$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}.$$

$$\blacksquare \ Me = \left\{ \begin{array}{cc} x_{\left(\frac{n+1}{2}\right)} & , & \text{si n es impar} \\ \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2} & , & \text{si n es par} \end{array} \right.$$

donde k=np y k^* es el valor de k aproximado por exceso.

$$S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1} = \frac{\sum_{i=1}^n x_i^2 - n\bar{x}^2}{n-1}.$$

$$RIC = Q_3 - Q_1 = q_{0.75} - q_{0.25}$$

$$CV = 100 \times \frac{S}{\bar{x}}$$

$$A = \frac{3(\bar{x} - Me)}{S}$$

•
$$\gamma_1 = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{S^3}$$

•
$$\kappa = \frac{0.5(Q_3 - Q_1)}{D_9 - D_1} = \frac{0.5(q_{0.75} - q_{0.25})}{q_{0.90} - q_{0.10}}$$

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{k} \hat{x}_j n_j$$
, con datos agrupados, donde \hat{x}_j es la marca de clase del intervalo j

•
$$S^2 = \frac{1}{n-1} \left(\sum_{j=1}^k \hat{x}_j^2 n_j - n\bar{x}^2 \right)$$
, con datos agrupados

•
$$S_{XY} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1} = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{n-1}$$

$$r_{XY} = \frac{S_{XY}}{S_X S_Y}$$
 donde S_X y S_Y son las desviaciones estándares de los datos de x e y respectivamente.

$$\bullet \hat{y} = \hat{a} + \hat{b}x, \ \hat{a} = \bar{y} - \hat{b}\bar{x} \ y \ \hat{b} = r_{XY} \frac{S_Y}{S_X}$$

$$\bar{x} = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n}$$

$$S^{2} = \frac{1}{n-1} \left((n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2} + n_{1}\bar{x}_{1}^{2} + n_{2}\bar{x}_{2}^{2} - n\bar{x}^{2} \right)$$

$$A \cup A = A$$
$$A \cap A = A$$

- $A \cup B = B \cup A$ $A \cap B = B \cap A$
- $\begin{array}{c} \bullet \ \ A \cup A^C = \Omega \\ A \cap A^C = \emptyset \end{array}$
- $A \cup \emptyset = A$ $A \cap \emptyset = \emptyset$
- $A \cup \Omega = \Omega$ $A \cap \Omega = A$
- $\begin{array}{l} \bullet \;\; \Omega^C = \emptyset \\ \emptyset^C = \Omega \\ (A^C)^C = A \end{array}$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $(A \cup B)^C = A^C \cap B^C$ $(A \cap B)^C = A^C \cup B^C$

•
$$P(\emptyset) = 0$$

- $P(A^C) = 1 P(A)$
- Si $A \subset B \Rightarrow P(A) \leq P(B)$
- $P(A-B) = P(A) P(A \cap B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

•

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(A \cap B) - P(A \cap C) - P(B \cap C)$$
$$+P(A \cap B \cap C)$$

• Sean $A_1, A_2, ..., A_n$ eventos entonces

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$
$$-\sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k)$$
$$- \dots + (-1)^{n-1} P(A_1 \cap A_2 \cap \dots \cap A_n)$$

- $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
- Sean A y B dos eventos cualesquiera entonces $P(A \cap B) = P(A)P(B \mid A)$.
- Sean A_1 , A_2 ,..., A_n eventos cualesquiera entonces $P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2)...P(A_n \mid A_1 \cap A_2 \cap A_3 \cap ... \cap A_{n-1})$.
- Sean A y B eventos independientes entonces $P(A \cap B) = P(A)P(B)$
- Los eventos A_1, A_2, \ldots, A_n son independientes si la probabilidad de la intersección de cualquier subconjunto de estos es el producto de sus probabilidades.

