NOTES ON SCHUBERT CALCULUS AND QUANTUM INTEGRABILITY

Abstract.

Contents

1.	Introduction	1
2.	Lecture 1 (Allen Knutson)	2
3.	Lecture 2 (Allen Knutson)	2
4.	Lecture 3 (Paul Zinn-Justin)	2
5.	Lecture 4 (Paul Zinn-Justin)	2
6.	Lecture 5 (Allen Knutson)	2
7.	Lecture 6 (Allen Knutson)	2
8.	Lecture 7 (Paul Zinn-Justin)	2
9.	Lecture 8 (Paul Zinn-Justin)	2
10.	Lecture 9 (Allen Knutson)	2
11.	Lecture 10 (Allen Knutson)	2
12.	Lecture 11 (Paul Zinn-Justin)	2
13.	Lecture 12 (Paul Zinn-Justin)	2
14.	Lecture 13 (Allen Knutson)	2
15.	Lecture 14 (Paul Zinn-Justin)	2
16.	Lecture 15 (Allen Knutson)	2
17.	Lecture 16 (Allen Knutson)	2
18.	Lecture 17 (Paul Zinn-Justin)	10
19.	Lecture 18 (Paul Zinn-Justin)	10

1. Introduction

Here is a template for a simple commutative diagram in tikz:

$$X' \xrightarrow{f'} Y'$$

$$h' \downarrow \qquad \qquad \downarrow h$$

$$X \xrightarrow{f} Y$$

Here is a template for an elaborate commutative diagram in tikz:

- 2. Lecture 1 (Allen Knutson)
- 3. Lecture 2 (Allen Knutson)
- 4. Lecture 3 (Paul Zinn-Justin)
- 5. Lecture 4 (Paul Zinn-Justin)
- 6. Lecture 5 (Allen Knutson)
- 7. Lecture 6 (Allen Knutson)
- 8. Lecture 7 (Paul Zinn-Justin)
- 9. Lecture 8 (Paul Zinn-Justin)
- 10. Lecture 9 (Allen Knutson)
- 11. Lecture 10 (Allen Knutson)
- 12. Lecture 11 (Paul Zinn-Justin)
- 13. Lecture 12 (Paul Zinn-Justin)
- 14. Lecture 13 (Allen Knutson)
- 15. Lecture 14 (Paul Zinn-Justin)
- 16. Lecture 15 (Allen Knutson)
- 17. Lecture 16 (Allen Knutson)

17.1. **Setup.**

Consider the diagonal embedding $Gr(k,n) \xrightarrow{\Delta} Gr(k,n) \times Gr(k,n)$. Recall from Lecture 13 that any continuous map between varieties/manifolds gives the following commutative diagram in the category of correspondences

$$\begin{array}{c} \operatorname{Gr}(k,n) \times \operatorname{Gr}(k,n) \xrightarrow{\operatorname{graph}(\Delta)^T} \operatorname{Gr}(k,n) \\ \\ \operatorname{graph}(s) \times \operatorname{graph}(s) \downarrow & \qquad \qquad \downarrow \operatorname{graph}(s) \\ T^*\operatorname{Gr}(k,n) \times T^*\operatorname{Gr}(k,n) \xrightarrow{C_{\operatorname{graph}(\Delta)}^T} T^*\operatorname{Gr}(k,n) \end{array}$$

where composition is given by fiber product, $s: Gr(k,n) \hookrightarrow T^*Gr(k,n)$ is the inclusion of the zero section and given A a correspondence in $M \times N$, C_A is the conormal bundle of A in $M \times N$. As it will turn out, we have a better understanding of $C_{graph(\Delta)^T}$ over $graph(\Delta)^T$.

