Perfect Set Games and Colorings on Generalized Baire Spaces

Dorottya Sziráki

5th Workshop on Generalized Baire Spaces Bristol, 4 February 2020

Assume $\kappa^{<\kappa} = \kappa$.

Assume $\kappa^{<\kappa}=\kappa$. A subset of κ is closed iff it is the set of branches

$$[T] = \{ x \in {}^{\kappa}\kappa : x \upharpoonright \alpha \in T \text{ for all } \alpha < \kappa \}$$

of a subtree T of ${}^{<\kappa}\kappa$.

Assume $\kappa^{<\kappa}=\kappa$. A subset of κ is closed iff it is the set of branches

$$[T] = \{ x \in {}^{\kappa}\kappa : x \upharpoonright \alpha \in T \text{ for all } \alpha < \kappa \}$$

of a subtree T of $^{<\kappa}\kappa$.

Example

A subset of a topological space is perfect in the usual sense iff it is closed and contains no isolated points.

$$X_{\omega}=\{x\in {}^{\kappa}2: |\{\alpha<\kappa: x(\alpha)=0\}|<\omega\} \text{ is perfect in this usual sense, but } |X_{\omega}|=\kappa.$$

Assume $\kappa^{<\kappa} = \kappa$. A subset of κ is closed iff it is the set of branches

$$[T] = \{ x \in {}^{\kappa}\kappa : x \upharpoonright \alpha \in T \text{ for all } \alpha < \kappa \}$$

of a subtree T of $<\kappa$.

Example

A subset of a topological space is perfect in the usual sense iff it is closed and contains no isolated points.

 $X_{\omega} = \{x \in {}^{\kappa}2 : |\{\alpha < \kappa : x(\alpha) = 0\}| < \omega\}$ is perfect in this usual sense, but $|X_{\omega}| = \kappa$.

Definition

A subtree T of ${}^{<\kappa}\kappa$ is a strongly κ -perfect tree if T is ${}^{<\kappa}$ -closed and every node of T extends to a splitting node.

A set $X \subseteq {}^{\kappa}\kappa$ is a strongly κ -perfect set if X = [T] for a strongly κ -perfect tree T.

Väänänen's perfect set game

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in {}^{\kappa}\kappa$ and let $\omega \leq \gamma \leq \kappa$.

Definition (Väänänen, 1991)

The game $\mathcal{V}_{\gamma}(X,x_0)$ has length γ and is played as follows:

$$\mathbf{I} \qquad \qquad U_1 \qquad \dots \qquad \qquad U_{\alpha} \qquad \dots$$

$$\mathbf{II} \qquad x_0 \qquad \qquad x_1 \qquad \qquad \dots \qquad \qquad x_{\alpha} \qquad \qquad \dots$$

II first plays x_0 . In each round $0<\alpha<\gamma$, I plays a basic open subset U_{α} of X, and then II chooses

$$x_{\alpha} \in U_{\alpha}$$
 with $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

I has to play so that $U_{\beta+1}\ni x_{\beta}$ in each successor round $\beta+1<\gamma$ and $U_{\alpha}=\bigcap_{\beta<\alpha}U_{\beta}$ in each limit round $\alpha<\gamma$.

II wins a given run of the game if II can play legally in all rounds $\alpha < \gamma$.

Väänänen's perfect set game

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in {}^{\kappa}\kappa$ and let $\omega \leq \gamma \leq \kappa$.

Definition (Väänänen, 1991)

The game $\mathcal{V}_{\gamma}(X,x_0)$ has length γ and is played as follows:

II first plays x_0 . In each round $0 < \alpha < \gamma$, I plays a basic open subset U_{α} of X, and then II chooses

$$x_{\alpha} \in U_{\alpha}$$
 with $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

I has to play so that $U_{\beta+1}\ni x_\beta$ in each successor round $\beta+1<\gamma$ and $U_{\alpha} = \bigcap_{\beta < \alpha} U_{\beta}$ in each limit round $\alpha < \gamma$.

II wins a given run of the game if II can play legally in all rounds $\alpha < \gamma$.

Let $X \subseteq {}^{\kappa}\kappa$, and suppose $\omega \leq \gamma \leq \kappa$.

Definition (Väänänen, 1991)

X is a γ -scattered set if \mathbf{I} wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

X is a γ -perfect set if X is closed and II wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

Let $X \subseteq {}^{\kappa}\kappa$, and suppose $\omega \leq \gamma \leq \kappa$.

Definition (Väänänen, 1991)

X is a γ -scattered set if I wins $\mathcal{V}_{\gamma}(X,x_0)$ for all $x_0 \in X$.

X is a γ -perfect set if X is closed and II wins $\mathcal{V}_{\gamma}(X,x_0)$ for all $x_0 \in X$.

• X is ω -perfect iff X is perfect in the usual sense (i.e., iff X closed and has no isolated points).

Let $X \subseteq {}^{\kappa}\kappa$, and suppose $\omega \leq \gamma \leq \kappa$.

