Marriage and Divorce under Labor Market Uncertainty

Christian Holzner¹ and Bastian Schulz²

¹Hochschule München, CESifo ²Aarhus University, the Dale T. Mortensen Centre, CESifo

Motivation

- Gender differences in labor market outcomes are related to choices made both in the marriage market and at the household level.
- Two dimensions:
 - 1. Marriage market: Who do I marry? Who do I divorce? → Marital sorting.
 - 2. Household level: how do we organize our time to maximize utility flows?
 - ightarrow Trade-off between labor supply and home production (specialization).

Motivation

- Gender differences in labor market outcomes are related to choices made both in the marriage market and at the household level.
- Two dimensions:
 - 1. Marriage market: Who do I marry? Who do I divorce? → Marital sorting.
 - 2. Household level: how do we organize our time to maximize utility flows?
 - \rightarrow Trade-off between labor supply and home production (specialization).
- There is a two-way interaction (or simultaneity) between those choices:
 - My labor market status affects who I can marry.
 - Changing labor market status affects marital stability.

Motivation

- Gender differences in labor market outcomes are related to choices made both in the marriage market and at the household level.
- Two dimensions:
 - 1. Marriage market: Who do I marry? Who do I divorce? \rightarrow Marital sorting.
 - 2. Household level: how do we organize our time to maximize utility flows?
 - \rightarrow Trade-off between labor supply and home production (specialization).
- There is a two-way interaction (or simultaneity) between those choices:
 - My labor market status affects who I can marry.
 - Changing labor market status affects marital stability.
- Suppose gender equality in labor market outcomes was a political goal.
- Understanding this interaction would be critical to achieving this goal.

- We study this two-way interaction in a novel structural model.
- Marriage market: TU, random search, ex-ante heterogeneity (Shimer & Smith, 2000).
- Match-specific "love shocks" (Jacquemet & Robin, 2012; Goussé et al., 2017).

- We study this two-way interaction in a novel structural model.
- Marriage market: TU, random search, ex-ante heterogeneity (Shimer & Smith, 2000).
- Match-specific "love shocks" (Jacquemet & Robin, 2012; Goussé et al., 2017).
- We add "labor market uncertainty" (Burdett & Mortensen, 1998):
 - Employed workers lose their job at an exogenous rate.
 - Endogenous search intensity depends on marital surplus (via reservation wage).

- We study this two-way interaction in a novel structural model.
- Marriage market: TU, random search, ex-ante heterogeneity (Shimer & Smith, 2000).
- Match-specific "love shocks" (Jacquemet & Robin, 2012; Goussé et al., 2017).
- We add "labor market uncertainty" (Burdett & Mortensen, 1998):
 - Employed workers lose their job at an exogenous rate.
 - Endogenous search intensity depends on marital surplus (via reservation wage).
- Marital surplus depends on "love shocks" × "public good":
 - Endogenous home hours choice, trade-off with leisure, employment status constraint.
 - Differences in returns to home hours induce specialization, augmented by love shock.

- We study this two-way interaction in a novel structural model.
- Marriage market: TU, random search, ex-ante heterogeneity (Shimer & Smith, 2000).
- Match-specific "love shocks" (Jacquemet & Robin, 2012; Goussé et al., 2017).
- We add "labor market uncertainty" (Burdett & Mortensen, 1998):
 - Employed workers lose their job at an exogenous rate.
 - Endogenous search intensity depends on marital surplus (via reservation wage).
- Marital surplus depends on "love shocks" × "public good":
 - Endogenous home hours choice, trade-off with leisure, employment status constraint.
 - Differences in returns to home hours induce specialization, augmented by love shock.
- This mechanism affects marital stability, and marital sorting.

- We confront the model with German household survey data.
- GSOEP and IAB-PASS, 1983–2019.
- Key advantage: detailed information on domestic work hours and labor supply.

- We confront the model with German household survey data.
- GSOEP and IAB-PASS, 1983–2019.
- Key advantage: detailed information on domestic work hours and labor supply.
- Four applications:
 - 1 Event study evidence of the two-way interaction, support of modeling choices.

- We confront the model with German household survey data.
- GSOEP and IAB-PASS, 1983–2019.
- Key advantage: detailed information on domestic work hours and labor supply.
- Four applications:
 - 1 Event study evidence of the two-way interaction, support of modeling choices.
 - Structural estimation with different degrees of heterogeneity (work in progress)
 - No heterogeneity
 - One-dimensional heterogeneity (age or education)
 - Two-dimensional heterogeneity (age and education)

- We confront the model with German household survey data.
- GSOEP and IAB-PASS, 1983–2019.
- Key advantage: detailed information on domestic work hours and labor supply.
- Four applications:
 - 1 Event study evidence of the two-way interaction, support of modeling choices.
 - Structural estimation with different degrees of heterogeneity (work in progress)
 - No heterogeneity
 - One-dimensional heterogeneity (age or education)
 - Two-dimensional heterogeneity (age and education)
 - 3 Application to the German labor market reforms (2003–2005).

