DATA SCIENCE FESTIVAL > 1

10 Data Science Uberhacks to Turbocharge your Workflow!!

Codenode, London 20/05/2023

Tom Ewing
Head of AI & Data Engineering
Station10

tom-s10

@TomEwingS10

Firstly... sorry about the Clickbaity title.

Things this presentation was nearly called...

Big Tech HATES these 10 Data Science Hacks!

Things this presentation was nearly called...

10 Reasons why your Data Science Workflow SUCKS!

Things this presentation was nearly called...

Multi-zillionaire tech-ninja open sources the 10 secrets that made him his **FORTUNE!**

About Me.

Tom Ewing
Head of AI & Data Engineering
Station10

- + 20 years experience in Data
- + 8 years experience in Data Science, Data Engineering & Machine Learning Engineering
- + Hands-on practitioner
- + I love "hacks"
- + Contributor to DSF since 2016

What Station 10 do.

Digital Analytics

Strategy & Insight

Revealing patterns and insights to better support data-driven decision making.

AI & Data Engineering

Creating and embedding AI & data services and analysis to drive change, efficiency and value.

What this presentation is.

- Gave a talk last year on Dask...
- A lot of people there didn't know about PySpark's game-changing pandas-style
 API!

What this presentation is.

- + This got me thinking... What else might people not know about?
- + Tech moves quickly!
- + There's things I like and use, but I can't fill 30 mins talking about one of them... So, maybe talk about all of them?!

The rules.

I've come up with 10 "things" that:

- + Can make specific jobs or tasks around AI easier
- + You might not have heard of, or not be using
- + Are easy to pick up and integrate.
- Are (mostly) Python-based.
- Can showcased in 2 minutes or less.

What this presentation is NOT.

- + A "deep dive" into anything.
- + About "hacking" outcomes or circumventing established AI processes.
- + Anything to do with Chat-GPT.

Introducing the Uberhacks!

2. D-Tale Eyeball data easily.

3. Ydata-profiling EDA as a Service.

4. thefuzz Fuzzy string matching.

5. UK Open Data So. Much. Data.

6. Yellowbrick Easy Al Visualisation.

7. Shap Al explainability.

8. FairlearnNon-discriminatory AI.

9. Metaflow Easy Pipelines.

10. Make CLI maker-easier.

1. Github Awesomeness
Awesome curated content.

1. Github Awesomeness Intro.

Because Google is always trying to sell you stuff.

- + Community curated content around a subject area (e.g. Machine Learning, Python, Data Engineering etc.) on Github.
- + Contain a list of links to packages, repos, sites, research papers... resources!
- + Wide ranging
- + Example: <u>awesome-production-machine-learning</u>

1. Github Awesomeness pros & cons.

The Good...

- A great starting point for research
- Open Source centric
- ✓ Tend to be exhaustive (if updated)
- Quicker than Googling
- Opportunity to find more Uberhacks!

- Some topics are repeated across different lists.
- Some lists aren't updated regularly, so be sure to check.

2. D-Tale Eyeball data easily.

2. D-Tale Intro.

Excel but way better.

- + Python package that generates an interactive dashboard to explore your data from your Notebook.
- + Has a range of exploration, visualisation and analysis options, tailored for ML use cases.
- + Viewed in the browser or a notebook.

Example: <u>Live D-Tale demo</u> (House Prices)

2. D-Tale example.

Installation (CLI)

conda install dtale

Execution (Python)

```
import dtale

d = dtale.show(df)
d.open_browser()
```


2. D-Tale pros & cons.

The Good...

- Blazing fast as it loads what it needs dynamically
- ✓ View the whole dataframe not just the .head()
- ✓ Great breadth of functionality
- ✓ Does charting & dashboarding
- ✓ Very easy to use

- Doesn't work well in the cloud.
- Non-Python syntax for filtering which takes some getting used to.
- Crashes sometimes, particularly on larger datasets.
- Lots of dependencies

3. Ydata-profiling EDA as a Service.

3. Ydata-profiling Intro.

EDA done for you

- The package formerly known as pandas-profiling
- + D-Tale = low level, Ydata-profiling = high level.
- + Shows data on duplicates, missing vlaues, aggregations, correlations, statistics etc.

