Topologie

Sebastian Bechtel

15. April 2015

Filter

Definition. Sei X Menge, $\emptyset \neq \varphi \subseteq \mathcal{P}(X)$. φ heißt <u>Filter</u> auf X gdw.

- (1) $X \in \varphi, \emptyset \notin \varphi$
- (2) $A \in \varphi$ und $B \in \varphi \implies A \cap B \in \varphi$
- (3) $A \in \varphi$ und $B \supseteq A \implies B \in \varphi$

Beispiel 1. • Aus Folgen gebildete Filter: Elementarfilter

- Für $\emptyset \neq A \subseteq X$: $[A] := \{P \subseteq X : P \supseteq A\}$
- Spezialfall $A = \{a\} \colon \dot{a} \coloneqq [\{a\}]$ ist <u>Einpunktfilter</u> zu a

Definition. X Menge, φ Filter auf X, $\mathfrak{B} \subseteq \mathcal{P}_0(X)$.

- ${\mathfrak B}$ heißt Basis von φ gdw. $\varphi=\{P\subseteq X:\exists B\in{\mathfrak B}:B\subseteq P\}$
- $\mathfrak B$ heißt <u>Subbasis</u> von φ gdw. die Familie aller endlichen Schnitte von Elementen in $\mathfrak B$ eine Basis von φ ist.
- φ heißt der von \mathfrak{B} erzeugte Filter $[\mathfrak{B}]$.

Proposition 1. Sei $\emptyset \neq X$ Menge, $\emptyset \neq \mathfrak{B} \subseteq \mathcal{P}_0(X)$.

(1) \mathfrak{B} ist Filtersubbasis gdw. die endlichen Durchschnitte von Elementen aus \mathfrak{B} sämtlich nicht leer sind.

- (2) \mathfrak{B} ist Filterbasis gdw. zu je endlich vielen $B_1, \ldots, B_k \in \mathfrak{B}$ es ein $B_0 \in \mathfrak{B}$ gibt, sodass $B_0 \subseteq \bigcap_{i=1}^k B_i$.
- (3) Sind \mathfrak{A} und \mathfrak{B} Filterbasen, so ist $\mathfrak{A} \cup \mathfrak{B}$ Filtersubbasis gdw. für $A \in \mathfrak{A}$ und $B \in \mathfrak{B}$ $gilt: A \cap B \neq \emptyset$.
- (4) Ist \mathfrak{A} eine Filterbasis und $P \subseteq X$, sodass für $A \in \mathfrak{A}$ gilt: $P \cap A \neq \emptyset$, dann ist $\mathfrak{A} \cup \{P\}$ Filtersubbasis.

Definition. X Menge, $d: X \times X \to [0, \infty)$ mit

- (1) für $x, y \in X$ gilt d(x, y) = 0 gdw. x = y.
- (2) für $x, y \in X$ gilt d(x, y) = d(y, x).
- (3) für $x, y, z \in X$ gilt $d(x, z) \le d(x, y) + d(y, z)$.

dann heißt (X, d) metrischer Raum.

Definition. Sei (X, d) metrischer Raum, $x \in X$, $\varepsilon > 0$.

- $U_{\varepsilon}=U_{\varepsilon}^{d}\coloneqq\{y\in X:d(x,y)<\varepsilon\}$ heißt $\underline{\varepsilon\text{-Umgebung}}$ von x.
- Eine Teilmenge $O \subseteq X$ heißt offen (bzgl. d), falls es für $x \in O$ ein $\varepsilon > 0$ gibt, sodass $U_{\varepsilon}(x) \subseteq O$.
- Eine Menge $V \subseteq X$ heißt Umgebung von x, falls es $\varepsilon > 0$ gibt, sodass $U_{\varepsilon}(x) \subseteq V$.
- Die Familie aller Umgebungen von x heißt Umgebungsfilter von x: $\underline{U}(x)$
- Eine Folge (x_n) in X konvergiert gegen y, falls es für $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, sodass für $m > n_0$ gilt: $d(x_m, y) < \varepsilon$
- Ein Filter φ auf X konvergiert gegen y, falls für $\varepsilon > 0$ gilt: $U_{\varepsilon}(y) \in \varphi$. Äquivalent: $\underline{U}(y) \subseteq \varphi$

Proposition 2. In einem metrischen Raum (X,d) ist jede ε -Umgebung $U_{\varepsilon}(x)$ offen.

