OptiMOS[®]2 Power-Transistor

Features

- Ideal for high-frequency dc/dc converters
- Qualified according to JEDEC¹⁾ for target application
- N-channel, logic level
- Excellent gate charge x R DS(on) product (FOM)
- Superior thermal resistance
- 175 °C operating temperature
- Pb-free lead plating; RoHS compliant

Product Summary

V _{DS}	25	V
R _{DS(on),max} (SMD version)	8.6	mΩ
I _D	50	Α

Туре	IPD09N03LA	IPF09N03LA	IPS09N03LA	IPU09N03LA
	2 (tab)	3	123	
Package	P-TO252-3-11	P-TO252-3-23	P-TO251-3-11	P-TO251-3-21
Marking	09N03LA	09N03LA	09N03LA	09N03LA

Maximum ratings, at T_j =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	I _D	T _C =25 °C ²⁾	50	А
		T _C =100 °C	45	
Pulsed drain current	I _{D,pulse}	T _C =25 °C ³⁾	350	
Avalanche energy, single pulse	E _{AS}	$I_{\rm D}$ =45 A, $R_{\rm GS}$ =25 Ω	75	mJ
Reverse diode dv/dt	dv/dt	/ _D =50 A, V _{DS} =20 V, d <i>i</i> /d <i>t</i> =200 A/μs, / _{j,max} =175 °C	6	kV/μs
Gate source voltage ⁴⁾	V_{GS}		±20	V
Power dissipation	P _{tot}	T _C =25 °C	63	W
Operating and storage temperature	$T_{\rm j}$, $T_{\rm stg}$		-55 175	°C
IEC climatic category; DIN IEC 68-1			55/175/56	

IPD09N03LA G IPF09N03LA G

IPS09N03LA G IPU09N03LA G

Parameter	Symbol Conditions		Values			Unit
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance, junction - case	R _{thJC}		-	-	2.4	K/W
SMD version, device on PCB	R_{thJA}	minimal footprint	-	-	75	
		6 cm ² cooling area ⁵⁾	-	-	50	

