CSE 202: Take-Home Final

Jason Ramirez

December 8, 2017

Problem 1: Sequence Matching

Let T and P be respectively two sequences t_1, \ldots, t_n and p_1, \ldots, p_k of characters such that $k \leq n$. Let v(i) denote the value for the i-th position in T for $1 \leq i \leq n$. The algorithm begins by creating a list MaxSS that keeps track of the values and ordered list of character indices, (v_i, lss_i) , of the maximum value subsequences of P found in T. All v_i and lss_i are initialized to $-\infty$ and an empty list [], respectively. The number of elements in MaxSS is $k + (k - 1) + (k - 2) + \cdots + 1 = \frac{(k+1)(k)}{2}$. The pattern subsequences that the elements of MaxSS correspond to, beginning with the lowest index of MaxSS, are: $p_1, p_1p_2, \ldots, p_1p_2 \ldots p_k, p_2, p_2p_3, p_2p_3 \ldots p_k, \ldots, p_{k-1}p_k, p_k$. Let S be the set of indices of MaxSS that correspond to pattern subsequences of length S, i.e. $S = \{1, k + 1, k + (k - 1) + 1, \ldots, k + (k - 1) + \cdots + 1\}$.

A hashmap PI is created with a key for each distinct element p_i that is mapped to an ordered list of the indices lp_i of MaxSS such that p_i is the last character in the subsequences indexed by those indices. More specifically, when p_i is found when traversing P, if p_i is not in PI then add key-value pair $(p_i, [i, k + (i-1), k + k - 1 + (i-2), \dots, k + k - 1 + \dots + 2 + (i - (k-1))])$, while $(i-l) \geq 1$. So for a new p_4 the key-value pair would be $(p_4, [4, k+3, k+k-1+2, k+k-1+k-2+1])$ If p_i is already in PI then just append the aforementioned list of indices to the list already in the hashmap.

The algorithm continues as follows:

- 1. It iterates through T, checking if each t_i encountered is a key of PI
 - (a) If not, the algorithm continues
 - (b) If so, it retrieves the list lp_j that t_i is the key for. $lp_j = [i_1, i_2, \dots, i_m]$ is then iterated through and each index i_j is used to update each (v_{i_j}, lss_{i_j})
 - i. A copy of MaxSS is made, MaxSSPrev is set equal to MaxSS and MaxSS is set equal to the copy.
 - ii. It first checks if l_j is in S, and if so checks if $v_i > MaxSSPrev.v_{i_j}$ and if so setting $MaxSS.v_{i_j} = v_i$ and $MaxSS.lss_{i_j} = [i]$, otherwise if $v_i + MaxSSPrev.v_{i_j-1} > MaxSSPrev.v_{i_j}$ set $MaxSS.v_{i_j} = v_i$ and set $MaxSS.lss_{i_j} = MaxSSPrev.lss_{i_j-1}.append(i)$.

2. The algorithm returns MaxSS[k], the value and ordered indices of the subsequence of T that matches the pattern P with maximum value.

Proof of Correctness:

<u>Claim</u>: The algorithm finds the sequence of indices $1 \le i_1 < i_2 < \cdots < i_k \le n$ such that for all $1 \le j \le k$, we have $t_{i_j} = p_j$ and $\sum_{k=1}^j v(i_j)$ is maximized.

Proof. Clearly, after PI is created and initialized each distinct p_i is paired with the list of indices l_{p_i} such that the subsequences in MaxSS located at these indices end with p_i . Consider the first iteration of the part of the algorithm that iterates through T. The

algorithm checks if $t_1 \in P$, if not, the algorithm continues since this t_1 cannot be part of any of the subsequences in MaxSS. If $t_1 \in P$ then $t_1 = p_j$ for some j and the indices in the list $l_{p_j} = [i_1, i_2, \ldots, i_l]$ update the corresponding values and lists (if needed) in the new MaxSS by comparisons with MaxSSPrev. Although some pattern subsequences of length $m \geq 2$ may end with t_1 , the values of the corresponding subsequences of length m-1 of these subsequences $p_i p_{i+1} \ldots t_1$ will have value $-\infty$ in prevMaxSS so they will essentially not be updated. Only $MaxSS[i_p].v = v(t_1) \neq -\infty$ at the end of this iteration, where $i_p \in S$ corresponds to a subsequence of length 1, as this update only involves comparing $MaxSSPrev[i_p].v = -\infty$ to $v(t_1) \geq 0$. Also, $MaxSS[i_p].lss = [t_1]$.

