æ	
Ba	
_	

Ba)
Ę
3arit

Enthalpy Kelerence	נונונוער זו	1.V-1-mol-1			L. Lamond		
7/K	เ	S -[G	-[G*-H*(T,)]/T	H*-H*(T,)	- H.A	₽ C•	log K
0	ó	Ö	INFINITE	-6.912	ó	ó	oʻ
<u>8</u> £	24.301	34.083	86.220	-5214	o' c	o' c	o c
298.15	28.096	62.475	62.475	0	်ဝံ	်ဝံ	်ဝံ
300	28.142	62.649	62,476	0.052	0	ö	o
Q	33.229	71.295	63.622	3.069	o' (oʻ (o' o
8 2	43.744	17.67	6.99	7889		0.	oʻ
582.530 582.530	32,468	87.232	68.471	- 62601	1	ALPHA <> BELA TRANSTITON	
86	33.941	88.213	69.031	11.509	o' c	o' c	o c
768.130	48.103	98.274	74313	18.406	BETA	4 <> GAMM	
768.130	39.066	98.274	74313	18.406		TRANSITION	
<u> </u>	39.066 39.066	99,863	75.299 280 280	19.651	ဝင်	o o	o o
0001	39.066	108.580	81.116	27.464	ó	ď	
1000,000	39.066 43.304	108,580	81.116 81.116	27.464 35.476	— GAMMA	AA <> LIQUID TRANSTTION	
001	42,007	120.657	84.530	39.741	0	ő	
22.5	30,000	124262	87.693	43.883	o' c	oʻ c	o' c
6	39.330	130.437	93.373	51.890	ဝ	ö	်ဝံ
200	38.869	133.133	95.935	55.798	oʻ.	oʻ	o ·
<u>8</u> 2	38.618	135.633	98.339	59.670 63.578	o' c	o' o	o c
1800	38.740	140.180	102.740	67.392	ó	ď	ó
<u>8</u> 2	39.116	142.284	104.766	75.73	oʻ c	o' c	o c
2100	40,518	146.260	108.531	79.232	ó	ď	ó
2118,599	40.692	146.618	108.863	19.987	CIDOTI —	D <> IDEAL GAS	GAS
2118.599	30.938	212.831	108.863	220.265		FUGACTIY - 1 ba	,
2300	34.873	215.029	112.732	226.230	o o	ರ ರ	ರ ರ
2400	37.123	217.062	121.299	229.830	ó	0	ó
88	55.5	770.900	101.621	233.034	.	o c	.
2700	43.543	221.814	132.202	241.952	ó	ာ်ဝံ	ó
2800	45.406	223.431	135.431	246.401	0'	oʻ (oʻ
3006	48.509 48.509	225.054 226.675	141.406	255.807	ာ ဝ	ರ ರ	ာ် ဝ
3100	49.718	228.286	144.182	260.720	ó	o	oʻ
3200	\$0.695	229,880	146.836	265.743	o' c	oʻ c	o' c
3400	51.931	232.992	151.813	276.012	ö	ó	ó
3200	52.262	234.503	154.154	281.223	oʻ	oʻ (oʻ
965	52.420	235.978	158.576	286.458	o c	o c	o' c
3800	52.319	238.812	160.669	296.940	ó	ó	ó
3900	52.105	240.168	162.691	302.162	ರ ೧	oʻ c	o' c
4200	51.068	243.993	168.363	317.645	်ဝံ	ö	ó
98	50.234	246.350	171.855	327.776	o	o' c	0.0
\$ \$ \$	48.545	250.640	178.245	347.499	ರ ರ	ö	ာ်ဝံ
2000	47.832	252.606	181.180	357.129	oʻ	Ö	oʻ
2700	47.194	254.465	183.963	366.608	oʻ c	o c	o' c
200	46.176	257.908	189.122	385.200	ó	ó	ó
2800	45.812	259.517	191.522	394.376	oʻ (o' (o o
900	45,569	201.036	195.810	403.55	oʻ	oʻ	j

 $A_r = 137.33$ Barium (Ba)

Ba₁(ref)

ш
E
2
(X)
ш
ទ្ធ
Ū
Œ
Ш
Щ
Œ

582.53 K crystal, alpha 768.13 K crystal, beta 1000 K crystal, gamma 2118.599 K liquid 2118.599 K ideal monatomic gas Refer to the individual tables for details. 2222 0 582_53 768.13 1000 above

Barium (Ba)

 $A_r = 137.33$

CRYSTAL(α-β-γ)

Barium, Alpha-Beta-Gamma (Ba)

 $\Delta_{\rm u}H^{\circ} = [0.0] \text{ kJ·mol}^{-}$ $\Delta_{ln}H^{\circ} = [0.0] \text{ kJ·mol}^{-}$

 $\Delta_{fu}H^{\circ} = 8.012 \pm 0.62 \text{ kJ·mol}$

 $\Delta_t H^0(0 \text{ K}) = 0 \text{ kJ·mol}$ Δ_rH*(298 15 K) = 0 kJ·mol

 $S^{(298.15 \text{ K})} = 62.475 \pm 0.8 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

 $\Gamma_{\rm m} = [582.53] \text{ K } (\alpha \to \beta)$ r_m = [768.13] K (β → γ)

Fus = 1000 ± 3 K

Enthalpy of Formation Zero by definition.

Heat Capacity and Entropy

bout 0.2 cal-K-1 mol-1, the mainly to possible effects of impurities. Furukawa and Ishihara' reported impurities (in mole %) of about 3% The adopted values below 298.15 K are based on C, (18-370 K) of Furukawa and Ishihara' and C, (1.5-20 K) of Robens. 2° (298.15 K) is calculated from C, based on an extrapolation of about 0.001 cal.K-1-mol-1 below 1.5 K. We estimate that \$'(298.15 K) is uncertain by

BaO, 1% Sr and 0.2% Ca. Further details on adjustment of the data for impurities are given in the original paper.¹ Relative enthalpies were measured by Jauch,¹Shpil'rain⁴ and Ditmars and Douglas.⁵ Earlier reviewers dismissed the abnormally high C; values of Jauch as due to a very impure sample. The new data confirm this decision, but at least one new study may also involve bias due appears to be 1/4 as large in as in, the sample of may have been more pure, however, such a conclusion would be quite speculative. Liquic enthalpies are in reasonable agreement, but the crystal enthalpies of are 4 to 20% lower than those of. Another major difference is that suggests a single "transition" near 650 K, while suggests two "transitions" near 580 and 770 K. Further confusion arises because the to impurities. Separate portions from a common sample consisting of three Ba rods were used in the heat capacity study, the enthalpy study and the analytical studies. ' The calorimetric data suggest variability in the impurity contents of the separate portions. The 2nd law study used Ba which was not analyzed for O or N which are the most likely contaminants. Since the premelting effect in the enthalpy at 979 I enthalpies reported for CsF(c, l) are unreasonably large

and adopted C. for Ba(1) and Ba(\gamma), suggesting that the γ -phases are identical in the two studies. C. (o) from the equation is a reasonable extension of the data below 298.15 K; C. does not show the abnormally steep rise just above 300 K which appears in the enthalpy data and to a lesser degree, in the C. data. The alternative functions suggest that the adopted γ -phase entropy may be biased by about +0.6 We tentatively adopt the smoothed C, of Ditmars and Douglas, pending resolution of the transition discrepancy. The following alternative functions reproduce the enthalpies of Shpil'rain and provide estimates of the possible bias in the adopted functions, Ba(a): C Δ_{ss}H° = 2.048 kcal·mol⁻¹ at 999 6 K; Ba(f); C²/₇ cal·K⁻¹·mol⁻¹ = 10 0 (999.6–1300 K). There is reasonable agreement between the alternative cal-K-1 mol-1 (about +6% in S'(T)-S'(298.15 K) due to impurities. Ditmars and Douglas stressed the possibility of such systematic errors' and estimated errors of up to 5% in C_p^a and H^a . Our alternative functions suggest the maximum error in $C_p^a(\alpha)$ may be much larger than 5% $ca^{1}K^{-1}mol^{-1} = 5.023 \pm 0.005657 T (298-650 K), \Delta_{\mu\nu}H^{\circ} = 0.345 kcal\cdot mol^{-1} at 650 K; Ba(\gamma) C_{\sigma}^{\circ}/cal\cdot K^{-1} mol^{-1} = 9.4 (650-999.6 K)$

FransitionData

change in X-ray pattern. 19 We speculate that these two "transitions" are identical; however, evidence for their being a property of pure Ba is inconclusive. The main support comes from the relatively small premelting effect in enthalpy. The enthalpy data are insufficient to Recent data for Sr and Ca indicate that the pure metals exist in the fcc and bcc polymorphs but that impurities probably stabilize the hcg near 648 K at one atmosphere; this is consistent with new enthalpy data and could correspond to the "transition" found by Bridgman 13 nea 17 kbar at room temperature. Bridgman's "transition" is in dispute, it seems to involve a very small volume contraction^{12,14} and no obvious form. Although enthalpy data^{1,5} suggest a similar controversy for Ba, the pure metal is usually reported to have the bcc form at all temperature at atmospheric pressure. ^{5,4} Several high-pressure polymorphs are known. ¹⁰⁻¹² Earlier literature¹³ contains much evidence for a "transition" distinguish whether the "transitions" is first or second order.

We tentatively adopt the two "transitions" with zero enthalpies selected by Ditmars and Douglas.3 These values are placed in brackets to emphasize that there is no confirmatory evidence whatsoever. The authors suggest that these "transitions" may have resulted wholly from impurities. We speculate further the T₁₁ = 582 K could be due to impurity lowering of T₁₁ = 650 K, while T₁₁ = 768 K could result from crossing of a solid-solubility limit below the eutectic temperature of the Ba-BaO system. This case would favor the alternative functions given above It is also possible that the Sr and Ca impurities could nucleate other polymorphs.

The adopted functions include $\Delta_{nr}H^{\circ} = 0.97$ cal·mol⁻¹ at 57 K from a small-anomaly observed between 50 and 60 K.

Fusion and Sublimation Data

Refer to the liquid and ideal gas tables for details

G. T. Furukawa and S. Ishihara, U. S. Nat. Bur. Stand., Report 10326, chap. 2, (July 1, 1970).

²L. M. Roberts, Proc. Phys. Soc. (London) B70, 738 (1957)

 R Jauch, quoted by O. Kubaschewski, Z. Elektrochem, 54, 275 (1950); Z. Metallkunde 41, 445 (1950).
 E. Shpil'rain and D. N. Kagan, Teplofiz. Vys. Temp. 7, 577 (1969); English transl., High Temp. 7, 525 (1969).
 A. Ditmars and T. B. Dovelas, U. S. Nat. Bur. Stand., Report 10326, chap. 3, (July 1, 1970). A. Ditmars and T. B. Douglas, U. S. Nat. Bur. Stand., Report 10326, chap. 3, (July 1, 1970).

Continued on page 358

H(T,))/T H"-H"(T,) A ₄ H" A ₅ G" bog K ₁ HINTE —6.912 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	H*-H*(T;) AH* AG* K -6912 0 0 0 -5214 0 0 0 -2469 0 0 0 -1309 0 0 0 1489 0 0 0 4846 0 0 6887 0 0 0 15324 0 0 15324 0 0 15324 0 0 15324 0 0 15324 0 0 23557 0 0 23557 0 0 23557 0 0 23557 0 0 23557 0 0 23587 0 0 23587 0 0 23587 0 0 23588 46997 -8809 1686 3830 -8744 2558 46997 -8801 4.269	Enthalpy Reference Temperature = T, = 298.15 K J·K ⁻¹ mol ⁻¹	eference	Ĕ	mperature J·K ⁻¹ mol ⁻¹	- T, - 298.15		Standard Sta	Standard State Pressure = $p^* = 0.1 \text{ MPa}$ $\text{MJ} \cdot \text{mol}^{-1}$,* = 0.1 MPa
-6912 0. 05214 0. 05251 0. 05251 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	-6912 0. 05214 0. 05214 0. 02650 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TK C; S		'n	5	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{*})$	$\Delta_{c}H^{\bullet}$	$\Delta_i G$	log Kr
1.350 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1.350 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 0. 0. 0. 100 24.301 34.083 200 26.368 51.643		34.08	m m r	86.220 64.988	-6.912 -5.214 -2.669	000	ರರ ರ	ರರರ
1.488 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1488 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28.096		62.475		62.475	0.	ံ ဝံ	င် ငံ	ော်ဝံ
10.929 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	10929 ALPHA <> BETA 10929	28.142		62.649		62,476	0.052	o o	o o	00
10.929 — ALPHA <> BETA — 11.509 0. 0. 0. 15.324 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	11.509 0. 0. 0. 0. 11.509 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	400 33.229 71.295 450 38.031 75.475 500 43.744 70.771		75.475		63.622 64.706 89	3.069 4.846 827	000	ddd	
11509 0. 0. 18.406 — BETA <> GAMMA – 18.406 — BETA <> GAMMA – 18.406 — C. 21557 0. 0. 0. 21557 0. 0. 21557 0. 0. 21557 0. 0. 21557 0. 0. 21557 0. 0. 0. 21557 0. 0. 0. 21557 0. 0. 0. 21557 0. 0. 0. 21557 0. 0. 0. 0. 21557 0. 0. 0. 0. 21557 0. 0. 0. 0. 21557 0. 0. 0. 0. 21557 0. 0. 0. 0. 21557 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	11509 0. 0. 15334 0. 0. 0. 18 406 — BETA <> GAMMA 18,406 0. 0. 21557 0. 0. 0. 27,464 0. 0. 0. 0. 27,464 GAMMA <> LIQUID 31,3718,606 1,666 39,1848,714 2,238 46,5978,801 4,269	0 54 400 0 32.468	54 400 32.468	87.232		68.471	10.929	ALPH/	A <> BETA IRANSITION	
18.406 — BETA <> GAMMA — 19.651 0. 0. 23.557 0. 0. 0. 27.464 CAMMA <> LIQUID 31.371 -8.370 0.820 35.277 -8.606 1.666 39.9184 -8.741 2.538 45.997 -8.791 4.269	18.406 — BETA <> GAMMA — 18.406 — TRANSITION — 19.651	33.941 42.363	33.941 42.363	88.213		69.031	11.509	óó	ဝဝ	o o
19.651 0. 0. 23.557 0. 0. 27.464 0. 0. 27.464 GAMMA <> LIQUID 31.371 -8.370 0.820 35.377 -8.606 1.666 39.184 -8.741 2.538 46.997 -8.799 3.398	19.651 0. 0. 27.464 0. 0. 27.464 0. 0. 27.464 GAMMA <> LIQUID 31.371 8.570 0.820 35.277 8.666 1.666 39.184	0 48.103	48.103	98.274		74313	18.406		:> GAMMA	
27.464 GAMMA <> LIQUID 31.371 -8.370 0.820 35.277 -8.666 1.666 35.184 -8.741 2.538 45.997 -8.801 4.269	27.464 GAMMA <> LIQUID 31.371 -8.370 0.820 35.277 -8.466 1.666 39.184 -8.741 2.238 43.090 -8.799 3.398 46.997 -8.801 4.269	39.066 39.066 19.066	39.066 39.066 39.066	99.863 104.464 108.580		75.299 78.289 81.116	19.651 23.557 27.464		ರರರ	
35.277 - 8.606 35.277 - 8.606 35.184 - 8.741 2.538 45.997 - 8.801 4.269	35.277 - 8.606 35.277 - 8.606 35.277 - 8.606 45.997 - 8.791 45.997 - 8.801 4.269	39.066		108.580		81.116	27.464	GAMM	,	
43,997 -8,801 4,269 46,997 -8,801 4,269	43090 -8.799 3.398 46.997 -8.801 4.269	1200 39.066 115.702 1300 39.066 118.829		115.702		86.305 88.688	35.277 39.184	-8.606 -8.741	1.666 2.528	-0.039 -0.073 -0.102
		39,006		124,420		937088	45.597	-8.801	4.269	-0.149

PREVIOUS December 1970

CURRENT. December 1970

CURRENT: December 1970

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [4.985] \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{tus} H^{\circ} = 8.012 \pm 0.62 \text{ kJ} \cdot \text{mol}^{-1}$ S°(298.15 K) = [66.328] J·K⁻¹·mol⁻¹ T_{tot} = 1000 ± 3 K

Enthalpy of Formation

Barium (Ba)

The enthalpy of formation is calculated from that of the crystal by adding $\Delta_{las}H^a$ and the difference in enthalpy, H^a (1000 K)- H^a (298.15 K) between the crystal and liqiud.

Heat Capacity and Entropy

C, is based on the parabolic equation derived by Douglas and Krause from enthalpy data of Ditmars and Douglas. The enthalpy data (1003 to 1173 K) may be biased due to impurities in the sample, however, enthalpy data (1035 to 1253 K) of Shpil'rain are in reasonable agreement. This suggests that the large discrepancies for Ba(cr) are partially compensated by different values of $\Delta_{lm}H^n$. Detailed discussions of the discrepancies and possible alternative functions are given on the crystal table. The alternative functions, derived from the possibly purer sample of Shpil'rain, 3 suggest that the adopted liquid entropies may be biased by about +0.4 cal·K-1-mol-1

Douglas and Krause emphasized the uncertain nature of the parabolic extrapolation of C, from 1200 to 2000 K. The extrapolation is amounts much below their solubility Jimits^{2,4,5} in Ba(I). We note also that S°(2000 K) is not significantly changed when the parabolic fit is reasonable provided that the temperature coefficient of C_o^* is not grossly biased due to effects of impurities on the observed enthalpies. Such bias seems unlikely because of the agreement in enthalpy between samples of different purity23 and because the impurities2 are present in

replaced by a two-constant fit in which C_p^a approaches a constant (8.48 cal·K⁻¹·mol⁻¹) at high temperature. The parabolic C_p^a is extrapolated to 580 K, the assumed glass transition temperature. C_p^a below 580 K is taken to be the same as the crystal. S^a (298.15 K) is calculated in a manner analogous to that of the enthalpy of formation.

Melting Data

Dirmars and Douglas² considered early melting point data and arbitrarily selected 991 K. Recent data yield higher values of 998 ± 1^{6,7} and $1002 \pm 1 \, \text{K}^{3}$ to These values represent more carefully purified samples. We adopt $1000 \pm 3 \, \text{K}$ and adjust $\Delta_{los} H^{\circ}$ slightly so that the result is consistent with the smoothed enthalpy² of the liquid. Alternative functions based on enthalpies of Shpil rain³ suggest that the adopted A_{ns}H³ may be too small by about 0.15 kcal·mol⁻¹ (see the crystal table).

Vaporization Data

between $\Delta_t H^{\gamma}(g)$ and $\Delta_t H^{\gamma}(t)$ at T_{sap} . Bohdansky and Schins¹¹ ported T_{sap} = 2063 K(1 atm) based on extrapolation of their vapor pressure data from 2024 K. Our calculated T_{sap} is some 60 K higher due to the entropy difference between the adopted functions and vapor pressure data and to adoption of the mean 3rd law $\Delta_{sab}H^{\gamma}$ rather than the apparent value at 2024 K. Refer to the ideal gas table for further details. " = 2118.599 K is calculated as the temperature at which ∆₁G° = 0 for Ba(1) → Ba(g). ∆₁₄₉H° = 140.278 kJ·mol⁻¹ is the difference

A. Douglas and R. F. Krause, U. S. Nat. Bur. Stand., Report 10326, chap. 4, (July 1, 1970).
 A. Ditmars and T. B. Douglas, U. S. Nat. Bur. Stand., Report 10326, chap. 3, (July 1, 1970).
 E. Shpill'rain and D. N. Kagan, Teplofiz. Vys. Temp. 7, 577 (1969), English transl., High Temp. 7, 525 (1969).
 M. Schriel, Z. Anorg. Chem. 231, 313 (1937).
 R. G. Hirst, A. J. King and F. A. Kanda, J. Phys. Chem. 60, 302 (1956).
 A. S. Dworkin, H. R. Bronstein and M. A. Bredig, J. Phys. Chem. 62, 132 (1958).
 D. V. Keller, F. A. Kanda and A. J. King, J. Phys. Chem. 69, 3867 (1965).
 F. A. Kanda, R. M. Stevens and D. V. Keller, J. Phys. Chem. 63, 1367 (1965).
 D. T. Peterson and J. A. Hinkebein, J. Phys. Chem. 63, 1360 (1959).

Bohdansky and H. E. J. Schins, J. Phys. Chem. 71, 215 (1967)

Standard State Pressure = p = 0.1 MPa -0.232 -0.159 -0.097 0. -0.128 -0.271 -0.402 -0.522 -0.532 -0.533 -0.934 -0.995 -1.070 -1.264 -1.264 -1.264 0.672 0.667 0.450 0.377 0.320 log Kr ರರದರದ ದರದದರ ರ S <--> LIQUID IRANSTITON 2.669 2.128 1.489 0.777 5.375 11.942 18.475 24.978 31.455 37.907 44.337 50.743 57.123 63.474 69.791 76.068 82.299 ರರದರ ರರದದ ದ 5.286 6.428 6.853 7.514 8.012 -136.626 -136.008 -135.368 -134.666 -133.860 -139.520 -138.683 -137.935 -137.258 -131.758 -130.366 -128.696 -126.704 4.985 4.985 4.985 4.985 4.985 -132.905 Li-mol-00000 000000 Δ_H $H^{\bullet}-H^{\bullet}(T_t)$ 54.685 58.545 66.298 70.238 70.238 74.247 74.247 78.348 82.562 82.562 82.562 82.562 91.410 96.087 110.6048 111.1376 111. 0. 0.052 1.498 3.069 4.846 6.887 10.792 10.792 11.809 11.576 21.518 25.086 30.491 34.755 38.898 42.940 46.904 50.813 30.491 Enthalpy Reference Temperature = T, = 298.15 K $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$ 66.329 66.677 67.475 68.539 69.849 77.242 77.242 77.242 77.267 79.670 79.670 86.101 89.062 91.848 94.468 96.933 101.454 103.534 105.509 107.390 109.185 110.905 111.217 112.555 114.144 115.679 117.164 118.605 120.008 121.377 122.715 125.315 126.584 127.836 129.073 130.299 135.633 140.180 142.284 144.304 146.260 155.562 157.400 159.251 161.120 163.014 100.219 106.567 111.950 116.592 124.262 127.498 130.437 133.133 64.938 66.896 68.894 70.935 73.023 116.592 120.657 146.618 48.168 38.618 38.576 38.740 39.116 \$0.664 48.509 46.564 43.304 43.304 42.007 40.878 39.999 39.330 40.518 40.692 41.539 42.769 44.208 45.857 49.771 52.047 54.536 57.237 60.151 63.277 66.616 70.167 ئ

Barium (Ba)

PREVIOUS. December 1970

Ba₁(cr,l)

Barium (Ba)

582.53 K crystal, alpha 768.13 K crystal, beta 1000 K crystal, gamma 1000 K liquid

0 to 582.53 to 768.13 to l Refer to the individual tables for details.

	log K, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0.00.00.00.00.00.00.00.00.00.00.00.00.0	BET
0.000.000.000.000.000.000.000.000.000.	BET
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	BET
0.00.000000000000000000000000000000000	BET
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	BET
0.000 0.000	BET
0. 0. 0. 0. TRANSITIO 0. 0. 0. TRANSITIO	BET
0. 0. TRANSTIO 0. 0. BETA <> TRANSTIO	BET
ALPHA < TRANSITIO 0. 0. 0. — BETA <> TRANSITIO	BET
HANSHIO 0. 0. 0. BETA <> TRANSHIO 0. 0.	M.
0. 0. —————————————————————————————————	MM
BETA <> TRANSITIO 0.	MM
io	i o o
GAMMA	LIQUID.
	2
	် ဝ
00	o o
	öö
	o
	oʻ c
	i oʻ
o o	ರ ೧
,	į
-137,935 18,475 -137,258 24,978	-0.402
-136.008 37.908	-0.733
	-1.070
5 2 5	

Ba₁(g)

A_r = 137.33 Barium (Ba)

DEAL GAS

Barium (Ba)

CURRENT: December 1970 (1 bar)

PREVIOUS: December 1970 (1 atm)

IP (Ba, g) = $42035.14 \pm 0.05 \text{ cm}^{-1}$ S°(298.15 K) = $170.245 \pm 0.01 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

 $\Delta_t H^{\circ}(0 \text{ K}) = 179.8 \pm 5.0 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 179.1 \pm 5.0 \text{ kJ·mol}^{-1}$ 888-988 £, cm-1 [36440] [20000] [24000] [25000] [19000] [39000] [42000] [2] [3] 33 33 93 94 95 96 £, cm-1 39765 39905 40736 40893 41097 42012 42436 43264 33500 37700 õ Electronic Levels and Quantum Weights €, cm 33188 33837 35142 34649 35658 35893 36974 36974 36974 ę, ca 25704 25957 26160 26816 28230 28230 30237 30771 30903 V 6 0 e,, cm⁻¹ 222947 23757 23068 23209 23480 24192 24192 24532 24532 24980

€, cm⁻¹

9034.0 9215.5 9296.6 11395.4 12266.0 12636.6

Enthalpy of Formation

18060 22065

Hinnov and Ohlendorf.8 our analysis is not tabulated below since the graphical data include large discrepancies in temperature. Hartmann and Δ_dH* is Δ_{ds}H*, 42.8 ± 1.2 kcal·mol⁻¹, selected from 3rd law analyses of pressure data tubulated below. The adopted value is from the recent boiling-point study of Bohdansky and Schins. Except for the very scattered effusion data of Zavitsanos, the other studies differ by presumably due to poor effusion geometry or to impurities. A similar bias seems to exist in the effusion-resonance-fluorescence data of Scheider's Ba data? deviate considerably more from the selected value than do their data for Li, Mg, Ca and Sr. The differences probably discrepancy; their data for other metals have similar discrepancies. Data of Rudberg and Lempert's for Ca and Ba show almost identical biases, musually large amounts: -2, -6, and +3 kcal·mol-1. Data of Ruff and Hartmann are readily dismissed due to the large entropy arise from impurity effects. Since Ba is the least volatile of the reactive metals studied, 12 purification by distillation presents special problems. Even Bohdansky and Schins noted that their Ba data may be biased by impurities.

Analyses of the pressure data assume that the monatomic gas is the only significant species in the vapor and that gas imperfection is negligible. Evidence supporting the unimportance of the dimer was reviewed by Douglas and Krause. Estimated bond energies for the dimers of Mg, Ca, Sr nd Ba are less than 8.6 kcal·mol^{-1.1.10}

			Δ,H°(298.15	Δ _t H°(298.15 K), kcal·mol ⁻¹	SS
Source	Method	7/K*	2nd law	3rd law	cal·K ⁻¹ ·mol ⁻¹
_	Boiling Point	1498-2027	46.7 ± 0.3	42.78 ± 0.04	2.2 ± 0.1
7	Boiling Point	1334-1421	41.4 ± 3.3	40.76 ± 0.33	0.4 ± 2.4
•	Boiling Point	1204-1404	92.6 ± 3.0	37.0 ± 6.1	43 ± 2.3
	Effusion	1120-1210	65 ± 10	43.8 ± 1.6	18 ± 8.8
•	Torsion Effusion	1103-1216	36 ± 10	43.5 ± 1.9	-6.3 ± 8.4
•	Effusion	798-1024	43.2 ± 1.2	45.91 ± 0.77	-3.0 ± 1.3
	•				

Temperature adjusted to IPTS-68 assuming published values to be IPTS-48.

Heat Capacity and Entropy

Observed energy levels and quantum weights are from Moore¹¹ as modified by Garton et al. ^{12,13} Additional levels above the cutoffs have been reported. ^{14,13} We adopt an energy-level cutoff which is about KTmax (Tmax = 6000 K) below each series limit. For Ba I this corresponds (estimated at 19000 ± 10000 cm⁻¹). Levels above 30000 cm⁻¹ are averaged. The adopted functions are essentially identical with earlier tables up to 2000 K; however, the entropies at 6000 K differ as follows: Hilsenrath et al., ¹⁶ 62.26; JANAF, 63.20; Gurvich et al., ¹⁷ 63.65 cal.K⁻¹ mol⁻¹. These differences arise from different methods of cutoff and different degrees of accounting for the unobserved terms. their isoelectronic ions. The most important are terms of the 5d² configuration (20000-25000 cm⁻¹) and those of the 5d6s' configuration to omitting levels above 9s, 8p, 7d and 5f. Energies of unobserved but predicted terms 11 are estimated by comparison of Ca 1, Sr 1, Ba I and

Bohdansky and H. E. J. Schins, J. Phys. Chem. 71, 215 (1967).
 H. Hartmann and R. Schneider, Z. Anorg. Chem. 180, 275 (1929).
 O Ruff and H. Hartmann, Z. Anorg. Chem. 133, 29 (1924).

P. D. Zavitsanos, G. E. Technical Report 68 SO 331, General Electric Co., Valley Forge, Pa., Nov. 1968, data quoted by Douglas and Krause.

E. Rudberg and J. Lempert, J. Chem. Phys. 3, 627 (1935).

Te. Hinnov and W. Ohlendorf, J. Chem. Phys. 50, 3005 (1969).

T. B. Douglax and R. F. Krause, U. S. Nat. Bur. Stand., Report

B. Douglas and R. F. Krause, U. S. Nat. Bur. Stand., Report 10326, chap. 4, (July 1, 1970)
 A. Gingerich and H. C. Finkbeiner, J. Chem. Phys. 52, 2956 (1970).

Standard State Pressure = $p^* = 0.1$ MPa NANIE - 88.1185 - 1117 ರದದರ ದದದದರ ದದದದದ ದದದದ ದದದದದ ದದದದದ ದದದದ 179.790 152.764 165.744 146.744 146.744 141.385 150.889 150.889 150.889 150.889 150.889 150.889 150.889 150.889 150.889 160.88 -- FUGACITY - 1 153.963 152.033 180.211 48.493 146.878 145.369 143.969 142.684 141.514 140.461 රටුරට ප්රවුර්ට ප්රවුරට ප්රවුරට ප්රවුරට ප්රවුරට ප්රවුරට $H^{\bullet}-H^{\bullet}(T_i)$ -6.197
-1.001
-1.001
-1.001
-1.001
-1.001
-1.001
-1.001
-1.0003
-1.002
-1.001
-1.001
-1.001
-1.001
-1.002
-1.002
-1.002
-1.003
-1.002
-1.002
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-1.003
-Enthalpy Reference Temperature = T, = 298.15 K S* -[G*-H*(T,)]/T 194,130 195,038 195,038 196,791 197,661 199,386 200,243 201,998 201,998 201,998 201,998 201,998 201,94 210.211 211.000 211.782 212.554 213.318 214.072 215.552 216.278 216.995 217.702 218.401 219.089 219.769 182.229 183.569 184.838 186.043 187.190 189.338 190.337 191.333 192.287 193.218 INFINITE 188.725 172.146 170.245 170.245 170.245 170.245 170.245 170.245 170.245 171.060 171.060 174.324 175.053 176.053 180.811 214,029 215,530 217,062 218,622 220,208 221,814 223,431 225,054 225,054 228.286 229.880 231.450 234.503 235.978 235.978 237.415 238.812 240.168 242.758 243.993 245.190 246.350 247.474 248.563 249.614 250.640 251.636 252.606 253.545 254.465 255.361 256.236 257.084 0. 147.537 161.945 166.584 170.245 197.389 199.211 200.901 202.489 204.000 212.560 170,373 173,577 176,353 178,201 180,991 205.457 206.881 208.289 209.697 211.118 212831 0. 20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.786 20.883 21.014 21.251 22.204 22.204 22.307 22.307 22.307 22.307 22.307 22.307 22.307 30.938

3arium (Ba)

Continued on page 358

Ba;(g)

M.= 137.32945 Barium, Ion (Ba*)

IDEAL GAS

 $\Delta_t H^{\circ}(0 \text{ K}) = 682.6 \pm 5.0 \text{ kJ} \cdot \text{mol}^{-1}$ Δ_tH°(298.15 K) = [688.126] kJ·mol⁻¹

 $IP(Ba^*, g) = 80686.87 \pm 0.05 \text{ cm}^{-1}$ $S^*(298.15 \text{ K}) = 176.008 \pm 0.05 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Barium, Ion (Ba*)

Electronic Levels and Quantum Weights 974 £, CEI, 0.00 4873.85 5674.824 20261.562 21952.422

State SIZ

Enthalpy of Formation

 $\Delta_h H^*(Ea^*, g, 0K)$ is calculated from $\Delta_h H^*(Ba, g, 0K)^1$ using the spectroscopic value of IP(Ba) = 42035.14 ± 0.05 cm⁻¹ (502.8521 ± 0.0006 kJ·mol⁻¹) from Moore. The ionization limit is converted from cm⁻¹ to kJ mol⁻¹ using the factor, 1 cm⁻¹ = 0.01196266 U-mol-1, which is derived from the 1973 CODATA fundamental constants. Rosenstock et al. and Levin and Lias have summarized additional ionization and appearance potential data.

80686.87

 $\Delta_H^{H'}(Ba^*, g, 298.15 \, K)$ is calculated from $\Delta_H^{H'}(Ba, g, 0 \, K)$ by using IP(Ba) with JANAF¹ enthalpies, $H^{*}(0 \, K) \rightarrow H^{*}(298.15 \, K)$, for Ba(g), Ba^{*}(g), and e^{*}(ref). $\Delta_H^{H'}(Ba \rightarrow Ba^* + e^*, 298.15 \, K)$ differs from a room temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock et al. $^4\Delta H^{*}(298.15 \, K)$ should be changed by $-6.197 \, k \, J \cdot mol^{-1}$ of it is to be used in the ion convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

The information on electronic energy levels and quantum weights, given by Moore, 26 is incomplete because many theoretically predicted missing levels (for n = 6), the cut-off procedure, and the inclusion of n = 12 levels up to 6000 K. The reported uncertainty in \$°(298.15 K) is due to uncertainties in the relative ionic mass, and the fundamental constants Extension of these calculations above 6000 K may require levels have not been observed. Although we have listed only the ground, the first four excited states, the highest observed excited state, and the ionization potential for Ba*(g), all levels listed by Moore, 26 as well as estimated levels, are used in the calculation. The observed levels too numerous to list completely. The calculations indicate that for Ba*(g), the thermodynamic functions are independent of the estimated consideration of the higher excited states (n>12), and use of different fill and cut-off procedures.7

References

JANAF Thermochemical Tables: Ba(g), 9-30-83; e (ref), 3-31-82.

E. Moore, U.S. Nat. Bur. Stand., NRRDS-NBS-34, 87 pp. (1970).
 E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663(1973).
 H.M. Rovenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, I-638 (1977).
 R. D. Levin and S. G. Lias, U.S. Nat. Bur Stand., NSRDS-NBS-71, 634 pp. (1982); refer to p. 521.
 C. E. Moore, U.S. Nat. Bur. Stand., NSRDS-NBS-35, Volume III, (1970) [Reprint of NBS Circular 467, Volume III, 1958].
 R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978).

Standard State Pressure = $p^* = 0.1 \text{ MPa}$ -112.787 -95.663 -82.809 -72.805 -64.800 -1.849 -1.738 -1.632 -1.530 - 52.797 - 44.223 - 31.792 - 32.790 - 28.787 - 25.548 - 22.849 - 20.563 - 18.603 - 16.902 -15.412 -14.093 -12.923 -11.872 -10.925 -9.412 -8.840 -8.314 -7.829 -7.380 -6.963 -6.576 -6.215 -5.877 4.244 4.023 -3.814 -3.616 -3.428 -3.43 -3.079 -2.017 -2.01 -1336 -5.265 -5.265 -4.724 -4.477 log K 330.040 322.531 315.018 307.505 299.994 255.040 247.568 240.102 232.641 225.185 606.457 578.810 564.973 551.102 538.012 524.909 511.777 498.602 472.090 458.741 445.325 431.843 418.295 404.684 396.390 389.236 382.002 374.699 367.340 359.936 352.495 345.028 292.487 284.985 277.489 270.000 262.517 217.731 210.279 202.831 195.385 187.941 180.496 173.053 165.611 158.170 150.724 ₽Ġ. 689.166 689.514 689.535 689.660 689.001 682.293 682.293 682.293 682.293 685.159 686.240 687.412 688.643 691.137 552.808 554.753 556.492 558.011 562.889 562.889 562.957 562.925 562.925 \$60.490 \$60.378 \$60.267 \$60.181 \$60.078 \$60.043 \$60.023 \$60.016 682,643 559.308 560.383 561.246 561.909 562.391 562.651 562.445 562.212 561.967 561.718 즐 $\Delta_t H^{\bullet}$ 86.336 89.360 92.351 95.310 98.238 101.135 8.360 8.360 10.457 12.582 14.751 16.986 19.305 19.305 22.643 32.643 33.506 41.619 44.790 48.004 51.247 54.506 57.772 61.034 64.285 67.518 77.066 80.189 83.279 106.844 109.659 112.448 115.213 117.956 120.678 123.381 126.064 134,015 Enthalpy Reference Temperature = T, = 298.15 K $-[G^*-H^*(T_*)]T$ 208.831 209.623 210.397 211.153 211.153 212.612 214.677 215.334 215.33 176.008 176.261 176.261 176.823 177.550 181.817 183.488 186.596 186.596 188.034 189.708 191.979 193.719 195.512 196.512 204.573 205.465 206.337 207.188 208.019 218.987 219.552 220.104 220.646 221.177 180.087 199.783 200.787 201.767 202.724 203.659 22.208 22.208 22.708 23.199 23.681 176.136 179.341 182.116 184.564 186.755 190.546 193.759 196.560 199.061 201.347 203.476 205.493 207.428 209.300 211.121 228.048 229.275 230.450 231.577 232.656 0. 153,301 167,708 172,347 176.008 212.898 214.631 217.967 219.564 221.111 222.606 224.048 225.435 226.768 23.691 234.682 235.633 236.546 237.422 238.265 239.076 239.856 240.609 242.715 242.715 243.371 244.007 145.222 245.803 246.368 246.918 247.975 248.484 248.465 249.465 249.465 250.403 250.857 251.301 252.164 0. 20.786 20.786 20.786 20.786 20.786 20.786 20.787 20.787 20.789 20.781 20.811 20.890 21.681 21.681 32.305 32.305 32.533 32.643 32.653 32.576 32.224 31.975 31.693 31.066 30.737 30.405 29.749 29.124 28.827 28.543 28.773 28.015 27.771 27.541 22.738 23.660 25.834 26.975 28.082 29.109 30.026 27.119 26.927 26.747 26.579 26.422 ¥

Barium, Ion (Ba*)

VPREVIOUS

Ba;(g)

CURRENT: September 1983 (1 bar)

J. Phys. Chem. Ref. Data, Monograph 9

-134.866 -129.977 -125.057 -120.109 -115.137

389.462 390.750

-110.145 -105.122 -100.082

346.738 347.453 348.159 348.856 349.546

-158.760 -154.064 -149.322 -144.540 -139.720

175.189 180.023 184.903 189.830 194.801

339.038 339.860 340.668 341.465 342.250

377.123 378.162 379.190 380.206 381.210

48.106 48.575 49.037 49.491

199.817

382,203

50.373 49.937

51.612

343.024 343.786 344.539 345.282 346.015

-181.482 -177.051 -172.560 -168.012 -163.411

151.733 156.328 160.971 165.662

334.719 335.614 336.492 337.355

372.835 373.927 375.006 376.071

45.710 46.191 46.673 47.154 47.632

4450 6450 650 650 650 650

371.727

361.836

369.330 373.834 375.916 377.924 Ba₁Br₁(g)

CURRENT: December 1974 (1 bar)

IDEAL GAS
Barium Bromide (BaBr)

3a,Br,(g)

M_r = 217.234 Barium Bromide (BaBr)

$\Delta_t H^2(0 \text{ K}) = -101.6$.15 K) = 270.4 \pm 0.4 J·K ⁻¹ ·mol ⁻¹ $\Delta_t H^2(298.15 \text{ K}) = -110.6$	
---	--

5°(298.

