NOME DO PROJETO Pirelli

Controle do IoTDoc - Documentação Geral do Projeto

Histórico de revisões

Data	Autor	Versão	Resumo da atividade
18/04/2023	Arthur Tsukamoto	1.0	1.0 - Introdução 1.1 - Objetivos
19/04/2023	Samuel Lucas	1.1	3.1.1 - Adicionando uma parte do contexto da indústria. 3.1.4 -Adicionando o Value Proposition Canvas.
20/04/2023	Samuel Lucas Yago Lopes	1.2	3.1.2 - Adicionando a análise SWOT 3.1.3 - Adicionando a descrição da solução a ser desenvolvida 3.1.1 - Finalizando o contexto da indústria
20/04/2023	Felipe Moura	1.3	3.2.3 -Adicionando user stories
26/04/2023	Felipe Moura	1.4	3.2.2 - Adicionando jornada do usuário da persona Luiz
27/04/2023	Felipe Moura	1.5	3.2.2 - Atualizando jornada do usuário da persona Luiz e preenchendo requisitos funcionais
27/04/2023	Yago Phellipe	1.6	3.3.2 preenchendo requisitos funcionais
28/04/2023	Yago Phellipe	1.7	3.1.5 - Adicionando Matriz de Risco 3.1.6 - Adicionando LGPD
28/04/2023	Arthur Tsukamoto Oliveira Guilherme Moura	1.8	3.4.1 Protótipo Inicial do Projeto usando o Simulador Wokwi
28/04/2023	Samuel Lucas	1.9	3.1.7 Bill of Material
29/04/2023	Guilherme Moura	2.0	3.2.1 Personas 3.2.2 Jornada do Usuário

Sumário

1 Introducão (aprint 1)
<mark>1. Introdução (sprint 1) 4</mark>
1.1. Objetivos (sprint 1) 4
1.2. Proposta de Solução (sprint 1) 4
1.3. Justificativa (sprint 1) 4
2. Metodologia (sprint 3) 5
3. Desenvolvimento e Resultados 6
3.1. Domínio de Fundamentos de Negócio (sprint 1) 6
3.1.1. Contexto da Indústria (sprint 1) 6
3.1.2. Análise SWOT (sprint 1) 6
3.1.3. Descrição da Solução a ser Desenvolvida (sprint 1) 6
3.1) qual é o problema a ser resolvido 6
3.2) qual a solução proposta (visão de negócios) 6
3.3) como a solução proposta deverá ser utilizada 6
3.4) quais os benefícios trazidos pela solução proposta 6
3.4) quais os benefícios trazidos pela solução proposta 63.5) qual será o critério de sucesso e qual medida será utilizada para o avaliar 6
3.5) qual será o critério de sucesso e qual medida será utilizada para o avaliar
3.5) qual será o critério de sucesso e qual medida será utilizada para o avaliar 3.1.4. Value Proposition Canvas (sprint 1) 6
 3.5) qual será o critério de sucesso e qual medida será utilizada para o avaliar 3.1.4. Value Proposition Canvas (sprint 1) 6 3.1.5. Matriz de Riscos (sprint 1) 7
 3.5) qual será o critério de sucesso e qual medida será utilizada para o avaliar 3.1.4. Value Proposition Canvas (sprint 1) 6 3.1.5. Matriz de Riscos (sprint 1) 7 3.1.6. Política de Privacidade de acordo com a LGPD (sprint 1) 7
 3.5) qual será o critério de sucesso e qual medida será utilizada para o avaliar 3.1.4. Value Proposition Canvas (sprint 1) 6 3.1.5. Matriz de Riscos (sprint 1) 7 3.1.6. Política de Privacidade de acordo com a LGPD (sprint 1) 7 3.1.7. Bill of Material (BOM) (sprint 1) 7
3.5) qual será o critério de sucesso e qual medida será utilizada para o avaliar 3.1.4. Value Proposition Canvas (sprint 1) 6 3.1.5. Matriz de Riscos (sprint 1) 7 3.1.6. Política de Privacidade de acordo com a LGPD (sprint 1) 7 3.1.7. Bill of Material (BOM) (sprint 1) 7 3.2. Domínio de Fundamentos de Experiência de Usuário (sprint 1) 9
3.5) qual será o critério de sucesso e qual medida será utilizada para o avaliar 3.1.4. Value Proposition Canvas (sprint 1) 6 3.1.5. Matriz de Riscos (sprint 1) 7 3.1.6. Política de Privacidade de acordo com a LGPD (sprint 1) 7 3.1.7. Bill of Material (BOM) (sprint 1) 7 3.2. Domínio de Fundamentos de Experiência de Usuário (sprint 1) 9 3.2.1. Personas (sprint 1) 9
3.5) qual será o critério de sucesso e qual medida será utilizada para o avaliar 3.1.4. Value Proposition Canvas (sprint 1) 6 3.1.5. Matriz de Riscos (sprint 1) 7 3.1.6. Política de Privacidade de acordo com a LGPD (sprint 1) 7 3.1.7. Bill of Material (BOM) (sprint 1) 7 3.2. Domínio de Fundamentos de Experiência de Usuário (sprint 1) 9 3.2.1. Personas (sprint 1) 9 3.2.2. Jornadas do Usuário ou Storyboard (sprint 1) 9
3.5) qual será o critério de sucesso e qual medida será utilizada para o avaliar 3.1.4. Value Proposition Canvas (sprint 1) 6 3.1.5. Matriz de Riscos (sprint 1) 7 3.1.6. Política de Privacidade de acordo com a LGPD (sprint 1) 7 3.1.7. Bill of Material (BOM) (sprint 1) 7 3.2. Domínio de Fundamentos de Experiência de Usuário (sprint 1) 9 3.2.1. Personas (sprint 1) 9 3.2.2. Jornadas do Usuário ou Storyboard (sprint 1) 9 3.2.3. User Stories (sprint 1) 9
3.5) qual será o critério de sucesso e qual medida será utilizada para o avaliar 3.1.4. Value Proposition Canvas (sprint 1) 6 3.1.5. Matriz de Riscos (sprint 1) 7 3.1.6. Política de Privacidade de acordo com a LGPD (sprint 1) 7 3.1.7. Bill of Material (BOM) (sprint 1) 7 3.2. Domínio de Fundamentos de Experiência de Usuário (sprint 1) 9 3.2.1. Personas (sprint 1) 9 3.2.2. Jornadas do Usuário ou Storyboard (sprint 1) 9 3.2.3. User Stories (sprint 1) 9 3.2.4. Protótipo de interface com o usuário (sprint 2) 10

	3.3.4. Ar	<mark>quitetura da</mark>	a Solução (s	print 3)	10		
	<mark>3.3.5. Ar</mark>	<mark>quitetura do</mark>	o Protótipo (sprint 4)	11		
	<mark>3.3.6. Ar</mark>	<mark>quitetura Re</mark>	efinada da S	Solução (sp	rint 5) 1	<mark>12</mark>	
3.4. Resultado	s 12						
3.4.1.Protót	<mark>ipo Inicial (</mark>	<mark>do Projeto u</mark>	<mark>sando o Sin</mark>	nulador Wo	<mark>kwi (spri</mark> ı	nt 1)	12
3.4.2. Protó	tipo Físico	do Projeto	(offline) (sp	rint 2)	<mark>14</mark>		
3.4.3. Protó	<mark>tipo do Pr</mark>	<mark>ojeto com M</mark>	IQTT e I2C (sprint 3)	<mark>14</mark>		
3.4.4. Protó	tipo Físico	do Projeto	(online) (sp	rint 4)	<mark>15</mark>		
3.4.5. Protó	tipo Final	do Projeto (sprint 5) 15				
4. Conclusões e R	<mark>ecomenda</mark>	<mark>ções (sprin</mark>	ts4e5) 16				
5. Referências	17						
Anexas 18							

1. Introdução

A Pirelli, fundada em 1872 por Giovanni Battista Pirelli em Milão, iniciou suas atividades produzindo itens de borracha e, em 1885, passou a fabricar elásticos para carruagens. Em 1894, a empresa produziu seu primeiro pneu para velocípedes e, em 1905, produziu seu primeiro pneu para carros.

