計算機アーキテクチャ講義 ノート1

平成19年10月1日配布 今瀬 真

皙問

オフィスアワー: 授業のある月曜日16:30から17:00 事前にメールまたは授業終了後に予約をとること

メール: imase@ist.osaka-u.ac.jp

http://www.ispl.jp/~imase/lecture/comp-arch/2007/

開講日:10月1日、10月15日、10月22日、10月29日、11月12日、 11月19日、11月26日、12月3日、12月10日、12月17日、

1月7日、1月21日、1月28日、1月30日

試験: 2月11日(多分、教務係りからのアナウンスに従う事)

計算機アーキテクチャ講義

講義の目的:汎用計算機の構造を理解する。

利点:

- システム設計や組み込みプログラミングを行う上での素養となる。
- 通常のプログラミングでも、厳しい性能要求や高度なデバッグな どはアーキテクチャをしらないとできない。
- オペレーティングを理解する上で、必須の知識

講義の主眼

- 計算機のメンタルイメージをつける
- アーキテクチャの基本を正しく把握することにより、新しい技術に対する理解力を養う。現状の計算機のアーキテクチャを理解するのが目的でなく、何故そうなっているかを理解できる素養を身につける。

計算機アーキテクチャ講義

- 講義の進め方:下記の教科書に従って講義をすすめる。 授業中に教科書を引用するので、受講の際は教科書 を持参すること。
 - 「計算機アーキテクチャ」橋本昭洋著 昭晃堂 ISBN4-7856-2027-7
- 授業の内容はプリントを配布する。
- 講義の後は、教科書の該当する部分を読んで復習すること。教科書の内容をすべて説明しない。プリントで配布する部分の理解だけでよい。
- 成績:試験成績で判定(追試験は原則行わない)。病気などやむ経ない場合は実施するので、申し出ること。

O. 計算機の構成(復習)

- 1. 入力装置:キーボードやマイク、カメラなど
- 2. 出力装置:ディスプレー、プリンターなど
- 3. 補助記憶装置:ハードディスク、フロッピィディスク、CD-ROMなど。
- 4. 主記憶装置:メモリボード。語の1次元配列。機械語命令とデータを格 物
- 5. 中央処理装置: CPUボード。主記憶の機械語命令を取り出し制御装置に 格納し、その指令に従い演算や主記憶装置と演算装置の間のデータの やりとりなどを実行する。

専用回路 (関数)

- ALU(算術演算回路):AとBの信号から演算を行い結果をGに 出す。(CO~C6で演算の種類を指定)
- SEL(選択回路):2つの入力のどちらかを選択して出力する。
- シフタ(シフト回路):入力をシフトして出力する。
 - これらは、論理回路(入力を変換して出力する関数の機能) で構成されており記憶素子は含まれていない。
 - 例えば1ビットの加算器は下記のように構成されている。

○ :否定

: 論理積

: 論理和

同期式計算機のモデル

- 計算機は論理ゲートの集合(関数を実現する。一般に 論理回路と呼ぶ。)とフリップフロップの集合(記憶)で あり、各クロックの間に関数の計算が行われクロックの 立ち上がりで状態が変更される。
 - →一般に順序回路と呼ぶ

計算機の動作原理

- 計算機は1クロックサイクルの間にレジスタ→バス→専用回路→バス→レジスタの動作を行い。レジスタの状態を更新する。
- 命令はこの繰り返しにより実現される。(複数のクロックサイクルで機械語1命令が実行される。

実際の計算機は、高速化をはかるため、様々な工夫がなされている。 (計算機アーキテクチャの授業で習う)。


```
• 加減算の機械語命令の実行(SUBA GR0, adr, GR1)
  • step1: BAR ← PR, PR ← PR+1, R ←1 (命令の読み出し)
         tp sba | RM ------上記の動作を実現するために1とする信号の集合
  • step 2: R=1| → step2,
          R=0| IR \leftarrow BDR, BAR \leftarrow PR, PR \leftarrow PR+1, R = 1
                                 <u>(命令</u>のアドレス部の読み出し )
         sl tp sba l RM CLK=クロック OR ----- Rでクロックをとめて
                                            R=1の時はNOPを実現
  • step 3: R=1| → step3,
          R=0| WR ← BDR (アドレス計算 1)
         sw WS(=1) CLK=クロック∩R
  • step 4: BAR ← WR+GR1, R←1 (アドレス計算2)
         tal tw CO~C6 ta sba RM <------ CO~C6で加算を指定
   • step 5: R=1| → Phase 5, R=0| WR ← BDR
         sw ws CLK=クロック∩R ←------ C0~C6で減算を指定

    step 6: GR0 • FR ← GR0 – WR

         ta0 tw C0~C6 ta sf s0
```

1 はじめに

- 講義では、説明しない。難しいが、講義が終了した時点で読めばわかるはず。各自読んでおくこと。
- 情報の人なら常識として、vonNeumann, stored program computer, ENIAC, UNIVAC, IBM360, CDC6600, Amdahl などは知っておきべき。

2.1 データ語の構成

- 語長(処理の単位)とアドレス付けとは単位が異なる。
- 語長の決定要素:1語でどれだけのデータ/命令を表現できるか、
 - 長い: CPUのコスト高、1命令の実行速度の低下、無駄なメモリ領域の増加
 - 短い:1語で表現できないデータの発生頻度が増加し、 1つの演算を複数の命令で実行する必要がおこる(この場合は著しく速度が遅くなる。)

