

Рис. 1: Зависимости положения мениска от времени в трех экспериментах

Таблица 1: Концентрации компонентов в исследуемых растворах

	А , мл	В, мл	С, мл	D , мл
I состав	1	8	1	
II состав	3	6	1	-
III состав	7	2	-	1

A – раствор инициатора в ММА (0.01 г/мл); **B** – раствор иницатора в бензоле (0.01 г/мл); **C** –чистый ММА; **D** – раствор ТЕМРО в ММА (1.5 \cdot 10⁻³ M).

Скорость полимеризации V_r рассчитывалась по формуле

$$-\frac{d\left[M\right]}{dt} = V_r = \frac{\pi r^2}{V_0 \,\delta_M M} \frac{\Delta h}{\Delta t},$$

где δ_M — параметр контракции — является разностью обратных плотностей мономера и полимера

$$\delta_M = \frac{1}{\rho_M} - \frac{1}{\rho_\Pi},$$

а объем при температуре $T=70^{\circ}C$ пересчитывался через объем при комнатной температуре при помощи коэффициента термического расширения α :

$$V_0 = V_0' (1 + \alpha \cdot (70 - 20))$$

Таблина 2:

1400πημα 2.							
Номер эксперимента	[M], моль/л	$\log [M]$	$\mathbf{v}_p,\; \mathtt{моль}/\mathtt{л} \cdot \mathbf{c}$	$\log v_p$			
#1	1.872	0.627	$1.18 \cdot 10^{-4}$	-9.05			
#2	3.744	1.320	$3.35 \cdot 10^{-4}$	-8.00			
#3	7.488	2.013	$6.50 \cdot 10^{-4}$	-7.34			

Порядок реакции по ММА 1.23.

Рис. 2: Определение порядка реакции по инициатору

Определим скорость ингибирования по формуле

$$v_{inh} = \frac{[TEMPO]}{t_{inh}}, \quad t_{inh} = t_2 - t_3,$$

где t_2 , t_3 – времена, отсекаемые прямыми на центральном и правом графиках на рис. 1, а [TEMPO] – концентрация TEMPO в реакционной смеси ($1.5\cdot 10^{-4}\mathrm{M}$). Скорость ингибирования $v_{inh}=8.24\cdot 10^{-5}M/s$.

Определим константу распада по следующей формуле

$$k_{dis} = \frac{v_{inh}}{2 \cdot f \cdot [I]} = 4.97 \cdot 10^{-3} s^{-1}, \quad f \approx 0.5$$

Длину кинетической цепи Y_{kin} определяют в условиях квазистационарности радикалов из соотношения скоростей роста цепи и ингибирования:

$$Y_{kin} = \frac{v_p}{v_{inh}} = 4.075$$

1 Вопросы

- 1. На чем основано определение скорости инициирования? Метод определения скорости инициирования основан на измерении скорости полимеризации при разных концентрациях инициатора на начальных конверсиях мономера.
- 2. В чем отличие константы инициирования от константы распада инициатора? Константа распада инициатора определяет распад инициатора с образованием радикалов, которые инициируют процесс радикальной полимеризации мономеров. Инициация мономеров определяется константой инициирования. Константа инициирования связана с константой распада инициатора эффективностью инициатора.

3. Какую информацию дает величина длины кинетической цепи? Кинетическая цепь — число молекул мономера, приходящихся на один образовавшийся радикал R до его гибели при обрыве цепи. Эта величина напрямую связана со среднечисловой степенью полимеризации (в зависимости от преобладающего типа обрыва цепи, они связаны по-разному).