Google Cloud

Contact sales

Get started for free

Blog

Solutions & technology >

Ecosystem ∨

Developers & Practitioners

Transform with Google Cloud

Q

 \mathbb{X}

in

f

 \square

Threat Intelligence

The Spies Who Loved You: Infected USB Drives to Steal Secrets

July 11, 2023

Mandiant

Written by: Rommel Joven, Ng Choon Kiat

In the first half of 2023, Mandiant <u>Managed Defense</u> has observed a threefold increase in the number of attacks using infected USB drives to steal secrets. Mandiant tracked all of the cases and found that the majority of the incidents could be attributed to several active USB-based operation campaigns affecting both the public and private sectors globally.

Previously, we covered one of the campaigns that <u>leverages USB flash</u> <u>drives as an initial infection vector</u> and concentrates on the Philippines. In this blog post, we are covering two additional USB-based cyber espionage campaigns that have been observed by Managed Defense:

 SOGU Malware Infection via USB Flash Drives Across Industries and Geographies

This is the most prevalent USB-based cyber espionage attack using USB flash drives and one of the most aggressive cyber espionage campaigns targeting both public and private sector organizations globally across industry verticals. It uses USB flash drives to load the SOGU malware to steal sensitive information from a host.

Mandiant attributes this campaign to TEMP.Hex, a China-linked cyber espionage actor. TEMP.Hex likely conducted these attacks to collect information in support of Chinese national security and economic interests. These operations pose a risk to a variety of industries, including construction and engineering, business services, government, health, transportation, and retail in Europe, Asia, and the United States.

Understood

SNOWYDRIVE Malware Infection via USB Flash Drives, Targets
 Oil and Gas Organizations in Asia

This campaign uses USB flash drives to deliver the SNOWYDRIVE malware. Once SNOWYDRIVE is loaded, it creates a backdoor on the host system, giving attackers the ability to remotely issue system commands. It also spreads to other USB flash drives and propagates throughout the network.

Mandiant attributes this campaign to UNC4698, a threat actor that has targeted oil and gas organizations in Asia. Once the actor has gained access to the system, they execute arbitrary payloads using the Windows Command Prompt, use removable media devices, create local staging directories, and modify the Windows registry.

SOGU Malware Infection via USB Flash Drives Across Industries and Geographies

Managed Defense first observed this campaign while hunting for suspicious file write events in common directories that threat actors use for their malware, tools, or utilities.

Figure 1: Geographic distribution of TEMP.HEX victims

Figure 2: Managed Defense investigation breakdown by industry

The Initial Infection

An infected USB flash drive is the initial infection vector. The flash drive contains multiple malicious software that is designed to load a malicious payload in memory through DLL hijacking.

Figure 3: <u>Attacker lifecycle</u>

Established Foothold

The entire infection chain usually consists of three files: a legitimate executable, a malicious DLL loader, and an encrypted payload. Table 1 shows the commonly observed malware file paths and file names observed throughout the campaign.

File Path	Benign Executable	Malicious DLL Loader	Encr Payl
:\RECYCLER.BIN\1\	CEFHelper.exe	wsc.dll	avas
:\RECYCLERS.BIN\	Smadav.exe	smadhook32c.dll	smac
:\RECYCLERS.BIN\	AdobeUpdate.exe	hex.dll	adok

Table 1: The legitimate executables commonly observed were security software, such as Avast, Smadav, or Symantec. The working directory is usually either in RECYCLER.BIN or RECYCELRS.BIN

When the legitimate executable is run, it will side-load a malicious DLL file, which we tracked as **KORPLUG**. The **KORPLUG** malware will then load a decrypted shellcode, commonly observed in the form of a .dat file, and execute it in memory. The shellcode is commonly observed as a backdoor that Mandiant tracked as **SOGU**, a backdoor written in C.

