रैखिक प्रोग्रामन Linear Programming

❖ The mathematical experience of the student is incomplete if he never had the opportunity to solve a problem invented by himself. — G POLYA ❖

12.1 भूमिका (Introduction)

पिछली कक्षाओं में हम रैखिक समीकरणों और दिन प्रति दिन की समस्याओं में उनके अनुप्रयोग पर विचार-विमर्श कर चुके हैं। कक्षा XI में हमने दो चर राशियों वाले रैखिक असिमकाओं और रैखिक असिमकाओं के निकायों के आलेखीय निरूपण से हल निकालने के विषय में अध्ययन कर चुके हैं। गिणत में कई अनुप्रयोगों में असिमकाओं/समीकरणों के निकाय सिम्मिलत हैं। इस अध्याय में हम रैखिक असिमकाओं/समीकरणों के निकायों का नीचे दी गई कुछ वास्तविक जीवन की समस्याओं को हल करने में उपयोग करेंगे।

एक फर्नीचर व्यापारी दो वस्तुओं जैसे मेज़ और कुर्सियों का व्यवसाय करता है। निवेश के लिए उसके पास Rs 50,000 और रखने के लिए केवल 60 वस्तुओं के लिए स्थान है। एक मेज़ पर Rs 2500 और एक कुर्सी पर Rs 500 की लागत आती है। वह

L. Kantorovich

अनुमान लगाता है कि एक मेज़ को बेचकर वह Rs 250 और एक कुर्सी को बेचने से Rs 75 का लाभ कमा सकता है। मान लीजिए कि वह सभी वस्तुओं को बेच सकता है जिनको कि वह खरीदता है तब वह जानना चाहता है कि कितनी मेजों एवं कुर्सियों को खरीदना चाहिए ताकि उपलब्ध निवेश राशि पर उसका सकल लाभ अधिकतम हो।

इस प्रकार की समस्याओं जिनमें सामान्य प्रकार की समस्याओं में लाभ का अधिकतमीकरण और लागत का न्यूनतमीकरण खोजने का प्रयास किया जाता है, इष्टतमकारी समस्याएँ कहलाती हैं। अत: इष्टतमकारी समस्या में अधिकतम लाभ, न्यूनतम लागत या संसाधनों का न्यूनतम उपयोग सम्मिलत है।

रैखिक प्रोग्रामन समस्याएँ एक विशेष लेकिन एक महत्त्वपूर्ण प्रकार की इष्टतमकारी समस्या है और उपरोक्त उल्लिखित इष्टतमकारी समस्या भी एक रैखिक प्रोग्रामन समस्या है। उद्योग, वाणिज्य, प्रबंधन विज्ञान आदि में विस्तृत सुसंगतता के कारण रैखिक प्रोग्रामन समस्याएँ अत्यधिक महत्त्व की हैं।

इस अध्याय में, हम कुछ रैखिक प्रोग्रामन समस्याएँ और उनका आलेखी विधि द्वारा हल निकालने का अध्ययन करेंगे। यद्यपि इस प्रकार समस्याओं का हल निकालने के लिए अन्य विधियाँ भी हैं।

12.2 रैखिक प्रोग्रामन समस्या और उसका गणितीय सूत्रीकरण (Linear Programming Problem and its Mathematical Formulation)

हम अपना विचार विमर्श उपरोक्त उदाहरण के साथ प्रारंभ करते हैं जो कि दो चर राशियों वाली समस्या के गणितीय सूत्रीकरण अथवा गणितीय प्रतिरूप का मार्गदर्शन करेगा। इस उदाहरण में हमने ध्यानपूर्वक देखा कि

- (i) व्यापारी अपनी धन राशि को मेज़ों या कुर्सियों या दोनों के संयोजनों में निवेश कर सकता है। इसके अतिरिक्त वह निवेश के विभिन्न योजनात्मक विधियों से विभिन्न लाभ कमा सकेगा।
- (ii) कुछ अधिक महत्त्वपूर्ण स्थितियाँ या व्यवरोधों का भी समावेश है जैसे उसका निवेश अधिकतम Rs 50,000 तक सीमित है तथा उसके पास अधिकतम 60 वस्तुओं को रखने के लिए स्थान उपलब्ध है।

मान लीजिए कि वह कोई कुर्सी नहीं खरीदता केवल मेज़ों के खरीदने का निश्चय करता है, इसिलए वह $50,000 \div 2500$, या 20 मेज़ों को खरीद सकता है। इस स्थिति में उसका सकल लाभ $Rs~(250 \times 20)$ या Rs~5000 होगा।

मान लीजिए कि वह कोई मेज न खरीदकर केवल कुर्सियाँ ही खरीदने का चयन करता है। तब वह अपनी उपलब्ध Rs 50,000 की राशि में $50,000 \div 500$, अर्थात् 100 कुर्सियाँ ही खरीद सकता है। परंतु वह केवल 60 नगों को ही रख सकता है। अतः वह 60 कुर्सियाँ मात्र खरीदने के लिए बाध्य होगा। जिससे उसे सकल लाभ Rs 60×75 अर्थात् Rs 4500 ही होगा।

ऐसी और भी बहुत सारी संभावनाएँ हैं। उदाहरण के लिए वह 10 मेज़ों और 50 कुर्सियाँ खरीदने का चयन कर सकता है, क्योंकि उसके पास 60 वस्तुओं को रखने का स्थान उपलब्ध है। इस स्थिति में उसका सकल लाभ Rs ($10 \times 250 + 50 \times 75$), अर्थात् Rs **6250** इत्यादि।

अत: हम ज्ञात करते हैं कि फर्नीचर व्यापारी विभिन्न चयन विधियों के द्वारा अपनी धन राशि का निवेश कर सकता है और विभिन्न निवेश योजनाओं को अपनाकर विभिन्न लाभ कमा सकेगा।

अब समस्या यह है कि उसे अपनी धन राशि को अधिकतम लाभ प्राप्त करने के लिए किस प्रकार निवेश करना चाहिए? इस प्रश्न का उत्तर देने के लिए हमें समस्या का गणितीय सूत्रीकरण करने का प्रयास करना चाहिए।

12.2.1 समस्या का गणितीय सूत्रीकरण (Mathematical Formulation of the Problem) मान लीजिए कि मेजों की संख्या x और कुर्सियों की संख्या y है जिन्हें फर्नीचर व्यापारी खरीदता है। स्पष्टत: x और y ऋणेतर हैं, अर्थात्

$$x \ge 0$$
 (ऋणेतर व्यवरोध) ...(1) $y \ge 0$...(2)

क्योंकि मेज़ों और कुर्सियों की संख्या ऋणात्मक नहीं हो सकती है।

व्यापारी (व्यवसायी) पर अधिकतम धन राशि (यहाँ यह Rs 50,000 है) का निवेश करने का व्यवरोध है और व्यवसायी के पास केवल अधिकतम वस्तुओं (यहाँ यह 60 है) को रखने के लिए स्थान का भी व्यवरोध है।

गणितीय रूप में व्यक्त करने पर

$$2500x + 500y \le 50{,}000$$
 (निवेश व्यवरोध) या $5x + y \le 100$... (3) और $x + y \le 60$ (संग्रहण व्यवरोध) ... (4)

व्यवसायी इस प्रकार से निवेश करना चाहता है उसका लाभ Z (माना) अधिकतम हो और जिसे x और y के फलन के रूप में निम्नलिखित प्रकार से व्यक्त किया जा सकता है:

Z = 250x + 75y (उद्देशीय फलन कहलाता है)

प्रदत्त समस्या का अब गणितीय रूप में परिवर्तित हो जाती है:

Z = 250x + 75y का अधिकतमीकरण कीजिए

जहाँ व्यवरोध निम्नलिखित है

$$5x + y \le 100$$
$$x + y \le 60$$
$$x \ge 0, y \ge 0$$

इसलिए हमें रैखिक फलन Z का अधिकतमीकरण करना है जबिक ऋणेतर चरों वाली रैखिक असिमकाओं के रूप कुछ विशेष स्थितियों के व्यवरोध व्यक्त किए गए हैं। कुछ अन्य समस्याएँ भी हैं जिनमें रैखिक फलन का न्यूनतमीकरण किया जाता है जबिक ऋणेतर चर वाली रैखिक असिमकाओं के रूप में कुछ विशेष स्थितियों के व्यवरोध व्यक्त किए जाते है। ऐसी समस्याओं को रैखिक प्रोग्रामन समस्या कहते हैं।

अत: एक रैखिक प्रोग्रामन समस्या वह समस्या है जो कि x और y जैसे कुछ अनेक चरों के एक रैखिक फलन Z (जो कि उद्देश्य फलन कहलाता है) का इष्टतम सुसंगत/अनुकूलतम सुसंगत मान (अधिकतम या न्यूनतम मान) ज्ञात करने से संबंधित है। प्रतिबंध यह है कि चर ऋणेतर पूर्णांक हैं और ये रैखिक असिमकाओं के समुच्चय रैखिक व्यवरोधों को संतुष्ट करते हैं। रैखिक पद से तात्पर्य है कि समस्या में सभी गणितीय संबंध रैखिक हैं जबिक प्रोग्रामन से तात्पर्य है कि विशेष प्रोग्राम या विशेष क्रिया योजना ज्ञात करना।

आगे बढ़ने से पूर्व हम अब कुछ पदों (जिनका प्रयोग ऊपर हो चुका है) को औपचारिक रूप से परिभाषित करेंगे जिनका कि प्रयोग हम रैखिक प्रोग्राम समस्याओं में करेंगे:

