Introduzione Reti di Calcolatori ISO/OSI-TCP/IP Internet Esercizi

Sistemi Informatici - Fondamenti di Networking

Michele Corrias

Lombardia Plus 2019 Cyber Security - GALDUS

27/11/2019

Index

- Introduzione
- 2 Reti di Calcolatori
- 3 ISO/OSI-TCP/IP
- 4 Internet
- **5** Esercizi

Rete

- network radiofonico
- network televisivo
- social network
- rete telematica

Rete

- network radiofonico
- network televisivo
- social network
- rete telematica

Rete

- network radiofonico
- network televisivo
- social network
- rete telematica

Rete

- network radiofonico
- network televisivo
- social network
- rete telematica

Reti Telematiche

La nascita delle reti di tele-comunicazione infor-matica

- XX secolo: elaborazione e distribuzione informazioni
- nascita delle reti di telecomunicazioni
- sviluppo HW & SW dei calcolatori
- anni 70: informatica e telecomunicazioni convergono nelle reti telematiche

Reti Telematiche

La nascita delle reti di tele-comunicazione infor-matica

- XX secolo: elaborazione e distribuzione informazioni
- nascita delle reti di telecomunicazioni
- sviluppo HW & SW dei calcolatori
- anni 70: informatica e telecomunicazioni convergono nelle reti telematiche

Reti Telematiche

La nascita delle reti di tele-comunicazione infor-matica

- XX secolo: elaborazione e distribuzione informazioni
- nascita delle reti di telecomunicazioni
- sviluppo HW & SW dei calcolatori
- anni 70: informatica e telecomunicazioni convergono nelle reti telematiche

Reti Telematiche

La nascita delle reti di tele-comunicazione infor-matica,

- XX secolo: elaborazione e distribuzione informazioni
- nascita delle reti di telecomunicazioni
- sviluppo HW & SW dei calcolatori
- anni 70: informatica e telecomunicazioni convergono nelle reti telematiche

Reti Telematiche

Idea generica

Una rete può essere vista come un certo numero di dispositivi:

- autonomi
- interconnessi
- capaci di comunicare
- capaci di condividere risorse

Reti Telematiche

Più in dettaglio

Una rete consiste di:

- componenti hardware
 - dispositivi di rete: modem, router, switch ...
 - calcolatori
 - canale di comunicazione: doppino telefonico, cavo coassiale, fibra ottica, onde elettromagnetiche . . .
- 2 componenti software
 - protocolli di rete

Reti Telematiche

Dispositivi di rete

Detti anche apparati di rete, sono utilizzati per l'accesso diretto ai canali di comunicazione: codificano i dati (informazione) e inviano sul canale

Reti Telematiche

Calcolatori

I calcolatori hanno il compito di condivisione ed elaborazione dati.

Sono strutturati gerarchicamente o allo stesso livello, e si distinguono in:

- nodi *interni* alla rete
- nodi terminali: all'estremità della rete, sono punti di ingresso/uscita dei dati
 - periferiche (stampanti, fax ...)
 - PC stand-alone
 - microcomputer
 - . .

Reti Telematiche

Calcolatori

I calcolatori hanno il compito di condivisione ed elaborazione dati.

Sono strutturati gerarchicamente o allo stesso livello, e si distinguono in:

- nodi interni alla rete
- nodi *terminali*: all'estremità della rete, sono punti di ingresso/uscita dei dati
 - periferiche (stampanti, fax . . .)
 - PC stand-alone
 - microcomputer
 - o . .

Reti Telematiche

Calcolatori

I calcolatori hanno il compito di condivisione ed elaborazione dati.

Sono strutturati gerarchicamente o allo stesso livello, e si distinguono in:

- nodi interni alla rete
- nodi terminali: all'estremità della rete, sono punti di ingresso/uscita dei dati
 - periferiche (stampanti, fax ...)
 - PC stand-alone
 - microcomputer
 - . . .

Reti Telematiche

Canale di comunicazione

Con canale di comunicazione si intende tutta quella tecnologia trasmissiva utilizzata per il trasferimento fisico dei dati. I canali (dedicati/condivisi) trasportano fisicamente le informazioni, opportunamente codificate.

- guidati (elettrici o ottici): doppino telefonico, cavo coassiale, fibra ottica
- non guidati: onde radio, microonde, infrarossi

Reti Telematiche

Canale di comunicazione

Con canale di comunicazione si intende tutta quella tecnologia trasmissiva utilizzata per il trasferimento fisico dei dati. I canali (dedicati/condivisi) trasportano fisicamente le informazioni, opportunamente codificate.

- guidati (elettrici o ottici): doppino telefonico, cavo coassiale, fibra ottica
- non guidati: onde radio, microonde, infrarossi

Reti Telematiche

Canale di comunicazione

Con canale di comunicazione si intende tutta quella tecnologia trasmissiva utilizzata per il trasferimento fisico dei dati. I canali (dedicati/condivisi) trasportano fisicamente le informazioni, opportunamente codificate.

- guidati (elettrici o ottici): doppino telefonico, cavo coassiale, fibra ottica
- non guidati: onde radio, microonde, infrarossi

Figura 1: Canali guidati

Figura 2: Esempio di canali di comunicazione

tipo	v min	v max
doppino telefonico	300 bps	10 Mbps
microonde	256 Kbps	100 Mbps
satellite	256 Kbps	100 Mbps
cavo coassiale	56 Kbps	200 Mbps
fibra ottica	500 Kbps	10 Gbps

Figura 3: Esempio di sistema di comunicazione a collegamento misto

Reti Telematiche

Protocolli di rete

Codifiche e protocolli costituiscono la parte software di una rete, e sono adibiti alla sua gestione: definiscono le regole ed il modo per trasferire le informazioni.

- standard pubblici
- proprietari

Reti Telematiche

Protocolli di rete

Codifiche e protocolli costituiscono la parte software di una rete, e sono adibiti alla sua gestione: definiscono le regole ed il modo per trasferire le informazioni.

- standard pubblici
- proprietari

Reti Telematiche

Protocolli di rete

Codifiche e protocolli costituiscono la parte software di una rete, e sono adibiti alla sua gestione: definiscono le regole ed il modo per trasferire le informazioni.

- standard pubblici
- proprietari

Reti Telematiche

Scopo

- condivisione di risorse
 - dati (database remoti, distribuiti ...)
 - programmi software
 - dispositivi (stampanti, dischi ...)
- comunicazione tra utenti
 - e-mail
 - chat (IRC, AIM, Whatsapp, Telegram ...)
 - videoconferenza
 - RSS
 - file
 - . . .