Definition (Väänänen, 1991)

X is a γ -scattered set if \mathbf{I} wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

X is a γ -perfect set if X is closed and II wins $\mathcal{V}_{\gamma}(X,x_0)$ for all $x_0 \in X$.

- X is ω -perfect iff X is perfect in the usual sense (i.e., iff X closed and has no isolated points).
- X is ω -scattered iff X is scattered in the usual sense (i.e., each nonempty subspace contains an isolated point).

Let $X \subseteq {}^{\kappa}\kappa$, and suppose $\omega \le \gamma \le \kappa$.

Definition (Väänänen, 1991)

X is a γ -scattered set if \mathbf{I} wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

X is a γ -perfect set if X is closed and II wins $\mathcal{V}_{\gamma}(X,x_0)$ for all $x_0 \in X$.

- X is ω -perfect iff X is perfect in the usual sense (i.e., iff X closed and has no isolated points).
- X is ω -scattered iff X is scattered in the usual sense (i.e., each nonempty subspace contains an isolated point).
- $\mathcal{V}_{\gamma}(X, x_0)$ may not be determined when $\gamma > \omega$.

κ -perfect sets vs. strongly κ -perfect sets

Example (Huuskonen)

The following set is κ -perfect but is not strongly κ -perfect:

$$Y_{\omega} = \{x \in {}^{\kappa}3 : |\{\alpha < \kappa : x(\alpha) = 2\}| < \omega\}.$$

κ -perfect sets vs. strongly κ -perfect sets

Example (Huuskonen)

The following set is κ -perfect but is not strongly κ -perfect:

$$Y_{\omega} = \{ x \in {}^{\kappa}3 : |\{ \alpha < \kappa : x(\alpha) = 2 \}| < \omega \}.$$

Proposition

Let X be a closed subset of κ .

$$X$$
 is κ -perfect \iff $X = \bigcup_{i \in I} X_i$ for strongly κ -perfect sets X_i .

Theorem (Väänänen, 1991)

The following Cantor-Bendixson theorem for κ is consistent relative to the existence of a measurable cardinal $\lambda > \kappa$:

Every closed subset of κ is the (disjoint) union of a κ -perfect set and a κ -scattered set, which is of size $\leq \kappa$.

Theorem (Väänänen, 1991)

The following Cantor-Bendixson theorem for ${}^{\kappa}\kappa$ is consistent relative to the existence of a measurable cardinal $\lambda > \kappa$:

Every closed subset of κ is the (disjoint) union of a κ -perfect set and a κ -scattered set, which is of size $\leq \kappa$.

Theorem (Galgon, 2016)

Väänänen's generalized Cantor-Bendixson theorem is consistent relative to the existence of an inaccessible cardinal $\lambda > \kappa$.

Proposition (Sz)

Väänänen's generalized Cantor-Bendixson theorem is equivalent to the κ -perfect set property for closed subsets of κ (i.e, the statement that every closed subset of κ of size $> \kappa$ has a κ -perfect subset).

Remark: The κ -PSP for closed subsets of κ is equiconsistent with the existence of an inaccessible cardinal $\lambda > \kappa$.

Proposition (Sz)

Väänänen's generalized Cantor-Bendixson theorem is equivalent to the κ -perfect set property for closed subsets of κ (i.e., the statement that every closed subset of κ of size $> \kappa$ has a κ -perfect subset).

Remark: The κ -PSP for closed subsets of κ is equiconsistent with the existence of an inaccessible cardinal $\lambda > \kappa$.

Sketch of the proof.

Let X be a closed subset of κ . Its set of κ -condensation points is defined to be

$$CP_{\kappa}(X) = \{x \in X : |X \cap N_{x \upharpoonright \alpha}| > \kappa \text{ for all } \alpha < \kappa\}.$$

If the κ -PSP holds for closed subsets of κ_{κ} , then $CP_{\kappa}(X)$ is a κ -perfect set and $X - CP_{\kappa}(X)$ is a κ -scattered set of size $\leq \kappa$.

Let T be a subtree of $^{<\kappa}2$, let $t\in T$, and let $\omega\leq\gamma\leq\kappa$.

Definition (Galgon, 2016)

The game $\mathcal{G}_{\gamma}(T,t)$ has length γ and is played as follows:

In each round $\alpha < \gamma$, player I first plays $\delta_{\alpha} < \kappa$. Then II plays a node $t_{\alpha} \in T$ of height $\geq \delta_{\alpha}$, and I chooses $i_{\alpha} < 2$.

II has to play so that $t \subseteq t_0$, and $t_{\beta} \cap \langle i_{\beta} \rangle \subseteq t_{\alpha}$ for all $\beta < \alpha < \gamma$.

II wins a given run of the game if II can play legally in all rounds $lpha < \gamma$.

Let T be a subtree of ${}^{<\kappa}2$, let $t\in T$, and let $\omega\le\gamma\le\kappa$.

Definition (Galgon, 2016)

The game $\mathcal{G}_{\gamma}(T,t)$ has length γ and is played as follows:

In each round $\alpha < \gamma$, player I first plays $\delta_{\alpha} < \kappa$. Then II plays a node $t_{\alpha} \in T$ of height $\geq \delta_{\alpha}$, and I chooses $i_{\alpha} < 2$.

