

01076101 วิศวกรรมคอมพิวเตอร์เบื้องต้น Introduction to Computer Engineering

Arduino #1

LED, Digital Output

บอร์ด Arduino

- อ่านว่า (อา-ดู-อิ-โน่ หรือ อาดุยโน่)
- เป็นบอร์ด ไมโครคอนโทรลเลอร์
- มีการใช้งานที่ง่าย
- มี Library มาก
- มีอุปกรณ์ที่นำไปเชื่อมต่อมาก
- ทำให้ได้รับความนิยมอย่างมาก

องค์ประกอบของ Arduino

Technical specs

Microcontroller	ATmega328P	
Operating Voltage	5V	
Input Voltage (recommended)	7-12V	
Input Voltage (limit)	6-20V	
Digital I/O Pins	14 (of which 6 provide PWM output)	
PWM Digital I/O Pins	6	
Analog Input Pins	6	
DC Current per I/O Pin	20 mA	
DC Current for 3.3V Pin	50 mA	
Floris Manager	32 KB (ATmega328P)	
Flash Memory	of which 0.5 KB used by bootloader	
SRAM	2 KB (ATmega328P)	
EEPROM	1 KB (ATmega328P)	
Clock Speed	16 MHz	
Length	68.6 mm	
Width	53.4 mm	
Weight	25 g	

• ดาวน์โหลด Arduino จากเว็บ https://www.arduino.cc/en/software

Downloads

Arduino IDE 1.8.15

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. This software can be used with any Arduino board.

Refer to the **Getting Started** page for Installation instructions.

SOURCE CODE

Active development of the Arduino software is **hosted by GitHub**. See the instructions for **building the code**. Latest release source code archives are available **here**. The archives are PGP-signed so they can be verified using **this** gpg key.

• เลือก JUST DOWNLOAD และ ติดตั้งลงในเครื่อง

• คลิก I Agree และ Next ตามลำดับ

คลิก Install

• เรียกขึ้นมาทำงาน

ตั้งค่า preferences

• คลิกที่ File -> Preferences แล้วปรับแต่งได้ตามสะดวก เช่น theme, ขนาด font, แสดงเลขบรรทัด

Preferences		×
Settings Network		
Sketchbook location:		
d:\		Browse
Editor language:	System Default vertex (requires restart of Arduino)	
Editor font size:	16	
Interface scale:	✓ Automatic 100 🕏 % (requires restart of Arduino)	
Theme:	Default theme V (requires restart of Arduino)	
Show verbose output during:	: compilation upload	
Compiler warnings:	None	
Display line numbers	☐ Enable Code Folding	
✓ Verify code after upload	Use external editor	
✓ Check for updates on sta	artup Save when verifying or uploading	
Use accessibility features	s	
Additional Boards Manager UF	IRLs: om/dl/package_esp32_index.json,https://docs.heltec.cn/download/package_heltec_esp32_index.json	
More preferences can be edit	ited directly in the file	
C: \Users\khtha\AppData\Loca	cal\Arduino 15\preferences, txt	
(edit only when Arduino is not	pt running)	
	ОК	Cancel

ตั้งค่า preferences

- กำหนดจุดที่ใช้เก็บโปรแกรม
- ขนาดฟอนต์
- Show verbose output during จะให้แสดงรายละเอียดระหว่างที่ Compile หรือ Upload หรือไม่
- แสดง Warning หรือไม่
- แสดงเลขที่บรรทัด
- Check for updates on startup
- Save when verifying or uploading

กำหนด Board และ Port

- เสียบ USB ระหว่างเครื่องคอมพิวเตอร์กับบอร์ด
- ไปที่ Tools -> Board เลือก Arduino Uno (ถ้าเป็น Nano เลือก Nano)

กำหนด Board และ Port

- เสียบ USB ระหว่างเครื่องคอมพิวเตอร์กับบอร์ด
- เลือกพอร์ต (ขึ้นอยู่กับเครื่อง)

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

Arduino Sketch


```
void setup()
  // put your setup code here, to run once:
void loop()
  // put your main code here, to run repeatedly:
```

Activity

- เลือก Files -> Examples -> Basics -> Blink
- จากนั้น Upload ขึ้นบอร์ด 💽
- หากไฟบนบอร์ดกระพริบ แสดงว่า การติดตั้งสำเร็จ
- กรณีใช้บอร์ด Arduino Nano แล้ว upload ไม่ได้ให้ลองเปลี่ยนเป็น
 Tools -> Processor ATmega328P (Old Bootloader) แล้ว Upload
 ใหม่อีกครั้ง

Tinkercad

- ไปที่เว็บ https://www.tinkercad.com/
- สร้าง account โดยเลือก personal account ในช่อง starters เลือก Arduino แล้ว ลากตามรูปมาวาง จากนั้นกดที่ Code แล้วเลือก Text แล้วกด Start Simulation

ไดโอด

• อุปกรณ์ที่ใช้ในการควบคุมทิศทางการไหลของ<u>กระแสไฟฟ้า</u> คือ ไดโอด จะ ยอมให้<u>กระแสไฟฟ้า</u>ไหลผ่าน ในทิศทางเดียว (ไบอัสตรง) และกั้นการ ไหลในทิศทางตรงกันข้าม (ไบอัสย้อนกลับ)