Example: <u>Live Ydata-profiling example (Titanic)</u>

3. Ydata-Profiling example.

Installation (CLI)

conda install ydata-profiling

Execution (Python)

```
From ydata_profiling import ProfileReport
profile = ProfileReport(df)
profile.to_file("my_report.html")
```


3. Ydata-profiling pros & cons.

The Good...

- ✓ Also, two lines of code!
- Saves time plotting and correlating
- Simple & explorable with a sharable output
- Has modes for dataset comparison and time series too.
- ✓ Makes it look like you've done more work than you actually have

- Slow particularly on larger datasets (but can now run on Spark)
- Limited scope

4. thefuzz Fuzzy string matching.

4. thefuzz Intro.

Easy fuzzy joins in Pandas (or anything)

- + Python package that measures and matches similarity between two string elements.
- Wide range of matching options including comparison, partial and token (sentence) matching
- Can be used to join two dataframes with similar but non-identical keys

4. thefuzz examples.

Installation (CLI)

conda install thefuzz

Execution (Python)

```
from thefuzz import fuzz
from thefuzz import process

>>> fuzz.ratio("this is a test", "this is a test!")
97

>>> fuzz.partial_ratio("this is a test", "this is a test!")
100

>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100

>>> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
>>> process.extract("new york jets", choices, limit=2)
[('New York Jets', 100), ('New York Giants', 78)]
```


4. thefuzz pros & cons.

The Good...

- ✓ Simple & effective
- ✓ Quick (considering...)
- Makes "dirty joins" possible with a degree of control
- Versatile and can be used outside of pandas

- Slow if your data is large
- Need to be careful and check the joins

5. UK Open Data So. Much. Data.

5. UK Open Data Intro.

Open data can make your stuff better!

- UK has a wide range of open data particularly from central statistical authorities and government (ONS, Gov.Scot, NIRSA, Gov.uk etc.)
- + A multitude of areas (economic, demographic, housing, deprivation, transport etc.) that can enhance outcomes.
- + 2021 / 2022 Census data is presently "fresh"

5. ONS Open Data pros & cons.

The Good...

- Huge breadth of data
- Deep granularity
- ✓ A range of geographic breakdowns
- ✓ Well supported by the ONS Geoportal

- ONS website isn't user friendly
- Need some geographic knowledge to merge to existing data
- Time consuming to collate and maintain
- Disparate sources across England & Wales, Scotland and Northern Ireland

6. Yellowbrick Easy Al Visualisation.

6. Yellowbrick Intro.

Because C+P matplotlib is so 2017...

- + Python package that visualises AI algorithms.
- + Extends Scikit-Learn
- + Covers regression, classification, clustering and much more.

6. Yellowbrick gallery.

6. Yellowbrick examples.

Installation (CLI)

conda install -c districtdatalabs yellowbrick

Execution (Python)

```
from yellowbrick.classifier import ClassificationReport
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
visualizer = ClassificationReport(model)

visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.show()
```


6. Yellowbrick pros & cons.

The Good...

- Beautiful
- ✓ Wide range of visualisers
- ✓ Simple & works out of the box
- Excellent prototyping tool
- Excellent documentation & examples gallery

- SKL only
- "Wrapper" may cause issues if using in conjunction with other wrappers
- Sometimes you have to train twice
- Visualisers aren't easily customisable

7. Shap Al Explainability.

7. Shap Intro.

Explainability isn't just for stakeholders...

- + Uses game theory to explain the predictions of any model.
- Calculates the contribution of each feature for each record in the overall prediction data.
- + This uncovers complex relationships between the features and the target and uncovers how models are working "under the hood".
- + Reveals where features do well and badly in the data.