	Electronic	Electronic Levels and Qua	ntum Weights		
State	€, cm ⁻¹	₩.	State	€,, cm ^{−1}	8
(' };	0	2	D ² 2	25670.9	2
_	[13000]	4	E.Y	26865.9	7
8 ² 2]	[13200]	[2]	(F²II)	[28000]	4
[12	18650.9	2	[G, ² A]	[3000]	<u>4</u>
ដ	19192.5	2	[K,X]	[30000]	[2]
$\omega_{\rm c} = 193~2~{\rm cm}^{-1}$	- - E	$\omega_{\rm e} x_{\rm e} = 0.42~{\rm cm}^{-1}$	- ₋ #	Đ	-
[0 04052]	2] cm	a, = [0.000113] cm ⁻¹	113] cm_	-2	$r_c = [2.87] A$

Enthalpy of Formation

The selected value, $\Delta H^0(0 \text{ K}) = -24.3 \text{ kcal mol}^{-1}$, is obtained from an analysis of spectroscopic data. Herzberg' suggested $D_0^* = 2.8 \text{ eV}$ for BaBrg) which was derived from a linear Birge-Sponer extrapolation of the ground state vibrational levels. Our adopted vibrational (95.5 kcal-mol⁻¹) which is adopted. Gaydon¹ has claimed that the spectroscopic data for BaBr(g) are insufficient to obtain a reliable extrapolation However, our adopted value for D₀⁰ gives D₀⁰ (BaBr)Δ_MH'(BaBr₂) = 0.48 which is quite consistent with values of this ratto for constants give 2.74 eV by a similar extrapolation. Based on the ionicity correction developed by Hildenbrand, this value adjusts to 4.14 eV other alkaline earth halide systems. $^4\Delta_H^o(298.15 \text{ K})$ corresponds to $-26.4 \text{ kcal·mol}^{-1}$.

Ionic model calculations, 3 have led to D_0^0 values of 4.9 eV³ and 3.76 eV⁶. The latter result is believed to represent a minimum value Two other experimental values, which bracket the selected value, have been reported. Flame studies, gave $D_0^0 = 3.79$ eV, and chemiluminescence from reaction of Ba atoms with Br₂ gave a lower limit to D_0^0 of 4.54 eV. We assign an uncertainty of ± 10 kcal·mol⁻¹ to $\Delta_0 H^0(0 \text{ K})$ to include the possibility that these studies are correct.

Heat Capacity and Entropy

The value of re is obtained from that for gaseous BaBr2* with re(BaBr3)re(BaBr3) = 0.96. This value for the ratio is calculated from bond lengths for several other alkaline earth halide systems. Two other estimates of re agree with the adopted value to within 0.05 Å. The rotational constant is calculated from the estimated value for re. The value of $lpha_e$ is obtained from a Morse potential function.

The vibrational constants are taken from the compilation of Rosen¹⁰ and are corrected for the natural isotopic abundances of the elements. The observed electronic levels for BaBrtg) are from Rosen. Also included are A, B, F, G, and H states. Their energies are estimated by analogy with those for StBrtg.?

References

G Herzberg, "Molecular Spectra and Molecular Structure of Diatomic Molecules," 2nd ed., D. Van Nostrand Company, New York, 658 pp. (1950); refer to p. 506.

D. L. Hildenbrand, "Advances in High Temperature Chemistry," Vol 1, Ed. by Eyring, Academic Press, New York, (1967).

A. G. Gaydon, "Dissociation Energies and Spectra of Diatornic Molecules," Chapman and Hall, Ltd., London, 330 pp. (1968), refer to

JANAF Thermochemical Tables.

L. Margrave, J. Phys. Chem. 58, 258 (1954).

⁶K. S. Krasnov and N V. Karaseva, Optics and Spectroscopy 19, 14 (1965).

N. Khitrov, V. G. Ryabova, and L. V. Gurvich, Teplofiz. Vys. Temp. 11, 1126 (1973).

⁰B. Rosen, Ed., "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, 515 pp. (1970). ⁴M. Menzinger, Can. J. Chem. 52, 1988 (1974).

⁹JANAF Thermochemical Tables: BaBf₂(g) and SrBr(g), 13–31–74.

Standard State Pressure = p° = 0.1 MPa 26.140 23.256 20.890 19.039 17.547 15.276 13.626 11.372 10.565 26.260 9,883 8,740 8,740 9,740 61.996 35.309 29.901 NFINITE log Kr -214.295 -210.482 -206.580 -202.592 -198.521 -194.371 -190.145 -135.193 -143.109 -149.888 -231.300 -235.635 -239.856 -243.967 -150.132 -155.829 -159.970 -207.543 -212.622 -217.518 -222.253 -226.843 -250.304 -247.437 -244.503 -241.495 -238.407 -235.236 -231.976 -228.626 -225.183 -221.647 -218.017 -251.877 128.011 -150.580 -152.819 -110.641 -126.558 -127.181 -131.834 -133.755 -136.187 -138.196 -140.204 154.957 157.016 159.017 164.882 -166.859 -168.883 -315.787 -317.667 -319.756 -322.040 -324.501 -327.119 -329.869 -332,725 -341.652 -344.668 -353.539 -356.384 -359.153 -110,587 - 170.975 347.666 Kinol. 160.981 $H^{\bullet}-H^{\circ}(T_{*})$ 0.068 1.923 3.785 5.653 7.524 11.277 11.277 11.8812 22.532 26.378 33.968 37.773 33.968 37.773 33.054 49.230 56.882 68.468 72.352 76.253 80.171 84.111 88.073 95.076 96.076 108.314 116.534 116.534 120.883 125.154 129.469 133.829 138.234 147.186 Enthalpy Reference Temperature = T_1 = 298.15 K $S^{\circ} - [G^{\bullet} - H^{\circ}(T_t)]H$ 311.526 313.049 314.517 315.934 317.302 319.809 319.809 312.361 322.389 322.789 322.789 322.789 323.896 323.89 273.152 274.609 277.704 280.814 283.822 286.687 289.400 291.964 294.390 296.686 298.863 300.932 302.902 304.780 306.576 308.294 309.943 270.395 J-K-'mol' 0. 231.368 255.748 263.900 319.392 322.697 325.742 328.566 331.199 333.666 335 989 338 183 340.263 344 130 345.937 349.338 350.946 352.500 354.005 355.466 356.886 356.886 362.223 363.486 364.724 365.940 367.134 368.309 369.466 370.605 270.395 276.342 281.315 285.714 296,500 311.788 359.617 289.688 347.671 90.93 37.177 37.300 37.394 37.469 37.586 37.677 37.756 37.826 37.826 38 428 38 526 38 639 39.746 40.013 40.304 40.619 40.956 41.314 41.692 42.089 42.930 42.930 43.372 43.824 44.286 44.756 45.231 36.996 37 954 38 015 38.075 38.136 38.199 38.268 38.769 38.919 39.091 39.286 39.504 37.004 250 250 28.15 3.30 2.40 7, 5 ± 41.8 kJ·mol⁻¹ 5 ± 41.8 kJ·mol⁻¹

Barium Bromide (BaBr)

PREVIOUS December 1974 (1 atm

 $\Delta_t H^{\circ}(0 \text{ K}) = \text{Unknown}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -757.7 \pm 1.7 \text{ kJ} \cdot \text{mol}^{-1}$ S°(298.15 K) = [148.5 ± 4.2] J·K⁻¹·mol⁻¹

CRYSTAL

Barium Bromide (BaBr₂)

 $\Delta_{\text{fus}}H^{\circ} = 31.96 \pm 0.63 \text{ kJ} \cdot \text{mol}^{-1}$ The selected value is based on results obtained from solution calorimetry performed in aqueous acid media. Ehrlich et al. reported measurements of the enthalpies of solution of Ba(cr) and BaBr₂(cr) in HBr(555 H₂O). These results lead to $\Delta_t H^0$ (BaBr₂, cr, 298.15 K) = -181.1 ± 0.4 kcal-mol⁻¹(-757.7 ± 1.7 kJ-mol⁻¹) when combined with the most recent thermal data^{2.3} for aqueous HBr. This Enthalpy of Formation $T_{\text{fus}} = 1130 \pm 2 \, \text{K}$

Two independent calorimetric values in kcal·mol⁻¹ of -180.7° and -181.7° bracket our adopted value. These values are based on results of early enthalpy of solution measurements⁵ 6 which are combined with $\Delta_t H^0(Ba^{4\circ}$, aq. 298.15 K) = -128.5 kcal·mol⁻¹ 4 and $\Delta_t H^0(Br^-$, aq. 298.15 K) = -29.039 ± 0.035 kcal·mol⁻¹ 2 Use of the newly derived value (see BaO(cr) table) for $\Delta_t H^0$ of Ba⁻²(aq) makes these values less value is adopted and is essentially that (-181.0 kcal·mol-1) which has been selected by NBS.4 negative by 0.5 kcal·mol-1

Heat Capacity and Entropy

 C_o^* data needed to define S'(298.15 K) are unavailable. The adopted value $S'(298.15 \text{ K}) = 35.5 \pm 1.0 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ is a compromise for the bromide. Application of the Berthelot principle to the process $SrBr_2(cr) + Ba(cr) \rightarrow BaBr_2(cr) + Sr(cr)$ gives $S^2(298.15 \text{ K}) = 36.7 \pm 1.7 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$. Literature estimates which were considered are (in cal·K⁻¹·mol⁻¹) 35.0, 35.5 ± 5.0, and 38.10 between several estimates. JANAF? entropies for the other three barium dihalides suggest a value of \$°(298 15 K) near 35.3 cal·K-¹1 mol -1

The adopted C, data are obtained from JANAF curve fits of the relative enthalpies (825-1130 K) reported by Efremova and Matizen. 11 For 27 enthalpy points the average deviation of the fit is ±0.4%; the maximum deviation is -1.0% at 847 K. Two points (1129 and 1130 K) are omitted from the fit, since these points presumably involve pre-melting effects. The derived value of C_{ρ}^{ρ} (298.15 K) = 18.41 cal·K⁻¹ mol⁻¹ is supported by the value (18.48 cal·K⁻¹ mol⁻¹) obtained from the process BaCl₂(α) + 2 KBr(α) \rightarrow BaBr₂(α) + 2 KCl(α) with ΔC_{ρ}^{ρ} = 0. Relative enthalpies (487-1126 K) reported in equation form by Janz et al. 2 suggest a somewhat lower value (17.8 cal-K⁻¹-mol⁻¹) for C₂ at 298.15 K. Their smoothed enthalpies show deviations from our adopted ones that are generally less than ±0.3% but show maximum deviations of ±1.0% at 500 K and 900 K. The enthalpy measurement of Dworkin and Bredig 13 at the melting point (T_{tas} = 1130 K) is roughly 1% lower than that which is adopted. The values of C° above Tt_{ts} are obtained from the adopted enthalpy equation.

Fusion Data

Refer to the fiquid table for details

Sublimation Data

 $\Delta_{ab}H^{\circ}(298.15 \text{ K})$ is the difference in the values of $\Delta_{l}H^{\circ}$ for the gas and crystal at 298.15 K.

¹P. Ehrlich, K. Peik, and E. Koch, Z. Anorg. Chem. 324, 113 (1963). ICSU-CODATA Task Group, J. Chem. Thermodyn. 4, 331 (1972)

³U. S. Nat. Bur. Stand. Tech. Note 270-3, (1968). ⁴U. S. Nat. Bur. Stand. Tech. Note 270-6, (1971).

Thomsen, "Thermochemische Untersuchungen," Vol. III, Barth, Leipzig, (1883).

6R. Varet, Ann. Chim. Phys. 8, 240 (1896).

JANAF Thermochemical Tables: BaO(cr), 6-30-74, BaF₂(cr) and BaCI₂(cr), 12-31-72; BaI₂(cr), 6-30-74.

N. Drozin, Zhur. Fiz. Khim. 35, 879 (1961).
 C. Kubaxchewski, E. Ll. Evans, and C. B. Alcock, "Metallurgical Thermochemistry," 4th ed., Pergamon Press, New York, (1967).
 D. Brewer, G. R. Somayajulu, and E. Brackett, Chem. Revs. 63, 111 (1963).
 R. I. Efremova and E. V. Matizen, Izv. Sib. Ord. Akad. Nauk SSSR, Ser. Khim. Nauk (1), 144 (1970).
 G. J. Janz, F. J. Kelley, and J. L. Perano, Trans. Faraday Soc. 59, 2718 (1963).

¹³A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 67, 697 (1963).

Standard State Pressure = p° = 0.1 MPa 129.295 128.476 94.687 74.129 60.425 50.643 30.643 33.070 29.317 26.195 23.560 21.307 19.360 --- andri ---> -694.082 -678.671 -663.354 -648.154 -633.101 -601.795 -586.354 -571.071 -555.956 -617.382 -737.877 -725.089 -709.575 ΔQ -- CRYSTAI -787.031 -785.122 -785.523 -784.299 -782.869 -757.772 -787.455 -786.935 -789.601 $\Delta_{\rm r}H$ $H^{\bullet}-H^{\bullet}(T_i)$ 0.143 7.956 15.986 24.232 33.684 41.372 59.377 68.705 71.545 78.248 88.007 97.983 Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $S^{*} - [G^{*} - H^{*}(T_{*})]T$ 164.022 170.743 177.319 183.656 189.727 195.534 148.533 151.582 157.409 201.089 206.408 211.510 216.412 L·K-'mol-' 204.409 217.449 229.034 239.507 249.105 257.993 260.540 96.512 98.675 100.839 103.002 77.053 79.216 81.379 83.542 85.701 87.864 90.027 92.190 94.353 ئ ž

PREVIOUS:

Barium Bromide (BaBr₂)

CURRENT: December 1974

CURRENT December 1974

LIQUID

Barium Bromide (BaBr₂)

Δ_{fus}H° = 31.96 ± 0.63 kJ·mol

 $\Delta_{\rm f}H^{\circ}(298.15 \text{ K}) = [-730.193] \text{ kJ} \cdot \text{mol}$ $S^{(298.15 \text{ K})} = [172.108] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ The = 1130 ± 2 K

Enthalpy of Formation

 $\Delta_b H^{\circ}$ of the liquid is calculated from that of the crystal by adding $\Delta_{lm} H^{\circ}$ and the difference in enthalpy, $H^{\circ}(1130 \, \mathrm{K}) - H^{\circ}(298.15 \, \mathrm{K})$, betwee the crystal and liquid.

Heat Capacity and Entropy

Co for the liquid is taken equal to 25.06 cal-K⁻¹ mol⁻¹ above the assumed glass transition temperature of 800 K. The constant value of C for $C_p^*(1)$ is obtained from yet another enthalpy study, however, these latter measurements extend over a relatively short temperature interv (~100 K) above T_{tas} and are probably insufficient to accurately establish C_p^* of the Inquid. C_p^* data below the glass transition are those of the is derived from a curve fit of the relative enthalpies (1134-1963 K) reported by Efremova and Matizen. For 11 enthalpy points the avera the enthalpy measurements of Dworkin and Bredig² who found $C_p^*(1) = 25.6 \, \mathrm{cal \cdot K^{-1} \cdot mol^{-1}}$. A considerably higher value (31 cal·K⁻¹ ·mol deviation of the fit is ±0.3%, the maximum deviation occurs at 1386 K and amounts to -0.7%. Our adopted value for C^o_o is supported

S°(298.15 K) is calculated in a manner analogous to that used for the enthalply of formation

T_{les} is the value determined in two independent drop-calorimetric investigations.^{1,2} Nine other reported values for T_{les} lie within 11 K the adopted value. These other values are 1126 K, ^{1,2} 1119 K, ^{3,7} 1128 K ⁸ and 1120 K.²⁻¹¹

 $\Delta_{lm}H^o$ is calculated as the difference between JANAF values for the enthalpies of the liquid and crystal at T_{lm} . Our value for $\Delta_{lm}H^o$ is i excellent agreement with another drop-calorimetric value $(\Delta_{lm}H^o = 7.63 \text{ kcal-mol})^2$ and is further supported by a value $(\Delta_{lm}H^o = 7.8 \text{ kcal-mol})^4$ obtained by dynamic differential calorimetry. Other published values include (in kcal-mol-1) 7.75 ± 0.08, 7.25 ± 0.19 7.15 ± 0.4,4 and 7.0.5

Vaporization Data

Δ_tH* values for the gas and Inquid at T_{rap} Petersen and Hutchison¹² calculated T_{rap} = 2122 K (p = 1 atm) from their measured vapor pressudata which covered the range 1175–1321 K. This value is considered somewhat uncertain due to the rather long extrapolation. we is the temperature at which Δ,G° = 0 for the process BaBr₂(l) = BaBr₂(g) at p = 1 bar Δ₁₁₁H° is the corresponding difference in the

'R. I. Efremova and E. V. Matizen, Izv. Sib. Ord. Akad. Nauk SSSR, Ser. Khin. Nauk (1), 144 (1970)

²A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 67, 697 (1963).

³G. J. Janz, F. J. Kelley, and J. L. Perano, Trans. Faraday Soc. 59, 2718 (1963)

H. Emons and B. Loffelholz, Wiss. Z. Tech. Hochsch. Chem., Leuna-Merseburg 6, 261 (1964).
 M. Blanc, Compt. rend. 249, 2012 (1959).
 E. D. Eastman, D. D. Cubicciotti, and C. D. Thurmond in "Chemistry and Metallurgy of Miscellaneous Materials: Thermodynamics," L.

L. Quill, Ed., National Nuclear Energy Series IV-19B. McGraw-Hill Book Co., New York, (1950).

H. H. Emons, Z. Anorg. Chem. 323, 114 (1963).

R. Riccardi, C. Sinistri, G. V. Campari, and A. Magistris, Z. Naturforsch. 25a, 781 (1970).

G. Kellner, Z. Anorg. Chem 99, 137 (1917).

G. Kellner, J. Chem. Soc. 112, 469 (1917).

H. Schünke and F. Sauerwald, Z. Anorg. Chem. 304, 25 (1960).

D. T. Peterson and J. F. Hutchison, J. Chem. Eng. Data 15, 320 (1970).

ŢŢ	Enthalpy Re	eference Te	mperature = 1.K ⁻¹ mol ⁻¹	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $t_1 K^{-1} m_0 t_1$	-	Standard Stat	Standard State Pressure = p° = 0.1 MPa k 1.ma ⁻¹	- 0.1 MPa	
	τÆ	್ಟ	S -[G	-[G*-H'(T,)]T	$H^{\bullet}-H^{\circ}(T_i)$	ΔιΗ°	$\Delta_i G^{\bullet}$	log Kr	
- E	°88°								
	298.15	77.015	172.108	172,108	0.000	-730.193	-717,500	125.703	
ę	300	77.053	172,585	172.109	0.143	-730.242	-717.421	124.914	
5	200	81.379	212.956	180.985	15.986	-759.406	-693,834	72.484	
μ, Ε	009	83.542	227.985	187.598	24,232	-759,501	-680.698	59.260	_
<u>-</u> -2	8 8 8	85.701 87.866	241.025 252.610	194,319 200,895	32.694 41.372	-758.593 -757.994	-667.645 -654.685	49.820 42.747	
val t	800.000	87.866 104.851	252.610 252.610	200.895	41.372	GLASS	SS <> LIQUID TRANSITION	<u> </u>	
2	08.5	104.851	264.959	207.340	51.857	-755.179 -757.75	-641.940	37.257	
	8 2	104.851	286.000	219.793	72.827	-757.949	-616.538	777.62	_
	1130,000	104 851	288.821	221.589	- 5.973	CRYSTAL	T <> LIQUID	JID	_
ō	1200	104851	295.123	225.696	83.313	-755.398	-603.794	26.282	_
	9	104.851	311.286	236.798	104.283	-750.045	-578.946	21.601	_
.E	200	104.851	318.520	242.008	114.768	- 747.287	-554.881	18.115	_
7.7	1700	104.851	331.643	251.798	135.738	-741.717	-543.114	16.688	_
·,	1800	104.851	337.637	256.402	146.223	-738.950	-531.512	15.424	_
	2000	104.851	348.684	265.087	167.193	-733.565	-508.754	13.287	_
	2100	104,851	353.799	269.191	819:11	-730.993	-497.577	12.377	_
ş	2200	104.851	358.677	273.148	188.164	-868.053	-481.145	11.424	_
1	2400	104.85	367.800	280.661	209.134	-861.972	-446.248	9.712	
3	2500	104.851	372.081	284.233	219.619	-859.302	-428.981	8.963	
	2600	104.851	376.193	287.691	230.104	-856.874	-411.818	8.274	_
	2200	104.85	380.150	291.043	240,289	-852.699	-377.745	7047	
	2000	104.851	387.643	297.450	261.559	-850.916	-360,814	6.499	_
	3000	104.851	391.197	300,516	272.044	-849.307	-343.942	5.989	_

Barium Bromide (BaBr₂)

PREVIOUS

Ba₁Br₂(cr,1)

ច	
~	
೭	
m	
_	
Ba	
m	
ш	

(BaBr ₂)
Bromide
Barium
$M_{\rm r} = 297.138$

0
쁘
-
=
G
_
_i
_
⋖
Η-
U)
`
ш.
/ h
~

Barium Bromide (BaBr₂)

crystal	liquid
to 1130 K	1130 K
0	apove

crystal Iiquid	tables for details.
to 1130 K 1130 K	e individual tables
0 above	Refer to the

y Ref	erence To	emperature	Enthalpy Reference Temperature = $T_r = 298.15$ $1 \cdot \text{K}^{-1} \text{mol}^{-1}$	×	Standard State Pressure	ite Pressure = /	= p° = 0.1 MPa
ts			-H(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\epsilon})$	\ \ \ \ \ \ \ \ \ \ \	₽ ′Q•	log K,
E	77.015	148.532	148.532	0.000	-757.722	-738.000	129.295
F 25 3	77.053	171.471	148.533	7.956	-757.772 -787.455	-737.877 -725.089	94.687
	<u> </u>	204 400	6400	74733	CCC.DO1 -	-604.00	50.475
382	85.701	217.449	170.743	32.694	-786.122	179.879	50643
88	120	239.507	183.656	50267	-784299	-648.154	37.618
7 3	041.29	249.103	171.681	59.215	608791-	-635.101	20.000
. 83	95.002	260.540	197.226	71.545	. દ		(E)
3 6	2 5	170.007	357 600	702201		-602 704	187.30
58	8	303.516	210.187	121.327	-752.756	-591.267	23.757
ರರ	104.851	311.286	217.134	131.812	-750.045	-578.946	21.601
ಿ	104.851	325.287	229.798	152.782	-744504	-554.881	18.115
00	4.851	331.644	235.604	163.268	-741.717	-543.114	16.688
50	104.851	343.306	246.338	184238	-736.225	-520.062	14.298
0	4.851	348.684	251.322	194.723	-733.565	- 508.754	13.287
00	104.851	353.799	256.081	205.208	-730.993	-497.577	12377
0	4851	363.338	265.000	226.178	-864.890	-463.630	10.529
00	104.851	367.800	269.191	236.663	-861.972 -859.302	-446.248	9.712 8.963
	4.851	376 193	277.103	257.633	-856.874	-411.818	8.274
	4.851	380.150	280.847	268.119	-854 678	-394.742	7.637
	104.85 104.85 104.85	387.643	284.462	289.089	-852.699	-360.814	6.49
0	4.851	391.197	291,339	299.574	-849.307	-343.942	2 989
						CURRENT	CURRENT December 1974

CURRENT. December 1974 (1 bar)

-138.397 -127.888 -117.319

-745.231 -747.794 -750.200 -752.697

-159.317

742,605

512.168 514210 515.205 516.183

-210.765 -200.579 -190.337 -180.043 -169.703

451.993 453.057 454.101 455.127 456.136

506.725 507.855 508.964

28.195 28.195 28.195 28.195 28.195 28.195 28.195 28.197 28.197 28.197 28.198 28

-728.865

-471.484 -463.777 -455.999 -448.143

-641.825 -643.574 -645.571

104561 110.378 116.196 122.015 127.833

405.303 407.628 409.866 412.023 414.104

446.126 449.271 452.255 452.255 452.800 462.862 462.862 462.862

-477.896

-498.594

-481.012 -480.390 -479.662 -478.830

488 763

375.304 379.033 382.562 389.082 389.082 392.103 394.983 397.732 400.363

439,276

417.492 422.549 427.202 431.511 435.522

58.111 58.125 58.136 58.145 58.145

-490.646 -492.547 -494.490 -496.498

81.293 87.109 92.926 98.743

-482 180 -481.915

-482 083 -482.308

480 975

466.731 -478.853 -483 005 -484.965 -486.877

11.604 17.389 23.183 28.984 34.789 40.597 46.407 52.219 58.032 63.846

405.835 411.954

88.557 86.574 86.574 86.574 87.576

-440.202 -432.171 -424.045 -415.818 -407.490

-647.810 -650.280 -652.968 -655.851 -658.908

416 115 418 060 419.943 421.768 423.537

28.158
28.163
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28.171
28

467.520 473.873 -355.319 -346.265 -337.115 -327.871 -318.536

-690.182 -693.703 -697.182 -703.991 -707.315 -710.580

191.840 197.660 203.479 209.298 215.118

433.167 434.628 436.055 437.447

486.456 488.050 489.602 491.113

299.608 290.020 280.354 270.614 250.923 240.976 230.966 220.894

220.937 226.757 232.576 238.396 244.215

440.137 441.436 442.708 443.953 445.171

494 024 495.426 496.795 498.133 499.441

-713.780 -716.901 -719.984 -723.003

25.035 25.854 261.674 273.313

446.365 447.535 448.682 449.806 450.910

500.720 501.972 503.197 504.397 505.573

-309.114

-381 874 -373.126 -364.273

-668.863 -672.357 -675.902 -679.474 -683.055 -686.629

425.256 426.925 428.549 430.129 431.667

477 754 479.602 481.392 483.129 484.816

-399.057

-662.114 -665.444

133.651 139.470 151.107 156.274 168.564 174.383 180.202

3
aB
e (E
nide
Š
=

Bariur

Enthalpy Reference Temperature = T, = 298.15 K ž $\Delta_t H^o(0 \text{ K}) = -408.5 \pm 12.6 \text{ kJ·mol}^{-1}$ $\Delta_t H^o(298.15 \text{ K}) = -424.7 \pm 12.6 \text{ kJ·mol}^{-1}$ $S^{\circ}(298.15 \text{ K}) = [342.1 \pm 8.4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

IDEAL GAS

Ba₁Br₂(g)

M_r = 297.138 Barium Bromide (BaBr₂)

Standard State Pressure = p° = 0.1 MPa

NFINITE 223.628 116.700 95.214 81.055

-408.509 -428.123 -446.830 -455.703

-462.891 -467.523 -469.135 -470.669

342.068 342.764 344.313 346.319

358.908 382.320 391.252 398.998

57.536 57.673

342.420

-462.656

424.676

342.067

57.029

0. 282.411 319.525 332.061 342.067

0. \$0.661 \$5.737 \$6.566

-472.107 -474.626 -476.798 -478.667 -480.280

-458.270 -460.827 -462.587 -464.865

348.566 353.339 358.133 362.768 367.181 371.357

57.772 57.901 57.980 58.031 58.067 58.092

log Kr

 $H^{\bullet}-H^{\bullet}(T_t)$

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$

 $\sigma = 2$ Vibrational Fequencies and Degeneracies [160] (1) [28] (1) [223] (1) Ground State Quantum Weight: [1]

Ba-Br = 2.99 ± 0.03 Å Bond Angle: Br-Ba-Br = [150 ± 30] Point Group: C2v Bond Distance.

Product of Moments of Inertia: $I_A I_B I_C = [3.718284 \times 10^{-112}]$ g³ cm⁶

Enthalpy of Formation

agreement with the 3rd law value; thus, the entropy deviation is small (Δ₁₀x/S°(2nd law)-Δ₁₀x/S°(3rd law) = 0.5 ± 0.8 cal·K⁻¹·mol⁻¹). The The enthalpy of formation is calculated from the selected value for the enthalpy of vaporization, (Δ_{vap}H^o(298.15 K) = 73.04 ± 0.24 kcal-mol⁻¹, and the adopted value for $\Delta_t H^o(t)$. The selected value of $\Delta_{exp} H^o$ is obtained from a 3rd law analysis of the vapor pressures for the liquid (1175-1321 K) reported by Peterson and Hutchison. ² These measurements were made by the Knudsen effusion method on a dominant vapor species is assumed to be the dihalide monomer. This assumption is supported by the fact that negligible concentrations of sample of anhydrous BaBr₂ which had been prepared by direct union of high purity elements. The 2nd law $\Delta_{vap}H^o = 73.7$ keal mol⁻¹ polymenc species have been observed for some of the other alkalme-earth dihalides by use of mass spectrometry (see CaBrzg) table

A 3rd law analysis of a single sublimation pressure reported by Stock and Heynemann³ leads to Δ_H^{4} (298.15 K) = 104.3 kcal mol⁻¹. This result suggests a possible uncertainty in the adopted value for Δ_H^{4} of as much as ± 3 kcal mol⁻¹. This also brings our value in agreement with the selection (-105 kcal mol-1) of NBS.4

Heat Capacity and Entropy

that for BaCl₂ (100°)⁵ but less than that for Bal₂ (170°). The bond distance is that measured in the gas phase by an electron diffraction study of Akishin and Spuridonov. The principal moments of mertia are: $I_A = 228.6976 \times 10^{-3}$, $I_B = 221.3525 \times 10^{-3}$, and $I_C = 7.3451 \times 10^{-3}$ g cm² stretching force constant (K = 1.117 × 10² dynev(cm) is taken equal to that for BaBr. The ratio of the stretching to bending force constants is estimated as 125. This value for the ratio is to be compared with that for BaF₂ (93)² and BaCl₂(1199). The uncertainty in the adopted value for v₂ is believed to be no greater than ±20 cm⁻¹ which corresponds to roughly 1 cal·K⁻¹-mol⁻¹ in the value of S'(298.15 K). Other sets^{11–11} of estimated vibrational frequencies compare faavorably with ours; the maximum deviation is 35 cm⁻¹ in v₂. ¹¹ The ground state quantum weight of one is assigned by analogy with that for BaCl. ⁹ Our Gibbs energy functions differ by roughly 2 cal·K⁻¹ mol⁻¹ in Experimental evidence which has been presented in favor of a linear or nonlinear structure for BaBr₂ is conflicting. Electron diffraction analysis by Akishin and Spiridonov⁵ showed BaBr₂ to be linear (180 ± 30°). Later studies by Klemperer et al., ⁶ 1 using electric quadrupole the range 298-2000 K from those given by Brewer et al. 11 However, their values are based on a linear structure for the bromide which now deflection of melecular beams, have shown that this molecule possesses a permanent dipole moment and therefore must be bent. A simple explanation of the observed trends in the geometries of the alkaline—earth dihalides as established by the electric deflection experiments. has been presented by Hayes, and it appears quite likely that BaBr, is probably bent. The bond angle is arbitrarily taken to be greater than appears to be incorrect.

References

F. Hutchison, Ames Laboratory, Iowa State University, AEC Contract No. W-7405-eng-82, Report No. IS-T-50, (November, 1965). T. Peterson and J F. Hutchison, J. Chem. Eng. Data 15, 320 (1970). ت

Stock and H Heynemann, Chem. Ber. 42, 4088 (1909).

⁵P. A. Akishın and V. P. Spiridonov, Kristallografiya 2, 475 (1957). S. Nat. Bur Stand. Tech. Note 270-6, 119 pp. (1971).

L. Wharton, R. A Berg, and W. Klemperer, J. Chem. Phys. 39, 2023 (1963).

⁹JANAF Thermochemical Tables: BaCl₂(g) and BaF₂(g), 12–31–72, BaI₂(g), 6–30–74, BaBr(g), 12–31–74; CaBr₂(g), 6–30–74. "Infrared and Raman Spectra of Polyatomic Molecules," D. Van Nostrand Company, Inc., New York, (1962). ⁷A. Buchler, J. L. Stauffer, and W. Klemperer, J. Amer. Chem. Soc. 86, 4544 (1964). ⁸E. F. Hayes, J. Phys. Chem. 70, 3740 (1966).

¹⁰G. Herzberg, "Infrared and Raman Spectra or rongarous, security (1963).
¹¹L Brewer, G. R. Somayajulu, and E. Brackett, Chem. Revs. 63, 111 (1963).
¹² Proceeding Community (1963).

¹²K. S. Krasnov and V. I. Švettsov, Izv. Vysshikh Uchebn. Zavedenii, Khim i Khim. Tekhnol. 6, 167 (1963). ¹³V. I Baikov, Opt. Spektrosk. 27, 502 (1969).

