XARXES (GEINF) CURS 2015/16 Recuperació del segon examen parcial teoria i problemes (10 de febrer de 2016)

Nom:	_	
DNI:	_	
La duració de l'examen és d'1.5 hores. No es poden utilitzar apunts.	/ (

Test (5 punts) OPCIÓ A

Una resposta correcta suma 0.500 punts, una incorrecta resta 0.125 punts, i una no contestada suma zero. Fes servir la taula que tens a sota (les respostes que no estiguin a la taula no es comptaran).

	R	esposte	es	
1)	а	b	С	d
2)	а	b	С	d
3)	а	b	С	d
4)	а	b	С	d
5)	а	b	С	d
6)	а	b	С	d
7)	а	b	С	d
8)	а	b	С	d
9)	а	b	С	d
10)	а	b	С	d

- 1) Quant al protocol HTTP, quina és CERTA?
 - a. Tots els camps de la capçalera dels missatges HTTP estan escrits en ASCII.
 - b. Quan s'ha acabat la transferència d'objectes HTML entre un client i un servidor HTTP, les connexions TCP establertes entre ells sempre es tanquen de seguida (sempre són connexions "no persistents").
 - c. Els missatges HTTP s'envien a través d'UDP.
 - d. Un servidor HTTP ha d'escoltar peticions forçosament en el número de port TCP 80.
- 2) Quant a les xarxes Ethernet i Wi-Fi, quina és FALSA?
 - a. A les xarxes *Ethernet* actuals (amb switchs i full-duplex) no hi ha col·lisions mentre que a les xarxes Wi-Fi sí que n'hi ha.
 - b. Donada una targeta *Ethernet* i una altra Wi-Fi, les seves adreces tenen el mateix format (IEEE EUI-48), però tot i ser xarxes diferents, segur que aquestes dues adreces no són iguals.
 - c. Una xarxa Ethernet i una xarxa Wi-Fi només es poden unir a través d'un router IP.
 - d. Les interfícies Ethernet d'un switch no tenen adreça però la interfície Wi-Fi d'un Access Point sí
- 3) En una xarxa de commutació de paquets amb circuit virtual (VC), quina és FALSA?
 - a. Abans d'enviar-se paquets d'informació d'un determinat flux, cal que les taules de VCs dels commutadors del camí que es seguirà, tinguin una entrada corresponent a aquest flux.
 - b. Les taules d'encaminament es consulten durant la creació (l'establiment) d'un VC.
 - c. Per reenviar els paquets d'informació d'un flux, els commutadors no consulten les taules d'encaminament sinó les taules de VCs.
 - d. Els paquets d'informació porten el mateix identificador de VC a tots els enllaços del camí.
- 4) Una xarxa de commutació de circuits amb TDM (*Time Division Multiplexing*) digital síncrona proporciona circuits de 3 Mbps. Quina és FALSA?
 - a. A cada enllaç hi ha un senyal digital amb una velocitat de transmissió múltiple de 3 Mbps.
 - b. A cada enllaç hi viatja un senyal digital amb una seqüència de símbols digitals dividida en "trossos", i per transportar un flux se li assigna un d'aquests trossos a cada enllaç del camí.
 - c. En un determinat enllaç la trama TDM té una duració de 3 ms i està formada per 3 canals temporals de 3000 bits cadascun.
 - d. Un circuit és una "concatenació" de canals temporals, un a cada enllaç del camí escollit.

