- Confirm that the test is actually negative. That is, it appears that the old version of the site with just one translation across Spain and LatAm performs better
- Higher conversion dare using one translation cross spain (test=0) and LatAM compare with localized translation (test=1) confirms the test is actually negative

conversion_Sum	test	Record_Count	Conversion_Rate	
8949	0	185311		0.048
9367	1	215774		0.043

Z-score = 7.35
P-value = 1
With 100% confidence level, we can conclude that the old version outperforms the localized translation version in conversion rate

- The steps involved:
 - Merge test_table.csv with user_table.csv (use user_id as key and inner join operation)
 - Select non-spain countries records
 - Group conversion count by test value (0 and 1)
 - Compute conversion rate using conversion_sum / read count

Large discrepancy in the sample size between the control & test sets is not observed in the other fields and values

Explain why that might be happening. Are the localized translations

really worse?

	l				
	_	country		Conversion_Rate	7
141	_	Argentina	9356	0.015	
513	_	Argentina	37377	0.014	
274	_	Delivia	5550	0.049	F
267		Bolivia	5574	0.048	
474		Chile	9853	0.048	
507		Chile	9884	0.051	
1411		Colombia	27088	0.052	
1364		Colombia	26972	0.051	\
139	_	Costa Rica	2660	0.052	There is a large
145		Costa Rica	2649	0.055	_
395		Ecuador	8036	0.049	discrepancy in the
385		Ecuador	7859	0.049	cample size between
220		El Salvador	4108		sample size between
195		El Salvador	4067	0.048	the control & test
386		Guatemala	7622	0.051	the control & test
365		Guatemala	7503	0.049	sets of Argentina
222		Honduras	4361	0.051	sets of Algeritina
200		Honduras	4207	0.048	and Uruguay
3178		Mexico	64209	0.049	and Oragady
3290		Mexico	64275	0.051	
180		Nicaragua	3419	0.053	
179	_	Nicaragua	3304	0.054	
92	_	Panama	1966	0.047	/
98		Panama	1985	0.049	/
177		Paraguay	3650	0.048	/
182		Paraguay	3697	0.049	/
842		Peru	16869	0.050	\mathcal{L}
850	_1	Peru	16797		
5	_	Uruguay	415		
48		Uruguay	3719	0.013	
813		Venezuela	16149		
779	1	Venezuela	15905	0.049	

Ads 3763 1 86448 0.044 Direct 1833 0 37238 0.049 Direct 1830 1 43047 0.043 SEO 3496 0 73721 0.047 SEO 3774 1 86279 0.044	Source	conversion_oun	test	Record_Count	Conversion_Rate		
Direct 1833 0 37238 0.049 Direct 1830 1 43047 0.043 SEO 3496 0 73721 0.047 SEO 3774 1 86279 0.044 device conversion_Sum test Record_Count Conversion_Rate	Ads	3620	0	74352		0.049	
Direct 1830 1 43047 0.043 SEO 3496 0 73721 0.047 SEO 3774 1 86279 0.044 device conversion_Sum test Record_Count Conversion_Rate	Ads	3763	1	86448		0.044	١.
SEO 3496 0 73721 0.047 SEO 3774 1 86279 0.044 device conversion_Sum test Record_Count Conversion_Rate	Direct	1833	0	37238		0.049	-
SEO 3774 1 86279 0.044 device conversion_Sum test Record_Count Conversion_Rate	Direct	1830	1	43047		0.043	
device conversion_Sum test Record_Count Conversion_Rate	SEO	3496	0	73721		0.047	
	SEO	3774	1	86279		0.044	
Mobile 4019 0 82350 0.049	device	conversion_Sum	test	Record_Count	Conversion_Rate		
	Mobile	4019	0	82350		0.049	

