Intel® Al for Manufacturing Certificate Course

Week-3 – Assignment: ML Canvas

Name: Ayan Memon

Submission Date: 07 - 03 - 2025

Assignment Problem Statement -

Identify significant machine parts in a manufacturing factory that are prone to get damaged in near future.

Problem Statement (Predicting Bearing Failures in Industrial Motors)

Predict bearing failures in industrial motors using vibration sensor data. The goal is to identify bearings likely to fail within the next 30 days, minimizing downtime and maintenance costs.

ML Canvas:

Decisions: Prioritize bearings needing replacement based on failure probability. Schedule maintenance.	ML Tasks: Input: Vibration amplitude, temperature, RPM. Output: Probability of failure. Task: Binary classification.	Value Propositions: Extend equipment lifespan, reduce costs, ensure safety.	Data Source: Vibration sensors, motor logs.	Data Collection: Collect real-time sensor data and historical maintenance records.
Making Predictions: The model predicts failure probability using real-time sensor data (vibration, temperature) and triggers maintenance alerts if the probability exceeds 80%.	Offline Evaluation: Use F1-score and ROC-AUC on historical test data.		Features: Mean vibration, peak temperature, operating hours	Building Models: Train a model (e.g., Random Forest) on 6 months of historical data. Retrain monthly.
	Evaluation and Monitoring: Track prediction accuracy monthly. Alert if accuracy drops below 85%.			