STAT 110: Week 4

University of Otago

Outline

- Previous lectures:
 - ▶ Introduction to probability, random variables
 - ▶ First example of a statistical model
 - Normal model
- Today: learn more about the normal distribution

Normal distribution

- We used a normal model to describe flipper length (gentoo penguins in Palmer archipelago)
- Is the normal model appropriate
 - ▶ Does it make sense scientifically
 - Understand 'properties' of a normal distribution
 - Looked at some aspects in last lecture
 - Understand more about the normal distribution today
 - After estimation: check model fit
 - Looked briefly at this in last lecture
 - Consider it further in future lectures

Recap: normal distribution

- Described by two parameters
 - \blacktriangleright Mean μ
 - \triangleright Standard deviation σ
- Changing μ shifts the pdf side to side

Recap: normal distribution

- Described by two parameters
 - \blacktriangleright Mean μ
 - ightharpoonup Standard deviation σ
- Changing σ compresses or expands the pdf

IQ scores

- IQ tests are designed so that scores are (approximately) normally distributed
 - $\mu = 100$
 - $\sigma = 15$
- We may be interested in knowing things like:
 - ▶ What is the probability of a randomly chosen individual scoring less than 85?
 - ▶ What is the probability of a randomly chosen individual scoring between 85 and 115?
 - ► For membership Mensa require a score at or above the 98th percentile on certain standardized IQ tests. For an IQ test (as above) what score would you need?
- All of these require us to be able to find probabilities from the normal distribution

Probabilities

- Recall: we find probabilities by finding the area under pdf
- The normal pdf is a mathematical function: $f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y-\mu)^2\right)$
 - ▶ Not expected (or required) to remember or understand this
 - Mathematical representation of the pdfs we saw in earlier slides
- Theory: to find probabilities we can use calculus and integrate $f(y)^{-1}$
 - ightharpoonup Problem: can't integrate f(y) by hand
- Historical solution: tables of values we could refer to
 - \blacktriangleright Problem: lots of possible values of μ and σ
 - ► Solution: find them for a single standardized version of the distribution

¹Integration can be thought of as (mathematically) finding the area under curve

Standard normal distribution

- Normal pdfs have the same shape
 - Irrespective of the value of μ , σ
 - Hard to see on the previous plots
 - More clear if change the scale of the axes for different values of μ , σ

• Idea: work with a standard normal distribution: $\mu = 0$, $\sigma = 1$

Standardizing

- Idea: define a standard normal distribution
 - $\mu = 0, \, \sigma = 1$
- Find probabilities, etc, for this standard distribution
- Convert a value (y) to a z-score
 - lacktriangleq y-value from distribution with mean μ and standard deviation σ
 - ► z-score from distribution with mean 0 and standard deviation 1
 - ightharpoonup Going from y to z is often called standardizing
- The z-score tells us how many standard deviations above the mean a value is
 - ightharpoonup z=1: value is 1 standard deviation above the mean
 - ightharpoonup z = -1.5: value is 1.5 standard deviations below the mean

Standardizing

• We can find a z-score from y

$$z = \frac{\text{value} - \text{mean}}{\text{standard deviation}} = \frac{y - \mu}{\sigma}$$

• IQ test of y = 115:

$$z = \frac{y - \mu}{\sigma} = \frac{115 - 100}{15} = 1$$

- ▶ An IQ test of 115 is one standard deviation above the mean
- We can also find y from a z-score

$$y = \mu + z\sigma$$

• A z-score of 1 for IQ corresponds to a score of:

$$y = 100 + 1 \times 15 = 115$$

Graphical representation

normal pdf: $\mu = 0$, $\sigma = 1$

Finding probabilities: deep dark past

• We used to find probabilities from tables

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.6	.0002	.0002	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001
-3.5	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183

Finding probabilities: computing age

- We can find them using a graphical calculator or computer
- We will use R
- R has four functions for the normal distribution
 - ▶ dnorm: density function
 - pnorm: probability function
 - qnorm: quantile function
 - ▶ rnorm: generate random values
- In STAT 110, most our interest is in pnorm and qnorm
 - ► Look at each in turn

Probability function

- This is best seen graphically
- The blue area is given by pnorm(q)
 - $ightharpoonup \Pr(Z < q)$

