Seminar 11

- **1.** In the real vector space \mathbb{R}^3 consider the bases $B=(v_1,v_2,v_3)=((1,0,1),(0,1,1),(1,1,1))$ and $B'=(v'_1,v'_2,v'_3)=((1,1,0),(-1,0,0),(0,0,1))$. Determine the matrices of change of basis $T_{BB'}$ and $T_{B'B}$, and compute the coordinates of the vector u=(2,0,-1) in both bases.
- **2.** In the real vector space \mathbb{R}^2 consider the bases $B = (v_1, v_2) = ((1, 2), (1, 3))$ and $B' = (v'_1, v'_2) = ((1, 0), (2, 1))$ and let $f, g \in End_{\mathbb{R}}(\mathbb{R}^2)$ having the matrices $[f]_B = \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}$ and $[g]_{B'} = \begin{pmatrix} -7 & -13 \\ 5 & 7 \end{pmatrix}$. Determine the matrices $[2f]_B$, $[f+g]_B$ and $[f \circ g]_{B'}$. (Use the matrices of change of basis.)
- **3.** In the real vector space $\mathbb{R}_2[X] = \{f \in \mathbb{R}[X] \mid degree(f) \leq 2\}$ consider the bases $E = (1, X, X^2), B = (1, X a, (X a)^2) (a \in \mathbb{R})$ and $B' = (1, X b, (X b)^2) (b \in \mathbb{R})$. Determine the matrices of change of bases T_{EB} , T_{BE} and $T_{BB'}$.
 - **4.** Let $f \in End_{\mathbb{R}}(\mathbb{R}^2)$ be defined by f(x,y) = (3x + 3y, 2x + 4y).
 - (i) Determine the eigenvalues and the eigenvectors of f.
 - (ii) Write a basis B of \mathbb{R}^2 consisting of eigenvectors of f and $[f]_B$.

Compute the eigenvalues and the eigenvectors of the (endomorphisms having) matrices:

5.
$$\begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ -4 & -8 & -2 \end{pmatrix}$$
. 6. $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$.

7.
$$\begin{pmatrix} x & 0 & y \\ 0 & x & 0 \\ y & 0 & x \end{pmatrix}$$
 $(x, y \in \mathbb{R}^*)$. 8. $\begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$ $(x \in \mathbb{R})$.

- **9.** Let $A \in M_2(\mathbb{R})$ and let λ_1, λ_2 be the eigenvalues of A in \mathbb{C} . Prove that:
- (i) $\lambda_1 + \lambda_2 = Tr(A)$ and $\lambda_1 \cdot \lambda_2 = det(A)$, where Tr(A) denotes the trace of A, that is, the sum of the elements of the principal diagonal. Generalization.
 - (ii) A has all the eigenvalues in $\mathbb{R} \iff (Tr(A))^2 4 \cdot det(A) \ge 0$.
 - (iii) Show that A is a root of its characteristic polynomial.
 - **10.** Let $A \in M_2(\mathbb{R})$ be such that $det(A + iI_2) = 0$. Show that $det(A + 2I_2) = 5$.