PROYECTO COMPILANDO CONOCIMIENTO

MATEMÁTICAS AVANZADAS

Análisis Complejo

Una Pequeña (Gran) Introducción

AUTORES:

Rosas Hernandez Oscar Andrés Lopez Manriquez Angel

Índice general

Ι	Νú	imeros Complejos	3		
1.	Definiciones				
	1.1.	Definición de Números Complejos	5		
	1.2.	Términos Comúnes	5		
2.	Aritmética Compleja				
	2.1.	Operaciones Básicas	7		
	2.2.	Cero y la Identidad	7		
	2.3.	Campo de los Complejos	8		
	2.4.	Conjugados	9		
	2.5.	Módulo o Valor Absoluto	11		
	2.6.	Inverso Multiplicativo	13		
3.	Forma Polar y Argumentos				
	3.1.	Forma Polar	15		
		3.1.1. De forma Polar a forma Rectangular	15		
		3.1.2. De forma Rectangular a forma Polar	15		
	3.2.	Argumento de z	16		
	3.3.	Leyes de Aritmetica	17		
	3.4.	Ley de Moivre's	19		
4.	Forma Exponencial				
	4.1.	Forma de Euler	21		
		$A = 1 + 1 = a^2$	21		

		4.1.2. Lemmas y Propiedades	22
	4.2.	Identidad de Lagrange	23
5.	Ecu	aciones y Raíces	24
	5.1.	n-Raíces de un Numero z	25
6.	Pro	ducto Punto y Cruz	26
II	Fu	ınciones Complejas	27
7.	Fun	ciones Complejas	28

ÍNDICE GENERAL

Parte I Números Complejos

Definiciones

1.1. Definición de Números Complejos

Definición 1.1.1 (Números Complejos) Definamos al Conjunto de los números complejos \mathbb{C} como:

$$\mathbb{C} = \left\{ a + bi \mid a, b \in \mathbb{R} \quad y \quad i = \sqrt{-1} \right\}$$
 (1.1)

Podemos usar la notación a+bi, a+ib y (a,b) de manera intercambiable (pero personalmente la primera se me hace la más cool pero la ultima mas concreta).

1.2. Términos Comúnes

- Unidad Imaginaria: Usamos el símbolo i para simplificar $i = \sqrt{-1}$, de ahí la propiedad famosa $i^2 = -1$.
- Parte Real: Considere el complejo $z = a + bi \in \mathbb{C}$, entonces decimos que Re(z) = a
- Parte Imaginaria: Considere el complejo $z = a + bi \in \mathbb{C}$, entonces decimos que Im(z) = b

Aritmética Compleja

2.1. Operaciones Básicas

Si $z_1 = a_1 + b_1 i \in \mathbb{C}$ y $z_2 = a_2 + b_2 i \in \mathbb{C}$ entonces:

■ Definición 2.1.1 (Suma de Complejos)

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i (2.1)$$

■ Definición 2.1.2 (Resta de Complejos)

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i (2.2)$$

■ Definición 2.1.3 (Multiplicación de Complejos)

$$z_1 z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 + b_1 b_2 i^2) + (a_1 b_2 + b_1 a_2) i$$

= $(a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2) i$ (2.3)

■ Definición 2.1.4 (División de Complejos)

$$\frac{z_1}{z_2} = \frac{a_1 + b_1 i}{a_2 + b_2 i} = \frac{(a_1 a_2 + b_1 b_2) - (a_1 b_2 - a_2 b_1) i}{(a_2)^2 + (b_2)^2} \qquad z_2 \neq 0$$
(2.4)

2.2. Cero y la Identidad

- Denotamos a 0 = 0 + 0i como el elemento cero o identidad aditiva, ya que se cumple $\forall z \in \mathbb{C}, \ z + 0 = 0 + z = z$
- Denotamos a 1=1+0i como el elemento identidad multiplicatica, ya que se cumple $\forall z \in \mathbb{C}, \ z \cdot 1 = 1 \cdot z = z$

2.3. Campo de los Complejos

Recuerda que el hecho de que los Complejos sean un campo nos dice que cumple con que:

Definición 2.3.1 (Ley Aditiva Asociativa)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3) \tag{2.5}$$