Electrical characteristics, at T_i =25 °C, unless otherwise specified

Static characteristics

$V_{(BR)DSS}$	V _{GS} =0 V, I _D =1 mA	25	1	-	V
$V_{GS(th)}$	$V_{\rm DS}=V_{\rm GS}, I_{\rm D}=20~\mu{\rm A}$	1.2	1.6	2	
I _{DSS}	$V_{\rm DS}$ =25 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =25 °C	1	0.1	1	μΑ
	V _{DS} =25 V, V _{GS} =0 V, T _j =125 °C	-	10	100	
I _{GSS}	V _{GS} =20 V, V _{DS} =0 V	-	10	100	nA
R _{DS(on)}	V _{GS} =4.5 V, I _D =30 A	ı	12	15	mΩ
	$V_{\rm GS}$ =4.5 V, $I_{\rm D}$ =30 A, SMD version	-	11.8	14.8	
	V _{GS} =10 V, I _D =30 A	-	7.4	8.8	
	$V_{\rm GS}$ =10 V, $I_{\rm D}$ =30 A, SMD version	1	7.2	8.6	
R _G		-	1	-	Ω
g _{fs}	$ V_{\rm DS} > 2 I_{\rm D} R_{\rm DS(on)max},$ $I_{\rm D} = 30 \text{ A}$	23	46	-	S
	V _{GS(th)} I _{DSS} I _{GSS} R _{DS(on)}	$V_{\rm GS(th)}$ $V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 20 \mu {\rm A}$ $I_{\rm DSS}$ $V_{\rm DS} = 25 {\rm V}, V_{\rm GS} = 0 {\rm V}, T_{\rm j} = 25 {\rm °C}$ $V_{\rm DS} = 25 {\rm V}, V_{\rm GS} = 0 {\rm V}, T_{\rm j} = 125 {\rm °C}$ $I_{\rm GSS}$ $V_{\rm GS} = 20 {\rm V}, V_{\rm DS} = 0 {\rm V}$ $R_{\rm DS(on)}$ $V_{\rm GS} = 4.5 {\rm V}, I_{\rm D} = 30 {\rm A}, SMD {\rm version}$ $V_{\rm GS} = 10 {\rm V}, I_{\rm D} = 30 {\rm A}, SMD {\rm version}$ $R_{\rm G}$ $V_{\rm DS} = 2 {\rm I} {\rm V}, I_{\rm D} = 30 {\rm A}, SMD {\rm version}$ $R_{\rm G}$ $V_{\rm DS} = 2 {\rm I} {\rm V}, I_{\rm D} = 30 {\rm A}, SMD {\rm version}$	$V_{\rm GS(th)}$ $V_{\rm DS} = V_{\rm GS}$, $I_{\rm D} = 20~\mu{\rm A}$ 1.2 $I_{\rm DSS}$ $V_{\rm DS} = 25~\rm V$, $V_{\rm GS} = 0~\rm V$, $V_{\rm DS} = 25~\rm V$, $V_{\rm GS} = 0~\rm V$, $V_{\rm DS} = 25~\rm V$, $V_{\rm DS} = 0~\rm V$. $V_{\rm DS} = 25~\rm V$, $V_{\rm DS} = 0~\rm V$. $V_{\rm DS} = 20~\rm V$, $V_{\rm DS} = 0~\rm V$. $V_{\rm DS} = 20~\rm V$. $V_{\rm DS} = 0~\rm V$. $V_{\rm DS} = 20~\rm V$.	$V_{GS(th)}$ $V_{DS}=V_{GS}$, $I_D=20$ μA 1.2 1.6 I_{DSS} $V_{DS}=25$ V, $V_{GS}=0$ V, $I_D=25$ °C - 0.1 $V_{DS}=25$ V, $V_{GS}=0$ V, $I_D=125$ °C - 10 I_{GSS} $V_{GS}=20$ V, $I_D=30$ A - 12 I_{SS} $V_{SS}=4.5$ V, $I_D=30$ A - 11.8 I_{SMD} $I_{SS}=4.5$ V, $I_D=30$ A - 7.4 $I_{SS}=10$ V, $I_D=30$ A - 7.2 $I_{SS}=10$ V, $I_D=30$ A - 7.2 $I_{SS}=10$ V, $I_D=30$ A - 7.2	$V_{GS(th)}$ $V_{DS}=V_{GS}$, $I_D=20$ μA 1.2 1.6 2 I_{DSS} $V_{DS}=25$ V, $V_{GS}=0$ V, $I_D=25$ °C - 0.1 1 $V_{DS}=25$ V, $V_{GS}=0$ V, $I_D=125$ °C - 10 100 I_{GSS} $V_{GS}=20$ V, $I_D=30$ A - 12 15 $V_{GS}=4.5$ V, $I_D=30$ A - 11.8 14.8 14.8 $V_{GS}=10$ V, $I_D=30$ A - 7.4 8.8 $V_{GS}=10$ V, $I_D=30$ A - 7.2 8.6 I_{GS} I_{GS} I_{GS} I_{GS} $I_{DS(on)}$ $I_{DS}=20$ V, $I_{DS(on)}$ $I_$

¹⁾ J-STD20 and JESD22

 $^{^{2)}}$ Current is limited by bondwire; with an $R_{\rm thJC}$ =2.4 K/W the chip is able to carry 67 A.

³⁾ See figure 3

 $^{^{4)}}$ $T_{\rm j,max}\text{=}150~^{\circ}\text{C}$ and duty cycle D <0.25 for V $_{\rm GS}\text{<-}5~\text{V}$

 $^{^{5)}}$ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm 2 (one layer, 70 μ m thick) copper area for drain connection. PCB is vertical in still air.