• Look at three examples

- What is the probability that IQ is less than 85?
- Find *z*-score:

$$z = \frac{y - \mu}{\sigma} = \frac{85 - 100}{15} = -1$$

• Find Pr(Z < -1)

```
mu = 100; sigma = 15 # the mean and sd for IQ
z = (85 - mu)/sigma # finding the z-score
pnorm(z)
## [1] 0.159
pnorm(-1) # for those who want to check
## [1] 0.159
```


Probability that IQ is more than 120?

$$z = \frac{y - \mu}{\sigma} = \frac{120 - 100}{15} = 1.3333$$

• Use pnorm to find Pr(Z < 1.3333) (gold area)

```
z = (120 - mu)/sigma # finding the z-score
pnorm(z)
## [1] 0.909
```

- Pr(Z > 1.3333) (blue area) is the complement
 - $\Pr(Z > z) = 1 \Pr(Z < z)$

z

Probability that IQ is between 110 and 130?

$$z_{110} = \frac{y - \mu}{\sigma} = \frac{110 - 100}{15} = 0.6667$$
$$z_{130} = \frac{y - \mu}{\sigma} = \frac{130 - 100}{15} = 2$$

▶ Best seen graphically on RHS

Important properties

- We can use this to learn some important characteristics of a normal distribution
- Pr(-1 < Z < 1) = 0.683
 - ► Approximately 68% of values should be within 1 sd of the mean
- Pr(-2 < Z < 2) = 0.955
 - ▶ Approximately 95% of values should be within 2 sd of the mean
- Pr(-3 < Z < 3) = 0.997
 - ▶ More than 99% of values should be within 3 sd of the mean
- Challenge: confirm these numbers using pnorm in R before next class

Quantile function

- Basically the same graphic as before: interest is switched
- The value q is given by qnorm(p)
 - ► The value of *p* is the black area (known)

• Look at an example

- What score is required for Mensa membership
 - ► At or above the 98th percentile
 - In the top 2%
- Find the z-score corresponding to p = 0.98

$$z = qnorm(0.98)$$

• Find the y-value

$$y = \mu + z\sigma$$

```
mu + z * sigma
## [1] 131
```

• Need an IQ score of 131 or higher

z or y?

- Throughout we have done calculations using standard normal
 - Standardized to find z
- ullet With R it is comparatively easy to find using y
 - pnorm has optional arguments for the mean and sd
- First example: Pr(IQ < 85)

```
pnorm(q = 85, mean = 100, sd = 15)
## [1] 0.159
```

- Rstudio guides you as to the arguments (in R)
- Important to know about z / standardization
 - Required knowledge in the scientific world
 - ▶ Need it to understand how confidence interval and t-tests work

Summary

- Looked in some detail at normal distribution
 - ► Standardization and z-scores
 - ► Finding probabilities from *z*-scores
 - ightharpoonup Finding z-scores from probabilities
- Next class: sampling distributions
 - ▶ If we took another sample, how much variation would we expect in the sample mean \bar{y} ?

Outline

- Previous:
 - ▶ Introduction to statistical modelling
 - Looked into the normal distribution
- Today:
 - ► Look at sampling distribution
 - Explore: how precise is the estimate \bar{y} ?

- Previously we have been exploring flipper length of gentoo penguins
- Today we will use a different example
- Data from urine tests of n = 314 children (aged 0 17 years)
 - ► (log) GAG concentration²
 - ► GAG: glycosaminoglycan
 - Test is used to diagnose disorders of glycosaminoglycan metabolism
 - Glycosaminoglycans are important in cell signalling
- Data were collected to help paediatricians assess normal level of GAG concentration
- Today we'll consider a simpler problem
 - ▶ What is the expected (or mean) GAG concentration?

