分割表の検定

比率の差の検定

目的:新しく研究開発された石けんが,すり傷や切り傷を予防する効果があるかを調べたい

□ データ:無作為抽出された600人

■ 320人: 殺菌石けんを使用

■ 280人:<u>普通の石けん</u>を使用

- 自然にできたすり傷や切り傷から2次的な感染が 起こるかを記録した
- 二重目かくし法による試験

2次感染を起こした比率

	2次感染を 起こした数	2次感染を 起こさなかった数	合計
殺菌石けん	27	293	320
普通の石けん	45	235	280

□ 2次感染を起こした比率

■ <u>殺菌石けん</u>

27/320 = 0.084

■ <u>普通の石けん</u>

45/280 = 0.161

帰無仮説

□ <u>帰無仮説</u>: 殺菌石けんと普通の石けんとの間には 2次感染の予防の効果に差は無い

帰無仮説 $H_0: p_1 = p_2$

 p_1 : 殺菌石けんを使った場合の2次感染を起こす真の比率

 p_2 : 普通の石けんを使った場合の 2 次感染を起こす真の比率

比率の差の検定

	2次感染を 起こした数	2次感染を 起こさなかった数	合計
殺菌石けん	a	b	n_1
普通の石けん	С	d	n_2
合計	m_1	m_2	N

二組の比率の差の検定は、次の統計量が帰無仮説のもとで 自由度1のカイ二乗分布にしたがうことを用いて行う

$$\chi_1^2 = \frac{N(ad - bc)^2}{n_1 n_2 m_1 m_2}$$

検定統計量の計算

	2次感染を 起こした数	2次感染を 起こさなかった数	合計
殺菌石けん	27	293	320
普通の石けん	45	235	280
合計	72	528	600

□ 検定統計量

$$\chi_1^2 = \frac{N(ad - bc)^2}{n_1 n_2 m_1 m_2} = \frac{600 (27 \times 235 - 293 \times 45)^2}{320 \times 280 \times 72 \times 528} = 8.24$$

検定結果

- □ 検定統計量 : $\chi_1^2 = 8.24$
- □ 自由度1のカイニ乗分布の上側1%点 : 6.64
- 検定結果
 - 有意水準1%で帰無仮説 を棄却する
 - 殺菌石けんと普通の石けんとの間には2次感染の予防に差があると主張できる

独立性の検定

独立性の検定

目的:2つの質問に対する回答の関連性を調べる

□質問(回答は「はい」または「いいえ」)

■ A: 私は看護という職業に精神的充実を感じている

■ B: 私は看護という職業をいつまでも続けていきたい

質問に対する回答

AB	はい	いいえ
はい	71	24
いいえ	12	31

帰無仮説

□帰無仮説

- ■「看護という職業に対する精神的充実感」と, 「看護という職業を続けていきたい」ということの間には 関連性は無い
- 帰無仮説が棄却される ⇒

独立でない

精神的充実感を感じている人ほど 仕事を続けたいと思っている

独立性の検定

特性B	有	無	計
有	a	b	n_1
無	c	d	n_2
計	m_1	m_2	N

二組の比率の差の検定と同様に、次の統計量が帰無仮説のもとで 自由度1のカイ二乗分布にしたがうことを用いて行う

$$\chi_1^2 = \frac{N(ad - bc)^2}{n_1 n_2 m_1 m_2}$$

検定統計量の計算

ВА	はい	いいえ	計
はい	71	24	95
いいえ	12	31	43
計	83	55	138

□ 検定統計量

$$\chi_1^2 = \frac{N(ad - bc)^2}{n_1 n_2 m_1 m_2} = \frac{138 (71 \times 31 - 24 \times 12)^2}{95 \times 43 \times 83 \times 55} = 27.1$$

自由度1のカイ二乗分布の上側1%点:6.64よりも 著しく大きい。よって帰無仮説を棄却する。

独立性の検定:一般の場合

- □一般の分割表の場合を考える
 - 帰無仮説: 特性A, Bの間に関連性はない

	B_1	B_2	• • •	B_t	計
A_1	c_{11}	c_{12}	• • •	c_{1t}	m_1
A_1	c_{21}	c_{22}	• • •	c_{2t}	m_2
:	:	÷		÷	:
A_s	c_{s1}	c_{s2}	• • •	C_{st}	m_s
計	n_1	n_2		n_t	N

独立性の検定:一般の場合

□ 検定統計量

$$\chi^2 = \sum_{i=1}^s \sum_{j=1}^s \frac{(c_{ij} - d_{ij})^2}{d_{ij}}, \quad d_{ij} = \frac{m_j n_i}{N}$$

- 帰無仮説のもとで、検定統計量 χ^2 は 自由度 $(s-1)\times(t-1)$ のカイニ乗分布にしたがう
- 期待度数 d_{ij} が 5 より小さいときは、
 隣接した行や列を加え合わせて、
 期待度数を 5 以上にしてから検定を行う