Recall that given a correspondence $L \subset M \times N$ we have an induced map on (equivariant) cohomology¹ $\beta_L : H^*(M) \to H^*(N)$ given by the pull-push construction, i.e.

$$\beta_L(\alpha) = (\pi_N)_*([L] \cup \pi_M^*([\alpha]))$$

Moreover one has that $\beta_{graph(f)} = H^*(f)$ and in particular we see that $\beta_{graph(s)} : H^*(Gr(k, n)) \to H^*(T^*Gr(k, n))$ corresponds to multiplication by the Poincare dual of the zero section, so multiplication by 1 for ordinary cohomology. Also recall that the product in (equivariant) cohomology comes from the pullback map of Δ . As such, the transpose/dual map in (equivariant) Borel-Moore homology is given by $\beta_{graph(\Delta)^T}$. Therefore commutativity of the above diagram tells us that the product in $H^*(Gr(k, n))$ can be computed from the map

$$\beta_{C_{\operatorname{graph}(\Delta)^T}}: H^*(T^*\operatorname{Gr}(k,n)) \otimes H^*(T^*\operatorname{Gr}(k,n)) \to H^*(T^*\operatorname{Gr}(k,n))$$

Switching to $T \times \mathbb{C}^{\times}$ equivariant cohomology, the only thing that changes is that the class of the Poincare dual of the zero section is no longer trivial so that $\beta_{graph(s)}$ is no longer trivial. Thus if we know the structure constants for multiplication of the Maulik Okounkov classes in $H_{T \times \mathbb{C}^{\times}}^*(T^*Gr(k, n))$, say

$$[MO_{\lambda}] \cdot [MO_{\mu}] = \sum_{\nu} \widetilde{c_{\lambda\mu}^{\nu}} [MO_{\nu}]$$

it follows from commutativty of the diagram above that in $H^*_{T\times\mathbb{C}^\times}(\mathrm{Gr}(k,n))$ we have the formula

$$\frac{[MO_{\lambda}]}{[s]} \cdot \frac{[MO_{\mu}]}{[s]} = \sum_{\nu} \widetilde{c_{\lambda\mu}^{\nu}} \frac{[MO_{\nu}]}{[s]}$$

Definition 17.1. The Serge-Schwartz-MacPherson class associated to a sequence λ is

$$SSM_{\lambda} := \frac{[MO_{\lambda}]}{[s]}$$

One might think that the classes SSM_{λ} correspond to Schubert classes, but notice that both $[MO_{\lambda}]$ and [s] arise geometrically from classes of Langrangian subvarieties of $T^*Gr(k, n)$ and so SSM_{λ} has degree 0. However it will turn out that

¹This should really be (equivariant) Borel-Moore homology but for smooth varieties Borel-Moore homology is isomorphic to cohomology via Poincare duality and Gr(k, n) is smooth.

Proposition 17.2. Let $inv(\lambda)$ be the number of inversions in the sequence λ . Then

$$\lim_{h\to 0} h^{\operatorname{inv}(\lambda)} SSM_{\lambda} = S_{\lambda}$$

where S_{λ} is the corresponding Schubert class associated to λ .

Heruistically, this is saying that the Schubert classes are the 5 vertex limit of the Maulik Okounkov classes which correspond to the 6 vertex model.

17.2. Stable Envelope.

The reason why we have a better understanding of $C_{qraph(\Delta)^T}$ is that it factors

$$T^*\mathrm{Gr}(k,n) \times T^*\mathrm{Gr}(k,n) \xrightarrow{C_{graph(\Delta)^T}} T^*\mathrm{Gr}(k,n)$$

$$T^*\mathcal{FL}(k,n+k;2n)$$

Let us first describe the first correspondence/map senv, the stable envelope.

