

Satellite Collision Avoidance

Gabriella Armijo

Project Goals

Introduction

Mathada

Wicthous

resures

Relevance

Future Worl

Referen

Satellite Collision Avoidance

Gabriella Armijo

Institute for Computing in Research

August 4, 2022

Outline

Satellite Collision Avoidance

Gabriella Armijo

Project Goal

Introduction

Methods

Methods

Б.

. dedice rron

Project Goals

2 Introduction

Methods

4 Results

6 Relevance

6 Future Work

References

Project Goals

Satellite Collision Avoidance

Gabriella Armijo

Project Goals

.

.

Methods

Polovono

F.,..... \\/---

_ .

- Track satellites to see how likely they were collide.
- See how often they got within 100 km of each other.
- Analyze those results to see what satellites showed up the most.

Kessler Syndrome

Satellite Collision Avoidance

Gabriella Armijo

Project Goal

Introduction

Martinale

Methous

D. . . liv

Polovono

Future Wor

Reference

A scenario in which the density of objects in Low Earth Orbit (LEO) is high enough that each collision creates debris that increases the likelihood of more collisions.

3D Plot

Satellite Collision Avoidance

Gabriella Armijo

Project Goal

.

Methods

Б.

E \A/...

Referen

Conjunction Plots

Satellite Collision Avoidance

Gabriella Armijo

Project Goals

.

Methods

_ .

Eutura Wa

Referenc

Satellite Point of View

Satellite Collision Avoidance

Gabriella Armijo

Project Goals

Introduction

Methods

...cemou

Future Worl

Referenc

Dot Product

Satellite Collision Avoidance

Gabriella Armijo

Project Goals

Introduction

Methods

Relevano

Future Wor

Reference

```
|def mindist_and_time(pairpos_vels):
    deltas = pairpos_vels[:, 1] - pairpos_vels[:, 0]
    v = deltas[:, 1, :]
    rnorm = np.sqrt(np.sum(r ** 2, axis=-1))
    vnorm = np.sqrt(np.sum(v ** 2, axis=-1))
    rdotv = np.sum(r * v. axis=-1)
    costheta = rdotv / (rnorm * vnorm)
    sintheta = np.sqrt(1 - costheta ** 2)
    distance = rnorm * sintheta
    travel = -rnorm * costheta
    time = travel / vnorm
    return distance, time
```

Figure: Dot Product

```
def pairs_for_time(satellites, time, search_radius=100, maxdistance=10, timestep=10):
  Satellite
                      pos vels = satellitepos vels(satellites, time)
  Collision
                      if np.anv(np.isnan(pos vels)):
  Avoidance
                      times = time + delta_times / seconds_per_day
Methods
                          for i, satnum in enumerate(pairs[i]):
                               result[i]["velocities"][i] = geocentric.velocitv.km per s
                      delta pos = np.diff(result["positions"], axis=1)[:, 0, :]
```

new_distance = np.sgrt(np.sum(delta_pos ** 2, axis=-1))

Results

```
Satellite
Collision
Avoidance
```

Gabriella Armijo

Project Goals

Introduction

Results

_ .

Relevance

Future Work

Referenc

```
[(2459793.49996586, [b'STARLINK-2686', b'STARLINK-4016'], [48464, 52683], [
(2459793.49995395, [b'COSMOS 2251 DEB', b'FENGYUN 1C DEB'], [36052, 37578],
(2459793.50000893, [b'STARLINK-1477', b'STARLINK-3763'], [45754, 52556], [1
```

[[3043.82085744, 3832.24481974, 4890.72523754], [3040.55030319, 3828.28038801, 4885.57477159]], [
-6.96578649, 0.41137369, -2.99202699], [-4.81553841, -5.82496521, 3.84540734]], 9.24237707, 9.24234973),
[[-4.84987248, -5.65995379, -0.78727613], [6.36757837, -3.49630711, -1.91743309]], 4.39999659, 4.4000118
-6.81385665, 1.79480535, 2.82645312], [-3.28465361, 6.23568948, -2.83285029]], 7.27602526, 7.27602899),

[[-1035.20786393, 1826.2946224, -6772.34418336], [-1035.9581627, 1830.56719824, -6771.60789707]

```
[(2459793.49996586, [b'STARLINK-2686', b'STARLINK-4016'], [48464, 52603], [
(2459793.49995395, [b'COSMOS 2251 DEB', b'FENGYUN 1C DEB'], [36052, 37578]
(2459793.50000893, [b'STARLINK-1477', b'STARLINK-3763'], [45754, 52556], [
```

[[-1794.74737479, 4644.46295733, 4803.81598868], [-1796.996286 , 4637.41754928, 4798.27287865]], [], [[-1035.20786393, 1826.2946224 , -6772.34418336], [-1035.9581627 , 1830.56719824, -6771.60789707]] [[3043.82085744, 3832.24481974, 4890.72523754], [3040.55030319, 3828.28038801, 4885.57477159]], [

```
[-6.96578649, 0.41137309, -2.99202699], [-4.81553841, -5.02496521, 3.04540734]], 9.24237707, , [[-4.84987248, -5.65995379, -0.78727613], [6.36757837, -3.49630711, -1.91743309]], 4.3999965 [-6.81385665, 1.79480535, 2.82645312], [-3.28465361, 6.23568948, -2.83285029]], 7.27602526,
```

Why is this important?

Satellite Collision Avoidance

Gabriella Armijo

Project Goal

Method

....

Doculto

Relevance

E \A/...

- Prevents Collisions
- Keeping tabs on growing constellations
- Understanding satellite movement

Future Work

Satellite Collision Avoidance

Gabriella Armijo

Project Goal

Introduction

Method

D. . . li .

Relevano

Future Work

Reference

- Conjunction Plots
- Starlink orbital readjustments
- Future Collisions

Acknowledgments

Satellite Collision Avoidance

Gabriella Armijo

Project Goals

.

ivietnoas

_ .

Relevano

Future Work

Referen

I would like to thank my mentor, David Palmer, for everything he has taught me.

I would also like to thank the Institute for Computing in Research and everyone involved for giving me and my fellow interns this opportunity.

References

Satellite Collision Avoidance

Gabriella Armijo

Introductio
Methods

Results

Relevance

Future Work

[1] InetDeamon (2018, May 19) Satellite Orbits https://www.inetdaemon.com/tutorials/satellite/orbits/

[2] Mann, A., Pultarova, T., Howell, E. (2022, April 14). SpaceX Starlink Internet: Costs, Collision Risks and How it Works. Available at https://www.space.com/spacex-starlink-satellites.html

[3] McKnight, D., Shouppe, M., (2021, November 18). Analysis of the Cosmos 1408 Breakup Available at

https://leolabs-space.medium.com/analysis-of-the-cosmos-1408-breakup-71b32de5641f

[4] Lambert, J. (2018, September). Fengyun-1C Debris Cloud Evolution Over One Decade.

[5] Wall, M. (2018, November 15,). Kessler Syndrome and the Space Debris Problem Available at

https://www.space.com/kessler-syndrome-space-debris

[6] Weeden, B. (2010 November 10,) 2009 Iridium-Cosmos Collision Fact Sheet