Sean $A_1, ... A_n$ eventos tales que $\bigcup_{i=1}^n A_i = \Omega$ y $A_i \cap A_j = \emptyset \ \forall i \neq j$ entonces

$$P(B) = \sum_{i=1}^{n} P(B \mid A_i) P(A_i) \text{ y } P(A_j \mid B) = \frac{P(B \mid A_j) P(A_j)}{\sum_{i=1}^{n} P(B \mid A_i) P(A_i)}$$

Formulario

- E(a) = a.
- E(a+bX) = a+bE(X).
- Var(a) = 0.
- $Var(a + bX) = b^2 Var(X)$.
- E(aX + bY) = aE(X) + bE(Y) para cualesquiera v.a. $X \in Y$.
- $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$ solamente si las v.a. $X \in Y$ son independientes.
- Si $X \sim N(\mu, \sigma^2)$ entonces $Z = \frac{X \mu}{\sigma} \sim N(0, 1)$.
- Si $X \sim N(\mu, \sigma^2)$ entonces $Y = a + bX \sim N(a + b\mu, b^2\sigma^2)$.
- Sean $c_1, c_2, \ldots c_n$ constantes cualesquieras y X_1, X_2, \ldots, X_n variables aleatorias independientes con $X_i \sim N(\mu_i, \sigma_i^2)$ entonces

$$\sum_{i=1}^{n} c_{i} X_{i} \sim N\left(\sum_{i=1}^{n} c_{i} \mu_{i}, \sum_{i=1}^{n} c_{i}^{2} \sigma_{i}^{2}\right)$$

• Sean X_1, X_2, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas tales que $X_i \sim N(\mu, \sigma^2)$, entonces

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

• Sean $X_1, X_2, ..., X_n$ variables aleatoria independientes e identicamente distribuidas tal que $E(X_i) = \mu$ y $V(X_i) = \sigma^2$, entonces para n suficientemente grande

$$\bar{X} \stackrel{aprox}{\sim} N\left(\mu, \frac{\sigma^2}{n}\right)$$

• Si $X \sim LN(\mu, \sigma^2)$ entonces $\ln(X) \sim N(\mu, \sigma^2)$

Función de distribución acumulada – Distribución Gamma

Sea $X \sim Gamma(\alpha, \lambda)$, si α es un entero entonces $F_X(x) = 1 - \sum_{k=0}^{\alpha-1} \frac{(\lambda x)^k}{k!} e^{-\lambda x}$.

Distribuciones Discretas

Nombre	Notación	Definición	Parámetro(s)	Función de proba- bilidad	Rango	Función de distri- bución acumulada	E(X)	Var(X)
Hipergeométrica	HG(N,M,n)	número de elementos que presentan la carac- terística de interés en la muestra	N= tamaño de la población $M=$ elementos en la población que presentan la característica de interés $n=$ tamaño de la muestra	$\frac{C_x^M C_{n-x}^{N-M}}{C_n^N}$	$x = \max\{0, n+M-N\}$ $,, \min\{M,n\}$	n.a	$n\frac{M}{N}$	$n\frac{M}{N}\frac{N-M}{N}\frac{N-n}{N-1}$
Binomial	Binomial(n,p)	Número de éxitos en n ensayos	n = número de ensayos $p = P(Éxito)$	$C_x^n p^x (1-p)^{n-x}$	x = 0, 1,, n	n.a	np	np(1-p)
Geométrica	Geométrica(p)	Número de ensayos hasta conseguir el primer éxito	$p = P(\text{\'Exito})$	$p(1-p)^{x-1}$	$x = 1, 2, \dots$	$1 - (1-p)^x$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Binomial Negativa	BinomialN(r,p)	Número de ensayos hasta conseguir el r -ésimo éxito	r= número de éxitos $p=P(Éxito)$	$C_{r-1}^{x-1}p^r(1-p)^{x-r}$	$x = r, r + 1, \dots$	n.a.	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Poisson	$Poisson(\mu)$	Número de eventos en un intervalo de tamaño t . En un proceso de Poisson con tasa de ocurrencia λ .	$\mu = \lambda t$	$\frac{e^{-\mu}\mu^x}{x!}$	$x = 0, 1, 2, \dots$	n.a.	μ	μ

n.a.= no tiene forma analítica.

