

³ CNAM, Paris, France

⁴ Centrale Lille, France

Contents

- **01.** Problem statement
- **02**. Our proposed predictor
- 03. Application to autonomous driving

01

Problem statement

Motivation

We are interested in trajectory planning for an autonomous vehicle.

- 1. We need to predict the behaviours of other drivers
- 2. These behaviours are uncertain and non-linear

In order to efficiently capture model uncertainty, we consider the modelling framework of Linear Parameter-Varying systems.

Linear Parameter-Varying systems

$$\dot{x}(t) = A(\theta(t))x(t) + Bd(t)$$

There are two sources of uncertainty:

- Parametric uncertainty $\theta(t)$
- External perturbations d(t)

Interval Prediction

Can we design an interval predictor $[\underline{x}(t), \overline{x}(t)]$ that verifies:

- inclusion property: $\forall t, \underline{x}(t) \leq x(t) \leq \overline{x}(t)$;
- stable dynamics?

We want the predictor to be as tight as possible.

Assumptions

Assumption (Bounded trajectories)

- $||x||_{\infty} < \infty$
- $x(0) \in [\underline{x}_0, \overline{x}_0]$ for some known $\underline{x}_0, \overline{x}_0 \in \mathbb{R}^n$

Assumptions

Assumption (Bounded trajectories)

- $||x||_{\infty} < \infty$
- $x(0) \in [\underline{x}_0, \overline{x}_0]$ for some known $\underline{x}_0, \overline{x}_0 \in \mathbb{R}^n$

Assumption (Bounded parameters)

- $\theta(t) \in \Theta$ for some known Θ
- The matrix function $A(\theta)$ is known

Assumptions

Assumption (Bounded trajectories)

- $||x||_{\infty} < \infty$
- $x(0) \in [\underline{x}_0, \overline{x}_0]$ for some known $\underline{x}_0, \overline{x}_0 \in \mathbb{R}^n$

Assumption (Bounded parameters)

- $\theta(t) \in \Theta$ for some known Θ
- The matrix function $A(\theta)$ is known

Assumption (Bounded perturbations)

• $d(t) \in [\underline{d}(t), \overline{d}(t)]$ for some known signals $\underline{d}, \overline{d} \in \mathcal{L}_{\infty}^n$

How to proceed?

A first idea

Assume that $\underline{x}(t) \leq x(t) \leq \overline{x}(t)$, for some $t \geq 0$.

Assume that $\underline{x}(t) \leq x(t) \leq \overline{x}(t)$, for some $t \geq 0$.

Ly To propagate the interval to x(t + dt), we need to bound A(θ(t))x(t).

Assume that $\underline{x}(t) \leq x(t) \leq \overline{x}(t)$, for some $t \geq 0$.

- → To propagate the interval to <math>x(t + dt), we need to bound $A(\theta(t))x(t)$.
- → Why not use interval arithmetics?

Assume that $\underline{x}(t) \le x(t) \le \overline{x}(t)$, for some $t \ge 0$.

- → To propagate the interval to <math>x(t + dt), we need to bound $A(\theta(t))x(t)$.
- → Why not use interval arithmetics?

Lemma (Image of an interval (Efimov et al. 2012))

If A a known matrix, then

$$A^{+}\underline{x} - A^{-}\overline{x} \le Ax \le A^{+}\overline{x} - A^{-}\underline{x}.$$

where
$$A^{+} = \max(A, 0)$$
 and $A^{-} = A - A^{+}$.

Assume that $\underline{x}(t) \leq x(t) \leq \overline{x}(t)$, for some $t \geq 0$.

- L→ To propagate the interval to x(t + dt), we need to bound $A(\theta(t))x(t)$.
- → Why not use interval arithmetics?

Lemma (Product of intervals (Efimov et al. 2012))

If A is unknown but bounded $\underline{A} \leq A \leq \overline{A}$,

$$\underline{A}^{+}\underline{x}^{+} - \overline{A}^{+}\underline{x}^{-} - \underline{A}^{-}\overline{x}^{+} + \overline{A}^{-}\overline{x}^{-} \le Ax$$
$$\le \overline{A}^{+}\overline{x}^{+} - \underline{A}^{+}\overline{x}^{-} - \overline{A}^{-}\underline{x}^{+} + \underline{A}^{-}\underline{x}^{-}.$$

Assume that $\underline{x}(t) \leq x(t) \leq \overline{x}(t)$, for some $t \geq 0$.

- → To propagate the interval to <math>x(t + dt), we need to bound $A(\theta(t))x(t)$.
- → Why not use interval arithmetics?

