Predicción del impacto de diferentes medidas de cuarentena utilizando un modelo S-E-I-H-R-D

Julio Benavides, Joaquín Escobar-Dodero, Daniel Pons & Fernando Mardones

Fernando Mardones Escuela de Medicina, PUC

Equipo colaborativo

Joaquín Escobar-Dodero Univ. of Minnesota

Daniel Pons Depto. Matemáticas, UNAB

Julio Benavides Fac. Cs. de la Vida, UNAB

Modelo: S-E-I-IS-H-R-D tiempo discreto

$$b(t) = b_{min} + (b_0 - b_{min})\{1 - 1/(1 + \exp[-\theta(t - t_b)])\}$$

Turchin 2020, reporte M. Lima

Parámetros del modelo para Región Metropolitana

- Datos hasta el 14 de abril
- Parámetros fijos:
 - Pop RM = 7.112. 808
 - Días expuestos (latentes)= 1/g = 5 días (Lauer et al. 2020. Liu et al. 2020, Zheng et al.)
 - $I \rightarrow IS = ps = 0.75$ (Mizumoto et al. 80-85%)
 - Tasa de Hospitalización de IS = 0.14 (Dong et al. 2020)
 - Mortalidad de hospitalizados= 1 %
 - Tasa de recuperación de I (y1) o IS (y2) = 0.09 (11 días de recuperación)
 - Tasa de recuperación de Hospitalizados = y3 = 0.1= 10 días promedio de hospitalización
 - Io= 20 infectados al inicio (Si número muy bajo, Ro de inicio muy alto)
- Parámetros estimados por método 'Least Square' sobre curva acumulada de casos y estimación de b_o y θ 'refinada' con función nls de R:
 - $b_o \sim 0.74$, $R_o \sim 4$, conforme a Majumder *et al.*, 2020 ; Anastasopoulou *et al.*, 2020; Xu *et al.*, 2020 ; Zhuang *et al.*, 2020 $t_b \sim 23$, $\theta = 0.46$, bmin =0.07

$$b(t) = b_{min} + (b_0 - b_{min})\{1 - 1/(1 + \exp[-\theta(t - t_b)])\}$$

Escenario actual proyectado por nuestro modelo

Reducción de Beta por reducción de movilidad y "contención de sintomáticos"?

Evolución de Beta

Ministerio: 'Cuarentena total, las personas quedan con prohibición de salir de su casa, solo con permisos especiales'.

Ministerio: "Cierre colegios/Ues/comercios"

Ministerio: "Cuarentena alternante de 15 días con cierre colegios"

Ministerio: 'Cuarentena alternante de 15 o 30 días ?'

Ministerio: 'Cuarentena alternante de 15 días SIN cierre colegios'

Ministerio: 'Una comuna/región entra en cuarentena cuando casos llegan a 4 / 10.000'

Ministerio: 'Una comuna/región entra en cuarentena cuando casos llegan a 4 / 100.000'

Conclusión: Solo mantener medidas actuales (implementadas hasta 13 abril) o aumentarlas para bajar la tasa de transmisión permitirían 'aplanar' epidemia

Comparación estrategias implementadas el 20 abril

Comparación estrategias implementadas el 04 Mayo

Recomendaciones para Ministerio de nuestro modelo (con toda la incertidumbre asociada)

- > Si el modelo capta correctamente la situación actual, una cuarentena total que reduciría la tasa de contacto actual de 10 veces no parece modificar significativamente la epidemia
- > Ni solo cerrar solo colegios/comercios ni Cuarentenas Alternantes permiten 'aplanar la curva'
- Cuarentena alternante cada 15 días con cierre de colegios disminuye epidemia (mejor que cuarentena cada 30 días) pero no logra 'aplanar la curva'
- Mantener medidas actuales (implementadas hasta 13 de abril) por lo menos hasta mediados de mayo, sin relajar las cuarentenas y con el escenario 'más optimista', podría llevar a un 'aplanamiento de la curva' en mayo sin saturación de hospitales

Principales limitaciones del modelo

 Escenario muy optimista? Modelo no incluye subnotificación ni detección variable

• Entender mejor el Beta y como se puede disminuir:

Beta $\approx \frac{\text{Tasa de contacto de la pop *Probabilidad de Infectados de transmitir}}{\text{Barreras para evitar la transmisión (e.g. mascarillas)}}$

- Modelo por comuna y estructura de edades
- Parámetros fijos del modelo inciertos para Chile:
 - Probabilidad de caso sintomático
 - % pacientes hospitalizados
 - Duración hospitalización y si esta aumentará cuando saturen los hospitales.

Gracias

DISTANCIA SOCIAL EN PUERTO MONTT

Predicción del impacto de diferentes medidas de cuarentena utilizando un modelo S-E-I-H-R-D

Julio Benavides, Joaquín Escobar-Dodero, Daniel Pons & Fernando Mardones