Assume that at iteration i MaxSS contains the ordered sequence of indices of T of maximum sum possible so far, for each subsequence of P, that have been found up to and including t_i . t_{i+1} is the new element of T to be processed by algorithm. If $t_{i+1} \notin P$, the algorithm continues since t_i cannot be part of any subsequence of P. If $t_{i+1} \in P$, then $PI.t_{i+1} = l_{p_i} = [i_1, i_2, \dots, i_l]$ where $p_j = t_{i+1}$.

For each $i_y \in p_j$, if $i_y \in S$ then $MaxSS[i_y]$ corresponds to t_{i+1} , which is updated if and only if $v(t_{i+1}) > MaxSSPrev[i_y].v$ by setting $MaxSS[i_y] = (v(t_{i+1}), [t_{i+1}])$. So $MaxSS[i_y]$ contains the index of maximum of the subsequence t_{i+1} found so far.

If $i_y \notin S$, then i_y corresponds to a subsequence of length $m \geq 2$ ending with t_{i+1} . $MaxSS[i_y]$ is updated if and only if $MaxSSPrev[i_y-1].v+v(t_{i+1}) < MaxSSPrev[i_y]$, since an ordered set of indices of greater sum than the previous ordered set of indices that matches the subsequences $p_rp_{r+1}...t_{i+1}$ can only be found at this iteration (if possible) by using the maximal sum and indices of the subsequences that ends right before t_{i+1} which is located at $MaxSSPrev[i_y-1]$. If an update is necessary

 $MaxSS[i_y] = (MaxSSPrev[i_y - 1].v + v(t_{i+1}), MaxSSPrev[i_y - 1].append(t_{i+1}).$

As MaxSS[k] corresponds to the sequence $P = p_1 \dots p_k$, MaxSS[k] contains the sequence of indices $1 \le i_1 < i_2 < \dots < i_k \le n$ such that for all $1 \le j \le k$, we have $t_{i_j} = p_j$ and $\sum_{k=1}^{j} v(i_j)$ is maximized.

Time Complexity:

It takes $O(k^2)$ time to initialize the values of MaxSS and O(k) time to iterate through P and O(k) time to add (p_i, l_{p_i}) to PI or update the list hashed by p_i in PI, threby requiring

 $O(k^2)$ time in total. Iterating through T, copying MaxSS, and updating the corresponding indices of t_i in the new MaxSS takes $O(k^2)$ time. Therefore, the algorithm has an overall time complexity of $O(nk^2)$.

Problem 2: Covering points with gain

The algorithm first sorts the intervals in nondecreasing order by their finishing times. An array G is maintained using this order, where G[i] corresponds to the total gain of the i-th interval based on the points in $\{x_1, x_2, \ldots, x_n\}$ that intersect with it. This ordering will be used when referring to an interval $[s_i, f_i]$. Then, the starting times, finishing times, and x_i values are sorted in nondecreasing order in another array. If there are $s_i's$ and $s_i's$ or $s_i's$ and $s_i's$ with the same value, $s_i's$ will be to ordered before $s_i's$ and and after $s_i's$. Whenever an $s_i's$ is encountered, all the $s_i's$ values found up $s_i's$ are added to $s_i's$

The algorithm proceeds using dynamic programming as follows:

- The value we want is $Opt(d) = (d_d, l_d)$, the maximal difference, $profit_d$, between point gains and intervals costs after the d-th interval is considered, d_d , and the corresponding list of intervals l_d
- Base case: $Opt(1) = (0, [\emptyset])$ if $G[1] \leq 0$ and $Opt(1) = ([[s_1, f_1]], G[1])$ if G[1] > 0
- Suppose i > 1:
 - $-f_i \ge f_j, \forall j < i$, therefore, $[s_i, f_i]$ is disjoint from all previous intervals if and only if $s_i > f_{i-1}$.
 - * If $G[i] \le 0 \Rightarrow Opt(i) = Opt(i-1)$
 - * Otherwise, Opt(i).d = Opt(i-1).d + G[i] and $Opt(i).l = Opt(i-1).l.append([s_i, f_i])$
 - If there exists an intersection between $[s_i, f_i]$ and some previous interval $[s_j, f_j] \in Opt(i-1).l$, then $f_j \geq s_i$. Consider such an interval. The overlapping component of intervals i and j is $[\max(s_i, s_j), f_j]$.
 - * $[f_j, f_i]$ has weight z and $z > c_i$ then add $[s_i, f_i]$ to Opt(i-1).l (since Opt(i-1) is no longer going to be used, it is being altered, this doesn't represent the actual optimal values of Opt(i-1) anymore)
 - · If $s_j \geq s_i$, remove $[s_j, f_j]$ from Opt(i-1).l. Let z_2 be the weight of $[s_i, s_j]$ not already in Opt(i-1).d, then $Opt(i-1).d = Opt(i-1).d + z c_i + z_2$.
 - · Otherwise, $[s_j, s_i]$ has weight z_2 and if $z_2 \leq c_j$, remove $[s_j, f_j]$ from Opt(i-1).l. Then, Opt(i-1).d = Opt(i-1).d + z.
 - * If $z \leq c_i$
 - · If $s_j \geq s_i$, let z_2 be the not already considered weight of $[s_i, s_j]$ if $z_2 > c_i$ add $[s_i, f_i]$ to Opt(i-1).l, remove $[s_j, f_j]$ from Opt(i-1).l, and $Opt(i-1).d = Opt(i-1).d + z_2$. If $z_2 \leq c_i$ then compare Gain[i] to Gain[j] and update accordingly, only the one with greater benefit is kept.

· If $s_j \leq s_i$ then then compare Gain[i] to Gain[j] and update accordingly, only the one with greater benefit is kept.

$$* Opt(i) = Opt(i-1)$$

Opt(i) is the output of the algorithm.

Time Complexity

The sorting process takes O((n+d)log(n+d)) time. Each iteration of the dynamic programming component takes $O((n+d)^2)$ time and there are O(n) iterations. So the overall time complexity is $O(n(n+d)^2)$.

Problem 4: Cellular Network

Let G = (V, E) be an undirected graph, where $V = \{s_1, s_2, \ldots, s_n\}$ is a finite set containing n sites and $e_{ij} \in E$ if and only if there is an edge between s_i and s_j . Each site s_i has a cost $c_i \geq 0$ of selecting it and each pair of selected sites s_i and s_j have a benefit $b_{ij} \geq 0$ if they have an edge between them. Clearly, vertices s_i that are not adjacent to any edges can be removed from V and edges e_{ij} with $b_{ij} = 0$ can be removed from E.

In order to select a subset $S' \subset V$ of sites that maximizes the difference (profit) between the sum of the edge benefits less the vertex costs, a flow network $H = (V_H, E_H, c)$, where c is a capacity function, is constructed as follows:

- $V_H = \{s, t\} \cup E \cup \{s_i | e_{ij} \in E\}$. Note: $e_{ij} = e_{ji}$ since G is undirected
- $E_H = \{s\} \times E \cup \{(e_{ij}, s_i), (e_{ij}, s_j) | e_{ij} \in E\} \cup \{s_i | e_{ij} \in E\} \times t$
 - Each $(s, e_{ij}) \in E_H$ has capacity b_{ij}
 - Each $(e_{ij}, s_i) \in E_H$ and $(e_{ij}, s_j) \in E_H$ has capacity ∞
 - Each $(s_i, t) \in E_H$ has capacity c_i

A minimum cut (A, B) of G_H is found using the Preflow-Push maximum flow algorithm. Then $S' = \{s_i | s_i \in A\}$ and we output S' as the set of sites that are to be selected for maximum profit.

