Implicit Bias of Mirror Flow on Separable Data

Scott Pesme (Inria Grenoble)
Radu Dragomir (Télécom Paris)
Nicolas Flammarion (EPFL)

Setup: logistic regression

<u>Assumption</u>: linearly separable data \rightarrow the loss is minimised `at infinity':

$$\lim_{s \to \infty} L(s\beta^*) = 0 \quad \text{for } \beta^* \in S := \{ \beta^* \in \mathbb{R}^d, y_i \langle \beta^*, x_i \rangle \ge 1, \forall i \}$$

set of vectors defining separating hyperplanes

For mirror flow, what is the directional limit $\lim_{t\to\infty}\frac{\beta_t}{\|\beta_t\|}$ of the iterates β_t ?

Many possible solutions in *S*: which one is preferred by the method? *(implicit regularisation)*This question is important to understand the generalisation properties!

The gradient method: mirror flow

$$d\nabla\phi(\beta_t) = -\nabla L(\beta_t)dt$$

$$strictly\ convex\ potential$$

Motivation: reparametrisation $\beta = F(\theta)$, then under some (restrictive) conditions:

Gradient flow on $\theta \mapsto L(F(\theta)) \implies \text{Mirror flow on } \beta \mapsto L(\beta)$

Example: $\beta = F(u, v) = u \odot v$ "diagonal neural networks"

Horizon function: geometry of ϕ `at infinity'

$$S_c = \{\beta : \phi(\beta) \le c\}$$

 $\bar{S}_c = S_c / \max_{\beta \in S_c} \|\beta\|$

$$S_{\infty} = \lim_{c \to \infty} \bar{S}_c$$

We say that ϕ admits a horizon function if $\lim_{c\to\infty} \bar{S}_c$ exists

Horizon function: $\phi_{\infty}(\beta) = \inf\{r > 0 : \frac{\beta}{r} \in S_{\infty}\}$

Minkowski gauge of S_{∞} Asymmetric norm whose unit ball is S_{∞}

Main result: convergence and implicit bias

e.g. polynomial, semialgebraic, subanalytic, log-exp...

Theorem: if ϕ is tame, it admits a horizon ϕ_{∞} and the mirror flow iterates β_t converge in direction towards the vector $\bar{\beta}_{\infty}$ satisfying the ϕ_{∞} -max margin problem:

$$\lim_{t \to \infty} \frac{\beta_t}{\|\beta_t\|} =: \bar{\beta}_{\infty} \propto \operatorname{argmin} \{ \phi_{\infty}(\beta^*) : \beta^* \in S \}$$

set of separating hyperplanes

- Experiments

Mirror descent with:

Limiting directions

