

Capture and Modeling of Non-Linear Heterogeneous Soft Tissue | Bickel et al

Questions from Previous Lecture?

Equations of Motion

$$M\ddot{\mathbf{q}} = -rac{\partial V}{\partial \mathbf{q}}$$

Time Integration

$$m\ddot{\mathbf{q}} = f(\mathbf{q})$$

How to Solve This?

$$\dot{\mathbf{M}}\ddot{\mathbf{q}} = -\frac{\partial V}{\partial \mathbf{q}}$$

Spatial Discretization -- Finite Elements

How to Solve This?

$$M\ddot{\mathbf{q}} = -rac{\partial V}{\partial \mathbf{q}}$$

$$\dot{q} = \lim_{t \to 0} \frac{\mathbf{q}(\mathbf{t} + \delta \mathbf{t}) - \mathbf{q}(\mathbf{t})}{\delta t}$$

Finite Difference Derivative

$$\dot{\mathbf{q}} = \frac{\mathbf{q}(\mathbf{t} + \delta \mathbf{t}) - \mathbf{q}(\mathbf{t})}{\delta t}$$

Finite Difference Derivative

$$\mathbf{q}^{i+1} = \frac{\mathbf{q}^{i+1} - \mathbf{q}^{i}}{h}$$

$$\ddot{q} = ?????$$

Continuous Derivative

$$\ddot{\mathbf{q}} = \lim_{t \to 0} \frac{\mathbf{q}(\mathbf{t} + \delta \mathbf{t}) - \mathbf{q}(\mathbf{t})}{\delta t}$$

Finite Difference Derivative

$$\ddot{\mathbf{q}}^{i} = rac{\dot{\mathbf{q}}^{l+1} - \dot{\mathbf{q}}^{l}}{h}$$

$$\ddot{\mathbf{q}}^{i} = \frac{1}{h} \left(\frac{\mathbf{q}^{i+1} - \mathbf{q}^{i}}{h} - \frac{\mathbf{q}^{i} - \mathbf{q}^{i-1}}{h} \right)$$

Finite Difference Derivative

$$\ddot{\mathbf{q}}^{i} = \frac{1}{h^{2}} \left(\mathbf{q}^{i+1} - 2\mathbf{q}^{i} + \mathbf{q}^{i-1} \right)$$

Discretize in Time

$$M\ddot{\mathbf{q}} = -rac{\partial V}{\partial \mathbf{q}}$$

Discretize in Time

$$M\frac{1}{h^2}(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) = -\frac{\partial V}{\partial \mathbf{q}}$$

What about this?

Explicit Integrator

$$M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) = -h^2 \frac{\partial V}{\partial \mathbf{q}}(\mathbf{q^i})$$

Forward Euler

Implicit Integrator

$$M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) = -h^2 \frac{\partial V}{\partial \mathbf{q}} (\mathbf{q^{i+1}})$$

Backward Euler: More stable, harder to solve

How do we Solve This?

$$M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) = -h^2 \frac{\partial V}{\partial \mathbf{q}} (\mathbf{q^{i+1}})$$

Root Finding?

$$M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) + h^2 \frac{\partial V}{\partial \mathbf{q}}(\mathbf{q^{i+1}}) = 0$$

Nonlinear Root Finding is Hard

How do we Solve This?

$$M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) + h^2 \frac{\partial V}{\partial \mathbf{q}}(\mathbf{q^{i+1}}) = 0$$

What other type of problem involves finding the zero of a function?

Optimization

$$\nabla \mathbf{g}(\mathbf{q}^{i+1}) = 0$$

Find where gradient is zero

How do we Solve This?

$$M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) + h^2 \frac{\partial V}{\partial \mathbf{q}}(\mathbf{q^{i+1}}) = 0$$

Gradient of what equals this? Let's guess, then check

How do we Solve This?

$$E(\mathbf{q^{i+1}}) = \frac{1}{2} (\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}})^{\mathrm{T}} M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) + h^2 V(\mathbf{q^{i+1}})$$

Gradient of what equals this? Let's guess, then check

For each Time Step, Use Optimization!