- We confront the model with German household survey data.
- GSOEP and IAB-PASS, 1983–2019.
- Key advantage: detailed information on domestic work hours and labor supply.
- Four applications:
 - 1 Event study evidence of the two-way interaction, support of modeling choices.
 - 2 Structural estimation with different degrees of heterogeneity (work in progress)
 - No heterogeneity
 - One-dimensional heterogeneity (age or education)
 - Two-dimensional heterogeneity (age and education)
 - 3 Application to the German labor market reforms (2003–2005).
 - 4 Application to marital sorting and inequality (not today).

Literature

- Unemployment, especially male unemployment, is associated with an increase in the divorce rate (e.g. Jensen and Smith, 1990; Hansen, 2005; Amato and Beattie, 2011).
- Marriage/divorce rates negatively correlated with unemployment over the business cycle (e.g. Schaller, 2013; González-Val and Marcén, 2017a/b).
- Does female labor market participation decrease or increase marital stability? (Newman and Olivetti, 2017 vs. Folke and Rickne, 2020).
- Marriage market matching models (with and without frictions, TU/NTU): Becker (1973/74), Burdett & Coles (1997), Shimer & Smith (2000), Jacquemet & Robin (2012), Choo & Siow (2006), Choo (2015), Chiappori et al. (2015).
- Most closely related: Goussé et al. (2017), Greenwood et al. (2016).
- Also related: models of joint search: Guler et al. (2012), Pilossoph & Wee (2021), Fang & Shephard (2019).

Outline

- ① Descriptive Evidence
- 2 Model
- 3 Estimation
- 4 Application

Descriptive Evidence

Household specialization - Time Inputs

Labor market work hours per day

	sin		married				
	U	Ε	UU	UE	EU	EE	
male female	0.57	9.68	0.25	0.66	10.23	10.32	
female	0.67	8.50	0.21	8.02	0.67	7.64	

Household specialization - Time Inputs

Labor market work hours per day

	single		married				
					EU		
male female	0.57	9.68	0.25	0.66	10.23	10.32	
female	0.67	8.50	0.21	8.02	0.67	7.64	

• Domestic work hours per day (childcare, errands, repairs, routine chores):

	sin	gle	married				
	U			UE		EE	
male female	3.21	2.62	4.99	5.42	3.08	3.13	
female	6.00	3.97	7.39	4.57	9.89	5.90	

Event Study: Employment Rate around Marriage

• Relative to matched control group: no marriage, matched in t-3.

Marriage around EU Marriage around UE

Event Study: Employment Rate around Divorce

• Relative to matched control group: no divorce, matched in t-3.

Event Study: Work Hours around Divorce

• Relative to matched control group: no divorce, matched in t-3.

Work Hours around Marriage

Domestic Hours around Marriage

Domestic Hours around Divorce

Event Study: Life Satisfaction around Divorce

• Relative to matched control group: no divorce, matched in t-3.

Model

The Basics

- Marriage Market: Transferable utility, random search, and ex-ante heterogeneity (following Becker, 1973/74; Shimer & Smith, 2000; Goussé et al., 2017).
- Labor Market: Endogenous labor search decisions on and off the job (as in Burdett & Mortensen, 1998, but no firms). Exogenous separations.

The Basics

- Marriage Market: Transferable utility, random search, and ex-ante heterogeneity (following Becker, 1973/74; Shimer & Smith, 2000; Goussé et al., 2017).
- Labor Market: Endogenous labor search decisions on and off the job (as in Burdett & Mortensen, 1998, but no firms). Exogenous separations.
- Utility flow depends on own income, leisure and home production.
- For married couples, home production depends on:
 - time input into domestic work
 - match-specific "love" shock

$$u\left(c_f, e_f, y\right) = c_f + \zeta_x e_f + y$$

$$\begin{aligned} u\left(c_f,e_f,y\right) &= c_f + \zeta_x e_f + y \\ \text{with } y &= \begin{cases} \left(X_j^l\right)^{1-\alpha_x} \left(h_f\right)^{\alpha_x} & \text{if single female} \\ \left(zX_{ij}^{-ll}\right)^{(1-\gamma_y-\gamma_x)} \left(h_m\right)^{\gamma_y} \left(h_f\right)^{\gamma_x} & \text{if married.} \end{cases}$$

$$\begin{aligned} u\left(c_f,e_f,y\right) &= c_f + \zeta_x e_f + y \\ \text{with } y &= \begin{cases} \left(X_j^l\right)^{1-\alpha_x} \left(h_f\right)^{\alpha_x} & \text{if single female} \\ \left(zX_{ij}^{-ll}\right)^{(1-\gamma_y-\gamma_x)} \left(h_m\right)^{\gamma_y} \left(h_f\right)^{\gamma_x} & \text{if married.} \end{cases} \\ c_f &= I_j^l + t \text{ and } c_m = I_i^{-l} - t \\ \overline{h} &= l_j^l + h_f + e_f \text{ and } \overline{h} = l_i^l + h_m + e_m \end{aligned}$$

