連假隊

7109018022 魏良育 7109018028 魏敏如

Gantt Chart 4/29 5/6 5/13 5/20 6/17 5/27 6/10 ((₍₁))) **©** 資料前處理 模型建立 模型參數調整 探索資料 資料視覺化 標準化資料 使用不同模型比較預測準確 此处添加详细文本描述,文 檢視資料遺失值 Over-sampling 率 字内容建议与标题相关尽量

Under-sampling

檢視資料不平衡狀況

简洁生动......

Kaggle – Credit Card Fraud Detection

- 資料集來源 : https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
- 簡介: 信用卡公司能夠識別欺詐性信用卡交易非常重要,這樣客戶就不會為他們沒有購買的商品付費。
- 信用卡欺詐,也作為信用欺詐,廣泛描述信貸或銀行信息的盜竊,盜賊使用訊息來製作欺詐性交易或獲得不當利益。

About dataset

- •歐洲持卡人在2013年9月通過信用卡進行的交易。
- · 284,807 筆交易中有 492 筆欺詐。 數據集高度不平衡,正類(欺詐)佔所有交易的 0.172%。
- Feature :

v1-v28: 為使用PCA獲得的主成分

Time:每次交易與第一次交易之間經過的秒數

Amount:交易金額

• Label:

Class: 1為Fraud、0:為Not Fraud

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	. V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	-0.018307	0.277838	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	149.62	0
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	-0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	2.69	0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	0.247998	0.771679	0.909412	-0.689281	-0.327642	-0.139097	-0.055353	-0.059752	378.66	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	-0.108300	0.005274	-0.190321	-1.175575	0.647376	-0.221929	0.062723	0.061458	123.50	0
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	-0.009431	0.798278	-0.137458	0.141267	-0.206010	0.502292	0.219422	0.215153	69.99	0

5 rows × 31 columns

- 交易金額相對較小。平均值約為88美元。
- 沒有 "null"值。
- 大多數交易是非欺詐(99.83%)的時間, 而DataFrame中的時間發生欺詐事務(0.17%)。

No Frauds 99.83 % of the dataset Frauds 0.17 % of the dataset Amount of Label 0: 284315 Amount of Label 1: 492

Amount 284807.000000 count 88.349619 mean 250.120109 std 0.000000 min 25% 5.600000 50% 22.000000 77.165000 75% 25691.160000 max

<class 'pandas.core.frame.DataFrame'> RangeIndex: 284807 entries, 0 to 28480 Data columns (total 31 columns):

Data	columns (cocal of columns).									
#	Column	Non-Null Count Dtype								
0	Time	284807 non-null float64								
1	V1	284807 non-null float64								
2	V2	284807 non-null float64								
3	V3	284807 non-null float64								
4	V4	284807 non-null float64								
5	V5	284807 non-null float64								
6	V6	284807 non-null float64								
7	V7	284807 non-null float64								
8	V8	284807 non-null float64								
9	V9	284807 non-null float64								
10	V10	284807 non-null float64								
11	V11	284807 non-null float64								
12	V12	284807 non-null float64								
13	V13	284807 non-null float64								
14	V14	284807 non-null float64								
15	V15	284807 non-null float64								
16	V16	284807 non-null float64								
17	V17	284807 non-null float64								
18	V18	284807 non-null float64								
19	V19	284807 non-null float64								
20	V20	284807 non-null float64								
21	V21	284807 non-null float64								
22	V22	284807 non-null float64								
23	V23	284807 non-null float64								
24	V24	284807 non-null float64								
25	V25	284807 non-null float64								
26	V26	284807 non-null float64								
27	V27	284807 non-null float64								
28	V28	284807 non-null float64								
29	Amount	284807 non-null float64								
30	Class	284807 non-null int64								
dtype	es: float	:64(30), int64(1)								

memory usage: 67.4 MB

資料分布情況

-每兩feature的o與1分布

資料分布情況

-每一feature的o與1分布

資料標準化

- ·特徵v1~v28皆已做PCA轉換,故已做Scaled
- ·剩下Amount與Time尚未做Scaled

count	284807.000000	284807.000000
mean	94813.859575	88.349619
std	47488.145955	250.120109
min	0.000000	0.000000
25%	54201.500000	5.600000
50%	84692.000000	22.000000
75%	139320.500000	77.165000
max	172792.000000	25691.160000

