Grounded language understanding: The Rational Speech Acts model

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

Additional resources

- 1. Goodman and Frank 2016
- 2. Technical screencast: https://youtu.be/bPd6CNy5UqA
- 3. Associated slides:
 https://web.stanford.edu/class/linguist130a/
 screencasts/130a-screencast-implicature.pdf
- 4. Reference implementation:
 https://web.stanford.edu/class/linguist130a/
 materials/rsa130a.py

Literal listener

$$L_{lit}(state \mid msg) = \frac{ [\![msg, state]\!] P(state)}{\sum_{state'} [\![msg, state']\!] P(state')}$$

Pragmatic speaker

$$S_{\text{prag}}(msg \mid state) = \frac{\exp\left(\alpha\left(\log L_{\text{lit}}(state \mid msg) - C(msg)\right)\right)}{\sum_{msg'} \exp\left(\alpha\left(\log L_{\text{lit}}(state \mid msg') - C(msg')\right)\right)}$$

Literal listener

$$L_{lit}(state \mid msg) = \frac{ [\![msg, state]\!] P(state)}{\sum_{state'} [\![msg, state']\!] P(state')}$$

Pragmatic listeners

Pragmatic listener

$$L_{prag}(state \mid msg) = \frac{S_{prag}(msg \mid state)P(state)}{\sum_{state'} S_{prag}(msg \mid state')P(state')}$$

Pragmatic speaker

$$S_{\text{prag}}(msg \mid state) = \frac{\exp\left(\alpha\left(\log L_{\text{lit}}(state \mid msg) - C(msg)\right)\right)}{\sum_{msg'} \exp\left(\alpha\left(\log L_{\text{lit}}(state \mid msg') - C(msg')\right)\right)}$$

Literal listener

$$L_{lit}(state \mid msg) = \frac{[\![msg, state]\!]P(state)}{\sum_{state'} [\![msg, state']\!]P(state')}$$

Pragmatic listener

 $L_{prag}(state \mid msg) = pragmatic speaker \times state prior$

Pragmatic speaker

 $S_{prag}(msg \mid state) =$ **literal listener** – message costs

Literal listener

 $L_{\text{lit}}(state \mid msg) = lexicon \times state prior$

A simple example

L_{prag}
S_{prag}
L_{lit}

A simple example

 L_{prag} S_{prag} L_{lit}

A simple example

beard	glasses	tie
.67	.33	0
0	.5	.5
0	0	1

L_{prag}
S_{prag}
L_{lit}

A simple example

L_{prag}
S_{prag}
L_{lit}

[[•]]

Literal speaker

$$S_{\text{lit}}(msg \mid state) = \frac{\exp\left(\alpha\left(\log[[msg, state]] - C(msg)\right)\right)}{\sum_{msg'} \exp\left(\alpha\left(\log[[msg', state]] - C(msg')\right)\right)}$$

Pragmatic listener

$$L_{\text{prag}}(state \mid msg) = \frac{S_{\text{lit}}(msg \mid state)P(state)}{\sum_{state'} S_{\text{lit}}(msg \mid state')P(state')}$$

Literal speaker

$$S_{\text{lit}}(msg \mid state) = \frac{\exp\left(\alpha\left(\log[\![msg, state]\!] - C(msg)\right)\right)}{\sum_{msg'} \exp\left(\alpha\left(\log[\![msg', state]\!] - C(msg')\right)\right)}$$

Pragmatic speaker

$$S_{\text{prag}}(msg \mid state) = \frac{\exp\left(\alpha\left(\log L_{\text{prag}}(state \mid msg) - C(msg)\right)\right)}{\sum_{msg'} \exp\left(\alpha\left(\log L_{\text{prag}}(state \mid msg') - C(msg')\right)\right)}$$

Pragmatic listener

$$L_{prag}(state \mid msg) = \frac{S_{lit}(msg \mid state)P(state)}{\sum_{state'} S_{lit}(msg \mid state')P(state')}$$

Literal speaker

$$S_{\text{lit}}(msg \mid state) = \frac{\exp\left(\alpha\left(\log[[msg, state]] - C(msg)\right)\right)}{\sum_{msg'} \exp\left(\alpha\left(\log[[msg', state]] - C(msg')\right)\right)}$$

Pragmatic speakers

Pragmatic speaker

 $S_{prag}(msg \mid state) = pragmatic listener - message costs$

Pragmatic listener

 $L_{prag}(state \mid msg) =$ **literal speaker** \times state prior

Literal speaker

 $S_{\text{lit}}(msg \mid state) =$ **lexicon** – message costs

Limitations

- Hand-specified lexicon
- Reasoning about all possible utterances?

$$S_{\text{prag}}(msg \mid state) = \frac{\exp\left(\alpha\left(\log L_{\text{lit}}(state \mid msg) - C(msg)\right)\right)}{\sum_{msg'} \exp\left(\alpha\left(\log L_{\text{lit}}(state \mid msg') - C(msg')\right)\right)}$$

- · High-bias model; few chances to learn from data
- Cognitive demands limit speaker rationality
- Speaker preferences
- Scalability

References I

Noah D. Goodman and Michael C. Frank. 2016. Pragmatic language interpretation as probabilistic inference. *Trends in Cognitive Sciences*, 20(11):818–829.