Lecture 6

Pólya's Enumeration Formula. Stirling cycle numbers. Stirling set numbers

Counting in the presence of symmetries

Burnside's Lemma

The number N of equivalence classes of a set of colourings C in the presence of a group of symmetries G is

$$N = \frac{1}{|G|} \sum_{\pi \in G} |C_{\pi}|$$

where $C_{\pi} = \{c \in C \mid \pi^*(c) = c\}$ is the invariant set of π in the set of colorings C.

If C is the set of all possible colourings with m colours and π is a cyclic structure made of p cycles, then $|C_{\pi}| = m^p$.

For instance:

- $|C_{(1,2)(3,4)}| = m^2$
- $|C_{(1)(2)(3)(4)}| = m^4$
- $|C_{(1)(2,4)(3)}| = m^3$

Cycle index of a group

Assumption: G is a group of n-permutations, and $\pi \in G$

• If π has type $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_n]$ then

$$M_{\pi} = M_{\pi}(x_1, x_2, \dots, x_n) = \prod_{i=1}^{n} x_i^{\lambda_i}$$

where x_1, \ldots, x_n are unknowns.

• The cycle index of *G* is

$$P_G(x_1, x_2, ..., x_n) = \frac{1}{|G|} \sum_{\pi \in G} M_{\pi}(x_1, x_2, ..., x_n).$$

The dihedral group $G = D_4$ has 8 permutations, and:

$$M_{(1)(2)(3)(4)} = x_1^4,$$

 $M_{(1,3)(2)(4)} = M_{(1)(2,4)(3)} = x_1^2 x_2,$
 $M_{(1,2)(3,4)} = M_{(1,3)(2,4)} = M_{(1,4)(2,3)} = x_2^2,$
 $M_{(1,2,3,4)} = M_{(1,4,3,2)} = x_4.$

If we add these terms and divide the sum by their number, we obtain the cycle index of D_4 :

$$P_{D_4}(x_1, x_2, x_3, x_4) = \frac{1}{8}(x_1^4 + 2x_1^2x_2 + 3x_2^2 + 2x_4),$$

Similarly, for the group C_4 we obtain

$$P_{C_4}(x_1, x_2, x_3, x_4) = \frac{1}{4}(x_1^4 + x_2^2 + 2x_4).$$

Burnside's Lemma and the Cycle Index

According to Burnside, the number of colourings of n objects with m colors, by taking into account the symmetries of group G, is $N = P_G(m, m, \ldots, m)$.

Example

The number of 4-beads necklaces with m colors is

$$P_{D_4}(m, m, m, m) = \frac{1}{8}(m^4 + 2 m^3 + 3 m^2 + 2 m).$$

because we already know that

$$P_{D_4}(x_1, x_2, x_3, x_4) = \frac{1}{8}(x_1^4 + 2x_1^2x_2 + 3x_2^2 + 2x_4)$$

Burnside's Lemma

Application

Q: How many 20-beads necklaces can be made by using 3 colors?

A: We compute the cycle index of the symmetry group D_{20} . D_{20} has 20 rotations:

- The rotation with 0° has type $[20,0,0,\ldots,0] \Rightarrow$ monomial x_1^{20}
- 8 rotations with $k\cdot 18^\circ$ where $k\in\{1,3,7,9,11,13,17,19\}$ have type $[0,\dots,0,1]\Rightarrow$ monomial 8 x_{20}
- 4 rotations with $k\cdot 18^\circ$ where $k\in\{2,6,14,18\}$ have type $[\lambda_1,\ldots,\lambda_{20}]$ with $\lambda_{10}=2$ and $\lambda_j=0$ for all $j\neq 10\Rightarrow$ monomial $4\,x_{10}^2$
- 4 rotations with $k\cdot 18^\circ$ where $k\in\{4,8,12,16\}$ have type $[\lambda_1,\dots,\lambda_{20}]$ with $\lambda_5=4$ and $\lambda_j=0$ for all $j\neq 5\Rightarrow$ monomial $4\,x_5^4$
- 2 rotations with $k\cdot 18^\circ$ where $k\in\{5,15\}$ have type $[\lambda_1,\ldots,\lambda_{20}]$ with $\lambda_4=5$ and $\lambda_j=0$ for all $j\neq 4\Rightarrow$ monomial $2\,{}^5_4$
- Rotation with $10 \cdot 18^{\circ}$ has type $[0, 2, 0, ...] \Rightarrow$ monomial x_2^{10}

and 20 reflections

- 10 reflections around axes passing through midpoints of opposite edges of the regular polygon have type $[0, 10, 0, \dots, 0] \Rightarrow$ monomial 10×10^{10}
- 10 reflections around axes passing through opposite nodes of the regular polygon have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_1 = 2$ and $\lambda_9 = 1 \Rightarrow 10 \times_1^2 \times_2^9$

