

Задача 1. Найти якобиан $\frac{\partial(x,-y,-z)}{\partial(r,-\mathbf{r},-\psi)}$ отображения $x=r\cos^p\varphi\cos^q\psi,-y=r\sin^p\varphi\cos^q\psi,-z=r\sin^q\psi,-p,-q\in N.$

Задача 2. Пусть $E_1 \subset R^n$, $E_2 \in R^m$, $f: E_1 \to E_2$, $E_2 \to R^k$, причём отображение f дифференцируемо в точке $x \in E_1$, а отображение g дифференцируемо в точке f(x) inE_2 . Доказать, что:

- композиция $g \circ f$ дифференцируема в точке x и производная композиции отображений равна произведений. производных, т.е. $(g(f(x)) \circ f(x))' = g'(f(x)) f'(x)$
- в случае k=m=n якобиан композиции $g \circ f$ в точке x равен произведениб якобианов отображений $f(u_1; u_2; \ldots; u_n)$ и $g(v_1; v_2; \ldots; v_n)$ т.е.

$$\frac{\partial (v_1, \dots, v_n)}{\partial (x_1, \dots, x_n)} = \frac{\partial (v_1, \dots, v_n)}{\partial (u_1, \dots, u_n)} \frac{\partial (u_1, \dots, u_n)}{\partial (x_1, \dots, x_n)}$$

; в частности, если $g = f^{-1}$: $\frac{\partial(x_1, \dots, x_n)}{\partial(u_1, \dots, u_n)} \frac{\partial(u_1, \dots, u_n)}{\partial(x_1, \dots, x_n)} = 1$

Задача 3. Привести пример непрерывно дифференцируемого отображения области, якобиан которого нигде в этой области не обращается в нуль и которое не взаимно однозначно.

Задача 4. Найти второй дифференциал функции $u=xe^y$, если d^2x , d^2y известны.

Задача 5. Найти d^2u (2; 0) , $2x^2+2y^2+u^2-8xu-u+8=0$. дифференциал второго порядка в точке неявно заданной функции

Задача 6. Разложить по формуле Маклорена до $o\left(\rho^{5}\right)$, $\rho=\sqrt{x^{2}+y^{2}}$, функцию $f=\sin x \sinh 2y$.

Задача 7. Доказать, что *одномерному волновому уравнению* $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$ удовлетворяют следующие функции:

•
$$u = x/(x^2 - a^2t^2)$$
;

- $u = A \sin \omega x \cos a\omega t$
- u = f(x + at) + g(x at), f, g - произвольные дважды дифференцируемые функции.

Задача 8. Исследовать функцию u = f(x; y) на условный экстремум при заданных уравнениях связи (выяснить, можно ли при этом использовать метод Лагранжа):

•
$$u = (x-1)^2 + (y+1)^2$$
, $x^2 + y^2 - 2xy = 0$, $x - y = 0$

•
$$u = x^4 + y^4$$
, $(x-1)^3 - y^2 = 0$

Задача 9. Исследовать функцию u = f(x; y) на условный экстремум при заданных уравнениях связи:

•
$$u = 1 + 1/x + 1/y$$
, $1/x^2 + 1/y^2 = 1/8$

$$\bullet \ u = \ln xy, \quad x^3 + xy + y^3 = 0$$

Задача 10. Доказать, что наибольшее и наименьшее значения функции $u = \sum_{i, k=1}^{n} a_{ik} x_i x_k, \quad a_{ik} = a_{ki}, \quad \text{на сфере } \sum_{i=1}^{n} x_i^2 = 1$ равны наибольшему и наименьшему корню характеристического уравнения матрицы (a_{ik}) .

Задача 12. Определить наибольшую вместимость цилиндрического ведра, поверхность которого (без крышки) равна S.

Задача 13. Определить размеры открытого прямоугольного аквариума с заданной толщиной стенок d и ёмкостью V, на изготовление которого потребуется наименьшее количество материала.

Задача 14. До кр посмотреть видео https://www.youtube.com/watch?v=HEfHFsfGXjs