$$u\left(c_f,e_f,y\right)=c_f+\zeta_xe_f+y$$
 with $y=\begin{cases} \left(X_j^l\right)^{1-\alpha_x}\left(h_f\right)^{\alpha_x} & \text{if single female}\\ \left(zX_{ij}^{-ll}\right)^{(1-\gamma_y-\gamma_x)}\left(h_m\right)^{\gamma_y}\left(h_f\right)^{\gamma_x} & \text{if married.} \end{cases}$ (1)
$$c_f=I_j^l+t \text{ and } c_m=I_i^{-l}-t$$

$$\overline{h}=l_j^l+h_f+e_f \text{ and } \overline{h}=l_i^l+h_m+e_m$$

- Linearity in consumption implies that income changes affects the couples' joint utility in the same way as single utilities.
 - ⇒ Marital surplus is independent of spouses' current income. Event study evidence

• Singles search for partners in the marriage market. The Value of Singlehood

- Singles search for partners in the marriage market. The Value of Singlehood
- Upon meeting, potential couples draw match-specific ("love") shock.

- Singles search for partners in the marriage market. The Value of Singlehood
- Upon meeting, potential couples draw match-specific ("love") shock.
- Couples bargain over transfers, hours, and search intensities, value functions depend on shock and labor market statuses.

- Singles search for partners in the marriage market. The Value of Singlehood
- Upon meeting, potential couples draw match-specific ("love") shock.
- Couples bargain over transfers, hours, and search intensities, value functions depend on shock and labor market statuses.
- Surplus is invariant to EE transitions (linear utility assumption).

- Singles search for partners in the marriage market. The Value of Singlehood
- Upon meeting, potential couples draw match-specific ("love") shock.
- Couples bargain over transfers, hours, and search intensities, value functions depend on shock and labor market statuses.
- Surplus is invariant to EE transitions (linear utility assumption).
- While married, couples renegotiate when match-specific shock hits or in case of EU/UE-transitions. The Value of Marriage

- Singles search for partners in the marriage market. The Value of Singlehood
- Upon meeting, potential couples draw match-specific ("love") shock.
- Couples bargain over transfers, hours, and search intensities, value functions depend on shock and labor market statuses.
- Surplus is invariant to EE transitions (linear utility assumption).
- While married, couples renegotiate when match-specific shock hits or in case of EU/UE-transitions. The Value of Marriage
- Specifically, taking up a job implies less hours for home production and leisure.

- Singles search for partners in the marriage market. The Value of Singlehood
- Upon meeting, potential couples draw match-specific ("love") shock.
- Couples bargain over transfers, hours, and search intensities, value functions depend on shock and labor market statuses.
- Surplus is invariant to EE transitions (linear utility assumption).
- While married, couples renegotiate when match-specific shock hits or in case of EU/UE-transitions.
- Specifically, taking up a job implies less hours for home production and leisure.
- No commitment, efficient divorce in case of negative surplus.

Endogenous Search Intensity and Reservation Wages

Endogenous search intensity and reservation wages depend on

- employed married/single: current wage.
- unemployed single: UI, home production, marriage market option value.
- unemployed married:
 - UI,
 - labor market status and type of spouse,
 - match-specific shock,
 - household public good.

Reservation Wages: Singles

• While employed, the reservation wage is equal to the current wage irrespective of marital status, i.e., $R_{j}^{l,-l}\left(z,I_{i}^{-l},w_{j}\right)=R\left(w_{j}\right)=w_{j}.$

Reservation Wages: Singles

- While employed, the reservation wage is equal to the current wage irrespective of marital status, i.e., $R_{j}^{l,-l}\left(z,I_{i}^{-l},w_{j}\right)=R\left(w_{j}\right)=w_{j}$.
- The reservation wage of an unemployed single (defined by $V_{j}^{e}\left(R_{j}^{u}
 ight)=V_{j}^{u}\left(b_{j}
 ight)$), is

$$R_{j}^{u} = b_{j} - \zeta_{x} \left(l_{j}^{u} - l_{j}^{e} \right) + \xi_{y} \left(X_{j}^{u} - X_{j}^{e} \right) + \lambda \beta_{x} \int_{i} \sum_{-l} \left(\overline{S}_{z_{ij}^{-lu}}^{-lu} - \overline{S}_{z_{ij}^{-le}}^{-le} \right) s_{i}^{-l} di.$$

where
$$ar{S}^{-ll}_{z^{-ll}_{ij}} \equiv \int_{z^{-ll}_{ij}}^{\infty} S^{-ll}_{ij}(z) dG(z)$$
.

