Методы машинного обучения. Предобработка данных и оценивание моделей

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.vorontsov@iai.msu.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-24-25 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 8 октября 2024

Содержание

- 📵 Предварительная обработка данных
 - Преобразование признаков
 - Обработка пропущенных значений
 - Генерация признаков
- 2 Оценки качества классификации
 - Чувствительность, специфичность, ROC, AUC
 - Правдоподобие вероятностной модели классификации
 - Точность, полнота, AUC-PR
- Анализ ошибок и выбор моделей
 - Обобщающая способность
 - Анализ ошибок
 - Выбор моделей

Межотраслевой стандарт интеллектуального анализа данных

CRISP-DM: CRoss Industry Standard Process for Data Mining (1999)

Компании-инициаторы:

- SPSS
- Teradata
- Daimler AG
- NCR Corp.
- OHRA

Шаги процесса:

- понимание бизнеса
- понимание данных
- предобработка данных
- моделирование
- оценивание моделей
- внедрение

Шкалы измерения

Измерительная шкала — множество Z допустимых значений, получаемых в результате измерения признака f(x), f:X o Z

Тип шкалы определяется множествами

- ullet допустимых биективных преобразований $\psi\colon Z o Z'$
- допустимых операций над значениями из шкалы *Z*

Классификация типов измерительных шкал по Стивенсу:

шкала	D	$\psi(z)$	операции
логическая (boolean)	0, 1	биективные	$\vee \wedge \neg$
номинальная (nominal)	$< \infty$	биективные	$= \neq \in$
порядковая (ordinal)	$< \infty$	монотонные	$= \neq \in < >$
интервальная (interval)	\mathbb{R}	az + b	<>+-
отношений (ratio)	\mathbb{R}	az	<>+-×÷
абсолютная (absolute)	\mathbb{R}	Z	любые

S.S. Stevens. On the Theory of Scales of Measurement // Science, 1946.

Примеры величин, измеряемых в различных шкалах

- Логическая наличие/отсутствие свойства, ответ «да/нет»
- **Номинальная** (можно переименовать или перенумеровать) идентификаторы классов, людей, регионов, фирм, товаров
- Порядковая (порядок частичный или линейный) уровень образования, тяжесть болезни, степень согласия
- Ранговая (частный случай порядковой: $1,2,3,\ldots,N$) оценка в баллах, шкалы Рихтера, Бофорта, Мооса, Бека
- Интервальная (можно сдвигать положение нуля)
 время, географическая широта, температура (°C, °F)
- Отношений (можно менять единицы измерения) масса, скорость, объём, сила, давление, заряд, яркость, °К
- **Абсолютная** число предметов, частота события, оценка вероятности

Ослабление шкалы

Номинальный \rightarrow много бинарных (one-hot-encoding):

- ullet $f_{v}(x)=ig[f(x)={f v}ig]$, для всех значений v признака
- ullet $f_A(x) = [f(x) \in A]$, индикаторный признак подмножества A

Числовой или порядковый o бинарный:

$$\bullet$$
 $f_{a,b}(x) = [a \leqslant f(x) \leqslant b]$ для заданного отрезка $[a,b]$

Числовой \rightarrow ранговый (data binning, quantization):

•
$$f_a(x) = \sum\limits_{k=1}^K \left[f(x) \geqslant \frac{a_k}{a_k} \right]$$
, номер интервала сетки a_1, \ldots, a_K

Ослабление шкалы всегда влечёт потерю информации

Усиление шкалы

Номинальный \rightarrow числовой:

• категория заменяется частотой:

$$f'(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} [f(x_i) = f(x)]$$

• условное среднее числового признака g(x):

$$f'(x) = \text{mean}(g|f(x)) = \frac{\sum_{i=1}^{\ell} g(x_i) [f(x_i) = f(x)]}{\sum_{i=1}^{\ell} [f(x_i) = f(x)]},$$

• условное среднее целевой величины y(x): $f'(x) = \max(y|f(x))$, возможно переобучение!

