Cryptologie asymétrique

DUT S4

Pierre Ramet: ramet@labri.fr

2013-2014

Plan

Plan

La cryptgraphie à clé secrète

- Une seule clé pour chiffrer/déchiffrer
- La clé est connue des deux intervenants
- Si un attaquant intercepte la clé, fin de la confidentialité

Limites de la cryptographie à clé secrète

- Il faut pouvoir communiquer la clé secrète par un moyen sûr
 - Lettre, téléphone, malette diplomatique
 - Pas très pratique
- Nombre de clés à échanger pour communiquer avec plusieurs personnes

Nb personnes	Nb clés
2	1
5	10
100	4450
n	n(n-1)

■ Plutôt contraignant

La cryptographie à clé publique

- Petite révolution dans les années 1970 (Diffie Hellman 1976)
- La sécurité ne repose désormais plus sur :
 - Un secret partagé (la clé secrète)
 - Des algorithmes obscurs
- Mais sur :
 - Des problèmes connus de tous (ex : factorisation)
 - Une information connue de tous (la clé publique)

La cryptographie à clé publique

- La cryptographie à clé publique ou asymétrique est basée sur un concept très différent de la cryptographie symétrique
- Chaque intervenant possède une clé publique
 - Cette clé peut être connue de tous. Par exemple, disponible dans un répertoire accessible publiquement, sur internet
 - Toute personne connaissant cette clé peut envoyer un message chiffré au propriétaire de cette clé
- Chaque intervenant possède une clé privée
 - Cette clé doit demeurer confidentielle
 - Cette clé est liée (mathématiquement) à la clé publique correspondante
 - Cette clé permet de déchiffrer tout message chiffré avec la clé publique correspondante

Le principe du coffre fort

On peut assimiler la cryptographie à clé publique au protocole suivant :

- Bob veut envoyer un message à Alice de manière confidentielle
- Alice fournit un coffre fort à Bob, ainsi qu'un cadenas
 - Alice conserve la clé du cadenas
- Bob met ses documents dans le coffre d'Alice et le cadenasse
 - Le cadenas est la **clé publique** d'Alice
 - Il permet de mettre des informations dans le coffre
 - Difficile d'ouvrir le coffre juste avec le cadenas
- Alice récupère le coffre, et l'ouvre avec la clé du cadenas
 - C'est la clé privée d'Alice

Exemple

Exemple plus réaliste

Un exemple plus réaliste :

- Bob veut envoyer un message à Alice de manière confidentielle
- Alice possède un couple (clé privée, clé publique)
- Bob récupère la clé publique d'Alice (disponible publiquement)

Exemple plus réaliste (2)

- Bob **chiffre** son message avec la **clé publique** d'Alice
- Il l'envoie à Alice
- Alice déchiffre le message avec sa clé privée

Avantages

Avantages:

- Si N intervenants veulent s'échanger des informations sans l'aide d'un tiers, chaque intervenant doit avoir une clé publique unique connue de tous
 - Donc, N clés sont suffisantes
- Les clés publiques doivent être distribuées de façon authentifiée, mais non confidentielle
 - Seule la clé publique est divulgée
 - Connaître la clé publique d'un intervenant ne permet pas de déchiffrer ses messages

Comment est-ce possible?

- La cryptographie à clé publique est basée sur des problèmes mathématiques
- Utilisation de fonction à sens unique à brèche secrète
 - Métaphore du cadenas
 - Facile à fermer
 - Nécessite une clé pour ouvrir

Plan

Rappel de la complexité

Théorie de la complexité :

- On dira qu'un problème est complexe si il appartient à la classe NP (non-determinist polynomial)
 - C'est à dire que trouver une solution au problème se fait en $O(2^{n^k})$
 - Vérifier la solution se fait en temps polynomial
 - n étant la longueur de l'entrée (en bits)
- On dirat qu'un problème est facile si il existe un algorithme le résolvant appartenant à P
 - Trouver une solution se fait en $O(n^k)$
 - Facile ... si k reste petit
- Donnez des exemples

Rappel de la complexité (2)

