وقمی k رقمی و با ارقام ۶ و ۸ باشد. برای k را تعداد اعداد k رقمی و با ارقام ۶ و ۸ باشد. برای k را تعدادی صفر در سمت میگیریم که با حذف k رقم از آنها k حاصل می شود. (این اعداد می توانند تعدادی صفر در سمت چپ خود داشته باشند.) ثابت کنید

$$F(n,k) = F(n-1,k-1) + 1 \cdot F(n-1,k).$$

حل. عدد n رقمی X را در نظر بگیرید، برای رقم nام آن Υ حالت داریم، یا این رقم را حذف میکنیم یا خیر. اگر این رفم را حذف نکنیم یعنی با رقم kام عدد S باید برابر باشد پس در این حالت تعداد برابر است با F(n-1,k-1). زیرا یک رقم از S و یک رقم از S کم شده و برای انتخاب رقم S ام عدد S است.

n-1 اگر رقم nام عدد X حذف شود، این رقم هر عددی میتواند باشد که ۱۰ حالت دارد. سپس باید S رقم S رقم اول S را به کل S تبدیل کنیم که تعداد آن S تعداد آن S است. پس با فرض حذف آخرین رقم S تعداد اعداد برابر با S S میباشد. پس S میباشد. پس S S میباشد. پس S S تعداد اعداد برابر با S S میباشد.

۸. فرض کنید a_n تعداد اعداد n رقمی متشکل از ارقام ۲،۱ و ۳ باشد که تعداد زوجی رقم ۱ دارند. رابطهای بازگشتی برای a_n بیابید و سپس این رابطه ی بازگشتی را حل کنید.

حل. دنباله ی کمکی b_n را برابر تعداد اعدادی تعریف میکنیم که فرد رقم ۱ دارند. خواهیم داشت:

$$a_n = Ya_{n-1} + b_{n-1}$$
$$b_n = Yb_{n-1} + a_{n-1}$$

جملات اولیهی این دو دنباله $a_1=1$ و $a_1=1$ هستند. برای حل رابطهی بازگشتی داریم:

$$b_{n-1} = a_n - \Upsilon a_{n-1} \Rightarrow b_n = \Upsilon b_{n-1} + a_{n-1} = \Upsilon a_n - \Upsilon a_{n-1}$$
$$\Rightarrow a_n = \Upsilon a_{n-1} + b_{n-1} = \Upsilon a_{n-1} - \Upsilon a_{n-1}$$

 $r_1= \mathfrak r$ پس معادله ی مشخصه این رابطه به صورت $\mathfrak r^*-\mathfrak r^*+\mathfrak r^*+\mathfrak r^*=\mathfrak r$ خواهد بود. ریشههای این معادله ی بست معادله یه صورت $a_n=\alpha_1r_1^n+\alpha_1r_2^n+\alpha_2r_3^n+\alpha_3$

۱۲. ماتریسی $n \times n$ در نظر بگیرید که درایههای روی قطر اصلی و بالای آن همگی برابر ۱ و بقیهی درایهها برابر $n \times n$ درایهی ۱ از این ماتریس انتخاب کرد به طوری که هیچ دوتا در یک سطر یا ستون نباشند؟

حل. فرض کنید پاسخ مسئله برابر f_n باشد. برای انتخاب n-1 درایهی 1 از ماتریس داده شده به طوری که هیچ دوتا در یک سطر و یک ستون نباشند دو حالت در نظر میگیریم.

حالت اول: هیچ درایهای از سطر اول انتخاب نشود. در این حالت باید از هر یک از سطرهای دوم تا nام

۵

۱۳. اعداد ۱ تا n را دور یک دایره به ترتیب و در جهت عقربههای ساعت چیدهایم. از عدد ۱ شروع و اعداد را یکی در میان حذف میکنیم تا سرانجام یک عدد باقی بماند. این عدد را J(n) مینامیم. برای مثال J(n) مینامیم تا سرانجام یک عدد باقی زیرا اگر اعداد ۱ تا ۵ را دور دایره قرار دهیم، اعداد ۲ و ۴ و ۱ و ۵ به ترتیب حذف می شوند و عدد J(n) می ماند.

$$J(\Upsilon n+1)=\Upsilon J(n)+1$$
 و $J(\Upsilon n)=\Upsilon J(n)-1$ الف) ثابت کنید $J(T n)=\Upsilon J(n)=\Upsilon J(n)-1$ که در آن $J(n)=\Upsilon J(n)=\Upsilon J(n)$ فرض کنید $J(n)=\Upsilon J(n)=\Upsilon J(n)$ که در آن

حل. الف: اگر 7n عدد دور دایره باشند، ابتدا اعداد 7، 7، ... و 7n حذف می شوند و پس از این، مسئله دقیقا همانند حالتی که تنها n عدد 1 تا n دور دایره قرار دارند، فقط با این تفاوت که به جای عدد 1 عدد 1 نوشته شده است. در مورد 1 (1 1 نیز استدلالی مشابه به کار می رود. 1 با استفاده از قسمت اول با استفاده از استقرا بر بروی 1 نتیجه می شود.