- 5) Quant a les xarxes de difusió, quina és FALSA?
 - a. Hi ha una línia de transmissió única i permanent que les estacions comparteixen.
 - b. Quan una estació envia un missatge, aquest arriba a les altres estacions.
 - c. Les estacions comparteixen la línia de transmissió mitjançant una tècnica d'accés múltiple.
 - d. No existeix cap tècnica d'accés múltiple en què es sàpiga prèviament que l'enviament d'un missatge no coincidirà amb altres enviaments d'altres estacions, i que per tant arribarà al destí.
- 6) En una xarxa Wi-Fi amb una velocitat de transmissió de 54 Mbps, on $t_{AT} \cong T_{ix}$ (t_{AT} és el temps d'anada i tornada entre estació i Punt d'Accés, i T_{ix} és el temps de transmissió d'un paquet d'informació), quina és FALSA?
 - a. Si només una estació transmetés, la velocitat efectiva o throughput que rebria seria 54 Mbps.
 - b. Si hi hagués tres estacions transmetent alhora, la velocitat efectiva o *throughput* que rebria cadascuna seria inferior a 18 Mbps, ja que possiblement hi haurien col·lisions, esperes, etc.
 - c. La velocitat efectiva o *throughput* és el valor mig de la velocitat dels paquets rebuts amb "èxit" durant un determinat període de temps.
 - d. Com que una xarxa Wi-Fi utilitza la tècnica CSMA/CA (*Carrier Sense Multiple Access / Collision Avoidance*), això garanteix que la velocitat efectiva o *throughput* que aconsegueix una estació és sempre de 54 Mbps, independentment del trànsit.
- 7) En una estació E un usuari executa la comanda "ping www.udg.edu". Quina és FALSA?
 - a. L'usuari vol comprovar la connectivitat a nivell de xarxa entre l'estació E i l'estació de nom www.udg.edu, i la seva qualitat (temps i pèrdues d'anada i tornada).
 - b. A l'estació E l'aplicació ping primer "fa de client DNS" per resoldre el nom www.udg.edu, i després envia periòdicament un paquet a l'estació de nom www.udg.edu, i llavors espera rebre un paquet de resposta.
 - c. A l'estació de nom www.udg.edu, un altre usuari ha engegat un servidor de ping que espera rebre un paquet, i quan el rep d'E, li envia un paquet de resposta.
 - d. Els paquets que s'intercanvien E i l'estació de nom www.udg.edu són paquets ICMP (*Internet Control Message Protocol*) de tipus *echo request* i *echo reply*, dins paquets IP amb #protocol 1.
- 8) Un prefix de xarxa IP de longitud 23 bits s'escriu /23 o bé, en forma de màscara, s'escriu així:

a. 255.255.254.0

c. 255.255.255.1

b. 255.255.255.128

d. 255.255.255.0

9) Després d'associar-se a la xarxa Wi-Fi de la figura, l'estació H2 engega un Client (C) DHCP (*Dynamic Host Configuration Protocol*) que parla amb el Servidor (S) DHCP d'H1. Quina és FALSA?

- b. A la figura, el S (o bé un DHCP *relay agent*) està a la mateixa xarxa IP on arriba H2, però si estigués en una altra (és a dir, més enllà del *router*), també funcionaria.
- c. Els paquets que s'envien el C i el S són paquets DHCP *Discover*, *Offer*, *Request*, ACK, etc., dins paquets UDP amb número de port 67 i 68, dins paquets IP amb número de protocol 17.
- d. Com que H2 encara no té @IP, i el C no sap l'@IP del S, C i S es comuniquen fent *broadcast* IP a la xarxa local (@IP destí 255.255.255.255), i per tant tothom rep els paquets DHCP.
- 10) Suposa que la taula d'encaminament del teu ordinador ("route print" en Windows i "route -n" en GNU/Linux) és la següent:

destí	stí següent inte			
84.88.154.0/23	directe	84.88.154.37		
resta	84.88.154.1	84.88.154.37		

Quina és FALSA?

- a. L'adreça IP del teu ordinador és 84.88.154.37.
- b. La xarxa IP on està el teu ordinador té el prefix 84.88.154.0/23 i un rang de 512 adreces.
- c. Un paquet IP amb adreça destí 84.88.155.16 s'enviarà a l'estació destí a través del *router*.
- d. 84.88.154.1 és l'adreça de la interfície del router que uneix la teva xarxa amb la resta d'Internet.

Exercici (5 punts)

La xarxa d'una organització (veieu la figura) està formada per les estacions E1, E2, ...E9, els commutadors *Ethernet* S1, S2 i S3, i els *routers* R1, R2 i R3, units entre si per línies sèrie (amb el protocol *Point-to-Point Protocol* o PPP). Les adreces MAC de totes les interfícies es troben a les taules de sota.

El *router* R2 uneix la xarxa de l'organització a la resta d'Internet. La seva interfície R2₄ és ADSL, té l'adreça IP 31.42.53.133, la màscara 255.255.255.128 i un únic "següent" *router* d'adreça IP 31.42.53.189. Els prefixos de cada xarxa IP de l'organització es troben a la figura.