Reti Telematiche

Scopo

- affidabilità
 - backup e replicazione di file e risorse
- risparmio computazionale
 - calcolo distribuito
- intrattenimento
 - streaming (musica, video ...)
 - gaming

Sistema di Comunicazione

Figura 4: Schema di sistema di comunicazione semplice

Sistema di Comunicazione

Figura 5: Schema di sistema di comunicazione realistico

Reti Telematiche

Problemi

- connettere e far comunicare tanti sender/receiver
 - schemi di connessione
 - tecnologie di trasmissione
- trasmettere un segnale in modo efficace ed efficiente
 - mezzi di trasmissione
 - codifiche e protocolli

Reti Telematiche

Problemi

- connettere e far comunicare tanti sender/receiver
 - schemi di connessione
 - tecnologie di trasmissione
- trasmettere un segnale in modo efficace ed efficiente
 - mezzi di trasmissione
 - codifiche e protocolli

Reti Telematiche

Problemi

- connettere e far comunicare tanti sender/receiver
 - schemi di connessione
 - tecnologie di trasmissione
- trasmettere un segnale in modo efficace ed efficiente
 - mezzi di trasmissione
 - codifiche e protocolli

Reti di Calcolatori

Caratteristiche

Sono caratterizzate in base a:

- scala (distanza tra i nodi)
- topologia (schema di connessione tra i nodi)
- modalità di interazione (gerarchica/paritetica)
- tecnologia di trasmissione (broadcast/punto-punto)
- standard di comunicazione (ISO/OSI-TCP/IP)

Reti di Calcolatori

Scala

Tipologie

- interna ad un elaboratore
- locale (LAN)
- metropolitana (MAN)
- geografica (WAN)
- internetwork (reti di reti)

Reti di Calcolatori

Reti Interne all'Elaboratore

Caratteristiche

- collegano i processori delle macchine parallele o multicore
- occupano spazi ridotti [0.1m 1m]
- molto veloci
- seguono standard proprietari
- hanno topologie particolari che formano strutture con specifiche proprietà (alberi, ipercubi ...)

Local Area Network

- collega i computer di una stanza, piano, edificio, campus (CAN)
- si estende al massimo per pochi km
- mediamente veloci [100 Mbps 1 Gbps]
- il tempo max di connessione dipende dalla dimensione della rete
- generalmente privata: cavi utilizzati in modo esclusivo

Metropolitan Area Network

- collega i computer a livello cittadino
- usa spesso la tecnologia delle LAN
- mediamente veloce
- trasporta dati e voce
- privata o pubblica

Wide Area Network

- collega i computer su territorio nazionale
- usa tecnologia e linee di comunicazione a banda larga e pubbliche (linee telefoniche, canali satellitari)
- \bullet veloci nell'ordine di [Kb/s Mb/s]
- topologia complessa

Reti di Reti

Per connettere

- più reti omogenee
- più reti eterogenee

I segnali trasmessi in rete devono essere

- amplificati per arrivare più lontano
- codificati per essere trasmessi a una rete diversa
- inviati nella giusta direzione

Reti di Reti

Aggregazione di varie reti

- tecnologie e scala diverse
- HW/SW complessi

Gateway

Elementi di collegamento, solitamente di confine:

- traducono i formati dei pacchetti
- conoscono il SW di entrambe le reti che vogliono collegare
- collegano reti che usano protocolli di comunicazione diversi

Internet

La rete di tutte le reti (meta-rete)

Reti di Reti

Dispositivi di rete

- gateway
- modem: modula in trasmissione i segnali digitali (sequenze di bit) in impulsi analogici (elettrici) e viceversa demodula in ricezione
- router: instradano un messaggio, suddiviso in pacchetti, da un nodo a reti multiple

Reti di Reti

Figura 6: Modem

Figura 7: Router

Reti di Reti

Dispositivi di rete

- hub: semplici ripetitori di segnale, estendono la rete locale (solo broadcasting, no addressing)
- bridge: connettono reti differenti, con topologie e collegamenti fisici diversi
- switch: definiscono diversi collision domain, attraverso più porte, collegando logicamente LAN differenti ed evitando così problemi di congestione (meglio di hub e bridge)

Reti di Reti

Figura 8: Hub

Figura 9: Switch

Reti di Reti

Figura 10: Esempio di rete di reti collegate da vari dispositivi

Topologia

Schema di connessione tra i nodi

Rappresentata mediante grafi:

- vertici: nodi della rete (interni/terminali)
 - host (computer ...)
 - apparati di rete
- archi: connessione tra i nodi
 - cavi
 - collegamenti satellitari
 - microonde

Topologia

Tipi

- bus o lineare
- anello
- stella
- albero
- maglia
- . .

Topologia

Bus o lineare

- tutti i sono collegati ad un unico cavo lineare
- un solo nodo alla volta può inviare dati
- tutti gli altri nodi *vedono* i dati, ma solo il nodo destinatario può *riceverli*
- non adatta ad una rete con molti nodi

Figura 11: Rete topologia lineare

Topologia

Anello (token ring)

- tutti i nodi collegati ad un unico cavo circolare
- i nodi trasmettono a turno, secondo algoritmo prestabilito
- i dati inviati dal mittente percorrono il *ring* fin quando raggiungono il destinatario
- topologia attiva perché ogni nodo è repeater (al contrario di topologia bus)

Figura 13: Rete topologia anello

Topologia

Stella

- tutti i nodi sono collegati ad un unico host centrale
- l'host riceve i dati dai nodi sender e li smista ai nodi receiver
 - collo di bottiglia prestazionale
 - in caso di guasto, occorre eleggere un nuovo host centrale

Figura 14: Rete topologia stella

Topologia

Figura 15: Rete topologia albero

Figura 16: Rete topologia maglia

Modalità di Interazione

Gerarchica vs Paritetica

L'interazione tra due o più nodi può avvenire con due modalità:

- gerarchica $\rightarrow client/server$ (web, e-mail, ...)
- paritetica \rightarrow peer-to-peer (Napster, WinMX, ...)