資料標準化

Method 1: StandardScaler標準差標準化

標準化數據減去均值後,除以標準差,經過處理後數據符合標準常態分佈(mean = o, std = 1)

$$x = \frac{x - mean}{std}$$

適用於:本身服從常態分佈的數據

Outlier: 基本可用於有Outlier的情況, 但在計算變異數和平均值時, Outlier仍會影響計算

• Method 2: MinMaxScaler極差標準化

將特徵縮放到給定的最小值和最大值之間,也可以將每個特徵的最大絕對值轉換至單位大小,對原始數據 的線性轉換,將數據歸一到[o,1]之間

$$x = \frac{x - min}{max - min}$$

適用於:分布範圍較穩定的數據,當新數據的加入導致max/min變化,則需重新定義Outlier:因為Outlier會影響最大值或最小值,因此對outlier非常敏感

• Method 3: RobustScaler 穩健標準化

刪除中位數,並根據百分位數範圍(默認值為IQR:四分位間距)縮放數據 x-median

$$x = \frac{x - median}{75_{th} \ quntile - 25_{th} \ quantile}$$

適用於:包含許多異常值的數據

Outlier: RobustScaler利用IQR進行縮放來弱化Outlier的影響

資料標準化

StandardScaler

	std_scaled_amount	std_scaled_time
0	0.244964	-1.996583
1	-0.342475	-1.996583
2	1.160686	-1.996562
3	0.140534	-1.996562
4	-0.073403	-1.996541

2. MinMaxScaler

	minmax_scaled_amount	minmax_scaled_time
0	0.005824	0.000000
1	0.000105	0.000000
2	0.014739	0.000006
3	0.004807	0.000006
4	0.002724	0.000012

3. RobustScaler

	rob_scaled_amount	robx_scaled_time
0	1.783274	-0.994983
1	-0.269825	-0.994983
2	4.983721	-0.994972
3	1.418291	-0.994972
4	0.670579	-0.994960

Sampling methods

- Random Oversampling(ROS)
- 2. SMOTE
- 3. Borderline SMOTE
- 4. SVM SMOTE
- 5. ADASYN

- Random Undersampling(RUS)
- 2. Ensemble Methods
- 3. NearMiss
- 4. Tomek Links
- 5. ENN

Sampling methods OverSampling

Random Oversampling

SMOTE

(synthetic minority oversampling technique)

對少數類樣本進行分

析並根據少數類別的

樣本來人工合成新樣

本並添加到數據集中

缺點:

1. 選取的少數類樣本周圍

也都是少數類樣本,則新

合成的樣本不會提供太多

有用信息

2.選取的少數類樣本周圍 都是多數類樣本,這類的

樣本可能是噪音

Borderline

SMOTE 1

僅使用邊界上的少數樣

將少數樣本分為三類: Safe \ Danger \ Noise 僅對Danger樣本過採樣

1. 在K近鄰隨機選擇少 數類樣本

Borderline SMOTE 2

ADASYN

(adaptive synthetic sampling)

隨機地抽取少數類別 的樣本,並將其複製 後加入數據集當中

缺點:易造成過擬和

本來合成新樣本,從而 改善樣本的類別分布

2. 在K 近鄰 隨機 選擇 任 一樣本

在合成樣本時,為使用k 近鄰中的任一樣本

給每個少數類樣本施加 一個權重, 周圍的多數 類樣本越多則權重越高 依此機制自動決定每個 少數類樣本需要產生多 少合成樣本

· Time/V1資料分布情況

Split train/test set

Train / test : 80/ 20

	未做Over sampling	Oversampling			
Y_sampled	{0: 284315, 1: 492}	{0: 284315, 1: 284315}			
X_train.shape	(227845, 30)	(454904, 30)			
X_test.shape	(56962, 30)	(113726, 30)			
y_train	{0: 227440, 1: 405}	{0: 227389, 1: 227515}			
y_test	{0: 56875, 1: 87}	{0: 56926, 1: 56800}			

Sampling methods UnderSampling

Random Under sampling

從多數類樣本中隨機選取一些 剔除掉

缺點:剔除的樣本可能包含重要訊息,致使學習出來的模型效果 不好

ENN

(Edited Nearest Neighbours)

對於屬於多數類的一個樣本, 如果其K近鄰點有超過一半不 屬於多數類,則這個樣本會被 剔除

缺點:無法控制欠採樣的數量

1

2

Sampling methods UnderSampling

· Time/V1資料分布情況

Model selection

Train / test : 80/ 20

	Original	RUS-0.05%	ENN		
Y_sampled	{0: 284315, 1: 492}	{0: 9840, 1: 492}	{0: 283892, 1: 492}		
X_train.shape	(227845, 30)	(8265, 30)	(227507, 30)		
X_test.shape	(56962, 30)	(2067, 30)	(56877, 30)		
y_train	{0: 227440, 1: 405}	{0: 7872, 1: 393}	{0: 227103, 1: 404}		
y_test	{0: 56875, 1: 87}	{0: 1968, 1: 99}	{0: 56789, 1: 88}		

