lodels of HoT (simplicial & cubical) Christian Sattler EPII 2024

O. Introduction & Overview

1. What is a model of type theory?

2. Presheaf models

Exercises 3. The simplicial model of HoTT

4. Cabical models and open questions

Exercises

O. Introduction & overview

Model of type theory:

Interpretation of language
that turns judgmental equality
into actual equality.

Slogan

There are many frameworks for models, some times equivalent, other times differing in some aspects:

· Collection of types over context [Seen as set or groupoid or category

· split vs. non-split

· contextual / democratic

· algebraic or categorical notion
category
of models
bicategory
of models

· terms or context projections (display maps)

We will work with categories with families.

Model of HoTT: Just a model of type theory with elements witnessing function extensionality + univalence. History of models of HoTT: Set model · Univalent universe anoitize good to Groupoid model Hofmann-Streicher · univalence for (strict) sets Simplicial model · full univalence Voevodsky Coquand + comorters · non-constructive Cubical models · models spaces/ · full univalence often does not model spaces/op-groupoids Inverse diagram models Shulman · computational -BCH model - connection - based models Model for injective fibrations · unknown if can model spaces in simplicial presheaves L Cartesian-based models · can model spaces (equivariant model)

HotT and -toposes

We want to "interpret HoTT in so-toposes.

But models of HoTT are not (directly) so-categories!

They are 1-categories with homotopical structure,

Presenting on so-category.

Models of Hott present (and el categories)

(interprets into

Hott

So to interpret HotTinto agive so-topost, first need to find suitable presentation of t.

Shalman found such a presentation for every on-topos!

So far, this is a classical (hon-constructive)

1. What is a model of type theory?

Don't want to bother with modelling named variables."

Abstract over contexts as lists of hypotheses x1:A1..., xn:An by modelling contexts + substitutions as a <u>category</u> ?

 $[Y_n:B_n,...,Y_m:B_m]$ $[X_1:A_1,...,X_n:A_n]$ $\times_1 = \{x_1[Y_1,...,Y_m] \}$ $\times_n = \{x_1[Y_1,...,Y_m] \}$

Every context I has a <u>set of types</u> Ty(I).
We can <u>substitute</u> types: A ∈ Ty(I) ~> A[o] ∈ Ty(A).

Ly Ty is a <u>presheaf</u> over C.

Same for terms Tm, but they additionally depend on a type.

Excursion: Presheaves and discrete fibrations

Def Presheaves over eategory & are functors & op Set. Traditional definition Notation: &= Presheaf (e) Grothendieck construction* Version S: [eop Set] fully faithful > {category over e} FIND SF Category & We regard & as "displayed"

Over &:

E(A) set for A = P. (SF) o(A) = F(A) · E1(X,X,f) set for $(2t)^{1}(x^{1})^{1}(t) = [t(t)(\lambda) = x]$ XEE (A) YEE0 (B) fee (A,B) That way, we can strictly reinder The essential image of 5 the discrete tilorations.

2-49X) & HEE(A,B), YEE(B) We use both interchangably. are the discrete filorations: categories over a base, ABB C XEEdA), HEE(F,X,Y).

Often, discrete fibrations are a better model for presheaves, than en set!

Categories with families

Definition

A category with families consists of: cwf

· Category &

· Terminal object 1 EC

· Tyee

· Tm & STy

· Context extension:

for ree and A e Ty(r), a representation of: (CVM) Set

AST HO TM (A, ALO])

in the category of tuples (Δ, σ, +) where: -Dee

-0-51

-teTm (A, Alo])

T. A content extension I context projection / display map for A

9AETIM (T.A, ASPAJ) generic term Last variable

For algebraic notion of model:

· context extension is structure,

Strictly preserved by mor phisms of models · obtain category of models

Syntax 11 = def unitial object

Context extension is seally a property
of the presheaf Tm!

Alternative definition (cuf)

Notation for adjunctions:

left adjoint

Reserve LD

Fight adjoint

to indicated projections

Exercise: Show that this means the same

as the first definition.

Type formers

Dependent sams

For Tee, Acty(T), Bety (T.A), have Z(A, B) ETy (T) with a bijection

Tm(T, E(A, B)) { a ∈ Tm(T, A), Tm(T, B[(id, a)])}

natural in T.

Dependent products

For TEE, AETY(T), BETY (T.A), hove Tr(A, B) eTy(T) with a bijection

Tm(T, TT(A,B)) Tm(T,A,B),

hatural in T.