- Unemployed married female j with a partner of type i and emp. status -l.
- Definition:

$$R_{j,i}^{u,-l}(z) = R_j^u + r \left(S_{ij}^{-lu}(z) - \max \left[0, S_{ij}^{-le}(z) \right] \right)$$

 A married individual faces on top of a single individual additional gains or losses associated with the effect of a changed labor market status on marital surplus.

• If after a shock the new z is high enough (above z_{ij}^{-le}) the individual will stay married and the marital surplus of a female of type j changes from $S_{ij}^{-lu}(z)$ to $S_{ij}^{-le}(z)$.

- If after a shock the new z is high enough (above z_{ij}^{-le}) the individual will stay married and the marital surplus of a female of type j changes from $S_{ij}^{-lu}(z)$ to $S_{ij}^{-le}(z)$.
- If after a shock the new z is too small (below z_{ij}^{-le}) the labor market transition will lead to a divorce and hence to a loss of the marital surplus, i.e., $S_{ij}^{-le}(z) = 0$.

- If after a shock the new z is high enough (above z_{ij}^{-le}) the individual will stay married and the marital surplus of a female of type j changes from $S_{ij}^{-lu}(z)$ to $S_{ij}^{-le}(z)$.
- If after a shock the new z is too small (below z_{ij}^{-le}) the labor market transition will lead to a divorce and hence to a loss of the marital surplus, i.e., $S_{ij}^{-le}(z) = 0$.
- Through this mechanism, a negative love shock will...
 - decrease the reservation wage (due to lower marital surplus) and
 - increase the labor market search intensity of the unemployed spouse.
 - make a transition into employment more likely.
 - make a divorce more likely.

- Note two things:
 - 1 The couple is currently married, so $S_{ij}^{-lu}(z) > 0$. Thus, reservation wage of unemployed married is (weakly) higher compared to unemployed single.
 - 2 But, the lower the love shock z, the lower is current marital surplus. Thus, the reservation wage is lower and search intensity higher ...

Search Equilibrium

- The equilibrium is characterized by:
 - a set of surplus functions $S_{ij}^{ll}(z)$,
 - search intensities for unemployed married and single individuals,

$$\{\widehat{\sigma}_{i}^{u,l}\left(z
ight),\widehat{\sigma}_{j}^{u,-l}\left(z
ight)\}\ ext{and}\ \left\{\widehat{\sigma}_{i}^{u},\widehat{\sigma}_{j}^{u}
ight\},$$

- love shock threshold values z_{ii}^{ll} ,
- the distributions of married couples m_{ij}^{ll} for each type ij and labor market status ll,
- and single distributions s_i^l , s_i^l .
- Solution algorithm: alternating fixed-point iterations, three model blocks.

Estimation

Structural Estimation

- Four versions: no heterogeneity (today),
 heterogeneous education, heterogeneous age, heterogeneity in both dimensions.
- We target the following moment groups:
 - Yearly transition probabilities between: Example
 - married/single
 - employment/unemployment
 - EE-transition if employed
 - and combinations thereof
 - domestic work hours of unemployed singles and couples, where both are unemployed.
 - median wages for males and females.
- ullet We have analytical expressions for all theoretical moments o GMM ${}_{\hspace{-0.5em} ext{identification}}$

Target Moments and Fit

Table: Initial state: single

Moment	Mean	Estimation	Deviation
T_sju_sju_none_1	0.795	0.759	-3.60pp
T_sju_sje_none_1	0.187	0.169	-1.80pp
T_sju_mju_none_1	0.013	0.060	4.70pp
T_sju_mje_none_1	0.005	0.014	0.90pp
T_siu_siu_none_1	0.757	0.784	2.70pp
T_siu_sie_none_1	0.234	0.151	-8.30pp
T_siu_miu_none_1	0.005	0.054	4.90pp
T_siu_mie_none_1	0.003	0.005	0.20pp

Table: Initial state: married

Moment	Mean	Estimation	Deviation
T_miuju_miuju_none_1_1	0.712	0.657	-5.50pp
T_miuju_miuje_none_1_1	0.051	0.111	6.00pp
T_miuju_mieju_none_1_1	0.093	0.131	3.80pp
T_miuju_mieje_none_1_1	0.029	0.044	1.50pp
T_miuju_siu_sju_none_1_1	0.110	0.049	-6.10pp
T_miuju_siu_sje_none_1_1	0.002	0.023	2.10pp
T_miuju_sie_sju_none_1_1	0.003	0.005	0.20pp
T_miuje_sie_sju_none_1_1	0.001	0.010	0.90pp
T_mieju_siu_sje_none_1_1	0.002	-0.013	-1.50pp

Table: Hours and wages

Moment	Mean	Estimation	Deviation
hh_f_su_none_1	5.283	5.284	0.02%
hh_m_su_none_1	2.815	2.814	-0.04%
hh_muu_f_none_1_1	7.897	7.830	-0.85%
hh_muu_m_none_1_1	4.991	4.905	-1.72%
w_p50_f_none_1	13.476	13.570	0.70%
w_p50_m_none_1	17.408	17.513	0.60%