Definition 17.3. Let \mathbb{C}^{\times} act on a variety M. Then define

$$\operatorname{attr}(M, \mathbb{C}^{\times}) = \left\{ m \in M \,\middle|\, \lim_{z \to 0} z \cdot m \text{ exists} \right\}$$

and similarly define

$$\operatorname{attrlang}(M, \mathbb{C}^{\times}) = \left\{ (m_{\ell}, m) \in M^{\mathbb{C}^{\times}} \times M \,\middle|\, m_{\ell} = \lim_{z \to 0} z \cdot m \text{ exists} \right\}$$

Remark 17.4. If M is compact, then $\operatorname{attr}(M) = M$. When M is not compact then $\operatorname{attr}(M)$ can be quite small. For example, let \mathbb{C}^{\times} act on \mathbb{C} with weight -1. Then only the origin (0,0) is in $\operatorname{attr}(M)$, the limit for everything else goes to infinity.

Remark 17.5. attrlang (M, \mathbb{C}^{\times}) is a correspondence between $M^{\mathbb{C}^{\times}}$ and M, but isn't the one we are looking for because the map attrlang $(M, \mathbb{C}^{\times}) \to M$ need not be proper²! For example, let \mathbb{C}^{\times} act on \mathbb{CP}^1 by $z \cdot [a:b] = [za:b]$. \mathbb{CP}^1 is compact, so attr(M) = M. Moreover, one can check that the only fixed points are [1:0] (north pole) and [0:1] (south pole) and that $m_{\ell} = [0:1]$ for all points $m \in \mathbb{CP}^1$ except the north pole. It follows that attrlang $(M, \mathbb{C}^{\times}) = \mathbb{C} \sqcup pt$ topologically, and this isn't compact and so the map attrlang $(M, \mathbb{C}^{\times}) \to M$ cannot be proper in this case.

Theorem 17.6. If M is affine, then the map $\operatorname{attrlang}(M, \mathbb{C}^{\times}) \to M$ is proper.

The following example will be very important.

²And so there will be no pushforward map in Borel-Moore homology

Example 17.7. Let

$$M' = \operatorname{GL}_n \cdot \begin{pmatrix} \epsilon_1 I_{n_1} & & & \\ & \epsilon_2 I_{n_2} & & \\ & & \ddots & \\ & & & \epsilon_d I_{n_d} \end{pmatrix}$$

where GL_n acts by conjugation and all the ϵ_i are fixed distinct elements of \mathbb{C} . This is what the general fiber of the partial Grothendieck Springer resolution $GS_{n_1,...,n_d}$ looks like. Recall that

$$M' \cong \frac{\operatorname{GL}_n}{\operatorname{GL}_{n_1} \times \dots \operatorname{GL}_{n_d}}$$

And as a result, M will be an affine variety as it's the quotient of a reductive group acting on an affine variety.

Now, consider the case when $M = T^*\mathcal{FL}(k, n+k; 2n)$. This is not affine and so we can't use Theorem 17.6 to conclude that $\operatorname{attrlang}(M, \mathbb{C}^{\times})$ gives rise to a map in cohomology. However, recall that M is the 0 fiber in the partial Grothendieck Springer resolution, i.e.

$$GS_{k,n+k}|_{\vec{z}=\vec{0}} = T^*\mathcal{FL}(k,n+k;2n)$$

So M in this case is the limit or special fiber of a family of varieties, most of which are affine by the example above (the set of points whose fibers are affine are dense). Therefore if we define

Definition 17.8.

$$env := \lim_{\vec{\epsilon} \to \vec{0}} \operatorname{attrlang}(T^* \mathcal{FL}(k, n+k; 2n), \mathbb{C}^{\times})$$

this will give rise to a map

$$H^*(T^*\mathcal{FL}(k, n+k; 2n)^{\mathbb{C}^\times}) \xrightarrow{\beta_{env}} H^*(T^*\mathcal{FL}(k, n+k; 2n))$$