Exercise: identity types

Adjoint perspective on E/T
$\Gamma. \Sigma(A,B) \simeq \Gamma.A.B$ $\Gamma. \Sigma(A,B) \longrightarrow \Delta$ $\Gamma.A.B \longrightarrow \Delta.A[\sigma]$ $\Gamma.A.B \longrightarrow \Delta.A[\sigma]$ $\Gamma.A.B \longrightarrow \Delta.A[\sigma]$ $\Gamma.A.B \longrightarrow \Delta.A[\sigma]$
A> T.TIA, B) A. A[o]> T.A. B Natural T.A
after switching to "display map" Presentation. Caveat: Σ_A/T_A only defined
On types / display maps! Tim (T, A) = { It A Section } Lifting perspective on Id
T.A. A. Ida C CETY (T.A. A. Ida) Motive T.A. A. Ida C CETY (T.A. A. Ida) Motive Motive CETERATION WITHESS

Universe

UETY(T), ELETY(T.U) natural in t

Equivalently: UETY(1), ElETY (1.41)

AETm(Tiu) -> Elkidr, A)] decodes elements of U into types.

Tyue & Timue STyu $Ty_{\alpha}(\Gamma) = T_{m}(\Gamma, \alpha)$ $T_{m_{\alpha}}(A) = T_{m}(\Gamma, E[Kid_{\Gamma}, A)])$

defines cwf structure on Einduced by U.

U closed under type formers means:

(1) induced out structure has type formers, Tyu

(2) map of cut structures preserves type formers. Thu > Ty

Can abstractly define cumulative hierarhy Using merphisms of out structures.

Axioms (Fun Ext + univalence)

Witnessed by a term of the type for the axiom (not wally in the context).

Examples.

- Set as cwf: $Ty(\Gamma) = \Gamma \rightarrow Set$ $Tw(\Gamma(A) = (x:F) \rightarrow A(x)$
- Groupoids as cuf: $T_{\gamma}(r) = r \rightarrow 6pd$ $T_{m}(r_{1}A) = \begin{cases} 75A \\ 75A \end{cases}$

· Cube category
$$\square$$
:
 $T_Y(X) = 1$
 $T_{m}(X, x) = \square(X, I)$
for interval I generating \square

- For a cut e, the sore CFIb has
- maps 1. A --> 1. B - Tyfil (A) = Ty (1. A)
 - · For a cuf e and TEE, the slice ELT inherits a cuf structure.

Split fibration model.
There is also the (clover) fibration model:
Pseudofunctors T - Gpd.

2. Presheaf models

Goal: For category E, make presheaves & into a model of extensional type theory equality reflection

Extra ordinarily useful:

- · Can use ETT as internal language for presheaves.

 · Can use presheaves to express naturality natural models of type formers.

 HOAS
- · Bootstrapping basis for all known semantic models of Hott.

Let ree. In displayed form

Ty(T) = {discrete fibration overst}

Acty(t) written A or T.A

Tm(t,A) = { Section of A}

Context extension give by taking the "total space" dependent sum of presheaves.

Simplification

Build a cut on categories with discrete fibrations as types. The præheat model over C is the slice model over C. E Given by composition of discrete fibrations.

1d+ equality reflection Given by Levelwise equality.

For IT and U, we revisit the Grothendisch construction:

[POP Set] { Category over e3

TT-types are easy in graphs.

Presheaves over [0] => [1] Compute ti-types in & by moving to graphs over C, adjoint to go back to presheaves.

Universe in categories over C: just Set! Exset Transport it to Eusing the right adjoint

Exercises: work out the details.

HOAS Higher order abstract syntax For cut e, can describe type formers using the internal language of ê. EHTy type A:Ty + Tm(A) type 1 T-types Given A: Ty, B: Tm(A) -> Ty, have T(A,B):Ty and $T_{in}(T(A,B)) \sim TT T_{in}(B(a))$.

Don't have to mention context ranymore!

Simplicial sets
Combinatorial model for spaces/or-groupoids* other things
Adeg.
Built by gluing basic geometric shapes called simplices; A[n] in dimension n:
(point) (line) (triangle) (tetrahedron)
Category of simplices
= "inhabited finite total orders" · injections give faces
L'Enje roset in 205 sar jections give degeneracies
€0 < 1 < ··· < n-1 < n }
Simplicial sels are presheaves over 1 Definition SSet = 1 - P 1 SCORE
SSet = A = Presheaf (1) - Notations

Homotopical Structure on s Set Important simplicial sets:

· The boundary dA[n] ∈ A[n] misses the "inside". - n=0: Ø ∈ {0}

- n=1: {0,1} = { }

-n=2: 2 c

The horn $\Lambda_{\kappa}[n] \in \Lambda[n]$ misses the "inside" and κ -th face. |n| = 1: $\{0\} \subseteq \{0\}, \{1\}, \{1\} \subseteq \{0\}, \{1\}\}$

