Devoir à la maison nº 6

Problème 1 —

Pour tout entier naturel n, on considère l'équation différentielle

$$(\mathbf{E_n}): (x^2 - 1)y'' + 2xy' - n(n+1)y = 0$$

appelée équation de Legendre d'ordre \mathfrak{n} . Elle intervient très souvent lors de l'étude de phénomènes physiques comme la conduction de la chaleur. On recherchera des solutions de cette équation sur l'intervalle $\Omega =]-1,1[$.

Partie I – Résolution de (E₀)

- 1. Déterminer la solution générale de (E_0) sur l'intervalle Ω .
- 2. Trouver les solutions f de (E_0) telles que f(0) = 0 et f'(0) = 1.

Partie II – Résolution de (E₁)

- 1. Déterminer les solutions polynomiales non nulles de $(\mathbf{E_1})$. On pourra commencer par déterminer le degré d'une telle solution
- **2.** Soit y une fonction définie sur $\Omega =]-1,1[$. Pour tout x dans $\Omega^* = \Omega \setminus \{0\}$, on pose $z(x) = \frac{y(x)}{x}$.
 - a. Montrer que si y est solution de $(\mathbf{E_1})$ sur Ω , alors, z vérifie sur Ω^* une équation différentielle du second ordre, notée $(\mathbf{E_1'})$, que l'on précisera.
 - b. Établir l'existence de trois réels α , β et γ tels que

$$\forall x \in \Omega^*, \ \frac{4x^2 - 2}{x(x^2 - 1)} = \frac{\alpha}{x} + \frac{\beta}{x - 1} + \frac{\gamma}{x + 1}$$

- c. Résoudre (\mathbf{E}_1') sur chacun des intervalles]-1,0[et]0,1[.
- d. En déduire la solution générale de (E_1) sur l'intervalle Ω .

Partie III - Cas général

On note \mathcal{P}_n l'ensemble des solutions polynomiales de $(\mathbf{E_n})$ sur \mathbb{R} où n est un entier supérieur ou égal à 2. On considère une fonction polynômiale P définie sur \mathbb{R} par $P(x) = \sum_{k=0}^q \alpha_k x^k$ où $\alpha_0, \ldots, \alpha_q$ sont des réels et $\alpha_q \neq 0$.

- 1. Montrer que si $P \in \mathcal{P}_n$, alors q = n et $a_{n-1} = 0$.
- **2.** On suppose que $P \in \mathcal{P}_n$.
 - a. Trouver une relation de récurrence liant a_k et a_{k+2} .
 - **b.** Vérifier que $a_{n-2k-1} = 0$ pour tout entier naturel k tel que $2k + 1 \le n$.
 - c. Montrer que, pour tout entier naturel k tel que $2k \le n$, on a

$$a_{n-2k} = (-1)^k \frac{\binom{2n-2k}{n-2k}\binom{n}{k}}{\binom{2n}{n}} a_n$$

- **d.** En déduire \mathcal{P}_n .
- e. A titre d'exemple, préciser \mathcal{P}_4 .