1語					
O番地	1番地	2番地	3番地		
4番地	5番地	6番地	7番地		
8番地	9番地	10番地	11番地		

2.2 数の表現

10進整数

- 4ビットで表現する。16通りの表現ができるが、そのうちのどれで10通りの数字をどう表現するかが問題。通常の計算機では提供されていない。
- BCD符号

 $0\rightarrow0000\ 1\rightarrow0001\ 2\rightarrow0010\ 3\rightarrow0011\ 4\rightarrow0100\ 5\rightarrow0101\ 6\rightarrow0110\ 7\rightarrow0111\ 8\rightarrow1000\ 9\rightarrow1001$

3余り符号

 $0 \rightarrow 0011 \ 1 \rightarrow 0100 \ 2 \rightarrow 0101 \ 3 \rightarrow 0110 \ 4 \rightarrow 0111 \ 5 \rightarrow 1000$

6→1001 7→1010 8→1011 9→1100

桁上げが通常の2進数加算器により自動的に生成

[問1] 3余り符号では、桁上げが、4ビットに通常の2進数加算器で自動的に生成されることを示せ。また、加算を行った結果を3余り符号とするためには、どのような補正が必要か?

演習 (10.2変更)

• 3余り符号系のコードで2+23を計算する。ただし、+2 単純な2進加算を意味する。

2のビット表現は0101 3のビット表現は0110

 $0101 + 20110 = 1011(8?) \rightarrow 1011-0011 = 1000(5)$

3余り符号系のコードで5+26を計算する。

5のビット表現は1000 6のビット表現は1001

 $1000 + 21001 = 10001 (*?) \rightarrow 0001 + 0011 = 10100(1)$

その桁の値: 桁上がりがある場合は3加算、桁上がりがない場合は3減算

2.2 数の表現(正整数)

正整数:nビット(1語)で0~2ⁿ-1の数を表現
 Xはnビットの系列(x_{n-1},x_{n-2},,x₀)x_i∈{0,1}

 $(X)_2 \equiv \sum_{i=0...n-1} [x_i \times 2^i]$

 $000001 \rightarrow 1 \quad 000010 \rightarrow 2 \quad \dots \quad 1111111 \rightarrow 2^{n} - 1$

- (X)_αはシステム α でのXが表現する数 ∈ Iを表す。 例えば、(000010)₂ = 2
- 逆に数 $a \in I$ のシステム α でのnビット系列 $\epsilon I_{\alpha}(a)$ で表す。 正整数表現は、下記のとおり表せる。

$$\begin{split} I_2(a) &\equiv (x_{n-1}, x_{n-2}, \; \dots, x_0) \\ &\text{such that } a = \sum_{i=0, \dots, n-1} x_i \times 2^i \; \; x_i \in \{0, 1\} \end{split}$$

2.2.1 数の表現(整数)

nビットで-2ⁿ⁻¹-1から2ⁿ⁻¹-1までを表現したい。

正負の整数はいくつかの表現法がある。

その基準:

- 正負の判定が容易(以下の例はすべて最上位ビットがO か1で正負が判定可能)
- 加(減)算回路の構成が簡単(加算回路と減算回路の2つを用意するのでなく一つの回路+ α で構成したい。できれば正整数の加算回路を流用したい。)

2進数の表現系(4ビットの場合)

数	8余り符号	符号付き	1の補数	2の補数
奴	系	絶対値系	系	系
7	1111	0111	0111	0111
6	1110	0110	0110	0110
5	1101	0101	0101	0101
4	1100	0100	0100	0100
3	1011	0011	0011	0011
2	1010	0010	0010	0010
1	1001	0001	0001	0001
0	1000	0000	0000	0000
-0		1000	1111	
-1	0111	1001	1110	1111
-2	0110	1010	1101	1110
-3	0101	1011	1100	1101
-4	0100	1100	1011	1100
-5	0011	1101	1010	1011
-6	0010	1111	1001	1010
-7	0001	1111	1000	1001
-8	0000			1000

2.2.2 数の表現(整数)

2ⁿ⁻¹余り符号系(X)_{EX}

- nビットで-2ⁿ⁻¹から2ⁿ⁻¹-1までを表現
- $(X=(x_{n-1},x_{n-2},...,x_0))_{EX} \equiv (X)_2 2^{n-1} = \sum_{i=0...n-1} [x_i \times 2^i] 2^{n-1}$ すなわち、 $I_{EX}(a) \equiv I_2(a+2^{n-1})$
- 符号:正数はx_{n-1}=1 負数はx_{n-1}=0
- 加算:正整数の加算を行い、桁上げありの場合は2ⁿ⁻¹加 算、桁上げなしの場合は2ⁿ⁻¹減算

以下では正整数の加算を*加算₂と*表現する。混同しない場合は省略することもある。

演習

2ⁿ⁻¹余り符号系 (X)_{EX}で下記の計算をせよ。 ただし、n=4

- 4+3 1100+21011→10111(桁上がりあり) 0111+21000→1111=(7)EX
- 4+(-2) 1100 +2 0110→10010 (桁上がりあり) 0010 +21000→1010 (2)EX
- 3+(-5) 1011 +2 0011→01110(桁上がりなし) 1110 -21000→0110 (-2)EX