- Un ordinateur peut résoudre des problèmes appartenant à la classe P
 - Dans la plupart des cas, c'est à dire si k pas trop grand
 - Un ordinateur peut difficilement résoudre des problèmes NP-complexes
 - Dès que n devient un peu grand, le temps nécessaire devient prohibitif
 - Exemple : factoriser un nombre de 1024 bits
 - Conjecture $P \neq NP$?
 - Pas prouvé!
 - Mais on l'espère

Fonction à sens unique

Definition

Une fonction à sens unique est une fonction f telle que f(x) est facile à calculer et $f^{-1}(x)$ est difficile à calculer

- Exemple:
 - casser un oeuf
 - mélanger un pot de peinture rouge et un pot de peinture blanche

Factorisation

- Quelle est la complexité de factorisation?
- Trouver les deux facteurs premiers de :
 - 35 = 5 * 7
 - 221 = 13 * 17
 - **50123093?**
- Comment calculer le dernier exemple?
- Quelle complexité?
 - ici $n = |log_2(50123093)| +1 = 26$

Plan

Fonction à sens unique à brêche secrète

Definition

Une fonction à sens unique et à brèche secrète est une fonction f telle que

- f(x) est facile à calculer
- $f^{-1}(x)$ est difficile à calculer
- $f^{-1}(x)$ sachant k est facile à calculer
 - k est la brêche secrête

Récapitulatif

- La cryptographie asymétrique : Chaque utilisateur possède deux clés :
 - Une clé publique qui permet de chiffrer des messages pour l'utilisateur
 - Une clé privée qui permet à l'utilisateur de déchiffrer les messages chiffrés avec sa clé publique
- La clé publique est **diffusée** à tout le monde
 - La connaître ne permet pas de déchiffrer les messages
- La clé privée est gardée secrète par l'utilisateur
 - La seule qui permette de déchiffrer les messages

Récapitulatif (2)

- La cryptographie à clé publique est basée sur des problèmes mathématiques difficiles à résoudre
 - Factorisation
 - Logarithme discret
- De ces problèmes, on extrait des fonction à sens unique à brêche secrête
 - Calculer f(x) est **facile** (f=clé publique, x=message)
 - Calculer $f^{-1}(x)$ est **difficile**
 - Calculer $f^{-1}(x)$ sachant k est **facile** (k=clé privée)
- Les deux problèmes les plus célèbres :
 - Le problème RSA
 - Le problème Diffie Hellman

Plan

Calcul modulaire

- 37 ≡ 2 mod 5 :
 - 37 = 2 + k * 5
 - Reste de la division Euclidienne
- Addition, multiplication, exponentiation modulaire
 - Opérations peu coûteuses
- Z_n = ensemble des résidus modulo n muni des opérations modulaires
- Inversion modulaire :
 - Trouver b tel que $ab \equiv 1 \mod n$
 - Si pgcd(a, n) = 1, une solution unique (algorithme d'Euclide étendu)
 - Sinon pas de solution

Calcul modulaire (2)

■ Petit théorème de Fermat :

Theorem

Si m premier, et pgcd(a, m) = 1, $a^{m-1} \equiv 1 \mod m$

■ Fonction d'Euler :

Definition

- $\varphi(n)$ est le nombre de résidus premiers avec n
- Si n est premier, $\varphi(n) = n 1$
- Si n = p * q, alors $\varphi(n) = (p-1)(q-1)$

Calcul modulaire (3)

■ Petit théorème de Fermat généralisé par Euler :

Theorem

Si
$$pgcd(a, n) = 1$$
, $a^{\varphi(n)} \equiv 1 \mod n$

Inverse modulaire :

Theorem

Si pgcd(a, n) = 1, l'inverse de a est $a^{\varphi(n)-1} \mod n$

Plan

Quelques exemples

Deux principales fonction à sens unique et à brêche secrète en cryptographie asymétrique :

- Basé sur le problème factorisation :
 - Le problème RSA
- Basé sur le problème logarithme discret
 - Le problème **Diffie Hellman**
- Abordons tout d'abord RSA

Le problème RSA

- Le problème factorisation :
 - Entrée : n = p * q produit de deux nombres premiers
 - Sortie : *p* et *q*
- Fournit une fonction à sens unique, mais pas de brêche secrète
- Le problème RacineIemeModulaire ou problème **RSA** :
 - Entrées :
 - Un entier n = p * q produit de deux nombres premiers
 - Un entier e > 0 premier avec (p-1)*(q-1)
 - Un entier c
 - Sortie : m tel que $c = m^e \mod n$
- Fonction à sens unique et à brêche secrète (p, q)
- le cryptosystème RSA est basé sur les problèmes RacineIemeModulaire et factorisation

