Protezione e Integrità dei Dati nel Cloud

Parte V

Indice

1	Enc	ryption	2
	1.1	Searchable Encryption	7
		1.1.1 Order preserving encryption	7
		1.1.2 Fully homomorphic encryption	7
	1.2	Esposizione all'inferenza	8

Capitolo 1

Encryption

Il server potrebbe essere **honest-but-curious**, non dovrebbe avere accesso alle risorse; voglio garantire confidenzialità anche rispetto a lui.

Un modo per ottenerla è utilizzare l'*encyption*: si aggiunge un livello di protezione attorno ai dati sensibili che li rende non leggibili a chi non è autorizzato.

Di base voglio avere una criptazione dei dati; il problema è il **bilanciamento tra protezione e funzionalità**, ovvero sulle *query* che è possibile fare sui dati.

Approcci per accesso a diversi livelli di granularità

• Keyword-based searching: passo un token già criptato che viene usato per fare ricerca sui dati criptati (voglio trovare dove c'è una certa parola/espressione booleana)

• Crittografia omomorfica: crittografia che supporta le operazioni direttamente sul cifrato

• Encryption Schemas: ogni colonna può essere cifrata con un diverso schema crittografico (random, add homomorphic, deterministic, order preserving, ...)

• Onion Encryption: cifro i dati con diversi livelli a cipolla, ognuno dei quali supporta l'esecuzione di una specifica query SQL; l'idea è che scopro il dato solo quando mi serve

random encryption
homomorphic encryption
plaintext value

• Indicizzazione: associo degli indici ai metadati Nella seconda tabella:

Accounts

Account	Customer	Balance
Acc1	Alice	100
Acc2	Alice	200
Acc3	Bob	300
Acc4	Chris	200
Acc5	Donna	400
Acc6	Elvis	200

Accounts^k

Counter	Etuple	$ \mathbf{I}_A $	I_C	\mathbf{I}_{B}
1 x4Z3tfX2ShOSM		π	α	μ
2	mNHg1oC010p8w	σ	α	κ
3	WslaCvfyF1Dxw	ξ	β	η
4	JpO8eLTVgwV1E	ρ	γ	K
5	qctG6XnFNDTQc	ς	δ	θ
6	4QbqCeq3hxZHkIU	ι	ε	κ

nella seconda colonna c'è la tupla criptata; nelle ultime tre ci sono gli attributi; si possono avere diversi tipi di indicizzazione:

- **Direct** (1:1)

- + riesco a fare query precise
- soggetto ad attacchi di frequenza

Patients SSN Name Illness Doctor 123...89 Asthma Angel 234...91 Angel 345...12 Bell 456...23 Clark 567...34 Dan 232...11 Ellis

Patients"					
Tid	Etuple	I_S	I_N	I_{I}	I_{D}
1	x4Z3tfX2ShOSM	π	K	Cζ	δ
2	mNHg1oC010p8w	σ	ω	Cl	δ
3	WslaCvfyF1Dxw	ξ	λ	α	ν
4	JpO8eLTVgwV1E	ρ	υ	β	γ
5	qctG6XnFNDTQc	ı	μ	CC	σ
6	kotG8XnFNDTaW	χ	0	β	Ψ

- **Bucket** (n:1) → indicizzazione con collisione; ho diversi valori che sono **mappati allo stesso indice**
 - + non ho più attacchi di frequenze
 - + supporta query di uguaglianza (se un valore è uguale ad un altro)
 - i risultati avranno delle tuple spurie
 - è ancora possibile fare qualche leakage In questo caso sono comunque

Patients							
SSN Name Illness Docto							
12389	Alice	Asthma	Angel				
23491	Bob	Asthma	Angel				
34512	Carol	Asthma	Bell				
45623	David	Bronchitis	Clark				
56734	Eva	Gastritis	Dan				
23211	Eva	Stroke	Ellis				

Patients ^k						
Tid	Etuple	I_{S}	I_N	ΙI	$ _{\mathbb{D}}$	
1	x4Z3tfX2ShOSM	π	K	α	δ	
2	mNHg1oC010p8w	$\overline{\omega}$	ω	α	δ	
3	WslaCvfyF1Dxw	υS	λ	α	V	
4	JpO8eLTVgwV1E	ρ	υ	β	γ	
5	qctG6XnFNDTQc	l	μ	α	σ	
6	kotG8XnFNDTaW	χ	0	β	Ψ	

esposto perché asma ha 3 occorrenze, dunque sarà per forza associata ad α

- **Flattened** $(1:n) \to$ ciascun indice deve avere lo stesso numero di occorrenze; significa che i valori che hanno più occorrenze sono associati ad indici diversi
 - + rimuovo la possibilità di fare attacchi di inferenze
 - sono esposto ad osservazioni dinamiche (magari certi dati sono sempre cercati assieme)

Patients								
SSN Name Illness Doctor								
12389	Alice	Asthma	Angel					
23491	Bob	Asthma	Angel					
34512	Carol	Asthma	Bell					
45623	David	Bronchitis	Clark					
56734	Eva	Gastritis	Dan					
23211	Eva	Stroke	Ellis					

Patients ^k							
Tid	Etuple	I_{S}	I_N	I_{I}	$I_{\mathbb{D}}$		
1	x4Z3tfX2ShOSM	π	K	α	δ		
2	mNHg1oC010p8w	$\overline{\omega}$	ω	α	δ		
3	WslaCvfyF1Dxw	ξ	λ	α	V		
4	JpO8eLTVgwV1E	ρ	υ	β	γ		
5	qctG6XnFNDTQc	1	μ	α	σ		
6	kotG8XnFNDTaW	χ	0	β	Ψ		

