Activity Recognition

KTH WASP AS 1 Group 2

Khashayar Etemadi, César Soto Valero, Deepika Tiwari, Truls Nyberg, Georg Schuppe

https://github.com/cesarsotovalero/wasp-act-recognition

Data Collection

- Data was collected with the <u>Sensor Fusion app</u>
- Four variables were measured: ACC, GPS, GYR, and ORI
- Two rounds of measurement were made:
 - One round to collect the **Train Set**, and other round for the **Test Set**.

Data Preprocessing

- We reshaped the dataset to obtain the measurements of each variable for each of the three dimensions: X, Y, Z
- Missing values were filled via quadratic interpolation

Data Preprocessing

- We created three additional features for each variable
 - o <variable>_MIN
 - o <variable>_MAX
 - o <variable>_MEAN

Data Labelling

We manually labelled the train and test datasets

Data Labelling

 We plot the projection of the classes to get insights about the distribution of the data and the best classifier to use

Classification

 We use the XGBoost classifier as our machine learning model for the activity recognition decision task

```
667 # Define the main parameters
668 Class ← as.factor(data$Class)
669 num_class ← length(levels(Class))
670 params ← list(
671
      booster = "gbtree",
672
      eta = 0.001,
673
      max_depth = 5,
674
      gamma = 3,
675
      subsample = 0.75,
676
      colsample_bytree = 1,
677
      objective = "multi:softprob",
      eval_metric = "mlogloss",
678
679
      num_class = num_class
680
```

```
# Train the model: train the XGBoost classifer
683 xgb.fit \leftarrow xgb.train(
684
       params = params,
685
       data = xgb.train,
686
       nrounds = 1000,
687
       nthreads = 1,
       early_stopping_rounds = 10,
688
       watchlist = list(val1 = xgb.train, val2 = xgb.test),
689
690
       verbose = 0
691 )
```

Classification

We obtained a high accuracy of 99.91% on the Test Set

```
696  # Predict the test set
697  xgb.pred = predict(xgb.fit, test.data, reshape = T)
698  xgb.pred = as.data.frame(xgb.pred)
699  colnames(xgb.pred) = levels(Class)
700
701  # Use the predicted label with the highest probability
702  xgb.pred$prediction = apply(xgb.pred,1,function(x) colnames(xgb.pred)[which.max(x)])
703  xgb.pred$label = levels(Class)[test.label+1]
704
705  # Calculate the final accuracy
706  result = sum(xgb.pred$prediction=xgb.pred$label)/nrow(xgb.pred)
707  print(paste("Final Accuracy =",sprintf("%1.2f%%", 100*result)))
708

[1] "Final Accuracy = 99.91%"
```

Deliveries

- Code: https://github.com/cesarsotovalero/wasp-act-recognition/tree/master/Notebooks
- Data: https://github.com/cesarsotovalero/wasp-act-recognition/tree/master/Data
- Figures: https://github.com/cesarsotovalero/wasp-act-recognition/tree/master/Figures
- README: https://github.com/cesarsotovalero/wasp-act-recognition/blob/master/README.md