Mobile	4019	0	82350	0.049
Mobile	4236	1	96256	0.044
Web	4930	0	102961	0.048
Web	5131	1	119518	0.043
			ll	 1

ono io o longo	browser_language	conversion_Sum	test	Record_Count	Conversion_Rate		
ere is a large	EN	1207	0	25777	0	.047	
• • • •	EN	1283	1	30106	0	.043	١
crepancy in the	ES	7508	0	154416	0	.049	ľ
. ,	ES	7816	1	179598	0	.044	
nple size betwee	Other	234	0	5118	0	.046	
	Other	268	1	6070	0	.044	
control & test							

conversion_Sur	n test	sex	Record_Count	Conversion_Rate	
37	24 (F	77096	0.048	
390	0 1	F	89909	0.043	
522	25 0	M	108215	0.048	
540	7 1	M	125865	0.043	

ads_channel	conversion_Sum	test	Record_Count	Conversion_Rate	
Bing	254	0	5565		0.046
Bing	274	1	6508		0.042
Facebook	1402	0	27846		0.050
Facebook	1439	1	32607		0.044
Google	1355	0	27923		0.049
Google	1392	1	32378		0.043
NA	5329	0	110959		0.048
NA	5604	1	129326		0.043
Other	71	0	1716		0.041
Other	73	1	1930		0.038
Yahoo	538	0	11302		0.048
Yahoo	585	1	13025		0.045

/ /	
conversion_Sum test age Record_Count Conver	rsion Rate
519 0 18 10556	0.049
534 1 18 12412	0.043
567 0 19 11023	0.051
561 1 19 12701	0.044
524 0 20 11107	0.047
513 1 20 12821	0.040
534 0 21 11301	0.047
586 1 21 13150	0.045
519 0 22 11127	0.047
585 1 22 13012	0.045
525 0 23 10983	0.048
559 1 23 12927	0.043
534 0 24 10885	0.049
593 1 24 12801	0.046
497 0 25 10578	0.047
554 1 25 12549	0.044
481 0 26 10225	0.047
540 1 26 12020	0.045
463 0 27 9763	0.047
468 1 27 11259	0.042
461 0 28 9068	0.051
468 1 28 10558	0.044
405 0 29 8463	0.048
384 1 29 9912	0.039
383 0 30 7896	0.049
379 1 30 9179	0.041
322 0 31 7269	0.044
348 1 31 8382	0.042
299 0 32 6548	0.046
335 1 32 7665	0.044
286 0 33 5846	0.049
301 1 33 6722	0.045
251 0 34 5151	0.049
269 1 34 5969	0.045
216 0 35 4651	0.046
247 1 35 5333	0.046
207 0 36 3923	0.053
200 1 36 4550	0.044
169 0 37 3341	0.051
179 1 37 3916	0.046
165 0 38 3005	0.055
138 1 38 3388	0.041
106 0 39 2369	0.045
129 1 39 2808	0.046
118 0 40 2087	0.057
116 1 40 2340	0.050
94 0 41 1722	0.055
79 1 41 1966	0.040
58 0 42 1339	0.043
60 1 42 1636	0.037
59 0 43 1095	0.054
38 1 43 1272	0.030
49 0 44 908	0.054
41 1 44 1007	0.041
35 0 45 737	0.047
15 1 15 000	0.050

 Explain why that might be happening. Are the localized translations really worse?

- The negative test is the result of sampling bias represented by the large discrepancy in the sample size between the control & test sets of Argentina and Uruguay
- Records of these two countries are removed from the control and test sets. The conversion rates of both control and test people are found to be equal (5%). In conclusion, the localized translations are not really worse than Spanish translation if the sampling bias is removed.

conversion_Sum	test	Record_Count	Conversion_Rate	
8803	0	175540		0.050
8806	1	174678		0.050

- If you identified what was wrong, design an algorithm that would return FALSE if the same problem is happening in the future and TRUE if everything is good and the results can be trusted.
 - My proposed solution to help answering the sampling bias problem is by fitting the dataset (using test as the target variable and the rest of variables as independent variables) to a machine learner (i.e. chaid decision tree, random forest, gbm, or neural network etc) and obtain and evaluate the relative predictor importance result
 - The predictor importance chart indicates the relative importance of each variable in determining which records goes into control or test set. Since the values are relative, the sum of the values for all predictors on the display is 1.0
 - As shown on the left figure, country is the prevalent variable (importance ~= 0.6 or 60%) found after fitting a machine learner, which is also indicative that the sampling process according to country is not random
 - So we can apply this technique to return FALSE if there is one ore more independent variables found to be prevalent in the relative predictor importance result, if not, return TRUE and everything is good and results can be trusted

