Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 841 394 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 13.05.1998 Bulletin 1998/20

- (51) Int Cl.6: C12N 15/31, C07K 14/31
- (21) Application number: 97307485.9
- (22) Date of filing: 24.09.1997
- (84) Designated Contracting States:

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

 NL PT SE
- (30) Priority: 24.09.1996 US 27032 P
- (71) Applicants:
 - SMITHKLINE BEECHAM CORPORATION Philadelphia Pennsylvania 19103 (US)
 - SMITHKLINE BEECHAM PLC Brentford, Middlesex TW8 9EP (GB)
- (72) Inventors:
 - Black, Michael T., SmithKline Beecham Pharma.
 Collegeville, Pennsylvania 19426-0989 (US)
 - Hodgson, John Edward,
 SmithKline Beecham Pharma.
 Collegeville, Pennsylvania 19426-0989 (US)
 - Knowles, David J. C., SmithKline Beecham Pharma.
 Harlow, Essex CM19 5AW (GB)
 - Reichard, Raymond W.,
 SmithKline Beecham Pharma.
 King of Prussla, Pennsylvania 19406 (US)

- Nicholas, Richard O., SmithKline Beecham Pharma.
 Collegeville, Pennsylvania 19426-0989 (US)
- Burnham, Martin K. R., SmithKline Beecham Pharma.
 Collegeville, Pennsylvania 19426-0989 (US)
- Pratt, Julie M., SmithKilne Beecham Pharma.
 Harlow, Essex CM19 5AW (GB)
- Rosenberg, Martin, SmithKline Beecham Pharma.
 King of Prussia, Pennsylvania 19406 (US)
- Ward, Judith M., SmithKilne Beecham Pharma.
 Harlow, Essex CM19 5AW (GB)
- Lonetto, Michael A., SmithKline Beecham Pharma.
 Collegeville, Pennsylvania 19426-0989 (US)
- (74) Representative: Giddings, Peter John, Dr. et al SmithKline Beecham plc Corporate Intellectual Property, Two New Horlzons Court Brentford, Middlesex TW8 9EP (GB)
- (54) Staphylococcus aureus polynucleotides, polypeptides and their uses
- (57) The invention provides novel polypeptides and polynucleotides encoding such polypeptides and meth-

ods for producing such polypeptides by recombinant techniques. Also provided are methods for utilizing such polypeptides to screen for antibacterial compounds.

Description

5

10

15

20

RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Application Number 60/027,032, filed September 24, 1996.

FIELD OF THE INVENTION

This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses. In particular, in these and in other regards, the invention relates to novel polynucleotides and polypeptides set forth in the Sequence Listing.

BACKGROUND OF THE INVENTION

The Staphylococci make up a medically important genera of microbes. They are known to produce two types of disease, invasive and toxigenic. Invasive infections are characterized generally by abscess formation effecting both skin surfaces and deep tissues. Stapylococcus aureus (herein *S. aureus*) is the second leading cause of bacteremia in cancer patients. Osteomyelitis, septic arthritis, septic thrombophlebitis and acute bacterial endocarditis are also relatively common. There are at least three clinical conditions resulting from the toxigenic properties of Staphylococci. The manifestation of these diseases result from the actions of exotoxins as opposed to tissue invasion and bacteremia. These conditions include: Staphylococcal food poisoning, scalded skin syndrome and toxic shock syndrome.

While certain Staphylococcal proteins associated with pathogenicity have been identified, e.g., coagulase, hemolysins, leucocidins and exo and enterotoxins, very little is known concerning the temporal expression of such genes during infection and disease progression in a mammalian host. Discovering the sets of genes the bacterium is likely to be expressing at the different stages of infection, particularly when an infection is established, provides critical information for the screening and characterization of novel antibacterials which can interrupt pathogenesis. In addition to providing a fuller understanding of known proteins, such an approach will identify previously unrecognised targets.

GUG is used as an initating nucleotide, rather than ATG, for a significant number of mRNA's in both Gram positive and Gram negative bacteria. Statistics on the frequency of NTG codons in the start codon for several bacterial species are available on line via computer (http://libiochem.otago.ac.nz:800/Transterm/home_page.html).

A discussion of initiation codons in *B. subtilis* is set forth in Vellanoweth, RL.1993 in *Bacillus subtilis and other Gram Positive Bacteria, Biochemistry, Physiology and Molecular Genetics,* Sonenshein, Hoch, Losick Eds. Amer. Soc. Microbiol, Washington DC. p. 699-711. Vellenworth indicates a major difference between *B. subtilis* and the gram-negative organisms is in the choice of initiation codon. 91% of the sequenced *E. coli* genes start with AUG. By contrast, about 30% of *B. subtilis* and other clostridial branch gened start with UUG or GUG. Moreover, CUG functions as a start codon in *B. subtilis*. Mutations of an AUG initiation codon to GUG or UUG often cause decreased expression in *B. subtilis* and *E. coli*. Generally, translation efficiency is higher with AUG initiation codons. A strong Shine-Delgarno ribosome binding site, however, can compensate almost fully for a weak initiation codon. It has been reported that genes with a range of expression levels have initiation codons other than ATG in gram positives (Vellanoweth, RL.1993 in *Bacillus subtilis and other Gram Positive Bacteria, Biochemistry, Physiology and Molecular Genetics*, Sonenshein, Hoch, Losick Eds. Amer. Soc. Microbiol, Washington DC. p. 699-711).

Provided herein are ORF sequences from genes possessing GUG initiation codons and proteins expressed therefrom to be used for screening for antimicrobial compounds. Clearly, there is a need for polypeptide and polynucleotide sequences that may be used to screen for antimicrobial compound and which may also be used to determine the roles of such sequences in pathogenesis of infection, dysfunction and disease. There is also need, therefore, for identification and characterization of such sequences which may play a role in preventing, ameliorating or correcting infections, dysfunctions or diseases.

The polypeptides of the invention have amino acid sequence homology to a known protein(s) as set forth in Table 1.

SUMMARY OF THE INVENTION

It is an object of the invention to provide polypeptides that have been identified as novel polypeptides by homology between an amino acid sequence selected from the group consisting of the sequences set out in the Sequence Listing and a known amino acid sequence or sequences of other proteins such as the protein identities listed in Table 1.

It is a further object of the invention to provide polynucleotides that encode novel polypeptides, particularly polynucleotides that encode polypeptides of *Staphylococcus aureus*.

In a particularly preferred embodiment of the invention the polynucleotide comprises a region encoding a polypeptide comprising a sequence sequence selected from the group consisting of the sequences set out in the Sequence

Listing, or a variant of any of these sequences.

5

15

20

25

30

35

40

In another particularly preferred embodiment of the invention there is a novel protein from Staphylococcus aureus comprising an amino acid sequence selected from the group consisting of the sequences set out in the Sequence Listing, or a variant of any of these sequences.

In accordance with another aspect of the invention there is provided an isolated nucleic acid molecule encoding a mature polypeptide expressible by the *Staphylococcus aureus* WCUH29 strain contained in the deposited strain.

A further aspect of the invention there are provided isolated nucleic acid molecules encoding a polypeptide of the invention, particularly *Staphylococcus aureus* polypeptide, and including mRNAs, cDNAs, genomic DNAs. Further embodiments of the invention include biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.

In accordance with another aspect of the invention, there is provided the use of a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunization. Among the particularly preferred embodiments of the invention are naturally occurring allelic variants of a polypeptide of the invention and polypeptides encoded thereby.

Another aspect of the invention there are provided novel polypeptides of *Staphylococcus aureus* as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.

Among the particularly preferred embodiments of the invention are variants of the polypeptides of the invention encoded by naturally occurring alleles of their genes.

In a preferred embodiment of the invention there are provided methods for producing the aforementioned polypeptides.

In accordance with yet another aspect of the invention, there are provided inhibitors to such polypeptides, useful as antibacterial agents, including, for example, antibodies.

In accordance with certain preferred embodiments of the invention, there are provided products, compositions and methods for assessing expression of the polypeptides and polynucleotides of the invention, treating disease, for example, infections of the upper respiratory tract (e.g., otitis media, bacterial tracheitis, acute epiglottitis, thyroiditis), lower respiratory (e.g., empyema, lung abscess), cardiac (e.g., infective endocarditis), gastrointestinal (e.g., secretory diarrhoea, splenic absces, retroperitoneal abscess), CNS (e.g., cerebral abscess), eye (e.g., blepharitis, conjunctivitis, keratitis, endophthalmitis, preseptal and orbital cellulitis, darcryocystitis), kidney and urinary tract (e.g., epididymitis, intrarenal and perinephric absces, toxic shock syndrome), skin (e.g., impetigo, folliculitis, cutaneous abscesses, cellulitis, wound infection, bacterial myositis) bone and joint (e.g., septic arthritis, osteomyelitis), assaying genetic variation, and administering a polypeptide or polynucleotide of the invention to an organism to raise an immunological response against a bacteria, especially a *Staphylococcus aureus* bacteria.

In accordance with certain preferred embodiments of this and other aspects of the invention there are provided polynucleotides that hybridize to a polynucleotide sequence of the invention, particularly under stringent conditions.

In certain preferred embodiments of the invention there are provided antibodies against polypeptides of the invention

In other embodiments of the invention there are provided methods for identifying compounds which bind to or otherwise interact with and inhibit or activate an activity of a polypeptide or polynucleotide of the invention comprising: contacting a polypeptide or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity of the polypeptide or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide or polynucleotide.

In accordance with yet another aspect of the invention, there are provided agonists and antagonists of the polypeptides and polynucleotides of the invention, preferably bacteriostatic or bacteriocidal agonists and antagonists.

In a further aspect of the invention there are provided compositions comprising a polynucleotide or a polypeptide of the invention for administration to a cell or to a multicellular organism.

Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following descriptions and from reading the other parts of the present disclosure.

GLOSSARY

The following definitions are provided to facilitate understanding of certain terms used frequently herein.

"Host cell" is a cell which has been transformed or transfected, or is capable of transformation or transfection by

an exogenous polynucleotide sequence.

20

25

40

"Identity," as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "Identity" and "similarity" can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM J. Applied Math., 48: 1073 (1988). Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., J. Molec. Biol. 215: 403-410 (1990). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990). As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "identity" to a reference nucleotide sequence it is intended that the nucleotide sequence of the tested polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. Analogously, by a polypeptide having an amino acid sequence having at least, for example, 95% identity to a reference amino acid sequence is intended that the test amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

"Isolated" means altered "by the hand of man" from its natural state, *i.e.*, if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein.

"Polynucleotide(s)" generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotide(s)" include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double-stranded regions. In addition, "polynucleotide" as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. As used herein, the term "polynucleotide(s)" also includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s) as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term "polynucleotide(s)" as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex cells. "Polynucleotide(s)" also embraces short polynucleotides often referred to as oligonucleotide(s).

Polypeptide(s) refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds. "Polypeptide(s)" refers to both short chains, commonly referred to as peptides, oligopeptides and oligomers and to longer chains generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene encoded amino acids. "Polypeptide(s)" include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art. It will be appreciated that the same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini. Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins, such as arginylation, and ubiquitination. See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993) and Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York (1983); Seifter et al., Meth. Enzymol. 182:626-646 (1990) and Rattan et al., Protein Synthesis: Posttranslational Modifications and Aging, Ann. N.Y. Acad. Sci. 663: 48-62 (1992). Polypeptides may be branched or cyclic, with or without branching. Cyclic, branched and branched circular polypeptides may result from post-translational natural processes and may be made by entirely synthetic methods, as well.

"Variant(s)" as the term is used herein, is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans.

DESCRIPTION OF THE INVENTION

20

25

30

40

Each of polynucleotide and polypeptide sequences provided herein may be used in the discovery and development of antibacterial compounds. Upon expression of the sequences with the appropriate initiation and termination codons the encoded polypeptide can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding preferably the amino terminal regions of the encoded protein or the Shine-Delgarno region can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.

Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The first of these approaches entails searching appropriate databases for sequence matches in related organisms. Thus, if a homologue exists, the Streptococcal-like form of this gene would likely play an analogous role. For example, a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial com-

pounds. Because each of the sequences contains an open reading frame (ORF) with an appropriate initiation and termination codons, the encoded protein upon expression can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.

It is believed that bacteria possess a number of ways of regulating gene expression levels, especially in subtle degrees, and the interplay between ribosome binding site and inititation codon is utilized for this purpose for these genes. It is also believed that such genes will be important targets for antimicrobial drug discovery, particularly since pathogenesis genes are believed undergo gene expression regulation during in the pathogenesis process. Therefore, the invention provides ORF sequences possessing a GTG (GUG) initiation codon and protein targets expressed thereform.

Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The first of these approaches entails searching appropriate databases for sequence matches in related organisms. Thus, if a homologue exists, the Staphylococcal-like form of this gene would likely play an analogous role. For example, a Staphylococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.

ORF Gene Expression

10

15

25

30

35

40

45

50

55

Recently techniques have become available to evaluate temporal gene expression in bacteria, particularly as it applies to viability under laboratory and infection conditions. A number of methods can be used to identify genes which are essential to survival *per se*, or essential to the establishment/maintenance of an infection. Identification of an ORF unknown by one of these methods yields additional information about its function and permits the selection of such an ORF for further development as a screening target. Briefly, these approaches include:

1) Signature Tagged Mutagenesis (STM): This technique is described by Hensel et al., Science 269: 400-403 (1995), the contents of which is incorporated by reference for background purposes. Signature tagged mutagenesis identifies genes necessary for the establishment/maintenance of infection in a given infection model.

The basis of the technique is the random mutagenesis of target organism by various means (e.g., transposons) such that unique DNA sequence tags are inserted in close proximity to the site of mutation. The tags from a mixed population of bacterial mutants and bacteria recovered from an infected hosts are detected by amplification, radiolabeling and hybridisation analysis. Mutants attenuated in virulence are revealed by absence of the tag from the pool of bacteria recovered from infected hosts.

In Staphylococcus aureus, because the transposon system is less well developed, a more efficient way of creating the tagged mutants is to use the insertion-duplication mutagenesis technique as described by Morrison et al., <u>J. Bacteriol.</u> 159:870 (1984) the contents of which is incorporated by reference for background purposes.

2) In Vivo Expression Technology (IVET): This technique is described by Camilli et al., Proc. Nat'l. Acad. Sci. USA. 91:2634-2638 (1994), the contents of which is incorporated by reference for background purposes. IVET identifies genes up-regulated during infection when compared to laboratory cultivation, implying an important role in infection. ORF identified by this technique are implied to have a significant role in infection establishment/maintenance.

In this technique random chromosomal fragments of target organism are cloned upstream of a promoter-less recombinase gene in a plasmid vector. This construct is introduced into the target organism which carries an antibiotic resistance gene flanked by resolvase sites. Growth in the presence of the antibiotic removes from the population those fragments cloned into the plasmid vector capable of supporting transcription of the recombinase gene and therefore have caused loss of antibiotic resistance. The resistant pool is introduced into a host and at various times after infection bacteria may be recovered and assessed for the presence of antibiotic resistance. The chromosomal fragment carried by each antibiotic sensitive bacterium should carry a promoter or portion of a gene normally upregulated during infection. Sequencing upstream of the recombinase gene allows identification of the up regulated gene.

3) Differential display: This technique is described by Chuang et al., J. <u>Bacteriol</u>. 175:2026-2036 (1993), the contents of which is incorporated by reference for background purposes. This method identifies those genes which are expressed in an organism by identifying mRNA present using randomly-primed RT-PCR. By comparing pre-

infection and post infection profiles, genes up and down regulated during infection can be identified and the RT-PCR product sequenced and matched to 0RF 'unknowns'.

4) Generation of conditional lethal mutants by transposon mutagenesis: This technique, described by de Lorenzo, V. et al., Gene 123:17-24 (1993); Neuwald, A. F. et al., Gene 125: 69-73(1993); and Takiff, H. E. et al., J. Bacteriol. 174:1544-1553(1992), the contents of which is incorporated by reference for background purposes, identifies genes whose expression are essential for cell viability.

In this technique transposons carrying controllable promoters, which provide transcription outward from the transposon in one or both directions, are generated. Random insertion of these transposons into target organisms and subsequent isolation of insertion mutants in the presence of inducer of promoter activity ensures that insertions which separate promoter from coding region of a gene whose expression is essential for cell viability will be recovered. Subsequent replica plating in the absence of inducer identifies such insertions, since they fail to survive. Sequencing of the flanking regions of the transposon allows identification of site of insertion and identification of the gene disrupted. Close monitoring of the changes in cellular processes/morphology during growth in the absence of inducer yields information on likely function of the gene. Such monitoring could include flow cytometry (cell division, lysis, redox potential, DNA replication), incorporation of radiochemically labeled precursors into DNA, PNA, protein, lipid, peptidoglycan, monitoring reporter enzyme gene fusions which respond to known cellular stresses.

5) Generation of conditional lethal mutants by chemical mutagenesis: This technique is described by Beckwith, J., Methods in Enzymology 204:

3-18(1991), the contents of which are incorporated herein by reference for background purposes. In this technique random chemical mutagenesis of target organism, growth at temperature other than physiological temperature (permissive temperature) and subsequent replica plating and growth at different temperature (e.g. 42°C to identify ts, 25°C to identify cs) are used to identify those isolates which now fail to grow (conditional mutants). As above close monitoring of the changes upon growth at the non-permissive temperature yields information on the function of the mutated gene. Complementation of conditional lethal mutation by library from target organism and sequencing of complementing gene allows matching with unknown ORF.

6) RT-PCR: Staphylococcus aureus messenger RNA is isolated from bacterial infected tissue e.g. 48 hour murine lung infections, and the amount of each mRNA species assessed by reverse transcription of the RNA sample primed with random hexanucleotides followed by PCR with gene specific primer pairs. The determination of the presence and amount of a particular mRNA species by quantification of the resultant PCR product provides information on the bacterial genes which are transcribed in the infected tissue. Analysis of gene transcription can be carried out at different times of infection to gain a detailed knowledge of gene regulation in bacterial pathogenesis allowing for a clearer understanding of which gene products represent targets for screens for novel antibacterials. Because of the gene specific nature of the PCR primers employed it should be understood that the bacterial mRNA preparation need not be free of mammalian RNA. This allows the investigator to carry out a simple and quick RNA preparation from infected tissue to obtain bacterial mRNA species which are very short lived in the bacterium (in the order of 2 minute halflives). Optimally the bacterial mRNA is prepared from infected murine lung tissue by mechanical disruption in the presence of TRIzole (GIBCO-BRL) for very short periods of time, subsequent processing according to the manufacturers of TRIzole reagent and DNAase treatment to remove contaminating DNA. Preferably the process is optimised by finding those conditions which give a maximum amount of Staphylococcus aureus 16S ribosomal RNA as detected by probing Northerns with a suitably labelled sequence specific oligonucleotide probe. Typically a 5' dye labelled primer is used in each PCR primer pair in a PCR reaction which is terminated optimally between 8 and 25 cycles. The PCR products are separated on 6% polyacrylamide gels with detection and quantification using GeneScanner (manufactured by ABI).

Each of these techniques may have advantages or disadvantage depending on the particular application. The skilled artisan would choose the approach that is the most relevant with the particular end use in mind.

Use of the of these technologies when applied to the ORFs of the present invention enables identification of bacterial proteins expressed during infection, inhibitors of which would have utility in anti-bacterial therapy.

The invention relates to novel polypeptides and polynucleotides as described in greater detail below. In particular, the invention relates to polypeptides and polynucleotides of *Staphylococcus aureus*, which is related by amino acid sequence homology to known polypeptide as set forth in Table 1. The invention relates especially to compounds having the nucleotide and amino acid sequence selected from the group consisting of the sequences set out in the Sequence Listing, and to the nucleotide sequences of the DNA in the deposited strain and amino acid sequences encoded thereby.

Deposited materials

5

10

15

20

25

30

35

40

45

S. aureus WCUH 29 has been deposited at the National Collection of Industrial and Marine Bacteria Ltd. (NCIMB),

Aberdeen, Scotland under number NCIMB 40771 on 11 September 1995.

The Staphylococcus aureus strain deposit is referred to herein as "the deposited strain" or as "the DNA of the deposited strain."

The deposited strain contains the full length genes comprising the polynucleotides set forth in the Sequence Listing. The sequence of the polynucleotides contained in the deposited strain, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.

The deposit of the deposited strain has been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for Purposes of Patent Procedure. The strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent. The deposited strain is provided merely as convenience to those of skill in the art and is not an admission that a deposit is required for enablement, such as that required under 35 U.S.C. §112.

A license may be required to make, use or sell the deposited strain, and compounds derived therefrom, and no such license is hereby granted.

Polypeptides

30

45

The polypeptides of the invention include the polypeptides set forth in the Sequence Listing (in particular the mature polypeptide) as well as polypeptides and fragments, particularly those which have the biological activity of a polypeptide of the invention, and also those which have at least 50%, 60% or 70% identity to a polypeptide sequence selected from the group consisting of the sequences set out in the Sequence Listing or the relevant portion, preferably at least 80% identity to a polypeptide sequence selected from the group consisting of the sequences set out in the Sequence Listing, and more preferably at least 90% similarity (more preferably at least 90% identity) to a polypeptide sequence selected from the group consisting of the sequence Listing, and still more preferably at least 95% similarity (still more preferably at least 95% identity) to a polypeptide sequence selected from the group consisting of the sequences set out in the Sequence Listing, and also include portions of such polypeptides with such portion of the polypeptide generally containing at least 30 amino acids and more preferably at least 50 amino acids.

The invention also includes polypeptides of the formula:

$$X-(R_1)_n-(R_2)-(R_3)_n-Y$$

wherein, at the amino terminus, X is hydrogen, and at the carboxyl terminus, Y is hydrogen or a metal, R_1 and R_3 are any amino acid residue, n is an integer between 1 and 2000, and R_2 is an amino acid sequence of the invention, particularly an amino acid sequence selected from the group set forth in the Sequence Listing. In the formula above R_2 is oriented so that its amino terminal residue is at the left, bound to R_1 , and its carboxy terminal residue is at the right, bound to R_3 . Any stretch of amino acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a hornopolymer, preferably a heteropolymer. In preferred embodiments n is an integer between 1 and 1000 or 2000.

A fragment is a variant polypeptide having an amino acid sequence that entirely is the same as part but not all of the amino acid sequence of the aforementioned polypeptides. As with polypeptides, fragments may be *free-standing, *or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region, a single larger polypeptide.

Preferred fragments include, for example, truncation polypeptides having a portion of the amino acid sequence of the Sequence Listing, or of variants thereof, such as a continuous series of residues that includes the amino terminus, or a continuous series of residues that includes the carboxyl terminus. Degradation forms of the polypeptides of the invention in a host cell, particularly a *Staphylococcus aureus*, are also preferred. Further preferred are fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.

Also preferred are biologically active fragments which are those fragments that mediate activities of polypeptides of the invention, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also included are those fragments that are antigenic or immunogenic in an animal, especially in a human. Particularly preferred are fragments comprising receptors or domains of enzymes that confer a function essential for viability of Staphylococcus aureus or the ability to initiate, or maintain cause disease in an individual, particularly a human.

Variants that are fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.

In addition to the standard single and triple letter representations for amino acids, the term "X" or "Xaa" is also used. "X" and "Xaa" mean that any of the twenty naturally occuring amino acids may appear at such a designated position in the polypeptide sequence.

Polynucleotides

20

25

45

The nucleotide sequences disclosed herein can be obtained by synthetic chemical techniques known in the art or can be obtained from *S. aureus* WCUH 29 by probing a DNA preparation with probes constructed from the particular sequences disclosed herein. Alternatively, oligonucleotides derived from a disclosed sequence can act as PCR primers in a process of PCR-based cloning of the sequence from a bacterial genomic source. It is recognised that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.

To obtain the polynucleotide encoding the protein using the DNA sequence given herein typically a library of clones of chromosomal DNA of *S.aureus* WCUH 29 in *E. coli* or some other suitable host is probed with a radiolabelled oligonucleotide, preferably a 17mer or longer, derived from the partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using high stringency washes. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook, J. in MOLECULAR CLONING, A Laboratory Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory (see: Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70).

Moerover, another aspect of the invention relates to isolated polynucleotides that encode the polypeptides of the invention having a deduced amino acid sequence selected from the group consisting of the sequences in the Sequence Listing and polynucleotides closely related thereto and variants thereof.

Using the information provided herein, such as the polynucleotide sequences set out in the Sequence Listing, a polynucleotide of the invention encoding polypeptide may be obtained using standard cloning and screening methods, such as those for cloning and sequencing chromosomal DNA fragments from bacteria using Staphylococcus aureus WCUH29 cells as starting material, followed by obtaining a full length clone. For example, to obtain a polynucleotide sequence of the invention, such as a sequence set forth in the Sequence Listing, typically a library of clones of chromosomal DNA of Staphylococcus aureus WCUH29 in E.coli or some other suitable host is probed with a radiolabeled oligonucleotide, preferably a 17-mer or longer, derived from a partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using stringent conditions. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently, such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). (see in particular Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70). Illustrative of the invention, the polynucleotides set out in the Sequence Listing were discovered in a DNA library derived from Staphylococcus aureus WCUH29.

The DNA sequences set out in the Sequence Listing each contains at least one open reading frame encoding a protein having at least about the number of amino acid residues set forth in the Sequence Listing. The start and stop codons of each open reading frame (herein "ORF") DNA are the first three and the last three nuclotides of each polynucleotide set forth in the Sequence Listing.

Certain polynucleotides and polypeptides of the invention are structurally related to known proteins as set forth in Table 1. These proteins exhibit greatest homology to the homologue listed in Table 1 from among the known proteins.

The invention provides a polynucleotide sequence identical over its entire length to each coding sequence in the Sequence Listing. Also provided by the invention is the coding sequence for the mature polypeptide or a fragment thereof, by itself as well as the coding sequence for the mature polypeptide or a fragment in reading frame with other coding sequence, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence. The polynucleotide may also contain non-coding sequences, including for example, but not limited to non-coding 5' and 3' sequences, such as the transcribed, non-translated sequences, termination signals, ribosome binding sites, sequences that stabilize mRNA, introns, polyadenylation signals, and additional coding sequence which encode additional amino acids. For example, a marker sequence that facilitates purification of the fused polypeptide can be encoded. In certain embodiments of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al., Proc. Natl. Acad. Sci., USA 86: 821-824 (1989), or an HA tag (Wilson et al., Cell 37: 767 (1984). Polynucleotides of the invention also include, but are not limited to, polynucleotides comprising a structural gene and its naturally associated sequences that control gene expression.

The invention also includes polynucleotides of the formula:

$X-(R_1)_n-(R_2)-(R_3)_n-Y$

wherein, at the 5' end of the molecule, X is hydrogen, and at the 3' end of the molecule, Y is hydrogen or a metal, R_1 and R_3 is any nucleic acid residue, n is an integer between 1 and 3000, and R_2 is a nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from the group set forth in the Sequence Listing. In the polynucleotide formula above R_2 is oriented so that its 5' end residue is at the left, bound to R_1 , and its 3' end residue is at the right, bound to R_3 . Any stretch of nucleic acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer. In a preferred embodiment n is an integer between 1 and 1000, or 2000 or 3000.

10

20

25

30

40

50

The term "polynucleotide encoding a polypeptide" as used herein encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of the *Staphylococcus aureus* having an amino acid sequence set out in the Sequence Listing. The term also encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by integrated phage or an insertion sequence or editing) together with additional regions, that also may contain coding and/or non-coding sequences.

The invention further relates to variants of the polynucleotides described herein that encode for variants of the polypeptide having the deduced amino acid sequence of the Sequence Listing. Variants that are fragments of the polynucleotides of the invention may be used to synthesize full-length polynucleotides of the invention.

Further particularly preferred embodiments are polynucleotides encoding polypeptide variants, that have the amino acid sequence of a polypeptide of the Sequence Listing in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, that do not alter the properties and activities of such polynucleotide.

Further preferred embodiments of the invention are polynucleotides that are at least 50%, 60% or 70% identical over their entire length to a polynucleotide encoding a polypeptide having the amino acid sequence set out in the Sequence Listing, and polynucleotides that are complementary to such polynucleotides. Alternatively, most highly preferred are polynucleotides that comprise a region that is at least 80% identical over its entire length to a polynucleotide encoding a polypeptide of the deposited strain and polynucleotides complementary thereto. In this regard, polynucleotides at least 90% identical over their entire length to the same are particularly preferred, and among these particularly preferred polynucleotides, those with at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred.

A preferred embodiment is an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of: a polynucleotide having at least a 50% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of the Sequence Listing and obtained from a prokaryotic species other than *S. aureus*; and a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 50% identical to the amino acid sequence of the Sequence Listing and obtained from a prokaryotic species other than *S. aureus*.

Preferred embodiments are polynucleotides that encode polypeptides that retain substantially the same biological function or activity as the mature polypeptide encoded by the DNA of the Sequence Listing.

The invention further relates to polynucleotides that hybridize to the herein above-described sequences. In this regard, the invention especially relates to polynucleotides that hybridize under stringent conditions to the herein above-described polynucleotides. As herein used, the terms "stringent conditions" and "stringent hybridization conditions" mean hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. An example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% forma-mide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1x SSC at about 65°C. Hybridization and wash conditions are well known and exemplified in Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 11 therein.

The invention also provides a polynucleotide consisting essentially of a polynucleotide sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence set forth in the Sequence Listing under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence or a fragment thereof; and isolating said DNA sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers described elsewhere herein.

As discussed additionally herein regarding polynucleotide assays of the invention, for instance, polynucleotides of the invention as discussed above, may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding a polypeptide and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to a polynucleotide set forth in the Sequence Listing. Such probes generally will

comprise at least 15 bases. Preferably, such probes will have at least 30 bases and may have at least 50 bases. Particularly preferred probes will have at least 30 bases and will have 50 bases or less.

For example, the coding region of each gene that comprises or is comprised by a polynucleotide set forth in the Sequence Listing may be isolated by screening using a DNA sequence provided in the Sequence Listing to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.

The polynucleotides and polypeptides of the invention may be employed, for example, as research reagents and materials for discovery of treatments of and diagnostics for disease, particularly human disease, as further discussed herein relating to polynucleotide assays.

Polynucleotides of the invention that are oligonucleotides derived from the a polynucleotide or polypeptide sequence set forth in the Sequence Listing may be used in the processes herein as described, but preferably for PCR, to determine whether or not the polynucleotides identified herein in whole or in part are transcribed in bacteria in infected tissue. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.

The invention also provides polynucleotides that may encode a polypeptide that is the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature polypeptide (when the mature form has more than one polypeptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, may allow protein transport, may lengthen or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things. As generally is the case *in vivo*, the additional amino acids may be processed away from the mature protein by cellular enzymes.

A precursor protein, having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.

In addition to the standard A, G, C, T/U representations for nucleic acid bases, the term "N" is also used. "N" means that any of the four DNA or RNA bases may appear at such a designated position in the DNA or RNA sequence, except it is preferred that N is not a base that when taken in combination with adjacent nucleotide positions, when read in the correct reading frame, would have the effect of generating a premature termination codon in such reading frame.

In sum, a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.

Vectors, host cells, expression

20

25

35

40

50

The invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention.

For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention. Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis et al., BASIC METHODS IN MOLECULAR BIOLOGY, (1986) and Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), such as, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction and infection.

Representative examples of appropriate hosts include bacterial cells, such as staphylococci, staphylococci, enterococci *E. coli*, streptomyces and *Bacillus subtilis* cells; fungal cells, such as yeast cells and *Aspergillus* cells; insect cells such as *Drosophila* S2 and *Spodoptera* Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293 and Bowes melanoma cells; and plant cells.

A great variety of expression systems can be used to produce the polypeptides of the invention. Such vectors include, among others, chromosomal, episomal and virus-derived vectors, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression system constructs may contain control regions that regulate as well as engender expression. Generally, any system or vector suitable to

maintain, propagate or express polynucleotides and/or to express a polypeptide in a host may be used for expression in this regard. The appropriate DNA sequence may be inserted into the expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, (supra).

For secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.

Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.

15 Diagnostic Assays

20

25

This invention is also related to the use of the polynucleotides of the invention for use as diagnostic reagents. Detection of such polynucleotides in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of a disease. Eukaryotes (herein also "individual(s)"), particularly mammals, and especially humans, infected with an organism comprising a gene of the invention may be detected at the nucleic acid level by a variety of techniques.

Nucleic acids for diagnosis may be obtained from an infected individual's cells and tissues, such as bone, blood, muscle, cartilage, and skin. Genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification technique prior to analysis. RNA or cDNA may also be used in the same ways. Using amplification, characterization of the species and strain of prokaryote present in an individual, may be made by an analysis of the genotype of the prokaryote gene. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the genotype of a reference sequence. Point mutations can be identified by hybridizing amplified DNA to labeled polynucleotide sequences of the invention. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in the electrophoretic mobility of the DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing. See, e.g., Myers et al., Science, 230: 1242 (1985). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase and S1 protection or a chemical cleavage method. See, e.g., Cotton et al., Proc. Natl. Acad. Sci., USA, 85: 4397-4401 (1985).

Cells carrying mutations or polymorphisms in the gene of the invention may also be detected at the DNA level by a variety of techniques, to allow for serotyping, for example. For example, RT-PCR can be used to detect mutations. It is particularly preferred to used RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan. RNA or cDNA may also be used for the same purpose, PCR or RT-PCR. As an example, PCR primers complementary to a nucleic acid encoding a polypeptide of the invention can be used to identify and analyze mutations. These primers may be used for, among other things, amplifying a DNA of the invention isolated from a sample derived from an individual. The primers may be used to amplify the gene isolated from an infected individual such that the gene may then be subject to various techniques for elucidation of the DNA sequence. In this way, mutations in the DNA sequence may be detected and used to diagnose infection and to serotype and/or classify the infectious agent.

The invention further provides a process for diagnosing disease, preferably bacterial infections, more preferably infections by *Staphylococcus aureus*, and most preferably disease, such as, infections of the upper respiratory tract (e.g., ottis media, bacterial tracheitis, acute epiglottitis, thyroiditis), lower respiratory (e.g., empyema, lung abscess), cardiac (e.g., infective endocarditis), gastrointestinal (e.g., secretory diarrhoea, splenic absces, retroperitoneal abscess), CNS (e.g., cerebral abscess), eye (e.g., blepharitis, conjunctivitis, keratitis, endophthalmitis, preseptal and orbital cellulitis, darcryocystitis), kidney and urinary tract (e.g., epididymitis, intrarenal and perinephric absces, toxic shock syndrome), skin (e.g., impetigo, folliculitis, cutaneous abscesses, cellulitis, wound infection, bacterial myositis) bone and joint (e.g., septic arthritis, osteomyelitis), comprising determining from a sample derived from an individual a increased level of expression of polynucleotide having the sequence of the Sequence Listing. Increased or decreased expression of a polynucleotide of the invention can be measured using any on of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods.

In addition, a diagnostic assay in accordance with the invention for detecting over-expression of a polypeptide of the invention compared to normal control tissue samples may be used to detect the presence of an infection, for example. Assay techniques that can be used to determine levels of a protein, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, West-

12

ern Blot analysis and ELISA assays.

Antibodies

5

15

20

25

40

50

The polypeptides of the invention or variants thereof, or cells expressing them can be used as an immunogen to produce antibodies immunospecific for such polypeptides. "Antibodies" as used herein includes monoclonal and polyclonal antibodies, chimeric, single chain, simianized antibodies and humanized antibodies, as well as Fab fragments, including the products of an Fab immunolglobulin expression library.

Antibodies generated against the polypeptides of the invention can be obtained by administering the polypeptides or epitope-bearing fragments, analogues or cells to an animal, preferably a nonhuman, using routine protocols. For preparation of monoclonal antibodies, any technique known in the art that provides antibodies produced by continuous cell line cultures can be used. Examples include various techniques, such as those in Kohler, G. and Milstein, C., Nature 256: 495-497 (1975); Kozbor et al., Immunology Today 4: 72 (1983); Cole et al., pg. 77-96 in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc. (1985).

Techniques for the production of single chain antibodies (U.S. Patent No. 4,946,778) can be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies.

Alternatively phage display technology may be utilized to select antibody genes with binding activities towards the polypeptide either from repertoires of PCR amplified v-genes of lymphocytes from humans screened for possessing recognition of a polypeptide of the invention or from naive libraries (McCafferty, J. et al., (1990), Nature 348, 552-554; Marks, J. et al., (1992) Biotechnology 10, 779-783). The affinity of these antibodies can also be improved by chain shuffling (Clackson, T. et al., (1991) Nature 352, 624-628).

If two antigen binding domains are present each domain may be directed against a different epitope - termed 'bispecific' antibodies.

The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptides to purify the polypeptides by affinity chromatography.

Thus, among others, antibodies against a polypeptide of the invention may be employed to treat infections, particularly bacterial infections and especially infections of the upper respiratory tract (e.g., otitis media, bacterial tracheitis, acute epiglottitis, thyroiditis), lower respiratory (e.g., empyema, lung abscess), cardiac (e.g., infective endocarditis), gastrointestinal (e.g., secretory diarrhoea, splenic absces, retroperitoneal abscess), CNS (e.g., cerebral abscess), eye (e.g., blepharitis, conjunctivitis, keratitis, endophthalmitis, preseptal and orbital cellulitis, darcryocystitis), kidney and urinary tract (e.g., epididymitis, intrarenal and perinephric absces, toxic shock syndrome), skin (e.g., impetigo, folliculitis, cutaneous abscesses, cellulitis, wound infection, bacterial myositis) bone and joint (e.g., septic arthritis, osteomyelitis).

Polypeptide variants include antigenically, epitopically or immunologically equivalent variants that form a particular aspect of this invention. The term "antigenically equivalent derivative" as used herein encompasses a polypeptide or its equivalent which will be specifically recognized by certain antibodies which, when raised to the protein or polypeptide according to the invention, interfere with the immediate physical interaction between pathogen and mammalian host. The term "immunologically equivalent derivative" as used herein encompasses a peptide or its equivalent which when used in a suitable formulation to raise antibodies in a vertebrate, the antibodies act to interfere with the immediate physical interaction between pathogen and mammalian host.

The polypeptide, such as an antigenically or immunologically equivalent derivative or a fusion protein thereof is used as an antigen to immunize a mouse or other animal such as a rat or chicken. The fusion protein may provide stability to the polypeptide. The antigen may be associated, for example by conjugation, with an immunogenic carrier protein for example bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Alternatively a multiple antigenic peptide comprising multiple copies of the protein or polypeptide, or an antigenically or immunologically equivalent polypeptide thereof may be sufficiently antigenic to improve immunogenicity so as to obviate the use of a carrier.

Preferably, the antibody or variant thereof is modified to make it less immunogenic in the individual. For example, if the individual is human the antibody may most preferably be "humanized"; where the complimentarity determining region(s) of the hybridoma-derived antibody has been transplanted into a human monoclonal antibody, for example as described in Jones, P. et al. (1986), *Nature 321*, 522-525 or Tempest et al., (1991) *Biotechnology 9*, 266-273.

The use of a polynucleotide of the invention in genetic immunization will preferably employ a suitable delivery method such as direct injection of plasmid DNA into muscles (Wolff et al., Hum Mol Genet 1992, 1:363, Manthorpe et al., Hum. Gene Ther. 1963:4, 419), delivery of DNA complexed with specific protein carriers (Wu et al., J Biol Chem. 1989: 264,16985), coprecipitation of DNA with calcium phosphate (Benvenisty & Reshef, PNAS, 1986:83,9551), encapsulation of DNA in various forms of liposomes (Kaneda et al., Science 1989:243,375), particle bombardment (Tang et al., Nature 1992, 356:152, Eisenbraun et al., DNA Cell Biol 1993, 12:791) and *in vivo* infection using cloned retroviral vectors (Seeger et al., PNAS 1984:81,5849).

Antagonists and agonists - assays and molecules

10

20

30

50

Polypeptides of the invention may also be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures. These substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See, e.g., Coligan et al., Current Protocols in Immunology 1(2): Chapter 5 (1991).

The invention also provides a method of screening compounds to identify those which enhance (agonist) or block (antagonist) the action of a polypeptides or polynucleotides of the invention, particularly those compounds that are bacteriostatic and/or bacteriocidal. The method of screening may involve high-throughput techniques. For example, to screen for agonists or antagoists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising a polypeptide of the invention and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be an agonist or antagonist of a polypeptide of the invention. The ability of the candidate molecule to agonize or antagonize a polypeptide of the invention is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate. Molecules that bind gratuitously, *i.e.*, without inducing the effects of a polypeptide of the invention are most likely to be good antagonists. Molecules that bind well and increase the rate of product production from substrate are agonists. Detection of the rate or level of production of product from substrate may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric labeled substrate converted into product, a reporter gene that is responsive to changes in polynucleotide or polypeptide activity, and binding assays known in the art.

Another example of an assay for antagonists of polypeptides of the invention is a competitive assay that combines any such polypeptide and a potential antagonist with a compound which binds such polypeptide, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay. A polypeptide of the invention can be labeled, such as by radioactivity or a colorimetric compound, such that the number of such polypeptide molecules bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist.

Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to a polynucleotide or polypeptide of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide such as a closely related protein or antibody that binds the same sites on a binding molecule, such as a binding molecule, without inducing activities induced by a polypeptide of the invention, thereby preventing the action of such polypeptide by excluding it from binding.

Potential antagonists include a small molecule that binds to and occupies the binding site of the polypeptide thereby preventing binding to cellular binding molecules, such that normal biological activity is prevented. Examples of small molecules include but are not limited to small organic molecules, peptides or peptide-like molecules. Other potential antagonists include antisense molecules (see Okano, *J. Neurochem. 56*: 560 (1991); *OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION*, CRC Press, Boca Raton, FL (1988), for a description of these molecules). Preferred potential antagonists include compounds related to and variants of a polypeptide of the invention.

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. The encoded protein, upon expression, can be used as a target for the screening of antibacterial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.

The invention also provides the use of the polypeptide, polynucleotide or inhibitor of the invention to interfere with the initial physical interaction between a pathogen and mammalian host responsible for sequelae of infection. In particular the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive bacteria, to mammalian extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block protein-mediated mammalian cell invasion by, for example, initiating phosphorylation of mammalian tyrosine kinases (Rosenshine et al., Infect. Immun. 60:2211 (1992); to block bacterial adhesion between mammalian extracellular matrix proteins and bacterial proteins that mediate tissue damage and; to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques.

The antagonists and agonists of the invention may be employed, for instance, to inhibit and treat disease, such as, infections of the upper respiratory tract (e.g., otitis media, bacterial tracheitis, acute epiglottitis, thyroiditis), lower respiratory (e.g., empyema, lung abscess), cardiac (e.g., infective endocarditis), gastrointestinal (e.g., secretory diarrhoea, splenic abscess, retroperitoneal abscess), CNS (e.g., cerebral abscess), eye (e.g., blepharitis, conjunctivitis, keratitis, endophthalmitis, preseptal and orbital cellulitis, darcryocystitis), kidney and urinary tract (e.g., epididymitis, intrarenal and perinephric absces, toxic shock syndrome), skin (e.g., impetigo, folliculitis, cutaneous abscesses, cellulitis, wound infection, bacterial myositis) bone and joint (e.g., septic arthritis, osteomyelitis).

Helicobacter pylori (herein H. pylori) bacteria infect the stomachs of over one-third of the world's population causing

stomach cancer, ulcers, and gastritis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Helicobacter Pylori (International Agency for Research on Cancer, Lyon, France; http://www.uicc.ch/ecp/ecp2904.htm). Moreover, the international Agency for Research on Cancer recently recognized a cause-and-effect relationship between *H. pylori* and gastric adenocarcinoma, classifying the bacterium as a Group I (definite) carcinogen. Preferred antimicrobial compounds of the invention found using screens provided by the invention, particularly broad-spectrum antibiotics, should be useful in the treatment of *H. pylori* infection. Such treatment should decrease the advent of *H. pylori*-induced cancers, such as gastrointestinal carcinoma. Such treatment should also cure gastric ulcers and gastritis.

Vaccines

20

25

40

Another aspect of the invention relates to a method for inducing an immunological response in an individual, particularly a mammal which comprises inoculating the individual with a polypeptide of the invention, or a fragment or variant thereof, adequate to produce antibody and/ or T cell immune response to protect said individual from infection, particularly bacterial infection and most particularly Staphylococcus aureus infection. Also provided are methods whereby such immunological response slows bacterial replication. Yet another aspect of the invention relates to a method of inducing immunological response in an individual which comprises delivering to such individual a nucleic acid vector to direct expression of a polynucleotide or polypeptide of the invention, or a fragment or a variant thereof, for expressing such polynucleotide or polypeptide, or a fragment or a variant thereof in vivo in order to induce an immunological response, such as, to produce antibody and/ or T cell immune response, including, for example, cytokine-producing T cells or cytotoxic T cells, to protect said individual from disease, whether that disease is already established within the individual or not. One way of administering the gene is by accelerating it into the desired cells as a coating on particles or otherwise.

Such nucleic acid vector may comprise DNA, RNA, a modified nucleic acid, or a DNA/RNA hybrid.

A further aspect of the invention relates to an immunological composition which, when introduced into an individual capable or having induced within it an immunological response, induces an immunological response in such individual to a polynucleotide of the invention or protein coded therefrom, wherein the composition comprises a recombinant polynucleotide or protein coded therefrom comprising DNA which codes for and expresses an antigen of said polynucleotide or protein coded therefrom. The immunological response may be used therapeutically or prophylactically and may take the form of antibody immunity or cellular immunity such as that arising from CTL or CD4+ T cells.

A polypeptide of the invention or a fragment thereof may be fused with co-protein which may not by itself produce antibodies, but is capable of stabilizing the first protein and producing a fused protein which will have immunogenic and protective properties. Thus fused recombinant protein, preferably further comprises an antigenic co-protein, such as lipoprotein D from *Hemophilus influenzae*, Glutathione-S-transferase (GST) or beta-galactosidase, relatively large co-proteins which solubilize the protein and facilitate production and purification thereof. Moreover, the co-protein may act as an adjuvant in the sense of providing a generalized stimulation of the immune system. The co-protein may be attached to either the amino or carboxy terminus of the first protein.

Provided by this invention are compositions, particularly vaccine compositions, and methods comprising the polypeptides or polynucleotides of the invention and immunostimulatory DNA sequences, such as those described in Sato, Y. et al. Science 273: 352 (1996).

Also, provided by this invention are methods using the described polynucleotide or particular fragments thereof which have been shown to encode non-variable regions of bacterial cell surface proteins in DNA constructs used in such genetic immunization experiments in animal models of infection with *Staphylococcus aureus* will be particularly useful for identifying protein epitopes able to provoke a prophylactic or therapeutic immune response. It is believed that this approach will allow for the subsequent preparation of monoclonal antibodies of particular value from the requisite organ of the animal successfully resisting or clearing infection for the development of prophylactic agents or therapeutic treatments of bacterial infection, particularly *Staphylococcus aureus* infection, in mammals, particularly, humans

The polypeptide may be used as an antigen for vaccination of a host to produce specific antibodies which protect against invasion of bacteria, for example by blocking adherence of bacteria to damaged tissue. Examples of tissue damage include wounds in skin or connective tissue caused, e.g., by mechanical, chemical or thermal damage or by implantation of indwelling devices, or wounds in the mucous membranes, such as the mouth, mammary glands, urethra or vagina.

The invention also includes a vaccine formulation which comprises an immunogenic recombinant protein of the invention together with a suitable carrier. Since the protein may be broken down in the stomach, it is preferably administered parenterally, including, for example, administration that is subcutaneous, intramuscular, intravenous, or intradermal. Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the bodily

fluid, preferably the blood, of the individual; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.

While the invention has been described with reference to certain protein, such as, for example, those set forth in the Sequence Listing, it is to be understood that this covers fragments of the naturally occurring protein and similar proteins with additions, deletions or substitutions which do not substantially affect the immunogenic properties of the recombinant protein.

Compositions, kits and administration

10

15

20

25

30

35

40

45

50

The invention also relates to compositions comprising the polynucleotide or the polypeptides discussed above or their agonists or antagonists. The polypeptides of the invention may be employed in combination with a non-sterile or sterile carrier or carriers for use with cells, tissues or organisms, such as a pharmaceutical carrier suitable for administration to a subject. Such compositions comprise, for instance, a media additive or a therapeutically effective amount of a polypeptide of the invention and a pharmaceutically acceptable carrier or excipient. Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof. The formulation should suit the mode of administration. The invention further relates to diagnostic and pharmaceutical packs and the invention

Polypeptides and other compounds of the invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.

The pharmaceutical compositions may be administered in any effective, convenient manner including, for instance, administration by topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes among others.

In therapy or as a prophylactic, the active agent may be administered to an individual as an injectable composition, for example as a sterile aqueous dispersion, preferably isotonic.

Alternatively the composition may be formulated for topical application for example in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwash, impregnated dressings and sutures and aerosols, and may contain appropriate conventional additives, including, for example, preservatives, solvents to assist drug penetration, and emollients in ointments and creams. Such topical formulations may also contain compatible conventional carriers, for example cream or ointment bases, and ethanol or oleyl alcohol for lotions. Such carriers may constitute from about 1% to about 98% by weight of the formulation; more usually they will constitute up to about 80% by weight of the formulation.

For administration to mammals, and particularly humans, it is expected that the daily dosage level of the active agent will be from 0.01 mg/kg to 10 mg/kg, typically around 1 mg/kg. The physician in any event will determine the actual dosage which will be most suitable for an individual and will vary with the age, weight and response of the particular individual. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

In-dwelling devices include surgical implants, prosthetic devices and catheters, i.e., devices that are introduced to the body of an individual and remain in position for an extended time. Such devices include, for example, artificial joints, heart valves, pacemakers, vascular grafts, vascular catheters, cerebrospinal fluid shunts, urinary catheters, continuous ambulatory peritoneal dialysis (CAPD) catheters.

The composition of the invention may be administered by injection to achieve a systemic effect against relevant bacteria shortly before insertion of an in-dwelling device. Treatment may be continued after surgery during the in-body time of the device. In addition, the composition could also be used to broaden perioperative cover for any surgical technique to prevent bacterial wound infections, especially *Staphylococcus aureus* wound infections.

Many orthopedic surgeons consider that humans with prosthetic joints should be considered for antibiotic prophylaxis before dental treatment that could produce a bacteremia. Late deep infection is a serious complication sometimes leading to loss of the prosthetic joint and is accompanied by significant morbidity and mortality. It may therefore be possible to extend the use of the active agent as a replacement for prophylactic antibiotics in this situation.

In addition to the therapy described above, the compositions of this invention may be used generally as a wound treatment agent to prevent adhesion of bacteria to matrix proteins exposed in wound tissue and for prophylactic use in dental treatment as an alternative to, or in conjunction with, antibiotic prophylaxis.

Alternatively, the composition of the invention may be used to bathe an indwelling device immediately before insertion. The active agent will preferably be present at a concentration of 1 µg/ml to 10mg/ml for bathing of wounds or

indwelling devices.

A vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response. A suitable unit dose for vaccination is 0.5-5 microgram/kg of antigen, and such dose is preferably administered 1-3 times and with an interval of 1-3 weeks. With the indicated dose range, no adverse toxicological effects will be observed with the compounds of the invention which would preclude their administration to suitable individuals

Each reference disclosed herein is incorporated by reference herein in its entirety. Any patent application to which this application claims priority is also incorporated by reference herein in its entirety.

10 TABLES

Certain pertinent data for each of the polypeptides and polynucleotides set forth in the Sequence Listing are summarized in the following Table.

15 TABLE 1

20

25

30

35

45

50

5**5**

Provided in this Table is the closest homologue of each polypeptide encoded by each ORF of the invention based on a comparison of the sequences of in the Sequence Listing with sequences available in the public domain (see the right hand column entitled "Desc"). Where no significant homologue was detected "unknown" appears in the column. Preferred polypeptides encoded by the ORFs of the invention, particularly full length proteins either obtained using such ORFs or encoded entirely by such ORFs, are ones that have a biological function of the homologue listed, among other functions. The analysis used to determine each homologue listed in Table 1 was either BlastP, BlastX or MP-Search, each of which is well known. In the left hand column the SEQ ID NO: of each DNA sequence in the Sequence Listing appears. In the center column, the SEQ ID NO: of each protein (polypeptide) sequence of each sequence in the Sequence Listing appears across from the DNA sequence which encodes it (which DNA sequence is in the left hand column). In some instances the DNA sequence encodes more than one protein sequence and so is listed more than once, each listing being shown next to the encoded protein sequence.

17

TABLE 1

	DNA	Protein	Assembly	Description
5	No.:	No.:	ID	
	1.	260.	2698808	Unknown
	2.	261.	2700024	Unknown
	3.	262.	2700052	Probable ABC Transporter
10	4.	263.	2700068	Unknown
	5.	264.	2700110	Unknown
	6.	265.	2700242	Polyribo-Nucleotide Nucleotidyl-Transferase
				(Ec 2.7.7.8) (Polynucleotide Phosphor
15				Ylase) (Pnpase) Escherichia Coli.
	7.	266.	2700302	Unknown
	8.	267.	2700520	Unknown
	9.	268.	2700548	Unknown
20	10.	269.	2700738	Unknown
	11.	270.	2700754	Unknown
	12.	271.	2701136	Excinuclease ABC Subunit B (Dina Protein)
				(Fragment) Bacillus Subtilis.
25	13.	272.	2701728	Unknown
	14.	273.	2702000	Unknown
	15.	274.	2702042	2-Oxoglutarate Dehydrogenase E1
				Component (Ec 1.2.4.2) (Alpha-
30				Ketoglutarate De- Hydrogenase)
				Escherichia Coli.
	16.	275.	2702062	Unknown
25	17.	276.	2702076	Unknown
35	18.	277.	2702336	Unknown
	19.	278.	2702342	Unknown
	20.	279.	2702482	Ribonuclease P Protein Component (Ec
40				3.1.26.5) (Protein C5) (Rnase P) Bacill
40				Us Subtilis.
	21.	280.	2702500	Riboflavin Synthase Alpha Chain (Ec
				2.5.1.9) Bacillus Subtilis.
45	22.	281.	2702520	ECKBLTDH NCBI Gi: 41862 - Escherichia
				Coli.
	23.	282.	2702580	Glucose Inhibited Division Protein B
				Bacillus Subtilis.
50	24.	283.	2702648	Unknown

	DNA	Protein	Assembly	Description
	No.:	No.:	ID	-
5	25.	284.	2702700	Flagellar Hook-Associated Protein 1 (Hap1) Salmonella Typhimurium.
	26.	285.	2702838	Pyrimidine Nucleoside Transport Protein Bacillus Subtilis.
10	27.	286.	2702934	Protein Dfp Escherichia Coli.
	28.	287.	2703752	Unknown
	29.	288.	2703916	Diaminopimelate Decarboxylase (Ec 4.1.1.20) (Dap Decarboxylase) Bacillus
15				Sub Tilis.
	30.	289.	2704026	Unknown
	31.	290.	2704028	Unknown
	32.	291.	2704448	Unknown
20	33.	292.	2704502	Unknown
	34.	293.	2704680	Unknown
	34.	294.	2704680	Unknown
	35.	295.	2704892	Unknown
25	36.	296.	2705066	Unknown
	37.	297.	2705204	Unknown
	38.	298.	2705378	Unknown
	39.	299.	2705414	Unknown
30	40.	300.	2705440	Methylated-DNA-Protein-Cysteine
				Methyltransferase (Dat1) Homolog - Haemophilus Influenzae (Strain Rd KW20)
35	41.	301.	2705526	Ornithine Carbamoyltransferase Chain I (Ec 2.1.3.3) (Otcase-1) (Fragment) Sa Lmonella Typhimurium.
	42.	302.	2705632	Unknown
	43.	303.	2705646	Unknown
40	44.	304.	2705712	Ribonucleoside-Diphosphate Reductase 2
	,	20	2,05,12	Alpha Chain (Ec 1.17.4.1) (Ribonucleotid E Reductase 2) Salmonella Typhimurium.
	45.	305.	2705740	Unknown
45	46.	306.	2705742	Unknown
	47.	307.	2705876	D-Lactate Dehydrogenase (Ec 1.1.1.28) (D-
				Ldh) Lactobacillus Plantarum.
50	48.	308.	2706108	Unknown
	49.	309.	2706282	Unknown
	50.	310.	2706344	Unknown

	DNA	Protein	Assembly	Description
5	No.:	No.:	ID	
	51.	311.	2706452	Nickel-Binding Periplasmic Protein
				Precursor Escherichia Coli.
	52.	312.	2706548	Stringent Response-Like Protein -
10				Streptococcus Equisimilis
	53.	313.	2706730	Unknown
	54.	314.	2706734	Phosphate Regulatory Protein - Rhizobium Meliloti
15	55.	315.	2706832	Diphtheria Toxin Repressor (Iron-Dependent Diphtheria Tox Regulatory Element) (Tox Regulatory Factor) Corynebacterium
				Diphtheriae.
20	56.	·316.	2706930	Unknown
20	57.	317.	2707190	Unknown
	58.	318.	2707592	Phosphoribosylaminoimidazole Carboxylase
	., 50.	510.	2101372	Catalytic Subunit (Ec 4.1.1.21) (Air C
25				Arboxylase) (Airc) Bacillus Subtilis.
	59.	319.	2707978	Unknown
	60.	320.	2708140	Unknown
	61.	321.	2708372	Unknown
30	62.	322.	2708478	Unknown
	63.	323.	2708862	Nitrite Reductase (Nad(P)H) (Ec 1.6.6.4)
				Escherichia Coli.
	64.	324.	2709034	Unknown
35	65 .	325.	2709098	Unknown
	66.	326.	2709168	Unknown
	67.	327.	2709352	Unknown
	68.	328.	2709366	Rep827 Protein - Staphylococcus Sp.
40	69 .	329.	2709474	Unknown
	70.	330.	2709570	Unknown
	70 .	331.	2709570	Unknown
45	71.	332.	2709600	Unknown
43	72.	333.	2709642	Unknown
	72.	334.	2709642	Unknown
	73.	335.	2709736	Unknown
50	74.	336.	2709760	Unknown
	75.	337.	2709766	Unknown
	76.	338.	2709772	Unknown

	DNA No.:	Protein No.:	Assembly ID	Description
5	77.	339.	2709790	Unknown
	78.	340.	2709830	Udp-N-AcetylmuramoylalanineD-
		3 70.	2.03030	Glutamate Ligase (Ec 6.3.2.9) (Udp-N-
				Acetylmura Noyl-L-Alanyl-D-Glutamate
10				Synthetase) Bacillus Subtilis.
	79.	341.	2709848	Unknown
	80.	342.	2709852	Unknown
	81.	343.	2709888	Unknown
15	82.	344.	2709954	Unknown
	83.	345.	2709992	Unknown
	84.	346.	2709994	Heat Shock Protein Hslu Bacillus Subtilis.
	85.	347.	2710014	Tryptophan Synthase (Ec 4.2.1.20)
20				Neurospora Crassa.
	86.	348.	2710028	Single-Strand Binding Protein (Ssb) (Helix-
				Destabilizing Protein) Bacillus S Ubtilis.
	87.	349.	2710092	Elongation Factor Tu (Ef-Tu) Bacillus
25				Subtilis.
	88.	350.	2710096	Unknown
	89.	351.	2710272	Unknown
30	90.	352.	2710276	Unknown
30	91.	353.	2710330	Unknown
	92.	354.	2943530	Unknown
	93.	355.	2943556	Unknown
35	94.	356.	2943564.	Unknown
	95.	357.	2943624	Possible Sodium-Dependent Phosphate
				Transporter
	96.	358.	2943704	Unknown
40	96.	359.	2943704	Unknown
	97.	360.	2943710	Anaerobic Ribonucleoside-Triphosphate
				Reductase (Ec 1.17.4.2) Escherichia Co
				Li.
45	98.	361.	2943716	Unknown
	99.	362.	2943742	U00013 NCBI Gi: 466868NCBI Gi: -
				Mycobacterium Leprae.
	100.	363.	2943746	Unknown
50	101.	364.	2943774	Unknown
	102.	365.	2943782	Unknown
	103.	366.	2943806	Unknown
	104.	367.	2943822	Unknown
55	105.	368.	2943834	Unknown

	DNA	Protein	Assembly	Description
	No.:	No.:	ID	•
5	106.	369.	2943864	Unknown
	107.	370.	2943956	Unknown
	108.	371.	2943960	Unknown
	108.	372.	2943960	Unknown
10	109.	373.	2944036	Deoxyribose-Phosphate Aldolase (EC
				4.1.2.4) - Mycoplasma Hominis (SGC3)
	110.	374.	2944044	Unknown
	110.	375.	2944044	Biotin Synthetase (Ec 2.8.1) Bacillus
15				Sphaericus.
	111.	376.	2944066	Unknown
	112.	377.	2944114	Unknown
	113.	378.	2944126	Sirohem Synthase (Contains: Uroporphyrin-
20				Iii C-Methyltransferase (Ec 2.1.1.107)
				(Urogen Iii Methylase) (Sumt)
				(Uroporphyrinogen Iii Methylase) /
25				Precorrin-2 Oxidase (Ec 1) /
25				Ferrochelatase (Ec 4.99.1)) Escherichia
				Coli.
30	114.	379.	2944146	Mercuric Reductase (Ec 1.16.1.1) (Hg(Ii)
30				Reductase) Staphylococcus Aureus.
	115.	380.	2944210	Unknown
	116.	381.	2944212	Unknown
35	117.	382.	2944262	Regulatory Protein Pfor - Clostridium
00				Perfringens
	118.	383.	2944264	Replicative Dna Helicase (Ec 3.6.1)
				Bacillus Subtilis.
40	119.	384.	2944276	Ribokinase (Rbsk) Homolog - Haemophilus
				Influenzae (Strain Rd KW20)
	120.	385.	2944306	Dna-Invertase Hin Salmonella
				Typhimurium.
45	121.	386.	2944308	Unknown
	122.	387.	2944310	Histidine Ammonia-Lyase (Ec 4.3.1.3)
				(Histidase) Bacillus Subtilis.
	123.	388.	2944342	Unknown
50	124.	389.	2944344	Primosomal Protein N' (Replication Factor
				Y) Escherichia Coli.
	125.	390.	2944360	Unknown
	126.	391.	2944364	Unknown
55				

	DNA No.:	Protein No.:	Assembly ID	Description
5	127.	392.	2944366	Starvation Sensing Protein Rspb (Ec 1.1.1.) Escherichia Coli.
	128.	393.	2944390	Probable ABC Transporter
10	128.	394.	2944390	Atp-Binding Protein Abc Escherichia Coli.
15	129.	395.	2944414	Potassium-Transporting Atpase (Ec 3.6.1.36), A Chain (Atp Phosphohydrolase (Pot Assium-Transporting), A Chain) Escherichia Coli.
	130.	396.	2944426	Unknown
	131.	397.	2944434	Unknown
	132.	398.	2944446	Unknown
20	133.	399.	2944452	Unknown
	134.	400.	2944464	Lipoprotein Nlpd Precursor Escherichia Coli.
25	135.	401.	2944492	Pts System, Galacticol-Specific Iia Component (Eiia-Gat) (Galacticol- Permease Iia Component) (Phosphotransferase Enzyme Ii, A Component) (Ec 2.7.1.69) E
•				Scherichia Coli.
30	136.	402.	2944508	Unknown
	137.	403.	2944522	1-Phosphofructokinase (Fruk) Homolog - Haemophilus Influenzae (Strain Rd KW20)
35	138.	404.	2944556	Folylpolyglutamate Synthase (Ec 6.3.2.17) (Folylpoly-Gamma-Glutamate Synthetase) (Fpgs) Bacillus Subtilis.
40	139.	405.	2944576	Lactam Utilization Protein (Lamb) Homolog - Haemophilus Influenzae (Strain Rd K W20)
<i>45</i>	140.	406.	2944578	Lactam Utilization Protein (Lamb) Homolog - Haemophilus Influenzae (Strain Rd K W20)
	141.	407.	2944584	Possible Glutathione Peroxidase
	142	408.	2944592	BK5TATTP NCB - Bacteriophage BK5-T DNA.
50	143.	409.	2944644	Phosphoribosylformylglycinamidine Cyclo- Ligase (Ec 6.3.3.1) (Airs) (Phosphoribo Syl-Aminoimidazole Synthetase) (Air Synthase) Bacillus Subtilis.
55	144.	410.	2944648	Unknown

	DNA	Protein	Assembly	Description
5	No.:	No.:	ID	
	145.	411.	2944654	Unknown
	146.	412.	2944658	Indole-3-Glycerol Phosphate Synthase (Ec
				4.1.1.48) (Igps) Lactococcus Lactis
10				(Subsp. Lactis) (Streptococcus Lactis).
	147.	413.	2944670	Unknown
	148.	414.	2944694	Unknown
	149.	415.	2944706	Unknown
15	150.	416.	2944720	Unknown
	151.	417.	2944746	Unknown
	152.	418.	2944760	Unknown
	153.	419.	2944782	Pts System, Sucrose-Specific Iiabc
20				Component (Eiiabc-Scr) (Sucrose- Permease
				Ii Abc Component) (Phosphotransferase
				Enzyme Ii, Abc Component) (Ec 2.7.1.69)
				(E Ii-Scr) Streptococcus Mutans.
25	154.	420.	2944800	Right Origin-Binding Protein Escherichia
				Coli.
	155.	421.	2944806	Unknown
	156.	422.	2944808	Unknown
30	157.	423.	2944838	Phospho-N-Acetylmuramoyl-Pentapeptide-
				Transferase (Ec 2.7.8.13) Bacillus Sub
				Tilis.
	158.	424.	2944882	Oligopeptide Transport Atp-Binding Protein
35				Oppf Lactococcus Lactis (Subsp. L Actis)
				(Streptococcus Lactis).
	159.	425.	2944888	Unknown
40	159.	426.	2944888	Unknown
40	160.	427.	2944902	Unknown
	161.	428.	2944930	Unknown
	162.	429.	2944932	Unknown
45	163.	430.	2944936	Unknown
43	164.	431.	2944966	30s Ribosomal Protein S4 (Bs4) Bacillus
				Subtilis.
	165.	432.	2944988	Unknown
50	166.	433.	2945022	Unknown
	167.	434.	2945040	Unknown
	168.	435.	2945060	Unknown

	DNA No.:	Protein No.:	Assembly ID	Description
5	169.	436.	2945070	Unknown
3	170.	437.	2945078	Isocitrate Dehydrogenase (Nadp) (Ec
		,57.	2745070	1.1.1.42) (Oxalosuccinate Decarboxylase) (I
				Dh) (Nadp+-Specific Icdh) (Idp) Bacillus
10				Subtilis.
	171.	438.	2945082	Unknown
	172.	439.	2945186	Unknown
	173.	440.	2945250	Unknown
15	174.	441.	2945254	Unknown
	175.	442.	2945260	Unknown
	176.	443.	2945316	Tagd Protein Vibrio Cholerae.
	177.	444.	2945338	4-Methyl-5-(Beta-Hydroxyethyl)Thiazole
20				Monophosphate Synthesis Protein Thif - E
				Scherichia Coli
	178.	445.	2945378	Pyrroline-5-Carboxylate Reductase (EC
				1.5.1.2) - Arabidopsis Thaliana
25	179.	446.	2945474	Unknown
	180.	447.	2945520	Unknown
	181.	448.	2945550	Unknown
	182.	449.	2945580	Nadh Dehydrogenase I Chain G (Ec 1.6.5.3).
30				- Escherichia Coli.
	183.	450.	2945772	Unknown
	184.	451.	2945780	Signal Peptidase I S (Ec 3.4.21.89) (Spase I)
35				(Leader Peptidase I) Bacillus Subtilis.
	184.	452.	2945780	Signal Peptidase I S (Ec 3.4.21.89) (Spase I)
				(Leader Peptidase I) Bacillus Subtilis.
	185.	453.	2945792	Fibronectin-Binding Protein Precursor
40				(Fnbp) Staphylococcus Aureus.
	186.	454.	2945794	Unknown
	187.	455.	2945802	Rod Shape-Determining Protein
	•			Escherichia Coli.
45	188.	456.	3038342	X-Pro Dipeptidase (EC 3.4.13.9) -
				Lactobacillus Delbrueckii
	189.	457.	3038352	Unknown
	190.	458.	3038362	Unknown
50	191.	459.	3038372	Unknown
	192.	460.	3038374	Phosphotransferase System Enzyme II -
				Staphylococcus Carnosus
	193.	461.	3038406	Unknown
5 5				

	DNA	Protein	Assembly	Description
5	No.:	No.:	LD	
	194.	462.	3038410	Crtd Protein - Rhodobacter Sphaeroides
	195.	463.	3038424	Tetrahydropteroyltriglutamate
				Methyltransferase (Mete) Homolog -
10				Haemophilus In Fluenzae (Strain Rd KW20)
	196.	464.	3038426	Unknown
15	197.	465.	3038428	Exopolysaccharide Production Protein Pss Rhizobium Leguminosarum (Biovar Pha Seoli).
	198.	466.	3038438	Galacticol-1-Phosphate Dehydrogenase (Ec
				1.1.1) Escherichia Coli.
20	1 99 .	467.	3038442	Unknown
	200.	468.	3038450	Excinuclease Abc Subunit C Bacillus Subtilis.
	201.	469.	3038458	Nitrite Reductase (Nad(P)H) Small Subunit (Ec 1.6.6.4) Bacillus Subtilis.
25	202.	470.	3038474	Unknown
	202.	470. 471.	3038474	Probable Imidazoleglycerol-Phosphate
	203.	4/1.	3030402	Dehydratase (Ec 4.2.1.19) Anabaena Sp.
30				(Strain Pcc 7120).
	204.	472.	3038492	Unknown
	205.	473.	3038496	SXSCRBA Sucrose Repressor -
				Staphylococcus Xylosus.
35	206.	474.	3038498	Nitrate Reductase Alpha Chain - Bacillus Subtilis (Fragment)
	206.	475.	3038498	Nitrate Reductase Alpha Chain - Bacillus Subtilis (Fragment)
40	207.	476.	3038504	3-Isopropylmalate Dehydratase (Ec 4.2.1.33) (Isopropylmalate Isomerase) (Alpha- Ipm Isomerase) (Ipmi) Lactococcus Lactis
45	207.	477.	3038504	(Subsp. Lactis) (Streptococcus La Ctis). 3-Isopropylmalate Dehydratase (Ec 4.2.1.33) (Isopropylmalate Isomerase) (Alpha- Ipm Isomerase) (Ipmi) Lactococcus Lactis
50				(Subsp. Lactis) (Streptococcus La Ctis).
50	208.	478.	3038510	Unknown
	209.	479.	3038536	Unknown
	210.	480.	3038538	Unknown

	DNA No.:	Protein No.:	Assembly	Description
5	211.	481.	3038544	Formate Dehydrogenase Alpha Chain (Ec 1.2.1.2) Methanobacterium Formicicum.
	212.	482.	3038550	Peptide Transport System Permease Protein Sapb Salmonella Typhimurium.
10	212.	483.	3038550	Dipeptide Transport System Permease Protein Dppb Bacillus Subtilis.
	213.	484.	3038552	Unknown
	214.	485.	3038578	Unknown
15	215.	486.	3038588	Seca Protein - Staphylococcus Carnosus
	216.	487.	3038590	Di-Tripeptide Transporter Lactococcus Lactis (Subsp. Lactis) (Streptococcus
20	217.	488.	3038594	Lactis). Histidinol Dehydrogenase (Ec 1.1.1.23) (Hdh) Lactococcus Lactis (Subsp. Lact Is)
25	218.	489.	3038596	(Streptococcus Lactis). Histidinol Dehydrogenase (Ec 1.1.1.23) (Hdh) Escherichia Coli.
	219.	490.	3038624	Thiolase (EC 2.3.1.9) - Clostridium Acetobutylicum
30	220.	491.	3038642	Exou Protein - Rhizobium Meliloti
00	221.	492.	3038658	Unknown
	222.	493.	3038686	Unknown
	223.	494.	3038692	Unknown
35	224.	495.	3038726	Unknown
	225.	496.	3038746	Unknown
	226.	497.	3038752	Unknown
	227.	498.	3038764	Unknown
40	228.	499.	3038766	Glucokinase Regulator Homolog -
				Haemophilus Influenzae (Strain Rd KW20)
	229.	500.	3038772	Unknown
	230.	501.	3038798	Bile Acid-Coenzyme A Ligase (Ec 6)
45				Eubacterium Sp. (Strain Vpi 12708).
	231.	502.	3038810	Probable Reductase
	232.	503.	3038816	Unknown
	232.	504.	3038816	Unknown
50	233.	505.	3038848	Unknown
	234.	506.	3038858	3-Dehydroquinate Synthase (Ec 4.6.1.3) Bacillus Subtilis.
	235.	507.	3038872	Unknown
55	236.	508.	3038896	Unknown

	DNA	Protein	Assembly	Description
5	No.:	No.:	ID	
	237.	509.	3038902	Unknown
	238.	510.	3038954	Unknown
	239.	511.	3038956	Unknown
10	240.	512.	3038964	P115 Protein - Mycoplasma Hyorhinis (SGC3)
	241.	513.	3039072	Pyruvate Oxidase (EC 1.2.3.3) Mutant With Pro 178 Replaced By Ser, Ser 188 Repl
15				Aced By Asn, And Ala 458 Replaced By Val (P178s,S188n,A458v), Chain A - Lacto Bacillus Plantarum
	242.	514.	3039118	Unknown
20	243.	515.	3039122	Unknown
	243.	5 16.	3039122	Unknown
	244.	517.	3039124	Unknown
	245.	518.	3039126	Unknown
25	246.	519.	3039132	Glucose-Fructose Oxidoreductase (EC 1.1) Precursor - Zymomonas Mobilis
	246.	520.	3039132	Unknown
	247.	521.	3039156	Putative Ornithine Carbamoyltransferase (Ec
30				2.1.3.3) (Otc) (Hypothetical Protein In Sagp 3'region) (Fragment) Streptococcus Pyogenes.
05	248.	522.	3039170	Unknown
35	249.	523.	3039172	Carbamoyl-Phosphate Synthase, Pyrimidine- Specific, Large Chain (Ec 6.3.5.5) (Ca Rbamoyl-Phosphate Synthetase Ammonia Chain) Bacillus Subtilis.
40	250.	524.	3039176	Acetoin(Diacetyl) Reductase (Ec 1.1.1.5) (Acetoin Dehydrogenase) (Ar) Klebsi Ella Terrigena.
45	251.	525.	3039182	Formate Dehydrogenase Alpha Chain (Ec 1.2.1.2) Methanobacterium Formicicum.
	252.	526.	3039200	Uvr-402 Protein - Streptococcus Pneumoniae Plasmid Psb470
50	253.	527.	3039234	Unknown
	254.	528.	3039244	CDP-Ribitol Pyrophosphorylase - Haemophilus Influenzae
	255.	529.	3039246	Unknown
55	256.	530.	3039248	Unknown

DNA	Protein .	Assembly		Description
No.:	No.:	ID		•
257.	531.	3039254	Unknown	
257.	532.	3039254	Unknown	
258.	533.	3039264	Unknown	
259.	534.	3039282	Unknown	

Example 1

5

10

15

25

30

40

50

Isolation of DNA coding for a Novel Protein from S. Aureus WCUH 29

The polynucleotide having the DNA sequence given herein can be obtained from a library of clones of chromosomal DNA of *S. aureus* WCUH 29 in *E. coli*. Libraries may be prepared by routine methods, for example:

Methods 1 and 2.

Methods 1 and

Total cellular DNA is isolated from Staphylococcus aureus strain WCUH29 (NCIMB 40771) according to standard procedures and size-fractionated by either of two methods.

Method 1.

wemoa

Total cellular DNA is mechanically sheared by passage through a needle in order to size-fractionate according to standard procedures. DNA fragments of up to 1 lkbp in size are rendered blunt by treatment with exonuclease and DNA polymerase, and *Eco*RI linkers added. Fragments are ligated into the vector Lambda ZapII that has been cut with *Eco*RI, the library packaged by standard procedures and *E.coli* infected with the packaged library. The library is amplified by standard procedures.

Method 2.

Total cellular DNA is partially hydrolysed with a combination of four restriction enzymes (*Rsal*, *Pal*, *Alu*) and *Bsh*12351) and size-fractionated according to standard procedures. *Eco*RI linkers are ligated to the DNA and the fragments then ligated into the vector Lambda ZapII that have been cut with *Eco*RI, the library packaged by standard procedures, and *E.coli* infected with the packaged library. The library is amplified by standard procedures.

Example 2

The determination of expression during infection of a gene from Staphylococcus aureus WCUH29

Necrotic fatty tissue from a four day groin infection of Staphylococcus aureus WCUH29 in the mouse is efficiently disrupted and processed in the presence of chaotropic agents and RNAase inhibitor to provide a mixture of animal and bacterial RNA. The optimal conditions for disruption and processing to give stable preparations and high yields of bacterial RNA are followed by the use of hybridisation to a radiolabelled oligonucleotide specific to Staphylococcus aureus 16S RNA on Northern blots. The RNase free, DNase free, DNA and protein free preparations of RNA obtained are suitable for Reverse Transcription PCR (RT-PCR) using unique primer pairs designed from the sequence of each gene of Staphylococcus aureus WCUH29.

a) Isolation of tissue infected with Staphylococcal aureus WCUH29 from a mouse animal model of infection

10 ml. volumes of sterile nutrient broth (No.2 Oxoid) are seeded with isolated, individual colonies of *Staphylococcus aureus* WCUH29 from an agar culture plate.

The cultures are incubated aerobically (static culture) at 37 degrees C for 16-20 hours. 4 week old mice (female, 18g-22g, strain MFI) are each infected by subcutaneous injection of 0.5ml. of this broth culture of Staphylococcus aureus WCUH29 (diluted in broth to approximately 108 cfu/ml.) into the anterior, right lower quadrant (groin area). Mice should be monitored regularly during the first 24 hours after infection, then daily until termination of study. Animals

with signs of systemic infection, i.e. lethargy, ruffled appearance, isolation from group, should be monitored closely and if signs progress to moribundancy, the animal should be culled immediately.

Visible external signs of lesion development will be seen 24-48h after infection. Examination of the abdomen of the animal will show the raised outline of the abscess beneath the skin. The localised lesion should remain in the right lower quadrant, but may occasionally spread to the left lower quadrant, and superiorly to the thorax. On occasions, the abscess may rupture through the overlying skin layers. The affected animal should be <u>culled immediately</u> and the tissues sampled if possible. Failure to cull the animal may result in the necrotic skin tissue overlying the abscess being sloughed off, exposing the abdominal muscle wall.

Approximately 96h after infection, animals are killed using carbon dioxide asphyxiation. To minimise delay between death and tissue processing /storage, mice should be killed individually rather than in groups. The dead animal is placed onto its back and the fur swabbed liberally with 70% alcohol. An initial incision using scissors is made through the skin of the abdominal left lower quadrant, travelling superiorly up to, then across the thorax. The incision is completed by cutting inferiorly to the abdominal lower right quadrant. Care should be taken not to penetrate the abdominal wall. Holding the skin flap with forceps, the skin is gently pulled way from the abdomen. The exposed abscess, which covers the peritoneal wall but generally does not penetrate the muscle sheet completely, is excised, taking care not to puncture the viscera.

The abscess/muscle sheet and other infected tissue, such as the necrotic pads of fatty tissue in the abdominal lower right and left quadrants may require cutting in sections, prior to flash-freezing in liquid nitrogen, thereby allowing easier storage in plastic collecting vials.

b) Isolation of Staphylococcus aureus WCUH29 RNA from Infected tissue samples

20

25

4-6 infected tissue samples(each approx 0.5-0.7g) in 2ml screw-cap tubes are removed from -80°C.storage into a dry ice ethanol bath In a microbiological safety cabinet the samples are disrupted individually whilst the remaining samples are kept cold in the dry ice ethanol bath. To disrupt the bacteria within the tissue sample 1ml of TRIzol Reagent (Gibco BRL, Life Technologies) is added followed by enough 0.1mm zirconia/silica beads to almost fill the tube, the lid is replaced taking care not to get any beads into the screw thread so as to ensure a good seal and eliminate aerosol generation. The sample is then homogenised in a Mini-BeadBeater Type BX-4 (Biospec Products) Necrotic fatty tissue is treated for 100 seconds at 5000 rpm in order to achieve bacterial lysis. *In vivo* grown bacteria require longer treatment than *in vitro* grown *S.aureus* WCUH29 which are disrupted by a 30 second bead-beat.

After bead-beating the tubes are chilled on ice before opening in a fume-hood as heat generated during disruption may degrade the TRIzol and release cyanide.

200 microlitres of chloroform is then added and the tubes shaken by hand for 15 seconds to ensure complete mixing. After 2-3 minutes at room temperature the tubes are spun down at 12,000 x g, 4 °C for 15minutes and RNA extraction is then continued according to the method given by the manufacturers of TRIzol Reagent i.e.:- The aqueous phase, approx 0.6 ml, is transferred to a sterile eppendorf tube and 0.5 ml of isopropanol is added. After 10 minutes at room temperature the samples are spun at 12,000 x g, 4°C for 10 minutes. The supernatant is removed and discarded then the RNA pellet is washed with I ml 75% ethanol. A brief vortex is used to mix the sample before centrifuging at 7,500 x g, 4 °C for 5 minutes. The ethanol is removed and the RNA pellet dried under vacuum for no more than 5 minutes. Samples are then resuspended by repeated pipetting in 100 microlitres of DEPC treated water, followed by 5-10 minutes at 55 °C. Finally, after at least 1 minute on ice, 200 units of Rnasin (Promega) is added RNA preparations are stored at -80 °C for up to one month. For longer term storage the RNA precipitate can be stored

RNA preparations are stored at -80 °C for up to one month. For longer term storage the RNA precipitate can be stored at the wash stage of the protocol in 75% ethanol for at least one year at -20 °C.

Quality of the RNA isolated is assessed by running samples on 1% agarose gels. 1 x TBE gels stained with ethidium bromide are used to visualise total RNA yields. To demonstrate the isolation of bacterial RNA from the infected tissue 1 x MOPS, 2.2M formaldehyde gels are run and vacuum blotted to Hybond-N (Amersham). The blot is then hybridised with a ³²P labelled oligonucleotide probe specific to 16s rRNA of *S.aureus* (K. Greisen, *et al.*, <u>J. Clin. Microbial</u>. 32 335-351(1994)). An oligonucleotide selected from the group consisting of the polynucleotides of the Sequence Listing is used as a probe. The size of the hybridising band is compared to that of control RNA isolated from *in vitro* grown *S. aureus* WCUH29. Correct sized bacterial 16s rRNA bands can be detected in total RNA samples which show extensive degradation of the mammalian RNA when visualised on TBE gels.

c) The removal of DNA from Staphylococcus aureus WCUH29 derived RNA

DNA was removed from 73 microlitre samples of RNA by a 15 minute treatment on ice with 3 units of DNasel, amplification grade (Gibco BRL, Life Technologies) in the buffer supplied with the addition of 200 units of Rnasin (Promega) in a final volume of 90 microlitres.

The DNase was inactivated and removed by treatment with TRIzol LS Reagent (Gibco BRL, Life Technologies)

according to the manufacturers protocol.

DNase treated RNA was resuspended in 73 microlitres of DEPC treated water with the addition of Rnasin as described in Method 1.

d) The preparation of cDNA from RNA samples derived from infected tissue

10 microlitre samples of DNase treated RNA are reverse transcribed using a SuperScript Preamplification System for First Strand cDNA Synthesis kit (Gibco BRL, Life Technologies) according to the manufacturers instructions. 1 nanogram of random hexamers is used to prime each reaction. Controls without the addition of SuperScriptII reverse transcriptase are also run. Both +/-RT samples are treated with RNaseH before proceeding to the PCR reaction

e) The use of PCR to determine the presence of a bacterial cDNA species

PCR reactions are set up on ice in 0.2ml tubes by adding the following components:

45 microlitres PCR SUPERMIX (Gibco BRL, Life Technologies).

1 microlitre 50mM MgCl₂, to adjust final concentration to 2.5mM.

1 microlitre PCR primers(optimally 18-25 basepairs designed to possess similar annealing temperatures), each primer at 10mM initial concentration.

2 microlitres cDNA

15

20

25

40

45

50

55

PCR reactions are run on a Perkin Elmer GeneAmp PCR System 9600 as follows:

5 minutes at 95°C, then 50 cycles of 30 seconds each at 94°C, 42°C and 72 °C followed by 3 minutes at 72°C and then a hold temperature of 4°C.

10 microlitre aliquots are then run out on 1% 1 x TBE gels stained with ethidium bromide with PCR product sizes estimated by comparison to a 100 bp DNA Ladder (Gibco BRL, Life Technologies).

RT/PCR controls may include +/- reverse transcriptase reactions, 16s rRNA primers or DNA specific primer pairs designed to produce PCR products from non-transcribed S.aureus WCUH29 genomic sequences.

To test the efficiency of the primer pairs they are used in DNA PCR with WCUH29 total DNA PCR reactions are set up and run as described above using approx. 1 microgram of DNA in place of the cDNA and 35 cycles of PCR rather than 50.

Primer pairs which fail to give the predicted sized product in either DNA PCR or RT/PCR (approx 20%) are PCR failures and as such are uninformative. Of those which give the correct size product with DNA PCR three classes are distinguished in RT/PCR:

- 1. Genes which are not expressed in vivo reproducibly fail to give a product in RT/PCR.
- 2. Genes which are expressed *in vivo* reproducibly give the correct size product in RT/PCR and show a stronger signal in the +RT samples than in the -RT controls.
- 3. Genes which may be expressed in vivo give similar amounts of product in both +/-RT samples.

31

SEQUENCE LISTING

5	(1) GENERAL INFORMATION
	(i) APPLICANT: Black, Michael
	Burnham, Martin
10	Hodgson, John
	Knowles, David
	Lonetto, Michael
	Nicholas, Richard
15	Pratt, Julie
	Reichard, Richard
	Rosenberg, Martin
	Ward, Judith
20	
	(ii) TITLE OF THE INVENTION: Novel Prokaryotic Polynucleotides,
	Polypeptides and Their Uses
25	(iii) NUMBER OF SEQUENCES: 534
	(iv) CORRESPONDENCE ADDRESS:
30	(A) ADDRESSEE: SmithKline Beecham Corporation
30	(B) STREET: 709 Swedeland Road
	(C) CITY: King of Prussia
	(D) STATE: PA
35	(E) COUNTRY: USA
	(F) ZIP: 19406-0939
	(v) COMPUTER READABLE FORM:
40	(A) MEDIUM TYPE: Diskette
	(B) COMPUTER: IBM Compatible
	(C) OPERATING SYSTEM: DOS
	(D) SOFTWARE: FastSEQ for Windows Version 2.0
45	
	(vi) CURRENT APPLICATION DATA:
	(A) APPLICATION NUMBER:
	(B) FILING DATE:
50	(C) CLASSIFICATION:
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 60/027,032
55	(B) FILING DATE: 24-SEP-1996

	(V111) ATTORNEY/AGENT INFORMATION:	
	(A) NAME: Gimmi, Edward R	
	(B) REGISTRATION NUMBER: 38,891	
5	(C) REFERENCE/DOCKET NUMBER: P50549	
	(ix) TELECOMMUNICATION INFORMATION:	
	(A) TELEPHONE: 610-270-4478	
10	(B) TELEFAX: 610-270-5090	
	(C) TELEX:	
15	(2) INFORMATION FOR SEQ ID NO:1:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 396 base pairs	
20	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
30	GAATTCCTGA TAATTATTIN GCGATATAAG TCGTCAACGT ACCAATATTA TCAATAGTCA	60
00	CTTTANATNC ATCACCTGGT TGGAAAAATT TAGGTGGTTG AATACCTGNA CCANCGTCTG	120
	AGTGGTGTAC CAGTTGCAAT AATATCTCCC GGATGNAGTG CAACACATCA TGACATCACT	180
	ACTATTACAA CAACATATAT CAGAATCAAG TCGCCAGNGT NACCATCTTG TCTAATTTCA	240
35	TNGTGACCTC NTGTAACAAT ATTCACATTT CCAGGTAATG GCAGTNCGTC TTGAGNAANG	300
	ATTTAAGGAC CCATNGGNTN ANCCNNCAGT TAAACTNNGT GGTAAAAATG CTTGATCTTG	360
	NTCACTGCGG GCTNTGAGAT CAAGTGATAT CGTAAA	396
40	(2) INFORMATION FOR SEQ ID NO:2:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 696 base pairs	
45	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
55	CCCCTCTATT GCTTNNTTGA TACGTTTCTG TTCTTTAAAT CCAAGATATA CCGCAAACAA	60
JJ		120

	ACTTTTGGCT TTTAACACTG CAGCTACACG AGCCATTGGA CCTCCCCAAG GTNCCATGTT	180
	CATAATCGCC GCGCTTAATG CTAATAGTAA AATCAATAAA TATTTATTCA TATTTAACGC	240
5	TTTATATAAA GGTAATAATG CAGGAATAGA AAGCAAAAAT GTTACCGCAC CGGCCCCATC	300
	TAATTGGGCT ATTGTGCCAA TTAAAGCTGT CATTGCACAG ACAATGACGA CATTGCCTCG	360
	TGTCATTAAT ATTAAGCGTT TGACAAGCGG CTTGAATAAA CCACTATCGT TCATGATGCC	420
	AAAGAAAATA ATGGCANAGA TAAACATAAT AACAACGTNG ATGACNTGAT CTAACCCTTT	480
10	AGCAAAAAAT CCAACCAAAT CTGNCACACT ATATCCTAAA ATCATTGCCC CTAAGCAAGG	540
	TATGATTGTC ATACCTACAN CTGGATTTAT CTTNNTGGGC AATGAGTAAN CCTACAACTG	600
	AAATAATAAT NATGNGCCCC ATCACTGTCA ACCACATATT ATCACTATTC ATTTATTTTC TCCCTCCACT TNCAATACAA TTTACATTCA CCCCCC	660
	TECCTCCACT INCAATACAA TTTACATTCA CCCCCC	696
15	(2) INFORMATION FOR SEQ ID NO:3:	
	(i) SEQUENCE CHARACTERISTICS:	
•	(A) LENGTH: 588 base pairs	
20	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) CENTROL DECORPORA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
30	CCCTTCNC3 A TTCATNCCCT THE CTCTTT	
	CCCTTGNCAA TTCATNGGGT TTTCTGTTTA ATATTTTTCG GGTTCTAANC CCACCATATC	60
	AAGTGATTCA TCTACTCTTT TATCAATATC TTTTTCTTCC CACTTTTTCA TTTGTGCCAC	120
	TTTGTGCAAA AATTTCCTTT GGGCCTCAAA TGGGGNATAA TTCCAATCTN CCTCCAANAC GTANCCAATA TCCCAACGCA TTTCGTAATA CTGGATAATC ACTTATTGGT TTATCTTTAA	180
35	AATAAATATA ACCTTCACTT AAGTCAATCA CECCAMBAAT CATTTAGA	240
	TTCCACAACC TGAAGGTCCA ATTAGCACAA AAAATTGAAGA GTGATTAAAA	300
	TGTTATCGAC AGCAACATGT TTGCCATAAC CCTTACCTTA	360
40	TGCCACCTCT TTTTTTCTCA TAGCATAAAA CCCACATTAAAA CCCACATTAAAA	420
.•	ACCACGTTTA TTACAATTTTT CAAATTTTAAA TICATTTAAA TICATTTTAAA	480
	AATGAATAAT AGGTAATCTC CAGTTAACAA ATACTCOTTAT TOTAL	540
	TOTAL CHARGAR ATAGIGITAT TITACCIT	588
45	(2) INFORMATION FOR SEQ ID NO:4:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 500 base pairs	
50	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: Genomic DNA	

(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:4:

CGGGCAGNCT	TTANAATTAT	TTNAATGATG	ATTAGCAATG	CATATACGAT	TAATTCGATT	60
ATGGNTTATA	TCTNNATTGA	TTAANTCACT	TATATTTCAC	AAGTGTGTTG	CTTTGGAGCG	120
TCAACGATGC	TATCACATAT	TACGGCATAT	GAAATTTTAT	CTGAAATTCG	NAAAAAATTA	180
GCTCAAAAAT	TAATGCGCCT	CCCTTTAGGN	GTAGTGGAAT	CTAAGAAAAT	AGGTGAATTA	240
AAAAATATAT	TTGNCGATAA	GGTTGAAACA	ATAGAATTAC	CTTTAGCACA	TATGATTCCT	300
	GAAACTTACT					360
	GATAGGTGNC					420
	CTTGGATTTT					480
TTTTTNATTT						500

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 808 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

5

10

15

20

25

30

35

40

45

55

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ACCCTGTTGT	CCCCNGGGGT	CAATAGACCC	CGACATACTT	TNNGGCTTCT	GAAAATAAAA	60
TTTCAGGNNC	GCACTTTAAA	GATGGACGTC	GATGTCGACT	AATGTGATGA	CNGCCTTTCA	120
TCTTTTTAAA	AANTCATTAA	TTTCCCTTCT	TGTTTAANAC	GTACATANAA	GAAATACGCA	180
				ATAATAATAC		240
				ATTTTATATA		300
				CAAATACCAC		360
				ACTAAGCCAA		420
				GCCAATACAT		
				TCAACTGCAC		480
						540
TAATTGTTTT						600
				TCATATGTAT		660
TTTGACAACA	TAAAGTATTT	TATAGATAAA	ACTTGTCACA	TACTATTAAC	TATTTATTAA	720
TTTTAGTACA					GATAATTTAA	
TAATTTTAAG				CASIAITIIG	GALAATITAA	780
-AATITIAAG	GATATTAAGC	GCTTACAG				808

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 806 base pairs
 - (B) TYPE: nucleic acid

	(C) STRANDEDNESS: single							
	(D) TOPOLOGY: linear							
5								
	(ii) MOLECULE TYPE: Genomic DNA							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:							
10								
	CGGAATTCTT ATTCATTTAT AAAATAATAT TCGTATGATT TGATGTTTTA ATTAGTCCAC	60						
	CATTTCGATT TGTGCTATGA TAATAGTGTT AAGTAAACGA AATAAGGGGT TATTAAGTTG	120						
	AATAACTACA AAATTGGCCA ACATATCAAG GTGCGTGTAA CTGGTATTCA NCCATACGGT	180						
15	GCGTTTGTTG AGACCCCTAA TCATACTGAA GGACTGATTC ATATATCAGA AATTATGGAT	240						
	GACTACGTTC ATAATTTGAA GAAATTTCTA TCAGAAGGAC AAATTGTTAA AGCTAAAATT	300						
	NTGTCTATAG ATGATGAAGG AAAGCTTAAT CTATCATTAA NGGATAATGA TTACTTCAAA	360						
	AATTATGAGC GTAAGAAGGA AAAACAATCA GTATTAGATG AAATCAGAGG NACAGAAAAA	420						
20	TATGGGTNNC AAACACTTAA AAGAACGCTT ACCAATCTTG GATAAAACAG GCAAAGCGAG	480						
	CAACTCGAAA CNGACTAAAG GAACAAGATA AATCCGNACC CGAAAATCAA ACAAAGGGTC	540						
	TTGAAATGAA AGTTTCTTAG ACTATAAAAG AGATTAGGTA TCTATTAAAT TTTATTAGAT	600						
	ACTAATCTCT TTTTGTCTAC GATAACGTAA TATGATTGAT TCTATTTACA CGTACAAATG	660						
25	GTTTAAGGTG ACATATCCAT TATCTTTGTT AGATAGAATC GTTGATTTGC AATATTGTAT	720						
	GTGGATTTGT TTTTTTATT TATTTTAGAA ATGAGAACTA CAACTTAAAG TATTAAACGA	780						
	ATTGCAACTA TATAAACAGA TAATTG	806						
30	(2) INFORMATION FOR SEQ ID NO:7:							
	·							
	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 1033 base pairs							
35	(B) TYPE: nucleic acid							
	(C) STRANDEDNESS: single							
	(D) TOPOLOGY: linear							
40	(ii) MOLECULE TYPE: Genomic DNA							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:							
45	CTACGGCATA CCATGCGAAA TAATTGTTGA TTCTAATGCT ACAATCGGTT GATTGTTCTC	60						
	CCGTGCTTGC TGAACTTCTC GAGAATACTC AATATACTTG TGTAAATTTG CCATTTTTAT	120						
	AATCCTCCAT ATCGTGATAA AGTTGCTGTT GATCTAGGTT GTGCCTAACT GTATATTTCG	180						
	TTTCTATCGT TTTCTNTGCG TTAACCATAC CAGCAATTAA TATATCTACA GTAGACATCC	240						
50	CATTTANCCA GCTATATACT ACTGCAGCAC AGAATGAATC GCCTGCACCT GTAACATCTT	300						
	TCACACTATG TGGATGGCAT AACTGACTTG ATGATTCTTC CTCACCACTN CGGATAATTA	360						
	ATTCTTNCAC GCCATNTGTC ACAATAACAT TTNTACACCT AAATCATTCC AGCGGTTTTA	420						
	GCAGCTATTT NTANATCAAC AAGTAGATTC TTATTTNTAA NTTTAAGTAT GGTTCTGGCN	480						
55	CANCTINANT CGGGGATAAT CCAATCAATA GCATGTAATG AATCAGGCAT ATTITTCATT	540						
	TTTGGGGAAG AAACCGTGGT GATAACTAAT TTGATTTGAT	600						

AAGAAGTTTA	ATGCCTCTTT	GCCTAAATTC	AAATCGACAA	TAATGCACTT	AGCCTTTTTC	660
AATAAGTGTG	AACGCTTAAT	TAAAAATTCA	GGCGTAATGT	AGTCANACAC	TTCCATATCT	720
		GCCTTCTTTA				780
		ATGANCCCAA				840
					CGCCAAGCCT	900
					ACGTTACAGG	960
					CATTCGCTGC	1020
ATTTGATGTT	TCTGCAACTA	AATCTTTATG	CACATAAAAC	TIACGATCIA	CMITCOCIO	1033
GCCAATACAA	ACG					1033

(2) INFORMATION FOR SEQ ID NO:8:

15

5

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1172 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

25

30

35

40

45

50

55

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

					m. cm. c	60
CTTACACAAC						
GTAAAAGAAT	TATTTGTAGC	TCATCGAGTT	GAAAAACAAT	ATAATAAGAA	CGAAATTTTA	120
CGCTTTTATT	TAAATAATAT	TTACTTTGGG	GATAATCAAT	ATACGCTTGA	GGGCGCAGCA	180
AACCATTATG	TGGNACACCC	GTGAATAAAA	ATAGNACAAC	AATGTCTCAC	ATCACAGNTT	240
NACAAAGCGC	TATTTTAGCT	AGTAAAGTCA	ATGCACCTAG	CGTATATAAT	NTCAATAATA	300
TGTCAGAGAA	TTTCACGCAA	CGTGTTAAGC	ACGANCTTAG	AAAAAATGAA	GCAACAACAT	360
NATATCAATG	ACACACAATA	TCAACAGGCT	ATGTCACAAC	TAAATCGCTA	AATACTNGCA	420
TTCATGTGTA	AGATGCTTGG	AACTATAATG	TAGAAGGTTT	AATTGAAATG	TCATAATGAT	480
AAAGTTGAAT	TGTTTCTGCT	TAATAAATTT	TACAGATTTG	CTTGTAATCA	CACTNTCATT	540
TTAAAAGATG	ATAGTGTGAT	TTTTTGTTAG	CATCGAAAAA	TATTTAAAGT	TAAACATTTG	600
CTATAGGAAG	TGGCTTATTG	AATAATAAA	GAGTATTGTA	TAAAACTTGA	GAAAGTAACG	660
GGGTGATCCA	GTGCCGAAGA	TTACTAAAAT	AGAAGTTCAA	AAGAAAAACA	AAGAACGTCT	720
TAATCTTTTT	TTAGACGAAC	AATTTGANAN	GGNNANTGGG	TATAGATATC	GATACATTAG	780
TCAAATTTAA	AAAAAATTT	GGGCAACAAC	TTGAAGCTGC	TGACATGGNA	GAGGTTCAAN	840
AGTATGATCA	TTATCGCATA	GGTTTAAACA	AAGCAATCCA	NTATTTATCA	TATAAAAAGA	900
GAACTGAAAA	AGAAGTTATT	CAATATTTAC	AANAAGAAGA	GATATCAGAG	CAAGCGATTT	960
				CCATCAAGAT	TATGCGGAAA	1020
GTTTACNAAA	TACAANGATT	CGCACGACAG	ATAATGGACC	TANANTTNAT	CANCAAAAAC	1080
	TCGGGTATNG		CATTGANATG		TTTCTTAGNG	1140
		ATTCATCCAA	AN			1172

(2) INFORMATION FOR SEQ ID NO:9:

	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 399 base pairs	
5	(B) TYPE: nucleic acid	
•	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
70		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
15	GAAGGCTTGT CGTCCCATTT AAGCATCACT CCGTTTGTTT TCGCTTAAAA TCCCTTGCAT	60
	CGATGCTAAC AATTGATCAA CATCTTTAAA TTCTTTATAG ACTGATGCAA ATCTAACATA	120
	TGAAACTTGA TCAACATGCA TTAACAAGTT CATAACGTGT TCACCTATAT CTCGTGAAGA	180
	CACTTCCGTA TGACCNTCAT CTCGTNATTG GCATNCAACC TTGNTTGNTA TGTCTTCAAG	240
20	TTGTTGGATA TCTAACTGGT CGGTTCTCAC AAGAACGCAC AAGTCCAATA AGTATTTTNT	300
	CTCTTGAAAA CTGNTCTCTT GCGCCATCTT TTNNCACAAC TATAAGCTGA CTTAACTTCG	360
	ATATGTTCAA ATTGTAGGGG GAAACCGTGG TTCCCACAA	399
	•	
25	(2) INFORMATION FOR SEQ ID NO:10:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 632 base pairs	
30	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
40	ATTTATATAT AGTAACAAAA CTAAATTATA AATGACAATA TCATATTTCG CAATCACTGT	60
	TAGTAATTTA AATATTTTTC AAAAACGACA TAATCATCAG TTTGTTCGAT TTCAACGAAA	120
	TTACTATTTA AACATAATGG TTTAAAATCA TTATTCTCTC CAAACAGAAT CATCGTAATC	180
	ACATTAAGGT TGTCATAGTT TTTTCTTAAG TAAGTTGGCA ATTGTCGCAG CGCACTTGAA	240
45	CCAATACCAT TAAAGCGATA TGATTTATCC ACTTCAATAG CAGCAATGTT CATGCGTTCA	300
	CCAATCTGCT CCAATGCGAT AAAGCCACCT NTTGGCANCA GCATCATAAA NTTAATGATA	360
	TNTACATNGG CCACTTCTTG AACGACTTTC TTCCTCCAAG CTTTTAATGA CGAACATTGT	420
	TTNGATCTTA AGTCCAAGTA TTTGGCCGGT CCTTTGCATT GGTCCTCTTC TTAGTCGNTT	480
50	GATTGAATGA TCCAGACGTC CGTTGGTCCA GATTGGNCAA TTTCCGANTC TACTACTGNN	540
	TTTGNTGATA AATCAGGAAT CACCCTGACA TTTTGGGAAT GAATCAATNT TTCCNGGCCA	600
	ATTCCAAACC TGGTTTTTTC CAATAATCGN TT	632
55	(2) INFORMATION FOR SEQ ID NO:11:	

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 438 base pairs	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
15	GATATACAGC ACTCAGAATT TTAATGACAA TTAATGCAGC AGTTAACACG ACAACGCCAT	60
	TAAATGCTTC TTTATGCTTC ATCACTGATT CTCATGCTTT CTTCAATGCA CTTAACTAAA	120
	AACTTCAAAC TATCAAGCCA TTGATTTTGT TTCGTTAAAG TAATTGTCAT TGCATTATTT	180
	TGAACACCAA CCTTCATTGT TCTACCTAAA GGTTGTGTTG CTTTGAACAG CACTTCGCCA	240
20	TCAATATTTT CAGTGGCTTT TACAGATAAA TGAATATCAA TTATTTTCCC TTTATCTTTA	300
	ATCAACGTGA TACCTGAATG TAATGCGTGT ACTTTTATTT CCACTATATC AAGCAAACGT	360
	GCTACTTCAA CAGGNTAATC CAATTAAACG ATCAATTANT TCATCTTTAN TGTCGATAAT	420
	TGGGNCAAAT TGTTCCAG	438
25	(2) INFORMATION FOR SEQ ID NO:12:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 522 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
40		
	TACCAAAGTT CTTCTTTAGA GGCTGGGGAA TATNTCCNAA CTACATCACG ACGCACTCGA	60
	AACGGTTCCT CGTTGGAAAA TCGATGTCAT TTCGTGTATA TTGCACATCT ACAAGTTTTC	120
	TAAGTAATTC ACTTCTATCC ATTTCCATAC CAACTCGAAC ACTTACTACT AAATCTTTAT	180
45	ATTCTTCAGG ATTACCTAAA CCATATATAC AACTTACACT AGCAATAATA ATTACATCAT	240
	CGCGTTCAAA TAATGCACTT GTAGCAGAAT GTCGNAGNTG ATCAATTTCA TCATTGATTG	300
	AGGCATCTTT TTCAATAAAA GTGTCAGTAG ACGGTACGTA TGCCTCAGGT TGATAATAAT	360
	CATAGTAACT TACAAAGTAT TCCACCCTGT TTTCAGGAAA AAATTCTTTA AACTCACTAT	420
50	ATAATTGCCC TGCTNATGTT GTGGTAGGTG CGATAATTAA CGTTGGTTTC CCAACTTCTT	480
	TAATAACATT ACTCATCCGN CAATGTTTTC CCTCGNGGCA GG	522
	(2) INFORMATION FOR SEQ ID NO:13:	

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 520 base pairs	
	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	ATCGCCACCT GTACCATGCA ACAATATTAG CGTTGGTGCA CCTTTNTTGT CCTTCACGAA	60
15	AAATATGTTC CATCACAAAT CCTCCTCATT CCAATTAATC ATGTTAACGC TTAGTATTAA	120
	ATGGTCTTAT TTCTGATTCT ATATACTCTC TTTTATTTTC TAAAAATGGT GGCAATGATA	180
	AACCTNCACC TAATGTTTCA TACGGNTCAT CTTCCATAAA TCCTGGTCCA TCTGNTGAAA	240
	TTTCTATTAA AATATGCCCC ACACGTGNAT ATAATGCTTC AAAATAGAAA CGATTAACGA	300
20	TGCCTGAGTT GGTTAATACC TACCTCTTTA TATTNCGGGT GCCCACGCTT CTTATTTGCA	360
	TCAGGATCTT TCCACAACGA AATGACACAT GATGTACCTC ACCATAACTT GAGGGNGGTT	420
	GNTGGCCTNN ATCATCTTTT ATTAAGATTA CTGGNCACAT TGGCGNCTTC GCAACTTCAA	480
	GGTAATGCGA CATATCTTCA AGCGCAATAG GTGGCATACC	520
25		
	(2) INFORMATION FOR SEQ ID NO:14:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 397 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
0.2	(XI) SEQUENCE DESCRIPTION: SEQ ID NO.14.	
40	GAATTCCATC AGTGCGACAA CTGAAGTATT TANACCAATA ATGTCATCGA CACTAGTTAC	60
	TATTATCGTC TTCTTACCAC TTGTGTTTGT ATCAGGTTCA GTAGGCGAAA TGTTTAGACC	120
	TTTTGCATTG GCTATTGCAT TTAGTTTATT AGCATCGTTA TTAGTGTCAA TTACACTCGT	180
45	NCCAGCTTTG GCAGCAACAC TATTTAAAAA AGGCGTTAAA CGTCGTAATA AACAACATCA	240
45	AGAAGGATTA GGTGTTGTTA GTACAACTTA TAAAAANGTA TNGCATTGGG TCACTAAATC	300
	ATAAGTGGGA TNGGTAATTA TATTAAGTAC ATTAATTTGG GGNTGNAACT ATTGTTTTTG	360
	GGGGGACCNA GACTAGNCAC TTAGCTTTTT TCCAGAA	397
50	SOSSOGRECIA GRETAGNEAC TIAGETTITI TECAGAA	371
50	(2) INFORMATION FOR SEQ ID NO:15:	
	(i) SEQUENCE CHARACTERISTICS:	
55	(A) LENGTH: 444 base pairs	
	(B) TYPE: pucleic acid	

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
10		
	AACCATCTTA CCGATATCAG TACAGTACGG CGTAGGAACG GGCATCCAGC GGATTAGAGG	60
	TGGTGAAACC AACCTGGTTG TTGATAACGA TACGTACCGT ACCGCCAACT TCATAACCAC	120
	GCGCTTTCGA CATGTTCAGG GTTTCCTGAA CCACGCCCTG CCCGGTCACT NTGGGGTCAC	180
15	CGNGGATGGT GATTGGNAGN ACTTTGTTGN TGCTCGGNTC ATCAAGTCTG TCCAGACGGG	240
	CACGAACAGA ACCGATANCT ACCNGGCTTA CAATCTCAAN GTGAGACGGG TTAAACGCCA	300
	GNGCCAGGTG NACCAGGGCG CCATCGGTCT NTAAGTCAGA CGAGAAGCCC ATGTGGTATT	360
	TCACGTCACC CNTGCCGAGG TGTTCTNTAT GTTTACCCGG GGGAACTCCG TCGNAACAAN	420
20	TCTTTGGGGG TTTTTTACCC CAGC	444
	(2) INFORMATION FOR SEQ ID NO:16:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 387 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	GAATTCCGTG GAGGGCAATT TTGGGCTTGC AATAAACAAT CATCAAAATA TTGTTGGTAC	60
	TATAGGTTTG ATTAGACTAG ATAATAATAT GTCTGCACTT AAAAAAATGT TTGTTGATAA	120
40	AGGTTATAGG AATTTAAAAA TAGGTAAAAA ACTTTTAGAT AAAGTTATAA TGACATGTAA	180
	AGAACAAAAT ATCGATGGNA TNTATTTAGG AACAATNGAT AAATNTATNA GTGCACAGTA	240
	TINITAINCI AATAANGGCI TCCGCGNAAA TTAAGCGAGG AGATTTACCA AGNAGCTITC	300
	CTAAATCAGA TGTAGATAAT AGGTTCCATT ACAGCAAANT CNAAAGATTA ANTCGANGCA	360
45	CTGAATAANT GNNATGACAN CCCTCAG	387
	(2) INFORMATION FOR SEQ ID NO:17:	
50	(i) SEQUENCE CHARACTERISTICS:	
· =	(A) LENGTH: 417 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
55	(D) TOPOLOGY: linear	
	(D) TOLOBOGI. TIMERI	

(ii) MOLECULE TYPE: Genomic DNA

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	GAATTCCTAG AAGGAGAATT TGTTAGTGGT GTTGCAGAAA AGCAATGGTT GGAAGAAAAA	60
	GGTTATGAAG TAGACTTTGA ATTAATGGCT GAAATAAATC CAACAAGATT ATCATTAAGT	120
10	GATTGGCTTA AAGTCCAAAA CTATAATAAG TAATGAATGG GGTGCAATCA TGATTCAATC	180
	AATGTGGTTT AATTTGCATG TGCAAGATTT AGAAAAGAGC GCACAGTTTT ATAAAGCGTT	240
	AGGATTTAAA ATAAATAGAA ACCCACAAAT GTTAGATAAA ATGGTCGGTA TTCAAATAGG	300
	TCAAACAACC GCAATTTTAA TAGAAAACAA GCATTTTCAA AATGTAAGTC AGCAAAGCCT	360
15	TAATACTGAA CCAAATGAAG TGATGATTTC TCTAGGTGTG ACACAATGAG AGTTGAC	417
	(2) INFORMATION FOR SEQ ID NO:18:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 341 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
	GAATTCCTAT ATACTACTTT GAAAAGGTGT GAGCTTAATG ACAACTTTTA GTGAAAAAGA	60
	AAAAATTCAA TTACTAGCAG ATATTGTTGA ACTACAAACT GAAAATAATA ATGAAATAGA	120
35	CGTTTGTAAT TATTTAAAAG ATTTATTCGA CAAGTACGAT ATTAAATCTG AAATTTTGAA	180
	AGTTAATGAA CACCGCGCCA ATATCGTTGC AGAAATCGGT AACGGNTCAC CTATACTCGC	240
	ATTGAGTGGT CATATGGATG TTGTTGGATG CAGGAAATCA AGATAATTGG ACTTATCCCC	300
	CTTTNCAACT CACAGAAAAA GCTGGCAAAT TATACGGTCC G	341
40		
	(2) INFORMATION FOR SEQ ID NO:19:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 351 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
50		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
55		
	GAATTCCTCA GGTATAACAC TTCNCATATC TTTACGAGNA ACTTTTCAAA CTAGATACCC	60

	CTGCACCAAC CAACGTCCAT AATGGTTGAT AGTAATGATG GTCTGCTGGG TCTATAATTG	120
	CTATTTTCTC TTTTAAGTTN TGATTTTTC TTAATAGTCT TGATGCTACG GTAACACCTG	180
5	CTGTACCGCC ACCAATAATA ACAATNTGAT AATGCTTATT CATTTNTTCC ACATCCTTAA	240
J	ATTATTTTAA TGATTCTGGA AAATCTTGAT AGCCTTCTCT AATATTCACC ACATTTTCAA	300
	AACCINIGCT TICCAATATA CCCACIGCAA TIGAACITCI AACACCIGAC I	351
10	(2) INFORMATION FOR SEQ ID NO:20:	
,,		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 324 base pairs	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	•	
20	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
25	GAATTCCGTG TTAAGAAACA AGATTAAAAG AGCAATACGT GAAAATTTCA AAGTACATAA	60
	GTCGNATATA TTCGNCAAAG ATATTATTCN TATAGNAAGA CAGGCAGCTA AAGATATGAC	120
	GACTTTACAA ATACAGNATA GTCTTGAGCA CGTNCTTAAA ATTGGCAAAG TTTTTAATAA	180
	AAAGATTAAG TAAGGATAGG GTAGGGAATG AAAACATTAA CCCCTCAACG CATCCCGAAG	240
30	TCTTACCTCA GACAAACGTT AGACTGACCC TAGGGTTAAG ACTTGGCCCN AGGGNTATNN	300
	TAACTTACTT TAAAATGTTT TCAC	324
	(2) INFORMATION FOR SEQ ID NO:21:	
35		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 484 base pairs	
	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
	CIAMMOOMAM MAMOONAMA OLEMPANAGO CERTANAGO CERT	
	GAATTCCTAT TATCGAATTG CATGCTACCC CTCCTAAAAN CCAAATGCTC TTAATTTATC	60
50	TACAGATAAT TGGTCTTTAT CTTTATTTAA AATATTTTCA ACATATTTAA ACAAAACGTC	120
	TGTTTCTAAA TGTACTTTAT CTCCTAATTT TGTGGATGAT AAAATCGTTG AACGCCTCGT	180
	TTCTGGAATA AGATGAATGT CAAAACTGTT ATCATGCTTA TCAAATACCG CTAGACTTAC	240
	ACCATCCACA GTAATAGACC TTGCTTAACT AACTGATTAT TAATATGTTG GCTACATTGA	300
55	ATCGNAATAA TTGTGGCATT GGTGTTTCAT TTATTTGTGA ANTGTCCTAG TCACTACATG	360
	ACCGAGGAAA AATGTCCACC AAACCTACCG NTACACTCAT GGAAGNTCTA AATTACTTCT	420

	GATTGGCGCT TACANCTGCT AATAGGTTTA TTTCAAGGCT TTATTACTTG ACAGGAAAGA TGCT	480 484
5	(2) INFORMATION FOR SEQ ID NO:22:	
	(2) INFORMATION FOR SEQ 1D NO.22.	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 481 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
20	011 MM00MM1 (M00M1 M01M1 1100M1 MM10 (011101 M10 MM110	60
	GAATTCCTTA CTGTATGATA AAGGTATTAC CAAACAATAC TTAAGGGGGA TTATATACTG TGGNTCAATC ATTATATGAG TTTTTAGAGG AAAATATAAA TTATCTAAAA GAAAATGGTN	120
	TGTATAATGA AATAGATACA ATTGAAGGTG CAAACGGACC AGAAATCAAA ATCAATGGGA	180
25	AATCATACAT TAACTTATCT TCANATAATT ATTTAGGACT AGCAACAAAT GAAGATNTGA	240
25	GATCAGCTGC AAAAGCAGCT ATTGATACAC ATGGTGTAGG TGCAGGCGCT GNTCGCACAA	300
	NCAATGGTAC ATTAGATTTA CACGACGAAT TAGAAGAAAC ACTAGCAAAA TTTANNGGAA	360
	CAGAAGCTGC AATAGCTTAT CAAGNCAGGA TTTANTTGGN NATATGGCTG CTATNTCAGC	420
30	TTGTCAANGA ATNAAAATGA TGCTATTTTN TCAGATGAGC TTAATCATGC ATCAATTATT	480
	G	481
	(2) INFORMATION FOR SEQ ID NO:23:	
35	(i) CHOURNAR CUIDACMERYCMICS	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 459 base pairs	
	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single	
70	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
	GAATTCCGTG TTAGGTGGTA ACGTTACAGA AACACATACC TTTAAATTGC CAGAAGATGC	60
50	TGGAGAGCGC CAGATGTTCA TTATTGATAA AAAAAGACAG ACGCCGAAAA AGTACCCAAG	120
	AAAACCAGGG ACGCCTAATA AGACTCCTTT ACTTGAAAAA TAATGCATAA TCCTTTACAA	180
	CTAACATAAA AGGAGCGAAT GGATAATGAA AAAACCTTTT TCAAAATTAT TTGGTTTGAA	240
	AAACAAAGAT GACATCATTG GACATATTGA AGAAGGATCG CAATAGTAAT GTTGAATCCA	300
5 5	TTCAAATTGA ACGTATCGTT CCCAACCCGT TATCAACCCA AGACAGGTGT TTGAACCCAA	360
	ATAAAATTAA AGAACTTGGT GAATCAAATA CAATGAACAT GGGTTTACTA CAAACCTATT	420

	GTTGGTAAGA CCGATGAGAA GATATGTTTG AAATTATTG	459
5	(2) INFORMATION FOR SEQ ID NO:24:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 440 base pairs	
10	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
20	GAATTCCCNA AAGATACNAT NCNATTTAAA TGGATATCAT TCCAAGAAGC TGTAGATAAG	60
	AATCGGGAAC NAATGTCTCT GTTTAATGAA ATTCTTAAGA GTCATCAAAA GACTCCANTT	120
	TTTGATACAT CTAGCTTGCG ACATACTTCG AAAAAATTAT CAACAATTTT AAAAGGGGAT	180
	TTGTAAAATG AATATTGAAA AAATCGAACA AATAATCAAA TTAGTGAAGG AAAATGATGT	240
25	TAAGAAATTT AAATATAAAA ATTTTGANGA TGAAATAGAA ATTGACTTCA CTGACTCGAA	300
	TCATTTGGCT GCACACAGGT AATCAATCAA NTCAANGTAT GAACAATAAT GATTTGACAG	360
	CTTCAANAGC GAATGATAAC TCCGATGTNT CGACAAATTG ATTATCATGA CATTAANTCA	420
	CCANTGGNAG GTACATTCTT	440
30		
	(2) INFORMATION FOR SEQ ID NO:25:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 358 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
40		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
45		
	CCCCCGGGCT GCCACGGTAA CTGATGCCTC CGCGGTACTG GCGACAGATT ACAAAATCTC	60
	GTTCGATAAT AATCAGTGGC AGGTCACCCG CCTTGCCAGC AATACCACTT TTACGGTGAC	120
	GCCGGATGCC AACGGTAAAG TGGCATTTGA TGGTCTGGAG TTGACGTTTA CAGGAACGCC	180
50	TGCCGTTAAC GACAGCTTCA CGCTGAAACC AGTAAGTGAC GCCATCGTCA ACATGGATGT	240
	ATTAATCACC GACGAAGCGA AAATAGCGAT GGCGAGCGAA GAAGATGCGG GTGATAGCGA	300
	TAACCGCAAC GGTCAGGCCC TGCTGGATCT TGCAAAGCAA CAGTAAAACG GNNGGCGG	358
55		
	(2) INFORMATION FOR SEQ ID NO:26:	

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 480 base pairs	
5	(B) TYPE: nucleic acid	
3	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
15	GAATTCCTAC CAGACGTCGC AATGGTCTAT AATTTCGCTC TAGATAATCT TGGAATAATA	60
	TCTTTTATTG TTAAATATAC TTCTGGTTGT CCAAACATTG CTGTTGAAAT AGCAAAGTAA	120
	CTTTCTAAGC GCCCCATTCT CGTTATTTTA TTAATAGCGA TACCTACATA TTTGATAATA	180
	AATGGTAATA CCTTAATATA ATTAAAAATG CCTATTAATA CAGAAATGAA CACTAATGGC	240
20	AGTAACACAT TTAAAAAGAA CGTAAAGCCA TTTNTATTTT GTATATCTCC AAAAACAAAG	300
	TTTATACCTG CTTTACTAAC ATTTATTAAC CCTTCCAAAA AATGAGCCTA ATGCAGGTAA	360
	GATTGGTTAA ACCAATCGTG GTGTTCATCC ATTAAATTAC AACAATCCAA CAACTTTGGA	420
	TTAAATTATC AATTATTAAC NGCCNTTTTT GGAAGTCTAT GTTTTTACGG ATCCCAAAAA	480
25	(2) INFORMATION FOR SEQ ID NO:27:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 545 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
40		
	GAATTCCTCT TTCACTTCTA TGATTTTTTT TAACTTCGAA ACGTCAAGTT GTGCATCAGG	60
	TTCTGCTGTT ACTTCCATTA CATAACCTTG AATCGTTCTT GGTCCAAAAG GTACAATTAC	120
	ACGCACACCA GGTTGGATGA CAGATTCGAG TTGTTCGGGA ATTATATAAT CAAATTTATA	180
45	GTCAACGCTC TTCGACGCGA CATCGACTAT GACTTTCGCT ATCATTATTG CCACCTAGTT	240
	TCTAGTTCAT CTAAAATTTG TGCAGCTAAT ACTACTTTTT TTCCTTTCTT GATATTTACC	300
	TTTTCATTAT TTCTAAAATG CATTGTCAAT TCATTATCAT CAGAACTAAA TCCGATAGAC	360
	ATATCCCCAA CATTATTTGA AATAATCACA TCTGCATTTN TCTTGCGTAA TTTTTGTTGT	420
50	GCATAATTTT CAATATCTTC AGCCTCTGCT GAAAGGCTAT TAATACTGNG ATGTTTATGT	480
	CACCTAAATA TTAAGAATGT CTTCAGACGT TTAAAAGATA CTGACAATCA CCACCTGGTT	540
	TTTCA	5 45
55	(2) THEODWANTON DOD GEO TO NO. 20.	

(2) INFORMATION FOR SEQ ID NO:28:

	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 429 base pairs	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
15	GAATTCCTNA CCATCCATAG CTGTGNACAC AACATGATCT TTATCAATCA TCATAATGTT	60
	GCAAAGGGAT TTCTTTNATC AAACTCAGGT GCATATGCTC GNACTTCTTC CATAGTTANG	120
	GGCAATTTCG TTGGGGTTAA AGGGTGTGTT GGATGCCCCT CTGGNNCCAA GCTCTCAGAA	180
	TAAGTTAACT CATCTGTCTT ATCACTATCT TTTACATGTT GTANCCATGA AAAAAAGTTA	240
20	ATATCTTGTG GTAATCTNGA AAATTTAAAA CTGTGACTTA TTAATGTGTG TCTGTGAGAC	300
	ATGTGNTTAT ATGTCACATC TAAACTATCT CGACTGTGTA TTANCTCCTT CGNNGTAGTC	360
	GCTCTGANNA NTAGGGATAT CAANGGTCAT GACTCAACAC ATCTAACAAC NCCTTCTTAA	420
	NGGTTATTA	429
25	(2) INFORMATION FOR SEQ ID NO:29:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 434 base pairs	
50	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
40		
	GAATTCCTAA TGCANAAAN TTCCCCGAGT CACAGTACAA TTTGCCGTGC TTCGGNGGAT	60
	TACTTTGTTT ATTTTTATTG TGTANCATTA ATAATGAGTT GTCTTAACGA TTGTCGCTTT	120
	ATAACTACAC GTGCTGTGAC ATCTTTTAAG AAAAACACAG AAGGCTTGTG CATGTGATTG	180
45	TAATTGGATG NCATAGAGTA ATGATATGCA CCAGNTGATA ATATAGCAAG ATAGTCTCCA	240
	CGTGTGACTG ATGAAGGTAA TTTAGCGTCT TTTAATAATG ATATCACCAG ACTCACATAA	300
	TTTTCCAGCT ATAGNTACAC TGACATCTGC TTCTACATCT CTTATTTAAC AAAGCAATGC	360
	TTGATACTGT GCGGTCATAA AGGTGAAGGT TCTTGATATT GAATCACTCA TNCCGCATCG	420
50	AGTTGAACAT ATTT	434
	(2) INFORMATION FOR SEQ ID NO:30:	
55	(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 535 base pairs

	(B) TYPE: nucleic acid							
	(C) STRANDEDNESS: single							
5	(D) TOPOLOGY: linear							
	(ii) MOLECULE TYPE: Genomic DNA							
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:							
	GAATTCCTAC AAGGATTCAA AATAAAATAC AAGTGTTTTG CGAATATTTG TTCGTATAAA	60						
	ATCTTGAAAT CAAAACGCAA AAACGAACAA ACGTGCTTAT ATTTTTATCG ATAATACAAT	120						
	TANTTTGTTG TTCTAAGCCA ATTTAATAAT CTTATGAGCA CATNATTTTG ACTTCTGTTC	180						
15	TTTAATAAAT TTCTAGATTT AGACATTTTA AATTGCTCAG TTTTAAATTC AAAGTTATTA	240						
	TCATAGCCTA TATGGACTAC ACCATCATAC TCTAATAGAA TAATTGCTGA TGACACATTA	300						
	AACAATTTAT TAACAAATTG CACTGCATCT TTTAATTGCT GCTCAATAGG TTTATTAATA	360						
00	TCAACAAAGT TTTCATTGGT GATTAATCAT ACCCTTTAGA ACATCGGNTT AAATCCNCTT	420						
20	CTTNCAATCG ATGATATTAA GCACCATTAG TAATACCATC ATTTTTACAA AAGGGTCANG	480						
	AATTTTCTTN ATTACAGCTT GGTCAATTAT GTGTCANCTT GAACCATARR DCTNS	535						
25	(2) INFORMATION FOR SEQ ID NO:31:							
	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 376 base pairs							
30	(B) TYPE: nucleic acid							
	(C) STRANDEDNESS: single							
	(D) TOPOLOGY: linear							
<i>35</i>	(ii) MOLECULE TYPE: Genomic DNA							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:							
40	GAATTCCGTC ATTTCCAGGA GGATANGAAA TAAGAATTGA GTTATTAATC AGTGGTTTTA	60						
40	TTTTTATATT GGCTTCCCTT AGCGATTGTG GTTGATGGTT ATTTAGCTAG AAAATGGAAT	120						
	TTAGTTACAA ATATGGGGAA ATTTGTGGGN TCCATTAGCG GATAAATTAT TAGNTGCAAG	180						
	TGCTTTAATT GTNCTTGTGC AACTAGGACT AACAAATTCT GTAGTAGCAA TCATTATTAT	240						
45	TGNCAGAGAA TNTGCCGTAA CTGGTTTACG TTTACTACAA ATTGAACAAG GATNTGGTAA	300						
40	GTGCAGCTGG NCAATTAGGT AAAATTAACA CAGCAGTTAC TATGGGTAGC AAATTACTTG	360						
	CGTCGCTATT ACCCTC	376						
50	(2) INFORMATION FOR SEQ ID NO:32:							
	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 518 base pairs							
55	(B) TYPE: nucleic acid							
	(C) STRANDEDNESS: single							

	(D) TOPOLOGY: linear							
5	(ii) MOLECULE TYPE: Genomic DNA							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:							
- 0	GAATTCTCAG TTCATGTTGT GGNGACACTT TAAACGGNCT GTGCCAGTAG CGACCGAGTC	60						
10	ATTTCAAGAA TGACCATTTC ACATTTATAT TATAACACTT GTCGNGCGTA ACTGTATAGN	120						
	TTTTCAGNNG TGTTTAAAGT TAAGTTATCT ACTTCGCGCT TTCCTTGGCT TAATTGTGAA	180						
	ATTACATATT GCGCTACGCC AGNTTGGTTG GGAATTTGGT AACCTGTTAT ATCACTTNTG	240						
	GTCAANNCAA TTATTTTTAA TTTATAATCA CTCATATTAT CTACGTCCAC TCNTTTTATC	300						
15	TAAACAATAA AAATGTGTTT NTCTCCCCNT AAATAATAAC AATGGCAGGC TTAATAAAAA	360						
	CAATATTAAA TACAATTTGC TCTTGTCAAA ATTGAAAACC CCCACATAAT ATTATTTTAT	420						
	TTAAGNGTAA GAGGGGGGCA ATCAGGGCTC CAGCATAATG TTAATCTTTG TCGGGTGGGG	480						
20	TTCCNGTCTT GGGTNGCCCN AGATGCCCAC TCTCTAGG	518						
	(2) INFORMATION FOR SEQ ID NO:33:							
25	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 423 base pairs							
	(B) TYPE: nucleic acid							
	(C) STRANDEDNESS: single							
30	(D) TOPOLOGY: linear							
	(ii) MOLECULE TYPE: Genomic DNA							
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:							
	GAATTCCACT AGAAGTTNCA ACATTACGCA TTTTACATTT CGTAAGTGGA GACGGTGGCA	60						
	AGCTAAAGAT TCATTATGAA TTATATCAAG ATAATGAAAA AATGGGTTCT TATCAATATG	120						
	AAATTAACTA TNAGGAGATA GGCGAATGAA TATTATTGAT CAAGTGAAAC AAACATNAGT	180						
40	AGAAGAAATT GNAGCAAGTA TTAACANAGC AGGATTAGNA GNTGAGATTC CTGATTTTAA	240						
	AANTGAAGTT CCNNNNGNNT NCAAAAAATG GAGATTATGC TACTAATATT GCGATGGTAC	300						
	TGACTAAGAT TGGAAAGNNG TNCTCCNCNC TGNNNATTGC TCANGCGGAA NGNTTGNNNA	360						
	CCTTAGCTCC NGGACACCNG CACATGNAAC ACAACTNGAC ATTGCCTGGC CCCACGGCTT	420						
45	CAA	423						
	(2) INFORMATION FOR SEQ ID NO:34:							
50								
50	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 943 base pairs							
	(B) TYPE: nucleic acid							
	(C) STRANDEDNESS: single							
55	(D) TOPOLOGY: linear							

	(ii) MOLECULE TYPE: Genomic DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	AATGACAAAA TATTAATCAA TTGGCGTATT ATACAAGAGT AATAGACATA TAAAAGTCGA	60
	ATGTAACTAC GTGAGTACTG ATTTTATTCT TTGTAAATTA CAAGCATTTC ATATCATAAA	120
10	GTTTGAAAAG AGGTATATTG AAGTGGAGAA AAACGAATAT ACAGCTAAAT ATAATGAATA	180
	TAGTCAATTA TTAGACGCTA CTTACTCGCA AGCTGTAGCA TACCTTTTAA ATAAATATGG	240
	CGCTGTAACC GATGATTATT ATAAGGAAAA ATCATACACG CGATTTTTAA ATGGAGAAAT	300
15	CAAAAGTATT TCAAAAAGGAA AATACACTAG AGCTAGCGAA GGATTATATT GTCATCACAT	360
,,,	AAGCGAAGAC AAATTCCAAA ACTTATCTTG ACCTAAGATT CATTTCCGAA TTTAAGTACT	420
	CATACAACGT CAAAAGAAAG AAAACTTAGT GTACTGTGAT CTTATCGAGC ATTTANTTTT	480
	ACATGCAATT ATTACAAAAG AATCCAATGG CAATTGGGGT GTGGGCTGGA TTATGTCAAA	540
20	TGATCAAACC AACAGTCATT GATTGGGACA TTAGCGAATA TACTCCAAAA CCAGCATGGA	600
	TGCAAGCCAC CAAAGCACGT GCCTATGTGC CTAGAATATT AGTAGAGAAA CTACTCATTA	660
	NNATTGACGA TATGTTAGAA GGAATAGAAA TATATGATNT CCNTGAGTCT AGATAAATGA	720
	TTAANGGAGA TATATTTCGT GNTCGNTGAG ATTGTGNTAT AGATAGNNTA ACCCNNTAAT	780
25	TAAATATTAT TCTATNAAAT AGACCACGCA TNCCTATCTA TAAACGGACA ACGTTTATAA	840
	ATGAGTTTGC ATGGTCTTGA ATTGTATTAA ATNTCTTNTT GGGTTTTAAT AGNTCACTTA	900
	GNGGGTATGT CAACATTCTT TNGACAGCTT CACGTGTATT TTT	943
30	(2) INFORMATION FOR SEQ ID NO:35:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1119 base pairs	
	(B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
	CAGATATACC TGCACTAATC AAAGTTTCAC CAAAATTTAA AGCTGTGTGA TATATCACAA	60
45	ATCCACAAAA TCCTAAAATA AAAATAACAG GGATATCTCT TAGTTCAGGG GTAGGCAATT	120
	TCTTTATAAT TACGAACGGC AAGAGAATTA TTGTTGCTAA AATTAAACGA AATGCCGACA	180
	ATGATTCTGC ACTAAAATCA TTTAACGCAA TCTTTATCAT TGGAAATGCA GATCCCCACA	240
50	ATATGATAGT AAATAAATAT GATAGAAAAG TAGTGTCTCG AAGTTTATTC ATTAATATCA	300
50	TCACTCCTTT AATTATGTGT TTCTATATTA AAAAATATGA TTTAAAATGA GTACAACCAA	360
	TTGGGAATGG ATTTACCTAT CCAATTTTAA AAGGGAGGGA GAAGATGGCT AAATATTAAG	420
	ATATTGCTAG TGACATAAGA GATAAAATAA TCACAGGGGG ATTGGGTTTT ATGGAATGAA	480

540

600

GATACCTCCA CAGAGGCAGG TGGCGATACA AATACAACGT NAATAGAGTG ACGATTATTA

AAAGTATTGG AGTTATTAGA GGCTGAAGGA TTTACTATAC TAAAGTGGGG AGTGGGNACA

55

	TATGTTAATG ACTATTTGAA TGAAGCACAT ATTACAAATA AGTGGTCTGA AATGATGTTA	660
	TGGTCCTCTC AACAAAGAAG TCAGTATACG GTGCAATTAA TTAATAAAAT TGAGACAGAT	720
	GATTCGTATA TACATATAAG TAAAGGTGAA TTGGGTATAT CGTTAATGCC ACATATTCAA	780
5	TTGAAAAAAG CCATGTCTAA TACAGCCAGT CATATTGAAG ACTTATCTTG TGGGTTATAA	840
	TAATGGCTAT GGTTATATCA AGGTTAAGAG ATATTATCCG GNTGAACGAA TTGTCAAAGC	900
	AAGGTATTAA ATTGTAGGTA GAGGAAAATT GTAATGGATC AACTCCAGGC GCTTTTACAA	960
10	TGCCANACCA ACTINITATC TTATTGGGGT TINTAGGGTC AAAGATGCCA TAATAATTTC	1020
10	GGATACAACC ATCATATTTT CCACTCTACA AANTGTTTGN GGAACAAATG GAATTTTAGA	1080
	CATATTGATG TCCCCNTATT ATCAAATTTA ATGAAATTA	1119
15	(2) INFORMATION FOR SEQ ID NO:36:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 600 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
	AAGAAATGTT CTAGAGATTT AGGTATCGAA GAACCCAGGA TTAAGACGAT TAAAAGAGCN	60
30	ACTATGATAT TAGGATTATC AACATATTTA CTGCTGTGTG CAAGAAGTAC GTGCTTGGAC	120
	AATTTAAACC AGGTATGACT GCACCTCAAT GTGCTGGTAT CATTCATACT GATTTTGANC	180
	GTGGATTTAT CCGTGCCGGA AGTAACAAGT TATTGATGAC TATGTACAAT ATGGCGGCGA	240
	AAGTGGCGCT AAAGAAGCGG GCAGACACCG ATTAGAAGGT AAAGAATATA TTATGCAAGA	300
35	TGGCGATATC GTTCATTTCA GATTTAATGT ATAAACGATA GAGTGAAGTT AATTAAATAG	360
	TATATATGTA GAAGAGGGG AATCAATTGT TCGCCTCTTT TAATTATGCG TATAATTAT	420
	TAAAAGAATG GAATGATTTT ACTCGCGTAA ATAATATCTT GAGTGCTGAA AAATTGTTTG	480
	CCTTCGCCAG TATAAGCAGG CTCTAAAACA AGATTAGCCT TTGCACAATA AAGCCATTCA	540
40	GGATGAATGC CACTATTAAG TATCTCTTGG AATTCGATAT CAAGCTTATC GATACCGTCG	600
	(2) INFORMATION FOR SEQ ID NO:37:	
45		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 479 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
	(XI) SEQUENCE DESCRIPTION: SEQ ID NO.37.	

GAATTCGNAA ATGTTGGCT TGGCGCAATG AAGAGCAAC CACCNTCTAA AAGC AANCTTATTT GAACACATGA TNNCGANTGC ACGTACATCA NCAGAACAAG GAAA NTCTGCGGNA ACAATGCTCA NNCANAGTAC GCTACCCACA TTTACGAAAA ATAC AAGTCGTTCA TGATATGAAA TGTAGCAGAC ACGACATTCA CCCTNTGTNT CCAC TCGCAAGTCA NNNAAATGTG TTAACTCTAG CGGAAATGAA AAGGACATTC ACTCGCAAGTCA NNNAAATGTG TTAACTCTAG CGGAAATGAA AAGGACAATT CATC TCGCATTCAG AGATGAAGAT ATTTGGGNTT GTTATTTGGG TACTTTGGCT GTGT GCTTAANGGA TGATGANGGT CANNNGTTAC TATCACGTNT ANGAAATGCT TACA ACGANTAGAA ATGACCCGGA TGGCGNGGNC NGNTAAATTG TCAATGNTTT NAAA (2) INFORMATION FOR SEQ ID NO:38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT: CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATATT TAGT: CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATACT CTATAATTTAAG TAGAATTACT TATAATTTTAAG TAGAACAAAT ATTATATTAGG AGGCAAAAT ATGG GCAGTTAAA TTTAAACAAAT TCTTATACCAA TATTATATAGG AGGCAATACA CAAG GCAGTTAAAG TTGAACCACG AGAAACATTA AAACAAAAA CCAAAATCACT CTAAA GCATGATTTG AGGATAGTAC CTTATAGGCC TATTGAAATT TACCCTCGCTG CACA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGG GCACTTTNCC CCNNCCCGAA GAAAATTTTA AGGGTCTTAA TAACTCGTTA GCACT AAAAGCACTAG GNTACCGGA GAAAATTTTA AGGGTCTTAA TAAACTCGTTA GCACT AAAAGACATTG GNTTCCTGAA GCAGAATGT TAGAGGGCT AAAACAATATA TATTATCGNCCA TTTAAC AAAAGACATTG GNTTCCTGAA GCAGAATGT TAGAGGGCT AAAACAATATA TATTATCGNCCA TTAAA (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
NTCTGCGGNA ACAATGCTCA NNCANAGTAC GCTACCCACA TTTACGAAAA ATAC AAGTCGTTCA TGATATGAAA TGTAGCAGAC ACGAGATTCA CCCTNTGTNT CCAC TCGCAAGTCA NNNAAATGTG TTAACTCTAG CGGAAATGAA AAGGACAATT CATC TCGCAAGTCA NNAAATGTG TTAACTCTAG CGGAAATGAA AAGGACAATT CATC TGGATTCAG AGATGAACAT ATTGGGNTT GTTATTTGGG TACTTGGCT GTGT GCTTAANGGA TGATGANGGT CANNNGTTAC TATCACGTNT ANGAAATGCT TACA ACGANTAGAA ATGACCCGGA TGGCGNGGNC NGNTAAATTG TCAATGNTTT NAAA (2) INFORMATION FOR SEQ ID NO:38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT CAGATTACTT GTCCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTT AATCTGTAA TATAATTGTGA AATTATTAGAA AATTTATTGGA ACGCAAAAT ATGG ATAATTTAGA TTAAAACAAAT TCTTATACAA TATTTATTGGA AGGCAAATCAC CATGA GCAGTATAAG TTGAACCACA AGAACACATA AAACAAAAC CAAATACATC TCAAA TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATAGTAGCAG ATAA GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAACTA TATAGATGCAG ATAA GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAACTA TAAACGAGTA GCACA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAACTGCTTA GCACA AAATGCCTCA AGTAGACGTA TCGAAGAGTT TAGAGGGGT AAAACACANTTA GTTGG CAACAGAAGG GCCACTTNCC CCNNCCCGAA GAAAATTTTA AGCCTCTTATA TAACTCGTTA GCACA AAATGCCTCA AGTAGACGT GCAGAATTGT TAGAGGGGT AAAACACANTTA GTTGG CAACAGAAGG GCCACTNGC GTTGCCGCAT CACACTCAGTA TNAAAATTTAT TAAAC (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
AGGTCGTTCA TGATATGAAA TGTAGCAGAC ACGAGATTCA CCCTNTGTNT CCAC TCGCAAGTCA NNNAAATGT TTAACTCTAG CGGAAATGAA AAGGACAATT CATC TGGATTCAG AGATGAAGAT ATTTGGGNTT GTTATTTGGG TACTTTGGCT GTGT GCTTAANGGA TGATGANGGT CANNNGTTAC TATCACGTNT ANGAAATGCT TACA ACGANTAGAA ATGACCCGGA TGGCGNGGNC NGNTAAATTG TCAATGNTTT NAAA (2) INFORMATION FOR SEQ ID NO:38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT. CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAATG CTTTT AATCTGTTAA TTAATTGTGA ATTATTATAAA AATTATATGA CAAGCAAAAAT ATGG. ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTATGA GAGCAAATCAC CATC GCAGTTAAG TTGAACGACG AGAACATTA AAACAAAAAC CAAATACACT CACA TGTGGGTAAA TATTTTCTG ATTATACTA TATTATAGAT TATGATGCAG ATAAA GCATGATTG AACGATAGTAC CTTATGGCC TATTGAAATT TCACCTGCTG CACA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCAATA TAAACCAGAAAAC GCACTTINCC CCNNCCCGAA GAAAATTTTA AGCGTCTTAA TAACCTGTTA GCAC AAAGAGATNG GNTTCCTGAA GAGGAATTCT TAGAGGGGCT AAAACAANTA GTGG AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AACATTATA TATTTCCNCCA TTTGC AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AACATTATA TATTTCCNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAC TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39:	
TCGCAAGTCA NNNAAATGTG TTAACTCTAG CGGAAATGAA AAGGACAATT CATC TGGATTTCAG AGARGAAGAT ATTTGGNTT GTTATTTGG TACTTTGGCT GTGT GCTTAANGGA TGATGANGGT CANNNGTTAC TATCACGTNT ANGAAATGCT TACA ACGANTAGAA ATGACCCGGA TGGCGNGNC NGNTAAATTG TCAATGNTTT NAAA (2) INFORMATION FOR SEQ ID NO:38: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT. CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAAT ATGG. ATTATTTAAT TTAATTGTGA ATTTTTAGAA AATTTATTGA AGGCAAAAT ATGG. ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGA AGGCAACAAT CATCT GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAAT TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAA GCATGATTG AAGATAGTAC CTTATGGCC TATTGAAATT TCACCTGCTG CACA TCAAATTACG TCAATCGCTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGGG ACACTTTNCC CCNNCCCGAA GAAACATTA AGCGTCTTAA TAACCGTTA GCGGG AAAATCCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACAGATTA CGCTCTTAC AAATCCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACACATTA CGCTCTTACC CAACAGAAGG GGCACTNGCC GTTGGCGCAT CACATCAGTA TNAAACTTTA GTTGTACACAATTACCTTACACACAGAAGGGGGGCAACACATTA TAAAAGAGATTA TAAATCCCTCA AAATCCCTCA AGAGAATTTTA AGCGTCTTAA TAAATCCTCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAAGAGATA TAAAGAGATTA TATTTCTTCA TTTGCACAGAATTGT TAGAGGGGCT AAAACANTTA TTTTCCTCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAAGAGATTA TAAAAGAGATA TAAAAGAATAA TAGAGAGATA TAAAAGAGATA TAAAAGAGATA TAAA	
TGGATTTCAG AGATGAAGAT ATTTGGGTT GTTATTTGG TACTTGGCT GTGT GCTTAANGGA TGATGANGGT CANNNGTTAC TATCACGTNT ANGAAATGCT TACA ACGANTAGAA ATGACCCGGA TGGCGNGNC NGNTAAATTG TCAATGNTTT NAAA (2) INFORMATION FOR SEQ ID NO:38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTT AATCTGTTAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGA GAGCAATCAC CATG GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAA TGTGGGTAAA TATTTTACTG ATTATATGTG GAGTTATGAT TATGATGCAG ATAA GCATGATTG AAGATAGAC CTTATGGGCC TATTGAAAAT TCACCTGCTG CACA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAATA GCGGC TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAATA GCGGC TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAATA GCGGC TCAATTATG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAATT GCGCG AAAATCCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACCANTTA GTTG AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AAATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAC 45 TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39:	
GCTTAANGGA TGATGANGGT CANNNGTTAC TATCACGTNT ANGAAATGCT TACA ACGANTAGAA ATGACCCGGA TGGCGNGGNC NGNTAAATTG TCAATGNTTT NAAA (2) INFORMATION FOR SEQ ID NO:38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT. CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTTTAATCTTAA TTAATTGTGA ATTTTTTAGAA CAATTAATTAGG AGGCAATCAC CATG GCAGCTTAAG TTGAACGACA AGAACATTA AAACAAAAAC CAAATCACT TCAAT ATCAGTTAAA TATATTACTG ATTATATAGT GAGTTATAGT TAGTGCAG ATTAAT GCATGATTTG AAGATAGTA CTTATGGCC TATTGAAAAAC CAAATACATT TCACCTGCTG CACAA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAGCAGAT GGGG GCACTTTNCC CCNNCCCGAA GAAAATTTTA AGCGTCTTAA TAACCTGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTTTA AGCGTCTTAA TAACTCGTTA GCACC AAAAGGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTCC CAACAGAAGG GGCACTNGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAC (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
ACGANTAGAA ATGACCCGGA TGGCGNGGNC NGNTAAATTG TCAATGNTTT NAAA (2) INFORMATION FOR SEQ ID NO:38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTT AATCTGTAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGG AGGCAATCAC CATG GCAGTTAAAG TTGAACCACA AGAAACATTA AAACAAAAAC CAAATACATC TCAAC TGTGGGTAAA TATTTTACTG ATTATATGT GAGTTATGAT TATGATGCAG ATAA GCATGATTTG AAGATAGTAC CTTATGGCC TATTGAAAT TACCCTGCTG CACA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGG AAATGCCTCA AGTAGACGAT GCAGAATTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTTT TGAGGGGCT AAAACANTTA GTTGG AAAGACATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTCC CAACAGAAGG GGCACTNCGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAC (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
(2) INFORMATION FOR SEQ ID NO:38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TICATITTAA AGTAAAGAGT TITTTGTATG TAAAGTATAT TAGT CAGATTACTT GTCTCTGTGA AATTAATACG TITTATACTAA AAGATATAAT ATGG ATAATTTAAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTGGA AGGCAATCAC CAGA TGTGGGTAAA TATTTTACTG AGAAACATTA AAACAAAAAC CAAATACACT TCAAC GCAGTTATGG TCAATCGGTA TTCGAAGGAT TAAAAGACAT TCACCTGCTG CACAC TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGG GCACTTTNCC CCNNCCCGAA GAAAATTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACCGT GCAGAATTTT TAGAGGGGCT AAAACANTTA GTTGG AAAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTCC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAACT (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: (Xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTT AATCTGTTAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGG AGGCAATCAC CATG GCACTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAA TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAA GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGGATA TAAAAGAGAT GGGG GCACTTTNCC CCNNCCCGAA GAAAATTTA AGGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGA AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAAG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAACTTTA TAAAC (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	AGGTAA 479
(A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT. AATCTGTTAA TTAATTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTT AATCTGTTAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG. ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGA AGGCAATCAC CATG GCAGTTAAAG TTGAACGACG AGAACATTA AAACAAAAC CAAATACACT TCAAC GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAL TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAACGAGAT GGGGG GCACTTTNCC CCNNCCCGAA GAAAAATTTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGG AAAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAAATTTAT TAAAC (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
(A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT. AATCTGTTAA TTAATTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTT AATCTGTTAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG. ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGA AGGCAATCAC CATG GCAGTTAAAG TTGAACGACG AGAACATTA AAACAAAAC CAAATACACT TCAAC GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAL TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAACGAGAT GGGGG GCACTTTNCC CCNNCCCGAA GAAAAATTTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGG AAAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAAATTTAT TAAAC (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTT AATCTGTAA TTAATTGGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG. ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGA AGGCAATCAC CATGG GCAGTTAAAG TTGAACGACG AGAACATTA AAACAAAAC CAAATACATC TCAAA GCATGATTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACA TCAATTATGG TCAATCAGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAG GGGGG GCACTTNCC CCNNCCCGAA GAAAATTTTA AGCGTCTTAA TAAACGAGAT GGGGG AAAAGACATTA TAGACGTCA TAGACACATTA GTTGG AAAAGACATTA GTTGG AAAAGACATTA GTTGG AAAAGACATTA GTTGG AAAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TATTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAAATTTAT TAAACAAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAACAAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAACAAAGAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAACAAAGAGAAGAG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAACAAAGAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT. CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTT. AATCTGTTAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG. ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGG AGGCAATCAC CATG. GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAAC TCTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAA. GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACA. TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAACGAGT GGGG. AAATGCCTCA AGTAGACGAT GCAGAATTTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGG. AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAC (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT. CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTT. AATCTGTTAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG. ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGG AGGCAATCAC CATG GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAAC GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAL TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGG GCACTTTNCC CCNNCCCGAA GAAAATTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACACATA TAAACTACTC TTGGAAGGAT GGAGAATTGT TAGAGGGGCT AAAACACATA TAAACTACTC TTGGAAGGAT GCACATTATA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACACATA TAAACTACTTA TTTGGAAGAGATAG GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAC 45 TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT. CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTTT AATCTGTAAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG. ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGG AGGCAATCAC CATGG GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAAG TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAAA GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGGG AAATGCCTCA AGTAGACGAT GCAGAAATTGT TAGAGGGGCT AAAACANTTA GTTGG AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGG CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAC TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: GCGAGCTTAG TTCATTTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT. CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTTT AATCTGTAAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG. ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGG AGGCAATCAC CATGG GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAAG TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAAA GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGGG AAATGCCTCA AGTAGACGAT GCAGAAATTGT TAGAGGGGCT AAAACANTTA GTTGG AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGG CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAC TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
GCGAGCTTAG TTCATTTAA AGTAAAGAGT TTTTTGTATG TAAAGTATAT TAGT. CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTT. AATCTGTTAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG. ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGG AGGCAATCAC CATG. GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAAG. TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAA. GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACA. TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGG. 40 GCACTTTNCC CCNNCCCGAA GAAAATTTTA AGCGTCTTAA TAACTCGTTA GCACC. AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTG. AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC. CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAA. 45 TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS:	
CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTTT AATCTGTTAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGG AGGCAATCAC CATGG GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAAG TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAAA GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGGG AAATGCCTCA AGTAGACGAT GCAGAATTTA AGCGTCTTAA TAACTCGTTA GCACG AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGA AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGG CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAAT TATCTTCCTT CAG (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
CAGATTACTT GTCTCTGTGA AATTAATACG TTTATACTAA AAGATATAGT CTTTT AATCTGTTAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGG ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGG AGGCAATCAC CATGG GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAAG TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAAA GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGGG AAATGCCTCA AGTAGACGAT GCAGAATTTA AGCGTCTTAA TAACTCGTTA GCACG AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGA AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGG CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAAT TATCTTCCTT CAG (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	•
AATCTGTTAA TTAATTGTGA ATTTTTAGAA AATTTATTGA ACAGCAAAAT ATGGA ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGG AGGCAATCAC CATG GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAAG TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAAA GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAAGCATA TAAAAGAGAT GGGGG AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGAAAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAAA TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	AAAACA 60
ATAATTTAAG TTAAACAAAT TCTTATACAA TATTATTAGG AGGCAATCAC CATG GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAAC TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAAA GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGG 40 GCACTTTNCC CCNNCCCGAA GAAAATTTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGA AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAAC 45 TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	CTAGAA 120
GCAGTTAAAG TTGAACGACG AGAAACATTA AAACAAAAAC CAAATACATC TCAAC TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAAA GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGGG 40 GCACTTTNCC CCNNCCCGAA GAAAATTTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGGCT AAAACANTTA GTTGA AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAC 45 TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	SATTGTT 180
TGTGGGTAAA TATTTTACTG ATTATATGTT GAGTTATGAT TATGATGCAG ATAAA GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAA TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGGG 40 GCACTTTNCC CCNNCCCGAA GAAAATTTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGA AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAAT 45 TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	TCACAA 240
GCATGATTTG AAGATAGTAC CTTATGGGCC TATTGAAATT TCACCTGCTG CACAL TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGG GCACTTTNCC CCNNCCCGAA GAAAATTTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGA AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAAT TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	CTAGGT 300
TCAATTATGG TCAATCGGTA TTCGAAGGAT TAAAAGCATA TAAAAGAGAT GGGGG GCACTTTNCC CCNNCCCGAA GAAAATTTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGA AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAC TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	AGGATG 360
GCACTTTNCC CCNNCCCGAA GAAAATTTTA AGCGTCTTAA TAACTCGTTA GCACC AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGCT AAAACANTTA GTTGA AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGC CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAAT TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	AGGTGT 420
AAATGCCTCA AGTAGACGAT GCAGAATTGT TAGAGGGGGCT AAAACANTTA GTTGAAAAGAATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGCCAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAATTTCTT CAG (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
AAAGAGATNG GNTTCCTGAA GGGGAAGGTC AATCATTATA TNTTCGNCCA TTTGG CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAA. 45 TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	GATTAG 540
CAACAGAAGG GGCACTNGGC GTTGGCGCAT CACATCAGTA TNAAATTTAT TAAAY TATCTTCCTT CAG (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	ATATAG 600
(2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	GTCTNG 660
(2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	TTATNT 720
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	733
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1263 base pairs	
(A) LENGTH: 1263 base pairs	
4-1	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: Genomic DNA

5	(xi)	SEQUENCE DI	ESCRIPTION:	SEQ ID NO:	39:		
5							
	ACTTGTGCAC	TGCCAATAAT	AATTAATCCT	TTCATATTTG	ACCCCTCTTT	TTTTTATTAA	60
	ACTTGTTGTT	CACGTAATAA	TTTCATAATA	GCTTTTCCAA	CACCACTATT	TTCATTCGTA	120
	TCTGTGACAT	ATTTCGCTAT	TTTTTTAACT	TCTTCTGCAC	CATTTTCCAT	CGCAACTGGA	180
10	TAGCCAACTT	TCTCTAACAT	TGATAAGTCA	TTTAAATTGT	CACCTATTGG	CATGACATCT	240
	TTCATTTCAA	TCCCTAATCT	TTCGGCAATT	GTTTCTAGCG	CAATACCTTT	NGGTGCATCT	300
	GAATGCGTTA	TTTCTATATT	TCCTCTCGAA	GATGATGATA	TAGCTAAATT	CGGAGATTCA	360
	GCTAAAATTT	TACTAGCTTN	GGCAATTTTT	TCTTAAATTT	CCATCAAATG	CTAATATTTT	420
15	CATAATTAAT	TCAACAGGTA	TGTTTTCAAT	AGGATCATAA	TTATCAACAA	CTTTCAACGG	480
	TNCCAATATC	TATGCGTCTT	TGNATACCAT	CTTNAATACG	CTCAACGTNT	GGATGTTGAC	540
	CTGCACGCTC	AGCAATATCT	ATGTAAATGT	CTAAATCTCT	TGGGGGATCT	TCCAGTATAA	600
	ATCGCACGAC	TCGGNTATNC	TGGATAATAA	GTACCTGNAT	CTTTTAAAAC	ATNTGTAATG	660
20	NGGTGTACTA	ACGATTTATT	ANGGNGTGAA	GTGCTCATTA	CATTGAAAGT	TTCATCACGT	720
	TCTTCAGNAC	CATTCAGACA	AATATATGGT	ACTGNTAAAT	CTGTGTCAGC	AANTGGTGCT	780
	TGTGCTTCAA	AAAATGCTCG	ACCTGGCACG	AGCGATAACA	ACCGTTATCC	CTTGTTCTTG	840
	AGCGTATTNA	NTCGCATCAA	TATTAGGTTG	AGAAATTTCA	TNTGCTGCAT	TAAGGTAGCG	900
25	NGCCATCCAT	ATCAGNGGNT	ATTAGGTTTN	TCANTATGTT	NCCNCGCCCN	CGNCTTTCGT	960
	AAATTTAAAA	TCTTGTTCTT	AAATAAGAAT	ATATACTCAG	CGCACATACT	TTTCTATTAA	1020
	CATTTATATT	GTCATTAATT	TATCATATAA	TGTAATTCTA	ACAAATTTTA	ATTAGTATGT	1080

ACTATCGTCT TAATTGGTGG ATTTCTTATT GGCTCTTAAG TTTTTAAAAA ATGTTGGTTA 1140

ATAATGGTGC TACATGCTTC TTTTAAGGTA CAACCTTTAT CAACAAATTG GACGGATGAT 1200
TAAAAAATTAG GTTNGGTTGG AAATAAATTC AATTAAACTT GCTACTACAA ACCACCRRDC 1260

1263

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 594 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

30

35

40

45

50

55

TNS

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

ATTATGCCTA TTTGACACAT TATTGAAATT TTTAATATAC CCCTTATACG TTACGGCTTT 60
GTACTGTGT TAGGTATATA AAGCTTTGAC ATATCGATAT TCTCCAACTC TAACAGCTTA 120
ATTTTATTAT TAATCGTTCC ACCGAATCCT GTTAAGCTAC CCGTTTTACC GACAACACGA 180
TGACATGGCA CGATAATTGA TAATGGATTA CTTCCGACTG CACCTCCAAC CGCTTGGGCT 240
GACATTTGTG GCTTATCAAG CACCTTACCT ACTTTTGTGG CAATAGCACC ATACGTTGTT 300

	AGAGICCCAI AAGGAACCIG ICTTAATICA TICCAAACAC ACTGTTGAAA ATGACTACCT	360
	GTTGGCTTTA AAGGTATTGT GATTTCAGGA TTGTCAACCT TTAAAATACG CGTCTTAACC	420
	ACTGTGTCGN CTCTCTAAAT ATCGCTAAAG ACGTATTTTC TTCCCTAGTA CCAACACCTT	480
5	GTTGATTTTC AAACAAACAG CGGTCAGATT ACCCATCACT CAAAAGTCCA ATCGTCTACA	540
	GCGATCATAG TACTCTATCT CCATAAATCC CCCTTTTCTT ATCATACGCC TATG	594
	(2) INFORMATION FOR SEQ ID NO:41:	
10	•	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 511 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
	•	
	AATGGGAAGT TCAATACCCA TAATGNCAAG CACCCTTGCA TTTAATTGCA TTTTCCNACC	60
25	GTTATTACNG GCCCCATCTC CAACAATATG TAAAGTTAAT ATCTGCATAA TCTTTTTTTA	120
	AAGACTTCTT TTGCTGTTAA GAAATCAGCA AGANCTTGAG TAGGATGATC TTCATCAGTT	180
	AAACCATTCC ACACTGGTAC GCCTGAATAT TCAGCTAAAG TTTCTACTGT TCTTTGTGTN	240
	AAACCCGCGG TATTCAATGC CATCATACAT TCCACCAAGC ACACGTGCAG TATCTTTAGT	
30	TGTTTCTTTT TTACCCATTT GTGATCCAGT TGGGCCTAAA TAAGTTACAT TTGCACCTTG	
	ATCATGCGCT GCAACTTCAA ATGCACATCG CGTTCTTGTA GAATCTTTTT CAAATAACAG	420
	TGCAATATTT TTATTTTTA ACATAGGCTT TTCAGTGCCA ATATATTTAG CACGTTTTAA	480
	ATCCTCGGAG AGNGTTAATA ATNNGNAATT C	511
35		
	(2) INFORMATION FOR SEQ ID NO: 42:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 546 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
.=	(D) TOPOLOGY: linear	
45	(a) 111111111111111111111111111111111111	
	(ii) MOLECULE TYPE: Genomic DNA	
	(==, ==================================	
	(xi) SEQUENCE DESCRIPTION: SEO ID NO:42:	
50	the objection buy in the table.	
	CTGCCTTTTC TCTATCTGAT AAACCACGCT TTATTAAAAT TAAATCTCCT AACCATACCC	60
	CGTCTAAATT ATCTGGAAGT ACATCAGCCT CTCTTACTTC AATATAATCA TGTTGTATTA	120
55	AAGTTTCTTC ATATAATCCC ATCTGATACA TCCTTTACTT ACGTTTACTT CTTATATAAT	180
<i>33</i>	CTGCATAATC TAAAACTCTT TGGCATTCAT CATCTGTCAA TTCTCCTTCA AGGTGAGCTG	
	TOOLITICAL CHICAGORM TICICCIEM MOGIGAGETS	240

	CACGATGTTG TACTTCGNTT TCTGGTTGTC TATTTNNTAA TAGTAAATAT TCTGGGGTAA	300
	CTTTCAATGC ATTGGCAATT TCAGCTATAT CCTCCATAGG TATTTNTCTG CTACCGNNTN	360
	CGTATCGGGA TAAGGTAGAT TTATTGACAC CTATCTTAGG TGGAAAATCA GGTAAATTCA	420
5	CATTATTTNC TTTTCGGAGG TTGGGTGATT AATTTANCTA TTTCCGCTGA AGTNCTCATA	480
	TTCAAATTTA CTCCCGTTTA TTTATACAGT ATAATAACAC TTCCCATATT AGGAAACACT	540
	AGCATT	546
10	(2) INFORMATION FOR SEQ ID NO:43:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 572 base pairs	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
25		
	TTATATTATG TTCTGTTGGA CCCAGTAAAA TGTTGCAATG TATGATAAAA AGCCCTTGGT	60
	TCAATTAATC GAAAATCGAC ACCAATCGTT TCATCATCAT ACGCTAATTC TAATGAAACT	120
	TGTGTGTTCC CCACTGCAAC TTCTTTTACT TTATTGGGAA TATTTAATAA TTGCTGCTGC	180
30	ACTGCTTGTG GGTTATCGGT ACTTATTATG AAATCTAAAT CTTTGCTCAT TTCTTTAAAA	240
	CGACGGAAGC TTCCTGCAGA TGAATATTGA TCGATATAAT TTAATGTATC TATATAATCA	300
	ATGATTTCTT GATTAAGTCT TCTCATTGGA TCAATTGGAT ATCTATCTTT CTTAGCACAG	360
	NGGGGTTTCA CAGCTTCTAA TATGGTGTGG TCCGNTTTCT TTAGCAAATC CGCTTAATTC	420
35	ACTTAACTIN TCCCAATNIC ACAANCAACI TGGAAGTGAC GCTINIATCA ACAAATAITC	480
	CAACTCTTTA TATAGCTTAG CAATTTCTTG GTTCCAAGTC TGGAANTTTC AAAAGTGGAT	540
	TAAGACCTCC CGGACTTCTT CCCGGTAATG GT	572
	(2) INFORMATION FOR SEO ID NO:44:	
40		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1115 base pairs	
45	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
-		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
55	GGATGCACTC TGTTAGCATT ATCTTTAAAC ATTAAATATG GATAACCTGA TTGTAATTGT	60
	GTNTGCGCAA TTAAATTCAA CATTTCACGC GCATTCTTTT TCTTTTTCTC AACATTTGGG	120

