18.2 单缝衍射

最大光程差

最大光程差
$$BC = a \sin \theta = \begin{cases} 0 \\ (2k+1)\frac{\lambda}{2} \\ \Delta x_0 = 2\frac{f}{a}\lambda \end{cases}$$

$$2k\frac{\lambda}{2} = k\lambda$$

$$\Delta x_0 = 2\frac{f}{a}\lambda$$

$$2k\frac{\lambda}{2}=k\lambda$$

中央明纹

$$k = \pm 1, \pm 2, \pm 3...$$
 明纹

$$k = \pm 1, \pm 2, \pm 3...$$
 暗纹

讨论

当单缝上下移动时衍射图样是否变化?

单缝上下移动,衍射图样位置不变。

10101001011011011011E=mc2

例题 用单色平行可见光垂直照射到缝宽为a=0.5mm的单缝上,在缝后放一焦距f=100cm的透镜,则在位于焦平面的观察屏上形成衍射条纹。已知在屏上离中央明纹中心为1.5mm处的P点为明纹,求 (1)入射光的波长; (2)该点的明纹级次,以及此时单缝波面可分出的半波带数; (3)中央明纹的宽度。

解 (1) 明纹条件
$$a\sin\theta = (2k+1)\frac{\lambda}{2}$$

$$\lambda = \frac{2a\sin\theta}{2k+1}$$
$$\tan\theta \approx \sin\theta \quad \lambda \approx \frac{2a\tan\theta}{2k+1} = \frac{2a\frac{x}{f}}{2k+1} = \frac{2\times0.5\times\frac{1.5}{1000}}{2k+1}$$

k=1时, $\lambda_1=500$ nm; k=2时, $\lambda_2=300$ nm(紫外)

波长为: $\lambda = \lambda_1 = 500$ nm

例题 用单色平行可见光垂直照射到缝宽为a=0.5mm的单缝上,在缝后放一焦距f=100cm的透镜,则在位于焦平面的观察屏上形成衍射条纹。已知在屏上离中央明纹中心为1.5mm处的P点为明纹,求 (1)入射光的波长; (2)该点的明纹级次,以及此时单缝波面可分

解(2) 取k=1 即有(2k+1)=3个半波带

(3)中央明纹宽度

出的半波带数;(3)中央明纹的宽度。

$$\Delta x_0 = 2f \frac{\lambda}{a} = 2 \times 1000 \times \frac{5 \times 10^{-4}}{0.5} = 2 \text{(mm)}$$

 $E=mc^2$

例题 在单缝实验中,波长为 λ 的单色平行光垂直射到宽度为 10λ 的单缝上,在缝后放一焦距为1m 的凸透镜,在透镜的焦平面上放一观察屏,问观察屏上最多可出现几条明纹?

解: $\sin \theta \le 1$ 屏幕上不可能看到全部级次条纹

$$a\sin\theta = (2k+1)\frac{\lambda}{2}$$
$$\sin\theta = (2k+1)\frac{\lambda}{2a} \le 1 \quad \therefore k \le 9.5$$

故最多可出现9级明纹

共19条: $0,\pm 1,\pm 2,\pm 3,\pm 4,\pm 5,\pm 6,\pm 7,\pm 8\pm 9$

$E=mc^2$

18.3 圆孔衍射

一、圆孔的夫琅和费衍射

圆孔夫琅和费衍射结果:

中央是个明亮的圆斑,外围是一组同心的明环和暗环。

中央的亮斑---- 艾里斑

• 第一暗环对应的衍射角: 艾里斑的半角宽度

$$\sin \theta_1 = 0.61 \frac{\lambda}{R} = 1.22 \frac{\lambda}{D}$$

$$\theta_1 \approx \sin \theta_1 = 0.61 \frac{\lambda}{R} = 1.22 \frac{\lambda}{D}$$

• 艾里斑的角宽度

$$2\theta_1 \approx 2\sin\theta_1 = 2.44 \frac{\lambda}{D}$$

• 艾里斑的直径 $d = 2f \cdot \tan \theta_1 \approx 2.44f \frac{\lambda}{D}$

高能激光武器

 $E=mc^2$

$E=mc^2$

二、光学仪器的分辨率

几何光学: (经透镜) 物点 ⇒ 像点 物(物点集合) ⇒ 像(像点集合)

波动光学: (经透镜)

物点 ⇒ 像斑

物(物点集合) ⇒ 像(像斑集合)

距离很近的两个物点的像斑有可能重叠,从而分辨不清

瑞利判据

若一点光源的衍射图样的中央最亮处(艾里斑中心)刚好与另一点光源的衍射图样的第一个最暗处(艾里斑边缘)相重合,这时这两个点光源恰能为这一光学仪器所分辨。

- 最小分辨角 θ_1 $\theta_1 = 1.22 \frac{\lambda}{D}$ 第一级暗环的衍射角 (艾里斑的半角宽度)
- 仪器的分辨本领 $\frac{1}{\theta_1} = \frac{D}{1.22\lambda}$