Em 1929, a Pirelli iniciou suas operações na América Latina, construindo e inaugurando sua primeira fábrica de pneus no Brasil. Onze anos depois, a empresa expandiu seus negócios na região com a construção de mais duas fábricas, em Santo André e na cidade de Merlo, na Argentina. Em 1949, a Pirelli fez um grande avanço tecnológico ao fabricar os pneus radiais Cinturato, que proporcionaram maior segurança aos consumidores.

Atualmente, a Pirelli é a sétima maior fabricante de pneus do mundo, com um total de 18 fábricas e 4.6 bilhões de Euros em capitalização de mercado. A empresa tem foco no setor automobilístico *premium* e super *premium*, produzindo pneus para carros esportivos e superesportivos, como Ferrari, McLaren, Bentley, Pagani e outros. Além disso, a Pirelli é conhecida por seu icônico calendário anual, produzido há mais de 40 anos. Ademais, a empresa, também, atua no setor educacional por meio da disponibilização de cursos para professores e alunos.

Em suma, a Pirelli é uma das maiores fabricantes de pneus do mundo, composta por grandes fábricas ao redor do mundo. Para acompanhar o andamento das fábricas e dos processos de fabricação dos pneus, é necessário o uso de tablets e notebooks. No entanto, devido ao tamanho da fábrica, acaba-se perdendo esse aparelhos. Dessa forma, o projeto visa solucionar o problema do desaparecimento e perda de notebooks e tablets no território fabril.

1.1. Objetivos

O projeto tem dois objetivos: o principal é desenvolver um dispositivo móvel de rastreamento que possa ser acoplado em notebooks e tablets, a fim de facilitar sua localização na fábrica e evitar perdas e extravios. Além disso, é necessário criar uma interface web com dashboards para melhor visualização da localização desses dispositivos dentro do ambiente fabril.

O objetivo secundário consiste em construir um dispositivo fixo que permita a recarga do artefato móvel e dos tablets e notebooks simultaneamente. Ao ser conectado a este dispositivo, os dispositivos móveis da Pirelli irão gerar dados que alimentarão o *dashboard*.

1.2. Proposta de Solução

Nossa solução é composta por dois objetos principais: dispositivos de rastreamento que serão acoplados nos tablets e uma base para carregamento. Estes dispositivos trabalham em

conjunto para fornecer um sistema de rastreamento eficiente e fácil de usar. Para o rastreamento, os endereços MAC e IP da fábrica são mapeados. A base de carregamento, que serve tanto para o aparelho quanto para o dispositivo de rastreamento, também envia notificações de quando o aparelho está sendo carregado, o que ajuda a manter o sistema sempre funcionando.

Todos os dados emitidos pelos dispositivos de rastreamento são compilados numa interface web com um dashboard, que pode ser acessado a partir de qualquer dispositivo com acesso à internet. Esse dashboard fornece informações detalhadas sobre a localização dos dispositivos de rastreamento, permitindo que os usuários monitorem a localização de seus equipamentos de forma fácil e rápida.

Além disso, o sistema pode ser configurado para enviar alertas quando um dispositivo de rastreamento estiver fora da área de cobertura ou em uma área restrita, o que ajuda a prevenir perdas e roubos. Em resumo, nossa solução é um sistema de rastreamento eficiente, fácil de usar e altamente personalizável para atender às necessidades específicas de cada cliente.

1.3. Justificativa

Nossa proposta de solução oferece uma ferramenta valiosa para a Pirelli, permitindo que seus colaboradores localizem facilmente qualquer aparelho dentro da fábrica. Com a crescente demanda por mobilidade dentro das empresas, é comum que os funcionários da Pirelli usem frequentemente dispositivos móveis, que são fáceis de transportar, em diferentes locais da fábrica, como os tablets. No entanto, muitas vezes esses dispositivos são perdidos ou esquecidos em algum lugar, o que pode resultar em perda de tempo e produtividade para os colaboradores.

Nossa primeira solução (rastreador) se diferencia por sua simplicidade e facilidade de uso, permitindo que os colaboradores da Pirelli localizem facilmente seus dispositivos móveis sem a necessidade de conhecimento técnico avançado. Além disso, o sistema é altamente escalável, podendo ser expandido conforme as necessidades da Pirelli cresçam.

Além disso, a outra solução, que será a base de carregamento, também corrobora para a diminuição dos extravios e perdas dos dispositivos móveis, visto que o carregamento acontecerá em um local fechado e precisará de chave de identificação para retirada da base. Com nossas soluções, a Pirelli poderá proteger seus equipamentos e manter um controle preciso de sua localização e quem está responsável pelo aparelho, resultando em maior produtividade, eficiência, controle e segurança no ambiente de trabalho.

2. Metodologia (sprint 3)

Descreva as etapas da metodologia RM-ODP que foram utilizadas para o desenvolvimento, citando o referencial teórico. Você deve apenas enunciar os métodos, sem dizer ainda como ele foi aplicado e quais resultados obtidos.

3. Desenvolvimento e Resultados

3.1. Domínio de Fundamentos de Negócio

3.1.1. Contexto da Indústria

De acordo com o site CarLogos, as maiores fabricantes de pneus e principais concorrentes da Pirelli são: Michelin, Bridgestone e Continental. Na primeira posição se encontra a Michelin, empresa fundada em 1888 pelos irmãos André e Édouard Michelin na cidade Clermont-Ferrand, França. A empresa iniciou atuando no setor da fabricação de pneus para bicicletas e elásticos para carruagens. Apenas em 1895, a Michelin passou a fabricar pneus para veículos motorizados e desde então, a empresa possui 69 unidades industriais e 130 mil funcionários ao redor do mundo. Em segundo lugar, encontra-se a Bridgestone, que possui origem Americana e Japonesa, a empresa é a fusão de duas outras empresas, a *Firestone Tire & Rubber Company* fundada em 1900 por *Harvey Firestone* em *Akron*, Estados Unidos e a *Bridgestone Tire Company Ltd.* fundada em 1931 pelo japonês Shojiro Ishibashi. A fusão ocorreu em 1988 e atualmente a empresa possui 178 fábricas, sendo 47 voltadas para a produção de pneus, além de empregar 139 mil pessoas ao redor do mundo. Por fim, a terceira maior empresa de pneus é a Continental, fundada em 1871 em Hanôver na Alemanha, que possui 13 fábricas de pneus e emprega 190 mil pessoas em 61 países diferentes.

A Pirelli é uma fábrica no setor da indústria de pneus, sendo a maior fábrica da Pirelli localizada em Campinas - São Paulo - Brasil. Como uma empresa privada, a Pirelli tem seu modelo de negócio focado na fabricação e na venda de pneus para carros de luxo como BMW, Mercedes, Porsche e Ferrari. Além disso, a Pirelli busca expandir seus negócios para outros segmentos do mercado de pneus, como pneus para bicicletas e motocicletas, fornecendo a esses segmentos produtos de alta qualidade e tecnologias avançadas. A empresa também está investindo em novos modelos de negócios, como a oferta de um serviço de pneus sob demanda, onde os clientes podem agendar a troca de pneus em casa ou no trabalho, tornando o processo mais conveniente e acessível. A Pirelli também se destaca no mercado de pneus sustentáveis, desenvolvendo produtos que reduzem as emissões de CO₂ e ajudam a proteger o meio ambiente. Por meio dessas iniciativas, a Pirelli demonstra seu compromisso em atender às necessidades de seus clientes e permanecer competitiva em um mercado em constante mudança. Para uma melhor compreensão do cenário industrial que a Pirelli se encontra, foi realizado um estudo através das cinco forças de Porter, exibido no item 3.1.1.1...

