Cell, Volume 138

Supplemental Data

Transposition into Replicating DNA

Occurs through Interaction

with the Processivity Factor

Adam R. Parks, Zaoping Li, Qiaojuan Shi, Roisin M. Owens, Moonsoo M. Jin, and Joseph E. Peters

Table S1. Strains used in the study

E. coli Strains	Genotype	Reference
	araD139 ∆(argF-lac)169 rpsL150 relA1	(Casadaban, 1976)
MC4100	flhD5301 deoC1 ptsF25 rbsR22 e14	
	Δ (fimB-fimE)632::IS1 Δ (fruK-yeiR)725	
NLC28	MC4100 Val ^R	(McKown et al.,
112020		1988)
NLC51	NLC28 Val ^R recA56	(McKown et al.,
NEOST		1988)
BB101	B F- ompT hsdS _B (r _B ⁻ m _B ⁻) gal dcm	(Chivers and Sauer,
DD 101	⊿slyD (DE3)	1999)
BLR21(DE3)	BL21(DE3) srl::Tn10 ∆recA	Mark Sutton
SY2	∆lac X74 rpsL araD139 ∆(ara-leu)7697	(Ohmori et al., 1995)
0.2	galU galK hsr⁻ hsm⁺sulA::lacZ'YA::Kan ^R	
JP1386	NLC28 <i>∆ara714</i>	(Peters and Craig,
5. 1000		2001)

AP330	JP1386 sulA::lacZ'YA::Kan ^R	JP1386 X (P1)SY2
	JP1386 sulA::lacZ'YA::frt::Cm ^R ::frt	AP330 X λRED
		"recombineered"
AP389		with PCR product
AF309		JEP191/JEP192
		(Datsenko and
		Wanner, 2000)
	JP1386 sulA::lacZ'YA::frt	Cam ^R cassette
		removed from
		AP389 by
AP427		expression of FLP
AF421		recombinase from
		pCP20 (Cherepanov
		and Wackernagel,
		1995)
STL3607	AB1157 <i>recF400</i> ::Kan ^R	(Lovett et al., 2002)
AD461	AP427 recF400::Kan ^R	AP 427 X (P1)
AP461		STL3607
Yeast Strains	Genotype	Reference
EGY40	MATa ura3-52 trp1-1 leu2-3,112	(Liachko and Tye,
[pSH18-34]	[pSH18-34]	2005)

Table S2. Primers used in this study

Primer		
name	Primer sequence	Use
	5' - ATT TTC GTA TTA GCT TAC GAC GCT ACA	Left end Tn7 primer for
JEP3	CCC - 3'	mapping transposition
	5' - ACT TTA TTG TCA TAG TTT AGA TCT ATT	Right end Tn7 primer for
JEP4	TTG - 3'	mapping transposition
JEP129	5' – CGG GTG AGG GAC ATT ACA GT – 3'	Amplicon for cloning β
	5' – ATG AAA TTT ACC GTA GAA CGT GAG CA	
JEP130	- 3'	Amplicon for cloning β
	5' – TTA ATT AAA AAT AAT GAC CGA GCT AGC	Introducing the Q122A
JEP149	TCT AAC GCT GGG – 3'	mutation into TnsE
	5' – TTA ATT AAA AAT AAT GAC CGA GCT AGC	Introducing the L123A
JEP150	TCT GCC TGT GGG – 3'	mutation into TnsE
	5' – TTA ATT AAA AAT AAT GAC CGA GCT GCC	Introducing the L125A
JEP151	TCT AAC TGT GGG – 3'	mutation into TnsE
	5' – TTA ATT AAA AAT GCT GAC CGA GCT AGC	Introducing the L129A
JEP152	TCT AAC TGT GGG - 3'	mutation into TnsE
	5' – TTA ATT AAA GCT AAT GAC CGA GCT AGC	Introducing the F130A
JEP153	TCT AAC TGT GGG – 3'	mutation into TnsE
	5' – CAG AAA TAG GAG TTA ATT GCA AAT AAT	Introducing the L131A
JEP155	GAC CGA GCT AG – 3'	mutation into TnsE
	5'- AGA AAA ACT CAT CGA GCA TCA AAT GAA	Amplicon for replacing the
JEP191	ATGAAA CTG CAA TTT ATT CAT A GT GTA	Kan ^R cassette with a <i>frt</i> -Cam ^R -