Lemma (Product of intervals (Efimov et al. 2012))

If A is unknown but bounded $\underline{A} \leq A \leq \overline{A}$,

$$\underline{A}^{+}\underline{x}^{+} - \overline{A}^{+}\underline{x}^{-} - \underline{A}^{-}\overline{x}^{+} + \overline{A}^{-}\overline{x}^{-} \le Ax$$
$$\le \overline{A}^{+}\overline{x}^{+} - \underline{A}^{+}\overline{x}^{-} - \overline{A}^{-}\underline{x}^{+} + \underline{A}^{-}\underline{x}^{-}.$$

✓ Since $A(\theta)$ and the set Θ are known, we can easily compute such bounds $\underline{A} \leq A(\theta(t)) \leq \overline{A}$

Following this result, define the predictor:

$$\dot{\underline{x}}(t) = \underline{A}^{+}\underline{x}^{+}(t) - \overline{A}^{+}\underline{x}^{-}(t) - \underline{A}^{-}\overline{x}^{+}(t)
+ \overline{A}^{-}\overline{x}^{-}(t) + B^{+}\underline{d}(t) - B^{-}\overline{d}(t), \qquad (1)$$

$$\dot{\overline{x}}(t) = \overline{A}^{+}\overline{x}^{+}(t) - \underline{A}^{+}\overline{x}^{-}(t) - \overline{A}^{-}\underline{x}^{+}(t)
+ \underline{A}^{-}\underline{x}^{-}(t) + B^{+}\overline{d}(t) - B^{-}\underline{d}(t),$$

$$\underline{x}(0) = \underline{x}_{0}, \ \overline{x}(0) = \overline{x}_{0},$$

Following this result, define the predictor:

$$\dot{\underline{x}}(t) = \underline{A}^{+}\underline{x}^{+}(t) - \overline{A}^{+}\underline{x}^{-}(t) - \underline{A}^{-}\overline{x}^{+}(t)
+ \overline{A}^{-}\overline{x}^{-}(t) + B^{+}\underline{d}(t) - B^{-}\overline{d}(t), \qquad (1)$$

$$\dot{\overline{x}}(t) = \overline{A}^{+}\overline{x}^{+}(t) - \underline{A}^{+}\overline{x}^{-}(t) - \overline{A}^{-}\underline{x}^{+}(t)
+ \underline{A}^{-}\underline{x}^{-}(t) + B^{+}\overline{d}(t) - B^{-}\underline{d}(t),$$

$$\underline{x}(0) = \underline{x}_{0}, \ \overline{x}(0) = \overline{x}_{0},$$

Proposition (Inclusion property)

✓ The predictor (1) satisfies
$$\underline{x}(t) \le x(t) \le \overline{x}(t)(t)$$

Following this result, define the predictor:

$$\dot{\underline{x}}(t) = \underline{A}^{+}\underline{x}^{+}(t) - \overline{A}^{+}\underline{x}^{-}(t) - \underline{A}^{-}\overline{x}^{+}(t)
+ \overline{A}^{-}\overline{x}^{-}(t) + B^{+}\underline{d}(t) - B^{-}\overline{d}(t), \qquad (1)$$

$$\dot{\overline{x}}(t) = \overline{A}^{+}\overline{x}^{+}(t) - \underline{A}^{+}\overline{x}^{-}(t) - \overline{A}^{-}\underline{x}^{+}(t)
+ \underline{A}^{-}\underline{x}^{-}(t) + B^{+}\overline{d}(t) - B^{-}\underline{d}(t),$$

$$\underline{x}(0) = \underline{x}_{0}, \ \overline{x}(0) = \overline{x}_{0},$$

Proposition (Inclusion property)

- ✓ The predictor (1) satisfies $\underline{x}(t) \le x(t) \le \overline{x}(t)(t)$
 - ? But is it stable?

Consider the scalar system, for all $t \ge 0$:

$$\dot{x}(t) = -\theta(t)x(t) + d(t), \text{ where } \begin{cases} x(0) \in [\underline{x}_0, \overline{x}_0] = [1.0, 1.1], \\ \theta(t) \in \Theta = [\underline{\theta}, \overline{\theta}] = [1, 2], \\ d(t) \in [\underline{d}, \overline{d}] = [-0.1, 0.1], \end{cases}$$

√ The system is always stable

Consider the scalar system, for all $t \ge 0$:

$$\dot{x}(t) = -\theta(t)x(t) + d(t), \text{ where } \begin{cases} x(0) \in [\underline{x}_0, \overline{x}_0] = [1.0, 1.1], \\ \theta(t) \in \Theta = [\underline{\theta}, \overline{\theta}] = [1, 2], \\ d(t) \in [\underline{d}, \overline{d}] = [-0.1, 0.1], \end{cases}$$

