HYDROGENATING REDUCTION OF NITROGEN-CONTAINING COMPOUND

Publication number: JP6065107 Publication date: 1994-03-08

Inventor:

KAWASAKI ISAHIRO; MORITA MINORU; KONISHI

HIROAKI; KAWANARI MASAMI; DOSEMARI

SHUNICHI; SHUKKE SAKANORI

. Applicant:

SNOW BRAND MILK PROD CO LTD

Classification:

- international:

B01J23/755; B01J23/74; B01J23/78; C07B31/00; C07B43/02; C07B43/04; C07B61/00; C07C209/32; C07C209/38; C07C209/40; C07C209/42; C07C209/48; C07C211/13; C07C211/39; C07C211/53; C07C213/02; C07C215/44; C07C221/00; C07C225/22; C07C229/44; C07C229/48; C07C239/08; C07C255/24; C07D333/76; C07B61/00; B01J23/755; B01J23/74; B01J23/76; C07B31/00; C07B43/00; C07B61/00; C07C209/00; C07C211/00; C07C213/00; C07C215/00; C07C221/00; C07C225/00; C07C229/00; C07C239/00; C07C255/00; C07D333/00; C07B61/00; (IPC1-7); C07B61/00; C07B31/00; B01J23/74; B01J23/78; C07B43/02; C07B43/04; C07C209/32; C07C209/38; C07C209/40; C07C209/42; C07C209/48; C07C211/13; C07C211/39; C07C211/53; C07C213/02; C07C215/44; C07C221/00; C07C225/22; C07C229/44; C07C229/48; C07C239/08;

C07C255/24; C07D333/76

- european:

Application number: JP19910307156 19911028 Priority number(s): JP19910307156 19911028

Report a data error here

Abstract of JP6065107

PURPOSE:To perform safe hydrogenation at a low cost under low pressure in high reduction rate using a highly reactive hydrogen storage alloy in reducing a nitrogen-atom-contg. compound such as nitro group-contg. compound, nitrile group-contg. compound, nitroso group-contg. compound, aldoxime or ketoxime. CONSTITUTION:A nitrogen-atom-contg. compound is reduced by catalytic hydrogenation with hydrogen released from a hydrogen storage alloy having, as the main phase, compounds with hexagonal CaCu5-type crystal structure containing rare earth element or Ca plus Ni as the essential elements. The compounds are e.g. (A) as the essential constituents, CaNi5, LaNi5, LaNi4.2, Al0.8, etc., containing >=50wt.% of the CaCu5-type crystal phase. With this method, using, as starting material, RNO2, RCN, RCHNOH, RNO, RNHNH2, etc., (R is atomic group), RNH2, RNHOH, RCH2NH2, RCH, etc., can be obtained. This process can be effected in high efficiency under highly safe conditions of a hydrogen gas pressure of <20kg/cm<2> without requiring any catalyst.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-65107

(43)公開日 平成6年(1994)3月8日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	FΙ	技術表示箇所
C 0 7 B 31/00		7419-4H		,
B 0 1 J 23/74	3 2 1			•
23/78				<i>'</i>
C 0 7 B 43/02		7419-4H		
43/04		7419-4H	9 8 5	
			審査請求 未請求	帝 請求項の数7(全 5 頁) 最終頁に続く
(21)出願番号	特願平3-307156		(71)出願人	000006699
				雪印乳業株式会社
(22)出願日	平成3年(1991)10月28日			北海道札幌市東区苗穂町6丁目1番1号
			(72)発明者	川崎 功博
				埼玉県川越市笠幡4881-21
			(72)発明者	守田 稔
				埼玉県川越市新宿町5-11-3むさしの寮
			(72)発明者	小西 寛昭
•	,			埼玉県川越市石原町2-63-4ツインビラ
				C-103
			(72)発明者	川成 真美
			,	埼玉県川越市吉田新町2-12-16
			(74)代理人	弁理士 舟橋 榮子
				最終頁に続く

