Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC 140 - SISTEMAS OPERACIONAIS I

Turmas A e B

Aula 19 – Gerenciamento de Dispositivos de Entrada/Saída (E/S)

Profa. Sarita Mazzini Bruschi

Slides de autoria de Luciana A. F. Martimiano baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

Dispositivos de E/S - Discos

- Discos Magnéticos:
 - Grande evolução em relação a:
 - Velocidade de acesso (seek): tempo de deslocamento do cabeçote até o cilindro correspondente à trilha a ser acessada;
 - Transferências: tempo para transferência (leitura/escrita) dos dados;
 - □ Capacidade;
 - Preço;

Dispositivos de E/S - Discos

- Técnica para reduzir o tempo de acesso: entrelaçamento (*interleaving*):
 - Setores são numerados com um espaço entre eles:
 - Entre o setor K e o setor K+1 existem n (fator de entrelaçamento) setores;
 - Número n depende da velocidade do processador, do barramento, da controladora e da velocidade de rotação do disco;

4

3

Dispositivos de E/S - Discos

Trilhas com 16 setores

Disco B N = 2

Dispositivos de E/S - Discos

□ *Drivers* de Disco:

- Fatores que influenciam tempo para leitura/escrita no disco:
 - □ Velocidade de acesso (seek) → tempo para o movimento do braço até o cilindro;
 - Delay de rotação (latência) → tempo para posicionar o setor na cabeça do disco;
 - Tempo da transferência dos dados;
- Tempo de acesso:
 - □ T_{seek} + T_{latência*} + T_{transferência}

Tempo necessário para o cabeçote se posicionar no setor de escrita/leitura;

Dispositivos de E/S – Discos

- □ Algoritmos de escalonamento no disco:
 - FCFS (FIFO) → First-Come First-Served;
 - SSF → Shortest Seek First;
 - Elevator (também conhecido como SCAN);
- Escolha do algoritmo depende do número e do tipo de pedidos;
- Driver mantém uma lista encadeada com as requisições para cada cilindro;

Dispositivos de E/S - Discos

Disco com 37 cilindros;
Lendo bloco no cilindro 11;
Requisições: 1,36,16,34,9,12, nesta ordem

Pos. inicial

0 5 10 15 20 25 30 36

| X | X | X | X | X | X | X | X | X |

FCFS → atendimento: 1,36,16,34,9,12;
movimentos do braço (número de cilindros): 10,35,20,18,25,3 = 111;
s

Dispositivos de E/S – Discos RAID

- RAID (Redundant Array of Independent Disks) → armazena grandes quantidades de dados;
- RAID combina diversos discos rígidos em uma estrutura lógica:
 - Aumentar a confiabilidade, capacidade e o desempenho dos discos;
 - Recuperação de dados → redundância dos dados;
 - Armazenamento simultâneo em vários discos permite que os dados fiquem protegidos contra falha (não simultânea) dos discos;
 - Performance de acesso, já que a leitura da informação é simultânea nos vários dispositivos;

11

Dispositivos de E/S – Discos RAID

- Pode ser implementado por:
 - Hardware (controladora):
 - Instalação de uma placa RAID no servidor, o subsistema RAID é implementado totalmente em hardware:
 - Libera o processador para se dedicar exclusivamente a outras tarefas;
 - A segurança dos dados aumenta no caso de problemas devido à checagem da informação na placa RAID antes da gravação;

Dispositivos de E/S – Discos RAID Pode ser implementado por: Software (sistema operacional) Menor desempenho no acesso ao disco; Oferece um menor custo e flexibilidade; Sobrecarrega o processador com leitura/escrita nos discos; Para o SO existe um único disco;

Dispositivos de E/S – Discos RAID A forma pela qual os dados são escritos e acessados define os níveis de RAID (até 9 níveis): RAID 0: Arquivos são espalhados entre os discos em stripes; Melhora desempenho das operações de E/S; Sem controle ou correção de erros; Todo o espaço do disco é utilizado para armazenamento; Utilizam mesma controladora (controladora RAID); Aplicações multimídia (alta taxa de transferência);

