Future Outlooks for Enabling Interactive Supercomputing Frameworks

Thomas Marrinan¹ and Michael E. Papka^{1,2}

Basic Job Queue Paradigm

Computational Simulation

- Submit job
- Wait in queue
- Simulation runs to completion
- Results saved to disk
- Post-processing of Data
 - Read data from disk
 - Analyze and visualize data
 - Save resulting images / video to disk
- Viewing the Results
 - Read images / video from disk
 - View and explore the results

Interactive Paradigm

- In-situ Visualization/Analysis and Display/Interaction of Simulation
- Data streamed between services in real-time
- Feedback loop
 - Users view current state of the simulation
 - Users can update parameters of simulation or visualization
 - Simulation and visualization dynamically update based on user input

New Possibilities / Benefits

- Real-time analysis
- Reduced time-to-discovery
- Checkpointing and event logging for reproducibility
- Intuitive use (look and feel of a desktop application)
- Necessary for exascale

Interactive Data Flow

Connections between the various interactive supercomputing services. These services are not necessarily tied to physical computing resources.

Example Implementations

Argonne National Laboratory:

Mira: 786K nodes, 768 TB memory
Cooley: 252 GPUs, 48 TB memory
Active Mural: 8.19m x 2.31m,
66 Mpixel display

Simulation Visualization/Analysis Display/Interaction

Oak Ridge National Laboratory:

Titan: 299K nodes, 710 TB memory, 18K GPUs

EVEREST: 9.30m x 2.59m, 37 Mpixel display

Display/Interaction

Author Information:

¹Argonne National Laboratory ²Northern Illinois University

contact: tmarrinan@anl.gov

Simulation & Visualization/Analysis