But what is $T^*\mathcal{FL}(k, n+k; 2n)^{\mathbb{C}^{\times}}$? Well, this will depend on the weights of the action of \mathbb{C}^{\times} on \mathbb{C}^{2n} , but first consider an easier, related problem, namely $Gr(k, V \oplus W)$ where \mathbb{C}^{\times} acts on $V \oplus W$ with weights 0 on V and 1 on W. Explicitly this means that $z \cdot (\vec{v}, \vec{w}) = (\vec{v}, z\vec{w})$. Then because \mathbb{C}^{\times} acts on V and W with different weights, we will have the following decomposition

(17.9)
$$\operatorname{Gr}(k, V \oplus W)^{\mathbb{C}^{\times}} = \bigsqcup_{i+j=k} \operatorname{Gr}(i, V) \times \operatorname{Gr}(j, W)$$

One way to get an element of the LHS is the following procedure. Consider any subspace $A \subseteq V \oplus W$ and note that

$$\lim_{z\to 0} z\cdot A = (\text{Projection of } A \text{ to } V) \oplus A\cap W" = "\operatorname{gr}(A)$$

The notation gr(A) is because we can think of the result as the associated graded subspace of A under the filtration $0 \subseteq W \subseteq V \oplus W$. By Eq. (17.9) we see that the LHS above is in $Gr(k, n)^{\mathbb{C}^{\times}}$.

Now let $V = \mathbb{C}^n$ and $W = \mathbb{C}^n$ and again let \mathbb{C}^{\times} act on V and W with weights 0 and 1. The same reasoning giving rise to the decomposition in Eq. (17.9) also applies to the two step partial flag variety, i.e. we will have the following decomposition

$$\mathcal{FL}(k, n+k; 2n)^{\mathbb{C}^{\times}} = \bigsqcup_{\substack{a+c=k\\b+d=n+k}} \mathcal{FL}(a, b; n) \times \mathcal{FL}(c, d; n)$$

And notice that for a = 0, b = k, we have that the RHS above will be

$$\mathcal{FL}(0,k;n) \times \mathcal{FL}(k,n;n) = Gr(k,n) \times Gr(k,n)$$

 $Gr(k,n) \times Gr(k,n)$ is one of the Now applying T^* to everything, and since $T^*(Gr(k,n) \times Gr(k,n)) \hookrightarrow T^*\mathcal{FL}(k,n+k;2n)^{\mathbb{C}^{\times}}$ is closed it's also proper and so we obtain our desired map

$$senv: H^*(T^*(\operatorname{Gr}(k,n)) \times T^*(\operatorname{Gr}(k,n))) \to H^*(T^*\mathcal{FL}(k,n+k;2n)^{\mathbb{C}^{\times}}) \xrightarrow{\beta_{env}} H^*(T^*\mathcal{FL}(k,n+k;2n))$$

17.3. Hamiltonian Reduction and Nakajima guiver varieties.

Definition 17.10. Suppose that G is a Lie group acting on symplectic manifold M such that the action is Hamiltonian. Let $\mu: M \to \mathfrak{g}^*$ be the associated moment map and let λ be a regular value of μ . Then the symplectic reduction is defined to be $\mu^{-1}(\lambda)/G$. If λ and μ are given, this will be abbreviated as M//G.

Theorem 17.11 (Marsden-Weinstein). M//G is a symplectic manifold.

Theorem 17.12. If G is compact, the quotient map $\pi: \mu^{-1}(\lambda) \to M//G$ is proper.

Proof. We need to show that π is closed with compact fibers. The fact that π is closed reduces to the fact that when G is compact, the G-orbit of a closed set is also a closed set. The fibers of π are all of the form $G \cdot m$ where $m \in M$ which is diffeomorphic to G/G_m where G_m is the stabilizer of m. Since G is compact, and $G \to G/G_m$ is surjective and continuous, it follows that G/G_m is also compact.