Moment	Mean	Estimation	Deviation
T_sje_sje_none_1_comb	0.798	0.770	-2.80pp
T_sie_sie_none_1_comb	0.784	0.892	10.80pp
T_sje_mje_none_1_comb	0.016	0.062	4.60pp
T_sie_mie_none_1_comb	0.017	0.073	5.60pp
T_mieju_mieju_none_1_1_comb	0.709	0.802	9.30pp
T_miuje_miuje_none_1_1_comb	0.623	0.620	-0.30pp
T_mieju_mieje_none_1_1_comb	0.140	0.163	2.30pp
T_miuje_mieje_none_1_1_comb	0.146	0.123	-2.30pp
T_mieje_mieje_none_1_1_comb	0.779	0.799	2.00pp
T_mieju_sie_sju_none_1_1_comb	0.006	0.000	-0.60pp
T_mieju_sie_sje_none_1_1_comb	0.001	0.000	-0.10pp
T_miuje_siu_sje_none_1_1_comb	0.015	0.078	6.30pp
T_miuje_sie_sje_none_1_1_comb	0.002	0.007	0.50pp
T_mieje_sie_sje_none_1_1_comb	0.007	0.000	-0.70pp

Estimated Parameter Values

Parameter	Symbol	Value
Output elasticity male hours married	γ_y	0.100169
Output elasticity female hours married	γ_x	0.160040
HH public good EE	X_{ij}^{ee}	3.831828
HH public good EU	X_{ij}^{eu}	3.492983
HH public good UE	X_{ij}^{ue}	0.115131
HH public good UU	X_{ij}^{uu}	0.805449
Wage offer dist shape female	$artheta_j$	0.036759
Wage offer dist shape male	ϑ_i	0.058715

Estimated Parameters Values

Parameter	Symbol	Value
HH public good single male E	X_i^e	0.012107
HH public good single male U	X_i^u	0.641705
Output elasticity male hours single	$lpha_y$	0.286963
Leisure coefficient male	ζ_y	0.100021
HH public good single female E	X_j^e	0.010053
HH public good single female U	X_i^u	0.539622
Output elasticity female hours single	$lpha_x$	0.396608
Leisure coefficient female	ζ_x	0.100113

Estimated Parameters Values

Parameter	Symbol	Value
Quit rate female	q_{j}	0.171884
Quit rate male	q_{i}	0.035313
Love shock arrival rate	δ	0.655706
Marriage market matching efficiency	ϕ	0.078410
Male bargaining power	eta_y	0.200013
Labor market matching efficiency female	μ_j	0.046432
Labor market matching efficiency male	μ_i	0.036816
Love shock standard deviation	σ_z	1.147241

Application

The German labor market reforms (2003-2005)

- Many changes, hard to evaluate (means-testing, UI, matching efficiency, etc.).
- Female employment was relatively more affected by the reforms.
- Change in socially insured employment (Burda & Seele, 2020):
 - Women: **5.3**% in 2003–08 and **6.8**% in 2008–11.
 - Men: 2.7% in 2003–08 and 3.5% in 2008–11.
- At the same time, divorce rates increased:
 - **1.3**% (2000–02), **1.9**% (2003–05), **1.5**% (2006–08), **1.5**% (2006–08)
- Our model can explain how rising employment and divorce rates are associated.

Flow Equation System

Equate inflows and outflows:

$$\lambda \alpha_{ij}^{-ll} s_i^{-l} s_j^l + \bar{\tau}_{i,j}^{-l',l} m_{ij}^{-l'l} + \bar{\tau}_{j,i}^{l',-l} m_{ij}^{-ll'} = \left[\delta \left(1 - \alpha_{ij}^{-ll} \right) + \underline{\tau}_{i,j}^{-l,l} + \bar{\tau}_{i,j}^{-l,l} + \underline{\tau}_{j,i}^{l,-l} + \bar{\tau}_{j,i}^{l,-l} \right] m_{ij}^{-ll}$$

The outflow consists of divorces driven by love shocks, $\delta\left(1-\alpha_{ij}^{-ll}\right)$ and labor market transitions that lead to a divorce, $\underline{\tau}_{i,j}^{-l,l}+\underline{\tau}_{i,i}^{l,-l}$, where

$$\underline{\tau_{j,i}^{u,-l}} = \begin{cases} 0 & \text{if } z_{ij}^{-le} \leq z_{ij}^{-lu} \\ \mu_{j} \int_{z_{ij}^{-lu}}^{z_{ij}^{-le}} \sigma_{j,i}^{u,-l} \left(R_{j,i}^{u,-l} \left(z' \right) \right) \left[1 - F_{j} \left(R_{j,i}^{u,-l} \left(z' \right) \right) \right] dG \left(z' \right) & \text{if } z_{ij}^{-le} > z_{ij}^{-lu} \end{cases}$$

- Starting point: think of a low-surplus marriage.
- The unemployed member(s) have relatively low reservation wages.

