RunMo

Run Motion Capture and Analysis on the Cloud and on Edge

James Wall, Tosin Akinpelu, and Mumin Khan

THE TEAM

Mumin Khan

Tosin Akinpelu

INTRODUCTION

- Running is one of the world's most democratized sport
- Yet access to tailored mentorship is often expensive and exclusive
- Poor running posture can lead to:
 - Plantar fasciitis
 - o ITB syndrome
 - o Runner's knee
 - Shin splints
 - Achilles tendonitis
 - More serious muscle and tendon tears

EXISTING SOLUTIONS

- Interactive workout apps
- Human coaching
- Physical posture correctors
- Sensor based correctors

CAN WE DO BETTER?

RunMo was built to bridge the gap between general Al workout and tailored running solutions

HIGH LEVEL OVERVIEW

Record User on Edge

Users can use any camera device with internet to stream themselves running

Persist Data on Cloud

Data should be collected and stored off-device for future re-analysis

Learn User's Features on Cloud

RunMo should provide near real-time recommendations

Send Results to Edge

Users get to quickly consume the results of their analysis

Begin James

ARCHITECTURE

VIDEO DEMO

CAPTURE ON NX XAVIER

CLOUD INTERFACE

```
Approximate time left: 10 seconds
(Frame:6): dbind-WARNING **: 22:20:01
 to socket /tmp/dbus-yIR827C7Wk: Conn
Approximate time left: 9 seconds
Approximate time left: 8 seconds
Approximate time left: 7 seconds
Approximate time left: 6 seconds
Approximate time left: 5 seconds
Approximate time left: 4 seconds
Approximate time left: 3 seconds
Approximate time left: 2 seconds
Approximate time left: 1 seconds
Upload credentials set
Supplied args:
UPLOAD OBJ outpy.avi
DESTINATION_PATH 12_08_2020-22_20_13.
BUCKET NAME w251 test
Upload started
```

DATA PERSISTENCE

PROCESSING MODEL FEATURES

POSTURE CALCULATION

```
def isGoodPosture(row):
129
        stride_length = row['stride_length']
130
        ideal_stride = row['ideal_stride']
131
132
        right_elbow_angle = row['right_elbow_angle']
133
        # right_shoulder_angle = row['right_shoulder_angle']
134
        right_knee_angle = row['right_knee_angle']
135
136
        left_elbow_angle = row['left_elbow_angle']
137
        # left_shoulder_angle = row['left_shoulder_angle']
        left knee angle = row['left knee angle']
138
139
140
        back_angle = row['back_angle']
141
142
        # Calculate weighted metric on whether good posture or not
143
        # Amount added ranges from [0,1]. Higher added values indicates more importance for posture
144
        weighted_posture_metric = 0
145
146
        # TODO get rid of hardcoded weights - maybe have standardized low, medium, and high weight variables defined before this method?
147
        if isGoodElbowAngle(right_elbow_angle):
          weighted_posture_metric = weighted_posture_metric + 0.4
148
149
        if isGoodElbowAngle(left_elbow_angle):
150
          weighted_posture_metric = weighted_posture_metric + 0.4
151
        if isGoodKneeAngle(right_knee_angle):
152
153
          weighted_posture_metric = weighted_posture_metric + 0.8
154
        if isGoodKneeAngle(left_knee_angle):
155
          weighted_posture_metric = weighted_posture_metric + 0.8
156
157
        if isGoodBackAngle(back_angle):
          weighted_posture_metric = weighted_posture_metric + 0.8
158
159
169
        if isStrideLength(stride_length, ideal_stride):
161
          weighted_posture_metric = weighted_posture_metric + 0.9
162
163
        # Make call whether posture is good enough or not
164
        # TODO check if there is a method to this so it is less arbitrary
        # Currently highest possible total is 4.3
165
166
        # Probably missing two 0.8s is ok. so we'll say over 2.7 is good
```


RESULT REPORTING

Nvidia Xavier NX receiving recommendation from RunMo pipeline

Begin Tosin

LEARNINGS

- No need to reinvent the wheel under time crunch; explored available MLaaS cloud solutions:
 - Amazon, IBM, Microsoft & Google offer video analytics REST APIs (some in beta versions)
 - o These platforms leverage advances in Deep Learning under the hood
 - We chose Google Video Intelligence for their Pose Detection service which is relevant to our project
- Ideas are great but execution is 'everything'

CHALLENGES

THE APP DESIGN

- MQTT protocol (a core feature of our project workflow) does not support video robustly
- API did not work when all points were not present
 - o Robust error handling for when ankle, etc. were missing from frame

MURPHY'S LAW

NX breaks just in time, house moves, covid-19

- RunMo makes live running advisory service accessible to runners with minimal hardware investment
- The solution can be extended to wider application areas leveraging Deep Learning in the Cloud.

Thank you!

Questions, Comments, or Concerns?