	TTTGCAACCA TGTCATCATA ATATTTTTCT AAATCGATAT CGTCTAATGT CACACCATAT	180						
	TCTTCTTTAA CTGTATGAGG TGCAAACATA TAAAAGTCCT TACCTTCTTT AGCTAAATCG	240						
5	AAGAATTTAG ATGGAACAAT TAAACCAGTT GATATTGTAG ATAAACGTAA ATCTTCATCC	300						
5	GCATTTACTT NNTTAGTATC TAAAAATTCT TCTACATCAT AATGGAAGAT ATTTAAGGTA	360						
	CACAGCACCA GCACCAGGGC GGTTGGACAA GTTGGATCTG CATAGCTAAA GCCACCTTCA	420						
	AGTGACTTAG CAATAGGTAA AACGCCTTNC GCTACGCCTT TAATTCCTTT AATTGCTTCA	480						
10	CCACGTGCAC GCAATTTAGA TAAGTTAATT GCAACGCCGC CCCCAATTTT ACTTAATTGG	540						
10	TNGNGCAAGG NGGANTCAAT AAAGTTAANT TGAATTTAAG NTGNCAACCC ACTTCTTNNA	600						
	TNNGAAACAT GACACTAGCT CACCACGACG CGCACGGNCT GCGTTTAAAA ATGTTGGTGT	660						
	CGCTGGNTGA TATCTTTGTT CAACCATAGC AGAAATAAAT TGTTTAGCTT GTGCTTTATT	720						
15	ACCATNTGCT AGGTATAAAG CAACAATGGC AACGTGTTGA TTATAGTCTT CTAAGTATTG	780						
,,	ACTITIATCA TITGITINCA AAGCGTAATC TITGAAAAAT TIACTAGCIG ACATATAACI	840						
	TGCAAAATTA AACGAGATTG ATTNTGGATA ATCAGTGATT TCAATTAGAT CCNCTTCACT	900						
	ATAAATATCA AACACATTGA AATAAAAATC GGTGTCTTCT AAATAACGTA AAACGCTCGA	960						
20	TTTCAATATT CGAAGAAGAT NGCGTGGGCT TTTTACTTCT TTCTTAAATT AAGCTTACNT	1020						
20	AAAGGTTCCT TGGGGCTTTT, TTCTTAAACT TAAAGGAATC CCATCTTCCT CTTCCCGGTT	1080						
	NGGGGACCCC AAATATTTTA CTCAAATATT GATGG	1115						
25	(2) INFORMATION FOR SEQ ID NO:45:							
	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 1123 base pairs							
30	(B) TYPE: nucleic acid							
	(C) STRANDEDNESS: single							
	(D) TOPOLOGY: linear							

(ii) MOLECULE TYPE: Genomic DNA

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

40	TTCCATGGAG	GCATGCGCAC	AATCTGCATT	GTAATTCATA	CCAAAATGTT	CACCGACTCC	60
•	CAACCGAATC	CACCGAAAAT	GCCAACATCT	AGAATCGGTT	GCACATCATG	TTCAACACAT	120
	TCTTCGTGCA	ATAAATTAGA	GAGTTCATTA	TTGATGCCAT	AACCGATGCT	AATTGTATCN	180
	CCATAAGTTA	AAAACTGAGC	AGCACGTCGG	AGAATCAATT	TCCGACTANT	AAAAGGTAAT	240
45	GCGGGTTCAG	GTATTCCATC	AATTCGTTCT	TCTCAAGACA	AGGCTGGTAA	ATAATGACTC	300
	TGAATTACTT	GGCGGTGATT	CTTTTCATCT	TCTGTGACGA	ATACATAATC	GACAAGATTT	360
	CCTGGGATAA	CAACTTCATT	CGGTTTTAGG	TGATAGTCGT	CAACTAAAGC	TTTAACTTGN	420
	ACAATAACTT	TCCCATGATT	GGCTTTCGCG	TTTAATGCGA	CATGATAACA	CTCGCTCAAG	480
50	TACGCTTCTT	GAGNTAAATA	AATGTTACCT	TGTTGATCTG	CGTATGTTCC	TCTCAGTAGT	540
	GCCACATCAA	CGCTAGGGAA	TGTGTAATGT	AAGTATGTTT	CATCGTTGAT	GGTTACTAAT	600
	GAAACTAAAT	CATCAGTTGT	TCGTGTATTT	ACTTTACCGC	CACCGTATCT	AGGATCAACA	660
	GCTGTGTTTA	ATCCGATTTT	AGTAATAACT	CCAGGTAATA	ATTGATTACT	CTGACGATAA	720
55	TGAGTTGCAA	TGATACCTTG	TGGTAAAAAA	TAAGCTTCAA	TGTCATTATT	TTTCATTGCT	780
	TGTGCCGTTT	TGGAAGAAGC	CGTTAAAATG	CTCATAATGA	CACGTTTAAT	CATGCGACGT	840

5	TCTATAAAAT CATCTAAATC CGGTGCGGCA CCTAAACTAT GGATATCATT CGCTAATATA AACGTTAAAT CTTTGGGCGT ATGATATGTG TCATGTTGCG CTAACACAGC ACGTAGAACT TCGGCGGGTA AGTTGGCTAC AGCTAATGCT GGTAAACCAA TCACATCACC ATCTTTAATG ATATGTTGTA AGTCGTGCCA TGTGATTTGT TTCAAGCAAG TCACCTCCAT CACATTTGAT AAAATATAGC GTTTTTACAC TTTGTGTAAA CCCTTACAAG AAG	900 960 1020 1080 1123
10	(2) INFORMATION FOR SEQ ID NO:46:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 960 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	(II) MODECODE TIPE. GENOMIC DAR	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
25	CTCCATTTGC ATTTGGGTCT TTAAAACTAA ACACATACTT ATAGTTGCCA TTATGTTCTT	60
	CAATAGAATA ATCATTATAC ACTITATTAT TACTACCAAA TITATTTGCT TCATTATTAG	120
	CCGCATTTAA AGCTGTTTGG AAATTTGGCA ATTGCTGTAA AGCTTGAGTT TTATTTCCAT	180
	TAAACGGATA AATTTGACGT GCAACCGGCG CGGCATTTTG TCCATAATAT GGTGCAACGT	240
30	AACTTGATTN TTGATTATTA CTTGATTGGG TTATTATTTG TTTGGGTNTT GGGTCATTGT	300 360
	TTGTTGCATT TGGAATTAGA TTGTTGCTGG TTATCGTTTG CACTATTATC TTTATTATCT TTGNTTACGT CTTNACTATC ATCTTNATTG TCTTTCTTAT CTTNAGATGA ATCANTTGNT	420
	TINITIATOTT GTTGNTCAGT TCTCGCTTTA TCATCTTTTT CTNNATTACT GTCTTTTTGG	480
	TGGNGCACTA TCTTGACCAC ATGCAGCTNA AAATAATGAT AATGCTAGTG GACCCTGTAN	540
35	CTAATCTTTT CATACATATC TCCTCCTATA ATTCGATATT CATTGAATAA GCTTGAAATA	600
	CATATCTNCC ATGTGTATCA TTTCATGGCT TGTTACCANA GACGTCAACA TTAATATGAT	660
	TTGANTTATC ACAATACCCA TAACTACAAT CTAAGGTTCT TTTTATTATA CCCTAATTTT	720
0.4	TGTTCATTAT TATTTAATTT TTGTGAATTT TATGTTTTCT ATAAATTTAA TTATTTTACT	780
40	TTAACAATTC ATTACGCATT TAGCATTTCA AGGCATACAC AATAGGAATT CCGATGATTT	840
	CATTTTATCT TGCTGCAAAA AACAATCATT ATTACTTCTT TTTTCCATAA TTAAATCTTG	900
	TATCCCGTTA CATCACCTGG TNTGGAAATG ATGTTCAACC CAACCACTTT TAAATCCAAG	960
45		
	(2) INFORMATION FOR SEQ ID NO:47:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1130 base pairs	
50	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
55		
55	(ii) MOLECULE TYPE: Genomic DNA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

	,						
5	ተዣርሩርርርጥጥጥ	GGAGANTCCG	CATTATTCAT	A A A C A T A T T T C	СТАСССТТСС	CTAAGCATAG	60
						CTGTCGCTCC	
	AAGTAATGAT	AAGCAGGGTG	TTTTANCGAT	TATCGAACAA	GAAGTATTGN	NCAAGTAGGT	180
10	AGCACATCAT	CAATGAAGCG	GCTATCATGA	TACCTAAATA	CATGTTNNAT	GNAANCTTTG	240
10	NATACCGAAT	CATCNAACAT	TAATATATCT	CCAAACAGGT	TAGCCAATAA	TCCCATAGTA	300
	AAATAAGCCC	ACTACAATCA	GTTGAATAGA	TGATAAAATA	AAGCAGATTT	TAATCAANCC	360
	GATTTTGATA	CAGATAAACA	ANATANNAAN	CAAAGGCACA	TGGTGCGCCT	GTGCTTTTAA	420
15	ATATATATTA	ATTTAAACGT	GTTTCACATG	TACCCAAGTT	GTTAATNGAC	AAGATAATTG	480
15	CTGCGTTTAA	ANCCCACCTT	CCAACAAGGT	TTTGTACCTG	CTTCATCAGA	GAAGAAACCA	540
	ATATGTGGTG	TTACTAAAAT	TCCTTTCATG	TTCCGATTAA	CTCTAATAAT	GTTTTATCGT	600
	CAATGTCTTT	ATTAGTCCAG	TCATTTGTGA	AGTATGCAGC	TTCATTTTCA	TAAGTATCAA	660
22	TCGCAGCACC	TAACAAAGTA	CCATCGTTCA	CTGCAGCGAN	TAAATCAGGT	GTATTGATGA	720
20	CTGCACCACG	TGCTGCGTTA	ACTAAGATTG	CACCTTTTTT	CACATGATCA	AACATTGCTT	780
	TATCGAATAA	ATGATAGCTT	TCTTTGTTCG	CTGGAACATG	TAAAGAAATA	ATATCGGCAT	840
	CTTTAATAGC	TTCTTTAACA	CTATCTTTAT	AAGTTAAAAA	GTCTAAATCT	TTATTAGGAT	900
0.5	AAGCGTCATA	AGCTGTAATT	GTAGCACCAA	ATCCTGCATA	TATTTTAGCT	GTAGCAGCAC	960
25	CGATACGACC	CGTACCGATA	ATTGCAACAG	TCATATTTTT	AACTGGTTTA	GACATGATTT	1020
	CTGCTTGCCA	AGTAAAATCA	TGTGTTTGTA	CACGGCGTTC	AATATCTGGG	AAGCGACGCA	1080
	CTAATTGTAG	GGCGATAGAA	ACAGAATACT	CTGCAGTGTT	TCAGGGGAAG		1130
30			-				
50	(2) INFORMATI	ON FOR SEQ	ID NO:48:			
	123 6		D > 40000 * 4000 *				

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 573 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

35

40

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

	45							
43	45	GCAGTATCAA	TAGTAGTTGG	TTCATCATTG	CCCAACACCT	TTTTCAAATT	ATCATTTTCA	60
50		AGTTGAAGCG	CTACATTTTC	TTCTACTAAT	TCAACTGCAA	GTGCCTTTAA	TTCTGAAGTT	120
		TCCTTTGAAA	GTTGATTGAC	ATTCATTTCT	AAACGCATTA	TTTTTTCAAA	TATTTCATTG	180
	50	CGATCCAAAT	GTAATAATGC	CTCCTTAATG	CATAGTTTCT	ATTTCTTCTA	ATTTATATTC	240
	50	AAGTGGCTGT	TCATGTCCCT	CAAGCTTCAC	CTGCATAGAA	ATGTCTAATA	TATTTAAAGC	300
<i>55</i>		AACTACTTTC	CCGGTTACCA	TCAGGCGTTT	CAATTGCTTC	ACCAATATCA	GGTAATTGTG	360
		CACGTACTTC	CTCATAATAG	TCATTTTCAT	ATTTTAAACA	ACACATCAAG	ACGACCACAT	420
	55	GCAACCAGAA	ATTTTAGTTG	GATTTAATGA	TAAATTTGGG	TCCCTTAGCC	ATCTTTAATC	480
		GATACTGGGT	TCAAAATCCC	CCTAGAAAAT	GTAGGAACAA	CATAACGACC	TACCCACAAG	540

	GGTCCCGATA CCGCCAAGCA ATTGGGCTTC AAT	573
5	(2) INFORMATION FOR SEQ ID NO:49:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 870 base pairs	
10	(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
20	CCTTAAGAAG CACCTTTACC AATTCCGCCA AAATCTGTAA ANTCAAATGT AGTAGGTAAT	60
20	GTTTTTTAG GTTGAACCAT TTCTTCTAAT TTAAGTAGTC TTGCATCTGN CACTTCNACA	120
	ATACCCACAT TTGGGTCNAT AGTTGCGANC GGATAGTTTN CTCCCAAGGC ACCCGCCTTT	180
	GTAATTGCAT TAAATAATGT TGATTTACCA ACGTTTGGTA AGCCAACGAT ACCTGCTGTT	240
25	AAAGCCATGA ATCATTCTCC TATCTTNGTG TATCATCCTG AGATACGATG ATTTTTTTTA	300
	GTTTTTTATC AAACGTTTGA CGTGGAATCA TAATGCTTCG TTGACAATTT TCACACTTAA	360
	TTCTAATGTC AGCACCCATT CTAATAATTT TAAAACGATT GGTTCCACAC GCATGTTGTT	420
	TTTTCATTTC TACTATATCA TTTATTCCAT ATTGNGACGC CATTAAATAT GACCTCCATG	480
30	TATTATAAAC TACTAAACAC CGNTTTCACT ATGATTAAAA GGTGTCATTA TTGGNTGTGG	540
	TGTCTTGATA CCTTCTTGTA AAAACATTTT GTGGACTTCT TTACGAATAA TACGCGCACC	600
	AGAGAAACCN TCACCTGGTA TTGTTTCTGC TGAAACCCNT AATATTACTC TAGTATCTTC	660
	AAAGGCATCA ATACCAATCA CAACAGGATC ACTTACAAAT AAATNNATAT TTACTACGCA	720
35	GAGGATGGTA AATAATGTGT TTAATTTCTT CTCAACATTA TCAATATTTT CATCTACAGA	780 840
	TACTGGAATT TTAACAATTG CTGGTTCCAC TCGGNAATTG AGTAANTCGG TATTCACCCC	870
	NTNCTACTAT TTGGGAAGAT TGGRRDCTNS	870
40	(2) INFORMATION FOR SEQ ID NO:50:	
	(i) SEOUENCE CHARACTERISTICS:	
	(A) LENGTH: 519 base pairs	
45	(B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
55	TAAGATATTA AGTTATAAAA ATGATTTGAA AAATAAAGTA GAAAACTTAA ACAATTTAAG	60
	TCCAACTAAT ACNATGTTGC GTGGATATGC AATTGTTAAT AAAAAAGACG AAGTCATTAC	120

	GAGTACTAAA GATTTAACAG AAAATGATCA ATTGACGTTA ACAATGAAAG ATGGCTTAGT	180
	AGATGCAAAA GTTACGAAAG TAAGGTGTAA TAATGACTAA AGAAACGCAA AGTTTTGAAG	240
_	AAATGATGCA AGAATTAGAG CAAATTGTTC AAAAATTAGA TAATGAAACA GGTATCTTTA	300
5	GAGGAATCAT TAGATTTATA TCAACGTGGG TNTTGAAACT ATCAGCAGCT TGGTGACACA	360
	ACTTTAAAA AATGCCGANA AAAAGGNGAA TGACTTAATA AAAGAAGAAG CTGAGATTGT	420
	TAAAAATGAC GATCTTCCGA NTGANTTAAT TATAGANGGA NGTCAATATG ATNTCCGGTG	480
10	GCGATAATTA NCCCAGNAAT GGTTCTCNGT NGGAAGGAG	519
	(2) INFORMATION FOR SEQ ID NO:51:	
15	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 734 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) SPONENCE DESCRIPTION, SPO. ID NO. 51	
25	(xi), SEQUENCE DESCRIPTION: SEQ ID NO:51:	
	CCAATCGCNT GTNTGACTGT NTTGTCACTG ANAGCGTTAT CTTNTTTACC AGANTTGACA	60
	ACTNACATIN TOGTANICAT AGGITGACIA CGCNIAACII GATAGICACO IGIATOITIC	120
30	AATTGTTTTA AAGAGTCTTT GNCTAAGCTA TCCGTACCTC TATCATCTGT GAGCCANAGT	180
	CGTTTCACCT TTTTTCATTG ATAGGAATGC TGTTTCACCA GCAGGCATTA CTTTTGCTTG	240
	TACTTTGTTA AGTTAAGACT TTTCGCCCCA GTATTGATCA TTTTTGTTAA AGTCTGCAGA	300
	CTCATCTTTT TTGTGTTCAC CTAATTTAAA TGGACCAGTA CCATCGAACT TTTTAACGCC	360
35	ATCTTTTGTT GTACCGTTTT TAAAGTCTTT TGGAGACACA AATACATATG GACGAGGCAT	420
	CGCTAATTCA GCCAATGCAG GTTGATATGC TTCTTTCAAA TTCAATTCAA	480
	ATCTTTAACT TTAACATTGT CAATTAATGT TGAAATCTTT AACCAAGAAT GCAATTTTTT	540
	ATTTTGTTGA NCCGCATCAA TATTTTTCTT AACTGCGTCA GCATCAAATG TTGNTCCATC	600
40	ATGGAATCTC ACATCATCTC TTAAATGGAA TTGTATTAAG TCTTCCCATC TTCAAGACAC	660
	ATCCCATTTT TTAGCTAGGT AAAGGCTTAA TACCATCTTT CGGTGTTACG GTACAAAGCG	720
	GCTCGTARRD CTNS	734
45	(2) INFORMATION FOR SEQ ID NO:52:	
	(2) IN ONE ATTOM FOR SEQ ID NO. 32:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1219 base pairs	
50	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
55		
	(ii) MOLECULE TYPE: Genomic DNA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

_	GNGNTNCTTA	TNCGATTCAC	AGTGAAGTAG	GTGATAAGAT	GATTGGTCCC	AAGCTGAAAT	60
5	CCCCAAAATT	GTGCCAATTG	ACTATATTTT	NCAAACAGGC	GATATTGTTG	AAATACGTAC	120
	TAGTAAACAT	TCATATGGAC	CAAGTCGTGA	TTGGTTGAAN	ATTGTTAAAT	CGTCTAGTGC	180
	CAAAGGTAAA	ATTAAAAGTT	TCTTCNCAAN	ACAAGATCGT	TCATCTAATA	TTGAAAAAGC	240
	CCGAATGATG	GTTGAAGTTG	AAATAAAAGA	CCAAGGATTT	AGAGTCGAAG	ATATTTTGAC	300
10	AGAGAAAAAT	ATTCAGGTTG	TTAATGANAA	ATATAACTTT	NCAAATGAAG	ATGATTTATT	360
	CGCAGCTGTA	GGATTTGGCG	GCGTGACATC	CTTACAGATT	GTTAATAAAT	TAACTGAAAG	420
	ACAACGTATT	TTAGATAAAC	AACGTGCTTT	AAATGAAGCA	CAAGAAGTTA	CGAAATCATT	480
	GCCTATTAAA	GACAACATCA	TTACTGATAG	TGGTGTCTAT	GTAGAAGGTT	TAGAAAATGT	540
15	ACTTATCAAG	TTGNCAAAAT	GTTGTAATCC	TATACCAGGT	GATGATATTG	TAGGTTATAT	600
	CACCAAAGGT	CACGGCACGA	AAGTACATCG	CACTGATTGC	CCAAATATTA	AGAACGAAAC	660
	TGAACGACTA	ATTAATGTTG	AATGGGTAAA	ATCNAAAGAC	GCAACTCAAA	AATATCAGGT	720
	TGATTTAGAG	GTAACTGCGT	ATGACCGAAA	TGGCTTGTTG	AATGAAGTAC	TACAAGCTGT	780
20	TAGCTCGACA	GNCGGCAATT	TAATTAAAGT	TTCAGGACGT	TCAGATATTG	ATNNNAATNC	840
	AATAATAAAT	ATTAGTGTCA	TGGTGAAAAA	CGTGAATGAT	GTTTATCGTG	TGGTAGAAAA	900
	GACCAAACAA	CTTGGTGATG	TTTATACAGG	TAACAAGAGT	TTGGGAACTA	GAGGGTCCAA	960
	AAATATTGAA	AGTAGGTGGT	ACAAAAGAGG	TTAAAGAAGC	ATCGGGTGGA	CGAATTGATA	1020
25	CATTAAATAA	TCAAATCAAA	AAAAGGATAT	TGGTTTATTA	GTCGGGGATC	CGGNCAAGAA	1080
		GCAAAGATGC					1140
		ATAATAAATT					1200
	GTTTCACAAT		Amiciliani	AT COMCAM	10A11GGTGA	ARIACIAICA	1219
30	GITTCACAAT	ITACICICG					1219

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 498 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

35

40

- (ii) MOLECULE TYPE: Genomic DNA
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

	ACTAAAATGA	TTAAATTACT	TATCTCTTTT	CATCTGATTG	ATTATCGAAA	TTTCTTCCTT	60
	CTAAACCTGC	TAACTCTTCT	TTAGAAGCTG	NAGGTGCTTT	CATTTCAAAT	ATCTCATTCA	120
50	CTACTGTGTA	ATCGGAATAT	CCTAATCTGG	CAATAGGTTT	AATCGACTTA	ATGTCCAATT	180
	TACCATTATC	AAGAATAACC	NTATCGGCAA	TATGAACTTG	GGCAACTCTT	CCTATAACAA	240
<i>55</i>	TATCTACGGT	AGATACTGGG	TCTCCTGGCG	GAATACGAAT	CGGGTGAACG	GTACTCACAT	300
	NCAAAATGTA	CTGGCGATCT	TNGACTCGAT	AACCNGGGGG	CTTCTATACA	ATGNTNCTTN	360
	CGGGCACAAC	CGGNATATTN	AAAATNCAAC	CCCCCNCAGG	TGGGTAGGTG	CCTTCCGACG	420
	GATAAATTAA	CAGGCTTCTC	TTTAAATCAT	ACGGTGGCCA	TGTNCCAATA	CAAACCCACC	480

	CCGGTTTCTT CCTGGAAT	498						
5	(2) INFORMATION FOR SEQ ID NO:54:							
	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 922 base pairs							
	(A) LENGTH: 922 base pairs (B) TYPE: nucleic acid							
10	(C) STRANDEDNESS: single							
	(D) TOPOLOGY: linear							
	~							
15	(ii) MOLECULE TYPE: Genomic DNA							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:							
00	CTGTCAATGA ATATGATGAT ACTGATAAAA TTTTCTCTAA CCCATCAAAC AAGAAAACAG	60						
20	AAGATTATAT TTCAGGAAGG TTTGGTTGAT ATATAATGGC AATAATTAGA CAGCGATATC	120						
	AGGAGCAACT TGATGATTTA ATAAAGGAAT TACGTCGGTT AGGTGCAAAT GTCTATGTGA	180						
	GTATTGAAAA TGGTATAAAA TCATTAAGTA TTGACGATAG AGGCTTTGNA CGACAAACAG	240						
25	TTAAAAACGA TAAACATATC AATCAATTAA ATTATGATAT TAATGAGCGA GTTATCATGT	300						
	TAATTACAAA GCAACAGNCC ATTGCGAGTG ATTTGCGTAT GATGATTTCT TCAANTAAAA	360						
	ATCGNCTCCG ATTTAGAAAG AATAGGAGAT AATGCATCGA GTATTGCCAA TATTCGATTG	420						
	CGTACAAAGA TTACAGATGA TTATGTGTTA ACCCGTTTAA AGACAATGGG TAAATTAGCT	480						
30	ATGTTAATGC TAAAGGACTT AGATCAAGCA TTTAAAAAGA AAGATACCGT ATTAATAAGA	540						
	GAAATAATTG AGCGTGATGA AGATATCGAT GACTTATATA GTCATATTAT TAACGCAACG	600						
	TATCTTATTG ATAACGATCC ATTTGTCGCT GCACAAGCTC ATTTAGCAGC AAGACATTTA	660						
	GAACGTATTG GTGATCATAT TATTAACATC GCTGAAAGTG TTTATTTTTA TTTAACAGGT ACACATTACG AACAAATAAC TTAAAGTTAT TACTATAAAA TCCCTTACGA TAAATATATA	720						
35	TTTCTATCAT TCATAAACCC TCAAAAAAAA CCAAGATTCT CACAAATTAG NAATGNGTGA	780 840						
	AAANCTINGN GNTATATITT GGTTCTTACT TATTAAATNG GTCTCGCATC TTAGGNTATT	900						
	TGGNTTGGTC AATTTCATCT TG	922						
40	(2) INFORMATION FOR SEQ ID NO:55:							
	(i) SEQUENCE CHARACTERISTICS:							
45	(A) LENGTH: 1209 base pairs							
	(B) TYPE: nucleic acid							
	(C) STRANDEDNESS: single							
	(D) TOPOLOGY: linear							
50	(ii) MOLECULE TYPE: Genomic DNA							
	(II) MODECODE TIPE. GENOMIC DWA							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:							
55								
	CCAATCGGTC TTATCTTTCA ACACGTTTGA TTGTANCGGA TATCACCCGG TTCATAAATC	60						

	CNAAATCGTT GTAATATATT TCTCTTTATA TTCATTATTT CTAGGAATCC ACCCCCNCCG	120
	TGCGGGCAAG TTTCTGGGAA ATTTAACAGC TATCCAGCCT TTCAACAAAT AAATCTGAAA	180
5	TTCGATGTTC TAAAATTTCT GCTTCTTGAT GTACTTCTTC CCAATTATAT TTCAATATTT	240
	CTATTAAAAA TAATTCTAAT AGTCGATGTC TCTTAATGAT ATCAAGCGTA TGCGTTAAAC	300
	CATCCTCTGT TAATCTAACA CCTTTGTATG GTTTTGTTTC AACATAGCCT GCTTTTTCAA	360
	GACGTCCTAC CATTTCACTT ACAGATGGAG GCTTAATATT TAAAAATTGA GATAAGATTT	420
10	TATTTGTCAC AAAGTTTTTA TCGCCATTAA TTCGTAAGGA TTTGCCTTTA AAATAAGTCC	480
	TCTTTTCTT CAGNTAACAT ACTTTCACCT CAACAGACAT TGTCTATATT ATATCACGAA	540
	TTTACTTGAC ATGATAAATA TTCTCAGTTT ATTANACAAT TAATTAGGTT AGCCTAAACT	600
	TTTAATTAGG AGGTATAAAC GTTTGTTAGA AACANAAGAT TTAAATCTGT TTTTAGGTAA	660
15	TAAGCATGTA CTTAAAAACA TTTCCTTATC GATACCAGCA CGAGCGGCGA AATAATTGGT	720
	ATCATGGGCC CGAATGGTGC TGGTAAATCT TCCCTTATCA AGTCTTTAAT TGGTGAATTT	780
	AATGCTACCG GTACTAAATN GTTNTATAAC AAACCTATAC AACAACAACN GCAACAGATT	840
	ACATATATTC CACAAAAAGC ACATATTGAT TTAGATTTTC CTATAAGTGT GGAACAAGTG	900
20	ATTTTATCAG GTTGCTACAA AGAAATTGGA TGGTTTAGAC GACCTAATAA ATCAGCAAGG	960
	GATTAAACTC AAACAGTTAT TAAGCGATTT AGAATTAGAA TCTTTTACGT CATCGACAAA	1020
	ATTTCAAGAA TTAAGTGGGT GGGACAAATT ACAACGGTGG TGCTTANGTA GGAAAGAGCA	1080
	TTGGATGGTC CCGAAAAGTG AAGGTTTATT TTCTTTAGAT NGAGCCCGGT TGGTCGGGAA	1140
25	TTTGGATTTT AGGGTAGCGA AAAAATTAAT CAATGACAAA AAATCCGAGA ACTTTAAAAC	1200
	AACAAAGGA	1209
30	(2) INFORMATION FOR SEQ ID NO:56:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 369 base pairs	
	(B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(II) MODECOME TIPE: Genomic back	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
	GAATTCATNT TATCTATCGG NAATCATTNG TAATACATCT ACTAATTATA GTGTTTTATT	60
45	CGATAATATA ACTGCATGTA CATCTANAGA AGCCTCTTGC CTNGAAATCG CACCGTCAAA	120
	CTTAAAACTA TAACCTATTA AATCTGCTTG NGTGNCATTA CCACTCACAG NACAGCGATT	180
	AAATGATGCA GTAGCAACCA AATCGTTTCA TGCACTTNCA CATAANTACG ACTGACATTA	240
	NGCTGTGTAG ATGTACCTGC TTCTANCTCG CCAAGAACAT CTTGGANTNC GNGNTNGCTA	300
50	TTTGGNGCAA TGTCANCTTC ATCCATNGAG CGCTCAATAG TGTCAGCTGC CAGAGCGGCA	360
	TAACTGCTT	369
	(2) INFORMATION FOR SEQ ID NO:57:	

(i) SEQUENCE CHARACTERISTICS:

55

	(A) LENGTH: 268 base pairs	
	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	
	CCTTATTATA AATTAAAGAA AGGTAGTGGT TTCTATGAAA TACAATACTA ATGTTAAACA	60
15	TACAACTTTA GAAGCGTTTG TCACAACTGT CAATGATTTG GGTATTGAAT TAATTATCAA	120
	TGAAGCACTT CGAGAGGTAA GAAAACGACA GCTCATAGAA CTTATAGATG ACGCACTCGT	180
	CAATAAAGAT GAAGCAGCAT TTAATCAATA TACGGCAGAA TACAAAAATT TGGAGGCATT	240
	TCTCGGTGNA TAACATTGAT TCGAATTC	268
20		
	(2) INFORMATION FOR SEQ ID NO:58:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 512 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
35		
33	CTATACAACT AAAGTAATTC ACAATTCAAA CTTTTGAAAG GGTGTACAAA GTGAAAGTAG	60
	CAGTCATTAT GGGCAGTTCT TCCGATTGGA AAATTATGCA AGAGAGTTGT AACATGTTGG	120
	ATTATTTGGA AATTCCGTAC GAAAAACAAG TAGTATCCGC ACATCGTACG CCAAAAATGA	180
40	TGGTTCAATT TGCTTCTGAA GCGAGAGAAA GAGGTATAAA CATTATCATT GCAGGCGCTG	240
	GCGGTGCGGN ACATTTACCA GGTATGGTTG CATCATTAAC GACGCTACCA GTTATTGGTG	300
	TGCCGATTGA AACANAAAAG TTTAAAGGGT ATTAGATTCT TTTATTATCA ATTGCTCAAA	360
	ATGNCAGGAG GGTATTCCNG NTGGAACGAC TTGCAANTGG GTGCAGNAGG GTGCTTAAAA	420
45	ACGCAGGTAT TCTTGGCAGG AAGAATGTTA AGTNTTCAAA ANTCCTCTTT TGGNNGGANA	480
	ANTTAATCAA GNTTGATCTT CCGNAATCAA AA	512
	(2) INFORMATION FOR SEQ ID NO:59:	
50	•	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 321 base pairs	
	(B) TYPE: nucleic acid	
	(b) IIIb. Mattell dela	
55	(C) STRANDEDNESS: single	

	(ii) MOLECULE TYPE: Genomic DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
	GAATTCCCCA AGTTCCTCGC ATTTAATTGA ACTTTATAAT ATTTGTAGTC ATCCACAAGC	60
10	AAATATATAC ACTCCCAAAG GTTTACATAA TTCCAAATTA GACACACAC GGTGGATTGA	120
	AAAATGGCAA AACCATTGGC AACAATATCA ATTTGGTTAC TTTGTATTGG TGAAAAAAA	180
	AGATTGTAGT GNTATTGGTA TTTGTGGATA TGAATATCGA CAATTAAAGC AAGAAACAGN	240
	ACTAANTTTA TTTNATAAAT TACATCCAAG TTTTGGNGGA CAAGGGGTAC GCATGTGAGG	300
15	CTNTTACAGC AATCACAAAT T	321
	(2) INFORMATION FOR SEQ ID NO:60:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 422 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
	GGCACGACTC GTGCCGCTCC TGCACAAGAT GTAGGAGCAT TTTTATATTT AAATAACTAG	60
	AGTAATTAAC GTAAAGGCGT GTGATACAGT GAAAACAATT GATTAAATTA ACACCGAAGC	120
35	AAGAAAAGTT TGTGCTAGGA CTCATAGAGG GCAAGAGCCA ACGGAAAGCA TATATTGACG	180
	CAGGGTATTC GACTAAAGGT AAAAGTGATA ATTATATTGA TAGCCGAGCT TTTGAGTTGA	240
	GTAAGAATAG TGCGGGTTTA GATAGGTATG AAGAATTGCG TCAAGAAGCA GGTTGAACAA	300
	TCAAAATGGA CACGCCAAAA GGGTTTTGAA GAATATGAGT GGGTAAAGAA TGTNGCTAAG	360
40	AATTGACATT GNAATAGAGG GGAGGTAAAG GAAAGGGACA GGTTGATGCA TTCCCCCCTA	420
	GT	422
	(2) INFORMATION FOR SEQ ID NO:61:	
45		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 395 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	

	GGCCCGAGCG GGACTTAAAA AGGCCACCAC TGGTTGTGAC CTANCCTTAT TTACNTTTAT	60
5	AAATATAAGG AGGAGGTAGT AGTGAAAGAC TTATTGCAAG CACAGCAAAA GCTTATACCG	120
	GATCTCATAG ATAAAATGTA TAAACGTTTC TCTATTCTTA CTACTATCTC AAAAAATCAG	180
	CCTGTCGGAC GTCGAAGTTT AAGCGAACAT ATGGATATGA CTGAACGTGT ACTGCGCTCT	240
	GAAACAGATA TGCTTAAGAA ACAAGATGTG ATAAAAGTTA AGCCTACCGG AATGGAAATT	300
10	ACAGCTGAAG GTGAGCAACT GATTTCGCAA TTGAAAGGTT ACTGNGATAT CTATGGAGAT	360
	GATAATCGTC TTGTCAAGAA GGGTATTTAA AGAAT	395
	(2) INFORMATION FOR SEQ ID NO:62:	
15		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1493 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	
	CTGTGATTTA TCATTCGATT GCATGATTAG AGGGAGGGAT TAAACGTGAC ATATCATGAG	60
30	CGTGTTTTAG CATTAAGAGC AGANAGTAAN AGNNCCGCAT TTGATTTTCG ATTCGGNAGA	120
	TTTATTTACC NAAGAAGAAT GGCTAAGTAT GTCTCTTGCA GAAAGACNCA AAGCTGANAA	180
	AGCATTICGA CACGNAGITA AAAATATGGA CGATGTAAGA ATGCCCTTCT CAAGTGTCCA	240
	TGACGCCCCA AGTAAAATTA TATAATGTTG TATATTCTGA TANCGGCATT AAACGTAATT	300
35	TTAAACNAGC TGAAAATGAA GGATTCTAAT ATCATTTCGT TTATATATAG CAGACATGAT	360
	AGAATTTTAT ATGTAAATCT TGTAGGTAAT CGTTTTNNAA ATAATATAAG TATGACTAAA	420
	NCCACATCCA ATATAGGACG GGGCTTTTAG TATCGTTCCA GATTTGTGGG GAGTTAGGGT	480
	TTACTTAATT AAAGGGGTCT GCCCTCAATT GCTCACCAAC GAGGGCAAGT TACATCAATC	540
40	ACACTTCAAT TGCCGCCGAC TAGGGGTAGT AATCATTGGC AATAAGAACT AGTTAGTGAC	600
	TAACGGATTT ACGTTCCATA AGCAAAGTGA TACAAACGCT CAGCATCAAT GTAAGGCATA	660
	GAATCAATAG TTAGGTAACC ATCTTTGATG TCACCAATTA ATCCTTGATT TACACCAGTG	720
	TTCACGTAAA TATCATAGCT ACTTACGTCT GAGAAAATAA GCGCTTCAAT CTCTTTTCTC	780
45	ATAATCATCA CTCCAATGTT TATATATTAT TTATATAAAC TCTCTCGTCT CTCTCTATTT	840
	ATTAACTTCT TACAAGTCTA ATATTACATG AATTTCCAAA TAAATAAAGA GGTTTGTGAT	900
	GTATTTCACA AATTTATCAC TATTTTGGAA AATTAAGAAA TAGTTAATTA TATAAAAGTT	960
	TAATAAGTCA GAAAATATGA TAAAATGTAG ATGTTCTTTA GACATTAAAA GCTTCTAACA	1020
50	TGATACGGAA TATGAGGTTC CTGTATCACA TTAGAAGCTT TTTTGTTGCG GTGCTTATAT	1080
~ -	TAATAATGGC ATGAATGAAC GCATGCTGTC TTAGTTTCAG GAATCGGCTA GAATATTAAA	1140
	CTTCCGTTCT TTGAATATTT NTTAATTTCT TACTAATATC ATCCAGTTCA TTCTTCGCCT	1200
	TTTTAACCCA ATCTCCTTGA GCTACATTAT CAAATTCACC TTTAAATTTT TTGANATGGC	1260

TACCTATATT TCACAGCTCA CTTTAGATAT CGAACTTGTT TCTTCAGAGT TACTTGTTAT 1320

ATTACCAGGT TTTATTTGAT ATTCAGTTTG ACTCATAACT TGTATCCTCA CTTGAAGTAT 1380

55

	AGTGTACAGA ATCTGTAAAA TAAATGTTTT CTTCTTTATT TTCTACAAAG GTAAATTCTA	1440
	GATTTTTTGA CCCTACAGAT GAGCCTTTTA AATCACCATC NCCTTTTATT AAG	1493
5		
	(2) INFORMATION FOR SEQ ID NO:63:	
10	(i) SEQUENCE CHARACTERISTICS:	
70	(A) LENGTH: 1215 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear	
15		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
20	*	
	TGATGTGATC CAACCAAGTG ATAGCAATGT ATATGCAGTT GGAGAATGTG CAGAACATA	c 60
	CGCCAAAGTT TATGGACTCG TTGCACCACT ATATGAACAA GGTAAAGTAA AGCTGATCA	
	TTAACAAATA AAGAAACGAA CGGATACAAG GGATCAACAA CAAATTACGT CATTAAAAG	
25	TTCTGGTTGT GACTTGTATA GTGCTGGTCA AAGTTGTAGA AAATGCAGAA ATTAAAGGT	
	TTGAAATATT TAATAGTGTT GATAATAACA ATAAAAAAT CTTTTTAAAA GACGGTAAT	G 300
	TAGTTGGTGC AGTATCGTGC CAATATGGTG ATATCGATGA TGGTTCACGC TTTTATAAC	
	TGATGAAAAA AGGTGAATCC ACTGAAGATT ACACACTTGT ATCATTGCTT ACTAAAGGT	G 420
30	GAGAAGAGGC ATCGCTATCA ATTGCTGATA TGGCTGATGA TGAAACAATT TGTGGTTGT	A 480
	ATGGTGTTGA TAAAGGTACT ATAGTAAATG CGATTACGGA AAATGGCTTT ACAACAGTT	G 540
	AAGAAGTAAC GGCTAAAACA AAAGCGGGGA ATTCATGTGG TAAATGTAAA CCGCAAATT	G 600
	CTCAAATATT GCAGCACACC TTAGGAGATG ACTTTGTTGC CGCAAAACCT GCTGGTATA	T 660
35	GTGGTTGTAC TGATTTGACA CGCGATCAAA TTGTAACGCA AATAAGAGCG AAAGGTTTA	A 720
	AAACATCTAA AGAAGTTCGA CATGTTTTAA ACTTTAAAAA TAAAGGTGGA TGTCCAAAA	T 780
	GTCGACCAGC AATCAACTAT TATTTAAACA TGGTTTATCC ACATGATCAT GAAGATGAA	A 840
	GAGAATCAAG ATTTGCTAAC GAACGTTACC ATGCGAATAT TCAAAATGAT GGTACATTT	T 900
40	CTGTTATACC TCAAATGCGT GGAGGTGTTA CAGATGCAGA CCAACTGATT CGTCTAGGA	.G 960
	AAGTGGCTAA GAAATATCAT GTGCCACTAG TTAAAGTGAC AGGTTCGCAA CGTGTTGGT	T 1020
	TGTATGGAGG TTAAAAAAGA AGAATTACCA AATATATGGG AAGACTAGGT ATGCGTTCA	G 1080
	CATCAGCTTA TGGTAAGAAA ACACGCTCAA GTTAAAAGCT GTGTTGGGTA AAGAGTTTG	G 1140
45	GCGATTGGGT ACGCAATACA ACGACAACGA CTTGGGATCC GTTTAGAAAA ACATTTGGG	T 1200
	TCAATCGATC AACCC	1215
	(2) INFORMATION FOR SEQ ID NO:64:	
50		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 760 base pairs	
55	(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: Genomic DNA						
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:						
	TTACCTCCAA AATCCTTTTA AATCCATGCC CATAGAAGAT GANNCCCAAA ATACATTANC	60					
10	TAAATCGAAA CATTGCCATC CATAACTACC GTCGAAATCC CATCCTCTAT TCTCTAATGT	120					
	TCTCAAATAA NTTAATGTAC TGCTATTACT ATTACTTTTA TTATTTGAAG ACACTGTTTN	180					
	TGGTNTTGGT TCTACTAATG GTGTCATTGG CACTTTTAAN TNTTGACCAA NAAATANTAA	240					
	ATTAGGATTT GCTATATTAT TTGTATTTTG AATATTTGAA ACTGAAGTTT NGTACTTTTA	300					
15	ATGCNATAGC ACTAAGTGTG TCTCCTTTTT TTACAGTATA GAGTTGTGTT TTTGGAGCTT	360					
	CTCTAAACCT GTAGTAACCA AAGTAATTAG TAAGTAACNT TAATCGTTTT CTTCTGATAA	420					
	GAATNTTTGA GCTTCCAAGT TTGCAATNTT AANTTCTTNA GTAGGTNCAT TGTTANTTAA	480					
	TAACTAGATT GTTACCNTGG CTTGAGTTTT TCGGAGTATT TGAAATCTTT ATATCTTGAT	540					
20	TAATTTCATT TCCGTTTGAA ATTGCTGATT TGTTGTCTAA CTTTAAACTT GTGTCCGATG	600					
	TTTTAACAGC ACCTTCATTT TTTATTTTGT CTTTTGTCGT ATTTTTATTA GCATTTAACT	660					
	CTGATTTCGC TCGAATACAT TTTGCTCATA CCCTCTTGTA AAATCTTTAG ATTTATCAAT	720					
	TTCATCTGCA TATGCTTNGT TCGACATACC CAATGCCAAG	760					
25	(0)						
	(2) INFORMATION FOR SEQ ID NO:65:						
	(i) CECUENCE CUADACTED TOTAL						
	(i) SEQUENCE CHARACTERISTICS:						
30	(A) LENGTH: 846 base pairs						
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single						
	(D) TOPOLOGY: linear						
	(b) Torobodi. Tilleat						
35	(ii) MOLECULE TYPE: Genomic DNA						
	(10) INDICATE OF THE PROPERTY						
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:						
0.2	•						
40	ATATGCTGAA AATGTATCAT CAGGATTCAA GATATCAATT AAATGATGTG GAATACCATC	60					
	CATTTCTTCA GGTGTTACTT GTGCAGTTCC AATATTCATA TGTTTGTAAA CTTGCATAGA	120					
	ATCACCGCTT ATGATTTCAC CATTGATACG CTTCGCGAGT TCTATGCTAA GCTCTGTTTT	180					
45	ACCTGAAGCA GTTGGCCCCA CAATTACTAC AATAAAAGGC TTATTTTAT TCATATTTAA	240					
	TTCCACTTTC TTTATTTTTT ATAAAATTGA TTCAACCATT TAAACAAGTC TTCCCAAATT	300					
	GTGTCATGAT CTTTTTCAA ATAACACTTC ATGACGTTTA TGATGATAAA GATTCACTTT	360					
	TAACAATTTT TAATGCCAGC TTCTCTATAT ATATTCGCCA ATTTTAAAAT CCCTTTACCA	420					
50	TAATCACCTA AAGAATCGGC ATATCCTGAA ACTAATAATA TAGGCATGGC ATGATTTAAC	480					
	ATTTTCATAT TTTTTAATTG TGATGTATGT AGCATATAAT AGGCTGTGTG ATATAATAAT	540					
	TGATNTGACA CATTAAATCC ACTATATGGA TCTTTAATAA AGTTATCTAC TTCAATTGGA	600					
	TTACTAGAAA TCCAATCACT NTGTGTACGT AATGGACGTA TTTTTTTATT AAAACTATNT	660					
5 5	GATACTAACT GGTTAACCCA TNCAACTCGT TTCTCAGCAC CATAAATTTG TGTAATCAGT	720					
	TGTAACACTT TAACGGTTGG GTAAACCTTT CCATAATTGA ATACATACCA AGGTCACCAC	780					

	TTTAAAATTA GACCATCAAC ATATTTGCGG ATATTGGTTT CTTACAAAAC AATCTTAGTT ATACGG	840 846							
5	(2) INFORMATION FOR SEQ ID NO:66:								
	- · · · ·								
	(i) SEQUENCE CHARACTERISTICS:								
10	(A) LENGTH: 2854 base pairs								
	(B) TYPE: nucleic acid								
	(C) STRANDEDNESS: single								
	(D) TOPOLOGY: linear								
15	(ii) MOLECULE TYPE: Genomic DNA								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:								
20	AAGNTGAATT TTTAGTACAA TTTCCACTGT ATTTATCTGT TANCCACTTT ATACCCGCAA	60							
	TATTTCGTTG ATCTTATATA AACACTTTTG GCTGCTTTTC CTTGACCNAG GNTAANATTA	60 120							
	NAGATTTTCC TTTGTAAGAG TGTGTTTTGT AGTATCATAA ATATGTAANC TGTATNAAAN	180							
	TCCACCACAT TTTAGGACCT GGTGANAGAT GTCGNAAAAG AANATTTTAA TATTANCTAG	240							
25	TATTATGTTA ATCATANTAA TTAGTGTTGC AAGTATCNAN TTTAAAATGA AATATGACGA	300							
	AAAAGAAAAC CAAAAATCAA TTTATTATAA AGAACAACAA NCGCGCATTA CACTTTATCT	360							
	TAAGCATAAT ACTATAGAAC CGAACACAAC CAANTCTGNA CATTTCNCNA AATTGGAANC	420							
	AANTCCTATG GGAAGTGCTG TGATTGAAGG TTACATAAAT GANAATAAAG AAGATGATTT	480							
30	TGTTGCCTAT GCATCACCTG AAAATAACTT TCAATTTGTA GGTGATTTAN TTNNAAAGTG	540							
	AAAGATTAAG TGAGTTACTA AAACCAGCGC ATCAATTNNA ACATCNCCAG ATGATATNNN	600							
	NNAAGAACTA AATANNAAGT AGAGTCACTA ANGTTAGGAG TTACTTTAAT GAACAAAAAA	660							
35	CATGTTTTTG TAATTATTGG TGTCATTTTA TGTATATGTA TAGTTGCATC AGTCATTTAT	720							
35	TTAAAAGTGA AATATGACGA AAAAGAAAAA CCAAAAAGCA AAATACTATA AAGAACAACA	780							
	GGAGCGTATT ACACTCTATC TCCAGCATAA TACCAAAGAA CCCAATACCA TCAAATCTGT	840							
	GCATTTCACA AGTTTAAAAA GAGGACCCAT GGGCGATGCC GTAATTGAAG GCTACATCAA	900							
40	TGAAANCAAA AAAGATAATT TTACTGCTTA TGCTACACCA GAACATAATT ATCAGTTTGG	960							
70	TGGTGCTATG ATAGAAAGTG AAAGATTAAG TGAGTTACTA AAACCAGCGC ATCAATTAAA	1020							
	ATCACCTGAC GAAATCAAAG AAGAATTAGA CACCNAAGAA GGCCACTAGG GTCTTCTTTA	1080							
	TTTTTGATTT AATCTTCCAA TAATCTATGT CATTGCTATC GAAGGTGTTT CGCAATTAAT	1140							
45	ATCAATCACT TCATCATCAC CAATACTTCC CCAGTTTTGT ACAGTACATT AACACAAGCG	1200							
	AACCCCATTA ATGTAAATGA AATAATAGTT TAGCCATTAT AAAAACATTA TATACCGAAT	1260							
	AACAATGGCG AGGACGTGAT TTATTGACNA CTATCAAATT TTCTCANATG TGTGTGATTT	1320							
	TTTATAANNN AGGGTAGAGC AAGGTATAAT ATCCTTTCAA TCGGTTTTCA TATTTTATAT	1380							
50	ATTTTTAAA TATAAGCGCT AAATGTTTTA ACTAAAGCAT AGATTGACAA GATGTTATAC	1440							
	AGAATTTTAA ATTCTATCCA ATATTGTTCG AAGTGTAGTA TCACTGGANT GGTATTAAAC	1500							
	AATGTAAAGG AGAGATTGCA NATGCCGTAT AATTACAAGA AACACAATGG AGAGTTAATG	1560							
	TCTGTAATGA GCCAAGGTGA AAAGTTTATT CATCCAATCC ACCGGTGAAT GATGAACTTA	1620							
55	GTGCATTGAT TAAAGCTATT AATCTCCAAC AAATTAACGG TTGTCATTAT TGTGTTGATA	1680							
	NCCANAANAA AGAAGTAAAG GAANTGGGTG TAACACAACT GANNATTGAT GAAGTCTTGA	1740							

		NNTTTAGACA	TTTAGANTTA	TTTACTTGAT	CAAGAAAAAG	TGACGCTTGA	AGTTGCAGAA	1800
5		ATGNTAAATT	CAANCAAAGA	CNTTAAGAAG	TTTGAAATTA	TTGACCGGCN	AAAATCATTT	1860
	:	TATGATGAAG	AACAANTTAT	TGATCTTGTC	TTTGTTGTAA	ACCAAATTAA	CGGTTGGAAC	1920
·		AGACTAAATA	TTATTAGTGA	TAGACTATAA	TTGTTCATAT	AAATGCAGAG	TTTCATCTCG	1980
		AACGCTATAT	CATAACAANT	CATGCCACTA	TACAGGTCAA	ATCTTGTATA	GTGGCATTTT	2040
		TAATTTATCC	CTTTGAATAC	TGTTATTTAA	CGAATATCGG	TCCACCTGGT	CCAACAGGGA	2100
1	2	TACCTAATAA	GAACCAAATG	ATGACAAATA	CTGTCCATAC	AATGCTTAGC	GCGATTGAAT	2160
		ACGGCATTAA	ACTAGAAAGT	AAGGCTCCGA	${\tt GTTTCATGCG}$	TTTATCGTAT	TTTTGTGCAT	2220
		AAGTTAATAA	TAAAGGTAAG	TACGGCATCA	TCGGTGTAAT	TGGATTGGTA	ATTGAATCGC	2280
		CTACACGGTA	AATGACTTGC	${\tt GTAAATGCGG}$	GATGAAAGCC	GATAAGGATT	AACATTGGTA	2340
1	15	CGAATATCGG	TCCTAAAATA	CCCCATTTAG	CCGATGCGCT	TCCGATTAAC	ATGTTGACCA	2400
15		TTGCACTCAG	TACAATAATA	CCTAGTATCA	ATACAATACC	GTTTTGATGT	TCTAATAATT	2460
		TGGCACCTTT	AACAGCAGCG	ATAATTCCTA	AATTACTCCA	CTTTAAATAC	GCAAGTAGCT	2520
		GTGCTGCAAA	AAACACAATA	ACGATAAATG	TTCCCATTGA	TCCTACAGCA	TCGCCGAACA	2580
2	n	TTTTACCTAA	GTCTTTTGTA	${\tt TTTTTAATTT}$	CTTTGCTTAA	AATCCCATAA	ACTAATCCAG	2640
	•	GTACTAAAAA	TACGACAAGA	ATAATTAATC	CGACACCGTT	AATTAATGGC	GCATCGTCTA	2700
		GTAAGCTGCC	TGTTTTAGCA	TTTCTTAAAA	AACTATGTTC	AGGAATAGCT	GTAATAATTA	2760
		TAAAATAAT	TGTGACTATG	AAACTGATAT	TTGCCCATTT	TAAAGCATGT	GCTTCTTTGT	2820
2.	5	CAGTAATATG	TGAAGATGCT	TCTTCAGGGT	CATG			2854

(2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1442 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30

45

50

55

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

CTATGATAGN	ATCGGAAAGA	TGTATAAAGT	TATCTAAAAG	TTATACGACA	CAAGTACACG	60
AGGCACATCG	CTATGCGGTG	TGTCTTNTGG	TATGCAATCA	AAGAGGTGTA	AGAGATGACC	120
AAGCATAATA	ACATTTATTA	GCATGGNCGT	AAGTCATATC	AATACGATTG	GTTCTATCAT	180
TCAAAAGCAT	GGAAGAAGTT	AAGAGAGATA	GCATTAGATA	GGGATAATCA	TCTTTGTCAA	240
ATGTGTTTAC	GTGAAGACAT	NGTAACAGAT	GCAAACATAG	TGCATCATAT	TATTTATGTT	300
GATGAAGATT	TTAATAAAGC	TTTAGACTTA	GATAATTTGA	TGTCAGTTTG	TTATAGCTGT	360
CATAACAAAA	TTCATGCAAA	TGATAATGAC	AAAAGTAATC	TTAAGAAAAT	TAGAGTATTA	420
AAAATTTAAA	ТААААААТА	${\bf ATTTATTTT}$	ATAGCCCCCT	ACCCATCGGC	TTAAAATGTT	480
TTTTCGACGG	GTACCGGCGG	GGGCCCTTCG	CTTGCAACGC	GGATAAACTT	TTATGAAAGG	540
GGGTCTTTAT	ATGAAATTAA	CAAAAAAACA	GCTGAAAGAA	TATATAGAGG	ATTATAAAAA	600
ATCTGATGAC	ATATTAATTA	ATTTGTATAT	AGAAACGTAT	GAATTTTATT	GTCGGTTAAG	660
AGÄTGAACTT	AAAAATAGTG	ATTTGGATGA	TAGAGCATAC	AAACAAGGCT	GGTGCCGAGC	720

	AATATTGTTA AGAATCCATT AAGCATAGAA CTGACAAAAA CAGNTCAAAC ACTAAATAAC	780
	TTACTCAAGT CTATGGGTTT ANCTGCAGCA CAAAGAAAAA AGATAGCNCA AGAAGAAGGT	840
5	GGATTCGGTG ACTATTAAAG TITTAAATGA ACCTTCACCA AAACTATTAA CAACATGGTA	900
	TGCAGAGCAA GTCACTCAAG GGAAAATAAA AACAAGCAAA TATGTTAAAA AAGAATGTGA	960
	GAGACACCTT AGATATCTAG AAAATGGAGG TAAATGGGTA TTTGATGAAG AATTAGCGCA	1020
	CCGCCCTATT CGATTCATAG AAAAGTTTTG TAAACCNTCC AAAGGATCTA AACGTCAACT	1080
10	TGCATTACAA CCATGGCAAC ATTTTATTAT TGGCAGTTTG TTTGGTTGGG TTCATAAAGA	1140
	AACAAAACTG CGCAGGTTTA AAGAAGCTTT GATATTTATG GGGGCGAAAA AATGGTAAAA	1200
	CAACTACTAT ATCTGGTGTT GCTAACTATG CTGTTTCTCA AGATGGAGAA AACGGCGCTG	1260
	AAATCCATCT NTTAGCAAAC GTAATGAAAC AAGCTAGGAT TCTATTTGAT GAATCTAAGG	1320
15	CGATGATTAA AGCTAGCCCA NAGCTTAGAG AAAATTTTAG ACCTTTGAGA GATGAAATTC	1380
	ATTACGATGC ACTATATCTT AAAATATGCA CAGGCTTCAG ACAGTGATAA GTGGTTGGTT	1440
	AA	1442
20	(2) INFORMATION FOR SEQ ID NO:68:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 332 base pairs	
25	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
35	GAATTCAAGC CGACCGATGA NGGTTATNTG ANATTACATA AGACGTGGTT TNGTNANTCA	60
	AAGCTATGTC CAGTTTGTAA TCGGAGGCGT GCTATGAAAA NTAGTTATCA CGCTCANANA	120
	GTGATTGANG ANGTAATTAA GGAAAAGCCA NCAGCACGTT GGTTGTTTTC ACCACTNTCA	180
	CCAANANNTG CGATAGATGG AGATACTTTA GTAACAAAGT TNGANGCATC TAACTAANGC	240
40	ATTTGATAGG TTGAGTAGCA TATNAAAAGG TTAAACANAA TCTNGTTGGA TCTATGCGTN	300
	CAACAGAAGT TNCCGCCTAC CTAAAAATGA CG	332
	(2) INFORMATION FOR SEQ ID NO:69:	
45		
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1070 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single	
50	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:	

	CCATCCGTTC	NCNTCATCNC	ANGACNTTCN	ANANTTAATT	TTTACNAGGA	GTGACATCTG	60		
5	TGAATAACAC	ACAATCCTCA	CCACGCAGTN	ATANTATTAT	TGCGATTATG	TTGTCTGCAT	120		
-	TAACATATTG	GGTGTGTGNA	CAATCATTTA	TTAATATAGG	ACCTCTCGNN	GGNCAAACGT	180		
	ATCAAACCTC	TCCTGCCGTG	TTAAATTTAT	CTATTAGTTT	AACTTCCCTC	GCCACAGGTA	240		
	TCTTCATGGT	GGCTGCAGGT	GATATTGCTG	ATAAAATAGG	ACAANTGAGA	ATGACATACA	300		
10	TGGGTCTCAT	AATCAGNATG	TTTGNATCTC	TTCTATTAAT	TATATCGGAC	ATCACTGCAC	360		
	TGCTCATCAT	CGGNAGGAAT	TTTACAAGGT	CTATCAGCAG	NTATCTTGGT	TACCCTCCAA	420		
	CAGTTGGCGT	${\tt TTTAAATAAT}$	CAATTTAAAG	GAGAACATTT	AAGACGAGCG	ATTAGTTATC	480		
	TAATGATTAG	TACTGTTGGG	GGCATCGGCC	TAGCTGGTGT	TATCGGCGGT	TTAATTGCTA	540		
15	CAAATTTCGG	ATGGCAAATG	AATTTCATCA	TTAGTATAGT	CATTGNTTTC	ATTGCCATAT	600		
	TACTTCTAAA	AGGCACACCT	GAAAAAGTAA	GTCAACATAG	NCACCGTCAT	CCGTTCGATT	660		
	ACAAAGGTAT	GTCGATTTTC	GCTGTTATGA	TTGGTAGCTT	TACATTATTG	TTAACACAAG	720		
	GATTCGAACA	AGGTTGGTTT	AGTACATTCT	CATTCATTTG	TCTGAGCATT	TTTATCATCA	780		
20	CTACGCTGAT	ATTCATCATC	ATCGAACGTC	GACATGAAGT	ACCCTTTTAT	TGATTTCTCA	840		
	GTATTACGCA	ACCGNCCGNT	CATTGGTGCA	TTTTTAAATA	ACTTTGTTTT	AAATAGCGGT	900		
	CTAGGCGTTA	CAGTGGTCTT	TTTCATATAT	GCTCAAACAC	ACCTTGGTTT	ATCAGCTGCG	960		
	CAATCTGGAT	TGNTACATTG	GCATATNCCA	TAGTGGTAGT	TGCGATGATT	CGTCTTAGGT	1020		
25	GAAAAAAGCA	ACATTACGGT	TCGGGTGGGC	AAATTGGATG	CTCATCATGG		1070		
	(2) INFORMATI	ON FOR SEQ	ID NO:70:					
30	(i) S	EQUENCE CHA	RACTERISTIC	:S:					
50	(A) LENGTH: 1246 base pairs								
	(B) TYPE: nucleic acid								
35	(C)	STRANDEDNE	SS: single						
	(D) TOPOLOGY: linear								
	(ii)	MOLECULE 1	YPE: Genomi	C DNA					

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

GAACAANTGG	TAAAACCACG	ACTTCNAACT	TAATTGGACN	TACTTTAAAA	GCAAATAATA	60
TNCNAATTAT	ACNCAATAAT	GAAGGTGCTA	ATATGGCTGC	AGGTATAACT	TCTGCATNCA	120
TCATGCAATC	AACACCTAAG	ACTAAAATTG	CGGTAATCGA	AATTGATGAA	GGTTCGANTC	180
CACGTGTGTT	AANAGAAGTT	ACACCTNCAN	TGATGGTATT	TACTAATTTC	TTNAGAGATC	240
AAATGGATCG	CTTCGGTGAA	ATTGATATTA	TGGTTAATNA	CATNGNAGAG	ACAATTAGTA	300
ATANAGGCAT	CAANTTATTG	CTAAATGCTG	ATGATCCATG	TGNGAGTCGG	GTGAAAATCG	360
CAAGTGANAC	GATTGTGTAC	TATGGTATGA	AAGCACATGC	CCATGAATTT	GNACAAATGT	420
ACGATGAATG	AAAGTAGATA	TTGNCCAANC	TGTGGTCGCT	TATTGCAATA	CGATTATATT	480
CATTATAATC	AAATNGGTCA	TTATCACTGT	CAGNGTGGTT	TCANACGAGA	GCAAGCAAAA	540
TATGAAATAT	CANGTTTTGA	TGTGGCACCG	TTTCTATATC	TANATATCAA	TGATGAAAAN	600
TNTGATATGA	AAATTGCAGG	TGACTTGAAC	GCTTATAACG	CGTTAGNAGC	ATATACTGTT	660
TNAAGAGAGC	TAGGGTTAAA	TGAACAANCA	AATTAANAAT	GGCTTTGAAT	ACGTATACAT	720

	CAGACAATGG TCGCTATGCA GTACTTTTAA NANAGAACGA AAAGAAGCGA TGACTCAANT	780
	TTAGCTAAAA ATCCTGCAGG AATGAATGCA NAGTCTATCA AGTGGGTGAA CAATTAGAAG	840
5	GCGAAAAAGT GTATGTTATT TCGCTAAATG ATAACGCTGC AGATGGTCGA GATACTTCAT	900
	GGATTTATGA TGCAGATTTT GGAAAAATTA TCTAAGCAAC AAATTGAAGC TATCATCGTG	960
	ACAGGTACAC GAGCAGAAGA ACTTCAATTG CGATTGAAGT TAGCAGAGGT TGAAGTACCA	1020
	ATTATTGTTG AGCGTGATAT TTATAAAGCA ACGGCAAAGA CTATGGATTA TAAGGTTTCA	1080
10	CAGTTGCAAT ACCAAACTAT ACATCAATTA GCGCCTATGC TTGACAATTA AACCGTCCGT	1140
	TTGAAGGAGG GCAATCATAA TATGCATGAA TTGACTATTT ATCATTTNAT GTCAGATAAA	1200
	TTGAATTTAT NCAGTGATAT AGGAAATATT ATTGCTTTAA GACAAC	1246
	·	
15	(2) INFORMATION FOR SEQ ID NO:71:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 751 base pairs	
20	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
30	CATTCAAGAA TTATCTATAC TTTAAGCCCG ACTAAAATCT ATAGAACAGC ATTACTAAAA	60
	GATAATGACA TTTATTTTCC AGAAGAATTA AAGAGTGCAG AAGATCAATT ATTTACAATG	120
	AAAGCATATT TGAATGCAAA TCGAATCAGT GTGTTAAGTG ATAAAGCGTA TTATTATGCT	180
	ACAAAGCGTG AAGGTGAACA TATGAGTAGT GCGTATGTTT CACCTGAAGA CTTTTACGAA	240
35	GTCATGAGAT TGATTGCTGT AGAAATATTA AATGCAGATT TAGAAGAAGC TCATAAAGGA	300
	TCAAATCTTA GCAGGAATTT TTAAATCCGN CATTTTAGTT TTTCTCCGTA CGAATGGCTT	360
	CTCACTTAAA GTTAAACTTG AAGAGCAACC ACAATGGATT AATGCTCTAG GAGGACTTTA	420
	TACAAGCAGT TCCAGAACGT GTAGATGCAT TGGTGATGAG TAAATTACGA CCATTGTTGC	480
40	ACTACGCGAG AGCGAAAGAT ATAGACAACT ATAGAACTGT AGAAGAAAGT TACCGTCAAG	540
	GTCAATACTA CCGTTNNGNT ATTGTAGATG GTAAATTAAA CATTCAATTC AATGAAGGCG	600
	AACCATACTT TGGAAGGCAT TGATATCGCT AAGCCAAAAG TGAAAATGAC AGCATTTAAA	660
	TTTGGATAAT CATAAAATTG NTACAGGAGC TAACGGTTAA ATGATTTATG ATTGGCGAAG	720
45	GGACAATTAT GATGTTCAAA GCTTTAAATT T	751
	(2) INFORMATION FOR SEQ ID NO:72:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1394 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
55	(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: Genomic DNA

5

10

15

20

25

30

35

40

45

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

			55g 15 NO.			
CCTGTTTGCC	CTAATGGANT	CGGGTNACAA	TNCACGGAGA	TCCTTCTTCT	CACATCAATN	60
TNAAATGGGG	TGTTCAACCT	CATCTTTGAT	CTGATGACGA	TGACATGCGC	GGCATGCAAC	120
TTGTCCGNTC	AATTTGTTCA	AGATCATTCG	TACGNATAAA	ATTAGTAATN	TTAACGTGTA	180
TCGGNAATNT	TAAATAAATG	TTTAATGCTT	TTGAGAATAC	AGTTCTANCC	GNAGACGTCG	240
GGGACACTAA	ATCACCGGAG	ACGCCAAGGT	CTTTTATTAA	ACCTTGTTCA	CTATATTGCA	300
TATACTGTGG	ATACTGTCNC	AACACATTGA	NTTGATAAGG	ATGTGTTGGT	AATAAAATAA	360
AATCTTTGGG	TATCTCTGAT	ATATCTATGT	CTGCTAATTG	ATACAACACT	TTCTCAACCT	420
GATCTTCTTT	ACCTTCTACA	TAGCGCGTGA	GCAGAACATC	TGGATGCACA	GCTAAATAAT	480
GCAATTGGAA	TGATGTATGA	CATTCGGGTG	CATATTTCTC	TAAATCTGCT	TCTGAAAACC	540
CACTTGCACT	CTTAGGAGTC	GGGATGAAAT	GGATGACCTA	AGTATTNAAG	ANTGGTCTGA	600
AACGATATAA	CGATCCTCTA	CGTAGGCTAT	TGTGTTACTT	GGGAAAGAAC	GCGCCGNGCG	660
ATGAATGCTA	TTATCGATGN	CAAACATAAT	TNGCGCCATA	TGTTGGTTGC	ACTGCCGTTT	720
GATTATCTGC	ACTTTGAGCC	ATATGTGGCA	AAATACGCGC	AATTGCTTCT	TTATAAGTTG	780
TTATTTTTTT	ACTTTTTCCA	TCGATAAGCC	ATACCTCTGG	ATGATACATA	TGATGCCCCA	840
TCGCAGACCA	ATAGCGAAAT	TCACCCGTTA	AAGTTTCGAG	CTCTGATAAT	TGTATAGACC	900
ATTGATGATT	TTGAGGTGGT	ACTTGATATA	AATTTTCTTC	TCTAAAATAT	TCATTTAAAA	960
TGCGTTCGAT	AGCCGCATAC	GCTGCATGTT	${\tt GTATTAATTC}$	TTTATTTTGC	ACTTTTTGGT	1020
TTCAACTCCC	ATAATTTCAT	TAATGTGTGA	TCGGTTGATT	TGATTAGTGA	TGGTTGAACA	1080
AATTAAAAAT	AAACTACTTA	CTGCAAATAC	TACGCCCATA	ACGATAAACG	TAGTAGCTGG	1140
TGTAGTATAA	CTTGTAATGG	CAGCGCCACT	AAGACTGCCA	ATAATTTGAC	CAACAACTAA	1200
CATACTGTTC	GTCGTTCCAA	CAAATGTGCC	NTTAAGNTGT	TGATGACACG	CANTCACGAC	1260
AACAAACATG	ACACTTTGAA	TCNATGCACT	AGATGTTAAT	CCTTGAAGTA	TTCTTGCAGC	1320

CATTAAANAC TCTATATTCG TCGCTAAACC TTGCAGTATC GCACTACAAC CACATGCAAT

1380

1394

(2) INFORMATION FOR SEQ ID NO:73:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 459 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

CGTGGCAAAT ATAG

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

ATAATATGTC	TAATTGACTA	ACTTGTTGGA	${\tt GTCATTTACT}$	ATTTTATGTA	TGACATATTT	60
TAAAAAGTGA	GGGTCAAGCA	TGTCTTATAA	AGCATATCCA	CTCTTTAGAG	ATATATTAAT	120
AAATGAATGT	ATTTATTTCG	CCTCTAAAAA	TAAAAAACTA	GTACGCCTAA	ATTATAAAAG	180

	TGAAGCGTAT GTAGGCGTTT GGACAGAAGA AAGTGTGGCC GTATCATTTT TAACAAGTCG	240
	TGATATTCCA TNTGATAAAG TTGTAAAAAT GGACGTTGAT CCGCCGNGCT ACTTATGAAT	300
5	TAGATGAATT GTGTGATGAA CAAGACATAT TATTATGAAT CAAACAATGG AAGAAGAAGG	360
	GCATCTACTA ACGTGGGCT TGNTACAAAA AGAAGGTGAT GACGGGATTA GATAAAANAG	420
	ATCAAAGATT TGGGCCCAGA TGTTGCAAAT ATGATGAAG	459
10	(2) INFORMATION FOR SEQ ID NO:74:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 930 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(b) Torobodi: Timear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	(12) till till till till till till till til	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:	
	•	
25	CTGGTGCGTC TTCTAATGAA TTTAGAGATT TTTTACCAAA TCACCATATG CAGTATACGA	60
	TGATGAAGTA TGCACGTGAA CATGGTGCAA CAACTTACGA TTTCGGTGGT ACAGATAATG	120
	ATCCAGATAA AGACTCTGAA CATTATGGCT TATGGGCATT TAAAAAAGTG TGGGGAACAT	180
	ACTTAAGTGA AAAGATTGGT GAATTTGATT ATCTATTGAA TCAGCCATTG TACCAATTAA	240
30	TTGAGCAAGT TAAACCGCGT TTAACAAAAG CTAAAATTAA AATATCTCGT AAATTAAAAC	300
	GAAAATAGAT TAACGACTGA AATCTGAACG CTCATAAGAC TGTCATTTGC GTTCAGATTT	360
	TTTTACACAA TATAGAATGG TTGAGTAAAA TATTTTTGAA TATAGTGAAA GAGGGGGAAG	420
	TACTGTGATA AAAAAGCTAT TACAATTTTC TTTGGGGAAT AAGTTTGCTA TCTTTTTAAT	480
35	GGTTGTTTTA GTTGGCTTGG GCGGTGTATA CGAGCGAAGT GCTAAATTGA AATTAGAATT	540
	ACTACCAAAN TGTACAAAAA TCCAGTTATT TCAAGTTACA ACAACAATGC CGGGGTGCAA	600
	CGCCACAAAG TACCCAAGAT GAAATAAGTA GTAAAATTGA CAATCAAGTA AGATCGTTGG	660
	CATATGTGAA AAATGTTAAA ACGCAATCCA TACAAAATGC TTCAATTGTA ACAGTTGAAT	720
40	ATGAAAATAA TACAGATATG GATAAAGCAG AAGAACAGCT TAAAAAAGAA ATCGATAAAA	780
	TTAAATTTAA AGATGAAGTT GGTCAACCAG AATTAAGACG TAATTCGATG GACGCTTTTC	840
	CGGTTTTAGC ATATTCATTT CAAATAAAGA GATGACTTGA AAAAGTACGA AAGTACTGAA	900
	TGACAATTAA TACCAAATAC AAACGGAGAT	930
45	(2) INDODUMETON FOR SEC. IN NO. IS	
	(2) INFORMATION FOR SEQ ID NO:75:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 744 base pairs	
50	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
55		

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

5							
	TTTACCTTCC	TTAATTGCTT	CCAACCCAAT	CATCAGCTAA	TAATCCACTA	CTTTTTCACC	60
	CATGCTCTTT	CACNAATGTT	TTGAACTGCG	TTTCCTTTAA	CGTCATACCA	ACCTGTTTTA	120
	CCTACTTTTG	TAATATTACT	TGCCAACACC	ATTTTATTAT	TATAAGCGAT	TTGGTTAGCT	180
10	ATCGTGAACA	TAGGTTTTAA	ACATCGTCTG	TGCACCCATA	AAGGTATGCC	TATCCAGGTT	240
	TTTTGATTAC	TATCAGTAGC	ATCAGATTTC	CAAAAACCAT	ATTGATTGGC	GTTGTCTGCA	300
	ACAGACTGCA	CAGAAGCTTC	TTTAGAAACT	AGATATTCCG	GAACATGATA	ATTTTTACGA	360
	ATGTTATCAA	TTAAATGACT	TTCTAAAGTC	ACAACCGGTT	CTATTTGAAT	CGGATCACCT	420
15	ACAGCTACAA	CTTTTTTTGA	ACGATATAAT	GCTCCCACAG	CTGCTTGAGG	TATTGCTTGT	480
	CCTGCTTCAT	СААТАААТАА	GTAGTCTATG	AAATCTTGTG	GTATGCCCCC	ATACATAGAT	540
	TTAAAGCTTG	CAAACGTCGN	ACTAACTACT	GGAAATATNA	AATGCATCAC	ATTCCATGCG	600
	TNGTGTNCTT	TATCTGGATG	NGCATCAATT	AATTTCCTTC	TATCTTNAAA	ATCATTAATC	660
20	GCATAATAAA	TAGTTGGTTT	TATTAGCAAT	CAATAATAAT	TTATGCAATA	TCAATNGCTT	720
	CTTAAAAAGA	GCATGGACCG	TCTT				744

(2) INFORMATION FOR SEQ ID NO:76:

25 (i) SEQUENCE CHARACTERISTICS:

30

35

40

45

50

(A) LENGTH: 858 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

GGCCTGGATA	AGTAGTACCA	GTCCACATAA	TCTAACCTAA	GACAATTAAG	ATTAAGATTG	60
ATCGCATGAT	TCAATTTATT	TAGCTTTGTA	ACCCAATCAT	ATTGANTAAA	TCTTTAGGGT	120
GCCAATATGG	TGGTGCATAA	NCCACNNCAA	ACTCAGTTAA	CTCATCTACA	GTTAGCTGGT	180
TCATCATTGC	CATCGATAGT	ACATCAATAC	GTTTATCTGC	ACCTTCTTTT	CCTACTGCAG	240
CTGCTCTTAA	AATCTGACGG	TTTGAAGTGT	CATAATATAC	CCTTAAGTGT	AAAGGGGAAT	300
TTCCTGGGTA	ATAATTCGCG	TGTGCACCTT	GAGTGACTTC	CACCATTTTA	TAGTCAAATT	360
GCTTTAGTTC	${\bf ATTTGGTTTA}$	ACGCCGACAC	TCGCAAATGT	ATAATCAAAG	AACTTCACAA	420
TATTGTTGCC	TAAGAAGCCT	TTGAATTCAA	TAGTGTCATT	TCCAGCAATT	TGTTCGGCAA	480
CAATACTTGC	TGCACGGTGA	GCGCCCAAG	CTAAAGGAAC	ACTAGCCGGT	AGATCGACAT	540
GTCGATAATG	TGATGTTGCA	ATATCGCCTA	TTGCATAAAT	GTTTGGAACA	TTTGTTTCAA	600
ATTTATCGTT	TACGGTATGA	AACCTTTTCG	ATCAAGTTTG	ATATTTGAAC	TTTCGATAAA	660
TTTTGAATTG	GGGTGAGTAC	CGACACCTTC	AATAATCATA	TCGTAATGTT	CAACTTTTCC	720
TGATTTAAAT	GTAATTTCAT	TTCCATTGAT	AGCATCAATT	CCTCATTTAA	CGGTATGGAT	780
CTCCGCTATC	TATTCAACAA	GTATTGGTTG	CTTCATGTCA	GCATCCATAT	TTATTTATCT	840
TATCAGATCG	ATGATTAA					858

(2) INFORMATION FOR SEQ ID NO:77:

5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1004 base pairs	
	(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:	
	GGAATGCGAT ATGCCTTTTT ATTCATCGTC ATATAAATTG CATTTTCATT TTTACGTGTC	6
20	ATACGCTGAA AAGGATGCTT CACAAATTGT GGTGTAGTAT AACCAATTCC AATTTCCAAA	120
	TACAACACTT TATCATCTTG ATGTTGCTCT AGAAAAGCAT TATAACGTTG NNGNTGNGCC	180
	TGAAATTCAG CATCTTCAAC CATGCCAACT TCCGCTTTAC GTTTATTCAC TTCCATTGGA	24
	GCATCACATT NTGGACATCT TGGAATCATC TCCCAAGGTA TAAGCATATC TTGTTGCGCA	300
25	ACAACCATTT TACGAATTAA ATCATCATTG CGATACGTGT GAGCATGACA ATGCTGACTA	360
	CACTGNTGNA GTATATACTC CCCNTGTATA TGAAATACAT GAGTCATATC ATATTCAGCA	420
	GCATCGAAAG CATTGTCTGC ATTCGGAGNT ATGATATGGT ACTGTTTACC CTCCACTAAG	480
	GATTTTAATG CGAGATAAGA CTGACCTACA GGTTGGATCT TAATAATTTA NTGTAATAAA	540
30	ACGACTOTOA AATGCCCAAT ACTOTTGCCA ACTGCCATAA GGATGTAAAC TOGOTTGCAA	600
	CATATCAAAG AAGCGATATT TTTCAATAAA ATCTGGGAAA TTTTCCGTAA AACGCTCTCC	660
	TACATATGTA AATCCGTCAG ATGCAGACAT GCCTGCACCA ATTCCAATCA CTATCGCATC	720
	TGCTTCATCA ATCGCAGTAC GCAATACTTC AGCCTGCTTT GTCTTTTCAT CCATTAAAAG	780
<i>35</i>	AGACATTGCA TTCCATTTAC TACTCTGCAT CACGGCTCAA TGCCTCCTTA TACAGTTGGT	840
	AAATCCTTAT CTTGGAAATA CATTGAACAC GACTTTCAAT GTTGAATTTG GCTCTGCGAG	900
	ATAGCTTTCT TCTGTTCGAC AGCATTTCTG CTGCTTCATC TTGAGAAAAG CAATACACTG	960
	TAGATATACA GCAAAGCGAC ATGATTTAAC TATGTGGGCC AGGC	1004
40	(2) INFORMATION FOR SEQ ID NO:78:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 717 base pairs	
45	(B) TYPE: nucleic acid	•
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
50		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
55	ATATTACCAC CITCITICC IIIICC IIIICCA DIRICITA COMPONIA COMPANIA	
	ATATTAGCAG CTGTGCTTGC TTGTATTTTA GCTGGTGTAC CCTATCAAAG CAATTATTGA	60

	TAGTTTAACT ACATTTTCAG GAATAGAGCA TAGATTGCAA TATGTTGGTA CTAATAGAAC	120
	TAATAAATAT TATAATGATT CCNAAGCAAC AAACACGCTA GCAACACAGT TTGCCTTAAA	180
5	TTCATTTAAT CAACCAATCA TTTGGTTATT GTGGTGGTAT TGGATCGAGG GAGATGAATT	240
	TGACGAACTC ATTCCTTATA TGGAAAATGT TNCGCACGAT GGTTGTATTC GGACAAACGA	300
	AAGCTNAGTT TGCTAAACTA GGTAATAGTC AAGGGAAATC GGTCANTGAA GCGAACAATG	360
	TCGAAGACGC TGTTGATAAA GTACAAGATA TTATAGANCC AAATGATGTT GTATTATTGT	420
10	CACCTGCTTG TGCGAGTTGG GATCAATATA GTACTTTTGA AGAGCGTGGA GAGAAATTTA	480
	TTGAAAGATT CCGTNCCCAT TTACCATCTT ATTAAAGGGT GTGAGTATTG ATGGATGATG	540
	AAACGAAGAN CGATCAACAA GAATCAAATG AAGATAAAGA TGAATTAGAA TTATTTACGA	60 0
	GGAATACATC TAAGAAAAGN CGGCAAAGGA GAAAGGTCAA AGGCTACACA TTTTTCTACN	660
15	TCAAAATAAA GATGATACAT CTCAACAAGC TGATTTTGAT GAAGAAATTT ACTTGAG	717
	(2) INFORMATION FOR SEQ ID NO:79:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 650 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:	
	CTCTTCTTCA TCAACATCGA TCATACTTAC TAAATTGTGG ATGTGAAAGC TGTGATGAGT	60
	ATATGTACTT CTCGNNCAAA ACGGTTTAAT GTNTCCTCCT TTTCTCCAGG GTGGTATAAA	120
35	AATCGCCTTA ATTGCAACCT TAATGTTAAG TATCGTATCT TCTGCAAGAT AAACGGTACT	180
	CATGCCACCG NCGCCAAGCT TATCTACAAT TTTATATCGC ACATTTATTA TTTTACCTAT	240
	CATACTTTAT CACCTNCAAT AGCCGCGAGT ATGAAAGTAA CGTTATCTTT CGAATGGTTA	300
	TCTAATGCCA ATTGCATTAA TTGATCACCA TGATCTTCTA TTGTACCTTC TTTTACTAAC	360
40	AAACGCTTAA TTTCATTGTC TTTAACATAA TCAGTTAATC CATCTGAATT TAATAATAAA	420
	TAATCATAAA AATTTAATCG CTTAATAAAC AAATCTGGAC TCACACGTTT ATCTGTGCCC	480
	ATCACCTTCG TAATAATATT ACGTTGTGGA TGTGTAAATG CTTCTTCCGG CGTAATTTGA	540
	CCCGTTAAAA CAAGATGATT ACAAATGAGT GATCACTAGT AATTTGCACA ATTGTCTACT	600
45	ATTAATACAT AGGCTCTAGA ATCACCGACA TTTGGTATCA CAACTGATTT	650
	(2) INFORMATION FOR SEQ ID NO:80:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 524 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
55	(D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: Genomic DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:	
	CACCAAGAAC TTACTTATAT TTTAGACAAC ATAAAAGGGA ATAATAATTA TGGTAAGGAA	60
	TTTGTTGCAA CCGNTGAAGA AACATTCGAC ATTGAATAAA GCGGGGTGAA GCACTATGAA	120
10	TCAATGGGAT CAGNTCTTAA CACCTTATAA GCAAGCGGTT GATGAGTTGA AAGTGAAACT	180
	TAAAGGCATG CGCAAACAAT ATGAAGTTGG TGAACAAGCG TCGCCAATAG AATTTGTTAC	240
	TGGTCGTGTT AACCCGCATC GCTAGTATTA TAGATAAGGC AAACAAACGA CAAATACCAT	300
	TTGGATAGGT TAAGAGAAGA AATGTACGAT ATCGCTGGGT TTAAGAATGA TGTGCCAATT	360
15	GGTAGAAGAT ATTGATGTTG GCCGCCAATA TTTTTAAGGA CAAAGAAAAG ATTTTAAAGN	420
	TATTGGAGAC CGAGATTATT TCCCGNACAC TAAAGGAAGG TGGGTACCGT CCGCTTCANG	`480
	TCAATATTGG ATTTCCCAAC TGGACCAATA CAAGGCCAAA ATTT	524
20	(2) INFORMATION FOR SEQ ID NO:81:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 751 base pairs	
25	(B) TYPE: nucleic acid	
23	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
35	CGTCTATCAT TGTTAACATA TATAGCACCT TCCTTATTTT AATGTTGTTT TAGTTGAATG	60
	ACAGTAAAAA GGTTGTTAAG ATACTCATAC ATTTTTATGT GTAAATATCT ACAAAGTTAC	120
	CCANCTACTG ACAATGTTTA TTTNAGATAG TATATGTAAA TTCACAGATA TGCTAATTGC	180
	TTAAAAAATG ATTAAAGTGT TGGCTCCAAG CAATGATACT TTAGAAATTT ATTTATCATC	240
40	TNGACTTTAA AAATTATATT ATAAATGACG TAACTGACAA CAGATATACT TAGTAATGAA	300
	GATGTGTAAT GTAATTGTTT AAAATTGATC TCCAAGCAGA TTTTATTTAT CATTTAATTT	36
	AAATAGCAAG TGGAGGTACA AGTAATGAAA TTTGGAAAAA CAATCGCAGT AGTATTAGCA	42
	TCTAGTGTCT TGCTTGNAGG ATGTACTACG GATAAAAAAG AAATTAAGGC ATATTTAAAG	48
45	CAAGTGGATA AAATTAAAGA CGATGAAGAA CCAATTAANA CTGTTGGNAA GAAAATTGCT	54
	GAATTAGATG AGAAAAAGAA AAAATTAACT GAAGATGTCA ATAGTAAAGA TACAGCAGGT	60
	TCGCGGTNAA AGCAGTAAAA GATTTAATTA AAAATGNCGA TGATCCGTCT TAAAGGAATT	66
	TGAAAAAGAA GAAGACGCAA TTAAGAANGT CTTGAACAAA GACTTTAAGA AAGCAAAANG	72
50	TACGTNGGGA TAACATGATA TGATGTTAAA C	75
	(2) INFORMATION FOR SEQ ID NO:82:	

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 785 base pairs

55

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
5	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
	CCTTTGTTTA NCATCCTTAG TCAGTGTCAT AAGGTTGTCC CATCAGAAGG TAGNCCCCAC	60
	AATAGTTGAA ATCCTCCCAC AATAGGGGTA GNCTCCTGCA TCTGTAAATA CCTACTGGNN	120
15	TGCCANATAC TTTTTCTGCT GGTGTGTCAA AGAAATTTGT TGTTCCATTT GAGAGAACAC	180
	TAATAATTTT GACATAATCT GCATATCGCA TATAAATTGT TGCGTTATCA CGATAATCTT	240
	CATGTAAATC TGCTAAAGCG TTAATAATAG CATCATACAT GTCTGCTCCC NCAACTTCTT	300
	TAACAGATCC ATTATAAAAT GACATGTGTT CTAATCCAGA TTTAGGACTT ACTGCTAAGG	360
20	CATCTTTACG CTCTTTAGCT GCTAATCCTG ATTGTAGTGC GTTTTCAACC CAGTTTACTA	420
	AATCTACATC TGATCCATGA ATTACAGTAT CTGAAATTGC AGCAAATACT TTGAANTTAT	480
	TAAGTAGTGA ACTTGACTGT ATCACCTTGT GCTTTTAATT CTTGTGCTGT NTCTACGTCT	540
	GTAATGAAAT CATCATCGTC TAAAGTGTAT GAAACTCTTG GAATCTCTAA ACCTTTAATG	600
25	TTAGNTAGAC GAGCTTTTAC ACGTAATTGG GTTTNNAGCA AATGGCTCTG AAACAATTTC	660
	TTGTAGAAAG TGGGTTGGGG AAGAGCTTAT CTCCACCTGA ATCATTTCCT GTTGGTAAAG	720
	CGTGTAATAA ACGTTGTGCC TCCATTGAAG GTTTTTCAAA TTCATTTGGT AAAATCGCTC	780
	GTGCC	785
30	•	
	(2) INFORMATION FOR SEQ ID NO:83:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 924 base pairs	
33	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(5) 101020011 121100-	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(II) Modecode III & Constitution Constitutio	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:	
	(XI) SEQUENCE DESCRIPTION. BBQ IS NO. 00.	
45	CTTNATAAAN ANCNATCNTA TGCCAATTTG ACCATTGTTT GAATCCATAT ANAAACCGGC	60
	NACGGTTCTT TTCAAATATA ATAGTAAGTG TATAATGAAA ATGTAAATAT TATTAAANAT	120
	GGGGTTCAC TCAATGAAAA TGAAACGTTT TATAGCTATT GTAATGGCAT TATTTTTAGT	180
	ATTAGNTGGT TGCTCTAATT CTAACGATAA TAATGAAAGT AAAAAAGATG ACGCAGACAA	240
50		300
	TGGTAAGAAA CAAGAGATTC AAGTTGCAGC GGCAGCAAGT TTAACAGATG TAACCAAGAA	360
	ACGAGCTTCA GAATTTAAAA AAGAGCATAA AAATGCTGAT ATTAAATTTA ACTATGGTGG	420
	ATCAGGGGCA TNAAGAAAAC AAATTGANTC AGGCGCACCN CTTGTTGACG TATTNATGNC	480
55	TNCCNAANTN CTAAAGATGT AGATGCATTN NNAAGACAAG GAATNNAGCG CATTTGATAT	540
	CARAGNARA TOCCOMMINAT ACTUTACTAT TAATTGGTGA TAAAAGATTC AAATTACACT	241

	TCAGTAAAAA GACTTAAAAG NCAATGATAA ATTAGCATTA GGTGAAGTGA AAACTGTACC	600
	AGCAGGAAAA TATGCGAAAC AGTATTTAGA TAACAATAAC TTATTTAAAG AAGTCGAAAG	660
5	TAAAATCGTT TATGCTAAAG ATGTAAAACA AGTATTAAAT TATGTTTGAA AAGGGTTAAT	720
	GCGAAACAAG GTTTTGTGTA TAAAACTGAC TTATATAANC AANNCNNAAA AATTGATACT	780
	GTAAAAGTAA TTAAAGAAGT AGAACTTAAG AAACCAATCA CATACGAAGC TGGTGCTACA	840
	TCAGATAGTA AATTANCAAA AGAGTGGATG GATTCTTAAA TCAGATAAGC TAAGAATATT	900
10	AAAGATACAC TTTGCAGCAT AAGA	924
	(2) INFORMATION FOR SEQ ID NO:84:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 536 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:	
	GGCACGAGCT CGTGCCGAAC TTACGGCACG ACGCGATACN ATAAATACAT TTGTTACAGT	60
	TACGCTACTA ATCGTTTGTG CTACATCTTT AAAATCAACC GCAATACCTT TGTGTTTGTG	120
30	AAGTAACGTG TTTAACTCTC TCGTTTTAGA TAATAAGCTC ATGAATTTCT CTCCTTGTGT	180
	ATATTTTTAT AGAATAAATG CACTTAAATC TTTATNTGTT GAAATTGATT TTAATTTATC	240
	ATCAACATAT TGTGGGGTAA TATCTACAAC TGCATTCGGC ATACTTGGTG CTTCGAATGA	300
	TAAATCTTCT AGCATCTTNT CTAAAATTGT ATGAAGTCGA CGGTGCAACA ATGTNGTCTT	360
35	GTATCTTGGA TTCACTTGGA TAAGCAATCT CAAGCTTAAG GCGANTAATT GCTTCCATCG	420
	GGTAAAGTTT ACAGGNAACT TCTTCTTNTT TGGGAGCAAT GCTTCATATT TGGNNTAATT	480
	AATGACAATG TGGGGTCTGG NCAAAATTCT TACAAAATCT TCCTNCCCGT TANCTA	536
40	(2) INFORMATION FOR SEQ ID NO:85:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 802 base pairs	
45	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:	
55	CTACCTTCAT GTTTTGTAAA GTTGATTAAA GCATTCATTG CTTGTGTATC ACTTGCATTT	60
	TCAAAAGTTA CTCTACCAAT GTCGTGGTAA TAAGAATGTT CAGGCCCAAT ACCAGGATAA	120

	TCAAGTCCTG CTGAAATAGA ATGTGCTAGT TGCACTTGCC CACCTTCATC TTGAATTAAA	180
	TACATTTTAG TACCATGTAA TACGCCAGGT GATCCTTTGN CAATTGCAAG TGCATGTTTA	240
5	TCAGTATCCT CGCCTTGACC TGCGGNTTCA ACACCGNATT AATGCAACAT CATCTTTAAT	300
	AAATGGATAA AAGGCACGAG ACCGATTGCA TTTGAGCCAC CACCGATACA TGCTACAATT	360
	GCATCCGGAA GTCGACCTTC TTTCTTCAAT ATCTGTGATT TNATTTCTTT ACCAATGACA	420
	CTCTGAAAAT CTCTAACAAT CGTTGGGAAT GGGTCTGGAC CTAATGCAGA ACCTAATAAA	480
10	TAATGTGTAT CATCTACATG ACTTACCCAA TATTGCAATG CTTTATTAAC TGCATCCGAT	540
	AAAGTCCCTT GANCTTCTAC AACTGCCACA ACCCTTNGCA CCAAGTAATT CCATTCTAAA	600
	TACATTAAGT TGGTGTCTTT TAATATCTTC ACTTCCCATA AAGACAACAA GTTCCATATC	660
	AAATAATGGA GGAACCGGAG GACTAGCTAC AACATGTTGA CCCGCACCAG TTTCAGNAAC	720
15	AAGCTTCTTC TTGGCCATTC TTTTTGCAAG CAACGGTGAC TAACGCATAT AATTTATGGC	780
	GCCGTATGAT TAGATCCTCT CG	802
	(2) INFORMATION FOR SEQ ID NO:86:	
20		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 662 base pairs	
	(B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:	
	CTATTCTTCT ATGTCTTTGA CAAGCGCGAA TATTTTTCGT CGTTGCTTGC CGGTAATTTG	60
35	AAACGGATCT ATGACGCTTA CATCGACTTC CACATCAAAT CCGTTATCAA GTAGTAATGT	120
33	TTCTTTATTG CCTAATTCAA CACCCGAGAT GACAACTGTT GNTGTACCGN CATCTTGAGT	180
	GATATAACTA GTAATTATTG GCATCTAATC ATTCCAATCA GAACGGGAGG TCTGAAAAAT	240
	CTTCTTCACT ATTGTCAAAC GGATTATTGC CAGTTTGAGC TTGTCCTTGT TGTTGATAAT	300
40	TGTTGTTTTG NTGTTGGTTG TTATTCTTCG GTTCTAAGAA TTGAACGCTG TCCGCTACTA	360
 -0	CTTCTGTCAC AAATACACGT CGCCCTTCTT TGTTATCGTA ACTGCGTGAT TGTAAACGTC	420
	CATCAACGCC AGCCAATGAC CCTTTGGATA AATAATTATT TACATTTTCT GCTTGTTTTC	480
	TAAAAGTTAC ACAGTTAATA AAGTCTGCCT CACGTTCTCC TTGAGCGTTA GTAAATGTTC	540
45	TGTTAACTGC GATAGTGAAA GTGGTNACAC TCACACCATN TGGGCGCTGT TCTATATTCT	600
+5	GGATCTTTTT GGGTAAGCGT CCCACTTAAT ACTGTTCTCG TNNTAACATT ATTTGNTTTC	660
	cc	662
50	(2) INFORMATION FOR SEQ ID NO:87:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 656 base pairs	
	(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: single	
	···	

	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:	
10	CTGGTAAAAC AACATTAACA GCAGCAATCG CTACTGTATT AGCAAAAAAT GGTGACTCAG	60
	TTGCACAATC ATATGACATG ATTGACAACG CTCCAGAAGA AAAAGAACGT GGTATCACAA	120
	TCAATACTTC TCACATTGAG TACCANACTG ACAAACGTCA CTANGCTCAC GTCGNCTGCC	180
	CAGNATCCCG CTGACTACGT TAAAAACATG ATCACTGGTG CTGCTCAAAT GGACGGCGGT	240
15	ATCTTAGTAG TATCTGCTGC TGACGGTCCA ATGCCACAAA CTCGTGAACA CATTCTTTTA	300
	TCACGTAACG TTGGTGTACC AGCATTAGTA GTATTCTTAA ACAAAGTTGA CATGGTTGAC	360
	GATGAAGAAT TATTAGAATT AGTAGAAATG GAAGTTCGTG ACTTATTAAG CGAATATGAC	420
	TTCCCAGGTG ACGATGTACC TGTAATCGCT GGTTCAGCAT TAAAAGCTTT AGAAGGCGAT	480
20	GCTCAATACG AAGAAAAAT CTTAGAATTA ATGGAAGCTG TAGATACTTA CATTCCACTC	540
	CAGACGTGAT CCTGACAAAC CATCAAGATG CCAGTGAGAC GTATCTCAAC ACNGTCGGGG	600
	TCTGTTGGTA CAGGCCCGTT GACGTGGCA ATCAAGTGGT GAGGAGGTGG GATCAC	656
25	(2) INFORMATION FOR SEQ ID NO:88:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 390 base pairs	
30	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:	
40	GAATGCCCAC ANAATGATGC TGGCAATGAT TTTCACTTAG TTATGAGCGG TAATGAATTT	60
	TGCGGTAATG CGACGATGTC ATATATACAT CATTTGCAGG AAAGTCATTT GCTTAAAGAC	120
	CAACAGTTTA AGGTGAAGGT ATCTGGCTGT TCGGATTTAG TGCAATGCGC AATTCATGAT	180
	TGCCAATACT ATGAAGTTCA AATGCCACAA GCCCATCGTG TTGTGCCAAC AACAATTAAT	240
45	ATGGGTAATC ATTCATGGAA AGCATTAGAA ATTATTTATG AAACATATTG TACATTATGT	300
	GATTCCNAGC TAAACAAAGT NACAACTTGA AATTCAACAT TTGGNTGGAA GCATTTGTGC	360
	CGTTGANCAA CAAATGGAGT CACAAATATT	390
50	(2) INFORMATION FOR SEQ ID NO:89:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 423 base pairs	
55	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	

	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:	
10	GGNACGAGCG CATNATTAAA AACATATCAG GTTATGTATG CGCATAAAAA ACAGCCTTGA	60
	AAAACCTTTA TAAATCGGAT TTTCAAAGCG TGTTTTGAAA GGTATTTAAT TAAAACTAAG	120
	CATGTTGATG TAAATCATCA AAGTTTGTTA AACGTTGTTG CCACTCATTA TCACTAATAT	180
	TATTTGCTTG AACATAACGA TTACGCTCAT GTTTAGCACA TTCATAAGAG CATGCACCTA	240
15	AATATTTAGT TTCGNTTTCT TCAGAAACTA ATATTTGTTT ATTACATTCT GGGTTAGCGC	300
	AATTAATATT AACGNTCACA TGGGTTTGGC ATCAAAACCC AATCCTTACC AATAATTGTT	360
	TTTTCAACTT GGGTTGATAT CAACACTGAT ACGGATCAAC AANTTACAAT ACAATTTNAC	420
	CCG	423
20	(2) INFORMATION FOR SEQ ID NO:90:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 891 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:	
35	TTGGTGCACC ACCTCAAAAC TTTGGTACCA TTGATGCATT GTACATTAAT TGCGCCAAGT	60
	TTTTGTTAAT GCCACCAATG ATTCAGGTAA TAATTGTCCC AAAAGCAGCA GTTACAATTA	120
	AATCTACATC TAATTGAANC AATTGTTCTA ATTCTTCTGA TCCACTTAAT TTTTCAGGCT	180
	GATATACAGG TAAATCATAT TTCATTNCAA CTTTTTTAAC TGGTGGTGGT GTCATAACAC	240
10	GTTTACGTCC AACAGGTCGA TCTGGTTGCG TTACGACTGC AATGACATCA TGTTCTGCAA	300
	TAAGCATTTC TAAAACAGTT GTTGAAAAGG CACGAGTACC CATAAATATT ATTTTAGTCA	360
	TTTATAAAAT ATGCCTCCAC TTCTTTATCT GTTAAAATAC GGTCCGCACG TTCNGTAAAA	420
15	GGGAGACCGT TCATTTGATC TATAATATGC AAAATCATTC TTGCTACATC TTCATGTGCA	480
,5	GTTAGTTCAA CTTTGTTCCC ATTGACGTCA TAACTTTCGA CAACTATCAT TTTACTTCTT	540
	GTCACTTCGC CGTAAACATC TGGCAATGTA ATTGAACCTT CTAAGTCTGT TATTGTTTCA	600
	TTTGATTGAC TAATAATTTT CGGATTAACA AGTTGGTAAT AATCCTTCCA TTTCCATATT	660
50	CAATAATTGG CACTTGGCAA TGACTTGATT AATTTGAGGG TGCACATAAG CCAGCAGCTT	720
,,,	CTTGGTGCAT ACATTGGTAT CTTCTTAAAT CTTGGTAATA ATCTTTTTTA CGAATCACAA	780
	TTGTTTTAAC TTGCTTGCGC TTTTTCCGGT TAAATAGGAT GCGATGCTGG GTACTAACTT	840
	TTTTAATCGC CAATACTCTT ACTCCTCAAT AAATCAATCA ACTATATACC G	891
E		

84

(2) INFORMATION FOR SEQ ID NO:91:

	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 652 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
10		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:	
15		
	GGCACGAGCT ATAAATCCAA TGATGAATTG TAAAAGTGAA TAATTGAGAA AAAGGTTAAT	60
	ATCAAATTTT GGTGTCATCA TTAATGTAAG TTCCTTGGCT AACGTTGAGA AAGTTGTTAA	120
	GCCACCTAAA AAACCGGTGA CAAAGAACGC AGGGAACCAT GAGATTGAAA TTGATAGGCC	180
20	TATAGTTAAT CCAATTAAAA AACTACCAAC TAGATTTACT ATCAATGTTG CGATAGGTAA	240
	CTTTGAAGTA AATTTATGAT TAAAATAATC AGTAATGGCA CTTCTAGCAA TTGCGCCAAA	300
	ACCGCCGCCA ATCATGACTA AAATGATTGA TATCATGATA AACCACCACC TAGTTTTATA	360
	CCGACGTAAC ATAACAAAAT CCCAAAGACA TAACTTGTTA CAGCATATAG TAGTAAAGTT	420
25	ATAAATTGTT GATGATCAAA CATATGTATT AATTCTTAAT TGAAATGTTG AAAAAGTCGG	480
	CTAAAGCACA AGAAAACAGT CGTAATAGCT TTTTTTAGGG TCGGATGGTT TGAAAAAATG	540
	CAATCGTTAA GCTGTTAGCA TCCCATTACA AAGGCACCAG TCAATGGTAT CAGTGTCCGA	600
	TGGAACTCCG CAGTATCAGA AAGATGAGGT ACGTATAAGG CTAAGCACAC CG	652
30		
	(2) INFORMATION FOR SEQ ID NO:92:	
	(1)	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 1142 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
40	(iii) MOT DOWN D. MIND. Garanti - man	
	(ii) MOLECULE TYPE: Genomic DNA	
	(wi) CROUDICE DECORTONION, GROUP NO 02	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:	
45	CARACCARCO CONCORDO ORGA CHOA CHOA CHOA CARACCAR CARACTER TO CARAC	
	GAAACCATCC CCNCGTGCTC GTCACTGATT GTTCCGCCAC CACCTTGTGT TCCACCACTT	60
	GATTTGATCA GCAGGATTGA AAGTACCTCT NCCACAGTAA TACCCATTAT TAGTCCCACC	120
	AAAACCTGTA CATTACCTGC TGATGCTCCT TTCACCCATG GGCTCGTATT ATNACGACGT	180
50	GTAAATGTCG TNACCACATT TCCATTACGT TTAATAACTA ATTTGTCAGC ATATGTCGTA	240
	ACATTACCAG CATGAGTATT GACTGTTTGG TTCGCACCAG GTGCAATTGT AATCGCTCCT	300
	GCCGCTGTTT CAGTGACAGT TGGTTTCGCT GGTTGAACAT CTTTTACTAC AAATTTCGCT	360
	GGTAAAGATG TTGCAAATGT ATGTCCATTA TAGATGACAT CATATTTTGC ATTAACGACT	420
55	TGTGCAGTAT TTGGTTATT CATTGCTGCC CAGTTTGCAT CGTTTGTACC CGTAGTATCA CGATTCCATT TATACGTAAA TCCATCTGTT GGTAAACCTG AAGCGTTTTG CATATGTGCA	480
		540

	TATCCTCATC CTTCCCTACC ACCTCCCTAAA CTCCCAAAA CTCCCAAAA CTCCCAAAA	
	TATCCTGATG CTTGCGTACC ACTTGCTAAA GTGCCACCAA CTGTTGTTGT ATAAGTAGTT	600
_	TGAGGGAATT CCAAATTGAT ATACGTTCAC AGTTACAGGA ACTCGTTTAG CAGCTGAAAT	660
5	ACCTGGATAT GTGACATCGA CATTTAAATG TTGAACGCCT GCTTGCTGGT TATTTGGTTG TTGTCTATTT GCCCATGCTG CTGTAATACC ATTCGTATTA GTATTTGGAT CAAATGTAAT	720
		780
	GTAATCAATA GCGTTTGTAC CATGTGTCAA ATTTTGACCT TTCACATCAC GTGATGGCGC	840
	CTTAGCATTA GCAACTGGAT AAACTTTGAC TGGAACTTCA ACATTACGCG TACCTTGACC	900
10	ACTAGGTAAT GTTACAACCG CAGTTTTATG TGTGTTGGCG ACTGTATTCT TCCATGTATC	960
	TGGACTATCA TGCCATGCGA CCGCTGGCCC ATGTGGNGGA TTTTGGAATA AATCGTCTTC	1020
	ATGACCGAAA TCAAAACCGN CGCACCTTTA ATAAATACAG CGCTTCAGTA GTTGCTTGTA	1080
	TTGTGGGGTT ACTGTACAAG AAGCACTATC ATTTGATCAC AGATCAATCT TGGTNNTNGA AC	1140
15	AC	1142
	(2) INFORMATION FOR SEQ ID NO:93:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 605 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:	
	GGNANTNGAG GAANCAAANC NGCCCTTCNA CNCGGATTAA AACCTGTTNG AANCTGNNGA	60
	AGNGTGGGNC NAANNCCTTG ANTGCAAGGT GCGANGGNCG NNTGCAAGNT GTNNAACNGC	120
35	NNGNGANCGN TTGNCNGTGC ANTGNNCAAG ANTGGTGAAA ACCCNTGTGN TANATTGTGC	180
	GNCCNNCTTG GTGANGNTGN GTTGNGCNGN NTCTTCAGNA GTCGCANCTG CAGNGTGTCC	240
	NATAAGCGCT NTNTGNACGG TTGCTGGTGT TGCNNANTCA TCTATCGCAA CATCGNTAAT	300
	TGTTGTATCT CCAGTAATAC CTTGAATATC AGCAACTGCT TGATCATTAA TTTGCGTAAC	360
40	ATCATTAGTT GNTTGTGCAN TTAAGATATC TTGANACGCT TTTTCTTTAG CTTNTAAAAC	420
	TAAATCTTTT GCTGCATTTT TCTCTTCAGT TGTAGCGCCA GTTGTATTAT CAATTGCTTG	480
	ATTTTGAGTT GTCACAGCTT GATCAACTTC ATTTTTCGCA TTCGATTTAA CTGCTGNTGC	540
	TGGTTGTGTG CTTTGAATTA NAGAAGACTC AAGCTTGCAT GCCTGCAGTC GACTCTAGAG	600
45	GATCG	605
	(2) INFORMATION FOR SEQ ID NO:94:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1778 base pairs	
	(B) TYPE: nucleic acid	
	,-,	

(C) STRANDEDNESS: single(D) TOPOLOGY: linear

55

(ii) MOLECULE TYPE: Genomic DNA

5

45

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

	AAATTCATAA TAAAGNCT	TT TGNCATTAAA	GTTNNAAAGA	AGATAAAGAA	NCTGCTNNAA	60
	ATTGACGTAT CNNAAAGA	ag taaaagaagi	TTAAATANTC	AAATAATAAA	TCNACAACAC	120
10	AAGANATTTC TGAAGAAC	AA AAAGGTGAAT	' ATCAAAGAAA	GTCAGAGGCA	TTAAAAGAAA	180
	GATTTATAAA CAGACAAA	AA TCTAAAAATG	AGTCTGTGGT	TTCACTAATC	GATGACGAAG	240
	ACGACAACGN AAACGACA	GG CAACTTGTGG	TTTCTGCGCC	ATCAAAGAAA	CCAACAACAC	300
	CGACTACATA TACTGAAA	CA ACGACTCAGG	TANCAATGCC	TACAGTTGAG	CGTCAAACTC	360
15	AGCAACAAAT CGTTTACA	AA ACACCCAAAA	CCATTAGCTG	GATTAAATGG	TGAAAGTCAT	420
	GATTTCACAA CAACGCAT	CA ATCACCAACA	ACTTCAAATC	ATACGCATAA	TAATGTTGTT	480
	GAATTTGAAG AAACGTCT	GC TTTACCTGGT	AGAAAATCAG	GATCACTGGT	TGGTATAAGT	540
	CAAATTGATT CTTCTCAT	T AACTGAACGT	GAGAAGCGTG	TAATCAAGCG	TGNACACGTT	600
20	AAGAGAAGCT CCAAAAGT	TA GTTGATAATT	TATAAAGATA	CACATAGTTA	GAAAAGACCG	660
	ATTAAATGCA CAACAAAA	G TAAATACCTT	AAGTGAAGGT	CATCAAAAAC	CGTTTAATAA	720
	CCCAATCAAT AAAGTANC	A TGCCAATAAT	ATTAATGCAT	GGCTGCAAAG	CAAATAATGA	780
	GTTTGTCGTA AAAATACC	A CATTTAAACT	AGCAATAAAT	AATATCCAAG	TCATCATTTC	840
25	ATTGATGCAA TCTAGTAT					900
	TTATATTACC GAAAAAAT	A TTATGCTTAA	CTATCAATAT	CAATAATTAA	TTTTAAGCTG	960
	AAAAACAATA AAAATGTT	A GACAACGTTT	ACTTCAAGTT	AATTATTATA	CTGAAAATTC	1020
	TGGTATATAA TGCTGTTAG	T GAATATAACA	GGGAAATTAT	ATTGGTTATA	ATATTGAGTC	1080
30	TATATAAAGG AGAAATAAG	A GATGAAAAAG	AAATTATTAG	TTTTAACTAT	GAGCACGCTA	1140
	TTTGCTACAC AACTTATC	A TTCAAATCAC	GCTAAAGCAT	CAGTGACAGA	GAGTGTTGAC	1200
	ACAAAATTTG TAGTTCCAG	A ATCAGGAATT	AATAAAATTA	TTCCAGCTTA	CGATGAATTT	1260
	AAGAATTCGC CAAAAGTAA	A TGTTAGTAAT	TTAACTGACA	ATAAAAACTT	TGTAGTTTCT	1320
35	GAAGACAAAT TGAATAAGA	T TGTAGATTCA	TCGGCAGCTA	GTAAAATTGT	AGATAAAAAC	1380
	TTTGCCGTAC CAGAATCAA	A GTTAGGAAAC	ATTGTACCAG	AGTACAAAGA	AATCAATAAT	1440
	CGCGTGAATG TAGCAACAA	A CAATCCAGCT	TCACAACAAG	TTGATAAGCA	TTTTGTTGCT	1500
	AAAGGCCCAG AAGTAAATA	G ATTTATTACG	CAAAACAAAG	TAAACCACCA	CTTCATTACT	1560
40	ACGCAAACCC ACTACAAGA	A AGTTATTACT	TCATNCAAAA	TCAACACATG	TNCATTAACA	1620
	TGTNNATCAT GCAAAAGGA	т тсттттаата	NACACTTTAT	TGTTACACAT	CAGACTCGCC	1680
	TAGATATACA CATCCATCT	C AATCTTTATT	ATCAAGCATC	ATGTGCAGCT	CCTGGATATC	1740
	ACGCGCATAA TTTGGTACA	C AGGGCATGCT	AGCATTAA			1778

(2) INFORMATION FOR SEQ ID NO:95:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1568 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	95 :	••.	
5							
	GTGCTTTTGT	TCAAGCTTCT	GATCAATTTT	TTATCGTCTT	TTGTAATTTC	GCGAATGTCT	ϵ
	TCAAACATTG	ATAAGACAAT	CTGACCCACA	TTTTGTAATT	CTTTTTGAGT	TTCTTGTAAT	12
	GCAACACCAG	GTGCGTGATA	AACAAGATCT	TTGTGTAAGT	GCTGAGGNNT	ATAGTCANCA	18
10	GCNATATCTT	TACCTGGGAC	AAGCTTTGTA	NCTATCCATG	CTAAACCTGC	TACANATGGT	24
						CGTCATCGCT	30
						TGGCAAGAAA	36
	ATTGTGNAGA	TAATTACCCC	GANTAAATTA	AAGATGACGT	GTACAAGCGC	CGCACGTTTT	42
15						AGACAATGTT	48
	ATCACCTAGG	AACACAGGGA	TIGCIGCGIT	TNAGCTGATT	AAATCTTGTT	GATAAAATTC	54
	TTGTAAAATA	CCAATCGNCG	GACTTGAANT	GTTGANCTAG	TGCTGTTACC	CCTGCGCCGA	60
	CAATGACACC	AAGTATTGGA	TGTGATGACA	ATATCAAGCA	TTAATTGNTT	AAAATCCATC	66
20	TAATGATGCT	AAGGGGTTTA	NCGGCATCCA	CCCCATAAAT	TCTAAGACCG	AAGAAAAGAG	72
						AAAAGAAAAA	78
	GATTAAAAAT	GCACCTAATG	CTAAAATTGG	CATTTGCATA	TTCGCCTAAA	TCTAATNCCG	84
						AATAGCTTGT	90
25						ACCTGAACTA	96
						ATTTGATGTA	102
						GTCTCCCATG	108
					AGGAGAAAAT		114
30					TTTAGATTAT		120
						TTGTANATGA	126
	CTTGTAAAAT	ATCGTCACTT	ATTATGTNAA	TTTTCAGTGT	GAAATGGCAG	GTNTGCAATA	132
	ACGTGTTTAA	CAAAATGATG	CAATCAATCA	TGTAATTATG	TTTCATCAAA	AAAATCATGT	138
35	GAGTGGGATA	ACGAAATAAA	GTTTGTGAAC	ATATCATTTC	TATCCCACTC	CATGATTTGA	144
-	AATCACCAAA						150
	TGTCTCAATG	TACGTACCTT	TTATCTTTTT	AAGGAATCCT	GCTAATGCGA	GTTTCTGCAT	156
	TTTCGAAT						156
10							
	(2) INFORMATI	ON FOR SEQ	ID NO:96:			
	(i) S	EQUENCE CHA	RACTERISTIC	:S:			
15	(A)	LENGTH: 13	17 base pai	rs			
	(B)	TYPE: nucl	eic acid				
	(C)	STRANDEDNE	SS: single				
	(D)	TOPOLOGY:	linear				
50							
	(ii)	MOLECULE T	YPE: Genomi	c DNA			
	(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:9	6:		
5							
	ACCCCATTGA 1	TTCCTGAATC	CCCTGAAAGA	AGTTGAATCA	ССТТСААСАТ	ССТСАТТССМ	60

	CCTGTACTTT GTGAACCCAC TGAAACTTAT TGAAGAAGAA TCCCCTGANC CTGTCTGATG	120							
	TTGATAATGA TGCCGACACC GATGTGCTTT GTGATGCCGA TGTACTAGCA CTCATTGACA	180							
5	TTGATGTTGA TATCGATGTA CTTAAGGAAC CAGATGCACT TGTACTTGTT GACTGCCTTG	240							
	TGACATTGAA TCACNTAATG ATGTAGATGT GCTTGTTGAG CTCGAGTCAC TTACACTTGT	300							
	TGAACCTGAT ATTGAGTCAC TTAAACTTGT CGATGTTGAA ACTGATACGC TTCCGCTCAT	360							
	TGAGTCAGAT GTTGAAAGTG ATGTACTCGT TGAATTTGAT CCACTGATGT TAGACGAATC	420							
10	ACTTGTAGAC ATTGAGTCGC TTTCTGATGC ACTGATGCTC ATAGAGTCAA ATTGACTATT	480							
	ACTTGTTGAG CTTGACTGCG AATCGCTCAC ACTTGTTGAC GTTGATTCTG ATCCACTCAA	540							
	ACTTTGCGAG CTACTCAATG ATTTTGAATC ACTTAATGAA TCCGAAGTGC TAAGACTTGT	600							
	GGAACCACTT AAAGATATTG ATCCACTTAA TGAGTCGGAG TCACTTGTAC TAGTAGAATC	660							
15	ACTCATTGAT ATTGAATCAC TTAGCGAGGT AGACTCGCTT ACGCTTTCTG AACCACTTAA	720							
	TGATGTTGAG GTACTCAATG AACCAGATGT ACTTGTTGAA GTCGAACCAC TTGTTGATTT	780							
	TGAATCACTT AATGAATCAG ATTCACTCAC GCTTTCTGAA CTTCTTAGTG ACGTCGATAC	840							
	ACTTAATGAT GACGAATCGC TTGTGCTTAC TGAATCGCTC ATCGATTGTG AGCCACTCAA	900							
20	TGAACTTGAC TCGCTTACAC TTTCTGATTT TCTTAATGAC GTTGAGACGC TCAATGAGCC	960							
	AGAATCACTG ACACTTGTTG AGCCACTCAT CGATTTAGAG TCACTTTCAG AATTAGATTC	1020							
	ACTTACACTT TCTGAATCAT TTACAGATTC TGACATACTT TGTGAATCAG ATATGCTTGC	1080							
	GCTCATTACT TCACTAGCCG ATGTTGATGT ACTTGTCGAA TCACTTAACG ATATAGATAC	1140							
25	ACTCATCGAA CCAGATGTAC TCGCACTTGT TGAGTCTGAT GTTGAATCAC TCACACTATC	1200							
	AGATAATGAC GTTGAATCAC TCATACTTGT TGATGTACTT GTTGAAAGCG ACATACTTTG	1260							
	TGAATCACTA GTACTTGTAC GCATCGAAGT ACTAGTTGAC AGCTGATGTC TCGTGCC	1317							
30	(2) INFORMATION FOR SEQ ID NO:97:								
	(i) SEQUENCE CHARACTERISTICS:								
	(A) LENGTH: 2146 base pairs								
35	(B) TYPE: nucleic acid								
	(C) STRANDEDNESS: single								
	(D) TOPOLOGY: linear								
40	(ii) MOLECULE TYPE: Genomic DNA								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:								
45	CCCAAATTGG CGATAGCTAA TATTTGATAA TGATGCGCAT TTCATACAAT TTGTGACTTG	60							
	GCAATTATTG AATATTTATA TAATTTTTTC TCGTAATAAA CACAACTTTG ATAGCGCTAA	120							
	AACAGCTGTG TTAAGTTATG AGTTAACGAA TTTAACACAT TTTACTAGGG CGGCATTTAA	180							
	GAATATTTAT ACGTTTTTAN CGAATATTTA TTTATTGTAA NACGCTACCA AAAAGTTAGA	240							
50	CTTCCTTCCC ACTAAAGTNC CACTTTTTC TTTCAACTTT TTTAANAAAC GGATATGCAA	300							
	CTTTTAGTAT TGGTATCAAA ATGATTGTTA GGTCATATTC TATCAATATA TTTTTCTAAA	360							
		420							
	GAATTGCTTT TATTAACTTT CAATTATGTA CCTAACCTAA	420 480							
55									

GTTTGAATAA GTGTTGTATA AATAGACCAT CGACTAAAAC GTCAATGTAT GATAATAACT 600

	CTCGACGTTC	TGTACAATCA	TTTGCTAAAT	ATTCATATAA	AAATCCAGTC	CATACCCAAA	660
	TTGTCTTTGT	ATTTCCAAAA	CGTGCTCGAA	ATGCTTTGAC	AAGATTTAAT	GTAATATCCA	720
5	AATTACAAAA	TGGTTCGCCA	CCTAATAGAC	TTAGCCCAGA	TATATAATCA	TGATCGCAAT	780
	CATCTAATAT	TTCTGCTAAT	ATTTCATCAG	TGTATTTCTC	GCCATATCTG	AACTTTTGTG	840
	AGGCTTTGTT	ATAACATCCA	ACACAATTAA	ATGGACATCC	TGATACATAA	ACACTGCATC	900
	TTACTCCTTC	ACCGTCAACA	AAGCTATTTG	AATCCTATTT	TAGCAATATA	ACCTTGTCCT	960
10	TGTTTAATGT	CCTAAAAGTG	TCATCCTTTA	GGCGCCTTCA	TATGTTTTAC	TCGTGCGCAA	1020
	ATTTCTTTAT	GACGGCCTTT	AATTACTGGA	CGTTGAACTG	GATTGCCTAA	GTAACCCACA	1080
	TGTTCGTTTA	ACGACATCAA	CTGTTTTAGG	ATTATCATTG	NCACAAGTTC	GGGCATTTAA	1140
	ATCCTTTTTC	AGNTGCTTCA	AAATCTCCAT	CCGNNATCAC	ATTCAATAAC	AATGGANCAA	1200
15	ATCGGNATAT	TTGGNNCCTA	AGGTTAACCA	ACTTNGGCAA	TAAGAGTNGG	GCCCAATACC	1260
	CGNTTCTAGG	GCTTTCAAAT	TGTGTTGCAA	TTTCGGATAC	TCACAATAGT	GAATGAAACC	1320
	ACCACTCGCA	TAATAAGGAT	AATCTTTTTC	AAAATCTAAC	TTTTCAAAAG	GTGTAACATC	1380
	TTTACGTACA	TCATAATGGA	AAGAGTTTTG	ATAATATCCT	TTATCTGTAA	TGTCTTTAAT	1440
20	ATCTCCAAAT	CTCTCTTGGT	CTAAACGACA	AAAACGATCC	GTTAGCGANN	CACTCGGCGT	1500
	ACTCGTAAAT	ACTGANCCAA	ATGTCATATA	ATTCTGNCCA	TNGCGTGTGA	TAACGTNTCA	1560
	TTTCTTTAAG	AATNACAAGC	GTAAATGCTT	GNGCTTCTNG	AGATGTCTCC	CAGTCTGGAC	1620
	CATAGAAAAC	AGNAGCTGTN	TCATACAACC	CTATCTAGCC	CATTGAAATC	GTTGCACGTT	1680
25	TATTTTTAAA	TAACTCAGCA	ACATCATCTG	TTTCTTTTAA	TTTATAGTTA	AAAGCGCCAC	1740
	TTTTATATAA	AATTGGTGCG	TTATTCGGTA	CAGNATCTTT	CAAACGATTT	ATACGATAAA	1800
	GTAATGCATC	ATGTAACACA	TCGATACGTT	CATAAAAGAT	TTCCCAGAAT	TTCGTCATAT	1860
	TACCGGCAGA	TTCTAATGCC	ATTCTAGGTA	AATTAAGTGT	NACAACACCA	AGATTACAAC	1920
30	GACCATTATT	TTCAAAATGA	CCTTCCGCAT	CTTTCCAACT	TGGGTAAAAA	TGAACGACAA	1980
	CCCATTGGNG	CTTTGAAATC	ACCTAATATT	TCTACGAGTT	TGGTCAATAA	TTTAAAATAT	2040
	CTGGATACAT	ACGTTTCGGN	GGAACAACTT	TAATGCTAGT	TGTTTAATGT	CATAGGTCGG	2100
	ATCTTGGGGG	ACTAAAGTTG	GGGTCCCNTC	TCTATTGGAA	ATCAAA		2146
35							
	(:	2) INFORMAT	ION FOR SEQ	ID NO:98:			
	(i)	SEQUENCE CH	ARACTERISTIC	CS:			
40	(A) LENGTH: 1	015 base pa	irs			
	(B) TYPE: nuc	leic acid				
	(C) STRANDEDNI	ESS: single				
	(D	TOPOLOGY:	linear				
45							
	(ii) WOLECULE '	TYPE: Genom	ic DNA			
	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	98:		
50							
	ATTGTCCCAC	ACCATTTACT	ACAAGANACG	AGCGTCCTCC	ACATTGTTAC	NTTGTGCNAT	60
	CAATNCTTCT	NGTTTGTTTT	GAANNNAAGA	CCGAAGCATT	TGTANTCTGC	TGTGTTCGCA	120
	GCCTTGTTTC	GCACGTTCTA	AGGTATTGAA	TACCGTTTAA	TGCAGTATTG	GCTTGTGTAA	180
55	CAGCTTGCAT	TGCTCTATCG	ACATCTGCNT	TAGGTGTATT	TCCTCCAGCT	GTTTTATNTA	240
	AAATAGTTGC	TGCTGCATTT	ACTGCTTGAG	AATAAGCCGT	TCGTTTAGCA	TCATCAGCAT	300

CTTGATAATT	TTGACTTTGT	AACGTCGTGT	CTTTATCACG	AATTGATGTT	TCTAATTGAC	360
CCATAGCACC	ATCTAATTGT	TGCGCTTTGG	CTTTAACTGT	ATTAACACCT	CAACATTTGT	420
TGCTNGTGTA	ATTTCATTAT	CTAACGCATT	ACGTTGTGCA	TTATTAATGT	GTGTTAATGT	480
ACCTAACGTT	TGTTTCGCAG	CAGCTTTAGC	TTCATTTAAT	TTCGCATCAC	CGCNCAACGC	540
CGTCTTCGTA	CTGTNCACAT	TGTGTAATGC	TTGNNCAACT	GCTGCTTTGT	CTACATTGTG	600
ACCACTAGCT	TTTGTTAAAA	TTGCTTTTGC	TGCATTTACT	GCTTGATCAT	AAGCTGATTT	660
CTTACTTGGC	TCAGCATCTA	GGTATTTCTG	AGTTTGTTTT	GGTTGTGTCT	CATCATTGAT	720
ACCATTTTGT	AAACTTGTGC	ATTGCGTTAT	TTAATTCTTG	TTGCTTTNGC	AGGTTCTTGG	780
ATTTACACCA	GCTACTGTAG	GTGGNACCAT	CAATGTTAAG	CGTTAACGCA	TCTTTTTGTG	840
CATTGTTAAT	TGATGTTAAG	TTATTCAAGT	TTGTTTTTCG	CTGTTGTCTT	AGCTTGAGCT	900
AAGTTTTGGC	GCACCATTTA	ATGCATGTTC	TTTAGTNGGT	CACTTGTGAT	GTTGCTTGGC	960
GTAATAGTAT	TNGGGNTCCA	TCCNNTGGNT	TCCACGTTTG	GATTAATGAT	TGCTT	1015

(2) INFORMATION FOR SEQ ID NO:99:

20

10

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1550 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

30

35

40

45

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

GGCACCAGCT	AGAGCGAGTT	TTTATATATA	CAACACGAAA	GAAGACATTG	ATCAGTTAAT	60
AAATGCCTTG	AAACAAACGA	AGGAGTTTTT	CTCTTATGAA	TTTTAATAAT	CŤAGATCAAT	120
TATATAGATC	TGTCATTATG	GATCATTATA	AAAATCCTAC	AAATAAAGGT	GTATTANATA	180
ACGGGTCTAT	GACAGTAGAT	ATGAATAACC	CGACATGCGG	TGACCGTATA	CGACTAACAT	240
TTGATATAGA	AGACGGCATT	ATAAAAGATG	CTAAGTTTGA	AGGTGAAGGT	TGTTCGATTT	300
CAATGGCAAG	TGCATCGATG	ATGACACAAG	CTGTTAAAGG	GAATCCANTT	GGAGAAGCAA	360
TCCAAATNGA	CCCAAGGAAT	TTACCGNAAA	TGATGCTTGG	TTGGAAGCCT	ANTGTGATNC	420
AGGGAAGAAT	GGGGAGATAT	TGAAGCATTC	CNGGGTTGAT	CTCAATCCCA	GCTCGTATTA	480
AATTTGTCCA	CATACCTTGG	AAACATTGGA	AAAAGGGTCC	TTGTTCCTAA	AGGAGGGTAA	540
AACAGGAGGG	TCCGGCTTGA	AGAAGAAAAG	ATCCTGTTAA	TCATAAGATG	ATTTTGATAT	600
TAAGACATAT	NNAAGTATNN	NAATTTTTAA	TAAAGATGTC	ATGTCATTGT	AATAAATATG	660
GTTTACATCA	TTGAATTAAA	AACTTACGCA	CCGCCGTTGT	AAATATATTT	TTAAGGAGTG	720
ATTGAAATGG	CTAAAAAAGC	ACCTGATGTT	GGGGATTATA	AATATGGATT	CCCCGCCGAT	780
GATGTATCCA	TTTTCAGATC	AGAACGTGGT	TTAACTGAGA	ATATCGTTAG	AGAAATTTCT	840
AACATGAAAA	ATGAGCCGGA	ATGGATGTTA	GATTTCCGTC	TTAAATCATT	AAAATTGTTT	900
TATAAAATGC	CAATGCCTCA	ATGGGGTGGC	GACTTATCAG	AATTGAATTT	CGATGACATT	960
ACTTACTATG	TAAAGCCTTC	AGAACAAGCT	GAACGTTCAT	GGGATGAAGT	GCCAGAAGAA	1020
ATTAAAAGAA	CTTTCGATAA	ATTAGGAATT	CCTGAAGCTG	AACAAAAATA	TTTAGCTGGT	1080
GTTTCTGCTC	AATATGAATC	TGAAGTTGTT	TACCATAATA	TGGAAAAAGA	ACTTGAAGAA	1140

AAAGGTATTA	TCTTTAAAGA	TACAGATAGT	GCTTTACAAG	AAAATGAAGA	ATTATTCAAA	1200
AAATACTTTG	CTTCTGTAGT	ACCTGCAGCA	GATAACAAAT	TTGCGGCGTT	AAACTCAGCA	1260
GTATGGTCAG	GTGGNTCGCT	CATTTATGTA	ССТАААААТА	TCAAACTAGA	TACGCCACTA	1320
CAAGCTTATT	TCCGTATTAA	CTCTGAGAAC	ATGGGTCAAT	TTGAACGTAC	ATTAATCATT	1380
GCTGATGAAG	GTGCTTCTGT	ACATTACGTA	GAAGGTTGGT	ACTGCACCAG	TTTATACAAC	1440
TAGNTCTTTA	CACTCTGCTG	TTGGTGGNAA	TCATTGGGCA	TAAAGATGCG	CACNGTCCGC	1500
NTTATTCTTA	CGAANCAAAA	CTGCGGGACA	${\tt ATGTTTTCAA}$	CTNNAGGTAC		1550

(2) INFORMATION FOR SEQ ID NO:100:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1449 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5

10

15

20

25

30

35

40

45

50

55

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

TGATAATACT	GCTTAATACA	ACATTTATTG	CAATTAAAAG	TGCAGTAATA	GCCAGTTTTT	60
CNTTGANTTC	AAAATGANTG	TCCTCCNTTT	TTGTTTGTAA	NTAATCACTA	TGCTTGGCTT	120
TATTATGGTC	ANNTAAACGT	GTTTCCATTT	GTTGATACTA	ACATTTTCAA	TAATTGATTC	180
GCTTCATATT	GTGAAGTTTG	AAACTGTTCA	NCTATGGGCA	ATGTATTTAT	TTCTGCTTCT	240
ATACTTTGAN	TGGTATGTTC	CGACTGTTCT	AGCGCATTTT	GTTTCCCGTA	ATTTTGAAAG	300
TTTACTGCTT	GTTTTTGATG	CTTTTTTAAC	ATATCCATTT	TAGTCTTTAT	CGTTTGGTTC	360
TGATGAATCT	GTGCTTCAAT	TTGTTGATAT	GTTTTGATAG	AANCCCAAAT	TTTAATTTTA	420
NTTGCAATAT	AACCCGCTTG	TTCCAAANCG	TCATCTTTAT	AAAACAATTT	ATTTGAATCA	480
CCNATTTCGG	GCTCCTACTT	CCTTTACCAA	ACTTGCCATT	TAATGGAATA	CTGTTTAGCT	540
TCATCTATTC	GTACTTCCAC	TAGTTTACCC	AATCATTTCT	TTAGGTGCTT	TGAAATTAAC	600
TAGCTTATTT	TTATCAGTGT	AGCCAGCAAG	AACCTGATCA	TCTTTTTTAC	TACTACCTTC	660
ACAAAGTACT	GTTACAGTTT	GTCCTTCGTA	CTTACTCATA	GCTATTTGTG	AATAATGACC	720
AACTTTTTTA	TTCAAACGTT	GCAATCGTTC	${\tt CTTTTTGACA}$	TTTAAAGGTA	CATTATCTTT	780
CATTTTAGCA	GCAGGCGTAC	CATCACGTTG	TGAATACAAG	TACGTATATG	CATGTTCAAA	840
ACCAACTTCA	TCATACAGAG	TTAAAGTTTC	TTCAAATTGT	TCCTCTGATT	CATTTGGATA	900
CCCTACAATA	ATATCTGTAG	TTAATGCTAC	ATTAGGAAGT	CTATCTTTGA	TTCGTTTTAC	960
TAAATCCAAA	TAACTTTCTC	GTGTATATTT	TCTACCCATT	ATTTTTAATA	CTGCATTATT	1020
TCCAGATTGA	ACTGGCAAGT	GGATATGAGG	AACGATATTA	CCACCCTCTG	AAATAACATC	1080
AATCATGTGA	TCTGTAAAGT	CCCAAGGATG	ACTTGTTGTG	AAACGAACTC	TTGGAATCGC	1140
TATTTTAGAA	ATTGCTTGTA	AAAGATCTCC	TAAGTCATAT	TCTATATCCT	GTAAATCTTT	1200
ACCATAAGAA	TTTACATTGT	GACCTAAAAG	CGTTATTTCT	TTGTAACCTT	CACGAGCAAG	1260
TTCACGTACT	TCATCTATAA	TGTCTTCAGG	TCTACGGGTC	CGGTCCTTAC	TCCTTGTNAA	1320
TGGAACAATA	CAATATGTAC	AAAACTTATC	ACAACCATAC	ATAATATTGA	CCCATGCTTT	1380
ATGTTGCTTC	ACGGACTTGT	GGNAGATTAC	AATAACGTCT	NCTTCTTTTA	GACATACTCA	1440

	CAACAATGT	1449
5	(2) INFORMATION FOR SEQ ID NO:101:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 459 base pairs	
10	(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:	
20	GAAAGTGTTT CAGAACGTGG AGCAAAAGGC TTCGGAAGTA GCGGAGTGTA AAGACATCTT	60
	AGATCGAGTT AAGGAGGTTT TGGGGAAGTG ACGCAATACT TAGTCACAAC ATTCAAAGAT	120
	TCAACAGGAC GACCACATGA ACATATTACT GTGGCTAGAG ATAATCAGAC GTTTACAGTT	180
	ATTGAGGCAG AGAGTAAAGA AGAAGCTGAG CGCAAATACG AGGCACAAGT TAAGATAAGG	240
25	AGAGATGGAG ATGCCAAAGA AAACGGNAAC GATTGATGTA GATGAAAACT TATTAGTAGT	300
	AGCTAGTAAT GAAATATCAG AACTATTATA TGAATATGAC AGTGAGTTAA TCNCAGCTGG	360
	ATGAAGATGG CGATAATAGA GATATCGGAA GGAAAAAAGA GGACGCATTA AAACAAGCTA	420
	TACAAAATTT CTCGATAAAT TACATGGGGG TGTTTAGTG	459
30	(2) INFORMATION FOR SEQ ID NO:102:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2005 base pairs	
35	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
40		
40	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:	
45	GGCACGAGCT CATACATCGC TAGTAAGAAT AATAATCTTA GTATTTGTTT AGTCATTCCC	60
	CACACTCCCT TATATTTTCA AACAACTGAC TCACTTTAGC ATAATTCCAT CTCTCCTATC	120
	TTAACCTTGT GCCTCGTANT TGCGCTCAGC TTCTTCTTTA CTCTCTGCCT CAACAACTGT	180
	AAACGTCTGA TTATCTCTAG CAGTAGTAAA ATGTTCATGT GGTTGTCCTT GTTGAATCTT	240
50	TGAATGTTGT GACTAAGTAT TGTGTCATTC CTCATAGCTC CCTTGAACTT GTTTGAGCTT	300
	ACTCATAAAA AACATTACTA AAAATGCTAT TAAGATATGC GTCTTTTGAT GTTTATAAGC	360
	AAATGTAGAT ATCATAAAGA TAGTAGCAAG CATTAACATT TCATATATGT TTGTGTGTAT	420
55	AGTCTTTTTA CTCTTAAGAA AAATAATTGC TATGCGATAA AAGAGATAAA CGCCAAACCC	480
33	TATTAAAAAT ATTTCTAACA TGTCGCTCAC TTCCCCAAAA CCTCCTTGAC TCGATCTAAC	540

		•					
	ATGTCTTTAT	ACTCCGCTAC	TTCCGAAGCC	TTTTGCTCCA	CGTTCTGAAA	CACACTCGAA	600
	-	TGCTTTAGTT					660
5	GTCGCCTTCG	TTGATTTGAT	AAGTTCCATA	TTGTCTTATG	GCGTCACTCA	AATCGATTTC	720
	TCCTTTAATA	TCAAAAACAC	CTGGTGTGAT	ATAACCATTC	GATGCAATAG	CGTCATTCTT	780
	GATATTAATC	CCTAAATTGC	CGTGATATCC	CGCGTCTATC	TTGCCTGTTT	CAATCACTAA	840
	ATGCGTTTTA	CTACTTACAC	CACTACGACT	AGTTAATAGT	CCGACATAGC	CCTCTGGTAT	900
10	ACTCACAGCT	ACATCTGTTT	TGATCACTGC	TTTTTCTTGT	GGTTCGAGTA	CGACAGTTTC	960
	AGCTGAGAAT	ATGTCATAAC	CTGCATCCGT	CTTATGATTT	CGTTCGGGCA	TTCTAGCATT	1020
	TTTTGATAAT	AGTTTTACTT	GTAATGTGTT	AGTCATTTTC	CTATTCCTCC	TCATATTTAT	1080
	AGACAACTTG	ACCTGCCATA	ATCCCTACTG	CTTCATCAAG	TTCAATACCT	CNTTTAACTG	1140
15	AATGTTGAAT	AGCATTTGTC	ATTCCCTCAA	GTATTTCATC	AAACGCTTGC	GCTTTCTTAT	1200
	ACACGTCCTC	AATCTCTTTT	AGCAACCCCT	CTGTGTCATT	ACCGTATACG	CACTAGCACT	1260
	AATAACGGAC	TGTTCGATTT	TTTCGCGATT	ATTCATTGGT	GTCATCCTCC	TTTAAAAATT	1320
	TATTGTTTAA	TTCCATTCCG	AATTTAACTC	TTTCATCATC	GTTACCGAAT	TCGTTTATTA	1380
20	AATCTTTTTC	AACGCTCTTG	CAATACCTAT	CCCATGCGCT	TGCTTTCTTC	TCCAGTTCTT	1440
	TGTTACAATC	TCGTAACTTC	GCTATATCCC	CAATAAGCTC	ATCTCGTTGC	TTCTTGTACT	1500
	CTTCACGATC	TTTTAATGCT	TTGTGAAGTT	TATCTAATAA	CTTGTTAGAG	TTAGTACAAA	1560
	GATTTTTATA	TTGTTCATCT	GATAAGGTGA	ACGTCATCTC	ATAACCTCCA	ATAGCATCTC ·	1620
25	ATTTTCAAAA	ATATTTCCAA	CAATTTCAAT	AATATCGGCA	TTTTCACTTA	GTAATTCAGT	1680
	TACATTGCTA	AAAGTTATAT	AAAAGGCTCC	TTCTTTAAAC	TCGATAAAAC	TTACTTCTCT	1740
	CGAATTAACA	ATCTTGGAAC	AATATCCCCT	TCATAAATCT	CCACAACCGG	GCACATCTTT	1800
	TAAATCCTGT	GTATTGGTAA	TAGGTTTTAC	TTCAATTGAA	ACTTTTATTA	ACCTGGTGGA	1860
30	AATCAAAATG	TACCCACTTA	TTAAAAATCG	GATTTCGGNC	AATAATACTC	AATAACTTNN	1920
	NNTATCTTNA	TCCCAAGCTT	TTAATTTCAA	CATCAATCTT	ACCAACTCCC	CATCTTTCCA	1980
	AATCAATGTC	AACCGGCAAN	GTCAC				2005
35	(2) INFORMAT	ION FOR SEQ	ID NO:103:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 796 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

40

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

50	GGCACGAGCT	GTTTTTTATT	TGCTTCGTTA	CAAAGCATTA	TTGAATTTAT	TTTACGTGTT	60
	CATATTTTGA	AACATCAAAG	CCGTCTTGCT	TAGCTTTGTT	GATAATGTCT	TTGATTGAAT	120
	GTAGTCCTTT	ATCGGCGAAG	TATGATCTTA	AGTTGTCTTT	TGTAGCTTGG	TCAGCATTCT	180
	TATCTAATAA	CACATCGATA	TAGCTTAATT	CATGTTCTAA	GAAGTTTGCG	TCATCATGTA	240
55	GTACGAGTCC	ATTTTGAGAA	TAAACTTTCG	CATCTGCTTG	ATTACCATAT	CCAACAACGC	300
	CAGTTGCTAA	TACACCTACC	ATTGCCGTAG	CTACTAAAAC	CTTTTTAAAT	TTCATATCTA	360

	TCACTCCTCT AAAAATTGTA CTCTATCATA ACACTTGAAT ATTAAGAAAA TTACGGNTTA	420
	TTAAGTCGGA CTTNANTAAT TCTTAATAAA TAGNTAAACT GACAAATATT NGCTNAAATG	480
5	CAATTANTCT TNAAAACCGG GGTTTATGGA TTTTTCCTAC TAAAACCTTG ATTTCAAAAA	540
	GGGTTTANCT CAAATGAAAC AATAATAAAA AATAATGCAA CATAATAATA AGTACAAATT	600
	TANTTAAGAA ATTAAATTGA TTGTATATGT ATATTNTGGT AACGTNAAAG AGAAATATNC	660
	AANATAATTA ATTATTTATT TGAAAAGAGA ATATTAATGA AGTATTAAAC AAAGAGACGT	720
10	GAAACGATGC GATATTTAAA AAGACTTTCA TGGNACATAA GCATCTTAAT TTTAATAGGT	780
	GGTATTGCTG GGTGGG	796
	(2) INFORMATION FOR SEQ ID NO:104:	
15		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1122 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:	
	AACTTTGAGT NTTTTGTTCN ATATGGAACT TTAAAGATTT GGAAATTATN TAGATGGAGA	60
30	TATATCATAT AATCCAGAGG TGCCNAGTTA TTCAGCTAAA TATCAATTAN CTAATGATGA	120
	TNACAATGTA AAGCAATTAC GTAAAAGATA TGACATNCCA GCAGAATAAA GCACCCAAAG	180
	TTATTTGTTG AAAGGGTACA GGGTAATTTN AAAGCCTCAT CAGTTGGATA TAAAGACAGT	240
	GAATTTACTT TCGTAGAGAN NAAAGGTGAA AATATATACT TTAGTGATAG TCTACATCTT	300
35	GANCCAAGTG AGGATAAATA AACGTGACCA ATAAAGAGTA TGAAATCGAA CCCGGAAAAA	360
	GAGAGTGTGA AATGATGAAA CGATTAAATA AATTAGTGTT AGGCATTAGT TTTCTGTTTT	420
	TAGTCATTAG TATCACTGCT GGTTGTGGCA TAGGTAAAGA AGCGGAAGTT AAGAAAAGCT	480
	TTGAAAAAC ATTGAGTATG TACCCTATTA AAAATCTAGA GGATTTATAC GATAAGGAAG	540
40	GCTATCGTGA TGATCAGTTT GATAAAAATG ATAAAGGTAC ATGGATTATA AATTCTGAAA	600
	TGGTTATTCA ACCTAATAAT GAAGATATGG TAGCTAAAGG CATGGTTCTA TATATCGAAT	660
	AGAAATACCA AAACAACAAA TGGTTACTAC TATGTCGATG TGACTAAGGA CGAGGATGAA	720
	GGAAAACCGC ACGACAATGA AAAAAGATAT CCGGTTAAAA TGGTCCGATA ATAAAATCAT	780
45	TCCAACAAA GAAATTANAG ATAANAACAT AAAAAAAGAA NTCGAAAACT TTAAGTTCTT	840
	TGTTCAATAT GGAAACTTTA AAGATTTGTC GAAGTACAAA GATGGAGATA TTTCATACAA	900
	TCCAGAGGTG CCAAGTTATT CACCAAAATA TCAAGTAACT AATGATGACT ATAATGTAAN	960
	ACAATTNCGN AAAAGATATA GATATACCGA CCGAATAAAG CACCANAGCT ATTGTTGANA	1020
50	GGTACAGGGA ATTTAAAAGG TTCATCAATT GGCTACACAA AAATTGAATT TACTTTCGTA	1080
	GAGAAAAAGG GAGAAAATAT ATACTTTAGT GATGGGCTAC AG	1122

(2) INFORMATION FOR SEQ ID NO:105:

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 652 base pairs	
	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:	
	(XI) SEQUENCE DESCRIPTION. SEQ ID NO. 103.	
	CGGTGGTCTT CTATTCCCGT TTTGCCATCT CNAATTTCTT ACCATGGCCC ACAAAGTATT	60
15	GTNACGTTTG AGCTGATCCT TATTTAATTT TNAAATTGAG AAAAATGTCT CCAAATCCTG	120
	TACCTNCCCC ATATTCCCGC AATACAAATA AAATTTTGTC GTATTTGCTC NCCGGTAAGC	180
	TTTAAATGTG GTCATTATAA GANCGGATTG TCTTGTAATT GACCGCATGT CATACCAGTT	240
	AGGAATCACA TGGATATTGT CAGCATTTTT AAGAAATTTG ATGATTTAGT AAGTAGTTTT	300
20	TCATTTCCGT ACCCAAGGAC AATGACATTT TCAGCATTCT TGTAGACATG TCTATTAATG	360
	TAACGCATCA GCTTATCAAT CATGCTACCT GGACGAGTTG CACCTGTCTT AATCGCATTA	420
	TCAGGTGCTA TATCATACAC CACAAAAGAA TATTTTTTCT TAAGCAGTCT GTGTAAAACG	480
	TCTGGTATTA ATGGCAAGAT TGGTGGATTA GAGTAAACAA GAATCTGATC ATATTTCAAC	540
25	ATTTTAGGTA TATTAATCAC GAATTTTGAA AATAAACTAA AGAAATTGAT GATCCTTCCA	600
	ACCTTACTTT TGTTATTAAA CCTCGAATAC TTGAGACGTC GAATGCGAAN TC	652
	(2) INFORMATION FOR SEQ ID NO:106:	
30		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 392 base pairs	
	(B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:	
	GAATTCCCTT CAAAAGCACC TTTGATACCG AATAAATTAT GGTTTGGTGA CTTAGATAAA	60
45	GAACTAGCGG GAAGATTTTA ATCGCAAGAC TGGTGCGAAT GTGAAGTATA TTGAAGCACC	120
	TTATGAACCG CATAAGTTTG TGAAAATGGT GAAGGATAAA GAATTAGCTG ATGAAAAAGA	180
	AGGCGGCTTA CGTNGTACCG CTTGTTTTGA AATGCGTTTG GATATTGTAG CGAAAGCAGC	240
	TGTAGAACAT GGCTATGATT ATTTTGGCAG TGCAATCACG TTATCACCTA AAAAGAACGC	300
50	ACAATTAATC AATGAACTTG GTATGGATTG TCCAAAAAAT ATACGATGTG AACTTATTTG	360
	CAAGTGATTT TAAGAAAACT AAGGTATTGA GC	392
	(2) INFORMATION FOR SEQ ID NO:107:	
55		

(i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH:	3797	base	pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

	TCAAATGCAG	TCAGGGAAGC	AATAGGACGA	TATGCATAAA	GGÄGATGGTA	AAGTGGAACA	60
15	GTGACAGAAG	GTAAAGACAC	GCTTCAATCA	TCGGAGNCAT	CAATCAANCA	CAAAATAGTA	120
	AAACAATCAG	GAACGCAAAA	TGATAATCAA	GTAAAGCAAG	ATTCTGGAAC	GACAAGGTTC	180
	TAAACAGTCA	CACCAAAATA	ATGCGACTAA	TAATACTGAA	CGTCAAAATG	ATCAGGTTCA	240
	AAATACCCAT	CATGCTGAAC	GTAATGGATC	ACAATCGACA	ACGTCACAAT	CGAATGATGT	300
20	TGATAAATCA	CAACCATCCA	TTCCGGCACA	AAAGGTATTA	CCCAATCATG	ATAAAGCAGC	360
	ACCAACTTCA	ACTACACCCC	CGTCTAATGA	TAAAACTGCA	CCTAAATCAA	CAAAAGCACA	420
	AGATGCAACC	ACGGACAAAC	ATCCAAATCA	ACAAGATACA	CATCAACCCG	CGTGCCTCAA	480
	ATCATAGATG	CAAAGCAAGA	TGATACTGTT	CGCCAAAGTG	AACAGAAACC	ACAAGTTGGC	540
25	GATTTAAGTA	AACATATCGA	TGGTCAAAAT	TCCCCAGAGA	AACCGACAGA	TAAAAATACT	600
	GATAATAAAC	AACTAATCAA	AGATGCGCTT	CAAGCGCCTA	AAACACGTTC	GACTACAAAT	660
	GCAGCAGCAG	ATGCTAAAAA	GGTTCGACCA	CTTAAAGCGA	ATCAAGTACA	ACCACTTAAC	720
	AAATATCCAG	TTGTTTTTGT	ACATGGATTT	TTAGGATTAG	TAGGCGATAA	TGCACCTGCT	780
30	TTATATCCAA	ATTATTGGGG	TGGAAATAAA	TTTAAAGTTA	TCGAGGGAAT	TGAGAAAGCA	840
	AGGCTATAAT	GTACATCAAG	CAAGTGTAAG	TGCATTTGGT	AGTAACTATG	ATCGCGCTGT	900
	AGAACTTTAT	TATTACATTA	AAGGTGGTCA	CGAGCGTAGA	TTATGGCGCA	GCACATGCAG	960
	CTAAATACGG	ACATGAGCGC	TATGGTAAGA	CTTATAAAGG	AATCATGCCT	AATTGGGAAC	1020
35	CTGGTAAAAA	GGTACATCTT	GTAGGGCATA	GTATGGGTGG	TCAAACAATT	CGTTTAATGG	1080
	AAGAGTTTTT	AAGAAATGGT	AACAAAGAAG	AAATTGCCTA	TCATAAAGCG	CATGGTGGAG	1140
	AAATATCACC	ATTATTCACT	GGTGGTCATA	ACAATATGGT	TGCATCAATC	ACAACATTAG	1200
	CAACACCACA	TAATGGTTCA	CAAGCAGCTG	ATAAGTTTGG	AAATACAGAA	GCTGTTAGAA	1260
40	AAATCATGTT	CGCTTTAAAT	CGATTTATGG	GTAACAAGTA	TTCCGAATAT	CGATTTAGGA	1320
	TTAACGCAAT	GGGGCTTTAA	ACAATTACCA	AATGAGAGTT	ACATTGACTA	TATTAAAACG	1380
	CGTTAGTAAA	AGCAAAATTT	GGACATCAGA	CGATAATGCT	GCCTATGATT	TAACGTTAGA	1440
	TGGCTCTGCA	AAATTGAACA	ACATGACAAG	TATGAATCCT	AATATTACGT	ATACGACTTA	1500
45	TACAGGTGTG	TCTTCACATA	CTGGTCCATT	AGGCACGAA	AATCCTGCCG	AATTAGGCAC	1560
	GAGACATTTT	TCTTAATGGA	TACAACGAGT	AGAATTATTG	GTCATGATGC	AAGAGAAGAA	1620
	TGGCGTAAAA	ATGATGGTGT	CGTACCAGTG	ATTTCGTCGT	TACATCCATC	CAATCAACCA	1680
	TTTATTAATG	TTACGAATGA	TGAACCTGCC	ACACGCAGAG	GTATCTGGCA	AGTTAAACCA	1740
50	ATCATACAAG	GATGGGATCA	TGTCGATTTT	ATCGGTGTGG	ACTTCCTGGA	TTTCAACACC	1800
	GTAAGGTGCA	GAACTTGCCA	ACTTCTATAC	AGGTATAATA	AATGACTTGT	TGCGTGTGGA	1860
	AGCGNCTGAA	AGTAAAGGAA	CACAATTGAA	AGCAAGTTAA	ATTCATCTTC	TGAATTTAAT	1920
	AGGCTATGTA	AATCGTGCTG	TTATCATGGC	ACATCAGATA	TAAGTAGCAT	CACAGTGTTG	1980
55	AATCTCAAAA	TAGTAAAGTG	AAATAAAGCG	CCTGTCTCAT	TAGCGAAAAC	TAAAGGGACA	2040
	GGCGTATCTG	TTTATGAGCT	TAATAAATTG	TATGAATAAT	ATGGTTGATC	GAATAACTGT	2100

	TTATCATTGA	TGATAAATTT	GAGTTTTTTA	AAAATAATTG	ATATATTACA	CCATTGTTAT	2160
	AGCGTTTAAA	GAAATCAACC	CAACTTTACG	ATAAATAGTG	ATTGCTTCGT	CATTAGGTCT	2220
5	ACGATCAAAA	TCATGCTCGT	TTTTATTCAC	GCGTTCAAAT	GTTGAATGTG	GAACATGATT	2280
	CATGATATGT	TCGCTTTCCT	CAACGGGAAC	ATCATAATCG	CCATTACAAT	GCGCAATGAA	2340
	AACAGGTGGA	AGTGTTTTAA	GNTCATCTGG	TGCAATATTA	TATTTTGAAT	CAGTATAATC	2400
	ANCAATGTTA	ATCATATTTA	TCCATTTACC	TGTGCCACGT	GCATAAACGT	AGAGTAAAAA	2460
10	ACGTGTGCGA	TTTGATCTTG	ANCAACCGGT	GTTGGTGAAG	TGAGTTGTCC	AATCATTGTT	2520
	TCGTTTATGC	TTTGAGCTAT	TTTTGCGTAA	TACCTATTAG	TTGTTTTAAA	AGGGTTCAGT	2580
	GTTGATGCGA	CTATAACCAT	AAAAATCAAT	AACACCATCA	ATATCTCTGT	CTCGTGCAAT	2640
	TAATAAGACT	TAAATATGCA	CCTGATGATC	TGCCAAAGGT	AAAAATAGGG	CAATTAGAAT	2700
15	ATTGTGATTG	AATCGCATCG	AATGATGCGT	AGACATCCTC	AATAATGCAA	TCGAGACTTA	2760
	CTTCTGGTAA	TAAACGATAA	CTTAGTTGAA	TTAAATCGTA	ATGTTCCGTA	AGGATATCGA	2820
	TATACTGTGG	GGATAAATCG	TTAGCTTTAC	CGAACATTAA	TCCACCACCG	TGGATGTAGA	2880
	CAATAACGCC	TTTTGTTGGT	TGATTTTTTG	CTTTAATAAT	TGTGTAAGGT	AATGCAAATG	2940
20	CATCTTTAGT	AATTACTTTA	TATTTAATTT	CAGTCACGAT	TTAATAGGCT	CCTTAGGAAT	3000
	CCGATATTGA	TGTCATTATA	ACACTGTCNT	NAATTTCCAT	GNAAAATAGT	CTTAAGACGA	3060
	TGAGTCATGA	TAATTCTGTT	CCAATTGACG	TAAAGCGTCN	CGGGTATGCT	TCTTTAGACC	3120
	TTCCCCATAA	TCCATCATTT	TAACAATATC	TTTAAAAGCA	GCATGTGGNA	TGGCTAAATC	3180
25	TTCTAAATCT	GCCATAGAAA	ATTCAAGATT	GATATCATGT	GGTCGCTGTT	CAGCAAGTTT	3240
	ATGCACAAAG	TCAGGTTCTG	TGACCAAAGG	CGAAGACATG	CCGACCATAT	CTGCATGTTG	3300
	TAAAGCATCT	AAAGCAGACT	CTGGAGAATT	AATCCCGCCA	CTTGCAATTA	AAGGGATACG	3360
	ACCTGCTAAA	TGTTCATAGA	CAATTTGGTT	AACTGGTCGA	CCGAAATGAT	CACCTGGTGT	3420
30	ACGAGACGTA	TTTTGATAAA	TATGTCGACC	CCAGCTAGCG	ATTGCTAAGT	ATTGGATGTT	3480
	TGAAACGTCC	ATGACCCAAT	CGATTAATTG	GTTGAACTCG	TCAATGGTAT	ATCCTAAATC	3540
	ACTGCCTCTG	GTTTCTTCTG	GCGTTGCTCG	AAATCCTAAA	ATAAAATTGT	CAGGTGCTTC	3600
	TTTATCAATC	ACTTCTTGTA	CCGCACGCAT	AACTTCTAAA	CATAATCTTG	CACGATTTTT	3660
35	TAATGAGTCG	GCACCGTAAT	GGTCTGTACG	TCTATTTGAA	AAAGTTGAGA	AAAATGTTTG	3720
	AATCAGCAAA	CGTTGTGCAA	TCGAAATTTC	CACACCATCA	AAACCTGCTT	TAATCGCGCG	3780
	TGCATCGAGC	TCGTGCC					3797
40	(:	2) INFORMAT	ION FOR SEQ	ID NO:108:			
	(i) :	SEQUENCE CHA	ARACTERISTIC	CS:			
	(A)	LENGTH: 31	165 base pa:	irs			

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:
- 55 CAAGCCAGTT CAACTNACCG ACCCGGTATA TTTGGGGAAT ATACGAANCN CNNTCAGATG 60
 ATCNAAATAT GANTGANACN CGGTNGCGTT CTCNAGNCAN AACAGNGTTA AATAANCGTA 120

	AGTCGGCAGT	TATGTCANAT	GAGATTACTT	CTNCTGATTG	GGNAGTTACG	NNTCCACACG	180
	AGANNATATC	ANNTGGTGAN	NCAGNCAGAG	TAAAACATAG	AGATTTTGAC	CCGCCATTGT	240
5	ATGTAGAGGC	AGAAGTTATT	GCCGAAGAAT	ATAACATAAT	TTCAGAAAAT	AGCACATATA	300
	CATTCGGTCA	ACCTAAAGAG	TTCAAAGAAT	CAGAATTACG	AGAAGAGTTT	AACAAGCGAT	360
	TGAACATAAT	ACATCAAAAG	TTAAACGATA	ATATTAGCAA	TATCAACACT	ATAGTAAAAG	420
	ATGTTGTAGA	TAGTGAATTA	GAATACTTTG	AACGCAAAAT	ACACAAAAGT	GATACACCGC	480
10	CAGAAAATCC	AGTCAATGAT	ATGCTTTGGT	ATGATACAAG	TAACCCTGAT	GTTGCTGTCT	540
	TGCGTAGATA	TTGGAATGGT	CGATGGATTG	AAGAAACACC	AAATGATGTT	GNAAAATTAG	600
	GTGGTATAAC	AAGAGAGGAA	AGCGCTATTC	AGTGAATTAA	ACAATATATT	TATTAATTTA	660
	TCTATACAAC	ACGCTAGTCT	TTTGTCAAGA	AGCTACAGAA	TTACTGGAAT	AGCGAGTACT	720
15	TAGTAGATAA	TGATTTGAAA	GCGGACTTAC	AAGCAAGTTT	AGACGCTGTG	ATTGATGTTT	780
	ATAATCAAAT	TAAAAATAAT	TTAGAATCTA	TGACACCCGA	AACTGCAACG	ATTGGTCGGT	840
	TGGTAGATAC	AAAAACTTTA	TTTCTTGAGT	ATAGAAAGAA	ATTACAAGAT	GTTTATACAG	900
	ATGTAGAAGA	TGTCAAAATC	GCCATTTCAG	ATAGATTTAA	ATTATTACAG	TCACAATACA	960
20	CTGATGAAAA	ATATAAAGAA	GCGTTGGAAA	TAATAGCAAC	AAAATTTGGT	TTAACGGTGA	1020
	ATGAAGATTT	GCAGTTAGTC	GGAGAACCTA	ATGTTGTTAA	ATCAGCTATT	GAAGCAGCTA	1080
	GAGAATCCAC	AAAAGAACAA	TTACGTGACT	ATGTNAAAAC	ATCGGACTAT	NAAACAGACA	1140
	ANGACGGGAT	TGTTGAACGT	NTAGATACTG	CTGAAGCTGA	GAGAACGACT	TTNNAAGGGG	1200
25	AAATCAAAGA	TAAAGNTACG	GTTANACGAA	TATCGAAACG	GATTGGAAGA	ACAAAAACAA	1260
	TATACTGATG	ACCAGTTAAG	TGATTTGTCC	AATAATCCTG	AGATTAAAGC	AAGTATTGAA	1320
	CAAGCAAATC	AAGAAGCGCA	AGAAGCTTTA	AAATCATACA	TTGATGCTCA	AGATGATCTT	1380
	AAAGAGAAGG	AATCCCAAGC	GTATGCTGAT	GGTAAAATTT	CGGAGAGAAG	AGCAACGCGC	1440
30	TATACAAGAT	GCTCAAGCTA	AACTTGNAGA	GGCAAAACAA	AACGCAGGAN	CTTAAAGGCT	1500
	TAGANACGCT	GAAAAGANAG	CTAATGTTTA	TACAGACAAC	AAGGTCAAAG	AAAGCACAGA	1560
	TGCACAGAGG	AAAACATTGA	CTCGCTATGG	TTCTCAAATT	ATACACAATG	GTAAGGAAAT	1620
	CANATTAAGA	ACTACTAAAG	AAGAGTTTAA	TGCTTCTAAA	AGAACACTAT	CAAGAGTGTT	1680
35	AGCAGACATC	ACTGTAAATG	CTATGAAAGG	CATCTATTTA	AGGTATGACG	AAAATGGGGC	1740
	GATTACTTCA	CATACTATTG	ATAAAGATGG	CGTGAAAATT	AGTGGCGATA	AAGTTGATAT	1800
	AACAGCGAAT	AGAGAATTTA	ATGTATTCGC	AAATAATATT	AATAACAAAG	TTGGTAAAAA	1860
	TGACATTGTT	AATAGCCTAA	ACTTATCAAA	TGAAGGTCTT	GACATCAATG	TGAATAGAAT	1920
40	TGGTATTAAA	GGCGGAAATG	CTAACCGTTA	TGTACAAGTT	CAAAATGATT	TTATTGAACT	1980
	TGGCGGAATC	GTACAACGAA	CTTGGAAAGG	CAAACGATCA	ACCGATGATA	TATTCACACG	2040
	TCTTAAAGAT	GGACATCTAA	GGTTTAGAAA	TAATACCGCA	GGCGGGTCAC	TTTATATGTC	2100
	ACATTTTGGT	ATTTCAACAT	ATATTGATGG	AGAAGGCGAA	GACGGAGGTT	CATCCGGTAC	2160
45	TATTCAATGG	TGGGATAAAA	CTTACAGTGA	TAGCGGTATG	AATGGCATAA	CAATCAATTC	2220
	TTATGGCGGT	GTAGTCGCTT	TAACATCTGA	CTACAATCGA	ATTATTATCG	ATTCATATGC	2280
	TTCAGCTAAT	ATTGAAAGTA	GAGAAGCGCC	GATATATTTA	TCTCCGAACA	CCCAAAAATT	2340
	AAACCTGGNT	TTAANCCGAT	TCGCATTCAC	ATTATCAAAC	GCTGATAGGT	NCATTACGAA	2400
50	ACTGGCGGTT	ATATCATGTT	GGGTTCAAGA	TGNAANCTAT	AAGTNCGGTG	CTGGATTAAG	2460
						ATGCTACAGG	2520
	CGGAGACACT	ACAATTGAAT	CAGGTATGGC	CAAATTCAAC	TTAGTTAANC	GGAAGAGATG	2580
						GATAATGCTG	2640
55						GCTAACTTAC	2700
	ACATTACTTC	TGCTGGAACA	ATTGGGCGTG	CTACTTCTGC	CAAAAAGTAT	AAAATTTCAA	2760