Burnside's Lemma

Application

Q: How many 20-beads necklaces can be made by using 3 colors?

A: We compute the cycle index of the symmetry group D_{20} . D_{20} has 20 rotations:

- The rotation with 0° has type $[20,0,0,\ldots,0] \Rightarrow$ monomial x_1^{20}
- 8 rotations with $k\cdot 18^\circ$ where $k\in\{1,3,7,9,11,13,17,19\}$ have type $[0,\dots,0,1]\Rightarrow$ monomial 8 x_{20}
- 4 rotations with $k\cdot 18^\circ$ where $k\in\{2,6,14,18\}$ have type $[\lambda_1,\ldots,\lambda_{20}]$ with $\lambda_{10}=2$ and $\lambda_j=0$ for all $j\neq 10\Rightarrow$ monomial $4\,x_{10}^2$
- 4 rotations with $k\cdot 18^\circ$ where $k\in\{4,8,12,16\}$ have type $[\lambda_1,\dots,\lambda_{20}]$ with $\lambda_5=4$ and $\lambda_j=0$ for all $j\neq 5\Rightarrow$ monomial $4\,x_5^4$
- 2 rotations with $k\cdot 18^\circ$ where $k\in\{5,15\}$ have type $[\lambda_1,\ldots,\lambda_{20}]$ with $\lambda_4=5$ and $\lambda_j=0$ for all $j\neq 4\Rightarrow$ monomial $2\,{}^5_4$
- Rotation with $10 \cdot 18^{\circ}$ has type $[0, 2, 0, ...] \Rightarrow$ monomial x_2^{10}

and 20 reflections

- 10 reflections around axes passing through midpoints of opposite edges of the regular polygon have type $[0, 10, 0, \dots, 0] \Rightarrow$ monomial 10×10^{10}
- 10 reflections around axes passing through opposite nodes of the regular polygon have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_1 = 2$ and $\lambda_9 = 1 \Rightarrow 10 \times_1^2 \times_2^9$

Burnside's Lemma

Application

- Q: How many 20-beads necklaces can be made by using 3 colors?
- A: We compute the cycle index of the symmetry group D_{20} . D_{20} has 20 rotations:
 - The rotation with 0° has type $[20, 0, 0, \dots, 0] \Rightarrow$ monomial x_1^{20}
 - 8 rotations with $k\cdot 18^\circ$ where $k\in\{1,3,7,9,11,13,17,19\}$ have type $[0,\dots,0,1]\Rightarrow$ monomial 8 x_{20}
 - 4 rotations with $k\cdot 18^\circ$ where $k\in\{2,6,14,18\}$ have type $[\lambda_1,\ldots,\lambda_{20}]$ with $\lambda_{10}=2$ and $\lambda_j=0$ for all $j\neq 10\Rightarrow$ monomial $4\,x_{10}^2$
 - 4 rotations with $k\cdot 18^\circ$ where $k\in\{4,8,12,16\}$ have type $[\lambda_1,\ldots,\lambda_{20}]$ with $\lambda_5=4$ and $\lambda_j=0$ for all $j\neq 5\Rightarrow$ monomial $4\,x_5^4$
 - 2 rotations with $k\cdot 18^\circ$ where $k\in\{5,15\}$ have type $[\lambda_1,\dots,\lambda_{20}]$ with $\lambda_4=5$ and $\lambda_j=0$ for all $j\neq 4\Rightarrow$ monomial $2\frac{1}{4}$
 - Rotation with $10 \cdot 18^{\circ}$ has type $[0, 2, 0, ...] \Rightarrow$ monomial x_2^{10}