Beweis. Sei
$$y \in U_{\varepsilon}(x)$$
. Wähle $\delta := \varepsilon - d(x, y)$, dann ist $U_{\delta}(y) \subseteq U_{\varepsilon}(x)$.

Proposition 3. Sei (X, d) metrischer Raum, $O \subseteq X$. Es sind äquivalent:

(1) O ist offen.

- (2) Für jede Folge (x_n) in X, die gegen $y \in O$ konvergiert, gilt: es gibt $n_0 \in \mathbb{N}$, sodass für $m > n_0$ gilt: $x_m \in O$.
- (3) Für jeden Filter φ auf X, der gegen $y \in O$ konvergiert, gilt $O \in \varphi$.

Beweis. (1) \Longrightarrow (2): Da O offen ist, gibt es $\varepsilon > 0$ mit $U_{\varepsilon} \subseteq O$. Nun gibt es $n_0 \in \mathbb{N}$, sodass für m > n gilt: $x_m \in U_{\varepsilon}(y) \subseteq O$.

- (2) \Longrightarrow (1): Angenommen O ist nicht offen, dann gibt es $y \in O$, sodass für $n \in \mathbb{N}^+$ ein x_m existiert mit $x_m \in U_{1/n}(y) \setminus O$. Widerspruch!
- (1) \Longrightarrow (3): O offen, $\varphi \to y \in O$, dann gibt es $\varepsilon > 0$, sodass $U_{\varepsilon}(y) \subseteq O$. $U_{\varepsilon}(y) \in \varphi$, also auch $O \in \varphi$.
 - (3) \implies (1): Wähle für alle $x \in X$ den Umgebungsfilter von x.

Lemma 1. Sei (X, d) metrischer Raum, $\tau_d := \{O \subseteq X : O \text{ offen bzgl. } d\}$. Dann gelten:

- (1) $X \in \tau_d, \emptyset \in \tau_d$
- (2) $A \in \tau_d \ und \ B \in \tau_d \implies A \cap B \in \tau_d$
- (3) $\mathfrak{B} \subseteq \tau_d \implies \bigcup_{B \in \mathfrak{B}} B \in \tau_d$

Definition. Seien $(X_1, d_1), (X_2, d_2)$ metrische Räume, $f: X_1 \to X_2$. f heißt stetig, falls

- es für $x \in X$ und $\varepsilon > 0$ ein $\delta > 0$ gibt, sodass für $y \in X_1$ mit $d_1(x,y) < \delta$ folgt: $d_2(f(x), f(y)) < \varepsilon$
- Äquivalent: für $x \in X_1$ und $\varepsilon > 0$ gibt es $\delta > 0$, sodass $f(U_{\delta}(x)) \subseteq U_{\varepsilon}(f(x))$
- Äquivalent: für $x \in X_1$ gilt: $[f(\underline{U}(x))] \supseteq \underline{U}(f(x))$

Lemma 2. Eine Funktion $f: X_1 \to X_2$ zwischen metrischen Räumen $(X_1, d_1), (X_2, d_2)$ ist stetig gdw. für jede in X_2 offene Menge O das Urbild $f^{-1}(O)$ offen in X_1 ist.

Beweis. " \Rightarrow ": Sei f stetig, $O \subseteq X_2$ offen, $x \in f^{-1}(0)$. $f(x) \in O$, also gibt es $\varepsilon > 0$, sodass $U_{\varepsilon}(f(x)) \subseteq O$. Wegen Stetigkeit gibt es $\delta > 0$, sodass $f(U_{\delta}(x)) \subseteq U_{\varepsilon}(f(x)) \subseteq O$. Somit $U_{\delta}(x) \subseteq f^{-1}(O)$, also $f^{-1}(O)$ offen.

