Package 'rhep'

April 27, 2015

chisq.pois mdaplot minota multcoef tfreq			 	 	 				 		 			 	 	 	
emtd mdaplot minota multcoef			 	 	 				 		 			 	 	 	-
emtd mdaplot minota multcoef			 	 	 				 		 			 	 	 	
emtd mdaplot																 . :	
emtd																	•
* *															 		
chisa nois																	
chisq.comb																	
chisq.bin chisq.comb																	
R topics document																	
NeedsCompilation no																	
Suggests testthat																	
LazyData true																	
License GPL-3																	
Imports shiny, sn																	
Depends R (>= 3.1.2)																	
Description Miscellaneous	κħ	ınctı	ions														
Maintainer Raul Eyzaguiri		•	_		-668	gma:	LI.	CO	m>								
				•	0												
Author Raul Eyzaguirre																	
Version 0.1.0	040																
	ode																

Description

This function performs a chi-square goodness of fit test for a binomial distribution.

Usage

```
chisq.bin(x, f, n = NULL, p = NULL)
```

2 chisq.comb

Arguments

X	The observed values.
f	The observed counts.
n	Binomial parameter n.
р	Binomial parameter pi.

Details

If p is not specified, then it is estimated from the data. If there are categories with expected counts less than 5 or less than 1 a warning is shown.

Value

It returns a table with the contribution to the chi-square statistic for each category, the chi-square statistic, the degrees of freedom, and the p-value.

Author(s)

Raul Eyzaguirre.

Examples

```
x <- 0:6
f <- c(334, 369, 191, 63, 22, 12, 9)
chisq.bin(x, f, n = 10)
```

chisq.comb

Combine categories for a chi-square goodness of fit test

Description

This function combines categories for a chi-square goodness of fit test.

Usage

```
chisq.comb(chisq.test, combine)
```

Arguments

chisq.test The output of a chi-square goodness of fit test by functions chisq.bin or chisq.Pois.

combine A vector with the numbers of the categories to combine.

Details

This function only cobines categories on the extremes. It is recommended to combine categories when the expected counts are too low. As a rule of thumb, the chi-square approximation for the test statistic can be unreliable if some categories have expected counts smaller than 5 or if there is any with an expected count smaller than 1.

chisq.pois 3

Value

It returns a table with the contribution to the chi-square statistic for each category, the chi-square statistic, the degrees of freedom, and the p-value.

Author(s)

Raul Eyzaguirre.

Examples

```
x <- 0:6
f <- c(334, 369, 191, 63, 22, 12, 9)
output <- chisq.bin(x, f, n = 10)
# Combine categories 5, 6, and 7
chisq.comb(output, combine = c(5, 6, 7))</pre>
```

chisq.pois

Chi-square goodness of fit test for Poisson distribution

Description

This function performs a chi-square goodness of fit test for a Poisson distribution.

Usage

```
chisq.pois(x, f, lambda = NULL)
```

Arguments

x The observed valuesf The observed counts.lambda Poisson parameter.

Details

If lambda is not specified, then it is estimated from the data. If there are categories with expected counts less than 5 or less than 1 a warning is shown.

Value

It returns a table with the contribution to the chi-square statistic for each category, the chi-square statistic, the degrees of freedom, and the p-value.

Author(s)

Raul Eyzaguirre.

Examples

```
x <- 0:9
f <- c(6, 16, 48, 77, 72, 72, 46, 39, 15, 9)
chisq.pois(x, f)
```

4 emtd

_	 +	٦

Location and scale parameters estimation of a t distribution

Description

EM algorithm to estimate the location and scale of a t distribution for given degrees of freedom.

Usage

```
emtd(y, v, initmu = mean(y), inits = sd(y), tol = 1e-04)
```

Arguments

У	The data.
V	Degrees of freedom.
initmu	Initial value for the location parameter
inits	Initial value for the scale parameter.
tol	Tolerance for the iterative procedure.

Details

By default the initial values are set to the sample mean and standard deviation.

Value

It returns the estimated location and scale parameters for each iteration.

Author(s)

Raul Eyzaguirre.