and 20 reflections

- 10 reflections around axes passing through midpoints of opposite edges of the regular polygon have type $[0,10,0,\ldots,0]$ \Rightarrow monomial $\frac{10}{2}$
- 10 reflections around axes passing through opposite nodes of the regular polygon have type $[\lambda_1, \dots, \lambda_{20}]$ with $\lambda_1 = 2$ and $\lambda_9 = 1 \Rightarrow 10 \times_1^2 \times_2^9$
- $P_{D_{20}}(x_1, x_2, \dots, x_{20}) = \frac{1}{40}(x_1^{20} + 10x_1^2x_2^9 + 11x_2^{10} + 2x_4^5 + 4x_2^{10} + 8x_{20})$ $\Rightarrow N = P_{20}(3, \dots, 3) = 87230157$

Applictaions of the cycle index

Pólya's enumeration formula

The cycle index can be used to solve more complicated problems to count arrangements in the presence of symmetries. For instance:

• How can we find the number of equivalence classes of colourings of arrangements of n objects with m colours y_1, y_2, \ldots, y_m , if every colour should appear a predefined number of times?

Definition (Pattern Inventory)

The pattern inventory of the colourings of n objects with m colours in the presence of symmetries from a group G is the polynomial

$$F_G(y_1, y_2, \dots, y_m) = \sum_{\mathbf{v}} a_{\mathbf{v}} y_1^{n_1} y_2^{n_2} \dots y_m^{n_m}$$

where

- the sum is over all vectors $\mathbf{v} = (n_1, n_2, \dots, n_m)$ of positive integers such that $n_1 + n_2 + \dots + n_m = n$, and
- $a_{(n_1,n_2,...,n_m)}$ is the number of non-equivalent colourings of these n objects, where every colour y_i appears exactly n_i times.

340

Example

How many different necklaces can be made with 2 red beads (r), 9 black (b) and 9 white (w)? We assume that the symetries of this necklace are the permutations of the dihedral group D_{20} , made of

- ▶ 20 rotations
- ▶ 20 symmetries

Example

How many different necklaces can be made with 2 red beads (r), 9 black (b) and 9 white (w)? We assume that the symetries of this necklace are the permutations of the dihedral group D_{20} , made of

- 20 rotations
- ▶ 20 symmetries

Answer: This is the coefficient of $r^2b^9w^9$ in the pattern inventory, which is the polynomial

$$F_{D_{20}}(r,b,w) = \sum_{\substack{\mathbf{v} = (i,j,k) \\ i+j+k=20 \\ i \ i \ k>0}} a_{\mathbf{v}} r^i b^j w^k = \sum_{\substack{i+j+k=20 \\ i,j,k\geq 0}} a_{(i,j,k)} r^i b^j w^k.$$

Example

How many different necklaces can be made with 2 red beads (r), 9 black (b) and 9 white (w)? We assume that the symetries of this necklace are the permutations of the dihedral group D_{20} , made of

- ▶ 20 rotations
- ▶ 20 symmetries

Answer: This is the coefficient of $r^2b^9w^9$ in the pattern inventory, which is the polynomial

$$F_{D_{20}}(r,b,w) = \sum_{\substack{\mathbf{v} = (i,j,k) \\ i+j+k=20 \\ i,j,k \geq 0}} a_{\mathbf{v}} r^i b^j w^k = \sum_{\substack{i+j+k=20 \\ i,j,k \geq 0}} a_{(i,j,k)} r^i b^j w^k.$$

In 1937, G. Pólya found a simple formula to compute the pattern inventory, using the cycle index of the group. (see next slide)

Theorem

Suppose S is an arrangement od n objects colorable with m colors y_1, \ldots, y_m , and G is a group of n-permutations. Let

$$P_G(x_1, x_2, ..., x_n) = \frac{1}{|G|} \sum_{\pi \in G} M_{\pi}(x_1, x_2, ..., x_n)$$

be the cycle index of G. The pattern inventory of all colourings of the objects of S with colours y_1, \ldots, y_m in the presence of symmetries of G is

$$F_G(y_1,\ldots,y_m) = P_G\left(\sum_{i=1}^m y_i, \sum_{i=1}^m y_i^2, \ldots, \sum_{i=1}^m y_i^n\right).$$

Applications

The pattern inventory of colourings $F_G(r, g, b)$ with (r) green (g) and blue (b) of the beads of a necklace with 4 beads (=square vertices) in the presence of symmetries from $G = D_4$ can be computed as follows:

- m = 3 because the set of colours is $\{r, g, b\}$
- The cycle index is $P_{D_4}(x_1, x_2, x_3, x_4) = \frac{1}{|D_4|} \sum_{\pi \in D_4} M_{\pi}(x_1, x_2, x_3, x_4) = \frac{1}{8} (x_1^4 + 2x_1^2x_2 + 3x_2^2 + 2x_4)$

$$F_{G}(r,g,b) = P_{D_{4}}(r+g+b,r^{2}+g^{2}+b^{2},r^{3}+g^{3}+b^{3},r^{4}+g^{4}+b^{4})$$

$$= \frac{1}{8}((r+g+b)^{4}+2(r+g+b)^{2}(r^{2}+g^{2}+b^{2})$$

$$+3(r^{2}+g^{2}+b^{2})^{2}+2(r^{4}+g^{4}+b^{4}))$$

$$= r^{4}+g^{4}+b^{4}+r^{3}g+rg^{3}+r^{3}b+rb^{3}+g^{3}b+gb^{3}$$

$$+2r^{2}g^{2}+2r^{2}b^{2}+2g^{2}b^{2}+2r^{2}gb+2rg^{2}b+2rgb^{2}$$

E.g., there are 2 colorings with 1 red bead, 1 green, and 2 blue.

Pólya's Enumeration Formula Aplicații

The pattern inventory of colourings $F_G(r, v, a)$ with red (r) green (g) and blue (b) of the beads of a necklace with 4 beads (=square vertices) in the presence of symmetries from $G = C_4$ can be computed as follows:

- m = 3 because the set of colourings is $\{r, v, a\}$
- The cycle index is $P_{C_4}(x_1, x_2, x_3, x_4) = \frac{1}{|C_4|} \sum_{\pi \in C_4} M_{\pi}(x_1, x_2, x_3, x_4) = \frac{1}{4} (x_1^4 + x_2^2 + 2x_4)$

$$F_{G}(r,g,b) = P_{C_{4}}(r+g+b,r^{2}+g^{2}+b^{2},r^{3}+g^{3}+b^{3},r^{4}+g^{4}+b^{4})$$

$$= \frac{1}{8} ((r+g+b)^{4} + 2(r^{2}+g^{2}+b^{2})^{2} + 2(r^{4}+g^{4}+b^{4}))$$

$$= r^{4} + g^{4} + b^{4} + r^{3}g + rg^{3} + r^{3}b + rb^{3} + g^{3}b + gb^{3}$$

$$+ 2r^{2}g^{2} + 2r^{2}b^{2} + 2g^{2}b^{2} + 3r^{2}gb + 3rg^{2}b + 3rgb^{2}$$

E.g., there are 3 colourings with 1 red bead, 1 green, and 2 blue.

Problem

In how many ways can n persons be seated at k round tables, such that no table is unoccupied? At every table can stay any number o persons between 1 and n.

Problem

In how many ways can n persons be seated at k round tables, such that no table is unoccupied? At every table can stay any number o persons between 1 and n.

ANSWER: Every answer to this problem is described by a cycle structure with k disjoint structures $C_1 \ldots C_k$ where C_i is the cycle describing the people seated at table i.

Problem

In how many ways can n persons be seated at k round tables, such that no table is unoccupied? At every table can stay any number o persons between 1 and n.

ANSWER: Every answer to this problem is described by a cycle structure with k disjoint structures $C_1 \ldots C_k$ where C_i is the cycle describing the people seated at table i.

Example

The cycle structure (1,2,4)(3,6,9,10)(5)(7,8) represents a possible arrangement of 10 persons at 4 round tables:

- The people at one table are arranged 1,2,4 clockwise.
- The people at another table are arranged 3,6,9,10 clockwise.
- At another table stays only person 5.
- At the remaining table are persons 7 and 8.

Definition

The Stirling cycle number $\binom{n}{k}$ is the number of possibilities to seat n persons at k identical round tables such that no round table is left unoccupied.

Definition

The Stirling cycle number $\begin{bmatrix} n \\ k \end{bmatrix}$ is the number of possibilities to seat n persons at k identical round tables such that no round table is left unoccupied.