 $-N=2: \{0, \frac{1}{2}, \{0, \frac{1}{2}\}, \{0, \frac{1}{2}\} \subseteq \{0, \frac{1}{2}\}$

Definition

A mop Y+X in sSet is:

· A trivial fibration if it lifts against boundary inclusions

· A (Kan) fibration if it lifts against horn inclusions

Excursion: Weak factorization systems
Definition (L,R)
A weak factorization system on a category & consists of wfs
Classes of maps L and R such that:
(1) every map factors using Land R;
eL ER
(2) R=LA: Ris the class of maps right lifting against L, (3) L=R: Lis the class of maps right lifting against L,
(3) L=R: Lis the class of mops left lifting against L,
Ai Litting against R.
GL JAR LAR
- and R are closed under many operations:
· retracts
· Pust 1/C
· Composition · Pushout (for L), pullback (for R) [EL] = 1 · Coproducts (for L), products (for R)
· coproducts (for L), products (for R)
Note If I is replaced by I! (unique lift), One speaks of L cond R being orthogonal (LIR) and a factorization system. E.g. (n-connected, n-truncated) in Hott
One speaks of Land R being orthogonal (LIR)
and a factorization system.
Generalizations:
· Algebraic wfs (Grandis-Tholen, Gorner) Small of: 1
account (Suan)
There are several general theorems constructing & a wts (L, R) generated by some set/category I of maps.
WHS (L, K) generated by some set/category I of maps.
K = L'''

ŧ	Excursion: Secret sauce of homotopy the	
	Pushout/pullback constructions!	Your homotopy through
	Given a functor F: E × D -> E, the pushout or pull back construction of F is a functor F: E × D -> E.	does not want you to know about this!
	By example: The pushout red I can to A	C
	The pushout product $f \hat{x} g$ of f and $A \times C \longrightarrow A \times D$	D g
	EXC EXD	
	$BxC \xrightarrow{Bxq} BxD$	
	· The pullback exponential exp(f, u) o	Y A
	YB yf YA	X WIII It:
	uB JuA	
	$X \xrightarrow{B} X \xrightarrow{A}$	
	The magic properties (= 10)	Fl Special case
	The magic: properties of Flift to Monoidal (dosed) structure on Elifts to (co) continuit in and	F Of Day convolution
	WIND A POOL OF THE PERSON OF T	
	in each argument. F preserves pushout/pullback in each argument.	dlback)
	If F(X,-) -1 G(X,-) \(\forall X\), then \(\beta(\frac{1}{19}) \tau h \(\frac{1}{19}\)	VI FII VILLIAI
	onout construction	Pullback construction

Homotopical structure on sSet (cont.)
Boundary inclusions generate was (C, TF).
Cofibrations Trivial fibrations Itiv
Horn inclusions generate who (TC, F). towial cofibrations Ainfibrations & These of III
towial cofibrations thing ibrations
TOTIM THE TOTIM THE
and udge 7642
Ethorn inclusions and { 1 } 203 } & Eboundary inclusions generate the same wfs. Also endpoint inclusions
endpoint inclusions
So can done to Cil 1:
So can describe fibrations without using horns!
IP fileration
♦ { £i} → Δ[1] x { board. incl.} d p
= 260mmd incl 2 1 1 1 1 1 2
Ebound. incl. 3 th exp (Ei3 - AGJ, p) for i=0,1 Dexp (Ei3 / / P) trivial fibration Pagarage we only tely Secause we only tely
YAM Because we all -1
On an interval,
Because we only tely On an interval, this approach to fibrations makes sense also in other settings: groupoids
makes sense also in other settings:
* the artesian cubind I cabical sets*
* the artesion cubical model "cubical sets* Uses expir(IX, IP)

slet as a model of HotT

The presheaf category Set = A supports a model of "extensional" MLTT as covered in a previous part.

We refine it by adding a component to the types (contexts, substitutions, terms, context extensions do not change):

Ty(r) = { [A P | P(Kan) fibration)} In displayed form,

to interpret substitution Strictly functorially

Two interpretations:

- Proof irrelevant: just a property of p.

· Voevodsky's original model

Total space (non-displayed) - Proof relevant: a lifting operation.

· Better when working constructively

Dependent sums Given by closure of fibrations under composition:

Γ.Σ(A, B) ~ Γ.A. B

Unit types Same, but using nullary composition.