Clocks - Tipos Hardware ■ Dois tipos: ■ Básico: usa o sinal da rede elétrica (110/220 V) para fazer contagem (50/60 Hz) → cada oscilação da rede é uma interrupção;

Clocks - Tipos

Hardware

- **□** Esquema:
 - Contador recebe o valor armazenado no registrador;
 - A cada pulso do oscilador, o contador é decrementado de uma unidade;
 - Quando o contador zera, é gerada uma interrupção de clock (interrupção da CPU);
 - Precisão;

27

Clocks - Tipos

Hardware

- Relógios programáveis podem operar de diversos modos:
 - One-shot mode
 - □Ao ser iniciado, o relógio copia o valor contido no registrador, e decrementa o contador a cada pulso do cristal;
 - Quando o contador chega a zero, um interrupção ocorre;
 - □Recomeça por intervenção de software;

28

Clocks – Tipos Hardware

- Square-wave mode
 - ■Repete o ciclo automaticamente, sem intervenção de software;
- As periódicas interrupções geradas pela CPU são chamadas de <u>clock ticks</u> (pulsos do relógio);

29

Clocks - Tipos

Software

- □ Hardware → gera interrupções em intervalos conhecidos (*clock ticks*);
- □ Tudo o mais é feito por Software: clock driver;
- Funções do *clock driver*:
 - Manter a hora do dia;
 - Evitar que processos executem por mais tempo que o permitido;
 - Supervisionar o uso da CPU;
 - Cuidar da chamada de sistema alarm;
 - Fazer monitoração e estatísticas;
 - Prover temporizadores "guardiões" para os dispositivos de E/S;

Software Manter a Hora do Dia Hora e data correntes: Checa a CMOS; Uso de baterias para não perder as informações Pergunta ao usuário; Checa pela rede em algum host remoto; Número de clock ticks: Desde às 12 horas do dia 1° de janeiro de 1970 no UNIX; Desde o dia 1° de janeiro de 1980 no Windows;

Software Manter a Hora do Dia

- Incrementar contador a cada tick;
- Com um contador de 32 bits, a capacidade estouraria em 2 anos...
- Solução: três abordagens:
 - a) Contador com 64 bits → alto custo;
 - b) Contar em segundos → ticks/seg;
 - Ticks relativos à hora que o sistema foi iniciado;

32

Controlar duração da Execução dos Processos

- Execução inicia → escalonador inicia contador → número de ticks do quantum;
- □ Contador é decrementado a cada *tick*;
- □ Contador = 0 → hora de acionar escalonador (que pode trocar o processo);

34

Software Supervisão do uso da CPU

- Quanto tempo o processo já foi executado?
 - Processo inicia → novo clock (segundo relógio) é iniciado:
 - Processo é parado → clock é lido;
 - Durante interrupções → valor do *clock* é salvo e restaurado depois;
- Possível usar a tabela de processos → variável global armazena o tempo (em ticks);

□ redes

Software

Alarmes (Avisos)

uma mensagem;

em tempos;

Exemplo:

 redes de computadores → pacotes n\u00e3o recebidos devem ser retransmitidos;

□ Processos podem requerer "avisos" de tempos

□ Avisos podem ser: um sinal, uma interrupção ou

Software

Temporizadores Guardiões

- Esperar por um certo tempo e realizar uma tarefa:
 - Δt → registrador (contador);
 - Quando contador zera → procedimento é executado;
- Onde usar?
 - Exemplo:
 - acionador de disco flexível: somente quando o disco está em rotação na velocidade ideal é que as operações de E/S podem ser iniciadas;

37

Clocks – Tipos

Software

- □ Tarefas básicas do *driver* de relógio (*clock driver*) durante uma interrupção:
 - Incrementar o tempo real;
 - Decrementar o quantum e comparar com 0 (zero):
 - Contabilizar o uso da CPU;
 - Decrementar o contador de alarme;
 - Gerenciar o tempo de acionamento de dispositivos de E/S;