II has to play so that $t \subseteq t_0$, and $t_{\beta} \cap \langle i_{\beta} \rangle \subseteq t_{\alpha}$ for all $\beta < \alpha < \gamma$.

II wins a given run of the game if II can play legally in all rounds $\alpha < \gamma$.

Definition (Galgon, 2016)

T is a γ -scattered tree if player I wins $\mathcal{G}_{\gamma}(T,t)$ for all $t \in T$.

T is a γ -perfect tree if player II wins $\mathcal{G}_{\gamma}(T,t)$ for all $t \in T$.

Proposition

Let T be a subtree of ${}^{<\kappa}\kappa$.

• T is a κ -perfect tree \iff [T] is a κ -perfect set.

Definition (Galgon, 2016)

T is a γ -scattered tree if player \mathbf{I} wins $\mathcal{G}_{\gamma}(T,t)$ for all $t\in T$.

T is a γ -perfect tree if player II wins $\mathcal{G}_{\gamma}(T,t)$ for all $t \in T$.

Proposition

Let T be a subtree of ${}^{<\kappa}\kappa$.

- T is a κ -perfect tree \iff [T] is a κ -perfect set.
- 2 If the κ -PSP holds for closed subsets of κ , then

T is a κ -scattered tree \iff [T] is a κ -scattered set.

Theorem (Sz)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma \le \kappa$.

 $\ \ \, \textbf{If}\,\, [T] \,\, \text{is a}\,\, \gamma\text{-perfect set, then}\,\, T \,\, \text{is a}\,\, \gamma\text{-perfect tree}.$

Theorem (Sz)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma \le \kappa$.

- If [T] is a γ -perfect set, then T is a γ -perfect tree.
- ② If T is a γ -scattered tree, then [T] is a γ -scattered set.

Theorem (Sz)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma \le \kappa$.

- If [T] is a γ -perfect set, then T is a γ -perfect tree.
- ② If T is a γ -scattered tree, then [T] is a γ -scattered set.
- **3** If κ is weakly compact and $T \subseteq {}^{<\kappa}2$, then

T is a γ -perfect tree \iff [T] is a γ -perfect set.

Theorem (Sz)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma \le \kappa$.

- If [T] is a γ -perfect set, then T is a γ -perfect tree.
- ② If T is a γ -scattered tree, then [T] is a γ -scattered set.
- **3** If κ is weakly compact and $T \subseteq {}^{<\kappa}2$, then

T is a γ -perfect tree \iff [T] is a γ -perfect set.

More generally: this holds if κ has the tree property and T is a κ -tree.

Theorem (Sz)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma \le \kappa$.

- If [T] is a γ -perfect set, then T is a γ -perfect tree.
- ② If T is a γ -scattered tree, then [T] is a γ -scattered set.

T is a γ -perfect tree \iff [T] is a γ -perfect set.

More generally: this holds if κ has the tree property and T is a κ -tree.

Question

Is it consistent that 3 holds for "scattered" instead of "perfect"?

Theorem (Sz)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma \le \kappa$.

- If [T] is a γ -perfect set, then T is a γ -perfect tree.
- ② If T is a γ -scattered tree, then [T] is a γ -scattered set.

T is a γ -perfect tree \iff [T] is a γ -perfect set.

More generally: this holds if κ has the tree property and T is a κ -tree.

Question

Is it consistent that 3 holds for "scattered" instead of "perfect"?

Analogues of 1–3 hold for levels of "generalized Cantor-Bendixson hierarchies" associated to subsets of ${}^{\kappa}\kappa$ and to subtrees of ${}^{<\kappa}\kappa$ (see next 4 slides).

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in {}^{\kappa}\kappa$, and let S be a tree without branches of length $\geq \kappa$.

Definition (Hyttinen; Väänänen)

The S-approximation $\mathcal{V}_S(X,x_0)$ of $\mathcal{V}_\kappa(X,x_0)$ is the following game.

I
$$s_1, U_1 \dots s_{\alpha}, U_{\alpha} \dots$$
II $x_0 \dots x_1 \dots x_{\alpha} \dots$

In each round $\alpha>0$, $\mathbf I$ first plays $s_{\alpha}\in S$ such that $s_{\alpha}>_{S}s_{\beta}$ for all $0<\beta<\alpha$. Then $\mathbf I$ plays U_{α} and $\mathbf I\mathbf I$ plays x_{α} according to the same rules as in $\mathcal V_{\kappa}(X,x_{0})$.

The first player who can not move loses, and the other player wins.

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in {}^{\kappa}\kappa$, and let S be a tree without branches of length $\geq \kappa$.

Definition (Hyttinen; Väänänen)

The S-approximation $\mathcal{V}_S(X,x_0)$ of $\mathcal{V}_\kappa(X,x_0)$ is the following game.

$$\mathbf{I}$$
 s_1, U_1 ... s_{α}, U_{α} ... \mathbf{II} x_0 x_1 ... x_{α} ...

