Definition 1. Let a, b, c be non-negative integers. We use $\mathcal{G}(a, b, c)$ to denote an undirected graph with three groups of vertices, namely A, B, and C with |A| = a, |B| = b, |C| = c such that $A \cup B$ forms a clique and $B \cup C$ forms a clique.

Note that $\mathcal{G}(a, b, 0)$ is a graph formed by the union of two cliques K_a and K_b of size a and b, respectively.

Theorem 1. Any graph with $n \le a + b$ vertices and $m \le \lfloor (a+b)/2 \rfloor - 1$ edges $(0 < a \le b)$ is always a subgraph of $\mathcal{G}(a,b,0)$ (or equivalently, a subgraph of $\mathcal{G}(b,a,0)$).

Proof. We shall prove this theorem by induction.

(Basis Case:) If a = b = 1, then $\lfloor (a+b)/2 \rfloor - 1 = 0$. Any graph with $n \le 2$ vertices and $m \le 0$ edges (i.e., no edges) is always a subgraph of G(1, 1, 0).

(Inductive Case:) Suppose that the theorem holds for all $a + b \le k$. Our target is to show that the theorem also holds for the case a + b = k + 1 with $a \le b$. Consider a graph G with $n \le k + 1$ vertices and with $m \le \lfloor (k+1)/2 \rfloor - 1$ edges.

- 1. If G is connected, then $n \leq m+1 \leq (k+1)/2 \leq b$, which is a subgraph of K_b , and thus a subgraph of $\mathcal{G}(a,b,0)$.
- 2. Otherwise, G is not connected. If G has no edges, then G is obviously a subgraph of $\mathcal{G}(a,b,0)$ since G has at most a+b vertices. Else, let C be the connected component of G with the largest number n' of vertices (so that $n' \geq 2$. Then, the number of edges in C is at least n'-1. To complete the proof, it is sufficient to show that G-C is a subgraph of $\mathcal{G}(a,b-n',0)$, as we can map C as a subgraph in K_b .

The number of vertices in G - C is k + 1 - n' = a + (b - n'), and the number of edges of G - C is at most

$$m - (n'-1) \le \lfloor (k+1)/2 \rfloor - n' = \lfloor (k+1)/2 - n' \rfloor$$

$$= \lfloor (k+1-n')/2 - n'/2 \rfloor$$

$$\le \lfloor (k+1-n')/2 - 1 \rfloor$$

$$= \lfloor (k+1-n')/2 \rfloor - 1 = \lfloor (a+(b+n'))/2 \rfloor - 1.$$

By induction hypothesis, G - C is a subgraph of $\mathcal{G}(a, b - n', 0)$, and consequently G is a subgraph of $\mathcal{G}(a, b, 0)$.

In all cases, G is a subgraph of $\mathcal{G}(a, b, 0)$. This completes the proof of the induction case, so that by the principle of mathematical induction, the theorem follows.