Порядковый \rightarrow числовой:

• значение заменяется частотой:

$$f'(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} \left[f(x_i) \leqslant f(x) \right]$$

Нормализация и стандартизация числовых шкал

Многие методы накапливают меньше вычислительных погрешностей, если признаки приведены к одному масштабу

$$ullet$$
 $f_j'(x)=rac{f_j(x)-f_j^{\min}}{f_i^{\max}-f_i^{\min}}$ — нормализация, приведение к $[0,1]$

$$ullet$$
 $f_j'(x)=rac{f_j(x)}{|f_j|^{ ext{max}}}$ — масштабирование с сохранением нуля

•
$$f_j'(x) = \frac{f_j(x) - \mu_j}{\sigma_j}$$
 — стандартизация

 f_j^{max} , $|f_j|^{\mathsf{max}}$, f_j^{min} , μ_j , σ_j определяются по обучающей выборке

Для повышения устойчивости к выбросам можно отбрасывать 5% наименьших и наибольших значений признака

Трансформация вида распределения

 F_j — функция распределения (c.d.f.) признака f_j Эмпирическая функция распределения (кусочно-постоянная):

$$\hat{F}_j(z) = \frac{1}{\ell} \sum_{i=1}^{\ell} \left[f_j(x_i) \leqslant z \right]$$

- $f'_j(x) = F_j(f_j(x))$ преобразование $f_j(x)$ в равномерную на отрезке [0,1] случайную величину
- $f'_j(x) = \Phi^{-1}(F_j(f_j(x)))$ преобразование $f_j(x)$ в случайную величину с заданной функцией распределения Φ (например, в нормальную)
- $f'_j(x) = \ln(1 + f_j(x))$ преобразование неотрицательной случайной величины «с тяжёлым правым хвостом» (объёмы производства, перевозок, продаж)

Подходы к обработке пропущенных значений

- Игнорировать объекты или признаки с пропусками
 - ведёт к потере информации :(
- ullet Заполнить пропущенные значения признака f:
 - средним или медианным значением $ar{f}$
- ullet Прогнозировать значения признака f по остальным:
 - регрессия для вещественного признака f
 - классификация для дискретного признака f
 - матричные разложения, например, разреженный SVD
- Использовать модели, способные обрабатывать пропуски:
 - решающие деревья
 - голосование низкоразмерных базовых предикторов
- ullet Ввести бинарный признак $f'(x) = ig[f(x) \$ не известноig]

Непараметрическая регрессия для заполнения пропусков

Формула Надарая-Ватсона, ядерное сглаживание:

$$\hat{f}_j(x_i) = \frac{\sum_u f_j(u)S(u,x_i)}{\sum_u S(u,x_i)}$$

где \sum_u — сумма по всем объектам $u \in X^\ell$ с известным $f_j(u)$

Возможные конструкции функций сходства S(u,x):

•
$$S(u,x) = K\left(\frac{\rho(u,x)}{h}\right), \quad \rho^2(u,x) = \frac{1}{|J_{ux}|} \sum_{j \in J_{ux}} \left(f_j(u) - f_j(x)\right)^2$$

$$ullet$$
 $S(u,x)=rac{1}{|J_{ux}|}\sum_{j\in J_{ux}}f_j(u)f_j(x)$ — скалярное произведение

•
$$S(u,x) = \frac{\sum_{j \in J_{ux}} f_j(u) f_j(x)}{\sqrt{\sum_{j \in J_{ux}} f_j^2(u)} \sqrt{\sum_{j \in J_{ux}} f_j^2(x)}}$$
 — косинусная ф.сх.

где J_{ux} — множество признаков j с известными $f_j(x)$ и $f_j(u)$

Разреженное низкоранговое матричное разложение

Дано: матрица
$$F = \left(f_{ij} = f_j(x_i)\right)_{\ell \times n}, \ \Omega \subseteq \{1,\dots,\ell\} \times \{1,\dots,n\}$$

Найти: матрицы $G = (g_{it})_{\ell \times k}$ и $U = (u_{it})_{n \times k}$ такие, что

$$||F - GU^{\mathsf{T}}|| = \sum_{(i,j) \in \Omega} \left(\underbrace{f_{ij} - \langle g_i, u_j \rangle}_{\varepsilon_{ij}} \right)^2 = \sum_{(i,j) \in \Omega} \left(f_{ij} - \sum_{t=1}^k g_{it} u_{jt} \right)^2 \to \min_{G,U}$$

Классический SVD неприменим для разреженной задачи.