Modalità di Interazione

Client/Server

- il client ha bisogno di un servizio, il server fornisce quel servizio
 - il server gestisce tutto: condivisione delle risorse, gestione della rete, sicurezza ...
- client contatta server, instaurando connessione, per chiedere servizio desiderato

P2P

- non c'è client (che fa richieste) o server (che le soddisfa)
- insieme di macchine che si scambiano dati e informazioni, da pari a pari
- ogni nodo si occupa dei propri problemi di gestione

Modalità di Interazione

Client/Server

- il client ha bisogno di un servizio, il server fornisce quel servizio
 - il server gestisce tutto: condivisione delle risorse, gestione della rete, sicurezza ...
- client contatta server, instaurando connessione, per chiedere servizio desiderato

P₂P

- non c'è client (che fa richieste) o server (che le soddisfa)
- insieme di macchine che si scambiano dati e informazioni, da pari a pari
- ogni nodo si occupa dei propri problemi di gestione

Tecnologia di Trasmissione

Broadcast

- tutti i nodi condividono un unico canale di comunicazione
- l'informazione spedita viene ricevuta da tutti i nodi della rete
 - solo il nodo destinatario la elabora
- diverse tecniche per accedere al canale di comunicazione
 - collision detection: conflitti risolti arbitrariamente
 - collision avoidance: conflitti evitati tramite un token
- LAN, Wireless network

Tecnologia di Trasmissione

Point-to-Point

- connessioni dirette tra coppie di nodi
- store and forward: il sender trasmette al destinatario l'informazione, che viaggia per tutti i nodi intermedi sul cammino tra i due nodi
 - ciascun nodo intermedio deve conoscere dove forwardare l'informazione
 - ricerca del cammino
 - fault tolerance: possibile prevedere cammini multipli
- MAN, WAN ...

Tecnologia di Trasmissione

Point-to-Point

Strategie di instradamento:

- commutazione di circuito
 - modello dei collegamenti telefonici
 - creazione di un canale logico temporaneo dedicato, costruito tramite successioni di connessioni tra nodi intermedi
 - capacità trasmissiva totale interamente utilizzata
 - veloce
- commutazione di pacchetto
 - modello delle spedizioni postali
 - informazione suddivisa in *Protocol Data Unit (PDU)* di ridotte dimensioni, con ID univoco per ricostruzione
 - problema ritardi sistemi real-time: Quality of Service (QoS
 - robusto ed efficiente

Tecnologia di Trasmissione

Point-to-Point

Strategie di instradamento:

- commutazione di circuito
 - modello dei collegamenti telefonici
 - creazione di un canale logico temporaneo dedicato, costruito tramite successioni di connessioni tra nodi intermedi
 - capacità trasmissiva totale interamente utilizzata
 - veloce
- commutazione di pacchetto
 - modello delle spedizioni postali
 - informazione suddivisa in *Protocol Data Unit (PDU)* di ridotte dimensioni, con ID univoco per ricostruzione
 - problema ritardi sistemi real-time: Quality of Service (QoS)
 - robusto ed efficiente

Tecnologia di Trasmissione

Commutazione di pacchetto

I PDU, cioè le unità minime di trasmissione, sono composti da header e payload, rispettivamente intestazione e dati incapsulati:

- sono indipendenti e instradabili
- contengono ciascuno mittente, destinatario e info necessarie per ricomporre i pacchetti nel formato originale

Commutazione di circuito virtuale

Combinazione di entrambe le commutazioni precedenti

Tecnologia di Trasmissione

Commutazione di pacchetto

I PDU, cioè le unità minime di trasmissione, sono composti da header e payload, rispettivamente intestazione e dati incapsulati:

- sono indipendenti e instradabili
- contengono ciascuno mittente, destinatario e info necessarie per ricomporre i pacchetti nel formato originale

Commutazione di circuito virtuale

Combinazione di entrambe le commutazioni precedenti

Standard di comunicazione

Per poter comunicare due calcolatori devono concordare delle convenzioni:

- formato dei dati
- struttura dei pacchetti
- informazioni di controllo
- velocità di trasmissione

Figura 17: Esempio di standard di comunicazione

Standard di comunicazione

- organizzato a livelli per
 - ridurre complessità
 - aumentare flessibilità
- il numero di livelli, con relative funzionalità, dipendono dalla complessità della rete
- astrazione: ogni livello formalizza un particolare aspetto della comunicazione
- ogni livello comunica e fornisce servizi solo con i due livelli adiacenti, superiore ed inferiore (se esistenti)

Interfacce

Permettono la comunicazione tra i livelli adiacenti:

- definiscono le operazioni primitive e i servizi che il livello sotto offre a quello sopra
- strutturate per ridurre al minimo gli scambi d'informazione

Protocolli

Costituiscono le regole per la comunicazione sui vari livelli:

- stabiliscono come la comunicazione deve procedere
- decidono il formato dei pacchetti
- ogni protocollo aggiunge un header al messaggio, con info necessarie al livello omologo dall'altra parte

Interfacce

Permettono la comunicazione tra i livelli adiacenti:

- definiscono le operazioni primitive e i servizi che il livello sotto offre a quello sopra
- strutturate per ridurre al minimo gli scambi d'informazione

Protocolli

Costituiscono le regole per la comunicazione sui vari livelli:

- stabiliscono come la comunicazione deve procedere
- decidono il formato dei pacchetti
- ogni protocollo aggiunge un header al messaggio, con info necessarie al livello omologo dall'altra parte

Standard di comunicazione

- pila dei protocolli: insieme dei protocolli usati ai vari livelli di una rete
- architettura di rete: insieme dei livelli e dei protocolli

Standard di comunicazione

- pila dei protocolli: insieme dei protocolli usati ai vari livelli di una rete
- architettura di rete: insieme dei livelli e dei protocolli

Figura 18: Esempio di architettura di rete a livelli

ISO/OSI-TCP/IP ISO/OSI

Application Presentation Session **Transport** Network Data link **Physical**

Data
Segment
Packet
Frame

Bit

ISO/OSI-TCP/IP ISO/OSI

Standard di riferimento

- fisico: realizza il trasporto fisico sul canale di comunicazione
- link dati: sincronizza gli elaboratori nell'accesso alla rete
- rete: instrada i pacchetti
- trasporto: segmenta i messaggi in pacchetti
- sessione: apre e chiude la connessione tra gli elaboratori
- presentazione: converte i formati (ASCII ...)
- applicazione: offre i servizi all'utente

ISO/OSI-TCP/IP TCP/IP

Figura 20: Un modello semplificato (TCP/IP Illustrated, W. Stevens)

Figura 21: ISO/OSI vs TCP/IP

Transmission Control Protocol/Internet Protocol

Sviluppato per consentire l'interoperabilità tra reti fisiche diverse, definito nel 1974 da Vinton Cerf:

- link
- rete
- trasporto
- applicazione

Lo stack TCP/IP è la realizzazione $standard\ de\ facto$ del modello ISO/OSI

OSI Application Presentation Session Transport Network Data Link Physical

Telnet Protocol Suite Telnet NFS FTP XDR SMTP SNMP RPC TCP e UDP ICMP IP Protocolli di routing

Non Specificati

Figura 22: Protocolli di rete nello stack TCP/IP

Figura 23: Stack dei protocolli internet

Figura 24: Stack dei protocolli internet

Figura 25: Stack dei protocolli internet

ISO/OSI-TCP/IP

Livello Fisico

- possibile modello ibrido che distingue livello fisico da livello datalink, aumentando da 4 a 5 i livelli dello stack
- insieme di procedure meccaniche ed elettroniche per stabilire, mantenere e disattivare un collegamento fisico
- caratteristiche del mezzo di trasmissione
- natura, forma e tensioni del segnale
- velocità e durata di trasmissione
- modulazione, codifica, simultaneità (Simplex/{Half,Full}Duplex) ...
- connettori (HW)
- hub

