ROBEM I Let $X = \{X(n) : n \geq 0\}$ be Markov chain defined on probability space $(\Omega, \mathscr{F}, \mathbb{P})$, with state space E and transition probability matrix $P = (p(i,j) : i,j \in E)$. Let $a,b \in E$, $\tau_0 = 0$, $\sigma_k = \inf\{n \geq \tau_{k-1} : X(n) = b\}$, $\tau_k = \inf\{n \geq \sigma_k : X(n) = a\}$. Prove: $\tau_n, \sigma_n, n \geq 1$ are all stopping time on $(\mathscr{F}_n : n \geq 0)$.

SOUTON. Since $\sigma_1 = \inf\{n \geq 0 : X(n) = b\}$, then $\{\sigma_1 = m\} = \{X(i) \neq b, 0 \leq i \leq m - 1, X(m) = b\} \in \sigma\{X(i), 0 \leq i \leq m - 1, X_m\} = \mathscr{F}_m$. Then σ_1 is stopping time. Next, we will prove $\sigma_k, \tau_{k-1}, k \in \mathbb{N}$ are stopping time. Since σ_1, τ_0 are stopping time, which we have proved. Assume σ_k, τ_{k-1} are stopping time, we will prove σ_{k+1}, τ_k are stopping time. Let $m \in \mathbb{N}^+$, $\{\tau_k = m\} = \bigcup_{i \in [0, m-1] \cap \mathbb{N}} \{\sigma_k = i, X(i+l) \neq a, 1 \leq l \leq m - i - 1, X(m) = a\} \in \mathscr{F}_m$, since $\{\sigma_k = i\} \in \mathscr{F}_i \subset \mathscr{F}_m, \forall 0 \leq i \leq m - 1, \sigma(X_j) \subset \mathscr{F}_m, j \leq m$. Let $m \in \mathbb{N}^+$, $\{\sigma_{k+1} = m\} = \bigcup_{i \in [0, m-1] \cap \mathbb{N}} \{\tau_k = i, X(i+l) \neq a, 1 \leq l \leq m - i - 1, X(m) = b\} \in \mathscr{F}_m$, since $\{\tau_k = i\} \in \mathscr{F}_i \subset \mathscr{F}_m, \forall 0 \leq i \leq m - 1, \sigma(X_j) \subset \mathscr{F}_m, j \leq m$. Therefore, σ_{k+1}, τ_k are stopping time.

ROBEM II Let $(X_n : n \ge 0)$ is a one-dimension simple random walk starting at 1. Let $e(n) = \{X_{n \land \tau_1} : n \ge 0\}$, where $\tau_1 = \inf\{n \ge 0 : X_n = 0\}$. Find the distribution of $\sup_{n \ge 0} e(n)$.

SOLTON. Assume $\mathbb{P}(X_{n+1} - X_n = 1) = p$, $\mathbb{P}(X_{n+1} - X_n = -1) = q$, p, q > 0, p + q = 1. Let $E := \sup_{n \geq 0} e(n)$. Let $\gamma = \inf\{n \geq 0 : X_n = 0 \text{ or } X_n = m\} \geq 1$, where $m \in \mathbb{N}^+$. First of all, if $p = q = \frac{1}{2}$: Easy to get that $\gamma < \infty$, a.s., so $X_{n \wedge \gamma} \overset{\text{a.s.}}{\to} X_{\gamma}$. And $0 \leq X_{n \wedge \gamma} \leq m$, so $\mathbb{E}(X_{\gamma}) = \mathbb{E}(X_{n \wedge \gamma}) = \mathbb{E}(X_0)$. Noting that $\{X_{\gamma} = 0\} \overset{\text{a.s.}}{=} \{E < m\}$ and $\{X_{\gamma} = m\} \overset{\text{a.s.}}{=} \{E \geq m\}$, we get two equations:

$$\begin{cases} \mathbb{P}(E < m) + \mathbb{P}(E \ge m) = 1\\ 0\mathbb{P}(E < m) + m\mathbb{P}(E \ge m) = 1 \end{cases}$$

Solve this equation, we get $\mathbb{P}(E \geq m) = \frac{1}{m}$. So $\mathbb{P}(E = m) = \frac{1}{m(m+1)}$, and easily $\mathbb{P}(E = \infty) = 0$. Secondly, $p \neq q$: Let $Y_n := (\frac{q}{p})^{X_n}$, then $\mathbb{E}(Y_{n+1}) = \mathbb{E}(\mathbb{E}(Y_{n+1} \mid Y_n)) = \mathbb{E}((\frac{q}{p})^{X_n+1}p + (\frac{q}{p})^{X_n-1}q) = \mathbb{E}((\frac{q}{p})^{X_n}) = \mathbb{E}(Y_n)$. Obviously, γ is stopping time. Then $\mathbb{E}(Y_{n+1 \wedge \gamma}) = \mathbb{E}(\mathbb{E}(Y_{n+1 \wedge \gamma} \mid Y_{n \wedge \gamma})) = \mathbb{E}(\mathbb{E}(Y_{n+1} \mid Y_n) + \mathbb{E}(Y_n) + \mathbb{E}(Y_n)) = \mathbb{E}(\mathbb{E}(Y_n) + \mathbb{E}(Y_n)) = \mathbb{E}(Y_n)$. Then $\mathbb{E}(Y_n) = \mathbb{E}(Y_n) =$