	TCGAAAACCA ATACATCAAT GAAGACGATC	•		2820
5	TTCCAATTCG TACATGGTTT GACAAATATG			2880
3	GTGGTAAAAA GTTATCTGAT GATACTTTTA			2940
	AAGAGGTTGA AGAATTAGGA TTTAATGAAT			3000
	AAGGTATCGC ATACGATAGA CTTTGGGTTC	· · · · · · ·		3060
	CANTCAAANA NCGNAAAACN TANTGGNGGN	NTTAACNTCT NATNGACNGC	AACCAGGGTC	3120
10	CNCATNCCAC CTCCACATTA TACAANTCAC	TTTCTCNCGT CACTA		3165
	(2) INFORMATION FOR SEQ	ID NO:109:		
15	(i) SEQUENCE CHARACTERISTIC	S:		
	(A) LENGTH: 1229 base pai	.rs		
	(B) TYPE: nucleic acid			
	(C) STRANDEDNESS: single			
20	(D) TOPOLOGY: linear			
	(ii) MOLECULE TYPE: Genomi	C DNA		
25	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:109:		
	AAAACAAGCG ATTATCACAG CAATTATTTT	AATAGCACTG AGCTTGATTT	TACCTGCATT	60
	TGCAGTAGGT AATCACATTT CAATCTTCGT	CATTTCTATG ATATTCTTTG	CAGGTAGCTT	120
30	TGCTTTAATG TATGCACCTT TACTTAACGA	AGCCATTAAA ACAATAGATC	TTAATATGAC	180
	AGGTGTGGCT ATTGGTTTTT ATAATTTAAT	TATTAATGTG GCGGTATCTG	TAGGTATTGC	240
	GATTGCTGCG GCTCTAATCG ATTTTAAAGC	ATTAAATTTC CCAGGCAATG	ATGCATTAAG	300
	TTCACATTTC GGTATTATTT TAATTATTTT	AGGTTTAATG AGTATTGGTC	CGGATTAGTT	360
35	TTATTCCGNC ATCTTTAAAT CCGGTGGGAC	AACAATCTTG AAAAATAAAT	AGATATTAAA	420
	TCGCGAGATA TATCCGTATT TTATTGGTAA	AATTAAATTA AAGAGATTAT	ATTACACGAG	480
	GAGTAGTAAG TATTGAAATT GGAGAAATAT	ATAGATCACA CTTTATTGAA	GCCTGAGTCA	540
	ACACGTACGC AAATCGATCA AATCATCGAT	GAAGCGAAAG CATACCATTT	TAAATCTGTA	600
40	TGTGTGAATC CAACGCATGT TAAATATGCA	GCAGAGCGAC TAGCTGATTC	AGAGGTGCTC	660
	GTTTGTACGG TAATAGGATT CCCATTAGGT	GCGTCGACAA CTGCAACGAA	AGCATTTGAA	720
	ACAGAAGATG CAATTCAAAA TGGTGCAGAT	GAAATTGACA TGGTCATCAA	CATCGGCGCA	780
	TTAAAAGATG GACGTTTTGA TGATGTACAA	CAAGACATTG AAGCAGTGGT	TAAAGCTGCG	840
45	AAAGGTCACA CAGTAAAAGT GATTATTGAG	ACGGTATTGT TGGAACCATG	ACGAAATTGT	900
	AAAAGCGAGT GAATTAACAA AAGCGGCTGG	TGCGGACTTC GTTAAAACTT	CAACAGGTTT	960
	TGCAGGTGGC GGTGCGACTG CAGAAGACGT	TAAATTAATG AAAGATACAA	GTAGGTGCTG	1020
	ATGTAGAAGT AAAAGCATCA GGTGGCGTAC			1080
50	GAAGCAGGTG CGACACGTAT TGGGCGCGAG			1140
	AAGCAGATTC AAGATTACTA ATATATATA	AATTTGGGAG TGATAGCTAT	GACAAAGACC	1200
	ATTTAATCGN GTTCATTTTA TCCGTATGG		·	1229

(2) INFORMATION FOR SEQ ID NO:110:

55

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1066 base pairs	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:	
15	GGCACGAGAC GTAAATGNAA AGAAAACCGG CCTNCNTGAT TAAGANATTT AGAAAAGTGT	60
	TTGTCATNAC GGTTGTCCCA GTGNTNAGTA TGTCCAAATA NAGGAAGTGA NAACGATGGN	120
	ACCGTATTTT TAAAANAGGC AGNACATANC ATTTTAGATA GGAAGTGATA ATATGAATTT	180
	GGCTAAACGC ANATTACAAG GGGAACNATT AACAANAGAG ACTGTAGTGA AAATTTATGA	240
20	GGATACTAAT ATTGATACCT TAGNTTTATT AAATGAGGCG NACATCTTTA AGNANACATT	300
	ATTTTGGTGC NATNAGTCAA ATTAAACATG ATTTTAAATG CTAAAAGTGG NATATGTCCT	360
	GAGAATTGTG GGCNCGAGAC TGTGGACAAT CACGAGATAT TAAACAANAA CAGCGATATG	420
	CTTTAATTCC AGAGGAACAA ATTATCGATN GANCANAGGT GGCACATGAT AATCATATTG	480
25	GAACATATTG TATTGTTATG AGTGGTAGAG GACCGAGCGA TAAAGAAGTT GATCATATTA	540
	GTAATCCTGT AAGAACGATT AAATCTCAAC ACCCGCAACT AAAAATCTGT GCATGTTTAG	600
	GATTAACGGA TTGCCGACCA AGCTAAGAAA CTTAAGTCAG CTGTTGTAGA CAGATATANC	660
	CACAATATTA ATACCAAGTG AAAATTACCC ATTGATAACC GTCGTGCCAA CGCATAGTTA	720
30	TNAAGATAGA ACAGATACGA TAGAACTAAT GAAAGCGAAT AATATATCAC CATGTTCTGG	780
	CGTGATTTGT GGTATGGGAG AATCTAATCA AGATATTGTT GATATGGCAT TTGCTTTAAA	840
	AGAAATGGAT GCCGACAGTA TTCCGATTAA TTTTTTGCAT CCAATCAAAG GCACAAAGTT	900
	TGGAAGCATG GATGATTTAA CACCAATGAA ATGTTTAAGA ATCGTAGCAT TATTCCGATT	960
35	AATCAATCCT ACGAAAGAAA TTCGTATTGC TGGAGGAAGA GAGGTCAACT TACGTTCGTT	1020
	ACAGCCATTA GCATTAAAAG CGGCGAANTN CAATATTTGG GCGGGG	1066
	(2) INFORMATION FOR SEQ ID NO:111:	
40		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 3222 base pairs	
	(B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:	
	CCAAGTAAGT ATAGAAGCAG CATCCTTAGA AAAGAAAAAT GTAGATTTGA ACGAATTATT	60
55	ACAGCGTCTC AATGACGTTG AACAAACGGA ATACACCAGG TTCGCTTNAC CCTAAATTTT	120
	TANATGTTTC GTCACTTATT CAATATATTC AAGCAGCATA TCATGAACCT CTTAGAGAAG	180
	IMMIGITIC GICACITATI CAMINIATIC ANGENCATA TENTOACCI CITAGNAMO	

AATTTAAAAA TTTAACACCT TATGTSACGA AATTATCGAA AGTACATGA CCTAACCATC CATATTTAGT CGGGTTAAAA GAAACATATG ATACATTTAA AAGTGGCATG TTAGAGCATA 300 TCCAAAAAGA AGATGATGT GATTTTCAAAA ACTAATTAAA TATGACACAA GTGAAGTAGT 360 AAACGATATT AATACAGTGA TTGATGATT AGTACTCAAC CGGATAGAG GTGAAGTAGT 420 GTTAGTGAAA ATGACGGATT TAACATCTAG CATTGTCAA CGGGACAATT 420 GTTAGTGAAA ATGACGGATT TAACATCTAG CATTGGAACC CCGATAGGG CATGTGCTAC 480 GTGGCGACCC GTTTATCAGA GATAAAAACC ACTGAAGTG TTAACACATG AGCTGTTCA 540 TTTAGAGAAT CATGTTTAT TTAAAAAACAC ACTGAAGTG TTAACACATG AGCTGTTCA 540 CAAAGTAATG TCAGCAGTTT TTCGCTATAC TTAACAGAAA TTTAGTGATAA GAACTGTTGG 660 CAAAGTAATG TCAGCAGTTT TTCGCTATAC TAAAAAACT ATGACATATA AAACTGCATATA AAACTGCATATA AAACATTAAA TAAATTCACT GAGGTGCTATTCA TGAACTATAG AAACTGCATATT 780 GATAATTAAA TAACATAATT ATAATTCACT GAGGTGCTAT CGTGCTATCG CTAACAAATT 780 ATGATAAAAT AAACATAATT ATAATTCACT GAGGTGCTAT CGTGCTATCG CTAACAATGT 780 ATAATTTTAA AAACATTAAT GAAATCCGTCG ACGCTACACT GAAACCACGT TGGCAATTTT 780 ATAATTTATA AGACTTTAAT GAATCCGTCG ACGCTACACT GAAACCACGT TGGCAATTTT 780 GTTATATTTT CAGTTTGTTT GCCTTAATTATT TCTTAATTTAA CTGGTATCGT CATCGAACTAT 1900 ATAATTTAAA AACCTTAAT GAATCCGTCG ACGCTACACT GAAACCACGT TGGCAATTAT 780 GTTATATTTT CAGTTTTTT CCCTTAATTTA TCTTAATTTATA ATGATTCAT CAGGTACAT 1020 CAACATAGTT TAACGATAG TGTGTACTC CGTTTAGATT ATGAGCACAT 1020 CAACATAGTT TATCAGGAAG TGTGTACTC CGTTTAGATT ATGAGTACAT 1140 GTTGGCGTTA TTTCAGGTAT TTCAGGAGT TATCATGTG GCCCTTTTGT AGGTCTATT 1140 GTTGGCGTTA TTTCAGGTAT TTCAGGTTG TATCATGTTG GCCCTTTTGT AGGTCTATT 1140 CTTATCTCAT CTATATTTAT CGAGTATTT GCCGAAAAATT TATCGTGTACA CAAAGCTCAA 1260 CTTATCTCAT CTATATTTAT CGAGTATTT GCCGAAAAATT TATCGGGTTA CAAAGCTCAA 1260 CTTATCTCAT CTATATTTAT CGAGTATTTT GCCGAAAATTA TTTTCCCCA CGACAAAGCA 1380 CTTGTCCAAA CACGTAACCA ATTAATTACA TTTTTTCCCCA CGACAAAGCA 1380 CTTGTCCAAA CACCGTAACCA ATTACATTC ATTAATTACA TTTTTTCCCCA CGACAAAGCA 1380 CTTGTCCAAA CACATACCA ATTACAATT CAACAATTAA ATTATCACA TTTTTTAAAAA ATTATCACA ACCTTACAT CAACAAATGA AATTATAAAA ATTATCACA TTTAAAATT AAAACCAGA CAATTACAAT 1680 CATCCACATAC CAACAAATGA AATATATACA ATTGTCTCA AA
5 TCCAAAAAGA AGATGATGT GATTTCAAA ACTAATTAAA TATGAACAG GTGAAGTAGT AAACGATATT AATACAGTGA TIGATGATTT AGTATCTAGT CACATTGCAA GGGACAATT 420 GTTAGTGAAA ATGAGGGATT TAACAATCTAG CTATGAACCA CCGATAGAGG CATGGGTAC 480 GTGGCGACTC GTTATCAGA GATTAAAAGC ACTGAAGTG TTAACACATG AGATGTGTAC 480 TTAAGAGGAT CATGTTTAT TTAAAAAAGT ATCATGAAGTA TATGAGTAG TAACAGTAG AGATGTTGA 660 TAATTGAAAA GAAAAATGA TACAATAAAA ACGCGATTAG AAACTGTTGG 660 TAATTGAAAAA TAGAAGGATT TTCGCTATAC TAACAGAAA TTTAGTGATA TAGAACACAT 660 TAATTGAAAA TAGAAGGGT TATTTTATTAA AAATTTAAC TGAATTTTAC ATGACAATT 780 GATAATTAAA TAACATAATT ATAATTCACT GAGGGGCATT CGTGCTATGC CTAACAATGT 780 AAAATTGTA AACATAATT ATAATTCACT GAGGGGCATT CGTGCTATGC CTAACAATGT 780 AAAATTGTATAC TAACATAATT ATAATTCACT GAGGGGCATT CGTGCTATGC CTAACAATGT 780 ATATTTTTAA AACATAATT ATAATTCACT GAGGGCCTA CGTGCTATGC CTAACAATGT 780 ATATTTTTAA AACATAATT ATAATTCACT GAGGGCCTA CGTGCTATGC CTAACAATGT 780 ATATTTTTAA AACATTAATT TATATTAA CTGGTAATGT TGGCAATTAT 790 AAAAATTGTT CAGTTTTATT CAGTTTAATT TCATTTAAA CTGGTAATGT CAGTATATT 790 AACACTGTAT TACAGAAAG TGTGTAACTT CCTTAATTTAA CTGGTAATCT CAGTACATT 790 AACACTGTAT TACAGAATGA TGTGTAACTT CCTTAACTTAA
GTTAGTGAAA ATGAGCGATT TAACATCTAG CTATGAACCA CCGATAGAGG CATGTGGTAC 480
GTTAGTGAAA ATGAGCGATT TAACATCTAG CTATGAACCA CCGATAGAGG CATGTGTAC 480
GTGGCGACTC GTTTATCAGA GATTAAAAGC ACTTGAAGTG TTAACACATG AGCATGTTCA 540
10
CAAAGTAATG TCACCAGTTT TTCGCTATAC TTAACAGAAA TTTAGTGATA TGAACAGCAT 660 TATTTGAAAA GAAAAATGGT CAACTTAGCA TAAAAATTGA TATGAAAATT TAATGGTATA 720 GATAATAAAA TAGTAGCGTG TTTTTTTAAT AATTTATTCA TGAATTTTCA ATGCACTATT 780 15 ATGATAAAAA AAACATAATT ATAATTTCA GAGGTGCTAT CGTGCTATGG CTAACAATGT 840 TATATTTTA AAACTTAATA ATAATTATTA TTNTGGGCCCT ATGTGTATG GAATTATTC 900 ATATTTTAA CAACATAGTT TGCCTTAATCT CAGCTACATG GAAAGCACGT TGCGAATTAT 960 GAACAGTGTAT TGACGAGAG TGTGTACTTC CGTTTAGATG ATGATGATC CATCGATCAT 1020 GTTAGCGGTTA TTCAGGTAT TGCAGAGAG TTATTAGATG TATATGGGT GCCCTTTTGT AGAAGTCTAA 1200 CTTATCTCAT CTATATTTAT CGGGATTTT TTCAGAGTA TTCAGAGTA TTCAGAGTA TTCAGAGTA TTCAGAGTA TTCAGAGTA TTCAGAGTA TTCAGAGTA TTCAGAGTA
TATTTCAAAA GAAAATGGT CAACTTAGCA TAAAAATTGA TATGAAAATT TAATGGTATA 720 GATAATTAAA TAGTAGCGTG TTTTTTTAAT AATTTTCA TGAATTTTAC ATGCACTATT 780 ATGATAAAAT AAACATAATT ATAATTCACT GAGGTGCTAT CGTGCTATCG CTAACAATGT 840 TATTACTTGA GCGTGTAGGT TTAATTATTA TTNTGGGCCT ATGTGTGAT GAATTATTCC 900 ATATTTTTAA AAACTTTAAT GAATCCGTCG ACGCTACACG GAAAGCACGT TGGCAATTAT 960 GTATTATTTT CAGTTTGTTT GCCTTAATGT TCTAATTTAA CTGGTATCGT CATCGACAT 1020 CCAACATAGGT TGTCAGGAAG TGTGTACTCT CGTTTAGATG ATGATTCTC TTTAGCTAAC 1080 ACACGTGTAT TAACGATAGG TGTGCACGGA TTAGTTGGT GCCCCTTTTGT AGGTCATCT 1140 GTTGCGCGTTA TTTCAGGTAT TTTCAGAGTG TATATGGGTG GCCCCTTTTGT AGGTCATTT 1200 CTTATCTCAT CTATATTTAT CGGNATTAAT TCCTGGTTAT TTTCAGGGTG ACAGACTTAAT 1220 CTTATTGGGA AATGAATCAA ATGTNGGAGC AATTTTAACA TTTTCCCCA CGACAAAGCA 1380 TATTGCGGTT GACTCATACC ATTAATTTCC ACCAATGA TTTTTCCCCA CGACAAAGCA 1380 TATTGCGGTT TTATGTCTAT TATCATTTCC AACATTAAAA GCCAAAGAGAG CAAATGAAAGC 1500 30 CTGTTCCAAA CACATGACGT ACTCCAATTG ATGAACCAGA CATTGCCGTA TTTTAAAAAATT AATGAAAGA 1560 GGATTGAATA GAGAATCGA CAAAAATGAA ATCTTATCC AACACTAAA TTAAAAAATT AATGAAAGTA 1620 TCTGCCCGTAG CAATTACAAG CAAAAATGAA ATCTTATCC AACACTATA TAAAAAATT AATGAAAGTA 1620 TCTGCCCGTAG CAATTACAAG CAAAAATGAA AATATTAACA ATCTTATCC ATGTAGGTG AGGTAGTAT 1680 CAACCAATAC CAACAAATGA AATATTAACA ACCTGACTA TCTAAAAAGAAGA AATATTAACA ACCTGACATA TCAAGAAGAA AATATTAACA AGCTGTCTA AAGAATGAA AGGTGAAACA AATATTAACA AGCTGTCTA AAGAATGAA AATATTAACA ATCTTTCCC ATCTCCGAA TCGCCCCTT 1800 AAGGCAGCTA TCCTGGACACC ACTTCAGAATG CATGGTTCTA ACGAAATTA GAAATCAGA 1740 AAGACGAGTT TCCTGGACACC ACTTCAGAATG CATGGTTCTA TCCTCCGAA TCGCCCCTT 1800 AAGACGAGCTA TCCTGACACC ACTTCAGAATG CATGGTTCTA TCCTCCGAA TTGCCCCCTT 1800 AAGACGAGCAC TCCTGAACAC AATTACATT CTGCGAACA CACAAAATGA AATATTAACC ACTGGTTCTA TCCTCCGAA TTGCCCCCTT 1800 AAAATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAA CGCAAAGTAA GTTTTTCAAA 1980 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAA CGCAAAGTAA GTTTTTGAAA 1980 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTTTTGAAA 1980 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTTTTTTAAAA 198
GATAATTAAA TAGTAGCGTG TTTTTTAAT AATTTATCA TGAATTTAC ATGCACTATT 780
ATGATAAAAT AAACATAATT ATAATTCACT GAGGTGCTAT CGTGCTATCG CTAACAATGT 840 TATTACTTGA GCGTGTAGGT TTAATTATTA TTNTGGGCCT ATGTGTGAT GAATTATTCC 900 ATATTTTTAA AAACTTTAAT GAATCCGTCG ACGCTACATG GAAAGCACGT TGGCAATTAT 960 GTATTATTTT CAGTTTGTTT GCCTTAATGT TCTAATTTAA CTGGTATCGT CATCGATCAT 1020 CAACATAGTT TGTCAGGAAG TGTGTCAGGAG TGGTTAGATG ATGATGTATC TTTAGCTAAC 1080 ACACGTGTAT TAACGATAGG TGTCGCAGGA TTAGTTGGTG GCCCTTTTGT AGGTCTATTT 1140 GTTGGCGTTA TTTCAGGTAT TTTCAGAGTG TATATGGGTG GGCCGATGC ACAAGTTTAT 1200 CTTATCTCAT CTATATTAT CGGNATTAAT TGCTGGTTAT TTNGGGCTTA CAAAGCTCAA 1260 25 AGGACGCAAA GCGGTTACCC GAGGTATTTG GCGAAAAAGT GGCCAATGAA TTGGGANTTG 1320 GTTATTGGGA AATGAATCAA ATGTNGGAGC AATTTTAACA TTTTTCCCCA CGACAAAGCA 1380 TATTGCGGTT TATATCTATA TATCATTCC ACAATGAA TTTTTCCCCA CGACAAAGC 1500 30 CTGTTCCAAA CACATGACT ACTGCAATTG ATGACCAGA CAATGCAATG
ATATTTTAA AAACTTAAT GAATCCGTCG ACGCTACATG GAAAGCACGT TGGCAATTAT 960 GTATTATTTT CAGTTTGTTT GCCTTAATGT TCTAATTTAA CTGGTATCGT CATCGATCAT 1020 CAACATAGGT TGTCAGGAAG TGTGTACTC CGTTTAGATG ATGATGTATC TTTAGCTAAC 1080 ACACGTGTAT TAACGATAGG TGTCGCAGGA TTAGTTGGTG GCCCTTTTGT AGGTCTATTT 1140 GTTGGCGTTA TTTCAGGTAT TTTCAGAGTG TATATGGGTG GCCCGATGC ACAAGTTTAT 1200 CTTATCTCAT CTATATTTAT CGGNATTAAT TGCTGGTTAT TTNGGGCTTA CAAAGCTCAA 1260 25 AGGACGCAAA GCGGTTACCC GAGGTATTTG GCGAAAAAGT GGCCAATGAA TTGGGANTTG 1320 GTTATTGGGA AATGAATCAA ATGTNGGAGC AATTTTAACA TTTTTCCCCA CGACAAAGCA 1380 TATTGCGGTT GACTCATATC ATTAATTGCA CTACCAATGA TTATTGTTAA TAGCGTTGGT 1440 ACGGCGATTT TTATGTCTAT TATCATTTCC AACATTAAAA GCAAGAAAGG CAAATGAAGC 1500 30 CTGTTCCAAA CACATGACGT ACTGCAATTG ATGAACCAGA CATTGCCGTA TTTTAAAGAA 1560 GGATTGAATA GAGAATCGG ACGCAAATT GCGATGATTA TTAAAAAATTT AATGAAAGTA 1620 TCTGCCGTAG CAATTACAAG CAAAAATGAA ATCTTATCGC ATGTAGGTG AGGTAGTGAT 1680 CATCACATAC CAACAAATGA AATATTAACA AGCTGTGTA AAGATGATT GAAATCAGGA 1740 35 AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA AAGATGATT GAAATCAGGA 1740 36 AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA AAGATGATT GAAATCAGGA 1740 37 AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA AAGATGATT GAAATCAGGA 1740 38 AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA AAGATGATT GAAATCAGGA 1740 38 AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA TCGTCCGAA TTGCCCGCTT 1800 AAGACCAGATT TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCCGAA AGGATTGGCA 1920 AATATTTTAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 40 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGGTCCAC ATTTTTCTT CAATTCAATT
CATATTATTT CAGTTTGTTT GCCTTAATGT TCTAATTTAA CTGGTATCGT CATCGATCAT 1020
CATATTATTT CAGTTTGTTT GCCTTAATGT TCTAATTTAA CTGGTATCGT CATCGATCAT 1020
ACACGTGTAT TAACGATAGG TGTCGCAGGA TTAGTTGGTG GCCCTTTTGT AGGTCTATTT 1140 GTTGGCGTTA TTTCAGGTAT TTTCAGAGTG TATATGGGTG GGCCGATGC ACAAGTTTAT 1200 CTTATCTCAT CTATATTTAT CGGNATTAAT TGCTGGTTAT TTNGGGCTTA CAAAGCTCAA 1260 AGGACGCAAA GCGGTTACCC GAGGTATTTG GCGAAAAAGT GGCCAATGAA TTGGGANTTG 1320 GTTATTGGGA AATGAATCAA ATGTNGGAGC AATTTTAACA TTTTTCCCCA CGACAAAGCA 1380 TATTGCGGTT GACTCATATC ATTAATTGCA CTACCAATGA TTATTGTTAA TAGCGTTGGT 1440 ACGGCGATTT TTATGTCTAT TATCATTTCC AACATTAAAA GCAAGAAGAG CAAATGAAGC 1500 GGATTGAATA GAGAATCGGC ACACGAAATT GCGATGATTA TTAAAAATTT AATGAAAGTA 1620 GCATTGAATA GAGAATCGGC ACACGAAATT GCGATGATTA TTAAAAAATTT AATGAAAGTA 1680 CATCACATAC CAACAAATGA AATATTAACA AGTCTGTCTA AAGATGATT GAAATCAGGA 1740 AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA GTCATCCGAA TTGCCCGCTT 1800 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCCGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTAAACTATT GTGGAACCTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGGATCCAC ATTTTTTCT CAATTCAATT
GTTGGCGTTA TTTCAGGTAT TTTCAGAGTG TATATGGGTG GGGCGGATGC ACAAGTTTAT 1200 CTTATCTCAT CTATATTTAT CGGNATTAAT TGCTGGTTAT TTNGGGCTTA CAAAGCTCAA 1260 25 AGGACGCAAA GCGGTTACCC GAGGTATTTG GCGAAAAAGT GGCCAATGAA TTGGGANTTG 1320 GTTATTGGGA AATGAATCAA ATGTNGGAGC AATTTTAACA TTTTCCCCA CGACAAAGCA 1380 TATTGCGGTT GACTCATATC ATTAATTGCA CTACCAATGA TTATTGTTAA TAGCGTTGGT 1440 ACGGCGATTT TTATGTCTAT TATCATTTCC AACATTAAAA GCAAGAAGAG CAAATGAAGC 1500 30 CTGTTCCAAA CACATGACGT ACTGCAATTG ATGAACCAGA CATTGCCGTA TTTTAAAGAA 1560 GGATTGAATA GAGAATCGGC ACAGCAAATT GCGATGATTA TTAAAAATTT AATGAAAGTA 1620 TCTGCCGTAG CAATTACAAG CAAAAATGAA ATCTTATCGC ATGTAGGTGC AGGTAGTGAT 1680 CATCACATAC CAACAAATGA AATATTAACA AGTCTGTCTA AAGATGATG TTGCCCGCTT 1800 AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA GTCATCCGAA TTGCCCGCTT 1800 AAGACCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACCGT AACTTGCAGA AGGATTGGCA 1920 AATATTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTCTT CAATTCAAAT 1980 AACACGATTT CAGCTTTAGT TAGAATAAAT AGCGAAAAGG CACGAAGATG ACTATCAATT 2040 AACACGATTT CAGCTTTAGT TAGAATAAAT AGCGAAAAGG CACGAAGAGTA ACTATTAGAA 2100
25 AGGACGAAA GCGGTTACCC GAGGTATTAG GCGAAAAAGT GGCCAATGAA TTGGGANTTG 1320 GTTATTGGGA AATGAATCAA ATGTNGGAGC AATTTTAACA TTATTGTCCCA CGACAAAGCA 1380 TATTGCGGTT GACTCATATC ATTAATTGCA CTACCAATGA TTATTGTTAA TAGCGTTGGT 1440 ACGGCGATTT TTATGTCTAT TATCATTTCC AACATTAAAA GCAAGAAGAG CAAATGAAGC 1500 GGATTGAATA GAGAATCGGC ACAGCAAATT GCGATGATTA TTAAAAATTT AATGAAAGTA 1620 GGATTGAATA GAGAATCGGC ACAGCAAATT GCGATGATTA TTAAAAATTT AATGAAAGTA 1620 TCTGCCGTAG CAATTACAAG CAAAAATGAA ATCTTATCGC ATGTAGGTG AGGTAGTGAT 1680 CATCACATAC CAACAAATGA AATATTAACA AGTCTGTCTA AAGATGTATT GAAATCAGGA 1740 35 AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA GTCATCCGAA TTGCCCGCTT 1800 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GGTGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTTCTT CAATTCAATT
AGGACGCAAA GCGGTTACCC GAGGTATTTG GCGAAAAAGT GGCCAATGAA TTGGGANTTG 1320 GTTATTGGGA AATGAATCAA ATGTNGGAGC AATTTTAACA TTTTTCCCCA CGACAAAGCA 1380 TATTGCGGTT GACTCATATC ATTAATTGCA CTACCAATGA TTATTGTTAA TAGCGTTGGT 1440 ACGGCGATTT TTATGTCTAT TATCATTTCC AACATTAAAA GCAAGAAGAG CAAATGAAGC 1500 CTGTTCCAAA CACATGACGT ACTGCAATTG ATGAACCAGA CATTGCCGTA TTTTAAAGAA 1560 GGATTGAATA GAGAATCGGC ACAGCAAATT GCGATGATTA TTAAAAATTT AATGAAAGTA 1620 TCTGCCGTAG CAATTACAAG CAAAAATGAA ATCTTATCGC ATGTAGGTGC AGGTAGTAT 1680 CATCACATAC CAACAAATGA AATATTAACA AGTCTGTCTA AAGATGTATT GAAATCAGGA 1740 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGAA TTGCCCGCTT 1800 AAGATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTCTT CAATTCAATT
GTTATTGGGA AATGAATCAA ATGTNGGAGC AATTTTAACA TTTTTCCCCA CGACAAAGCA 1380 TATTGCGGTT GACTCATATC ATTAATTGCA CTACCAATGA TTATTGTTAA TAGCGTTGGT 1440 ACGGCGATTT TTATGTCTAT TATCATTTCC AACATTAAAA GCAAGAAGAG CAAATGAAGC 1500 CTGTTCCAAA CACATGACGT ACTGCAATTG ATGAACCAGA CATTGCCGTA TTTTAAAGAA 1560 GGATTGAATA GAGAATCGGC ACAGCAAATT GCGATGATTA TTAAAAATTT AATGAAAGTA 1620 TCTGCCGTAG CAATTACAAG CAAAAATGAA ATCTTATCGC ATGTAGGTGC AGGTAGTGAT 1680 CATCACATAC CAACAAATGA AATATTAACA AGTCTGTCTA AAGATGTATT GAAATCAGGA 1740 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTGTA GTCATCCGAA TTGCCCGCTT 1800 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTCTT CAATTCAATT
TATTGCGGTT GACTCATATC ATTAATTGCA CTACCAATGA TTATTGTTAA TAGCGTTGGT 1440 ACGGCGATTT TTATGTCTAT TATCATTTCC AACATTAAAA GCAAGAAGAG CAAATGAAGC 1500 CTGTTCCAAA CACATGACGT ACTGCAATTG ATGAACCAGA CATTGCCGTA TTTTAAAGAA 1560 GGATTGAATA GAGAATCGGC ACAGCAAATT GCGATGATTA TTAAAAATTT AATGAAAGTA 1620 TCTGCCGTAG CAATTACAAG CAAAAATGAA ATCTTATCGC ATGTAGGTGC AGGTAGTGAT 1680 CATCACATAC CAACAAATGA AATATTAACA AGTCTGTCTA AAGATGTATT GAAATCAGGA 1740 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGAA TTGCCCGCTT 1800 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GATGCTGAGA TTAAGTCATT ACAAGCACAA GTGAGTCCAC ATTTTTCTT CAATTCAATT
ACGGCGATTT TTATGTCTAT TATCATTTCC AACATTAAAA GCAAGAAGAG CAAATGAAGC 1500 CTGTTCCAAA CACATGACGT ACTGCAATTG ATGAACCAGA CATTGCCGTA TTTTAAAGAA 1560 GGATTGAATA GAGAATCGGC ACAGCAAATT GCGATGATTA TTAAAAATTT AATGAAAGTA 1620 TCTGCCGTAG CAATTACAAG CAAAAATGAA ATCTTATCGC ATGTAGGTGC AGGTAGTGAT 1680 CATCACATAC CAACAAATGA AATATTAACA AGTCTGTCTA AAGATGTATT GAAATCAGGA 1740 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGAA TTGCCCGCTT 1800 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTTCTT CAATTCAATT
CTGTTCCAAA CACATGACGT ACTGCAATTG ATGAACCAGA CATTGCCGTA TTTTAAAGAA 1560 GGATTGAATA GAGAATCGGC ACAGCAAATT GCGATGATTA TTAAAAATTT AATGAAAGTA 1620 TCTGCCGTAG CAATTACAAG CAAAAATGAA ATCTTATCGC ATGTAGGTGC AGGTAGTGAT 1680 CATCACATAC CAACAAATGA AATATTAACA AGTCTGTCTA AAGATGTATT GAAATCAGGA 1740 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTGTA GTCATCCGAA TTGCCCGCTT 1800 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTTCTT CAATTCAATT
GGATTGAATA GAGAATCGGC ACAGCAAATT GCGATGATTA TTAAAAATTT AATGAAAGTA 1620 TCTGCCGTAG CAATTACAAG CAAAAATGAA ATCTTATCGC ATGTAGGTGC AGGTAGTGAT 1680 CATCACATAC CAACAAATGA AATATTAACA AGTCTGTCTA AAGATGTATT GAAATCAGGA 1740 35 AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA GTCATCCGAA TTGCCCGCTT 1800 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 40 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTTCTT CAATTCAATT
TCTGCCGTAG CAATTACAAG CAAAAATGAA ATCTTATCGC ATGTAGGTGC AGGTAGTGAT 1680 CATCACATAC CAACAAATGA AATATTAACA AGTCTGTCTA AAGATGTATT GAAATCAGGA 1740 35 AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA GTCATCCGAA TTGCCCGCTT 1800 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 40 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTCTT CAATTCAATT
CATCACATAC CAACAAATGA AATATTAACA AGTCTGTCTA AAGATGTATT GAAATCAGGA 1740 35 AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA GTCATCCGAA TTGCCCGCTT 1800 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 40 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTCTT CAATTCAATT
AAGTTGAAAG AAGTGCATAC TAAAGAAGAG ATTGGTTGTA GTCATCCGAA TTGCCCGCTT 1800 AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTCTT CAATTCAATT
AGAGCAGCTA TCGTGACACC ACTTGAGATG CATGGTTCTA TCGTCGGTAC ATTGAAGATG 1860 TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTCTT CAATTCAATT
TATTTTACAA ACCCTAATGA TTTAACTTTT GTGGAACGTC AACTTGCAGA AGGATTGGCA 1920 AATATTTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTCTT CAATTCAATT
AATATTTTA GTAGCCAAAT TGAACTTGGT GAAGCCGAAA CGCAAAGTAA GTTATTGAAA 1980 GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTTCTT CAATTCAATT
GATGCTGAGA TTAAGTCATT ACAGGCACAA GTGAGTCCAC ATTTTTCTT CAATTCAATT
AACACGATTT CAGCTTTAGT TAGAATAAAT AGCGAAAAGG CACGAGAGTT ACTATTAGAA 2100
TTGAGTTATT TTTTCAGAGC GAATTTACAA GGCTCAAAGC AACATACGGA TTACTTTAGA 2160
TAAAGAGTTA AGTCAAGTGC GTGCATACTT ATCACTCGAA CAAGCACNGT TATCCAGGAA 2220
GATTTAATAT CAATATTAAT GTTGAAGACA AATATCGCGA TGTGCTTGTA CCACCATTTT 2280
TAATTCAAAT TTTAGTTGAA AATGCCATCA AACATGCGTT TACGAATCGA AAGCAAGGTA 2340
ACGATATTGA CGTGTCAGTG ATTAAAGAAA CTGCAACACA TGTACGTATT ATTGTACAAG 2400
ATAATGGTCA GGGTATTTCT AAAGATAAAA TGCATTTGTT GGGAGAAACA TCTGTAGAAT 2460
50 CAGAATCTGG AACTGGTAGT GCTTTAGAAA ATTTAAACTT ACGCCTAAAN GGATTATTTG 2520
GAAAATCCGC AGCATTACCA ATGTGAATCC GACATCGAGN GGTACCACTT TTTGGTGTGT 2580
ACCTTCCTTA TGAAAGACAA GAGGAGGAAT AAATATGAAA GCATTAATCA TAGATGATGA 2640
GCCATTAGCA CGCTAATGAA TTAACATATT TATTAAATGA AATTGGTGGT TTTGAAGAAA 2700
55 TTAATGAGGC AGAAAATGTA AAAGAAACAT TGGAAGCACC TACTTGATCA ATCAATATGA 2760
CATTATATTT TTAGATGTCA ATTTAATGGA TGAAAATGGG ATCGAATTAG GAGCTAAGAT 2820

	. TCAAAAGATG AAAGAGCCAC CTGCGATTAT TTTTGCAACT GCACATGACC AATACGCAGT	2880
	ACAGGCATTT GAATTAAATG CGACAGACTA TATTTTGAAA CCGTTTGGTC AAAAACGTAT	2940
5	TGAACAAGCA GTCAATAAAG TGCGTGCGAC TAAAGCCAAA GATGATAATA ACGCAAGTGC	3000
	AATTGCGAAT GATATGTCGG CGAATTTTGA TCAAAGCTTA CCTGTTGAAA TTGACGATAA	3060
	AATTCACATG TTAAAGCAAC ANAATATTAT TGGGATTGGC ACACATAATG GTATTACAAC	3120
	CATACATACA ACGAATCATA AATACGAAAC AACAGAGCCA TTGAATCGTT ATGAAAAACG	3180
10	ATTGAATCCC ACTTATTTTA TACGTATTCA TCGTTCATAT AG	3222
	(2) INFORMATION FOR SEQ ID NO:112:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 805 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:	
	ATCAATGTAA CCTAATAGTT TATGTCTATC TTGTGTACCA ACTACTACAT CGACACCAGG	60
	AATTTCCATA ATTTCAGCTG ATGAAGTTTG CGCATAACAA CCTGTTACAC AGATTACAGC	120
30	ATCAGGATTG TGTCTTATTG CACGTCTAAT TATTTGACGA CTTTTTTAT CACCTGTATT	180
	CGTTACTGTA CAAGTATTAA TAACAAATAC ATCAGCATTC GCTTCAAAGT CAACGCGCTC	240
	ATAGTTTGCT TCTTTAAATA ATTGCCAGAT TGCTTCAGTT TCATAATGGT TTACTTTACA	300
	ACCTAATGTG TGAAACGCAA CTGTTGACAT AAATATTCAC CCCATTAATT CTTTTTCATA	360
35	ACTTATTGCA CTTAACGCAT ACAATGGCGC AGTTTCTGCC CGTAAAATTC TCGGTCCAAG	420
	ACCAACAACT GTACTAGTAT TACTAAATAA TGAAATTTCA ATTTCTGACA AACCACCCTC	480
	AGGACCAAAA ATCATCAACA CTTTATCCTG AGCCTTGAAT TGTTGTAAAG TNTGCTTGAA	540
	ATTGCTTAAC TCACCATCTT TTGCTTCCTC TTCATATGCA ATAAGAATAT AGTCNTAATT	600
40	ATCAATAGTA TCACAAATTA ATTTTAAATT CCGACTCCGA ATTGAATAGA TGGAATCCAC	660
	TAAACGAATA GCTTTGTTCA GCAGCTTCTT TAATTATTTT TTGCCAACGC TCTATCTTTT	720
	TGACAACTTT CGCCTCCGTT TAATTTAACA ATTGAGCGTT CCATGCTCAC AGCTATAAAT	780
	GATGAAGCAC CCAATTCATA GCTTT	805
45		
	(2) INFORMATION FOR SEQ ID NO:113:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1448 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
55		
	(ii) MOLECULE TYPE: Genomic DNA	

	(xi)	SEQUENCE DE	ESCRIPTION:	SEQ ID NO:	113:		
5	*						
	GGCACGAGCG	TAGATTTAGC	ATTTTCAAGA	GACCAAGAAC	ACAAAGAAAT	ATGTACAGCA	60
	TCGTATAATG	GAAGAAAGTG	AACGTTTCAA	TGAATGGATT	GAGCAAGGCG	CAGCAATCTA	120
	TATTTGTGGC	GATGAAAAAT	GTATGGCGAA	AGATGTCCAT	CAAGCCATTA	AAGATGTATT	180
10	GGTAAAAGAA	CGTCATATTT	CTCAAGAAGA	AGCAGAGTTA	TTATTGCGAC	AAATGAAACA	240
				GCGATTGGTG			300
	TGATGTAAAA	AGATATAAAG	GATGTTGCTC	AACATGAATA	TGCCATTAAT	GATAGATTTA	360
	АСАААТАААА	ATGTCGTCAT	AGTTGGNTGG	AGGCGTCGTT	GCAAGTCGTC	CGGGCACCAA	420
15	ACATTAAATC	AATACGTTGA	ACATATGGAC	GGTCATCAGT	CCGACAATCA	CTGAAAAACT	480
	TCAAAATATG	GTAGATAACG	GTGTCGTCAA	TATGGAAAGA	AAAAGAATTT	GAACCAAGCG	540
	ATATTGTAGA	CGCGTATCTA	GTTATTGCAG	CAACCAATGA	GCCACGTGTC	AATGAAGCGG	600
	TAAAACAAGC	CTTACCTGAG	CATGCCCTTT	TTAATAATGT	TGGAGATGCA	TCAAATGCCA	660
20	ATGTTGTATT	TCCAAGTGCA	CTACACCGCG	ACAAGCTAAC	TATCAGTGTA	TCAACTGATG	720
	GTGCGAGTCC	TAAGTTGACA	AAATCAATTA	TGGCAGAGCT	TGAGGCGTTA	TATCCACCAT	780
	CATACAGTTC	GTATATCGAC	TTTTTATATA	CTTGCCGACA	GAAAATAAAA	GTACTTGATA	840
	TAACATATAT	ACGAAAAGCA	ACAGTTACTG	TCACAAATTG	TGTCACAAGA	TAATTTAAAT	900
25	CATGACAAAC	AAGCTCAATT	TTTAGCGTGG	TTGGATGTAA	GATAATAATA	GCGGACCGTC	960
	TAACCGTCTA	AGGTAAGTCT	TCTTATTTTA	ACTTTAACGC	TTAATCATTG	AAATTAAGAC	1020
	ATGGGTGGCT	TTGTGAATAG	TCTAATAATG	aaggatttaa	GCGATAATGA	TATGCGTTTT	1080
	AAATATGAAT	ATTACAATAG	AGAAAAAGAT	ACGTAGAACA	AACTTAATAA	AATAGATGGA	1140
30	TAAATTGAAA	TCTGGTTGAA	GTCGTTACTA	TCATAGCGAC	CTTTAGCCAG	ATTTTTTGTG	1200
	CAATAGAAAG	CAATAATAAA	AATGATAGAT	CAANATGAAA	TACAGGACAG	GATATACAAG	1260
	GATTAGTCAT	GCCATGTTAT	CAAGTAGGAA	AATCAAACTT	CACTATTGAT	AGTTACGCAN	1320
	AAAGATTTTT	TTGATAAAAT	GAGATAACTT	AAAGATAAAA	AATTATATTA	ATTATAATAT	1380
35	TTAAGTTAAA	GAGGGGGATT	ATGTAAATTG	TATTAAAAGT	GGAGGGAGAA	AATAATATGA	1440
	ATAGTGAG						1448
	(:	2) INFORMAT	ION FOR SEQ	ID NO:114:			
40							
	(i) :	SEQUENCE CHA	ARACTERISTIC	CS:			
	(A	LENGTH: 1	127 base pa	irs			
	(B	TYPE: nucl	leic acid				
45	(C	STRANDEDNI	ESS: single				
	(D	TOPOLOGY:	linear				
	(ii	MOLECULE 1	TYPE: Genom	ic DNA			
50							
	(xi)	SEQUENCE DE	ESCRIPTION:	SEQ ID NO:	114:		
	CGACATGGAA	GAACNTANAC	CCTCGTNNAG	GAGGCCCAGA	AAGGNAGCNT	NAAGNNAAAT	60
55	TAAGNNAAGC	GAAAAGCACC	AACAATAAAA	CCTGATGGCA	GCATCATTCA	ATGCGTGCCA	120
	CCAGGTTTTT	ATGTTTTGTC	AAGAAAATTA	AATAAATCAT	TAAATGATTC	GGCCCATCGT	180

	AGGATGTGAA	TAAATACTAT	CTCGTAATAC	GGTATATGGA	ATGTTTTGAT	CAATCGCAAG	240
	TTTAATTATA	TTAATTAATT	CTTCAGATTG	CTTACCATAT	AATGTAGCAC	CTAAAATCAT	300
5	ATTATTTTCA	TTATTAATGA	CTACTTTAAA	TAAACCTCTT	GGATCATTGT	TAATTTTGTG	360
	ACGAGGTATA	GCACTTACTA	AAAGTTGATG	TTCAGTGTAA	TCATAATGTT	GAGCGGCAGC	420
	TTCTTTACTA	GTTAATCCAA	CACGTGATAA	TGGTGGATCT	ATAAATACTG	TATAAGGCAC	480
	GCTACCTCTA	TTGTCAGTCG	TACGTGACTG	ATTACCATAT	AACGCTGATT	TGATAATTCG	540
10	ATAATCATCT	AAAGATATAT	ACGTAAATTG	AAGTCCGCCT	TTAACATCAC	CTGCAGCATA	600
	AATATGTGGC	ACAGATGTTT	GAAGTTGAGC	ATTGACTTTA	ATTTCGCCTC	TATCACCTAA	660
	TTCGATATCA	GTATTTTCTA	AAGCTAAGGC	TGTATTCGGT	TTGCGCCCGA	TAGCCAAAAG	720
	TACTGCATCA	GCCTCANAGT	TGCCAACATT	AGNACGGACT	GTTGTATGAT	GATCGTCAGA	780
15	TGACAATTCA	GTCGTTTCAA	CATTTGTATG	CAATGCAATG	CCTTTATTTT	CTAAGTCAGT	840
	AATAGCATGT	GCANCGACAT	CTTGATCTTC	GCCGTGGCAT	AAATGATTCA	CCACGTTCTA	900
	ATACNGTTAC	CTTACTACCT	AAATTCGCAA	ACATTGAAGC	AAATTCTAAG	GCAATATAAC	960
	CGCCACCTAC	AATAACGAGA	TGCTTAGGTT	GATAGCTAAT	GTTTAATAAA	CCTGTTGAAT	1020
20	CGAAGACATG	TTTAGCTTGA	TCAAGGCCTT	TTATGTTAGG	AATGATAGAG	GTAGCACCGG	1080
	TATTAATAAT	GATATGAGGT	GCAGTAATAC	TAGCGACGAT	ATCGCCG		1127

(2) INFORMATION FOR SEQ ID NO:115:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 876 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

35

40

45

50

55

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

GAAGANATAN	CGTGGTNTTG	AAGATTTGGG	ANGTTAATAG	ATNAAGGGGA	ATATGCANTT	60
ATTACCGGGA	GNNNAGTATC	CAAGNAAATC	TAGAGTCAAT	AGGTTAATAA	TCTTATGCCT	120
TTTTAATTTT	GAATAAAAGT	GGGGTGGTGT	AATGTTTGGA	TTTACCCANC	CGACCCGAAC	180
AAGATTGNCG	TTTNACGCGA	TTAGAAGNAA	ATGATAAGCC	TATGTTTGNN	AAATTCGACA	240
GAATAGAAGA	CAGTCTGAGA	ACGCAAGAAA	AAATTTATGA	CAAGTTAGAT	AGAAATTTCG	300
AAGAACTAAG	GCACGAGCGA	CAAGGTAGAA	GATGAAAAGA	ATAAAGAAAA	GAATGCCAAA	.360
AATATTAGAG	ACATAAAAAT	GTGGATTCTA	GGATTAATAG	GGACGATCTT	CTAAGTACGA	420
TTTGTCATAG	CCTTACTAAG	AACTATTTT	GGTATTTAAA	GGAGGTGATT	ACCATGCTTA	480
AAGGGATTTT	AGGATATAGC	TTCTGGGCGT	GCTTCTGGTT	TGGTAAATGT	AAATAACAGT	540
TAAGAGTCAG	TGCTTCGGCA	CTGGCTTTTT	ATTTTGATTG	AAATGAGGTG	CATACATGGG	600
ATTACCTAAT	CCGAAAAATA	GAAAGCCCAC	AGCTAGTGAA	GTGGTTGAAT	GGGCGTTATA	660
TATCGCTAAA	AACAAAATAG	CTATTGATGT	ACCTGGTTCT	GGAATGGGAG	CACAATGCTG	720
GGAATTTACC	TAATTATTTA	CTCCGATAAA	TATTGGGGAT	${\tt TTAGAACATG}$	GGGAAATGCT	780
GATGCTATGG	CTCAGAAATC	CAATTAATAG	AGGTAGAGAT	TTCAAGATAA	TTAGAATCAA	840
AAGACTTGGT	ACACAACCAG	GCGACTGGGT	TTTTGG			876

(2) INFORMATION FOR SEQ ID NO:116:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1789 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

10

20

25

30

35

40

45

50

55

(ii) MOLECULE TYPE: Genomic DNA

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

GGCACGAGCG	GCACGAGCGT	GTTGTATCAA	GATTTTGTAG	GCAGTTTTAC	AACGTCCGAT	60
TCAGCAAGTT	ATGCACAAGA	TTTTAAATCT	GAGGAAAACG	CTAAAAAGAT	TGCTGAAACT	120
TTAAATCTTT	TATATCAATT	AACAGGCAAT	CAAAACGGTG	TGAAAGTTGT	GAAAGAAGTT	180
GTGGATAGAA	CTGACTTGTC	ATCTGATAAA	TCAGTTGATA	GCGAAACAAT	GTAACTATAC	240
TAAGTTATGA	GCATTACGCT	CATAGCTTTC	TTAGAAAGTA	GGTGTAGTTT	TGGATGATAT	300
TCAGAAAATA	AAAAAAGAGC	TTTCTGAATT	AGTTGAACGT	GTTGATGATG	TTGAAATACT	360
AGCAAACGAA	ACAGCTGATC	ATGTGCTTGA	ACTTAGAGAG	GAACATAAGC	AACATCATAA	420
TGAACTAAGA	GAATCTCATA	AAGAACTTAA	AGATAAGCAA	GATAAAGTTG	TAGATGAGAA	480
TTTAGAGCAA	ACAAAGATAT	TAAACAGAAT	TGAAGAAAGA	TATCANACGC	AAGTAGNTGT	540
TGNGCAAAAA	AATGAAGAAA	AGACACTCGC	CCAAAATAAA	TGGCTCGTAG	GTGCCATATG	600
GGCGCTTGTA	ACAATTGTTA	TGATTGCAGT	CATTACTGCA	TCAATTNCTG	CGTTATTACC	660
TTAAGGGAGG	TGGACATAAT	GAGTTGGGCA	AGATGGTTAT	CATGTTATTT	GTNTGGTCGT	720
AAATGTAAAT	AATGTTTTTG	GTCAGTGCAT	CGGCACTGGC	${\tt TTTTTATTTT}$	GATTGAAAAG	780
AGGTACGTAC	ATGGTATTAC	ACAGCTCACA	AGACAGGAAG	CATACTCCAA	GTGAAGTTGG	840
GAAGTGTTGT	TAATACCAAG	TAAGTAGGAT	ATCTGANATG	TATAATAGAG	TAAAAATGAA	900
ATCTTTTTAT	TATAGACACA	TATAAAAAGT	GTATAGTAAT	ATATGTATGT	TAATTAAAT	960
GATAATCATT	TCATAATTAT	TGTATATAAC	TAAATAACTA	CTTAACANAA	ATAATTATGC	1020
TTTAGAGNTG	ACCANNATGA	NNNANNCCAG	CATTTACATT	ACTTTTATTC	ATTGCCCTNA	1080
CGTTGACNAC	AAGTCCCANT	TGTAAATGGT	AGCGAGAAAA	GCGNAGNAAT	AAATGCGAAA	1140
GATTTGCGAA	AAAAGTCTGA	ATTCCAGGGN	ACAGCTTTAG	NCAATCTTAN	NCANATCTAT	1200
TATTACNATG	NNANAGCTAN	AACTGAAAAT	AAAGAGAGTC	CNCGACCACA	TTTTTACAGC	1260
ATACTATATT	GTTTANAGGC	TTTTTTACAG	ATCATTCGTG	GTATANCGAT	TTATTAGTAG	1320
ATTNTGATTC	NNAGGATATT	GTTNATAAAA	ATAAAGGGNA	AANAGTAGAC	TTGTATGGTG	1380
CTTATTATGG	TTATCAATGT	GCGGGTGGTA	CACCACACAA	AACAGCTTGT	ATGTATGGTG	1440
GTGTAACGTT	ACATGATAAT	AATCGATTGA	CCGAAGAGAA	AAAAGTGCCG	ATCAATTTAT	1500
GGCTAGACGG	TAAACANAAT	ACAGTACCTT	TGGAAACGGT	TAAAACGAAT	AAGAAAAATG	1560
TAACTGTTCA	GGAGTTGGAT	CTTCAAGCAA	GACGTTATTT	ACAGGAAAAA	TATAATTTAT	1620
ATAACTCTGA	TGTTTTTGAT	GGGAAGGTTC	AGAGGGGATT	AATCGTGTTT	CATACTTCTA	1680
CAGAACCTTC	GGTTAATTAC	GATTAATTTG	GTGCTCAAGG	ACAGTATTCA	NATACACTAT	1740
TAAGAATNTA	TAGAGATAAT	AAAACGATTA	ACTCTGAAAA	CNTGCGTAG		1789

(2) INFORMATION FOR SEQ ID NO:117:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1410 base pairs

(B) TYPE: pucleic acid

(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5

10

15

20

25

30

35

40

45

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

CGATCTACAT	TCGCTGCGCC	AATACACACA	ATAGGATAAT	CTTCATTTAA	AACATATGCC	60
TTTCCCATAA	CATATTCCTT	TTGTATTAAT	CCTGAAATAA	TGTTTGCTAC	GCTGGGTCTA	120
GATAATCCAA	TTGCCTCAGC	AAGTTCACGT	TGTGAAATAA	NCGGATTATC	TTTAATTCTT	180
${\tt TTTAAAATTT}$	CTTTCTCAGN	ATCGCTCATA	ACCATCCCTC	CTCATATTGA	CTTAAAATAC	240
TTGAATCAGT	GAATTCACCA	AAAATATCGT	AGCATGCTGT	TATTTCTGTT	GTAAACGCTT	300
ACATTTTNCC	GTTATATCAA	TGATATTTGT	TTATAAAATA	CGCATAATTT	CGTAAAAAGT	360
AAGTTCATTG	CCATCGTGTA	AAAGNTACTC	GAGCAAATGA	TAAATGTTTA	TACAGTATGA	420
TATTTGTCGA	СААТАААТТА	TGACATTTTT	ATGTCTTATA	TTTTTCTATA	AAAAAACGTG	480
ACTCATTATC	GATTTTTCA	TCGACTGAAT	CACGTTACGA	TGTTTTATTT	GTTTTTNCTA	540
TTCAATATGA	TGATGCTATG	CGTCCAACTG	CACCTCGATT	AATCATGTCT	TGCTTAGTAA	600
CAATTGGATA	TTTTTTAAAT	ACGGATTGAA	CCCAAGATAA	CCCTGCAAGC	GCACCCTACA	660
ATCGCCATTA	CTACACCATA	AATTACAATA	GTCATTGGAT	GATTAAATCC	ANACATTACT	720
AAAAATCCTN	CAATCGGTGT	AGCTGTACCT	GTCGCATCGT	TAATTAAACC	TGACATAGCA	780
ATAATTAAAC	CAGCAATCGC	ACCACCAAAG	AAATTTGTAA	TATAGATTGG	AATTGGATTG	840
GCTGATACAA	TATCTGCTTG	TGATAAAGGT	TCAATACTTA	CTGCAATCGT	AGACTTACGA	900
TCACCTAATT	TTAAGCGATG	GAATAGCGTC	CCATTCATAA	ATGCCGAACT	AAATGCTGCC	960
ATGGCACCAA	TAGCCATAGG	TACACCCGTT	AAACCTAATA	ATGCTGTCAA	TGCCATTGAA	1020
CTCAATGGCG	CTGTGCCGAC	AACCGTGATA	ATACCACCTA	AAATGATACC	CATGATAATT	1080
GGATTCGTAT	TCGTACTACT	TTGGATAATA	TCACCAATTC	GAATCAATGT	ACTATTCACT	1140
ACTGGCGTTA	ATAATACTGC	AATAAGACGA	GCTAATGGCG	CTAAGATGAC	AATCGGATCC	1200
AATTAAGTCG	ACAACCATCC	GGGCACATAT	TTCTCTTGTA	TATTTCATCA	CATATCCAAT	1260
CAATATTTAA	CCCGNAAAGG	AAACCTGGGT	AATAAATCCA	TACCACCGCA	ACGCTCGGGC	1320
CGGTTATTAA	CTTAATGGAT	ATTCTGGGGG	ATACAACCGA	TTAGGTTAAT	GCTTGTTGAA	1380
TCCCAGGCGG	GAGGGGACAA	CAACCTAGGA				1410

(2) INFORMATION FOR SEQ ID NO:118:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 926 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

	(ii) MOLECULE TYPE: Genomic DNA							
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:							
	AATTATTCCG GTTTCGCCGT CTTTGTTTGT GGCTATGTTA CATTCAACAA TAGATTTGCC	60						
10	AGTGATACTG TCATCTTCGT CACGGTTATA ATAATCATCA CGGTAAAGTA GCATTGCTAA	120						
	ACTTGCATCG GCTTCTATTC CGCCTGATTC TTTCATGTCT GATAGCATTG GTCGTTTATC	180						
	CTGCCTAGAT TCAACACCAC GATTCAGTTG TGAAAGTAGT ACGATGATTG CGCCTGTCTC	24(
	GTTAGCGATT ATCTTTAAGT CACGTGATAT CTTTTCTACT GCTACACGTC TATCAACTTT	300						
	CGCATCAGTA TCCATCAGTT GAAGATAATC TATAAAAATA ACTTGGTTGC TCGGTCTGAA	360						
15	TGCCTCATTG GTTTGAGCTC GCACATCTTG CGGTGGTAAT ATTTACTTTT GGTCAAGAAA	420						
	TATCAAATAC CTAACTTCAA TGATTTGGAT CCCATTGCAT TTGTTAACTT CGTTAAGTCA	480						
	TCCGGTGTTA AGTTCCTGAT TTCTTTTATC TTGGTTAACT CAATACCAGT AATTGTTGAT	540						
00	AACATACGTT TCAATACTGA TGTGCCAGTT GTTTCAAGAC TAAAGAAAGA TGTTTTATAT	600						
20	CCATTTCGTG CTATGTTCAA CATCATGTTT AATGCAAAAC CTGTTTTACC CACTGAGGGA	660						
	CGCGCGTGCC ATGACGATTA ATTGCGACGG CTCTAATCCC CCTATTTTGT AATCCATGAG	720						
	CTTATAACCC GTCTTAATTT GCTTCTTAGG GCTATCGCTG TATAACTCAT CAACAAACTC	780						
25	CTCAACAAAC TTCTTGGTTC CATCTTCTTT TTTGTTAGTA ATCGTTTTTA AATCCTTGAG	840						
25	TTCATCAATC AAGTTGTTAA AGTTTTGGTT CGTAGGTTGT TGTTTAAACT CAGTTACCAA	900						
	TTCGTTAGCT TTGTTGAGCT CGTGCC	926						
30	(2) INFORMATION FOR SEQ ID NO:119: (i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 1406 base pairs							
35	(B) TYPE: nucleic acid							
00	(C) STRANDEDNESS: single							
	(D) TOPOLOGY: linear							
40	(ii) MOLECULE TYPE: Genomic DNA							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:							
45	CCAATAATCC ATTNCAAGGC TTTTTCGTTG CCCCAATNAA GAAGCACGAG ACCCATCCCG	60						
	GCTATTAAAT ACCTGCAATT TGAAATTTGC CAAGGGCACC ATGGTGTGAC CGACAAGTAT	120						
	TAAAATCCTG CACCAGCGAA AAGCATTACC TAATGAATTA TTATCATTAA TCGATATTAT	180						
	TGTGCCAAAC GAAACAGAAG CCGAATTGTT ATCTGGGATT AAAGTAACTA ATGAACAATC	240						
50	TATGAAAGAC AATGCCAATT ACTTTTTATC TTTAGGCATT AAGACTGTTT TGATTACGCT	300						
	AGGTAAGCAA GGTACATATT TTGCTACTAA AAATCAAAGC CAACACATCG AAGCTTATAA	360						
	AGTAAATGCG ATTGATACAA CTGCTGCAGG CGACACATTT ATTGGTGCAT TTGTCAGTCG	420						
	CTTAAACAAG TCGCAAGATA ACTTAGCAGA TGCTATTGAT TTTGGTAATA AAGCGAGCTC	480						
55	ACTCACTGTA CAAAAAACAC GGCGCGCAAG CATCTATTCC TCTACTAGAA GAAGTAAATC	540						

AAGTTTAAAT GAATCAAACA CAGCTATGAT ATGAAGGTTT AGCATATAAC ATGCAACATT 600

	CGTATATCAT GGCTGTGCTT TTTTATCTTT ATAAAACATC ATCTATTAGA AATAATTTTC	660
	CACTAAACCT ATGCTTGTTG ACTCATGTTT AGTTATAAAT GAAGTGACAA TTTTTTGTAA	720
5	TCTTTTTAAC TTCCAAATTA TTGCATATAA ATATGCTATA TTAATGATAA TAATTATCAA	780
5	TTAAAAGGAG GTTATGCTAT GTCTAAAGAA GCTGGTCATA CATTTTTAGC TAAATTAGGA	840
	AAAACTCGTC TACGCCCCGG TGGGTAAAGA AGCAACAGAT TGGNTTAATA CANCAAGGGG	900
	CATTTTCACA AGATAAACAA GTGTTAGAAG TGGCATTGTA ATATTGTGCA CAACATCTAT	960
10	TTATCTAGCT CATACATATG GCTGTCACAT TCAAGGCGTT GGATATAAAT AAGAAAGCAT	1020
10	TAGAAAAAGC ACAGGAAAAT TTCCAGCAGC AGGTCTTGAA TCATATATTC AAGTTCAACA	1080
	AGCGAATTGC TGTTAAATTG CCCTTTGATG ACAATCAATT CNATGTCGTT TTAAATGAAG	1140
	CAATGTTAAC AATGTTACCC ATCGCCATAA AGGAAAAAGC ATTACGCGAG TNCTACCGAG	1200
15	TCATAAAGCC NGGGGGTNTN TTGTTAACCA CATGATNTTG TCATCGTTAA TGAATCANAT	1260
15	NCCACANATG TTGTTAAATC ATTATCTGCA GCAATTAATG TCNATGTCTC ACCGCAGACG	1320
	AAACTTGGCT GGTTAGATTT ATATCATCAA AGCTGGTTTT AATCAGGTGC ATTATCCATA	1380
	CTGGTCCATG AGTTTAATGA CACCAA	1406
20	(2) INFORMATION FOR SEQ ID NO:120:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 654 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
35	GGACGTAATN ATACGCCTTT TCTGATTATT TCTTTACTAT TCTAAAAACT GTTGTTCTAC	60
	TAATACCTAC CATTTTGAAA TTTCATTTGG CGTGTACATT CTACTTGCGA ATAATTGTTT	120
	AATATATTTA CGTTTATCTT CAGAAAGTTG AGGTCGTCCT CCATACCTAC CACGTTCTTT	180
40	TGCAGATTCT AGACCATTTG TTGTTCTTTC TTTTAATAAT ATATTTTCTG AATCTGCTAA	240
,,	CATTTTAAAT ACTTCAATAA ATGATTGTCC TTCTTCACTA TTAGTATTTA TGCCTAAATC	300
	AAGCACTTCT AAATGGATAT CATATGGTAA TATTCTACTT TCAAAAAATT CCATGAGTTT	360
	TTTTGGTGTG AATCCTAGTA CTTTTAATTT TTCTATCACT AATGTATCAT CTGTTTTCAA	420
45	CTCGTCTAAA CAATGCTCAA GTTCTAGTTG TTCTTTATAA TAAACATTTA CTTGCTCAGA	480
	ATAAACTAAG TCACAACCAT TTATTAAGAG TTTCGTTAAT TGAGTATCTA GATTTTGATC	540
	AGGATATGCT ACACGTGCGT AACCAATTTT CCTCATTTTA TACACCCTTC CAGCTTATTC	600
	ATTTTCTCCG ATTAATAAAC CTTCGCTCGT GCCGTTTCAA CAAGTCGGGC CCTG	654
50	(2) INFORMATION FOR SEQ ID NO:121:	
	(i) SEQUENCE CHARACTERISTICS:	
cc	(A) LENGTH: 1213 base pairs	
55	(B) TYPE: nucleic acid	

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:	
	GCAAAGGCTT TGAAGATATG AGTGGTAAAG AATGTACCTA AGGATGACAT TGAATAGAGG	60
10	GAGTAAAGAA AGCGACAGCT GATGCATCCT CGCTAGTTTG GACGGCATGA ATAGAATGAC	120
	GTTAGGAAAT GAAGTTCTGA CTAACAAAAA GATTGAAACT GAAATCAAGA TGCTTGAGAA	180
	AAAAATTGAC CAAATGGATA AATCAGAAAA TAATTCACAA GAAGCAGAAG TTGCTAAAGC	240
15	ACTTATTAAG TTAGCGGGTG TTAATAATGA TTAATGAAAT GTTAAACCCG AAACAACAAG	300
15	AAGTCTGGAC CTGCTTTATA AACGATAAAC CCAAAGTATT AATAGCGAGT GGTGCCAAAA	360
	GGGCAGGTAA AACATATGTG TTCATCCTGC TTTTTTTAAT GCATATAGCT ACTTATAAAG	420
	ACAAGGGGCT TAACTTCATT ATTGGAGGAG CAACACAAGC ATCTATAAGA CGTAACATAC	480
20	TAGATGATAT GGAGTTAATA CTAGGTAGAG AGTTAACACT CGACAAATCT AACGCAGTCA	540
20	AAATATTCGG TAATAAAGTG TATGTATTCG ACGGACAAAA CTCGGATGCA TGGAAAAAAG	600
	CGCGTGGTTT TACTTCAGCA GGTGCTTTTT TAAATGAGGG AACAGCATTA CACAATATGT	660
	TTATTAAAGA AGTGTTCTCA CGTTGTAGTT ACAAAGGCGC GAGAATATTA ATTGATACCA	720
25	ACCCCGAAAA CCCGATGCAT CCAGTTAAAA AAGATTACAT TGATAAGAGT GGTCAACGGT	780
	TATCGAATGG AAGACTAAAT ATCAAAGCAT TCCAATTTAC TTTGTTTGAC AATACATTTT	840
	TAGATGAAGA ATATATTGAA TCGATTATCG CAAGTACACC AACAGGAATG TTCACAGATC	900
	GTGATATTTA TGGTAAGTGG GTTTCTGCTG AAGGTGTTGT ATATAAAGAT TTCAAAGAAA	960
30	AAGTTCATTA CATCACAGAA GAAGAATTTA AAACTAAACA AATAAAAAGG AAATATGCAG	1020
	GCGTCGACTG GGGATATGAG CATTATGGTT CTATTATGGT TGTAGCGGAA GACTTCGACG	1080
	GAAACAAGTA CGTTATTGAA GAACACGCAC ACAGACATAA AGAAATAGAT GACTGGGTAG	1140
	CTATTGCAAA AGAGTTATAA AAGCATGGCG ATATCCTTTT TATGTGATAC GCTAGACCTG	1200
35	ACATATIGAC ATT	1213
	(2) INFORMATION FOR SEQ ID NO:122:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1141 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
45	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:	
	CATTATTATT TGTCGTTAAA TACAATAGAA AATACTATAC CTGTATATGC AATTCGACAA	60
	TAGATAAATT ATTAAATATG CTTACAACAA TCTTAATATC CTTTAACGCA CTACAATAGT	120
55	GCTCTGATAA TAGGTTATAA ATGTACGTAA AACCATTGTC TCAATAAAAA TGAAAACGTA	180

240

TACTTCAAGA AGGATGGGTT ACTTAATATA AACAAGGGGG TAACATATAT GACTTTATAT

	TTAGATGGTG	ANACACTAAC	AATTGAGGAT	ATTAACTCAT	TTTCACAACA	ACACTCAAAG	300
	ATTGANATTA	TTGATGATGC	GTTAGAACGT	NTCAAAAAAA	GTAGAGCGGG	AGGTGAACGT	360
	ATTATTGAAA	ATGANGAAAC	GGGNTTGACG	GGTATCACTA	CAGGGTTGNG	GGGTTTATTT	420
5	AGTGATGTAC	GTATTAGCAC	CCGACGCAAT	ATNATGAATN	ACAAGTGAAT	CTGATACGCT	480
	CACATGCCTG	TGGACTAGGT	GAGCCATTTC	CAAAAGAAGT	AGCATTAGTC	ATGATGATTT	540
	NACGATTGAA	TACATTATTA	AAAGGTCATT	CAGGTGCCAC	TTTAGTAATT	AGTGAGACAA	600
	TTACAATTTT	TTATAAATGA	ACGTATTATA	CCGATAATCC	CACAACAAGG	CTCTCTCGGT	660
10	GCATCAGGAG	ATTTAGCGCC	ATTATCACAT	TTAGCATTAG	CATTAATTGG	TGAAGGGAAG	720
	TATTGTACAG	AGGGGAAGAA	AAGGATAGTG	ACGATGTATT	AAGAGAATTA	AATAGACAAC	780
	CTTTGAACCT	TCAGGCTAAA	GAGGGTTTAG	CATTGATTAA	TGGTACGCAA	GCTATGACAG	840
	CTCAAGGTGT	CATTAGTTAT	ATAGAAGCAG	AAGATTTAGG	TTACCAATCT	GAATGGATTG	900
15	CTGCATTAAC	GCATCAGTCT	CTTAATGGCA	TTATAGATGC	ATATCGACAT	GATGTGCACT	960
	CTGTTCGTAA	TTTTCAAGAA	CAGATTAATG	TGGCAGCGCG	TATGCGTGAT	TGGTTAGAAG	1020
	GATCAACATT	AACGACGCGA	CAAGCAGAAA	TACGTGTACA	AGATGCATAT	ACGTTGCGTT	1080
	GTATACCACA	AATCCATGGC	GCTGGTGCCC	AAGTATTCAA	TTATGTTAAA	CAGCAATTAG	1140
20	A						1141
							~

(2) INFORMATION FOR SEQ ID NO:123:

(i) SEQUENCE CHARACTERISTICS:

25

30

35

40

45

50

55

(A) LENGTH: 1258 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

TTTGTGCTTC	GTCAATCTTG	TCACCANCTA	ACTCTAAACG	CTTTCCTTTT	GTCGTTTTCG	60
GGNTCCCACC	ACAATTAATC	TGTTTTGATT	TCTGACATAT	CAATCTTCCT	AGTTAACCCA	120
AGCCAAATCT	TTACCATACT	CAATTTCTTT	ACCTTGGAAC	AAGCTGTTTT	TCTTGTTGAG	180
TACCACATAT	CTACCTTTGA	CGGTATTAGA	ACTAAGCTCT	АТАТАААААТ	CCAATGCCAT	240
TTTATAGGTT	GTACATAATT	GCTTTAAAAC	TTCATATCTA	GTNTGATAAG	AAGTCCATGA	300
CGTAGTACGT	AAGCCATCGT	ATTCGGTNTG	TTCAGAAACT	TCCCAACCTG	TATCGCTCAA	360
CACATCTTTC	AATGCTTCTG	AAGTTGTCTT	TTTCTCAAAT	TTGCCTGGTG	CATACGGTTT	420
AGCTGTTGTT	ATATCAGCAA	GATAAGACGC	TATACATTCT	ATCTCTGTGT	AGCCGTCCAT	480
CGTATCTTGA	ACCCAGTTAA	TAATAAATTC	ACGCCATTGT	TTGTTTGAAT	CCCTTATAAT	540
AACACGATGT	CGTTCACGGA	ACNTTTCAGC	TCTTTCTGAT	GATATGAGCA	GTTCAAGCAT	600
TTCTGAATTG	TCATTAACAT	TACGTTTATG	AATCGCTCTA	ACTAAGGAAG	GATCATCAGT	660
AGAAAGGAAA	TCTATAATCT	TGTCGTTAAA	ATCTAAAACA	TGTATCACAC	TCTCATCTCC	720
TTTCTATAAA	TATCTATCTT	GCCATTTAAC	CGTCGTATCA	AAGACGTTTT	CAGGTTGTAT	780
GATTAATTCA	CTGTACCCAG	AATCAACATT	GAAATAATTA	CTTCCAAACG	ATTTCTCGCT	840
CCAACATTGG	TTCCTCATTT	GATGACAACA	CTTNNNGCTT	GNATATCTAT	TTTCACTAAA	900

TCACCTTTTT	GTATAATGAC	ATCCCTTGCG	CCTTTCGGNT	TCGGTAGAAT	CTCCGTATTG	960
AATGAACCTA	ATCCATTCAT	CTCCATCCAC	TTATAACCGT	NATACTTCGC	ACTATAGATA	1020
GCTATGATAG	AAGCTGGACG	CTGATAAAAC	TTACCGCCAT	CTATCCACTC	TTTCTCATCC	1080
ATATCAATAG	GTTTACGTCT	ATCTGGGTCT	TTAATGTGAT	CAAATTTCCA	AGTTTTAATA	1140
GAAAATTTAT	TACCTACTCT	TCTGAGCCGC	ATATAAACAN	CGATTCTGTC	CAAGTTATAC	1200
ATTATCGGTT	TATTCTGATA	GTCGTATATC	TTTTTGGGGT	CTCCTTTTTG	GTTATACG	1258

(2) INFORMATION FOR SEQ ID NO:124:

5

10

15

25

30

35

40

45

50

5**5**

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1620 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

TCGAATTTGG	TGTTGNCCGT	TCCTGTATNA	CATTCTGNCT	TATCTAATGG	GGGACGTTAT	60
GATGAGTGCC	CACNNATTAG	GGATGATCGT	NCGAGAGTAA	GTGTTGGTGC	AAGGTCAAGT	120
GTGTTCGCAC	CTTTCCACAA	ANTTAGGGTT	AATCATCATT	GATGAAGAAC	ATGAATCTAC	180
ATATAAACAA	GAAGATTATC	CGAGATATCA	CGCTAGAGAA	ATTGCCCAAT	GGCGAAGTGA	240
ATATCATCAC	TGTCCAGTCA	TTTTAGGAAG	TGCAACACCA	TGTCTTGAAA	GTTATGCACG	300
AGCTGAAAAA	GACGTTTATC	ATTTGCTATC	ATTACCAAAC	AGAGTGAACC	AACAAGCTTT	360
ACCTGAAATT	GATATAGTAG	ACATGCGTGA	AGAATTGAGT	GAAGGTAATC	GGTCAATGTT	420
TTCAAAAGAT	TTACGTGAAG	CCATACAATT	AAGATNAAGA	TCGACAGGAA	CAAGTTGTTT	480
TATTTTTAAA	TCCGACGTGG	TTATGCATCG	TTTATGTTAT	GTCGGGATTG	TGGATATGTA	540
CCGCAATGTC	CAANCTGTGA	TATTTCATTA	ACGTATCATA	AAACGACAGA	CTTATTAAAA	600
TGTCACTATT	GTGGTTACCA	AGAGACGCCA	CCGAATCAAT	GTCCAAATTG	TGAGAGTGAA	660
CACATTCGAC	AAGTAGGTAC	TGGTACTCAG	AAAGTTGAAG	AACTATTGCA	ACAAGAATTT	720
GAAGATGCGC	GCATAATTAG	GATGGATGTA	GATACAACCT	CAAAGAAAGG	TGCACATGAA	780
AAGTTATTGA	CTGAATTCGA	AAAAGGTAAC	GGTGACATTT	TACTAGGTAC	TCAGATGATT	840
GCGAAAGGAT	TAGATTATCC	AAATATTACT	TTAGTTGGTG	TGCTGAATGC	NGATACAATG	900
TTAAATTTAC	CTGATTTTCG	GGCGAGCGAA	CGTACTTATC	AACTATTAAC	GCAAGTGGCT	960
GGTAGAGCTG	GTCGTCATGA	AAAGGCAGGT	CAAGTCATCA	TTCAAACGTA	TAATCCAGAT	1020
CATTATTCAA	TATTGGATTG	TTCAAAAAAA	TGATTATTTA	ACATTTTATC	GTCAGGAAAT	1080
GGAATATCGT	CAAATTAGGA	AAGTATCCAC	CGTATTTATT	ATTTGGTTAN	TTTCACAATC	1140
TCACATAAAG	AAATGAAGAA	GGTTATGGAA	GCATCGCAGC	ATGTTCATAA	AATTTTATTA	1200
CAGCATTTAC	AAGAAAAAGC	GCTTGGTACT	AGGTCCATCC	TCCGGCAGCA	CTTGCGAGAA	1260
TCAACAATGA	ATTTAGATTC	CCAAATTTTA	GTGAAATATA	AAAGTGAACC	TGGATTATTA	1320
CAAGCCANTC	AGTTTTTAGA	TGACTATTAC	CATGAAAAAT	TTATAAAAGA	AAAATTAGCA	1380
TTGAAGATTG	ATATTGGANC	CACAGATGAT	GATGTAACAT	TACTAATTAT	TAGAAACAAG	1440
NNCAAGTATT	GTACGAGTAT	TTGAACCCAG	TGTGTGAATA	TTTACTTNAN	GNACAAGAAA	1500

AAGGGCAGAA TATACAACTG TTAACTATTT AAATTAGCAG TTTATATTCT GTCTTTTAT 1560
ATGGCTTTAT AACTTACGTG ATTTTGGTTT GATAAGGAAT TTATTAGTAT TTTCATTTAC 1620

5	(2) INFORMATION FOR SEQ ID NO:125:	
	(i) SEOUENCE CHARACTERISTICS:	
	(A) LENGTH: 875 base pairs	
10	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(b) for obodi. Illious	
15	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:	
20	AATTGGGCAC GGGTANACAG TTGTAGCGTT ATTAAGNATT TTAACTTTTG CGAAGTTAGC	60
	AACAATTING CAATGATGIT ATTITATCAA TGITACCICA AGCAGCAACI ACAANCGAIT	120
	GCGTTACCAG TATCAGCTGG TATCGGTGGT ATAAAAGAAT TAACATCATT AGCAGNTATT	180
	TTAAATGGTG TCATTATTTA TGCCCTAGGT AATAAATTCN TGAAGCTTTT CCGAATTACT	240
25	AACCCTATTG CCCGAGGATT AGCACTTGGA ACNAGTGGTC ACACATTAGG TGTAGCACCA	300
	GCCAAAGAAT TAGGACCTGT AGAAGAATCA ATGGCAAGTA TAGCTTTAGT GTTAGTTGGT	360
	GTAGTTGTTG TAGCAGTTGT GCCTGTCTTT GTAGCAATAT TCTTCTAAAA CGAAAAACCT	420
	AAGCAAGATA ATAGCAATTT GAGCCATTGT TATTATCGTA AAAAAACGTC TATACTCCAG	480
30	TTTATAACTG GGATATAGAC GTTTTTATGT ATTTATTACT TTTTACTAGG AATATAAAAC	540
	TGTGCATGNC GATAATGAAA TACGATGTCA GACGAATCAA AGGGTTTGCC AGTCATTGTA	600
	TAAAAAGTCT GGTGGTAACG TAAACATGGT TCACCTGTAG ACAATTGTAG TAATGAAGCT	660
95	TCACTTGAAG TGAGTTTATC TACATTAAAG AAAATATCTG AAAAACCAAT ACGAAGTTTC	720
35	ATGTTTGATT CTAAATAATC GAAGATAGAG CCCTTAGCAA TATCATCATT TAAATATTTC	780
	ACGATTTCTT TATGATAATA AGAATATTCG ATACATAAAA CATCATCGTC CACGAATCTT	840
	AATCGCTCTA AATAGTAGAC GGTATCACTC GTGCC	875
40	(2) INFORMATION FOR SEQ ID NO:126:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 654 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:	
55	CAACTAGTGA TTCAGGATAT AGGAATTGTA TTGTCGGAAT TCANACAGGT GGATATGGTC	60

AAGATTTAAA	AAGATTATAA	CTTGGCCCAA	TTATNACGGN	GATCTTGAAA	ACGATTANTG	120
GATTAGAACG	AATTCGAATT	TCTTCAATTG	AAGCAAGTCA	ACTTACAGAT	GAAGTAATTG	180
ACGTTTTAGA	ACGTTCAACA	AAAGTTGTGC	GTCATTTGCA	TATTCCATTA	CAATCTGGTT	240
CAGATACAGT	ATTAAAACGT	ATGAGACGTA	AGTATACAAT	GGATAGATTT	TCAGAACGAT	300
TAACAAAATT	GCATAAAGCT	TTACCAGACT	TGGCAGTTAC	GAGTGATGTA	ATTGTTGGTT	360
TCCCAGGTGA	AACTGAAGCA	GAGTTCCAAG	AAACATATGA	TTTTATCGTA	AAGCATAAGT	420
TCTCTGAACT	GCATGTTTTC	CCTTATTCTC	CTAGAATTGG	CACGCCAGCT	GCAAGAATGG	480
ATGACCAAAT	TGATGAAGAA	ATTAAAAATG	AACGCGTGCA	TAAGGTTAAT	TACGCTTAAG	540
CAATCAACTC	GGAAAGTTAT	ATGCGTCTTA	AATTGGATCA	AAGATGTGCT	TGGANGGTNA	600
TTCCCTGAGG	GAACAAGGGT	GGACACAAGA	AGGGTACAAT	TAGGTGGRRD	CTNS	654

(2) INFORMATION FOR SEQ ID NO:127:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1443 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5

10

15

20

25

30

35

40

45

50

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

CTANCNAANG	GAANTTCAGC	ATCCTTAAAA	ATACCTATTT	GACTGTAGAA	ACCTTTTGNT	60
GCGTACAATA	TCTAAACCTT	GTCGTGCTGC	TGGAACTGCA	CCTGAACATT	CAACAACAAC	120
ATCTGCACCG	TAACCGTCTG	TAATTCCATT	GATATACGTT	TTTAAGTCTG	TGTGTTGTAA	180
ATTGACTACA	TAATCCATGT	GCAATGCTTC	TGCTTTATCT	AATCTGACTT	NGTGGCANTG	240
TCCAATCCAG	TTACCACAAC	AGGTGCGCCT	TTACTTTTCA	ACACTTGTGC	TACAAGTAAT	300
CCGATTGGCC	CAGGTCCCAT	TACAACTGCT	ACATCGCCAG	AGTTCACTTG	AATCTTAGAA	360
ACGCCATGAT	GTGCACATGC	TAATGGTTCT	TGTCATAGCT	GCAGACTGAT	ACGATACTTC	420
CGCTTCTGGA	ATATGATNCA	AACTTTCTTC	ACGTGCAATG	ACATAATTAG	TAAATGCGCC	480
ATCAACTTGT	GTTCCAATAC	CTTTTCGATG	GTTGCATAAA	TGATAGTTTT	TTGATTTACA	540
GGAATCACAC	TCATTACANA	CCATAGAATG	TAGTTTCAGA	AGTGACNCGG	TCACCAACTT	600
TAAAATCNTT	AACGTCTGCT	CCCAACTTCA	ACGATNTCAC	CAGAAAATTC	ATGACCTAAT	660
GTCACTGGAA	AATTAACTTN	ATAATGCCCT	TCATAAGTAT	GAAGGTCTGT	GCCACAAATT	720
CCTGCATAAT	GTACTTTAAT	CTTTACTTTA	TCATCTAGCG	GTGTTGCAAC	TTCTTTATCA	780
AGAAGTTCTA	AGTTGCCATG	TCCTTCTCTT	GTTTTTACTA	AAGCTTCCAC	CACAAACACN	840
TCGANTTTTT	ANTTGNAATA	GACTNNATAG	NTTNAAGATA	AGATAGTTAN	CGATATTNCC	900
ACCTTGATCA	ATACTTGANA	TTTCAGATGA	ACCTTTTGNC	ATTTGTACAT	TCGTACCTTT	960
CGCCATATCT	GTGAAAATGG	GTGCTACGTC	TGTTGCAATA	TATAATGAAA	TTGCAATCAT	1020
AATCGTACCC	ACAATGACAG	AATGAATAAT	GTTTCCTCTT	GCTGCACCAA	CAATAAACGC	1080
GACAACAAAT	GGTATAGTTG	CTAAGTCACC	AAAAGGTAGT	ACTTGGTTTC	CTGGTAAAAT	1140
AACGGCTAAT	AAAACAGTGA	TAGGTACTAA	AATTAATGCT	GTCGAAATAA	CCGCTGGATG	1200
ACCTAATGCT	ACAGCCGCAT	CCAATCCAAT	ATAAATTTCA	CGTTCGCCAA	AACGTTTATT	1260

	TAGCCATGTT CTTGCAGACT CTGAAACTGG CATTAAACCT TCCATTAAGA TTTTTACCAT	1320
	TCTAGGCATT AAGACCATTA CTGCAGCCAT TGACATTCCT AAATTAATGA TGTCTCCAGG	1380
	TTTGTAACCT GCTAACACAC CAATACCTAA ACCTAAAATT AAGCCGACAA ATATAGACTC	1440
5	TCC	1443
	(2) INFORMATION FOR SEQ ID NO:128:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1103 base pairs	
	(B) TYPE: nucleic acid	
_	(C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	
	CTTAGCAACT CAAGAAAACG TTAATTTATC AATTCGCGGA ATTCCTAAAG AAGTAGTAGC	60
25	ACGTGGTGCA CATCCATGTA TTATTTCTAT GGAGGGTCTT GAAAAAGAAG GCGACACTTA	120
20	TGTCATTCCT CATGTACATG AATTATTGAC ACCATTAGTT TCAGTAGTTG CATTACAATT	180
	GATTTCATAT TATGCAGCAT TACACAGAGA TTTAGATGTG GATAAACCAC GTAACCTTGC	240
	TAAATCAGTT ACTGTAGAAT AATTCACTTT TTTAGAATCA ATCATGTATT AAAATTAAAG	300
30	TATATGGCAC CCTTTTAGAT TAATCGACTA GAAGGGTGCT TTTTTAGGTC GACTTAGCTT	360
	TTACTTCATC TTAATTTGGC AGAAATGCGT NAAAAGGAAG TGTTTTATTT ATTTAAATAG	420
	TCTGACAATT AAGGGTGTTA TGTTAATATG ATTTTATGAG AAGTATGGAG TAGCNATAGA	480
	GGGGTGACCT CGCATGTTAA TTCAATTAAG ATCCACATTG GGCGANTGAA GCAAGGAAAA	540
35	ACAATTTTAA AAAATATTTC TTGCCACATT CCTAAAGGTG ATAAATGGAT ATTATATGGG	600
	TTGANTGGTG CTGGTAAGAC AACGCTATTA AATATATTAA ATGCATATGA GCCTGCGACA	660
	ACTGGCGGTG TTAATCTATT TGGTAAAATG CCAGGCAAGG TAGGGTATTC TGCAGAGACT	720
	GTNCGACAAC ATATAGGTTT TGTATCTCAT AGTTTACTGG AAAAGTNTCC AAGAGGGTGA	780
40	AAGAGTAATC GATGTGGTGA TAAGCGGTGC TTTTAAATCA ACTGGTGTTT ATCAAGATAT	840
	TGATGATGAG GTACGTAATG AAGCACATCA TTTACTTAAA TTAGTTGGAA TATCTGCTAA	900
	AGCGCAACAA TATATTGGTT ATTTATCTAC AGGTGAAAAA CAACGAGTGA TGATTGCACG	960
	AGCTTTAATG GGGCAACCTC AGGTTTTTAA TTTTAGATGA GCCAGCAGCT GGTTTAGACT	1020
45	TTATTGCTCG TGAGTCACTA TTGAATATAC TTGACTCATT GTCAGATTCA TATCCAACGC	1080
	CTTGCGATGA TTATGTGACG CAC	1103
	(2) INFORMATION FOR SEQ ID NO:129:	
50		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1095 base pairs	
	(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: Genomic DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:	
	CTGACATATT TAATGTTTAC ATCTAGTGCA TCAGGTTACG CCGTNTGTAT AGCGATGTTG	60
	AGACGTTTAA CTGGATTAAC TAATATCATT GGTAATTTTT ANCCAAAANA TATTGNTNGG	120
10	GTTTAATTGG CCCGAGTACT TTTACCANTA TCATGGTTAA NTAGTATTTT GNTGTGACTC	180
	NAGGTGTACC NCCCAAACCG TTGCATGCTA ATTTAATGAT TCGGACTTTA AGCGGACATA	240
	TCCAACATAT TGCATTTGGA CCTATTGCAT CACTTGAATC AATAAAACAT CTTGGTACGA	300
	ATGGTGGAGG ATTTTTAGCA GGAAATTCTG CAACACCTTT TGAAAATCCA AATATTTGGA	360
15	GCAATTTTAT AGAAATGGGC AGTATGATGT TACTTCCTAT GTCAATGTTG TTCTTATTTG	420
	GTCGCATGTT AAGTAGACAT GGTAAACGAG TACATCGTCA TGCGTTGATA TTATTTGTCG	480
	CAATGTTTTT CATTTTTATA GCAATTCTTA CATTAACTAT GTGGAGTGAG TATCGTGGTA	540
	ATCCAATACT AGCGAATTTA GGCATTTATG GACCGAATAT GGAAGGTAAA GAGGTACGGT	600
20	TTGGAGCAGG TTTGTCAGCA CTATTTACAG TTATTACGAC GGCATTTACA ACGGGTTCTG	660
	TTAATAACAT GCATGATAGC TTAACGCCTA TAGGTGGATT AGGACCAATG GTATTAATGA	720
	TGCTAAATGT TGTATTTGGT GGCGAAGGCG TAGGACTCAT GAATTTATTG ATATTNNTCT	780
25	TACTGACGGT GTTTATATGC AGTTTGATGG TTGGTAAAAC ACCAGAATAT TTAAATATGC	840
25	CAATTGGCGC CCGTGAAATG AAATGTATTG TCTTAGTCTT TCTCATACAC CCAATTTTAA	900
	TTTTAGTATT TTCAGCACTT GCTTTTATGA TTCCTGGAGC AAGTGAAAGT ATAACGAATC	960
	CGTCTTTTCA TGGTATTTCA CAAGTTATGT TATGAAATGA CATCAGCTGC TGGCGAACAA	1020
20	TGGATCAGGG TTTGAAGGAC TGAAANGAAT GAATNCAACA TTTCTGGGAA ATATCTCTAC	1080
30	AGGAATCATT AATGT	1095
	(2) INFORMATION FOR SEQ ID NO:130:	
35		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 913 base pairs	
	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(II) MODECODD IIID. GENORIC DRA	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:	
	GGTGTTGTTT TCCTCCAATT TTTGGATCTT TTTTGCTCTA AAATCTCATC TTTTTTAATC	60
50	TAAATAGATC AAGAGTGCGC TCTAAGTTTT CTTCTTTTTG AAGAAGTCGG GTTTCCTTGT	120
	CTNTGAAGAT CNCAACGTCT TTCTCGNAGT TCTGCTTCAG TNTGTTCTCT TNGGAGTTGG	180
	TNTTCTTCTT TTGCNTCAAG TAATTTCTCT TTTTTGATAN TGTCAGCTTC TTTATGTGCT	240
	TGATNAACAA TATCNTCGGC AGTTTGTCTA GCTTGTGATT GCTTTTGAAG CANCANATTT	300

CGGGCNACAA CATACCCTCC AACAACTCCT AGAATGATCC CCANCACATG AGTAGGAGGC

TTAATAAATT CACACACAC CCTCCTTTTC TAGGGGTTTG CTCCTTTAAT ATGAAATCCA 420

55

360

	ATATGACTTT ATGAAATTAA AAATAAATCA AACCAAATTA ATTTGTGCGG TTTAATAGGA	480
	GATAAGTGTC AAGTTATCAA TTTGCACTTT TGCACTATAT TGAATGCTAT TTCTACTATT	540
	TTCTAAAGTT TTGAAGCTCG ATTATAAAAC TATTGATAAT GTAATAATAA ATAAAATAAA	600
5	AAACCTTATA GTCTCGATTT GTAGTGTATC CCATAAAGTT AGATATTATT CTAGCTTTAT	660
	GAGATGAATA TCACTTTCAA TCAATCCTAT AAGGATATTT GCTAAGTTTA ACTATAGATA	720
	TAAATTTGTG TACTATTCTT CGTCAAATAA TGACTTTGGT GCATCTTCTG TTTCTTCAAC	780
	ATCACCATCA GATATACCTA ATTTTTCTCT CAATTTACGA TCAATTTCTT CTTTAATTTG	840
10	TGGATTTTCT TTCAAGTACA TTTTAACATT TTCCTTACCT NGACCCATTC GTTCGCCATN	900
	GCAAGAATAC CAG	913
	(2) INFORMATION FOR SEQ ID NO:131:	
15		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 970 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:	
30	TGANGTAAAT TTGGTTGTGG CTCANTCGCA TCTGCGAAAG NGNAGTGCCC NGAGACCGCC	60
	TGTAATGTTC ATGACGACCC TAGAATAATA ATAAACTAAA AGCGCCGCCT NATGAAANTG	120
	AGCGCCTTGG ATGNAATCAC TCCAAACGGA CACCNTCGAA NCCACCTNGA GATGTANANG	180
	AAATACATAG TAAACCTACG AGTGATCCAN CGATATAAGG GTTCATGTCT GATACAGATG	240
35	TGATTGCTAA TGTTGGTAAG TAGATAACAA TTGCAACACG CCCTAAATGG TAAACGACAA	300
	ATAATAATGA GCCANTGACA CGTATGCTAG GGCCAAATCT AGCTTCTAAA TATTCATATG	360
	CAGATGTTAC CTTTAACTIT TTAAAGAAAG GGACATAGAA ATAAATAAGT AATGGAATAA	420
	TTGCGACGAT AGCAATGTTA CCAGCGATAT ATGACCAATC TGTTAAAAAT GCTTTCCTCT	480
40	GGTGTAGACA TAAATGTAAT CGCACTTAAC GTAGTAGCAT AAATTGAAAA GCCAACTACC	540
	CAAGATGGCA AGCGACCACT TGCGGTAAAG AAACTATTGG TACTTTGGCT CGCGCGCTTG	600
	GTAAAATAAA CGCCAATGAA CAACATAGCT AGTAGATAAA TGATAACGGC AACCCAGTTT	660
	AGTGTGCCAA ATCCAACTTC TTTCATGGGC AACATCCCCT TTACAATGTA TTGATTCTTT	720
45	GATGTCTATA AATCGTATTT TGCAATGAGT TGATCTACAT GTTCGTCGAT GTGCTTCGTT	780
	AAAAGGTTTG AAAGGTCTTT TCGGTAATCC TGCATCAATG TCACGATGAC GTAATATTTC	840
	TTTCAATGTT GGATAAATCC CCATNGATNA CAACTGTTTC GATAATGTCG TTTGAATCAT	900
	GTTGTAGTTG GTAAGCTTCT TGAATTTGAC CTTGTCGTGC TAAGTCGAAG ANTTCTCTAG	960
50	CGCTCGTGCC	970
	(2) INFORMATION FOR SEQ ID NO:132:	
55	(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 791 base pairs

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5		
	(ii) MOLECULE TYPE: Genomic DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:	
	GAAGACATGA ACGCATACGA AGATAGTTAT GAAAACCGAA CTAAAAAAAC AACTGCTGGC	60
	AGTAGCGATT TAAGTATGTA ATTAACGAGG GCATTAGCCC TCTATTTTTG TGTACAAAAT	120
	AACGATAAAC GAGGTATTTA ATATGACTGA AACAACTTTT AATCCAATTA CATCATTAAC	180
15	AATTAACAAT GAAGAAGTGA AAGCAAAAGC AACATTTATG TTCGATAAAA CCGCTAAAAA	240
	ATTTGCAACT GAACAAGAAG ATAACAAAGG TAGAAAACAA ACGATTTCAG GATTTACTAA	300
	TGTTTATNAC GCTTTATTAG AACGTGACAC AGTGGCAATC GTAGACTTTT GGGAATGTGC	360
	AACAGCTTAT CTAGGTAAAA GCGCGCCTAA AAGAGAAGAT ATTGAAGCGG AAATCATGGA	420
20	AATCATCGAA AGAGAAAACG ACACGTTGAT CTTTTACAAG GTGCGTTGGA CGTAATGAAT	480
	AATAGCGGTT TTTTCAAGCA GAAATCACGT CTATTCTGGA CACAGATGAA CCAAGCGCCA	540
	TCGTTAGCCA AAGAAGACGA GAAAGAGGGC GCGAAAGCTG GTATCGAGAT GATGAAGAAC	600
	AACTACAAAG AAATCATGAC CGTAGCACCT TATTAGACTA TTCGGAAATA AGGCAGATGA	660
25	CAAGTCGTTA CATAGGTTAT ATGAGTAATG ACGAGCTAAT GAGCATGCTA CCTGCCGAAT	720
	GGAATGACTG GATTATTGGC GCTAGACAAG CATTGATTGA CCAAAGGGAC NTCGCTCGTC	780
	CCGCTCGTGC C	791
	CEGETEGIOC C	
30	(2) INFORMATION FOR SEQ ID NO:133:	
	(2) 111 0.22121011 1011 002 11 0001200	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 820 base pairs	
35	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(5) 10102000 02::002	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(,	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:	
45	GGCACGAGCT AAAATATATG AAGCTAAAGG CCGTCCATCT GACAATCCGC TTATTGTTCA	60
	TATACACAGT AAAGTTCAAT TAAAAGATTT TACATATACT TTGGCACGAG CGTAGAAAAG	120
	TTAATGCAGG CATTCTGGCC GGGCCCTATT TCGTTTATAT TGCCGCTAAA GCCAGGCTAT	180
	CTATGTCGAA AAGTTTCTGG AGGTTTATCA TCAGTTGCTG TTAGAATGCC AAGCCATTCT	240
50	GTAGGTAGAC AATTATTACA AATCATAAAT GAACCTCTAG CTGCTCCAAG TGCTAATTTA	300
	AGTGGTAGAC CTTCACCAAC AACTTTCAAT CATGTATATC AAGATTTGAA TGCCCGTATA	360
	GATGGTATTG TTCAAGCTGA ACAAAGTGAA GAAGGATTAG AAAGTACGGT TTTAGATTGC	420
	ACATCTTTTC CTTATAAAAT TGCAAGACCT GGTTCTATAA CAGCAGCAAT GATTACAGAA	480
55	ATACTATICA ATACTATICA COATCATCAT TATALATCATA CTGLACAGC AATTGCACA	540

5	GGTATGAAGT ATTAAGCATT ACTCACCCAA TACAACACTT ACAATTATTA CAGATATTGA GAGCAAAATT GGAAATGACG GTAAAGATTG GTCTTCTATA GCTTTTATTG TGCCGAGTAA TAAGGTGGCG TTTATACCAA GTGAAGCGCA ATTCATTCAA TTATGTCAGG ATGACAATGA TGTTAAACAA GCAAGTCATA ATCTTTATGA TGGTGTTACA TTCACTTGAT GAAAATGAAA ATATTTCAGC GGCGTATATA TACGGCTTTG AGCTCGTGCC	600 660 720 780 820
10	(2) INFORMATION FOR SEQ ID NO:134:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1107 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
20	*	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:	
	OMON CHIMCANA A CAMANTA CHIMA MARCOCCA CHIMAN MONANTA MARCANCA CHIMAN MARCANCA	60
25	GTGACTTGAA AGATATAGTA TATCGGATTT GTAATGCGCC GTTAATCAAT TATGATGCGA TTAAGATGAC CCGACTTAAA ATACNCAGTC CGACACAAGA TTGCTATGAG TTTTTTGGGT	120
	GGAGATATTG AATTATATAA TTATCACTAT TAATACCTAC ATCAAAGGTA TGCTATTGAT	180
	TTAGTTATTA AAGNAAATCA TAAAACATAT AAGAATCAAG GAAAAGTAAA TACTGATTAT	240
	TTTTGTTTTG GAAAAGATAT CATTGCGCCA GCAAATGGTA CAGTTGAAAA AGTAGTGAAT	300
30	GGGGTTCAAG ACAACAGTAT TGGAAGTACG AATGAATCAC AGTTTTTAGG AAATTATATT	360
	GTAATTAAGC ACGCAGAAAA TGAGTATAGC TTAATAGCTC ATTTACAACA ATATTCAATC	420
	ATTGTGAATG AGGGCAAAA TGTTAAATAT GGTGACTTCC TTGGGAAGGT TGGGAATTCT	480
	GGCAATTCTA CTGAACCTCA TATACATTTC CAAGTAATGA ATGATAAGAA TATTGAAGCA	540
35	TGTACGTCTT TGAAAATTCG ATTTTTAAAT AATCTAGAAC TTATCAAAGG GGATGTGGTC	600
	TGCGGATTAC AAGGTGAATG ATGGCGATAC TTATAAAATC TCGACACTAT AAAAATGGTA	660
	TAGTGTCGAG ATTTTCTTGC TTATTTAGTT AATTCAAAGT GTACGCCGGA TTCATTAGAA	720
	GTTGATGTAT TTGTGTTTGT AATAGAGTAT CCAGTTATTG AAATTTTAGA TTCAATATCT	780
40	GAAGCGGTAT TTGTAGATTC GGGATTATAG AAGCTACATT CATAAGTGTT ATCATCTNTG	840
	GINTICNAAG AATTAAACAT TCCCTTTGGC TTTTAACTTC CGACTTTAGT GGTGGGNTAA	900
	TGNCAAAAAG TNTGGAGNTG CTTATTACTA TTAATTAACA ACCCAGCCCA ATTGGGNCAC	960
	CCCCCAACGG ATTTGGACCA ATCCTCAACT TACCTGCTTA TGAATCCCTG GCTCCCAACC	1020
45	CCCGCAAATT TGCTAAACCC AAAATCCACT TCCAANGTTT CCAAACTTAC TTTCTTCCAA	1080
	GNTAATTTCT TCAAGGATTT TTTTTGG	1107
50	(2) INFORMATION FOR SEQ ID NO:135:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1135 base pairs	
55	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	

	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:	
	AAGTTTGATC CACCCACCNT AAACCCATCG CCTAACAATA AANCCGAANN TCACCTCCTG	60
10	CCTGTTGATC CAATTGTTCC CATTCCAATA ACCGCCACCT CTTTTTCTAG AACACCCACA	120
	CCTATCGTTC TATGGTTAAT ATGTTCGACA TCTGTATGCG GTATAGCGAC CGAACATAGA	180
	TGTGTTGGTA AACCAGTANC NAATTCTTTT TCTCTGTCGA TGACTGCATC TTTAAACGTT	240
	GACTTCACGA ACCCATTTTG AAATAACACA TCTGACATTT GNGACAATAC GGATTCTTTA	300
15	TCAGTTGCCG ACNAATTGAG CATTATATTT TCTTTATGCA CCTAATTGCT TGTCCCATCC	360
	ATTTTCCCTC GCTTCTTTAT TTGAATAATT TTTTAAAATC TCATTTACAT CAGAATTTTT	420
	GCGACTTTGT ATGATGCGCT TAATTGCGTC ATTGTCTTGC GCCACATCTC TCAATTGTAG	480
	TAACGCTCTT AAGTGTGTCA CTTTATCAAC AGCAGCAATA GGTACAATAA TATGGATTGC	540
20	TGTGCCATCT GACATGTATA TTGGTTCTTG TAATATCAAC ATACTCATCG CTGTTTTATG	600
	TACATGCTTT TCAGAGTATG CATGTGGAAT AGCAATATTT TGCATGATAA CCATATACGA	660
	ATCANCANAT ACCNGGGAAT TCCATCTCAT GAATATATTT AATATCAATA AAATGATTAG	720
	CAACTAACAC AGCACGNGCT TTAGCAATAG CTTCATCAAT ATTTTCAACA GGAGGCNTNC	780
25	TTTNCACGGG CCTGGCCGGT ATCAAGGCAG CTAAATCTAA TGTCTTATTT TGTGTGACAA	840
	TCGATCCATT AATGGTTGAA ATTGAATTAT AATTGGCAAT AAAATCTTCT AAACCATCAC	900
	GTAGTTCTGT AATGTCATTA ACTGTCGTTG TGCGTTCAAT TAATGCCATT AACTTGTTTA	960
	TTTCCTTATC AATGTCAGCC GATTCCTTAT TAATGTACTT CATCACTTCT TTACGTAACT.	1020
30	TTCGTTGCTC ATTTTCAGAT AAAGCTACTT TTGTGATAAA TAATTTTTTA TGTGTTAGGA	1080
	CAAACATTGG TGAAAAGACG AAGTCATAAT CTAATGTGTA ATTTTCAAAT GTTCT	1135
	(2) INFORMATION FOR SEQ ID NO:136:	
35		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 973 base pairs	
	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE MYDE. Comenia DVD	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:	
	CGTGCGAGCT GCTTTTGGTA AAAACGGCGG TAATATGGGT GTATCTGGAT CAGTTGCTTA	60
50	TATGTTTGAT CATGTGGCAA CATTTGGTAT TGAAGGAAAG TCTGTTGACG AAATACTTGA	120
	AACATTAATG GAACCAAGAT GTAAGATGNA AATGATGTGA TTGACGATAA TGGATTGACA	180

240

300

360

ATAGTCTATG CTTGAACCAA GATCCAATTT CCAGTCGTTC CAAGATGCGC TTCGTNCACC

AGGTTGTTGG AAGAATTTAA AAGTTGCTTG AATTTGAAAT TGTTACCCTC CAAACAAGAT

ATTGAACTTT CTGAAGCGGA CCNAAGTAAC ATTTGAAAAA TTAATCGATG CATTAGAAGA

	EP 0 841 394 A2	
	TTTAGAAGAT GTACAAAACG TATTCCATAA TGTGGATTTG AAATAATGAA ATCAGCAGAA	420
	CAATGGATTG ATGAATTGCA ACTTGAATCA CATCCTGAAG GTGGTTTCTA TAGAGAGACA	480
	ATTCGAGAAG TATTGAAAGA TGGACGCAGA GCGCCGTTTA GNAGTATTTA TTTTTTACTT	540
5	ACAGATGACA ATATTTCGCA TTTTCATCGA ATTGATGCTG ATGAAGTATG GTACTATCAT	600
	GCTGGTGATT CTCTAACAAT TCATATGATA AATCCGGATG GGGAATATAC GACTGCAACA	660
	TTGGGTACTG ATATCCAAAA TGGAGATGTA TTGCAATATG TAGTGCCTAA AGGAACAATT	720
	TTTGCTTCTT CAATCGAAAT TTCAAATACT TATAGTTTAG TAGGTTGTAT GTGTCAACCG	780
10	GCATNTGAGT TTAAGCAGTT TGAATTGTTT AAGCAATCTG AATTAATTAC ACAATATCCG	840
	CATCTTAAAT CAGTGATTGA NAAATATGCT TTAAAATAAA AATGATCAAT GAAGTGGTTT	900
	GAAGGTTGTT AATAAACCTT TGAGTCACTT CATTTTTATA TGTATTCTTG ATTGAATCAG	960
	AATAGATTTG ATG	973
15		
	(2) INFORMATION FOR SEQ ID NO:137:	
	(i) SEOUENCE CHARACTERISTICS:	
20	(A) LENGTH: 1701 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25	(b) 1010b0d1. IIIIdal	
	(ii) MOLECULE TYPE: Genomic DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:	
	GGCACGAGCT GGTTGCATAT CTAAACTTTG GTAATCTACA CCTTCTTTAG ATTTACCGAA	60
	TGCGATAGCT GGAGACTTAA CTGCGGCTAC TTTCGCATGT GGAATAGCAA TACCTCGCCG	120
	ATACCAGTTG TACTTTGTGA TTCTCGATTG TGAATCGCTT CCTTAAATGA CGCGACATCA	180

ATACCAGTTG TACTTTGTGA TTCTCGATTG TGAATCGCTT CCTTAAATGA CGCGACATCA CTTAATTTAC CTGCCTTGNC TAATTGGAAT TACCTAACTC ATCAATAACA CCATTTTGT 240 300 CATTTGCCAN TAAATCCATT GCTATCGTAT CTTTTGTTAA TAACTCTGTT ACTCTCATTA TTTTCACTCC CCATCAAGTA CGCTAATCGN AACTTGGTGA TTCTATTTTT TCTTATAGCG 360 GTCCCGTGTT TGCTAAGTCC TCAATCAAAA TGCCGGGGCA AGTACCGCAA TGCGACTGCT 420 TGGTTGGGAA TGCTTTTCA ATCGTTAAAC CTGGAAGCAA TTCCAGCCAC CATGCCTGCA 480 ACTGTACTAT CACCAGAGCC AACTGTATTA ACCACTTTCC CTTGTGGATT AACTGCTTTA 540 ATACTGATTT CTTTATCAAT ATAAATAGCA CCATCACCGC CAAGCGAGAC AATAACAGAT 600 TGCGCACCTT TATCAACTAA CAAACGACCA TATTTAATAA CATCTGTGTC TGAGTTCACT 660 GTTGTATTAA ACATCACTTC TAATTCATCT TTATTAGGTT TAATAAATAG TGGNTGAAAT 720 GGTAAAACGC TTTCAAGCCA ATTCTTTTTC AGCGTCGACC GACTAATTTA GCACCTGTCT 780 GTGCTGTAAT TTGTGCAAGT TTGCGCATAC GCATCGCTTG GAATACNACT TGGTACACTT 840 CCAGCAACAA TAACGATATC NTCGCTTGTT GTATTTTTAA TGTGTTGTAA CAGTTGTTCA 900 AATTGTGTTG ACGTTATATG AGGACCCGGT GCATTGATTT CTGTTTCTTG TCCTGTTTTT 960 AATTTCACAT TAATACGTGT ATCTTCATCN ACNNCAATAA AATTCGATTG AATTGCNCTG 1020 TTANTTAATG TATCTATAAT GAATTCCCA GGAAATCCAC CTGCANATCC CAAGGCAGTT 1080 GACTCAACAT CTAATGTCTT TAAGACGGCG CGAGACGATT AATACCCTTT CCCCCCCAGC 1140 GAAGTAATAT GTTGCTGTTG CTCTGTCCAA NNCCATCAAG GTTNAGAATC ATTCGTAAAA 1200

35

40

45

50

55

	ATGACATAAG TCAATTGTAG GAGTGNGAGT CNCCTGTATA AATCATAAAG TCCCTCCTAT	1260
	AAAGTGAGAC TTTTGTTGGT ATTCTTTTAN CGAGTCTTGA GTTAATGCTT TTTCAGATGT	1320
5	GATGANTGTC GTACTTTCTA GCACAGGGAC ACGAGCACAA TATACTTTAT TAAACTTAGA	1380
	NTGATCCTAT AAGNACANAT GANTGAGTGG CTAATGACAT TGCTGTTTGT GTAACTAATN	1440
	CCTCTTGCTC ATCGGGAGTA GTTAATCCAA GTTCAATATC TAATCCATTC ATCCCGATAA	1500
	AAGCTTTATC GNAACAATAT CGTCTTAATA TCTCCATAGC ACTAGANCCA ATCGTAGCNA	1560
10	GTGTATTTTC TTTAACTTGA CCACCTAGCA TAATTGTTTT AATACCTTTT GGAAGTAAAG	1620
	CTTCTACATG TGTTAAACCA TTGGTTACCA CAATGATATC TTTCGCTTGA ATATATTTAA	1680
	TTAGCGGCAC GAGCTCGTCC C	1701
15	(2) INFORMATION FOR SEQ ID NO:138:	
,,,		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 858 base pairs	
20	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
23		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:	
30	CCCGGTGTAA ACCGTATGGA TGGATGCTAG CACCAANTTA ATAATCCTCC ACAATANCAT	60
00	TAAGGGTATT CATGTAGGTG NCACAACATG GTAAAGGCTC TACCAGTTGC TTACCTTAGA	120
	ACAGCTTTAA GTTGNAAATG GTTATGAAGT AGGTACATTT ACGTCGCCGT TTATTGAAAC	180
	ATTTAATGAN CGAATTAGTC TAAATGGTGT GCCAATATCA AATGACGCTA TTGTAGAATT	240
35	AGTATCACGT ATTAAACCAG TAAGTGAAAT GATGGAACGT GAAACAGATT TAGGTGTTGC	300
•••	AACTGAATTC GAAATAATCA CAGCGATGAT GTTTTTATAT TTTGGTGAAA TACATCCTGT	360
	TGATTTTGTC ATTGTTGAGG CTGGATTGGG TATAAAGAAC GATTCGACAA ATGTCTTTAC	420
	ACCGGTTTTA TCAATCTTAA CTAGTATCGG TCTAGACCAT ACAGATATTT TAGGTGGTAC	480
40	TTATCTAGAT ATTGCTAGGG ATAAAGGCGC GATTATAAAG CCTAACGTTC CAGTGATATA	540
70	TGCTGTTAAA AATGAAGATG CATTAAAATA TGTTCGCTGA ACGCGCAATT GAACAACATG	600
	CAAAGCCAAT TGAATTAGAT AGAGAAATTG TTGTTGTATC GCAAAAATGA TGAATTTACT	660
	TACCCGNTAT TAAAGATTAT GAATNAGAAA CAATCAATNT NAAGCATTGT TAGGGTNGAA	720
45	CATCAAGAAA CAANATGCTG CATTAGCCAT AACAANTCTT ATTGGANTCA AATTGAACAA	780
75	GGATTAATTG AATNCAGATT TNCAANAAGA TGATAGACGG GTTTGATCAA GTCCGTGGAC	840
	NTGNCGTTTT GGGCAGGT	858
50	(2) INFORMATION FOR SEQ ID NO:139:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 497 base pairs	
55	(B) TYPE: nucleic acid	
-	(C) STRANDEDNESS: single	

	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:	
10	GAATTCNAAG TCACTTTCTT TTTTAAGCTT TAAATTTCTC CCCATTTTTT TAGCCCCCTA	60
	TAAGGATTGA ATATCAATGC CTTCTNTCAT TAAAATTTCT CTAATTTGCG AAACAAATAA TAATGCATGT TCTCCATCAC CATGCACACA AATTGTATCT GCTTGTAACG TTACTTCCTT	120
	ATTGTTTTGT GAAATAACTT TATTTTCCNN CACCATCTTT AAAACCTGCT TAAGTGCTTC	180 240
	GTCAGTATCA GTAATCACAG CATCACTTTC TTTTCTGATT GATAAAATCA TATATGTTCC	300
15	TATAAACACT AAAAATCCTA TAACTAGGTA ATAATATTAA ATTCAAGGAT CGANCCTCCG	360
	CTAAGCGACA ACAACAATGG TGACAATAAC AACAACAACT GAGAATTNAA ATACCTAATT	420
	CAAAAAGGGG TNATNGGNCT TACAATGAAT GTGGCCNAAA ATTGGGGAGG NTCCAAGGNG	480
20	GGNTCAAATT RRDCTNS	497
	(2) INFORMATION FOR SEQ ID NO:140:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 969 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30		
	(ii) MOLECULE TYPE: Genomic DNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:	
	CCCTGGTTGA TTGGAAAATG TAATTGAATG AAACGGGTAA AACCTTCCCC AAAGCACCAT	60
	AATTGTTGCA AGTAGGTTGC CACCCCAATC CTGGTTTACC CTGATTTGAA AGGCTTTGGG	120
40	CAAGCCGAAA TATAGATATC TCTAACCGAC GAGATTTATA ATTTGATGAT TTATCAATTA	180
40	GGTGCATTAC AAGGGTTTTG TCGCATTCAT CAACTTAAAA TTAATCATGT TAAACCCGCA	240
	TGGTGCATTG TATCAGATGG GTGCAAAAGA CAGAGAAATA GCAAACCCCC GTNATANCAC	300
	NACCTGTTNA TGNCNTTGAT CCATCACTAG TGTTAGTAGG ATTAGCAATC ATATCTAATT	360
45	TCAGAAGCAA AGAATGTCGG ATATAATCCA GCTTCTGAAG TGTTTGCTGA TAGACGATAC	420
	GAAGATGATG GGCAGCTCGT TAGTAGAAAA GAAAGTGATG CTGTGATTAC TGATACTGAC	480
	GAAGCACTTA AGCAGGTTTT AAAGATGGTG NAGGAAAATA AAGTTATTTC AAAAAAACAAT	540
	AAGGAAGTAA CGTTACAAGC AGATACAATT TGTGTGCATG GTGATGGAGA ACATGCATTA	600
50	TTATTTGTTT CGCAAATTAG AGAAATTTTA ATGAAAGAAG GCATTGATAT TCAATCCTTA	660
	TAGGGGGCTA AAAAAATGGG GAGAAATTTA AAGCTTAAAA AAGAAAGTGA CTTTGAATTC	720
	ACAAAAATC ATAAAAGGTT ATTATTAGGT TCTGTATTTC ACGATGGCAA CTTCTGCAAT	780
	TGGCCCAGCA TTTTTAACGC AAACAGNAGT ATCAACATCA CAATCGTTTG NAAGTCNCGN	840
<i>55</i>	ATCTGCCATA TNACTGTCTA TCATCATTGA CATTGGTGCA CAAATTAATA TATGGCGCAT	900
	ATNAGTTGTA ACTGGTTTAA GAGGTCAAGA AATATCAAAT AAAGTTGTTC CTGGGCTTGG	960

	TCTCGTGCC	· -	V- i	969
_	(2) INFORMATION FOR SEQ	ID NO:141:		
5				
	(i) SEQUENCE CHARACTERISTIC	S:		
	(A) LENGTH: 632 base pair	s		
	(B) TYPE: nucleic acid			
10	(C) STRANDEDNESS: single			
	(D) TOPOLOGY: linear			
15	(ii) MOLECULE TYPE: Genomi	C DNA		
	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:141:		
•	GGNACGAGCG GCACGAGCGC ACTTATTTTA			60
20	ATAAAAAAGG CTGTGTAGGG GTGTCTTATG	AATAATAGAA ATGTGTATGA	TATCGAAGTA	120
	AGTGATTATA AAGGCTTAAC TTATAAATTA	GAAGCATTTA GAGGTAAAGT	GATTTTAGTT	180
	GTTAATACTG CAACAGAATG TATATATAGC			240
25	CAAAAATATA AGGATCGTGG GTTTGTAGTG			300
25	CGACAACCAG GNTCTAATGA AGAAATCTTG			360
	CATTTCCAGT GCTAGCTTAA AATATCTTGT	GAACGGGAAC GAATGAACAT	CCCCGNTATT	420
	TACGCATTIN ANAGGAATGA ACAAACCAGG			480
30	CACAAAATT TATAATCGAT CGACAAGGCA			540
50	ATCCAATGGA TATATCGACA AATATAGAAA	TATTATTGGA AGAATCTTCA	ATCTTAAATT	600
	TAANATTGAG CGCTTAGTNT GCAAATACAC	AA		632
35	(2) INFORMATION FOR SEQ	ID NO:142:		
	(i) SEQUENCE CHARACTERISTIC	S:		
	(A) LENGTH: 662 base pair	rs .		
40	(B) TYPE: nucleic acid			
40	(C) STRANDEDNESS: single			
	(D) TOPOLOGY: linear			
45	(ii) MOLECULE TYPE: Genomi	c DNA		
	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:142:		
50	CCCCACNAAG TACNCGAAAC GCAAACAAAC	ATCTTAAAAG GAGGAACGAA	CAATGCAAGC	60
	ATTACAAACA TTTAATTGGA AAGAGCTACC			120
	TTATTTTGTA GGAAAAGATA TTGCTGAAAT	TTTAGGATAT GCAAGGGCAG	ACAATGCCAT	180
	CAGAAATCAT GTTGATAGCG AGGACAAGCT	GACGCACCAA TTTAGCGACA	GCAGGTCAAA	240
55	ACAGAAATGT AACGATCAAT CAACGAATCA	GGATTATACA GTTTAATCTT	TTCTAGCAAA	300
	TTAGAAAATG CGAAGCGGTT CAAACGTTGG	GTAACTTCGG AAGTTTTACC	AACATTAAGA	360

	AAAACTGGTG CTTACCAAGT ACCTAGCGAC CCAATGCAAG CATTGAGATT AATGTTTGAA	420
	GCTACAGAAG AAACAAAACA AGAAATTAAA AACGTAAAAG ATGATGTTGA TNGATTTGAA	480
	AGAAAATCAA AAACTGGATG CGGGAGACTA CAATTTCTTA ACTAGAACTA TCAATCAAAG	540
5	AGTAGCTCAC ATNCAAAGAC TACATGCGAT AACAAATCAA AAACAACGTA GCGAATTATT	600
	CNGGGATATT AATTCAGAAG TGAAAAAGAT GACTGGTGCA AGTTCAAGAA CGAATGTTAG	660
	AC	662
10	(2) INFORMATION FOR SEQ ID NO:143:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 960 base pairs	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	(II) MODECOLE TIPE: GENOMIC DNA	
	(xi) SEQUENCE DESCRIPTION: SEO ID NO:143:	
25	TAATTCGCAA TAGGAGTGAT GAATATCATA AATTTTACCC TCCAAATGAA GCTAATGAAG	60
	TCCTGGACCC GAGTAAGACG CATGTAGCCA AGCTAAAATA ATCCACTCTA CCTTATCTTT	120
	AGTTAATAAT GTTACTAAAT GTTGTTCATA CGCTGCTTTT GAATCAAATT GTTTTGGTTC	180
	ATTAATATAA ACAGGAATAT CGTGCTTGTT TGCTCTATCT ATACAAAACG CATTTTGATG	240
30	ATCCGTATAT AGCNCCGTAA CTTCAATATT TTCAAGTTTT CCTGATTCAA CATGCTCAAC	300
	TATATTTTCA AAGTTACTTC CTGAACCTGA TGCAAAAATC GCAATTTTAA CCATTGTTAT	360
	ACCCCCAACA ATTCAATTGC AGTTGACTCA TTTTTCACAA TATGACCAAT TTGATAAGCT	420
	TCCACATTTT GTTCTGCTAA AATCTTCAAA GCGCGTCGAT GCATCTTTTT CATCAACGAT	480
35	AACCGTATAG CCAATACCCA TGTTAAAAAT GTTATACATT TCATTTGTGT CTATATTGCC	540
	TTGTTGTTGT AACCAATCAA ATATTTTTGG CGTTGGAAAT GATGTAGTAT CAATTCTAGC	600
	AGCATATCCG GCTGGCAATG CACGTGGAAT ATTTTCATAA AAACCTCCAC CAGTAATATG	660
40	ATTCATTGCC TTAATAGAAA CTTCTTTTTT TAAAGCAAGT ACAGGTNTGA CATATAATTT	720
70	AGTTGGCTCT AAAAAGACAT CTATAAATGG ACGATTATCG NAGGGTGATG CCAAATCAAT	780
	GNCTGATTCA NTAATTAATN TGCGCACTAA ACTGTNTCCA TTNGANTGAA TGNCACTTGG	840
	ACGCAAGTCC TATAACAACT TGGCCCTCTT NCAATTCTTG AACCATCTTA CAATAGNCAA	900
45	CCTTTTTCAA CTGCTCCAAC AGCAAATCCG GCTACATCAT ATTCACCTTC GTGATACATT	960
	(2) INFORMATION FOR SEQ ID NO:144:	
	(i) CHOURNON CURP COMPOSITORIOS	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1013 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(C) STRANDEDNESS: Single (D) TOPOLOGY: linear	
55	(b) TOPOLOGI: IInear	

	(ii) MOLECULE TYPE: Genomic DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:	
	TAATNAATTT GGCGANTCAC TTGTCGCTAA GTGGCTCCAC CTTGTCATCT ATTATTGCAT	60
	CACTCATGGG NCGNACATCA TAGTGTTGAT TTGATTCAGC CATATCNACG TTTTGATTTT	120
	TCTAATAGAA GATCAGCAAC AACATCAACA TTTGAATGAT TCATATATGA TGCAGGTACG	180
10	TCTTTTAATG TTTTAATGTT ATCAATATAA AGATTGATGT AGTGTTGCGG GATATTGTAG	240
	TGATGTTCAA GTAACATATC AGTAACAAGT TGATTAAAGA CACTTTCATC TAATTCACCA	300
	CGTGCCACAG CGCTTTCTAT TAATGCTTTA TTTGGGAAAA TAGGCACGAG CGAACGTCAC	360
	GTAACCATTT NGCGACATCT TCAAACGTAT CCGCTTCTAA TCCTTCCCAG GGGTTACGTG	420
15	CTGCAAAAAT CGAAATCGGT GATAATGGTG TAATAACACG TTTCGCATTT TCAATGACTG	480
	AATTGATATT TAACTGTGTT GTCATACCTT TCACCTCCTA TAAATACTTC TTCAAATAAT	540
	TCGGATGACT TTCTATCGCT TTCGAGCGTG CTTCACCTAG ATTAACTAAC CACACGTACA	600
	ATACCGCAAA ACCCTTAGAG TATCGATGAC GCGCCACCCA AATACTTAAT AAACTGCCAA	660
20	AGATTAAAAT GACAACACTA ATGATGACAC TCACTGTAGG CGGTGTTGTC GCATGTGTTG	720
	TTATATTTTG GTAATACATC GTAAAAATAA TTGTGTGTGA TGACGTAGAT AAATGTCACA	780
	ATTGCAATCA AAATCATGCC AACCAGACGT GCCATGCGCC CTTTACTAAA GGCTACCATC	840
	TGATTCCAAG ATACAAGTTA ATGACCATGC TAGAATGAGT GCACTTAACA CTTCATATGC	900
25	ACTTCTGTCA CTACCATCCA AATAGAATGC ACGATAATAG CTAATACACG TCCATGACAT	960
	CCAGCATAAG CTCTTACAAT GCTGTTTTGA ATATGATCGC TCCCAARRDC TNS	1013
30	(2) INFORMATION FOR SEQ ID NO:145:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1032 base pairs	
35	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:	
45	ATCCACCCAT NACGNTACTC ATANCATTGT CAACAGTAAG TAATGTCCAT ATGCATATCN	60
45	ATNCCGCTCG GCANTATANC ACCCAACCGG ATTTCATAAG TGGGCGGATA AAGTGATNAG	120
	AGTGATCTCA ACACTATCGA NTAGNTACCA GCGTTCTTTA TCGGTNTTAT TTTATNATTT	180
	ATTGTCACAN ATTTANTGAA TATAGATAGC GTTATACTAA GTCAGNTTAT ATTACCTGTA	240
50	ATCACGCTAT CTTTAGGTAT GTGTGCATAC ATCATTCGTT TAGTGCGTTC TAATTTATTG	300
50	ATGTTATTGC AAAGTAATAT CGTACAANCA GCAAGATTAC GCGGTATGAA TGANCGTTAT	360
	ATTTTAATTC ATGATTTACT AAAACCAACA ATTTTGCCGA TTATCCCATT ACTAGGGATT	420
	TCACTTGGCA GTCTAATAGG TGGTACTGTA GTGATTGAAA ATTTATTTGA TAATACCTGG	480
	TATTGGTTAT CTATTAATGG GATAGTATTA AATCTCGAGA TTATCCTGTT ATTCANGGAT	540
55	COORDINATE TO THE PROPERTY OF	240

600

GCGTGTTATT TATTGGCTTC TTCGTTGTTA TTATCAATAC GATTGCTGAT TTATTAACGT

	TATTACTTGA TCCGAAGCAG CGTTTACAAT TAGGAAATCC CACAAAACAC AACCAATACA	660
	CCATTGATAT CAGAAAGTAG TGNCCGTCAT GCATAAAATA TTTTCANAGA ATAACCTGAT	720
	ATTTTTTGTA TTCGTTGCAT TTATTTTTGT GGTAATTGTA CTGCAATTCT TTGTCAGTAG	780
5	TGAAAATGCA ACCACAGTCA ATTTATCACA AACTTTTGAA CCGATTAGTT GGTTGCATTT	840
	ATTAGGAACT GATGATTATG GGAGAGATTT ATTTACCCGA ATTATTATCG GTGCACGTTC	900
	AACATTGTTT GTTACTGTTT TAACATTAAT AGCTATCGTT GTCATAGGTG TTACACTAGG	960
	TCTATTTGCC GGATATAAAA AAGGGTGGAT TGAACGATTA GTGTTAAGGT TTATTGATGT	1020
10	TGGTCTAAGT AG	1032
	(2) INFORMATION FOR SEQ ID NO:146:	
15		
13	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 646 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:	
	GGCACGAGAC TTTGGTGGTA GTTTTGAAAG ATTACAAGCA TTGACAACAA AAACAACATT	60
30	ACCCGTATTA TCCAAAGACT TTATAATAAG ACCCCCCCA ANTTGATGTT CCTAAACCNA	120
	GCTGGTGCAT CTATGATTTT ATTGATCGTT AACATCTTAT CGGATANACA ATTGAAAGAT	180
	TNAATATACC CTACGCAATA TCCCAAAATC NAGAAGTGTT AATTGAAGTA CATGATCCCC	240
	ATGAATTAGA ACGTGCCNAT ANGGTTAATG CTAAATTGAT TGGTGTAAAT AACAGGGACT	300
35	TAAAACGATT TGTCACAAAT GTGGAACATN CAAATACTAT TTTAGAAAAT AAAAAACCAA	360
	ATCATCATTA TATTTCTGAA AGTGGTATTC ACGATGCATC TGATGTAAGA AAAATCTTGC	420
	ATAGTGGTAT CGATGGCTTA CTAATAGGTG AGGCGCTTAT GCGTTGTGAC AATCTATCTG	480
	AATTTTTACG ACAACTGAAA ATNCNAAAGG TGAAGTCATG ATGAAATTGA AATTTTGTGG	540
40	CTTTACATCA ATAAAGGATG TTACAGCGGC CAGTCAATTA CCTATTGATT CGATAGGTTT	600
	CATCCATTAT GAAAAAAGTA AAAGGCATCA AACAATACCC AAATAA	646
	(2) INFORMATION FOR SEQ ID NO:147:	
45		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 565 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

	GGCACGAGCG TCAGTCCAAA TCACGCCTTG TGGTTTCTCT GGAATTGTCA TCTATTACTC	60
5	ACCCCCAAAT ACATCATTAA TGTTAATATT GTGAATTGCT TCAATTGGAT TTATTGTTTC	120
	ATCTACAGNN CGATATCGCT TACTATCAAT CATGNCATCT ACATGACATA CCGATTGATA	180
	ACTACAAAAA GCACATGGCA ATTTGTGTGT GTNCTTTAAT GGTGCAACTN CAGTATGTCC	240
	ATCCATAATA TNTGAAGCTG TNTCTATAAA ATTCTCTNTG TTATGCTGAA TGAATTTATA	300
10	AATTGNTGGT TCATCTGACA CTTGGCTGGC TCGTTTACTC AAAGAGACAT CTTTTATTCA	360
	ANCCAACTGG GTACAAATAT CTGAAGGTGA ANTTAGGGTT CTTNAACGAA TTTCCAATGC	420
	ATCAAATAGC AGGGGGTCT TGCATTCAAC TAAACCCTCA GGTTAANCTT NNNAATTAAT	480
	CTTGNTCTTG GNTNTCTTTC ANCAATATCA AGACCATGAT TTAATTTACT CTTGGGCCAA	540
15	GTCATGGAGT TTTATATCCA CCGGG	565
	(2) INFORMATION FOR SEQ ID NO:148:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 919 base pairs	
•	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:	
	CTTGAAGTAG TAGGGTTACA AGGCTCAACT TACCTTTTAA AAGGACCAAA CGGTGAAAAC	60
	GTAAAGTTAA ACCAATCAGA AATGAACGAT GATGATGAAT TAGAAGTAGG TGAAGAATAT	120
35	AGTTTCTTCA TTTATCCAAA CCGTTCAGGT GAATTATTTG GAACTCAAAA TATGCCTGAT	180
	ATTACGAAAG ATAAATATGA TTTTGGTAAA GTACTTAAAA CGGATCGCGA TGGGGNACGT	240
	ATAGATGTTG GGTTTACCCC GNGAAGTGTT AGTACCATGG GAAGATTTAC CAAAAGTGAA	300
	ATCACTATGG CCACAACCTG GTGGATCATT TGNTAGTTAC ATTACGAATT GACCGTGAGA	360
40	ATCATATGTA TGGACGTTTA GCGAGTGAAT CTGTTGTAGA AAATATGTTT ACACCTGTAC	420
	ACGATGATAA TTTAAAAAAC GAAGTCATTG AAGCCAAACC TTGGCNCGAG CGTATTACGA	480
	ATTGGTAGCT TCTTATTAAG CGAATCAGGT TACAAAATTT TCGTACATGA ATCAGAACGT	540
	AAAGCTGAAC CAAGATTAGG TGAATCTGTT CAAGTTAGAA TTATCGGGCA TAATGATAAA	600
45	GGTGAGTTAA ATGGTTCATT TTTACCACTT GCACATGAAC GNTTTAGACG ATGACGGCCA	660
	AGTCATCTGT GATTTACTAG GTGAATATGA TGGGGAATTA CCATTCTGGG ACAAAATCAA	720
	GCCCTGAAGC GATTAAAGAA GTATTCAAAT ATGAGTAAAG GTTCATTCAA AACGTGCAAA	780
	TCGGNCACTT ATATTAAACA GAAGGATTAT TAATATTAGG AAACAGGGTA AAAATCACTT	840
50	TTAACTTAAA AAAGGGTTGG CGGGTCGNNT TTGGNCTCAA AAAGAATTAA TCATTNTNAC	900

(2) INFORMATION FOR SEQ ID NO:149:

(i) SEQUENCE CHARACTERISTICS:

AACGNNNTCG GNGGATGCG

919

5	(A) LENGTH: 955 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:	
	CTGCATCTGG TGAAGGAAAT CAANTANNTN TTATNNCTGA AGTGATTGCA TGGTGCAACN	60
	TCAAATATCA CATATGGCTC AGTGGANTAT ATGGATAAAG GCTTAACAGG TCATATCATG	120
15	CGGCGTGGTA TTACTGAAGC GGATGCCTCA ATTAATTGGG CACTAGGTTT AATGAATGAG	180
	GGTAGCCAAA TTATTGATAA TACAACAAAT TTATGTGGTG ATCGCACAAC AAGNNCACTT	240
	AAATCAGGAG GTGNAGGTAC AGGAGAACAA AAAATTAATC TAACATCTAA ANTCGCACAA	300
	ATATGGTAAA GAAACAGATG GTTATNTCCT TAAACATGGT GTTATGAAAG AACATGCATC	360
20	ATCTTGTATT TTAATGGGTA TCCGGCTACA TTANGCATGG GGGGAACTAA ATCAAGTGCT	420
	AATCAGGAAT CACGTGTTAT TNATGTTATC TTGAACATGC TCGGGGGNGA CGCGAATCCT	480
	ATTTTATTTA ATTGANGAAG ATGATGTACA AGCTGGTCAT GCTGCATCAG TAGGCCGTGT	540
	TGGATCCCAG ATCAACTTTT ACTATTTAAT GAGTCGTGGT ATTTCTCAAA GAGAAGCGGA	600
25	ACGTCTTGTT ATACAGGGTT TCTTAGATCC AGTAGTACGT GAATTACCTA TCGAAGACGT	660
	TAAACGTCAA TTGAGAGAAG TAATTGAACG CAAAGTTTCT AAATAATATT TTGAAAATAA	720
	AAGTTTGTAA TAGATATAGA CTGTCGATAT TGGTATAAGA CTAATACAAC GTCAGTATTT	780
	AAATGATTAG GATTTTTATT TAAGAAAGGT CGTGAATGAA GTGGCCGAAC ACTCATTTGA	840
30	CGTTNATGAA GTAATCAAGG ATTTTCCGAT ATTAGATCAA AAAGTCCATG GCAAACGTTT	900
	AGCATATCTT GATTCAACAG CGACAAGTCC AACGCCTATG CCAGTGTTAA ATGTT	955
35	(2) INFORMATION FOR SEQ ID NO:150:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 462 base pairs	
	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:	
50	NAAATTTCCT ATACGTTATA CTTTAATTGT TAATAAGCCA CATAAATAAG AGGGGGAAAT	60
-	GCTGTGTACA AGCAAGGTGA ACCAAATTTA TGGACTGGAA GGTTAGATAG TGAAACAGAC	120
	CCGAAAAAT TTAGACATTT TCAAACAGTA ACATTTGAAG ATTTGTCTAA GCTGGAAAAG	180
	AGTAGTATGC CATCAGGGGT CGGTATATTA GGCTATGCTG TTGGACAAAG GTGTTGCTTT	240
55	ANACAAGGGG CGCATTGGTG CAAAAGAAGG ACCAGATGCG ATTAAACAAG CATTTGCAGG	300
	TTTGGCGGAT TTGGATCACT GTGAAACTNT AGTCGATTAC GGAAATGTTT NTCATGATCA	360

	TGAGGAATTA NCTNGATACN CAACCANGAA TTTGGTACTG TNTTGGCAAA TTGAGCTCTN	420
	TCTTTAGAGC TTGGNNCATT GATAGGTTCT CTCGCAGGTG GT	462
5		
	(2) INFORMATION FOR SEQ ID NO:151:	
	(i) Chayman ayanamaranga	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 752 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	(II) MODECODE TIPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:	
20		
	GGCACGAGCG TAAGATTAAC CATTGACCAT AATATATATT GTGTTTTTCC AAAATCGGCT	60
	CTGCTAATTT TAAATAGGGG CGATATATTG TTATAAAACT ATTGAAAAAT TCTTGTGATA	120
	GCATAGTGAC ATCTCCTAAG ACAAAATAGT TAGCTTAGCT	180
25	AATTATAAAA CGGGAGCAAT TAGAAATCAA TATATAATTA TTAAGAGCAA AAATAATTAT	240
	ACTTTGTTAA AATAAGCGTA ATTACATGTA AATAGGGGGA TACTAATGAT ATTGAAATGT	300
	GCATCACATC ACTCATTATA TAGATCAGTT AGATCGGTTT AGTTCTCCAG GAGATGTTAT	360
	AAAATNACAT TCAGGTGGGT ATCATCATAA ATATGGAACA TTCAATAAAT TAGGTTATAT	420
30	CAATGAAAAT TATATTGAGC TACTGGATGT AGAAAATAAT GAAAAGTTGA AAAAGATGGC	480
	AAANACGATA GAAGGTGGAG TCGCTTGCGC TACTCAAATT GCACAAGAGA AGTATGAGCA	540
	AGGCTTTAAA AATATGTGTG TGCGNACAAA TGATATAGAG GCAGTTAAAA ATAATCTACA	600
	ANGTGAGCAG GTTGANGTAG TAGCGCCGAC TCAAATGGAA AGAGATACAC ATAAAGATGG	660
35	TAAGGTAAAG TGGCAATTGC TTATATTATG AATCAGGATG ATGATGAAAT TACGCACCAT	720
	TTTTTATTCA ATGGGAGAAA GTGCCTCCAT GC	752
	(2) INFORMATION FOR SEQ ID NO:152:	
40		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 791 base pairs	
	(B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	, , , , , , , , , , , , , , , , , , , ,	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:	
	CAAATGTTTA TCATGATATG ATGAATATAA TAATCGGGTA TATAACTGTA TGATTAATTA	60
55	CACAATAAAG AGAGGGAATA TAATATGNGN NAAGTGTCAA TTAAAGATGT TGCTAGAGAA	120
	GCTGGTGTAT CAGTTNCANC TGTGTCACAT ATTTTAAATC ATAATGATAG TCGTTTTTCC	180

	GCANCACCGA	TAAAAAACGT	ACATGCTGTT	CCAGAAÇGTT	TAGGCTATGC	СССТААТАДА	240
	CATGCAAAAC	AAGCTCGTGC	GCGGCAGTAA	AATTCAAACT	ATTGGCGTCA	TTTTACCTAG	300
5	CTTAACAAAT	CCGTTTTTCT	CAGCACTGAT	GCAAAGTATT	CATGACCATA	AACCATCTGA	360
3	TGTTGATTTA	TGCTTTTTAA	CATCTACAGC	AACTGATNTG	TATGACAATA	TTAAACATTT	420
	AATTGATCGA	GGTATTGACG	GATTAATTAT	CGCACAATAC	ATATCATCCC	CGGACGCCCT	480
	AAATAACTAT	CTAAAGAAAC	ATCATGTACC	TTATGTCGTA	CTGGATCAAA	AATGACCATC	540
10	AAAGGCTATA	CAGATTGTGN	TCCGGACAAA	ATTGAATATC	AAGGGTGGGA	CAACTTTGGC	600
10	AGCACAACAA	TTTAATAGAA	CTCGGGTCAC	AAACCATATT	GATAATTGGT	TGCAACCATA	660
	TTGACAATGA	TGGNGAATAT	TGTCGACTCC	TGTCGCTGGA	TTTGTCGATA	CTTTGCGCGC	720
	GAATCAATTG	CCAGAACCAC	AAATCGTCCC	TACTGAATTA	TCTAAACGCC	GTGGCTAACC	780
15	ATGTTGAATG	A					791

(2) INFORMATION FOR SEQ ID NO:153:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1314 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

20

25

30

35

40

45

50

55

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

TTTGTCTTTG	GAATGGGCTC	GTTTTTTTA	ACCTAATAAG	AAATGATAGG	GCATTTGAGA	60
TTGGAAGGNC	ATTTTGGCTT	TGTGCAAATA	ATACAATAAG	CTAAATGTCT	NTTTTTGTTT	120
TTGTGAAAAT	ATGATGGATG	GCTTGTGTGG	GCAAGTTTGC	TAATTTAATA	AGATATGCAT	180
TTTTCAATTT	AGGAGTTGGC	CATGCATCTA	CACTTTATAA	TGGTGAGAGC	GTGGTGAGGT	240
ATTGTTAATC	ACGCAATTGT	AGCGAGGAGT	TATTGCTACA	TATGTCGTTA	TGGCCTATTG	300
ATTTTCTAAA	ATAGCTGTAT	CAGATCATGT	GACNAAATAA	AAATAATTTG	TTGAAAGCCT	360
TTACATAACT	TGTCTAGACA	AGTTATACTC	GTTTTAAGAC	ATTAAGGGAG	TGAAATATAT	420
GGCTGTAAAA	AGAGAAGATG	TAAAAGCCAT	CGTAAGNCGC	TATTGGGGGA	NAAGAAAATC	480
NTGAAGCTGC	ANCGCATTGT	GTAACNCGAT	TACGTTTNGT	GCTTAANGAT	GAAANCANAG	540
TTGATAAAGA	CGCATTAAGG	AACAACGCGT	TGGTCAAGGG	GCAGTTCAAA	GCAGACCATC	600
AATATCAAAT	TGTCATTGGT	CCAGGANCAG	TCGATGAAGT	GTATAAGCAG	TTTATTGATG	660
AAACAGGTGC	TCAAGAAGCT	TCGAAAGATG	AAGCGAAACA	AGCAGCTGCG	AAAAAAGGGA	720
ATCCAGTACA	ACGTTTGATC	AAATTGTTAG	GGGAGATTTT	TATACCAATA	TTACCTGCGA	780
TTGTGACAAC	TGGTTTGTTA	ATGGGGATTC	AATAATTTAC	TTACAATGAA	AGGTTTATTT	840
GGTCCCAAAA	GCACTTATTG	AGATGTATCC	CGCAAATTGC	TGATATTTCA	AACATCCATT	900
AATGTGATTG	CGAGTTACCG	CATTTATTTC	CTTACCANCA	TTAATTGGTT	GGAGTAATAT	960
GCTGTGTATT	TGGTGGTAGT	CCGATCCTAG	GCATAGTCTT	AGGTTTGATT	TTAATGCÀTC	1020
CGCAATTAGT	ATCTCAGTAT	GATTTGGCAA	AAGGGAATAT	TCCGACGTGG	AACTTATTTG	1080
GCTTAGAGAT	TAAGCAGTTG	AATTACCAAG	GTCAAGTGTT	GCCTGTTTTA	ATTGCAGCTT	1140
ATGTTCTAGC	TAAAATTTGA	AAAAGGATTA	AATAAAGTCG	TTCACGATTC	GATAAAAATG	1200

	TTGGTCGTTG GACCGTAACG CTTTTAGTTA CTGGATTTTT AGCATTTATT ATCATTGGAC	1260
	CACTTCCATT ATTCATTCCT ACACTATTCCT CONTINUE CONTI	1314
5	(2) INFORMATION FOR SEQ ID NO:154:	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 972 base pairs	
70	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	4111	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) SPOUPNOS DESCRIPTION AND TO THE	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:	
20	ATAATTATTG NTGGAAAATA ACATTGAGCC CAATTCCCAA CAGTGGCCGA CATTTTCCAT	
	CCATTTACCC CCCCGTGACT TTGTATCCGA ATTTCNACCN TCCACCNAAG TTGNCATCAA	60
	TATGTTAATA ACCCAAATCC CAAATTGGAA ATATTTTGCC AAGCCAAGTT TTGATGATGC	120
	GCATTTGTCC TAATATTTTC CACTTAACAA GATCCGACCC CCAGCCAAGA AAATACATCA	180 240
25	ACTGAGAAAT ATAATGNCCA AGACTGGTTT CCAACACACA TTCGACATAA TGAGTTGTCT	300
	AAATTGACTG AGCAACAACT TGTGATTCAG TTGCTTATGC ATATGATTCA TTATGGCACG	360
	AGCGTACATA TCATTCGAAC CCAAAGTATC TTAAATGATG ATAAAGTGAA TCAAGTATGC	420
	GACTATATCG AGTTACATTT TCATGAAGAT TTAAGCCTTT CAGAATTAAG CGAATACGTT	480
30	GGGTGGTCAG AGAGCCATCT GTCTAAAAAG TTTACAGAAT CGCTAGGTGT AGGATTCCAA	540
	CATTTCTTAA ATACGACGCG AATTGAGCAT GCGAAACTCG ATTTAACATA CACAGATGAA	600
	ACGATTACTG ATATTGCATT GCAAAATGGC TTTTCAAGTG CAGCGAGCTT TGCGAGAACA	660
as	TTTAAACACT TTACGCATCA AACGCCTAAA CAATATCGAG GTGATCGTCC AGCAATCACT	720
35	GAAAATCAAC AATCGGCACA ACATAATTAT CACGACCGTG AATTGATATT ACTTTTAAAT	780
	GACTACATTG AAGAAATGAA TCAATTCAAT TGAAGATATT GAAAAGNTGA ACTTATAAAG	840
	AGATTGCCTT NAAACCAACT AATCAACAAC TAAATCCAAT TATAATCCAT ATTATTCAAG	900
40	TTGGGCTATT TGAGGAATTT GCTCCAATAC ACAGTATCAA TCCACAGTTG CTTACATGTT	960
	CATCCCATGA TT	972
	(2) INFORMATION FOR SEQ ID NO:155:	
45		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 503 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLEGULE TURE Co. 1	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:	
	(AL) SEQUENCE DESCRIPTION: SEQ ID NO:155:	

	AAACCATTTT CCAAAACCAA GCTGGGCATC CAAGTTTTCC TATTGTAATC TGCAGGTAAC	60
	CAAGGGAATG CTTCCGTGAA TTTAGGTGGT AGCGTAACAT CTATTCAACC ATTACGTATT	120
	AATTTAACAA GTAATGAGAA TTTTACAGAT AAAGATTGGC AAATTACAGG TATTCCGCGT	180
5	ACATTACACA TTGAAAACTC GACAAATAGA ACTAATAATG CTAGAGAACG TAACATTGAA	240
	CTTGTTGGTA ATTTATTACC AGGGGATTAC TTTGGTACGA TACGTTTTGG ACGTAAAGAA	300
	CAATTATTTG AAATTCGTGT TANNCCACAT NCACCACAAT TACAACGACA GCTGAGCAAT	360
	TANGAGGTCA GGAATTACAA AAGTGCCTGT TAATATTTCG GGAATACCGT TGGATCCATC	420
10	GGCATTGGTT TATTTANTTG CACCAACTAA TCAACTACGA ATGGTGGTAG TGAGGCAGAT	480
	CAAATACCAT CTGGTTATAC CAT	503
	(2) INFORMATION FOR SEQ ID NO:156:	
15		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1118 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:	
	GGCACGAGAC TCAAANCACT GAAGCATTAA CAAAATAATA CTATATTACT GTCTAATCAT	60
30	AGACATGTTG TATTIAACTA ACAGTTCATT AAAGTAGAAT TTATTTCACT TTCAATGAAC	120
	TGTTTTTAT TTACGTTTGA CTAATTTACA ACCTTTTCAA TAGTAGTTTT CATGCCACGA	180
	GCTATCCTAA CCCACAGATT AGTGATTTCT ATACAATTCC TCTTTTGTCT TTACATTTTC	240
35	TTAAAATATT TGCGATGTTG AGTATAAATT TTTGTTTTCT TCCTACCTTT TTCGTTATGA	300
35	TTAAAGTTAT AAATATTATT ATGTACAACG ATTCAATCGC TCTATTTTTC AACTTTCAAC	360
	ATATTATTAA TICGGAAAGG ACCACITTAA AATTTAACNG GCCACAACAA ATCAAATCAA	420
	TTAATCACIT TTTCCAAAAT AATCATATAA GGAGGTTCTT TTCATTATGA ATATCATTGA	480
40	GCAAAAATTT TATGACAGTA AAGCTTTTTT CAATACACAA CAAACTAAAG TTATTAGTTT	540
40	TAGAAAAGAT CAATTAAAGA AGTTAAGCAA AGCTATTAAA TCATACGAGA GCGATATTTT	600
	AGAAGCACTA TATACAGATT TAGGAAAAAA TAAAGGCACG AAGCTTATGC TACTGAAATT	660
	GGCATAACTT TGAAAAGTAT CAAAAATGCC CGNAAGGAAC TTAAAAAACTG GACTAAAACA	720
45	AAAAATGTAG ACACACCTTT ATATTTATTT CCAACAAAAA GCTATATCAA AAAAGAACCT	780
43	TATGGAACAG TTTTGATCAT TGCACCATTT AACTATCCTT TTCAACTAGT ATTCGAACCT	840
	TTAATCGGTG CTATTGCAGC AGGTAATACA GCAATTATTA AACCATCTGA GTTGACACCA	900
	AATGTTGCAC GAGTGATTAA ACGATTAATC AATGAAACAT TTGATGCAAA TTACATTGAA	960
50	GTTATTGAGG GAGGAATTGA AGAAACGCAA ACGTTAATTC ACTTACCTTT TGACTATGTC	1020
50	TCTTACAGGA GTGAAATTGT AGGCAAATCG TTTATCAAGC TGCAGCGAAA TTTAGTCCTG	1080

(2) INFORMATION FOR SEQ ID NO:157:

TGACATAGAA TGGTGGGGAA ATCTCCAGTC ATCGNGGG

55

1118

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 675 base pairs	
	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(II) MODECODE IIFE: GENOMIC DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:	
	CCANTTGCCG TTTCCTCCTA AACACCAGCG GNACGAGCTC ATGATGGCAT ACATTGTAAA	60
15	TCCGATAATT GACAGTCCAG TTGCTAATCC ATCTAAACCA TCTGTTAAAT TTACCGCATT	120
	AGAAAAACCT ACTTGCCAAA AAACAATGAA AATAACATAT GCAAATGATA GTGGGATTGC	180
	TACATTCGTA AATGGAATAT GTATGCTCGT AGAAAAATTC ACCAAATGAA ACACATTACT	240
	TAAAACAAAG AAAATAATCG CAATACCAAT TTGCGCCAAA AACTTCTGTT TACTTGTTAA	300
20	ACCTTGGTTA TTCTTTTTAA CAACAATAAT ATAATCATCT ATAAAACCAA TTAACCCAAA	360
	ACCAATCGGT CACAAATAAT AACAGGTATG ATTGGATTAG CTTGATCTTA CAAATATAAT	420
	AGCCACCAAA GACGGTTATC ACAAATACTT TAATAGAAAT GGTTAGGCCA CCCATCGTTG	480
05	GTGTACCAGT CTTCTTCATA TGGCTTTGTG GACCTTCTTC TCGAATACTT TGACCAAATT	540
25	TCATCCTTTT TAATGTAGGT ATTAAAACAG GTACCAAAAC AAATGTAATC ACTAGCGCTA	600
	ATAACGCATA TACAAAAATC ATAACTATCT CCTCTTCTTA ATCCAGACTT TTTTAACCAC	660
	TAATATATTA TCAAG	675
30	(2) INFORMATION FOR SEO ID NO:158:	
	(2) INFORMATION FOR SEQ ID NO:138:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 746 base pairs	
55	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
40		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:	
45		
45	CTTAGATACA ATTACTCAAT ATGATGTACT GGAAGCANTT ATAGATACTA AAAAACACAT	60
	TGNCTGTNCG ATGANTNTCA TCTTCACATG ANNTANCGGG TTGATTAACN AAGATTGCAG	120
	ACCGTGNTGT TGTGATGANA AATGGTCANC TGATAGAGCA TGGTACACGT GAATCAGTCT	180
50	TGCATCATCC AGAACATGTT TATACGAAGT ATTTATTATC ANCGNAGAAG AAGANTAATG	240
	ATCATTTAA ACATGTGATG AGGGGTGATG TACATGANTA AAGTTACAGA TGTTGAAAAA	300
	TCATATCAAA GCNCACATGT TTTTAAGCGT CGTCGAACAC CTATCGTGAA AGGTGTGTCA	360
	TTTGAGTGTC CAATCGGTGC GACGATTGCG ATTATCGGAG AAAGTGGTAG CGGTAAATCG	420
	ACCTTGAGTC GTATGATATT ACCTTATTGAG AAACCGGATA AACCCTTGTG AACCTTAAAT	400

	GATCTACCGA TGCATAAGAA GAAAGTCAGA CGTCATCAAA TTGGTGCTGT ATTTCAAGAT	540
•	TATACGTCAT CATTACACCC ATTTCAGACT GTTAGAGAAA TCTTATTTGA AGTGATGTGT	600
5	CAATGTGATG GACAACCTAA AGAAGTTATG GAAGTCCAAG CAATTACATT GTTGGAAGAA	660
•	GTCGGTCTAT CTAAGGCATA CATGGATAAA TATCCTAATA TGTTATCAGG TGGAGAAGCG	720
	CAGCGTGTTG CGATTGCGCT CGTGCC	746
10	(2) INFORMATION FOR SEQ ID NO:159:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 692 base pairs	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:	
25	AATGTCAGAC AGATACTGCC ACAAGATGCG TGCNTATGAG ATTTCGCTGT GTATGAATAG	60
	CGACACGAGC GGCACGAGCG CTCACNTCAT TTCCAATTAA AACTAATGCC TAAATCTGAT	120
	GCAGTAAAAT CTATCATGAT TCACTCTTAA CATCCGTATT TCGTGCTACT AATTGATGTC	180
	TTGCATTGAA AAATTGACCA TAGCTTAAAT ATGTCGCAAT CAAAGCAGAC ATAATGNTCG	240
30	CAGTTGTATG AATAAACACG ACTAACAATT GAAATTTAAT CGCTTGTAAA GGTGGTACGC	300
	CACCAATAAT TAAGCCTGTC ATCATACCAG GAATCGACAC AAGCCCATAT GTTTTAACCG	360
	AATCAATTGT TGGCACCTAT AGCTAAACGA ATACTTTCAC GTATTGCACC TTTAGAAGCC	420
	AATTTAGGTG TAGCTGCAAG TGATAATTTA GATTCAATAT TAGTACCATC TTGTACGAAT	480
35	GCACGATCTA AATTCTGGTA AGCTAAATTA ATTGCAATCA AGCCATTATT TNCAAGCATN	540
	CCGCCGATAG GTATAACTTC ATTGGCTGTA AAATGAATTG CCCCTGTAGC TACAGTACCT	600
	GCAAGTGGTA ATGCTGTTCC AATGAAGATN GCTGGAAATG GTNTCCAAAA CACANGGGGC	660
	ATCACTGTGA TGCTCGACTA ATGGTAAGAG TC	692
40		
	(2) INFORMATION FOR SEQ ID NO:160:	
	(1) ADALTHAD AND DECEMBER OF COLUMN	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 857 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
50	(11) MAT POUR D. GUERN CONTRACT DAY	
	(ii) MOLECULE TYPE: Genomic DNA	
	(wi) CRAMENCE DECERTRATION, CRO. ID NO. 160	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:	
<i>-</i>	A NOTA COCON COMPANYA COCOCON COMPONENTA CO COMPONENTA CO COMPANYA COMPONENTA CO COMPANYA COMPANYA COMPONENTA CO	
	AATATAGCGT TTTNACCCCT TTGTGTNACC CTCCCCAAGA GATATAACAT NCCGCCGTNT	60

	AAAATCAATT AGAAATATCT TTTTATTCTG ATAATAGACA CAGTATAGAC ACATTTTAAT	120
••	GGGTGATACC ACTTGTAATA TCACGGGGTT GTNATGTNTT GNATATCANT NAAATACTTA	180
5	TATANAAATA TTGCTCGGAA TATAAAAAGN TAAATAGGNT TTTGAGTTTT AAATATGAAA	240
	TACAAAGCGC CCANTCGAAC AAAGTATTTA TATTAAAATA TGGAAAATCC ATCANTATTA	300
	AATTAAAATN GTTTTATTAT GATAAAGTGA AAGTAGGTAA GTCTATGGAA GGTCTTAATC	360
	ATCGAAGAAA TACAGAAAAA GAAGAGACAA CACAAACGCA ATCAGTTGCA CCTAATACAG	420
10	GTGAAGAGGG GATGTCATCA GGCAAGTAAC ACAATCAANT AAGACGTCCG ACATACATAA	480
	ATGAATCTAT CAATAAACAA ATGGAAGCCA AAGCGCATGA AACAGCGCAA AATGCAGATT	540
	TAAAAACCGA AGCAAGAAGT TTATTTGATA ATGCAACCAA ATCAATCGGG AGACTAGCCG	600
	GCAATGATGA AAGCATAAAT CTTAATTTAA AAGATATGTT TTCTGAAGTA TTTAAGCCGC	660
15	ATACTAAAAA CGAAGCAGAT GAAATATTTA TAGCGGGTAC TGCTAAAACT ACGCCAGCAA	720
	TTTGTGACAT ATCAGAAGAA TGGGGGAAGC CATGGCTCTT TTCTCGAGTA TTCATCGCTT	780
	TCACAGTAAC ATTTATTGGA TTATGGGTCA TGGCAGCGAT TTTTAATAAC AATGACGCTT	840
	GTACCGGTGC TCGTGCC	857
20		
	(2) INFORMATION FOR SEQ ID NO:161:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 907 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:	
35		
	CTCACTTTGT TTTCCAGTAT GGAACGCTTG CCCTAAGTCC TTAATTGCAT TATAAAATTC	60
	AGGCGCTAAA ATAATCGCAA TTGCCGCAGT TTTAAAATCA ATATTATGAA ATACTACTAA	120
	GCTTAGCGTT GCTTCCAATG CAACCAATCC AATACCTAAC ATACTTATAA ATTCGAGCAT	180
40	TAATCCCGAT AAAAAAGCAC TGCGTAAAAT GCGCATTGTT AAAGTTCTAA ACTGAGTACT	240
	ATCGTCGTAA ATATGCTTCT CTGTTTGCTC TGTACGATTA AATAGCTTTA ACGTCACTAA	300
	ACCTNTAGCA ATATTTAAAA ACCGNCGACT AAATTGATTC ANATAAGTCA TTTGATCTTT	360
	TTGACGCATC GAGCGTTTTC AAACCGAAAA TAATATAAAA CAAAGGAATA AATGGTGCAG	420
45	NTATTAACAT AATTAATGCG GNATTGAAAT GGATGAAAAA CAATGCAATG ATTATGATGA	480
	GCNGAACCAT CAATCGATTT GAACAACTTG AGGCAAATAA CTCTTATAAA AAGGTGCTAA	540
	ACCATCAATG TTTTCTGTGA GTATAGTCAT TTGTTCACCG ATTGGATGAC CATTATTTTT	600
50	ATAAATAACC CGCTGTCTAA GCATATGCTT AACTTTAAAT GCTAATGTAT CACCTAACCA	660
5 0	TTGATTTAGA AATTGCACAG NTGCTCTTAA AAGTAAAACA CCTAATAAAA TAAATAATAC	720
	AATCCATAAA CCTTGAAATT GATGTCTTAT AATTTTAGCT AAAAAATCTG CTATTAAAAT	780
	ATTGTGCGTT ATAACGAGTA TGCCCGAGAC CAGTACTGAC CAAGAACATG AGTACCGGAA	840
	AAATTTTATA TTGAAACAGT ATTGTTGTTA ATTTTTCACA ATTATATCAC CTAACCTATA	900

907

55

TAAAGTT

	(2) INFORMATION FOR SEQ ID NO:162:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 774 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:	
	AATTTTAAAG ACCCCNCGCA TAAATANCCA TCCCACCTAC TTATCCAAAA GTTANGTGGA	60
	TGGTTTTTCA ATTAAAATTA ATATTAGTGT AANCCAATCA AAGATTTAAT CNAATATGCC	120
20	CCTGCTCAAA ACATTTCCTC ATTTAATTTG CTTTACTTTC AATTTAATAT CATTATCCAC	180
	AACACTTGGC GTGTCATCGT TATTATTTCG CATCTTTGAC ACGTTTATCA TCATTAGGAN	240
	TCGGCACCGA ATAAAATTGC GATAAATGCC ATGATTCCCA TTAATACGTT AACCCAAAGT	300
	GCAATCATCG CACCTGTATG AATGCTCGTT GCAGCAACTG CACCAACATA TACAGCACCA	360
25	CTAATTGCGA CACCGAATGC GCCACCAAGT GATGAAGCCA TTTTATAAAT ACCTGAAGCA ACGCCAACTT TATCTAACGG TGCATTCGAA ATAGCTGTAT CTGTAGAAGG TGTTGCATAA	420
	ATACCTAAGC CTAGTCCGAA ACATAAATAT CCTACGACAC AACTGATAAC ATAAAATATG	480
	CCTGGTAAGA ATACTANTGA AATAAGTGCA ATNCCAATGA CCACAATGNA TGTACCTNAT	540
	AACATTGGTC GCTTAGAACC CANTINTGGT NATAATAATT TTTCACCAAC TCGAATCATC	600
30	AATAACAACA TGATTAAATA AGTAANTGAT NAGTATCCTG CCTGCCATNC TGTATAACCT	660 720
	AAACCTTGTT GCACGCATGT ATTCGCTACA ATTNATGTAC CTACAACNCC GTTG	774
		//4
35	(2) INFORMATION FOR SEQ ID NO:163:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 773 base pairs	
40	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:	
50	CTCTGATTCA ACAAAATGAT TATTCTTTAC GTAAACTACC TTTTTTTATT TGAGATGAAG	60
	CATATGCTTT TAATAATATT GTCCCAATAA TACCAACTGA AATAATATTT AATACTGCAG	120
	AGATAACACC TTGTGTATAA ACCTTGTTAG CCGGTTCGTT ATAAATCAAA ATATCTAATG	180
	TTGGTGCAAT AAGTGCCCAG CAAATAATAT TCGCAATAAT TTGACCGATA TTAAAATAAA	240
55	TCATCGATTT CCTAGAAAAT AGGCATGAAG AAAGATTTAA TTTTAGGGCC AATCCATCCA	300
	TATTAAACAG GCGATAATTC CTGAACAAAT AACCCAACTC CACCAAGCAC TACCCGTATG	360