- √ The system is always stable
- X The predictor (1) is unstable

02

Our proposed predictor

Additional assumption

Assumption (Polytopic Structure)

There exist A_0 Metzler and $\Delta A_0, \dots, \Delta A_N$ such that:

$$A(heta) = \underbrace{A_0}_{egin{array}{c} Nominal \ dynamics \end{array}} + \sum_{i=1}^N \lambda_i(heta) \Delta A_i, \quad \sum_{i=1}^N \underbrace{\lambda_i(heta)}_{\geq 0} = 1; \quad orall heta \in \Theta$$

Denote

$$\Delta A_{+} = \sum_{i=1}^{N} \Delta A_{i}^{+}, \ \Delta A_{-} = \sum_{i=1}^{N} \Delta A_{i}^{-},$$

We define the predictor

$$\underline{\dot{x}}(t) = A_{0}\underline{x}(t) - \Delta A_{+}\underline{x}^{-}(t) - \Delta A_{-}\overline{x}^{+}(t)
+ B^{+}\underline{d}(t) - B^{-}\overline{d}(t),
\dot{\overline{x}}(t) = A_{0}\overline{x}(t) + \Delta A_{+}\overline{x}^{+}(t) + \Delta A_{-}\underline{x}^{-}(t)
+ B^{+}\overline{d}(t) - B^{-}\underline{d}(t),
\underline{x}(0) = \underline{x}_{0}, \ \overline{x}(0) = \overline{x}_{0}$$
(2)

Theorem (Inclusion property)

The predictor (2) ensures $\underline{x}(t) \le x(t) \le \overline{x}(t)$.

Theorem (Stability)

If there exist diagonal matrices P, Q, Q_+ , Q_- , Z_+ , Z_- , Ψ_+ , Ψ_- , Ψ , $\Gamma \in \mathbb{R}^{2n \times 2n}$ such that the following LMIs are satisfied:

$$P + \min\{Z_+, Z_-\} > 0, \ \Upsilon \leq 0, \ \Gamma > 0,$$
 $Q + \min\{Q_+, Q_-\} + 2\min\{\Psi_+, \Psi_-\} > 0,$

where $\Upsilon = \Upsilon(A_0, \Delta A_-, \Delta A_+, \Psi_-, \Psi_+, \Psi)$, then the predictor (2) is input-to-state stable with respect to the inputs \underline{d} , \overline{d} .

- 1. Define the extended state vector as $X = [\underline{x}^{\top} \ \overline{x}^{\top}]^{\top}$
- 2. It follows the dynamics

$$\dot{X}(t) = AX(t) + R_{+}X^{+}(t) - R_{-}X^{-}(t) + \delta(t)$$

$$\mathcal{A} = \left[\begin{array}{cc} A_0 & 0 \\ 0 & A_0 \end{array} \right] \ R_+ = \left[\begin{array}{cc} 0 & -\Delta A_- \\ 0 & \Delta A_+ \end{array} \right], \ R_- = \left[\begin{array}{cc} \Delta A_+ & 0 \\ -\Delta A_- & 0 \end{array} \right]$$

3. Consider a candidate Lyapunov function:

$$V(X) = X^{T}PX + X^{T}Z_{+}X^{+} - X^{T}Z_{-}X^{-}$$

- 4. V(X) is positive definite provided that $P + \min\{Z_+, Z_-\} > 0$,
- 5. Check on which condition we have $\dot{V}(X) \leq 0$

Recall the scalar system:

$$\dot{x}(t) = -\theta(t)x(t) + d(t), \text{ where } \begin{cases} x(0) \in [\underline{x}_0, \overline{x}_0] = [1.0, 1.1], \\ \theta(t) \in \Theta = [\underline{\theta}, \overline{\theta}] = [1, 2], \\ d(t) \in [\underline{d}, \overline{d}] = [-0.1, 0.1], \end{cases}$$

- ✓ The system is always stable ✓ The predictor (2) is stable

03

Application to autonomous driving

A multi-agent system

$$\dot{z}_i = f_i(Z, \theta_i), \ i = \overline{1, N},$$

where

- $z_i = [x_i, y_i, v_i, \psi_i]^{\top} \in \mathbb{R}^4$ is the state of an agent
- $\theta_i \in \mathbb{R}^5$ is the corresponding unknown behavioural parameters
- $Z = [z_1, \dots, z_N]^{\top} \in \mathbb{R}^{4N}$ is the joint state of the traffic
- $\theta = [\theta_1, \dots, \theta_N]^\top \in \Pi \subset \mathbb{R}^{5N}$

