

Listings and Amendments to the Claims

This listing of claims will replace the claims that were published in the PCT Application and annexed to the International Preliminary Report on Patentability:

1. (currently amended) Device for generating a look-up table for a given value (VAL) of a parameter (APL) among N different values, whose output values can be approximated by a piecewise linear function of a variable ($S(\text{VAL})$) depending on the given value, the set of N values being divided into P subsets of consecutive values, each piece of the piecewise linear function being in a different subset, wherein characterized in that it comprises:

- a first memory (101) for storing, for each subset i , a primary look-up table (PMTG_i) associated to a bound value of the subset i ,

- a second memory (102) for storing, for each subset i , a delta look-up table corresponding to the difference between a secondary look-up table (SMTG_i) and the primary look-up table (PMTG_i) related to the subset i , the secondary look-up table (SMTG_i) being associated to the other bound value of the subset i ,

- a third memory (103) for storing, for each of said N values, an index indicating which primary look-up table in the first memory (101) and which delta look-up table in the second memory (102) have to be used for extrapolation,

- a fourth memory (104) for storing an extrapolation coefficient (C) for each one of said N values, the extrapolation coefficient ($C(\text{VAL})$) associated to a given value being defined in accordance with the value ($S(\text{VAL})$) of a variable S for said given value (VAL) and the values ($S(\text{PMTG}_i), S(\text{SMTG}_i)$) of the variable S for the two bound values of the subset i comprising said given value; and

- a computing block (105) for generating a look-up table, for the given value (VAL)—in accordance with the related extrapolation coefficient ($C(\text{VAL})$), primary look-up table (PMTG_i) and delta look-up table.

2. (currently amended) Device according to claim 1, wherein characterized in that the parameter is an average power level and the variable ($S(VAL)$) is a number of sustain pulses corresponding to the given value (VAL) of the parameter

and that it generates a Metacode look-up table is generated for each average power level value.

3. (currently amended) Device according to claim 2, wherein characterized in that the bound level related to the primary look-up table ($PMTCi$) of a subset of average power level values is the highest average power level value of the subset and the bound level related to the secondary look-up table ($SMTCi$) of a subset of average power level values is the lowest average power level value of the subset.

4. (currently amended) Device Method according to one of the claims 1 –to–3, wherein characterized in that the ratio between the value ($S(PMTCi)$) of the variable for one bound value in the subset i and the value ($S(PMTCi+1)$) of the variable for the same bound value in the subset $i+1$ equals to a fixed parameter α .

5. (currently amended) Device according to the claim 4, wherein characterized in that the parameter α is defined as followed : $\alpha = \sqrt[n]{\frac{S_{MAX}}{S_{MIN}}}$

where S_{MAX} is the value of the variable (S) for a peak white image and S_{MIN} for a full white image.

6. (currently amended) Device according to ~~one of the claims 1 to 5, wherein characterized in that~~ the extrapolation coefficient ($C(VAL)$) equals to :

$$C(VAL) = \frac{S(VAL) - S(PMTC_i)}{S(SMTC_i) - S(PMTC_i)}$$

where - $S(PMTC_i)$ is the value of the variable for the highest bound value of the subset i;

- $S(SMTC_i)$ is the value of the variable for the lowest bound value of the subset i; and

- $S(VAL)$ is the value of the variable for the given value.

7. (currently amended) Device according to ~~one of the claims 1 to 6, wherein characterized in that~~ the computed look-up table equals to the sum of the output of the primary look-up table ($PMTC_i$) for the given value (VAL) and the output of the delta look-up table ($PMTC_i$) for the given value (VAL) weighted by the extrapolation coefficient for the given value (VAL).