How do we Solve This?

$$E(\mathbf{q^{i+1}}) = \frac{1}{2} (\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}})^{\mathrm{T}} M(\mathbf{q^{i+1}} - \widetilde{\mathbf{q^i}}) + h^2 V(\mathbf{q^{i+1}})$$

Gradient of what equals this? Let's guess, then check

WARNING I DID NOT HAVE TIME TO RE-TYPESET THIS MATH SO THE OTPIMIZATION PROBLEM IS SLIGHTLY DIFFERENT FROM THE ONE **ABOVE**

BUT DON'T PANIC THE ALGORITHM IS STILL THE SAME !!!!!

Backward Euler using Optimization

$$\mathbf{v}^* = \arg\min_{\mathbf{v}} \frac{1}{2} \left(\mathbf{v} - \dot{\mathbf{q}}^t \right)^T \mathbf{M} \left(\mathbf{v} - \dot{\mathbf{q}}^t \right) + V \left(\mathbf{q}^t + \Delta t \mathbf{v} \right)$$

Gradient-Based Optimization

Choose an initial guess

$$i = 0$$

 $\mathbf{v}^0 = \text{something}$

Check for convergence

$$\left| \left| \frac{\partial E}{\partial \mathbf{v}} \right|_{\mathbf{v}^i} \right| < \text{tol}$$

Choose search direction

$$d = ??????$$

$$\mathbf{v}^{i+1} = \mathbf{v}^i + \alpha \mathbf{d}$$
$$i = i+1$$

Backward Euler using Optimization

$$\mathbf{v}^* = \arg\min_{\mathbf{v}} \frac{1}{2} \left(\mathbf{v} - \dot{\mathbf{q}}^t \right)^T \mathbf{M} \left(\mathbf{v} - \dot{\mathbf{q}}^t \right) + V \left(\mathbf{q}^t + \Delta t \mathbf{v} \right)$$

Gradient Descent

Choose an initial guess

$$i = 0$$

 $\mathbf{v}^0 = \text{something}$

Check for convergence

$$\left| \left| \frac{\partial E}{\partial \mathbf{v}} \right|_{\mathbf{v}^i} \right| < \text{tol}$$

Choose search direction

$$\mathbf{d} = -rac{\partial E}{\partial \mathbf{v}}\Big|_{\mathbf{v}^i}$$

$$\mathbf{v}^{i+1} = \mathbf{v}^i + \alpha \mathbf{d}$$
$$i = i+1$$

Choose an initial guess

$$i = 0$$

 $\mathbf{v}^0 = \text{something}$

Check for convergence

$$\left| \left| \frac{\partial E}{\partial \mathbf{v}} \right|_{\mathbf{v}^i} \right| < \text{tol}$$

Choose search direction

d = Minimize quadratic approximation

$$\mathbf{v}^{i+1} = \mathbf{v}^i + \alpha \mathbf{d}$$
$$i = i+1$$

Aside: Quadratic Approximations

$$\mathbf{y}^* = \arg\min_{\mathbf{y}} E(\mathbf{y})$$
 generic optimization problem optimal solution energy/cost function

$$\mathbf{d} = \arg\min_{\tilde{\mathbf{d}}} E\left(\mathbf{y}^i + \tilde{\mathbf{d}}\right)$$

Second Order Taylor Approximation

$$\mathbf{d} = \arg\min_{\tilde{\mathbf{d}}} \frac{1}{2} \tilde{\mathbf{d}}^T \mathbf{H}^i \tilde{\mathbf{d}} + \tilde{\mathbf{d}}^T \mathbf{g}^i + \tilde{\mathbf{T}}^i$$

$$\frac{\partial^2 E}{\partial \mathbf{v}^2}|_{\mathbf{v}^i} \frac{\partial E}{\partial \mathbf{v}^i}|_{\mathbf{v}^i} E(\mathbf{y}^i)$$

Choose an initial guess

$$i = 0$$

 $\mathbf{v}^0 = \text{something}$

Check for convergence

$$\left| \left| \frac{\partial E}{\partial \mathbf{v}} \right|_{\mathbf{v}^i} \right| < \text{tol}$$

Choose search direction

$$\mathbf{d} = \arg\min_{\tilde{\mathbf{d}}} \frac{1}{2} \tilde{\mathbf{d}}^T \mathbf{H}^i \tilde{\mathbf{d}} + \tilde{\mathbf{d}}^T \mathbf{g}^i$$

$$\mathbf{v}^{i+1} = \mathbf{v}^i + \alpha \mathbf{d}$$
$$i = i+1$$

Aside: Minimizing a Quadratic Function

$$\mathbf{d} = \arg\min_{\tilde{\mathbf{d}}} \frac{1}{2} \tilde{\mathbf{d}}^T \mathbf{H}^i \tilde{\mathbf{d}} + \tilde{\mathbf{d}}^T \mathbf{g}^i$$