Barium Bromide (BaBr₂)

PREVIOUS: December 1974 (1 atm

J. Phys. Chem. Ref. Data, Monograph 9

Barium Chloride (BaCI)

IDEAL GAS

Barium Chloride (BaCI)

Enthalpy Reference Temperature = T, = 298.15 K	$TK = C_r^* = S^* - [G^* - H^*(T_r)]/T = h$	0, 0, 11	200 35.235 244.313 261.945	35.986 252.263	258.643	36.450 258.868	36.757 264.512	36.973 269.435	37.132 273.799	37.256 277.718	37.438 284.528	37.570 290.309	37.676 295.333	37.765 299.776	37 846 303.759
$\Delta_t H^{\circ}(0 \mathbf{K}) = -140.6 \pm 12.6 \mathrm{kJ \cdot mol^{-1}}$ $\Delta_t H^{\circ}(298.15 \mathbf{K}) = -142.3 \pm 12.6 \mathrm{kJ \cdot mol^{-1}}$		Electronic Levels and Quantum Weights	e,, cm-1 g, State e,, cm-1 g,	2 312736 32 00	7 C1/4C7 7 0.0	7. F . Z	10995.3 2 F 2 29493.6 2	Ω ₂ Ω		7 (2007)	19450.1		Set = 0.88 cm ⁻¹	-	\(\alpha = \left(\cdot
$S^{\circ}(298.15 \text{ K}) = 258.64 \pm 0.4 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$			State 6,	V 75.4	7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	A III A		n iy	1 L ₇ U				ω _e = 277.9 cm ⁻¹	R = 10.08518 + 0.0031cs	Monora - aronaral - 34

Enthalpy of Formation

			Δ,H°(298.1.	(298.15 K), kcal·mol-1	SS	Δ _H *(298.15 K)	
Source	Reaction*	T/K	2nd law	3rd law	cal·K ⁻¹ ·mol ⁻¹	kcal·mol-1	D_0°
Ξ	V	1234-1380	3.3 ± 3.6	6.76 ± 0.8	-2.6 ± 2.7	-34.82 ± 2.2	107.2
6	∢	1507-1702	13.0 ± 5.4	13.34 ± 1.0	-0.2 ± 3.3	-31.53 ± 2.2	103.9
3	∢	974-1052	21.8 ± 9.4	5.89 ± 1.3	5.9 ± 9.3	-30.26 ± 2.2	102.7
Ξ	В	1234-1380	10.3 ± 5.1	13.21 ± 1.1	-2.2 ± 3.9	-34.29 ± 2.6	106.7
3	æ	1507-1702	9.7 ± 7.3	17.72 ± 1.5	-5.0 ± 4.5	-29.78 ± 2.8	102.2

Heat Capacity and Entropy

References

S°(298.15 K) = 258.64 ± 0.4 J·K ⁻¹ ·mol ⁻¹	'.K ⁻¹ .mol ⁻¹				ï	$\Delta_t H^{\circ}(298.15 \text{ K}) =$	$\Delta_t H^{\circ}(0 \text{ K}) = -140.6 \pm 12.6 \text{ kJ} \cdot \text{mol}^{-1}$ (298.15 K) = -142.3 ± 12.6 kJ ·mol^{-1}	6 ± 12.6 3 ± 12.6		ithalpy Ref	eference Te	mperature J.K ⁻¹ mol ⁻¹ S* -[G'	Enthalpy Reference Temperature = T ₁ = 298.15 K T/K C ₂ S* -[G*-H ² (T)]/T	1 42		Standard State Pressure = p° = 0.1 MPa Ld-mol- A _i H* A _i G° log K _i	p* = 0.1 MPa log K _t	
	State e, on X 72	State 6, X 22+ A 211 11 11 12 12 C 211 11 12 12 12 12 12 12 12 12 12 12 12	2.00 2.00 2.00 2.00 2.00 3.10 8.00	Electronic Levels and Quant cm ⁻¹ 8, State 0.0 2 D 2 0.351.1 2 E 2 0.995.3 2 F 2 1880.0 G 2 9962.9 2 9450.1 2 0.25. = 0.88 cm ⁻¹ 0.25. = 0.88 cm ⁻¹		um Weights \$\epsilon, \text{cm}^{-1}\$ 25.471.5 2706.46 29493.6 325.11.4 \text{c} \text{c} = 1 \text{c} = 12.65	8, 2 2 2 2 2 2 4 0.05]Å		7.777-1-1	200 200 200 250 250 300 300 300 400 400 400 600 600 600 600 600 600 6	0. 31 691 35.235 35.235 36.436 36.436 36.757 36.757 37.438 37.438 37.576 37.656 37.656		INFINITE 259.084 259.084 259.241 28.644 259.089 260.081 261.367 262.810 263.879 263.879 263.879 263.879 263.879 263.879 263.879 271.955 271.955	-9878 -6904 -1326 -1,744 0.0067 1,898 1,898 1,898 1,898 1,494 11,189 14,940 14,940 18,703 12,255	- (40.63) - (41.498 - (41.498 - (41.272 - (42.772 - (42.772 - (42.772 - (43.302 - (43.272 - (43.272 - (43.2722 - (43.2422) - (52.2422 - (52.2422) - (52.2422) - (52.2422)	-140,631 -150,038 -159,035 -163,795 -167,488 -167,488 -171,837 -171,837 -171,837 -171,837 -181,397 -191,378 -19	1832 1832 1832 1832 1836 29,34 29,34 20,37 20,37 20,37 19,213 16,661 13,402 11,389	
Enthalpy of Formation Δμ* is based mainly on two sets of gas-phase equilibria measured mass spectrometrically by Hildenbrand¹ and, to a lesser extent, on the amalogous data of Potter <i>et al.</i> ² Analyses of the mass-spectrometric data¹³ are summarized below. The results from Potter <i>et al.</i> ² and Zmboν³ are less negative by about 4 kcal·mol⁻¹, suggesting the approximate uncertainty in Δμ². From the adopted Δμ² we derive D₀ = 106.4 ± 3 are less negative by about 4 kcal·mol⁻¹, suggesting the approximate uncertainty in Δμ². From the adopted Δμ² we derive D₀ = 106.4 ± 3 kcal·mol⁻¹. Independent methods yield D₀ = 103 ± 5, ≥ 110, 106.8 ± 2 * and 105 ± 6 kcal·mol⁻¹ to derive D₀ = 103 ± 5 kcal·mol⁻¹. Chemiluminescence from crossed beams of Ba atoms with Cl ₂ gave an approximate lower limit to D₀ of 110 kcal·mol⁻¹? Flame studics⁰ gave D₀ = 106.8 ± 2 kcal·mol⁻¹ and D₀ (ClBa-Cl) = 114 ± 4; we derive D₀ = 105 ± 6 kcal·mol⁻¹ from the latter value using Δμ²/(BaCl.) = 219 kcal·mol⁻¹. Ryabova⁴ considered the flames to involve BaCl., BaOHCl, and BaOH as well as BaCl. Schofield and Sugden inferred that the flames involved mainly BaCl, rather than BaCl as assumed in earlier flame studies. Gaydon⁴ discounted the values derived from electronic spectra, but Hildenbrand¹ showed that ionicity corrections bring the Birge-Sponer extrapolation into reasonable agreement with D₀.	Analyses of the al-mol ⁻¹ , sugge of the al-mol ⁻¹ , sugge of the al-mol ⁻¹ , sugge of speed of sugges of the crossed from crossed keal-mol ⁻¹ and crossed of sugges of suggested of sugges	ase equilibri e mass-spectusting the app 103 \pm 5, $^4 \ge 1$ 115.8 \pm 3.3.1 beams of Ba bridge of Ba 1 6 (CIBa-1 n) sidered the 1 6 BaCl, rat and showed	ia measured frometric da proximate u 110, 166.8 kcal-mol-1 a atoms with CI) = 114 ± CI) = 114 ± that than Ba d that ionic.	I mass spec tal-3 are su uncertainty ± 2 ⁶ and and we use h Cl, gave: 14; we de involve Bi involve Bi incl as assu	trometricall minarized b in $\Delta_t H^*$. Fig. 105 ± 6 kg. $\Delta_u H^*$ (BaC an approxin rive D_0^* = 10.17, and in a filtransity in the filtransity of the filtransity	by by Hildenbr eclow. The rest from the adopt all all all and -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , and BaOb for flame and BaOb for flame studienthe Hildenbry and Hildenbry experiments.	cally by Hildenbrand¹ and, to a lesser extent, on the ed below. The results from Potter et $al.^2$ and Zmbov³. From the adopted $\Delta_t H^o$ we derive $D_o^a = 106.4 \pm 3$ (scal·mol¹¹, abeZl.) = 219 ± 4 kcal·mol¹¹ to derive $D_o^a = 103 \pm 5$ satinate lower limit to D_o^a of 110 kcal·mol¹¹ Flame = 105 ± 6 kcal·mol¹¹ from the latter value using (OHCl, and BaOH as well as BaCl. Schofield and earlier flame studies. Gaydon¹ discounted the values ng the Birge-Sponer extrapolation into reasonable	seer exter tt $al.$ 2 and ve $D_0^2 = 1$ rive $D_0^2 = [cal \cdot mol]^{-1}$ latter voll [CI. School counted the n into rea	nt, on the 12 Zmbov ² 106.4 ± 3 106.4 ± 1 103 ± 5 1.5 Flame lue using field and he values assonable	1100 1200 1200 1300 1300 1300 1300 1300	37,921 37,995 38,156 38,156 38,456 38,652 39,046 39,046 39,557 40,505	307.370 310.673 310.673 316.77 316.49 321.649 326.184 330.275 330.275 330.275 337.488 337.488 337.488	280.057 284.761 284.761 286.931 286.931 286.932 296.342 296.342 296.342 296.342 301.057 301.057 301.366 301.366	30.044 33.840 33.840 37.644 41.454 41.454 45.275 66.675 64.573 64.573 76.403 88.439 88.511	- 166.610 - 168.837 - 170.952 - 173.007 - 174.990 - 176.932 - 186.679 - 186.679 - 186.679 - 186.679 - 192.632 - 192.632 - 192.632 - 193.632 - 134.848	- 223.306 - 233.235 - 233.235 - 245.537 - 246.935 - 251.273 - 251.273 - 251.273 - 261.463 - 261.463 - 261.463 - 261.463 - 261.463 - 261.005 - 261.	10.604 9.940 9.940 9.940 9.848 8.848 8.845 7.721 7.721 7.721 7.721 6.653 6.653 6.653 5.973 5.973 5.973	
Source Reaction*	TIK	Δ,H°(2 2nd law	Δ _H *(298.15 K), kcal·mol ⁻¹ nd law 3rd law	c), kcal·mo 3rd law		8S cal·K ⁻¹ ·mol ⁻¹	$\Delta_t H^{\circ}(298.15 \text{ K})$ kcal·mol ⁻¹	, K)			41.304 41.716 42.143 42.581	342.284 343.793 345.264 346.700	307.979 309.231 310.449 311.633	92.622 96.773 100.966	-336.962 -339.239 -341.661 -344.205	-247.653 -244.339 -240.940	4.854 4.620 4.401 4.105	
(3) (3) (4) (5) (5) (6) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	1234-1380 1507-1702 974-1052 1234-1380 1507-1702	121		6.76 ± 0.8 13.34 ± 1.0 5.89 ± 1.3 13.21 ± 1.1 17.72 ± 1.5		-2.6 ± 2.7 -0.2 ± 3.3 5.9 ± 9.3 -2.2 ± 3.9 -5.0 ± 4.5	-34.82 ± 2.2 -31.53 ± 2.2 -30.26 ± 2.2 -34.29 ± 2.6 -29.78 ± 2.8		07.2 03.9 02.7 06.7		43.027 43.027 43.933 44.387 45.287	348.104 349.477 350.822 352.140 353.433	312.787 313.912 315.010 316.083 317.132	109.482 113.807 118.178 122.594 127.055	-346.846 -349.561 -352.319 -355.106 -357.898	-237.455 -233.883 -230.226 -226.485 -222.661	3.818 3.644 3.480 3.323 3.174	
Reactions: (A) Ba(g) + BaCl ₂ (g) \rightarrow 2BaCl(g); (B) Ba(g) + AlCl(g) \rightarrow BaCl(g) + Al(g). Data given in Table 2 ³ are assumed to be $10^3 \times K_p$ instead of $10^3 \times K_p$	$aCl_2(g) \rightarrow 2Ba(g)$ assumed to be	Cl(g); (B) B; : 10 ³ × K _p ir	a(g) + AICI	$(g) \rightarrow BaC$ $0^4 \times K_F$.!(g) + A!(g)) 	I		1		45.728 46.161 46.998 47.399	355.950 357.175 358.380 359.564	319.163 320.147 322.058 37.005	136.112 140.707 145.344 150.023	-363.425 -366.128 -368.775 -371.356	-214.777 -210.724 -206.599 -202.408	3.032 2.897 2.643 2.643	
Heat Gapacity and Entropy Electronic levels and vibrational constants are taken from the review of Rosen. ⁹ The level at 10351.1 cm ⁻¹ is T _o rather than T _o . Vibrational constants are adjusted for natural isotopic abundances. B _c is calculated from τ _o which is estimated by comparison of the bond lengths of MX ₂ (M=Mg, Ca, Sr, Ba and X=F, Cl) with those of MgCl, CaCl and MF(M=Mg, Ca, Sr, Ba). The value of α _c is estimated from the Morse potential function.	f and constants ar ral isotopic abu	re taken fron indances. Be se of MgCl,	n the review is calculate CaCl and	v of Rosen. ed from re MF(M=M	The level which is e g, Ca, Sr, B	at 10351.1 cm stimated by cc ta). The value	$^{-1}$ is $T_{\rm e}$ rather the smparison of the of $\alpha_{\rm e}$ is estimate	an <i>Te</i> . Vil e bond le ed from th	brational ingths of he Morse		48.162 48.513 48.869 49.200 49.817	361.877 363.005 364.117 365.211 367.350 363.36	323.900 324.796 325.677 326.543 327.396 328.235	159.503 164.300 169.135 174.005 178.908 183.844	-375.094 -378.646 -380.916 -383.103 -385.203 -387.203 -387.203	- 193.338 - 189.466 - 185.040 - 176.040 - 171.474 - 166.863	2.30 2.30 2.30 2.09 1.99 1.906	
References ¹ D. L. Hildenbrand, J. Chem. Phys. 52 , 5751 (1970). ² M. D. Potter, M. H. Boyer, F. Ju, D. L. Hildenbrand, E. Murad and W. F. Hall, AD–715567, 17–26 (1970); Aeronutronic Div., Philco Corp., Report U–4859, AFOSR 70–2311 TR, (August 31, 1970). ² M. F. Zahov, Chem. Phys. Letters 4 , 191 (1969). ² D. Jonah and R. N. Zare, Chem. Phys. Letters 9 , 65 (1971). ³ C. G. Jonah and R. N. Zare, Chem. Phys. Letters 9 , 65 (1971). ³ C. G. Ryabova, Teplofiz. Vys. Temp. 10, 744 (1972).	hys. 52, 5751 (u, D. L. Hildenl 311 TR, (Augu tters 4, 191 (19 s Spectrom. Ior Them. Phys. Let	(1970). brand, E. Mt. sts 31, 1970) 769). n Phys. 4, 7! tters 9, 65 (1 † (1972).	urad and W.). 5 (1970). 1971).	. F. Hall, A	.D-715567,	17–26 (1970)	, Aeronutronic E	Jiv., Philk	со Сот.,		50.103 50.374 50.631 50.314 51.101 51.215 51.703 51.878 52.040 57.311	359.478 370.441 371.441 372.398 374.358 376.229 376.229 376.229 377.145 377.145	335,874 30,675 331,465 332,10 333,010 335,276 335,977 336,695 331,403	193.807 193.831 203.931 208.957 214.055 224.176 224.578 234.658 239.854 245.066	-391.003 -392.798 -396.152 -396.152 -397.741 -402.714 -402.714 -404.719 -404.719	- 162.213 - 157.526 - 183.050 - 143.264 - 138.448 - 133.468 - 123.853 - 118.940 - 118.940	1,729 1,412 1,412 1,413	
 K. Scholield and I. M. Sugden, Irans. Faraday Soc. 61, 1034 (1971). K. G. Gaydon, "Dissociation Energies and Spectra of Diatomic Molecules," 3rd Edition, Chapman and Hall, Ltd., London, 330 pp. (1968); 	n, Trans. Farad mergies and Sp.	lay Soc. 67, ectra of Diat	1054 (1971 tomic Molea	l). cules," 3π	l Edition, C.	hapman and H	all, Ltd., Londor	n, 330 pp.		VIOUS: D	PREVIOUS: December 1972 (1 atm)	72 (1 atm)	01.900	767707	CUR	CURRENT December 1972 (1 bar)	0.250 rr 1972 (1 bar)	
refer to p. 203. *B. Rosen, Ed., "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Pres	: Data Relative	to Diatomic	: Molecules	i," Pergam	ý	New York, 515 pp. (1970)	pp. (1970).		Ba	rium Ct	Barium Chloride (BaCl)	(BaCl)					Ba.Cl.(g)	۔ ا

26.249 23.851 21.784

-633.284 -639.260 -625.569

-837.859 -833.221 -828.535

105.472 117.856 130.241

187.147

271.330

19.986 18.408 17.014 15.774 14.664

-612.191 -599.109 -573.759 -573.759

-823.823 -819.105 -814.402 -809.736

142.625 155.010 167.395 179.779

287.867 295.375 302.454 309.150 315.503

29.063

-667.664

-842.429

93.087 97.422

174.666 181.020

252 239

123.846 123.846 123,846

1200 1198.010

255.799 162.152

--- BETA <--> LIQUID - ALPHA <--> BETA TRANSITION

32,466

-683.694

-861.132

66.480

169.256 174.538 174.538 176.915

229.622

93.531 100.015

237.924

75.937

-762.428 -746.684 -730.992 -715.380 -699.882

23.547 31.678 40.003 48.546 57.345

138.772 145.293 151.657 157.780 163.643

80.425 82.233 84.299 86.624 89.471

888 88888 5

211 721 220.988

78.018

Standard State Pressure = $p^* = 0.1$ MPa

ところ

 $H^{\bullet}-H^{\bullet}(T_{i})$

S -[G-H'(T,)]/T NFINITE

ΤÆ

J.K.'mol'

141.032 103.685 81.300 66.375 55.718

-858.533 -857.384 -856.963 -857.255 -856.611 -856.313 -855.396 -854.241

0.139 7.774 15.585

123.668 126.646 132.335

124.131 146.082 163.505

440.590 215.839 141.959

859.171 843.483 826.420

-810.290 -809.990 -793.994 -778.216

-858.557

0.00

123,666

75.140 75.195 77.329 78.857

100 200 298.15

49.346 23.666

000

NFINITE

log Kr

Enthalpy Reference Temperature = T, = 298.15 K $\Delta_i H^{\circ}(0 \text{ K}) = -859.17 \pm 13 \text{ (or } \pm 2.5) \text{ kJ·mol}^{-1}$ Δ_H °(298.15 K) = -858.6 ± 13 (or ± 2.5) kJ·mol⁻¹ $\Delta_{uy}H^{\circ} = 16.90 \pm 0.21 \text{ kJ} \cdot \text{mol}^{-1}$ $S^{*}(298.15 \text{ K}) = 123.666 \pm 0.13 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $\Gamma_{\rm ts} = 1198 \pm 1 \,\mathrm{K} \,(\alpha \rightarrow \beta)$ $\Gamma_{las} = 1235 \pm 1 \text{ K } (\beta \rightarrow \gamma)$

Barium Chloride (BaCl₂)

 $\Delta_{\text{fus}}H^{\circ} = 15.991 \pm 0.33 \text{ kJ} \cdot \text{mol}^{-1}$ agreement, but a recent study by Vorob'ev et al. of Ba in HCl (240 and 400 H₂O) yields $\Delta_t H^0 = -201.8$ kcal mol⁻¹. The deviation (+3.4) kcai mol⁻¹) from the adopted value is confirmed by direct measurements of ΔH^o and Δ_{so}H^o of BaH₂(cr), yielding –202.1 kcal·mol⁻¹ for e is from NBS Technical Note 270-61 and its selection was discussed in detail by Parker. The adopted value was denved by Ehrlich et al.³ from their measurements of ΔH_{sd} of BaCr, and BaCr,(cr) in HCl (550 H₂O). Earlier solution data for Ba^4 and $BaCl^5$. 5 are in good BaCl₂(cr). All authors reported difficulties in obtaining or maintaining Ba and BaH₂ free of impurities; this provides conceivable reasons for bias in either of the opposing results. We assign an uncertainty of ±3 kcal·mol⁻¹ to include the possibility that Vorob'ev et al.⁷ are correct Enthalpy of Formation

Parker² rejected $\Delta H^{\circ} = -219.3$ kcal-mol⁻¹ obtained by Siemonsen⁸ by direct chlorination and $\Delta_0 H^{\circ} = -212.0$ kcal-mol⁻¹ which would result from BaO(cr) based on Mah's direct combustion.⁹ Parker noted that these more negative values are incompatible with data for BaO₃. Ba(OH), and BaCO. They are also incompatible with calorimetric data for BaH; noted above and equilibrium data as discussed on the tables but add an alternative of ±0.6 kcal·mol⁻¹ if their data are biased. for BaCl₂(1 and g).

Heat Capacity and Entropy

C is based on adiabatic calorimetry (6-346 K) of Goodman and Westrum. 10 S is calculated from C susing S (6 K) = 0.012 cal·K - 1 mol - 1. above 300 K is from constrained fitting of enthalpy data (340-1197 K for α-phase and 1201-1231 K for β-phase) measured in an ice calorimeter by Gardner and Taylor." The sample studied at high temperatures was a portion of that used at low temperatures. Deviations of the H data!! from the adopted values are <0.1% for most points but show a maximum of -0.3% for two points near 400 K.

for the smooth values (~1100-1230 K) of, 12 +1.8 to +2.9% for the equations (892-1235 K) of, 13 and -1.7 to +6.7% for the data (406-1230 K) Other enthalpy studies include those of Dworkin and Bredig, 12 Janz et al. 13 and Gant. 14 Deviations from the adopted values are about +2% of.¹⁴ Popov and Gal'chenko¹⁵ used a continuous heating method to obtain C_o values which deviate by +4 to +9% (443-973 K).

Transition Data

4.15 ± 0.16.13

 $T_{m} = 1198$ K is from the enthalpy study of Gardner and Taylor." Other enthalpy studies gave 1193^{12} and 1198 K, ¹³ while thermal analysis gave 1199^{16} and 1197 K. ¹⁷ $\Delta_{m}H^{\circ}$ is calculated from our adopted fits of the enthalpy data. ¹¹ Published values include 4.04, ¹¹ 4.10¹² and

Fusion Data

Refer to the liquid table for details.

Refer to the ideal gas table for details.

Sublimation Data

¹V. B. Parker, D. D. Wagman and W. H. Evans, U. S. Nat. Bur. Stand. Tech. Note 270-6, 119 pp. (1971).
²V. B. Parker, U. S. Nat. Bur. Stand. Rept. 10074, 164 (1969).

Ehrlich, K. Peik and E. Koch, Z. anorg. allg. Chem. 324, 113 (1963)

Guntz and F. Benoit, Ann. Chim. (Paris) [9] 20, 5 (1923).
 Ya. Samoilov, Izv. Akad. Nauk SSSR, Otdel. Khim. Nauk 1952, 627, 1950, 337

A. F. Vorob'ev, A. S. Monaenkova and S. M. Skuratov, Vestn. Mosk. Univ., Ser. II 22 (6), 3 (1967); Dokl. Akad. Nauk SSSR 179, 1129 (1968); Izv. Vyssh. Ucheb Zaved., Khim. i Khim. Tekhnol. 15, 191 (1972) ⁶ F. E. Young, J. Amer. Chem. Soc. 66, 773 (1944).

^tH. Siemonson, Z. Elektrochem. 55, 327 (1951).

¹⁰R. M. Goodman and E. F. Westrum, J. Chem. Eng. Data 11, 294 (1966). A. D. Mah, U. S. Bur. Mines RI-6171, 8 pp. (1963).

1. E. Gardner and A. R. Taylor, J. Chem. Eng. Data 14, 281 (1969).

¹²A. S. Dworkin and M. A. Bredig, J. Phys. Chem. **67**, 697 (1963).

Gant, Ph.D. Thesis, Univ. Alabama, 1967; Diss. Abstr. B28, 133 (1967). ¹³G. J. Janz, F. J. Kelly and J. L. Perano, Trans. Faraday Soc. 59, 2718 (1963).

¹⁵M. M. Popov and G. L. Gal'chenko, Zh. Obshch. Khim. 21, 2220 (1951).

Grjotheim, H. G. Nebell and J. Krogh-Moe, Acta Chem. Scand. 22, 1159 (1968). Krohn, Acta Chem. Scand. 20, 255 (1966).

CURRENT December 1972 **PREVIOUS**

Barium Chloride (BaCl₂)

LIQUID

Barium Chloride (BaCl₂)

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [-832.467] \text{ kJ} \cdot \text{mol}^{-1}$

 $\Delta_{\text{tus}}H^{\circ} = 15.991 \pm 0.33 \text{ kJ} \cdot \text{mol}^{-1}$

CURRENT: December 1972

 $S^{\circ}(298.15 \text{ K}) = [143.518] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tat}} = 1235 \pm 1 \text{ K}$

Enthalpy of

Ilpy of Formation $^{\circ}$ is calculated from tiquid. Independent HaCl; (1) \rightarrow BaCl; (1) \rightarrow BaCl; the adopted $\Delta_t H^{\circ}(\mathbf{r})$ tent with the alternation and $\Delta_t H^{\circ}(\mathbf{r})$	If py of Formation $^{\circ}$ is calculated from that of the crystal by addition of $\Delta_{los}H^{\circ}$ and the difference in enth liquid. Independent values of Δ_{eH}° for liquid (and crystal) may + BaCl ₂ (I) \rightarrow Ba(I) + CaCl ₂ (I). Our 3rd-law analysis is summarized below; it shows the adopted Δ_{eH}° (cr) = -205.2 kcal·mol $^{\circ}$ from Ehrlich et al. (cf. BaCl ₂ , cr), while the alternative Δ_{eH}° (cr) = -201.8 kcal·mol $^{\circ}$ 1 from Vorob ev et al Both are nation and Δ_{eH}° (cr) = -212.0 derived from Mah's Δ_{eH}° value for Δ_{eH}° of BaO(cr).	tal by addition of f A _f H° for 3rd-law analysi ul·mol ⁻¹ from El—201.8 kcal·mo red from Mah's	of \$\Delta_{\text{log}}H^{}\$ and the distributed (and constant is is summarized by halich et al. (cf. For International International Constant International Intern	fference in enthalpy ystal) may be elow; it shows that haCl ₃ , cr), while th et al Both are inco	y, H°(1235 K)—H°(derived from the data of Feschot e data of Peterson ompatible with Δ _H	It is calculated from that of the crystal by addition of $\Delta_{las}H^2$ and the difference in enthalpy, $H^0(1235 \text{ K})$ - $H^0(298.15 \text{ K})$, between crystal liquid. Independent values of $\Delta_t H^0$ for liquid (and crystal) may be derived from equilibrium data. For EBCl ₂ (I) \rightarrow Ba(I) + CaCl ₂ (I). Our 3rd-law analysis is summarized below; it shows that the data of Feschotte—Ostertag¹ are consistent the adopted $\Delta_t H^0(cr) = -205.2 \text{ kcal·mol}^{-1}$ from Ehrlich et al. (cf. BaCl ₂ , cr), while the data of Peterson and Hinkebein² are more tent with the alternative $\Delta_t H^0(cr) = -201.8 \text{ kcal·mol}^{-1}$ from Vorob' ev et al. Both are incompatible with $\Delta_t H^0(cr) = -219.3 \text{ from direct}$ action and $\Delta_t H^0(cr) = -219.3 \text{ from direct}$	
Source	Source Remarks	<i>1</i> /K	SS 2 cal·K ⁻¹ ·mol ⁻¹	$\Delta_i H^o(298.15 \text{ K})$ $\Delta_i H^o(1)$ kcal·mol ⁻¹ kcal·mol ⁻¹	$\Delta_i H^{\circ}(I)$ kcal·mol ⁻¹	Δ _i H'(cr) kcal·mol ⁻¹	
7	Direct measurement 1273 Indirect via SrCl ₂ 1273 Direct measurement 1173–1223	1273 1273 1173–1223	13.24 ± 1.6 14.12 ± 1.8 -2.5 ± 8.1	11.47 ± 0.6	-198.3 ± 2 -199.1 ± 2 -196.5 ± 1	-204.5 ± 2 -205.4 ± 2 -202.7 ± 1	

Heat Capacity and Entropy

Deviations of the data from the adopted fit are all less than 0.05%. Smoothed enthalpies of Dworkin and Bredig⁴ deviate by +1.2% and those of Janz et al. ⁵ by +2.7 to 2.1%. Enthalpy data of Gant⁶ deviate by +1.5%. C_p^6 is taken equal to that of the crystal from 298 to 800 K, the assumed The constant C,= 26.0 cal K-1.mol-1 is based on enthalpy data (1238-1347 K) measured in an ice calorimeter by Gardner and Taylor. glass transition. So is calculated in a manner analogous to that used for $\Delta_t H$.

Fusion Data

T_{ine} is from the enthalpy study of Gardner and Taylor.¹ Some other reported values include 1233⁴ and 1235 K³ 6 from enthalpy studies and 1234² and 1235 K⁴ from thermal analysis. Δ_{in}H² is obtained from the difference in the adopted enthalpy fits for liquid and β-phases. Published values include 3.82,3 3.904 and 4.13 ± 0.125 kcal-mol-1.

Vaporization Data

 $\vec{T}_{\nu\mu}$ is calculated as the temperature at which $\Delta_i G^* = 0$ for BaCl₂(1) \rightarrow BaCl₂(g) at p=1 bar. $\Delta_{\nu\mu} H^*$ is calculated as the corresponding $\Delta_i H^*$.

References

¹H. Feschotte-Ostertag, Ann. Chim. (Paris) 6, 791 (1961).

²D. T. Peterson and J. A. Hinkebein, J. Phys. Chem. 63, 1360 (1959).

⁴T. E. Gardner and A. R. Taylor, J. Chem. Eng. Data 14, 281 (1969).

⁴A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 67, 697 (1963).

⁵G. J. Janz, F. J. Kelly and J. L. Perano, Trans. Faraday Soc. 59, 2718 (1963).

⁶F. A. Gant, Ph.D. Thesis, Univ. Alabama, 1967, Diss. Abstr. B28, 133 (1967).

⁷C. Krolm, Acta Chem. Scand. 20, 255 (1966).

⁸K. Grjotheim, H. G. Nebell and J. Krogh-Moc, Acta Chem. Scand. 22, 1159 (1968).

Enthalpy Reference Temperature = T, = 298.15 K 1.K ⁻¹ mol-1	, = 298.15 K		Standard Sta	Standard State Pressure = p = 0.1 MPa	• = 0.1 MPa
1-0	-[G*-H'(T,)]T	$H^{\bullet}-H^{\bullet}(T_i)$	Α'.H°	Φ,G•	log Kr
_	143.518	0000	-832.467	-790.119	138.426
_	43.520		-832,443	-789.857	137.526
	146.498 152.187	7.774	-831.295 -830.874	-775.846 -762.052	101.315
	158.624		-831.165	-748.249	65.141
	71.509	31.678 40.003	-830.522 -830.223	-734.491	54.808 47.062
	171.509	40.004	GLASS		
	177.791	50.881	-826.972 -823.737	-707.300 -694.176	41.051
	190.120		-828.885 -825.911	-680.557	32.317
	198.040	٠	BETA	٧	•
~ ~	201.716		-822.847	-654.101	26.282
-	212,460		-816.536	-628.600	21.890
	217.522	127.030	-813.330	-616.175	20.116
	27.069		-806.921	-591.916	17.17
	231 <i>.576</i> 235.918	159.665	-803.761 -800.659	- 580.058 568.365	15.947
	240.106		-797.639	-556.824	13.850
	48.055		-930.614	- 572.215	12.822
	251.833 255.490	214.057 224.935	-927.225 -924.075	-504.532	10.981
	259.033	235.814	-921.163	-469,560	9.434
	265.803		-918.478	-452.242	8.749
יסינ	9.041		-913.733	-417.883	7.527
	272.189		-911.633	-400.821	6.979

Barium Chloride (BaCl₂)

PREVIOUS:

(BaCl ₂)
hloride (F
Barium C

						- 1	
Enthalpy Re	ference Ter	mperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $J \cdot K^{-1} \text{mol}^{-1}$		Standard State Pressure	te Pressure = p	o* = 0.1 MPa
7.K	ະ	S -[G	$-[G^{\bullet}-H^{\bullet}(T_{i})]T$	H*-H*(T.)	$\Delta_c H^{\bullet}$	$\Delta_i G^{\bullet}$	log K _r
-85	0.000 56.961	0.000 49.346	INFINITE 187.175	-16.707 -13.783	-859.171	-859.171 -843.483	INFINITE 440.590
298.15	75.140	123.666	123.666	0.000	-858.557	-820.420	141.959
8 8	75.195 77.329	124.131	123.668	0.139	-858,533 -857,384	-809.990 -793.994	141.032
200	78.857	163.505	132,335	15.585	-856.963	-778.216	81,300
888	82.233	178.018	138.772	31.678	-857.255 -856.611	-762.428 -746.684	55.718 55.718
<u>8</u> 8	84.299 86 624	201.861 211.721	151.657	48.546	-855.313	-730.992 -715.380	41.520
90 5	89.471	220.988	163.643	57.345	-854.241	-699.882	36.558
1198.010	100.001	237.924	174.538	75.937	ALPH ALPH	ALPHA <> BETA	- 1
1200	123.846	252.033	174.538	92.840	- 247 470	TRANSTITION -657 664	70.063
1235.000	123.846	255.799	176.915	91.422	Η.	٧í	
1300	108.784	774 378	181 648	113.413		-654 101	
0045	108.784	282.389	188.559	131.362	-819.715	-641.237	23.925
99	108.784	296.915	201.216	153.119	-813.330	-616.175	20.116
0021	108.784	303.510	207.041	163.997	-810.118	-603.951	18.557
200	108.784	315.610	217.845	185.754	-803.761	- 580.058	15.947
2100	108 784	326.150	777 683	200.051	-707.630	-556.303	13.850
2200	108.784	331.558	232.290	218.389	-934.242	-540.051	12.822
2300 2400	108.784	336.394	236.712 240.963	229.268 240.146	-930.615 -927.225	-572.215	11.860
2500	108.784	345.464	245.054	251.025	-924.075	-486.986	10.175
2600 2700	108.784	349.731	248.999	261.903	-921.163	-469.560	9.434
2800	108.784	357 793	256.486	283.660	-916.008	-435.021	8.115
800	108.784	361.610 365.298	260.045 263.492	294.538 305.417	-913.733 -911.634	-417,883	7227 6.979

PREVIOUS:						CURRENI	CURRENT: December 1972

Refer to the individual tables for details.

crystal, alpha crystal, beta liquid

0 to 1198 K of 1198 K of 1198 to 1235 K of above 1235 K of 1235 K

_
Ø
~
Ļ
_
₩.
- [
×
⋖
-
-
ίŊ
>-
α
-
O
-

Ω'n

Barium Chloride (BaCl₂)

Enthalpy Reference Temperature = T, = 298.15 K

ž

 $\Delta_t H^0(0 \text{ K}) = -497.3 \pm 17 (\text{or} \pm 6.7) \text{ kJ·mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = -498.7 \pm 17 (\text{or} \pm 6.7) \text{ kJ·mol}^{-1}$

Vibrational Fequencies and Degeneracies

M_r = 208.236 Barium Chloride (BaCl₂)

DEAL GAS

Ba₁Cl₂(g)

CURRENT: December 1972 (1 bar)

Standard State Pressure = p = 0.1 MPa 88.936 76.527 67.212 59.959 54.147 45.399 39.125 34.400 30.710 NFINITE 262.394 132.330 106.299 89.475 25.276 21.208 21 log K, -510.787 -512.769 -514.693 -516.545 -518.305 -521.477 -524.311 -526.849 -529.135 -531.216 -532.293 -533.173 -533.882 -534,439 -535.155 -535.335 -535.405 -535.371 -535.235 -463.319 -455.515 -447.608 -439.598 -431.487 -423.276 -414.966 -406.562 -398.064 -389.476 -534.998 -529.288 -522.284 -515.214 -508.069 -336.220 -327.085 -317.882 -289.897 -280.450 -270.948 -261.393 -510.713 -493.529 -486.123 -478.622 -471.021 -363.200 -354.281 -345.287 -242.141 -232.439 -222.693 -212.921 -203.088 500.842 -380.801 299.284 -498.744 -499.086 -499.565 -500.260 -501.228 -503 726 -505.439 -507.680 -509.514 -511.358 497.307 497.806 -498.258 -498.477 -498.733 -521.583 -523.681 -525.688 -527.625 -529.513 -533.228 -535.096 -536.999 -538.961 -541.004 -682.670 -684.104 -685.776 -687.688 689.837 -694.804 -697.590 -700.551 -706.904 -710.241 -713.660 -717.139 -720.654 -724.190 -727.728 -731.256 -734.763 -738.238 -741 673 -745.066 -748.410 -751.704 -770.236 -773.140 -775.992 -778.794 -784.160 -786.808 -789.386 -791.800 -794.296 -531,374 -754.938 -758.097 -761.221 -764.285 -767.299 -703.664 -781.515 즐 $H^{\bullet}-H^{\bullet}(T_{\bullet})$ 0.104 5.770 8.628 8.628 117.25 23.026 23.026 23.026 24.03 46.04 46.06 52.011 63.628 63 133.405 139.222 145.039 150.857 156.675 168.341 174.129 179.948 185.766 191.585 197.403 209.0212 209.0212 220.678 226.497 232.316 238.135 243.954 278.870 284.689 290.509 296.328 302.147 249.774 255.593 261.412 267.231 273.051 S -[G-H'(T,)]/T 336.893 341.653 346.258 350.646 354.802 358.730 362.444 365.959 369.292 372.457 375.469 381.082 383.706 385.21 386.221 390.954 393.187 395.340 399.424 401.366 403.245 405.067 406.834 408.549 410.216 411.838 413.415 414.952 416.449 417.909 419.333 420.724 423.410 424.708 427.222 428.439 429.631 430.800 431.946 J.K-'mol-' 0. 268.409 303.691 315.909 325.736 326.083 365.647 382.273 389.096 395.205 400.735 410.435 414.740 418.749 425.004 426.024 429.348 432.491 435.474 460.966 462.814 464.604 466.341 468.028 42.378 441.017 443.602 446.078 448.452 452.929 455.045 457.086 459.059 469.667 471.261 472.813 474.324 475.797 477.234 478.636 480.006 481.343 482.651 483.930 485.182 486.407 487.607 489.935 491.065 492.173 493.261 494.329 438,311 495.377 496.407 497.419 498.414 56.183 56.689 57.028 57.266 57.266 57.807 57.898 57.898 58.006 58.006 58.006 58.114 58.115 58.115 58.115 28.172 28.172 28.172 28.172 28.182 28.183 28 57.667 58.157 58.160 58.164 58.167 58.170 56.160 58.195 58.195 58.195 58.195 58.195

Product of the Moments of Inertia: $I_A I_B I_C = 1.128013 \times 10^{-112} \text{ g}^3 \text{cm}^6$ 265 (1) r, CEII_1 Bond Distance: Ba-Cl = 2.82 ± 0.03 Å Bond Angle: Cl-Ba-Cl = $[100 \pm 20]$ ° r, cm -[36] (1) Ground State Quantum Weight: [1] 255 (1) , cm Point Group: C24

Enthalpy of Formation

 $\Delta_t H^0(g)$ is assigned alternative uncertainties to reflect the discrepancies in $\Delta_t H^0(g)$. Equilibria derived from flame studies? yield $\Delta_t H^0(g) = -119.1 \pm 3$ and $\Delta_t H^0(g) = -205.1 \pm 3$ kcal·mol⁻¹, which confirm the adopted values by an independent path. Mass spectra* at 1230 K showed that the saturated vapor consists predominantly of BaCl₂ with considerably less than 1% of dimer. rure equation of Hildenbrand et al. 12 The equation summarized five torsion-effusion runs (83 total points) and is reasonably consistent with $\Delta_H^{\circ}(298.15 \text{ K})$ is calculated from $\Delta_H^{\circ}(\text{cr})$ by addition of $\Delta_{\text{cr}}H^{\circ} = 86.0 \pm 1.5 \text{ kcal·mol}^{-1}$ derived from 3rd law analysis of the vapor-presfive boiling pressures in the mmHg range measured by Novikov.³ Other vapor pressure data^{4,6} reviewed below are considered less reliable.

				$\Delta_{\rm ub}H^{\circ}(298.15$	Δ _{sub} H°(298.15 K), kcal·mol ⁻¹	88
Source	Method	Points	7/K	2nd law	3rd law	cal·K ⁻¹ ·mol ⁻¹
(71)	Torsion effusion	83*	1235-1440	85.1	86.01	-0.7
€ :	Boiling Point	S	1588-1710	75.6 ± 4.2	86.30 ± 0.7	-6.4 ± 2.5
€	Effusion	e	1244-1277	78.5 ± 1.6	85.3 ± 0.2	-5.4 ± 1.3
ତ :	Boiling point	-	1819		>81	
@ (Static	4	1343-1487	85.4 ± 3.8	76.6 ± 0.9	6.1 ± 2.7
ε	Flame K,	œ	2134-2535	$-9.5 \pm 8.7^{\circ}$	$-13.5 \pm 2.4^{\circ}$	1.7 ± 3.7
Pre.	Pressures obtained from an equation summarizing 5 runs (83 total points).	n equation sur	nmarizing 5 runs (83	3 total points).		

 $^{\circ}\Delta_{i}H^{\circ}$ for Ba(g) + 2 HCl(g) \rightarrow BaCl(g) + 2 H(g) yields $\Delta_{i}H^{\circ}$ (298.15 K) = 119.1 \pm 3 kcal·mol⁻¹

\$25,000 \$25,00

Heat Capacity and Entropy

bending mode to a band which they observed at 61 cm⁻¹ in argon and 62 cm⁻¹ in neon. This value would reduce 5° by about 1.0 cal·K⁻¹ mol⁻¹. Our assigned uncertainty includes this possibility. Agreement is better for $v_1 = 255^{910}$ or 262 cm⁻¹ (in Ne)¹² and for $v_2 = 265 \pm 5$ (gas)¹³, 260⁹¹⁰ or 268 cm⁻¹ (in Ne)¹² We adopt the gas-phase value¹³ for v_3 . Bond length is from gas-phase electron diffraction¹⁴ which also gave the bond angle 180° ± 40°. Later studies¹³ of electric and magnetic deflection of molecular bearns revealed a permanent electric dipole moment and suggested a bond angle of the order of roughly 120°. Hastie et al.¹² estimated an angle of 120° ± 10° from relative intensities of v_3 and v_4 . The matrix spectra³¹⁰ were first interpreted to give an angle Vibrations v₁ and v₂ are the values quoted by Hildenbrand⁹ and derived from IR spectra of molecules in matrix isolation.¹⁰ The bending mode was not observed; its value was calculated¹⁰ from force-constant correlations as described for BaF₂.¹¹ Hastie et al. ¹² assigned the

of 120° but reanalysis by Hemple gave the angle 95.4°, estimated from the three fundamentals. We adopt $100^\circ \pm 20^\circ$ and note that 5° changes by only 0.2 cal·K⁻¹ mol⁻¹ in the range 95° to 120°. The singlet ground state is based on magnetic deflection data. The principal moments of inertia are $I_A = 25.5142 \times 10^{-3}$, $I_B = 54.9471 \times 10^{-3}$, and $I_C = 80.4613 \times 10^{-3}$, g.cm².