Examples

```
# Some data y = c(10,12,16,15,15,17,20,21,16,24,13,22,14,15,16,16,17,18,19,18,23,20,30) # Estimates for a t(10) emtd(y, 10)
```

mdaplot 5

mdaplot	Simulate and plot from a normal distribution
---------	--

Description

This function simulates 1000 random samples from a skew normal distribution for specified values of the mean, standard deviation and skewness parameter.

Usage

```
mdaplot()
```

Details

It uses package sn to simulate the data and package shiny for the web layout.

Value

It returns a histogram and a boxplot for the simulated data.

Author(s)

Raul Eyzaguirre.

minota

Predice la nota final del curso EP1 y EP2

Description

Esta funcion predice la nota final del curso basado en datos historicos y un modelo de regresion lineal.

Usage

```
minota(curso = NULL, vez = NULL, pp = NULL, prob = 0.95, pa1 = NULL,
  pa2 = NULL, pa3 = NULL, pa4 = NULL, pi1 = NULL, pi2 = NULL,
  ep = NULL)
```

Arguments

curso	1 o 2 (corresponde a EP1 o EP2).
vez	Numero de veces que se lleva el curso (1, 2 o 3).
рр	Promedio ponderado.
prob	Probabilidad para la prediccion.
pa1	Practica de aula 1.
pa2	Practica de aula 2.
pa3	Practica de aula 3.
pa4	Practica de aula 4.

6 multcoef

pi1	Practica integrada 1.
pi2	Practica integrada 2.
ер	Examen parcial.

Details

No es necesario introducir todos los parametros, el modelo solo considera los que son introducidos.

Value

Devuelve la nota final estimada con un intervalo de prediccion, y el coeficiente de determinacion del modelo.

Author(s)

Raul Eyzaguirre.

Examples

```
minota(curso = 1, pa1 = 12)
```

multcoef

Multinomial coefficient

Description

Computes the number of permutations of a multiset M of size n.

Usage

```
multcoef(n, counts)
```

Arguments

n The size of M.

counts The counts for the repeated elements.

Details

For a set M with k unique elements with associate counts n_1, n_2, \ldots, n_k , you only need to specify in the counts argument the counts that are bigger than 1.

Value

It returns the multinomial coefficient

$$\frac{n!}{n_1!n_2!\dots n_k!}$$

where

$$n=n_1+n_2+\ldots+n_k.$$

tfreq 7

Author(s)

Raul Eyzaguirre.

Examples

```
# The number of permutations of the letters in the set M = {A,A,A,B,B,C} multcoef(6, c(3,2,1)) # Same result with multcoef(6, c(3,2))
```

tfreq

Frequency distribution table

Description

Constructs a frequency distribution table for a quantitative variable.

Usage

```
tfreq(data, limits = NULL, open = "right")
```

Arguments

data The observations to construct the frequency distribution table.

limits The class limits.

open Where to leave the class limits open, left or right. Defaults to right.

Details

If class limits are not specified, the Sturges' rule is used to calculate the number of class intervals k:

$$k \approx 1 + 3.3 \log n$$

Then, the left limit for the first class interval is set to the minimum value of the data, the range r is computed and the size of the class intervals is defined by:

$$c \approx \frac{r}{k}$$

where c is rounded up with the same number of decimal places as the data.

Value

It returns a frequency distribution table with columns for class mark, absolute and relative frequencies, and cumulative absolute and relative frequencies.

Author(s)

Raul Eyzaguirre.

8 tfreq

Examples

```
# Some random data from a normal population with mean 10 and standard deviation 1
set.seed(1)
datos <- rnorm(100, 10, 1)
# Data with 3 decimal places
datos <- round(datos, 3)
# A summary of the data
summary(datos)
# Frequency table with 6 specified limits
tfreq(datos, c(7, 8, 9, 10, 11, 12, 13))
# Default method
tfreq(datos)</pre>
```

Index

```
chisq.bin, 1
chisq.comb, 2
chisq.pois, 3
emtd, 4
mdaplot, 5
minota, 5
multcoef, 6
tfreq, 7
```