■ Definición 2.3.2 (Ley Aditiva Conmutativa)

$$\forall z_1, z_2 \in \mathbb{C}, \ z_1 + z_2 = z_2 + z_1 \tag{2.6}$$

Definición 2.3.3 (Elemento Indentidad Aditivo)

$$\exists 0 \in \mathbb{C}, \ \forall z_1 \in \mathbb{C}, \ 0 + z_1 = z_1 + 0 = z_1 \tag{2.7}$$

■ Definición 2.3.4 (Existen Inversos Aditivos)

$$\forall z_1 \in \mathbb{C}, \ \exists z_2 \in \mathbb{C}, \ z_1 + z_2 = z_2 + z_1 = 0 \tag{2.8}$$

■ Definición 2.3.5 (Ley Distributiva)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ z_1 \cdot (z_2 + z_3) = (z_1 \cdot z_2) + (z_1 \cdot z_3)
\forall z_1, z_2, z_3 \in \mathbb{C}, \ (z_2 + z_3) \cdot z_1 = (z_2 \cdot z_1) + (z_3 \cdot z_1)$$
(2.9)

■ Definición 2.3.6 (Ley Multiplicativa Asociativa)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ z_1 \cdot z_2 = z_2 \cdot z_1 \tag{2.10}$$

Definición 2.3.7 (Ley Multiplicativa Distributiva)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ (z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3) \tag{2.11}$$

Definición 2.3.8 (Elemento Indentidad Multiplicativo)

$$\exists 1 \in \mathbb{C}, \ \forall z_1 \in \mathbb{C}, \ 1 \cdot z_1 = z_1 \cdot 1 = z_1 \tag{2.12}$$

Definición 2.3.9 (Existen Inversos Multiplicativos)

$$\forall z_1 \in \mathbb{C} - \{0\}, \ \exists z_2 \in \mathbb{C}, \ z_1 + z_2 = z_2 + z_1 = 1$$
 (2.13)

2.4. Conjugados

Tenemos que el Conjugado de $z = a + bi \in \mathbb{C}$ que lo definimos como: $\overline{z} = a - bi$ Usando la definición podemos demostrar algunas propiedades muy importantes:

• $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ y mas general tenemos que: $\overline{z_1 + z_2 + \dots + z_n} = \overline{z_1} + \overline{z_2} + \dots + \overline{z_n}$

Demostración:

Definidos $z_1 = a_1 + ib_1$ y $z_2 = a_2 + ib_2$. Entonces tenemos que:

$$\overline{z_1 + z_2} = \overline{a_1 + ib_1 + a_2 + ib_2} = \overline{(a_1 + a_2) + i(b_1 + b_2)}$$

$$= (a_1 + a_2) - i(b_1 + b_2) = a_1 - ib_1 + a_2 - ib_2$$

$$= \overline{z_1} + \overline{z_2}$$

Ahora para la parte mas general:

Creo que cuando k=1 es demasiado sencillo hasta para escribirlo y lo que acabamos de demostrar es para cuando k=2, por lo tanto lo único que tenemos que probar es que:

Si
$$\overline{z_1+\cdots+z_n}=\overline{z_1}+\cdots+\overline{z_n}$$
 se cumple entonces también lo hará $\overline{z_1+\cdots+z_{n+1}}=\overline{z_1}+\cdots+\overline{z_{n+1}}$

Lo cual se logra dandote cuenta que $z_a = \overline{z_1 + z_2 + \cdots + z_n}$. y dandote cuenta que volviste al caso de k = 2.

• $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$ y mas general tenemos que: $\overline{z_1 \cdot z_2 \cdot \dots \cdot z_n} = \overline{z_1} \cdot \overline{z_2} \cdot \dots \cdot \overline{z_n}$

Ideas

Definidos $z_1 = a_1 + ib_1$ y $z_2 = a_2 + ib_2$. Entonces tenemos que:

$$\overline{z_1 \cdot z_2} = \overline{a_1 + ib_1 \cdot a_2 + ib_2} = \overline{(a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2)i}$$

$$= (a_1 a_2 - b_1 b_2) - (a_1 b_2 + b_1 a_2)i = (a_1 - ib_1) \cdot (a_2 - ib_2)$$

$$= \overline{z_1} \cdot \overline{z_2}$$

Ahora para la parte mas general se demuestra de manera casi identica a la propiedad pasada.

