Correction partielle de l'examen

Logique mathématique

18 janvier 2024

Vous pouvez toujours utiliser une question précédente pour faire les questions suivantes, même si vous n'y avez pas répondu. Les questions avec une (*) sont considérées comme plus difficiles. La qualité de la rédaction sera prise en compte dans la notation.

Exercice 1. On travaille dans le langage avec deux symboles de relation binaire < et R. Soit C la classe des structures dans lesquelles < est un ordre total, R est symétrique antiréflexive. Soit T la théorie de structures M dans C telles que pour tous $X,Y \subseteq A(M)$ finis tels que $X \cap Y = \emptyset$ et $d,g \in A(M) \cup \{-\infty,+\infty\}$ tel que g < d, il existe $x \in A$ tel que g < x < d et qui est relié par R à tous les éléments de X et à aucun de Y.

- 1. Soit $M \models T$, soient A, B des structures finies dans C et $f : A \to M$ et $g : A \to B$ des plongements. Montrer qu'il existe un plongement $h : B \to M$ tel que $h \circ g = f$.
- 2. Montrer que T a un unique modèle dénombrable à isomorphisme près.
- 3. Montrer que T élimine les quantificateurs.
- 4. Montrer que T est complète dans le langage où on rajoute une constante.
- 5. Soit $n \in \mathbb{N}$. Montrer que l'algèbre de Boole des formules $\varphi(x_1, \dots, x_n)$ à équivalence près dans T est finie.

[Indice: On pourra d'abord montrer que l'espace de Stone associé est fini.]

Exercice 2. Dans cet exercice, les opérations sont celles de l'arithmétique cardinale.

1. Soit κ un cardinal infini. On note $2^{<\kappa} = \sup\{2^{\lambda} \mid \lambda < \kappa, \lambda \text{ cardinal}\}$. Montrer que $(2^{<\kappa})^{\operatorname{cof}(\kappa)} = 2^{\kappa}$.

[Indice: on pourra, pour une fonction $f: cof(\kappa) \to \kappa$ strictement croissante cofinale, considérer la partition $(f(\alpha) \setminus \bigcup_{\beta < \alpha} f(\beta))_{\alpha < cof(\kappa)}$ de κ .]

On commence par constater que $2^{<\kappa} \le 2^{\kappa}$ et donc, comme $cof(\kappa) \le \kappa$, on a $(2^{<\kappa})^{cof(\kappa)} \le 2^{\kappa}$. Il s'agit donc de montrer l'inégalité réciproque. Fixons $f : cof(\kappa) \to \kappa$ strictement croissante cofinale. Pour tout $\alpha < cof(\kappa)$, notons X_{α} l'ensemble $f(\alpha) \setminus \bigcup_{\beta < \alpha} f(\beta)$. Alors, la partition $(X_{\alpha})_{\alpha < cof(\kappa)}$ nous fournit une fonction injective, et même bijective, $2^{\kappa} \to \prod_{\alpha < cof(\kappa)} 2^{X_{\alpha}}$, qui à toute fonction $g : \kappa \to 2$ associe la famille des restrictions $(g|_{X_{\alpha}})_{\alpha < cof(\kappa)}$.

Or, pour tout $\alpha < \operatorname{cof}(\kappa)$, on a $X_{\alpha} \subseteq f(\alpha)$, donc $|X_{\alpha}| \leq |f(\alpha)| < \kappa$, car $f(\alpha) < \kappa$. Par conséquent, le cardinal de $2^{X_{\alpha}}$ est majoré par $2^{|f(\alpha)|}$, donc par $2^{<\kappa}$. On en déduit que $2^{\kappa} \leq \prod_{\alpha < \operatorname{cof}(\kappa)} 2^{<\kappa} = (2^{<\kappa})^{\operatorname{cof}(\kappa)}$, d'où le résultat.

2. Soit κ un cardinal infini singulier. On suppose qu'il existe un cardinal μ tel que, pour tout cardinal $\lambda < \kappa$ assez grand, on ait $2^{\lambda} = \mu$. Montrer que $2^{\kappa} = \mu$.

[Indice: On pourra utiliser la question précédente.]

Comme κ est singulier, on a $\operatorname{cof}(\kappa) < \kappa$. Donc, par hypothèse, il existe un cardinal λ tel que $\operatorname{cof}(\kappa) \le \lambda < \kappa$ et $2^{\lambda} = \mu$. Par ailleurs, la question précédente nous donne que $(2^{<\kappa})^{\operatorname{cof}(\kappa)} = 2^{\kappa}$. Or, par hypothèse, on a $2^{<\kappa} = \mu = 2^{\lambda}$. Donc $(2^{<\kappa})^{\operatorname{cof}(\kappa)} = 2^{\lambda \cdot \operatorname{cof}(\kappa)} = 2^{\lambda}$, car $\lambda \ge \operatorname{cof}(\kappa)$. Ainsi, on a bien $2^{\kappa} = (2^{<\kappa})^{\operatorname{cof}(\kappa)} = 2^{\lambda} = \mu$.

Exercice 3. On travaille dans le langage de l'arithmétique. Soit $\beta : \mathbb{N}^2 \to \mathbb{N}$ une fonction récursive telle que pour c_0, \ldots, c_n , il existe $a \in \mathbb{N}$ telle que pour tout $i \leq n$, $\beta(a, i) = c_i$. On dit alors que a est un code c_0, \ldots, c_n .

