Introduction

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

Rick ScavettaFounder, Scavetta Academy

Your instructor - Rick Scavetta

- e-mail: office@scavetta.academy

- Twitter: @Rick_Scavetta

Data visualization & data science

• A core skill in Data Science.

Exploratory versus explanatory

MASS::mammals

MASS::mammals

	body	brain
Arctic fox	3.385	44.50
Owl monkey	0.480	15.50
Mountain beaver	1.350	8.10
Cow	465.000	423.00
Grey wolf	36.330	119.50
Goat	27.660	115.00
Roe deer	14.830	98.20
Pig	192.000	180.00
Echidna	3.000	25.00
Brazilian tapir	160.000	169.00
Tenrec	0.900	2.60
Phalanger	1.620	11.40
Tree shrew	0.104	2.50
Red fox	4.235	50.40

A scatter plot

```
ggplot(mammals, aes(x = body, y = brain)) +
  geom_point()
```


Explore with a linear model

```
ggplot(mammals, aes(x = body, y = brain)) +
  geom_point(alpha = 0.6) +
  stat_smooth(
    method = "lm",
    color = "red",
    se = FALSE
)
```


Explore: fine-tuning

```
ggplot(mammals, aes(x = body, y = brain)) +
  geom_point(alpha = 0.6) +
  coord_fixed() +
  scale_x_log10() +
  scale_y_log10() +
  stat_smooth(
    method = "lm",
    color = "#C42126",
    se = FALSE,
    size = 1
```


Publication-ready plot

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

The grammar of graphics

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

Rick Scavetta
Founder, Scavetta Academy

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

Article	The	\boldsymbol{A}	The
Adjective	quick brown	rabid red	
Noun	fox	fox	Hunter
Verb	jumps	bit	shot
Preposition	over		
Article	the	the	the
Adjective	lazy	friendly	rabid red
Noun	dog.	dog.	fox.

Grammar of graphics

- Plotting framework
- Leland Wilkinson, Grammar of Graphics, 1999
- 2 principles
 - Graphics = distinct layers of grammatical elements
 - Meaningful plots through aesthetic mappings

The three essential grammatical elements

Element	Description
Data	The data-set being plotted.
Aesthetics	The scales onto which we <i>map</i> our data.
Geometries	The visual elements used for our data.

Course 1: core competency

Element	Description
Data	The data-set being plotted.
Aesthetics	The scales onto which we <i>map</i> our data.
Geometries	The visual elements used for our data.
Themes	All non-data ink.

The seven grammatical elements

Element	Description
Data	The data-set being plotted.
Aesthetics	The scales onto which we <i>map</i> our data.
Geometries	The visual elements used for our data.
Themes	All non-data ink.
Statistics	Representations of our data to aid understanding.
Coordinates	The space on which the data will be plotted.
Facets	Plotting small multiples.

Jargon for each element

Data {variables of interest} line width *x-axis* colour size alpha Aesthetics shape labels y-axis fill line type Geometries point histogram line bar boxplot Themes non-data ink

Statistics binning smoothing descriptive inferential

Coordinates cartesian fixed polar limits

Facets columns rows

Course 2: Tools for EDA

- Remaining 3 layers
- Best practices for Data Viz

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

ggplot2 layers

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

Rick ScavettaFounder, Scavetta Academy

ggplot2 package

- The grammar of graphics implemented in R
- Two key concepts:
 - 1. Layer grammatical elements
 - 2. Aesthetic mappings

Data

Iris dataset

Setosa

Versicolor

Virginica

¹ Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179–188. ² Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2–5.

Iris dataset

iris

	Sepal.Length Sepa	al.Width Peta	al.Length Peta	l.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
50	5.0	3.3	1.4	0.2	setosa
51	7.0	3.2	4.7	1.4	versicolor
52	6.4	3.2	4.5	1.5	versicolor
53	6.9	3.1	4.9	1.5	versicolor
	•				
100	5.7	2.8	4.1	1.3	versicolor
101	6.3	3.3	6.0	2.5	virginica
102	5.8	2.7	5.1	1.9	virginica
103	7.1	3.0	5.9	2.1	virginica
	•				
150	5.9	3.0	5.1	1.8	virginica

Aesthetics

Iris aesthetics

Species Sepal.Length Sepal.Width Petal.Length Petal.Width
X

Geometries

Iris geometries

```
g <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
  geom_jitter()
g</pre>
```


Themes

Iris themes

```
g <- g +
  labs(x = "Sepal Length (cm)", y = "Sepal Width (cm)") +
  theme_classic()
g</pre>
```


Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