Distribuciones Continuas

Nombre	Notación	Definición	Parámetro(s)	Función de densidad	Rango	Función de distribución acumulada	E(X)	Var(X)
Exponencial	$Exp(\lambda)$	En un proceso de Poisson con tasa de ocurrencia λ , es el tiempo que transcurre hasta la ocurrencia del primer evento	$\lambda > 0$	$\lambda e^{-\lambda x}$	x > 0	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gama	$Gama(lpha,\lambda)$	En un proceso de Poisson con tasa de ocurrencia λ , es el tiempo que transcurre hasta la ocurrencia del α -esimo evento	$\alpha > 0, \lambda > 0$	$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	x > 0	n.a.	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$
Uniforme	Unif(a,b)	Distribución continua, uniforme en el intervalo (a,b)	$a < b, \ a,b \in \mathbb{R}$	$\frac{1}{b-a}$	a < x < b	$\frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Beta	Beta(lpha,eta)	Distribución continua en el intervalo $(0,1)$	$\alpha > 0, \beta > 0$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	0 < x < 1	n.a.	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Normal	$N(\mu, \sigma^2)$	Distribución simétrica continua en \mathbb{R}	$\mu \in \mathbb{R}, \sigma^2 > 0$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$	$x\in \mathbb{R}$	n.a.	μ	σ^2
Log-Normal	$LN(\mu, \sigma^2)$	Distribución continua para valores positivos	$\mu \in \mathbb{R}, \sigma^2 > 0$	$\frac{1}{\sqrt{2\pi}\sigma x}e^{-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2}$	x > 0	n.a.	$e^{\mu + \frac{\sigma^2}{2}}$	$(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$
Weibull	$Weibull(lpha,\lambda)$	Distribución continua para valores positivos	$\alpha > 0, \lambda > 0$	$\alpha \lambda^{\alpha} x^{\alpha-1} e^{-(\lambda x)^{\alpha}}$	x > 0	$1 - e^{-(\lambda x)^{\alpha}}$	$\frac{1}{\alpha\lambda}\Gamma\left(\frac{1}{\alpha}\right)$	$\frac{1}{\alpha\lambda^2} \left[2\Gamma\left(\frac{2}{\alpha}\right) - \frac{1}{\alpha}\Gamma\left(\frac{1}{\alpha}\right)^2 \right]$
Valor Extremo tipo I	$VE_{I, ext{máx}}(\mu, lpha)$	Distribución asintótica para el máximo	$\mu \in \mathbb{R}, \alpha > 0$	$\alpha e^{-\alpha(x-\mu)}e^{-e^{-\alpha(x-\mu)}}$	$x\in \mathbb{R}$	$e^{-e^{-\alpha(x-\mu)}}$	$\mu + \frac{\gamma}{\alpha}$	$\frac{\pi^2}{6\alpha^2}$
Valor Extremo tipo II	$VE_{II, ext{máx}}(\mu,lpha)$	Distribución asintótica para el máximo	$\mu > 0, \alpha > 0$	$\frac{\alpha}{\mu} \left(\frac{\mu}{x}\right)^{\alpha+1} e^{-\left(\frac{\mu}{x}\right)^{\alpha}}$	x > 0	$e^{-\left(\frac{\mu}{x}\right)^{\alpha}}$	$\mu\Gamma\left(1-\frac{1}{\alpha}\right)$	$\mu^2 \left[\Gamma \left(1 - \frac{2}{\alpha} \right) - \Gamma \left(1 - \frac{1}{\alpha} \right)^2 \right]$

n.a.= no tiene forma analítica, $\Gamma(a)=(a-1)!$ si a es entero, $\gamma=0.5772$ es la constante de Euler.

