Introducing NEDAS: A Light-weight and Scalable Python Solution for Ensemble Data Assimilation

Yue (Michael) Ying

NERSC

Supported by: SASIP, ACCIBERG

The Scale-Aware Sea Ice Project

Ensemble Data Assimilation

Model state ψ updated by observation φ to find best estimate

$$p(\boldsymbol{\psi}|\boldsymbol{\varphi}) = \frac{p(\boldsymbol{\varphi}|\boldsymbol{\psi})p(\boldsymbol{\psi})}{p(\boldsymbol{\varphi})}$$

Use an ensemble of state $\Psi = (\psi_1, ..., \psi_{N_e}) \in \mathbb{R}^{N_{state} \times N_e}$ as samples of $p(\psi)$

and "observation priors" $\mathbf{\Phi} = (\boldsymbol{\varphi}_1, ..., \boldsymbol{\varphi}_{N_e}) \in \mathbb{R}^{N_{obs} \times N_e}$ comparing with actual observation $\boldsymbol{\varphi}^o$ to give the likelihood $p(\boldsymbol{\varphi}|\boldsymbol{\psi})$

How to update Ψ so that it characterizes $p(\psi|\varphi)$?

Algorithm: $\Psi \leftarrow \mathcal{A}(\Psi, \Phi, \varphi^o)$

How much effort is needed for testing novel algorithms in real models?

Simple method: just implement in the model code (WRF nudging/fdda)

Complex method: dedicated DA software:

Data Assimilation Research Testbed (DART; Anderson et al. 2009)
Parallel Data Assimilation Framework (PDAF; Nerger & Hiller 2013)
Joint Effort in DA Integration (JEDI; JCSDA)

Conception → Python prototype → implement in *DART / PDAF / JEDI*→ test in real model → operational use

New ideas for nonlinear filtering for large dimensional systems, but a lot of them stuck at Python prototype phase...

Next-generation Ensemble Data Assimilation System NEDAS enters the market

Conception → Python prototype → test in real models → implement in DART / PDAF / JEDI → operational use

Python code is light-weight and easier to maintain

mpi4py, numpy, numba.jit allow scalability and efficiency

operating system integration, error handling and testing

plenty of open-source libraries: machine learning, optimization...

NEDAS implementation

Sequential DA with pause-restart strategy

Require: $\Psi(t_0), \varphi^o(t_{1:N_t}), \mathbf{R}(t_{1:N_t})$

1: **for**
$$n = 1, ..., N_t$$
 do

2:
$$\Psi(t_{n-1}) \leftarrow \mathcal{P}[\Psi(t_{n-1})]$$

3:
$$\Psi(t_n) = \mathcal{M}_n \left[\Psi(t_{n-1}) \right]$$

4:
$$\Phi(t_n) = \mathcal{H}_n \left[\Psi(t_n) \right]$$

5:
$$\Psi(t_n) \leftarrow \mathcal{A}[\Psi(t_n), \Phi(t_n), \varphi^o(t_n), \mathbf{R}(t_n)]$$

6: end for

7: **return** $\Psi(t_{1:N_t})$

NEDAS implementation: more details

model.<model_name> modules

The smallest I/O task for a processor is to read a field with record index n and member index m

Parallel processing of state data

In this example:

m = 1...100 members l = 1...9 spatial locations n = 1...4 field records

Nq = 2 groups of Np = 9 processors, total 18 processors

The data is "**field-complete**" (also called "state-complete" in Anderson & Collins 2007)

field-complete

$$\Psi = (\psi_1, ..., \psi_{N_e})$$

q = 1

ensemble-complete

dataset.<dataset_name> modules

processor p = 0 is in charge of reading the obs

Observation operator $\Phi = \mathcal{H}(\Psi)$

- 1: obs_operator provided by the dataset module (space-time integral, nonlinear function, etc.)
- ②: obs fields from read_var provided by the model module
- 3: obs is one of the state variable: just read from fields_prior

Same parallel processing as the state: each processor reads an obs network with record index n^o and member index m