उद्देश्य फलन रैखिक फलन Z = ax + by, जबिक a, b अचर है जिनका अधिकतमीकरण या न्यूनतमीकरण होना है एक रैखिक उद्देश्य फलन कहलाता है।

उपरोक्त उदाहरण में Z = 250x + 75y एक रैखिक उद्देश्य फलन है। चर x और y निर्णायक चर कहलाते हैं।

व्यवरोध एक रैखिक प्रोग्रामन समस्या के चरों पर रैखिक असिमकाओं या समीकरण या प्रतिबंध व्यवरोध कहलाते हैं। प्रतिबंध x≥0, y≥0 ऋणेतर व्यवरोध कहलाते हैं। उपरोक्त उदाहरण में (1) से (4) तक असिमकाओं का समुच्चय व्यवरोध कहलाते हैं।

इष्टतम सुसंगत समस्याएँ निश्चित व्यवरोधों के अधीन असिमकाओं के समुच्चय द्वारा निर्धारित समस्या जो चरों (यथा दो चर x और y) में रैखिक फलन को अधिकतम या न्यूनतम करे, इष्टतम सुसंगत समस्या कहलाती है। रैखिक प्रोग्रामन समस्याएँ एक विशिष्ट प्रकार की इष्टतम सुसंगत समस्या है। सुसंगत समस्या व्यापारी द्वारा मेजों तथा कुर्सियों की खरीद में प्रयुक्त एक इष्टतम सुसंगत समस्या तथा रैखिक प्रोग्रामन की समस्या का एक उदाहरण है।

अब हम विवेचना करेंगे कि एक रैखिक प्रोग्रामन समस्या को किस प्रकार हल किया जाता है। इस अध्याय में हम केवल आलेखीय विधि से ही संबंधित रहेंगे।

12.2.2 रैखिक प्रोग्रामन समस्याओं को हल करने की आलेखीय विधि (Graphical Method of Solving Linear Programming Problems)

कक्षा XI, में हम सीख चुके है कि किस प्रकार दो चरों x और y से संबंधित रैखिक असमीकरण निकायों का आरेख खींचते हैं तथा आरेखीय विधि द्वारा हल ज्ञात करते हैं। अब हमें अनुच्छेद 12.2 में विवेचन की हुई मेजों और कुर्सियों में निवेश की समस्या का उल्लेख करेंगे। अब हम इस समस्या को आरेख द्वारा हल करेंगे। अब हमें रैखिक असमीकरणों के रूप प्रदत्त व्यवरोधों का आरेख खींचें:

$$5x + y \le 100$$
 ... (1)
 $x + y \le 60$... (2)
 $x \ge 0$... (3)
 $y \ge 0$... (4)

इस निकाय का आरेख (छायांकित क्षेत्र) में असमीकरणों (1) से (4) तक के द्वारा नियत सभी अर्धतलों के उभयनिष्ठ बिंदुओं से निर्मित हैं। इस क्षेत्र में प्रत्येक बिंदु व्यापारी (व्यवसायी) को मेज़ों और कुर्सियों में निवेश करने के लिए सुसंगत विकल्प प्रस्तुत करता है। इसलिए यह क्षेत्र समस्या का सुसंगत क्षेत्र कहलाता है (आकृति 12.1)। इस क्षेत्र का प्रत्येक बिंदु समस्या का सुसंगत हल कहलाता है।

अत: हम निम्न को परिभाषित करते हैं:

सुसंगत क्षेत्र प्रदत्त समस्या के लिए एक रैखिक प्रोग्रामन समस्या के ऋणेतर व्यवरोध x, y≥0 सहित सभी व्यवरोधों द्वारा नियत उभयनिष्ठ क्षेत्र सुसंगत क्षेत्र (या हल क्षेत्र) कहलाता है आकृति 12.1 में क्षेत्र OABC (छायांकित) समस्या के लिए सुसंगत क्षेत्र है। सुसंगत क्षेत्र के अतिरिक्त जो क्षेत्र है उसे असुसंगत क्षेत्र कहते हैं।

सुसंगत हल समूह सुसंगत क्षेत्र के अंत: भाग तथा सीमा के सभी बिंदु व्यवरोधों के सुसंगत हल कहलाते हैं। आकृति 12.1 में सुसंगत क्षेत्र OABC के अंत: भाग तथा सीमा के सभी बिंदु समस्या के सुसंगत हल प्रदर्शित कहते हैं। उदाहरण के लिए बिंदु (10, 50) समस्या का एक सुसंगत हल है और इसी प्रकार बिंदु (0, 60), (20, 0) इत्यादि भी हल हैं।

सुसंगत हल के बाहर का कोई भी बिंदु असुसंगत हल कहलाता हैं उदाहरण के लिए बिंदु (25, 40) समस्या का असुसंगत हल है।

इष्टतम/अनुकूलतम (सुसंगत) हल: सुसंगत क्षेत्र में कोई बिंदु जो उद्देश्य फलन का इष्टतम मान (अधिकतम या न्युनतम) दे, एक इष्टतम हल कहलाता है।

अब हम देखते हैं कि सुसंगत क्षेत्र OABC में प्रत्येक बिंदु (1) से (4) तक में प्रदत्त सभी व्यवरोधों को संतुष्ट करता है और ऐसे अनंत बिंदु हैं। यह स्पष्ट नहीं है कि हम उद्देश्य फलन Z=250x+75y के अधिकतम मान वाले बिंदु को किस प्रकार ज्ञात करने का प्रयास करें। इस स्थिति को हल करने के लिए हम निम्न प्रमेयों का उपयोग करेंगे जो कि रैखिक प्रोग्रामन समस्याओं को हल करने में मूल सिद्धांत (आधारभूत) है। इन प्रमेयों की उपपित इस पुस्तक के विषय–वस्तु से बाहर है।

प्रमेय 1 माना कि एक रैखिक प्रोग्रामन समस्या के लिए R सुसंगत क्षेत्र* (उत्तल बहुभुज) है और माना कि Z=ax+by उद्देश्य फलन है। जब Z का एक इष्टतम मान (अधिकतम या न्यूनतम) हो जहाँ व्यवरोधों से संबंधित चर x और y रैखिक असमीकरणों द्वारा व्यक्त हो तब यह इष्टतम मान सुसंगत क्षेत्र के कोने (शीर्ष) पर अवस्थित होने चाहिए।

प्रमेय 2 माना कि एक रैखिक प्रोग्रामन समस्या के लिए R सुसंगत क्षेत्र है तथा Z = ax + by उद्देश्य फलन है। यदि R परिबद्ध क्षेत्र हो तब उद्देश्य फलन Z, R में दोनों अधिकतम और न्यूनतम मान रखता है और इनमें से प्रत्येक R के कोनीय (corner) बिंदु (शीर्ष) पर स्थित होता है।

टिप्पणी यदि R अपरिबद्ध है तब उद्देश्य फलन का अधिकतम या न्यूनतम मान का अस्तित्व नहीं भी हो सकता है। फिर भी यदि यह विद्यमान है तो R के कोनीय बिंदु पर होना चाहिए, (प्रमेय 1 के अनुसार)

उपरोक्त उदाहरण में परिबद्ध (सुसंगत) क्षेत्र के कोनीय बिंदु O, A, B और C हैं और बिंदुओं के निर्देशांक ज्ञात करना सरल है यथा (0,0),(20,0),(10,50) और (0,60) क्रमशः कोनीय बिंदु हैं। अब हमें इन बिंदुओं पर, Z का मान ज्ञात करना है।

वह इस प्रकार है:

सुसंगत क्षेत्र के शीर्ष	Z के संगत मान	
O (0,0)	0	
A (0,60)	4500	
B (10,50)	6250 ←	
C (20,0)	5000	

अधिकतम

हम निरीक्षण करते हैं कि व्यवसायी को निवेश योजना (10, 50) अर्थात् 10 मेजों और 50 कुर्सियों के खरीदने में अधिकतम लाभ होगा।

इस विधि में निम्न पदों का समाविष्ट हैं:

- 1. रैखिक प्रोग्रामन समस्या का सुसंगत क्षेत्र ज्ञात कीजिए और उसके कोनीय बिंदुओं (शीर्ष) को या तो निरीक्षण से अथवा दो रेखाओं के प्रतिच्छेद बिंदु को दो रेखाओं की समीकरणों को हल करके उस बिंदु को ज्ञात कीजिए।
- 2. उद्देश्य फलन Z = ax + by का मान प्रत्येक कोनीय बिंदु पर ज्ञात कीजिए। माना कि M और m, क्रमश: इन बिंदुओं पर अधिकतम तथा न्यूनतम मान प्रदर्शित करते हैं।
- 3. (i) जब सुसंगत क्षेत्र परिबद्ध है, M और m, Z के अधिकतम और न्यूनतम मान हैं।
 - (ii) ऐसी स्थिति में जब सुसंगत क्षेत्र अपरिबद्ध हो तो हम निम्नलिखित विधि का उपयोग करते हैं।
- 4. (a) M को Z का अधिकतम मान लेते हैं यदि ax + by > M द्वारा प्राप्त अर्ध-तल का कोई बिंदु सुसंगत क्षेत्र में न पड़े अन्यथा Z कोई अधिकतम मान नहीं है।
 - (b) इसी प्रकार, m, को Z का न्यूनतम मान लेते हैं यदि ax + by < m द्वारा प्राप्त खुले अर्धतल और सुसंगत क्षेत्र में कोई बिंदु उभयनिष्ठ नहीं है। अन्यथा Z का कोई न्यूनतम मान नहीं है।

हम अब कुछ उदाहरणों के द्वारा कोनीय विधि के पदों को स्पष्ट करेंगे:

उदाहरण 1 आलेख द्वारा निम्न रैखिक प्रोग्रामन समस्या को हल कीजिए:

निम्न व्यवरोधों के अंतर्गत

$$x + y \le 50 \qquad \dots (1)$$

^{*} सुसंगत क्षेत्र का कोनीय बिंदु क्षेत्र का ही कोई बिंदु होता है जो दो रेखाओं का प्रतिच्छेदन बिंदु है।
** एक रैखिक समीकरण निकाय का सुसंगत क्षेत्र परिबद्ध कहा जाता है यदि यह एक वृत के अंतर्गत परिबद्ध किया जा सकता है अन्यथा इसे अपरिबद्ध कहते हैं। अपरिबद्ध से तात्पर्य है कि सुसंगत क्षेत्र किसी भी दिशा में असीमित रूप से बढाया जा सकता है।

$$3x + y \le 90 \qquad \dots (2)$$

$$x \ge 0, y \ge 0$$
 ... (3)

Z = 4x + y का अधिकतम मान ज्ञात कीजिए:

हल आकृति 12.2 में छायांकित क्षेत्र (1) से (3) के व्यवरोधों के निकाय के द्वारा निर्धारित सुसंगत क्षेत्र है। हम निरीक्षण करते है कि सुसंगत क्षेत्र OABC परिबद्ध है। इसलिए हम Z का अधिकतम मान ज्ञात करने के लिए कोनीय बिंदु विधि का उपयोग करेंगे।

कोनीय बिंदुओं O,A,B और C के निर्देशांक क्रमश: (0,0),(30,0),(20,30) और (0,50) हैं। अब प्रत्येक कोनीय बिंदु पर Z का मान ज्ञात करते हैं। अत: बिंदु (30,0) पर Z का अधिकतम मान 120 है।

उदाहरण 2 आलेखीय विधि द्वारा निम्न रैखिक प्रोग्रामन समस्या को हल कीजिए।

निम्न व्यवरोधों के अंतर्गत

$$x + 2y \ge 10 \qquad \dots (1)$$

$$3x + 4y \le 24$$
 ... (2)

$$x \ge 0, y \ge 0 \qquad \qquad \dots (3)$$

Z = 200 x + 500 y का न्यूनतम मान ज्ञात कीजिए

हल्न आकृति 12.3 में छायांकित क्षेत्र, (1) से (3) के व्यवरोधों के निकाय द्वारा निर्धारित सुसंगत क्षेत्र ABC है जो परिबद्ध है। कोनीय बिंदुओं A, B और C के निर्देशांक क्रमश: (0,5), (4,3) और (0,6) हैं। हम इन बिंदुओं पर Z = 200x + 500y का मान ज्ञात करते हैं

अत: बिंदु (4, 3) पर Z का न्यूनतम मान Rs 2300 प्राप्त होता है। उदाहरण 3 आलेखीय विधि से निम्न समस्या को हल कीजिए:

निम्न व्यवरोधों के अंतर्गत

$$x + 3y \le 60$$
 ... (1)

$$x + y \ge 10 \qquad \dots (2)$$

$$x \le y$$
 ... (3)

$$x \ge 0, y \ge 0 \qquad \qquad \dots (4)$$

Z = 3x + 9y का न्यूनतम और अधिकतम मान ज्ञात कीजिए।

हल सबसे पहले हम (1) से (4) तक की रैखिक असिमकाओं के निकाय के सुसंगत क्षेत्र का आलेख खींचते हैं। सुसंगत क्षेत्र ABCD को आकृति 12.4 में दिखाया गया है। क्षेत्र परिबद्ध है। कोनीय

आकृति 12.4

बिंदुओं A, B, C और D के निर्देशांक क्रमश: (0, 10), (5, 5), (15, 15) और (0, 20) हैं। अब हम Z के न्यूनतम और अधिकतम मान ज्ञात करने के लिए कोनीय बिंदु विधि का उपयोग करते हैं। सारणी से हम सुसंगत क्षेत्र बिंदु B(5, 5) पर Z का न्यूनतम मान 60 प्राप्त करते हैं।

Z का अधिकतम मान सुसंगत क्षेत्र के दो कोनीय बिंदुओं प्रत्येक C(15,15) और D(0,20) पर 120 प्राप्त होता है।

टिप्पणी निरीक्षण कीजिए कि उपरोक्त उदाहरण में, समस्या कोनीय बिंदुओं C और D, पर समान इष्टतम हल रखती है, अर्थात् दोनों बिंदु वही अधिकतम मान 180 उत्पन्न करते हैं। ऐसी स्थितियों में दो कोनीय बिंदुओं को मिलाने वाले रेखाखंड CD पर प्रत्येक बिंदु तथा C और D भी एक ही अधिकतम मान देते हैं। वही उस स्थिति में भी सत्य है यदि दो बिंदु वही न्यूनतम मान उत्पन्न करते हैं।

उदाहरण 4 आलेखीय विधि द्वारा उद्देश्य फलन Z = -50x + 20y का न्यूनतम मान निम्नलिखित व्यवरोधों के अंतर्गत ज्ञात कीजिए:

$$2x - y \ge -5 \qquad \dots (1)$$

$$3x + y \ge 3 \qquad \dots (2)$$

$$2x - 3y \le 12 \qquad ... (3)$$

$$x \ge 0, y \ge 0 \qquad \qquad \dots (4)$$

हल सबसे पहले हम (1) से (4) तक के असमीकरण निकाय द्वारा सुसंगत क्षेत्र का आलेख खींचते है। आकृति 12.5 में सुसंगत क्षेत्र (छायांकित) दिखाया गया है। निरीक्षण कीजिए कि सुसंगत क्षेत्र अपरिबद्ध है।

अब हम कोनीय बिंदुओं पर Z का मान भी ज्ञात करेंगे:

कोनीय बिंदु	Z = -50x + 20y
(0,5)	100
(0,3)	60
(1,0)	-50
(6,0)	-300 ←

सबसे कम

अर्थात्

इस सारणी से हम ज्ञात करते हैं कि कोनीय बिंदु (6,0) पर Z का सबसे कम मान -300 है। क्या हम कह सकते हैं कि Z का न्यूनतम मान -300 है? ध्यान दीजिए कि यदि क्षेत्र परिबद्ध होता तो यह Z का सबसे कम मान (प्रमेय 2 से) होता। लेकिन हम यहाँ देखते हैं कि सुसंगत क्षेत्र अपरिबद्ध है। इसिलए -300, Z का न्यूनतम मान हो भी सकता है और नहीं भी। इस समस्या का निष्कर्ष ज्ञात करने के लिए हम निम्नलिखित असमीकरण का आलेख खींचते हैं:

$$-50x + 20y < -300$$

$$-5x + 2y < -30$$

और जाँच कीजिए कि आलेख द्वारा प्राप्त खुले अर्धतल व सुसंगत क्षेत्र में उभयनिष्ठ बिंदु हैं या नहीं है। यदि इसमें उभयनिष्ठ बिंदु हैं, तब Z का न्यूनतम मान -300 नहीं होगा। अन्यथा, Z का न्यूनतम मान -300 होगा।

जैसा कि आकृति 12.5 में दिखाया गया है। इसलिए, Z = -50 x + 20 y, का प्रदत्त व्यवरोधों के परिप्रेक्ष्य में न्यूनतम मान नहीं है।

उपरोक्त उदाहरण मे क्या आप जाँच कर सकते हैं कि Z=-50~x+20~y, (0,5) पर अधिकतम मान 100 रखता है? इसके लिए, जाँच कीजिए कि क्या -50~x+20~y>100 का आरेख सुसंगत क्षेत्र के साथ उभयनिष्ठ बिंदू रखता है।

उदाहरण 5 निम्नलिखित व्यवरोधों के अंतर्गत, Z = 3x + 2y का न्यूनतमीकरण कीजिए:

$$x + y \ge 8 \qquad \dots (1)$$

$$3x + 5y \le 15$$
 ... (2)

$$x \ge 0, y \ge 0 \qquad \dots (3)$$

हल असिमकाओं (1) से (3) का आलेख खींचिए (आकृति 12.6)। क्या कोई सुसंगत क्षेत्र है? यह ऐसा क्यों है?

आकृति 12.6 से आप ज्ञात कर सकते है कि ऐसा कोई बिंदु नहीं है जो सभी व्यवरोधों को एक साथ संतुष्ट कर सके। अत:, समस्या का सुसंगत हल नहीं है।

टिप्पणी उदाहरणों से जिनका विवेचन हम अब 5 तक कर चुके हैं जिसके आधार पर हम कुछ $3x + 5y = 15 \frac{4}{5}$ रैखिक प्रोग्रामन समस्याओं की सामान्य विशेषताओं (0.3) का उल्लेख करते हैं।

- (1) सुसंगत क्षेत्र सदैव उत्तल बहुभुज होता है।
- (2) उद्देश्य फलन का अधिकतम (या न्युनतम) हल सुसंगत क्षेत्र के शीर्ष पर

आकृति 12.6

(कोने पर) स्थित होता है। यदि उद्देश्य फलन के दो कोनीय बिंदु (शीर्ष) एक ही अधिकतम (या न्यूनतम) मान प्रदान करते हैं तो इन बिंदुओं के मिलाने वाली रेखाखंड का प्रत्येक बिंदु भी समान अधिकतम (या न्यूनतम) मान देगा।

प्रश्नावली 12.1

ग्राफीय विधि से निम्न रैखिक प्रोग्रामन समस्याओं को हल कीजिए:

- **1.** निम्न अवरोधों के अंतर्गत Z = 3x + 4y का अधिकतमीकरण कीजिए: $x + y \le 4, x \ge 0, y \ge 0$
- 2. निम्न अवरोधों के अंतर्गत Z = -3x + 4y का न्यूनतमीकरण कीजिए: $x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0$, $y \ge 0$
- **3.** निम्न अवरोधों के अंतर्गत Z = 5x + 3y का अधिकतमीकरण कीजिए: $3x + 5y \le 15, 5x + 2y \le 10, x \ge 0, y \ge 0$
- **4.** निम्न अवरोधों के अंतर्गत Z = 3x + 5y का न्यूनतमीकरण कीजिए; $x + 3y \ge 3, x + y \ge 2, x, y \ge 0$
- **5.** निम्न अवरोधों के अंतर्गत Z = 3x + 2y का न्यूनतमीकरण कीजिए: $x + 2y \le 10$, $3x + y \le 15$, $x, y \ge 0$
- **6.** निम्न अवरोधों के अंतर्गत Z = x + 2y का न्यूनतमीकरण कीजिए: $2x + y \ge 3, x + 2y \ge 6, x, y \ge 0$

दिखाइए कि Z का न्यूनतम मान दो बिंदुओं से अधिक बिंदुओं पर घटित होता है।

- 7. निम्न अवरोधों के अंतर्गत Z = 5x + 10 y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए: $x + 2y \le 120, x + y \ge 60, x 2y \ge 0, x, y \ge 0$
- **8.** निम्न अवरोधों के अंतर्गत Z=x+2y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए: $x+2y\geq 100,\ 2x-y\leq 0,\ 2x+y\leq 200;\ x,y\geq 0$
- 9. निम्न अवरोधों के अंतर्गत Z = -x + 2y का अधिकतमीकरण कीजिए: $x \ge 3, x + y \ge 5, x + 2y \ge 6, y \ge 0$
- **10.** निम्न अवरोधों के अंतर्गत Z = x + y का अधिकतमीकरण कीजिए: $x y \le -1, -x + y \le 0, \ x, y \ge 0$

12.3 रैखिक प्रोग्रामन समस्याओं के भिन्न प्रकार (Different Types of Linear Programming Problems)

कुछ महत्त्वपूर्ण रैखिक प्रोग्रामन समस्याएँ नीचे सूचीबद्ध हैं:

1. उत्पादन संबंधी समस्याएँ इस प्रकार की समस्याओं में हम ज्ञात करते हैं कि विभिन्न उत्पादनों के कितने नग बनाने में एक निश्चित जनशक्ति, मशीन के घंटे, प्रत्येक नग के निर्माण में व्यय, श्रम के घंटे, माल भंडारण गोदाम में प्रत्येक उत्पादन को रखने के लिए स्थान आदि को दृष्टि में रखते हुए अधिकतम लाभ कमाया जा सके।

- 2. आहार संबंधी समस्याएँ इस प्रकार की समस्याओं में हम ज्ञात करते हैं कि विभिन्न प्रकार के घटक/पोषक तत्व आहार में कितनी मात्रा में प्रयोग किए जाएँ जिससे उसमें सभी पोषक तत्वों की न्यूनतम आवश्यक मात्रा कम से कम लागत पर प्राप्त हो।
- 3. परिवहन संबंधी समस्याएँ इस प्रकार की समस्याओं में हम परिवहन प्रणाली को तय करते हैं जिससे संयंत्रों / कारखाने से विभिन्न स्थानों पर स्थित विभिन्न बाजारों में उत्पादनों को भेजने में परिवहन व्यय न्युनतम हो।

अब हमें इस प्रकार की कुछ रैखिक प्रोग्रामन समस्याओं को हल करना चाहिए

उदाहरण 6 (आहार संबंधी समस्या): एक आहार विज्ञानी दो प्रकार के भोज्यों को इस प्रकार मिलाना चाहता है कि मिश्रण में विटामिन A का घटक कम से कम 8 मात्रक और विटामिन C का घटक कम से कम 10 मात्रक हो। भोज्य I में 2 मात्रक विटामिन A प्रति kg और 1 मात्रक विटामिन C प्रति kg है। जबिक भोज्य II में 1 मात्रक विटामिन A प्रति kg और 2 मात्रक विटामिन C प्रति kg है। दिया है कि प्रति kg भोज्य I को खरीदने में Rs 50 और प्रति kg भोज्य II को खरीदने में Rs 70 लगते हैं। इस प्रकार के भोज्य मिश्रण का न्यूनतम मूल्य ज्ञात कीजिए।

हल माना कि मिश्रण में भोज्य I का $x \log$ और भोज्य II का $y \log$ है। स्पष्टत: $x \ge 0$ $y \ge 0$. हम प्रदत्त आँकड़ों से निम्न सारणी बनाते हैं।

स्रोत	भोज्य पदार्थ		आवश्यकता
	I	II	(मात्रकों में)
	(x)	(y)	
विटामिन A	2	1	8
(मात्रक/kg)			
विटामिन C	1	2	10
(मात्रक/kg)			
लागत(Rs/kg)	50	70	

चूँिक मिश्रण में विटामिन A की कम से कम 8 मात्रक और विटामिन C के 10 मात्रक होने चाहिए, अत: निम्नलिखित व्यवरोध प्राप्त होते हैं

$$2x + y \ge 8$$

$$x + 2y \ge 10$$

भोज्य I के x kg और भोज्य II के y kg खरीदने का कुल मूल्य Z है जहाँ

$$Z = 50x + 70y$$

अतः समस्या का गणितीय सूत्रीकरण निम्नलिखित हैः

निम्न व्यवरोधों के अंतर्गत

$$2x + y \ge 8 \qquad \dots (1)$$

$$x + 2y \ge 10 \qquad \dots (2)$$

$$x, y \ge 0 \qquad \dots (3)$$

Z = 50x + 70y का न्यूनतमीकरण कीजिए

असमीकरणों (1) से (3) तक के आलेखों द्वारा निर्धारित सुसंगत क्षेत्र को आकृति 12.7 में दिखाया

आकृति 12.7

यहाँ हम देखते हैं कि सुसंगत क्षेत्र अपरिबद्ध है।

हमें कोनीय बिंदुओं A(0,8), B(2,4) और C(10,0) पर Z का मान ज्ञात करना है।

सारणी में, बिंदु (2, 4) पर Z का सबसे कम मान 380 है, क्या हम कह सकते हैं कि Z का न्यूनतम मान 380 है (क्यों?) याद कीजिए कि सुसंगत क्षेत्र अपरिबद्ध है। इसलिए हमें निम्नलिखित असमीकरण का आलेख खींचना पडेगा।

$$50x + 70y < 380$$

अर्थात्
$$5x + 7y < 38$$

जाँच करने के लिए कि क्या असमीकरण द्वारा निर्धारित परिणामी खुला अर्धतल, सुसंगत क्षेत्र के साथ कोई उभयनिष्ठ बिंदु रखता है। आकृति 12.7 में हम देखते हैं कि यहाँ कोई उभयनिष्ठ बिंदु नहीं है।

अत:, बिंदु (2,4) पर Z का प्राप्त न्यूनतम मान 380 है। इसलिए आहार विज्ञानी की इष्टतम मिश्रण योजना भोज्य 'I' की 2 kg और भोज्य 'II' के 4 kg के मिश्रण बनाने की हो सकती है और इस योजना के अंतर्गत मिश्रण का न्यूनतम मूल्य Rs 380 होगा।

उदाहरण 7 (आबंटन समस्या) किसानों की एक सहकारी समिति के पास दो फ़सलों X और Y को उगाने के लिए 50 हेक्टेयर भूमि है। फसलों X और Y से प्रति हेक्टेयर लाभ का क्रमश: Rs 10,500

और $Rs\,9,000$ का अनुमान लगाया गया है। फसलों X और Y के लिए अपतृण नियंत्रण के लिए शाक-नाशी द्रव का क्रमश: 20 लिटर तथा 10 लिटर प्रति हेक्टेयर प्रयोग किया जाता है। इसके अतिरिक्त प्रयुक्त भूमि से जुड़ी नालियों से संबद्ध तालाब पर निर्भर जीवधारियों एवं मछिलियों की जीवन-सुरक्षा हेतु शाकनाशी की मात्रा 800 लिटर से अधिक न हो। प्रत्येक फ़सल के लिए कितनी भूमि का आबंटन होना चाहिए तािक सिमिति के सकल लाभ का अधिकतमीकरण किया जा सके?

