

ORGANIZAÇÃO BÁSICA DE COMPUTADORES – LABORATÓRIO

André Breda Carneiro Rafael Rodrigues Da Paz

CODIFICADOR E DECODIFICADOR

CIRCUITO DECODIFICADOR

CONTROLE: C2 C1 C0

Objetivos:

 Adquirir conhecimentos em dispositivos de lógica programável;

• Estudo do circuito decodificador;

• Estudo do circuito codificador.

É um circuito combinatório que permite transformar um conjunto de sinais em outro formato (ou codificação).

Exemplos:

- Decodificador de número decimal para número em hexadecimal;
- Decodificador de número decimal para um display de sete segmentos;
- Decodificador de instruções de um computador.

Entre outras aplicações.

Tradicionalmente um decodificador processa as N entradas (o conjunto) e gera um único sinal em uma das M saídas.

O decodificador:

Abaixo temos um exemplo de 3 entradas e 8 saídas:

EN	ENTRADAS			SAÍDAS								
С	В	Α	O ₀	O ₁	02	O ₃	O ₄	O ₅	O ₆	O ₇		
0	0	0	1	0	0	0	0	0	0	0		
0	0	1	0	1	0	0	0	0	0	0		
0	1	0	0	0	1	0	0	0	0	0		
0	1	1	0	0	0	1	0	0	0	0		
1	0	0	0	0	0	0	1	0	0	0		
1	0	1	0	0	0	0	0	1	0	0		
1	1	0	0	0	0	0	0	0	1	0		
1	1	1	0	0	0	0	0	0	0	1		

Interpretando a tabela temos:

$$O_0 = \overline{CBA}$$

$$O_1 = \overline{CB}A$$

$$O_4 = C\overline{B}\overline{A}$$

$$O_5 = C\overline{B}A$$

$$O_2 = \overline{C}B\overline{A}$$

$$O_3 = \overline{CBA}$$

$$O_6 = CBA$$

$$O_7 = CBA$$

Interpretando as expressões lógicas temos o circuito abaixo:

$$O_1 = \overline{CB}A$$

$$O_2 = \overline{CBA}$$

$$O_3 = \overline{C}BA$$

$$O_4 = C\overline{B}\overline{A}$$

$$O_5 = C\overline{B}A$$

$$O_6 = CB\overline{A}$$

$$O_7 = CBA$$

O Codificador:

Similar ao decodificador, o codificador transforma os sinais decodificados no formato original.

Se fizermos a associação do decodificador com o seu codificador correspondente teremos os sinais originais.

O Codificador:

Abaixo está um exemplo de um codificador para o decodificador apresentado anteriormente:

		S	AÍDA	S						
A ₇	A_6	A_5	A ₄	A ₃	A ₂	A ₁	A ₀	02	O ₁	O ₀
0	0	0	0	0	0	0	Χ	0	0	0
0	0	0	0	0	0	1	Х	0	0	1
0	0	0	0	0	1	0	Х	0	1	0
0	0	0	0	1	0	0	Х	0	1	1
0	0	0	1	0	0	0	Х	1	0	0
0	0	1	0	0	0	0	Х	1	0	1
0	1	0	0	0	0	0	X	1	1	0
1	0	0	0	0	0	0	Χ	1	1	1

Os "0" em vermelho:

Podem se tornar

irrelevantes também!

Para todas as entradas em zero, as saídas também serão zero, logo o bit de entrada A₀ é irrelevante, sendo adotado X, ou seja, pode ser qualquer coisa que não altera a expressão.

O Codificador:

Resolvendo a expressão lógica fica:

		S	AÍDA	S						
A ₇	A_6	A_5	A_4	A_3	A ₂	A ₁	A_0	02	O ₁	O ₀
0	0	0	0	0	0	0	Χ	0	0	0
0	0	0	0	0	0	1	X	0	0	1
0	0	0	0	0	1	0	Х	0	1	0
0	0	0	0	1	0	0	Χ	0	1	1
0	0	0	1	0	0	0	Х	1	0	0
0	0	1	0	0	0	0	Х	1	0	1
0	1	0	0	0	0	0	Χ	1	1	0
1	0	0	0	0	0	0	Χ	1	1	1

$$O_0 = A_1 + A_3 + A_5 + A_7$$

 $O_1 = A_2 + A_3 + A_6 + A_7$
 $O_2 = A_4 + A_5 + A_6 + A_7$

O Codificador:

Construindo o circuito fica:

$$O_0 = A_1 + A_3 + A_5 + A_7$$
 $O_1 = A_2 + A_3 + A_6 + A_7$ $O_2 = A_4 + A_5 + A_6 + A_7$

O decodificador muito utilizado em aplicações é o decodificador de 7 segmentos que é utilizado para exibição em displays.