(54) 【発明の名称】 含窒素化合物の水素化還元方法

(57)【要約】

【構成】本発明は、窒素原子を含む化合物を水素化還元する際に、M(希土類元素もしくはCa元素を表す)およびNiを必須元素とした六方晶のCaCus型の結晶構造を有する化合物を主相とする水素貯蔵合金を用い、該合金から放出される水素で接触水素化して還元することを特徴とする含窒素化合物の水素化還元方法である。

【効果】水素貯蔵合金自体が高い触媒能を有するので、 従来のニッケルなどの触媒を必要とせずに、水素ガス圧 20kg/cm² 未満の安全性の高い条件で、効率良く水素化還 元を行うことが可能であり、該合金を繰り返して反応に 供することが可能である。

【特許請求の範囲】

【請求項1】 窒素原子を含む化合物を水素化還元する際に、M(希土類元素もしくはCa元素を表す)およびNiを必須元素とした六方晶のCaCus型の結晶構造を有する化合物を主相とする水素貯蔵合金を用い、該合金から放出される水素で接触水素化して還元することを特徴とする含窒素化合物の水素化還元方法。

【請求項2】 請求項1に記載の方法を用い、化合物R -NO2(Rは有機原子団を表す)を出発物質として化 合物R-NH2(Rは有機原子団を表す)を得ることを 10 特徴とする含窒素化合物の水素化環元方法。

【請求項3】 請求項1に記載の方法を用い、化合物R-NO2(Rは有機原子団を表す)出発物質として化合物R-NHOH(Rは有機原子団を表す)を得ることを特徴とする含窒素化合物の水素化還元方法。

【請求項4】 請求項1に記載の方法を用い、化合物R-CN(Rは有機原子団を表す)を出発物質として化合物R-CH2NH2(Rは有機原子団を表す)を得ることを特徴とする含窒素化合物の水素化環元方法。

【請求項5】 請求項1に記載の方法を用い、化合物R 20 - CH=NOH (Rは有機原子団を表す)を出発物質として化合物R-CH2NH2 (Rは有機原子団を表す)を 得ることを特徴とする合窒素化合物の水素化還元方法。

【請求項6】 請求項1に記載の方法を用い、化合物R-NO(Rは有機原子団を表す)を出発物質として化合物R-NH2(Rは有機原子団を表す)を得ることを特徴とする含窒素化合物の水素化還元方法。

【請求項7】 請求項1に記載の方法を用い、化合物R -NHNH2(Rは有機原子団を表す)を出発物質として 化合物R-NH2(Rは有機原子団を表す)を得ること 30 を特徴とする含窒素化合物の水素化還元方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、水素貯蔵合金を用いて、含窒素化合物を水素化還元する方法に関する。本発明の方法は、食品、医薬、農薬などの分野において利用される化成品の合成に際して有用である。

[0002]

【従来の技術】ニトロ基(-NO2)、ニトリル基(-CN)、ニトロソ基(-NO)、アルキドキシム(RC 40 H=NOH)、ケトキシム(R'RC=NOH)などの窒素原子を含む化合物を水素添加によって還元する反応として、水素雰囲気下で各種の金属触媒を用いる方法が知られている。この反応の際に用いる触媒としては、パラジウム、白金、ニッケル、コパルト、銅などがある。これらのうち、パラジウム及び白金は触媒としての活性が比較的高く、低温・低圧下でも水素化反応を行うことができるが、ニッケル、コパルト、銅などは触媒としての活性が低く、高温・高圧条件下の反応を必要とする。

いえ、高価であり、工業規模で使用するには必ずしも適 当でなかった。

【0003】近年開発されたその応用が注目されている水素貯蔵合金は、現在、自動車、ヒートポンプ及び室内の冷暖房システムなどの分野で利用されているが、水素貯蔵合金には、例えばLaNis、MgNi、TiFeなど多くの種類があって、合金の水素貯蔵量、排出圧力及び排出温度などの機能は、その構成金属によって大きく異なるため、その利用に当たっては合金の選択が重要となる。