"\(\infty\)": Sei $x \in X_1$. Setze $O := U_{\varepsilon}(f(x))$. Dann ist $f^{-1}(U_{\varepsilon}(f(x)))$ offen, also gibt es $\delta > 0$ mit $U_{\delta}(x) \subseteq f^{-1}(U_{\varepsilon}(f(x)))$, somit $f(U_{\delta}(x)) \subseteq U_{\varepsilon}(f(x))$.

Definition. Sei $X = \mathbb{R}^{\mathbb{R}}$.

- Eine Folge (f_n) in $\mathbb{R}^{\mathbb{R}}$ konvergiert punktweise gegen $g \in \mathbb{R}^{\mathbb{R}}$, falls für $x \in \mathbb{R}$ gilt $f_n(f) \to g(x)$.
- Ein Filter φ auf $\mathbb{R}^{\mathbb{R}}$ konvergiert punktweise gegen $g \in \mathbb{R}^{\mathbb{R}}$, falls für $x \in \mathbb{R}$ gilt $\varphi(x) \to g(x)$, wobei $\varphi(x) \coloneqq [\{F(x) : F \in \varphi\}]$ und $F(x) \coloneqq \{f(x) : f \in F\}$.

Lemma 3. Es gibt keine Metrik auf $\mathbb{R}^{\mathbb{R}}$, deren Konvergenz die punktweisen Konvergenz ist.

Topologische Räume

Definition. Sei X Menge, $\tau \subseteq \mathcal{P}(X)$. τ heißt eine Topologie auf X gdw.

- (1) $\emptyset \in \tau, X \in \tau$
- (2) $A, B \in \tau \implies A \cap B \in \tau$
- (3) $\mathfrak{A} \subseteq \tau \implies \left(\bigcup_{A \in \mathfrak{A}} A\right) \in \tau$

Die Elemente von τ heißen offene Mengen (bzgl. τ). Das Paar (X,τ) heißt ein topologischer Raum.

Beispiel 1. • d Metrik, dann ist τ_d Topologie.

- $\tau := \mathcal{P}(X)$ (diskrete Topologie).
- $\{\emptyset, X\}$ (indiskrete Topologie)
- X unendliche Menge, dann ist $\tau_{\text{cf}} := \{A \subseteq X : X \setminus A \text{ endlich}\} \cup \{\emptyset\}$ Topologie.
- X unendlich, dann ist $\tau_{cc} \coloneqq \{A \subseteq X : X \setminus A \text{ h\"ochstens abz\"{a}hlbar}\} \cup \{\emptyset\}$ Topologie.
- φ Filter auf X, dann ist $\varphi \cup \{\emptyset\}$ Topologie.

Proposition 4. Sei (X, τ) topologischer Raum. Äquivalent sind:

- (1) $X \supset O \in \tau$
- (2) $f\ddot{u}r\ o \in O\ gibt\ es\ U \in \tau$, $sodass\ o \in U \subseteq O$.

Definition. Der Filter, der von der Basis $\{U \in \tau : x \in U\}$ erzeugt wird, heißt Umgebungsfilter von $x : \underline{U}^{\tau}(x)$.

Definition. $x \in X$, (X, τ) topologischer Raum, φ Filter auf X. φ konvergiert gegen X, falls $\varphi \supseteq \underline{U}(x)$, $\varphi \to x$

Proposition 5. (X, τ) topologischer Raum. Äquivalent sind:

- (1) $O \subseteq X$ ist offen
- (2) für alle Filter φ auf X mit $\varphi \to x \in O$ gilt: $O \in \varphi$.

Bemerkung. $X = \mathbb{R}, \tau = \tau_{cc}$, dann konvergieren nur Folgen, die irgendwann konstant sind.

Filter und Ultrafilter

X Menge, $\mathfrak{F}(X)$ Menge aller Filter auf X.

Proposition 6. X Menge, $\underline{C} \subseteq \mathfrak{F}(X)$ total geordnet durch \subseteq . Dann ist $\bigcup_{C \in \underline{C}} C$ wieder Filter und ein Supremum von \underline{C} in $\mathfrak{F}(X)$.

Beweis. totale Ordnung für Schnitte.

Korollar 1. X Menge. Zu jedem $\underline{C} \in \mathfrak{F}(X)$ existiert ein maximales Element $\psi \in \mathfrak{F}(X)$ mit $\varphi \subset \psi$.

