Lógica y Computabilidad

Práctica 1: Funciones primitivas recursivas y clases PRC

2do cuatrimestre 2022

Ejercicio 1

Para construir una constante k, aplicamos la función s (sucesor) unas k veces, partiendo inicialmente de la función n que nos devuelve el 0.

$$f(x) = k = (\underbrace{s \circ \cdots \circ s}_{k \text{ veces}} \circ n)(x) = s^k(n(x))$$

Ejercicio 2

- $f_1(x,y) = \operatorname{suma}(x,y) = x + y$ $\operatorname{suma}(x,0) = u_1^1(x) = x$ $\operatorname{suma}(x,y+1) = g(\operatorname{suma}(x,y),x,y) \text{ donde } g(x_1,x_2,x_3) = s(u_1^3(x_1,x_2,x_3))$ $\Rightarrow \operatorname{suma}(x,y+1) = s(\operatorname{suma}(x,y))$
- $f_2(x,y) = \operatorname{prod}(x,y) = x \cdot y$ $\operatorname{prod}(x,0) = n(x) = 0$ $\operatorname{prod}(x,y+1) = g(\operatorname{prod}(x,y),x,y)$ donde $g(x_1,x_2,x_3) = \operatorname{suma}(u_1^3(x_1,x_2,x_3),u_2^3(x_1,x_2,x_3))$ $\Rightarrow \operatorname{prod}(x,y+1) = \operatorname{suma}(\operatorname{prod}(x,y),x)$
- $f_3(x,y) = \text{pot}(x,y) = x^y$ pot(x,0) = s(n(x)) = 1 $\text{pot}(x,y+1) = g(\text{pot}(x,y),x,y) \text{ donde } g(x_1,x_2,x_3) = \text{prod}(u_1^3(x_1,x_2,x_3),u_2^3(x_1,x_2,x_3))$ $\Rightarrow \text{pot}(x,y+1) = \text{prod}(\text{pot}(x,y),x)$
- $g_1(x) = \operatorname{pred}(x) = x \div 1$ $\operatorname{pred}(0) = n() = 0$ Permitimos utilizar la función nula n sin parámetros. $\operatorname{pred}(x+1) = g(\operatorname{pred}(x), x)$ donde $g(x_1, x_2) = u_2^2(x_1, x_2) = x_2$ $\Rightarrow \operatorname{pred}(x+1) = x$
- $g_2(x,y) = \text{resta}(x,y) = x y$ $\text{resta}(x,0) = u_1^1(x) = x$ $\text{resta}(x,y+1) = g(\text{resta}(x,y),x,y) \text{ donde } g(x_1,x_2,x_3) = \text{pred}(u_1^3(x_1,x_2,x_3))$ $\Rightarrow \text{resta}(x,y+1) = \text{pred}(\text{resta}(x,y))$

• $g_3(x,y) = \max\{x,y\}$ $g_3(x,y) = \text{suma}(\text{resta}(x,y),y) = (x - y) + y$

Si $x \ge y$, entonces q_3 simplemente resta y suma y a un x que es más grande, y en efecto terminamos con x que era el máximo. En el otro caso x < y, al hacer la resta en \mathbb{N} obtenemos x - y = 0, luego al sumar y obtenemos nuevamente

y que era el máximo.

•
$$g_4(x, y) = \min\{x, y\}$$

 $g_4(x, y) = \text{resta}(\text{suma}(x, y), \max\{x, y\}) = x + y - \max\{x, y\}$

Ejercicio 3

a)

Para la ida (⇒) hacemos una demostración por inducción estructural. Primero probamos que todas las funciones iniciales cumplen la propiedad.

- Función nula f(x) = n(x) = 0. La función nula cae en el caso f(x) = k donde k = 0.
- f(x) = s(x) = x + 1. La función sucesor cae en el caso f(x) = x + k donde k = 1.
- Función provector $f(x_1,\ldots,x_n)=u_i^n(x_1,\ldots,x_n)=x_i$. La función proyector cae en el caso $f(x_1,\ldots,x_n)=x_i+k$ donde k=0.

Paso inductivo. Supongamos que existe $h_m \in \mathcal{C}_c$ generada a partir de m composiciones, tal que $h_m(x_1,\ldots,x_n)=k$ o bien $h_m(x_1,\ldots,x_n)=x_i+k$. Queremos ver si cualquier $h_{m+1}\in\mathcal{C}_c$ también cumple la propiedad. Para generar h_{m+1} componemos h_m con alguna función $f \in \mathcal{C}_c$.

- \blacksquare Caso f(x) = n(x) $h_{m+1} = f(h_m(x_1, \dots, x_n)) = n(h_m(x_1, \dots, x_n)) = 0.$ No importa la forma de h_m pues n(x) = 0 para cualquier x.
- \blacksquare Caso f(x) = s(x)
 - Caso $h_m(x_1, ..., x_n) = x_i + q$ $h_{m+1} = f(h_m(x_1, \dots, x_n)) = s(x_i + q) = x_i + q + 1 = x_i + k \text{ donde } k = q + 1.$
 - Caso $h_m(x_1,\ldots,x_n)=q$ $h_{m+1} = f(h_m(x_1, \dots, x_n)) = s(q) = q + 1 = k \text{ donde } k = q + 1.$
- Caso $f(x) = u_i^n(x)$ Como $h_m: \mathbb{N}^n \to \mathbb{N}$, necesariamente $f(x) = u_1^1(x)$ para poder componer $f \circ h_m$.
 - Caso $h_m(x_1,\ldots,x_n)=x_i+k$ $h_{m+1} = f(h_m(x_1, \dots, x_n)) = u_1^1(x_i + k) = x_i + k.$
 - Caso $h_m(x_1,\ldots,x_n)=k$ $h_{m+1} = f(h_m(x_1, \dots, x_n)) = u_1^1(k) = k.$
- Caso f(x) = x + r
 - Caso $h_m(x_1, ..., x_n) = x_i + q$ $h_{m+1} = f(h_m(x_1, \dots, x_n)) = x_i + q + r = x_i + k \text{ donde } k = q + r.$
 - Caso $h_m(x_1,\ldots,x_n)=q$ $h_{m+1} = f(h_m(x_1, \dots, x_n)) = q + r = k \text{ donde } k = q + r.$
- Caso f(x) = k