- Partition-based:

- 1. si partiziona il dominio di un attributo
- 2. a ciascuna partizione si assegna un'etichetta
- 3. il valore in chiaro viene sostituito dall'etichetta

Supporta query dove le condizioni sono espressioni booleane del tipo:

- Attribute op Value
- Attribute op Attribute

dove op=
$$\{=, <, >, \le, \ge\}$$

Example

$$Map_{cond}(Balance=Benefit) \Longrightarrow \begin{matrix} I_{Balance} & \mu & \kappa & \eta & \theta \\ & & 120 & 240 & 360 & 480 \end{matrix}$$

$$V & \mu & \alpha & \mu \\ & & 240 & 480 & 480 \end{matrix}$$

$$(I_{Balance} = \mu \land I_{Benefit} = \gamma) \land (I_{Balance} = \kappa \land I_{Benefit} = \gamma) \land (I_{Balance} = \gamma \land I_{Benefit} = \alpha) \land (I_{Balance} = \beta \land I_{Benefit} = \alpha) \land (I_{Balance} = \theta \land I_{Benefit} = \alpha) \land (I_{Balance} = \theta \land I_{Benefit} = \alpha) \end{matrix}$$

Esecuzione delle query:

Ogni query Q sul DB in chiaro viene tradotta in:

- 1. una query Q_s da eseguire sul server \to query sull'indice per ottenere le tuple criptate
- 2. una query Q_c da eseguire sul client \to decriptare il risultato della query precedente e filtrare le tuple spurie

La traduzione dovrebbe essere fatta in modo tale che il server sia responsabile della maggior parte del lavoro.

Accounts						
Account Customer Balance						
Acc1	Alice	100				
Acc2	Alice	200				
Acc3	Bob	300				
Acc4	Chris	200				
Acc5	Donna	400				
Acc6	Elvis	200				

Accounts ^k							
Counter	Etuple	I _A	$I_{\rm C}$	l _B			
1	x4Z3tfX2ShOSM	π	α	μ			
2	mNHg1oC010p8w	σ	α	к			
3	WslaCvfyF1Dxw	ξ	δ	θ			
4	JpO8eLTVgwV1E	ρ	α	к			
5	qctG6XnFNDTQc	ς	β	к			
6	4QbqC3hxZHkIU	ι	β	к			

 Hash-based: basate sul concetto di one-way hash function; ogni attributo viene mappato ad un indice utilizzando una funzione di hash sicura.

Dat una funzione h e il dominio degli attributi D_i , diciamo che h è sicura se:

- 1. $\forall x, y \in D_i \implies h(x) = h(y)$ (determinismo)
- 2. dati due valori $x, y \in D_i$ tali che $x \neq y$, potremmo avere che h(x) = h(y) (**collisione**, per proteggermi da attacchi di frequenza)
- 3. la distanza dei valori in chiaro deve essere **indipendente** dalla distanza dei valori di hash (*strong mixing*)

Questo metodo supporta query dove le condizioni sono espressioni booleane del tipo:

- * Attribute = Value
- * $Attribute_1 = Attribute_2$, se sono indicizzati con la stessa funzione di hash

La traduzione funziona come nel metodo partion-based; non sono supportate query di range.

Interval-based queries

- Le tecniche di indicizzazione che preservano l'ordine supportano query di range, ma sono esposte ad inferenza
- Le tecniche di incizzazione che *non* preservano l'ordine non sono esposte ad inferenza, ma non supportano query di range

 \rightarrow viene calcolato un B_+-tree dal client, ed ogni nodo viene criptato come un tutt'uno; successivamente per rispondere alle query l'albero viene visitato (in ambiente trusted).

1.1 Searchable Encryption

1.1.1 Order preserving encryption

- Order Preserving Encryption Schema (OPES): prende in input una distribuzione target di valori per gli indici ed applica una trasformazione che preserva l'ordine e rispecchia la distribuzione di input.
 - + la comparazione può essere fatta direttamente sui dati criptati
 - + le query non producono tuple spurie
 - vulnerabile ad attacchi di inferenza
- Order Preserving Encryption with Splitting and Scaling (OPESS):

Questo schema crea degli indici in modo tale che la loro distribuzione delle frequenze sia piatta.

1.1.2 Fully homomorphic encryption

- Permette una performante computazione specifica sui dati criptati
- Decriptando il risultato, si ottiene lo stesso risultato delle stesse operazioni sui dati in chiaro

1.2 Esposizione all'inferenza

Ci sono due requisiti conflittuali quando si parla di *indicizzare* dati:

- gli indici dovrebbero fornire una esecuzione delle query efficiente
- gli indici non dovrebbero aprire porte ad attacchi di inferenza e linking
- \rightarrow diventa importante misurare quantitativamente il livello di esposizione dovuto alla pubblicazione degli indici:
 - $\epsilon = Coefficiente di Esposizione$

La computazione del Coefficiente di Esposizione dipende da diversi fattori:

- Metodo di incizzazione utilizzato
 - direct encryption
 - hashing
- Conoscenza pregressa dell'attaccante
 - $-Freq + DB^k$
 - $-DB + DB^k$

In entrambi i casi l'attaccante può risalire alla funzione di incizzazione.