Методы оптимизации

Целочисленное программирование

Д.В. Домашова

Общая постановка задачи целочисленного программирования отличается от общей постановки задачи ЛП лишь наличием дополнительного ограничения: требования целочисленности, в соответствии с которым значения всех или части переменных являются целыми числами.

Постановка задачи ЦЛП

$$f = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \rightarrow max$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$x_{j} \in N_{0}, j = 1, k, k \le n$$

k<n – задача частично-целочисленная

k=n – задача полностью целочисленная

Пример

$$F = x_1 + 1.5 \cdot x_2 \to \max$$

$$\begin{cases} 2x_1 + 4x_2 \le 17 \\ 10x_1 + 4x_2 \le 45 \end{cases} \quad x_1, x_2 \ge 0, \quad x_1, x_2 \in \mathbb{N} \cup \{0\}$$

$$x^* = \left(\frac{7}{2}, \frac{5}{2}\right) = (3.5, 2.5) \quad f^* = 7.25$$

Подходы к решению ЗЦЛП Методы отсечений

1. Решается задача ЛП, получающаяся из исходной отбрасыванием требования целочисленности $x = (x_1, ..., x_n)$.

Если найденное решение x^1 - целочисленное, то оно является решением ЗЦЛП.

Если найденное решение x^1 - не целочисленное, то к ограничениям задачи, решаемой на первом этапе, добавляется ограничение вида:

$$\sum_{j=1}^{n} a_{m+1, j} \cdot x_{j} \ge b_{m+1}$$
 , которое:

целочисленным.

- 1) Отсекает точку \mathcal{X}^1 , т.е.: $\sum_{j=1}^n a_{m+1,\,j} \cdot x_j^1 < b_{m+1}$
- 2) Сохраняет в допустимом множестве все целочисленные точки допустимого множества исходной задачи. Такое ограничение называется правильным отсечением.
- 2. На втором этапе находится решение x^2 задачи ЛП с дополнительным ограничением. Если x^2 не целочисленное, тогда вводится новое правильное отсечение вида $\sum_{j=1}^n a_{m+2,j} \cdot x_j \geq b_{m+2}$ и т.д. до тех пор, пока решение очередной задачи ЛП, не окажется

Подходы к решению ЗЦЛП Комбинаторные методы

- В основе комбинаторных методов лежит идея перебора всех элементов множества допустимых решений, удовлетворяющих требованию целочисленности, с целью нахождения оптимального решения.
 - Такими методами являются методы ветвей и границ.
 - Различные методы типа ветвей и границ существенно используют специфику конкретной задачи и заметно отличаются друг от друга.
 - Все они основаны на последовательном разбиении допустимого множества на подмножества (ветвление) и вычислении оценок (границ), позволяющих отбрасывать подмножества, заведомо не содержащие решений задачи.

Подходы к решению ЗЦЛП Общая идея методов ветвей и границ

Задача:
$$f(x) \to \min_{x \in X}$$

1) В зависимости от специфики задачи выбирается некоторый способ вычисления оценок снизу d(X'), функции f(x) на множествах $X' \subset X$: (в частности может быть X' = X) $f(x) \ge d(X')$, $x \in X'$.

Оценка снизу часто вычисляется путем релаксации, т.е. замены задачи минимизации f(x) по множеству X' задачей минимизации по некоторому более широкому множеству. (Например, релаксацией целочисленного или частично целочисленной задачи может состоять в отбрасывании требования целочисленности.)

2) Выбирается также правило ветвления, состоящее в выборе разветвляемого подмножества X' из числа подмножеств, на которые к данному шагу разбито множество X, и выборе способа разбиения X' на непересекающиеся подмножества.

Обычно из числа кандидатов на ветвление выбирается множество $X^{'}$ с наименьшей оценкой, поскольку именно в таком множестве естественно искать минимум в первую очередь.

При этом рассматриваются только такие способы вычисления оценок снизу, в которых оценки для подмножеств, получившихся в результате разветвления $X^{'}$ не меньше $d(X^{'})$.

Метод отсечений Гомори1. Полностью целочисленная задача

Рассмотрим полностью целочисленную задачу, представленную в канонической форме:

$$F = \sum_{j=1}^{n} c_j x_j \to \max$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_j, i = \overline{1, m}$$

$$x_j \ge 0, j = 1, n, x_j \in N_0, j = 1, n$$

Будем считать, что c_i , a_{ii} , $b_i \in Z$.

Метод отсечений Гомори Полностью целочисленная задача

Иначе строим правильное отсечение.

Для этого выбираем любое базисное x_i^* , которому соответствует нецелое значение, и выписываем *i*-ую строку оптимальной симплекстаблицы.

$$x_i + \sum_{j \in S} a_{ij}^* x_j = b_i^*$$
 (1)

где S – множество индексов свободных переменных.