In each round $\alpha>0$, ${\bf I}$ first plays $s_{\alpha}\in S$ such that $s_{\alpha}>_S s_{\beta}$ for all $0<\beta<\alpha$. Then ${\bf I}$ plays U_{α} and ${\bf II}$ plays x_{α} according to the same rules as in $\mathcal{V}_{\kappa}(X,x_0)$.

The first player who can not move loses, and the other player wins. Let

$$\operatorname{Sc}_S(X) = \{ x \in X : \mathbf{I} \text{ wins } \mathcal{V}_S(X, x) \};$$

 $\operatorname{Ker}_S(X) = \{ x \in {}^{\kappa} \kappa : \mathbf{II} \text{ wins } \mathcal{V}_S(X, x) \}.$

$$\operatorname{Sc}_S(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_S(X, x)\}; \quad \operatorname{Ker}_S(X) = \{x \in {}^{\kappa}\kappa : \mathbf{II} \text{ wins } \mathcal{V}_S(X, x)\}.$$

Given an ordinal α , let $B_{\alpha}=$ the tree of descending sequences of elements of α . $X^{(\alpha)}$ denotes the $\alpha^{\rm th}$ Cantor-Bendixson derivative of X.

Observation 1 (Väänänen)

$$X^{(\alpha)} = X \cap \operatorname{Ker}_{B_{\alpha}}(X) = X - \operatorname{Sc}_{B_{\alpha}}(X).$$

$$\operatorname{Sc}_S(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_S(X, x)\}; \quad \operatorname{Ker}_S(X) = \{x \in {}^{\kappa}\kappa : \mathbf{II} \text{ wins } \mathcal{V}_S(X, x)\}.$$

Given an ordinal α , let $B_{\alpha}=$ the tree of descending sequences of elements of α . $X^{(\alpha)}$ denotes the $\alpha^{\rm th}$ Cantor-Bendixson derivative of X.

Observation 1 (Väänänen)

$$X^{(\alpha)} = X \cap \operatorname{Ker}_{B_{\alpha}}(X) = X - \operatorname{Sc}_{B_{\alpha}}(X).$$

Corollary

$$\operatorname{Ker}_{\omega}(X) = \bigcap \{ \operatorname{Ker}_{S}(X) : S \text{ is a tree without infinite branches} \};$$

 $\operatorname{Sc}_{\omega}(X) = \bigcup \{ \operatorname{Sc}_{S}(X) : S \text{ is a tree without infinite branches} \}.$

$$\operatorname{Sc}_S(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_S(X, x)\}; \quad \operatorname{Ker}_S(X) = \{x \in {}^{\kappa}\kappa : \mathbf{II} \text{ wins } \mathcal{V}_S(X, x)\}.$$

Given an ordinal α , let $B_{\alpha}=$ the tree of descending sequences of elements of α . $X^{(\alpha)}$ denotes the $\alpha^{\rm th}$ Cantor-Bendixson derivative of X.

Observation 1 (Väänänen)

$$X^{(\alpha)} = X \cap \operatorname{Ker}_{B_{\alpha}}(X) = X - \operatorname{Sc}_{B_{\alpha}}(X).$$

Theorem 2 (Hyttinen (1990); Väänänen (1991))

$$\operatorname{Ker}_{\kappa}(X) = \bigcap \{ \operatorname{Ker}_{S}(X) : S \text{ is a tree without branches of length } \geq \kappa \};$$

$$\operatorname{Sc}_{\kappa}(X) = \bigcup \{ \operatorname{Sc}_{S}(X) : S \text{ is a tree without branches of length } \geq \kappa \}.$$

$$\operatorname{Sc}_S(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_S(X, x)\}; \quad \operatorname{Ker}_S(X) = \{x \in {}^{\kappa}\kappa : \mathbf{II} \text{ wins } \mathcal{V}_S(X, x)\}.$$

Given an ordinal α , let B_{α} = the tree of descending sequences of elements of α . $X^{(\alpha)}$ denotes the α^{th} Cantor-Bendixson derivative of X.

Observation 1 (Väänänen)

$$X^{(\alpha)} = X \cap \operatorname{Ker}_{B_{\alpha}}(X) = X - \operatorname{Sc}_{B_{\alpha}}(X).$$

Theorem 2 (Hyttinen (1990); Väänänen (1991))

$$\operatorname{Ker}_{\kappa}(X) = \bigcap \{ \operatorname{Ker}_{S}(X) : S \text{ is a tree without branches of length } \geq \kappa \};$$

 $\operatorname{Sc}_{\kappa}(X) = \bigcup \{ \operatorname{Sc}_{S}(X) : S \text{ is a tree without branches of length } \geq \kappa \}.$

The sets $X \cap \operatorname{Ker}_S(X)$ (resp. $X - \operatorname{Sc}_S(X)$) can be seen as the "levels of a generalized Cantor-Bendixson hierarchy" for the set X associated to II (resp. I).

