Linear Maps

Flower

Linear Algebar

A. The Vector Space of Linear Maps

Problem 3

假设 $T \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}^m)$. 证明存在 $A_{j,k} \in \mathbb{F}$,其中 $j=1,\ldots,m$ $k=1,\ldots,n$,使得

$$T(x_1,...,x_n) = (A_{1,1}x_1 + \cdots + A_{1,n}x_n,...,A_{m,1}x_1 + \cdots + A_{m,n}x_n)$$

对于每一个 $(x_1,\ldots,x_n)\in\mathbb{F}^n$ 都成立.

Proof. 对于任意的 $x \in \mathbb{F}^n$, 我们可以写

$$x = x_1e_1 + \cdots + x_ne_n$$

其中 e_1, \ldots, e_n 是 \mathbb{F}^n 的标准基. 因为 T 是线性的, 我们有

$$Tx = T(x_1e_1 + \cdots + x_ne_n) = x_1Te_1 + \cdots + x_nTe_n.$$

现在对于 $Te_k \in \mathbb{F}^m$, 其中 k = 1, ..., n, 都存在 $A_{1,k}, ..., A_{m,k} \in \mathbb{F}$ 使得

$$Te_k = A_{1,k}e_1 + \dots + A_{m,k}e_m$$

= $(A_{1,k}, \dots, A_{m,k})$

因此

$$x_k Te_k = (A_{1,k} x_k, \ldots, A_{m,k} x_k).$$

所以我们有

$$Tx = \sum_{k=1}^{n} (A_{1,k}x_k, \dots, A_{m,k}x_k)$$
$$= \left(\sum_{k=1}^{n} A_{1,k}x_k, \dots, \sum_{k=1}^{n} A_{m,k}x_k\right),$$

就证得存在 $A_{j,k} \in \mathbb{F}$,其中 $j=1,\ldots,m$ 并且 $k=1,\ldots,n$ 使得等式成立.

Problem 4

设 $T \in \mathcal{L}(V, W)$ 并且 v_1, \ldots, v_m 是 V 中的一组向量,其使得 Tv_1, \ldots, Tv_m 在 W 上的线性独立。证明 v_1, \ldots, v_m 线性独立.

Proof. 假设 v_1, \ldots, v_m 不线性独立,则有方程

$$a_1v_1 + \cdots + a_mv_m = 0$$

有一组 a_i 不全为零的解,接下来

$$T(a_1v_1 + \cdots + a_mv_m) = a_1Tv_1 + \cdots + a_mTv_m = 0$$

则存在一组不全为零的 a_i 使得上式成立。与条件矛盾,故假设不成立。原命题正确. [

Problem 7

证明如果 $\dim V=1$ 并且 $T\in \mathcal{L}(V,V)$, 存在 $\lambda\in \mathbb{F}$ 使得对于任意的 $v\in V$ 都有 $Tv=\lambda v$.

Proof. 因为 dim V = 1, 所以 V 的基为单向量, 设为 e 则存在 α , λ 使得下式成立

$$Tv = T(\alpha e) = \alpha Te = \alpha \lambda e = \lambda v$$

其中 λ 即为所需。原命题证明完毕