Intervalos de Confianza para la media μ

Población	Varianza (σ^2)	Tamaño de muestra (n)	Intervalo de confianza
Normal	conocida	cualquiera	$\left[\bar{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right]$
Cualquiera	conocida	$n \ge 30$	
Normal	desconocida	cualquiera	$\left[\overline{X} - t_{1-\frac{\alpha}{2},n-1} \frac{S}{\sqrt{n}}, \overline{X} + t_{1-\frac{\alpha}{2},n-1} \frac{S}{\sqrt{n}} \right]$
Cualquiera	desconocida	$n \ge 30$	$\left[\overline{X} - z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \right]$

Intervalo de Confianza para la varianza σ^2

Para una población normal

$$\left[\frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}},\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}}\right]$$

Intervalo de Confianza para la proporción p

Para un tamaño de muestra suficientemente grande $(n \ge 30)$

Intervalo de Confianza para la razón de varianzas $\frac{\sigma_1^2}{\sigma_2^2}$

Se asume que las muestras en cada población normal son tomadas de manera independiente

$$\left[\frac{S_1^2}{S_2^2}\frac{1}{F_{1-\alpha/2,n_1-1,n_2-1}}\,,\,\frac{S_1^2}{S_2^2}\frac{1}{F_{\alpha/2,n_1-1,n_2-1}}\right]$$

Intervalo de Confianza para la diferencia de proporciones p_1-p_2

Se asume que las muestras en cada población son tomadas de manera independiente y que los tamaños de muestra son suficientemente grandes $(n_1, n_2 \ge 30)$

$$\left[\bar{p}_1 - \bar{p}_2 - z_{1-\frac{\alpha}{2}}\sqrt{\frac{\bar{p}_1(1-\bar{p}_1)}{n_1} + \frac{\bar{p}_2(1-\bar{p}_2)}{n_2}}, \ \bar{p}_1 - \bar{p}_2 + z_{1-\frac{\alpha}{2}}\sqrt{\frac{\bar{p}_1(1-\bar{p}_1)}{n_1} + \frac{\bar{p}_2(1-\bar{p}_2)}{n_2}}\right],$$

Intervalos de Confianza para la diferencia de medias $\mu_1-\mu_2$

Se asume que las muestras en cada población son tomadas de manera independiente

Población	Varianzas	Tamaño de	Intervalo
	$(\sigma_1^2 \ \mathrm{y} \ \sigma_2^2)$	muestra $(n_1 y n_2)$	de confianza
Normal	conocidas	cualquiera	
Cualquiera	conocidas	$n_1, n_2 \ge 30$	
Normal	desconocidas pero iguales $(\sigma_1^2 = \sigma_2^2)$	cualquiera	$\left[\bar{X} - \bar{Y} - t_{1 - \frac{\alpha}{2}, n_1 + n_2 - 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \bar{X} - \bar{Y} + t_{1 - \frac{\alpha}{2}, n_1 + n_2 - 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right]$ donde $S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$
Normal	desconocidas pero diferentes $(\sigma_1^2 \neq \sigma_2^2)$	cualquiera	$\left[\bar{X} - \bar{Y} - t_{1 - \frac{\alpha}{2}, \nu} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}, \bar{X} - \bar{Y} + t_{1 - \frac{\alpha}{2}, \nu} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \right]$ donde los grados de libertad se aproximan por $\nu = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$
Cualquiera	desconocidas	$n_1, n_2 \ge 30$	$\left[\bar{X} - \bar{Y} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}, \bar{X} - \bar{Y} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}\right]$

Prueba de hipótesis para la media μ : H_0 : $\mu=\mu_0$

Población	Varianza	Tamaño de	Estadística	H_1	Región	p-valor
	(σ^2)	muestra (n)	de prueba		crítica	
Normal	conocida	cualquiera	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	$ Z > z_{1-\frac{\alpha}{2}}$ $Z > z_{1-\alpha}$	$2P(Z > Z_{obs})$ $P(Z > Z_{obs})$
Cualquiera	conocida	$n \ge 30$	$Z = \frac{1}{\sigma/\sqrt{n}} \approx W(0,1)$	$\mu < \mu_0$	$Z < z_{\alpha}$	$P(Z < Z_{obs})$
Normal	desconocida	cualquiera	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$	$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	$ T > t_{1-\frac{\alpha}{2},n-1}$ $T > t_{1-\alpha,n-1}$ $T < t_{\alpha,n-1}$	$ P(T > T_{obs}) $ $P(T > T_{obs}) $ $P(T < T_{obs}) $
Cualquiera	desconocida	$n \ge 30$	$Z = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim N(0, 1)$	$\begin{array}{c c} \mu \neq \mu_0 \\ \mu > \mu_0 \\ \mu < \mu_0 \end{array}$	$ Z > z_{1-\frac{\alpha}{2}}$ $Z > z_{1-\alpha}$ $Z < z_{\alpha}$	$ \begin{array}{c c} 2P(Z > Z_{obs}) \\ P(Z > Z_{obs}) \\ P(Z < Z_{obs}) \end{array} $

