Deep Learning Bootcamp

2026

Agenda

- 1. Introduction to Python
- 2. Basic numerical libraries for ML

Break 15:30

- 1. Linear Regression
- 2. Exploratory data analysis
- 3. Linear regression with PyTorch (deep learning library)

Schedule

Event No.	Details		
Event 1	Deep Learning Essentials		
24 th Oct 2025	Covers the basics of Python and necessary packages required for Deep Learning such as numpy, scipy, pandas etc.		
Event 2	Deep Learning for Regression and Classification		
10 th Nov 2025	Will cover the basics of PyTorch, as well as how to use PyTorch for performing regression and classification tasks.		
Event 3	Deep Learning for Images		
17 th Nov 2025	In this event, we will extend the classification using deep learning, specifically focusing on datasets involving images.		
Event 4	Deep Learning for Sequence Data (text and time series)		
TBD – Sem 2 – 2026	In this event, we will focus on using Deep Learning models for datasets involving sequences or temporal relations. We plan to cover examples from both text and time-series datasets.		
Event 5	Reinforcement Learning		
TBD – Sem 2 – 2026	This session will introduce Deep Reinforcement Learning techniques with some practical applications.		
	NTU DI hootsamp		

What is Deep Learning?

- Machine learning: learn from examples or data
- Deep Learning: use artificial neural networks: weight * variable + some non-linear layer

$$y = \sigma \left(W_L \dots \sigma \left(W_2 \sigma (W_1 x) \right) \right)$$

Deep Learning is powered by deep neural networks

https://cdn-images-1.medium.com/max/2400/1*1mpE6fsq5LNxH31xeTWi5w.jpeg

Why Deep Learning?

- Find hidden patterns in a lot of data (high-dimensional, complex, etc.)
- Many applications, open models
 - Material properties prediction
 - Protein folding: see AlphaFold
 - Text generation/Natural Language Processing: ChatGPT
 - Image generation: DALLE, MidJourney, etc.
 - Computer Vision: ImageNet, image segmentation, detect face in phone, etc.

• ...

Deep Fakes...

Your interest

Examples

You

suggest a simple dataset to use to predict material property using deep

ChatGPT

For predicting material properties using deep learning, you might conside Materials Project database, which provides extensive information on var Let's formulate this as a regression problem, where we aim to predict a number property (e.g., band gap) based on certain features.

Dataset:

Materials Project Database - Band gap prediction.

Mathematical Formulation:

Given a dataset with N samples, where each sample is represented by a X_i and the corresponding material property (band gap) y_i , the goal is to mapping function f such that $f(X_i) \approx y_i$.

Python Code (using PyTorch):

python

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

ML 101

- Approximate a function $y = f(x; \theta)$
 - x: image pixels; y: classes (dog, cat)
 - *x*: house size; *y*: house price
 - θ are the parameters

- Classification: discrete categories
- Regression: continuous categories

Regression

- Univariate regression problem (one output, real value)
- Fully connected network

Classification

- Multiclass classification problem (discrete classes, >2 possible classes)
- Convolutional network

ML workflow

https://www.coursera.org/learn/ml-foundations?specialization=machine-learning

Feature Extraction 101

Machine learning needs numerical data as input:

$$x \in \mathbb{R}^n$$

• Data normalization: assumption of data with mean 0, stddev 1

$$x' = \frac{x - \mu}{\sigma}$$

\$ x_std = StandardScaler().fit_transform(x)

Typical representations

Data Type	Common Representation
Images	Pixel intensity arrays
Text	Word embeddings (Word2Vec, GloVe, BERT)
Audio	Spectrogram or MFCC features

Model Selection 101

Many ML models to choose from:

- Linear models: simple, interpretable, good baseline
- Decision Trees / XGBoost: handle complex patterns, less linear assumptions
- Neural Networks: powerful but need large data and tuning

- NNs can overfit on small datasets
- Many hyperparameters, hard to tune
- Require more computation and time

Model selection = experimentation

- Try multiple models
- Tune hyperparameters
- Compare results using validation metrics (e.g., accuracy, RMSE, F1)
- Pick the model that's accurate, simple, and practical

ChatGPT for everything XGBoost

Pro & Cons of DL

Pro	Cons
 Can learn features & representations easily Ability to process a lot of data Flexible framework Maps well into parallel hardware (GPU and others) 	 Hard to understand and build intuition of why the model works: explainability and interpretability Requires a lot of data and expensive hardware.

Python 101: Why Python?

• A lot of libraries for ML/DL: PyTorch, scikit-learn, pandas, numpy

• Easy to learn, simple syntax

• Interactive notebooks: Jupyter Notebook, Kaggle, Google Collab

• Free & open-source

Python 101: Basic features

```
Data
          Train:
Data
         Function
                         def vowel_count(word):
                             vowels = ["a", "e", "i", "o", "u"]
                Data
                             count = 0
       count
                             for char in word: # loops
                                 if char in vowels: # conditions
                                     count += 1
                             return count
                        vowel_count("hello")
```

```
MyModel: Class
```

my_model: Data1 params: Data2

...

Train: Function1
Test: Function2

••

Google Colab: Our tool for today

Can you open the notebooks?

Work session 1.0

Handling numbers & data: numpy

Numpy is library for handling array, vector & matrices

- Provide all keys operations in arrays
 - Creation : *a* = *np.array*([[1, 2, 3], [4, 5, 6]])
 - Add/subtract/multiply: a + b, a b, a * b, ...
 - Dot product and matrix multiplication: a @ b
 - Slicing: *a*[1]=> [4,5,6]

Plotting: matplotlib

 Matplotlib is the Python library used to plot data

 You can create easily different types of plots (scatter plot, histogram, X-Y plot), add legend and different details.

Work Session 1.1

Linear Regression

Linear regression makes predictions about the linear relationship between the input variable x (contrast) and the output variable y (neural response).

We are not considering the intercept for simplicity, resulting in a one-parameter model.

Linear Regression: MSE

$$\min_{ heta} rac{1}{N} \sum_{i=1}^{N} (y_i - heta x_i)^2$$

Mean Squared Error (MSE)

MSE computes the average error between the model prediction $\,\hat{y}\,$ and the true $\,y.$

Work session 2

Housing data exploration

Let's explore a housing data

- Relevant plots
- Linear regression model
 - Scikit-learn
 - PyTorch

Deep Learning & Pytorch

Pytorch one of the most popular libraries for deep learning

- Components of a DL model:
 - The model itself: the structure of the model
 - A loss function (error metric)
 - An optimization algorithm
 - The training loop

Yasharth to add stuff model eval

Mae / mse => regression

- Cross entropy => classification
 - Also things like FP / FN etc
- Confusion matrix

References / Reading

- Python introduction: https://swcarpentry.github.io/python-novice-inflammation/
- More on scientific python: https://lectures.scientific-python.org/
- https://deeplearning.neuromatch.io/
- NeuroMatch Academy: <u>https://deeplearning.neuromatch.io/tutorials/W1D1_BasicsAndPytorch/chapter_title.html</u>
- Exploratory computing w/ Python: https://mbakker7.github.io/exploratory computing with python/
- https://udlbook.github.io/udlbook/
 - Reuse slides from there

Please provide your feedback!

See you in the next session

Upcoming Sessions	Date	Speakers
Deep Learning for Images	17 Nov 2025	Micheal Yuhas θ Amashi Niwarthana
Natural Language Processing (NLP)	To be decided	To be decided

