

UJIAN TENGAH SEMESTER GENAP TAHUN AKADEMIK 2021/2022 PROGRAM STUDI INFORMATIKA FAKULTAS TEKNIK DAN INFORMATIKA UNIVERSITAS MULTIMEDIA NUSANTARA

Mata Kuliah	:	IF420 Analisis Numerik	Hari/Tanggal	:	
Dosen	:	Angga Aditya Permana, Seng Hansun	Jam	:	
Sifat Ujian	:	Terbuka	Tipe Soal	:	Onsite 2A

KETENTUAN / PETUNJUK UJIAN:

- Perhatikan bobot nilai soal karena tiap soal memiliki bobot penilaian yang berbeda
- Jawaban diberikan langsung pada template file python yang telah disediakan (template_UTSIF420.ipynb)
- Perhatikan petunjuk khusus yang diberikan di template file python yang telah disediakan untuk setiap butir pertanyaan
- Perhatikan format penamaan file jawaban (*rename* template_UTSIF420.ipynb) sebagai berikut "<NamaMahasiswa>_<NIM>_<KodeMataKuliah>_<Kelas>_UTS.ipynb"

SUB-CAPAIAN PEMBELAJARAN MATA KULIAH (SUB-CPMK):

SUB-CAPAIAN PEMBELAJARAN MATA KULIAH (SUB-CPMK)				
Kode Sub-CPMK				
Sub-CPMK 4	Mahasiswa mampu memahami dan menerapkan Aljabar Linear serta Sistem Persamaan Linear – C3	3 dan 7		
Sub-CPMK 5	Mahasiswa mampu memahami dan menerapkan teknik mencari nilai dan vektor Eigen – C3	3 dan 7		
Sub-CPMK 6	Mahasiswa mampu memahami dan menerapkan regresi kuadrat terkecil – C3	3 dan 7		
Sub-CPMK 7	Mahasiswa mampu memahami dan menerapkan berbagai teknik Interpolasi – C3	3 dan 7		

SOAL:

1. Soal 1: Sub-CPMK 4, Bobot (30%)

Gunakan metode Gauss-Seidel (metode iterative) untuk mendapatkan solusi dari sistem persamaan linear berikut dengan nilai *threshold* $\epsilon = 0.01$:

$$4x_1 + x_2 - 2x_3 = 2$$

$$-2x_1 - 8x_2 + 5x_3 = 5$$

$$x_1 + x_2 + 8x_3 = -3$$

Jangan lupa untuk mengecek kondisi kekonvergenan dipenuhi atau tidak terlebih dahulu untuk permasalahan tersebut!

RUBRIK PENILAIAN:

Perhatikan rubrik penilaian dan petunjuk yang diberikan di dalam template_UTSIF420.ipynb

2. Soal 2: Sub-CPMK 5, Bobot (30%)

Soal 2 A (Bobot: 20%)

Carilah nilai eigen dan vektor eigen untuk matrix

$$\begin{bmatrix} 2 & 1 & 2 \\ 1 & 3 & 2 \\ 2 & 4 & 1 \end{bmatrix}$$

dengan menggunakan Power method. Anda bisa mencoba dengan vektor awal [1, 1, 1] dan 10 kali iterasi.

Soal 2 B (Bobot: 10%)

Carilah seluruh nilai eigen dan vektor eigen untuk permasalahan di Soal 2A dengan menggunakan *built-in function* **eig** dari numpy.linalg!

UJIAN TENGAH SEMESTER GENAP TAHUN AKADEMIK 2021/2022 PROGRAM STUDI INFORMATIKA FAKULTAS TEKNIK DAN INFORMATIKA UNIVERSITAS MULTIMEDIA NUSANTARA

RUBRIK PENILAIAN:

Perhatikan rubrik penilaian dan petunjuk yang diberikan di dalam template_UTSIF420.ipynb

3. Soal 3: Sub-CPMK 6, Bobot (20%)

Misal diberikan data buatan yang diperoleh dengan formulasi x = np. linspace(0,1,101) dan y = 100 - x - x * np. random. random(len(x)).

Gunakan metode Least Squares Regression (LSR) dengan fungsi estimasi yang didefinisikan sebagai $\hat{y} = \alpha_1 x + \alpha_2$.

Bandingkan hasilnya dengan metode **Pseudo-inverse** dan built-in function **Istsq** dari numpy.

Plot titik-titik data yang dihasilkan dari formulasi tersebut bersama dengan hasil pendekatan LSR-nya.

RUBRIK PENILAIAN:

Perhatikan rubrik penilaian dan petunjuk yang diberikan di dalam template_UTSIF420.ipynb

4. Soal 4: Sub-CPMK 7, Bobot (20%)

Soal 4 A (Bobot: 10%)

Buat sebuah definisi fungsi **my_lagrange(x, y, X)** dimana *output* Y adalah hasil interpolasi Lagrange dari titik-titik data yang ada di x dan y yang dihitung terhadap data-data di X.

Petunjuk: Gunakan *nested for-loop*, dimana *inner for-loop* digunakan untuk menghitung hasil kali dari Lagrange basis polynomial dan *outer for-loop* digunakan untuk menghitung jumlahan dari Lagrange polynomial. Jangan menggunakan fungsi lagrange yang tersedia di scipy.

Soal 4 B (Bobot: 10%)

Dengan menggunakan fungsi yang telah didefinisikan pada Soal 4A dan titik-titik data dummy berikut

$$x = [0,1,2,3,4]$$

 $y = [2,1,3,5,1]$
 $X = np. linspace(0,4,101)$

Sajikan plot tiap titik data dan interpolasi Lagrange yang dihasilkan!

RUBRIK PENILAIAN:

Perhatikan rubrik penilaian dan petunjuk yang diberikan di dalam template UTSIF420.ipynb

Acuan Pembuatan Soal:	Soal dibuat oleh:	Disetujui oleh:
	a.n Tim Dosen Mata Kuliah	
Materi Perkuliahan Pertemuan 04-07	(Seng Hansun) Koord. Mata Kuliah	(Marlinda Vasty Overbeek) Ketua Program Studi