Com a evolução da tecnologia, a maior parte das indústrias estão sofrendo alterações no seu modelo de negócios a fim de se adaptar às tendências do mercado. Para a Pirelli não deve ser diferente, em que foi possível identificar diversas tendências como por exemplo: o aumento na demanda por pneus ecológicos, sendo mais eficientes em termos de energias e com maior durabilidade, visando aumentar a sustentabilidade; aumento exponencial da fabricação de carros elétricos levando a criação de pneus específicos para eles, devido ao peso e toque do motor elétrico; aumento de veículos autônomos, exigindo pneus com maior capacidade de comunicação e sensoriamento, visando auxílio na navegação do veículo. Além de tudo isso, uma integração maior à indústria 4.0 e 5.0, onde a indústria 4.0 diz respeito à quarta revolução industrial, caracterizada pela adoção de tecnologias como Internet das Coisas, Inteligência artificial, big data, entre outros, para aumentar a eficiência do processo das indústrias, enquanto a indústria 5.0 se refere à próxima fase da evolução da indústria, propondo uma maior colaboração entre humanos e máquinas, de maneira mais simbiótica, além da produção sob demanda.

Nesse contexto, relacionando as tendências com o projeto, os artefatos que serão entregues irão ajudar a Pirelli a se adaptar à indústria 4.0, por meio dos dispositivos loT para rastrear e localizar equipamentos dentro de suas fábricas. A evolução tecnológica na digitalização e a automação das operações de fabricação exigem medidas eficientes e produtivas. Para isso, as empresas usam esses dispositivos para monitorar a localização e condição dos equipamentos, gerando dados em tempo real que otimizam o trabalho dos funcionários, além de reduzir o tempo de inatividade e aumentar a utilização dos equipamentos. Com a adoção desses dispositivos, decisões informadas sobre reparo e substituição são mais fáceis e possíveis ao rastrear o tempo de uso e o desempenho do equipamento por meio da tecnologia loT. Dessa forma, entende-se que, além de reduzir o tempo de inatividade, melhorar a eficiência e gerar dados, essa tecnologia pode desempenhar um papel fundamental na otimização dos processos industriais ao permitir que as empresas monitorem a localização, condição e desempenho dos equipamentos em tempo real.

3.1.1.1. Cinco Forças de Porter

Para uma melhor compreensão do modelo de negócios da Pirelli, foi realizado um estudo através das cinco forças de Porter:

	5 FORÇAS DE PORTER						
Rivalidade entre os concorrentes	Por ser uma instituição privada e fazer parte da Indústria de pneus, a Pirelli possui muitos concorrentes, porém, é válido lembrar que a Pirelli é focada em vendas de pneus para carros de corrida e carros de luxo, então, não são todas empresas do setor da indústria de pneus que são concorrentes diretos da Pirelli. Algumas das empresas concorrentes nestes setores são: Michelin, Bridgestone, Goodyear e Continental.						
Poder de barganha dos fornecedores	Pode-se considerar que a barganha dos fornecedores é moderada, especialmente se houver falta de matérias-primas ou se os preços delas aumentarem, pois a Pirelli é uma empresa que depende muito de fornecedores dessas matérias-primas para produzir seus produtos.						
Poder de barganha dos compradores	O poder de barganha dos compradores é relativamente alto, visto que existem muitos concorrentes no mercado de pneus e os compradores têm a possibilidade de comparar facilmente os preços e a qualidade dos produtos. Porém, a Pirelli, por ser uma marca reconhecida mundialmente por sua qualidade, pode se sobressair devido ao seu reconhecimento de possuir ótimos produtos.						
Ameaças de produtos ou serviços substitutos	Os pneus são produtos essenciais para os veículos e não há muitos outros que possam substituí-lo. Pode-se dizer que alguns serviços substitutos são os sistemas de transporte público, bicicleta e outros meios de transporte. No entanto, como grande parte da população depende do uso de carros e outros veículos com pneus para se locomover, isso torna a ameaça de produtos baixa.						
Ameaças de novos entrantes	A preocupação enquanto a novos entrantes é muito baixa, já que a indústria de pneus está bem consolidada na área de automóveis de luxos e corridas com uma base sólida de clientes. Além disso, a indústria de pneus é muito complexa e exige investimentos altos em tecnologia e maquinário, dificultando a entrada de novos concorrentes.						

3.1.2. Análise SWOT

A análise SWOT é um método de planejamento estratégico que ajuda uma empresa ou organização a identificar seus pontos fortes, pontos fracos, oportunidades e ameaças.

Imagem 1: Matriz SWOT.

Matriz Swot: Pirelli

Forças

- Marca consolidada e reconhecida globalmente;
- Tecnologia de ponta na fabricação de seus produtos;
- Excelente reputação no mercado;
- Diversidade de produtos.

Fraquezas

- Dependência do mercado automotivo;
- Concentração em poucos segmentos de mercado;
- Vulnerabilidade a variações de preços de matérias-primas.

Oportunidades

- Crescimento do mercado de veículos elétricos e híbridos;
- Aumento da demanda por pneus para veículos de carga e transporte;
- Aproveitamento da tendência de digitalização para oferecer novos serviços e soluções.

Ameaças

- Alta concorrência;
- Instabilidade política e econômica;
- Aumento do preço das matérias-primas;
- Mudança nas regulamentações do meio ambiente.

Fonte: Desenvolvido pelo grupo através do Miro, utilizando o template disponibilizado pela orientadora.

Para melhor visualização da imagem, é possível acessar diretamente o Miro através do link: clique aqui.

3.1.3. Descrição da Solução a ser Desenvolvida

3.1) Qual é o problema a ser resolvido

O problema que a Pirelli está enfrentando é a perda e extravios de notebooks e tablets, podendo, com isso, ocasionar na perda ou vazamento de dados confidenciais, ocasionando em prejuízos financeiros e reputacionais. A empresa precisa encontrar uma solução para manter esses dispositivos protegidos contra extravios, o que pode envolver medidas de segurança física, como armários com trava para armazenamento seguro dos dispositivos e medidas de segurança digital, como criptografia de dados armazenados em dispositivos. A Pirelli também pode precisar revisar seus procedimentos de manuseio desses dispositivos para minimizar o risco extravios.

3.2) Qual a solução proposta (visão de negócios)

A solução proposta é a criação de três artefatos: O primeiro artefato é um dispositivo loT conectado por Wi-Fi que possa ser acoplado aos dispositivos móveis como laptops e tablets para obter informações sobre eles e suas respectivas localizações. O segundo artefato é uma aplicação web que será um dashboard que permite os funcionários a monitorar e rastrear a localização dos dispositivos, além de obter dados sobre a situação do dispositivo, o funcionário que fez a reserva, a porcentagem da bateria, os logs, entre outras informações. Por fim, o último artefato é uma base de carregamento, que serve tanto para o carregamento dos dispositivos móveis quanto dos rastreadores, ajudando na concentração dos dispositivos e controle de acesso.

