7. Повні метричні простори

Озн. 7.1. Метричний простір називається **повним**, якщо в ньому будь-яка фундаментальна послідовність має границю.

Приклад 7.1.
$$\left(R^n, \sqrt{\sum_{i=1}^n (x_i - y_i)^2}\right)$$
.

Приклад 7.2.
$$\left(C[a,b], \max_{[a,b]} |x(t)-y(t)|\right)$$
.

Озн. 7.2. Бієктивне відображення φ одного метричного простору (E_1, ρ_1) на інший (E_2, ρ_2) називається ізометрією, якщо

$$\forall x_1, x_2 \in E_1 \ \rho_1(x_1, x_2) = \rho_2(\varphi(x_1), \varphi(x_2)).$$

- **Озн. 7.3.** Метричні простори, між якими існує ізометрія, називаються ізометричними.
- **Озн. 7.4.** Повний метричний простір $(\tilde{E}, \tilde{\rho})$ називається **поповненням** метричного простору (E, ρ) , якщо
 - 1) $E \subset \tilde{E}$;
 - 2) $\overline{E} = \tilde{E}$.

Теорема про поповнення метричного простору (**Хаусдорф).** *Будь-який метричний простір має поповнення, єдине з точністю до ізометрії, що залишає точки простору нерухомими.*

Лема 7.1. Якщо фундаментальна послідовність містить збіжну підпослідовність, то сама послідовність збігається до тієї ж границі.

Доведення. Припустимо, що
$$\lim_{n_k \to \infty} \rho(x_{n_k}, x_0) = 0$$
, тобто

$$\forall \varepsilon > 0 \,\exists N_1(\varepsilon) > 0 : \forall n \geq N_1 \, \rho(x_{n_{\varepsilon}}, x_0) < \varepsilon$$

За нерівністю трикутника

$$\rho(x_n,x) \leq \rho(x_n,x_{n_k}) + \rho(x_{n_k},x).$$

Оскільки послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ є фундаментальною,

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) > 0 : \forall n, m \geq N \, \rho(x_n, x_m) < \varepsilon$$
.

Таким чином,

$$\forall \varepsilon > 0 \ \forall n, n_{\varepsilon} \geq \max(N_1, N_2)$$

$$\rho(x_n, x_0) \le \rho(x_n, x_{n_k}) + \rho(x_{n_k}, x_0) < \varepsilon + \varepsilon = 2\varepsilon.$$

Лема 7.2. *Будь-яка підпослідовність фундаментальної послідовності є фундаментальною.*

Доведення. За нерівністю трикутника

$$\rho\left(x_{n_k}, x_{n_l}\right) \leq \rho\left(x_{n_k}, x_n\right) + \rho\left(x_n, x_{n_l}\right).$$

Оскільки послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ є фундаментальною,

$$\forall \varepsilon > 0 \, \exists N(\varepsilon) > 0 \, : \forall n, m \geq N \ \rho \left(x_{_{\! n}}, x_{_{\! m}} \right) < \varepsilon \, .$$

Отже,

$$\forall \varepsilon > 0 \ \forall n, n_k, n_l \geq N$$

$$\rho(x_{n_k}, x_{n_l}) \le \rho(x_{n_k}, x_n) + \rho(x_n, x_{n_l}) < \varepsilon + \varepsilon = 2\varepsilon.$$

Теорема 7.1 (принцип вкладених куль). Для того щоб метричний простір був повним, необхідно і достатньо, щоб у ньому будь-яка послідовність замкнених вкладених одна в одну куль, радіуси яких прямують до нуля, мала непорожній перетин.

Доведення. Необхідність. Нехай (X, ρ) — повний метричний простір, а $S_1^*(x_1, r_1) \supset S_2^*(x_2, r_2) \supset ...$ — вкладені одна в одну замкнені кулі.

Послідовність їх центрів є фундаментальною, оскільки $\rho(x_n, x_m) < r_n$ при m > n, а $r_n \to 0$ при $n \to \infty$.

Оскільки (X, ρ) — повний метричний простір, існує елемент $x = \lim_{n \to \infty} x_n$, $x \in X$.

