Лабораторная работа №1 «Характеристики собирающей и рассевающей линз»

Цысин Михаил 5-А группа

Ход работы:

Параметры линз:

Линза	R ₊ , cm	R ₋ , cm	Толщина, мм
Тонкая	6	50	9.15
Толстая	4.85	50	10.5
Рассеивающая	15	5	5.52

1) Нахождение фокусного расстояния тонкой линзы

Считаем по формуле:

$$f' = \frac{L^2 - l^2}{4L},$$

где l – величина перемещения линзы,

L – расстояние между источником и экраном.

Положение экрана и источника: $L_1 = 12,9$ см, $L_2 = 101,5$ см

L , cm	Положение линзы	Положение	<i>l</i> , cm	f^{\prime} , cm
	для большого	линзы для		
	изображения, см	маленького		
		изображения, см		
	75.8	29.9	45.9	16.2
88,6	76.0	29.6	46.4	16.1
	75.9	29.8	46.1	16.15

После подсчета всех инструментальных и случайных ошибок приходим к результату:

$$f'$$
 = 16,1 ± 0,3; $\varepsilon_{f'}$ = 2%

2) Метод Аббе для толстой линзы

Считаем по формуле:

$$f = -f' = \frac{\Delta}{y} \frac{y_1' \ y_2'}{y_2' - y_1'},$$

Тут:

 y_1' – размер изображения до перемещения предмета

 y_2' – размер изображения после перемещения предмета

 $X_2 - X_1 = \Delta -$ смещение предмета.

y — размер предмета (4 см),

y_1' , CM	y_2' , CM	X ₁ , CM	X ₂ , cm	f , cm
6.7	2.7	78.4	90.5	-13.7
6.9	4.0	78.1	83.7	-13.3
7.2	3.4	77.7	86	-13.4

После расчётов: f' = 13.5 ± 0.6; $\varepsilon_{f'}=4\%$

3) Нахождения фокальных плоскостей с помощью зрительной трубы

Положение линзы, см	Положение источника, см	F, см
56.1	70.6	14.5
56.9	71.3	14.4
56.5	70.8	14.3

$$F$$
 = 14.4 ± 0,4 cm; $\varepsilon_{f'} = 2\%$

4) Определение фокусного расстояния тонкой рассеивающей линзы с помощью собирающей линзы.

Считаем по формуле:

$$\frac{1}{f'} = \frac{1}{S'} - \frac{1}{S} = \frac{1}{A''C} - \frac{1}{A'C}$$

де A' - положение мнимого предмета, A'' - положение изображения, C — положение рассеивающей линзы.

A' , cm	$A^{\prime\prime}$, cm	<i>C</i> , cm	f^{\prime} , cm
	36.7	75.0	-12.6
	48.6	74.1	-13.0
65,5	54.6	72.5	-11.5
	56.0	72.6	-12.4
	58.0	72.0	-12.1

$$f'$$
 = -12.3 ± 0.8 cm; $\varepsilon_{f'} = 6\%$

5) Определение фокусного расстояния тонкой собирающей линзы с помощью зрительной трубы.

A' , cm	С, см	f^{\prime} , CM
	79.65	-14.15
	79.0	-13.5
65,5	79.2	-13.7
	79.3	-13.8
	79.35	-13.9

$$f'$$
 = -13.8 ± 0.4 cm; $\varepsilon_{f'} = 2\%$

6) Вычисление показателя преломления

Запишем:

$$X = \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
$$Y = \frac{d}{R_1 R_2}$$

$$D = X(n-1) + \frac{Y(n-1)^2}{n}$$

$$n = \frac{f'X + 2f'Y + 1 + \sqrt{D}}{2(f'X + f'Y)}$$
, где $D = 2f'X + 4f'Y + 1 + (f'X)^2$,

Линза	R ₊ , M	R., M	Толщина, мм	f',cm	n
Тонкая	0.06	-0.5	9.15	16.1	1.42
Толстая	0.0485	-0.5	10.5	13.5	1.40
Рассеивающая	0.15	-0.05	5.52	-13.8	1.30

Расчет погрешности: $\Delta n = 0.1$.

В данной лабораторной работе были определены фокусные расстояния и положения главных оптических плоскостей собирающей и рассеивающей линз. Для собирающей линзы мы использовали метод Бесселя, считая исследуемую линзу тонкой, а для модели толстой линзы - метод Аббе. Теоретически, метод Аббе является более точным в данном случае, потому что применим для толстой линзы. Хотя точность результатов и является несколько хуже, это может быть вызвано промахом для первого измерения. рассеивающей линзы пользовались также двумя методами: с собирающей линзой и зрительной трубой. Второй дал значительно меньшую случайную погрешность и экспериментально является более точным, ведь меньше изменяемых вручную величин в эксперименте по сравнению с методом с собирающей линзой, что значительно уменьшает вероятность погрешности. По полученным результатам был рассчитан коэффициент преломления линз, который не очень близок к табличным данным и для случая тонкой и толстой линзы. Скорее всего это связанно с некой ошибкой в измерениях.