$$\blacksquare \ \overline{\overline{z}} = z$$

Demostración:
$$\overline{\overline{z}} = \overline{\overline{a+bi}} = \overline{a-bi} = a+bi$$

$$z \cdot \overline{z} = |z|^2$$

Demostración:
$$z \cdot \overline{z} = (a+ib) \cdot (a-ib) = a^2 + b^2 = |z|^2$$

$$Re(z) = \frac{z + \overline{z}}{2}$$

Demostración:

Dado a
$$z = a + ib$$

$$\frac{z+\overline{z}}{2} = \frac{(a+bi)+(a-bi)}{2} = \frac{2a}{2} = a$$
$$= Re(a+bi)$$

$$Im(z) = \frac{z - \overline{z}}{2i}$$

Demostración:

Dado a
$$z = a + ib$$

$$\frac{z-\overline{z}}{2} = \frac{(a+bi)-(a-bi)}{2i} = \frac{2bi}{2i} = b$$
$$= Im(a+bi)$$

2.5. Módulo o Valor Absoluto

Tenemos que definir el Módulo de $z = a + bi \in \mathbb{C}$ como $|z| = \sqrt{a^2 + b^2}$.

 $|Re(z)| \le |z| \le |Im(z)| \le |z|$

Demostración:

Ya habiamos visto que $|z|^2 = x^2 + y^2 = Re(z)^2 + Im(z)^2$

Entonces podemos ver que $|z|^2 - Im(z)^2 = Re(z)$ (recuerda que $Im(z)^2 > 0$) por lo tanto tenemos que $|Re(z)|^2 \le |z|^2$ ya que |Re(z)| = Re(z)

Entonces podemos ver que $|z|^2 - Re(z)^2 = Im(z)$ (recuerda que $Re(z)^2 > 0$) por lo tanto tenemos que $|Im(z)|^2 \le |z|^2$ ya que |Im(z)| = Im(z)

 $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2Re(z_1\overline{z_2})$

Demostración:

Ya sabemos que $|z+\overline{z}|^2=z\cdot\overline{z}$ y recuerda que $2Re(z)=z+\overline{z},\,|z|^2=z\cdot\overline{z}$ entonces tenemos que:

$$|z_1 + z_2|^2 = (z_1 + z_2) \cdot \overline{(z_1 + z_2)}$$

$$= (z_1 + z_2) \cdot (\overline{z_1} + \overline{z_2})$$

$$= z_1 \overline{z_1} + (z_1 \overline{z_2} + \overline{z_1} z_2) + z_2 \overline{z_2}$$

$$= z_1 \overline{z_1} + (z_1 \overline{z_2} + \overline{z_1} \overline{z_2}) + z_2 \overline{z_2}$$

$$= |z_1|^2 + 2Re(z_1 \overline{z_2}) + |z_2|^2$$

 $(|z_1| + |z_2|)^2 = |z_1|^2 + |z_2|^2 + 2|z_1\overline{z_2}|$

Demostración:

Esta la vamos a empezar al réves, solo recuerda que $|z| = |\overline{z}|$:

$$|z_1|^2 + |z_2|^2 + 2|z_1\overline{z_2}| = |z_1|^2 + |z_2|^2 + 2|z_1||\overline{z_2}|$$

$$= |z_1|^2 + |z_2|^2 + 2|z_1||z_2|$$

$$= (|z_1| + |z_2|)^2$$

• Desigualdad del Triangulo: $|z_1| - |z_2| \le |z_1 + z_2| \le |z_1| + |z_2|$

Demostración:

Ok, esto aún estará intenso, así que sígueme, vamos a hacerlo más interesante, ya tenemos las piezas necesarias. Así que vamos a hacerlo al réves:

 $|z_1 + z_2| \le |z_1| + |z_2|$ si y solo si $|z_1 + z_2|^2 = (|z_1| + |z_2|)^2$ y además $|z_1 + z_2|, |z_1|, |z_2| \ge 0$ lo cual si que se cumple, pues los módulos nunca son negativos.

Y lo que dije anteriormente se cumple si y solo si $|z_1 + z_2|^2 = (|z_1| + |z_2|)^2 + k$ donde $k \ge 0$.