1. Montrer qu'il existe une formule $\varphi(x,y)$ qui est Σ_1 et telle que pour toute formule $\psi(y)$ qui est Σ_1 , il existe un entier $n \in \mathbb{N}$ tel que:

$$\mathbb{N} \vDash \forall y \, \psi(y) \leftrightarrow \varphi(n, y).$$

Soit $f: \mathbb{N}^2 \to \mathbb{N}$ la fonction récursive telle que pour toute formule $\psi(x)$ et tout $n \in \mathbb{N}$, $f(\sharp \psi, n)$ est le code de $\psi(n)$. Soit $\theta(x, y, z)$ une formule Σ_1 qui la représente dans PA_0 et soit $\varphi(x, y)$ la formule $\exists z \ \theta(x, y, z) \land Dem_{PA_0}(z)$. Pour toute formule $\psi(x)$ qui est Σ_1 et tout $i \in \mathbb{N}$, on a alors

$$\mathbb{N} \vDash \varphi(\sharp \psi, i) \leftrightarrow \mathrm{PA}_0 \vdash \psi(\underline{i})$$
$$\leftrightarrow \mathbb{N} \vDash \psi(i)$$

Soit $\theta(x)$ une formule. On note $\Sigma_1(\theta)$ le plus petit ensemble de formules qui contient les formules atomiques et leurs négations, $\theta(t)$ et $\neg \theta(t)$ pour tout terme t et qui est clos par conjonction, disjonction, quantification universelle bornée¹ et quantification existentielle.

2. Soit $\psi(y_1, \ldots, y_n)$ une formule $\Sigma_1(\theta)$. Montrer qu'il existe une formule $\chi(y_1, \ldots, y_n, s, t)$ qui est Σ_1 et telle que, pour tous $a_1, \ldots, a_n \in \mathbb{N}$, on a $\mathbb{N} \models \varphi(a_1, \ldots, a_n)$ si et seulement s'il existe $b, c \in \mathbb{N}$ tels que c code $[\![\theta(\underline{0})]\!]_{\mathbb{N}}, \ldots, [\![\theta(\underline{b})]\!]_{\mathbb{N}}$ et que

$$\mathbb{N} \vDash \chi(a_1, \dots, a_n, b, c).$$

Prouvons la question par récurrence sur la formule ψ . Si ψ est atomique ou négation d'atomique, alors il suffit de prendre $\chi(y,t,s) \equiv \psi$. Si $\psi \equiv \theta(y_i)$, on prend $\chi(y,s,t) \equiv y_i < t \land \beta(s,y_i) = 1$ (respectivement 0 pour $\neg \theta(y_i)$). Si $\psi(y)$ est la formule $\exists z\psi_0(y,z)$ et $\chi_0(y,z,t,s)$ est la formule correspondante pour ψ_0 , on prend $\chi \equiv \exists z\chi_0(y,z,s,t)$ puisque le fait que s code une certaine suite ne dépend pas de z. Enfin si ψ est $\forall z < y_i \psi_0$, alors on peut prendre $\chi \equiv \forall z < y_i \exists u \leqslant s \exists v \forall i < u \ \beta(v,i) = \beta(t,i) \land \chi_0(y,z,u,v)$.

3. Montrer qu'il existe une formule $\varphi(x,y)$ qui est $\Sigma_1(\theta)$ et telle que pour toute formule $\psi(y)$ qui est $\Sigma_1(\theta)$, il existe un entier $n \in \mathbb{N}$ tel que:

$$\mathbb{N} \vDash \forall y \, \psi(y) \leftrightarrow \varphi(n, y).$$

Soit $\chi(y,s,t)$ telle que dans la question précédente et $\varphi(x,y)$ telle que dans la question 1. Il existe alors $n \in \mathbb{N}$ tel que $\mathbb{N} \models \forall y \forall s \forall t \ \chi(y,s,t) \leftrightarrow \varphi(m,\alpha(y,s,t))$, où $\alpha : \mathbb{N}^3 \to \mathbb{N}$ est une bijection récursive d'inverse récursive. On a alors, pour tout $a \in \mathbb{N}$

$$\mathbb{N} \vDash \psi(a) \leftrightarrow \exists s \exists t \forall i < s \ (\theta(i) \to \beta(t,i) = 1 \land \neg \theta(i) \to \beta(t,i) = 0) \land \varphi(m,\alpha(a,s,t)).$$

¹Si $\varphi(x, y_1, \dots, y_n)$ est $\Sigma_1(\theta)$ alors $\forall x \ x < y_i \to \varphi$ l'est aussi.

4. Montrer qu'il existe une formule $\psi(x)$ qui est $\Sigma_1(\theta)$ mais telle que $\neg \psi(x)$ ne soit pas équivalente à une formule $\Sigma_1(\theta)$ dans \mathbb{N} .

Soit $\psi(x)$ la formule $\varphi(x,x)$. Elle est bien $\Sigma_1(\theta)$ et si $\neg \varphi(x,x)$ est $\Sigma_1(\theta)$, elle est équivalente dans \mathbb{N} à $\varphi(n,x)$ pour un $n \in \mathbb{N}$. On a alors $\mathbb{N} \models \varphi(n,n)$ si et seulement si $\mathbb{N} \models \neg \varphi(n,n)$, ce qui est absurde.

Par récurrence sur i entier strictement positif, on définit Σ_{i+1} comme étant le plus petit ensemble de formules qui contient les formules Σ_i ainsi que leurs négations et qui est clos par conjonction, disjonction, quantification universelle bornée et quantification existentielle.

5. Montrer que Σ_i est strictement inclus dans Σ_{i+1} .

On montre par récurrence sur i que Σ_{i+1} est $\Sigma_1(\varphi_i)$ où φ_i est une formule Σ_i -universelle. D'après la question précédente, Σ_{i+1} n'est pas clos par négation. Cependant, si $\Sigma_{i+1} \subseteq \Sigma_i$ alors Σ_{i+1} serait clos par négation. L'inclusion est donc stricte.