	GGC TGG AGC TGC TTC-3'	frt cassette
	5'-ATG AGC CAT ATT CAA CGG GAA ACG TCT	Amplicon for replacing the
	TGC TCG AGG CCGCGA TTA AAT TCA TAT	Kan ^R cassette with a <i>frt</i> -Cam ^R -
JEP192	GAA TAT CCT CCT TAG -3'	frt cassette
	5'- GGGG ACA AGT TTG TAC AAA AAA GCA	
	GGC TTC GAA GGA GAT AGA ACC ATG GTT	TnsE fusions for use in the two
JEP272	AGG CTA GCT ACA TTT AAT GAC – 3'	hybrid assay
	5'- GGGG AC CAC TTT GTA CAA GAA AGC TGG	TnsE fusions for use in the two
JEP273	GTT TTA ATG CGT AAA TTG CTC TC – 3'	hybrid assay
	5'- GGGG ACA AGT TTG TAC AAA AAA GCA	
	GGC TTC GAA GGA GAT AGA ACC ATG AAA	β fusions for use in the two
JEP275	TTT ACC GTA GAA CG – 3'	hybrid assay
JEP247	5' – AAT CTC CCT CCC ACA AGC AGT AAC - 3'	Construction of pGAP
	5' – CCT CAG CAA TGC TTT CAC CAC CTC	
JEP248	AGC TAT CCG CGG TAT TCC AGA CGA - 3'	Construction of pGAP
	5' – GCT GAG GTG GTG AAA GCA TTG CTG	
JEP249	AGG AGC TGA AAC AAG GCG GGA CTC – 3'	Construction of pGAP
JEP250	5' – CGC GCA CCA GAG AAG AAC CC -3'	Construction of pGAP
		Complementary to the
		removed 20-nt ssDNA upon
JEP345	5' – GCA ATG CTT TCA CCA CCT CA -3'	making the gap
	5' - GGGG ACA AGT TTG TAC AAA AAA GCA	
	GGC TTC GAA GGA GAT AGA ACC ATG AAT	δ fusions for use in the two
JEP278	CGG TTG TAC CCG GAA C – 3'	hybrid assay

	5' - GGGG AC CAC TTT GTA CAA GAA AGC	δ fusions for use in the two
JEP279	TGG GTT TCA ACC GTC GAT AAA TAC GTC – 3'	hybrid assay
	5' – AGG TTG TTG TAC AGA ATA TGA TTC GGT	
JEP286	TGT ACC CGG AAC – 3'	Construction of pTYB12-δ
	5' – TAA AGA TCT CGA GTC AAC CGT CGA TAA	
JEP265	ATA CG– 3'	Construction of pTYB12-δ
	5' – GGT GGT CTC GAG TTA AAG ATG AGG	
JEP266	AAC CGG– 3'	Construction of pTYB12-δ'
	5' – CCC ACT TGT ACA GAA TAT AGA TGG TAT	
JEP287	CCA TGG TTA CG- 3'	Construction of pTYB12-δ'
	5' – CCT TCC TGT ACA GAA TGC TGG TCA TAT	
JEP268	GAG TTA TCA GGT CTT AGC CCG- 3'	Construction of pTYB12-γ
	5' – GCG GCT CTC GAG TCA CTC CTT TTT TGC	
JEP269	TTT GGT TGC TCC- 3'	Construction of pTYB12-γ

Table S3. Plasmids used in this study

Name	Relevant information
pGPS2.1	Mini-Tn7::Cam ^R containing plasmid with a conditional origin of replication.
	(NEB)
pBTM ^{gw}	pBTM16 derivative containing a gateway cassette, 2μ, LEU2, GAD4-AD
	(Liachko and Tye, 2005)
pGAD ^{gw}	pGAD2F derivative containing a gateway cassette, 2μ, TRP1, LEXA-DBD
	(Liachko and Tye, 2005)
pBAD24	pBR322 derivative containing a multi-cloning site under the control of an
	arabinose promoter, ampicillin resistant cloning vector (Guzman et al.,
	1995)
pTA106	pSC101 replicon, ampicillin resistant cloning vector
рβНК	a pET16b (Novagen) derivative containing a protein kinase motif and His ₆
	tag fused to the N-terminus of β , ampicillin resistant (Kelman et al., 1995)
pCP20	Temperature sensitive plasmid with thermal induction of FLP
	recombinase (Cherepanov and Wackernagel, 1995)
pKD46	Temperature sensitive plasmid with the λ Red proteins under arabinose
	control (Datsenko and Wanner, 2000)
pKD3	Plasmid encoding ampicillin resistance that allows PCR amplification of a
	gene cassette encoding chloramphenicol resistance flanked by frt sites
	recognized by the FLP recombinase (Datsenko and Wanner, 2000)
pCAW11	pET22b (Novagen) derivative encoding TnsE, ampicillin resistant
	(Wolkow et al., 1996)
pCW4	pACYC184 derivative encoding TnsABCDE, tetracycline resistant
	(Waddell and Craig, 1988)

