Міністерство освіти і науки України Національний університет "Львівська політехніка"

Кафедра ЕОМ

Звіт

з лабораторної роботи №2

з дисципліни: "Моделювання комп'ютерних систем" на тему: "Структурний опис цифрового автомата"

Виконав: ст. гр. KI-201 Теслер I.A

> Прийняв: Козак Н.Б.

Мета: "На базі стенда реалізувати цифровий автомат світлових ефектів".

Завдання до варіанту № 4:

Варіант – 4:

• Пристрій повинен реалізувати 8 комбінацій вихідних сигналів згідно таблиці:

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	0	0	0	0	0	0	1
1	0	1	0	0	0	0	1	0
2	0	0	1	0	0	1	0	0
3	0	0	0	1	1	0	0	0
4	0	0	1	1	1	1	0	0
5	0	1	1	1	1	1	1	0
6	1	1	1	1	1	1	1	1
7	0	0	0	0	0	0	0	0

- Інтерфейс пристрою повинен мати вхід синхронного скидання (RESET).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (MODE):
 - \circ Якщо *MODE=0* то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - \circ Якщо *MODE=1* то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід керування швидкістю роботи(*SPEED*):
 - Якщо SPEED=0 то автомат працює зі швидкістю, визначеною за замовчуванням.
 - \circ Якщо *SPEED=1* то автомат працює зі швидкістю, <u>В 4 РАЗИ НИЖЧОЮ</u> ніж в режимі (*SPEED= 0*).
- Для керування сигналом MODE використати будь який з 8 DIP перемикачів (див. Додаток – 1).
- Для керування сигналами *RESET/SPEED* використати будь якI з *PUSH BUTTON* кнопок (див. **Додаток** 1).

Хід виконання:

1) Створюю TransitionLogic.vhd

2) Створюю OutputLogic.vhd

```
-- Project Name:
    -- Target Devices:
    -- Tool versions:
11
    -- Description:
12
   -- Dependencies:
13
14 --
15
    -- Revision 0.01 - File Created
16
17
    -- Additional Comments:
18
19
20 library IEEE;
    use IEEE.STD_LOGIC_1164.ALL;
21
22
    entity Out_Logic_intf is
24
    Port ( IN BUS : in std_logic_vector(2 downto 0);
OUT_BUS : out std_logic_vector(7 downto 0)
25
26
27
28
    end Out_Logic_intf;
    architecture Out_Logic_arch of Out_Logic_intf is
31
32
         OUT BUS(0) <= (not(IN BUS(2)) and not(IN BUS(1)) and not(IN BUS(0)));
33
         OUT BUS(2) <= (not(IN BUS(2)) and not(IN BUS(1)) and IN BUS(0));
34
         OUT_BUS(4) <= (not(IN_BUS(2)) and IN_BUS(1) and not(IN_BUS(0)));
35
         OUT_BUS(6) <= (not(IN_BUS(2)) and IN_BUS(1) and(IN_BUS(0)));
36
37
         OUT_BUS(7) <= ((IN_BUS(2)) and not IN_BUS(1) and not(IN_BUS(0)));
        OUT_BUS(5) <= ((IN_BUS(2)) and not IN_BUS(1) and (IN_BUS(0)));
OUT_BUS(3) <= ((IN_BUS(2)) and IN_BUS(1) and not(IN_BUS(0)));
38
39
         OUT_BUS(1) <= ((IN_BUS(2)) and IN_BUS(1) and(IN_BUS(0)));
40
41
42 end Out_Logic_arch;
```

3) Створюю схему LightController.sch

4) Створюю файл TopLevel.sch

Також, щоб забезпечити можливість зменшення вхідної частоти в чотири рази – умова завдання, додаю мультиплексор.

5) Додаю Constraints.ucf файл

```
# This file is a .ucf for ElbertV2 Development Board
# To use it in your project :
# * Remove or comment the lines corresponding to unused pins in the project
# * Rename the used signals according to the your project
UCF for ElbertV2 Development Board
CONFIG VCCAUX = "3.3";
# Clock 12 MHz
 NET "CLOCK"
                       LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;
                             LED
              NET "OUT B(7)"
                       LOC = P46
                              | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
  NET "OUT_B(6)"
                       LOC = P47
                               | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
  NET "OUT_B(5)"
NET "OUT B(4)"
                       LOC = P48
                               | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
                       LOC = P49
                               | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
  NET "OUT B(3)"
                       LOC = P50
                              | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
```

6) Симулюю роботу OutputLogic:

									7.2000	33 d3
Name	Value	0 us	1 us	2 us	3 us	4us	5 us	6 us	7us	8 us
in_bus[2:0]	111	000	001	010	011	100	101	110	11	1
▶ 📆 out_bus[7:0] 0	0000010	00000001	00000100	00010000	01000000	10000000	00100000	00001000	00000	010

7) Симулюю роботу TransitionLogic:

8) Симулюю роботу LightController:

				1.941667 us													
Name	Value		1 us	2 us		3 us		4us		5 us	1	6 us	1	7 us	1	8 us	9
ใ⊞ clk	1																
l₁ mode	0																
ใ <mark>∎</mark> reset	0																
▶ 📑 out_bus[7:0]	00000001	-	0000001	0000	00100	0001	0000	010	00000	100	00000	001	00000	000	01000	000	00010
> K current_state_bus[2:0]	000		000	X 0	01	01	10	× 0	11	k	100		101		110		11
> Next_state_bus[2:0]	001	001		010		011		100		101		110		111		000	

9) Симулюю роботу TopLevel.sch :

10) Генерую BIN файл:

Локальний диск (D:) > xilinx > LAB2										
л Ім'я	Дата змінення	Тип	Розмір							
sch2HdlBatchFile	31.05.2023 1:18	Файл	0 КЬ							
testbench.v	02.05.2023 15:16	Файл V	2 КБ							
top_level.bgn	02.05.2023 16:17	Файл BGN	7 КБ							
top_level.bin	02.05.2023 16:17	Файл BIN	54 KG							
top_level.bit	02.05.2023 16:17	Файл BIT	54 KG							
Top_Level.bld	02.05.2023 16:17	Файл BLD	2 КБ							
Top_Level.cmd_log	02.05.2023 16:17	Файл CMD_LOG	1 КБ							
📤 top_level.drc	02.05.2023 16:17	DRC Video File (VL	1 КБ							
Top_Level.jhd	02.05.2023 16:16	Файл JHD	1 КБ							
Top_Level.lso	02.05.2023 16:17	Файл LSO	1 КБ							
Top_Level.ncd	02.05.2023 16:17	Файл NCD	15 KG							
Top_Level.ngc	02.05.2023 16:17	Файл NGC	18 KБ							
	00.05.0000.45.47	* Y 1100	20.45							

Висновок: На даній лабораторній роботі я на базі стенда Elbert V2- Spartan 3A FPGA реалізував цифровий автомат світлових ефектів. Навчився створювати нові елементи і описувати логіку їх роботи засобами VHDL.