Livello Link

- accesso alla rete
- dati organizzati in frame
- instradamento all'interno della singola rete
- bridge, switch
- Ethernet
- due sottolivelli
 - Logical link control (LLC): servizi di controllo di flusso, conferma, rilevazione degli errori
 - Medium Access Control (MAC): gestione di accesso multiplo di molteplici nodi ad un canale di comunicazione condiviso, evitando o gestendo collisioni

Ethernet

- Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
- MAC address: indirizzi a 48 bit (6 byte)
 - numero seriale identificativo di tutte le schede di rete
 - utilizzato come indirizzo all'interno della LAN
 - notazione esadecimale: primi 24 identificano il produttore
 - MAC: 00:23:a2:d6:f2:15 (Motorola Mobility, Inc.)
- Maximum Transmission Unit (MTU): 1500 bytes
- dimensione minima: 46 byte (padding)

Figura 26: Frame

Problemi di sicurezza liv. 2?

Le reti locali assumono che i nodi collegati condividano una relazione di fiducia:

- tutti i nodi connessi (LAN) ricevono tutti i frame: scartano quelli non diretti a loro
- MAC sono un identificatore debole: con privilegi adeguati, (quasi) sempre possibile cambiare
- MAC spoofing: possibilità di impersonare una macchina assente
- MAC flooding: saturare le tabelle di indirizzamento (CAM) di un dispositivo di rete $\rightarrow fail$

Livello Rete

- definisce schema di indirizzamento e formato dei messaggi
- dati organizzati in *IP packet*
- gestisce l'attraversamento di reti diverse (routing):
 instradamento
- trasparente all'utente finale
- router
- Internet Protocol (IP)
- connectionless communication: no garanzia di affidabilità
 - verifica dell'integrità dell'header, ma non del payload
 - nessuna garanzia su consegna né ordine
 - i pacchetti possono seguire diversi cammini

ISO/OSI-TCP/IP

Internet Protocol (IP)

- ogni nodo identificato da un indirizzo IP a 32 bit (IPv4), scritto in ottetti
- il routing avviene tramite nodi gateway che si interfacciano con due o più LAN
- IPv6:
 - prossima versione dello standard: risolve problema della saturazione degli indirizzi IPv4
 - implementa direttamente elementi di routing, QoS e sicurezza
 - basato su 128 bit (contro i 32 attuali)
 - IPv4 $\rightarrow 2^{32}$ possibili indirizzi (circa $4, 3*10^9$)
 - IPv6 $\rightarrow 2^{128}$ possibili indirizzi (circa $3, 4*10^{38}$)

Struttura del pacchetto IP

IHL = Internet Header Length
Identificativo/flags/offset di frammento = frammentazione di pacchetto
Tempo di vita = TTL (accoppiato con ICMP e traceroute)
Protocollo = TCP/UDP o altro

Figura 28: IPv6

Livello Trasporto

- dati organizzati in segmenti
- Transmission Control Protocol (TCP) e User Data Protocol (UDP)
- a liv. applicativo la comunicazione avviene fra processi: a liv. trasporto occorre identificare nodi e processi
- socket pair: una comunicazione tra processi su macchine fisiche separate necessita di 4 numeri

$$\langle ip_1, n_1 : ip_2, n_2 \rangle$$

ISO/OSI-TCP/IP

Porte

Permettono ad un calcolatore di effettuare più connessioni contemporanee verso altri calcolatori:

- 1 i processi a livello applicativo possono richiedere dati
- ② i dati contenuti nei segmenti in arrivo vengono indirizzati ai processi che li stanno aspettando
- o porta virtuale (logica): astrazione di label che identifica e discrimina il traffico dati di una connessione da quello di un'altra
- $\mathbf{0}$ n_1, n_2 porte [0,65536]: lato server devono esser note al client

socket: particolare oggetto sul quale leggere/scrivere i dati da trasmettere/ricevere

ISO/OSI-TCP/IP

Porte well-known: www.iana.org/assignments/port-numbers

```
ftp 21/tcp
ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp
telnet 23/tcp
smtp 25/tcp mail
www 80/tcp http # WorldWideWeb HTTP
pop3 110/tcp pop-3 # POP version 3
ntp 123/udp # Network Time Protocol
irc 194/tcp # Internet Relay Chat
https 443/tcp # http protocol over TLS/SSL
printer 515/tcp spooler # line printer spooler
```

Ancora porte

- le porte sono numeri convenzionali
- Internet Assigned Numbers Authority (IANA) stabilite per numeri < 1024
- NON identificano un servizio, MA possibilità di stabilire una connessione
- vietare uso della porta 23 non significa vietare TELNET, ma impedire che client e server si accordino sull'uso di tale porta

ISO/OSI-TCP/IP

Transmission Control Protocol (TCP)

- connection-oriented: negoziazione connessione tra sender e receiver, che rimane attiva anche in assenza di scambio di dati (chiusa se non più necessaria)
- organizza in pacchetti la sequenza da trasmettere, riorganizza i pacchetti all'arrivo
- full-duplex
- affidabile: garantisce la consegna dei pacchetti (ACK)
- at most once: garantisce l'ordine dei pacchetti
- controllo di flusso: receiver lento non congestionato da un sender troppo veloce
- controllo di errore: checksum

$\frac{\rm ISO/OSI\text{-}TCP/IP}{\rm \tiny TCP/IP}$

Figura 29: Segmento TCP

TCP Flag

- SYN: richiesta di connessione, sempre il primo pacchetto di una comunicazione
- FIN: indica l'intenzione del sender di terminare la sessione in maniera concordata
- ACK: conferma del pacchetto precedente
- RST: reset della sessione
- PSH: dati inviati al destinatario non devono essere bufferizzati
- URG: dati urgenti, inviati con precedenza sugli altri

Figura 30: Connessione TCP (ISN = Initial Sequence Number)

User Datagram Protocol (UDP)

- connection-less: protocollo di trasporto minimo, senza connessione, senza stato
- minimo overhead (TCP: +20B, UDP: +8B)
- non garantisce ordine
- inaffidabile
- veloce
- nessun controllo di correttezza
- adatto nei servizi in cui il tempo di risposta è più importante della correttezza (audio, video, ...)

