

Hi3861V100 / Hi3861LV100 升级

开发指南

文档版本 02

发布日期 2020-06-28

版权所有 © 上海海思技术有限公司2020。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

(HISILICON)、海思和其他海思商标均为海思技术有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

上海海思技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: https://www.hisilicon.com/cn/

客户服务邮箱: support@hisilicon.com

前言

概述

本文档主要介绍了升级接口的使用方法,供用户开发升级使用。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3861	V100
Hi3861L	V100

读者对象

本文档主要适用于以下工程师:

- 技术支持工程师。
- 软件开发工程师。

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
▲ 危险	表示如不避免则将会导致死亡或严重伤害的具有高等级风险的危害。
▲ 警告	表示如不避免则可能导致死亡或严重伤害的具有中等级风险的危害。
<u></u> 注意	表示如不避免则可能导致轻微或中度伤害的具有低等级风险的危害。

符号	说明	
须知	用于传递设备或环境安全警示信息。如不避免则可能会导致设备 损坏、数据丢失、设备性能降低或其它不可预知的结果。 "须知"不涉及人身伤害。	
🖺 说明	对正文中重点信息的补充说明。 "说明"不是安全警示信息,不涉及人身、设备及环境伤害信 息。	

修改记录

文档版 本	发布日期	修改说明
02	2020-06-28	• 在" 1 概述 "中新增关于升级模式的建议。
		• 在"3注意事项"中新增关于升级模式的建议。
01	2020-04-30	第一次正式版本发布。
		● 在"1概述"中更新关于双分区升级模式、压缩升级模式的描述。
		● 在 " 2 开发流程 "的 表2-1 中更新hi_upg_transmit、 hi_upg_transmit_finish接口的描述。
		● 更新 "4 编程实例 "的Kernel升级示例、FlashBoot 升级示例。
00B03	2020-04-03	• 在" 1 概述 "中新增关于Menuconfig中的"OTA Settings"选择双分区升级模式、压缩升级模式的描 述;新增关于注册回调类接口的说明。
		● 在 " 2 开发流程 "的 表2-1 中更新 hi_upg_get_file_index接口的描述;新增 hi_upg_register_file_verify_fn接口的描述。
		● 在" 3 注意事项 "中新增 hi_upg_register_file_verify_fn接口的注意说明。
		● 在"4编程实例"中更新关于双分区升级模式下获取 APP升级文件编号的注释说明。
00B02	2020-02-12	● 在"表2-1"中新增hi_upg_init接口描述。
		● 在 " 3 注意事项 "中新增hi_upg_init接口的注意说 明。
00B01	2020-01-15	第一次临时版本发布。

目录

前言	
1 概述	1
2 开发流程	
2	
4 编程实例	ı

4 概述

当前Flash分区请参见《Hi3861V100 / Hi3861LV100 SDK 开发指南》的"Flash分区与Flash保护"小节,通过调用升级接口更新Kernel或FlashBoot,从而实现升级。

- Menuconfig中的"OTA Settings"选择"dual-partition ota support"(双分区升级模式),升级Kernel时,如果当前运行在Kernel A,则获取Kernel B的升级文件更新至Kernel B区,升级重启后从Kernel B启动;如果当前运行在Kernel B,则获取Kernel A的升级文件更新至Kernel A区,升级重启后从Kernel A启动。
- Menuconfig中的"OTA Settings"选择"compression ota support"(压缩升级模式),升级Kernel时,将压缩后的升级文件更新至Kernel B,升级重启后,在FlahBoot下,将Kernel B中的压缩文件解压缩后,更新至Kernel A,并从Kernel A启动。
- 升级FlashBoot时,获取FlashBoot升级文件先更新至备份FlashBoot区,校验通过后,再更新至FlashBoot区,升级重启后使用新的FlashBoot。

建议优先选择压缩升级模式,其相比双分区升级,镜像可用空间更大,默认多250KB+。如果选择双分区升级,需要考虑后续功能扩展情况,为后续的升级镜像预留足够空间,升级镜像不支持压缩升级和双分区升级混用。

根据功能不同,升级接口可以分为以下几类:

- 流程类接口:用于控制升级流程。此类接口包括:
 - 升级文件传输接口
 - 升级文件传输完成接口
 - 升级结束接口
 - 升级停止接口
- 信息获取类接口:用于获取升级文件相关信息。此类接口包括:
 - 获取升级文件编号接口
 - 获取升级文件大小上限接口
 - 获取升级文件内容接口
- 注册回调类接口:用于用户控制或了解当前执行的升级流程。此类接口包括:
 - 注册用户自定义升级文件合法性校验接口 用户在任务初始化流程中调用注册接口,后续执行对应的升级流程时,调用 用户注册的回调函数。