References

¹D. L. Hildenbrand, Stanford Res. Inst., personal communication, 1973; D. L. Hildenbrand, E. Murad, N. D. Potter, L. P. Theard and W. F. Hall, Aeronutronic Division, Philco Corp., Report No. U-3183, Contract AF 49(838)–1397, (June 30, 1965).

The Hildenbrand, Proc. 2nd Meeting, Crept. Northing Group on Thermochemistry, CPIA Publ. No. 54U, pp. 79–80, (August 1964).

G. I. Novikov and F. G. Gavryuchenkov, Russ. J. Inorg. Chem. 9, 260 (1964).

J. A. Van Westenburg, Ph.D. Thesis, Iowa State Univ., 1964; Diss. Abstr. 25, 1129 (1964).

S. H. von Wartenburg and O. Bosse, Z. Elektrochem. 28, 384 (1922).

C. G. Maier, USBM Tech. Paper 360, 25 (1925).

R. Schoffeld and T. M. Sugden, Trans. Faraday Soc., 67, 1054 (1971).

P. L. Hildenbrand, Int. J. Mass Spectrom. Ion Phys. 4, 75 (1970)

L. Hildenbrand, J. Chem. Phys. 52, 5751 (1970)

Continued on page 358

Barium Chloride (BaCl.)

PREVIOUS: December 1972 (1 atm)

J. Phys. Chem. Ref. Data, Monograph 9

 $S^{\circ}(298.15 \text{ K}) = 325.74 \pm 5.0 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Barium Chloride (BaCl₂)

66.396
52.377
74.186
52.377
74.186
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.386
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75.377
75

-397.790

-533,606 -536,382 -539,144

299,346 300,449 301,524 302,573 303,598

333.962 335.278 336.566 337.827 339.063

41.273 41.651 42.042 42.445 -389.478

-541,871

107.309 111.455 119.864 119.864 124.129 128.436 132.785 137.177 141.613

304.600 305.580 306.540 307.481 308.403

340.276 341.468 342.639 343.792 344.926

43.708 43.708 44.140 44.575

-409,640

528,102

-385.208 -380.867 -376.457 -371.984

-552,141

-367.451 -362.861 -358.219 -353.528 -348.791

-554.495 -556.750 -558.907 -560.963 -562.919

150.615 155.182 159.792 164.445 169.140

309.307 310.195 311.067 311.923 312.766

45.448 45.883 46.315 46.742 47.164

346.043 347.143 348.228 349.297 350.352 351,394

-344.013 -339.197 -334.344 -329.457

-564.768 -566.499 -568.157 -569.716 -571.193

173.877 178.656 183.474 188.332 193.229

313.594 314.409 315.212 316.002 316.781

47.579 47.986 48.385 48.775

888

-427.655 -424.224 -420.709 -417.107 -413.418

-515.782

67.568 71.433 75.316 79.220 83.147 87.098 91.077 95.086

293.357 294.626 295.857 297.052 298.215

329,816 331,234 332,615

328.358

39.649 40.240 40.566 40.911 3a,F,(g)

CURRENT December 1972 (1 bar)

PREVIOUS: December 1972 (1 atm)

Barium Fluoride (BaF)

-294.514 -289.438 -284.349 -279.261 -274.144

-578.297

-580,833

-314.621 -309.623 -304.603 -299.566

198.163 203.133 208.139 213.179 218.251

317.548 318.305 319.051 319.787 320.513

359.264

-319,594

572.563

 $S'(298.15 \text{ K}) = 246.23 \pm 0.2$

Enthalpy Reference Temperature = T, = 298.15 K

M_r = 156.28403 Barium Fluoride (BaF)

3a,F,(g)

Standard State Pressure = p^* = 0.1 MPa

 $H^{\bullet}-H^{\bullet}(T_{\epsilon})$

S -[G-H(T,)]T

J.K-'mol-

60.744

-346,723

322.168

246.228

246.228

34.748 34.776

28.15

322.185

338.481 -346.875 -354.954 -358.868 -362.679

324.082

248.849

264.687

36.206 36.839 37.088 37.268

-369.92

389.626

334.154

10.888 14.585 18.303 22.037 25.783

256,234 259,155 261,946 264,595

286.432

37.406

293.959 200.255 300.255 303.057 305.671

37.611 37.694 37.770 37.843 37.917

-400,718

346,539

-423.193 -427.267 -431.225 -435.072 -438.813

359,016 360,997 363,001 365,045

48.443 52.246 56.059 59.883 63.718

-410.185 -414.663 -418.995

353,022

29.540 33.305 37.078 40.859

-357.039

267.105 269.481 271.734 273.872 275.906 277.843 279.693 281.461 281.461 283.155

308.120 314.673

37.995 38.081 38.179 38.292 38.421

-442.450 -440.610 -437.476 -434.276 -431.004

286.343 287.847 289.296 290.695 292.048

320,316 322,042 323,704 325,307

38.570 38.740 38.933 39.148

367.149

NFINITE log Kr

 $\Delta_t H^0(0 \text{ K}) = -320.2 \pm 8.4 \text{ kJ} \cdot \text{mol}^{-1}$

21 J·K ^{~1} ·mol ^{~1}		,		PV	I°(298.15 K) = −3	Δ _r H°(298.15 K) = -322.2 ± 8.4 kJ·mol ⁻
	Electronic	Electronic Levels and Quantum Weights	nantum Weigh			
State	£, cm-1	ಹ	State	£, cm_	8	
*2° ×	0	2	D 72.	24156.8	2	
A ² Π _{υ2}	11646.9	7	$0.5\Sigma_{\bullet}$	26222.3	2	
A 211322	12278.2	2	E ½	28139.7	2	
B 7%	14062.5	7	F.72.	29411.3	2	
C 211	19998.2	7	, X, O	31451.9	2	
	20197.2	7	.ζ. Η	31582.0	2	
$\omega_e = 468.9 \text{ cm}^{-1}$ $B_e = 0.2164 \text{ cm}^{-1}$	7 ⁷ 6	$\omega_c x_c = 1.79 \text{ cm}^{-1}$ $\alpha_c = \{0.00112\} \text{ cm}^{-1}$	m ⁻¹ 12] cm ⁻¹	P	σ=1 re=2.152 Å	

Enthalpy of Formation

made on the condensed phase systems BaF_T - B^1 and BaF_T - AI^2 by the mass spectrometric-Knudsen effusion method. Results of a 2nd and 3rd law analysis of these data are given below. Also included below are results derived from two mass spectrometric studies²⁻³ of the heterogeneous reaction (D), and a value for the heat of dissociation of BaF which was determined from spectrophotometric studies 1 of Δ_Hⁿ is obtained from a 3rd law analysis of K_p data for three gaseous dissociation equilibria. The K_p data were derived from observations reaction equilibria in Hz-Oz-N2 flames.

				Δ,H°(298.	Δ,H°(298.15 K), kcal·mol-1	Drift	ΔH°(298.15 K)
Source	Source Reaction	T/K	Points	2nd law	3rd law	cal·K-1	kcal·mol-1
_	٧	1418-1512	∞	-1.0	-6.6 ± 0.5	-3.8 ± 2.2	-78.0 ± 1.5
_	В	1418-1512	∞	9.8	-3.5 ± 1.1	-3.5 ± 5.7	-77.3 ± 3.6
7	ပ	1175-1255	‰	26.0	23.0 ± 0.2	-2.5 ± 0.9	-75.6 ± 3.0
7	Ω	1175-1255	œ	-118.8	-96.4 ± 1.1	18.4 ± 3.6	-74.9 ± 1.7
m	۵	1428		-103.5			-71.3 ± 3.0
Ĵ.	ш			145 ± 6			-83.3 ± 8.0
Reactions:	_	(A) $Ba(g) + BaF_2(g) \rightarrow 2 BaF(g)$	→ 2 BaF(g		(D) 2 BaF(g)	(D) 2 BaF(g) → Ba(g) + BaF ₂ (cr)	Ω.
	(B) 2	$2Ba(g) + BF_3(g) \rightarrow 2 BaF(g) + BF(g)$	→ 2 BaF(g) + BF(g)	(E) BaF(g) -	(E) BaF(g) → Ba(g) + F(g)	
	(C)	(C) $Ba(g) + AIF(g) \rightarrow BaF(g) + AI(g)$	 BaF(g) + 	AI(g)			
One po	int rejected	One point rejected due to failure of a statistical test	of a statist	ical test.			

tometric studies^{4,5} are somewhat more uncertain than those derived from the K_p data for the three homogeneous reactions. Therefore, we choose to adopt a median value $\Delta_t H^0(BaF, g, 298.15 \, K) = -77.0 \pm 2.0 \, kcal \cdot mol^{-1}$ of the first three results. The adopted value corresponds this constant from vaporization experiments performed with silver contained in their Knudsen cell. Further support for this belief is provided It is believed that the K, data for the three homogeneous reactions (A, B, and C) are more reliable than those for the heterogeneous reaction (D) due to the need for a machine calibration constant which appears in the equilibrium expression for the latter. Ehlert et al.2 determined by the large positive drift that arises in the 3rd law analysis of these K_p 's. Also, it is felt that the results otained from the flame-spectropho-

Gaydon? has reported a spectroscopic value for Do of 3.8 eV which is considerably lower than the adopted thermochemical value. The pectroscopic value is based on a linear Birge-Sponer extrapolation of the thirteen known vibrational levels for the ground state (22). However, Gaydon⁷ and later Hildenbrand⁸ have shown that the linear extrapolation generally under-estimates D₀⁹ when the bonding in the molecule is partially ionic. Correcting D%(LBX) for the ionic character of BaF with the ionicity parameter suggested by Hildenbrand, we obtain D_0^0 (Ba-F) = 6.9 eV which is somewhat high. Other values for D_0^0 that have been reported are 5.94 and 5.68 eV. 9 Both of these values to a dissociation energy of D_0^2 (Ba-F) = 137.9 kcal·mol⁻¹ (5.98 eV).

Heat Capacity and Entropy

The spectroscopic data, except for α_e , are given by Rosen. For "BaF: α_e is calculated from the Morse potential function. Corrections to hese data to account for the natural isotopic abundances of barium were found to be negligible. The electronic states and levels are also taken rom the compilation of Rosen.11

References

D. L. Hildenbrand, J. Chem. Phys. 48, 3657 (1968).

C. Ehlert, G. D. Blue, J. W. Green, and J. L. Margrave, J. Chem. Phys. 41, 2250 (1964).

were calculated from the Rittner ionic model 10 for polarizable ions and show remarkably good agreement with the adopted value.

-60.030 -62.689 -65.376 -68.089 -70.823

8.713 9.508 10.233 10.903 11.537

91.374 96.267 101.276 106.397 111.623

-1.096 -10.065 -19.048 -37.061 -46.094 -49.767 -49.767 -57.403

42.23 42.101 42.104 42.104 42.124 42.305 42.305 43.084 43.

29.316 33.076 36.853 44.484 44.484 48.353 55.249 66.297 66.297 68.648 71.398 81.940 86.598

259,595 261,954 266,119 266,319 266,319 266,319 266,319 277,239 277,239 277,239 277,239 277,239 277,239 277,239 277,239 277,239 277,239 277,239 277,239 277,239 277,239

38.139 38.481 33.461 40.114 40.114 40.114 41.741 42.700 43.739 42.892 42.892 42.893 42

-87.651 -90.526 -93.424 -96.344 -99.289

144.773 150.511 156.285 162.087

298.280 299.388 300.479 301.553 302.610

-73.579 -76.354 -79.149 -81.963 -84.797

116.949 122.367 127.868 133.442 139.080

292.454 293.660 294.845 296.009 297.154

321.197 323.044 324.865 326.662 331.908 331.908 333.527 336.891 338.495 340.667 341.164

53.732 54.605 55.389 56.673 57.171 57.576 57.890 58.266

11110 11

102.259 105.255 108.277

12.151 13.375 14.045 14.735 16.247 16.247 17.112 18.022 18.022 17.112 17

173.737 179.572 185.404 191.228 197.038

303.652 304.678 305.688 306.683

346.027 347.433 348.805 350.144 351.450

111.326

-117.509 -120.645 -123.807 -126.999 -130.218

202.831 208.601 214.346 220.063

308.629 309.581 310.518 311.441

352.723 353.964 355.173 356.352 357.501

58.340 58.345 58.345 58.20 58.020 57.316 57.316 57.024 57.024 55.336 55.336 55.336

-143.374

242.613 248.165 253.680

313.247 314.131 315.001 315.858 316.703

358.621 359.713 360.777 361.815

-150.124 -153.534 -156.972 -160.451

363.814 364.778 365.718 366.637

4.618 3.203 3.204

-133.467 -136.742 -140.045

DEAL GAS

Barium Fluoride, Ion (BaF*)

S°(298.15 K) = [

CURRENT: December 1972 (1 bar)

Standard State Pressure = $p^* \approx 0.1 \text{ MPa}$ k1-mal-1	log Kr				•	187 -21.135		•	•	,		_			-3.623	
tate Pressu	₽ 'Q•				121.5	121.387	116.5	9.11.6	106.6	101.6		816	82.0	72.7	62.429	52.6
Standard S	$\Delta_{l}H^{\bullet}$	146.127			150,206	150,226	150.749	151.158	151.367	151,313		150.668	150.827	150.471	150,532	150.591
K	$H^{\bullet}-H^{\bullet}(T_t)$	-9.205	-3245	-1.619	oʻ	0.063	1.787	3.543	5.323	7.120		10.755	14.427	18.124	21.840	15.571
Enthalpy Reference Temperature = $T_r = 298.15$ I·K ⁻¹ mol ⁻¹	$-[G^*-H^*(T_*)]T$	INFINITE	242,009	239.511	238.955	238.956	239.374	240,311	241.532	242,907		245.848	248.823	251.714	254.479	257.106
emperature I-K ⁻¹ mol ⁻	S - [C	0.	225.783	233.035	238.955	239.166	244.480	249.169	253,360	257.148		263.773	269.433	274.369	278.746	282.677
leference To	ະ	0.	31.866	33.131	34.073	34.105	34.831	35,375	35.787	36.105		36.557	36.859	37.074	37.240	37.381
Enthalpy R	7/K	٥٥	88	250	298.15	300	320	\$	450	800		8	8	800	8	<u>00</u>
$\Delta_t H^0(0 \text{ K}) = 146.1 \pm 41.8 \text{ kJ·mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = 150.2 \pm 41.8 \text{ kJ·mol}^{-1}$																י וואס מ
		eights	8	۱'		9	7	,	7	m	-	-	•		6	
		Sectronic Levels and Quantum Weights	£, cm_	-	0	[0006]	[000]	[13000]	[mac]	[15000]	[16000]	[30000]	faccaci		ω.r. = [2.06] cm ⁻¹	~ = [0.00122] cm ⁻¹
7		Electronic L	State		χχ	a'II	Α''Π	A'1A	1 1	-7.4	Α'Σ•	R ¹ X*	i)	•	ω _e = [540] cm ⁻¹	R = [0 23711 cm-1
[239.0 ± 8] J·K ⁻¹ ·mol ⁻¹															J	~

Enthalpy of Formation

The appearance potential (AP) of BaF* from BaF(g) has been measured mass spectrometrically as 4.9 eV¹ and 4.8 ± 0.3 eV. This latter value has been confirmed by Zmbov and Margrave.² Combining these results with $\Delta_t H'(BaF, g, 0 K) = -76.5 \pm 2.0 \text{ kcal-mol}^{-1}$, we obtain $\Delta_t H'(BaF, g, 0 K) = -76.5 \pm 2.0 \text{ kcal-mol}^{-1}$, we obtain $\Delta_t H'(BaF, g, 0 K)$ equal to 36.5 and 34.2 \pm 9.0 kcal-mol $^{-1}$

Hildenbrand² also reported an AP for BaF* from BaF4g) as 13.5 ± 1.0 eV. Green et all.⁵ obtained an ionization efficiency curve for $e^- + BaF_2(g) \rightarrow BaF'(g) + F(g) + 2e^-$, we obtain $\Delta_1H'(BaF', g, 0 | K)$ values of 101.3 ± 25 and 87.5 kcal mol⁻¹ by combining the above results with $\Delta_1H'(BaF, g, 0 | K) = -191.6 \pm 1.5$ kcal mol⁻¹ and $\Delta_1H'(F, g, 0 | K) = 18.36 \pm 0.4$ kcal-mol⁻¹ 4 9 the process 12.9 eV at zero ion BaF* which extrapolates (high-energy portion) to

The two lower values for A H (0 K) are preferred here, since the dissociative ionization of BaF (g) most likely involved unknown kinetic energy factors. We choose to adopt $\Delta_f H^2(BaF^*, g, 0 K) = 35.0 \pm 10.0 \text{ kcal-mol}^{-1} \text{ which gives } \Delta_f H^2(BaF^*g, 298.15 K) = 35.9 \pm 10.0 \text{ kcal-mol}^{-1}$. The adopted heat of formation corresponds to an ionization potential for BaF(g) of 4.83 eV.

Heat Capacity and Entropy

The dissociation energy of BaF'(00 = 145.4 kcal mol-1) is slightly greater than that for BaF(00 = 137.9 kcal-mol-1)4 which implies somewhat stronger bonding in the ion. Thus, one would expect the internuclear distance (r,) for the ground state of BaF' to be less than that for BaF. Barrow and Beale postulated from a rotational analysis of the FX+XX* band system of SrF ar, for SrF* which was some 4% lower than that for SrF. We assume a similar decrease in r_e for BaF* and obtain $r_e = 2.064$ Å from r_e (BaF) = 2.152 Å. $^4\omega_e$ is calculated from Badger's rule? which can be written in the form $\omega_{ca} = 3.159 \times 10^6/\mu(r_e - d_u)$. Molecular data for CsF, 4 BaF, 4 and BaO 4 were used to determine the constant d_{ν} . The product $x_{\mu}^{\mu D}$ has been shown to be constant within a group of similar molecules by Barrow and Caunt. Since μ^{ν} 2 (BaF') $\equiv \mu^{\mu D}$ (BaF') $\equiv x_{\nu}$ (BaF') and obtain $\omega_{\nu}x_{\nu}$ equal to 2.06 cm⁻¹ with our estimated value for ω_{ν} , ω_{ν} is obtained from the other constants assuming a Morse potential function.

BaF has eight valence electrons; thus, the ground state configuration ($^{1}\Sigma$) and electronic levels for the A and B states are estimated from those for the isoelectronic molecule BaS. 10 By analogy with the gaseous alkaline earth oxides, 11 C₂, and BeS. 12 low-lying triplet states are to be expected. The two estimated triplet levels are based on those which have been observed directly in C₂, 4 BeS, ¹² and indirectly (through perturbative effects) in BaS. ¹⁰ Also included are a ¹Π state at 11,000 cm⁻¹ and ¹Δ state at 13,000 cm⁻¹. These levels are also estimated by analogy with those for C_2^4 and BeS.¹² It is believed that our adopted electronic entropies for BaF* are most likely minimal values. Probable upper limits for the electronic contributions can be established by decreasing the triplet levels to 1000 cm⁻¹ (3 I) and 5000 cm⁻¹ (3 E) and neglecting the other excited states. This increases the entropy (in cal-K⁻¹mol⁻¹) by 3 8 and 2.1 at 2000 K and 4000 K, respectively.

T. C Ehlert, G. D. Blue, J. W. Green, and J. L. Margrave, J. Chem. Phys. 41, 2250 (1964).

L. Hildenbrand, J. Chem. Phys. 48, 3657 (1968).
 F. Zmbov and J. L. Margrave, J. Chem. Phys. 45, 3167 (1966).

⁴JANAF Thermochemical Tables: BaF(g) and BaF₂(g), 12-31-72; F(g), 9-30-65; CsF(g), 6-30-68; C₂(g), 12-31-69.

⁵I. W. Green, G. D. Blue, T. C. Ehlert, and J. L. Margrave, J. Chem. Phys. 41, 2245 (1964).

R. F. Barrow and J. R. Beale, Chem. Comm., 1967, 606 (1967).
 R. M. Badger, J. Chem. Phys. 2, 128 (1934).
 M. Marcano and R. F. Barrow, Trans. Faraday Soc. 66, 1917 (1970).

R. F. Barow and A. D. Caunt, Proc. Roy. Soc (London) 219A, 120 (1953).

"L. Brewer and G. M. Rosenblatt in "Advances in High Temperature Chemistry,"; Vol. 2, ed. by L. Eyring, Academic Press, New York, ¹⁰R. F. Barrow, W. G. Burton, and P. A. Jones, Trans. Faraday Soc. 67, 902 (1971).

¹²С. J. Cheetham, W. J. M. Gissane, and R. F. Barrow, Trans. Faraday Soc. 61, 1308 (1965)

Barium Fluoride, Ion (BaF*)

PREVIOUS. December 1972 (1 atm)

Ba₁F₂(cr)

CURRENT: December 1972

CRYSTAL(α-β-γ)

Barium Fluoride (BaF₂)

 $\Delta_{\rm try}H^{\circ} = 2.674 \pm 0.837 \text{ kJ·mo}$ $\Delta_i H^{\circ}(0 \text{ K}) = -1207.5 \pm 4.2 \text{ kJ·mo}$ Δ_H °(298.15 K) = -1208.8 ± 4.2 kJ·mo Δ_mH° = 0.0 kJ·mo Δ_{fus}H° = 23.359 ± 0.628 kJ·mo $S^{\circ}(298.15 \text{ K}) = 96.40 \pm 0.42 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $\Gamma_{\rm tr} = 1240 \, {\rm K} \, (\alpha \rightarrow \beta)$ L = 1480 K (β → γ) Tus = 1641 K

Enthalpy of Formation

cal K⁻¹-mol⁻¹² for Ba(OH), 660 H₂O + 2(HF 110 H₂O) \rightarrow BaF₈(cr) + 2 H₂O(I) which gives $\Delta_1 H^9$ (298.15 K) = -33.4 kcal·mol⁻¹. This let to $\Delta_1 H^9$ (298.15 K) = -288.3 kcal·mol⁻¹ when combined with auxiliary data $^{3/4}$ Petersen investigated the same reaction but with HF-2 Guntz¹ measured the heat of neutralization of Ba(OH),(aq) with HF(aq) as ΔH = -34.8 kcal·mol⁻¹ at 284 K. We estimate ΔC, = 1 BaF₂ remained dissolved. After correcting for incomplete precipitation his final result $\Delta H^{\circ}(292.15 \text{ K}) = -33.92 \text{ kcal·mol}^{-1} \text{ which gives } \Delta_t H^{\circ}(298.15 \text{ K}) = -288.2 \text{ kcal·mol}^{-1}$. H,O and found that 16% of the

In the same study, Petersen* measured the heat of precipitation of BaF, from BaCl₂(at) with AgF(aq) as $\Delta H^*(292 \text{ K}) = -35.02 \text{ kcal·mol}$. We estimate $\Delta C_p = 108$ cal·K⁻¹·mol⁻¹ for 2 (AgF-200 H₂O) + BaCl₂·400 H₂O → BaF₂(cr) + 2AgCl(cr) which gis $\Delta H^*(298.15 \text{ K}) = -34.4 \text{ kcal·mol}^{-1}$. Using auxiliary data* we obtain $\Delta H^*(BaF_s$, cr, 298.15 K) = -288.4 kcal·mol⁻¹. Petersen* a

reported the heat of solution of BaF, as $\Delta_{ps}H^{\circ} = 1.88$ kcal·mol⁻¹. From this result, we obtain $\Delta_t H^{\circ}(298.15 \text{ K}) = -290.3$ kcal·mol⁻¹. Stephen and Stephen⁸ have selected a "best" value for the solubility of BaF₂ of 1.614 g/l at 298.15 K which corresponds $K_{pp} = 3.1196 \times 10^{-6}$. Using $\Delta_t G^{\circ}(Ba^{12}, \infty$ aq, 298.15 K) = -134.02⁴ and $\Delta_t G^{\circ}(F^{\circ}, \infty$ aq, 298.15 K) = -66.96 kcal·mol⁻¹, we calcult $\Delta_i G^{\circ}(298.15 \text{ K}) = -275.45 \text{ kcal·mol}^{-1}$. Based on the adopted functions, $\Delta_i H^{\circ}(298.15 \text{ K}) = -287.5 \text{ kcal·mol}^{-1}$.

Two equilibrium studies 19, 11 have also been reported. 2nd and 3rd law analyses of these data are given below.

Source	Reaction	TIK	No. of Points	Δ,H°(298.15 K 2nd law	No. of $\Delta_t H^{\circ}$ (298.15 K), kcal·mol ⁻¹ Points 2nd law 3rd law	Drift cal·K ⁻¹ ·mol ⁻¹	Δ _t H*(298.15 K) kcal·mol ⁻¹
Domangem ¹⁰ Hood and Woyski ¹¹	A B	1173-1373 477-1033	9	41.0 5.9	62.5 ± 3.4 5.8 ± 1.0	16.9 ± 1.0 -0.1 ± 0.1	-267.3 -279.8

(B) HF(g) + 0.5 BaCl₂(cr) \rightarrow HCl(g) + 0.5 BaF₂(cr)

Reaction: (A) $BaF_2(cr) + H_2O(g) \rightarrow 2 HF(g) + BaO(cr)$

of solution of BaO(cr) in HF(aq), which contained some dissolved silica, as $\Delta H^* = -73.04$ kcal-mol⁻¹. We assume this value refers to reaction BaO(cr) + 2 HF-4.41 H₂O \rightarrow BaF₂(cr) + H₂O(l), and we calculate $\Delta_1 H^0$ (298.15 K) = -290.2 ± 2.0 kcal-mol⁻¹with $\Delta_1 H^0$ (BaO, The large discrepancy which arises in the $\Delta_t H^{\alpha}$ values obtained from the equilibrium and calorimetric results is not well understo diffraction studies of the precipitate showed the formation of BaCIF and Ba₂CIF₃along with BaF₂. We believe the equilibrium results of He 10 has measured similar equilibria for CoFs, MgFs, and CaF2 which are very consistent with JANAF heats of formation. V recently, Finch et al. 12 attempted to determine the heat of precipitation of BaF₂ form BaCl₂(aq) by dissolving a slight excess of NaF. Xand Woyski" may have been influenced by the formation of mixed halides. Also, it seems quite likely that the calorimetric results of Peters on the precipitation of BaF₂ from BaCl₂(aq) with AgF(aq) would be similarly influenced. We adopt A₁H°(298.15 K) = -288.9 ± kcal-mol-1 which is a weighted value of the calorimetric results of Guntz1 and Petersen6 on the heat of neutralization of Ba(OH)z(aq), heat of solution of BaF₄(cr)⁶ and the K₄₉ value obtained from the solubility data of Stephen and Stephen. Barany et al. determined the lither 298.15 K) = -132.3 kcal·mol^{-1.5} These results substantiate our adopted $\Delta_i H^{\circ}$ value.

Heat Capacity and Entropy

C, above 274 K, and values in the range 274-300 K are obtained by graphical extrapolation of their low temperature data. \$^(298.15 K) below 298 K is based on the low temperature (14-300 K) heat capacities of Pitzer et al. 13 These data show an unusual leveling of based on the adopted C_p 's with $S^0(15 \text{ K}) = 0.09 \text{ cal·K}^{-1} \cdot \text{mol}^{-1}$.

to premelting, and these points were not used in the fit. The maximum deviation of our adopted functions from those used in the fit is 0.5%. Kelley 16 analyzed the enthalpy data of Krestovnikov and Karetnikov. 13 His smoothed enthalpies are consistently 2-3% higher than those data for 800–1480 K. C, 's below 800 K are estimated graphically by comparison with those for BaCl₃, CaF₃, and SrF₂, ^C, (BaF₃, γ) are basee on a JANAF curve fit of their relative enthalpies (1482–1596 K). The rapid rise in the enthalpy near the melting point is assumed to be due entialpy data of Efremova and Matizen didicated the existence of a second order phase transition at 1240 K. We adopt their smoothed Relative enthalplies have been reported by Efremova and Matizen (757-2053 K)¹⁴ and Krestovnikov and Karetnikov (288-1273 K). 15 · adopted. No second order phase transition was observed. These data are judged to be less reliable and are not used in our evaluation.

ransition Data

since no discontinuity appears in their enthalpy data at this temperature. The heat of the $\beta-\gamma$ transition is calculated as the difference between The transition temperatures are those reported by Efremova and Matizen.14 We assume the transition at 1240 K is of the second order type. the adopted enthalpies for these two phases at 1480 K.

-10	Enthalpy Re	eference Te	emperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$	22	Standard Sta	Standard State Pressure = $p^* = 0.1 \text{ MPa}$, = 0.1 MPa
	7/1		. J.K - 'mol -' .S - [G	nol" -[G*-H(T.)]/T	H*-H*(T.)	Kimori - \AH*	₽°	log Kr
<u> </u>	1	•				}	: !	.
<u>_</u>	0 8	0.000	0,000	INFINITE	-14.454	-1207.475	-1207.475	INFINITE 633 010
	200	65.79	68.764	102.826	-6812	-1209.912	-1175.206	306.932
•	298.15	72.204	765397	96.397	0.000	-1208.758	-1158,410	202.949
8	300	72,304	96.844	96.398	0.134	-1208.734	-1158.097	201.643
eads	8 8	78.450	118.170	99.281 718.401	7.556	-1207.548	-1141.405	149.052
8	8 8	20.33	140 864	191 111	23.218	-1207 165	-1108 515	96.505
was	38	82.383	162,395	117.610	31,350	-1206.400	-1092.143	81.497
	008	84.935	173.549	123.917	39.705		-1075.841	70.245
<u></u>	88	88.701	183.750	130.005	48,370	-1204.877	- 1059.636	54.511
ives	001	104.182	202.789	141.520	67.396	-1209.444	-1026.882	48.763
also	1200	130.541	212.702	147.030	78.807	-1205.921	-1010.421	43.983
S to	1240.000	194.914	217.601	149.222	84.790	ALPHA	HA <> BETA TRANSITION	, v
ılate	1300	137.654	225.182	152.565	94.403	-1198.136	-994.440 -978.956	39.957 36.525
	1480.000		240.427	162.380	115.511	BETA		. !
	1480.000	107.654	242.234	162.380	118.184		2	
	1500	107.654	243.679	163.454	120,337	-1187.676	-963.778	33,562
	0091	107.654	250.627	168.687	131,103	-1184,612	-948.951	30.980
	1641.000	107.654	253,351	170.769	135.517	GAMMA	MA <> LIQUID	OID
	1700	107.654	257.153	173.701	141.868	-1181.550	-934,316	28.708
	88	107.034	707.07	01.67	127.03	2000	100.517	24.806
	2002	107.654	274 649	187.567	174 164	-1172.561	-891.443	23.282
Very								
-ray								
100d								
_ LSCD								
1.0								
j.								
heat								
o the								
૧								
if of								
K) is								
۾ ج								
a C,								
due								

PREVIOUS

28.734 26.758 21.409 21.977 20.520 19.222 18.008 16.893 14.034 14.034 11.039 11

-789.675 -770.935

-1277.876

-752.260 -733.644 -715.080

-1271.316 -1275.994

217.146 227.128 237.111 247.094 257.076 267.059 277.041 287.024 297.007

99 826 99 826 99 826 99 826 99 826 99 826 99 826 99 826

230 008 233.172 236.241 239.222 242.119

313.526 317.293 320.924 324.427 327.811

-1270.001

-696.561 -678.082 -659.642 -641.237 -622.866

-1268.767 -1267.581 -1266.430 -1265.291

244.936 247.678 250.349 252.951 255.488

331.084 334.254 337.326 340.306 343.199

-883.531 -865.517 -846.400 -827.396 -808.492

-1149.925 -1287.453 -1284.735 -1282.236 -1279.952

167.233 177.215 187.198 197.181 207.163

212.571 216.297 219.897 223.377 226.745

301.287 305.536 309.611

99.826 99.826 99.826 99.826 99.826

Ba₁F₂(I)

Standard State Pressure = $p^* = 0.1$ MPa

Enthalpy Reference Temperature = T, = 298.15 K

M_r = 175.326806 Barium Fluoride (BaF₂)

LIQUID

log Kr

Ş.

K-mol- $\Delta_t H$

 $H^{\bullet}-H^{\bullet}(T_{\bullet})$

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$

ڻ

7.K

 $\Delta_1 H^{\circ}(298.15 \text{ K}) = [-1171.294] \text{ kJ·mol}^{-1}$ $\Delta_{lus} H^{\circ} = 23.359 \pm 0.628 \text{ kJ·mol}^{-1}$

197.684 196.418 145.458 114.907 94.542 80.000 69.097 60.624 53.852

-1085.965 -1072.079 -1058.263 -1044.544 -1030.969

-1169.702 -1168.937 -1168.517 -1167.414

0.134 7.555 15.280 23.218 31.349 39.705 48.369 57.501

121.256 124.139 129.694 136.024 142.467 148.774 154.862 160.721

174.720 187.251 198.405 208.606 218.222

-1113.885

-1170.085 -1169.544

-1128.357 -1128.091

-1171.294 -1171.270

121.254 121.701 143.027 160.253 43.648 39.735 36.386 33.490 30.961

-1169.875 -1167.704 -1165.476 -1163.213

71.389 87.372 97.354 107.337

171.850 177.123 182.191 187.059 191.735

GLASS <--> LIQUID __ TRANSITION -1002.742 -988.902 -975.232 -961.722

67.407 67.407

166.377 166.377

-1016.761

-1171.970

67.407

166,377

227.655 227.6SS 227.6SS 236.341 244.332 251.730 258.617 265.060 267.585

104.182 104.182 99.826 --- GAMMA <--> LIQUID ---

-948.363

-1160.931

117.320

99.826 99.826 99.826 99.826 99.826 99.826 99.826

-935.147 -922.065 -909.108 -896.266

-1158.652 -1156.393 -1154.174 -1152.011

127.302 137.285 147.267 157.250

196.228 200.548 204.705 208.710

282.215

271.111

292.206 296.850

Fas = 1641 K

S°(298.15 K) = [121.254] J·K⁻¹·mol⁻¹

Barium Fluoride (BaF₂)

Enthalpy of Formation

The enthalpy of formation of the liquid is calculated from that of the crystal by addition of $\Delta_{tos}H^n$ the difference in enthalpy, H^o (1641 K)-

A glass transition is assumed at 1100 K below which C* follows that of the crystal. C* is assumed constant in the temperature range 1100-3500 K and is based on a JANAF curve fit of the relative enthalpies of Efremova and Matizen' for the liquid (1641-1900 K). Some 4°(298.15 K), between the crystal and liquid Heat Capacity and Entropy

scatter was observed in these data at the higher temperatures, and these points were not included in the fit. The maximum deviation of the

observed enthalpies which were used in the fit from those adopted is 0.29%. \$\sigma'(298.15 K)\$ is calculated in a manner analogous to that used for the enthalpy of formation.

Fusion Data

Tra is the value selected by Efremova and Matizen! from their relative enthalpy data. These data show premelting starting near 1620 K and complete melting occurring at 1646 K. Other values for Tim that have been reported are 1627, 1628, 1627, 1617, and 1593 K. The selected Im was obtained from measurements made on samples of BaF2 contained in steel and molybdenum capsules. There were no indications of any reaction between the sample and container. Three of the lower values given above were determined from measurements on BaFs, contained in either graphite. 4 or tantalum² crucibles. It has now been established by mass spectroscopy, 1 that the alkaline earth diffuorides can be appreciably reduced by these materials near 1400 K. Thus, we prefer the higher value.

 $\Delta_{lus}H^{\circ}$ is obtained as the difference in the adopted functions for the liquid and crystal at T_{lus}

Vaporization Data

 $T_{\rm top}$ is the calculated temperature at which $\Delta_i G^o = 0$ for BaF₂(I) \rightarrow BaF₂(g), $\Delta_{\rm top}H^o$ is calculated from the difference in $\Delta_i H^o(T_{\rm top})$ for the gas and liquid. Ruff and Le Boucher² derived $T_{\rm top} = 2533$ K and $\Delta_{\rm top}H^o = 69.8$ kcal-mol⁻¹ from an analysis of their vapor pressures (1960–2206 K).

R. Efermova and E. V. Matizen, Izv. Sib. Otd. Akal. Nauk SSSR, Ser. Khim. Nauk, (1), 3 (1970).
A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 75, 2340 (1971)
H. Kojima, S. G. Whiteway, and C. R. Masson, Can J Chem. 46, 2968 (1968).
B. Porter and E. A. Brown, J. Amer. Ceram. Soc. 45, 49 (1962).
G. Petit and F. Delbove, Compt. rend. 254, 1388 (1962).
P. E. Hart and A. W. Searcy, J. Phys. Chem. 70, 2763 (1966).
D. L. Hildenband, J. Chem Phys. 48, 3657 (1968).
J. W. Green, G. D. Blue, T. C. Ehlert, and J. L. Margrave, J Chem. Phys. 41, 2245 (1964).
O. Ruff and L. Le Boucher, Z. Anorg. Chem. 219, 376 (1934).