Generalizing the Cantor-Bendixson hierarchy for trees

Theorem (Sz, part 1)

There exists a family $\{\mathcal{G}'_{\gamma}(T,t): T \text{ is a subtree of } {}^{<\kappa}\kappa, \, t\in T \text{ and } \omega \leq \gamma \leq \kappa \}$ of games such that the following hold for all such $T, \, t$ and $\gamma.$

- The games $\mathcal{G}'_{\gamma}(T,t)$ and $\mathcal{G}_{\gamma}(T,t)$ are equivalent whenever $T\subseteq {}^{<\kappa}2.$
- Given a tree S without branches of length $\geq \kappa$, let $\mathcal{G}_S'(T,t)$ denote the S-approximation of $\mathcal{G}_\kappa'(T,t)$, and let

$$\operatorname{Sc}_S(T) = \{ t \in T : \mathbf{I} \text{ wins } \mathcal{G}'_S(T,t) \}; \quad \operatorname{Ker}_S(T) = \{ t \in T : \mathbf{II} \text{ wins } \mathcal{G}'_S(T,t) \}.$$

Then the analogues of Observation 1 and Theorem 2 hold.²

The analogue of Theorem 2 is a special case of a general theorem due to Hyttinen (1990).

¹This is defined analogously to the S-approximation $\mathcal{V}_S(T,x)$.

 $^{^2}$ We consider the Cantor-Bendixson derivative of subtrees T of $^{<\kappa}\kappa$ which was defined in: G. Galgon. *Trees, refining, and combinatorial characteristics*. PhD thesis, University of California, Irvine, 2016.

Comparing the Cantor-Bendixson hierarchies

$$\operatorname{Sc}_S(T) = \{t \in T : \mathbf{I} \text{ wins } \mathcal{G}'_S(T,t)\}; \quad \operatorname{Ker}_S(T) = \{t \in T : \mathbf{II} \text{ wins } \mathcal{G}'_S(T,t)\}.$$

 $\operatorname{Sc}_S(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_S(X,x)\}; \quad \operatorname{Ker}_S(X) = \{x \in {}^{\kappa}\kappa : \mathbf{II} \text{ wins } \mathcal{V}_S(X,x)\}.$

Theorem (Sz, part 2)

- Let S be a tree without branches of length $\geq \kappa$. Then
 - $\operatorname{Ker}_S([T]) \subseteq [\operatorname{Ker}_S(T)]$ (i.e., if **II** wins $\mathcal{V}_S([T], x)$ then **II** wins $\mathcal{G}'_S(T, t)$ when $t \subseteq x \in {}^{\kappa}\kappa$.).

Comparing the Cantor-Bendixson hierarchies

$$\begin{aligned} &\operatorname{Sc}_S(T) = \{t \in T : \mathbf{I} \text{ wins } \mathcal{G}_S'(T,t)\}; & \operatorname{Ker}_S(T) = \{t \in T : \mathbf{II} \text{ wins } \mathcal{G}_S'(T,t)\}. \\ &\operatorname{Sc}_S(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_S(X,x)\}; & \operatorname{Ker}_S(X) = \{x \in {}^{\kappa}\kappa : \mathbf{II} \text{ wins } \mathcal{V}_S(X,x)\}. \end{aligned}$$

Theorem (Sz, part 2)

- Let S be a tree without branches of length $\geq \kappa$. Then
 - $\operatorname{Ker}_S([T]) \subseteq [\operatorname{Ker}_S(T)]$ (i.e., if **II** wins $\mathcal{V}_S([T], x)$ then **II** wins $\mathcal{G}'_S(T, t)$ when $t \subsetneq x \in {}^{\kappa}\kappa$.).
 - ② $[T] \operatorname{Sc}_S([T]) \subseteq [T \operatorname{Sc}_S(T)]$ (i.e., if I wins $\mathcal{G}'_S(T,t)$ then I wins $\mathcal{V}_S([T],x)$ when $t \subseteq x \in {}^{\kappa}\kappa$).

Comparing the Cantor-Bendixson hierarchies

$$\operatorname{Sc}_S(T) = \{t \in T : \mathbf{I} \text{ wins } \mathcal{G}_S'(T,t)\}; \quad \operatorname{Ker}_S(T) = \{t \in T : \mathbf{II} \text{ wins } \mathcal{G}_S'(T,t)\}.$$

 $\operatorname{Sc}_S(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_S(X,x)\}; \quad \operatorname{Ker}_S(X) = \{x \in {}^{\kappa}\kappa : \mathbf{II} \text{ wins } \mathcal{V}_S(X,x)\}.$

Theorem (Sz, part 2)

- Let S be a tree without branches of length $\geq \kappa$. Then
 - $\operatorname{Ker}_S([T]) \subseteq [\operatorname{Ker}_S(T)]$ (i.e., if II wins $\mathcal{V}_S([T], x)$ then II wins $\mathcal{G}'_S(T, t)$ when $t \subsetneq x \in {}^{\kappa}\kappa$.).
 - ② $[T] \operatorname{Sc}_S([T]) \subseteq [T \operatorname{Sc}_S(T)]$ (i.e., if I wins $\mathcal{G}'_S(T,t)$ then I wins $\mathcal{V}_S([T],x)$ when $t \subsetneq x \in {}^{\kappa}\kappa$).
 - **1** If κ has the tree property and T is a κ -tree, then

$$\operatorname{Ker}_S([T]) = [\operatorname{Ker}_S(T)]$$

(i.e., $\mathcal{V}_S([T], x)$ and $\mathcal{G}'_S(T, t)$ are equivalent for **II** when $t \subseteq x \in {}^{\kappa}\kappa$).