हल माना कि X फसल के लिए x हेक्टेयर भूमि तथा Y फसल के y हेक्टेयर भूमि का आबंटन होता है। स्पष्टत: $x \ge 0, y \ge 0$

X फसल पर प्रति हेक्टेयर लाभ = Rs 10500

Y फसल पर प्रति हेक्टेयर लाभ = Rs 9000

इसलिए कुल लाभ = Rs(10500x + 9000y)

समस्या का गणितीय सूत्रीकरण निम्न है:

निम्न अवरोधों के अंतर्गत

$$x + y \le 50$$
 (भूमि संबंधी व्यवरोध) ... (1)

 $20x + 10y \le 800$ (शाकनाशी का उपयोग संबंधी व्यवरोध)

अर्थात्
$$2x + y \le 80 \qquad \dots (2)$$

$$x \ge 0, y \ge 0 \tag{3}$$

Z = 10500 x + 9000 y का अधिकतमीकरण कीजिए

अब हम (1) से (3) तक असमीकरण निकाय का आलेख खीचते हैं। आकृति 12.8 में सुसंगत क्षेत्र OABC को छायांकित दिखाया गया है। निरीक्षण कीजिए कि सुसंगत क्षेत्र परिबद्ध है।

कोनीय बिंदु	Z = 10500x + 9000y
O(0, 0)	0
A(40,0)	420000
B(30, 20)	495000 ←
C(0,50)	450000

अधिकतम

आकृति 12.8

कोनीय बिंदुओं के निर्देशांक क्रमश: (0,0), (40,0), (30,20) और (0,50) हैं। उद्देश्य फलन Z = 10500 x + 9000 y का मान इन शीर्षों पर निकालना चाहिए ताकि उस शीर्ष को ज्ञात किया जा सके जिस पर अधिकतम लाभ होता है।

अत: सिमिति को X फसल के लिए 30 हेक्टयर और Y फसल के 20 हेक्टयर का आबंटन होगा ताकि अधिकतम लाभ Rs 4,95,000 का हो सके।

उदाहरण 8 उत्पादन संबंधी समस्या (Manufacturing Problem) एक निर्माणकर्ता कंपनी एक उत्पाद के दो नमूने (प्रतिमान) A और B बनाती है। नमूना A के प्रत्येक नग बनाने के लिए 9 श्रम घंटे और 1 घंटा पॉलिश करने के लिए लगता है जबिक नमूना B के प्रत्येक नग के बनाने में 12 श्रम घंटे तथा पॉलिश करने में 3 श्रम घटों की आवश्यकता होती है। बनाने तथा पॉलिश करने के लिए उपलब्ध अधिकतम श्रम घंटे क्रमश: 180 तथा 30 हैं। कंपनी नमूना A के प्रत्येक नग पर Rs 8000 तथा नमूना B के प्रत्येक नग पर Rs12000 का लाभ कमाती है। नमूना A और नमूना B के कितने नगों का अधिकतम लाभ कमाने के लिए प्रति सप्ताह निर्माण करना चाहिए? प्रति सप्ताह अधिकतम लाभ क्या है?

हल मान लीजिए कि नमूना A के नगों की संख्या x है तथा नमूना B के नगों की संख्या y है।

इसलिए कुल लाभ =
$$(Rs 8000 x + 12000 y)$$

अत:

$$Z = 8000 x + 12000 y$$

अब हमारे पास प्रदत्त समस्या का गणितीय सूत्रीकरण निम्नलिखित है:

निम्न व्यवरोधों के अंतर्गत

$$9x + 12y \le 180$$

अर्थात् $3x + 4y \le 60$ (गढ़ने का व्यवरोध) ... (1)

$$x + 3y \le 30$$
 (पॉलिश का व्यवरोध) ... (2)

$$x \ge 0, y \ge 0$$
 (ऋणेतर व्यवरोध) ... (3)

Z = 8000 x + 12000 y का अधिकतमीकरण कीजिए।

रैखिक असमीकरण (1) से (3) द्वारा निर्धारित सुसंगत क्षेत्र OABC (छायांकित) आकृति 12.9 में दिखाया गया है। ध्यान दीजिए कि सुसंगत क्षेत्र परिबद्ध है।

आकृति 12.9

प्रत्येक कोनीय बिंदु पर उद्देश्य फलन Z का मान की गणना की गई है जैसा कि निम्न सारणी में दिखाया गया है:

कोनीय बिंदु	$Z = 8000 \ x + 12000 \ y$
0 (0, 0)	0
A (20, 0)	160000
B (12, 6)	168000 ←
C (0, 10)	120000

अधिकतम

हम शीर्ष B(12,6) पर Z का अधिकतम मान Rs 1,68,000 पाते हैं। अतः कंपनी को नमूना A के 12 नग तथा नमूना B के 6 नगों के उत्पादन पर अधिकतम लाभ कमाने के लिए करना चाहिए और अधिकतम लाभ Rs 1,68,000 होगा।

प्रश्नावली 12.2

- 1. रेशमा दो प्रकार के भोज्य P और Q को इस प्रकार मिलाना चाहती है कि मिश्रण में विटामिन अवयवों में 8 मात्रक विटामिन A तथा 11 मात्रक विटामिन B हों। भोज्य P की लागत Rs 60/kg और भोज्य Q की लागत Rs 80/kg है। भोज्य P में 3 मात्रक/kg विटामिन A और 5 मात्रक/kg विटामिन B है जबिक भोज्य Q में 4 मात्रक/kg विटामिन A और 2 मात्रक/kg विटामिन है। मिश्रण की न्यूनतम लागत ज्ञात कीजिए।
- 2. एक प्रकार के केक को 200 g आटा तथा 25 g वसा (fat)की आवश्यकता होती है तथा दूसरी प्रकार के केक के लिए 100 g आटा तथा 50 g वसा की आवश्यकता होती है। केकों की अधिकतम संख्या बताओ जो 5 किलो आटे तथा 1 किलो वसा से बन सकते हैं, यह मान लिया गया है कि केकों को बनाने के लिए अन्य पदार्थों की कमी नहीं रहेगी।
- 3. एक कारखाने में टेनिस के रैकेट तथा क्रिकेट के बल्ले बनते हैं। एक टेनिस रैकेट बनाने के लिए 1.5 घंटा यांत्रिक समय तथा 3 घंटे शिल्पकार का समय लगता है। एक क्रिकेट बल्ले को तैयार करने में 3 घंटे यांत्रिक समय तथा 1 घंटा शिल्पकार का समय लगता है। एक दिन में कारखाने में विभिन्न यंत्रों पर उपलब्ध यांत्रिक समय के 42 घंटे और शिल्पकार समय के 24 घंटे से अधिक नहीं हैं।
 - (i) रैकेटों और बल्लों को कितनी संख्या में बनाया जाए ताकि कारखाना पूरी क्षमता से कार्य करे?
 - (ii) यदि रैकेट और बल्ले पर लाभ क्रमश: Rs 20 तथा Rs 10 हों तो कारखाने का अधिकतम लाभ ज्ञात कीजिए यदि कारखाना पूरी क्षमता से कार्य करे।
- 4. एक निर्माणकर्ता नट और बोल्ट का निर्माण करता है। एक पैकेट नटों के निर्माण में मशीन A पर एक घंटा और मशीन B पर 3 घंटे काम करना पड़ता है, जबिक एक पैकेट बोल्ट के निर्माण

- में 3 घंटे मशीन A पर और 1 घंटा मशीन B पर काम करना पड़ता है। वह नटों से Rs 17.50 प्रति पैकेट और बोल्टों पर Rs 7.00 प्रति पैकेट लाभ कमाता है। यदि प्रतिदिन मशीनों का अधिकतम उपयोग 12 घंटे किया जाए तो प्रत्येक (नट और बोल्ट) के कितने पैकेट उत्पादित किए जाएँ ताकि अधिकतम लाभ कमाया जा सके।
- 5. एक कारखाने में दो प्रकार के पेंच A और B बनते हैं। प्रत्येक के निर्माण में दो मशीनों के प्रयोग की आवश्यकता होती है, जिसमें एक स्वचालित और दूसरी हस्तचालित है। एक पैकेट पेंच A के निर्माण में 4 मिनट स्वचालित और 6 मिनट हस्तचालित मशीन, तथा एक पैकेट पेंच B के निर्माण में 6 मिनट स्वचालित और 3 मिनट हस्तचालित मशीन का कार्य होता है। प्रत्येक मशीन किसी भी दिन के लिए अधिकतम 4 घंटे काम के लिए उपलब्ध है। निर्माता पेंच A के प्रत्येक पैकेट पर Rs 7 और पेंच B के प्रत्येक पैकेट पर Rs 10 का लाभ कमाता है। यह मानते हुए कि कारखाने में निर्मित सभी पेंचों के पैकेट बिक जाते हैं, ज्ञात कीजिए कि प्रतिदिन कितने पैकेट विभिन्न पेंचों के बनाए जाएँ जिससे लाभ अधिकतम हो तथा अधिकतम लाभ ज्ञात कीजिए।
- 6. एक कुटीर उद्योग निर्माता पैडेस्टल लैंप और लकड़ी के शेड बनाता है। प्रत्येक के निर्माण में एक रगड़ने / काटने और एक स्प्रेयर की आवश्यकता पड़ती है। एक लैंप के निर्माण में 2 घंटे रगड़ने/काटने और 3 घंटे स्प्रेयर की आवश्यकता होती है, जबिक एक शेड के निर्माण में 1 घंटा रगड़ने/काटने और 2 घंटे स्प्रेयर की आवश्यकता होती है। स्प्रेयर की मशीन प्रतिदिन अधिकतम 20 घंटे और रगड़ने/काटने की मशीन प्रतिदिन अधिकतम 12 घंटे के लिए उपलब्ध है। एक लैंप की बिक्री पर Rs 5 और एक शेड की बिक्री पर Rs 3 का लाभ होता है। यह मानते हुए कि सभी निर्मित लैंप और शेड बिक जाते है, तो बताइए वह निर्माण की प्रतिदिन कैसी योजना बनाए कि लाभ अधिकतम हो?
- 7. एक कंपनी प्लाईवुड के अनूठे स्मृित चिह्न का निर्माण करती है। A प्रकार के प्रित स्मृित चिह्न के निर्माण में 5 मिनट काटने और 10 मिनट जोड़ने में लगते हैं। B प्रकार के प्रित स्मृित चिह्न के लिए 8 मिनट काटने और 8 मिनट जोड़ने में लगते हैं। दिया गया है कि काटने के लिए कुल समय 3 घंटे 20 मिनट तथा जोड़ने के लिए 4 घंटे उपलब्ध हैं। प्रत्येक A प्रकार के स्मृित चिह्न पर Rs 5 और प्रत्येक B प्रकार के स्मृित चिह्न पर Rs 6 का लाभ होना है। ज्ञात कीजिए कि लाभ के अधिकतमीकरण के लिए प्रत्येक प्रकार के कितने-कितने स्मृित चिह्नों का कंपनी द्वारा निर्माण होना चाहिए?
- 8. एक सौदागर दो प्रकार के निजी कंप्यूटर-एक डेस्कटॉप नमूना और दूसरा पोर्टेबल नमूना, जिनकी कीमतें क्रमश: Rs 25,000 और Rs 40,000 होगी, बेचने की योजना बनाता है। वह अनुमान