- Build an algorithm that identifies users who have exceeded their monthly credit limit on any day.
- Using a series of processing steps to formulate this algorithm
 - Join the transactions and cc_info datasets using credit_card field as the key
 - Sort the cred_card field in ascending order, followed by date in ascending order, so that we can have the table formatted according to account holder

first then his/her transactions in sequential date format

 Then accumulate the transaction amounts up until to date but refresh at the beginning of every month, see the figures below

Derive as: Conditional 🔻							
Field type: 🧳 <default> 🔻</default>							
lf.							
<pre>datetime_month(@OFFSET(date,1)) = datetime_month(date)</pre>							
Then:							
1 transaction_dollar_amount+@OFFSET(Derive17,1)							
Else:							
1 transaction_dollar_amount							

1			
į	date	transaction_dollar_amount	Derive17
	2015-08-26 18:53:43	13.430	6964.16
1	2015-08-26 22:44:20	48.870	7013.03
1	2015-08-26 23:33:58	122.710	7135.74
1	2015-08-27 20:01:25	87.700	7223.44
1	2015-08-27 21:34:58	89.010	7312.45
1	2015-08-27 22:16:39	160.670	7473.12
1	2015-08-28 16:07:40	109.940	7583.06
1	2015-08-28 18:30:34	62.090	7645.15
1	2015-08-29 00:35:11	104.920	7750.07
1	2015-08-29 16:38:37	44.780	7794.85
1	2015-08-29 18:34:04	122.650	7917.50
1	2015-08-29 18:36:10	118.760	8036.26
1	2015-08-29 21:24:04	26.490	8062.75
1	2015-08-30 14:29:15	133.360	8196.11
1	2015-08-30 21:26:52	56.890	8253.00
1	2015-08-31 02:03:20	98.750	8351.75
1	2015-08-31 16:54:11	89.760	8441.51
1	2015-09-01 00:50:44	118.840	118.84
1	2015-09-01 18:53:30	122.800	241.64
3	2015-09-01 22:55:09	93.730	335.37
1	2015-09-02 01:54:20	124.630	460.00
1	2015-09-02 20:54:00	905.540	1365.54
3	2015-09-03 16:41:23	141.320	1506.86
1	2015-09-03 18:36:35	115.630	1622.49
1	2015-09-03 19:17:22	91.740	1714.23
1	2015-09-03 20:46:36	68.380	1782.61
1	2015-09-04 20:11:59	143.650	1926.26
1	2015-09-04 22:03:33	162.050	2088.31
1	2015-09-04 22:08:31	80.480	2168.79
1	2015-09-04 22:55:36	162.610	2331.40
1	2015-09-05 20:12:57	200.340	2531.74
1	2015-09-05 21:36:43	115.020	2646.76
1	2015-09-07 00:29:10	99.450	2746.21
1	2015-09-07 21:58:15	110.130	2856.34
	0045 00 07 04 50 40	04.000	0047.07

Using a series of processing steps to formulate this algorithm

Check the accumulated transaction amount with respect to the monthly
 Yes/No Flag as indicato