2 开发流程

使用场景

- 升级Kernel
- 升级FlashBoot

功能

升级模块提供的接口如表2-1所示。

表 2-1 升级接口描述

接口名称	描述
hi_upg_init	升级状态初始化。
hi_upg_transmit	升级文件传输。
hi_upg_transmit_finish	升级文件传输完成。
hi_upg_finish	升级结束。
hi_upg_stop	升级停止。
hi_upg_get_file_index	双分区升级模式,升级Kernel时用于获取 Kernel升级文件编号。 1: Kernel A升级文件; 2: Kernel B升级文件。
hi_upg_get_max_file_len	获取允许升级的升级文件长度最大值。
hi_upg_get_content	获取升级文件内容。
hi_upg_register_file_verify_fn	注册用户自定义升级文件合法性校验接口。 升级文件中预留了32byte用户自定义字段, 可配合该接口使用。

开发流程

升级典型场景的开发流程:

步骤1 调用hi_upg_transmit,分包传输升级文件。如果该接口返错,则停止升级流程。

步骤2 调用hi_upg_transmit_finish,通知UPG模块传输完成。如果该接口返错,则停止升级流程。

步骤3 调用hi_upg_finish,实现升级重启。

----结束

3 注意事项

- hi_upg_transmit传输第1包的长度≥96byte。
- hi_upg_transmit分包传输升级文件且按从前到后的顺序传输。
- hi_upg_transmit相同包不能重复传输。
- hi_upg_transmit_finish必须在传输文件后调用,不能重复调用。
- FlashBoot升级过程中不能断电,FlashBoot升级不支持停止升级。
- hi_upg_get_content需要在调用hi_upg_transmit传输文件之后,且调用 hi_upg_transmit_finish之前调用。
- 升级接口不支持在中断中调用;不支持多个APP同时调用。
- hi_upg_init必须在hi_nv_init之后调用。SDK包中默认APP已调用此接口,具体请参见app_main函数。
- hi_upg_register_file_verify_fn必须在启动升级流程前调用。
- 建议优先选择压缩升级模式,其相比双分区升级,镜像可用空间更大:默认多 250KB+。如果选择双分区升级,需要考虑后续功能扩展情况,为后续的升级镜像 预留足够空间,升级镜像不支持压缩升级和双分区升级混用。

4 编程实例

Kernel 升级示例

```
hi_u32 file_size = 0x2000; /* 升级文件大小(实际大小由APP获取) */
hi_u32 max_len;
hi_u8 file_index;
/* 1.获取APP升级文件大小上限. */
hi_u32 ret = hi_upg_get_max_file_len(HI_UPG_FILE_KERNEL, &max_len);
if ((ret != HI_ERR_SUCCESS) || (file_size > max_len)) {
  return HI_ERR_UPG_FILE_LEN;
/* 2.双分区升级模式,获取APP升级文件编号以确定需要传输的升级文件。压缩升级模式,跳过此步
骤即可. */
ret = hi_upg_get_file_index(&file_index);
if (ret != HI_ERR_SUCCESS) {
  return ret;
/* 3.用户自行实现: 通过网口或串口等方式加载对应升级文件.
并调用接口hi_upg_transmit将升级文件传输给UPG模块. */
/* 4.传输完成hi_upg_transmit_finish.如果该接口返错,则停止升级流程. */
ret = hi_upg_transmit_finish();
if (ret != HI_ERR_SUCCESS) {
  /* 停止升级流程 */
  hi_upg_stop();
  . . . . . .
/* 5.升级结束hi_upg_finish. */
hi upg finish();
```

FlashBoot 升级示例

```
hi_u32 file_size = 0x2000; /* 升级文件实际大小(实际大小由APP获取) */
hi_u32 max_len;

/* 1.获取APP升级文件大小上限. */
hi_u32 ret = hi_upg_get_max_file_len(HI_UPG_FILE_BOOT, &max_len);
if ((ret != HI_ERR_SUCCESS) || (file_size > max_len)) {
    return HI_ERR_UPG_FILE_LEN;
}

/* 2.用户自行实现: 通过网口或串口等方式加载对应升级文件.
并调用接口hi_upg_transmit将升级文件传输给UPG模块. */
```

```
/* 3.传输完成hi_upg_transmit_finish.如果该接口返错,则停止升级流程. */
ret = hi_upg_transmit_finish();
if (ret != HI_ERR_SUCCESS) {
    /* 停止升级流程 */
    hi_upg_stop();
    .....
}
/* 4.升级结束hi_upg_finish. */
hi_upg_finish();
```