Free/unregulated/license-exempt spectrum

- □ Not subject to license
- ☐ Has rules for products (eg *power limitation*)
- ☐ More frequencies are being released as license-exempt
- □ Some current license-exempt frequencies
 - > 900 MHz
 - > 2.4 GHz ISM band (WiFi, Microwave etc.)
 - > 5.2/5.3/5.8 GHz (WiFi, Cordless phone etc.)
 - > Can you identify more?

©2020 Mahbub Hassan

Decibel

- ☐ Tx power for practical mobile systems vary by many orders of magnitude
 - > 100kW or kilowatt (FM radio station)
 - > 500mW or milliwatt (cellular phone tx power)
 - > 2.5mW (Bluetooth with ~10m range)
 - > 100pW or picowatt (typical WiFi rx threshold)
 - > Femto watt? (nanosensor communication)
 - $> ~1~W = 10^3~mW = 10^6~\mu W = 10^9~nW = 10^{12}~pW \\$
- □ Decibel is a more convenient (logarithmic scale) unit to compare these powers, which are many orders of magnitude apart
- ☐ Also path loss (attenuation) can be many orders of magnitude
 - > Path loss therefore is usually expressed in decibels

©2020 Mahbub Hassar

Decibel (dB) Formula

- In Honour of Graham Bell
- The number of decibels is ten times the logarithm to base 10 of the ratio of two power quantities ($dB = 10\log_{10}(P_1/P_2)$)
 - \rightarrow The quantity "Bel" would be $\log_{10}(P_1/P_2)$, but not used
- Decibel can be used for different purposes
 - 1. Path Loss: To express path loss or attenuation: $[P_1 = \text{transmit power};$ P_2 = receive power]
 - 2. SNR: To express signal (P_1) to noise (P_2) ratio at the receiver
 - 3. Signal Power: To express signal power (P₁), which can be either transmit or receive power, to a reference power (P₂)

©2020 Mahbub Hassan

Decibel Examples for Path Loss

- **Example 1**: $P_t = 10 \text{ mW}$, $P_r = 5 \text{ mW}$ (power reduced by half) Attenuation (path loss) = $10 \log_{10} (10/5) = 10 \log_{10} 2 = 3 \text{ dB}$
- **Example 2**: $P_t = 100 \text{ mW}$, $P_r = 1 \text{ mW}$ (power reduced by a factor of 100) Attenuation = $10 \log_{10} (100/1) = 10 \log_{10} 100 = 20 \text{ dB}$

dB
100 (10 × 10)
60 (10 × 6)
10 (10 × 1)
-30 (10 x -3)
-40 (10 x -4)

Decibel Examples for Signal-to-Noise Ratio

Example 1: $P_{\text{signal}} = 1 \text{ mW}$ (received signal strength), $P_{\text{noise}} = 100 \mu\text{W}$

 $SNR = 10 \log_{10} (1000/100) = 10 \log_{10} 10 = 10 \text{ dB}$

■ Example 2: Received signal strength is measured at 10 mW. What is the noise power if SNR = 10 dB?

$$SNR = 10 \text{ dB} = 10 \text{ log }_{10} \text{ (10mW/P}_{noise})$$

$$P_{noise} = 1 \text{ mW}$$

©2020 Mahbub Hassan

21

Expressing Power in dBm

- □ dBm is in reference to 1 milliwatt
- □ First, express power in milliwatt
- ☐ Then apply the following formula to obtain dBm

Power in $dBm = 10 \log$ (power in milliwatt)

©2020 Mahbub Hassan

22

Conversion to dBW

- □ dBW is in reference to 1 watt
- □ First express power in watt
- ☐ Then apply the following formula to obtain dBW

Power in $dBW = 10 \log$ (power in watt)

23

©2020 Mahbub Hassan

2020 Mahbub Hassan

Relationship between dBm & dBW

- \square Note that 1 W = 1000 mW
- ☐ This gives us following relationship
 - \rightarrow Note $\log(axb) = \log(a) + \log(b)$

dBm = dBW + 30

If you've calculated a power in dBW, you can simply derive the equivalent dBm by adding 30 to dBW, and vice versa.

24

©2020 Mahbub Hassan

Examples for converting Watt to dBm/dBW

□ Example 1: Express 1 mW power in units of dBm

 $10 \log (1) = 10x0 = 0 \text{ dBm}$

So, ZERO dBm does not mean there is no power!

©2020 Mahbub Hassan

25