Thus when G is compact, it follows from above that $\mu^{-1}(\lambda) \times M//G$ gives us a correspondence from M to the symplectic reduction M//G such that we get an induced map on Borel-Moore homology. Moreover, since λ is a regular value, μ is a submersion at λ and it follows that $\mu^{-1}(\lambda)$ has codimension dim $\mathfrak{g}^* = \dim G$ in M. It follows that

(17.13)
$$\dim M / / G = \dim \mu^{-1}(\lambda) - \dim G = \dim M - 2\dim G$$

We want to apply the formalism above to $M = T^* \mathcal{FL}(k, n + k; 2n)$ so we want to find a compact G such that $M//G = T^*Gr(k, n)$. First note that

$$\mathcal{FL}(k, n+k; 2n) \cong \frac{\mathrm{GL}_{2n}}{P_{k,n,n-k}}$$
 $\mathrm{Gr}(k, n) \cong \frac{\mathrm{GL}_n}{P_{k,n-k}}$

where $P_{k,n,n-k}$ and $P_{k,n-k}$ are the parabolic subgroups corresponding to the partition k + n + n - k of 2n and k + n - k = n of 2n and n respectively. As a result, one can then compute their dimensions by computing the dimensions of the tangent spaces resulting in

$$\dim T^* \mathcal{FL}(k, n+k; 2n) = 2n^2 + 2k(n-k) \qquad \qquad \dim T^* \operatorname{Gr}(k, n) = 2k(n-k)$$

By Eq. (17.13), it follows that we should have dim $G = n^2$. So where are we going to find a compact group of dimension n^2 acting on $T^*\mathcal{FL}(k, n+k; 2n)$? It turns out that both $T^*\mathcal{FL}(k, n+k; 2n)$ and $T^*\mathrm{Gr}(k, n)$ are Nakajima quiver varieties, and these come with natural actions of " $\mathrm{GL}(\vec{w})$ " on the "framed" vertices. We won't define these varieties, but will say how these varieties are indexed. Given a Dynkin diagram I, construct the Nakajima diagram of I by attaching a framed vertex hanging off each vertex of I. For example the Nakajima diagram for A_4 looks like

Given a Nakajima diagram, by filling in the vertices and framed vertices of I with natural numbers with natural numbers $\vec{w} = (w^i)_{i \in I}$ and $\vec{v} = (v^i)_{i \in I}$, there is a procedure to turn this datum into an algebraic variety $\mathcal{M}(I, \vec{w}, \vec{v})$. For example,

$$\mathcal{M}(A_1,(n),(k)) = \underbrace{k}^{n} \cong T^*\mathrm{Gr}(k,n)$$

We should note that if $w^i = 0$ then we will not draw the framed vertex at i. In general if $n_1 < \ldots < n_{d-1} < n_d$ then we will have that

$$\begin{array}{c}
\boxed{n}\\
\boxed{n_{d}}$$

$$\boxed{n_{d-1}}$$

$$\boxed{n_{d-1}}$$

$$\boxed{n_{d}}$$

$$\boxed{n_{d-1}}$$

$$\boxed{n_{d-1}}$$

In our case we will be working with the Nakajima quiver variety

$$\begin{array}{c} |2n| \\ \hline \\ (n+k) \\ \hline \end{array} \cong T^* \mathcal{FL}(k, n+k; 2n)$$

The framed vertex 2n has an action of GL_{2n} . If we write $T^*\mathcal{FL}(k, n+k; 2n)$ in Springer coordinates, e.g.

$$T^*\mathcal{FL}(k,n+k;2n) = \left\{ (X,V^{n+k} \supset W^k) \,|\, X \in \operatorname{End}(\mathbb{C}^{2n}), \mathbb{C}^{2n} \xrightarrow{X} V^{n+k} \xrightarrow{X} W^k \xrightarrow{X} 0 \right\}$$

where V^{n+k} is a n+k dimensional subspace of \mathbb{C}^{2n} and W^k is a k dimensional subspace in V^{n+k} , then the action of $g \in GL_{2n}$ is

$$(17.14) g \cdot (X, V^{n+k} \supset W^k) = (gxg^{-1}, g(V^{n+k}) \supset g(W^k))$$