3.3) Como a solução proposta deverá ser utilizada

A solução do artefato de rastreamento será utilizada como um sistema interno de controle de TI da Pirelli, onde a área de TI irá rastrear e monitorar a localização dos dispositivos móveis utilizados pelos colaboradores dentro da fábrica, a fim de melhorar a eficiência operacional e a segurança. Dessa forma, evita-se que o dispositivo possa sair da área da fábrica estipulada para o manuseio do equipamento. Já o artefato da base de carregamento, será posto em locais fixos, de acordo com divisão de áreas da Pirelli, sistemas de carregamento dos dispositivos, com controle de acesso, sendo possível identificar quais tablets estão carregando, quem foi o último responsável e quem retirou os últimos dispositivos que estavam na base.

3.4) Quais os benefícios trazidos pela solução proposta

A proposta de implantação de um sistema de rastreamento de equipamentos dentro da fábrica pode trazer uma ajuda para a empresa. Dentre esses benefícios, podemos destacar a maior eficiência operacional, pois rastrear a localização de dispositivos móveis permitirá que a Pirelli identifique gargalos de produção e otimize fluxos de trabalho. Outro ponto que vale a pena ressaltar é a segurança aprimorada, já que a localização do dispositivo móvel permitirá que a Pirelli identifique rapidamente se um dispositivo foi extraviado, garantindo a segurança dos dados e do dispositivo e reduzindo o trabalho dos funcionários ao ter que procurar pelos itens perdidos. Por último, outro fator que pode beneficiar é a melhor tomada de decisão, pois os painéis com dados exportados permitirão à Pirelli monitorar e analisar as informações coletadas, ajudando a tomar decisões mais informadas sobre o gerenciamento de equipamentos móveis.

3.5) Qual será o critério de sucesso e qual medida será utilizada para o avaliar

Um dos critérios de sucesso será a diminuição de casos de perdas e extravios de dispositivos móveis da Pirelli, medido através da comparação entre a média de perdas mensais atuais após a implementação com antes da implementação. Além disso, caso ocorra essas perdas, outro critério será a taxa de recuperação e o tempo gasto para recuperar esses dispositivos móveis, sendo possível medir pela comparação com os dados anteriores.

Client Profile

3.1.4. Value Proposition Canvas

O Value Proposition Canvas é uma ferramenta que auxilia as empresas a compreender melhor seus clientes e desenvolver produtos e serviços que atendam às suas necessidades e desejos.

Value Proposition Redução de custos em relação à eficiência na Maior gestão e localização dos Artefato IoT para o rastreamento dos equipamentos dentro da fábrica reposição dos equipamentos eficiência na fábrica Melhora na para a reposição dos eficiência dos processos internos da equipamentos Equipamento para realizar a recarga dos equipamentos e dos dispositivos de rastreamento fábrica Notificar os Localizações e informações extravios dos equipamentos dos dispositivos situação atual da empresa em tempo real para à busca e substituição de equipamentos perdidos miro

Imagem 2: Canvas Value Proposition.

Fonte: Desenvolvido pelo grupo através do Miro, utilizando o template disponibilizado pela orientadora.

3.1.5. Matriz de Riscos

A Matriz de Risco é uma ferramenta de gerenciamento utilizada para identificar e determinar o tamanho de um risco por meio de porcentagem, seja para ameaças ou para oportunidades, possibilitando as ações de impedimento e controle do projeto que está sendo feito.

Nesse contexto, a ferramenta foi elaborada por meio de uma tabela inserida no próprio documento, onde algumas células contém letras, sendo possível identificar os valores delas nas legendas no fim do tópico.

Matriz de Riscos - Ameaças

Probabilidade			Ameaças		
90%					
70%					
50%			G		С
30%		A			B, D
10%				F	E
	Muito Baixo	Baixo	Moderado	Alto	Muito Alto

Matriz de Riscos - Oportunidades

	Oportunidades				
Н, К					90%

	L	М			70%
J		I			50%
					30%
					10%
Muito Alto	Alto	Moderado	Baixo	Muito Baixo	

Imagem 3: Matriz de risco.

Legenda:

Índice	Nome	Probabilidade	Impacto
	Ameaças		
Α	Base de recarregamento não funcionar adequadamente	30%	Baixo
В	Poucos roteadores e repetidores Wi-Fi	30%	Muito Alto
С	Internet instável na fábrica	50%	Muito Alto
D	Não adaptabilidade com a plataforma	30%	Muito alto
E	Mau entendimento do problema a ser resolvido	10%	Muito Alto
F	Mau funcionamento dos componentes que vão ser utilizados para produção do MVP	10%	Alto
G	Custos elevados	50%	Modera do
	Oportunidades		
н	Redução na perda e extravio de tablets/notebooks na fábrica da Pirelli	90%	Muito Alto
ı	Maior controle dos colaboradores por meio dos dashboards	50%	Modera do
J	Aumentar a eficiência operacional	50%	Muito Alto
K	Melhorar o gerenciamento de estoque dos dispositivos	90%	Muito

		Probabilidade	Impacto
	Ameaças		
A	Base de recarregamento não funcionar adequadamente	30%	Baixo
В	Poucos roteadores e repetidores Wi-Fi	30%	Muito Alto
С	Internet instável na fábrica	50%	Muito Alto
D	Não adaptabilidade com a plataforma	30%	Muito alto
E	Mau entendimento do problema a ser resolvido	10%	Muito Alto
F	Mau funcionamento dos componentes que vão ser utilizados para produção do MVP	10%	Alto
			Alto
L	Gerar insights valiosos por meio dos dados	70%	Alto
M	Reduzir custos operacionais	70%	Modera do

Para uma melhor visualização da Matriz de Riscos, é possível acessar através do Google Sheets:

Matriz de Riscos - IoTrackers

3.1.6. Política de Privacidade de acordo com a LGPD

O loTrackers é um grupo focado no desenvolvimento de produtos lOTs em parceria com a Pirelli, sendo os materiais necessários para a criação, providos pelo Instituto de Tecnologia e Liderança para a composição de um dispositivo geolocalizador capaz de identificar onde os dispositivos como notebook e tablet estão pela fábrica que se conecta com o Wi-Fi e mostra os dados por meio de um dashboard com as informações de cada dispositivo.

A privacidade dos usuários é uma prioridade para o loTrackers e, por isso, a presente política de privacidade estabelece como as informações coletadas serão tratadas.

Coleta dos dados:

O loTrackers irá coletar as seguintes informações: identidade do Usuário, IP da máquina, logs e outros registros necessários para o funcionamento do artefato nível e do

artefato fixo. Esses dados serão coletados através do artefato de rastreamento e da base comum de carregamento, em que serão utilizados apenas para fins de controle interno da Pirelli.

Utilização dos dados:

As informações coletadas pelo loTrackers serão utilizadas exclusivamente para fins internos de controle de Tl. Os dados coletados serão exportados e alimentarão um dashboard que será utilizado pelo IT Local da Pirelli para identificar problemas e soluções relacionados à utilização dos dispositivos móveis e fixos na fábrica. Além da análise dos dados para um melhor desempenho de toda a fábrica e ajudando também na melhora para os colaboradores por meio da análise dos dados obtidos.

Armazenamento dos dados e período de retenção:

Os dados serão armazenados na nuvem AWS, juntamente com outros dados coletados e tratados da Pirelli, a fim de estar em um sistema só. Na questão de retenção, os dados coletados não possuem data de validade, podendo ser retidos até quando a companhia desejar.

Uso de cookies e/ou tecnologias semelhantes:

Será utilizado cookies para rastrear o comportamento dos usuários no dispositivo, como por exemplo quais páginas e aplicativos ele visitou e quanto tempo passou em cada um.

Compartilhamento dos dados:

As informações coletadas pelo loTrackers não serão compartilhadas com terceiros, exceto quando exigido por lei ou por ordem judicial.