- लगाता है कि कंप्यूटरों की कुल मासिक माँग 250 नगों से अधिक नहीं होगी। प्रत्येक प्रकार के कंप्यूटरों के नगों की संख्या ज्ञात कीजिए जिसे सौदागार अधिकतम लाभ प्राप्त करने के लिए संग्रह करें यदि उसके पास निवेश के लिए Rs 70 लाख से अधिक नहीं है और यदि डेस्कटॉप नमूने पर उसका लाभ Rs 4500 और पोर्टेबल नमूने पर Rs 5000 लाभ हो।
- 9. एक भोज्य पदार्थ में कम से कम 80 मात्रक विटामिन A और 100 मात्रक खनिज होना चाहिए। दो प्रकार के भोज्य F, और F, उपलब्ध हैं। भोज्य F, की लागत Rs 4 प्रति मात्रक और F, की लागत Rs 5 प्रति मात्रक है। भोज्य F_1 की एक इकाई में कम से कम 3 मात्रक विटामिन A और 4 मात्रक खिनज है। F_2 की प्रति इकाई में कम से कम 6 मात्रक विटामिन A और 3मात्रक खनिज हैं। इसको एक रैखिक प्रोग्रामन समस्या के रूप में सूत्रबद्ध कीजिए। उस आहार का न्यूनतम मूल्य ज्ञात कीजिए, जिसमें इन दो भोज्यों का मिश्रण है और उसमें न्यूनतम पोषक तत्व हैं।
- 10. दो प्रकार के उर्वरक F_1 और F_2 है। F_1 में 10% नाइट्रोजन और 6% फास्फोरिक अम्ल है। तथा F, में 5% नाइट्रोजन तथा 10% फास्फोरिक अम्ल है। मिट्टी की स्थितिओं का परीक्षण करने के पश्चात् एक किसान पाता है कि उसे अपनी फसल के लिए 14 kg नाइट्रोजन और 14 kg फास्फोरिक अम्ल की आवश्यकता है। यदि F_1 की कीमत $Rs\ 6/kg$ और F_2 की कीमत Rs 5/kg है, प्रत्येक प्रकार का कितना उर्वरक उपयोग के लिए चाहिए ताकि न्यूनतम मूल्य पर वांछित पोषक तत्व मिल सके। न्युनतम लागत क्या है।
- **11.** निम्नलिखित असमीकरण निकाय: $2x + y \le 10, x + 3y \le 15, x, y \ge 0$ से निर्धारित सुसंगत क्षेत्र के कोनीय बिंदु: (0, 0), (5,0), (3, 4) और (0, 5) है। मानािक Z = px + qy, जहाँ $p,q>0,\;p$ तथा q के लिए निम्नलिखित में कौन प्रतिबंध उचित है तािक Z का अधिकतम (3, 4) और (0, 5) दोनों पर घटित होता है

(A)
$$p = q$$

(B)
$$p = 2q$$

(C)
$$p = 3q$$
 (D) $q = 3p$

(D)
$$q = 3p$$

विविध उदाहरण

उदाहरण 9 (आहार समस्या) एक आहारविद् दो भोज्यों P और Q का उपयोग करते हुए एक विशेष आहार तैयार करता है। भोज्य P का प्रत्येक पैकेट (जिसमें 30 ग्राम अंतर्विष्ट है) में कैल्शियम के 12 मात्रक लौह तत्व के 4 मात्रक, कोलेस्ट्रोल के 6 मात्रक और विटामिन A के 6 मात्रक अंतर्विष्ट हैं जबिक उसी मात्र के भोज्य Q के पैकेट में कैल्शियम तत्व के 3 मात्रक, लौह तत्व के 20 मात्रक, कोलेस्ट्रोल के 4 मात्रक और विटामिन A के 3 मात्रक अंतर्विष्ट है। आहार में कम से कम 240 मात्रक कैल्शियम, लौह तत्व के कम से कम 460 मात्रक, और कोलेस्ट्रोल के अधिक से अधिक 300 मात्रक अपेक्षित हैं। प्रत्येक भोज्य के कितने पैकेटों का उपयोग किया जाए ताकि आहार में विटामिन A की मात्रा का न्यूनतम किया जा सके।

हल माना कि भोज्यों P और Q के पैकेटों की संख्या क्रमश: x और y है। स्पष्टत: $x \ge 0, y \ge 0$. प्रदत्त समस्या का गणितीय सूत्रीकरण निम्न है

निम्न व्यवरोधों के अंतर्गत

$$12x + 3y \ge 240$$
 (कैल्शियम का व्यवरोध) अर्थात् $4x + y \ge 80$... (1)

$$4x + 20y \ge 460$$
 (लौह तत्व का व्यवरोध) अर्थात् $x + 5y \ge 115$... (2)

$$6x + 4y \le 300$$
 (कोलेस्ट्रोल का व्यवरोध) अर्थात् $3x + 2y \le 150$... (3)

$$x \ge 0, y \ge 0$$
 ... (4)

Z = 6x + 3y (विटामिन A) का न्यूनतमीकरण कीजिए।

असमीकरणों (1) से (4) तक का आलेखन व्यवरोधों (1) से (4) तक के अंतर्गत आकृति 12.10 में दर्शाया गया है। उसमें सुनिश्चित सुंसगत क्षेत्र (छायांकित) पर ध्यान दीजिए जो परिबद्ध है।

आकृति 12. 10

कोनीय बिंदुओं L, M और N के निर्देशांक क्रमश: (2,72), (15,20) और (40,15) हैं। इन बिंदुओं पर Z का मान निम्नलिखित सारणी में दिया गया है।

कोनीय बिंदु (शीर्ष)	Z = 6x + 3y
(2, 72)	228
(15, 20)	150 ←
(40, 15)	285

न्यूनतम

सारणी से, हम Z का मान बिंदु (15, 20) पर न्यूनतम पाते हैं। अत: समस्या में प्रदत्त व्यवरोधों के आधीन विटामिन A का मान न्यूनतम तब होगा जबिक भोज्य P के 15 पैकेट और भोज्य Q के 20 पैकेट का उपयोग विशेष आहार के प्रबंध में किया जाय। विटामिन A का न्यूनतम मान 150 मात्र का होगा।

उदाहरण 10 उत्पादन संबंधी समस्या (Manufacturing problem) एक उत्पादन के कारखाने में तीन मशीनें I, II और III लगी हैं। मशीनें I और II अधिकतम 12 घंटे तक चलाए जाने की क्षमता रखती है। जबिक मशीन III प्रतिदिन कम से कम 5 घंटे चलना चाहिए। निर्माणकर्ता केवल दो प्रकार के सामान M और N का उत्पादन करता है, जिनमें प्रत्येक के उत्पादन में तीनों मशीनों की आवश्यकता होती है। M और N के प्रत्येक उत्पाद के एक नग उत्पादन में तीनों मशीनों के संगत लगे समय (घंटों में) निम्न लिखित सारणी में दिए हैं।

उत्पाद	मशीन पर लगा समय (घंटों में)			
	Ι	II	III	
M	1	2	1	
N	2	1	1.25	

वह उत्पाद M पर Rs 600 प्रति नग और उत्पाद N पर Rs 400 प्रति नग की दर से लाभ कमाती है। मानते हुए कि उसके सभी उत्पाद बिक जाते हैं, जिनका उत्पादन किया गया है, तब ज्ञात कीजिए कि प्रत्येक उत्पाद के कितने नगों का उत्पादन किया जाए, जिससे लाभ का अधिकतमीकरण हो? अधिकतम लाभ क्या होगा?

हल माना कि उत्पाद M और N के नगों की संख्या क्रमश: x और y है। उत्पादन पर कुल लाभ = Rs $(600\ x+400\ y)$

प्रदत्त समस्या का गणितीय सूत्रबद्ध रूप निम्नलिखित है:

Z = 600 x + 400 y का अधिकतमीकरण कीजिए

जहाँ व्यवरोध निम्नलिखित हैं।

$$x + 2y \le 12$$
 (मशीन । पर व्यवरोध) ... (1)

$$2x + y \le 12$$
 (मशीन II पर व्यवरोध) ... (2)

$$x + \frac{5}{4} y \ge 5$$
 (मशीन III पर व्यवरोध) ... (3)

$$x \ge 0, \ y \ge 0 \qquad \qquad \dots (4)$$

हम व्यवरोधों (1) से (4) का आलेखन करते हैं। आकृति 12.11 में दिखाया गया सुसंगत क्षेत्र ABCDE (छायांकित) है जिसको व्यवरोधों (1) से (4) तक द्वारा निर्धारित किया गया है। अवलोकन कीजिए कि सुसंगत क्षेत्र परिबद्ध है, कोनीय बिंदुओं A, B, C, D और Eके निर्देशांक क्रमशः (5,0)(6,0),(4,4),(0,6) और (0,4) हैं।

इन कोनीय बिंदुओं (शीर्षों) पर Z = 600 x + 400 y का मान निम्नलिखित सारणी में दिया गया है।

कोनीय बिंदु	Z = 600 x + 400 y का मान
(5, 0)	3000
(6, 0)	3600
(4, 4)	4000 ←
(0, 6)	2400
(0, 4)	1600