²We will refer to this as the concentration from here on

Data

- The data are in lect4GAG.csv
- Import the data into R³

```
lect4GAG = read.csv('lect4GAG.csv')
```

The function head shows us the first few lines of data

```
head(lect4GAG)

## age conc

## 1 0.00 3.14

## 2 0.00 3.17

## 3 0.00 2.83

## 4 0.00 2.92

## 5 0.01 2.88

## 6 0.01 3.25
```

³Recall there are several ways to do this: see week 1 of lectures

Data

• Look at a histogram

hist(lect4GAG\$conc) # dollar sign: selects the appropriate variable (conc)

- We can 'adapt' this plot to change axes labels, title, etc.
 - ▶ Keep it simple, getting an idea of the data

Recap: normal model

- We model the data as from a normal distribution
 - Modelling GAG concentration as being normally distributed
- Two parameters μ and σ
- Parameters are unknown
 - $\blacktriangleright \mu$: mean GAG concentration
 - \triangleright σ : standard deviation of GAG concentrations
- Return to our question: what is the expected (or mean) GAG concentration?
 - \blacktriangleright Estimate μ with sample mean
 - $\hat{\mu} = \bar{y}$

```
ybar_conc = mean(lect4GAG$conc)
ybar_conc
## [1] 2.36
```

Critical thinking

- Do we now know the expected GAG concentration?
 - ▶ That we could use (if we were a paediatrician) seeing patients

Critical thinking

- Do we now know the expected GAG concentration?
 - ▶ That we could use (if we were a paediatrician) seeing patients
- No, we don't
 - Mean GAG concentration is a parameter μ
 - lacktriangle Estimated it with a statistic: sample mean, \bar{y}
- How precise is the estimate?
 - ▶ If we took another sample of 314 children, how much would the estimate change?
 - Would you 'trust' the estimate more, less, or the same, if:
 - The estimate was from a sample of 8 children?
 - The estimate was from a sample of 50 000 children?

Thought experiment

• How close to μ is \bar{y} ?

Thought experiment

- How close to μ is \bar{y} ?
- To answer it, let's play god:
 - Assume that GAG concentration really is normal
 - ightharpoonup Pretend that we know μ and σ
 - $-\mu = 2.4$
 - $-\sigma = 0.75$
- Take a sample of size n=314 from the population
 - Observe how close the sample mean \bar{y} is to μ
- Take many (separate) samples of size n
 - See how much \bar{y} varies from one sample to another

Let's try it

• We saw a function previously for simulating from a normal distribution

```
rnorm(n,mean,sd)
```

 Generates a sample of size n from a normal distribution with mean (mean) and std deviation (sd)

```
n = 314; mu = 2.45; sigma = 0.75
y = rnorm(n = n, mean = mu, sd = sigma)
mean(y)
## [1] 2.52
```

• True mean: $\mu=2.45$; sample mean: $\bar{y}=2.52$

What if we took a lot of samples?

- Repeat this m times (using R)
 - ▶ You will not be expected to replicate the R code below

```
m = 10000 # the number of samples
ybar = rep(NA, m) # this 'initializes' a vector to store each
# of the m sample means
for(i in 1:m) { # repeats the code below m times
    y = rnorm(n, mu, sigma) # takes a sample of size n = 314
    ybar[i] = mean(y) # finds the sample mean and stores it in ybar
}
```

What if we took a lot of samples?

• The first few sample means are:

```
head(ybar)
## [1] 2.48 2.46 2.45 2.46 2.44 2.50
```

- We could look at a histogram of these
 - ► Get an idea of the distribution of sample means
 - Evaluate how variable \bar{y} is: one sample to another
 - Assess whether \bar{y} accurately estimates the mean (on average)

What if we took a lot of samples?

- This is called the sampling distribution
 - ightharpoonup Sampling distribution of \bar{y}
- Tells us how we would expect our statistic (\bar{y}) to vary from one sample to another
- From the histogram we can see
 - ▶ On average it is 2.45: the value of μ
 - ▶ Sample means less than 2.35 or larger than 2.55 are unlikely

What if?

- We can use this to answer 'what if' questions, e.g.
- What is the chance of observing a sample mean as extreme as $\bar{y}=2.36$
 - If the $\mu = 2.45$ and $\sigma = 0.75$?
- Look at the histogram again:
 - ► Possible, but unlikely
- Could use R to count how many samples (of 10 000) had mean less than 2.36
 - ► Estimate the probability
 - R shown for interest only

```
sum(ybar < ybar_conc) # ybar_conc = 2.36 (from data)
## [1] 218</pre>
```

What is extreme?

• We asked 'what is the chance of observing a sample mean as extreme as ...'

▶ Did we answer that correctly?

What is extreme?

