

NOSSOS DIFERENCIAIS | QUEM SOMOS

Graduação, pós-graduação, MBA, Pós- MBA, Mestrado Profissional, Curso In Company e EAD

CONSULTING

Consultoria personalizada que oferece soluções baseada em seu problema de negócio

RESEARCH

Atualização dos conhecimentos e do material didático oferecidos nas atividades de ensino

Líder em Educação Executiva, referência de ensino nos cursos de graduação, pós-graduação e MBA, tendo excelência nos programas de educação. Uma das principais escolas de negócio do mundo, possuindo convênios internacionais com Universidades nos EUA, Europa e Ásia. +8.000 projetos de consultorias em organizações públicas e privadas.

Único curso de graduação em administração a receber as notas máximas

A primeira escola brasileira a ser finalista da maior competição de MBA do mundo

Única Business School brasileira a figurar no ranking LATAM

Signatária do Pacto Global da ONU

Membro fundador da ANAMBA -Associação Nacional MBAs

Credenciada pela AMBA -Association of MBAs

Credenciada ao Executive MBA Council

Filiada a AACSB
- Association to
Advance
Collegiate
Schools of
Business

Filiada a EFMD
- European
Foundation for
Management
Development

Referência em cursos de MBA nas principais mídias de circulação O **Laboratório de Análise de Dados** – LABDATA é um Centro de Excelência que atua nas áreas de ensino, pesquisa e consultoria em análise de informação utilizando técnicas de **Big Data**, **Analytics** e **Inteligência Artificial**.

O LABDATA é um dos pioneiros no lançamento dos cursos de *Big Data* e

Analytics no Brasil

Os diretores foram professores de grandes especialistas do mercado

- +10 anos de atuação
- +1000 alunos formados

Docentes

- Sólida formação acadêmica: doutores e mestres em sua maioria
- Larga experiência de mercado na resolução de *cases*
- Participação em Congressos Nacionais e Internacionais
- Professor assistente que acompanha o aluno durante todo o curso

Estrutura

- 100% das aulas realizadas em laboratórios
- Computadores para uso individual durante as aulas
- > 5 laboratórios de alta qualidade (investimento +R\$2MM)
- 2 Unidades próximas a estação de metrô (com estacionamento)

Conteúdo da Aula

2. VIF

3. Ponto de Corte

4. KS e AUC

5. Exercícios

1. Information Value

O **Valor da Informação**, ou *Information Value (IV)*, é um indicador que mede a força da relação entre variáveis e é útil para realizar uma análise prévia das variáveis que têm maior potencial para o modelo.

O **IV** é indicador calculado por meio da análise bivariada entre as variáveis explicativas (categorizadas) versus a variável resposta (binária). Quanto maior seu valor, mais ele explica a resposta, variando na prática geralmente entre valores de 0 a 0,5.

O propósito da **análise bivariada** é identificar a relação e o quão forte é a variável explicativa em relação à variável resposta. Esta análise investigativa é muito importante para identificar potenciais variáveis candidatas a compor o modelo de Regressão Logística.

- Por exemplo, um estudo pretende identificar as variáveis mais importantes para explicar se um cliente paga ou não paga um empréstimo.
- A covariável em análise nesse caso é a "quantidade de contatos da assessoria de cobrança com o cliente certo (chamado de CPC contato com a pessoa certa)".

Quantidade de CPC	Cliente Pagou a Dívida?						
(contatos com a pessoa certa)	Não	(0)	Si	m (1)	Total	%	
	#	%	#	%		7.0	
Zero	1.366.039	66,30%	23.128	23,70%	1.389.167	64,40%	
Um	289.587	14,10%	20.356	20,80%	309.942	14,40%	
Dois	139.243	6,80%	13.583	13,90%	152.826	7,10%	
Três	82.422	4,00%	8.202	8,40%	90.624	4,20%	
Quatro	103.220	5,00%	14.305	14,60%	117.525	5,40%	
Cinco	79.775	3,90%	18.157	18,60%	97.932	4,50%	
Total	2.060.286	100%	97.730	100,00%	2.158.015	100,00%	

Analisando as distribuições de clientes que pagaram a dívida em comparação a aqueles não pagaram a dívida, verificamos que as distribuições são diferentes, concentrando um maior número de contatos para os clientes que pagaram a dívida. Esta análise mostra que esta covariável parece ser relevante para explicar a resposta.

