

Data Science Overview

What is Machine Learning?

Machine Learning is the "Field of study that gives computers the ability to learn without being explicitly programmed "

Arthur Samuel, 1959

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. "

Tom Mitchell, 1997

Machine Learning is the art of programming computers such, that they can learn from data.

Programming paradigms

spam in an automatic manner

Answers

Why do we use Machine Learning?

ML techniques are applicable in a variety of fields:

- Image recognition
- Speech recognition
- SemanticSpeech recognition
- Pattern recognition
- Process optimization

Why do we use Machine Learning?

Examples of different ML projects.:

- Diagnosis of hard-to-detect diseases
- prevention or detection of criminal behavior
- Prediction of house prices
- Product recommendation for customers
- Filter/classification of texts (spam filter)
- Prediction of future revenue based on performance metrics
- Prediction of customer interest in certain products
- Customer segmentation
- Development for Intelligent Gaming Bots / intelligent NPCs

Types of Machine Learning

Quelle: Peng et al., 2021

https://www.researchgate.net/figure/The-main-types-of-machine-learning-Main-approaches-include-classification-and_fig1_354960266

Example:

Preconditions for Machine Learning

For predictions we need:

- Training data / predictors (features)
- Outcome variable (target)
- Data in a **numerical** format

The user needs:

- Awareness of model limitations
- Awareness of data set limitations
- Awareness of problem statement

Example:

df_feature, X
df_target, y

0...1

Target Vector (y)

Basic approach in Machine Learning

13 Quito 2016-06-29 02:47:56 -78.510291 -0.141160 -78.466496 -0.122125 1180 6986.445737

Goal: Formulation of prediction

- Dog or Cat?
- Traffic density for just-in-time production (best route)
- Which machinery components need maintenance/replacement soon?
- Which employees will quit soon?
- Which customers might be interested in which product?
- Taxi waiting times

•

New Data

			featu	ires_	aim				targe	t_aim
	Α	В	С	D	E	F	G	н	v	vait_sec
0	Quito	2016-12-01 10:28:18	-78.511757	-0.197635	-78.499418	-0.199470	260	1576.018785	0	?
1	Quito	2017-02-01 04:19:34	-78.498426	-0.134412	-78.482535	-0.211699	1152	10360.934339	1	?
2	Quito	2017-01-05 05:59:54	-78.525115	-0.237964	-78.528946	-0.234163	106	848.602220	2	?
3	Quito	2016-10-15 08:27:24	-78.495506	-0.186236	-78.510663	-0.189334	336	2029.879987	3	?
4	Quito	2016-12-08 08:33:23	-78.500753	-0.191887	-78.492498	-0.199611	287	1776.787481	4	7
5	Quito	2017-02-23 09:51:03	-78.464270	-0.127246	-78.494709	-0.113480	605	4915.353813	5	?
6	Quito	2016-12-14 06:21:43	-78.499175	-0.137640	-78.490467	-0.103600	745	4753.201104	6	?
7	Quito	2017-01-16 08:01:16	-78.496449	-0.133146	-78.487182	-0.169828	794	5109.236034	7	?
8	Quito	2017-05-08 08:46:10	-78.480584	-0.198707	-78.485616	-0.176475	439	3031.625527	8	?
9	Quito	2016-09-16 12:00:21	-78.551900	-0.259176	-78.537133	-0.250046	296	2657.219761	9	?
10	Quito	2016-10-03 09:20:37	-78.493355	-0.185061	-78.462988	-0.163322	500	5793.903277	10	?
11	Quito	2016-09-07 08:07:34	-78.469686	-0.136556	-78.497103	-0.200596	965	10169.594365	11	?
12	Quito	2017-06-30 07:51:34	-78.470360	-0.130801	-78.482835	-0.170711	764	5825.002281	12	?
13	Quito	2017-06-30 08:27:10	-78.478410	-0.192965	-78.482544	-0.186297	152	1201.169041	13	?
14	Quito	2017-07-13 10:05:35	-78.547637	-0.261817	-78.537277	-0.249575	255	2513.179573	14	?