Метод стохастического градиента: перебираем $(i,j) \in \Omega$ в случайном порядке, делаем градиентные шаги $(\varepsilon_{ij})^2 \to \min_{\varepsilon_i,u_i}$

$$g_{it} := g_{it} + \eta \varepsilon_{ij} u_{jt}, \quad t = 1, \dots, k$$

 $u_{jt} := u_{jt} + \eta \varepsilon_{ij} g_{it}, \quad t = 1, \dots, k$

 $\hat{f}_j(x_i) = \langle g_i, u_j \rangle$ — восстановление пропущенных значений g_{it} — новые признаки x_i в пространстве размерности k

Классические подходы к генерации признаков

Feature Engineering: признаки вычисляются по формулам, которые зависят от задачи, требуют изобретательности и знаний предметной области. Долго, дорого.

- Прогнозирование временных рядов:
 признаки агрегируются по предыстории различной глубины
- Распознавание лиц:
 признаки размера и формы черт лица
- Классификация и поиск текстов:
 признаки частоты слов, терминов, названий, синонимов
- Распознавание речи: спектральные, фонетические, лингвистические признаки

Иногда удачные признаки решают задачу без ML

Copeвнование «Ford Classification Challenge» (2008) Задача детектирования поломок по сигналу датчика

Признаки, генерируемые по исходным временным рядам, слабы:

Среди признаков рядов их производных оказывается идеальный:

https://dyakonov.org/2018/06/28/простые-методы-анализа-данных

Обучаемая векторизация данных

Глубокие нейронные сети объединяют два этапа обработки данных: векторизацию и предсказательное моделирование

- компьютерное зрение
- обработка текстов естественного языка
- анализ сигналов и прогнозирование временных рядов
- распознавание и синтез речи
- анализ графов и транзакционных данных
- немного в следующем семестре, много в курсе DL

Анализ ошибок классификации

Задача классификации на два класса, $y_i \in \{-1,+1\}$. Алгоритм классификации $a(x_i) \in \{-1,+1\}$

	ответ классификатора	правильный ответ
TP, True Positive	$a(x_i) = +1$	$y_i = +1$
TN, True Negative	$a(x_i) = -1$	$y_i = -1$
FP, False Positive	$a(x_i) = +1$	$y_i = -1$
FN, False Negative	$a(x_i) = -1$	$y_i = +1$

Правильность классификации (чем больше, тем лучше):

Accuracy =
$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left[a(x_i) = y_i \right] = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{FP} + \mathsf{FN} + \mathsf{TP} + \mathsf{TN}}$$

Недостаток: не учитывается ни численность (дисбаланс) классов, ни цена ошибки на объектах разных классов.

Функции потерь, зависящие от штрафов за ошибку

Задача классификации на два класса, $y_i \in \{-1, +1\}$. Модель классификации: $a(x; w, w_0) = \mathrm{sign}(g(x, w) - w_0)$. Чем больше w_0 , тем больше x_i таких, что $a(x_i) = -1$.

Пусть λ_y — штраф за ошибку на объекте класса y. Функция потерь теперь зависит от штрафов:

$$\mathscr{L}(w,x_i) = \frac{\lambda_{y_i}}{a(x_i; w, w_0)} \neq y_i = \frac{\lambda_{y_i}}{a(x_i; w) - w_0} y_i < 0.$$

Проблема

На практике штрафы $\{\lambda_{y}\}$ могут пересматриваться

- Нужен удобный способ выбора w_0 в зависимости от $\{\lambda_y\}$, не требующий построения w заново.
- Нужна характеристика качества модели g(x, w), не зависящая от штрафов $\{\lambda_v\}$ и численности классов.

Определение ROC-кривой

Кривая ошибок ROC (receiver operating characteristic). Каждая точка кривой соответствует некоторому $a(x; w, w_0)$.