Reconnaissance and Data Staging

The infection continues by dropping a batch file onto the RECYCLE.BIN file path. The batch file runs host reconnaissance commands and outputs the results to a file named **c3lzLmluZm8**. When decoded from Base64, the file name **c3lzLmluZm8** is "sys.info". The following commands to gather specific system metadata are executed:

- tasklist /v
- arp -a
- netstat -ano
- ipconfig /all
- systeminfo

Subsequently, the malware searches the C drive for files with the following extensions: .doc, .docx, .ppt, .pptx, .xls, .xlsx, and .pdf. It encrypts a copy of each file, encodes the original filenames using Base64, and drops the encrypted files in the following directories:

- C:\Users\<user>\AppData\Roaming\Intel\<SOGU CLSID>\<filename
 in Base64>
- <drive>:\RECYCLER.BIN\<SOGU CLSID>\<filename in Base64>

Maintain Presence

To maintain its persistence on the system, the malware creates a directory that masquerades as a legitimate program and sets the directory's attribute to hidden. It then copies its main components to this directory, with the following commonly used file paths:

- C:\ProgramData\AvastSvcpCP
- C:\ProgramData\AAM UpdatesHtA
- C:\ProgramData\AcroRd32cWP
- C:\ProgramData\Smadav\SmadavNSK

Then, it creates a Run registry key with the same name as the directory created earlier. The Run registry keys are used to run programs automatically when a user logs on. The following are the commonly

Value: AvastSvcpCP

• Text: C:\ProgramData\AvastSvcpCP\AvastSvc.exe

• Value: AAM UpdatesHtA

Text: C:\ProgramData\AAM UpdatesHtA\AAM Updates.exe

Value: AcroRd32cWP

• Text: C:\ProgramData\AcroRd32cWP\AcroRd32.exe

Value: SmadavNSK

Text: C:\ProgramData\Smadav\SmadavNSK\Smadav.exe

In some SOGU variants, an additional scheduled task may be created to run the malware every 10 minutes to maintain persistence.

 SCHTASKS.exe /create /sc minute /mo 10 /tn "Autodesk plugin" /tr """"C:\ProgramData\Smadav\Smadav\SK\Smadav.exe""" 644" /f

Complete Mission

At the last stage of the attack lifecycle, the malware will exfiltrate any data that has been staged. The malware may include HTTP, HTTPS, a custom binary protocol over TCP or UDP, and ICMP to communicate with its command and control server. The malware was also found to support a wide range of commands, including file transfer, file execution, remote desktop, screenshot capture, reverse shell, and keylogging.

The malware can also copy onto new removable drives plugged into an infected system. This allows the malicious payloads to spread to other systems and potentially collect data from air-gapped systems.

Mandiant tracks this event as Campaign 22-054.

SNOWYDRIVE Malware Infection via USB Flash Drives, Targets Oil and Gas Organizations in Asia

Managed Defense first observed this campaign while hunting Windows Explorer process execution with a suspicious folder path (e.g., "F:\") specified on the command line. This behavior is commonly observed when a user is tricked into executing malware on USB drives. While this type of threat is not uncommon, Mandiant's relentless research and pursuit of every attack led to the discovery of yet another espionage campaign that uses USB drives to spread malware.

The Initial Infection

An infected USB flash drive is the initial infection vector. The victim is lured to click on a malicious file that is masquerading as a legitimate executable. Upon executing the malicious file, it triggers a chain of malicious executions, each designed to perform its specific task throughout the attacker's lifecycle.

Figure 4: Attacker lifecycle

Established Foothold

The infection chain typically starts with an executable that serves as a dropper. The dropper is responsible for writing malicious files to disk and launching them. In one instance, a dropper named **USB Drive.exe** wrote the following encrypted files to

C:\Users\Public\SymantecsThorvices\Data:

- aweu23jj46jm7dc
- bjca3a0e2sfbs
- asdigasur3ase
- sf33kasliaeae
- sf24acvywsake

The encrypted files contain executables and DLLs that are extracted and written in the directory C:\Users\Public\SymantecsThorvices\Bin.

These files can be broken down into four components, each consisting of a legitimate executable and a malicious DLL that is loaded via DLL search order hijacking. As shown in Figure 5, each component is responsible for a task within the attack lifecycle.

Figure 5: Components and the execution chain of this campaign

Filename	Purpose
GUP.exe	Legitimate WinGup for Notepad++
Silverlight.Configuration.exe	Legitimate Microsoft Silverlight
spoololk.exe	Legitimate VentaFax Software
CLIZ ava	Legitimate CAM Un7in Software

VNTFXF32.dll	A malicious DLL loaded by spoololk.exe to create registry persistence.
	A malicious DLL loaded by Silverlight.Configuration.exe. This malware will
	 Drop and execute a shellcode- based backdoor.
coreclr.dll	 Drop and execute a malicious utility that configures the host to evade detection.
	 Infect other attached USB flash drives.
libcurl.dll	A malicious DLL loaded by GUP.exe . It is an evasion utility that sets registry values to show hidden files, hide file extensions, and hide files that are marked "system" and "hidden".
ZIPDLL.dll	ZIPDLL.dll is a memory-only dropper that injects a shellcode-based backdoor named SNOWYDRIVE into CUZ.exe.