Barium Fluoride (BaF₂)

PREVIOUS

CURRENT December 1972

Ba₁F₂(I)

BaF ₂)	
oride (E	
um Flu	
Bari	

Enthalpy Re	ference T	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard Sta	Standard State Pressure = $p^* = 0.1 \text{ MPa}$ k I-mol ⁻¹	" = 0.1 MPa
7.K	ប	S - [C	-H'(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$		$\Delta_i G^{\bullet}$	log K,
° 200	0.000 43.897 65.796	0.000 29.894 68.764	INFINITE 155.326 102.826	-14.454 -12.543 -6.812	-1207.475 -1210.169 -1209.912	-1207.475 -1192.713 -1175.206	623.010 623.010 306.932
298.15	72,204	96.397	96.397	0000	-1208.758	-1158.410	202.949
88	72,304 75,940	96.844 118.170	96.398 99.281	0.134 7.556	-1208.734 -1207.548	-1158.097	201.643 149.052
8 8	78.450	135.397	104.837		-1207.007	-1124.951	117.523
829	82.383	162.395	117.610		-1206.400	-1108.515	81.497
888	88.701	183.750	130,005	39.705 48.370	-1205.980	-1075.841	70.245 61.500
8 2 2	104.182	202.789	141.520	67.396	-1203.338	-1026.882	48.763
1240 000	130,541	212.702	147.030	78.807	-1205.921 A1 PHA	-[0]0.42] HA <> BET	
1240.000	194.713	217.601	149.222		1		1
1300 1400	137.654	225.182	152.565 158.091	94.403 106.695	-1198.136	-994.440 -978.956	39.957 36.525
1480.000	107.104	240.427	162.380 162.380	115.511	BETA	A <> GAMMA TRANSTTON	
1500	107.654	243.679	163.454	120.337	-1187,676	-963.778	33.562
0091	107.654	250.627	168.687	131.103	-1184.612	-948.951	30.980
1641.000	107.654 99.826	253.351 267.585	170.769 170.769	135.517	45	GAMMA <> LI TRANSITION	-> LIQUID
1700	99.826	271.111	174.191		-1158.652	-935.148	28.734
000	99.826	282.215	184.988	184.731	-1154.174	-909.108	24.993
2100	99.826	292.206	194.731		-1149.925	-883.531	21.977
2200	99.826	296.850	199.268	214.679	-1287.454	-865.517	20.550
750	99.826	305.536	207.767	234 644	-1282.236	-827.396	800'81
2002	079.00	313 576	215 500	070747		-780 675	15.865
2700	99.826	317.293	219.296	264.592	-1275.994	-770.935	14.915
2005	99.826 99.826	324 427	226.304	284.557	-1272.736	-733.645	13.214
3000	93.826	327.811	229.631	294.539	-1271.316	-715.080	12.451
3200 3200	99.826 99.826	331.084	232.851 235.971	304.522	-1270.001 -1268.767	-696.561	11.737
3300	99.826	337.326	238.996	324 487		-659.642	10.441
3500	93.826	343 199	241.932 244.784	344.452	-1265.291	-641.23	9.296
PREVIOUS.						CURRENT: I	CURRENT: December 1972

CRYSTAL(a-β-y)-LIQUID

crystal, alpha crystal, beta crystal, gamma liquid

0 to 1240 K 1240 to 1480 K 1480 to 1641 K above 1641 K

Refer to the individual tables for details.

Mr = 175.326806 Barium Fluoride (BaF2)

Ba₁F₂(cr,l)

Barium Fluoride (BaF₂)

J. Phys. Chem. Ref. Data, Monograph 9

141 827 95,150 95,15

-757.057 -748.923 -740.696 -732.379 -723.972

-1007.773 -1010.706 -1013.687 -1016.703 -1019.730

435.189 437.035 438.825 440.561 442.247

58.155 58.158 58.160 58.163

58.152

-715.479 -706.902 -698.246 -689.512 -680.704

-1022.748 -1025.740 -1028.692 -1031.593 -1034.434

161.739 167.554 173.370 179.186 185.603 190.818 196.635 202.452 214.086 219.903 221.538 231.535 231.535 231.535

443.885 445.479 447 030 448.541 450.014

58.165 58.167 58.168 58.170 58.172

-671.827 -662.882 -653.874 -644.806 -635 680

1037.208

-1042.540 -1045.096 -1047.577

-1049.978

404.016

458.145 459.396 460.621 461.821 462.996

58.179 58.180 58.181 58.181 58.182

454221 455.559 456.866

58.173 58.174 58.176 58.177 58.177

451.451

-626.501 -617.272 -607.992 -598.667 -589.297 -570.436 -560.947 -511.261

-1056.734 -1058.862

-1060.907 -1062.914

248.991 250.627 260.627 260.627 277.263 278.081 283.900 289.718 295.536 301.355

405.181 406.324 407.444 408.543 409.622 410.682 411.723 411.723 411.723

464.148

468,542

-796.340 -788.664 -780.900 -773.045 -765.098

-997.094 -999.556 -1002.173 -1004.920

350.150 335.716 355.716 363.217 365.517 365.517 367.517 377.39 377.37 37

424.962 427.156 429.271 431.311

58.132 58.137 58.141 58.145 58.149

-994.807

103.610 109.420 115.231 121 042 126.854 132.667 133.667 144.295 150.109 155.924

-832,330 -826,253 -818,883 -811,444 -803,932

-846.001 -987.701 -989.155 -990.827

412.550 415.253 417.836 420.310 422.682

58.095 58.104 58.113 58.120 58.126

CURRENT December 1972 (1 bar)

-532.278 -522.655 -513.004 -503.340 -493.632

-1070.341 -1072.098 -1073.791 -1075.327 -1076.953

414 738 415.709 416 664 417.605 418.530

PREVIOUS December 1972 (a atm)

-1064.866 -1066.768 -1068.591

Standard State Pressure = p = 0.1 MPa

Kj.mol- Δ_{iH}

 $H^{\bullet}-H^{\bullet}(T_{\epsilon})$

 $-[G^{\bullet}-H^{\bullet}(T_{\tau})]T$

NEINITE 421.431 211.773 169.811 142.695

-801.659 -806.804 -810.853 -812.732

-814,489

-803.746

301.297

301.297

0. 42.748 50.089 52.332 53.780

200 200 250 250 28.15

-803.757 -804.074 -804.514 805.167 806.094

301.298 301.957 303.434 305.355 307.516

317.380 323.954 329.882

53.826 54.840 55.551 56.064 56.444

-819.711 -821.280

-824.081 -826.557 -828.742 -830.680

-808.517 -812.368 -814.172 -816.000

312.130 316.788 321.307 325.622 329.716

56.957 57.276 57.487 57.634 57.740

-833.150 -834.051 -834.262 -834.335

-826.218 -828.321 -830.342 -832.303 -832.303

45.610 51.395 57.185 62.980 68.778

333.592 337.260 340.735 344.032

57.819 57.879 57.926 57.964 57.994

375.055 384.724 389.018 393.018 396.762

-834.280 -834.107 -833.821 -833.428 -832.930

-836.125 -838.025 -839.944 -841.900 -843.913

74.579 80.382 86.186 91.993 97.801

400.280 403.598 406.737 409.716

58.019 58.040 58.057 58.072 58.084

9
\overline{Z}
≂
a
m
_

M. = 175.326806 Barium Fluoride (BaF.)

J·K-'mol-'	$\Delta_t H^0(298.15 \text{ K}) = -803.7 \pm 6.3 \text{ kJ} \cdot \text{mol}^{-1}$	3.15 K) = $301.30 \pm 2.09 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$
-1 Enthalpy Reference Temperature = T, = 298.15 I	$\Delta_t H^{\circ}(0 \text{ K}) = -801.7 \pm 6.3 \text{ kJ} \cdot \text{mol}^{-1}$,

IDEAL GAS

Barium Fluoride (BaF₂)

7.K		
-	K) = $301.30 \pm 2.09 \text{ J·K}^{-1} \text{mol}^{-1}$ $\Delta_f H^o(298.15 \text{ K}) = -803.7 \pm 6.3 \text{ kJ·mol}^{-1}$	K)=30
Enthalpy Reference Temp	$\Delta_i H^{\circ}(0 \text{ K}) = -801.7 \pm 6.3 \text{ kJ} \cdot \text{mol}^{-1}$ Enthalpy Reference Term	

$\Delta_i H^0(298.15 \text{ K}) = -80.$	Vibrational Frequencies, wcm - and Degeneracies	413(1) [64](1) 390(1)	Ground State Quantum Weight: 1 $\sigma = 2$ Point Group: C_2 Bond Distance: $B_3 + F = 2.32 \pm 0.03$ Å Bond Angle: $F - B_3 + F = [95]^c$ Product of Moments of Inertia. $I_A/b_C = [6.858791 \times 10^{-11}]^c$ g^3 -cm ⁶
-lom-	1 >	14	Ground S Point Gro Bond Dist Bond Ang

Enthalpy of Formation

 $\Delta_t H^{\circ}(BaF_{\lambda}, g, 298.15 \text{ K}) = -192.1 \pm 1.5 \text{ kcal-mol}^{-1} (-803.7 \pm 6.3 \text{ kJ·mol}^{-1})$ is obtained from that of the crystal by addition of $\Delta_{ab} H^{\circ} = 96.83 \pm 0.50 \text{ kcal·mol}^{-1}$. The selected $\Delta_{ab} H^{\circ}$ is based on an analysis of six sets of vapor pressure data. The results of our analysis are given below. A weighted value of these six results is adopted

			Data	Δ _{mb} H°(29)	Δ _{ab} H°(298.15 K), kcal·mol ⁻¹ Drift	1-1 Drift	Δ _t H°(298.15K)
Source	Method	7/K	Points	2nd law	3rd law	cal·K-1·mol-	cal·K-'-mol-' kcal·mol-'
Ruff and Le Boucher	Dynamic B.P.	2061–2206	6	97.04	86.79 ± 0.88*	-4.9 ± 0.8	-193.2 ± 2.0
Green et al.2	Knudsen-Mass Spec.	1232-1503	20	96.5	98.17 ± 0.45	1.2 ± 0.6	-190.7 ± 1.5
Bautista and Margrave3	Langmuir	1130-1250	ф О	4.96	97.68 ± 0.19	11 ± 0.9	-191.2 ± 1.2
Hart and Searcy	Torsion-Effusion	1261-1548	49¢	93.2	96.12 ± 0.68		-192.8 ± 1.7
Hart and Searcy	Torsion-Langmuir	1315-1492	25	93.7	96.47 ± 0.38	2.0 ± 0.8	-192.4 ± 1.4
Hildenbrand et al.5	Torsion-Effusion	1265-1550	Equation	94.2	94.74 ± 0.13		-194.2 ± 1.1

 $\Delta_{vac}H^{\circ}$, 2^b, 4^c, and 3^d points rejected due to failure of a statistical test.

Heat Capacity and Entropy

Spiridonov⁶ interpreted their results in terms of a linear configuration for BaF₂, recent electric-deflection experiments² and matrix isolation infrared studies^{4 3} clearly indicate that BaF₂ is bent. Calder et al. ⁶ estimated the bond angle as 100° from the changes in the bond angles with mass of the central atom for other alkaline earth difluorides. Baikov 10 estimated the angle as 115°. We prefer a slightly lower value (95°) than The bond length is taken from the high-temperature electron diffraction studies of Akishin and Spiridonov. Although Akishin and these, since there are indications that other heavy metal halides have bond angles below 100°. For example, bond angles for PbF₂ and PbCl₂ have been reported as $90^{\circ 11}$ and $96 \pm 3^{\circ 12}$ respectively.

Further confirmation of the adopted v₃ is provided by observations of Baikov.¹³ He reported v₃ = 415 ± 7 cm⁻¹ which was observed in the infrared spectra of BaF₂ vapor at 1950 K. The bending frequency (v.) is that estimated by Calder et al ⁸ This value is considerably less than that observed by Baikov¹⁰ (v₂ = 100 cm⁻¹). However, only the high frequency portion of this rather broad band was recorded. We have used our adopted frequencies in a valence bond calculation with the result k/(k/8/l²) = 11.8. This ratio of the stretching to bending force constants appears quite reasonable in comparison with those for other alkaline earth difluorides. A Also, our adopted frequencies give thermodynamic The symmetric (v₁) and antisymmetric (v₂) stretching frequencies are those observed by Calder et at ¹ in their study of infrared spectra of BaF2 trapped in a krypton matrix. Other matrix frequencies in excellent agreement with the adopted ones have been reported by Snelson. functions which show good compatibility with the vapor pressure data (see Enthalpy of Formation section).

The principal moments of inertia are: $I_A = 30.6016 \times 10^{-39}$, $I_B = 18.4604 \times 10^{-39}$, and $I_C = 12.1412 \times 10^{-39}$ g cm².

References

O. Ruff and L. Le Boucher, Z. Anorg. Chem. 219, 376 (1934).

W. Green, G. D. Blue, T. C. Ehlert, and J. L. Margrave, J. Chem. Phys. 41, 2245 (1964).

³R. G. Bautista and J. L. Margrave, J Phys. Chem. 69, 1770 (1965) E. Hart and A. W. Searcy, J. Phys. Chem. 70, 2763 (1966)

Continued on page 358

Barium Fluoride (BaF₂)

J.	Phys.	Chem.	Ref.	Data,	Monograph	9	

-199.898

-409.858 -411.342

99.138 105.089 111.076 117.102 123.165

356.831 359.599 362.261 364.825 367.300

59.320 59.689 60.063 60.442 60.828

-182.278

-413.030 -414.913 -416.972

129.268 135.410 141.593 147.818 154.086

374260 376.445 378.570

61.223 61.627 62.040 62.460 62.888

311.832 313.967 318.034 318.034 319.975 321.860 321.860 322.473 322.473 327.208

369.694

-233.499 -231.915 -230.237 -228.471 -226.619

-259.656 -261.244 -262.852 -264.501

297.250 299.925 302.492 304.959 309.622

344.460 347.775 350.932 353.946

57.398 57.807 58.199 58.578 58.951

258,065

-224.683

266.213

11.32 10.23

164.384 155.325 146.186

-419.188 -421.539

-423.999

-118.289 -108.829 -99.292 -89.678 -79.991 -70.233 -60.407 -50.516

-429.146 -431.787 -434.447

-437.104

160.3% 166.750 173.148 179.590 186.076 192.607 199.181 205.798 212.458 219.159

338.898 330.547 333.156 333.727 335.766 336.766 338.236 339.676 341.087

63.321 63.759 64.200 64.642 65.083 65.957 66.386 66.386

390.268 392.069 393.833 395.563 397.260

380.639 382.656 384.625 386.548 388.428

-442.351 -444.915 -447.428

-449.884

Standard State Pressure = p = 0.1 MPa

K-mol-

Enthalpy Reference Temperature = T, = 298.15 K

H*-H*(T.)

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\epsilon})]T$ NFINITE 60.260 48.478 40.847

-233.150

-226,440

252.893

252.893

46,356 46.432 48.141 49.361 50.257 50.937

0. 211.167 235.500 244.931

0.086 2.453 4.892 7.383 9.914

NFINITE log Kr

40.602 34.963 30.723 30.723 27.415 20.743 17.850 15.661 13.944

233,599 237.515

262.466 266.641 270.715 274.625 278.352

302.695 309.003 314.707

51.916 52.641 53.266 53.855 54.427

319.921

-240.259 -240.471

-239.691 -238.730 -237.612 -236.358 -234.983

15.060 20.283 30.241 36.355 41.826 47.351 52.929 52.929 52.929 56.949 66

281.898 285.269 288.478 291.537 294.457

54.983 55.519 56.029 56.512 56.968

333,363

340.968

249.320 251.251 -253.067 -254.793 -256.452

M, = 154.33734 Barium Hydroxide (BaOH)

CURRENT: December 1975 (1 bar)

-0.114 -0.226 -0.333 -0.437 -0.536 -0.536 -0.726 -0.726 -0.986

471.036

-474.665 -476.430 -478.136 -479.790 -481.473 484.622

356.156 357.282 358.392 359.486 360.564

414.052

70,860

416.787 418.122 419.436

330.970 338.163 345.371 352.591 359.823

361.627 362.675 363.709 364.729 365.735

-40.562 -30.550 -20.481 -10.359 -0.186

225.901 232.683 239.503 246.361 253.254

343.827 345.158 346.465 347.749 349.011

400.559 402.164 403.740 405.289

67.622 68.013 68.391 68.755 69.104

398.925

-456.876 -459.081

-461.217 -463.275

260.181 267.141 274.132 281.152 288.200

350.251 351.470 352.670 353.850 355.012

406.812 408.309 409.780 411.228 412.652

Ŋ
⋖
G
_
7
ш
_
=

Barium Hydroxide (BaOH)

$\nabla^{\mu}H_{0}$	$\Delta_c H^{\circ}(298.151$
	1-mol
	S°(298.15 K) = [252.9 ± 8] J·K ⁻¹ ·mol ⁻¹
	S°(298.15 K)

1-lou					$\Delta_t H^o(0 \text{ K}) = -221.75 \pm 29.3 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^o(298.15 \text{ K}) = -226.44 \pm 29.3 \text{ kJ} \cdot \text{mol}^{-1}$
	Electronic	Levels and	Electronic Levels and Quantum Weights	ights	
	e, cm	8	e, cm	8	
	0 [11800] [13500]	242	[19500]	22	
	Vibrational	Frequencies	Vibrational Frequencies and Degeneracies	acies	
	,	[469] (1) [431] (2) [3650] (1)	133		
Bond 1 Bond /	Bond Distances: Ba-O = [2.17] Å Ba-O Bond Angle: Ba-O-H = [180] Rozational Constant: 8. = 10.2270441 cm ⁻¹	Ba-O = [2.17] Å Ba-O-H = [180]° tant: B _s = [0.22204] Å Ba-O= 80f° 220441 cm ⁻¹	[2.173] Å	Bond Distances: Ba-O = [2.17] Å Ba-O = [2.173] Å; O-H=[0.96] Å Bond Angle: Ba-O-H = [180]° Rorational Constant: B. = 10.2220441 cm ⁻¹

The adopted Apt*(BaOH, g., 0 K) = -53.0 ± 7.0 kcal·mol⁻¹ is based on an assessment of dissociation energies derived from Knudsen-cell mass-spectrometric measurements of Stafford and Berkowitz¹ and Newbury² and flame spectral work.³-6 **Enthalpy of Formation**

Source	Source Reaction	No. Points	T/K	Δ _t H°(298.15 K), kcal·mol ⁻¹ Drift 3rd law cal·K ⁻¹ ·mol ⁻¹	Drift cal·K ⁻¹ ·mol ⁻¹	$\Delta_t H^{\circ}(298.15 \text{ K})$ $D_0^{\circ}(Ba-OH)$ kcal·mol ⁻¹ kcal·mol ⁻¹	D ₀ (Ba-OH) kcal·mol ⁻¹
	-	2	1755-1785	115.23 ± 3.55	-83.6	-51.58 ± 6	102.8
_	7		1785	62.11	ı	-55.82	108.1
~	3	_	1821	77.33	ł	-53.67	104.8
v,	4	7	1570-1800	2.40 ± 2.39	7.3	-64.70	115.9
Reactions	- 7	аО(ст) + ВаО ЗаО(g) + H ₂ O	 BaO(cr) + BaO(g) + H₂O(g) → 2BaOH(2) 2BaO(g) + H₂O(g) → 2BaOH(g) + O(g)) BaO(cr) + BaO(g) + H ₂ O(g) \rightarrow 2BaOH(g) + 0.5 O ₂ (g)) 2BaO(g) + H ₂ O(g) \rightarrow 2BaOH(g) + O(g)	 BaO(cr) Ba(g) + 1 	 BaO(cr) + 0.5 H₂(g) = BaOH(g) Ba(g) + H₂O(g) → BaOH(g) + H(g) 	l(g) + H(g)

law analysis of Cotton and Jenkins' data above, using auxiliary data, is about 2 kcal-mol-1 higher than theirs. Applying this correction to Ryabova and Gurvich³ considered the reaction Ba(g) + $H_2O(g) \rightarrow BaOH(g) + H(g)$ to be dominant and derived D_0^0 (as defined in the table above) = 111 \pm 8 kcal-mol⁻¹. Sugden and Schoffeld* considered the reaction Ba(g) + 2H₂O(g) \rightarrow Ba(OH)₂(g) + 2H(g) to be dominant. Cotton and Jenkins? found both the mono- and dihydroxide to be present in significant amounts in fuel-rich hydrogen-oxygen-nitrogen flames and considering both BaOH and Ba(OH); to be present and obtained recalculated values of D% = 110 and 114 kcal-mol⁻¹, respectively. Ryabova et al. 6 made further measurements, considered BaOH as dominant, and reported D_0^* = 109 \pm 3 kcal-mol⁻¹. The D_0^* calculation from the 3rd respectively. The value $D_0^2 = 109 \pm 3$ kcal-mol⁻¹ given by Ryabova et al.⁶ is an average of four calculations with two sets of molecular constants assumed for BaOH. This value, if recalculated with the present auxiliary data, would probably be higher. derived D_0^* = 114 ± 5 kcal·mol⁻¹. Cotton and Jenkins⁵ recalculated the work of Ryabova and Gurvich³ and of Sugden and Schoffeld the values from Ryabova and Gurvich³ and Sugden and Schofield* as recalculated by Cotton and Jenkins,² gives 112 and 116 kcal·mol⁻¹

Ba(OH),(g) \rightarrow Ba(g) + 2 OH(g) and is 209.6 kcal·mol⁻¹, is approximately 0.53-0.55 for the flame spectral measurements and 0.50 for the average $D_0^2 = 105.3$ kcal·mol⁻¹ for the Knudsen-cell mass spectrometric measurements. The ratio for the barium mono— and diffuoride² is 0.51, and the ratio for the other alkaline earth halides fall in the 0.40 to 0.51 range² with an average close to 0.46.⁸ The similarity of the halides and hydroxides, particularly the fluorides, has been established.¹⁹⁻¹¹ $D_0^6 = 105.3$ kcal·mol⁻¹ is adopted from which is calculated The dissociation energies derived from flame spectra are higher, as a group, than those derived from the Knudsen cell mass spectrometric neasurements. The ratio of D_0^2 (monohydroxide) D_0^2 dihydroxide), where D_0^2 of the dihydroxide is defined by the reaction $\Delta_i H^0(0 \text{ K}) = -53.0 \pm 7.0 \text{ kcal·mol}^{-1}$

Heat Capacity and Entropy

The molecular configuration is assumed to be linear in accordance with the prediction of Walsh ¹² and the evidence that gaseous alkali metal hydroxides are linear. ¹³⁻¹⁵ The ground state is assumed to be $^{2}\Sigma^{+}$ by analogy with BaF and BaCl. The electronic levels are estimated from he observed band spectra 16-20 and the comparison with BaF and BaCl.7

PREVIOUS: December 1975 (1 atm) The Ba-O bond distance is estimated to be slightly larger, 0.02 Å, than the Ba-F distance after noting the close similarity in bond distance of the alkali metal fluorides and hydroxides. The O-H bond distance is that in water.7 The Ba-O stretching frequency, 469 cm⁻¹, is estimated

Continued on page 358

IDEAL GAS

Barium Hydroxide, Ion (BaOH")

CURRENT: June 1976 (1 bar)

PREVIOUS: June 1976 (1 atm)

1-10-01-17	$\Delta_t H^0(0 \text{ K}) = 269.36 \pm 62.8 \text{ kJ·mol}^{-1}$ $\Delta_t H^0/08.15 \text{ K}) = 270.00 + 62.8 \text{ kJ·mol}^{-1}$	Enthalpy R	eference Te	mperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $1 \cdot \text{K}^{-1} \text{mol}^{-1}$		Standard State Pressure = $p^* = 0.1$ k1·mol ⁻¹	Pressure = 1	- 0.1
1011 A. C. [5:0 - 02:17] - (A. C. 10:02) C		τÆ	ಚ	S -[G	$S^{*} - [G^{*} - H^{*}(T_{*})]T$	$H^{\bullet}-H^{\bullet}(T_t)$	$\Delta_{r}H^{\bullet}$	$\Delta_i G^{ullet}$	log K
		0	ď	oʻ	INFINITE	-10.823	269.364		
Vibrational Fequencies and Degeneracies		8	30.902	205.415	284.269	-7.885			
رد CB		200	40.603	229.824	251.356	-4306			
		250	44.104	239.283	248,018	-2.184			
[460] (1)		298.15	46.458	247.265	247.265	oʻ	270.897	259.611	-45.4
[430] (2)		300	46.533	247.552	247.266	0.086	270.916	259,541	-45.1
(1) [1392]		350	48.225	254.860	247.839	2.457	271.417	257.605	-38.
(1) [1-10]		400	49.430	261.383	249.132	4.900	271.853	255.601	-33.3
		420	50.315	267.258	250.825	7.395	272.122	253,551	-29.
Ground State Quantum Weight: [1] G=[1]		200	50.986	272.5%	252.739	9.928	272.151	251.483	-26.
Point Group:[C]		8	51.952	281.983	256.852	15.078	271.713	247.401	-21.
Bond Dietances: Ba-O = 171 A O-H = 10961 A		002	52.668	290.047	261.032	20.311	272.113	243,306	<u>≈</u>
		908	53.287	297.121	265.110	25.609	272.018	239.203	-15.0
Bond Angre: Ba-O-11 = [160]		8	53.872	303 431	269.023	30.967	272.358	235.081	-13
Rotational Constant: $B_o = [0.222053] \text{ cm}^{-1}$		0001	54 440	309 137	272.754	36,383	272.713	230 920	-17(
	_								

Enthalpy of Formation

The ionization potential of BaOH(g) was deduced by Kelly and Padley to be 5.25 ± 0.1 eV. These authors quantitatively examined the total positive ion concentrations produced from Ba aqueous salt additives in fuel nch, premixed $H_2+O_2+N_2$ flames. Using current JANA

auxiliary data,2 we recalculate the ionization potential to be 5.36 eV.

Jensen's determined the enthalpy of reaction $\Delta_H^*=6\pm10$ kcal-mol-1 for Ba(g) + OH(g) = BaOH'(g) + e^- in atmospheric pressur H₂ + O₂ + N₂ flames using the microwave cavity resonance method. This value was calculated assuming a bent molecule for BaOH*. The vali is not significantly changed, within the uncertainty, by the change in the configuration. Using auxiliary data,2 we derive an ionization potenti of 4.83 eV, which is not in good agreement with the value derived from the data of Kelly and Padley.

We adopt an ionization potential of 5.09 eV (117.38 kcal·mol⁻¹) which is an average of the above two studies.¹ This leads $\Delta_t H^0(0 \text{ K}) = 64.38 \text{ kcal·mol}^{-1}$ and $\Delta_t H^0(298.15 \text{ K}) = 64.75 \text{ kcal·mol}^{-1}$ for BaOH¹(g). We assign an uncertainty of ±15 kcal·mol⁻¹. For comparison, the ionization potential of BaF(g) is 483 eV² while that of Ba(g) is 5.21 eV.

The average of these two values is very close to the ionization potential adopted for BaOH*

Heat Capacity and Entropy

The molecular configuration is assumed to be linear, since experimental evidence indicates that the gaseous alkali metal hydroxides a linear. ^{2.5 & 7} In addition, Walsh had predicted tha BAH molecules (H = hydrogen atom) with ten or less valence electrons (BaOH* has eig valence electrons) will be linear in their ground state. The molecule BaOH* is isoelectronic with CsOH.

The bond dissociation energy for BaOH ($D_0^a = 108.2 \, \text{kcal·mol}^{-1}$), 4 for the process BaOH ($D_0^a = 105.3 \, \text{kcal·mol}^{-1}$). This suggests that the bonding in these two molecules is quite similar. Thus, the bond distances at assumed to be the same as those adopted for BaOH(g). The vibrational frequencies are assumed to be similar to those adopted for BaOH(g). The ground state quantum weight is assumed to be the same as that of CsOH(g).2

¹R. Kelly and P. J. Padley, Trans. Faraday Soc. 67, 1384 (1971).

¹JANAF Thermochemical Tables: e - (ref st), 3–31–65; H₂(g) and H₂O(g), 3–31–61; OH(g) and Ba(g), 12–31–70, H(g), 6–30–74; BaOH(

and Ba(OH)₂(g), 12-31-75; BaF(g), 12-31-72; CsOH(g), 6-30-71

E. Moore, U. S. Nat. Bur. Stand., Circ. 467, Vol 1II (1958).
 A. E. Moore, U. S. Nat. Bur. Stand., Circ. 467, Vol 1II (1958).
 A Aquista, S. Abramowitz, and D. R. Lide, J. Chem. Phys. 49, 780 (1968).
 R. L. Kuczkowski and D. R. Lide, J. Chem. Phys. 44, 3131 (1966).
 A Aquista and S. Abramowitz, U. S. Nat. Bur. Stand., Report 9905, 111 pp. (July, 1968); refer to Ch. 6 (p. 99).
 A. D. Walsh, J. Chem. Soc. 1953, 2288 (1953).

LL	Enthalpy Reference Temperature = T,	eference Te	mperature	. T, = 298.15 K		tandard State	Standard State Pressure * p* = 0.1 MPa kJ·mol ⁻¹	,* = 0.1 MPa
	7/K	ប	S -[G	-[C*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	$\Delta_{c}H^{\bullet}$	Φ_{iG}^{\bullet}	log Kr
	200 200 250	0. 30.902 40.603 44.104	0. 205.415 229.824 239.283	1NFINITE 284.269 251.356 248.018	-10.823 -7.885 -4.306 -2.184	269.364		
	298.15	46.458		247.265	0	768.072	259.611	-45.483
	320	46.533	247.552 254.860	247.266	0.086	270.916	259.541 257.605	-45.190 -38.445
	0 0 0 0 0 0 0 0	49.430	261.383 267.258	249.132	7.395	271.853	255.601	-33.378
	000	50.986	272.596	252.739	9.928	272.151	251.483	-26.272
	888	52.668	290.047	261.032	20311	272.113	243.306	-18.156
	888	53.872	303 431	269.023	30.967	272.358	235.081	13.64
	8 8 8	54.994	314.351	276.302	41.855	264.713	227.543	-10.805
g	981	56.031 56.031	323.624	282.886	52.959	265.125	220.757	-8.870
AF	8 S	\$6.95 \$4.95	331.707	288.868	04.259 64.259	265.895	213.877	-8.109 -7.448
ع	1200	57.351 57.723	335.396	291.662 294.338	69.974 75.728	266,357 266,839	210.395	-6.869
le le	88	58.064	342.193	296.906	81.517	267.319	203.342	-5.901
tial	2000	58.658	348.343	301.747	93.191	268.17	196.185	-5.124
9	2100	58.917	351.211	304.034	99.070	268.510	192.577	-4.790
3	330	59.366	356.591	308.374	110,900	130.185	197.267	-4.480
	2500	59.740	361.557	312.433	122.812	131.410	203.042	-4.242
	2600	59.903 60.053	363.903 366.167	314.367 316.244	128.794	131.680	205.901	-4.137 -4.039
	2800 2800 2800	60.190	368.354 370.468	318.066	140.804	131,580	211.609 214.473	-3.948 -3.863
g:	3000	60.432	372.515	321.559	152,867	130.741	217.351	-3.784
ght	3100	60.539	374.498	323.235	158.916	130.097	223.168	-3.711
hat	3400	60.813	380.103	328.009	177.120	127.555	229.085	-3.519
, (S	3600	60.964	383.584	331.001	189.298	125.557	235.114	-3.411
	3700	61.032	385.255	332.445	195.398	124.523	238.172 241.258	-3.362
	3300 4000	61.153	388 471 390.020	335.236 336.586	207.617 213.735	122.450 121.431	244.371 247.509	-3.273 -3.232
(6)	4100	61.259	391.532	337.908	225.987	120.436	253.862	-3.194
<u> </u>	84 4 8 4 8	61.352	394.452	340.471	232.120	118.528	257.073	-3.123 -3.090
	4	61.472	398.594	344.128	250.544	115.901	266.829	-3.030
	4400 4800	61.540	401.211	345.301	262.845	114.329	273.423	-2.975
	8 8 8 8 8 8	61.571 61.601	402.481 403.725	347.583 348.693	269.001 275.159	113.578	276.745 280.083	-2.950 -2.926
	5100	61.629	404.945	349 784	281.321	112.160	283.432	-2.903
	\$300 \$400	61.680	407.317	352.947	293.652 299.821	110,801	293.565	-2.860 -2.840
	0000	171.10	410.715	354071	31.515	108 048	200.371	CUS C-
	5800 5800 5800	61.788 61.788 61.788	411.808	355.958 356.930	318.342 324.520	108.326	303.794	-2.784 -2.767
	2300	61.806 61.824	413 939 414.977	357.888 358.831	330 700 336.881	107.264 106.670	310.650 314.102	-2.750 -2.735
							i	

CURRENT: December 1975

Ba₁H₂O₂(cr)

CRYSTAL(a)

Barium Hydroxide, Alpha (α-Ba(OH)2)

 $S^{(298.15 \text{ K})} = [107.11 \pm 8.4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

",fus = 681.15 ± 1 K

Enthalpy of Formation

M_r = 171.34468 Barium Hydroxide, Alpha (Ba(OH)₂)

 $\Delta_0 H^2(0 \text{ K}) = \text{Unknov}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = [-946.30] \text{ kJ} \cdot \text{mol}$ $\Delta_{\text{fur}}H^{\circ} = 16.74 \pm 1.26 \text{ kJ} \cdot \text{mol}$ $\Delta_{co}H^{\circ} = Unknov$

nre = p	1	:.	
ate Press		$\Phi_i G$	
Standard State Pressure = p	kJ·mol-1	$\Delta_r H^{\bullet}$	
Sta	ٳ	€.	
		$H^{\bullet}-H^{\bullet}(T_t)$ $\Delta_t H^{\bullet}$	
8.15 K	1		
T, = 29		S[GH'(T,)]/T	
ature =	"mod"	5	
Temper	Ļ	'n	
Enthalpy Reference Temperature = T, = 298.15 K	J·K-'mol-'	ئ	
dpy Ref			
Entha		7/K	
ž	<u>-</u>	Ţ,	5

thalpy Re	ference Ter	mperature =	ithalpy Reference Temperature = $T_r = 298.15 \text{ K}$ 1. K^{-1} mol ⁻¹		Standard Stal	Standard State Pressure = $p^* = 0.1 \text{ MPa}$ k!-mol ⁻¹	• = 0.1 MPa
7.K	ಬ	S -{G.	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_t)$	$\Delta_c H^{\bullet}$	$\Delta_i G^{\bullet}$	log K _r
- 8 8 8 5 2 8 9 9 9							
298.15	101.629	107.110	107.110	0.000	-946.295	-859.476	150.577
300	101.797	107.740	107.112	0.188	-946,267	-858.938	149.554
9	112,633	138.679	111.257	10.969	-944,380	-830.099	108,400
8	118.658	164.520	119,399	22.560	-942.589	-801.748	83.758
9	122.717	186,510	128.797	34.628	-941.231	-773.693	67.356
681.150		202,280	136.628	44.719	CRYST/	CRYSTAL <> LIQUID	alu
200		205.731	138.443	47.102	-938.765	-745.972	55.665
8	130.834	222.924	147.947	59.982	-936.501	-718.575	46.918
8	134.892	238.569	157.159	73.268	-933.501	-691.511	40.134
000	138.951	252.991	166.030	86.961	-930.182	-664.799	34.726

Δ_tH*(298.15 K) kcal·mol⁻¹ -226.84 ± 2 cal·K⁻¹·mol⁻¹ -13.5 ± 0.2 38.04 ± 1.63 Δ,H°(298.15 K), kcal⁻¹·mol⁻¹ 3rd law 2nd law 559-682 X

The adopted AH'(298.15 K) = -226.17 ± 1.5 kcal·mol⁻¹ is obtained from the enthalpy of formation of the liquid minus the enthalpy of fusion and the enthalpy difference of the liquid and the crystal between the melting point and 298.15 K. Using auxiliary data, our 2nd and

3rd law analysis of the dissociation pressure equation of Kondakov et al. 2 for the reaction Ba(OH)_L(cr) = BaO(cr) + H₂O(g) is given below.

While this is in good agreement with the adopted value, there is an inconsistency in the measurements of Kondakov et al.? for the crystal and the liquid and the adopted enthalpy of fusion. The liquid state dissociation pressures are in good agreement with other measurements (see the iquid table) and are judged more reliable than the solid state measurements. The adopted value for the alpha crystal is also in good agreement

Heat Capacity and Entropy

with -225.8 kcal from another recent evaluation.

The heat capacities at 298.15 K and above are derived from the drop-ice-calorimeter enthalpy measurements of Powers and Blalock, 425-681 K) combined with a graphical comparison of the heat capacities of Mg(OH)₂(cr) and Ca(OH)₂(cr)¹ From the information referenced in the Transition Data Section below, it is concluded tha the \(\alpha\)-form is maintained on cooling to 273.15 K. This JANAF Table is a single-phase alpha-crystal table.

The adopted entropy, S°(298.15 K) = [25.6 ± 2] cal·K⁻¹·mol⁻¹, is calculated from Kelley's additive entropy constants for cations and

Fusion Data

a melting point of 395°C where they found $\Delta_{\text{Im}}H^{\circ} = 24$ cal^g (4113 cal·mol⁻¹) by drop calorimetry. However, their enthalpy measurements show a possible melting range of 395 to 421°C. (At the adopted temperature of melting, 408°C, our smoothing of Powers and Blalock's experimental enthalpies leads to AtuH" = 4051 cal mol-1). Kondakov et al. observed barium hydroxide to melt at 682 K (ca. 409°C) while enthalpy of fusion of 3720 ± 200 cal·mol⁻¹. From a consideration of all of these data, a melting point of 681.15 ± 1 K (408 ± 1°C) and a Seward⁶ determined a melting point of 408 ± 1°C and a cryoscopic enthalpy of fusion of 3400 ± 100 cal·mol⁻¹. Powers and Blalock³ chose investigating the dissociation pressures of the crystal and liquid states. Michaud ⁸ determined a melting point of 409 ± 1°C and a cryoscopic enthalpy of fusion of 4000 ± 300 cal·mol-1 are adopted.

Fransition Data

Michaud has observed a β to α crystal transition, on heating anhydrous barium dihydroxide, at 250°C' and at 246°C' by both thermal and dilatometric techniques. In the absence of water vapor, the high temperature α-form is maintained on cooling to room temperature. This "metastable" state has been confirmed by others. 9 10 This present JANAF Table considers only the α-form. A transition temperature of $521 \pm 2 \text{ K} (248 \pm 2^{\circ}\text{C}) \text{ is adopted}$ JANAF Thermochemical Tables. Ba(OH)₂(t), 12-31-75, BaO(cr), 6-30-74, H₂O(g), 3-31-61; Mg(OH)₂(cr), 12-31-75; Ca(OH)₂(cr),

²B. V. Kondakov, P. V. Kovtunenko, and A. A. Bundel, Zh. Fiz. Khim. 38, 190 (1964). 12-31-75.

³W. D. Powers and G. C. Blalock, U. S. Atomic Energy Comm., ORNL-1653 (1954). U. S. Nat. Bur. Stand. Tech. Note 270-6, 119 pp. (1971).

K. K. Kelley in Clap. 13. D. R. Stull and H. Prophet, "The Characterization of High Temperature Vapors," J. L. Margrave, ed., John Wiley and Sons, New York, (1967).

⁶R. P Seward, J Am. Chem Soc. 67, 1189 (1945).
⁷M. Michaud, Compt. Rend. Ser. C 262, 1143 (1966).

¹M. Michaud, Rev. Chim. Miner. 5, 89 (1968).

P. Buck and H. Baernighausen, Acta Crystallogr., Sect. B 24, 1705 (1968).
¹⁰H. D. Lutz, R. Heider, and R. A. Becker, Z. Naturforsch. B 24, 1657 (1969).