ISO/OSI-TCP/IP

Figura 31: Segmento UDP

Criticità di TCP/IP

- checksum sia in TCP che in UDP
 - solo per errori di trasmissione, non per alterazioni maligne
- non è prevista autenticazione tra le due parti comunicanti
 - IP spoofing: campo src dell'IP header falsificabile
 - autenticazione basate su indirizzi IP sono insicure in LAN
 - la presenza di IP duplicati può causare denial of service (DoS)
- controlli di integrità banali
 - man-in-the-middle può alterare frammenti di segmenti TCP
- salvaguardata la rete dalla congestione, piuttosto che la possibilità di connettersi ad un determinato nodo

Livello Applicazione

- TCP/IP non è orientato a nessuna specifica applicazione
- il liv. applicazione specifica come un applicativo può utilizzare l'insieme dei protocolli TCP/IP
- fornisce la possibilità di comunicazione tra applicazioni su calcolatori diversi
- protocolli applicativi definiti sopra TCP/IP

Livello Applicazione

- raccoglie i protocolli di alto livello che i software usano per offrire un servizio
- ogni protocollo associato ad una porta
 - serve per smistare le diverse connessioni ai vari protocolli
- connessione stabilita solo se il servizio è in ascolto sulla porta specificata

Recap.

- architettura di rete TCP/IP è un'eccellente piattaforma per la realizzazione di applicazioni client-server affidabili
- permette di condividere info tra diverse entità connesse a Internet
- presente nella quasi totalità dei sistemi operativi
- i protocolli applicativi offrono una comunicazione basata su un'architettura di tipo client-server
 - client: calcolatore che sottopone le richieste
 - server: calcolatore che risponde alle richieste del client

Protocolli applicativi

- File Transfer Protocol (FTP) (porta 21): trasferimento di file tra calcolatori
- The Secure Shell Protocol (SSH) (porta 22): sessione remota cifrata tramite interfaccia a riga di comando
- Telnet (porta 23): connessione a calcolatori remoti (sessioni di login remoto di tipo riga di comando)

ISO/OSI-TCP/IP

Protocolli applicativi

- Simple Mail Transfer Protocol (SMTP) (porta 25): consente agli utenti di inviare messaggi di posta elettronica
- Post Office Protocol (POP) (porta 110): lettura remota della posta elettronica
- Interactive Mail Access Protocol (IMAP) (porta 143): lettura remota della posta elettronica
- Network News Transfer Protocol (NNTP) (porta 119): newsgroup, messaggistica all'interno di gruppi di interesse
- Network Time Protocol (NTP) (porta 123): sincronizzazione di orologio

Protocolli applicativi

- World Wide Web (WWW): consultazione interattiva di ipermedia con modalità point-and-click
 - HyperText Transfer Protocol (HTTP) (porta 80): protocollo di trasferimento di un ipertesto, usato come principale sistema per la trasmissione d'informazioni sul web
 - HTTP consente l'accesso a risorse distribuite su diversi host della rete con un approccio di tipo ipertestuale
 - i documenti ipertestuali sono codificati secondo le specifiche dettate dallo standard HyperText Markup Language (HTML)

Internet Rete

Definizione

- un network basato su protocollo TCP/IP
- per estensione, un insieme di risorse informative rese disponibili da tale rete
- per estensione, una comunità di utenti che utilizza tale rete per:
 - comunicare
 - infomarsi
 - apprendere
 - . .

Internet

Rete

Vantaggi

- democratica: gli utenti sono uguali
- potenzialmente alla portata di tutti
- stimola la comunicazione, lo studio di informazioni e la produzione di contenuti

Svantaggi

- contiene barriere
 - culturali
 - linguistiche
 - tecnologiche
 - . .

Internet

Rete

Vantaggi

- democratica: gli utenti sono uguali
- potenzialmente alla portata di tutti
- stimola la comunicazione, lo studio di informazioni e la produzione di contenuti

Svantaggi

- contiene barriere
 - culturali
 - linguistiche
 - tecnologiche
 - . .

Internet

Storia

Arpanet

- nasce alla fine degli anni 60, come progetto embrionale con il nome di Advanced Research Projects Agency NETwork (ARPAnet)
- sviluppato dal Defense Advanced Research Projects Agency (DARPA), il Dipartimento della Difesa degli Stati Uniti, per scopi militari
- rete di comunicazione resistente ad una guerra nucleare
- rete militare finalizzata allo scambio di informazioni, veloce e sicura
- fault-tolerance garantita da natura point-to-point e ridondanza di cammini

Storia

Arpanet

- risposta allo Sputnik sovietico del 1957
- incentiva la ricerca presso università e laboratori di ricerca
- di uso esclusivamente militare ed accademico
- prima rete a commutazione di pacchetto del mondo

Storia

Arpanet

- decentralizza la gestione delle telecomunicazioni
- permette alle informazioni di arrivare a destinazione attraverso diversi cammini
- rende dinamica la ricerca dei cammini dove viaggia l'informazione
- attivata nel 1969, connettendo 4 elaboratori Honeywell 516 con 12 KB di memoria
 - University of California Los Angeles (UCLA)
 - University of California Santa Barbara (UCSB)
 - University of Utah (UTAH)
 - Stanford Research Institute (SRI)

Storia

Figura 32: Arpanet - 1969

Storia

Figura 33: Arpanet - 1971

Storia

Figura 34: Arpanet - 1981

Internet Storia

ARPANET Geographic Map, 31 October 1989

Figura 35: Arpanet - 1989

Storia

Da Arpanet a Internet

- Arpanet diventa MILNET, predecessore di Internet
- Milnet rete per il traffico non classificato
- tra 1988 e 1990 l'esercito abbandona il progetto Arpanet
- Tim Berners-Lee inventa il World Wide Web (WWW) e HTTP (CERN, Ginevra)
 - primo sito web: info.cern.ch/hypertext/WWW/TheProject.html
- 1995 integrato protocollo SSH
- le dimensioni di Internet tendono a raddoppiare ogni anno
- 2015: gli utenti di Internet sono oltre 3,3 miliardi in tutto il mondo

Internet Geografia

Figura 36: Utenti Internet, espressi in % della popolazione per nazione, nel 2012

Internet Geografia

Figura 37: Mappa dei cavi Internet sottomarini nel mondo

Internet Geografia

Figura 38: Mappa dei cavi Internet sottomarini in Europa

Internet Geografia

Figura 39: Mappa dei cavi Internet sottomarini in Italia

Schema di Indirizzamento

IP address

- ogni nodo è identificato univocamente in rete da un indirizzo IP
- ogni indirizzo IP è rappresentato in 32 bit (IPv4), scritto come 4 ottetti in notazione 256
- un indirizzo IP porta con sé due informazioni:
 - la rete fisica cui il nodo è collegato
 - il singolo nodo all'interno della rete fisica
- il numero di host in una rete dipende dalla *classe* di tale rete
 - classe A: 3 byte (24 bit)
 - classe B: 2 byte (16 bit)
 - classe C: 1 byte (8 bit)

