的数值解,取 h=0.1,梯形公式只迭代一次,并与精确值比较. 方程的解析解为 $y=\sqrt{1+2x}$.

解 欧拉公式为

$$\begin{cases} y_{n+1} = y_n + 0.1 \times \left(y_n - \frac{2x_n}{y_n} \right) = 1.1 y_n - \frac{0.2x_n}{y_n} \\ y_0 = 1 \end{cases}$$

梯形公式只校正一次的格式为

$$\begin{cases} y_{n+1}^{(0)} = 1. \ 1y_n - \frac{0. \ 2x_n}{y_n} \\ y_{n+1} = y_n + 0. \ 05 \times \left(y_n - \frac{2x_n}{y_n} + y_{n+1}^{(0)} - \frac{2x_{n+1}}{y_{n+1}^{(0)}} \right) \\ y_0 = 1, \quad x_0 = 0 \end{cases}$$

结果列入下表:

\boldsymbol{x}_n	欧拉方法	梯形法	精确值
0. 1	1. 100 000	1. 095 909	1. 095 445
0. 2	1. 191 818	1. 184 097	1. 183 216
0.3	1. 277 438	1. 266 201	1. 246 911
0. 4	1. 358 213	1. 343 360	1. 341 641
0.5	1. 435 133	1. 416 402	1. 414 214
0. 6	1. 508 966	1. 485 956	1. 483 240
0. 7	1. 580 338	1. 552 515	1. 549 193
0. 8	1. 649 783	1. 616 475	1. 612 452
0. 9	1.717 779	1. 678 167	1. 673 320
1.0	1. 784 771	1. 737 868	1. 732 051

6.2.3 龙格-库塔方法

1. 龙格-库塔方法的基本思想

考察差商 $\frac{y(x_{n+1})-y(x_n)}{h}$,根据微分中值定理,存在点 $\xi,x_n<\xi< x_{n+1}$,使得

$$\frac{y(x_{n+1}) - y(x_n)}{h} = y'(\xi)$$

从而利用所给方程 y'=f得

$$y(x_{n+1}) = y(x_n) + hf(\xi, y(\xi))$$
 (5)

其中的 $K^* = f(\xi, y(\xi))$, 称作区间[x_n, x_{n+1}]上的平均斜率. 这样, 只要对平均斜率提供一种算法, 由(5)式便相应地导出一种计算格式.

考察欧拉方法的公式

$$y_{n+1} = y_n + hf(x_n, y_n), \quad n = 0, 1, 2, \dots$$

它简单地取点 x_n 的斜率值 $K_1 = f(x_n, y_n)$ 作为平均斜率 K^* , 精度自然很低.

再考察(4),它亦可改写成

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(K_1 + K_2) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_{n+1}, y_n + hK_1) \end{cases}$$

可以理解为:它用 x_n 与 x_{n+1} 两个点的斜率值 K_1 和 K_2 取算术平均作为平均斜率 K^* ,而 x_{n+1} 处的斜率值 K_2 则利用欧拉方法来预报.

这个处理过程启示我们,如果设法在[x_n , x_{n+1}]内多预报几个点的斜率值,然后将它们取加权平均作为平均斜率,则有可能构造出具有高精度的计算格式,这就是龙格-库塔方法的基本思想.

2. 二阶龙格-库塔方法

考察区间 $[x_n,x_{n+1}]$ 内一点

$$x_{n+p} = x_n + ph, \quad 0$$

用 x_n 和 x_{n+n} 两个点的斜率值 K_1 和 K_2 加权平均得到平均斜率 K^* ,即令

$$y_{n+1} = y_n + h[(1 - \lambda)K_1 + \lambda K_2]$$

式中的 λ 为待定系数. 仍取 $K_1 = f(x_n, y_n)$,问题在于该如何预报 x_{n+p} 处的斜率值 K_2 ? 先用欧拉方法提供 $y(x_{n+p})$ 的预报值 y_{n+p} :

$$y_{n+p} = y_n + phK_1$$

然后用 y_{n+n} 通过计算 f 产生斜率值 $K_2 = f(x_{n+n}, y_{n+n})$.

这样设计出的计算格式具有形式:

$$\begin{cases} y_{n+1} = y_n + h[(1 - \lambda)K_1 + \lambda K_2] \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + ph, y_n + phK_1) \end{cases}$$
(6)

其中含两个待定参数 λ,p,我们适当选取这些参数的值,使得格式(6)具有较高的精度.

假定 $y_n = y(x_n)$, 分别将 K_1 和 K_2 作泰勒展开, 有

$$K_{1} = f(x_{n}, y_{n}) = y(x_{n})$$

$$K_{2} = f(x_{n+p}, y_{n} + phK_{1})$$

$$= f(x_{n}, y_{n}) + ph[f_{x}(x_{n}, y_{n}) + f(x_{n}, y_{n})f_{y}(x_{n}, y_{n})] + O(h^{2})$$

$$= y'(x_{n}) + phy''(x_{n}) + O(h^{2})$$

代入(6)式知

$$y_{n+1} = y(x_n) + hy'(x_n) + \lambda p h^2 y''(x_n) + O(h^3)$$

和二阶泰勒展开式

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + O(h^3)$$

比较系数即可发现,欲使格式(6)的截断误差为 $O(h^3)$,只要 $\lambda p = \frac{1}{2}$.

满足这一条件的一簇格式统称**二阶龙格-库塔格式**. 特别地,当 p=1, $\lambda = \frac{1}{2}$ 时, 龙格-库塔格式(6)就是梯形公式的预报-校正格式.