ไดโอดเปล่งแสง แอลอีดี (LIGHT EMITTING DIODS)

• ไดโอดเปล่งแสง (Light Emitting Diode) มัก เรียกย่อว่า แอลอีดี (LED) เป็นไดโอดที่ออกแบบมาเป็นพิเศษโดยเมื่อได้รับแรงดัน ใบอัสตรง จะเปล่งแสงออกมาได้ ซึ่งมีทั้ง สีแดง เขียว ฟ้า ส้ม

เหลือง ฯลฯ

การหาค่า R สำหรับต่อ LED

- เป็น R อนุกรมที่ใช้จำกัดกระแสที่จะไหลผ่าน LED โดยทั่วไปกระแสสูงสุดที่ใช้ จะไม่เกิน 20 mA หากเกินหลอดอาจจะขาดได้
- ullet โดยใช้หลักการแบ่งแรงดันจะใช้สูตร $R = rac{V V_{LED}}{I}$

- $R = (24-1.6)/0.02 = 1.12 \text{ k}\Omega$
- กรณี 5V R = (5-1.6) /0.02 = 170 Ω แต่โดยทั่วไปจะใช้ R = 220 Ω สำหรับไฟ 5V (มักเผื่อให้มากเอาไว้นิดหน่อย)

Digital Output

SETUP PINMODE

Syntax:

pinMode(pin, mode)

Parameter:

pin: the number of the pin whose mode you wish to set

mode: INPUT, OUTPUT or INPUT_PULLUP.

Digital Output

DIGITAL OUTPUT PROGRAMMING (ON-OFF)

Syntax:

digitalWrite(pin, logic)

Parameter:

pin: the number of the pin whose mode you wish to set

logic: HIGH or LOW.

Digital Output

Example:

```
#define LED on Arduino 13
void setup()
  pinMode(LED_on_Arduino,OUTPUT); // setup output
void loop()
  digitalWrite(LED_on_Arduino, HIGH); // Pin13 is HIGH
  delay(250);
  digitalWrite(LED on Arduino,LOW); // Pin13 is LOW
  delay(250);
```

Delay

- delay (x) หมายถึงให้หน่วงเวลา เป็นระยะเวลาเท่ากับ x มิลลิวินาที
- millis () ฟังก์ชันที่ส่งค่าจำนวน มิลลิวินาที นับจากที่โปรแกรมเริ่มรัน

```
unsigned long time;

void setup(){
    Serial.begin(9600);
}

void loop(){
    Serial.print("Time: ");
    time = millis();
    //prints time since program started
    Serial.println(time);
    // wait a second so as not to send massive amounts of data delay(1000);
}
```


ให้นำหลอด LED มาต่อกับบอร์ด โดยให้ขา + ต่อกับขา 13 และขาลบต่อกับ
 GND ดังรูป แล้วรันโปรแกรมอีกครั้ง

Activity

- ถ้าจะต่อ LED กับไฟ +5V จะต้องใช้ R อนุกรมค่าเท่าไร?
 (กำหนดให้ LED มีค่ากระแส ณ จุดทำงาน 2V = 15mA)
- ให้ต่อ LED บน Protoboard ตามรูปด้านล่าง (ขา 12) ทดสอบการทำงาน และ ตอบคำถามว่า ทำไมต้องต่อ R

Positive Logic Interface & Negative Logic Interface

Activity

- ให้ต่อ LED กับบอร์ด Arduino จำนวน 4 ดวง ในแบบ Positive Logic
- เขียนโปรแกรมให้แสดง OFF-OFF-OFF-OFF -> OFF-OFF-OFF-ON ->
 OFF-OFF-ON-ON -> OFF-ON-ON -> ON-ON-ON โดยเว้นจังหวะละ
 500 ms
- ให้วนซ้ำแสดงตามข้อก่อนหน้าไปเรื่อยๆ

Charlieplexing

 เป็นเทคนิคในการลดขาที่ต้องใช้ในการขับ LED เช่นจากรูปด้านล่างนี้ จะใช้ขา จำนวน 3 ขา ในการขับ LED จำนวน 6 ดวง

 การเขียนโปรแกรมสำหรับ Charlieplexing ต้องมีเทคนิคเล็กน้อย เนื่องจากเรา จะต้องใช้ขาเพียง 2 ขาเท่านั้นที่จะทำงานได้ มิฉะนั้นจะติด 2 ดวง จึงต้องเขียนใน ลักษณะนี้

```
void setup()
  pinMode(2, OUTPUT);
  digitalWrite(2, HIGH);
  pinMode(3, OUTPUT);
  digitalWrite(3, LOW);
  pinMode(4, INPUT);
void loop()
```


Charlieplexing

จะเห็นว่าใช้ขา 8 ขาจะสามารถต่อกับ LED ได้ถึง 32 ดวง

Assignment #1

- ให้ต่อวงจร LED ในแบบ Charlieplexing จำนวน 3 ขา
- เขียนโปรแกรมให้แสดงไฟวิ่ง 1 ดวงไปกลับ

For your attention