Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

PATIENT		
Name: 鐘乃光		Patient ID: 47657341
Date of Birth: Sep 27, 1960		Gender: Male
Diagnosis: Malignant peripheral nerve	e sheath tumor	
ORDERING PHYSICIAN		
Name: 張廷驊醫師 Tel: 886-228712121		
Facility: 臺北榮總		
Address: 臺北市北投區石牌路二段 201 號		
SPECIMEN		
Specimen ID: S11127221C Collection site: Small intestine Type: FFPE tissue		
Date received: Jul 26, 2022 Lab ID: AA-22-04297 D/ID: NA		

ABOUT ACTORCO®4

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in Patient's Cancer Type		Probable Sensitive in Other
Alterations/Biomarkers	Sensitive Resistant		Cancer Types
Not detected			

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
NF1 Splice acceptor	Everolimus, Selumetinib, Trametinib	Afatinib, Erlotinib, Gefitinib, Cetuximab, Lapatinib, Trastuzumab, Vemurafenib
PTEN R15S	Everolimus, Temsirolimus, Niraparib, Olaparib, Talazoparib	Erlotinib, Gefitinib, Cetuximab, Panitumumab, Trastuzumab
CDKN2A Homozygous deletion	Abemaciclib, Palbociclib, Ribociclib	-

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
NF1	Splice acceptor	96.1%
PTEN	R15S	96.5%

- Copy Number Alterations

Chromosome Gene		Variation	Copy Number
Chr9	CDKN2A	Homozygous deletion	0
Chr7	CARD11	Amplification	6 [¥]

^{*} Increased gene copy number was observed.

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	< 1 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 70% tumor purity.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **29**

Project ID: C22-M001-02232

Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 3B		
NF1 Splice acceptor	Selumetinib	sensitive
PTEN R15S	Everolimus, Temsirolimus, Niraparib, Olaparib, Talazoparib	sensitive
CDKN2A Homozygous deletion	Abemaciclib, Palbociclib, Ribociclib	sensitive
Level 4		
NF1 Splice acceptor	Everolimus, Trametinib	sensitive
NF1 Splice acceptor	Afatinib, Erlotinib, Gefitinib, Cetuximab, Lapatinib, Trastuzumab, Vemurafenib	resistant
PTEN R15S	Erlotinib, Gefitinib, Cetuximab, Panitumumab, Trastuzumab	resistant

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 3 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
NF1	Tomovifon	Less sensitive	Clinical	Droot concer
Splice acceptor	Tamoxifen	Less sensitive	Cillical	Breast cancer

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 4 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

VARIANT INTERPRETATION

NF1 Splice acceptor

Biological Impact

The neurofibromin 1 (NF1) gene encodes a GTPase activating protein (GAP) which is an important negative regulator of the Ras cellular proliferation pathways^{[1][2][3][4]}. Besides, NF1 also physically interacts with the N-terminal domain of focal adhesion kinase (FAK) and involves in the regulation of cell adhesion, growth, and other pathways^{[5][6]}. NF1 is considered a classical haploinsufficient tumor suppressor gene with loss of one allele through inherited or acquired mutation may lead to reduced protein expression and is insufficient to execute normal cellular functions contributing to tumor development^{[7][8][9][10][11]}. NF1 syndrome is a germline condition resulting in a predisposition to several types of cancer such as neurofibromas, melanoma, lung cancer, ovarian cancer, breast cancer, colorectal cancer, hematological malignancies^{[12][13][14]}. Meanwhile, sporadic NF1 mutations have been observed in multiple cancer types^[15], including myelodysplastic syndromes, melanomas, colon cancer^[16], glioblastomas^[17], lung cancer^[18], ovarian cancer, and breast cancer^[12].

NF1 c.2326-5 2337del is a variant located at the splice acceptor region, which may result in the exon skipping.

Therapeutic and prognostic relevance

In April 2020, the U.S. FDA has approved selumetinib for pediatric patients 2 years of age and older with neurofibromatosis type 1 (NF1) who have symptomatic, inoperable plexiform neurofibromas (PN). A phase II trial (NCT02664935, NLMT) demonstrated that selumetinib in combination with docetaxel resulted in a confirmed ORR of 28.5% (4/14), durable clinical benefit (DCB) rate of 50% (7/14), and mPFS of 5.3 months in lung adenocarcinoma patients harboring NF1 loss^[19]. NF1 loss has been determined as an inclusion criterion for the trials evaluating selumetinib efficacies in lung cancer (NCT02664935) and NF1-associated tumors (NCT03326388).

