

Design and Optimization of Low-Dropout Voltage Regulator Using Relational Graph Neural Network and Reinforcement Learning in Open-Source SKY130 Process

Zonghao Li, Anthony Chan Carusone Integrated Systems Laboratory University of Toronto

Motivation

Using Reinforcement Learning (RL) ?

- In analog IC design, sizing circuit components for a given circuit to meet specifications can be challenging.
- Reinforcement learning (RL) has been introduced as an alternative approach to design and optimize analog circuits.

Motivation

- Using RL to optimize analog ICs:
 - Can be more sample efficient than evolutionary algorithms.

Transfer learning (TL) makes RL-trained agent reusable.

- In the domain of ML, reproducibility is crucial, however:
 - Commercial PDKs come with NDA, no public access to the dataset.

Trained RL agents cannot be publicized, exacerbate their reusability.

- Open-source PDKs are the good solutions since:
 - They are completely open-sourced without any NDA restrictions.

- Unrestricted access to the dataset, better reusability.
- They are manufacturable, so the designs can be taped out.

Overview

Using GNN as Function Approximator for RL Agent

- Recently, using graph neural network (GNN) as the function approximator is getting popular, such as graph convolutional neural network (GCN).
- We explore applying a kind of heterogeneous GNN called relational graph convolutional neural network (RGCN).
- The biggest difference between homogeneous and heterogeneous GNN is the latter allows different edge types.

Using GNN as Function Approximator for RL Agent

- GCN: $H^{(l+1)} = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$
 - $-\tilde{A}$ is the adjacent matric, \tilde{D} is the degree matrix, σ is the non-linear activation function, $H^{(l)}$ is the hidden feature of layer l and $W^{(l)}$ is the layer l weight shared by all edges (since there is only one edge type)
- RGCN: $h_i^{(l+1)} = \sigma(\sum_{r \in R} \sum_{j \in N_i^r} \frac{1}{c_{i\,r}} W_r^{(l)} h_j^{(l)} + W_0^l h_i^l)$
 - -r is the edge type, N_i^r indicate node i is connected with edge type r.
 - Each type r has a learnable weight matrix $\mathcal{W}_r^{(l)}$ for layer l
- As an example, we could try to categorize a circuit net based on the signals they are carrying: AC and DC signals.

[Schlichtkrull, 2017]

Test Vehicle: Low-Dropout Voltage Regulator (LDO)

Reward Function

• The reward function R is formulated as:

$$r_{i} = \omega_{i} \beta_{i} \left\{ \frac{O_{i} - O_{i}^{*}}{O_{i} + O_{i}^{*}}, 0 \right\}_{min}$$

$$R = \begin{cases} \sum_{i=1}^{N} r_{i} & \text{if } \exists r_{i} < 0 \\ \sum_{j=1}^{N} \omega_{j} \beta_{j} \frac{O_{j} - O_{j}^{*}}{O_{j} + O_{j}^{*}} + C & \text{else} \end{cases}$$

TABLE I: LDO Specifications

$\mid V_{DD}(V)$	2
$V_{reg}(V)$	1.8
$V_{drop}\left(mV ight)$	≤ 200
$oxed{I_L}$	$[10\mu A, 10mA]$
$PSRR_{\leq 10kHz}(dB)$	≤ -30 (at $I_{L,min}$ and $I_{L,max}$)
$PSRR_{\leq 1MHz}(dB)$	≤ -20 (at $I_{L,min}$ and $I_{L,max}$)
$PSRR_{\geq 1MHz}(dB)$	≤ -5 (at $I_{L,min}$ and $I_{L,max}$)
PM (deg)	$\geq 60^{\circ}$ (at $I_{L,min}$ and $I_{L,max}$)
$I_q(\mu A)$	$\leq 200 \ (\leq 400 \text{ for LDO2})$
$\int \Delta V_{reg}\left(mV ight)$	≤ 36
C_{dec}	As small as possible

- Here, O is the simulated result and O^* is the target specification. ω is the weight assigned to a specification. i represents the hard specifications and j are the soft specifications. β would be either -1 (minimization task) or 1 (maximization task). C is a constant.
- Taking the min action is to avoid over-optimizing.
- If R = 0, all hard specifications are met.