Prueba de hipótesis para la varianza σ^2 : $H_0:\sigma^2=\sigma_0^2$

Para una población normal

	ara ana población normai			
	Estadística	H_1	Región	p-valor
	de prueba		crítica	
Ì	$(n-1)S^2$	$\sigma^2 \neq \sigma_0^2$	$W < \chi^2_{\alpha/2, n-1} \text{ o } W > \chi^2_{1-\alpha/2, n-1}$	$2 \min \{P(W > W_{obs}), P(W < W_{obs})\}$
	$W = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$\sigma^2 > \sigma_0^2$	$W > \chi^2_{1-\alpha,n-1}$	$P(W > W_{obs})$
	σ_0^z	$\sigma^2 < \sigma_0^2$	$W < \chi^2_{\alpha, n-1}$	$P(W < W_{obs})$

Prueba de hipótesis para la proporción p: $H_0: p=p_0$

Para un tamaño de muestra suficientemente grande $(n \ge 30)$

Estadística	H_1	Región	p-valor
de prueba		crítica	
$\bar{p}-p_0$	$p \neq p_0$	$ Z > z_{1-\alpha/2}$	$2P(Z > Z_{obs})$
$Z = \frac{1}{\sqrt{1 - N(0, 1)}} \sim N(0, 1)$	$p > p_0$	$Z > z_{1-\alpha}$	$P(Z > Z_{obs})$
$\sqrt{p_0(1-p_0)/n}$	$p < p_0$	$Z < z_{\alpha}$	$P(Z < Z_{obs})$

Prueba de hipótesis para la razón de varianzas $\frac{\sigma_1^2}{\sigma_2^2}$: $H_0:\sigma_1^2=\sigma_2^2$

Se asume que las muestras en cada población normal son tomadas de manera independiente

Estadística	H_1	Región	p-valor
de prueba		crítica	
S^2	$\sigma_1^2 \neq \sigma_2^2$	$F < F_{\alpha/2,n_1-1,n_2-1} \text{ o } F > F_{1-\alpha/2,n_1-1,n_2-1}$	$2 \min \{P(F > F_{obs}), P(F < F_{obs})\}$
$F = \frac{S_1^2}{S_2^2} \sim F_{(n_1 - 1, n_2 - 1)}$	$\sigma_1^2 > \sigma_2^2$	$F > F_{1-\alpha,n_1-1,n_2-1}$	$P(F > F_{obs})$
$oldsymbol{\mathcal{S}}_{ar{2}}$	$\sigma_1^2 < \sigma_2^2$	$F < F_{\alpha, n_1 - 1, n_2 - 1}$	$P(F < F_{obs})$

Prueba de hipótesis para la diferencia de proporciones p_1-p_2 : $H_0:p_1=p_2$

Se asume que las muestras en cada población son tomadas de manera independiente y que los tamaños de muestra son suficientemente grandes $(n_1, n_2 \ge 30)$

Estadística	H_1	Región	p-valor
de prueba		crítica	
$Z = \frac{\bar{p}_1 - \bar{p}_2}{\sqrt{\bar{p}(1-\bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1) \text{ con } \bar{p} = \frac{n_1\bar{p}_1 + n_2\bar{p}_2}{n_1 + n_2}$	$ \begin{array}{c c} p_1 \neq p_2 \\ p_1 > p_2 \\ p_1 < p_2 \end{array} $	$ Z < z_{1-\alpha/2}$ $Z > z_{1-\alpha}$ $Z < z_{\alpha}$	$2P(Z > Z_{obs})$ $P(Z > Z_{obs})$ $P(Z < Z_{obs})$