Segurança dos dados:

O loTrackers adota medidas de segurança adequadas para proteger as informações coletadas, armazenadas e processadas. Nestes processos, incluiremos, medidas técnicas e organizacionais para garantir a confidencialidade, integridade e disponibilidade dos dados coletados, sendo possível integrar os dados obtidos à Segurança interna da Pirelli.

Direitos dos Usuários:

Os Usuários têm o direito de solicitar ao controlador, a qualquer momento e mediante requisição, informações como a confirmação da existência do tratamento dos seus

dados pessoais, o acesso aos dados, correção de informações incompletas, inexatas ou desatualizadas, além do direito de anonimização, bloqueio ou eliminação de dados desnecessários, excessivos ou tratados em desconformidade com

as normas da LGPD. Para exercer esses direitos, os usuários devem entrar em contato com o IT Local da Pirelli responsável pelo projeto.

Esses direitos garantem ao titular dos dados maior controle sobre suas informações pessoais, além de possibilitar maior transparência e responsabilidade por parte das empresas e instituições que lidam com dados pessoais. É importante que as empresas e instituições estejam preparadas para atender a essas solicitações e que estejam em conformidade com as normas da LGPD para evitar sanções e penalidades.

Alterações na Política de Privacidade:

O loTrackers se reserva o direito de alterar a presente política de privacidade a qualquer momento. As alterações serão comunicadas ao usuário por meio das reuniões da Pirelli e no site do projeto.

Contato: iotrackers@gmail.com

3.1.7. Bill of Material (BOM)

O Bill of Material é um documento que descreve de forma detalhada todos os componentes, peças e materiais necessários para fabricar um produto ou construir um projeto.

		Bill Of M	aterials - lotrackers	
Título do Projeto Autor Número do documento Revisão			lotrackers lotrackers S/N 0	
Total de component	tes da PCI		70	
Categorias	Quantidades	Referências dos componentes na PCI	Códigos dos Componentes (Fabricante)	Valores dos Componentes
			Capacitores	
Capacitores	1	C1, C2	Capacitor eletrolítico de 10 uF / 25v	R\$0.32
Somatório				R\$0.32
			Resistores	
Resistores	1	R1	Resistor 10k ohm	R\$0.20
Resistores	1	R2	Resistor 1k ohm	R\$0.21
Resistores	1	R3	Resistor 330ohm	R\$0.18
Somatório				R\$0.59
			rcuito Integrado	
Circuito Integrado	1	U1	ESP32 WROOM-32D	R\$84.90
Somatório				R\$84.90
			Conexões	
Conexões	20	JP1	Jumper Macho x Macho	R\$4.05
Conexões	20	JP2	Jumper Macho x Femea	R\$6.56
Conexões	20	JP3	Jumper Femea x Femea	R\$6.56
Somatório				R\$17.17
			Diversos	
Diversos	1	BZ1	Buzzer	R\$2.48
Diversos	2	Led1, Led2	Led Vermelho	R\$1.44
Diversos	1	Led3	Led Verde	R\$0.72
Diversos	1	BAT	Bateria	R\$58.90
Diversos	1	SBAT	Suporte de bateria	R\$8.70
Diversos		MC1	Módulo Carregador de Bateria	R\$5.50
Somatório	<u> </u>			R\$4.64
Somatório Total				R\$107.62

3.2. Domínio de Fundamentos de Experiência de Usuário

3.2.1. Personas

Uma Persona é uma representação fictícia do cliente ideal. Ela é baseada em dados demográficos, psicológicos, e comportamentais reais de seus clientes existentes ou potenciais. Ao criar uma persona, a empresa entende melhor as necessidades, desejos, objetivos, problemas e motivações de seus clientes, fazendo com que a empresa se conecte melhor com os seus clientes, além de fazer com que a empresa consiga criar estratégias de marketing mais eficazes.

Nesse sentido, foram criadas duas personas para esse projeto. A primeira é o Bruno Garcia:

Bruno Oliveira Garcia

"Um líder é aquele que sabe o caminho, segue o caminho e mostra o caminho."

Idade: 38 Função: Gestor de TI Estado Civil: Casado Família: 1 filho Localização: Jundiaí, São Paulo

Personalidade

Introvertido	Extrovertido
Pensamento	Sentimento
Sensação	Intuição
Julgamento	Percepção

Focado Emotivo Exigente

Objetivos

• Identificar a eficácia do dispositivo de IoT no vastreamento de tablets

- Caso comprovada a eficácia, implementar o dispositivo em todas as capas de tablet.
- Implementar dispositivos de carregamento IoT em cada setor da fábrica da Pirelli

Frustrações

- Atraso em tarefas importantes devido a pausa causada pela procura dos tablets pela fábrica.
- Ter que ficar fazendo os contratos de Leasing para substituição dos tablets perdidos.

Biografia

Bruno Garcia nasceu em Campinas, mas viveu sua vida toda em Jundiaí. Ele estudou em escola pública durante toda a sua vida e sempre foi apaixonado por computadores.

Bruno começou a cursar Gestão de TI na Fatec de Jundiaí com 22 anos. 1 ano depois de se formar, tirou a certificação ITIL e conseguiu ser contratado por uma multinacional do ramo de pagamentos (Getnet), cuja sede é em Porto Alegre, e por Isso, Bruno teve que se mudar para lá. Após passar 10 anos nessa empresa, Bruno se demitiu pois quería voltar para São Paulo. Então foi contratado pela Pirelli em Campinas, na qual trabalha até hoje.

Focos

Hobbies

- Jogar Xadrez
- Brincar com o seu Golden Retriever

Imagem 5: Persona Bruno I Fonte: Elaboração própria.

Bruno é um gestor de TI que é responsável por cuidar do departamento de TI da fábrica da Pirelli. Suas principais dores são o atraso de tarefas importantes devido ao desprendimento do seu tempo na procura de tablets pela fábrica da Pirelli e ficar fazendo os contratos de

Leasing de tablets para substituir aqueles que não conseguiram ser encontrados. Já seus objetivos são o de identificar de maneira eficaz os dispositivos perdidos pela fábrica e implementar a solução IoT em todos os dispositivos da fábrica.

A segunda persona é o Luiz Schmidt:

Imagem 6: Persona Luiz I Fonte: Elaboração própria.

Schmidt é um engenheiro de controle e automação responsável por dar manutenção no maquinário presente na fábrica da Pirelli. Suas principais dores são a preocupação com a segurança dos dados que estavam no tablet que ele ou seus colegas de trabalho perderam, Indisponibilidade para utilizar o tablet na hora necessário e levar advertências por causa do sumiço de um tablet que ele emprestou para algum de seus colegas. Já seus principais objetivos são a utilização dos tablets durante o decorrer do seu turno sem a preocupação de um possível sumiço e ter plena disponibilidade do tablet durante o seu turno.

3.2.2. Jornadas do Usuário

Jornada do Usuário é a representação gráfica de todas as etapas que o cliente passa em seu contato com algum produto ou serviço. Dessa forma,

foram elaboradas duas jornadas do usuário, uma para cada persona, sendo a primeira jornada do usuário a do Bruno Garcia e a segunda a do Luiz Schmidt.

Bruno Garcia

Cenário: Bruno terá um Dashboard disponível para gerenciar a localização de todos o<mark>s tablets p</mark>ela fábrica da Pirelli.