NF1 depletion has been associated with drug resistance to RAF and EGFR inhibitors, tamoxifen, and retinoic acid^{[15][20]}. For example, loss of NF1 was identified in patients with lung adenocarcinomas or colorectal cancer who presented resistance to anti-EGFR treatment, including erlotinib, gefitinib, afatinib, and cetuximab, respectively^{[21][22][23]}. Loss of NF1 in patients with BRAF-mutated melanomas was also suggested conferring resistance to BRAF inhibitors^{[24][25][26][27]}.

Notably, preclinical studies further revealed that the addition of a MEK inhibitor could restore the sensitivity to erlotinib^[21]. Also, in a liquid biopsy-based ctDNA profiling study of HER2-positive metastatic gastric cancer, NF1 loss (either induced by mutation or deletion) was suggested as a novel mechanism contributes to trastuzumab resistance. The cell-based study also showed that the trastuzumab and lapatinib resistance could be overcome with a combination of HER2 and MEK/ERK inhibitors^[28]. A case study had reported that MEK inhibitor, trametinib, was effective in a treatment-refractory neurofibromatosis type I-associated glioblastoma^[29]. Various preclinical data had also supported the activity of MEK and mTOR inhibitors in NF1-deficient tumors^{[30][31][32][33][34][35]}. In an NGS-based study, patients harboring mutations in the mTOR pathway, including mTOR, TSC1, TSC2, NF1, PIK3CA, and PIK3CG responded to everolimus^[36].

PTEN R15S

Biological Impact

The phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene encodes a lipid/protein phosphatase that is important for the regulation of cell proliferation, survival, homologous recombination and maintenance of genomic integrity^{[37][38]}. PTEN acts as an essential tumor suppressor by antagonizing the PI3K/AKT/mTOR signaling pathway^[39]. PTEN is a haploinsufficient tumor suppressor gene, in which having only one copy of the wild-type allele does not produce enough protein product to execute wild-type functions^{[40][41][42]}. Germline loss-of-function PTEN mutations are found in approximately 80% of patients with Cowden syndrome, a disorder that is associated with high-penetrance breast and thyroid cancer^{[43][44][45]}. Somatic mutations or monoallelic loss of PTEN is regularly observed in a significant fraction of human cancers, including sporadic breast cancer, colon cancer, endometrial cancer, prostate cancer, and

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **5** of **29**

Project ID: C22-M001-02232 Report No.: AA-22-04297 ONC

Date Reported: Aug 08, 2022

glioblastoma^{[46][47][48][49][50]}

PTEN R15S is a missense mutation located in the phosphatase tensin-type domain of the PTEN protein (UniProtKB). R15S confers a loss of function to the PTEN protein as demonstrated by a partial loss of ability to rescue spheroid formation, loss of PTEN phosphatase activity, failed to suppress cell proliferation, and had impaired nuclear localization in vitro^{[51][52][53]}.

Therapeutic and prognostic relevance

Somatic loss of PTEN results in aberrant activation of PI3K/AKT/mTOR signaling pathway and provides a mechanistic rationale for PI3K pathway inhibitors treatment[54][55]. Preclinical studies demonstrated that PTEN deficiency was associated with increased sensitivity to PI3K pathway inhibitors in selected cancer subtypes [56][57][58][59][60][61]. Moreover, early clinical data also indicated that PTEN loss was associated with improved response and longer PFS in patients with advanced breast cancer^[62], advanced pancreatic neuroendocrine tumors^[63], and metastatic castration-resistant prostate cancer treated with mTORC1 inhibitor, everolimus[64].

Several groups found that PTEN loss was generally associated with poor response to trastuzumab therapy, whether this agent was administered in the neoadjuvant, adjuvant, or metastatic settings [65][66][67][68][69].