O decodificador:

O decodificador:

Tabela verdade do circuito

	Α	В	С	D	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
	1	0	1	0	Х	Х	Х	Х	Χ	Х	X
	1	0	1	1	Х	Х	Х	Х	X	Х	X
	1	1	0	0	Х	Х	Х	Х	Χ	Х	X
	1	1	0	1	Х	Х	Х	Х	Х	Х	Х
	1	1	1	0	Х	Х	Х	Х	Х	Х	Х
	1	1	1	1	Х	Х	Χ	Χ	Χ	Χ	Χ

A indicação X, indica situação irrelevante. Ajuda a simplificar o sistema

	A	В	С	D	а	b
0	0	0	0	0	1	1
1	0	0	0	1	0	1
2	0	0	1	0	1	1
3	0	0	1	1	1	1
4	0	1	0	0	0	1
5	0	1	0	1	1	0
6	0	1	1	0	1	0
7	0	1	1	1	1	1
8	1	0	0	0	1	1
9	1	0	0	1	1	1
	1	0	1	0	Χ	Х
	1	0	1	1	Χ	Х
	1	1	0	0	Χ	Х
	1	1	0	1	Х	Х
	1	1	1	0	Х	Х
	1	1	1	1	Χ	Χ

Resolvendo o circuito abaixo, será mostrado a solução do seguimento **a** e **b**

Seguimento *a*:

$$a = A + \overline{A}.C + \overline{B}.\overline{D} + \overline{A}.B.D$$

Simplificando fica:

$$a = A + C + \overline{B}.\overline{D} + \overline{A}.B.D$$

	A	В	С	D	а	b
0	0	0	0	0	1	1
1	0	0	0	1	0	1
2	0	0	1	0	1	1
3	0	0	1	1	1	1
4	0	1	0	0	0	1
5	0	1	0	1	1	0
6	0	1	1	0	1	0
7	0	1	1	1	1	1
8	1	0	0	0	1	1
9	1	0	0	1	1	1
	1	0	1	0	Χ	Х
	1	0	1	1	Χ	Х
	1	1	0	0	Χ	Х
	1	1	0	1	Χ	Х
	1	1	1	0	Χ	Х
	1	1	1	1	Χ	Χ

Resolvendo o circuito, abaixo será mostrado a solução do seguimento **a** e **b**

Seguimento **b**:

$$b = A + \overline{B} + CD + \overline{CD}$$

Sendo necessário continuar o processo para os demais seguimentos: a,b,c até g. Totalizando 7 circuitos.

O experimento decodificador:

Implemente o circuito decodificador abaixo no software Quartus:

Circuito decodificador criado no Quartus:

Definição de pinagem através do **Assignment Editor** (caso não aparecer os pinos criados definir utilizando o **Pin Planner**):

Tabela dos pinos de entrada (chaves on/off)

Signal Name	FPGA Pin No.	Description	I/O Standard
SW[0]	PIN_V28	Slide Switch[0]	2.5V
SW[1]	PIN_U30	Slide Switch[1]	2.5V
SW[2]	PIN_V21	Slide Switch[2]	2.5V
SW[3]	PIN_C2	Slide Switch[3]	2.5V
SW[4]	PIN_AB30	Slide Switch[4]	2.5V
SW[5]	PIN_U21	Slide Switch[5]	2.5V
SW[6]	PIN_T28	Slide Switch[6]	2.5V
SW[7]	PIN_R30	Slide Switch[7]	2.5V
SW[8]	PIN_P30	Slide Switch[8]	2.5V
SW[9]	PIN_R29	Slide Switch[9]	2.5V
SW[10]	PIN_R26	Slide Switch[10]	2.5V
SW[11]	PIN_N26	Slide Switch[11]	2.5V
SW[12]	PIN_M26	Slide Switch[12]	2.5V
SW[13]	PIN_N25	Slide Switch[13]	2.5V
SW[14]	PIN_J26	Slide Switch[14]	2.5V
SW[15]	PIN_K25	Slide Switch[15]	2.5V
SW[16]	PIN_C30	Slide Switch[16]	2.5V
SW[17]	PIN_H25	Slide Switch[17]	2.5V

Definição de pinagem através do **Assignment Editor** (caso não aparecer os pinos criados definir utilizando o **Pin Planner**):

Tabela dos pinos de saída (Leds)

Signal Name	FPGA Pin No.	Description	I/O Standard
LEDR[0]	PIN_T23	LED Red[0]	2.5V
LEDR[1]	PIN_T24	LED Red[1]	2.5V
LEDR[2]	PIN_V27	LED Red[2]	2.5V
LEDR[3]	PIN_W25	LED Red[3]	2.5V
LEDR[4]	PIN_T21	LED Red[4]	2.5V
LEDR[5]	PIN_T26	LED Red[5]	2.5V
LEDR[6]	PIN_R25	LED Red[6]	2.5V
LEDR[7]	PIN_T27	LED Red[7]	2.5V
LEDR[8]	PIN_P25	LED Red[8]	2.5V
LEDR[9]	PIN_R24	LED Red[9]	2.5V

Crie as formas de onda, conforme EXEMPLO abaixo:

Resultado da simulação:

Após a geração do gráfico conectar o KIT da INTEL ao computador e carregar o programa (circuito elaborado) para dentro do FPGA.

Fazer as devidas configurações dos pinos das entradas e saídas do kit e fazer o teste prático.

Demonstrar ao professor o funcionamento.

Relatório 8

- Introdução
- Construção do circuito codificador no programa Quartus II
 - Definição do circuito no software
- Procedimento experimental executado
- Demonstração com forma de onda na execução do circuito
 - Para modelo de simulação funcional e Timming
 - Análise as formas de onda
 - Conclusão