Plan

RSA

- Chiffrement à clé publique le plus utilisé
- Créé en 1977 par Rivest, Shamir et Adleman
- Breveté par le MIT en 1983 aux États-Unis. Le brevet a expiré le 21 septembre 2000
- Utilisé dans :
 - Les banques
 - Les cartes à puce
 - Les site webs commerciaux

Protocole

Trois étapes :

- Création d'une clé publique et d'une clé privée pour Bob (la clé publique est diffusée à tout le monde, par exemple à Alice)
- 2 A chaque fois qu'Alice veut envoyer un message confidentiel à Bob, elle utilise la clé publique de Bob pour chiffrer le message
- Bob utilise sa clé privée pour déchiffrer le message envoyé par Alice

Création des clés

- 1 Choisir deux grand nombres p et q premiers
- **2** n = p * q et $\varphi(n) = (p-1)(q-1)$
- 3 e un entier tel que $1 < e < \varphi(n)$ et e premier avec $\varphi(n)$
 - i.e $pgcd(e, \varphi(n)) = 1$
- 4 Calculer d tel que $ed = 1 \mod \varphi(n)$
- **5** Clé publique : (e, n)
- **6** Clé privée : d (ou (p,q))

Chiffrement

- 1 Obtenir la clé publique (e, n) du destinataire
- 2 Représenter le message comme un entier m tel que 1 < m < n
- 3 Calculer $c = m^e \mod n$: texte chiffré
 - Relation avec le problème RSA?

Déchiffrement

1 A l'aide de la clé privée d, calculer :

$$m = c^d \mod n$$

2 Et c'est tout!

Exemple

- p = 31 et q = 137
- $n = 4247 \text{ et } \varphi(n) = 4080$
- $e = 967 \ (1 < e < \varphi(n) \ \text{et } pgcd(e, \varphi(n)) = 1)$
- d = 2983 (1 < d < $\varphi(n)$ et $ed = 707 \times 4080 + 1 = 1 \mod \varphi(n)$)
- Clé publique : (*e*, *n*)
- Clé privée : d

Exemple Chiffrement/Déchiffrement

- Message en clair m = 3333
- Chiffrement :

$$c = m^e \mod n = 3333^{967} \mod 4247 = 3790$$

Déchiffrement :

$$m = c^d \mod n = 3790^{2983} \mod 4247 = 3333$$

Preuve formelle

On rappelle :

$$m = c^d \mod n$$

- 2 Exercice:
 - Démontrez que c^d mod n permet bien de retrouver le message en clair. On s'aidera de :
 - Des propriétés de l'arithmétique modulaire
 - Du petit théorème de Fermat

RSA pourquoi ça marche?

- Attaque à texte chiffré : revient à résoudre le problème RSA qui est difficile
 - C'est à dire difficile de calculer la solution de manière efficace
 - Problème supposé dans NP
 - S'assurer quand même que *n* est grand
- Retrouver la clé privée à partir de la clé publique : revient à résoudre le problème factorisation qui est difficile
 - Opération mathématiquement impossible si n est grand
 - Et heureusement RSA utilise de grand nombres (plus de 1024bits conseillé)
 - Record actuel : 512bits (Anciennes cartes à puces : 320bits!)
 - Combien de temps cela prendrait-il pour un ordinateur à 4Ghz si n fait 1024 bits?

Confiance dans RSA

- Utilisé depuis 25 ans
 - Quelques défauts mineurs ont été corrigés
- La confiance dans la sécurité de RSA est calculatoire : difficulté de factoriser un grand nombre en facteurs premiers
- Mais il n'existe pas de démonstration que RSA ne puisse pas être un jour pris en défaut

Inconvénients

- RSA est très lent
 - 1000 fois plus que DES
 - Clé de grande taille
- Souvent RSA+chiffrement symétrique :
 - 1 D'abord l'expéditeur d'un message choisit une clé secrète symétrique
 - 2 II chiffre son message avec cette clé secrète
 - 3 Il envoie au destinataire ce message chiffré et ainsi que la clé secrète chiffrée avec la clé publique du destinataire
 - 4 Le destinataire déchiffre avec sa clé privée la clé secrète chiffrée
 - 5 Avec le clé secrète déchiffrée, il déchiffre le message