Loss of PTEN expression in advanced colorectal cancer (CRC) has been linked with resistance to anti-EGFR mAbs like cetuximab and panitumumab^{[70][71][72][73][74][75]}. However, encouraging anti-tumor activity of the combination of an EGFR antibody and a mTORC1 inhibitor (everolimus or temsirolimus) have been reported in early-phase clinical studies (J Clin Oncol. 2011;29 (suppl): abstr 3587; J Clin Oncol. 2013;31 (suppl): abstr 608). Ongoing phase I/II studies testing combinations of EGFR antibodies and PI3K/AKT/mTOR pathway inhibitors (e.g., NCT01816984, NCT01252628, NCT01719380) will provide larger numbers of patients to assess the role of PTEN status in therapeutic response.

Preclinical studies showed that loss of PTEN expression in EGFR mutant cells was associated with decreased sensitivity to EGFR TKIs, erlotinib and gefitinib[76][77]. Inhibition of the PI3K/AKT/mTOR signal pathway has been shown to be an effective strategy to radiosensitize NSCLC cells harboring the EGFR activating mutation that acquires resistance to both TKIs due to PTEN loss or inactivation mutations[78].

Loss or biallelic inactivation of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapies, including pembrolizumab and nivolumab in melanoma and leiomyosarcoma patients[79][80][81].

PTEN loss of function mutation has been determined as an inclusion criterion for the trial evaluating olaparib efficacy in metastatic biliary tract cancer (NCT04042831); talazoparib efficacy in HER2-negative breast cancer (NCT02401347), and niraparib efficacy in breast cancer (NCT04508803) or any malignancy (except prostate) cancer (NCT03207347). Clinical data also suggested that PTEN deficient cancers may be sensitive to olaparib^[82].

CARD11 Amplification

Biological Impact

CARD11 (caspase recruitment domain 11) gene encodes a cytoplasmic scaffold protein of the CARD11/BCL10/MALT1 (CBM) complex which plays essential roles in regulating apoptosis and NF-κB activation in response to upstream stimuli^{[83][84]}. CARD11 gain-of-function mutations are frequently detected in human diffuse large B-cell lymphoma (DLBCL)^[85] and cutaneous squamous cell carcinoma^[86]. Moreover, CARD11 gene amplification has been observed in a significant proportion of DLBCL^[87]. Biochemical assays revealed that enforced expression of CARD11/BCL10/MALT1 is essential for transformation of B-cell and survival of DLBCL cell[88].

Therapeutic and prognostic relevance

Retrospective studies have shown that high CARD11 expression or CARD11 gene amplification was associated with

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 6 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

poor survival in diffuse large B cell lymphoma (DLBCL)[89][87].

CDKN2A Homozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^{[90][91][92]}. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions^[93]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation^{[94][95]}.

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors^{[96][97]}. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments^{[98][99][100]}. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients^{[101][102][103]}. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[97][104][105]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib^[99]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models^[106].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[107].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **7** of **29**

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

- FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)	
monarchE	HR-positive, HER2-negative	
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor [IDFS at 36	
	months(%): 86.1 vs. 79.0]	
MONARCH 3 ^[108]	Breast cancer (Approved on 2018/02/26)	
NCT02246621	HR-positive, HER2-negative	
NC102240021	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole [PFS(M): 28.2 vs. 14.8]	
MONARCH 2 ^[105]	Breast cancer (Approved on 2017/09/28)	
NCT02107703	HR-positive, HER2-negative	
NC102107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 16.4 vs. 9.3]	
MONARCH 1 ^[109]	Breast cancer (Approved on 2017/09/28)	
NCT02102490	HR-positive, HER2-negative	
110102102490	Abemaciclib [ORR(%): 19.7 vs. 17.4]	

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

RADIANT-4 ^[110] NCT01524783	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
	-
	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]
DOLEDO 0[111]	Breast cancer (Approved on 2012/07/20)
BOLERO-2 ^[111]	ER+/HER2-
NCT00863655	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]
EXIST-2	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved or 2012/04/26)
NCT00790400	-
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]
(62)	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
RADIANT-3 ^[63]	
NCT00510068	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]
EVIOT 4[112]	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
EXIST-1 ^[112]	-
NCT00789828	Everolimus vs. Placebo [ORR(%): 35.0]
	Renal cell carcinoma (Approved on 2009/05/30)
RECORD-1 ^[113]	
NCT00410124	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 8 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

DDIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)				
PRIMA					
NCT02655016	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]				
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2019/10/23)				
QUADRA ^[114] NCT02354586	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation, and/or genomic instability)				
	Niraparib [ORR(%): 24.0, DOR(M): 8.3]				
NOVA[115]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)				
NOVA ^[115]					
NCT01847274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]				

