1. Upper Bound, Least Upper Bound:

 A_0 is the set we are talking about. A is the super set, or say, the space A_0 lies in. One example of A is \Re . $A_0 \subset A$.

• a represents the largest element of A_0 (also called Maximum of A_0);

so $a \in A_0$;

a may not exist, and a may not be unique.

If A_0 has finite elements, then A_0 has the largest element and smallest number.

• b represents an upper bound of A₀;

so $b \in A$, if $b \in A_0$ then b=a;

b may not exist (eg. $A=A_0$ and A_0 has no largest element), b is usually not unique.

• c represents the least upper bound of A_0 (it is the smallest element of the upperbound set of A_0);

so $c \in A$. If $c \in A_0$, then c=a; If a exists, then c=a. c may not exist, c may not be unique.

Therefore, when we talk about upper bound or least upper bound of A_0 , there is always a super set A in the background. Similarly with greatest lower bound.

eg: A=(0,1); $A_0=(0, \sqrt{2}/2)$

The sup. of A_0 in A is $\sqrt{2}/2$, A_0 has no inf. in A.

The sup. of A_0 in \Re is $\sqrt{2}/2$, the inf. of A_0 in \Re is 0.

 A_0 has no sup. in Q (rational number set), but 1 is an upper bound of A_0 , the inf. of A_0 in Q is 0.

A₀ has no largest element and smallest element.

2. LUB property

A has LUB property if every nonempty and bounded above subsets A₀ of A has a LUB (again, LUB itself implies that it is in A)

- LUB property is a concept for A, the super set.
- If A has LUB property, A is nonempty and bounded above, then A has a LUB in A itself, (so A has a largest element.)

Contrapositive: If A doesn't have a LUB in A, and A is nonempty and bounded about, then A doesn't have LUB property.

 \Re^{n} has LUB property.

```
eg. 1. A=(-1,0)
     2. A=Q
     3. A = \{ 1 - 1/n \mid n \in Z_{++} \}
```

All these A do not have LUP property.

3. Limsup, Liminf

Limsup and Liminf are concepts for sequence.

- 1). Limsup and liminf always exist. They can take three possible values: $+\infty$, $-\infty$, a number.
 - $\{x_n\}$ unbounded above $\Leftrightarrow a_k = +\infty \Leftrightarrow \limsup_{n \to +\infty} x_n = \lim_{k \to +\infty} a_k = +\infty$
 - $\{x_n\}$ unbounded below \iff $b_k = -\infty \iff \liminf_{n \to +\infty} x_n = \lim_{k \to +\infty} b_k = -\infty$ here $a_k = \sup \{ x_k, x_{k+1}, \dots \}$; $b_k = \inf \{ x_k, x_{k+1}, \dots \}$
 - when $\{x_n\}$ bounded above, $\limsup_{n\to+\infty} x_n$ can be ∞

eg. {n}
$$\limsup_{n\to +\infty} x_n = +\infty = \liminf_{n\to +\infty} x_n$$

{-n} $\limsup_{n\to +\infty} x_n = -\infty = \liminf_{n\to +\infty} x_n$
{1,-1,1,-2,1,-3,1,-4,1,-5,} $\limsup_{n\to +\infty} x_n = 1$, $\liminf_{n\to +\infty} x_n = -\infty$

 $\limsup_{n\to+\infty} x_n$ is a number iff $\{a_k\}$ converges, but $\{x_n\}$ may not converge. eg. {1,-1,1,-1,1,-1}

But, if $\{x_n\}$ converges, then $\limsup \{x_n\}$ is a number.

- 2). $\liminf_{n\to+\infty} x_n \leq \limsup_{n\to+\infty} x_n$
- 3). $\limsup_{n\to+\infty} x_n = \liminf_{n\to+\infty} x_n = x \iff \lim_{n\to+\infty} x_n = x$ here $x \in (-\infty, +\infty)$
- 4). The following statements are false.

```
" x_n \le \limsup_{n \to +\infty} x_n for any n"
 " There exists an N, s.t. for all n \ge N, x_n \le limsup_{n \to +\infty} x_n"
eg. \{1+1/n\}
```

We have similar statements for liminf.

5) For any sequence
$$\{x_n\}$$
, can we say $x_n \ge \liminf x_n = \underline{x_n}$ or $x_n \le \limsup x_n = \overline{x_n}$? No, for example, $x_n = 1 - \frac{1}{n}$ $\liminf x_n = 1 > x_n = 1 - \frac{1}{n}$, $\forall n$

$$x_n = 1 + \frac{1}{n} \quad \limsup x_n = 1 < x_n = 1 + \frac{1}{n}, \forall n$$

4. Convergence of sequences in \Re^n :

Bounded above and nondecreasing \Rightarrow converge, and converge to sup $\{x_n\}$ Bounded below and nonincreasing \Rightarrow converge, and converge to inf $\{x_n\}$ converge $\not\Rightarrow$ monotone converge \Rightarrow bounded , ie, bounded is a necessary condition, but not sufficient condition.