Expectativas

- Economia monetária
- Economia de tempo (tarefas repetitivas: compras, configuração, relatórios etc)
- Aumentar segurança dos equipamentos e dados Produção ter sempre equipamentos disponíveis

Diagnóstico de Localização / Perda Bloqueio de Acesso Dashboard Perda consumada 1. O gestor de TI faz o bloqueio 1. O funcionário avisa o 1. Após bloquear o acesso ao 1. Depois de olhar no Gestor de TI que seu de acesso temporário do tablet, o gestor de TI tenta Dashboard, caso o tablet tablet. Pois como ele não verificar a localização do ainda esteja na fábrica, o tablet foi perdido pela fábrica. Ele afirma seu está em posse do tablet na fábrica por meio Gestor irá buscá-lo por do Dashboard. É nessa meio da sua localização. nome, setor, número do funcionário daquele setor, armário e horário que informações sigilosas etapa que o Gestor vê se o Contudo, caso o tablet pegou o tablet na base podem ser vistas por outros tablet realmente foi perdido tenha sido perdido, o funcionários ou até por ou se está na fábrica. Gestor irá fazer um de carregamento. pessoas que não são relátorio para passar para funcionários da Pirelli. O dispositivo o seu superior. está pela Com qual O dispositivo foi fábrica? É possível acessar funcionário estava encontrado ou foi de Qual a informações sigilosas por o dispositivo? localização dele? fato perdido? meio do tablet perdido?

Oportunidades

Criação de um dispositivo que tenha a localização exata e instantânea dos equipamentos com identificação do usuário. Com uma interface de fácil uso, fácil instalação, personalizável, escalável e que seja 100% confiável.

Com esse novo sistema, se espera ser possível implementar novos procedimentos e tecnologias.

Responsabilidades

- Não constrangimento de funcionários, caso ocorra a perca de algum tablet.
- Utilização do Dashboard para localização dos dispositivos.
- Elaboração de um relatório caso a perca do dispositivo seja consumada.

Imagem 7: Jornada do Usuário Bruno I Fonte: Elaboração Própria.

Luiz Schmidt

Cenário: Luiz, foi realizar sua tarefa diária que é verificar as chamadas de manutenção das máquinas as quais ele é responsável

Expectativas

- · Ter equipamentos carregados e disponíveis
- Manter o padrão de qualidade da produção,
- Fazer a manutenção das máquinas que estão em estado de alerta.

Imagem 8: Jornada do usuário Luiz I Fonte: Elaboração Própria.

Para melhor visualização das jornadas dos usuários, é possível acessar através do link do Miro: clique aqui.

3.2.3. User Stories

Segundo a AWari, User Stories é uma técnica de desenvolvimento de software ágil que descreve uma funcionalidade ou requisito do sistema sob a perspectiva do usuário final. Essas descrições curtas e simples são escritas em linguagem natural e ajudam a equipe de desenvolvimento a entender as necessidades dos usuários, a priorizar funcionalidades e a se comunicar com os clientes e usuários finais de maneira eficaz. A importância das User Stories está em garantir que as funcionalidades sejam implementadas de acordo com as necessidades reais dos usuários finais e em compartilhar uma visão comum daquilo que deve ser desenvolvido.

Dessa forma, foi elaborado as seguintes User Stories para o projeto:

- 1) Eu como gestor do IT da Pirelli, desejo um artefato que me forneça o rastreio de geolocalização dos c<mark>omputadores/</mark>tablets dentro da fábrica, para atender as normas de compliance e governança, de forma que nenhum computador saia da fábrica.
- 2) Eu como gestor do IT da Pirelli, desejo exportar os dados desse artefato que alimentarão um dashboard, com identidade do usuário, tempo de uso, logs e outros registros necessários. Para que eu consiga identificar o usuário e não faça falsas acusações.
- 3) Eu como gestor do IT da Pirelli, desejo que meu artefato móvel deva ser fixado nos tablets e notebooks dos meus funcionários de forma que não seja possível removê-lo ou danificá-lo, para evitar trapaças em nossas análises.
- 4) Eu como gestor do IT da Pirelli, desejo que meu artefato informe ao usuário quando ele estiver saindo da fábrica com seu dispositivo, para evitar que pessoas de boa índole e sem intenções ruins sejam punidas.
- 5) Eu como gestor do IT da Pirelli, quero um artefato fixo que seja capaz de recarregar os dispositivos móveis de forma segura e eficiente para que eu possa garantir que os dispositivos estejam sempre prontos para uso.
- 6) Eu como funcionário executivo da Pirelli, quero um artefato que possa facilmente ser desativado, para que eu consiga fazer reuniões externas ou levar o computador para casa sem ser prejudicado/envergonhado.

3.2.4. Protótipo de interface com o usuário (sprint 2)

Criação do wireframe do projeto. A ideia é o desenvolvimento de interfaces do usuário que sejam correspondentes ao desenvolvimento do wireframe.

É importante a construção do wireframe para que o desenvolvimento do dashboard da solução seja implementado sem maiores problemas.

O wireframe deve apresentar os seguintes requisitos:

O wireframe deve ser coerente com o mapa de jornada do usuário (ou storyboard) feito anteriormente.

O wireframe deve refletir ao menos uma User Story mapeada anteriormente.

O wireframe deve ser desenvolvido em baixa ou média fidelidade. (Não é um mock-up)

O wireframe deve contemplar boa usabilidade (Facilidade de navegação, estrutura, mapa do site)

Coloque aqui o link para seu protótipo de interface.

3.3. Solução Técnica

Nesta seção, detalhe a especificação da solução, de acordo com o disposto nas subseções.

3.3.1. Requisitos Funcionais

RF: Requisitos Funcionais

RF 01:

Descrição: Artefato IoT deve ser capaz de se conectar ao wi-fi.

Entradas: Sinal de rede wi-fi.

Saídas: Conexão estabelecida com a rede wi-fi.

Equipamentos necessários: ESP32, roteador wi-fi.

Regras de negócio:

- O artefato deve ser capaz de detectar e se conectar automaticamente à rede wi-fi disponível na fábrica;
- A conexão wi-fi deve ser estável, segura e se conectar a todos os pontos da fábrica;
- Capaz de se acoplar mecanicamente a um dispositivo móvel;
- Não seja possível removê-lo ou danificá-lo.

RF 02

Descrição: O artefato loT deve fornecer rastreio de geolocalização dos notebooks/tablets.

Entradas:

• Informações de geolocalização dos equipamentos a serem rastreados.

Saídas:

- Informações de geolocalização em tempo real;
- Alerta de localização ao gestor do IT, caso algum equipamento saia do ambiente fabril.

Equipamentos:

- ESP 32;
- Dispositivo de rastreamentos;
- Servidor ou banco de dados para salvar as informações.

Regras de Negócios:

- O equipamento de rastreio deve utilizar protocolos de mqtt para conversar com o servidor;
- Fornecer a maior precisão possível dentro da fábrica;
- Em caso de saída do ambiente fabril, um alerta deve ser enviado imediatamente ao gestor do IT.

RF 03:

Descrição: Desenvolver artefato fixo de recarga de dispositivos móveis que complemente o rastreio móvel.

Entradas:

Dispositivo móvel com bateria incompleta

Saídas:

Dispositivo móvel com bateria carregada

Equipamentos necessários:

• Artefato com travas mecânicas e lógicas capazes de recarregar os dispositivos móveis

Regras de Negócios:

Impedir que o artefato móvel fique descarregado;

- Não pode ser removível;
- Gerar um alerta em caso de tentativa de violação;
- Permita a identificação do usuário.

RF 04:

Descrição: O dispositivo construído deverá ser capaz de coletar dados dos tablets e notebooks por meio de sensores colocados no equipamento IoT.

Entradas:

• Dados dos tablets e notebooks, como uso de CPU, uso de memória, tempo de atividade, temperatura, entre outros.

Saídas:

- Dados coletados e processados pelo dispositivo IoT;
- Relatórios e análises gerados por meio dos dados coletados, como gráficos, tabelas, alerta.