Le problème Diffie Hellman

- Le problème Logarithme Discret :
 - Entrée : un entier premier p, un générateur g de Z_p^* et $y \in Z_p^*$
 - Sortie : en entier e tel que $g^e \mod p = y$
- Fournit une fonction à sens unique, mais pas de brêche secrète
- Le problème **Diffie Hellman** :
 - Entrées :
 - Un entier premier p
 - Un générateur g de Z_p^*
 - Deux entiers $g^a \mod p$ et $g^b \mod p$
 - Sortie : l'entier g^{ab} mod p
- Fonction à sens unique et à brêche secrète (a, b)
- Le cryptosystème Diffie-Hellman est basé sur les problèmes
 Logarithme Discret et Diffie Hellman

Diffie Hellman

- Pas un protocole de chiffrement, mais un protocole d'échange de clé
- Basé sur les problèmes Logarithme Discret et Diffie Hellman
- Objectif:
 - Alice et Bob veulent s'échanger une information connue d'eux seuls

Protocole

- **I** Soit p un grand nombre premier et g un générateur de Z_p^*
- 2 Alice et Bob se mettent d'accord sur p et g
- 3 Alice choisit un entier a et calcule $g^a \mod p$
- 4 Alice envoie $g^a \mod p$ à Bob
- **5** Bob choisit un entier b et calcule $g^b \mod p$
- 6 Bob envoie $g^b \mod p$ à Alice

Protocole (2)

- Alice calcule $(g^b \mod p)^a \mod p = g^{ab} \mod p$
- Bob calcule $(g^a \mod p)^b \mod p = g^{ab} \mod p$
- La clé échangée est :

$$k = g^{ab} \mod p$$

Diffie Hellman

Diffie Hellman : Pourquoi ça marche?

- Un attaquant peut observer p, g, $g^b \mod p$ et $g^a \mod p$
- Pour déterminer *k* il peut :
 - Essayer de déterminer a ou b
 - Problème du Logarithme Discret ⇒ difficle
 - **E**ssayer de déterminer directement $g^{ab} \mod p$
 - Problème dit de Diffie Hellman ⇒ difficle
- L'algorithme El Gamal est basé sur les mêmes problèmes

Inconvénients

- Comme RSA, très lent
 - Diffie-Hellman+chiffrement symétrique
- Pas d'authentification

Récapitulatif

Récapitulatif :

- Le protocole RSA :
 - Protocole de **chiffrement**
 - Le plus utilisé
 - Repose sur factorisation et RacinelemeModulaire (difficiles)
- Le protocole Diffie Hellman :
 - Protocole d'échange de clés
 - Repose sur le problème Logarithme Discret (difficile)
- Bien d'autres protocoles
 - Fl Gamal
 - Courbes Elliptiques
 - etc

Où est utilisée la cryptographie asymétrique?

Partout!

- IPSEC
 - Authentification du serveur plus échange de clés : Signature RSA, DSA ..
 - Chiffrement de la communication (AES, TDES, DES ...)
- SSL/TLS
 - Authentification du serveur plus échange de clés : RSA + DH
 - Chiffrement de la communication (AES, TDES, DES ...)
- SSH
 - Authentification du serveur plus échange de clés : DH
 - Authentification du client (facultatif)
 - Chiffrement de la communication (AES, TDES, DES ...)

Où est utilisée la cryptographie asymétrique?

- Client mail
 - PGP, Outlook
 - Signature des mails : RSA, DSA
 - Chiffrement des mails RSA + AES, TDES, DES ...
- Essayez!
 - GPG : GNU Privacy Guard
 - Plugin Thunderbird : Enigmail

Conclusion

- La cryptographie est un outil essentiel de la politique de sécurité de l'entreprise
 - Confidentialité
 - Intégrité
 - Authenticité
- Cryptographie à clé secrète
 - Rapide, mais comment s'échanger la clé
- Cryptographie à clé publique
 - Plus lente, mais plus pratique
 - Permet notamment d'authentifier grâce aux signatures