

LHCb Grid Operations in 2011

LHCb Data Characteristics

- Expected data size and trigger rates are modest compared to other LHC experiments (TDR)
 - □ 35 kB RAW event size
 - Trigger rate: 2000 events/s
 - □ 25 kB RDST (a.k.a. ESD), 85 kB DST (a.k.a. AOD)
 - Typical reconstruction time: 12 HS06.s/event
- o Physics research channels are rare
 - b-quark CP violation decay modes (BR ~ 10-9 to 10-6)
 - Typically a few 10'000s to a million events per year (2 fb⁻¹)
 - ☆ A needle in a haystack
 - Easier to extract b decay events if only one primary vertex
 - \Box Metrics = average number of visible interactions per beam crossing (μ)
 - * For LHC design characteristics μ =0.4 at LHCb
- LHCb is a small experiment
 - Very small Computing Operations Team (< 5FTE)

Guidelines for the Computing Model

- o Small processing time, but high trigger rate
 - 24 kHS06 required for reconstruction
 - ★ Typically 2000 CPU slots
 - TierO could not provide the necessary CPU power
 - Use Tier1s as well for reconstruction (first pass)
- Most problems for analysis jobs are related to Data Management
 - SE accessibility, scalability, reliability...
 - Restrict the number of sites with data access
 - Use Tier1s for analysis
- High requirements on simulated data
 - Background identification, efficiency estimation for signal
 - Typically 360 HS06.s per event
 - Use all possible non-Tier1 resources for simulation

The LHCb Computing Model

LHCb Computing Model

- First pass reconstruction takes place at TierO and all Tier1s
- RAW distribution to Tier1s and reconstruction jobs proportional to the CPU pledges 2011
 - □ 15% reconstruction at CERN
 - Some adjustments made by hand on Tier1 shares
 - Output SDST on T1D0 at local SE
- o Stripping (a.k.a. skimming) done at the reconstruction site
 - Output streamed DSTs (10 to 12) uploaded to local TOD1
 - Small files automatically merged into up to 5 GB files (locally)
- DST placement
 - One replica local (from the job)
 - One replica at CERN
 - Two more replicas at Tier1s (only one for MC)
 - Two replicas as Archive on T1D0 (CERN + one Tier1)

The LHCb Grid solution

- Based on DIRAC (developed within LHCb)
 - Now used also by many other communities
- LHCb specific extensions (LHCbDirac)
 - E.g. production system, bookkeeping system etc...
- Based on central services run at CERN
 - Redundancy services running at Tier1s:
 - * VOBox (collecting requests from jobs)
 - * LFC read-only mirrors
 - ∴ Oracle Conditions DB mirrors (3D streaming)
- Data Management System
 - File staging, bulk transfers, bulk removal
 - Using LFC, SRM-enables Ses, FTS services at Tier1s
- Workload Management System
 - Using pilot jobs (pioneers!) and central task queues
 - Allows a lot of flexibility on implementing policies

MC filling the gaps

2011 Running Conditions

- LHC decided to optimise luminosity by increasing the bunch density
 - Good for ATLAS and CMS, less good for LHCb (large pileup)
- Required rapid adaptability (trigger and CM)
 - Be able to use large pileup events for B physics
 - Introduction of charm physics in the LHCb program (high luminosity)
- o Consequences
 - Larger events (50 kB vs 35 kB), higher multiplicity
 - Longer reconstruction time
 - High trigger rate (3 kHz vs 2 kHz)
 - □ Larger DST (a.k.a. AOD) (130 kB vs 100 kB)
 - Higher stripping retention (15% vs 10%)
- However... we and more importantly you managed to adapt to these new conditions!
 - Thanks!

LHCb new requirements for 2011

- We had to change our requirements for 2011 in order to be able to cope with these changes
 - More CPU, more disk and more tape requested
 - Presented to and approved by C-RSG in March 2011
 - ... but no changes in pledges from sites
 - * Fortunately bilateral agreements were made with most sites
- o CPU limitations
 - Not expected during data taking
 - * We can even run MC at Tier1s and CERN
 - ... but during reprocessing (need 4 times as much CPU power)
 - ☆ This is the bottleneck
- Disk limitations
 - Also comes at reprocessing time
 - ★ We must keep previous processing on disk + 2010
 - 0.4 PB missing at CERN, 1.5 PB missing at Tier1s (250 TB per Tier1)

2011 data taking

10

Jobs in 2011

UK jobs

62.4

On average 3000 running jobs

134.5 LCG.EFDA.uk

118.5 LCG.BHAM-HEP.uk

- Dominated by MC jobs
- Manchester > RAL!

LCG.Liverpool.uk

Tier1 usage

- Still resources for running MC
- User jobs similar to processing jobs

Generated on 2011-09-14 15:15:39 UTC

2011 re-processing

- Due to higher luminosity, not enough CPU power at Tier1s
- LHCb Reconstruction Centers
 - In addition to CERN and Tier1s, use major Tier2s also for reconstruction
 - RAW data downloaded from a Tier1
 - Not necessarily in the same country
 - Add Tier2s to Tier1s in order to balance the storage usage and RAW availability
 - Once the RAW file is staged at Tier1, all LRCs attached to that storage are eligible to run the job
 - Availability decides (pilots jobs!)
 - SDST uploaded to the same Tier1
 - Stripping/merging running at Tier1
 - LRSs are "coprocessors" to Tier1s
 - Only requires good network connectivity (using general network for downloading directly to WN)
 - Tests successful with more than 20 Tier2s

2011 reprocessing planning

- Applications fully ready 23 September
- LHCbDirac adaptations also ready and commissioned by 23 September
- Last validation the week after
- Start of large reprocessing: last days of September
- New feature: file staging throttling
 - Not stage more than what can be processed
 - Avoid jobs starting when the file has gone!
 - Avoid multiple recall from tape
 - Tested and working well
 - Requires to know the size of the cache buffer(s)
- Memory footprint problem fixed!
 - ... however still old releases of applications running
 - Special memory extension can be removed after the end of data taking (November)

Conclusions

- Very fruitful data taking year for LHCb
 - □ 1 fb⁻¹ in reach (unexpected!)
 - Very rich physics program in sight: even access to new physics
 - Already as precise as b-factories and Tevatron!
- Smooth distributed computing over the year, but...
 - ... very manpower intensive!
 - Operations team, production managers, site contacts
 - LHCb team is small (less than 20 people in total, many being developers!)
 - LHCb will be short in disk at Tier1s, so... please...
 - UK was the biggest provider of resources! Thanks!
 - RAL was running very reliably as Tier1
 - Looking forward to using partly UK Tier2s for the end-ofyear reprocessing (Manchester, Glasgow, Liverpool...?)