Prueba de hipótesis para la diferencia de medias $\mu_1-\mu_2$: $H_0:\mu_1=\mu_2$

Se asume que las muestras en cada población son tomadas de manera independiente

Población	Varianzas	Tamaños de	Estadística	H_1	Región	p-valor
	$(\sigma_1^2 \ \mathrm{y} \ \sigma_2^2)$	muestra	de prueba		crítica	
		$(n_1 y n_2)$				
Normal	conocidas	cualquiera	$Z=rac{ar{X}-ar{Y}}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}}\sim N(0,1)$	$\begin{vmatrix} \mu_1 \neq \mu_2 \\ \mu_1 > \mu_2 \end{vmatrix}$	$Z > z_{1-\alpha}$	$2P(Z > Z_{obs})$ $P(Z > Z_{obs})$
Cualquiera	conocidas	$n_1, n_2 \ge 30$	$\sqrt{\frac{\sigma_1}{n_1} + \frac{\sigma_2}{n_2}}$	$\mu_1 < \mu_2$	$Z < z_{\alpha}$	$P(Z < Z_{obs})$
Normal	desconocidas pero iguales $(\sigma_1^2 = \sigma_2^2)$	cualquiera	$T = \frac{\overline{X} - \overline{Y}}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t(n_1 + n_2 - 2), \text{ con } S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$\begin{vmatrix} \mu_1 \neq \mu_2 \\ \mu_1 > \mu_2 \\ \mu_1 < \mu_2 \end{vmatrix}$	$ T > t_{1-\frac{\alpha}{2},n_1+n_2-2}$ $T > t_{1-\alpha,n_1+n_2-2}$ $T < t_{\alpha,n_1+n_2-2}$	$2P(T > T_{obs})$ $P(T > T_{obs})$ $P(T < T_{obs})$
Normal	desconocidas pero diferentes $(\sigma_1^2 \neq \sigma_2^2)$	cualquiera	$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t(\nu), \text{ con } \nu = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$	$\mu_1 \neq \mu_2$ $\mu_1 > \mu_2$ $\mu_1 < \mu_2$	$ T > t_{1-\frac{\alpha}{2},\nu}$ $T > t_{1-\alpha,\nu}$ $T < t_{\alpha,\nu}$	$2P(T > T_{obs})$ $P(T > T_{obs})$ $P(T < T_{obs})$
Cualquiera	desconocidas	$n_1, n_2 \ge 30$	$Z = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$	$\begin{array}{c c} \mu_1 \neq \mu_2 \\ \mu_1 > \mu_2 \\ \mu_1 < \mu_2 \end{array}$	1 -	$2P(Z > Z_{obs})$ $P(Z > Z_{obs})$ $P(Z < Z_{obs})$

Donde Z_{obs} , T_{obs} , W_{obs} y F_{obs} representan el valor observado en la muestra de las estadísticas de prueba Z, T, W y F respectivamente.

Intervalos de Confianza y Pruebas de hipótesis para la media μ

Se considera que el vector ${\tt x}$ contiene los valores de la muestra, que ${\tt sigma}$ es la desviación estándar conocida si fuera

el caso y mu
0 es el valor μ en la hipótesis nula.

Población	Varianza	Tamaño de	R
	(σ^2)	muestra(n)	
Normal	conocida	cualquiera	<pre>require(BSDA) # Intervalo de Confianza z.test(x,sigma.x=sigma,conf.level=0.95)</pre>
Cualquiera	conocida	$n \ge 30$	<pre># Prueba de Hipótesis z.test(x,sigma.x=sigma,mu=mu0,alternative = "two.sided")</pre>
Normal	desconocida	cualquiera	<pre># Intervalo de Confianza t.test(x,conf.level=0.95) # Prueba de Hipótesis t.test(x,mu=mu0,alternative = "two.sided")</pre>
Cualquiera	desconocida	$n \ge 30$	<pre>require(BSDA) # Intervalo de Confianza z.test(x,sigma.x=sd(x),conf.level=0.95) # Prueba de Hipótesis z.test(x,sigma.x=sd(x),mu=mu0,alternative = "two.sided")</pre>