- Starting point: think of a low-surplus marriage.
- The unemployed member(s) have relatively low reservation wages.
- Reform effects:
 - 1 Labor demand and matching efficiency improved.
 - 2 UI benefits decreased.

- Starting point: think of a low-surplus marriage.
- The unemployed member(s) have relatively low reservation wages.
- Reform effects:
 - 1 Labor demand and matching efficiency improved.
 - 2 UI benefits decreased.
- $\rightarrow \mu_j$ and μ_i increase due to (1).

- Starting point: think of a low-surplus marriage.
- The unemployed member(s) have relatively low reservation wages.
- Reform effects:
 - 1 Labor demand and matching efficiency improved.
 - 2 UI benefits decreased.
- $\rightarrow \mu_j$ and μ_i increase due to (1).
- ightarrow Reservation wages decrease further due to (2) as b_i and b_j fall.

- Starting point: think of a low-surplus marriage.
- The unemployed member(s) have relatively low reservation wages.
- Reform effects:
 - 1 Labor demand and matching efficiency improved.
 - 2 UI benefits decreased.
- $\rightarrow \mu_j$ and μ_i increase due to (1).
- \rightarrow Reservation wages decrease further due to (2) as b_i and b_j fall.
- → More transitions into employment.

- Starting point: think of a low-surplus marriage.
- The unemployed member(s) have relatively low reservation wages.
- Reform effects:
 - 1 Labor demand and matching efficiency improved.
 - 2 UI benefits decreased.
- $\rightarrow \mu_j$ and μ_i increase due to (1).
- \rightarrow Reservation wages decrease further due to (2) as b_i and b_j fall.
- → More transitions into employment.
- → Domestic hours and surplus decrease.

- Starting point: think of a low-surplus marriage.
- The unemployed member(s) have relatively low reservation wages.
- Reform effects:
 - 1 Labor demand and matching efficiency improved.
 - 2 UI benefits decreased.
- $\rightarrow \mu_i$ and μ_i increase due to (1).
- \rightarrow Reservation wages decrease further due to (2) as b_i and b_j fall.
- → More transitions into employment.
- → Domestic hours and surplus decrease.
- → More divorces.

Quantification

- Model is estimated on pre-reform data (1993–2002).
- Estimates imply that 9% of female UE transitions lead to divorce.

Quantification

- Model is estimated on pre-reform data (1993–2002).
- Estimates imply that 9% of female UE transitions lead to divorce.
- 1. Increase female labor market matching efficiency μ_i by 20%.
 - Married population share falls from 81.56% to 79.22% (2.34pp).
 - $\underline{\tau}_{j,i}^{u,u}$ increases by approx. 6%.
 - Share of m^{uu} couples falls from 5.3% to 4.2%.
 - Share of m^{ue} couples rises from 4.4% to 4.8%.

Quantification

- Model is estimated on pre-reform data (1993–2002).
- Estimates imply that 9% of female UE transitions lead to divorce.
- 1. Increase female labor market matching efficiency μ_j by 20%.
 - Married population share falls from 81.56% to 79.22% (2.34pp).
 - $\underline{\tau}_{j,i}^{u,u}$ increases by approx. 6%.
 - Share of m^{uu} couples falls from 5.3% to 4.2%.
 - Share of m^{ue} couples rises from 4.4% to 4.8%.
- 2. Additionally decrease b_j and b_i to "Hartz IV" level.
 - Small increase in married population share (79,91%).
 - $\underline{\tau}_{j,i}^{u,u}$ increases further, 8.3%.
 - Share of m^{ue} couples rises to 5%.

Conclusions

- We present a novel structural model that highlights the interaction between decisions made in labor and marriage markets.
- Using German data, we apply the model to recent labor market reforms and find significant feedback effects → more "labor market divorces".
- Companion paper on marital sorting and income inequality (full heterogeneity).

Thank you for your attention.

Bastian Schulz

bastian.schulz@econ.au.dk

Event Study: Part-time to full-time transitions around Divorce

• Relative to matched control group: no divorce, matched in t-3.

Bargaining - No Commitment

- Bargaining powers are (β_i, β_j) , with $\beta_i + \beta_j = 1$.
- Search intensities and transfers are chosen such that the Nash-Product,

$$\left[V_j^{l,-l}\left(z,I_i^{-l},I_j^l\right)-V_j^l\left(I_j^l\right)\right]^{\beta_j}\left[V_i^{-l,l}\left(z,I_i^{-l},I_j^l\right)-V_i^{-l}\left(I_i^{-l}\right)\right]^{\beta_i},$$

is maximized subject to participation and feasibility constraints.