Покажемо, що x належить всім кулям $S_n^* \left(x_n, r_n \right)$, $n=1,2,\ldots,$ тобто $x \in \bigcap_{n=1}^\infty S^* \left(x_n, r_n \right)$. Дійсно, оскільки $x=\lim_{n\to\infty} x_n$, то

$$\forall \varepsilon > 0 \,\exists N > 0 : \forall n \geq N \quad \rho(x_n, x) < \varepsilon.$$

Значить, в довільному околі точки x знайдеться нескінченна кількість точок із послідовності $\{x_n\}$, починаючи з деякого номера N. Оскільки кулі вкладені одна в одну, ці точки належать всім попереднім кулям $S_1^*, S_2^*, ..., S_{N-1}^*$. Отже, для довільного n точка x є точкою дотику множини S_n^* , тобто належить його замиканню. Оскільки кожна куля є замкненою, точка x належить всім S_n^* . Це означає, що

$$x \in \bigcap_{n=1}^{\infty} S_n^*$$
.

Достатність. Покажемо, що якщо $\left\{x_n\right\}_{n=1}^{\infty}$ фундаментальна послідовність, то вона має границю $x \in X$.

- 1. Оскільки послідовність $\left\{x_{n}\right\}$ є фундаментальною, то $\forall \varepsilon > 0 \,\exists n_{1} > 0 \colon \forall n \geq n_{1} \quad \rho\left(x_{n}, x_{n_{1}}\right) < \varepsilon \; . \;$ Поклавши $\varepsilon = \frac{1}{2}$, ми можемо вибрати точку $x_{n_{1}}$ так, що $\rho\left(x_{n}, x_{n_{1}}\right) < \frac{1}{2}$ для довільного $n > n_{1}$. Зробимо точку $x_{n_{1}}$ центром замкненої кулі радіуса $1 \colon S_{1}^{*}\left(x_{n_{1}}, 1\right)$.
- 2. Оскільки підпослідовність $\left\{x_n\right\}_{n=n_1}^{\infty}$ є фундаментальною (за лемою 7.2), то поклавши $\varepsilon=\frac{1}{2^2}$, можна вибрати точку x_{n_2} таку, що $\rho\left(x_n,x_{n_2}\right)<\frac{1}{2^2}$ для довільного $n>n_2>n_1$. Зробимо точку x_{n_2} центром замкненої кулі радіуса $\frac{1}{2}$: $S_2^*\left(x_{n_2},\frac{1}{2}\right)$.
- к. Нехай $x_{n_1}, x_{n_2}, ..., x_{n_{k-1}}$, де $n_1 < n_2 < ... < n_{k-1}$ уже вибрані. Тоді, оскільки підпослідовність $\left\{x_n\right\}_{n=n_{k-1}}^{\infty}$ є фундаментальною, покладемо $\varepsilon = \frac{1}{2^k}$ і виберемо точку x_{n_k} так, щоб виконувалися умови $\rho\left(x_n, x_{n_k}\right) < \frac{1}{2^k}$ для довільного $n \geq n_k > n_{k-1}$. Як і раніше, будемо вважати точку x_{n_k} центром замкненої кулі радіуса $\frac{1}{2^{k-1}}$: $S_k^*\left(x_{n_k}, \frac{1}{2^{k-1}}\right)$.

Продовжуючи цей процес, ми отримаємо послідовність замкнених куль, радіуси яких прямують до нуля. Покажемо, що ці кулі вкладаються одна в одну, тобто

$$S_{k+1}^*\left(x_{n_{k+1}}, \frac{1}{2^k}\right) \subset S_k^*\left(x_{n_k}, \frac{1}{2^{k-1}}\right).$$

Нехай точка $y \in S_{k+1}^* \left(x_{n_{k+1}}, \frac{1}{2^k} \right)$. Значить, $\rho \left(y, x_{n_{k+1}} \right) \leq \frac{1}{2^k}$. За нерівністю трикутника

$$\rho(y, x_{n_k}) \le \rho(y, x_{n_{k+1}}) + \rho(x_{n_{k+1}}, x_{n_k}).$$

Оскільки $n_{k+1} > n_k$, то $\rho(x_{n_{k+1}}, x_{n_k}) < \frac{1}{2^k}$. Значить,

$$\rho(y, x_{n_k}) \le \frac{1}{2^k} + \frac{1}{2^k} = \frac{2}{2^k} = \frac{1}{2^{k-1}}.$$