Assimilation algorithm $\mathcal{A}(\Psi, \Phi, \varphi^o)$

EnKF implementation

Make Gauss-linear assumption
$$p(\psi) = \mathcal{N}(\overline{\psi}, \mathbf{C}_{\psi\psi})$$

where $\overline{\psi} = \Psi \mathbf{1}^{\mathrm{T}}/N_e$ and $\mathbf{C}_{\psi\psi} = \Psi (\Psi - \overline{\psi} \mathbf{1}^{\mathrm{T}})^{\mathrm{T}}/(N_e - 1)$
and observation $\boldsymbol{\varphi}^o = \mathcal{H}(\boldsymbol{\psi}^{\mathrm{tr}}) + \boldsymbol{\varepsilon}^o, \, \boldsymbol{\varepsilon}^o \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$

Algorithm:

$$\begin{split} & \Phi = \mathcal{H}(\Psi) \\ & \Psi \leftarrow \Psi + C_{\psi,\phi} \big(C_{\phi,\phi} + R \big)^{-1} (\Phi^o - \Phi) \quad \text{(perturbed-obs EnKF)} \end{split}$$

There are two different strategies in parallelization:

- batch assimilation
- serial assimilation

Parallelization strategy

Batch assimilation (e.g. PDAF)

for
$$i=1,...,N_{\mathrm{state}}$$
:
$$\mathbf{S} = \mathbf{R}^{-1/2} \left(\mathbf{\Phi} - \overline{\boldsymbol{\varphi}} \mathbf{1}^{\mathrm{T}} \right) \circ (\boldsymbol{\rho} \mathbf{1}^{\mathrm{T}}) / \sqrt{N_e - 1}$$

$$d = \mathbf{R}^{-1/2} (\boldsymbol{\varphi}^o - \overline{\boldsymbol{\varphi}}) \circ \boldsymbol{\rho} / \sqrt{N_e - 1}$$

$$\boldsymbol{\Xi} = \left(\mathbf{I} + \mathbf{S}^{\mathrm{T}} \mathbf{S} \right)^{-1}$$

$$\mathbf{T} = \boldsymbol{\Xi} \mathbf{S}^{\mathrm{T}} d \mathbf{1}^{\mathrm{T}} + \boldsymbol{\Xi}^{1/2}$$

$$\boldsymbol{\psi}_i^{e^T} \leftarrow \boldsymbol{\psi}_i^{e^T} \mathbf{T}$$

$$\text{return } \boldsymbol{\Psi} = \left(\boldsymbol{\psi}_1^e, ..., \boldsymbol{\psi}_{N_{\mathrm{state}}}^e \right)^{\mathrm{T}}$$

cost: $O(N_{\text{lobs}}N_e^2 + N_e^3) \times N_{\text{state}}$

"local analysis"

Serial assimilation (e.g. DART)

for
$$j=1,\ldots,N_{\mathrm{obs}}$$
:
$$\xi = \sigma_{o,j}^2/(\sigma_j^2 + \sigma_{o,j}^2)$$

$$\boldsymbol{\delta}_j^e = \xi \overline{\boldsymbol{\varphi}}_j + (1-\xi)\boldsymbol{\varphi}_j^o + \sqrt{\xi} \left(\boldsymbol{\varphi}_j^e - \overline{\boldsymbol{\varphi}}_j\right) - \boldsymbol{\varphi}_j^e$$
 broadcast $\boldsymbol{\delta}_j^e$
$$\boldsymbol{\Psi} \leftarrow \boldsymbol{\Psi} + \left(\boldsymbol{\rho}^{\psi} \circ \boldsymbol{c}_{\psi,\varphi_j}/\sigma_j^2\right) \boldsymbol{\delta}_j^{e^{\mathrm{T}}}$$

$$\boldsymbol{\Phi} \leftarrow \boldsymbol{\Phi} + \left(\boldsymbol{\rho}^{\varphi} \circ \boldsymbol{c}_{\varphi,\varphi_j}/\sigma_j^2\right) \boldsymbol{\delta}_j^{e^{\mathrm{T}}}$$
 return $\boldsymbol{\Psi}$

cost:

$$O(N_e \log N_p + N_e N_{\text{lstate}} + N_e N_{\text{lobs}}) \times N_{\text{obs}}$$