- We asked 'what is the chance of observing a sample mean as extreme as ...'
 - ▶ Did we answer that correctly?
- No: we looked at chance of observing a sample mean less than 2.36
 - ▶ A sample mean higher than 2.54 is just as extreme as one below 2.36
 - lacktriangle Both are 0.09 units away from the true mean $(\mu=2.45)$
- An extreme observation could be below or above the mean
 - ► Calculating the probability of an extreme value needs to account for both
- This is a principle we will use often

Theory

- ullet It turns out that when we have a normal model for y
 - lacktriangle The sampling distribution (distribution of sample means \bar{y}) is also normally distributed
- What are the mean and variance?
 - lacktriangle The mean of the sampling distribution is μ
 - ▶ The variance of the sampling distribution is $\frac{\sigma^2}{n}$
 - \blacktriangleright The standard deviation of the sampling distribution is $\frac{\sigma}{\sqrt{n}}$

Theory

- Where do these results come from?
 - ▶ We worked these out a few lectures ago! (lecture 8; copied below)
 - The expected value of the sample mean is

$$E\left[\frac{Y_1 + Y_2 + \dots + Y_n}{n}\right] = \frac{1}{n}E[Y_1] + \frac{1}{n}E[Y_2] + \dots + \frac{1}{n}E[Y_n]$$
$$= \mu$$

- The variance of the sample mean is

$$Var\left(\frac{Y_1 + Y_2 + \dots + Y_n}{n}\right) = \frac{1}{n^2} Var(Y_1) + \frac{1}{n^2} Var(Y_2) + \dots + \frac{1}{n^2} Var(Y_n)$$
$$= \frac{\sigma^2}{n}$$

Slide 38

- ullet When using a normal model for y, the sampling distribution for $ar{y}$
 - \blacktriangleright Normally distributed with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$
- For the example above, the sampling distribution has:
 - ► Mean: 2.45, standard deviation $\frac{0.75}{\sqrt{314}}$
- Compare to the sampling distribution found in R

STAT 110: Week 4

- Use our knowledge of the normal distribution to earlier questions
- What is the chance of observing a sample mean as extreme as $\bar{y} = 2.36$?
 - If the $\mu=2.45$ and $\sigma=0.75$?
- Three steps
 - 1. Find mean and sd of sampling distribution
 - 2. Convert to z-value
 - 3. Find the probability

- Mean: $\mu = 2.45$
- Standard deviation: $\frac{\sigma}{\sqrt{n}} = \frac{0.75}{\sqrt{314}}$
- z-value: $z=\frac{\bar{y}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{2.36-2.45}{\frac{0.75}{\sqrt{314}}}=-2.021$
- Probability of z-value less than -2.021

• Probability of z-value more extreme than -2.021

Does this make sense?

- The standard deviation of the sampling distribution $\frac{\sigma}{\sqrt{n}}$
 - \triangleright Decreases as n increases
- Makes sense
 - As the sample size (n) increases, the estimate \bar{y} is increasingly precise
- If n is small (n=1)
 - Sample mean is the same as an observation: same sd (σ)
- If n is large (n = 1000000)
 - ► Standard deviation of the sample mean is 1/1000th the sd of observations
 - ▶ Lots of data: sample mean is a precise estimate of true mean

Summary

- Introduced the concept of sampling distribution
 - lacktriangle Tells us how much \bar{y} varies from one sample to the next
- Introduced some core principles that we will see again and again
- Standard deviation of sampling distribution is $\frac{\sigma}{\sqrt{n}}$
 - ▶ Use this to evaluate how precise an estimate is
 - ▶ Problem: relies on σ being known
 - What happens if σ is unknown
 - Always the case in the real world
 - Explore in the next lecture

STAT 110: Week 4

Outline

- Previous:
 - ▶ Introduction to (normal) statistical model
 - Sampling distributions
 - Describe variation in the sample mean \bar{y} (or any other statistic) from one sample to another
 - Relies on us knowing σ
- Today:
 - Use that to find confidence interval
 - Interval estimate for the parameter value
 - ▶ Look at what happens when σ is unknown

Example

- Continue using the GAG concentration data
 - ▶ Data from urine tests of n = 314 children (aged 0 17 years)
 - ▶ (log) concentration of glycosaminoglycan (GAG)
- Asking: what is the expected (or mean) GAG concentration?

