Want more revision exercises? Get MathsFit for \$2.95/topic - New from projectmaths.

2014 16a

Use Simpson's Rule with five function values to show that $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sec dx \approx \frac{\pi}{9} \left(3 + \frac{8}{\sqrt{3}} \right).$

х	$-\frac{\pi}{3}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$
f(x)	2	$\frac{2}{\sqrt{3}}$	1	$\frac{2}{\sqrt{3}}$	2

$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sec x \, dx \approx \frac{\frac{\pi}{6}}{3} [2 + 2 + 2(1) + 4(\frac{2}{\sqrt{3}} + \frac{2}{\sqrt{3}})]$$

$$= \frac{\pi}{18} [6 + \frac{16}{\sqrt{3}})]$$

$$= \frac{\pi}{9} [3 + \frac{8}{\sqrt{3}})]$$
State Mean:

State Mean: **1.40**

Board of Studies: Notes from the Marking Centre

This part was generally attempted well with most candidates recognising the appropriate form of Simpson's Rule and using five function values. The most successful attempts started with candidates filling out a table of values and using correct weightings.

Common problems were:

- not correctly evaluating the sec function values, particularly $\sec\left(-\frac{\pi}{3}\right)$ and $\sec\left(-\frac{\pi}{3}\right)$;
- mixing up the order of the weightings;
- finding the value of 'h' in the table by identifying correct x values, but then attempting to use $h = \frac{b-a}{n}$ incorrectly to find a different value for 'h';
- using values for 'h' expressed in degrees.

http://www.boardofstudies.nsw.edu.au/hsc exams/2014/pdf doc/2014-maths.pdf

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.