B. Wróblewski

Metoda Fouriera – rozdzielanie zmiennych

Zadanie 1. Rozważmy równanie różniczkowe zwyczajne z warunkami brzegowymi:

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}y + y = 0, \quad y(0) = 0, \quad y(L) = 0.$$

Funkcja $y(x) \equiv 0$ jest rozwiązaniem tego zagadnienia. Czy jest to jedyne rozwiązanie? Czy odpowiedź zależy od L?

Zadanie 2. Dla jakich wartości λ zagadnienie

$$y'' + \lambda y = 0$$
, $y(0) = y(2\pi)$, $y'(0) = y'(2\pi)$

ma nietrywialne rozwiązanie?

Zadanie 3. Znajdź szereg Fouriera funkcji

a)
$$f(x) = x \text{ na } (-\pi, \pi)$$

b)
$$f(x) = |x| \text{ na } (-\pi, \pi)$$

a)
$$f(x) = x \text{ na } (-\pi, \pi)$$
 b) $f(x) = |x| \text{ na } (-\pi, \pi)$ c) $f(x) = e^x \text{ na } (0, 2\pi)$

Zadanie 4. Skonstruuj rozwiązanie następujących zagadnień metodą rozdzielania zmiennych:

a)
$$u_t = u_y$$
, $u(0, y) = e^y + e^{-2y}$;

b)
$$u_t = u_y + u$$
, $u(0, y) = 2e^{-y} - e^{2y}$;

c)
$$u_t = u_{xx} + u$$
, $x \in (0,1)$, $u(x,0) = \cos x$, $u(0,t) = u(1,t) = 0$.

Zadanie 5. Rozdzielając zmienne rozwiąż równanie $tu_t = u_{xx} + 2u$ z warunkami brzegowymi $u(0,t)=u(\pi,t)=0$. Udowodnij, że równanie to ma nieskończenie wiele rozwiązań spełniających warunek początkowy u(x,0) = 0. Wniosek: brak jednoznaczności rozwiązań.

Zadanie 6. Znajdź rozwiązanie równania $u_{xx} + u_{yy} = 0$ w prostokącie 0 < x < a, 0 < y < bspełniające następujące warunki brzegowe:

$$u_x=-a$$
 dla $x=0$, $u_x=0$ dla $x=a$, $u_y=b$ dla $y=0$, $u_y=0$ dla $y=b$.

WSKAZÓWKA: To zadanie można zrobić na dwa sposoby: metodą Fouriera rozdzielania zmiennych lub można szukać rozwiązania w postaci wielomianu.

Zadanie 7. Rozwiąż zagadnienie początkowo-brzegowe dla równania ciepła $u_t = u_{xx}$ w prostokącie $(0,1)\times(0,T)$ z warunkiem początkowym u(x,0)=g(x) oraz warunkami brzegowymi u(0,t) = u(1,t) = 0. Pokaż, że rozwiązanie jest gładkie wewnątrz prostokąta $(0,1) \times (0,T)$ jeżeli $g \in C^1(0,1)$, oraz $\lim_{x\to 0} g(x) = \lim_{x\to 1} g(x) = 0$ i istnieją pochodne jednostronne g'(0), g'(1). Zbadaj, co się dzieje w przypadku gdy g(x) = 0 dla 0 < x < a i b < x < 1, g(x) = 1 dla $a \le x \le b \ (0 < a < b < 1).$

Zadanie 8. Rozwiąż metodą Fouriera zagadnienie brzegowo-początkowe dla równania struny $u_{tt} = u_{xx}$ w $\{(x,t): 0 < x < 1, \ t > 0\}$ z warunkami:

- a) u(x,0) = 2x dla 0 < x < 1/2, u(x,0) = 2(1-x) dla 1/2 < x < 1 oraz $u_t(x,0) = 0$, u(0,t) = u(1,t) = 0;
- b) u(x,0) = 0, $u_t(x,0) = 0$ dla 0 < x < a i dla b < x < 1, $u_t(x,0) = 1$ dla $a \le x \le b$, u(0,t) = u(1,t) = 0.

Czy otrzymane szeregi Fouriera można dwukrotnie różniczkować?

Zadanie 9. Rozwiązać zagadnienie Dirichleta dla równania Laplace'a $\Delta u=0$ w pierścieniu

$$A = \{(x, y): R_1 < r = (x^2 + y^2)^{1/2} < R_2\}$$

z warunkami brzegowymi $u(R_1,\theta)=g_1(\theta), u(R_2,\theta)=g_2(\theta)$. Co należy zmodyfikować w otrzymanych wzorach (i jakie przyjąć warunki brzegowe) w przypadkach granicznych: $R_1=0$ albo $R_2=\infty$?

WSKAZÓWKA: Użyj metody rozdzielania zmiennych we współrzędnych biegunowych. We współrzędnych biegunowych zagadnienie to ma postać

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0.$$

Zadanie 10. Znajdź rozwiązanie stacjonarne U=U(x) równania $u_t=u_{xx}+1$ z warunkami brzegowymi $u(0,t)=0,\ u(1,t)=1.$ Zbadaj, czy $\lim_{t\to\infty}u(x,t)=U(x).$