7. Shap gallery.

Waterfall Plot

Summary Plot

Force Plot

Red = Positive contribution

Blue = Negative contribution

7. Shap examples.

Installation (CLI)

conda install shap

```
# Initialise the explainer & Calculate Shap values
explainer = shap.Explainer(model, X_train)
shap_values = explainer(X_test)

# Waterfall plot on a single record
shap.plots.waterfall(shap_values[0])

# Summary plot for all records
shap.summary_plot(shap_values, X_test)

# Force plot
shap.force_plot(explainer.expected_value, shap_values, X_test)
```


7. Shap pros & cons.

The Good...

- ✓ Simple to use...
- ✓ Works with most major AI libraries
- ✓ Interactive plotting in your notebook
- Beautiful
- ✓ Excellent for images

- Complex to master!
- Highly mathematical
- Computationally expensive

8. FairlearnNon-discriminatory Al.

8. Fairlearn Intro.

Al Regulation is coming!

- Python package that helps identify and mitigate unfairness in AI models.
- + Has two components:
 - + Metrics for identifying which groups are negatively impacted by a model
 - + Algorithms for mitigating any unfairness

8. Fairlearn examples.

Installation (CLI)

conda install fairlearn

```
# Metric (Gender)

from fairlearn.metrics import MetricFrame
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier

classifier = DecisionTreeClassifier(min_samples_leaf=10, max_depth=4).fit(X, y_true)

y_pred = classifier.predict(X)
mf = MetricFrame(
    metrics=accuracy_score,
    y_true=y_true,
    y_pred=y_pred,
    sensitive_features=sex
)

mf.overall
mf.by_group
```


8. Fairlearn examples.

```
# Algorithm (Gender)
from fairlearn.reductions import (
    ExponentiatedGradient,
    DemographicParity
)

constraint = DemographicParity()
classifier = DecisionTreeClassifier(min_samples_leaf=10, max_depth=4)
mitigator = ExponentiatedGradient(classifier, constraint).fit(X, y_true, sensitive_features=sex)
y_pred_mitigated = mitigator.predict(X)
sr_mitigated = MetricFrame(metrics=selection_rate, y_true=y_true, y_pred=y_pred_mitigated, sensitive_features=sex)
sr_mitigated.overall
sr_mitigated.by_group
```


8. Fairlearn pros & cons.

The Good...

- ✓ Integrates with major AI packages (SKL, PyTorch etc.)
- ✓ Wide range of fairness metrics & algorithms
- ✓ Great documentation
- ✓ Integrated into Azure
- ✓ It's ethical and the right thing to do

- Another "Wrapper"
- Highly mathematical
- Computationally expensive
- Algorithms need data on gender, ethnicity, religion, immigration etc.
- Be prepared to take a hit on model performance

9. Metaflow Easy Pipelines.

9. Metaflow Intro.

Because everyone loves pipelines!

- + Netflix produced "Data Science Project Manager"
- + Versatile and easy orchestration tool:
 - + In-project pipelines
 - + End-to-end data workflows
 - + Environment managment

9. Metaflow examples.

⊘ METAFLOW

The DAG (Directed Acyclic Graph):

9. Metaflow examples.

Installation (CLI)

conda install metaflow

```
from metaflow import FlowSpec, step
class MyFlow(FlowSpec):
@step
def start(self):
self.data = load_your_data()
self.next(self.step_a, self.step_b)
@step
def fitA(self):
self.model= model_a()
self.next(self.eval)
@step
def fitB(self):
self.model=model_b()
self.next(self.eval)
@step
def eval(self, inputs):
self.best = pick_best(inputs)
self_next(self_end)
@step
def end(self):
logger.success("All done!")
```


9. Metaflow pros & cons.

The Good...

- ✓ Simple, versatile & scalable
- ✓ Easy parallelisation of workflows
- ✓ Extensible "microframework"
- ✓ GUI option

- Verbose
- Limited Cloud support for non-AWS

10. Make CLI maker-easier.

10. Make Intro.

CLI maker-easier

- Automates the process of building programs through managing dependencies (Think data pipelines but for programs!)
- It also enables creation of repeatable CLI jobs (what I use it for)
- Specify complex tasks in the Makefile and run these with make <command>

10. Make examples.

Make installation

Mac: Included in Xcode

Windows: Via chocolate package manager

Linux: Included already!