Information Value e WOE INFORMATION VALUE | REGRESSÃO LOGÍSTICA

A análise dos percentuais revela que a incidência de pagamentos é mais baixa quando não se fala com o titular da dívida, enquanto que esse número se eleva consideravelmente à medida que a quantidade de CPC aumenta.

Para facilitar esse processo para um número maior de variáveis (dezenas, centenas de variáveis), a força da relação entre as variáveis pode ser traduzida por um indicador chamado "valor da informação (VI ou IV)", que contempla não apenas a diferença entre %bons e %maus para cada categoria, mas também considera, de algum modo, a penetração desse atributo na carteira.

$$VI = \sum_{i=0}^{n} \ln(\frac{\%Bons_i}{\%Maus_i}) * (\%Bons_i - \%Maus_i)$$

O indicador WOE (weight of evidence) ou "**peso da evidência**", é um indicador da força do atributo e é parte do cálculo do IV, como WOE= $\ln \left(\frac{\%Bons_i}{\%Maus_i} \right)$.

Information Value | REGRESSÃO LOGÍSTICA

$$IV = \sum_{i=0}^{n} \ln(\frac{\%Bons_i}{\%Maus_i}) * (\%Bons_i - \%Maus_i)$$

		Cliente Pagou a Dívida?							
Quantidade de CPC (contatos com a pessoa certa)	Não	(0)	Sim	(1)	Total	0/	CINA/NIÃO	WOF	INIE MALLIE
(contactos com a pessoa certa)	#	%	#	%	Total	%	SIM/NÃO	WOE	INF. VALUE
Zero	1.366.039	66,3%	23.128	23,7%	1.389.167	64,4%	0,36	-103,0	0,4393
Um	289.587	14,1%	20.356	20,8%	309.942	14,4%	1,48	39,3	0,0266
Dois	139.243	6,8%	13.583	13,9%	152.826	7,1%	2,06	72,1	0,0515
Três	82.422	4,0%	8.202	8,4%	90.624	4,2%	2,10	74,1	0,0325
Quatro	103.220	5,0%	14.305	14,6%	117.525	5,4%	2,92	107,2	0,1032
Cinco	79.775	3,9%	18.157	18,6%	97.932	4,5%	4,80	156,8	0,2306
Total	2.060.286	100%	97.730	100,0%	2.158.015	100,0%	1,00	-	0,8838

O IV da variável quantidade de CPC é 0,8838.

Information Value INFORMATION VALUE | REGRESSÃO LOGÍSTICA

A partir do cálculo do VI gerado para todas as covariáveis do banco de dados, essa lista pode ser ordenada e uma maior importância inicial pode ser dada às variáveis mais fortes (com VI mais elevado), reduzindo sensivelmente o esforço de processamento na modelagem, dedicando atenção para um conjunto menor de variáveis.

Valor da informação (VI)	Classificação	
<=0,02	Fraquíssima	
Entre 0,02 e 0,10	Fraca	
Entre 0,10 e 0,30	Média	
Entre 0,30 e 0,50	Forte	
> 0,50	Suspeita	

Se o VI for superior a 0,50, a variável tem poder preditivo "suspeito" ou "alto demais" e é importante checar a consistência do dado, bem como a relevância prática dessa variável, assim como, eventualmente, o modo como foi gerada.

Information Value INFORMATION VALUE | REGRESSÃO LOGÍSTICA

Um valor de IV de 0,8838 é considerado com forte poder preditivo, sendo um excelente candidato a compor o modelo de Regressão Logística.

Vale a pena salientar, como esta é uma análise bidimensional, pode ocorrer de uma covariável apresentar alto valor de IV, dado a presença das demais covariáveis do modelo (visão multidimensional), uma determinada covariável não ser relevante.

Ouantidada da CDC	Cliente Pagou a Dívida?								
Quantidade de CPC (contatos com a pessoa certa)	Não	(0)	Sim	(1)	Total	%	SIM/NÃ	WOE	INF.
(contatos com a pessoa certa)	#	%	#	%	IOLAI	% 0	0	WOE	VALUE
Zero	1.366.03				1.389.16				
	9	66,3%	23.128	23,7%	7	64,4%	0,36	-103,0	0,4393
Um	289.587	14,1%	20.356	20,8%	309.942	14,4%	1,48	39,3	0,0266
Dois	139.243	6,8%	13.583	13,9%	152.826	7,1%	2,06	72,1	0,0515
Três	82.422	4,0%	8.202	8,4%	90.624	4,2%	2,10	74,1	0,0325
Quatro	103.220	5,0%	14.305	14,6%	117.525	5,4%	2,92	107,2	0,1032
Cinco	79.775	3,9%	18.157	18,6%	97.932	4,5%	4,80	156,8	0,2306
Total	2.060.28				2.158.01				
	6	100%	97.730	100,0%	5	100,0%	1,00	-	0,8838
		-	-			-	<u> </u>	-	