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

O	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)			
OlympiA	gBRCA			
NCT02032823	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]			
	Prostate cancer (Approved on 2020/05/19)			
PROfound ^[116]	ATMm, BRCA1m, BRCA2m, BARD1m, BRIP1m, CDK12m, CHEK1m, CHEK2m, FANCLm,			
NCT02987543	PALB2m, RAD51Bm, RAD51Cm, RAD51Dm, RAD54Lm			
	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]			
	Ovarian cancer (Approved on 2020/05/08)			
PAOLA-1[117]	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation,			
NCT02477644	and/or genomic instability)			
	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]			
POLO ^[118]	Pancreatic adenocarcinoma (Approved on 2019/12/27)			
NCT02184195	Germline BRCA mutation (deleterious/suspected deleterious)			
NC102184195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]			
001 0 4[110]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)			
SOLO-1 ^[119]	Germline or somatic BRCA-mutated (gBRCAm or sBRCAm)			
NCT01844986	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]			
OI :AD[120]	Breast cancer (Approved on 2018/02/06)			
OlympiAD ^[120]	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative			
NCT02000622	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]			
001 0 0/51/007 0 04/12/1	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)			
SOLO-2/ENGOT-Ov21 ^[121]	gBRCA+			
NCT01874353	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]			

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 9 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

C4dd.0[122]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)		
Study19 ^[122] NCT00753545			
NC100753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]		
O4l. 40[123]	Ovarian cancer (Approved on 2014/12/19)		
Study 42 ^[123]	Germline BRCA mutation (deleterious/suspected deleterious)		
NCT01078662	Olaparib [ORR(%): 34.0, DOR(M): 7.9]		

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

- FDA Approval Summary of Palbociclib (IBRANCE)

PALOMA-2 ^[124]	Breast cancer (Approved on 2017/03/31)			
NCT01740427	ER+, HER2-			
NC101740427	Palbociclib + letrozole vs. Placebo + letrozole [PFS(M): 24.8 vs. 14.5]			
DAL CALA 0[125]	Breast cancer (Approved on 2016/02/19)			
PALOMA-3 ^[125]	ER+, HER2-			
NCT01942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 9.5 vs. 4.6]			

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

- FDA Approval Summary of Ribociclib (KISQALI)

MONAL FECA 0[104]	Breast cancer (Approved on 2017/03/13)
MONALEESA-2 ^[104] NCT01958021	HR+, HER2-
NC101958021	Ribociclib vs. Letrozole [PFS(M): NR vs. 14.7]

Selumetinib (KOSELUGO)

Selumetinib is a kinase inhibitor. Selumetinib is developed and marketed by AstraZeneca under the trade name KOSELUGO.

- FDA Approval Summary of Selumetinib (KOSELUGO)

CDDINT	Plexiform neurofibromas (Approved on 2020/04/10)
SPRINT	Neurofibromatosis type 1
NCT01362803	Selumetinib [ORR(%): 66.0]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 10 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[126]	Breast cancer (Approved on 2018/10/16)
	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative
NCT01945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

- FDA Approval Summary of Temsirolimus (TORISEL)

[127]	Renal cell carcinoma (Approved on 2007/05/30)
NCT00065468	-
	Temsirolimus vs. Ifn-α [OS(M): 10.9 vs. 7.3]

Trametinib (MEKINIST)

Trametinib is an anti-cancer inhibitor which targets MEK1 and MEK2. Trametinib is developed and marketed by GlaxoSmithKline (GSK) under the trade name MEKINIST.

- FDA Approval Summary of Trametinib (MEKINIST)