IPD09N03LA G IPF09N03LA G IPS09N03LA G IPU09N03LA G

Parameter	Symbol	Conditions		Values		Unit
			min.	typ.	max.	
Dynamic characteristics						
Input capacitance	C iss		-	1235	1642	pF
Output capacitance	C oss	V _{GS} =0 V, V _{DS} =15 V, f=1 MHz	-	474	630	
Reverse transfer capacitance	C _{rss}		-	61	92	
Turn-on delay time	t _{d(on)}		-	7.0	10	ns
Rise time	t _r	V _{DD} =15 V, V _{GS} =10 V,	-	5.6	8.4	
Turn-off delay time	$t_{\text{d(off)}}$	$I_{\rm D}$ =25 A, $R_{\rm G}$ =2.7 Ω	-	20	30	
Fall time	t _f]	-	3.4	5.1	
Gate Charge Characteristics ⁶⁾						
Gate to source charge	Q _{gs}		-	4.3	5.7	nC
Gate charge at threshold	Q _{g(th)}		-	2.0	2.6	
Gate to drain charge	Q _{gd}	V _{DD} =15 V, I _D =25 A,	-	2.8	4.3	
Switching charge	Q sw	V _{GS} =0 to 5 V	-	5.2	7.3	
Gate charge total	Q _g		-	10	13	
Gate plateau voltage	V _{plateau}		-	3.5	-	٧
Gate charge total, sync. FET	Q _{g(sync)}	V _{DS} =0.1 V, V _{GS} =0 to 5 V	-	8.7	12	nC
Output charge	Q _{oss}	V _{DD} =15 V, V _{GS} =0 V	-	10	14	
Reverse Diode						
Diode continous forward current	Is	T -25 °C	-	-	50	Α
Diode pulse current	I _{S,pulse}	- T _C =25 °C	-	-	350	
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =50 A, T _j =25 °C	-	0.97	1.2	V
Reverse recovery charge	Q _{rr}	V_R =15 V, I_F = I_S , di_F / dt =400 A/ μ s	-	-	10	nC

⁶⁾ See figure 16 for gate charge parameter definition

IPD09N03LA G

IPF09N03LA G

IPS09N03LA G IPU09N03LA G

1 Power dissipation

$$P_{\text{tot}}$$
=f(T_{C})

2 Drain current

$$I_D = f(T_C); V_{GS} \ge 10 \text{ V}$$

3 Safe operating area

$$I_D = f(V_{DS}); T_C = 25 \,^{\circ}C; D = 0$$

parameter: t_p

4 Max. transient thermal impedance

$$Z_{thJC}$$
=f(t_p)

parameter: $D = t_p/T$

5 Typ. output characteristics

 $I_D = f(V_{DS}); T_j = 25 °C$

parameter: $V_{\rm GS}$

6 Typ. drain-source on resistance

 $R_{DS(on)}$ =f(I_D); T_j =25 °C

parameter: $V_{\rm GS}$

7 Typ. transfer characteristics

 I_{D} =f(V_{GS}); $|V_{DS}|$ >2 $|I_{D}|R_{DS(on)max}$

parameter: $T_{\rm j}$

8 Typ. forward transconductance

 g_{fs} =f(I_D); T_j =25 °C

IPS09N03LA G

9 Drain-source on-state resistance

$$R_{DS(on)}$$
=f(T_j); I_D =30 A; V_{GS} =10 V

16 14 12 10 R_{DS(on)} [mΩ] 6 4 2 0 -60 -20 20 60 100 140 180 T_j [°C]

10 Typ. gate threshold voltage

$$V_{GS(th)} = f(T_j); V_{GS} = V_{DS}$$

parameter: I_D

11 Typ. Capacitances

$$C = f(V_{DS}); V_{GS} = 0 V; f = 1 MHz$$

12 Forward characteristics of reverse diode

$$I_{\mathsf{F}} = \mathsf{f}(V_{\mathsf{SD}})$$

parameter: $T_{\rm j}$

IPS09N03LA G

13 Avalanche characteristics

 I_{AS} =f(t_{AV}); R_{GS} =25 Ω

parameter: $T_{j(start)}$

14 Typ. gate charge

 $V_{\rm GS}$ =f(Q _{gate}); $I_{\rm D}$ =25 A pulsed

parameter: $V_{\rm DD}$

15 Drain-source breakdown voltage

10

100

 t_{AV} [µs]

