Computer Graphic Note

Jiechang Shi

Version: 1.00

Update: September 25, 2019

1 Class 1: Overview

1. Frame Buffer

• Pixel: One element of a frame buffer

• Pixel depth: Number of bytes per-pixel in the buffer

• Resolution: Width × Height

• Buffer size: Total memory allocated for frame buffer

• Exam Question: Given Resolution and Pixel depth, Asked Buffer size

• Z Value: For solving the hidden-surface removal(HSR) problem

2 Class 2,3: Rasterization

- 1. For each pixel on screen, the sample point of that pixel is the center point of that pixel, which have **integer** coordinates. For examples, (3, 2).
- 2. A simple problem: Rasterizing Lines

Program Description: Given two endpoints, $P = (x_0, y_0)$, $R = (x_1, y_1)$ find the pixels that make up the line.

Note that: Lines are infinitely thin so they rarely fall on pixel sample point.

A Feasible Description: Rasterize lines as closest pixels to actual lines, with 2 requirement

- No Gap
- Minimize error(distance to true line)

To make this question simplify: Only consider situation that $|x_1 - x_0| \ge |y_1 - y_0| \ge 0 \land |x_1 - x_0| \ne 0$, which means the $-1 \le slope \le 1$. Otherwise we just exchange x and y.

A basic Algorithm: $k = \frac{y_1 - y_0}{x_1 - x_0}$, $d = y_0 - kx_0$, for each $x_0 \le x \le x_1$, y = ROUND(kx + d). This method by brute force is inefficient because of the multiplication and the function ROUND().

Basic Incremental Algorithm: for each $x_0 \le x_i < x_{i+1} \le x_1$, $y_{i+1} = y_i + k$, However, the successsive addition of a real number can lead to a **cumulative error buildup**!

Midpoint Line Algorithm:

- For $0 \le k \le 1$
- For one approximate point P = (x, y), we only have 2 choices for the next point E = (x + 1, y) and NE = (x + 1, y + 1), we should choose the one which is closer to k(x + 1) + d
- Calculate the middle point $M = (x + 1, y + \frac{1}{2})$

- If the **Intersection point** Q is below M, take E as next, otherwise take NE as next.
- Note that: we consider this equation:

$$f(x,y) = ax + by + c = (y_1 - y_0)x - (x_1 - x_0)y + (x_1y_0 - y_1x_0)$$

We assume a > 0

• For a point (x, y)

if f(x, y) = 0, (x, y) lies on the line.

if f(x, y) < 0, (x, y) lies upon the line.

if f(x, y) > 0, (x, y) lies below the line.

- So we have to test $f(M) = a(x + 1) + b(y + \frac{1}{2}) + c = f(Former) + a + \frac{b}{2}$
- Assum a > 0, if f(M) > 0 choose NE otherwise choose E
- Update f(Former):

If we choose E, f(Former) = f(Former) + a

If we choose NE, f(Former) = f(Former) + a + b

Note that:a and b are **constant integer**, so here is no **cumulative error issuse**

3. A harder problem: Triangles Rasterization

Why Triangle:

- Triangles (tris) are a simple explicit 3D surface representation.
- Convex and concave polygons (polys) can be decomposed into triangles.
- Tris are planar and unambiguously defined by three vertex(verts) coordinates (coords).

Definition: Find and draw **pixel** samples **inside** *tri* edges and interpolate parameters defined at *verts*

4. Rasterizxation and Hidden Surface Removal(HSR) Algorithm Classes:

- Image order rasterization: ray tracing/ ray casting <u>traverse</u> pixel, process each in world-space transform rays from image-space to world-space
- Object order rasterization: scan-line / LEE
 <u>traverse</u> triangles, process each in image-space
 <u>transform</u> objects from model-space to image-space

5. LEE Linear Expression Evaluation Algorithm:

• We already discussed in *Midpoint Line Algorithm* that how to determine a point is on the left(up) or right(below) the line, just *a quick review here*:

Assume the lien have a positive slope

For an Edge Equation E, for point (x, y): E(x, y) = dY(x - X) - dX(y - Y)

if E(x, y) = 0, (x, y) lies on the line.

if E(x, y) < 0, (x, y) lies right(below) the line.

if E(x, y) > 0, (x, y) lies left(up) the line.

• For **Rasterization**:

Compute LEE result for all three edges.

Pixels with **consistent sign** for all three edges are inside the *tri*.

Include edge pixels on left or right edges.

3 Class 4,5,6,7:Transformations

• Linear transformations (*Xforms*) define a mapping of coordinates (*coords*) in one coordinate frame to another.

$$V_b = X_{ba}V_a$$

- **Homogeneous Vector** (V) is 4×1 columns $(x, y, z, w)^T$
- **Homogeneous Transforms** (X) is 4×4 matrix
- From Homogeneous Vector to 3D Vector:

$$x = \frac{x}{w}, y = \frac{y}{w}, z = \frac{z}{w}$$

• Why we use Homogeneous Vector?

We want to uniform the transform matrix including translation, scaling, rotation in the same form of matrix.

