

Class: Machine Learning

Machine Learning Evaluation

Instructor: Matteo Leonetti

Learning outcomes

- Define overfitting.
- Apply a strategy to avoid overfitting.
- List the main accuracy metrics to measure the performance of a classifier.
- Choose the appropriate metric for a given classification problem.
- Apply the metrics to real data sets and classifiers.

Feature Selection

The first step before any classification can take place is to decide what *features* we are considering when trying to discriminate two sets.

For example, we could use width and height, or colour, shape...

Two possible solutions

Which one would you say it's best?

Overfitting

A model *overfits* when it describes the randomness associated with the data, rather than the underlying relationship between the data points.

Occam's razor

Attributed to William of Ockham (~1300 A.D.):

Entities should not be multiplied unnecessarily

Preventing Overfitting

Test set

Test on a portion of the data different from training.

Example: parametric classifier

You may want to choose between different models, for instance:

Different orders of polynomials:

Validation set

When to stop learning

Cross validation

Measuring Accuracy

Accuracy

Specificity

Precision

Recall (same as sensitivity)

Accuracy metrics

Sensitivity =
$$\frac{\#TP}{\#TP + \#FN}$$

Specificity =
$$\frac{\#TN}{\#TN + \#FP}$$

$$Precision = \frac{\#TP}{\#TP + \#FP}$$

$$Recall = \frac{\#TP}{\#TP + \#FN}$$

$$F_1 = 2 \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \quad 0 \le F_1 \le 1$$

$$MCC = \frac{\#TP \times \#TN - \#FP \times \#FN}{\sqrt{(\#TP + \#FP)(\#TP + \#FN)(\#TN + \#FP)(\#TN + \#FN)}}$$

$$-1 \leq MCC \leq 1$$

Confusion Matrix

Conclusion

Chapter 2, up to 2.2