3 Assume mRNA is at QSS:

$$0 = \dot{m} = k_m g - d_m m = 0$$

 $\Rightarrow m = \frac{k_m g}{dm} = constant$

$$\begin{array}{ll}
\text{P. New SDE:} \\
\dot{\rho} = \left[k_{p} \frac{k_{m} g}{\alpha m} - d_{p} P \right] + \sqrt{k_{p} \frac{k_{m} g}{\alpha m}} + d_{p} P \left[7_{p}(t) \right]
\end{array}$$

Approximate
$$p$$
 as being not too for from equilibrium:

 $P = \overline{P} + \Delta P$ with $\frac{\Delta P}{\overline{P}} \ll 1$

The mean/ss is where $\hat{p} = 0$,

The mean/ss is where
$$p = 0$$
,
i.e. $0 = \dot{p} = k_p \frac{k_m g}{dm} - dp P$
 $\Rightarrow Pss = \bar{p} = \frac{k_p k_m g}{dp dm}$

(b) Use Taylor series:

$$\sqrt{1+x} \approx 1+\frac{1}{2}x - \frac{1}{8}x^2 + \cdots$$

hoise
$$\approx 6a$$
 $8a \approx \frac{3}{4}\sqrt{2dpPss} + \sqrt{2dpPss} = \sqrt{2dpPss}$

noise
$$\approx 5 \text{mP}$$

noise $\approx \frac{3}{4} \frac{\sqrt{20pPss}}{Pss} P + \frac{\sqrt{20pPss}}{4Pss} P$