RF117019, NCI-MATCH,	Cancer (Approved on 2022/06/22)			
CTMT212X2101	BRAF V600E			
NCT02034110, NCT02465060, NCT02124772	Dabrafenib + trametinib [ORR(adult patients)(%): 41.0, ORR(pediatric patients)(%): 25.0]			
BRF117019 ^[128]	Anaplastic thyroid cancer (Approved on 2018/05/04)			
NCT02034110	BRAF V600E			
NC102034110	Dabrafenib + trametinib [ORR(%): 61.0]			
DDE44000[129]	Non-small cell lung cancer (Approved on 2017/06/22)			
BRF113928 ^[129]	BRAF V600E			
NCT01336634	Trametinib + dabrafenib vs. Dabrafenib [ORR(%): 63.0 vs. 27.0, DOR(M): 12.6 vs. 9.9]			
001101 1[130]	Melanoma (Approved on 2014/01/10)			
COMBI-d ^[130]	BRAF V600E/K			
NCT01584648	Trametinib + dabrafenib vs. Dabrafenib + placebo [PFS(M): 9.3 vs. 8.8]			
METDIO[131]	Melanoma (Approved on 2013/05/29)			
METRIC ^[131]	BRAF V600E/K			
NCT01245062	Trametinib vs. Dacarbazine or paclitaxel [PFS(M): 4.8 vs. 1.5]			

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 11 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **12** of **29**

Project ID: C22-M001-02232 Report No.: AA-22-04297 ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
NF1	Splice acceptor	20	c.2326-5_2337del	NM_001042492	-	96.1%	1078
PTEN	R15S	1	c.45A>T	NM_000314	COSM5270	96.5%	1090

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 13 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297 ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ABL1	G706V	11	c.2117G>T	NM_005157	-	97.8%	271
AXL	P751L	19	c.2252C>T	NM_021913	-	94.4%	568
ERBB3	R488Q	12	c.1463G>A	NM_001982	COSM1580859	93.5%	1304
NTRK2	Splice region	-	c.213-7del	NM_001018064	-	97.5%	564
PRKDC	N192S	6	c.575A>G	NM_006904	-	47.9%	1997
SETD2	H2249R	15	c.6746A>G	NM_014159	-	97.7%	1097
ZNF217	I211V	1	c.631A>G	NM_006526	-	65.3%	2058

Note:

This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section). The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Jul 2022

Facility retrieved: 臺北榮總

H&E-stained section No.: S11127221C

Collection site: Small intestine

Examined by: Dr. Chien-Ta Chiang

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 25%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 70%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTOnco®+

DNA test

- Mean Depth: 895x
- Target Base Coverage at 100x: 94%

RNA test

Average unique RNA Start Sites per control GSP2: 147

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 15 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297 ONC

Date Reported: Aug 08, 2022

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 16 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫藥資訊研究員 楊杭哲 博士 Hang-Che Yang Ph.D.

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

AMERICAN PARHOLOGIS Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **17** of **29**

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	EPHA7	ЕРНВ1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	мис6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	РІКЗСВ	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

AIK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTPK2	RET	ROS1

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 18 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Not Applicable.

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Everolimus, Temsirolimus; 2: Trametinib, Selumetinib

1: Palbociclib, Ribociclib, Abemaciclib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 19 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

1: Olaparib, Niraparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **20** of **29**

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **21** of **29**

Project ID: C22-M001-02232 Report No.: AA-22-04297 ONC

Date Reported: Aug 08, 2022

ACTOnco® + Report

REFERENCE

- PMID: 8563751; 1996, Nat Genet; 12(2):144-8 1. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells.
- PMID: 1946382; 1991, Proc Natl Acad Sci U S A;88(21):9658-62 Identification of the neurofibromatosis type 1 gene product.
- PMID: 2116237; 1990, Cell;62(3):599-608 The neurofibromatosis type 1 gene encodes a protein related to GAP.
- PMID: 2121370: 1990. Cell:63(4):843-9 4. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21.
- PMID: 14502561; 2003, J Cell Physiol;197(2):214-24 NF1 modulates the effects of Ras oncogenes: evidence of other NF1 function besides its GAP activity.
- PMID: 19479903; 2009, Mol Carcinog;48(11):1005-17 Neurofibromin physically interacts with the N-terminal domain of focal adhesion kinase.
- PMID: 28680740; 2017, Adv Med Biol;118():83-122 7 Haploinsufficient tumor suppressor genes.
- PMID: 10442636; 1999, Oncogene; 18(31): 4450-9 Haploinsufficiency for the neurofibromatosis 1 (NF1) tumor suppressor results in increased astrocyte proliferation.
- PMID: 16288202; 2006, Oncogene;25(16):2297-303 Nf1 haploinsufficiency augments angiogenesis.
- PMID: 18089636: 2008. Hum Mol Genet:17(7):936-48 10. Rac1 mediates the osteoclast gains-in-function induced by haploinsufficiency of Nf1.
- PMID: 7920653; 1994, Nat Genet;7(3):353-61 11. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1.
- PMID: 25026295; 2014, Oncotarget;5(15):5873-92 The NF1 gene revisited - from bench to bedside.
- PMID: 29892687; 2018, Gynecol Oncol Rep;23():41-44 13. Clonal lineage of high grade serous ovarian cancer in a patient with neurofibromatosis type 1.
- PMID: 29926297; 2018, Breast Cancer Res Treat;171(3):719-735 14. Breast cancer in women with neurofibromatosis type 1 (NF1): a comprehensive case series with molecular insights into its aggressive phenotype.
- PMID: 28637487; 2017, Hum Genomics;11(1):13 15. The NF1 somatic mutational landscape in sporadic human cancers.
- 16. PMID: 15840687; 2005, Gut;54(8):1129-35 NF1 gene loss of heterozygosity and expression analysis in sporadic colon cancer.
- PMID: 20129251; 2010, Cancer Cell;17(1):98-110 Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.
- PMID: 27158780; 2016, Nat Genet;48(6):607-16 18. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas.
- PMID: 32669708; 2020, Nature;583(7818):807-812

