MU-ID: Multi-user Identification Through Gaits Using Millimeter Wave Radios CSE870

Jeremy Arsenault

Table of Contents

Objective

System Overview

Signal Preprocessing and Feature Extraction

Identification

Results

Objective

- ▶ MU-ID is the first work of performing lower limb movements using a single multi-user identification based on mmWave radar sensor
- Traditional WiFi-based gait recognition systems ¹²³ identify the user based on the user's whole-body movements
- Recent studies rely on ambient CSI to identify single users according to their distinct gait patterns ¹²³⁴ as CSI is susceptible to the environmental changes which is restrictive.

(b) Illustration of the radar displacement and possible walk paths.

Fig. 12: Illustration of the experimental setup. (a) AWR1642BOOST radar paired with DCA1000EVM data capture card.

 1 https://dl.acm.org/doi/pdf/10.1145/2971648.2971670

 2 https://dl.acm.org/doi/10.5555/2959355.2959359

 3 https://ieeexplore.ieee.org/document/7536315/

4https://web.eecs.utk.edu/jliu98/publications/shi2017smart.pdf

A |II| ▼ 5 https://web.eecs.utk.edu/jliu/publications/yang2020mu \dot{i} d.pd \dot{f}

Fig. 2: Overview of MU-ID architecture.

_

¹Figure 2: https://web.eecs.utk.edu/jliu/publications/yang2020muid.pdf ≘

Frequency modulated continuous wave radar

- Radar device repeatedly transmits chirp signals linearly sweeping through frequency bandwidth (red)
- Range information is mixed with doppler information in return signal (green)
- Intermediate frequency (IF) signal is subtraction of transmitted and received signal

Ranging with an FM-CW radar system: if the error $^{\rm ED}$ caused by a possible Doppler frequency f_D can be ignored and the transmitter's power is linearly frequency modulated, then the time delay (Δt) is proportional to the difference of the transmitted and the received signal (Δf) at any time.

jllji ¹https://en.wikipedia.org/wiki/Continuous-wave_radar → →

FMCW range estimation

Apply FFT and use fd-IF signal to calculate distance to target

$$d = \frac{f_{IF} * c * T}{2B}$$

Where f_{IF} is the average frequency of the IF signal over time window T and B is the chirp sweep bandwidth

Fig. 1: Illustration of FMCW radar signal processing techniques.

となる jllji

FMCW velocity estimation

Use phase difference of td-IF signal to calculate distance to target

$$v = \frac{\lambda * \omega}{4\pi T}$$

Where ω is the phase difference of the IF signal over time window ${\it T}$

Fig. 1: Illustration of FMCW radar signal processing techniques

 $^{^1 \}text{https:} // \text{web.eecs.utk.edu} / \text{ jliu/publications/yang2020muid.pdf} \, \text{\tiny } \text{\tiny$

FMCW AoA estimation

Use phase difference of td-IF signal to calculate AoA for multi-target differentiation. Uses single-path model with linear antenna array.

$$\theta = \sin^{-1} \frac{\lambda * \omega}{2\pi \delta}$$

Where δ is the inter-antenna spacing.

Fig. 1: Illustration of FMCW radar signal processing techniques.

FMCW stationary interference removal and denoising

The frequency / velocity response associated with stationary objects is constant over time, so can be estimated as the average response in the range-doppler domain. This is calculated over a sliding window then subtracted from the recieved signal.

Noise is removed using a high-pass filter.

(c) Interference removal result. (d) Denoised range-Doppler signal Fig. 3: Illustration of interference removal and denoising.

Å |II| ▼ 1 https://web.eecs.utk.edu/ jliu/publications/yang2020mu \dot{i} d.pdf

Example preprocessed range-doppler signal

Fig. 5: Correspondence between the actual step and lower limb feature map.

000 jllji ≜ |II|I |▼ 1 https://web.eecs.utk.edu/ jliu/publications/yang2020mu $_{
m id}$.pdf $_{
m i}$

П

User detection and separation

- K-Means clustering is used to detect and separate users for multiple values of K
- ► Number of users is chosen as *K* which minimizes Calinski-Harabasz index

Fig. 7: Scatters of two abreast users in the spatial domain.

Fig. 8: Mixed steps of two abreast users (left), and separation results (right).

 $^{^1}$ https://web.eecs.utk.edu/ jliu/publications/yang2020muid.pdf $_{
m I}$ $^{\prime}$

Step segmentation

500 75 Frame Index

250

となる jllji 1 https://web.eecs.utk.edu/ jliu/publications/yang2020mu $_{\rm id}$.pdf $_{\rm in}$

Gait Profiling

Model is trained in supervised setting

Fig. 10: Illustration of the proposed CNN structure.

jllji $^{1} https://web.eecs.utk.edu/jliu/publications/yang2020mu id.pdf {\tt bold} = {\tt bold}$

000

Results: single-user

Average single-step ID accuracy: 97.7%

Fig. 13: Confusion matrix of single-user identification.

Fig. 17: Identification accuracy with different upper limb behaviors.

となる jilji Å |II| ▼ 1 https://web.eecs.utk.edu/ jliu/publications/yang2020mu $_{
m id}$.pdf $_{
m i}$

Results: multi-user

- Average single-step ID accuracy (3 users): 84%
- Average 5-step ID accuracy (3 users): 96%

(a) Average accuracy of 1, 3, and 5- (b) Average FP rate of 1, 3, and 5-step step identifiction.

Fig. 15: Performance of multi-user identification.

となる jilji

_