$$\frac{\binom{p}{q}^{m}\binom{p}{q}-1}{\binom{p}{q}^{m}-1)\binom{p}{q}^{m+1}-1}. \text{ Furthermore, easily } \mathbb{P}(E=\infty)=\lim_{m\to\infty}\mathbb{P}(E\geq m)=\begin{cases} 0 & \frac{q}{p}>1\\ 1-\frac{q}{p} & \frac{q}{p}<1 \end{cases}. \qquad \Box$$

BOBEM III Prove:

- 1. When $0 , the reflecting random walk with transition matrix <math>Q_+^a$ is recurrent.
- 2. When $0 < q \le p$, the reflecting random walk with transition matrix Q_{-}^{a} is recurrent.

SPETION. By symmetry, only need to prove the first question. Without loss of generality we can assume a = 0. We consider the equation

$$y_0 = y_1, \forall i \ge 1, y_i = qy_{i-1} + py_{i+1}$$

Only need to prove its all bounded solution are all constant. Easy to get $y_{i+2} = \frac{1}{p}y_{i+1} - \frac{q}{p}y_i$. Consider the charasteristic equation of this sequence, $x^2 - \frac{x}{p} + \frac{q}{p} = 0$. We get $x_1 = 1, x_2 = \frac{q}{p} \ge 1$. If $x_2 > 1$, then $y_n = c_1 x_1^n + c_2 x_2^n$ is bounded $\iff c_2 = 0$, so $y_n = c_1 x_1^n = c_1$ is constant. Else, $x_2 = x_1 = 1$, then $y_n = (an + b)x_1^n = an + b$ is bounded $\iff a = 0$, so $y_n = b$ is constant. So the Markov chain is recurrent.

ROBEM IV Let $\phi_0(n:n\in\mathbb{N}^+)$ be simple random walk begin at $\phi_0(0)\geq a+1$, let $\zeta_0:=\inf\{m:\phi_0(m)=a+1\}$, let $(W_n:n\in\mathbb{N})$ be reflecting simple random walk on \mathbb{Z}_+^a , starting at a+1, independent with ϕ_0 . Let $X_n:=\begin{cases} \phi_0(n) & n\leq\zeta_0\\ W_n-\zeta_0 & n\geq\zeta_0 \end{cases}$. Prove that $(X_n:n\in\mathbb{N})$ is reflecting random walk on \mathbb{Z}_+^a begin at $\phi_0(0)$.

SOLTHON. Now we consider $n \in \mathbb{N}^+$ and $i_0, i_1, i_2, \cdots, i_{n+1} \in \mathbb{Z}^a_+$.

1. If $\forall k : 1 \leq k \leq n, i_k \neq a+1$, then we have

$$\mathbb{P}(X_0 = i_0, \dots, X_{n+1} = i_{n+1}) = \mathbb{P}(\phi_0(0) = i_0, \dots, \phi_0(n+1) = i_{n+1})
= \mathbb{P}(\phi_0(0) = i_0, \dots, \phi_0(n) = i_n) \mathbb{P}(\phi_0(n+1) = i_{n+1} \mid \phi_0(n) = i_n)
= \mathbb{P}(X_0 = i_0, \dots, X_n = i_n) q_+^a(i_n, i_{n+1})$$

2. Else, we let $k := \inf\{m : 1 \le m \le n, i_m = a + 1\}$. Then we have

$$\mathbb{P}(X_0 = i_0, \dots, X_{n+1} = i_{n+1})
= \mathbb{P}(\phi_0(0) = i_0, \dots, \phi_0(k) = i_k, W_0 = a+1, W_{k+2+i} = i_{k+i}, i = 1, \dots, n-k+1)
= \mathbb{P}(\phi_0(0) = i_0, \dots, \phi_0(k) = i_k) \mathbb{P}(W_0 = a+1, W_{k+2+i} = i_{k+i}, i = 1, \dots, n-k+1)
= \mathbb{P}(\phi_0(0) = i_0, \dots, \phi_0(k) = i_k) \mathbb{P}(W_0 = a+1, W_{k+2+i} = i_{k+i}, i = 1, \dots, n-k) q_+^a(i_n, i_{n+1})
= \mathbb{P}(X_0 = i_0, \dots, X_n = i_n) q_+^a(i_n, i_{n+1})$$

So we get $(X_n : n \ge 0)$ is reflecting simple random walk on \mathbb{Z}_+^a .