Es demana el següent:

- a) Quantes xarxes IP hi ha a l'organització? Qui en forma part?
- b) Escriviu el rang d'adreces IP de cada xarxa IP.
- c) Feu l'assignació de les adreces IP (feu servir la notació @IPE1, @IPR1, etc.).
- d) Escriviu les taules d'encaminament IP de l'estació E4 i del *router* R2, segons el criteri del camí més curt mesurat en nombre de salts. Feu servir el format [destí, següent, interfície], i indiqueu tant el nom (és a dir, x1, E1, R1, etc.) com l'adreça corresponent.
- e) Suposeu que les taules dels commutadors S1, S2 i S3 estan totalment completes, i escriviu el contingut de la taula de S1. Feu servir el format [destí, interfície], i indiqueu tant el nom (és a dir, E1, R1₁, etc.) com l'adreça corresponent.
- f) Suposeu que darrerament l'estació E4 només ha enviat paquets IP a E6, E1 i E8, i escriviu el contingut de la seva taula ARP. Feu servir el format [@IP, @MAC], i indiqueu tant el nom (és a dir, E1, R1, etc.) com l'adreça corresponent.
- g) En el supòsit dels apartats anteriors, expliqueu com es transporta un paquet IP des de l'estació E4 fins a l'E8, és a dir, expliqueu com actuen les estacions i dispositius de xarxa implicats (commutadors i *routers*; consulta en taules; a quines estacions arriba un paquet, etc.), i dibuixeu els paquets IP i ARP que es generen (amb adreces, etc.; feu servir la notació @IPE1, @IPR1, @MACE1, @MACR1, etc.).

NOTA:

- Els commutadors S1, S2 i S3 no són dispositius de xarxa gestionables remotament.
- Feu servir la següent notació: @IPx1 per al prefix de la xarxa IP x1, @IPE1 per a l'adreça IP (@IP) de l'estació E1, @IPR1₁ per a l'@IP de la interfície 1 del *router* R1, @MACE1 per a l'adreça MAC (@MAC) de l'estació E1, @MACR1₁ per a l'@MAC de R1₁, etc.
- El format "resumit" d'un paquet Ethernet II és

altres | @destí | @origen | type | info | CE

on "type" indica el protocol usuari i "info" és el paquet del protocol usuari (IP, ARP, etc.).

- El format "resumit" d'un paquet IP (v4) és

altres | @origen | @destí | #protocol | info | CE |,

on "#protocol" indica el protocol usuari i "info" és el paquet del protocol usuari (TCP, UDP, etc.).

- El format "resumit dels paquets ARP és

altres | tipus | @MACorigen | @IPorigen | @MACdestí | @IPdestí

on "tipus" indica el seu significat (petició o resposta).

- El format "resumit" d'un paquet PPP és

altres | protocol | info | CE ,

on "protocol" indica el protocol usuari i "info" és el paquet del protocol usuari (IP, LCP, etc.).

Quines xarxes IP hi ha? (i)

Una xarxa IP és un conjunt d'interfícies (de nodes, és a dir, hosts o routers) que tenen un mateix prefix d'@IP...

Quins "elements" tenen capa IP? Estacions i routers, és a dir, les estacions Ex i els router Rx. A sota d'IP, tots tenen una capa de xarxa Ethernet o PPP o ADSL. Recordeu que cada capa de xarxa té les seves pròpies adreces de xarxa, p.e., a Ethernet, les adreces MAC (IEEE 802 EUI-48).

Quins "elements" no tenen capa IP? Els switchs Ethernet Sx. A més un switch no té adreça MAC. Dit això, si un switch fos configurable remotament, llavors sí tindria una @IP, capa IP, etc., i una @MAC.

Quines xarxes IP hi ha? (ii)

Rang d'adreces IP de cada xarxa IP (i)

Rang d'adreces IP de cada xarxa IP (ii)

Assignació d'adreces IP

Les adreces d'un rang es poden assignar a interfícies de hosts i routers de cada xarxa IP com es vulgui, excepte 2: la primera (prefix+0s) indica la xarxa IP (p.e., 192.168.4.0 a la xarxa x3) i l'última (prefix+1s) indica broadcast a la xarxa IP (p.e., 192.168.4.0 a la xarxa x3) i l'última (prefix+1s) indica broadcast a la xarxa IP (p.e., 192.168.4.0 a la xarxa x3) i l'última (prefix+1s) indica broadcast a la xarxa x3) i l'última (prefix+1s) indica broadcast a la xarxa x3) i l'última (prefix+1s) indica broadcast a la xarxa x3) i l'última (prefix+1s) indica broadcast a la xarxa x3) i l'última (prefix+1s) indica broadcast a la xarxa x4.