Ya sabemos que $|z_1+z_2|^2=|z_1|^2+|z_2|^2+2Re(z_1\overline{z_2})$ y $(|z_1|+|z_2|)^2=|z_1|^2+|z_2|^2+2|z_1\overline{z_2}|$, ahora vamos a acomodar un poco, podemos poner lo último como $(|z_1|+|z_2|)^2-2|z_1\overline{z_2}|=|z_1|^2+|z_2|^2$

Ahora veamos que:

$$|z_1 + z_2|^2 = [|z_1|^2 + |z_2|^2] + 2Re(z_1\overline{z_2}) = [(|z_1| + |z_2|)^2 - 2|z_1\overline{z_2}|] + 2Re(z_1\overline{z_2})$$
$$= (|z_1| + |z_2|)^2 + k$$

Donde $k=2Re(z_1\overline{z_2})-2|z_1\overline{z_2}|$, ahora además podemos decir que si $k\geq 0$ entonces así lo será $\frac{k}{2}$, por lo tanto: $\frac{k}{2}=Re(z_1\overline{z_2})-|z_1\overline{z_2}|$, pero si les cambias en nombre ves que todo se simplifica $w=z_1\overline{z_2}$ y tenemos que Re(w)-|w|. Espera, recuerda que ya habíamos demostrado que $|Re(z)|\leq |z|$, así que por lo tanto $k\geq 0$ y la propiedad siempre se cumple.

Sabemos que $z_1 = z_1 + z_2 + (-z_2)$ además ahora sabemos que: $|z_1| = |z_1 + z_2 + (-z_2)| \le |z_1 + z_2| + |-z_2|$ y como |z| = |-z| Que es lo mismo que $|z_1| - |z_2| \le |z_1 + z_2|$.

Y listo, todas las propiedades están listas.

Además creo que es bastante obvio que por inducción tenemos que:

$$|z_1 + z_2 + z_3 + \dots + z_n| \le |z_1| + |z_2| + |z_3| + \dots + |z_n|$$

2.6. Inverso Multiplicativo

Si $z=a+bi\in\mathbb{C}-\{0\}$ entonces podemos denotar al inverso de z como z^{-1} Creo que es más que obvio que $z^{-1}=\frac{1}{a+bi}$.

■ Podemos escribir a z^{-1} como $\frac{a-ib}{a^2+b^2}$

Demostración:

Veamos como llegar a eso paso a paso:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{1}{a+bi} \left(\frac{a-bi}{a-bi}\right) = \frac{a-bi}{(a+bi)(a-bi)}$$
$$= \frac{a-bi}{a^2+b^2}$$

• Gracias al inciso anterior podemos separar la parte real y la imaginaria como:

$$\frac{1}{z} = \left(\frac{a}{a^2 + b^2}\right) - \left(\frac{b}{a^2 + b^2}\right)i\tag{2.14}$$

• Gracias al inciso anterior podemos separar la parte real y la imaginaria como:

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} \tag{2.15}$$

Recuerda: $\overline{z} = a - bi$ y $|z| = a^2 + b^2$

Forma Polar y Argumentos

3.1. Forma Polar

Podemos expresar un punto en el plano complejo mediante la tupla (r, θ) , donde $r \ge 0$ y θ esta medido en radianes.

Entonces podemos pasar rápido y fácil de un sistema de coordenadas a otro como:

3.1.1. De forma Polar a forma Rectangular

Supongamos que tenemos un punto que podemos describir como (r, θ) , donde $r \ge 0$ y θ medido como radianes.

Entonces tenemos que:

- $a = r \cos(\theta)$
- $b = r \sin(\theta)$

Otra forma de escribirlo es $r(\cos(\theta) + i\sin(\theta))$

3.1.2. De forma Rectangular a forma Polar

Supongamos que tenemos un punto que podemos describir como (a + bi), entonces podemos decir que:

$$r = \sqrt{a^2 + b^2}$$

$$\theta = \begin{cases} \tan(\frac{b}{a})^{-1} & \text{si } a > 0 \\ \tan(\frac{b}{a})^{-1} + \pi & \text{si } a < 0 \text{ y } b > 0 \\ \tan(\frac{b}{a})^{-1} - \pi & \text{si } a < 0 \text{ y } b < 0 \end{cases}$$

3.2. Argumento de z

Definimos al argumento de un número $z = a + bi \in \mathbb{C}$ como $\theta = arg(z)$, es decir, al final del día arg(z) es un ángulo.