Інакше кажучи,

$$y \in S_k^* \left(x_{n_k}, \frac{1}{2^{k-1}} \right).$$

Таким чином, ми побудували послідовність вкладених одна в одну замкнених куль, радіуси яких прямують до нуля. За припущенням, в просторі (X,ρ) існує точка x, загальна для всіх таких куль: $x\in\bigcap_{k=1}^\infty S_k^*\left(x_{n_k},\frac{1}{2^{k-1}}\right)$. Крім того, за побудовою, $\rho(x_{n_k},x)=\frac{1}{2^{k-1}}\to 0$, коли $k\to\infty$. Таким чином, фундаментальна послідовність $\{x_n\}$ містить підпослідовність $\{x_{n_k}\}$, що збігається до деякої точки в просторі (X,ρ) . Із леми 7.1 випливає, що і вся

послідовність $\{x_n\}$ прямує то тієї ж точки. Таким чином, простір (X, ρ) є повним. \blacksquare

Зауваження. Покажемо, що умову $r_n \to 0$ зняти не можна. Розглянемо метричний простір (N, ρ) , де N — множина натуральних чисел, а

$$\rho(m,n) = \begin{cases} 1 + \frac{1}{n+m}, \text{ якщо } n \neq m, \\ 0, \text{ якщо } n = m. \end{cases}$$

Визначимо послідовність замкнених куль з центрами в точках n і радіусом $1 + \frac{1}{2n}$.

$$S^*\left(n,1+\frac{1}{2n}\right) = \left\{m: \rho\left(m,n\right) \le 1+\frac{1}{2n}\right\} = \left\{n,n+1,\ldots\right\}, n = 1,2,\ldots$$

Ці кулі є вкладеними одна в одну і замкненими, простір є повним, але перетин куль є порожнім (яке б число ми не взяли, знайдеться нескінченна кількість куль, які лежать правіше цієї точки). Отже, необхідні умови в принципі вкладених куль не виконуються. \blacksquare

Озн. 7.5. Підмножина M метричного простору (X, ρ) називається **множиною першої категорії**, якщо його можна подати у вигляді об'єднання не більш ніж зліченої кількості ніде не щільних множин.

Озн. 7.6. Підмножина M метричного простору (X, ρ) називається **множиною другої категорії**, якщо вона не ϵ множиною першої категорії.

Теорема 7.2 (**теорема Бера про категорії**). *Нехай* (X, ρ) — непорожній повний метричний простір, тоді X ϵ множиною другої категорії.

Доведення. Припустимо супротивне, тобто

$$X = \bigcup_{n=1}^{\infty} E_n ,$$

і кожна множина E_n , n=1,2,... ϵ ніде не щільною в X . Нехай S_0 — деяка замкнена куля радіуса 1.

Оскільки множина $E_{_1}$ є ніде не щільною, існує замкнена куля $S_{_1}$, радіус якої менше $\frac{1}{2}$, така що

$$S_1 \subset S_0 \text{ i } S_1 \cap E_1 = \emptyset.$$

(Якщо існує куля радіуса більше $\frac{1}{2}$, що задовольняє таким умовам, то ми виберемо в ній кулю, радіуса менше $\frac{1}{2}$.)

