Assignment 3

question 1

$$d(k,y) = |x-y|^2$$

(i)
$$d(x,y) \in [0,\infty)$$
 & $d(x,x) = 0$
 \Rightarrow satisfies positive definite

(ii)
$$d(x,y) = d(y,x)$$
 : $|x-y|^2 = |y-x|^2$
 \Rightarrow satisfies symmetry

(iii) To check:
$$d(x,z) \leq d(x,y) + d(y,z)$$

 $|x-z|^2 \leq |x-y|^2 + |y-z|^2$

Without loss of generality, say,
$$x \ge y \ge z$$

 $(x-z)^2 \le (x-y)^2 + (y-z)^2$
 $x^2 + x^2 - 2xz \le x^2 + y^2 - 2xy + y^2 + x^2 - 2yz$

$$2y(y-x) - 2z(y-x) \ge 0$$

 $2(y-z)(y-x) \ge 0$

$$(x-y)(x-y) \geq 0$$

...
$$d(x,y) = |x-y|^2$$
 fails to qualify Truingle inequality

question 2

stion 2

$$x = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$
 $x_1 \in C$
 $x_2 \in C$
 $x_2 \in C$
 $x_3 \in C$
 $x_4 \in C$
 $x_4 \in C$
 $x_5 \in C$

5.0249

$$2.6926$$
 D avg = $\langle 8(2, V) \rangle$
 2.6926 D avg = $\langle 8(2, V) \rangle$

Question 3

Single Linkage Algorithm

Dinin = min {8 (u,v)}

v € C₂

→ Drawing dendogram for elongated clusters x, to xy

x, x₂ x₃ x₄ x₅ x₆ x₇

 \rightarrow Drawing dendogram for $x_8 \rightarrow x_{11}$ $x_0 \qquad x_0 \qquad x_{10} \qquad x_{11}$

Complete Linkage Algorithm

 \rightarrow Drawing dendogram for clusters $x_1 \rightarrow x_7$ $x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7$

-> Decaring dendogram for clusters $x_8 \rightarrow x_{11}$

→ Merging both

$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} x_{11}
 x_{11}
 x_{12}
 x_{13}
 x_{14}
 x_{15}
 x_{16}
 x_{17}
 x_{19}
 x_{19}
 x_{10}
 x_{11}
 x_{11}
 x_{12}
 x_{13}
 x_{14}
 x_{15}
 x_{16}
 x_{17}
 x_{19}
 x

Question 4

Single Linkage Algorithm

Complete Linkage Algorithm

Question 5

$$N = 5$$

5 points mapped to K = 3 clusters, namely, $C_1 = (2,3)$, $C_2 = (5,8)$, $C_3 = (9,4)$

d(x, y) is (Euclidean distance b/w x, y points)²
= distortion function

Point p
$$d(p, C_1)$$
 $d(p, C_2)$ $d(p, C_3)$ Nearest controld $(1,2)$ (2) 52 68 C_1 $(3,4)$ (2) 20 36 C_1 $(6,7)$ 32 (2) 18 C_2 $(8,3)$ 36 34 (2) C_3 $(5,5)$ 13 (9) 17 C_2

(a)
$$C_{1}$$
, new = $\left(\frac{1+3}{2}, \frac{2+4}{2}\right) = (2,3)$
 C_{2} , new = $\left(\frac{6+5}{2}, \frac{7+5}{2}\right) = (5.5,6)$
 C_{3} , new = $(8,3)$

Point p
$$d(p, C_1 new)$$
 $d(p, C_2 new)$ $d(p, C_3 new)$ Nevertheord $(1,2)$ (2) 36.25 50 C_1 $(3,4)$ (2) 10.25 26 C_1 $(6,7)$ 32 (1.25) 20 C_2 $(8,3)$ 36 15.25 (0) (3)

2+2+1.25+0+1.25=6.5Distortion devicases after this iteration

Question 6

$$E_{Z}[\ln p(X,Z|\mu,\Xi,\pi)] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left(\ln \pi_{k} + \ln N(\pi_{n}|\mu_{k},\Xi_{k})\right)$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left(\ln \pi_{k} + \ln N(\pi_{n}|\mu_{k},\Xi_{k})\right)$$

4 susponsibility (fixed, constant)

$$N \left(x_{n} | \mu_{k}, \Xi_{k} \right) = \frac{1}{(2\pi)^{0/2}} \frac{1}{|\Xi_{k}|^{1/2}} e^{-\frac{1}{2} (x_{n} - \mu_{k})^{T} \Xi_{k}^{-1} (x_{n} - \mu_{k})}$$

$$E_{Z}[\ln p(x, z | \mu, \xi, \pi)] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left[\ln \pi_{k} - \frac{1}{2} \ln |\Sigma_{k}| \right] \\ - \frac{1}{2} (z_{n} - u_{k})^{T} \sum_{k} (z_{n} - u_{k}) \right] \\ + C \longrightarrow independent \\ of \Sigma_{k}, \pi_{k}$$