【0004】ところで、水素貯蔵合金による水素化還元 反応の例としては、オレフィンの水素化還元、一酸化炭素の水素化及びアンモニアの合成が「水素貯蔵合金データブック」(与野書房1987年発行)において、さらに、オレイン酸メチルの常圧水素化分解によるC18アルコール生成反応については日本化学会(第54会春季年会1987年開催)において報告されている。また、油脂の水素添加(特開昭63-268799号)、糖アルコールの製造(特願平2-219100号)、ジスルフィド結合の還元(特願平2-277808号)、脱保護法(特願平2-277809号)などについても報告されている。

【0005】しかし、水素貯蔵合金を用いて含窒素化合物を水素化還元した例についての報告は見られない。

[0006]

【発明が解決しようとする課題】本発明は、接触水素化による含窒素化合物の還元を行うに当たり、反応性の高い水素貯蔵合金を利用するため、従来の触媒を全く用いる必要がなく、また、水素貯蔵合金から排出される大量の水素を低圧で利用することができ、高い還元率で、安全かつ安価に接触水素化による含窒素化合物の水素化を行う方法を提供することを課題とする。

[0007]

【課題を解決するための手段】本発明は、ニトロ基、ニトリル基、ニトロソ基、アルドキシム、ケトキシムなどの窒素原子を含む化合物に対し、接触水素化反応によって水素化する際に、M(希土類元素もしくはCa元素を表す)及びNiを必須元素とした六方晶のCaCus型の結晶構造を有する化合物を主相とする水素貯蔵合金を用い、該合金から放出される水素で接触水素化を行い、還元することを特徴とする。

【0008】以下、本発明を詳しく説明する。本発明において用いられる水素貯蔵合金は、M(希土類元素もしくはCa元素を表す)及びNiを必須元素とした六方晶のCa Cus 型の結晶構造を有する化合物を主相とする。具体的には CaNis、LaNis、LaNis、2 Alo、8 等が挙げられる。また、水素貯蔵合金内に含まれるCaCus型の結晶相は、50重量%以上含まれ、残部は主相以外の金属間化合物、不純物、添加元素などが第2相もしくは混合相として存在する。

の活性が低く、高温・高圧条件下の反応を必要とする。 【0009】これらの水素貯蔵合金は、それ自体還元反 パラジウムや白金などの貴金属は再生が可能であるとは 50 応に対する高い触媒能を有しているので、使用する合金 3

の種類と反応液の還元反応温度の設定により、20kg/cm²未満の水素ガス圧力の条件下で、高い還元率でかつ安全に含窒素化合物を水素化還元することが可能である。この水素貯蔵合金を微粉化した後、0℃もしくはそれ以下の温度で水素雰囲気下、一定時間保持することにより水素を合金に吸蔵させる。

【0010】本発明においては、反応溶液とこのあらかじめ水素を吸蔵させた水素貯蔵合金を反応槽に入れ、脱気後、攪拌しながら反応液を一定の温度で保持するか、ジャケット式によって、水素貯蔵合金を一定の温度に保 10 持することができるようにした、棚段式カラムに水素貯蔵合金を封入し、一定の温度に保持された反応液を循環することにより含窒素化合物の水素化還元を行う。

【0011】反応後、水素ガス及び反応液を回収し、水素貯蔵合金を冷却する。この水素貯蔵合金は、水素を再循環することにより、次回の還元反応に繰り返し使用することが可能である。なお、本発明は、水素貯蔵合金の特性上、水素ガス圧力が20kg/cm²未満の条件で十分に含窒素化合物の水素化還元を行うことが可能であり、製造装置の保守安全上、有利である。また、水素貯蔵合金 20は、耐食性、熱伝導性などの向上を意図して表面改質されたメッキ粉末、表面処理粉末、銅やシリコンなどによるカプセル化合金なども本発明に使用可能である。