From the previous remark results that $\binom{n}{k}$ is the number of n-permutations whose cycle structure is made of exactly k cycles.

Definition

The Stirling cycle number $\begin{bmatrix} n \\ k \end{bmatrix}$ is the number of possibilities to seat n persons at k identical round tables such that no round table is left unoccupied.

From the previous remark results that $\binom{n}{k}$ is the number of n-permutations whose cycle structure is made of exactly k cycles.

• QUESTION: How to compute directly $\binom{n}{k}$?

Definition

The Stirling cycle number $\begin{bmatrix} n \\ k \end{bmatrix}$ is the number of possibilities to seat n persons at k identical round tables such that no round table is left unoccupied.

From the previous remark results that $\binom{n}{k}$ is the number of n-permutations whose cycle structure is made of exactly k cycles.

- QUESTION: How to compute directly $\binom{n}{k}$?
- Answer: Identify a recursive definition for Stirling cycle numbers, and then solve it.

1. We can not place n persons at 0 tables, unless n=0 (in this special case, the number is assumed to be 1). Thus

$$\begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{cases} 1 & \text{if } n = 0, \\ 0 & \text{if } n > 0. \end{cases}$$

2. $n \ge 1$ persons can be seated at 1 table in (n-1)! ways. Thus:

$$\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)! \quad \text{if } n \ge 1.$$

- 3. *n* persons can be seated at *n* tables in just 1 way: every person is alone at a table. Thus: $\binom{n}{n} = 1$.
- 4. n persons can be seated at n-1 tables as follows: all persons, except one couple, stay alone at a table. Thus

$$\begin{bmatrix} n \\ n-1 \end{bmatrix} = \text{number of possible couples} = \binom{n}{2}.$$

5. If the number of tables *k* is negative or if there are more tables than persons, the problem has no solution. Thus:

$$\begin{bmatrix} n \\ k \end{bmatrix} = 0 \text{ if } k < 0 \text{ or } k > n.$$

6. Every permutation has a cycle structure made of k cycles, where $1 \le k \le n$. According to the rule of sum

$$\sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!$$

Finding a recurrence relation

How can we seat n > 0 persons at k > 0 round tables?

We distinguish two disjoint cases:

- Place the first n-1 persons at k-1 round tables, and afterwards place person n at table k. This case can be performed in $\binom{n-1}{k-1}$ ways.
- 2 Place n-1 persons at k round tables, and afterwards add person n together with other persons at a round table.
 - Placing n-1 persons at k tables can be done in $\binom{n-1}{k}$ ways.
 - Placing person n at a round table = placing person n to the left of one of the other persons $i \in \{1, 2, \ldots, n-1\} \Rightarrow n-1$ ways.
 - \Rightarrow This case can be performed in $(n-1) \cdot {n-1 \choose k}$ ways.

According to the rule of sum

$$\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} \quad \text{if } n \ge 1 \text{ and } k \ge 1.$$

• We already know that the binomial formula holds $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$. For y=1 we get:

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Also, in a previous lecture we gave a combinatorial proof that

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

We just proved combinatorial proof that

$$\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}.$$

• We already know that the binomial formula holds $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$. For y=1 we get:

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Also, in a previous lecture we gave a combinatorial proof that

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

We just proved combinatorial proof that

$$\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}.$$

We want to get a formula for Stirling cycle numbers, which is similar to the binomial formula.

Identifying a generative funciton

Let
$$G_n(x) = \sum_k {n \brack k} x^k$$
. Then $G_0(x) = {0 \brack 0} x^0 = 1 \cdot 1 = 1$, and for $n > 1$

$$G_{n}(x) = \sum_{k} {n \brack k} x^{k}$$

$$= (n-1) \sum_{k} {n-1 \brack k} x^{k} + \sum_{k} {n-1 \brack k-1} x^{k}$$

$$= (n-1)G_{n-1}(x) + x G_{n-1}(x)$$

$$= (x+n-1)G_{n-1}(x)$$

$$\Rightarrow G_n(x) = \underbrace{x \cdot (x+1) \cdot (x+2) \cdot \ldots \cdot (x+n-1)}_{\text{notation: } x^{\bar{n}}}.$$

Thus
$$x^{\bar{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^{k}$$
.