Schema di Indirizzamento

Figura 40: Classi di indirizzamento

Schema di Indirizzamento

Figura 41: Classi di indirizzamento

Schema di Indirizzamento

Subnetting

- struttura dell'indirizzamento IP parzialmente modificabile
- per migliorare la strutturazione di una rete posso suddividere la rete stessa in sottoreti
- subnetting: suddivisione della parte HostID dell'indirizzo IP in due parti: SubnetID + HostID
- IP = NetID SubnetID HostID

Indirizzo IP di classe B (HostID = 16 bit)

- SubnetID = 8 bit \rightarrow 2⁸ = 256 subnet + 2¹⁶⁻⁸ 2 = 254 host ciascuna
- SubnetID = 12 bit \rightarrow 2¹² = 4096 subnet + 2¹⁶⁻¹² 2 = 14 host ciascuna

Schema di Indirizzamento

Subnetting

- struttura dell'indirizzamento IP parzialmente modificabile
- per migliorare la strutturazione di una rete posso suddividere la rete stessa in sottoreti
- subnetting: suddivisione della parte HostID dell'indirizzo IP in due parti: SubnetID + HostID
- IP = NetID SubnetID HostID

Indirizzo IP di classe B (HostID = 16 bit)

host ciascuna

- SubnetID = 8 bit \rightarrow 2⁸ = 256 subnet + 2¹⁶⁻⁸ 2 = 254 host ciascuna
- SubnetID = 12 bit $\rightarrow 2^{12} = 4096$ subnet $+ 2^{16-12} 2 = 14$

Schema di Indirizzamento

Subnet Mask

- sequenza di 32 bit che identifica quali bit sono comuni in un indirizzo IP all'interno della stessa sottorete
- definisce la dimensione della rete, ovvero l'intervallo di indirizzi da controllare, stabilendo il confine (perimetro) tra HostID (parte di host) e NetID - SubnetID (parte di rete)
- permette la destinazione dei pacchetti verso i computer della rete in modo più veloce, indicando ai dispositivi di rete che fanno routing quali bit dell'indirizzo IP devono essere controllati e quali no per poter determinare se un indirizzo IP fa parte della rete o si trova in una rete remota
- rivela anche max numero di host nella subnet considerata

Schema di Indirizzamento

Subnet Mask

- 255.255.255.0
- significativi i primi tre byte dell'indirizzo IP, il quarto può non essere controllato
- la presenza di un bit 1 indica che la cifra è da controllare
- la presenza di un bit 0 indica che non si deve controllare

Schema di Indirizzamento

Subnet Mask

AND logico tra subnet mask e indirizzo IP individua la rete di appartenenza.

Schema di Indirizzamento

Classe A

- utilizzata per reti di grandi dimensioni (WAN)
- il primo byte rappresenta la rete, gli altri tre gli host per ogni rete
- IP del tipo: [0-127].H.H.H
- subnet mask: 255.0.0.0 (o anche detta /8 in quanto i bit di rete sono 8)
- questi indirizzi in binario iniziano con il bit 0

Schema di Indirizzamento

Classe B

- utilizzata per reti di medie dimensioni (MAN)
- i primi due byte rappresentano la rete, gli altri due gli host per ogni rete
- IP del tipo: [128-191].N.H.H
- subnet mask: 255.255.0.0 (o anche detta /16 in quanto i bit di rete sono 16)
- questi indirizzi in binario iniziano con i bit 10

Schema di Indirizzamento

Classe C

- utilizzata per reti di piccole/medie dimensioni (LAN)
- i primi tre byte rappresentano la rete, l'ultimo gli host per ogni rete
- IP del tipo: [192-223].N.N.H
- subnet mask: 255.255.255.0 (o anche detta /24 in quanto i bit di rete sono 24)
- questi indirizzi in binario iniziano con i bit 110

Schema di Indirizzamento

Classi D e E

- classe D
 - riservata agli indirizzi multicast (indirizzamenti di un sottoinsieme degli host di una rete)
 - questi indirizzi non sono indirizzi IP disponibili: potrebbero essere utilizzati dai dispositivi di rete
 - IP del tipo: [224-239].X.X.X
 - subnet mask non definita
 - questi indirizzi in binario iniziano con i bit 1110
- classe E
 - riservata per usi futuri
 - IP del tipo: [240-255].Y.Y.Y
 - subnet mask non definita
 - questi indirizzi in binario iniziano con i bit 1111

Schema di Indirizzamento

CIDR

- notazione Classless InterDomain Routing
- IP = a.b.c.d/m
- m indica il numero di bit che compongono la parte di indirizzo della rete (NetID-SubnetID)
- più pratica e compatta rispetto la subnet mask
- n = 32 m bit per gli host $\rightarrow 2^n$ possibili valori e $2^n 2$ indirizzi validi
 - primo indirizzo: riservato come indirizzo della rete della subnet (usato ad esempio nelle tabelle dei router)
 - ultimo indirizzo: riservato come indirizzo di broadcast

Schema di Indirizzamento

Esempio

- IP address = 192.168.1.0
- Subnet mask = 255.255.255.0
- - 24 bit per la rete
 - 32 24 = 8 bit per gli host

Schema di Indirizzamento

Indirizzo simbolico

- indirizzo IP: 159.149.145.240
- indirizzo simbolico: security.di.unimi.it
- negli indirizzi IP la gerarchia dalla macchina alla rete si legge da destra a sinistra
- negli indirizzi simbolici la gerarchia dalla macchina alla rete si legge dal basso verso l'alto
 - security: laboratorio di sicurezza nel dipartimento
 - di: dipartimento di informatica nell'istituzione
 - unimi: l'istituzione (Università degli Studi di Milano)
 - it: lo stato (Italia)
- indirizzo IP sempre formato da 4 parti, ma indirizzo simbolico non necessariamente

Schema di Indirizzamento

Indirizzo simbolico

- nessuna corrispondenza tra le singole parti di indirizzo simbolico e indirizzo IP
- Internet Assigned Numbers Authority (IANA): fornisce ufficialmente indirizzi IP
- Network Information Center (NIC): fornisce ufficialmente indirizzi simbolici
- Top Level Domain (TLD): suffisso simbolico fisso

Schema di Indirizzamento

TLD

- .com (commercial): organizzazioni commerciali (es.: www.ibm.com)
- .gov (government): enti governativi (es.: www.nasa.gov)
- .mil (military): enti militari (es.: www.navy.mil)
- .net (network): enti di gestione della rete (es.: www.internic.net)
- .edu (education): università e centri di ricerca (es.: www.mit.edu)
- .org (organization): organizzazioni no-profit (es.: www.wwf.org)
- TLD nazionali: www.worldstandards.eu/other/tlds

Rivoluzioni tecnologiche

- 1492: invenzione della stampa a caratteri mobili (Gutenberg)
- 1993: introduzione di un'interfaccia grafica per gli utenti di Internet - nasce il WWW (Tim Berners-Lee, CERN)
 - nasce per necessità degli scienziati di dover scambiare materiale non testuale

Ragnatela globale

WWW è la rete costituita dai server che forniscono accesso alle informazioni tramite protocollo HTTP

Che cos'è?