Equipamentos necessários:

Regra de Negócios:

- A velocidade de transmissão deve garantir a precisão dos dados coletados;
- Os dados coletados devem ser transmitidos de forma segura e confiável;
- O dispositivo loT deve ser capaz de armazenar e gerenciar os dados coletados de forma eficiente:
- Os dados coletados devem ser processados em tempo real visando a detecção e correção de falhas ou anomalias rapidamente;
- A privacidade dos funcionários e dos dados coletados deve ser protegida conforme as leis e regulamentações aplicáveis;
- Os dados coletados devem ser usados para melhorar a eficiência e a produtividade da fábrica, bem como para fornecer informações para a tomada de decisões estratégicas.

RF 05:

Descrição: O dispositivo IOT deverá conseguir exportar dados de ambos artefatos que alimentarão um dashboard, como: identidade do usuário, tempo de uso, logs e localização do usuário na planta da fábrica

Entradas:

- Identificação do Usuário;
- Tempo de uso;
- Logs;
- Localização do usuário na planta da fábrica.

Saídas:

• Dados exportados em um formato adequado para serem exibidos em um dashboard, como tabelas, gráficos ou mapas.

Equipamentos Necessários:

- Microcontroladores ou microprocessadores, como o ESP-32;
- Plataforma ou serviço de broker MQTT;
- Software ou plataforma para dashboard;
- Módulos de memória.

Regra de Negócios:

- Os dados exportados devem ser precisos e atualizados;
- Os dispositivos loT devem ser capazes de coletar as informações necessárias de forma confiável e segura;
- As identidades dos usuários devem ser protegidas e compartilhadas apenas com as partes autorizadas;
- A localização do usuário deve ser rastreada com precisão conforme as leis de privacidade aplicáveis;
- Os logs devem ser armazenados de forma segura e protegidos contra acesso não autorizado.

RF 06:

Descrição: Os dispositivos loT devem ser capazes de formatar os dados coletados no protocolo MQTT.

Entradas:

• Dados coletados por dispositivos loT ou sensores conectados a eles.

Saídas:

Dados formatados no protocolo MQTT.

Equipamentos necessários:

- Dispositivos loT capazes de realizar a formatação de dados no protocolo MQTT;
- Protocolo MQTT.

Regras do negócio:

- Os dados coletados devem ser formatados conforme a especificação do protocolo MQTT;
- A privacidade e a segurança dos dados devem ser mantidas durante a formatação e transmissão dos dados;
- Os dispositivos loT devem ser capazes de gerenciar a conexão com o agente MQTT e reconectar automaticamente se desconectados;
- Os dados devem ser transmitidos em tempo real para que os problemas possam ser detectados e corrigidos imediatamente.

RF 07:

Descrição: Definir uma chave de identificação de usuário para cada usuário do artefato lot.

Entradas: Identificação de usuário.

Saídas: Chave de identificação do usuário.

Equipamentos necessários: Placas ESP32, aplicativo desenvolvido pela Pirelli.

Regras de negócio:

- A chave de identificação deve ser única para cada usuário e não pode ser alterada, exceto pelo gestor do IT;
- Ser capaz de integrar com o banco de dados dos aplicativos já existentes da Pirelli.

3.3.2. Requisitos Não Funcionais (sprint 2)

Descreva quais são os requisitos não funcionais e sua relação com aspectos de qualidade (visão de aspectos de qualidade).

3.3.4. Arquitetura da Solução (sprint 3)

Descreva a arquitetura técnica da solução de forma detalhada (visão de arquitetura).

Justifique como a arquitetura suporta os requisitos funcionais e não funcionais.

O diagrama de arquitetura deve:

- mostrar microcontroladores, incluindo descrições de sua função no sistema (por exemplo: "Irá processar o sinal dos sensores a cada X minutos")
- mostrar sensores, incluindo descrição de função e especificações técnicas do tipo de informação que será coletada
- mostrar apresentadores de informação (displays), incluindo descrição de que tipo de informação será apresentada (por exemplo, "Mostrar temperatura dos sensores")
- mostrar atuadores, caso existam na solução, incluindo descrições do que irão acionar (por exemplo, "Ligar motor de irrigação durante x minutos")
- mostrar o broker MQTT e o dashboard que é a interface do usuário
- mostrar ligações entre os elementos (com fio ou sem fio) incluindo conexões com sensores e atuadores, conexão com Wi-Fi, entre outros

3.3.5. Arquitetura do Protótipo (sprint 4)

Descreva as tecnologias utilizadas de forma detalhada (visão de tecnologia).

Descreva a arquitetura usando um diagrama de blocos similar à visão anterior, porém especificando as tecnologias utilizadas.

O diagrama de arquitetura deve:

- mostrar microcontroladores, incluindo descrições de sua função no sistema (por exemplo: "Irá processar o sinal dos sensores a cada X minutos")
- mostrar sensores, incluindo descrição de função e especificações técnicas do tipo de informação que será coletada

- mostrar apresentadores de informação (displays),
 incluindo descrição de que tipo de informação será apresentada (por exemplo, "Mostrar temperatura dos sensores")
- mostrar atuadores, caso existam na solução, incluindo descrições do que irão acionar (por exemplo, "Ligar motor de irrigação durante x minutos")
- mostrar o broker MQTT e o dashboard que é a interface do usuário
- mostrar ligações entre os elementos (com fio ou sem fio) incluindo conexões com sensores e atuadores, conexão com Wi-Fi, entre outros

Faça uma tabela dos possíveis componentes utilizados. Todos os componentes devem estar presentes na arquitetura.

Componente	Descrição das características do componente	Tipo: sensor, atuador, notificação, processador, backend, frontend

3.3.6. Arquitetura Refinada da Solução (sprint 5)

Descreva a revisão da arquitetura técnica da solução de forma detalhada (visão de arquitetura).

Justifique como a arquitetura suporta os requisitos funcionais e não funcionais.

A revisão deverá incluir comentários sobre cada ponto levantado, mostrando como os ajustes foram realizados, além da descrição da arquitetura revisada.

3.4. Resultados

3.4.1. Protótipo Inicial do Projeto usando o Simulador Wokwi

Neste primeiro momento do protótipo, foi testada a conexão do ESP32 ao *Wi-Fi* por meio de um botão. Além disso, adicionamos um *Keypad* para que o usuário possa desconectar da rede *Wi-Fi* ao digitar a senha corretamente. Dessa forma, foi elaborado um passo a passo para auxiliar na replicação dos procedimentos.

Passo a Passo dos procedimentos:

1º Passo: Ao ligar o ESP32, irá aparecer uma mensagem no LCD: "loTrackers Inteli I Pirelli".

Imagem 9: Primeira mensagem que aparece no LCD, ao ligar o ESP32 .

2º Passo: Após alguns segundos, irá aparecer uma mensagem pedindo para conectar o ESP32 ao *Wi-Fi*.

Imagem 10: Mensagem solicitando conexão ao Wi-Fi.

3º Passo: Ao clicar no botão, o ESP32 irá tentar conectar ao Wi-Fi, caso de sucesso irá resultar na seguinte mensagem: "Wi-Fi Conectado! 10.10.0.2" e acender um led verde. Uma falha identificada é que após a conexão do Wi-Fi, caso o usuário clique novamente no botão, o sistema é reiniciado e inicia a conexão ao Wi-Fi novamente.

Imagem 11: Confirmação da conexão do Wi-Fi no ESP32.

4º Passo: Caso o usuário queira desconectar o ESP32 da rede Wi-Fi, com o objetivo de realizar alguma manutenção no dispositivo, é preciso digitar uma senha no teclado. Caso a senha esteja incorreta, irá aparecer uma mensagem de senha incorreta. Por outro lado, caso a senha seja digitada corretamente, o Wi-Fi será desconectado.