	TCGGGGAAAT CTTTAATAGC GTGNCCAACT AATCCAGGCA TTAAACCAGC AAAAGGCCCA	420
	AATATTGCAG ATATTAATGC TAAAAATGCA TAAGATGTTT CTATATTCGT ATTAGGAAAA	480
5	CCTGTTGGTA TTACAACAAA ACGCCCTAAA ATCACAAATA CCGCNGCTCC TATACCAATC	540
	GCAACAACAG TTTTAACTGA AATATCNTGT TTTTTCATCT TCATTACTCC TTACATAAAA	600
	AATTCATTAA ATTGATGGTG CTTTAGATAA ATGAATCGTC CAATCATTTC CAGTACCAAT	660
	ATGATATAAA TCTGAAAATG AGTCTCGATT GACTGCTACA CCAATATTTA CTAGCGAGTT	720
10	AACATACACA AGAGGTTCAC CCACATTAAC ATCTGCAAAC GATCGCTCGT GCC	773
	(2) INFORMATION FOR SEQ ID NO:164:	•
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 676 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	,	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:	
	CATAAGACAT GTAAATTCTA AGATGATTTG TTGGATAGGG TAGCTCCATA TAATTCTTGA	60
	ATCCNATCAT TATTACATTA ATAAAAAAA CACCCACAAT TGTGGGTGAT TGTAATGAAC	120
30	GTATTATCTT GGCACGAGTA CTCAACGATT AATTGTTCGT TAATTTCAGC AGGTAATTCG	180
	CTACGTTCTG GTAAACGTAC GAAAGTACCA GTTAAGCTGT CAGCATCAAA GTTTAAGTAC	240
	TCAGGTACGA AATTGTTGAT TTCAACTGAT TCAACGATGA TGTTTAGTTT TTGAGATTTT	300
	TCACGAACTG AAATTGTTTG ACCAGGTTTA ACAGAATAAG ATGGAATATC AACACGTTTA	360
35	CCATCTACTA AGATATGACC GTGGTTAACT AATTGACGTG CTTGACGACG AGTACGAGCT	420
	AAACCTAATG AATAAACAAC AGCGTCTAAA CGACTTGCTA ATAAAATCAT GAAGTTTTCA	480
	CCCGCGTACA CCCNAATTTT TTACCAGCGA TGTCAAATGT GTTACGGAAT TGTCTTTCAG	540
	TCAATCCATA TTANGTAACG TAATTTTTGT TTTTCACGTA ATTGTAAACC ATATTCTGAT	600
40	AATTTTTTAC GTTGGTTTGG ACCATGTTGT CCTGGTGCGT AAGGACGTTT TTCTAATTCT	660
	TTACCAGTCT CGTGCC	676
	(2) INFORMATION FOR SEQ ID NO:165:	
45		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 397 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

	GGCACGAGCG ATGATGGCTG TCGGAACAGG TGCATTTGGT GCGCATGGTT TACAAGGGAA	60
	AAATAAGTGA TCACTATTTA TCAGTATGGG AAAAAGCAAC GACGTATCAA ATGTACCATG	120
	GCTTAGCATT ATTAATTATA GGTGTAATTA GTGGTACAAC TTCAATCAAT GTTAACTGGG	180
5	CTGGCTGGTT AATATTTGCT GGTATTATTT TCTTTAGTGG ATCATTATAT ATTTTAGTAT	240
	TAACTCAAAT TAAAGTTTTA GGTGCGATTA CGCCAATTGG TGGCGTATTG TTCATCATTG	300
	GCTGGATAAT GTTAATCATT GCGACATTCA AATTTGCTGG TTAAATTTTA AAACTTTAGA	360
	TTACCTATGT AACTAAACAT TAAATTTTTA ANAAAAA	397
10		
	(2) INFORMATION FOR SEQ ID NO:166:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 739 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:	
25		
	TATCTTTAAG AACAATTGAA GCCGCTAACC ATCGGAGAAA GCTGTAAAAT CCAAGTGTTG	60
	GCCTGCTAAA TACCCACAAT CATCACGGGT CGTTGCCTTG TACCACAATA GAAGGCAGCA	120
	TTATCACCCA AATATTTGCA TAGCTAATTG TGATAAAACT GTCGTTTCCG TTTGTGGCAT	180
30	AATTCCATAA ACATATGCTA AACCACCGAT ACCAACTAAT AAAAACGCTA AAATTGAACC	240
	CATAGCAATT AACGTTTTTA CAGCATTATT AGCACTTGGT TCTCTAAAAA TTGGTGACCG	300
	CATTTGAAAT AGCTTCAACA CCTGTTAATG ATGAAGCCCC TGATGAAAAA GCTCTTAATA	360
	GCAAGAATAA TGTTACTCCA GGANCCGCAG TTCCTACTGA TGCATGCATA TGTGGTTGAA	420
35	TATCTCCTGT CGCCACACGG AAAGTACCCT ATAAATATTA ATATCACTAA CCCCATAATG	480
	ANAAGATATA CTGGATAGGA TAATACGGTG NCAGATTCAG TTAAACCCAC GTAAATTTAA	540
	TATTAAAATA AAAAGTACAA GTAAACATGC AATCAGTACT TTATGCCCAT ATAAACTTGG	600
	GAATGCAGCA ACANATGCAT CAGCACCAGA TGATATACTA ACAGCGACAG TCAGTATGTA	660
40	ATCGACTAAT AATGAGCCTC CTGCAAGCAA TCCCCATTTT TCTCCTAAAT TGGTCTTGGA	720
	CACCATATAC GCTCGTGCC	739
45	(2) INFORMATION FOR SEQ ID NO:167:	
45		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 507 base pairs	
50	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
55		

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:	
	GGCACGAGCG AGAACGATTG AAGCTACAAT ACCTGATGTT GCTGCGGGAA GTACGACTTT	60
5	AGTTGCTACT TCTAATTTAG TTGCTCCAAG TCCATAGGCA CCTTCTCGAA TTTTATTTGG	120
	TACAGATGCC ATTGCATCCT CACTCAAACT TGTGATGAGA GGGACAATCA TAATACCGAC	180
	AACTAAGCCG GGACTTATAG CATTAAACTC TCCAAGACCT GATATGAAAG ATCTTAATAC	240
	TGGTGTAACA AAGGTTAATG CAAAGAAACC AAACACAATT GTTGGTATTC CTGCTAAAAT	300
10	TTCTAATATC GGTTTAATTA TGCGTCGGGC ACGGGCACTT GCATATTCAC TTAAATAAAT	360
	TGCTGCACCA AGCCCGACTG GAACTGCAAA TATAGTCGCA ATAACTGTGA TTTTTAAAGT	420
	CCCTATTATC AATGCCAGAT ACCAAACTTA GGGTCTGAAC CGGTAGGATT CCAGTAGTAG	480
	AAATAGAAAT CAGTATTGGA ATTCTGG	507
15		
	(2) INFORMATION FOR SEQ ID NO:168:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 753 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25	(D) TOPOLOGY: linear	
25	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA	
25		
25 30	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:	
	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GAATAGTCTA CTCATTCATC GTCCTTCACC ATTGATGGAT CCAGAACAAG TTGCTGATGC	60
	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GAATAGTCTA CTCATTCATC GTCCTTCACC ATTGATGGAT CCAGAACAAG TTGCTGATGC ATTAACTAAA CTTGTTAAAC AAGGTAAGTT GAAGTCATTC GGGGTGTCGA ATTTTAATCA	120
30	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GAATAGTCTA CTCATTCATC GTCCTTCACC ATTGATGGAT CCAGAACAAG TTGCTGATGC ATTAACTAAA CTTGTTAAAC AAGGTAAGTT GAAGTCATTC GGGGTGTCGA ATTTTAATCA TTCACAATAC CAATTGTTAA ATCAATATAT TATGAAAGAA AGACTACATA TTAGCATCAA	120 180
	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GAATAGTCTA CTCATTCATC GTCCTTCACC ATTGATGGAT CCAGAACAAG TTGCTGATGC ATTAACTAAA CTTGTTAAAC AAGGTAAGTT GAAGTCATTC GGGGTGTCGA ATTTTAATCA TTCACAATAC CAATTGTTAA ATCAATATAT TATGAAAGAA AGACTACATA TTAGCATCAA TCAATTAGAA TTATCGCCAT ATCACGTTGA TAGTTTACAA GATGGAACAA TGGATTCAAT	120 180 240
30	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GAATAGTCTA CTCATTCATC GTCCTTCACC ATTGATGGAT CCAGAACAAG TTGCTGATGC ATTAACTAAA CTTGTTAAAC AAGGTAAGTT GAAGTCATTC GGGGTGTCGA ATTTTAATCA TTCACAATAC CAATTGTTAA ATCAATATAT TATGAAAGAA AGACTACATA TTAGCATCAA TCAATTAGAA TTATCGCCAT ATCACGTTGA TAGTTTACAA GATGGAACAA TGGATTCAAT GTATCAAAAC CATGTTCAAA TTATGGCTTG GAGTCCTTTT GCAGGCGGTA AAATTTTCGA	120 180 240 300
30	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GAATAGTCTA CTCATTCATC GTCCTTCACC ATTGATGGAT CCAGAACAAG TTGCTGATGC ATTAACTAAA CTTGTTAAAC AAGGTAAGTT GAAGTCATTC GGGGTGTCGA ATTTTAATCA TTCACAATAC CAATTGTTAA ATCAATATAT TATGAAAGAA AGACTACATA TTAGCATCAA TCAATTAGAA TTATCGCCAT ATCACGTTGA TAGTTTACAA GATGGAACAA TGGATTCAAT GTATCAAAAC CATGTTCAAA TTATGGCTTG GAGTCCTTTT GCAGGCGGTA AAATTTTCGA CAAGGAAGAT ATTAAAGCGC AACGTATTAT GAAAGTTGTC AATCAATAGC TGACAAATAT	120 180 240
30 35	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GAATAGTCTA CTCATTCATC GTCCTTCACC ATTGATGGAT CCAGAACAAG TTGCTGATGC ATTAACTAAA CTTGTTAAAC AAGGTAAGTT GAAGTCATTC GGGGTGTCGA ATTTTAATCA TTCACAATAC CAATTGTTAA ATCAATATAT TATGAAAGAA AGACTACATA TTAGCATCAA TCAATTAGAA TTATCGCCAT ATCACGTTGA TAGTTTACAA GATGGAACAA TGGATTCAAT GTATCAAAAC CATGTTCAAA TTATGGCTTG GAGTCCTTTT GCAGGCGGTA AAATTTTCGA CAAGGAAGAT ATTAAAGCGC AACGTATTAT GAAAGTTGTC AATCAATAGC TGACAAATAT GGTGTGAGTG ACACAGCTGT GATGATAGCA TGGTTAGTAA AAATACCGCA TAGTACCATG	120 180 240 300
30	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GAATAGTCTA CTCATTCATC GTCCTTCACC ATTGATGGAT CCAGAACAAG TTGCTGATGC ATTAACTAAA CTTGTTAAAC AAGGTAAGTT GAAGTCATTC GGGGTGTCGA ATTTTAATCA TTCACAATAC CAATTGTTAA ATCAATATAT TATGAAAGAA AGACTACATA TTAGCATCAA TCAATTAGAA TTATCGCCAT ATCACGTTGA TAGTTTACAA GATGGAACAA TGGATTCAAT GTATCAAAAC CATGTTCAAA TTATGGCTTG GAGTCCTTTT GCAGGCGGTA AAATTTTCGA CAAGGAAGAT ATTAAAGCGC AACGTATTAT GAAAGTTGTC AATCAATAGC TGACAAATAT GGTGTGAGTG ACACAGCTGT GATGATAGCA TGGTTAGTAA AAATACCGCA TAGTACCATG CCGATACTGG GAACAAGTCA GTTAAAGCGT ATNGATCAAG CAATCGAAGG GCTACAACTT	120 180 240 300 360 420 480
30 35	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GAATAGTCTA CTCATTCATC GTCCTTCACC ATTGATGGAT CCAGAACAAG TTGCTGATGC ATTAACTAAA CTTGTTAAAC AAGGTAAGTT GAAGTCATTC GGGGTGTCGA ATTTTAATCA TTCACAATAC CAATTGTTAA ATCAATATAT TATGAAAGAA AGACTACATA TTAGCATCAA TCAATTAGAA TTATCGCCAT ATCACGTTGA TAGTTTACAA GATGGAACAA TGGATTCAAT GTATCAAAAC CATGTTCAAA TTATGGCTTG GAGTCCTTTT GCAGGCGGTA AAATTTTCGA CAAGGAAGAT ATTAAAGCGC AACGTATTAT GAAAGTTGTC AATCAATAGC TGACAAATAT GGTGTGAGTG ACCAGCTGT GATGATAGCA TGGTTAGTAA AAATACCGCA TAGTACCATG CCGATACTGG GAACAAGTCA GTTAAAGCGT ATNGATCAAG CAATCGAAGG GCTACAACTT AATTTAGATG ATCAAGTCGT GGGTTGACAT TTACAACGCT ATTATCGGAC AAGATATCCC	120 180 240 300 360 420 480 540
30 35	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GAATAGTCTA CTCATTCATC GTCCTTCACC ATTGATGGAT CCAGAACAAG TTGCTGATGC ATTAACTAAA CTTGTTAAAC AAGGTAAGTT GAAGTCATTC GGGGTGTCGA ATTTTAATCA TTCACAATAC CAATTGTTAA ATCAATATAT TATGAAAGAA AGACTACATA TTAGCATCAA TCAATTAGAA TTATCGCCAT ATCACGTTGA TAGTTTACAA GATGGAACAA TGGATTCAAT GTATCAAAAC CATGTTCAAA TTATGGCTTG GAGTCCTTTT GCAGGCGGTA AAATTTTCGA CAAGGAAGAT ATTAAAGCGC AACGTATTAT GAAAGTTGTC AATCAATAGC TGACAAATAT GGTGTGAGTG ACACAGCTGT GATGATAGCA TGGTTAGTAA AAATACCGCA TAGTACCATG CCGATACTGG GAACAAGTCA GTTAAAGCGT ATNGATCAAG CAATCGAAGG GCTACAACTT AATTTAGATG ATCAAGTCGT GGGTTGACAT TTACAACGCT ATTATCGGAC AAGATATCCC GTAAACTTAN NNACNCNNAA ATCATAAATG GAGCATACCA TGACAAACGA AGATAAACGT	120 180 240 300 360 420 480 540 600
30 35	(ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168: GAATAGTCTA CTCATTCATC GTCCTTCACC ATTGATGGAT CCAGAACAAG TTGCTGATGC ATTAACTAAA CTTGTTAAAC AAGGTAAGTT GAAGTCATTC GGGGTGTCGA ATTTTAATCA TTCACAATAC CAATTGTTAA ATCAATATAT TATGAAAGAA AGACTACATA TTAGCATCAA TCAATTAGAA TTATCGCCAT ATCACGTTGA TAGTTTACAA GATGGAACAA TGGATTCAAT GTATCAAAAC CATGTTCAAA TTATGGCTTG GAGTCCTTTT GCAGGCGGTA AAATTTTCGA CAAGGAAGAT ATTAAAGCGC AACGTATTAT GAAAGTTGTC AATCAATAGC TGACAAATAT GGTGTGAGTG ACCAGCTGT GATGATAGCA TGGTTAGTAA AAATACCGCA TAGTACCATG CCGATACTGG GAACAAGTCA GTTAAAGCGT ATNGATCAAG CAATCGAAGG GCTACAACTT AATTTAGATG ATCAAGTCGT GGGTTGACAT TTACAACGCT ATTATCGGAC AAGATATCCC	120 180 240 300 360 420 480 540

- (2) INFORMATION FOR SEQ ID NO:169:
- (i) SEQUENCE CHARACTERISTICS:

CTTTTCTTTG CGTATAATGT AGTCATTTTG TTC

- (A) LENGTH: 542 base pairs
- 55 (B) TYPE: nucleic acid

50

753

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	٠
5	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:	
10	CCCATTATTA TTTNGAAAAT GAATTGGAAA ATACAGTAGA CGAAGTGTGG GTTGTATACA CTTCTGAAAG TATACAAATG GATCGTTTAA TGCAACGTAA TAATCTGNCA TTAGAAGATG	60 120
	CGAAAGCACG TGTCTACATA CATCAACGCG TACGTAAAGT AATGACTTAT TTATAGTGTA	180
	ATATTAATCT TCTTCTCCGN AATTCGGNTT TNCAATATAA CCTTCTTCTT CTAACAANCT	240
15	CTCAAGGTTG TGNGTNAATN CAAGTTTATC CCCTAAATTA TCGATAACAT GATCGGCCAN	300
	TCGGNTNNNN NNATCAATAG AAATTTGGNT TATAGACACG TGCTTTCGCA TCTTCTAATG	360
	ACAGATCATN ACGTNGCATT AAACGATCCA TTTGTATACT TTCAGAAGTG TATACAACCC	420
	ACACTTCGTC TACTGTATTT TCCAATTCAT TTTCAAATAA TAATGGAATA TCCACGAACC	480
20	ACATTATATC CTTGGTTTTA AATATTCTTG CTTTTCTTCT GCCATAATAT CTCGCACGAA	540
	TA	542
	101	
25	(2) INFORMATION FOR SEQ ID NO:170:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 731 base pairs	
	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:	
0.	TCAATCCANC CTCCAATTGC TGATGAAGAA CCTCCTTCAG CNCCCACCCA TTANNGGGGC	60
40	CANAGTCATA AGTAACAACT TTTGAACCAA TTGTATCTTC AATTGAATCT GTAATCTTAT	120
	CTCCCGCTTC TTCCCATCCT AAATGTTCTA ACATTAATAC AGAACTTAAA ATTACTGAAG	180
	NTGGATTCAC TTTATTTAAA CCTGCATATT TTGGANCTGA GACCATGTGT TGCTTCAAAA	240
45	ATAGCATGAC CTGTTTCATA ATTAATGTTT GCACCTGGCG CAATACCAAT NCCACCAACT	300
	TGTGCAGCTA AAGCATCTGA AATATAGTCA CCATTCAAGT TCATAGTTGC TACAACATCA	360
	TGCTCAGCTG GACGAGTTAA AATTTGTTGT AAGAAAATGT CAGCAATAGA ATCTTTAATG	420
	ATAATCTTGC CTTCTTTCAC AGCTTTTTCT TGAGCAGCAT TAGCAGCATC TCTGCCTTCA	480
50	TTTACAACAA TTTCGACATA TTGTTGCCAA GTGAATACTT GCATCACCAA ATTCAGATAA	540
	TGCTAAATCG TAACCCCACT GCTTAAATGA GCCTTCTGTA AATTTCATAA TATTACCTTT	600
	ATGAACTTAA AGTAACTTGA TTTACGGGTT ATTTATCGAT AGCATATTGG TATAGCTGCT	660
	CTACTAATCG CTCAAGTCCT TCTTTTAGAA CTTGGTTTAA TACCAATACC TGAAGGTTCT	720 731
55	TGGAATCGAT T	/) I

	(2) INFORMATION FOR SEQ ID NO:171:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 695 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear	
,,,		
	(ii) MOLECULE TYPE: Genomic DNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:	
	TTTGACATCT CTCAAAAATT AAAGCATAAA GGTTTATCGG AAAGGCGCAA AATTCACAGT	60
	TGTTTGTTGG TTTGTTATTT CCCTCNCAAT ATTCAGTATT AGACATTTAT AGTTTGGAAA	120
20	ATGCGTGATA ATTAGTTGTA TTCAGTTATT AAGTAATAAA TTTTTGGAGG CAGAACATCA	180
	TGAAATTAAC ATTAATGAAA TTTTTTGTGG GGGGATTTGC AGTATTATTA AGTTATATTG	240
	TATCTGATAA CAATAACCTT GGGAAAGAAT TTGGCGGTAT ATTTGCAACG TTTCCGGGCA	300
	GTATTTTTAG TGTCTATGTT TATTACAGGT ATGCAATATG GTGATAAAGT CGCTGTGCAT	360
25	GTAAGTCGTG GCGCAGTGTT TGGTATGACA GGGGTATTAG TTGTATTTTA GTAACATGGA	420
	TGATGTTACA TATGACGCAC ATGTGGTTGA TTAGCATTAT TGTTGGTTTC CTAAGCTGGT	480
	TCATCAGTGC AGTATGTATT TTTGAAGCGG TAGAATTTAT AGCACAAAAA AGATTAGAAA	540
	AGCATAGTTG GAAAGCTGGA AAATCGAATA GTAAATAGTG TGAACGTAAT CTCTTAACTA	600 660
30	GGACTAACTT TGCAAGCATT GAATAGCATG GAAAAGTTGC ATCATTAATA AGTGAAATTC	695
	AAGTTGGCAT TGAGAAAATT ACAAGCGCTC GTGCC	093
	(2) INFORMATION FOR SEQ ID NO:172:	
	(2) INFORMATION FOR SILV ID NO. 172.	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 612 base pairs	
	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:	
	GGCACGAGCT CGGCTTGACG GTAGGAAATA TCAGCACGAG CTTGATTCAA CANCCGAATC	60
50	AGGGAGGAAA TGCAGGTATA ACTCAATCTA AGTTCGCTAA GAGACATCCA ACGTTTTACN	120
	AGGCAAATCC AAGCNAAAAG GATTGCTTCN AATAATATCC CACCAAACAA TTTAAGACAT	180
	TATGCTGTTA AGAGGTCACC AACNATATAT ATAGTGGTTA CGGATCAGTT ATTAGCGTTC	240
	TTTAACAACA GATATTGGCG CTCACAGTTT AACCCAAGAG GTGGTTGGTC TCCAAGTGGT	300
55	CCAAGAAGAT ATGCGAATGG TGGTTTGATT ACAAAGCATC AACTTNCTGA AGTGGGTGAA	360
	GGAGATAAAC AGGAGATGGT TATCCCTTTA ACTAGACGTA AACGAGCAAT TCAATTAACT	420

	GAACAGGTTA TGCGCATCAT CGGTATGGAT GGCAANCCAA ATAACATCAC TGTAAATAAT	480
	GATACTTCTA CAGTTGAAAA ATTGTTTGAA ACAAATTGTT ATGTTAAGTG ATAAAGGAAA	540
	TAAATTAACC GATGCGTTGA TCAAACTGTT CTTCTCAGGA TAATACTTAG TTCTATGATG	600
5	CACTTAGAAG TT	612
	(2) INFORMATION FOR SEQ ID NO:173:	
10		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 605 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(II) MODECULE TIPE: Genomic DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:	
	GGCACGAGCG ACTITITCTA GGCATAATCG AATTGACAAT GGTACTCAAG CTTAAAAATG	60
	GCCCACTTAA TTCAGGCAAT AACAGACTAG GCATAACATT ATTTTTCATC AATTTAAATG	120
25	TGTAAAACAT CGATGACATT GTCTGTTGCT GTTGTCGATA AACATTCATA TCGTAGCGGT	180
	CTGCAAATTC TTTAATGCGA TATGCCGGCG GCACGAGACA TGACAGGTAA TGAATCATGT	240
	TTGAATTGTT CGTCTACGGC ATCTTTTTGA ATAGGTAATC CAAAGAAACC TGCAATACCA	300
	ATCGTTTCAA AGGGCCCTGC TGCTTCGATA TGTCTACGAA ATGGTTCTGA ACGAACATCT	360
30	ATACAAAATG CAATTTGCGC TTTCGTTGAT GTGCCCACCT GATTTAGCTC GCTATTATTT	420
	TCATCAACTG CTTGTGTGTC AATTAACAAT ACTGAATGTG GCTGATTAGC GTTATCATTT	480
	TCTGAGACAT TTACTTGGTT TACATCTAAT GCGCCCGCCA CACTTTCATG ACTGCTTTAA	540
25	TTTTTGTTTT AACTGAGATC GTATGTCAAT TTCCCAGGCA ATTAGCCATA AATTTNTAAA	600
35	TACAT	605
	(2) INFORMATION FOR SEQ ID NO:174:	
40	(1)	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 508 base pairs	
	(B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(b) TOPOLOGY: Tinear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(11) Hobberts III . Collowing Bigs	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:	
	GGCACGAGCT GATCAAGGGT GTAAGTTGGT AGTGGTCAAT AAAGAACAAT CATTACCAGC	60
<i>cc</i>	TAACGTAACA CAAGTGGTTG TGCCGGACAC ATTAAGGAGT AGCTAGTATT TCTAGCAACA	120
55	ACAACATTAT ATGGATTATC CGGAGTCATC AGTTAGTGAC ATTTGGTGTA ACGGGTACAA	180

	ATGGTAAAAC TTCTATTGCG ACGGATGATT CATTTAATTC AANGAAAGTT ACAAAAAAAT	240
	AGTGCATATT TAGGAACTAA TGGTTTCCAA ATTAATGAAA CAAAGACAAA AGGTGCAAAT	300
5	ACGACACCAG AAAACAGTTT CTTTAACTAA GAAAATTAAA GAAGCAGTTG ATGCAGGCGC	360
	TGAATCTATG ACATTAGAAG TATCAAGCCA TGGCTTAGTA TTAGGACGAC TGCGAGGCGT	420
	TGAATTTGAC GTTGCAATAT TTTCAAATTT AACACAAGAC CATTTAGATT TTCATGGCAC	480
	AATGGAAGCA TACGGACACG CTCGTGCC	508
10		
	(2) INFORMATION FOR SEQ ID NO:175:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 750 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20		
	(ii) MOLECULE TYPE: Genomic DNA	
	(will appropriate presentanton, CPO TO NO.175.	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:	
25	GGCNCGAGAC TGTCGAATAT TTAGTAGTAA CTTCAGATTA CAAGCGTATG ACTTATCGAC	60
	CGAACGGTAC AAATAAAGTA TTTGTTAAAA GAAAAGAAGC GGGNTCATGG TCTGAGTGGT	120
	CAGAATTAGC TATTAATGAT TACAATACAC CTTGTGAAAC TGNTCAAAGT GCCCANTCAA	180
	AAGCTAATAT GGCCGAAAGT AACGCTAAAT TATACGCAGA TGACAAGTTT AATAAAAGGC	240
30	ATTCGAGTTA TTTGTGGATG GAACAGCAAA TGGTGTGGGC TCTACATTGN ACTTAAATGA	300
	GAGTTTAGAC CAATTTATTT TATTAATTTT TTATGGGACT TTTCCAGGTG GTGACTTTAC	360
	AGAGTTTGGC AGTCCTTTTG GAGGAGGAAA GATTTCATTG AATCCCTCAA ATCTTCCAGA	420
	TGGTGATGGA AATGGTGGAG GTGTTTATGA GTTTGGATTA ACTAAATCTA GTCGTACATC	480
35	TTTAACTATA TCAAACGATG TCTATTTCGA CTTAGGAAGT CAAAGAGGCT CTGGTGCGAA	540
	CGCAAATAGA GGGACAATTA ACAAAATTAT AGGAGTGAGA AAATAATGCA AATATTAGTT	600
	AACAAGCGTA ATGAGATAAT TTCATACGCT ATCATTGGTG GCTTTGAAGA AGTATGATAT	660
40	TGAAATTACA GAAATTCTCT CAAGTTTTAG ACTAAGCTTT AAATATCAAT GGGAATAGTT	720
40	TTACGAAGAT ATCCGAGAAA AGATGACTGC	750
	(2) INFORMATION FOR SEQ ID NO:176:	
45		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 787 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

	AAATGCCGGG GGAGCTCAAG TATATGACTG AAATAACATT CAAAGGTGGA CCAATCCACT	60
	AAAAAGGTCA ACAAATTAAT GAAGGTGATT TTGCACCTGA TTTTACAGTG TTAGATAATG	120
_	ACTTAAATCA AGTAACATTA GCAGATTATG CTGGTAAAAA GAAATTAATT AGTGTGGTAC	180
5	CATCAATTGA TACAGGTGTT TGTGATCAGC AGACTCGCAA ATTCAACTCT GAAGCTTCTA	240
	AAGAAGAGGG GATTGTGCTT ACAATTTCAG CAGACTTACC ATTCGCACAA AAAAGATGGT	300
	GCGCTTCAGC AGGTTTAGAC AATGTCATTA CATTAAGTGA CCACCGTGAC TTATCATTTG	360
10	GTGAAAACTA TGGCGTTGTT ATGGAACGAA CTTCGTGCCG AATTCGGCAC GAGCTCGTGC	420
10	AGTATTTGTA TTAGATGTAG ATAATAAAGT TGTTTATAAA GAAATCGTTA GTGAAGGTAC	480
	TCGATGCCCC AGATTTTGAT GCTGCTTTAG CTGCATACAA AAATATTTAA TCATTAAAGA	540
	GATAAATCTT AAAATGTATA CATCGTGTCC ATCGTTGTCA ACAGCATTAA AATAGAATTG	600
15	TTTTCTATGA TTGCTAAGAC CTATGGGCAC TTTTTATTGG AGAGGGACGA ATATGGCAGA	660
,,,	ACAACAAACA ATTATGGAAC GCTTGTTTCA TACATTAGAT GAAAAAGCTA AAACATTAAA	720
	TAATGAAAAT GGCCAAAGTT TTATTGAAAA TCTTGGGCTA GCAATGGAAC AAGTATATAC	780
	CAATGAA	787
20		
	(2) INFORMATION FOR SEQ ID NO:177:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 568 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:	
35		
	GGCACGAGCG CGTCATATAA TGAAAGTAAT GATAAAAAGA AAGGATAACT TAATGTGAGT	60
	CAAGAACGTT ATTCAAGGCA AATTTTATTT AAACAAATAG GTGAAATAGG TCAAAGCAAA	120
	ATAAATCAAA AATGTGCGTT GATTATTGGT ATGGGCGCAT TAGGTACACA TGTGGCCGAA	180
40	GGACTTGTTA GAGCAGGCAT TGCTAAACTA ATCATTGTTG ATAGAGATTA TATTGAATTT	240
	AGTAATTTAC AAAGACAAAC ATTGTTTACT GAAGAAGATG CTTTGAAAAT GATGCCTAAA	300
	GTGGTTGCAG CTAAAAAGCA TTTGCTAGCG TTACGTAGTG ATGTTGATAT TGATGGTTGT	360
	ATTGCCCATG TGGATTATTA TTTTTTGGGA AACACATGGA CAGGACGTTG GACGTTATTA	420
45	TTGATGCAAC CGATAACTTT GAAACACGAC AACTGATTAA TGATTTTGCA TATAAACATC	480
	GTATTACCTG GATTTATGGC GGGCGTTGGT CAGAGTACAT ATTCAGGAAG CTGCATTTAT	540
	ACCTGGNAAA CACCTGCTTT ACTGTTGG	568
50	(2) INFORMATION FOR SEQ ID NO:178:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 573 base pairs	

(B) TYPE: nucleic acid

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:	
10		
	CTACNNTAAT AAGAAAATAT AACATACNAA TCAAAAACTA AAGGGATGTG ACGTTAATGA	60
	AACTCGTATT TGTGGCACGA GCTGGTAATA TGGCACAAGC TATATTTACA GGAATTATTA	120
	ACTCAAGCAA CTTAGATGCC AATGATATAT ATTTAACAAA TAAATCTAAT GAACAAGCTT	180
15	TAAAAGCATT CGCTGAAAAA CTAGGTGTTA ACTATAGTTA TGATGATGCG ACATTATTAA	240
	AAGATGCAGA TTATGTTTTT TTAGGTACCA AACCGCATGA CTTTGATGCT CTAGCAACAC	300
	GCATCAAACC ACATATCACA AAAGACANTT GCTTCATGTC AATTATGGCA GGTATTCCGA	360
	CTGATTATAT TAANCAACAA TTAGAATGCC AAAATCCAGN TGCTAGAATT ATGCCANACA	420
20	CAANTGCGCA NGTTGGACAC TCAGTTACTG GCATTAGTTT TTCAAACAAC TTTGAACCCT	480
	AAATCCTAAA GATTAAATTA ACGATTTAGT TAAAGCATTT GGTCTGTATT GAAGTATCCA	540
	GAGATCATTT TACATCCAGT TACAGCTATC ACC	573
	(2) INFORMATION FOR SEQ ID NO:179:	
25	(2) Intolumitor for bag is notify.	
	(i) SEOUENCE CHARACTERISTICS:	
	(A) LENGTH: 619 base pairs	
20	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:	
40	CTCTATTATA AACATATTAA AACGCATTTT TCATGCCTAA TTTATCTAAA TATGCATTTT	60
	GTAATTTTTG AATATCACCT GCACCCATAA ATAAAACAAC AGCATTATCA AATTGTTCTA	120
	ATACATTAAT AAGAATCTTC ATTAATGAAC GATGCACCTC CAATTTTATC AATTAAATCT	180
	TGTATCGTTA ATGCGCCAGA ATTTTCTCTA ATTGAGCCAA AAATTTCACA TAAGAATACA	240
45	CGATCTGCTT TACATAAACT TTCTGCAAAT TCATTTAAAA ATGCTTGTGT TCTAGAGAAA	300
	GTGTGTGGTT GAAATACTGC AACAACTTCT TTATGTGGAT ATTTCTTTCG TGCTGTGTCA	360
	ATTGTAGCAC TAATTTCTCT TGGATGGTGT GCATAATCAT CTACAATAAC TTGATTTGCA	420
	ATTGTAGTTT CATTGAAACG ACGTTTAACA CCACCAAACG TTTCTAATGC TTCTTTAATA	480
50	TTTGTAACAT CTAGCTTCTC TAAATAACTA ATCGCAATTA CAGCTAATGC ATTTAAAACT	540
	GTATGGTCAC CATATTGTGG AGACAGGAAG TGATCATAAA ACTCACCATC CACATACACA	600
	TCAAAAGCAG TCTCGTGCC	619
	(2) INFORMATION FOR SEQ ID NO:180:	
55	(2) Intolumiton for one in no.100.	

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 443 base pairs	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:	
15	GGCACGAGCG TGTCAATATT TACATGATGA TTTCATTTAA TAGCCTTTTT TAGCATCAAC	60
	TTCATTCTCA ATTAGACCAT TCTTATTGAG AAAATTAACT AGATTGTTTT TAAAAATATC	120
	TAATAAGTCA TACTTTGCCT CATAATCATT ACCAGTTATA TGCGCTGTTA TAGTTACATT	180
	TTCCAATTCA TATAATTCAT GATTAGGTTT CAAAGGTTCA TTTTCAAACA CATCTAAATA	240
20	TGCATGTCGA ATAACTTTAC TTTTTAATAC TTCTATTAAG AGCGCTTCCT TTAACTATGC	300
	TACCTCGTCC TATATTTATA AAAAGTGCTT CCATCCTTTC ATTAATTCCA AAATGTTTTT	360
	TTCCTTTAGT TAAATGAATC CGTTTCCTTG CGTTTCCTGG TAAAGCATTT ATAATAATGT	420
	CAGCATTTGG TAATGTGCTT TCA	443
25	(2) INFORMATION FOR SEQ ID NO:181:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 569 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: Genomic DNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:	
70	GGCACGAGCT ATGTGGTTTG AAGTCAATCG CCAAATGTTC CACCTACCAT TCTGATAAAA	60
	GTATTTACTT GTTCTTTATT CCATAACACA TATACTTTAT GATCTCTATT TTCAAATTGT	120
	CTATGCACAT ATTTTTGTAA AGGATGCAAC TTTCCTTTTT CTTGCTTCAT TTCTACAAAA	180
45	TATGTTTTTC CTTCTGGCAT AATAATAATT CTATCTGGCA CACCTCTTGT TCCAGGTGCG	240
10	ACCCATTITA AACATAAACC GITTAGCITT GITATCICIT ICACTAAATA IITTICIAAT	300
	GTCGATTCCT TTCATTTATT CACCTTGTAT ACAAAATTTA TATTTGTGTT CCGAATGTTT	360
	GTTATCAATT CCTTGCCAAA CTTTTTAAAA ATAGCTGTTT AGAGGGTTTA CCCCTATACC	420
50	CCCTTTACTC CCCTAAACAC TACTTTTTTA AACTTTATAG TGAATTTGAA TGCAACATTG	480
- -	GGAAACAAAC AGGTTTGAAC CCCTACAGCT AGAAAGAAGA GTGTTTGTAA TCATTGTTGC	540
	ATCATGTTGC ATCACCAAAA TGATACAAC	569
5 5	(2) INFORMATION FOR SEQ ID NO:182:	

	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 511 base pairs							
5	(B) TYPE: nucleic acid							
·	(C) STRANDEDNESS: single							
	(D) TOPOLOGY: linear							
10	(ii) MOLECULE TYPE: Genomic DNA							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:							
	GGCACGAGCG CAAAATATTT CAAATAAAAA TGATTGTAAA AAGGCAAAAT ACAAAATTTC	60						
15	ACTTAACAAC TAGTACATAA AGTAATACAA TTAAATTAAT TCTATCTGAA AGATGTGTGG	120						
	GGCATCGTTA TTTTAGGTGG ATATGAGCAA TTTATTAAAA GTCATTTACG GAAAATATAT	180						
	ATAGACGGGG TGAGTAATAT GCAAGAACAT GTGGTGGTTA CACTTGATGG AAAAGATTAT	240						
	CTTGTAGAAC CAGGTACGAA TTTACTTGAA TTTATTAAAT CACAAGATAC TTTTGTCCCT	300						
20	TCAATTTGTT ATAACGAGTC GATGGGCCCA ATTCAAACAT GTGATACATG TACTGTTGAG	360						
	ATTGACGGTA AAATTGAACG CTCATGTAGT ACGGTGATTG ATCGCCCAAT GACTGTAAAT	420						
	ACTGTGAACA ATGATGTGAA AGATGCTCAA AAAGAGCCTT GATCCGAATT TTAGAAAAGC	480						
	ATATGCTGTA TTGGACAGTA TGTGATTATT A	511						
25								
	(2) INFORMATION FOR SEQ ID NO:183:							
30	(i) SEQUENCE CHARACTERISTICS:							
30	(A) LENGTH: 1125 base pairs							
	(B) TYPE: nucleic acid							
	(C) STRANDEDNESS: single							
35	(D) TOPOLOGY: linear							
55								
	(ii) MOLECULE TYPE: Genomic DNA							
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:							
	I TO COMPANY TO THE THE STATE OF THE STATE O							
	ATCCTTTATT TNTAAGGCGT TTCATCAAGC TAACACTTCA TTATCTTTAG TCGCTTTAAT GCCCTTCTAT TAAACTCGGA ACTAAAAATG GATTGNCTTT TCAACCACCC GANCACTAAA	60						
	ACATTGTCNT TTTTGATGGC CNATTAAGAC ACAATTTCCC GCTGTTTGCT TCAAAGTAGC	120						
45	TTGCTTCTTG NATTNATTTT CAATATCTTT CTTGTTAAAA ACAAGANTGT TGCACAGTTT	180 240						
	GATTGCCATC TTTATTTAGA NCAATGCCAT CTGCTTGCCA CTTATCAATG CCTTCTTTAT							
	TCATATTGAT AAGACCATTC GCCAATCCAG ATAATAAAAA TAGCAAGTAA CTAATCATCG	300 360						
	TTAACACACC AATAATTAGT CCAAACTTCA ATTTGTTGCG CCGTATTTCA TTCCAAGCTA							
50		420						
	AAAACATGCA TTTCTCTCCC TACTACTATG ATTTAAACAT TGTTTATATT CTTAGATGCA	480						
	CGTACGTCGT GTTGCGCTCT GTAATGTTAT ACATACACTT ATCCTTCATT ATACCCGANC	540						
	TTTTTATATT AAAACCAAAT TTATGGAAAA TGCAANNANT TGTCTATTAT TTTTGTGCGG	600						
55	TACATTTAAA ATTAAGGATC AATTTAAAAA CGCCTACATA TACCTTTAAG TACATGAAGA CGTCCAATTC ATATATTATT TAACTTCGCC TGTTTTAGGA TCGGATTGCT TAATAGCATT	660						
	COLCONALIC MINIMITALI INNCLICOCC IGITITAGGA ICGGATIGET TAATAGCATT	720						

TTTACGTAAT	${\tt TTATCTTTTG}$	${\tt CTTTGTCACT}$	TGCTTTATAG	TTATTGTTGT	AAATCGTAGC	780
TTCCCAACTA	CCATACATTG	GGTTAGGGAA	AATGATATAT	TTCTTACCGA	AATCGTCTTT	840
ATGTTTTTCA	ATTAATGCTT	CACGAGATTC	AGCTGTAGCT	TCTTTTGGAT	CTGTAAAGTC	900
TAATAAATTA	TCTCCAAATA	GCATGACAAG	TTTATGATCC	TTTTGAACCA	TTTGTCTGCG	960
TGATTCTTTA	CTCTTATCAT	CTTTACCTTT	TAGTAAAATA	TGACTCTTCT	TAGCTTGAGG	1020
GATACCTTGT	TGTTTTAAGT	TCTTTTGTGT	TGCCTTTAAA	TCTTTTTCTT	TATCTCTATC	1080
AGAAATATAG	TAGATATCGA	CACCTTTTTT	GTCAGCATAT	TTCAA		1125

(2) INFORMATION FOR SEQ ID NO:184:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3100 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5

10

15

20

25

30

35

40

45

50

55

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

AGAAGCATAT	AAACAAAACA	TGTTCGCATT	ATTAGGTAAA	ACTGGTTTTG	AAGACTTGAA	60
AAAAGAATTA	GAAGAGCGTT	${\tt TATAAAATAC}$	ATTACTTCAA	TGATTAGTGA	AGTTTGAAAA	120
GATAGAACTA	GACGTTAACT	ATTTAAAGCA	${\tt TATTTTCGAG}$	GTTGTCATTA	CAAATGTAAA	180
aatgtaatga	CAACCTCGTT	TTTATTTATA	TGCAAGAACT	AGGTTACTAG	CTAATGTGAC	240
AAGATGTTAA	GAGAAAATTA	AAGAAAAAAT	AACATCTGTC	ATACAATAAT	ATTGTTATAC	300
TACTAGAGAC	TGATTTATTA	GCATGATTAC	ATGTTAATGT	TTCTTTACTT	AGTAATTAAC	360
TTTATAATGT	AAGAATAATT	ATCTTCAACC	AAAGAAAGGG	ATTGATGATT	TGTCGTTTCA	420
TCAAGTAGAA	GAATGGTTTG	AGATATTTCG	ACAGTTTGGT	TATTTACCTG	GATTTATATT	480
GTTATATATT	AGAGCGATAA	TTCCAGTATT	TCCTTTAGCA	CTCTATATTT	TAATTAACAT	540
TCAAGCTTAT	GGACCTATTT	TAGGTATATT	GATTAGTTGG	CTTGGATTAA	TTTCTGGAAC	600
ATTTACAGTC	TATTTGATCT	TGTAAACGAT	TGGTGAACAC	TGAGAGGATG	CAGCGAATTA	660
AACAACGTAC	TGCTGTTCAA	ACGCTTGATT	AGTTTTATTG	ATCGCCAAGG	ATTAATCCCA	720
TTGTTTATTT	TACTTGGGNT	TTCCTTTTAC	GCCAAATACA	TTAATAAATT	TTGTAGCGAG	780
TCTATCTCAT	ATTAGACCTA	AATATTATTT	CATTGTTTTG	GCATCATCAA	AGTTAGTTTC	840
AACAATTATT	TTAGGTTATT	TAGGTAAGGA	AATTACTACA	ATTTTAACGC	ATCCTTTAAG	900
AGGGATATTA	ATGTTAGTTG	TGTTGGTTGT	ATTTTGGATT	GTTGGAAAAA	AGTTAGAACA	960
GCATTTTATG	GGATCGAAAA	AGGAGTGACA	TCGTGAAAAA	AGTTGTAAAA	TATTTGATTT	1020
CATTGATACT	TGCTATTATC	ATTGTACTGT	TCGTACAAAC	TTTTGTAATA	GTTGGTCATG	1080
TCATTCCGAA	TAATGATATG	TCGCCAACCC	TTAACAAAGG	GGATCGTGTT	ATTGTAAATA	1140
AAATTAAAGT	TACATTTAAT	CAATTGAATA	ATGGTGATAT	CATTACATAT	AGGCGTGGTA	1200
ACGAGATATA	TACTAGTCGA	ATTATTGCCA	AACCTGGTCA	ATCAATGGCG	TTTCGTCAGG	1260
GACAATTATA	CCGTGATGAC	CGACCGGTTG	ACGCATCTTA	TGCCAAGAAC	AGAAAAATTA	1320
AAGATTTTAG	TTTGCGCAAT	TTTAAAGAAT	TAGATGGAGA	TATTATACCG	CCTAACAATT	1380
TTGTTGTGCT	AAATGATCAT	GATAACAATC	AGCATGATTC	TAGACAATTT	GGTTTAATTG	1440

	ATAAAAAGGA	TATTATTGGT	AATATAAGTT	TGAGATATTA	TCCTTTTTCA	AAATGGACGA	1500
	TTCAGTTCAA	ATCTTAAAAA	GAGGTGTCAA	AATTGAAAAA	AGAATTATTG	GAATGGATTA	1560
5	TTTCAATTGC	AGTCGCTTTT	GTCATTTTAT	TTATAGTAGG	TAAATTTATT	GTTACACCAT	1620
5	ATACAATTAA	AGGTGAATCA	ATGGATCCAA	CTTTGAAAGA	TGGCGAGCGA	GTAGCTGTAA	1680
	ACATTATTGG	АТАТАЛАЛСА	GGTGGTTTGG	AAAAAGGTAA	TGTAGTTGTC	TTCCATGCAA	1740
	ACAAAAATGA	TGACTATGTT	AAACGTGTCA	TCGGTGTTCC	TGGTGATAAA	GTAGAATATA	1800
10	AAAATGATAC	ATTATATGTC	AATGGTAAAA	AACAAGATGA	ACCATATTTA	AACTATAATT	1860
10	TAAAACATAA	ACAAGGTGAT	TACATTACTG	GGACTTTCCA	AGTTAAAGAT	TTACCCGAAT	1920
	GCGAATCCCA	AATCAAATGT	CAATCCAAAA	GGGTAAATAT	TTAGCTCTTG	GAGGATAATC	1980
	GTGAAGTAAG	TAAAGATAGC	CGTGCGTTTG	GCCTCATTGA	TGAAGACCAA	ATTGTTGGTA	2040
15	AAGTTTCATT	TAGATTCTGG	CCATTTAGTG	AATTTAAACA	TAATTTCAAT	CCTGAAAATA	2100
15	CTAAAAATTA	ATATGAAACA	AATACAACAT	CGTTTGTCGG	TTTTAATACT	GATAAACGAT	2160
	GTTTTATTTG	GTTAGTACCA	CAATAAAAGC	TAAGTTCGAA	ATGAACTTAT	AATAAATCAA	2220
	TCACAATCAC	TTTGTGTTAA	AATATGTGTC	AAAGGAAGTG	AGGGTTTGTC	ATGACATTAC	2280
20	ATGCTTATTT	AGGTAGAGCG	GGAACAGGTA	AGTCTACGAA	AATGTTGACC	GAAATAAAAC	2340
20	AAAAAATGAA	AGCAGATCCG	CTTGGAGATC	CAATCATTTT	AATTGCGCCA	ACTCAAAGTA	2400
	CATTTCAATT	AGAACAAGCC	TTTGTCAATG	ATCCGGAATT	AAATGGTAGT	TTAAGAACAG	2460
	AAGTGTTGCA	TTTTGAACGA	TTAAGTCATC	GTATTTTCCA	AGAAGTTGGT	AGTTATAGCG	2520
25	AACAAAAGTT	ATCTAAAGCT	GCAACGGAAA	TGATGATTTA	TAACATTGTT	CAAGAACAAC	2580
25	AAAAGTATTT	AAAACTTTAT	CAATCACAAG	СААААТАТТА	TGGGTTTAGT	GAAAAATTAA	2640
				CAGTAACGCC			2700
	TTGCTGATAA	AAATATGCAA	ACTCGAACTA	AAAATAAGTT	AGAGGATATT	GCTTTAATAT	2760
30	ACCGTGAGTT	CGAACAACGC	ATNCCANAAC	GAGTTTATTA	CTGNTGAGGA	TTCATNACAA	2820
				TGGCTAAAAC			2880
	GGTTTTCACA	ACTTTTCAAC	GATTGAGTAT	TTAATAATCA	AAGGATTAAT	TAAATATGCG	2940
	AAGAGTGTCA	CAATTATATT	GACGACAGAT	GGTAACCACG	ATCAATTTAG	TTTATTTAGA	3000
35	AAACCATCGG	AAGTGTTACG	ACATATTGAA	GAAATAGCAA	ATGAACTCAA	TATTTCTATT	3060
	GAACGTCAAT	ATTTCAACCA	ATTATATCGC	TTCAATAATC			3100
	(2) INFORMATI	ON FOR SEQ	ID NO:185:			
40							
	(i) S	EQUENCE CHA	RACTERISTIC	s:			
	(4)	TENTOTEL 01	7 haga mair	_			

(A) LENGTH: 817 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

45

50

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

GGTGGCGAGA AAATACCGCA AGGTCATAAA GATATCTTTG ATCCAAACTT ACCAACAGAT 60
CAAACGGAAA AAGTACCAGG TAAACCAGGA ATCAAGAATC CAGACACAGG AAAAGTGATC 120
GAAGAGCCAG TGGATGATGT GATTAAACAC GGACCAAAAA CGGGTACACC AGAAACAAAA 180

	ACAGTAGAGA	TACCGTNTGA	AACAAAACGT	GAGTTTAATC	CAAAATTACA	ACCTGGTGAA	240
	GAGCGAGTGA	AACAAGAAGG	ACAACCAGGA	AGTAAGACAA	TCACAACACC	AATCACAGTG	300
_	AACCCATTAA	CAGGTGAAAA	AGTTGGCGAG	GGTCACCCAA	CAGAAGAGAT	CACAAAACAN	360
5	CCAGTAGATA	AGATTGTAGA	GTTCGGGTGG	AGAGAAACCA	AAAGGTCCCA	AANGGACCTG	420
	AAAACCCAGA	GAAGCCGAGC	AGACCAACTC	ATCCANGTGG	GCCAGTAAAT	CCTAACAATC	480
	CAGGATTATC	GANAGACAGA	GCAAAACCAA	ATGGCCCAGG	TCCATTCAAT	TGGATAAAAA	540
**	TGATAAAGGT	TAAAAAATCT	AAAATTGCTA	AAGAATCAGT	AGCTAATCAA	GAGAAAAAAC	600
10	GAGCAGAATT	ACCAAAAACA	GGTTTAGAAA	GCACGCAAAA	AGGTTTGATC	TTTAGTAGTA	660
	TAATTGGAAT	TGCTGGATTA	ATGTTATTGG	CTCGTAGAAG	AAAGAATTAA	AATAATTCAT	720
	AATTTAAATA	ATAGTTGATT	TGCATTCACT	${\bf ATATTTAGTT}$	TGTTAAAAAC	AACCTAGAAT	780
15	ATGATGAGAA	TGATATACAA	CCCCAAAAGT	TGGCTTG			817

(2) INFORMATION FOR SEQ ID NO:186:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1348 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

20

25

30

35

40

45

50

55

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

CCATCGACTA	AGCAATGGTA	TTTGTTCATT	AAATCCTCAT	GTTGATCGTT	TAACGTTAAG	60
CTGTCGCATG	GAAATCGATG	CTAGTGGTCG	CGTTGTTAAA	CATGAAATTT	NTGATAGTGT	120
TATACATTCT	GATTATCGAA	TGACGTATGA	TGCGGTAAAT	CAGATTATTA	CTGAAAAGGA	180
TCCTAACATT	CGCGAACAAT	ATAAAGAAAT	TACGCCTATG	TTAGATTTAG	CACAAGATTT	240
ATCTAATCGN	TTGATTCAAA	TGAGAAAACG	ACGTGGGGTG	AAATCGATTT	TGGATATTAG	300
NGAAGCAAAA	GTATTAGTTA	ACGAAGTCGG	GTATACCAAC	AGATGTTCAA	TTAAGACAAC	360
GTGGCGAGGG	TGAACGTCTA	ATTGAATCAT	TTATGTTAAT	TGCAAATGAA	ACAGTTGCTG	420
AACATTTTAG	TAAGTTAAAT	GTACCTTTTA	TTTACCGAGT	GCATGAGCAA	CCTAAATCAG	480
ATCGCTTAAG	ACAATTCTTT	GATTTTATTA	CAAACTTTGG	CATCATGATT	AAGGGCACTG	540
GCGAAGATAT	TCATCCAACA	ACACTTCAAA	AGGTTCAAGA	AGAAGTAGAA	GGTCGACCTG	600
AACAAATGGT	CATTTCAACA	ATGATGTTAC	GTTCAATGCA	ACAAGCGCAT	TATGATGATG	660
TGAACTTGGG	ACATTGTGGC	${\tt TTATCAGCTG}$	AATATTATAC	GCATTTNACA	TCACCAATTA	720
GACGTTATCC	TGATTTAACA	GNTCATCGTT	TAATCCGTAA	GTATTTAATT	GAGAAATCAA	780
TGGATAACAA	AGAAGTGAAG	CGTTGGGAAG	ACAAATTGCC	TGAGTTAGCT	GAACATACTT	840
CTAAACGTGA	ACGTCGTGCT	${\tt ATTGAGGCAG}$	AACGTGATAC	TGATGAATTG	AAAAAAGCAG	900
AATATATGAT	TCAACATATT	GGTGATGAAT	TTGAAGGTAT	TGTCAGCTCA	GTAGCTAACT	960
TCGGTATNTT	CATTGAATTG	NCAAATACGA	TAGAAGGTAT	GGNTCATATT	GCGAATATGA	1020
CTGATGATTA	TTACCGCGTT	GAAGAGCGTC	AAATGGCATT	AATTGGGTGA	GCGTCAAGCT	1080
AAAGTATTTA	GAATTGGTGA	CACAGTTAAG	GTTAAAGTGA	CGCATGTTGA	TGTAGATGAA	1140
CGATTAATTG	ATTTTCAAAT	TGTTGGAATG	CCTTTACCTA	AAAATGACCG	CTCACAGCGA	1200

	CCAGCAAGAG GTAAAACGAT TCAAGCTAAA ACGCGTGGCA AATCTTTAGA TAAATCGAAA	1260
	TCTGATGATA AGGGTCGGTA AGAAAAAAGG TAAGCAACGT AAGGTAAAAA CCAACGTAAT	1320
5	AATGATAATC AGGTAATAGT AAGCATAG	1348
	(2) INFORMATION FOR SEQ ID NO:187:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 982 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:	
	ATGAAAATTA TTTTAATTTT AGCATTAGCG CGTGTCGTTT CTAGACATAA TCAATTCACA	60
	TTCAATAAAT CATTCCAAAG TGATTTGTTA TTATTTTTCA AAATTATTGG TGTCTCGTTA	120
25	GTACCAAGTA TTTTAATATT ACTGCAAAAT GACCTAGGAA CTACATTAGT ATTAGCTGCT	180
	ATTATTGCAG GTGTGATGTT AGTAAGTGGT ATAACATGGC GTATCTTAGC ACCTATCTTT	240
	ATTACAGGTA TTGTTGGTGC AATGACAGTC ATTTTAGGTA TTCTATATGC ACCCGCATTA	300
	ATTGAAAATT TATTAGGTGT CCAACTGTAT CAAATGGGAC GAATCAATTC AAGGCTTGAC	360
30	CCCTATACAT ATAGTAGGGG GGGGGATGGC TATCAATTAA CTGAATCACT TAAAGCTATC	420
	GGGCTCTGGA CAAGGTACTA GGTAAAGGAT ACAATCACGG GGGAGGTTTA TATTCCCTGA	480
	AAATCATACT GACTTTTATC TTTNCAAGNG AATGGGAGAG GAACTTGGCT TTATCGGTTC	540
	TGGCAAATTG AGNCTTAATA TTTTTATTTT TAATCTTCCA TCTAATAAGA TTAGCTGCGA	600
35	AAATTGGAGA TCAATTTACC AAAATCTTTA TCGTTGGTTT CGTCACTTTA CTTGTGTTCC	660
	ATATTTACA AAATATTGGT ATGACAATTC AGTTGTTACC AATCACTGGT ATTCCATTAC	720
	CATTTATTAG TTATGGTGGT AGTGCGCTAT GGAGTATGAT GACTGGAATA GGTATAGTCT	780
	TATCAATTTA TTATCATGAA CCAAAACGAT ATGTCGATTT ATACCATCCA AAAAGTAATT	840
40	AATTTAAACT ATTTTGAGTT TCAAATATCA TAACTTTTCA AGATGACGTT ATATAGTCTA	900
	TTTACGTCGT CGATTTAAAA TGTCATATAT AGATATTACT CGATAATAAC AATCCCTCTT	960
	TGAAGTACAC ATTGTAAAAT GG	982
45	(2) INFORMATION FOR SEQ ID NO:188:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1709 base pairs	
50	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

```
GGCACTAACT TCATTTGAGC ATCCTCCTAT CAATTGCTAT ATAAATTAGT ACCCTTTTGC
                                                                              60
5
       CACTTAATTA TAACAAATTC TCAAATTTTA AAAATTGAAA ATCTAGTTAA TGTATTAGCT
                                                                            120
       CGATTTTGAA ATCTAATAAT AATTGGCATA AAATGGAAGT AATATTATGT GAGGAGTGTT
                                                                            180
       ATGAAATGAC AAAAATATCA AAAATAATAG ACGAACTGAA CAATCAACAA GCTGATGCAG
                                                                            240
       CATGGATTAC AACACCGTTG AATGTATATT ATTTTACTGG ATACCGTAGC GAACCCATGA
                                                                            300
10
       AAGATTATTT GCATTATTGA TTAAGAAAGA TGGTAAACAA GGTACTATTT TGTCCAAANA
                                                                            360
       TTGGAAGTCG GAAGAATCA AAGCATCACC CTTCACAGGT TGAAATCGTT GGATATTTAA
                                                                            420
       GACACTTGAA ATCCTTTTTC ACTTTATCCA CAACNCAATC AATAAATTAC CTAATTGTAA
                                                                             480
       GCGGAGCACC TTAACAAGTA GCACCGCCAC AAACAATTAA TCTCTGTTTC NATGTCAATT
                                                                             540
       CATTCGGAGA TGTTGAGTTA ACAATCACAC AATTAAGAGA TATTAAATCC GAAGATGAAA
                                                                             600
       TTAGCACAAT ACGTAAAGCT GCTGAGTTAG CAGATAAGTG TATCGAAATA GGTGTTTCTT
                                                                             660
       ATTTAAAAGA AGGTGTGACT GNACGTGAAG TAGTCAACCA TATTGAGCAA ACTATCANAC
                                                                            720
       AATATGGCGT CAATGAAATG AGTTTTGATA CGATGGTTTT ATTTGGAGAT CATNCCGCAT
                                                                            780
20
       CACCTCATGG CACACCAGGA GATCGCAGAT TAAAAAGCAA TGAATATGTA CTATTTGATT
                                                                             840
       TAGGTGTAAT TTATGAGCAT TATTGTAGCG ATATGACACG TACCATTAAA TTTTGGTGAA
                                                                            900
       CCTAGCAAAG AAGCACNAGA AATTTATAAT ATTGTATTAG AAGCAGAAAC ATCTGCAATC
                                                                             960
       CAAGCAATTA AACCTGGAAT ACCTTTAAAA GATATCGATC ATATCGCTAG AAATATTATT
                                                                            1020
25
       TCAGANNAAG GTTATGGTGA ATATTTCCCT CATCGCTTAG GTCATGGTTT AGGATTACAA
                                                                            1080
       GAACATGAAT ATCAAGATGT TTCAAGTACT AATTCTAATT TGTTAGAAGC TGGCATGGTT
                                                                            1140
       ATTACAATCG AACCAGGTAT TTATGTACCA GGTGTTGCAG GTGTAAGAAT TGAAGATGAC
                                                                            1200
       ATACTTGTCA CTAATGAAGG ATATGAAGTA TTAACACATT ACGAAAAATA AGGAGTGGGA
                                                                            1260
30
       TAAAAATGAA AAGCTTGTTA CAAGCACATT CTCATTCAGT CAAACACTGC CAATATAACA
                                                                           1320
       TTGTAGCGCC TAAGACATAA ATTTTTATCC AAGTCTAAAT GCAATATGTA ACAAACAAGC
                                                                            1380
       TAGAAACACA TATGCAGGTA TGTTCATCAG TAACATGTAA TGAATCAAAT CAATATCATT
                                                                           1440
       CATGITCGAT GATTICTICG CATTGITTCT AGCITTAATT TATCATTAIT TAATTITAAT
                                                                           1500
35
       AACCAAGGAG ATGATAACGT CAGTCTTTAG TACGCTGTAA TCCATTCCCT TTTCATCAAA
                                                                            1560
       TTCAAATTAT AATTGTAATG CTTCTTCTAC AGATTTATAT TCCATTTCAA ATGCCTCTGC
                                                                            1620
       AACGCCTTTA TTGGTTACGT GACCTTTGTA AGTATTTAAA CCTAATGATA ATGGTTGATT
                                                                            1680
       TGATTTAAAT GCTTCTCTAT ACCCTTTAG
                                                                            1709
40
```

- (2) INFORMATION FOR SEQ ID NO:189:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1355 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 50 (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic DNA
- 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

	AAAGAGGAAG	ATGTGAACCA	CCACTAGTAT	TGAATCŢĀAA	GATTGAGGAC	GTTCCTTTAT	60
	TAATTGGCTA	NNNAAGNNAN	ATCNNNAAGA	TAGCCAATCC	AAAGCCAAAA	AGTCAGCATC	120
5	AAGAAATACT	TCTANNAAGG	TAGCAGCTNN	NNAGAAGNGN	NAGAAATCTA	AGANAAATNN	180
J	NAAATAATTT	GTTTCTTTGC	TAAATAGAGG	AGCACCGATT	GACATCACAT	CAGTCGGTGC	240
	TCCTTTTATT	TATTCTTTTT	AATTAATTTA	TACAAANCCN	ATTCCCTGTT	GAGCGTGTTG	300
	AATCGCCTTC	CNTTGTTTTG	TTCTCNCGGT	ANCCCATTTA	ACCAAATNAT	AAACCNANAT	360
10	CTTTNTCCAA	ATATTTCTAT	TTGATCAAAA	TAAGGTTTGA	AATTTGCGTT	TTTCACATAA	420
	CCAGCTCGTG	CCAATGCTAT	CGTGCAATTA	GCTTTGAGTC	TGTATATAAT	AGTGCGTTTT	480
	GAACATTTAA	TTCACGTGCA	TGTTCTAGTG	CATAAATACA	TGCAGCCCAT	TCTGCAGTGT	540
	GGTTATCCAT	TTCGCCTAAC	TCATGTGTAT	ATGTATNATG	CTGCTTATCT	TCTTTGATTA	600
15	CAATGGCACA	NGTACTTATG	CCTGGATTTC	CTNTTCGTCG	CAGCATCAAA	ATTTATGTGC	660
	GCCATAATAA	ACCTACTTTC	TATTCAATAC	TTAGTTAAAG	TTACTATTAC	TGTAATACAA	720
	AATATGTTGG	GTAATCCATT	AAAAAACACG	CATCACTTAA	ATAAGTAAAC	ACGTTGTTAA	780
	AAATACTTCG	CTTGATTCAA	A'AGATGATTT	TCTAAATACG	TAGTNCTTGT	AAAATACTTC	840
20	CTAAANAAAT	CATCTTCAGG	CTGGGGACAT	AAATCAATGT	TCTATGCTCC	TNCCGAAGTT	900
	ATATTGGCAG	TAGTTGACTG	ANCGAAAATG	CGCTTGTAAC	AAGCTTTTTT	CAATTCTAGT	960
	CAGGGGCCCC	AACACAGAAG	CTGNCGAAAA	GTCAGCTGAC	AATAATGTGC	AAGTTGGGGA	1020
	TGGACCCCAN	CAAAGAGAAA	TTGTATTCCC	AAATTCTACA	GACNATNCAA	GTTGGGGTGG	1080
25	GNCGACGAAA	TAAATTTTGC	GAAAATATCA	TTTCTGTCCC	ACTCCCTTAA	AACTTATTCT	1140
	TTTGTGTAGT	AAGTGCGTTA	ATAGCCTTGA	TCTAACTTAT	CAATCTTACC	TTTACGATAA	1200
	AATGATTTAG	CAATATATCC	ANNTGGTACA	TTGAAAACTG	TTGAAGCTAA	TTTTAATACG	1260
	TAAGTTGTAA	TAAATATTTC	NAATNCAACT	GTACCAGGTA	AACTTCCGAT	AAAAGCGATA	1320
30	GCTACAAATA	AAGCTGTATC	CAATTATTGA	GCTTG			1355

(2) INFORMATION FOR SEQ ID NO:190:

(i) SEQUENCE CHARACTERISTICS:

35

40

45

50

55

(A) LENGTH: 1410 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

CCAATTTTCC	CTTCTACCTG	CGTGGGTAGT	ATTCAAGCCC	AAAGTTCAGC	GGGAAAATAT	60
TGACAATTAA	CCGGATCCAG	CTAATCGGAG	GTCGGATAAA	GATGTTGAGT	TGTAAGTTAT	120
TTGGAATATT	ATTTTAATAG	TGTCATCCCC	CTTTGTAAAA	TAATTGTCTT	ACTTTTAAAT	180
TAAAAGCCAA	ATTAATATAA	GAAANCTAAG	ACTTAGTACN	GTATCAATTT	TGTGCGTTTC	240
AATTGAGTTC	TAGTTTTTTT	TAATATGTTA	ATATTAAACT	TATAACTTTA	TGGGAGTGGG	300
ACAAGAATGA	TAAAGAGCCA	CTAAATGATT	TATTATGTAG	TGGTTCTTAA	TACATTAGCC	360
ACANCTAATG	TGTACTTAAA	AATAGGAATA	CATGAGTAAA	ACTCATGCAT	AAGAAATACT	420
AATTTCTATA	GAAAAAGTAT	TACTTTATCG	TTGTACCACA	CCAACTTGCA	CATTATCGTA	480

	AGCTGACTTA	TCGTAAGCTT	CTGTGTTGGG	GCCCACACCC	CAACTCGCAT	TGCCTGTAĢĀ	540
	ATTTCTTTTC	GAAATTCTCT	TTGTTGGGGC	CCACACCCCA	ACTTGCATTG	TCTGAAGAAA	600
5	TTGGAAATCC	AATTTNCTCT	GTGTTGGGGC	CCACACCCCA	ACTCGCATTG	CCTGGAAGCT	660
5	GAATTTCTTT	TCGAAATTCA	GCTTCTGTGT	TGGGGCCCAC	ACCCCAACTT	GCATTGCCTG	720
	TAGAAATTCT	TTTCGAAATC	CAATTTCTCT	GTGTTGGGGC	CCCTGACTAG	GATTGAAAAA	780
	AGCTTGTTAC	AAGCGCATTT	TCGTTCAGTC	AACTACTGCC	AATATAACTT	CGTAGAGCAT	840
	AGAACATTGA	TTTATGTCCC	AGCCTGATAT	CACCATTAAA	TACAATTCAT	TTAGTNTTCA	900
10	ATTGGAAACA	ATTNATCGAT	ATATTGAATC	TCATCATCTG	ATAAAACGAT	ATCTGCAGCT	. 960
	TTAATATTT	CAATGACTTG	TTCTGCACGT	TTTGCACCAG	GAATAATCAC	ATCGATAGCT	1020
	GGTCTCGTTA	AATAAAATGC	TAATACAATG	TTCGCAATTG	AAGTTTGATG	TGCTGCAGNT	1080
15	AGNCTTTCCC	AAAGCTTTTA	CGCTCGTGAC	GCACATTCTC	TTCAAAAACA	CCAGGTATAA	1140
15	AATCCCGACG	TGTAGTACGA	TGGTCACTAA	ATTTAGTGTT	CTCATCATAT	TTTCCAGCTA	1200
	AAATACCGGA	TGCTAATGGG	AAATAAGGAA	TAAATGTGAT	TAGGTGATCA	ACACAATATT	1260
	GCAATACTGC	${\tt CTCATTTTCG}$	CGGTGCAATA	AATTATATTC	TAACTGTACA	ACATCAACGT	1320
20	AACCATCTTT	ATTTGCTTCT	TTAAGTTGAT	CTAATGTGAA	ATTTGATACA	CCAATGGCTT	1380
20	TAATCTTCCC	TTGTTCCTTA	AGCTCGTGCC				1410

(2) INFORMATION FOR SEQ ID NO:191:

(i) SEQUENCE CHARACTERISTICS:

25

30

35

40

45

50

55

(A) LENGTH: 2437 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

GTGTTACGGT	AGGTTGTTGA	TCCTAATTTT	CCCTGNCAGT	TGGTCCCAGT	ACCCACCCAT	60
TTCCCAACTT	ACTAAAAAAG	AAATCCAATT	ANNCCGAAAG	AAAATATTGA	AGTCATTGAA	120
ATTAACCGAA	GCGTTCCAGT	GCACAGGTAG	TTGCCTCCCC	AACCAAGCTT	TAAATATTTC	180
CAAATACGCA	ATTAAATATA	TGGGGTGGTG	CATTAGCATC	AGGTCATCCA	TACGGTGCAA	240
GCGGTGCCCA	ATTAGTGACT	${\bf CGATTATTTT}$	ATATGTTTGA	CAAAGAGACT	ATGATTGCAT	300
CTATGGGGAT	AGGGGGAGGT	CTAGGAAATG	CAGCATTATT	TACTCGATTC	TAACCAGCGA	360
TTAAATGTGT	CATTTTCTAA	GGATAGTGTG	GCTGCATATT	ATCAGTGTTT	TANCCAACCT	420
TATAGAAAAG	AAGTCTCGTG	CCCATTAATG	TGTNCGTCAT	TATGGCCACA	ATTTGATTTA	480
TTTAAAAAA	TATCCAAATA	GCGAGCTGAT	TTTACCACAA	ATCAGCAATT	AATCAAACTC	540
NCAAGATAGA	AGTAGACACA	ATATATGTAG	GGCATTTAGA	AGATATTGAA	TGCCGACAGA	600
CTCGCAATAT	CACACGTTAT	ACAATGGCTT	TAACATTAAC	TAAAAATGAT	CAACATGTCA	660
TANCGGTTAC	ACAAACTTTT	ATTAAGGCGA	TGAAGTAGAG	ATGAAGTTTA	ATGAGATATG	720
GATAAATGAA	TATTTGGCGC	TCGTAAATGA	TGATAATCCA	ATACATAATG	AGATTGTGCC	780
AGGACAATTA	GTGAGTCAAA	TGATGCTGAT	GGCTATGTCA	TTAGAGACAA	ACCAGTGTCA	840
AATTAACTAC	GTTAAACCTA	TTTTAATAAA	TGAAAATATC	GAATTCATTG	AACAACACGA	900

960

ACACGAAATT ATAGCAATTA ATGACGATGG AGAGATTAAA ATAAAAATTT CTTTGAGCAC

	ACACGAAATT ATAGCAATTA ATGACGATGG AGAGATTAAA ATAAAAATTT CTTTGAGCAC	960
	AAAAAAATAA CCGATATTAG CTGCATGAAC GCATATTAAT TAGGAGATGA AAGGACAGCT	1020
5	AATATCAGTT ATGTATTGTT ATTATTATTG GGAACAGAGA TGAATATAGG TTACGTTTCT	1080
3	TTCTTTGCAC GGGGATGCAT TAATCTAAAA TAATAATAAC AACTATATCA ATGTTTAATA	1140
	AATTCTGGAT TATTGGAACG ATTAGTCAAT TTAACTAACT TNCATATGAT CTATATCGTC	1200
	TTGTNATAAA GAGAGCAATT TGAATATTTC AGTATCACTA AATGAATCGN CACATTTAAT	1260
	TGAAACATGC TGAAACGTTT GGGTTATAAT TTCATAAACT GGTGCGCCTT CATGGTGATA	1320
10	CTGTCGAATA AATAATCATA ACCATATTTA CCTCCTTNGG CTACTCTATG GGTATATTAT	1380
	AAATAACATT TTTATGTGTG ACATCAACCT TAAGTATCAA CTTTTTATCA GACATAGAAC	1440
	GTANGATTTA CTAAGACTAT TTATGTATAA AAGTTCTAAA TAAATATATA TTTATAGAGT	1500
45	CGCCTGGCAG NCATTTGGGA AATATAACAT ATATGATTAG AGAGGCATCT ATCGCAAAAG	1560
15	AATGATAATG ATAGAGGTAT TGAGCATATA GATGAGTTTA AGTTCATCTT GAAAATAAAG	1620
	GGTTATTTAG TCATAGATGT AGATGTATAG GAAATATTTG TATGTATTGN TCGATATGTA	1680
	TGAAATTTTC AATAAAAGCT AATAACGCTT ATATGTAACT TTCAAATTTA AATTATATAC	1740
20	AGAGCATGAT GATTATAAAA AAATANCCAC ATCACATAAA TTGAGTTCAT ACCCAATTTA	1800
20	AGTGGTGTGG CTAATAATGT TGATTTATAG ATGAACCGCC TAATCGTTAA ACCTCTGTTA	1860
	CTTCAACATC GATATGTTCA ATACGGTTGT ATGCACCGTG ATCCACAGGA CCAACAAAAT	1920
	CATTCATTTT CCAACCGTTT TTAATAGCAG AAGCGACGAA AGCTTTCGCT CGTGCTAATC	1980
25	ACAGCTTCTT TCGGTGACTT ACCGTTAGCT AAATATGCAG GTGTTGCCGC AGCAAATGTA	2040
25	CAACCAGCAC CATGGTTATA ACTTTGTTGG AACATGTCTG TTGTTAGTTG ATAAAATGTG	2100
	TGACCATCAT AGTATAAGTC ATACGATTTA TCTTGATCTA AAGCTNTGNC ACCTTTAATG	2160
	ATGACATGCT GTGCGCCTTT ATCAAAGATA ATTGNTGCAG CCTTTNACAT ATCTTCAATT	2220
30	GAATTTAATT TACCTAATCC TGATAATTGA CCCGCTTCAA ATAAGTNTGG TGTCACTACC	2280
00	GGTGGTTTAG GTAGTAAATA TTTAATCATC GCCTCAGTAT TTCCAGGATT AAGCACTTCA	2340
	TCTTCGGCCT TTACAANCCA TGACAGGATC TTACTACAAA ATATTGTGCA ATTAGATGCT	2400
	CATATACTTC TCCAGNACGG GTGGATATCT CCTCAAG	2437
35	÷	
	(2) INFORMATION FOR SEQ ID NO:192:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 479 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
45		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:	
50		
	TTTCCCCCNA CTCCATAATC TTGGCCAAAA TCATGTTTAA ATTTGATCTT GATTTGGACC	60
	CAAAGATAGC TTGCATATTG TTTCCCAACT TCTAANACAC CTGATGCGCC TAAAGCTTTA	120
	AATACCTGCT ACATCTACTT TTGATTTATC CAACCCACTT CTACGCGCAG ACGTGTAATA	180
55	CATGCATCTA AATGTTTAAT GTTTTCTTTT CCACCCCATT GNATCTAAGA CATCANATGG	240
	TAATTTTGCG ACACTAGAGT TACGAATTTC AGTTTCTTCA TCTTCACGAC CTGGTGTTTT	300

	CAATTTAAAC TTACGAATTN CACAGTCGAA TGAGANGTAA NACACGATAG CAGACACGAC	360
	AGCGTTCTNN GACTGGTAAT NGGGCATTNN GCCCAACCCA ATTTATGTGA GCTAACTCAG	420
	GTTGAACNTT GACCATCTTT NNATTCTTCA ACCCANAACC TGCAGGCGTA TTCATAANT	479
5	GIIGAACHII GACCAICIII MMAIICIIGH HOODILAIGU ICHIIGAACHII GACCAICII MMAIICII MMAIICII GACCAICII MMAIICII MMAIICII MMAIICII MMAIICII MMAIICII MMAIICII GACCAICII MMAIICII MMAIICII MMAIICII MMAIICII MMAIICII MMAIICII GACCAICII MMAIICII MMAIICI	
	(2) INFORMATION FOR SEQ ID NO:193:	
10	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 2593 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	·	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:	
	The second of th	60
	CCAAAGTGTT CTGGTCTAAG ATATTATCGC TAATCCGTGT TAAGCCACTC AGCTGTTTAA	120
	TATCAATTAC CTTTTTNAAA TCCCTCCAAC CTAAAATCTT GATTCCCACC TTGCTTTAAT	180
25	AAAATCTTTC GTTTTAGTTG TATTATGTTT AAACTTCTTG CCAGTCTTTT CGGTAAGATA	240
	ATCAATAATC TCTTTATATG GGATGCGTGT CGGGTTTCCC GACAATATAT CTACTCTATT	300
	TATATTGTTA TTACTTGTAT TATTAATACT TGTATTGTCT CTTTAACATT TGTGATAATA	360
	GGGGTATTAA CAGAATTGTT AATAGGGGTA TTATCATTTG TGTTAATAGG TCTTATCATT TCTGTTAAGG GGTATAGCTT TCTTTGTTTA ATTTCATTAC CATTTCTAAT GATTTCAACA	420
30	TGTAAATATC CACATTCTTT TAAGTTGGCT ATACGGCGTG ATACAGTAAC TTTTGTAACT	480
	TCATATAGTT TCGCAAAGTA ACCATTACTT GCTGTGCAGT ATCCGTACTT GTTACTTAAA	540
	GACGTTATTT CTGCAAAAAG TAACTTTTCG CTGTCAGTAA GTCGGTTATC GTATCTGACA	600
	TTTGCCGTTA TTATTGAGTA GTAACTTGGT TGTTCAGTCA TTCTCAGCAC CTTCTTTCAG	660
35	TGCTTTGAAC TTGTCTGGTA TCTCCCAGTT AGATATGAAT TCTTTCAATT CATCAGTCAT	720
	AGGTACTTCG TTTAGTATTG CGTCATCACC AAACAGATAT AAAACTATCT TGTTATATGC	780
	TAATGCCGCT TTTTCTGTGC TATCAAAATA TTCCGTAGTA TATAGCTTGC CATCAATTTT	840
40	TTTCCTAACA GAAAATCGAT GCGGCATATC AGAGTGGTTT CCAATTCCTC TGTAGCCATA	900
40	TTTACTAGCG TTTCTTGTGT TGTTAATATT TTTATGAGGA AAATAATCTC TAACTTTACG	960
	CATATCTCTT CCAATTATGT TTTTAAAACC TTCCACCACC CCAAAACTCA TCTACAGCTT	1020
	NGTTATACGC TTCAGCTGCT AATTCTTCTT GTTTNAAAAA TACCTAAACG TTTTNGGATT	1080
45	TCCTTCAACA TTTATATTGG CTGTCCATTT ATTGCAATCT TNACGCCAGT TAACACCTTT	1140
	ANACTTAGAA GAACCATTAC TTTTAGGTNT CTCCCATCTT GANCNGTTNN NACCTTTTGT	1200
	AGTTAAATTA GATTTAGTAA AATTATTATT TTTAATTTTT TGAAAACTTC CTTCTTTAT	1260
	AAAGGTTGTT AATAGTACAA CCTTTCTCTC GTTGCCAATC CTAGTATGGA TATATCTTGT	1320
50	ATTACCTTTA TAGTATTTGA ACCATTTATA TCTGTTCCAC TCTTTCATAA TCTTCATCAT	1380
	CAACAAAAT TTCTTCTCCA TCTTGTAAAA ATATCGATTT AACCATTATT CTCTTCCTTT	1440
	CAGCATTTTG TTGAGCCTCT CATCAACTTT TATCCACGAG TCATGCAAGT GATATTTATC	1500
	ATCAAACGAC TTAACACCAA TCGCATGTTG CTCGTTGTGA TGTTCGCGAC ATAACGCTAA	1560
5 5	TACATGTTTG TTGTAGTGAT TCATTTTGTT TCTGTTCATT CCTCTGCCGA CTGCTTCATA	1620
		4

ATGCGCTAGG TCTGCGTGAG GCTTTCCACA AATTACACAG TTGCGGTTGA TTGTAGCCCA 1680

		ATACAATAGT	GCTTTATCCT	CACTTAACAA	CTTGCTCTCG	TGCCTATGCT	CATAGGTATT	1740
	• • •	•			TCTATTAACT			1800
	5	CAGTCGCGCA	GACTGATTTC	TTCATAACCT	TTCATAATTT	CCAATTCTGT	TTGTAATAAT	1860
		TTNCTAATTG	ATTCCACCGG	TTCTCCCCAG	TGAAGTTCTA	TATCTCTACA	CATNGCGAAT	1920
		ATTTTTTTGC	GTTGTTCTAT	AGATAGTTTT	TTATTATCCG	GAACCTCTAC	TTCTGCTTTT	1980
		AGTGGATATC	CGTTTTCTAG	TAAGTCAATG	TGACTTTGTT	CAAGTTCAAC	ACCANTAGCA	2040
10	10	ACGACGGAAT	AAGTNCCGTC	ATTGTCNNTC	TGGNATCTTG	TAATGTATTG	CANNTAAACC	2100
		CACACCTTAA	ACGCTAAATC	TTGGTCGTCA	TATCCAAATT	GCCCCCTGCT	TTCAAATGGA	2160
		TTGCTTTGTT	GAGACATTGA	TGTTTGTTGT	TGTGCCCCGT	TATTTTCTTC	AGCTTTTTGC	2220
		TTATCTGTCT	TCGGAATAGG	TTTGTTAACA	ACATCATCGC	${\tt CCTTTTTGTA}$	AGGTTTAATA	2280
	15	AATGAAAAAT	CCGTAAAATA	CTTACCTTCA	TCTTCATTGA	ATTTCCATTT	CAATACCAAG	2340
		TGACANAACT	TACCAATAAG	ATCATTGGTA	TCANAATCTA	AGCTAGGAAG	ATTTAACTTA	2400
		ATACCTAATC	GAGTAACTAA	TTCAATCAAT	TGTTTTTCTT	GGAAATCATA	TTTATACGGC	2460
		GGTACAAATT	GATTATGTTT	ATATTGTTTG	CCTTCATCAT	TTTCAAATAC	GATTGTGAAA	2520
	20	TATCTATTTT	CTCTATCATT	AGAAGAAAAC	CTGATCATCT	TTTTTAGGTT	TCTTAGATTG	2580
_0		GAATTGTTGA	GGG					2593

(2) INFORMATION FOR SEQ ID NO:194:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3191 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

35

40

45

50

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

ACATAGTAAA GTGCCGGATG ATAGTGCAAG AGGTATCGTT GCACAAAATA TGACAACTGC TGAGATTGAA ACATTTGGTT CAGATCCAGT TATTATGCCA ACGGGTGCC CCTGGTATTA 180 TTTTCGGTAA AACAACAAC TCAATGATTA ATACAGGATC AGCGGTTCC ATTGTTTACC 240 AACAAGGCGC TATTTATGCT AATGCTGAGT TCATTCAAAT TCATCCTACT GCAATCCCTG 300 GTGATGATAA ACTCCGACTA ATGAGTGATC AGCACCNTTG TTGAAGGTGG ACGAATTTGG ACATATAAAG ATGGTAAGCC TTGGTACTTC TNAAGAAGAG AAATATCCTG ATTATGGTAA 420 CTTAGTACCT CGTGATATCG CAACCGCGTG ANATTTTCGA TGTATGTATT AACCAACAAA 480 TTAGGNATAA ATGNCGAAAA CATGGNATAT CTTGATTTGT CACATAAAGA TCCAACATGA 540 GTTAGATGTA AAACTAGGTG GTATCATTGA AATTTATGAN AAATTCACTG GTGATGACCC 600 ACGCAAAGTA CCAATGAAGA TTTTCCCAGC TGTTCACTAT TCAATGGGTG GTCTATATGT 660 AGATTATGAT CAAATGACAA ATATTAAAGG GTTATTTGCA GCTGGAGAAT GTGACTTCTC 720 TCAACATGGT GGTAACCGCT TAGGTGCCAA TTCATTGTTA TCAGCGATTT ATGGTGGTAC 780 AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840 TATGGACNGA AGTATTTTTG AAAAACGTAA AGCTGAAGAG CCAAGGAACGT TTTGATAAAT 900	CCCCAAGTCT	CATATGAAGT	AGTTGGATTA	GTTCCGAAGT	ATGAGGATGG	GAATTTCTTG	60
TTTTCGGTAA AACAACAAC TCAATGATTA ATACAGGATC AGCGGCTTCC ATTGTTTACC 240 AACAAGGCGC TATTTATGCT AATGCTGAGT TCATTCAAAT TCATCCTACT GCAATCCCTG 300 GTGATGATAA ACTCCGACTA ATGAGTGATC AGCACCNTTG TTGAAGGTGG ACGAATTTGG 360 ACATATAAAG ATGGTAAGCC TTGGTACTTC TNAAGAAGAG AAATATCCTG ATTATGGTAA 420 CTTAGTACCT CGTGATATCG CAACCGCGTG ANATTTTCGA TGTATGTATT AACCAACAAA 480 TTAGGNATAA ATGNCGAAAA CATGGNATAT CTTGATTTGT CACATAAAGA TCCAACATGA 540 GTTAGATGTA AAACTAGGTG GTATCATTGA AATTTATGAN AAATTCACTG GTGATGACCC 600 ACGCAAAGTA CCAATGAAGA TTTTCCCAGC TGTTCACTAT TCAATGGGTG GTCTATATGT 660 AGATTATGAT CAAATGACAA ATATTAAAGG GTTATTTGCA GCTGGAGAAT GTGACTTCTC 720 TCAACATGGT GGTAACCGCT TAGGTGCCAA TTCATTGTTA TCAGCGATTT ATGGTGGTAC 780 AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840	ACATAGTAAA	GTGCCGGATG	ATAGTGCAAG	AGGTATCGTT	GCACAAAATA	TGACAACTGC	120
AACAAGGCGC TATTTATGCT AATGCTGAGT TCATTCAAAT TCATCCTACT GCAATCCCTG 300 GTGATGATAA ACTCCGACTA ATGAGTGATC AGCACCNTTG TTGAAGGTGG ACGAATTTGG 360 ACATATAAAG ATGGTAAGCC TTGGTACTTC TNAAGAAGAG AAATATCCTG ATTATGGTAA 420 CTTAGTACCT CGTGATATCG CAACCGCGTG ANATTTTCGA TGTATGTATT AACCAACAAA 480 TTAGGNATAA ATGNCGAAAA CATGGNATAT CTTGATTTGT CACATAAAGA TCCAACATGA 540 GTTAGATGTA AAACTAGGTG GTATCATTGA AATTTATGAN AAATTCACTG GTGATGACCC 600 ACGCAAAGTA CCAATGAAGA TTTTCCCAGC TGTTCACTAT TCAATGGGTG GTCTATATGT 660 AGATTATGAT CAAATGACAA ATATTAAAGG GTTATTTGCA GCTGGAGAAT GTGACTTCTC 720 TCAACATGGT GGTAACCGCT TAGGTGCCAA TTCATTGTTA TCAGCGATTT ATGGTGGTAC 780 AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840	TGAGATTGAA	ACATTTGGTT	CAGATCCAGT	TATTATGCCA	ACGGGGTGCC	CCTGGTATTA	180
GTGATGATAA ACTCCGACTA ATGAGTGATC AGCACCNTTG TTGAAGGTGG ACGAATTTGG ACATATAAAG ATGGTAAGCC TTGGTACTTC TNAAGAAGAG AAATATCCTG ATTATGGTAA 420 CTTAGTACCT CGTGATATCG CAACCGCGTG ANATTTTCGA TGTATGTATT AACCAACAAA 480 TTAGGNATAA ATGNCGAAAA CATGGNATAT CTTGATTTGT CACATAAAGA TCCAACATGA 540 GTTAGATGTA AAACTAGGTG GTATCATTGA AATTTATGAN AAATTCACTG GTGATGACCC 600 ACGCAAAGTA CCAATGAAGA TTTTCCCAGC TGTTCACTAT TCAATGGTG GTCTATATGT 660 AGATTATGAT CAAATGACAA ATATTAAAGG GTTATTTGCA GCTGGAGAAT GTGACTTCTC 720 TCAACATGGT GGTAACCGCT TAGGTGCCAA TTCATTGTTA TCAGCGATTT ATGGTGGTAC 780 AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840	TTTTCGGTAA	AACAACAAAC	TCAATGATTA	ATACAGGATC	AGCGGCTTCC	ATTGTTTACC	240
ACATATAAAG ATGGTAAGCC TTGGTACTTC TNAAGAAGAG AAATATCCTG ATTATGGTAA 420 CTTAGTACCT CGTGATATCG CAACCGCGTG ANATTTTCGA TGTATGTATT AACCAACAAA 480 TTAGGNATAA ATGNCGAAAA CATGGNATAT CTTGATTTGT CACATAAAGA TCCAACATGA 540 GTTAGATGTA AAACTAGGTG GTATCATTGA AATTTATGAN AAATTCACTG GTGATGACCC 600 ACGCAAAGTA CCAATGAAGA TTTTCCCAGC TGTTCACTAT TCAATGGGTG GTCTATATGT 660 AGATTATGAT CAAATGACAA ATATTAAAGG GTTATTTGCA GCTGGAGAAT GTGACTTCTC 720 TCAACATGGT GGTAACCGCT TAGGTGCCAA TTCATTGTTA TCAGCGATTT ATGGTGGTAC 780 AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840	AACAAGGCGC	TATTTATGCT	AATGCTGAGT	TCATTCAAAT	TCATCCTACT	GCAATCCCTG	300
CTTAGTACCT CGTGATATCG CAACCGCGTG ANATTTTCGA TGTATGTATT AACCAACAAA 480 TTAGGNATAA ATGNCGAAAA CATGGNATAT CTTGATTTGT CACATAAAGA TCCAACATGA 540 GTTAGATGTA AAACTAGGTG GTATCATTGA AATTTATGAN AAATTCACTG GTGATGACCC 600 ACGCAAAGTA CCAATGAAGA TTTTCCCAGC TGTTCACTAT TCAATGGGTG GTCTATATGT 660 AGATTATGAT CAAATGACAA ATATTAAAGG GTTATTTGCA GCTGGAGAAT GTGACTTCTC 720 TCAACATGGT GGTAACCGCT TAGGTGCCAA TTCATTGTTA TCAGCGATTT ATGGTGGTAC 780 AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840	GTGATGATAA	ACTCCGACTA	ATGAGTGATC	AGCACCNTTG	TTGAAGGTGG	ACGAATTTGG	360
TTAGGNATAA ATGNCGAAAA CATGGNATAT CTTGATTTGT CACATAAAGA TCCAACATGA 540 GTTAGATGTA AAACTAGGTG GTATCATTGA AATTTATGAN AAATTCACTG GTGATGACCC 600 ACGCAAAGTA CCAATGAAGA TTTTCCCAGC TGTTCACTAT TCAATGGGTG GTCTATATGT 660 AGATTATGAT CAAATGACAA ATATTAAAGG GTTATTTGCA GCTGGAGAAT GTGACTTCTC 720 TCAACATGGT GGTAACCGCT TAGGTGCCAA TTCATTGTTA TCAGCGATTT ATGGTGGTAC 780 AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840	ACATATAAAG	ATGGTAAGCC	TTGGTACTTC	TNAAGAAGAG	AAATATCCTG	ATTATGGTAA	420
GTTAGATGTA AAACTAGGTG GTATCATTGA AATTTATGAN AAATTCACTG GTGATGACCC 600 ACGCAAAGTA CCAATGAAGA TTTTCCCAGC TGTTCACTAT TCAATGGGTG GTCTATATGT 660 AGATTATGAT CAAATGACAA ATATTAAAGG GTTATTTGCA GCTGGAGAAT GTGACTTCTC 720 TCAACATGGT GGTAACCGCT TAGGTGCCAA TTCATTGTTA TCAGCGATTT ATGGTGGTAC 780 AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840	CTTAGTACCT	CGTGATATCG	CAACCGCGTG	ANATTTTCGA	TGTATGTATT	AACCAACAAA	480
ACGCAAAGTA CCAATGAAGA TTTTCCCAGC TGTTCACTAT TCAATGGGTG GTCTATATGT 660 AGATTATGAT CAAATGACAA ATATTAAAGG GTTATTTGCA GCTGGAGAAT GTGACTTCTC 720 TCAACATGGT GGTAACCGCT TAGGTGCCAA TTCATTGTTA TCAGCGATTT ATGGTGGTAC 780 AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840	TTAGGNATAA	ATGNCGAAAA	CATGGNATAT	CTTGATTTGT	CACATAAAGA	TCCAACATGA	540
AGATTATGAT CAAATGACAA ATATTAAAGG GTTATTTGCA GCTGGAGAAT GTGACTTCTC 720 TCAACATGGT GGTAACCGCT TAGGTGCCAA TTCATTGTTA TCAGCGATTT ATGGTGGTAC 780 AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840	GTTAGATGTA	AAACTAGGTG	GTATCATTGA	AATTTATGAN	AAATTCACTG	GTGATGACCC	600
TCAACATGGT GGTAACCGCT TAGGTGCCAA TTCATTGTTA TCAGCGATTT ATGGTGGTAC 780 AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840	ACGCAAAGTA	CCAATGAAGA	TTTTCCCAGC	TGTTCACTAT	TCAATGGGTG	GTCTATATGT	660
AGTAGCAGGT CCAAACGCGA TTGATTAATA TTTCAAATAT TGATCCGATC CATATACTGA 840	agatťatgat	CAAATGACAA	ATATTAAAGG	GTTATTTGCA	GCTGGAGAAT	GTGACTTCTC	720
	TCAACATGGT	GGTAACCGCT	TAGGTGCCAA	TTCATTGTTA	TCAGCGATTT	ATGGTGGTAC	780
TATGGACNGA AGTATTTTTG AAAAACGTAA AGCTGAAGAG CAAGGAACGT TTTGATAAAT 900	AGTAGCAGGT	CCAAACGCGA	TTGATTAATA	TTTCAAATAT	TGATCCGATC	CATATACTGA	840
	TATGGACNGA	AGTATTTTTG	AAAAACGTAA	AGCTGAAGAG	CAAGGAACGT	TTTGATAAAT	900

	TATTAGCTAT GCGCGGTAG	A AGAAAATGCC	TATAAATTAC	ACCGTGAACT	TGGTGAAAIT	960
	ATGACACCAA ATGTAACTO	T TGTTCGTGAA	AATGAAAAAC	TGTTAGAAAC	AGATNAAAAG	1020
5	ATTGTTGAAT TGATGAAA	G TTATGAAGAT	ATTGATATGG	AAGATACTCA	AACTTGGAGT	1080
	AACCAAGCGG TATTCTTT	C CCGTCAACTA	TGGAACATGT	TAGTACTTGC	ACGTGTTATT	1140
	ACGATTGGTG CATATAACO	G TAACGAATCA	CGCGGTGCCC	ATTATAAACC	AGAATTCCTG	1200
	ATAAGTATTT TCGTCAGA	G TACATAATAT	TTAAATCATT	TAATTTTGAG	AAGCATGGAA	1260
10	AATTTTGGAA CAAATGGTT	T TACGTAAGAA	AATGGAAACA	TAAGATTTTA	GATGGTCATC	1320
	AGCTTAATCA AAATATATA	T GATCAGCGTC	ATTTAATGAC	AATCAATACT	GATGAAATTG	1380
	AAAAAATGAT TATAGAGAG	A AAGAGGGCAG	AGTTGATTCA	TTGGATATCG	ATACTTCCAG	1440
	TCATCATATT CAATAAAGO	C TCTCGTTTAG	TAAAGTATAT	AAATATTTTC	TATGCAATGA	1500
15	TAGCTAATGT TCCAATCAT	T ATTGTGCAAC	GCTATAATCG	ACGAGATTAA	CGCAGGTACT	1560
	ACGCATTTTA AAACGAAGA	G GTGAACGTCA	TGACTAAACA	TATCATCCGN	TATTGGGTGG	1620
	GNGGCTTAGG TGGGATTT	N TGCAGCAATT	CGAATGGACA	AAAGTGGCTA	TTCGGNCTCA	1680
	TTATATGAAC AAAATACTO	A TATAGGAGGC	AAAGTGAATC	GNCATGAATC	AGATGGCTTT	1740
20	GGCTTTGATT TAGGTCCAT	C TATTTTAACG	ATGCCTTATA	TTTGTGAAAA	ATTATTCGAA	1800
	TATAGCAAGA AGCAAATG	C AGACTACGTT	ACAATCAAGC	GTTTGNCACA	TCAATGGCGT	1860
	AGCTTTTTTC CAGATGGC	C GACTATCGAT	TTGTATGAAG	GTATTAAAGA	AACAGGTCAG	1920
	CATAATGCGA TATTGTCGA	A ACAGGATATA	GAGGAACTGC	AAAATTATTT	GAATTATACA	1980
25	AGACGAATCG ATCGTATT	C TGAAAAAGGG	TATTTTAACT	ATGGTTTAGA	TACACTATCT	2040
	CAAATTATTA AATTTCAT	G GCCATTAAAT	GCTCTTATTA	ATTATGATTA	TGTACATACT	2100
	ATGCAACAGG CCATAGACA	A GCGTATCTCG	AATCCATACT	TGCGACAAAT	GTTAGGCTAT	2160
	TTTATCAAAT ATGTAGGT	C TTCATCATAC	GATGCGNCAG	CTGTATTATC	TATGTTATTC	2220
30	CATATGCAAC AAGAGCAAG	G CCNTTGNTAT	GTAGAAGGTG	GAATCCATCA	TTTNGCCAAT	2280
	GCCTTGGAAA AGCTAGCGG	G TGAAGAAGGT	GTCACAATTC	ATACAGGTGC	ACGTGTGGAC	2340
	AATATTAAAA CATATCAAA	G ACGTGTGACG	GGTGTCAGAT	TAGATACAGG	TGAGTTTGTA	2400
	AAGGCAGATT ATATTATT	C AAATATGGAA	GTCATACCTA	CTTATAAATA	TTTAATTCAC	2460
35	CTTGGATACT CAACGATTA	A ACAAATTAGA	GAGGGAATTT	GAGCCGGCAA	GCTCAGGATA	2520
	TGTGATGCAT TTAGGTGT	G CTTGCCAATA	CCCGCAATTA	GCACATCATA	ATTTCTTTTT	2580
	TACGGAAAAT GCTTATCT	A ATTATCAACA	AGTTTTTCAT	GAAAAGGTAT	TGCCAGATGA	2640
	TCCGACCATT TATCTAGT	A ATACGAATAA	AACTGATCAC	ACACAAGCGC	CAGTAGGGTT	2700
40	ATGAAAATAT CAAAGTCT	TA CCACATATTC	CATATATTCA	AGATCAGCCT	TTTACCACTG	2760
	AAGATTATGC GAAGTTTAG	G GATAAAATTT	TGGATAAATT	AGAAAAAATG	GGACTTACTG	2820
	ATTTAAGAAA ACACATTA	T TATGAAGATG	TTTGGACACC	GGAGGATATT	GAAAAAAATT	2880
	ATCGNTCTAA TCGTGGTG	A ATATATGGTG	TTGTCGCAGA	TAAAAAGAAA	AACAAAGGAT	2940
45	TTACCTTTCC TAAAGAAA	T CAGTATTTTG	AAAACTTGTA	CTTTGTAGGT	GGATCAGNAA	3000
	ATCCTGGTGG TGGCATGC	A ATGGTTACAT	TAAGTGGGCA	ACAANTCGCA	GACAAANTNA	3060
	ACGCGCGAAG AAGCGAAN	ATAGGANGGT	GANATCTATT	GAAATCGGTN	NTCACGACTA	3120
	TTTAANAGAC AATAGTGGI	IN ACCCATENTE	TTNTGGGGNC	TTGGGAGCAT	TTGGATNTTC	3180
50	NNCGGGGGNC A					3191

- (2) INFORMATION FOR SEQ ID NO:195:
- (i) SEQUENCE CHARACTERISTICS:

55

(A) LENGTH: 1189 base pairs

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
5	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:	
	CCTGGAATAA TTGGTGGTCC GTAATTGATG GGCCAAGTTG AAATTGGAAG CTAAAAAAAG	r 60
	CTTAATCCGC CCAAATTGTT AACAACACAC CTATTGACTT TGTCAATCCA ACCCATCAA	120
15	CCTTCATTAT TAACATGTCC CAGGTATCTT TAAGNTTGAT GAAACATTAG ATACCAGTTC	G 180
15	TTGGCGAAGG CTTAAAGCTT TGCCANCTTG AAAAATTAAG CCGGAATTAA GATGCATTGC	240
	GTCGCCTATT TGAATCCAAA CCGATAGTGT TAAATATGAT AAATTAAAAG CACGTTATGA	300
	GCGTTTCCAA AATCAATCAT TCAAAAACTT AGATTATGAT TTCGAAAGCG TGCGTACTTC	360
20	AAGACAATCA CCATTCGCGC AACGTATTGA ACAACAACAA AAACGTTTGA ACTTACCGGA	420
20	TTTACCAACA ACAACTATTG GATCATTCCC ACAAAGCCGA GAAGTTCGAA AATACCGTGC	480
	AGATTGGAAG AACAAACGCA TTACAGACGA AGCATATGAA ACATTCTTAA AAAATGAAAT	r 540
	TGCTCGATGG ATTAAAATTC AAGAAGACAT CGGCTTAGAT GTATTAGTTC ACGGTGAATT	600
25	TGAACGTAAT GACATGGTTG AATTCTTCGG AGAAAAATTA CAAGGTTTCT TAGTAACTAA	4 660
	ATTCGGTTGG GTGCAATCAT ATGGTTCACG CGCCGTAAAA CCACCAATCA TTTATGGTGA	720
	TGTAAAATGG ACAGCGCCTT TAACTGTTGA TGAAACAGTT TATGCACAAA GCTTAACAGA	780
	TAAACCAGTT AAAGGTATGT TAACTGGACC TGTAACAATT CTAAACTGGT CATTTGAACC	840
30	TGTTGATTTA CCACGTAAAG TCGCTCAAGA TCAAATTGCT TTAGCAATCA ACGAAGAAGT	900
	ATTAGCACTT GAAGCTGCAG GAATCAAAGT TATCCAAGTT GACGAACCTG CATTACGTGA	960
	AGGCTTACCA TTACGCTCTG AATATCACGA ACAATATCTT AAAGATGCTG GTTTTATCAT	1020
	TTAANCTTGC AACGTCTTCA AGTTCGGTGA TGAANCTCAA ATCCATACAC ATATTGTGTT	1080
35	ATTCTCAANT CGGGCAAATC AATCAATGCT ATTCAAGATT TAGATTGCTT GATGTTATTC	1140
	AATTGAACAC TCCGNGCCNT GGGGATTTAA TTAAGNTTGG AGGTTTTAT	1189
	(2) INFORMATION FOR SEQ ID NO:196:	
40	(i) crouning out is commanded.	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3815 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
45	(D) TOPOLOGY: linear	
	(b) Torobodi. Tilear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:	
	GGAGCATAAT AAAGAGCGTA TCTTAAACAT TAATTTTAAG TGTGATCCCA AAGTAATTT	60
55	CGTGATTCAT TGAAAATTGT TCCGAAAGNA CCGTTGTTCA TCCAAGACAA TATTTACCTT	120
	AACAATATTG ATTTGGGGTT ACCTGGAACG ATGTTATTAA GTTTGGTTAG CTGACAAAAA	180

	TAGTCGTTAC	CGCCATCGCA	GGACCCAATG	CCGATTGTAA	TGGTTAGCAT	таттааатса	240
	ATGATGCATC	CAAAAAATGG	AATATATAGA	TGCAAGTCAT	ATTGTGATTG	CGTTGTTAAT	300
5	CATCCTTGTG	ATAATCACAT	TGTTTATCTT	ATTATTCATT	GAATTAGTAG	AAGTGAGAAT	360
•	ACCATATATC	GATTTAATGA	ACGTTTCCGC	AACAAATATG	AAATCTTATT	TATCTTGGAA	420
	AGTTAACCCT	GCAGGCAGTA	TTACTTTAAT	GATGAGTATT	${\tt TCAGCATTTG}$	TTTTCTTGAA	480
	AAGTGGCATT	CATTTTATTT	TATCTATGTT	TAATAAAAGC	ATATCAGATG	ACATGCCAAT	540
10	GCTGACATTT	GATAGTCCAG	TAGGTATTTC	AGTATATTTA	GTGATTCAAA	TGTTATTGGG	600
,,,	TTATTTTTA	TCGAGATTTT	TAATCAATAC	TAAACAAAAA	TCCAAAGATT	TCTTAAAGAG	660
	TGGCAATTAT	TTTTCAGGAG	TTAAACCTGG	TAAGGATACA	GAACGTTATT	TAAATTATCA	720
	AGCAAGACGC	GTATGTTGGT	TTGGATCGGC	ATTAGTTACA	GTCATTATTG	GTATACCGCT	780
15	TTATTTCACA	TTGTTTGTAC	CGCATTTATC	TACTGAAATT	TATTTCTCAG	TACAACTGAT	840
	TGTATTAGTT	TACATCAGTA	TTAATATTGC	AGAAACAATT	CGTACATATT	TATATTTTGA	900
	TAAATATAAG	CCATTTTTAA	ACCAGTATTG	GTAAGGAGGT	AATTATGAAA	TACTTTATTC	960
	CAGCTTGGTA	CGATGACCAA	CGATGGTGGC	AAGACACGAC	TGTGCCGTAT	TATCAACTAC	1020
20	AAAATAAGAC	${\tt GGAATTTGAC}$	GATATGATTA	GTTTAATGGG	AATGCACCTT	GAAAATGACT	1080
20	TAGATTATCA	ACTGATTGTT	CTCAATCATG	CACCAAATTT	AAGAACATTT	TTACATCGAT	1140
	ATGACTTATA	TGAAACAAAG	TATTCGTCTG	TGTTTGATGA	AATTCAAGGA	TTCAGTCACC	1200
	ATGCGCCACA	AGCGATTAAT	TATCATCACT	TAAAATGGNC	GGATGATGTT	GGAGTNTGGG	1260
25	TACACGCCCG	NATTTATTAA	AAATGTGTGA	CGAGTGAACA	GACCTATACA	NATATTTATT	1320
25	TNAGNCAAGA	AGGGTATTCA	NTTGGGTTTG	NAGANTGATT	NGAAAGAGAT	CAAGTNACAA	1380
	CGGCGTTATA	TTTTTGATGA	CAGAGGTTAT	TTATCAGCGA	TACGTTATTT	TGATGATCAG	1440
	GGAGAGGCTT	CTTACCAACA	ATATTTAACG	GATTAATGGA	GATTGTGTAA	CTTCATGGAA	1500
00	GATTGGANAA	ATGGCAGGAG	TCACTGTATC	NANAAGGATA	TTCAACATCA	CTATCAACAA	1560
30	ACAGAATATA	ACAATATGGC	TCAACTAATT	GGAAGAAAA	TTTCAAGCAA	TGATTGCACA	1620
30	ACAAATACAT	GAAGATGATC	ATGTGATTGT	GGCTTCAGAT	GCTAGGCACA	ATCGACAAAT	1680
	AGCCAATCAT	ATTCCAGCGA	AATTGTTAAG	TTATTCATTT	TTTAAAAATA	GAAATGAANC	1740
35	TGTGTCAGAT	GAGGAATATC	AATCTATCGT	AAAGAATGCC	CATTTAATTG	TTGATAGTGT	1800
35	GCAACTAGAA	CGTGATTTAA	TTAGTCATCA	AGAGAAGTAT	CAGCGGGAGA	ATACAATGAT	1860
	TCGAATCACA	CCATTTGAAA	CGAGACAATC	ACCTAATATA	AGTAGTCAAT	TGATGGAAAC	1920
	ATTTATAGGT	GTATGGATAG	ATGGTATGAG	TGACGCTGAT	TTGCAACAAA	TGATGCAACG	1980
40	ACTTGTGGAT	TATATCGCAC	AGGAAGATTA	TTACCGTTTA	ATTTTATTAT	CGCGCCATCA	2040
40	AAATGACATA	CCGATGTGGC	TTCGTGAATG	TATTACGTCG	GTAAATGAGG	AATACCAAGC	2100
	TAAACAGAAT	GCGGATGTTA	ATGTTTCAGC	ATTAATGACA	CCTGAAGATC	AAGATGACAT	2160
	CATTGCTGTT	AAGACGATAC	ATGCTGAACA	TGATGTTGTA	GAAGCATTGC	GGACGTTGCG	2220
45	ACTTGTGATA	GATATGTCAA	AAGAACCTGA	TTTGTATTTA	CAAATTAGTG	CAATTAGCGC	2280
43	TGGGATTCCA	CAAATTAATG	GTCAACAAAC	AGATTACGTC	TCTGATTATG	ACAATGGCCG	2340
	TATTATAAAT	ACAGCTGGAT	GAATTAGATG	ATGCGTTAAA	TTATTATTA	TTTTATTTGA	2400
	AAAATTGGAA	TTATGCGTAC	GCCTATTCTT	TAAAATTAAT	AGATGCATAT	GCTTCTAAGA	2460
50	ATATTATTAA	TCAGCTCGAT	GAGTTAATAG	AAGGTGAAAA	TGATGCCACG	TAAATTTAGA	2520
50	GTTTTGCAAA	TTGGAGGAGA	CGATTTAGAA	CCTATTTTTC	AACACAAAAA	AGGTGTGAGT	2580
	TGGGATTACT	TCGATATTGG	ATTGTTTGAA	TTTGATAGTG	GTTATGTAGA	GGCTATTGAA	2640
	GCGATTGTTG	AAGCAGAAGG	GCGCTTTGAT	TTTATCTATA	TTCAAGCACC	ATACTCGGAG	2700
	ACATTAACGA	ATTTATTACA	AATGATAAGC	GAACCATACA	ATACGTATGT	TGATGAATCA	2760
55			ACAAGACGAA				2820

	TACATTACCG	GAATATTGGA	AGGAACGTAA	TAATNAATTA	GAGGCAGGNT	AGCTTCTCAA	2880
	GGACAAGGAT	TGGAGATAAA	GTTTCCCCTA	AGTTAGCACT	TGTGCATCCG	AATTTTAAAG	2940
5	GAGATGTCGA	ATACCCAAGG	TAATTCAAGA	GCTCACGTTG	AGTGGAGAAT	TTGGAAAAGA	3000
•	ATTTAAACCT	ATCGCATCTT	GNCAAAATAA	TCTCGTTTAC	GATAAAGATA	AAGTCATTCA	3060
	NATATGGCCA	GAATTTGATA	TTGATGGTGC	GGTCGAGTTG	CAATATACAT	TTAGATTGAT	3120
	TCAGACTGGC	GCTGATGGTG	CATTAATTGA	ACAAATCATA	TTAACTGATG	ATATGTTAGA	3180
10	CAGTCCTTTA	GAGATACCTG	CGAAACCATT	TGATGCTTAT	ATAAGTGTAA	CTGTTAAGGC	3240
	GCGTGGGAAC	GGGACGGTAC	ATTTAGGACC	TAAACACACA	CGATGGTCCA	GANTAGANAN	3300
	GGNTCAATTT	TTACNTGGTG	GGAATCGTTT	CGAAGATANN	CNCCGNCNGG	AATTTAATTA	3360
	TTAATCCCNC	CCTGGTGATA	TGANACCCCC	ACTAAACGTA	AATTTTAGTG	GTTATCGANC	3420
15	ACCGGAAGGT	TTCGAAGGAT	ATTATATGAT	GANACGTATG	AATGCNCCGT	TTTTACTTAT	3480
,,	CGCCGATCCT	CGTGTTGANG	GTGGTAGCTT	TTATATCGGT	TCATCTGAAT	ATGAACAACG	3540
	TGATTATCAA	TGTTATTGAC	GAGACAATAT	TCATGCTGTA	AATCCAACAT	CAGGTGCAGC	3600
	TGGTAAGTAT	CAATTCTTAC	AATCAACTTG	GGATTCAGTA	GCACCTGCTA	AATATNAAGG	3660
20	TGTATCACCA	GCAAATGCTC	CTGGAAGTGT	TCAAGATGCC	GCAGCAGTAA	AATTATAA	3720
20	CACTGGTGGC	GCTGGACATT	GGGTTACTGC	ATAAGCCATT	TATGCATAGC	TAATCAATAG	3780
	TTATATAAGT	AACTTTTAGA	TCGGAATATA	TCGGG			3815
25	(3	2) INFORMAT	ON FOR SEQ	ID NO:197:			
20							

(2) INFORMATION FOR SEQ ID NO:197:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2848 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

30

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

40	GGCNCGAGAC	GCTTAATTAT	GGAACNCCAA	GATGCNATTG	GACNCGGTTA	TAACATTGGN	60
70	ACAGGCACTT	TTACTAATTT	ATTAGAGGTT	TATCGTATTA	TTGGTGAATT	AAATATGGNA	120
	AATCCAATCG	AGCNTTGAAT	TTAAAGGAAG	CACGAAAAGG	AGATATTAAC	CATTCTTATT	180
	GNAGATATCT	CTAACTTAAA	GGCATTAGGA	TTTTGTGCTC	CTAAAAAATA	CAGTAGAAAC	240
45	AGGTTTAAAG	GATTACTTTA	ATTTTGAGGT	AGATAATATT	GAAGAAGTTA	CAGCTAAAGA	300
	AGTGGAAATG	TCGTGAAAAT	GACATTGAAG	CTGTCCATAA	TAATAAGGGT	TATGCCTATC	360
	AAAGAAAATT	AGATGCACTC	GAAGAAGTGA	GAAAAGGCTA	TTACCCAATT	AAACGTGCGA	420
	TTGACTTAGT	ATTAAGTATC	GTTTTATTAT	TTTTAACATT	TCCGATTATG	TTCATATTCG	480
50	CCATTGCTAT	CGTCATAGAT	TCGCCAGGAA	ACCCTATTTA	TAGTCAGGTT	AGAGTTGGGA	540
	AGATGGGTAA	ATTAATTAAA	ATATACAAAT	TACGTTCGAT	GTGTAAAAAC	GCAGAGAAAA	600
	ATGGTGCGCA	ATGGGCTGAT	AAAGATGATG	ATCGTATAAC	AAATGTCGGG	AAGTTTATTC	660
	GTAAAACACG	CATTGATGAA	TTACCACACC	TAATTAATGT	TGTTAAAGGG	GAAATGAGTT	720
55	TTATTGGACC	ACGCCCGGAA	CGTCCGGAAT	TTGTAGAATT	ATTTAGTTCA	GAAGTGATAG	780
	GTTTCGAGCA	AAGATGTCTT	GTTACACCAG	GGTTAACAGG	ACTTGCGCAA	ATTCAAGGTG	840

	GAȚATGACȚT	AACACCGCAA	CACAAACTGA	AATATGAÇAT	GAAATATATA	CATAAAGGŢĄ	900
	GTTTAATGAT	GGAACTATAT	ATATCAATTA	GAACATTGAT	${\tt GGTTGTTATT}$	ACAGGGGAAG	960
5	GCTCAAGGTA	GTCTTAATTT	ACTTAATAAG	ттсааатааа	AGTTATATTT	TAAAGATTGT	1020
	GACCAATNGT	TACAGTNTAA	CGAGGANTCC	CTTGNGACNG	TATCAAATGG	CATTAAAGAA	1080
	ATATGTNCCA	TCNTTTGATT	TGCNTGGCCA	ATAAATACTA	TTCATCTTGA	TGAGATAAGC	1140
	CATGTTAAGA	AATTGAAAGT	ATAGCATTAA	NGGGGTTTGT	AACAGTTGAA	AATTATATAT	1200
1	TGTATTACTA	AAGCAGACAA	TGGTGGTGCA	CAAAACACAT	CTCATTCAAC	TCGCCAACCA	1260
•	TTTTTGCGTA	CACCATGATG	TTTATGTCAT	TGTAGGCAAT	CATGGACCAA	TGATTGAACA	1320
	NCTAGATGCA	AGAGTTAATG	TAATTATTCT	CGAACATTTA	GTAGGTCCAA	TTGACTTTAA	1380
	ACAAGATATT	TTAGCTGTCA	AAGTGTTAGC	ACAGTTATTC	TCGAAAATTA	AGCCTGATGT	1440
1.	TATCCATTTA	CATTCTTCCA	AAGCTGGAAC	GGTCGGACGA	ATTGCGAAGT	TCATTTCGAA	1500
	ATCGAAAGAC	ACACGTGTAG	TTTTTACTGC	GCATGGATGG	GCTTTTACAG	AGGGTGTTAA	1560
	ACCAGCTAAA	AAATTTCTAT	ATCTAGTTAT	CGAAAAATTA	ATGTCATGTA	TTACAGATAG	1620
20	CATTATTTGT	GTTTCAGATT	TCGATAAACA	GTTAGCGTTA	AAATATCGAT	TTAATCGATT	1680
	GAAATTAACC	ACAATACATA	ATGGTATTGC	AGATGTTCCC	GCTGTTAANC	AAACGCTAAA	1740
		CATAACAATA	TTGGCGAAGT	AGTTGGANTG	TTGCCTAATA	AACAAGATTT	1800
	ACAGATTAAT	GCCCGACAA	AGCATCAATT	TGTTATGATT	GCAAGATTTG	CTTATCCAAA	1860
25	ATTGCCNCAA	AATCTAATCG	CGGCAATAGA	GATATTGAAA	TTACATAACA	GTAATCATGC	1920
	GCATTTTACA	TTTATAGGCG	ATGGACCTAC	ATTAAATGAT	TGTCAGCCAC	CAAGTTGTAC	1980
_		AAGAAAATGA	TGTCACATTT	TTGGGCAATG	TCATTAATGC	GAGTCATTTA	2040
	TTATCACAAT	ACGATACGTT	TATTTTAATA	AGTAAGCATG	AAGGTTTGCC	AATTAGCATT	2100
	ATAGAAGCTA	TGCCTACAGG	TTTGCCTGTT	ATAGCCAGTC	ATGTTGGCGG	TATTTCAGAA	2160
3	TTAGTAGCTG	ATAATGGTAT	ATGTATGATG	AACACCCAAC	CCGAAACTAT	TGCTAAAGTC	2220
		ATTTAATAGA	CAGTGATTAC	ATCAAAATGA	GTAATCAATC	TAGAAAACGT	2280
	TATTTAGAAT	GTTTTACTGA	GGAGAAAATG	ATTAAAGAAG	TGGAAGACGT	TTATAATGGA	2340
	AAATCAACAC	AATAGTAAAT	TACTAACATT	GTTACTTATC	GGTTTAGCGG	TTTTTATTCA	2400
3.	GCAATCTTCG	GTTATTGCCG	GTGTGAATGT	TTCTATAGCT	GACTTTATCA	CATTACTAAT	2460
-		TTACTGTTTT	TCGCTAACCA	TTTATTAAAG	GCAAATCATT	TTTTACAGTT	2520
	TTTCATTATT	TTGTATACAT	ATCGTATGAT	TATTACGCTT	TGTTTGCTAT	TTTTTGATGA	2580
	TTTGATATTT	ATTACGGTTA	AGGAAGTTCT	TGCATCTACA	GNTAAATATG	CATTTGTAGT	2640
4	CATTTATTTC	TATTTAGGGA	TGATCATCTT	TAAGTTAGGT	AATAGCAAAA	AAGTGATCGT	2700
7		ATTATAAGCA	GTGTGACTAT	AGGTCTATTT	TGTATTATAG	CTGGTTTGAA	2760
	CAAGTCCCCT	TTACTAATGA	AATCGTTATA	TTTTGATGAA	ATACGTTCAA	AAGGATTAAG	2820
	GAATGACCCT	AACTATTTCG	CTCGTGCC				2848

(2) INFORMATION FOR SEQ ID NO:198:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2144 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

45

(ii) MOLECULE TYPE: Genomic DNA

99

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

_							
5	CCCCAAAGAA	ATACANTTGT	TGGTAGAAGA	ACCCCCAACC	CACAAGNTGG	GGACCCTTCA	60
	TTTCCAACCN	TATGGCGGAG	GGTTAAAGTA	AATTCTTGAA	GCTTTGGTTG	CCCNCAAATA	120
	ATATGATATT	TCCGAAATGG	GCCGGAGCCG	TATCCAACAA	TTTAAAATCT	GCCGGAGGTA	180
10	TTAAAGCATT	ACTTAACCGC	TCCGATTAAG	ATGNNATTGA	AGGAGAGATT	AATATGGTAG	240
10	AATCAATGCT	AACTTTTATG	CTTGGGCCAT	TAAGACAAAT	CNCTGATTTT	TATATGGAAC	300
	ATTTACTCGT	AAGTAATTCC	ATCGTCATTG	CAGGTTATTT	TGCGACAGGT	ATTTTTAAAA	360
	AGAAAAAAGT	TGTGAATTAA	ATCANATTTG	AGGTGATTTA	CAAGTGAAAG	CATTGAAATT	420
15	ATATGGCGTA	GAAGATTTAC	GGTATGAGGA	TAATGAAAAG	CCAGTCATTG	AAAGTGCGAA	480
,,	TGACGTTATT	GTTAAAGTAC	GAGCGACTGG	CATATGTGGT	TCAGACACGT	CACGAAACAN	540
	AAANATGGGG	CCATACATTA	AAGGTATGCC	ATTTGGTCAT	GAATTTTCAG	GTGTAGTAGA	600
	TGCCATTGGA	AGTGATGTTA	CGCATGTTAA	TGTGGGCGAC	AAAGTGACAG	GTTGCCCAGC	660
20	AATACCTTGT	TATCAATGCG	AGTAGTGTTT	GAAAGGTGAA	TATGCACGAT	GTGAAAAAGT	720
	TATTCGTCAT	TTGNCTCAAT	ATGAACCTTG	GATCGTTCNG	CGGAATATGT	CAAATTCCCA	780
	CCCCAAAATG	TTTTNAAGGG	TTCCAAGCCA	ATGTTGATTA	CCATTGAANC	AACCAATGGT	840
	TTGAGCCATC	AGCCCGTTGT	TGCGCATGGG	TTTTATAAAT	CCGAATANAC	AACCTGGTAT	900
25	GACTGTTGCA	GTAATGGGGT	GTGGCAGTAT	AGGTTTGTTA	GCTATTCAAT	GGGCACGAAT	960
	ATTTGGTGCT	GCACATATCA	TCGCTATAGA	TATAGATGCG	CATAAACTAG	ATATTGCAAC	1020
	ATCATTGGGC	GCACATCAAA	CAATCAATTC	AAAAGAAGAA	AATCTTGAGA	AATTCATCGA	1080
	AAATCATTAC	GCCAATCAAA	TCGATTTAGC	TATAGAATCA	TCAGGTGCTA	AAGTTACGAT	1140
30	TGGTCAAATA	TTGACGCTAC	CTAAAAAAGG	TGGCGAGGTG	GTATTACTCG	GAATACCATA	1200
	TGATGATATT	GAGATTGATC	GCGTTCATTT	TGAAAAAATT	CTGCGTAACG	AGTTGACAGT	1260
	ATGTGGCTCT	TGGAACTGTT	TGTCCAGTAA	TTTTCCGGGC	AAAGAGTGGA	CGGCAACCTT	1320
	ACATTATATG	AAGACGAAAG	ATATTAATGT	AAAGCCTATT	ATTTCTCATT	TTTTACCGTT	1380
35	AAGAAAAAGG	CCCGGAGACA	TTTTGATAAA	TTAGTTAATA	AGAAAGACCG	ATTTGATAAA	1440
	GTCATGTTTA	CGATTTATTA	GTATGCACCT	TTGAGGACGA	AAACGCTGGT	ATAGTTATAG	1500
	CTATGAAAGT	GCGAATGCCG	TCTGGTCTAC	AGATACTATC	GAAATAATTC	ATCTTCGAAT	1560
	ATACGTTGAT	AAATAGCCGG	TTTACTTGTG	TGAAATATGC	TTGTGAATCG	GTTGTTTTGC	1620
40	ATTTTGTATA	CTTAAAATGA	GATGGCAATA	TTTGATAATT	TTTAAAGTGA	AAATCAAGTA	1680
	CAGCCACTTA	ATAAGATAAA	TTTATTATAA	TATATGGTAA	AATGATGGCA	GTAATAATGA	1740
	ATTTGAAAAA	GAGTAAACAT	TAATACCTTT	AACAATTTAA	TATCGTCAGA	GTTAATGATT	1800
	AACTGCATGG	CAAAACAACT	TAGAATGGTC	AGTTACNNAA	ATACATTTTT	ATAAAAAATT	1860
45	ATCACACTAT	TGTGACAACT	ATCTTTGGAT	TAATAAAAGA	GGCAAGTGAG	CAATAGGTTA	1920
	GGCTTATGTG	CGGGCATAGG	TCAGTAATGT	AGAAATGGAA	ATGATGTAAT	ACGTTAATTC	1980
	GTTTGAATCT	TTAAAAGTAT	TGGATAAATC	AGATAATCGC	CTGTTATACG	CATCAATCAA	2040
	TGTTTTATAC	ATAAATATGT	CTGATATTTC	TAAGTCGTTA	TTTTTGAATG	GAATAAATGG	2100
50	AATCTTACCC	CACGACCCTG	TACTAAAATG	CGTTTTTRRD	CTNS		2144

(2) INFORMATION FOR SEQ ID NO:199:

(i) SEQUENCE CHARACTERISTICS:

55

(A) LENGTH: 2178 base pairs

V- -

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

CAAATAACGG	ACCCTTTNGT	TAATATCCCA	TNTTTTTGGC	GGAGTATGGG	ACCTTAGCAG	60
AGAAAATAGC	CATAAGATAA	GATTTCGCCC	CANNCGTTGG	AGCCCAACTT	ACATTGTTTG	120
TAGAATTTCT	TTTCGAAATT	CTTTGTGTTG	GGCCCCACC	CCAACTTGCA	TCGTCTGNAG	180
AAATTGGGGG	TCCAATTTCA	CTGTGTTGGG	NCCCCCTGAA	CTAAATAGTA	TGGAAATATA	240
TATATCTAAA	TAATTAAAAC	GGNCAAATAG	TTTAATATGG	CAGTAACAAT	TTTTATAATT	300
TAGATATTTT	GATATAGACT	AATGCTTAAA	TTAAGCAACT	TTTCTANNNA	GGGAGTATGA	360
AAATGATTAG	TACTTTGAAT	GAAATTATGA	AATGTATCGG	AAGACCNCGA	TACAATTATT	420
AATACACAAG	ACATGTTAGA	CCAGATCCAG	ATGCATATGG	TTCACAACTT	GGTTTAAAAT	480
ACTATATTCA	GCAGAAATTT	CCGCAAAAGC	AAGTATTTGC	AGTGGGTGAA	GCGGAATCAT	540
CATTAAGTTT	TATTGGAGAG	TTGGATAACA	TTGATGATAA	AACATATCAA	GATGCGCTTG	600
TAATTGTATG	TGATACTGCC	AATGCTCCAC	GAATTGACGA	TGAACGATAT	AGTACAGGTA	660
GTAAACTTAT	TAAAATAGAT	CATCATCCTG	CAGTTGATCA	${\tt GTATGGTGAT}$	ATTAATTTAG	720
TTAATACGAA	CGCGTCATCT	ACAAGTGAAA	TCATTTATGA	TTTAATCTCA	CATTTTAATG	780
ATGAAGCAAT	TGTTAATAAA	GGCACGAGCG	AGTGTTTTAT	ACCTTGGTAT	CGTCGGTGAT	840
ACTGGGCGAT	TCCTTTTTAA	CAATACCTCA	GAACATACTA	TGGAAATTGC	TGGAAAGTTA	900
ATTGGGCATG	ATATTGATCA	TAATGCGCTA	TTAAATAAAA	TGATGGAGAA	GGACCCAAAA	960
ATGTTGCCGT	TTCAAGGTTA	TGTTTTACAA	CATTTCGAAC	TTATGGATGA	TGGATTCTGC	1020
CAAGTTAAAA	TAACTGAAGA	TGTATTGGAG	CAATTCGGTA	TTCAGCCAAA	TGAAGCATCT	1080
CAGTTTGTTA	ATACAATTGC	TGACATCAAA	GGTTTGAAAA	TATGGGTGTT	TCCAAGTTGT	1140
TGAGGGTAGT	GAAATAAGAT	GTCGCTTACG	CTCTAAAGGG	CAATTGATTA	TTAATGATAT	1200
TGCGCAAGAT	TTTGGTGGCG	GTGCCCATCC	GGAATGCGTC	AGGAGTTTCA	GTGAACAGCT	1260
GGGATGAATT	TGAGCAACTT	GCTACAGCTT	TACGCACAAA	ACTTAACTAA	TAGAAAGGAG	1320
CCATTCAATC	ATGGTGGCAT	ATTTAAATAT	TCATACGGCT	TATGATTTGT	TAAATTCAAG	1380
СТТАААААТА	GAAGATGCCG	TAAGACTTGC	TGTGTCTGAA	AATGTTGATG	CACTTGCCAT	1440
AACTGACACC	AATGTATTGT	ATGGTTTTCC	TAAATTTTAT	GATGCATGTA	TAGCAAATAA	1500
CATTAAACCG	ATTTTTGGTA	TGACAATATA	TGTGACAAAT	GGATTAAATA	CAGTCGAAAC	1560
AGTTGTTCTA	GCTAAAAATA	ATGATGGATT	AAAAGATTTG	TATCAACTAT	CATCGGAAAT	1620
AAAAATGAAA	ACAATGGAAA	ATGTTTCATT	TGAACTATTG	CAACAATTTT	CATCGAATTT	1680
GATTATCATT	TTTAAAAATG	TTGCAGACGA	ACATCGTGAC	ATTGTTCAAG	TTTGTGATTC	1740
GCATGAAGAT	ACGTATTTAG	ATCATCAAAG	TGTTTTAGTT	CAGGGTATAA	AGCACGTATG	1800
GATTCAAAAT	GTTTGTTACC	AAACACGTCA	AGATGCCGAT	ACGATTTCTG	CATTAGCAGC	1860
TATTAGAGAC	AATGCAAAAT	TAGACTTAAT	TCATGATCAA	GAAGATTTTG	GTGCACATTT	1920
TTTAACTGAA	AAGGAAATTA	AACAATTAGA	TATTAACCAA	GAATATTTAA	CGCAGGTTGA	1980
TGTTATAGCT	CAAAAGTGTA	ATGCAGAATT	AAAATATCAT	CAATCTCTAC	TTCCTCAATA	2040
TCAGACAACT	AACGATGAAT	CAGCTAAAAA	ATATTTGGTG	GCGTGTCTTA	GTTACACAAA	2100
TTGAAAAAAT	TAGAACTTAA	TTATGACGTC	TATTTAGAGC	GATGGAATAT	GAGTATTAAG	2160

	TTATTACTAA TATGGGTT	2178						
5	(2) INFORMATION FOR SEQ ID NO:200:							
	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 1528 base pairs							
10	(B) TYPE: nucleic acid							
	(C) STRANDEDNESS: single							
	(D) TOPOLOGY: linear							
15	(ii) MOLECULE TYPE: Genomic DNA							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:							
20	TCATTTTTT GATTGAGCCA AAAGGAGTCC CCCCTGTGAG CGGAATATTT AATTTATTGA	60						
20	GCTATTTAAT ATTAAACGTA CGCTTAACCC CCCTANAGTG ATATCGTTTC TAGCGTTGTC	120						
	ATTATCATTA AGCGAAACAT TTTAAAGACA AATACACACT GTACGATCAC CAAACTGCAT	180						
	GTCGAACAAT GTAACATTTG GATTCGATAT TTAAAATTGC TTGTGATGAT AAACTTTCTC	240						
25	ATTTAGAAAA CGCTTCCACG TACATTCAAA AAAATAACTT TGTTAACCAT ATTGTAACAT	300						
25	TATTTCATAT ATTTTGGGGC ATGAGAATGA TTCTCACGCC CAGTAATTTA TTTATGCAAT	360						
	TGTTCATGTA GGTTCTTTGC GACGTTTTCA GGAATACCTA TATTTTTAAA ATCTTCAAGT	420						
	GTAGCTCGTG CCTTCATTTT CTTGATTGAA CCGAATGAAC GCAATAATAA TGTTTTAACG	480						
30	TTTGTTACCG ATACCATCTA TATCATCAAG TATTGATTTC AAGCCTGTCT TTTGACGTGT	540						
30	TTGTCTATGA AATGTGATTG CGAATCTGTG AACCTCATCT TGGATACGGA TGCAACAAAT	600						
	AAAATGCCTG CCTATTTTC TTCAGTGGAC AATTTCCTGC ACTAGCGCCA TAATAATAAT	660						
	TCAGATGTTT GGTGTTTATC ATTTTTCTGC AAACCTGCAA CAGGGATATC AAGACCTAAT	720						
35	TCGTTTTGTA GCACATCAAT AACCCCGTTC ATATGTCCTT TACCACCATC GACTATTATT	780						
55	AAATCAGGTA ATGGTAATCC TTCGTTTAAA ACGCGAGAAT ATCGTCGTCT TACTACTTCT	840						
	CTCATTGATT TGTAATCATC TGGACCTTTA ACCGTTTTGA TTTTATACTT TCTATAATTT	900						
	TTCTTATCTG GTTTACCGTC GACAAATGTA ACCATTGCTG ACACTGGATC CACACCTTGA	960						
40	ATATTAGAAT TATCGAATGC TTCAATTCTA ATTGGTGTTT GAATTCCCAT TTGTGTTCCA	1020						
70	AGTTCTTCAA TAGCTTTAAT CGTTCTTGAC TCATCACGTG ATATTAATTC AAATTTATTA	1080						
	TTTAAGGATA CTTTAGCGTT ATGTGCAGCT AGGTCAACCA TATCTTTTTT GGGACCTCGC	1140						
	GCGGGTTGAA CGATTTTAGT GTCCACAACA GATTGAATCA TTTCTTTATC CAAATTACGT	1200						
45	GGTACATGAA CTTCCTTAGG TAAAATATGT TGGTTTAAGC TATAAAATTG TCCAATAAAT	1260						
10	GTATAAAATT CTTCTTCTTC TGTTTGGTGT AATGGAATCA TCGGNGTATC TCGCTTTATC	1320						
	ATATTACCTT GTCGGATTAA AGAAAACTTG GATACACATC CATCCTTTAT CAACACAATA	1380						
	ACCAAAGACA TCACGAATCG GNTTATCTGA TGACATAATT TNGGGTGGGT GGGCAAGATT	1440						
50	TGGATATTGT TGGATTAAAT CTCTATATTC TTNAGCCGCN CAAAATCAAG TGATTCACTT	1500						
	GGAGGNCACA TNCGCTCTTC TAANCTTT	1528						
	(2) INTERPRETARION FOR CEO ID NO. 201.							

(2) INFORMATION FOR SEQ ID NO:201:

(i) SEQUENCE CHARACTERISTICS:

·/- -

(A) LENGTH: 2933 base pairs

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

5

10

15

20

25

30

35

40

45

50

55

(C) STRANDEDNESS: single

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

AGGTTGATAC ATATGTCTTG TAAATACATG TGTCATTGCT TGACCAATTG CAGCAATCTG 60 GACCCAGGAT NGGTGCCTAC CCAGTTATCT CCAAATTTCA CATTTCTGCG TAATCTGGTG CTACTTGAAA TGACTTTTGT ACCTTAATAG CGGACTTCTG TCATAAAATG TGCATCCGGA 180 GTACGTGTTA AAGGTACATT AGAGCCCCAC ATAATAATGT ATGATGCGTT ATACCAGTCA CTTGATTCAG GCACATCTGT TTGCTCTCCC CAAATTTGTG GAGAGGCAGG TGGTAAATCT 300 GCATACCAGT CATAAAAACT AAGCATTTCA CCACCAAGCA AATTGATGAA TCGAGCACCT 360 GCTGCATAAC TAATCATTGA CATCGCTGGA ATAGGTGTAA ATCCTGCGAT TCGATCTGGA 420 CCATATTTTT TTATTGTATA CAGTAATTGT GCTGCGATTA TCTCTGTAAC GTCTTTCCAA 480 540 TTTGAACGCA CGTGCCTCC CATACCTCGG GCTTGCTTAT ATTGTTTGGC TTTGTCTTCA TTTTCAACAA TAGACGCCCA TGCAGCAACG CGATTACCAT AGTTTTCTTC TAATGCTTCA GTCCATAAAT CCCAGAGTTT TCCACGAATA TATGGATATT TGATTCGAAG CGGACTGTAT 660 TCATACCAAG AGAATGACGC ACCTCGTGGA CATCCTCTCG GTTCATATTC AGGCATATCC 720 GGACCACAC TTGGATAGTC AGTTTGTTGA TTTTCCCAGG TAATCACACC ATTTTTCACA 780 AATACTTTCC AAGAACATGA GCCTGTACAG TTAACACCAT GTGTTGTTCT TACTTCTTTA 840 TCGTGGCTCC AACGTTCTCT GTACATTTTT TCCCATTCTC TACTTTTACT TTCTAGGATC 900 GACCAATTCC CATTAAATTT TCTGTTGGCT TAAAGAATTC AATCCAAATT TTCCCATATT 960 TATATCCTCC TACGTATAAA AAATACGATG TGTAGATGTC GTGTTNTTAA ATACTTTAAA 1020 ATGCCCAAGA CTATTGCTTT AATTAGATTG TACATTTTTT CACAAATATA AAATATTAGG 1080 GAATCACCTA ATTACTTAAG GAATTTCCCT ATCAATAACG GGATTTCATT GAAATAATAC 1140 ACAATCATGT ATGGTCGTGC TTATTGCCAA TCTAAATCGT TCAAATTTGC CACAACGACA 1200 AATAAGGCTT CAACACGAAT ATATTCTCTC GGTTGAAACC TTACTTATTC ATTTATTTTT 1260 TATAAATTAG TGACATAACA CTGTATTAGC ATCTGCACGA TCGGTTGAAA TATATGTTAC 1320 ATTTTCTTGC TGCTTAATAA ATGCATCATA GTAATCATAT TGCCGACCGG AATGATATGT 1380 CCCATTCGAT GTATCATTTG GGTTTAGCAA ACAGCCATAA CCTTCGTCAT ATAAATGTTC 1440 ACAGAGCATA AGGGCGTCAT GTCTAGAACC ACTTACTACA TAAAATTGCT GAGTCGGATT 1500 AGAAGTTGTT GAGACATTTT CAGTATAACC CACTACTTCG CCTATAATAC ATATACCTGG 1560 TTTCGCCTCA ATTGCGTAAT GCTCCAGTTT CCCAACAATA TTACTTAAAC GCCCCTTAAC 1620 AACAAACTCG TTAAAACACG ATGCTTGAAA GACAATCGCT ATCGGATAAT CAATATCTGT 1680 GTACTGTTGT ATCTGGGCGA TAATTTTCCC TAAACGTTTA ACTCCCATAT ATATCGCCAA 1740 CGTACCACCA TTTACTAAAG NGTTGACATC TACGTCATTT TCTTCTGAAT CTNTNAAGTG 1800 ACCTGTAGAA AATGTCNCAC TCTTAGCAAC AGCACGCNTC GNTAATCCTG TTTGCATCGT 1860 AGCAGCTGCA GCACTCGCAA GATGTCACAC CAGGTACAAT GTCANACGCA ATAGTAAAAG 1920 1980 TTGTTTAGTG TGTCAACTTC TTCTTGAACT CGNCCAAATA TTGCTGGGTC GCCACCTTTA ACCCTCACCA ACCTTGTTAT ATCGACGTGC TGCTTCCACG ATACATTCAT TTATTTTTTC 2040 TTGCTGAATG TGTTTTGCAT ACGGCTTTTT ACCAACATCG ATAATTTCAG TAGTCAAATT 2100

	CGCATATTGT	AAAATTAACG	GATTCACTAA	TCGATCATAT	AGTATAACAT	CCGCTTCACG	2160
	TATTAAACGC	TCAGCCTTTT	TAGTCAAATA	ATTCGGATTA	CCTGGTCCCG	CACCTATCAA	2220
_	GTAAACCTTG	CCATATTTAT	CTACAGACAT	ATATATACGT	TCCCGTCTGT	AACTTCTACC	2280
5	TCATAAACAT	CTACACAACC	TTCATCAGGT	TCTTGTACAA	TCCCAGTATT	TAAATCAATC	2340
	TTTTGATCAT	GAAGTGGACA	GAATACATAT	TCACCACTCA	CTGTTCCCTC	TGACAATGGT	2400
	CCTTGTTTAT	GCGGACAAAT	ATTGTGGAAT	CGCGTGANTT	GTACCACTTT	CAGATAAAAA	2460
	CCAATCCTAC	CTCTTTGCCT	TTGNCAATAA	CCTTTTTTCC	AATTAGGGGT	GTTAATTCAT	2520
10	CTATAGTTGT	CACTTTAATT	TTTTCTTTTG	TTTCCATGTA	TTACACCTTC	TCCACTTCAA	2580
	AAATTTTACG	TGCTTGCGCA	TTGCTAGNTA	TTGCTTCCCA	AGGTTCAGCT	TCGACTGCTT	2640
	TTTTAGCATC	CATAATGCGT	TCAAATAGTT	CATTTTGTCT	TTCTGGGTCA	AGTAAGACTT	2700
	CTTTTACATT	TTCAAATCCA	AGTCTTCTTA	ACCATGGCGC	TGTTCTTTCA	GCATATATAC	2760
15	CTGTTTCGCG	ATATAGTGCA	TCAAAGCACC	ACATAATGTG	NTTACTTCAT	CTTCTGTTTC	2820
	TACAGTTGTT	AAAAATTCAG	CTTTTTCGAC	TTCTGTACCA	CCATTACCAC	CGATATAGAT	2880
	TTGGAATCCA	TTTTCAACTG	AGATAATACC	AAAATCTTTA	ACACCTGATT	CAG	2933

- (2) INFORMATION FOR SEQ ID NO:202:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1866 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: Genomic DNA

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:

35	TAAAGTTCNT	TCCCCTGCTN	AATGTCCAAN	TTTCCCCCAT	AGCAACTTTC	AAATATTTTT	60
	CATGACTTGC	TTTAGCCCAA	TCAAGTTCTT	TACCTGAAGG	TATATTAAAT	TGATTTGTTG	120
	AAAAGTTCCA	AAAATTCTGC	GCTTGGGTAA	GTCCTTGTGG	GACAATTTTT	TGAAATCCTC	180
	CAACTTCTTA	AATATTTCTG	GTGATTTTTG	ATTAAAACTC	ACGTAATTTA	CGTAGTTTCT	240
40	CTTCTAATTC	ATGTTTTTTG	TTGACCTAAT	GTTTGTATTA	TTTGTTGGTT	CGATGAAATG	300
	GCTTGCTGAT	TATCGGAAGC	ATGCTTTTTC	AAATTGTTAG	TTAAATTTTC	ATATCGCGTA	360
	ATTTGTTGAC	TTAATGATCT	GATATCTTCT	TCAAGCTCTG	ATTCTTTTAA	AGATATGCTA	420
0_	TCAACCTCAC	TCGTATAACG	TGACACAAAA	TTATCGCAAG	CTTGCTTCGT	TAAATCACTC	480
45	AATGTTTTCA	TACTTGTTGA	TAATGGAATT	AACACCGTAC	TAAAAAATTG	CTTAGCTGAC	540
	GTATACGCTT	TCCCTTTAAG	CGCATCATCA	TTGATAAATT	GAGTAATTGC	TTTTTCCAAC	600
	GCATCATAAT	TTGAATTCAT	TGTTTGACTC	AAATTCCCCA	CACTTGAAGC	TTGGTTTCGA	660
	GATCTGTCTA	AATACATGTC	AATACTCATC	GGCATGCTCC	TTTTTCAAAA	ATATATGATT	720
50	TTCAAACTAT	TTAAAATCAA	ATGCTTTTTA	CATCTACAAA	GTTGTAAAAT	TTTAAAACTC	780
	${\tt GGCGATGATT}$	ATTTCTTATG	TAAAGGAGTC	TAGATGCAGG	TAAATTGAGA	TAACATGTCG	840
	CCTTTTTTCT	TATTTTAGCA	TATGGATATA	ATGGTGTCTT	TGTATATTCG	CAATTAATCA	900
	${\tt ATAAAAATTA}$	TCTTTCAATA	TTTTAATTTT	ATTGCGACAA	CATCCTTAAC	ATTAAATATA	960
55	TTAATATCTC	AAAATATATT	CACTATTAAA	ATATGTCATC	AGTTGTTAAA	AGTATTTCCT	1020

	CATCATGCGA	AATATCAAAA	CGTATCTAAA	ATACGAATAG	TTTATCAATC	ACACAACATC	1080
	ATCATCCAAA	ATTTNATTGC	TCTCATNTNC	AATATTCATT	TCATATCTAT	CAGTTCATAC	1140
5	ATAATTAAAA	TTTCAATTGT	GCAATCTCAC	CGTTAATGCA	TCAACTTTCA	AACAATAAAT	1200
	CATCACAATA	ACCACACCTA	ATTCAACACT	TTTCAAACAT	AAGTATTGAC	ACATTGAGCA	1260
	AAATGATTTT	TAATTGTAAC	TAATACAGTT	ACAATTATGA	GGTGAGAAAC	ATTGAATTTA	1320
	GAATTTAACA	TTGCCGTGCA	TGTATTAGCT	TTTTTAACTA	AGCATCATTC	AGAAAATTC	1380
10	AATAGTAGTT	CATTAGCAGA	ATTAACTTGT	TTANATCCTG	TTCAATTACG	ACGCGTGACG	1440
	ACTCAACTTG	TCGATTTAAN	AATGATTGAC	ACAATACGAG	GTAAAGATGG	CGGTTATTTA	1500
	GCAAATGATC	AAAGTGCTGA	TGTCTCTCTA	GCAACATTAT	ATAAACATTT	TGTCTTAGAG	1560
	AAAGAACAAC	ACACACGTCT	ATTTACTTGG	CGACGAAGGC	AGTCACTGTC	AAATTGCTCG	1620
15	TAATATTGCA	ACTACCATGT	CACATTATCA	GCAAGACGAA	CAGAATATCA	TTATTAATTT	1680
	TTATAATGAA	алалсаатса	AAGATGTCAT	TGAAGACATT	CAAAAGGAGG	ATTTATGTCA	1740
	TGAAAACATA	TGATTTAATT	GTAATAGGAT	TTGGGNAAGC	TGGTAAAACT	TTAGCGAAAT	1800
	ATGCTGCATC	AACAGGTCAA	CACGTTCGCA	GGTATCGAAC	AATCTTCCAA	AATGTATGGN	1860
20	GGCACT						1866

(2) INFORMATION FOR SEQ ID NO:203:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2990 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

25

30

35

40

45

50

55

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

ACAATGCCTC	CAAGAGGTAC	ANCCGATAAC	TGTCTCACAA	AACTAAATAA	ATTTAACTCT	60
GTGTCCTCTT	CCCATCCGTT	CACTTTAATA	TCTTCTCCAT	AAGCATCAAC	GGAAAGATAA	120
AANCCGGACC	TGGAAATGTA	TGTGCCATCT	CTTTAACCCA	ATCAGTATCT	TGAATGCCTT	180
TCGNTCCCAA	CCTATGCAAT	AATTAATCCC	TGCGGCAAAG	TAGTCCATGA	TTTGGTGACT	240
TCGTACGAAT	GCCACCACCT	ACTTCAATAT	CTTTGGTTGT	TAATCTCCTC	AATGACTTAA	300
TATAATCAAA	CTCTCGGGCA	TACTGTGCCT	TAGCACCTAT	CAAGTCGACG	ATATGAATAC	360
GATTCACACA	TTCAAATTGA	CTATAGTAAG	CAATACTTCC	TTCAGCCGAA	CGCGACATTT	420
TTTCTTCACT	ATCATATTTA	CCCTCTGTTA	ACCTCACACT	TGTTGACCCA	ATCAAATCAA	480
TCGCTGGCCA	TAATTCAATC	ATTTATAAAT	CCCCCTTGTA	TTGCCTGACG	CAAAATTTGT	540
AACCCATATG	TACCGCTTTT	TTCAGGATGG	AATTGAATAC	CAATATAATT	GTTAAATTGA	600
ACAATTGCCG	GAATATCAGC	CCCATACTGC	GCATATGCAA	TGACATTTTC	TGACATCGGC	660
GCTTGGTAAG	AATGTACGAA	GTAAACATCT	TGATTTAACA	TAGGATGCTT	ACTCACTAAA	720
TTATTCCAAC	CTAAGTGCGG	CACTGGGTAT	TCTGTTGGGA	TACGCGAAAT	ATTTCCTGGG	780
ATAAACCCTA	ATCCAGATGC	ATCGCCTTCA	TCACTATGCT	CATACATTAA	TTGCATGCCT	840
AAACAAATAC	CAATCATCTT	CTTATCAGTA	TTCTTAGCCA	ATATTGCATT	GAGATTTAAT	900
CGTTTTATCT	CTGACATCGC	ATCTTTAAAA	TGGCCGACAC	CGGGCAATAT	GATTGTTTCT	960

		GCŢTGATCGA	TTATTTTTGA	GGTATTTGAG	ACAACCACCT	CATACCCTAA	ATGTTCAATA	1020
		GCGCGTTTTA	CATTACTAAT	ATTCCCTAAT	CCATAATCAA	CGATGACAAT	CATTCAATCA	1080
	5	CACCTTTCGA	TGACGGCACA	CGCTGATCAT	CAGTTGCAGT	TAGCGCTATG	CCTAATGCAC	1140
		GGGAAAACGC	TTTGAATATA	GCTTCAATTT	CATGGTGTGT	ATTACCTCCA	CGAATTAAAT	1200
		CAATATGCGT	TGTTAATCTT	GCATTGATTA	CGACCGCTCT	AAAAAATTCT	TCTACTAACT	1260
		CCGTATCAAA	CGTACCAACT	TTTTCTTTAC	TTAATGATGC	ATTGAATGAT	AGGTATGGGC	1320
1	o	GCCCACTTAT	ATCCACAACG	ACACGTGCTA	ATGTTTCATC	CATTGGAATG	TACATCGTTC	1380
		CATAACGAAC	GAAATGCTTT	TTATCTTTAA	TCATTTCAAG	TAACAATTGG	CCAATGACAA	1440
		TGCCGATATC	TTCAGTTACA	TGGTGATCAT	CTACGTCAAT	ATCACCTTGT	GCCTCAATGT	1500
		TTAATGACAG	ACCGCTATGA	AATGTAAACA	ATGTTAACAT	ATGATTTAAA	AAGCCCACAC	1560
1	5	CTGTATTAAT	ATGCGATGGT	GACTGGTCAT	CTGATATTGA	AATATTTAGT	TGGGGTTTCA	1620
		GCTGTGTTTC	GGTGGTTGTG	AATAAATCAT	ATTGTGCGCT	CCANTCTTTA	ACAATNTCTT	1680
		CCTAATTGCT	TTAACTGCGA	TGCTGTTGCA	ATTGAGTATC	TTACATAGCC	CTTCATCAAC	1740
		CGGCTCAACA	TAAAAGCGAG	GTTTAAATCC	TTGTTCAAAT	ACGTATTGTC	CTAATTGGTG	1800
2	0	CGCTGCTGAA	CCTTTAGTAA	GTACAAAATT	GGCATTTGAT	GGGAATACTG	ACATTTTATC	1860
		TGCAACATGT	GTATCAAATA	TTTGTTTTAA	CTGCTCAGCT	AACTGTCGTT	GCATCGTTAA	1920
		AAATACTCTT	GTCTCTTCTC	TATGTCTAAA	AATATAAGTC	GCAATATTTA	GCGTAAATAC	1980
		atttaatgga	TATGGATGTT	CTATTTTTTG	AATATGCTTT	ATCGTTCCAG	CAGTACTAAT	2040
,	5	TAAGACACCT	AATCTTAAGC	CGGCAATTCC	AAACGCCTTT	GATAATGTAC	GCATTCTTAA	2100
_	-	GATGTGTGGT	GCCAGTTCCA	CGTCATATGC	CGTACCATAA	TCTAAATATG	CTTCATCAAT	2160
		GACAAAGTAT	CCGTTTAATG	CTTTCATCTT	ATCTGCAATA	GCTGTTAAAA	ATGCCGNATC	2220
		AAATTGCTTG	CCTGAAGGGT	TATGTGGATT	ACTCATAATA	AAAAATGATG	GNTGTNCTTC	2280
.3	0	ATCGATTTTC	GTTAAAATGG	TTTCCAAATC	AAACGTNAAA	TCTGATCCNG	CATCTTACAA	2340
Ī	•	ATGCAATTTC	ACGATTTACT	TGTGCCGCAT	ATGCTTGATA	САТАААААА	TCAGGATTTA	2400
		GCGTTAATGC	CGGACCTTCT	GGCATGATCA	GCATTAACTT	TTGANTCANT	TCATCAGATC	2460
		CATTTCCTGC	AATAANTTGT	TCAGGCGATA	ACCCGTAAAA	CTTAGCATNA	GCTTCCGTGA	2520
.3	5	ATTGTTCATA	TGCTGCATCA	GGATATAAAT	TATATGGCGT	TGCACTAATA	ATAGACGTCA	2580
·		TTGTTTTTTC	ATCCAACGGC	GTAACTGGAC	TTTCATTTTT	ATCAATATAA	ATCATTTCAA	2640
		TTACACTCCC	CTAAGACTGA	CGTATTAAAA	TAGACTGCTG	GTGATTGTAT	AATGCTTCAA	2700
		CATGAGCAAT	ATGTTGTGCT	GAATCAGCAA	TTTGTTCAAA	CGTATCTTTT	GATAAATGGA	2760
4	0	TGACCGTGTT	CCGTGTTAAG	AAATCATTGA	CCGATAACCC	ATTGGTAAAT	CTAGCTGTTC	2820
•	-	TATTTGTAGG	TAATACATGA	CTTGGACCTG	CAACGTAATC	TCCTATGACC	TCTGGCGAAT	2880
		AATGTCCAAT	AAACAATGCA	CCCACATATT	TCACTTNCNC	AATATATGGN	TGAGGATTTA	2940
		CTGTGTGAAT	CGACGCATGT	TCAGGCGCGA	TCGTGCCTTT	CATGACATGG		2990

(2) INFORMATION FOR SEQ ID NO: 204:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3386 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

45

50

55

(ii) MOLECULE TYPE: Genomic DNA

200

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:204: 5 GCATCGGTTA AATGGCGTCA TTCCACTTAC GGGCATCTTN AGGCATTTTG CTTTTCAAGT 60 GGCTAATTTA GCTTCACCGT TTAAGGCTAT TTTTAGCATC AGTCACTTGA GTTAATGCAC 120 GGAGTAATGT CATCTGGGTT AAGCGTTGGA TTTGTCGTTT GATTGATAAT ACCTTCCGCT 180 TGAGACACTG CATTTGTATA TGCTGTTTGC TTATCGACAT CAGCATCGTG GTAGTTCTCA 240 10 CTTGCTTTCA CAGTATCTTT ATTTGCAATA CCTTGTTTCA AGTTACCCAT TGCTGTATTC 300 ACATTTTGTG CATTTTTGTT TAGTTTGTCC AACCTGTAGC TAAAGCTTGT GCTTGATTGA 360 NTTGGTTTCG TAATGCATCA CGTTGTGGTG ATTTAAGTCA CGTNACGTAT CAAGATTTGC 420 TAAAGCATCT TGTTTCGCTT GCGCTAATTT TTCATCACCG TTTAATGCAT CTTTCGCTTG 480 ATTCATAGTT GTAACTGCTT TTGTTACTGT ATCAGGCGCC AATACAGGTG TTGGTGTGCC 540 ATTTGCGATT TGTTGCGCTT GGTTAGCTGC ATTGTTATAA GCTTGTTGTT TGTCTTGATC 600 CGCTTGTGTA AAGTCAACTG ATTGTGGTAC TTGACTATTC GCTTGAATTT GTTGTGTCAA 660 CGTACCCATT GCATTATTTA ACGCATCAGC ATTTTGCTTA ATAGCATTAA CACCTGTAAC 720 20 AAGTTCTGCA TGCGACACTT GGGTCTTTTA ATGCTGTTTT TTGTGGTTGA TTTAAGTTTG 780 GTAACTGATC AATGGCTGTA TTTGNATTGT CTTTAGCAAC TTGTAAGTTA TGGTTACCGT 840 TTAAATCACC CTTAGCTCGA GCCACTTGTT GTAACGCTTG AGCCACTTGT TGTGGACCCA 900 CGCTTGCATT TGGGTGNACC ACTAATGATT TGGTCCAGCA TGCGCTACCG CATTTGAAAA 960 25 ATGCATTTTT GCTTATCAGT ATCAGCATTT GCCAAAGTTA CCATTTGCTT NAGGTGGTCT 1020 TAATCTGCAA TACCTTGTNT CAATTGTGTC ATTGCTTTGA NNTAAATCTT TGTGCTGTTT 1080 GCTTAATCGT GTTNACATTT GCAACAGTTT GCGCAGCATC GACTTGTTGT TTAAAGGCAT 1140 CTTTGTGCGC TGGATTTAAA TCATTTGCAT TTGTAATAAC TTGTTTCGCT GCATCTTTTG 1200 30 CACGTTGTAA CATTGTCATT ACCATTCAAT GCTTGTTTCG GCTTCGTTCA CACGTTGCAT 1260 CGCTTGTTTC CAACTTCAGT TTGAACTTGC ATTGCTGCCA TTTGCTTTAG ATAAAATACC 1320 TTCTGCATGT GAAACCGCAT TAGTATAATC ATCTTTCTTA GCTNGATCTG CATCAGTAAA 1380 GTTAATGCTA TCTAATGTCT CAGTTTTATC TTGTAATGCA TTGTTTAAGT TAGTCATAGC 1440 35 ATTATTCAGA TTTTGAGCAT TTTGCTTAAC ATTATTAACT GTTGCAATAT CTGGTGCTTG 1500 TTCAACTIGA GTTGTTAGCG CTTGTTTTTG AGCATCATTT AAATGATCTA GTGTACCAAG 1560 TGTTGTCTTA GCATCTTGTT TGGCATCAGC TAATTTGTGA TTACCGTTAA GTGCTTGATT 1620 TGTGTCATTC ACTITAGTTA ATGCTTGTTG AATTGTATTT GGATCCATTG TTGGATTTGT 1680 40 TGTTTGTTTT AACAATTCTT CTGCTTGNGT TACTGCATTA TCATATGCTG TTTGCTTGTC 1740 AGTATCAGCA TCGTGATAGN TCTCGCTACC TTTAATTTGT GCTTTATTCG CAATACCTTG 1800 TTTCAATTGT GTCATCGCGT CATTAAGCGT TGTTGCCGCT TGTTGAATAG CATTGACGTT 1860 TGGTACAAGT GTTGCTTGCG TGATTTGTTT GCTGTATTCA TCACGTTGCG CTTGGTTTAA 1920 45 GTTTGGCAAT TGATCAATAG CATGTTGAAC ATTTTGTTTC GCCGTTGCTA AGTTTGTATT 1980 ACCATTTAAA TCATTTTTAG CTTGCGTAAC TNNATCTAAC GCTGCAGGAA TTTCGCTAGG 2040 TGTAACGACA ACATCAGGCG TACCACTAAT TAATGCTTCA GCTTTCGCTA CTGCTTGATT 2100 ATATGCATTT TTCTTGTCAG AATCTGCATT GACAAAGTTA CCATCAGCTT TTGTTTGTTC 2160 50 TTTATCTGCA ATGCCTTGTT TTAATTGTGT CATCGCATTG TNTAACTCTT GCGCCGTTTG 2220 TTTAACATTG TTTACACCAG CTACAGTAGT TGCATTTCGT ACTTGTTGTT TTAATGCATC 2280 TTTCTGTGCT TGGTTAAGAT CATTAGAGTT ATTAATTAAT GCTGTTGCTT CGTCTTNTGC 2340 ATGTTGAACG TTGGCATTAC CATTTAATGC TTGTTNTGCT GCATTTACTT GTTGGATTGC 2400 55 TTGNNCAACT TCAGTTTGTG TTGCATTACC ACCATTAGCT TGTGGAAATG ATATTTNCAG 2460

	CATTIGTAC TGCAGTGTTA TATGCTTGTT GTIGNGCTTG ATCTNNATCA GNGAAGTTAC	2520
	CTGNTGCTNG CGTAGCATCT ATATCACCTA TCGCTTGTCA CAAGTTACCC ATCGCAGTAT	2580
5	TTAAGTTTTG CGCATTTTGC TTAATTTGAT TTGCTTCATC ACCAGTATGC GCGCCATTAA	2640
	TTTGATTAGT AACAGCTTGT TTTTGCGCAT TATTTAAGNT GTCTAATGAA CCTAAAGATT	2700
	GCGTTGCTAG TTGCTTCGCT GCCTCTAAGT TTTCATTACC ATTTAAAGCA TTTTTAGACG	2760
	TGCTTACTTG TCCAGCAGCT TGATTGATAA CAGTCGGATC TAATGAAGGG TTTGTAGTTT	2820
10	GATCAATAAT ACCTTGTGCA GTTGTGACAG CATTATTGTA CGCATCCTTT TTATTCGGAC	2880
	TTGCATCAGT ATAATTTTGG TTTTGTTTTG TTGTCGCATT ATCTGCAATA CTTTGACGTA	2940
	ATTTGTCCAT TGCTGCATCA ACATTGTTTG CTTTTTGTTC ATTACCTTGT GCTTCTGCAA	3000
	CAGTAGTCGA TTGTTGTACC AATTGTTTTA ATGCCTCTTT TTGTGCATTT GTTAAATGGC	3060
15	TTAAACCGTC AATTGCTGTA TTTGCGTGTT GTTTCGCTTT TTCAAGGTTT TGAGTACCAT	3120
	TAAGCGCTGC TTTTGTAGTA TTCACTTGAT TCATAGCTGC TTCAACTTGA TCTTTAGGCA	3180
	CGTTCGTACC TGTAGATTTA TTTAAAATAT TTTCAGCATT ACGAACCGCT TCATTGTATG	3240
	CATTTTNCTT CTCTGGATCT TGCATCTTGC AAAGTNNNGG ACTGGCAAGT GTAGTGTCTT	3300
20	TATCATTCAA GCTATTTTTC AAGTTANCCA TCGCTGTTTC AAAATCCTGA GNGGGNTTGA	3360
	TTGGTTGGNG TTNACTTCAN CTACAG	3386
	(2) INFORMATION FOR SEQ ID NO:205:	
25		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 761 base pairs	
	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:	
	AAAATACAAG CGTCTAAATA TTAACAATCT NCCTGTGACG CTATATGGCA TATCTTGCTT	60
40	TTTAAGCATC TGTTGTATCT CTGCCATCGA GCGCATTGGC CAGCTTCACA ATAATTATAA	120
	TGAATTGTTT TTATCGATGG AGACACTAAT TGTGTCATTG GGTCACCACC ANAACCATAT	180
	ATTTGATGTG GTTTCATAAC ATCATTTTTA TCAGAATAAT ATTTATAGGC AGCTAATGCA	240
	ATCGTATCAG TTGCTCCAAC ANCCGCATCT ACTTGCTCCA CATTTTCCAA AACATTTGCA	300
45	ACATCTTTTT GTGCTTCCAC ATAAGTAAAA TTTGTTTCAT GTATATTAGG TTTAATTTGG	360
	TATTTAGCTA ACTGGTCCAA GTAAACCCAC GTTTTCTATG AATACCACCT GCAATATCTT	420
	TTTCACTTAC ACTAAACACT TCAACTTGTT GATATCCCTG TTGACCAATC CATTCGCCTA	480
	TAATTTGACC TGCTTTATAA TCATCATGCA CAATACTATG AAGTTGTTCA TGTTGTTGAC	540
50	CAACAATAAC GATTGGTACA TICATTTTAT TAATGACTTC AATATGTCTC TCTGTTATGT	600
	CTGTAGCCAT TAAAACAATA CCATCTACTT TACTGCGTGC TAATGTTTCA AGCGCTTGTA	660
	TTTCTGCTTC GATATTTAAA CCTGTGTAAT TTAAAATTAA TTGTGATTCA TATTTTTGGC	720
	ATTGTTTTGC CAATCCTTTG ATTGTTTCAT CTACTGCATA T	761

(2) INFORMATION FOR SEQ ID NO:206:

55 .

