Contents

SECTION	The basics	
CHAPTER	1 ■ Why visualize?	3
1.1	BECAUSE OUR BRAINS ARE WIRED THAT WAY	3
1.2	TO HELP THE ANALYST AVOID PROBLEMS	5
1.3	TO WIN OVER THE AUDIENCE	8
1.4	WORKING ON DATA VISUALIZATION	12
1.5	A TOOLBOX	14
1.6	BE PREPARED TO SKETCH AND DISCARD	15
CHAPTER	2 • Translating numbers to images	21
2.1	LEAVES ON THE LINE: AN EXAMPLE OF VISUAL ENCODING	21
2.2	CHOOSING VISUAL PARAMETERS	27
2.3	UNDERSTANDING COLOR	30
2.4	THE LIMITATIONS OF AREAS	31
2.5	ANNOTATION	37
2.6	USER TESTING	37
Section	Statistical building blocks	
CHAPTER	3 - Continuous and discrete numbers	41
3.1	ONE VARIABLE AT A TIME	41
		vii

viii ■ Contents COMPARING UNMATCHED DATA 45 3.2 3.3 COMPARING MATCHED DATA 49 3.4 **ASSOCIATIONS** 51 CHAPTER 4 Percentages and risks 59 SHOWING ONE VARIABLE AT A TIME 59 4.1 4.2 COMPARING UNMATCHED DATA 62 4.3 COMPARING MATCHED DATA 63 **CATEGORIES WITHIN CATEGORIES** 65 4.5 ASSOCIATIONS 67 RISKS, RATES AND ODDS 70 5 - Showing data or statistics 71 CHAPTER 5.1 CHOOSING DATA OR STATISTICS 71 5.2 THE STANDARD DEVIATION 73 5.3 QUANTILES AND OTHER ROBUST STATIS-75 **TICS** 5.4 **SMOOTHING** 77 6 • Differences, ratios, correlations 81 6.1 **DIFFERENCE OR RATIO?** 81 6.2 ODDS AND THE ODDS RATIO 85 CHOOSING A BASELINE 88 6.4 CHERRY-PICKING 89 6.5 CORRELATIONS 89 Section III Specific tasks CHAPTER 7 • Visual perception and the brain 97

7.1

ATTENTION AND CLARITY

98

	Contents	■ ix
7.2	CULTURAL ASSUMPTIONS	102
7.3	LEARNING FROM OPTICAL ILLUSIONS	103
CHAPTER	8 ■ Showing uncertainty	105
8.1	THE BOOTSTRAP	105
8.2	CONFIDENCE REGIONS	103
8.3	OTHER SOURCES OF UNCERTAINTY	107
CHAPTER	9 ■ Time trends	111
9.1	MORE FORMATS AND ENCODINGS FOR	
	TIME	111
9.2	STATISTICAL CONSIDERATIONS	116
9.3	UNCERTAINTY OVER TIME	119
9.4	STATISTICAL TIME SERIES MODELS	119
CHAPTER	10 ■ Statistical predictive models	123
10.1	LINEAR REGRESSION MODELS	124
	LOGISTIC REGRESSION MODELS	127
	SEMI- AND NON-PARAMETRIC MODELS	131
	HOW GOOD IS THAT MODEL?	135
10.5	USES OF COMPUTER SIMULATION	135
CHAPTER	11 • Machine learning techniques	137
11.1	ENSEMBLES, BAGGING AND BOOSTING	138
11.2	CLASSIFICATION AND REGRESSION TREES	138
11.3	RANDOM FORESTS	142
11.4	SUPPORT VECTOR MACHINES	144
11.5		145
11.6	IMAGE DATA	146
CHAPTER	12 • Many variables	149

x ■ Contents

12.1	SMALL MULTIPLES	149
12.2	IMPRESSIONS OF 3-D	150
12.3	DISTANCES	151
12.4	PROJECTIONS INTO TWO DIMENSIONS	155
12.5	CLUSTER ANALYSIS	158
12.6	OTHER APPROACHES	161
CHAPTER	13 ■ Maps and networks	163
13.1	MAPPING BASICS	163
	DATA ON TOP OF MAPS	167
	SPATIAL MODELS AND UNCERTAINTY	171
	NETWORKS	173
CHAPTER	14 ■ Interactivity	177
14.1	WEB PAGES AND JAVASCRIPT	177
14.2	FORMS OF INTERACTIVITY	178
14.3	METHODVIZ	181
14.4	RUNNING THE ANALYSIS TOO	181
14.5	SECURITY AND CONFIDENTIALITY	182
CHAPTER	15 ■ Big data	185
15.1	TOO BIG	186
	TOO FAST	189
CHAPTER	16 • Visualization as part of a bigger pa	ıck-
	age	191
16.1	THINK ABOUT IT	191
		192

	Contents	■ xi
16.3 TALK ABOUT IT		196
Section IV Closing remarks		
CHAPTER 17 ■ Some overarching ideas		203
Index		205