3.1 Transformation Matrix

1. Translation:

$$T(t_x, t_y, t_z) \Rightarrow \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}, T^{-1}(t_x, t_y, t_z) = T(-t_x, -t_y, -t_z)$$

2. Scaling:

$$S(s_x, s_y, s_z) \Rightarrow \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, S^{-1}(s_x, s_y, s_z) = S(\frac{1}{s_x}, \frac{1}{s_y}, \frac{1}{s_z})$$

3. Rotation, CCW:

$$R_{x}(\theta) \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, R_{x}^{-1}(\theta) = R_{x}^{T}(\theta)$$

$$R_{y}(\theta) \Rightarrow \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, R_{y}^{-1}(\theta) = R_{y}^{T}(\theta)$$

$$R_{z}(\theta) \Rightarrow \begin{bmatrix} cos\theta & -sin\theta & 0 & 0 \\ sin\theta & cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, R_{z}^{-1}(\theta) = R_{z}^{T}(\theta)$$

4. Pitfall: commutative property is for S,R only.

Here assume uniform scaling in all dimensions.

If S is not an uniform scaling matrix. S,R don't have commutative property.

3.2 Spaces Transformation

1. NDC to Output Device

$$X_{sp} \Rightarrow \begin{bmatrix} \frac{xs}{2} & 0 & 0 & \frac{xs}{2} \\ 0 & -\frac{ys}{2} & 0 & \frac{ys}{2} \\ 0 & 0 & MAXINT & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Note that:

Output Device is **RH coords** and origin in **upper left**. $X \in [0, xs), Y \in [0, ys), Z \in [0, MAXINT]$

NDC is **LH coords** and origin at screen center. $X, Y \in [-1, 1], Z \in [0, 1]$

2. Perspective Projection

$$X_{pi} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix}$$

What is d And **Why** there are two $\frac{1}{d}$?

- Assume camera is on (0,0,-d), perspective(also image) plane is z=0, a object in world space is (X,Y,Z)
- Defined FOV(field of view) as the angle the camera can see.
- Note: $X \in [-1, 1]$, so the distant(d) from Forcus point to view plane can be calculate by this equation:

$$\frac{1}{d} = tan(\frac{FOV}{2})$$

• Futher More: The object project to view plane can be calculate by these equations:

$$\frac{X}{Z+d} = \frac{x}{d} \Rightarrow x = \frac{X}{\frac{Z}{d}+1}$$

$$\frac{Y}{Z+d} = \frac{y}{d} \Rightarrow y = \frac{Y}{\frac{Z}{d}+1}$$

$$\frac{Z}{Z+d} = \frac{z}{d} \Rightarrow z = \frac{Z}{\frac{Z}{d}+1}$$

$$(x,y,z) = (\frac{X}{\frac{Z}{d}+1}, \frac{Y}{\frac{Z}{d}+1}, \frac{Z}{\frac{Z}{d}+1})$$

• Write this 3D vector to Homogeneous Vector:

$$(x, y, z, w) = (X, Y, Z, \frac{Z}{d} + 1)$$

• Futher: We forcus on the **range** of Z now is $z \in (-\infty, d)$.

But in NDC we hope $z \in [0, 1)$ So:

We delete all vector that Z < 0, because they cannot project to the view plane.

For $z \ge 0$, we define $z' = \frac{z}{d}$

• $(x, y, z', w) = (X, Y, \frac{Z}{d}, \frac{Z}{d} + 1) = X_{pi} * (X, Y, Z, 1)$

Pitfall: Do Z interpolation in Perspective Plane!

Why we need the farest plane?

Asymptotic curve of Z vs. z, that z increase slower when Z is large.

It might map different Z to the same z

3.3 Camera Matrix

- 1. Assume camera position is c, camera look-at point is l, here c and l are both in world coordinate. And the world up vector is \vec{up}
- 2. Camera Z-axis in world coordinate is

$$\vec{Z} = \frac{\vec{cl}}{||\vec{cl}||}$$

3. Camera Y-axis in world coordinate is the orthogonal(vertical) part of world-up vector to Z-axis which is

$$\vec{up'} = \vec{up} - (\vec{up} \cdot \vec{Z})\vec{Z}$$

$$\vec{Y} = \frac{\vec{up'}}{||\vec{up'}||}$$

4. Camera X-axis in world coordinate is orthogonal to both Y and Z axises. So:

$$\vec{X} = \vec{Y} \times \vec{Z}$$

5. Build the X_{wi} from camera space to world space: X-axis vector [1,0,0] in camera space should be \vec{X} in world space, also for Y,Z-axis vectors, So:

$$X_{wi} \Rightarrow \begin{bmatrix} X_x & Y_x & Z_x & 0 \\ X_y & Y_y & Z_y & 0 \\ X_z & Y_z & Z_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

6. Also we need to add the translation of the camera to the Matrix:

$$X_{wi} \Rightarrow \begin{bmatrix} X_x & Y_x & Z_x & c_x \\ X_y & Y_y & Z_y & c_y \\ X_z & Y_z & Z_z & c_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

7. Now we can get the inverst matrix X_{iw} :

$$X_{iw} \Rightarrow egin{bmatrix} X_x & X_y & X_z & -X \cdot c \\ Y_x & Y_y & Y_z & -Y \cdot c \\ Z_x & Z_y & Z_z & -Z \cdot c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

8. In this proof we know that: If we know the X,Y,Z-axis in world coordinate for a specific space, we can easily build and inverst the translation from or to that space.

This method can also be used to **proof the general rotation matrix**.

9. Orbit a Model about a Point

The idea is the same as place camera.

Need to care about which space you current in!