- P.e., una possible assignació seria:
 - (x1): @IPR1₁ = 143.26.60.1 @IPE1 = 143.26.60.2, @IPE2 = 143.26.60.3, @IPE3 = 143.26.60.4
 - (x2): $@IPR2_1 = 143.26.62.65$ @IPE4 = 143.26.62.66, @IPE5 = 143.26.62.67, @IPE6 = 143.26.62.68
 - (x3): @IPR3₁ = 143.26.64.1 @IPE7 = 143.26.64.2, @IPE8 = 143.26.64.3, @IPE9 = 143.26.64.4
 - (x4): @IPR1₂ = 143.26.104.1, @IPR2₃ = 143.26.104.2
 - (x5): @IPR1₃ = 143.26.104.5, @IPR3₂ = 143.26.104.6
 - (x6): @IPR2₂ = 143.26.104.9, @IPR3₃ = 143.26.104.10

(R2₄ no forma part d'aquestes xarxes; ens diuen que té @IP 31.42.53.133)

Taules d'encaminament IP d'E4 i R2

Taules d'encaminament IP: E4

Ei! El switch Ethernet S2 de la xarxa x2 no en sap d'IP (no té capa IP 1), sinó només sap Ethernet! Té una taula [destí, interfície] amb les 4 @MAC de R2, E4, E5 i E6!

si el destí és algú de la meva xarxa, el lliurament és directe: següent = destí ("directe") Són R2₁, E4, E5 i E6, i també la resta d'@lPs "Iliures" del rang de 64 @lP d'x2 ²

si el destí és algú altre, el lliurament és indirecte via router: següent = router, (la interfície del router a la meva xarxa)

64 destins 2³² - 64

1	estació E4								
	destí	següent	interfície						
	x1 (143.26.62.64/26)	directe	E4 (143.26.62.66)						
	resta	R2 ₁ (143.26.62.65)	E4 (143.26.62.66)						

¹ De fet, si fos un *switch* configurable remotament, llavors sí tindria una @IP, capa IP, etc., i també una @MAC... Es modelaria com una "nova" estació, p.e. "E10", connectada al *switch*

Taules d'encaminament IP: R2

A la resta d'Internet hi ha moltíssimes xarxes IP unides per routers... Entre elles la xarxa IP on està R2₄: en diem la xarxa xz, és ADSL, la formen R2₄, potser altres estacions i la interfície d'un router que p.e., en diem Rz₄

@IPR2₄ = 31.42.53.133, mask 255.255.255.128 ⇒ xarxa xz: 31.42.53.128/25 Hi ha un únic "següent" *router* Rz amb @IPRz₁ = 31.42.53.189

	router R2		
destí	següent	interfície	
x2 (143.26.62.64/26)	directe	R2 ₁ (143.26.62.65)	
x4 (143.26.104.0/30)	directe	R2 ₃ (143.26.104.2)	
x6 (143.26.104.8/30)	directe	R2 ₂ (143.26.104.9)	
x1 (143.26.60.0/24)	R1 ₂ (143.26.104.2)	R2 ₃ (143.26.104.2)	F
x3 (143.26.64.0/23)	R3 ₃ (143.26.104.6)	R2 ₂ (143.26.104.9)	F
x5 (143.26.104.4/30)	R1 ₂ (143.26.104.2)	R2 ₃ (143.26.104.2)	7
xz (31.42.53.128/25)	directe	R2 ₄ (31.42.53.133)	
resta	Rz ₁ (31.42.53.189)	R2 ₄ (31.42.53.133)	

Per R3 és més llarg Per R1 és més llarg O bé per R3

² Recordeu que les @IP "Iliures" cap altra xarxa IP les pot fer servir

Taula del switch S1

... quan la taula de S1 està plena

Les taules indiquen la "interfície" (port) on es troba una estació "destí", és a dir, la "interfície" a la qual cal reenviar un paquet dirigit a "destí"

La taula local ARP d'E4...

... si darrerament l'estació E4 només ha enviat paquets IP a E6, E1 i E8

Si darrerament l'estació E4 només ha enviat paquets IP a E6, E1 i E8, la seva taula local ARP només conté les entrades corresponents a E6 i R2₁

	estació E4					
	@IP	@MAC				
E6	E6 (143.26.62.68)	E6 (00-34-D6-11-AB-6D)				
R2 ₁	R2 ₁ (143.26.62.65)	R2 ₁ (00-1D-60-EE-4F-5F)				

Fixeu-vos també que a la taula local ARP de R1 hi haurà l'entrada corresponent a E1, i que a la taula local ARP de R3 hi haurà l'entrada corresponent a E8...