Definition

A subset $X \subseteq {}^{\kappa}\kappa$ is κ -dense in itself if \overline{X} is a κ -perfect set.

A subset $X\subseteq {}^\kappa\kappa$ is strongly κ -dense in itself if \overline{X} is a strongly κ -perfect set.

Definition

A subset $X \subseteq {}^{\kappa}\kappa$ is κ -dense in itself if \overline{X} is a κ -perfect set.

A subset $X\subseteq {}^\kappa\kappa$ is strongly κ -dense in itself if \overline{X} is a strongly κ -perfect set.

Proposition (Sz)

The following are equivalent for any $X \subseteq {}^{\kappa}\kappa$.

- X is κ -dense in itself.
- $X = \bigcup_{i \in I} X_i$ where each X_i is strongly κ -dense in itself.
- $X \subseteq \operatorname{Ker}_{\kappa}(X)$ (i.e., player II wins $\mathcal{V}_{\kappa}(X,x)$ for all $x \in X$.)

```
Theorem (Väänänen, 1991)

If \lambda > \kappa is measurable and G is \operatorname{Col}(\kappa, <\lambda)-generic, then in V[G],

every subset of {}^{\kappa}\kappa of size \kappa^+ contains a \kappa-dense in itself subset. (1
```

Theorem (Väänänen, 1991)

If $\lambda > \kappa$ is measurable and G is $\operatorname{Col}(\kappa, <\lambda)$ -generic, then in V[G], every subset of ${}^{\kappa}\kappa$ of size κ^+ contains a κ -dense in itself subset. (1)

Theorem (Schlicht, Sz)

It is enough to assume that λ is weakly compact in the above theorem.

Theorem (Väänänen, 1991)

If $\lambda > \kappa$ is measurable and G is $\operatorname{Col}(\kappa, <\lambda)$ -generic, then in V[G],

every subset of ${}^{\kappa}\kappa$ of size ${\kappa}^+$ contains a ${\kappa}$ -dense in itself subset.

Theorem (Schlicht, Sz)

It is enough to assume that λ is weakly compact in the above theorem.

Question

What is the consistency strength of (1)?

 \mathcal{R} is a collection of finitary relations on a set X.

 $Y\subseteq X$ is \mathcal{R} -homogeneous if for all $1\leq k<\omega$ and k-ary $R\in\mathcal{R}$ we have: $(x_1,\ldots,x_k)\in R$ for all pairwise distinct $x_1,\ldots,x_k\in Y$.

 \mathcal{R} is a collection of finitary relations on a set X.

 $Y\subseteq X$ is \mathcal{R} -homogeneous if for all $1\leq k<\omega$ and k-ary $R\in\mathcal{R}$ we have: $(x_1,\ldots,x_k)\in R$ for all pairwise distinct $x_1,\ldots,x_k\in Y$.

Theorem (Kubiś, 2003; Doležal, Kubiś 2015)

Let $\mathcal R$ be a countable set of G_δ relations on a Polish space X (i.e., every $R \in \mathcal R$ is an G_δ subset of ${}^k X$ for some $1 \le k < \omega$).

1 Either there exists a perfect \mathcal{R} -homogeneous set, or there exists $\alpha < \omega_1$ such that every \mathcal{R} -homogeneous set Y has Cantor-Bendixson rank $< \alpha$ (i.e., $Y^{(\alpha)} = \emptyset$).

 \mathcal{R} is a collection of finitary relations on a set X.

 $Y\subseteq X$ is \mathcal{R} -homogeneous if for all $1\leq k<\omega$ and k-ary $R\in\mathcal{R}$ we have: $(x_1,\ldots,x_k)\in R$ for all pairwise distinct $x_1,\ldots,x_k\in Y$.

Theorem (Kubiś, 2003; Doležal, Kubiś 2015)

Let $\mathcal R$ be a countable set of G_δ relations on a Polish space X (i.e., every $R \in \mathcal R$ is an G_δ subset of kX for some $1 \le k < \omega$).

- **①** Either there exists a perfect \mathcal{R} -homogeneous set, or there exists $\alpha < \omega_1$ such that every \mathcal{R} -homogeneous set Y has Cantor-Bendixson rank $< \alpha$ (i.e., $Y^{(\alpha)} = \emptyset$).
- (a) If there exists an uncountable \mathcal{R} -homogeneous set, then there exists a perfect \mathcal{R} -homogeneous set.

 \mathcal{R} is a collection of finitary relations on a set X.