		_	feat	ure	s_tr	ain			targ	et_t	train
	Α	В	С	D	E	F	G	н		wait_sec	
0	Quito	2016-08-25 12:40:00	-78.411326	-0.309814	-78.455283	-0.287551	678	7363.299869	(38	
1	Quito	2016-12-17 05:29:50	-78.512510	-0.221165	-78.478725	-0.196938	750	6450.734909	1	1 210	
2	Quito	2017-03-16 05:36:36	-78.467560	-0.163823	-78.483523	-0.094844	1274	9445.014567	-	666	
3	Quito	2016-10-20 09:25:57	-78.472038	-0.139989	-78.494747	-0.169194	615	5772.514970	:	312	
4	Quito	2016-12-01 12:58:06	-78.493910	-0.176009	-78.504876	-0.180504	308	1719.218262	4	4 70	
5	Quito	2017-01-11 01:51:04	-78.494189	-0.153841	-78.465081	-0.159089	582	3820.278633	!	5 595	
6	Quito	2017-07-01 02:17:56	-78.457157	-0.095768	-78,497726	-0.160567	1251	11716.503975		277	
7	Quito	2017-04-01 12:16:00	-78.461659	-0.096617	-78.485796	-0.176556	1113	11572.746079	7	7 839	
8	Quito	2017-01-09 04:31:41	-78.507261	-0.182553	-78.481459	-0.176753	491	3514.035664		3 267	
9	Quito	2017-03-29 06:40:52	-78.480522	-0.173560	-78.473197	-0.168500	146	1377.085439	9	91	
10	Quito	2017-02-02 06:24:55	-78.520887	-0.250102	-78.567757	-0.301510	1496	10928.025008	10	1372	
11	Quito	2017-07-31 07:08:05	-78.494964	-0.251684	-78.436138	-0.198676	1088	12435.259168	11	1 259	
12	Quito	2016-08-11 09:57:36	-78.476153	-0.178950	-78.496747	-0.199636	442	4590.024057	12	208	
13	Quito	2016-06-29 02:47:56	-78.510291	-0.141160	-78.466496	-0.122125	1180	6986.445737	13	306	
14	Quito	2016-09-06 10:33:28	-78.500458	-0.197328	-78.509207	-0.185257	343	2315.077281	14	4 151	

		_	feat	ure	s_te	est			targ	et_i
	Α	В	С	D	E	F	G	н		wait_sec
0	Quito	2016-08-25 12:40:00	-78.411326	-0.309814	-78.455283	-0.287551	678	7363.299869	0	38
1	Quito	2016-12-17 05:29:50	-78.512510	-0.221165	-78.478725	-0.196938	750	6450.734909	1	210
2	Quito	2017-03-16 05:36:36	-78.467560	-0.163823	-78.483523	-0.094844	1274	9445.014567	2	666
3	Quito	2016-10-20 09:25:57	-78.472038	-0.139989	-78.494747	-0.169194	615	5772.514970	3	312
4	Quito	2016-12-01 12:58:06	-78.493910	-0.176009	-78.504876	-0.180504	308	1719.218262	4	70
5	Quito	2017-01-11 01:51:04	-78.494189	-0.153841	-78.465081	-0.159089	582	3820.278633	5	595
6	Quito	2017-07-01 02:17:56	-78.457157	-0.095768	-78.497726	-0.160567	1251	11716.503975	6	277
7	Quito	2017-04-01 12:16:00	-78.461659	-0.096617	-78.485796	-0.176556	1113	11572.746079	7	839
8	Quito	2017-01-09 04:31:41	-78.507261	-0.182553	-78.481459	-0.176753	491	3514.035664	8	267
9	Quito	2017-03-29 06:40:52	-78.480522	-0.173560	-78.473197	-0.168500	146	1377.085439	9	91
10	Quito	2017-02-02 06:24:55	-78.520887	-0.250102	-78.567757	-0.301510	1496	10928.025008	10	1372
11	Quito	2017-07-31 07:08:05	-78.494964	-0.251684	-78.436138	-0.198676	1088	12435.259168	11	259
12	Quito	2016-08-11 09:57:36	-78.476153	-0.178950	-78.496747	-0.199636	442	4590.024057	12	208
13	Quito	2016-06-29 02:47:56	-78.510291	-0.141160	-78.466496	-0.122125	1180	6986.445737	13	306
14	Quito	2016-09-06 10:33:28	-78.500458	-0.197328	-78.509207	-0.185257	343	2315.077281	14	151

		_	_	_	_	_	_		–
	Α	В	С	D	E	F	G	н	
0	Quito	2016-12-01 10:28:18	-78.511757	-0.197635	-78.499418	-0.199470	260	1576.018785	
1	Quito	2017-02-01 04:19:34	-78.498426	-0.134412	-78.482535	-0.211699	1152	10360.934339	
2	Quito	2017-01-05 05:59:54	-78.525115	-0.237964	-78.528946	-0.234163	106	848.602220	
3	Quito	2016-10-15 08:27:24	-78.495506	-0.186236	-78.510663	-0.189334	336	2029.879987	
4	Quito	2016-12-08 08:33:23	-78.500753	-0.191887	-78.492498	-0.199611	287	1776.787481	
5	Quito	2017-02-23 09:51:03	-78.464270	-0.127246	-78.494709	-0.113480	605	4915.353813	
6	Quito	2016-12-14 06:21:43	-78.499175	-0.137640	-78.490467	-0.103600	745	4753.201104	
7	Quito	2017-01-16 08:01:16	-78.496449	-0.133146	-78.487182	-0.169828	794	5109.236034	
8	Quito	2017-05-08 08:46:10	-78.480584	-0.198707	-78.485616	-0.176475	439	3031.625527	
9	Quito	2016-09-16 12:00:21	-78.551900	-0.259176	-78.537133	-0.250046	296	2657.219761	
10	Quito	2016-10-03 09:20:37	-78.493355	-0.185061	-78.462988	-0.163322	500	5793.903277	
11	Quito	2016-09-07 08:07:34	-78.469686	-0.136556	-78.497103	-0.200596	965	10169.594365	
12	Quito	2017-06-30 07:51:34	-78.470360	-0.130801	-78.482835	-0.170711	764	5825.002281	
	0	2017-06-30 08:27:10	70.470410	0.102065	-78.482544	0.106207	152	1201.169041	

- Test data is trested like new, unknown data behandelt
- Information from test data is not allowed to inform the training process (**Data Leakage**)

Basic approach in Machine Learning

Not enough <u>volume</u> of training data

ML techniques need a great number of data points in order to work well. Even for simple tasks, thousands of examples are needed to learn. More complex tasks like image recognition even use millions of labeled data points.

