Predicting seasonal influenza using supermarket retail records

Seasonal influenza

Seasonal influenza is a major burden to the health care systems, with 3 - 5 millions infected worldwide every year.

The study explores whether the inclusion of retail records in a predictive model improves seasonal influenza forecasting.

Baskets as proxy for seasonal flu

Retail data as proxy

Items purchased in a shopping cart are a good proxy of consumers' behavioral changes.

Idea: exploit the retail data to capture the spread of seasonal flu

Baskets instead of products

Instead of using single items, consider sentinel baskets (products bought together) as a proxy for the actual seasonal flu.

Obtaining sentinel baskets

Products

Identify a set of sentinel

purchase is historically

correlated with the

previous flu season.

products whose volume of

Customers

Consider the whole purchase history of customers buying sentinel products.

Baskets

Using an Apriori algorithm, identify sentinel baskets.

What's in sentinel baskets?

Many products in sentinel baskets are rather common to prepare a healthy meal that could benefit a sick person.

Regression model

By using sentinel baskets purchases, develop a nowcasting and forecasting algorithm that provides seasonal flu incidence in Italy estimates up to 4 weeks ahead.

SVR (Support Vector Regression) model used to produce the predictions.

$$I_{t^s+k} = \alpha^k + \sum_{i=0}^{h-1} a_i^k I_{t^s-i} + \sum_{n=1}^{N_S} \sum_{j=-1}^{h-1} b_j^{kn} S_{t^s-j}^n$$

Predictions vs ground truth

The predictions accuracy show that the sentinel baskets track the influenza activity level very accurately.

Assessing the results

	Pearson correlation				MAPE				RMSE			
	1 week ahead	2 weeks ahead	3 weeks ahead	4 weeks ahead	1 week ahead	2 weeks ahead	3 weeks ahead	4 weeks ahead	1 week ahead	2 weeks ahead	3 weeks ahead	4 weeks ahead
autoreg	0.95	0.82	0.76	0.77	9.79	19.65	24.15	27.79	0.79	1.53	1.81	1.77
Product-5	0.60	0.49	0.28	0.01	41.47	41.80	44.22	51.07	2.88	3.07	3.42	3.76
Basket-1	0.96	0.94	0.94	0.91	8.77	11.48	12.29	16.65	0.74	0.99	0.97	1.24
Basket-5	0.96	0.94	0.93	0.87	11.80	13.48	14.77	17.62	0.75	0.95	1.02	1.35

THE ACCURACY IMPROVES

The results indicate that the seasonal influenza forecast accuracy improves with the use of retail records.

BASKETS VS PRODUCTS

Forecasts obtained by using sentinel baskets are significantly more accurate than those obtained using single products' time series.

EVALUATION METRICS

The forecast performance is evaluated using Pearson correlation, mean absolute percent error and root mean square error.

Thanks!

References:

Miliou I, Xiong X, Rinzivillo S, Zhang Q, Rossetti G, Giannotti F, et al. (2021) Predicting seasonal influenza using supermarket retail records. PLoS Comput Biol 17(7): e1009087

https://doi.org/10.1371/journal.pcbi.1009087