Minimum when gradient is equal to zero

$$H^i d + g^i = 0$$

$$\mathrm{H}^i\mathrm{d}=-\mathrm{g}^i$$
 Solve linear system to get d

Choose an initial guess

$$i = 0$$

 $\mathbf{v}^0 = \text{something}$

Check for convergence

$$\left| \left| \frac{\partial E}{\partial \mathbf{v}} \right|_{\mathbf{v}^i} \right| < \text{tol}$$

Choose search direction

$$\mathrm{H}^i\mathbf{d} = -\mathbf{g}^i$$
 Solve linear system to get \mathbf{d}

$$\mathbf{v}^{i+1} = \mathbf{v}^i + \alpha \mathbf{d}$$
$$i = i+1$$

Gradient and Hessian

$$E\left(\mathbf{v}\right) = \frac{1}{2} \left(\mathbf{v} - \dot{\mathbf{q}}^{t}\right)^{T} M\left(\mathbf{v} - \dot{\mathbf{q}}^{t}\right) + V\left(\mathbf{q}^{t} + \Delta t \mathbf{v}\right)$$

$$\frac{\partial E}{\partial \mathbf{v}} = \mathbf{M} \left(\mathbf{v} - \dot{\mathbf{q}}^t \right) + \Delta t \frac{\partial V}{\partial \mathbf{q}} \Big|_{\mathbf{q}^t + \Delta t \mathbf{v}}$$

$$rac{\partial^2 E}{\partial {f v}^2} = {f M} + \Delta t^2 rac{\partial^2 V}{\partial {f q}^2} igg|_{{f q}^t + \Delta t {f v}}^{
m negative generalized forces}$$

Choose an initial guess

$$i = 0$$

 $\mathbf{v}^0 = \text{something}$

Check for convergence

$$\left| \left| \frac{\partial E}{\partial \mathbf{v}} \right|_{\mathbf{v}^i} \right| < \text{tol}$$

Choose search direction

$$\mathrm{H}^i\mathbf{d} = -\mathbf{g}^i$$
 Solve linear system to get \mathbf{d}

$$\mathbf{v}^{i+1} = \mathbf{v}^i + \alpha \mathbf{d}$$
$$i = i+1$$

Choose an initial guess

$$i = 0$$

 $\mathbf{v}^0 = \text{something}$

Check for convergence

$$\left| \left| \frac{\partial E}{\partial \mathbf{v}} \right|_{\mathbf{v}^i} \right| < \text{tol}$$

Choose search direction

$$\mathrm{H}^i\mathbf{d} = -\mathbf{g}^i$$
 Solve linear system to get \mathbf{d}

$$\mathbf{v}^{i+1} = \mathbf{v}^i + \alpha \mathbf{d}$$
$$i = i+1$$

Choose an initial guess

$$i = 0$$

 $\mathbf{v}^0 = \text{something}$

Check for convergence

$$\left| \left| \frac{\partial E}{\partial \mathbf{v}} \right|_{\mathbf{v}^i} \right| < \text{tol}$$

Choose search direction

$$\mathrm{H}^i\mathbf{d} = -\mathbf{g}^i$$
 Solve linear system to get \mathbf{d}

Choose α using line search

$$\mathbf{v}^{i+1} = \mathbf{v}^i + \alpha \mathbf{d}$$
$$i = i+1$$

Line Search

$$\mathbf{y}^* = \arg\min_{\mathbf{y}} E\left(\mathbf{y}\right)$$

Once we compute d...

One-dimensional optimization

$$\alpha^* = \arg\min_{\alpha} E\left(\mathbf{y}^i + \alpha \mathbf{d}\right)$$

Solve by 1D Search

Backtracking Line Search

Choose an initial guess

$$\alpha = \alpha_{max}$$

Stop if sufficient decrease achieved or you get stuck

$$E\left(\mathbf{v}^{i} + \alpha \mathbf{d}\right) \le E\left(\mathbf{v}^{i}\right) + c \cdot \mathbf{d}^{T}\mathbf{g}^{i} \text{ or } \alpha < \text{tol}$$

Reduce α

$$\alpha = p \cdot \alpha$$