Definition. Die maximalen Filter auf X heißen auch <u>Ultrafilter</u> auf X. Familie aller Ultrafilter auf X: $\mathfrak{F}_0(X)$. Die Familie aller <u>Oberfilter</u> von $\varphi \in \mathfrak{F}(X)$ bezeichnen wir mit $\mathfrak{F}(\varphi)$. Familie aller <u>Oberultrafilter</u> von φ : $\mathfrak{F}_0(\varphi)$.

Lemma 4. X Menge, $\varphi \in \mathfrak{F}(X)$. Äquivalent sind:

- φ Ultrafilter
- $A \subseteq X$, so gilt $A \in \varphi$ oder $X \setminus A \in \varphi$
- Für je endlich viele Teilmengen A_1, \ldots, A_n von X folgt aus $(\bigcup_{i=1}^n A_i) \in \varphi$ stets, dass es ein i mit $A_i \in \varphi$ gibt, wobei $1 \le i \le n$.

Beweis. (1) nach (2): Angenommen $A \notin \varphi$, dann gilt für $P \in \varphi : P \cap (X \setminus A) \neq \emptyset$. Also ist $\varphi \cup \{X \setminus A\}$ eine Filtersubbasis. Also existiert Ultrafilter ψ mit $\psi \supseteq \varphi \cup \{X \setminus A\}$. Da φ selbst maximal ist, folgt $\varphi = \psi$, somit $(X \setminus A) \in \varphi$.

- (2) nach (3): Angenommen für alle $i \in I$ gilt $A_i \notin \varphi$. Dann ist $(X \setminus A_i) \in \varphi$ für alle $i \in I$, also auch $(\bigcap_{i=1}^n (X \setminus A_i)) \in \varphi$. Dann gilt auch $X \setminus (\bigcup_{i=1}^n A_i) \in \varphi$, also $(\bigcup_{i=1}^n A_i) \notin \varphi$, Widerspruch!
- (3) nach (1): Angenommen φ ist nicht maximal, also dass ein $\psi \in \mathfrak{F}_0(X)$ existiert, mit $\psi \neq \varphi$. Also existiert $A \in \psi \setminus \varphi$. Es gilt $A \cup (X \setminus A) \in \varphi$, also nach Annahme $A \in \varphi$ oder $(X \setminus A) \in \varphi$. $A \in \varphi$ kann nicht sein, da $A \in \psi \setminus \varphi$. Wäre $(X \setminus A) \in \varphi$, so auch $(X \setminus A) \in \psi$ im Widerspruch zu $A \in \psi$. Also φ maximal.

Beispiel 2. Einpunktfilter sind Ultrafilter, ansonsten nicht konstruierbar.

Proposition 7. Jeder Filter φ ist gleich dem Durchschnitt aller seiner Oberultrafilter.

Korollar 2. X Menge, φ Filter auf X, dann gilt:

$$\mathfrak{F}_0\left(\bigcap_{i=1}^n\varphi_i\right)=\bigcup_{i=1}^n\mathfrak{F}_0(\varphi_i)$$

Beweis. "\(\text{\text{"}}\): \(\sigma\)": \(\varphi\)": Sei \(\psi\) \(\varphi\) \(\begin{align*} \psi_0 \left(\beta_i)\). Angenommen \(\psi\) \(\psi\) \(\psi_{i=1}^n \mathcal{F}_0(\varphi_i)\), dann gibt es für jedes $1 \leq i \leq n$ ein \(A_i \in \varphi\), sodass \(A_i \noting \psi\). Also \((\bigcup_{i=1}^n A_i) \in (\bigcup_{i=1}^n \varphi_i) \in \psi\). Nach Lemma gibt es dann \(i_0\) mit \(A_{i_0} \in \psi\), Widerspruch!

Lemma 5. Sei X Menge, $\mathfrak{E} \subseteq \mathcal{P}_0(X)$ sei unter endlicher Vereinigung abgeschlossen, $\varphi \in \mathfrak{F}(X)$. Dann gilt: φ enthält ein Element von \mathfrak{E} gdw. jeder Oberultrafilter von φ ein Element von \mathfrak{E} enthält.