Este ángulo tiene que cumplir las dos siguientes ecuaciones:

$$\bullet \cos(\theta) = \frac{x}{\sqrt{a^2 + b^2}}$$

$$\bullet \sin(\theta) = \frac{y}{\sqrt{a^2 + b^2}}$$

Pero como sin y cos con funciones periodicas con 2π , es decir arg(z) no es único.

Además para encontrarlo usamos $\tan(\frac{b}{a})^{-1}$ pero resulta que esta función solo regresa ángulos entre $-\frac{\pi}{2}$ y $\frac{\pi}{2}$ por lo tanto habrá problemas con números en el segundo y tercer cuadrante.

Argumento Principal

Ya que arg(z) es más bien un conjunto de ángulos, podemos considerar al ángulo o argumento principal de z como Arg(z) y que será el ángulo que cumpla con que:

$$\bullet \cos(Arg(z)) = \frac{x}{\sqrt{a^2 + b^2}}$$

$$\bullet \sin\left(Arg(z)\right) = \frac{y}{\sqrt{a^2 + b^2}}$$

$$-\frac{\pi}{2} < Arg(z) \leq \frac{\pi}{2}$$

Podemos probar que Arg(z) para alguna z cualquiera será única.

Por lo tanto ahora podemos definir a arg(z) como:

$$arg(z) = \{ Arg(z) + 2n\pi \mid n \in \mathbb{Z} \}$$
(3.1)

3.3. Leyes de Aritmetica

Supón dos números complejos de manera polar como $z_1 = (r_1, \theta_1)$ y $z_1 = (r_2, \theta_2)$ es decir $z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1))$ y $z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2))$ entonces tenemos que:

Producto de Números Complejos:

$$z_1 z_2 = [(r_1 r_2), (\theta_1 + \theta_2)]$$

Demostración:

Esto es muy sencillo, primero ya que tenemos los dos números en forma rectangular podemos multiplicar como ya sabemos:

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2)i$$

$$z_1 z_2 = r_1 r_2 [(\cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)) + (\cos(\theta_1)\sin(\theta_2) + \sin(\theta_1)\cos(\theta_2))i]$$

Usando las leyes de senos y cosenos:

- $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$
- $\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$

Podemos reducirlo a: $z_1z_2 = r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$ y creo que de ahí podemos reducirlo casi mentalmente ya que $(r, \theta) = r(\cos(\theta) + i\sin(\theta))$

División de Números Complejos:

$$\frac{z_1}{z_2} = [(\frac{r_1}{r_2}), (\theta_1 - \theta_2)]$$

Demostración:

Esto es muy sencillo, primero ya que tenemos los dos números en forma rectangular podemos dividir como ya sabemos, pero vamos a hacer un poco de trampa ingeniosa, usamos la idea de que $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$ y hacer:

$$\begin{split} \frac{z_1}{z_2} &= z_1 \frac{\overline{z_2}}{|z_2|^2} = z_1 \frac{\overline{z_2}}{(r_2)^2} \\ &= \frac{1}{(r_2)^2} z_1 \overline{z_2} = \frac{1}{(r_2)^2} (a_1 + ib_1)(a_2 - ib_2) \\ &= \frac{1}{(r_2)^2} (a_1 a_2 - b_1 b_2) + (a_1 b_2 - b_1 a_2)i \\ &= \frac{r_1}{r_2} [(\cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2)) + (\cos(\theta_1)\sin(\theta_2) - \sin(\theta_1)\cos(\theta_2))i] \end{split}$$

Usando las leyes de senos y cosenos:

- $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$
- $\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$

Podemos reducirlo a: $z_1z_2=\frac{r_1}{r_2}[\cos{(\theta_1-\theta_2)}+i\sin{(\theta_1-\theta_2)}]$ y creo que de ahí podemos reducirlo casi mentalmente ya que $(r,\theta)=r(\cos{(\theta)}+i\sin{(\theta)})$

ullet Simplificar Potencias de z:

$$z^n = [(r^n), (n \cdot \theta)]$$

${\bf Ideas:}$

No considero a esto una demostración, por basta con darte cuenta que z^n es $z \cdot z \cdot z \dots$ n veces

Por lo tanto puedes aplicar la regla: $z_1z_2=[(r_1r_2),(\theta_1+\theta_2)]$ que ya que $z_1=z_2$ se puede simplificar a $z\cdot z=[2r,2\theta]$.

Y llegar a ese resultado mediante la inducción.