Barium Hydroxide, Alpha (Ba(OH)2)

PREVIOUS

Standard State Pressure = $p^* = 0.1$ MPa

log Kr

PG.

 $H^{\bullet}-H^{\circ}(T_i)$ Δ_iH^{\bullet}

 $S^{*} - [G^{*} - H^{*}(T_{*})]T$

J·K-'mol-'-

14.mol-1

CURRENT: December 1975

LIQUID

M₁ = 171.34468 Barium Hydroxide (Ba(OH)₂)

1-1 Enthalpy Reference Temperature = T, = 298.15 K

5 (298.15 K) = [123.357] J·K '-mol''	7/ J·K ·mol ·				Δ _t H*(298.15 K)	$\Delta_i H'(298.15 \text{ K}) = [-934.123] \text{ kJ·mol}^{-1}$ Enthalpy Reference 1 er	Enthalpy Reference Te
/ Its = 081.13 ± 1 K					$\Delta_{\mathrm{fus}}H$	$\Delta_{lus}H^{\circ} = 16.74 \pm 1.26 \text{ KJ} \cdot \text{mol}$	7.K C;
Enthalpy of Formation The adopted ∆H²(298.15 K) = −223.26 ± 1.0 kcal·mol⁻¹ is the average of values derived from the 3rd law pressure measurements of Tamaru and Shiomi¹ and of Kondakov et al.² Auxiliary data used in the analysis are from thical Tables.³ Johnston⁴ has also determined pressures for the dissociation reaction Ba(OH)x() = BaO(cr) + H₃O(g).	ion 298.15 K) = -223. of Tamaru and Sh has also determin	26 ± 1.0 kcal·mol⁻ iomi¹ and of Kondak ed pressures for the	t is the average to et al. Auxi	e of values derived liary data used in the saction Ba(OH).(1) =	from the 3rd law analysis are from tl BaO(cr) + H,O(g)	Enthalpy of Formation The adopted Δ _t H°(298.15 K) = −223.26 ± 1.0 kcal·mol ⁻¹ is the average of values derived from the 3rd law analysis of dissociation pressure measurements of Tamaru and Shiomi¹ and of Kondakov <i>et al.</i> ² Auxiliary data used in the analysis are from the JANAF Thermochemical Tables.³ Johnston⁴ has also determined pressures for the dissociation reaction Ba(OH) _t (1) = BaO _t (r) + H ₂ O(g).	0 % % % % % % % % % % % % % % % % % % %
							298.15 101.629
Source	No. of	7.17	Δ,H°(298.15 I	Δ _t H°(298.15 K), kcal·mol ⁻¹	Drift	Δ _t H°(298.15)	300 101.797 400 112.633
South	Louins	W	WEI DIT		Cal In Timol	ACAI TIMI	450.010 116.065
Tamaru and Shiomi	7	788-1018	32.1	34.56 ± 0.48	2.8 ± 0.5	-223.35 ± 1	450:010 141:001
Kondakov et al.2	Equation	682-993	34.0	34.37 ± 0.21	0.4	-223.17 ± 0.7	
Johnston*	=	918-1263	34.4	33.86 ± 0.38	-0.5 ± 0.5	-222.66 ± 0.9	600 141.001
The enthalpy of format	ion derived from L	ohnston's measurem	ponts is in and	someone with the a	donied value but is	The enthalox of formation derived from folinaton's measurements is in good agreement with the adouted value but is not aversed in because	700 141,001

Enthalpy of Formation The adopted $\Delta_t H^2(298.15 \text{ K}) = -223.26 \pm 1.0 \text{ kcal·mol}^{-1}$ is the average of values derived from the 3rd law pressure measurements of Tamaru and Shiomi¹ and of Kondakov et al.¹ Auxiliary data used in the analysis are from the pressure measurements of Tamaru and Shiomi¹ and of Kondakov et al.² Auxiliary data used in the analysis are from the call Tables.³ Johnston⁴ has also determined pressures for the dissociation reaction Ba(OH) ₂ (I) = BaO(cr) + H ₂ O(g).	on 98.15 K) = -223.26 of Tamaru and Shior has also determined	± 1.0 kcal·mol ⁻ ni¹ and of Kondak pressures for the	is the averagor et al. Auxil	e of values deriver liary data used in the action Ba(OH) _X (I)	d from the 3rd law e analysis are from t = BaO(cr) + H ₂ O(g)	Enthalpy of Formation The adopted Δ/H°(298.15 K) = -223.26 ± 1.0 kcal·mol ⁻¹ is the average of values derived from the 3rd law analysis of dissociation pressure measurements of Tamaru and Shiomi¹ and of Kondakov et al.² Auxiliary data used in the analysis are from the JANAFThermochemical Tables.³ Johnston⁴ has also determined pressures for the dissociation reaction Ba(OH)χ(l) = BaC(cr) + H₂O(g).
Source	No. of Points	T/K	Δ,H°(298.15 K 2nd law	λ,θ'(298.15 K), kcal·mol ⁻¹ 2nd law 3rd law	Drift cal·K ⁻¹ ·mol ⁻¹	Δ _t H°(298.15) kcal·mol ⁻¹
Tamaru and Shiomit Kondakov et al. ² Johnston ⁴	7 Equation 11	788–1018 682–993 918–1263	32.1 34.0 34.4	34.56 ± 0.48 34.37 ± 0.21 33.86 ± 0.38	2.8 ± 0.5 0.4 -0.5 ± 0.5	$ \begin{array}{c} -223.35 \pm 1 \\ -223.17 \pm 0.7 \\ -222.66 \pm 0.9 \end{array} $

The enthalpy of formation derived from Johnston's measurements is in good agreement with the adopted value but is not averaged in by as indicated by Kondakov et al.,2 the measurements are believed less accurate.

Heat Capacity and Entropy

 C_p^s is based on the enthalpy measurements of Powers and Blalock² and is assumed constant at 33.7 cal·K⁻¹-mol⁻¹ over the range to 1600 K. A glass transition is assumed at 450 K below which C_p^s is that of the alpha crystal. The entropy at 298.15 K is derived fraulte adopted for the alpha crystal.

Decomposition Data

 T_{em} is calculated as the temperature at which $\Delta_i G^\circ = 0$ for the reaction Ba(OH)₂(1) = BaO(cr) + H₂O(g).

References

1S. Tamaru and K. Shiomi, Z. physik. Chem. A171, 221 (1935).

2B. V. Kondakov, P. V. Kovtunenko, and A. A. Bundel, Zh. Fiz. Khim. 38, 190 (1964).

¹JANAF Thermochemical Tables: BaO(cr), 6-30-74; H₂O(g), 3-31-61.

Johnston, Z. physik. Chem. 62, 330 (1908).
 W. D. Powers and G. C. Blalock, U. S. Atomic Energy Comm., ORNL–1653 (1954).

	298.15	101.629	123.357	123.357	0000	-934.123	-852.148
	300	101.797	123.987	123,359	0.188	-934.095	-851.640
	9	112,633	154.926	127.504	10.969	-932.208	-824.426
	450.010	116.065	168.404	131,312	16.692	CLAS	S <> LIQUID
	450.010	141,001	168.404	131,312	16 692		TRANSITION
_	200	141.001	183,256	135.776	23.740	-929.236	-797.764
	009	141.001	208.964	145.896	37.841	-925.847	-771.780
	681.150	141.001	226.850	154,498	49.283	CRYST	CRYSTAL <> LIQUID
Pacconea	700	141,001	230.699	156.498	51.941	-921 754	-746.439
occause,	800	141.001	249.527	166.976	66.041	-918.270	-721.627
	8	141.001	266.135	17.090	80.141	-914.457	-697.277
	0001	141.001	280.991	186.750	94.241	-910.729	-673,346
	81	141,001	294.430	195.938	108.341	-915.454	-648.965
05770	1200	141.001	306.698	204.664	122.441	-912.123	-624.886
2.	1300	141.001	317,984	212.953	136541	-908.769	-601.085
from the	1400	141,001	328.434	220.833	150.641	-905.411	-577.543
	1500	141,001	338.162	228.334	164.741	-902.068	-554.241
	1600	141.001	347.262	235.486	178.841	-898.759	-531.161
	1700	141.001	355.810	242.315	192.941	-895,502	-508.286
	0081	141.001	363,869	248.846	207.041	-892,316	-485.601
	1800	141.001	371.493	255.102	221.142	-889.219	-463.090
	2000	141,001	378.725	261.104	235.242	-886.231	-440.740
-							

55.700 47.117 40.469 35.172 30.817 27.201 24.152 21.548 11.341 15.618 14.092 11.5731 11.511

-- CRYSTAL <--> LIQUID ---

GLASS <--> LIQUID TRANSTHON

Barium Hydroxide (Ba(OH)₂)

PREVIOUS:

æ
ĕ
$\overline{}$
Ø
~~
.≌
×
0
÷
2
~
_
_
=
⋾
Έ.
ā
$\mathbf{\omega}$
_
ø
8
4
4
က
÷
7
-
- 11
*
~

Ba₁H₂O₂(cr,l)

Ω
5
ਰ
Į
7
٦
<u> </u>
⋖
H
⋦
75
J

Barium Hydroxide (Ba(OH)₂)

A low temperature beta form does exist but is not included in this table, $T_{ex}(\beta \rightarrow \alpha) = 521 \pm 2$ K. 681.15 K crystal, alpha 681.15 K liquid 0 to above

Refer to the individual tables for details.

0.1 MPa	log Kr	150.577 149.554 108.400 83.758	67.356	55.700 47.117 40.469 35.172	30.817 27.201 24.152 21.548	17.341 15.618 14.092 12.731	
essare = p ==	δ. Δ.G.	-859.476 1 -858.938 1 -830.099 1	-773.693 AL <> LIQUID	-746.439 -721.627 -697.277 -673.346	-648.965 -624.886 -601.085 -577.543	-531.161 -588.286 -485.601 -463.090	
Standard State Pressure = p = 0.1 MPa	—— •H¹∇	-946.295 - -946.267 - -944.380 - -942.589 -	-941.231 - 	-921.754 - -918.270 - -914.457 -			
Stz	H*-H*(T,)	0.000 0.188 10.969 22.560	34.628 - 44.719 -				
Enthalpy Reference Temperature = T, = 298.15 K	-[G*-H*(T,)]/T	107.110 107.112 111.257 119.399	136.628	139.110 151.761 163.565 174.578	184.872 194.521 203.590 212.138	227.878 235.155 242.084 248.696 255.018	
mperature =	-S -[G.	107.110 107.740 138.679 164.520	186.510 202.280	230.699 249.527 266.135 280.991	294.430 306.698 317.984 328.434	347.262 355.810 363.869 371.493	
ference Te	ಚ	101.629 101.797 112.633 118.658	122.717	4444 8888	4444 4460 100 100 100 100 100 100 100 100 100 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Enthalpy Re	7.K	200 200 250 250 298.15 300 500	681.150	8 50 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1200	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

12.536 11.2993 11.094 11.094 11.094 11.094 11.094 11.095 11.094 11.095 11.095 11.095 11.095 11.095 11.095 11.095 11.095 11.096 1

323.042 304.634 286.169 267.641 249.044

-800.931 -802.391 -804.064 -805.932 -807.973

219.649 229.984 240.347 250.737 261.150

428.397 431.598 434.708 437.731 440.673

512.877 516.778 520.547 524.192 527.723

-230.377 -211.638 -192.825 -173.936 -154.973

-810.166 -812.488 -814.908 -817.416 -819.987

271.586 282.042 292.517 303.010 313.519

531.145 534.464 537.688 540.820 543.866

104.463 104.659 104.841 105.009 105.165

-822.602 -825.247 -827.907 -830.571 -833.231 -835.879 CURRENT. December 1975 (1 bar)

0.506 0.252 0.009 0.009 0.009 0.006

-848.834 -851.342 -853.851 -856.341 -858.822

429.913 440.549 451.191

479.318 481.330 483.307 485.248 487.154

572.777 575.064 577.305 579.501 581.653

117.568

157.417 177.414 197.461 217.552 237.684

-863.732 -866.188 -868.644 -871.068

490.870 492.681 494.462 496.214

106.634 106.687 106.736 106.784 106.829

583.764 587.868 589.864 591.823

861 271

873.468 875.922 878.359 880.687

593.749 595.641 597.500 599.329 601.127

-39.684 -20.233 -0.718 18.855 38.488

-838.509 -841.123 -843.716 -846.289

376.853 387.447 398.051 408.664 419.285

560.566 563.119 565.614 568.054 570.441

105.898 105.993 106.083 106.167 106.246 106.391 106.457 106.578

-135.936 -116.826 -97.643 -78.390 -59.071

324.043 334.580 345.131 355.694 366.268

443.536 446.326 449.046 451.699 454.289 456.819 461.708 464.072 466.386 473.044 473.044 473.044 473.044

546.831 549.718 552.532 555.275 557.953

105.309 105.444 105.569 105.686 105.796

S°(298.15 K) = [315.0 ± 12.6] J·K⁻¹·mol⁻¹

Standard State Pressure = p = 0.1 MPa

Enthalpy Reference Temperature = T, = 29&15 K

J·K-'mol-'

M_r = 171.34468 Barium Hydroxide (Ba(OH)₂)

K-mol-

 $H^{\bullet}-H^{\bullet}(T_t)$

 $-[G^{\bullet}-H^{\circ}(T_{\bullet})]T$

105.421 104.744 89.153 77.453 68.346 61.052

-601.576 -597.376 -593.116 -588.795 -584.399

-626.579 -626.996 -627.428 -627.994 -628.780

315.017 315.973 318.131 320.962 324.168

315.494 327.681 338.602 348.465 357.440

0.143 4 098 8.189 12.376 16.636 25.312 34.143 43.098 52.169 61.352

-601.731

-626.562

315.016

0. 248.363 286.310 301.794 315.016

0. 45.351 65.873 72.732 77.256

50.086 42.235 34.235 31.731 28.043 24.981 22.423 20.255 18.393

-526.064 -515.137 -504.100 -492.972 -481.765

-645.589 -646.959 -648.204 -649.348 -650.416

70.644 80.044 89.545 99.144

363.810 369.507 374.934 380.111

428.033 436.210 443.815 450.928 457.612

93 465 94 513 95 510 96.447 97 319

-470.488 -459.148 -447.750 -436.297

-651.435 -652.428 -653.421 -654.439 -655.506

118.605 128.455 138.376 148.361 158.406

463.919 469.890 475.561 480.959 486.111

-413,224 -396,228 -377,982 -359,709

-656.648 -797.410 -797.936

168.504 178.651 188.843 199.075 209.345

491.038 495.759 500.289 504.644 508.836

98.124 98.864 98.864 99.864 100.138 101.234 102.128 102.873 103.495 103.495 104.250

 -153.96 ± 4.0

 8.8 ± 0.0

 23.04 ± 2.98

8.1

1570-1800

m

Cotton and Jenkin3

389.791 394.328 394.328 402.874 406.908 411.554 411.696 421.696

-798.697 -799.697

-575.322 -565.991 -556.443 -546.718 -536.860

-630.814 -631.991 -633.652 -634.868 -636.057

331.067 338.088 344.947 351.537 351.825

373.254 386.863 398.820 409.503 419.177

87.607 88.958 90.141 91.271 92.380

1 ± 37	
+1	
Ø	
2	
2	
-619.09	
ı	
a	
3	
0) _e H	
٤,	
4	
~	
7	
7	
7	
7	
7	
7	
7	
7	
7	
7	
7	
7	

 $\Delta_1 H^0$ (298.15 K) = -626.56 ± 37.7 kJ·mol⁻¹

/ibrational Fequencies and Degeneracies [3650] (2) [431] (4) v, cm⁻¹ [413] (1) [64] [390] (3) ν, cm⁻¹

Product of the Moments of Inertia. $I_A I_B I_C = [6.366076 \times 10^{-114}] \text{ g}^3 \cdot \text{cm}^6$ O-H = [0.96] Å B2-0-H - [180] Bond Distances: Ba-O = [2.34] Å; Bond Angles: O-Ba-O = [95]*. Ground State Quantum Weight: [1] Point Group: [C₂,]

Enthalpy of Formation

The adopted $\Delta_t H^{o}(298.15 \text{ K}) = -149.75 \pm 9.0 \text{ kcal·mol}^{-1}$ is derived from the Knudsen-cell mass-spectrometric equilibrium study of Newbury. Tabulated below are the results of a 2nd and 3rd law analysts of this study, the Knudsen-cell mass-spectrometric work of Stafford and Berkowitz,2 and the slame-spectral work of Cotton and Jenkins.

	•							
	Rxn	No. of	7	,H°(298.15	1,H°(298.15 K), kcal·mol-1	Drift	ΔH°(298.15 K)	D ₀
Source	Š.	Points	7.K	2nd law	3rd law	cal·K_'·mol_'	kcal-mol-1	kcal-mol_
Stafford and Berkowitz ²	<	24*	1485-1727	56.4	45.37 ± 1.82	-6.7 ± 1.7	-143.43 ± 2.5	203.3
Newbury!	4	4	1428-1899	39.0	39.05 ± 0.17	0.0 ± 0.1	-149.75 ± 0.7	209.6

Reactions: A) BaO(cr) + H₂O(g) = Ba(OH)₂(g) B) Ba(g) + 2H₂O(g) = Ba(OH)₂(g) + 2H(g)

a. Two points rejected by a statistical test.
 b. Do is the dissociation energy for the reaction Ba(OH)_A(g) = Ba(g) + 2OH(g).

In addition to the three investigations above, dissociation energies (D_0^0 as defined in the table above) have been derived from flame spectra Ryabova and Gurvich3 and by Sugden and Schoffeld.6 Ryabova and Gurvich3 believed the dominant reaction to be Ba(g) + H₂O(g) = BaOH(g) + H(g), but they also considered the possibility that the reaction Ba(g) + 2H₂O(g) = Ba(OH) + 2H(g) was dominant and derived $D_0^0 = 205 \pm 20$ kcal-mol⁻¹. Sugden and Schofield* considered the dihydroxide to be the domiant product and derived $D_0^0 = 229 \pm 12$ kcal-mol⁻¹. Cotton and jenkins* found both BaOH and Ba(OH), to be present and obtained recalculated D_0^0 values of 208 and 212 kcal·mol-1, respectively.

The 3rd law analysis of the data of Cotton and Jenkins' above combined with current JANAF Thermochemical Table data' leads to D₀² = 213.8 kcal·mol⁻¹ which is 0.8 kcal·mol⁻¹ higher than the 213 kcal·mol⁻¹ derived by Cotton and Jenkins.³ Applying this difference to the values of Ryabova and Gurvich³ and of Sugden and Schofield⁶ as recalculated by Cotton and Jenkins³ gives D₀² = 208.8 and 212.8

The average of the dissociation energies from the flame-spectral measurements (208.8, 212.8, and 213.8) and the dissociation energy from the Knudsen-cell mass-spectrometric work of Stafford and Berkowitz (203.3) is 209.7 kcal-mol-1 which happens to be in agreement with kcal·mol⁻¹, respectively.

 Δ_4 (298.15 K) = -149.75 ± 9.0 kcal·mol⁻¹ is adopted because of the excellent agreement in the 2nd and 3rd law enthalpies of reaction from Newbury's datal and because of the larger uncertainty associated with dissociation energies derived from flame spectra. the 209.6 kcal·mol⁻¹ calculated from Newbury's data.

The enthalpy of dissociation listed by Jackson⁸ leads to $\Delta_1H^2(298.15 \text{ K}) = -151.22 \text{ kcal mol}^{-1}$. Another recent compilation¹⁰ lists Δ_tH^o(298.15 K) = -140 kcal·mol⁻

Heat Capacity and Entropy

recognized. 27-9 The O-Ba-O bond angle is assumed to be the same as the F-Ba-F bond angle, the Ba-O-H bond angle is considered to be linear as in BaOH.⁴ The Ba-O bond distance is estimated to slightly larger, 0.02 Å, than the Ba-F distance in BaF; ⁴ after noting the close similarily in the bond distance of the alkale metal fluorides and hydroxides. The O-H bond distance is taken to be the same as in water.⁴ The vibrational frequencies are assumed to be the same as in BaF² (O-Ba-O symmetrical and asymmetrical stretch, and bend) and as in The analogy between gaseous mono- and dihydroxides and gaseous mono- and dihalides, particularly the mono- and difluorides, has been

BaOH* (O-H stretch and Ba-O-H bend). The principal moments of inertial are: $I_A = 29.8004 \times 10^{-39}$, $I_B = 17.7971 \times 10^{-39}$, and

Continued on page 359

 $_{\rm C}$ = 12.0033 × 10⁻³⁹ g·cm².

Barium Hydroxide (Ba(OH)₂)

PREVIOUS: December 1975 (1 atm

14588 14588 16178

CURRENT. June 1974 (1 bar)

Standard State Pressure = $p^* = 0.1$ MPa

W = 264.345 Barium lodide (Bal)

IDEAL GAS

 $H^{\bullet}-H^{\bullet}(T_{i})$ Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $-[G^{\bullet}-H^{\circ}(T_{t})]T$

J.K-'mod-'

¥

 $\Delta_t H^{\circ}(0 \text{ K}) = -39.29 \pm 84 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -42.42 \pm 84 \text{ kJ·mol}^{-1}$

NFINITE log Kr

63.961 72.196

278.737

37.221

278.737

15.694

-89.582

-42.417

-42.451

-89.875 -97.703 -105.106 -111.562 -115.892

294.123

37,227 37,349 37,439 37,510 37,569

304.937

-79.455

11.316 15.087 18.865 22.650 26.442

320.253 324.248

286.077 289.197 292.213 295.086 297.806

37.666 37.747 37.820 37.887 37.952

-123.460 -130.654 -137.520 -144.111 -150.478

-81,383 -83,821 -85,838 -87,853

300.376 302.807 305.109 307.291 309.364

331.178 334.229 337.057 339.694

38.015 38.076 38.137 38.197

-155.823 -160.957 -165.908 -170.695 -175.334

-98.239 100.493 -102.652 -104.744 -106.793

342.165 344.490 346.685 348.764 350.740

38.315 38.33 38.433 38.493 38.554

-179.837 -184.213 -188.468 -192.606 -196.630

-108.826 -110.867 -112.941 -115.071 -117.278

-119.583 -261.525 -263.243 -265.199 -267.391

352.623 354.421 356.142 357.792 359.378

38.616 38.680 38.746 38.816 38.889

-200541 -198.965 -196.084 -193.123 -190.076

-272.426 -275.234 -278.203 -281.307 -269.805

-186.936 -183.700 -180.363 -176.922 -175.927

-284.517 -287.807 -291.141 -294.505 -297.872

360.905 362.377 363.799 365.174 366.506

38.968

49.334 53.158 56.999 60.845 68.556 72.421 76.292 80.170 84.055 81.948 99.1849 99.1849 99.677

107.545 111.496 111.496 111.436 123.426 127.431 131.452 133.546 143.620 147.713 151.826 164.296

367.798

-169.727 -165.972 -165.972 -158.153 -154.094 -149.938 -145.690 -141.353 -135.429

-301.221 -304.534 -307.795 -310.992

311.338 313.220 315.019 315.019 319.977 321.502 321.502 321.502 321.502 321.502 321.502 321.502 321.502 321.502 321.502 321.502 321.502 321.502 331.50

369.052 370.272 371.459 372.615 373.744 374.845 376.976 376.976

39.450 39.569 39.696 39.832 39.977

40.130 40.293 40.465 40.646 40.835

41.033 41.239 41.453 41.674 41.902

383,800

379.018 380.009 380.982 381.937 382.876

43,389

-103.927 -98.966 -93.950 -88.886 -83.776

331.016 -333.489 -335.894 -338.206 -340.439

68 498 72,724 76,974

347.170 347.959 348.734 349.495 350.244

342.570 344.641 346.638

-127.849 -123.196 -118.473 -113.685

-317.157 -320.111 -322.976 -325.750

385.603 386.485 387.354

350.980 351.704 352.417 353.118 353.809

388.210 389.055 389.889 390.713 391.526

PREVIOUS: June 1974 (1 atm)

Barium lodide (Bal)

다. 다.작] 라.작]

22225

18568.8 25764.4 26753.3 17816.3

X,X,

Electronic Levels and Quantum Weights

 $S^{(298.15 \text{ K})} = 278.74 \pm 0.21 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Barium lodide (Bal)

e, cm,

ω_cx_e = 0.29 cm⁻¹

ω_c = 152.2 cm⁻¹ B_c = [0.0250] cm⁻¹

Enthalpy of Formation

α_e = [0.000059] cm⁻¹

r. = [3.20] Å

The adopted $\Delta_t H^0(0 \text{ K}) = -9.39 \pm 20 \text{ kcal·mol}^{-1}$ is calculated from $D_0^0 = 3.37 \text{ eV}$ (77.7 kcal mol -1) calculated by a linear Birge-Sponer

a consideration of ionic bonding forces and $\delta \delta^2$ derived as a lower bound from a consideration of energy conservation and measured reaction threshold relative kinetic energy from crossed molecular beam experiments. $D_0^2 = 77.7$ kcal-mol⁻¹ is adopted because the ratio of D_0^2 (Bally $\Delta_{\mu}H^0(Ball) = 0.47$ which is nearly the same as the ratio of 0.46 found for a series of mono– and diffuorides and for other alkaline earth halides are 55³ predicted from a correlation of binding energies of Group II and Group III diatomic hydrides and halides, 71.7⁴ as a lower bound from extrapolation of ω, t data with a correction for the ionic character of the molecule as described by Hildenbrand. Other values, in keal mol

 $\Delta_i H^0$ (298.15 K) = -10.14 ± 20 kcal·mol⁻¹ is calculated from the adopted $\Delta_i H^0$ (0 K) = -9.39 ± 20 kcal·mol⁻¹

Heat Capacity and Entropy

The ground state vibrational constants are from the compilation of Rosen. The adopted value of r_e = 3.20 Å was estimated by Margrave³ and is also the bond distance in Bal $\chi(g)$. B_e is calculated from the adopted r_e ; α_e is calculated assuming a Morse potential function. The electronic levels and their probable designation are those given by Rosen.

References

 Rosen, Ed., "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, 515 pp. (1970).
 L. Hildenbrand in "Advances in High Temperature Chemistry," Vol. 1, L. Eyring, Ed., Academic Press, New York, 1967, pp. 193–215. Rosen, Ed., "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, 515 pp. (1970).

L. Margrave, J. Phys. Chem. 58, 25 (1954).

⁴K. S. Krasnov and N. V. Karaseva, Optics and Spectrosc. 19, 14 (1963).

A. Mims, S. Lin, and R. R. Herm, J. Chem. Phys. 57, 3099 (1972).
 Blue, J. W. Green, T. C. Ehlert, and J. L. Margrave, Nature 199, 804 (1963).
 A. Akishin, V. P. Spiridonov, G. A. Sobolev, and V. A. Naumov, Zhur. Fiz. Khi

⁷P. A. Akishin, V. P. Spiridonov, G. A. Sobolev, and V. A. Naumov, Zhur. Fiz. Khim. 32, 58 (1958).
⁴JANAF Thermochemical Tables, refer to all alkaline earth halide tables.

CRYSTAL

Barium lodide (Bal₂)

CURRENT: June 1974

 $\Delta_l H^0(0 \text{ K}) = -604.5 \pm 3.3 \text{ kJ·mol}^{-1}$ $\Delta_l H^0(298.15 \text{ K}) = -605.4 \pm 3.3 \text{ kJ·mol}^{-1}$ $\Delta_{lup}H^{\circ} = 26.53 \pm 0.54 \text{ kJ} \cdot \text{mol}^{-1}$

 $S^{(298.15 \text{ K})} = 165.14 \pm 0.4 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Combining Δ_tH²(Ba², aq, 298.15 K) = -128.5 kcal·mol⁻¹, selected by Parker, ⁴ with the CODATA value for Γ²(aq) gives Δ_tH²(Bal₂, aq, 298.15 K) = -155.7 kcal·mol⁻¹. Further combination with the enthalpy of solution, -10.98 kcal·mol⁻¹. If gives Δ_tH²(Bal₂, cr, 298.15 K) = -144.7 kcal·mol⁻¹. This enthalpy of solution value was based on several sets of data, one of which was that of Ehrlich et al. ^{1,11} We adopt -144.7 ± 0.8 kcal·mol⁻¹ (-665.425 ± 3.347 kJ·mol⁻¹) because of the correlation of Δ_tH²(Ba², aq, 298.15 K) with the evaluation of data for several barium compounds. ⁴ See also the updated discussion in the enthalpy of formation section for BaO(cr). ¹² derivation. This auxiliary value will be changed by incorporation of the accepted CODATA key value of $\Delta_t H^q(\Gamma, aq, 298.15 \text{ K}) = -13.60$ kcal·mol⁻¹ in the $\Delta_t H^q(HI, aq, 298.15 \text{ K})$ table, so that the above derived enthalpy of formation of Bal₂(cr) will be approximately -145.1Ehrlich, Peik, and Koch derived $\Delta_t H^0(Bal_2, cr, 298.15 \, K) = -144.7 \pm 0.4 \, kcal-mol^{-1}$ from entialpy of solution measurements of Ba(cr) and Bal₂(cr) in 0.1 N HI. An auxiliary HI enthalpy of solution value, $-13.22 \, kcal\cdot mol^{-1}$, calculated from data in reference² was used in the Enthalpy of Formation $T_{\rm fus} = 984 \pm 2 \, {\rm K}$ kcal·mol-1.

Heat Capacity and Entropy

 $C_p^*(13.08-300.17 \,\mathrm{K})$ has been measured by Paukov, Khriplovich, and Smirnova. Our T^3 extrapolation agrees with their $S^*(13) = 0.619$ cal- K^{-1} mol⁻¹ and $H^*(13 \,\mathrm{K}) + H^*(0 \,\mathrm{K}) = 6.01$ cal- K^{-1} mol⁻¹, and our smoothing and integration of their C_p^* data agrees with their $S^*(298.15 \,\mathrm{K}) = 39.47 \pm 0.1$ cal- K^{-1} mol⁻¹ which is adopted.

The low-temperature heat capacities join smoothly with a linear extrapolation from C, (298.15 K) = 18.52 cal·K⁻¹ mol⁻¹ to Dworkin and Bredig's reported C, of 21.8 cal·K⁻¹-mol⁻¹ at the adopted T_m of 984 K.² This gives H°(984 K)-H°(298.15 K) = 13.83 kcal·mol⁻¹, in fair agreement with Dworkin and Bredig's drop calorimeter value of 13.9 kcal·mol⁻¹?

Fusion Data

Dworkin and Bredit⁷ report $\Delta_{lm}H^{\circ} = 6.34$ kcal·mol⁻¹ (±2%) at T_{lm} of 984 K from drop calorimetry; Emons and Loeffelholz⁸ found 6.050 kcal-mol⁻¹ ($\pm 5\%$) at a reported, T_{uu} of 981 K by high temperature cryoscopy. Hutchison⁹ determined T_{tuu} to be 983 K, while Kubaschewski et al. 10 listed 985 K. We adopt $\Delta_{tuu}H^{\circ} = 6.34 \pm 0.13$ kcal-mol⁻¹ and $T_{tuu} = 984 \pm 2$ K.

Sublimation Data

Δ_mH^o(298.15 K) is calculated as the difference between the enthalpies of formation of the ideal gas and the crystal at 298.15 K.

P. Ehrlich, K. Peik, and E. Koch, Z. anorg. allgem. Chem. 324, 113 (1963),

U. S. Nat. Bur. Stand. Circ. 500, (1952).

ICSU-CODATA Task Group, J. Chem. Thermodyn. 4, 331 (1972).

Braker, U. S. Nat. Bur. Stand., Repr. 10074, 164 (1969).
 S. Nat. Bur. Stand. Tech Note 270-6, 119 pp. (1971).

I. E. Paukov, L. M. Khriplovich, and O. M. Smimova, Russ. J. Phys. Chem. 45, 1204 (1971).

⁴H. H. Emons and B. Loeffelholz, Wiss. Z. Hochsch. Chem. Leuna-Merseburg 6, 261 (1964). A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 67, 697 (1963).

¹ F. Hutchison, U. S. At. Energy Comm. IS-T-50, (1965).

O. Kubaschewski, E. Ll. Evans, and C. B. Alcock, "Metallurgical Thermochemistry," 4th ed., Pergamon Press, New York, (1967).

V. B. Parker, U. S. Nat. Bur. Stand., personal communication, (May 1974). ¹JANAF Thermochemical Tables: BaO(cr), 6-30-74.

	Enthalpy Re	eference Te	Enthalpy Reference Temperature = 7	T, = 298.15 K		Standard Stat	Standard State Pressure = p"	p° = 0.1 MPa
			J.K-'mol-'			-K-mod-1		
	7,K	ដ	S -[G	$-[G^{\bullet}-H^{\circ}(T_{r})]T$	$H^{\bullet}-H^{\bullet}(T_{*})$	$\Delta_t H^{\bullet}$	$\Phi'G$	log K _r
	0	0000	0.000	INFINITE	-19.230	-604.544	-604.544	INFINITE
_	8	68.952	84.559	232,338	-14.778	-604.841	-603.789	315.387
-	200	75.228	134.767	172.276	-7.502	-605.042	-602.675	157.403
-	298.15	77.488	165.142	165.142	0.000	-605.425	-601.407	105.364
	300	77.530	165.622	165.144	0.143	-605,434	-601.382	104.710
_	9	79.538	188.201	168.209	7.997	-622.236	-599.374	78.270
	800	81.546	206.166	174.063	16.051	-666.196	-589.434	61.578
	909	83.513	221,207	180.700	24,304	-666.319	-574.057	49.976
-	92	85.521	234,231	187.437	32.756	-665.450	-558.758	41.695
-	0 08	87.529	245.782	194.022	41.408	-664.904	-543.545	35.490
	06	89.538	256.207	200.361	50.262	-663.747	-528.443	30,670
	984.000	91211	264.271	205.477	57.853 -	CRYSTAL	T <> LIQ	QIN
	1000	91.546	265.743	206.429	59.314	-662.403	-513.479	26.821
	81	93.617	274.566	212.227	68.573	-669,237	-497.840	23.640
	1200	95.653	282.799	217.769	78.036	-667.748	-482.322	20.995
	1300	97.653	290.535	223.072	87.702	-665.980	-466.940	18.762
	1400	99.617	297.844	228.154	97.566	-663.968	-451.703	16.853
-	1200	101.546	304.783	233.033	107.624	-661.745	-436.618	15.204
-								

Barium lodide (Bal₂)

PREVIOUS:

-386.649 -370.839 -353.962 -337.231 -320.629

346.146 335.995 335.995 345.599 371.354 371.354 371.354 382.121 382.121 382.121 382.121 382.125 400.993 405.256

112.968 112.968 112.968 112.968 112.968

-607.184 -743.879 -740.384 -737.157 -734.189 -731.462 -728.956

26.844 23.796 21.268 19.141 15.764 14.403 13.210 12.154 11.215 11

-441,191 -429,917 -418,841 -407,948 -397,222

-623.251 -619.848 -616.516 -613.281 -610.164

CURRENT: June 1974

PREVIOUS:

Barium lodide (Bal ₂)	LIQUID	M,=391.139 B	M _r = 391.139 Barium lodide (Bal ₂)	Ba ₁ I ₂ (I)
$S^{*}(298.15 \text{ K}) = [183.669] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{tab} = 984 \pm 2 \text{ K}$		$\Delta_t H^0$ (298.15 K) = [-585.884] kJ·mol ⁻¹ $\Delta_{tur} H^0$ = 26.53 ± 0.54 kJ·mol ⁻¹	$\lambda_1 H^0(298.15 \text{ K}) = [-585.884] \text{ kJ·mol}^{-1}$ Enthalpy Reference Temperature = $T_1 = 298.15 \text{ K}$ Standard State Pressure = $p^* = 0.1 \text{ MPa}$ $\Delta_{10.4} H^0 = 26.53 \pm 0.54 \text{ kJ·mol}^{-1}$ Reference Temperature = $T_1 = 298.15 \text{ K}$ Standard State Pressure = $p^* = 0.1 \text{ MPa}$	Standard State Pressure = p° = 0.1 MPa kJ·mol ⁻¹

Enthalpy of Formation

 Δ_H (Bals, 1, 298.15 K) is calculated from that of the crystal by adding $\Delta_{tor}H$ ° and the difference in ethalpy, H°(984 K)—H°(298.15 K), between the crystal and liquid.

Heat Capacity and Entropy

The liquid heat capacity near the melting point, 27.0 cal-K⁻¹-mol⁻¹, was determined by Dworkin and Bredigl⁻ from drop calorimetric measurements. This value is adopted and assumed constant over a 700-2800 K range. A glass transition is assumed at 700 K below which the heat capacity is that of the crystal.

102.908 102.275 76.686 60.504 49.243

-587.390 -587.399 -587.244 -579.156

-585.884 -585.893 -602.695 -646.655 -646.778

183.669 184.149 206.728 224.693 239.733

77.488 77.530 79.538 81.546 83.513

--- CRYSTAL <--> LIOUID ---

-513.914

-501.106 -488.595 -476.365 -464.399 -452.680

-635,530 -640,325 -637,003 -633,605 -630,159 -626,698

0.000 0.000 1.997 1.997 1.4051 1.2051 1.2051 1.2050

183.669 183.611 185.756 192.570 192.57

85.51 12.968 1

252.756 252.756 252.758 267.842 281.148 291.228 293.051 303.818 313.647 312.689 331.061 338.855

-552.186 -539.009 -526.261

-645.910 -642.719 -639.119

GLASS <--> LIQUID TRANSITION

-565.632

log Kr

P.G

 $H^{\bullet}-H^{\bullet}(T_t)$ $\Delta_t H^{\bullet}$

S -[G*-H'(T,)]/T

ئ |

S°(298.15 K) is calculated in a manner similar to that used for the enthalpy of formation.

Vaporization Data

The temperature at which Δ,G° = 0 for the reaction Bal₂(!) = Bal₂(g) is the adopted T_{var}. Peterson and Hutchison² have extrapolated Knudsen effusion cell measurements in the 1154–130! K range to obtain a normal boiling point (1 atm) of 2300 K. Δ_{var}H²(T_{var}) is the calculated difference between the enthalpies of formation of the ideal gas and the liquid at T_{var}. Refer to the ideal gas table for details.

A. S. Dworking and M. A. Bredig, J. Phys. Chem. 67, 697 (1963).
²D. T. Peterson and J. F. Hutchison, J. Chem. Eng. Data 15, 320 (1970).

Ba₁l₂(cr,l)

Barium lodide (Bal₂)

Refer to the individual tables for details.