Reward Function

- A few modifications are made to the reward function R:
 - − Change $ω_{PSRR \le 10kHz} = 0.5$
 - Modify r_{PSRR} :

$$r_{PSRR} = \begin{cases} -1 & if \ PSRR \ge 0 \\ -\omega_i \left\{ \frac{O_i - O_i^*}{O_i + O_i^*}, 0 \right\}_{min} else \end{cases}$$

– Modify r_{PM} :

$$r_{PM} = \begin{cases} -1 + \omega_i \left\{ \frac{O_i - O_i^*}{O_i + O_i^*}, 0 \right\}_{min} & if \ PM \le 45^{\circ} \\ \omega_i \left\{ \frac{O_i - O_i^*}{O_i + O_i^*}, 0 \right\}_{min} & else \end{cases}$$

Action

- Design in SKY130 CMOS Process.
- We use high voltage transistors (5V/10.5V) for both NMOS and PMOS.
- For R_{fb} we use high sheet resistance (1112.4 Ω /) poly resistor.
- For C_{fb} and C_{dec} we use MiM capacitor with a capacitance density of $2fF/\mu m^2$
- Using device multiplier *M* to reduce the action dimension of resistor and capacitor by fixing their W and L.

TABLE II: LDO Action Space

LDO1	$W(\mu m)$	$L(\mu m)$	M	$\mid V \mid$
M_1 - M_5	[1, 100]	[0.5, 2]	1	
M_P	[10, 100]	[0.5, 1]	[100, 2000]	
R_{fb}	0.35	1	$^{1}[1,20]$	
C_{fb}	10	10	$^{2}[1,50]$	
C_{dec}	30	30	$^{3}[10,300]$	
V_b				[0.9, 1.4]
LDO2	$W(\mu m)$	$L(\mu m)$	M	V
M_1 - M_9	[1, 100]	[0.5, 2]	1	
M_P	[10, 100]	[0.5, 1]	[100, 2000]	
R_{fb}	0.35	1	$^{1}[1,20]$	
C_{fb}	10	10	$^{2}[1,50]$	
C_{dec}	30	30	$^{3}[10,300]$	
V_{b1}				[0.9, 1.4]
V_{b2}				[0,1]

¹ Corresponds to [476.7, 9335] Ω. ² Corresponds to [0.2076, 10.38] pF.

³ Corresponds to [18.23, 546.8] pF.

Action

• Using min-max normalization to do the feature scaling (bounded by [-1,1]):

$$A_{scaled} = \frac{\left(A - \frac{A_{max} + A_{min}}{2}\right)}{\left(\frac{A_{max} - A_{min}}{2}\right)}$$

• To help RL agent explore the action space, we added the truncated uniform noise (bounded by [-1,1]) to the action taken by the actor, with an initial noise volume $\sigma=2$ and an exponential decay factor $\epsilon=0.999$ (0.9995 for LDO2 for more explorations).

- The observations are the attributes of each circuit components.
- Attributes for resistor, capacitor and voltage sources are simply their resistance, capacitance, and voltage values, respectively.
- Transistor attributes can be obtained by running DCOP analysis of the circuit.
- For transistors, the node attributes will be a vector containing some essential attributes of a transistor M is:

$$S_M = [i_d, g_m, g_{ds}, V_{th}, V_{dsat}, V_{ds}, V_{gs}]$$

• As an example, the observation matrix for LDO1 is:

$$S = \begin{bmatrix} S_{M_N} & \mathbf{0_{6\times6}} \\ \mathbf{0_{6\times7}} & diag(V_b, V_{DD}, V_{GND}, R_{fb}, C_{fb}, C_L) \end{bmatrix}$$

where:

$$S_{M_N} = \begin{bmatrix} S_{M_1} \\ S_{M_2} \\ \dots \\ S_{M_P} \end{bmatrix}$$

- It is also important to normalize the observations.
- For passive components, their ranges are explicitly defined, can therefore be normalized using min-max normalization.
- For transistors, it is hard to define a clear range for each attribute.
- Therefore, z-score normalization is used:

$$\hat{S}_{M_N} = \frac{S_{M_N} - \mu_{S_{M_N}}}{\sigma_{S_{M_N}}}$$

• We also do not want to having the μ and σ change across simulation run.

```
\overline{\textbf{Algorithm}} 1 Find \mu_{S_{M_N}} and \sigma_{S_{M_N}}
Require: n \in \mathbb{N}^+
                                               \triangleright Such as n=100
Require: S^* = []
                              1: i \leftarrow 0
 2: while i < n do
        Sample A randomly from Table III
 3:
      Run OP analysis
       Store S_{M_N} in S^*
      i \leftarrow i + 1
 7: end while
 8: \mu_{S_{M_N}} = mean(S^*)
 9: \sigma_{S_{M_N}} = std(S^*)
```


Only need to be done once for a circuit.

Optimization Setup

- Using Deep Deterministic Policy Gradient (DDPG) as the RL algorithm.
 - Off-policy, can be more sample efficient than on-policy methods.

For continuous action space.

- Four different function approximators are experimented for each LDO circuit: RGCN, GCN, Graph Attention Network (GAT), and Multi-layer Perceptron (MLP).
 - All NNs have four layers.
 - Each experiment has been run three times independently.