Transport d'un paquet IP d'E4 a E8 (i)

Transport d'un paquet IP d'E4 a E8 (ii)

- La capa superior "SUP" (p.e., TCP, UDP, etc.) usuària de la capa IP d'E4 vol enviar un paquet "paqSUP" a l'"@IPdestí" = @IPE8...
 - la capa superior "SUP" crida IPenv(@IPE6, "paqSUP"); la capa IP construeix un paquet amb @origen=@IPE4, @destí=@IPE8, #prot="SUP", info="paqSUP", etc., i consulta la taula d'encaminament IP per saber "següent": per @IPE8 = 143.26.64.3 la 2a línia aplica ("resta"), i llavors següent = R2₁, amb @IPR2₁ =143.26.62.65; ara la capa IP haurà de cridar ETHenv(@MACR2₁, "paqIP") però no sap l'@MACR2₁...
 - per descobrir-ho la capa IP crida a ARPresol(@MACR2,?,@IPR2,); la capa ARP ho busca primer a la seva taula local ARP, i si no hi fos es faria servir ARP... En aquest cas SÍ hi és:

@IPE6 (143.26.62.68) ---- @MACE6 (00-34-D6-11-AB-6D) @IPR2₁ (143.26.62.65) ---- @MACR2₁ (00-1D-60-EE-4F-5F)

 la capa IP crida ETHenv(@MACR2₁,"paqIP"); la capa Ethernet construeix un paquet amb @origen=@MACE4, @destí=@MACR2₁, type="IP", info="paqIP", etc., i l'envia...

paquet IP sobre Ethernet		altres	@c	rigen	@destí		#protocol		informació	6 CE
Sobie Linei	net			•••••						
	altres	@des	tí	@ori	gen	typ	е	info	rmació	CE
"SUP", "IP", etc., de fet, són números que ho indiquen altres @IPE4 @IPE8 "SUP" "paqSUP" CE										
números que ho indiq	aiti es									
	@MAC	R2 ₁	@MA		"IF		l	aqIP"	CE	

 el paquet Ethernet arriba al switch S2, que llegeix que l'@destí = @MACR2, consulta la seva taula, i el reenvia només a través de la interfície que porta a R2, (S2,)

Transport d'un paquet IP d'E4 a E8 (iii)

- El router R2 (via R2₁) rep el paquet Ethernet, el desencapsula, i extrau el paquet IP.
 Ha de reenviar un paquet IP dirigit a l'"@IPdestí" = @IPE8...
 - la capa IP consulta la taula d'encaminament IP per saber el "següent": per @IPE8 = 143.26.64.3 la 5a línia aplica ("xarxa x6"), i llavors següent = R3₃, amb @IPR3₃ = 143.26.104.10; ara la capa IP haurà de cridar PPPenv(R2₂, "paqIP")...
 - la capa IP crida a PPPenv(R2₂, "paqIP"); la capa PPP construeix un paquet amb protocol="IP", info="paqIP", etc., i l'envia via R2₂

el paquet PPP arriba al router R3 (a la interfície R3₃)

Transport d'un paquet IP d'E4 a E8 (iv)

- El router R3 (via R3₃) rep el paquet PPP, el desencapsula, i extrau el paquet IP. Ha de reenviar un paquet IP dirigit a l'"@IPdestí" = @IPE8...
 - la capa IP consulta la taula d'encaminament IP per saber el "següent": per @IPE8 = 143.26.64.3 la 1a línia aplica ("xarxa x3"), i llavors següent = directe, és a dir, següent = E8 (amb @IPE8 = 143.26.64.3), o sigui, directament al destí E8, via la interfície R3₁; ara la capa IP haurà de cridar ETHenv(R3₁, @MACE8, "paqIP") però no sap l'@MACE8...
 - per descobrir-ho la capa IP crida a ARPresol(@MACE8?,@IPE8); la capa ARP ho busca primer a la seva taula local ARP, i si no hi fos es faria servir ARP... En aquest cas Sí hi és:
 @IPE8 (143.26.64.3) ---- @MACE8 (00-16-B6-83-E4-51)
 - la capa IP crida ETHenv(R3₁, @MACE8, "paqIP"); la capa Ethernet construeix un paquet amb @origen=@MACR3₁, @destí=@MACE8, type="IP", info="paqIP", etc., i l'envia via R3₁

 el paquet arriba al switch S3, que llegeix que l'@destí = @MACE8, consulta la seva taula, i el reenvia només a la interfície que porta a E8 (S3₂)