[0012]

【実施例】以下に実施例を示して本発明を具体的に説明 する。

実施例1

容量1リットルのデッドエンド式反応容器に、予め水素を貯蔵させた100gの水素貯蔵合金CaNisを入れておいた。そして、0℃、真空度750mmEgで3分間脱気し、冷30却した0.5重量%濃度の1-ニトロー2-フェニルシクロペキサンのエタノール溶液300mlを反応容器に注入した。その後、攪拌しながら反応温度を40℃に調整した。この時の反応容器内の水素ガス圧は、3.8kg/cm²であった。4時間後、高速液体クロマトグラフィーによって反応液中の主要な画分を分取し、分析したところ、80%の収率で1-アミノー2-フェニルシクロペキサンが生成していることを確認した。生成物の確認はNMRで行った。

【0013】 実施例2

容量1リットルのデッドエンド式反応容器に予め水素を 貯蔵させた50gの水素貯蔵合金LaNisを入れておいた。 そして0℃、真空度750mm限で5分間脱気し、冷却した 1.0重量%濃度の2-二トロアセトフェノンの酢酸エチル溶液200mlを反応容器内に注入した。その後、攪拌しながら反応温度40℃に調整した。この時の反応容器内の水素ガス圧は2.3kg/cm²であった。4時間後、高速液体クロマトグラフィーによって反応液中の主要な画分を分取し、分析したところ、95%の収率で2-アミノアセトフェノンが生成していることを確認した。生成物の確認50 はNMRで行った。

【0014】 実施例3

容量1リットルのデッドエンド式反応容器に、予め水素を貯蔵させた100gの水素貯蔵合金CaNisを入れておいた。そして、0℃、真空度750mmHgで4分間脱気し、冷却した0.5 重量%濃度の4ーニトロフェノールの水溶液200mlを反応容器内に注入した。その後、攪拌しながら反応温度を80℃に調整した。この時の反応容器内の水素ガス圧は14.0kg/cmであった。4時間後、高速液体クロマトグラフィーによって反応液中の主要な画分を分取し分析したところ、81%の収率で4ーアミノシクロヘキサノールが生成していることを確認した。生成物の確認はNMRで行った。

【0015】 実施例4

容量1リットルのデッドエンド式反応容器に、予め水素を貯蔵させた100gの水素貯蔵合金LaNi4.2Alo.8を入れておいた。そして25℃、真空度750mmHgで2分間脱気し、冷却した2.0重量%濃度の2-二トロケイ皮酸のエタノール溶液100mlを反応容器に注入した。その後、攪拌しながら反応温度を40℃に調整した。この時の反応容器内の水素ガス圧は4.2kg/cm²であった。6時間後、高速液体クロマトグラフィーによって反応液中の主要な画分を分取し分析したところ、65%の収率で2-アミノケイ皮酸が生成していることを確認した。生成物の確認はNMRで行った。

【0016】 実施例5

容量1リットルのデッドエンド式反応容器に、予め水素を貯蔵させた100gの水素貯蔵合金CaNisを入れておいた。そして、0℃、真空度750mmHgで5分間脱気し、冷却した0.5 重量%濃度の4−二トロジベンゾチオフェンのエタノール溶液200mlを反応容器内に注入した。その後、攪拌しながら反応温度を40℃に調整した。この時の反応容器内の水素ガス圧は4.2kg/cm²であった。5時間後、高速液体クロマトグラフィーで反応液中の主要な画分を分取し分析したところ、68%の収率で4−アミノジベンゾチオフェンが生成していることを確認した。生成物の確認はNMRで行った。