(i) SEQUENCE CHARACTERISTICS:

...

1740

1800

1860

1920

1980

5	(A) LENGTH: 2334 base pairs							
	(B	TYPE: nucl	leic acid					
	(C) STRANDEDNI	ESS: single					
	(D	TOPOLOGY:	linear					
10	(ii) MOLECULE :	TYPE: Genom	ic DNA				
	(xi)	SEQUENCE DE	ESCRIPTION:	SEQ ID NO:	206:			
15	CCACCCANCT	GATTATAATG	ጥጥጥ አርር እ NG	ልርርጥልርልርጥጥ	CCTTCCTTAC	CATCATATCC	60	
		AAAAATAGTT					120	
		ATTTTAAAAC					180	
		TCCGGATTTG					240	
20		CAAGTTCTGC					300	
		TATTAGCTAC					360	
						GACAGCAACA	420	
						TGATTTGTCA	480	
25						ATTATGGGAA	540	
						AATGGCAAAA	600	
	GACTATTTAC	CTGGAACGTT	TAAAGATGTT	GTGACAACTC	CACTTAGTCA	TGATACAAAG	660	
	CAAGAAATTT	CAACACCATA	CGGCGTAGTG	AAAGATTGGT	CGAAGGGTGA	AATTGAAGCG	720	
30	GTACCTGGAC	GTACAATGCC	TAACTTTGCA	ATTGTAGAAC	GCGACTACAC	TAAAATTTAC	780	
	GACAAATATG	TCACGCTTGG	TCCTGTACTT	GAAAAAGGGA	AAGTTGGAGC	ACATGGTGTA	840	
	AGTTTCGGTG	TCAGTGAACA	ATATGAAGAA	TTAAAAAGTA	TGTTAGGTAC	GTGGAGTGAT	900	
25	ACAAATGATG	ATTCTGTGAG	AGCGAATCGT	CCGCGTATTG	ATACAGCACG	TAATGTAGCA	960	
35	GATGCAATAC	TAAGTATTTC	ATCTGCTACG	AATGGTAAAT	TATCACAAAA	ATCATATGAA	1020	
	GATCTTGAAG	AACAAACTGG	AATGCCGTTA	AAAGATATTT	CTAGCGAACG	TGCTGCTGAG	1080	
	AAAATTCGTT	TTTAAATATA	ACTTCACAAC	CACGAGAAGT	AATACCGACA	GCAGTATTCC	1140	
40	CAGGTTCAAA	TAAACAAGGT	CGACGATATT	CACCATTTAC	AACGAATATA	GAACGTCTAG	1200	
40	TACCTTTTAG	AACATTAACA	GGACGTCAAA	GTTATTATGT	GGATCACGAA	GTTTTCCAAC	1260	
	AATTTGGGGA	GAGCTTACCA	GTATATAAAC	CGACATTGCC	GCCAATGGTA	TTTGGGAATA	1320	
	GAGATAAGAA	AATTAANGGT	GGTACAGATG	CTTTGGTACT	GCGTTATTTA	ACGCCTCATG	1380	
45	GANAATGGAA	TATACACTCA	ATGTATCAAG	ATAATAAGCA	TATGTTGACA	CTATTTAGAG	1440	
70	GTGTCCACCG	GTTTGGATAT	CANATGAAGA	TGCTGNAAAA	CACGATATCC	AAGATAATGA	1500	
	TTGGCTAGAA	GTGTATANCC	GTAATGGTGT	TGTAACGGCA	AGAGCAGTTA	TTTCGCATCG	1560	
	TATGCCTAAA	GGTACAATGT	TTATGTATCA	TGCACAAGAT	AAACATATTC	AAACGCCTGG	1620	
50	GTCAGAAATT	ACAGATACAC	GTGGTGGTTC	ACACAACGCG	CCGACTAGAA	TCCATTTGAA	1680	

ACCAACACA CTAGTCGGAG GATACGCACA AATTAGTTAT CACTTTAATT ATTATGGACC

AATTGGGAAC CAAAGGGATT TATATGTAGC AGTTAGAAAG ATGAAGGAGG TTAATTGGCT

TGAAGATTAA AGCGCAAGTT GCGATGGTAT TAAATTTAGA TAAATGCATA GGATGCCATA

CGTGTAGTGT GACATGTAAA AACACTTGGA CAAATCGTCC AGGTGCTGAG TAACATGTGG

TTCAATAACG TAGAAACGAA GCCAGGTGTA GGGTATCCGA AACGTTGGGA AGACCAAGAA

	CACTACAAAG	GTGGTTGGGT	ACTAAANTCG	TAAAGGĢĀAA	CTTGAATTAA	AATCTGGAAG	2040
•	TAGAATTTCA	CAAATTGCTT	TAGGTAAAAT	TTTTTATAAC	CCAGATATNC	CATTAATAAA	2100
	AGATTATTAT	GANCCATGGA	NCTATAATTA	TGAACATTTA	ACAACTGCGA	AATCAGGGAA	2160
	GCATTCGCCA	GTTGCTAGAG	CGTATTCAGA	AATTACAGGG	GATAACATTG	AAATTGAATG	2220
	GGGACCTAAC	TGGGAAGATG	ACTTAGCAGG	TGGTCATGTT	ACAGGCCCAA	AAGATCCTAA	2280
	CATACACAAA	ATAGAAGAAG	AGATTAAATT	CCAATTTGAC	GAAACTTTTA	TGAG	2334

(2) INFORMATION FOR SEQ ID NO:207:

(i) SEQUENCE CHARACTERISTICS:

. (A) LENGTH: 2698 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

10

15

20

25

30

35

40

45

50

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:

GGCACGAGAC	TAATACCTGA	AATTAATCCA	CCACCACCAA	TAGCGGCAAA	TAAATAATCA	60
AAGTTAACGG	AATTGTCAGT	CTTTGATTGT	TCTAGCATTT	CTTTAGCAAG	CGTACCTTGT	120
CCAGAAATTG	TATGAACATT	ATTGAATGGA	TCTATAAAGT	TCATTTGATG	TTCACTTGTA	180
TAAGTTAAAG	CTTCAGCTAA	ACAGNGATCA	AATGTATCAC	CAGTGAGTAC	AACTTCAACG	240
TTACTATTTC	CAAAGAACTT	TACTTGATTT	ACCTTTTGTN	AAGGTGTAGT	GACTGGCATA	300
AAGATAACAG	CGTTTANATT	AAGTTTTTTA	GCTGTATAGG	CAACACCTTG	AGCATGATTA	360
CCTGCACTCG	CACATGTAAT	ACCTTTACTT	TTAGCTTCAT	CTGATAAAAC	AGAAATAGCG	420
TTGTAAGCAC	CTCTTAATTT	AAAAGAACGT	ACCCATTGTA	AATCTTCTCG	TTTTAAATAA	480
ACTTTACAAT	CATACTTTTG	AGATAAGTAA	TGGTCTAATT	GTAAAGGTGT	TTCTTTGACA	540
ATATCTTTAA	GTCTTAAAAA	TGCTTCATCG	ATATCTTNCG	TAGAAACTGN	TGTTTTGACT	600
GGCATAATAT	TCAACTCCCT	TAAAGTGATT	TNNCATATTN	NTCTATTAAT	GATTCATATT	660
GTAGGGTGAT	TGCAATTGTC	ATCTAAGCCA	TTTACCAAGT	TTATTTTTCC	AAAGTTTCAT	720
CAATTTCAAA	ATGGAAACGC	TTGTCTGGTG	ATGACACAGT	TTGATTTGGT	AAATCTATTT	780
CAATTTCCTC	ATATTGTGCA	AGATGTTCAC	GAGCACTTTT	TTCTAAANCG	ATAGGCAACA	840
TCGCATTTTT	AGTGCAATTC	ATATAAAATA	TGTCACTGAA	ACTTCCTGCA	ATAATAATAT	900
GNAAACCATA	GTCCTTAAGA	GCCCAAGCAG	CATGTTCACG	ACTTGAACCA	CATCCAAAAT	960
TATCTCCAGT	AATTAAAATA	GAAGCCCCTT	TATATTGTGG	TTTGTTAGGA	TTGAAATCAG	1020
GATTATCTGA	ACCATCAGGT	AAGTACCGCC	ATTCATCAAA	AGCAAATGGA	CCAAAGCCAC	1080
TTTTTGAAAT	ACGCTTTAAG	TGTACCTTAG	GAATGATTTG	GTCTGTATCG	ATATTGTCGT	1140
TGAAGAGAGG	GACTATTTTA	CCTTTATATG	TTGTAATAGG	TTTGATTGCT	GCCATTTAAA	1200
CAACCACCTT	TCTTACGTCC	ACAAATTTAC	CATGAATAGC	TGCTGCTGCT	GCCATAGCAG	1260
GGGATACTAA	ATGTGTTCTT	GCACCTTTGC	CTTGTCGTCC	TTCAAAGTTT	CGATTACTTG	1320
TAGATGCACA	ATGTACGCCC	TCAGGTACTT	GGTCAGGATT	CATGCCTAAA	CACATTGAAC	1380
ATCCTGGTTC	ACGCCATTCA	AATCCTGCAT	TTTTAAAGAT	AGTATCTAGA	CCTAATTTTT	1440
CTGCTTCTTT	TTTTACTGTA	CGAGAACCTG	GTACGACAAT	AGCTGTAATA	TTTGGATGAA	1500

	CTTTATTTCC TTTAACAATA TGACTAGCTT CAATCAAATC TGA	ATAGTCTA GCATTTGTĄC 156	0					
	ATGAACCGAG AAAAACATAC CCTAAGTCGA TGTCTTCAGC TT	TTTGACCT GGTTCTAACC 162	0					
5	CCATATAATC ATACGCACGT TGATCGTTGA TATCATTGAT TTC	CAGGGAAT GGTTCACTGA 168	30					
	AATTAACACC CATTTCAGGA TTAGTTCCCC ATGTCACTTG TGC	GTTCTAAT GTTGAAACAT 174	10					
	CAAGTTCAAT TACACGATCA AATATCGCGT CGTGCCATCA GAA	ATATAGCT CACGCCACTT 180	0					
	ATCAACTGAT TTAGCGAAGT TATCGGCAAA TGGTCTCCCT TT	AACATATT CAAATGTTAT 186	0					
10	ATCATCAGGT TGGATTATGC CGTATTTGGC ACCACCTTCG ATA	AGCCATGT TACAAATAGT 192	0					
,,	CATTCGACCG TCCATTGAAA GGTTTTTAAT TGTTTCGCCA GT	AAATTCCA AAGCATAGCC 198	30					
	TGTACCAAAA TCAACACCAT ACGTTTTAAT TAAATGCAGA ATA	AATGTCCT TAGCATAGAC 204	0					
	GCCTGTTGGT AAGGTACCAT TAATATCGAT TTTTAAGTTT TT	GGGTTTTG TTTGCCATAG 210	0					
15	CGTTTGAGTT GCGAAAACAT GTTCAACTTC ACTTGTTCCA ATT	TCCAAATG CAATAGCACC 216	0					
15	AAATGCTCCA TGTGTTGCTG TGTGAGAGTC ACCACAAACG AT	TGTTTTGC CGGGCTGTGT 222	90					
	AAGTCCTGTC TCAGGTCCTA CCATGTGAAC AATACCTTGT TCA	ATCAGAGC CCATATCAAA 228	30					
	AATATGCACC CCAAAATCTA TGGCGTTTTT TTGTAATGTT GTC	GATTTGTT TGTTTGCAAT 234	0					
20	TTCATCTTTA ATATTGAAAA TATCAATAGT AGGAACATTG TG	ATCGAGTG TTGCAAATGT 240	0					
20	TAAATCTGGG CGTCTTAATT TTCTGTTTTG AAGCCTAAGT CC	TTCAAATG CTTGAGGAGA 246	0					
	AGTAACTTCA TGTATAAGGT GTAAATCAAT GTATAATAGT TGG	CGGGTCGC CCNATTTCCC 252	0					
	GNATAACACA TGTCTGTTCC ACACCTTGTC AAATAATGTT TG	ACCCAGTT ACATCTCCCC 258	30					
25	CTNAGTGATT CAATTTTTGA GATAGCATTT CGAAAATATC AG	TAGTATTC AATTTGCCGC 264	ŀO					
25	CTAAATCTGC TGTCGTTTGC CCATGTTCAA TCATGTTATA AAS	TATGTTGT TCTAATTC 269	8					
30	(2) INFORMATION FOR SEQ ID NO:208:							
30	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 706 base pairs							
	(B) TYPE: nucleic acid							
35	(C) STRANDEDNESS: single							
35	(D) TOPOLOGY: linear							
	(ii) MOLECULE TYPE: Genomic DNA							
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:	:						
	CTAAGANGAT ANTTTAAGCT TGTAACCCAA CAGTTCGCAG GTT	TAAATCCA ATCCAGTTTG 6	0					
45	ACCAAAGAAA TACCGACCCA AACCGCCTTT GNACCGTAGT TGC							
43	CCCAAAGATA ATAAGCAGTT AGCCGNNNAG GTTCCGGGAA TAC		30					
	ACCCAGCTGC CTTTTGCTTC TTGAAATACA TTGGGGAATC TGC		0					
50	TACCGTCGAC ACCATCACGT CAAGCAGTTG CAATNCCAGC ATC	CAGATGTG ATTATAAACA 30	0					
	AAGTGATGAC GAGTGATACA CCTGTAACAA TTGTAGCGAC AGC	GTCCTCTT ACGAATGTAG 36	0					
	CAACGCATT GATTCGTGAT CCAAGAATCG CTGAGCATAT TGA	AATCTATT ACTTTGATGG 42	0					
	GTGGTGGTAC ATTTGGAAAT TGGACCGCCT ACAGCAGAAT TCT	TATCAATA CCTACTTCTT 48	0					
	TCTTGACTAA ATCANACTGT GGCTTCGTTA ACATGCCACT TGC	GTGTGATA TAAAAACTAT 54	0					
	MODERNA AND AND AND AND AND AND AND AND AND A							

600

660

TTTTAAAGTA ATAGCTTACA GAGTGGTTCA AATGTTCAGC GAATAAAGCT TCATCCATAC

GTTCTAAGAA GAATGGGATA AACTCACCCC AATGTCCAAT AATCATATTT AACTTTGGAT

	AACGATCAAN AATGCCAGAT AATACTAGAT GTATTGCATR RDCTNS	706							
5	(2) INFORMATION FOR SEQ ID NO:209:								
	(i) SEQUENCE CHARACTERISTICS:								
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 634 base pairs									
	(B) TYPE: nucleic acid								
10	(C) STRANDEDNESS: single								
	(D) TOPOLOGY: linear								
	(2) 1333331 223332								
15	(ii) MOLECULE TYPE: Genomic DNA								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:								
	CTTGTTGGAT CAGATCCAAC ACTACCTGAT GGATCNCTAT CNAGATTGAG CACGCCACCA	60							
20	TATCAGATGG AATATCAACC TTGTCATGGG ACAGACTGAC ACCTGAATGA NGGGGTGTCT	120							
	GGNCANNCAC ATCATCACCA TTAATGGGAC AGCGAGTGGC ACATNTCCAT GTAGTAAATG	180							
	GCACTTATTA CTTACACGGN CATATCGTGN CAGGTTGGCA AGGTGTGAAA AAGACATGTG	240							
25	ATACAGCGGA AGAGCTTGAC ACATATATAA AGCANAGTGA TGTGGTATAT GAGGAACAGA	300							
25	AGCATCTANC TTTATTTTAA GNGGGCGGAA ACAATGAAAC TCAANGTTAA AAGAGANATG	360							
	AGATTAGATG AATTAATTAA NTGGGCGAGA GAAAATCCGG ATCTATCACA NGGAAAAATA	420							
	TTTTTCNCAA CAAGGATTTA GTGATGGATT CCGTCCGNTT TCATCCANAT ACAAATAAGT	480							
30	GTCTCGACGN CAAGTTTTAT TCCAATTGAT ATCCCCTTCA TAGTTGATAT TGAAAAAGAA	540							
30	GTAACGGAAG AGACTAAGGT TGATAGGTTG ATTGAATTAT TCGAGATTCA AGAAGGAGAC	600							
	TATAACTCTA CACTATATGA GAACACGRRD CTNS	634							
	(2) INFORMATION FOR SEQ ID NO:210:								
35									
	(i) SEQUENCE CHARACTERISTICS:								
	(A) LENGTH: 1157 base pairs								
40	(B) TYPE: nucleic acid								
40	(C) STRANDEDNESS: single								
	(D) TOPOLOGY: linear								
	(ii) MOLECULE TYPE: Genomic DNA								
45									
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:								
	GGCACGAGCG CCCATTTAAT TAATTCATCT AATCTCATTT CTTTTTTAAC TTTGATTTTC	60							
50	ATTGTTATAT CTCCTCTTGA ACAGTAAATT TATCGTTAAT TGATACGTAT CCAGTCACAT	120							
	TACATAAGAT GCTATCAACA TCAAAAGTCA CACAACAGTT GCGTTCAACA TCATTTGAAT	180							
	AGAATCTTTT ATTACCTGAT AACTTGGCGG TTATCACCAA GCCCATTGAA TAAATTCAGC	240							
	TAAATCTCAT TTCTTTTCA ACTTTGATTT TCATTGTTTC CGCCCTTTTA AAATAAAGTT	300							
5 5	AGTTGCTTCT GTTCCTCATA TTCCAGAATC ACTTTGCTTT ATATATGTTT CAAGCTCTTC	360							

	CGCTGTATCA AATGTCTTTT TCACACCTTG CCAACCTGGC ACGATATGAC CGTGAAAGTA	42						
	ATAAGTGCCA TTTACTACAT GGATATGTGC CACTCGTTCG TTATCCTGAT ACAGATATCT	48						
5	CTTAGAGCCG AAAAAATGTT TTAAGTATTC TTTACGTCCG CTATCTGTCA TGGTCATCAC	540						
	TCCCGCAAGT CAAATACTCT ATCGACGTAA AACTTCGCCT TTGCTAAATC CTCATGACCA	600						
	TTCTTTAACG GTGCTCTAGA CAAGTATTTA ATTGCATTAC CTATTGCGAA TGCTAATTGT	660						
	GGTGGGTACT GTGCCGTAAC TTGTTCAATA AAATCTATAA TTTCAATGTT CGCCGTATGT	720						
10	TGTTAATGCG CAGGTTGCTT AACGTTGTCT TGCGTTTTGT TCATATCTAC TTTTCTGTTA	780						
	CTGATTATGC TCATTATGTT TCACTCCATT TCTTGAACAT TTGGTTATAG TTGACATCGA	840						
	ACCAGTACGA TCACGTTGAA TGTTTTTGAG TACATCAAAT AATGTTGCTC CTTCTCTAGC	900						
	TCAGCTTCTT TACGTCGTAG CCTAGCCATT TCACGCTCTC GCTCCAAAGC TTTTGTTATT	960						
15	TGTATTTCTC TATAGTCGTT TAGCTTCATG CCGAAAGGTG CATCAATTGC TTCCGACATC	1020						
	TCCCAACCCT TCGCAACTCT GTTTCTAACT ATTTCGGGCG TGAGTCCTTT CTTTTTCATC	1080						
	TGCTCATTTT CATATTCAGT GTATTTAGAA GGGGGTTTTT CTTGTGGTGG CGCAATAAGC	1140						
	GCATCGCCCG TTAGCCC	1157						
20								
	(2) INFORMATION FOR SEQ ID NO:211:							
	(i) SEQUENCE CHARACTERISTICS:							
25	(A) LENGTH: 725 base pairs							
	, (B) TYPE: nucleic acid							
	(C) STRANDEDNESS: single							
	(D) TOPOLOGY: linear							
30								
	(ii) MOLECULE TYPE: Genomic DNA							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:							
35								
	GGCACGAGCT CGTGCCGATT CGGCACGAGC TTCGGCTGTA TTGGTACCTA TCAATACAGA	60						
	CATTGCCGCT TTTTCTAAAT CTTCAATACT ACCTTGAGTC ACCCGCCGTG TCCAACCGTT	120						
	CTAAATAAGC CTTTTGTTGC AGGTGCTTGN CAATATCTTT GNACAAGCTA TCAACGTTAT	180						
40	TTGTGCCAAT AACTTGTCTT GCTAATTTTT GCANTAAANA CGATTCTTCA TTCGTCGCTT	240						
	TAGAAGAAGA AATGAATGAT AGTGCATCTG GGCCATACTT TTCTTTAATA GATGTAAAAT	300						
	TATCTGCAAT GACATTTAAA GCTTCATCCC ATTCTACTTC ATGGAACTCA CCATTTTTCC	360						
	TTACTAGTGG TTTAGTTAAG CGTTGATCTG AATTAATATG TCCCCATGAA AACTTACCTT	420						
45	TAACACAAGT CGCAATTTTA TTTGCTGGAG AATCATGTGA TGGTTGTACT TTTAAAATTT	480						
45	CTCTATCTTT AGTCCAAACT TCAAATGAAC AACCCACACC ACAATAAGTA CACACTGTTT	540						
	TAGTTTTCTT AATACGCTCT TAACGCAGTT CTGCTTCTGA ATCTGAGATT GCAAATAGTG	600						
	GACCATAACC AGGTTCTGCT TTTTTAGTTA AATCAATCAT TGCTGCTAAT GAACCAGGTT	660						
50	CCGTATCAGT CATATAACCC GCATTACCTT CCAGATTCAC TTCCATCATG GCATTACATG	720						
<i></i>	GACAG	725						
	(2) INFORMATION FOR SEC ID NO.217.							

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 1676 base pairs						
	(B) TYPE: nucleic acid						
5	(C) STRANDEDNESS: single						
	(D) TOPOLOGY: linear						
	(ii) MOLECULE TYPE: Genomic DNA						
10							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:						
	AAAATCCAAG GCACAAAGTT CTAAATACGG AGTCAAAAGA ATATTGAACA AGCACATTTT	60					
15	CAACAATACT TTGAAAATTT ATTATTTCAT AAGTTCATCA TTGATCCAAA GTAATATTGC	120					
	CCTTGCCGAT GTTCATCTTA TTGACTATTT ATTTACAGCC ATTAGTTAGA TATATTTTTG	180					
	AGCGAATTGT CATGGCTGTG ATTGTCATCA TTGGTGTTAT TGTCAGTGTG TTTACCATTC	240					
	TGTATTTTC ACCGCTTGAT GCGGCTTATA GCATACTGGG ACACAATGCA ACANAGGCAC	300					
20	AGATACATCA ATTCAATGTA TTACATCATC TTAACGAACC TTATTTTATT	360					
	ATACCATCAA GGGTGTTTTT ACCTTTGACT TAGGTACGAC TTACAAAGGG AATGAGGTTG	420					
	TGACTAAAGC AGTTGGCGAA AGAATTCCAA TTACAATAAT TGTCGCAGTA TTAGCGCTAA	480					
	TTGTGGCATT AATTATTGCA ATACCAATTG GTATTATCAG TGCGATGAAG CGAAATAGTT	540					
25	GGCTTGATAT CACGTTAATG ATAATTGCAT TAATTGGTTT ATCTATTCCA AGTTTCTGGC	600					
	AAGGGCTATT ATTCATTTTA GCGNTCTCAT TGAAATTGGA TATTTTGCCA CCATCTTATA	660					
	TGCCAGAACA TCCAATATCG GTGGATTTTA CCTGTACTTG TCATTGGAAC AAGTATTGCT	720					
	GCTTCTATCA CGCGTATTGA CAAGGTCTTC TTGTACTTGA AGGTAATGCG CAGCGATTAT	780					
30	GTTTTNACTG CTTATGCAAA AGGATTATCG ACGACACAAG TTGGTTATTA AACATATTGT	840					
	GGAAAAATGC CATTATTCCA ATTGTACGGT AAGTGGGTCT TCCTNGGTGG CAGAGTTACT	900					
	AGGCGGTTCA GCAGTGACGG AACAAGTATT TAACATTAAT GGTATCGGTC GTTATATCGT	960					
	CCAAAAACAA CTAATACCTG ATATCCCAGC AGTCATGGGT GGGGTCGTAT ATATATATCA	1020					
35	ATTGTAATAT CTTTAGCAAA CTTAATTATT GATATATTTT ATGCTTTAAT CGATCCAAAA	1080					
	TTACGTAGTG AAATTAACGA AAGGAAGTGA GGCATATGGT AAAACTTACA ACAAAGATAG	1140					
	CTTCCTTAAA ACTATTCGCA AGTTATGCTA TAGCAACTTA TATTTTAGTT ATGTTAACGA	1200					
	GTGCATTAAA TCTTTTTAAA GGTTATGTGG CCGATACGTT CTATATTGCT GAAACATTGC	1260					
40	TAATCATTTT AACCATCATT TTAATTATCA TTTTAACAAC GGAACAAACA TGGAAGCATC	1320					
	ATGACCTATG GCGACGTATC GTCGAAGTGT TGTTATTGTT GATGGCATTA ACAGGCAACG	1380					
	TATTTACATT ATTAATGTGT GTAAGTATTA GACGTTACCA ACGTACATCG CAAATACATA	1440					
45	GTTATAACGG GGTGGGAATC CGNTTATACG AAAAACTACT AGACATCCGT ATTTGCGATT	1500					
	ATCGGGGTTA CTTATTTTAG TCTACATGCT GACATTATCA ATNGTGTCAC AATTTAAATT	1560					
	TGATACGACA ATGGCTTACT AAAAATCCAG TCCAATGAAC TNGTACAATG GACCGAGTCT	1620					
	AGCCTATCCG TTTGGTACTG ATGATTTCGG TAGAGACTTA TTTACACGCT CGTGCC	1676					
50	(2) INFORMATION FOR SEQ ID NO:213:						

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1978 base pairs
 - (B) TYPE: nucleic acid

5**5**

(C) STRANDEDNESS: single

70.0

.... (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

5

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:

10	CTAATCGTAT	GAACGAGTAC	CCAGAGGTTT	GAAATTTAAT	ATTGATTCTA	TNAATGATTC	60
	CTTAGTGTCG	CATAACGGTG	CAAGAGCACG	ATACTTAGGA	TCAATAAAAC	CTTCGTCAAT	120
	CATATGGTCA	ATCATTGNTT	GTAGTGGNTT	GAAAANGCCA	TTAATATTAT	AAATGGCAAT	180
	AGGCTTGTCA	TGGATACCTA	TTTGAGCCCA	ACTAATACAT	TTCGAAAAAT	TCTTCTAGTG	240
15	AACCCTGCGC	CACCAGGAGC	CATGACAAAT	GCATCTGCAA	GTTCTGCCAT	TTTATTTTTA	300
	CGTTCATGCA	TAGAATCCAA	СТААААТТАА	TTCAGTTAAA	CGTTGGCTTG	TGATTTCATG	360
	TTCATCTAAC	ATTTTAGGCA	TGACGCCAAT	AGCTTTGCCG	CCATGATTTA	ATACACCATC	420
	TTGAATGGCA	CCCATAATGC	CAATTGACCC	TGCACCAAAT	ACTAATTCAT	AACCTTGTTC	480
20	AGCAAAATAT	TTACCTAAAT	CGTATGCTTT	TTGTACATAT	GAAGGGTCAT	GACCTTTGCT	540
20	TGCACCACAA	TAAACTGCGA	TTCGTTTCAT	GTTAATCCAG	CTCCTTAATT	CGATGAATGA	600
	CTTTTAATAG	TGATTGTTCA	AACACTTTTT	GATCTTGCTT	TGTAAAAGGT	GGGGGACCTT	660
	TGTGGCGACC	ACCTTGTTTT	CTAATTTGTG	CATTCATATA	TCGTTTATCT	AATAGTTGTT	720
25	GAATATTTTT	GGAATTGTAT	ATCTTCCCAT	TATGATGCAT	GACAATTAAG	ACTTTGTCGA	780
25	CTAATAAACT	TGCGAGTCCA	TAATCTTGAG	TGACTACGAT	ATCATCCTTC	GTTGATAATT	840
	GAACAATTTT	GTAATCAACT	GCATCTGGTC	CATCATCAAC	ATATAATGTT	GATACATGTG	900
	GAGGATATAA	TTGGTTCGAA	AAATGGCTGA	AGCTCCGAAT	AATTGTCACA	AAAATGCCTG	960
30	TCTCAGTTGT	TAAATCTATA	ATAGAATCNA	CAACAGGACA	AGCATCTCCA	TCAATAATAA	1020
30	TATGTGTCAC	AATTATGCCT	CTGTATTGTT	TTCTTTATTT	TGTTGAGAGG	CGCTTTTGGC	1080
	AACATAATCT	TTATATTTT	TAAATGACTT	GATGCGTGCT	TTATCAGCTT	CTTGTTGGCG	1140
	TTTGTTCTTC	TTTGTGTCGT	TTTTCAATAT	TTTTTTGTAA	${\tt CTTTTTATTC}$	ATTTTAGCGA	1200
05	TTTCTTTGCG	ATTTTTTCA	GCTAGTTTAT	CGCCTTTTCT	CTCAGTTTTC	TCATCTAATT	1260
35	TATTAGGTGT	TAAGCCTGCT	TTTTCTTCGT	ATTTTTGTGA	TTTTTTCATA	TCTTTAATAC	1320
	GTTGTATTTC	ATTCTTTTCG	CGGGCTTTTT	${\tt GCTCTTCTTT}$	ATGACGCTTT	TCGATATTTT	1380
	TTTGAAGTAT	TTTATTCATT	TTATCAGCGT	CTTTACGATT	TTGTTTAGCT	AATTTTTCGC	1440
	CTTTTTTCTC	AATATAGGCA	GGATCATGTT	CTCTAGCAAA	CTTTTTAAGT	TCACGTTTAT	1500
40	TTTCAAAATC	TTGTTTTTTA	TCGCCGACAT	ATTCTTTAAC	ATCACTCGCT	GTGTTACTGA	1560
	TTGCTGCAGA	TGTTTTTGAA	GCAACTTTAC	TTGGTAGCAT	CTGTAACTTT	TGGGACGTCC	1620
	GGATGTTGTT	TGATACGTTT	ACGTTCAACA	ATTAACGGTA	CCAATACAAT	TGGTAATACA	1680
	TTAATCATAA	ATTTGATGAC	TTTTTTCTTA	TCCATAGATC	TTGCCTCCAT	AATTACTTTA	1740
45	TTAATTTTAC	ATACCCTATG	ATACATCAAT	ATAAACGATG	ATAGTAGTGA	NTCACTATTA	1800
	AGTATTTCAG	ATGTTTTTTA	NAAGAAGACA	ATAAAAACTG	CCAATCACGT	GGTTCCTTAA	1860
	TTGACAGTCT	ATATTTTANA	CAGGAAATTA	AATACCTTTA	CCAATGCCAA	TCCGAAGTAA	1920
	AGTATAGCAA	TANAGATTAC	TAATACANTT	CTGCTAAATG	GCANATGGAA	TTAGTCTG	1978
50							

- (2) INFORMATION FOR SEQ ID NO:214:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 2558 base pairs

(C) STRANDEDNESS: single
(D) TOPOLOGY (B) TYPE: nucleic acid

(D) TOPOLOGY: linear

5

10

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:

	GGCACGAGCG	ATGTGCCCAG	${\tt CTTTTTTCAA}$	TTGCAATACC	ATCGGTCCTT	GATATTGTTC	60
	TTCTGGTACG	TCTTTAAGTC	CTAATGTTAA	TTCCACTTCT	TTTGCATCAT	CTGACCATAA	120
15	TTTTCTGAAA	TCTGTTTCTA	${\tt CTAAATCTTC}$	TTGATATACA	TTTTCTGGTA	ATGGTGGTAA	180
13	CCATGGACGC	TTAACTTCTT	CAATTTCTAA	TCGTGTTGTA	ATAGATTCGA	TATGATCGAT	240
	AACCGCTTCT	AACTCGGTTT	GGTTTTCTTT	CGTTTCTTCA	TCTTCAAGTC	CACTCAAGTC	. 300
	TTTGTTGATT	GCTTGAAGTT	GACCATAGTC	ATTAATCATG	TAAATCGTCT	TATCTTCAAC	360
20	TTCTAATTTA	TCGCCTTCGA	TGTCATATGT	TGCACCACTC	CATGCAGATT	GGAATAATTC	420
20	ATAAATTTCA	TTATTACCAA	CTTTGTAAAT	ACGCACGACC	TGGTAATGTA	ATGTCTGCTG	480
	CATCTGGTGT	TTTAAAATT	TCATTACTGT	CTTGTCTATC	TGGNACGAGT	TNTAATGCCA	540
	ATTTAAATTN	AGAGTTAGAC	CAAATTTGGT	CATCAACAAC	ACCCGATGGT	TTNTGTGTCG	600
	CAAGTATTAA	ATGAATACCT	AACGAACGTC	CAATACGTGN	CGGNGATACA	AGTTCTNTNC	660
25	ACATAAAATC	AGGTTGNTCT	GATTTTAATT	CGGCAAACTC	ATCGGAAATA	ATGAATAAAT	720
	GTGGCATTGG	CTCTGNTGCA	ACACCTTCTT	TAAATAACTT	ATGGTATTGA	TTAATATGGT	780
	TAACATCATG	CTCTCCGAAT	AAACGTTGAC	GTTTCTCAAT	TCGGCTTTGA	TTGATGTTAA	840
	GGCACGCATC	GCTTCATCGC	CATCTAAGTT	TGTAATCCGT	ACCAACTAAA	TGGACTAAAT	900
30	CTTTAAATAA	GTTCGCCATA	CCCCCACCTT	TATAGTCAAT	CAATAGGAAC	GCAACTTCAT	960
	GTGGATGAAA	ATTAATAGCT	AAAGATAAAA	TGTATGATTG	GATAATCTCA	AGATTTCCCT	1020
	GAACCAGTGG	TACCAGCAAC	TAAACCATGT	GCCCGTGTG	CTTTTTCATG	TAAGTTCAAT	1080
	GATAAAATAT	CATCTTTACC	TCTTACACCT	AAAGGTACTG	CCATCGTTTT	GTATGTTTCG	1140
35	TTTTGTCTCC	ATCGATTAAC	CACATCAAGC	TGATCTACTT	CTTTCACGTT	ATACATCTCT	1200
	AAAAATGTAA	TACTATCAGG	AATTGCATTT	TTCAAATGTT	CGACGTGTAT	CAAATTCGCC	1260
	AAACGTCTCG	CGATGATATT	CTTTATCAAC	GTTATCAATA	TTTTCAGGTG	TAAATTTCAA	1320
	TTGAACTAAT	TCTTTTTCTT	TCGTAATCAG	TTCGCCTTCA	GTACGAGACT	TGATATCAAT	1380
40	AATGGTATCT	ACATGCTCTG	GCAAACTTTC	AATCACATCT	TCAACAAAGA	TTAATGAAAT	1440
	ACCATATTCT	GATNAATCTT	GGNTNACATA	GTCTAAAATG	ACATGATCAA	TAATTAATGA	1500
	CATATCTGTA	ATGACAAACA	CTAATTGCGG	TGTGAAAATA	ATTTGCTCAT	TACTTCTGCT	1560
	GCGTTCACGC	ACAGCTTGGA	TACGTTCTTT	AATCATGCTA	TAAATTGACG	TTAAAATTTG	1620
45	GTCACGTGTT	CGGTGATTGT	AAACAAACCC	TCTAATGTTT	TGACCTCTCA	ATGTCATATG	1680
	TGGCAACCAA	CGTGCCCATT	TCAATGTTTC	AACTTCATCT	TCACGTGTCA	CAAATAGAAA	1740
	CTCTAAATCA	TGATAACTAT	GGAACGTTGA	CAATTGGATT	AGCATTTTCT	CCAATTCTTC	1800
	TAAAATGAGA	TGTCGGGCAC	CAATATATGC	AATTGGTCCA	TGATTTAAAT	CATTGATTAA	1860
50	TGGGTGCTTT	GTCCNACANC	TNTGANAAAT	TCATACAATT	CTTTAGCATC	GTCGAATAGT	1920
	TCATCACGAC	GTTGGTTAAA	TTCTCCNTCT	TGGTAATCTA	ATTTGAATGA	CTTTTCTACA	1980
	TTCGCAATAC	СТААСТТАТА	ATGTAAGAAA	TCGTGATGAT	GCGATGTTTT	TTCATATATT	2040
	CTTGGTGCTT	TCGTTTCAAC	GATATCTTTA	ATTTCANCAA	CCGTTGGATA	ATGGTAATTC	2100
55	AAACTAAAAC	GTTGTGCTTT	AATCGCTTTA	TTAATTTCTT	TAGATTTATT	ATCCAAATAA	2160
						•	

	GCTTTGTAAT CTTTCTCTCG TTTTTCAACA TCTTTGTTAT ACTTTTCTT TTCAGAGAAA	2220
	TACGTTGTAA TACCAAATAC TATCGTTACT GTACTCATAC CAATCATCAT TAAAATATAA	
	ATACCAATTG GTCTCACTAA AAAGATGACA ACAGTTAAAG CAATCATTAC TAATGGCGGT	
5	ATAATGGAAC GCCATATCAC TGTATTCCGG AATTCCGGAA TTCCGTATTG GCTGTGGCGG	2400
	TCTTTCAATC TTAATATCAT CGGTCGGGTC NCGGTGNATA ATCCTTGGCG AGCGATGGTA	2460
	CGTATTGTAA TCATCTGCCT GTGCATGTGG CATCTCTTGT GTTAAGCGAA TTAATGACGA	
	TGCCACTGTA TTCTGACTCA ATACANTTAA ACCATCAG	2558
10		
	(2) INFORMATION FOR SEQ ID NO:215:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 668 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
20		
	(ii) MOLECULE TYPE: Genomic DNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:	
	GGGGGGGATT ATT ATT ATT ATT ATT ATT ATT A	
	CCGGCTGATT ATTAGCGAAG CGAGATTTTG AAGAGATGCA ACCATTATAT GAATGGTTAG	60
	GTTTAACTGC TTCATTAGGT TTTGTTGATA TTGTGGATTA TGAGTATCAA AAAGGGAAAA	120
30	ACGTAATATA TATGAACATG ATATTATAAA TACAACTAAT GGACGTCTCG GTTTTGATTA	180
	TTTAATTGAT CAACTICGUTE CAACTICGGA AGGGAAATTT TTACCACAAT TAAATTACGG	240
	TATTATTGAT GAAGTGGATT CAATCATTTT AGATGCTGCT CAAACACCAT TAGTTATTTC	300
	GGGTGCACCA AGATTACAAT CAAATCTATT TCATATTGTG AAAGAGTTTG TAGATACATT	360
35	GATTGAAGAC GTGCATTTTA AAATGAAGAA GACCAAAAAA GAAATATGGC TGTTAAATCA	420
-	AGGTATTGAA GCGGCACAAT CATACTTTAA TGTTGNAGAT TTATATAGCG AACAAGCGAT	480
	GGTCCTAGTG CGTAATATTA ATTTAGCACT GCGCTCGTGC CGAATGTTCC TTGGTTCATA	540
	TAAGTCATAT CGATGTAAAA ATGTTCTTAA ATTTGGGTGC ATGATTGGAG AACAACCAGG TGGATAATCT TAGTCATTTT CAAGGGTGCA TTCCCATTAA ACTTATCATA TCGGCAAATT	600
40	CCCGCTTT	660
		668
	(2) INFORMATION FOR SEQ ID NO:216:	
	(2) Intolarition for SEQ ID NO.210:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2606 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
50	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
5 5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:	

						v	
	CCCAAATCCT	TTGAAATAAA	ACTTAATTAA	GTTCAAGAAN	TCGNGGTGAT	TTTCCCCGGA	60
5	AGTTTGTTTG	AATATTATTA	TGGATTGATT	TGATAGAGCT	TATGGACCCC	ACATTAATAT	120
	TGAAGTCCTG	GGGCCAAGTT	CACNCCCCCG	TGGGTGGAAT	TTCCTATTTG	ATCCCTAAAC	180
	CCAAACTATG	GACGTCCCAA	ATTCTAAATA	TGAAAAAATG	GCTGAGCATC	GTTTGATGAA	240
	TCATGATTTA	TATCCCGAAA	AAATAGATAA	TCGTTAAATG	TATCATTTAA	TAAACACACC	300
10	AATAAGTTGA	TTTTCCTAAC	TTATTGGTGT	GTGTTTTTCA	TTTAGCATAC	ATAATAGGTT	360
	ACATTAAAAT	AACATTTTAT	ACCCAAAGTA	CACCAAAAGA	ATATTAGTAC	ACGAATTANA	420
	CAACATTTTT	ATAGAAACCT	ATTGCACTTT	AACGTCAATA	AGTATATTTT	TATATTATCT	480
	CTAATTAATT	GTGCGCGCTT	AATAACAGAA	TATTCTCAAT	${\bf ATTTTTATTT}$	TTTTGTGATT	540
15	TGTTGGAATA	TTTAGTTGAT	AAGGCACAAT	CAAATTTACT	TAAACTATTG	TATTAGGGGA	600
15	AGAAAGGATG	GGATGTATAC	ATGACACAAC	AAAACTCCCA	TGGAAATCAA	ATTCAAGACA	660
	TACCTCAAAC	AGGATTTTTC	GGGCATCCTC	GAGGACTAGG	CGTACTCTTC	TTTGTAGAGT	720
	TCTGGGAAAG	GTTTAGTTAT	TATGGCATGC	GTGCCCTACT	CATTTTCTAC	ATGTACTTTG	780
	CCGTAACAGA	TAATGGCCTT	GGAATTGATA	AAACAACAGC	TATGTCAATT	ATGTCAGTTT	840
20	ATGGTTCATT	AATCTATATG	ACATCCAATA	CCAGGCGGAA	TGGATTGCTG	ACAGAATTAC	900
	AGGCACTAGA	AGCGCTACTT	TATTAGGTGC	AGTCTTTATT	ATTATCCGAC	ATATTTGTTT	960
	AAGCTTACCA	TTTGCATTAA	TCCGCTTATT	CACATCAATG	TTCTNCATCA	TTATTGGCTC	1020
	AGGTTTAATG	AAGCCAAACA	TTCCAAATAT	CGGTGGCCGT	TTATATCCTG	AAAATGATAG	1080
25	ACGTATGGAT	GCAGGTTGTG	TTATTTTCTA	TATGTCAGTT	AATATGGGTG	CATTATTATC	1140
	ACCTATTATT	GTGCAACACT	GTGTTAATGT	TAAAAACTTC	CACGGCGGAT	TCTTGATTGC	1200
	AGCAGTTGGT	ATGGCATTAG	GTTTAGTATG	GTATGTACTT	NACANCCGCA	AAAACTTAGG	1260
	TAGCGGTGGT	ATTGAAACCN	ACTAACCCAT	TGACNACCAG	CTTGNAAAGA	AAAAGTATGG	1320
30	TCTTTATTAT	CGGAAGTGGT	GTCTTTAGCA	ANTGTATTAA	TTATCGGTAT	TGGGGCATTA	1380
	ACTAACTCAA	TATCAANTAA	CTTAGGTAGG	AATACTGTTT	TAGTATTAGG	TATTGCATTA	1440
	CCANTCATTT	ACTTGACTTT	AATTATTAGA	AGTANAGATG	TCANNGATAC	TGNACGTTCT	1500
	CGTGTTAAAG	CATTTATTCC	ATTATTTATT	CTTGGAATGG	TGTTCTGGGC	TATTCAAGAA	1560
35	CAAGGGTCTA	ATGTATTAAA	CATATATGGA	ANTGNACATT	CAGATATGAA	ATTAAACTTA	1620
	TTTGGTTGGA	AAACANACTT	TGGTGAAGCG	ATCTTCCAAT	CAATTAACCC	ATTATTTATT	1680
	TTATTATTAG	CTCCAATTAT	TTCACTTTTA	TGGCAAAAGC	NTGGAACTAA	ACAACCTAGC	1740
	CTGCCAGTAA	AATTTGCAAT	TGGTACGTTC	TTAGCAGGTG	CGTCATACAT	ACTAATTGGT	1800
40	ATTGTAGGTT	ATGCATCAGG	TTCATCAAAC	TTCTCAGTTA	ACTGGGTTAT	TTTATCGTAC	1860
	ATTATTTGTG	TTATCGGTGA	GCTATGCTTA	TCACCAACGG	GTAATAGTGC	TGCTGTTAAG	1920
	TTAGCACCTA	AAGCATTTAA	TGCCCAAATG	ATGAGTATTT	GGTACTTAAC	TAACGCTTCT	1980
	GCACAAGCAA	TCAATGGTAC	TTTAGTTAAG	TTAATAGAAC	CACTAGGTCA	AACAAATTAC	2040
45	TTTATTTTCC	TAGGTGTTGT	TGCAATTATT	GTTACAACAA	TTTGTATTAG	CATTCTCACC	2100
	TTTAATCATC	AAAGCGATGA	AAGGTATACG	TTAATATTGT	TGGCCTAATT	CAAAAAACAG	2160
	TAAGTCATTT	AAATGGCTTA	CTGTGTTTTT	ATAGGTTTCT	ATTAATTAAA	TTCAAGATAT	2220
				ATAGACAGCT			2280
50						ATATTTTTGG	2340
						AGTAGGCTAA	2400
				CTCTTTTACC			2460
			-	ACAGCATTAA			2520
55				ATTATTAAAT			2520
	-CIAITCANI	- GAG LUMMAM	CONNOCIONC	ATTALIAMAT	A. IGCCAAGA	WI CUMMICT	2500

	AAAAACTATC CAAAAGATGT AGATAG	• •	w	2606
5	(2) INFORMATION FOR SEQ	ID NO:217:		
	(i) SEQUENCE CHARACTERISTIC	CS:		
	(A) LENGTH: 367 base pai			
10	(B) TYPE: nucleic acid			
10	(C) STRANDEDNESS: single			
	(D) TOPOLOGY: linear			
15	(ii) MOLECULE TYPE: Genom	ic DNA		
	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:217:		
	CTACGATGGC ATCTAAATCT GCGGTGTCGT	CAATAATCAG TGCTATTGNC	TGGTGGNCCT	60
20	GCNATGTGAG CAATACGCTA CCTGTCCAAA	TAAANATTTT GNGGNAGATG	CAACAAATTG	120
	GGTACCTGGA CCNACAATCT TATCAACTTT	AGGTATCGTN TCTGCNCCAT	AAGTCAATGN	180
	AGCAATACTN TGAGCACCAC CNNCTNGANA	CACTTGAGTA NCTTGCGTAA	GATAACATGC	240
25	AGCTAATACC TCTTGGGATA CTCCGTTAGG	GTGAGGTGGT GTCACANCAN	CAATATTTTC	300
25	TACACCCGCT ACTTGTGCTA AAGTACNCTG	TCATTAGANC CGTTGATGGA	TAACTTGCTT	360
	TGCCACG			367
30	(2) INFORMATION FOR SEQ	ID NO:218:		
	(i) SEQUENCE CHARACTERISTIC	cs:		
	(A) LENGTH: 1485 base pa	irs		
35	(B) TYPE: nucleic acid			
35	(C) STRANDEDNESS: single			
	(D) TOPOLOGY: linear			
40	(ii) MOLECULE TYPE: Genom	ic DNA		
	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:218:		
	GGCACGAGCG ATATTTGTCA GGAAGTTAAA	GTTCATGGAG ATAAGGCTTT	GAAAATGTAT	60
45	AATCTAACAT TCGATCATAC GAAAACAGAT	CATTTAGAAA TTAGTCATGA	ACAAATTAAA	120
	GCAGCATTTG ACACATTAGA TGAAAAAACA	AAACAAGCAT TACAACAAAG	TTATGAAAGA	180
	ATTAAAGCAT ATCAAGAAAG TATTAAGCAG	ACGAATCAAC AGTTAGAAGA	ATCAGTGGAG	240
50	TGTTATGAAA TATACCATCC AGTAGAAAGT	GTGGGTATTT ATGTGCCTGG	TGGCAAAGCA	300
30	AGTTATCCAT CAACGGTTCT AATGACAGCG			360
	ATTGTTGTTG TGACACCACC TCAACCTAAC			420
	TTATATTACG CAAGTTAATC AAGTGTTTCA			480
55	GACTTATGGA ACAGAAACGA TACCTAAAGT			540
	TGGTNGCATA TGCCCAAAAA ATATTTATTT	GGACAGGTAG GTATTGTTCC	ANATTCCAGG	600

	ACCANCAGAA	ATAGCACTTG	ATTATTGACG	ACACCGCCAG	ATGTAGATGC	CANCGNCTNT	660
	NATGTTTTTG	GGCAAGCNAG	AACATNATGA	ATTAGNACGT	CCATNTNTCA	TTGGTGAAGA	720
5	TGCGCAAGTC	CTNAAAGATT	TNGAATCACN	TATTGCTAAN	GCATTGCCTA	ATGTGGACAG	780
	ANACGACATT	GTTTCTANAA	GTATCGCNAA	TCAACACNAC	CTNATCCANN	ATNGTAATTN	840
	NGATNTGGGN	GAAGCATCNC	CANCTCATGA	ATACAATCGC	GCCTGAACAT	GCGTCGATTC	900
	AAACAGTAAA	TCCTCAACCA	GGAATTCTTG	TTGAACGAAT	AATTTCTATC	TCGTTATCAT	960
10	CGTAAGCGTC	ATTATCAACT	TGTGTTTCTT	GCATTTCTTG	TAATTCGGCA	ACAAACACTT	1020
	CTTGATCTCC	TCGATCACGG	CTCTTACGAT	TAATACGTGT	TTTATATTT	CGAACTTGTC	1080
	TTTCAAGTTT	ATTATTAATT	AAATCAATAC	CTGCGTATAA	ATCATCGTTT	CGCTCTTCAG	1140
	CTCTTAACGT	AACATTTTTC	AATGGAATTG	TTACTTCAAT	TTTAGTAGCT	GAATNTGAAT	1200
15	AAGTTTTAAC	TTTAACATGC	GCCACTGCAT	NTGGTACGTC	ATTAAAATAA	CGTTCCAACT	1260
,,	TACCAATTTN	CTCCTCAAAT	ATAGNTGCGA	ATAGCATCTT	GTGATAGGGG	AGGGNTATCT	1320
	CCAATGAATT	TNCAAATCTA	TATCATANGG	GAATCTCTCC	CTTAAACCTC	TTTATTGGTA	1380
	ACTCTTTATT	ATATTNNNAC	ATTNNNACGC	TATCGNGCAA	ACGCAAACAC	TTTGGATTCT	1440
20	CTGATATTNT	NNAGCATATT	AATTTACAAC	CCTGCACGAT	GATTG		1485
20							

(2) INFORMATION FOR SEQ ID NO:219:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1514 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

25

30

45

55

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:

ATGATGTAAA	CCCAGTTCCN	ANCTTCATCA	TTCAGTTGAT	GCAATAATGT	CACNNAAACT	60
CTACCACCAA	GATGCACCAA	TAGGTTGTCC	CTAAATGCAA	TAAGCGCCAC	CCTTTAACAA	120
${\tt TTCACCCTTT}$	TCAGGGAGGT	NATTTTAAAT	TCACCGATCC	AACAGCTAAT	GATTGTCCTN	180
CAAATGCTTC	AATTTAATTC	CAAATACATC	AATATCGCTT	AATTCTTTTT	TACTACGTTT	240
CCAAAGCCTT	TTCTACAGCG	CCAACTGGTG	CAATACCCAT	AATAGAAGGA	TCTACGCCAT	300
GACTTCCCAA	AGCCATCCAA	GCACTGCCAA	TGGTTCGATA	TTTAATTCTT	TAGCTTTGTC	360
TTCTGACATG	ACTAACATCA	TCGCAGCACC	ATCATTGATT	CCTGATGCAT	TACCTNCTGT	420
AACTGTCCCG	TCTTTTTTGA	AAGCTGGTCT	TAAGCGACTT	AATTTTTCGA	CTGATACATT	480
TTCACGGACA	CCTTCATCCT	TAGTGACTAA	GATTGGTTCA	CCTTTACGTT	GAGGAATCGA	540
TACTGGAACT	ATTTCACTAT	CAAATTCACC	ATTTTGCTGT	GCACGTACTG	CTTTATTGTT	600
GTGAGATTAC	CAGCAACATG	TATCTTTGTT	CTTCTCTTGA	AATACCATAT	TGCTCCTACT	660
AAATTTTCAG	CAGTAATACC	CATATGATAT	TGAGTAAATA	CATCTGTTAA	ACCATCATAT	720
ACCATGCTAT	CAACCATTGA	GTGATGTCCC	ATTTTAAAAC	CGAAGCGACT	GTTGTTGNCA	780
AGCATTGGTG	NCTGAGACAT	ATTCTCCATA	CCGCCAGCGA	GCACGATGCT	CATGCCCACC	840
AGTCAGCNAT	AGATTGATAT	GCTAATTGAN	TCGACTTTAA	CCCAGAGCCC	ACATACTTTA	900
TTCACTGTAA	ATGCAGGTGC	TGTTTCTGGC	AAGCCACCTT	TCATAGCAGC	AATTCGTGCT	960

GGATTTTGTC CTTGTCCTGC TTGTAGTACG TTACCGATGA TAACTTCATC AATCTCACTT	1020
GGATTCAAAC CCGTCTCTTT AATAATATGT TCTATTAAAG TCGCACCTAA ATCATAGGCT	1080
GGCACGTCTT TAAACGCACC TCCAAAAACG CCAATAGGTG TCCTGTATGC TGCTGCTAAT	1140
ACGACTCTCG TCATGTCATA TTCATCTCCT TATGATATAT ACAATTTTAT TACTAATACG	1200
TCTAATGAAC CAATACGCCA CTAACATCCA ATTTATGAAA CCAATTGCTA CGTATGTTAC	1260
ATTTTCATTC TTGTTATGCA TTTAACAAAT CATATTATAC AATGATGTAA TTTGTTTGGG	1320
CAATCGGAAA CGTAAACGGT TTCACTTTAA CATTTCACAC TCTTAAATAT GCTCTATCAT	1380
CCTCATCTAT AGTACAAAAT TATGCTTTGA TTTACCACAA ATTATCATTA ATCATTTCGC	1440
TCGTGCCTCT AATTAAATTC TTTCTATCAT TGGATCGNTA TCACAGGTGG NTTCACCACA	1500
ATTCTCATCA ATTT	1514
•	
(2) INFORMATION FOR SEQ ID NO:220:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1000 base pairs	
(B) TYPE: nucleic acid	
· ·	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:	
,	
	60
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC	60
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC TAAGACATAN CCCCTAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC	120
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC TAAGACATAN CCCCTAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAT GCTTTGTCCA TCCTTCTTGT	120 180
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC TAAGACATAN CCCCTAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT	120 180 240
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC TAAGACATAN CCCCTAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG	120 180 240 300
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC TAAGACATAN CCCCTAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG ACGGGTCGCA CTTTTATGAC CTCCAGTTGC ATAATAATCT TCTTTATTTG TTAATGTCAC	120 180 240 300 360
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC TAAGACATAN CCCCTAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG ACGGGTCGCA CTTTTATGAC CTCCAGTTGC ATAATAATCT TCTTTATTTG TTAATGTCAC CGGTCCAAAT GCATGCTGGT TAGTCCGCAC CGTCGTCTAA GGTANAAAAT ACATTCATAC	120 180 240 300 360 420
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC TAAGACATAN CCCCTAAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG ACGGGTCGCA CTTTTATGAC CTCCAGTTGC ATAATAATCT TCTTTATTTG TTAATGTCAC CGGTCCAAAT GCATGCTGGT TAGTCCGCAC CGTCGTCTAA GGTANAAAAT ACATTCATAC CACCGACTTG TCATTAAATT AAATATCGCT GAAAACCCTT CGTAGAAACG CTTTGTTATA	120 180 240 300 360 420 480
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAACC TAAGACATAN CCCCTAAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG ACGGGTCGCA CTTTTATGAC CTCCAGTTGC ATAATAATCT TCTTTATTTG TTAATGTCAC CGGTCCAAAT GCATGCTGGT TAGTCCGCAC CGTCGTCTAA GGTANAAAAT ACATTCATAC CACCGACTTG TCATTAAATT AAATATCGCT GAAAACCCTT CGTAGAAACG CTTTGTTATA TGATAAGGCT GTACGCTTAA CAATCCTTTT TCACCTTGTA ATTGATACTG ATTAATCAAC	120 180 240 300 360 420 480 540
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAACC TAAGACATAN CCCCTAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG ACGGGTCGCA CTTTTATGAC CTCCAGTTGC ATAATAATCT TCTTTATTTG TTAATGTCAC CGGTCCAAAT GCATGCTGGT TAGTCCGCAC CGTCGTCTAA GGTANAAAAT ACATTCATAC CACCGACTTG TCATTAAATT AAATATCGCT GAAAACCCTT CGTAGAAACG CTTTGTTATA TGATAAGGCT GTACGCTTAA CAATCCTTTT TCACCTTGTA ATTGATACTG ATTAATCAAC GTTTCAACAG CATCTTTCCT TAAGAAAGTT ACATCAGCAT CTACAAAGGC AATACGATTC	120 180 240 300 360 420 480 540
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC TAAGACATAN CCCCTAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG ACGGGTCGCA CTTTTATGAC CTCCAGTTGC ATAATAATCT TCTTTATTTG TTAATGTCAC CGGTCCAAAT GCATGCTGGT TAGTCCGCAC CGTCGTCTAA GGTANAAAAT ACATTCATAC CACCGACTTG TCATTAAATT AAATATCGCT GAAAACCCTT CGTAGAAACG CTTTGTTATA TGATAAGGCT GTACGCTTAA CAATCCTTTT TCACCTTGTA ATTGATACTG ATTAATCAAC GTTTCAACAG CATCTTTCCT TAAGAAAGTT ACATCAGCAT CTACAAAGGC AATACGATTC GTACATGCAT GCGTCACACC TTGATAACAA GCATGTGATT TCCCCATACC ATTTGCCGTC	120 180 240 300 360 420 480 540 600
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAACC TAAGACATAN CCCCTAAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG ACGGGTCGCA CTTTTATGAC CTCCAGTTGC ATAATAATCT TCTTTATTTG TTAATGTCAC CGGTCCAAAT GCATGCTGGT TAGTCCGCAC CGTCGTCTAA GGTANAAAAT ACATTCATAC CACCGACTTG TCATTAAATT AAATATCGCT GAAAACCCTT CGTAGAAACG CTTTGTTATA TGATAAGGCT GTACGCTTAA CAATCCTTTT TCACCTTGTA ATTGATACTG ATTAATCAAC GTTCCAACAG CATCTTTCCT TAAGAAAGTT ACATCAGCAT CTACAAAGGC AATACGATTC GTACATGCAT GCGTCACAC CTTGATAACAA GCATGTGATT TCCCCATACC ATTTGCCGTC AGTATCATCA ACAACATCTA CTACAAGTCG ACCATATGAA CGTGCTACAC GTGCTGTTTC	120 180 240 300 360 420 480 540 600 660 720
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC TAAGACATAN CCCCTAAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG ACGGGTCGCA CTTTTATGAC CTCCAGTTGC ATAATAATCT TCTTTATTTG TTAATGTCAC CGGTCCAAAT GCATGCTGGT TAGTCCGCAC CGTCGTCTAA GGTANAAAAT ACATTCATAC CACCGACTTG TCATTAAATT AAATATCGCT GAAAACCCTT CGTAGAAACG CTTTGTTATA TGATAAGGCT GTACGCTTAA CAATCCTTTT TCACCTTGTA ATTGATACTG ATTAATCAAC GTTTCAACAG CATCTTTCCT TAAGAAAGTT ACATCAGCAT CTACAAAGGC AATACGATTC GTACATGCAT GCGTCACACC TTGATAACAA GCATGTGATT TCCCCATACC ATTTGCCGTC AGTATCATCA ACAACATCTA CTACAGTCGC ACCATATGAA CGTGCTACAC GTGCTGTTTC ATCTGTCGAT CCGTCATTCA TAACAATGAC ATCTACTGGA ACTTGCTGTT GTATTATCGA	120 180 240 300 360 420 480 540 600 660 720
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC TAAGACATAN CCCCTAAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG ACGGGTCGCA CTTTTATGAC CTCCAGTTGC ATAATAATCT TCTTTATTTG TTAATGTCAC CGGTCCAAAT GCATGCTGGT TAGTCCGCAC CGTCGTCTAA GGTANAAAAT ACATTCATAC CACCGACTTG TCATTAAATT AAATATCGCT GAAAACCCTT CGTAGAAACG CTTTGTTATA TGATAAGGCT GTACGCTTAA CAATCCTTTT TCACCTTGTA ATTGATACTG ATTAATCAAC GTTTCAACAG CATCTTTCCT TAAGAAAGTT ACATCAGCAT CTACAAAGGC AATACGATTC GTACATGCAT GCGTCACACC TTGATAACAA GCATGTGATT TCCCCATACC ATTTGCCGTC AGTATCATCA ACAACATCTA CTACAGTCGC ACCATATGAA CGTGCTACAC GTGCTGTTTC ATCTGTCGAT CCGTCATTCA TAACAATGAC ATCTACTGGA ACTTGCTGTT GTATTATCGA ATGTAGTAAA TGACCTATTC TTTTTTCTTC ATTTCTAGCC GGAATAATAA TTGTTAATGC	120 180 240 300 360 420 480 540 600 720 780 840
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAACC TAAGACATAN CCCCTAAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG ACGGGTCGCA CTTTTATGAC CTCCAGTTGC ATAATAAACT TCTTTATTTG TTAATGTCAC CGGTCCAAAT GCATGCTGT TAGTCCGCAC CGTCGTCTAA GGTANAAAAT ACATTCATAC CACCGACTTG TCATTAAATT AAATATCGCT GAAAACCCTT CGTAGAAACG CTTTGTTATA TGATAAGGCT GTACGCTTAA CAATCCTTTT TCACCTTGTA ATTGATACTG ATTAATCAAC GTTCCAACAG CATCTTTCCT TAAGAAAGTT ACATCAGCAT CTACAAAGGC AATACGATTC GTACATGCAT GCGTCACACC TTGATAACAA GCATGTGATT TCCCCATACC ATTTGCCGTC AGTATCATCA ACAACATCTA CTACAATGCA ACCATATGAA CGTGCTACAC GTGCTGTTTC ATCTGTCGAT CCGTCATACA TGACCATTCA TAACAATGAC ATCTACTGGA ACTTGCTGTT GTATTATCGA ATGTAGTAAA TGACCTATTC TTTTTTCTTC ATTTCTAGCC GGAATAATAA TTGTTAATGC TTTTTTTCTTC ATTTCTAGCC GGAATAATAA TTGTTAATGC TTTTTTTTTT	120 180 240 300 360 420 480 540 600 720 780 840 900
GGCACGAGCT CAAGTAAAGT GCTACCATTT TTCTTACAGA CATTTGCCGA NATCTTAAAC TAAGACATAN CCCCTAAAAAT ACTCNCTANA GNACCGNACA ACCNCAACAC AATTCCTGTC ATGATCTTAG GCTTTGTGCC ACCTNCCCCA GTTGNCAAAAT GCTTTGTCCA TCCTTCTTGT AATGACTGAA ATCCTTCTTG ATACATNCGA AATGCAACAA ATGGAAATCC TTCATAAACT GTTACGGGCA ATGATTGTGA AGTAGATGCA CTTCCTAAAG CAAATCCTTC AATAAAAATG ACGGGTCGCA CTTTTATGAC CTCCAGTTGC ATAATAATCT TCTTTATTTG TTAATGTCAC CGGTCCAAAT GCATGCTGGT TAGTCCGCAC CGTCGTCTAA GGTANAAAAT ACATTCATAC CACCGACTTG TCATTAAATT AAATATCGCT GAAAACCCTT CGTAGAAACG CTTTGTTATA TGATAAGGCT GTACGCTTAA CAATCCTTTT TCACCTTGTA ATTGATACTG ATTAATCAAC GTTTCAACAG CATCTTTCCT TAAGAAAGTT ACATCAGCAT CTACAAAGGC AATACGATTC GTACATGCAT GCGTCACACC TTGATAACAA GCATGTGATT TCCCCATACC ATTTGCCGTC AGTATCATCA ACAACATCTA CTACAGTCGC ACCATATGAA CGTGCTACAC GTGCTGTTTC ATCTGTCGAT CCGTCATTCA TAACAATGAC ATCTACTGGA ACTTGCTGTT GTATTATCGA ATGTAGTAAA TGACCTATTC TTTTTTCTTC ATTTCTAGCC GGAATAATAA TTGTTAATGC	120 180 240 300 360 420 480 540 600 720 780 840
	GGCACGTCTT TAAACGCACC TCCAAAAACG CCAATAGGTG TCCTGTATGC TGCTGCTAAT ACGACTCTCG TCATGTCATA TTCATCTCCT TATGATATAT ACAATTTTAT TACTAATACG TCTAATGAAC CAATACGCCA CTAACATCCA ATTTATGAAA CCAATTGCTA CGTATGTTAC ATTTTCATTC TTGTTATGCA TTTAACAAAT CATATTATAC AATGATGTAA TTTGTTTGGG CAATCGGAAA CGTAAACGGT TTCACCTTTAA CATTTCACAC TCTTAAATAT GCTCTATCAT CCTCATCTAT AGTACAAAAT TATGCTTTGA TTTACCACAA ATTATCATTA ATCATTTCGC TCGTGCCTCT AATTAAATTC TTTCTATCAT TGGATCGNTA TCACAGGTGG NTTCACCACA ATTCTCATCA ATTT (2) INFORMATION FOR SEQ ID NO:220: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1000 base pairs

(2) INFORMATION FOR SEQ ID NO:221:

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 1047 base pairs	
	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10		
,,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:	
	GGCACGAGCT ATATCCAATT GGGGTAAAGC GGGTAAAGAC CAAGAGAAGA ATTTAAGAAG	60
15	ACATTAGCAG AAATTGAAAG GACACCGGCA CGAGCTAGCG CAACAAGTTT AGCGATTGAA	120
	GCATTTGGTG CAAAAGCAGG TCCTGATTTA GCAGATGCTA TTAAAGGCGG TCGCTTTAGT	180
	TACCAAGAGT TCTTAAAAAC TATCGAAGAT TCGCAAGGAA CGGTCAATCA GACATTTAAA	240
	GATTCTGAAA GTGGCTCCGA AAGATTTAAA GTAGCAATGA ATAAACTTAA ATTAGTAGGT	300
20	GCTGATGTAT GGGCTTCTAT TGAAAGTGCG TTTGCTCCAG TCATGGAAGA ATTAATCAAA	360
	AAGCTATCTG TAGCAGTTGA TTGGTTTTCA AGTTTAAGTG ATGGATTTAA AAGGTCGATT	420
	GTTATATTCG GTGGTATTGC TGCTGCAATT GGCCCTGTAG TTTTTGGGAT TAGGTGCATT	480
	CATAAGCACA ATTGGCAACG CAGTAACTGT TTTAGCTCCA TTATTAGCTA GTATTGTAAA	540
25	GGCTGGCGGA TTGATTAGTT TTTTATCAAC TAAAGTGCCT ATTTTAGGAA CAGTCTTCAC	600
23	AGCATTAACT GGTCCAATTG GTATCGTGTT AGGTGTACTG GCTGGTTTAG CAGTCGCATT	660
	TACAATAGCT TATAAGAAAT CTGAAACATT CAGAAATTGT GTTAATGGTG CAATTAACAG	720
	TGTTAAACAA ACGTTTAGTA ATTTCATTCA ATTTATCCAA CCTTACATTG ATTCCGTTAA	780
	AAACGTCTTT AAACAAGCGG TTTCAGCAAT CGGTGATTTC GCTAAAGATA TTTGGAGTCA	840
30	AATTAATGGA TTCTTTAATG AAAACGGAAT CTCTATTGCA CAAGCGCTTC AAAATATATG	900
	CAATTTTATC AAAGCTATAT TTGAATTTAT CTTAAAATTT TGTAATTAAA CCAATCATGT	960
	GTGCGATTTG GCAAGTGATG CAATTTATTT GGCCGGCGGC TAAAGCCTTG ATCGTCAAGT	1020 .
	ACTTGGGAGA ATATAAAAGA GTAATAC	1047
35		
	(2) INFORMATION FOR SEQ ID NO:222:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 1526 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
45		
	(ii) MOLECULE TYPE: Genomic DNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:	
	TOO SOME SALES TO SOLE THE SALES OF SALES	60
	GGCACGAGCG GTACGAGTTC ACTGTTAATC TGCACTTCAA TGTGATTATG ATCTGAGTTA	120
	TCCTGCATTT CGTAACCGAT AGCGATGTTT GTTACTTTTT CAAAATTAAT ATCACTATTG	180
55	TTCGCTAAGC TTGAACGTAC AGACTCTAAT TTCGGCAACG TTTTATTATC CTCACTATTT	240
-	AACACAACGT CGGTGCGCAA TAACGAACGA CGATAATCAA AGACGCCTTT TTCACCCCAA	240

	GTGACTTGAA TTTGATTAGA GCCTTCTTTA TTAAACGTTG GATAACCGTT AAGGAAACGT	300
	TGATATGTTA ACTCGCCTGA CTGATGGCAT TCGTACTAAA CAATCTGAAG TCTTCGTTTA	360
5	AGAAACCACC ATGACCATTA ATAAAATCAA AGGTTCCTGG AATCGTTTCT TCCATTGTGC	420
	TGGAACTTGC TTCATCTTCG GACAGGTTTT TATAATGATA TTTCNCATTT TTATCGTTAT	480
	AGTGTGNGAC ACCTGTATTA TTGNTGTAGG TTGTAACACC ACTCTNTGAN CTACGAACGA	540
	TGGNTGANTC GACAAATAGT ATAGCATNCA TTTTCTCAAC ACTAATCGTG TTAAATACCA	600
10	TGCGATATGT TTTTANCTTN NCAGGTTTAC CTTGGGTGCA AAAACATGCG TCGNACGATC	660
	AATTGTATCT NTGTGTGTGA TGATATCTTG TGTATGGGTT GCATATCTTT TCACACTGCT	720
	GCTTAATGCA TCTTAAAAAA TGNATCATTT CGCGGTGGTA GNTGNTTAAT TTTACGGTAA	780
	TCGGGGCGGT CTTTACTTAT AGCATAAAGC ACGATATTAT CATCAGCATC ATGATCTATG	840
15	ACTAAACGAT TGAAATTGAA ATGATTTGGT ACTTTCGCAT TCAATGTTCA NGAACTTGGC	900
	CAAGATATGT TGATAACGGT AAATCAAACG TAAAATCGAA TAATGTAAAA TCACTGCTTA	960
	AATCCGGAAT CATCAAGTTA TGATCACGAC GAACATGTTC CACGGACNTC ACTTCTTTAT	1020
	TTTTCAAAGG TTTCGTCAGT TTATTCACAT TAGATACCGT CGCAATCGTA CCTTCTGGAT	1080
20	GATCATTTTT CGAATGAATA ATCTGAAATG GCGTAATAGT TGTATCCATT TTGGCTGTCA	1140
	TAGGTGTCGT TAAAGGTTTC GTTTCACTCT TCTTACTATC TGTATTGTCG ACATTTGCAA	1200
	TATCAGGAGA AAAGTTCCAT ACCATATATG TCAATACGAC ACTCATCAAG ACGAGTAGCG	1260
	CTAAAATGAC AGATTTAATA TGTTCCTTAT TATTCATCCC AATCACCGTC TTCAATGACT	1320
25	TCACATGGAA GTGTGATAAA GATAGATGTA CCTTGACCTT CTACACTGTT TGCCCAAATA	1380
	CGACCATTGT GCGCTTCCAC AATCTCTTTC GAAATGGCTA GTCCTAATCC AGTACCACCC	1440
	ATTITACGCT CGTGCCGTNC CTTATCTACA CGATAGAATC GGGNCGGAAT ATCTTTATCG	1500
	ACTTTATTGG ATAGGAATTC CCGATG	1526
		1010
30	(2) INFORMATION FOR SEQ ID NO:223:	2020
30		1020
	(2) INFORMATION FOR SEQ ID NO:223:	1020
30	(2) INFORMATION FOR SEQ ID NO:223: (i) SEQUENCE CHARACTERISTICS:	1920
	(2) INFORMATION FOR SEQ ID NO:223:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1421 base pairs	1920
	(2) INFORMATION FOR SEQ ID NO:223:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1421 base pairs(B) TYPE: nucleic acid	
35	(2) INFORMATION FOR SEQ ID NO:223:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1421 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
	(2) INFORMATION FOR SEQ ID NO:223:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1421 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
35	(2) INFORMATION FOR SEQ ID NO:223: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	2020
35	(2) INFORMATION FOR SEQ ID NO:223: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA	60
<i>35</i>	(2) INFORMATION FOR SEQ ID NO:223: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:	
<i>35</i>	(2) INFORMATION FOR SEQ ID NO:223: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223: GGCACGAGCG AGCAATATCA AATAATAAAT CATCATCAAT AGTTCTTCCT TGGAAACGTT	60
<i>35</i>	(2) INFORMATION FOR SEQ ID NO:223: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223: GGCACGAGCG AGCAATATCA AATAATAAAT CATCATCAAT AGTTCTTCCT TGGAAACGTT CAGGGATGAT GTTGAATAAT AATGACGTAT CTAATATATG GTCATATAAA GAGAAATCAC	60 120
<i>35</i>	(2) INFORMATION FOR SEQ ID NO:223: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223: GGCACGAGGG AGCAATATCA AATAATAAAT CATCATCAAT AGTTCTTCCT TGGAAACGTT CAGGGATGAT GTTGAATAAT AATGACGTAT CTAATATATG GTCATATAAA GAGAAATCAC CAACTGGGAT GCTATCTAAG TGATAGTACT TTTTTTTTTT	60 120 180
<i>35 40 45</i>	(2) INFORMATION FOR SEQ ID NO:223: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223: GGCACGAGGG AGCAATATCA AATAATAAAT CATCATCAAT AGTTCTTCCT TGGAAACGTT CAGGGATGAT GTTGAATAAT AATGACGTAT CTAATATATG GTCATATAAA GAGAAATCAC CAACTGGGAT GCTATCTAAG TGATAGTACT TTTGTAATAA TAAATTTTCT TTATGTAGAT CAGGNAATGN ATGCATCTAN CNACTCNTCN TTAGANNTCN TCNTTGCCCA ANAACTTTCG	60 120 180 240
<i>35 40 45</i>	(2) INFORMATION FOR SEQ ID NO:223: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223: GGCACGAGCG AGCAATATCA AATAATAAAT CATCATCAAT AGTTCTTCCT TGGAAACGTT CAGGGATGAT GTTGAATAAT AATGACGTAT CTAATATATG GTCATATAAA GAGAAATCAC CAACTGGGAT GCTATCTAAG TGATAGTACT TTTGTAATAA TAAATTTTCT TTATGTAGAT CAGGNAATGN ATGCATCTAN CNACTCNTCN TTAGANNTCN TCNTTGCCCA ANAACTTTCG ATGGCTTTTC TCCATTCCCT TTCTCNACCT AATCTTGGGA ANCCTAAGTT TGATGTTTTA	60 120 180 240 300
<i>35 40 45</i>	(2) INFORMATION FOR SEQ ID NO:223: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223: GGCACGAGGG AGCAATATCA AATAATAAAT CATCATCAAT AGTTCTTCCT TGGAAACGTT CAGGGATGAT GTTGAATATA AATGACGTAT CTAATATATG GTCATATAAA GAGAAATCAC CAACTGGGAT GCTATCTAAG TGATAGTACT TTTGTAATAA TAAATTTTCT TTATGTAGAT CAGGNAATGN ATGCATCTAN CNACTCNTCN TTAGANNTCN TCNTTGCCCA ANAACTTTCG ATGGCTTTTC TCCATTCCT TTCTCNACCT AATCTTGGGA ANCCTAAGTT TGATGTTTTA ATTGTTGACA TAATATTGCC TCCTTGTGAG CAGGTAATAG ATTTNGAGTA TGCTGCAAGT	60 120 180 240 300 360
<i>35 40 45</i>	(2) INFORMATION FOR SEQ ID NO:223: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1421 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Genomic DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223: GGCACGAGCG AGCAATATCA AATAATAAAT CATCATCAAT AGTTCTTCCT TGGAAACGTT CAGGGATGAT GTTGAATAAT AATGACGTAT CTAATATATG GTCATATAAA GAGAAATCAC CAACTGGGAT GCTATCTAAG TGATAGTACT TTTGTAATAA TAAATTTTCT TTATGTAGAT CAGGNAATGN ATGCATCTAN CNACTCNTCN TTAGANNTCN TCNTTGCCCA ANAACTTTCG ATGGCTTTC TCCATTCCCT TTCTCNACCT AATCTTGGGA ANCCTAAGTT TGATGTTTTA ATTGTTGACA TAATATTGCC TCCTTGTGAG CAGGTAATAG ATTTNGAGTA TGCTGCAAGT TCTAATGAAT CTTCGACATT TNGANACGGT GTGATAATGT ATAAACCATN AAAATATTCA	60 120 180 240 300 360 420

	TNCATTATGC AAAAAGAGTG CGTCNTTGTA ACTTGCGATA GGCATAATGC CTATGAAAAA	600
	TGGNTTGNTC AAGTGCTTAG TGGCATGGTA AATTTCAATG ATTTTCTCTT TGCTGTACAC	660
5	GGGTTGTGTT ATNAAATAAG ACATTCCGCT TNCTATCTTT NTNCTCTAAT CTTNNGACGG	720
J	CACCATCTAA TTTACGAACA TCAGGGTTAA AGGCGCCAGC GATGTTGAAG TGTGTACGTT	780
	TCTTCAGCGC ATCACCCCCA GNGTTAATAC CCTGATTAAA TCTTAGAGCG AGTTCANCNA	840
	ATCCTTTAGG AATTAACATC ATAGACATTG GTTGCACCTG GTAAGTGACC AACTTTGGAA	900
10	GGATCACCAG TTATGGCTAA TATTTCGTTA ACGCCAATGA GCGATAATCC AAGTAAATGG	960
10	GACTGCAAGC CGATTAAGTT TCGGTCTCGA CATGTAATAT GTACGAGTGG NTCAATATTG	1020
	TAATATTGCT TAATTAAGCT AGCAGCAGCA ATATTGCTAA TTCTGACAGT TGCCAATGAA	1080
	TTATCTGCGA GTGTTACCGC ATCTACATTA GCTTTATCAA GTTTAGCGAT ATTTTCAAAA	1140
15	AATCTATCCG TGTCTAAATG TTTCGGTGTA TCCAATTCGA TAATAACGGT TGGACGTTCT	1200
15	TGAACCTTAG ATGTTAATGA TTGTCTAACT TTATTTTGAG ATGGATTGAA AAGTGCTTTC	1260
	GTTGGTATCG GAATCACTTT TNTGNCANTA ACAGGTTTAA GTGTCNGAAT AGATTCTTTA	1320
	ATAAATTTGA TGTGCTCTGG CGTTGTACCA CAGCAACCAC CAATTAAACG AACACCTTCG	1380
20	CGAATTAGTG CCATTNTGGN GNAACTTGAC CGAAATATTG T	1421
20		
	(2) INFORMATION FOR SEQ ID NO:224:	
25	(i) SEQUENCE CHARACTERISTICS:	
23	(A) LENGTH: 1886 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
30		
	(ii) MOLECULE TYPE: Genomic DNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:224:	
55		
	TTATTTAAAA GTATCCAATA GCCAACAATC TCTTTCATCT TTGAGTAGTA TCCCACGTAT	60
	TTCGGGATTG CATCCGAGTT GATTTTTATN ATTTTCTTCA ATGCTATCAA GCGCAGCTCG	120
40	TTTACGTCTT ACTITAGGTT TTATTTGCTC AATTGCCTTG ATTGTTTGAT TTCTAACATC	180
40	AGTAACAGCA GCATCTTGAT TTGTATTTTC TATTTCTTGT TGCGCTTGTT TGAGTGTGTC	240
	GCTAATTAAT TGATTCGCTT CATCTAATTC ATCAACTGTT GCATGTGGTG TATCTTTTAT	300
	TGATTCTACT TGATTTTCTG CAGTTGCTTT TATTGCTTGT TGTGCTTCAG GCTTAATTAC	360
45	AATATGAGGT TGCACGAGCA CCTTTTAGTG TAGCAATGCC ATTNGTTTCA ACACGTTTCA	420
45	CATCATTANT CGTGACTGCT TGATTGAGGT TTTGTAATGC AAGTTTTTCA TTATTCGCTA	480
	ATTGATTTAA AGCAACTTGT TTTTCTTCAT CAGTCNCATG TTCAGCTTGC TCTATTTCTT	540
	GCTTTTTAGC CTCATATTGT TGCTTTACTG CATCTCNAGC AGCTGCTCTA AAAATATGTT	600
50	CAGGCGCTAC TAAAGCAATG CTATCAAGCG CTTGACTTGT TGTATCATCA ACTTGTTGAT	660
30	TTGTTCTATT ATTCGTAATA TCTGTCATGG CTTGATTTAC AAATTCNTAT GNTNTTATCT	720
	AGTGCTACGT TGTCNNTCNG CCTGCTGTTG CNTCTTTATC CCTGANTAAT CGTAGCACAG	780
	TAAATCATTC GCNTGTTGGA TTGAGTTTTT CCACGTTGCC AGCTGGNGGT AACTTTTTGT	840

900

960

TTCAGGGTGA ATAATNTTAA TCGCTGATAC ACCATTTGTT CCTGCTTGAT TCACCTGACN

ATTCGTTTGA GCNTGGTCAA TANCTCCAAG TGCTTTTTCT TTTTCTTTAG CTAATGCTTG

	TGAAGCAACT TCTTTCTCAT NATCTGTTGA ATCAAGACTA TTATCAATTT GCTGTTGCTT	1020
	TTCTTTAACA GCTTTTTCAA NATCTGCAAT TGCCTTTGGT TTAATTACTA CTTCAGCTNC	1080
5	AACATTATCT ATAGCATTTA CCGCTTGATT TGTAGTTGTG TCTACCTGAT CATTTGTTTG	1140
	GTTTTGATTA ATTTGATTAA TTGCTTGATC TTTAAGTTGA GTGATTTGAT TAACAGCAGC	1200
	CTGCTTTTCT TCGTCAGTTG CATTAGGTGT TTGTTTAACC GCTTCAATAC GCTTCGCCAC	1260
	TTCAGCAGTG ATTTTATCTC GCGCTGCTTG TTTTTTTACT ACATCAACTT GAACAGCATC	1320
10	GATATTATTC TCTGCTACTG TCGCAGCTTG GTCTACTTCT GCATTTGTGT TAGCTTGTTT	1380
10	AATACTTCNA ATAGCTNGTT GTCTGTCTTG ATTTAAAGTA TAGATCGCAG CATTTNTCTC	1440
	AGCATTCGTT GCATCTGGTG TAGCATTGAT TTCAGCTAAT TTAGCATTAT AATGCTGATT	1500
	GATTTGTGCT AATGCTGCAG GTTTATTAAC AATATTTGGC TGAATCGCAT TAATTGCTTT	1560
15	TGTACCTAAT TGTTGCGCTT GATCTACTTC CGCATTTGTA TCAGCTTGAT TTATATTATT	1620
,,,	AATTGCCGTT GCTAACTCTT GATCCACTTG ATTTAAAGCC ACTTGCTTTT CTTCAGTTGT	1680
	TGCATTTGTG TTTTGATTAA TTTCTTGCTT TTTAGCAGTT GCTAAATCAT TTAATACACC	1740
	TGTAGCAGGT TGTTTCTTCG TTACATGCGG TTGACTGCGC CGATTTGATG ACTGCATCGN	1800
20	CTCTAATACT ATTGACCACC GAGTAGTAGA CGTCACACAA TATCAGTAAT GCTCTATTTT	1860
20	AGTGATTGAA ACGAATATCG GTCTTG	1886
	(2) INFORMATION FOR SEQ ID NO:225:	
25		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1381 base pairs	
	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
35	(vi) 0707777	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:225:	
	COCCOCCOCO 11 TO TO TOTAL COCTOCO 1 TO 1 COCCOCO 1 TO 1 COCCOCOCO 1 TO 1 COCCOCO 1 TO 1 COCCOCOCO 1 TO 1 COCCOCOCOCO 1 TO 1 COCCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	
	GGCACGAGAC AATATATCTA CCGTGAATAA CTGTGCAAAT AGTGAAGTTG TAGCCGCCAT	60
40	ACGCATTCA TTTTCATCAG TTCTGCCATA AATCAATGCA TAGTCGGCAA TTTGAGCCAC	120
	GTGCCGATTA TTCGGCACGA GCTGTACTAG ATATAGTTAT GATGGGAATA CTGTAATGTG	180
	TGGCCACCTG TGCAATTGAC TGCAATTCAC TATGACTACC TTGATTCGTC ACAAAAATCA	240
•	TGCAATCTCT ATCATCATGC GTCGCAAATG TTGACACAAG TAAATGCGTT TCATGTAATA ACCTGACATT TAAGCCAATA CGAGATAACT TTTGAAAAAG ATCACCAATA GTCAAACTCG	300
45		360
	ATGCGCCAAA TCCAAATAAA AATATTGTCC TGGCATTTTT CAACACATCA CAAATTGCAT	420
	CAATTTCCGC ATCCATAATA TTAGTAGCTA CAAATCGCAT CCGTATTCCG TTGCTCTAGC	480
	AATCATTTTA TTTTTCAAAG TTTCTACAGA TTCATTTTCA ATCAATTCTA AATGTGGATT	540
50	GGTTGCAATA TCTTCGGGTA AGTATCGAGA TATCGCAATC TTTAGCTCTT GAAAACCTTG	600
	ATGTGTCATT TTCCGACTAA ATCTAACAAT TGATGCTGTA CTAACATTCG TAACATCTGC	660
	CAAATCATTC ACCGTCATAT CAATGATTTT ATGTGGATTC TTTAAAATGT AATCAGCGAT	720
	TATCTTTTCT GTCTTCGTAA AATCACTCAA CTGTTTATCA ATGCGATATT AAAATATTTG	780

840

900

TCATCATTAA TCACCCAACA AATCTGTCTT GTCGCATCGC CTTTGTCGGT CCAAATAAAT

ATGTACAAAC GAATCCACCA GCATATGCAG CAAGTAATCC TGCAATATAA CCTAAATACA

	TATTATCTGA GATTAATGGT AAGAGTGACA CACCACTTGG GCCTATTGCT TTGGCACCAA	960
٠.	TATGTCCAAT TCCACCTATT ACAGCGCCAC CAATACCACC ACCAATACAA GCAGTTAAGA	1020
5	AAGGTCGAAC TAATGGGCAA AGTCACACCA TAGATTAATG GTTCTCCGAT ACCTAGGAAA	1080
	CCAACTGGCA ATGCACCTTT TAAAGTATTA CGTAATGTTG TGTTGCGTTT ACATCTTACC	1140
	CAAAGTGCTA ATGCGGCACC TACTTGTCCA GCACCCAGCC ATCGCTGCAA TTGGCAATAA	1200
	GTAAGTAGCA CCAGATTGGT TAATCAATTT CTATATGAAT TGGCGTNAAA AATATGATGA	1260
10	AGGCCCTAAC AATAACTTAA CGGTAGGAAG CTTGGTCCAA ATGATAAATC CACTTAAATT	1320
	ACGNCACCCA ATACTTAATA ATCCCCGTTA CTACTGAAAC TTAANTTGTC TTTGAAACAA	1380
	A	1381
15	(2) INFORMATION FOR SEQ ID NO:226:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 724 base pairs	
20	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	(II) Nobecone IIFE. Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	GGCACGAGCG TTTTAGTTGA TGTGTATCAC TAATATCTTT GAAAATTTTA ATCAGGTACT	60
30	ACGACAATAT GATGTCTGTT TTGTGTCTGA AAGTTTTACA GTTTTTAAAA TAAAAATGGT	120
	ATAAAGTGTG ATTTGTATAA AAAAGAGTCT CGACGGATAA GAATTGATTA ATAACAGTTA	180
	GCATTTTATT AATTACCTTA ACAATGATTC AAGTTTAGTT AAATGAGGTT TAATTTGAAA	240
35	GGGGATAGCG CCTCAATATA ATGTAGGTAG ATTGTTCATA TTACGTAATT GAAAAATCAA	300
35	ATTTAAATAN ATAGGGTGGG GCTNNAAATT ATGAAATTTA AAGCGATAGC AAAANCAAGT	360
	TTAGCATTGG GAATGTTAGC AACAGGTGTA ATTACATCGA ATGTACAATC AGTACAAGCG	420
	ANAACAGAAG TTANACAACA AAGTGAATCA GAGTTGANAC ACTATTATAA TAAACCGGTT	480
40	TTAGAGCGTA AAAATGTTAC TGGATATANA TATACTGAAA AAGGTAAAGA TTATATAGAT	540
40	GTCATAGTAG ACAATCAATA TTCTCAAATT TCTTTAGTTC GGATCTGAAT AAAGACANAT	600
	TTNAAGATGG AGACAACTCG NATATAGATG TGTTTATCCT TAGAGAAGGT GACAGTAGAC	660
	AAGCAACNAA TTACTCAATT GGTGGCGTAA CACAAACAAA CAGTCAACCT TTTATTGACT	720
45	ATAG	724
	(2) INFORMATION FOR SEQ ID NO:227:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 618 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: Genomic DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:	
	CCTTCACCAA TACGTGTANT ATCNTTATTT GGGCGNTTGT CCACTTACCC ATGTAATCGT	60
	GGCATCTGGA ATGGCACTAC CATTAGATAA CTTAAAGTAA TCTGCTGCAC TAGAACCATT	120
10	ACCTGCTGGG AAGTCTTGGC CTTGTACAGT GTAATGCGAA TGTGCAACGA TTTCTGGAAT	180
,,,	GACATGCTTT ACAGGTACAG TCACTGTTGA TGTTGTTCCA TCTTGATGAG TAACAGTTAC	240
	TGTGACATTG GCATTATTTC CAGTACGACT GACATTACTA ACTGTTTTAC TAGTGATTTC	300
	ATTTGCGCTT GCTGTTGCAT AGTTTCTATT TGGTGCATTA CTTGTAAACG TTAACGAATT	360
15	AATAATTGTC GCTTGATCAG CTTGTGATAC TGTCGCATTA TTCGAAATAT TGGCAATTCT	420
13	AACAGGATTA GCAGNCCGTT GATGAAGTAC CAACTCGATA TTTATCACGC AAAGGTTTCA	480
	CTGTTACATT GAATGAAGTT GTAGCTGTAT TACCACTNGT ATCAGTTGCT AATAAATTGA	540
	TTGTCTTACT AGTTGCTGAT GTCACATTTG GTGCCGTTGC AGAAACATGT TGATGGTTAT	600
20	TATCAACAGT CTCGTGCC	618
20		
	(2) INFORMATION FOR SEQ ID NO:228:	
25	(i) SEQUENCE CHARACTERISTICS:	
23	(A) LENGTH: 1005 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
00		
	(ii) MOLECULE TYPE: Genomic DNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:228:	
	TTGTGAGACA CACGCTTAGT GCACATGACA ATGTGAATGT TGTTGCACAA ATTATTAAAA	60
	GAAGACTTAC CACTGTTAAG TTGTATCGAG CCGAATGATA CATTTGATTT TCCACNAAAC	120
40	TAGGGAGTGT AAGAAGTGAT GGAAAATAGT AGGCCCGAGC GTAATGAAGC GACGATGCAT	180
	CTTGATGAAA TGACTGTGGA AGAGGCTTTA ATTACGATGA ATAAAGAAGA TCAGCAAGTC	240
	CCGTTAGCAG TTCGAAAGGC AATACCACAA TTGACAAAAG TAATAAAAA AACAATTGCA	300
	CAGTATAAAA AGGGTGGACG ATTGATCTAT ATCGGTGCAG GTACAAGTGG AAGATTGGGT	360
45	GTCTTAGATG CAGCGGAGTG TGTACCTACA TTCAATACTG ACCCTCATGA AATTATAGGT	420
	ATTATTGCTG GTGGACAACA TGCTATGACG ATGGCTGTAG AAGGTGCGGA AGATCACAAA	480
	AAATTAGCGG AAGAAGATTT GAAAAATATA GATTTAACAT CAAAAGATGT CGTTATAGGA	540
	ATTGCCGCGA GTGGCAAAAC GCCATATGTT ATAGGCGGTT TAACATTTGC TAACACAATC	600
50	GGTGCTACAA CAGTATCTAT TTCATGCAAT GAACATGCAG TTATAAGTGA AATTGCGCAG	660
	TATCCAGTAG AAGTTAAAGT TGGTCCAGAA GTATTAACTG GTTCANCACG TTTAAAGTCT	720
	GGTACAGCAC AAAAGTTAAT TTTAAATATG ATTTCAACCA TCACAATGGT TGGTGTCGGA	780
	AAAGTTTACG ATAACCTCAT GATTGATGTT AAAGCAACCA ATCAAAAACT GATCGACCGT	840
55	TCAGTGCGTA TTATTCAAGA AATATGTGCT ATCACATATG ATGAAGCAAT GGCGTTATAT	900
	CAGGTATCTG AGCATGATGT TGAAAGTTGC GACAGTTATG GGTATGTGTG GCATTTCTAA	960

	GGGAAGAAGC AACAAGACGG TTATTAAAAC AATGGTGACC TTGTT	1005
5	(2) INFORMATION FOR SEQ ID NO:229:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1040 base pairs	
	(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:229:	
	GGCACGAGCG ATGACAGGAA TATGATATTG TTTTGCAGCT AACGCAACGC	60
20	TTTACCAAAG ATGGTCTGAT AATCCATGCG TCCTTCTCCA GTAATAACGA GGTCTGCATC	120
	TTTAATTCTT TGATGAAAAT CTGTAATGTC AAAGACGACA TCAATACCTT TTGTTAAAGT	180
	TGTCTCACAA AACGCTAATA ATGCTGCGCC CATACCGCCA GCTGCACCAG AACCTGGTAT	240
	TTGATTATAC GGACTTTCCT GTGCACATTT TTATCTTATC	300
25	AATCCAAATT AGGTATGCAT CTTTGCATCA GCGCATTTTT GAGGACCATA AATATAGGTA	360
	GCACCATTTT CACCCAATAA AGGATTTGAA ACATCACAGG CCACTTTAAA GGTCACCTCT	420
	TTTANTCGCG AATCGGCCAG ATTGGTTATA TCGATTTGTG CAATGTGAGC AAGATTAGCA	480
	CCATTCATTT GTAATAAGTC CCCGTTTACA TCAGTAAACT TTACGCCTAG TGCACTTAGC	540
30	ATACCTGTAC CACCATCATT TGTTGCACTG CCACCAATCC CTAAAATAAT GGTCTTAGCA	600
	CCATGATTTA ATGCATCTTT AATTAGTTCA CCGGTACCAT ATGATGATGT GTATAAAGGA	660
	TTACGTTCCT CTTTTTCTAA TAAATCCAAA CCTGACGCTG CCGCCATTTC AATAATTGCA	720
	ATTTGTTGTT CGTCTGCGCG TGCATAACAT GCTTCAATAG GTCGCATTAA AGGGTCATTA	780
35	ACGATGACTG TATACTTAGT GGCANCTGNT GCATGAATTA ANGCATCTGN GGTACCTTCA	840
	CCACCATCAG GCATCGGAAT GATATCATAA TGAAGGGTAT TCCCATAAAC ATTAGTAAAT	900
	GCCTGTTTTA TAATATTGNC AACTTGGTGT GNGGNCATAC TTTCCTTAAA TGAGTCAGGA	960
	GCGATGACAA TTTGTTGGGA ATGGATGGNA GNCACCNCTC AATATGNNGG CGNTCTTTTG	1020
40	GTTTTANATT NTAGTGACTN	1040
	(2) INFORMATION FOR SEQ ID NO:230:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1291 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:230:	

						•••	
	TGTATAGGCC	TATTTGTATA	NAAAGTAATA	TGATGTTTAG	TGGCTATGTA	AGTGAAGCAA	60
5	TGTATAAATA	ATGATGAGTG	GTTTGTTACT	AATGATAATG	GCTATGTAAA	AGAGCAGTAT	120
•	TTATATTTNG	CGGGACGTCA	ACAGGATATG	${\tt TTAATTATTG}$	GTGGGCGAAA	TATATATCCA	180
	GCACATGTTG	TNCGCCTTTT	AACGCAATCT	TCGAGCATTG	ATGAAGCAAT	TATCATCGGT	240
	ATTCCACATG	AGCGTTTTGG	TCANATAGGC	GTATTGCTTT	ATTCTGGTGA	TGTGACACTT	300
10	ACACATAAAA	ATGNGAAACA	ATTTTTNAAA	AAGAAAGTGA	AACGCCATGA	AATTCCATTC	360
	GATGATTCAT	CATGTAGAAA	AGATGTATTA	CNCTGCAAGT	GGTAAAATTG	CTAGAGAAAA	420
	AATGATGTCG	ATGTATTTGA	GAGGTGAATT	ATAATATGAA	TCAAGCAGTC	ATAGTTGCAG	480
	CTAAACCGAA	CTGCATTTGG	GNAATATGGT	GGCACTTTAA	AACATTTAGA	GCCAGAACAA	540
15	TTGCTTAAAC	CTTTATTCCA	ACATTTTAAA	GAGAAGTATC	CAGAGGTAAT	ATCTAAAATA	600
15	GATGATGTAG	TTTTAGGTAA	TGTTGTTGGG	ANTGGTGGCA	ATATTGCAAG	AAAAGCATTG	660
	CTTGAAGCGG	GGCTTAAAGA	TTCAATACCT	GGCGTCACAA	TCGATCGGCA	ATGTGGGTCT	720
	GGACTTNGAA	AGTGTTCAAT	ATGCATGTCG	CATGATCCAA	GCCGGAGCTG	GCAAGGTATA	780
20	TNTTGCAGGT	GGTGTTTGAN	AGTACAAGTC	GAGCACCTTG	GAAAATCAAA	CGACCGCANT	840
20	CTGTGTACGA	AACAGCATTA	CCNGAGTTTT	TATGAGCGTG	CATCATTTGC	ACCTGAAATG	900
	AGCGACCCAT	CACATGATTC	AAGGTGCTGA	AAATGTGGCC	AAGATGTATG	ATGTTTCAAG	960
	AGAATTACAA	GATGAATTTG	CTTATCGAAG	TCATCAACTG	ACAGCGGAAA	ATGTAAAGAA	1020
	TGGAAATATT	TCTCAGGAAA	TATTACCTAT	AACCGTTAAA	GGAGAAATAT	TCAATACTGA	1080
25	TGAAAGTCTA	AAATCACATA	TTCCGAAAGA	TAACTTTGGC	CGATTTAAGC	CCGTAATCAA	1140
	AGGTGGGACC	GTTACCGCTG	CGAATAGTTG	TATGAAAAAT	GATGGTGCAG	TTTTATTGCT	1200
	TATTATGGAA	AAAGATATGG	CATACGAATT	AGGTTTCGAG	CATGGTTTAT	TATTTAAAGA	1260
	ATGGTGTTAC	GGTAGGTGTT	GATTCTAATT	T			1291
30							
	(:	2) INFORMAT	ION FOR SEQ	ID NO:231:			
	(i) :	SEQUENCE CHA	ARACTERISTIC	es:			
35	(A)	LENGTH: 55	7 base pair	cs			
	(B)	TYPE: nuc	leic acid				
	(C)	STRANDEDNE	ESS: single				
	(D)	TOPOLOGY:	linear				
40							
	(ii)	MOLECULE 1	TYPE: Genomi	ic DNA			
	(xi)	SEQUENCE DE	ESCRIPTION:	SEQ ID NO:2	231:		
45							
	CATTCATCTA	ACCTNTTCAT	CAGTTGAGTG	ATTTTAATCT	ATCCTTCAAA	AGTTNGNGGA	60
	TCAGGTCCAA	TTCTCTTATC	TAGATTTAAA	CCAGGCACGA	GCGTCATTTG	TTCATCTGAT	120
	AATTCGAAAT	CAAATATTTG	GAAGTTTTCA	GAGATTCTGT	TTGGTGTTAC	CGATTTAGGG	180
50	ATTATAACCA	CACCATGCTG	CACATTCCAT	CTTAAAACAA	CTTGGGCAGG	TGACTTTCCT	240
	AATTCTTGAG	CAATGTCTTT	AATTGTCTCA	TCATTTAAAA	TTTGTGCATT	CATCAATGGT	300
	GACCAAGATT	CCATCACGAT	ATGTTGTGCT	GCCAAATATA	ATTTCAATTT	ATGTTGCGTT	360
						TGCCAACAAA	420
55						TATTATTTT	480
							-

	ATATAAATCT TCCATACCTT TCCATGTTAT CAACCATTAC GGCTTCGTTC GTGCCTGGCC	540
	AATGTTACTA RRDCTNS	557
5		
	(2) INFORMATION FOR SEQ ID NO:232:	
	()	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 904 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(5) 1010001. 1111001	
15	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:232:	
20	GGCACAATTC GGCACGAGCG TTGGTATGTA GAATATGATG GTGAATGGTA TGTGTATAAC	50
	GATGGGAGGC TTGAATAAAT GAACTGGAAA CTGACAAAGA CACTTTTCAT TTTCGTGTTT	60 120
	ATTOTTGTCA ACATCGGGTT AGTATCGATT TATGTTAATA AAGTCAATCG CTCACACATT	180
	AATGAAGTTG AGAGTAACAA TGAAGTTAAT TTTCAGCAAG AAGAAATTAA NGNACCGGCT	240
25	AGTATATTGA ATAAATCAGG TAAAGGTATA AAATGAGAGC AAATTACAGG GCGATCAAAA	300
	GACTITAGIT CTAAAGCTAA GGGCGATTCG GATTTGACCA CATCAGATGG TGGAAAATTA	360
	TTGAATGCGA ACATTAGTCA ATCGGTAAAG GTCAGTGACA ATAACTTAAA AGATTTGAAA	420
	GATTATGTTA ACAAACGTGT GTTCAAAGGT TCAGAATATC AATTAAGTGA AATTAATTCT	480
30	GGTTCTGTAA AATACGAACA AACGTATGAT AATTTCCCGA TTTTGAACAA TAGTAAAGCG	540
	ATGTTGAACT TTAATATAGA AGATAACAAA GCGGCTAGTT ATAAACAATC AATGATGGAT	600
	GACATTAAGC CCACAGATGG TGCAGATAAG AAGCATCAAG TTATTGGAGT GAGAAAAGCA	660
	ATCGAGGCAT TATAGTATAA TCGTTACTTG AAAAAAGGTG ATGAAGTCAT TAATGCTAGA	720
35	CTCGGTTACT ACTCAGTCGT GAACGAAACG AATGTTCAAT TGTTACAACC AAACTGGGAA	780
	ATTAAAGTGA AGCATGACGG TAAGGACAAA ACGAATACTT ACTATGTCGA AGCGACAAAT	840
	AATAACCCTA AAATTATTAA TCATTAATAT GAATCGTAAT AAGCTAGTAT TGCAAGCTCG	900
	TGCC	904
40		
	(2) INFORMATION FOR SEQ ID NO:233:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 699 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
50		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:233:	

	TTGTACCAÇC ACAGTTGTCA CGGAGACCAT AAAGATGCCG AGGAGTAAAA GTAAAAAGAA 60	
	CCAAATAGAA TTGATACCAG CGGCTGATAT GTTAAACTTG TTAGGGTTTG AATTACAACC 120	
5	AACTAATGAT GGATTGATTA TTCATCCGTC AAGAATTTAA AACAAATGCA ACAGTTGATA 180	
_	GTTTAACTGA TCATCGAATA GGAATGATGC TTGCAGTTGC TTCTCTACTT TCAAGCGAGC 240	
	CTGTCAAAAT CAAACAATTT GATGCTGTAA ATGTATCATT TCCAGGATTT TTACCAAAAC 300	
	TAAAGCTTTT AGAAAATGAG GGATAATATA AAATGGAAGA TATCTATAAA TTAATAGACG 360	
10	ATATCAATCT ACAAAAACTA GAAAATTTAG ACTCTCGTGT TAATGAAGCA ATAACTACTG 420	
	ACAACGATGA CGCATTATTT ATTCTAGGAG AGACACTTTA CAATTTTGGA TTAATGCCAC 480	
	AAGGTTTGGA AGTATTCCGC TCGTGCCATA TCNCAAATAT CCAGNCGANA GTGANGTGCT 540	
	GATTTATTTT ATTGAAGGTT TAATGTCTGA NAATCAACCT GCCGAAGCGT TAGAANANTT 600	
15	AAGTTATGTT GATCCATCAC CTGCNNAGTT GATGTTNAAG AAATAGTTTT GCGANNTGAT 660	
15	TATCTAAAAC AGTATTCAGA ANTTATTTGG TAGAAAATA 699	
	(2) INFORMATION FOR SEQ ID NO:234:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 654 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:234:	
	CCAAACAACC TATCCTTCAA ACAATTATCC AATATTTGTT GAACATGGTG CAATTGACCA 60	
	TATTAGCACG TATATTGATC AGTTTGATCA AAGTTTTATA TTAATTGACG AGCATGTAAA 120	
35	TCAATATTNT GCTGAAAANT TTGATTGAAA TTTTAATCAA ATTGAAAATG TCCATAAAGT 180	
	TCATTAATCC NAACCTGGTG AAAAAGACGG AAAACATTTG ACCAATATCA AAGAAACATT 240	
	AGAATACATT NTGGTCACAT CATGTAACGC GTAATACAGC GATTATAGCT GTTGGTGGTG 300	
	GTGCGACAGG AGATTTTGCA GGATTTGTAG CAGCAACACT ATTAAGAGGT GTCCATTTTA 360	
40	TACAAGTTCC TACAACGATT TTGGCGCATG ATTCTAGTGT TGGCGGTAAA GTGGGTATTA 420	
	ACTCAAAACA AGGTAAAAAC CTTATCGGTG CATTTTATCG TCCAACTGCT GTGATTTATG 480	
	ATTTAGACTT TTTAAAGACG TTACCATTTG AGCAAATATT AAGTGGCTAT GCAGAAGTTT 540	
	ATAAGCATGC GTTATTGAAT GGTGAATCAA CGACGCAAGA AATCGAACAG CACTTTAAAG 600	
45	ATAGAGAGAT ATTACAGCCA TTAAATGGTA TTGGATAAAT ATATTGCTAA AGGT 654	
	(2) INFORMATION FOR SEQ ID NO:235:	
50	(i) CEOUPNEE CHARACTERISES.	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 880 base pairs	
	(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: Genomic DNA	
5	(42, 44, 44, 44, 44, 44, 44, 44, 44, 44,	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:235:	
	,	
	CTAACTITCG CTTTTCTTT TTCTTCAATG TCTTGCACTT GTCTTTCAAC AATGTTAAAT	60
10	CTTTGTTGTA AACCTGCTTT TTCTGTTTCT AGTTGTTTGA TGTCTTCCAT ATCAATATTT	120
	GGATCTGTTG CTTTCTGACT CAATTCATCA TTTTTATTTT TTAATTGNTG TCCAATCATA	180
	CCTAAGGATT GTTTNAATTC ATATAATGTC GGCATNTCAT TTCCTCCTAA TAANTCATTG	240
	TCATTTTTAA AATTTCGCAT TCGAGCGTAC AATNTNNTCT CTNTNNTCTT NCTCTTCTAG	300
15	CGACATACTT TCTTTAGGTG GTTTCAACCA ATCCAGATCG TATCTNACAT CATCAATTTT	360
	AGTGATTTTN TCTACATCTT TCTTTAAATC TTCTGGGACN TTCTCNAAAC GCCTACATTG	420
	CTCTTTAGAG ATACTAGCAG CTATTTCATT AGCTCCTAAA ATTTCATCTA TCAAGCCGAA	480
	AGACAAGGCT TCTTCTGCAG TAAGCCAAGT TTCTGCATCT AACATCTGTT TTAAGTGTTC	540
20	TTGATCTAAA TCTNTTGNTT TATCTAAATA AGCTGAATTA CTAACAGCAT CTGTTTTTTC	600
	AAGTAAATCC GCTGTCTTTC TTAATTCTTC TGCATTACCT ACAGTCATAA CCCATGAATT	660
	ATGAATCATT AAAAAACTAT TNNTGGGGCA TAAAAATAGT GTCACCACTC ATAGGGATAA	720
	CAACTAGCAA TTGGATGCCG CTAAGGCATC GACATAGATA TTANTTNNTG GAGGATGCAT	780
25	TTNTAGCATA TTGGNTTTTT GGATGNTCCN CAAATACANT GGCTCCAGAT GAATTTATAT	840
	TGAACAACTT TTTCAACTGA TGTCTCCNNG GTCAACTTAG	880
	(D) THEORY FOR THE TO NO 226	
	(2) INFORMATION FOR SEQ ID NO:236:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 830 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:236:	
	AGTATTTTT TGACCGAGAC ATGCAAGCCC TCCTGGTTGA TTATCATTTA CATATCGTAT	60
	CATAACCAAT CATAAACAAT AGTTTTATTA ACTTGTAGAC ACAATGTTTG CTAAAGTCAT	120
45	TTTTAAAAAA TATAGCCAAA AAATTAGCTA TATATTATAA AAGCGTGATA TAAATGTTTT	180
	ATATAACAAA GAAATAAAAA TCATTTTTTA CAAATGGTTG TAAGAAAAAG ACATGCAGAT	240
	GTTGTTAAAA TTTTAATAAG AATCAAGGAG GCTATATTAT ATGGCTAAAC TAAATGTAGA	300
	AGTATTTGCG GACGGTGCAG ATATTGAAGA AATGAAAGCA GCTTATAAAA ACAAACAAGT	360
50	GGATGGTTTT ACAACAAATC CTAGTTTAAT GCCGAAAGCG GCCGTAAGCA GATTACAAAG	420
	CTTTTGCTGA AGAAGCTCGT GAAAGAAATT CCAGATGCTT CAATTTCATT TGAAGTATTT	480
	GCAGACGATT TAGAAACTAT GGAAAAAGAA GCAGCAATTT TAAAACAATA TGGCGAAAAT	540
	GTATTTGTTA AAATTCCTAT TGTAAATACA AAAGGTGAAT CAACGATTCC TTTAATTAAA	600
<i>55</i>	AAACTTTCAG CTGACAATGT GAGATTAAAC GTTNCGGCTG TTTACACAAT TGAACAAGGT	660

	AAAGAAATAA CTGAAGCAGT AACTGAAGGT GTGCCCAACA TATGTTTCAG TATTTGCAGG	720
	ACGTATTGCA GATACAGGCG TAGATCCATT ACCATTAATG AAAGAGGCTG TAAAAGTTAC	780
5	GCATAGTAAA GACGGCGTTA AATTATTATG GGCAAGTTGC CGCTCGTGCC	830
	(2) INFORMATION FOR SEQ ID NO:237:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 789 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(II) MODECODE IIFE: GENOMIC DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:	
20		
	NTTAATTTTA AAATGTACAA TGATATNTGT GAAAGCGCTT GCTTAGGAGG TGTATNTGAG	60
	AGTGAATGAA ATGAATGCTA AAGAACNATT AGTGGACNAT TTAATGAAAA CATCATCGCA	120
	ATTATTTAAA TTNCACGGTG AAGTTGNCAT GCAGCTTNTC TTAAATGATG AATTAAAATT	180
25	ACCTTCTATT GNTGAAATAT GCGTGGAACG TAAGCGTTTA AGTGATATTG TGAAAGTTAT	240
	TCCGCAATCA TATGCGTTAC TATACATAGA TAAGCAAGAT CAAGCAAGAG CTAAAGANNA	300
	TTTATCACTT NCAAAAATTG CAAAAGTTTA TGTGCAATAT GATGATACAA CAATAATGAG	360
	TATTTTCGTT TATGATGTAG TAAACGATGA ATGGATTTTA AGATTGGATC CGAATATACG	420
30	TATACCTAAG AGTAACATAT ACTTCCATAG TTTAAATTGG GATGTGGATT ATATTAAACC	480
	GGAGATCGTT CTAATGTATG ATCTAATGCA ACACCATCAG TATCATCATT ATTCCAATTA	540
	TAAACGAGTC ATAGATGCNT TAAGCTACTA TCAATTTTTT ATTTTAAAAT TTGTAGTAGG	600
	TGAGCNACGT ATTAAGGATG CAATCCAGAA GAACAATAAA TAATTAAGAA AAAGCAATTC	660
35	ATAACGCAGT TGAATACATG TGTTACGAAT TGCTTTTATA TTAGTTTTTA TCACACAAGT	720
	TTTTTAATGC AACNCCGTGA TAGCAAAACT CATATGTAGA TAATACAGCT TTTTCAGCAT	780
	CATCTACAT	789
40		
40	(2) INFORMATION FOR SEQ ID NO:238:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 605 base pairs	
45	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(2) Tot obodi. Illicat	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:238:	
55	ATATTCGAGA CGACCCTAAN TAATTGTGTT GTCTGTCATA CTGGGNCANG ATTTGTGTGN	60

	CTANATACNA CTNATCATTA GCANTAGATT GTTTATATGT TGTTGAGTGG CAAAATTGTT	120
	GTGGTGCGTG TGGGGTTGCN TGCTGAGATG AGTGAGTATA TTGTTGAGTA TTATATGGCT	180
5	CTGGTGTTGG GTGTTGCGCC TGTGGCACGT TAGNCTCGAG CCGCTGGGTG TGTATTATCA	240
	TCAGTTTTCT TCTGAGTATC ATCTGAGNTA TCTTGAGATG CATTGTCATC CTTATCTTTC	300
	GACTCATCCT NTGATGCTTT ATCATCATTC TCNTCTTTAG CAGGACGTTG CTTTGTAGGT	360
	GCTTGTTGCT GAGGTGGCAC ATATTGATAT TGATTCTGCT GTGGCAATTG CTGATATTGG	420
10	TTTGCTTGTG AATCTAGCTC AGCCTGCTTT TTTTCCTCTT GTTGCTTTNN CTTTCTCTCT	480
	TTATCTGCAA TTTCTTTTTG ACGCTTTTCT TTTTGTTCCT GCTTTTTGTT CGTTCAACAT	540
	ACGTTCTTTA GCTTTATTCG AATGAATCTA CATATGCAAA AATTGCAAAT ACTAAATCCT	600
	CCCGA	605
15		
	(2) INFORMATION FOR SEQ ID NO:239:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 683 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25		
	(ii) MOLECULE TYPE: Genomic DNA	
	(will appropriate percentage and to Mo. 220.	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:239:	
30	GGCACGAGAC TGGTGGAGGT TCAGGTAACT CGCCGGCACG ATTAATGCCT GATAAAATAT	60
	TGGATTTAAA GTATAAGTTG CGTGTTAATA ATGTACCGAC ACCAAGAACA GTAACATTTA	120
	ATGATACATT AACATATAAA ACATATACAC AAGATTTTAT TAATTCACCT GCTGAAAGTC	180
	ATACTGTAAG TACAAATCCA TATACAATCG ATATCATCAT GAATAAAGAT GCATTACAAG	240
35	CCGAGGTTGA TAGACGCATG GCAACAAGCT GATTATACAT TTGCATCATT AGATATCTTT	300
	AATGATCTTA AAAGACGTGC ACNAACGATT TTAGATGAAA ATCGTAACAA TGTACCATTA	360
	AATAAAAGAG TTTCTCAAGC ANATATTGAT TCATTAACTA ATCAAATGCA ACATACGTTA	420
	ATTCGAAGTG TTGATGCTGA AAATGCNGTT AATAAAAAAG TTGACACAAA TGGAAGATTT	480
40	AGTTAATCAA AATGATGANT TGACAGATGA AGAAAAACAA GCNGCAATAC AAGTTATCGA	540
	GGAACATAAA AATGAAATAA TTGGTAATAT TGGTGACCAA ACGACTGATG ATGGCGTTAC	600
	TAGAATCACA AGATCAAGGT ATACAGACCT TAAGTGGGGA TACTGCAACA CCGGTTGTTA	660
	AACCAAATGC TAGGAAAAGC AAT	683
45		
	(2) INFORMATION FOR SEQ ID NO: 240:	
	<u> </u>	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 932 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
55		

	(ii) MOLECULE TYPE: Genomic DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:	
	TGATGATTAG ATAAATTGAA ACAACAACGT ATTGAGTTGA ATGAACAAAT CGATGCGCAG	60
	GAAGCTACAT ACAAGTTTGT CACCAAGATA TTTTAGCTAT CGAAAATCAC TACCAAGATA	120
10	TTAAAGCTGA ACAATCAAAG TTAGGATGTA TTAATTCATC ATGCGATAGA TCATTTAAAT	180
	GATGAATATC AATTGACTGT TGAACGTGCG AAATCTGAAT ATACGAGTGA TGAATCGATT	240
	GACGCATTAC GTAAAAAAGT TAAGTTAATG AAGATGTCCG ATTGATGAAC TAGGTCCTGT	300
	AAACTTAAAT GCAATTGAAC AATTTGAAGA GTTAAATGAA CGTTATACAT TTTTAAGTGA	360
15	ACAACGTACA GATCTTCGTA AAGCTAAAGA AACATTAGAG CAAATTATAA GTGAAATGGA	420
,,,	TCAAGAGGTT ACTGAAAGAT TTAAAGAAAC TTTCCATGCT ATTCAAGGAC ATTTTACAGC	480
	TCGTGCCCAA ACAATTGTTT GGTGGAGGCG ATGCAGAATT GCAATTAACT GAAGCCGATT	540
	ATTTAACAGC TGGTATTGAT ATTGTGGTAC AACCACCGGG TAAAAAGTTG CAACATTTAT	600
20	CGTTACTGAG TGGTGGTGAG CGTGCATTAA CTGCTATTGC TTTACTATTT GCAATTTTAA	660
20	AAGTAAGATC TGCACCTTTT GTTATATTAG ATGAGGTTGA AGCTGCACTA GATGAAGCAA	720
	ATGTTATTAG ATACGCAAAA TATTTAAATG AGTTATCAGA CGAAACACAA TTCATTGTTA	780
	TTACACACCG TAAAGGAACA ATGGAATTTG CAGATAGGTT ATACGGTGTA ACAATGCAAG	840
25	AATCAGGTGT TACTAAACTT GTGAGTGTGA ATTTAAATAC AATAGATGAT GTGTTGAAGG	900
25	AGGAGCAATA ATGAGCGGCA CGAGCTCGTG CC	932
30	(2) INFORMATION FOR SEQ ID NO:241: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 966 base pairs	
	(B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: single	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:241:	
	&	
	CGGTTAATCG GTAGTATTTT AGGTTCNGTT GTTATTAAGA TTTGGGAAGA TTTGATCTTC	60
	CATCCCCCAA AGGGNTTAAC CGTATGGGGA TNCNTCANAA TCATTTGCCC AAGCTAAACC	120
45	ACCAAAGAAT GGATATTTGA ATCCGGTTGC ATTTAAGNTC AATTGGGATG ATTTTTAGCC	180
	TCCAGTTATT AAGTTCAAGT GTTAAATACC CTGTTCTAAT TTTAATTAAT TCTATTAATT	240
	TAAGATACTT AAAATGATAA GACACTAAGA AAGGGAGGCT ATTAGTAATA ATGCCCAAAA	300
	ATAAAAGCAA ATGAAGCATT AGTTAAAGCA TTACAAGCAT GGGATATAGA TCACTTGTAT	360
50	GGTATTCCAG GAGACTCAAT CGACGCAGTT GTCGATTAGT TTAACGTACA GTGAGAGATC	420
	AATTTAAATT TTATCATGTA CGTCATGAAG AAGTAGCAAG CTTAGCGGCT GCTGGTTACA	480
	CAAAATTAAC TGGTNAAATC GGTGTGGCAT TAAGTATCGG TGNCCCTGGT TTAATTCATT	540
	TATTAAATGG TATGTACGAT GCCAAAATGG ATAATGTACT CGTGCCAATT AATATTATCT	600
55	GGACAAACNG AATAGTACAG CACTTGGAAC GAAAGCATTT CAAGAAACAA ATTTACAAAA	660

	ATTATGTGAA GATGTAGCCG TTTATAATCA CCAAATTGAA AAAGGTGACA ATGTGTTTGA	720
	AATCGTTAAC GAAGCAATTC GTACGGCATA TGAACAAAAA GGTGTCGCTG TTGTTATTTG	780
5	TCCTAACGAC TTATTAACTG AAAAAATTAA AGATACAACG AATAAACCAG TAGATACATC	840
	AAGACCAACA GTTGTATCAC CAAAATATAA AGACATCAAA AAAGCGGTTA AACTAATTAA	900
	TAAAAGTAAA AAGCCTGTCA TGTTAATTGG TGTAGGTGCA AAACATGCGA AAGATGAGCT	960
	CGTGCC	966
10		
, •	(2) INFORMATION FOR SEQ ID NO:242:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 1396 base pairs	
75	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20		
20	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:	
25		
20	CTGTGAAATT AAGTCGNTAT TACCCGCAAG GATTAAGAAG TTTGAATGGT GGTCGCATGG	60
	CAAGATTTGG ACGTACACCA TTACTTGATG CAATGGAGAT GGCTAATGAG CATATTATGG	120
	TGATTGCCAT GATAGAAGAT GTTGANGGGG TTATGGCCAT TGACGATATA GCTCAAGTCG	180
30	AAGGTTTAGA CATGATAGTC GAAGGTGCCG CAGGATTTAT CGCAGTCACT TGGCATACCA	240
30	TNGCAAACGA GCGTGATGAT CAAGTAACAT CACATNTTCA ACATATTTNT GNGGTTGTGA	300
	ATGCACATGG TAAACATTTN TGTGCATTAC CACGTGAAGA TGAAGATATT GCAAAATGGC	360
	AGGCACAAGG TGTACAAACA TTTATTTTAG GCACGAGCGG AAAAATATAT CGCCATTTAA	420
35	GTGCATCTCT AGCGACGTCT AAACAGAAAG GGGATGATGG CTAATGCGTA TAGTTCAACC	480
33	TGTTATTGAA CAATTAAAAG CACAATCTCA TCCAGTTTGT CATTATATCT ATGATTTAGT	540
	CGGACTGGAA CATCATTTGC AACATATTAC ATCGTCATTG CCGAGTAATT GTCAAATGTA	600
	CTATGCAATG AAAGCAAATA GTGAACGAAC AATCCTAGAT ACAATTAGTC AGTATGTTGA	660
40	AGGATTCGAA GTTGCATCTC AAGGTGAAAT AGCAAAAGGT CTTGCTTTTA AACCAGCAAA	720
40	TCATATTATT TTTGGTGGCC CTGGTAAGAC AGACGAGGAA CTAAGATATG CAGTAAGTGA	780
	AGGTGTTCAG CGTATTCATG TTGAAAGTAT GCATGAATTA CAACGGCTAA ATGCCATCTT	840
	AGAAGATGAA GATAAGACAC AACACATTTT ATTGCGTGTT AATTTAGCAG GACCATTTCC	900
	CAATGCAACG TTGCATATGG CAGGACGCCC AACACAATTT GGTATTTCTG AAGACGAAGT	960
45	TGATGATGTC ATTGAAGCTG CGCTAGTAAT GCCAAATATT CATCTAGATG GCTTTCATCT	1020
	TCATTCCTAT TTCTAACAAT TTAGACTCGA ATTTACATGT CGATGTAGGG GAAACTTTAT	1080
	TTTAAAAAAG CAAAATCATG GCCTTGAAAA ACATCGATTT CCACTCAAAC ATATCAATCT	1140
	TGGTGGGTGG CATAGGCGGT CAACTATGCA GATTTAACTA GGCCAACTNG AGTGGGATAA	1200
50	TTTTGNNGAA AATTTNAAAA CACTTATCGT TGAGCAAGAA ATGGAAGATG TGACATTGAA	1260
	CTTTGAATGT GGGCGCTNTA TTGTGGCACA TTGGGGTTAC TATGTGACAG AAGTGCTAGA	1320
	TATTANGAAA GNGCATGGCG CTTGGTATGC CATTTNAAGA GGAGGTACGC AACAACNTAG	1380

1396

CCTGCCGGNA TCTTGC

(2) INFORMATION FOR SEQ ID NO:243:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3918 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5

10

15

20

25

30

35

40

45

50

55

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:243:

ACCAAAGCCA	AATACTTGCA	TTAANNCGGG	GTAATTCCAA	CAACTTAAGA	ACNGTGCGAA	60
ACNAGCCTGC	GGAACNACAA	GCGATTACCA	AATGCTTCGG	GACNTTAAAA	TACCACAACA	120
CAAAGAAGCA	TTGTAAGCAC	AAGTAACAAG	TGCAGGACGC	GTATCTGCAG	CANATGGTGT	180
TGAACATACT	GCGACTGAAT	TAAATACTGC	GATGACAGCT	TTAAAACGTG	CCATTGCTGA	240
TAAAGCTGAC	ACACAAGCTA	GTGGTAATTA	TGTCAATGCT	GATGCGAATA	AACGCCAAGC	300
ATATGATGAA	AAAGTGACAG	CTGCAGAACA	TATCGTTAGT	GGTACACCAA	CACCAACGTT	360
AACNCCATCA	GATGTTACAA	ATGCAGCAAC	GCAAGTAACG	AATGCGAAGA	CGCAGTTANN	420
CGGTAATCAT	AATTTAGAAG	TAGCGACNCA	AAATGCTAAC	ACAGCAATTG	ATGGTTTAAC	480
TTCTTTAAAT	GGTCCTCCAA	AAACCCAAAA	CTTAAAGAAC	AAGTGGGTCA	AGCGACNGAC	540
GTTNCCAAAT	GTTCAAACTG	TTCGTGATAA	TGCACAAACA	TTAAACACTG	CAATGAAAGG	600
TCTACGAGAT	AGCATTGCGA	ATGAAGCAAC	GATTAAAGCA	GGTCAAAACT	ACACAGATGC	660
AAGTCAAAAC	AAACAAAATG	ACTACAACAA	TGCAGTCACT	GCAGCANAAG	CAATCATTGG	720
TCAAACAACT	AGTCCATCAA	TGATTGCGCA	AGAAATTAAT	CAAGCGAAAG	ACCAAGTGAC	780
AGCTAAACAA	CAAGCGTTAA	ACGGTCAAAG	AAAACTTAAG	AACTNCGCAA	ACCAAATGCG	840
AAGCAACAAT	TGAATGGCTT	AAGTGACTTA	ACTTAATGCC	CCCCAAAGAT	GNAGCGANAC	900
CNCCAAATCG	AGGTGCAACG	CATGTTAATG	GAAGTAAACA	CCCAAGCCCA	CAATAATGGG	960
GACGGCATTA	AAATACAAGC	TATGNCGGNA	CTTGTNAAAT	GGTAATTCAA	AGACTCACAA	1020
TNCGGATTAA	GCAAGGTGTT	AACTTCACTT	GATGCAGATG	AAGCGAAACG	TAATGCATAT	1080
ACAAATGCAG	TGACGCAAGC	TGANCAAATT	TTAAATAAAG	CACAAGGGCC	AAATACTGCA	1140
AAAGACGGTG	TCGAAACTGC	GTTACAAAAT	GTACAACGTG	CTAAAAACGA	ATTGAGCGGT	1200
AATCAAAATG	TTGCGAACGC	TAAGACAACT	GCGAAAAATG	CATTGAATAA	CCTTACATCA	1260
ATTAATAATG	CACACAAAGC	AGCATTGAAA	TCACAAATTG	AAGGTGCGAC	AACAGTTGCA	1320
GGTGTAAATC	AAGTGTCTAC	AATGGCATCT	TGAATTAAAT	ACCTGCAATT	GAGCAACTTA	1380
CCAACGTGGT	ATTAATGACG	AAGCAGCTAC	AAAAGCAGCT	CAGAAATATA	CTGAAGCAGA	1440
TAGAGATAAA	CCCANCCTGC	ATACAATGAT	GCTGTAACAG	CAGCTAAAAC	GTTATTAGAT	1500
AAAACAGCTG	GTTCAAATGA	CAATAAAGTA	GCCGTTGAAC	AAGCATTACA	ACGTGTGAAT	1560
ACTGCTAAAA	CAGCATTAAA	TGGTGACGCG	CGATTAAATG	AAGCGAAGAA	CACAGCTAAA	1620
CAACAATTAG	CGACAATGTC	ACATTTAACT	AATGCTCAAA	AAGCAAACTT	AACAGAACAA	1680
ATTGAACGTG	GTACAACTGT	TGCTGGTGTT	CAAGGCATCC	AAGCAAATGC	TGGTACTTTA	1740
AATCAAGCAA	TGAATCAATT	AAGACAAAGT	ATTGCTTCTA	AAGATGCGAC	TAAATCAAGC	1800
GAAGATTATC	AAGACGCGAA	TGCAGATTTA	CAAAATGCAT	ACAATGATGC	GGTAACTAAT	1860
GCTGGAGGTA	TTATTAGTGC	ANCGAATAAC	CCTGAAATGA	ATCCTGATAC	AATTANCCAA	1920

	AAAGCGAG	C AAGTGAACAG	TGCGAAGTCT	GCATTGANCG	GTGATGAAAA	ATTAGCAGÇA	1980
	GCAAAACAA	A CTGCGAAATC	AGATATCGGT	CGTGTGACAG	ACTTGAACAA	TGCACAACGA	2040
5	ACTGCGNCA	A ATGCTGAAGT	GGATCAAGCA	CCAANTCTTG	CAGCTGTCAC	AGCGGCTAAA	2100
	AATAAAGCA	A CATCGTTAAA	CACAGCGATG	GGTAATGTGA	AACATGCACT	TGCTGAAAAG	2160
	GATAATACO	A NACGTAGTGT	CAATTACACA	GATGCGGATC	AACCAANACA	ACAAGCGTNT	2220
	GATACTGCA	G GTACACAAGC	AGAAGCAATT	ACTAATGCAA	ATGGCAGTNA	CGCGAATGAA	2280
10	ACACAAGTT	C AAGCAGCGCT	TAACCAATTG	AATCAAGCTA	AAAACGACTT	GGAATGGGTG	2340
,,,		T TGCTCAAGCG	AAAGAAACAA	CAAAACGTGC	ATTAGCTTCA	TATAGTAACT	2400
	TGAATAACO	C GCAATCAACT	GCAGCAACTA	GTCAAATTGA	CAATGCAACG	ACAGTAGCAG	2460
	ACGTAACTO	C TGCACAAAAT	ACTGCTAATG	AATTAAATAC	AGCAATGGGT	CAACTTCAAA	2520
15	ATGGTATTA	A TGACCAAAAC	ACTGTTAAAC	AACAAGTGAA	CTTTACAGAT	GCTGACCAAG	2580
75		A TGCTTACACA	AATGCTGTTA	CGAATGCTCA	AGGTATTTTA	GATAAAGCAA	2640
	CACGGTCCA	A AATATGNCAA	AAGCACAAGT	TGAAGCTGCA	TTAAATCNAG	TANCGNCTGC	2700
	TAAGAATGO	T TTAAACGGTG	ATGCAAATGT	NAGACAANCA	AAATCAGATG	CGAAAGCAAA	2760
	CTTAGGTAC	A TTAACACACT	TANATAATGC	АСАААААСАА	GATTTAACAT	CACAAAGCGN	2820
20		A ACAGNCAACG	GTGTAAATNG	TGTTAAAACG	AAAGCACNAG	ACTTAGATGG	2880
	TGCAATGCA	A CGATTAGAGT	CAGCAATCGC	AAATAAAGAC	CAAACTAAAG	CGAGCGAAAA	2940
	CTACATTGA	C GCAGATCCAA	CTAAGAAAAC	AGCATTTGAT	AATGCCATCA	CACAAGCTGA	3000
		'A AATAAAGATC	ATGGTACGAA	TAAAGATAAG	CAAGCTGTTG	AACAAGCAAT	3060
25	TCAAAGTGT	A ACGTCTACTG	AAAATGCTTT	GAACGGTGAC	GCGAACTTAC	AACGCGCTAA	3120
	AACTGAAGO	T ACACAAGCTA	TCGATAACTT	GACACAATTG	AATACACCGC	AAAAAACAGC	3180
	ATTGAAACA	A CAAGTGAATG	CTGCACAACG	CGTATCAGGT	GTAACTGATC	TGAAAAATAG	3240
	TGCTACATO	A CTTAATAATG	CGATGGATCA	АТТААААСАА	GCAATTGGTG	ATCATGACAC	3300
30	AATTGTAGO	T GGTGGTAATT	ACACTAACGC	AAGTCCTGAT	AAACAAGGTG	CTTACACTGA	3360
	TGCATATAA	T GCTGCGAAGA	ATATCGTAAA	TGGTTCACCT	AATGTGATTA	CAAATGCAGC	3420
	AGATGTTAC	T GCGNCAACAC	AACGTGTCAA	TAATGCTGAA	ACAAGTTTAA	ATGGTGAGAC	3480
	AAACTTAGO	A ACTGGCGAAG	CAACAAGCTA	AAGATGCATT	ACGTCAAATG	ACACATTTAT	3540
35	CTGATGCAC	A ANAAACAAAG	TATTACTGGT	CAAATTGATA	GCGCGACACA	AGTAACTGGT	3600
	GTACAAAGT	G TGAAAGACAA	TGCAACAANT	CTTGACAATG	CAATGAATCA	ACTTCGAAAT	3660
	AGTATTGCG	A ATAAAGATGA	AGTAAAAGCG	AGTCAACCAT	ATGTTGATGC	AGATACAGAT	3720
	АААСААААТ	G CATACAATAC	AGCAGTTACA	AGTGCTGAAA	ATATCATTAA	TGCAACGAGT	3780
40	CAGCCAACA	C TTGATCCATC	TGCAGTAACA	CAAGCAGCTA	ATCAAGTGAA	CACTAACAAA	3840
		A ATGGTGCGCA					3900
		A GTCATTTA					3918

(2) INFORMATION FOR SEQ ID NO:244:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1265 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

45

50

55

(ii) MOLECULE TYPE: Genomic DNA

	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	244:	**	
5							
	ATGCGATACG	CTTAACCAGC	AATGCATGGT	TTAAGACAGA	GCATTCAAGA	TAACGCAGCA	60
	NCTAAACCGA	ATAGCAAATA	TATCAACGGA	AGTCCACGAG	AGCAACCAAA	ACTATGATCA	120
	AGCTGTTCAA	GCCCCAAATA	ATATTATCAA	TGAACAAACT	GCAACATTAG	ATAATAATGC	180
10	GATTAATCAA	GTAGCGGCAA	CTGTGAATAC	AACGAAAGCA	GCATTACATG	GTGATGTGAA	240
		GATAAAGATC					300
		CATATGGAAG					360
	GCAAGATTTG	ACTGAAGTAC	AAGCATTAGA	TCAACTTATG	GATGCATTAC	AACAAAGTAT	420
15		GATGCAACAC					480
	ACAAGCCTAT	GATGAAGCAG	TTCAAAATGC	TGAGTCTATC	ATTGCAGGAT	TAAATAATCC	540
	AACTATCAAI	AAAGGTAATG	TATCAAGTGC	GACTCAAGCA	GTAATATCAT	CTAAAAATGC	600
	ATTAGATGGT	GTTGAACGAT	TAGCTCAAGA	TAAGCAAACT	GCTGGAAATT	CTCTAAATCA	660
20	TTTAGATCAA	TTAACACCAG	CTCAACAACA	AGCGCTAGAA	AATCAAATTA	ATAATGCAAC	720
	AACTCGTGAT	AAAGTGGCTG	AAATCATTGC	ACAAGCGCAA	GCATTAAATG	AAGCGATGAA	780
	AGCATTAAAA	NAAAGTATTA	AGGATCAACC	ACAAACTGAA	GCAAGTAGTA	AATTTATTAA	840
	CGAGGATCAA	GCGCAAAAAG	ATGCATATAC	GCAAGCAGTA	CAACACGCTC	GAAGATGCCT	900
25	TGNTTAACAA	AACAACTGAT	CCTACATTAG	CTAAATCAAT	CATTGATCAA	GCGACACAGG	960
23	CAGTGACTGA	TGCTAAAAAC	AATTTACATG	GTGGATCAAA	AACTAGCTCA	AGATNAGCAA	1020
	CGTGCAACAG	AAACGTTAAA	TAACTTGTCT	NACTTGAATA	CACCACAACG	TCAAGCACTT	1080
	GANAATCAAC	TCAATTCNTG	CAGCAACTCG	NCGNGANGTA	GCACANAAAT	TTACTGANGC	1140
	ACANGCACNT	TATCCACGCA	ATGGANGCTT	TNCGTCATAG	CATTCACGNN	NCAACAAACA	1200
3 0	AAACAGATCT	GGTNTGCAAN	TTTTTTATTG	AAGGTTNNNC	CNCACCCCGG	TGCTTCCNGC	1260
	GCCAC						1265
	(2) INFORMAT	ION FOR SEQ	ID NO:245:			
35							
	(i)	SEQUENCE CH	ARACTERISTIC	cs:			
	(A) LENGTH: 7	91 base pair	rs			
	(E) TYPE: nuc	leic acid				
40	(0) STRANDEDNI	ESS: single				
	(1)) TOPOLOGY:	linear				
	(ii) MOLECULE	TYPE: Genom	ic DNA			
45							
	(xi)	SEQUENCE DI	ESCRIPTION:	SEQ ID NO:	245:		
	TTCATTAGTG	GTGTGGCACG	ATAGCTCAAN	GATAACCAAA	CTCCTGGAAA	TTCTCTAAAT	60
50	TCATTTAGAT	CAATTAACAC	CAGCTCAACA	ACAAGCGCTA	GAAAATCAAA	TTAATAATGC	120
	AACAACTCGT	GATAAAGTGG	CTGAAATCAT	TGCACAAGCG	CAAGCATTAA	ATGAAGCGAT	180
	GAAAGCATTA	AAAGAAAGTA	TTAAGGATCA	ACCACAAACT	GAAGCAAGTA	GTAAATTTAT	240
	TAACGAGGAT	CAAGCGCAAA	AAGATGCATA	TACGCAAGCA	GTACAACACG	AGCGAAAGAT	300
55	TTGATTAACA	AAACAACTGA	TCCTACATTA	GCTAAATCAA	TCATTGATCA	AGCGACACAG	360

	GCAGTGACTG ATGCTAAAAA CAATTTACAT GGTGATÇAAA AACTAGCTCA AGATAAGCAA	420
	CGTGCAACAG AAACGTTAAA TAACTTGTCT AACTTGAATA CACCACAACG TCAAGCACTT	480
5	GAAAATCAAA TCAATAATGC AGCAACTCGT GGTGAAGTAG CACAAAAATT AACTGAAGCA	540
	CAAGCACTTA ACCAAGCAAT GGAAGCTTTA CGTAATAGCA TTCAAGATCA ACAACAAACA	600
	GAATCTGGTA GCAAGTTTAT TAATGAAGAT AAACCGCAAA AAGATGCTTA CCANGCAGCA	660
	GTTCAANATG CAAAAGATTT AATTAACCAA ACAGGTANTC CAACGCTTGA TAAAAGCACAA	720
10	GTTGAACAAT TGACACATGC TTTTAAACAA GCTAAAGATA ACCTACACGG TGATCAAAAA	780
	CTTGCAGACG A	791
	(2) INFORMATION FOR SEQ ID NO:246:	
15	(i) SEQUENCE CHARACTERISTICS:	

- (A) LENGTH: 3323 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20

30

35

40

45

50

- (ii) MOLECULE TYPE: Genomic DNA
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:246:

CTATTAAGGA	ATCCTTGNNA	AATTCACATT	AGCAAGTTGG	ATTGTCCACC	TTATTAATTG	60
ATAAAGTATG	CAAATAATTT	CACAGTGTTT	CCAGCGGGGC	CAANTTATGA	TTGCAAGTAA	120
CCTATAGCAA	TCGTATTCTT	GTTCTTGCCA	ACGCTATTTA	AGTATCAGGT	TTAACCAACA	180
GGTGCGACAA	AAGGTTAGTT	TGAAATTAGG	GAGTGGGGCA	GAATTGATAA	AGAACCACTA	240
ATGACGATAA	AGATTAAAAG	GGAGGACGTT	ATGATGACGG	ATTAAAGTTG	GAATCATTGG	300
GTGTGGTGGT	ATTGCGAATG	GCAAGCAACA	TGCCAAGTTT	ACNAAAAGTT	GAAAATGTTG	360
AAATGATCGC	ATTTTGTGAC	GTAGACATTT	CGAAAGCAGC	GAGTGCGGCA	GAAGCATACG	420
GAACTGACAA	TGCAAAGGTT	TATGATGATT	ACAAAGCATT	GTTAAAAGAT	GACACGATTG	480
ATGTTATCCA	TGTTTGTACG	CCAAATGACT	CGCATTGTGA	AATTACTGTA	GCAGGGTTGC	540
ATGCCGGTAA	GCATGTGATG	TGTGAAAAAC	CAATGGCTAA	AACGACAGCA	GAAGCTCAAA	600
AAATGATAGA	TACAGCTAAA	TCAACAGGTA	AAAAATTAAC	AATAGGTTAT	CAAAATCGCT	660
TCAGACCAGA	TAGTCAATTT	TTACATCAAG	CAGCGCAACG	TGGCGACTTA	GGAGACATTT	720
ACTTCGGAAA	GGCACATGCC	ATTCGTCGTC	GTGCAGTACC	GACATGGGGT	GTCTTTCTAA	780
ACGAAGAAGC	CCAAGGTGGA	GGACCTTTAA	TCGATATTGG	TACGCACGCA	TTAGATTTAA	840
CGTTATGGAT	GATGGATAAT	TATGAACCAG	AATCAGTGAT	GGGTTCAACA	TTCCATAAAT	900
TAAATAAGCA	GCATGATGCG	CCAAACGCTT	GGGGTTCATG	GAATCCAGAT	GAATTAACAG	960
TTGAAGACTC	TGCGTTTGGC	TTTATTAAAT	GAAGAACGGA	GCGACGATCA	TTTTAGATCC	1020
GCTTGGGCGA	TTAATTCTTT	AGAAGTGGAT	GAGGCAAAAT	GTTCATTATT	AGGAACGAAA	1080
GCAGGTGCTG	ATATGAAAGA	TGTTCTACGT	ATTCATGGTG	AAGATATGGG	CACACTTTAT	1140
ACCAAACACG	TTGAATTNGA	AAACAAAGGC	GTCGACTTTT	ATGAAGGTAA	TGAAGTGGAT	1200
GAAGCTGAAG	AAGAANCAAA	AGCTTGGATT	GATGCAGTTG	TAAATGATAC	TGAACCAGTT	1260
GTGAAACCGG	AACAAGCAAT	GGTAGTTACA	AAAATTCTTG	AAGCGATTTA	TCAGTCTGCA	1320
AAATCAGGCA	AAGCAATTTA	CTTTGAATAA	CATCATACGG	TAAGGAGGCA	CATCATGACA	1380

```
AAATTAAAAG TTGGTGTGAT AGGTGTTGGT GGCATTGCAC AAGACCGTCA TATTCCAGCA
                                                                           1440
       TTGCTGAAAC TCAAAGACAC AGTCTCATTA GTTGCAGTAC AAGATATTAA TACAGTGCAG
                                                                           1500
       ATGATTGATG TTGCGAAGCG CTTTAATATA CCTCAGGCAG TTGAGACACC TAGCGAGCTG
                                                                           1560
5
       TTTAAACTTG TTGATGCGGT GGTCATTTGT ACACCCAATA AATTCCATGC TGATCTTTCT
      ATAGAAGCAT TGAACCATGG TGTCCATGTC TTATGCGAAA AGCCAATGNC AATGACGACG
                                                                           1680
       GAAGAGTGTG ATCGCATGAT TGAAGCGGCT AATAAAAATC ACAAATTATT AACTGTCGCT
                                                                           1740
       TATCATTATC GTCACACAGA TGTCGCTATG ACTGCTAAAA AAGCAATTGA AGCAGTGTG
                                                                           1800
10
       GTTGGTAAAC CATTAGTAGC ACCGTTGTCC AANCGATGCG TAGGCGTAAA GNACCTGGGT
                                                                           1860
       GGGGCGTTTT TACCCAATAA AACCGTTGCA AGGTGGCGGT AGTTTAATCG ATTATGGTTT
                                                                           1920
       CCCACTTGTT AAGACTTATC TTTGTGGCTA TTAGGTAAAG ATATGGTGCC GCATGAAGTG
                                                                           1980
       CTAGGAAAAA CATATAATCA ATTGAGCAAA CAACCGAATC AAATTAATGA TTGGGGAACA
                                                                           2040
15
       TTTGATCACA CTAAATTTGA TGTCGATGAT CATGTTACTA GTTATATGAC ATTTGCCAAT
                                                                           2100
       CGAGCAAGCA TGCAGTTTGA ATGTTCGTGG TCTGCAAATA TAAAGGAAGA TAAGGTACAC
                                                                           2160
      GTTAGTTTAT CAGGAGAAGA TGGCGGTATC AATTTATTTC CATTTGAAAT ATATGAGCCC
                                                                           2220
       CGCTTTGGAA CTATTTTTGA AAGCAAAGCT AATGTTGAGC ATAACGAAGA CATTGCTGGT
                                                                           2280
20
       GAGAGACAGG CGCGTAACTT TGTCAATGCG TGTTTAGGTA TAGAAGAGAT TGTGGTGAAA
                                                                           2340
      CCGGAAGAAG CACGCAATGT AAATGCCCTT ATAGAAGCGA TTTATCGTAG CGATCTTGAT
                                                                           2400
       AACAAGAGCA TACAACTTTA ATGATTATTA TATATAATAC AAAATTCTCA ATATAAAAAG
                                                                           2460
      ANGGAGTGCT TTTCAATGAA AATAGGTGTA TTTTCAGTAT TATTTTACGA TAAAAATTTT
                                                                           2520
25
       GAAGATATGT TAGATTATGT CGCAGAATCT GGATTGGATA TGATTGAAGT TGGAACAGGT
                                                                           2580
      GGTAACCCAG GAGATAAATT TTGTAAGTTA GATGAGTTGT TAGAAAATGA AGACAAGCGA
                                                                           2640
       CAAGCATTTA TGAAGTCAAT CACAGACAGA GGCTTACAAA TAAGTGGTTT CAGTTGTCAT
                                                                           2700
       AACAATCCAA TTTCTCCAGA TCCGATAGAA GCGAAAGAAG CCGATGAAAC GTTACGTAAA
                                                                           2760
30
       ACAATCCGTT TAGCAAATCT ATTAGACGTG CCAGTTGTTA ATACATTTTC TGNCATTGCA
                                                                           2820
       GGGTCAGATG ATACCGCTAA AAAGCCTAAT TGGCCTGTTA CACCTTGGCC AACAGCCTAC
                                                                           2880
       TCTGAAATTT ATGATTATCA GTGGAATGAA AAGTTGATAC CATATTGGCA AGATTTAGCT
                                                                           2940
       GAGTTTCCNC AAGAGCAAGA TGTNNAAATT GCCATNGAGT TACATNCAGG ATTTTTAGCT
                                                                           3000
35
      CANACACCAA ATACGATGTT NAAGTTACGT GAGCCAACAA ATGAATATAT CGGTGCTAAC
                                                                           3060
       TTAGATCCTA GTCATTTATG GTGNCAAGGT ATTGACCCAA NTCCTGCGAN TCGCATATTA
                                                                           3120
      GGCCCNANCA AATNCAATTC ATCACTTCCA TGGAATTCCG AAGAAACGTA TGTTANTCNA
                                                                           3180
      GGGNATGTAA ANATGTATGG TCTAGCTGAT NTCCAGCCAT ATGGTNACGT TGCGACANGN
                                                                           3240
40
      GCATGGACAT TCCNTACAGN TGGNTATGGA CATAGTCCAT ATGNATGGGC AGATNTCATA
                                                                           3300
       AGTCAACTTA NTATTAGATG GAG
                                                                           3323
```

(2) INFORMATION FOR SEQ ID NO:247:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 641 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

45

50

55

(ii) MOLECULE TYPE: Genomic DNA

	(xi)	SEQUENCE DESCRIPTION:	SEQ ID NO:247:	474	
5	ጥርር ልጥጥባል ልጥ	ጥርር እርርጥጥረር ርርርር እር እርርር	TTTNCCGACC TGGAAAGCGG	TCAGTGAGCC	60
5			TCATTAGGCC ACCCCAGGCC		120
			TTGTGAGCGG ATAACAATTT		180
			AAATTAACCC TCACTAAAGG		240
10			AGAACTAGTG GATCCCCGG		300
70	TTCGACGAGA	ACGCGTGCAG CGTTTACAGT	TGCGTCTATT GATTTAGGTG	CGCATCCAGA	360
	ATTTTTAGGG	AAAATGATA TTCAATTAGN	CAAAAAAGAA TCTGTAGAGG	ATACTNCNAA	420
	AGTATTAGGT	AGAATGTTCG ATGGTATTGA	ATTCAAACTT TAACTGAGCT	TCATGGGGCA	480
15	CCAGGTTTTG	AAGAAGAAGT AAAAAATTAT	ATGACTCAGC AAATGGCGCC	GTATGTAGAT	540
,,,	GGAATTTATT	GAAAATCGTA TGGGTGGATT	TTTTGGGTGT GAAAAATCT	АААААТССАА	600
	ATGCAAAACG	TGTAATGATT GCAGNACATA	TGGATGAAAT C		641
20	(:	2) INFORMATION FOR SEQ	ID NO:248:		
	(i) :	SEQUENCE CHARACTERISTIC	cs:		
	(A) LENGTH: 1130 base par	irs		
25	(B) TYPE: nucleic acid			
25	(C) STRANDEDNESS: single			
	(D) TOPOLOGY: linear			
30	(ii) MOLECULE TYPE: Genom	ic DNA		
	(xi)	SEQUENCE DESCRIPTION:	SEQ ID NO:248:		
	CTGCTTAAAT	TCGAACGTGT CATTGACATT	TTCAATAAGA AAAACAACGG	AGCATGGAAT	60
35			CATATCCCTA AGAGTATTAC		120
			ATCACTACTG AAGAATCAAA		180
	GATTTTCCTA	AAGACTTTAA AGGTATTGCA	GGTTGGATAT TAGAAGTAAA	ATCGAATACA	240
	CCAGGTAACA	CAACACAAGT ATTAAGACGT	AATAACTTCC CGTCTGCACA	TCAATTTNTA	300
40	GTTAGAAACT	TTGGCACGAG ACTGGTGGCG	TTGGTAAATG GGAGTTTATT	CGAAGGAAAG	360
	GTGGTTGAAT	AATGATAGTA GATAATTTTT	CAAAAGACGA TAACTTAATC	GAGTTACAAA	420
	CAACATCACA	ATATAATCCA ATTATTGACA	CAAACATCAG TTTCTATGAA	TCAGATAGAG	480
	GAACTGGTGT	TTTAAATTTT GCAGTAACTA	AGAATAACAG ACCGTTATCT	ATAAGTTCTG	540
45	AACATGTTAA	GACATCTATC GTGTAAAAAC	CCGATGATTA TAACGTAGAT	AGAGGCGCTT	600
	ATATTACAGA	CGAATTAACG ATAGTAGACG	CAATTAATGG GCGTTTGCAG	TATGTGATAC	660
	CGAATGAATT	TTTAAAACAT TCAGGCAAGG	TGCATGCTCA GGCATTCTTT	ACACAAAACG	720
	GGAGTAATAA	TGTTGTTGTT GAACGTCAAT	TTAGCTTCAA TATTGAAAAT	GATTTAGTTA	780
50	GTGGGTNTGA	TGGTATAACA AAGCTTGTTT	ATATCAAATC TATTCAAGAT	ACTATCGAAG	840
	CTGTCGGTAA	AGACTTTAAC CAATTAAAGC	AAAATATGGC TGATACACAA	ACGTTAATAG	900
	CAAAAGTGAA	TGATAGTGCG ACAAAAGGCA	TTCAACAAAT CGAAATCAAG	CAAAACGAAG	960
	CTATACAAGC	TATTACTGCG ACGCAAACTA	GTGCAACACA AGCTGTTACA	GCTGAAGTCG	1020
55	a	CMCCC333333 CACC33CCC3	TTGGGGACCG TTTTAACGAA	CONTOCACAAC	1080
	GATAAANTAG	GIGGGAAAAA GAGCAAGCGA	110000ACCG 1111AACGAA	GINGGACAAC	1000

	AAATCAATGC GCCTGGCCTT GTNAAGGTAA TNCAACAACA AATTGGGAAA	1130							
5	(2) INFORMATION FOR SEQ ID NO:249:								
	(i) SEQUENCE CHARACTERISTICS:								
	(A) LENGTH: 1104 base pairs								
	(B) TYPE: nucleic acid								
10	(C) STRANDEDNESS: single								
	(D) TOPOLOGY: linear								
15	(ii) MOLECULE TYPE: Genomic DNA								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:249:								
20	CCTCAGCATA TGGTTGAACC CCTTCTTGAT AACCCATATC TGTTAGTTTT CCCCAATGAT	60							
20	TGCTCGCATA GCTAATTGTG CCATTGGAAT ATCAAGTAAT TTTACTTAGG CACGAGAATG	120							
	GTNCCGTTCT ACTAGAACGG TGGGTTTACT TCTAAAACAA TATACACCAT CGTGAGCTAT	180							
	AACGAATTGA ATGTTGATTA AGCCAATGAT GTTTAAACCT TTAGCTAATT TTATAGTATA	240							
25	GTCCTCAAGT GTTGCTAACT CGTCTTCTGT CAAAGTTTGT GGCGGATATA CAGCGATTGA	300							
25	GTCACCACTA TGTACACCAG CACGTTCAAT ATGTTCCATG ATTCCTGGAA TAATGACCGT	360							
	TTCTCCATCA CAAATCGCAT CAACTTCAAT TTCTTTACCA GTTAAATATC TATCGACTAG	420							
	TACCGGATGT TCCGGACTCG CTTTTACAGC CTGGGTCATA TAGTTTTCTA ACTCTTTGTC	480							
30	ATTGTCTACA ATTTCCATTG CGCGACCACC TAATACATAA GAAGGTCTTA CTACAACCGG	540							
	ATATCCGATT TCTGCAGCAT TCGCTAATGC TTCCTCAGGT GATGTAGCTG ATTTCCCTTG	600							
	TGGCTGTGGC ACGTTAATTT TTCTTAATAG TGCTTCAAAT TCTTTTCTAT CTTCAGCACG	660							
	ATTTAGATTT TCTAGTGAAG TACCAAGTAT TTTAACACCA TGTTTAGCCA ATTTGTCTGC	720							
35	TAAATTAATC GCTGTTTGTC CTCCAAATTG TACAACGACA CCTTTAGGTT TTTCTAAATT	780							
	AATGATATTC ATCACATCTT CTTCAGTTAA AGGTTCAAAG TATAATTTGT CAGAAATTGA	840							
	AGAAGTCTGT TGAAACTGTT TCTGGATTGT TATTCACAAT TATCGCTTCG TACCCTGCTT	900							
	TTTGAATTGC CCAAACGGCG TGAACTGTCG CATAGTCAAA TTCTACACCT TGGCCGATTC	960							
40	GAATTGGTCC AGAGCCTAAT ACTAAGATTT CTCTTTGTCA GTAACTATGG ATTCATTTTC	1020							
40	AGTTTCGTAT GTACCATAAT AATATGGTGT TGAGATCAAA TCAGCTGCGC AGTATCAACA	1080							
	TCTGTAACAG GTTAATATCA TTTC	1104							
45	(2) INFORMATION FOR SEQ ID NO:250:								
	(i) SEQUENCE CHARACTERISTICS:								
	(A) LENGTH: 1995 base pairs								
	(B) TYPE: nucleic acid								
50	(C) STRANDEDNESS: single								
	(D) TOPOLOGY: linear								

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:250:

	5	CTATCATAAA	AACATAAAGT	ATTGTAAGCT	TTTTATCGAT	ATTTTTTATT	TATAAAAATA	60
		AAATGAGATA	ACTNTGTGAA	TTTTTATTGA	GATAAATTAG	ATAGTGNTGT	TTTTGTGATG	120
		TTTAATAATA	TCTTGGGTGT	GTTAATACTA	GTAATGCTTT	CAACTGATGC	ATTAAGACTG	180
10		TGACATCATA	ACTCATTTAA	GAACTTCGCT	TATTAATTTT	CTACCAATAC	AATCCCTTCT	240
	10	AAGTGCACTA	AAAAATCCTT	ACTGCTAAGT	GATTAAACTT	AACAATAAGG	ATTTATTTAT	300
		CGCTAATGCA	TGATTATTAA	CGGAATCTCA	TACCACCATC	TACAATAATT	GTTTGTCCAG	360
		TAATGTAATC	AGAGTCTTTA	CCAGCTAAGA	AGCTCACTAC	ATTTGAAACA	TCTTCTGGTT	420
		GAGAAACTCT	GCCCAAAGCA	ATCTGACTTG	TAAATTGTTC	CCAACCCCAT	GCTTCAGGTT	480
1	15	TACCTGCTTC	TTCGGCTGTT	GCCACTGCGA	TACTTTCCAT	CATTGGTGTT	TGAACGATAC	540
		CAGGTGCGAA	TGCATTCACA	GTAATACCTT	CAGACGCTAA	ATCTTGTGCG	GCTACTTGTG	600
		TTAAACCTCG	CACTGCGAAT	TTTGTACTGC	AATATAAAGA	CAAGCCTGGG	TTACCCTCAA	660
		CGCCTGCTTG	AGATGTTGCA	TTGATAATTT	TACCGCCATG	ATTGAATTTT	TTAAATTGTT	720
2	20	CATGTGCGGC	TTGAATACCC	CATAGCACAC	CTGCAACGTT	CACGCCATAT	ACTGTTTTAA	780
		ACTGTTCTTC	AGTAATTGTA	TCGATTGGTG	TTGTTGGTCC	AAGGCCGGCA	TTGTTAACCA	840
		TGACATGGAA	ATCGCCAAAT	TGCGCTCGGA	GTTGCCTGTC	TTACTGCGTT	AAATACATCA	900
		TCACGGTTTG	ATACATCTGC	TTTGATAGCA	ATAGCTTTTG	TACCATCACT	TGATAATTTA	960
,	25	AGTGCAGCTG	CTTTTGCCCC	TTCTTCATTG	AAATCAACAA	CTGCTACTTT	GAAACCATCT	1020
-	.0	TCCACTAAAC	GTTCTGCAAT	TTTAAAACCA	ATCCCTTGTG	CTCCGCCAGT	TACTAATGCT	1080
		ACTTTGTTGT	TTGTCATAAA	GATCACTCCT	CAAATTTCTT	TCCTTTAATT	ACATTTTACT	1140
		CCTCTTCATT	TGAATAGTAC	AACAAAGGTA	GCTCCATTTA	ACAAAATATT	CAGATATTTA	1200
,	30	AGGTATAGTT	AAACGCACTA	CCATTAGTGA	TTGGCAATGC	GTTTAAATGT	CGTTTTAAAA	1260
٠		GTTCTTATGT	TGAATATTAT	TTTTTTAAGT	CTCTCGATTA	GTTTGTCATC	AATCTTTTTT	1320
		CGAGACATGG	GCCTTTTGAT	TCAATCGGCG	GNTTCCGTGT	TATCACTGAC	AACTTTAGTT	1380
		GTAGCTTCAT	CTTTATGTAT	TTCTTCGCTA	AATCCTTCAA	GGTTTTTAGT	CGTGGGATTT	1440
	35	TTAACCTCAG	GATGTTCCAT	CATGTCTTTG	ACTATCAAGT	TCCTTTTTAC	ACGTGTCTTT	1500
٥	,,	ATGGTGATGC	TTGATTTGGC	GTTCCCTTTT	ACTTTTTTTG	AATAGTGGGT	AGGTATCTGC	1560
		TGCAGCTACT	AATTTNCTTC	TTACCCTTAA	AATAGATATT	GGCTTGGAAA	CAAAACCAGA	1620
		GTATTTGCAG	ATACAAAGTT	GCATTAATAC	TTAAAGCAAT	AATAGCCAAT	ACAAATTAAT	1680
		ATTGACACCT	NTTGAAATCC	CTTCTTTTAA	ATTAAGTCAG	ATGCCAATAC	GATGACAGGG	1740
4	10	TACGGATTGA	AAGTATAATT	ACAAATATAG	AAATTATTGC	CGATATAACT	ATTGTTACTA	1800
		TTAAATAATC	AGCTCTGCTA	CCTGATAATA	AATAGAAAAG	GCGAAAATTA	GTCCATAGCA	1860
		AATTACAAAC	CCACATAAAG	TTATAGCCAT	GAGTACTATA	TAAGCTATTT	GAAAATATAA	1920
		ACCTATCTTT	ATGAATGATT	TTCTACATTT	TTTCCATGTC	TATCCCCATT	ATTAATATTA	1980
4	15	TACTTACCTA	ATATA					1995

(2) INFORMATION FOR SEQ ID NO:251:

(i) SEQUENCE CHARACTERISTICS:

50

55

(A) LENGTH: 1940 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

5

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:251:

	TGTACTTGAA	CACTGTACTG	CGGATGAGTT	TTTTATTGAC	ACGGAATTAT	TAGGGTTCAA	60
10	CGGTGACTTA	CCACGTTTCG	TAATTACCTC	CAAACGACAG	CTAGTACGTT	TATAAGATGG	120
	TGTATCCGTG	TATTGATCAA	CATCACTATT	AGTTAATAAG	TTAATTGCAC	CTAGATCTCC	180
	ATTTTCCATC	GCATCATTAT	TTAATGGAAT	ATAGATTTCT	TTACCTTTAA	CACGATCTGT	240
	CACGTGAACT	TGTAATACCG	CTTCTCCTGT	TTCAGAAATC	AGCTTAACTT	CTGCACCTTC	300
15	ATGAATGCCT	CTATCTTCAG	CAAGCTCTGG	AGAAATTTCA	ACAAATGCAC	GTGGCACTTT	360
, ,	GTATTTAATC	ATTGGTGTTT	GATAAGTCAT	ATTACCTTCA	TGGAAGTGCT	CTAACAATCG	420
	ACCATTGTTT	ACATGAATAT	CATAAATTTC	ATCTTGCTTA	AAGTAATTAT	CAAATGATAA	480
	TGGGAATAAT	TTTGCTTTAC	CATTATCAAA	ATTGAATCCT	TCTAAGTATA	GAATAGGCTC	540
20	ATCAGTNCCA	TCCNGNTTGT	ACTTGNCCAT	TGTAAACTAT	TGAATCCTTC	TANNCGATTC	600
20	ATAACTTACC	CCAGCATATA	GAGGTGTTAA	GCGTCCTACC	TTCAATCCAT	AATTTCACTA	660
	GGATGCTTGT	AATTCCAATC	CAAATCCCTA	ATCTATTAGC	AATTGCTTGG	AAAATTTTCC	720
	AGTCAGGTTT	TGAATCACCA	AGAGGTTCTA	ATGCTTGGTA	TAAACGTTGA	ATACGACGTT	780
25	CGGTATTTGT	AAAAGTACCG	TCTTTTTCAA	GTGAAGGACT	TGCTGGCAAT	ACAACATCTG	840
25	CGTATGTTGC	TGTGAATGTT	AAAAATTCAT	CTTGGACTAC	CATGAAATCT	AATTTTTCAA	900
	ACGCAGCTTG	TACAAAATTA	ATATTTGAAT	CCACAATACC	CGTATCTTCA	CCATATAAGT	960
	ACAATGAGTG	TACTTCTCCG	TCATGTATAC	CTTCTACCAT	TTCATGATTA	TCTTTACCAG	1020
	CTTTTGGATT	CAATTTAACG	CCATATTCTT	TTTCAAATTT	AGCACGAGCG	AATATCATCC	1080
30	GCTTCAATAC	TTTGATAACC	AGTAATCTTA	TCAGGCATAC	TTCCCATATC	ACTACATCCT	1140
	TGAACATTAT	TATGTCCACG	TAATGGATAC	GCACCAGTAC	CAGGACGACG	ATAATTACCT	1200
	GTTACTAATA	ATAAGTTTGA	AATCGCTGTA	CTTGAGTCAC	TACCAATGTC	TTGTTGTGTA	1260
	ATACCCATTG	CCCAACAAAT	TACAACAGAT	TCAGCTTTAG	CACATTCTTC	AGCAAATTTA	1320
35	ATCAATTCTG	ATTCAGGAAT	ACCTGTTGCT	TCTTCAGCAA	AAGCCATTGT	AAATGTTTCT	1380
	AATGATTTGT	AATATTCATC	AAAATCATCT	ACCCACTCAT	CAATAAATGC	TTTATCGTGT	1440
	AAATCATGAT	CAATAATATA	CTTAGTCACT	GCACTTAACC	ACGCTAAATC	CGTACCTGGT	1500
	TTAGGTTGAT	AAAAACGATC	CGCACGTTCT	GCCATTTCAT	GTTTTCTAAT	ATCAAATACA	1560
40	TGTATTTTT	GTCCAAATAA	TTTTTGAGCA	CGTTTCATGC	GTGATGCGAT	AACTGGATGA	1620
	GCTTCGGCTG	TATTGGTACC	TATCAATACA	GACATTGCCG	CTTTTTCTAA	ATCTTCAATA	1680
	CTACCTGAGT	CACCGCCGTG	TCCAACCGTT	CTAAATAAGC	CTTTTGTTGC	AGGTGCTTGG	1740
	CAATATCTTG	AACAGNTATC	AACGTTATTT	GTGNCAATAA	CTTGGTCTTG	CTTAATTTNN	1800
45	GGGATGNAAA	TACGATTCTT	CCATTCCGGC	CGGTTTTAGA	AGAAGGAAAT	GAATTGATAG	1860
	TGCATCTTGG	GCCAATACTT	NNNCTTTNAA	TAGATGTAAA	ATTATCTGCA	AATGACAATT	1920
	TAAAGGTTCC	ATCCCATCTT					1940

(2) INFORMATION FOR SEQ ID NO:252:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 847 base pairs
- (B) TYPE: nucleic acid

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5		
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:252:	
10	GATTCAACAT AACGTCGTGT CCTTCAGCAT ATATAGTATC GAATGCTATG GACGATTAAC	60
	CTGACCCAGA TAAACCTGTC ATAACAATTA ATTTATTTTT AGGTAGTTCG GATATCAATA	120
	TCTTTCAAGT TATGCGCACG AGCACCTTTT ACTACTATGG ATGGNTCTTT CATTTACTTG	180
	TCACCCNTCT GCTTTTAATT CAAATAACAT ATCTCTTAAT TCNGTAGCTT TCTCGAAATC	240
15	TAAATCTTTC GCTGCTTGTT TCATTTCTTT TTCTATATTG TCGATTGTCT TTNGACGTGC	300
	TCTTTTCGGC ATCTTCTTAG GTATCACAGT TTGTGCTTNG TCATNATTTT CGTCATTTTC	360
	AACAGTAGCA CTAATTAAAT CATGTACTIN TITATTAATT GITTTAGGTG TAATACCATG	420
	TTTTTCATTA TGTTTCATCT GTATTTCTCG ACGACGTTGT GTCTCATCAA TTGCATACTT	480
20	CATNGAATCA GTCATATTAT CGGCATACAT AATGANTTCA CATTTATCGN TACGCTCGTG	540
	CCGAATCGGC ACGAGCTCGT ACCTATTGTT TGAATTAATG AGCGGNTAGA ACGTAAAAAT	600
	CCTTCTTTAT CTGCATCTAA TATGACAAGT AGAGAAACTT CTGGTATATC AATACCCTCT	660
	ACTTAATAAA TTAATACCTA CGATAACATC ATATGTACCC ATTCGTAAGT CTCTAATTAT	720
25	TTCGATTCGT TCGTAATGTC TTGATTTCTG AATGCAGATA ATTAACTTTA ATACCCGCTT	780
	CTTTCATGTA TGTGGTTAAA TCTTCACTCA TCTTTTTAGT GAGCGTTGTA ACAAGTACGC	840
	TCGTGCC	847
30	(2) INFORMATION FOR SEQ ID NO:253:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1300 base pairs	
35	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	4.12	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:253:	
45	CCGCTTCGCA CGAGCNAAGG CTTTTATTGC ANCCCTCGCA TCTTCTTTAG CTTACACTAA	60
	ATCTTTGATG TCTTGTAATG CTTGTGCAAG TTGTGCTTTG GCTTGTTCAA TTTCTTCTTT	120
	AGTCATCGCA TTGTTAATGT CGTTATGACC TTGTTGAAGT ATTTGANTAA TTCGATCTTT	180
	AAGCGCTTGT TTNTCCTTAT CTGTTAGATT TGGATTGTGA TCGATTTCGN CAATTAATGC	240
50	TTGAACTTGT TTATCAACAT CTTGTTTCGC ATCTTCTTTA GCTTACACTA AATCTTTAAT	300
	GTCTTGTAAT GCTTGCGCAA GTTGTGCTTT AGCTTGTTCA ATTTCTTCTT TAGTCAGCGC	360
	ATTGTTAATG TCGTTATGAC CTTGTTGAAG TATTTGATTA ATACGATCTT TTAAGTGCTT	420
	GTTTTTCCTT ATCTGTTAGA TTTGGATTTC GATCAATTTC GTCAATTAAT GCTTGAACTT	480
55	GCTTATCAAC GTCTTTATTATTC CCATCAATTT TACCOTTTATCA TATTTATCAAC GTCATTATCAAC	540

	GTTCAATCGC GTGGTTGCCT GCTGTTTGAA CTTGAGATAC AGCCTGATTA CTTGTTGCTT	600								
	TATTAATGTT GTTGATGATG CTGGTTTGCC AATTCTTCTT GCTTTATTTT TTCGGCAATA	660								
5	AGCTTGTCTT GATCCGTCGC ATTTGAAGCT TCGATTTCTT TTAGCTTATT AGCTAAAGCT	720								
•	TGATTAATTG ATTGAATTGC CTTGTCTTTA GCATCTTGTA GTCGTTGATC ACCATTAAGA	780								
	TTATGGATTG CATCATTGAC TGCTTGGATT GCGCCATTGA TATCATTCAC ATTTGTGTTA	840								
	TCACTATTTA GCAATGTATT TGCTAGACGT TTGGCATCAT CGAAGTTTGT TTTAGCATTA	900								
10	TCGTCAGCGT TTTGGTAATT GACAGTTTGC TCTGCATTTG GAATTTCATT GTCAACTAAA	960								
	TGTTTCAATG TTTCCATTGC ATCATTTAAG TCAATTTGAT TATTAACAAT ATCTGTTACA	1020								
	TCTGATACAG TATCGGCATT GTTAATTGCT TTATGTGCAA GATCTTGTTG CTGTTGATTT	1080								
	AATCCATTTA ACGAATTAAC AAACGCATTT GCTTTATCCT TTGGCATTTG CAAGGTTTTG	1140								
15	GTCTCCATTT AATGCATTTT GAGCATCGAT AATATTTTGT TTCAATTGCT CTGCTTCAGC	1200								
	TTTTGCAATT GCATTACTTG CACTTTATCT AACTCATGTG CTGCATTCGC AATGCATATC	1260								
	ATAATTTGCT TTCAATGTCA TCTGCATGAT GTATTGTGCT	1300								
20	(2) INFORMATION FOR SEQ ID NO:254:									
	(i) SEQUENCE CHARACTERISTICS:									
	(A) LENGTH: 1425 base pairs									
25	(B) TYPE: nucleic acid									
	(C) STRANDEDNESS: single									
	(D) TOPOLOGY: linear									
30	(ii) MOLECULE TYPE: Genomic DNA									
	•									
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:254:									
		60								
35	CTTTTCATCT CTTCGACCTG TGTAATACCT TTGATCAGCT GCACAAATAG ACAAGTATAA	120								
	AGGTCTTACG ATGACATGAT TACCATAAAT ATCAACATTA TTATATGTGA CGTCGAACTG	180								
	TCTCGGTGCA ACGAGTTGAT ATACTTGATT AATCATCGC AATATCACCT TGAATAATGG	240								
	NATTTGCTAC TTTNAANTCA TNCGGGGTTG TCACTTTAAT GTTGTATAGT TCTCCACGTA	300								
40	CCAATTTAAC TGCATGTCCA GATTCGACAA TTATTTTACA TGCATCTGAT AAGATTTCTT	360								
	THIGGITCAC TACTTAAGGC GCGATAACTA TCTTGTAATA ATTTAATATT AAATGATTGT	420								
	GGTGTTTGGC CTTGATACAT TTCATTCCTT ACAGGGATAC TGTGTATGTT CTGTTTATCT	480								
	TTAGACATTA CAATCGTATC AATTGCTTCA ATGACTGTAT CTACTGCACC ATATTNNGCT	540								
45	GCTACTTCAA TGTTCTCTTT AATAATACGT TGAGTTAAAA ATGGTCTTAC GGCATCATGA	600								
	GTTACAATCA CATCATCATT ATTAATTCCA TTTACATTGC GAATATGGTC GATAATGTTC	660								
	ATAATTGTTT CGTTTCGATC CGNACCACCT GCAACTACTT TGACACGTTG ATCTGTAATG	720								
	TTATATTTTT TTAAAATATC CTGTGTATGG GAAATCCACT GTGCTGGCGT TGCGATAATA	720 780								
50	ATCTCATTAA ATTCACTCAC TAAAATGAAC TTCTCAATTG TATGGATTAA AATCGGTTTA	780 840								
	TTATCAATAT CTAAAAATTG TTTTGGGTAA TGGCACGTTC CCCATTCTCG AACCAATACC	900								
	TCCTGCTAAA ATACCTGCAT AAATCATGTT GGCCTCCATC CTGTCATTAC ATCATTTCCA	960								
	TTTATACATT ACTGACCTAT GCCCGCACAT AAGCCTAACC TATTGCTCAC TNGNCTCTTN	1020								
55	TATTAATCCA AAGATAGTTG TCACAATAGT GTGATAATTN TTTATAAAAA TGTATTTNTG	1020								

NNACTGACCA NTCTAAGTTG TTTTGGCATG CAGCTAATCA TTAACTCTGA CGATATTAAA 1080

ŢŢĢŢŢĀĀĀGG	TATTAATGTT	TACTCTTTCA	САААТТСАТТ	ATTACTGCCA	TCATTTNNCC.	1140
ATATATATA	ATAAATTTAT	CTTATTAAGT	GGCTGNACTT	GATTTTCACT	TTAAAAATTA	1200
TCAAATATTG	CCATCTCATT	TTAAGNATAC	AAAATGCAAA	ACAACCGATT	CACAAGCATA	1260
TTTCACACAA	GTAAACCGGC	TATTTATCAA	CGTATATTCG	AAGATGAATT	ATTTCGATAG	1320
TATCTTGTAG	ACCAGNCGGC	ATTCGCACTT	TCAATAGCNT	ATTAACTTAT	ACCAGNGGTT	1380
TCGTCCTCNA	NGGTGCATAC	TAATAAATCG	TAAACNTGAC	TTTAG		1425
(2	2) INFORMATE	ON FOR SEQ	ID NO:255:			
(i) S	SEQUENCE CHA	ARACTERISTIC	cs:			
(A)	LENGTH: 31	160 base pai	irs			
(B)	TYPE: nucl	leic acid				
(C)	STRANDEDNE	ESS: single				
(D)	TOPOLOGY:	linear				
(ii)) MOLECULE 1	TYPE: Genom	ic DNA			
(xi)	SEQUENCE DE	ESCRIPTION:	SEQ ID NO:	255:		
TTTCTTACCT	TTAATAATTG	GTAATTCATC	TTCCATCCTC	TTGTTTGATC	TGTGTCGCAT	60
AAGCTTCATC	AAATAGTACA	TCAGTACGTG	GAACACCTGT	AGGCACTACA	TTTTTCTCTT	120
TAATACCAAA	TGCTTCAGCG	TAGAATGGAA	TATCGGTTTC	AGATGATACA	TAAGCTTTGG	180
CACGAGCTAC	GATGATTTAA	TGAATCAATA	AATGGTCCAC	CCTTTTTACC	AGTACGACTA	240
AAGCCAACTG	TTTTAAAGGC	ACCAACGGCA	TGCCATACTT	GAATAACTTC	TTGAGAACGT	300
CTAAAACGCA	CTGTATAAAT	CAAGGGGTGA	AAGTCATCAA	CAAAGATGTA	GTCTGCCTTC	360
CCAAGTAAAT	ATGGCAATCT	AAACTTGTCG	ATGATGCCAC	GTCTATCTGT	AATATTCGCT	420
TTAAAAACAG	TGTGAATATC	ATACTTTTTA	TCTAAATTTT	GACGTAACAT	TTCGTTATAG	480
ATGTATTCAA	AGTTTCCAGA	CATCGTTGGT	CTAGAGTCTG	ATGTGAACAA	CACCGTATTC	540
CCTTTTTTCA	AGGGTGAAAA	ATTTCGTCGT	ATTAAATATC	GCNTNAAAAA	TAAATTGTCT	600
TTGTTATTAA	ATGAATGTTT	GCGGAAATAC	NTACGTAATT	CTTTAATATT	TACGAACGAA	660
AATAAATACT	TTTAACTTCC	GGAGTCGTTA	CNACCAACAT	CAAGGACAAA	TTCATTAACA	720
TTCGCNAGAA	ATTTCAGGGT	GTAACAGTAT	AAACCGTTTT	CTTCGAAATG	CCGCCTTTTC	780
TAAATTCTTT	TAGGTAAGTC	TGCAATAAGA	AATTGATTTT	ACCATTTTGT	GTTTCTAATT	840
CGTTGTATTC	TTCTTCTTGT	TCTGGCTTTA	GATTTTGATA	TGCATCATTA	ATCACATCTG	900
GGTTTANCTG	TGCAATATAA	TCAAGTTCTT	GCTCATTCAC	TAATAAGTAC	TTATCTTCAG	960
GTAAGTAATA	ACCATTATCT	AAGATAGCTA	CATTGAAACG	ACAAACGAAT	TGATTCCCAT	1020

CTATTTTGAC ATCATTCGCC TTCATTGTAC GTGTCTCAGT TAAATTTCTT AATACAAAAT TACTATCTTC TAAATCTAGG TTTTCACTAT GTCCTTCAAC GAATAACTGA ACACGTTCCC

AATAGATTTT ATCTATATAT ATCTTACTTT TANCCAACGT TAATTCATCC TTTTCTATTT

ACATAATCCA TTTTAATACT GTTTTACCCC AAGATGTAGA CAGGTCTGCT TCAAAAGCTT

CTGTAAGATC ATNAATTGTT GCAATTTCAT ATTCTTGACC TTTTAACAAC GCTAATTTAT

CTACAATATC TGGGTATTGA ATGTATAAGT CTACAACATC TTGGAAATCT TGTGACCCAC

TTCGACTACT ACCAATCAAC GTTAGTCCTT TTTCCAATAC TAGACGTGTA TTAACTTCTA

CTGGGAACTC ACTTACACCT AACAGTGCAA TGCTTCCTTC TGGTGAAATA TANTCAATCA

1680

TTTGATTTAT TGCTGATTGG NTACCACGCC CACCAACGCA CTCAAATGCA TGATCANATG

TTAAGCCTTC AGGTATTTTA TTAATAAAGA AGACATCATC AACAAATGAG AAGTGACTCA 1620

ATTTATAATC TTGGTNNACC AAAGACATAT ATGGNAGACT TCTGGATATT AATNGACGGA

	ATAAAATGGC	TGTAATGTAA	CCTAAGTTAC	CATCACCCCA	AATACCAAAT	GTATTTTTAT	1740
	TTGAAATAGA	TTTCTTTTCA	ACAACGACGA	ATAGCATGCA	AACTTACTGT	TACAAGCTCT	1800
	GTAGATGAAA	TAATACTTAA	ATCAATATCA	TCAGGTAGTG	GTACAGCTCT	ATCATGATTT	1860
10	AGCAACACAA	AATCTTGCAT	AAACCCATCA	TGTCCACTTG	ATCTGAAGTA	GCTCGATTTT	1920
	AAATAGTTTT	CAGCAATGAC	ATCGTCTTTT	TCTGTCGGCG	TATTCGGTAC	CATAACTACT	1980
	TTTGTACCTT	TATTAAACAC	ACCTTTACTG	TCAAATACGA	CCTCACCAAC	ACCTTCATGA	2040
	ATTAAAGACA	TTGGCAATTT	CTGAGATAAG	ACATTCTCAT	CACGGCTACC	AGTATAATAT	2100
15	CTTTGATCGG	CAGCACAAAT	TGACATATAT	AAAGGACGTA	CAATGACATA	GTCACTGTAA	2160
	ATATCTACGT	TGTTATACGT	AACTTCAAAT	TGTCTAGGTG	CAACTAATTG	ATATACTTGA	2220
	TTAATCATCG	GCCAATACCA	CCTCGAATAA	TAGCATTCGC	TACTTTTAAA	TCGTAAGGTG	2280
	TTGTTACTTT	AATGTTATAT	AACTCACCTT	TTACAAGTCG	AACCGGTTTG	TTTGTTTCTA	2340
20	CAATAATCTT	ACAAGCATCA	GATAAAATAC	TCTTTTGCTC	ATCACTCAAC	TGTGCATAGC	2400
	TTTCTTTTAA	TAAATTAATA	TTAAACGATT	GAGGTGTTTG	ACCTTGGTAC	ATTTCATTAC	2460
	GCACTGGAAT	TGCATCAATC	GTTTGATTAT	CTTTAGATGT	AACAATCGTA	TCTATAGCAT	2520
	CAATCACTGT	ATCTACTGCA	CCGTACTCTA	AAGCAGCTTG	AATATTTTCT	TTAATAATAC	2580
25	GATGCGTTAA	AAATGGTCTA	ACTGCATCAT	GTGTCACAAT	GACATCGTCA	TCGTTAATAC	2640
	CATTTGTTGA	TTCAATATGT	TTAACGATAT	TCATAATTGT	ATCGTTACGA	TCGCTACCAC	2700
	CTTGAATGAC	TICAATTCTT	TCATCAGAAA	TTTTGAATTT	TCTAAGTGTA	TCTTTCGTAT	2760
	GCGTCATCCA	TTGTTGTGGC	GTCGCGATAA	TAATTTTTTC	AAAATCATTA	ATTAAAATAA	2820
30	ATTTTTCTTA	ATGTATGGAT	TAAAATCGGN	TTGTTGTCTA	AATCTAAAAA	TNGTTTAGGT	2880
	AAAGGGTACG	GTTACCCATT	CCTTGAGCCT	ATACCTCCAG	CTAGAATACC	AGCGTATTTC	2940
	ATAAAATACT	TCCTCCATTC	AACTATATCT	ATATTTAATT	ATTTAAATTT	CGTTGCATTT	3000
	TCCAATTGAA	AACTCATTTT	АЛЛАТСЛАЛА	CTCTAAATGT	CTGTGTATTA	CTTAAAATTA	3060
35	TACATATTTT	GCTTATATTT	TAGCATATTT	TGTTTAAACC	TATATTACAT	TATATCAGAC	3120
33	GTTTTCATAC	ACAAATAATA	ACATACAAGC	AAACATTTCG			3160
	(:	2) INFORMAT	ION FOR SEQ	ID NO:256:			
40	(3)	CECHENCE OF	. D. COED T COT	20.			
	• •	-	ARACTERISTI				
			676 base pa:	IIS			
		TYPE: nuc					
45	•) STRANDEDN	•				
	(D)) TOPOLOGY:	linear				
	(ii) MOLECULE	TYPE: Genom	ic DNA			
50	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	256:		
	AAAAAAACAA	TTTANCCCAT	NACNACTTGT	CGTTAATTAT	TCATACGAAA	TACATGATTA	6
55	ATGTACCACT	TTAACATAAC	AAAAAATCGT	TATCCATTCA	TAACGTATGT	GTTTACACAT	12
55	TTATGAATTA	GATAACGATT	GGATCGATTA	TTTTATTTTA	CAAAATGACA	ATTCAGTTGG	18

	AAGGTGATTG	CTTTTGATTG	AATCGCCTTA	TGCATGAAAA	ATCAAAAGGT	TATTCTCATT	240
	GTATAGTCCT	GCTTCTCATC	ATGACATGTT	GCTCACTTCA	TTGTCAGAAC	CCTTCTTGAA	300
5	AACTATGCCT	TATGACTCAT	TTGCATGGCA	AGTAATATAT	GCCAACATTA	GCGTCTAAAC	360
	AAATCTTNGA	CTAAACGTTC	ACTNGAGCGA	CCATCTGGAT	ATTTAAAANG	TTTAGCTAAG	420
	AATGGTACAA	CTTTTTCAAC	CTCATAATCT	TCAGTGTCCA	AAGCATCCAT	TAATGCATCA	480
	AAGGATTGTA	CAATTTTACC	TGGAACAAAT	GATCCATATG	GTTCATAGAA	ATCACGCGTC	540
10	GTAATGTAAT	CTTCTAAGTC	AAATGCATAG	AAAATCATCG	GCTTTTTAAA	TACTGCATAT	600
	TCATATATTA	AAGATGAATA	ATCACTAATC	AACAAGTCTG	TAACAAAGAG	AATATCGTTA	660
	ACTTCACGAT	GATCTGACAC	ATCGATAAAG	TATTGTCTAT	GTTCACGTGA	AATATTAAGT	720
	CTATTTTTTA	CGAACGGATG	NATTTTGAAT	AACACAACTG	NATTATGCTT	CTCGCAGGAT	780
15	CTTGCTAAAC	GTTCAAAATC	AATTTTAAAA	AATGGATAAT	GTGCCGTACC	GTGACCATTA	840
	CCTCTAAATG	TCGGTGCGAA	TAGAATAACT	TTCTTACCTT	TTATAATTGG	CAATTCATCT	900
	TCCATCTCTT	GTTTAATTTG	TGTTGCATAA	GCTTCATCAA	ATAGTACATC	AGTACGTGGT	960
	ACACCTGTTG	GTACAACATT	TTCTTCTCTA	ATTCCAAATG	CTTCAGCATA	AAATGGAATA	1020
20	TCGGGTTTCT	GATGAAACAT	ATGCTTTCGG	TGTAACTACG	ATGGGTTTTA	ATGAATCGAT	1080
	AAACGGACCA	CCTTTTTNAC	CTGTACGACT	AAAGCCAACT	GTTTTAAAGG	CACCAACAGC	1140
	ATGNCACACT	TGAATAATTT	CTTGTGATGG	TCTAAAGCGA	ACCGTATAAA	TTAATGGATG	1200
	GAAATCATCA	ACAAAAATAT	AATCGGCCTT	ACCAAGTAAA	TATGGCAATC	TAAACTTGTC	1260
25	TCTCCATTTG	CGTCTATCCG	TAATATTCGC	CTTAAATACC	GTTTTAATAT	CATAATCAAA	1320
20	ATCTACTTTG	TGGCGTAGTA	ACTCATCATA	TACATACTTG	AAATTCCCTG	ATAAATTCGG	1380
	ACGCGAATCT	GATGTGAATA	ATATTGTTNT	GCTTCTTTTA	ATATGTAGTA	ACTTTGTAAT	1440
	ATTAAAAATA	GCTTTAAATA	AGAAACTTCT	ACTTTCAAAT	GAAGCTTTAT	GACCTTGTTT	1500
30	ATGAAGCCAG	TGTGCACTTG	GCGCAATGAC	CCTGATTTCT	CTTGAGGTAA	GGTGATTTCA	1560
30	ATATCAAATA	CAAATTCGGN	TAACCGTCAC	TTGGCTATCT	CCGGAGTAAT	GGTATTAGAC	1620
	CGTATGTTGT	GATACGCCAC	CTTTACGGAA	AACTTTAGCA	TCATACGCTA	ATAAAG	1676
35	(2) INFORMAT	ON FOR SEQ	ID NO:257:			
	/÷> 6	SECUENCE CUI	ARACTERISTIC	· ·			
		-	l10 base pa:				
		TYPE: nucl					
40		STRANDEDNI					
		TOPOLOGY:	_				
	(1)	TOPOLOGI.	Tilleat				
45	(ii)	MOLECULE 1	TYPE: Genom	ic DNA			
	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	257:		
	GATTCGAGCT	CGGTACCGGG	GATCCTCTAG	AGTCGACCTG	CAAGCTATAC	CAAGCTAGAG	60
50	TACTGCGACG	CAAACTAGTG	CAACACCTAA	GGCTGTTACA	GCTTGGAAGT	CGATAAAATA	120
	GTTGAAAAAG	AGCAAGCGAT	TTTTGAACGT	GTTAACGAAG	TTGAACAACA	AATCAATGGC	180
	GCTGACCTTG	TTAAAGGTAA	TTCAACAACA	AATTGGCAAA	AGTCTAAACT	TACAGATGAT	240
	TACGGTAAAG	CAATCGAATC	GTCTGAGCAG	TCCATAGATA	GCGTTTTAAG	CACAGTTAAC	300
55							

360

ACATCTAGGA TTATTCATAT TACTAATGCA ACAGATGCGC CAGAAAAGAC GGATATAGGC

	ACĢTTAGAGA	AGCCTGGACA	AGATGGTGTT	GATGACGGTT	CTTCGTTCGA	TGAATCAAÇŢ	420
	TATACATCAA	GCAAATCTGG	TGTGTTAGTT	GTTTATGTTG	${\tt TTGATAATAA}$	TACTGCTCGG	480
5	TGCAACATGG	TACCCAGACG	ATTCAAACGA	TGAGTTCACA	AAATACAAAN	TCTTACGGCA	540
	CATGGTACCC	GTTTTATTAA	AAAGAATGAT	GGAAACTTAA	CTAGCAATTT	GGTTGGAGGA	600
	ACGTCTTACA	ACGCTTTAAA	TCAAGCTAAG	CAGTATGTAG	${\tt ATGATAAATT}$	CGGAACAACG	660
	AGCTGGCAAC	AACATAAGAT	GACAGAGCCG	AACGGTCAAT	CAATTCAAGT	TAACTTAAAT	720
10	AATGCGCAAG	GCGATTTGGG	ATATTTAACT	GCTGGTAATT	ACTATGCAAC	AAGAGTGCCG	780
	GATTTACCAG	GTAGCGTTGA	AAGTTATGAG	GGTTATTTAT	CGGTATTCGT	TAAAGATGAT	840
	ACAAACAAGC	TATTTAACTT	CACACCTTAT	AACTCTAAAA	AGATTTACAC	ACGATCAATC	900
	ACAAACGGAA	GACTTGAGCA	ACAGTGGACA	GTTCCTAATG	AACATAAGTC	AACGGTATTG	960
15	TTCGACGGTG	GAGCAAATGG	TGTAGGTACA	ACAATCAATC	TAACTGAACC	GTACACAAAC	1020
	TATTCTATTT	TGTTGGTAAG	TGGAACTTAT	CCAGGTGGCG	TTATTGAGGG	ATTCGGACTA	1080
	ACCGCATTAC	CTAATGCAAT	TCAATTAACC	AAACCGAATG	TAGTTGACTC	AGACGGTANC	1140
	GGTGGCGGTA	TTTATGAGTG	TTTACTATCA	AAAACAAGTA	GTACCCACTT	TAAGAATAGA	1200
20	CAACGATGTG	TATTTCGATT	TAGGCAAAAC	ATCAGGTTCT	GGAACGAATG	CCAACAAAGT	1260
20	TACTATAACT	AAAATTATGG	GGTGGAAATA	ATGAAAATAA	CAGTAAACGA	TAAAAACGAA	1320
	GTTATCGGAT	ACGTTAATAC	TGGCGGTTTA	CGCAATAGTT	TAGATGTAGA	TGATAACAAT	1380
	GTGCCTATCA	AATTCAAAGA	AGAGTTTGAA	CCTAGAAAGT	TTGTTTTCAC	TAACGGCGAA	1440
25	ATTAAATATA	ACAGCAATTT	TGAAAAAGAA	GACGTACCGA	ATGCATCAAG	CCAACAAAGT	1500
25	GAATCAGATT	TGAGTGATGA	AGAACTTCGC	${\tt GGAATGGTTG}$	CGAGTATGCA	AATGCAGGTG	1560
	GCACAAGTAA	ACGTATTAAC	AATGGAATTA	GCTCAACAAA	ACGCTATGTT	AACACAACAG	1620
	TTGACTGAAC	TGAAAACTAA	CAAAACAAGT	ACTGAGGGGG	ACGTTTAATG	ATGAAGATGA	1680
	TTTATCCGAC	TTTTAAAGAC	ATCAAAACTT	TTTATGTTTG	GGGTTACTAT	AAAAACGAGC	1740
30	AAATTAAGTG	GTACGTAGAC	AAGGGTTTAA	TCGATAAAGA	AGAATACGCT	TTAATCACTG	1800
	GAGAAAAATA	TCCAGAAACA	AAAGATGAAA	AGTCACAGGT	GTAATGCTTG	TGGCTTTTTA	1860
	ATTTAACAAA	AAGTAGGTGG	CGTAATGTTT	GGTTTTACCA	AACGACATGA	ACAAGATTGG	1920
	CGTTTAACGC	GATTAGAAGA	AAATGATAAG	ACTATGTTTG	AAAAATTCGA	CAGAATAGAA	1980
35	GATAGTCTTA	GAGCGCAAGA	AAAGATTTAT	GACAAATTAG	ATAGAAATTT	TGGAAGAATT	2040
	AAAGCGCGAC	AAGGTAGAAG	ATGAAAAGAA	TAAAGAAAAG	AATGCCAAGA	ATATTAGAGA	2100
	CATAAAAATG	TGGATTCTCG	GTTTGATAGG	GACTATCTTC	AGTACGATTG	TCATAGCTTT	2160
	ACTAAGAACT	ATTTTTGGTA	TTTAAAGGAG	GTGATTACCA	TGCTTAAAGG	GGATTTTAGG	2220
40	ATATAGCTNC	TGGGCGGTCC	TCCTGGTTGG	GGGTAAATGT	AAATAACAGT	TAAGAGTCAG	2280
	TGCTCCGGCA	CTGGCTTTTT	ATTTTGATTG	AAATGAGGTG	CATACATGGG	ATTACCTAAT	2340
	CCAAAGACTA	GAAAGCCTAC	AGCTAGTGAA	GTGGTGGAGT	GGGCAAAGTC	GAATATTGGT	2400
	AAGAGGATTA	ATATAGATAA	TTATCGGGGC	AGTCAATGTT	GGGATACACC	TAACTTTATT	2460
45	TTTAAAAGAT	ATTGGGGTTT	TGTAACATGG	GGCAATGCTA	AGGATATGGC	TAATTACAGA	2520
	TATCCTAAGG	GTTTCCGATT	CTATCGTTAT	TCATCTGGAT	TTGTTCCGGA	ACCCGGAGAC	2580
	ATAGCAGTTT	GGCACCCTGG	CAACGGAATA	GGTTCGGACG	GACACACCGC	AATAGTAGTA	2640
	GGACCATCTA	ATAAAAGTTA	TTTTTATAGC	GTTGACCAAA	ACTGGGTTAA	TTCTAATAGT	2700
50	TGGACAGGTT	CTCCAGGAAG	ATTAGTAAGA	CACCCTTATG	TAAGTGTTAC	AGGCTTTGTT	2760
	AGGCCTCCGT	ACTCAAAAGA	TACTAGCAAA	CCTAGTAGTA	CTGATACAAG	TTCAGCATCA	2820
	AAAAGCCAAT	GACTCAACAA	TTACTGGCGA	AGCGAAGAAA	CCGCAATTTA	AAGAAGTTAA	2880
	AACAGTAAAA	TACACTGCTT	ACAGCAATGT	TTAGATAAAG	AAGAGCACTT	CATTGATCAT	2940
55	ATAGTTGTAA	TGGGTGATGA	ACGCTCAGAT	ATTCAAGGAT	TATATATAAA	AGAATCAATG	3000

CATATGCGTT CTGTAGACGA ACTTTATACG CAAAGAAATA AGTTTATAAG CGATTATGAA 3060

	ATACCGCATT	TATATGTCGA	TAGAGAGGCT	ACAGGAATTC	CGGAATTCCG	•	3110
5	(2) INFORMATION FOR SEQ ID NO:258:						
	(2) INFORMATION FOR SEQ ID NO:230:						
(i) SEQUENCE CHARACTERISTICS:							
10	(A) LENGTH: 2553 base pairs						
	(B) TYPE: nucleic acid						
	(C) STRANDEDNESS: single						
	(D) TOPOLOGY: linear						
15	(ii) MOLECULE TYPE: Genomic DNA						
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:258:						
20	ል ል ል ጥጥ ል ጥ ል ጥ ል	ሞል ልሞል እርርጥር	ርተጥጥጥ አስርጥ አ	ACCCA ACATA	ACCACCTCCC	TCAATTGGCT	60
						AACAAATTCA	120
		-					180
25						AGTTGTATTA	
						CTTCTTTAAT	240
						AACTGGTTTT	300
			- +			TGTATTGCAA	360
30						CAAAGCTGAA	420
						TCCAAATTTT	480
						TTCATTATTT	540
						AACAAACCAT	600
35	CAACATCGTG	ATGTTGCAAA	AGTTGCACTG	GAAAATATAA	AAGCTTGGTT	TGGTTCATTT	660
	AATGAAAAAA	TGTCGGAAAG	AAACCAAGAA	AAACAATTGA	AGCGTGAAGA	AAAAGCGAGA	720
	CTTAAAGAAG	AACAAAAGGC	ACGTCAAAAT	GAACAGCCAC	AAATAAAAGA	TGTGAGTGAT	780
	TTTACGGAAG	TGCCTCAAGA	AAGAGATATT	CCAATTTATG	GGCATACTGA	AAATGAAAGT	840
40	AAAAGCCAGT	GTCAACCAAG	TCGAAAAAA	CGAGTGTTTG	ATGCAGAGAA	TAGTTCGAAT	900
	AACATCGTAA	ATCATCAAGC	AGATCAGCAA	GAGCAATTAA	CAGAACAAAC	TCATAACAGT	960
	GTTGAAAGTG	AAAACACTAT	TGAAGAAGCT	GGTGAAGTTA	CGAATGTATC	GTATGTTGTT	1020
	CCACCGTTAA	CTTTACTTAA	TCAACCTGCA	AAACAAAAAG	CAACATCTAA	AGCTGAAGTA	1080
45	CAACGTAAAG	GACAAGTACC	AAAGAGATAC	ATNAAAAGAT	TTTGGGGTNA	AATCCNAAAG	1140
	TNGACACAAA	TNAAATTGTC	CTNCAGTAAC	TCAATATGAA	ATCCCACCCA	GCTCAANGGG	1200
	GGTTNAAAGT	GAGTAAAATT	GTAAACTTTG	CATAATGATA	TTGCATTAGC	TTTAGCACCA	1260
	AAAGATGTTA	GAATCGAAGC	ACCAATACCT	GGTCGCTCTG	CAGTAGGTAT	TGAAGTGCCA	1320
50	AATGAGAAAA	TTTCATTAGT	TTCACTAAAA	GAAGTTTTAG	ATGAAAAATT	CCCGTCTAAT	1380
	AATAAACTAG	AAGTTGGATT	AGGAAGAGAT	ATATCAGGTG	ATCCAATTAC	TGTTCCACTA	1440
	AATGAAATGC	CACACTTATT	GGTGGCAGGA	TCGACGGGTA	GTGGTAAATC	TGTTTGTATA	1500
	AATGGTATTA	TTACAAGTAT	TTTATTAAAT	GCTAAGCCGC	ATGAAGTTAA	ACTTATGTTA	1560
						ATTAATTCCG	1620
						TGAGATGGAA	1680
55						TAACGAATTA	1740

	ATCCGTAAGC	AAAATCAAGA	ATTAGATGAG	AAGCAAÇÇAG	AATTACCTTA	TATCGTTGTT	1800
	ATTGTAGATG	AGCTTGCAGA	TTTAATGATG	GTAGCTGGTA	AAGAAGTTGA	AAATGCGATT	1860
5	CAACGTATCA	CACAAATGGC	ACGTGCAGCA	GGTATACATT	TGATTGTAGC	AACACAAAGA	1920
	CCTTCTGTGG	ATGTAATTAC	AGGTATCATT	AAAAATAACA	TTCCATCTAG	AATTGCTTTT	1980
	GCTGTGAGTT	CTCAAACAGA	TTCAAGAACT	ATTATTGGTA	CTGGCGGCGC	AGAAAAGTTA	2040
	CTTGGTAAAG	GGTGACATGT	TATACGTTGG	AAATGGTGAT	TCATCACAAA	CACGTATTCC	2100
10	AAGGGGCGTT	TTTAAGTGAC	CAAGAGGTGC	AAGATGTTGT	AAATTATGTA	GTAGAACAAC	2160
	AACAGGCAAA	TTATGTAAAA	GAAATGGAAC	CAGATGCACC	AGTGGATAAA	TCGGAAATGA	2220
	AAAGTGAAGA	TGCTTTATAT	GATGAAGCGT	ATTTGTTTGT	TGTTGAACAA	CAAAAGGCAA	2280
	GTACATCATT	GTTACAACGC	CAATTTAGAA	TTGGTTATAA	TAGAGCATCT	AGGTTGATGG	2340
15	ATGATTTAGA	ACGCAATCAG	GTAATCGGTC	CACAAAAAGG	AAGCAAGCCT	AGACAAGTTT	2400
.5	TAATAGATCT	TAATAATGAC	GAGGTGTAAA	AAATTTGATT	AAGCAAAATA	AATTGGAATA	2460
	TGGTGACCAA	CTATCCAAGT	AATTTATCAA	TTGCCAGAGA	ATTAAATGTA	AAAACCGACG	2520
	ATGTTTATGA	AGCAATTCAG	GCATTGATTA	CTG			2553

(2) INFORMATION FOR SEQ ID NO:259:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1664 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

25

30

35

40

45

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:259:

CCGTACATTA	ACAACCTGGA	TTAATTACAG	ATTACGTTTT	GTCTCATCTA	AAAATTGTTG	60
ATAATCTTTG	ATCAATTTCC	AAATCTGTAC	GTATGTATTA	TCTTAGTAGT	AGTTTAATAT	120
GCACTAAATA	CTTGCAATTG	ATATTTACCA	TATTTATTGT	CAAATCCAAT	TATCTTGTGT	180
TTTTCATAAA	ACGATTGCTT	TAAATAATCT	TCTAACACAT	CAAACATCGT	ATTATCACCG	240
ACATGGTGCC	CGTATAAAAT	AGTATTATGA	TTTAAATTCT	NCAATTCATT	TCTAAAATCC	300
ATAAAAATAC	TACCTTTACG	TCGATGTTCT	CGCTCAAAAT	CTAAATTTAA	ATAATCGTGA	360
TTTGTCTTAC	CTTGTAGTAC	TGGATAANTT	AATGATGTTC	CTGATAATTT	TATCCATCCA	420
ACAATGTCTT	TATTTATTTT	TTCAAGTGAT	TCAAATTGTG	GTCTCACATG	TTCTTGATGT	480
TTGNTCATCA	GCATNTGAAA	TTTNTGTTGT	AATTTCTCAT	AANTTGCGCG	TTCTTGCTTG	540
TCTTCAATAT	ATGTTTGAAC	AATTTTGTAA	CCAAAAATGA	TAATAATTAC	AACCAATAAA	600
ATTTGTACAA	TAGTTAAAAA	TCGCTTCATT	СТСАТААААА	CCCTCTTTAA	TAAACAANTT	660
TCTTCAGTCA	TCACTAAACC	AGTTGTTGTA	CCGTTTTAGA	TTCGATTTCG	TTGACTTTGA	720
CAAATTAAGT	AAATTAGCAT	TGGACCACCG	ACAATCATTA	AAATAGCATT	GGCTGGAATT	780
TCTAAAGGAG	GCTGTATCAC	TCGTCCTAAT	AAATCAGCCA	CTAACAATAG	CCATGCACCA	840
ATAACTGTAG	AAAACGGAAT	AAGTACTCTG	TAATTGCCCC	CAACTAGCTT	TCTAACCACA	900
TGTGGCACAA	TAATACCTAA	AAAGGCTAGT	TGTCCAACAA	TCGCAACAGT	TGCACTTGCT	960
AAAAATACTG	CTAATAAACC	TGTTAACCAT	CTGTAACGAT	CAATATTAAA	ACCGATACTT	1020

	CGCGCTTGTA TGTCGTCTAA ATTTAGTAAA TTCAATTTAG GGGACAATAG TAATGTTAAT	1080
	ATTAATCCCA ATAATGCTGA TACTGCTAAT ATGTATACGT CGCTCCATAT TTTCATTGTT	1140
5	AAGCCTTGAG GAATTTTCAT TAAAGGGTTT TGAGTTAAAA TTTCTAAAAC ACCATTTAAT	1200
	AATACGNATA ACGCAACACC TACTAATATC ATACTTACAG CATTGAATCT AAATTTAGAA	1260
	TGCAACAATA TAATTATTAA AAATGGTATT AAACCTCCAA TAAAACTTAA TAATGGTAAG	1320
	TAAAAGTACA ATTGTGGAAT AAACAACATA CCAAGTGCTC TCATTATAAG TGCACCTGAG	1380
10	GAAACGCCAA TGATATTCGC CTCTGCCAAA GGATTTTGTA GTCCTGCTTG TAATAATGCT	1440
	CCAGAAACTG CTAACATTGC GCCANCCATC AATGCAANTA ATAGACGTGC CAATCCCAAA	1500
	TCAATGATTG AATCCACTGC TTCATTGCTA CCAGTTGTAA ATTTTGTAAA TAGGTCATTA	1560
	AATGACAATT TAATTGTACC GGTTACAAAC GAAATATAAG CAGTTGCGAT TAAAATGACT	1620
15	AACAAACATA AAAATAGTAG TTTCTTTTTA TTTTTTTATCA TCAG	1664
,5		
	(2) INFORMATION FOR SEQ ID NO:260:	
20	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 50 amino acids	
	(B) TYPE: amino acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25		
	(ii) MOLECULE TYPE: Protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:260:	
30		
	Val Leu His Xaa Ile Arg Glu Ile Leu Leu Gln Leu Val His His Ser	
	1 5 10 15	
	Asp Xaa Gly Xaa Gly Ile Gln Pro Pro Lys Phe Phe Gln Pro Gly Asp	
35	20 25 30	
	Xaa Xaa Lys Val Thr Ile Asp Asn Ile Gly Thr Leu Thr Thr Tyr Ile	
	35 40 45	
	Xaa Lys	
40	50	
	(2) INFORMATION FOR SEQ ID NO:261:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 51 amino acids	
	(B) TYPE: amino acid	
	(C) STRANDEDNESS: single	
50	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Protein	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:261:	

	Val 1	Pro	Ile	Lys	Ala 5	Val	Ile	Ala	Gln	Thr	Met	Thr	Thr	Leu	Pro 15	Arg
5	Val	Ile	Asn	11e 20	Lys	Arg	Leu	Thr	Ser 25	Gly	Leu	Asn	Lys	Pro 30	Leu	Ser
			35	Pro	Lys	Lys	Ile	Met 40	Ala	Xaa	Ile	Asn	Ile 45	Ile	Thr	Thr
10	Xaa	Met 50	Xaa													
			(2) IN	FORM	ATIO	N FOI	R SE	Q ID	NO:	262:	-				
15		(:	(A)	EQUEI LENC	STH:	90 8	amino	ac:								
20	(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear															
25				MOLEC						O ID	NO:	262:				
	Val												Tve	ui e	Val	212
30	1				5					10					15 Val	
				20					25					30	Ile	
35			35					40					45			
		50					55					60			Lys	
40	65					70					Leu 75	Gly	Tyr	Trp	Xaa	Arg 80
	Xaa	Gly	Xaa	Arg	Leu 85	Glu	Leu	Xaa	Pro	Ile 90						
45			(2)	INF	ORMA	TION	FOR	SEC	D	NO: 2	63:					
		(i		QUEN												
50				LENG TYPE					ds							
				STRA												
			(D)	торо	LOGY	: li	near	-								
55		(i	i) M	OLEC	ULE	TYPE	: Pr	otei	n							

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:263:

5	Val 1	Cys	Cys	Phe	Gly 5	Ala	Ser	Thr	Met	Leu 10	Ser	His	Ile	Thr	Ala 15	Tyr
	Glu	Ile	Leu	Ser 20	Glu	Ile	Xaa	Lys	Lys 25	Leu	Ala	Gln	Lys	Leu 30	Met	Arg
10	Leu	Pro	Leu 35	Xaa	Val	Val	Glu	Ser 40	Lys	Lys	Ile	Gly	Glu 45	Leu	Lys	Asn ·
	Ile	Phe 50	Xaa	Asp	Lys	Val	Glu 55	Thr	Ile	Glu	Leu	Pro 60	Leu	Ala	His	Met
15	Ile 65	Pro	Glu	Val	Xaa	Gly 70	Asn	Leu	Leu	Val	Ala 75	Ala	Ala	Ile	Phe	Leu 80
	Tyr	Ile	Met	Xaa	Xaa 85	Asp	Trp	Arg	Ile	Gly 90						
20			(2)) INI	FORM	ATIO	N FOR	R SEG	Q ID	NO:2	264:					
		(:	i) S1	EQUEI	CE (CHARA	ACTE	RIST	ICS:							
25					E: ar				cids							
					NDE			-	2							
30		(:	ii) l	MOLE	CULE	TYPE	E: P:	rote	in							
		()	ki) S	EEQUI	ENÇE	DESC	CRIP	rion	: SE(Q ID	NO:	264:				
35	Val	Thr	Ser	Phe	Ile 5	Tyr	Lys	Ile	Leu	Tyr 10	Val	Val	Lys	Ile	Asn 15	Ala
40		Thr	Tyr	Asp 20	-	Met	Thr	Glu	Asp 25		Met	Xaa	Leu	Ser		Leu
	Leu	Ile	Phe 35		Cys	Ile	Arg	Leu 40		Ser	Leu	Lys	Ile 45		Ile	Xaa
45	His	Ser 50	Lys	Gln	Leu	Lys	Ala 55	Asp	Gly	Ala	Val	Glu 60	Tyr	Gly	Val	Lys
	Asn 65	Ser	Lys	Phe	Leu	Ala 70	Ile	Thr	His	Val	Leu 75	Ile	Tyr	Val	Leu	Ala 80
50	Gly	Val	Glu	Ala	Phe 85	Ile	Asn	Lys	Asp	Thr 90	Phe	Ser	Phe	Ala	Asn 95	Gly
	Ile	Gly	Leu	Val 100	Ile	Leu	Ile	Phe	Ala 105	Tyr	Ile	Met	Leu	Phe 110	Met	Val
55	Ile	Lys	Thr		Gly	_	Ile	_			_		Phe		Leu	Pro

	คอา	130		, ile	: 11e	rys	135		Leu	туг	řλε	11e		Lys	Thr	Pro "
5	Lys 145	Leu		Leu	Lys	His	His					140				
			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	265:					
10		((A)	LEN	GTH:	CHAR 104	ami	no a								
15			(C)	STR	ANDE	mino DNES Y: 1	S: s	ingl	e							
		(ii)	MOLE	CULE	TYP	E: P	rote	in							
20		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	QID	NO:	265:				
	1	Arg			5					10					15	
25	Asn	His	Thr	Glu 20	Gly	Leu	Ile	His	Ile 25	Ser	Glu	Ile	Met	Asp 30	Asp	Tyr
	Val	His	Asn 35	Leu	Lys	Lys	Phe	Leu 40	Ser	Glu	Gly	Gln	Ile 45	Val	Lys	Ala
30	Lys	Ile 50	Xaa	Ser	Ile	Asp	Asp 55	Glu	Gly	Lys	Leu	Asn 60	Leu	Ser	Leu	Xaa
	Asp 65	Asn	Asp	Tyr	Phe	Lys 70	Asn	Tyr	Glu	Arg	Lys 75	Lys	Glu	Lys	Ģln	Ser 80
35	Val	Leu	Asp	Glu	Ile 85	Arg	Xaa	Thr	Glu	Lys 90	Tyr	Gly	Xaa	Gln	Thr 95	Leu
40	Lys	Arg	Thr	Leu 100	Thr	Asn	Leu	Gly								
			(2)) IN	FORMA	MOITA	V FOR	R SE(Q ID	NO:2	266:					
45		į }				CHARA										
45			(B)	TYPE	E: an	97 a nino	acio	3								
						NESS : li		_	2							
50		(i	Li) M	10LEC	ULE	TYPE	E: Pr	otei	.n							
		(х	ci) S	SEQUE	NCE	DESC	RIPT	ION:	SEÇ) ID	NO : 2	66:				
<i>55</i>																

	. <u>y</u> aı	THE	xaa	GIY	Val 5	Xaa	Glu	Leu	He	Ile 10	Xaa	Ser	Gly	Glu	Glu 15	Glu ,
		Ser	Ser	Gln	_	Cys	His	Pro	His		Val	Lys	Asp	Val	-	Glv
5				20		•			25			•		30		
	Ala	Gly	Asp 35	Ser	Phe	Cys	Ala	Ala 40	Val	Val	Tyr	Ser	Trp	Xaa	Asn	Gly
10	Met	Ser 50	Thr	Val	Asp	Ile	Leu 55	Ile	Ala	Gly	Met	Val 60	Asn	Ala	Xaa	Lys
	Thr 65	Ile	Glu	Thr	Lys	Tyr 70	Thr	Val	Arg	His	Asn 75	Leu	Asp	Gln	Gln	Gln 80
15	Leu	Tyr	His	Asp	Met 85	Glu	Asp	Tyr	Lys	Asn 90	Gly	Lys	Phe	Thr	Gln 95	Val
	Tyr															
20			(2)) INI	FORM	ATIO	N FO	R SE() ID	NO: 2	267:					
25		(1	(B) (C)	TYPE STRA	GTH: E: ar ANDEI	56 a mino ONES	amino acio	o aci i ingle	ds							
30			ii) N							\ TD	NO.	. 67.				
		,,,	, .	POOL	aved	DESC	-KIF	LION	SEÇ	2 10	NO: 2	207:				
35	Val 1	Asn	Lys	Asn	Xaa 5	Thr	Thr	Met	Ser	His 10	Ile	Thr	Xaa	Xaa	Gln 15	Ser
	Ala	Ile	Leu	Ala 20	Ser	Lys	Val	Asn	Ala 25	Pro	Ser	Val	Tyr	Asn 30	Xaa	Asn
40	Asn	Met	Ser 35	Glu	Asn	Phe	Thr	Gln 40	Arg	Val	Lys	His	Xaa 45	Leu	Arg	Lys
	Asn	Glu 50	Ala	Thr	Thr	Xaa	Tyr 55	Gln								
45																
			(2)	INF	ORMA	MION	FOF	SEC	ID	NO : 2	68:					
		(i) SE													
50								aci	ds							
				LIPE	: am	TUO	acid	1								
			(()	STRA	MDED	MECC		nale								
							: si near	ngle								

		(:	ii) 1	MOLE	CULE	TYP	E: P:	rote:	in		·					•
5		(:	xi) :	SEQUI	ENCE	DES	CRIP'	rion	: SE(Q ID	NO:	268:				
	Val 1	Ser	Ser	Arg	Asp 5	Ile	Gly	Glu	His	Val	Met	Asn	Leu	Leu	Met 15	His
10	Val	Asp	Gln	Val 20	Ser	Tyr	Val	Arg	Phe 25	Ala	Ser	Va1	Tyr	Lys 30	Glu	Phe
	Lys	Asp	Val 35	Asp	Gln	Leu	Leu	Ala 40	Ser	Met	Gln	Gly	Ile 45	Leu	Ser	Glu
15	Asn	Lys 50	Arg	Ser	Asp	Ala										
	(2) INFORMATION FOR SEQ ID NO:269: (i) SEQUENCE CHARACTERISTICS:															
20		(:	i) SI	EQUE	NCE (HAR	ACTE	RIST	cs:							
			(A)	LEN	STH:	104	ami	no ac	ids							
					E: an											
25					ANDEI			_	?							
			(0)	TOP	DLOG	(: L)	ınea	<i>-</i>								
		(:	ii) 1	OLE	CULE	TYP	E: P:	rote	in							
30																
30		(:	ki) S	SEQUI	ENCE	DESC	CRIP	rion:	SEÇ	Q ID	NO:	269:				
30					ENCE Xaa					_			Xaa	Pro	Xaa	Gly
35	1	Ala	Xaa	Val	Xaa 5	Ile	Ile	Xaa	Phe	Met 10	Met	Leu			15	_
	1	Ala	Xaa	Val Ala	Xaa 5	Ile	Ile	Xaa	Phe Gly	Met 10	Met	Leu		Ile	15	Gly Ala
	1 Gly	Ala Phe	Xaa Ile	Val Ala 20	Xaa 5 Leu	Ile Glu	Ile Gln	Xaa Ile	Phe Gly 25	Met 10 Glu	Met Arg	Leu Met	Asn	Ile 30	15 Ala	Ala
35	1 Gly	Ala Phe	Xaa Ile	Val Ala 20	Xaa 5	Ile Glu	Ile Gln	Xaa Ile	Phe Gly 25	Met 10 Glu	Met Arg	Leu Met	Asn	Ile 30	15 Ala	Ala
	1 Gly Ile	Ala Phe Glu Arg	Xaa Ile Val 35	Val Ala 20 Asp	Xaa 5 Leu	Ile Glu Ser	Ile Gln Tyr Tyr	Xaa Ile Arg 40	Phe Gly 25 Phe	Met 10 Glu Asn	Met Arg Gly	Leu Met Ile Tyr	Asn Gly 45	Ile 30 Ser	15 Ala Ser	Ala Ala
35	1 Gly Ile Leu	Ala Phe Glu Arg 50	Xaa Ile Val 35 Gln	Val Ala 20 Asp	Xaa 5 Leu Lys Pro	Ile Glu Ser Thr	Ile Gln Tyr Tyr 55	Xaa Ile Arg 40 Leu	Phe Gly 25 Phe	Met 10 Glu Asn Lys	Met Arg Gly Asn	Leu Met Ile Tyr 60	Asn Gly 45 Asp	Ile 30 Ser Asn	15 Ala Ser Leu	Ala Ala Asn
35	1 Gly Ile Leu Val	Ala Phe Glu Arg 50	Xaa Ile Val 35 Gln	Val Ala 20 Asp	Xaa 5 Leu Lys	Ile Glu Ser Thr	Ile Gln Tyr Tyr 55	Xaa Ile Arg 40 Leu	Phe Gly 25 Phe	Met 10 Glu Asn Lys	Met Arg Gly Asn	Leu Met Ile Tyr 60	Asn Gly 45 Asp	Ile 30 Ser Asn	15 Ala Ser Leu	Ala Ala Asn Leu
35	1 Gly Ile Leu Val 65	Ala Phe Glu Arg 50 Ile	Xaa Ile Val 35 Gln Thr	Val Ala 20 Asp Leu Met	Xaa 5 Leu Lys Pro	Ile Glu Ser Thr Leu 70	Ile Gln Tyr Tyr 55 Phe	Xaa Ile Arg 40 Leu Gly	Phe Gly 25 Phe Arg	Met 10 Glu Asn Lys Asn	Met Arg Gly Asn Asn 75	Leu Met Ile Tyr 60 Asp	Asn Gly 45 Asp	Ile 30 Ser Asn Lys	15 Ala Ser Leu Pro	Ala Ala Asn Leu 80
<i>35</i>	1 Gly Ile Leu Val 65	Ala Phe Glu Arg 50 Ile	Xaa Ile Val 35 Gln Thr	Val Ala 20 Asp Leu Met	Xaa 5 Leu Lys Pro	Ile Glu Ser Thr Leu 70	Ile Gln Tyr Tyr 55 Phe	Xaa Ile Arg 40 Leu Gly	Phe Gly 25 Phe Arg	Met 10 Glu Asn Lys Asn	Met Arg Gly Asn Asn 75	Leu Met Ile Tyr 60 Asp	Asn Gly 45 Asp	Ile 30 Ser Asn Lys	15 Ala Ser Leu Pro	Ala Ala Asn Leu 80
<i>35</i>	1 Gly Ile Leu Val 65 Cys	Ala Phe Glu Arg 50 Ile Leu	Xaa Ile Val 35 Gln Thr	Val Ala 20 Asp Leu Met	Xaa 5 Leu Lys Pro Ile Asn	Ile Glu Ser Thr Leu 70 Phe	Ile Gln Tyr Tyr 55 Phe	Xaa Ile Arg 40 Leu Gly	Phe Gly 25 Phe Arg	Met 10 Glu Asn Lys Asn Glu	Met Arg Gly Asn Asn 75	Leu Met Ile Tyr 60 Asp	Asn Gly 45 Asp	Ile 30 Ser Asn Lys	15 Ala Ser Leu Pro	Ala Ala Asn Leu 80
<i>35</i> 40 45	1 Gly Ile Leu Val 65 Cys	Ala Phe Glu Arg 50 Ile Leu	Xaa Ile Val 35 Gln Thr	Val Ala 20 Asp Leu Met	Xaa 5 Leu Lys Pro Ile Asn 85	Ile Glu Ser Thr Leu 70 Phe	Ile Gln Tyr Tyr 55 Phe	Xaa Ile Arg 40 Leu Gly	Phe Gly 25 Phe Arg	Met 10 Glu Asn Lys Asn Glu	Met Arg Gly Asn Asn 75	Leu Met Ile Tyr 60 Asp	Asn Gly 45 Asp	Ile 30 Ser Asn Lys	15 Ala Ser Leu Pro	Ala Ala Asn Leu 80
<i>35</i>	1 Gly Ile Leu Val 65 Cys	Ala Phe Glu Arg 50 Ile Leu	Xaa Ile Val 35 Gln Thr Asn	Val Ala 20 Asp Leu Met Ser Lys 100	Xaa 5 Leu Lys Pro Ile Asn 85	Ile Glu Ser Thr Leu 70 Phe	Ile Gln Tyr Tyr 55 Phe Val	Xaa Ile Arg 40 Leu Gly Glu Tyr	Phe Gly 25 Phe Arg Glu	Met 10 Glu Asn Lys Asn Glu 90	Met Arg Gly Asn Asn 75 Gln	Leu Met Ile Tyr 60 Asp	Asn Gly 45 Asp	Ile 30 Ser Asn Lys	15 Ala Ser Leu Pro	Ala Ala Asn Leu 80
<i>35</i> 40 45	1 Gly Ile Leu Val 65 Cys	Ala Phe Glu Arg 50 Ile Leu Phe	Xaa Ile Val 35 Gln Thr Asn Glu	Val Ala 20 Asp Leu Met Ser Lys 1000	Xaa 5 Leu Lys Pro Ile Asn 85	Ile Glu Ser Thr Leu 70 Phe Leu	Ile Gln Tyr Tyr 55 Phe Val	Xaa Ile Arg 40 Leu Gly Glu Tyr	Phe Gly 25 Phe Arg Glu Ile	Met 10 Glu Asn Lys Asn Glu 90	Met Arg Gly Asn Asn 75 Gln	Leu Met Ile Tyr 60 Asp	Asn Gly 45 Asp	Ile 30 Ser Asn Lys	15 Ala Ser Leu Pro	Ala Ala Asn Leu 80

V. ...

5	(C) STRANDEDNESS: single (D) TOPOLOGY: linear														
	(ii) MOLECULE	TYPE: Prote	in											
10	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO:270:											
	Val Glu I 1	le Lys Val	His Ala Leu	His Ser Gly Ile	Thr Leu Ile Lys 15										
15	Asp Lys G	ly Lys Ile 20	Ile Asp Ile	His Leu Ser Val 25	Lys Ala Thr Glu 30										
	Asn Ile A		Val Leu Phe 40	Lys Ala Thr Gln	Pro Leu Gly Arg 45										
20	50	_	55	Asn Ala Met Thr 60											
	65		70	Leu Lys Phe Leu 75	Val Lys Cys Ile 80										
25	GIU GIU S	er met Arg 85	Ile Ser Asp	90											
	(2) INFORMATION FOR SEQ ID NO:271:														
30		-	HARACTERIST												
35	((B) TYPE: am C) STRANDED D) TOPOLOGY	NESS: single	•											
	(ii)) MOLECULE	TYPE: Protei	in											
40	(xi)) SEQUENCE	DESCRIPTION:	SEQ ID NO:271:											
45	Val Glu Ty 1	yr Phe Val 5	Ser Tyr Tyr	Asp Tyr Tyr Gln 10	Pro Glu Ala Tyr 15										
45	Val Pro Se	er Thr Asp 20	Thr Phe Ile	Glu Lys Asp Ala 25	Ser Ile Asn Asp 30										
50	Glu Ile As 3!		Arg His Ser 40	Ala Thr Ser Ala	Leu Phe Glu Arg 45										
55	50		55	Val Ser Cys Ile 60											
55	Asn Pro Gl 65		Lys Asp Leu 70	Val Val Ser Val . 75	Arg Val Gly Met 80										

	Ģlų	Met	Asp	Arg	Ser 85	Glu	Leu	Leu	Arg	Lys 90	Leu	Val	Asp	Val	Gln 95	Tyr _v ,	٠.
5	Thr	Arg	Asn	Asp	Ile	Asp	Phe	Pro	Thr 105	Arg	Asn	Arg	Phe	Glu 110	Cys	Val	
	Val	Met															
10			(2)) INE	FORM	OITA	v FOF	R SE() ID	NO:2	272:						
		(:		_			ACTE										
15							amino		ids								
			(B)	TYPE	E: ar	nino	acid	ì									
			(C)	STRA	ANDEI	ONESS	5: si	ngle	2								
			(D)	TOPO	DLOG	Y: 1:	inear	:									
20		(:	ii) P	OLEC	CULE	TYPI	E: Pı	rotei	in								
. .		(:	xi) S	SEQUE	ENCE	DESC	CRIPT	rion:	: SE() ID	NO:2	272:					
25	Va1	Gly	His	Ile	Leu	Ile	Glu	Ile	Ser	Xaa	Asp	Gly	Pro	Gly	Phe	Met	
	1	_			5					10		_		_	15		
	Glu	Asp	Xaa	Pro	Tyr	Glu	Thr	Leu	Glv		Glv	Leu	Ser	Leu	Pro	Pro	
		•		20	- 4				25					30			
30	Phe	Leu	Glu		Lvs	Arq	Glu	Tyr		Glu	Ser	Glu	Ile	Arq	Pro	Phe	
			35		-,-	3		40					45	5			
	Asn	Thr		Arg				-									
		50	•	•													
35																	
			(2)	INI (FORM	ATIO	1 FOF	R SEQ	Q ID	NO:	273:						
		(:	i) SE	EQUE	NCE (CHAR	ACTE	RIST	cs:								
40			(A)	LENC	STH:	46 a	amino	aci	ids								
			(B)	TYPE	E: ar	nino	acid	1									
			(C)	STRA	ANDE	ONES	5: si	ingle	•								
			(D)	TOPO	DLOG	Y: 1:	inear	•									
45																	
		(:	ii) P	OLEC	CULE	TYP	E: P1	rotei	in								
50		()	ki) S	SEQUE	ENCE	DESC	CRIPT	rion:	: SE() ID	NO:	273 :					
	Val	Ser	Ile	Thr	Leu	Xaa	Pro	Ala	Leu	Ala	Ala	Thr	Leu	Phe	Lys	Lys	
	1				5					10					15		
	Gly	Val	Lys	Arg	Arg	Asn	Lys	Gln	His	Gln	Glu	Gly	Leu	Gly	Val	Val	
55				20					25					30			

	Ser Thr Thr Tyr Lys Xaa Val Xaa His Trp Val Thr Lys Ser v
5	(2) INFORMATION FOR SEQ ID NO:274:
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 45 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
15	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:274: Val Val Gln Glu Thr Leu Asn Met Ser Lys Ala Arg Gly Tyr Glu Val
	1 5 10 15 Gly Gly Thr Val Arg Ile Val Ile Asn Asn Gln Val Gly Phe Thr Thr
25	20 25 30 Ser Asn Pro Leu Asp Ala Arg Ser Tyr Ala Val Leu Tyr 35 40 45
30	(2) INFORMATION FOR SEQ ID NO:275:
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 88 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
40	(ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:275:
45	Val Glu Gly Asn Phe Gly Leu Ala Ile Asn Asn His Gln Asn Ile Val 1 5 10 15 Gly Thr Ile Gly Leu Ile Arg Leu Asp Asn Asn Met Ser Ala Leu Lys
50	20 25 30 Lys Met Phe Val Asp Lys Gly Tyr Arg Asn Leu Lys Ile Gly Lys Lys 35 40 45
	Leu Leu Asp Lys Val Ile Met Thr Cys Lys Glu Gln Asn Ile Asp Xaa 50 55 60 Yaa Tyr Leu Gly Thr Yaa Asp Lys Yaa Yaa Ser Ala Gln Tyr Yaa Tyr
5 5	Xaa Tyr Leu Gly Thr Xaa Asp Lys Xaa Xaa Ser Ala Gln Tyr Xaa Tyr 65 70 75 80

	Xaa	Asn	Xaa	Gly		Arg	Xaa	Asn								V
					85											
5			(2)	INF	ORMA	TIO	N FOF	SEÇ	Q ID	NO:2	276:					
		(i	i) Si	EQUEN	ICE (CHAR	ACTE	RIST	CS:							
10			(A)	LENC	TH:	96 a	amino	aci	ds							
			(B)	TYPE	E: an	nino	acio	l								
			(C)	STRA	MDEI	ONES	5: si	ngle	2							
			(D)	TOPO	LOGY	<i>!</i> : 1:	inear	•								
15		(i	li) P	OLEC	CULE	TYPI	E: Pi	otei	in							
		(>	ci) S	EQUE	ENCE	DESC	CRIPT	CION	: SE(Q ID	NO:2	276:				
20	Va 1	Ile	Glv	T.em	Lvs	Ser	LVS	Thr	Tle	Tle	Ser	Asn	Glu	Tro	Glv	Ala
	1		023		5		_,_			10					15	
	Ile	Met	Ile	Gln	Ser	Met	Trp	Phe	Asn	Leu	His	Val	Gln	Asp	Leu	Glu
25				20					25					30		
	Lys	Ser	Ala	Gln	Phe	Tyr	Lys	Ala	Leu	Gly	Phe	Lys	Ile	Asn	Arg	Asn
			35					40					45			
	Pro	Gln	Met	Leu	Asp	Lys	Met	Val	G1y	Ile	Gln	Ile	Gly	Gln	Thr	Thr
3 0		50					55					60				
		Ile	Leu	Ile	Glu	Asn	Lys	His	Phe	Gln		Val	Ser	Gln	Gln	
	65					70					75					80
	Leu	Asn	Thr	Glu		Asn	Glu	Val	Met		Ser	Leu	Gly	Val		Gln
35					85					90					95	
			(2)	TNIE	Man	MTO:	v FOF	er.	חד כ	NO - 1	77.					
			(2)	TIVE	ORT	11101	, FOI	. 524	2 10	110.2						
40		(i	i) si	EOUE	ICE C	CHAR	ACTE	RIST	ics:							
40		•		_			amino									
			(B)	TYPE	E: an	nino	ació	i								
			(C)	STR	ANDEI	ONES	S: si	ngle	2							
45			(D)	TOPO	DLOGY	(: 1 :	inear	:								
		()	Li) P	MOLEC	CULE	TYPI	E: Pi	otei	in							
50		()	ci) S	EQUI	ENCE	DESC	CRIPT	ION:	: SE(Q ID	NO:	277:				
	Val	Ser	Leu	Met	Thr	Thr	Phe	Ser	Glu	Lys	Glu	Lys	Ile	Gln	Leu	Leu
	1				5					10					15	
5 5	Ala	Asp	Ile	Val	Glu	Leu	Gln	Thr	Glu	Asn	Asn	Asn	Glu	Ile	Asp	Val
				20					25					30		

	 ÇAè	Asn	Tyr 35	Leu	Lys	Asp	Leu	Phe 40	Asp	Lys	Tyr	Asp	Ile 45	Lys	Ser	Glu _{wall}
	- 3 -		-			-1	•••		.1-		T1 -	**** 3		~1	T1.	C1.
5	11e	50	rys	Val	Asn	Glu	His 55	Arg	Ala	Asn	TTE	60	Ата	GIU	TIE	GIY
	Asn	Xaa	Ser	Pro	Ile	Leu	Ala	Leu	Ser	Gly	His	Met	Asp	Val	Val	Gly
	65					70					75					80
		Δτα	Lys	Ser	Ara											
10	Cys	,9	_,,	561	85											
					03											
			(2)) IN	FORM	ATIO	N FOI	R SE	Q ID	NO:	278:					
15																
		(:	i) SI	EQUE	NCE (CHAR	ACTE	RIST	cs:							
				-			amino									
							acio									
							S: S:									
20								-	=							
			(D)	TOP	OLUG:	X: 1:	inear	5								
									_							
		(:	ii) 1	MOLE	CULE	TYP	E: P	rote:	in							
25																
		(:	xi) :	SEQU	ENCE	DES	CRIP'	rion	: SE	Q ID	NO:	278:				
	Val	Glu	Xaa	Met	Asn	Lys	His	Tyr	Xaa	Ile	Val	Ile	Ile	Gly	Gly	Gly
	1				5					10					15	
30	Thr	Ala	Gly	Val	Thr	Val	Ala	Ser	Arg	Leu	Leu	Arg	Lys	Asn	Xaa	Asn
			_	20					25			•	-	30		
	T.e.11	Lvs	Glu		Tle	λla	Ile	Tle		Pro	Ala	Asp	His	His	TVY	Tvr
		,	35	_,,				40					45		-3-	-3-
35	~1 ~	D			m1		17-1		21-	~1	1107	C		T	*	Com
	GIN		rea	Trp	Thr	Leu	Val	GIA	Ald	GIY	vai		ser	Leu	Lys	Sei
		50					55					60				
		Ser														
40	65															
			(2)) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	279:					
		(:	i) Si	EQUE	NCE (CHAR	ACTE	RIST	ics:							
45			(A)	LEN	GTH:	61	amin	ac:	ids							
							acio									
							S: s:		_							
								_	_							
50			(0)	1010		1; 1;	inea	L								
		(:	11) 1	MOLE	CULE	TYP	E: P:	rote:	ın							
55		(2	xi) :	SEQUI	ENCE	DES	CRIP	rion	: SE	Q ID	NO:	279:				

	Vaļ 1	Leu	Arg	Asn	Lys 5	Ile	Lys	Arg	Ala	Ile. 10	Arg	Glu	Asn	Phe	Lys 15	Val
5	His	Lys	Ser	Xaa 20	Ile	Leu	хаа	Lys	Asp 25	Ile	Ile	Xaa	Ile	Xaa 30	Arg	Gln
	Ala	Ala	Lys 35		Met	Thr	Thr	Leu 40	Gln	Ile	Gln	Xaa	Ser 45		Glu	His
10	Xaa	Leu 50	Lys	Ile	Gly	Lys	Val	Phe	Asn	Lys	Lys	Ile 60	Lys			
			(2)	INI	FORM	ATIO	N FOE	R SE(Q ID	NO:2	280:					
15		(i	i) SI	EQUE	NCE (CHAR	ACTE	RIST	cs:							
				LENG					ids		,					
20				STRA					9							
		i)	i) N	OLEC	TULE	TYPE	E: P1	rote	in							
25		(>	ci) S	SEQUI	ence	DESC	CRIP	noi?	: SEÇ	Q ID	NO:2	280:				
	Val	Asp	Gly	Val	Ser	Leu	Ala	Val	Phe	Asp	Lys	His	Asp	Asn	Ser	Phe
30	1 Asp	Ile	His	Leu	5 Ile	Pro	Glu	Thr	Arg	10 Arg	Ser	Thr	Ile	Leu	15 Ser	Ser
	Thr	Lys	Leu	20 Gly	Asp	Lys	Val	His	25 Leu	Glu	Thr	Asp	Val	30 Leu	Phe	Lys
35	Tyr		35 Glu	Asn	Ile	Leu	Asn	40 Lys	Asp	Lys	Asp	Gln	45 Leu	Ser	Val	Asp
	Lys	50 Leu	Arg	Ala	Phe	Xaa	55 Phe					60				
40	65					70										
				INE						NO:2	281:					
45		(i	(A)	LEIN	TH:	126	amir	o ac								
			(C)	TYPE	NDEI	ONESS	S: si	ngle	•							
50				TOPO												
		(i	.i) N	OLEC	CULE	TYPE	E: P1	otei	in							
55		(x	ci) S	SEQUE	INCE	DESC	CRIPT	NOI:	SEC	DID	NO:	281:				

	Val	Xaa	Gln	Ser	Leu 5	Tyr	Glu	Phe	Leu	Glu 10	Ģlu	Asn	Ile	Asn	Tyr 15	Leu
5	Lys	Glu	Asn	Gly 20	Xaa	Tyr	Asn	Glu	Ile 25	Asp	Thr	Ile	Glu	Gly 30	Ala	Asn
	Gly	Pro	Glu 35	Ile	Lys	Ile	Asn	Gly 40	Lys	Ser	Tyr	Ile	Asn 45	Leu	Ser	Ser
10	Хаа	Asn 50	Tyr	Leu	Gly	Leu	Ala 55	Thr	Asn	Glu	Asp	Xaa 60	Arg	Ser	Ala	Ala
	Lys 65	Ala	Ala	Ile	Asp	Thr 70	His	Gly	Val	Gly	Ala 75	Gly	Ala	Xaa	Arg	Thr 80
15		Asn			85					90					95	
	Lys	Phe	Xaa	Gly 100	Thr	Glu	Ala	Ala	Ile 105	Ala	Tyr	Gln	Xaa	Arg 110	Ile	Xaa
20	Leu	Xaa	Ile 115	Trp	Leu	Leu	Xaa	Gln 120	Leu	Val	Xaa	Glu	Xaa 125	Lys		
	(2) INFORMATION FOR SEQ ID NO:282:															
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 51 amino acids(B) TYPE: amino acid															
30			(C)	STRA	ANDEI	ONES:	acio S: si inear	ingle	9							
		(:	ii) 1	OLEC	CULE	TYPI	E: Pı	rotei	in							
35		(2	ki) S	EQUE	ENCE	DES	CRIPT	CION:	: SE(O ID	NO: 2	282:				
40	1	Leu	_	_	5					10			-		15	
		Ala		20					25					30		
45		Lys Glu 50	35	TYE	Pro	arg	Lys	40	GIÀ	Thr	Pro	ASN	45	Thr	Pro	Leu
5 0			(2)	INE	FORM	ATIO	N FOR	R SE(Q ID	NO:2	283:					
		(:					ACTE									
55			(B)	TYPE	E: an	nino	acio	3								

	(D) TOPOLOGY: linear
5	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:283:
10	Val Lys Glu Asn Asp Val Lys Lys Phe Lys Tyr Lys Asn Phe Xaa Asp
,,,	1 5 10 15 Glu Ile Glu Ile Asp Phe Thr Asp Ser Asn His Leu Ala Ala His Arg
	20 25 30
15	(2) INFORMATION FOR SEQ ID NO:284:
	(i) SEQUENCE CHARACTERISTICS:
20	(A) LENGTH: 76 amino acids
20	(B) TYPE: amino acid (C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
25	
	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:284:
30	tral mba para a sala sala sala sala sala sala sala
	Val Thr Pro Asp Ala Asn Gly Lys Val Ala Phe Asp Gly Leu Glu Leu 1 5 10 15
	Thr Phe Thr Gly Thr Pro Ala Val Asn Asp Ser Phe Thr Leu Lys Pro
35	20 25 30
	Val Ser Asp Ala Ile Val Asn Met Asp Val Leu Ile Thr Asp Glu Ala 35 40 45
	Lys Ile Ala Met Ala Ser Glu Glu Asp Ala Gly Asp Ser Asp Asn Arg
40	50 55 60
	Asn Gly Gln Ala Leu Leu Asp Leu Ala Lys Gln Gln 65 70 75
45	(2) INFORMATION FOR SEQ ID NO:285:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 73 amino acids
50	(B) TYPE: amino acid
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
55	(ii) MOLECULE TYPE: Protein

		()	cį) :	SEQU	ENCE	DESC	CRIP	rion:	SE(Q ID	<u>N</u> O : 3	285:				v.
5	Val	Leu	Leu	Pro	Leu 5	Val	Phe	Ile	Ser	Val	Leu	Ile	Gly	Ile	Phe	Asn
	Tyr	Ile	Lys	Val 20	Leu	Pro	Phe	Ile	11e 25	Lys	Туr	Val	Gly	Ile 30	Ala	Ile
10	Asn	Lys	Ile 35	Thr	Arg	Met	Gly	Arg 40	Leu	Glu	Ser	Tyr	Phe 45	Ala	Ile	Ser
	Thr	Ala 50	Met	Phe	Gly	Gln	Pro 55	Glu	Val	Tyr	Leu	Thr 60	Ile	Lys	Asp	Ile
15	11e 65	Pro	Arg	Leu	Ser	Arg 70	Ala	Lys	Leu							
			(2)) IN	FORM	ATIO	N FOE	R SEC	Q ID	NO:	286:					
20		(:					ACTE									
05			(B)	TYP	E: ar	nino	acio	1								
25	'		(D)	TOP	DLOG	r: 1:	inear									
30		(:	ii) 1	MOLEC	CULE	TYPI	E: Pi	rotei	in							
		()	ci) S	SEQUI	ENCE	DES	CRIP	NOI	: SE(O ID	NO:	286:				
	Val 1	Ile	Ile	Ser	Asn 5	Asn	Val	Gly	Asp	Met 10	Ser	Ile	Gly	Phe	Ser 15	Ser
35		Asp	Asn	Glu 20	_	Thr	Met	His	Phe 25		Asn	Asn	Glu	Lys 30		Asn
40	Ile	Lys	Lys 35	Gly	Lys	Lys	Val	Val		Ala	Ala	Gln	Ile 45		Asp	Glu
	Leu	Glu 50	Thr	Arg	Trp	Gln										
45			(2)) INI	FORM	ATIO	V FOR	R SEÇ) ID	NO:2	287:					
		(i	L) SI	EQUE	ICE (CHAR	ACTE	RIST	cs:							
			(A)	LEN	STH:	88 a	amino	aci	ds							
50							acio									
							s: si inear	_	•							
55		()	Li) E	OLE	CULE	TYPI	E: P1	rotei	in							

		()	çi) S	SEQUI	ENCE	DESC	CRIP	NOI?	: SEC	ID.	ЙΟ: 3	287:				. /-	
5	Val	Thr	Tyr	Xaa	His 5	Met	Ser	His	Arg	His 10	Thr	Leu	Ile	Ser	His 15	Ser	
	Phe	Lys	Phe	Xaa 20	Arg	Leu	Pro	Gln	Asp 25	Ile	Asn	Phe	Phe	Ser 30	Trp	Xaa	
10	Gln	His	Val 35	Lys	Asp	Ser	Asp	Lys 40	Thr	Asp	Glu	Leu	Thr 45	Tyr	Ser	Glu	
	Ser	Leu 50	Xaa	Pro	Glu	Gly	His 55	Pro	Thr	His	Pro	Leu 60	Thr	Pro	Thr	Lys	
15	Leu 65	Pro	Xaa	Thr	Met	Glu 70	Glu	Хаа	Arg	Ala	Tyr 75	Ala	Pro	Glu	Phe	Asp 80	
	Xaa	Arg	Asn	Pro	Phe 85	Ala	Thr	Leu									
20			(2)) INI	FORM	ATIO	N FOI	R SE(O ID	NO:2	288:						
25		(i	(A) (B) (C)	TYPI STR	GTH: E: ar ANDEI	70 a nino ONESS	ACTER amino acio s: si	aci ingle	iđs								
30			ii) !	MOLE	CULE	TYPI	E: Pi	rotei		O ID	NO:2	288:					
35	Val	Ile	Ser	Leu	Leu	Lvs	Asp	Ala	Lys	Leu	Pro	Ser	Ser	Val	Thr	Arg	
	1	Asp			5					10					15		
40		Ser	_	20					25					30			
		Val	35	_				40					45				
45	Ile 65	50 Ile	Asn	Xaa	Thr	Gln 70	55					60					
50			(2)) INI	FORM	ATIOI	N FOE	R SEÇ	O ID	NO:	289:						
		(:	i) SI	EQUEI	NCE (CHAR	ACTE	RIST	cs:								
			(A)	LEN	STH:	67 a	amino	aci	ids								
5 5			(B)	TYP	E: ar	nino	acio	i									
			(C)	STR	ANDEI	ONES	S: si	ingle	9								

	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: Protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:289:	
10	Val Gln Phe Val Asn Lys Leu Phe Asn Val Ser Ser Ala Ile Ile Leu 1 5 10 15	
	Leu Glu Tyr Asp Gly Val Val His Ile Gly Tyr Asp Asn Asn Phe Glu 20 25 30	
15	Phe Lys Thr Glu Gln Phe Lys Met Ser Lys Ser Arg Asn Leu Leu Lys 35 40 45	
	Asn Arg Ser Gln Asn Xaa Val Leu Ile Arg Leu Leu Asn Trp Leu Arg 50 55 60	
20	Thr Thr Xaa 65	
	(2) INFORMATION FOR SEQ ID NO:290:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 41 amino acids (B) TYPE: amino acid	
30	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: Protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:290:	
	Val Gln Leu Gly Leu Thr Asn Ser Val Val Ala Ile Ile Ile Ile Xaa	
40	1 5 10 15 Arg Glu Xaa Ala Val Thr Gly Leu Arg Leu Leu Gln Ile Glu Gln Gly	
	20 25 30	
45	Xaa Gly Lys Cys Ser Trp Xaa Ile Arg 35 40	
75	33	
	(2) INFORMATION FOR SEQ ID NO:291:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 66 amino acids (B) TYPE: amino acid	
	(C) STRANDEDNESS: single	
55	(D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: Protein	·/•
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:291:	
	Val Asp Val Asp Asn Met Ser Asp Tyr Lys Leu Lys Ile Ile Xaa Leu 1 5 10 15	ļ.
10	Thr Xaa Ser Asp Ile Thr Gly Tyr Gln Ile Pro Asn Gln Xaa Gly Val 20 25 30	
	Ala Gln Tyr Val Ile Ser Gln Leu Ser Gln Gly Lys Arg Glu Val Asp 35 40 45	,
15	Asn Leu Thr Leu Asn Xaa Xaa Glu Xaa Leu Tyr Ser Tyr Xaa Arg Gln 50 55 60	1
	Val Leu 65	
20	(2) INFORMATION FOR SEQ ID NO:292:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 40 amino acids(B) TYPE: amino acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: Protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:292:	
35	Val Lys Gln Thr Xaa Val Glu Glu Ile Xaa Ala Ser Ile Asn Xaa Ala 1 5 10 15	ı
40	Gly Leu Xaa Xaa Glu Ile Pro Asp Phe Lys Xaa Glu Val Xaa Xaa Xaa 20 25 30	ı
	Xaa Lys Lys Trp Arg Leu Cys Tyr 35 40	
45	(2) INFORMATION FOR SEQ ID NO:293:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 106 amino acids	
50	(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: Protein	

		(:	xi) S	SEQUI	ENCE	DESC	CRIP	rion	: SE(O ID	ŇO:	293:				•
5	Val 1	Ser	Thr	Asp	Phe 5	Ile	Leu	Cys	Lys	Leu 10	Gln	Ala	Phe	His	Ile 15	Ile
	Lys	Phe	Glu	Lys 20	Arg	Tyr	Ile	Glu	Val 25	Glu	Lys	Asn	Glu	Tyr 30	Thr	Ala
10	Lys	Tyr	Asn 35	Glu	Tyr	Ser	Gln	Leu 40	Leu	Asp	Ala	Thr	Tyr 45	Ser	Gln	Ala
	Val	Ala 50	Tyr	Leu	Leu	Asn	Lys 55	Tyr	Gly	Ala	Val	Thr 60	Asp	Asp	Tyr	Tyr
15	Lys 65	Glu	Lys	Ser	Tyr	Thr 70	Arg	Phe	Leu	Asn	Gly 75	Glu	Ile	Lys	Ser	Ile 80
	Ser	Lys	Gly	Lys	Tyr 85	Thr	Arg	Ala	Ser	Glu 90	Gly	Leu	Tyr	Cys	His 95	His
20	Ile	Ser	Glu	Asp 100	Lys	Phe	Gln	Asn	Leu 105	Ser						
			(2)) INI	FORM	ATIO	N FOI	R SE	QID	NO:	294:		•			
25		(_												
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 86 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single															
30							S: s: inea:	_	e							
		(:	ii) 1	MOLE	CULE	TYPI	E: Pi	rote	in							
35		(:	xi) s	SEQUI	ENCE	DESC	CRIP	rion	: SE	Q ID	NO:	294:				
	Val 1	Ile	Leu	Ser	Ser 5	Ile	Xaa	Phe	Tyr	Met 10	Gln	Leu	Leu	Gln	Lys 15	Asn
40		Met	Ala	Ile 20	_	Val	Trp	Ala	Gly 25		Cys	Gln	Met	Ile 30		Pro
	Thr	Val	Ile 35		Trp	Asp	Ile	Ser 40	_	Tyr	Thr	Pro	Lys 45	-	Ala	Trp
45	Met	Gln 50		Thr	Lys	Ala	Arg 55		Tyr	Val	Pro	Arg 60		Leu	Val	Glu
50	Lys 65		Leu	Ile	Xaa	Ile 70	-	Asp	Met	Leu	Glu 75		Ile	Glu	Ile	Tyr 80
		Xaa	Xaa	Glu	Ser 85											
<i>55</i>			(2)) INI	FORM	ATIO	N FOI	R SE	Q ID	NO:	295:					

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 82 amino acids (B) TYPE: amino acid														٠.	
			(A)	LEN	GTH:	82 4	amin	o ac	ids							
5			(B)	TYP	E: aı	mino	aci	đ			-					
							S: s	-	9							
			(D)	TOP	orog.	Y: 1	inea	r								
		,	;;) 1	MOT E	ם זוור	ימעים	E: P:	rote	in							
10			11, 1	.TODE	COLE	IIF	D. F.	LOCE.								
		(:	xi) :	SEQU:	ENCE	DES	CRIP	TION	: SE	QID	NO:	295:				
15	Val	Xaa	Thr	Tyr	Val	Asn	Asp	Tyr	Leu	Asn	Glu	Ala	His	Ile	Thr	Asn
	1				5					10					15	
	Lys	Trp	Ser		Met	Met	Leu	Trp		Ser	Gln	Gln	Arg	Ser	Gln	Tyr
				20					25					30		
20	Thr	Val		Leu	Ile	Asn	Lys		Glu	Thr	Asp	Asp		Tyr	Ile	His
	~2 -		35	~1	-1	_	-3	40	_			_	45		_,	_
	iie	Ser 50	гус	GIY	GIU	Leu	55 55	TIE	ser	Leu	Met	60	HIS	TIE	GIN	Leu
	Lve	Lys	A1 =	Mot	Ser	Acn		λla	Ser	uie	בוז		λcn	Lau	Sar	Cue
25	65	_,		1100	561	70	1111	*****	501		75	914	rsp	Deu	Jer	80
		Leu														•
30																
30			(2)	IN:	FORM	ATIO	N FO	R SE	Q ID	NO:	296:					
		(:		_			ACTE									
35							amino		ids							
							acio									
							S: 5:	_	2							
			(D)	TOP		X: 1:	inea	5								
40		(ii) P	OT.EC	TIT.E	TYP	E: P:	rote:	'n							
		,,	, .	1022	-000	• • • •	J . 1.									
		(:	ci) s	EQUI	ENCE	DESC	CRIP	rion	SE	OID	NO:	296:				
45										_						
40	Val	Cys	Lys	Lys	Tyr	Val	Leu	Gly	Gln	Phe	Lys	Pro	Gly	Met	Thr	Ala
	1				5					10					15	
	Pro	Gln	Cys	Ala	Gly	Ile	Ile	His	Thr	Asp	Phe	Xaa	Arg	Gly	Phe	Ile
50				20					25					30		
	Arg	Ala	Gly	Ser	Asn	Lys	Leu	Leu	Met	Thr	Met	Tyr	Asn	Met	Ala	Ala
			35					40					45			
	Lys	Val	Ala	Leu	Lys	Lys	_	Ala	Asp	Thr	Asp					
55		50					55									

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 56 amino acids														
10	(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear														
,,	(ii) MOLECULE TYPE: Protein														
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:297:														
	Val Leu Thr Leu Ala Glu Met Lys Arg Thr Ile His Asp Ile Leu Asp 1 5 10 15														
20	Phe Arg Asp Glu Asp Ile Trp Xaa Cys Tyr Leu Gly Thr Leu Ala Val 20 25 30														
	Ser Pro Xaa Leu Xaa Asp Asp Xaa Gly Xaa Xaa Leu Leu Ser Arg Xaa 35 40 45														
25	Xaa Asn Ala Tyr Asn Xaa Tyr Xaa 50 55														
	50 55 (2) INFORMATION FOR SEQ ID NO:298:														
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 98 amino acids														
35	(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear														
	(ii) MOLECULE TYPE: Protein														
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:298:														
45	Val Phe Asn Tyr Gly Gln Ser Val Phe Glu Gly Leu Lys Ala Tyr Lys 1 5 10 15														
	Arg Asp Gly Glu Gly Cys Thr Xaa Pro Xaa Pro Glu Glu Asn Phe Lys 20 25 30														
50	Arg Leu Asn Asn Ser Leu Ala Arg Leu Glu Met Pro Gln Val Asp Asp 35 40 45														
-	Ala Glu Leu Leu Glu Gly Leu Lys Xaa Leu Val Asp Ile Glu Arg Asp 50 55 60														
55	Xaa Xaa Pro Glu Gly Glu Gly Gln Ser Leu Tyr Xaa Xaa Pro Phe Gly 65 70 75 80														

	Xaa	Ala	Thr		Gly 85	Ala	Xaa	Gly		Gly _. 90	Āla	Ser	His	Gln	Tyr 95	Xaa _v
5	Ile	Tyr														
			(2)	INF	ORMA	TION	FOR	SEQ	ID	NO: 2	99:					
10		(i		-			CTER mino									
15			(C)	STRA	NDEC	NESS	acid : si	ngle	:							
		(i					near E: Pr		.n							
20		()	ci) S	SEQUE	NCE	DESC	RIPT	CION:	SEC	Q ID	NO : 2	299:				
25	1	Arg			5					10					15	
		Ile		20					25					30		Xaa
30	Asp	Gly	35	GIn	Arg	Arg	116	40	116	лаа	m	var	45	361	cys	
							N FOF			NO:	300:					
35		(:	(A)	LENG	STH:	123	ACTER amir acio	no a								
40			(C)	STRA	NDE	ONES	S: si inea	ingl	2							
		(:	ii) I	MOLEC	CULE	TYPI	E: P	rote:	in							
45		(:	xi) :	SEQUI	ENCE	DES	CRIP'	TION	: SE	Q ID	NO:	300:				
	1	l Val			5					10					15	
50		o Leu		20					25					30		
		u Arg	35					40					45			
55	Th:	r Lys 50	Val	Gly	Lys	val	Leu 55	ASP	гуѕ	Pro	GIU	мет 60	. ser	мта	GIN	uTq

	yal	Gly	Gly	Ala	Val	Gly 70	Ser	Asn	Pro	Leu	<u>S</u> er	Ile	Ile	Val	Pro	Cys 80
5	His	Arg	Val	Val	Gly 85	Lys	Thr	Gly	Ser	Leu 90	Thr	Gly	Phe	Gly	Gly 95	Thr
		Asn		100					105			Asn	Ile	Asp 110	Met	Ser
10	Lys	Leu	Tyr 115	Ile	Pro	Lys	His	Ser 120	Thr	Lys	Pro					
			(2)) INI	FORM	OITA	N FOR	R SE(2 ID	NO:	301:					
15		(:		EQUE												
20			(C)	TYPI STRA	ANDE	ONES	S: s:	ingle	=							
25		(:	ii) 1	MOLE	CULE	TYP	E: P	rote	in							
				SEQUI												
30	Val 1	Cys	Leu	Val	Glu 5	Cys	Met	Met	Ala	Leu 10	Asn	Thr	Ala	Gly	Xaa 15	Thr
	Gln	Arg	Thr	Val 20	Glu	Thr	Leu	Ala	Glu 25	Tyr	Ser	Gly	Val	Pro 30	Val	Trp
35	Asn	Gly	Leu 35	Thr	Asp	Glu	Asp	His 40	Pro	Thr	Gln	Xaa	Leu 45	Ala	Asp	Phe
	Leu	Thr 50	Ala	Lys	Glu	Val	Phe 55	Lys	Lys	Arg	Leu	Суs 60	Arg	Tyr		
40			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	302:					
		(EQUEI												
45			(B)	TYP	E: ar	nino	aci	d								
			(D)	TOP	OLOG!	Y: 1:	inea	r								
50		(ii) 1	MOLE	CULE	TYP	E: P:	rote	in							
		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	302:				
5 5	Val	Asn	Leu	Pro	Asp 5	Phe	Pro	Pro	Lys	Ile 10	Gly	Val	Asn	Lys	Ser 15	Thr

••	Leu	Ser	Arg	Tyr 20	Xaa	Xaa	Gly	Ser	Arg 25	Xaa	Ile	Pro	Met	Glu 30	Asp	Ile⊹
5	Ala	Glu	Ile 35	Ala	Asn	Ala	Leu	Lys 40	Val	Thr	Pro	Glu	Tyr 45	Leu	Leu	Leu
	Xaa	Asn 50	Arg	Gln	Pro	Glu	Xaa 55	Glu	Val	Gln	His	Arg 60	Ala	Ala	His	Leu
10	65					70			Cys	Gln	Arg 75	Val	Leu	Asp	Tyr	Ala 80
	Asp	Tyr	Ile	Arg	Ser 85	Lys	Arg	Lys								
15			(2)	INI	FORM	ATIO	N FOE	R SE(Q ID	NO:3	303:					
20		(:	(A) (B)	LENG	STH: E: ar	121 mino	ACTER amir acio	no ao i	cids							
25		(:					inear E: Pr		in							
		(2	ki) S	SEQUI	ENCE	DESC	CRIPT	TION	: SE(Q ID	NO:	303:				
30	Val	Lys	Pro	Xaa	Cys 5	Ala	Lys	Lys	Asp	Arg 10	Tyr	Pro	Ile	Asp	Pro 15	Met
<i>35</i>	Arg	Arg	Leu	Asn 20	Gln	Glu	Ile	Ile	Asp 25	Tyr	Ile	Asp	Thr	Leu 30	Asn	Tyr
	Ile	Asp	Gln 35	Tyr	Ser	Ser	Ala	Gly 40	Ser	Phe	Arg	Arg	Phe 45	Lys	Glu	Met
40		50					55					60			Ala	
	65					70					75				Ala	80
45	GIŞ	ASII	Inr	GIN	85	ser	ren	GIU	rea	90	Tyr	Asp	Asp	GIU	Thr 95	iie
	Gly	Val	Asp	Phe 100	Arg	Leu	Ile	Glu	Pro 105	Arg	Ala	Phe	Tyr	His 110	Thr	Leu
50	Gln	His	Phe 115	Thr	Gly	Ser	Asn	Arg 120	Thr							
			(2)	INE	FORM	TION	FOF	R SE(Q ID	NO:3	304:					
55		(:					ACTEF amir									

V. .

			_(B)	TYP	E: ar	nino	acio	a e								
			(C)	STR	ANDEI	ONES:	5: s:	ing1e	•							
5			(D)	TOP	OLOGY	<i>t</i> : 1:	inear	ς .								
		(:	ii) ?	MOT.E	CULE	TYPI	e. Pı	rotei	n							
		,	, .													
10		(:	ki) (SEQUI	ENCE	DES	CRIP	rion:	SEC	Q ID	NO:3	304:				
	Val	Phe	Asp	Ile	Tyr	Ser	Glu	Xaa	Asp	Leu	Ile	Glu	Ile	Thr	Asp	Tyr
	1				5					10					15	
15	Pro	Xaa	Ser	Ile	Ser	Phe	Asn	Phe	Ala	Ser	Tyr	Met	Ser	Ala	Ser	Lys
				20					25					30		
	Phe	Phe	-	Asp	Tyr	Ala	Leu	Xaa	Thr	Asn	Asp	Lys		Gln	Tyr	Leu
			35					40			_		45			
20	Glu	_	Tyr	Asn	Gln	His		Ala	Ile	Val	Ala		Tyr	Leu	Ala	Xaa
		50					55		_1			60		1	~1	- 1-
		Asn	Lys	Ala	Gln		Lys	Gin	Pne	ile		ATA	Met	Val	G1u	80
	65	m	V	D	315	70	D=0	@b~	Dho	Lou	75 200	27.5	Vas	Arg	A 1 =	
25	Arg	lyi	лаа	PIO	85	THE	PIO	1111	PILE	90	ASII	ATG	Add	Arg	95	AI 9
	A = 0	Gly	Glu	T.eu		Sar	Cve	Pho	Yaa		T.VS	Lvs	Tro	Val		Xaa
	ALG	GLY	GIU	100	Val	561	-12	1110	105		2,0	2,0	***	110		
	Leu	Asn	Ser													
30			115													
			(2) IN	FORM	ATIO	N FO	R SE	OI C	NO:	305:					
35																
		(.	i) S	EQUE	NCE (CHAR.	ACTE	RIST:	cs:							
			(A)	LEN	GTH:	266	ami	no a	cids							
			(B)	TYP	E: aı	mino	aci	đ								
40			(C)	STR	ANDE	DNES	S: 5	ingl	9							
			(D)	TOP	OLOG	Y: 1	inea	r								
									_							
		(ii)	MOLE	CULE	TYP	E: P	rote:	in							
45												205				
		(:	XI)	SEQU.	ENCE	DES	CRIP	TION	: SE	עו ט	NO:	305:				
	17-1	Mate	C1	170 1	mb.~	C++0	T 011	Tuc	Gla	Tla	The	Tr-m	Hic	Asp	Len	Gla
50	1	Mec	GIU	vai	5	Cys	Dea	LYS	GIII	10	1111	ιιμ	1113	дар	15	GIL
50		Tlo	710	Lve		Glv	Acn	Va 1	Tle		T.em	Pro	Δla	Leu		Va1
	1112	116	116	20	rsp.	CLY	رړد.،		25	~-1		- 20		30		
	Ala	Asn	Leu		Ala	Glu	Va)	Leu		Ala	Va]	Leu	Ala	Gln	His	Asp
55			35					40	3				45			- 2

... Thr Tyr His Thr Pro Lys Asp Leu Thr Phe Ile Leu Ala Asn Asp Ile. ...

		50					55					60				
5	His	Ser	Leu	Gly	Ala	Ala	Pro	Asp	Leu	Asp	Asp	Phe	Ile	Glu	Arg	Arg
	65					70					75					80
	Met	Ile	Lys	Arg	Val	Ile	Met	Ser	Ile	Leu	Thr	Ala	Ser	Ser	Lys	Thr
					85					90					95	
10	Ala	Gln	Ala	Met	Lys	Asn	Asn	Asp	Ile	Glu	Ala	Tyr	Phe	Leu	Pro	Gln
				100					105					110		
	Gly	Ile	Ile	Ala	Thr	His	Tyr	Arg	Gln	Ser	Asn	Gln	Leu	Leu	Pro	Gly
			115					120					125			
15	Val	Ile	Thr	Lys	Ile	Gly	Leu	Asn	Thr	Ala	Val	Asp	Pro	Arg	Tyr	Gly
		130					135					140				
	Gly	Gly	Lys	Val	Asn	Thr	Arg	Thr	Thr	Asp	Asp	Leu	Val	Ser	Leu	Val
	145					150					155					160
20	Thr	Ile	Asn	Asp	Glu	Thr	Tyr	Leu	His	Tyr	Thr	Phe	Pro	Ser	Val	Asp
					165					170					175	
	Val	Ala	Leu	Leu	Arg	Gly	Thr	Tyr	Ala	Asp	Gln	Gln	Gly	Asn	Ile	Tyr
				180					185					190		
25	Leu	Xaa		Glu	Ala	Tyr	Leu		Glu	Cys	Tyr	His		Ala	Leu	Asn
			195					200					205			
	Ala	Lys	Ala	Asn	His	Gly	_	Val	Ile	Xaa	Gln		Lys	Ala	Leu	Val
		210					215					220				
30	-	Asp	Tyr	His	Leu	_	Pro	Asn	Glu	Val		Ile	Pro	Gly	Asn	
	225					230					235					240
	Val	Asp	Tyr	Val		Val	Thr	Glu	Asp		Lys	Asn	His	Arg		Val
	_				245					250					255	
35	Ile	Gln	Ser		Tyr	Leu	Pro	Ala		Ser						
				260					265							
			(2)	INE	ORMA	ATION	1 FOR	R SEC) ID	NO:3	306:					
40																
		(2				CHARA										
						68 a			as							
						nino										
45						ONESS		_	•							
			(D)	TOPO	LOGY	(: li	Lneai	•								
				40T 77												
		(1	Ll) E	OLEC	OLE	TYPE	s: Pi	cotei	.n							
50		1-	-2.		m.c.=	5500	-n - n	TON.	CD		NO. 7					
		()	(1) 5	SEQUE	INCE	DESC	KIP	TON:	SEC	עד ג	NO:	.00:				
	12-1	17- 1	r	T 1-	* 7 7	V	** -	C1-	*	N	C	>	V	C1	T	200
55		Val	гÃ2	тте		лаа	utz	GIN	υλέ	_	ser	ASII	Add	GIU	_	usp
33	1				5					10					15	

	ysp	Lys	Ala	Arg 20	Thr	Xaa	Gln	Gln	Asp 25	Xaa	Lys	Xaa	Xaa	Asp 30	Ser	Ser.
5	Xaa	Asp	Lys 35	Lys	Asp	Asn	Xaa	Asp 40	Asp	Ser	Xaa	Asp	Val 45	Xaa	Lys	Asp
	Asn	Lys 50	Asp	Asn	Ser	Ala	Asn 55	Asp	Asn	Gln	Gln	Gln 60	Ser	Asn	Ser	Lys
10	Cys 65	Asn	Lys	Gln												
			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	307:					
15		(i) S	EQUE	NCE	CHAR	ACTE	RIST	ics:							
						171 mino			cids							
20						DNES:			e							
20			(D)	TOP	OLOG.	Y: 1:	inea	r								
		(:	ii) 1	10LE	CULE	TYP	E: P	rote	in							
25		(:	xi) s	SEQUI	ENCE	DES	CRIP'	rion	: SE	Q ID	NO:	307:				
		Arg	Arg	Phe		Asp	Ile	Glu	Arg		Val	Gln	Thr	His	Asp	Phe
30	1 Thr	Trp	Gln	Ala	5 Glu	Ile	Met	Ser	Lys	.10 Pro	Val	Lvs	Asn	Met	15 Thr	Val
				20					25					30		
	Ala	Ile	Ile	Gly	Thr	Gly	Arg	Ile	Gly	Ala	Ala	Thr	Ala 45	Lys	Ile	Tyr
35	Ala	Gly 50	Phe	Gly	Ala	Thr	Ile 55	Thr	Ala	Туг	Asp	Ala 60	Tyr	Pro	Asn	Lys
	Asp 65	Leu	Asp	Phe	Leu		Tyr	Lys	Asp	Ser		Lys	Glu	Ala	Ile	
40		Ala	Asp	Ile	Ile	70 Ser	Leu	His	Val	Pro	75 Ala	Asn	Lys	Glu	Ser	80 Tyr
					85					90					95	
45	HIS	Leu	Pne	100	Lys	Ala	Met	Phe	Asp 105	His	Val	Lys	Lys	Gly 110	Ala	Ile
75	Leu	Val		Ala	Ala	Arg	Gly		Val	Ile	Asn	Thr		Asp	Leu	Xaa
	Ala	Ala	115 Val	Asn	Asp	Gly	Thr	120 Leu	Leu	Gly	Ala	Ala	125 Ile	Asp	Thr	Tyr
50		130					135					140				
	Glu 145	Asn	Glu	Ala	Ala	Tyr 150	Phe	Thr	Asn	Asp	Trp 155	Thr	Asn	Lys	Asp	Ile 160
		Asp	Lys	Thr	Leu		Glu	Leu	Ile	Gly						100
55					165					170						

		**
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 amino acids	
10	(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Protein	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:308:	
	Val Val Val Leu Met Cys Cys Leu Lys Tyr Glu Asn Asp Tyr Tyr 1 5 10 15	
20	Glu Val Arg Ala Gln Leu Pro Asp Ile Gly Glu Ala Ile Glu Thr 20 25 30	Pro
	Asp Gly Asn Arg Glu Ser Ser Cys Phe Lys Tyr Ile Arg His Phe 35 40 45	Tyr
25	Ala Gly Glu Ala 50	
	(2) INFORMATION FOR SEQ ID NO:309:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 114 amino acids (B) TYPE: amino acid	
35	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Protein	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:309:	
45	Val Asn Thr Xaa Leu Leu Asn Xaa Arg Val Glu Pro Ala Ile Val	Lys
45	Ile Pro Val Ser Val Asp Glu Asn Ile Asp Asn Val Glu Lys Lys 20 25 30	Leu
50	Asn Thr Leu Phe Thr Ile Leu Cys Val Val Asn Xaa Xaa Leu Phe	val
	Ser Asp Pro Val Val Ile Gly Ile Asp Ala Phe Glu Asp Thr Arg	val
	Ile Leu Xaa Val Ser Ala Glu Thr Ile Pro Gly Xaa Gly Phe Ser	
55	cc 70 75	RO

	Ala Arg Ile Ile Arg Lys Glu Val His Lys Met Phe Leu Gln Glu Gly 85 90 95	
5	Ile Lys Thr Pro Xaa Pro Ile Met Thr Pro Phe Asn His Ser Glu Xaa	
	Gly Val	
10	(2) INFORMATION FOR SEQ ID NO:310:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 amino acids	
	(B) TYPE: amino acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: Protein	
2 5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:310:	
	Val Thr Gln Leu Leu Lys Asn Ala Xaa Lys Lys Xaa Asn Asp Leu Ile 1 5 10 15	
	Lys Glu Glu Ala Glu Ile Val Lys Asn Asp Asp Leu Pro Xaa Xaa Leu	
30	20 25 30 Ile Ile Xaa Gly Xaa Gln Tyr Asp Xaa Arg Trp Arg	
	35 40	
35	(2) INFORMATION FOR SEQ ID NO:311:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 119 amino acids(B) TYPE: amino acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(b) Torobosi: Timear	
45	(ii) MOLECULE TYPE: Protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:311:	
50	Val Arg Phe His Asp Gly Xaa Thr Phe Asp Ala Asp Ala Val Lys Lys 1 5 10 15	
	Asn Ile Asp Ala Xaa Gln Gln Asn Lys Lys Leu His Ser Trp Leu Lys 20 25 30	
55	Ile Ser Thr Leu Ile Asp Asn Val Lys Val Lys Asp Lys Tyr Thr Val	

	. Ģlų	Leu 50	Asn	Leu	Lys	Glu	Ala 55	Tyr	Gln	Pro.	Ala	Leu 60	Ala	Glu	Leu	Ala,
5	Met 65	Pro	Arg	Pro	туr	Val 70	Phe	Val	Ser	Pro	Lys 75	Asp	Phe	Lys	Asn	Gly 80
	Thr	Thr	Lys	Asp	Gly 85	Val	Lys	Lys	Phe	Asp 90	Gly	Thr	Gly	Pro	Phe 95	Lys
10	Leu	Gly	Glu	His 100	Lys	Lys	Asp	Glu	Ser 105	Ala	Asp	Phe	Asn	Lys 110	Asn	Asp
	Gln	Tyr	Trp 115	Gly	Glu	Lys	Ser									
15			(2)	INI	FORM	ATIO1	N FOI	R SEQ	O ID	NO:3	312:					
20		(:	(A) (B) (C)	LENG TYPI STR	GTH: E: ar ANDEI	307 mino ONESS	amir acid	ingle	cids							
25		(:					inea: E: P:	rotei	in		,					
		(3	ci) S	SEQUI	ENCE	DESC	CRIP	rion:	: SE(Q ID	NO:	312:				
30	Val	Pro	Ile	Asp	Tyr 5	Ile	Xaa	Gln	Thr	Gly 10	Asp	Ile	Val	Glu	Ile 15	Arg
35	Thr	Ser	Lys	His 20	Ser	Tyr	Gly	Pro	Ser 25	Arg	Asp	Trp	Leu	Xaa 30	Ile	Val
	_		35	•		_		40		_			45	Xaa		
40	Asp	Arg 50	Ser	Ser	Asn	Ile	Glu 55	Lys	Ala	Arg	Met	Met 60	Val	Glu	Val	Glu
	Ile 65	Lys	Asp	Gln	Gly	Phe 70	Arg	Val	Glu	Asp	Ile 75	Leu	Thr	Glu	Lys	Asn 80
45	Ile	Gln	Val	Val	Asn 85	Xaa	Lys	Tyr	Asn	Phe 90	Xaa	Asn	Glu	Asp	Asp 95	Leu
	Phe	Ala	Ala	Val 100	Gly	Phe	Gly	Gly	Val 105	Thr	Ser	Leu	Gln	11e 110	Val	Asn
50			115					120			_		125	Ala		
		130					135					140		Asn		
55	Thr 145	Asp	Ser	Gly	Val	тут 150	Val	Glu	Gly	Leu	Glu 155	Asn	Val	Leu	Ile	Lys 160

	Feñ	Xaa	Ļys	Суѕ	Cys 165	Asn	Pro	Ile	Pro	Gly 170	Asp	Asp	Ile	Val	Gly 175	Tyr.
5	Ile	Thr	Lys	Gly 180	His	Gly	Thr	Lys	Val 185	His	Arg	Thr	Asp	Cys 190		Asn
	Ile	Lys	Asn 195	Glu	Thr	Glu	Arg	Leu 200	Ile	Asn	Val	Glu	Trp 205	Val	Lys	Xaa
10	Lys	Asp 210	Ala	Thr	Gln	Lys	Tyr 215	Gln	Val	Asp	Leu	Glu 220	Val	Thr	Ala	Tyr
	Asp 225	Arg	Asn	Gly	Leu	Leu 230	Asn	Glu	Val	Leu	Gln 235	Ala	Val	Ser	Ser	Thr 240
15	Xaa	Gly	Asn	Leu	Ile 245	Lys	Val	Ser	Gly	Arg 250	Ser	Asp	Ile	Asp	Xaa 255	Asn
				260					265					Asp 270		_
20			275					280					285			Asn
	Lys	Ser 290	Leu	Gly	Thr	Arg	Gly 295	Ser	Lys	Asn	Ile	Glu 300	Ser	Arg	Trp	Tyr
25	Lys 305	Arg	Gly													
			(2)	INI	FORM	ATIO	N FOI	R SE(Q ID	NO:	313:					
30		(:		_		CHAR										
			(B)	TYPE	E: ar	92 a	acio	i								
35						ONESS Y: 1:			=							
		(:	ii) N	OLEC	CULE	TYPI	E: Pi	rotei	in							
40		()	ci) S	EQUE	ENCE	DESC	CRIPT	rion:	SE() ID	NO:	313:				
	Val	Ser	Thr	Val	His 5	Pro	Ile	Arg	Ile	Pro 10	Pro	Gly	Asp	Pro	Val	Ser
45		Val	Asp	Ile 20	-	Ile	Gly	Arg	Va1 25		Gln	Val	His	Ile 30		Asp
50	Xaa	Val	Ile 35		Asp	Asn	Gly	Lys 40		Asp	Ile	Lys	Ser 45	Ile	Lys	Pro
30	Ile	Ala 50		Leu	Gly	Tyr	Ser 55		Tyr	Thr	Val	Val		Glu	Ile	Phe
55	Glu 65	-	Lys	Ala	Pro	Хаа 70		Ser	Lys	Glu	Glu 75		Ala	Gly	Leu	Glu 80
											-					

V. .

(2) INFORMATION FOR SEQ ID NO:314: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:314: (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315:						85					90						
(A) LENGTH: 99 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:314: (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315:	5			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	314:					
(ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:314: 20 Val Leu Thr Arg Leu Lys Thr Met Gly Lys Leu Ala Met Leu Met Leu 1	10		((A) (B)	LEN	GTH: E: a	99 mino	amin aci	o ac d	ids							
Val Leu Thr Arg Leu Lys Thr Met Gly Lys Leu Ala Met Leu Met Leu 1 5 10 15 Lys Asp Leu Asp Gln Ala Phe Lys Lys Lys Asp Thr Val Leu Ile Ar 20 25 30 25 Glu Ile Ile Glu Arg Asp Glu Asp Ile Asp Asp Leu Tyr Ser His Il 35 40 45 Ile Asn Ala Thr Tyr Leu Ile Asp Asn Asp Pro Phe Val Ala Ala Gl 50 50 55 60 Ala His Leu Ala Ala Arg His Leu Glu Arg Ile Gly Asp His Ile Il 65 70 75 80 Asn Ile Ala Glu Ser Val Tyr Phe Tyr Leu Thr Gly Thr His Tyr Gl 85 90 95 Gln Ile Thr (2) INFORMATION FOR SEQ ID NO:315: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) Type: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315:	15		(in							
Val Leu Thr Arg Leu Lys Thr Met Gly Lys Leu Ala Met Leu Met Leu 1 5 10 15 Lys Asp Leu Asp Gln Ala Phe Lys Lys Lys Asp Thr Val Leu Ile Ar 20 25 30 Glu Ile Ile Glu Arg Asp Glu Asp Ile Asp Asp Leu Tyr Ser His Il 35 40 45 Ile Asn Ala Thr Tyr Leu Ile Asp Asn Asp Pro Phe Val Ala Ala Gl 50 55 60 Ala His Leu Ala Ala Arg His Leu Glu Arg Ile Gly Asp His Ile Il 65 70 75 80 Asn Ile Ala Glu Ser Val Tyr Phe Tyr Leu Thr Gly Thr His Tyr Gl 85 90 95 Gln Ile Thr (2) INFORMATION FOR SEQ ID NO:315: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315:			(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	314:				
25 30 Glu Ile Ile Glu Arg Asp Glu Asp Ile Asp Asp Leu Tyr Ser His Il 35 40 45 Ile Asn Ala Thr Tyr Leu Ile Asp Asn Asp Pro Phe Val Ala Ala Gl 50 55 60 Ala His Leu Ala Ala Arg His Leu Glu Arg Ile Gly Asp His Ile Il 65 70 75 80 Asn Ile Ala Glu Ser Val Tyr Phe Tyr Leu Thr Gly Thr His Tyr Gl 85 90 95 Gln Ile Thr (2) INFORMATION FOR SEQ ID NO:315: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) Type: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315:	20		Leu	Thr	Arg		Lys	Thr	Met	Gly		Leu	Ala	Met	Leu		Leu
Ile 11e Glu Arg Asp Glu Asp 11e Asp Asp Leu Tyr Ser His II 35 40 45 Ile Asn Ala Thr Tyr Leu Ile Asp Asn Asp Pro Phe Val Ala Ala Gl 50 55 60 Ala His Leu Ala Ala Arg His Leu Glu Arg Ile Gly Asp His Ile Il 65 70 75 80 Asn Ile Ala Glu Ser Val Tyr Phe Tyr Leu Thr Gly Thr His Tyr Gl 85 90 95 Gln Ile Thr (2) INFORMATION FOR SEQ ID NO:315: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) Type: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315: Val Thr Asn Lys Ile Leu Ser Gln Phe Leu Asn Ile Lys Pro Pro Ser	25				20					25					30		
30 Ala His Leu Ala Ala Arg His Leu Glu Arg Ile Gly Asp His Ile Il 65 70 75 80 Asn Ile Ala Glu Ser Val Tyr Phe Tyr Leu Thr Gly Thr His Tyr Gl 85 90 95 Gln Ile Thr (2) INFORMATION FOR SEQ ID NO:315: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) TypE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TypE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315:	25			35					40					45			
Asn Ile Ala Glu Ser Val Tyr Phe Tyr Leu Thr Gly Thr His Tyr Gl 85 90 95 Gln Ile Thr (2) INFORMATION FOR SEQ ID NO:315: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) Type: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE Type: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315: Val Thr Asn Lys Ile Leu Ser Gln Phe Leu Asn Ile Lys Pro Pro Ser	30		50					55					60				
Asn Ile Ala Glu Ser Val Tyr Phe Tyr Leu Thr Gly Thr His Tyr Gl 85 90 95 Gln Ile Thr (2) INFORMATION FOR SEQ ID NO:315: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315: Val Thr Asn Lys Ile Leu Ser Gln Phe Leu Asn Ile Lys Pro Pro Ser			піс	beu	AIA	АТА		HIS	ren	GIU	Arg		GIA	Asp	His	Ile	Ile 80
(2) INFORMATION FOR SEQ ID NO:315: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315: Val Thr Asn Lys Ile Leu Ser Gln Phe Leu Asn Ile Lys Pro Pro Ser	25	Asn	Ile	Ala	Glu		Val	Tyr	Phe	Tyr		Thr	Gly	Thr	His		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315: Val Thr Asn Lys Ile Leu Ser Gln Phe Leu Asn Ile Lys Pro Pro Ser	33	Gln	Ile	Thr													
(A) LENGTH: 95 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315: Val Thr Asn Lys Ile Leu Ser Gln Phe Leu Asn Ile Lys Pro Pro Ser	40			(2)	INF	ORMA	TION	i FOF	R SEÇ) ID	NO:3	115:					
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315: Val Thr Asn Lys Ile Leu Ser Gln Phe Leu Asn Ile Lys Pro Pro Ser			(i	(A)	LENG	TH:	95 a	mino	aci								
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:315: Val Thr Asn Lys Ile Leu Ser Gln Phe Leu Asn Ile Lys Pro Pro Ser	45									ŧ							
Val Thr Asn Lys Ile Leu Ser Gln Phe Leu Asn Ile Lys Pro Pro Ser	50		(i	.i) M	OLEC	ULE	TYPE	: Pr	otei	n							
1			(x	i) S	EQUE	NCE	DESC	RIPT	'ION:	SEQ	ID	NO: 3	15:				
	55		Thr	Asn	Lys		Leu	Ser	Gln			Asn	Ile	Lys	Pro		Ser

Gly Arg Asn Phe Asp Asn Gln Ser Asp Glu Lys Arg

	. Va.	l Ser	Glu	Met 20	Val	Gly	Arg	Leu	Glu 25	Lys	Ala	Gly	Tyr	Val	Glu	Thr _e
5	Lys	s Pro	Tyr 35	Lys	Gly	Val	Arg	Leu 40	Thr	Glu	Asp	Gly	Leu 45	Thr	His	Thr
	Let	Asp 50	Ile	Ile	Lys	Arg	His 55	Arg	Leu	Leu	Glu	Leu 60		Leu	Ile	Glu
10	Ile 65	e Leu	Lys	Tyr	Asn	Trp 70	Glu	Glu	Val	His	Gln 75	Glu	Ala	Glu	Ile	Leu 80
	Glu	His	Arg	Ile	Ser 85	Asp	Leu	Phe	Val	Glu 90	Arg	Leu	Asp	Ser	Суs 95	
15			(2)	INE	FORM	ATION	FOF	R SE(Q ID	NO:	316:					
		(i) S	EQUEN	ICE (CHARA	CTE	RIST	ics:							
20						40 a nino			ids							
						ONESS			2							
						?: li		_								
25		(:	ii) M	OLEC	ULE	TYPE	: Pr	otei	in							
		(2	xi) S	EQUE	NCE	DESC	RIPI	'ION :	SEC) ID	NO:3	16:				
30																
30		Ser	Gly	Asn		Xaa	Gln	Ala	Asp		Ile	Gly	Tyr	Ser	Phe	Lys
	1 Phe	Asn	Glv	1 12	5 T1e	Vaa	N ===	C1 n	C1	10	C	V	1	**- 1	15 His	
			1	20		7.00	y	GIII	25	A.a	Ser	naa	ASP	30	піз	Ala
35	Val	Ile	Leu	Ser	Asn	Lys	Thr	Leu								
			35					40								
40			(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:3	17:					
		(i) SE	QUEN	CE C	HARA	CTER	ISTI	cs:							
			(A)	LENG	TH:	75 a	mino	aci	ds							
45						ino										
						NESS		ngle								
			(2)	.0.0	2001	. 11.	ilear									
50		(i	.i) M	OLEC.	ULE	TYPE	: Pr	otei	n							
		(x	i) S	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NO : 3	17:				
55		Val	Ser 1	Met :		Tyr I	Asn '	Thr .			Lys	His '	Thr	Thr	Leu (Glu
	1				5				:	10					15	

	Ala	Phe	Уal	Thr 20	Thr	Val	Asn	Asp	Leu 25	Gly	<u></u> [le	Glu	Leu	Ile 30	Ile	Asn _{v.}
5	Glu	Ala	Leu 35	Arg	Glu	Val	Arg	Lys 40	Arg	Gln	Leu	Ile	Glu 45	Leu	Ile	Asp
	Asp	Ala 50	Leu	Val	Asn	Lys	Asp 55	Glu	Ala	Ala	Phe	Asn 60	Gln	Туг	Thr	Ala
10	G1u 65	Tyr	Lys	Asn	Leu	Glu 70	Ala	Phe	Leu	Gly	Хаа 75		•		•	
			(2) INI	FORM	ATIO	N FOI	R SE	Q ID	NO:	318:	,				
15		(:	(A)	LEN	GTH:	97 8	ACTEI amino acio	o ac								
20			(C)	STR	ANDEI	ONES	S: s:	ingle	€							
25							E: Pi CRIPT			Q ID	NO:	318:				
	Val	Tyr	Lys	Val	Lys 5	Val	Ala	Val	Ile	Met 10	Gly	Ser	Ser	Ser	Asp 15	Trp
30	Lys	Ile	Met	Gln 20	_	Ser	Cys	Asn	Met 25		Asp	Tyr	Leu	Glu 30		Pro
25	Tyr	Glu	Lys 35	Gln	Val	Val	Ser	Ala 40	His	Arg	Thr	Pro	Lys 45	Met	Met	Val
35		50					Arg 55					60				
40	65					70	His				75					80
		Leu	Pro	Val	Ile 85	Gly	Val	Pro	Ile	Glu 90	Thr	Xaa	Lys	Phe	Lys 95	Gly
45	Tyr															
			(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:3	19:					
50		(i	(A) (B)	LENG TYPE	TH:	42 a ino	CTER mino acid	aci	đs							
55							: si near	_								

	(ii) MOLECULE TYPE: Protein
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:319:
	Val Lys Lys Ile Asp Cys Ser Xaa Ile Gly Ile Cys Gly Tyr Glu Tyr 1 5 10 15
10	Arg Gln Leu Lys Gln Glu Thr Xaa Leu Xaa Leu Phe Xaa Lys Leu His 20 25 30
	Pro Ser Phe Xaa Gly Gln Gly Val Arg Met 35 40
15	(2) INFORMATION FOR SEQ ID NO:320:
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 54 amino acids(B) TYPE: amino acid
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
25	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:320:
30	Val Leu Gly Leu Ile Glu Gly Lys Ser Gln Arg Lys Ala Tyr Ile Asp 1 5 10 15
	Ala Gly Tyr Ser Thr Lys Gly Lys Ser Asp Asn Tyr Ile Asp Ser Arg 20 25 30
35	Ala Phe Glu Leu Ser Lys Asn Ser Ala Gly Leu Asp Arg Tyr Glu Glu 35 40 45
40	Leu Arg Gln Glu Ala Gly 50
	(2) INFORMATION FOR SEQ ID NO:321:
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 102 amino acids(B) TYPE: amino acid
50	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: Protein
5 5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:321:

•	Vaļ 1	Lys	Asp	Leu	Leu 5	Gln	Ala	Gln	Gln	Lys. 10	Leu	Ile	Pro	Asp	Leu 15	Ile _v .
5	Asp	Lys	Met	Tyr 20	Lys	Arg	Phe	Ser	Ile 25	Leu	Thr	Thr	Ile	Ser 30	Lys	Asn
	Gln	Pro	Val 35	Gly	Arg	Arg	Ser	Leu 40	Ser	Glu	His	Met	Asp 45	Met	Thr	Glu
10	Arg	Val 50	Leu	Arg	Ser	Glu	Thr 55	Asp	Met	Leu	Lys	Lys 60	Gln	Asp	Val	Ile
	Lys 65	Val	Lys	Pro	Thr	Gly 70	Met	Glu	Ile	Thr	Ala 75	Glu	Gly	Glu	Gln	Leu 80
15	Ile	Ser	Gln	Leu	Lys 85	Gly	Tyr	Xaa	Asp	Ile 90	Tyr	Gly	Asp	Asp	Asn 95	Arg
	Leu	Val	Lys	Lys 100	Gly	Ile										
20			(2)	INI	FORM	ATIO	N FOI	R SE	Q ID	NO:	322:					
		(;	i) SI	QUEI	VCE (HAR	ACTE	RIST:	cs:							
25	(2) INFORMATION FOR SEQ ID NO:322: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 amino acids															
								_	9							
30		()	ii) N	OLEC	CULE	TYPE	E: Pi	rote	in							
		(>	ci) S	SEQUE	ENCE	DESC	CRIP	rion:	: SE(Q ID	NO:3	322:				
35		Met	Ile	Met	_	Lys	Glu	Ile	Glu		Leu	Ile	Phe	Ser	_	Val
		Ser	Tyr			Tyr	Val	Asn			Val	Asn	Gln	_		Ile
40	Gly	Asp			Àsp	Gly	Tyr		_	Ile	Asp	Ser			Tyr	Ile
45	(ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:322: Val Met Ile Met Arg Lys Glu Ile Glu Ala Leu Ile Phe Ser Asp Val 1 5 10 15 Ser Ser Tyr Asp Ile Tyr Val Asn Thr Gly Val Asn Gln Gly Leu Ile 20 25 30 Gly Asp Ile Lys Asp Gly Tyr Leu Thr Ile Asp Ser Met Pro Tyr Ile 35 40 45 Asp Ala Glu Arg Leu Tyr His Phe Ala Tyr Gly Thr															
			(2)	INF	ORMA	TION	I FOF	R SEC) ID	NO:3	323:					
50		(i		QUEN												
			(B)	TYPE	: am	ino	ació	i								
55				TOPO					•							

		()	i) M	OLEC	CULE	TYPE	: Pr	otei	.n	-						v
5		()	ci) S	SEQUE	ENCE	DESC	RIPT	ION:	SEC	O ID	NO:3	23:				
	Val 1	Thr	Cys	Ile	Val 5	Leu	Val	Lys	Val	val 10	Glu	Asn	Ala	Glu	Ile 15	Lys
10	Gly	Ile	Glu	Ile 20	Phe	Asn	Ser	Val	Asp 25	Asn	Asn	Asn	Lys	Lys 30	Ile	Phe
			35					40					45	Tyr		
15		50					55					60		Gly		
	65					70					75			Gly		80
20					85					90				Ile	95	
				100					105					Thr 110		
25			115					120					125	Ala		
		130					135					140		Cys		
30	145					150					155			Ala		160
		_			165					170				Lys	175	
35		-		180	_				185					190 Leu		
40			195					200					205	Phe		
70		210					215					220		Ser		
45	225	Ī	_			230					235			Ile		240
					245					250				Val	255	
50				260		Leu			265				-	270		
			275		-		•	280	_							
			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	324:					

(i) SEQUENCE CHARACTERISTICS:

55

	•• •• •		(B)	TYP	E: a	mino	amin aci S: s	đ								V•
5							inea		•							
		(ii) 1	MOLE	CULE	TYP	E: P	rote	in							
10		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	324:				
15	Val 1	Pro	Met	Thr	Pro 5	Leu	Val	Glu	Pro	Xaa 10	Pro	Xaa	Thr	Val	Ser 15	Ser
15	Asn	Asn	Lys	Ser 20	Asn	Ser	Asn	Ser	Ser 25	Thr	Leu	Xaa	Tyr	Leu 30	Arg	Thr
20	Leu	Glu	Asn 35	Arg	Gly	Trp	Asp	Phe 40	Asp	Gly	Ser	Tyr	Gly 45	Trp	Gln	Cys
20	Phe	Asp 50	Leu	Xaa	Asn	Val	Phe 55	Trp	Xaa	Ser	Ser	Ser 60	Met	Gly	Met	Asp
		Lys	Gly	Phe	Trp											
25	65					70										
			(2)) IN	FORM	ATIO	N FOI	R SE(Q ID	NO:	325:					
30		(i) SI	EQUEI	VCE (CHAR	ACTE	RIST	ics:							
							ami		cids							
							acio S: s:									
35							inea	-	-							
		C	ii) N	OLE	CULE	TYPI	E: P	rotei	in							
40		(:	xi) S	EQUI	ENCE	DESC	CRIP:	rion:	: SE(Q ID	NO:3	325:				
		Leu	Gln	Leu		Thr	Gln	Ile	Tyr		Ala	Glu	Lys	Arg		Xaa
	1	17-7	n an	01 -	5	77- J	C	V	G	10	•	•	•		15	_
45	ΠĎ	Vai	Asn	20	Leu	Val	261	Add	25	Pne	ASI	Lys	гÀг	30	Arg	Pro
	Leu	Arg	Thr 35	Xaa	Ser	Asp	Trp	Ile 40		Ser	Asn	Pro	Ile 45		Val	Asp
50	Asn	Phe 50	Ile	Lys	Asp	Pro	Tyr 55	Ser	Gly	Phe	Asn	Val	Ser	Xaa	Gln	Leu
	Leu	Tyr	His	Thr	Ala	Tyr	Tyr	Met	Leu	His	Thr	Ser	Gln	Leu	Lys	Asn
	65					70					75					80
55	Met	Lys	Met	Leu	Asn 85	His	Ala	Met	Pro	Ile 90	Leu	Leu	Val	Ser	Gly 95	Tyr

	Ala	Asp	Ser	Leu 100	Gly	Asp	Tyr	Gly	Lys 105	Gly	Ile	Leu	Lys	Leu 110	Ala	Asn _{v.}
5	Ile	Tyr	Arg 115	Glu	Ala	Gly	Ile	Lys 120	Asn	Cys						
			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	326:					
10		(i) s	EQUE	NCE (CHAR	ACTE	RIST	ics:							
			(A)	LEN	GTH:	56	amin	o ac	ids							
			(B)	TYP	E: ar	nino	acio	1								
15			(C)	STR	ANDE	ONES:	S: s:	ingl	е							
			(D)	TOP	OLOGY	r: 1:	inea	r								
		(ii) 1	MOLE	CULE	TYP	E: P	rote	in							
20		(:	xi) s	SEQUI	ENCE	DES	CRIP'	FION	: SE(Q ID	NO:	326:				
	Val	Thr	Leu	Glu	Val	Ala	Glu	Met	Xaa	Asn	Ser	Xaa	Lys	Asp	Xaa	Lys
25	1				5					10					15	
20	Lys	Phe	Glu	Ile	Ile	Asp	Arg	Xaa	Lys	Ser	Phe	Tyr	Asp	Glu	Glu	Gln
				20					25					30		
	Xaa	Ile	Asp	Leu	Val	Phe	Val	Val	Asn	Gln	Ile	Asn	Gly	Trp	Asn	Arg
30			35					40					45			
30	Leu	Asn	Ile	Ile	Ser	Asp	Arg	Leu								
		50					55									-
35			(2)	INE	ORMA	TIO	v FOE	R SE	Q ID	NO:	327:					
35																
		(:	i) SE	EQUE	ICE C	HAR	ACTE	RIST	ICS:							
			(A)	LENC	TH:	119	amir	o a	cids							
40			(B)	TYPE	E: an	nino	acid	3								
40			(C)	STR	NDEI	NESS	S: si	ingle	•							
			(D)	TOPO	LOGY	: 1i	inear	:								
45		(:	ii) N	OLEC	CULE	TYPE	E: Pz	ote	in							
		()	ci) S	SEQUE	NCE	DESC	RIPT	CION	SEC) ID	NO:3	327:				
50	Val	Asp	Ser	Val	Thr	Ile	Lys	Val	Leu	Asn	Glu	Pro	Ser	Pro	Lvs	Leu
30	1	_			5		-			10					15	
		Thr	Thr	Tro		Ala	Glu	Gln	Val		Gln	Glv	Lys	Ile		Thr
				20	•				25			3		30	-, -	
55	Ser	Lys	Tyr		Lys	Lys	Glu	Cvs		Ara	His	Leu	Ara		Leu	Glu
		•	35			_,		40		3			45	-3-		

	Asņ	Gly 50	Gly	Lys	Trp	Val	Phe 55	Asp	Glu	Glu.	Leu	Ala 60	His	Arg	Pro	Ile".
5	Arg 65	Phe	Ile	Glu	Lys	Phe 70	Cys	Lys	Xaa	Ser	Lys 75	Gly	Ser	Lys	Arg	Gln 80
	Leu	Ala	Leu	Gln	Pro 85	Trp	Gln	His	Phe	Ile 90	Ile	Gly	Ser	Leu	Phe 95	Gly
10	Trp	Val	His	Lys 100	Glu	Thr	Lys	Leu	Arg 105	Arg	Phe	Lys	Glu	Ala 110	Leu	Ile
	Phe	Met	Gly 115	Ala	Lys	Lys	Trp									
15			(2)) IN	FORM	ATIOI	N FOI	R SE(Q ID	NO:	328:					
		(:	i) SI	EQUE	NCE (HAR	ACTE	RIST:	ICS:							
20			(A)	LEN	STH:	38 a	amino	o ac	ids							
			(B)	TYPI	E: ar	nino	acio	d								
			(C)	STR	ANDE	ONES!	S: s:	ingl	е							
			(D)	TOP	OLOG!	Z: 1:	inea	r								
25		(:	ii) 1	MOLE	CULE	TYPI	E: P:	rote	in							
		(:	xi) :	SEQUI	ENCE	DES	CRIP'	TION	: SE	Q ID	NO:	328:				
30																
	1				5		_		Lys	10					15	
35	Ser	Pro	Xaa	Ser 20	Pro	Xaa	Xaa	Ala	Ile 25	Asp	Gly	Asp	Thr	Leu 30	Val	Thr
	Lys	Xaa	Xaa 35	Ala	Ser	Asn										
40			(2) IN	FORM	ATIO	N FO	R SE	QID	NO:	329:					
		t:	i) Si	EQUE	NCE (CHAR	ACTE	RIST	ICS:							
		·		_			ami									
45			(B)	TYP	E: au	nino	aci	đ								
			(C)	STR	ANDE	ONES:	S: s	ingl	e							
			(D)	TOP	OLOG	Y: 1:	inea	r								
50		(:	ii) 1	MOLE	CULE	TYP	E: P	rote	in							
		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	329:				
55	Val	Leu	Asn	Leu	Ser	Ile	Ser	Leu	Thr	Ser	Leu	Ala	Thr	Gly	Ile	Phe
	1				5					10					15	

... Met Val Ala Ala Gly Asp Ile Ala Asp Lys Ile Gly Gln Xaa Arg Met. ...

				20		•			25					30	_	
5	Thr	Tyr	Met	Gly	Leu	Ile	Ile	Xaa	Met	Phe	Xaa	Ser	Leu	Leu	Leu	Ile
3		_	35	-				40					45			
	Ile	Ser	Asp	Ile	Thr	Ala	Leu	Leu	Ile	Ile	Xaa	Arg	Asn	Phe	Thr	Arg
		50	-				55					60				
10	Ser	Ile	Ser	Xaa	Tyr	Leu	Gly	Tyr	Pro	Pro	Thr	Val	Gly	Val	Leu	Asn
, •	65					70					75					80
	Asn	Gln	Phe	Lys	Gly	Glu	His	Leu	Arg	Arg	Ala	Ile	Ser	Tyr	Leu	Met
					85					90					95	
15	Ile	Ser	Thr	Val	Gly	Gly	Ile	Gly	Leu	Ala	Gly	Val	Ile	Gly	Gly	Leu
				100					105					110		
	Ile	Ala	Thr	Asn	Phe	Gly	Trp	Gln	Met	Asn	Phe	Ile	Ile	Ser	Ile	Val
			115					120	,				125			
20	Ile	Xaa	Phe	Ile	Ala	Ile	Leu	Leu	Leu	Lys	Gly	Thr	Pro	Glu	Lys	Val
		130					135					140				
		Gln	His	Xaa	His		His	Pro	Phe	Asp		Lys	Gly	Met	Ser	
	145		•			150	_				155			- 1-	01	160
25	Phe	Ala	Val	Met		GIÀ	Ser	Phe	Thr		Leu	Leu	Thr	GIn		Pne
	03	G1-	01		165		mb	Dho	Co	170	71.	~	7 011	505	175	Dhe
	GIU	Gln	GIA	180	Pne	ser	THE	Pne	185	Pne	116	Lys	Leu	190	116	FIIC
	710	Ile	Th-		Leu	T10	Phe	Tla		Tle	Glu	Ara	Ara		Glu	Va l
30	116	116	195	THE	Leu	116	FIIC	200	116	116	Gru	ALG	205	1112	GIG	V41
	Pro	Phe						200					203			
		210	-3-													
35																
00			(2) IN	FORM	ATIO	N FOI	R SE	O I D	NO:	330:					
		(i) S	EQUE	NCE (CHAR	ACTE	RIST	ics:							
40			(A)	LEN	GTH:	44 8	amin	ac:	ids							
			(B)	TYP	E: au	mino	aci	i								
			(C)	STR	ANDE	DNES:	S: s:	ingl	9							
			(D)	TOP	OLOG.	Y: 1:	inea	r								
45																
		(ii)	MOLE	CULE	TYP	E: P:	rote	in							
		(:	xi)	SEQU	ENCE	DES	CRIP	rion	: SE	QID	NO:	330:				
50			_		_	_	_			_		-1		••	•	20-5
		Ala	Pro	Phe		Tyr	Leu	хаа	TTG		ASP	GIU	хаа	хаа		met
	1	T1		Q1-	5	T	3	21-	/The ex-	10	71-	T 011	V	a7-	15	ጥ ኮ ~
55	Lys	Ile	ATA		ASD	reu	ASN	WIG	1yr 25	ASN	WIG	ьeu	Add	30	TÄE	LILL
55				20					د ع					30		

	Val Xaa Arg Glu Leu Gly Leu Asn Glu Gln Xaa Asn 40
5	(2) INFORMATION FOR SEQ ID NO:331:
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
15	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:331:
20	Val Tyr Val Ile Ser Leu Asn Asp Asn Ala Ala Asp Gly Arg Asp Thr 1 5 10 15
25	Ser Trp Ile Tyr Asp Ala Asp Phe Gly Lys Ile Ile 20 25
	(2) INFORMATION FOR SEQ ID NO:332:
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 56 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
35	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:332:
	Val Met Ser Lys Leu Árg Pro Leu Leu His Tyr Ala Arg Ala Lys Asp 1 5 10 15
45	Ile Asp Asn Tyr Arg Thr Val Glu Glu Ser Tyr Arg Gln Gly Gln Tyr 20 25 30
	Tyr Arg Xaa Xaa Ile Val Asp Gly Lys Leu Asn Ile Gln Phe Asn Glu 35 40 45
50	Gly Glu Pro Tyr Phe Gly Arg His 50 55
	(2) INFORMATION FOR SEQ ID NO:333:
55	(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 129 amino acids

			(A)	LEN	GTH:	129	ami	no a	cids							w	
			(B)	TYP	E: a	mino	aci	đ									
_			(C)	STR	ANDE	DNES	S: s	ingl	е								
5			(D)	TOP	orog.	Y: 1	inea	r									
								-									
		/ 5		MOT EX	- ***	mv.D			· _								
		, 1		MOLE	COLE	TYP	E: P	rote.	111								
10																	
		(x	:1) :	SEQUI	ENCE	DES	CRIP'	TION	: SE	QID	NO:	333:					
	Val F	His	Pro	Asp	Val	Leu	Leu	Thr	Arg	Tyr	Val	Glu	Gly	Lys	Glu	Asp	
	1				5					10					15		
15	Gln V	/al	Glu	Lys	Val	Leu	Tyr	Gln	Leu	Ala	Asp	Ile	Asp	Ile	Ser	Glu	
				20			_		25		-		•	30			
	Ile E	ero.	Lvs		Phe	Tle	T.e.11	T.011		Thr	wie.	Dro	Th. r=		V	3.00	
			35		• • • • •			40		****		110		GIII	Add	ASII	
20	Wal t			O1-		B	01 -			~1	_	_	45				
	Val I		лаа	GIN	туг	Pro		Tyr	met	GIN	Tyr		Glu	Gln	Gly	Leu	
		50					55					60					
	Ile L	ys	Asp	Leu	Gly	Val	Ser	Gly	Asp	Leu	Val	Ser	Pro	Thr	Ser	Xaa	
25	65					70					75					80	
20	Xaa A	\rg	Thr	Val	Phe	Ser	Lys	Ala	Leu	Asn	Ile	Tyr	Leu	Xaa	Xaa	Pro	
					85					90					95		
	Ile H	lis	Val	Xaa	Ile	Thr	Asn	Phe	Xaa	Ara	Thr	Asn	Asp	Leu	Glu	Gln	
				100					105					110	O_u	0111	
30	Tle V	'aa	λ		C	~		D		1.F. A.		_	_		_		
	Ile X			1111	Ser	cys	met		Arg	met	ser	ser		Ser	Asp	GIN	
	_		115					120					125				
	Arg					•											
35																	
			(2)	INF	ORMA	MOIT	FOR	SEC	ID 9	NO:3	34:						
		(i) SE	QUEN	CE C	HARA	CTER	ISTI	cs:								
40				LENG													
				TYPE					Lus								
				STRA				-	•								
45			(D)	TOPO	LOGY	: li	near	•									
		(i:	i) M	OLEC	ULE	TYPE	: Pr	otei	n								
50		(x:	i) s	EQUE	NCE	DESC	RIPT	ION:	SEO	ID	NO : 3	34:					
50					-							•					
	Val G	ln i	262	Lare	C1	T 0''	T10	C1 ~	u:-	77 -	n1-	т	a1 -	. 1 -	-1	01	
	Val G	2		-y s		neu	-1E	2111			WIG	TAL	wrg	ATA		GIU	
				_	5					10					15		
55	Arg I	ie I			Glu	Tyr	Phe	Arg	Glu	Glu	Asn	Leu	Tyr	Gln	Val	Pro	
				20					25					30			

	Pro Gln Asn His Gln Trp Ser Ile Gln Leu Ser Glu Leu Glu Thr Leu 35 40 45
5	Thr Gly Glu Phe Arg Tyr Trp Ser Ala Met Gly His His Met Tyr His 50 55 60
	Pro Glu Val Trp Leu Ile Asp Gly Lys Ser Lys Lys Ile Thr Thr Tyr 65 70 75 80
10	Lys Glu Ala Ile Ala Arg Ile Leu Pro His Met Ala Gln Ser Ala Asp 85 90 95
	Asn Gln Thr Ala Val Gln Pro Thr Tyr Gly Xaa Asn Tyr Val Xaa His 100 105 110
15	Arg
	(2) INFORMATION FOR SEQ ID NO:335:
20	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 27 amino acids (B) TYPE: amino acid
25	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: Protein
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:335:
	Val Ala Val Ser Phe Leu Thr Ser Arg Asp Ile Pro Xaa Asp Lys Val
35	Val Lys Met Asp Val Asp Pro Pro Xaa Tyr Leu 20 25
40	(2) INFORMATION FOR SEQ ID NO:336:
	(i) SEQUENCE CHARACTERISTICS:
45	(A) LENGTH: 69 amino acids (B) TYPE: amino acid
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:336:
55	Val Lys Asn Val Lys Thr Gln Ser Ile Gln Asn Ala Ser Ile Val Thr
	1 5 10 15

	Val	Glu	Tyr	Glu 20	Asn	Asn	Thr	Asp	Met 25	Asp	.Ļys	Ala	Glu	Glu 30	Gln	Leu " 👝
5	Lys	Lys	Glu 35	Ile	Asp	Lys	Ile	Lys 40	Phe	Lys	Asp	Glu	Val 45	Gly	Gln	Pro
	Glu	Leu 50	Arg	Arg	Asn	Ser	Met 55	Asp	Ala	Phe	Pro	Val 60	Leu	Ala	Tyr	Ser
10	Phe 65	Gln	Ile	Lys	Arg											
			(2) IN	FORM	ATIO	N FOE	R SE	Q ID	NO:	337:					
15		C:	i) s	EOUE	NCE (THAR	ACTE	RIST	ICS:							
		,		_			amir									
			(B)	TYP	E: ar	nino	acio	3								
20							5: si	-	⊋							
			(D)	TOP	: کاللا	(: L:	inear	5								
		(:	ii) 1	MOLE	CULE	TYPE	E: P1	cote	in							
25																
		()	ki) S	EQUI	ENCE	DESC	CRIP	NOI	: SE() ID	NO:3	337:				
	Val	Met	His	Xaa	Ile	Phe	Pro	Val	Val	Ser	Xaa	Thr	Phe	Ala	Ser	Phe
30	1				5					10					15	
••	Lys	Ser	Met		Gly	Gly	Ile	Pro		Asp	Phe	Ile	Asp		Leu	Phe
	Tle	Aen	Glu	20 Ala	Glv	Gln	Δ 1 =	Tla	25 Pro	Gln	Δl=	21=	17= 1	30 Gly	Ala	ĭ eu
		p	35	710	GLY	GIII	AIG	40	110	GIII	NI.	AIG	45	Gly	A10	nea
35	Tyr	Arg	Ser	Lys	Lys	Val	Val	Ala	Val	Gly	qzA	Pro	Ile	Gln	Ile	Glu
	_	50			_		55		_			60				
	Pro 65	Val	Val	Thr	Leu	Glu 70	Ser	His	Leu	Ile	Asp 75	Asn	Ile	Arg	Lys	Asn 80
40		His	Val	Pro	Glu		Leu	Val	Ser	Lys	_	Ala	Ser	Val	Gln	
					85	_				90					95	
	Val	Ala	Asp		Ala	Asn	Gln	Tyr		Phe	Trp	Lys	Ser		Ala	Thr
45) en	Sar	λen	100	T	mh		T10	105	T1.	Dwa	T 011	M	110	11: -	3
	rop	261	115	GIII	rys	1111	пр	120	GIY	11e	PIO	Leu	125	vai	His	Arg
	Arg	Cys	Leu	Lys	Pro	Met	Phe		Ile	Ala	Asn	Gln		Ala	Tyr	Asn
50		130					135					140				
		Lys	Met	Val	Leu		Ser	Asn	Ile	Thr	_	Val	Gly	Lys	Thr	_
	145 Trp	ፓ v r	Asp	Val	Lve	150	Aen	Δla	Va 1	Gl n	155	Tle	Y.o.a	61.,	Arg	160
55		-3-		+41	165	JLY	-1311	.124	var	170	ASII	116	Add	GIU	175	NTØ.

V- .

	Trp	Val	Ļys	Lys 180						-						v.
5			(2)	INF	ORMA	MOIT.	I FOF	SEC) ID	NO : 3	38:					
		(i		EQUEN												
10			(B)	TYPE	E: an	nino	acid	i								
15		(<u>i</u>	, - ,	TOPO					in							
		()	ci) S	SEQUE	ENCE	DESC	CRIPT	rion	: SE(Q ID	NO:3	338:				
20	Val	Lys	Phe	Phe	Asp 5	Tyr	Thr	Phe	Ala	Ser 10	Val	Gly	Val	Lys	Pro 15	Asn
25		Leu		20					25					30		
		Ala Asp	35					40					45			
30		50 Gly					55					60				
	65					70					75					80
35		Leu			85					90					95	
	Pro	Tyr	Trp	His 100	Pro	Lys	Asp	Leu	Xaa 105	Asn	Met	Ile	Gly	Leu 110	Gln	Ser
40			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	339:					
		(EQUE:												
45			(C)	TYP: STR. TOP	ANDE	DNES	s: s	ingl	e							
50		(MOLE					in							
		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	339:				
55	Val	. Met	Gln	Ser	Ser 5	Lys	Trp	Asn	Ala	Met 10	Ser	Leu	Leu	Met	Asp 15	Glu

٠.	Lys	Thr	Lys	Gln 20	Ala	Glu	Val	Leu	Arg 25	Thr_	Ala	Ile	Asp	Glu 30	Ala	Asp _v ,
5	Ala	Ile	Val 35	Ile	Gly	Ile	Gly	Ala 40	Gly	Met	Ser	Ala	ser 45	Asp	Gly	Phe
	Thr	Tyr 50	Val	Gly	Glu	Arg	Phe 55	Thr	Glu	Asn	Phe	Pro 60	Asp	Phe	Ile	Glu
10	Lys 65	Tyr	Arg	Phe	Phe	Asp 70	Met	Leu	Gln	Ala	Ser 75	Leu	His	Pro	Tyr	Gly 80
	Ser	Trp	Gln	Glu	Tyr 85	Trp	Ala	Phe	Glu	Ser 90	Arg	Phe	Ile	Thr	Xaa 95	Asn
15	Tyr															
			(2)	INE	FORM	TION	1 FOF	R SEG	Q ID	NO:3	340:					
20		(:		-			ACTER									
. -			(B)	TYPE	E: an	nino	ació S: si	3								
25			(D)	TOPO	DLOGY	(: li	near	•								
30		(i	ii) N	OLEC	CULE	TYPE	E: Pı	rote	in							
30		(2	ki) S	SEQUE	ENCE	DESC	CRIPT	rion:	: SEÇ	Q ID	NO:3	340:				
35	Val 1	Tyr	Pro	Ile	Lys 5	Ala	Ile	Ile	Asp	Ser 10	Leu	Thr	Thr	Phe	Ser 15	Gly
	Ile	Glu	His	Arg 20	Leu	Gln	Tyr	Val	Gly 25	Thr	Asn	Arg	Thr	Asn 30	Lys	Tyr
40			35					40					45		Ala	
		50					55					60			Trp	
45	65		_			70					75			Asn	Val	Хаа 80
	His	Asp	GIĀ	Cys	85	Arg	Thr	Asn	Glu	ser 90	хаа	Val	Cys			
50			(2)) INI	FORM	ATION	N FOR	R SE	Q ID	NO:	341:					
		(:		_			ACTER									
55			(B)	TYP	E: au	nino	ació 3: si	£								
			,					3 1								

	(ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:341: Val Met Gly Thr Asp Lys Arg Val Ser Pro Asp Leu Phe Ile Lys Arg 1 5 10 15 Leu Asn Phe Tyr Asp Tyr Leu Leu Leu Asn Ser Asp Gly Leu Thr Asp 20 25 30 Tyr Val Lys Asp Asn Glu Ile Lys Arg Leu Leu Val Lys Glu Gly Thr 35 40 45 Ile Glu Asp His Gly Asp Gln Leu Met Gln Leu Ala Leu Asp Asn His 50 55 60 Ser Lys Asp Asn Val Thr Phe Ile Leu Ala Ala Ile Xaa Gly Asp Lys 65 70 75 80														
5	(ii) MOLECULE TYPE: Protein														
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:341:														
10															
	-														
15															
20	Ser Lys Asp Asn Val Thr Phe Ile Leu Ala Ala Ile Xaa Gly Asp Lys 65 70 75 80 Val (2) INFORMATION FOR SEQ ID NO:342:														
25	Val														
<i>30</i>	(2) INFORMATION FOR SEQ ID NO:342: (i) SEQUENCE CHARACTERISTICS:														
35	(ii) MOLECULE TYPE: Protein														
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:342:														
40	Val Lys Leu Lys Gly Met Arg Lys Gln Tyr Glu Val Gly Glu Gln Ala 1 5 10 15														
45	Ser Pro Ile Glu Phe Val Thr Gly Arg Val Asn Pro His Arg 20 25 30														
	(2) INFORMATION FOR SEQ ID NO:343:														
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 82 amino acids (B) TYPE: amino acid														
55	(C) STRANDEDNESS: single (D) TOPOLOGY: linear														

		()	<u>۱</u> (ز	OLEC	ULE	TYPE	: Pr	otei	.n							**	
5		(>	ci) S	EQUE	ENCE	DESC	RIPI	CION:	SEQ	ID	NO: 3	43:					
	Val	Glu	Val	Gln		Met	Lys	Phe	Gly		Thr	Ile	Ala	Va1		Leu	
	1				5					10	_			_	15		
10	Ala	Ser	Ser	Val 20	Leu	Leu	Xaa	Gly	Суs 25	Thr	Thr	Asp	Lys	Lys 30	GLu	He	
	Lys	Ala	Tyr 35	Leu	Lys	Gln	Val	Asp 40	Lys	Ile	Lys	Asp	Asp 45	Glu	Glu	Pro	
15		50					55		Ala			60					
	Lys	Leu	Thr	Glu	Asp	Val	Asn	Ser	Lys	Asp	Thr	Ala	Gly	Ser	Arg	Xaa	
	65					70					75					80	
20	Lys	Gln															
25			(2)) IN	FORM	ATIO	N FO	R SE(Q ID	NO:	344:						
	(2) INFORMATION FOR SEQ ID NO:344: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 162 amino acids																
				-													
			(B)	TYP	E: au	mino	aci	đ									
30								ing1	е								
			(D)	TOP	oLog	Y: 1:	inea	r									
		(ii) 1	MOLE	CULE	TYP	E: P:	rote	in								
35																	
		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	344:					
	Val	Ile	Gln	Ser	Ser	Ser	Leu	Leu	Asn	Xaa	Phe	Lys	Val	Phe	Ala	Ala	
40	1				5					10					15		
	Ile	Ser	Asp	Thr	Va1	Ile	His	Gly	Ser	Asp	Val	Asp	Leu	Val	Asn	Trp	
				20					25					30			
	Val	Glu	Asn	Ala	Leu	Gln	Ser	Gly	Leu	Ala	Ala	Lys	Glu	Arg	Lys	Asp	
45			35					40					45				
	Ala	Leu	Ala	Val	Ser	Pro	Lvs	Ser	Gly	Leu	Glu	His	Met	Ser	Phe	Tyr	
		50	*			•	55		_			60					
	Asn		Ser	Val	Lvs	Glu		Xaa	Gly	Ala	asA.	Met	Tyr	Asp	Ala	Ile	
5 0	65	1			-10	70			1		75		•	•		80	
		Acn	Ala	Len	Ala		Leu	Hie	Glu	Asn		Ara	Asp	Asn	Ala	Thr	
	-10			200	85	,p				90		9			95		
	Tle	. The 2 m	Mor	Ara		Ala	Asn		Val		Ile	Ile	Ser	Va1	Leu	Ser	
55	110	-11		100					105					110			

	Ası	n Gly			Asn	Phe	Phe		Thr	Pro	Ala	Glu		Val	Xaa	Gly _v
		_	115			_		120					125			
5	хаа	Pro		Gly	Ile	Tyr		Cys	Arg	Xaa	Leu		Leu	Leu	Trp	Glu
	•	130		_	_		135	_	_	_		140				
		Phe	Asn	Tyr	Cys		Xaa	Tyr	Leu	Leu		Gly	Gln	Pro	Tyr	
	149					150					155					160
10	Thi	Asp														
			(2) IN	FORM	ATIO	N FOI	R SE(O ID	NO:	345:					
15																:
		(EQUE												
				LEN					ıds							
				TYP												
20				STR.				•	5							
			(5)	TOP	JLOG:	1: 1.	mear	•								
	(ii) MOLECULE TYPE: Protein															
25	5															
	Va]	Tyr	Lys	Thr	Asp	Leu	Tyr	Xaa	Gln	Xaa	Xaa	Lvs	Ile	Asp	Thr	Val
20	1	_	-		5		-			10					15	
30	Lys	Val	Ile	Lys	Glu	Val	Glu	Leu	Lys	Lys	Pro	Ile	Thr	Tyr	Glu	Ala
				20					25	_				30		
	Gly	Ala	Thr	Ser	Asp	Ser	Lys	Leu	Xaa	Lys	Glu	Trp	Met	Asp	Ser	
35			35					40					45	_		
55																
			(2)) INE	ORM	OITA) FOF	SEC	Q ID	NO:3	346:					
40		(:	i) SI	EQUEN	ICE C	HARA	CTEF	ISTI	CS:							
			(A)	LENC	TH:	62 a	amino	aci	ds							
			(B)	TYPE	: ал	nino	ació	l								
			(C)	STRA	NDEI	NESS	3: si	ngle	•							
45			(D)	TOPO	LOGY	: li	near	•								
		(:	ii) N	10LEC	ULE	TYPE	: Pr	otei	.n							
50		()	(i) S	EQUE	NCE	DESC	RIPT	'ION:	SEC	ID.	NO:3	46:				
		Asn	Pro	Arg		Lys	Xaa	Thr	Leu		His	Arg	Arg	Leu	His	Thr
	1				5					10					15	
<i>55</i>	Ile	Leu	Xaa		Met	Leu	Glu	Asp		Ser	Phe	Glu	Ala		Ser	Met
				20					25					30		

	Pro	Asn	Ala 35	Val	Val	Asp	Ile	Thr 40	Pro	Gln _.	Ţyr	Val	Asp 45	Asp	Lys	Leu _v .
5	Lys	Ser 50	Ile	Ser	Thr	Xaa	Lys 55	Asp	Leu	Ser	Ala	Phe 60	Ile	Leu		
			(2)) IN	FORM	ATIO	N FOI	R SE(Q ID	NO:3	347:					
10		(:				CHAR										
						117			cids							
						nino										
15						ONESS		_	9							
			(D)	TOP	OLOGY	(: li	inea	•								
		(5	ii) 1	MOLE	CULE	TYPE	E: P:	rotei	in							
20		()	ci) s	SEQUI	ENCE	DESC	CRIP	rion:	SE(Q ID	NO:	347:				
		Lys	Ile	Leu	-	Asp	Thr	Asn	Leu		Tyr	Leu	Glu	Trp		Tyr
25	1				5					10					15	
	Leu	Val	Xaa	Arg 20	Val	Val	Ala	Val	Val 25	Glu	Xaa	Gln	Gly	Thr 30	Leu	Ser
	Asp	Ala	Val	Asn	Lys	Ala	Leu	Gln	Tyr	Trp	Val	Ser	His	Val	Asp	Asp
30			35					40					45			
	Thr	His 50	Tyr	Leu	Leu	Gly	Ser 55	Ala	Leu	Gly	Pro	Asp 60	Pro	Phe	Pro	Thr
	Ile	Val	Arg	Asp	Phe	Gln	Ser	Val	Ile	Gly	Lys	Glu	Xaa	Lys	Ser	Gln
35	65					70					75					80
	Ile	Leu	Lys	Lys	Glu 85	Gly	Arg	Leu	Pro	Asp 90	Ala	Ile	Val	Ala	Cys 95	Ile
	Gly	Gly	Gly	Ser 100	Asn	Ala	Ile	Gly	Leu 105	Val	Pro	Phe	Ile	His	Leu	Leu
40	Tire	Met	Wat		vi.				103					110		
	БУЗ	met		reu	HIS											
			115													
45			(2)	IN	FORMA	ATION	1 FOF	R SEÇ	Q ID	NO:3	48:					
		(j	i) si	EQUE	NCE C	HAR	CTE	RISTI	cs:							
			(A)	LEN	STH:	135	amir	o ac	ids							
50			(B)	TYP	E: aun	nino	acid	1								
			(C)	STRA	ANDEI	DNESS	5: si	ingle	•							
			(D)	TOP	DLOGY	7: li	near	•								

55 (ii) MOLECULE TYPE: Protein

	··	(2	ki) :	SEQUI	ENCE	DESC	CRIP	NOI?	SEÇ) ID	_NO : 3	348:				We ex-
5	Val 1	Gly	Arg	Leu	Pro 5	Lys	Lys	Ile	Gln	Asn 10	Ile	Glu	Gln	Arg	Pro 15	Xaa
	Gly	Val	Ser	Xaa 20	Thr	Thr	Phe	Thr	11e 25	Ala	Val	Asn	Arg	Thr 30	Phe	Thr
10	Asn	Ala	Gln 35	Gly	Glu	Arg	Glu	Ala 40	Asp	Phe	Ile	Asn	Cys 45	Val	Thr	Phe
	Arg	Lys 50	Gln	Ala	Glu	Asn	Val 55	Asn	Asn	Tyr	Leu	Ser 60	Lys	Gly	Ser	Leu
15	Ala	Gly	Val	Asp	Gly	Arg	Leu	Gln	Ser	Arg	Ser	Tyr	Asp	Asn	Lys	Glu
	65					70					75					80
	Gly	Arg	Arg	Val	Phe	Val	Thr	Glu	Val		Ala	Asp	Ser	Val		Phe
					85					90					95	
20	Leu	Glu	Pro	-	Asn	Asn	Asn	Gln		Gln	Asn	Asn	Asn	_	Gln	Gln
				100					105					110		
	Gln	Gly		Ala	Gln	Thr	Gly		Asn	Pro	Phe	Asp		Ser	Glu	Glu
			115					120					125			
25	Asp	Phe 130	Ser	Asp	Leu	Pro	Phe 135									
30		1) INI						NO:3	349:					
		١.		LEN												
				TYPE					.rus							
				STRA												
35				TOP				_	-							
			(D)	IOP		1.	inea	•								
		1	: 4 \ 1	MOLE	71 TT E	מעש	7. D									
		(.	, ,	MOLEK	LULE	IIPI	5: F1	.oce.	.11							
40		(2	ki) :	SEQUI	ENCE	DESC	CRIP	rion:	SE(Q ID	NO:3	349:				
	Val	Va1	Ser	Gln	Ser	Ile	Leu	Leu	Thr	Leu	Ser	Thr	Xaa	Leu	Thr	Asn
45	1				5					10					15	
	Val	Thr	Xaa	Leu	Thr	Ser	Xaa	Ala	Gln	Xaa	Pro	Ala	Asp	Tyr	Val	Lys
				20					25					30		
	Asn	Met	Ile	Thr	Gly	Ala	Ala	Gln	Met	Asp	Gly	Gly	Ile	Leu	Val	Val
50			35					40					45			
	Ser	Ala 50	Ala	Asp	Gly	Pro	Met 55	Pro	Gln	Thr	Arg	Glu 60	His	Ile	Leu	Leu
	Ser	Arg	Asn	Val	Gly	Val	Pro	Ala	Leu	Val	Val	Phe	Leu	Asn	Lys	Val
55	65					70					75					80

	Asp	Met	Val	Asp	Asp	Glu	Glu	Leu	Leu	Glu	Leu	Val	Glu	Met	Glu	Val.,	
					85					90					95		
5	Arg	Asp	Leu	Leu	Ser	Glu	Tyr	Asp	Phe	Pro	Gly	Asp	Asp	Val	Pro	Val	
				100					105					110			
	Ile	Ala	Gly	Ser	Ala	Leu	Lys	Ala	Leu	Glu	Gly	Asp	Ala	Gln	Tyr	Glu	
			115					120					125				
10	Glu	Lys	Ile	Leu	Glu	Leu	Met	Glu	Ala	Val	Asp	Thr	Tyr	Ile	Pro	Leu	
		130					135					140					
		Thr															
	145																
15																	
			(2)) INI	FORM	OLTA	1 FOI	R SE(DID	NO:	350:						
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 65 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear																
20	(A) LENGTH: 65 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear																
	(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																
	(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear																
25	(D) TOPOLOGY: linear																
	(ii) MOLECULE TYPE: Protein																
30	Val	Lys	Va 1	Ser	Glv	Cvs	Ser	Asn	Len	Va1	Gln	Cve.	Δla	Tle	Hic	Acn	
	1	5,0		001	5	C , 5	501		204	10	01	C y S	mu		15	nop	
		Gln	Tvr	Tvr	_	Va l	Gln	Met	Pro		Ala	His	Ara	Val		Pro	
	-2-		-3-	20					25					30			
35	Thr	Thr	Ile		Met	Glv	Asn	His		Trp	Lvs	Ala	Leu		Ile	Ile	
			35					40					45				
	Tyr	Glu	Thr	Tyr	Cys	Thr	Leu	Cys	Asp	Ser	Xaa	Leu	Asn	Lys	Xaa	Thr	
40		50		-	-		55		_			60		-			
40	Thr																
	65								•								
45			(2)	INE	FORM	OITA	I FOR	SEC] ID	NO: 3	351:						
		(:	i) SE	QUE	NCE (HARA	CTE	RISTI	CS:								
			(A)	LENC	STH:	67 a	mino	aci	.ds								
50			(B)	TYPE	E: ar	nino	acid	1									
			(C)	STRA	ANDE	DNESS	: si	ngle	:								
			(D)	TOPO	LOGY	: li	near	:									
55		(:	li) N	10LEC	CULE	TYPE	: Pi	otei	n.								