2.2.2 数の表現(整数)

2ⁿ⁻¹余り符号系(X)_{FX}の計算例

- 4+3:1100+₂1011→0111(桁上がりあり)
 0111+₂1000→1111=(7)_{EX}
- 4+(-2):1100 +₂0110→0010 (桁上がりあり) 0010 +₂1000→1010 (2)_{FX}
- 3+(-5):1011 +₂0011→1110(桁上がりなし) 1110 -₂1000→0110 (-2)_{EX}

[用語]オーバフロー: 演算結果が取り扱える範囲の数より大きくなるアンダーフロー: 演算結果が取り扱える範囲の数より小さくなる[問2] 2ⁿ⁻¹余り符号系の加算演算でアンダーフローした場合(例えば4ビットの場合-7+(-6))、オーバフローした場合(例えば7+6)に、どのように検出できるか?[問3] 2ⁿ⁻¹余り符号系(X)_{EX}の加算: 正整数の加算を行い、桁上げありの場合は2ⁿ⁻¹加算、桁上げなしの場合は2ⁿ⁻¹減算で正しく計算できることを証明せよ。

2.2.2 数の表現(整数)

符号付絶対値系

- 最上位ビットで正負を表す
 - **0**010→2 **1**010→**-**2
- 加算X+Y(一方が正で他方が負)
- XとYの絶対値を比較し、大きい方から小さい方を引き、大きい方の符号をつける。
- 7+(-4)の例:
 - ○111と1100の絶対値を比較(前者が大きい)
 - 0111-,0100→0011(大きい方一小さい方)
 - 0011+20000→0011(大きい方の符号をつける)

<u>絶対値の比較をするには、減算を行う必要があり、一つの加算減算</u> <u>IC2回の演算が必要となるので、絶対値表現は計算機で使用さ</u> <u>れていない。</u>

2.2.2 数の表現(整数)

1の補数系

- nビットで-2ⁿ⁻¹+1から2ⁿ⁻¹-1までを表現
- 1の補数: $(X)_2$ の1の補数とは、 $2^n-1-(X)_2$ 。すなわち、すべてのビットを反転してえられる。
- 1の補数系:負の数を1の補数表現する。
 - x_{n-1}=0の時 (X)_{1C} = (X)₂

 $x_{n-1} = 1$ の時 $(X)_{10} \equiv -(2^{n-1}) + (X)_{20}$

すなわち a≥0の時 I₁₀(a) ≡I₂(a)、a<0の時 I₁₀(a) ≡I₂(a+2ⁿ-1)

- 符号:正数はx_{n-1}=0 負数はx_{n-1}=1
- 加算(X+Y): 加算を行い、最上位からの桁上げがあれば1加算
- 減算(X-Y):減数のすべてのビットを反転し(Y)、X+Yを計算

演習

• 3と-3を1の補数系で表現せよ(ただし、n=4)

3:0011(ビットの反転) → 1100: -3 -3:1100 → (ビットの反転) 0011:3

1の補数系で次の加算を行え(ただし、n=4)

- 3+(-2) 0011+21101 →10000(桁上げあり) →0001:1
- 3+2 0011+20010 → 00101(桁上げなし) → 0101:5
- - 3+(-2) 1100+21101 → 11001(桁上げあり) →1010:-5
- -3+2
 1100+20010→01110(桁上げなし)→1110:-1

2.2.2 数の表現(整数)

1の補数系演算の例

- 補数化 3:0011(ビットの反転) → 1100:-3
 - -3:1100 →(ビットの反転) 0011:3
- 加算例
 - 3+(-2):0011+,1101→0000(桁上げあり)→0001:1
 - 3+2:0011+,0010 →0101(桁上げなし)→0101:5
 - -3+(-2):1100+₂1101 →1001(桁上げあり) →1010:-5
 - - 3+ 2: 1100 +, 0010 →1110(桁上げなし) →1110:-1

[問4] 1の補数系演算でアンダーフローした場合(例えば4ビットの場合-7+(-6))、オーバフローした場合(例えば7+6)に、どのように検出できるか? [問5]1の補数系の加算が正しい結果をだすことを証明せよ。

2.2.2 数の表現(整数)

2の補数系

- nビットで-2ⁿ⁻¹から2ⁿ⁻¹-1までを表現
- 2の補数:(X)₂の2の補数とは、2ⁿ-(X)₂。すなわち、すべてのビットを反転し1を加算。してえられるX+1。
- 2の補数系:負の数を2の補数表現する。

 x_{n-1} =0の時 $(X)_{2C} \equiv (X)_2$ 、 $x_{n-1} = 1$ の時 $(X)_{2C} \equiv (X)_2 - 2^n$ すなわち $a \ge 0$ の時 $I_{2C}(a) \equiv I_2(a)$ 、a < 0の時 $I_{2C}(a) \equiv I_2(a+2^n)$

- 符号:正数はx_{n-1}=0 負数はx_{n-1}=1
- 加算: 加算。を行う。
- 減算(X-Y):減数のすべてのビットを反転し(Y)、X+Y +1を計算する

演習

• 3と-3を2の補数系で表現せよ(ただし、n=4)

3:0011(ビットの反転) → 1100(1加算) →1101: -3 -3:1101 →(ビットの反転) 0010 →(1加算)0011:3

2の補数系で次の加算を行え(ただし、n=4)