(i) Diff. w.r.t
$$\Sigma_k$$
 & equating to 0
$$-\frac{1}{2}\sum_{n=1}^{N} Y(\Sigma_{nk}) \left[\Sigma_k^{-1} - \Sigma_k^{-1} \left(\varepsilon_n - \mu_k \right) \left(\varepsilon_n - \mu_k \right)^{T} \Sigma_k^{-1} \right] = 0$$

Mulliplying
$$\Sigma_k$$
 on both sides
$$\sum_{k=1}^{N} \gamma(x_{nk}) (x_n - u_k)^T = N_k \Sigma_k \left[N_k = \sum_{k=1}^{N} \gamma(x_{nk}) \right]$$

=>
$$\sum_{k} = \frac{1}{N_k} \sum_{n=1}^{N} Y(z_{nk}) (z_n - \mu_k) (z_n - \mu_k)^T$$

(ii) Term with
$$\pi_k$$
 is $\sum_{n=1}^{K} \sum_{k=1}^{K} Y(E_{nk}) \ln \pi_k$
Adding the constraint $\left(\sum_{k=1}^{K} \pi_k = 1\right)$

Using Lagrange Multiplier method,
$$L = \sum_{k=1}^{K} \sum_{n=1}^{N} Y(z_{nk}) \ln \pi_{k} + \lambda \left(\sum_{k=1}^{K} \pi_{k} - 1\right)$$

Diff. w. 9. t
$$\pi_k$$
 & equating to 0
$$\sum_{n=1}^{\infty} \gamma(z_{nk}) + \lambda = 0 \Rightarrow \lambda = \pi_k = -\frac{N_k}{\lambda} - 0$$

Summing over all K
$$\overset{K}{\Sigma} \pi_{k} = -\frac{1}{\lambda} \overset{K}{k=1} Y(Z_{nk}) = -\frac{1}{\lambda} \cdot N = 1 \Rightarrow \lambda = -N$$
Pulling in (1) => $\pi_{k} = -\frac{N_{k}}{N} \Rightarrow \pi_{k} = \frac{N_{k}}{N}$

Question 7

Perobability density function of the mixture distribution is given by, $p(x) = \sum_{k=1}^{K} \pi_k p(x|k)$ mixing coefficient

$$p(x_b|x_a) = p(x_b, x_a)$$

$$p(x_a)$$

$$p(x_{b}|x_{a}) = \frac{\sum_{k=1}^{K} \pi_{k} p(x_{b}, x_{a}|k)}{\sum_{k=1}^{K} \pi_{k} p(x_{a}|k)}$$

$$= \underbrace{\sum_{k=1}^{K} \frac{\pi_{k} p(x_{a}|k)}{p(x_{a})}}_{\pi_{k}} p(x_{a}|k)$$

$$= \underbrace{\sum_{k=1}^{K} \frac{\pi_{k} p(x_{a}|k)}{p(x_{a})}}_{\pi_{k}} p(x_{a}|k)$$

$$= \underbrace{\sum_{k=1}^{K} \frac{\pi_{k} p(x_{a}|k)}{p(x_{a})}}_{\pi_{k}} p(x_{a}|k)$$

$$= \sum_{k=1}^{K} \overline{\pi}_{k} p \left(x_{b} | x_{a}, k \right)$$

Question 8

(a) Likelihood funcⁿ,
$$p(x|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

N K

$$= \frac{N}{11} \sum_{k=1}^{K} \pi_k N(2n|\mu_k) \sum_{k=1}^{K} n$$

Log likelihood fum,
$$L(\theta) = \ln p(x|\theta)$$

$$= \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k N(x_n|\mu_k, \xi_k)$$

This is complete as it sums over all components. If we assume that the component responsible for generating each data point is known, we introduce latent variable z_n , where z_n is a one-hot encoded indicator for component

$$Z_{nk} = \begin{cases} 1 & \text{if } x_n \text{ was generated by component } k \\ 0 & \text{otherwise} \end{cases}$$

Complete log likelihood funch,
$$L(\theta) = \sum_{n=1}^{K} \sum_{k=1}^{K} Z_{nk} \ln \left(\pi_{k} N(x_{n} | u_{k}, \sum_{k}) \right)$$

(b) (i) Update Rule for The

Need to maximize
$$\sum_{n=1}^{N} z_{nk} \ln \pi_k$$
 subject to the constraint

 $\sum_{k=1}^{K} \pi_k = 1$ to get MLE estimate for π_k

Using the lagrange multiplier method, we get

 $\pi_k = \frac{N_k}{N}$ where $N_k = \sum_{n=1}^{K} z_{nk}$

(ii) Update rules for
$$\mu_k$$

Maximize the complete log likelihood wat μ_k , we differentiate $\sum_{n=1}^{K} Z_{nk} \ln N \left(x_n | \mu_k, \Sigma_k \right)$

Taking derivative wat μ_k & equating to 0 gives

 $\mu_k = \frac{1}{N_k} \sum_{n=1}^{K} Z_{nk} x_n$

(iii) Update rule for
$$\Sigma_k$$

Maximizing wat Σ_k ,
$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} Z_{nk} (x_n - \mu_k) (x_n - \mu_k)^T$$