Technische Universität Ilmenau Institut für Mathematik

Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Übungsserie 6 (13.11.2023 - 17.11.2023)

Aufgabe 1:

Der Binomialkoeffizient ist für natürliche Zahlen n,k mit $n\geq k$ definiert als

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Weisen Sie nach, dass

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

gilt.

Aufgabe 2:

Zeigen Sie – unter Benutzung von Aufgabe 1 – die Gültigkeit des Binomischen Satzes

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Aufgabe 3:

(*) Zeigen Sie:

(a)
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$
 (b) $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$

Aufgabe 4:

(*) Bestimmen Sie das konstante (von x unabhängige) Glied des Terms $(x^2 + \frac{1}{x})^9$.

Aufgabe 5:

- (a) Beweisen Sie durch vollständige Induktion (nach n), dass für $n \ge k$ jede n-elementige Menge genau $\binom{n}{k}$ k-elementige Teilmengen besitzt.
- (b) Zeigen Sie mit Hilfe des binomischen Satzes und Teilaufgabe (a), dass jede nelementige Menge genau 2^n Teilmengen hat.

Bemerkung: Die Menge aller Teilmengen einer Menge A heißt Potenzmenge von A und wird mit $\mathcal{P}(A)$ oder 2^A bezeichnet.

Hinweis: Um über Konvergenz und Stetigkeit sprechen zu können, benötigen wir den Betrag zur Abstandsmessung. Der Umgang mit $|x| = \max\{x, -x\} = \begin{cases} x & : x \ge 0 \\ -x & : x < 0 \end{cases}$ soll darum in den nächsten drei Aufgaben geübt werden.

Aufgabe 6:

Verifizieren Sie die Dreiecksungleichung: $\forall x, y \in \mathbb{R}$ gilt $|x + y| \le |x| + |y|$.

Aufgabe 7:

(*) Verifizieren Sie die Dreiecksungleichung: $\forall x, y \in \mathbb{R}$ gilt $|x| - |y| \le |x - y|$.

Aufgabe 8:

Stellen Sie die Lösungsmengen der folgenden Ungleichungen als Vereinigung von Intervallen dar.

$$(a) \left| \frac{x+3}{2x-4} \right| > 3$$

(b)^(*)
$$|x-1| + |x+5| \le 4$$

(c)^(*)
$$||||x| - 2| - 2| - 2| < 2$$

(d)
$$|x^2 + 4x + 1| < 3$$

Aufgabe 9:

Untersuchen Sie die reelle Zahlenfolge $(a_k)_{k\in\mathbb{N}}$ auf Monotonie und Beschränktheit und geben Sie den Grenzwert $\lim_{k\to\infty}a_k$ an, falls dieser existiert.

(a)
$$a_k = 1$$

(b)
$$a_k = (-1)^k$$

(c)
$$a_k = k$$

$$(d) a_k = \frac{1}{k}$$

(a)
$$a_k = 1$$
 (b) $a_k = (-1)^k$ (c) $a_k = k$ (d) $a_k = \frac{1}{k}$ (e) $a_k = \frac{(-1)^k}{k}$