Nesta aula prática, você deverá usar um valor ε para determinar valores dos parâmetros usados nos problemas. Para encontrar ε , use a equação:

 $\varepsilon = \begin{cases} + [(8121 \cdot X + 24411) \mod{1000003}] \cdot 10^{-6}, & \text{se o seu número USP for } impar, \\ -[(8121 \cdot X + 24411) \mod{1000003}] \cdot 10^{-6}, & \text{se o seu número USP for } par; \\ \text{em que } X \text{ é seu número USP. Por exemplo, para o número USP 8215658}, \\ X = 8215658 \text{ e} \end{cases}$

$$\varepsilon = -[(8121 \times 8215658 + 24411) \mod 1000003] \cdot 10^{-6} \Rightarrow$$

 $\varepsilon = -[66719358618 \mod 1000003] \cdot 10^{-6} = -0,182872.$

A mod B é o resto da divisão de A por B; numa planilha, a fórmula é =MOD (número; divisor).

Nesta aula prática, você deverá montar uma planilha para determinar o tamanho máximo uma composição ferroviária formada por N_L locomotivas e N_V vagões, considerando as características das locomotivas e dos vagões e o trecho ao longo do qual o trem irá viajar.

A composição será formada por N_L locomotivas EESC L-36ACe rebocando o maior número possível de vagões plataforma PDD carregados. A tabela anexa fornece os dados das locomotivas e dos vagões.

A rampa máxima no trecho percorrido é i_{max} . Inicialmente, adote $i_{max} = 2\%$, mas esse valor deve ser um parâmetro de entrada na planilha.

Os passos para determinar o comprimento máximo do trem são:

1. Calcular a força motriz máxima $F_{t_{\text{max}}}$ e a velocidade V_{min} da locomotiva quando se produz a força motriz máxima:

$$F_{t_{\text{max}}} = \min \begin{cases} \text{TE m\'aximo cont\'inuo} & (\text{limite da } i_{\text{max}}) \\ f T_d & (\text{limite da ader\'encia}) \end{cases}$$

como

$$F_{t_{\text{max}}} = \eta 3, 6 \frac{P_{\text{max}}}{V_{\text{min}}} \Rightarrow V_{\text{min}} = \eta 3, 6 \frac{P_{\text{max}}}{F_{t_{\text{max}}}}$$

2. Calcular a resistência total de um vagão $R_V(V_{\min})$ e de uma locomotiva $R_L(V_{\min})$ viajando na rampa máxima com velocidade V_{\min} :

$$\begin{split} R_L(V_{\min}) &= R_{t_L}(V_{\min}) + R_{g_L}(i_{\max}) \\ R_V(V_{\min}) &= R_{t_V}(V_{\min}) + R_{g_V}(i_{\max}), \end{split}$$

em que $R_t(V_{\min})$ é a resistência inerente (resistência de rolamento + resistência do ar) do veículo na velocidade V_{\min} ; e $R_g(i_{\max})$ é a resistência de rampa do veículo no aclive mais íngreme do trecho.

3. Calcular quantos vagões (n_v) uma locomotiva é capaz de rebocar viajando em V_{\min} num aclive i_{\max} :

$$F_{t_{\text{max}}} = R_L(V_{\text{min}}) + n_{\nu} \cdot R_V(V_{\text{min}}) \Rightarrow n_{\nu} = \frac{F_{t_{\text{max}}} - R_L(V_{\text{min}})}{R_V(V_{\text{min}})}$$

4. Calcular quantos vagões (N_V) o engate suporta no aclive crítico:

$$F_{eng_{\text{max}}} \ge N_V \cdot R_V(V_{\text{min}}) \Rightarrow N_V = \frac{F_{eng_{\text{max}}}}{R_V(V_{\text{min}})}$$

em que N_V é o número máximo de vagões no trem. Lembre-se que N_V deve ser um número inteiro.

5. Calcular o número de locomotivas (N_L) necessário para rebocar N_V vagões viajando em V_{\min} no aclive crítico:

$$N_L=rac{N_V}{n_{
m p}}$$
 ou seja, $N_L=rac{{
m vag\~{o}es\ no\ trem}}{{
m vag\~{o}es\ rebocados\ por\ uma\ locomotiva}}$

Lembre-se que ${\cal N}_L$ também deve ser um número inteiro.

6. Verificar se o trem é capaz de reiniciar o movimento no aclive crítico:

$$F_t = N_L \cdot F_{t_{\text{max}}} > N_L R_L(V \approx 0) + N_V \cdot R_V(V \approx 0),$$

ou seja, na partida ($V\approx 0$), a força motriz total do trem ($N_L\cdot F_{t_{\max}}$) deve ser maior que a resistência total do trem [$N_LR_L(V\approx 0)+N_V\cdot R_V(V\approx 0)$].

A resposta para essa atividade deve indicar:

- (a) A maior composição que pode viajar num aclive de 2%.
- (b) A velocidade máxima de cruzeiro dessa composição no aclive de 2%. [Dica: essa velocidade pode ser diferente de V_{\min} ? Por que?]
- (c) Inclua o gráfico das forças em função da velocidade para essa composição, que mostre a velocidade de cruzeiro deste trem no aclive de 2% e num trecho reto e plano.

DADOS

Locomotiva Diesel-Elétrica EESC L-36ACe

Sistema de tração	Motores AC
Número de eixos	6 (classe C–C)
Altura total H (m)	4,81
Largura total W (m)	3,23
Área transversal (m²)	H × W
Comprimento total (m)	23,32
Aderência	$0,25 - 0,02 \cos(2\pi\epsilon \text{ rad})$
Potência nominal (hp)	$3600 + 300 \cos(2πε \text{ rad})$
Velocidade máxima (km/h)	90
TE máximo contínuo (kN)	520 + 20 cos(2πε rad)
Eficiência da transmissão	$0.825 - 0.01 \cos(4\pi\epsilon \text{ rad})$
Tanque de combustível (l)	23000
Peso bruto total (t)	150 + 10 cos(2 π ε rad)

Vagão plataforma porta-contêineres PDD

ragae platarerma per ta contemer es i 22	
Número de eixos	4
Altura total H (m)	0,96 + altura contêiner
Largura total W (m)	2,75
Área transversal (m²)	H × W – 1
Comprimento total (m)	14,77
Tara (peso próprio) (t)	16,00
Lotação (carga) máxima	64,00
PBT (tara + lotação) máximo	80,00
Capacidade do engate (kN)	1500
Capacidade de carga	2 contêineres ISO 20 pés