Semi-Supervised Learning in the Imbalanced Visual World

Tinghui Zhou, Joseph Lim

1 Model without β regularization

$$\min_{\mathbf{w},\beta} \frac{1}{2} \|\mathbf{w}\|^2 + C_l \sum_{i \in I_l} \ell(\mathbf{w}, \mathbf{x}_i, y_i) + C_{u+} \sum_{i \in I_u} \beta_i \ell(\mathbf{w}, \mathbf{x}_i, 1) + C_{u-} \sum_{i \in I_u} (1 - \beta_i) \ell(\mathbf{w}, \mathbf{x}_i, -1), \quad (1)$$

where $\beta_i \in [0, 1]$ indicates how much the *i*-th example is borrowed as a positive ($\beta_i = 1$ means borrowing as a full positive, and $\beta_i = 0$ means borrowing as a full negative).

We utilize an iterative update scheme to optimize Eq. 1, i.e., after initializing \mathbf{w} using the labeled data, we iteratively update \mathbf{w} and $\boldsymbol{\beta}$ by fixing the other as constant.

1.1 Stochastic Gradient Descent over w

Let F denote the objective function given in Eq. 1, and $\ell(\mathbf{w}, \mathbf{x}_i, s) = \max(0, 1 - s\mathbf{w} \cdot \mathbf{x}_i)$. The gradient over \mathbf{w} is thus given by:

$$\frac{\partial F}{\partial \mathbf{w}} = \mathbf{w} + C_l \sum_i g(\mathbf{w}, \mathbf{x}_i, y_i) + C_{u+1} \sum_{i \in I_u} \beta_i g(\mathbf{w}, \mathbf{x}_i, 1) + C_{u-1} \sum_{i \in I_u} (1 - \beta_i) g(\mathbf{w}, \mathbf{x}_i, -1), \quad (2)$$

where

$$g(\mathbf{w}, \mathbf{x}_i, s) = \begin{cases} 0 & \text{if } s\mathbf{w} \cdot \mathbf{x}_i \ge 1\\ -s\mathbf{x}_i & \text{otherwise} \end{cases}$$

At each iteration, a randomly selected subset of examples is used for update: $\mathbf{w} := \mathbf{w} - \eta \frac{\partial F}{\partial \mathbf{w}}$, where η is the learning rate (needs to be adaptive?).

1.2 Optimizing over β

Since each β_i is independent¹, we can optimize over each β_i separately. Consequently, we would like to minimize the following objective function (**w** is fixed):

$$F_1 = C_{u+}\beta_i \ell(\mathbf{w} \cdot \mathbf{x}_i, 1) + C_{u-}(1 - \beta_i) \ell(\mathbf{w} \cdot \mathbf{x}_i, -1).$$

Expanding the second term and getting rid of the term $C_{u-}\ell(\mathbf{w}\cdot\mathbf{x}_i, -1)$ that does not depend on β_i gives the new objective function:

$$F_2 = \beta_i [C_{u+}\ell(\mathbf{w} \cdot \mathbf{x}_i, 1) - C_{u-}\ell(\mathbf{w} \cdot \mathbf{x}_i, -1)].$$

Thus, the optimal β_i can be solved analytically by

$$\hat{\beta}_i = \begin{cases} 0 & \text{if } C_{u+}\ell(\mathbf{w} \cdot \mathbf{x}_i, 1) - C_{u-}\ell(\mathbf{w} \cdot \mathbf{x}_i, -1) \ge 0\\ 1 & \text{otherwise} \end{cases}$$

2 Model with β regularization

$$\min_{\mathbf{w},\boldsymbol{\beta}} \frac{1}{2} \|\mathbf{w}\|^2 + C_l \sum_{i \in I_l} \ell(\mathbf{w} \cdot \mathbf{x}_i, \operatorname{sign}(y_i)) + C_{u+} \sum_{i \in I_u} \beta_i \ell(\mathbf{w} \cdot \mathbf{x}_i, 1) + C_{u-} \sum_{i \in I_u} (1 - \beta_i) \ell(\mathbf{w} \cdot \mathbf{x}_i, -1) + \lambda \|\boldsymbol{\beta}\|_1$$
(3)

The additional ℓ_1 regularization over $\boldsymbol{\beta}$ enforces a strong preference of borrowing the unlabeled data as negatives, which incorporates the prior that the vast majority of the visual world consists of negatives.

¹Joseph: I think we should come up with a way to model the correlation among β_i 's.