E1.- Dada

$$f(x,y) = \begin{cases} \frac{y^2 - x^2}{y - x} & \text{si } y \neq x \\ 1 & \text{si } y = x \end{cases}$$

- a) Analice la continuidad de f(x, y) en todo su dominio.
- b) Estudie la existencia de derivadas direccionales de f en el origen. ¿Qué puede decir acerca de la existencia de plano tangente en el punto (0,0,1)? Justifique.
- E2.- Se sabe que la intersección entre el conjunto de nivel 3 de $F(x,y,z)=x^2+2y-3z^2$ y la imagen de $\overrightarrow{\Sigma}(u,v)=(u,v-u,v^2)$, con $(u,v)\in[-2,2]\times[-2,2]$, define una curva C en cercanías del punto P=(-1,1,0). Demuestre que el plano normal a C en P es paralelo al plano x+y=2.
- E3.- a) Demuestre que la ecuación $e^{x+y} x^2 2yx = 2$ define una curva en el plano, en un entorno del punto Q = (1, -1).
 - b) Halle la ecuación de la recta tangente a esa curva en el punto Q. Justifique sus cálculos.
- E4.- Sea $f(x,y) = x^2 y^2$. Estudie, justificando apropiadamente, los extremos de f en el círculo $x^2 + y^2 \le 1$.
- E5.- Halle la curva que pasa por (1,1) y es solución de la ecuación diferencial $xy' 2x^2y = y$.
- T1.- a) ¿Qué es una ecuación diferencial lineal de primer orden?
 - b) Halle la solución de la EDO y'-xy=x que en x=0 tiene a y=-1 por recta tangente.
- T2.- a) ¿Qué significa, geométrica y analíticamente, que un campo f(x,y) sea diferenciable en un punto (a,b) de su dominio?
 - b) Analice si el campo

$$f(x,y) = \begin{cases} x^2 + 2y^2 & \text{si } y \le 0\\ x + y & \text{si } y > 0 \end{cases}$$

es diferenciable en (-1,0). Justifique.

1) a) Pane
$$x \neq y$$
:

 $f(x, \theta) = \frac{x^2 - x^2}{y - x} = \frac{(y - x)(y + x)}{y - x} = \frac{y + x}{y - x}$

i. Pane $x \neq \theta$, $f(x, \theta) = x$ continua perputes

un polinamia $(f(x, \theta) = y + x)$

Pana los puntos $(x, \theta) = (a, a)$:

 $\lim_{(x, \theta) \to (a, a)} f(x, \theta) = \lim_{(x, \theta) \to (a, a)} (x, \theta) \to (a, a)$
 $\lim_{(x, \theta) \to (a, a)} f(x, \theta) = \lim_{(x, \theta) \to (a, a)} (x, \theta) \to (a, a)$

i. En los puntos de la forma (a, a) la

tunción solo es continua si $2a = 1$

i. Dominios de continuidad de f :

 $(\mathbb{R}^2 - f(x, \theta) \in \mathbb{R}^2 / x = \theta f) \cup f(\frac{1}{2}, \frac{1}{2}) f$

b) Pana $f(x, \theta) = \lim_{x \to a} f(x, \theta) + \lim_{x \to a} f(x, \theta) = \lim_{x \to a} f(x, \theta) + \lim_{x \to a} f(x, \theta) = \lim_{x \to a$

=
$$\lim_{h\to 0} \frac{hv_2 + hv_1 - 1}{h} = \lim_{h\to 0} (v_2 + v_1 - \frac{1}{h})$$
No existe

:
$$f'((0,0), \tau)$$
 solo existe para
$$\vec{r} = (\frac{1}{12}, \frac{1}{12}) \wedge \vec{r} = (-\frac{1}{12}, -\frac{1}{12})$$

Como f mo es continua en (0,0),
f no es diferenciaber en ese punto

i. mo existe el plano tongente a la
giótica en (0,0,1)

2)
$$S_1: \chi^2 + 2y - 3z^2 = 3$$
 En $P: M=-1$
 $S_2: \hat{\Sigma}(M, V) = (M, N-M, V^2)$ $N=0$

$$N_{1} = \nabla F(-1,1,0) = (2\times,2,-62)\Big|_{p} = (-2,2,0)$$

$$N_{2} = \sum_{k=1}^{1} \sqrt{2}\Big|_{p} = \begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ 0 & 1 & 25 \end{bmatrix}_{p} = (0,0,1)$$

$$T = N_1 \times N_2 =$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 2 & 0 \\ 0 & 0 & 1 \end{vmatrix} = (2, 2, 0)$$

: plans normal a Cen P:

que is parolelo el plano X+7=2
mes ambos tienen normales parolelos

a) a)
$$e^{x+3} - x^2 - 27x = 2$$
 define $y = 7(x)$
carea de $Q = (1,-1)$ pres:

I)
$$F(x, \bar{\sigma}) = e^{x+\bar{\sigma}} - \chi^2 - 2\bar{\sigma}x$$
 es $C' = mR^2 \bar{\sigma}$
 $F'_{\chi} = e^{x+\bar{\sigma}} - 2x - 2\bar{\sigma}$

on continuos

I)
$$\mp (1,-1) = e^{1-1} - 1^2 - 2 \cdot (-1) \cdot 1 = 2$$

$$\pm 1$$
) $\pm (1,-1)$ = $e^{1-1} - 2.1 = -1 \neq 0$

b)
$$y'(1) = -\frac{F_{\chi}'(1,-1)}{F_{\eta}'(1,-1)} = -\frac{2}{-1} = 2$$

: reta tangente :
$$y - (-1) = 2(x - 1)$$

4)
$$f(x,3) = x^2 - 3^2$$
 $f'_{x} = 2x$
 $f'_{y} = -27$
 $f'_{$

5)
$$xy' - 2x^2 y = y$$

 $xy' = y(1+2x^2)$
 $y = 0$
 $y =$