Оскільки множина E_2 є ніде не щільною, існує замкнена куля S_2 , радіус якої менше $\frac{1}{2^2}$, така що

$$S_2 \subset S_1 \text{ i } S_2 \cap E_2 = \emptyset.$$

Продовжуючи цей процес, ми отримаємо послідовність вкладених одна в одну замкнених куль $\left\{S_n\right\}_{n=1}^{\infty}$, радіуси яких прямують до нуля. За принципом вкладених куль існує точка $x\in\bigcap_{n=1}^{\infty}S_n\cap X$. Оскільки за побудовою $S_n\cap E_n=\emptyset$, то

 $x \notin E_n \ \, \forall n=1,2,\ldots$ Значить, $x \notin \bigcup_{n=1}^\infty E_n$. Це суперечить припущенню, що $X=\bigcup_{n=1}^\infty E_n$. \blacksquare

Озн. 7.7. Відображення $g:(X,\rho) \to (X,\rho)$ називається **стискаючим**, якщо існує таке число $0 < \alpha < 1$, що $\rho(g(x),g(y)) \le \alpha \rho(x,y)$ для довільних $x,y \in X$.

Теорема 7.3. Будь-яке стискаюче відображення ϵ неперервним.

Розв'язок. Нехай $x_n \to x$, а $g: X \to X$ ε стискаючим відображенням. Тоді

$$0 \le \rho(g(x_n), g(x)) \le \alpha \rho(x_n, x) \to 0, n \to \infty.$$

Отже,

$$g(x_n) \rightarrow g(x)$$
, коли $x_n \rightarrow x$.

Теорема 7.4 (принцип стискаючих відображень Банаха). Будь-яке стискаюче відображення повного метричного простору (X, ρ) в себе має лише одну нерухому точку, тобто $\exists ! x \in X : g(x) = x$.

Розв'язок. Нехай x_0 — деяка точка із X. Визначимо послідовність точок $\{x_n\}$ за таким правилом:

$$x_1 = g(x_0), ..., x_n = g(x_{n-1}).$$

Покажемо, що ця послідовність ϵ фундаментальною. Дійсно, якщо m>n , то

$$\rho\left(x_{n},x_{m}\right)=\rho\left(g\left(x_{n-1}\right),g\left(x_{m-1}\right)\right)\leq\alpha\rho\left(x_{n-1},x_{m-1}\right)\leq\ldots\leq$$

$$\leq \alpha^{n} \rho(x_{0}, x_{m-n}) \leq \alpha^{n} \left\{ \rho(x_{0}, x_{1}) + \rho(x_{1}, x_{2}) + \dots + \rho(x_{m-n-1}, x_{m-n}) \right\} \leq$$

$$\leq \alpha^{n} \rho(x_{0}, x_{1}) \left\{ 1 + \alpha + \alpha^{2} + \dots + \alpha^{m-n-1} \right\} \leq \alpha^{n} \rho(x_{0}, x_{1}) \frac{1}{1 - \alpha}$$

Таким чином, оскільки $0 < \alpha < 1$,

$$\rho(x_n, x_m) \to 0, n \to \infty, m \to \infty, m > n$$
.

Внаслідок повноти простору (X, ρ) в ньому існує границя послідовності $\{x_n\}$. Позначимо її через $x = \lim_{n \to \infty} x_n$.

Із теореми 7.3 випливає, що

$$g(x) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} x_{n+1} = x$$
.

Отже, нерухома точка існує.

Доведемо її єдиність. Якщо g(x) = x і g(y) = y, то $\rho(x,y) \le \alpha \rho(x,y)$, тобто $\rho(x,y) = 0$. за аксіомою тотожності це означає, що x = y.

Наслідок 7.1. Умову $\alpha \le 1$ не можна замінити на $\alpha < 1$.

Доведення. Якщо відображення $g:(X,\rho) \to (X,\rho)$ має властивість $\rho(g(x),g(y)) < \rho(x,y)$ $\forall x,y \in X, x \neq y$, то нерухомої точки може не бути. Дійсно, розглянемо простір $([1,\infty),|x-y|)$ і визначимо відображення $g(x)=x+\frac{1}{x}$. Тоді $\rho(g(x),g(y))=\left|x+\frac{1}{x}-y-\frac{1}{y}\right|<|x-y|$. Оскільки для жодного $x \in [1,\infty)$ $g(x)=x+\frac{1}{x}\neq x$, нерухомої точки немає.

9

Література

- 1. Садовничий В,А. Теория операторов. М.: Изд-во Моск. ун-та, 1986. с.41–47.
- 2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. (5-е изд.) М.: Наука, 1981. с. 66-75.