Table 2: Malware components

Command and Control

The shellcode-based backdoor named SNOWYDRIVE generates a unique identifier based on the system name, username, and volume serial number. This identifier serves as a unique ID when communicating to its command and control (C2) server. The C2 domain is usually found hard-coded in the shellcode.

Figure 6: Hard-coded domain observed in a SNOWYDRIVE variant

The backdoor supports the following commands:

Command ID	Description
Ox2	Sleep

0x3, 0x4	Terminate reverse shell, exit
Ox5	Create file
0x6	Write file or delete file
Ox7	Initiate file upload
0x8	Continue file upload
Ox9	Create cmd.exe reverse shell
OxA	Execute reverse shell command
OxB	Retrieve reverse shell command output
OxC	List logical drives
OxD	Start file/directory search
OxE	Continue file/directory search

Table 3: SNOWYDRIVE supported commands

Maintain Presence

The registry value HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ushsguaei1hg ba is used for persistence. It stores the path of Silverlight.Configuration.exe.

Lateral Movement

The malware copies itself to removable drives that are plugged into an infected system. It creates the folder "<drive_root>\Kaspersky\Usb Drive\3.0" on the removable drive and copies the encrypted files that contain the malicious components. An executable is extracted from the file "aweu23jj46jm7dc" and written to <drive_root>\<volume_name> .exe, which is responsible for extracting and executing the content of the encrypted files.

Outlook and Implications

Mandiant's investigation and research identified local print shops and

cloud.google.com uses cookies from Google to deliver and enhance the quality of its services and to analyze traffic. Learn more.

targeted specific industries or regions, <u>Campaign 22-054</u> appears to be more opportunistic in nature. This campaign may be part of a long-term collection objective or a later-stage follow-up for subjects of interest to state-sponsored threat actors.

Organizations should prioritize implementing restrictions on access to external devices such as USB drives. If this is not possible, they should at least scan these devices for malicious files or code before connecting them to their internal networks.

YARA Rules

SOGU

SOGU is a backdoor written in C. The network protocol varies between samples and may include HTTP, HTTPS, a custom binary protocol over TCP or UDP, and ICMP. Supported commands include file transfer, file execution, remote desktop, screenshot capture, reverse shell, and keylogging.

FROZENHILL

FROZENHILL is a launcher written in C++ that is configured to utilize existing files for execution and also infects newly attached storage volumes with additional malware.

```
rule M_Code_FROZENHILL
{
    meta:
```

```
sha256 = "89558b4190abcdc1a2353eda591901df3bb88567!

strings:
    $str1 = "path_symantec" ascii
    $str2 = "symantec_dir" ascii
    $str3 = "name_svchost" ascii
    $str4 = "run_cmd" ascii
    $str5 = "usb_dll_name" ascii
    $str6 = "name_mutex" ascii
    $str7 = "cmd /c \"%s\" %d" wide
    $str8 = { 8B 85 [4] 83 ?? 01 89 85 [4] 8B 85 [4] 3E

condition:
    uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0xE
```

ZIPZAG

ZIPZAG is an in-memory dropper written in C++ that is configured to overwrite portions of the loading process with shellcode and transfer execution back to the process for execution.

SNOWYDRIVE

SNOWYDRIVE is a shellcode-based backdoor that communicates via a custom binary protocol over TCP. Supported commands include reverse shell creation, file transfer, file deletion, and disk enumeration.

YARA-L Hunting Rules

The YARA-L syntax is derived from the YARA language developed by VirusTotal. The language works in conjunction with the Chronicle Detection Engine and enables you to hunt for threats and other events across large volumes of data.

Find out more about <u>Google Chronicles</u>.

```
rule hunting_T1091_User Execution: Malicious File
{
         meta:
                     rule_name = "Replication Through Removable Media"
                     description = "This rule detects a file write event from the from the detects and the file write event from the file write
author = "Mandiant Managed Defense"
                     mitre_technique_name = "User Execution: Malicious File'
                     mitre_technique = "T1204"
                     mitre_tactic_name = "Execution"
                     platform = "Windows"
          events:
                                      $e.target.process.path = ":\RECYCLER.BIN\" nocase or
                                      $e.target.process.path = ":\RECYCLERS.BIN\" nocase
                     }
                     condition:
                                          $e
}
```

```
rule hunting_T1091_Replication_Through_Removable_Media
{
   meta:
```

```
author = "Mandiant Managed Defense"
    mitre_technique_name = "Replication Through Removable N
    mitre_technique = "T1091"
    mitre_tactic_name = "Lateral Movement,Initial Access"
    platform = "Windows"

events:
    $e.target.process = "explorer.exe" and
    {
        re.regex($e.principal.process.command_line, = `/explorer.exe($e.principal.process.full_path, `:\\[^\\]+\.
    }
    condition:
        $e
}
```

