Real-Time Video Generation for Holographic Interactions with Bella

TABLE OF CONTENTS

01

PROJECT OVERVIEW

04

CHALLENGES & SOLUTIONS

02

RESEARCH & DEVELOPMENT

05

FUTURE DEVELOPMENT

03

FINDINGS

06

CONCLUSION

PROJECT OVERVIEW

PROJECT OVERVIEW

PROJECT: BELLA

- Holographic companion device for hospitalized children
- Real-time interactive technology
- Emotion-adaptive responses

KEY GOALS

- Enhance hospital experience through companionship
- Break isolation barriers
- Provide personalized emotional support

TECHNICAL FOCUS

- Real-time interactivity
- Emotion recognition
- Synchronized audio-visual experiences

RESEARCH & DEVELOPMENT

State of the Art Models:

Open Source

- Cog Video
- Pyramid Flow
- AnimateLCM

Paid Models

- Runway
- Deepmotion
- LUMALABS

- HailuoAl
- Synthesia
- KlingAl

Research Efforts:

API Solutions:

- Investigated commercial video generation APIs for real-time performance.
- Assessed cost,compatibility, and scalability for integration with holographic hardware.

Open Source Tools:

- Explored advanced free models like Pyramid Flow and Cog Video.
- Evaluated their ability to meet real-time video generation requirements.

WHAT APIS DID WE FIND?

API Name	COST	PROS	CONS
SYNTHESIA	\$64/mo (billed yearly)	High-quality video output	High cost for larger usage, Limited flexibility on lower-tier plans
LUMA LABS	\$0.4 for 5s at 24fps (1280x720p)	Flexible pixel- based pricing	Higher cost for longer or higher-res videos, Limited to short durations
VEO		Advanced technology with potential for high-quality output	Limited availability, not yet available in France
	5s: \$0.25 per video, 10s: \$0.50 per video	Configurable output settings (aspect ratio, keyframes)	Costs increase with longer videos, Requires input image for Turbo model
DEEPMOTION	\$83/month (Studio plan, paid annually)	Unlimited animation, Variety of output formats	Higher cost due to annual commitment, Potential overkill for basic projects
KLING AI	\$6720 for 20000 units (20% off, \$0.112 per unit)	Cost effective per unit for high volume	Expensive upfront cost, Unused units expire after 3 months

03 FINDINGS

FINDINGS: Commercial API Solutions

ADVANTAGES

- Polished video generation
- Ready-to-use infrastructure
- Professional output quality

LIMITATIONS

- Cost-prohibitive
- Restricted customization options
- Poor fit for Bella's specific needs

Key Point: While commercial APIs offered a refined solution, their high costs and inflexibility made them unsuitable for our specialized holographic companion project.

PYRAMID FLOW

Advantages:

- High-quality visual output
- Smooth animation transitions

Limitations:

- Heavy resource consumption
- Performance too slow for real-time use

COG VIDEO

Advantages:

- More efficient processing
- Better pipeline integration

Limitations:

- Still not reaching real-time speeds
- Limited animation range
- Reliance on pre-rendered content

The key takeaway is that while both solutions offered distinct benefits, neither fully achieved the real-time performance needed for seamless interactive holographic

04

CHALLENGES & SOLUTIONS

Challenge I

Computational and memory demands for real-time generation.

Challenge 2

Ensuring smooth transitions between clips.

Challenge 3

Adapting human-centric face detection models for Bella

IMPROVEMENTS

- Expanded animation sets and standardized transitions
- Optimized hybrid processing to prioritize system responsiveness.

FUTURE DEVELOPMENT

Long-Term Vision

Advance real-time video generation with enhanced infrastructure.

Expand deployment to educational and therapeutic settings.

Integrate Bella into hospital communication workflows. 06

CONCLUSION

Project Bella showcased the potential of **holographic companions** to bring warmth to hospital environment.

Despite challenges in **real-time video generation**, the **clip-based system** using **CogVideo** and **Wave2Lip** enables engaging, adaptive interactions.

Future improvements will address current limitations and explore broader applications.

Abdellahi El Moustapha

Likhita YERRA

Baptiste LANGLOIS

Remi Uttejitha ALLAM