 \triangleright

سوال (۱)) (سات بالسقرا ردى m:	λ
$0 < \ell < 2^{m} = 1 \Rightarrow \ell = 0$	٩
$n = 2^{m} + \ell = 2^{\circ} + 0 = 1 + 0 = 1$	1.
J(n)= J(1)=1= 2l+1= 2x0+1=1 /	
(11
فض اسقا: فض مهم علم ملى ا_m مِعَار باسد.	
$n = \gamma^{m} + \ell : m \text{ of } \neg \omega $	
حالت (): الد n مرد ماسد، طبق فتحت الف داريم:	14
$\mathcal{I}(v) = S \mathcal{I}\left(\frac{S}{v-1}\right) + 1$	
$= z \int (z^{m-1} + \frac{\ell-1}{z}) + 1$ $= z \left(\frac{z(\ell-1)}{z} + 1 \right) + 1$	18
$= 2\left(\frac{2(\ell-1)}{2}+1\right)+1$	10
= 2l+1 V	
م على الد اروج بالله عداري :	18
J(n) = 2J(n/2) - 1	ΙΥ
$= z_{\overline{f}}(2^{m-1} + \frac{\ell}{2}) - 1$	
$= 2\left(2\frac{\ell}{2}+1\right)-1$	١٨
= 2+1/	
. w = w de =	

19. n لامپ در یک ردیف قرار دارند. ابتدا همه آنها خاموش هستند. در هر مرحله میتوانیم وضعیت یکی از لامپها را تغییر دهیم (از خاموش به روشن و از روشن به خاموش) ثابت کنید میتوان این عمل را طوری تکرار کرد که هر یک از Υ^n وضعیت مختلف لامپها دقیقا یک بار ظاهر شود و در پایان همهی لامپها خاموش باشند.

حل. با استقرا روی n ثابت می کنیم. در حالت پایه یک لامپ داریم که ابتدا خاموش است. سپس آن را روشن می کنیم و دو مرتبه خاموش می کنیم. حالا می خواهیم برای n ثابت کنیم، با فرض اینکه برای n ثابت شده است. دو نوع کار تعریف می کنیم. کار استقرایی: همان کاری است که طبق فرض استقرا برای n انجام دادیم. کار لامپ اول: یعنی تغییر وضعیت لامپ اول.

حالا ما به صورت یکی در میان این کارها را انجام میدهیم. طبق استقرا n-1 لامپ دیگر جز لامپ اولی تمام حالتهای ممکن را میگیرند. لامپ اول هم به ازای هر حالت از آنها هر دو حالت را میگیرد. پس دقیقا Υ^n حالت انجام می شود. در نهایت هم تمام لامپهای دومم تا آخر خاموش می شوند طبق فرض استقرا و لامپ اول را هم ما خاموش می کنیم و مساله حل می شود.

(x,y,z) از دستگاه مختصات سهبعدی قرار دارد. این مگس از نقطه ی (\cdot,\cdot,\cdot) از دستگاه مختصات سهبعدی قرار دارد. این مگس از نقطه ی به هر نقطه ی به هر نقطه ی بازگشتی x+y+z=n برساند. رابطهای بازگشتی برای x+y+z=n برساند. رابطهای بازگشتی برای x+y+z=n برساند.

حل. اگر مگس در حرکت اول به نقطهای از صفحه ی x+y+x=k برود، تعداد راههای انجام این کار برابر تعداد جوابهای مساله در مجموعه اعداد طبیعی خواهد بود که برابر است با ${k-1 \choose \gamma}$. حال اگر مگس از هر نقطه ی صفحه ی x+y+z=k به a_{n-k} طریق می تواند به صفحه ی برود و در نتیجه

$$a_n = \sum_{k=1}^n \binom{k-1}{\mathbf{Y}} a_{n-k}.$$

>

۹. تعداد نامحدودی مهره داریم که برخی از آنها سفید و برخی سیاه هستند. میخواهیم ۱۰ مهره را به گونهای بچینیم که بلوکهای سفید همیشه زوجتایی و بلوکهای سیاه همیشه فردتایی باشد. بلوک به مجموعه

ماکزیمال از مهرههایی گفته می شود که پست سر هم قرار گرفته اند و از یک نوع هستند. مثلا در چینش (سفید، سفید، سیاه، سفید، سیاه، سیاه، سفید) سه بلوک از مهرههای سفید و دو بلوک از مهرههای سیاه داریم. به کمک روابط بازگشتی بگویید که به چند طریق می توان این ۱۰مهره را انتخاب کرد تا به چینش دلخواه برسیم.

حل. p_n را تعداد چینشهای مطلوبی بگیرید که با مهره سفید پایان مییابد و s_n را تعداد چینشهای مطلوبی که با مهره سیاه پایان مییابند.

اگر مهره آخر سفید باشد، چون بلوک مهرههای سفید زوجتایی خواهد بود، مهره یکی مانده به آخر قطعا سفید بوده و به طور یکتا تعیین میشود. بقیه n-1 مهره باقی مانده، خود یک آرایش مطلوب را تشکیل خواهند داد که میتواند با یک مهره سفید یا سیاه پایان یابد. پس داریم:

$$p_n = p_{n-1} + s_{n-1}$$

همچنین اگر مهره آخر سیاه باشد، برای مهره بعدی دو حالت دارد. یا سفید است که تعداد حالاتش معادل با با p_{n-1} نیز سیاه خواهند بود. پس خواهد بود، یا سیاه است که در این صورت مهرههای p_{n-1} و p_{n-1} نیز سیاه خواهند بود. پس داریم:

$$s_n = p_{n-1} + s_{n-1}$$

از طرفی به راحتی میتوان به دست آورد:

$$p_1 = \cdot, p_Y = 1, s_1 = 1, s_Y = \cdot$$

پس با جایگذاری داریم:

$$p_1 \cdot = 19, s_1 \cdot = 11$$

پس تعداد کل آرایشهای مطلوب ۳۷ مورد است.