"obs_incr": nonlinear filters possible
"obs_updates_ens": linear, probit-space

Memory layout for state/obs

Benchmarking: QG model example

state and observations: velocity fields Nstate = 256x256x8, Nobs = 10000, obs_err = 0.5, Ne = 100, hroi=10, vroi=5

Scalability of \mathcal{A} as N_p increases

How A scales as dimensionality increases

Analysis error/spread comparison

Both strategies produced comparable results

Serial assimilation fits more to observations (lower posterior spread); slightly less accurate (higher rmse)

Consistent with previous findings (Holland & Wang 2012; Nerger 2015).

Algorithmic flexibility: Miscellaneous transform functions \mathcal{T}

1:
$$\mathbf{for}\ s=1,\ldots,N_s\ \mathbf{do}$$

2: $\widetilde{\boldsymbol{arphi}}^o=\mathcal{T}_s^o(\boldsymbol{arphi}^o)$

3: $\mathbf{for}\ m=1,\ldots,N_e\ \mathbf{do}$

4: $\widetilde{\boldsymbol{arphi}}_m=\mathcal{T}_s^o(\boldsymbol{arphi}_m)$

5: $\widetilde{\boldsymbol{\psi}}_m=\mathcal{T}_s(\boldsymbol{\psi}_m)$

6: $\mathbf{end}\ \mathbf{for}$

8:
$$\widetilde{\mathbf{\Phi}} = (\widetilde{oldsymbol{arphi}}_1, \ldots, \widetilde{oldsymbol{arphi}}_{N_e})$$

9:
$$(\widetilde{m{\psi}}_1',\ldots,\widetilde{m{\psi}}_{N_e}')=\widetilde{m{\Psi}}'=\widetilde{\mathcal{A}}(\widetilde{m{\Psi}},\widetilde{m{\Phi}},\widetilde{m{arphi}}^o,\widetilde{m{\mathbf{R}}}_s,m{r}_s^\psi,m{r}_s^arphi,m{L}_s)$$

- Gaussian anamorphosis (Simon & Bertino 2009)
- Multiscale decomposition (Ying 2019, 2020), gcm-filters (Grooms et al. 2021)
- Super-resolution (Barthelemy et al 2022)
- Mapping to latent space (Chipilski 2023)

. .

Algorithmic flexibility: Update functions *u*

1: **for**
$$s = 1, ..., N_s$$
 do

2:
$$\widetilde{oldsymbol{arphi}}^o = \mathcal{T}^o_s(oldsymbol{arphi}^o)$$

3: **for**
$$m = 1, ..., N_e$$
 do

4:
$$\widetilde{\boldsymbol{\varphi}}_m = \mathcal{T}_s^o(\boldsymbol{\varphi}_m)$$

5:
$$\widetilde{oldsymbol{\psi}}_m = \mathcal{T}_s(oldsymbol{\psi}_m)$$

6: end for

7:
$$\widetilde{oldsymbol{\Psi}} = (\widetilde{oldsymbol{\psi}}_1, \ldots, \widetilde{oldsymbol{\psi}}_{N_e})$$

8:
$$\widetilde{oldsymbol{\Phi}} = (\widetilde{oldsymbol{arphi}}_1, \ldots, \widetilde{oldsymbol{arphi}}_{N_e})$$

9:
$$(\widetilde{m{\psi}}_1',\ldots,\widetilde{m{\psi}}_{N_e}')=\widetilde{m{\Psi}}'=\widetilde{\mathcal{A}}(\widetilde{m{\Psi}},\widetilde{m{\Phi}},\widetilde{m{arphi}}^o,\widetilde{m{\mathbf{R}}}_s,m{r}_s^\psi,m{r}_s^arphi,m{L}_s)$$

10: **for** $m = 1, ..., N_e$ **do**

11:
$$\boldsymbol{\psi}_m \leftarrow \mathcal{U}_s(\boldsymbol{\psi}_m, \widetilde{\boldsymbol{\psi}}_m, \widetilde{\boldsymbol{\psi}}_m')$$

12: end for

13: **end for**

- Inverse transform, additive increments
- Alignment techniques (Ying 2019)
- Update not only model states, but also hyperparameters.