【0017】実施例6

容量1リットルのデッドエンド式反応容器に、予め、水 素を貯蔵させた100gの水素貯蔵合金LaNisを入れておい た。そして0℃、真空度750mmIgで2分間脱気し、冷却 した1.0 重量%濃度の2-クロロニトロペンゼンのメタ ノール溶液200mlを反応容器内に注入した。その後、攪 搾しながら反応温度60℃に調整した。この時の容器内の 水素ガス圧は9.8kg/cm²であった。4時間後、高速液体 クロマトグラフィーによって反応液中の主要な画分を分 取し分析したところ、92%の収率で2-アミノクロルペ ンゼンが生成していることを確認した。生成物の確認は NMRで行った。

50 【0018】 実施例 7

容量1リットルのデッドエンド式反応容器に、予め、水素を貯蔵させた100gの水素貯蔵合金CaNiiを入れておいた。そして、0℃、真空度750mmHgで2分間脱気し、冷却した1.0 重量%濃度の4-二トロベンズアルデヒドのエタノール溶液200mlを反応容器内に注入した。その後、攪拌しながら反応温度を40℃に調整した。この時の反応容器内の水素ガス圧は3.9kg/cm²であった。3時間後、高速液体クロマトグラフィーで反応液中の主要な画分を分取し分析したところ、87%の収率で4-ヒドロキシアミノベンズアルデヒドが生成していることを確認し10た。生成物の確認はNMRで行った。

【0019】実施例8

容量1リットルのデッドエンド式反応容器に、予め水素を貯蔵させた100gの水素貯蔵合金CaNisを入れておいた。そして、0℃、真空度750mmHgで2分間脱気し、冷却した0.5 重量%濃度の4-二トロメチル-3-シクロヘキセン-1-カルボン酸の水溶液200mlを反応容器内に注入した。その後、攪拌しながら反応温度50℃に調整した。この時の反応容器内の水素ガス圧は5.3kg/cm²であった。5時間後、高速液体クロマトグラフィーで反応20液中の主要な画分を分取し分析したところ、80%の収率で4-アミノメチルシクロヘキサンカルボン酸が生成していることを確認した。生成物の確認はNMRで行った。

【0020】実施例9

容量1リットルのデッドエンド式反応容器に、予め水素を貯蔵させた40gの水素貯蔵合金CaNisを入れておいた。そして、0℃、真空度750mmEgで2分間脱気し、冷却した0.5重量%濃度の2ーメチルー3ーニトロプチロニトリルのメタノール溶液200mlを反応容器内に注入し30た。その後、攪拌しながら反応温度25℃に調整した。この時の容器内の水素ガス圧は、1.8kg/cm²であった。3時間後、高速液体クロマトグラフィーで反応液中の主要な画分を分取し分析したところ、68%の収率で3ーアミノー2ーメチルプチロニトリルが生成していることを確認した。生成物の確認はNMRで行った。

【0021】実施例10

容量1リットルのデッドエンド式反応容器に、予め水素を貯蔵させた50gの水素貯蔵合金LaNisを入れておいた。そして、0℃、真空度750mmIgで2分間脱気し、冷40却した0.5重量%濃度の2,5ージアミノー4ーニトロソイミダゾールの水溶液200mlを反応容器内に注入した。その後、攪拌しながら反応温度を40℃に調整した。この時の容器内の水素ガス圧は2.2kg/cm²であった。2時間後、高速液体クロマトグラフィーで反応液中の主要な画分を分取し分析したところ、89%の収率で2,4,5ートリアミノイミダゾールが生成していることを確認した。生成物の確認はNMRで行った。

【0022】実施例11

容量1リットルのデッドエンド式反応容器に、予め水素 50 カラムを使用する場合には、反応溶液と水素貯蔵合金の

を貯蔵させた150gの水素貯蔵合金CaNisを入れておいた。そして、0℃、真空度750mmHgで2分間脱気し、冷却した0.5重量%濃度の1,3,5ートリシアノベンタンの水溶液100mlを反応容器内に注入した。その後、攪拌しながら反応温度75℃に調整した。この時の容器内の水素ガス圧は18.9kg/cm²であった。3時間後、高速液体クロマトグラフィーで反応液中の主要な画分を分取し分析したところ、79%の収率で4ーアミノメチルー1,7ージアミノヘプタンが生成していることを確認した。生成物の確認はNMRで行った。