Makefile example

```
CONDA ENVIRONMENT NAME = my env
PYTHON_VERSION = 3.8
ACTIVATE = source $$(conda info --base)/etc/profile.d/conda.sh ; conda activate ; conda activate
DEACTIVATE = source $$(conda info --base)/etc/profile.d/conda.sh ; conda deactivate ; conda deactivate
.PHONY: create-environment
create-environment: ## Create the conda environment & jupyter kernel
conda create --name $(CONDA_ENVIRONMENT_NAME) --channel conda-forge --yes python=$(PYTHON_VERSION)
$(ACTIVATE) $(CONDA ENVIRONMENT NAME) && \
    conda config --add channels conda-forge && \
    conda config --set channel priority strict && \
    conda install --yes --file requirements-conda.txt && \
    conda update pip && \
    pip install -r requirements-pip.txt && \
    conda env export --name $(CONDA_ENVIRONMENT_NAME) -no-builds > environment.yaml && \
    ipython kernel install --user --name $(CONDA ENVIRONMENT NAME) && \
    nbstripout --install --attributes .gitattributes
    $(DEACTIVATE)
.PHONY: remove-environment
remove-environment: ## Remove the environment and any relevant files
    conda env remove --name $(CONDA_ENVIRONMENT_NAME)
.PHONY: run
run: ## Run the application
    $(ACTIVATE) $(CONDA ENVIRONMENT NAME) && \
    python -m main --env=.env
    $(DEACTIVATE)
```


10. Make pros & cons.

The Good...

- ✓ Simplifies complex CLI jobs
- Pre-installed on most VMs
- Easy model serving via REST API
- ✓ Made in 1976... Stood the test of time

- Verbose & complex syntax
- Unforgiving (e.g. requires tabs not spaces)
- Difficult to install on windows machines

11. Bonus Round!

The honourable mentions:

- + <u>polars</u>: High Performance Computing (HPC) in Python
- + dask: Like Spark but on your machine
- + <u>splink</u>: Data linking at scale
- + <u>ydata-synthetic</u>: Synthetic data generator
- + <u>python-dp</u>: Python data privacy
- + scikit-plot: Al explanation & visualisation
- lime: Quicker explainable Al
- + **pyLDAvis**: Interactive topic model visualisation
- mlflow: Al tracking & serving
- + <u>nbstripout</u>: Remove Jupyter output cells from git
- <u>loguru</u>: Easy, colourful logging
- + <u>Excalidraw</u>: Online collaborative whiteboarding
- + <u>Github copilot (\$)</u>: Predictive coding Al
- + <u>DuckDB</u>: SQLite for analytics
- + Streamlit: R Shiny! In Python
- + **SparseSC**: Synthetic A/B testing

12. Bonus Round #2.

The not-so honourable mentions from Reddit:

- + Domain knowledge
- + Communication skills
- + Sense of humour
- + Economics
- + Psychometrics
- + My data engineer
- + Pandas
- + Excel
- + Powerpoint
- + The side scroller on my mouse

Those 10 Uberhacks again.

1. Github Awesomeness

https://github.com

2. D-Tale

https://github.com/man-group/dtale

3. Ydata-profiling

https://github.com/ ydataai/ydataprofiling

4. Thefuzz

https://github.com/ seatgeek/thefuzz

5. UK Open Data

https://www.ons.gov.uk/ https://opendata.scot/ https://www.nisra.gov.uk/

6. Yellowbrick

https://github.com/District DataLabs/yellowbrick

7. Shap

https://github.com/slundberg/shap

8. Fairlearn

https://github.com/fairlearn/fairlearn

9. Metaflow

https://metaflow.org

10. Make

https://www.gnu.org /software/make

Thanks!

Slides, links, posts & mo' shizzle on my socials from Monday!

Station'lO

www.station10.co.uk

Station¹O

www.station10.co.uk