

ELEMENTS I COMPOSTOS

2n ESO - 3r ESO

Rodrigo Alcaraz de la Osa. Traducció: Óscar Colomar (🛩 @ocolomar)

La taula periòdica dels elements

La taula periòdica dels elements organitza els 118 elements coneguts en 7 períodes (files) i 18 grups (columnes), ordenats pel seu nombre atòmic Z.

Classificació dels elements quimics

Els elements químics poden classificar-se generalment en metalls, semimetalls, no metalls i gasos nobles, segons les seves propietats físiques i químiques comunes:

Metalls

Aparença brillant, són **bons conductors** de la **calor** i de l'**electricitat** i formen **aliatges** amb altres metalls. La majoria són **sòlids** a T ambient (**Hg** és 🍐).

Formació d'ions Tendeixen a cedir electrons, formant cations (ions amb càrrega \bullet). Exemples: Li \longrightarrow Li⁺ + 1 e⁻; Mg \longrightarrow Mg²⁺ + 2 e⁻; Al \longrightarrow Al³⁺ + 3 e⁻.

Semimetalls

Sòlids fràgils/trencadissos d'aspecte metàl·lic que són semiconductors i es comporten com no metalls.

No metalls

Aparença apagada, són mals conductors de la calor i de l'electricitat i són fràgils. Poden ser sòlids, líquids o gasosos a temperatura ambient.

Formació d'ions Tendeixen a captar electrons, formant anions (ions amb càrrega \bigcirc). Exemples: Cl + 1 e⁻ \longrightarrow Cl⁻; O + 2 e⁻ \longrightarrow O²⁻; P + 3 e⁻ \longrightarrow P³⁻.

He, Ne, Ar, Kr, Xe y 🚱 Rn. Gasos monoatòmics inodors i incolors que gairabé no reaccionen químicament, perquè tenen vuit electrons a la seva capa exterior.

Unions entre atoms

- Regla de l'octet

La configuració més estable per a qualsevol àtom és comptar amb vuit electrons a la capa exterior.

Els elements tendiran a unir-se per a completar la seva capa exterior, intercanviant (cedint/captant) o compartint electrons, i així guanyar estabilitat. En funció del nombre i tipus d'àtoms, distingim entre molècules i cristalls.

Són grups elèctricament neutres de dos o més àtoms del mateix element o d'elements diferents, units per enllaços químics. La massa molecular es calcula tenint en compte el nombre d'àtoms i la massa atòmica de cada element.

Exemples $m(H_2O) = 2 \cdot m(H) + m(O); m(H_2SO_4) = 2 \cdot m(H) + m(S) + 4 \cdot m(O).$

Cristalls

Són materials sòlids constituïts per (àtoms, molècules o ions) disposats en una estructura microscòpica molt ordenada, formant una xarxa cristal·lina que s'estén en totes les direccions.

Elements i compostos d'especial interès

Amb aplicacions industrials iii

Àcid sulfúric (H_2SO_4) El compost químic més produït del món.

Etilè (C_2H_4) El compost orgànic més produït del món.

Hidròxid de sodi (NaOH) Fabricació de paper, teixits i productes de neteja.

Propilè (C_3H_6) Combustible o producció de cautxú/plàstic.

Nitrgen (N_2) Emprat en **fertilizants**, **teixits**, **tints** i fins i tot **explosius**. Combinat amb hidrogen forma amoníac (NH₃), crucial en si mateix.

Amb aplicacions tecnològiques

Li, Co i Ni Utilitzats en bateries recarregables.

- Al Es pot trobar en tot, des d'embalatges fins a nanotecnologia.
- Si Semiconductor ideal imprescindible per a l'electrònica.
- Fe El metall més emprat de la taula periòdica, en part gràcies a l'acer.
- Cu Material conductor imprescindible per a l'electrònica.
- Ga Àmpliament emprat en electrònica, per exemple en llums LED.
- In Essencial en pantalles tàctils.

Terres rares Sc, Y i els lantanoides, considerats, entre d'altres, elements tecnològicament crítics.

Amb aplicacions biomèdiques

Aplicacions quirúrgiques Pròtesis i implants de Ti, Pt u Au.

Diagnòstic i tractament de càncer **Isòtops radiactius** 🚱 com el ⁶⁰Co, ^{99m}Tc, ¹³¹I, ¹³⁷Cs o