Inside GL_{2n} we have the unitary subgroup

$$U_n := \left\{ \begin{bmatrix} I_n & 0 \\ E & I_n \end{bmatrix} \middle| E \in \operatorname{Mat}_{n \times n} \right\} \subseteq \operatorname{GL}_{2n}$$

which is a compact group of dimension n^2 so this fits our criteria from above. The moment map for the action of U_n turns out to send X to the northeast $n \times n$ quadrant of X when written in block matrix form. We will let $\lambda = I_n$ and as a result we have that

$$T^*\mathcal{FL}(k,n+k;2n)//U_n = \left\{ (X,V^{n+k} \supset W^k) \middle| X = \begin{bmatrix} A & I_n \\ C & D \end{bmatrix}, \mathbb{C}^{2n} \xrightarrow{X} V^{n+k} \xrightarrow{X} W^k \xrightarrow{X} 0 \right\}/U_n$$

Proposition 17.15.

$$T^*\mathcal{FL}(k, n+k; 2n)//U_n \cong T^*Gr(k, n)$$

Proof. The fiber of the moment map imposes more conditions on the set of tuples (X, V, W) than described above. In particular, let $\vec{v} = (\vec{v_1} \ \vec{v_2})^T \in \ker X$. Then it follows from

$$\begin{bmatrix} A & I_n \\ C & D \end{bmatrix} \begin{pmatrix} \vec{v_1} \\ \vec{v_2} \end{pmatrix} = \begin{pmatrix} A\vec{v_1} + \vec{v_2} \\ C\vec{v_1} + D\vec{v_2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

that $\vec{v_2} = -A\vec{v_1}$ and thus $(C - DA)\vec{v_1} = 0$. We claim that dim ker $X \ge n$ from which it follows that $(C - DA)\vec{v_1} = 0 \ \forall \vec{v_1} \in \mathbb{C}^n$ or in other words C = DA. Because X preserves the flag, X restricts to a map

$$X|_V:V\to W$$

Because dim V = n + k and dim W = k, by rank-nullity it follows that

$$\dim \ker X|_V = (n+k) - \dim \operatorname{im} X|_V \ge (n+k) - k = n$$

and thus C = DA as desired. In fact much more is true, as from before we know that

$$\ker X \subseteq \left\{ \begin{bmatrix} v \\ -Av \end{bmatrix}, v \in \mathbb{C}^n \right\} = V_0$$

and the subspace on the right has dimension n. Therefore

$$\dim \ker X = \dim \ker X|_V = n \implies \ker X = V_0 \subseteq V \text{ and } \operatorname{im} X|_V = W$$

Another consequence of the moment map condition is that since $X^3=0$ we have

$$X^{3} = \begin{bmatrix} * & C + A^{2} + AD + D^{2} \\ * & * \end{bmatrix} = 0$$

As C = DA the top right entry will be $(A + D)^2$ and so $(A + D)^2 = 0$.

We now consider the action of U_n . We claim that any element in $\mu^{-1}(I_n)$ is in the orbit of elements of the form

$$\left(X = \begin{bmatrix} 0 & I_n \\ 0 & F \end{bmatrix}, \mathbb{C}^n \oplus M \supset X(M)\right)$$