Bargaining - No Commitment

- Bargaining powers are (β_i, β_j) , with $\beta_i + \beta_j = 1$.
- Search intensities and transfers are chosen such that the Nash-Product,

$$\left[V_j^{l,-l}\left(z,I_i^{-l},I_j^l\right)-V_j^l\left(I_j^l\right)\right]^{\beta_j}\left[V_i^{-l,l}\left(z,I_i^{-l},I_j^l\right)-V_i^{-l}\left(I_i^{-l}\right)\right]^{\beta_i},$$

is maximized subject to participation and feasibility constraints.

- If a labor market transition or a love shock occurs, search intensities $(\sigma_{i,j}^{-l,l}(.), \sigma_{j,i}^{l,-l}(.))$ and transfers (t_i, t_j) are (re)negotiated.
- Marital Surplus is defined as the gain from marriage for both spouses:

$$\begin{split} S_{ij}^{-ll}\left(z,I_{i}^{-l},I_{j}^{l}\right) & \equiv \left[V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)-V_{j}^{l}\left(I_{j}^{l}\right)\right] \\ & + \left[V_{i}^{-l,l}\left(z,I_{i}^{-l},I_{j}^{l}\right)-V_{i}^{-l}\left(I_{i}^{-l}\right)\right] \end{split}$$

The Value of Singlehood

• The present value of being a single female with $l \in \{e, u\}$ satisfies:

$$rV_{j}^{l}\left(I_{j}^{l}\right) = \underbrace{u_{j}^{l}\left(I_{j}^{l}\right)}_{\text{Flow utility}} + \underbrace{q_{j}\left[V_{j}^{u}\left(b_{j}\right) - V_{j}^{l}\left(I_{j}^{l}\right)\right]\mathbbm{1}\left[l = e\right]}_{\text{Job separation if employed}}$$

$$+ \underbrace{\max_{\sigma_{j}}\left[\sigma_{j}\mu_{j}\int\max\left[V_{j}^{e}\left(w_{j}^{\prime}\right) - V_{j}^{l}\left(I_{j}^{l}\right),0\right]dF_{j}\left(w_{j}^{\prime}\right) - c\left(\sigma_{j}\right)\right]}_{\text{Search intensity choice}}$$

$$+ \underbrace{\lambda_{ij}\iiint\max\left[V_{j}^{l,-l}\left(z^{\prime},I_{i}^{-l},I_{j}^{l}\right) - V_{j}^{l}\left(I_{j}^{l}\right),0\right]dG\left(z^{\prime}\right)s_{i}d\widehat{H}_{i}^{s}\left(I_{i}\right)di}_{\text{Option value of finding a (male) partner}}$$

Option value of finding a (male) partner

• $\widehat{H}_{i}^{s}\left(I_{i}\right)$ is the income distribution for singles of type i, incorporating the wage earnings distribution $H_{i}^{s}\left(w_{i}\right)$ and the unemployment rate u_{i}^{s} .

The Value of Marriage

$$\begin{split} rV_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right) &= u_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right) \\ + & \delta \int \left[\max\left[V_{j}^{l}\left(I_{j}^{l}\right),V_{j}^{l,-l}\left(z',I_{i}^{-l},I_{j}^{l}\right)\right] - V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)\right] dG\left(z'\right) \\ + & \widehat{\sigma}_{j,i}^{l,-l}\mu_{j} \int \left[\max\left[V_{j}^{e}\left(w'_{j}\right),V_{j}^{e,-l}\left(z,I_{i}^{-l},w'_{j}\right)\right] \\ - & V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)\right] dF_{j}\left(w'_{j}\right) - c\left(\widehat{\sigma}_{j,i}^{l,-l}\right) \\ + & \widehat{\sigma}_{i,j}^{-l,l}\mu_{i} \int \left[\max\left[V_{j}^{l}\left(I_{j}^{l}\right),V_{j}^{l,e}\left(z,w'_{i},I_{j}^{l}\right)\right] - V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)\right] dF_{i}\left(w'_{i}\right) \\ + & q_{j}\left[\max\left[V_{j}^{u}\left(b_{j}\right),V_{j}^{u,-l}\left(z,I_{i}^{-l},b_{j}\right)\right] - V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)\right] \mathbbm{1}\left[l = e\right] \\ + & q_{i}\left[\max\left[V_{j}^{l}\left(I_{j}^{l}\right),V_{j}^{l,u}\left(z,b_{i},I_{j}^{l}\right)\right] - V_{j}^{l,-l}\left(z,I_{i}^{-l},I_{j}^{l}\right)\right] \mathbbm{1}\left[-l = e\right] \end{split}$$

The Surplus of Marriage

• independent of income due to quasi-linearity of utility, strictly increasing in z.