 $Y\subseteq X$ is \mathcal{R} -homogeneous if for all $1\leq k<\omega$ and k-ary $R\in\mathcal{R}$ we have: $(x_1,\ldots,x_k)\in R$ for all pairwise distinct $x_1,\ldots,x_k\in Y$.

Theorem (Kubiś, 2003; Doležal, Kubiś 2015)

Let $\mathcal R$ be a countable set of G_δ relations on a Polish space X (i.e., every $R \in \mathcal R$ is an G_δ subset of ${}^k X$ for some $1 \le k < \omega$).

- **①** Either there exists a perfect \mathcal{R} -homogeneous set, or there exists $\alpha < \omega_1$ such that every \mathcal{R} -homogeneous set Y has Cantor-Bendixson rank $< \alpha$ (i.e., $Y^{(\alpha)} = \emptyset$).
- ② If there exists an uncountable \mathcal{R} -homogeneous set, then there exists a perfect \mathcal{R} -homogeneous set. This also holds for analytic spaces X.

 \mathcal{R} is a collection of finitary relations on a set X.

 $Y\subseteq X$ is \mathcal{R} -homogeneous if for all $1\leq k<\omega$ and k-ary $R\in\mathcal{R}$ we have: $(x_1,\ldots,x_k)\in R$ for all pairwise distinct $x_1,\ldots,x_k\in Y$.

Theorem (Kubiś, 2003; Doležal, Kubiś 2015)

Let $\mathcal R$ be a countable set of G_δ relations on a Polish space X (i.e., every $R \in \mathcal R$ is an G_δ subset of ${}^k X$ for some $1 \leq k < \omega$).

- **①** Either there exists a perfect \mathcal{R} -homogeneous set, or there exists $\alpha < \omega_1$ such that every \mathcal{R} -homogeneous set Y has Cantor-Bendixson rank $< \alpha$ (i.e., $Y^{(\alpha)} = \emptyset$).
- ② If there exists an uncountable \mathcal{R} -homogeneous set, then there exists a perfect \mathcal{R} -homogeneous set. This also holds for analytic spaces X.

Recall that $Y^{(\alpha)} = Y \cap \operatorname{Ker}_{B_{\alpha}}(Y) = Y - \operatorname{Sc}_{B_{\alpha}}(Y).$

A dichotomy for infinitely many $\Pi_2^0(\kappa)$ relations

R is a $\Pi^0_2(\kappa)$ relation on a topological space X iff R is an intersection of $\leq \kappa$ many open subsets of kX for some $1 \leq k < \omega$.

Theorem (Sz)

Assume \Diamond_{κ} or κ is inaccessible.

Let $\mathcal R$ be a collection of $\leq \kappa$ many $\Pi^0_2(\kappa)$ relations on a closed subset X of ${}^\kappa\kappa$. Then either

- ullet X has a κ -perfect $\mathcal R$ -homogeneous subset, or
- there exists a tree T without κ -branches, $|T| \leq 2^{\kappa}$, such that for all \mathcal{R} -homogeneous $Y \subseteq X$, we have $Y \cap \operatorname{Ker}_T(Y) = \emptyset$ (that is, player \mathbf{II} does not win $\mathcal{V}_T(Y,y)$ for any $y \in Y$).

A dichotomy for infinitely many $\Pi_2^0(\kappa)$ relations

R is a $\Pi_2^0(\kappa)$ relation on a topological space X iff R is an intersection of $\leq \kappa$ many open subsets of kX for some $1 \leq k < \omega$.

Theorem (Sz)

Assume \Diamond_{κ} or κ is inaccessible.

Let $\mathcal R$ be a collection of $\leq \kappa$ many $\Pi^0_2(\kappa)$ relations on a closed subset X of ${}^\kappa\kappa$. Then either

- ullet X has a κ -perfect $\mathcal R$ -homogeneous subset, or
- there exists a tree T without κ -branches, $|T| \leq 2^{\kappa}$, such that for all \mathcal{R} -homogeneous $Y \subseteq X$, we have $Y \cap \operatorname{Ker}_T(Y) = \emptyset$ (that is, player \mathbf{II} does not win $\mathcal{V}_T(Y,y)$ for any $y \in Y$).

If κ is inaccessible, then there exists a tree T of size κ witnessing this.

A dichotomy for infinitely many $\Pi_2^0(\kappa)$ relations

R is a $\Pi_2^0(\kappa)$ relation on a topological space X iff R is an intersection of $\leq \kappa$ many open subsets of kX for some $1\leq k<\omega$.

Theorem (Sz)

Assume \Diamond_{κ} or κ is inaccessible.

Let $\mathcal R$ be a collection of $\leq \kappa$ many $\Pi^0_2(\kappa)$ relations on a closed subset X of ${}^\kappa\kappa$. Then either

- X has a κ -perfect \mathcal{R} -homogeneous subset, or
- there exists a tree T without κ -branches, $|T| \leq 2^{\kappa}$, such that for all \mathcal{R} -homogeneous $Y \subseteq X$, we have $Y \cap \operatorname{Ker}_T(Y) = \emptyset$ (that is, player \mathbf{II} does not win $\mathcal{V}_T(Y,y)$ for any $y \in Y$).

