

Machine learning models for network related 3D video QoE

Lykourgiotis, A. Kordelas, I.Politis, C. Mysirlidis, T. Dagiuklas University of Patras, Greece

(2nd ROMEO Workshop, Istanbul, 9/7/13)

Outline

- Aim of work in context of ROMEO
- QoE knowledge management
 - Machine learning categories
 - Naive Bayesian classifier
 - Logical decision tree
 - Multi-layer perceptron
- Performance evaluation
 - Simulation setup
 - Subjective evaluation
- Comparison of ML QoE models

Aim

- Goals of ROMEO project
 - delivery of live and collaborative 3D immersive media across next generation converged all-IP networks
 - development of a QoE based mobility management framework
 - handle horizontal and vertical handovers based on parameters and statistics from the application and underlying layers
- Provide a QoE-based mobility management across LTE-WiFi networks
 - MIH IEEE 802.21 framework
 - Handover decision
 - Stream adaptation

QoE Knowledge Management

- QoE estimation is an event based method
 - viewers respond and evaluate the perceptual (quality) experience by reflecting on the reactions that earlier events provoked
- Supervised ML
 - learning process based on instances produces a generalized hypothesis
 - forecasts future instances
- Main steps of ML techniques
 - gathering of the data set
 - data prepossessing
 - feature creation
 - algorithm selection
 - learning
 - test evaluation

Machine learning categories (1)

- Logic-based (decision trees)
 - nodes represent a feature of instances
 - branches represent a value that the node can assume
 - Disadvantage: not efficient if numerical features are used
- Perceptron-based (artificial neural networks)
 - It has been applied to a range of different real-world problems
 - Their accuracy is a function of the:
 - used number of neurons
 - processing cost
 - Disadvantage: inefficient when fed with irrelevant features

Machine learning categories (2)

Statistical

- Naive Bayesian classifier
 - requires short computational time for training
 - it distinguishes between classes using only a single Gaussian distribution
- k-nearest neighbor
 - based on the fact that neighboring instances have similar properties
 - very simple to use it since it requires only the number of nearest neighbors
 - unreliable when applied on data sets with irrelevant features

Support Vector Machines (SVM)

- performs better when:
 - dealing with multi-dimension and continuous features
 - applied to inputs with a non-linear relationship between them

Naive Bayesian classifier (1)

Specialized form of Bayesian network

- Assumptions
 - predictive attributes are conditionally independent given the class
 - these are no hidden attributes that could affect the prediction
- Properties
 - represents, uses and learns stochastic knowledge
 - accurately predicts the class of test instances given that the training instances include class information

Statements

- C the class of an instance
- c a particular class label
- X the vector of a random variable that denotes the values of the attributes
- x a particular observed attribute value vector

Naive Bayesian classifier (2)

Bayesian rule

computes the probability of each class given the vector of observed values for the predictive attributes

$$P(C = c|X = x) = \frac{P(C = c)P(X = x|C = c)}{P(X = x)}$$
 (1)

Naïve Bayesian

- can be simple calculated by (2) since:
 - the event X = x
 - attributes are assumed to be conditionally independent

$$P(X = x | C = c) = \prod_{i} P(X_i = x_i | C = c)$$
 (2)

In case of continuous attributes

the probability density function for a normal (or Gaussian) distribution is

$$P(X = x | C = c) = G(x; \mu_c, \sigma_c), \tag{3}$$

$$P(X = x | C = c) = G(x; \mu_c, \sigma_c),$$
(3)
$$G(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
(4)

Logical decision tree (1)

Decision trees can be:

- a leaf node labeled with a class
- a structure containing a test, linked to nodes

Classification

instances are classified by applying the attribute vector

C4.5 algorithm assumptions

- when all cases belong to the same class
 - the tree is a leaf and is labeled with the particular class
- calculate for every attribute the information gain that results from a test
 - according to the probability of each case having a particular value for the attribute
 - using the probabilities of each case with a particular value for the attribute being of a particular class
- depending on the current selection criterion
 - find the best attribute to create a new branch.

Logical decision tree (2)

C4.5 splitting criterion

- normalized information gain
- entropy $H(\vec{y})$ of the n-dimensional vector of attributes of the sample denotes the disorder on the data
- conditional entropy $H(j \mid \vec{y})$ is derived from iterating over all possible values of \vec{y}
- Goal:
 - find the attribute with the highest information gain and create a splitting decision node
 - prune the tree in order to minimize the classification error due to the outliers

$$H(\overrightarrow{y}) = -\sum_{j=1}^{n} \frac{|y_j|}{|\overrightarrow{y}|} log \frac{|y_j|}{|\overrightarrow{y}|}$$
 (5)

$$H(j|\overrightarrow{y}) = \frac{|y_j|}{|\overrightarrow{y}|} log \frac{|y_j|}{|\overrightarrow{y}|}$$
 (6)

$$Gain(\overrightarrow{y}, j) = H(\overrightarrow{y} - H(j|\overrightarrow{y}))$$
 (7)

Multi-layer perceptron (1)

Classification:

- Input layer of neurons distribute the values in the vector of predictor variable values, to the neurons of the hidden layers
- ii. hidden layers are fed with a bias of a constant input of 1.0
- iii. bias is multiplied by a weight and added to the sum going into the neuron
- iv. the weighted sum is fed to a transfer function
- V. the outputs from the transfer function are distributed to the output layer
- vi. the value from each hidden layer neuron is multiplied by a weight
- vii. the resulting weighted values are added together producing a weighted sum
- viii. the weighted sum is fed into the transfer function.
- ix. the output values of the transfer function are the outputs of the network

Multi-layer perceptron (2)

Training process

- determine the set of weight values that will result in a close match between the output from the neural network and the actual target values
- Algorithm precision depends on the number of neurons in the hidden layer
 - inadequate number of neurons
 - the network will be unable to model complex data and the resulting fit will be poor
 - too many neurons
 - the training time may become excessively long
 - the network may over fit the data
 - the network will begin to model random noise in the data
- Network parameters used:
 - six neurons
 - one hidden layer

Simulation setup (1)

- NS2
 - 802.11g WLANs extensions
- 3D video Sequences
 - Two left-right sequences, different spatial and temporal indexes
- Medium Grain Scale scalability
- RTP/UDP/IP protocol stack
 - MTU size of 1500 bytes

Video Sequence	Martial Arts	Munich		
No of Frames	400			
Intra period	5 frames			
QP	(42,36) & (36,30)			
Frame rate	25 fps			
Resolution per view	640x720 pixels & 960x1080 pixels			
Spatial Index	21	25		
Temporal Index	17	8		

Simulation setup (2)

- Modeling the impact of wireless channel errors on the QoE
 - Rayleigh fading channel of the simulated 802.11g is represented by a twostate Markov model
- MAC layer load (time outs and retransmissions)
 - UDP traffic is transmitted to both uplink and downlink channels
 - Poisson distribution with a mean value of 2Mbps, 3Mbps and 4Mbps in each direction
- IP layer delay variation
 - constant plus gamma distribution
 - jitter increases based on the value of the shape parameter k and shape

parameter θ

	Bad Channel	Medium Channel	Good Channel
P_G	$1.25e^{-2}$	$1.29e^{-2}$	$1.29e^{-2}$
P_B	$4.13e^{-14}$	$1.3e^{-13}$	$4.1e^{-12}$
P_{GG}	0.996	0.990	0.987
P_{BB}	0.336	0.690	0.740

Subjective evaluation

- Video sequences rating
 - Absolute category rating (ACR) method

Naïve Bayes Classifier

- Output of the Naive Bayesian classification
 - implemented in Weka environment
 - mean and standard deviation of the Gaussian distribution for every attribute of the data set

Attributes	Class (MOS)					
		1	2	3	4	5
SI	mean	20.21	21.71	22.28	22.67	24
	std. dev.	0.89	1.97	1.98	1.88	0.6667
TI	mean	17.53	14.16	12.87	12	9
11	std. dev.	2.01	4.45	4.45	4.24	1.5
QP_1	mean	39.15	38.82	39.55	38.14	36
WF1	std. dev.	2.99	2.99	2.94	2.87	1
QP_2	mean	33.15	32.82	33.55	32.14	30
Q12	std. dev.	2.99	2.99	2.94	2.87	1
Resolution	mean	0.57	0.51	0.46	0.5	1
Resolution	std. dev.	0.49	0.49	0.49	0.5	0.16
Jitter	mean	7	5.61	2.68	0.25	0
Jitter	std. dev.	0.58	2.00	2.17	0.90	0.5833
Load	mean	3.42	3.13	2.98	2.64	2
	std. dev.	0.67	0.82	0.81	0.71	0.16
Channel	mean	0.52	0.85	1.06	1.28	2
	std. dev.	0.67	0.77	0.83	0.76	0.16

Decision tree QoE prediction model

- Decision tree of the C4.5 ML
 - implemented as J48 in Weka environment
 - the jitter is the most important parameter

Comparison of ML QoE Models

Algorithm's precision

 denotes the degree to which repeated measurements under unchanged conditions show the same results

Algorithm's recall

 is defined as the number of relevant instances retrieved by a search divided by the total number of existing relevant instances

Algorithm's F-measure

considers the precision and the recall

$$p = \frac{TP_i}{TP_i + FP_i}, r = \frac{TP_i}{TP_i + FN_i}, f = \frac{2 \cdot p \cdot r}{p + r}$$

I	Represents the class
TP_i	correctly classified instances
FP _i	instances that belong to the class i but they have not be classified there
FN _i	instances that do not belong to the class i but they have been classified there

Conclusions

- Currently considering three ML classification algorithms for modeling QoE due to network related impairments
- QoE model is a function of parameters collected not only from the application layer, but also from the underlying layers
- Packet loss as a function of a QoS parameters
- MOS comparison indicated that the predominant factor of QoE degradation is the IP layer delay variation
- Future work:
 - integrate the QoE classification model to the Handoff functionality and manage handover decision and mobility

Thank you!

Questions?