credit limit, and set a flag if the limit is exceeded

	edit_card	date	transaction_dollar_amount		Lat	city	state 2		card_limit Derive17		edLimit_Flag	
42	9855709967237	6 2015-10-21 02:41:24	46.780	-79.871	40.45	4 Pittsburgh	PA	15201	8000	5556.840 NO		
42	9855709967237	6 2015-10-21 20:40:41	103.690	-79.950	40.42	4 Pittsburgh	PA	15201	8000	5660.530 NO		
42	9855709967237	6 2015-10-21 21:06:47	101.670	-79.969	40.43	3 Pittsburgh	PA	15201	8000	5762.200 NO		
42	9855709967237	6 2015-10-22 04:32:57	44.410	-79.899	40.42	2 Pittsburgh	PA	15201	8000	5806.610 NO		
42	9855709967237	6 2015-10-22 18:32:36	122.000	-79.977	40.43	4 Pittsburgh	PA	15201	8000	5928.610 NO		
42	9855709967237	6 2015-10-22 18:48:38	47.330	-79.917	40.54	9 Pittsburgh	PA	15201	8000	5975.940 NO		
42	9855709967237	6 2015-10-22 18:51:17	134.140	-80.019	40.46	5 Pittsburgh	PA	15201	8000	6110.080 NO		
42	9855709967237	6 2015-10-22 21:03:36	155.970	-79.923	40.50	4 Pittsburgh	PA	15201	8000	6266.050 NO		
42	9855709967237	6 2015-10-22 21:16:58	22.860	-79.914	40.41	3 Pittsburgh	PA	15201	8000	6288.910 NO		
42	9855709967237	6 2015-10-22 21:57:13	73.660	-79.995	40.39	5 Pittsburgh	PA	15201	8000	6362.570 NO		
42	9855709967237	6 2015-10-22 22:39:37	117.080	-79.879	40.44	1 Pittsburgh	PA	15201	8000	6479.650 NO		
42	9855709967237	6 2015-10-23 00:22:10	172.400	-79.978	40.42	2 Pittsburgh	PA	15201	8000	6652.050 NO		
42	9855709967237	6 2015-10-23 18:00:40	31.950	-79.914			PA	15201	8000	6684.000 NO		
42	9855709967237	6 2015-10-23 20:49:01	70.070	-79.987	40.54	4 Pittsburgh	PA	15201	8000	6754.070 NO		
42	9855709967237	6 2015-10-24 00:48:03	97.830	-79.904	40.52	7 Pittsburgh	PA	15201	8000	6851.900 NO		
42	9855709967237	6 2015-10-24 19:21:26	6.660	-79.968	40.46	5 Pittsburgh	PA	15201	8000	6858.560 NO		
42	9855709967237	6 2015-10-24 20:04:00	136.950	-79.983	40.40	2 Pittsburgh	PA	15201	8000	6995.510 NO		
42	9855709967237	6 2015-10-24 20:57:04	87.340	-79.934	40.40	6 Pittsburgh	PA	15201	8000	7082.850 NO		
42	9855709967237	6 2015-10-24 22:46:02	68.470	-80.020	40.45	4 Pittsburgh	PA	15201	8000	7151.320 NO		
42	9855709967237	6 2015-10-24 23:04:45	6.320	-79.984	40.40	6 Pittsburgh	PA	15201	8000	7157.640 NO		
42	9855709967237	6 2015-10-24 23:25:52	53.550	-79.976			PA	15201	8000	7211.190 NO		
42	9855709967237	6 2015-10-25 00:14:24	24.180	-80.027	40.47	4 Pittsburgh	PA	15201	8000	7235.370 NO		
42	9855709967237	6 2015-10-25 21:16:57	70.790	-79.884			PA	15201	8000	7306.160 NO		
42	9855709967237	6 2015-10-26 00:27:54	84.230	-79,904	40.47	6 Pittsburgh	PA	15201	8000	7390.390 NO		
42	9855709967237	6 2015-10-26 00:47:04	81.180	-80.035	40.48	8 Pittsburgh	PA	15201	8000	7471.570 NO		1 1
42	9855709967237	6 2015-10-26 01:26:05	23.450	-80.008	40.42	3 Pittsburgh	PA	15201	8000	7495.020 NO	The	credit card
42	9855709967237	6 2015-10-26 17:03:24	46.880	-79.966	40.55	3 Pittsburgh	PA	15201	8000	7541.900 NO		ci care cara
42	9855709967237	6 2015-10-26 19:55:11	19.030	-80.038	40.50	7 Pittsburgh	PA	15201	8000	7560.930 NO		
42	9855709967237	6 2015-10-26 21:03:25	43.060	-79.903	40.45	3 Pittsburgh	PA	15201	8000	7603.990 NO	noid	er exceeded
42	9855709967237	6 2015-10-26 21:03:26	13.070	-79.891	40.47	7 Pittsburgh	PA	15201	8000	7617.060 NO		c. checcaea
42	9855709967237	6 2015-10-26 21:03:27	87.890	-80.001	40.49	1 Pittsburgh	PA	15201	8000	7704.950 NO	1. • . /1.	
42	9855709967237	6 2015-10-27 17:42:56	112.260	-79.989	40.47	7 Pittsburgh	PA	15201	8000	7817.210 NO	nis/r	ner card
42	9855709967237	6 2015-10-27 22:45:57	96.760	-79.885	40.45	2 Pittsburgh	PA	15201	8000	7913.970 NO	,	
42	9855709967237	6 2015-10-27 23:16:09	108.770	-79.970	40.41	4 Pittsburgh	PA	15201	8000	8022.740 YES		المراج المناج مرااح
42	9855709967237	6 2015-10-28 01:54:11	53.330	-79.958	40.49	8 Pittsburgh	PA	15201	8000	8076.070 YES	sper	ding limit on
42	9855709967237	6 2015-10-28 17:02:05	97.480	-80.002	40.42	6 Pittsburgh	PA	15201	8000	8173.550 YES	- 1	
42	9855709967237	6 2015-10-28 19:30:44	56.280	-79.982	40.40	8 Pittsburgh	PA	15201	8000	8229.830 YES	204	10 27
42	9855709967237	6 2015-10-28 20:23:44	39.160	-79.922	40.48	8 Pittsburgh	PA	15201	8000	8268.990 YES	2015	5-10-27
42	9855709967237	6 2015-10-28 20:44:21	51.460	-80.023	40.51	3 Pittsburgh	PA	15201	8000	8320.450 YES		
42	9855709967237	6 2015-10-28 21:08:56	122.750	-79.898	40.52	7 Pittsburgh	PA	15201	8000	8443.200 YES		
42	9855709967237	6 2015-10-28 21:16:46	62.500	-79.958	40.48	3 Pittsburgh	PA	15201	8000	8505.700 YES		
42	9855709967237	6 2015-10-29 01:54:49	71.770	-79.954			PA	15201	8000	8577.470 YES		
42	9855709967237	6 2015-10-29 18:10:04	44.730	-79.912	40.47	9 Pittsburgh	PA	15201	8000	8622.200 YES		
42	9855709967237	6 2015-10-29 20:05:28	53.840	-79.971	40.46	5 Pittsburgh	PA	15201	8000	8676.040 YES		
42	9855709967237	6 2015-10-29 23:27:43	68.150	-79.997			PA	15201	8000	8744.190 YES		
-		9 2015-07-31 14:42:21	93.780				NJ	8810	16000	93.780 110		
		9 2015-07-31 15:38:00	22.970				NJ	8810	16000	116.750 NO		
		9 2015-07-31 17:47:22	46.620				NJ	8810	16000	163.370 NO		
-		9 2015-07-31 18:56:50	21.840				NJ	8810	16000	185.210 NO		
43	0263377224816	9 2015-07-31 19:13:01	19 040				NII	8810	16000	204 250 NO		

