

Feed Forward

- . Dot product between input X and input weight U
- . Dot product between initial hidden state ho & weight matrix W
- . Summation between output of both dot product operations $\frac{1}{2}$ bias $\frac{1}{6}$, resulting in logits α_{\pm}
- . Pass a_t into the activation node g which uses the hyperbolic tangent (tanh) as activation function, resulting in h_t
- . Dot product of ht & V, added with C (this represents a fully connected layer after the new hidden state is calculated), outputting ot
- · Pass of to softmax to output gt
- · Pass \hat{y}_{t} to CELOSS node to get Le, which represents the loss for the Branch at time t

at = Uxt + Wht-1 + 6 $h_t = tanh(a_t)$ $O_t = Vh_t + C$ Ŷ = softmax (O+) Lt = CE(Ŷt, Yt)

Dimensionality

Input

Xt: [batch-size, input-dim]

Weight matricies & Brases

U: [input_dim, hidden_dim]

W: [hidden-dim, hidden-dim]

: [1, hidden-dim]

V: [hidden_dim, output_dim]

c: [1, output_dim]

Hidden State

ht: [batch-size, hidden-dim]

Output Before Softmax

Ot: [batch-size, output-dim]

Predicted output à True output

yt & yt: [batch-size, output-dim]

Loss L.: [batch-size, 1]