6.8
$$f'(x) = \left(\frac{x^2}{x+k}\right)' = \frac{(x^2)'(x+k) - x^2(x+k)'}{(x+k)^2} = \frac{2x(x+k) - x^2 \cdot 1}{(x+k)^2}$$
$$= \frac{x^2 + 2kx}{(x+k)^2} = \frac{x(x+2k)}{(x+k)^2}$$

La dérivée s'annule si x = 0 ou si x = -2k.

1)
$$f(0) = \frac{0^2}{0+k} = \frac{0}{k} = 0 \neq 8$$
: cette possibilité est donc à rejeter.

2)
$$f(-2k) = \frac{(-2k)^2}{-2k+k} = \frac{4k^2}{-k} = -4k$$

La condition 8 = -4 k entraı̂ne k = -2.

On a alors bien affaire à un minimum en $x = -2 \cdot (-2) = 4$:

	0 2 4			1
x	_ (+	+	+
x-4	_	_	- () +
$(x-2)^2$	+	+	+	+
f' f	+ () —	- (\(\sum_{\text{m}} \)) + _{in} /