• по оси X: доля ошибочных положительных классификаций (FPR — false positive rate):

$$\mathsf{FPR} = \frac{\sum_{i=1}^{\ell} [y_i = -1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = -1]};$$

 $1-\mathsf{FPR}$ называется специ ϕ ичностью алгоритма a.

• по оси Y: доля *правильных положительных классификаций* (TPR — true positive rate):

$$\mathsf{TPR} = \frac{\sum_{i=1}^{\ell} [y_i = +1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = +1]};$$

TPR называется также чувствительностью алгоритма a.

ROC-кривая и площадь под кривой AUC (Area Under Curve)

ABCDE — положения порога w_0 на оси значений функции g

Алгоритм эффективного построения ROC-кривой

```
Вход: выборка \{x_i\}_{i=1}^{\ell}; дискриминантная функция g(x,w);
Выход: ROC-кривая (X_i, Y_i)_{i=0}^k, k \leq \ell и площадь AUC
\ell_{v} := \sum_{i=1}^{\ell} [y_{i} = y], для всех y \in Y;
упорядочить \{x_i\} по убыванию g_i = g(x_i, w): g_1 \geqslant \ldots \geqslant g_\ell;
(X_0, Y_0) := (0, 0); AUC := 0; \Delta X := 0; \Delta Y := 0; i := 1;
для i := 1, \ldots, \ell
                                                                                                 \Delta Y = 0
     \Delta X := \Delta X + \frac{1}{\ell} [y_i = -1];
     \Delta Y := \Delta Y + \frac{1}{\ell_+} [y_i = +1];
     если (g_i \neq g_{i-1}) то
                                                                        \Delta X = 0
   X_j := A_{j-1} + \Delta Y;

Y_j := Y_{j-1} + \Delta Y;

AUC := AUC + \frac{1}{2}(Y_{j-1} + Y_j)\Delta X;

j := j + 1; \Delta X := 0; \Delta Y := 0;
          X_i := X_{i-1} + \Delta X;
                                                                                     \Delta X
```

Максимизация AUC как попарного (pairwise) критерия

Модель классификации: $a(x_i, w, w_0) = \operatorname{sign}(g(x_i, w) - w_0)$.

AUC — это доля правильно упорядоченных пар (x_i, x_j) :

$$\begin{aligned} \mathsf{AUC}(w) &= \frac{1}{\ell_{-}} \sum_{i=1}^{\ell} \big[y_{i} = -1 \big] \mathsf{TPR}_{i} = \\ &= \frac{1}{\ell_{-}\ell_{+}} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \big[y_{i} < y_{j} \big] \big[g(x_{i}, w) < g(x_{j}, w) \big] \to \max_{w} \end{aligned}$$

Явная максимизация аппроксимированного AUC:

$$1 - \mathsf{AUC}(w) \leqslant \mathit{Q}(w) = \sum_{i,j \colon y_i < y_j} \mathit{L}(\underbrace{\mathit{g}(x_j,w) - \mathit{g}(x_i,w)}_{\mathit{M}_{ij}(w)}) \to \min_{w}$$

L(M) — убывающая функция отступа,

 $M_{ii}(w)$ — новое понятие отступа для пар объектов.

Алгоритм SG для максимизации AUC

Возьмём для простоты линейный классификатор:

$$g(x, w) = \langle x, w \rangle, \qquad M_{ij}(w) = \langle x_j - x_i, w \rangle, \qquad y_i < y_j.$$

Вход: выборка X^{ℓ} , темп обучения h, темп забывания λ ; **Выход:** вектор весов w;

инициализировать веса w_j , $j=0,\ldots,n$; инициализировать оценку: $\bar{Q}:=\frac{1}{\ell+\ell-}\sum_{i,j}[y_i< y_j]\,L(M_{ij}(w))$;

повторять

выбрать пару объектов (i,j): $y_i < y_j$, случайным образом; вычислить потерю: $\varepsilon_{ij} := L(M_{ij}(w))$; сделать градиентный шаг: $w := w - h \, L'(M_{ij}(w))(x_j - x_i)$; оценить функционал: $\bar{Q} := (1 - \lambda) \bar{Q} + \lambda \varepsilon_{ij}$; пока значение \bar{Q} и/или веса w не сойдутся;

Логарифм правдоподобия, log-loss

Вероятностная модель бинарной классификации, $y_i \in \{-1, +1\}$:

$$a(x, w) = sign(g(x, w) - w_0), \qquad g(x, w) = P(y = +1|x, w).$$

Проблема: ROC и AUC инвариантны относительно монотонных преобразований дискриминантной функции g(x, w).

