Step-1

Given that $S = \{0 = (0,0,0,0)\}$

We know that this is the trivial subspace of \mathbb{R}^4

Suppose $S^{\perp} = \{ v = (x, y, z, w) : v \in \mathbb{R}^4 \}$

Then by definition of orthogonal complement, we get $v^T 0 = 0$

 $\begin{bmatrix} x & y & z & w \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 0$

We know that this condition is satisfied by every v = (x, y, z, w): $v \in \mathbb{R}^4$

Therefore, $\mathbf{R}^4 \subseteq S^{\perp}$

Since \mathbb{R}^4 is the linear space, S is the subspace, we follow that $S^{\perp} \subseteq \mathbb{R}^4$

Putting these observations together, we get $S^{\perp} = \mathbf{R}^4$

Step-2

Suppose w = (0,0,0,1) spans the subspace S.

Then $S = \{x = (0, 0, 0, k)\}$ where k is any real number.

Suppose $S^{\perp} = \{ v = (x, y, z, w) : v \in \mathbb{R}^4 \}$

$$\begin{bmatrix} x & y & z & w \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ k \end{bmatrix} = 0$$

Then by definition, we get

In other words, $x \cdot 0 + y \cdot 0 + z \cdot 0 + w \cdot k = 0$

We easily see that the first three summands obviously become zero with any real numbers x, y, z.

But k is any real number such that w. k = 0 is possible only when w = 0

Therefore, we can write $S^{\perp} = \{ v = (x, y, z, 0) : v \in \mathbf{R}^4 \}$

Observe that S is of dimension 1 and S^{\perp} is of 3 such that their sum is the dimension of \mathbb{R}^4 .

Step-3

Assuming $S^{\perp} = U$, we follow that U is of dimension 3 and so, U^{\perp} is of dimension 1 and thus, $U^{\perp} \subseteq (S^{\perp})^{\perp}$

In other words, $S \subseteq (S^{\perp})^{\perp} \hat{a} \in [\hat{a} \in (1)]$

On the other hand, S spans all the vectors of the form (0,0,0,k) and $(S^{\perp})^{\perp}$ contains vectors of the form (0,0,0,k)

Therefore, $(S^{\perp})^{\perp} \subseteq S$ $\hat{a} \in \hat{a} \in$

Putting (1) and (2) together, we get $(S^{\perp})^{\perp} = S$