sine basis 05

Design matrix

Statistics: p-values adjusted for search volume

set-	level	cluster-level				peak-level					mm mm mm	
р	С	p_{FWE-c}	<i>g</i> corrFDR-c	orr E	p _{uncorr}	p_{FWE-c}	g orrFDR-co	T orr	(Z_{\equiv})	$p_{ m uncorr}$	1111111	
<u> </u>	C	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.790 0.790 0.790 0.790 0.790 0.790 0.790 0.790 0.790 0.790 0.790 0.790	2 4 4 5 3 1 4 4 3 4 4 5 2 3 2 3 2	0.688 0.553 0.553 0.503 0.613 0.790 0.553 0.613 0.553 0.553 0.688 0.613 0.688	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.823 0.828 0.838 0.838 0.842 0.842 0.842 0.842 0.842 0.842 0.843 0.853	2.58 2.57 2.56 2.56 2.55 2.55 2.55 2.54 2.54 2.54 2.54 2.53 2.52	2.57 2.55 2.55 2.55 2.54 2.54 2.54 2.53 2.53 2.53 2.51 2.51	Puncorr 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006	22 34 16 36 -10 0 -22 32 -46 16 24 6 -52 30	68 16 -24 18 44 -12 -6 -32 44 22 66 18 -6 20 -4 -24 0 2 -80 -36 8 -24 -42 52 -42 -44 -14 -32 -20 72
		1.000 1.000 1.000 1.000 1.000 1.000	0.790 0.790 0.790 0.790 0.790 0.790 0.790	2 4 5 2 4 2	0.688 0.688 0.553 0.503 0.688 0.553 0.688	1.000 1.000 1.000 1.000 1.000 1.000	0.872 0.885 0.889 0.891 0.891 0.910 0.928	2.50 2.49 2.48 2.48 2.48 2.46 2.44	2.49 2.48 2.47 2.47 2.45 2.45	0.006 0.007 0.007 0.007 0.007 0.007	8 18 -26 -6 36 -52 -48	54 -20 0 56 -38 -2 26 2 52 -10 -32 10 -70 16