Geometria 2022-23 (Trombetti)

${\bf Indice}$

1	Lezione $01 - XX/03/2023$		
	1.1	Defini	zioni di base
		1.1.1	Prodotto Cartesiano
		1.1.2	Coppie
		1.1.3	Operaziona Interna
		1.1.4	Operaziona Esterna
		1.1.5	Prodotto Scalare Standard
		1.1.6	Matrice in R
2	Lez 2.1		4 - 17/03/2023 Vettoriali su R
	2.2	-	pi Spazi Vettoriali
		2.2.1	Spazio Vettoriale di una matrice di ordine m,n
		2.2.2	Spazio Vettoriale polinomiale
		2.2.3	Spazio Vettoriale polinomiale di al più n
		2.2.4	Spazio Vettoriale polinomiale di al più n
		2.2.5	Spazio Vettoriale dei vettori geometrici in un punto O

1 Lezione 01 - XX/03/2023

1.1 Definizioni di base

1.1.1 Prodotto Cartesiano

Presi $S, T \neq \emptyset$, possiamo definire il prodotto cartesiano:

$$SxT = \{(s, t)/s \in S, t \in T\}$$

$$S^2 = SxS = \{(s, t)/s \in S, t \in T\}$$

Da non confendere con la definizione di diagonale: $S^2 = SxS = \{(s, s)/s \in S\}.$

1.1.2 Coppie

La definizione di coppia è la seguente:

$$(s,t) = \{\{s,t\},\{s\}\}$$

Negli insiemi l'ordine non conta $\{s,t\} = \{t,s\}$, invece nelle coppie è rilevante, infatti due coppie sono uguali se e solo sono ordinatamente uguali:

$$(s,t) = (s',t') \Leftrightarrow s = s', t = t'$$

Andiamo a dimostrare questa affermazione:

- DIM ⇐: BANALE
- DIM \Rightarrow $(s,t) = (s',t') \Leftrightarrow \{\{s,t\},\{s\}\} = \{\{s',t'\},\{s'\}\}$ Ragioniamo per casi:

a SE
$$s = t$$
:

$$Sx:\{\{s,t\},\{s\}\} \Rightarrow \{\{s,s\},\{s\}\} \Rightarrow \{s\}$$
$$Dx:\{\{s',t'\},\{s'\}\} \Rightarrow \{\{s',s'\},\{s'\}\} \Rightarrow \{s'\}$$

b SE $s \neq t$:

Usiamo le definizioni di uguaglianza tra insiemi:

$$\{s\} = \{s'\} \Rightarrow s = s'$$

$$\{s,t\} = \{s',t'\} \land s = s' \Rightarrow t = t'$$

- 1.1.3 Operaziona Interna
- 1.1.4 Operaziona Esterna
- 1.1.5 Prodotto Scalare Standard
- 1.1.6 Matrice in R

2 Lezione 04 - 17/03/2023

2.1 Spazi Vettoriali su R

Sia V un insieme non vuoto, definiamo due operazioni:

Interna +: VxV - > V (somma vettoriale)

Esterna $\cdot : RxV - > V$ (scalare per un vettore) R è campo

Posto $(V, +, \cdot)$ si dice spazio vettoriale su $\mathbb{R} \Leftrightarrow$

1. (V,+)è un gruppo abeliano, quindi:

Associatività

Commutatività

Neutro

Tutti gli elementi invertibili

- 2. $\forall \underline{v} \in V$ tale che $\underline{v} \cdot 1 = \underline{v}$ (associtività mista)
- 3. $\forall h, k \in R, \forall \underline{v} \in V \text{ tale che } (hk)\underline{v} = h(k\underline{v})$
- 4. $\forall h, k \in \mathbb{R}, \forall \underline{v} \in V$ tale che $(h+k) \cdot \underline{v} = h \cdot \underline{v} + k \cdot \underline{v}$ (distrub. tra \cdot e + in \mathbb{R})
- 5. $\forall h, k \in \mathbb{R}, \forall \underline{v} \in V \text{ tale che } h(\underline{v} + \underline{w}) = h \cdot \underline{v} + h \cdot \underline{v} \text{ (distrub. tra} \cdot e + \text{in } V)$

2.2 Esempi Spazi Vettoriali

2.2.1 Spazio Vettoriale di una matrice di ordine m,n

Verifichiamo che $(R^n, +, \cdot)$ sia uno spazio vettoriale, ma prima facciamo un esempio:

$$(1,2,3) + (0,1,2) = (1,3,5)$$
 $3(3,2,4) = (9,6,12)$

Andiamo a verificare che sia spazio vettoriale:

- 1. $(R^n, +)$ gruppo abeliano:
 - * Associatività e Commutatività banalmente eraditati da +
 - * Neutro: $\underline{0} = (0, 0, ..., 0)$
 - * Inverso: $-(x_1, ..., x_n) = (-x_1, -x_2, ..., -x_n)$
- 2. Banale ereditatà di ·

3.
$$(hk)(x_1,...,x_n) = (hkx_1,...,hkx_n) = h(kx_1,...,kx_n) = h(k(x_1,...,x_n))$$

- 2.2.2 Spazio Vettoriale polinomiale
- 2.2.3 Spazio Vettoriale polinomiale di al più n
- 2.2.4 Spazio Vettoriale polinomiale di al più n
- 2.2.5 Spazio Vettoriale dei vettori geometrici in un punto O