Beweis. " \Leftarrow ": Sei ψ Oberultrafilter von φ mit $\psi \cap \mathfrak{E} \neq \emptyset$. Angenommen $\varphi \cap \mathfrak{E} = \emptyset$. Betrachte:

$$\mathfrak{B} \coloneqq \{X \setminus E : E \in \mathfrak{E}\}$$

 $\mathfrak B$ ist Filtersubbasis, denn X ist nicht durch endliche Schnitte von Elementen in $\mathfrak E$ darstellbar.

 $\mathfrak{B} \cup \varphi$ ist auch Filtersubbasis, denn für $P \in \varphi$ und $E \in \mathfrak{E}$ gilt $P \cap (X \setminus E) \neq \emptyset$. Es existiert also Oberultrafilter $\xi \supset \varphi$ mit $\mathfrak{B} \subseteq \xi$, d.h. für $E \in \mathfrak{E}$ gilt $E \notin \xi$, denn $(X \setminus E) \in \xi$, Widerspruch!

Seien X, Y Mengen, $f: X \to Y, \varphi$ Filter auf X, ψ Filter auf Y, dann ist

$$f(\varphi) := \{ f(P) : P \in \varphi \}$$

Filterbasis in Y, denn

$$f(P_1 \cap P_2) \subseteq f(P_1) \cap f(P_2)$$

d.h. es gibt einen erzeugten Filter $[f(\varphi)]$, üblicherweise kurz geschrieben als $f(\varphi)$.

Lemma 6. Seien X, Y Mengen, $f: X \to Y$, φ Ultrafilter auf X. Dann ist $f(\varphi)$ Ultrafilter auf Y.

Beweis. Sei $B \subseteq Y$, $B \notin f(\varphi)$. Dann ist $f^{-1}(B) \notin \varphi$ (sonst $f(f^{-1}(B)) \in f(\varphi)$). Somit folgt $(X \setminus f^{-1}(B)) \in \varphi$, also $f(X \setminus f^{-1}(B)) \in f(\varphi)$. Da $f(X \setminus f^{-1}(B)) \subseteq (Y \setminus B)$ folgt $(Y \setminus B) \in f(\varphi)$.

Proposition 8. (1) φ Filter auf X und $B \subseteq Y$, dann ist $B \in f(\varphi)$ gdw. $f^{-1}(B) \in \varphi$.

- (2) Seien φ_1, φ_2 Filterbasen auf X. Dann folgt aus $[\varphi_1] \supseteq \varphi_2$ stets $f([\varphi_1]) \supseteq [f(\varphi_2)]$.
- (3) Ist (χ_i) Familie von Filtern auf X, so gilt:

$$f\left(\bigcap_{i\in I}\chi_i\right) = \bigcap_{i\in I}f(\chi_i)$$

Proposition 9. Sei ψ Filter auf Y.

$$\{f^{-1}(P) : P \in \psi\}$$

ist Filterbasis auf X gdw. für $P \in \psi$ gilt: $P \cap f(X) \neq \emptyset$.

Lemma 7. Seien X, Y Mengen, $f: X \to Y$, φ Filter auf X. Sei ψ_0 Oberultrafilter von $f(\varphi)$. Dann existiert ein Ultrafilter φ_0 auf X mit $f(\varphi_0) = \psi_0$.

Beweis. $f^{-1}(\psi_0)$ ist Filterbasis, also existiert Ultrafilter $\varphi_0 \supseteq f^{-1}(\psi)$. Also ist $f(\varphi_0)$ Ultrafilter mit $f(\varphi_0) \supseteq f(f^{-1}(\psi_0)) \supseteq \psi_0$.

Definition. Sei (X_i) Familie nichtleerer Mengen, φ_i jeweils Filter auf X_i , dann nennen wir den von der Subbasis

$$\left\{ \prod_{i \in I} P_i: \quad P_i \in \varphi_i, P_i \neq X_i \text{ für höchstens endlich viele } i \in I \right\}$$

erzeugten Filter den Produktfilter $\prod_{i \in I} \varphi_i$ auf $\prod_{i \in I} X_i$.