

Prediction improvement of non-stationary time series analysis based on transformation

Seung-Ho Ryu^a · Young Eun Jeon^b · Suk-Bok Kang^b · Jung-In Seo^c

^a Department of Data Science, Andong National University, Andong, Korea

^b Department of Statistics, Yeungnam University, Gyeongsan, Korea

^c Department of Information Statistics, Andong National University, Andong, Korea

1. Abstract

Motivation and Purpose

- A Box-Cox transformation is used to enhance the predictive performance of a non-stationary time series dataset, but it has a disadvantage of depending on a power parameter to be estimated from the dataset.
- A scaled logit transformation has no parameters to be estimated from the dataset, so it is stressfree in parameter estimation.
- This study aims to demonstrate the superiority of the scaled logit transformation, compared to the Box-Cox transformation.

Practical Example

• We demonstrate the applicability and excellence of the scaled logit transformation using the bike sharing dataset obtained from University of California, Irvine (UCI) Machine Learning Repository (https://archive.ics.uci.edu).

2. Methodology

2.1. Transformations

■ Box-Cox Transformation (BC Trans)

$$Y_t^* = \begin{cases} \frac{Y_t^{\lambda} - 1}{\lambda}, & \lambda \neq 0, \\ \log Y_t, & \lambda = 0, \end{cases}$$

where $Y_t > 0$ and λ is a power parameter.

☐ Scaled Logit Transformation (SL Trans)

$$Y_t^* = \log\left(\frac{Y_t - a}{b - Y_t}\right), a < Y_t < b,$$

where a and b are constants that must be assigned.

2.2. Traditional Time Series (TTS) Models

☐ Dynamic Harmonic Regression (DHR)

$$Y_t = \beta_0 + \sum_{i=1}^{j} \beta_{i,t} x_{i,t} + \sum_{i=1}^{K} \left[\alpha_{i,t} \sin\left(\frac{2\pi i t}{m}\right) + \gamma_{i,t} \cos\left(\frac{2\pi i t}{m}\right) \right] + \eta_t,$$

where Y_t is the observed time series data point at time t,

 $eta_{i,t}$ is the coefficient for the *i*th covariate $x_{i,t}$ at time t,

 $lpha_{i,t}$ and $\gamma_{i,t}$ are unobserved stochastic time variable parameters,

 η_t is modeled as an autoregressive integrated moving average (ARIMA) process,

 $\it m$ is a seasonal frequency.

☐ ARIMA Model

$$(1 - \emptyset_1 B - \dots - \emptyset_p B^p)(1 - B)^d \eta_t = (1 + \theta_1 B + \dots + \theta_q B^q) \epsilon_t, \epsilon_t \sim WN(0, \sigma_\epsilon^2),$$

where $\,p$ and $\,q$ are the orders of the autoregressive and moving average terms,

d is the number of differences required to make a stationary time series.

☐ Seasonal-Trend decomposition using LOESS Model (STLM)

$$Y_t = A_t + S_t,$$

where A_t is the seasonally adjusted component (trend + remainder components) and predicted by regression with ARIMA error,

 \mathcal{S}_t is a seasonal component and predicted by the seasonal naive method.

☐ Bayesian Structural Time Series (BSTS)

$$Y_{t} = \mu_{t} + \tau_{t} + \boldsymbol{\beta}^{T} \boldsymbol{x}_{t} + \varepsilon_{t}, \varepsilon_{t} \sim N(0, \sigma_{\varepsilon}^{2}),$$

$$\mu_{t+1} = \mu_{t} + \delta_{t} + u_{t}, u_{t} \sim N(0, \sigma_{u}^{2}),$$

$$\delta_{t+1} = \delta_{t} + v_{t}, v_{t} \sim N(0, \sigma_{v}^{2}),$$

$$\tau_{t+1} = -\sum_{s=1}^{S-1} \tau_{t+1-s} + w_{t}, w_{t} \sim N(0, \sigma_{w}^{2}),$$

where μ_t is the level of the trend at time t,

 δ_t is the slope of the trend at time t,

 au_t is the seasonal component.

2.3. Machine Learning (ML) Models

☐ Random Forest (RF)

RF is a ML technique that uses the bootstrap and feature bagging methods to create multiple decision trees and then collects the results of individual decision trees to make a final prediction.

☐ Extreme Gradient Boosting (XGBoost)

XGBoost is a ML technique based on a boosting algorithm that improves predictive performance by sequentially learning new models that complement errors in previous models.

☐ Light Gradient Boosting Machine (LightGBM)

LightGBM is an improved ML technique that has less memory and learning time than XGBoost, using methods such as gradient-based one-side sampling and exclusive feature bundling.

