

Co-location is the strategic combination of two or more distinct technologies such as solar, wind and storage

AUR 😂 RA

Example of physically co-located solar and battery storage assets (AC connected)

Co-locating renewables and storage projects offers benefits for individual projects as well as for the power system

Better use of scarce grid resources

Co-location reduces risks for renewables projects.... ...but can also add benefits to the battery business case... 2 Revenue diversification Hedge against capture price 5 Cost savings cannibalisation 3 Avoiding Imbalance cost 4 Generation shifting 6 Faster grid connection ...and can have an overall positive impact on the power system. 7 Reduced grid congestion 8 Avoided curtailment

Source: Aurora Energy Research 3

Co-location is improving merchant solar business case, but most capacity in Germany is build out under EEG or PPAs

Internal rate of return for assets COD 2027, with 1 MW grid connection Percentage points, pre-tax

Wind and solar net capacity additions in Germany GW

Co-located EEG-assets face restrictions, hence the business case is worse than AUR RA The merchant business case of co-located plants

Internal rate of return for assets COD 2027, with 1 MW grid connection Percentage points, pre-tax

Illustrative battery cycle with grid connection and co-location constraints

1) IRR Only for battery add-on

Source: Aurora Energy Research

The solar package introduces legislative changes which allow colocated asset within the EEG to charge from the grid

Regulation before the solar package

Regulation after the solar package

Few European countries allow grid charging for co-located projects under subsidy schemes

Source: Aurora Energy Research