$$[r + \delta + q_{i} + q_{j}] S_{ij}^{-ll}(z) = v_{ij}^{-ll}(z) + \delta \int_{z_{ij}^{-ll}}^{\infty} S_{ij}^{-ll}(z') dG(z')$$

$$Gains from search for i \Leftarrow + \frac{c'(\widehat{\sigma}_{i,j}^{-l,l})^{1+\kappa}}{1+\kappa} - \frac{c'(\widehat{\sigma}_{i}^{-l})^{1+\kappa}}{1+\kappa}$$

$$Gains from search for j \Leftarrow + \frac{c'(\widehat{\sigma}_{j,i}^{l,-l})^{1+\kappa}}{1+\kappa} - \frac{c'(\widehat{\sigma}_{j}^{l})^{1+\kappa}}{1+\kappa}$$

$$+ q_{i} \max \left[0, S_{ij}^{ul}(z)\right] + q_{j} \max \left[0, S_{ij}^{-lu}(z)\right]$$

$$- \lambda_{ij}\beta_{i} \int_{l \in \{u,e\}} S_{i}^{l} \int_{z_{ij}^{-ll}}^{\infty} S_{ij}^{-ll}(z') dG(z') dj$$

$$- \lambda_{ij}\beta_{j} \int_{i} \sum_{-l \in \{u,e\}} S_{i}^{-l} \int_{z_{ij}^{-ll}}^{\infty} S_{ij}^{-ll}(z') dG(z') di$$

Solution Method

- Linear grids with, 1×1 , 4×4 , 5×5 , 20×20 nodes.
- Three fixed point systems, alternating solution algorithm.
 - 1 Initialize the model.
 - 2 Find fixed point of first system of equations:
 - 16 integrated surplus equations.
 - 3 Find fixed point of second system of equations:
 - Compute reservation wages and search intensities.
 - Find the z_{ij}^{ll} thresholds at the point where the surplus is zero.
 - **4** z_{ij}^{ll} determine $\alpha_{ij}^{ll} \equiv \left(1 G\left(z_{ij}^{ll}\right)\right)$, which determine m_{ij}^{ll} .
 - **5** Use flow equations and exog. distributions of i, j to find s_i^l , s_i^l .
 - 6 Go back to step 2. Repeat until convergence.

Yearly transition probability - Example

$$\begin{split} \Pr\left[s_j^u \to \int_i \sum_{-l} m_{ij}^{-le} di\right] &= \int_0^1 \lambda_j^u e^{-\lambda_j^u t} dt \int_0^1 \tau_j^u e^{-\tau_j^u t} dt \\ &+ \int_0^1 \tau_j^u e^{-\tau_j^u t} \left(\int_t^1 \lambda_j^e e^{-\lambda_j^e x} dx - \int_t^1 \lambda_j^u e^{-\lambda_j^u x} dx\right) dt \\ &+ \int_0^1 \lambda_j^u e^{-\lambda_j^u t} \left(\int_t^1 \widehat{\tau}_{j,i}^{u,-l} e^{-\widehat{\tau}_{j,i}^{u,-l} x} dx - \int_t^1 \tau_j^u e^{-\tau_j^u x} dx\right) dt, \\ &= \frac{\tau_j^u}{\lambda_j^e + \tau_j^u} \left(1 - e^{-\left(\lambda_j^e + \tau_j^u\right)\right) - \left(1 - e^{-\tau_j^u}\right) e^{-\lambda_j^e} \\ &+ \frac{\lambda_j^u}{\lambda_j^u + \widehat{\tau}_{j,i}^{u,-l}} \left(1 - e^{-\left(\lambda_j^u + \widehat{\tau}_{j,i}^{u,-l}\right)\right) - \left(1 - e^{-\lambda_j^u}\right) e^{-\widehat{\tau}_{j,i}^{u,-l}}. \end{split}$$

Go back

Event Study: Marriage Rate around EU Transition

• Relative to matched control group: no EU Transition, matched in t-3.

Event Study: Marriage Rate around UE Transition

• Relative to matched control group: no UE Transition, matched in t-3.

Event Study: Work Hours around Marriage

Event Study: Domestic Hours around Marriage

Event Study: Domestic Hours around Divorce

Event Study: EE Rate around Divorce

Identification

- Marriage market transitions identify the parameters $\{\lambda^{...}, \mu_z, \sigma_z, \delta\}$.
- Labor market transitions identify the parameters $\{\beta_{\mu...}\}$, $\{\beta_{\vartheta...}\}$, and $\{\beta_{q...}\}$.
- The reservation wage of unemployed individuals is a function of the difference in working hours and the household public good.
- The job finding probability linked to a certain reservation wage therefore identifies the preference parameters $\{\zeta_x, \zeta_y\}$ given the observed difference in working hours $l_j^u l_j^e$.
- Household public good production parameters $\{\alpha_x, \alpha_y\}$ cannot be directly identified, since we do not observe the difference in the household public good $X_i^u X_i^e$.
- To identify household public good parameters via job finding, we need to tie down the household public good for one labor market status.
- We use the time input into household production while being unemployed.