States	(x_i, y_i) v_i ψ_i	position longitudinal velocity yaw angle
Controls	a_i eta_i	longitudinal acceleration slip angle at the center of gravity

Each vehicle follows the Kinematic Bicycle Model:

$$\dot{x}_i = v_i \cos(\psi_i),$$

 $\dot{y}_i = v_i \sin(\psi_i),$
 $\dot{v}_i = a_i,$
 $\dot{\psi}_i = \frac{v_i}{I} \tan(\beta_i),$

Longitudinal control

A linear controller using three features inspired from the intelligent driver model (IDM) [Treiber et al. 2000].

$$a_i = \begin{bmatrix} \theta_{i,1} & \theta_{i,2} & \theta_{i,3} \end{bmatrix} \begin{bmatrix} v_0 - v_i \\ -(v_{f_i} - v_i)^- \\ -(x_{f_i} - x_i - (d_0 + v_i T))^- \end{bmatrix},$$

where

 v_0 speed limit d_0 jam distance

T time gap

 f_i index of vehicle i's front vehicle

A cascade controller of lateral position y_i and heading ψ_i :

$$\dot{\psi}_{i} = \theta_{i,5} \left(\psi_{L_{i}} + \sin^{-1} \left(\frac{\widetilde{v}_{i,y}}{v_{i}} \right) - \psi_{i} \right),$$

$$\widetilde{v}_{i,y} = \theta_{i,4} (y_{L_{i}} - y_{i}).$$
(3)

We assume that the drivers choose their steering command β_i such that (3) is always achieved: $\beta_i = \tan^{-1}(\frac{1}{\nu_i}\dot{\psi}_i)$.

LPV Formulation

We linearize trigonometric operators around $y_i = y_{L_i}$ and $\psi_i = \psi_{L_i}$. This yields the following longitudinal dynamics:

$$\dot{x}_i = v_i,
\dot{v}_i = \theta_{i,1}(v_0 - v_i) + \theta_{i,2}(v_{f_i} - v_i) + \theta_{i,3}(x_{f_i} - x_i - d_0 - v_i T),$$

where $\theta_{i,2}$ and $\theta_{i,3}$ are set to 0 whenever the corresponding features are not active.

$$\dot{Z} = A(\theta)(Z - Z_c) + d.$$

For example, in the case of two vehicles only:

$$Z = \begin{bmatrix} x_i \\ x_{f_i} \\ v_i \\ v_{f_i} \end{bmatrix}, \quad Z_c = \begin{bmatrix} -d_0 - v_0 T \\ 0 \\ v_0 \\ v_0 \end{bmatrix}, \quad d = \begin{bmatrix} v_0 \\ v_0 \\ 0 \\ 0 \end{bmatrix}$$

$$A(\theta) = \begin{bmatrix} i & f_i & i & f_i \\ 0 & 0 & 1 & 0 \\ f_i & 0 & 0 & 1 \\ -\theta_{i,3} & \theta_{i,3} & -\theta_{i,1} - \theta_{i,2} - \theta_{i,3} & \theta_{i,2} \\ 0 & 0 & 0 & -\theta_{f_i,1} \end{bmatrix}$$

LPV Formulation

The lateral dynamics are in a similar form:

$$\begin{bmatrix} \dot{y}_i \\ \dot{\psi}_i \end{bmatrix} = \begin{bmatrix} 0 & \mathbf{v}_i \\ -\frac{\theta_{i,4}\theta_{i,5}}{\mathbf{v}_i} & -\theta_{i,5} \end{bmatrix} \begin{bmatrix} y_i - y_{L_i} \\ \psi_i - \psi_{L_i} \end{bmatrix} + \begin{bmatrix} \mathbf{v}_i \psi_{L_i} \\ 0 \end{bmatrix}$$

Here, the dependency in v_i is seen as an uncertain parametric dependency, *i.e.* $\theta_{i,6} = v_i$, with constant bounds assumed for v_i using an overset of the longitudinal interval predictor.

Results

The naive predictor (1) quickly diverges

The proposed predictor (2) remains stable

Results

Prediction during a lane change maneuver

Prediction with uncertainty in the followed lane L_i

Conclusion

Problem formulation

- Prediction of an uncertain non-linear system
- → Within the LPV framework
- **□** Design of an interval predictor $[\underline{x}(t), \overline{x}(t)]$?

Proposed solution

- Direct prediction with interval arithmetics is valid but unstable
- ightharpoonup Assume polytopic uncertainty structure around a nominal A_0

Application

- Joint prediction of coupled traffic dynamics
- Can be used as a building block for robust planning

