# Bellabeat Case Study

# Lidiya Arsova

### 2025-04-13

#### Ask

Bellabeat is a high-tech wellness company that manufactures health-focused smart devices for women. The goal of this project is to analyze Fitbit data and uncover user trends that Bellabeat can use to inform its marketing strategy.

### **Prepare**

We are working with public Fitbit data collected from 30 users over two months, shared under a public domain license via Kaggle and Zenodo.

We are using two daily activity files — one from each month — and will combine them.

```
daily1 <- read_csv("dailyActivity_merged.csv")</pre>
## Rows: 457 Columns: 15
## -- Column specification -----
## Delimiter: ","
## chr (1): ActivityDate
## dbl (14): Id, TotalSteps, TotalDistance, TrackerDistance, LoggedActivitiesDi...
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
daily2 <- read csv("dailyActivity merged2.csv")</pre>
## Rows: 940 Columns: 15
## -- Column specification -----
## Delimiter: ","
## chr (1): ActivityDate
## dbl (14): Id, TotalSteps, TotalDistance, TrackerDistance, LoggedActivitiesDi...
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

### **Process**

Here, we combine the two datasets, remove any duplicates, and convert the activity date column into proper Date format.

```
daily_full <- bind_rows(daily1, daily2) %>%
  distinct() %>%
  mutate(ActivityDate = mdy(ActivityDate))
```

# Analyze

We calculate summary statistics to understand users' daily activity patterns.

```
daily full %>%
  summarise(
    avg_steps = mean(TotalSteps, na.rm = TRUE),
   avg_calories = mean(Calories, na.rm = TRUE),
    avg_very_active = mean(VeryActiveMinutes, na.rm = TRUE),
   avg_lightly_active = mean(LightlyActiveMinutes, na.rm = TRUE),
    avg_sedentary = mean(SedentaryMinutes, na.rm = TRUE)
 )
## # A tibble: 1 x 5
##
     avg_steps avg_calories avg_very_active avg_lightly_active avg_sedentary
##
         <dbl>
                      <dbl>
                                       <dbl>
                                                          <dbl>
## 1
         7281.
                      2266.
                                        19.7
                                                           185.
                                                                          993.
We also explore how different activities correlate with calories burned.
cor data <- daily full %>%
  select(TotalSteps, TotalDistance, VeryActiveMinutes, FairlyActiveMinutes,
         LightlyActiveMinutes, SedentaryMinutes, Calories)
cor(cor_data, use = "complete.obs")
##
                        TotalSteps TotalDistance VeryActiveMinutes
## TotalSteps
                         1.0000000
                                        0.9859539
                                                          0.6765583
## TotalDistance
                         0.9859539
                                        1.0000000
                                                          0.6911431
## VeryActiveMinutes
                         0.6765583
                                        0.6911431
                                                          1.0000000
## FairlyActiveMinutes
                         0.3591856
                                        0.3380976
                                                          0.2341731
## LightlyActiveMinutes 0.6040972
                                        0.5553730
                                                          0.1047707
## SedentaryMinutes
                        -0.3110263
                                       -0.2771641
                                                         -0.1678437
## Calories
                         0.5901599
                                        0.6353040
                                                          0.5820275
                        FairlyActiveMinutes LightlyActiveMinutes SedentaryMinutes
## TotalSteps
                                  0.3591856
                                                        0.6040972
                                                                        -0.31102626
## TotalDistance
                                   0.3380976
                                                        0.5553730
                                                                        -0.27716405
## VeryActiveMinutes
                                   0.2341731
                                                        0.1047707
                                                                        -0.16784374
## FairlyActiveMinutes
                                  1.0000000
                                                        0.1191759
                                                                        -0.18504495
## LightlyActiveMinutes
                                  0.1191759
                                                        1.0000000
                                                                        -0.41933197
## SedentaryMinutes
                                  -0.1850449
                                                       -0.4193320
                                                                         1.00000000
## Calories
                                   0.3074824
                                                        0.3257006
                                                                        -0.06192441
##
                           Calories
## TotalSteps
                         0.59015995
## TotalDistance
                         0.63530399
## VeryActiveMinutes
                         0.58202752
## FairlyActiveMinutes
                         0.30748240
## LightlyActiveMinutes 0.32570064
## SedentaryMinutes
                        -0.06192441
## Calories
                         1.00000000
```

#### Share

Average Calories Burned by Activity Level

```
daily_full %>%
    pivot_longer(cols = c(VeryActiveMinutes, FairlyActiveMinutes, LightlyActiveMinutes),
```

```
names_to = "ActivityLevel", values_to = "Minutes") %>%
group_by(ActivityLevel) %>%
summarise(AvgCalories = mean(Calories, na.rm = TRUE)) %>%
ggplot(aes(x = ActivityLevel, y = AvgCalories, fill = ActivityLevel)) +
geom_col() +
labs(title = "Avg Calories Burned by Activity Level", y = "Calories", x = "Activity Level") +
theme_minimal()
```

# Avg Calories Burned by Activity Level



# Average Steps by Weekday

```
daily_full %>%
  mutate(Weekday = wday(ActivityDate, label = TRUE)) %>%
  group_by(Weekday) %>%
  summarise(AverageSteps = mean(TotalSteps, na.rm = TRUE)) %>%
  ggplot(aes(x = Weekday, y = AverageSteps)) +
  geom_col(fill = "steelblue") +
  labs(title = "Average Steps by Weekday", x = "Day of Week", y = "Steps") +
  theme_minimal()
```



## Act

Based on this analysis, Bellabeat could take the following actions:

Encourage High-Intensity Movement: Very Active Minutes had a strong correlation with calories burned. Bellabeat can promote workouts that drive this metric.

Target Weekday Engagement: Most users are more active during weekdays. Bellabeat can use this insight to drive weekday-focused campaigns.

Combat Sedentary Behavior: Sedentary minutes are still high. Bellabeat can add movement reminders or gentle nudge notifications via smart devices.

# Conclusion

This project explored user activity data to generate business insights for Bellabeat. Using R and tidyverse, we cleaned and analyzed the data, created visualizations, and delivered actionable recommendations for smarter engagement strategies.