91258 Natural Language Processing

Lesson 20. Beyond

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

22/12/2022

Transformers¹

— 1					
Tab	ie c)† (on:	ter	its

Transformers

Bert

Recap

Attention (Vaswani et al., 2017)

- ► RNNs are [were] at the core of NLU tasks —language modeling, machine translation and question answering
- ► Attention is all you need² introduced the "self-attention" mechanism for MT: en—de and en—fr
- ► Comparison against recurrent and convolutional models:
 - ► Higher translation quality
 - ► Less computation cost
- ► By reading one word at a time, RNNs have a hard time modelling distant word interactions
- ► CNN's get all the info at once, but combining distant relationships comes late

https://ai.googleblog.com/2017/08/ transformer-novel-neural-network.html

 $^{^1\}mbox{Partially based on https://neptune.ai/blog/bert-and-the-transformer-architecture-reshaping-the-ai-landscape$

²I just passed by a paper with title "pre-training without attention"...

Transformer (Devlin et al., 2019)

- ► A small/constant number of steps (chosen empirically)
- ► The self-attention mechanism models relationships between all words in a sentence, regardless of their respective position
- ► Attention: scores that determine how much each of the other words should contribute to the next representation of each of them

Example: I arrived at the bank after crossing the river I arrive at the bank after crossing the road

- Let us look at an animated example for MT: transform20fps.gif
 - 1. Initial embedding representations (empty circles)
 - 2. new representation (filled circles) ← aggregating info (attention) from all other words (context)³

Pre-trained models

Transfer learning (image recognition, again)

- 1. Train a model on a (large) [open,out-of]-domain corpus
- 2. Fine-tune it with new data to your task of interest
- * Change of paradigm wrt, for instance, word2vec Picture from https://madhuramiah.medium.com/

deep-learning-using-resnets-for-transfer-learning-d7f4799fa863

Transformer (Devlin et al., 2019)

The attention can be *observed*, here within two contexts:

How to translate it in these cases?

https://ai.googleblog.com/2017/08/ transformer-novel-neural-network.html

Pre-trained models

Typical current setting

- 1. An organisation with large computing capabilities trains a large language model⁴
- 2. Download and fine-tune the model with a few thousand instances⁵

³In parallel for all words, multiple times

⁴GPT-3 is trained on 45TB of data; it has 175B parameters

⁵Or even less: zero-shot and few-shot learning; e.g., Muti and Barrón-Cedeño (2022)

Bert

Transformer architecture⁶

- ► Scaled dot-product attention multiple times, in parallel
- ► Similar to looping over an RNN, without vanishing gradient descent

Multiple times?

BERT: 24 attention layers GPT-2: 12 attention layers GPT-3: 96 attention layers

⁶Don't panic!

BERT

Masking (cloze test)

- ▶ When training to predict the next word, BERT might cheat and just copy it from the right-to-left component
- ▶ Instead of predicting the next word, we hide or "mask" a word, and then force the model to predict that word
 - ► 15% of the input tokens are masked (picked randomly):

%	masked with	Sentence
	(original)	BERT can see all the words in this sentence
80	MASK token	BERT can see all the [MASK] in this sentence
10	random word	BERT can see all the ragù in this sentence
10	same word	BERT can see all the words in this sentence

BERT in other Languages

For instance:

► Spanish (Cañete et al., 2020)

(Muti and Barrón-Cedeño, 2020)

► Italian (AIBERTo) (Polignano et al., 2019)

Use case: misogyny identification in Italian

Figure 1: The two alternative system architectures for

(b) Multi-class architecture model (exp. multi). misogyny and aggressiveness identification.

Multilingual models

What makes multilingual BERT multilingual? (Liu et al., 2020) Use case: multilingual misogyny identification

(Muti and Barrón-Cedeño, 2022)

${\sf BERTology}$ Semi-supervised Sequence Learning context2Vec Pre-trained seq2seq ULMFiT -ELMo GPT Multi-lingual MultiFiT BERT GPT-2 XLM +Knowledge Graph Cross-modal UDify MT-DNN Whole Word Masking MASS Permutation LM Transformer-XL Knowledge distillation UniLM VideoBERT CBT MT-DNN_{KD} Vilbert VisualBERT ERNIE (Baidu) (Tsinghua) B2T2 BERT-wwm XLNet Unicoder-VL SpanBERT RoBERTa LXMERT VL-BERT KnowBert By Xiaozhi Wang & Zhengyan Zhang @THUNLP Picture from https://github.com/thunlp/

Conferences (non-exhaustive)

⁷Apparently gone

NLP-ish	IR-ish	MT-ish
Тор		
ACL	SIGIR	WMT
EMNLP	CIKM	EAMT
NAACL	WSDOM	
EACL	ECIR	
Nice		
SemEval	CLEF	
CICLing ⁷	TREC	
LREC		
National		
CLIC-it	IIR	
Evalita		

(Other) Reference Libraries

- ► Spacy Industrial-Strength Natural Language Processing https://spacy.io/
- ► Stanza
 A Python NLP Package for Many Human Languages
 https://stanfordnlp.github.io/stanza/
- ► Hugging Face
 The Al community building the future
 https://huggingface.co/

Recap

Recap: The path

- 1. Baby steps into computing
- 2. What is NLP? From rule-based to statistical
- 3. Pre-processing text: tokens, stemming, stopwording...
- 4. From words to vectors: the vector space model
- 5. A few supervised models
- 6. Training and evaluating in machine learning
- 7. From words to meaning: topic modeling
- 8. Using one neuron: perceptrons
- 9. Fully-connected neural networks
- 10. From words to semantics: word embeddings
- 11. Taking snapshots of text: CNNs
- 12. Texts as sequences: (Bi)RNNs
- 13. Using a better memory: LSTM
- 14. LSTM to produce text
- 15. Intro to transformers

References I

- Cañete, J., G. Chaperon, R. Fuentes, J.-H. Ho, H. Kang, and J. Pérez
 - 2020. Spanish pre-trained bert model and evaluation data. In *PMI 4DC at ICI R 2020.*
- Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova 2019. Bert: Pre-training of deep bidirectional transformers for language understanding.
- Lane, H., C. Howard, and H. Hapkem 2019. *Natural Language Processing in Action*. Shelter Island, NY: Manning Publication Co.
- Liu, C.-L., T.-Y. Hsu, Y.-S. Chuang, and H. yi Lee 2020. What makes multilingual bert multilingual? *arXiv*.

Recap: The future path

- ► We covered Parts 1 and 2 of Lane et al. (2019) (up to Section 9)
- ► That's 9 out of 13 chapters of Natural Language Processing in Action

Now go and celebrate the end of the course

...and worry about your project from Jan 2nd!

► I'm available during January for 1-to-1 discussion on your project **upon request!**

References II

Muti, A. and A. Barrón-Cedeño

2020. UniBO@AMI: A Multi-Class Approach to Misogyny and Aggressiveness Identification on Twitter Posts Using AlBERTo. In *Proceedings of the 7th evaluation campaign of Natural Language Processing and Speech tools for Italian (EVALITA 2020)*.

Muti, A. and A. Barrón-Cedeño

2022. A checkpoint on multilingual misogyny identification. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop*, Pp. 454–460, Dublin, Ireland. Association for Computational Linguistics.