FONDAMENTI DI MATEMATICA

Enrico Martini v1.0 - 2015 - 2019

Contents

1	Geometria analitica	3					
	1.1 Punto	3					
	1.2 Retta	3					
	1.3 Circonferenza	3					
	1.4 Parabola	4					
	1.5 Ellisse	4					
	1.6 Iperbole	4					
	1.6.1 Funzione omografica	4					
	1.7 Coniche generali	4					
2	Trasformazioni geometriche	5					
3	Solidi	6					
4	Geometria analitica dello spazio	7					
5	Probabilità						
6	Calcolo combinatorio						
7	Goniometria 1						
8							
o	Trigonometria	12					
9	Esponenziali	13					
10	Logaritmi	14					
11	Limiti	15					
12	Derivate	16					
13	Integrali	17					
14	Equazioni differenziali	19					
15	Studio di funzione	20					
	15.1 Line-up	20					
	15.2 Calcolo del dominio	20					
	15.3 Asintoti	20					
	15.4 Parità/Disparità	20					
	15.5 Incontro con gli assi	20					
	15.6 Studio del segno	20					
	15.7 Punti di massimo e minimo	20					
	15.8 Punti di flesso	20					

1 Geometria analitica

1.1 Punto

Rappresentazione:

$$P(x_P; y_P)$$

Distanza tra due punti:

$$d = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Punto medio:

$$M\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2}\right)$$

Baricentro:

$$G\left(\frac{x_A + x_B + x_C}{3}; \frac{y_A + y_B + y_C}{3}\right)$$

Area di un triangolo:

$$A = \frac{1}{2} \cdot \left| \begin{array}{ccc} x_C - x_A & y_C - y_A \\ x_B - x_A & y_B - y_A \end{array} \right|$$

1.2 Retta

Rappresentazione:

$$y = mx + q \qquad \qquad \lor \qquad \qquad ax + by + c = 0$$

Retta passante per due punti:

$$\frac{y - y_A}{y_B - y_A} = \frac{x - x_A}{x_B - x_A}$$

Fascio di rette passante per un punto:

$$y - y_0 = m(x - x_0)$$

Distanza punto-retta:

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

1.3 Circonferenza

Rappresentazione:

$$x^{2} + y^{2} + ax + by + c = 0$$
 $(x - \alpha)^{2} + (y - \beta)^{2} = r^{2}$

Coordinate del centro:

$$C\left(-\frac{a}{2};-\frac{b}{2}\right)$$

Raggio:

$$r=\frac{1}{2}\sqrt{a^2+b^2-4c}$$

1.4 Parabola

Rappresentazione:

$$y = ax^2 + bx + c x = ay^2 + by + c$$

Vertice:

$$V\left(-\frac{b}{2a};-\frac{\varDelta}{4a}\right) \qquad \qquad V\left(-\frac{\varDelta}{4a};-\frac{b}{2a}\right)$$

1.5 Ellisse

Rappresentazione:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Con a > b:

$$F(\pm c; 0) c = \sqrt{a^2 - b^2}$$

Con a < b:

$$F(0; \pm c) c = \sqrt{b^2 - a^2}$$

1.6 Iperbole

Rappresentazione:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Se rivolta all'asse x:

$$F(\pm c; 0)$$
 $c^2 = a^2 + b^2$ $y = \pm \frac{b}{a}x$

Se equilatera:

$$x^2 - y^2 = a^2 y = \pm x$$

1.6.1 Funzione omografica

Rappresentazione:

$$y = \frac{ax+b}{cx+d} \qquad C\left(-\frac{d}{c}; \frac{a}{c}\right)$$

1.7 Coniche generali

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

2 Trasformazioni geometriche

$\mathbf{Simmetria}$

Simmetria rispetto ad un punto $P(\alpha, \beta)$:

$$\begin{cases} x' = 2\alpha - x \\ y' = 2\beta - y \end{cases}$$

Simmetria rispetto all'asse y:

$$\begin{cases} x' = -x \\ y' = y \end{cases}$$

Simmetria rispetto all'asse x:

$$\begin{cases} x' = x \\ y' = -y \end{cases}$$

Traslazione

Traslazione rispetto ad un vettore $\vec{v}(a;b)$:

$$\begin{cases} x' = x + a \\ y' = y + b \end{cases}$$

Rotazione

Rotazione rispetto ad un angolo α :

$$\begin{cases} x = x' \cdot \cos(\alpha) + y' \cdot \sin(\alpha) \\ y = -x' \cdot \sin(\alpha) + y' \cdot \cos(\alpha) \end{cases} \begin{cases} x' = x \cdot \cos(\alpha) - y \cdot \sin(\alpha) \\ y' = x \cdot \sin(\alpha) + y \cdot \cos(\alpha) \end{cases}$$