- è parte di internet
- è una vasta collezione di informazioni distribuita
- rete client-server distribuita

Funzionamento

Gli host si collegano ai server usando un programma client come il *browser*: Internet Explorer, Google Chrome, Mozilla Firefox

Point & Click

Il browser permette la consultazione interattiva di documenti ipertestuali e multimediali con modalità point-and-click.

Website

Le informazioni sono raggruppate in siti web, a loro volta suddivisi in pagine web:

- le pagine contengono informazioni di diverso:
 - formato (testo, immagini, suoni, video, software, ...)
 - contenuto (commerciale, ludico, scientifico-educativo, militare ...)
- forniscono servizi di: compravendita, consulenza, accesso a informazioni (database), prenotazioni e iscrizioni a eventi

Identificazione delle Risorse

URL

Le risorse disponibili sulla rete (i documenti sui server) devono essere identificabili in modo univoco

I browser identificano le risorse tramite indirizzi detti Uniform $Resource\ Locator\ (URL)$

Un indirizzo URL ha la forma: protocollo://server:porta/pathname

Identificazione delle Risorse

URL

Le risorse disponibili sulla rete (i documenti sui server) devono essere identificabili in modo univoco

I browser identificano le risorse tramite indirizzi detti Uniform $Resource\ Locator\ (URL)$

Un indirizzo URL ha la forma: protocollo://server:porta/pathname

Identificazione delle Risorse

URL

Le risorse disponibili sulla rete (i documenti sui server) devono essere identificabili in modo univoco

I browser identificano le risorse tramite indirizzi detti Uniform $Resource\ Locator\ (URL)$

Un indirizzo URL ha la forma: protocollo://server:porta/pathname

Identificazione delle Risorse

URL

- protocollo: tipo di protocollo utilizzato
- server: indirizzo IP, numerico o simbolico, del computer cui si vuole accedere
- porta: porta cui il protocollo fa riferimento
- pathname: percorso completo del file

Identificazione delle Risorse

URL

Alcune informazioni sono superflue e possono essere omesse; il server e/o il client sceglieranno implicitamente dei valori di default, cioè predefiniti:

- protocollo \rightarrow default HTTP
- porta \rightarrow default 80, associata ad HTTP
- il nome del file \rightarrow default index.html, home.html ...

Identificazione delle Risorse

URL

I seguenti URL sono equivalenti:

- http://security.di.unimi.it:80/index.html
- security.di.unimi.it:80/index.html
- http://security.di.unimi.it/index.html
- http://security.di.unimi.it:80
- http://security.di.unimi.it
- security.di.unimi.it
- 159.149.145.240

Connessione diretta

Navigazione

- per visitare un sito web con un browser si deve specificarne l'indirizzo
- il client invia la richiesta di connessione, formulata secondo HTTP
- ricevuta la richiesta, il web server trasmette le informazioni al client ed il browser provvede a visualizzarle

Successo del web

- immediatezza di accesso alle informazioni
 - i protocolli precedentemente utilizzati, come FTP, prevedevano il download della risorsa per potervi accedere
 - documento salvato sul client prima di poterlo consultare
 - con il web possibile consultare documenti on-line
 - trasferimento delle risorse automatico e trasparente all'utente finale
- consente di accedere in modo uniforme a informazioni di natura eterogenea (testo, immagini, video . . .)
- con l'introduzione di tecnologie attive (form, Javascript, PHP ...) è anche possibile utilizzare il browser per trasmettere informazioni dal client al server

Successo del web

- permette all'utente di scegliere l'ordine di consultazione
- link: svincola associazione logica da quella fisica; su una pagina possono esserci collegamenti a risorse che riesedono su server distanti
- facilità d'uso tramite interfaccia grafica con interazione point-and-click
- indipendente dal sistema sottostante; stessa informazione può essere acceduta:
 - su differenti tipi di computer
 - sul medesimo computer con diversi SO
 - sullo stesso computer e stesso SO con differenti browser
 - la pagina può avere un layout differente, a seconda della configurazione utilizzata (non cambia contenuto)

Conversioni numeriche

Notazione posizionale

- ogni cifra di un numero assume un certo valore a seconda della sua posizione
- un numero si esprime come somma dei prodotti di ciascuna cifra per la base elevata all'esponente che rappresenta la posizione della cifra, da destra verso sinistra

Conversioni numeriche

Sistema di numerazione decimale

- basato su 10 cifre (da 0 a 9) e sulle potenze di 10
- $365_{10} = 3 * 10^2 + 6 * 10^1 + 5 * 10^0$

Sistema di numerazione binario

- basato su 2 cifre (0 e 1) e sulle potenze di 2
- $1001_2 = 1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 1 * 2^0$

Sistema di numerazione esadecimale

- basato su 16 cifre (da 0 a 9 e da A a F) e sulle potenze di 16
- \bullet A = 10, B = 11, C = 12, D = 13, E = 14, F = 15
- $ABCDEF_{16} =$ $A * 16^5 + B * 16^4 + C * 16^3 + D * 16^2 + E * 16^1 + F * 16^0$

Introduzione Reti di Calcolatori ISO/OSI-TCP/IP Internet Esercizi

Esercizi

Conversioni numeriche

Da base n a base 10 e viceversa

- per convertire un numero da una qualunque base alla base 10 è sufficiente rappresentarlo esplicitamente per mezzo della notazione posizionale e fare i calcoli
- per convertire un numero decimale a una base n bisogna determinare tutti i resti delle successive divisioni del numero per la base n, ricomponendo dal basso verso l'alto

0

Esercizi

Conversioni numeriche

Conversioni numeriche

Esempio da base 10 a base 16

	16	
378	A	
23	7	$\uparrow 17A_{16}$
1	1	
0		

Conversioni numeriche

0x00

$$\bullet$$
 39₁₀ = 100111₂ =?₁₆

•
$$378_{10} = ?_2 = 17A_{16}$$

•
$$365_{10} = ?_2 = ?_{16}$$

•
$$?_{10} = ?_2 = ABCDEF_{16}$$

•
$$127_{10} = ?_2 = ?_{16}$$

$$\bullet$$
 265₁₀ =?₂ =?₁₆

Conversioni numeriche

0x00

- \bullet 39₁₀ = 100111₂ = 27₁₆
- $\bullet \ 378_{10} = 1011111010_2 = 17A_{16}$
- $365_{10} = 101101101_2 = 16D_{16}$
- $11259375_{10} = 10101011111001101111101111_2 = ABCDEF_{16}$
- $127_{10} = 11111111_2 = 7F_{16}$
- $\bullet \ 265_{10} = 100001001_2 = 109_{16}$