3.4. Ley de Moivre's

$$z^{n} = r^{n} (\cos (n \cdot \theta) + i \sin (n \cdot \theta))$$
 donde $n \in \mathbb{Z}$

Demostración:

Se puede dar una demostracion muy sencilla, no se porque los libros usan induccion matematica para demostrar el teorema de Moivre...

En fin, expresando a z en su forma polar y usando la fórmula de Euler, tenemos:

$$z^{n} = (a + bi)^{n}$$

$$= [r (\cos (\theta) + i \sin (\theta))]^{n}$$

$$= r^{n} (\cos (\theta) + i \sin (\theta))^{n}$$

$$= r^{n} (e^{\theta i})^{n}$$

$$= r^{n} e^{(\theta i)n}$$

$$= r^{n} e^{(n\theta)i}$$

$$= r^{n} (\cos (n \cdot \theta) + i \sin (n \cdot \theta))$$

Forma Exponencial

4.1. Forma de Euler

Podemos también expresar un número complejo de la siguiente manera:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta) \tag{4.1}$$

Ideas:

Esta fórmula sale de a partir de la serie de McLaurin para la función exponencial:

$$e^k = 1 + \frac{k}{1!} + \frac{k^2}{2!} + \frac{k^3}{3!} + \cdots$$

Pasa algo muy interesante al hacer $k=i\theta,$ pues vemos que se hayan las series de McLaurin del seno y coseno:

$$e^{i\theta} = \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \cdots\right) + \left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \cdots\right)i$$
$$= \cos(\theta) + \sin(\theta)i$$

4.1.1. e^z

También podemos ver más generalmente que e^z se puede reducir a:

$$e^{z} = e^{a+bi} = e^{a} \cdot e^{bi} = e^{a} \cdot (\cos(b) + i\sin(b)) = e^{a} (\cos(b) + i\sin(b))$$

4.1.2. Lemmas y Propiedades

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

Demostración:

$$\frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{\left[\cos(\theta) + i\sin(\theta)\right] + \left[\cos(-\theta) + i\sin(-\theta)\right]}{2}$$
 Tip: $\cos(\theta) = \cos(-\theta)$ y $\sin(-\theta) = -\sin(\theta)$

$$= \frac{\cos(\theta) + i\sin(\theta) + \cos(\theta) - i\sin(\theta)}{2}$$
 Y si simplificamos
$$= \frac{2\cos(\theta)}{2}$$

$$= \cos(\theta)$$

$$\bullet \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Demostración:

$$\begin{split} \frac{e^{i\theta}-e^{-i\theta}}{2} &= \frac{\left[\cos\left(\theta\right)+i\sin\left(\theta\right)\right]-\left[\cos\left(-\theta\right)+i\sin\left(-\theta\right)\right]}{2} & \text{Tip: } \cos\left(\theta\right)=\cos\left(-\theta\right) \text{ y } \sin\left(-\theta\right)=-\sin\left(\theta\right) \\ &= \frac{\cos\left(\theta\right)+i\sin\left(\theta\right)-\cos\left(\theta\right)+i\sin\left(\theta\right)}{2} & \text{Y si simplificamos} \\ &= \frac{2i\sin\left(\theta\right)}{2i} \\ &= \sin\left(\theta\right) \end{split}$$

4.2. Identidad de Lagrange

$$1 + \cos(1\theta) + \cos(2\theta) + \dots + \cos(n\theta) = \frac{1}{2} \left(\frac{\sin\left((n + \frac{1}{2})\theta\right)}{\sin\left(\frac{\theta}{2}\right)} + 1 \right)$$
(4.2)

