6 LATE HOURS

1 SVD and PCA [35 Points]

Problem A [3 points]:

Solution A:	
A. We have X, an Nx	N matrix. We also
have X=UZVT	
SO, XT=VEUT	
Thus, we have XXT = U	EVTVEUT
ナキーニル	
We recognize this as the	definition of PCA.
So by definition U are t	he prinical compenents of X
and Ez is the digonal	he princial compenents of X matrix whose entres are
the eventralues XXT.	
E contains the singul	ar values of X. So, because
2° are the eigen val	nes of XX1, the singular
values of X are the sque	us of XXT, the singular we root of the eigenvalue
of XX,	V
•	

Problem B [4 points]:

Problem C [5 points]:

Solution C:
C. We want for show that the trace is invariant under cyclic permutations for any number of commence and is
to show that the trace
munche of under cyclic permutations for any
Square manico.
We will show this for a matrices at first as the
Mil Mygests and then generalize.
Note that tr(AB) = £ (AB);
=> +r (AB) = \(\frac{1}{2} \) \(\frac{1}{2} \) AD, BD
2) Ir (AB) = 2 2 AUS 030
= ZZBjoAij
je, je, je dij
- S (P A)
= E (BA);
+ r (AB)= + r(BA)
Now we can take + (CABC) and describe D=BC.
So, we have to (AD) = tr (DA) which examples to
tr (ABC) = tr (BCA), So we see we can generalize
any number of square matures to the 2 matrix
case, So we have shown that trace is orvaniant
under cyclic permutations of any number of
square matrices,

Problem D [3 points]:

Problem E [3 points]: .

Problem F [3 points]:

Problem G [4 points]:

6.	We know the columns of li are orthonormal
	and the rows of u'T are orthonormal and when
	two corresponding orthonormal vectors are multiplied
	together the result 15 1 and a orthonormal
	Column with a hon corresponding row results on O
	This clearly U U = Trime UU + 4020
	La course the columns of hi, not the rows, are
	orthonormal. This, we are not multiplying armoname
	vectors together so we won't get Ipico.

Problem H [4 points]:

Problem I [4 points]:

Problem J [2 points]:

2 Matrix Factorization [30 Points]

Problem A [5 points]:

Solution A:	
B	Solve for up. So, we have 0= > up - \(\forall v_i \) - \(\forall v_j \) \(\foral
-5	G= Jui - Zvjyot + Zvjvotuo
	ラン'yoj = U; () I + ランンン)
	=> u; = (>I+ \(\frac{1}{2}\v_3\v_3\v_3\) - (\(\frac{1}{2}\v_3\v_3\v_3\v_3\v_3\v_3\v_3\v_3\v_3\v_3
	For optimal v; we set $\partial v_i = 0$ $0 = \lambda v_i - \xi u_i (y_{ij} - u_i + v_j)^T$
	o=tv; - Zuo yoj + Zuoui Tv;
	Zucycj = V; (AI + Zuouct)
	=> U; = (AI + & uouot) (& uoyo;)

Problem B [5 points]:

olution B:	
В,	So find the optimal up we set du; = 0 and solve for up. So, we have 0 = > up - \(\forall v_j \) - \(\forall v_j \) \(
=)	6 = >ui - \ viyi + \ vivi ui
	ラン'yoj = Ui () I + ランジン)
	⇒ u; = (>I+ ₹v;v; +) - (₹y0, v;)
	For optimal v; we set $\partial v_i = 0$ $0 = \lambda v_i - \underbrace{z}_{i} u_i (y_{ij} - u_i^{\dagger} v_i)^{\dagger}$
	0= ty; - Zue yej + Zueui tv;

Caltech CS/CNS/EE 155 February 2019

Problem C [10 points]:

Solution C: *See* 2*D.py and prob2utils.py for the solution code.*

Problem D [5 points]:

Figure 1: Unregularized factorization

As K increases Eout goes up and Ein goes down. This makes sense because as the number of latent factors increases, the more the complex the model becomes. The model increases in complexity because K incresases the dimensionality of the problem. This clearly leads to overfiting that we can see in the graph.

Problem E [5 points]:

Solution E:

Figure 2: E_{in} vs k for different λ

Figure 3: E_{out} vs k for different λ

With the Ein graphs we see regularization of 1 causes underfitting and that the rest see a decrease in Ein as the complexity of the model increases. With Eout we see that regularization of 1 is super underfit and that regularization of .1 produces the best results. As regularization decreses we get a plot that looks more and more similar to the Eout from the previous part which was unregularized. For regularization under .1 we see that as the number of latent factors increases overfitting starts to occur.

3 Word2Vec Principles [35 Points]

Problem A [5 points]:

Solution A: Computing these gradients scales approximately linearly with W and D. Each new word will be an input word once and an output approximately 2*D times. So 2*D more pairs will get made. With an increase in D we see that it will create 2 * W more pairs because it increases the window by one on each side of the input word.

Problem B [10 points]:

Solution B: Huffman tree

Binary tree

Caltech CS/CNS/EE 155 February 2019

Problem C [3 points]:

Solution C: I would expect the calue of the training objective to increase as D increases. Too large of a D would be computationally expensive and inefficient and could lead to overfitting which is undesirable.

Caltech CS/CNS/EE 155 February 2019

Problem D [10 points]:

Solution D: *See solution code in P3C.py*

Caltech CS/CNS/EE 155 February 2019

Problem E [2 points]:

Solution E: 308 x 10

Caltech CS/CNS/EE 155 February 2019

Problem F [2 points]:

Solution F: 10 x 308

Problem G [1 points]:

Solution G: Pair (green, eggs), Similarity: 0.99271554 Pair(eggs, green), Similarity: 0.99271554 Pair(likes, drink), Similarity: 0.98298174 Pair(drink, likes), Similarity: 0.98298174 Pair(box, goat), Similarity: 0.9789746 Pair(goat, box), Similarity: 0.9789746 Pair(fox, goat), Similarity: 0.976961 Pair (boat, goat), Similarity: 0.9768292 Pair(some, slow), Similarity: 0.974435 Pair(slow, some), Similarity: 0.974435 Pair (there, here), Similarity: 0.97167295 Pair(here, there), Similarity: 0.97167295 Pair(tree, goat), Similarity: 0.9714184 Pair(samiam, anywhere), Similarity: 0.9709146 Pair (anywhere, samiam), Similarity: 0.9709146 Pair (brush, comb), Similarity: 0.9708585 Pair(comb, brush), Similarity: 0.9708585 Pair(wink, drink), Similarity: 0.9693825 Pair(not, box), Similarity: 0.96915597 Pair(five, eight), Similarity: 0.96764493 Pair (eight, five), Similarity: 0.96764493 Pair (mouse, fox), Similarity: 0.9672581 Pair(them, or), Similarity: 0.96560454 Pair(or, them), Similarity: 0.96560454 Pair (ham, green), Similarity: 0.9652538 Pair(blue, old), Similarity: 0.9648802 Pair(old, blue), Similarity: 0.9648802 Pair (heads, grows), Similarity: 0.9645252 Pair (grows, heads), Similarity: 0.9645252 Pair(in, dark), Similarity: 0.96441853

Problem H [2 points]:

Solution H: One pattern is that if (x, y) shows up as similar then it is very likely that (y, x) also shows up as a pair right after it. Another thing to notice is that common and well know Dr. Seuss phrases like green eggs and anywhere samiam occur in this set. Some odd pairs like (blue, old) appear which could be a function of it being Dr. Seuss writing again.