Omotetia

Omotetia di centro O(0;0) e rapporto h:

$$\begin{cases} x' = hx - x_c \\ y' = hx - y_c \end{cases}$$

Affinità

$$\begin{cases} x' = ax + by + h \\ y' = cx + dy + k \end{cases} con \Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$$

${\bf Solidi}$ 3

Cilindro

$$S_L = 2p \cdot h$$
$$S_B = \pi r^2$$

$$S_{TOT} = S_L + 2S_B$$
$$V = S_b \cdot h$$

Cono

$$S_L = \pi r a$$

$$S_B = \pi r^2$$

$$S_{TOT} = S_L + 2S_B$$

$$V = \frac{1}{3}\pi r^2 h$$

Sfera

$$S=4\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$

Prisma

$$S_{\tau} = 2n \cdot h$$

$$S_L = 2p \cdot h$$
 $S_{TOT} = S_L + 2S_B$ $V = S_b \cdot h$

$$V = S_b \cdot l$$

Piramide

$$S_L = pa$$

$$S_B = l^2$$

$$S_{TOT} = S_L + S_B$$

$$V = \frac{1}{3}S_B \cdot h$$

4 Geometria analitica dello spazio

Equazione del piano

$$\alpha : ax + by + cz + d = 0$$
 $d = -a^2 - b^2 - c^2$

Punto medio

$$M\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right)$$

Equazione di una retta

$$\begin{cases} ax + by + cz + d = 0 \\ ex + fy + gz + h = 0 \end{cases}$$

Retta passante per due punti

$$\frac{x-x_A}{x_B-x_A} = \frac{y-y_A}{y_B-y_A} = \frac{z-z_A}{z_B-z_A} = \lambda$$

Distanza tra piano e punto

$$d(A; \alpha) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Piano parallelo ad un altro piano passante per un punto Retta perpendicolare ad un piano passante per un punto Piano passante per un punto perpendicolare ad una retta Parallelismo tra piani

Perpendicolarità tra piani

5 Probabilità

6 Calcolo combinatorio

7 Goniometria

Formula fondamentale:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

Formule derivate:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \qquad \cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)}$$
$$\sec(\alpha) = \frac{1}{\sin(\alpha)} \qquad \csc(\alpha) = \frac{1}{\cos(\alpha)}$$

Somma e differenza:

$$\sin(\alpha + \beta) = \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot \sin(\beta)$$
$$\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$$
$$\sin(\alpha - \beta) = \sin(\alpha) \cdot \cos(\beta) - \cos(\alpha) \cdot \sin(\beta)$$
$$\cos(\alpha - \beta) = \cos(\alpha) \cdot \cos(\beta) + \sin(\alpha) \cdot \sin(\beta)$$

Duplicazione:

$$\sin(2\alpha) = 2\sin(\alpha) \cdot \cos(\alpha)$$
 $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$

Bisezione:

$$\cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos(\alpha)}{2}} \qquad \qquad \sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos(\alpha)}{2}}$$

$$\tan\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos(\alpha)}{1+\cos(\alpha)}} = \frac{\sin(\alpha)}{1+\cos(\alpha)} = \frac{1-\cos(\alpha)}{\sin(\alpha)}$$

Formule parametriche:

$$\sin(\alpha) = \frac{2t}{1+t^2} \qquad \cos(\alpha) = \frac{1-t^2}{1+t^2} \qquad t = \tan\left(\frac{\alpha}{2}\right)$$

$$0.5 \qquad \qquad -\cos(x)$$

$$-0.5 \qquad \qquad -\cos(x)$$

$$1 \qquad \qquad \cos(x)$$

$$-0.5 \qquad \qquad -\cos(x)$$

$$1 \qquad \qquad \cos(x)$$

$$-\cos(x)$$

quadrante	angolo	seno	coseno	tangente	cotangente		
	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	√3		
primo	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1		
	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	$\frac{\sqrt{3}}{3}$		
	120°	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	-√3	$-\frac{\sqrt{3}}{3}$		
secondo	135°	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	-1		
	150°	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\sqrt{3}$		
	210°	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	√3		
terzo	225°	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	1		
	240°	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	√3	$\frac{\sqrt{3}}{3}$		
	300°	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{\sqrt{3}}{3}$		
quarto	315°	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1	-1		
	330°	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	-√3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							