अधिकतम

हम देखते हैं कि बिंदु (4, 4) Z का अधिकतम मान है। अत: उत्पादक को अधिकतम Rs 4000 लाभ कमाने के लिए प्रत्येक उत्पाद के 4 नगों का उत्पादन करना चाहिए।

उदाहरण 11 परिवहन संबंधी समस्या (Transportation Problem) P और Q दो स्थानों पर दो कारखाने स्थापित हैं। इन स्थानों से सामान A, B और C पर स्थित तीन डिपो में भेजे जाते हैं। इन डिपो की साप्ताहिक आवश्यकता क्रमश: 5, 5 और 4 सामान की नग हैं, जब कि P और Q की स्थापित कारखानों की उत्पादन क्षमता 8 और 6 नग हैं।

प्रति नग परिवहन व्यय निम्न सारणीबद्ध है:

से/को	मूल्य (Rs में)		
	A	C	
P	160	100	150
Q	100	120	100

प्रत्येक कारखाने से कितने नग सामान प्रत्येक डिपो को भेजा जाए जिससे परिवहन व्यय न्यूनतम हो? न्यूनतम परिवहन व्यय क्या होगा।

हल आकृति 12.12 द्वारा इस समस्या को निम्नलिखित रूप में व्यक्त किया जा सकता है।

माना कि माल के x नगों और y नगों को कारखाना P से क्रमश: A और B डिपो को भेजा गया। तब (8-x-y) नगों को C डिपो तक भेजा जाएगा (क्यों?)

अत:

$$x \ge 0, y \ge 0$$
 3 और $8 - x - y \ge 0$

अर्थात

$$x \ge 0, y \ge 0$$
 और $x + y \le 8$

अब डिपो A पर सामान की साप्ताहिक आवश्यकता 5 नग है। क्योंकि P कारखाने से x नग डिपो A को भेजे जा चुके हैं इसलिए कारखाने Q से (5-x) नग, डिपो A को भेजे जाएँगे। स्पष्टत: $5-x\geq 0$, अर्थात् $x\leq 5$ है।

इसी प्रकार (5-y) और 6-(5-x+5-y)=x+y-4 नग कारखाने Q से क्रमश: डिपो B और C को भेजे जाएँगे। अत:

$$5 - y \ge 0$$
, $x + y - 4 \ge 0$

अर्थात्

$$y \le 5$$
, $x + y \ge 4$

संपूर्ण परिवहन व्यय, जो Z द्वारा दिया गया है निम्न है:

$$Z = 160 x + 100 y + 100 (5 - x) + 120 (5 - y) + 100 (x + y - 4) + 150 (8 - x - y)$$
$$= 10 (x - 7y + 190)$$

इसलिए समस्या गणितीय रूप में निम्नलिखित रूप से व्यक्त की जा सकती है: निम्न व्यवरोधों के अंतर्गत

$$x \ge 0, y \ge 0$$
 ... (1)

$$x + y \le 8 \qquad \dots (2)$$

$$x \le 5$$
 ... (3)

$$y \le 5 \tag{4}$$

$$x + y \ge 4 \qquad \dots (5)$$

Z = 10 (x - 7y + 190) का न्यूनतमीकरण कीजिए

व्यवरोधों (1) से (5) द्वारा निर्धारित छायांकित क्षेत्र ABCDEF सुसंगत क्षेत्र है (आकृति 12.13)

अवलोकन कीजिए कि सुसंगत क्षेत्र परिबद्ध है। सुसंगत क्षेत्र के कोनीय बिंदुओं के निर्देशांक (0,4),(0,5),(3,5),(5,3),(5,0) और (4,0) हैं। हम इन बिंदुओं पर Z का मान ज्ञात करते हैं:

कोनीय बिंदु	Z = 10 (x - 7 y + 190)	
(0, 4)	1620	
(0, 5)	1550 ←	न्यूनतम
(3, 5)	1580	
(5, 3)	1740	
(5,0)	1950	
(4, 0)	1940	

सारणी से ज्ञात होता है कि बिंदु (0,5) पर Z का न्यूनतम मान 1550 है।

अतः इष्टतम परिवहन स्थिति के अनुसार कारखाना P से 5,0 और 3 नग और कारखाने Q से क्रमशः डिपो A,B और C तक 5,0 और 1 नग भेजा जाएगा। इसी स्थिति के संगत न्यूनतम परिवहन व्यय Rs 1550 होगा।

अध्याय 12 पर विविध प्रश्नावली

- 1. उदाहरण 9 पर ध्यान कीजिए। आहार में विटामिन A की मात्रा का अधिकतमीकरण करने के लिए प्रत्येक भोज्य के कितने पैकेटों का उपयोग होना चाहिए? आहार में विटामिन A की अधिकतम मात्रा क्या है?
- 2. एक किसान दो प्रकार के चारे P और Q को मिलाता (मिश्रण) है। P प्रकार के चारे, जिसका मूल्य Rs 250 प्रति थैला जोिक पोषक तत्व A के 3 मात्रक, तत्व B के 2.5 मात्रक और तत्व C के 2 मात्रक रखता है जबिक Q प्रकार का चारा जिसका मूल्य Rs 200 प्रति थैला है, पोषक तत्व A का 1.5 मात्रक, तत्व B का 11.25 मात्रक और तत्व C के तीन मात्रक रखता है। पोषक तत्वों A, B, और C की न्यूनतम आवश्यकताएँ क्रमश: 18 मात्रक, 45 मात्रक और 24 मात्रक हैं। प्रत्येक प्रकार के थैलों की संख्या ज्ञात कीजिए तािक मिश्रण के प्रत्येक थैले का मूल्य न्यूनतम हो? मिश्रण के प्रत्येक थैले का न्यूनतम मूल्य क्या है?
- 3. एक आहारिविद् दो प्रकार के भोज्यों X और Y को इस प्रकार मिलाना चाहता है कि मिश्रण में विटामिन A, की कम से कम 10 मात्रक, विटामिन B की कम से कम 12 मात्रक और विटामिन C की 8 मात्रक हों 1 kg भोज्यों में विटामिनों की मात्रा निम्नलिखित सारणी में दी गई है।

भोज्य	विटामिन A	विटामिन B	विटामिन C
X	1	2	3
Y	2	2	1

भोज्य X के $1~{\rm kg}$ का मूल्य ${\rm Rs}~16$ और भोज्य y के $1~{\rm kg}$ का मूल्य ${\rm Rs}~20~$ है। वांछित आहार के लिए मिश्रण का न्यूनतम मूल्य ज्ञात कीजिए।

4. एक निर्माता दो प्रकार के खिलौने A और B बनाता है। इस उद्देश्य के लिए निर्माण में तीन मशीनों की आवश्यकता पड़ती है और प्रत्येक प्रकार के खिलौने के निर्माण के लिए लगा समय (मिनटों में) निम्नलिखित है।

खिलौने के प्रकार	मशीन		
	I	II	III
A	12	18	6
В	6	0	9

प्रत्येक मशीन अधिकतम 6 घंटे प्रतिदिन के लिए उपलब्ध है। यदि A प्रकार के खिलौने की बिक्री पर Rs 7.50 लाभ और B प्रकार के खिलौने पर Rs 5 का लाभ हो तो दर्शाइए कि अधिकतम लाभ कमाने के लिए प्रतिदिन A प्रकार के 15 खिलौने और B प्रकार 30 खिलौने निर्मित होने चाहिए।

- 5. एक हवाई जहाज अधिकतम 200 यात्रियों को यात्रा करा सकता है। प्रत्येक प्रथम श्रेणी के टिकट पर Rs 1000 और सस्ते श्रेणी के टिकट पर Rs 600 का लाभ कमाया जा सकता है। एयरलाइन कम से कम 20 सीटें प्रथम श्रेणी के लिए आरक्षित करती है। तथापि प्रथम श्रेणी की अपेक्षा कम से कम 4 गुने यात्री सस्ती श्रेणी के टिकट से यात्रा करने को वरीयता देते हैं। ज्ञात कीजिए कि प्रत्येक प्रकार के कितने-कितने टिकट बेचे जाएँ ताकि लाभ का अधिकतमीकरण हो? अधिकतम लाभ कितना है?
- 6. दो अन्न भंडारों A और B की भंडारण क्षमता क्रमश: 100 क्विंटल और 50 क्विंटल है। उन्हें तीन राशन की दुकानों D, E और F पर अन्न उपलब्ध कराना पड़ता है, जिनकी आवश्यकताएँ क्रमश: 60, 50, और 40 क्विंटल हैं। भंडारों से दुकानों को प्रति क्विंटल परिवहन व्यय निम्न सारणी के अनुसार है:

प्रति क्विंटल परिवहन व्यय (रुपयों में)			
को / से	A	В	
D	6	4	
Е	3	2	
F	2.50	3	

परिवहन व्यय के न्यूनतमीकरण के लिए आपूर्ति का परिवहन कैसे किया जाए? न्यूनतम परिवहन मूल्य क्या है?

7. एक तेल कारखाने में दो डिपो A तथा B हैं, जिनकी क्षमताएँ क्रमश: 7000 लिटर और 4000 लिटर की हैं। कारखाने द्वारा तीन पेट्रोल पंपों D, E और F के लिए आपूर्ति करनी है, जिनकी आवश्यकताएँ क्रमश: 4500 लिटर, 3000 लिटर और 3500 लिटर की है। डिपो से पेट्रोल पंपों की दूरियाँ (km में) निम्नांकित सारणी के अनुसार है:

दूरियाँ (km में)			
को / से	A	В	
D	7	3	
E	6	4	
F	3	2	

544

यह मानते हुए कि परिवहन व्यय प्रति 10 लिटर पर प्रति किलोमीटर 1 रुपया है, ज्ञात कीजिए कि कैसी आपूर्ति योजना अपनाई जाए, जिससे परिवहन व्यय का न्यूनतमीकरण हो जाए? न्यूनतम व्यय क्या है?

