Geometry in Context — Word Problems

Show clear steps, label units, and box final answers. Unless told otherwise, use π exactly.

Formulas & Concepts (for reference)

Perimeter: rectangle $P = 2(\ell + w)$; square P = 4s; triangle P = a + b + c; circle $C = 2\pi r$ (semicircle perimeter $= \pi r + 2r$).

Area: rectangle $A = \ell w$; square $A = s^2$; triangle $A = \frac{1}{2}bh$; circle $A = \pi r^2$; sector $A = \frac{\theta}{2\pi} \cdot \pi r^2 = \frac{1}{2}r^2\theta$ (with θ in radians).

Surface Area: cube $S=6s^2$; right cylinder $S=2\pi r^2+2\pi rh$; sphere $S=4\pi r^2$; cone $S=\pi r^2+\pi r\ell$ (lateral + base).

Volume: rectangular prism $V = \ell wh$; cube $V = s^3$; right cylinder $V = \pi r^2 h$; sphere $V = \frac{4}{3}\pi r^3$; cone $V = \frac{1}{3}\pi r^2 h$.

Scaling idea: If all lengths scale by k, then perimeter/lengths scale by k, areas by k^2 , volumes by k^3 .

Units: area in unit², volume in unit³; surface area in unit².

Testing Mindset

When a problem looks "plug-and-play," pause: draw a quick sketch, mark what is known/unknown, and check whether you need the whole figure or only part of it (e.g., a semicircle edge includes the diameter).

1.	Fence and arc. A garden is shaped like a rectangle of length ℓ and width w topped with a semicircle of radius $\frac{w}{2}$ (the diameter sits on the rectangle's top). Only the outer boundary is fenced. Write the total fence length P in terms of ℓ and w . Then evaluate P for $\ell=10$ m and $w=6$ m.
2.	Same area, different shapes. A square and a circle have the same area. If the square has side s , find the circle's radius r in terms of s , then compute the numerical value when $s=8$ cm (exact form with π).

3.	You changed the wrong number. A student doubles the radius of a cylinder instead of doubling the height. By what factor does the volume change? By what factor does the surface area change? Briefly justify using scaling ideas.
4.	Paint budget. You can paint at most 600ft^2 of surface. A cylindrical water tank has radius 5 ft and height h ft. You must paint the entire outside (top + bottom + curved side). What is the largest whole number h you can fully paint? (Use $\pi = 3.14$)
5.	Two-box shipping. A company ships using either a cube box of side s or a rectangular prism of dimensions $2s \times s \times s$.
	(a) Compare their <i>volumes</i> . Which holds more (or are they equal)? Show work.
	(b) Compare their surface areas. Which uses more cardboard?
	Georgian (transliteration) for Problem 5: kartuli targmani (Problem 5): kompania agzavnis an kubisebur quts gverdit s , an martkutkha parallelepiped zomebit $2s \times s \times s$
	 sheadaret mati motsulobebi. romeli itevs mets (tu tanabaria)? sheadaret mati zedapiris fartoebebi. romeli moitkhovs met muqaos?

6. **Trim the slice.** A circular pizza of radius 10 in has a sector slice with central angle 72°. What fraction of the pizza is this? What is the area and arc length of the slice

Geometry Applications (Word Problems)

Page 3 of 6

Algebra 2 — Test 2

10. Lawn path. A rectangular lawn is 20 m by 12 m. A path of uniform width x m runs along the outside edge around all four sides (a larger rectangle). The path area is 136 m^2 .

Geometry Applications (Word Problems)

Page 4 of 6

Algebra 2 — Test 2

13. Same volume, different shapes. A cube and a sphere have the same volume. Express the sphere's radius r in terms of the cube's side s. Then determine which has the smaller

Geometry Applications (Word Problems)

Page 5 of 6

Algebra 2 — Test 2

17.	Arc-only fencing. A dog run is made from two straight segments of 7 ft and 5 ft that meet at a point, plus a circular arc connecting their free ends centered at the meeting point (i.e., a sector boundary). If the angle between the straight segments is 60°, how much fencing is used in total?
18.	A cone inside a sphere. A right circular cone is inscribed in a sphere of radius R so that the cone's base lies on the sphere's "equator" and its tip is at the "north pole." Express the cone's height and base radius in terms of R , then its volume in terms of R .

Sanity check: Units tell a story. Make sure yours match the story.