Полагая, что в (1) все переменные целочисленные, получаем:

$$\sum_{j\in S}a_{ij}^*x_j-b_i^*=a\in Z$$
 для любых d_j Є Z существует d Є Z :

$$\sum_{j \in S} (a_{ij}^* - d_j) x_j - (b_i^* - d_i) = d$$

при этом, если считать $d_{j}=[a_{ij}^{*}], j\in S, d_{i}^{}=[b_{i}^{*}]$ получим:

$$\sum_{j \in S} \gamma_{ij} x_j = d + \gamma_i, d \in Z \quad (2)$$

где
$${\gamma}_{ij} = \{a_{ij}^*\}, {\gamma}_i = \{b_i^*\}$$

Метод отсечений Гомори Полностью целочисленная задача

$$\sum_{j \in S} \{a_{ij}^*\} x_j = d + \{b_i^*\}, d \in Z$$

Т.к. левая часть равенства (2) является неотрицательной

$$(\gamma_{ij} \ge 0, x_j \ge 0)$$
, то $d \in N_0$ и

отсечение Гомори:

$$\sum_{j \in S} \{a_{ij}^*\} x_j \ge \{b_i^*\}$$

Из (1) следует, что

$$x_i + \sum_{j \in S} a_{ij}^* x_j = [b_i^*] + \{b_i^*\}$$
 (3)

$$x_i - [b_i^*] = \{b_i^*\} - \sum_{j \in S} a_{ij}^* x_j$$

при этом для переменной x_i , удовлетворяющей требованию Є N_0 выполняется одно из условий:

a)
$$x_i \leq [b_i^*]$$

б)
$$x_i \ge [b_i^*] + 1$$

Согласно (3) эти условия могут быть представлены в следующем виде:

$$\sum_{j \in S} a_{ij}^* x_j \ge \{b_i^*\} \qquad \text{(4)} \qquad \sum_{j \in S} a_{ij}^* x_j \le \{b_i^*\} - 1 \qquad \text{(5)}$$

Пусть S^+ - множество значений j: $a_{ij}^* \ge 0$

S - множество значений
$$j$$
: $a_{ij}^* < 0$ $S = S^+ \cup S^-$

Из (4) следует, что
$$\sum_{j \in S^+} a_{ij}^* x_j \ge \{b_i^*\}$$
 (6)

а (5) может быть преобразовано к следующему неравенству:

$$\sum_{j \in S^{-}} a_{ij}^{*} x_{j} \leq \{b_{i}^{*}\} - 1_{\text{NJN}} \frac{\{b_{i}^{*}\}}{\{b_{i}^{*}\} - 1} \sum_{j \in S^{-}} a_{ij}^{*} x_{j} \geq \{b_{i}^{*}\} \quad (7)$$

Неравенства (4), (5) и следствия из них (6), (7) не могут выполняться одновременно. Но независимо от того, какой случай имеет место, для каждого допустимого решения будет выполняться ограничение:

$$\sum_{j \in S^{+}} a_{ij}^{*} x_{j} + \frac{\{b_{i}^{*}\}}{\{b_{i}^{*}\} - 1} \sum_{j \in S^{-}} a_{ij}^{*} x_{j} \ge \{b_{i}^{*}\}$$
 (8)

Неравенство (8) определяет новое дополнительное ограничение. Это ограничение получено без учета требования целочисленности для некоторых переменных модели.

$$\sum_{j \in S^{+}} (a_{ij}^{*} - [a_{ij}^{*}]) x_{j} + \frac{\{b_{i}^{*}\}}{1 - \{b_{i}^{*}\}} \sum_{j \in S^{-}} (1 - \{a_{ij}^{*}\}) x_{j} \ge \{b_{i}^{*}\} - [a_{ij}^{*}]$$

$$\sum_{j \in S^{+}} a_{ij}^{*} x_{j} + \frac{\{b_{i}^{*}\}}{\{b_{i}^{*}\} - 1} \sum_{j \in S^{-}} a_{ij}^{*} x_{j} \ge \{b_{i}^{*}\}_{(8)}$$

(8) можно записать в следующем виде:

$$\sum_{j \in S} \gamma_{ij} x_j \ge \{b_i^*\}$$

для переменных, которые могут быть нецелыми:

$$\gamma_{ij} = \begin{cases} \frac{\{b_i^*\}}{\{b_i^*\} - 1} a_{ij}^*, ecnu \ a_{ij}^* < 0 \\ a_{ij}^*, ecnu \ a_{ij}^* \ge 0 \end{cases}$$

для переменных, которые могут быть только целыми:

$$\gamma_{ij} = \begin{cases} \{a_{ij}^*\}, ecnu \ \{a_{ij}^*\} \leq \{b_i^*\} \\ \frac{1 - \{a_{ij}^*\}}{1 - \{b_i^*\}} \{b_i^*\}, ecnu \ \{a_{ij}^*\} > \{b_i^*\} \end{cases}$$