Training data is not representative

If the training data is not representative for the abundance of real life situations the system might be confronted with, the model will make "bad" preditions/decisions

Data of inferior quality

A lot of missing data, outliers, erronous data, noise (random and irrelevant shape of data, that are useless for prediction) impede pattern recognition

Irrelevant features

Training data should be comprised of enough relevant and not too many irrelevant features. This is why feature selection and feature engineering are very important steps in the workflow.

Overfitting

Model works well on training data, but not on test or validation data. This means that model is bad at generalization, too closley fitted to training data, not abstract enough.

Reasons might be:

- Not enough training data volume
- Too much noise/irrelavant information in training data
- Model complexity might be too high, learns noise in training data as if it were pattern

Overfitting

How to avoid overfitting:

- Cross validation
- Higher training data volume
- Reduce noise in training data (errors, outliers, irrelevant features)
- Simplification of model:
 - Choice of simpler model (e.g. Linear instead of polynomial model)
 - Reduction/Selection of features
- Regularization (= restriction of model parameters)
 - Ridge-/ Lasso Regression
 - Early Stopping (ANN, Gradient-Boosted Decision Tress models like LightGBM, XGBoost, AdaBoost or CatBoost)
 - Pruning (identifying functions and parameters with (strong) effect on prediction)
- Ensembling: combination of different predictive models to get more accurate results (Bagging, Boosting, Voting, Stacking, Blending)

Appropriate fitting

Regression

Underfitting

The modell doesn't work well on either training nor test/validation data. This means that the model is not able to learn the given data structure/recognize inherent patterns.

Reasons might be:

- Problem is represented too superficially (degree of simplification is too high)
- Too much noise or errors
- Model too strongly distorted, relation between features and target cannot be captures appropriately
- Model too simple (e.g. Linear model trained for complex scenarios)

Underfitting

How to avoid underfitting:

- Choose more complex model with more parameters
- Create more meaningful features (Feature Engineering)
- Reduce restrictions (e.g. Increase parameter space)

Bias-variance tradeoff

Underfitted models show a high bias – they produce inaccurate results for training data as well as testand validation data.

Overfitted moels show high variance – they produce accurate results for training data, but not for testand validation data..

Goal: balance between under – and overfitting + minimization of variance and bias.

source:

Klassifizierung Regression

Overfitting

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html

Fehler	Overfitting	Appropriate fitting	Underfitting
Training	Low	Low	High
Test	High	Low	High

ML Training is an iterative process

Summary

- Data Science is applicable in a great variation of fields
- Domain knowledge is vitally important for successful Data Science projects
- We split data into train and test sets, in order to be able to evaluate and improve our predictions
- Data cleaning is a big challenge
- Creation of prediction is iterative, not linear
- There are several possibilities of performance problems (over- or underfitting)

Literature recommendation

Data Science and Python:

- Vanderplas, J. (2016): Python Data Science Handbook: Essential Tools for Working with Data.
 O'Reilly.
 - -> Online verfügbar (inkl. Notebooks) auf dem GitHub-Account des Autors: https://jakevdp.github.io/PythonDataScienceHandbook/
- Müller, A. C./ Guido, S. (2016): Introduction to Machine Learning with Python. O'Reilly.
- Géron, A. (2020): Praxiseinstieg Machine-Learning mit Scikit-Learn, Keras und TensorFLow. O'Reilly.
- Gallatin, K./ Albon, C. (2023): Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning. O'Reilly.
 - -> gibt auch Auflage von 2018 mit Albon, C. als alleinigen Autor.
- James, G. et al. (2023): An Introduction to Statistical Learning with Applications in Python. Springer.
 -> verfügbar unter: https://www.statlearning.com/
- Ng, A. (2018): Machine Learning Yearning. Technical Strategy for AI Engineers in the Era of Deep Learning. Verfügbar unter: https://github.com/ajaymache/machine-learningyearning/blob/master/full%20book/machine-learning-yearning.pdf

Literature recommendation

Platforms for ML with Python:

- stackoverflow.com
- machinelearningmastery.com
- analyticsvidhya.com

specialist journals:

- towardsdatascience.com
- medium.com

Advanced text books for mathematical/ statistical Basics:

- Grus, J. (2019): Data Science from Scratch. O'Reilly.
- Russel, S./ Norvig, P. (2021): Artificial Intelligence: A Modern Approach. Pearson Series.