Критерий логарифма правдоподобия (log-loss):

$$Q(w) = \sum_{i=1}^{\ell} [y_i = +1] \ln g(x, w) + [y_i = -1] \ln (1 - g(x, w)) \to \max_{w}$$

Вероятностная модель многоклассовой классификации:

$$a(x) = rg \max_{y \in Y} \mathsf{P}(y|x,w);$$
 $Q(w) = \sum_{i=1}^{\ell} \mathsf{In} \, \mathsf{P}(y_i|x_i,w)
ightarrow \max_{w}$

Точность и полнота бинарной классификации

В информационном поиске:

Точность, Precision =
$$\frac{TP}{TP+FP}$$

Полнота, Recall = $\frac{TP}{TP+FN}$

Precision — доля релевантных среди найденных Recall — доля найденных среди релевантных

В медицинской диагностике:

Чувствительность, Sensitivity =
$$\frac{TP}{TP+FN}$$
 Специфичность, Specificity = $\frac{TN}{TN+FP}$

Sensitivity — доля верных положительных диагнозов Specificity — доля верных отрицательных диагнозов

Точность и полнота многоклассовой классификации

Для каждого класса $y \in Y$:

 TP_y — верные положительные

 FP_y — ложные положительные

 FN_y — ложные отрицательные

Точность и полнота с микроусреднением:

Precision:
$$P = \frac{\sum_{y} \mathsf{TP}_{y}}{\sum_{y} (\mathsf{TP}_{y} + \mathsf{FP}_{y})};$$

Recall: $R = \frac{\sum_{y} \mathsf{TP}_{y}}{\sum_{y} (\mathsf{TP}_{y} + \mathsf{FN}_{y})};$

Микроусреднение не чувствительно к ошибкам на малочисленных классах

Точность и полнота многоклассовой классификации

Для каждого класса $y \in Y$: TP_y — верные положительные FP_y — ложные положительные FN_v — ложные отрицательные

Точность и полнота с макроусреднением:

Precision:
$$P = \frac{1}{|Y|} \sum_{y} \frac{\text{TP}_{y}}{\text{TP}_{y} + \text{FP}_{y}};$$
Recall: $R = \frac{1}{|Y|} \sum_{y} \frac{\text{TP}_{y}}{\text{TP}_{y} + \text{FN}_{y}};$

Макроусреднение чувствительно к ошибкам на малочисленных классах

Кривые ROC и Precision-Recall

Модель классификации: $a(x) = \text{sign}(\langle x, w \rangle - w_0)$ Каждая точка кривой соответствует значению порога w_0

AUROC — площадь под ROC-кривой

AUPRC — площадь под кривой Precision-Recall

Примеры из Python scikit learn: http://scikit-learn.org/dev

Резюме. Оценки качества классификации

- Чувствительность и специфичность лучше подходят для задач с несбалансированными классами
- Логарифм правдоподобия (log-loss) лучше подходит для оценки качества вероятностной модели классификации.
- Точность и полнота лучше подходят для задач поиска, когда доля объектов релевантного класса очень мала.

Агрегированные оценки:

- AUC лучше подходит для оценивания качества, когда соотношение цены ошибок не фиксировано.
- AUPRC площадь под кривой точность-полнота.
- $F_1 = \frac{2PR}{P+R} F$ -мера, другой способ агрегирования P и R.
- ullet $F_eta=rac{(1+eta^2)PR}{eta^2P+R}-F_eta$ -мера: чем больше eta, тем важнее R.