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 22 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297 ONC

Date Reported: Aug 08, 2022

ACTOnco® + Report

The National Lung Matrix Trial of personalized therapy in lung cancer.

- 20. PMID: 21482774; 2012, Proc Natl Acad Sci U S A;109(8):2730-5 Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen.
- PMID: 24535670; 2014, Cancer Discov;4(5):606-19 21. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer.
- PMID: 29703253; 2018, BMC Cancer;18(1):479 22. SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients.
- PMID: 30858928; 2019, Oncotarget; 10(14):1440-1457 23. CRISPR-induced RASGAP deficiencies in colorectal cancer organoids reveal that only loss of NF1 promotes resistance to EGFR inhibition.
- PMID: 24576830; 2014, Cancer Res;74(8):2340-50 24. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.
- PMID: 23171796; 2013, Cancer Discov;3(3):338-49 25. Elucidating distinct roles for NF1 in melanomagenesis.
- PMID: 23288408: 2013. Cancer Discov:3(3):350-62 26 A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition.
- 27. PMID: 24265153; 2014, Cancer Discov;4(1):94-109 The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma.
- PMID: 30269082; 2019, Gut;68(7):1152-1161 28. Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer.
- PMID: 26936308; 2016, J Clin Pharm Ther;41(3):357-359 29 Prolonged disease control with MEK inhibitor in neurofibromatosis type I-associated glioblastoma.
- PMID: 22573716; 2012, Cancer Res;72(13):3350-9 30. Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency.
- PMID: 19727076; 2009, Nature; 461(7262): 411-4 Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras.
- PMID: 23858101; 2013, Mol Cancer Ther;12(9):1906-17 32. NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to MEK inhibition.
- PMID: 23221341; 2013, J Clin Invest; 123(1):340-7 33. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors.
- PMID: 18483311; 2008, Mol Cancer Ther;7(5):1237-45 Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors.
- 35. PMID: 23209032; 2013, Clin Cancer Res;19(2):450-61 Prognostic significance of AKT/mTOR and MAPK pathways and antitumor effect of mTOR inhibitor in NF1-related and sporadic malignant peripheral nerve sheath tumors.
- PMID: 26859683; 2016, Oncotarget;7(9):10547-56 Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.
- 37. PMID: 17218262; 2007, Cell;128(1):157-70 Essential role for nuclear PTEN in maintaining chromosomal integrity.
- 38. PMID: 18794879; 2008, Oncogene; 27(41): 5443-53 PTEN: a new guardian of the genome.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 23 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

- PMID: 18767981; 2009, Annu Rev Pathol;4():127-50
 PTEN and the PI3-kinase pathway in cancer.
- 40. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- PMID: 11553783; 2001, Proc Natl Acad Sci U S A;98(20):11563-8
 Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression.
- 42. PMID: 20400965; 2010, Nat Genet;42(5):454-8
 Subtle variations in Pten dose determine cancer susceptibility.
- 43. PMID: 9467011; 1998, Hum Mol Genet;7(3):507-15 Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation.
- PMID: 24136893; 2013, J Natl Cancer Inst;105(21):1607-16
 Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria.
- PMID: 21430697; 2011, Nat Rev Cancer;11(4):289-301
 PTEN loss in the continuum of common cancers, rare syndromes and mouse models.
- PMID: 18455982; 2008, Cell;133(3):403-14
 Tenets of PTEN tumor suppression.
- PMID: 9393738; 1997, Cancer Res;57(23):5221-5
 MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines.
- 48. PMID: 9829719; 1998, Clin Cancer Res;4(11):2577-83