Indicators of Compromise

Malware Family	File Name	MD5
SOGU	AvastAuth.dat	ebb7749069a9b5bcda98d89fC
SOGU	hex.dll	b061d981d224454ffd8d692cf7e
SOGU	adobeupdate.dat	38baabddffb1d732a05ffa2c70
SOGU	SmadHook32c.dll	fc55344597d540453326d94eb
SOGU	smadavupdate.dat	028201d92b2b41cb616443023
SOGU	wsc.dll	722b15bbc15845e4e265a1519c
SOGU	SmadavMain.exe	ab5d85079e299ac49fcc9f1251
FROZENHILL	corecir.dll	848feec343111bc11cceb828b5(
ZIPZAG	ZIPDLL.dll	e1cea747a64c0d74e24419ab1a

Malware Family	Network IOCs
SNOWYDRIVE	www.beautyporntube[.]com

SOGU	103.56.53[.]46
SOGU	45.251.240[.]55
SOGU	43.254.217[.]165

About Managed Defense Hunting

Cyber security hunting missions are a way to look for security breaches that bypass an organization's security controls. Managed Defense hunting missions based on Mandiant's real-time intelligence mapped to the MITRE ATT&CK framework.

Find out more about Managed Defense.

About Threat Campaigns

Greater visibility into attacker operations: Threat Campaigns provides you with detailed information about active campaigns, including the tactics, techniques, and infrastructure used by attackers. This information can help you identify new threats and vulnerabilities, and prioritize your defensive actions.

Find out more about <u>Threat Campaigns</u>.

Mandiant Security Validation Actions

Mandiant Advantage Security Validation can automate the following process to give you real data on how your security controls are performing against these threats.

The following table is a subset of MSV actions for one of the malware variants. Find out more about <u>Mandiant Security Validation</u>.

VID	Name
A106-	Protected Theater - TEMP.Hex, SOGU, Execution, Variant #1

A106-	Protected Theater - TEMP.Hex, SOGU, Execution via
037	Malicious LNK, Variant #1
A106-	Command and Control - TEMP.Hex, SOGU, Beacon,
046	Variant #1
A106- 045	Protected Theater - TEMP.Hex, SOGU, Create Install Directory, Variant #1
A106-	Host CLI - TEMP.Hex, SOGU, Establish Persistence via
049	Registry Run Key, Variant #1
A106- 051	Protected Theater - TEMP.Hex, SOGU, Establish Persistence via Registry Run Key, Variant #1
A106-	Protected Theater - TEMP.Hex, SOGU, Network Registry
052	Key Change, Variant #1
A106- 060	Host CLI - TEMP.Hex, SOGU, Enumeration, Variant #1
S100-	Malicious Activity Scenario - TEMP.Hex Campaign
257	Spreading SOGU via Infected USB Drives, Variant #1

Acknowledgements

This blog post is dedicated to the analysts in the Managed Defense team for their tireless work to develop new ways in defending our clients around the clock.

Special thanks to Matt Williams for his assistance in analyzing the malware samples and Matthew Hoerger and Lexie Aytes for creating the Mandiant Security Validation (MSV) actions. Martin Co for his inputs and review of this blog post.

Posted in Threat Intelligence

Related articles

Threat Intelligence Threat Intelligence Threat Intelligence Threat Intelligence

Influence Campaign
Aims to
Compromise
Ukrainian Military
Recruits and Deliver
Anti-Mobilization
Narratives

Day Exploitation (CVE-2024-47575)

By Mandiant • 19-minute read

2023 Time-to-Exploit Trends

By Mandiant • 10-minute read

for Program Capability Analysis

By Mandiant • 6-minute read

By Google Threat Intelligence Group • 10-

minute read

Follow us

Google Cloud

Google Cloud Products

Privacy

Terms

? Help

English

cloud.google.com uses cookies from Google to deliver and enhance the quality of its services and to analyze traffic. Learn more.