Assessing image data quality for a vehicle damage detection algortihm

Aymane Moataz Tutors : Loick Briot Pascal vaxiviere

Our Goal

Vehicle Damage detection model M

Raw Image Data Ds

 $I_M: \{Image \mid Image \in True positives \cup True negatives \}$

Our Model M'

Raw Image Data Ds

Predicting $Ds - I_M$

Approach:

An Object detection solution

Sliding window object detection

R CNN

Fast R CNN

Faster R CNN

Yolo

Vehicle parts detection solution using Yolov5

Data: Training a custom yolo model

Labels for training for each grid cell:

100

A confidence vector

S x S grid, each grid cell predicts B bounding boxes and N conditional class probabilities.

$$Pr(Class\ i|Object)*Pr(Object)*IoU = Pr(Class\ i)*IoU.$$

$$Confidence = Pr(object)*IoU$$

IoU: Intersection over Union between the predicted box and the ground truth.

The final predictions are encoded as an $S \times S \times (B*5 + N)$ tensor

If no object exists in a cell, its confidence score should be zero.

A first criterion of data quality

The confidence threshold allowed us to extract two different relevance classes from our dataset

```
Relevant Data<sub>cy</sub>: {Image I \mid min(C_i(I)) > Treshold_1}
Irrelevant Data<sub>cy</sub>: {Image I \mid max(C_i(I)) < Treshold_1}
```

 $C_i(I)$ is the confidence score of class i for an image I

We trained the yolov5 object detection model to recognize 5 classes of vehicle parts. We collected images of vehicles of different types and states using web scraping, then we set a confidence score threshold $Treshold_1 = 0.30$.

Initial image: 1504 x 1000 Horizontal resolution: 300 dpi Vertical resolution: 300 dpi Color depth: 24

 $min(C_i(I)) > Treshold_1$

Example

- The image on the right belongs to the irrelevant dataset, with $\max(C_i(I)) = 0.19 < Treshold_1 = 0.30$
- Based on our Model, this image is irrelevant. We will predict that the image is non usable by the model M.

Example

We were able to test this prediction with the demo available on the company's website.

Initial image: 130 x 111 Horizontal resolution: 96 dpi Vertical resolution: 96 dpi Color depth: 24

Monk's website demo : damage detection results

Points to explore

- Learning more about the vehicle damage detection algorithm
- Using the demo to test image quality scores.
- Effects of inter-class variations: camera position/ sensors, light, internal parameters.
- Image preprocessing pipelines.
- A quality score to predict false predictions?