• 3+(-2) $0011+21110 \rightarrow 0001:1$

• 3+2 0011+20010 →0101:5

• -3+(-2) $1101+21110 \rightarrow 1011:-5$

• -3+2 $1101+20010\rightarrow1111:-1$

2.2.2 数の表現(整数)

2の補数系演算の例

- 補数化 3:0011(ビットの反転) → 1100 (1加算) → 1101: -3
 -3:1101 → (ビットの反転) 0010 → (1加算) 0011:3
- 加算例
 - $-3+(-2):0011+_21110\rightarrow0001:1$
 - $-3+2:0011+_{2}0010 \rightarrow 0101:5$
 - $-3+(-2):1101+_21110 \rightarrow 1011:-5$
 - $-3+2:1101+_{2}0010\rightarrow1111:-1$

[問6] 2の補数系の加算演算でアンダーフローした場合(例えば4ビットの場合-7+(-6))、オーバフローした場合(例えば7+6)に、どのように検出できるか?

[問7]2の補数系の加算演算が正しく計算できていることを証明せよ。

2.2.2 数の表現(シフト)

シフト

- <u>論理シフト</u>: nビットのビット系列を指定されたビット数だけ左右にシフト。空いた部分にはOがはいる。
- 算術シフト: 1ビット左シフトが2倍(kビット左シフトが2k倍)、右シフトが1/2倍(kビット右シフトが1/2k倍)となるようにシフト。
- 2の補数系の算術シフト 符号ビットを残し、左シフトは下位14ビットを左にシフトし最下ビットに0を挿入。右シフトは下位15ビットを右にシフトし、最上位ビットに符号ビットと同じ値を挿入。(n=16の時)

【問8】1の補数系に場合、算術シフトの条件を示せ。

演習

- 次の5ビットの2の補数表現について算術シフトを行え
- 00101を左1ビットシフト(2倍)

00101→01010

• 00101を右1ビットシフト(1/2倍)

00101→00010

• 11101を左1ビットシフト(2倍)

11101→11010

• 11101を右1ビットシフト(1/2倍)

11101→11110

2.2.2 数の表現(シフト)

「算術シフトとなっていることの証明」

 $X=(x_{n-1},x_{n-2},...,x_0):2の補数系の数、$

その左シフトを $X_L = (x_{n-1}, x_{n-3}, ..., x_0, x_L)$ 、右シフトの数を $X_R = (x_{n-1}, x_R, x_{n-2}, ..., x_0)$ とする。

- $(X)_{2C} = -x_{n-1} \times 2^{n-1} + \sum_{i=0...n-2} [x_i \times 2^i]$ より、 $(X_L)_{2C} = 2 \times (X)_{2C}$ が成立する条件は、 $-x_{n-1} \times 2^{n-1} + \sum_{i=0...n-3} [x_i \times 2^{i+1}] + x_L = 2 \times \{-x_{n-1} \times 2^{n-1} + \sum_{i=0...n-2} [x_i \times 2^i]\}$ $(x_{n-1} x_{n-2}) \times 2^{n-1} + x_L = 0$
- $n \ge 2$ より、 $x_{n-1} = x_{n-2}$ かつ $x_L = 0$ が成立する必要がある。これより、 $x_{n-1} \ne x_{n-2}$ の時は表現できないこと、および $x_L = 0$ となる。
- $(X_L)_{2C}$ =1/2× $(X)_{2C}$ が成立する条件についても、同様に $x_{n-1} = x_R$ かつ $x_0 = 0$ が得られる。

2.2.2 数の表現(符号拡張とアドレス計算)

符号の拡張とアドレス計算:

2の補数系のnを拡大するためには、符号ビットと同じ 値を上位ビットに付け足せばよい。

例1:0011(3)→00000011 例2:1010(-6)→11111010

[問9](10110101)。=181に(1110)。=-2を加算せよ。

2.2.2 実数の表現(浮動小数点数)

浮動小数点による表現と誤差

- 6.02×10²³のような表現(6.02を仮数、23を指数、10を指数 の底という。
- 一般には、下記のように表せる。計算機ではp、emin、emaxの値は 固定化していること(表現できる数が有限個)に注意。
 - $-\pm d_0.d_1d_2d_3...d_{p-1} \times \beta e$ t:t:t. $0 \le d_i < \beta e_{min} \le e \le e_{max}$
 - この実数値は、± (d₀+d₁*β⁻¹+d₂*β⁻²+ +d_{p-1}*β^{-p+1})*β^{-e}
 →誤差の問題が主課題
- d₀≠0の時、正規化されているという。
 - 正規化表現に限れば、一つの数の表現は一意に定まる。
 - ある値のeに対してに対して、 $1 \times \beta$ ^e以上 $1 \times \beta$ ^{e+1}より小さい実数の範囲で等間隔の β ^pの数が表現できる。実数をもっとも近い浮動小数点表現で近似する。

演習

次の浮動少数点表現を10進実数で表現せよ。

- 2. 102×3^2 ($\beta = 3$ e=2 p=4) 2. 102×9 = (2 +1·(1/3)+0·(1/9)+2·(1/27)) × 9 = 2·9 +1·3 +0·1 +2·(1/3) = 21+2/3=21.6666...
- 1. 1101 \times 2¹ (β = 2 e=1 p=5)

```
1. 1 1 0 1 × 2

= (1+1*(1/2) + 1*(1/4) + 0*(1/8) + 1*(1/16)) \times 2

= 2+1 + 1*(1/2) + 0 + 1*(1/8)

= 3+5/8=3. 6 2 5
```