of over spending limit

- Implement an unsupervised classifier which returns suspicious / anomalous transactions
 - There are two scenarios to this question
 - Overall anomalous transactions based on all transactions of individual card holder.
 - Anomalous transactions from the card holder's usual spending patterns (meaning he/she
 used to spend on two groups of items, expensive items (i.e. gadgets) and cheap items (i.e
 grocery items), so it is incorrect to classify a transaction as anomalous because he/she
 occasionally shop for expensive items and hence its frequency is considerably less the
 frequency of grocery shopping
 - Both scenarios can be answered using anomaly detection algorithm which has clustering technique built into it.
 - My suggestion is to build an anomaly detection model for every card holder, and since clustering algorithm takes in multi dimensional variables, I suggest to include more relevant variables (types of item, purchase location, online/offline purchase etc). For this example, I use transaction_dollar_amount as the only variable in the clustering algorithm.

- Implement an unsupervised classifier which returns suspicious / anomalous transactions
 - Answer (using credit_card=1003715054175576 as an example)

Preset the number of cluster (peer groups) = 3, The mean transaction_amount of these groups are: 137.756, 63.829 and 898.75 respectively. We can then classify peer group-3 (6 records) transactions are anomalous because they are farthest away from the mean of all transaction amounts

The field which indicates the peer group-3 in the transaction table

- Implement an unsupervised classifier which returns suspicious / anomalous transactions
 - Answer (using credit card=1003715054175576 as an example)

To answer the second scenario, simply detect transactions which are located far away from the mean/centroid of This is an anomalous transaction which belongs to peer

each cluster and flag them as anomalous transactions.

Standard deviation: 60.371

This is an anomalous transaction which belongs to peer group-1 as its transaction amount of 190 is far away from the mean of group=1 mean