Appunti del corso di Subatomia

Laurea in Fisica - Università di Ferrara

Scritto e impaginato in LaTeX da **Dario Chinelli** nel 2021 aggiornato al 15 aprile 2021

Contents

1	Sez	ione d'urto														
	1.1	Esperimento di Rutherford														

1 Sezione d'urto

Elemento X ha un numero di massa A che corrisponde alla somma di neutroni e protoni nel nucleo ed un numero atomico Z che è il numero di protoni nel nucleo, per cui si scrive:

$${}_{Z}^{A}X$$

in un atomo neutro il numero atomico corrisponde anche al numero di elettroni.

1.1 Esperimento di Rutherford

L'intuizione di Rutherford fu di utilizzare il decadimento dei nuclei α ed adottando un approccio statistico per ovviare al problema di non conoscere la posizione esatta delle particelle.

Nell'esperimento, Rutherford, utilizza un nucleo di **Radio** (Ra) con numero di massa A=226 e numero atomico Z=88, ovvero ${}^{226}_{88}Ra$. Il decadimento che avviene è il seguente

$${}^{226}_{88}Ra \longrightarrow {}^{222}_{86}Rn + {}^{4}_{2}He + Q \tag{1}$$

nella reazione si conserva il numero di massa totale 226=222+4 e si conserva la carica totale 88=86+2; Q è il calore emesso dalla reazione esotermica/spontanea, equivalente all'energia data dalla differenza di massa iniziale e finale. L'energia cinetica rilasciata nel decadimento che viene trasferita alla particella α è pari a $T=4.76\,\mathrm{MeV}$. Un fascio collimato di particelle α viene indirizzato contro un target