FORTE

Um diretor de retenção ao cliente de uma Telecom deseja criar um modelo para calcular a probabilidade de cancelamento para decisão de retenção ativa.

a) Calcule o IV das variáveis. Quais variáveis possuem maior IV?

2. Estatística VIF

Quando trabalhamos com dados multivariados podem existir variáveis que carreguem informações similares. Esse tipo de redundância, quando falamos de análise de regressão, chama-se <u>multicolinearidade</u>.

- ✓ Multicolinearidade é um efeito que ocorre quando variáveis fortemente correlacionadas são consideradas no mesmo modelo de regressão.
- ✓ Quando elas entram simultaneamente no modelo, a consequente redundância potencialmente eleva o nível de variabilidade dos pesos das variáveis correlacionadas, distorcendo sua interpretação e tornando o modelo instável e, muitas vezes, alterando a lógica esperada das variáveis envolvidas.

VIF (Variance Inflation Factor) ou Fator de Inflação da Variância: Mede o quanto variância dos coeficientes de regressão (pesos) são inflacionados por problemas de multicolinearidade.

Um valor de VIF>5 já revela sinais de multicolinearidade.

$$VIF_i = \frac{1}{1 - R_i^2}$$

Um diretor de retenção ao cliente de uma Telecom deseja criar um modelo para calcular a probabilidade de cancelamento para decisão de retenção ativa.

a) Verifique se há multicolinearidade no modelo final por meio do VIF.

3. Ponto de Corte

A Tabela de Classificação apresenta o cruzamento da variável resposta observada em comparação com a variável resposta predita pelo modelo. Ela também é conhecida como Matriz de Confusão.

Um bom ajuste de modelo apresenta grande concentração de casos na diagonal principal.

Tabela de Classificação avaliada no ponto de corte:

		Variável Resposta Predita		Total
		0	1	Total
Variável Resposta	0	VN	FP	VN+FP
Observada	1	FN	VP	FN+VP
	Total	VN+FN	FP+VP	VN+FN+ FP+VP ¹

¹VP: verdadeiro-positivo; VN: verdadeiro-negativo; FP: falso-positivo e FN: falso-negativo

Tabela de Classificação avaliada no ponto de corte:

		Variável Res _l	oosta Predita	Total
		0	1	Total
Variável Resposta	0	VN	FP	VN+FP
Observada	1	FN	VP	FN+VP
	Total	VN+FN	FP+VP	VN+FN+ FP+VP ¹

¹VP: verdadeiro-positivo; VN: verdadeiro-negativo; FP: falso-positivo e∉FN: falso-negativo

$$Acur = \frac{VP + VN}{VP + VN + FP + FN}$$

$$Sens = \frac{VP}{VP + FN}$$

$$Espec = \frac{VN}{FP + VN}$$

Os índices de **acurácia**, **sensibilidade** e **especificidade** variam de 0 a 1 (ou de 0% a 100%).

Esperamos que os índices sejam superiores a 50% (acima do acerto aleatório), sendo os valores mais próximos de 100% com maior poder preditivo.

Na prática, valores acima 70%-75% com ótimo desempenho.

Um diretor de retenção ao cliente de uma Telecom deseja criar um modelo para calcular a probabilidade de cancelamento para decisão de retenção ativa.

a) Obtenha diversos pontos de corte e calcule a acurácia, sensibilidade e especificidade para eles.

Exemplo de Faixas de probabilidade PONTOS DE CORTE | REGRESSÃO LOGÍSTICA

É possível realizar uma simulação para diversos pontos de corte e verificar as alterações nos valores de acurácia, sensibilidade e especificidade.

Ponto de Corte	Acurácia	Sensibilidade	Especificidade
0,1	0,3361	0,9543	0,1779
0,15	0,5565	0,8439	0,4830
0,2	0,6921	0,6706	0,6976
0,25	0,7593	0,5096	0,8232
0,3	0,7845	0,3775	0,8886

O ponto de corte afeta os cálculos dos indicadores de qualidade de um modelo.

