Parallel Programming Final Project-PSO

Group 29

Outline

- What is particle swarm optimization (PSO) ?
- How to implement it?
- How to optimize?
- Experiment & Analysis

Particle swarm optimization (PSO)

- An Optimization Method Based on Population Dynamics
- The concept originally came from a simulation of social behavior
- Individuals will be influenced by their past experience and cognition and overall social behavior,
 and form an evolutionary advantage

Particle swarm optimization (PSO)

Characteristic :

- It can effectively search for problems with a huge solution space and find candidate solutions without knowing too much information about the problem.
- Able to find the best solution or the value closest to the best solution

• Use cases:

- Solve the problem of finding the best solution
- Used in neural network algorithms
- Solve efficiently CSPs (Constraint Satisfaction Problems)

Particle swarm optimization (PSO)-Principle

Update the velocity of each particle

$$\mathbf{v}_i(t+1) = \mathbf{v}_i(t) + c_1(\mathbf{p}_i - \mathbf{x}_i(t))\mathbf{R}_1 + c_2(\mathbf{g} - \mathbf{x}_i(t))\mathbf{R}_2$$

Update the position of each particle

$$\mathbf{x}_i(t+1) = \mathbf{x}_i(t) + \mathbf{v}_i(t+1)$$

The workflow of the sequential PSO algorithm

The workflow of the parallel PSO algorithm

Optimization

- 1. Shared memory . Coalesced Memory Access: Put frequently accessed data into share memory
- 2. Interleaved addressing: handle warp divergence
- 3. Sequential addressing: handle bank conflict
- 4. Unroll
- 5. Mixed-Precision(Use float to replace double)

- Parallel: Baseline
- Parallel 1: Shared memory \ Coalesced Memory Access
- Parallel_2 : Shared memory \cdot Coalesced Memory Access \cdot handle warp divergent
- Parallel 3: Shared memory . Coalesced Memory Access . handle warp divergent . handle bank conflict
- Parallel_4 : Shared memory \cdot Coalesced Memory Access \cdot handle warp divergent \cdot handle bank conflict \cdot Unroll
- Parallel_5: Shared memory \(\cdot \) Coalesced Memory Access \(\cdot \) handle warp divergent \(\cdot \) handle bank conflict \(\cdot \) Unroll \(\cdot \) double -> float

- Parallel: Baseline
- Parallel 1: Shared memory \ Coalesced Memory Access
- Parallel_2 : Shared memory \cdot Coalesced Memory Access \cdot handle warp divergent
- Parallel 3: Shared memory . Coalesced Memory Access . handle warp divergent . handle bank conflict
- Parallel_4: Shared memory . Coalesced Memory Access . handle warp divergent . handle bank conflict . Unroll
- Parallel_5 : Shared memory \cdot Coalesced Memory Access \cdot handle warp divergent \cdot handle bank conflict \cdot Unroll \cdot double -> float

Particles	Iteration		Total Time_Serial(s)	Total Time_Parallel(s)	Total Time_Parallel_1(s)	Total Time_Parallel_:	Total Time_Parallel_3	Total Time_Paralle	Total Time_Parallel_5
12	8 100	0000	0.22058	0.680846	0.616901	0.522089	0.538232	0.494345	0.479629
25	5 100	0000	0.450724	0.764967	0.628925	0.59071	0.583021	0.568412	0.489103
51	2 100	0000	0.8511	0.964059	0.711591	0.616674	0.598647	0.591764	0.535207
102	4 100	0000	1.697453	1.372173	1.049532	0.827267	0.812177	0.754653	0.590641
204	8 100	0000	3.404291	1.454872	1.024608	0.889581	0.778589	0.773349	0.602957
409	5 100	0000	6.864119	1.747627	1.087807	0.863102	0.838115	0.788841	0.69506
819	2 100	0000	13.726206	2.777033	1.091495	0.915003	0.821749	0.818323	0.675779
1638	4 100	0000	27.846163	5.50088	1.15595	0.932236	0.907452	0.896619	0.734849
3276	8 100	0000	55.258001	11.168123	1.637492	1.304801	1.186819	1.158356	1.548642
6553	6 100	0000	110.009652	21.587691	3.306193	2.798614	2.600244	2.571494	2.409548
13107	2 100	0000	221.051729	44.585769	5.379395	4.910112	4.530291	4.527019	4.729527

- Parallel: Baseline
- Parallel_1 : Shared memory \cdot Coalesced Memory Access
- Parallel_2 : Shared memory \cdot Coalesced Memory Access \cdot handle warp divergent
- Parallel 3: Shared memory . Coalesced Memory Access . handle warp divergent . handle bank conflict
- Parallel 4: Shared memory \coalesced Memory Access \cdot handle warp divergent \cdot handle bank conflict \cdot Unroll
- Parallel_5 : Shared memory \cdot Coalesced Memory Access \cdot handle warp divergent \cdot handle bank conflict \cdot Unroll \cdot double -> float

- Parallel: Baseline
- Parallel_1 : Shared memory \cdot Coalesced Memory Access
- Parallel_2 : Shared memory \cdot Coalesced Memory Access \cdot handle warp divergent
- Parallel 3: Shared memory . Coalesced Memory Access . handle warp divergent . handle bank conflict
- Parallel 4: Shared memory \coalesced Memory Access \cdot handle warp divergent \cdot handle bank conflict \cdot Unroll
- Parallel_5: Shared memory \(\cdot \) Coalesced Memory Access \(\cdot \) handle warp divergent \(\cdot \) handle bank conflict \(\cdot \) Unroll \(\cdot \) double -> float

- Parallel: Baseline
- Parallel 1: Shared memory \(\cdot \) Coalesced Memory Access
- Parallel_2 : Shared memory \cdot Coalesced Memory Access \cdot handle warp divergent
- Parallel 3: Shared memory \(\cdot \) Coalesced Memory Access \(\cdot \) handle warp divergent \(\cdot \) handle bank conflict
- Parallel_4: Shared memory \(\cdot \) Coalesced Memory Access \(\cdot \) handle warp divergent \(\cdot \) handle bank conflict \(\cdot \) Unroll
- Parallel_5: Shared memory \(\cdot \) Coalesced Memory Access \(\cdot \) handle warp divergent \(\cdot \) handle bank conflict \(\cdot \) Unroll \(\cdot \) double -> float

Thank you for listening

Group 29