2.2.2 数の表現(浮動小数点数)

- 表現できる数の間隔は β e+1-pとなり、
- これをulp(units in the last place)とよぶ。

演習

次の浮動少数点表現のULPとその表す数の範囲を示せ。

• 2. 102×3^2 ($\beta = 3$ e=2 p=4)

ULP=(2.102-2.101) × 9 =0.001×9=1×(1/27)×9+=1/3 数の範囲:2.102×9-(1/3)・(1/2)=21.5以上 2.102×9+(1/3)・(1/2)=21.8333...より小さい

• 1. 1101 \times 2¹ (β = 2 e=1 p=5)

ULP= (1.1101-1.1100) × 2 = 0.0001×2= 1×(1/16)×2+=1/8 数の範囲:1.1101×2-(1/8)・(1/2)=3.5625以上 1.1101×2-(1/8)・(1/2)=3.6875より小さい

2.2.2 数の表現(浮動小数点数)

- 絶対誤差=0.5 × β e+1-p
 - (元の実数値と表現された数の差の最大値)
- 相対誤差= 0.5 × β e+1-p/(元の実数値)
 <0.5 × β e+1-p/(1.000...) × β e
 - $=(\beta/2) \times \beta^{-p} (\overline{\gamma}) \times \beta^{-p})$
 - (元の実数値と表現された数の差の最大値)/(元の実数値)
 - β e < (元の実数値) < β e+1
- 表せる最小値は β emin、Oが表せない。 $e=e_{min}$ の場合だけ正規化でない表現を許す(gradual underflow)ただし、相対誤差はOに近づくにつれて大きくなる。
- 【問10】 β=10、p=3の時、真の値12.35を1.24×10¹で表した時、絶対誤差はいくらか?また相対誤差はいくらか?

gradual underflow e=eminの場合だけ正 規化でない表現を 許す

これでも相対誤差は0 に近づくにつれて 急速に大きくなる。

• <u>知見</u>:bが非常に大きな数の時。 $a \div b \times c$ とするよりは、 $a \times c \div b$ とする方が相対誤差が小さくな る。浮動小数点表現はマシンに より異なり(emin、emax、pのと り方)、同じプログラムを異なる 計算機で実行した場合に、異な る結果がでることがある。

2.2.2 数の表現(浮動小数点数)

IBM System360の浮動小数点形式

 β=16、d₀=0、d₁≠0、p=7、e_{min}=-64、e_{max}=63 を32ビットで表現。

図 2.3 System 360 の浮動小数点数形式 (単精度) 仮数部は16進6桁で,小数点の位置は最上位桁の左側。指数部は64余り符号で-64~+63の範囲の値を表せる。

IBM System360の浮動小数点形式

- 特徴:2つの数の絶対値の大小関係を、32ビット中の符号を除く31ビットを整数とみて比較することにより可能。
 - 本文では、β として2をとるか16をとるかの利害得失について述べている。 自習しておくように。

[問11] $\beta = 2, p = 24 \ge \beta = 16, p = 6$ の場合についてマシンエプシロンを求めよ。

図 2.3 System 360 の浮動小数点数形式 (単精度) 仮数部は16進6桁で,小数点の位置は最上位桁の左側。指数部は64余り符号で-64~+63の範囲の値を表せる。

2.2.2 数の表現(浮動小数点数)

IEEE標準の浮動小数点形式

- 単精度: β = 2、d₀=1、p=24、e_{min}=-126、e_{max}=1 27を32ビットで表現。
- 正規化浮動少数点のみを対象とする
 - 仮数部の精度は24ビットであるが23ビットで表現可能
- | e_{min} | < e_{max}
 - 小さい値2^{emin}の逆数がオーバフローしない
- 符号:1ビット+指数:8ビット+仮数部23ビット=32ビット
- 指数は127余り符号で、-127と128は特殊な値を定義(表2.3)

IEEE標準の浮動小数点形式:特殊な表現を使う

表 2.3 IEEE 754 における特殊値の表現

指数部	仮 数 部	意 味
$e = e_{\min} - 1$	f = 0	± 0
$e = e_{\min} - 1$	$f \neq 0$	$0.f \times 2^{e_{\min}}$
$e_{\min} \le e \le e_{\max}$	f	$1.f \times 2^e$
$=e_{\max}+1$	f = 0	±∞
$e = e_{\text{max}} + 1$	$f \neq 0$	NaN

IEEE標準の浮動小数点形式

- NaN(表現不能の数): 0÷0や√-1を求めることがあっても、処理を中断せずにすむ。
- ±∞: 0でない数を±0で割った場合に返される。
- ±0: +0=-0の判定は成立と規定できる。1/x=1/yが成立してもx=yは必ずしも成立しない。1/(1/X)=Xが成立。
- 0.f×2^{emin}: 0と1.0×2^{emin}の間の数について、1.f×2^{emin}と同じ ULPで表現