• Caso
$$h_m(x_1, ..., x_n) = x_i + q$$

 $h_{m+1} = f(h_m(x_1, ..., x_n)) = f(x_i + q) = k.$

• Caso
$$h_m(x_1, ..., x_n) = q$$

 $h_{m+1} = f(h_m(x_1, ..., x_n)) = f(q) = k.$

Por lo tanto, partiendo de una función $h_m \in \mathcal{C}_c$, vemos que al realizar una composición con alguna función $f \in \mathcal{C}_c$ obtenemos una función $h_{m+1} \in \mathcal{C}_c$ (pues \mathcal{C}_c es cerrado por composición) que mantiene la propiedad enunciada.

Para la vuelta (\Leftarrow) mostramos que podemos construir cualquier $f(x_1, \ldots, x_n) = k$ o $f(x_1, \ldots, x_n) = x_i + k$ a partir de composición de las funciones iniciales, y por lo tanto $f \in \mathcal{C}_c$.

$$f(x_1,\ldots,x_n) = k = s^k(n(x_1,\ldots,x_n))$$

$$f(x_1,\ldots,x_n) = x_i + k = s^k(u_i^n(x_1,\ldots,x_n))$$

b)

En el ejercicio 2 vimos que la función suma(x,y) = x + y es P.R. pero $suma \notin C_c$ pues no cumple con la propiedad.

Ejercicio 4

Cualquier clase PRC contiene las funciones iniciales y está cerrada por recursión primitiva y composición. Para mostrar que los predicados están en cualquier clase PRC, es suficiente con mostrar que se pueden construir a partir de las funciones iniciales utilizando recursión primitiva y/o composición.

Para simplificar la escritura vamos a utilizar la función $\alpha(x)$ la cual es PR a partir de las iniciales y por lo tanto pertenece a cualquier clase PRC.

$$\alpha(x) = \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{si no} \end{cases}$$

Además, podemos definir el predicado $\neg(x) = \alpha(x)$ que niega otro predicado.

$$\leqslant$$
) $p(x,y) = \begin{cases} 1 & \text{si } x \leqslant y \\ 0 & \text{si no} \end{cases} = \alpha(x \div y)$

$$\geqslant) \ p(x,y) = \begin{cases} 1 & \text{si } x \geqslant y \\ 0 & \text{si no} \end{cases} = \alpha(y \dot{-} x)$$

$$=) p(x,y) = \begin{cases} 1 & \text{si } x = y \\ 0 & \text{si no} \end{cases} = (x \leqslant y) \cdot (x \geqslant y)$$

$$\neq) p(x,y) = \begin{cases} 1 & \text{si } x \neq y \\ 0 & \text{si no} \end{cases} = \neg(x=y)$$

$$<) p(x,y) = \begin{cases} 1 & \text{si } x < y \\ 0 & \text{si no} \end{cases} = \neg(x \ge y)$$

$$>) p(x,y) = \begin{cases} 1 & \text{si } x > y \\ 0 & \text{si no} \end{cases} = \neg(x \le y)$$

Ejercicio 5

Podemos escribir h de la siguiente forma equivalente en donde se puede ver más claramente que es composición de funciones, en particular es composición de funciones en \mathcal{C} pues todas las f_i y g están en \mathcal{C} . Como \mathcal{C} es una clase PRC resulta que $h \in \mathcal{C}$.

 $h(x_1, \dots, x_n) = \sum_{i=1}^k f_i(x_1, \dots, x_n) \cdot p_i(x_1, \dots, x_n) + g(x_1, \dots, x_n) \cdot \neg (\sum_{i=1}^k p_i(x_1, \dots, x_n))$

También podemos analizarlo por casos:

Caso 1: $\exists ! i : \mathbb{N}, 1 \leq i \leq k \text{ tal que } p_i(x_1, \dots, x_n) \text{ es verdadero.}$

Observemos que si existe i, tiene que ser único pues todos los predicados p_1, \ldots, p_k son disjuntos. Luego, vale que $h(x_1, \ldots, x_n) = f_i(x_1, \ldots, x_n)$ por definición (el predicado $p_i(x_1, \ldots, x_n)$ es verdadero y por lo tanto "selecciona" el caso de f_i dentro de la definición de h). Como todas las $f_i \in \mathcal{C}$ por hipótesis $\Rightarrow h \in \mathcal{C}$.

Caso 2: $\forall i : \mathbb{N}, 1 \leq i \leq k \Rightarrow p_i(x_1, \dots, x_n)$ es falso.

Como no existe predicado p_i que resulte verdadero, por definición h "selecciona" el último caso "si no" y luego resulta $h(x_1, \ldots, x_n) = g(x_1, \ldots, x_n)$. Como $g \in \mathcal{C}$ por hipótesis $\Rightarrow h \in \mathcal{C}$.

Ejercicio 6

Pendiente

Ejercicio 7

Pendiente

Ejercicio 8

Pendiente

Ejercicio 9

Pendiente

Ejercicio 10

Pendiente

Ejercicio 11

Pendiente

Ejercicio 12

Pendiente

Ejercicio 13

Pendiente

Ejercicio 14

Pendiente

Ejercicio 15

Pendiente