8. एक फल उत्पादक अपने बाग में दो प्रकार के खादों P ब्रांड और Q ब्रांड का उपयोग कर सकता है। मिश्रण के प्रत्येक थैले में नाइट्रोजन, फास्फोरिक अम्ल, पोटाश और क्लोरीन की मात्रा (kg में) सारणी में दिया गया है। परीक्षण संकेत देते है कि बाग को कम से कम 250 kg फास्फोरिक अम्ल, कम से कम 270 kg पोटाश और क्लोरीन की अधिक से अधिक 310 kg की आवश्यकता है।

यदि उत्पादक बाग के लिए मिलाई जाने वाली नाइट्रोजन की मात्रा का न्यूनतमीकरण करना चाहता है तथा, प्रत्येक मिश्रण के कितने थैलों का उपयोग होना चाहिए? मिलाई जाने वाली नाइट्रोजन की निम्नतम मात्रा क्या है?

kg प्रति थैला			
	ब्राँड P	ब्राँड Q	
नाइट्रोजन	3	3.5	
फास्फोरिक अम्ल	1	2	
पोटाश	3	1.5	
क्लोरीन	1.5	2	

- 9. उपरोक्त प्रश्न 8 पर ध्यान दीजिए। यदि उत्पादक बाग में मिलाई जाने वाली नाइट्रोजन की मात्रा का अधिकतमीकरण चाहता है तो मिश्रण के कितने थैलों को मिलाया जाना चाहिए? मिलाई जाने वाली नाइट्रोजन की अधिकतम मात्रा क्या है?
- 10. एक खिलौना कंपनी, A और B दो प्रकार की गुड़ियों का निर्माण करती है। मार्किट परीक्षणों तथा उपलब्ध संसाधनों से संकेत मिलता है कि सम्मिलित उत्पादन स्तर प्रति सप्ताह 1200 गुड़ियों से अधिक नहीं होना चाहिए और B प्रकार की गुड़ियों की अधिक से अधिक माँग A प्रकार की गुड़ियों की आधी है। इसके अतिरिक्त A प्रकार की गुड़ियों का उत्पादन स्तर दूसरे प्रकार की गुडियों के उत्पादन स्तर के तीन गुने से 600 नग अधिक है। यदि कंपनी A और B प्रत्येक गुडिया पर क्रमश: Rs 12 और Rs 16 का लाभ कमाती है, लाभ का अधिकतमीकरण करने के लिए प्रत्येक के कितने नगों का साप्ताहिक उत्पादन करना चाहिए।

सारांश

- एक रैखिक प्रोग्रामन समस्या वह समस्या है जो कई चरों के रैखिक फलन के इष्टतम मान (अधिकतम या न्यूनतम) को ज्ञात करने से संबंधित फलन को उद्देश्य फलन कहते हैं। जब प्रतिबंध यह हो कि चर ऋणेतर हों और रैखिक असमीकरणों (जिनको रैखिक व्यवरोध कहते हैं) को संतुष्ट करते हों। चरों को कभी-कभी निर्णायक चर कहते हैं और ऋणेतर हैं।
- कुछ महत्त्वपूर्ण रैखिक प्रोग्रामन समस्याएँ निम्नलिखित हैं:
 - (i) आहार संबंधी समस्या
 - (ii) उत्पादन संबंधी समस्या
 - (iii) परिवहन संबंधी समस्या
- \bullet सभी व्यवरोधों और ऋणेतर व्यवरोधों $x \ge 0, y \ge 0$ द्वारा निर्धारित उभयनिष्ठ क्षेत्र, एक रेखीय प्रोग्रामन समस्या का सुसंगत क्षेत्र (या हल समुच्चय) कहलाता है।
- सुसंगत क्षेत्र के अंत: भाग के तथा सीमांत बिंदु व्यवरोधों के सुसंगत हलों को प्रदर्शित करते हैं।
 सुसंगत क्षेत्र के बाह्य भाग के किसी भी बिंदु को असंगत हल कहते हैं।
- सुसंगत क्षेत्र में कोई बिंदु जो उद्देश्य फलन का इष्टतम मान (अधिकतम या न्यूनतम) एक देता है तो इसे इष्टतम हल कहते हैं।
- निम्निलिखित प्रमेय रैखिक प्रोग्रामन समस्याओं को हल करने के लिए आधारभूत महत्त्व के हैं: \mathbf{y} मेर्य 1: माना कि R एक रैखिक प्रोग्रामन समस्या के लिए सुसंगत क्षेत्र (उत्तल बहुभुज) है और माना कि Z = ax + by उद्देश्य फलन है। जब Z एक इष्टतम मान (अधिकतम या न्यूनतम) देता है जहाँ रैखिक असमीकरण चरों x और y द्वारा व्यवरोधों के रूप में वर्णित है तो यह इष्टतम मान सुसंगत क्षेत्र के एक कोनीय बिंदु (शीर्ष) पर होना ही चाहिए। \mathbf{y} मेर्य 2: माना कि R एक रैखिक प्रोग्रामन समस्या के लिए सुसंगत क्षेत्र (उत्तल बहुभुज) है और माना कि Z = ax + by उद्देश्य फलन है। जब यदि R परिबद्ध है तब उद्देश्य फलन, R में एक अधिकतम और एक न्यूनतम दोनों ही देता है और इनमें से प्रत्येक बिंदु R के कोनीय बिंदु (शीर्ष) पर स्थित होता है।
- यदि सुसंगत क्षेत्र अपरिबद्ध है तब अधिकतम या न्यूनतम अस्तित्व में नहीं भी हो सकता है। तथापि यदि यह अस्तित्व में होता है तो R के कोनीय बिंदु पर स्थित होना चाहिए।
- कोनीय बिंदु विधि: एक रैखिक समस्या को हल करने के लिए यह विधि निम्न पदों में क्रियान्वित होती है:
 - (1) रैंखिक प्रोग्रामन समस्या के सुसंगत क्षेत्र को ज्ञात कीजिए तथा इसके कोनीय बिंदु (शीर्षों) को ज्ञात कीजिए।

- (2) प्रत्येक कोनीय बिंदु पर उद्देश्य फलन Z = ax + by का मान ज्ञात कीजिए। मान लीजिए इन बिंदुओं पर अधिकतम और न्यूनतम मान क्रमश: M तथा m हैं।
- (3) यदि सुसंगत क्षेत्र परिबद्ध है, तो M और m क्रमश: उद्देश्य फलन के अधिकतम तथा न्यूनतम मान हैं।

यदि सुसंगत क्षेत्र अपरिबद्ध है तब

- (i) उद्देश्य फलन का M अधिकतम मान है यदि ax + by > M के द्वारा निर्धारित खुला अर्धतल सुसंगत क्षेत्र के साथ कोई उभयनिष्ठ बिंदु नहीं रखता है। अन्यथा उद्देश्य फलन का अधिकतम मान नहीं है।
- (ii) उद्देश्य फलन का न्यूनतम मान m है यदि ax + by < m द्वारा निर्धारित खुला अर्धतल और सुसंगत क्षेत्र में कोई बिंदु उभयनिष्ठ नहीं है। अन्यथा उद्देश्य फलन का कोई न्यूनतम मान नहीं है।
- यदि सुसंगत क्षेत्र के दो कोनीय बिंदुओं का इष्टतम मान एक ही प्रकार का है अर्थात् दोनों वही अधिकतम या न्यूनतम मान प्रदान करते है तब इन दोनों बिंदुओं को मिलाने वाले रेखाखंड के किसी भी बिंदु पर भी उसी प्रकार का इष्टतम हल है।

ऐतिहासिक टिप्पणी

द्वितीय विश्व युद्ध में, जब युद्ध संचालन की योजना बनी, जिससे कि शत्रुओं को न्यूनतम व्यय पर अधिकतम हानि पहुँचे, रैखिक प्रोग्रामन विधि अस्तित्व में आई।

रैखिक प्रोग्रामन के क्षेत्र में प्रथम प्रोग्रामन का सूत्रपात रूसी गणितज्ञ L.Kantoro Vich तथा अमेरिकी अर्थशास्त्री F.L.Hitch Cock ने 1941 में किए। दोनों ने स्वतंत्र रूप से कार्य किया। इस प्रोग्रामन को परिवहन-समस्या के नाम से जाना गया। सन् 1945 में अंग्रेज अर्थशास्त्री G.Stigler ने रैखिक प्रोग्रामन समस्या, के अंतर्गत इष्टतम आहार संबंधी समस्या का वर्णन किया। सन् 1947 में GB. Dantzig ने एक दक्षता पूर्ण विधि जो सिंपलेक्स विधि के नाम से प्रसिद्ध है, का सुझाव दिया जो रैखिक प्रोग्रामन समस्याओं को सीमित प्रक्रमों में हल करने की सशक्त विधि है।

रैखिक प्रोग्रामन विधि पर प्रारिभक कार्य करने के कारण सन् 1975 में L.Katorovich और अमेरिकी गणितय अर्थशास्त्री T.C.Koopmans को अर्थ शास्त्र में नोबेल पुरस्कार प्रदान किया गया। परिकलन तथा आवश्यक सॉफ्टवेयर के आगमन के साथ कई क्षेत्रों की जटिल समस्याओं में रैखिक प्रोग्रामन प्रविधि के अनुप्रयोग में उत्तरोतर वृद्धि हो रही है।