

POWER ENGINEERING

#01 - INTRODUCTION

2018

Dr Keliang Zhou Room 419, James Watt Building keliang.zhou@glasgow.ac.uk

Tel: 0141 330 6997

Thanks to Mr Calum Cossar for most of the notes!!!

PLAN FOR TODAY

- Introduction to Power Eng 3 Course
- Introduction to Electrical Power Engineering

Course Aim

Over the last few years Electrical Power Engineering has seen a significant increase in demand, primarily through the increase in the development of renewable energy technologies. As a result there has been a significant increase in employment opportunities for graduates with the necessary skills/education

The Power Engineering course therefore aims to give E&EE students a relevant foundation in modern Electrical Power systems with emphasis where possible in renewable energy applications.

Keliang Zhou: Background/Research Interests

- BEng, Huazhong University of Science and Technology1992
- PhD, Nanyang Technological University 2002
- Senior Lecturer, University of Glasgow, 2015 present
- Research interests primarily associated with
 - · Power electronic systems,
 - Control theory and applications,
 - Renewable energy and distributed generation,
 - Smart grid technologies
- One Monograph, about 120 co-author publications (about 60 journal articles) Total Citations about 4100, H-index:28

Technical Background

Power Electronic Converter

Simulation

SUPERBUS

15000×2550×1 650mm 9500KG
300kW Electric
Drive
Li-ion Battery
Distance: 210km 250km/h 23 Passengers **Project since** 2004

XSAT MICRO-SATELLITE

LEICA SPRINTER DIGITAL LEVEL

3 REASONS WHY YOU SHOULD CONSIDER A CAREER IN THE ELECTRICAL POWER INDUSTRY

- Energy is one of the most important challenges facing mankind over the coming years. New power engineering technology will be required to provide solutions.
- Technical Diversity:

Power Engineering Electro-Magnetics

Power Electronics Digital Electronics

Control Theory Mechanics

Thermo-dynamics etc, etc

Growing Industry NEEDs people with these skills

POWER ENGINEERING 3: COURSE OUTLINE

- 3 Weeks' Lectures/Tutorials
- 3 Laboratory Sessions (2 hours each)

Course Assessment

- **85%: Exam (2 hours)**
- 15%: Laboratory

ELECTRICAL POWER SYSTEM

COURSE CONTENT

Electrical Generation (AC)

Transmission (AC)

(AC) Loads

66kV

Step-Up Transformers

138kV+

Step-Down Transformers

415V/240V

Coal Powered (2400MW)

Nuclear (1200MW)

Hydro-electric (400MW)

Wind (2MW)

1 & 3 Phase AC Power Systems

Rotating Machinery
Heating
Lighting

Synchronous Generator

Induction Generator

Induction Motor

ELECTRICAL POWER SYSTEM IS ACTUALLY A BIG AC SINUSOIDAL CIRCUIT

	Topics
1	Introduction: DC v AC Systems Fundamentals of AC systems
2	Single & Three Phase Systems: R,L & C Loads Phasor Diagrams Power Triangle Balanced/Unbalanced 3 Phase Loads Power Measurement
3	Transformers: Magnetics Ideal/Real Transformer Equivalent Circuit No Load & Short Circuit Tests Three Phase Transformers
4	3 Phase Induction Motors: Construction Theory of Operation Equivalent Circuit No Load & Locked Rotor Tests Variable Speed Operation
5	3 Phase Synchronous Generators: Construction Theory of Operation Equivalent Circuit Modes of Operation Safe Operating Area
6	Exam Preparation

RESOURCES

what will help you pass the exam?

- Laboratory Sessions
- BlackBoard Website
- Recommended Readings
- Tutorials

Power Eng 3: Laboratory Sessions

1 & 3 Phase Power Systems

- Voltage, Current and Power Factor measurements
- Real, Apparent and Reactive power measurements
- 3 phase power systems: Delta and Wye connected loads

Transformers

- No load and Short circuit tests to determine equivalent circuit parameters
- Voltage Regulation from no load to full load
- Efficiency measurements

3 Phase Induction Motor

- No load and locked rotor tests to determine equivalent circuit parameters
- Torque v Speed, and efficiency measurements
- Comparison with simulation results

Where do the Laboratory Sessions take place?

Research Building Laboratory 330 (Next to Power Electronics Lab)

What do you NEED to bring?

- Printed Lab Sheets and Bound Laboratory record book
- Pen and pencil (and erazor)
- Ruler and protractor
- Calculator

How are the Laboratory Sessions Assessed?

Laboratory Book (submitted at the end of the semester)

Power Eng 3: Recommended Reading

Electrical Machines, Drives & Power Systems

Theodore Wildi Pearson Publishing ISBN 0-13-196918-8

Electrical Power and Control

Timothy Skvarenina, William DeWitt Pearson Publishing ISBN 0-13-113045-5

Now the BAD News!

What I expect of YOU

what I expect of YOU!

Unsurprisingly there is a clear ('linear') correlation between Lecture attendance and Exam Marks

- I will record attendance at every lecture
- Arrive on time
- Keep noise levels to a minimum during lectures

Solution done on whiteboard during lecture

Be Warned a lot of these appear throughout the course

Your Route to getting a Credit for this course:

- You MUST attend at least 50% of the lectures/tutorials
- You MUST attend all 3 laboratory sessions and submit your individual laboratory report at the end of the semester
- You must gain a sufficiently high grade in the Final exam

