Z_k

Generatoren:

**	[0]	D 1.				
X_d	$[\Omega]$	Reaktanz				
x%	[%]	relative syncrone Reaktanz $(0,01)$				
U_n	[V]	NennSpannung				
S_n	[VA]					
U_P	[V]	PolradSpannung				
U_G	[V]					
I_G	[A]	GeneratorStrom / Strang $\sqrt{3}$				
δ	[0]	Polradwinkel				
		Generator Blindleistung				
S_G	[VA]	Generator Scheinleistung				
		Generator Leistung				
		Leistungsfaktor				
$X_d = \frac{x\% \cdot U_n^2}{S_n}$ Bei % immer $\frac{1}{100}$.						
- T						
$U_P = \frac{P_G \cdot X_d}{U_G \cdot \sin(\delta)}$ $U_{\sigma} \cdot U_{\sigma} \cdot \sin(\delta)$						
	UG	$P_G = \frac{U_P \cdot U_G \cdot \sin(\delta)}{X_d}$				
$U_P \cdot U_G \cdot cos(\delta) U_G^2 = \frac{1}{X_d}$						
$Q_G = \frac{U_P \cdot U_G \cdot \cos(\delta)}{X_J} - \frac{U_G^2}{X_J}$						
$S_G = \sqrt{P_G^2 + Q_G^2}$						
$cos(\varphi) = \frac{P_G}{S_C}$ $P_C - i \cdot Q_C$						
S_G $T_G = P_G - j \cdot Q_G$						
$S_G \ \underline{\mathbf{U}}_P = U_G + j \cdot \sqrt{3} \cdot X_d \cdot \underline{\mathbf{I}}_G $ $\underline{\mathbf{I}}_G = \frac{P_G - j \cdot Q_G}{\sqrt{3} \cdot U_n}$						
Bemessungsleistung $Sr = \sqrt{P^2 + Q^2}$						
$P_{G,min} = P_G \cdot 0, 4 , P_G = S_G \cdot cos(\varphi) , Q_G = S_G \cdot sin(\varphi)$						

ESB-Synchronmaschine

Transformatoren:

 $[\Omega]$

R_k	$[\Omega]$	W'		
X_k	$[\Omega]$	BlindW'		
V_k	[W]	VerlustLeistung o. P_{CU}		
$\Delta \underline{\mathrm{U}}$	[V]	VerlustSpannung		
S_n	[VA]	NennScheinLeistung		
U_n	[V]	NennSpannung		
I_n	[A]	NennStrom		
u_k	[%]	relative KurzschlussSpannung		
u_r	[%]	relativer ohmischer Spannungsabfall		
u_x	[%]	relativer Spannungsabfall		
\ddot{u}	[1]	Uebersetzung		
$cos(\varphi)$	[1]	Leistungsfaktor		
$?_{OS}$		OberspannungsSeite		
$?_{US}$		UnterspannungsSeite		
Einseitiges ESB:				
	Δ <u>U</u>	_		

ScheinW'/Längsreaktanz

$$Z_k = \frac{u_k \cdot U_n^2}{S_n}$$

$$R_k = \frac{Z_k \cdot u_r}{u_k}$$

$$Z_{ref} = \frac{U_{OS}^2}{S_n}$$

$$U_nUS = \frac{U_{nOS}}{\ddot{u}}$$

$$I_{US} = I_{OS} \cdot \ddot{u}$$

$$U_nUS = \frac{1}{\sqrt{3}} \cdot U$$

$$U_nUS = \frac{1}{\sqrt{3}} \cdot U$$

$$U_nUS = \frac{1}{\sqrt{3}} \cdot U$$

$$\begin{split} \underline{\mathbf{S}^*} &= S \cdot (\cos(\varphi) \pm \cdot \sin(\varphi)) = S \cdot e^{\pm j \cdot \varphi} \\ u_k &= \frac{Z_{kOS} \cdot I_{nOS} \cdot \sqrt{3}}{U_{nOS}} \\ u_k &= \frac{Z_{kUS} \cdot I_{nUS} \cdot \sqrt{3}}{U_{nUS}} \\ u_x &= \sqrt{u_k^2 - u_r^2} \end{split} \} in\% \\ \Delta U &= I_{OS} \left(R_k + j \cdot X_k \right)$$