Reti IP

0x01

Calcolare il max numero di host, partendo da una subnet mask di classe C

$$255.255.255.$$
 0 = 1...1.1...1.1.00000000

$$2^8 - 2 = 254$$
 host

Reti IP

0x01

Calcolare il max numero di host, partendo da una subnet mask di classe C

$$255.255.255.$$
 0 = 1...1.1...1.00000000

$$2^8 - 2 = 254$$
 host

Esercizi Reti IP

0x02

In una rete IP con 10 host, determinare la subnet mask minima per la gestione di tale rete

- ogni rete ha due indirizzi riservati: se stessa (network) e broadcast
- il numero minimo di indirizzi per tale rete è 10 + 1 + 1 = 12
- la rete può essere indirizzata con un blocco minimo di $16 = 2^4$ indirizzi
- 255.255.255.240 (ultimo byte = 11110000)

Esercizi Reti IP

0x02

In una rete IP con 10 host, determinare la subnet mask minima per la gestione di tale rete

- ogni rete ha due indirizzi riservati: se stessa (network) e broadcast
- il numero minimo di indirizzi per tale rete è 10 + 1 + 1 = 12
- la rete può essere indirizzata con un blocco minimo di $16 = 2^4$ indirizzi
- \bullet 255.255.255.240 (ultimo byte = 11110000)

Esercizi Online Tools

Number Converter

- https://www.rapidtables.com/convert/number/index.html
- https://coderstoolbox.net/number/

Network Calculator

- https://www.subnetmask.info/
- http://www.subnet-calculator.com/

Linux Shell Bash

- https://repl.it/languages/bash
- https://rextester.com/l/bash_online_compiler

Bandit

Premessa

Le password per passare da un livello al successivo sono salvate in un file (solitamente *readme*) sulla home directory della macchina remota.

Non in tutti i livelli il file si chiamerà *readme*, bisognerà poter leggere il contenuto del file presente nella home directory, qualsiasi nome esso assuma.

Comandi utili

- cd = change directory
- ls = list (file and directory)
- cat = catenate
- file = info

Bandit

0x00

- connettersi in ssh a bandit.labs.overthewire.org sulla porta 2220
- user:bandit0; password:bandit0

- ssh bandit0@bandit.labs.overthewire.org -p 2220
- 2 ls
- 3 cat readme
- password: boJ9jbbUNNfktd78OOpsqOltutMc3MY1

Bandit

0x00

- connettersi in ssh a bandit.labs.overthewire.org sulla porta 2220
- user:bandit0; password:bandit0

- ssh bandit0@bandit.labs.overthewire.org -p 2220
- **2** ls
- cat readme
- password: boJ9jbbUNNfktd78OOpsqOltutMc3MY1

Bandit

0x01

- connettersi in ssh a bandit.labs.overthewire.org sulla porta 2220
- user:bandit1; password:boJ9jbbUNNfktd78OOpsqOltutMc3MY1

Soluzion ϵ

- ssh bandit1@bandit.labs.overthewire.org -p 2220
- 2 1s
- ③ cat ~/- (path assoluto)
- 4 cat ./- (path relativo)
- password: CV1DtqXWVFXTvM2F0k09SHz0YwRINYA9

Bandit

0x01

- connettersi in ssh a bandit.labs.overthewire.org sulla porta 2220
- user:bandit1; password:boJ9jbbUNNfktd78OOpsqOltutMc3MY1

- ssh bandit1@bandit.labs.overthewire.org -p 2220
- 0 ls
- 4 cat ./- (path relativo)
- password: CV1DtqXWVFXTvM2F0k09SHz0YwRINYA9

Bandit

0x02

- connettersi in ssh a bandit.labs.overthewire.org sulla porta 2220
- user:bandit2; password:CV1DtqXWVFXTvM2F0k09SHz0YwRINYA9

- ssh bandit2@bandit.labs.overthewire.org -p 2220
- 2 ls
- 3 cat spaces\ in\ this\ filename
- o password: UmHadQclWmgdLOKQ3YNgjWxGoRMb5luK

Bandit

0x02

- connettersi in ssh a bandit.labs.overthewire.org sulla porta 2220
- user:bandit2; password:CV1DtqXWVFXTvM2F0k09SHz0YwRINYA9

- ssh bandit2@bandit.labs.overthewire.org -p 2220
- 1s
- o cat spaces\ in\ this\ filename
- password: UmHadQclWmgdLOKQ3YNgjWxGoRMb5luK

Bandit

0x03

- connettersi in ssh a bandit.labs.overthewire.org sulla porta 2220
- $\bullet \ user: bandit 3; \ password: UmHadQclWmgdLOKQ3YNgjWxGoRMb5luK$

- ssh bandit3@bandit.labs.overthewire.org -p 2220
- cd inhere/
- 1s -a
- ① cat .hidden
- password: pIwrPrtPN36QITSp3EQaw936yaFoFgAB

Bandit

0x03

- connettersi in ssh a bandit.labs.overthewire.org sulla porta 2220
- user:bandit3; password:UmHadQclWmgdLOKQ3YNgjWxGoRMb5luK

- ssh bandit3@bandit.labs.overthewire.org -p 2220
- 2 cd inhere/
- ls -a
- cat .hidden
- password: pIwrPrtPN36QITSp3EQaw936yaFoFgAB

Bandit

0x04

- connettersi in ssh a bandit.labs.overthewire.org sulla porta 2220
- $\bullet \ user: bandit4; \ password: pIwrPrtPN36QITSp3EQaw936yaFoFgAB$

- ssh bandit4@bandit.labs.overthewire.org -p 2220
- <u>a</u> 1g
- 3 cd inhere
- file ./-file*
- 6 cat ./-file07
- o password: koReBOKuIDDepwhWk7jZC0RTdopnAYKh

Bandit

0x04

- connettersi in ssh a bandit.labs.overthewire.org sulla porta 2220
- $\bullet \ user: bandit 4; \ password: pIwrPrtPN36QITSp3EQaw936yaFoFgAB \\$

- ssh bandit4@bandit.labs.overthewire.org -p 2220
- 1s
- cd inhere
- file ./-file*
- cat ./-file07
- password: koReBOKuIDDepwhWk7jZC0RTdopnAYKh