É possível calcular o ponto de corte que:

$$Acur = \frac{VP + VN}{VP + VN + FP + FN}$$
 Maximiza a acurácia

$$Sens = \frac{VP}{VP + FN}$$

$$Espec = \frac{VN}{FP + VN}$$

O ponto de corte afeta os cálculos dos indicadores de qualidade de um modelo.

É possível calcular o ponto de corte que:

Acurácia

$$Acur = \frac{VP + VN}{VP + VN + FP + FN}$$

Sensibilidade

$$Sens = \frac{VP}{VP + FN}$$

Especificidade

$$Espec = \frac{VN}{FP + VN}$$

Minimiza a diferença entre sensibilidade e especificidade, gerando maior equilíbrio entre os acertos dos 0 e 1.

Um diretor de retenção ao cliente de uma Telecom deseja criar um modelo para calcular a probabilidade de cancelamento para decisão de retenção ativa.

a) Obtenha o ponto de corte que maximiza a acurácia e que minimiza a diferença entre sensibilidade e especificidade.

O ponto de corte que maximiza a acurácia é 0.8608, porém a diferença entre a sensibilidade (0,0005) e especificidade (1) é muito grande.

optimal_cutpoint accuracy acc sensitivity specificity tp fn fp tn 0.8608 0.7964 0.7964 0.0005 1 1 2036 0 7963

É possível buscar o maior equilíbrio, ou seja, a menor diferença entre sensibilidade e especificidade. No exemplo, o ponto de corte é 0,1967.

optimal_cutpoint abs_d_sens_spec acc sensitivity specificity tp fn fp 0.1967 0.0003 0.6846 0.6848 0.6845 1395 642 2512 tn 5451

4. KS e AUC

O indicador Kolmogorov-Smirnov (KS) reflete a máxima separação (em termos absolutos) entre as curvas acumuladas de dois grupos distintos quaisquer (virou consultor/não virou consultor ou inadimplente/adimplente). O indicador varia entre 0 (nenhuma separação) a 1 (separação completa).

Faixa de Probabilidade	% Y = 0	% Acumulado Y = 0	% Y = 1	% Acumulado Y = 1
<=10%	6,8%	6,8%	24,5%	24,5%
10% - 20%	5,4%	12,2%	21,1%	45,6%
20% - 30%	4,9%	17,1%	20,6%	66,3%
30% - 40%	6,9%	24,0%	10,9%	77,2%
40% - 50%	7,5%	31,5%	5,6%	82,8%
50% - 60%	8,9%	40,5%	4,6%	87,4%
60% - 70%	11,3%	51,8%	3,8%	91,2%
70% - 80%	14,2%	65,9%	3,8%	95,0%
80% - 90%	15,1%	81,0%	3,5%	98,5%
> 90%	19,0%	100,0%	1,5%	100,0%

Kolmogorov-Smirnov propuseram uma metodologia para comparação das distribuições de uma variável aleatória em duas populações [Conover, 1999].

Sejam as populações de distribuição:

- S1(*c*): distribuição acumulada do evento 1 nas *c* faixas de probabilidades.
- S0(c): distribuição acumulada do evento 0 nas c faixas de probabilidades.

✓ Objetivo: comparar os valores da distribuição S1(c) com os valores de S0(c); ou seja, nesse caso, a estatística KS será:

KS =
$$\max_{1 \le c \le q} |S1(c) - S0(c)|$$
,

em que c é o índice que percorre as faixas de probabilidades de 1 a q.

Faixa	0	1	KS
1	5,3%	0,4%	4,9%
2	10,4%	0,8%	9,6%
3	15,7%	1,1%	14,6%
4	21,0%	1,5%	19,5%
5	26,1%	1,8%	24,3%
6	31,4%	2,4%	29,0%
7	36,7%	3,1%	33,6%
8	41,9%	3,9%	38,0%
9	47,1%	5,0%	42,1%
10	52,3%	6,1%	46,2%
11	57,5%	7,3%	50,2%
12	62,6%	9,0%	53,6%
13	67,8%	11,1%	56,6%
14	72,9%	13,6%	59,3%
15	78,0%	16,6%	61,4%
16	83,1%	20,6%	62,5%
17	88,1%	25,3%	62,8%
18	93,0%	32,2%	60,8%
19	97,7%	43,6%	54,0%
20	100,0%	100,0%	0,0%

Para cada faixa de score, é calculada a diferença absoluta da distribuição acumulada do grupo 0 e do grupo 1.

