

B0B33OPT - Optimalizace - Test1

Jméno	Příjmení	Už. jméno	Podpis
Anna	Sereda	seredann	

Řešení testu pište perem na papír (tedy ne do počítače). Zadání příkladů nemusíte opisovat. Jednotlivé příklady oddělujte vodorovou čarou přes celou šířku papíru. Každý příklad příp. jeho část uvoď te příslušným číslem nebo písmenem v kroužku.

Do řešení pište nejen odpovědi ale i jejich odůvodnění a postupy řešení. Správná odpověď bez odůvodnění je neplatná!

Řešení celého testu se musí vejít na maximálně 4 stránky A4.

Na konci testu vaše řešení oscanujte nebo ofoťte (v tom případě zajistěte dobrou kvalitu snímků) a nahrajte do Brute do úlohy Test1. Dovolené formáty jsou PDF, JPG a PNG. Pokud odevzdáte více souborů např. ve formátu JPG, musí se jmenovat 1.jpg, 2.jpg atd. a být zabalené v jednom ZIP souboru.

Během testu můžete používat materiály k předmětu (skripta, slajdy, Vaše zápisky), nesmíte ale s nikým komunikovat. Prosíme, nezneužívejte situace a nepodvádějte! Při odhaleném podvodu předmět pro studenta okamžitě končí.

Otázka 1

Chceme vyřešit soustavu rovnic

$$\mathbf{x}^T \mathbf{A} + \mathbf{y}^T = \alpha \mathbf{1}^T, \quad \mathbf{B} \mathbf{x} + \mathbf{c} = \mathbf{0}$$

kde \mathbf{A} , \mathbf{B} jsou známé matice, \mathbf{c} je známý vektor, \mathbf{x} , \mathbf{y} jsou neznámé vektory a α je neznámý skalár. Soustavu přepište do tvaru $\mathbf{P}\mathbf{u} = \mathbf{q}$, kde matice \mathbf{P} a vektor \mathbf{q} obsahují známé konstanty a vektor \mathbf{u} obsahuje všechny neznámé.

Otázka 2

Najděte přibližné řešení soustavy

$$y = 1, \quad x = 2 + y, \quad x = 0$$

ve smyslu nejmenších čtverců.

Otázka 3.

Je pravda, že pro každou matici **A** a každé kladné číslo t je matice $\mathbf{A}\mathbf{A}^T + t\mathbf{I}$ regulární? Odpověď dokažte.

Otázka 4

Závislost výkonu motoru P na vstupním napětí V a vstupním proudu I je modelována funkcí $f(V,I)=a_1+a_2V+a_3{\rm e}^V+a_4{\rm e}^{-V}+a_5I+a_6I^2$

(kde e je základ přirozeného logaritmu). Naměřili jsme n trojic (V_i, I_i, P_i) , pro $i = 1, \ldots, n$. Hledáme koeficienty a_1, \ldots, a_6 tak, aby chyba $\sum_{i=1}^n [f(V_i, I_i) - P_i]^2$ byla minimální. Pokud úlohu dokážete vyřešit, napište co nejjednodušší matlabskou funkci $\mathbf{a} = \mathbf{vykon}(\mathbf{X})$, kde \mathbf{a} je sloupcový vektor obsahující koeficienty a_1, \ldots, a_6 a \mathbf{X} je matice rozměru $3 \times n$, jejíž sloupce jsou naměřené trojice (V_i, I_i, P_i) . Pokud usoudíte, že úlohu nelze snadno vyřešit, odůvodněte.

Otázka 5.

Existuje ortogonální matice \mathbf{A} taková, že $\mathbf{A} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ a $\mathbf{A} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$? Odpověď dokažte.

Otázka 6

Najdi ortogonální projektor na podprostor span $\{(2,-1,1)\}^{\perp}$.

Otázka 7_

Nechť $\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{bmatrix}$. Najděte libovolnou bázi podprostoru

- 1. rngA
- $2. \text{ null} \mathbf{A}$
- 3. $(\text{null}\mathbf{A})^{\perp}$

Otázka 8.

Máme množinu $X=\{\,(1,-t,2t)\mid t\in\mathbb{R}\}.$ Odpovězte na následující otázky a odpovědi dokažte:

- 1. Je množina X lineární podprostor?
- 2. Je množina X afinní podprostor?