0 to 984 K crystal above 984 K liquid

Barium lodide (Bal₂)

GAS
Ġ
¥

Barium lodide (Bal₂)

M_r = 391.139 Barium lodide (Bal₂)

Ba₁l₂(g)

 $S^{(298.15 \text{ K})} = [348.14 \pm 8.4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

loш-	$\Delta_t H^0(0 \text{ K}) = -29$ $\Delta_t H^0(298.15 \text{ K}) = -30$
Vibrational Fequencies and Degeneracies ν, cm ⁻¹	
[111] (1) [26] (1) [185] (1)	
Ground State Quantum Weight: [1] Point Group: Cx. Point State Quantum Weight: [1]	g = 2
bout usualue. Bar = 3.20 - 0.03 A Product of Moments of Inertia: $I_AI_BI_C = 2.117174 \times 10^{-112} \text{ g}^3 \text{ cm}^6$	0 ⁻¹¹² g³·cm ⁶

Enthalpy of Formation

consluded that Bal $\chi(1)$ = Bal $\chi(2)$ is the important vaporization. Peterson and Hutchrson^{2,3} used a weight loss Knudsen effusion technique observe vapor presured at 18 temperatures in the range of 1154–1301 K. Their enthalpy of vaporization, 53.6 \pm 1.3 kcal-mol⁻¹, is in go agreement with Winchell's value, 54 \pm 4 kcal-mol⁻¹. Winchell has reported ΔH , ΔG , and ΔS for the vaporization of BalA(1) at 1150 K derived from a mass spectrometric Knudsen effus cell investigation (28 unpublished points in the range of 1019-1278 K). The spectra showed no evidence of Bal₂ polymers; also it

	No. of		Δ,H°(298.15 K), kcal·mol-1	kcal·mol-1	Drift
Source	Points	<i>11</i> K	2nd law	3rd law	cal·K-1·mol-
Winchell	3*	1019-1278	62.16	68.07	5.1
Peterson and Hutchison ²	%	1154-1301	64.35 ±1.5	67.61 ±0.5	2.6 ±1.2

²ΔG calculated at 1019 K and 1278 K from ΔH, ΔG, and ΔS values given at 1150 K to permit use of 2nd law

one point rejected by statistical tests.

We select $\Delta_{up}H^{\circ}(298.15 \text{ K}) = 67.6 \pm 3 \text{ kcal·mol}^{-1}$ and combine this with $\Delta_{l}H^{\circ}(1, 298.15 \text{ K}) = -140.029 \pm 0.9 \text{ kcal·mol}^{-1}$ to give adopted $\Delta_{l}H^{\circ}(g, 298.15 \text{ K}) = -72.4 \pm 4 \text{ kcal·mol}^{-1}$.

Heat Capacity and Entropy

The bond distance, as determined from an electron diffraction study, is taken from the work of Akishin et al. who also judged the bx angle to be 180 \pm 20°. The later electric deflection study of Buechler et al. showed that all of the barium dihalide molecules are bent. Not the trend in the magnitude of the bond angle in the alkaline earth-halide series, we have assumed a bond angle of 170°. The principal mom of inertia are. $I_A = 429.4543 \times 10^{-39}$, $I_B = 428.3033 \times 10^{-39}$, and $I_C = 1.1510 \times 10^{-39}$ g cm².

is a reasonable approximation, an approximation used by Brewer et al.? The stretching force constant for Bal(g) is calculated from the grot state vibrational frequency given by Rosen. The bending force constant is assumed to be 0.01 times the stretching force constant. The adop In estimating the vibrational frequencies, the stretching force constants for gaseous BaF, BaFs, BaCl, and BaCl, are calculated from the vibrational frequencies, wing the valence force model. The trend in the ratio k(monohalide)/k₁(dihalide) indicates that k(BaJ/k₁(BaI₂) vibrational frequencies are calculated from these estimated force constants. Other estimates for ν_1 , ν_2 , and ν_3 where a linear molecule assumed, are 109, 26, 1847 and 106, 37, 178.

We assign an uncertainty of ±2 cal·K⁻¹·mol⁻¹ to the entropy to allow for error in the estimation of bond angle and of the vibratic requencies.

References

¹P. Winchell, Nature 206, 1252 (1965).

²J. F. Hutchison, U. S. At. Energy Comm. IS-T-50, (1965).

³D. T. Peterson and J. F. Hutchison, J. Chem. Eng. Data 15, 320 (1970).

A. Akishin, V. P. Spiridonov, G. A. Sobolev, and V. A. Naumov, Zhur. Fiz. Khim. 32, 58 (1958).
 Buechler, J. L. Stauffer, and W. Klemperer, J. Amer. Chem. Soc. 86, 4544 (1964).
 MANAF Thermochemical Tables: BaF(g), BaF₂(g), and BaCJ₂(g), 12–31–72.

Rosen, Ed., "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, 515 pp. (1970). S. Krasnov and V. I. Svettsov, Izv. Vysshikh Uchebn. Zavedenii, Khim. i Khim. Tekhnol. 6, 167 (1963) Brewer, G. R. Somayajulu, and E. Brackett, Chem. Rev. 63, 111 (1963).
 B. Rosen, Ed., "Spectroscopic Data Relative to Diatomic Molecules," Perg. P. Krasnov and V. I. Svettsov, Izv. Vysshikh Uchebn. Zavedenii, Khim.

1-loi	Enthalpy R	eference To	emperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$		Standard State Pressure	te Pressure = 1	= p = 0.1 MPa
<u> </u>	тÆ	ប		-[G*-H*(T,)]/T	H*-H*(T,)	 •#.\ •#.\	δ ₀ 6•	log Kr
	° <u>8</u>	0. 52.981	0. 287.151	398.518	-15.651 -11.137	-298.463 -298.697	-298.463	INFINITE 166.056
	ន្តន្ត	56.623 57.165	325,343 338.042	353.375 349.083	~5.606 ~2.760	-300.643 -301.764	-336.392 -345.202	87.856 72.126
	298.15	57.463	348.139	348.139	ö	-302.922	-353,464	61.925
	350	57.472 57.661	348.494 357.369	348.140 348.840	0.106 2.985	-302,968 -304,348	-353.778 -362.141	61.598 54.047
	8 2 2	287.72 17.87.72	365 077	350.399 352.415 354.673	8.763 8.763	-321.858 -324.777 -368.086	-369.746 -375.560 -377.735	48.284
	9	58.014	388.559	359.466	17.456	-370.664	-378.814	32.979
	88	58.063 58.096	397.506 405.262	364.278 368.927	23.260 29.068	-372.443 -374.741	-380.043	28.359 24.875
	88	58 118 58.133	412,106	373,352 377,539	34.879 40.691	-376.627 -378.523	-381.631	22.149 19.958
,	1100	58.145	423 771	381.494	46.505	-388.801	-381.530	18.117
noisi	98	58.161	433.486	388.766	58.136	-393.043	-379.839	15.262
was	8 <u>8</u>	58.17 58.171	437.736	395.297	63.932 69.769	- 395.078 - 397.097	-378.747 -377.510	13.146
ue to	0091	58.174	445.564	398.322	75.586	-399.129	-376.138	12.280
3	006	58.180	452.416	403.960	87,222 93,040	-403.352	-373.014	10.825
	2000	58.184	458,546	409.117	98.858	-407.957	-369.400	9,648
_	2100 2200	58 186 58.187	461.385 464.092	411.539	104.677 110.495	-410.456 -552.629	-367.411 -359.925	9.139 8.546
	7300 7400	58.188	466.679	416.107	116.314	-554.612	-351.122	7.974
	2500	58.190	471.530	420.350	127.952	-559.372	-333.234	6.963
	2200 2700	58.191 58.192	473.813	422.362 424.309	133.771	-562.124 -565.095	-324.135	6.512 6.093
	2800 2900	58.192	478.125	426.193	145.409	-568.261	-305.603	5.334
	3000	58.193	482.140	429.791	157.048	-575.056	-286.607	4.990
the	3100 3200	58.194 58.194	484.048 485.896	431.510 433.181	162.867 168.687	-578.624 -582.263	-276.934 -267.144	4.666 4.361
	3300 3400 3700	58.195 58.195	487.687	434.806	174.506	-585.938 -589.631 -503.335	-257.240 -247.224 -337.100	3.798
3	3600	58.196	492.750	439.427	191.965	-596,969	-226.871	3.292
bond oting	3700 3800	58.196	494,345	440.890	197.784	-600 <i>57</i> 3 -604.113	-216.540	3.057
ents	3300 4000	58.196 58.197	497.408	443.710	209.423	-607.577 -610.957	-195.594	2,620
their	4100	58 197	500.319	446.401	221.063	-614243	-174298	2221
)=1	4300	58.197	503.091	448 974	232.702	-620.528	-152.685	1.855
puno	450 00 00 00 00 00 00 00 00 00 00 00 00 0	58.197 58.198	504.429 505.736	450.219 451.438	238,522 244,342	-623.524 -626.423	-141.770 -130.788	1.683
Was	4600	58.198	507.016	452.633	250.161	-629.221	-119.744	1,360
	4800	58.198	509.492	454.951	261.801	-634.522	-97.480	190
ional	200 200 200	58.198 58.198	510.692	456.076	267.621 273.441	-637,046 -639,493	-86.265 -75.001	0.920
	\$100 \$700	58.198	513.021	458.264	279.260 285.08TT	-641.841	-63.689	0.652
	\$300 \$400	58.198	515,259	460.373	290,900	-646.358 -648.518	-40.929 -29.485	0.403
	2200	58.199	517,415	462.408	302.540	-650.584	-18.006	0.171
	5500 5700	58 199 58 199	518.464	463.400 464.375	308,360	-652.565 -654.542	-6.493 5.062	0.061
	\$800 \$800	58.199 58.199	520.506 521.501	465.334	319.999 325.819	-656.443 -658.176	16.647	-0.150 -0.250
	0009	58.199	522.479	467.206	331.639	-659.990	39.898	-0.347
	PREVIOUS June 1974 (1 atm)	June 1974 ((1 atm)				CURRENT Ju	CURRENT June 1974 (1 bar)

Barium Oxide (BaO)

PREVIOUS: December 1972

CURRENT June 1974

 $\Delta_i H^0(0 \text{ K}) = -546.8 \pm 2.1 \text{ k}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -548.1 \pm 2.1 \text{ M}$ $\Delta_{los} H^{\circ} = [59]$ 5°(298.15 K) = 72.069 ± 0.38 J·K⁻¹·mol⁻¹ Flus = 2286 ± 15 K

Enthalpy of Formation

Barium Oxide (BaO)

calorimeter on samples that were well characterized. The latter is particulaly important since impurities were a major problem in str BaO^{3 4 2-14} and Ba. ²⁻²⁻³ values for BaO and BaCl, from calorimetry involving aqueous HCl¹⁻³ instead of discrepant values derived from other reactions. ⁶⁻⁴ Ear calorimetry gave Δ_H"(BaO, cr) = -1320³² and -132.1 kcal·mol^{-1,4,5} The new value¹ is preferred since both reactions were run in t is rounded from -130.98 ± 0.47 kcal-mol⁻¹ derived by Fitzgibbon et al. I from calorimetric reactions of HCI(aq) with Ba BaO(cr). Combination of their two reactions yields $\Delta_t H^*(298.15 \text{ K}) = -62.66 \pm 0.47 \text{ kcal·mol}^{-1}$ for Ba(cr) + H₂O(t) \rightarrow BaO(cr). Although the resulting $\Delta_t H^0$ is 1.3 kcal·mol - less negative than that of NBS Technical Note 270–6, ² it confirms Parker's selection

Direct measurements of $\Delta_t H$ of Ba(cr) by Mah⁸ gave -139.06 ± 0.7 kcal·mol⁻¹. Combustion studies of Fitzgibbon *et al.*¹ suggest negative bias of 8 kcal·mol⁻¹ was due to partial dissolution of the crucible lining (MgO) in molten BaO formed in the combustion Disswas eliminated in combustions on sintered MgO disks, but large amounts of BaO₂ were formed both in this case and with the use crucibles. This led the authors to dismiss combustion calorimetry in favor of solution calorimetry. Parker? noted earlier that the con

Ba(cr) + 2HCl(54.3 H₂O) = H₂(g) + BaCl₂ [in 149.9 HCl (55.0 H₂O)] with $\Delta_t H^o$ (HCl, 54.3 H₂O) = -39.52 ± 0.02 kcal·mol⁻¹ $\Delta_{xx} H^o$ = -2.09 ± 0.2 kcal·mol⁻¹ 7 for BaCl₂(cr) in HCl(55 H₂O) to give $\Delta_t H^o$ (BaCl₂, cr) = -204.9 ± 0.5 kcal·mol⁻¹ This conf IANAF!9 A.H" (BaCl.) of -205.2 kcal-mol-1 based on the selection of Parker,2 the alternative uncertainty of ±0.6 kcal-mol-1 sho be used instead of ± 3 kcal·mol⁻¹. The new $\Delta_t H^\circ$ for BaCl₂ yields $\Delta_t H^\circ (Ba^{2^*}; aq) = -128.0 \pm 0.6$ kcal·mol⁻¹, assuming $\Delta_{sa} H$ ct) = -3.0 ± 0.2 kcal·mol⁻¹ (many references) and $\Delta_t H^\circ (Cl^-, aq) = -39.933 \pm 0.021$ kcal·mol⁻¹. This is consistent with Parker's s result was incompatible with data for BaCl₂(aq), Ba(OH)₂(aq and cr), BaO₂(cr) and BaCO₂(cr); also a similar discrepancy existed for We find that the combustion value is incompatible with equilibrium data¹⁹ for BaCl₂(1 and g). $\Delta_t H^0(BaCl_3$, cr) and $\Delta_t H^0(Ba^{2*}$, aq) deserve an updated discussion. We combine $\Delta_t H^0 = -127.95 \pm 0.41$ kcal·mol of $\Delta_t H^{\circ}(Ba^{2+}, aq) = -128.5 \text{ kcal·mol}^{-1.2}$

Heat Capacity and Entropy

have corrected several typographical errors and resmoothed C_s^a above 240 K where the scatter increases rapidly. The entropy is obtaintegration of our adopted C_s^a using $S^a = 0.0015$ cal·K⁻¹-mol⁻¹ reported by G Co is based on data (1.4-310 K) of Gmelin¹² who reported smoothed values only in the range 4 to 300 K Based on Gmelin's gra corresponds to reither 273.15 K nor 298.15 K and must be erroneous. C. data (56-299 K) of Anderson 13 differ by ±1.6% but averag 1.0% higher from 150 to 260 K.

 $\mathcal{C}_{\sigma}^{\rho}$ above 300 K is from constrained fitting of enthalpy data (391–1299 K) of Lander. ¹⁴ This calorimetry is subject to bias from a cal based on Pt and from impurities in the two samples. Information is insufficient to assess the bias due to minor changes in the enthalpy We apply crude corrections to the observed enthalpies for 27 mole % SrO in one sample and for about 2.8 mole % SiO; in the other Deviations from the adopted curve are ±0.9% (first sample) and ±1.0% (second sample) except for -2.0% at 421 K.

Fusion Data

Refer to the liquid table for details.

Sublimation Data

 $\Delta_{ab}H^{\circ}$ is calculated as the difference in $\Delta_i H^{\circ}$ between gas and crystal.

References IG. C. Fitzgibbon, E. J. Huber and C. E. Holley, J. Chem. Thermodyn. 5, 577 (1973).

²V. B. Parker, D. D. Wagman and W. H. Evans, U. S. Nat. Bur. Stand. Tech. Note 270-6, 119 pp, (1971); U. S. Nat. Bur. Stand. Report 10074, 164 (1969).

H. Adami and K. C. Conway, U. S. Bur. Mines RI 6822, 7 pp. (1966).
 V. Flidlider, P. V. Kovtunenko and A. A. Bundel, Russ. J. Phys. Chem. 40, 1168 (1966)

⁵A. Guntz and F. Benoit, Ann. Chim. (Paris) [9] 20, 5 (1923).

A. D. Mah, U. S. Bur. Mines RI 6171, (1963).
 J. F. Vorob'ev, A. S. Monaenkova and S. M. Skuratov, Vestn. Mosk. Univ., Ser. II 22 (6), 3 (1967).

A. S. Monaenkova and a. F. Vorob'ev, Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. 15, 191 (1972), Dokl. Akad. Nauk SSSR 179,

O. V. Kedrovskii, I. V. Kovtunenko, E. v. Kiseleva and A. A. Bundel, Russ. J. Phys. Chem. 41, 205 (1967).

¹⁰M. D. Judd and M. I. Pope, J. Appl. Chem. 20, 384 (1970).

¹¹A. A. Bundel et al., Russ, J. Phys. Chem. 43, 835 (1969); 41, 726 (1967); Tr. Mosk. Khim.-Tekhnol Inst No. 62, 291 (1969); ef. Chem.

Continued on page 359

kJ·mol ⁻¹	Enthalpy R	eference T	emperature :	Enthalpy Reference Temperature = T _r = 298.15 K I·K ⁻¹ mol ⁻¹		Standard Stat	Standard State Pressure = $p^* = 0.1 \text{ MPa}$ k I.mol ⁻¹	p* = 0.1 MPa
KJ-mol-1	7.K	ະ	S -[G	-[G*-H'(T,)]/T	$H^{\bullet}-H^{\bullet}(T_t)$	ν.Η.	₽ _C	log Kr
	0 5	0.000	0.000	INFINITE	-9.983	-546.833	-546.833	INFINITE
la(cr) and	38	43.493	53.898	76.289	-4.478	-548,479	-529.039	138,313
) + H ₂ (g).	298.15	47.279	72.069	72.069	0.000	-548.104	-520.382	91.169
n, of key	300	47.329	72.362	070.27	0.088	-548.096	-520.210	775'06
arlier HCI	88	49.898	86.347	13 960 13 960	4.955	-547.731	-510.977	86.77
the same	3 8	2 2	40.14	9 1	10.04	-347.990	201.178	32.420
studies of	88	54.396	107.707	86.021	20,578	- 548.939	-492.436	36.044
	008	55.405	122.892	90.180	26.169	-549.503	-473.558	30.920
st that the	88	56.312	129 471	94.186	31.756	-549.526	-464 063	26 934
issolution	000	57.153	135.448	98.018	37 429	-549.490	-454.569	23.744
e of BaO	00:	57.948	140.932	101.674	43.185	-557.766	-444.261	21.096
mbustion	981	29.700	150.00	105.159	54.018	-557,830	-433,937	18.889
r SrO(cr).	1400	60.162	155.167	111.663	50.905	-557.567	-413,300	15.420
,	1200	698.09	159.342	14.704	66.957	-557.244	-403.006	14.034
-i -i for	0091	61.563	163.292	819711	73.079	-556.829	-392.737	12.822
-1 16 and	0021	62.230	167.045	120.416	79.269	-556.342	-382.496	11.753
oth curry	26	63.605	174043	125,698	97770	-555,730	-362 105	0.00
nums ure	2000	64275	177.323	128.198	98.249	-554.665	-351.955	9.192
woild flow	2100	64.940	180,475	130.613	104.710	-554.107	-341.833	8.503
1 (BaCly,	2200	65.605	183,511	132,949	111.237	-693.105	-326.362	7 749
selection	2286.000	66.17	186.038	134 899	116.904	CRYSTAL	T <> LIQUID	din
	2300	66.270	186.442	135,211	117.831	-691.803	-309.721	7.034
	8 8 8 8 8	66.927 67.588	189.276 192.022	137.405	124.491	-690.669 -689.705	-293.134	6.380 5.779
1	2600	68 745	194 686	141 605	138 008	900889-	-260.087	\$17.5
rapns, we tained by	228	88.89	197.273	143.620	144.865	-688.261	-243.602	£
Gmelin ¹²	2300	70,208	202.243	47.493	158.776	-687.372	-210.699	3.795
age about	3000	70.860	204.634	149.358	165.830	-687.088	-194.267	3.382
alibration								
y of Pt. ¹⁵								
r sample.								
72001								

CURRENT: June 1974

PREVIOUS: December 1972

M _r = 153.294 Barium Oxide (BaO)	
רוסמום	
e (BaO)	

Ba₁O₁(I)

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [-491.627] \text{ kJ} \cdot \pi$ $\Delta_{tus} H^{\circ} = [59] \text{ kJ} \cdot \pi$ $S^{\circ}(298.15 \text{ K}) = [96.553] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{ta} = 2286 \pm 15 \text{ K}$

Enthalpy of Formation

Barium Oxide

 Δ_H ° is calculated from that of the crystal by addition of $\Delta_{lus}H$ ° and the difference in enthalpy, H°(2286 K)-H°(298.15 K), between cr and liquid.

 C_p^s of the liquid is estimated as 8 cal·K⁻¹ g-atom⁻¹ by comparison with other oxides. C_p^s is taken from the crystal in the range 298. up to the glass transition assumed at 1600 K. S^s is calculated in a manner analogous to that used for $\Delta_t H^s$. Heat Capacity and Entropy

Fusion Data

Foex¹ obtained $T_{tas} = 2010^{\circ}$ C from a solar-furnace study using BaO as its own container. We adopt this result but increase it by 3 conversion to IPTS-68. Foex showed that the much lower value (1918°C) of Schumacher^{2,3} probably resulted from contamination by from tungsten supports of the sample. $\Delta_{tas}H^{\circ}$ is estimated such that $\Delta_{tas}S^{\circ}$ is 6 cal·K⁻¹·mol⁻¹.

Vaporization Data

Unlike the other alkaline–earth oxides, BaO(cr) vaporizes mainly to BaO(g) with traces of Ba₂O₂ and Ba₂O. Mass–spectrometric stus suggest that decomposition to Ba(g) and O(g) is not a major contributor even though the observed intensities of Ba² are almost compar with those of BaO². T_{np} is the calculated temperature at which A_0 . Of or BaO(g) • BaO(g), $\Delta_{np}H^o$ is the corresponding difference in Δ_0 .

References

¹M. Foex, Solar Energy 9, 61 (1965).

²E. E. Schumacher, J. Amer. Chem. Soc.48, 396 (1926).

³S. J. Schneider, U. S. Nat. Bur. Stand. Monograph 68, (1963).

⁴JANAF Thermochemical Table: BaO(g) 6–30–74.

mol ⁻¹	Enthalpy Re	eference To	emperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ 1.K ⁻¹ mol ⁻¹		Standard State Pressure	te Pressure = p	- p - 0.1 MPa
	7/K	ະ	S - [C	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_t)$	Δ _t H•	Δ_G	log Kr
crystal	085							
	298.15	47.279	96.553	96.553	0000	-491.627	-471.205	82.553
7210	Š.8	47.329	96.845	96.554	0.088	-491.618	-471.078	82.022
401.	2005	51.785	122.178	102.090		-491.512	-457.543	41.799
	96	\$3.220 \$4.396	131.750	106.257		-492.461	-450.649	39.232
	808	55.405	147.375	114.664		-493.026	-436.668	28.511
3° for	88	56.312 57.153	153.954	118.670	31.756	-493.049 -493.013	-429.621 -422.575	24.935 22.073
Ç Ş ×	8	57.948	165.416	126.157	43.185	-501.289	-414.716	19.693
	200	59.442	170.491	129.643	49.018	-501.372	-406.840	17.709
•	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	60.162	179.650	136.146	60.905	-501.090	-391.100	14.592
udies'	1600	61.563	187.776	142.102			-375.433	
Δ _r H°.	1600.010	61.563 66.944	187.776 187.776	142.102 142.102	73.079	GLASS	SS <> LIQUID TRANSITION	<u>Q</u>
	0021	66.944	191.834	144.909			-367.656	
	000	46.94	199.280	150.248	93.162	-497.455	-352.271	9.683
	2100	66.944	205.980	155.242		-495.789	-337.076	8.384
	2286.000	66.944	211.661	159.604	1	CRYSTAL	-324:139 AL <> LIOUID	
	2300	66.944 66.944	212.070	159.923	119.940	-633.217		
	2500	66.944	217.652	164.321	133,328	-631.116	-282.077	5.894
	2600 2700	86.94 44.44	220.278	166.423	146.717	-630.414	-268.130	5.387
	2800	66.944	225.239	70.449	153.412	-629.655	-240.296	4.483
*****	3000	66.944	229.857	174.257	166.800	-629.540	-212,489	3.700
	3100	66.944	232.053	176 086	173.495	-629.857	- 198,580	3,346
	3300	66.94	236.238	179.607	186.884	-630.614	-170.735	2,703
	3200	8 8 4 4 4 4 4	238.236 240.177	181,302 182,956	193.578 200.272	-631.111 -631.660	-156.792 -142.833	2.409 2.132
	3600	66.944	242.063	184.572	206.967	-632.240	-128.859	1.870
	3800	66.94	245.682	187.694	220.356	-633.435	-100,860	7386.1
	3900 4000 000	66.94 44.94	247.421 249.116	189.203 190.680	227.050 233.744	-634,023 -634,593	-86.837 -72.800	1.163 0.951
	4100	66.944	250.769	192.125	240.439	-635.135	-58.748	0.748
	4300	66.94	253.957	194.928	253.828	-636.125	-30.608	0.372
	4 8 8 8 8	8.98 4.94 4.44	255.496 257.001	196.287	260 <i>5</i> 22 267.216	-636.568 -636.975	-16.521 -2.425	0.196 0.028
	4600	66.944	258.472	198.926	273.911	-637.339	11.680	-0.133
	44 808 800	86.88 44.88	259.912	200.209	280.605	-637.649	25.790 30.909	-0.287
	488	66.944	262.702	202.703	293.994	-638.206	\$4.034	-0.576
	3		5	016:507	200000	74.800	5	7117
-								

Ba₁O₁(cr,l)

Barium Oxide (BaO)

Refer to the individual tables for details.

0 to 2286 K crystal above 2286 K liquid

7/K 0 100 200 298.15		3		1-(1. I.mol-1	t Lund-1	
0 100 200 298.15	ಚಿ	S -[G	-[G*-H'(T,)]/T	H*-H*(T,)	i	₽ <i>G</i> •	log K,
100 200 298.15	0.000	0.000	INFINITE	-9.983	-546.833	-546.833	INFINITE
298.15	31.941	27.301	111.119	-8.382	-548.383	- 539.039	281.565
	47.279	72.069	72.069	0000	-548.104	-520.382	91.169
300	47.329	72.362	72.070	0.088	-548.096	-520,210	20.577
<u>\$</u> \$	49.898	86.347 97.694	73.960	4.955	-547.731	-510.977	66.727
009	53.220	107.267	81.773	15.296	-548.939	-492.436	42.870
2 2 2 3 3	54.396 55.405	115.561	86 021 90 180	20.678	-548.999	-483.025 -473.558	36.044
8	56.312	129.471	94.186	31.756	-549.526	-464.063	26.934
0001	57.153	135.448	98.018	37.429	-549.490	-454.569	23.744
200	58.706	146.007	101.674	43.185	-557.766	-444.261 -433.937	21.096
300	59.442	150.735	108.485	54.925	-557.776	-423.613	17.021
20051	60.869	159.167	704	66.957	-557.244	-403.006	14.034
1600	61.563	163.292	117.618	73.079	-556.829	-392.737	12.822
1700	62.250	167 045	120.416	79.269	-556.342	-382.496	11.753
88	63.605	174.043	125.698	91.855	-555.239	-362.105	9.955
2000	64.275	177.323	128.198	98.249	-554.665	-351.955	9.192
2200 2300 2300	65.605 65.605	180.475	130.613	104,710	-554.107 -693.105	-341.833	7.749
2286.000	66.177	186 038	134.899	116.904	17	AL <> LIQUID	
2286.000	4 5	199117	134.899	173 480		IKANSITION	
8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	86.94 44.84	214.919	138.623	183.111	-632.049	-296.057	44.8
2500	86.94	20717	141.730	908.800	-631.116	770.787	5.301
2700	86.94 44.44	222.804	147.547	203.194	-629.932	-254.206	4918
2800 3000	66.944	225.239	150,278	209.889	-629.655	-240.296	4.483
3000	66.944	229.857	155.432	223.278	-629.640	-212.489	3.700
3100	66.944	232.053	157.868	229.972	-629.857	-198,580	3,346
3300	86.94	236.238	162.492	243.361	-630.614	-170.735	2.703
3400	66.944	238.236	164.691	250.055	-631.111	-156.792	2,409
3600	66.944	242.063	168.884	263.444	-632.240	-128.859	1.870
3700	66.944	243.897	170.887	270.138	-632.837	-114.868	1.622
3008	86.98 44.44	247.421	174,722	283.527	-634.023	-86.837	1.163
4000	66.944	249.116	176.561	290,222	-634.593	-72.800	0.951
4100	66.944	250.769	178.351	296.916	-635.135	-58.748	0.748
\$ 6	66.94	253.957	181.794	310,305	-636.125	-30.608	0.372
64 60 60 60 60 60	66.94 6.94	255.496	183.451	316,999	-636,568	-16.521	0.196 0.038
609	66.944	758.477	186649	330 388	-637,339	1 689	-0.133
4100	66.944	259.912	188.192	337.082	-637.649	25.790	-0.287
84 4 808 800 800	8 8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	262.702	189.701	350.471	-638.206	54.034	-0.434
2000	66.944	264.054	192.621	357.166	-638.442	68.163	-0.712

0
Ψ,
a
α

CURRENT: June 1974 (1 bar)

റ
Ba(
9
흤
0
듬
ari
Ш

PREVIOUS June 1974 (1 atm)

GAS
⋖
Õ
•
_1
7
DE
_

Barium Oxide (BaO)

M_r = 153.3294 Barium Oxide (BaO)

Ba₁O₁(g)

$\Delta_t H^0(0 \text{ K}) = -121.6 \pm 8$	$\Delta_{\rm r}H^{\circ}(298.15~{\rm K}) = -123.8 \pm 8$
) = 235.457 ± 0.33 J·K ⁻¹ ·mol ⁻¹

Enthal		_	7 6	ξ, ·	J 4	· v	٠	_	-	. 2	=	2:	. 4	5	91
$\Delta_t H^o(0 \text{ K}) = -121.6 \pm 8 \text{ KJ·mol}^{-1}$ $\Delta_t H^o(298.15 \text{ K}) = -123.8 \pm 8 \text{ KJ·mol}^{-1}$		س _د ند. دس ⁻¹	2.054	2.4	2.4	[1.64]	49:1	[2]		:	:	:	:	[3.6]	3.6
Δ _t H°(0 K) = - (298.15 K) = -		we, cm	669.81	448.3	448.3	[499.7]	499.7	[480]	:	:	:	:	:	[488]	488.
Δ_H^2	$(\sigma = 1)$	a _e , cm -i	0.00139	0.0014	0.0014	[0.0011]	0.00107	[0.001]	:	:	:	:	:	:	:
	Electronic and Molecular Constants ($\sigma = 1$)	Be, cm	0.31261	0.2244	0.2244	[0.2583]	0.25832	[0.230]	:	:	:	:	:	[0.243]	:
	nic and Mole	r, A	1.9397	2.289	2.289	[2.133]	2.133	[2.26]	:	:	:	:	:	[2.20]	:
	Electro	8	-	9	7	33	_	3	9	7	~	-	_	9	7
3 J·K ⁻¹ ·mol ⁻¹		€, cm ^{−1}	0.0	17372	17568.	[14000]	16722.	[22000]	[22000]	[24000]	[24000]	[24000]	[28000]	[32000]	32775.
235.457 ± 0.3:		State	χıχ	$^3\Pi$	И,.∀	Ņ	Α¹Σ•	Ņ	۲.	۲.	Μ̈́	Ν̈́	<u>ķ</u> 1	п́	В'П
S°(298.15 K) = 235,457 ± 0.33 J·K ⁻¹ ·mol ⁻¹		Source	Ī	-	-	•	291	'n	'n	'n	'n	v s	'n	'n	7

Enthalpy of Formation

We adop $D_0^2 = 131.0 \pm 2$ kcal·mol⁻¹ and $\Delta_1H^*(298.15 \text{ K}) = -29.6 \pm 2$ kcal·mol⁻¹ based on equilibria and vaporization data analyza below. The results are in excellent agreement, even though δS varies widely. The dissociation energy is confirmed also by values of 132 ± 5 (electron impact), $^{17} \ge 131.4$ (crossed-beam chemiluminescence), 18 and $131 \text{ kcal·mol}^{-1}$ (flame study, 1973). We have adjusted that evalue to make it roughly consistent with our Gibbs energy functions. Less reliable data were reviewed by Schoffield. Our analys supports the conclusions of Brewer and Rosenblatt. 20

į		,	į		85		K), kcal mol-1	$\Delta_t H'(298.15 \text{ K})$, kcal mol ⁻¹ $\Delta_t H'(298.15 \text{ K})$, D_0^6
Source	Method	Keaction	I.K	Points	cal·K ·mol ·	Znd law	3rd law	kcal·mol_,
⁷ Kalff (1970)	Flame photometric	Υ	~2680-2860	12	19. ± 4	49. ± 11	-4.7 ± 2.5	$-29.6 \pm 3 131.0$
⁵ Colin (1964)	Knudsen mass spec.	В	1934-2069	m	-11. ± 10	$-29. \pm 20$	-6.8 ± 2.0	$-29.1 \pm 3 130.5$
⁹ Semenov (1972)	1 1 1	ပ	1423-1723	Eqn.	3.7	108.1	102.2 ± 1.0	$-28.8 \pm 2 \ 130.2$
¹⁰ Newbury (1968)	Knudsen thermobal.	ပ	1563-1853	11	5.9 ± 0.9	111.8 ± 1.5	101.8 ± 1.3	$-29.2 \pm 2 130.6$
	1 1	ပ	1503-1862	45	4.2 ± 0.5	109.2 ± 0.8	102.1 ± 1.0	$-28.9 \pm 2 \ 130.3$
	Knudsen mass spec.	ပ	1590-1892	=	4.8 ± 0.2	110.1 ± 0.3	101.7 ± 1.1	$-29.3 \pm 2 130.8$
	2 2	ပ	1481-1917	38	5.6 ± 0.3	111.4 ± 0.5	101.8 ± 1.4	$-29.2 \pm 2 130.6$
	1 1	ပ	1365-1910	1 29	6.1 ± 0.4	112.1 ± 0.6	102.1 ± 1.6	$-28.9 \pm 2 130.3$
"Inghram (1955)	:	ပ	1530-1758	4	-2.8 ± 6.1	99. ± 10	103.2 ± 1.7	$-27.8 \pm 2 129.2$
¹² Shchukarev (1957,	² Shchukarev (1957) Langmuir mass spec.	ပ	~1173-1473		-6.1	93.3	101.4 ± 0.6	$-29.6 \pm 2 \ 131.0$
"Novikov (1961)	Knudsen effusion	ပ	~1140-1470	Edn.	-2.0	97.2	99.8 ± 1.5	$-31.2 \pm 2 132.6$
¹⁴ Blewett (1939)	:	ပ	1526-1800		-0.5 ± 2.5	103.1 ± 4.1	103.9 ± 4.3	$-27.1 \pm 3 128.5$
¹⁵ Herrmann (1937)	Langmuir	, ပ	~1200-1560	Eqn.	.91	124.	101.8 ± 1.6	$-29.2 \pm 3 \ 130.7$
¹⁶ Claassen (1933)	•	ပ	1223-1475		-4.5 ± 1.5	95.9 ± 2.1	0.1 ± 0.101	$-29.1 \pm 2 130.5$

Heat Capacity and Entropy

C) BaO(cr) = BaO(g).

B) Ba(g) + SO(g) = BaO(g) + S(g);

A) $Ba(g) + CO_2(g) = BaO(g) + CO(g)$;

*Reactions

long-standing controversy over low-lying electronic levels and confirmed that X¹Z¹'s the ground state.⁴ We estimate the other potential low-lying state (¹Z¹) at 14000 cm⁻¹¹ by assuming that it lies 3000 ± 2500 cm⁻¹¹¹ below the isoconfigurational A state. Other predicted state and their vibrational-rotational constants are estimated in isoconfigurational groups by comparison with BeO, MgO, CaO and SrO Comparisons are facilitated by listing the states in the isoconfigurational order of MgO.⁵ Our thermodynamic functions correspond to a "effective" ground state with g = 1 instead of g = 6. ™ 19 Our functions are calculated using first-order anharmonic corrections to Q; and C. Electronic levels (T_a) and vibrational-rotational constants of the observed states are from Field' and Rosen. The long-sought a ¹II and A' states of CaO, SrO and BaO were characterized by Field' using a new method for assignment of perturbations. This study resolved in the partition function $Q = Q_1 \Sigma Q_1' Q_2' g$, $\exp(-c_2 \epsilon / T)$.