Задачи оценивания и выбора моделей

Дано:
$$X$$
 — пространство объектов, Y — множество ответов $X^{\ell}=(x_i,y_i)_{i=1}^{\ell}$ — обучающая выборка, $y_i=y^*(x_i)$ $A_t=\{a\colon X\times W_t\to Y\}$ — параметрические модели, $t\in T$ W_t — пространство параметров модели A_t $\mu_t\colon (X\times Y)^{\ell}\to W_t$ — методы обучения, $t\in T$

Найти: метод μ_t с наилучшей обобщающей способностью.

Частные случаи:

- ullet выбор лучшей модели A_t (model selection);
- выбор метода обучения μ_t для заданной модели A (в частности, оптимизация *гиперпараметров*);
- отбор признаков (feature selection): $F = \left\{ f_j \colon X \to D_j \colon j = 1, \dots, n \right\}$ множество признаков; метод обучения μ_J использует только признаки $J \subseteq F$.

Обобщающая (предсказательная) способность метода

$$\mathscr{L}(w,x)$$
 — функция потерь модели $a(w,x)$ на объекте x ; $Q(w,X^\ell)=rac{1}{\ell}\sum_{i=1}^\ell\mathscr{L}(w,x_i)$ — функционал качества $a(w,x)$ на X^ℓ

Bнутренний критерий оценивает качество на обучении X^ℓ :

$$Q_{\mu}(X^{\ell}) = Q(\mu(X^{\ell}), X^{\ell}).$$

Недостаток: эта оценка смещена, т.к. μ минимизирует её же.

Внешний критерий оценивает качество «вне обучения», например, по отложенной (hold-out) контрольной выборке X^k :

$$Q_{\mu}(X^{\ell}, X^{k}) = Q(\mu(X^{\ell}), X^{k}).$$

Недостаток: эта оценка зависит от разбиения $X^L = X^\ell \sqcup X^k$.

Основное отличие внешних критериев от внутренних

Внутренний критерий монотонно убывает с ростом сложности модели (например, числа признаков).

Внешний критерий имеет характерный минимум, соответствующий оптимальной сложности модели.

Кросс-проверка (cross-validation, CV)

Усреднение оценок hold-out по заданному N — множеству разбиений $X^L = X_n^\ell \sqcup X_n^k$, $n = 1, \ldots, N$:

$$\mathsf{CV}(\mu, X^L) = \frac{1}{|\mathcal{N}|} \sum_{n \in \mathcal{N}} Q_{\mu}(X_n^{\ell}, X_n^k).$$

Частные случаи — разные способы задания множества N.

- |N| = 1 единственное разбиение: hold-out.
- 2. N случайное множество разбиений: метод Монте-Карло.
- 3. N множество всех $C_{\ell+k}^k$ разбиений: полная кросс-проверка (complete cross-validation, CCV).

Недостаток: оценка CCV вычислительно слишком сложна. Используются либо малые k, либо комбинаторные оценки CCV.

Скользящий контроль и поблочная кросс-проверка

4. Скользящий контроль (leave one out CV): k=1,

$$LOO(\mu, X^L) = \frac{1}{L} \sum_{i=1}^{L} Q_{\mu}(X^L \setminus \{x_i\}, \{x_i\}).$$

Недостатки LOO: ресурсоёмкость, высокая дисперсия.

5. Кросс-проверка по q блокам (q-fold CV): случайное разбиение $X^L=X_1^{\ell_1}\sqcup\cdots\sqcup X_q^{\ell_q}$ на q блоков (почти) равной длины,

$$\mathsf{CV}_q(\mu, X^L) = rac{1}{q} \sum_{n=1}^q Q_\mu ig(X^L ackslash X_n^{\ell_n}, X_n^{\ell_n} ig).$$

Недостатки q-fold CV:

- оценка существенно зависит от разбиения на блоки;
- каждый объект лишь один раз участвует в контроле.

Многократная поблочная кросс-проверка

- 6. Контроль t раз по q блокам $(t \times q$ -fold CV)
- стандарт «де факто» для тестирования методов обучения.