提高光学仪器分辨本领的途径:

1. 加大光学仪器的孔径D (天文望远镜)

James Webb Space Telescope

European Extremely Large Telescope

人民科学家

南仁东 (1945-2017)

500米口径球面射电望远镜(FAST) 可观测最短波长为0.1米,最小分辨角 $heta_1 pprox 0.014^\circ$

2. 减小入射波波长 (电子显微镜 $\lambda << 1 \, \text{nm}$)

冷冻电子显微镜技术(2017年诺贝尔化学奖)

010101001011011011011E=mc

例题 在通常亮度下,人眼瞳孔的直径约为3mm,求人眼的最小分辨角。若黑板上有一个两横线相距2mm的等号"=",距黑板多远处的学生恰能分辨?(取人眼最敏感的黄绿光波长 $\lambda=550$ nm计算)

解: 人眼瞳孔相当于一个圆形通光孔径的透镜,由D=3mm得最小分辨角为

$$\theta_1 = 1.22 \frac{\lambda}{D} = 1.22 \times \frac{550 \times 10^{-9}}{3 \times 10^{-3}}$$

= $2.2 \times 10^{-4} \text{ (rad)} \cong 1'$

等号对瞳孔张角

$$\theta = \frac{l}{s}$$

 $E=mc^2$

当 $\theta = \theta_1$ 时,人眼恰能分辨黑板上的等号

$$s = \frac{l}{\theta_1} = \frac{2 \times 10^{-3}}{2.2 \times 10^{-4}} \cong 9.1(\text{m})$$

若物体放在距人眼25cm(明视距离)处,则两物点间距为多大时才能被分辨?

$$d = l\theta_1 = 25 \text{cm} \times 2.2 \times 10^{-4}$$

$$= 0.0055$$
cm $= 0.055$ mm

法国人乔治.修拉用点彩画法创作的《在拉•格兰德•加特岛的星期天下午》

单缝衍射:

- 随着 θ 角增加,光强的极大值迅速衰减
- 单缝上下移动,衍射图样位置不变

18.4 光栅衍射

一、光栅

一组平行、等宽、等间距的狭缝构成的光学器件。

a --- 表示透光部分宽度

b --- 表示刻痕宽度

光栅常数:

$$d = a + b$$

数量级: 10⁻⁵--10⁻⁶m

二、装置与现象

光栅衍射条纹特点:明纹细而明亮,明纹间暗区较宽

三、光栅衍射图样的形成

单缝衍射和多缝干涉综合作用的结果

1、多缝干涉条件

$$\Delta \varphi = \frac{2\pi}{\lambda} \delta = \pm 2k\pi$$

$$\delta = d \sin \theta = \pm k\lambda$$
 $k = 0, 1, \cdots$

——光栅方程

> 主极大明纹

合振幅: $E_{\ominus} = NE_0$

$$I = N^2 I_0$$

暗纹

$$5\Delta \varphi = \pm m \cdot 2\pi$$

$$\Delta \varphi = \pm \frac{m}{5} 2\pi$$

$$m = 1, 2, 3, 4, 6, \dots, 9, 11, \dots$$
 $m \neq 5k \ (k = 0, 1, \dots)$

$$\delta = \pm \frac{m\lambda}{N}$$

$$m \neq 5k \ (k = 0, 1, \cdots)$$

 $\delta = d\sin\theta = \pm \frac{m}{5}\lambda$

$$5\Delta \varphi = 2 \cdot 2\pi$$

总结:
$$(1)\Delta \varphi = 2\pi \frac{d \sin \theta}{\lambda} = \pm 2k\pi \quad k = 0,1,2,3...$$

$$d \sin \theta = \pm k\lambda \quad \pm \text{极大明纹}$$

$$I = N^2 I_0$$

$$(2)\Delta \varphi = 2\pi \, \frac{d \sin \theta}{\lambda} = \pm \frac{2m\pi}{N}$$

$$m = 1, 2, \dots, N-1, N+1, \dots, 2N-1, 2N+1, \dots \neq kN$$

$$d\sin\theta = \pm \frac{m\lambda}{N}$$
 暗纹

(1)两个主极大之间有N-1条暗纹 N-2条次极大明纹

 $d\sin\theta = \pm k\lambda$

(3) N 越大: 主极大越亮, 越窄。 N 很大时,两主极大间形成一片暗区。

 $\sin\theta = \pm \frac{k\lambda}{d}$

1010101001011011011011E=mc

作业: P127: 一.3 二.5 三.3