Imagem 12: Senha digitada incorretamente.

Imagem 13: Senha digitada corretamente e Wi-Fi desligado com sucesso.

Para fins de testar o simulador na plataforma WokWi, foi disponibilizado o seguinte link: <u>clique</u> <u>aqui.</u>

Nesse contexto, a fim de facilitar o entendimento do protótipo, segue uma tabela mostrando os procedimentos presentes até o momento:

#	Bloco.	Component e de entradas.	Leitura de entrada.	Component es de saída.	Leitura de saída.	Descrição.
1	Conectar ao Wi-Fi	Botao	HIGH	LCD	Mensag em no LCD	Visualização da mensagem: "Wi-Fi conectado
2	Desconect ar o Wi-Fi	Keypad (tecla do)	valores entre 0-10, além das teclas A, B, C, D, # e *	LCD	Mensag em no LCD	Caso a senha esteja correta, aparece a mensagem: "Wi-Fi desconectado com sucesso". Em caso de falha, irá aparecer a seguinte mensagem: "Senha incorreta".
3	Ligar o LED	Botao	HIGH	LED	HIGH	Ao clicar no botão, além de se conectar ao Wi-Fi, um LED verde será ligado.
4						

3.4.2. Protótipo Físico do Projeto (offline) (sprint 2)

Aqui você deve registrar diversas situações de teste, indicando exemplos de leitura (entrada) e escrita (saída) apresentadas pelo seu sistema físico. Estes registros serão utilizados para testar seus componentes, portanto,

descreva várias situações, incluindo não apenas casos de sucesso, mas também de possíveis falhas nas leituras de entradas e saídas.

Siga as nomenclaturas e convenções já utilizadas anteriormente, e não se esqueça dos alinhamentos de negócios e experiência do usuário para pensar em situações representativas. Inclua figuras do protótipo físico e descrições dos testes realizados para ilustrar o funcionamento do protótipo.

#	bloco	componente de entrada	leitura da entrada	componente de saída	leitura da saída	Descrição
1	ex. medidor de umidade relativa do ar	ex. "sensor de umidade XPTO"	< 100	ex. led amarelo	piscante em intervalo de 1s	quando a umidade está baixa, o led amarelo pisca
2						
3						
4						
5						

3.4.3. Protótipo do Projeto com MQTT e I2C (sprint 3)

Aqui você deve registrar diversas situações de uso de seu sistema como um todo, indicando exemplos de ação do usuário e resposta do sistema, apontando como o ambiente deverá estar configurado para receber a ação e produzir a resposta. Estes registros serão utilizados para testar seu sistema, portanto, descreva várias situações, incluindo não apenas casos de sucesso, mas também de falha nos comportamentos do sistema.

Siga as nomenclaturas e convenções já utilizadas anteriormente, e não se esqueça dos alinhamentos de negócios e experiência do usuário para pensar em situações representativas. Inclua figuras do protótipo físico e dashboards, além de descrições dos testes realizados para ilustrar o funcionamento do protótipo.

#	configuração do ambiente	ação do usuário	resposta esperada do sistema
1	ex. precisa de um computador conectado na interface, dois ou mais dispositivos que simulem o posicionamento de um item X no espaço físico etc.	ex. usuário logado busca a localização do item X, que está ativo e operando normalmente	ex. interface do sistema acessa os dados da última localização registrada do item X e apresenta, constando local e horário de última atualização
2			
3			
4			
5			

3.4.4. Protótipo Físico do Projeto (online) (sprint 4)

Aqui você deve registrar diversas situações de uso de seu sistema como um todo, indicando exemplos de ação do usuário e resposta do sistema, apontando como o ambiente deverá estar configurado para receber a ação e produzir a resposta. Estes registros serão utilizados para testar seu sistema, portanto, descreva várias situações, incluindo não apenas casos de sucesso, mas também de falha nos comportamentos do sistema.

Desta vez, utilize diagramas de sequência UML para descrever os fluxos de teste do sistema.

Siga as nomenclaturas e convenções já utilizadas anteriormente, e não se esqueça dos alinhamentos de negócios e experiência do usuário para pensar em situações representativas. Inclua figuras do protótipo físico e dashboards, além de descrições dos testes realizados para ilustrar o funcionamento do protótipo.

3.4.5. Protótipo Final do Projeto (sprint 5)

Registre as situações de uso do sistema revisadas utilizando a modelagem UML para descrever os fluxos de teste.

Também inclua figuras da versão final do protótipo físico e dashboards, além de descrições dos testes realizados para ilustrar o funcionamento do protótipo.

4. Possibilidades de Descarte

(sprint 4)

Construam um documento descrevendo os materiais utilizados no MVP, o método de descarte (em formato de orientações práticas) e a vida útil desses materiais (o momento em que esses materiais deveriam ser descartados), tendo atenção aos riscos de descarte incorreto.

5. Conclusões e Recomendações

(sprints 4 e 5)

Escreva, de forma resumida, sobre os principais resultados do seu projeto e faça recomendações formais ao seu parceiro de negócios em relação ao uso dessa solução. Você pode aproveitar este espaço para comentar sobre possíveis materiais extras.

6. Referências

Incluir as principais referências de seu projeto, para que seu parceiro possa consultar caso ele se interessar em aprofundar.

Um exemplo de referência de livro:

LUCK, Heloisa. Liderança em gestão escolar. 4. ed. Petrópolis: Vozes, 2010.

SOBRENOME, Nome. **Título do livro**: subtítulo do livro. Edição. Cidade de publicação: Nome da editora, Ano de publicação.

Pirelli Corporate Culture, Corporate Culture. Disponível em:

https://corporate.pirelli.com/corporate/en-ww/aboutus/pirelli-corporate-culture. Acesso em 17/04/2023.

Pirelli`s History, Pirelli`s History. Disponível em:

https://corporate.pirelli.com/corporate/en-ww/aboutus/history>. Acesso em 17/04/2023

CarLogos, The Largest Tire Manufacturers in the World (New). Disponível em:

https://www.carlogos.org/reviePirelli Corporate Culturews/largest-tire-manufacturers.html.

Acesso em 17/04/2023

Pirelli, O PORQUÊ DE ESCOLHER PIRELLI. Disponível em:

https://www.pirelli.com/tyres/pt-br/carro/sobre-nos/por-que-pirelli. Acesso em 17/04/2023.

Continental, *Headquarters and Plants*. Disponível em:

https://www.continental-tires.com/transport/company/businessunit/headquarters-plants#:~:text=W">e%20are%20manufacturing%20at%2013%20plants%20in%2012%20countries. > Acesso em 19/04/2023.

Continental, Continental History. Disponível em:

https://www.conti.com.br/about-us/history.html>. Acesso em 19/04/2023.

Britannica, Michelin History. Disponível em: < https://www.britannica.com/topic/Michelin>. Acesso em 19/04/2023.

Bridgestone, Informações sobre a Bridgestone. Disponível em:

https://www.bridgestone.com.br/pt/sobre-nos/informacion-corporativa>. Acesso em 19/04/2023.

De Oliveira, Ricardo, Visitamos a fábrica da Bridgestone em Santo André/SP, Notícias Automotivas, 2021. Disponível em:

<a href="https://www.noticiasautomotivas.com.br/visitamos-a-fabrica-da-bridgestone-em-santo-andresp/#:~:text=Atualmente%20a%20Bridgestone%20tem%20178,pneus%20e%20emprega%20139.000%20pessoas>. Acesso em 19/04/2023

Anexos

Utilize esta seção para anexar materiais extras que julgar necessário.