• Small reward value difference sometimes can still mean a big performance difference, since they are normalized.

Optimization Results – LDO1

Optimization Results – LDO2

TABLE IV: Optimization Results of LDOs

	Specifications	LDO1	LDO2
$V_{drop}\left(mV\right)$ at $I_{L,max}$	≤ 220	203	197
I_L	$[10\mu A, 10mA]$	$[10\mu A, 10mA]$	$[10\mu A, 10mA]$
$PSRR_{\leq 10kHz}\left(dB\right)$	≤ -30 (at $I_{L,min}$ and $I_{L,max}$)	-29.3 at $I_{L,min}$ and -34 at $I_{L,max}$	-53.53 at $I_{L,min}$ and -44.1 at $I_{L,max}$
$PSRR_{\leq 1MHz}(dB)$	≤ -20 (at $I_{L,min}$ and $I_{L,max}$)	-22 at $I_{L,min}$ and -23.2 at $I_{L,max}$	-25.2 at $I_{L,min}$ and -20 at $I_{L,max}$
$PSRR_{\geq 1MHz}(dB)$	≤ -5 (at $I_{L,min}$ and $I_{L,max}$)	-25.75 at $I_{L,min}$ and -0.32 at $I_{L,max}$	-25.86 at $I_{L,min}$ and -0.9 at $I_{L,max}$
$PM\left(deg ight)$	$\geq 60^{\circ}$ (at $I_{L,min}$ and $I_{L,max}$)	54.4° at $I_{L,min}$ and 61° at $I_{L,max}$	61.2° at $I_{L,min}$ and 78.2° at $I_{L,max}$
$I_{q}\left(\mu A ight)$	$\leq 200 \ (\leq 400 \text{ for LDO2})$	175.32	398
$\Delta V_{reg}\left(mV ight)$	≤ 36	40	24.74
$C_{dec}\left(pF\right)$	As small as possible	476.78	435

Comparison

	Wang NIPS'18	Wang DAC'20	Settaluri TCAD'22	Cao DAC'22	This work
RL algorithm	DDPG	DDPG	PPO	PPO	DDPG
RL function approximator	RNN	GCN	MLP	GCN, GAT	RGCN, GCN, GAT, MLP
Circuits considered	TIA	OTA, TIA, LDO	TIA, OTA	ОТА, РА	LDO
Technology	180nm CMOS	180nm CMOS	16nm CMOS	45nm CMOS, 150nm GaN	SKY130 CMOS
Action dimensions	19	25	29	15	18
Number of specifications	4	5	7	4	13
Fully open-sourced?	No	No	No	No	Yes

Conclusion

- We have demonstrated an open-sourced RL framework for designing and optimizing vanilla LDO circuits in the open-source SKY130 CMOS process, conditioned on a series of specifications.
- We believe that our proposed framework, with certain reward engineering and hyperparameter modifications, can be generalized to other analog circuits.
- In the future, we plan to expand our model to include post-layout simulation inside the optimization loop to deliver an end-to-end solution. Furthermore, by leveraging the ability of transfer learning, we aim to explore how the trained RL agent could be applied to other technology nodes.
- Linked to the GitHub: https://github.com/ChrisZonghaoLi/sky130 ldo rl

IEEE SSCS "Code-a-Chip" Travel Grant Awards at ISSCC'24

IEEE SSCS Open-Source Ecosystem "Code-a-Chip" Travel Grant Awards at ISSCC'24

The IEEE SSCS Code-a-Chip Travel Grant Award was created to:

- 1. Promote reproducible chip design using open-source tools and notebook-driven design flows and
- 2. Enable up-and-coming *talents* as well as seasoned *open-source enthusiasts* to travel to IEEE SSCS conferences and interact with the leading-edge chip design community.

• For more information: https://github.com/sscs-ose/sscs-ose-code-a-chip.github.io/

References

- M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling, "Modeling relational data with graph convolutional networks," 2017.
- H. Wang, J. Yang, H.-S. Lee, and S. Han, "Learning to design circuits," 2020
- K. Settaluri, Z. Liu, R. Khurana, A. Mirhaj, R. Jain, and B. Nikolic, "Automated design of analog circuits using reinforcement learning," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 9, pp. 2794–2807, 2022.
- H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.-S. Lee, and S. Han, "Gcn-rl circuit designer: Transferable transistor sizing with graph neural networks and reinforcement learning," in 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2020.
- W. Cao, M. Benosman, X. Zhang, and R. Ma, "Domain knowledge-infused deep learning for automated analog/radio-frequency circuit parameter optimization," in Proceedings of the 59th ACM/IEEE Design Automation Conference, ACM, jul 2022.

Thank You!