指数部	仮 数 部	意味
$e = e_{\min} - 1$	f = 0	± 0
$e = e_{\min} - 1$	$f \neq 0$	0.f×2*****
$e_{\min} \le e \le e_{\max}$	f	1.f×2e
$e = e_{\text{max}} + 1$	f = 0	±∞
$e = e_{max} + 1$	$f \neq 0$	NaN

2.2.2 数の表現(浮動小数点数)

IEEE標準の浮動小数点形式

表 2.4 NaN を生じる演算 (ただし REM は剰余を求める演算子)

***	演 算	例
	7-16	$\infty+(-\infty)$
1,	×	0 ×∞
	/	0 / 0, ∞/∞
	REM	x REM 0, ∞ REM y
	√	\sqrt{x} , $x < 0$

保護桁

- x-yの計算:桁合わせして計算。桁合わせして単純に 有効桁数で引き算をすると誤差が大きくなる
 - 例:x=1.00×10⁰ y=9.99×10⁻¹の場合
 - 1.00×10⁰-0.999×10⁰=0.001× 10⁰=1.00×10⁻³ が正解なのに、有効桁数で計算すると
 - 1.00×10⁰-0.99×10⁰=0.01×10⁰=1.00×10⁻²
 相対誤差は9(1.00×10⁻²-1.00×10⁻³)/1.00×10⁻³)
- 保護桁:有効桁数を多くしたままで計算する。

2.2.2 数の表現(浮動小数点数)

保護桁

• 計算時の有効桁数をどれだけとれば良いか?

精度pの正規化された数 $F_1=m_1 \times 2^{e_1} F_2=m_2 \times 2^{e_2}$ の差を求める場合、厳密な(偶数への)丸め計算を行うには、3ビットの保護桁があればよい。 $F_1 > F_2$ とする。

「証明.

- 1. e₁-e₂=0または1の時、桁合わせでシフトするのは高々1ビットであり、1桁の保護桁で厳密な丸め計算が行える。
- 2. $e_1 e_2 \ge 2$ の時、差を求めた結果の左端2ビットがともに0とういことはない。従って、減算後の正規化のための左シフトは高々1ビットである。減算でp+1桁が正しく求められれば、厳密な丸め計算を行える。
- 3. p+1桁を正しく得るためには、p+2桁を正しく求めればよい。
- 4. 大きい方の仮数部のp+1桁目以降はすべてOであるから、差をp+2桁まで正しく求めるには、以下のp+3桁の演算を行えばよい。

2.2.2 数の表現(浮動小数点数)

精度pの正規化された数 $F_1=m_1 \times 2^{e_1} F_2=m_2 \times 2^{e_2}$ の差を求める場合、厳密な(偶数への)丸め計算を行うには、3ビットの保護桁があればよい。 $F_1 > F_2$ とする。

「証明つづき」

従って、下記の手順で厳密な演算が行える。

- 1. 小さい方の数F,をe,ーe,ビット右にシフト
- F₂のp+3桁目以降がすべてOの時、p+3桁目をOとしてp+3 桁の減算
- p+3析目以降に1が存在の時、p+3析目を1としてp+3析の 減算
- 4. p+2桁目を丸める。

```
e_1 - e_2 = 5 \ \text{E} \ \text{J} \ \text{S}
  (全桁による計算)
       1.000001100
      -0.00001011010001 (末尾の3ピットの OR をとる)
       0.1111110101011111
                     丸めの処理
       0.1111101011
       1.111101011
                       正規化
  (3桁の保護桁による計算)
                CRS
       1.000001100
      -0.000010110101
       0.111110101011
                       丸めの処理
       0.1111101011
      1.111101011
                       正規化
```

2.3 命令の構成

CISC(complex instruction set computer)

- 200以上の命令
- ねらい:命令の機能を高度化し、実行命令数を減らすことにより高性能化を実現する

RISC(reduced instruction set computer)

- 50~100命令
- ねらい:計算機の構造を単純化し、1命令のサイクル数とサイクル時間を削減して高性能化をはかる。
- 1980年にPattersonらが提案
- CPUのシングルチップ化を容易化

2.3.1 命令とオペランド

- オペランド:被演算子 オペレータ:演算子
 - A←B■C
 - A: 演算結果の代入場所(デスティネーション)
 - ■:演算子
 - B, C: 演算対象(ソース)
 - A、B、C: 主記憶か中央処理装置内(アキュムレータ /レジスタ)

2.3.1 命令とオペランド • アキュムレータ型計算機(計算機の原型) A←B■C A=B=アキュムレータ C:主記憶内 a+b→c の場合 load b add a store c

2.3.1 命令とオペランド

• スタック型計算機(現存しない)

A←B■C

スタックの先頭をB、C(ポップして 利用)し、結果Aをスタックにプッ シュ

a+b→c の場合 push b push a add

pop c

図 2.6 スタック型計算機

2.3.1 命令とオペランド

• レジスタ型計算機(現在の計 算機の基本形)

A←B■C

A.B.C:レジスタや主記憶

a+b→c の場合 add r1,r2,c/ add r1,r2,r3/ add (r1),r2,(r3)/ など

LSIの進歩により、CPUの素子数を少なくする 必要がなくなり、アキュムレータ型計算機やス タック型計算機は現状では使われていない。

2.3.2 命令の種類

- 転送命令:レジスタ間、レジスタ・主記憶間、主記憶・主記憶間(主 として可変長データ)
- 算術演算命令:
 - データ形式:10進/2進 正数/整数 浮動小数点(単精度、倍 精度、4倍精度)
 - 演算:加減乗除
 - 条件コード:正、負、零、オーバフロー
- 論理演算: AND、OR EOR(ビット毎)
- シフト命令:算術シフト(2倍/4倍など)、論理シフト
- 比較命令:条件コードの設定
- 分岐命令:条件分岐、無条件分岐、サブルーチンコール
- その他:入出力命令、システム制御

