EXAMEN DE CÁLCULO. GRADO EN INGEN. INFORM, DEL SOFTWARE, 1-06-2021

Se ha de contestar razonadamente. Cualquier resultado (no trivial) no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario no se valorará. No se permite usar calculadora.

1)

a) Enunciar una condición suficiente (no necesaria) para que una función f no tenga asíntotas verticales.

b) Sea
$$f(x) = \frac{4 - x^2}{x\sqrt{x + 3}}$$

Obtener, caso de que existan, las ecuaciones de las asíntotas verticales de f (por la izquierda y/o por la derecha), las asíntotas horizontales y las oblicuas (en el $+\infty$ y/o en el $-\infty$). En ninguno de los casos se puede usar la regla de L'Hopital.

(0.4p.+1.3p.)

2)

a) Enunciar el teorema del valor medio de Lagrange. Interpretación geométrica.

b) Sea $f:D\subset R\to R$ una función real de variable real y sea $x_0\in D$. Definir, con lenguaje matemático, cuando f alcanza un máximo local en el punto x_0 y cuando alcanza el máximo absoluto en x_0 .

c) Sea $f(x) = \log(x^2) + \frac{2}{x}$, $x \ne 0$ Obtener, por aplicación del cálculo diferencial, el número máximo de ceros reales de f ¿Cuántos puntos críticos tiene la función f definida en el intervalo [1/2,2]? ¿Existe el máximo absoluto M de f(x), si $x \in [1/2, 2]$? Obténgase, en su caso. $(\log(2) \approx 0.7)$

(0.7p.+0.4p.+1.2p.)

3) Se considera la sucesión $\{a_n\}$ de números reales tal que $a_n = (-1)^n \sqrt[n]{b_n}$, siendo $b_n = \frac{n^2 + 1}{(n+1)!}$. Estudiar si la sucesión $\{a_n\}$ es convergente, divergente u oscilante.

(1p.)

4)

a) Demostrar que una serie $\sum_{n=1}^{\infty} a_n$, tal que $a_n \ge 0$ $\forall n$, es convergente o bien divergente a $+\infty$

b) Estudiar el carácter de las series siguientes:
$$\sum_{n=1}^{\infty} \frac{n!}{n^n} \qquad \sum_{n=1}^{\infty} \frac{\sqrt[4]{n}}{(n+2)\sqrt[3]{n}}$$

(0.4p.+1p.)

5)

a) Enunciar el 2º teorema fundamental del cálculo integral (regla de Barrow). Si la función $f(x) = e^{x^2}$ es continua en cualquier intervalo [a,b] ¿por qué no es posible resolver la integral $\int_{a}^{b} e^{x^2} dx$ usando dicha regla?

b) Sea
$$f(x) = \begin{cases} x \operatorname{sen}(x/2) & \text{si } x \le 0 \\ \operatorname{sen}^3(x) & \text{si } x > 0 \end{cases}$$

Obtener, si es posible, una función F(x) que sea una primitiva de f(x) en R y usarla para obtener la integral definida de f(x) en el intervalo $[-\pi, 2\pi]$, usando la regla de Barrow una sola vez.

(0.6p.+1.5p.)

6) Calcular el área determinada por la curva $y = \frac{4-x}{x+\sqrt{x}}$, las rectas x=1, x=9 y el eje de abscisas (usando la fórmula del cambio de variable en la integral definida).

(1.5p.)