If κ is inaccessible, then there exists a tree T of size κ witnessing this.

Sketch of the proof

First, show that if X has a κ -dense in itself $\mathcal R$ -homogeneous subset, then X has a κ -perfect $\mathcal R$ -homogeneous subset.

Let $\mathcal R$ be an arbitrary set of finitary relations on ${}^\kappa\kappa$.

Lemma

If X does not have a κ -dense in itself \mathcal{R} -homogeneous subset, then there exists a tree T without κ -branches, $|T| \leq 2^{\kappa}$, such that $Y \cap \operatorname{Ker}_T(Y) = \emptyset$ holds for all \mathcal{R} -homogeneous $Y \subseteq X$.

Let $\mathcal R$ be an arbitrary set of finitary relations on ${}^\kappa\kappa$.

Lemma

If X does not have a κ -dense in itself \mathcal{R} -homogeneous subset, then there exists a tree T without κ -branches, $|T| \leq 2^{\kappa}$, such that $Y \cap \operatorname{Ker}_T(Y) = \emptyset$ holds for all \mathcal{R} -homogeneous $Y \subseteq X$.

Proof.

The assumption holds iff II does not win $\mathcal{V}_{\kappa}(Y,x)$ for any \mathcal{R} -homogeneous $Y\subseteq {}^{\kappa}\kappa$ and $x\in Y$.

Let \mathcal{R} be an arbitrary set of finitary relations on κ .

Lemma

If X does not have a κ -dense in itself \mathcal{R} -homogeneous subset, then there exists a tree T without κ -branches, $|T| < 2^{\kappa}$, such that $Y \cap \operatorname{Ker}_T(Y) = \emptyset$ holds for all \mathcal{R} -homogeneous $Y \subseteq X$.

Proof.

The assumption holds iff II does not win $\mathcal{V}_{\kappa}(Y,x)$ for any \mathcal{R} -homogeneous $Y \subseteq {}^{\kappa}\kappa$ and $x \in Y$.

 $T_0 = \text{the tree of winning strategies } \tau \text{ of II in short games } \mathcal{V}_{\delta}(X,x) \text{ (where } \delta < \kappa$ and $x \in X$) such that the set of all possible τ -moves of II \mathcal{R} -homogeneous.

Let $\mathcal R$ be an arbitrary set of finitary relations on ${}^\kappa\kappa$.

Lemma

If X does not have a κ -dense in itself \mathcal{R} -homogeneous subset, then there exists a tree T without κ -branches, $|T| \leq 2^{\kappa}$, such that $Y \cap \operatorname{Ker}_T(Y) = \emptyset$ holds for all \mathcal{R} -homogeneous $Y \subseteq X$.

Proof.

The assumption holds iff II does not win $\mathcal{V}_{\kappa}(Y,x)$ for any \mathcal{R} -homogeneous $Y\subseteq {}^{\kappa}\kappa$ and $x\in Y$.

 $T_0=$ the tree of winning strategies au of \mathbf{II} in short games $\mathcal{V}_\delta(X,x)$ (where $\delta<\kappa$ and $x\in X$) such that the set of all possible au-moves of \mathbf{II} \mathcal{R} -homogeneous.

 $T = \sigma T_0$, the tree of ascending chains in T_0 .

Let $\mathcal R$ be an arbitrary set of finitary relations on ${}^\kappa\kappa$.

Lemma

If X does not have a κ -dense in itself \mathcal{R} -homogeneous subset, then there exists a tree T without κ -branches, $|T| \leq 2^{\kappa}$, such that $Y \cap \operatorname{Ker}_T(Y) = \emptyset$ holds for all \mathcal{R} -homogeneous $Y \subseteq X$.

Remark

If all $\mathcal R$ -homogeneous sets $Y\subseteq X$ are κ -scattered (i.e., $\mathbf I$ wins $\mathcal V_\kappa(Y,y)$ for all $y\in Y$), then there exists a tree S without κ -branches, $|S|\leq 2^\kappa$ such that $\mathrm{Sc}_S(Y)=Y$ (i.e., $\mathbf I$ wins $\mathcal V_S(Y,y)$ for all $y\in Y$) for all $\mathcal R$ -homogeneous $Y\subseteq {}^\kappa\kappa$.

A corollary

Corollary

If $\lambda > \kappa$ is weakly compact, and G is $\operatorname{Col}(\kappa, <\lambda)$ -generic, then in V[G]:

Let X be a $\Sigma^1_1(\kappa)$ subset of ${}^\kappa\kappa$, let $\mathcal R$ a set of $\leq \kappa$ many $\Pi^0_2(\kappa)$ relations on X.

If X has an $\mathcal R$ -homogeneous subset of size $> \kappa$, then X has a κ -perfect $\mathcal R$ -homogeneous subset. (2)

• This was known for measurable $\lambda > \kappa$ (Sz, Väänänen).

Question

What is the consistency strength of (2)?

Thank you!