2.3.2 オペランドの指定

- レジスタか主記憶かがあり、主記憶の場合は次のように分 類できる。
- (場合1)主記憶の内容をオペランドで指定する場合
 - 直接アドレスと間接アドレス
 - 絶対アドレスと相対アドレス
 - _ インデックス修飾
- (場合2)命令に値そのものが含まれいる
 - 即値形式(命令に含まれている値そのものがオペランド)
- 主記憶アクセスの削減(レジスタ多用と命令コード長削減) による処理速度向上と主記憶量の削減。

主記憶アドレスと語境界

- ワードアドレス/バイトアドレス (バイトアドレスが主流) バイトアドレスの懸案事項1:語境界があるか
- System370、VAX11は語境界がないが、RISCは語境界がある。(RISCの方が新しいアーキテクチャであるのに、語境界があることに注意。)

2.3.2 オペランドの指定

- バイトアドレスの懸案事項2:ビッグ/リトルエンディアンの どちらか?(プログラムの移植に問題)
- System370はビッグ/リトルエンディアン、VAX11はビッグ /リトルエンディアン語境界がないが、RISCは両者に対応

2.3.4 I BM System370の命令体系

32ビットマシン。バイトアドレス。

- 命令長:16ビット、32ビット、48ビット。
- レジスタ指定は4ビット: 汎用レジスタ16個と浮動小数点レジスタ 16個の区別は命令コードで判断。インデックスレジスタとしてレジスタO が指定された場合は特別な意味(インデックス修飾を行わない)をもつ場合が ある。
- ベースレジスタ: 主記憶はベースレジスタ(b1/b2)とベースレジスタからの偏移(displacement d1/d2)の和でアドレスを指定。
- オペランド数:オペランドの最後の数字がオペランドの種別を表現。 2オペランドが主。
- 可変長データの処理:RS形式でのレジスタセーブ命令、文字や1 O進数処理のSS形式命令。

2.3.4 DEC VAX11の命令体系

- 32ビットマシンであるが、16ビットを語(word)、32ビットを長語(long word)と呼んでいる。バイトマシン。
- レジスタ指定が8ビット: 上位4ビットでモード(後述)を指定し、下位4ビットで16個のレジスタのどれかを指定
 - R0~R11:汎用レジスタ、R12,R13:手続き呼び出し用のスタックポインター、R14:作業用スタックポインター、R15:プログラムカウンター
- 2進数で長さの異なる5つのデータ形式、浮動少数点で4形式など14種類のデータ形式。
- 命令数300
- オペランド数は0~3。一つのオペランドを1か2のオペランド指定子で指定。1オペランドに1~5バイト。
- プログラムカウンターは1バイト読むたびに加算されるのでR15を 利用する場合は注意が必要。

2.3.4 DEC VAX11の命令体系 (モード)

- 上位4ビットがモードmを指定し、下位4ビットがレジスタ名rを指定。
- モードにより1オペランドに必要となるバイト数が異なる。
- アセンブラ記法での記号
 - #x:xの値そのもの(x):xの内容 -:kをひく +:kを足す
 - @:間接アドレス
 - D(Rn):レジスタ相対、 A:アドレス(その番地を指すラベル)
 - S↑ #x:xの6ビット表現 B↑#x:xの1バイト表現 W↑#x:xの2 バイト表現(語) L↑#x:xの4バイト表現(長語)
- 有効アドレス部での記号
 - EA:有効アドレス [x]:xの内容 Rn:rで指定されたレジスタ
 - k:オペランドの長さ(対象となるデータ長)で、1, 2, 4バイトがある。操作符号部opで指定されたオペレーション(演算)によって決まる。
 - A:4バイトの絶対アドレス

2	. 3. 4	DEC VA	X11の命令体	系(<u>モード</u>)
	上位4ビット	アセンブラ記法	有効アドレスオ	トペランド指定子の長さ
1.	00xx	S↑#V	V	1byte
2.	0100	(4~13)[Ri]	EA=(4~13)+k[Ri]	1byte
3.	0101	Rn	EA=Rn	1byte
4.	0110	(Rn)	EA=[Rn]	1byte
5.	0111	-(Rn)	Rn←[Rn]-k EA=[Rı	n] 1byte
6.	1000	(Rn)+	EA=[Rn] Rn←[Rn]+k	1byte
7.	1001	@(Rn)+	EA=[[Rn]] Rn ←[Rn]-	+4 1byte
8.	1010	B ↑ #D(Rn)	EA=D+[Rn]	2byte

EA=D+[Rn]

EA=D+[Rn]

3byte

5byte

2byte

3byte

5byte

9. 1100

10. 1110

11. 1011

12. 1101

13. 1111

W↑#D(Rn)

L ↑ #D(Rn)

@B ↑ #D(Rn) EA=D+[Rn]

@ W | #D(Rn) EA=D+[Rn]

@ L | #D(Rn) EA=D+[Rn]