1000

 $V_{BR(DSS)}=f(T_i); I_D=1 \text{ mA}$

16 Gate charge waveforms

PG-TO252-3-11

DIM	MILLIM	ETERS	INCH	HES
DIM	MIN	MAX	MIN	MAX
Α	2.16	2.41	0.085	0.095
A1	0.00	0.15	0.000	0.006
Ь	0.64	0.89	0.025	0.035
b2	0.65	1.15	0.026	0.045
ь3	5.00	5.50	0.197	0.217
С	0.46	0.60	0.018	0.024
c2	0.46	0.98	0.018	0.039
D	5.97	6.22	0.235	0.245
D1	5.02	5.84	0.198	0.230
E	6.40	6.73	0.252	0.265
E1	4.70	5.21	0.185	0.205
е	2.	29	0.090	
e1	4.	57	0.180	
N		3	3	
Н	9.40	10.48	0.370	0.413
L	1.18	1.70	0.046	0.067
L3	0.90	1.25	0.035	0.049
L4	0.51	1.00	0.020	0.039
F1	10.50	10.70	0.413	0.421
F2	6.30	6.50	0.248	0.256
F3	2.10	2.30	0.083	0.091
F4	5.70	5.90	0.224	0.232
F5	5.66	5.86	0.223	0.231
F6	1.10	1.30	0.043	0.051

DOCUMENT NO. Z8B00003328
SCALE 0
2.0- 0 2.0 1 4mm
EUROPEAN PROJECTION
ISSUE DATE 19-10-2007
REVISION 03

PG-TO252-3-23

DIM	MILLIM	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.159	2.413	0.085	0.095	
A1	0.000	0.150	0.000	0.006	
b	0.635	0.889	0.025	0.035	
b2	0.650	1.150	0.026	0.045	
b3	5.004	5.500	0.197	0.217	
С	0.457	0.580	0.018	0.023	
c2	0.460	0.980	0.018	0.039	
D	5.969	6.223	0.235	0.245	
D1	5.020	5.842	0.198	0.230	
Е	6.400	6.731	0.252	0.265	
E1	4.850	5.207	0.191	0.205	
е	2.2	286	0.0	90	
e1	4.5	572	0.180		
N		3	3		
Н	9.400	10.480	0.370	0.413	
L3	0.900	1.143	0.035	0.045	
L4	0.584	0.950	0.023	0.037	
L6	0.510	0.686	0.020	0.027	
F1	10.500	10.700	0.413	0.421	
F2	6.300	6.500	0.248	0.256	
F3	2.100	2.300	0.083	0.091	
F4	5.700	5.900	0.224	0.232	
F5	5.660	5.860	0.222	0.231	
F6	1.100	1.300	0.043	0.051	

PG-TO251-3-11

DIM	MILLIM	ETERS	INCH	HES
DIM	MIN	MAX	MIN	MAX
Α	2.18	2.39	0.086	0.094
A1	0.80	1.14	0.031	0.045
ь	0.64	0.89	0.025	0.035
b2	0.65	1.15	0.026	0.045
b4	4.95	5.50	0.195	0.217
С	0.46	0.58	0.018	0.023
c2	0.46	0.89	0.018	0.035
D	5.97	6.22	0.235	0.245
D1	5.04	5.44	0.198	0.214
E	6.35	6.73	0.250	0.265
E1	4.90	5.10	0.193	0.201
е	2.	29	0.0	90
e1	4.	57	0.1	180
N	3			3
L	3.40	3.60	0.134	0.142
L1	0.90	1.10	0.035	0.043
L2	0.90	1.10	0.035	0.043

DOCUMENT NO. Z8B00003329
SCALE 0
0 2.0 4mm
EUROPEAN PROJECTION
ISSUE DATE 17-01-2008
REVISION 03

PG-TO251-3-21

DIM	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.16	2.41	0.085	0.095	
A1	0.90	1.14	0.035	0.045	
b	0.64	0.89	0.025	0.035	
b2	0.65	1.15	0.026	0.045	
b4	4.95	5.50	0.195	0.217	
С	0.46	0.60	0.018	0.024	
c2	0.46	0.89	0.018	0.035	
D	5.97	6.22	0.235	0.245	
D1	5.04	5.77	0.198	0.227	
E	6.35	6.73	0.250	0.265	
E1	4.70	5.21	0.185	0.205	
е	2.	29	0.090		
e1	4.	57	0.1	180	
N		3		3	
L	8.89	9.65	0.350	0.380	
L1	1.90	2.29	0.075	0.090	
L2	0.89	1.37	0.035	0.054	

DOCUMENT NO. Z8B00003330
SCALE 0
0 2.0 Lunnylunny
EUROPEAN PROJECTION
ISSUE DATE 19-03-2008
REVISION 03

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.