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:351:														
5	1 5 10 15 Leu Val Ser Glu Glu Xaa Glu Thr Lys Tyr Leu Gly Ala Cys Ser Tyr 20 25 30 Glu Cys Ala Lys His Glu Arg Asn Arg Tyr Val Gln Ala Asn Asn Ile 35 40 45 Ser Asp Asn Glu Trp Gln Gln Arg Leu Thr Asn Phe Asp Asp Leu His 50 55 60 Gln His Ala 65 (2) INFORMATION FOR SEQ ID NO:352:														
	Leu Val Ser Glu Glu Xaa Glu Thr Lys Tyr Leu Gly Ala Cys Ser Tyr														
10															
45															
15															
	(2) INFORMATION FOR SEQ ID NO:352:														
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 63 amino acids														
	(A) LENGTH: 63 amino acids (B) TYPE: amino acid														
	(A) LENGTH: 63 amino acids														
25	(A) LENGTH: 63 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single														
	(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear														
	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein														
30															
	(NO) DESCRIPTION DESCRIPTION														
	Val Thr Arg Ser Lys Met Ile Val Val Glu Ser Tyr Asp Val Asn Gly														
35	l 5 10 15 Asn Lys Val Glu Leu Thr Ala His Glu Asp Val Ala Arg Met Ile Leu														
	20 25 30														
	His Ile Ile Asp Gln Met Asn Gly Leu Pro Phe Xaa Glu Arg Ala Asp														
40	35 40 45 Arg Ile Leu Thr Asp Lys Glu Val Glu Ala Tyr Phe Ile Asn Asp														
	50 55 60														
45	(2) INFORMATION FOR SEQ ID NO:353:														
	(i) SEQUENCE CHARACTERISTICS:														
50	(A) LENGTH: 40 amino acids (B) TYPE: amino acid														
	(C) STRANDEDNESS: single														
	(D) TOPOLOGY: linear														
55	(ii) MOLECULE TYPE: Protein														

		(:	xi) :	SEQU:	ENCE	DES	CRIP	TION	: SE	O ID	NO:	353:				v.	٠.
5	val 1	Thr	Lys	Asn	Ala 5	Gly	Asn	His	Glu	Ile 10	Glu	Ile	Asp	Arg	Pro 15	Ile	
	Val	Asn	Pro		Lys	Lys	Leu	Pro		Arg	Phe	Thr	Ile		Val	Ala	
	T1e	Glv	Asn	20 Phe	Glu	Val	Asn	Leu	25					30			
10		01,	35		014	• • • •		40									
			(2)) IN	FODW	מתד הו	N FO	p cr	ח דר	NO.	151.						
15			(2	, 114.	rond	A110	N FO	, 3£	2 10	NO.	,,,,,,						
		(:	i) S	EQUE	NCE (CHAR	ACTE	RIST:	cs:								
				LEN					cids	•							
20	(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:354:																
			(D)	TOP	OLUG.	¥: 1.	mea.	L									
	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein																
25	(ii) MOLECULE TYPE: Protein																
25	(ii) MOLECULE TYPE: Protein																
	Val	Lys	Gly	Gln	Asn	Leu	Thr	His	Gly	Thr	Asn	Ala	Ile	Asp	Tyr	Ile	
30	1				5					10					15	_	
	Thr	Phe	Asp		Asn	Thr	Asn	Thr		Gly	Ile	Thr	Ala		Trp	Ala	
	3	3	C1	20	D	.	.	61 -	25		61	17- 1	01 -	30	*		
	ASII	Arg	Gln 35	GIN	Pro	Asn	ASII	40	GIN	Ala	GIY	vaı	45	HIS	Leu	ASII	
3 5	Val	Asp	Val	Thr	Tvr	Pro	Glv		Ser	Ala	Ala	Lvs		Val	Pro	Val	
		50			-4-		55					60	3				
	Thr	Val	Asn	Val	Tyr	Gln	Phe	Gly	Ile	Pro	Ser	Asn	Tyr	Leu	Tyr	Asn	
40	65					70					75					80	
	Asn	Ser	Trp	Trp	His	Phe	Ser	Lys	Trp	Tyr	Ala	Ser	Ile	Arg	Ile	Cys	
					85					90					95		
	Thr	Tyr	Ala		Arg	Phe	Arg	Phe		Asn	Arg	Trp	Ile		Val		
45				100					105					110			
			(2)) IN	EO PM:	N TO T	J FOI	o cer	. TD	NO.	255.						
			(2)	, 111	CIUI	11101		55,	2 10		,,,,,						
50		(:	i) Si	EQUEI	NCE (CHAR	ACTE	RIST	ics:								
				LEN													
			(B)	TYP	E: an	nino	aci	đ									
			(C)	STR	ANDEI	ONES:	s: s:	ingle	=								
55			(D)	TOP	DLOG	r: 1:	inea	r									

		(i,:	i) M	OLEC	ULE	TYPE	: Pr	otei	.n		-					W + .
5		(x:	i) S	EQUE	NCE	DESC	RIPT	CION:	SEC) ID	NO:3	55:				
	val 1	Thr '	Thr	Gln	Asn 5	Gln	Ala	Ile	Asp	Asn 10	Thr	Thr	Gly	Ala	Thr 15	Thr
10		Glu 1		20					25					30		
			35	_				40					45			
15		Asn 2					55	_				60		_	_	
	65	Ile :				70					75					80
20		Xaa 2			85					90					95	
		Thr :		100					105					110		
25			115					120		•			125			
30		130 Xaa 2					135					140				
	145					150										
35			(2)	INF	ORMA	MOIT	FOF	SEÇ	D	NO:3	156:					
							CTER									
40							ació : si		:							
			(ם)	TOPO	LOGY	7: li	.near	•								
45		(i:	i) M	OLEC	ULE	TYPE	: Pr	otei	.n							
		(x :	i) S	EQUE	NCE	DESC	RIPI	'ION:	SEÇ) ID	NO:3	56:				
50	Val 1	Val S	Ser	Leu	Ile 5	Asp	Asp	Glu	Asp	Asp 10	Asn	Xaa	Asn	Asp	Arg 15	Gln
	Leu	Val V	Val	Ser 20	Ala	Pro	Ser	Lys	Lys 25	Pro	Thr	Thr	Pro	Thr 30	Thr	Tyr
5 5	Thr	Glu 1	Thr 35	Thr	Thr	Gln	Val	Xaa 40	Met	Pro	Thr	Val	Glu 45	Arg	Gln	Thr

	Gln Gln Gln Ile Val Tyr Lys Thr Pro Lys Thr Ile Ser Trp Ile Lys
5	Trp 65
	(2) INFORMATION FOR SEQ ID NO:357:
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 amino acids
15	(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: Protein
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:357:
25	Val Lys Ile Met Glu Met Ser Val Thr Glu Val Ile Phe Ser Phe Leu 1 5 10 15
	Gly Gly Leu Gly Ile Phe Leu Tyr Gly Leu Lys Ile Met Gly Asp Gly 20 25 30
30	Leu Gln Ala Ser Ala Gly Asp Arg Leu Arg Asp Ile Leu Asn Lys Phe 35 40 45
	Thr Ser Asn Pro Val Leu Gly Val Ile Ala Gly Ile Val Val Thr Ile 50 55 60
35	Leu Ile Gln Ser Ser Ser Gly Thr Thr Val Ile Thr Ile Gly Leu Val 65 70 75 80
	Thr Ala Gly Phe Met Thr Leu Lys Gln Ala Ile Gly Val Ile Met Gly 85 90 95
40	Ala Asn Ile Gly Thr Thr Val Thr Ala Phe Ile Ile Xaa Ile Arg Phe 100 105 110
	Arg Arg Ile Cys Lys Cys Gln Phe 115 120
45	(2) INFORMATION FOR SEQ ID NO:358:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids
50	(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
<i>55</i>	(ii) MOLECULE TYPE: Protein

		(x	(i) S	SEQUE	NCE	DESC	RIPT	ION:	SEC	ID.	ЙО:3	358:				**
5	val 1	Leu	Суs	Asp	Ala 5	Asp	Val	Leu	Ala	Leu 10	Ile	Asp	Ile	Asp	Val 15	Asp
	Ile	Asp	Val	Leu 20	Lys	Glu	Pro	Asp	Ala 25	Leu	Val	Leu	Val	Asp 30	Cys	Leu
10	Val	Thr	Leu 35	Asn	His	Xaa	Met	Met 40								
			(2)	INE	FORM	ATIO	N FOF	SE(Q. ID	NO:3	359:					
15		(i		-			ACTE									
20			(B)	TYP	e: ar	mino	acio	3								
	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein															
25	5															
	5															
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:359: Val Leu Val Glu Leu Glu Ser Leu Thr Leu Val Glu Pro Asp Ile Gl															GIU
	Ser	Leu	Lys	Leu 20	Val	Asp	Val	Glu	Thr 25	Asp	Thr	Leu	Pro	Leu 30	Ile	Glu
35	Ser	Asp	Va1 35	Glu	Ser	Asp	Val	Leu 40	Val	Glu	Phe	Asp	Pro 45	Leu	Met	Leu
	Asp	Glu 50	Ser	Leu	Val	Asp	Ile 55	Glu	Ser	Leu	Ser	Asp 60	Ala	Leu	Met	Leu
40	Ile 65	Glu	Ser	Asn												
			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	360:					
45		(:		_			ACTE									
			(B)	TYP	E: a	mino	ami: aci:	đ								
50							S: s inea		е							
		(ii)	MOLE	CULE	TYP	E: P	rote	in							
55		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	360:				

	. Val	Ile	Ser	Lys	Xaa 5	Gln	Trp	Val	Val	Val	His	Phe	Tyr	Pro	Ser 15	Trp _v .
5	Lys	Asp	Ala	Glu 20	Gly	His	Phe	Glu	Asn 25	Asn	Gly	Arg	Cys	Asn 30		Gly
			Thr 35					40					45			
10		50	Lys				55					60				
	Asp 65	Ala	Leu	Leu	Tyr	Arg 70	Ile	Asn	Arg	Leu	Lys 75	Asp	Xaa	Val	Pro	Asn 80
15	Asn	Ala	Pro	Ile	Leu 85	Tyr	Lys	Ser	Gly	Ala 90		Asn	Tyr	Lys	Leu 95	
				Asp 100	Val	Ala	Glu	Leu	Phe 105	Lys	Asn	Lys	Arg	Ala 110	Thr	Ile
20	Glu Thr Asp Asp Val Ala Glu Leu Phe Lys Asn Lys Arg Ala Thr Ile 100 105 110 Ser Met Gly (2) INFORMATION FOR SEQ ID NO:361: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single															
	Ser Met Gly 115 (2) INFORMATION FOR SEQ ID NO:361: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids															
25	Ser Met Gly (2) INFORMATION FOR SEQ ID NO:361: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear															
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein															
35		(x	i) s	EQUE	NCE :	DESC	RIPT	ION:	SEQ	ID:	NO:3	61:				
	(2) INFORMATION FOR SEQ ID NO:361: (2) (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:361: Val Xaa Ser Thr Lys Thr Ala Leu Xaa Gly Asp Ala Lys Leu Asn Glu 1 5 10 15															
40	(2) INFORMATION FOR SEQ ID NO:361: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:361: Val Xaa Ser Thr Lys Thr Ala Leu Xaa Gly Asp Ala Lys Leu Asn Glu 1 5 10 15 Ala Lys Ala Ala Ala Lys Gln Thr Leu Gly Thr Leu Thr His Ile Asn 20 25 30															
45	Asn A	;	35					40					45	Ala '	Thr .	Asn
45	Val (Glu v 50	Val I	Leu I	Ile (Leu 1 55	Lys 1	Pro 1	Lys i		Asn . 60	Asn			
50			(2)	INFO	ORMAT	MOI	FOR	SEQ	ID I	NO : 3 (52:					
			SEC													
55		((A) I (B) T (C) S	YPE:	ami	.no a	cid		ids							

			(D)	TOP	orog.	Y: 1	inea	r								٠.
5		(:	ii) 1	MOLE	CULE	TYP.	E: P	rote	in							
		(3	ci) :	SEQUI	ENCE	DES	CRIP	TION	: SE	QID	NO:	362:				
10	Val 1	Ile	Glu	Met	Ala 5	Lys	Lys	Ala	Pro	Asp	Val	Gly	Asp	Туr	Lys 15	Tyr
	Gly	Phe	Pro	Ala 20	Asp		Val	Ser	Ile 25	Phe	Arg	Ser	Glu	Arg 30	Gly	Leu
15			35	Ile				40				-	45			
	Trp	Met 50	Leu	Asp	Phe	Arg	Leu 55	Lys	Ser	Leu	Lys	Leu 60	Phe	Tyr	Lys	Met
20	65			Gln		70					75					80
				Tyr	85					90					95	
25				Glu 100					105					110		
			115	Gln				120					125			
30		130		Tyr			135					140				
	145			Asp		150					155					160
35				Phe	165					170					175	
				Ser 180					185					190		
40			195	Lys				200					205	_		
		210		Met			215					220				
45	225 Asn	ALG	261	Val	nis	230	vai	GIU	GIY	TIP	235		Thr	ser	Leu	1yr 240
50			(2)	INF	ORMA	MOIT	1 FOR	SEÇ) ID	NO: 3	63:					
		(i		QUEN												
55				LENG TYPE					ids							

						ONESS			•							v.
5			•													
		(:	ii) }	MOLE	CULE	TYPI	E: Pi	otei	in							
		(:	xi) S	SEQUI	ENCE	DESC	RIPT	CION:	SEC) ID	NO:3	863:				
10	17-1	*	71 -	77.º	•			*** 1	3.00	710	Vat	M	C3	C	1.00	T
	1	Lys	GIN	HIS	Lys 5	Ala	пр	vai	Asn	10	met	ıyı	GIY	Cys	15	гЛЯ
		Суѕ	Thr	_	_	Ile	Val	Pro	Xaa		Arg	Ser	Lys			Thr
15	3 200	N ===	Dwo	20	3.00	T1.	Tlo	200	25	1751	7	C1	T ON	30 31a	1	Clu
	Arg	Arg	35	GIU	Asp	116	iie	40	Glu	vai	Arg	GIU	45	Ala	ALG	GIU
	Gly	Tyr 50	Lys	Glu	Ile	Thr	Leu 55	Leu	Gly	His	Asn	Val 60	Asn	Ser	Tyr	Gly
20	Lys	Asp	Leu	Gln	Asp	Ile	-	Tyr	Asp	Leu	Gly	Asp	Leu	Leu	Gln	Ala
	65					70					75					80
	Ile	Ser	Lys	Ile		Ile	Pro	Arg	Val	_	Phe	Thr	Thr	Ser		Pro
25	_	_			85	•			_	90		_	_,	~3	95	
	Trp	Asp	Phe	Thr	Asp	His	Met	IIe	Asp	vaı	IIe	Ser	GIU	110	GIY	Asn
	Ile	Val	Pro		Ile	His	Leu	Pro	Val	Gln	Ser	Glv	Asn		Ala	Val
30			115			0		120	-			1	125			
-	Leu	Lys	Ile	Met	Gly	Arg	Lys	Tyr	Thr	Arg	Glu	Ser	Tyr	Leu	Asp	Leu
		130					135					140				
		Lys	Arg	Ile	Lys		Arg	Leu	Pro	Asn		Ala	Leu	Thr	Thr	
35	145	~1 -	**- 1	 1		150	•	~ 3	6	~ 3	155	61	5 1	61	61	160
	11e	lie	vaı	GIY	19r	Pro	ASN	GIU	Ser	170	GIU	GIN	Рпе	GIU	175	THE
	Leu	Thr	Leu	Tyr		Glu	Val	Gly	Phe		His	Ala	Tyr	Thr		Leu
40				180				_	185				_	190		
	Tyr	Ser	Gln	Arg	Asp	Gly	Thr	Pro	Ala	Ala	Lys	Met	Lys	Asp	Asn	Val
			195					200					205			
	Pro		Asn	Val	Lys	Lys		Arg	Leu	Gln	Arg		Asn	Lys	Lys	Val
45	Gly	210 His	Tyr	Ser	Gla	Tle	215	Met	Ser	Lve	ጥህም	220 Glu	Glv	Gl n	Thr	Va 1
	225	1113	171	361	GIII	230	AIG	Mec	Jei	Dys	235	GIU	Gry	GIII	1111	240
	Thr	val	Leu	Cys	Glu		Ser	ser	Lys	Lys	Asp	Asp	Gln	Val	Leu	Ala
50					245					250					255	
	Gly	Tyr	Thr	_	Lys	Asn	Lys	Leu	Val	Asn	Phe	Lys	Ala		Lys	Glu
				260					265					270		
c c	Met	Ile	_													
55			275													

	(2) INFORMATION FOR SEQ ID NO:364:	V * + +
5	(i) SEQUENCE CHARACTERISTICS:	
-	(A) LENGTH: 62 amino acids	
	(B) TYPE: amino acid	
	(C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear	
10		
	(ii) MOLECULE TYPE: Protein	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:364:	
	Val Thr Gln Tyr Leu Val Thr Thr Phe Lys Asp Ser Thr Gly Arg Pro	•
	1 5 10 15	
20	His Glu His Ile Thr Val Ala Arg Asp Asn Gln Thr Phe Thr Val Ile	2
20	20 25 30	
	Glu Ala Glu Ser Lys Glu Glu Ala Glu Arg Lys Tyr Glu Ala Gln Val	L
	35 40 45	
25	Lys Ile Arg Arg Asp Gly Asp Ala Lys Glu Asn Kaa Asn Asp	
25	50 55 60	
	(2) INFORMATION FOR SEQ ID NO:365:	
30		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 47 amino acids	
	(B) TYPE: amino acid	
35	(C) STRANDEDNESS: single	
33	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Protein	
40		
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:365:	
	Val Tyr Lys Lys Ala Gln Ala Phe Asp Glu Ile Leu Glu Gly Met Th	-
45	1 5 10 15	
75	Asn Ala Ile Gln His Ser Val Lys Xaa Gly Ile Glu Leu Asp Glu Ala	1
	20 25 30	_
	Val Gly Ile Met Ala Gly Gln Val Val Tyr Lys Tyr Glu Glu	
50	35 40 45	
50		
	(2) INFORMATION FOR SEQ ID NO:366:	
55	(i) SEQUENCE CHARACTERISTICS:	
55	(A) LENGTH: 105 amino acids	
	(A) DENGIA: 100 BELLIO ACIGS	

			(B)	TYP	E: ar	nino	acio	1								v.
			(C)	STR	ANDE	ONES	S: s:	ing1	≥,							
5			(D)	TOP	DLOG	Y: 1:	inear	r								
		(:	ii) 1	MOLE	CULE	TYPI	E: Pi	rotei	in							
10		(:	xi) S	SEQUI	ENCE	DES	CRIP	rion:	: SE(O ID	NO:	366:				
	Val 1	Ile	Asp	Met	Lys 5	Phe	Lys	Lys	Val	Leu 10	Val	Ala	Thr	Ala	Met 15	Val
15	_	Val	Leu	Ala 20	_	Gly	Val	Val	Gly 25		Gly	Asn	Gln	Ala 30		Ala
	Lys	Val	Tyr 35	Ser	Gln	Asn	Gly	Leu 40	Val	Leu	His	Asp	Asp 45	Ala	Asn	Phe
20	Leu	Glu 50	His	Glu	Leu	Ser	Tyr 55	Ile	Asp	Val	Leu	Leu 60	Asp	Lys	Asn	Ala
	Asp 65	Gln	Ala	Thr	Lys	Asp 70	Asn	Leu	Arg	Ser	Tyr 75	Phe	Ala	Asp	Lys	Gly 80
25	Leu	His	Ser	Ile	Lys 85	Asp	Ile	Ile	Asn	Lys 90	Ala	Lys	Gln	Asp	Gly 95	Phe
	Asp	Val	ser	Lys 100	Tyr	Glu	His	Val	Lys 105							
30			(2)) INI	FORM	ATIO	N FOI	R SE(O ID	NO:	367:					
		(:	i) SI	EOUEI	NCE (CHAR	ACTE	RIST	cs:							
25		•					ami									
35			(B)	TYPI	E: ar	nino	acio	i.								
			(C)	STR	ANDE	ONES:	S: s:	ingle	9							
			(D)	TOP	DLOG	Y: 1:	inear	r								
40		(:	ii) 1	MOLE	CULE	TYPI	E: P	rote:	iņ							
_		(:	xi) :	SEQUI	ENCE	DESC	CRIP	rion	: SE	Q ID	NO:	367:				
45	Val	Thr	Asn	Lvs	Glu	ጥህም	Glu	Tle	Glu	Pro	Glv	Lvs	Ara	Glu	Cvs	Glu
	1			-30	5	-3-				10	3	-, -			15	
	Met	Met	Lys	Arg	_	Asn	Lys	Leu	Va1	Leu	Gly	Ile	Ser	Phe		Phe
50			_	20			-		25		-			30		
	Leu	Val	Ile 35	Ser	Ile	Thr	Ala	Gly 40	Cys	Gly	Ile	Gly	Lys 45	Glu	Ala	Glu
	Val	Lys		Ser	Phe	Glu	Lys	•	Leu	ser	Met	Tyr		Ile	Lys	Asn
55		50	-				55					60			-	

••	Leu 65	Glu	Asp	Leu	Tyr	Asp 70	Lys	Glu	Gly	Tyr.	Arg 75	Asp	Asp	Gln	Phe	Asp 80
5	Lys	Asn	Asp	Lys	Gly 85	Thr	Trp	Ile	Ile	Asn 90	Ser	Glu	Met	Val	Ile 95	Gln
	Pro	Asn	Asn	Glu 100	Asp	Met	Val	Ala	Lys 105	Gly	Met	Val	Leu	Tyr 110	Ile	Glu
10			(2)	INI	FORMA	OITA	N FOI	R SE() ID	NO: 3	368:					
15		i)	(A) (B) (C)	LENG TYPI STR	E: an ANDEI	104 nino ONES	ACTER amin acio S: si	no ac i ingle	cids							
20		:)					E: P1		in							
25		()	ci) s	EQUI	ENCE	DESC	CRIP	rion:	SE(Q ID	NO:3	368:				
	Val 1	Ile	Asn	Ile	Pro 5	Lys	Met	Leu	Lys	туг 10	Asp	Gln	Ile	Leu	Val 15	Tyr
30	Ser	Asn	Pro	Pro 20	Ile	Leu	Pro	Leu	Ile 25	Pro	Asp	Val	Leu	His 30	Arg	Leu
	Leu	Lys	Lys 35	Lys	Tyr	Ser	Phe	Val 40	Val	Tyr	Asp	Ile	Ala 45	Pro	Asp	Asn
35	Ala	Ile 50	Lys	Thr	Gly	Ala	Thr 55	Arg	Pro	Gly	Ser	Met 60	Ile	Asp	Lys	Leu
	Met 65	Arg	Tyr	Ile	Asn	Arg 70	His	Val	Tyr	Lys	Asn 75	Ala	Glu	Asn	Val	Ile 80
40	Val	Leu	Gly	Tyr	Gly 85	Asn	Glu	Lys	Leu	Leu 90	Thr	Lys	Ser	Ser	Asn 95	Phe
	Leu	Lys	Met	Leu 100	Thr	Ile	Ser	Met								
45			(2)) INI	FORM	ATIO	N FOI	R SE(Q ID	NO:	369:					
		(:		_			ACTEI amin									
50			(C)	STR	ANDEI	ONES:	acio S: s: inea:	ingle	e							
55		(i	ii) r	MOLE	CULE	TYPI	E: Pi	rotei	in							

		(:	ķi)	SEQU	ENCE	DES	CRIP'	rion	: SE	O ID	NO:	369:				•
5	Val	Lys	Tyr	Ile	Glu 5	Ala	Pro	Tyr	Glu	Pro	His	Lys	Phe	Val	Lys 15	Met
	Val	Lys	Asp	Lys 20	Glu	Leu	Ala	Asp	Glu 25	Lys	Glu	Gly	Gly	Leu 30	Arg	Xaa
10	Thr	Ala	Cys 35	Phe	Glu	Met	Arg	Leu 40	Asp	Ile	Val	Ala	Lys 45	Ala	Ala	Val
	Glu	His 50	Gly	Tyr	Asp	Tyr	Phe 55	Gly	Ser	Ala	Ile	Thr 60	Leu	Ser	Pro	Lys
15	Lys 65	Asn	Ala	Gln	Leu	Ile 70	Asn	Glu	Leu	Gly	Met 75	Asp	Cys	Pro	Lys	Asn 80
	Ile	Arg	Cys	Glu	Leu 85	Ile	Суѕ	Lys								
20			(2) IN	FORM	ATIO	N FOI	R SE(Q ID	NO:	370:					
		(:		EQUEI												
25				LENO TYPI					cids							
				TOP					•							
30		(:	ii) 1	MOLE	CULE	TYPI	E: P	rote	in							
		(:	xi) :	SEQUI	ENCE	DESC	CRIP	rion	: SE(Q ID	NO:	370:				
35	Val	Thr	Glu	Ile	Lys	Tyr	Lys	Va1	Ile	Thr	Lys	Asp	Ala	Phe	Ala	Leu
	1 Pro	ጥረም	ጥb r	Ile	5 Tle	LVC	Αla	Targ	Δen	10 Gln	Pro	Thr	Lve	Glv	15 Val	T16
40	110	*3*		20	116	ny 3	7.10	בעם	25	GIII	110	1111	Dys	30	vai	110
	Val	Tyr	Ile 35	His	Gly	Gly	Gly	Leu 40	Met	Phe	Gly	Lys	Ala 45	Asn	Asp	Leu
45	Ser	Pro 50	Gln	Tyr	Ile	Asp	Ile 55	Leu	Thr	Glu	His	Tyr 60	Asp	Leu	Ile	Gln
40	Leu 65	Ser	Tyr	Arg	Leu	Leu 70	Pro	Glu	Val	Ser	Leu 75	Asp	Cys	Ile	Ile	Glu 80
		Val	Tyr	Ala			Asp	Ala	lle			Gln	Tyr	Ser		
50	Pro	Ile	Phe	Thr	85 Phe	Gly	Arg	Ser		90 Gly	Ala	Tyr	Leu		95 Leu	Ile
	Asn	Cys	Thr	100 Arg	Gln	Arg	Tyr		105					110		
55		-	115	_		•	_									

			. (2)	INF	ORMA	OITA	1 FOF	SEC) ID	NO : 3	371:					v.	
5		(j	(A)	LENC	STH:	166	ACTER amir acid	o ac									
							S: si		2								
10			(D)	TOPO	DLOGY	: 1:	inear	:									
							_										
		()	11) 1	MOLEC	CULE	TYPE	E: Pi	cote	Ln								
15		(3	(i) 5	SEQUE	ENCE	DES	CRIP	rion	: SE() ID	NO:3	371:					
	val	Ile	Asp	Val	Tyr	Asn	Gln	Ile	Lys	Asn	Asn	Leu	Glu	Ser	Met	Thr	
	1				5					10					15		
20	Pro	Glu	Thr		Thr	Ile	Gly	Arg		Val	Asp	Thr	Lys		Leu	Phe	
	T	G1	(7)	20	T	T	T	C1-	25	1701	Th re-	Wh =	A.c.o.	30 V=1	Glu	Asp	
	Leu	Glu	1yr 35	Arg	Lys	rys	Leu	40	Asp	vai	TYF	1112	45	vai	GIU	Asp	
	Val	Lys		Ala	Ile	Ser	Asp		Phe	Lys	Leu	Leu		Ser	Gln	Tyr	
25		50					55			-		60				_	
	Thr	Asp	Glu	Lys	Tyr	Lys	Glu	Ala	Leu	Glu	Ile	Ile	Ala	Thr	Lys	Phe	
	65					70					75					80	
30	Gly	Leu	Thr	Val	Asn	Glu	Asp	Leu	Gln		Val	Gly	Glu	Pro		Val	
					85					90					95	_	
	Val	Lys	Ser		Ile	Glu	Ala	Ala	Arg 105	Glu	Ser	Thr	Lys	G1u 110	GIN	Leu	
	220	Asp	Tur	100 Yaa	Tage	Thr	Ser	Asp		Xaa	Thr	Asp	Xaa		Glv	Ile	
35	ALG	nsp	115	Aud	Lys		502	120	-3-				125		,		
	Val	Glu	Arg	Xaa	Asp	Thr	Ala	Glu	Ala	Glu	Arg	Thr	Thr	Xaa	Xaa	Gly	
		130					135					140					
40	Glu	Ile	Lys	Asp	Lys	Xaa	Thr	Val	Xaa	Arg	Ile	Ser	Lys	Arg	Ile	Gly	
	145					150					155					160	
	Arg	Thr	Lys	Thr		Tyr											
					165												
45			(2	\ TN1	POPM:	ልጥፐር:	N FO	e ce	מד ר	NO ·	372.						
			(2	, TIV	CRE	A110	V PO	. 52	2 10	140	J / Z .						
		(:	i) s	EQUE	NCE (CHAR	ACTE	RIST	ICS:								
50				-			ami										
- -							aci	_									
			(C)	STR	ANDE	DNES	S: s	ingl	е								
			(D)	TOP	orog.	Y: 1	inea	r									
55									_								
		- 1	111	MOT.F	G.III	TVD	F. P	TOTE	in								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:372:

Va 5 1	l Leu	Ala	Asp	Ile 5	Thr	Val	Asn	Ala	Met 10	Lys	Gly	Ile	Tyr	Leu 15	Arg
	r Asp		20					25					30		
10 Va	l Lys	Ile 35	Ser	Gly	Asp	Lys	Val 40	Asp	Ile	Thr	Ala	Asn 45	Arg	Glu	Phe
As	val 50	Phe	Ala	Asn	Asn	Ile 55	Asn	Asn	Lys	Val	Gly 60	Lys	Asn	Asp	Ile
Va 65	l Asn	Ser	Leu	Asn	Leu 70	Ser	Asn	Glu	Gly	Leu 75	Asp	Ile	Asn	Val	Asn 80
Ar	g Ile	Gly	Ile	Lys 85	Gly	Gly	Asn	Ala	Asn 90	Arg	Tyr	Val	Gln	Val 95	Gln
As	n Asp	Phe	Ile 100	Glu	Leu	Gly	Gly	Ile 105	Val	Gln	Arg	Thr	Trp 110	Lys	Gly
Ly	Arg	Ser 115	Thr	Asp	Asp	Ile	Phe 120	Thr	Arg	Leu	Lys	Asp 125	Gly	His	Leu
25 Ar	Phe 130	Arg	Asn	Asn	Thr	Ala 135	Gly	Gly	Ser	Leu	Tyr 140	Met	Ser	His	Phe
G1; 14	/ Ile	Ser	Thr	Tyr	Ile 150	Asp	Gly	Glu	Gly	Glu 155	Asp	Gly	Gly	Ser	Ser 160
30 Gl	7 Thr	Ile	Gln	Trp 165	Trp	Asp	Lys	Thr	Tyr 170	Ser	Asp	Ser	Gly	Met 175	Asn
G1:	, Ile	Thr	Ile 180	Asn	Ser	Tyr	Gly	Gly 185	Val	Val	Ala	Leu	Thr 190	Ser	Asp
35 Ty	Asn	Arg 195	Ile	Ile	Ile	Asp	Ser 200	Tyr	Ala	Ser	Ala	Asn 205	Ile	Glu	Ser
Ar	Glu 210	Ala	Pro	Ile	Tyr	Leu 215	Ser	Pro	Asn	Thr	Gln 220	Lys	Leu	Asn	Leu
40 Xa.	Leu 5	Xaa	Arg	Phe	Ala 230	Phe	Thr	Leu	Ser	Asn 235	Ala	Asp	Arg	Xaa	Ile 240
Th	Lys	Leu	Ala	Val 245	Ile	Ser	Cys	Trp	Val 250	Gln	Asp	Xaa	Xaa	Tyr 255	Lys
45 Xa	Gly	Ala	Gly 260	Leu	Arg	Phe	Ser	Lys 265	Arg	Thr	Asn	Lys	Gly 270	Leu	Val
Gl	val	Val 275	Asn	Gly	Asp	Tyr	Ala 280	Thr	Gly	Gly	Asp	Thr 285	Thr	Ile	Glu
50 Se:	Gly 290	Met	Ala	Lys	Phe	Asn 295	Leu	Val	Xaa	Arg	Lys 300	Arg	Trp	Lys	

(2) INFORMATION FOR SEQ ID NO:373:

284

55

		(:	i) SI	EQUE	VCE (CHAR	ACTE	RIST:	ICS:							V
			(A)	LEN	STH:	95 a	amino	ac:	ids							
5			(B)	TYPE	E: ar	nino	acio	£								
			(C)	STR	ANDE	ONES!	5: si	ingle	≥							
			(D)	TOP	DLOG	Y: 1:	ineaı	r								
10		(:	ii) 1	MOLE	CULE	TYPI	E: P1	rote:	in							
,,,																
		(:	xi) s	SEQUI	ENCE	DESC	CRIP	rion	: SE(Q ID	NO:	373:				
15	Val	Asn	Pro	Thr	His	Val	Lys	Tyr	Ala	Ala	Glu	Arg	Leu	Ala	Asp	Ser
,,	1				5					10					15	
	Glu	Val	Leu	Val	Cys	Thr	Va1	Ile	Gly	Phe	Pro	Leu	Gly	Ala	Ser	Thr
				20					25					30		
20	Thr	Ala	Thr	Lys	Ala	Phe	Glu	Thr	Glu	Asp	Ala	Ile	Gln	Asn	Gly	Ala
20			35					40					45			
	Asp	Glu	Ile	Asp	Met	Val	Ile	Asn	Ile	Gly	Ala	Leu	Lys	Asp	Gly	Arg
		50					55					60				
	Phe	Asp	Asp	Val	Gln	Gln	Asp	Ile	Glu	Ala	Val	Val	Lys	Ala	Ala	Lys
25	65					70					75					80
	Gly	His	Thr	Val	Lys	Val	Ile	Ile	Glu	Thr	Val	Leu	Leu	Glu	Pro	
					85					90					95	
30			(2)) INI	FORM	ATIO	N FOE	R SE	Q I:D	NO:	374:					
		(:	i) S	EQUE	NCE (CHAR	ACTE	RIST:	ics:							
	•	٠	(A)	LENG	TH:	32 a	amino	o ac	ids							
35			(B)	TYPI	E: ar	nino	acio	£								
			(C)	STR	ANDEI	ONES	5: s:	ingle	2							
			(D)	TOP	DLOG	Y: 1:	inea	r								
40		(:	ii) l	MOLE	TULE	TYP	E: Pi	rote:	in							
		(:	xi) S	SEQUI	ENCE	DES	CRIPS	rion	: SE	Q ID	NO:	374:				
				_												
45	Val	Lys	Ile	Tyr	Glu	Asp	Thr	Asn	Ile	Asp	Thr	Leu	Xaa	Leu	Leu	Asn
	1	•		-	5		•			10					15	
		Ala	Xaa	Ile		Lvs	Xaa	Thr	Leu	Phe	Tro	Cvs	Xaa	Xaa	ser	Asn
				20					25			-1		30		
50																
			(2)) IN	FORM	ልጥፓርባ	v FOI	R SEG	Q ID	NO:	375:					•
			,~,	=-11				,								
		t ·	i) 51	EOUE	ICE C	~HAP	ACTE	RIST	ics:							
55		٠.					amino									
			1-2/			ء د د										

			(B)	TYP	E: ar	nino	acid	1			-					V-
			(C)	STR	ANDE	DNES	S: si	ingle	e							
5			(D)	TOP	DLOG	Y: 1:	inear	•								
		(:	ii) 1	MOLE	CULE	TYP	E: Pi	rote:	in							
10		(:	xi) :	SEQUI	ENCE	DES	CRIP	rion	: SE	Q ID	NO:	375 :				
	Val 1	Ala	His	Asp	Asn 5	His	Ile	Gly	Thr	Tyr 10	Cys	Ile	Val	Met	Ser 15	Gly
15	Arg	Gly	Pro	Ser 20	Asp	Lys	Glu	Val	Asp 25	His	Ile	Ser	Asn	Pro 30	Val	Arg
	Thr	Ile	Lys 35	Ser	Gln	His	Pro	Gln 40	Leu	Lys	Ile	Суѕ	Ala 45	Cys	Leu	Gly
20	Leu	Thr 50	Asp	Суѕ	Arg	Pro	Ser 55									
			(2)	i tan	FORM	מייד הו	y FOE	9 GE(חז ר	NO.	376.					
			(2	, 1111	· Olde	11101	, LOI	(35)	2 10	140	,,,,					
25		1.	i) SI	FOLIE	VCF (TUAR	ACTE	ידפידי	rcs.							
		, .		-			mino									
							acio									
							5: si		5							
30							inear	-	-							
			•- /													
		(:	ii) P	MOLE	CULE	TYPI	E: Pr	ote	in							
35		()	ci) S	SEQUI	ENCE	DESC	CRIPT	CION:	: SEÇ	O ID	NO:3	376:				
		Ile	Asp	Asp		Val	Ser	Asp	His		Ala	Thr	Gly	Gln	Leu	Leu
40	1		** - **		5	_	_,	_	_	10		_			15	
	vaı	гÀ2	met		ASD	Leu	Thr	Ser		Tyr	GIU	Pro	Pro		Glu	Ala
	0.0	C1	mb.~	20	N	T	**- 7		25	N	T	•	11-	30	G1	*** 7
	cys	GLY	35	TIP	AIG	Leu	vai	40	GIII	Arg	reu	LYS	45	Leu	Glu	vaı
45	I.eu	The		Glu	u:e	V- 1	uie		Gl u	λen	uie	1751		Phe	Lys	Ture
	Jeu	50	****	GIU	1113	Val	55	Deu	GIU	ASII	nıs	60	Deu	FIIC	Б¥З	БÃЗ
	Val						,,					00				
	65															
50																
			(2)	INE	FORM	TIO	1 FOF	SEÇ	Q ID	NO:3	377:					
		<i>(</i> i	i) se	EOUEN	ICE C	HAR	CTEF	RISTI	CS:							
55		,-					mino									

			.(B)	TYPE	:: an	uno	acıc	ı								V+
			(C)	STRA	NDEI	NESS	: si	ngle	•							
5			(D)	TOPO) LOG3	: li	near	•								
		(i	.i) N	OLEC	CULE	TYPE	: Pr	otei	.n							
10		(3	ri) S	EOUE	ENCE	DESC	'R I P1	NOT:	SEC	DIO	NO:3	377:				
,,,		,-	, -													
•	Val	Leu	Met	Tle	Phe	GIV	Pro	Glu	Glv	Glv	Leu	Ser	Glu	Ile	Glu	Ile
	1				5	0-,				10					15	
15		Leu	Phe	Ser	_	Thr	Ser	Thr	Val	Val	Gly	Leu	Gly	Pro	Arg	Ile
15	501	204		20					25					30		
	Leu	Arg	Ala		Thr	Ala	Pro	Leu		Ala	Leu	Ser	Ala	Ile	Ser	Tyr
		5	35					40	•				45			_
20	Glu	Lys		Leu	Met	Gly										
20		50				-										
			(2)	INI	FORM	ATION	1 FOR	SEC	OI C	NO:	378:					
25																
25		(i	i) SI	EQUE	NCE (CHARA	CTE	RIST	cs:							
				_		134										
						nino										
30			(C)	STR	ANDE	ONESS	5: si	ingle	•							
30			(D)	торо	OLOG	Y: 1i	inear	•								
		(:	ii) P	MOLEC	CULE	TYPE	E: P1	ote	in							
35																
33		()	ci) S	SEQUI	ENCE	DESC	RIP:	TION	: SE(Q ID	NO:3	378:				
	Val	Ser	Ser	Ile	Trp	Lys	Glu	Lys	Glu	Phe	Glu	Pro	Ser	Asp	Ile	Val
40	1				5					10					15	
40	Asp	Ala	Tyr	Leu	Val	Ile	Ala	Ala	Thr	Asn	Glu	Pro	Arg	Val	Asn	Glu
				20					25					30		
	Ala	Val	Lys	Gln	Ala	Leu	Pro	Glu	His	Ala	Leu	Phe	Asn	Asn	Val	Gly
45			35					40					45			
45	Asp	Ala	Ser	Asn	Ala	Asn	Val	Val	Phe	Pro	Ser	Ala	Leu	His	Arg	Asp
		50					55					60				
	Lys	Leu	Thr	Ile	Ser	Val	Ser	Thr	Asp	Gly	Ala	Ser	Pro	Lys	Leu	Thr
50	65					70					75					80
50	Lys	Ser	Ile	Met	Ala	Glu	Leu	Glu	Ala	Leu	Tyr	Pro	Pro	Ser	туr	Ser
	-		•		85					90	-				95	
	Ser	Tyr	Ile	Asp	Phe	Leu	Tyr	Thr	Cys	Arg	Gln	Lys	Ile	Lys	Val	Leu
EE		-	_	100			-		105			-		110		

	Asp	Ile	Thr	Tyr	Ile	Arg	Lys	Ala	Thr	var.	inr	vai	Thr	Asn	Cys	var
			115					120					125			
5	Thr	Arg	Ile	Phe	Lys	Ser										
•		130			-•-											
		130														
										NO - 3	70.					
			(2)	INF	ORMA	ATTON	FOR	SEC	, דט	мо: 3	79:					
10											•					
		(i	.) SE	QUEN	ICE C	HARA	CTEF	RISTI	CS:							
			(A)	LENG	TH:	244	amir	o ac	ids							
			(B)	TYPE	: an	nino	acid	l								
15			(C)	STRA	NDE	ONESS	: si	ngle	:							
			(D)	TOPO	LOGY	(: li	near	•								
		G	i) N	OLEC	ULE	TYPE	: Pr	otei	n							
		•	-,													
20		()	ci) S	EOUE	NCF	DESC	רים ז קר	TON -	SEC	מז	NO : 3	79:				
			-1, -	LOCOL		2230										
	17-1	120 T	3	His	T 011	0.0	uic	G) v	Glu	Aen	Gla	Acn	Va 1	Yaa	Δla	His
		Vai	ASII	UIS	5	Cys	птэ	GLY	Olu	10	G111	nop	•••		15	
25	1			_		~1		-	C1	-	.1.		***	Mh =		17-1
	Ala	He	Thr	Asp	Leu	GIU	Asn	Lys		TIE	AIA	Leu	HIS		Maii	vai
				20					25		•			30		
	Glu	Thr	Thr	Glu	Leu	Ser	Ser		Asp	His	His	Thr		vai	Arg	хаа
30			35					40					45		_	
	Asn	Val	Gly	Asn	Xaa	Glu	Ala	Asp	Ala	Val	Leu	Leu	Ala	Ile	Gly	Arg
		50					55					60				
	Lys	Pro	Asn	Thr	Ala	Leu	Ala	Leu	Glu	Asn	Thr	Asp	Ile	Glu	Leu	Gly
35	65					70					75					80
	Asp	Arg	Gly	Glu	Ile	Lys	Val	Asn	Ala	Gln	Leu	Gln	Thr	Ser	Val	Pro
					85					90					95	
	His	Ile	Tyr	Ala	Ala	Gly	Asp	Val	Lys	Gly	Gly	Leu	Gln	Phe	Thr	Tyr
				100					105					110		
40	Ile	Ser	Leu	Asp	Asp	Tvr	Arg	Ile	Ile	Lys	Ser	Ala	Leu	Tyr	Gly	Asn
			115		•	-		120					125			
	Gln	Ser		Thr	Thr	ASD	Asn	Ara	Glv	Ser	Val	Pro	Tyr	Thr	Val	Phe
		130	3				135		•			140	-			
45	710		DYA	Pro	7.011	502		t/al	Glv	T.=11	Thr	Ser	Lvs	Glu	Ala	Ala
		nsp	110	FIO	Deu	150	AL 9	***	0.4.3		155		-,-			160
	145	63	112 -		•		m>	C1	***	C1-		T 011	1757	502	A 1 =	
	АТА	GIN	HIS	Tyr		ıyr	THE	GIU	nis		neu	Dea	vai	Ser	_	116
50				_	165			_	_	170		•	5 1	•	175	tro 1
	Pro	Arg	His	Lys	Ile	Asn	Asn	Asp		Arg	GIĀ	Leu	Pne		val	vaı
				180					185					190		
	Ile	Asn	Asn	Glu	Asn	Asn	Met	Ile	Leu	Gly	Ala	Thr	Leu	Tyr	Gly	Lys
			195					200					205			

	Gln	Ser 210	.Glu	Glu	Leu	Ile	Asn 215	Ile	Ile	Lys	Leu	Ala 220		Asp	Gln	Asn _y ,	
5	225					Leu 230	Arg	Asp	Ser	Ile	Tyr 235		His	Pro	Thr	Met 240	
	Gly	Arg	Ile	Ile													
10										NO:	380:						
		(i) S														
15								o ac	ids								
						mino											
								ingl	e								
			(D)	TOP	orog.	Y: 1	inea	r									
20		(:	ii) 1	MOLE	CULE	TYP	E: P	rote	in								
		(:	xi) :	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	380:					
?5	Val	Val	Glu	Trp	Ala	Leu	Tyr	Ile	Ala	Lys	Asn	Lys	Ile	Ala	Ile	Asp	
	1				5					10					15		
	Val	Pro	Gly	Ser	Gly	Met	Gly	Ala	Gln	Cys	Trp	Glu	Phe	Thr			
				20					25					30			
30																	
			(2)) IN	FORM	ATIO	N FO	R SE(Q ID	NO:	381:						
35		(:	i) SI	EQUE	NCE (CHAR	ACTE	RIST	ics:								
.5			(A)	LEN	GTH:	93 a	amin	o ac:	ids								
			(B)	TYP	E: ar	nino	aci	£									
			(C)	STR	ANDE	ONES	S: 5	ingle	₽								
10			(D)	TOP	OLOGY	r: 1:	inea	r									
		(:	ii) N	MOLE	CULE	TYPI	E: P	rote	in								
15			ki) S														
	Val	Leu	Glu	Leu	Arg	Glu	Glu	His	Lys	Gln	His	His	Asn	Glu	Leu	Arg	
	1				5					10					15		
60	Glu	Ser	His	Lys 20	Glu	Leu	Lys	Asp	Lys 25	Gln	Asp	Lys	Val	Val 30	Asp	Glu	
	Asn	Leu	Glu	Gln	Thr	Lys	Ile	Leu	Asn	Arg	Ile	Glu	Glu	Arg	Tyr	Xaa	
			35					40					45				
5	Thr	Gln	Val	Xaa	Val	Xaa	Gln	Lys	Asn	Glu	Glu	Lys	Thr	Leu	Ala	Gln	
_		50					55					60					

	Asn 65	Lys	Trp	Leu	Val	Gly 70	Ala	Ile	Trp	Ala	Leu 75	Val	Thr	Ile	Val	Met 80	
5		Ala	Val	Ile	Thr	_	Ser	Ile	Xaa	Ala		Leu	Pro			00	
					85					90							
			(2)) INI	ORM	ATIO	N FOR	SEC	Q ID	NO:3	82:						
10																	
		(:		EQUE													
				LENG					Jus								
				STR					2								
15			(D)	TOP	OLOG	Y: 1:	inear	•									
		(:	ii) 1	MOLE	CULE	TYP	E: Pr	rotei	in								
20																	
		()	K1) :	SEQUI	ENCE	DESC	CRIP	LION:	: DE(ענו נ	NU:	002:					
	Val	Asn	Ser	Thr	Leu	Ile	Arg	Ile	Gly	Asp	Ile	Ile	Gln	Ser	Ser	Thr	
25	1				5					10					15		
	Asn	Thr	Asn		Ile	Ile	Met	Gly		Ile	Leu	Gly	Gly		Ile	Thr	
		_		20				_	25				_	30	_	_	
	Val	Val	_	Thr	Ala	Pro	Leu		Ser	Met	Ala	Leu	Thr	Ala	Leu	Leu	
30	Gly	T.OU	35	Glv	Va I	Pro	Met	40 1=	т1ь	Glv	A 1 =	Mat	45 Ala	د1 ۵	Phe	Ser	
	GLY	50	1111	Gly	Val	FIU	55	AIG	110	Gry	naa	60	nia	AIG	11.0	561	
	Ser		Phe	Met	Asn	Gly		Leu	Phe	His	Arg		Lys	Leu	Gly	Asp	
	65					70					75					80	
35	Arg	Lys	Ser	Thr	Ile	Ala	Val	Ser	Ile	Glu	Pro	Leu	Ser	Gln	Ala	Asp	
					85					90					95		
	Ile	Val	Ser		Asn	Pro	Ile	Pro		Tyr	Ile	Thr	Asn		Phe	Gly	
40	-1		_,	100		_	_,	-1-	105	••-•		~1	- .	110		•	
	GIA	Ala	11e	Ala	GIY	Leu	iie	11e	ATG	Met	Ser	GIY	Leu 125	TIE	Asn	Asp	
	λla	Thr		Thr	Δla	Thr	Pro		Xaa	Glv	Phe	Len	Val	Met	Xaa	Glv	
		130	017		7.10		135			013	• • • • •	140	•			0.23	
45	Phe		His	Pro	Met	Thr		Val	Ile	Tyr	G1y		Val	Met	Ala	Ile	
	145					150				_	155					160	
	Val	Gly	Cys	Ala	Cys	Arg	Val	Ile	Leu	Gly	ser	Ile	Arg	Ile			
50					165					170							
			12) IN	FORM	יסנדב	N FOF	R SEC) ID	NO:	383:						
			,	,				,			•						
5 <i>5</i>		(:	i) SI	EQUE	NCE (CHAR	ACTE	RIST	ics:					_			
			(A)	LENG	STH:	76 a	amino	aci	ids					•			

			_(B)	TYP	E: a	nino	acio	i								44
				STR					e							
5			(D)	TOP	OLOG'	Y: 1:	inea	r								
		(ii) 1	MOLE	CULE	TYP	E: P:	rote:	in							
10		(:	xi) :	SEQU	ENCE	DES	CRIP:	rion	: SE	QID	NO:	383:				
	v-1	Cly	Tvo	mb~	C1.,	Dho	71 2	T OU) cn	Mor	Mor	T 011	200	T10	212	7
	1	Gly	LYS	THE	5	Pne	Ala	Deu	ASII	10	mec	Leu	ASI	iie	15	Arg
15		Gly	Tyr	Lys	Thr	Ser	Phe	Phe	Ser	Leu	Glu	Thr	Thr	Gly		Ser
15				20					25					30		
	Val	Leu		Arg	Met	Leu	Ser		Ile	Thr	Gly	Ile		Leu	Thr	Lys
	71 -	7	35	-1.	•	•	•	40	D				45	•		67 1
20	116	Lys 50	GIU	11e	Arg	ASN	Leu 55	Thr	Pro	Asp	Asp	Leu 60	Thr	Lys	Leu	Thr
	Asn	Ala	Met	Gly	Ser	Lys		Leu	Lys	Leu	Gly					
	65			_		70			_		75					
25																
			(2)) INI	FORM	ATIO	N FOI	R SE	O ID	NO:	384:					
			i) SI	EQUE	VCE (THAR	ਮ ਪੁਜਾਸਤ	ን ፓ.ማጥ	rcs.							
		•		LEN												
30			(B)	TYP	E: ar	nino	acio	i								
			(C)	STR	ANDEI	ONES	S: s:	ingle	9							
			(D)	TOP	OLOG	r: 1:	inear	•								
35				MOLE	יו דו	mv Di	e. D:	ratai								
		(.	11, 1	JOLE	LODE	1171	e: Pi	oce								
		(:	xi) S	SEQUI	ENCE	DESC	CRIP	CION:	: SE(Q ID	NO:	384:				
40																
,-		Pro	Asn	Glu		Glu	Ala	Glu	Leu		Ser	Gly	Ile	Lys		Thr
	1	C1	C1-	C	5	T	3		21-	10		Dh a	• •••	~	15	01
	ASII	Glu	GIN	20	Mec	Lys	Asp	ASI	A14 25	ASI	туг	Pne	Leu	Ser 30	Leu	GIY
45	Ile	Lys	Thr		Leu	Ile	Thr	Leu	_	Lys.	Gln	Gly	Thr		Phe	Ala
		_	35					40	_	-		_	45	_		
	Thr	Lys	Asn	Gln	Ser	Gln	His	Ile	Glu	Ala	Tyr	Lys	Val	Asn	Ala	Ile
50		50					55					60				
	_	Thr	Thr	Ala	Ala	-	Asp	Thr	Phe	Ile	_	Ala	Phe	Val	Ser	_
	65 Leu	Asn	T.V.C	Ser	Gla	70 Asn	Δen	T.e.u	Ala	λer	75 Ala	Tlo	A or	Dhe	Gly	80 Asn
	Deu	ASII	-73	361	85	nap	ASII	⊃∈ n	VJT 62	90	n1a	116	vab	FIIC	95	uali
55																

	Lys	Ala	Ser	Ser	Leu	Thr	Val	Gln	Lys 105	Thr	Arg	Arg	Ala	Ser 110	Ile	Tyr _v ,
5	Ser	Ser	Thr	Arg	Arg	Ser	Lys	Ser	Ser	Leu	Asn	Glu	Ser	Asn	Thr	Ala
•			115					120					125			
	Met	Ile														
		130														
10																
			(2)) IN	FORM	OITA	I FOR	R SE	Q ID	NO:	385:					
		, :		-0115	JCE (ינואר די	CTE	RIST	rce.							
		,,						10 a								
15						nino										
								- ingle	9							
			(D)	торо	DLOG	(: 1i	inear	:								
20																
20		(:	ii) P	MOLE	CULE	TYPE	: P:	rote:	in							
					•											
		()	ci) S	SEQUI	ENCE	DESC	CRIP	rion:	: SE(Q ID	NO:	385:				
25																
	Val	Tyr	Lys	Met	-	Lys	Ile	Gly	Tyr		Arg	Val	Ala	Tyr		Asp
	1				5					10					15	
	Gln	Asn	Leu	_	Thr	Gln	Leu	Thr		Leu	Leu	Ile	Asn		Cys	Asp
30			_	20				_	25	_	_			30	_	
	Leu	Val	_	Ser	Glu	Gln	Val		Val	Tyr	Тут	Lys		Gln	Leu	Glu
	*	61	35	0	.		61	40	T	mъ	3	>	45 The	T	17-1	T 10
	Leu	Glu 50	HIS	Cys	ren	Asp	55	reu	rys	THE	Asp	ASP 60	THE	Leu	vai	116
35	Glu	Lys	T. 0 11	Laze	1/2 l	T. A 11		Phe	ጥኮሎ	Pro	f.ve		T.e.ir	Met	Glu	Phe
	65	2,3	Deu	шуз	Val	70	013	1110			75	273	Deu	1100	014	80
		Glu	Ser	Arg	Ile		Pro	Tvr	Asp	Ile	_	Leu	Glu	Val	Leu	
				5	85					90					95	•
40	Leu	Gly	Ile	Asn	Thr	Asn	Ser	Glu	Glu	Gly	Gln	Ser	Phe	Ile	Glu	Val
				100					105					110		
	Phe	Lys	Met	Leu	Ala	Asp	Ser	Glu	Asn	Ile	Leu	Leu	Lys	Glu	Arg	Thr
45			115					120					125			
45	Thr	Asn	Gly	Leu	Glu	Ser	Ala	Lys	Glu	Arg	Gly	Arg	Tyr	Gly	Gly	Arg
		130					135					140				
	Pro	Gln	Leu	Ser	Glu	Asp	Lys	Arg	Lys	Tyr	Ile	Lys	Gln	Leu	Phe	Ala
50	145					150					155					160
50	Ser	Arg	Met	Tyr	Thr	Pro	Asn	Glu	Ile	Ser	Lys	Trp				
					165					170						

(2) INFORMATION FOR SEQ ID NO:386:

55

		(i) S	EQUE	NCE (CHAR	ACTE	RIST	ICS:							V4 .
			(A)	LEN	GTH:	300	ami	no a	cids							
5			(B)	TYP	E: ar	nino	acio	£								
			(C)	STR	ANDE	DNES	S: s:	ingl	e							
			(D)	TOP	OLOG	Y: 1:	inea	r								
10		(ii) 1	MOLE	CULE	TYP	E: P:	rote:	in							
		(:	xi) :	SEQU	ENCE	DES	CRIP	rion	: SE	O ID	NO:	386:				
15		Leu	Ile	Met		Asn	Glu	Met	Leu		Pro	Lys	Gln	Gln		Val
	1				5					10					15	
	Trp	Thr	Cys		Ile	Asn	Asp	Lys		Lys	Val	Leu	Ile		Ser	Gly
		_		20				_	25				_	30	_	
20	Ala	Lys	_	Ala	GLY	Lys	Thr	_	Val	Phe	Ile	Leu		Phe	Leu	Met
		T1-	35	mb	~			40	 1	•	•	D l	45	-1.	~1	~ 3
	nis	Ile 50	Ala	Thr	TYT	гуs		гÀг	GIY	Leu	Asn		11e	TTE	GIY	GIY
	719		Cln	710	Co=	71.	55	X	N cm	710	* ***	60	1	Mot	C1	7 011
25	65	Thr	GIII	АТА	Sel	70	AIG	Arg	ASII	TIE	75	ASp	ASD	Met	Giu	80
		Leu	Gly	A = 0	G1.,		Thr.	Leu) en	Lve) cn	712	va 1	Tve	
	110	Deu	Gry	Arg	85	neu	1111	Den	vəħ	90	361	Vali	Ala	Val	95	116
	Phe	Gly	Aen	Tare		Th. (7*	₩a1	Phe	Asn		Gln	Aen	Sar	Acn		Trr
30		OLY	7.511	100	Val	171	V4.1	1110	105	Gly	GIII	non	Jer	110	VI.	111
	Lvs	Lys	Ala		Glv	Phe	ጥክ r	Ser		Glv	λla	Phe	T.en		Glu	GIV
	-2-		115	9	023			120		0 -1			125			
	Thr	Ala	Leu	His	Asn	Met	Phe		Lys	Glu	Val	Phe		Arg	Cvs	Ser
35		130					135		-			140		•	•	
	Tyr	Lys	Gly	Ala	Arg	Ile	Leu	Ile	Asp	Thr	Asn	Pro	Glu	Asn	Pro	Met
	145					150					155					160
	His	Pro	Val	Lys	Lys	Asp	Tyr	Ile	Asp	Lys	Ser	Gly	Gln	Arg	Leu	Ser
40					165					170					175	
	Asn	Gly	Arg	Leu	Asn	Ile	Lys	Ala	Phe	Gln	Phe	Thr	Leu	Phe	Asp	Asn
				180					185					190		
45	Thr	Phe	Leu	Asp	Glu	Glu	Tyr	Ile	Glu	Ser	Ile	Ile	Ala	Ser	Thr	Pro
45			195					200					205			
	Thr	Gly	Met	Phe	Thr	Asp	Arg	Asp	Ile	Tyr	Gly	Lys	Trp	Val	Ser	Ala
		210					215					220				
50	Glu	Gly	Val	Val	Tyr	Lys	Asp	Phe	Lys	Glu	Lys	Val	His	Tyr	Ile	Thr
30	225					230					235					240
	Glu	Glu	Glu	Phe	Lys	Thr	Lys	Gln	Ile	Lys	Arg	Lys	Tyr	Ala	Gly	Val
					245					250					255	
55	Asp	Trp	Gly	Tyr	Glu	His	Tyr	Gly	Ser	Ile	Met	Val	Val	Ala	Glu	Asp
				260					265					270		

	Phe As	sp_Gly # 275	Asn Lys	Tyr Val	Ile Gl 280	u Glu	His Al	a His	Arg I	His	Lys
5			Asp Trp	Val Ala 295		a Lys	Glu Le 30	u			
10				TION FO			387:				
		(A) I	LENGTH:	HARACTES 51 amino ino acio	acids						
15		(C) S	STRANDEL	NESS: s: : linear	ingle						
20		(ii) M	OLECULE	TYPE: Pi	rotein						
20		(xi) SI	EQUENCE	DESCRIP:	rion: S	EQ ID	NO:387	:			
25	Val As	sn Leu 1	Ile Arg 5	Ser His	Ala Cy	s Gly 10	Leu Gl	y Glu		Phe 15	Pro
		:	20	Val Met	25				30		
30		ly His S 35 yr Lys	Ser Gly	Ala Thr	Leu Va	.i lie	Ser GI	u Thr 45	11e	Tnr	IIe
	50										
35				ATION FO			388:				
		(A) 1	LENGTH:	HARACTE 199 ami nino aci	no acid						
40		(C)	STRANDE	ONESS: s 7: linea:	ingle						
45		(ii) M	OLECULE	TYPE: P	rotein						
		(xi) S	EQUENCE	DESCRIP	TION: S	EQ ID	NO:388	:			
50	Val I	le His '	Val Leu 5	Asp Phe	Asn As	p Lys 10	Ile Il	e Asp	Phe	Leu 15	Ser
	Thr A		Pro Ser 20	Leu Val	Arg Al		His Ly	s Arg	Asn 30	Val	Asn
				Leu Glu							

•	Xaa	Phe 50	,Arg	Glu	Arg	His	Arg 55	Val	Ile	Ile	Arg	Asp 60	Ser	Asn	Lys	Gln.,
5		Arg	Glu	Phe	Ile		Asn	Trp	Val	Gln		Thr	Met	Asp	Gly	Tyr
	65 mb~	C1	71-	61	a	70		~		•	75		~ 1	_1		80
	Int	GIU	116	GIU	85	iie	Ala	ser	Tyr	90	Ala	Asp	116	Thr	95	Ala
10	Lys	Pro	Tyr	Ala	Pro	Gly	Lys	Phe	Glu	Lys	Lys	Thr	Thr	Ser	Glu	Ala
				100					105					110		
	Leu	Lys	Asp 115	Val	Leu	Ser	Asp	Thr 120	Gly	Trp	Glu	Val	Ser 125	Glu	Xaa	Thr
15	Glu	Tyr 130	Asp	Gly	Leu	Arg	Thr 135	Thr	Ser	Trp	Thr	Ser	Tyr	Xaa	Thr	Arg
	Tyr	Glu	Val	Leu	Lys	Gln	Leu	Cys	Thr	Thr	Tyr		Met	Ala	Leu	Asp
•	145				_	150		_			155	_				160
20	Phe	Tyr	Ile	Glu	Leu	Ser	Ser	Asn	Thr	Val	Lys	Gly	Arg	Tyr	Val	Val
-0					165					170					175	
	Leu	Asn	Lys	Lys 180	Asn	Ser	Leu	Phe		Gly	Lys	Glu	Ile		Tyr	Gly
	Lare	Acn	Len	-	Trn	Val	* cn		185					190		
25	Dy 5	rap	195	AIG	ΙΙĐ	vai	ASII									
			(2)	IN	FORM	ATION	I FOR	SE	DI C	NO:3	89:					
3 0			:) _ ~ ;		1CE (OMET									
		١.		_		CHARA 156										
						nino			-145							
						ONESS			<u> </u>							
35						(: li		-								
		(:	ii) M	OLEC	ULE	TYPE	: Pr	otei	n							
40			٠		-											
		()	(1) S	SEQUE	ENCE	DESC	RIPI	:ION	SEC) ID	NO:3	89:				
	Val	Leu	Val	Gln	Gly	Gln	Val	Cys	Ser	His	Leu	Ser	Thr	Xaa	Leu	Gly
45	1				5					10					15	
13	Leu	Ile	Ile	Ile	Asp	Glu	Glu	His	Glu	Ser	Thr	Tyr	Lys	Gln	Glu	Asp
				20					25					30		
	Tyr	Pro		Tyr	His	Ala	Arg		Ile	Ala	Gln	Trp		Ser	Glu	Tyr
50	ui.	W-1-0	35		1	-1.	•	40				_	45	_		_
	nis	H15	cAs	PLO	vaı	TIG	Leu 55	GIĀ	Ser	ATS	Thr	Pro 60	cys	Leu	GIu	ser
	Tvr		Arσ	Δla	Glir	Lve		Vel	Tyr	Hic	T.611		Sar	T.O.	Pro	A c n
	65		y		-14	70	p	101	- 7 -	.113	75	neu	Ser	neu	PIU	80
55																

	Arg	Val	Asn	Gln	Gln 85	Ala	Leu	Pro	Glu	Ile _. 90	Asp	Ile	Val	Asp	Met 95	Arg _{ų.}	٠.
5	Glu	Glu	Leu	Ser 100	Glu	Gly	Asn	Arg	Ser 105	Met	Phe	Ser	Lys	Asp	Leu	Arg	
	Glu	Ala	Ile 115	Gln	Leu	Arg	Xaa	Arg 120	Ser	Thr	Gly	Thr	Ser 125	Cys	Phe	Ile	
10	Phe	Lys 130	Ser	Asp	Val	Val	Met 135	His	Arg	Leu	Cys	Tyr 140	Val	Gly	Ile	Val	
	Asp 145	Met	Tyr	Arg	Asn	Val 150	Gln	Xaa	Val	Ile	Phe 155	His					
15			(2)) INI	FORM	ATIO	N FOI	R SE(Q ID	NO:3	390:						
20		(:	(B)	EQUE LENG TYPI STRA	STH: E: ar ANDEI	88 anino ONESS	amino acio 3: si	ac: ingle	ids								
25		(:	ii) 1	MOLE	TULE	TYP	E: P1	rote	in								
		(:	xi) S	SEQUI	ENCE	DESC	CRIPT	rion	: SE(Q ID	NO:3	390:					
30	Val	Lys	Tyr	Leu	Asn 5	Asp	Asp	Ile	Ala	Lys 10	Gly	Ser	Ile	Phe	Asp 15	Tyr	
	Leu	Glu	Ser	Asn 20	Met	Lys	Leu	Arg	11e 25	Gly	Phe	ser	Asp	Ile 30	Phe	Phe	
35	Asn	Val	Asp 35	Lys	Leu	Thr	Ser	Ser 40	Glu	Ala	Ser	Leu	Leu 45	Gln	Leu	Ser	
40	Thr	Gly 50	Glu	Pro	Cys	Leu	Arg 55	Tyr	His	Gln	Thr	Phe 60	Tyr	Thr	Met	Thr	
	65	Lys				70			Ile	Val	Phe 75	His	Tyr	Xaa	His	Ala 80	
45	GIn	Phe	Tyr	IIe	Pro 85	Ser	Lys	Lys									
			(2)) INI	FORM	OITA	1 FOF	R SEC	O ID	NO:3	391:						
50		(:	(B)	EQUE LENC TYPI STRA	STH: E: an	110 nino	amir acid	no ad	cids								
55			(D)	TOPO	DLOG	(: li	inear	•									

	··· · ·	(ii)	MOLE	CULE	TYP	E: P:	rote	in		·					v.
5		(:	xi)	SEQUI	ENCE	DES	CRIP	TION	: SE(QID	NO:	391:				
	Val 1	Arg	His	Leu	His 5	Ile	Pro	Leu	Gln	Ser 10	Gly	Ser	Asp	Thr	Val 15	Leu
10	Lys	Arg	Met	Arg 20	Arg	Lys	Tyr	Thr	Met 25	Asp	Arg	Phe	Ser	Glu 30	Arg	Leu
	Thr	Lys	Leu 35	His	Lys	Ala	Leu	Pro 40	Asp	Leu	Ala	Val	Thr 45	Ser	Asp	Val
15	Ile	Val 50	Gly	Phe	Pro	Gly	Glu 55	Thr	Glu	Ala	Glu	Phe 60	Gln	Glu	Thr	Tyr
	Asp 65	Phe	Ile	Val	Lys	His 70	Lys	Phe	Ser	Glu	Leu 75	His	Val	Phe	Pro	Tyr 80
20	Ser	Pro	Arg	Ile	Gly 85	Thr	Pro	Ala	Ala	Arg 90	Met	Asp	Asp	Gln	Ile 95	Asp
	Glu	Glu	Ile	Lys 100	Asn	Glu	Arg	Val	His 105	Lys	Val	Asn	Tyr	Ala 110		
25			(2) INI	FORM	ATIO	N FOI	R SE(Q ID	NO:3	392:					
		(:		_	ICE (
30			(B) (C)	TYPI STR	ETH: E: ar ANDEI OLOGY	nino ONESS	acio S: si	ingle								
35		(:	ii) 1	MOLEC	CULE	TYPE	E: P:	rotei	in							
		(2	ki) :	SEQUE	ENCE	DESC	CRIP	rion:	: SEC	Q ID	NO:3	392:				
40	Val 1	Phe	Val	Val	Glu 5	Ala	Leu	Val	Lys	Thr 10	Arg	Glu	Gly	His	Gly 15	Asn
	Leu	Glu	Leu	Leu 20	Asp	Lys	Glu	Val	Ala 25	Thr	Pro	Leu	Asp	Asp 30	Lys	Val
45	Lys	Ile	Lys 35	Val	His	Tyr	Ala	Gly 40	Ile	Cys	Gly	Thr	Asp 45	Leu	His	Thr
	Tyr	Glu 50	Gly	His	Tyr	Xaa	Val 55	Asn	Phe	Pro	Val	Thr 60	Leu	Gly	His	Glu
50	Phe 65	Ser	Gly	Xaa	Ile	Val 70	Glu	Val	Gly	Ser	Arg 75	Arg				
55			(2)	INF	ORMA	TION	FOF	R SEÇ) ID	NO: 3	193:					

		(i) S													,	٠.
						98 a mino			ids								
5						DNES!			e								
						Y: 1:		_									
10		(ii)	MOLE	CULE	TYPI	E: P:	rote	in								
		,	~i 1	CEOIT		DEC	~D T D/	TON	- 65	0 70	NO.						
		(.	xi) .	SEQU:	EINCE	DES	LRIP	LION	: SE	ע די	NO:	393:					
15	Val	Thr	Ser	His	Val	Asn	Ser	Ile	Lys	Ile	His	Ile	Gly	Arg	Xaa	Lys	
	1				5					10					15		
	Gln	Gly	Lys		Ile	Leu	Lys	Asn	Ile	Ser	Cys	His	Ile	Pro	Lys	Gly	
	3	T		20	• -	-	~1	•	25				_	30		_0	
20	Asp	rys	Trp	TIE	Leu	Tyr	GIY	Leu 40	Xaa	GIY	Ala	Gly	Lys 45	Thr	Thr	Leu	
	Leu	Asn	Ile	Leu	Asn	Ala	Tvr		Pro	Ala	Thr	Thr	_	Glv	Val	Asn	
		50					55					60	2	2			
25	Leu	Phe	Gly	Lys	Met	Pro	Gly	Lys	Val	Gly	Tyr	Ser	Ala	Glu	Thr	Xaa	
	65					70					75					80	
	Arg	Gln	His	Ile		Phe	Val	Ser	His		Leu	Leu	Glu	Lys		Pro	
30	Ara	Gly			85					90					95		
30	, LL 9	CLY															
			(2)) INE	ORMA	TION	1 FOE	SEÇ) ID	NO:3	394:						
35																	
		(:	i) SI														
						68 a nino			as								
40				-		DNESS			.								
			(D)	TOPO	DLOGY	: li	.near										
45		(:	li) N	OLEC	ULE	TYPE	: Pr	otei	.n								
45					-10	2200											
		()	ci) S	EQUE	INCE	DESC	RIPI	TON:	SEC	5 TD	NO: 3	94:					
	Val	Val	Ile	Ser	Gly	Ala	Phe	Lys	Ser	Thr	Glv	Val	Tvr	Gln	Asp	Ile	
50	1				5			-		10			-4-		15		
	Asp	Asp	Glu	Val	Arg	Asn	Glu	Ala	His	His	Leu	Leu	Lys	Leu	Val	Gly	
				20					25					30			
55	Ile	Ser	Ala	Lys	Ala	Gln	Gln		Ile	Gly	Tyr	Leu		Thr	Gly	Glu	
			35					40					45				

	rys	50	Arg	vaı	Met	He	55	AIG	AIG	Leu	wec	60	GIN	PIO	GIN	var
5	Phe 65	Asn	Phe	Arg												
			(2) IN	FORM	ATIO	N FOI	R SE	Q ID	NO:	395:					
10		(:	(A)	LEN	NCE (GTH: E: ar	273	amir	no ac								
15			(C)	STR	ANDEI	DNES:	5: s:	ingle	•							
		(:	ii) 1	MOLE	CULE	TYPI	E: P:	rote:	in							
20		(:	ki) :	SEQUI	ENCE	DESC	CRIP	CION	: SE(Q ID	NO:	395:				
25	Val 1	Thr	Xaa	Gly	Val 5	Xaa	Pro	Lys	Pro	Leu 10	His	Ala	Asn	Leu	Met 15	Ile
	Arg	Thr	Leu	Ser 20	Gly	His	Ile	Gln	His 25	Ile	Ala	Phe	Gly	Pro 30	Ile	Ala
30	Ser	Leu	Glu 35	Ser	Ile	Lys	His	Leu 40	Gly	Thr	Asn	Gly	Gly 45	Gly	Phe	Leu
	Ala	Gly 50	Asn	Ser	Ala	Thr	Pro 55	Phe	Glu	Asn	Pro	Asn 60	Ile	Trp	Ser	Asn
		Ile	Glu	Met	Gly		Met	Met	Leu	Leu		Met	Ser	Met	Leu	
35	65 Leu	Phe	Gly	Arg	Met 85	70 Leu	Ser	Arg	His	Gly 90	75 Lys	Arg	Val	His	Arg 95	80 His
40	Ala	Leu	Ile	Leu 100	Phe	Val	Ala	Met	Phe 105	Phe	Ile	Phe	Ile	Ala 110	Ile	Leu
	Thr	Leu	Thr 115	Met	Trp	Ser	Glu	Tyr 120	Arg	Gly	Asn	Pro	Ile 125	Leu	Ala	Asn
45	Leu	Gly 130	Ile	Tyr	Gly	Pro	Asn 135	Met	Glu	Gly	Lys	Glu 140	Val	Arg	Phe	Gly
	Ala 145	Gly	Leu	Ser	Ala	Leu 150	Phe	Thr	Val	Ile	Thr 155	Thr	Ala	Phe	Thr	Thr 160
50	Gly	Ser	Val	Asn	Asn 165	Met	His	Asp	Ser	Leu 170	Thr	Pro	Ile	Gly	Gly 175	Leu
	Gly	Pro	Met	Val 180	Leu	Met	Met	Leu	Asn 185	Val	Val	Phe	Gly	Gly 190	Glu	Gly
55	Val	Gly	Leu 195	Met	Asn	Leu	Leu	Ile 200	Xaa	Xaa	Leu	Leu	Thr 205	Val	Phe	Ile

	Çys	Ser 210	Leu	Met	Val	Gly	Lys 215	Thr	Pro	Glu _.	Tyr	Leu 220	Asn	Met	Pro	Ile _v
_	Gly	Ala	Arg	Glu	Met	Lys		Ile	Val	Leu	Val		Leu	Ile	His	Pro
5	225					230					235					240
	Ile	Leu	Ile	Leu	Val	Phe	Ser	Ala	Leu	Ala	Phe	Met	Ile	Pro	Gly	Ala
					245					250					255	
10	Ser	Glu	Ser	Ile	Thr	Asn	Pro	Ser	Phe	His	Gly	Ile	Ser	Gln	Val	Met
				260					265					270		
	Leu															
15																
			(2)) IN	FORM	ATIOI	V FOI	R SE() ID	NO:	396:					
		(:		-		CHAR										
20						102			cids							
						mino ONES:			_							
						Y: 1:		_	=							
			(-,					_								
25		(i	Li) P	MOLE	CULE	TYP	E: P	rote:	in							
		()	ci) S	SEQUI	ENCE	DES	CRIP	rion	: SE	Q ID	NO:	396:				
30													_		_	
		Cys	Glu	Phe		Lys	Pro	Pro	Thr		Val	Xaa	Gly	Ile		Leu
	1	17-1	17-7	G1	5		171	V ~ ~	21-	10	3	V	Vaa	T 0	15	Tira
	GLY	Val	vai	20	GIY	IYI	Vai	Add	25	Arg	ASII	Ada	naa	30	GIII	LYS
35	Gln	Ser	Gln		Ara	Gln	Thr	Ala		Asp	Ile	Val	Xaa		Ala	His
			35		3			40					45			
	Lys	Glu	Ala	Asp	Xaa	Ile	Lys	Lys	Glu	Lys	Leu	Leu	Xaa	Ala	Lys	Glu
40		50					55					60				
	Glu	Xaa	Gln	Leu	Xaa	Arg	Glu	Xaa	Thr	Glu	Ala	Glu	Xaa	Arg	Glu	Arg
	65					70					75					80
	Arg	Xaa	Asp	Leu		Arg	Gln	Gly	Asn		Thr	Ser	Ser	Lys		Arg
45		_			85					90					95	
	Lys	Leu	Arg		His	Ser										
				100												
			(2)	TNI	FORM	ATIO	v FOI	R SEC	מז כ	NO ·	397-					
50			(-,		. 0.42											
		(i	i) si	EQUE	NCE (CHAR	ACTE	RIST:	ics:							
			(A)	LEN	GTH:	122	amir	no a	cids							
55			(B)	TYP	E: ar	nino	acio	đ.								
			(C)	STR	ANDE	ONES	S: S:	ingle	e							

			(D)	TOP	OLOG	<i>t</i> : 1:	inea	r			·					v.
5		(:	ii) r	OLE	CULE	TYP	E: P	rotei	in							
		()	ci) s	SEQUI	ENCE	DES	CRIP'	rion:	: SE(Q ID	NO:	397:				
10	val 1	Arg	Leu	His	Leu 5	Cys	Leu	His	Gln	Arg 10	Lys	Ala	Phe	Leu	Thr 15	Asp
	Trp	Ser	Tyr	11e 20	Ala	Gly	Asn	Ile	Ala 25	Ile	Val	Ala	Ile	Ile 30	Pro	Leu
15	Leu	Ile	Tyr 35	Phe	Tyr	Va1	Pro	Phe 40	Phe	Lys	Lys	Leu	Lys 45	Val	Thr	Ser
	Ala	Tyr 50	Glu	Tyr	Leu	Glu	Ala 55	Arg	Phe	Gly	Pro	Ser 60	Ile	Arg	Val	Xaa
20	Gly 65	Ser	Leu	Leu	Phe	Val 70	Val	Tyr	His	Leu	Gly 75	Arg	Val	Ala	Ile	Val 80
	Ile	Tyr	Leu	Pro	Thr 85	Leu	Ala	Ile	Thr	Ser 90	Val	Ser	Asp	Met	Asn 95	Pro
25	Tyr	Ile	Xaa	Gly 100	Ser	Leu	Val	Gly	Leu 105	Leu	Суѕ	Ile	Xaa	Xaa 110	Thr	Ser
	Xaa	Gly	Xaa 115	Phe	Xaa	Gly	Val	Arg 120	Leu	Glu						
3 0			(2)) IN	FORM	ATIO	N FOI	R SE(Q ID	NO:	398:					
		(:	i) SI	EQUE	NCE (CHAR	ACTE	RIST	cs:							
35							amin acid		cids							
							S: s: inea:	_	•							
40		(:	ii) t	OLE	CULE	TYP	E: Pi	rote	in							
		()	ki) S	EQUI	ENCE	DES	CRIP'	rion:	: SE(Q ID	NO:	398:				
45	Val	Tyr	Lys	Ile	Thr 5	Ile	Asn	Glu	Val	Phe	Asn	Met	Thr	Glu	Thr	Thr
50	Phe	Asn	Pro	Ile 20	Thr	Ser	Leu	Thr	11e 25	Asn	Asn	Glu	Glu	Val 30	Lys	Ala
-	Lys	Ala	Thr 35	Phe	Met	Phe	Asp	Lys 40	Thr	Ala	Lys	Lys	Phe 45	Ala	Thr	Glu
55	Gln	Glu 50	Asp	Asn	Lys	Gly		Lys			Ile		Gly	Phe	Thr	Asn

	Val 65	Tyr ·	Xaa	Ala	Leu	Leu 70	Glu	Arg	Asp	Thr.	<u>V</u> al 75	Ala	Ile	Val	Asp	Phe 80
	Trp	Glu	Cys	Ala	Thr	Ala	Tyr	Leu	Gly	Lys	Ser	Ala	Pro	Lys	Arg	Glu
5					85					90					95	
	Asp	Ile	Glu	Ala	Glu	Ile	Met	Glu	Ile	Ile	Glu	Arg	Glu	Asn	Asp	Thr
				100					105			-		110	•	
	Leu	Ile	Phe	Tyr	Lys	Val	Arg	Trp	Thr							
10			115		-		_	120								
			(2)	INE	FORM	MOITA	N FOI	R SE(מו כ	NO:3	399:					
15		(i) SE	QUEN	JCE C	ישמעי	/ Curr	יייי	rcs.							
		`-		LENC												
				TYPE					Lus							
				STRA					_							
20				TOPO				-	3							
			(5)	1010)LOG1		inear	•							,	
		/ i	;) N	OLEC	ם חזי	mvp:	. D.	rotei	i n							
		, ,	1 , 1	IODEC	.ULE	IIFE	5. F1	.oce.								
25		1-	il c	EQUE	MOE	DECC	אם ד מי	TON.		\ TD	NO. 3					
		٠,٠		, LQOE	TACE.	טנטע	.KIF	LION.	. 350	, 10	140:5	,,,,				
	Val	Pro	Ser	Acn	Lve	TeV	λla	Pho	Tla	Dro	805	G1	77-	Cln	Dho	Tlo
	1		-	71311	5	Val	AIG	FIIC	110	10	Jer	Gru	AIA	GIII	15	116
30		Leu	O.e	Gln		y c.p.	7 ~ ~	200	3703		C1=	» 1 -	C	***		Tou
	GIII	Deu	Cys	20	ASP	Asp	ASII	Asp	25	Lys	GIII	Ala	Ser		ASII	Leu
	The same	Asp	Glar.		mb~	Dho	mb =		23					30		
	171	_	35	Val	1111	PHE	1111									
35														-		
			(2)	TNIC	ODMA	TITON	r POE	CEC	\ TD	NO - 4	١٥٥.					
			(2)	INF	ORTA	11101	FOF	CSEL	2 10	140 : 4	.00:					
		13	, c.	QUEN	CF C	11 X D X	CTE	Tem	ce.							
40				LENG												
				TYPE					.145							
				STRA												
				TOPO					=							
45			(0)	TOPO	LOGI	. 11	Hear									
		/ ;	i\	OLEC	711 E	myne	·	otei	_							
		(1	- / E	OLEC	OLE	IIFE	. FL	ocei	.11							
		1 -	;) c	FOITE	NICE	DECC	יים ד מי	TON.	CEC		NO - 4	00.				
50		(X.	±, 5	EQUE	TAC E	DESC	KIP1	TON:	SEC	עדיי	NO: 4	:00:				
	17- 1	A == -	C1	77- 7	0 1-	1	1	C	T1 -	~ 1	C	m L	>	~1 ··	O =	01-
		Asn (CIA	val		Asp	ASN	ser			ser	rnr	ASN	GIU		GIN
	1	•	~ 1.	• -	_5 					10			_		15	_
55	Fue	Leu (ıyr	ιıe	val	TTE		HIS	Ala	GIu	Asn		Tyr	ser
				20					25					30		

	 Leu	Ile	Ala 35	His	Leu	Gln	Gln	Tyr 40	Ser	Ile	Ile	Val	Asn 45	Glu	Gly	Gln _{vers}
5	Asn	Val 50	Lys	туг	Gly	Asp	Phe 55	Leu	Gly	Lys	Val	Gly 60	Asn	Ser	Gly	Asn
	Ser 65	Thr	Glu	Pro	His	Ile 70	His	Phe	Gln	Val	Met 75	Asn	Asp	Lys	Asn	Ile 80
10	Glu	Ala	Cys	Thr	Ser 85	Leu	Lys	Ile	Arg	Phe 90	Leu	Asn	Asn	Leu	Glu 95	Leu
	Ile	Lys	Gly	Asp 100	Val	Val	Cys	Gly	Leu 105	Gln	Gly	Glu				
15			(2)) INI	FORM	ATIO	1 FOI	R SE(O ID	NO : 4	101:					
		(i	i) SI	EOUE	NCE (HAR	ACTE	RIST	cs:							
20				_				aci								
20			(B)	TYP	E: an	nino	acio	3								
								ingle	•							
			(D)	TOPO	DLOGY	: li	ineai	5								
25		(i	ii) N	OLEC	CULE	TYPE	E: P1	rotei	in							
		()	ci) S	SEQUE	ENCE	DESC	RIP	rion:	SEC) ID	NO:	101:				
30	Val	His	Lys	Glu	Asn	Ile	Met	Leu	Asn	Xaa	Ser	Ala	Thr	Asp	Lys	Glu
	1	_			5					10					15	
	ser	Val	Leu	Xaa 20	Gln	Met	Ser	Asp	Val 25	Leu	Phe	Gln	Asn	-	Phe	Val
35	Lvs	Ser	Thr		Lvs	Asp	Ala	Va1		Asp	Ara	Glu	Lvs	30 Glu	Xaa	Xaa
			35					40					45			
40	Thr	Gly 50	Leu	Pro	Thr	His	Leu 55	Cys	Ser	Val	Ala	Ile 60	Pro	His	Thr	Asp
40	Val	Glu	His	Ile	Asn	His	Arg	Thr	Ile	Gly	Val	Gly	Val	Leu	Glu	Lys
	65					70					75					80
	Glu	Val	Ala	Val		Gly	Met	Gly	Thr		Gly	Ser	Thr	Gly	Arg	Arg
45					85					90					95	
			(2)	INF	ORMA	MOIT	FOF	SEÇ) ID	NO:4	102:					
50		(i) SE	QUEN	ICE C	HARA	CTEF	RISTI	CS:							
			(A)	LENG	TH:	52 a	mino	aci	.ds							
						ino										
								.ngl∈	•							
55			(ע)	TOPO	Y DUL	': li	near									

		(i	i) M	OLEC	ULE	TYPE	E: Pr	otei	n.	-						v •
5		(x	:i) S	EQUE	NCE	DESC	RIPT	'ION:	SEC) ID	NO:4	02:				
	Val 1	Arg	Ala	Ala	Phe 5	Gly	Lys	Asn	Gly	Gly 10	Asn	Met	Gly	Val	Ser 15	Gly
10	Ser	Val	Ala	Tyr 20	Met	Phe	Asp	His	Val 25	Ala	Thr	Phe	Gly	Ile 30	Glu	Gly
	Lys	Ser	Val 35	Asp	Glu	Ile	Leu	Glu 40	Thr	Leu	Met	Glu	Pro 45	Arg	Cys	Lys
15	Met	Xaa 50	Met	Met												
			(2)	INF	ORMA	OLTA	N FOF	SEC) ID	NO:	103:					
20		(i	(A)	LENC	STH:	79 a	ACTER amino acio	aci								
25			(C)	STRA	NDE	ONES	s: si	ingle	9							
		(i	i) N	OLEC	ULE	TYPI	E: Pi	ote:	in							
30		()	ci) S	EQUE	ENCE	DES	CRIPT	NOI	: SE	QID	NO:4	103:				
35	Val	Met	Phe	Asn	Thr 5	Thr	Val	Aşn	Ser	Asp	Thr	Asp	Val	Ile	Lys 15	Tyr
	Gly	Arg	Leu	Leu 20	Val	Asp	Lys	Gly	Ala 25	Gln	Ser	Val	Ile	Val 30	Ser	Leu
40	Gly	Gly	Asp 35	Gly	Ala	Ile	Tyr	Ile 40	Asp	Lys	Glu	Ile	Ser 45	Ile	Lys	Ala
		Asn 50					55					60				Ser
45	Thr 65	Val	Ala	Gly	Met	Val 70	Ala	Gly	Ile	Ala	Ser 75	Arg	Phe	Asn	Asp	
			(2)) IN	FORM	ATIO	N FOI	R SE	QID	NO:	404:					
50		(:					ACTE									
							ami		cids							
							S: s:		е							
55			(D)	TOP	olog	Y: 1	inea	r								

	• • • •	i)	.i) 1	OLEC	CULE	TYPE	: Pr	otei	in							v-
5		()	ci) S	SEQUI	ENCE	DESC	CRIPT	noi?	: SE(Q ID	NO:4	104:				
	Val 1	Pro	Ile	Ser	Asn 5	Asp	Ala	Ile	Val	Glu 10	Leu	Val	Ser	Arg	Ile 15	Lys
10	Pro	Val	Ser	Glu 20	Met	Met	Glu	Arg	Glu 25	Thr	Asp	Leu	Gly	Val 30	Ala	Thr
	Glu	Phe	Glu 35	Ile	Ile	Thr	Ala	Met 40	Met	Phe	Leu	Tyr	Phe 45	Gly	Glu	Ile
15	His	Pro 50	Val	Asp	Phe	Val	Ile 55	Val	Glu	Ala	Gly	Leu 60	Gly	Ile	Lys	Asn
	Asp 65	Ser	Thr	Asn	Val	Phe 70	Thr	Pro	Val	Leu	Ser 75	Ile	Leu	Thr	Ser	Ile 80
20	Gly	Leu	Asp	His	Thr 85	Asp	Ile	Leu	Gly	Gly 90	Thr	Tyr	Leu	Asp	Ile 95	Ala
	Arg	Asp	Lys	Gly 100	Ala	Ile	Ile	Lys	Pro 105	Asn	Val	Pro	Val	Ile 110	Tyr	Ala
25	Val	Lys	Asn 115	Glu	Asp	Ala	Leu	Lys 120	Tyr	Val	Arg					
			(2)) IN	FORM	ATIO	1 FOI	R SE(Q ID	NO: 4	105:	•				
30		(:	i) sı	EQUE	VCE (HAR	ACTE	RIST	ics:							
							amino acio	_	ids							
35							s: s: inea:	_	2							
		(:	ii) 1	MOLE	CULE	TYP	E: P	rote	in							
40		()	ci) s	SEQUI	ENCE	DES	CRIP	rion	: SE	Q ID	NO:	405:				
	Val	Phe	Ile	Gly	Thr	Tyr	Met	Ile	Leu	Ser	Ile	Arg	Lys	Glu	Ser	Asp
45	1				5					10					15	
	Ala	Val	Ile	Thr 20	Asp	Thr	Asp	Glu	Ala 25	Leu	Lys	Gln	Val	Leu 30	Lys	Met
50	Val	Xaa	Glu 35	Asn	Lys	Val	Ile	Ser 40	Gln	Asn	Asn	Lys	Glu 45	Val	Thr	Leu
	Gln	Ala 50	Asp	Thr	Ile	Cys	Val 55	His	Gly	Asp	Gly	Glu 60	His	Ala	Leu	Leu
	Phe	Val	Ser	Gln	Ile	Arg	Glu	Ile	Leu	Met	Xaa	Glu	Gly	Ile	Asp	Ile
55	65					70					75					80
	Gln	Ser	Leu													

(2) INFORMATION FOR SEQ ID NO:406:

(i) SEQUENCE CHARACTERISTICS:

			(A)	LEN	GTH:	87	amin	o ac	ids							
			(B)	TYP	E: a	mino	aci	d								
			(C)	STR	ANDE	DNES	S: s	ingl	е							
10			(D)	TOP	OLOG	Y: 1	inea	r								
		(ii)	MOLE	CULE	TYP	E: P	rote	in							
15		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	O ID	NO:	406:				
										-						
	Val	Phe	Ala	Asp	Arg	Arg	Tvr	Glu	Asp	Asp	Glv	Gln	Leu	Val	Ser	Ara
	1			_	5	•	_		-	10					15	9
20	Lys	Glu	Ser	Asp	Ala	Val	Ile	Thr	Asp		Asp	Glu	Ala	Leu		Gln
	-			20					25					30	_,	021
	Val	Leu	Lvs	Met	Val	Xaa	Glu	Asn		Val	Tle	Ser	Lve		Δen	Lare
			35					40	-,,0	• • • • • • • • • • • • • • • • • • • •	-1-0	DCI	45	non	non	цуз
25	Glu	Val		Leu	Gln	Ala	Asp		Tle	Cve	Va 1	Hie		Acn	Gly	Gl.
		50					55			-70		60	013	nop	Cry	0.0
	His	Ala	Leu	Leu	Phe	Va1		Gln	Tle	Ara	Glu		T.011	Mot	Lve	Glu
	65					70		· · · ·		9	75	110	Deu	Mec	Dys	80
30	-	Ile	Asp	Ile	Gln	-	Len				, ,					80
	1				85	501	Deu									
					-											
			(2) IN	FORM	ነ ተጥ ፈ	J FOI	2 5 50	חד ה	NO - A	107.					
35			`-	,	. 0141	11 101		. 52,	2 10	140.4						
		t.	i) s	EQUE	VCF (יטאטי	\	Tem	rce.							
				LEN												
				TYPE					us							
40				STRA												
				TOPO				-	=							
			(5)	TOPC)LOG		inear	•								
		1.		MOLEC	יו זו די	myns	. D.		_							
45		١.	11)	MOLEC	-ULE	life	P.	ocei	.11							
		1.		CEOU		DECC			and							
		1.2	KI) S	SEQUE	TACE	DESC	.KIPI	TON:	SEC	מד נ	NO:4	107:				
	17-1	Th		~1 -	01		~			_	_,	_				
50		TYL	ASP	Ile		vai	ser	Asp	TYT		GIĀ	Leu	Thr	Tyr		Leu
	1				5					10					15	
	GIU	Ala	Pne	Arg	Gly	Lys	Val	Ile		Val	Val	Asn	Thr		Thr	Glu
				20					25					30		
55																

	Cys Ile Tyr Ser Glu Gln Leu Lys Lys Leu Glu Thr Leu Xaa Gln Lys 45
5	Tyr Lys Asp Arg Gly Phe Val Val Leu Ser Ser Pro Asn Asn Asn Cys 50 55 60
	Asp Asn Arg Gln Pro Xaa Ser Asn Glu Glu Ile Leu Lys Ile Xaa Arg 65 70 75 80
10	Xaa Glu Ile Trp Val Leu His Phe Gln Cys 85 90
	(2) INFORMATION FOR SEQ ID NO:408:
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids
20	(B) TYPE: amino acid (C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
25	(ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:408:
	Val Glu Ile Glu Asn Glu Pro Tyr Phe Val Gly Lys Asp Ile Ala Glu 1 5 10 15
30	I 10 15 Ile Leu Gly Tyr Ala Arg Ala Asp Asn Ala Ile Arg Asn His Val Asp 20 25 30
35	Ser Glu Asp Lys Leu Thr His Gln Phe Ser Asp Ser Arg Ser Lys Gln 35 40 45
	Lys Cys Asn Asp Gln Ser Thr Asn Gln Asp Tyr Thr Val 50 55 60
40	(2) INFORMATION FOR SEQ ID NO:409:
-	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 139 amino acids(B) TYPE: amino acid
45	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:409:
55	Val Arg Xaa Leu Ile Xaa Glu Ser Xaa Ile Asp Leu Ala Ser Pro Xaa 1 5 10 15

•-	Asp	Asn	Arg	Pro 20	Phe	Ile	Asp	Val	Phe 25	Leu	<u>G</u> lu	Pro	Thr	Lys 30	Leu	$\mathtt{Tyr}_{ \psi_{k+1} _{\mathbb{R}}}$
5	Val	Xaa	Pro		Leu	Ala	Leu	Lys		Glu	Val	Ser	Ile		Ala	Met
			35					40					45			
	Asn	His	Ile	Thr	Gly	Gly	Gly	Phe	Tyr	Glu	Asn	Ile	Pro	Arg	Ala	Leu
	_	50					55					60				
10		Ala	Gly	Tyr	Ala		Arg	Ile	Asp	Thr		Ser	Phe	Pro	Thr	
	65	*1.0	Dh.a			70	01	01	-	-1	75					80
	Lys	11e	Pne	ASP	11TP 85	ren	Gin	Gin	GIn		Asn	Ile	Asp	Thr	Asn	Glu
15	Met	Tvr	Asn	Tle	-	Δen	Met	Gly	Tla	90 Glyr	Ф. с-	Th.∽	1751	T1.	95 Val	
.5		-3-		100	1110	7.5.1	1100	G1.y	105	Gry	TYL	1111	vai	110	vai	Asp
	Glu	Lys	Asp		Ser	Thr	Arg	Phe		Asp	Phe	Ser	Ara		Lys	Cvs
		_	115					120					125		2,0	C , 5
20	Gly	Ser	Leu	Ser	Asn	Trp	Ser	Tyr	Cys	Glu	Lys					
		130					135									
			(2)) INI	FORM	OITA	N FOI	R SE	Q ID	NO:4	10:					
25																
		(:					ACTE									
							amino		lds							
							acid									
30							s: si		2							
			(1)	TOPC) LOG Y	: 11	inear	5								
		()	ii) N	(OI.EC	т. Т.	TVDE	E: Pr	otei	_							
35			, .	.011	-000		. F.	ocei								
		(>	(i) 5	EQUE	INCE	DESC	RIPT	ION:	SEC) ID	NO: 4	10:				
				_												
	Val	Pro	Ile	Phe	Pro	Asn	Lys	Ala	Leu	Ile	Glu	Ser	Ala	Val	Ala	Arg
40	1				5					10					15	_
	Gly	Glu	Leu	Asp	Glu	Ser	Val	Phe	Asn	Gln	Leu	Val	Thr	Asp	Met	Leu
				20					25					30		
	Leu	Glu	His	His	Tyr	Asn	Ile	Pro	Gln	His	Tyr	Ile	Asn	Leu	Tyr	Ile
45			35					40					45			
			Ile	Lys	Thr	Leu	Lys	Asp	Val	Pro	Ala	Ser	Tyr	Met	Asn	His
		50					55					60				
		Asn	Val	Asp			Ala	Asp	Leu			Glu	Lys	Ser	Lys	
	65 V	m	6 3			70					75					80
	Xaa	TYT	стλ													
55			(2)	INF	ORMA	TION	FOR	SEO	ID	NO · 4	11-					
			/			•				=						

	··· ·· ·	(:	i) S	EQUE	NCE (CHAR	ACTE	RIST:	ICS:							V
_			(A)	LEN	GTH:	45 a	amino	ac:	ids							
5			(B)	TYP	E: ar	nino	acio	i.								
			(C)	STR	ANDE	ONES	S: s:	ingle	9							
			(D)	TOP	OLOG	Y: 1:	inear	•								
10		(:	ii) 1	MOLE	CULE	TYP	E: P	cote:	in							
		(:	xi) :	SEQUI	ENCE	DES	CRIP	TION	: SE(Q ID	NO:	411:				
15	Val	Leu	Phe	Ile	Gly	Phe	Phe	Val	Val	Ile	Ile	Asn	Thr	Ile	Ala	Asp
	1				5					10					15	
	Leu	Leu	Thr	Leu	Leu	Leu	Asp	Pro	Lys	Gln	Arg	Leu	Gln	Leu	Gly	Asn
				20					25					30		
20	Pro	Thr	Lys	His	Asn	Gln	Tyr	Thr	Ile	Asp	Ile	Arg	Lys			
			35				_	40		_			45			
			(2)) INI	FORM	ATIO	N FOE	R SE	OID	NO:	112:					
25									-							
		(:	i) SI	EOUE	NCE (CHAR	ACTE	RIST	ics:							
				-			amir									
							acio									
30							5: si		≘							
							inear	_								
			\- ,													
		(:	ii) 1	MOLE	TULE	TYPI	E: P1	ote:	in							
35		•														
		(:	ci) s	БЕО ІЛ	ENCE	DESC	CRIP	TION	: SEC	o ID	NO:	412:			•	
		•	•	_												
	Val	Leu	Ile	Glu	Val	His	asa	Pro	His	Glu	Leu	Glu	Arg	Ala	Xaa	Xaa
40	1				5		-			10			_		15	
	Val	Asn	Ala	Lvs	Leu	Ile	Glv	Val	Asn	Asn	Ara	Asp	Leu	Lvs	Ara	Phe
				20					25			•		30		
	Val	Thr	Asn		Glu	His	Xaa	Asn	Thr	Ile	Leu	Glu	Asn	Lvs	Lvs	Pro
45			35					40					45	-,-		
	Asn	His		Tvr	Tle	Ser	Glu		Glv	Tle	His	Asp	-	Ser	Asp	Val
		50		-1-			55	501				60				7 42
	Ara	Lys	Tle	T.e.v	Hie	Ser		T1e	Aen	Glv	Leu	-	Tle	Gly	Glu	Δla
5 0	65	دري	110	Dea	.113	70	GIY	116	.Top	GIY	75	Dea	116	GIY	314	80
		Met	A	Cura	A c=	. •	Low	5c~	G1	Dhe	-	A ===	G1~	7.00	Tuc	
	Deu	HEC	wr d	Cys	85	M311	peu	367	314	90	neu	AL Y	GIU	reu	95	vaa
	v	Lve	17-1	T 120						90					93	
55	Add	Lys	AGI	-	ser											
				100												

	(2) INFORMATION FOR SEQ ID NO:413:	٧.
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 88 amino acids	
	(B) TYPE: amino acid	
	(C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear	
	·	
	(ii) MOLECULE TYPE: Protein	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:413:	
	Val Ser Asp Glu Pro Xaa Ile Tyr Lys Phe Ile Gln His Asn Xaa	Glu
	1 5 10 15	GIU
20	Asn Phe Ile Xaa Thr Ala Ser Xaa Ile Met Asp Gly His Thr Xaa	Val
	20 25 30	
	Ala Pro Leu Lys Xaa Thr His Lys Leu Pro Cys Ala Phe Cys Ser	Tyr
	35 40 45	
25	Gln Ser Val Cys His Val Asp Xaa Met Ile Asp Ser Lys Arg Tyr	Xaa
	50 55 60	
	Xaa Val Asp Glu Thr Ile Asn Pro Ile Glu Ala Ile His Asn Ile	Asn
30	65 70 75	80
	Ile Asn Asp Val Phe Gly Gly Glu	
	85	
	(2) INFORMATION FOR SEC ID NO.414.	
35	(2) INFORMATION FOR SEQ ID NO:414:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 55 amino acids	
	(B) TYPE: amino acid	
40	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: Protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:414:	
	Unl how this too, was tral man too, how the how how only have this	W. h
50	Val Asp His Leu Xaa Val Thr Leu Arg Ile Asp Arg Glu Asn His 1 5 10 15	Met
	Tyr Gly Arg Leu Ala Ser Glu Ser Val Val Glu Asn Met Phe Thr	Pro
	20 25 30	FIO
	Val His Asp Asp Asn Leu Lys Asn Glu Val Ile Glu Ala Lys Pro	Tro
55	35 40 45	

••.	Xaa	Glu 50	Arg	Ile	Thr	Asn	Trp 55			-						ψ
5			(2)	INE	ORM	ATIO	N FOE	R SEC	Q ID	NO : 4	115:					
10		(i		_			ACTEF									
70			(B)	TYPE	E: ar	nino	amino	ì								
15							s: si inear	-	2							
		(i	.i) N	OLEC	ULE	TYPI	E: Pr	rotei	in							
20		(×	i) S	EQUE	ENCE	DESC	CRIPT	rion:	SEC	Q ID	NO:4	115:				
	Val 1	Xaa	Tyr	Met	Asp 5	Lys	Gly	Leu	Thr	Gly 10	His	Ile	Met	Arg	Arg 15	Gly
25	Ile	Thr	Glu	Ala 20	Asp	Ala	Ser	Ile	Asn 25	Trp	Ala	Leu	Gly	Leu 30	Met	Asn
			35				Asp	40					45			
30		50				_	Ser 55	_			_	Thr 60	Gly	Glu	Gln	Lys
	Ile 65	Asn	Leu	Thr	Ser	Lys 70	Xaa	Ala	Gln	Ile	Trp 75					
35			(2)	INE	ORM	TIO	1 FOF	R SEC	QID	NO:4	116:					
		(i		_			ACTER									
40			(B)	TYPE	:: ar	nino	ació S: si	1								
							inear									
45		(i	i) b	OLEC	ULE	TYPE	E: Pr	rotei	in							
		(x	i) S	SEQUE	ENCE	DESC	RIPT	NOI?	SEC) ID	NO : 4	116:				
50	Val 1	Tyr	Lys	Gln	Gly 5	Glu	Pro	Asn	Leu	Trp 10	Thr	Gly	Arg	Leu	Asp 15	Ser
	Glu	Thr	Asp	Pro 20	Lys	Lys	Phe	Arg	His 25	Phe	Gln	Thr	Val	Thr	Phe	Glu
55	Asp	Leu	Ser 35	Lys	Leu	Glu	Lys	Ser 40	Ser	Met	Pro	Ser	Gly 45	Val	Gly	Ile

5 TEP CYS LyS Arg Arg Thr Arg Cys Asp 65 70 (2) INFORMATION FOR SEQ ID NO:417: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein. (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser 1 5 10 15 Pro Gly Asp Val Ile Lys Xaa His Ser Gly Gly Tyr His His Lys Tyr 20 25 10 Gly Thr Phe Asn Lys Leu Gly Tyr Ile Asn Glu Asn Tyr Ile Glu Leu 35 40 45 Leu Asp Val Glu Asn Asn Glu Lys Leu Lys Lys Met Ala Xaa Thr Ile 50 55 60 Glu Gly Gly Val Ala Cys Ala Thr Gln Ile Ala Gln Glu Lys Tyr Glu 65 70 75 80 Gln Gly Fhe Lys Asn Met Cys Val Xaa Thr Asn Asp Ile Glu Ala Val 85 90 95 Lys Asn Asn Leu Gln Xaa Glu Gln Val Xaa Val Val Ala Pro Thr Gln 100 105 110 Net Glu Arg Asp Thr His Lys Asp Gly Lys Val Lys Trp Gln Leu Leu 130 (2) INFORMATION FOR SEQ ID NO:418: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	•-	Leu	Gly 50	Tyr	Ala	Val	Gly	Gln 55	Arg	Cys	Cys	Phe	Xaa 60	Gln	Gly	Ala	His _v
(2) INFORMATION FOR SEQ ID NO:417: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein. (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser 1	5		Cys	Lys	Arg	Arg		Arg	Cys	Asp							
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein. (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser (xi) SEQUENCE GLACATERISTICS: (xi) SEQUENCE CHARACTERISTICS: (xii) SEQUENCE CHARACTERISTICS: (xiii) SEQUENCE CHARACTERISTICS: (xiii) SEQUENCE CHARACTERISTICS: (xiiii) SEQUENCE CHARACTERISTICS: (xiiiii) SEQUENCE CHARACTERISTICS: (xiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii				/2	. Tari	20DW		y EOI	o cer	- TD	NO.	117.					
(A) LENGTH: 130 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein. (ii) MOLECULE TYPE: Protein. (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser 1	10			(2	, 11/1	ORM	ATTOL	N FOI	, SE	טו ג	NO:	417:					
(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein. (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:418: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:418: (xi) SEQUENCE CHARACTERISTICS:		•	(i	i) sı	EQUE	NCE (CHARA	ACTE	RIST	ics:							
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein. (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser 1 5 10 15 Pro Gly Asp Val Ile Lys Xaa His Ser Gly Gly Tyr His His Lys Tyr 20 25 30 Gly Thr Phe Asn Lys Leu Gly Tyr Ile Asn Glu Asn Tyr Ile Glu Leu 35 40 45 Leu Asp Val Glu Asn Asn Glu Lys Leu Lys Lys Met Ala Xaa Thr Ile 50 55 60 Glu Gly Gly Val Ala Cys Ala Thr Gln Ile Ala Gln Glu Lys Tyr Glu 65 70 75 80 Gln Gly Phe Lys Asn Met Cys Val Xaa Thr Asn Asp Ile Glu Ala Val 85 90 95 Lys Asn Asn Leu Gln Xaa Glu Gln Val Xaa Val Val Ala Pro Thr Gln 100 105 110 Met Glu Arg Asp Thr His Lys Asp Gly Lys Val Lys Trp Gln Leu Leu 115 120 125 (2) INFORMATION FOR SEQ ID NO:418: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single				(A)	LENG	GTH:	130	amin	no ac	cids							
(ii) MOLECULE TYPE: Protein. (iii) MOLECULE TYPE: Protein. (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser 1 5 10 15 Pro Gly Asp Val Ile Lys Xaa His Ser Gly Gly Tyr His His Lys Tyr 20 25 30 Gly Thr Phe Asn Lys Leu Gly Tyr Ile Asn Glu Asn Tyr Ile Glu Leu 35 40 45 Leu Asp Val Glu Asn Asn Glu Lys Leu Lys Lys Met Ala Xaa Thr Ile 50 60 Glu Gly Gly Val Ala Cys Ala Thr Gln Ile Ala Gln Glu Lys Tyr Glu 65 70 75 80 Gln Gly Fhe Lys Asn Met Cys Val Xaa Thr Asn Asp Ile Glu Ala Val 85 90 95 Lys Asn Asn Leu Gln Xaa Glu Gln Val Xaa Val Val Ala Pro Thr Gln 100 105 110 Met Glu Arg Asp Thr His Lys Asp Gly Lys Val Lys Trp Gln Leu Leu 115 120 125 Ile Leu 130 (2) INFORMATION FOR SEQ ID NO:418:				(B)	TYP	E: ar	nino	acio	ī								
(ii) MOLECULE TYPE: Protein. (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417: Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser 1 5 10 15 Pro Gly Asp Val Ile Lys Xaa His Ser Gly Gly Tyr His His Lys Tyr 20 25 30 Gly Thr Phe Asn Lys Leu Gly Tyr Ile Asn Glu Asn Tyr Ile Glu Leu 35 40 45 Leu Asp Val Glu Asn Asn Glu Lys Leu Lys Lys Met Ala Xaa Thr Ile 50 55 60 Glu Gly Gly Val Ala Cys Ala Thr Gln Ile Ala Gln Glu Lys Tyr Glu 65 70 75 80 Gln Gly Phe Lys Asn Met Cys Val Xaa Thr Asn Asp Ile Glu Ala Val 85 90 95 Lys Asn Asn Leu Gln Xaa Glu Gln Val Xaa Val Val Ala Pro Thr Gln 100 105 110 Met Glu Arg Asp Thr His Lys Asp Gly Lys Val Lys Trp Gln Leu Leu 115 120 125 Ile Leu 130 (2) INFORMATION FOR SEQ ID NO:418:	15			(C)	STR	ANDE	ONES	3: s:	ingle	е							
Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser				(D)	TOP	DLOG	Y: 1:	inear	•								
Val His His Ile Thr His Tyr Ile Asp Gln Leu Asp Arg Phe Ser Ser 1	20		(i	ii) 1	MOLE	CULE	TYPI	E: Pi	rote	in.							
25			()	ci) S	EQUI	ENCE	DESC	CRIP	rion:	: SE(Q ID	NO:	117:				
Pro Gly Asp Val Ile Lys Xaa His Ser Gly Gly Tyr His His Lys Tyr 20 25 30 Gly Thr Phe Asn Lys Leu Gly Tyr Ile Asn Glu Asn Tyr Ile Glu Leu 35 40 45 Leu Asp Val Glu Asn Asn Glu Lys Leu Lys Met Ala Xaa Thr Ile 50 55 60 Glu Gly Gly Val Ala Cys Ala Thr Gln Ile Ala Gln Glu Lys Tyr Glu 65 70 75 80 Gln Gly Phe Lys Asn Met Cys Val Xaa Thr Asn Asp Ile Glu Ala Val 85 90 95 Lys Asn Asn Leu Gln Xaa Glu Gln Val Xaa Val Val Ala Pro Thr Gln 100 105 110 Met Glu Arg Asp Thr His Lys Asp Gly Lys Val Lys Trp Gln Leu Leu 115 120 125 Ile Leu 130 (2) INFORMATION FOR SEQ ID NO:418:		Val	His	His	Ile	Thr	His	Tyr	Ile	Asp	Gln	Leu	Asp	Arg	Phe	Ser	Ser
30 Gly Thr Phe Asn Lys Leu Gly Tyr Ile Asn Glu Asn Tyr Ile Glu Leu 35	25	1				5					10					15	
35		Pro	Gly	Asp		Ile	Lys	Xaa	His		Gly	Gly	Tyr	His		Lys	Tyr
Leu Asp Val Glu Asn Asn Glu Lys Leu Lys Lys Met Ala Xaa Thr Ile 50 55 60 Glu Gly Gly Val Ala Cys Ala Thr Gln Ile Ala Gln Glu Lys Tyr Glu 35 65 70 75 80 Gln Gly Phe Lys Asn Met Cys Val Xaa Thr Asn Asp Ile Glu Ala Val 85 90 95 Lys Asn Asn Leu Gln Xaa Glu Gln Val Xaa Val Val Ala Pro Thr Gln 100 105 110 Met Glu Arg Asp Thr His Lys Asp Gly Lys Val Lys Trp Gln Leu Leu 115 120 125 Ile Leu 130 (2) INFORMATION FOR SEQ ID NO:418: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single		Gly	Thr	Phe	Asn	Lys	Leu	Gly	Tyr	Ile	Asn	Glu	Asn	Tyr	Ile	Glu	Leu
SO	30			35					40					45			
35 65 70 70 75 80 Gln Gly Phe Lys Asn Met Cys Val Xaa Thr Asn Asp Ile Glu Ala Val 85 90 95 Lys Asn Asn Leu Gln Xaa Glu Gln Val Xaa Val Val Ala Pro Thr Gln 100 105 110 Met Glu Arg Asp Thr His Lys Asp Gly Lys Val Lys Trp Gln Leu Leu 115 120 125 Ile Leu 130 (2) INFORMATION FOR SEQ ID NO:418: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) Type: amino acid (C) STRANDEDNESS: single		Leu		Val	Glu	Asn	Asn		Lys	Leu	Lys	Lys		Ala	Xaa	Thr	Ile
Gln Gly Phe Lys Asn Met Cys Val Xaa Thr Asn Asp Ile Glu Ala Val 85 90 95 Lys Asn Asn Leu Gln Xaa Glu Gln Val Xaa Val Val Ala Pro Thr Gln 100 105 110 Met Glu Arg Asp Thr His Lys Asp Gly Lys Val Lys Trp Gln Leu Leu 115 120 125 Ile Leu 130 (2) INFORMATION FOR SEQ ID NO:418: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single		Glu	Gly	Gly	Val	Ala	Cys	Ala	Thr	Gln	Ile	Ala	Gln	Glu	Lys	Tyr	Glu
Lys Asn Asn Leu Gln Xaa Glu Gln Val Xaa Val Val Ala Pro Thr Gln 100 105 110 Met Glu Arg Asp Thr His Lys Asp Gly Lys Val Lys Trp Gln Leu Leu 115 120 125 Ile Leu 130 (2) INFORMATION FOR SEQ ID NO:418: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid 55	35	65					70					75					80
100 105 110 Met Glu Arg Asp Thr His Lys Asp Gly Lys Val Lys Trp Gln Leu Leu 115 120 125 Ile Leu 130 (2) INFORMATION FOR SEQ ID NO:418: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single		Gln	Gly	Phe	Lys		Met	Cys	Val	Xaa		Asn	Asp	Ile	Glu		Val
Met Glu Arg Asp Thr His Lys Asp Gly Lys Val Lys Trp Gln Leu Leu 115 120 125 Ile Leu 130 (2) INFORMATION FOR SEQ ID NO:418: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single		Lys	Asn	Asn	Leu	Gln	Xaa	Glu	Gln	Val	Xaa	Val	Val	Ala	Pro	Thr	Gln
115 120 125 Ile Leu 130 (2) INFORMATION FOR SEQ ID NO:418: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single	40				100					105					110		
(2) INFORMATION FOR SEQ ID NO:418: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single		Met	Glu		Asp	Thr	His	Lys		Gly	Lys	Va1	Lys		Gln	Leu	Leu
(2) INFORMATION FOR SEQ ID NO:418: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single		Ile	Leu														
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single	45		130														
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single				(2)	IN	FORM	ATIO	N FOR	R SEQ	Q ID	NO: 4	118:					
(A) LENGTH: 92 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single	50		, ,			70E -		~~~									
(B) TYPE: amino acid (C) STRANDEDNESS: single			()														
(C) STRANDEDNESS: single										las							
55										_							
	55								-	-							

		(:	ii)	MOLE	CULE	TYPI	E: Pi	rote	in							w .
5		(2	ĸi) .	SEQUI	ENCE	DES	CRIP	rion	: SE(סו ס	NO:	418:				
	Val 1	Arg	Gly	Ser	Lys 5	Ile	Gln	Thr	Ile	Gly 10	Val	Ile	Leu	Pro	Ser 15	Leu
10	Thr	Asn	Pro	Phe 20	Phe	Ser	Ala	Leu	Met 25	Gln	Ser	Ile	His	Asp 30	His	Lys
	Pro	Ser	Asp 35	Val	Asp	Leu	Cys	Phe 40	Leu	Thr	Ser	Thr	Ala 45	Thr	Asp	Xaa
15	Tyr	Asp 50	Asn	Ile	Lys	His	Leu 55	Ile	Asp	Arg	Gly	Ile 60	Asp	Gly	Leu	Ile
	Ile 65	Ala	Gln	Tyr	Ile	Ser 70	Ser	Pro	Asp	Ala	Leu 75	Asn	Asn	Tyr	Leu	Lys 80
20	Lys	His	His	Val	Pro 85	Tyr	Val	Val	Leu	Asp 90	Gln	Lys				
25			(2) INI	FORM	ATIO	N FOR	R SE	Q ID	NO:	119:					
23		(:	i) s	EQUE	NCE (CHAR	ACTE	RIST	cs:							
30			(B)	LENG	E: ar	nino	acio	3								
				TOP				_	•							
35		į)	ii) 1	MOLEC	CULE	TYPE	E: Pi	rote	in							
		()	ki) :	SEQUE	ENCE	DESC	CRIP	CION	: SE(Q ID	NO: 4	419:				
40	Val	Leu	Xaa	Asp	Glu 5	Xaa	Xaa	Val	Asp	Lys 10	Asp	Ala	Leu	Arg	Asn 15	Asn
	Ala	Leu	Val	Lys 20		Gln	Phe	Lys	Ala 25		His	Gln	Tyr	Gln 30		Val
45	Ile	Gly	Pro	Gly	Xaa	Val	Asp	Glu 40	Val	Tyr	Lys	Gln	Phe	Ile	Asp	Glu
	Thr	Gly 50	Ala	Gln	Glu	Ala	Ser 55	Lys	Asp	Glu	Ala	Lys 60	Gln	Ala	Ala	Ala
50	Lys 65	Lys	Gly	Asn	Pro	Val 70	Gln	Arg	Leu	Ile	Lys 75	Leu	Leu	Gly	Glu	Ile 80
	Phe	Ile	Pro	Ile	Leu 85	Pro	Ala	Ile	Val	Thr 90	Thr	Gly	Leu	Leu	Met 95	Gly
55	Ile	Gln														

			. (2)	INF	ORMA	MOITA	FOF	SEC] ID	NO : 4	20:					44
5		i)		QUEN							•					
			(A)	LENC	TH:	163	amir	o ac	ids							
				TYPE									•			
10			(C)	STR	NDEI	DNESS	: si	ngle	•							
10			(D)	TOPO	LOGY	?: 1i	near	:								
				401 D	D	men.	. D.		_							
		(2	11) [10LEC	ULE	TIPE	1: P1	ocei	-11							
15		(2	<i) 5<="" th=""><th>EQUE</th><th>ENCE</th><th>DESC</th><th>RIP</th><th>CION:</th><th>SEC</th><th>Q ID</th><th>NO : 4</th><th>120:</th><th></th><th></th><th></th><th></th></i)>	EQUE	ENCE	DESC	RIP	CION:	SEC	Q ID	NO : 4	120:				
	Val	Ile	Gln	Leu	Leu	Met	His	Met	Ile	His	Tyr	Gly	Thr	Ser	Val	His
	1				5					10					15	
20	Ile	Ile	Arg	Thr	Gln	Ser	Ile	Leu	Asn	Asp	Asp	Lys	Val	Asn	Gln	Val
				20					25					30		
	Cys	Asp	Tyr	Ile	Glu	Leu	His	Phe	His	Glu	Asp	Leu	Ser	Leu	Ser	Glu
			35					40					45			
25	Leu		Glu	Tyr	Val	Gly		Ser	Glu	Ser	His		Ser	Lys	Lys	Phe
		50					55	_				60	_			
		Glu	Ser	Leu	Gly		Gly	Phe	Gln	His		Leu	Asn	Thr	THE	
20	65 -3		•		_	70 -		•	m\	Φ	75 mb		C1	mъ	T1.	80 Tb∽
30	Ile	GIU	His	Ala	Lys 85	Leu	ASD	Leu	Thr	90	Thr	Asp	GIU	THE	95	1111
	3.00	T10	315	Leu		7.00	Clv	Pho	Ser		λ1 s	11 2	Ser	Phe		Arm
	ASD	TIE	AIG	100	GIII	ASII	GIŞ	FILE	105	Ser	nia	AIG	Jer	110	71.14	7.12 g
35	Thr.	Dhe	Lve	His	Phe	Thr	His	Gln		Pro	Lvs	Gln	Tvr		Glv	Asp
	1111	1110	115		1110	****		120			-,-		125	3		
	Ara	Pro		Ile	Thr	Glu	Asn		Gln	Ser	Ala	Gln		Asn	Tyr	His
	9	130					135					140			-	
40	Asp	Arg	Glu	Leu	Ile	Leu	Leu	Leu	Asn	Asp	Tyr	Ile	Glu	Glu	Met	Asn
	145					150					155					160
	Gln	Phe	Asn													
45																
			(2) IN	FORM	ATIO	N FO	R SE	QID	NO:	421:					
		(EQUE												
50				LEN					cids							
				TYP				_	_							
				STR				_	е							
			(D)	TOP	OLOG	Y: I	ınea	r								
<i>55</i>																

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:421:

5	1				5	Ser				10					15	
	Leu	Thr	Ser	Asn 20	Glu	Asn	Phe	Thr	Asp 25	Lys	Asp	Trp	Gln	Ile 30	Thr	Gly
10	Ile	Pro	Arg 35	Thr	Leu	His	Ile	Glu 40	Asn	Ser	Thr	Asn	Arg 45	Thr	Asn	Asn
	Ala	Arg 50	Glu	Arg	Asn	Ile	Glu 55	Leu	Val	Gly	Asn	Leu 60	Leu	Pro	Gly	Asp
15	Tyr 65	Phe	Gly	Thr	Ile	Arg 70	Phe	Gly	Arg	Lys	Glu 75	Gln	Leu	Phe	Glu	Ile 80
	_	Val	Xaa	Pro	His 85	Xaa	Pro	Gln	Leu	Gln 90	· -	Gln	Leu	Ser	Asn 95	
20	Glu	Val	Arg	Asn 100		Lys	Ser	Ala	Cys 105	30					93	
			(2) INI	FORM	ATIO	1 FO	R SE(Q ID	NO:	422:					
25		(:	i) Si	EQUEI	NCE (CHAR	ACTE	RIST	cs:							
						56 a			ids							
30			(C)	STR	ANDE	ONESS	S: S:	ingle	•							
						Y: li							•			
35		(:	ii) l	MOLE	CULE	TYP	E: P	rote	LN							
		(:	ki) (SEQUI	ENCE	DESC	CRIP	rion:	: SE	Q ID	NO:	122:				
40	Val 1	Ile	Lys	Arg	Leu 5	Ile	Asn	Glu	Thr	Phe 10	Asp	Ala	Asn	Tyr	Ile 15	Glu
		Ile	Glu			Ile	Glu	Glu	Thr 25		Thr	Leu	Ile	His		Pro
	Phe	Asp	Tyr	20 Val	Ser	Tyr	Arg	Ser		Ile	Val	Gly	Lys	•	Phe	Ile
45	Lys	Leu	35 Gln	Arg	Asn	Leu	Val	40 Leu					45			
		50					55									
50			(2) INI	FORM	ATIO	N FO	R SE(Q ID	NO:	423:					
		(:	i) s	EQUEI	NCE (CHARA	ACTE	RIST	cs:							
55						85 á			ids							
			(B)	TYP	e: ar	nino	acı	2								

			.(C)	STRA	NDE	DNESS	: si	ngle	•							w
			(D)	TOPO	DLOGY	7: li	inear	:								
5																
5		(i	ii) h	MOLEC	CULE	TYPE	e: Pr	otei	n.							
		()	ci) S	SEQUI	ENCE	DESC	RIPT	NOI?	SEC) ID	NO:4	123:				
10																
10	Val	Ile	Thr	Phe	Val	Leu	Val	Pro	Val	Leu	Ile	Pro	Thr	Leu	Lys	Arg
	1				5					10					15	
	Met	Lys	Phe	Gly	Gln	Ser	Ile	Arg	Glu	Glu	Gly	Pro	Gln	Ser	His	Met
				20					25					30		
15	Lys	Lys	Thr	Gly	Thr	Pro	Thr	Met	Gly	Gly	Leu	Thr	Ile	Ser	Ile	Lys
			35					40					45			
	Val	Phe	Val	Ile	Thr	Val	Phe	Gly	Gly	Tyr	Tyr	Ile	Cys	Lys	Ile	Lys
		50					55					60		,		
20	Leu	Ile	Gln	Ser	Tyr	Leu	Leu	Leu	Phe	Val	Thr	Asp	Trp	Phe	Trp	Val
	65					70					75					80
	Asn	Trp	Phe	Tyr	Arg											
					85											
25																
			(2) IN	FORM	ATIO	N FOI	R SE	Q ID	NO:	424:					
		(:	i) S	EQUE	NCE (CHAR	ACTE	RIST	cs:							
30				_		49 a							•			
			(B)	TYP	E: au	mino	acio	i								
						DNES			•							
			(D)	TOP	OLOG:	Y: 1:	inea	r								
35																
		(:	ii)	MOLE	CULE	TYPI	E: P:	rote:	in							
40		(:	xi) .	SEOU	ENCE	DES	CRIP'	rion	: SE	Q ID	NO:	424:				
40		•								-						
	Val	Met	Xaa	Asn	Glv	Xaa	Leu	Ile	Glu	His	Gly	Thr	Arq	Glu	Ser	Val
	1				5					10	-				15	
		Hie	Hic	Pro	_	His	Va 1	Tvr	Thr		Tvr	Leu	Leu	Ser	Xaa	Xaa
45	204			20	010			-1-	25		-3-			30		
	Tage	Lve	Yaa		λen	His	Pho	Lve		Val	Met	Ara	Glv		Val	His
	пуз	Lys	35	non	nop	1113	1	40					45			
	Xaa		,,													
50	Add															
			12) TET	EUDM	ATIO:	M EO	D CE	חד ח	NO.	425.					
<i></i>			(2	, IN	· Orun	H. 10	LA FO	ن د.	ע בט	140 :						
55			٠, ~		NCE	C113.5	3 CM E	DTCM	TCC -							
		(I) S	ಲ್ಲರಕ	スペード	CHAR	~~ 1 E	LTOI.	100:							

				LENG					ids							We expense
			(C)	STRA	NDEI	NES!	5: si	ingle	=							
5			(D)	TOPO	LOGY	(: 1 :	inear	:								
		(i	i) P	MOLEC	CULE	TYPI	E: Pi	otei	in							
10		(x	i) S	SEQUE	ENCE	DESC	CRIP	NOI?	: SE(Q ID	NO : 4	125:				
	Val	Pro	Thr	Ile	Asp	Ser	Val	Lys	Thr	Tyr	Gly	Leu	Val	Ser	Ile	Pro
	1				5					10					15	
15	Gly	Met	Met	Thr 20	Gly	Leu	Ile	Ile	Gly 25	Gly	Val	Pro	Pro	Leu 30	Gln	Ala
	Ile	Lys	Phe 35	Gln	Leu	Leu	Val	Val 40	Phe	Ile	His	Thr	Thr 45	Ala	Xaa	Ile
20	Met	Ser 50	Ala	Leu	Ile	Ala	Thr 55	Tyr	Leu	Ser	Tyr	Gly 60	Gln	Phe	Phe	Asn
	Ala	Arg	His	Gln	Leu	Val	Ala	Arg	Asn	Thr	Asp	Val	Lys	Ser	Glu	Ser
25	65					70					75					80
		(i		INE					ICS:	NO : 4	126:					
30			(A)	LENC	TH:	100	amir	10 ac	cids							
			(B)	TYPE	E: an	nino	acio	ì								
				STRA				_	€							
35				TOPO					-							
		(1	1) P	MOLEC	ULE	TYPI	E: PI	rote	ın							
40		(x	:i) S	EQUE	INCE	DESC	CRIP	CION:	: SEÇ	O ID	NO:	126:				
	Val	Met	Pro	Xaa	Val	Phe	Trp	Xaa	Pro	Phe	Pro	Xaa	Ile	Phe	Ile	Gly
	1				5					10					15	
45	Thr	Ala	Leu	Pro 20	Leu	Ala	Gly	Thr	Val 25	Ala	Thr	Gly	Ala	Ile 30	His	Phe
	Thr	Ala	Asn 35	Glu	Val	Ile	Pro	Ile 40	Gly	Xaa	Met	Leu	Xaa 45	Asn	Asn	Gly
50	Leu	Ile 50	Ala	Ile	Asn	Leu	Ala 55	Tyr	Gln	Asn	Leu	Asp 60	Arg	Ala	Phe	Val
	Gln	Asp	Gly	Thr	Asn	Ile	Glu	Ser	Lys	Leu	Ser	Leu	Ala	Ala	Thr	Pro
	65					70					75					80
55	Lys	Leu	Ala	Ser	Lys 85	Gly	Ala	Ile	Arg	Glu 90	Ser	Ile	Arg	Leu	Ala 95	Ile

. --

... Gly Ala Asn Asn

				100)											
5			(2	2) IN	FORM	LATIC	N FC	R SE	Q ID	NO:	427:					
10		((A) (B) (C)	EQUE LEN TYP STR TOP	GTH: E: a	40 mino DNES	amin aci S: s	o ac d ingl	ids							
15		(ii)	MOLE	CULE	TYP	E: P	rote	in							
		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	427:				
20	1			Gly	5					10					15	
25				Glu 20 Met					Gln 25	Ser	Val	Ala	Pro	Asn 30	Thr	Gly
30		() IN						NO:	428:					
35			(A) (B) (C)	TYPE STREET	GTH: E: ai	62 a mino DNES	amin aci S: S	o ac: d ingle	ids							
40	•			MOLE SEQUI						Q ID	NO:	428:				
45	1			Leu	5					10					15	
50				Leu 20 Gln					25				Asp	30		
	Pro	Phe 50		Lys	Ser	Tyr	Leu 55		Gln	Val	Val	Gln 60	45 Ile	Asp		
55			(2)) TNE	OPM	ነጥፐ (ገእ	FOE	, erc	, TD	NO. 4	20.					

	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 116 amino acids
	(B) TYPE: amino acid
5	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
	(5) 10102001 1110111
	(ii) MOLECULE TYPE: Protein
10	(11) 110000000 1110. 1100011
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:429:
	(XI) DEGOTALE DESCRIPTION. DEG IS NO. 185.
	Val Val Ile Xaa Ile Ala Leu Ile Ser Xaa Val Phe Leu Pro Gly Ile
15	1 5 10 15
	Phe Tyr Val Ile Ser Cys Val Val Gly Tyr Leu Cys Phe Gly Leu Gly
	20 25 30
	Leu Gly Ile Tyr Ala Thr Pro Ser Thr Asp Thr Ala Ile Ser Asn Ala
20	
	Pro Leu Asp Lys Val Gly Val Ala Ser Gly Ile Tyr Lys Met Ala Ser
	50 55 60
25	Ser Leu Gly Gly Ala Phe Gly Val Ala Ile Ser Gly Ala Val Tyr Val
	65 70 75 80
	Gly Ala Val Ala Ala Thr Ser Ile His Thr Gly Ala Met Ile Ala Leu
	85 90 95
30	Trp Val Asn Val Leu Met Gly Ile Met Ala Phe Ile Ala Ile Leu Phe
	100 105 110
	Gly Ala Xaa Ser
	115
35	
	(2) INFORMATION FOR SEQ ID NO:430:
	(i) SEQUENCE CHARACTERISTICS:
40	(A) LENGTH: 107 amino acids
	(B) TYPE: amino acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
45	
	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:430:
50	
	Val Glu Leu Gly Tyr Leu Phe Arg Asn Tyr Arg Leu Phe Asn Met Asp
	1 5 10 15
	Gly Leu Ala Leu Lys Leu Asn Leu Ser Ser Cys Leu Phe Ser Arg Lys
55	20 25 30

	Ser	Met	Ile 35	Tyr	Phe	Asn	Ile	Gly 40	Gln	Ile	.Ile	Ala	Asn 45	Ile	Ile	Cys
5	Trp	Ala 50	Leu	Ile	Ala	Pro	Thr	Leu	Asp	Ile	Leu	Ile 60	Tyr	Asn	Glu	Pro
	Ala 65	Asn	Lys	Val	туr	Thr 70	Gln	Gly	Val	Ile	Ser 75	Ala	Val	Leu	Asn	Ile 80
10	Ile	Ser	Val	Gly	Ile 85	Ile	Gly	Thr	Ile	Leu 90	Leu	Lys	Ala	Tyr	Ala 95	Ser
	Ser	Gln	Ile	Lys 100		Gly	Ser	Leu	Arg 105	Lys	Glu					
15			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	431:					
		(:				CHAR										
20						137 mino			cids							
						DNES:			e							
			(D)	TOP	OLOG:	Y: 1:	inea	r								
25		(:	ii) 1	MOLE	CULE	TYPI	E: P:	rote	in							
		(3	ci) :	SEQUI	ENCE	DESC	CRIP	rion	: SE(OI O	NO:4	131:				
30	Val	Tyr	Ala	Glv	Glu	Asn	Phe	Met.	Ile	Leu	Leu	Ala	Ser	Ara	Len	Acn
	1	·			5					10				9	15	nsp
	Ala	Val	Val		Ser	Leu	Gly	Leu	Ala	Arg	Thr	Arg	Arg	Gln	Ala	Arg
35	Gln	Leu	Val	20 '	Hie	Glv	ui e	T16	25 Leu	v-1) an	C1	T	30	**- 1	١
			35			Gry	1115	40	Deu	vai	ASD	GIY	Lys 45	AIG	Val	ASD
	Ile	Pro	Ser	Tyr	Ser	Val	Lys	Pro	Gly	Gln	Thr	Ile	Ser	Val	Arg	Glu
40	•	50	-1	_	_		55					60				
	fys 65	Ser	GIn	Lys	Leu	Asn 70	Ile	Ile	Val	Glu	Ser 75	Val	Glu	Ile	Asn	Asn 80
		Val	Pro	Glu	Tyr		Asn	Phe	Asp	Ala	_	Ser	Leu	Thr	Gly	
45					85					90	-				95	
	Phe	Val	Arg		Pro				Glu		Pro					Glu
	Gln	Leu	Tle	100 Val	Glu				105 Gln		7.00		Dho			- 1.
50	02		115	vai	Giu	TYL	Ser	120	GIII	ASD	ASII	THE	125	116	THE	11e
	Thr	His	Asn	Cys	Gly	Cys	Phe		Tyr							
		130					135									
55			(2)	INF	ORMA	TION	FOR	SEC) ID	NO : 4	32:					

320

		(:	i) sı	EQUEN	NCE (CHAR	ACTE	RIST	cs:							v. .
			(A)	LENC	STH:	104	ami	no ac	cids							
5			(B)	TYPE	E: ar	mino	acio	1								
							S: 5:		€							
			(D)	TOPO	DLOG	Y: 1:	inear	•								
10		(:	11) 1	MOLEC	CULE	TYP	E: P1	rote	Ln							
			-2 > -				F-		CD/		110					
		()	(1)	SEQUE	ENCE	DESC	CRIP	LION	: SE(מז ג	NO:	132:				
	Val	His	Leu	Va 1	Ara	Met	Val	Tvr	Lvs	Glv	Lvs	Ile	Ser	Asp	His	Tvr
15	1				5			-1-	-10	10	-,-		001		15	-1-
	_	Ser	Val	Trp	_	Lvs	Ala	Thr	Thr	Tyr	Gln	Met	Tyr	His	Gly	Leu
				20					25	-			-	30	-	
	Ala	Leu	Leu	Ile	Ile	Gly	Val	Ile	Ser	Gly	Thr	Thr	Ser	Ile	Asn	Val
20			35					40					45			
	Asn	Trp	Ala	Gly	Trp	Leu	Ile	Phe	Ala	Gly	Ile	Ile	Phe	Phe	Ser	Gly
		50					55					60				
25	Ser	Leu	Tyr	Ile	Leu	Val	Leu	Thr	Gln	Ile	Lys	Val	Leu	Gly	Ala	Ile
	65					70					75					80
	Thr	Pro	Ile	Gly	Gly	Val	Leu	Phe	Ile	Ile	Gly	Trp	Ile	Met	Leu	Ile
					85					90					95	
30	Ile	Ala	Thr	Phe	Lys	Phe	Ala	Gly								
				100												
			(2)) INE	FORM	ATIO	N FOI	R SE) ID	NO:	433:					
35																
		(:		_			ACTE									
							amino		Las							
40							acio		_							
40							5: s:	_	=							
			(D)	1020		I: 1.	inea	•								
		13	i i 1 1	MOT.FC	я. пт	TVD1	E: P1	-01-0-	i							
45		, .	, -	10110	.022	****										
		()	(i) 9	SEOUE	INCE	DESC	CRIP	rion	: SEC	o ID	NO:	433:				
		,,	, .	J-201		525			,	2						
	Val	Leu	Lys	Leu	Phe	Gln	Met	Arg	Ser	Pro	Ile	Phe	Arg	Glu	Pro	Ser
50	1		-		5			_		10			·		15	
	Ala	Asn	Asn	Ala		Lys	Thr	Leu	Ile		Met	Gly	Ser	Ile		Ala
				20		-			25			•		30		
	Phe	Leu	Leu	Val	Gly	Ile	Gly	Gly	Leu	Ala	Tyr	Val	Tyr	Gly	Ile	Met
55		•	35		_			40					45			

	Pro Gln Thr Glu Thr Thr Val Leu Ser Gln. Leu Ala Met Gln Ile Phe 50 55 60
5	Gly 65
	(2) INFORMATION FOR SEQ ID NO:434:
10	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 68 amino acids
	(B) TYPE: amino acid
15	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: Protein
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:434:
	Val Met Arg Gly Thr Ile Ile Ile Pro Thr Thr Lys Pro Gly Leu Ile
25	1 5 10 15
20	Ala Leu Asn Ser Pro Arg Pro Asp Met Lys Asp Leu Asn Thr Gly Val
	20 25 30
	Thr Lys Val Asn Ala Lys Lys Pro Asn Thr Ile Val Gly Ile Pro Ala
30	35 40 45
	Lys Ile Ser Asn Ile Gly Leu Ile Met Arg Arg Ala Arg Ala Leu Ala 50 55 60
	50 55 60 Tyr Ser Leu Lys
	65
35	
	(2) INFORMATION FOR SEQ ID NO:435:
	(i) SEQUENCE CHARACTERISTICS:
40	(A) LENGTH: 47 amino acids
	(B) TYPE: amino acid
	(C) STRANDEDNESS: single
45	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: Protein
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:435:
	Val Ser Asp Thr Ala Val Met Ile Ala Trp Leu Val Lys Ile Pro His
	1 5 10 15
55	Ser Thr Met Pro Ile Leu Gly Thr Ser Gln Leu Lys Arg Xaa Asp Gln
	20 25 30

-	Ala Ile Glu Gly Leu Gln Leu Asn Leu Asp.Asp Gln Val Val Gly 35 4045
5	(2) INFORMATION FOR SEQ ID NO:436:
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 53 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
15	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:436:
20	Val Asp Ile Pro Leu Leu Phe Glu Asn Glu Leu Glu Asn Thr Val Asp 1 5 10 15
05	Glu Val Trp Val Val Tyr Thr Ser Glu Ser Ile Gln Met Asp Arg Leu 20 25 30
25	Met Xaa Arg Xaa Asp Leu Ser Leu Glu Asp Ala Lys Ala Arg Val Tyr 35 40 45
30	Xaa Pro Asn Phe Tyr 50
	(2) INFORMATION FOR SEQ ID NO:437:
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 111 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
40	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: Protein
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:437:
	Val Met Gln Val Phe Thr Trp Gln Gln Tyr Val Glu Ile Val Val Asn 1 5 10 15
50	Glu Gly Arg Asp Ala Ala Asn Ala Ala Gln Glu Lys Ala Val Lys Glu 20 25 30
	Gly Lys Ile Ile Ile Lys Asp Ser Ile Ala Asp Ile Phe Leu Gln Gln 35 40 45
55	Ile Leu Thr Arg Pro Ala Glu His Asp Val Val Ala Thr Met Asn Leu 50 55 60

	Asn Gly Asp Tyr Ile Ser Asp Ala Leu Ala Ala Gln Val Gly Xaa Ile
	65 70 75 80
5	Gly Ile Ala Pro Gly Ala Asn Ile Asn Tyr Glu Thr Gly His Ala Ile
J	85 90 95
	Phe Glu Ala Thr His Gly Leu Xaa Ser Lys Ile Cys Arg Phe Lys 100 105 110
	100 100
10	(2) INFORMATION FOR SEQ ID NO:438:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 33 amino acids
15	(B) TYPE: amino acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
20	
24	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:438:
	(XI) SEQUENCE DESCRIPTION. SEQ ID NO.430.
25	Val Ser Met Phe Ile Thr Gly Met Gln Tyr Gly Asp Lys Val Ala Val
	1 5 10 15
	His Val Ser Arg Gly Ala Val Phe Gly Met Thr Gly Val Leu Val Val
30	20 25 30
	Phe
	(2) INFORMATION FOR SEQ ID NO:439:
35	(L) 111 Old 11 101 Obg 15 10 . 155
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 105 amino acids
40	(B) TYPE: amino acid
7.0	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
	(iii) WOLDOW D. GREEN D. Danksin
45	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:439:
50	Val Val Thr Asp Gln Leu Leu Ala Phe Phe Asn Asn Arg Tyr Trp Arg
	1 5 10 15
	Ser Gln Phe Asn Pro Arg Gly Gly Trp Ser Pro Ser Gly Pro Arg Arg
	20 25 30
55	Tyr Ala Asn Gly Gly Leu Ile Thr Lys His Gln Leu Xaa Glu Val Gly
	35 40 45

	• • •	.G1		Gly 50	Asp	Lys	Gln	Glu	Met 55	Val	Ile	Pro	Leu	Thr 60	Arg	Arg	Lys	Arg∽	• •
		A1			Gln	Leu	Thr	Glu		Val	Met	Ara	Tle		Glv	Met	Asn	Glv	
5		65				200	****	70	02			3	75		01,		r.op	80	
				Pro	Asn	Asn	Ile		Val	Asn	Asn	Asp		Ser	Thr	Val	Glu		
							85					90					95	-3-	
		Le	u	Phe	Glu	Thr	Asn	Cvs	Tyr	Val	Lys						-		
10						100		•	-		105								
					(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:4	440:						
45																			
15				(i	i) SI	EQUEI	NCE (CHAR	ACTE	RIST	cs:								
					(A)	LEN	GTH:	109	ami	no a	cids								
					(B)	TYP	E: ar	nino	aci	i									
20					(C)	STR	ANDEI	ONES	S: s:	ingle	€								
					(D)	TOP	DLOG!	Z: 1:	inea	r									
				į)	ii) P	MOLE	CULE	TYPI	E: P:	rote:	in								
25																			
				(>	(i) S	SEQUI	ENCE	DES	CRIP'	rion:	SEÇ) ID	NO : 4	140:					
		17-	,		C1		•		17-1		G1 -	*** 7		*** 7	a	01	.	•	
		1		AIG	GIY	Ald	Leu 5	ASP	Agi	ASI	GIN	10	ASI	vaı	ser	GIU	ASN 15	ASP	
30				212	y e.v.	C1n	Pro	ui.	cor	17-1	Lou		T10	N com	mb	C1 n		1701	
		A.J	••	nia	ASII	20	FIU	птэ	261	Val	25	Deu	116	ASD	IIII	30	Ala	vai	
		As	י מ	Glu	Asn		Ser	Glu	Leu	Asn		Val	Glv	Thr	Ser		Lvs	Δla	
			•		35					40			1		45		2,5		
35		Gl	n :	Ile		Phe	Cys	Ile	Asp		Arg	Ser	Glu	Pro		Ara	Ara	His	
				50		45.			55					60		5			
		Il	e (Glu	Ala	Ala	Gly	Pro	Phe	Glu	Thr	Ile	Gly	Ile	Ala	Gly	Phe	Phe	
40		65						70					75			_		80	
		Gl	у	Leu	Pro	Ile	Gln	Lys	Asp	Ala	Val	Asp	Glu	Gln	Phe	Lys	His	Asp	
							85					90					95		
		Se	r	Leu	Pro	Val	Met	Ser	Arg	Ala	Ala	Gly	Ile	Ser	His				
45						100					105								
					(2)	INE	ORMA	TION	V FOR	SEC	OI S	NO:4	41:						
50				(i			ICE C												
							TH:				ds								
							: an												
							MDEI			_	•								
<i>55</i>					(D)	TOPO	LOGY	: li	near										

		(i	i.i) 1	MOLE	CULE	TYPI	E: P	rote	in	-						٧	
5		(2	ci)	SEQUI	ENCE	DES	CRIP	rion:	: SE(Q ID	NO:	141:					
	Val 1	Thr	Phe	Gly	Val 5	Thr	Gly	Thr	Asn	Gly 10	Lys	Thr	Ser	Ile	Ala 15	Thr	
10	Asp	Asp	Ser	Phe 20	Asn	Ser	Xaa	Lys	Val 25	Thr	Lys	Lys					
			(2)) INI	FORM	ATIO	N FOI	R SE(Q ID	NO:	442:						
15		13		-011-1	NCE (ומגטר	A CIME!	דכיייי	rce.								
		()		_	NCE (STH:												
					E: au												
			(C)	STR	ANDE	DNES:	S: s:	ingle	€								
20			(D)	TOP	OLOG	Y: 1:	inear	r									
		/:		OT E	~TT 10	myrb;	c. D										
		()	1, 1	MOLE(CULE	1117	e: P	iore.	L11								
25		()	ci) s	SEQUI	ENCE	DES	CRIP	rion:	: SE(Q ID	NO:	442:					
	Val	Asp	Gly	Thr	Ala	Asn	Gly	Val	Gly	Ser	Thr	Leu	Xaa	Leu	Asn	Glu	
	1	_	_		5		_		_	10					15		
30	Ser	Leu	Asp	Gln	Phe	Ile	Leu	Leu	Ile	Phe	Tyr	Gly	Thr	Phe	Pro	Gly	
	-1	_	_,	20		_•		_	25	_,				30			
	Gly	Asp	Phe 35	Thr	Glu	Phe	Gly	Ser 40	Pro	Phe	GIY	Gly	G1y 45	Lys	Ile	Ser	
35	Leu	Asn		Ser	Asn	Leu	Pro		Gly	Asp	Glv	Asn		Glv	Glv	Val	
		50					55	-	-	•	_	60	_	-	-		
	Tyr	Glu	Phe	Gly	Leu	Thr	Lys	Ser	Ser	Arg	Thr	Ser	Leu	Thr	Ile	Ser	
40	65					70					75					80	
	Asn	Asp	Val	Tyr	Phe 85	Asp	Leu	Gly	Ser	Gln 90	Arg	Gly	Ser	Gly	Ala 95	Asn	
	Ala	Asn	Arq	Glv		Ile	Asn	Lvs	Ile		Gly	Val	Arq	Lvs	93		
45				100				_	105		_			110			
75																	
			(2)	IN	FORM	ATIO	N FOI	R SE) ID	NO:	143:						
		/ :) cr	اعتن	NCE (יםגטי	تعنب	יתים דו	ורכ.								
50		, ,		_	STH:												
					E: ar												
			(C)	STRA	ANDE	ONES	5: s:	ingle	2								
55			(D)	TOP	DLOG	Y: 1:	inear	r									

	(ii) MOLECULE TYPE: Protein
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:443:
	Val Leu Asp Asn Asp Leu Asn Gln Val Thr Leu Ala Asp Tyr Ala Gly 1 5 10 15
10	Lys Lys Leu Ile Ser Val Val Pro Ser Ile Asp Thr Gly Val Cys 20 25 30
	Asp Gln Gln Thr Arg Lys Phe Asn Ser Glu Ala Ser Lys Glu Glu Gly 35 40 45
15	Ile Val Leu Thr Ile Ser Ala Asp Leu Pro Phe Ala Gln Lys Arg Trp 50 55 60
	Cys Ala Ser Ala Gly Leu Asp Asn Val Ile Thr Leu Ser Asp His Arg 65 . 70 75 80
20	Asp Leu Ser Phe Gly Glu Asn Tyr Gly Val Val Met Glu Arg Thr Ser 85 90 95
	Cys Arg Ile Arg His Glu Leu Val Gln Tyr Leu Tyr 100 105
25	(2) INFORMATION FOR SEQ ID NO:444:
	(i) SEQUENCE CHARACTERISTICS:
30	(A) LENGTH: 133 amino acids (B) TYPE: amino acid
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
35	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:444:
40	Val Ser Gln Glu Arg Tyr Ser Arg Gln Ile Leu Phe Lys Gln Ile Gly
45	1 5 10 15 Glu Ile Gly Gln Ser Lys Ile Asn Gln Lys Cys Ala Leu Ile Ile Gly
45	20 25 30 Met Gly Ala Leu Gly Thr His Val Ala Glu Gly Leu Val Arg Ala Gly
50	35 40 45 Ile Ala Lys Leu Ile Ile Val Asp Arg Asp Tyr Ile Glu Phe Ser Asn
30	50 55 60 Leu Gln Arg Gln Thr Leu Phe Thr Glu Glu Asp Ala Leu Lys Met Met
	65 70 75 80 Pro Lys Val Val Ala Ala Lys Lys His Leu Leu Ala Leu Arg Ser Asp
55	85 90 95

	.Val	Asp	Ile	Asp	Gly	Cys	Ile	Ala	His 105	Val.	Asp	Tyr	Tyr	Phe 110	Leu	Gly.
	Asn	Thr	Trp		Gly	Arg	Trp	Thr		Leu	Leu	Met	Gln		Ile	Thr
5			115					120					125			
	Leu	Lys	His	Asp	Asn											
		130														
10			(2) IN	FORM	ATIO	N FOI	R SE	Q ID	NO:	145:					
		(:	i) S	EQUE	NCE (CHAR	ACTE	RIST	ics:							
			(A)	LEN	STH:	144	ami	no a	cids							
15			(B)	TYP	E: ar	nino	acid	£								
			(C)	STR	ANDE	DNES	S: s:	ingle	e							
			(D)	TOP	DLOG	Y: 1:	inear	r								
20		(:	ii) 1	MOLE	CULE	TYPI	E: P	rote:	in							
		(:	xi)	SEQUI	ENCE	DES	CRIP'	rion	: SE() ID	NO:	445:				
25	Val	Thr	Leu	Met	Lve	T.e.u	Va 1	Phe	Va 1	Δla	Ara	Δla	G1v	Δεπ	Met	Ala
	1				5	200	•		•	10	9		013		15	
		Ala	Ile	Phe	_	Glv	Ile	Ile	Asn		Ser	Asn	Leu	Asp		Asn
				20		•			25					30		
30	Asp	Ile	Tyr	Leu	Thr	Asn	Lys	Ser	Asn	Glu	Gln	Ala	Leu	Lys	Ala	Phe
			35					40					45			
	Ala	Glu	Lys	Leu	Gly	Val	Asn	Tyr	Ser	Tyr	Asp	Asp	Ala	Thr	Leu	Leu
35		50					55					60				
35	Lys	Asp	Ala	Asp	Tyr	Val	Phe	Leu	Gly	Thr	Lys	Pro	His	Asp	Phe	Asp
	65					70					75					80
	Ala	Leu	Ala	Thr	Arg	Ile	Lys	Pro	His	Ile	Thr	Lys	Asp	Xaa	Cys	Phe
40					85					90					95	
	Met	Ser	Ile	Met	Ala	Gly	Ile	Pro	Thr	Asp	Tyr	Ile	Xaa	Gln	Gln	Leu
				100					105					110		
	Glu	Cys		Asn	Pro	Xaa	Ala		Ile	Met	Pro	Xaa		Xaa	Ala	Xaa
45	-02	_	115					120					125		_	
	Val		His	Ser	Val	Thr	_	Ile	Ser	Phe	Ser		Asn	Phe	Glu	Pro
		130					135					140				
50			(2) INI	FORM	OITA	N FOE	R SE(O I D	NO:	146:					
		(:	i) s	EQUE	NCE (CHARA	ACTE	RIST	cs:							
			(A)	LEN	STH:	46 a	amino	aci	ids							
55							acio									
			101	CTD I	MIDEI	MEC	2	nale	_							

	(D) TOPOLOGY: linear	v.
5	(ii) MOLECULE TYPE: Protein	
3	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:446:	
10	Val His Arg Ser Leu Met Lys Ile Leu Ile Asn Val Leu Glu Gln Ph	.e
	Asp Asn Ala Val Val Leu Phe Met Gly Ala Gly Asp Ile Gln Lys Le	u
15	Gln Asn Ala Tyr Leu Asp Lys Leu Gly Met Lys Asn Ala Phe 35 40 45	
	(2) INFORMATION FOR SEQ ID NO:447:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 64 amino acids	
25	(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Protein	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:447:	
35	Val Phe Glu Asn Glu Pro Leu Lys Pro Asn His Glu Leu Tyr Glu Le 1 5 10 15 Glu Asn Val Thr Ile Thr Ala His Ile Thr Gly Asn Asp Tyr Glu Al	
	20 25 30 Lys Tyr Asp Leu Leu Asp Ile Phe Lys Asn Asn Leu Val Asn Phe Le	u
40	35 40 45 Asn Lys Asn Gly Leu Ile Glu Asn Glu Val Asp Ala Lys Lys Gly Ty 50 55 60	r
45	(2) INFORMATION FOR SEQ ID NO:448:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 86 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: Protein	

		(:	Ki) S	SEQUI	ENCE	DESC	CRIP	rion	: SE	Q ID	NO : 4	148:				•
5	Val	Lys	Glu	Ile	Thr 5	Lys	Leu	Asn	Gly	Leu 10	Cys	Leu	Lys	Trp	Val 15	Ala
	Pro	Gly	Thr	Arg 20	Gly	Val	Pro	Asp	Arg 25	Ile	Ile	Ile	Met	Pro 30	Glu	Gly
10	Lys	Thr	Tyr 35	Phe	Val	Glu	Met	Lys 40	Gln	Glu	Lys	Gly	Lys 45	Leu	His	Pro
	Leu	Gln 50	Lys	Tyr	Val	His	Arg 55	Gln	Phe	Glu	Asn	Arg 60	Asp	His	Lys	Val
15	Tyr 65	Val	Leu	Trp	Asn	Lys 70	Glu	Gln	Val	Asn	Thr 75	Phe	Ile	Arg	Met	Val 80
	Gly	Gly	Thr	Phe	Gly 85	Asp										
20			(2)) INI	FORM	ATIO	N FOR	R SE	Q ID	NO:	149:					
		(:		-			ACTE									
25							amin acid		cids							
							: si inear	-	•							
30		(:	ii) 1	MOLE	CULE	TYPI	E: P1	rote:	in							
		(3	ki) S	SEQUI	ENCE	DESC	CRIP	CION	: SE() ID	NO:	149:				
35	Val	Trp	Gly	Ile	Val	Ile	Leu	Gly	Gly	Tyr 10	Glu	Gln	Phe	Ile	Lys 15	Ser
		Leu	Arg	Lys 20	•	Tyr	Ile	Asp	Gly 25		Ser	Asn	Met	Gln 30		His
40	Val	Val	Val		Leu	Asp	Gly	Lys 40		Tyr	Leu	Val	Glu 45		Gly	Thr
	Asn	Leu 50	Leu	Glu	Phe	Ile	Lys 55	Ser	Gln	Asp	Thr	Phe 60	Val	Pro	Ser	Ile
45	Cys 65		Asn	Glu	Ser	Met 70		Pro	Ile	Gln	Thr	Суѕ	Asp	Thr	Cys	Thr 80
	-	Glu	Ile	Asp	Gly 85	-	Ile	Glu	Arg	Ser		Ser	Thr	Val	Ile 95	
50	Arg	Pro	Met			Asn	Thr	Val			Asp	Val	Lys	_		Gln
	Lys	Glu	Pro	100					105					110		
55			115													

	(2) INFORMATION FOR SEQ ID NO:450:	٠
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 50 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:450:	
	Val Leu Thr Met Ile Ser Tyr Leu Leu Phe Leu Leu Ser Gly Leu . 1 5 10 15	
20	Asn Gly Leu Ile Asn Met Asn Lys Glu Gly Ile Asp Lys Trp Gln Asn Ala Ile Yan Lou Asn Lys Asn Ala Asn Cln Thr Val Gln Yan	
25	Asp Ala Ile Xaa Leu Asn Lys Asp Ala Asn Gln Thr Val Gln Xaa 35 40 45 Cys Phe 50	ser
30	(2) INFORMATION FOR SEQ ID NO:451: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 174 amino acids	
35	(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
40	<pre>(ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:451:</pre>	
45	Val Lys Lys Val Val Lys Tyr Leu Ile Ser Leu Ile Leu Ala Ile I 1 5 10 15 Ile Val Leu Phe Val Gln Thr Phe Val Ile Val Gly His Val Ile I 20 25 30	
50	Asn Asn Asp Met Ser Pro Thr Leu Asn Lys Glý Asp Arg Val Ile van Lys Ile Lys Val Thr Phe Asn Gln Leu Asn Asn Gly Asp Ile Society Societ	
55	Thr Tyr Arg Arg Gly Asn Glu Ile Tyr Thr Ser Arg Ile Ile Ala i	Lys 80

	Pro	GIÅ	Gln	Ser	Met 85	Ala	Phe	Arg	Gln	Gly 90	.Ģln	Leu	Tyr	Arg	Asp 95	Asp,
5	Arg	Pro	Val	Asp	Ala	Ser	Tyr	Ala	Lys 105	Asn	Arg	Lys	Ile	Lys 110	Asp	Phe
	Ser	Leu	Arg		Phe	Lys	Glu	Leu		Gly	Asp	Ile	Ile		Pro	Asn
			115			-		120	•		•		125			
10	Asn	Phe	Val	Val	Leu	Asn	Asp	His	Asp	Asn	Asn	Gln	His	Asp	Ser	Arg
		130					135					140				
		Phe	Gly	Leu	Ile		Lys	Lys	Asp	Ile		Gly	Asn	Ile	Ser	Leu
46	145	Th	m	Dwa	Dh.a	150	T		m>	-1 -	155		_	_		160
15	ALG	IYL	TAT	PIO	165	Ser	Lys	11p	Thr	170	GIN	Pne	Lys	Ser		
					103					1,0						
			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	452:					
20																
		(i) S	EQUEI	NCE (CHAR	ACTE	RIST	ICS:							
							ami		cids							
							acio									
25							5: s:	_	9							
			(ט)	TOP	DLOG:	Y: 1:	inear	•								
		C	ii) 1	MOLE	CULE	түрі	E: P:	rotei	in							
30		•	,													
		(:	xi):	SEQUI	ENCE	DESC	CRIP	ION:	SE(OID	NO:	152:				
		Ser	Lys	Leu		Lys	Glu	Leu	Leu		Trp	Ile	Ile	Ser	Ile	Ala
35	1		-1		5	_				10	_			-	15	_
	Val	AIA	Pne	Va 1 20	He	Leu	Phe	He	Va1 25	GIY	Lys	Phe	Ile	Val	Thr	Pro
	Tvr	Thr	Ile		Glv	Glu	Ser	Met		Pro	Thr	T.eu	Lve		Gly	Glu
40	-4-		35	-, -	1			40				200	45		013	014
	Arg	Val	Ala	Val	Asn	Ile	Ile	Gly	Tyr	Lys	Thr	Gly	Gly	Leu	Glu	Lys
		50					55					60				
	Gly	Asn	Val	Val	Val	Phe	His	Ala	Asn	Lys	Asn	Asp	Asp	Tyr	Val	Lys
45	65					70					75					80
	Arg	Val	Ile	Gly		Pro	Gly	Asp	Lys		Glu	Tyr	Lys	Asn	Asp	Thr
					85					90					95	
50	Leu	Tyr	Val		Gly	Lys	Lys	Gln		Glu	Pro	Tyr	Leu		Tyr	Asn
30	T 011	7	***	100	61 -	01	•		105			_,	_,	110		_
	Leu	nys	H15	rys	GIN	GIĀ	ASP		тте	Thr	GLY	Thr		Gln	Val	Lys
	Aco	T.en.		Glu	Cve	Glu	Ser	120 Gln	TIE	Two	Cvc	C1=	125	T.c	Arg	17-1
55	ASP	130	FIO	GIU	-ys	GIU	135	GIII	116	гåа	cys	140	ser	гÃ2	Arg	val
												7.40				

	Asn Ile .		Ve. e. e
	145		••••
5			
	(2) INFORMATION FOR SEQ ID N	D: 453:	
	(i) SEQUENCE CHARACTERISTICS:		
10	(A) LENGTH: 107 amino acids		
	(B) TYPE: amino acid		
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
15	(ii) MOLECULE TYPE: Protein		
	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO:453:	
20			
	Val Glu Arg Asn Gln Lys Val Pro Xaa G 1 5 1		lu Lys 5
	Pro Ser Arg Pro Thr His Pro Xaa Gly P	ro Val Asn Pro Asn A	sn Pro
25	20 25	30	
	Gly Leu Ser Xaa Asp Arg Ala Lys Pro A	sn Gly Pro Gly Pro P	he Asn
	35 40	45	
	Trp Ile Lys Met Ile Lys Val Lys Lys S	er Lys Ile Ala Lys G	lu Ser
30	50 55	60	
	Val Ala Asn Gln Glu Lys Lys Arg Ala G	-	_ -
	65 70	75	80
	Glu Ser Thr Gln Lys Gly Leu Ile Phe Se		
35	85 99	_	5
	Gly Leu Met Leu Leu Ala Arg Arg Arg Ly 100 105	ys Asn	•
	100		
	(2) INFORMATION FOR SEQ ID NO	7.454.	
40	(1) Information for one 15 in		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 54 amino acids		
45	(B) TYPE: amino acid		
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
50	(ii) MOLECULE TYPE: Protein		
	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO:454:	
	Wal man Wie Wal how Wal has Global	Tle les Di- 01 -	1 - 11-1
55	Val Thr His Val Asp Val Asp Glu Arg Lo	•	
	1 5 10	, 1	5