* Like identity types, but: Path types* · B-rale holds only up to path · Strictly fundarial ap Given AcTy(T), have Pathy(-,-) ety(T. (x,y:A)) given by: of range with with $\Gamma.A.A \simeq \Gamma \times (r.A)^2 \longrightarrow \Gamma.A.A \simeq \Gamma \times (r.A)^2 \longrightarrow \Gamma$ is a strong deformation retract. Identity types Using classical logic every mono is a cofibration. fec, fSDR = fetc+ = Trivia Since r mono: TA ETC. Given TETY (T.A. A. Pathy) with de Im (T.A, TET): This is avoided for T.A.A. Pathy Poth-types when Knorting proof-relevantly. Caveat: This is not substitution-stable! Solution: Construct Jonce in universal context To Needs closure of Read along Fullback Then Pathy functions as Idy. F*(TC) STC

Ano	ther approach: Swan
D	effine by from Pothy using (C,TF)-factorization:
	SDR To A. A. Pathy rely T. A. A. Vy
	Refly eTC (constructively)
	More is needed:
	(as in cubical approaches),
	· restricting to afibrant fragment could hop.
	Dependent products Given $A \in T_Y(\Gamma)$, $B \in T_Y(\Gamma, A)$, interpret $T(A, B) \in T_Y(\Gamma)$ as in "extensional" model. To show: $\Gamma.T(A, R) = \Gamma$.
	To show: T.T(A,B) -> T is fibration. T.A.B T.T(A,B) L=2
	T. A
	Pallback along T.A - Preserves trivial cofibrations. This holds for TA a CI I a
	This holds for I.A cofibrant. One approach: I cofibration TC = Cn Estrong homotopy equivalences? L.A.
	TC = C n & strong homotopy equivalences} To A co-fibration Separately dalle and leading to the separately dalle and the s
	separately stable under pullback along T.A.

Digression: Classicality of all objects are collibrant
XESSet is cofibrant iff we can "build up" X from the empty object by successively filling
sets of boundaries with "insides".
Representative strategy:
1. Fill in all the points Xo:
Z. Fill in all the lines X:
3. Fill in all the triangles Xz:
Try to spot the problem!
The problem
When we add the points to, we automatically add degeneracies of points in higher dimensions:
"Coral I'll so Points in higher dimensions:
The state of the s
So when filling in the lines, we must restrict ourselves to the non-degenerate lines (X).
Similarly for triangles and higher.
This reasons as I I wind higher.
This requires us to decide degeneracy in all dimensions:
(Xn) deg + (Xn)nd > Xn. This is the meaning of "X co-librant".

Fai	nction extensionality
5	simplest version to verify:
(*)	rave Tr(A,B) contractible. Exercise:
	Lemma X = Ty(T) contractible = TX trivial fibration
	Proof: Exercise!
	By adjointness, (*) & Pullback along T.A > r preserves cottlorations
	Holds for T.A cofibrant.

Uni

Universe

Our notion of type is local:

Ty(r) = { Coherent family AxeTy (ALD) for ALD >13

Reason: fibrations defined via lifting against maps with representable target (horn inclusions).

Thus, any universe V in the "extensional" model induces a corresponding universe U classfying fibrations.

Given a cofibration $\Delta > \Gamma$ and $A_{f} \in Tm(\Gamma, U)$, $B_{0} \in Tm(\Delta, U)$, $h \in Tm(B_{0} = A_{1}[G])$, there is $A_{0} \in Tm(\Gamma, U)$, $g \in Tm(\Gamma, A_{0} = A_{1})$

restricting to Ro, hono. A.R. Ju.El

Remaining:

(1) UETY (1), i.e. U fibrant

(2) Univalence

We show a version of (2) and use it to deduce (7)!

Univalence
In Hott (exercise): U univalent (Tis Contr(& A=B)
Assuming (1), this tollows from:
(Z') [B:4, A:4, e: A=B] [B:4] [B:4] [B:4] [B:4] [B:4]
For (2'), need lift
DA[n] → [B:U,A:U, e:A=B]
Aluj=
)[B: 4].
Lemma (Faminala a contension) for the hopeop istamin
Both-quiv As h-equiv And h-equiv
A Require
Can find Ao as indicated. Ao > T classified by V if A, > T and B, > + are.
Product of R - R dependent
All assertions have elementary (but not so short) proofs. I

	tibrancy of U
	Assaming that every object is colibrant (classical),
	we have a map E(A) E(B)
	UAEI D= U.EL
	H 112 W
	$A \rightarrow B U$
	To show U fibrant, we have to show:
0	CTE
	UAGI) OTF.
	We only show the second claim:
	A - Cody AFT.
	$\Delta \rightarrow \frac{1}{2} (an.$
	F = J Can.
	• \/\!
	Using a trick ("filling from composition"), this follows (off
	this follows (after quantifying over all such problems)
	V Dattial (14.
	UDEN JESS
	¥
	TI VEB
	and the resulting map [A,B:U, A=R]; (21) hill CI
	and the resulting map [A.R. (1 1-P7: (a))
	and the resulting map [A,B:U, A=B] is (2'), a trivial fibration.