Vizualizarea imaginilor medicale

LUCRARE DE DIPLOMĂ

Coordonator științific Ş.l. dr. ing. Paul-Corneliu HERGHELEGIU

Absolvent Silviu-Andrei MOTFOLEA

Scopul lucrării

Realizarea unei aplicații pentru vizualizarea imaginilor medicale

Objective:

Implementarea unui algoritm de redare prin metoda ray casting

Integrarea unei măști de segmentare pentru îmbunătățirea rezultatelor

Implementarea unei metode pentru generarea automată a măștii de segmentare

Utilitate:

Educațional

Diagnosticarea pacienților

Etape esențiale:

Încărcarea datelor

Setul de date utilizat: CT-ORG

140 tomografii coputerizate (CT)

Fiecare conține o mască de segmentare realizată manual (primele 21 scanări) sau semi automat

Format de stocare NIfTI -> fișiere .nii sau .nii.gz (gzip)

Stocare volum în shader folosind o textură 3D

Etape esențiale:

Încărcarea datelor Vizualizarea datelor

Transformare din spațiu scaner în spațiu voxel

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = M * \begin{bmatrix} i \\ j \\ k \\ 1 \end{bmatrix}$$

M – matricea afină 4 × 4

Transformare din spațiu voxel în spațiu scaner

$$\begin{bmatrix} i \\ j \\ k \\ 1 \end{bmatrix} = M^{-1} * \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

1. Proiecția razelor

2. Eșantionarea volumului

3. Compoziția

1. Proiecția razelor

Ecuația razei:

$$r = o + td$$

r – raza, o – originea, d - direcția

Parametrii intersecției:

$$t_0 = (B_0 - o)/d$$

$$t_1 = (B_1 - o)/d$$

B – punctele ce definesc cubul

Interpolarea celui mai apropiat vecin

Este folosită distanța Manhattan pentru determinarea acestuia

$$|x_s - x_v| + |y_s - y_v| + |z_s - z_v|$$

2. Eșantionarea volumului

Corecția ratei de eșantionare:

$$I_V = 1 - (1 - I_V)^{\frac{s_0}{s}}$$

I_V – intensitatea în punct

s₀ - rata de eșantionare de referința

s – rata de eșantionare actuală

2. Eșantionarea volumului

Funcție de transfer:

$$C, A = T(I_V)$$

C – culoarea corespunzătoare punctului

A – opacitatea corespunzătoare punctului

2. Eșantionarea volumului

Compunere back-to-front pentru culoare și opacitate:

$$a_i = a_i + (1 - a_i) \cdot A \cdot I$$

$$c_i = c_i + (1 - a_i) \cdot C \cdot I$$

a_i, c_i – opacitatea și culoarea pixelului la pasul i

I – intensitatea volumului în punct

A – opacitatea obținută din funcția de transfer

C – culoarea obținută din funcția de transfer

3. Compoziția

Masca de segmentare semantică obținută folosind API-ul PyTorch pentru C++

Rețea neuronală (U-Net) antrenată în Python

Intrarea rețelei:

Imaginea este redimensionată și împărțită în petice (opțional)

Ieșirea rețelei:

Etichetele sunt determinate folosind funcția sigmoid cu prag 0.5

Antrenarea rețelei neuronale

Funcția cost BCE – măsoară eroarea reconstrucției într-o rețea

$$l = -w[y \cdot \log x + (1 - y) \cdot \log(1 - x)]$$

l reprezintă costulw ponderea funcției costx datele de intrarey rezultatul dorit

Funcția F1 pentru măsurarea eficacității modelului:

$$F_1 = \frac{tp}{tp + \frac{1}{2}(fp + fn)}$$

Setul de date este împărțit în 3 subseturi disjuncte:

U-Net 3D

Rezultate

Funcția cost

Avantaje:

Evidențierea regiunilor de interes

Eliminarea voxelilor ce nu fac parte dintr-o clasă de segmentare

Reducerea zgomotului și îmbunătățirea vizualizării

Dezavantaje:

Este dificil de realizat o mască de segmentare manual

Măștile de segmentare generate automat conțin voxeli identificați greșit

Generarea automată a unei măști de segmentare necesită resurse suplimentare

Definirea funcției de transfer Etapă realizată de către utilizator

Axa Oy definește opacitatea Fiecare punct are atribuit o culoare

Analiza bazată pe histogramă

Ajustarea parametrilor folosiți în ray casting pentru îmbunătățirea vizualizării

Rata de eșantionare

Schimbarea ratei de eșantionare crește sau scade nivelul de detaliu redat din volum

Corecția alfa

Schimbă luminozitatea redării

Interactivitatea vizualizării

Rotație

Translație

Zoom

Clipping

Concluzii

Scopul lucrării a fost îndeplinit prin implementarea unei aplicații de redare a imaginilor medicale folosind tehnica ray casting și funcții de transfer.

Rețeaua neuronală a fost integrată în aplicația de redare astfel permițând crearea automată a măștilor de segmentare.

Rezultatele obținute sunt satisfăcătoare și lucrarea în sine și efortul depus sunt o bază bună pentru continuarea studiilor în domeniul vizualizării imaginilor medicale.