Self-Supervised Sample-Efficient RL

Hao Sun

Content

Self-Supervised RL

- PCHID and ESPD
- Exploration with Novelty Seeking
- Better Exploitation with Zeroth-Order Supervised Policy Improvement

PCHID and ESPD: Goal-Conditioned RL

Goal-Oriented Reward Sparse Tasks

Inspirations from Human Learning

1. Learning from failures [Hindsight Experience Replay, M Andrychowicz et al. 2017]

Inspirations from Human Learning

1. Learning from failures [Hindsight Experience Replay, M Andrychowicz et al. 2017]

Inspirations from Human Learning

- 1. Learning from failures
- 2. Extrapolating Success

Our Proposed Method

1. Hindsight 2. Extrapolate 3. Policy Continuation

Equipe Inverse Dynamics with Hindsight

Inverse Dynamics:

 S_t S_{t+1} a_t a_t state state state

Hindsight Inverse Dynamics:

 $g = m(S_{goal})$

1-step HID is Not Enough

1-step HID

Linear Case

Non-linear Case

Multi-step Optimality?

Policy Continuation: Test the optimality recursively

Multi-step Optimality?

Policy Continuation: Test the optimality recursively

Experiments

Evolutionary Stochastic Policy Distillation

Accelerated PCHID

Experiments

Global Exploration and Generalized Self-Supervised RL

The environment:

A maze with a non-trivial positive reward located at different positions (at centers of different sides)

Each time the point will receive a negative reward of -0.1 if it has not reached the positive reward

Finite time horizon: 2*N, where in the experiments I set N = 17, the scale of the gridworld

The environment can be easily extend to multiple reward cases.

I'm working with the multiple reward cases with a previous draft.

down: +10 200 epoches ~227 reward

right: +10 200 epoches ~224 reward

left: +10 200 epoches ~233 reward

4 reward maze, result with vanilla PPO

N=17,reward: left = 10,right = 10, up=10, down = 10

(a) The Four-Solution-Maze environment and the optimal solution

PPO: 30w timestep, reward = 435(477,80W)

DDPG: 30w timestep, reward = 463

SAC: 30w timestep, reward = 419 (451, 120w)

TD3: 30w timestep, reward = 493

Novelty Seeking Methods

Diversity Seeking for Non-Local Exploration

Every policy explores locally

But with **diversity regularization**,
they can explore **cooperatively**.

Diversity Seeking for Non-Local Exploration

Figure 4: The learning curves of A2C, PPO, and on-policy DiCE in 5 MuJoCo environments.

Figure 5: The learning curves of SAC and off-policy DiCE in 5 MuJoCo environments.

Zeroth-Order Method: RL without Policy Gradient

Intuition:

(a) Policy Gradient

(b) Supervised Policy Improvement

Toy Model Results

ZOSPI is able to explore all the rewards

i.e., Global Exploration

(a) The Four-Solution-Maze environment and the optimal solution

(b) Performance comparison

MuJoCo Benchmarks

Extensions Based on ZOSPI

- ZOSPI is learned with self-supervised learning (regression)

- Multi-modal policy can be used (MDN policy)

Humanoid-v2

Humanoid-v2

Homographic policy can be used (MDN policy)

TD3

ZOSPI

MoG

SAC

TD3

JOH

MoG

SAC

Interactions

Interactions

- Non-parametric model can be used (e.g., GP poincy)

