

### sommaire









contexte

1er essais généralisation conclusion









# Le contexte

Agrandissement de la base de données et difficulté à référencer les nouveaux pensionnaires



# problématique

Comment automatiser la reconnaissance des pensionnaires de l'association grâce au Deep Learning?







#### premiers essais

D'un CNN from scratch au transfer learning





# ETape par étape





#### préparation

Data augmentation : où comment obtenir artificiellement des données

#### CNN From SCratch

A la découverte des réseaux de neurones convolutionnels

#### **transfer Learning**

Le transfert de connaissance pour améliorer les performances

## CHOIX DU modèle

Analyse des résultats avant généralisation







#### Data Augmentation

- Génération (artificielle) d'un nombre plus importants d'images pour l'apprentissage
- Gestion des cas où l'image n'a pas été uploadé dans le bon sens



Exemple de data augmentation

COOL

WOOF

RRR



1,400%,



# convnet : Résultats

#### sans



53 sec. Précision : 33%

#### AVEC



105 sec. Précision : 43%







### transfer Learning: Résultats













76 sec.

Précision: 94%



#### **Resnet 50**

57 sec.

Précision: 90%



Précision: 100%



#### **Inception V3**

54 sec. Précision: 94%



# en Bref...

• Amélioration des performances sur 7 races

400%

Like

- Temps d'entraînement légèrement supérieur à CNN from Scratch
- Peu d'overfitting/underfitting





# généralisation

Inception V3 sur 120 races



RR

#### Inception v3: Architecture

- Développé en 2015.
- Environ 300 couches
- Meilleure rapport temps/performance
- Plus léger pour le déploiement (même si la version actuelle est de 86 Mo)







#### Résultats après entraînement

- 720 sec. (soit environ 12 min.) + 753 sec. (soit environ 12 min.)
- Précision :

COOL

RR

RR

- o 80% sur le jeu de validation
- o 77% sur le jeu de test







Mettre notre modèle dans un programme facile d'utilisation





# outils utilisés





Modélisation















#### ET La suite...?



- Acquisition de données représentatives de la réalité du refuge
- Vérification des races les plus présentes en refuge
- Traitement des races croisées
  ? (Souvent présentes dans les refuges)



 Généralisation à d'autres espèces ? (Chats, lapins, etc.)





# Merci

Avez-vous des questions ? cecile.gltslmcs@protonmail.com cecileguillot.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**Please keep this slide for attribution

