\cap				U		TA Co F
Отчет	по	лаоо	рато	рнои	работе	NōĐ

По курсу: «Фильтрация и прогнозирование данных» Тема: «Моделирование и прогнозирование ENSO и своего сигнала»

Студент: Пронин А. С.

Группа: МСМТ231

Преподаватель: Зотов Л. В.

Лабораторная работа 5

Часть 1 Для начала выведем наш сигнал из ЛР1 (рис. 1):

Рис. 1: Сигнал из ЛР1

Затем сгенерируем авто-регрессионный шум (рис. 2):

Рис. 2: Авто-регрессионный шум

Добавим его к сигналу (рис. 3):

Рис. 3: Сигнал с шумом

Вычислим смещенную оценку АКФ (рис. 4):

Рис. 4: Смещенная АКФ

Вычислим несмещенную оценку АКФ (рис. 5):

Рис. 5: Несмещенная АКФ

Построим СПМ взятием фурье-преобразования смещенной и несмещенной АКФ (рис. 6-7):

Рис. 6: СПМ из смещенной $AK\Phi$

Рис. 7: СПМ из несмещенной АК Φ

По пиковым значениям можно проверить частоты изначальных гармоник: 1 цикл в год, $\frac{1}{1}=1$, что соответствует гармонике с периодом 1 год 0.(1) цикл в год, $\frac{1}{0.111111}\approx 9$, что соответствует гармонике с периодом 8.86 год 0.0(5) цикл в год, $\frac{1}{0.055556}\approx 18$, что соответствует гармонике с периодом 18.6 год Также, по краям спектра видно отражение наличия цветного шума.

Часть 2

Теперь попробуем спрогнозировать индекс явления El Nino Southern Oscillation - ENSO BEST. Считаем данные из файла (рис. 8):

Рис. 8: Данные из файла ENSO_BEST_index.dat

Вычислим смещенную и несмещенную оценку АКФ (рис. 9-10):

Рис. 9: Смещенная АКФ

Рис. 10: Несмещенная АКФ

Построим спектральную плотность для периодов (рис. 11):

Рис. 11: СПМ для периодов

Выделим периоды: 2.89, 3.65, 5.68 и 12.77 для подбора гармоник в будущем.

Подберем полиномиальную модель (возьмем порядок 2) и определим тренд (рис. 12):

Рис. 12: Тренд

Подберем гармоники задав периоды указанные выше (рис. 13-14):

Рис. 13: Тренд гармоник

Рис. 14: Данные после удаления гармоник

Подберем авторегрессию, сначала возьмем порядок 25 (рис. 15):

Рис. 15: Авторегрессия с порядком =25

Как видно по графику, при данном порядке авторегрессии через небольшой промежуток прогнозируется спад.

Если же взять слишком маленький порядок, то график пойдет вверх (рис. 16):

Рис. 16: Авторегрессия с порядком = 3

Оставим порядок 25 и построим график прогноза (рис. 17):

Рис. 17: График прогноза

В итоге после небольшого подъема, по полученному прогнозу, ожидается спад.

Часть 3 Повторим данный прогноз для сигнала из ЛР1 (рис. 18):

Рис. 18: Сигнал из ЛР1

Добавим к нему цветной шум (рис. 19-20):

Рис. 19: Цветной шум

Рис. 20: Сигнал с шумом

Вычислим смещенную и несмещенную оценку АКФ (рис. 21-22):

Рис. 21: Смещенная АКФ

Рис. 22: Несмещенная АКФ

Построим спектральную плотность для периодов (рис. 23):

Рис. 23: СПМ для периодов

Подберем полиномиальную модель (возьмем порядок 2) и определим тренд (рис. 24):

Рис. 24: Тренд

Подберем гармоники задав периоды 1, 8.86 и 18.6 лет (рис. 25-26):

Рис. 25: Тренд гармоник

Рис. 26: Данные после удаления гармоник

Подберем авторегрессию, возьмем порядок 50 (рис. 27):

Рис. 27: Авторегрессия с порядком = 50

И наконец построим график прогноза (рис. 28):

Рис. 28: График прогноза

Можно сравнить прогноз с сигналом и авторегрессией продолженной на 1 год (рис. 29):

Рис. 29: Сравнение прогноза с продолженным сигналом

Как видно по графику 29 предсказание в принципе ухватывает общую тенденцию изменения сигнала.