【0023】実施例12

容量1リットルのデッドエンド式反応容器に、予め水素を貯蔵させた80gの水素貯蔵合金LaNi4.2Alo.8を入れておいた。そして、0℃、真空度750mmHgで2分間脱気し、冷却した1.0重量%濃度の4-(1-シアノ-1-フェニル)-メチレニルー1-ヒドロキシイミノー2,5-シクロヘキサジエンのメタノール溶液100mlを反応容器内に注入した。その後、攪拌しながら反応温度を40℃に調整した。この時の反応容器内の水素ガス圧は3.0kg/cm²であった。4時間後、高速液体クロマトグラフィーで反応液中の主要な画分を分取し分析でたところ、79%の収率で4-アミノジフェニルアセトニトリルが生成していることを確認した。生成物の確認はNMRで行った。

【0024】実施例13

容量1リットルのデッドエンド式反応容器に、予め水素を貯蔵させた80gの水素貯蔵合金CaNisを入れておいた。そして、0℃、真空度750mmIgで5分間脱気し、冷却した1.0重量%濃度の5ーアミノー4ークロロー3ーヒドラジノビリダジンのエタノール溶液150m1を反応容器内に注入した。その後、攪拌しながら反応温度を40℃に調整した。この時の反応容器内の水素ガス圧は3.1kg/cm²であった。6時間後、反応液から触媒を除去した後、減圧濃縮し、残渣を高速液体クロマトグラフィーにかけ、主要な画分を分取し、69%の収率で3,5ージアミノー4ークロロビリダジンが生成していることを確認した。生成物の確認はNMRで行った。

[0025]

【発明の効果】以上述べたように、本発明により水素貯蔵合金を用いて含窒素化合物の水素化還元を行うと、水素貯蔵合金自体が高い触媒能を有するので、従来のニッケルなどの触媒を必要とせずに、水素ガス圧20kg/cm²未満の安全性の高い条件で、効率良く含窒素化合物の水素化還元を行うことが可能であり、繰り返して反応に供することが可能である。

【0026】また、水素貯蔵合金は工業用の水素貯蔵装置に比べて大量の水素ガスを貯蔵でき、しかも上述のように低圧で作業でき、従来の触媒であるPd、Ptよりもはるかに安価である。さらに先に述べたような上昇流棚段カラムを使用する場合には、反応溶液と水素貯蓄合金の

7

分離に対する負荷を大幅に軽減できるという操作上の利 点もある。また、反応物によっては反応の際に水素圧、 温度などをコントロールすることで、アルデヒド基、炭 素 - 炭素多重結合など他の水素化を受ける部位との選択的な還元も可能である。

フロントページの	続き
----------	----

(51) Int. Cl. ⁸	5	識別記号	庁内整理番号	FΙ		技術表示箇所
C 0 7 C	209/32		9280-4H			
	209/38		9280-4H			
·	209/40		9280-4H			
	209/42		9280-4H			
	209/48		9280-4H			
	211/13	•	9280-4H			
	211/39		9280-4H			
	211/53		9280-4H			
	213/02		7457-4H			
	215/44		7457-4H	,		
	221/00		7457-4H			
	225/22		7457-4H			
	229/44		8930-4H		Ŧ	
	229/48		8930-4H			
	239/08		7106-4H			
	255/24		9357-4H			
C 0 7 D	333/76					
// C07B	61/00	300				

(72)発明者 堂迫 俊一

埼玉県浦和市北浦和5-15-39-616

(72)発明者 出家 栄記

埼玉県狭山市入間川1-6-6-802