- Recall we have a normal model for the data
 - lacktriangle Data come from a normal distribution with mean μ and standard deviation σ
- ullet Last lecture we found the sampling distribution for $ar{y}$
 - lacktriangle Distribution that describes how \bar{y} will vary from one sample to another
 - Sampling distribution is normally distributed (for a normal model)
 - Mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$

Cool result!

- We know about what will happen in repeated samples
 - Without having to take repeated samples!
- If we know the data distribution (i.e. we know μ and σ):
 - lacktriangleright We know how variable we expect \bar{y} to be without even sampling from the population
- If we know σ (but don't know μ):
 - \blacktriangleright Can we use a single sample to tell us about a range of plausible values of μ ?

Cool result!

- We know about what will happen in repeated samples
 - Without having to take repeated samples!
- If we know the data distribution (i.e. we know μ and σ):
 - lacktriangleright We know how variable we expect \bar{y} to be without even sampling from the population
- If we know σ (but don't know μ):
 - \blacktriangleright Can we use a single sample to tell us about a range of plausible values of μ ?

Yes!

Excursion: standard error

- Confusing notation to discuss
- Over the past few lectures, we have seen:
 - ightharpoonup Population standard deviation σ
 - ► Sample standard deviation s
 - ightharpoonup Standard deviation of sampling distribution of \bar{y}
 - It is $\frac{\sigma}{\sqrt{n}}$
 - Has a special name: standard error
 - Can be represented with notation $\sigma_{\bar{u}}$
 - lacktriangle Estimate of the standard deviation of the sampling distribution of \bar{y}
 - It is $\frac{s}{\sqrt{n}}$
 - It is often also called the standard error
 - Can be represented with notation $s_{ar{y}}$

Very confusing

Previous knowledge

- Want to determine an interval estimate of μ from \bar{y}
- From our knowledge of normal distribution:
 - \blacktriangleright 95% of observations will fall within (approx) ± 2 standard deviations of mean
 - More precisely it is ± 1.96
 - In R: qnorm(0.025) and qnorm(0.975)
 - Arr Pr(-1.96 < Z < 1.96) = 0.95

- Applying this to the sampling distribution we have:
 - ▶ 95% of sample means (\bar{y}) are between ± 1.96 standard errors $(\frac{\sigma}{\sqrt{n}})$ of the mean
- 95% of samples we collect will have sample means in the grey area
 - Given by $\mu \pm 1.96 \frac{\sigma}{\sqrt{n}}$

Flipping things I

- Consider any sample mean that is inside the shaded grey area
 - ▶ We've plotted one in brown on plot below
- Here's the magic:
 - ▶ If \bar{y} is inside the grey area $(\mu \pm 1.96 \frac{\sigma}{\sqrt{n}})$ (brown point)
 - ▶ Then μ (vertical black line) is inside the interval $\bar{y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ (brown interval)

Flipping things II

- Consider any sample mean that is outside the shaded grey area
 - ► We've plotted one in blue on plot below
- Here's the magic:
 - ▶ If \bar{y} is outside the grey area $(\mu \pm 1.96 \frac{\sigma}{\sqrt{n}})$ (blue point)
 - ▶ Then μ (vertical black line) is outside the interval $\bar{y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ (blue interval)

Confidence interval

$$\bar{y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

- This is a 95% confidence interval for μ
 - ▶ Interval estimate of μ
 - ightharpoonup Quantifies how precise the estimate of μ is
- On average, 95% of sample means will lie in shaded grey area (established above)
 - ▶ That means that our confidence interval should contain the true μ in 95% of samples
 - Gives us confidence in the procedure (hence the name)
 - Care is needed: we cannot say that there is a probability of 0.95 that μ is in the interval

A few notes on confidence intervals

• The confidence interval is in a general form:

estimate
$$\pm$$
 multiplier \times standard error

- ullet estimate: $ar{y}$
- multiplier:
 - ▶ 1.96 for 95% confidence interval
 - ▶ More generally, we write $z_{1-\alpha/2}$
 - More details on next slide
- Standard error: $\frac{\sigma}{\sqrt{n}}$

Multiplier

- Multiplier: $z_{1-\alpha/2}$
 - ▶ Also referred to as the critical value
- α : significance level
 - ightharpoonup significance level = 1 confidence level
 - 95% interval: $\alpha = 1 0.95 = 0.05$
 - 90% interval: what is α ?
- $\Pr(Z < z_{1-\alpha/2}) = 1 \alpha/2$
 - Find z-value so that tails have probability $\alpha/2$

STAT 110: Week 4

Multiplier

- For a 95% interval
 - $\alpha = 0.05$
 - $-\alpha/2 = 0.975$
 - ▶ We want to find $z_{0.975}$

```
qnorm(0.975)
## [1] 1.96
```

• How do we find the multiplier for a 90% interval?