pCW4mm76	pACYC184 derivative encoding TnsABCDE with a miniMu insertion in the
	TnsE gene, tetracycline resistant (Waddell and Craig, 1988) (For data
	presented in text regarding TnsD-mediated transposition with dnaN
	overexpression)
pCW15	pACYC184 derivative encoding TnsABC, chloramphenicol resistant
	(Waddell and Craig, 1988) (For data shown in Figure 5.A.)
pJRC210	pBBR322 derived plasmid encoding <i>dnaN</i> (Sutton, 2005)(For data
	presented in text regarding TnsD-mediated transposition with <i>dnaN</i>
	overexpression)
pJP104	pTA106 derivative encoding TnsE, ampicillin resistant (Peters and Craig,
	2001)(For data shown in Figure 3a)
pJP131	pBAD24 derivative encoding TnsE, ampicillin resistant (Peters and Craig,
	2001)(For data shown in Figure 7)
pQS100	pTA106 vector encoding TnsABC constructed by cloning the 4919 bp of
	Pvu II fragment encoding TnsABC from pCW4 into the Sma I site of
	pTA106 with the <i>tnsA</i> gene proximal to the vector <i>Hind</i> III site. (Shi et al.,
	2008)(For data shown in Figure 5.B.)
pQS102	pTA106 vector encoding TnsABC+E constructed by cloning the 4919 bp
	of Pvu II fragment encoding TnsABC from pCW4 into the Sma I site of
	pJP104 vector with the <i>tnsC</i> gene proximal to the vector <i>Hind</i> III site. (Shi
	et al., 2008)(For data shown in Figure 5.B.)
	Plasmid pGAD with <i>tnsE</i> fused to the yeast transcription activation
	domain. Gateway clone using PCR product from primers JEP272 and
pARP30	JEP273 and pJP131 as template. (For data shown in Figure 2 and 4.A.).
pARP35	Plasmid pBTM with eta fused to the GAL4 binding domain. Gateway clone

	using PCR product from primers JEP275 and JEP276 and E. coli
	chromosome (NLC28) as template. (For data shown in Figure 2 and 4.A.)
	Plasmid pGAD with holA fused to the yeast transcription activation
	domain. Gateway clone using PCR product from primers JEP278 and
	JEP279 and <i>E. coli</i> chromosome (NLC28) as template. (For data shown
pARP36	in Figure 2).
pAP8	Plasmid pGEM-T containing the <i>dnaN</i> gene.
	pACYC184 dnaN gene constructed by cloning an Eag I fragment from
	pAP8 into the <i>Eag</i> I site within the Tet ^R gene of pACYC184. The direction
	of β transcription is the same as that of the Tet^R gene. (For data shown in
pARP63	Figure 5.B.)
	pTYB12 containing holB fused to the Sce VMA intein tag and a chitin
	binding domain for affinity purification and subsequent tag cleavage of the
	δ' protein. A PCR product from primers JEP287 and JEP267 was
pAP42	digested with BsrG I and Xho I and cloned into pTYB12 (NEB).
	pTYB12 containing HolA fused to the to the Sce VMA intein tag and a
	chitin binding domain for affinity purification and subsequent tag cleavage
	of the δ protein. A PCR product from primers JEP286 and JEP265 was
pAP43	digested with <i>BsrG</i> I and <i>Xho</i> I and cloned into pTYB12 (NEB).
	pTYB12 containing the γ encoding portion of the <i>dnaX</i> gene fused to the
	Sce VMA intein tag and a chitin binding domain for affinity purification and
	subsequent tag cleavage of the γ protein. A PCR product from primers
	JEP268 and JEP269 was digested with BsrG I and Xho I and cloned into
	pTYB12 (NEB). A stop codon was introduced at amino acid position 431
pAP44	and the terminal amino acid was changed to glutamate to produce the γ

	protein alone and not τ.
pGEM-	
attTn7	pGEM-T cloning vector containing the <i>attTn7</i> locus (Finn et al., 2007).
	pGEM-T containing attTn7 from E. coli, and two Nb. BbvC I recognition
	sequences separated by 20 bp. An overlapping PCR product generated
	by using primer pairs JEP247/JEP248 and JEP249/JEP250 digested with
	Ava I and Nhe I replaces the ~200bp Ava I-Nhe I fragment of pGEM-
	attTn7 (Finn et al., 2007). This vector is used to make the target DNA with
pGAP	single-stranded gap (Figure 6).