Выборка X^L разбивается t раз случайным образом на q блоков

$$X^L = X_{s1}^{\ell_1} \sqcup \cdots \sqcup X_{sq}^{\ell_q}, \quad s = 1, \ldots, t, \quad \ell_1 + \cdots + \ell_q = L;$$

$$\mathsf{CV}_{t\times q}(\mu, X^L) = \frac{1}{t} \sum_{s=1}^t \frac{1}{q} \sum_{n=1}^q Q_\mu \big(X^L \backslash X_{sn}^{\ell_n}, X_{sn}^{\ell_n} \big).$$

Преимущества $t \times q$ -fold CV:

- увеличением t можно улучшать точность оценки (компромисс между точностью и временем вычислений);
- каждый объект участвует в контроле ровно t раз;
- оценивание доверительных интервалов (95% при t=40).

Методология анализа ошибок

 $\mathscr{L}(w,x_i)$ — функция потерь (чем меньше, тем лучше). Критерий средней потери модели a(x,w) на выборке U:

$$Q(w, U) = \frac{1}{|U|} \sum_{x_i \in U} \mathcal{L}(w, x_i)$$

Анализ потерь на обучающей выборке:

- ullet Ранжировать объекты по убыванию потерь $\mathscr{L}_i = \mathscr{L}(\mathsf{x}_i, w)$
- Объекты со сверхбольшими потерями выбросы?
- Если нет, то как улучшить модель на этих объектах?

Сравнительный анализ потерь на обучении и тесте:

- Сильно ли отличаются распределения потерь?
- Если сильно, то как устранить переобучение?
- Объекты со сверхбольшими отличиями выбросы?

Анализ распределения отступов в задаче классификации

Вместо потерь $L(M_i)$ можно ранжировать отступы M_i

Задача UCI:australian, метод JRip

Анализ ROC-кривых

ROC-кривые можно строить отдельно для каждого класса

Задача UCI:heart, метод Naive Bayes

Задача UCI:liver, метод Bagging

A/В тестирование (A/B testing, Split Testing)

Две модели, «базовая А» и «улучшенная В», построенные по историческим данным X^ℓ , тестируются по метрике качества Q на новых данных X^k

В чём отличия A/B тестирования от обычного hold-out?

- X^k это именно будущие данные (out-of-time), а не часть прошлых данных, исключённых из обучения (out-of-sample)
- больше реализма: за это время могут измениться свойства потока данных, реальные данные не обязаны быть i.i.d.
- однократный выбор модели почти не переобучается
- ullet накопление данных X^k может потребовать много времени
- работа модели может влиять на формирование потока данных (например, в рекомендательных системах)

Мета-обучение (meta-learning, learning to learn)

Дано: выборка «задача, метод» ightarrow критерии качества

Найти: модель предсказания, каким методом решать задачу

Критерий: точность предсказания оптимального метода

Признаки:

- размерные характеристики задачи
- характеристики пространства признаков: типы, выбросы, пропуски, корреляции
- результаты быстрых низкоразмерных методов

Joaquin Vanschoren. Meta-Learning: A Survey. 2018.

Joaquin Vanschoren. Meta-learning Architectures: Collecting, Organizing and Exploiting Meta-knowledge. 2009.

Автоматический выбор моделей и гиперпараметров (AutoML)

Проблема:

подбор структуры модели (архитектуры нейросети) и гиперпараметров требует слишком много ресурсов

Дано: выборка «задача, структура» ightarrow критерии качества

Найти: какой следующий эксперимент провести с моделью

Критерий:

минимизация затрат ресурсов на автоматический поиск оптимальной модели, сопоставимой по качеству с моделями, построенными профессиональными исследователями

Близкая классическая задача — планирование экспериментов

Xin He et al. AutoML: A Survey of the State-of-the-Art. 2019 https://github.com/sberbank-ai-lab/LightAutoML — AutoML от Сбербанка

- Культура анализа данных:
 - смотреть на данные глазами
 - пробовать нетривиальные идеи предобработки, основанные на знаниях предметной области
 - использовать анализ ошибок и визуализацию
 - креативно порождать и оценивать больше гипотез
 - знать и учитывать сильные и слабые стороны методов
- Автоматизация распространяется по схеме CRISP-DM,
 в перспективе нас ожидает бесшовная интеграция этапов
 - предобработки данных
 - моделирования
 - оценивания и выбора моделей
 - внедрения