 Loss of heterozygosity and mutational analysis of the PTEN/MMAC1 gene in synchronous endometrial and ovarian carcinomas.
- PMID: 9582022; 1998, Oncogene;16(13):1743-8
 Analysis of PTEN and the 10q23 region in primary prostate carcinomas.
- PMID: 9671321; 1998, Oncogene;17(1):123-7
 Allelic loss of chromosome 10q23 is associated with tumor progression in breast carcinomas.
- PMID: 32366478; 2020, Cancer Res;80(13):2775-2789
 A Premalignant Cell-Based Model for Functionalization and Classification of PTEN Variants.
- 52. PMID: 9823298; 1998, Cancer Res;58(22):5002-8
 The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells.
- PMID: 17213812; 2007, Oncogene;26(27):3930-40
 A short N-terminal sequence of PTEN controls cytoplasmic localization and is required for suppression of cell growth.
- PMID: 11504908; 2001, Proc Natl Acad Sci U S A;98(18):10314-9
 Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR.
- 55. PMID: 23714559; 2013, Am Soc Clin Oncol Educ Book;(): Targeting the PI3K/AKT/mTOR pathway: biomarkers of success and tribulation.
- 56. PMID: 20231295; 2010, J Biol Chem;285(20):14980-9 Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits.
- 57. PMID: 23287563; 2013, Clin Cancer Res;19(7):1760-72
 Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **24** of **29**

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

- 58. PMID: 17047067; 2006, Cancer Res;66(20):10040-7
 Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells.
- PMID: 22422409; 2012, Clin Cancer Res;18(6):1777-89
 PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors.
- 60. PMID: 22662154; 2012, PLoS One;7(5):e37431
 Genotype-dependent efficacy of a dual PI3K/mTOR inhibitor, NVP-BEZ235, and an mTOR inhibitor, RAD001, in endometrial carcinomas.
- 61. PMID: 23136191; 2012, Clin Cancer Res;18(24):6771-83
 Phosphoinositide 3-kinase (Pl3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to Pl3K inhibitors in lung cancer preclinical models.
- 62. PMID: 27091708; 2016, J Clin Oncol;34(18):2115-24

 Molecular Alterations and Everolimus Efficacy in Human Epidermal Growth Factor Receptor 2-Overexpressing Metastatic Breast Cancers:

 Combined Exploratory Biomarker Analysis From BOLERO-1 and BOLERO-3.
- 63. PMID: 21306238; 2011, N Engl J Med;364(6):514-23 Everolimus for advanced pancreatic neuroendocrine tumors.
- 64. PMID: 23582881; 2013, Eur Urol;64(1):150-8
 Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08).
- 65. PMID: 15324695; 2004, Cancer Cell;6(2):117-27
 PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients.
- 66. PMID: 20813970; 2010, Am J Pathol;177(4):1647-56 PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer.
- 67. PMID: 21135276; 2011, J Clin Oncol;29(2):166-73
 Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers.
- 68. PMID: 21594665; 2011, Breast Cancer Res Treat;128(2):447-56

 Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer.
- 69. PMID: 17936563; 2007, Cancer Cell;12(4):395-402 A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer.
- PMID: 18700047; 2008, BMC Cancer;8():234
 Potential value of PTEN in predicting cetuximab response in colorectal cancer: an exploratory study.
- PMID: 17940504; 2007, Br J Cancer;97(8):1139-45
 PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients.
- 72. PMID: 19398573; 2009, J Clin Oncol;27(16):2622-9 PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer.
- PMID: 19953097; 2010, Br J Cancer;102(1):162-4
 PTEN status in advanced colorectal cancer treated with cetuximab.
- PMID: 27605871; 2016, World J Gastroenterol;22(28):6345-61
 Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer.
- 75. PMID: 24666267; 2014, Acta Oncol;53(7):852-64
 The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 25 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297 ONC

