Práctica 4 – Pasaje de Mensajes

CONSIDERACIONES PARA RESOLVER LOS EJERCICIOS DE PASAJE DE MENSAJES ASINCRÓNICO (PMA):

- Los canales son compartidos por todos los procesos.
- Cada canal es una cola de mensajes; por lo tanto, el primer mensaje encolado es el primero en ser atendido.
- Por ser PMA, el *send* no bloquea al emisor.
- Se puede usar la sentencia *empty* para saber si hay algún mensaje en el canal, pero no se puede consultar por la cantidad de mensajes encolados.
- Se puede utilizar el *if/do* no determinístico donde cada opción es una condición boolena donde se puede preguntar por variables locales y/o por *empty* de canales.

```
if (cond 1) -> Acciones 1;
□ (cond 2) -> Acciones 2;
....
□ (cond N) -> Acciones N;
end if
```

De todas las opciones cuya condición sea Verdadera elige una en forma no determinística y ejecuta las acciones correspondientes. Si ninguna es verdadera, sale del if/do sin ejecutar acción alguna.

- Se debe evitar hacer *busy waiting* siempre que sea posible (sólo hacerlo si no hay otra opción).
- En todos los ejercicios el tiempo debe representarse con la función *delay*.
- 1. Suponga que N clientes llegan a la cola de un banco y que serán atendidos por sus empleados. Analice el problema y defina qué procesos, recursos y comunicaciones serán necesarios/convenientes para resolver el problema. Luego, resuelva considerando las siguientes situaciones:
 - a. Existe un único empleado, el cual atiende por orden de llegada.
 - b. Ídem a) pero considerando que hay 2 empleados para atender, ¿qué debe modificarse en la solución anterior?
 - c. Ídem b) pero considerando que, si no hay clientes para atender, los empleados realizan tareas administrativas durante 15 minutos. ¿Se puede resolver sin usar procesos adicionales? ¿Qué consecuencias implicaría?
- 2. Se desea modelar el funcionamiento de un banco en el cual existen 5 cajas para realizar pagos. Existen P clientes que desean hacer un pago. Para esto, cada una selecciona la caja donde hay menos personas esperando; una vez seleccionada, espera a ser atendido. En cada caja, los clientes son atendidos por orden de llegada por los cajeros. Luego del pago, se les entrega un comprobante. **Nota:** maximizando la concurrencia.

- 3. Se debe modelar el funcionamiento de una casa de comida rápida, en la cual trabajan 2 cocineros y 3 vendedores, y que debe atender a C clientes. El modelado debe considerar que:
 - Cada cliente realiza un pedido y luego espera a que se lo entreguen.
 - Los pedidos que hacen los clientes son tomados por cualquiera de los vendedores y se lo pasan a los cocineros para que realicen el plato. Cuando no hay pedidos para atender, los vendedores aprovechan para reponer un pack de bebidas de la heladera (tardan entre 1 y 3 minutos para hacer esto).
 - Repetidamente cada cocinero toma un pedido pendiente dejado por los vendedores, lo cocina y se lo entrega directamente al cliente correspondiente.

Nota: maximizar la concurrencia.

- 4. Simular la atención en un locutorio con 10 cabinas telefónicas, el cual tiene un empleado que se encarga de atender a N clientes. Al llegar, cada cliente espera hasta que el empleado le indique a qué cabina ir, la usa y luego se dirige al empleado para pagarle. El empleado atiende a los clientes en el orden en que hacen los pedidos, pero siempre dando prioridad a los que terminaron de usar la cabina. A cada cliente se le entrega un ticket factura. **Nota:** maximizar la concurrencia; suponga que hay una función *Cobrar()* llamada por el empleado que simula que el empleado le cobra al cliente.
- 5. Resolver la administración de las impresoras de una oficina. Hay 3 impresoras, N usuarios y 1 director. Los usuarios y el director están continuamente trabajando y cada tanto envían documentos a imprimir. Cada impresora, cuando está libre, toma un documento y lo imprime, de acuerdo con el orden de llegada, pero siempre dando prioridad a los pedidos del director. Nota: los usuarios y el director no deben esperar a que se imprima el documento.