$$\begin{split} \sum_{k=0}^n \cos\left(k\theta\right) &= \frac{1}{2} \sum_{k=0}^n \left(e^{ik\theta} + e^{-ik\theta}\right) & \text{Recuerda que: } \cos\left(x\right) = \frac{e^{ix} + e^{-ix}}{2} \\ &= \frac{1}{2} \left(\frac{e^{(n+1)i\theta} - 1}{e^{i\theta} - 1} + \frac{e^{(n+1)-i\theta} - 1}{e^{-i\theta} - 1}\right) & \text{Recuerda que: } \sum_{k=0}^n r^k = \frac{r^{n+1} - 1}{r - 1} \iff |r| < 1 \\ &= \frac{1}{2} \left(\frac{e^{(n+1)i\theta} - 1}{e^{i\theta} - 1} \left(\frac{e^{-i\frac{\theta}{2}}}{e^{-i\frac{\theta}{2}}}\right) + \frac{e^{(n+1)-i\theta} - 1}{e^{-i\theta} - 1} \left(\frac{-e^{i\frac{\theta}{2}}}{-e^{i\frac{\theta}{2}}}\right)\right) & \text{Multiplica por Uno };) \\ &= \frac{1}{2} \left(\frac{e^{(n+\frac{1}{2})i\theta} - e^{i\frac{\theta}{2}}}{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}} + \frac{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}}{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}}\right) & \text{Expande} \\ &= \frac{1}{2} \left(\frac{e^{(n+\frac{1}{2})i\theta} - e^{(n+\frac{1}{2})-i\theta}}{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}} + e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}\right) & \text{Organizando, gracias denominador común} \\ &= \frac{1}{2} \left(\frac{e^{(n+\frac{1}{2})i\theta} - e^{(n+\frac{1}{2})-i\theta}}{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}} + 1\right) & \text{Simplificar} \\ &= \frac{1}{2} \left(\frac{e^{(n+\frac{1}{2})i\theta} - e^{(n+\frac{1}{2})-i\theta}}{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}} + 1\right) & \text{Añadimos esto} \\ &= \frac{1}{2} \left(\frac{\sin\left((n+\frac{1}{2})\theta\right)}{\sin\left(\frac{\theta}{2}\right)} + 1\right) & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} - e^{-ix}}{2i} & \text{Recuerda que } \sin\left$$

Ecuaciones y Raíces

5.1. n-Raíces de un Numero z

En general decir que un número w es un raíz enesíma de un número complejo $z \in \mathbb{C} - \{0\}$ se cumpla que:

$$w^n = z$$

Donde obviamente $n \in \mathbb{Z}^+$.

Teorema 5.1.1 Existen exactamente n raíces para $w^n = z$

Que puedes encontrar con:

$$w_k = \sqrt[n]{r} \left[\cos \left(\frac{\theta + (2\pi)k}{n} \right) + i \sin \left(\frac{\theta + (2\pi)k}{n} \right) \right] \quad k = 0, 1, 2, \dots, n$$
 (5.1)

Demostración:

Tengamos dos números: $z = r \left[\cos(\theta) + i \sin(\theta)\right]$ y $w = p \left[\cos(\phi) + i \sin(\phi)\right]$

Entonces de la ecuación decir $w^n=z$ es lo mismo que decir que:

$$(p\left[\cos\left(\phi\right)+i\sin\left(\phi\right)\right])^{n}=r\left[\cos\left(\theta\right)+i\sin\left(\theta\right)\right]p^{n}\left[\cos\left(\phi\right)+i\sin\left(\phi\right)\right]^{n}=r\left[\cos\left(\theta\right)+i\sin\left(\theta\right)\right]$$

De esta ecuación tenemos que:

 $p^n = r$

Por lo tanto podemos definir a $p=\sqrt{n}$ donde \sqrt{n} es la única raíz positiva de un número $r\in\mathbb{R}$

 $(\cos(\theta) + i\sin(\theta))^n = \cos(\phi) + i\sin(\phi)$

Gracias a $\cos(n\theta) + i\sin(n\theta) = \cos(\phi) + i\sin(\phi)$ Por lo tanto podemos decir que:

- $\cos(n\theta) = \cos(\phi)$
- $\sin(n\theta) = \sin(\phi)$

Y por lo tanto tener que:

•
$$\sin(\phi) = \sin\left(\frac{\theta + (2\pi)k}{n}\right)$$

•
$$\cos(\phi) = \cos\left(\frac{\theta + (2\pi)k}{n}\right)$$

Y finalmente podemos generalizar los resultados como:

$$w_k = \sqrt[n]{r} \left[\cos \left(\frac{\theta + (2\pi)k}{n} \right) + i \sin \left(\frac{\theta + (2\pi)k}{n} \right) \right]$$
 (5.2)

Producto Punto y Cruz

Parte II Funciones Complejas

Funciones Complejas

Cualquier función compleja w=f(z) puede ser representada como f(z)=u(x,y)+iv(x,y) donde $x,y\in\mathbb{R}$