3. Analysis

3.1. Bike Sharing Dataset

- The bike sharing dataset consists of the hourly count of rental bikes between 2011 and 2012 in the bikeshare system with the corresponding weather and seasonal information.
 - [DataSoruce: UCI (https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset)]
- Using the bike sharing dataset, we predict the hourly count of rental bikes.
- □ Values for transformations

 BC Trans
 SL Trans

 $\lambda = 0.198$ a = -0.001, b = 1522.193

- Because the number of rental bikes has a value of **0** or more,
- a is assigned as -0.001, by subtracting a very small number from 0.
- Because almost all values exist within 3 standard deviations assuming that the time series dataset is normality, b is assigned as $\max(Y_{Training}) + 3\sigma = 1522.193$, where $Y_{Training}$ is the number of rental bikes of the bike sharing training dataset, σ is a standard deviation of $Y_{Training}$.

☐ Schematic Diagram

Parameter estimation for λ & Assignment for a, b

Features

Feature	Type	Explaination				
mnth	Categorical	Month (1 to 12)				
hour	Numerical	Hour (0 to 23)				
holiday	Categorical	Holiday or not				
workingday	Categorical	(Holiday + Weekend) or not				
weathersit	Categorical	Weather				
temp	Numerical	Temperature in celsius				
atemp	Numerical	Feeling temperature in celsius				
hum	Numerical	Humidity				

Metrics

- Mean Percentage Error (MPE)
- Mean Absolute Percentage Error (MAPE)
- Symmetric Mean Absolute Percentage Error (SMAPE)

3.2. Results

□ Parameter Estimation for TTS Models

	Original Scale			BC Trans			SL Trans		
	DHR	STLM	BSTS	DHR	STLM	BSTS	DHR	STLM	BSTS
$\overline{eta_{hour}}$	0.66	-0.21	0.00	0.01	0.00	0.15	0.01	0.00	0.11
$\beta_{month.2}$	13.32	-12.99	0.00	0.66	0.22	0.00	0.22	0.07	0.00
$\beta_{month.3}$	4.74	-13.21	0.00	-1.00	0.16	0.00	-0.75	-0.02	0.00
$\beta_{month.4}$	-5.14	-32.75	0.00	-2.44	0.12	0.00	-1.43	0.00	0.00
$\beta_{month.5}$	-12.23	-78.13	0.00	-1.82	-0.06	0.00	-1.14	-0.04	0.00
$\beta_{month.6}$	-4.33	-74.38	0.00	-0.89	0.04	0.00	-0.77	-0.01	0.00
$eta_{month.7}$	-10.71	-62.77	0.00	-0.79	0.10	0.00	-0.64	0.01	0.00
$\beta_{month.8}$	-49.29	-73.48	0.00	-1.94	-0.04	0.00	-1.11	-0.05	0.00
$\beta_{month.9}$	-15.87	-66.34	0.00	-1.29	-0.28	0.00	-0.81	0.06	0.00
$\beta_{month.10}$	8.00	-85.85	0.00	-0.33	0.07	0.00	-0.30	-0.07	0.00
$\beta_{month.11}$	-4.40	-55.36	0.00	-0.31	0.14	0.00	-0.36	0.02	0.00
$\beta_{month.12}$	4.29	-26.02	0.00	-0.29	0.27	0.00	-0.41	0.11	0.00
$\beta_{holiday.1}$	-4.98	-10.84	0.00	-0.00	-0.01	0.00	0.01	-0.02	0.00
$eta_{workingday.1}$	-5.74	3.54	0.00	-0.17	0.02	0.00	0.00	0.00	0.00
$eta_{weather sit.2}$	0.41	-4.52	0.00	0.02	-0.04	0.00	0.01	-0.02	0.00
$eta_{weather sit.3}$	-2.38	-16.96	0.00	-0.04	-0.25	-0.21	-0.02	-0.14	-0.41
β_{temp}	58.14	6.66	0.00	0.51	0.04	1.45	0.57	0.00	0.56
eta_{atemp}	-6.11	5.93	0.00	0.05	0.12	0.00	-0.02	0.08	0.00
β_{hum}	-19.42	-40.02	0.00	-0.30	-0.75	-1.85	-0.25	-0.37	-1.10
$lpha_1$	15.90	_	_	0.00	_	_	0.00	_	_
$lpha_2$	-8.98	_	_	0.14	_	_	0.08	_	_
γ_1	-27.89	_	_	-0.41	_	_	-0.17	_	_
$_{-}$	29.93	_	_	0.50	_	_	0.24	_	

Training Dataset

Transformation

Data Loading

Preprocessing

Test Dataset

☐ Optimal Hyperparameters for ML Models

RF	XGBoost	LightGBM			
mtry = 12	nrounds = 949	nrounds = 949			
ntree = 500	eta = 0.181	eta = 0.181			
nodesize = 7	$max_depth = 10$	$max_depth = 10$			
	gamma = 0.547	gamma = 0.547			
	$min_child_weight = 11$	$min_child_weight = 11$			
	subsample = 0.944	subsample = 0.944			
	colsample by tree $\equiv 0.646$	$colsample_bynode = 0.646$			

☐ TTS Models

ML Models

4. Conclusion

- The ML models have higher accuracy than the TTS models, and RF model with SL Trans has the best predictive performance among models.
- Our results strongly support the usefulness of the SL Trans and the ML models in modeling and predicting the non-stationary time series dataset.
- The SL Trans is applicable to various real non-stationary datasets such as a temperature prediction dataset.