Date-A-Scientist

Machine Learning Fundamentals Nabyl Belgrade 12-Nov-2018

Table of Contents

- Variables considered
- Question to Answer
- Basic Statistics
- Cleaning of Data
- Codification of Data
- Classification Approaches
- Conclusions

Variables considered

- · Age
- · Income
- · Body type
- · Drugs
- · Essay length
- Number of languages spoken
- Education level

Variables considered

- We added two variables:
 - Essay_len: that counts the words used in the essays
 - Nb_Languages: that counts the languages spoken

Question to Answer

- Can we predict the education level of an individual based on his/ her level of income, age, self conscious of body and sophistication of vocabulary?
 - Education level: described by the variable Education
 - Income and Age: described by the variables Income and Age directly respectively
 - Self maintaining: described by the variable Body_type and Drugs
 - Sophistication of vocabulary: described by the variables
 Essay length and Number of languages spoken

Basic Statistics: Histogram of Age

We can see from the histogram that the distribution of the **Age** is "balanced" and we can ignore values outside the interval 16 and 80 years old.

Basic Statistics: Histogram of Income

We can see from the following stats on the *Income* variable:

• *Average*: 20033.22

• **Median:** -1.0

Variance: 9476281117.08

That we need to filter the Income data as the median is "negative" and the variance is huge.

Basic Statistics: Bar chart of Body type

From the Bar chart of the **Body_type** data, the fact that the most frequent value is average is comforting.

We have to ignore the unknown values as "rather not say".

Basic Statistics: Bar chart of Education

We can see from the Bar chart of the **Education**, that there is a need to group the data in sub-categories. We can explain the rational in a further slide.

Basic Statistics: Bar chart of Number of Languages

We counted the number languages <u>decently</u> (other than reported as "poorly") and we included English as we don't know where the data has been collected. We created a new variable called **Nb_languages**.

Basic Statistics: Bar chart of Essay_Len

We should consider the data less than 20000 words as there is a huge skew on the right side.

Cleaning of data

 We proceeded to the following filtering of the data with the corresponding rationals:

Variable	Action	Why
All variables	Remove NA values	Standard
Age	Consider data within [16Y, 80Y]	As explained in the slide 5
Income	Consider data within [0\$, \$80000]	As explained in the slide 6
Body_type	Exclude "rather not say"	Not relevant as a value
Nb_Languages	Exclude 0 values	Not relevant as a value

Cleaning of data

 We proceeded to the following filtering of the data with the corresponding rationals:

Variable	Action	Why
Essay_len	Consider data within [0, 20000]	As explained in the slide 10
Education	Exclude educations with "Working on"	Status pending
Education	Exclude "rather not say"	Not relevant as a value

Codification of qualitative data

- We gathered the *Education* data into categories based on the last institution that an individual has reached and mapped the results in a variable named *Education_code*
- We mapped one-two-one each of the variables
 Body_type and Drugs separately

Normalisation

- As prior to every data classification or regression, we proceeded to normalisation steps following a min-max procedure. In the following slides, we expose some charts to show that the data has been well prepared to the analysis.
- Also we expose the scatter plot of the "explicative" variables vs the *Education* to visualise their cross dependancy

Classification Approaches

- We used two different classification methods from sklearn:
 - · KNeighbors Classifier
 - · SVM Classifier

where we used the usual *Training Set vs Validation Set vs Test Set* to N-Fold Cross-Validate our results.

Classification Approaches: KNeighbors Classifier

The results are just above average and the ideal range of k likes between [350, 800]

Classification Approaches: SVM Classifier

- The results are very stable and robust with different C parameters.
- We tried also with different gamma, the impact is minimal.

Classification Approaches: comparison of methods

- Both methods have similar structures to call and manipulate and they give very similar results.
- However, there are some structural differences:
- While the *KNeighbors Classifier* is intuitive to use and change the parameters, the convergence of the accuracy, scores, ... can be visualised easily but can be very slow.
- The SVM Classifier is certainly more robust but slower in execution and difficult to visualise. There is a need to use PCA analysis to plot the boundaries in multidimensional analysis.

Conclusion

- Through the results, we can see some links between the education levels and the of self-body awareness and vocabulary sophistication
- However, there is still a need to refine the data and the data subsets or re-choice of variables because the f1_scores and accuracies are not at the levels expected
- There is maybe a beed to refine the problematic with more selected individuals: *ethnicity* / *choice of words* but it needs more advanced procedures (natural language, ...)
- Next step would be to explore these possibilities

Conclusion

- The large data analysis is more challenging than it seems
- The data preparation is crucial to define and refine the problematic and obtain significant results
- The choice of variable has been an incremental exercise to obtain significant results
- The visualisation is necessary for more inputs and outputs understanding which leads me to use more advanced tools like PCA, ...