	Gly	Met	Pro	Leu 20	Pro	Lys	Asn	Asp	Arg 25	Ser	Gln	Arg	Pro	Ala 30	Arg	Gly,	v,
5	Lys	Thr	Ile 35	Gln	Ala	Lys	Thr	Arg 40	Gly	Lys	Ser	Leu	Asp 45	Lys	Ser	Lys	
	Ser	Asp 50	Asp	Lys	Gly	Arg											
10			(2)	INE	FORM	ATIO	N FOI	R SE(Q ID	NO: 4	455:						
		(:	i) SI	EQUE	VCE (CHAR	ACTE	RIST	ics:								
15			(A)	LENG	STH:	62 a	mino	ac	ids								
			(B)	TYPE	E: ar	nino	acio	£									
			(C)	STRA	ANDE	ONES	5: s:	ingle	2								
			(D)	TOP	DLOG	Y: 1	inea	r									
20																	
		(:	ii) A	OLEC	CULE	TYP	E: Pi	rote	in								
		()	ci) S	EQUE	ENCE	DESC	CRIP	CION	: SE(Q ID	NO:4	155:					
25																	
	Val	Phe	His	Ile	Leu	Gln	Asn	Ile	Gly	Met	Thr	Ile	Gln	Leu	Leu	Pro	
	1				5					10					15		
	Ile	Thr	Gly	Ile	Pro	Leu	Pro	Phe	Ile	Ser	Tyr	Gly	Gly	Ser	Ala	Leu	
30				20					25					30			
	Trp	Ser	Met	Met	Thr	Gly	Ile		Ile	Val	Leu	Ser	Ile	Tyr	Tyr	His	
			35					40					45				
	Glu		Lys	Arg	Tyr	Val	_	Leu	Tyr	His	Pro	_	Ser	Asn			
35		50					55					60					
			(0.1		70714		. 50.				456						
			(2)	TNE	ORM	ATTO	N FOI	(SE	מז נ	NO:4	456:						
40		(:	i) SE	QUE	NCE (CHAR	CTE	RIST	cs:								
			(A)	LENC	TH:	74 a	amino	aci	ids								
			(B)	TYPE	: ar	nino	acio	£									
			(C)	STRA	ANDEI	ONES	s: s:	ingle	9					J			
45			(D)	TOPO	LOG	: 1:	inear	•									
				101 P	E	my Di											
		(:	ii) P	IOLEC	LULE	TIPI	5: P)	oce	ın								
50		()	ci) S	EQUE	ENCE	DESC	CRIP	CION	: SE(Q ID	NO:	156:					
	Val	Thr	Xaa	Arg	Glu	Val	Val	Asn	His	Ile	Glu	Gln	Thr	Ile	Xaa	Gln	
	1			_	5					10					15		
55	Tyr	Gly	Val	Asn	Glu	Met	Ser	Phe	Asp	Thr	Met	Val	Leu	Phe	Gly	Asp	
	~	_		20					25					30	_		

	His	Xaa		Ser	Pro	His	Gly		Pro	Gly.	Ÿsb	Arg		Leu	Lys	Ser .
5			35					40	_				45			
5	Asr	Glu	Tyr	Val	Leu	Phe		Leu	Gly	Val	Ile		Glu	His	Tyr	Cys
		50					55					60				
		Asp	Met	Thr	Arg		Ile	Lys	Phe	Trp						
	65					70										
10																
			(2)	INF	ORMA	ATION	I FOR	R SEC	2 ID	NO:4	157:					
15		(:	i) SE	_												
,5						28 a		_	las							
						nino										
						ONESS			3							
20			(D)	TOPC	: فالكلار	(: li	.near	_								
20				rot Ec	71 T	myni	. D.	rotei	'n							
		١.	ii) Þ	101150	.ULE	1122	5. F1	ocei								
			xi) S	FOITE	MCE	DECC	ים ד סי	TON.	ুন্ত -	מד כ	NO ·	157 .				
25		\.	~1, ~	regor	# * CL	DESC		1011	. 52,	2 10	110.					
	Val	Gln	Va 1	Glv	Asn	Gly	Pro	Yaa	Gln	Ara	Glu	Tle	Val	Phe	Pro	Asn
	1	. 0111	***	dly	5	017				10				2 0	15	
		Thr	Asp	Xaa		Ser	Tro	Glv	Glv		Thr	Lvs				
30	50-			20		•••		,	25			-, -				
			(2)	INE	FORM	ATIO	I FOI	R SE	Q ID	NO:	158:					
35		(:	i) SE	EQUE	ICE (CHARA	ACTE	RIST	ics:							
			(A)	LENC	STH:	70 a	amino	aci	ids							
			(B)	TYPE	E: ar	nino	acio	1								
			(C)	STR	ANDE	ONESS	S: si	ingle	€							
40			(D)	TOPO	DLOG!	r: 1:	inear	-								
		(ii) B	MOLEC	CULE	TYP	E: P	rote	in							
45		(:	xi) S	SEQUE	ENCE	DESC	CRIP	rion:	: SE(Q ID	NO:	458:				
	Val	Gly	Pro	Asn	Thr	Glu	Ala	Glu	Phe	Arg	Lys	Glu	Ile	Gln	Leu	Pro
	1				5					10					15	
50	G13	Asn	Ala	Ser	Trp	Gly	Val	Gly	Pro	Asn	Thr	Glu	Xaa		Gly	Phe
				20					25					30		
	Pro	Ile	Ser	Ser	Asp	Asn	Ala		Trp	Gly	Val	Gly		Asn	Lys	Glu
			35					40					45			
55	Ası	Phe	Glu	Lys	Lys	Phe		Arg	Gln	Cys	Glu		Gly	Cys	Gly	Pro
		50					55					60				

	Gln His Arg Ser Leu Arg 65 70	V
	7,0	
5	(2) INFORMATION FOR SEQ ID NO:459:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 32 amino acids	
10	(B) TYPE: amino acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: Protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:459:	
20	Val Thr Arg Leu Phe Tyr Met Phe Asp Lys Glu Thr Met Ile	Ala Ser
	1 5 10	15
	Met Gly Ile Gly Gly Gly Leu Gly Asn Ala Ala Leu Phe Thr	Arg Phe
	20 25 30	
25		
	(2) INFORMATION FOR SEQ ID NO:460:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 53 amino acids	
	(B) TYPE: amino acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(5) 33332031 233323	
	(ii) MOLECULE TYPE: Protein	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:460:	
	Val Ser Ala Ile Val Xaa Tyr Xaa Ser Phe Asp Cys Xaa Ile	Ara Ive
	1 5 10	15
	Phe Lys Leu Lys Thr Pro Gly Arg Glu Asp Glu Glu Thr Glu	
45	20 25 30	
	Asn Ser Ser Val Ala Lys Leu Pro Xaa Asp Val Leu Asp Xaa	Met Glv
	35 40 45	
	Trp Lys Arg Lys His	
50	50	
	(2) INFORMATION FOR SEQ ID NO:461:	
55		
33	(i) SEQUENCE CHARACTERISTICS:	

5	(A) LENGTH: 136 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	v. .
10	(ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:461:	
15	Val Leu Arg Met Thr Glu Gln Pro Ser Tyr Tyr Ser Ile Ile Thr A 1 5 10 15 Asn Val Arg Tyr Asp Asn Arg Leu Thr Asp Ser Glu Lys Leu Leu P	
20	20 25 30 Ala Glu Ile Thr Ser Leu Ser Asn Lys Tyr Gly Tyr Cys Thr Ala S 35 40 45	
	Asn Gly Tyr Phe Ala Lys Leu Tyr Glu Val Thr Lys Val Thr Val S 50 55 60 Arg Arg Ile Ala Asn Leu Lys Glu Cys Gly Tyr Leu His Val Glu I	
25	Ile Arg Asn Gly Asn Glu Ile Lys Gln Arg Lys Leu Tyr Pro Leu T 85 90 95	
30	Glu Met Ile Arg Pro Ile Asn Thr Asn Asp Asn Thr Pro Ile Asn A 100 105 110 Ser Val Asn Thr Pro Ile Ile Thr Asn Val Lys Glu Thr Ile Gln V 115 120 125	
35	115 120 125 Leu Ile Ile Gln Val Ile Thr Ile 130 135	
	(2) INFORMATION FOR SEQ ID NO: 462:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 290 amino acids (B) TYPE: amino acid	
45	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: Protein	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:462: Val Gly Phe Xaa Ala Ala Ile Arg Met Asp Lys Ser Gly Tyr Ser X	(aa
55	1 5 10 15 Ser Leu Tyr Glu Gln Asn Thr His Ile Gly Gly Lys Val Asn Xaa H 20 25 30	

	Ģlų	Ser	Asp 35	Gly	Phe	Gly	Phe	Asp 40	Leu	Gly.	Pro	Ser	Ile 45	Leu	Thr	Met 🖏 .
5	Pro	Tyr 50	Ile	Cys	Glu	Lys	Leu 55	Phe	Glu	Tyr	Ser	Lys 60	Lys	Gln	Met	Ser
	_	Tyr	Val	Thr	Ile	_	Arg	Leu	Xaa	His		Trp	Arg	Ser	Phe	
	65					70					75					80
10	Pro	Asp	Gly	Thr	Thr 85	Ile	Asp	Leu	Tyr	Glu 90	Gly	Ile	Lys	Glu	Thr 95	Gly
	Gln	His	Asn	Ala 100	Ile	Leu	Ser	Lys	Gln 105	Asp	Ile	Glu	Glu	Leu 110	Gln	Asn
15	Tyr	Leu	Asn 115	Tyr	Thr	Arg	Arg	Ile 120	Asp	Arg	Ile	Thr	Glu 125	Lys	Gly	Tyr
	Phe	Asn 130	Tyr	Gly	Leu	Asp	Thr	Leu	Ser	Gln	Ile	Ile 140	Lys	Phe	His	Gly
20	Pro		Asn	Ala	Leu	Ile	Asn	Tvr	Asp	Tvr	Val		Thr	Met	Gln	Gln
	145					150					155					160
		Ile	Asp	Lys	Arg 165	Ile	Ser	Asn	Pro	Tyr 170		Arg	Gln	Met	Leu 175	Gly
25	Tyr	Phe	Ile	Lys 180		Val	Gly	Ser	Ser 185	Ser	Tyr	Asp	Ala	Xaa 190		Val
	Leu	Ser	Met 195	Leu	Phe	His	Met	Gln 200	Gln	Glu	Gln	Gly	Xaa 205	Xaa	Tyr	Val
30	Glu	Gly 210	Gly	Ile	His	His	Xaa 215	Ala	Asn	Ala	Leu	Glu 220	Lys	Leu	Ala	Arg
	Glu		Glv	Val	Thr	Ile	His	Thr	Glv	Ala	Ara		Asp	Asn	Ile	Lvs
	225					230					235					240
35		Tyr	Gln	Arg	Arg 245		Thr	Gly	Val	Arg 250		Asp	Thr	Gly	Glu 255	
	Val	Lys	Ala	Asp 260		Ile	Ile	Ser	Asn 265		Glu	Val	Ile	Pro 270		Tyr
40	Lys	Tyr	Leu 275	Ile	His	Leu	Gly	Tyr 280		Thr	Ile	Lys	Gln 285	Ile	Arg	Glu
	Gly	11e 290	2.5					•••					203			
45		230														
40			(2)	INE	FORM	ATIO	N FOR	R SEÇ) ID	NO:4	163:					
		(i					ACTE									
50							amir		ids							
							acio									
							5: si	_	•							
55			(D)	TOPO)LOG	(: 1:	inear	•								

(ii) MOLECULE TYPE: Protein

																ý.
_		()	ci) S	EQUE	ENCE	DESC	RIPT	ON:	SEC	QID	NO:4	163:				
5																
	Val	Arg	Thr	Ser	Arg	Gln	Ser	Pro	Phe	Ala	Gln	Arg	Ile	Glu	Gln	Gln
	1				5					10					15	
	Gln	Lys	Arg	Leu	Asn	Leu	Pro	Asp	Leu	Pro	Thr	Thr	Thr	Ile	Gly	Ser
10				20					25					30		
	Phe	Pro		Ser	Arg	Glu	Val		Lys	туг	Arg	Ala		Trp	Lys	Asn
			35					40	_				45	_		
15	Lys		Ile	Thr	Asp	Glu		Tyr	Glu	Thr	Phe		Lys	Asn	GLu	He
,,,	_	50					55		_			60	_			1
		Arg	Trp	He	Lys	Ile	GIn	Glu	Asp	He		Leu	Asp	vaı	Leu	80
	65 			_,		70	•		10-5	**- 7	75	5 -	Db -	C1	C1	-
20	HIS	GIY	GIU	Pne	85	Arg	ASI	ASP	Met	90	GIU	Pne	Pne	GIY	95	БŽЗ
	ī au	Cln	C111	Pho		Val	Thr	face	Dhe		Tr.	Val	Gln	Ser		Glv
	Den	GIII	GIY	100	Den	vai	1111	Lys	105	GIY	110	VUL	0111	110	-3-	013
	Sor	Ara	Δla		Lve	Pro	Pro	Tle		Tvr	Glv	Asp	Val		Tro	Thr
25	Jer	ar 9	115	141	233			120		-1-	0-7		125	-2-		
	Ala	Pro		Thr	Val	Asp	Glu		Val	Tyr	Ala	Gln		Leu	Thr	Asp
		130					135			•		140				-
	Lvs	Pro	Val	Lys	Gly	Met	Leu	Thr	Gly	Pro	Val	Thr	Ile	Leu	Asn	Trp
30	145			-	_	150					155					160
	Ser	Phe	Glu	Arg	Val	Asp	Leu	Pro	Arg	Lys	Val	Ala	Gln	Asp	Gln	Ile
					165					170					175	
	Ala	Leu	Ala	Ile	Asn	Glu	Glu	Val	Leu	Ala	Leu	Glu	Ala	Ala	Gly	Ile
35				180					185					190		
	Lys	Val	Ile	Gln	Val	Asp	Glu	Pro	Ala	Leu	Arg	Glu	Gly	Leu	Pro	Leu
			195					200					205			
	Arg	Ser	Glu	Tyr	His	Glu	Gln	Tyr	Leu	Lys	Asp	Ala	Gly	Phe	Ile	Ile
40		210					215					220				
			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	464:					
45																
75		(CHAR										
						118			cias							
						mino DNEC			_							
50						DNES:			E							
			(0)	105	OLUG	Y: 1:	THEG:	-								
		,	111	MOTE	CIII.F	TYP	E. P.	rote	in							
		,	~=;	تررب		F	r.									
55		(xi)	SEOU	ENCE	DES	CRIP	TION	: SE	O ID	NO:	464:				

	yaı	Lys	Met	Met	Pro 5	Arg	Lys	Phe	Arg	Val.	Leu	GIn	Ile	Gly		Asp
5		T av	C1	Dwa	_	Dha	~1 -	ui.	T		C1	u.	C	·	15	
	Asp	rea	GIU	20	116	Pne	GIN	HIS	25	гуs	GIĀ	vaı	Ser	Trp	Asp	1 yr
	Phe	Asp		Gly	Leu	Phe	Glu		Asp	Ser	Gly	Tyr	Val	Glu	Ala	Ile
			35					40					45			
10	Glu	Ala 50	Ile	Val	Glu	Ala	Glu 55	Gly	Arg	Phe	Asp	Phe 60	Ile	Tyr	Ile	Gln
	Ala	Pro	Tyr	Ser	Glu	Thr	Leu	Thr	Asn	Leu	Leu	Gln	Met	Ile	Ser	Glu
	65					70					75					80
15	Pro	Tyr	Asn	Thr	Tyr 85	Val	Asp	Glu	Ser	Phe 90	Trp	Ser	Val	Glu	Tyr 95	Glu
	Gln	Asp	Glu	Asn	Cys	Pro	Lys	Ile	Arg	Cys	Ser	Thr	Asn	Tyr	Ile	Thr
		_		100	-		_		105	-				110		
20	Gly	Ile	Leu	Glu	Gly	Thr										
			115													
			(2)) INI	FORM	ATIO	V FO	R SE	OID	NO:4	165:					
25																
		(:	i) SI	EQUE	NCE (CHAR	ACTE	RIST	cs:							
			(A)	LEN	STH:	194	amir	o ac	ids							
							acid									
30							S: Si	_	>							
			(D)	TOP	DLOG	?: 1:	near	•								
		U	ii) N	OLEC	TULE	TYPE	E: Pr	otei	n							
35		•	,													
		(2	ci) S	EQUI	ENCE	DESC	RIPI	CION:	SEÇ	OI C	NO:4	165:				
	t/a l	Ara	Tuc	C111	Th		Dro	T10	Tue	X ===	21-	T 1	3	7.00	17 n 7	T
40	1	Arg	гуэ	Gry	5	IYL	FLO	116	Lys	10	Ald	116	ASP	Leu	15	Leu
70		Tle	Va 1	T.en		Phe	T.e.ii	Thr	Phe		Tle	Mor	Dhe	Ile		A 1 =
	502			20	Deu		200		25	110		1160	rne	30	riie	A.C
	Ile	Ala	Ile		Ile	Asp	Ser	Pro		Asn	Pro	Ile	Tvr	Ser	Gln	Val
45			35			•		40					45			
	Arg	Val	Gly	Lys	Met	Gly	Lys	Leu	Ile	Lys	Ile	Tyr	Lys	Leu	Arg	Ser
		50	_	-		_	55			_		60	-		-	
	Met	Cys	Lys	Asn	Ala	Glu	Lys	Asn	Gly	Ala	Gln	Trp	Ala	Asp	Lys	Asp
50	65					70					75	_		_	_	80
	Asp	Asp	Arg	Ile	Thr	Asn	Val	Gly	Lys	Phe	Ile	Arg	Lys	Thr	Arg	Ile
					85					90			_		95	
	Asp	Glu	Leu	Pro	His	Leu	Ile	Asn	Val	Val	Lys	Gly	Glu	Met	Ser	Phe
55				100					105					110		

	Ile	Gly	Pro 115	Arg	Pro	Glu	Arg	Pro 120	Glu	Phe.	.Val	Glu	Leu 125	Phe	Ser	Serv
5	Glu	Val 130	Ile	Gly	Phe	Glu	Gln 135	Arg	Cys	Leu	Va1	Thr 140	Pro	Gly	Leu	Thr
	Gly	Leu	Ala	Gln	Ile	Gln	Gly	Gly	Tyr	Asp	Leu	Thr	Pro	Gln	His	Lys
	145					150					155					160
10	Leu	Lys	Tyr	Asp	Met	Lys	Tyr	Ile	His	Lys	Gly	Ser	Leu	Met	Met	Glu
					165					170					175	
	Leu	Tyr	Ile	Ser	Ile	Arg	Thr	Leu		Val	Val	Ile	Thr		Glu	Gly
15				180					185					190		
,,,	Ser	Arg														
			(2)	TNE	FORM	יסדים	v FOI	R SEC	מוכ	NO:	166:					
20			``		. 0.44				•							
		(:	i) SI	EQUE	NCE (CHAR	ACTE	RIST	ics:							
			(A)	LENG	GTH:	93 a	mino	ac	ids							
			(B)	TYPE	E: ar	nino	acio	£								
25			(C)	STR	ANDE	DNES:	S: 5	ingl	е							
			(D)	TOP	DLOG'	Y: 1:	inea	r								
		(ii) 1	MOLE	CULE	TYP	E: P	rote	in							
30																
			\	CECTI	7			マイヘル		חד ה						
		(:	xi) :	SEQUI	ENCE	DES	CRIP	rion	: SE	Q ID	NO:	466:				
	Val	•		-									Arg	Tyr	Glu	Asp
35	Val 1	(: Lys		-									Arg	Tyr	Glu 15	Asp
35	1	•	Ala	Leu	Lys 5	Leu	Tyr	Gly	Val	Glu 10	Asp	Leu			15	
35	1	Lys	Ala	Leu	Lys 5	Leu	Tyr	Gly	Val	Glu 10	Asp	Leu			15	
35	1 Asr	Lys	Ala Lys	Leu Pro 20	Lys 5 Val	Leu Ile	Tyr Glu	Gly Ser	Val Ala 25	Glu 10 Asn	Asp Asp	Leu Val	Ile	Val 30	15 Lys	Val
35	1 Asr	Lys Glu Ala	Ala Lys Thr 35	Pro 20 Gly	Lys 5 Val	Leu Ile Cys	Tyr Glu Gly	Gly Ser Ser 40	Val Ala 25 Asp	Glu 10 Asn Thr	Asp Asp Ser	Leu Val Arg	Ile Asn 45	Val 30 Xaa	15 Lys Xaa	Val Met
	1 Asr	Lys Glu	Ala Lys Thr 35	Pro 20 Gly	Lys 5 Val	Leu Ile Cys	Tyr Glu Gly Met	Gly Ser Ser 40	Val Ala 25 Asp	Glu 10 Asn Thr	Asp Asp Ser	Leu Val Arg	Ile Asn 45	Val 30 Xaa	15 Lys Xaa	Val Met
	1 Asr Arg Gly	Lys Glu Ala Pro	Ala Lys Thr 35	Pro 20 Gly	Lys 5 Val Ile Lys	Leu Ile Cys	Tyr Glu Gly Met 55	Gly Ser Ser 40 Pro	Val Ala 25 Asp	Glu 10 Asn Thr	Asp Asp Ser	Leu Val Arg Glu 60	Ile Asn 45 Phe	Val 30 Xaa Ser	15 Lys Xaa Gly	Val
	1 Asr Arg Gly Val	Lys Glu Ala	Ala Lys Thr 35	Pro 20 Gly	Lys 5 Val Ile Lys	Leu Ile Cys Gly Ser	Tyr Glu Gly Met 55	Gly Ser Ser 40 Pro	Val Ala 25 Asp	Glu 10 Asn Thr	Asp Ser His	Leu Val Arg Glu 60	Ile Asn 45 Phe	Val 30 Xaa Ser	15 Lys Xaa Gly	Val Met Val Lys
	1 Asr Arg Gly Val 65	Lys Glu Ala Pro 50 Asp	Ala Lys Thr 35 Tyr	Leu Pro 20 Gly Ile	Lys 5 Val Ile Lys Gly	Leu Ile Cys Gly Ser 70	Tyr Glu Gly Met 55 Asp	Gly Ser Ser 40 Pro	Val Ala 25 Asp Phe	Glu 10 Asn Thr Gly	Asp Ser His Val	Leu Val Arg Glu 60 Asn	Ile Asn 45 Phe Val	Val 30 Xaa Ser Gly	15 Lys Xaa Gly	Val
40	1 Asr Arg Gly Val 65	Lys Glu Ala Pro	Ala Lys Thr 35 Tyr	Leu Pro 20 Gly Ile	Lys 5 Val Ile Lys Gly	Leu Ile Cys Gly Ser 70	Tyr Glu Gly Met 55 Asp	Gly Ser Ser 40 Pro	Val Ala 25 Asp Phe	Glu 10 Asn Thr Gly His	Asp Ser His Val	Leu Val Arg Glu 60 Asn	Ile Asn 45 Phe Val	Val 30 Xaa Ser Gly	15 Lys Xaa Gly	Val Met Val Lys
40	1 Asr Arg Gly Val 65	Lys Glu Ala Pro 50 Asp	Ala Lys Thr 35 Tyr	Leu Pro 20 Gly Ile	Lys 5 Val Ile Lys Gly	Leu Ile Cys Gly Ser 70	Tyr Glu Gly Met 55 Asp	Gly Ser Ser 40 Pro	Val Ala 25 Asp Phe	Glu 10 Asn Thr Gly	Asp Ser His Val	Leu Val Arg Glu 60 Asn	Ile Asn 45 Phe Val	Val 30 Xaa Ser Gly	15 Lys Xaa Gly	Val Met Val Lys
40 45	1 Asr Arg Gly Val 65	Lys Glu Ala Pro 50 Asp	Ala Lys Thr 35 Tyr Ala Gly	Pro 20 Gly Ile Ile Cys	Lys 5 Val Ile Lys Gly Pro 85	Leu Ile Cys Gly Ser 70 Ala	Tyr Glu Gly Met 55 Asp	Gly Ser 40 Pro Val	Val Ala 25 Asp Phe Thr	Glu 10 Asn Thr Gly His	Asp Ser His Val 75 Gln	Leu Val Arg Glu 60 Asn	Ile Asn 45 Phe Val	Val 30 Xaa Ser Gly	15 Lys Xaa Gly	Val Met Val Lys
40	1 Asr Arg Gly Val 65	Lys Glu Ala Pro 50 Asp	Ala Lys Thr 35 Tyr Ala Gly	Pro 20 Gly Ile Ile Cys	Lys 5 Val Ile Lys Gly Pro 85	Leu Ile Cys Gly Ser 70 Ala	Tyr Glu Gly Met 55 Asp	Gly Ser 40 Pro Val	Val Ala 25 Asp Phe Thr	Glu 10 Asn Thr Gly His	Asp Ser His Val 75 Gln	Leu Val Arg Glu 60 Asn	Ile Asn 45 Phe Val	Val 30 Xaa Ser Gly	15 Lys Xaa Gly	Val Met Val Lys
40 45	1 Asr Arg Gly Val 65	Lys Glu Ala Pro 50 Asp	Ala Lys Thr 35 Tyr Ala Gly	Pro 20 Gly Ile Cys	Lys 5 Val Ile Lys Gly Pro 85	Leu Ile Cys Gly Ser 70 Ala	Tyr Glu Gly Met 55 Asp	Ser Ser 40 Pro Val	Val Ala 25 Asp Phe Thr Cys	Glu 10 Asn Thr Gly His	Asp Ser His Val 75 Gln	Leu Val Arg Glu 60 Asn	Ile Asn 45 Phe Val	Val 30 Xaa Ser Gly	15 Lys Xaa Gly	Val Met Val Lys
40 45	1 Asr Arg Gly Val 65	Lys Glu Ala Pro 50 Asp	Ala Lys Thr 35 Tyr Ala Gly (2	Pro 20 Gly Ile Cys) IN	Lys 5 Val Ile Lys Gly Pro 85 FORM	Leu Ile Cys Gly Ser 70 Ala	Tyr Glu Gly Met 55 Asp	Ser Ser 40 Pro Val Pro	Val Ala 25 Asp Phe Thr Cys	Glu 10 Asn Thr Gly His Tyr 90	Asp Ser His Val 75 Gln	Leu Val Arg Glu 60 Asn	Ile Asn 45 Phe Val	Val 30 Xaa Ser Gly	15 Lys Xaa Gly	Val Met Val Lys
40 45	1 Asr Arg Gly Val 65	Lys Glu Ala Pro 50 Asp	Ala Lys Thr 35 Tyr Ala Gly (2 i) S (A)	Pro 20 Gly Ile Cys In EQUE	Lys Val Ile Lys Gly Pro 85 FORM	Leu Ile Cys Gly Ser 70 Ala ATIO CHAR	Tyr Glu Gly Met 55 Asp Ile N FO	Ser Ser 40 Pro Val Pro R SE	Val Ala 25 Asp Phe Thr Cys	Glu 10 Asn Thr Gly His Tyr 90	Asp Ser His Val 75 Gln	Leu Val Arg Glu 60 Asn	Ile Asn 45 Phe Val	Val 30 Xaa Ser Gly	15 Lys Xaa Gly	Val Met Val Lys

			(D)	TOPO	LOGY	(: li	inear	=		-						W
5		(:	ii) M	OLEC	CULE	TYPI	E: Pı	rotei	in							
		(:	ki) S	EQUI	ENCE	DESC	CRIPT	rion:	: SE() ID	NO:	167:				
10	Val	Gly	Glu	Ala	Glu 5	Ser	Ser	Leu	Ser	Phe	Ile	G1y	Glu	Leu	Asp 15	Asn
	Ile	Asp	Asp	Lys 20	Thr	Tyr	Gln	Asp	A1a 25	Leu	Val	Ile	Val	Суs 30	Asp	Thr
15	Ala	Asn	Ala 35	Pro	Arg	Ile	Asp	Asp 40	Glu	Arg	Tyr	Ser	Thr 45	Gly	Ser	Lys
20	Leu	Ile 50	Lys	Ile	Asp	His	His 55	Pro	Ala	Val	Asp	Gln 60	Tyr	Gly	Asp	Ile
20	Asn 65	Leu	Val	Asn	Thr	Asn 70	Ala	Ser	Ser	Thr	Ser 75	Glu	Ile	Ile	Tyr	Asp 80
05	Leu	Ile	Ser	His	Phe 85	Asn	Asp	Glu	Ala	Ile 90	Val	Asn	Lys	Gly	Thr 95	Ser
25	Glu	Cys	Phe	Ile 100	Pro	Trp	Tyr	Arg	Arg 105							
30			(2)) INI	FORM	ATIO	N FOI	R SE(O ID	NO:	168:					
		(:	i) SI	EQUEI	VCE (CHAR	ACTE	RIST	cs:							
35			(B)	TYP	E: ar	nino	amin acio	i								
							inear	_								
40		(:	ii) 1	MOLE	CULE	TYPI	E: PI	rotei	i n							
		(:	xi) :	SEQUI	ENCE	DESC	CRIP	rion:	: SE	Q ID	NO:	168:				
45	Val 1	Met	Ser	Leu	Val 5	Ile	Val	Leu	Ile	Lys 10	Asp	Gly	Cys	Val	Ser 15	Lys
	Phe	Ser	Leu	Ile 20	Arg	Gln	Gly	Asn	Met 25	Ile	Lys	Arg	Asp	Xaa 30	Pro	Met
50	Ile	Pro	Leu 35	His	Gln	Thr	Glu	Glu 40	Glu	Glu	Phe	Tyr	Thr 45	Phe	Ile	Gly
	Gln	Phe 50	Tyr	Ser	Leu	Asn	Gln 55	His	Ile	Leu	Pro	Lys 60	Glu	Val	His	Val
55	Pro 65	Arg	Asn	Leu	Asp	Lys 70	Glu	Met	Ile	Gln	Ser 75	Val	Val	Asp	Thr	80 Lys

	Ţlę	Val	Gln	Pro	Ala 85	Arg	Gly	Pro	Lys	Lys. 90	Asp	Met	Val	Asp	Leu 95	Ala.	٠.
5	Ala	His	Asn	Ala 100	Lys	Val	Ser	Leu	Asn 105	Asn	Lys	Phe	Glu	Leu 110	Ile	Ser	
10	Arg	Asp	Glu 115	Ser	Arg	Thr	Ile	Lys 120	Ala	Ile	Glu	Glu	Leu 125	Gly	Thr	Gln	
70	Met	Gly 130	Ile	Gln	Thr	Pro	Ile 135	Arg	Ile	Glu	Ala	Phe 140	Asp	Asn	Ser	Asn	
	Ile	Gln	Gly	Val	Asp	Pro	Val	Ser	Ala	Met	Val	Thr	Phe	Val	Asp	Gly	
15	145					150					155					160	
	Lys	Pro	Asp	Lys	Lys 165	Asn	Tyr	Arg	Lys	Tyr 170	Lys	Ile	Lys	Thr	Val 175	Lys	
20	Gly	Pro	Asp	Asp 180	Tyr	Lys	Ser	Met	Arg 185	Glu	Val	Val	Arg	Arg 190	Arg	Tyr	
20	Ser	Arg	Val 195	Leu	Asn	Glu	Gly	Leu 200	Pro	Leu	Pro	Asp	Leu 205	Ile	Ile	Val	
25	Asp	Gly 210	Gly	Lys	Gly	His	Met 215	Asn	Gly	Val	Ile	Asp 220	Val	Leu	Gln	Asn	
	Glu	Leu	Gly	Leu	Asp	Ile	Pro	Val	Ala	Gly	Leu	Gln	Lys	Asn	Asp		
	225					230					235					240	
30	His	Gln	Thr	Ser	Glu 245	Leu	Leu	Leu	Trp	Arg 250							
			(2) INI	FORM	ATIO	N FOE	R SEQ	O ID	NO:	169:						
35		(:		EQUEI LEN													
				TYP				_	Lus								
				STR					>								
40				TOP					•								
		(:	ii) 1	MOLE	CULE	TYP	E: P	rote	in								
45		(:	xi)	SEQU	ENCE	DES	CRIP	rion	: SE	Q ID	NO:	469:					
	Val	Val	Gln	Xaa	Thr	Arg	Phe	His	Asn	Ile 10	Cys	Pro	His	Lys	Gln 15	Gly	
50		Leu	ser	Glu 20	_	Thr	Val	Ser	Gly 25		туr	Val	Phe	Cys		Leu	
	His	Asp	Gln 35	Lys	Ile	Asp	Leu	Asn 40		Gly	Ile	Val	Gln 45		Pro	Asp	
55	Glu	Gly 50		Val	Asp	Val	Tyr 55		Val	Glu	Va1	Thr 60		Gly	Asn	Val	

	.Ţyŗ 65	Ile	Cys	Leu						-						€i,
5			(2)	INI	FORM	ATIO	N FOR	R SE	Q ID	NO:4	170:					
		(i	i) SI	EQUE	NCE C	CHAR	ACTE	RIST	cs:							
			(A)	LENG	STH:	95 a	amino	ac	ids							
10			(B)	TYPE	E: an	nino	acio	1								
			(C)	STRA	MDE	ONES	5: si	ingle)							
			(D)	TOP	DLOGY	(: 1:	inear	•								
15		(i	Li) N	OLEC	CULE	TYPE	E: Pi	rote	in		•					
		(>	ci) 5	EQUE	ENCE	DES	CRIP	CION	SEC	Q ID	NO : 4	170:				
20	Val	His	Val	Leu	Ala	Phe	Leu	Thr	Lys	His	His	Ser	Glu	Lys	Phe	Asn
	1				5					10					15	
	Ser	Ser	Ser	Leu	Ala	Glu	Leu	Thr	Cys	Leu	Xaa	Pro	Val	Gln	Leu	Arg
				20					25					30		
25	Arg	Val	Thr	Thr	Gln	Leu	Val	Asp	Leu	Xaa	Met	Ile	Asp	Thr	Ile	Arg
			35					40					45			
	Gly	Lys	Asp	Gly	Gly	Tyr	Leu	Ala	Asn	Asp	Gln	Ser	Ala	Asp	Val	Ser
		50					55					60				
30	Leu	Ala	Thr	Leu	Tyr	Lys	His	Phe	Val	Leu	Glu	Lys	Glu	Gln	His	Thr
	65					70					75					80
	Arg	Leu	Phe	Thr	Trp	Arg	Arg	Arg	Gln		Leu	Ser	Asn	Cys	Ser	
35					85					90					95	
55																
			(2)	IN	PORMA	ATIO	V FOR	R SE	OID	NO:4	171:					
		(i) SE	COUEN	ICE (THAR	CTE	RIST	cs:							
40		,-			TH:											
					E: an	_										
					NDEI				2							
					LOGY			_								
45																
		(i	i) N	OLEC	CULE	TYPE	E: Pr	rote	in							
50		()	ci) S	SEQUE	ENCE	DESC	CRIP	rion:	SE(מו ס	NO:4	171:				•
			_,						-1	_	_,	_,	_,		~.	01
		Gly	Phe	Leu	Asn	His	Met	Leu	Thr		Phe	Thr	Phe	His		GIÅ
	1		_		5					10					15	
55	Leu	Ser	Leu		Ile	Glu	Ala	Gln		Asp	Iie	Asp	Val		Asp	H15
				20					25					30		

	Ḥiṣ	Val	Thr	Glu	Asp	Ile	Gly	Ile 40	Val	Ile.	Gly	Gln		Leu	Leu	Gl
5	Met	Ile	-	Asp	Lys	Lys	His		Val	Arg	Tyr	Gly	45 Thr	Met	Туг	Ile
		50					55					60				
	Pro	Met	Asp	Glu	Thr	Leu	Ala	Arg	Val	Val	Val	Asp	Ile	Ser	Gly	Arg
	65					70					75					80
10	Pro	Tyr	Leu	Ser		Asn	Ala	Ser	Leu	Ser	Lys	Glu	Lys	Val		Thr
	Pho	3.55	mb~	C1	85	**- 1	61	-21	5 5	90	_				95	
	File	ASD	1111	100	Leu	vai	GIU	GIU		Phe	Arg	Ala	Val		Ile	Asn
15	Δla	2 ***	T au		mb.~	ui -	T1.	3	105	~ 1 -		-1		110		
	Azu	AL 9	115	1111	1111	пть	116		rea	Ile	Arg	GIY		Asn	Thr	His
	His	Glin		Glu	λla	Tlo	Dho	120	320	Db		•	125	_		
	1123	130	116	Gru	Ala	116	135	r.ys	Ala	Phe	Ser		Ala	Leu	Gly	Ile
20	Ala		Thr	Δla	Thr	Acn		Cln	7	Val	D===	140	0	•	-1	
	145					150	nsp	GIII	ALY	Vai	155	Set	ser	rys	GIĀ	
		Glu									133					160
														•		
25																
			(2)	INF	ORMA	MOTT.	FOF	SEC	מד (NO:4	72.					
		(i	.) SE	QUEN	CE C	HARA	CTER	RISTI	cs:							
30				LENG												
				TYPE												
				STRA					,							
			(D)	TOPO	LOGY	: li	near	•								
35																
		(i	i) M	OLEC	ULE	TYPE	: Pr	otei	n							
		(x	i) S	EQUE	NCE	DESC	RIPT	'ION:	SEQ	ID:	NO : 4	72:				
40																
	Val	Asn	Thr	Ala i	Met	Gly	Asn	Leu	Lys	Gln (Gly	Ile	Ala	Asn	Lys	Asp
	1				5					10					15	_
	Thr	Val	Lys	Ala .	Ser	Glu	Asn	Tyr	His.	Asp /	Ala	Asp	Va1	Asp	Lys	Gln
45				20					25					30		
	Thr	Ala	Tyr	Thr !	Asn .	Ala	Val	Ser	Gln .	Ala	Glu	Gly	Ile	Ile	Asn	Gln
			35					40					45			
	Thr	Thr .	Asn :	Pro 1	Thr 1	Leu .	Asn	Pro .	Asp .	Asp :	Ile '	Thr	Pro	Cys	Ile	Asn
50		50					55					60				
	Ser	Ser .	Asp													
	65															
55			(2)	TNF	TRMAT	FTON	FOR	SEO	TD I	MO . 4"	72.					

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 amino acids	v.													
5	(B) TYPE: amino acid (C) STRANDEDNESS: single														
	(D) TOPOLOGY: linear														
10	(ii) MOLECULE TYPE: Protein														
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:473:														
15	Val Glu Ala Gln Lys Asp Val Ala Asn Val Leu Glu Asn Val Glu Gln 1 5 10 15 Val Asp Ala Xaa Val Gly Ala Thr Asp Thr Ile Ala Leu Ala Ala Tyr 20 25 30 Lys Tyr Tyr Ser Asp Lys Asn Asp Val Met Lys Pro His Gln Ile Tyr														
	1 5 10 15 Val Asp Ala Xaa Val Gly Ala Thr Asp Thr Ile Ala Leu Ala Ala Tyr 20 25 30														
20		r													
	Gly Xaa Gly Gly Asp Pro Met Thr Gln Leu Val Ser Pro Ser Ile Ly 50 55 60	s													
25	Thr Ile His Tyr Asn Tyr Cys Glu Ala Gly Gln Cys Ala Arg Trp Gl 65 70 75 80	n.													
	Arg Tyr Asn Arg Cys Leu Lys Ser Lys Ile Cys His Ile Ala Ser Gl:	n													
30	Xaa Asp Cys														
35	(2) INFORMATION FOR SEQ ID NO:474:														
33	(i) SEQUENCE CHARACTERISTICS:														
40	(A) LENGTH: 89 amino acids (B) TYPE: amino acid														
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear														
45	(ii) MOLECULE TYPE: Protein														
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:474:														
50	Val Asp His Glu Val Phe Gln Gln Phe Gly Glu Ser Leu Pro Val Ty	r													
	Lys Pro Thr Leu Pro Pro Met Val Phe Gly Asn Arg Asp Lys Lys Il.	e													
55	Xaa Gly Gly Thr Asp Ala Leu Val Leu Arg Tyr Leu Thr Pro His Gly	Y													

	Хаа	Trp 50		Ile	His	Ser	Met 55	Tyr	Gln	Asp	Asn	Lys 60	His	Met	Leu	Thre
5		Phe	Arg	Gly	Val		Arg	Phe	Gly	Tyr		Met	Lys	Met	Leu	Xaa
	65	m Ъ	-1-	_	_	70					75					80
	ASII	THE	ite	ser	Lys 85	iie	Met	11e	GIY							
10																
			(2) IN	FORM	ATIO	N FOI	R SE) ID	NO:	175:					
		(:	i) sı	EQUE	NCE (CHAR	ACTE	RIST	ics:							
15			(A)	LEN	GTH:	99 8	amino	ac:	ids							
							aci									
							S: s:	_	€							
20			(0)	TOP	DLOG	Y: 1:	inear	•								
		(ii) ?	OLE	TULE	TYP	E: Pi	rote	in							
		``	, .													
		(2	ci) S	EQU	ENCE	DESC	CRIP	NOI	: SE	Q ID	NO:	175:				
25																
	Val	Tyr	Xaa	Arg	Asn	Gly	Val	Val	Thr	Ala	Arg	Ala	Val	Ile	Ser	His
	1				5					10					15	
30	Arg	Met	Pro	_	Gly	Thr	Met	Phe		Tyr	His	Ala	Gln	-	Lys	His
30	~1 -		_,	20		_			25	_		_		30		
	11e	Gin	Thr	Pro	GIĀ	Ser	Glu	11e	Thr	Asp	Thr	Arg	Gly 45	Gly	Ser	His
	Asn	Ala		Thr	Ara	Tle	His		Tare	Pro	ጥb ፦	Gln		Val	Gly	Gly
35	-10	50		****	AI G	110	55	Deu	בעת	110	1111	60	Deu	vai	GIŞ	GLY
	Tyr	Ala	Gln	Ile	Ser	Tyr	His	Phe	Asn	Tyr	Tyr		Pro	Ile	Gly	Asn
	65					70				•	75	_			-	80
	Gln	Arg	Asp	Leu	Tyr	Val	Ala	Val	Arg	Lys	Met	Lys	Glu	Val	Asn	Trp
40					85					90					95	
	Leu	Glu	Asp													
45																
			(2)	INF	ORMA	TTOP	I FOF	SEÇ) ID	NO: 4	76:					
		(i) SE	OHEN	ICE C	ישמפי	CTEF	יוכתי	٠٥٠.							
		`-					amin									
50							acid									
							: si		:							
			(D)	TOPO	LOGY	: li	near									
55		(i	i) M	OLEC	ULE	TYPE	: Pr	otei	n							

		(х	(1) 5	EQUE	ENCE	DESC	RIP.	I'ION:	: SE(ם דם	NO:	1/6:				V.
5		Thr	Trp	Gly		Asn	Pro	Glu	Met	_	Va1	Asn	Phe	Ser	Glu	Pro
	1				5					10					15	
	Phe	Pro	Glu	Ile 20	Asn	Asp	Ile	Asn	Asp 25	Gln	Arg	Ala	Tyr	Asp 30	Tyr	Met
10	Gly	Leu	Glu 35	Pro	Gly	Gln	Lys	Ala 40	Glu	Asp	Ile	Asp	Leu 45	Gly	Tyr	Val
	Phe	Leu 50	Gly	Ser	Cys	Thr	Asn 55	Ala	Arg	Leu	Ser	Asp 60	Leu	Ile	Glu	Ala
15	Ser	His	Ile	Val	Lys	Gly	Asn	Lys	Val	His	Pro	Asn	Ile	Thr	Ala	Ile
	65				_	70					75					80
	Val	Val	Pro	Gly	Ser 85	Arg	Thr	Val	Lys	Lys 90	Glu	Ala	Glu	Lys	Leu 95	Gly
20	Leu	Asp	Thr	Ile		Lys	Asn	Ala	Gly 105		Glu	Trp	Arg	Glu 110		Gly
	Cys	Ser	Met 115		Leu	Gly	Met	Asn 120		Asp	Gln	Val	Pro		Gly	Val
25	vi.	Cys		50 ×	mh		3		200		C1	C1		C15	C3	T > 40
		130					135					140				
		Ala	Arg	Thr	His		Val	Ser	Pro	Ala		Ala	Ala	Ala	Ala	
	145					150					155					160
30	Ile	His	Gly	Lys	Phe 165	Val	Asp	Val	Arg	Lys 170	Val	Val	Val			
<i>35</i>			(2)	INE	FORM	TION	N FOR	R SE(Q ID	NO:	477:					
		/-	١		ICE C	ים געי	~m===	TOTAL	rce.							
		, ,		EQUEN LENC												
									ilus							
40				TYPE												
				STRA				-	3							
			(ח)	TOPO	JLOG	(: 1)	ıneai	•								
45		(i	i) 1	OLEC	CULE	TYPE	E: Pr	otei	in							
		(x	:i) S	EQUE	ENCE	DESC	CRIPT	CION:	: SE(Q ID	NO:	177:				
	Val	Trp	Δςς	1	ui ~	T/a l	Lev	Yəs	Glv.	Tare	Yan	Glaz) C-	Dro	G15	זים. ז
50	1	тъ	usii	wia	7. T.S	vai	Deu	Add	GIY	10	nad	GIY	usp	210	15	Den
		ጥተ	Tla	Aen	_	ui c	Lev	Tle	Hi e	_	Va1	ጥኮ ~	562	Dro		Δla
	Leu	Tyr	116	Asp 20	Leu	การ	Led	116	H15	GIU	val	THE	ser	30	GIN	W19
	Phe	Glu	Glv		Ara	Leu	G] n	Asn		Lvs	Leu	Arg	Ara	-	Asp	Leu
55				Deu	_							, m g				

	٠	Thr	Phe 50	Ala	Thr	Leu	Asp	His 55	Asn	Val	Pro	.Thr	Ile 60	Asp	Ile	Phe	Asn 💀 .
5		Ile 65	Lys	Asp	Glu	Ile	Ala 70	Asn	Lys	Gln	Ile	Thr 75	Thr	Leu	Gln	Lys	Asn 80
			Ile	Asp	Phe			His	Ile	Phe			Gly	Ser	Asp		
10		Gly	Ile	Val		85 Met	Val	Gly	Pro		90 Thr	Gly	Leu	Thr		95 Pro	Gly
		Lys	Thr	Ile	100 Val	Cys	Gly	Asp	Ser	105 His	Thr	Ala	Thr	His	110 Gly	Ala	Phe
15		Clv	212	115	77.	Dha	C1	T1.	120	m-~	C	G1	**- 1	125	•••	**- 1	D 1.
		GIY	Ala 130	116	AIG	Pne	GIY	135	GIĀ	THE	Ser	GIU	140	GIU	HIS	val	Pne
		Ala 145	Thr	Gln	Thr	Leu	Trp 150	Gln	Thr	Lys	Pro	Lys 155	Asn	Leu	ŗĀż	Ile	Asp
20		Ile	Asn	Gly	Thr			Thr	Gly	Val			Lys	Asp	Ile		
		His	Leu	Ile	Lys	165 Thr	Tyr	Gly	Val	Asp	170 Phe	Gly	Thr	Gly	Tyr	175 Ala	Leu
25		Glu	Phe	Thr	180 Glv	Glu	Thr	Tle	Lvs	185 Asp	Len	Ser	Met	Aen	190	Ara	Met
				195					200					205			
		Thr	Ile 210	Cys	Asn	Met	Ala	Įle 215	Glu	Gly	Gly	Ala	Lys 220	Tyr	Gly	Ile	Ile
30		Gln 225	Pro	Asp	Asp	Ile	Thr 230	Phe-	Glu	Tyr	Val	Lys 235	Gly	Arg	Pro	Phe	Ala 240
		Asp	Asn	Phe	Ala	Lys 245	Ser	Val	Asp	Lys	Trp 250	Arg	Glu	Leu	Tyr	Ser 255	Asp
35		Gly	Thr	Thr	Arg 260		Leu	Ile	Val		230					233	
				(2)	TNE	'ADM'	T T C N	FOR	CEC		NO . 4	70.					
10				(2)	INE	ORUZ	11101	FOR	SEQ	, 10	NO:4	170:					
			(i		_			CTER mino									
15				(B)	TYPE	:: an	nino	acid	l								
								: si near	•	•							
50			(i	.i) M	OLEC	ULE	TYPE	: Pr	otei	n							
			(x	i) S	EQUE	NCE	DESC	RIPT	'ION:	SEQ	ID	NO:4	78:				
55			Ile	Ile	Asn		Val	Met	Thr	Ser		Thr	Pro	Val _.	Thr		Val
		1				5					10					15	

	 Ala	Thr	ĠĮĀ	Pro 20	Leu	Thr	Asn	Val	Ala 25	Thr	Āla	Leu	Ile	Arg 30	Asp	Pro ,,,,
5	Arg	Ile	Ala 35	Glu	His	Ile	Glu	Ser 40	Ile	Thr	Leu	Met	Gly 45	Gly	Gly	Thr
	Phe	Gly 50	Asn	Trp	Thr	Ala	Tyr 55	Ser	Arg	Ile	Leu	Ser 60	Ile	Pro	Thr	Ser
10	Phe 65 Ile	Leu	Thr	Lys	Ser	Xaa 70	Суѕ	Gly	Phe	Val	Asn 75	Met	Pro	Leu	Gly	Val 80
15																
20		(i) SI (A)	EQUEI LENC	VCE (CHARA 54 a	ACTE	R SE(RIST) D aci	CS:	NO:	179:					
25		<u>(</u> ;	(C) (D)	STRA	ANDEI	ONESS	S: s: inea:	ingle						• .		
30	Val							rion: Asn					Leu	His	Xaa	His
35	1 Ile	Val	Xaa	Gly 20	5 Trp	Gln	Gly	Val	Lys 25	10 Lys	Thr	Cys	Asp	Thr	15 Ala	Glu
10		His	Asp 35 Leu				Lys	Хаа 40	Ser	Asp	Val	Val	Tyr 45	Glu	Glu	Gln
40		50	(2)) INI	FORM	ATIO	N F01	R SE(QI Q	NO:	180:					
45		(i	(A)	LEN	STH:	45 a		RISTI o aci								
50							S: s: inea:	ingle r	•							
		. (1	ii) 1	OLE	CULE	TYPI	E: P	rotei	n							
55		()	ki) S	EQUI	ENCE	DESC	CRIP	rion:	SEQ	Q ID	NO:	180:				

	Val	Ala	His	Ile	His 5	Val	Val	Asn	Gly	Thr.	Tyr	Tyr	Phe	His	Gly 15	His.
5	Ile	Val	Pro	Gly 20	Trp	Gln	Gĺy	Val	Lys 25	Lys	Thr	Phe	Asp	Thr		Glu
	Glu	Leu	Glu		Tvr	Tle	Lvs	Gln		Asp	Ser	GIV	Tle	30		
			35		-3-		_,_	40				013	45			
10																
			(2)) IN	FORM	ATIO	V FOI	R SE	O ID	NO:	481:					
		(i	i) S1	EQUEI	VCE (CHAR	ACTE	RIST	ics:							
15			(A)	LENG	GTH:	148	amin	no ac	cids							
			(B)	TYP	: ar	nino	acio	3								
			(C)	STR	ANDEI	ONES:	5: s:	ingle	9							
			(D)	TOP	DLOGY	7: 1:	inear	•								
20																
		(i	ii) 1	MOLE	CULE	TYP	E: P	rote:	in							
25		()	(1) 5	SEQUI	ENCE	DES	CRIP	PION:	: SE() ID	NO:4	181:				
25	77-1	~	m>	m	•	01 .	••- 1	63	•		73	63		_		_
	1	Cys	THE	TYT	Cys 5	GIY	vai	GIĀ	Cys	ser 10	Pne	GIU	vaı	Trp	Thr 15	rys
		Ara	Glu	Tla	_	Tare	V- 1	Gln.	P~0		ui.	A 575	502	Dro	Ala	7.00
30	nsp	n. g	Gru	20	Deu	цуз	vai	GIII	25	Ser	nis	rop	361	30	AIG	Poli
~	Lvs	Ile	Ala		Cvs	Val	Lvs	Glv		Phe	Ser	Tro	Glv		Ile	Asn
	-4-		35		4,70		-10	40	-,-				45			
	Ser	Asp	Gln	Arg	Leu	Thr	Lys	Pro	Leu	Val	Arq	Lys	Asn	Gly	Glu	Phe
35		50		_			55				-	60		-		
	His	Glu	Val	Glu	Trp	Asp	Glu	Ala	Leu	Asn	Val	Ile	Ala	Asp	Asn	Phe
	65					70					75					80
	Thr	Ser	Ile	Lys	Glu	Lys	Tyr	Gly	Pro	Asp	Ala	Leu	Ser	Phe	Ile	Ser
10					85					90					95	
	Ser	Ser	Lys	Ala	Thr	Asn	Glu	Glu	Ser	Xaa	Leu	Xaa	Gln	Lys	Leu	Ala
				100					105					110		
	Arg	Gln		Ile	Gly	Thr	Asn		Val	Asp	Ser	Leu	Xaa	Lys	Asp	Ile
15			115					120					125			
	Xaa		His	Leu	Gln	Gln		Ala	Tyr	Leu	Glu	_	Leu	Asp	Thr	Ala
		130					135					140				
		Asp	Ser	Arg												
50	145															
			(2)	INF	ORMA	MOITA	FOF	SEC) ID	NO:4	82:					
		,,	,		·~ -											
55		(1		EQUEN												
			(A)	LENC	TM:	T0.0	amır	io ac	JQS.							

5	(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Protein	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:482:	
	Val Thr Lys Ala Val Gly Glu Arg Ile Pro Ile Thr Ile Ile Val Ala	à
15	Val Leu Ala Leu Ile Val Ala Leu Ile Ile Ala Ile Pro Ile Gly Ile 20 25 30	€
	Ile Ser Ala Met Lys Arg Asn Ser Trp Leu Asp Ile Thr Leu Met Ile 35 40 45	•
20	Ile Ala Leu Ile Gly Leu Ser Ile Pro Ser Phe Trp Gln Gly Leu Leu 50 55 60	1
	Phe Ile Leu Ala Xaa Ser Leu Lys Leu Asp Ile Leu Pro Pro Ser Tyr 65 70 75 80	•
25	Met Pro Glu His Pro Ile Ser Val Asp Phe Thr Cys Thr Cys His Try 85 90 95	•
	Asn Lys Tyr Cys Cys Phe Tyr His Ala Tyr 100 105	
30	(2) INFORMATION FOR SEQ ID NO:483:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 46 amino acids (B) TYPE: amino acid	
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:483:	
45	Val Ala Glu Leu Leu Gly Gly Ser Ala Val Thr Glu Gln Val Phe Ass	1
50	Ile Asn Gly Ile Gly Arg Tyr Ile Val Gln Lys Gln Leu Ile Pro Asp 20 25 30 Ile Pro Ala Val Met Gly Gly Val Val Tyr Ile Tyr Gln Leu	•
	35 40 45	
55	(2) INFORMATION FOR SEQ ID NO:484:	

	· ·	(i) S	EQUE	NCE	CHAR	ACTE	RIST	ics:							,	٠.
			(A)	LEN	GTH:	152	ami	no a	cids								
5			(B)	TYP	E: a	mino	aci	đ									
			(C)	STR	ANDE	DNES	S: s	ingl	e								
	•		(D)	TOP	OLOG	Y: 1	inea	r									
10		(:	ii) 1	MOLE	CULE	TYP	E: P	rote	in								
		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	484:					
15								_									
,,,		Thr	His	Ile		Ile	Asp	Gly	Asp		Cys	Pro	Val	Xaa	Asp	Ser	
	1			_	5				_	10					15		
	He	Ile	Asp		Thr	Thr	Glu	Thr		Ile	Phe	Val	Thr		Ile	Arg	
20		-	_	20		_			25	_				30			
	ser	Phe		HIS	Pne	Ser	Asn		Leu	Tyr	Pro	Pro		Val	Ser	Thr	
	T	Φ	35			~ 1	5	40			_	_	45		_		
	Leu	Tyr	vai	ASP	Asp	GIY		Asp	ALA	vaı	Asp		Lys	He	Val	Gln	
25	T	50	m 1	•	•		55		••• •			60	_		_		
	65	Ser	IIII	гЛS	Asp		IIe	vai	vaı	Tnr		Asp	TYT	GIY	Leu		
		T 011	T	17-1	>	70	*** 1	7	-1-	**- 1	75	***		•		80	
	ser	Leu	reu	vai	ASP 85	Lys	vai	Leu	11e		mec	HIS	HIS	ASN		Lys	
30	Tle	Tyre	Aen	Ser.		7.00	T10	C1=	~1 n	90	T 011	3	T	1	95	W	
	110	Tyr	ASII	100	цуs	ASII	116	GIII	105	Leu	rea	ASP	гуs	110	Tyr	met	
	Asn	Ala	GIn		Ara	Lare	Gln	Gly		n ra	ui.c	Tura	C1.		Dro	Dwo	
			115	***	A.y	Dy S	GIII	120	GIY	AL Y	nis	БУЗ	125	FLO	PIO	PIO	
<i>35</i>	Phe	Thr		Gln	Asp	Gln	Lvs		Phe	Glu	Gln	Ser	_	T.em	Tage	17a 1	
		130					135			0		140	200	Deu	בעם	Val	
	Ile	His	Ara	Ile	Lvs	Glu		Asp									
	145					150											
40																	
			(2)	INE	ORM	ATIO	N FOR	SEC) ID	NO: 4	185:						
45		(i	.) SE	QUEN	ICE (CHARA	CTE	RISTI	cs:								
45			(A)	LENC	STH:	66 a	mino	aci	.ds								
			(B)	TYPE	E: an	nino	ació	ì									
			(C)	STRA	NDEI	ONESS	: si	.ngle	•								
50			(D)	TOPO	LOGY	(: lí	inear	•									
		(i	i) M	OLEC	CULE	TYPE	: Pr	otei	.n								
55		(x	i) S	EQUE	ENCE	DESC	RIPI	: NOI	SEC	OI O	NO:4	85:					

	Val	Ile	Glu	Ser	Leu 5	Pro	Glu	His	Val	Asp	. Thr	Ile	Ile	Asp	Ile 15	Lysw	
5		Arg	Thr	Glu		Glu	T.eu	Tle	Thr		Glu	LVS	Glu	T.e.n		Gln	
	501	9	****	20	Gry	Olu	Deu		25	D3.5	014	2,3	Gra	30	Val	GIII	
	Leu	Lys	Phe		Pro	Glu	Asn	Ile		Asn	Val	Asp	Lys		Tyr	His	
		-	35					40	•			•	45				
10	Arg	Glu	Thr	Phe	Gly	Glu	Phe	Asp	Thr	Arg	Arg	Thr	Phe	Glu	Lys	Cys	
		50					55					60					
	Asn	Ser															
	65																
15																	
			(2)) IN	FORM	ATIO	I FOI	R SE	Q ID	NO:	486:						
			:	FOLIE	VCE (711 A D 1	CME) T CM									
20		(.		-		117											
						nino			-145								
						ONESS			e								
						7: li		_									
25																	
		(:	ii) 1	MOLE	CULE	TYPE	E: Pi	ote	in								
		(2	ki) S	SEQUI	ENCE	DESC	CRIP	CION:	: SE(Q ID	NO:	486:					
30																	
		Asp	Ser	Ile		Leu	Asp	Ala	Ala		Thr	Pro	Leu	Val		Ser	
	1		S		5	~1		•		10	•• • •	_,			15		
35	GIY	Ala	Pro	Arg 20	Leu	GIn	Ser	Asn	Leu 25	Pne	HIS	11e	Vai	TAR	GIU	Pne	
35	Val	Asp	Thr		Tie	Glu	Aen	Val	-	Dhe	Tare	Wat	Lare		ሞኮድ	Lve	
	Val	rsp	35	Dea	116	Gru	ASD	40	nis	FILE	Lys	Mec	45	цуз	1111	пуs	
	Lvs	Glu		Tro	Leu	Leu	Asn		Glv	Ile	Glu	Ala		Gln	Ser	Tvr	
40		50					55					60				-3-	
	Phe	Asn	Val	Xaa	Asp	Leu	Tyr	Ser	Glu	Gln	Ala	Met	Val	Leu	Val	Arg	
	65					70					75					80	
	Asn	Ile	Asn	Leu	Ala	Leu	Arg	Ser	Cys	Arg	Met	Phe	Leu	Gly	Ser	Tyr	
45					85					90					95		
	Lys	Ser	Tyr	Arg	Cys	Lys	Asn	Val	Leu	Lys	Phe	Gly	Суѕ	Met	Ile	Gly	
				100					105					110			
	Glu	Gln	Pro	Gly	Gly												
50			115														
			(2)	INE	ORMA	TION	FOF	SEC	OI C	NO: 4	187:						
<i>EE</i>		1 =			ice c	י מי געי	CURE) T CM T									
55		(2		-		270											
			(4)	אוזינוע		270	anti	. a C	-105								

	···			TYP					2							,
				TOP												
5			, - ,					_								
		(:	ii) 1	MOLE	CULE	TYPI	E: Pi	rote:	in							
		(:	xi)	SEQUI	ENCE	DES	CRIP	rion	: SE	Q ID	NO :	187:				
10	.0.						_					_				
		Val	Ser	Leu		Xaa	Val	Leu	Ile		Gly	Ile	Gly	Ala	Leu	Thr
	1	_		_	5		_			10		_	_		15	
15	Asn	Ser	He	Ser 20	Xaa	Asn	Leu	GIA	Arg 25	Asn	Thr	Val	Leu	Val 30	Leu	GIÀ
	Ile	Ala	Leu	Pro	Xaa	Ile	Tyr	Phe	Thr	Leu	Ile	Ile	Arg	Ser	Xaa	Asp
			35					40					45			
	Val	Xaa	Asp	Thr	Xaa	Arg	Ser	Arg	Val	Lys	Ala	Phe	Ile	Pro	Leu	Phe
20		50					55					60				
	Ile	Leu	Gly	Met	Val	Phe	\mathtt{Trp}	Ala	Ile	Gln	Glu	Gln	Gly	Ser	Asn	Val
	65					70					75					80
25	Leu	Asn	Ile	Tyr	Gly 85	Xaa	Xaa	His	Ser	Asp 90	Met	Lys	Leu	Asn	Leu 95	Phe
	Gly	Trp	Lvs	Thr		Phe	Glv	Glu	Ala		Phe	Gln	Ser	Ile	Asn	Pro
	_	-	-	100			_		105					110		
	Leu	Phe	Ile	Leu	Leu	Leu	Ala	Pro	Ile	Ile	Ser	Leu	Leu		Gln	Lys
30			115					120					125	-		-
	Xaa	Gly	Thr	Lys	Gln	Pro	Ser	Leu	Pro	Val	Lys	Phe	Ala	Ile	Gly	Thr
		130		-			135				-	140			-	
	Phe	Leu	Ala	Gly	Ala	Ser	Tyr	Ile	Leu	Ile	Gly	Ile	Val	Gly	Tyr	Ala
35	145					150	_				155			-	_	160
	Ser	Gly	Ser	Ser	Asn	Phe	Ser	Val	Asn	Trp	Val	Ile	Leu	Ser	Tyr	Ile
					165					170					175	
	Ile	Cys	Val	Ile	Gly	Glu	Leu	Cys	Leu	Ser	Pro	Thr	Gly	Asn	Ser	Ala
40				180					185					190		
	Ala	Val	Lys	Leu	Ala	Pro	Lys	Ala	Phe	Asn	Ala	Gln	Met	Met	Ser	Ile
			195					200					205			
45	Trp	Tyr	Leu	Thr	Asn	Ala	Ser	Ala	Gln	Ala	Ile	Asn	Gly	Thr	Leu	Val
45		210					215					220				
	Lys	Leu	Ile	Glu	Pro	Leu	Gly	Gln	Thr	Asn	Tyr	Phe	Ile	Phe	Leu	Gly
	225					230					235					240
50	Val	Val	Ala	Ile	Ile	Val	Thr	Thr	Ile	Cys	Ile	Ser	Ile	Leu	Thr	Phe
50					245					250					255	
	Asn	His	Gln	Ser		Glu	Arg	Tyr	Thr		Ile	Leu	Leu	Ala		
				260	-		-	-	265					270		
55																
			(2)	INF	ORMA	TION	I FOF	SEC	OID	NO: 4	188:					

355

		į)	.) SE	QUE	ICE (HAR	CTE	RISTI	cs:							
			(A)	LENC	STH:	80 a	mino	aci	.ds							
5			(B)	TYPE	E: au	nino	ació	1								
·					INDE			-	•							
			(D)	TOPO	DLOGY	(: 1i	inear	:								
		(i	i)	OLEC	CULE	түрі	E: Pr	otei	n							
10		` `	, .													
		()	ci) S	EQUE	ENCE	DESC	CRIPT	: NOI	SEC) ID	NO: 4	188:				
a.e.	Val	Thr	Pro	Pro	His	Pro	Asn	Gly	Val	Ser	Gln	Glu	Val	Leu	Ala	Ala
15	1				5					10					15	
	Cys	Tyr	Leu	Thr	Gln	Xaa	Thr	Gln	Val	Xaa	Xaa	Xaa	Gly	Gly	Ala	Xaa
				20					25					30		
20	Ser	Ile		Xaa	Leu	Thr	Tyr		Ala	Xaa	Thr	Ile		Lys	Val	Asp
	.	7 1 -	35	-1	5	61	6	40	25-	**- 1		C	45	v	T	v
	Lys	50	лаа	GIY	Pro	СТĀ	55	GIN	Pne	vai	Ala	60	лаа	хаа	гЛя	хаа
	Leu		Glv	Gln	Val	Δla		Cvs	Ser	His	Xaa		Xaa	Thr	Xaa	Gln
25	65			01	•	70	-1-	0,0	-		75	9				80
						-										
			(2)	INE	ORM	ATIO	1 FOE	R SEC) ID	NO:4	189:					
30																
		()		-	CE (
					STH:				.ds							
25			-		: ar											
35					ANDEI DLOG				=							
			(2)	101				•								
		(5	i) N	OLEC	CULE	TYPE	E: P1	rotei	n							
40																
		()	ci) S	EQUE	ENCE	DESC	CRIPT	CION:	SEC	O ID	NO:4	189:				
	11-1	nh -	G1	**-1	03	~ 1	.1.	01 -	C	71-			*	mb	~	G1
45	vai 1	Pne	GIN	vaı	GIY	GIĀ	Ala	GIn	ser	11e	Ala	AIa	reu	THE	1yr 15	Gly
	_	Glu	Thr	Tle	Pro	Lve	Va 1	Asn	Lvs		Va 1	Glv	Pro	Glv		Gln
		022		20		2,5	•42	·p	25		***	023		30		02
	Phe	Gly	Xaa	Ile	Cys	Pro	Lys	Asn	Ile	Tyr	Leu	Asp	Arg			
50		_	35		_			40					45			
			(2)	INI	FORM	ATIO	V FOI	R SEC	DI	NO:	490:					
55																
		(3	i) SI	EQUE	VCE (CHAR	ACTE	RIST	cs:							

5	(A) LENGTH: 96 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	V
10	(ii) MOLECULE TYPE: Protein(xi) SEQUENCE DESCRIPTION: SEQ ID NO:490:	
15	Val Gly Met Ser Ile Val Leu Ala Gly Gly Met Glu Asn Met Ser Glr 1 5 10 15 Xaa Pro Met Leu Xaa Asn Asn Ser Arg Phe Gly Phe Lys Met Gly His 20 25 30	
20	His Ser Met Val Asp Ser Met Val Tyr Asp Gly Leu Thr Asp Val Phe 35 40 45 Thr Gln Tyr His Met Gly Ile Thr Ala Glu Asn Leu Val Gly Ala Ile 50 55 60	e
25	Trp Tyr Phe Lys Arg Arg Thr Lys Ile His Val Ala Gly Asn Leu Thr 65 70 75 80 Thr Ile Lys Gln Tyr Val His Ser Lys Met Val Asn Leu Ile Val Lys 85 90 95	
30	(2) INFORMATION FOR SEQ ID NO:491:(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 130 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: Protein(xi) SEQUENCE DESCRIPTION: SEQ ID NO:491:	
45	Val Ile Ser Met Lys Trp Leu Ser Arg Ile Leu Thr Val Ile Val Th 1 5 10 15 Met Ser Met Ala Cys Gly Ala Leu Ile Phe Asn Arg Arg His Gln Le	
50	20 25 30 Lys Thr Lys Thr Leu Asn Phe Asn His Lys Ala Leu Thr Ile Ile Il 35 40 45 Pro Ala Arg Asn Glu Glu Lys Arg Ile Gly His Leu Leu His Ser Il	
55	50 55 60 Ile Gln Gln Val Pro Val Asp Val Ile Val Met Asn Asp Gly Se 65 70 75 80	

	- Thr	Asp	Glu	Thr	Ala 85	Arg	Val	Ala	Arg	Ser 90	Tyr	Gly	Ala	Thr	Val	Val ↔
5	Asp	Val	. Val	Asp 100		Thr	Asp	Gly	Lys 105		Tyr	Gly	Glu	Ile 110	Thr	Cys
			115		Cys	Asp	Ala	Cys 120		Туг	Glu	Ser	Tyr 125		Leu	Сув
10	Arg	130														
			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	492:					
15		((A)	LEN	GTH:	124	ACTE	no a								
20			(C)	STR	ANDE	ONES.	acio S: s: inea:	ingl	e							
25							E: P									
	٠.		•				CRIP									
30	1				5		Val			10					15	
				20			Ala		25					30		
35			35				Phe Ser	40					45			
		50					55 Val					60				
40	65					70	Trp				75					80
					85		Gln			90					95	
45				100			Ile		105				C/3	110	7116	116
			115					120	•		-3-					
50			(2)	INF	ORMA	TION	FOR	SEC	ID	NO : 4	93:					
		(i					CTER amin									
55							acid : si									

	·· ·		(D)	торо	DLOG	Y: 1:	inear	-			·					•
5		(i	li) h	OLEC	TULE	TYPI	E: Pi	rotei	in							
		()	ci) S	EQUE	ENCE	DESC	CRIPT	NOI:	SE	Q ID	NO:4	93:				
10	Val	Lys	Ser	Leu	Lys 5	Thr	Val	Ile	Gly	Met 10	Asn	Asn	Lys	Glu	His 15	Ile
	Lys	Ser	Val	Ile 20	Leu	Ala	Leu	Leu	Va1 25	Leu	Met	Ser	Val	Val	Leu	Thr
15	Tyr	Met	Val 35	Trp	Asn	Phe	Ser	Pro 40	Asp	Ile	Ala	Asn	Val 45	Asp	Asn	Thr
	Asp	Ser 50	Lys	Lys	Ser	Glu	Thr 55	Lys	Pro	Leu	Thr	Thr 60	Pro	Met	Thr	Ala
20	Lys 65	Met	Asp	Thr	Thr	Ile 70	Thr	Pro	Phe	Gln	Ile 75	Ile	His	Ser	Lys	Asn 80
	Asp	His	Pro	Glu	Gly 85	Thr	Ile	Ala	Thr	Val 90	Ser	Asn	Val	Asn	Lys 95	Leu
25	Thr	Lys	Pro	Leu 100	Lys	Asn	Lys	Glu	Val 105	Xaa	Ser	Val	Glu	His 110	Val	Arg
	Arg	Asp	His 115	Asn	Leu	Met	Ile	Pro 120	Asp	Leu	Ser	Ser	Asp 125	Phe	Thr	Leu
30	Phe	Asp 130	Phe	Thr	Phe	Asp	Leu 135	Pro	Leu	Ser	Thr	Tyr 140	Leu	Gly	Gln	Val
	Xaa 145	Glu	His													
35			(2)	INF	FORM	ATION	I FOF	SEC) ID	NO : 4	94:					
		(i				CHARA										
40			(B)	TYPE	E: an	90 a nino	ació	ì								
45						ONESS : li		_	•							
		(i	.i) N	OLEC	ULE	TYPE	: Pr	otei	.n							
50		(э	:i) S	EQUE	ENCE	DESC	RIPI	:NOI	SEC) ID	NO : 4	94:				
	Val 1	Ile	Leu	Pro	Lys 5	Leu	Val	Thr	Tyr	Gln 10	Val	Gln	Pro	Met	Ser 15	Met
55	Met	Leu	Ile	Pro 20	Lys	Gly	Xaa	Xaa	Glu 25	Leu	Ala	Leu	Arg	Phe 30		Gln

	 Gly	Ile	Asn 35	Xaa	Gly	Gly	Asp	Ala 40	Leu	Lys .	Lys	Arg	Thr 45	His	Phe	Asn 🛂
5	Ile	Ala		Ala	Phe	Asn		Asp	Val	Arg	Lys	Leu 60	Asp	Gly	Ala	Val
	Yas	50 Arg	Len	Gl.	Yaa	Tare	55	Yaa	LVS	Ara	Asn		T.em	Phe	Хаа	Asn
	65	ALG	шеш	Gru	Add	70	nop	2100	2,0		75					80
		Thr	Arg	Val	Gln	-	Arg	Glu	Asn	His						
10			_		85		_			90						
			(2)	INE	FORM	OITA	7 FO	R SE) ID	NO:4	195:					
15																
		į)		_			ACTE									
							amir		cids							
							acio	•								
20							s: s: inea:	-	=							
			(5)	1020	JLOG.		liieai	-								
		(3	ii) 1	MOLE	CULE	TYP	E: P	rote	in							
25		•														
25		()	ci) S	SEQUI	ENCE	DES	CRIP	rion:	: SE	Q ID	NO:4	195 :				
	Val	Leu	Val	Gln	Pro	His	Ile	Val	Ile	Lys	Pro	Glu	Ala	Gln	Gln	Ala
30	1				5					10					15	
	Ile	Lys	Ala		Ala	Glu	Asn	Gln		Glu	Ser	Ile	Lys		Thr	Pro
				20	_		_	_	25		_	~ .		30	2	
	HIS	Ala	Thr	Val	Asp	GIu	Leu	Asp 40	GIU	Ala	Asn	GIN	րеս 45	116	ser	Asp
3 5	Th.	Leu		Gl n	בות	Gla	Gla		Tle	Glu	Δen	ሞኮኖ		Gln	Asn	Ala
	****	50	Lys	G1	714	01	55	014		014		60		02		
	Ala	Val	Thr	Asp	Val	Arq		Gln	Thr	Ile	Lys		Ile	Glu	Gln	Ile
40	65					70					75					80
40	Lys	Pro	Lys	Val	Arg	Arg	Lys	Arg	Ala	Ala	Leu	Asp	Ser	Ile	Glu	Glu
					85					90					95	
	Asn	Xaa	Lys	Asn	Gln	Leu	Gly	Cys	Asn	Pro	Glu	Ile	Arg	Gly	Ile	Leu
45				100					105					110		
	Leu	Lys	Asp	Glu	Arg	Asp	Суѕ	Trp	Leu	Leu	Asp	Thr	Phe	Lys		
			115					120					125			
											406					
50			(2) IN	FORM	ATIO	N FO	R SE	2 10	NO:	496:					
			() e	POLIE	MCE .	CHYB	አርጥድነ	ם ד כייי	TCC -							
		(:					ACTE:									
55							aci									
<i>-</i>							S: s		е							

	(D) TOPOLOGY: linear	w
	(ii) MOLECULE TYPE: Protein	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:496:	
	Val Ser Leu Leu Pro Leu Ile Ser Asp Asn Met Tyr Leu Gly Tyr Ile	
10	1 5 10 15	
	Ala Gly Leu Leu Ala Ala Tyr Ala Gly Gly Phe Val Cys Thr Tyr Leu	
	20 25 30	
	Phe Gly Pro Thr Lys Ala Met Arg Gln Asp Arg Phe Val Gly	
15	35 40 45	
	(2) INFORMATION FOR SEQ ID NO:497:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 90 amino acids	
	(B) TYPE: amino acid	
	(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Protein	
30	(vi) Appropriate appropriate to the contract of the contract o	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:497:	
	Val Cly Van Van Tle Man ton Die ee als als	
	Val Gly Xaa Xaa Ile Met Lys Phe Lys Ala Ile Ala Lys Xaa Ser Leu 1 5 10	
35	10 13	
	Ala Leu Gly Met Leu Ala Thr Gly Val Ile Thr Ser Asn Val Gln Ser	
	20 25 30 Val Gln Ala Xaa Thr Glu Val Xaa Gln Gln Ser Glu Ser Glu Leu Xaa	
	35	
40	40 45 His Tyr Tyr Asn Lys Pro Val Leu Glu Arg Lys Asn Val Thr Gly Tyr	
	33 00	
	Xaa Tyr Thr Glu Lys Gly Lys Asp Tyr Ile Asp Val Ile Val Asp Asn 65 70 75 80	
45	70 75 80 Gln Tyr Ser Gln Ile Ser Leu Val Arg Ile	
	85 90	
	(2) INFORMATION FOR SEQ ID NO:498:	
50	•	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 147 amino acids	
5 5	(B) TYPE: amino acid	
	(C) STRANDEDNESS: single	

	··· ·· ·		(D)	TOP	OLOG	Y: 1	inea	r									a
5		(ii)	MOLE	CULE	TYP	E: P	rote	in								
		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	498:					
10		Ile	Asn	Ile	Glu	Leu	Val	Leu	His	Gln	Arg	Xaa	Ala	Asn	Pro	Val	
10	1				5					10					15		
	Arg	Ile	Ala		Ile	Ser	Asn	Asn	Ala	Thr	Val	Ser	Gln	Ala	Asp	Gln	
				20					25					30			
15	Ala	Thr		Ile	Asn	Ser	Leu		Phe	Thr	Ser	Asn		Pro	Asn	Arg	
			35	-1			_ •	40					45				
	ASII	1yr 50	ALA	Thr	AIA	ser	Ala	Asn	Glu	Ile	Thr		Lys	Thr	Val	Ser	
	Acn		50-	N	Mh	C)	55	3	.1.	•		60					
20	65	VQ1	261	ALG	1111	70	Asn	ASII	AIA	ASN	75	Thr	vai	Thr	Val		
		Gln	Asn	Glv	Thr		Ser	ሞb~	Val	Th-	_	Dro	17-1	T	***	80	
			,	017	85		Jer	1111	Val	90	Vai	PIO	Val	Lys	95	vai	
	Ile	Pro	Glu	Ile		Ala	His	Ser	His		Thr	Val	Gln	GIV		Acn	
25				100					105	-2-				110		ענייי	
	Phe	Pro	Ala	Gly	Asn	Gly	Ser	Ser	Ala	Ala	Asp	Tvr	Phe		Leu	Ser	
			115					120			•	-	125				
	Asn	Gly	Ser	Ala	Ile	Pro	Asp	Ala	Thr	Ile	Thr	Trp	Val	Ser	Gly	Gln	
30		130					135					140					
	Xaa	Pro	Lys														
	145																
35																	
			(2)	INF	ORMA	OITA	I FOR	SEC	ID	NO:4	99:						
		(i					CTER										
40							amin		ids								,
							acid										
							: si		!								
			(D)	TOPO	LOGY	: 11	near										
45		<i>(</i> i	il M	ירו בר	111 5	TVDE	: Pr		_								
		``	-,	Obbc	ODE	A L F E	FI	ocer	11								
		(x	i) s	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NO : 4	99:					
50																	
		Met	Glu	Asn	Ser	Arg	Pro	Glu	Arg	Asn	Glu	Ala	Thr	Met	His	Leu	
	1				5					10					15		
	Asp	Glu			Val	Glu	Glu	Ala	Leu	Ile	Thr	Met	Asn	Lys	Glu	Asp	
55				20					25					30			

		3ln	Gln	Val 35	Pro	Leu	Ala	Val	Arg 40	Lys	Ala	.Ile	Pro	Gln 45	Leu	Thr	Lys 🐝 .
-	,	/al	Ile		Lys	Thr	Ile	Ala		Tyr	Lys	Lys	Gly		Arg	Leu	Ile
5	_		50					55					60				
		yr 5	Ile	Gly	Ala	Gly	Thr	Ser	Gly	Arg	Leu	Gly 75	Val	Leu	Asp	Ala	
			Cys	Val	Pro	Thr		Asn	Thr	Asn	Pro		Glu	Tle	Tla	Clv	80 Tlo
10						85					90					95	
	Ι	le	Ala	Gly		Gln	His	Ala	Met		Met	Ala	Val	Glu	Gly	Ala	Glu
	70	~~	ui a	T	100	7		01	-1	105	_	_			110		•
15		цsр	nis	115	Lys	Leu	Ala	Glu	120	Asp	Leu	Lys	Asn	Ile 125	Asp	Leu	Thr
	s	er	Lys	Asp	Val	Val	Ile	Gly		Ala	Ala	Ser	Glv		Thr	Pro	Tvr
			130					135					140				-1-
	ν	al	Ile	Gly	Gly	Leu	Thr	Phe	Ala	Asn	Thr	Ile	Gly	Ala	Thr	Thr	Val
20	1	45					150					155					160
	s	er	Ile	Ser	Cys		Glu	His	Ala	Val	Ile	Ser	Glu	Ile	Ala	Gln	Tyr
	_					165					170					175	
25	P	ro	Val	Glu		Lys	Val	Gly	Pro		Val	Leu	Thr	Gly		Xaa	Arg
			T	C	180				_	185		_			190		
	L	eu .		195	GIY	Thr	Ala	Gln	Lys 200	Leu	Ile	Leu	Asn		Ile	Ser	Thr
	Т	1e '			Va 1	Gly	Va I	Gly		1721	Th ex-	7	7 am	205	Wa.	-1 -	•
30	_		210		•	Q ₁ y	Val	215	цуз	Val	TÄT		220	Leu	met	116	Asp
	V	al :	Lys	Ala	Thr	Asn	Gln	Lys	Leu	Ile	Asp			Val	Arg	Ile	Ile
		25					230					235			_		240
35	G	ln (Glu	Ile	Cys	Ala	Ile	Thr	Tyr	Asp	Glu	Ala	Met	Ala	Leu	Tyr	Gln
			_			245					250					255	
	V	al s	Ser	Glu	His 260	Asp	Val	Glu			Asp	Ser	Tyr			Val	Trp
	H:	is 1	Phe		200					265					270		
10																	
				(2)	INF	ORMA	TION	FOR	SEQ	ID	NO : 5	00:					
15																	
								CTER									
								amin	o ac	ids							
								acid									
50								: si									
				(ע)	TOPO	LOGY	: li	near									
			(i:	i) M	OLEC	ULE '	TYPE	: Pr	otei	n							
55								_									
			(x:	i) s	EQUE	NCE I	DESC	RIPT	ION:	SEQ	ID I	NO:5	00:				

	Val	Xaa	Xaa	Tla	uio	c		~1					_			•• • • •
				116	HIS	Ser	GIn	GID	IIe	vai	Ile	Ala	Pro	Asp	Ser	Phe
	1				5					10					15	
_	Lys	Glu	Ser	Met	Xaa	Xaa	His	Gln	Val	Xaa	Asn	Ile	Ile	Lys	Gln	Ala
5				20					25					30		
	Phe	Thr	Asn	Val	Tyr	Gly	Asn	Thr	Leu	His	Tyr	Asp	Ile	Ile	Pro	Met
			35					40					45			
10	Pro	Asp	Gly	Gly	Glu	Gly	Thr	Xaa	Asp	Xaa	Leu	Ile	His	Ala	Xaa	Xaa
,,		50					55			,		60				
	Ala	Thr	Lys	Tyr	Thr	Val	Ile	Val	Asn	Asp	Pro	Leu	Met	Arg	Pro	Ile
	65					70					75					80
15	Glu	Ala	Cys	Tyr	Ala	Arg	Ala	Asp	Glu	Gln	Gln	Ile	Ala	Ile	Ile	Glu
					85					90					95	
	Met	Ala	Ala	Ala	Ser	Gly	Leu	Asp	Leu	Leu	Glu	Lys	Glu	Glu	Arg	Asn
				100					105					110		
20	Pro	Leu	Tyr	Thr	Ser	Ser	Tyr	Gly	Thr	Gly	Glu	Leu	Ile	Lys	Asp	Ala
			115					120					125			
	Leu	Asn	His	Gly	Ala	Lys	Thr	Ile	Ile	Leu	Gly	Ile	Gly	Gly	Ser	Ala
		130					135					140				
25	Thr	Asn	Asp	Gly	Gly	Thr	Gly	Met	Leu	Ser	Ala	Leu	Gly	Val	Lys	Phe
	145					150					155					160
	Thr	Asp	Val	Asn	Gly	Asp	Leu	Leu	Gln	Met	Asn	Gly	Ala	Asn	Leu	Ala
					165					170					175	
30	His	Ile	Ala	Gln	Ile	Asp	Ile	Thr	Asn	Leu	Ala	Asp	Ser	Arg	Xaa	Lys
				180					185					190		
	Glu	Val	Thr	Phe	Lys	Val	Ala	Суѕ	Asp	Val	Ser	Asn	Pro	Leu	Leu	Gly
			195					200	٠,				205			
35	Glu		Gly	Ala	Thr	Tyr	Ile	Tyr	Gly	Pro	Gln	Lys	Cys	Ala	Asp	Ala
		210					215					220				
		Met	His	Thr												
40	225															
40																
			(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:5	01:					
45		(i				HARA										
••						117			ids							
			(B)	TYPE	: am	ino	acid									
						NESS		_				•				
50			(D)	TOPO	LOGY	: li	near									
		(i	i) M	OLEC	ULE	TYPE	: Pr	otei	n							
EE		(x	i) S	EQUE	NCE	DESC	RIPT	ION:	SEO	ID	NO:5	01:				

	Val	Lys	Gln	Cys	Ile	Asn	Asn	Asp	Glu	Trp	. Phe	Val	Thr	Asn	Asp	Asn 🗸
	1				5					10					15	
5	Gly	Tyr	Val	Lys 20	Glu	Gln	Tyr	Leu	Tyr 25	Xaa	Ala	Gly	Arg	Gln 30	Gln	Asp
	Met	Leu	Ile 35	Ile	Gly	Gly	Arg	Asn 40	Ile	Tyr	Pro	Ala	His 45	Val	Xaa	Arg
10	Leu	Leu		Gln	Ser	Ser	Ser		Asp	Glu	Ala	Ile		Ile	Gly	Ile
,,		50					55		_			60			-	
	Pro	His	Glu	Arg	Phe	Gly	Xaa	Ile	Gly	Val	Leu	Leu	Tyr	Ser	Gly	Asp
	65					70					75					80
15	Val	Thr	Leu	Thr	His 85	Lys	Asn	Xaa	Lys	Gln 90	Phe	Xaa	Lys	Lys	Lys 95	Val
	Lys	Arg	His	Glu	Ile	Pro	Phe	Asp	Asp	Ser	Ser	Cys	Arg	Lys	Asp	Val
				100					105					110		
20	Leu	Xaa		Lys	Trp											
			115													
			/2) Thr	EODM:	מתד ביו	V FOI		. TD	NO.	502.					
			(2	, 11VI	CREE	AI I OI	N FOI	K 3E/	2 10	NO:						
25		t.	i) S	EOUEI	NCE (CHAR	ACTE	RIST	ICS:							
		•	•	_			_	no ac								
			(B)	TYP	E: ar	nino	acio	đ								
30			(C)	STR	ANDE	DNES:	S: s:	ingle	≥							
			(D)	TOP	DLOG	Y: 1:	inear	r								
		(.	ii) 1	MOLE	CULE	TYP	E: P:	rotei	in							
35																
		(:	X1) :	SEQUI	ENCE	DESC	CRIP.	rion:	: SE(Q ID	NO:	502:				
	Val	Ser	Ala	Ile	Phe	Glu	Pro	Glu	His	Leu	Glu	Ala	Leu	Leu	Ala	Gln
40	1				5					10					15	
	Val	Ser	Ile	Lys 20	Pro	Val	Ile	Asn	Gln 25	Val	Glu	Tyr	His	Pro 30	Tyr	Leu
	Thr	Gln	His	Lys	Leu	Lys	Leu	Tyr	Leu	Ala	Ala	Gln	His	Ile	Val	Met
45			35					40					45			
	Glu		Trp	Ser	Pro	Leu		Asn	Ala	Gln	Ile		Asn	Asp	Glu	Thr
	_	50			_		55					60				
		Lys	Asp	Ile	Ala		Glu	Leu	Gly	Lys		Pro	Ala	Gln	Val	
50	65		~	•		70		~ 3		7	75 -\			•		80
	rea	Arg	up	ASN		GID	HIS	GTĀ	val		Tie	пе	Pro	гÀ2	Ser 95	vai
	ም~-	D~~	λ ~~	A	85 T1a	Se~	G1	y c.~	Dha	90.	T10	Dho	N c=	Dho	95 Glu	Len
	TITE	£10	noil	100	116	361	GIU	noll	105	GIII	TIG	rne	web	110	GIU	⇒ c u
5 <i>5</i>				100					103					110		

	Ser Asp Glu Gln Met Thr Leu Val Pro Gly Leu Asn Leu Asp Lys Arg 115 120 125
5	Ile Gly Pro Asp Xaa Xaa Thr Phe Glu Gly
	130 135
	(2) INFORMATION FOR SEQ ID NO:503:
10	
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 78 amino acids
	(B) TYPE: amino acid
15	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: Protein
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:503:
	(,
	Val Phe Lys Gly Ser Glu Tyr Gln Leu Ser Glu Ile Asn Ser Gly Ser
25	1 5 10 15
	Val Lys Tyr Glu Gln Thr Tyr Asp Asn Phe Pro Ile Leu Asn Asn Ser
	20 25 30
	Lys Ala Met Leu Asn Phe Asn Ile Glu Asp Asn Lys Ala Ala Ser Tyr
30	35 40 45
	Lys Gln Ser Met Met Asp Asp Ile Lys Pro Thr Asp Gly Ala Asp Lys
	50 55 60
	Lys His Gln Val Ile Gly Val Arg Lys Ala Ile Glu Ala Leu
35	65 70 75
	(2) INFORMATION FOR SEQ ID NO:504:
40	(1) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 42 amino acids
	(B) TYPE: amino acid
	(C) STRANDEDNESS: single
45	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: Protein
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:504:
**	
	Val Asn Glu Thr Asn Val Gln Leu Leu Gln Pro Asn Trp Glu Ile Lys
	1 5 10 15
<i>55</i>	Val Lys His Asp Gly Lys Asp Lys Thr Asn Thr Tyr Tyr Val Glu Ala
	20 25 30

						٠,٠		110	AJII	HIS						•
			35					40								
5																
			(2)	INI	FORM	OITA	N FOR	SEC	Q ID	NO:	505:					
		(:	i) SI	EQUE	NCE (CHARA	ACTE	RIST	ICS:							
10			(A)	LEN	GTH:	36 a	amino	aci	ids							
			(B)	TYPE	E: ar	nino	acio	3								
			(C)	STRA	ANDEI	ONESS	3: si	nale								
							inear	_								
			(0)													
15			ii) 1	AOT EC	~111 E	mvDi	. D.		: _							
		(.	11, 1	TOLEC	CODE	lifi	5: P1	.oce.	LII							
		,							-			- 0.5				
		C	xi) S	FQUI	ENCE	DESC	KIP,	.TON:	: SE(מד נ	NO:					
20		_		_					_		_		_		_	
		Leu	Ile	Tyr		Ile	Glu	GIA	Leu		Ser	Xaa	Asn	Gln		Ala
	1			_	5					10					15	
	Glu	Ala	Leu		Xaa	Leu	Ser	Tyr		Asp	Pro	Ser	Pro		Xaa	Leu
25				20					25					30		
	Met	Xaa	Lys	Lys												
			35													
30			(2)	IN	FORM	ATION	V FOR	SEC	Q ID	NO:	506:					
		(:	i) SI	QUE	ICE (CHAR	ACTE	(IST	cs:							
			(A)	LENC	TH:	75 a	mino	aci	ids							
			(B)	TYPE	E: ar	nino	acid	ı								
35							S: si		2					-		
							inear	-								
			(2)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•								
		1	ii) 1	OT.EC	ים. דוזי	ימעים	7. D1	-01-01	in							
40		``	, .	.OLL	-005	1111	J. 11	.000								
		,.				2200	~n + nn	TON.								
			ki) S	PEQUE	TIACE	DESC	KIP	TON	SE(עו ג	NO:					
	•	_,		_	_	_			_	_	_					_
45		Gly	Ile	Asn		Lys	Gln	Gly	Lys		Leu	Ile	Gly	Ala		Tyr
45	1				5					10					15	
45	1		Ile Thr	Ala	5					10				Thr	15	
45	1				5					10					15	
	1 Arg	Pro		Ala 20	5 Val	Ile	Tyr	Asp	Leu 25	10 Asp	Phe	Leu	Lys	Thr 30	15 Leu	Pro
<i>45</i> 50	1 Arg	Pro	Thr	Ala 20	5 Val	Ile	Tyr	Asp	Leu 25	10 Asp	Phe	Leu	Lys	Thr 30	15 Leu	Pro
	1 Arg Phe	Pro Glu	Thr Gln	Ala 20 Ile	5 Val Leu	Ile Ser	Tyr Gly	Asp Tyr 40	Leu 25 Ala	10 Asp Glu	Phe Val	Leu Tyr	Lys Lys 45	Thr 30 His	15 Leu Ala	Pro Leu
	1 Arg Phe	Pro Glu	Thr Gln 35	Ala 20 Ile	5 Val Leu	Ile Ser	Tyr Gly	Asp Tyr 40	Leu 25 Ala	10 Asp Glu	Phe Val	Leu Tyr	Lys Lys 45	Thr 30 His	15 Leu Ala	Pro Leu
	1 Arg Phe Leu	Pro Glu Asn 50	Thr Gln 35	Ala 20 Ile Glu	5 Val Leu Ser	Ile Ser Thr	Tyr Gly Thr 55	Asp Tyr 40 Gln	Leu 25 Ala Glu	10 Asp Glu Ile	Phe Val Glu	Leu Tyr Gln	Lys Lys 45	Thr 30 His	15 Leu Ala	Pro Leu

(2) INFORMATION FOR SEQ ID NO:507:

5		(i) s	EQUE	NCE (CHAR	ACTE	RIST	ics:							
5			(A)	LEN	GTH:	153	ami	no a	cids							
			(B)	TYP.	E: au	mino	aci	d							_	
			(C)	STR	ANDE	DNES	S: s:	ingl	9							
10			(D)	TOP	orog.	Y: 1	inea									
		(:	ii)	MOLE	CULE	TYP	E: P:	rote:	in							
		,.		C D O ! !	m.c=	226	25 T 5	7.			NO - 1	F 0.7				
15		(,	XI) .	SEQU.	ENCE	DES	LRIP.	IION	. 55	Q ID	NO:	307:				
	Val	Val	Thr	Leu	Phe	Leu	Cys	Pro	Xaa	Asn	Ser	Phe	Leu	Met	Ile	His
	1				5		_			10					15	
20	Asn	Ser	Trp	Val	Met	Thr	Val	Gly	Asn	Ala	Glu	Glu	Leu	Arg	Lys	Thr
				20					25					30		
	Ala	Asp	Leu	Leu	Glu	Lys	Thr	Asp	Ala	Val	Ser	Asn	Ser	Ala	Tyr	Leu
			35					40					45			
25	Asp		Xaa	Xaa	Asp	Leu		Gln	Glu	His	Leu	_	Gln	Met	Leu	Asp
		50		_	_	_,	55				_	60			_	
	65	GIU	Thr	Trp	Leu	70	Ala	GIU	GIU	Ala	Leu 75	ser	Pne	GIY	Leu	
30		Glu	Tle	T.e.ii	Glv		Aen	Glu	Tle	272		Ser	Tla	Sor	Lys	80 Glu
		014		204	85		11011	014		90		JCI		001	95	014
	Gln	Суз	Arg	Arg	Xaa	Glu	Xaa	Val	Pro		Asp	Leu	Lys	Lys	Asp	Val
				100					105		_		-	110	-	
35	Xaa	Lys	Ile	Thr	Lys	Ile	Asp	Asp	Xaa	Arg	Tyr	Asp	Leu	Asp	Trp	Leu
			115					120					125			
	Lys	Pro	Pro	Lys	Glu	Ser	Met	Ser	Leu	Glu	Glu	Xaa	Xaa	Xaa	Arg	Xaa
40		130					135					140				
40		Ile	Val	Arg	Ser		Ala	Lys	Phe							
	145					150										
			(2)	. TNI	FORM	ስጥ ፐ ርስ	T EOE	o err	ח ד ח	NO ·	SOR.					
45			(2	, 1111	Oldin	11101	• 101	COEC	2 10	140.,						
		(i	i) Si	EQUEI	NCE (CHAR	ACTE	RISTI	cs:							
			(A)	LEN	GTH:	115	amir	no ac	ids							
50			(B)	TYP	E: ar	nino	acid	1								
50			(C)	STR	ANDEI	ONES	S: si	ingle	2							
			(D)	TOP	OLOGY	7: 1:	inear	•								
55		(j	ii) 1	OLEC	CULE	TYPE	E: P1	rotei	n							

-		()	ĸi) :	SEQU:	ENCE	DES	CRIP	rion:	: SE(2 ID	йо:	508:				v.	
5	Val 1	Lys	Glu	Ile	Pro 5	Asp	Ala	Ser	Ile	Ser 10	Phe	Glu	Val	Phe	Ala 15	Asp	
	Asp	Leu	Glu	Thr 20	Met	Glu	Lys	Glu	Ala 25	Ala	Ile	Leu	Lys	Gln 30	Tyr	Gly	
10	Glu	Asn	Val 35	Phe	Val	Lys	Ile	Pro 40	Ile	Val	Asn	Thr	Lys 45	Gly	Glu	Ser	
	Thr	Ile 50	Pro	Leu	Ile	Lys	Lys 55	Leu	Ser	Ala	Asp	Asn 60	Val	Arg	Leu	Asn	
15		Xaa	Ala	Val	Tyr		Ile	Glu	Gln	Gly	_	Glu	Ile	Thr	Glu	Ala	
	65		_	_		70		_	_		75					80	
	Val	Thr	Glu	Gly	Val 85	Pro	Asn	Ile	Cys	Phe 90	Ser	Ile	Суѕ	Arg	Thr 95	Tyr	
20	Суз	Arg	Tyr	Arg 100	Arg	Arg	Ser	Ile	Thr 105	Ile	Asn	Glu	Arg	Gly 110	Cys	Lys	
	Ser	Tyr															
			115														
25			(2) IN	FORM	ATIO	V FOI	R SE(Q ID	NO:5	509:						
		í)	i) si	EQUE	VCE C	CHARA	CTEF	RISTI	cs:								
30			(A)	LEN	STH:	197	amir	no ac	ids								
					: ar												
					ANDEI			-)								
35			(D)	TOP	DLOGY	(: 11	near	•									
33		(i	ii) I	MOLE	CULE	TYPE	E: Pi	rotei	in								
40		(>	ci) s	SEQUI	ENCE	DESC	RIPT	CION:	SEÇ) ID	NO:	509:					
	Val	Tvr	Xaa	Ara	Va1	Asn	Glu	Met	Asn	Ala	Lvs	Glu	Xaa	Leu	Va 1	Asp	
	1	-3-			5					10	-,-				15		
	Xaa	Leu	Met	Lys	Thr	Ser	Ser	Gln	Leu	Phe	Lys	Xaa	His	Gly	Glu	Val	
45				20					25					30			
	Xaa	Met	Gln 35	Leu	Xaa	Leu	Asn	Asp 40	Glu	Leu	Lys	Leu	Pro 45	Ser	Ile	Xaa	
	Glu	Ile	Cys	Val	Glu	Arg	Ĺys	Arg	Leu	Ser	Asp	Ile	Val	Lys	Val	Ile	
50		50					55					60					
	Pro	Gln	Ser	Tyr	Ala	Leu	Leu	Tyr	Ile	Asp	Lys	Gln	Asp	Gln	Ala	Arg	
	65					70					75					80	
55	Ala	Lys	Xaa		Leu 85	Ser	Leu	Xaa	Lys	Ile 90	Ala	Lys	Val	Tyr	Val 95	Gln	

	Tyr	Asp	Asp	Thr	Thr	Ile	Met	Ser		Phe	<u>V</u> al	Tyr	Asp		Val	Asn 🗸 👝
_				100					105					110		_
5	Asp	Glu		Ile	Leu	Arg	Leu		Pro	Asn	Ile	Arg		Pro	Lys	Ser
	•	71.	115	Db -	*** -	C	Tou	120	Trn) en	Wal	Acn	125	770	Lys	Pro
	ASI	130	Tyr	Pne	HIS	ser	135	ASII	rrp	vob	Val	140	-7-	116	Lys	110
10	Glu		Val	Leu	Met	Tvr		Leu	Met	Gln	His		Gln	Tyr	His	His
	145					150	_				155					160
	Tyr	Ser	Asn	Tyr	Lys	Arg	Val	Ile	Asp	Xaa	Leu	Ser	Tyr	Tyr	Gln	Phe
					165					170					175	
15	Phe	Ile	Leu	Lys	Phe	Val	Val	Gly	Glu	Xaa	Arg	Ile	Lys		Ala	Ile
				180					185					190		
	Gln	Lys		Asn	Lys											
20			195													
			(2) TN	FORM	ATIO	N FO	R SEG	O ID	NO:	510:					
			,-	,					•							
		(:	i) S	EQUE	NCE (CHAR	ACTE:	RIST	ics:							
25			(A)	LEN	GTH:	56	amin	o ac	ids							
			(B)	TYP	E: a	mino	aci	đ								
							S: s		е							
30			(D)	TOP	OLOG	Y: l	inea	r								
00				WOI E	CIII E	mv D	E: P	roto	in							
		,	11)	MOLE	CODE	112	E: F	roce	111							
		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	510:				
35				_						•	٠					
	Val	Pro	Pro	Gln	Gln	Gln	Ala	Pro	Thr	Lys	Gln	Arg	Pro	Ala	Lys	Xaa
	1				5					10					15	
40	Glu	Asn	Asp	Asp	Lys	Ala	Ser	Xaa		Glu	Ser	Lys	Asp		Asp	Asp
40				20					25			_	_	30		•
	Asn	Ala		Gln	Asp	Xaa	Ser		Asp	Thr	Gln	Lys	Lys 45	Thr	Asp	Asp
	3.50	mb	35 #i-	Bro	21-	A 1 =	Arg	40 Yaa					43			
45	ASII	50	nis	PLO	Ala	Ala	55	Add	`							
		30														
			(2) IN	FORM	ATIC	N FO	R SE	Q ID	NO:	511:					
50		(i) S	EQUE	NCE	CHAR	ACTE	RIST	ICS:							
			(A)	LEN	GTH:	77	amin	o ac	ids							
			,				aci									
55							S: s	_	e							
			(D)	TOP	OLOG	Y: 1	inea	r								

		(i	i) l	OLEC	CULE	TYPE	E: Pr	otei	.n								
5		(x	(i) 5	SEQUE	ENCE	DESC	CRIPT	ON:	SEC	Q ID	NO:5	511:					
	Val	Leu	Met	Leu	Lys	Met	Xaa	Leu	Ile	Lys	Lys	Leu	Thr	Gln	Met	Glu	
	1				5					10					15		
10	Asp	Leu	Val	Asn	Gln	Asn	Asp	Xaa	Leu	Thr	Asp	Glu	Glu	Lys	Gln	Xaa	
				20					25					30			
	Ala	Ile		Val	Ile	Glu	Glu		Lys	Asn	Glu	Ile		Gly	Asn	Ile	
			35			_	_	40	1				45				
15	Gly	_	Gln	Thr	Thr	Asp	_	GIY	Val	Thr	Arg		Thr	Arg	ser	Arg	
	~	50		*	T	m	55	m	~	B.c.n	mb ~	60	~				
	65	THE	ASP	Leu	Lys	71 p	GIY	ığı	Cys	ASII	75	GIY	Cys				
20	65					,0					,,,						
			(2) INE	FORM	ATIO	N FOI	R SEC	DID	NO:	512:						
			•														
		(i	i) si	EQUE	NCE (CHAR	ACTE	RIST	cs:								
25			(A)	LENG	GTH:	166	amir	no ac	cids								
			(B)	TYPE	E: ar	nino	acio	3									
			(C)	STRA	ANDEI	ONES	5: si	ingle	2								
			(D)	TOPO	DLOG	Y: 1:	inear	•									
30																	
		(i	li) 1	MOLE	CULE	TYP	E: Pi	ote	in								
		()	ci) :	SEQUI	ENCE	DESC	CRIP:	'ION	: SE() ID	NO:	512:					
35	*** 1	•		- 1 -	• • • •	•	•	T	T	3	T		T	Tan	C	Mot	
	vai 1	Lys	Trp	Ile	rys	Arg	Leu	Leu	Lys	ASP	Leu	гĀЗ	Lys	rea	15	Mec	
		Pho	Lare	Asp	_	Leu	Gln	T.011	Val		Lve	Gln	T.e.u	Phe		G1v	
40	Deu	rne	цур	20	**C	Dea	GIII	Deu	25	110	בעם	01	D C u	30	013	013	
	Glv	Asp	Ala	Glu	Leu	Gln	Leu	Thr		Ala	Asp	Tvr	Leu		Ala	Glv	
	023	,	35	010			204	40			-10-2	-3-	45			2	
	Ile	Asp		Val	Val	Gln	Pro	Pro	Gly	Lys	Lys	Leu	Gln	His	Leu	Ser	
45		50					55		-	•	-	60					
	Leu	Leu	Ser	Gly	Gly	Glu	Arg	Ala	Leu	Thr	Ala	Ile	Ala	Leu	Leu	Phe	
	65					70					75					80	
	Ala	Ile	Leu	Lys	Val	Arg	Ser	Ala	Pro	Phe	Val	Ile	Leu	Asp	Glu	Val	
50					85					90					95		
	Glu	Ala	Ala	Leu	Asp	Glu	Ala	Asn	Val	Ile	Arg	Tyr	Ala	Lys	Tyr	Leu	
				100					105					110			
	Asn	Glu	Leu	Ser	Asp	Glu	Thr	Gln	Phe	Ile	Val	Ile	Thr	His	Arg	Lys	
55			115					120					125				

	Gly Thr Met Glu Phe Ala Asp Arg Leu Tyr Gly Val Thr Met Gln Glu 130 135 140
5	Ser Gly Val Thr Lys Leu Val Ser Val Asn Leu Asn Thr Ile Asp Asp
3	145 150 155 160
	Val Leu Lys Glu Glu Gln
	165
10	
	(2) INFORMATION FOR SEQ ID NO:513:
	(i) SEQUENCE CHARACTERISTICS:
15	(A) LENGTH: 88 amino acids
	(B) TYPE: amino acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
20	
	(ii) MOLECULE TYPE: Protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:513:
25	
	Val Arg Asp Gln Phe Lys Phe Tyr His Val Arg His Glu Glu Val Ala
	1 5 10 15
	Ser Leu Ala Ala Gly Tyr Thr Lys Leu Thr Gly Xaa Ile Gly Val
30	20 25 30
	Ala Leu Ser Ile Gly Xaa Pro Gly Leu Ile His Leu Leu Asn Gly Met 35 40 45
	Tyr Asp Ala Lys Met Asp Asn Val Leu Val Pro Ile Asn Ile Ile Trp
35	50 55 60
	Thr Asn Xaa Ile Val Gln His Leu Glu Arg Lys His Phe Lys Lys Gln
	65 70 75 80
	Ile Tyr Lys Asn Tyr Val Lys Met
40	85
	(2) INFORMATION FOR SEQ ID NO:514:
45	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 153 amino acids
	(B) TYPE: amino acid
	(C) STRANDEDNESS: single
50	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: Protein
55	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:514:

	 vai	Lys	Leu	ser	xaa	ıyr	TYL	PIO	GIII	Gry.	neu	Arg	361	Dea	M311	Gry v.
	1				5					10					15	
5	Glv	Ara	Met	Ala	Arq	Phe	Gly	Arg	Thr	Pro	Leu	Leu	Asp	Ala	Met	Glu
		_		20	_		_	_	25					30		
	Vor	B1 a	3.00	Glu	uic	T10	Mat	t/a l		Δla	Mer	Tle	Glu	Asn	Val	Xaa
	met	Ala		GIU	nis	116	Mec	40	110	1110			45			
10			35						- •			-1				
,,	Gly	Val	Met	Ala	Ile	Asp		Ile	Ala	GIn	Val		GIY	Leu	Asp	Met
		50					55					60				
	Ile	Val	Glu	Gly	Ala	Ala	Gly	Phe	Ile	Ala	Val	Thr	Trp	His	Thr	Xaa
	65					70					75					80
15	Ala	Asn	Glu	Arg	Asp	Asp	Gln	Val	Thr	Ser	His	Xaa	Gln	His	Ile	Xaa
				_	85					90					95	
	Yaa	Va 1	Val	Asn	Δla	Hie	Glv	Lvs	His	Xaa	Cvs	Ala	Leu	Pro	Ara	Glu
	Add	A 17 T	Val	100	7.10		- -,	2,5	105		-1-			110	3	
20	_	_,	_			•		01 -		~1-	C1	tro 1	C15	_	Pho	T10
	Asp	GIU		Ile	Ala	rys	Trp		AId	GIII	GIY	vai		1111	FILE	116
			115					120					125			
	Leu	Gly	Thr	Ser	Gly	Lys	Ile	Tyr	Arg	His	Leu	Ser	Ala	Ser	Leu	Ala
		130					135					140				
25	Thr	Ser	Lys	Gln	Lys	Gly	Asp	Asp	Gly							
	145					150										
			12) IN	FORM	ስጥተ በ	J FOI	SEC	מז כ	NO:	515:					
30			12	, 1147	Olub	1110				1.0.						
						·										
		(EQUE												
			(A)	LEN	GTH:	105	amir	no a	cids							
05			(B)	TYP	E: au	nino	acio	đ								
35			(C)	STR	ANDE	DNES:	S: 6:	ingl	e							
			(D)	TOP	OLOG'	Y: 1:	inea	r								
		,	ii)	MOLE	CULE	TYP	E: P	rote	in							
40		`	,													
		,		anot:		שמים	~ D T D/	770N		0 TD	NO.	515.				
		,	XL)	SEQU	ENCE	DES	CRIP	LION	: SE	O ID	140:	J13.				
										_						
45	Val	Leu	Thr	Ser	Leu	Asp	Ala	Asp	Glu	Ala	Lys	Arg	Asn	Ala	Tyr	Thr
70	1				5					10					15	
	Asn	Ala	Val	Thr	Gln	Ala	Xaa	Gln	Ile	Leu	Asn	Lys	Ala	Gln	Gly	Pro
				20					25					30		
	y c.n	Thr	. Ala		Acn	Gly	Va 1	Glu	Thr	Δla	T.e.11	Gln	Asn	Val	Gln	Arg
50	ASII	1111		Lys	nsp	GIY	V & I					02	45			5
			35					40		_					•	(7)
	Ala	Lys	Asn	Glu	Leu	Ser	Gly	Asn	Gln	Asn	Val		Asn	Ala	ьуs	Thr
		50					55					60				
55	Thr	Ala	Lys	Asn	Ala	Leu	Asn	Asn	Leu	Thr	Ser	Ile	Asn	Asn	Ala	His
	65					70					75					80

	Lys	Ala	Ala	Leu	Lys 85	Ser	Gln	Ile	Glu	Gly. 90	Ala	Thr	Thr	Val	Ala 95	Gly v.
5	Val	Asn	Gln	Val 100	Ser	Thr	Met	Ala	Ser 105							
10			(2)	INE	FORM	ATIOI	N FOR	R SEC	Q ID	NO:5	16:					
		(:	i) SI	EQUEN	CE C	CHAR	ACTE	RIST	cs:							
			(A)	LENC	STH:	276	amir	no ac	cids							
			(B)	TYPE	E: ar	nino	acio	ī								
15			(C)	STRA	ANDE	ONES	S: S:	ingle	3							
			(D)	TOP	DLOG	Z: 1:	inear	•								
20		(:	ii) 1	MOLEC	CULE	TYPI	E: Pi	rote	in							
		()	ci) S	EQUI	ENCE	DES	CRIP	rion:	: SE(Q ID	NO:	516:				
25	Val 1	Asn	Thr	Ala	Lys 5	Thr	Ala	Leu	Asn	Gly 10	Asp	Ala	Arg	Leu	Asn 15	Glu
	Ala	Lys	Asn	Thr 20	Ala	Lys	Gln	Gln	Leu 25	Ala	Thr	Met	Ser	His 30	Leu	Thr
30	Asn	Ala	Gln 35	Lys	Ala	Asn	Leu	Thr 40	Glu	Gln	Ile	Glu	Arg 45	Gly	Thr	Thr
	Val	Ala 50	Gly	Val	Gln	Gly	Ile 55	Gln	Ala	Asn	Ala	G1y 60	Thr	Leu	Asn	Gln
	Ala	Met	Asn	Gln	Leu	Arg	Gln	Ser	Ile	Ala	Ser	Lys	Asp	Ala	Thr	Lys
35	65					70					75					80
	Ser	Ser	Glu	Asp	Tyr 85	Gln	Asp	Ala	Asn	Ala 90	Asp	Leu	Gln	Asn	Ala 95	Tyr
40	Asn	Asp	Ala		Thr	Asn	Ala	Gly		Ile	Ile	Ser	Ala		Asn	Asn
	Dun	01	W = b	100	D		m b	71 -	105	6 1-		31-	C	110	1701	7
	Pro	Glu	115	Asn	Pro	Asp	THE	120	лаа	GIN	Lys	Ala	125	GIN	Val	ASII
	Ser	Ala	Lys	Ser	Ala	Leu	Xaa	Gly	Asp	Glu	Lys	Leu	Ala	Ala	Ala	Lys
45		130					135					140				
	Gln	Thr	Ala	Lys	Ser	Asp	Ile	Gly	Arg	Val	Thr	Asp	Leu	Asn	Asn	Ala
	145					150					155					160
50	Gln	Arg	Thr	Ala	Xaa 165	Asn	Ala	Glu	Val	Asp 170	Gln	Ala	Pro	Xaa	Leu 175	Ala
	Ala	Val	Thr		Ala	Lys	Asn	Lys		Thr	Ser	Leu	Asn		Ala	Met
				180					185					190		
55	Gly	Asn	Val 195	Lys	His	Ala	Leu	Ala 200	Glu	Lys	Asp	Asn	Thr 205	Xaa	Arg	Ser

	Val	Asn	.Tyr	Thr	Asp	Ala	Asp	Gln	Pro	Xaa_	Ģln	Gln	Ala	Xaa	Asp	Three
		210					215					220				
5	Ala	Gly	Thr	Gln	Ala	Glu	Ala	Ile	Thr	Asn	Ala	Asn	Gly	Ser	Xaa	Ala
	225					230					235					240
	Asn	Glu	Thr	Gln	Val	Gln	Ala	Ala	Leu	Asn	Gln	Leu	Asn	Gln	Ala	Lys
					245					250					255	
10	Asn	Asp	Leu	Glu	Trp	Val	Ile	Ile		Leu	Leu	Lys	Arg		Lys	Gln
				260					265					270		
	Gln	Asn		His												
15			275													
			(2)	INE	ORMA	ATION	, FOF	R SEC) ID	NO:5	517:					
20		(i	-	_			CTE									
							amir		as							
							acio									
							S: si inear									
25			(1)	TOPC)LOG		mear	-								
		(i	i) h	10LE0	CULE	TYPE	E: P1	cote	in							
							٠									
20		(>	ci) S	EQUE	ENCE	DES	CRIP	rion:	SE() ID	NO:	517 :				
30																
	Val	Asn	Thr	Thr	Lys	Ala	Ala	Leu	His		Asp	Val	Lys	Leu		Asn
	1				5					10		_		•	15	_
35	Asp	Lys	Asp		Ala	Lys	Gln	Thr		Ser	Gln	Leu	Ala		Leu	Asn
				20	• -		~3		25	•	- 1 -		C	30	mb	mb ~
	Asn	Ala		ГĀЗ	HIS	Met	GIU	ASP	THE	Leu	rre	Asp	45	GIU	THE	THE
) ra	Thr	35	1751	Tare	Gl n	Acn		Thr	Glu	Val	Gla		T.e.v	Asp	Gln
40	ALG	50	AIA	Vai	Dys	GIII	55	ДСС	****	314	141	60		200		
	Leu	Met	Asp	Ala	Leu	Gln		Ser	Ile	Ala	Asp		Asp	Ala	Thr	Arg
	65					70					75	-	-			80
	Ala	Ser	Ser	Ala	Tyr	Val	Asn	Ala	Glu	Pro	Asn	Lys	Lys	Gln	Ala	Tyr
45					85					90					95	
	Asp	Glu	Ala	Val	Gln	Asn	Ala	Glu	Ser	Ile	Ile	Ala	Gly	Leu	Asn	Asn
				100					105					110		
50	Pro	Thr	Ile	Asn	Lys	Gly	Asn	Val	Ser	Ser	Ala	Thr	Gln	Ala	Val	Ile
30			115					120					125			
	Ser	Ser	Lys	Asn	Ala	Leu	Asp	Gly	Val	Glu	Arg	Leu	Ala	Gln	Asp	Lys
		130					135					140				
55	Gln	Thr	Ala	Gly	Asn	Ser	Leu	Asn	His	Leu	Asp	Gln	Leu	Thr	Pro	
	145					150					155					160

	Glņ	Gln	Gln	Ala	Leu 165	Glu	Asn	Gln	Ile	Asn. 170	Asn	Ala	Thr	Thr	Arg 175	Aspv
5	Lys	Val	Ala	Glu 180	Ile	Ile	Ala	Gln	Ala 185	Gln	Ala	Leu	Asn	Glu 190	Ala	Met
	Lys	Ala	Leu 195	Lys	Xaa	Ser	Ile	Lys 200	Asp	Gln	Pro	Gln	Thr 205	Glu	Ala	Ser
10	Ser	Lys 210	Phe	Ile	Asn	Glu	Asp 215	Gln	Ala	Gln	Lys	Asp 220	Ala	Tyr	Thr	Gln
	Ala 225	Val	Gln	His	Ala	Arg 230	Arg	Cys	Leu	Xaa						
15			(2)) INI	FORM	ATIO	N FOI	R SE() ID	NO:5	518:					
20		(:	i) SI (A)				ACTER			·						
			(B)	TYPE	E: ar	nino	ació S: si	1								
25			(D)	TOPO	LOGY	(: li	inear	:								
		(:	ii) N	OLEC	CULE	TYPE	Ë: Pi	rotei	in							
30			ki) S													
	1	Ala Leu			5					10					15	
35		Phe		20					25					30		
	0.	Gln	35					40		-,-	Пор		45			
40		50					55									
			(2)	INF	ORMA	MOIT	FOF	SEC) ID	NO:5	19:					
45		(i	(A)				ACTER amin									
50			(C)	STRA	NDEL	NESS	acid S: si	ngle	:							
		,,					near		_							
55			li) M								NO - F	10-				
		()	ci) S	, EQUE	TAC E	רביאל	'YTE'	TON:	SEC	עדי	MO:	173:				

	Val	Val	.Val	Leu	Arg	Met	Ala	Ser	Asn	Met.	Pro	Ser	Leu	Xaa	Lys	Val
	1				5					10					15	
5	Glu	Asn	Val	Glu	Met	Ile	Ala	Phe	Cys	Asp	Val	Asp	Ile	Ser	Lys	Ala
				20					25					30		
	Ala	Ser	Ala	Ala	Glu	Ala	Tyr	Gly	Thr	Asp	Asn	Ala	Lys	Val	Tyr	Asp
			35					40					45		•	
10	Asp	Tyr	Lys	Ala	Leu	Leu	Lys	Asp	Asp	Thr	Ile	Asp	Val	Ile	His	Val
		50					55					60				
	Cys	Thr	Pro	Asn	Asp	Ser	His	Cys	Gľu	Ile	Thr	Val	Ala	Gly	Leu	His
	65					70					75					80
15	Ala	Gly	Lys	His	Val	Met	Cys	Glu	Lys	Pro	Met	Ala	Lys	Thr	Thr	Ala
					85					90					95	
	Glu	Ala	Gln	-	Met	Ile	Asp	Thr		Lys	Ser	Thr	Gly	Lys	Lys	Leu
	_			100					105					110		
20	Thr	Ile	_	Tyr	Gln	Asn	Arg		Arg	Pro	Asp	Ser		Phe	Leu	His
			115					120					125			_
	Gin		Ala	Gln	Arg	Gly		Leu	Gly	Asp	Ile	_	Phe	Gly	Lys	Ala
0.5	•••	130		•		•	135		_	_,		140		_,	_	_
25	145	AIA	тте	Arg	Arg	150	Ala	vai	Pro	Thr		GIĀ	val	Pne	Leu	
		Cl.	27.	C1-	C1		c1	Door	T	T1.	155	T1 -	a 1	mb	774 -	160
	914	Gru	ALG	GIII	165	GIŞ	GIY	PIO	Leu	170	ASD	TIE	GLY	THE	His 175	Ala
30	T.Au	Aen	T.e.ii	ጥh r		Т~Т	Mot	Mot) en		Th me	Cl.	Pro	G1.	Ser	Val.
	500	nop	Ded	180	Deu	11p	Mec	nec	185	ASII	ıyı	GIU	FIU	190	SEL	Vai
	Met	Glv	Ser		Phe	His	Lvs	Leu		Lvs	Gln	His	Asp		Pro	Asn
		,	195				-,, -	200		_,_			205			
35	Ala	Tro		Ser	Trp	Asn	Pro	-	Glu	Leu	Thr	Val		Asp	Ser	Ala
		210	_		-		215	-				220				
	Phe	Gly	Phe	Ile	Lys											
	225															
40																
			(2)	INF	ORMA	MOITA	FOF	SEC	ID	NO:5	20:					
		(i	.) SE	QUEN	ICE C	HARA	CTEF	RISTI	CS:							
45			(A)	LENG	TH:	101	amir	o ac	ids							
			(B)	TYPE	: an	nino	ació	l								
			(C)	STRA	NDEI	NESS	: si	ngle	•							
50			(D)	TOPO	LOGY	: li	near	7								
50											٠.					
		(i	.i) M	OLEC	ULE	TYPE	: Pr	otei	.n							
		(ж	(i) S	EQUE	NCE	DESC	RIPI	: NOI	SEÇ	ID.	NO: 5	20:				

	 .vaı	Asp	Glu	Ala	Lys 5	Cys	Ser	Leu	Leu	Gly.	Thr	Lys	Ala	Gly	Ala 15	Aspv
5		Tuc	Non.	t/al		λ	T10	ui c	C1			Wa b	C1	mъ		m
	Mec	БУS	nsp	20	ren	ALG	Ile	urs	25	GIU	ASD	mec	GIY	30	reu	TYP
	Thr	Lys	His 35	Val	Glu	Xaa	Glu	Asn 40	Lys	Gly	Val	Asp	Phe 45	Tyr	Glu	Gly
10	Asn	Glu 50	Val	Asp	Glu	Ala	Glu 55	Glu	Glu	Xaa	Lys	Ala 60	Trp	Ile	Asp	Ala
	Val	Val	Asn	Asp	Thr	Glu	Pro	Val	Val	Lys	Pro	Glu	Gln	Ala	Met	Val
	65					70					75					80
15	Val	Thr	Lys	Ile	Leu 85	Glu	Ala	Ile	Tyr	Gln 90	Ser	Ala	Lys	Ser	Gly 95	Lys
	Ala	Ile	Tyr	Phe	Glu											
				100												
20																
			(2	IN:	FORM	ATIO	N FOI	R SE	Q ID	NO:5	521:					
		,	: \	-0:1	10E (7173 D	· corr	. T. C.M.								
25		(-					ACTE amino									
							acid									
							S: si		2							
							inear	_								
30																
		(:	ii) 1	OLE	CULE	TYP	E: PI	ote	in							
35		()	ci) S	SEQU!	ENCE	DES	CRIPI	NOI?	: SEQ	O ID	NO:	521:				
	Va l	Asp	Pro	Pro	Glv	Cva	Arg	Asn	Ser	ጥከተ	Ara	Thr	Ara	Δla	מוג	Phe
	1				5	4,5	9		D C.	10	1119		, LL y		15	
	Thr	Val	Ala	Ser	-	Asp	Leu	Gly	Ala		Pro	Glu	Phe	Leu		Lvs
40				20		•		-	25					30		
	Asn	Asp	Ile	Gln	Leu	Xaa	Lys	Lys	Glu	Ser	Val	Glu	Asp	Thr	Xaa	Lys
			35					40					45			
	Val	Leu	Gly	Arg	Met	Phe	Asp	Gly	Ile	Glu	Phe	Lys	Leu			
45		50					55					60				
			(2)	INI	FORM	TIO	N FOF	SEC) ID	NO:5	22:					
50		()	1 9	משוז חי	ICE C	ינואסי	ACTEF	Tem	ce.							
		(-		-			amir									
							acid									
							s: si		<u> </u>							
55							inear	-								

•		(:	ii)	MOLE	CULE	TYP.	E: P	rote	in		- - -					v.	
5		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	522:					
	Val 1	Ile	Pro	Asn	Glu 5	Phe	Leu	Lys	His	Ser 10	Gly	Lys	Val	His	Ala 15	Gln	
10	Ala	Phe	Phe	Thr		Asn	Gly	Ser	Asn 25		Val	Val	Val	Glu 30		Gln	
	Phe	Ser	Phe	Asn	Ile	Glu	Asn	Asp 40	Leu	Val	Ser	Gly	Xaa 45	Asp	Gly	Ile	
15	Thr	Lys 50	Leu	Val	туr	Ile	Lys 55	Ser	Ile	Gln	Asp	Thr 60	Ile	Glu	Ala	Val	
	Gly 65	Lys	Asp	Phe	Asn	Gln 70	Leu	Lys	Gln	Asn	Met 75	Ala	Asp	Thr	Gln	Thr 80	
20				Lys	85					90					95		
os.				Gln 100					105			Thr	Ala	Thr 110	Gln	Thr	
25	ser	Ala	115	Gln	Ala	Val	Thr	Ala 120	Glu	Val	Gly						
30			(2) INI	FORM	ATIO	N FOI	R SE() ID	NO:	523:						
		i)) s	EQUE	ICE (CHAR	ACTE	RISTI	cs:								
35			(B) (C)	TYPE STRA	E: an	nino ONESS	acio	i ingle									
40		(i	.i) 1	MOLEC	CULE	TYPI	E: Pi	rotei	.n								
		(х	(i) :	SEQUE	INCE	DESC	CRIPT	: NOI	SEC	D	NO:5	523:					
45	Val 1	Met	Asn	Ile	Ile 5	Asn	Leu	Glu	Lys	Pro 10	Lys	Gly	Val	Val	Val 15	Gln	
	Phe	Gly	Gly	Gln 20	Thr	Ala	Ile	Asn	Leu 25	Ala	qaA	Lys	Leu	Ala 30	Lys	His	
50	Gly		Lys 35	Ile	Leu	Gly	Thr	Ser 40	Leu	Glu	Asn	Leu	Asn 45	Arg	Ala	Glu	
		50		Glu			55				_	60					
55	Pro 65	Gln	Gly	Lys	Ser	Ala 70	Thr	Ser	Pro	Glu	Glu 75	Ala	Leu	Ala	Asn	Ala 80	

••	Ala	Glu	Ile	Gly	Tyr 85	Pro	Val	Val	Val	Arg.	Pro	Ser	Tyr	Val	Leu 95	Gly w
5	Gly	Arg	Ala	Met 100	Glu	Ile	Val	Asp	Asn 105	Asp	Lys	Glu	Leu	Glu 110	Asn	Tyr
	Met	Thr	Gln 115	Ala	Va1	Lys	Ala	Ser 120	Pro	Glu	His	Pro	Va1 125	Leu	Val	Asp
10	Arg	Tyr 130	Leu	Thr	Gly	Lys	Glu 135	Ile	Glu	Val	Asp	Ala 140	Ile	Суѕ	Asp	Gly
	Glu	Thr	Val	Ile	Ile	Pro	Gly	Ile	Met	Glu	His	Ile	Glu	Arg	Ala	Gly
	145					150					155					160
15	Val	His	Ser	Gly	Asp 165	Ser	Ile	Ala	Val	Tyr 170	Pro	Pro	Gln	Thr	Leu 175	Thr
	Glu	Asp	Glu	Leu	Ala	Thr	Leu	Glu	Asp	Tyr	Thr	Ile	Lys	Leu	Ala	Lys
				180					185					190		
20	Gly	Leu		Ile	Ile	Gly	Leu		Asn	Ile	Gln	Phe		Ile	Ala	His
	1	01	195		~	-1		200	_	_		-	205			_
	ASD	210	vaı	туг	Cys	Pne	Arg	ser	Lys	Pro	Thr		Leu	Val	Glu	Arg
25	Yaa	His	Cor	3 ~~	A1-		215					220				
	225		Jel	ALG	nra											
30		(1)	.) SI	EQUE	CE (CHARA	1 FOF	RIST	cs:	NO: 5	24:					
							mino ació		.as							
35							acio S: si									
							near	_	•							
40		(i	.i) Þ	OLEC	ULE	TYPE	: Pr	otei	.n							
		(х	:i) S	EQUE	NCE	DESC	RIPT	: NOI	SEC) ID	NO : 5	24:				
45		Ile	Phe	Met		Asn	Asn	Lys	Val		Leu	Val	Thr	Gly		Ala
40	1				5		_		_	10					15	
				20			Ile		25					30		
50	Lys		Ala 35	Val	Val	Asp	Phe	Asn 40	Glu	Glu	Gly	Ala	Lys 45	Ala	Ala	Ala
		Lys 50	Leu	Ser	Ser	Asp	Gly 55	Thr	Lys	Ala		Ala 60	Ile	Lys	Ala	Asp
55	Val 65	Ser	Asn	Arg	Asp	Asp 70	Val	Phe	Asn	Ala	Val 75	Arg	Gln	Ala	Thr	Pro 80

	Ser	Ala	Ile	Trp	Arg	Phe	Pro	Cys	His	Gly	·						W.
					85					90							
5																	
			(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	525:						
		(i) s	EQUE	NCE	CHAR	ACTE	RIST	ICS:								
10				_	GTH:												
					E: a												
					ANDE				e								
					OLOG												
15																	
		(ii)	MOLE	CULE	TYP	E: P	rote	in								
		(xi)	SEOU	ENCE	DES	CRIP	TION	: SE	O ID	NO:	525:					
20			•														
	Val	Arg	Ile	His	Tyr	Val	Asp	Ile	Ile	Met	Phe	Lys	Asp	Val	Val	Ile	
	1				5					10					15		
	Trp	Glu	Val	Суз	Leu	Ile	Arg	Leu	Leu	Val	Ile	Lys	Val	Leu	Lys	Arg	
25				20					25					30			
	Met	Ile	Phe	Ala	Arg	Ala	Lys	Phe	Glu	Lys	Glu	Tyr	Gly	Val	Lys	Leu	
			35					40					45				
	Asn		Lys	Ala	Gly	Lys	Asp	Asn	His	Glu	Met	Val	Glu	Gly	Ile	His	
30		50					55					60					
		Cly	Glu	Val	His	Ser	Leu	Tyr	Leu	Tyr	Gly	Glu	Asp	Thr	Gly	Ile	
	65					70					75					80	
	Val	Asp	Ser	Asn	Ile	Asn.	Phe	Val	Gln	Ala	Ala	Phe	Glu	Lys	Leu	Asp	
35					85					90					95		
	Phe	Met	Val		Gln	Asp	Glu	Phe	Leu	Thr	Phe	Thr	Ala	Thr	Tyr	Ala	
•				100					105					110			
	Asp	Val		Leu	Pro	Ala	Ser		Ser	Leu	Glu	Lys		Gly	Thr	Phe	
40	_,		115					120					125			•	
	Thr		Thr	Glu	Arg	Arg		Gln	Arg	Leu	Tyr		Ala	Leu	Glu	Pro	
	_	130	_	_			135					140					
		GIÀ	Asp	Ser	Lys		Asp	Trp	Lys	Ile		Gln	Ala	Ile	Ala		-
45	145	_				150					155					160	
	Arg	Leu	Gly	Ile	Trp	Ile	Gly	Ile	Thr		Ile	Leu	Val	Lys		Trp	
					165					170					175		
	IIe	Glu	Gly		Thr	Leu	Asn	Thr		Ile	Cys	Trp	Gly		Leu		
50				180					185					190			
			(2)	INF	FORMA	TION	I FOF	SEC) ID	NO:5	26:						
55		(i	.) SE	OUEN	ice c	HARA	CTER	e EST1	CS:								
-		•-			STH:												

			.(B)	TYP	E: a	mino	aci	đ			· -·						١.٠
			(C)	STR	ANDE	DNES	S: s	ingl	e								
5			(D)	TOP	OLOG	Y: 1	inea	r									
		(ii)	MOLE	CULE	TYP	E: P	rote	in								
10		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	526:					
	Val	Pro	Ile	Arg	His	Glu	Arg	Xaa	Asp	Lys	Cys	Glu	Xaa	Ile	Met	Tyr	
	1				5					10	_				15	Ī	
15	Ala	Asp	Asn	Met	Thr	Asp	Xaa	Met	Lys	Tyr	Ala	Ile	Asp	Glu	Thr	Gln	
				20		-			25	•				30			
	Arq	Arg	Ara	Glu	Ile	Gln	Met	Lvs	His	Asn	Glu	Lvs	Hie		Tla	ጥ h r	
	_	•	35					40				٠,٠	45		-10		
20	Pro	Lvs		Tle	Asn	ī.vs	Xaa	-	Hic	Asp	T.e.u	Tlo		בות	mh r	Wal	
20		50			11.511	2,3	55	Va.	1113	nap	Deu	60	SET	мта	1111	vai	
	Glu		Acn	Gl.,	Acn	Yaa		Yaa	215	Gln	Wh -		T1.	D	T	*	
	65		, mp	Olu	A3!!	70	rap	Add	VIG	GIII		Val	116	PIO	гĀг		
		Dro	Tve	3	81-		Voo	T	70%	-1-	75	•	-1-	~3	-	80	
25	Met	PLU	гÃ2	Arg		Arg	хаа	Lys	Thr	Ile	ASD	Asn	He	GLu		Glu	
	N - 4	•	-1		85	_	_	_	_	90			_		95		
	met	rys	Gin		Ala	Lys	Asp	Leu		Phe	Glu	Lys	Ala	Xaa	Glu	Leu	
		_		100					105					110			
30	Arg	Asp		Leu	Phe	Glu	Leu	Lys	Ala	Xaa	Gly						
			115					120									
			(2)) IN	ORM	ATIOI	V FOI	R SE) ID	NO:5	527:						
35																	
		(:	i) SI	EQUE	VCE (CHAR	CTE	RIST	tcs:								
			(A)	LENC	TH:	46 a	mino	ac	ids				•				
			(B)	TYPE	E: an	nino	acio	1									
40			(C)	STRA	NDE	ONESS	S: si	ingle	2								
			(D)	TOPO	LOG	: li	inear	:									
		(j	li) N	OLEC	TULE	TYPE	: Pi	otei	n								
45																	
		(>	ci) S	EQUE	NCE	DESC	RIPT	ION:	SEC	ID.	NO:5	527:					
										-							
	Val	Xaa	Ala	Asn	Glu	Ile	Xaa	Lys	Xaa	Lys	Ile	Asp	Ala	Asn	Lvs	Asp	
50	1				5			- 		10					15		
JU		Asp	Lvs	Gln	_	Glp	Ala	Len	Tle	Asp	Glu	Tle	Acr	7		Pro	
			-4-	20					25	wah	914	T16	ಬಾಗಿ		VOII	710	
	Acn	T.e.1	ጥኮ፦		Lve	G1··	T.v.	G1 ~		T	T	3	c =	30			
	roll	⊥-cu	35	voħ	-J.2	GIU	n X 23		WIG	Leu	пÃ2	Arg		ıyr			
55			23					40					45				

	·-• ·· -		· (2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	528:						٧٠
5		(i) s	EQUE	NCE	CHAR	ACTE	RIST	ICS:								
			(A)	LEN	GTH:	154	ami	no a	cids								
			(B)	TYP	E: a	mino	aci	đ									
			(C)	STR	ANDE	DNES	S: s	ingl	e								
10			(D)	TOP	OLOG	Y: 1	inea	r									
		(ii)	MOLE	CULE	TYP	E: P	rote	in								
15		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	528:					
	_																
		Ser	Glu	Phe		Glu	Ile	Ile	Ile	Ala	Thr	Pro	Ala	Gln	Trp	Ile	
	1				5					10					15		
20	Ser	His	Thr		Asp	Ile	Leu	Lys		Tyr	Asn	Ile	Thr		Gln	Arg	
	•	_		20					25					30			
	Val	rys		Val	Ala	Gly	Gly		Asp	Arg	Asn	Glu		Ile	Met	Asn	
	*1.	-1-	35			_	_	40	_				45				
25	m	50	Asp	His	IIe	Arg		Val	Asn	Gly	Ile		Asn	Asp	Asp	Val	
	т1 -		mL				55	_	_		_	60					
	65	vai	THE	HIS	Asp		Val	Arg	Pro	Phe		Thr	Gln	Arg	Ile		
22		C1	3	*1.	G1	70	.1-	.	:	_	75					80	
30	гуs	GIU	ASN	TIE		vai	ATA	хаа	xaa		GIĀ	Ala	Val	Asp	Thr	Val	
	т10	C1	21-	T1-	85	77 b	T1 -	* * - 1		90	•		_		95		
	116	GIU	AIA	100	ASP	THE	TTE	Val	met 105	ser	rys	Asp	Lys		Asn	He	
35	Hie	Ser	Tla		17-1	λ	3	~1. ,		m	01 -	01	01	110		-1	
33	1110	Jer	115	FIU	Val	ALG	ASII	120	mec	TYE	GIN	GIY		Thr	Pro	Gin	
	Ser	Phe		710	Lare	Leu	Lon		3.00	C	m	1	125	7	Ser	0	
	202	130		-10	Lys	Deu	135	GIII	rsp	261	ıyı	140	AIA	reu	ser	ser	
40	Glu		Хаа	Ara	Aen	T.eu		Ara	~re	Ma+		140					
40	145			9		150	110	AL Y	Cys	riec							
						130											
			(2)	INF	ORMA	TTON	FOR	SEC	תד (NO · S	:20.						
45			(2)		0142				10	140.5	,25.						
		(i) SE	EQUEN	ICE C	HARA	CTER	TSTI	cs.								
		•		LENG													
				TYPE													
50				STRA													
				TOPO													
				.a			_										
		(1	1) M	IOLEC	ULE	TYPE	: Pr	otei	n								
55			- دو								٠.						
		(x	1) S	EQUE	NCE	DESC	RIPT	: NOI	SEQ	ID	NO:5	29:					

	va. 1	. Leu	Phe	Thr	Ser 5	Asp	Ser	Arg	Pro	Thr 10	Met	Ser	Gly	Asr	Phe 15	
5	Tyr	Ile	Tyr	Asn 20	Glu	Met	Leu	Arg	Gln 25	Asn	Leu	Asp	Lys			
	Ile	His	Thr	Val	Phe	Lys	Ala			Thr	Asp	Arg		30 Gly	· Ile	Ile
10	Asp	Lys 50	Phe	Arg	Leu	Pro			Leu	Gly	Lys			Tyr	Ile	Phe
	Val 65	Asp	Asp	Phe	His	Pro 70		Ile	Tyr	Thr			Phe	Arg	Arg	Ser 80
15	Gln	Glu	Val	Ile	Gln 85	Val	Trp	His	Ala	Val 90		Ala	Phe	Lys		Val
	Gly	Phe	Ser	Arg 100	Thr			Lys	Gly 105	Gly	Pro	Phe	Ile			Leu
20	Asn	His	Arg 115	Ser	Ser	Cys	Gln	Ser 120	Leu	Cys	Ile	Ile				
			(2)	INF	ORMA	MOIT.	l FOF	SEQ) ID	NO:5	30:					
25		(i														
30			(B)	TYPE	: am	ino	acid	l								
35																
40	1				5					10					15	
				20					25					30		
45	Thr	Pro 1	Lys 1 35	Ala ?	Cyr '	Val :			Glu 1	Thr 1	Arg 1			Ile	Leu	Cys
			(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	VO:53	31:					
50	(ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:530: Val Xaa His Ala Val Gly Ala Phe Lys Thr Val Gly Phe Ser Arg T															
	Asp Lys Phe Arg Leu Pro Tyr Leu Leu Gly Lys Ala Asp Tyr Ile is 50 55 60 Val Asp Asp Phe His Pro Leu Ile Tyr Thr Val Arg Phe Arg Arg S 55 70 75 75 86 Gln Glu Val Ile Gln Val Trp His Ala Val Gly Ala Phe Lys Thr 18 85 90 95 90 95 95 90 95 95 90 95 95 90 95 95 90 95 95 90 95 95 90 95 95 95 95 95 95 95 95 95 95 95 95 95															
55								gle								

	(ii) MO	LECULE TYP	E: Prote	in			
5	(xi) SE	QUENCE DES	CRIPTION	: SEQ ID	NO:531:		
	Val Tyr Phe A 1	sp Leu Gly 5	Lys Thr	Ser Gly	Ser Gly	Thr Asn	Ala Asn
	Lys Val Thr I	le Thr Lys	Ile Met	Gly Trp	Lys		
10	2	0		25			
	(2)	INFORMATIO	N FOR SE	Q ID NO:	532:		
15							
		JENCE CHAR					
		ENGTH: 128		cids			
		YPE: amino		_			,
20		PRANDEDNES	_	e			
	(6) 1	OPOLOGY: 1	inear				
	(ii) MOI	LECULE TYP	F. Brote	i			
	(II) NO.	JECOLE IIP	E: Plote.	F11			
25	(xi) SE	QUENCE DES	CRIPTION	: SEQ ID	NO:532:		
	Val Glu Ile Mo	et Lys Ile	Thr Val	Asn Asp	Lvs Asn	Glu Val	Ile Glv
30	1	5		10			15
••	Tyr Val Asn T	r Gly Gly	Leu Arg	Asn Ser	Leu Asp	Val Asp	
	20			25	_	30	_
	Asn Val Pro I	le Lys Phe	Lys Glu	Glu Phe	Glu Pro	Arg Lys	Phe Val
35	35		40			45	
	Phe Thr Asn G	ly Glu Ile	Lys Tyr	Asn Ser	Asn Phe	Glu Lys	Glu Asp
	50		55		60		
	Val Pro Asn Al	la Ser Ser	Gln Gln	Ser Glu	Ser Asp	Leu Ser	Asp Glu
40	65	70			75		80
	Glu Leu Arg Gl	y Met Val	Ala Ser	Met Gln	Met Gln	Val Ala	Gln Val
		85		90			95
45	Asn Val Leu Ti		Leu Ala		Asn Ala	Met Leu	Thr Gln
45	10	•		105		110	
	Gln Leu Thr Gl	u Leu Lys					Asp Val
	115		120			125	
50	(2) 1	NFORMATIO	N FOR SEC	O ID NO:	533:		
	(i) SEO	ENCE CHAR	ACTERT ST	·ce.			
		NGTH: 377					
55		PF: amino					

			·(C)	STRA	MDEI	DNESS	5: si	ingle	· ·							v	•
			(D)	TOP	DLOG	/: 1:	inear	c									
5																	
		(:	ii) 1	OLEC	CULE	TYPE	E: P1	rotei	in								
		/-		20011	NC E	nece	יח ד חיי	BTON.	CEC	. TD	210 . 5						
10		()	KI) 3	SEQUI	ENCE	DESC	RIP.	TON:	SEL	עב ג	NO:	,,,;					
	175 1	A ===	CI-	7 011	פוג	C15	212	Tura	TVC	Lve	502	ሞኤ∽	77.	Lys	Tara	Tue	
	1	Arg	GIII	Lea	5	GIII	ATG	rys	Lys	10	ser	1111	Ala	Lys	15	Lys	
	_	- 1 מ	50×	Tuc	_	7 ~~	mh∽) cn	Ca*		Lave	Lvc	Tuc	Asn) cn	
15	1111	ALG	Ser	20	Llys	ALY	1111	ASII	25	ALG	Dys	Lys	БÃЗ	30		ASII	
	Pro	Tle	Ara		Val	Tle	Δla	Tle	_	Val	Val	Va 1	ĭ. A 11	Met		T.011	
	110	116	35	171	vai	116	AIG	40	Dea	741	Val	Vai	45	nec	Vai	Dea	
	Glv	Val		Gln	T.011	GIV	Tle		GIV	Ara	T.e.11	†1 ₀		Ser	Pho	Dhe	
20	,	50		V 2		01,	55		0-1	• 9		60	1105			• • • •	
	Asn		Leu	Phe	Glv	Tvr		Ara	Tvr	Leu	Thr		Tle	Leu	Val	Leu	
	65				2	70		•			75					80	
		Ala	Thr	Glv	Phe	-	Thr	Tvr	ser	Lvs		Ile	Pro	Lys	Thr		
25					85			•		90	_			-	95		
	Arg	Thr	Ala	Gly	Ser	Ile	Val	Leu	Gln	Ile	Ala	Leu	Leu	Phe	Val	Ser	
	-			100					105					110			
	Gln	Leu	Val	Phe	His	Phe	Asn	Ser	Gly	Ile	Lys	Ala	Glu	Arg	Glu	Pro	
30			115					120					125				
	Val	Leu	Ser	Tyr	Val	Tyr	Gln	Ser	Tyr	Gln	His	Ser	His	Phe	Pro	Asn	
		130					135					140					
	Phe	Gly	Gly	Gly	Val	Leu	Gly	Phe	Tyr	Leu	Leu	Glu	Leu	Ser	Val	Pro	
35	145					150					155					160	
	Leu	Ile	Ser	Leu	Phe	Gly	Val	Cys	Ile	Ile	Thr	Ile	Leu	Leu	Leu	Cys	
					165					170					175		
	Ser	Ser	Val	Ile	Leu	Leu	Thr	Asn	His	Gln	His	Arg	Asp	Val	Ala	Lys	
40				180					185					190			
	Val	Ala	Leu	Glu	Asn	Ile	Lys	Ala	Trp	Phe	Gly	ser	Phe	Asn	Glu	Lys	
			195					200					205				
	Met	Ser	Glu	Arg	Asn	Gln	Glu	Lys	Gln	Leu	Lys	Arg	Glu	Glu	Lys	Ala	
45		210					215					220					
	Arg	Leu	Lys	Glu	Glu	Gln	Lys	Ala	Arg	Gln	Asn	Glu	Gln	Pro	Gln	Ile	
	225					230					235		٠			240	
50	Lys	Asp	Val	Ser	Asp	Phe	Thr	Glu	Val	Pro	Gln	Glu	Arg	Asp	Ile	Pro	
50					245					250					255		
	Ile	Tyr	Gly	His	Thr	Glu	Asn	Glu	Ser	Lys	Ser	Gln	Cys	Gln	Pro	Ser	
				260					265					270			
55	Arg	Lys		Arg	Val	Phe	Asp	Ala	Glu	Asn	Ser	Ser		Asn	Ile	Val	
			275					280					285				

	,ASD	290	GIN	Ala	ASP	GIII	295	GIU	GIN	Leu.	Thr	300	GIN	The	HIS	ASII,
	Ser		Glu	Ser	Glu	Asn		Tle	Glu	Glu	Δla		Glu	Va 1	Thr	Acn
5	305	val	GIU	361	G1 u	310	1111	110	914	GIG	315	GIY	GIU	Val	1111	320
		Co	m	**~ 1	77-1		D=0	T 011	mb~	T 011		1	C1-	7	110	
	Val	Ser	Tyr	vai		210	PIO	Leu	1111		Leu	ASII	GIII	PIO		Lys
		_		_,	325	•		-1		330		_			335	_
10	Gin	гĀ2	Ala		ser	гЛS	Ala	GIU		GIn	Arg	Lys	GIY		vaı	Pro
	_	_	_	340	_	_	~.		345				_	350		
	Lys	Arg	Tyr	хаа	Lys	Arg	Pne		GIA	хаа	He	Xaa	_	Xaa	Thr	GIn
			355			_	_	360					365			
15	хаа	_	Leu	Ser	Xaa	Ser		Ser	He							
		370					375									
			(2)) IN	FORM	ATIO	V FO	R SE	O ID	NO:	534:					
20																
		(:	i) S	EQUE	NCE (CHAR	ACTE	RIST:	ics:							
			(A)	LEN	STH:	186	ami	no ac	cids							
			(B)	TYP	E: ar	nino	acio	i								
25			(C)	STR	ANDE	ONES:	5: s:	ingl	⊇							
			(D)	TOP	OLOGY	Y: 1:	inea	•								
		(:	ii) 1	MOLE	CULE	TYP	E: P	rote:	in							
30																
		(:	xi) :	SEQUI	ENCE	DES	CRIP'	rion:	: SE	Q ID	NO:	534:				
	Val	Met	Thr	Glu	Glu	Xaa	Cys	Leu	Leu	Lys	Arg	Val	Phe	Met	Arg	Met
35	1				5					10					15	
	Lys	Arg	Phe	Leu	Thr	Ile	Val	Gln	Ile	Leu	Leu	Val	Val	Ile	Ile	Ile
				20					25					30		
	Ile	Phe	Gly	Tyr	Lys	Ile	Val	Gln	Thr	Tyr	Ile	Glu	Asp	Lys	Gln	Glu
40 .			35					40					45			
	Arg	Ala	Xaa	Tyr	Glu	Lys	Leu	Gln	Xaa	Lys	Phe	Xaa	Met	Leu	Met	Xaa
		50		_		_	55			_		60				
	Lys	His	Gln	Glu	His	Val	Arq	Pro	Gln	Phe	Glu	Ser	Leu	Glu	Lys	Ile
45	65					70					75				-	80
	Asn	Lvs	Asp	Ile	Val	GIV	Tro	Tle	Lvs	Leu		Glv	Thr	Ser	Leu	Xaa
					85	,				90		1			95	
	Tur	Pro	Val	T.011		Glv	Lve	Thr	Acn	-) en	Tyr	T.e.ii	Δen	-	Acn
50	.,.	110	Vai	100	GIII	GIŞ	Lys	1111	105	1113	rsp	ıyı	Deu	110	Dea	ഹാറ
	Dha	G1 ···	λ ~~		u:-	A	A	T 3		c.~	Tle	Dho	Mot		Dh.o	A
	FIIG	GIU	Arg	GIU	uls	wrg	vcā	_	GTĀ	ser	116	rne		vab	FUG	wid
	>	61.	115	V = 5	•	•	•	120	•	m\n a-	T1 c		125	~ 1	T11 =	***
55	ASN		Leu	xaa	ASN	ren		HIS	ASN	Thr	ті́е		Tyr	GIA	HIS	HIS
		130					135					140				

.Val	Gly	Asp	Asn	Thr	Met	Phe	Asp	Val	Leu.	Glu	Asp	Tyr	Leu	Lys	Glnv
145					150					155					160
Ser	Phe	Tyr	Glu	⁻ Lys	His	Lys	Ile	Ile	Gly	Phe	Asp	Asn	Lys	Tyr	Gly
				165					170					175	
Lys	Tyr	Gln	Leu	Gln	Val	Phe	Ser	Ala	Tyr						
			180					185							

10

5

Claims

1. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

15

(a) a polynucleotide having at least a 70% identity to a polynucleotide encoding a polypeptide comprising an amino acid sequence of the Sequence Listing;
(b) a polynucleotide having at least a 70% identity to a polynucleotide encoding a mature polypeptide ex-

20

- pressed by the gene contained in the *S. aureus* of the deposited strain that was sequenced to obtain a polynucleotide sequence of the Sequence Listing;
 (c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 70% identical
- to an amino acid sequence of the Sequence Listing;
- (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
- (e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).

25

- 2. The polynucleotide of Claim 1 wherein the polynucleotide is DNA.
- 3. The polynucleotide of Claim 1 wherein the polynucleotide is RNA.
- 30 4. The polynucleotide of Claim 2 comprising the nucleic acid sequence selected from the group consisting of the nucleic acid sequences set forth in the Sequence Listing.
 - 5. The polynucleotide of Claim 2 which encodes a polypeptide comprising an amino acid sequence sequence selected from the group consisting of the amino acid sequences set forth in the Sequence Listing.

35

- 6. A vector comprising the polynucleotide of Claim 1.
- 7. A host cell comprising the vector of Claim 6.
- 40 8. A process for producing a polypeptide comprising: expressing from the host cell of Claim 7 a polypeptide encoded by said DNA.
 - 9. A process for producing a polypeptide or fragment comprising culturing a host of claim 7 under conditions sufficient for the production of said polypeptide or fragment.

45

10. A polypeptide comprising an amino acid sequence which is at least 70% identical to an amino acid sequence selected from the group consisting of the amino acid sequences set forth in the Sequence Listing.

50

- 11. A polypeptide comprising an amino acid sequence selected from the group consisting of the amino acid sequences set forth in the Sequence Listing.
- 12. An antibody against the polypeptide of claim 10.

55

13. An antagonist or agonist of the activity or expression of the polypeptide of claim 10.

14. A method for the treatment or prevention of disease of an individual comprising: administering to the individual a therapeutically effective amount of the polypeptide of claim 10.

- 15. A method for the treatment of an individual having need to inhibit a bacterial polypeptide comprising: administering to the individual a therapeutically effective amount of the antagonist of Claim 13.
- 16. A process for diagnosing a disease related to expression or activity of the polypeptide of claim 10 in an individual comprising:
 - (a) determining a nucleic acid sequence encoding said polypeptide, and/or

5

15

20

40

45

50

55

polypeptide.

- (b) analyzing for the presence or amount of said polypeptide in a sample derived from the individual.
- 17. A method for identifying compounds which interact with and inhibit or activate an activity of the polypeptide of claim 10 comprising:
 - contacting a composition comprising the polypeptide with the compound to be screened under conditions to permit interaction between the compound and the polypeptide to assess the interaction of a compound, such interaction being associated with a second component capable of providing a detectable signal in response to the interaction of the polypeptide with the compound; and determining whether the compound interacts with and activates or inhibits an activity of the polypeptide by detecting the presence or absence of a signal generated from the interaction of the compound with the
 - 18. A method for inducing an immunological response in a mammal which comprises inoculating the mammal with the polypeptide of claim 10, or a fragment or variant thereof, adequate to produce antibody and/or T cell immune response to protect said animal from disease.
- 25 19. A method of inducing immunological response in a mammal which comprises delivering a nucleic acid vector to direct expression of a polypeptide of claim 10, or fragment or a variant thereof, for expressing said polypeptide, or a fragment or a variant thereof in vivo in order to induce an immunological response to produce antibody and/ or T cell immune response to protect said animal from disease.
- 20. A polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO: 1, 52, 95, 184, 127, 128, 153, 212, 215 and 227.
 - 21. A polypeptide comprising a polypeptide encoded by the polynculeotide of claim 20.
- 35 22. The isolated polynucleotide of claim 1 wherein said nucleotide is selected from the group consisting of:
 - (a) a polynucleotide having at least a 90% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of the Sequence Listing;
 - (b) a polynucleotide having at least a 90% identity to a polynucleotide encoding the same mature polypeptide expressed by the gene contained in the *S. aureus* of the deposited strain that was sequenced to obtain a polynucleotide sequence of the Sequence Listing:
 - (c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 90% identical to the amino acid sequence of the Sequence Listing;
 - (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
 - (e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).
 - 23. The isolated polynucleotide of claim 1 selected from the group consisting of:
 - (a) a polynucleotide having at least a 95% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of the Sequence Listing;
 - (b) a polynucleotide having at least a 95% identity to a polynucleotide encoding the same mature polypeptide expressed by the gene contained in the *S. aureus* of the deposited strain that was sequenced to obtain a polynucleotide sequence of the Sequence Listing;
 - (c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 95% identical to the amino acid sequence of the Sequence Listing;
 - (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
 - (e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).

(a) a polynucleotide having at least a 50% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of the Sequence Listing and obtained from a prokaryotic species other than *S. aureus*; (b) a polynucleotide encoding a polypeptide-comprising an amino acid sequence which is at least 50% identical

24. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

- (b) a polynucleotide encoding a polypeptide-comprising an amino acid sequence which is at least 50% identical to the amino acid sequence of the Sequence Listing and obtained from a prokaryotic species other than S. aureus; and
- (c) a polynucleotide which is complementary to the polynucleotide of (a) or (b).
- 10 25. An isolated Streptococcal polypeptide having one of the amino acid sequences given in Table 1.
 - 26. An isolated nucleic acid encoding one of the amino acid sequences of Claim 1 and nucleic acid sequences capable of hybridizing therewith under stringent conditions.
- 75 27. Recombinant vectors comprising the nucleic acid sequences of Claim 26 and host cells transformed or transfected therewith.
 - 28. A method of identifying an antimicrobial compound comprising contacting candidate compounds with a polypeptide of Claim 1 and selecting those compounds capable of inhibiting the bioactivity of said polypeptide.
 - 29. Antimicrobial compounds identified by the method of Claim 28.

5

20

25

30

35

40

45

50

55

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 0 841 394 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 02.02.2000 Bulletin 2000/05

(43) Date of publication A2: 13.05.1998 Bulletin 1998/20

(21) Application number: 97307485.9

(22) Date of filing: 24.09.1997

(51) Int. **C12N 15/31**, C07K 14/31, C1.7: C07K 16/12, C12N 1/21.

C07K 16/12, C12N 1/21, A61K 38/16, G01N 33/50,

C12Q 1/68

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI
LU MC NL PT SE

(30) Priority: 24.09.1996 US 27032 P

(71) Applicants:

, SMITHKLINE BEECHAM CORPORATION Philadelphia Pennsylvania 19103 (US) , SMITHKLINE BEECHAM PLC Brentford, Middlesex TW8 9EP (GB)

(72) Inventors:

, Black, Michael T., SmithKline Beecham Pharma.

Collegeville, Pennsylvania 19426-0989 (US)

, Hodgson, John Edward, SmithKline Beecham Pharma.

Collegeville, Pennsylvania 19426-0989 (US)

, Knowles, David J. C., SmithKline Beecham Pharma.

Harlow, Essex CM19 5AW (GB)

, Reichard, Raymond W., SmithKline Beecham Pharma.

King of Prussia, Pennsylvania 19406 (US) , Nicholas, Richard O., SmithKline Beecham Pharma.

Collegeville, Pennsylvania 19426-0989 (US)

, Burnham, Martin K. R., SmithKline Beecham Pharma.

Collegeville, Pennsylvania 19426-0989 (US)

, Pratt, Julie M., SmithKline Beecham p.l.c.

Harlow, Essex CM19 5AW (GB)

, Rosenberg, Martin, SmithKline Beecham Pharma.

King of Prussia, Pennsylvania 19406 (US)

, Ward, Judith M., SmithKline Beecham Pharma.

Harlow, Essex CM19 5AW (GB)

, Lonetto, Michael A., SmithKline Beecham Pharma.

Collegeville, Pennsylvania 19426-0989 (US)

(74) Representative:

Mallalieu, Catherine Louise et al D. Young & Co., 21 New Fetter Lane London EC4A 1DA (GB)

(54) Staphylococcus aureus polynucleotides, polypeptides and their uses

(57) The invention provides novel polypeptides and polynucleotides encoding such polypeptides and methods for producing

such polypeptides by recombinant techniques. Also provided are methods for utilizing such polypeptides to screen for antibacterial compounds.

 ∞

0

European Patent Office

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention EP 97 30 7485 shall be considered, for the purposes of subsequent proceedings, as the European search report

	Citation of document with inc	insting where appropriate	Relevant	CI ARCIEICATION OF THE
Category	of relevant passas		to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.6)
X	20 January 1994 (199 * abstract * * nt 1-396 of seq. I application are comp	OHISA AKIO (JP); OHNO) 4-01-20) D 1 of the present	1-29	C12N15/31 C07K14/31 C07K16/12 C12N1/21 A61K38/16 G01N33/50 C12Q1/68
P,X	30 July 1997 (1997-6 * abstract * * compare nt 8-396 c	of seq. ID 1 of the with nt 4326-4711 of	1-29	
A	WO 94 06830 A (ALFA MARIA K (SE); FLOCK 31 March 1994 (1994- * abstract *		1-29	TECHNICAL FIELDS SEARCHED (Int.CI.6) CO7K C12N A61K G01N
INCO	MPLETE SEARCH		<u> </u>	C12Q
not compile carried	oh Division considers that the present a by with the EPC to such an extent that a d out, or can only be carried out partially earched completely : earched incompletely : of searched : or the limitation of the search: Sheet C	oplication, or one or more of its claims, does meaningful soarch into the state of the art ca for these claims.	ido unnot	
	Place of search	Date of comptation of the search		Examiner
	THE HAGUE	7 September 1999	Gal	li. I
X : part Y : part docu A : tech	ATEGORY OF CITED DOCUMENTS ioularly relevant if taken alone ioularly relevant if combined with another ment of the same category notogical bookground	T: theory or principle E: earlier patent doc after the füling date or D: document cited in L: document cited fo	underlying the i ument, but public the application of other reasons	nvention shed on, or
	-written disclosure	& ; member of the sa		

-3-

INCOMPLETE SEARCH SHEET C

Application Number EP 97 30 7485

Although claims 14,15,18,19 are directed to methods of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition.

Claim(s) searched incompletely:
 13,15,29

Reason for the limitation of the search:

The antagonists of claims 13 and 15 and the antimicrobial compounds of claim 19 are not sufficiently described to allow for a complete and meaningful search.

Application Number EP 97 30 7485

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims: See additional sheet, Invention 1.

LACK OF UNITY OF INVENTION SHEET B

Application Number EP 97 30 7485

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

```
1. Claims: 1-29
          Invention 1:
                  (claims 1-29, partially)
          An isolated polynucleotide comprising a sequence homologous or identical to the S. aureus sequence of Seq. ID 1.
          Corresponding vectors, recombinant cell, polypeptides (Seq. ID 260) and fragments thereof, antibodies, antagonists, antimicrobials, probes, pharmaceutical and diagnostic uses.
2. Claims: 1-29
           Inventions 2-259:
                   (claims 1-29, partially)
           Idem as subject matter 1, but wherein
               invention 2 is limited to seq. invention 3 is limited to seq.
                                                                           2 and 261
                                                                  IDs
                                                                          3 and 262
                                                                  IDs
               etc.
               invention 259 is limited to seq. IDs 259 and 534.
           (For the sake of conciseness, inventions 2-259 are not listed singly.) \label{eq:conciseness}
```

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 97 30 7485

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

07-09-1999

Patent document cited in search repo		Publication date		Patent family member(s)	Publicatio date
WO 9401583	Α	20-01-1994	AU	684250 B	11-12-1
			ΑU	4513593 A	31-01-1
			EP	0652291 A	10-05-1
			JP	2965543 B	18-10-1
			JP	10304895 A	17-11-1
			JP	2965544 B	18-10-1
			JP	10304896 A	17-11-1
			JP	10304897 A	17-11-1
			JP	2798499 B	17-09-1
			US	5807673 A	15-09-1
			US	5763188 A	09-06-1
			US	5770375 A	23-06-1
			US	5853998 A	29-12-1
			US	5798211 A	25-08-1
EP 0786519	Α	30-07-1997	CA	2194411 A	06-07-1
			JP	9322781 A	16-12-1
WO 9406830	Α	31-03-1994	AU	4837193 A	12-04-1
			CA	2124210 A	31-03-1
			EP	0621875 A	02-11-1

FORM POASS

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82