Given $(X, V^{n+k} \supset W^k) \in \mu^{-1}(I_n)$, let $V' := (0 \oplus \mathbb{C}^n) \cap V$. We claim that $V = \ker X \oplus V'$. The above description of $\ker X = V_0$ shows that $\ker X \cap V' = \{0\}$ and it is easy to see that these two subspaces span V. From this we see that $X|_{V'}$ gives an isomorphism $V' \xrightarrow{\simeq} W$ and thus W is extraneous data, as it can be recovered from X and V. Let $g = \begin{bmatrix} I_n & 0 \\ A & I_n \end{bmatrix}$. By the definition of the action Eq. (17.14) one can compute that

$$g \cdot (X, V) = g \cdot \left(\begin{bmatrix} A & I_n \\ DA & D \end{bmatrix}, \ker X \oplus V' \right) = \left(\begin{bmatrix} 0 & I_n \\ 0 & A+D \end{bmatrix}, \mathbb{C}^n \oplus V' \right)$$

which is exactly of the form above. Now, the RHS only depends on the datum of A+D and V' and we claim that they in fact satisfy the conditions to be in $T^*Gr(k,n)$. As $(A+D)^2=0$ from above, we only need to check that $(A+D)v \in V' \ \forall v \in \mathbb{C}^n$. This follows from $V_0 \subset V$ and so

$$\begin{pmatrix} 0 \\ (A+D)v \end{pmatrix} = \begin{pmatrix} v \\ Dv \end{pmatrix} - \begin{pmatrix} v \\ -Av \end{pmatrix} \in V$$

17.4. **Finale.** As explained in the paragraph before Eq. (17.13), the Hamiltonian reduction now gives us a correspondence

$$hr: T^*\mathcal{FL}(k, n+k; 2n) \to T^*\mathrm{Gr}(k, n)$$

and as alluded to at the beginning of Section 17.2 we have the following theorem

Theorem 17.16 (Knutson, Zinn-Justin, 2021). The two Lagrangian correspondences senv, hr

can be composed. Under the identification of first and third spaces with $T^*Gr(k,n)^2$ and $T^*Gr(k,n)$, the composite is the transpose $C_{graph(\Delta)^T}$ of the conormal bundle of the graph of the diagonal inclusion.

We should note that in order to make the identifications with $T^*Gr(k, n)$ we are using the following theorem of Nakajima,

Theorem 17.17 (Nakajima, 2003). Let $i \in I$, define

$$r_i(\vec{v})^j := \begin{cases} \vec{v}^j & \text{if } j \neq i \\ \text{sum of all adjacent labels } -\vec{v}^i & \text{if } j = i \end{cases}$$

Then

$$\mathcal{M}(I, \vec{w}, \vec{v}) \cong \mathcal{M}(I, \vec{w}, r_i(\vec{v}))$$

as complex varieties, equivariantly w.r.t. the framing group action $\prod_{i \in I} GL(w^i)$ on both sides.

Applying Nakajima's theorem above we find that

Remark 17.18. We can actually write out the two correspondences very explicitly in Springer coordinates

$$senv := \left\{ ((A, V', D, W'), (X, V, W)) : X = \begin{pmatrix} D & * \\ 0 & A \end{pmatrix}, V = \mathbb{C}^n \oplus V' \\ W = W' \oplus 0 \right\}$$

$$\{(A \in \operatorname{End}(\mathbb{C}^n), V'^{\ j})\} \times \{(D \in \operatorname{End}(\mathbb{C}^n), W'^{\ j})\} \qquad \{(X \in \operatorname{End}(\mathbb{C}^{2n}), V^{n+j}, W^j)\}$$

$$hr := \left\{ ((X, V, W), (Y, V'')) : \begin{array}{c} X = \begin{pmatrix} A & Id \\ DA & D \end{pmatrix}, \ Y = A + D \\ V \cap (0 \oplus \mathbb{C}^n) = 0 \oplus V'' \\ W/(0 \oplus \mathbb{C}^n) = (W' + \mathbb{C}^n)/(0 \oplus \mathbb{C}^n) \end{array} \right\}$$

$$\{(X \in \operatorname{End}(\mathbb{C}^{2n}), V^{n+j}, W^j)\} \qquad \{(Y \in \operatorname{End}(\mathbb{C}^n), V''^{\ j})\}$$

- 18. Lecture 17 (Paul Zinn-Justin)
- 19. Lecture 18 (Paul Zinn-Justin)