上位4	ドビット アセンブラ記法	有効アドレス	オペランド長
1. 00xx	(
2. 0100)		
3. 010 ⁻¹			
4. 0110) 注:[の値はアセンブラが計算する	(D=A-[PC]
5. 011			
6. 1000) I↑#V	EA=[PC] PC←[PC]+k	1+k byte
7. 100	@#A	EA=[[PC]] PC ←[PC]+4	5byte
8. 1010) B↑A	EA=D+[PC]=A	2byte
9. 1100) W↑A	EA=D+[PC]=A	3byte
10. 1110) L↑A	EA=D+[PC]=A	5byte
11. 101	@B↑A	EA=D+[PC]=[A]	2byte
12. 110	@ W ↑ A	EA=D+[PC]=[A]	3byte
13. 111	@ L ↑ A	EA=D+[PC] =[A]	5byte

2.3.4 DEC VAX11の命令体系

アセンブラでプログラミングをする人にとっては、

- 非常に便利(ソフトウェアの生産性が高い)
- 命令体系がシンプル
- 密度の高い(命令数の少ない)プログラムが書ける。
- スタックを有効に活用でき、スタックマシンともいえる。 (計算機の完成された命令体系、マニアック?)

メモリの大容量化、低価格化により、アセンブラでプログラムを作る機会が減って、その優位性はなくなった。

2.3.4 RISC型計算機 (MIPS) の命令体系

パイプライン制御を最大限利用するアーキテクチャ

時間	# 1 2 n									
命令	1	2	3	4	5	6	7	8	9	
1	IF	ID	AC	AT	OF	EX	MW			
2		IF	ID	AC	AT	OF ·	EX	MW		
3			IF	ID	AC	AT	OF	EX	MW	
4				IF	ID	AC	AT	OF	EX	
5					IF	ID	AC	AT	OF	
6						IF	ID	AC	AT	
7							IF	ID	AC	
8								IF	ID	
9									IF	
9									IF	

図 3.19 命令に着目したパイプライン制御の表現法

IF: 命令読み出し ID: 命令解読 AC: アドレス計算 *AT: アドレス変換* OF: オペランド読み出し EX: 演算実行 MW: メモリ書き込み

2.3.4 RISC型計算機 (MIPS) の命令体系

パイプライン制御

- プロセッサの内部動作を機能ブロックの動作ステージに分割し、
- 各ステージが互いに独立に動作するように構成する.
- 各ブロックは入力を処理して次のステージのブロックへ 結果を渡す。
- したがって、各ステージは並列に処理を実行し、命令が オーバーラップして実行されている.
- 一つの命令実行時間は長くても、出口のブロックをみると短時間に命令が次々に処理されてくる.
- これをパイプライン制御という。
- ただし、制御の乱れ(例えば条件分岐)が起こる

2.3.4 RISC型計算機 (MIPS) の命令体系

- ねらい
- パイプライン制御ができるだけ乱れないようにする。
- 処理を単純化して1サイクルを短くする。
- メモリアクセスをできるだけ少なくする。
- 命令およびオペランドの指定方法を使用頻度の高いも のに限定し命令の形式も可能な限り統一する
- 汎用レジスタの数を増やし、演算をレジスタ間で行えるようにする。
- 主記憶の参照はロード命令とストア命令に限定

2.3.4 RISC型計算機 (MIPS) の命令体系

op: 操作符号 funct:操作符号の拡張部 rs:ソースレジスタ rd:デスティネーションレジスタ rt:ソースまたは デスティネーションレジスタ rb:ベースレジスタ target:飛び越しアドレス offset:アドレス偏移 immediate:即値オペランド shamt:シフト桁数

図 2.14 MIPS R2000/R3000 の命令語の形式

2.3.4 RISC型計算機 (MIPS) の命令体系

- 1ワード4バイトでバイトアドレス
- 32個の汎用レジスタ、レジスタ指定に5ビット
- すべての命令は1語
- 命令数が少ない、op部が6ビット(ただし、R形式のfuncにより100以上の命令を指定可能にしている)
- 演算は3オペランド(I形式またはR形式)でレジスタか即値のみを 指定
- インデックスレジスタはなくベースレジスタ相対のみ(プログラムで ベースレジスタの値を変更する)
- 主記憶参照はロード命令とストア命令のみ(I'形式)
- 無条件分岐はJ形式(直接アドレス)
- 条件分岐はI''形式で分岐先はPC相対、rsとrt部で判定条件を指定

2.3.4 CISCERISC

CISC(complex instruction set computer)

- 命令数:200以上 命令長:可変
- プログラム: 少ない命令で実現(実行命令数の削減で高速化)
- ハードウェア:複雑
- アセンブラプログラミングが容易

RISC(reduced instruction set computer)

- 命令数:50~100命令 命令長:1語に固定
- プログラム:命令数は増加(1サイクル時間の短縮で高速化)
- ハードウェア: 単純(1チップLSI化が可能)
- アセンブラでプログラミングは不可能。高級言語利用が必須
- コンパイラ技術を駆使し、パイプラインの乱れを防ぐ必要がある。現状では1チップCPUが主流、16ビット以下のプロセッサがCISCで32 ビット以上がRISCがおおまかな図式であるが、LSIの集積度向上

でCISCがもりかえしている。 [問12]CISCとRISCが高速化に対するアプローチの違いを述べよ。