Binary and Hexadecimal Data Representation

Samia Hilal

Marianopolis College

January 31, 2022

Number Systems

Decimal	4-Bit Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Powers of 2

Power of 2	Decimal Value
20	1
21	2
2 ²	4
2 ³	8
24	16
2 ⁵	32
26	64
27	128
28	256
:	:

Convert 11110001 to decimal:

- $\rightarrow 1*2^7+1*2^6+1*2^5+1*2^4+0*2^3+0*2^2+0*2^1+1*2^0$
- \triangleright 128+ 64 + 32 + 16 + 0 + 0 + 0 + 1
- > 241

Example 2

Convert 2AB9₁₆ to decimal

$$2AB9_{16} = 2*16^3 + A*16^2 + B*16^1 + 9*16^0$$

= $2*16^3 + 10*16^2 + 11*16^1 + 9*16^0$
= 10937

Converting To Binary Subtraction Remainder Method

Suppose we want to convert 190 to binary:

- The largest power of 2 that can be subtracted is $2^7=128$.
- Subtract 128 from 190, giving 62.
- The next power of 2, $2^6 = 64$ is too large, so we assign a placeholder of zero.
- The next power of 2, $2^5 = 32$. We'll need one of these, so subtract 32 and write down the result.
- The next power of 2, $2^4 = 16$. We can subtract one of these too.
- The next power of 2, $2^3 = 8$.
- Continue, until all powers of 2 are represented including place holders.

$$190 = 1X2^{7} + 0X2^{6} + 1X2^{5} + 1X2^{4} + 1X2^{3} + 1X2^{2} + 1X 2^{1} + 0X 2^{0}$$

```
190
-128 = 1 \times 2^{7}
  62
\underline{\quad 0} = 0 \times 2^6
   62
-32 = 1 \times 2^{5}
   30
-16 = 1 \times 2^4
    14
-8 = 1 \times 2^3
       \underline{4} = 1 \times 2^2
      2 = 1 \times 2^{1}
       \underline{\mathbf{0}} = \mathbf{0} \times \mathbf{2}^{0}
```

Convert 190 to Binary - Continued

$$190=1X2^{7}+0X2^{6}+1X2^{5}+1X2^{4}+1X2^{3}+1X2^{2}+1X2^{1}+0X2^{0}$$

<u>Note</u>: The bit corresponding to exponent 0 is on the right (*least significant bit*) and the bit corresponding to largest exponent is the *most significant bit* (on the *left*).

$$190 = 10111110_2$$

Converting To Binary Division Method

Converting 190 to binary...

- First we take the number that we wish to convert and carry out subsequent divisions by 2.
- At each step, record the quotient and the remainder.
- Read remainders from bottom to top and record them from most significant to least significant bit.
- $190_{10} = 101111110_2$

2 190	
2 <u>95</u>	0
2 <u>47</u>	1
2 23	1

	_
2 <u>5</u>	1
2 <u> 2</u>	1
2 1	0

2 | 111

```
Convert 147<sub>10</sub> to binary using subtraction method:
  147
 -128
            2<sup>7</sup>
  19
<u>-16</u>
              24
               21
               20
147_{10} = 1 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0
        = 10010011 (binary)
        = 93_{16} (hex)
```

Convert 147_{10} to binary.

```
2 | 147 1 2 divides 147 73 times with a remainder of 1
 2 | 73 1 2 divides 73 36 times with a remainder of 1
 2 | 36 0 2 divides 36 18 times with a remainder of 0
 2 18 0 2 divides 18 9 times with a remainder of 0
       1 2 divides 9 4 times with a remainder of 1
  2 | 9
       0 2 divides 4 2 times with a remainder of 0
  2 \mid 4
      0 2 divides 2 1 time with a remainder of 0
  2 \mid 2
       1 2 divides 1 0 times with a remainder of 1
  2 | 1
```

Reading the remainders from bottom to top, we have: $147_{10} = 10010011_2$.

Convert 10111100011110001 to hexadecimal:

```
1011111000111110001
= 178F1_{16} (hex)
```

Example 6

```
Convert 2AB9_{16} to binary

2AB9_{16} = 001010101111001

= 10101010111001
```

Note: 0 digits to the left of Binary or hex numbers have no value. Same as decimal.

Convert 299₁₀ to hex

```
16|299 B divides 18 times (16x18=288) with remainder of 11 (B)
16|18 2 divides 1 times with a remainder of 2
16|1 1 divides 0 times with a remainder of 1
0
```

Read remainders from bottom to top

Answer: 12B₁₆