NEDAS analysis workflow

NEDAS sequential DA includes 4D model states

$$\Psi(t_{n-a}) \dots \Psi(t_{n-1}) - \Psi(t_n) - \Psi(t_{n+1}) - \dots \Psi(t_{n+b}) - \Psi(t_{n+b+1})$$

a = b = 0: filter

1: for
$$n = 1, ..., N_t$$
 do
2: $\Psi(t_{n-1}) \leftarrow \mathcal{P}[\Psi(t_{n-1})]$
3: for $k = 0, ..., b$ do
4: $\Psi(t_{n+k}) = \mathcal{M}_{n+k} [\Psi(t_{n+k-1})]$
5: $\Phi(t_{n+k}) = \mathcal{H}_{n+k} [\Psi(t_{n+k})]$
6: end for
7: $\Psi(t_{n-a:n}) \leftarrow \mathcal{A}[\Psi(t_{n-a:n}), \Phi(t_{n:n+b}), \varphi^o(t_{n:n+b}), (b+1)\mathbf{R}(t_{n:n+b})]$
8: end for
9: return $\Psi(t_{1:N_t})$

$$\Psi(t_{n-1})$$
 $\Psi(t_n)$
 $\Psi(t_n)$
 $\Psi(t_{n+1})$

b = 1, a > 0: recursive smoother

1: **for** $n = 1, ..., N_t$ **do**

Evensen & van Leeuwen 2000

2:
$$\Psi(t_{n-1}) \leftarrow \mathcal{P}[\Psi(t_{n-1})]$$

3: **for**
$$k = 0, ..., b$$
 do

4:
$$\mathbf{\Psi}(t_{n+k}) = \mathcal{M}_{n+k} \left[\mathbf{\Psi}(t_{n+k-1}) \right]$$

5:
$$\mathbf{\Phi}(t_{n+k}) = \mathcal{H}_{n+k} \left[\mathbf{\Psi}(t_{n+k}) \right]$$

6: end for

7:
$$\Psi(t_{n-a:n}) \leftarrow \mathcal{A}[\Psi(t_{n-a:n}), \Phi(t_{n:n+b}), \varphi^o(t_{n:n+b}), (b+1)\mathbf{R}(t_{n:n+b})]$$

8: end for

9: **return** $\Psi(t_{1:N_t})$

b=1, a=0: one-step-ahead smoother

1: **for**
$$n = 1, ..., N_t$$
 do

2:
$$\Psi(t_{n-1}) \leftarrow \mathcal{P}[\Psi(t_{n-1})]$$

Desbouvries et al. 2011; Gharamti et al. 2015; Ait-El-Fquih & Hoteit 2022

3: **for**
$$k = 0, ..., b$$
 do

4:
$$\mathbf{\Psi}(t_{n+k}) = \mathcal{M}_{n+k} \left[\mathbf{\Psi}(t_{n+k-1}) \right]$$

5:
$$\mathbf{\Phi}(t_{n+k}) = \mathcal{H}_{n+k} \left[\mathbf{\Psi}(t_{n+k}) \right]$$

More general smoother formulation: Khare et al., 2008; Bocquet & Sakov, 2014; Grudzien & Bocquet, 2022

6: end for

7:
$$\Psi(t_{n-a:n}) \leftarrow \mathcal{A}[\Psi(t_{n-a:n}), \Phi(t_{n:n+b}), \varphi^o(t_{n:n+b}), (b+1)\mathbf{R}(t_{n:n+b})]$$

8: end for

9: **return** $\Psi(t_{1:N_t})$

Summary

- NEDAS provides a light-weight Python solution for testing ensemble DA algorithms in real model settings.
- Both batch and serial assimilation strategies are efficient and scalable for large models, but they are favored in different scenarios.
- NEDAS has a modular design, which gives flexibility for integrating new algorithmic ideas in its workflow.

Code publicly available:

https://github.com/nansencenter/NEDAS

Manuscript submitted to JAMES:

Ying: "Introducing NEDAS: a light-weight and scalable Python solution for ensemble data assimilation"

Contact me: yue.ying@nersc.no