Question	Scheme	Marks
number		
7	$\log_7 x^2$	B1
	log ₇ 49	
	$\log_7 \left(\frac{8x^2 - 6x + 3}{x} \right), \ \log_7 2^3$ $\frac{8x^2 - 6x + 3}{2} = 2^3$	M1 A1
	$\frac{8x^2-6x+3}{x}=2^3$	
	$x^{2} - 14x + 3 = 0$ $(4x - 1)(2x - 3) = 0$ $x = \frac{1}{4}, \frac{3}{2}$	M1
	(4x - 1)(2x - 3) = 0	
	$x = \frac{1}{4}, \frac{3}{2}$	A1
		[5]

Mark	Additional Guidance		
B1	For changing the base of the log either to base 7 or base 49		
	$\log_{49} x^2 = \frac{\log_7 x^2}{\log_7 49} = \frac{\log_7 x^2}{2}$	$\log_7 \left(8x^2 - 6x + 3 \right) = \frac{\log_{49} \left(8x^2 - 6x + 3 \right)}{\log_{49} 7}$	
	OR	$=2\log_{49}\left(8x^2-6x+3\right)$	
	$\log_{49} x^2 = \frac{2\log_7 x}{\log_7 49} = \log_7 x$	AND $\log_7 2 = \frac{\log_{49} 2}{\log_{49} 7} = 2\log_{49} 2$	
M1	For combining the LHS together into one log and dealing with the powers on both sides		
	$\left[\frac{1}{2}\log_7 x^2 = \log_7 x\right] \Rightarrow$	$\log_{49}\left(\frac{\left[8x^2-6x+3\right]^2}{x^2}\right)$, $\log_{49}2^6$	
	$\log_7\left(\frac{8x^2 - 6x + 3}{x}\right), \log_7 2^3$		
dM1	For forming a 3TQ with their expressions which must have come from an acceptable attempt to deal with the logs This is an A mark in Epen		
	$8x^2 - 14x + 3 = 0$	$\left(8x^2 - 6x + 3\right)^2 = 64x^2 \Longrightarrow$	
		$8x^{2} - 6x + 3 = \pm 8x \Rightarrow 8x^{2} - 14x + 3 = 0$ If this method is used they must reject the negative root of $64x^{2}$ (i.e $-8x$) because it will form a quadratic equation with no real roots. $\left\{8x^{2} + 2x + 3 = 0 \Rightarrow b^{2} - 4ac = -92\right\}$	
dM1	For attempting to solve their 3TQ		
	$8x^2 - 14x + 3 = (4x - 1)(2x - 3) = 0 \Rightarrow x =,$		
A1	$x = \frac{3}{2}, \frac{1}{4}$		