Parallelbetrieb: $\frac{S_1}{S_2} = \frac{S_{1N} \cdot U_{k2}\%}{S_{2N} \cdot U_{k1}\%}$

Drehstromleitung:

U_E	[V]	EingangsSpannung
U_A	[V]	AusgangsSpannung
I_E	[A]	EingangsStrom
I_A	[A]	AusgangsStrom
X_L		LängsReaktanz
B_C	$[\Omega]$	QuerKapazität
-	[S]	Leitwert zur QuerKapazität
Z_W		WellenW'
	[H/km]	Kilometrische längsInduktivität
C'	[F/km]	
ω	[1/s]	Kreisfrequenz
l	[km]	Leitungslänge
α	-	Dämpfungskonstante
β	[rad/km]	Kilometrische Phasendrehung/
b		Phasenkonstante /-mass
δ	[rad]	Phasendrehung/Verdrehungswinkel
Q	[VAr]	BlindLeistung
P	[W]	WirkLeistung
S	[VA]	ScheinLeistung
P_{nat}	[W]	NatürlicheWirkLeistung
	[VAr]	AusgangsBlindLeistung
Q_E	[VAr]	EingangsBlindLeistung
S_A	[VA]	AusgangsScheinLeistung
S_E	[VA]	EingangsScheinLeistung
[H]	$\left[\frac{V \cdot s}{A}\right]$	

$$U_E = U_A \cdot cos(\beta \cdot l) + j \cdot Z_W \cdot I_A \cdot sin(\beta \cdot l)$$

Bei leerlaufender Leitung:

$$I_A=0$$

$$U_E=U_A \cdot cos(\beta \cdot l)$$

$$Z_W=\sqrt{\frac{L'}{C'}} \qquad \qquad \beta=\omega \sqrt{L' \cdot C'}$$

 $b = \beta \cdot l$

Bis 250km:

sonst:

$$X_L = \omega \cdot L' \cdot l$$

$$B_C = \frac{2}{\omega \cdot C' \cdot l}$$

$$Y_P = Y_C = \frac{1}{B_C} = \frac{\omega \cdot C' \cdot l}{2}$$

sonst:

kapazitiv:
$$\Delta \underline{\mathbf{U}} = (R_k + j \cdot X_k) \cdot \underline{\mathbf{I}}_{OS}$$
 induktiv: $\Delta \underline{\mathbf{U}} = (R_k - j \cdot X_k) \cdot \underline{\mathbf{I}}_{OS}$ verkettete Spannung:

_

$$\underline{\mathbf{U}}_1 = \ddot{\mathbf{u}}_n \cdot \underline{\mathbf{U}}_2 + \sqrt{3} \cdot \Delta \underline{\mathbf{U}}$$

sonst:
$$U_2' = U_1 - \sqrt{3}\Delta\underline{\mathbf{U}}$$

$$U_2 = \frac{U_2'}{\ddot{u}}$$
 ab 250km:
$$X_L = Z_W \cdot sin(\beta \cdot l)$$

Taschenrechner für nächste Gleichung entweder auf RAD gestellt werden, oder ihr wandelt β vorm tan mit $\frac{180^{\circ}}{\pi}$ von [rad] in $[\circ]$ um.

ACHTUNG!!! Wenn ihr umgestellt habt, wieder zurück stellen!

$$Y_C = \frac{1}{B_C} = \frac{1}{Z_W} \cdot tan\left(\frac{\beta \cdot l}{2}\right)$$

TR normal:

$$\delta = \arcsin\left(\frac{P\cdot X_L}{U_A\cdot U_E}\right)$$

Bei natürlicher Leistung:

$$\delta = \beta \cdot l$$

Blindleistungsbedarf bei Uebertragung der natürlichen Leistung Q=0

$$P_{nat} = \frac{U_n^2}{Z_W}$$

sonst:

Wenn Q_A negativ \Rightarrow Leitung gibt Leistung ab Wenn Q_A positiv \Rightarrow Leitung nimmt Leistung auf

$$Q_A = \frac{U_A \cdot U_E \cdot \cos(\delta) - U_A^2}{X_L} + Y_C \cdot U_A^2$$

Wenn Q_E negativ \Rightarrow Leitung nimmt Leistung auf Wenn Q_E positiv \Rightarrow Leitung gibt Leistung ab

$$Q_E = \frac{U_E^2 - U_A \cdot U_E \cdot cos(\delta)}{X_L} - Y_C \cdot U_E^2$$

sonst:

$$S_A = \frac{j \cdot U_E \cdot U_A(\cos(\delta) - j \cdot \sin(\delta))}{X_L} + j \cdot Y_C \cdot U_A^2$$

$$S_E = ?$$

Leitung:

$$Q_L = \frac{U_{1N} \cdot U_{2N}}{X_L} \cdot \cos(\delta) - \frac{U_{N2}^2}{X_L}$$
$$Q_C = \omega \cdot C' \cdot \frac{l}{2} \cdot U_{N2}$$
$$Q_2 = Q_C + Q_L$$

Leitungsmitte:

Aufteilung der gesamten Leitungskapazität C'l auf vier Glieder mit je C'l/4 $\hbox{Aufteilung der gesamten Leitungsinduktivität L'l auf zwei Glieder mit je L'l/2 } \\ kurze \ Leiung:$

$$U_M = \frac{U_1}{1 - \left(\omega^2 \cdot L' \frac{l}{2} \cdot C' \frac{l}{4}\right)}$$

exact:

$$U_{M} = \frac{U_{1}}{1 - \left(\tan\left(\frac{\beta \cdot l}{4}\right) \cdot \sin\left(\frac{\beta \cdot l}{2}\right)\right)}$$

mit $tan\left(\frac{\beta\cdot l}{4}\right)\approx \frac{\beta\cdot l}{4}$ und $sin\left(\frac{\beta\cdot l}{2}\right)\approx \frac{\beta\cdot l}{2}$ bei kurzer Leitung:

$$U_M \approx \frac{U_1}{1 - \left(\beta \cdot l \cdot \frac{2}{8}\right)}$$

Beliebiger Leitungspunkt:

$$L_K = \frac{Z_W \cdot sin(\beta \cdot l)}{\omega \cdot (1 - cos(\beta \cdot l))}$$

x=Länge bis zum Punkt:

$$\begin{split} U_x &= U_2 \left[\cos(\beta \cdot x) + \frac{Z_W}{\omega \cdot L_K} \sin(\beta \cdot x) \right] \\ \text{mit } \frac{Z_W}{\omega \cdot L_K} &= \frac{1 - \cos(\beta \cdot l)}{\sin(\beta \cdot l)} = \tan\left(\frac{\beta \cdot l}{2}\right) : \\ U_X &= U_2 \left[\cos(\beta \cdot x) + \tan\left(\frac{\beta \cdot l}{2}\right) \cdot \sin(\beta \cdot x) \right] \end{split}$$

Hochspannungsfreileitung

$$\begin{array}{ll} \underline{\gamma} & [rad/km] & \text{Komplexes } \beta \text{ (imaginärteil} = \beta) \\ \\ U_A = U_E \cdot cosh(\gamma \cdot l) + I_E \cdot Z_W \cdot sinh(\gamma \cdot l) \\ \\ I_A = I_E \cdot cosh(\gamma \cdot l) + \frac{U_E}{Z_W} \cdot sinh(\gamma \cdot l) \\ \\ \gamma = \alpha + j \cdot \beta \\ \\ \gamma = \sqrt{L' \cdot C'} \cdot j \cdot \omega \end{array}$$

Theoreme:

$$cosh(j \cdot \beta \cdot l) = cos(\beta \cdot l)$$

$$sinh(j \cdot \beta \cdot l) = j \cdot sin(\beta \cdot l)$$

Euler:

$$\cos(\beta \cdot l) + j \sin(\beta \cdot l) = e^{j \cdot \beta \cdot l}$$

Hinweise:

$$\begin{split} M &= \frac{P}{2 \cdot \pi \cdot n} \; \; ; \; \; I \approx M \\ &\frac{3}{\sqrt{3}} = \sqrt{3} \\ P &= |\underline{I}|^2 \cdot R \; \; ; \; \; Q = |\underline{I}|^2 \cdot X \\ |r| &= \sqrt{RE^2 + IM^2} \; \; ; \; \; \varphi = \arctan\left(\frac{IM}{RE}\right) \\ ARG\underline{z} &= \varphi \; \; ; \; \; ABS\underline{z} = |z| \end{split}$$