Table S4. Sequences used in computational analysis (Parks and Peters, 2007).

Host Species	Accession #
E.coli	CAA35687
P.stuartii	ABG21684
S. putrefaciens 200	EAY53112
I. loihiensis L2TR	AA83441
S. baltica OS155	ABN63817
S. putrefaciens CN-32.2	ABP77648
S. putrefaciens CN-32.1	ZP_00814471
S. loihica PV-4	ABO25690
P. carbinolicus	YP_358326
H. chejuensis KCTC2396	YP_438100
A. ferrooxidans	AAC21663
B. cereus ATCC10987	AAS39122
Staphylococcus sp.693-2	ABG49263
Immobile Ac/T-DNA vector pNU40	0ABB59986.1
Tn917 transposase sequence	AF061336

SUPPLEMENTAL REFERENCES

Casadaban, M. J. (1976). Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104, 541-555.

Cherepanov, P. P., and Wackernagel, W. (1995). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene *158*, 9-14.

Chivers, P. T., and Sauer, R. T. (1999). NikR is a ribbon-helix-helix DNA-binding protein. Protein Sci 8, 2494-2500.

Datsenko, K. A., and Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A *97*, 6640-6645.

Finn, J. A., Parks, A. R., and Peters, J. E. (2007). Transposon Tn7 directs transposition into the genome of filamentous bacteriophage M13 using the element-encoded TnsE protein. J Bacteriol *189*, 9122-9125.

Guzman, L.-M., Belin, D., Carson, M. J., and Beckwith, J. (1995). Tight regulation, modulation, and highlevel expression by vectors containing the arabinose P_{BAD} promoter. J Bact *177*, 4121-4130.

Kelman, Z., Yao, N., and O'Donnell, M. (1995). Escherichia coli expression vectors containing a protein kinase recognition motif, His6-tag and hemagglutinin epitope. Gene *166*, 177-178.

Liachko, I., and Tye, B. K. (2005). Mcm10 is required for the maintenance of transcriptional silencing in Saccharomyces cerevisiae. Genetics *171*, 503-515.

Lovett, S. T., Hurley, R. L., Sutera, V. A., Aubuchon, R. H., and Lebedeva, M. A. (2002). Crossing over between regions of limited homology in Escherichia coli: RecA-dependent and RecA-independent pathways. Genetics *160*, 851-859.

Sutton, M. D., Duzen, J. M., and. Maul, R. W. (2005). Mutant forms of the Escherichia coli β sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis. Mol Microbiol *55*, 1751-1766.

McKown, R. L., Orle, K. A., Chen, T., and Craig, N. L. (1988). Sequence requirements of *Escherichia coli attTn7*, a specific site of transposon Tn7 insertion. J Bacteriol *170*, 352-358.

Ohmori, H., Saito, M., Yasuda, T., Nagata, T., Fujii, T., Wachi, M., and Nagai, K.

(1995). The pcsA gene is identical to dinD in Escherichia coli. J Bacteriol 177, 156-165.

Peters, J. E., and Craig, N. L. (2001). Tn7 recognizes target structures associated with DNA replication using the DNA binding protein TnsE. Genes & Dev 15, 737-747.

Shi, Q., Parks, A. R., Potter, B. D., Safir, I. J., Luo, Y., Forster, B. M., and Peters, J. E. (2008). DNA damage differentially activates regional chromosomal loci for Tn7 transposition in Escherichia coli. Genetics *179*, 1237-1250.

Waddell, C. S., and Craig, N. L. (1988). Tn7 transposition: two transposition pathways directed by five Tn7-encoded genes. Genes & Dev 2, 137-149.

Wolkow, C. A., DeBoy, R. T., and Craig, N. L. (1996). Conjugating plasmids are preferred targets for Tn7. Genes & Dev 10, 2145-2157.