Proof of Correctness:

There consists of a finite min-cut (A_f, B_f) consisting of the edges from s to e_{ij} .

Claim: $e_{ij} \in A$ if and only if $s_i, s_j \in A$. Therefore, the minimum cut (A, B) found by the algorithm contains a subset $V' \subset V$ and only the edges between pairs of vertex elements in A.

Proof. Suppose $e_{ij} \in A$ and WLOG $s_i \notin inA$, then since there exists an edge in G_H from e_{ij} to s_i with capacity ∞ , so the capacity C of (A, B) is not minimal, a contradiction.

Suppose $e_i, e_j \in A$ but $e_{ij} \notin A$, assuming $e_{ij} \in E_H$. Then by adding e_{ij} to A and removing it from B, the C is decreased due to the positive capacity of the edge s, e_{ij} so C is not minimal, a contradiction.

<u>Claim</u>: There exists a cut (A', B') representing the subset $V' \subset V$ and the edges between pairs of these vertices.

Proof. Clearly, in this cut, $A' = \{s\} \cup \{s_i | s_i \in V'\} \cup \{e_{ij} | s_i, s_j \in V'\}$ and $B' = V_H \setminus A'$.

<u>Claim:</u> The subset S', corresponding to a min-cut C = (A, B), that is output by the algorithm maxmimzes profit.

Proof. The summation Q of the capacities edges that cross C from A to B is as follows:

$$Q = \sum_{e_{ij} \notin A} b_{ij} + \sum_{s_i \in A} c_i$$

And since

$$profit = \sum_{e_{ij} \in A} b_{ij} - \sum_{s_i \in A} c_i$$

$$= \sum_{e_{ij} \in E} b_{ij} - \sum_{e_{ij} \notin A} b_{ij} - \sum_{s_i \in A} c_i$$

$$= \sum_{e_{ij} \in E} b_{ij} - (\sum_{e_{ij} \notin A} b_{ij} + \sum_{s_i \in A} c_i)$$

$$= \sum_{e_{ij} \in E} b_{ij} - Q$$

then a maximization of profit is equal to a minimization of Q. So the set S' corresponds to a subset of the sites that maximizes profit.

Time Complexity

it takes $O(n^3)$ time to construct H. There are $O(n^2)$ edges and O(n) vertices in G, so there are $O(n^2)$ nodes in H. Therefore, the time complexity of running the Preflow-Push maximum flow algorithm is $O(n^6)$.

Problem 5: Center selection with producers and consumers

Consider the set C^* of k producers that minimizes $\max_{q \in Q} d(q, C)$, and let this value be d^* .

Let $C' = \emptyset$, let P' = P, and let Q' = V - P' For $\leq k$ iterations add the producer P_i such that P_i is closest to a point $q \in Q'$. Then remove all points in P' and Q' that are within a radius of $3d^*$ from P_i , from their respective sets. Add P_i to C' and continue with the next iteration if $Q' \neq \emptyset$, otherwise terminate the algorithm.

If $|C'| \le k$ then clearly $\max_{q \in Q} d(q, C') \le 3d^*$.

<u>Claim:</u> If |C'| > k then then for any set of k producers C, $\max_{q \in Q} d(q, C) > d^*$.

Proof. Each $P_i \in C'$ is selected because it was the producer closest to any point $q_i \in Q'$. $d(q_i, P_j) \leq d^*$ for some $P_j \in C^*$, if $P_i = P_j$ then all $q_k \in Q'$ within a distance of d^* from P_i are removed from Q'. If $P_i \neq P_j$ then by triangle inequality $d(P_i, P_j) \leq 2d^*$ and again by the triangle inequality all points $q_k \in Q'$ within a distance of d^* from P_j are covered by P_i since $d(P_i, q_k) \leq 3d^*$. So if at any iteratAlso, since $d(q_{i+1}, P_j) > d^*$, $\forall P_j \in C^* \setminus P'$ where q_{i+1} is the next closest $q \in Q'$ to P', then it must correspond to a $P_k \in P'$. So every P_i chosen by the algorithm covers all consumers that are within a distance d^* of a distinct producer in C^* . So if more than |C'| > k then $\max_{q \in Q} d(q, C^*) > d^*$.

