Lineare Algebra 2 Hausaufgabenblatt Nr. 3

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 4, 2023)

Problem 1. (a) Berechnen Sie alle möglichen Matrixprodukte der folgenden Matrizen. Was muss jeweils für die Dimensionen erfüllt sein?

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 5 \\ 1 & 8 & 7 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 \\ 0 \\ 8 \\ -7 \end{pmatrix}$$

$$D = \begin{pmatrix} -1 & 2 & 0 & 8 \end{pmatrix}, E = \begin{pmatrix} 1 & 4 \\ 0 & 5 \\ 6 & 8 \end{pmatrix}, F = \begin{pmatrix} -1 & 2 & 0 \end{pmatrix}.$$

(b) Eine Blockmatrix ist eine Matrix von der Form

$$A = \begin{pmatrix} A_1 & A_3 \\ A_2 & A_4 \end{pmatrix}$$

mit Matrizen $A_1 \in \mathbb{K}^{n \times m}, A_2 \in \mathbb{K}^{n' \times m}, A_3 \in \mathbb{K}^{n \times m'}, A_4 \in \mathbb{K}^{n' \times m'}$. Sei weiterhin

$$B = \begin{pmatrix} B_1 & B_3 \\ B_2 & B_4 \end{pmatrix}$$

mit ebenso Einträgen aus \mathbb{K} . Wer nun meint, die Multiplikation von A und B sei so simpel wie

$$A \cdot B = \begin{pmatrix} A_1 B_1 + A_3 B_2 & A_1 B_3 + A_3 B_4 \\ A_2 B_1 + A_4 B_2 & A_2 B_3 + A_4 B_4 \end{pmatrix}$$

hat tatsächlich recht. Beweisen Sie diese Formel und geben Sie gleichzeitig die B_i 's für die benötigten Matrizenräume an, sodass die Rechnung wohldefiniert ist.

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Proof. (a) Für A eine $n \times m$ Matrize, und B eine $p \times q$ Matrize, ist AB wohldefiniert, nur wenn m = p

Die Matrizprodukte sind

$$AB = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 5 & 3 & -5 & -3 \\ 6 & 8 & -6 & -8 \end{pmatrix}$$

$$AE = \begin{pmatrix} 13 & 15 \\ 30 & 55 \\ 43 & 100 \end{pmatrix}$$

$$FA = \begin{pmatrix} -1 & 7 & 8 \end{pmatrix}$$

$$BC = \begin{pmatrix} 7 \\ -7 \\ -7 \end{pmatrix}$$

$$CD = \begin{pmatrix} -1 & 2 & 0 & 8 \\ 0 & 0 & 0 & 0 \\ -8 & 16 & 0 & 64 \\ -7 & 14 & 0 & 56 \end{pmatrix}$$

$$DC = (55)$$

$$CF = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 0 & 0 \\ -8 & 16 & 0 \\ -7 & 14 & 0 \end{pmatrix}$$

$$FE = \begin{pmatrix} -1 & 6 \end{pmatrix}$$

(b) Wir brauchen $B_1 \in \mathbb{K}^{m \times p}, B_2 \in \mathbb{K}^{m' \times p}, B_3 \in \mathbb{K}^{m \times q}, B_4 \in \mathbb{K}^{m' \times q}$ für $p, q \in \mathbb{N}$. Wir bezeichnen, für $v_1 \in \mathbb{K}^p, v_2 \in \mathbb{K}^q$, das Vektor $(v_1, v_2) \in \mathbb{K}^{p+q}$.

Problem 2. Es seien V und W Vektorräume über K, nicht notwendigerweise endlichdimensional und

$$\Phi: V \to W$$

eine lineare Abbildung. Beweisen Sie:

- (a) Die duale Abbildung Φ^* ist injektiv genau dann, wenn Φ surjektiv ist. Hinweis: Die Richtung \Longrightarrow beweisen Sie am einfachsten als eine Kontraposition.
- (b) Die duale Abbildung Φ^* ist surjektiv genau dann, wenn Φ injektiv ist. Hinweis: Die Rückrichtung lässt sich am einfachsten direkt beweisen. Nutzen Sie in dem Fall die Injektivität von Φ aus, um für ein beliebiges $v^* \in V^*$ eine lineare Abbildung im Bild von Φ^* zu konstruieren, die die gleichen Werde wie Abbildung v^* liefert.
- (c) Im Falle der Invertierbarkeit gilt

$$(\Phi^{-1})^* = (\Phi^*)^{-1}$$
.

- Proof. (a) Sei Φ surjektiv, und $w_1^*, w_2^* \in W^*$. Es gilt $\Phi w_1^* = w_1^* \circ \Phi, \Phi w_2^* = w_2^* \circ \Phi$. Die zwei Abbildungen $w_1^* \circ \Phi$ und $w_2^* \circ \Phi$ sind unterschiedliche, solange es mindestens ein $v \in V$ gibt, sodass $(w_1^* \circ \Phi)(v) \neq (w_2^* \circ \Phi)(v)$. Wir haben aber ausgenommen, dass $w_1^* \neq w_2^*$. Das bedeutet, dass es $w \in W$ gibt, so dass $w_1^*(w) \neq w_2^*(w)$. Weil Φ surjektiv ist, ist $w = \Phi(v)$ für eine v. Dann ist $(w_1^* \circ \Phi)(v) \neq (w_2^* \circ \Phi)(v)$, also Φ^* ist injektiv. Jetzt nehmen wir an, dass Φ nicht surjektiv ist. Wir definieren zwei lineare Funktionale w_1^* und w_2^* , sodass $w_1^* \neq w_2^*$. Sei $w_1^*(w) = w_2^*(w) \forall w \in \operatorname{im}(\Phi)$
 - (b) Zuerst beweisen wir: Φ nicht injektiv $\implies \Phi^*$ nicht surjektiv.

Idee: Wenn $\Phi(v_1) = \Phi(v_2)$, können Abbildungen $W \to \mathbb{K} v_1$ und v_2 nicht unterscheiden.