Theorem 6. Let t and u be natural numbers with $0 \le t < u$ and let A be a proper non-empty subset of the vector space \mathbb{Z}_2^u . Set $\alpha = 1 - \frac{|A|}{2^u}$. Then for a random uniformly chosen surjective linear mapping $T : \mathbb{Z}_2^u \to \mathbb{Z}_2^t$ we have

$$\mathbf{P}(T(A) \neq \mathbb{Z}_2^t) \le \alpha^{u-t-\log t + \log\log\frac{1}{\alpha}}$$
.

Proof. Set s=u-t. Choose vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_s$ independently and randomly according uniform distribution. Let T be a set of all surjective linear mappings $T: \mathbb{Z}_2^u \to \mathbb{Z}_2^t$ with $T(\vec{v}_i) = \vec{0}$ for all $i=1,2,\ldots,s$. Then T is a random uniformly chosen linear surjective mapping from \mathbb{Z}_2^u onto \mathbb{Z}_2^t . The set $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_s\}$ of vectors need not be linearly independent. Let us define $A_0 = A$ and $A_i = A_{i-1} \cup (A_{i-1} + \vec{v}_i)$ and set $\alpha_i = 1 - \frac{|A_i|}{2^u}$. If we consider that α_i is a random variable then, by Lemma 2, $\mathbf{E}(\alpha_i) = \alpha_{i-1}^2$ for all $i=1,2,\ldots,s$. Then $0 < \alpha_0 < 1$ and clearly $\alpha_i \leq \alpha_{i-1}$ for all $i=1,2,\ldots,s$. Thus the assumptions of Lemma 3 are fulfilled and, by Lemma 3,

$$\mathbf{P}(\alpha_s \ge 2^{-t}) \le \alpha^{s - \log\log(\frac{1}{2^{-t}}) + \log\log(\frac{1}{\alpha})} = \alpha^{s - \log t + \log\log(\frac{1}{\alpha})} = \alpha^{u - t - \log t + \log\log(\frac{1}{\alpha})}.$$

Since $\alpha_s = 1 - \frac{|A_s|}{2^u}$ we infer that $|A_s| = 2^u(1 - \alpha_s)$ and hence from $\alpha_s < 2^{-t}$ it follows that $|A_s| > 2^u - 2^{u-t}$. Since kernel of T has a size 2^{u-t} we infer that $T(A_s) = T(\mathbb{Z}_2^u)$ and hence $T(A_s) = \mathbb{Z}_2^t$ because T is surjective. Thus

$$\mathbf{P}(\alpha_s < 2^{-t}) = \mathbf{P}(T(A_s) = \mathbb{Z}_2^t).$$

Since \mathbb{Z}_2^u is a vector space over a field \mathbb{Z}_2 we obtain, by induction over i that $A_i = A + \operatorname{spam}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_s)$. Since $T(\vec{v}_i) = \vec{0}$ for all $i = 1, 2, \dots, i$ we state that $T(A) = T(A_i)$ for all $i = 1, 2, \dots, s$. Hence

$$\mathbf{P}(T(A) \neq \mathbb{Z}_2^t) = \mathbf{P}(T(A_s) \neq \mathbb{Z}_2^t) = \mathbf{P}(\alpha_s \ge 2^{-t}) \le \alpha^{u - t - \log t + \log \log(\frac{1}{\alpha})}$$

and the proof follows. \square