Communication Exercises

The due date for this homework is Tue 16 Apr 2013 12:59 AM EDT -0400.

Question 1

Secret Communications

A system for hiding AM transmissions has the transmitter randomly switching between two carrier frequencies f_1 and f_2 . "Random switching" means that one carrier frequency is used for some period of time, then switches to the other for a while, back to the first, etc. The receiver knows the carrier frequencies but not when the frequency switches occur. Consequently, the receiver must be designed to receive transmissions regardless of which carrier frequency is used. Assume the message has a baseband bandwidth of W. The channel attenuates the transmitted signal (attenuation constant α) and adds white noise of spectral height $\frac{N_0}{2}$.

How frequency separation between the two carrier frequencies must be employed? Type an expression for the separation $|f_2-f_1|$ in terms of f_1 (typed as £1), f_2 (typed as £2), α (typed as a), N_0 (typed as N0) and W (typed as W).

				h
Preview	Help			

Question 2

What receiver should be designed?

- Receiver tuned to f_1 in cascade with a receiver tuned to f_2 .
- The receiver has to know the frequency switching pattern.
- $_{ extstyle e$
- Receiver tuned to f_1 in parallel with a receiver tuned to f_2 , with the two outputs added together.

Question 3

What is the signal-to-noise ratio for the demodulated signal?

Enter an expression for the signal-to-noise ratio in terms of f_1 (typed as £1), f_2 (typed as £2), α (typed as a), the transmitter's amplitude A (typed as A), N_0 (typed as N0) and W (typed as W). Type the message signal's power power[m] as power[m]

Preview

Help

Question 4

Which signal set will yield the smallest probability of error? Or will they yield the same performance?

- Signal set 1
- Signal set 2
- They yield the same performance.

Question 5

Which signal set that the smallest bandwidth? Or are they the same?

- Signal set 1
- Signal set 2
- They have the same bandwidth.

Question 6

Which signal set will yield the smallest probability of error? Or will they yield the same performance?

- Signal set 2
- Signal set 1
- They yield the same performance.

Question 7

Which signal set that the smallest bandwidth? Or are they the same?

Signal set 1

- Signal set 2
- They have the same bandwidth.

Question 8

Which signal set will yield the smallest probability of error? Or will they yield the same performance?

- They yield the same performance.
- Signal set 1
- Signal set 2

Question 9

Which signal set that the smallest bandwidth? Or are they the same?

- Signal set 1
- Signal set 2
- They have the same bandwidth.

In accordance with the Hono	r Code, I certi	fy that my	answers here	e are my	own
work.					

Submit Answers

Save Answers