

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

1 de Junio de 2022

Teorema.

Si $\lim_{n\to\infty} a_n = 0$ y $\{b_n\}$ es una sucesión acotada entonces

$$\lim_{n\to\infty} a_n \cdot b_n = 0.$$

Demostración Existe c>0 tal que $|b_n|\leqslant c$ para todo $n\in\mathbb{N}$. Dado cualquier $\varepsilon>0$, existe $N\in\mathbb{N}$ tal que n>N entonces $|a_n|<\varepsilon/c$. Entonces, si n>N implica que

$$|a_n \cdot b_n| = |a_n| \cdot |b_n| < (\varepsilon/c) \cdot c = \varepsilon$$
.

Luego
$$\lim_{n\to\infty} a_n b_n = 0$$
.

EJEMPLO 1 Si $a_n = \frac{1}{n}$ y $b_n = \text{sen}(n)$ entonces $\{b_n\}$ no es convergente, sin embargo como $-1 \leqslant b_n \leqslant 1$, se tiene

$$\lim_{n\to\infty}(a_n\cdot b_n)=\lim_{n\to\infty}\frac{\mathrm{sen}(n)}{n}=0.$$

Teorema.

Si $\lim_{n\to\infty} a_n = L$ y $\lim_{n\to\infty} b_n = M$ entonces:

Teorema.

Si
$$p > 0$$
 entonces $\lim_{n \to \infty} \frac{1}{n^p} = 0$.

Demostración Dado $\varepsilon > 0$ debemos encontrar N tal que si n > N entonces

$$\left|\frac{1}{n^p}-0\right|=\frac{1}{n^p}$$

debe ser menor que ε . Imponiendo la condición, vemos que

$$\frac{1}{n^p} < \varepsilon \Longleftrightarrow \frac{1}{\varepsilon^{1/p}} < n$$

Por la propiedad arquimediana, dado $a=1/\varepsilon^{1/p}$ existe $N\in\mathbb{N}$ tal que a< N. Luego, si n>N entonces

$$\frac{1}{\varepsilon^{1/p}} < n \Longleftrightarrow \frac{1}{n^p} < \varepsilon .$$

- **EJEMPLO 2** Determine el límite de la sucesión $a_n = \frac{n}{n+1}$
- **EJEMPLO 3** Determine el límite de la sucesión $b_n = \frac{n^3 + 2n^2 4}{n^4 + 2}$

Observación Si P(x) y Q(x) son polinomios reales, entonces para encontrar el límite de el cociente entre dos polinomios en la variable n, esto es

$$\lim_{n\to\infty}\frac{P(n)}{Q(n)}$$

basta con amplificar por $\frac{1}{n^p}$ donde p es el grado del polinomio Q

Límites y desigualdades

Teorema. (Teorema del Sandwich)

Si
$$a_n\leqslant b_n\leqslant c_n$$
 para todo $n\geqslant n_0$ y $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=L$, entonces $\lim_{n\to\infty}b_n=L$.

Demostración Dado cualquier $\varepsilon > 0$, existen N_1 y N_2 tales que si $n > N_1 \Longrightarrow L - \varepsilon < a_n < L + \varepsilon$ y $n > N_2 \Longrightarrow L - \varepsilon < c_n < L + \varepsilon$. Sea $N = \max\{N_1, N_2\}$. Entonces, si n > N implica que

$$L - \varepsilon < a_n \le b_n \le c_n < L + \varepsilon \Longrightarrow b_n \in (L - \varepsilon, L + \varepsilon)$$

luego $\lim_{n\to\infty} b_n = L$.

Límites y desigualdades

EJEMPLO 4 Calcule
$$\lim_{n\to\infty} \frac{\ln(n)}{n}$$
.

Solución Por la desigualdad fundamental del logaritmo

$$\ln(x) \leqslant x - 1 < x$$

En particular, para todo $n \in \mathbb{N}$ se cumple

$$0 \leqslant \ln(\sqrt{n}) \leqslant \sqrt{n} \iff 0 \leqslant \ln(n^{1/2}) \leqslant n^{1/2}$$

$$\iff 0 \leqslant \frac{1}{2} \ln(n) \leqslant n^{1/2}$$

$$\iff 0 \leqslant \frac{\ln(n)}{n} \leqslant \frac{2n^{1/2}}{n}$$

$$\iff 0 \leqslant \frac{\ln(n)}{n} \leqslant \frac{2}{n^{1/2}}$$

Por el teorema del Sandwich se sigue que $\lim_{n\to\infty} \frac{\ln(n)}{n} = 0$

Límites y desigualdades

EJEMPLO 5 Calcule $\lim_{n\to\infty} \frac{n!}{n^n}$.

EJEMPLO 6 Calcular $\lim_{n\to\infty} a_n$, donde

$$a_n = \frac{n+1}{n^2+1} + \frac{n+2}{n^2+2} + \cdots + \frac{n+n}{n^2+n}$$
.