3. 四阶龙格-库塔方法

用类似的方法可以确定三阶和四阶龙格-库塔方法的参数,构造出三阶和四阶的 龙格-库塔方法.常用的是四阶龙格-库塔方法,四阶龙格-库塔方法也不止一个,下面给出的是 最常用的四阶经典的龙格-库塔公式:

例 2 用经典的四阶龙格-库塔方法计算:

$$\begin{cases} y' = y - \frac{2x}{y} & (0 \le x \le 1) \\ y_0 = 1 \end{cases}$$

取步长为 0.2, 且与准确值比较.

解 由(7)得

$$\begin{cases} y_{n+1} = y_n + \frac{0.2}{6} (K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = y_n - \frac{2x_n}{y_n} \\ K_2 = y_n + 0.1K_1 - 2\frac{x_n + 0.1}{y_n + 0.1K_1} \\ K_3 = y_n + 0.1K_2 - 2\frac{x_n + 0.1}{y_n + 0.1K_2} \\ K_4 = y_n + 0.2K_3 - 2\frac{x_n + 0.2}{y_n + 0.2K_3} \end{cases}$$

计算结果列入下表:

x_n	\mathcal{Y}_{a}	$y(x_n)$
0	1	1 4 5 5 7 1 7
0. 2	1. 183 229	1. 183 216
0. 4	1. 341 667	1. 341 641
0.6	1. 483 281	1. 483 240
0.8	1.612 514	1. 612 452
1.0	1. 732 142	1. 732 051

可见,即使用 h=0.2 计算,也比一阶和二阶龙格-库塔方法精度高得多.

6.2.4 一阶常微分方程组和高阶方程

1. 一阶方程组

前面研究了单个方程 y'=f 的差分方法,只要把 y 和 f 理解为向量,则所提供的各种算法即可推广应用到一阶方程组的情形.

对于方程组

$$\begin{cases} y' = f(x, y, z), & y(x_0) = y_0 \\ z' = g(x, y, z), & z(x_0) = z_0 \end{cases}$$

令 $x_n = x_0 + nh$, $n = 1, 2, \dots$, 以 y_n , z_n 表示结点 x_n 上的近似解,则其梯形公式的预报-校正格式具有形式:

预报
$$\bar{y}_{n+1} = y_n + hf(x_n, y_n, z_n)$$

$$\bar{z}_{n+1} = z_n + hg(x_n, y_n, z_n)$$

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n, z_n) + f(x_{n+1}, \bar{y}_{n+1}, \bar{z}_{n+1})]$$
 校正
$$z_{n+1} = z_n + \frac{h}{2} [g(x_n, y_n, z_n) + g(x_{n+1}, \bar{y}_{n+1}, \bar{z}_{n+1})]$$

相应的四阶龙格-库塔格式为

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ z_{n+1} = z_n + \frac{h}{6}(L_1 + 2L_2 + 2L_3 + L_4) \\ K_1 = f(x_n, y_n, z_n) \\ L_1 = g(x_n, y_n, z_n) \\ K_2 = f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1, z_n + \frac{h}{2}L_1\right) \\ L_2 = g\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1, z_n + \frac{h}{2}L_1\right) \\ K_3 = f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_2, z_n + \frac{h}{2}L_2\right) \\ L_3 = g\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_2, z_n + \frac{h}{2}L_2\right) \\ K_4 = f(x_{n+1}, y_n + hK_3, z_n + hL_3) \\ L_4 = g(x_{n+1}, y_n + hK_3, z_n + hL_3) \end{cases}$$

2. 高阶常微分方程

高阶微分方程的初值问题,原则上总可以归结为一阶方程组来求解.以二阶常微分方程为例:

$$\begin{cases} y''(x) = f(x, y, y'), & x_0 \le x \le x_n \\ y(x_0) = y_0, y'(x_0) = z_0 \end{cases}$$

则可令 z=y',化为一阶方程组求解:

$$\begin{cases} y'(x) = z, & y(x_0) = y_0, & x_0 \le x \le x_n \\ z'(x) = f(x, y, z), & z(x_0) = z_0 \end{cases}$$

6.3 用 MATLAB 解微分方程

6.3.1 微分方程(组)的解析解

求微分方程(组)的解析解用函数 dsolve.

求解微分方程时,需要将微分方程包含在 dsolve 的表达式中. 在表达微分方程时,用字母 D 表示求微分,D2,D3 等表示求高阶微分. 任何 D 后所跟的字母为因变量,自变量可以指定或由 symvar 规则选定为缺省. 例如,微分方程 $\frac{d^2y}{dx^2}$ =0 应表达为:D2y=0.

下面举几个例子.

例1 求 $\frac{\mathrm{d}u}{\mathrm{d}t}$ =1+ u^2 的通解.

解 命令为:dsolve('Du=1+u^2','t') 结果为:ans=

$$tan(t-C1)$$

例2 求下列微分方程的特解.

$$\begin{cases} \frac{d^2 y}{dx^2} + 4 \frac{dy}{dx} + 29y = 0\\ y(0) = 0, y'(0) = 15 \end{cases}$$

解 命令为:y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x') 结果为:y=

$$3 * \exp(-2 * x) * \sin(5 * x)$$

例 3 求下列微分方程组的通解.

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = 2x - 3y + 3z \\ \frac{\mathrm{d}y}{\mathrm{d}t} = 4x - 5y + 3z \\ \frac{\mathrm{d}z}{\mathrm{d}t} = 4x - 4y + 2z \end{cases}$$

解 命令为:

[x,y,z] = dsolve('Dx = 2 * x - 3 * y + 3 * z','Dy = 4 * x - 5 * y + 3 * z','Dz = 4 * x