- ₁₀ :	Enthalpy R	eference Te	mperature	Enthalpy Reference Temperature = T, = 298.15 K	¥	Standard Sta	Standard State Pressure = p° = 0.1 MPa	p° = 0.1 MPa	
	7.K	្រ	S{G	-[G*-H'(T,)]/T	H°-H°(T,)	_K-mo- Δ _' H _* Δ	Φ'Ο'	log Kr	
	° 88	0. 29.160 30.735	0. 202.190 222.767	1051233 263.233 238.400	-9.014 -6.104 -3.127	-121.607 -121.848 -122.870	-121.607 -129.993 -137.747	INFINITE 67.901 35.976	
	298.15	32 897	235.457	235.457	0	-123.846	-144.839	25.375	
	& &	32.932 34.443	235.661 245.359	235.458 236.770	0.061 3.435	-123.865 -124.993	- 144.969 - 151.844	25.241 19.829	
	800	35,385	253.154	239.293	6.930	-126.845	-158.363	16.544	
	35	36.393	259.662	242.160 245.068	10.501	-129.476 -131.298	-164,410 -170,100	14.313	
	88	36.679 36.889	270.121 274.454	247.901 250.616	17.776 21.455	-133.639 -135.569	-175.478 -180.592	11.458	
	000	37 049	278.350	253.197	25.152	-137.510	-185.491	689.6	
	<u> </u>	37.281	281.887	255.647 257.971	28.864 32.587	-147.829 -150.023	- 189.375	8.993 8.403	
	1300	37.370	288.114	260.176	36.319	-152.124	-196.554	7.898	
	1200	37.520	293 472	264.267	43.809	- 156.135	-203.093	7.072	
	91. 00. 00.	37.593 37.671	295.896 298.178	266.169 267.985	47.564 51.327	-158.085 -160.026	-206.160 -209.105	6.730 6.425	
	<u>88</u>	37.762 37.873	300,333	269.723 271.388	55.099 58.880	-161.977 -163.956	-211.936 -214 658	6 150 5.901	
paz/	2000	38.014	304.324	272.987	62.675	-165.982	-217.274	5.675	
s of	2200	38.195	306.183	274.523 276.003	66.485 70.315	-168.074 -309.769	-219 787	5.467 5.148	
ysis	2400 2400	38.720 39.086	309.679	277.430 278.809	74.172	-311.204	-212.568	4.828 4.532	
	2500	39.535	312.939	280.142	81.992	-314.672	-203.850	4.259	
او	2002	40.079 40.725	314.500	281.434 282.687	85.972 90.011	-316.684	-199.378 -194.825	3.769	
?	2800 2800	41.483	317.519	283.904 285.089	94.121 98.312	-321.166 -323.579	- 190.190 - 185.470	3.548 3.341	
٦	3000	43,353	320.442	286.243	102.596	-326.064	- 180.665	3.146	
	3200	45.711	323,312	287.369	106.986	-328.585	-175.777	2.788	
2 4	3400	48.539	324.739	289.548	116.132	-333.585	-165.760	2.624	
۰ ۳	3200	20.112	327.595	291.640	125.844	-338,308	-155.447	2.320	
	3300	53.519	329.030	292.659 293.661	130.937	-340.490 -342.516	-150.191 -144.877	2045 2045	
٠ .	3800	55.323	331.924	294.649	141.643	-344,367	-139.509	1.918	
· ·	4000	59.044	334.855	296.586	153.078	-347.479	-128.643	1.680	
, .	4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60.922 62.784	336.337 337.827	297.537 298.479	159.077 165.262	-348.717 -349.737	-123.157 -117.643	1,569	
9 1	84 90 90 90	64.609 66.380	339.326 340.832	299.411 300.336	171.632	-350.540 -351.127	-112.107 -106.555	1362 1265	
٠.	4500	68.076	342.342	301.252	184.906	-351.505	-100.992	1.172	
	4100	71.180	345.371	303.065	191.794	-351.675	-95.423	0.999	
**	4 4 4 4 6 6 6 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	72.561	346.885 348.394	303.962 304.854	206.026 213.346	-351.439 -351.073	-84.287 -78.725	0.917	
	2000	74.928	349.896	305.740	220.784	-350.565	-73.172	0.764	
	5200 5200	75.901 76.729	351.390 352.872	306.620	228.327 235.960	-349.905	-67.632 -62.105	0.693	
Ę.	2300	77.413	355.793	308.365 309.230	243.668	-348,300	-56.593	0.558	
e :	2200	78.354	357.227	310.090	259.254	-346,348	-45.624	0.433	
ates	\$600 \$700	78.620	358.641	310.944	267.104	-345.252	-40.173	0.375	
Š.	280	78.77	361.404	312.637	282.851	-343.058	-29.318	0.264	
E (0009	78.489	364071	314,307	298.585	-340.718	-18.560	0 162	
<u>.</u>									

Continued on page 359

M_r = 169.39 Barium Sulfide (BaS)

 $\Delta_t H^{\circ}(0 \text{ K}) = -462.7 \pm 2.1 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -463.6 \pm 2.1 \text{ kJ·mol}^{-1}$

 $S^{\circ}(298.15 \text{ K}) = 78.4 \pm 1.3 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Barium Sulfide (BaS)

Sabatier measured the enthalpy of solution of BaS in hydrochloric acid solution as $\Delta H^{*}(284\,\mathrm{K}) = -27.0 \pm 1.0\,\mathrm{kcal\cdot mol^{-1}}$ for BaS(cr) + 2HCl(100 H₂O, aq) \rightarrow BaCl₂(100 H₂O, aq) + H₂S(aq). We derive $\Delta_t H^0$ (298.15 K) = -111.0 \pm 2.0 kcal·mol⁻¹ based on the following auxiliary data: $\Delta_t H^0$ (HCl·100 H₂O, aq, 298.15 K) = -39.657 kcal·mol⁻¹, $\Delta_t H^0$ (H₂S, aq, 298.15 K) = -9.5 kcal·mol⁻¹, and **Enthalpy of Formation**

 $\Delta_t H^0$ (BaCl₂ 100 H₂O, aq, 298.15 K) = -207.803 kcal·mol^{-1,1} Mourlot also measured the enthalpy of solution of BaS in hydrochloric acid solution as $\Delta_i H^o = -2735 \pm 1.0$ kcal·mol⁻¹ from which we calculate $\Delta_i H^o(298.15 \text{ K}) = -110.6 \pm 2$ kcal·mol⁻¹ using the same auxiliary Our analyses of equilibrium studies of Okuno, 2 Culver and Hamdorf, 8 Nikonov, 7 Schenck and Hammerschmid, and Colin et al., are listed data. The uncertainties quoted reflect the correction to 298.15 K and the ambiguity of the exact solution composition

partially based on the estimated C, data (above 300 K). The enthalpy of formation of BaS(cr) derived from equilibrium studies is in good agreement with that derived from enthalpy of solution studies. 1-4 We discount the studies of Nikonov and of Colin et al. 9 More information below. The calculated 3rd law A,H°(298.15 K) may have an uncertainty of 0.5 kcal·mol-1 since the JANAF Gibbs energy functions are is given in the SrS(cr) table.10

 $\Lambda.H^{\circ}(\mathbb{R}^{3}\mathbb{S} \times \mathbb{R}) = -110 \otimes + 0 \otimes 1000$

A weigined avera	ge, Apri (Bas	o, ct, 298.1	o K) = -110.	.8 ± 0.5 Kca	A weighted average, $\Delta_t H$ (bas, cf. 298.13 K) = -110.8 \pm 0.3 Kcal-mol , is adopted in the tabulation.	d in the tabulation.	
Source	Method Reaction* T/K	Reaction	T/K	No. of Points	8S cal·K ⁻¹ ·mol ⁻¹	δS Δ,H°(298.15 K), kcal·mol ⁻¹ Δ _t H°(298.15 K) cal·K ⁻¹ ·mol ⁻¹ 2nd law 3rd law kcal·mol ⁻¹	Δ _t H°(298.15 K) kcal·mol ⁻¹
⁵ Okuno (1935)	Equilibrium	4	973-1173	5	0.85 ± 0.75	0.85 ± 0.75 -6.27 ± 0.81 -7.18 ± 0.25 -110.29 ± 1.0	5 -110.29 ± 1.0
*Culver (1955)	Equilibrium	В	1073-1373	Equation	-2.89	6.14 9.68 ± 0.75	5 -111.23 ± 2.5
Nikonov (1961)	Vaporization	ر د	1400-1600	Equation	2.2	-106.38 -109.74 ± 0.6	
*Schenck (1933)	Equilibrium	ပ	1355-1399	. 2	-11.4	52.6 68.31 ± 0.7	1
⁹ Colin et al. (1964) Mass Spec	Mass Spec	ш	1846-2120	0	-17.6 ± 7.5	$-59.4 \pm 15.0 -24.2 \pm 4.2$	-118.6 ± 12
*Reactions:	A) BaSO4(cr B) BaSO4(cr	r) + 4CO(g r) + 4H ₂ (g)	A) BaSO ₄ (cr) + 4CO(g) = BaS(cr) + 4CO ₂ (g) B) BaSO ₄ (cr) + 4H ₂ (g) = BaS(cr) + 4H ₂ O(g)	4CO ₂ (g) 1H ₂ O(g)	D) BaSO ₄ (cr E) Ba(g) + 23	D) BaSO ₄ (cr) + S ₂ (g) = BaS(cr) + 2SO ₂ (g) E) Ba(g) + 2S ₂ (g) = BaS(cr) + 3S(g)	

B) $BaSO_4(cr) + 4H_2(g) = BaS(cr) + 4H_2O(g)$ C) BaS(g) = BaS(cr)

Heat Capacity and Entropy

King and Weller¹¹ measured the low temperature heat capacities from 54-296 K. Their smooth values are adopted in the tabulation. The entropy, $S'(298.15 \text{ K}) = 18.7 \pm 0.2 \text{ cal·K}^{-1} \text{mol}^{-1}$, is based on $S'(51 \text{ K}) = 2.60 \text{ cal·K}^{-1} \text{mol}^{-1}$ as extrapolated by King and Weller using Debye and Einstein functions ($\theta_0 = 159$, $\theta_E = 267$). The C_ρ^* values above 300 K are estimated by graphical extrapolation combined with method B of Kubaschewski *et al.*¹²

Fusion Data

Literature melting data for BaS(cr) are not available. It has been reported 13 44 that BaS melts above 2500 K but this value must be looked upon as a lower limit

¹²O. Kubaschewski, E. L. Evans, and C. B. Alcock, "Metallurgical Thermochemistry," 4th ed., Pergamon Press, Oxford, (1967).

¹³K. C. Mills, "Thermodynamic Data for Inorganic Sulfides, Selenides, and Tellurides," Butterworths, London, (1974).

¹⁴L. Brewer *et al.*, U. S. Atomic Energy Commission Publ. AECD-2242(MB-LB-18-5) (1948).

-	Enthalpy R	eference T	emperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$		Standard State Pressure = p = 0.1 MPa	e Pressure = 1	p = 0.1 MPa
_			L·K-1mol-			K-mol-'		
	7.1	ະ	S• -{G	$-[G^{\bullet}-H^{\bullet}(T_{*})]T$	$H^{\bullet}-H^{\bullet}(T_i)$	$\Delta_i H^{\bullet}$	Φ.Ο.	log K,
	0	0.000	0000	INFINITE	-10.458	-462.722	-462,722	INFINITE
<u>-</u>	8	36,317	29.938	120,037	-9.010	-463.661	-461.995	241,321
,	200	46.610	59.176	82.843	-4.733	-463.571	-460.350	120.231
Ð	298.15	49.374	78.395	78.395	0.000	-463.587	-458.776	80.376
~	300	49.407	78.701	78.396	160'0	-463.590	-458.746	79.875
. :	400	51.128	93.153	80.355	5.119	-466.176	-457,002	59 678
_	8	52.718	104.737	84.110	10.314	-468.728	-454,445	47.476
_	8	54.057	114,473	88.380		-471.593	-451.302	39,289
멎	92	55.061	122,882	227.22		-473.298	-447.793	33.415
·	800	55.982	130,296	96,965	26.665	-475.283	-444,006	28.991
_	8	56.777	136.935	101.043		-529.809	-438.930	25.475
	<u>00</u>	57.656	142,963	104.938	38.025	-529,849	-428.829	22,400
-	0011	58.430	148.494	108,650	43.829	-538.193	-417.908	19.845
-	1200	59.204	153.612	112,186		-538,341	-406,965	17.715
	1300	59.983	158.381	115.558		-538,326	-396.017	15.912
_	1400	60.752	162.855	118.778		-538.172	-385.075	14,367
1	1500	61.500	167.071	121.859		-537.901	-374.148	13.029
	009	62.258	171.065	124.810	74.007	-537,534	-363,243	11.859
	200	63.037	174,862	127.644		-537.090	-352,363	10.827
<u> </u>	<u>8</u>	63,806	178.487	130,369		-536,588	-341.511	9.910
	<u>8</u>	64.554	181.957	132,993		-536.051	-330.688	160'6
	2000	65.312	185.288	135.525		-535.498	-319.894	8.355
	2100	980.99	188.493	137.971	106.095	-534.950	-309.127	7.689
	2200	98.99	191,585	140,339	112.742	-673.947	-293.011	6.957
_	2300	67.640	194,574	142.632	119.467	-672.630	-275.725	6.262
	2400	68.408	197.469	144.857	126.270	-671.468	-258.494	5.626
	2500	69.156	777,002	147.018	133.148	-670.463	-241.308	5.042
	2600	69.915	203.004	149.119	140,102	609.699-	-224.159	4.503
	2700	70.694	205.657	151.164	147.132	-668.895	-207.041	4.005
_	2800	71.463	208.242	153.157	154,240	-668,304	- 189.946	3.543
	2900	72.221	210,763	155.100	161.424	-667,818	- 172.871	3.114
	3000	72.969	213.224	156.996	168.684	-667.418	- 155.811	2.713
-								

Barium Sulfide (BaS)

PREVIOUS:

CURRENT: September 1977

References
M. Sabatier, Ann. Chim. Phys. 22, 5–98 (1881).
U. S. Nat. Bur. Stand., Tech. Note 270–3, 264 pp. (1968).
U. S. Nat. Bur. Stand., Tech. Note 270–6, 119 pp. (1971).
U. S. Nat. Bur. Stand., Tech. Note 270–6, 119 pp. (1971).
A. Mourlot, Ann. Chim. Phys. 17, 510 (1899).
T. Okuno, J. Soc. Chem. Ind. Japan 38, 421 (1935).
R. V. Culver and C. J. Hamdorf, J. Appl. Chem. 5, 303 (1955).
R. V. Culver and C. J. Hamdorf, J. Appl. Chem. 5, 303 (1955).
R. Schenck and F. Hammerschmidt, Z. anorg. allgem. Chem. 210, 305 (1933).
R. Colin, P. Goldfinger, and M. Jennehomme, Trans. Fanday Soc. 60, 306 (1964).
"J. ANAF Thermochemical Tables. SrS(cr), 9–30–77.

J. Phys. Chem. Ref. Data, Monograph 9

CURRENT: September 1977 (1 bar)

PREVIOUS. September 1977 (1 atm)

	J	
•	1	
t	ũ	
ř		
:	=	

GAS

 $S^{(298.15 \text{ K})} = 248.861 \pm 0.42 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Barium Sulfide (BaS)

 $\Delta_t H^{\circ}(0 \text{ K}) = 39.55 \pm 12.6 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 37.78 \pm 12.6 \text{ kJ} \cdot \text{mol}^{-1}$

M_r = 169.39 Barium Sulfide (BaS)

Ba₁S₁(g)

	ω _c , cm ⁻¹ ω _c x _c , cm ⁻¹		[294.1] [3.075]				
nts (0 - 1)	α., cm -1	0.000314	[0.000713]	[0.0004]	[0.0004]	0.000713	0.000439
olecular Consta	Be, cm-1	0.103160	[0.09339]	[0.0784]	[0.0784]	0.09339	0.08591
tronic and Mc	200	2.5067	[2.635]	[2.88]	[2.88]	2.635	2 7468
Elect	∞	-	m	9	7	_	-
	€, cm ¹¹	0.0	[12000.]	[14000.]	[14200.]	14450.	26997 74
	State	χ ₁ Σ•	Ņ	Ľ.	Ľ,	Α'n	B ¹ 5+
	Source	1.2		:		-	_

Enthalpy of Formation

that results derived from a 3rd law analysis are preferred. Our value of the enthalpy of formation is intermediate between $\Delta_1H^2(298.15 \, K) = 7.3 \pm 5 \, \text{kcal·mol}^{-1}$ obtained by Mills* (using different Gibbs energy functions) in a recent critical compilation and $\Delta_1H^2(298.15 \, K) = 1.20 \, \text{kcal·mol}^{-1}$ we calculate $\Delta_2H^2(298.15 \, K) = 1.20 \, \text{kcal·mol}^{-1}$ we calculate $\Delta_2H^2(298.15 \, K) = 1.20 \, \text{kcal·mol}^{-1}$, we calculate $\Delta_2H^2(298.15 \, K) = 1.20 \, \text{kcal·mol}^{-1}$, we calculate $\Delta_2H^2(298.15 \, K) = 1.20 \, \text{kcal·mol}^{-1}$, and the $\Delta_2H^2(298.15 \, K) = 1.20 \, \text{kcal·mol}^{-1}$ after an ionic correction due to Hildenbrand, yields the dissociation energy of 99.8 kcal·mol}^{-1} for the products $\Delta_2H^2(29.15 \, K) = 1.20 \, \text{kcal·mol}^{-1}$. Buth of these values $\Delta_2H^2(29.15 \, K) = 1.20 \, \text{kcal·mol}^{-1}$. Both of these values metric study of Colin et al. Our reanalysis of their ion intensity data is given below. Although the large drift would suggest a larger uncertainty in the derived quantities (A_tH°, D3), our experience with related work on other alkaline earth sulfides and oxides by the same authors indicates The adopted value of the enthalpy of formation, $\Delta_t H^o(BaS, g, 298.15 \text{ K}) = 9.03 \pm 3.0 \text{ kcal mol}^{-1}$, is based on the Knudsen mass-spectroare uncertain due to the very long vibrational extrapolation.

Source	Method	Reaction*	<i>T</i> /K	No. of Points	δS Δ _r H°(298 15 K cal·K ⁻¹ mol ⁻¹ 2nd law	Δ,H°(298 15 K), kcal-mol- 2nd law 3rd law	, kcal·mol ⁻¹ 3rd law	Δ ₁ H°(298.15 K), D ₀ kcal·mol ⁻¹
Colin (1964) Mass Spec.	Mass Spec.	4	1846-2120 10	2	-2.5 ± 4.9	-3.37 ± 9.8	1.68 ± 2.5	9.03 ± 3.0 99.2 ± 3.0

Reaction: A) Ba(g) + $S_2(g)$ = BaS(g) + S(g)

Heat Capacity and Entropy

microwave work of Tremann et al. Other low-lying electronic states and their vibrational-rotational constants are estimated in isoconfigu-Electronic levels (T_{so.}) and vibrational-rotational constants of the observed states are from the optical study of Barrow et al.¹ and the rational groups by analogy with BaO* and from trends observed in the known states of the other alkaline-earth oxides and sulfides. Thermodynamic functions are calculated using first–order anharmonic corrections to Q² and Q², in the partition function Q = Q.ΣQ¦Q²₀, exp(−c,ε√T). Uncertainty in the energy and molecular constants for the estimated states may contribute as much as 2–3 cal-K⁻¹-mol⁻¹ to S° at 3000 K. The molecular constants have been corrected to the natural isotopic abundances.

References

'R. F. Barrow, W. G. Burton, and P. A. Jones, Trans. Faraday Soc 67, 902 (1971).

2. Tiemann, Ch. Ryzlewics, and T. Torring, Z. Naturforsch. 31A, 128 (1976).

3. R. Colin, P. Goldfinger, and M. Jeunchomme, Trans. Faraday Soc. 60, 306 (1964).

4. D. L. Hildenbrand, "Advance in High Temperature Chemistry." Vol. 1, L. Eyring (ed.) pp. 198–206, Academic Press, New York, (1967).

3. W. Field, C. R. Jones, and H. P. Broida, J. Chem. Phys. 60, 4377 (1974).

4. C. Mills, "Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides," Butterworths, London, (1974).

7. S. Nat. Bur. Stand. Tech. Note 270–6, 119 pp. (1971).

JANAF Thermochemical Tablev. Ba(g), 12-31-70; S₂(g), 12-31-65; S(g), 6-30-71, BaO(g), 6-30-74. Nat. Bur. Stand. Tech. Note 270-6, 119 pp. (1971).

	Enthalpy R	eference To	I-K-'mol-	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $J \cdot K^{-1} \text{mol}^{-1}$	×	Standard Sta kI-mol ⁻¹	Standard State Pressure = $p^* = 0.1 \text{ MPa}$ k1·moi ⁻¹	p* = 0.1 MPa
	rÆ	ដ	.s -[C	•-H°(T,)]/T	$H^{\bullet}-H^{\circ}(T_t)$		Δ_{iG}	log Kr
	- 85 - 85	30.195	0. 212.875	279.140	-9.556 -6.627	39.549	39.549	- 12.256
	298.15	35.531	248.861	248.861	0	37.782	-8.232	1.442
	88	35.552	249.081	248.862	0.066	37.753	-8.517	1.483
	88	36.789	267.597	252.946	7326	29.653	-37.494	3.917
	88	37.047	274.329	255.965	11.018	25.139	-50.484	4.395
_	8	37.342	285.032	261.956	18.461	17.881	-74.630	4.873
	88	37.438 37.515	289.436	264.769 267.437	22.200	-38.543 -40.558	-84.914 -89.959	4.928 4.699
	001	37.581	296.963	269.961	29.702	-50.951	-93.981	4.463
	300	37.705	303.251	274 612	33.404	-55.396	-97 792	4.257 2.07
	1500	37.776	306.048	276.759	41.005	-57.505	-104.879	3.913
-	1600	37,990	311.105	280 743	48.579	-61.593	-111.366	3636
_	88	38.161	313.413	282.597	52,386	-63.607	-114.415	3.516
_	88	38.721	317.685	286.069	60009	-67.645	-120.164	3.304
_	2000	39.146	319.681	287.700	63.961	-69.693	-122.875	3.209
	2100	39.691	321.604	289.269	67.902	-71 774	-125.484	3.121
	2300	41.193	325.277	292.242	75.981	-214748	-118.460	2690
	250 2500	42.168 43.296	328.794	293.656 295.026	80.148 84.420	-216.221	-114.242	2.486 2.298
	2600	44.576	330.517	296.358	88.812	-219.530	-105.613	2.122
	7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00	45.998	333.926	298 920	93.340 98.016	-221.318	-101 198	1 958
	2800 3000	49.216	335.623	300.157	102.853	-225.020	-92.167	0997
_	3100	52.795	339.022	302.554	113.050	-228.680	-82.880	1397
	3200	54.657	340.728	303.721	118 422	-230.418	-78.149	1.276
	88	58.384 58.384	347.153	305.998	129.728	-233.569	- 73.300	1.053
	3200	60.193	345.872	307.113	135.657	-234.951	-63.659	0.950
	3,200	63.570	349.312	308.213	148.040	-236 184	-58.747	0.852
	3800	65.093	351.027	310.376	154.474	-238.178	-48.832	0.671
	56 80 80	66.482 67.723	352.736 354.436	312.494	161.054	-238.936 -239.543	-43.839	0.507
	4100	68.809	356.122	313,538	174.593	-240.004	-33,805	0.431
	4200	70.494	359.441	314.572	181.522	-240.331 -240.541	-28.772 -23.732	0.288
	4 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	71.094	361.069 362.672	316.611	195.615	-240.647	-18.688	0.222
	4600	71.835	364.248	318.613	209.918	-240.600	-8.600	0.098
	4 4 8 8 8 8	72.020	367.311	320.579	224.312	-240.296	1.479	-0.016
	2000 2000	71.931	368.795	321.548	231,510	-240.099	6.513	-0.069
	2100	71.451	371.664	323 458	245.855	-239.662	16.568	-0.170
	2200	71.085	373.048	324.398	252.982	-239.460	21.590	-0217
	8 8	70.158	375.715	326.250	267.110	-239.123	31.624	-0.306 -0.306
	2200	619:69	376,997	327.161	274.100	-238.973	36.632	-0.348
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	69.043	378.246	328.062	281.033	-238.837	41.635	-0.388
	2800	67.814	380.648	329.834	294.720	-238.788	51.648	-0.465
	000	66.529	381.802	331.566	308.155	-238.821	50.050 61.643	-0.537

Continuation of discussions of selected Ba species

Continued from page 320

⁶R. G. Hirst, A. J. King and F. A. Kanda, J. Phys. Chem. **60**, 302 (1956).
⁷D. V. Keller, F. A. Kanda and A. J. King, J. Phys. Chem. **62**, 732 (1958).

¹D. T. Peterson and M. Indig, J. Amer. Chem. Soc. 82, 5645 (1960).

P. A. Kanda, R. M. Stevens and D. V. Keller, J. Phys. Chem. 69, 3867 (1965).
¹⁰J. P. Bastide, C. Susse and R. Epain, C. R. Acad. Sci., Paris, Ser. C 267, 857 (1968).

¹¹H. G. Drickamer, in "Solid State Physics," Vol. 17, pp. 101-3, Academic Press, New York, (1965).

¹²A. Jayaraman, W. Klement and G. C. Kennedy, Phys. Rev. Letters 10, 387 (1963).

¹³Gmelin's Handbuch, Barium Erg. 30, 206-7 and 220-224 (1960).

D. Barnett, R. B. Bennion and H. T. Hall, Science 141 (3580) 534 (1963). ¹⁴F. F. Voronov and O. V. Stal'gorova, Soviet Physics JETP 22, 524 (1966).

Continued from page 323

A. M. Mellor, J. Chem. Phys. 51, 1678 (1969).
 R. H. Ewing and A. M. Mellor, J. Chem. Phys. 53, 2983 (1970).
 L.C. E. Moore, "Atomic Energy Levels," Vol. 3, U. S. Nat. Bur. Stand. Circ. 467, (1958).
 F.W. R. S. Garton and K. Codling, Proc. Phys. Soc. 75, 87 (1960).
 W. R. S. Garton, W. H. Parkinson and E. M. Reeves, Proc. Phys. Soc. 80, 860 (1962).
 W. R. S. Garton, F. S. Tomkins, Astrophys. J. 158, 1219 (1969).

¹⁵R. D. Hudson, V. L. Carter and P. A. Young, Phys. Rev. A2, 643 (1970).

¹⁶J. Hilsenrath, C. G. Messina and W. H. Evans, AD606163, (1964).
¹⁷L. V. Gurvich et al., "Thermodynamic Properties of Individual Substances," Vol. I and II, Moscow, 1962; English transl., AD65659, (March, 1967)

Continued from page 334

¹⁰David White, Univ. of Pennylvania, personal communication, 1972; S. Hemple, U. S. Army Foreign Science and

¹¹V. Calder, D. E. Mann, K. S. Seshadri, M. Allavena and D. White, J. Chem. Phys. 51, 2093 (1969) Technolog:y Center, Charlottesville, Va., personal comm., (1973).

¹²J. W. Hastie, R. H. Hauge and J. L. Margrave, High Temp. Sci. 3, 56 (1971).

¹¹V. I. Baikov, Optics and Spectroscopy Z7, 502 (1969).

¹⁴P. A. Akishin, V. P. Spiridonov, G. A. Solobev and V. A. Naumov, Zh. Fiz. Khim. 32, 58 (1958); Kristallografiya

2, 475 (1957). ¹⁵L. Wharton, R. A. Berg and W. Klemperer, J. Chem. Phys. 39, 2023 (1963); A. Buchler, J. L. Stauffer and W. Klemperer, J. Amer. Chem. Soc. 86, 4544 (1964).

Continued from page 335

¹K. F. Zmbov and J. L. Margrave, J. Chem. Phys. 45, 3167 (1966).

V. Gurvich and V. G. Ryabova, Teplofiz. Vysokith Temperatur, Akad. Nauk SSSR 2, 401 (1964).
 L. V. Gurvich and V. G. Ryabova, Teplofiz. Vysokith Temperatur, Akad. Nauk SSSR 3, 652 (1965).
 JANAF Thermochemical Tables. BaF₂(cr. g), 12–31–72. Ba(g), 12–31–70. BF₃(g) and AlF(g), 6–30–69; BF(g).

12–31–64; Al(g), 12–31–65.

A. G. Gaydon, "Dissociation Energies and Spectra of Diatomic Molecules," 3rd ed., Chapman and Hall Ltd, London, 330 pp.(1968); refer to p. 263.

⁴D. L. Hildenbrand in "Advances in High Temperature Chemistry," Vol. 1, Ed. by L. Eyring, Academic Press, New

9K. S. Krasnov and N. V. Karaseva, Optics and Spectroscopy (Eng. Transl.) 19, 14 (1965). ^oE. S. Rittner, J. Chem. Phys. 19, 1030 (1951). York, (1967).

"B. Rosen, "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, 515 pp.(1970).

Continued from Page 337

Fusion Data

Refer to the liquid table for details.

Sublimation Data

Refer to the ideal gas table for details.

References

M. Guntz, Ann. Chim. Phys. 3, 5 (1884).

 ${}^{\prime}_{L}(Ba(OH)_{2}-660 H_{2}O) = [-60] \text{ cal-} K^{-1} \cdot \text{mol}^{-1}; \Phi_{L}(HF-110 H_{2}O) = 3.7 \text{ cal-} K^{-1} \cdot \text{mol}^{-1}; \Phi_{L}(AgF-200 H_{2}O) = -[3.0]$ cal·K-1·mol-1; Φ_c(BaCl₂·400 H₂O) = [-60] cal·K-1·mol-

¹U. S. Nail. Bur. Sid. Tech. Note 270-3, 264 pp. (1968).
⁴U. S. Nail. Bur. Sid. Tech. Note 270-6, 119 pp. (1971).

JANAF Thermochemical Tables: Consistent with HF(g), 12-31-68; BaO(cr), BaCl₂(cr), SrF₂(cr), 12-31-72; CaF₂(cr), 12-31-68.

6. Petersen, Z. Physik Chem. 4, 384 (1889).

⁷U S. Natl. Bur Std. Tech. Note 270-4, (1969).

⁸R. Bazany, E. G. King, and S. S. Todd, J. Amer. Chem. Soc. 79, 3639 (1957).

⁹H. Stephen and T. Stephen, "Solubilities of Inorganic and Organic Compounds," Vol. I, Pergamon Press, Ltd., London, (1963)

¹⁰L. Domange, Ann. Chim. 7, 225 (1937).

C. Hood and M. M. Woyski, J. Amer. Chem. Soc 73, 2738 (1951).
 G. Hood and M. M. Woyski, J. Amer. Chem. Soc 73, 2738 (1951).
 Finch, P. J. Gardner, and C. J. Steadman, Can. J. Chem. 46, 3447 (1965).
 K. S. Pitzer, W. V. Smith, and W. M. Latimer, J. Amer. Chem. Soc. 60, 1826 (1938).
 R. I. Efremova and E. V. Matizen, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, (1), 3 (1970).
 J. A. Krestovnikov and G. A. Karetnikov, Legkie Metal., 3, 29 (1934).
 K. Kelley, U. S. Bur, Mines Bulletin, 584, 232, pp. (1960).

K. Kelley, U S. Bur. Mines Bulletin 584, 232 pp. (1960).

Continued from page 340

⁵D. L. Hildenbrand, E. Murad, N. D. Potter, L. P. Theard, and W. F. Hall, Aeronutronic Report No. U-3183, Ford Motor Company, (June 1965).

^oP A. Akishin and V P. Spiridonov, Kristallografiya, 2, 475 (1957).

 Wharton, R. A. Berg, and W. Klemperer, J. Chem.Phys. 39, 2023 (1963).
 V. Calder, D. E. Mann, K. S. Sexhadri, M. Allavena, and D. White, J. Chem. Phys. 51, 2093 (1969).
 A. Snelson, J. Phys. Chem. 70, 3208 (1966).
 V. I. Baikov, Opt. Spektrosk. 25, 356 (1967).
 W. Haxtie, R. H. Hauge, and J. L. Margrave, in "Annual Review of Physical Chemistry," Vol. 21, ed. by H. Eyring, Annual Reviews, Inc., Palo Alto, California, (1970).

¹²J. W. Hastie, R. H. Hauge and J. L. Margrave, High Temp. Sci. 3, 56 (1971).
¹⁴V. I. Baikov, Opt. Spektrosk. 27, 502 (1969).

Continued from page 341

"JANAF Thermochemical Tables: BeF₂(g), 6-30-70; MgF₂(g), 3-31-66; CaF₂(g), 12-31-68; SrF₂(g), 12-31-72.

stretching force constant is 0 022, which is the average ratio found in the alkali metal monohydroxides by Acquista to be the same as in BaF.7 11 The O-H stretching frequency, 3650 cm-1, is estimated from the alkali hydroxide series. The bending frequency, 431 cm⁻¹, is estimated by assuming that the ratio of the bending force constant to the and Abramowitz,

The entropy in the present table is lower by 1.25 cal·K⁻¹·mol⁻¹ at 298 K and 1.77 cal·K⁻¹·mol⁻¹ at 1000 K than that proposed by Jackson," the vibrational frequencies and electronic levels adopted here differ from those of Jackson.11 The moment of inertia in Jackson11 appears to be in error.

References

 E. Stafford and J. Berkowitz, J. Chem. Phys. 40, 2963 (1964).
 R. S. Newbury, U. S. At. Energy Comm. UCRL-12225-T, (1965).
 Y. G. Ryabova and L. V. Gurvich, Teploftz. Vysokith Temperatur, Akad. Nauk SSSR 3, 318 (1965).
 M. Sugden and K. Schoffeld, Trans. Faraday Soc. 62, 266 (1966).
 D. H. Cotton and D. R. Jenkins, Trans. Faraday Soc. 64, 2988 (1968).
 V. G. Ryabova, A. N. Khitrov, and L. V. Gurvich, Teploftz. Vys. Temp. 10, 744 (1972).
 JANAF Thermochemical Tables: BaO(cr), BaO(l), H(g), O(g) 6-30-74; H₂(g), H₂O(g), 3-31-61; O₂(g), 9-30-65; Ba(g), 12-30-70; BaCl(g), BaF(g), BaF₂(g) 12-31-72.

D Blue, J. W. Green, T. C. Eller, and J. L. Margrave. Nature 199, 804 (1963).
 R. C. Schoonmaker and R. F. Porter, J. Chem. Phys. 31, 830 (1959).
 Berkowitz, D. J. Meschi, and W. A. Chupka, J. Chem. Phys. 33, 533 (1960).
 D. Jackson, Lawrence Livermore Laboratory, Univ. of Calif., Report UCRL-51137, (December 8, 1971).
 A. D. Walsh, J. Chem. Soc. 1933, 2288.

Continuation of discussions of selected Ba species

Barium

¹³N. Acquista, S. Abramowitz, and D. R. Lide, J. Chem. Phys. 49, 780 (1968). ¹⁴R. L. Kuczkowski and D. R. Lide, J. Chem. Phys. 44, 3131 (1966).

¹⁵N. Acquista and S. Abramowitz, U. S. Nat. Bur. Stand., Report 9905, (July, 1968).

G. James and T. M. Sugden, Nature 175, 333 (1955)

¹⁷E. M. Bulewicz, Nature 177, 670 (1956).

¹⁸M. Charton and A. G. Gaydon, Proc. Phys. Soc. (London) 694, 520 (1956).
¹⁹V. F. Zhitkevich, A. I. Lyutyi, N. A. Nesterko, V. S. Rossikhin, and I. L. Tsikora, Optika i Spektroskopiya 14, 35

(1963)

(1902).
²⁰J. Van der Hurk, Tj. Hollander, and C. Th. J. Alkemade, J. Quant. Spectrosc. Radiat. Transfer 13, 273 (1973).

Continued from page 346

estimate $S^{*}(298.15 \text{ K}) = 78.045 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$. We assign uncertainty of $\pm 3 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ to the adopted entropy. different vibrational frequencies to and used a different molecular configuration Jackson⁹

H. Cotton and D. R. Jenkins, Trans. Faraday Soc. 64, 2988 (1968). ¹R. A. Newbury, U. S. At. Energy Comm. UCRL-12225-T (1965).
 ²F. E. Stafford and J. Berkowitz, J. Chem. Phys. 40, 2963 (1964).
 ¹D. H. Cotton and D. R. Jenkins, Trans. Faraday Soc. 64, 2988 (1964).

'JANAF Thermochemical Tables: BaO(cr), H(g), 6-30-74; H₂O(g), 3-31-61, BaOH(g), 12-31-75; Ba(g), HO(g),

12-31-70; BaF/g), 12-31-72.

Sv. G. Ryabova and L. V. Gurvich, Teplofiz. Vysokikh Temperature, Akad. Nauk SSR 3, 318 (1965).

T. M. Sugden and K. Schoffeld, Trans. Faraday Soc. 62, 566 (1966).

R. C. Schoonmaker and R. F. Porter, J. Chem. Phys. 31, 830 (1959).

Berkowitz, D. J. Meschi, and W. A. Chupka, J. Chem. Phys. 33, 533 (1960).
 D. Jackson, Lawrence Livermore Lab., Univ. of Calif., Report USRL-51137, (December. 8, 1971).
 S. Nat. Bur Stand. Tech. Note 270-6, 119 pp. (1971).

Continued from page 352

¹²E. Gmelin, Z. Naturforsch. 24A, 1794 (1969).

T. Anderson, J. Amer. Chem. Soc. 57, 429 (1935).

¹⁴J. J. Lander, J. Amer. Chem. Soc. 73, 5794 (1951).

⁵A. C. Macleod, J. Chem. Thermodyn. 4, 391 (1972).

¹⁶ISCU-CODATA Task Group, J. Chem. Thermodyn. 4, 331 (1972); V. B. Parker, U. S. Nat. Bur. Stand. NSRDS-NBS 2, 66 pp. (1965)

¹⁷O. Ya. Samoilov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 585 (1952); p. 627 (Russian edition).
¹⁸ E. Young, J. Amer. Chem. Soc. 66, 773 (1944).

⁹JANAF Thermchemical Tables BaCl₂(cr, l, g), 12-31-72.

Continued from page 355

References

¹R. W. Field, J. Chem. Phys. 60, 2400 (1974).
²B. Rosen, "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, 515 pp. (1970), refer

⁴L. Wharton, M. Kaufman and W. Klemperer, J. Chem. Phys. 37, 621 (1962); 38, 2705 (1963); 39, 240 (1963); 43, ³J. Hoeft, F J Lovas, E. Tiemann and T. Torring, Z. Naturforsch. 25A, 1750 (1970). 3406 (1965).

³JANAF Thermochemical Tables. BaO(cr, I, g.), SrO(g) 6-30-74; CaO(g.), MgO(g.), BeO(g.), 12-31-74.
⁶R. W. Field, A. D. English, T. Tanaka, D. O. Harris and D. A. Jennings, J. Chem. Phys. 59, 2191 (1973); Ber. Bunsen

Ges. Phys. Chem.78, 146 (1974).

P. J. Kaliff and C. Th. J. Alchardet. J. Chem. Phys. 52, 1006 (1970); 59, 2572 (1973); 60, 1698 (1974).
P. J. Kaliff and C. Th. J. Alchardet. J. Chem. Phys. 52, 1006 (1964).
R. Colin, P. Goldfinger and M. Jeunehomme, Trans. Faraday Soc. 60, 306 (1964).
G. A. Sernenov, O. S. Popkov, A. I. Soloveichik and S. N. Persiyaninova, Russ. J. Phys. Chem. 46, 898 (1972).
R. S. Newbury, G. W. Barton and A. W. Scarcy, J. Chem. Phys. 23, 2159 (1955).
M. G. Inghram, W. A. Chupka and R. F. Porter, J. Chem. Phys. 23, 2159 (1955).
P. A. Shchukarev and G. A. Sernenov, J. Inorg. Chem. (USSR) 2 (6), 1 (1957); p. 1217 (Russian edition).
B. P. Nikinov and N. G. Ornakhova, Russ. J. Phys. Chem. 35, 734 (1961).
J. P. Blewett, H. A. Liebhafsky and E. F. Hennelly, J. Chem. Phys. 7, 478 (1939).
G. Herrmann, Z. Phys. Chem. 33B, 298 (1937).
A. Claassen and C. F. Veenemans, Z. Physik 80, 342 (1933).
G. D. Jonath, R. N. Zare and Ch. Ottinger, J. Chem. Phys. 56, 263 (1972); Chem. Phys. Lett. 5, 243 (1970).
W. Schoffeld, Chem. Rev. 67, 707 (1967).

Brewer and G. M. Rosenblatt, Adv. High Temp. Chem. 2, 1 (1969)