The algorithm is as follows: choose any $q \in Q'$ and add some P_i to C such that $\min_{P_i \in P} d(q, P_i)$. Remove q from Q' and add P to C and proceed through the algorithm as follows for at most k-1 iterations: choose $q \in Q'$ such that q is farthest from C add the closest $P_i \notin C$ to q to C and remove q from Q', if there are no $q \in Q'$, terminate the algorithm. C is returned.

<u>Claim</u>: The algorithm returns a set of producers of size k, C, such that $\max_{q \in O} d(q, C) \leq 3d^*$.

Proof. Suppose $\max_{q \in Q} d(q, C) > 3d^*$, then there exists some $q \in Q$ that satisfies this condition. Since the second algorithm chooses a consumer $q \in Q'$ that is farthest from C_i , the cover at the beginning of iteration i of the algorithm, this implies that every q_i chosen at an iteration i of the algorithm is at least a distance $3d^*$ from C_i . But this is the procedure of the first algorithm, so by choice of d^* and the previous claims, $\max_{q \in Q} d(q, C) \leq 3d^*$.

Time Complexity:

Only the second algorithm actually needs to be done to find an optimal set of k producers, so per iteration O(|Q|) comparisons are made with each of the O(k) producers in C to determine the farthest $q \in Q'$. O(|P| - k) comparisons are then made between q and the producers not already in C. Thus, the overall running time is $O(k(k|Q| + |P| - k)) = O(k^2|Q| + k|P|)$.

Problem 6: Approximation Algorithm

<u>Claim</u>: The algorithm outputs a sum that is with (k+3)/(k+1) fraction of the optimal output T^* .

Proof. If n=k the partition is optimal, so suppose n>k. Let S_1^k and S_2^k be the optimal partition of the k largest elements and let T_k be the sum of the larger subset. Consider the last $c_j, 1 \leq j \leq n$ added to the larger-sum-having subset S' in the partition that minimizes the quantity $\max(\sum_{i \in S_1} c_i, \sum_{i \in S_2} c_i)$. Let T be the sum of S'.

<u>Claim</u>: If the last element added to S', c_j , is one of the k largest elements then $T = T^*$.

Proof. Since c_{k+1} is added to the smaller of S_1^k and S_2^k , S' must be the larger of S_1^k and S_2^k . Therefore, $T = \sum_{i \in S'} c_i = T_k$ does not change for the remainder of the algorithm. Suppose

 $T* < T_k$, then the k largest elements would have to be distributed differently between S_1^* and S_2^* to make the sum of the larger subset less than T_k , but this is impossible as it would mean the k partition wasn't optimal. Thus $T* = T_k$ and so $T = T^*$.

Suppose $j \geq k+1$ and without loss of generality let $S' = S_1$ then $c_j \leq c_k$ and

$$T + \sum_{i \in S_2} c_i \ge 2(T - c_j) \iff T^* \ge (\sum_i c_i)/2 \ge T - c_j$$

since

$$\begin{aligned} c_j(k+1)/2 &\leq \frac{\sum_{i=1}^k c_i + c_j}{2} \leq \frac{\sum_{i=1}^n c_i}{2} \leq T^* \Rightarrow c_j \leq 2T^*/(k+1) \\ &\Rightarrow T - c_j + c_j \leq T^* + c_j \\ &\Rightarrow T \leq \frac{(k+1)T^*}{k+1} + \frac{2T^*}{k+1} \\ &\Rightarrow T \leq \frac{(k+3)T^*}{k+1}. \end{aligned}$$

Time Complexity:

There are 2^k possible partitions of the k largest integers into two sets, therefore it takes $O(2^k)$ time to find the optimal partition of these integers. It takes O(n) time to complete the partition by iterating through the remaining $c_i's$, the overall time complexity is $O(2^k + n)$.