XGBoost 預測

- · XGBOOST使用預設參數,並且重複"抽樣->訓練"進行10次,再 取平均計算各SCORE。
- · SCORE包含以下:
 - Precision
 - Recall
 - F1-Score

Precision	Original		Over-sampling		SMC	DTE	Borderline- SMOTE		Borderline2- SMOTE	
										Y=1
資料無Scaled	0.999661	0.960808	1	0.999865	0.999982	0.99975 4	0.999772	0.999912	0.999736	0.999807
StandardScaler 標準差標準化	0.999675	0.952663	1	0.999877	1	0.99949	0.999807	0.999859	0.999771	0.999684
MinMaxScaler 極差標準化	0.999645	0.947307	1	0.999877	0.999982	0.99931	0.999772	0.999771	0.999753	0.999702
RobustScaler 穩健標準化	0.999684	0.947500	1	0.999877	1	0.99954	0.999772	0.999806	0.999789	0.999614

Precision	Original		ADASYN							
	Y=o	Y=1	Y=o	Y=1	Y=o	Y=1	Y=o	Y=1	Y=o	Y=1
資料無Scaled	0.999661	0.960808	0.999982	0.999772						
StandardScaler 標準差標準化	0.999675	0.952663	1	0.999279						
MinMaxScaler 極差標準化	0.999645	0.947307	0.999982	0.999172						
RobustScaler 穩健標準化	0.999684	0.947500	0.999982	0.999065						

Recall	Original		Over-sampling		SMOTE		Borderline- SMOTE		Borderline2- SMOTE	
										Y=1
資料無Scaled	0.999942	0.807385	0.999865	1	0.999754	0.999982	0.999912	0.999771	0.999806	0.999737
StandardScaler 標準差標準化	0.999930	0.813131	0.999877	1	0.999491	1	0.999859	0.999806	0.999683	0.999772
MinMaxScaler 極差標準化	0.999921	0.800198	0.999877	1	0.999332	0.999982	0.999772	0.999771	0.999701	0.999754
RobustScaler 穩健標準化	0.999926	0.808102	0.999877	1	0.999543	1	0.999807	0.999771	0.999612	0.999789

Recall	Original		ADASYN							
	Y=o	Y=1	Y=o	Y=1	Y=o	Y=1	Y=o	Y=1	Y=o	Y=1
資料無Scaled	0.999942	0.807385	0.999771	0.999982						
StandardScaler 標準差標準化	0.999930	0.813131	0.999279	1						
MinMaxScaler 極差標準化	0.999921	0.800198	0.999175	0.999982						
RobustScaler 穩健標準化	0.999926	0.808102	0.999071	0.999982						

F1-Score	Original		Over-sampling		SMOTE		Borderline- SMOTE		Borderline2- SMOTE	
										Y=1
資料無Scaled	0.999801	0.877440	0.999932	0.999932	0.999868	0.999868	0.999842	0.999842	0.99971	0.99972
StandardScaler 標準差標準化	0.999802	0.877384	0.999939	0.999938	0.999745	0.999745	0.999833	0.999833	0.999727	0.999728
MinMaxScaler 極差標準化	0.999783	0.867560	0.999939	0.999938	0.999657	0.999657	0.999772	0.999771	0.999727	0.999728
RobustScaler 穩健標準化	0.999805	0.872267	0.999939	0.999938	0.999772	0.999771	0.999789	0.999789	0.999701	0.999702

F1-Score	Original		ADASYN							
	Y=o	Y=1	Y=o	Y=1	Y=o	Y=1	Y=o	Y=1	Y=o	Y=1
資料無Scaled	0.999801	0.877440	0.999877	0.999877						
StandardScaler 標準差標準化	0.999802	0.877384	0.999639	0.999640						
MinMaxScaler 極差標準化	0.999783	0.867560	0.999579	0.999577						
RobustScaler 穩健標準化	0.999805	0.872267	0.999527	0.999524						

結論

- · 經由不平衡資料處理後,資料的對於"1"的各種指標分數都明顯 提升。
- · 其中ADASYN的分數為最高,並且資料無經過標準化處理的分數為最高。