Date Reported: Aug 08, 2022

ACTOnco® + Report

- 76 PMID: 19351834: 2009. Cancer Res:69(8):3256-61 PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR.
- PMID: 23133538; 2012, PLoS One;7(10):e48004 77. Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression.
- PMID: 23592446; 2013, J Cell Biochem;114(6):1248-56 mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy.
- PMID: 26645196; 2016, Cancer Discov;6(2):202-16 79. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy.
- PMID: 28228279: 2017. Immunity:46(2):197-204 80. Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma.
- PMID: 30150660; 2018, Nat Genet;50(9):1271-1281 Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors.
- PMID: 21468130; 2011, Nat Rev Clin Oncol;8(5):302-6 82. Treatment with olaparib in a patient with PTEN-deficient endometrioid endometrial cancer.
- PMID: 11278692; 2001, J Biol Chem;276(15):11877-82 83 CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-kappa B.
- PMID: 26260210; 2015, Mol Immunol;68(2 Pt C):546-57 TCR signaling to NF-kB and mTORC1: Expanding roles of the CARMA1 complex.
- PMID: 18323416; 2008, Science;319(5870):1676-9 85. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma.
- PMID: 26212909; 2015, Am J Pathol;185(9):2354-63 86. Novel CARD11 Mutations in Human Cutaneous Squamous Cell Carcinoma Lead to Aberrant NF-kB Regulation.
- PMID: 22397314; 2012, Leuk Lymphoma;53(10):1971-7 Role of nuclear factor-kB regulators TNFAIP3 and CARD11 in Middle Eastern diffuse large B-cell lymphoma.
- PMID: 26668357; 2015, Proc Natl Acad Sci U S A;112(52):E7230-8 88. Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B-cell proliferation via cooperative NF-кВ and JNK activation.
- 89. PMID: 26876250; 2016, Zhonghua Xue Ye Xue Za Zhi;37(1):30-4 [Expression and prognostic value of CARD11 in diffuse large B cell lymphoma].
- PMID: 17055429; 2006, Cell;127(2):265-75 The regulation of INK4/ARF in cancer and aging.
- 91. PMID: 8521522; 1995, Cell;83(6):993-1000 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- 92. PMID: 9529249; 1998, Cell;92(6):725-34 ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7 Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.
- PMID: 7550353; 1995, Nat Genet;11(2):210-2 94 Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 26 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.

- 96. PMID: 27849562; 2017, Gut;66(7):1286-1296
 Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 97. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35
 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
- 98. PMID: 28283584; 2017, Oncologist;22(4):416-421
 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- 99. PMID: 27217383; 2016, Cancer Discov;6(7):740-53 Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- 100. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501 Does CDKN2A loss predict palbociclib benefit?
- 101. PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001
 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705
 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.
- 103. PMID: 24797823; 2014, Oncologist;19(6):616-22
 Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- 104. PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 105. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 106. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33
 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- 107. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.
- PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 109. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2-Metastatic Breast Cancer.
- 110. PMID: 26703889; 2016, Lancet; 387(10022):968-977
 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 112. PMID: 23158522; 2013, Lancet;381(9861):125-32
 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.

CAP

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 27 of 29

Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

- 113. PMID: 18653228; 2008, Lancet;372(9637):449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 114. PMID: 30948273; 2019, Lancet Oncol;20(5):636-648

 Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 121. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284
 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 122. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589
 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- 123. PMID: 25366685; 2015, J Clin Oncol;33(3):244-50
 Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.
- PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936
 Palbociclib and Letrozole in Advanced Breast Cancer.
- PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.
- 126. PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
- PMID: 17538086; 2007, N Engl J Med;356(22):2271-81
 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma
- 128. PMID: 29072975; 2018, J Clin Oncol;36(1):7-13
 Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer.
- 129. PMID: 27080216; 2016, Lancet Oncol;17(5):642-50
 Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial.
- PMID: 25265492; 2014, N Engl J Med;371(20):1877-88
 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 28 of 29

鐘乃光 Project ID: C22-M001-02232 Report No.: AA-22-04297_ONC Date Reported: Aug 08, 2022

ACTOnco® + Report

PMID: 22663011; 2012, N Engl J Med;367(2):107-14 Improved survival with MEK inhibition in BRAF-mutated melanoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **29** of **29**