Intervalo de Confianza y Prueba de hipótesis para la varianza σ^2

Se considera que el vector x contiene los valores de la muestra, y sigma_2_0 es el valor σ^2 en la hipótesis nula.

```
requiere(DescTools)
# Intervalo de Confianza
VarTest(x,conf.level=0.95)
# Prueba de Hipótesis
VarTest(x,sigma.squared=sigma_2_0,alternative = "two.sided")
```

Intervalo de Confianza y Prueba de hipótesis para la proporción \boldsymbol{p}

Se considera que x es el número de éxitos, n el tamaño de muestra y p0 el valor de p en la hipótesis nula.

```
# Intervalo de Confianza
requiere(DescTools)
BinomCI(x,n,conf.level = 0.95,method="wald")
# Prueba de Hipótesis
prop.test(x,n,p=p0,alternative="two.sided",correct=FALSE)
```

Intervalos de Confianza y Prueba de Hipótesis para la diferencia de medias $\mu_1 - \mu_2$

Se considera que x e y son dos vectores con los valores de las muestras de cada población, sigma1 y sigma2 son las deviaciones estándar poblaciones en caso sean conocidas, y do es el valor de la diferencia de medias (usualmente se considera do=0).

Población	Varianzas	Tamaño de	Intervalo		
	$(\sigma_1^2 \ y \ \sigma_2^2)$	muestra $(n_1 y n_2)$	de confianza		
Normal	conocidas	cualquiera	require(BSDA) # Intervalo de Confianza z.test(x,y,sigma.x=sigma1,sigma.y=sigma1,conf.level=0.95)		
Cualquiera	conocidas	$n_1, n_2 \ge 30$	# Prueba de Hipótesis z.test(x,y,sigma.x=sigma1,sigma.y=sigma1,mu=d0,alternative = "two.sided")		
Normal	desconocidas pero iguales $(\sigma_1^2 = \sigma_2^2)$	cualquiera	<pre># Intervalo de Confianza t.test(x,y,conf.level=0.95,var.equal = TRUE) # Prueba de Hipótesis t.test(x,y,var.equal = TRUE,mu=d0,alternative = "two.sided")</pre>		
Normal	desconocidas pero diferentes $(\sigma_1^2 \neq \sigma_2^2)$	cualquiera	<pre># Intervalo de Confianza t.test(x,y,conf.level=0.95,var.equal = FALSE) # Prueba de Hipótesis t.test(x,y,mu=d0,alternative = "two.sided")</pre>		
Cualquiera	desconocidas	$n_1, n_2 \ge 30$	<pre>require(BSDA) # Intervalo de Confianza z.test(x,y,sigma.x=sd(x),sigma.y=sd(y),conf.level=0.95) # Prueba de Hipótesis z.test(x,y,sigma.x=sd(x),sigma.y=sd(y),mu=d0,alternative = "two.sided")</pre>		

Intervalo de Confianza y Prueba de hipótesis para la razón de varianzas σ_1^2/σ_2^2

Se considera que x e y son dos vectores con los valores de las muestras de cada población y r es el valor de la razón de varianzas σ_1^2/σ_2^2 en la hipótesis nula (usualmente se asume r=1).

```
# Intervalo de Confianza
var.test(x,y,conf.level=0.95)
# Prueba de Hipótesis
var.test(x,y,ratio=r,alternative="two.sided")
```

Intervalo de Confianza y Prueba de hipótesis para la diferencia de proporciones p_1-p_2

Se asume que $\tt x1$ e $\tt x2$ son el número de éxitos en cada muestra y que $\tt n1$ y $\tt n2$ son los tamaños de muestra.

```
# Intervalo de Confianza
requiere(DescTools)
BinomDiffCI(x1,n1,x2,n2,conf.level = 0.95,method="wald")
# Prueba de Hipótesis
prop.test(c(x1,x2),c(n1,n2),alternative="two.sided",correct=FALSE)
```