O máximo da diferença será o KS do modelo.

- A análise ROC (*Reciever Operating Curve*) foi desenvolvida entre 1950 e 1960 para avaliar a detecção de sinais em radar e na psicologia sensorial.
- O maior problema da **Sensibilidade** e da **Especificidade** é que estas medidas dependem de um valor de corte, o qual é, às vezes, definido arbitrariamente.
- Assim, mudando o critério, pode-se aumentar a Sensibilidade com o consequente detrimento da Especificidade, ou vice-versa.
- A curva ROC permite estudar a probabilidade do verdadeiro-positivo (Sensibilidade) em função do falso-positivo (1 Especificidade) para diferentes valores de corte.

Gráfico bidimensional: **Sensibilidade** x **1 – Especificidade**.

Um diretor de retenção ao cliente de uma Telecom deseja criar um modelo para calcular a probabilidade de cancelamento para decisão de retenção ativa.

a) Obtenha o KS e a curva ROC do modelo final.

5. Exercícios

Um diretor de retenção ao cliente de uma Telecom deseja criar um modelo para calcular a probabilidade de cancelamento para decisão de retenção ativa.

- a) Calcule o IV das variáveis. Quais variáveis possuem maior IV?
- a) Verifique se há multicolinearidade no modelo final por meio do VIF.
- b) Obtenha o ponto de corte que maximiza a acurácia e que minimiza a diferença entre sensibilidade e especificidade.
- c) Obtenha o KS e a curva ROC do modelo final.

Arquivo Cancelamento.xlsx

Considere os dados provenientes de um banco de varejo, referente a 5.000 propostas passadas de crédito, geradas para solicitação de um empréstimo. A base traz dados como idade, nível de instrução, tempo de experiência, tempo no endereço e renda, além da variável "classif" (0=bom, 1=mau). Vamos avaliar o potencial preditivo inicial dessas variáveis para predizer se um cliente será um mau pagador.

- a) Calcule o IV das variáveis. Quais variáveis possuem maior IV?
- a) Verifique se há multicolinearidade no modelo final por meio do VIF.
- b) Obtenha o ponto de corte que maximiza a acurácia e que minimiza a diferença entre sensibilidade e especificidade.
- c) Obtenha o KS e a curva ROC do modelo final.

Arquivo CasoUso_02_Emprestimo_Bancario.xlsx

EXERCÍCIOS | REGRESSÃO LOGÍSTICA

Considere os dados de 534 profissionais, seus salários e algumas informações sociodemográficas. A ideia é tentar entender os fatores que mais influenciam na possibilidade do profissional ganhar um salário superior a 10 s.m. (salários mínimos). A partir da análise dessa base de dados, vamos tentar entender alguns elementos em torno desse tema, com a seguinte base de dados:

- a) Calcule o IV das variáveis. Quais variáveis possuem maior IV?
- a) Verifique se há multicolinearidade no modelo final por meio do VIF.
- b) Obtenha o ponto de corte que maximiza a acurácia e que minimiza a diferença entre sensibilidade e especificidade.
- c) Obtenha o KS e a curva ROC do modelo final.

Arquivo CasoUso_03_Fatores_Impacto_Salario.xlsx

Considere os dados de 2.143 segurados do produto seguro automóvel, de uma certa seguradora. A ideia nesse estudo é entender o que influencia o cancelamento do seguro auto e construir um modelo que explique a probabilidade de cancelamento, para estabelecer estratégias de retenção mais efetivas.

- a) Calcule o IV das variáveis. Quais variáveis possuem maior IV?
- a) Verifique se há multicolinearidade no modelo final por meio do VIF.
- b) Obtenha o ponto de corte que maximiza a acurácia e que minimiza a diferença entre sensibilidade e especificidade.
- c) Obtenha o KS e a curva ROC do modelo final.

Referências LIVROS-TEXTO & ARTIGOS

- Agresti, A. (2002). *Categorical data analysis* (Vol. 359). Wiley-Interscience.
- Conover, W. J. (1999). *Practical nonparametric statistics*. New York: Wiley.
- Fawcett, T. (2005). An introduction to ROC analysis. *Pattern Recognition Letters*, **27**, 861-874.
- Hosmer, D. W. e Lemeshow, S. (2000). *Applied Logistic Regression*, 2nd ed. New York: Wiley.