$$f(x_1, x_2) = x_1 + x_2 \rightarrow \max$$

$$\begin{cases} x_1 \le 2.5 \\ x_2 \le 2.5 \end{cases}$$

$$x_1, x_2 \in N_0$$

$$f(x_1, x_2) = x_1 + x_2 \rightarrow \max$$

$$\begin{cases} x_1 \le 2.5 \\ x_2 \le 2.5 \end{cases}$$

$$x_1, x_2 \in N_0$$

$$x_{max} = (2.5; 2.5)$$

$$f(x_1, x_2) = x_1 + x_2 \rightarrow \max$$

$$\begin{cases} x_1 \le 2.5 \\ x_2 \le 2.5 \end{cases}$$

$$x_1, x_2 \in N_0$$

$$x_{max} = (2.5; 2.5)$$

$$f(x_1, x_2) = x_1 + x_2 \to \max$$

$$\begin{cases} x_1 + x_3 = 2.5 \\ x_2 + x_4 = 2.5 \end{cases}$$

$$x_1, x_2 \in N_0, x_3, x_4 \ge 0$$

баз	Сб	D	1	1	0	0
043	Co	Б	A_1	A_2	A_3	A_4
A_1	1	2,5	1	0	1	0
A_2	1	2,5	0	1	0	1
			0	0	-1	-1

$$f(x_1, x_2) = x_1 + x_2 \rightarrow \max$$

$$\begin{cases} x_1 \le 2.5 \\ x_2 \le 2.5 \end{cases}$$

$$x_1, x_2 \in N_0$$

$$f(x_1, x_2) = x_1 + x_2 \to \max$$

$$\begin{cases} x_1 + x_3 = 2.5 \\ x_2 + x_4 = 2.5 \end{cases}$$

$$x_1, x_2 \in N_0, x_3, x_4 \ge 0$$

x_{max}	(2,5;	Z ,5)	
				1

баз	Сб	D	1	1	0	0
Ua3	Co	В	A_1	A_2	A_3	A_4
A_1	1	2,5	1	0	1	0
A_2	1	2,5	0	1	0	1
			0	0	-1	-1

$$\{1\} \cdot x_1 + \{0\} \cdot x_2 + 1 \cdot x_3 + 0 \cdot x_4 \ge \{2,5\}$$

 $x_3 \ge 0,5$

$$f(x_1, x_2) = x_1 + x_2 \rightarrow \max$$

$$\begin{cases} x_1 \le 2.5 \\ x_2 \le 2.5 \end{cases}$$

$$x_1, x_2 \in N_0$$

$$f(x_1, x_2) = x_1 + x_2 \to \max$$

$$\begin{cases} x_1 + x_3 = 2.5 \\ x_2 + x_4 = 2.5 \end{cases}$$

$$x_1, x_2 \in N_0, x_3, x_4 \ge 0$$

$x_{max} = (2,5;2,5)$

	баз	Сб	В	1	1	0	0
	0a3	Co	D	A_1	A_2	A_3	A_4
	A_1	1	2,5	1	0	1	0
	A_2	1	2,5	0	1	0	1
8				0	0	-1	-1

$$\{1\} \cdot x_1 + \{0\} \cdot x_2 + 1 \cdot x_3 + 0 \cdot x_4 \ge \{2,5\}$$

$$x_3 \ge 0,5$$

$$x_3 = 2,5 - x_1$$

$$2,5 - x_1 \ge 0,5$$

$$x_1 \le 2$$

$$f(x_1, x_2) = x_1 + x_2 \to \max$$

$$\begin{cases} x_1 + x_3 = 2 \\ x_2 + x_4 = 2,5 \end{cases}$$

$$x_1, x_2 \in N_0, x_3, x_4 \ge 0$$

баз	Сб	В	1	1	0	0
0a3			A_1	A_2	A_3	A_4
A_1	1	2	1	0	1	0
A_2	1	2,5	0	1	0	1
			0	0	-1	-1

$$x_{max} = (2; 2,5)$$

$$f(x_1, x_2) = x_1 + x_2 \to \max$$

$$\begin{cases} x_1 + x_3 = 2 \\ x_2 + x_4 = 2,5 \end{cases}$$

$$x_1, x_2 \in N_0, x_3, x_4 \ge 0$$

баз	Сб	В	1	1	0	0
0a3			A_1	A_2	A_3	A_4
A_1	1	2	1	0	1	0
A_2	1	2,5	0	1	0	1
			0	0	-1	-1

$$x_{max} = (2; 2,5)$$

$$\{0\} \cdot x_1 + \{1\} \cdot x_2 + 0 \cdot x_3 + 1 \cdot x_4 \ge \{2,5\}$$

$$x_4 \ge 0,5$$

$$x_4 = 2,5 - x_2$$

$$2,5 - x_2 \ge 0,5$$

$$x_2 \le 2$$

$$f(x_1, x_2) = x_1 + x_2 \to \max$$

$$\begin{cases} x_1 + x_3 = 2 \\ x_2 + x_4 = 2 \end{cases}$$

$$x_1, x_2 \in N_0, x_3, x_4 \ge 0$$

баз	Сб	D	1	1	0	0
Ua3	Co	D	A_1	A_2	A_3	A_4
A_1	1	2	1	0	1	0
A_2	1	2	0	1	0	1
			0	0	-1	-1

$$x_{max} = (2; 2)$$

Ошибки в данной презентации искали Котовану и Павлов.

Ошибки:

Слайд 3 : добавить $x_j \geq 0, j = \overline{1,n}$