Guidelines

Data

FVC_comments.txt: contains the YouTube video comments of the **Fake Video Corpus** and for each of them the timestamp when it was published.

<video_id><comment_id><label><video_upload_time> <comment_pubished_time><text>

<u>FVC_commentBasedFeatures.txt</u>: contains the comment-level-features in JSON format for each comment.

Comment-level features

- 0. Comment ID id
- 1. Comment text length getItemLength
- 2. Number of words getNumWords
- 3. Contains question mark (Boolean) getContainsQuestionMark
- 4. Contains exclamation mark (Boolean) getContainsExclamationMark
- 5. Contains happy emoticon (Boolean) getContainsHappyEmo
- 6. Contains sad emoticon (Boolean) getContainsSadEmo
- 7. Contains 1st person pronoun getContainsFirstOrderPron
- 8. Contains 2nd person pronoun getContainsSecondOrderPron
- 9. Contains 3rd person pronoun getContainsThirdOrderPron
- 10. Number of uppercase characters getNumUppercaseChars
- ${\bf 11.\ Number\ of\ positive\ sentiment\ words\ -\ getNumPosSentiWords}$
- 12. Number of negative sentiment words getNumNegSentiWords
- 13. Number of slang words getNumSlangs
- 14. Has ':' symbol (Boolean) getHasColon
- 15. Has 'please' word (Boolean) getHasPlease
- 16. Number of question marks getNumQuestionMark
- 17. Number of exclamation marks getNumExclamationMark
- 18. Readability score getReadability

FCV_histogram_features.txt: contains the comment credibility estimates of each video that were aggregated into a 10-bin histogram.

<u>FVC_histogram_feature_labels.txt:</u> contains a label for each video indicating if it is real (value 0) or fake (value 1).

The order of the videos and comments is same in all the above files.

ExtractCommentDasedFeatures

In order to extract the comment-level features use the CommentBasedFeaturesExtractor main class.

Input:

- id: Give an id for the video comment. E.g. "YouTubeID-IDX".
- comment_text: The text of a YouTube comment.

Output: A 18-dimensional feature vector for each comment.

Notes: In folder 'lib' there are two libraries that need to be externally added. Define the path of 'resources' folder into Vars class.

FirstLevelClassification

Create a text file containing the comment level features of a YouTube video in JSON format. Run CommentBasedClassification main class. The comment credibility estimates of each video are aggregated into a 10-bin histogram which serves as a descriptor for the entire video.

Input:

file: A text file containing the comment level features of a YouTube video in JSON format.

Output: A 10-diensional feature vector for each video.

SeconfLevelClassification

The extracted histograms of the first level classification are fed in an RBF SVM and 10 fold cross validation is used in order to evaluate the performance. Run second_level_classification.m for training and classification and evaluation.m for calculating Precision, Recall, Accuracy and F1-measure.

second_level_classification.m

Input:

- histogram_feat_file: A text file containing the histogram vectors of the videos.
- labels: A text file containing the video labels where 0 is for real and 1 for fake videos.

- folds: The number of folds for cross validation.

Output: A text file for each fold containing the probabilities of the classification process.

evaluation.m

Input:

- folds: The number of folds for cross validation.

Output: A text file containing the calculated metrics (EvaluationResults.txt).

For more details refer to – Olga Papadopoulou, Markos Zampoglou, Symeon Papadopoulos, Yiannis Kompatsiaris. "Web Video Verification using Contextual Cues". ICMR2017 Workshops. Bucharest, Romania 2017.