Multiplier

- For a 95% interval
 - $\alpha = 0.05$
 - $-\alpha/2 = 0.975$
 - We want to find $z_{0.975}$

```
qnorm(0.975)
## [1] 1.96
```

- How do we find the multiplier for a 90% interval?
 - $\alpha = 0.10$
 - $1 \alpha/2 = 0.95$
 - ▶ We want to find $z_{0.95}$

```
qnorm(0.95)
## [1] 1.64
```

STAT 110: Week 4

- Let's find an interval estimate for mean GAG concentration!
- We can't... we don't know σ
 - Population standard deviation
- Can we just replace σ with s?
 - ▶ No, the sampling distribution is no longer normal
 - All is not lost: most of the reasoning we worked through remains the same
- Replacing σ by s introduces additional noise (variability)
 - Sampling distribution no longer normally distributed
 - We need to use a t-distribution instead

t-distribution

- A t-distribution looks a lot like a (standard) normal distribution
 - ► Has fatter tails
- Additional parameter $\nu > 0$, called the degrees of freedom
 - ► This defines how fat the tails are

Historical excursion: William Gosset (1876 – 1937)

- Head Brewer of Guinness who 'discovered' the t-distribution
- Running experiments on yield of barley varieties and did not have statistical tools he needed to analyze the data
 - ► Statistical methodology developed due to applications in food science, agriculture
- The t-distribution is commonly known as Student's t-distribution
 - Gosset published under the pseudonym 'Student'
 - Guinness allowed its scientists to publish research if they did not mention:
 - Beer
 - Guinness
 - Their own surname

Confidence interval: unkonwn σ

ullet Replacing σ by s leads to the confidence interval

$$\bar{y} \pm t_{\nu,1-\alpha/2} \frac{s}{\sqrt{n}}$$

- $t_{\nu,1-\alpha/2}$: multiplier for the *t*-distribution
 - ightharpoonup Significance level α
 - ightharpoonup Degrees of freedom ν
- When finding confidence interval for μ
 - ▶ Degrees of freedom $\nu = n 1$
- Find multiplier in R: for 95% interval when n=30

```
n = 30
qt(0.975, df = n-1)
## [1] 2.05
```

- We are now ready to find an interval estimate for mean GAG concentration
- We need to get a few bits and pieces together:
 - Call in the data:

```
lect4GAG = read.csv('lect4GAG.csv')
```

Find the sample mean: \bar{y}

```
ybar = mean(lect4GAG$conc)
ybar
## [1] 2.36
```

▶ Find the sample standard deviation: s

```
s = sd(lect4GAG$conc)
s
## [1] 0.668
```

▶ Find the sample size: n

```
n = length(lect4GAG$conc) # length() tells us the number of values
n
## [1] 314
```

Find the standard error: $s_{\bar{y}} = \frac{s}{\sqrt{n}}$

```
se = s/sqrt(n)
se
## [1] 0.0377
```

► Find the multiplier: 95% confidence interval

```
alpha = 0.05
tcrit = qt(1-alpha/2, df = n-1)
tcrit
## [1] 1.97
```

► Put it all together

```
lower = ybar - tcrit * se # lower confidence limit
upper = ybar + tcrit * se # upper confidence limit
ci = c(lower, upper)
ci
## [1] 2.29 2.44
```

- ▶ The 95% confidence interval for μ is (2.29, 2.44)
 - Interval estimate for μ
- Spent some time interpreting the interval in the next lecture

Summary

- Found confidence interval for μ
 - \blacktriangleright Interval that quantifies how precise our estimate of μ is
- Found confidence interval if σ is known
 - Useful for understanding
 - ► Not practically useful
- Found confidence interval if σ is unknown
 - ▶ Introduced the *t*-distribution
- Looking forward:
 - ► More about confidence intervals