Figure 1: Tabella degli angoli associati

8 Trigonometria

9 Esponenziali

10 Logaritmi

11 Limiti

12 Derivate

13 Integrali

Proprietà

$$\int kf(x)dx = k \int f(x)dx$$

$$\int [f_1(x) + f_2(x) + f_3(x)] dx = \int f_1(x)dx + \int f_2(x)dx + \int f_3(x)dx$$

Integrali immediati

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c \qquad \qquad \int \frac{1}{x} dx = \ln|x| + c \qquad \qquad \int \sin(x) dx = -\cos(x) + c$$

$$\int \cos(x) dx = \sin(x) + c \qquad \int \frac{1}{1+x^2} dx = \arctan(x) + c \qquad \int \frac{1}{\cos^2(x)} dx = \tan(x) + c$$

$$\int e^x dx = e^x + c \qquad \qquad \int a^x dx = \frac{a^x}{\ln(a)} + c \qquad \int \frac{1}{\sqrt{a-x^2}} dx = \arcsin(x) + c$$

$$\int \frac{1}{\sin^2(x)} dx = -\cot(x) + c \qquad \qquad \int 1 dx = x + c$$

Integrali mediati

$$\int [f(x)]^{\alpha} \cdot f'(x)dx = \frac{[f(x)]^{\alpha+1}}{\alpha+1} + c \qquad \qquad \int \frac{f'(x)}{f(x)}dx = \ln|f(x)| + c$$

$$\int f'(x) \cdot \sin[f(x)]dx = -\cos[f(x)] + c \qquad \int f'(x) \cdot \cos[f(x)]dx = \sin[f(x)] + c$$

$$\int e^{f(x)} \cdot f'(x)dx = e^{f(x)} + c \qquad \qquad \int \frac{f'(x)}{\sqrt{1 - f^2(x)}}dx = \arcsin[f(x)] + c$$

$$\int a^{f(x)} \cdot f'(x)dx = \frac{a^{f(x)}}{\ln(a)} + c \qquad \qquad \int \frac{f'(x)}{1 + f^2(x)}dx = \arctan[f(x)] + c$$

$$\int \frac{f'(x)}{\cos^2[f(x)]}dx = \tan[f(x)] + c$$

Funzioni non banali

Risoluzione con formule parametriche:

$$\sin(x) = \frac{2t}{1+t^2}$$
 $\cos(x) = \frac{1-t^2}{1+t^2}$ $t = \tan(\frac{x}{2})$

Risoluzione di integrali irrazionali:

$$\int \sqrt{x^2 \pm \alpha^2} dx \qquad \int \frac{1}{\sqrt{x^2 \pm \alpha^2}} dx \quad \to t = x + \sqrt{x^2 \pm \alpha^2}$$

$$\int \sqrt{a^2 - x^2} dx = \frac{a^2}{2} \arcsin\left(\frac{x}{a}\right) + \frac{x}{2}\sqrt{a^2 - x^2} \qquad \to x = a\sin(t)$$

Risoluzione per parti:

$$\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx$$

Teorema della media

$$f(c) = \frac{\int_{a}^{b} f(x)dx}{b-a}$$

Volume nei solidi di rotazione

$$V = \pi \int_{a}^{b} f^{2}(x)dx$$

Metodo dei rettangoli

$$\int_{a}^{b} f(x)dx = \frac{b-a}{n} \sum_{i=0}^{n-1} f(x_i) \qquad \lor \qquad \int_{a}^{b} f(x)dx = \frac{b-a}{n} \sum_{i=0}^{n} f(x_i)$$

Metodo dei trapezi

$$\frac{b-a}{n} \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_i+1)}{2} = \int_a^b f(x) dx$$

14 Equazioni differenziali

15 Studio di funzione

- 15.1 Calcolo del dominio
- 15.2 Asintoti
- 15.3 Parità/Disparità
- 15.4 Incontro con gli assi
- 15.5 Studio del segno
- 15.6 Punti di massimo e minimo
- 15.7 Punti di flesso