Stirling cycle numbers The triangle of Stirling cycle numbers

This is an infinite triangle of Stirling cycle numbers growing downwards:

$\begin{bmatrix} n \\ k \end{bmatrix}$	k=0	1	2	3	4	5	6	7	8	n!
n = 0	1									1
1	0	1								1
2	0	1	1							2
3	0	2	3	1						6
4	0	6	11	6	1					24
5	0	24	50	35	10	1				120
6	0	120	274	225	85	15	1			720
7	0	720	1764	1624	735	175	21	1		5040
8	0	5040	13068	13132	6769	1960	322	28	1	40320

Recursive formula used in the computation:

$$\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}.$$

Binomial numbers

The triangle of binomial numbers

This is an infinite triangle of binomial numbers growing downwards:

$\binom{n}{k}$	k=0	1	2	3	4	5	6	7	8	<i>n</i> !
n = 0	1									1
1	1	1								1
2	1	2	1							2
3	1	3	3	1						6
4	1	4	6	4	1					24
5	1	5	10	10	5	1				120
6	1	6	15	20	15	6	1			720
7	1	7	21	35	35	21	7	1		5040
8	1	8	28	56	70	56	28	8	1	40320

Recursive formula used in the computation:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

Stirling set numbers

Problem

In how many ways can we divide n persons in k non-empty and disjoint groups, if the order of persons in one group does not matter?

Stirling set numbers

Problem

In how many ways can we divide n persons in k non-empty and disjoint groups, if the order of persons in one group does not matter?

Example

The set $\{1,2,3\}$ can be partitioned in 2 non-empty subsets in 3 ways: $\{1,2\},\{3\};\{1,3\},\{2\};$ and $\{1\},\{2,3\}.$

Stirling set numbers

Problem

In how many ways can we divide n persons in k non-empty and disjoint groups, if the order of persons in one group does not matter?

Example

The set $\{1,2,3\}$ can be partitioned in 2 non-empty subsets in 3 ways: $\{1,2\},\{3\};\{1,3\},\{2\};$ and $\{1\},\{2,3\}.$

Definition

The number of ways in which we can partition a set of n elements in exactly k non-empty and disjoint subsets is the Stirling set number $\binom{n}{k}$. Often in the literature this number is denoted by S(n,k) instead of $\binom{n}{k}$.

Stirling set numbers Obvious properties

1. There is only one way to place *n* people in one group, and also only one way to split *n* people in *n* groups. Thus:

$$\binom{n}{1} = \binom{n}{n} = 1.$$

2. We can not place n > 0 people in 0 groups. If n = 0 then we assume there is 1 way to place 0 people in 0 groups. Thus:

3. Splitting n people in n-1 groups amounts to choosing a couple of persons for one group; all other persons are alone in their group. Thus

$$\begin{Bmatrix} n \\ n-1 \end{Bmatrix} = \binom{n}{2}.$$

4. It is obvious that

$${n \brace k} = 0 \quad \text{if } k < 0 \text{ or } k > n.$$

How can we split n > 0 persons in k > 0 non-empty and disjoint subsets?

We distinguish 2 disjoint cases:

- 1. We split the first n-1 persons in k-1 groups; then person n is obliged to form a singleton group $\{n\} \Rightarrow {n-1 \choose k-1}$ possibilities.
- 2. We split the first n-1 persons in k groups $\Rightarrow {n-1 \choose k}$ possibilities; afterwards, we add person n to one of those k groups $\Rightarrow k \cdot {n-1 \choose k}$ possibilities.

According to the rule of sum

$$\binom{n}{k} = k \cdot \binom{n-1}{k} + \binom{n-1}{k-1} \quad \text{if } n \ge 1 \text{ and } k \ge 1.$$

Stirling set numbers The triangle of Stirling set numbers

This is an infinite triangle of Stirling set numbers growing downwards:

Recursive formula used in the computation:

$${n \brace k} = k \cdot {n-1 \brace k} + {n-1 \brace k-1}.$$

References

- J. M. Harris, J. L. Hirst, M. J. Mossinghoff. Combinatorics and Graph Theory, Second Edition. Springer 2008. §2.7. Pólya's Theory of Counting.
- Q. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen, und chemische Verbindungen, Acta Math. 68 (1937), 145–254; English transl. in G. Pólya and R. C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (1987).