STOR 320 Web Scraping

Lecture 16

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

Intermission

- Final 3 Data Frames From Last Tutorial Should All Be Saved to CSV's on PC
 - FINAL VIOLENT.CSV
 - FINAL ZIP.CSV
 - FINAL_STATE_ABBREV.CSV
- Think About What Other City Information Could Potentially Be a Factor in Violent Crimes
- Think About What Other City Information Could Potentially Be Influenced by the Prevalence of Violent Crimes

Tutorial 8 Introduction

- Step 1: Open Tutorial 8
- Step 2: Ensure You Have the Following R Packages Installed
 - tidyverse
 - rvest
- Step 3: Switch Knitter
- Step 4: Read the Introduction

Part 1: Connection to Population Change and Density

Step 1: Select the Link and Observe the Following Table

2019 rank \$	City \$	State ^[c]	2019 estimate \$	2010 Census \$	Change \$	2016 land area \$		2016 population density \$		Location \$
1	New York ^[d]	New York	8,336,817	8,175,133	+1.98%	301.5 sq mi	780.9 km ²	28,317/sq mi	10,933/km ²	Q 40.6635°N 73.9387°W
2	Los Angeles	California	3,979,576	3,792,621	+4.93%	468.7 sq mi	1,213.9 km ²	8,484/sq mi	3,276/km ²	Q 34.0194°N 118.4108°W
3	Chicago	Illinois	2,693,976	2,695,598	-0.06%	227.3 sq mi	588.7 km ²	11,900/sq mi	4,600/km ²	🔑 41.8376°N 87.6818°W
4	Houston ^[3]	Texas	2,320,268	2,100,263	+10.48%	637.5 sq mi	1,651.1 km ²	3,613/sq mi	1,395/km ²	Q 29.7866°N 95.3909°W
5	Phoenix	Arizona	1,680,992	1,445,632	+16.28%	517.6 sq mi	1,340.6 km ²	3,120/sq mi	1,200/km ²	@ 33.5722°N 112.0901°W
6	Philadelphia ^[e]	Pennsylvania	1,584,064	1,526,006	+3.80%	134.2 sq mi	347.6 km ²	11,683/sq mi	4,511/km ²	40.0094°N 75.1333°W
7	San Antonio	Texas	1,547,253	1,327,407	+16.56%	461.0 sq mi	1,194.0 km ²	3,238/sq mi	1,250/km ²	Q 29.4724°N 98.5251°W
8	San Diego	California	1,423,851	1,307,402	+8.91%	325.2 sq mi	842.3 km ²	4,325/sq mi	1,670/km ²	@ 32.8153°N 117.1350°W
9	Dallas	Texas	1,343,573	1,197,816	+12.17%	340.9 sq mi	882.9 km ²	3,866/sq mi	1,493/km ²	Q 32.7933°N 96.7665°W

- Step 2: Questions?
 - What is the Connection to Violent Crimes?
 - How is this Useful When Related to Violent Crimes?

Part 1: Connection to Population Change and Density

- Step 3: Run Chunk 1
 - What is required to convert the Pop_2019 to a numeric variable?
 - What is required to convert the Land to a numeric variable?
 - What is required to convert the Density to a numeric variable?
- Step 4: Run Chunk 2
 - Notice: ",|km2",",|/km2"

Part 1: Connection to Population Change and Density

- Step 5: Run Chunk 3
 - How to create a variable representing population change from 2016 to 2019?
 - How to create a variable representing population density in 2019?
 - How to clean the city name column?

- Step 1: Selector Gadget Website
 - Open Source
 - Chrome Extension Exists
 - Easy: Drag Link to Bookmark Bar as Webpage Explains

- Step 2: Observe the Article on 2018's Safest and Most Dangerous States
 - What info could be of use?
 - Do you agree identification?

- Step 3: Information of Interest
 - Safe vs Dangerous
 - 1. Vermont
 - 2. Maine
 - 3. Minnesota
 - 4. Utah
 - 5. New Hampshire
 - 6. Connecticut
 - 7. Rhode Island
 - 8. Hawaii
 - 9. Massachusetts
 - Washington

- 1. Mississippi
- 2. Louisiana
- 3. Oklahoma
- 4. Texas
- 5. Florida
- 6. Arkansas
- 7. Alabama
- 8. Missouri
- 9. Alaska
- 10. South Carolina
- Goal: Scrape this Information into Vectors in R to Create a Table

- Step 4: Identifying CSS Selector
 - Go to Web Page

 https://www.securitysales.com/fire-intrusion/2018-safest-most-dangerous-states-us/

 Choose SelectorGadget in Bookmark Tab

Locate This Box

- Step 4: Continued
 - Find Content You Want

- Point and Click to Select Info
- Info We Want is Highlighted
- Info We Don't Want, As Well

- Step 4: Continued
 - Find Content You Don't Want

- Point and Click to Deselect
- Locate This Box

- Step 4: Continued
 - Locate This Box

- Copy CSS Selector: "#articleContentWrapper li"
- Step 5: Run Chunk 1

```
SAFE_VS_DANGEROUS = URL.SAFE_VS_DANGEROUS %>%
read_html() %>%
html_nodes(css="#articleContentWrapper li") %>%
html_text()
```

- Step 6: Run Chunk 2
 - What About the Other States?
- Step 7: Walk-off Knit