Информационные технологии. Лекция 09. Intersection management. **ACAS**

Студент группы 2305 Макурин Александр

17 апреля 2023

По сути — задача пересечения перекрёстка. Необходимо оптимально пересечь перекрёсток.

$$R = \cup R_S$$
$$R_s = \{r_i\}$$

$$R_l \cap R_R$$
 — зона перекрёстка

 $R_l\cap R_R$ — зона перекрёстка. $S_{e_i}=\{r_i\}=\{i:\{r_i\}\}$ — множество участков дороги, которые хочет посетить $e_i.$

Интересуют: $t = 0 : r_0$ и $t = T : r_T$.

1	2	3	4	5	$V \sim 1$
r_1	r_2	r_3	r_4	r_5	V / 1

Как выбрать дискретное расстояние (r_i) ?

$$V = \begin{cases} 0 \\ 1 \end{cases}$$

В качестве одного из вариантов можно взять за $|r_i|$ минимальный тормозной путь.

Граф выбора пути:

Две машины \rightarrow коллизия (столкновение). Коллизии бывают:

- перестроечные
- встречные
- слияния (полосы сливаются в одну)

Если в одном месте в одно время находится два объекта (автомобиля) (происходит коллизия), то граф пути надо перестроить. Решение коллизии — один тормозит. Проблема — работает только для одного.

Изменяемые параметры: V — скорость. За счёт них решается задача оптимизации. $V_{e_i} \to max \Leftrightarrow T \to min = T^* \Rightarrow V_{e_i}^{\text{идеал}}$ ($T \to min$ в идеальных условиях, T^* — время проезда в идеальных условиях). $a \le 1$ — ускорение.

Более сложный перекрёсток

 $\omega_i j$ — вес перехода. $\omega_1^{21} \leq \omega_1^{22}$ $\sum_i \omega \to min$ $i:\exists (i-j)$

$$\omega_1^{21} \leq \omega_1^{22}$$

$$\sum \omega \to mir$$

$$i : \exists (i-i)$$

Алгоритм Дейкстры — нахождение оптимального маршрута в графе. Характеристики r_i :

- 1. Длина (*l*)
- 2. Качество (*q*)
- 3. Ограничения скорости (V_{max})

$$\omega = f(l, V_{max}, q)$$

Время:
$$f(\omega,\{E\},r_0,r_T) o min| \Rightarrow V_{\mathrm{cp}} = \frac{\sum \frac{\sum l}{T}}{N} \Rightarrow T_{\mathrm{cp}} \Rightarrow Q_i^{end}$$

Ещё более сложная ситуация

 $R=R_{const}\cup R_{dynamic}\cup R_{zero}.$ R — риски. R_{const} — известные проблемы (e.g. пешеходные переходы). Решается логикой. $R_{dynamic}$ — динамические проблемы. Решается сенсорами и предсказанием поведения.

ACAS- стандарт полёта самолётов (управления полётами). Есть h допустимая, к которой стремимся. Разлёт с конфликтующим самолётом должен происходить в рамках одного r. Решить задачу алгоритмом Дейкстры по причине роста графа экспоненциально при росте вариантов движения невозможно в оперативное время.

 $ITS-intellectual\ transport\ system-cамообучающиеся\ светофоры.$

Модель полицейских участков.

Ad-hoc добавление навигаторов автомобилей.

Полицейский делится на 2 части:

- Общение с другими полицейскими
- Общение с машинами