PH101

Lecture 2

Coordinate systems

http://www.iitg.ac.in/phy/ph101_2019.php

In Cartesian coordinate system each point is uniquely specified in a plane by a pair of numerical coordinates, measured in the same **unit of length**.

Each point P is identified with its unique x and y coord: P = P(x, y). Ranges: $x, y \in (-\infty, \infty)$.

Horizontal lines

Vertcial lines

Clearly, each point has separate coordinates.

- Geometric definition of magnitude and direction of vectors allow us to define operations: addition, subtraction, and multiplication by scalars.
- Often a coordinate system is helpful as it is easier to manipulate the coordinates of a vector, than manipulating its magnitude and direction.
- To determine vector coordinates, the first step is to translate the vector so that its tail is at the origin and head will be at some point P(x, y).

- Position vector of P is $\mathbf{r} = \hat{\mathbf{i}}x + \hat{\mathbf{j}}y$.
- Change x only keeping y fixed such that P moved to Q.
- The "direction" of increasing the vector is defined as

$$\mathbf{e}_x = \frac{d\mathbf{r}}{dx}$$

This vector is not necessarily normalized to have unit length, but from it we can always construct the unit vector as

$$\hat{\mathbf{i}} = \frac{\mathbf{e}_x}{|\mathbf{e}_x|} = \frac{1}{|d\mathbf{r}/dx|} \frac{d\mathbf{r}}{dx}$$

Therefore, unit vectors are defined as

$$\hat{\mathbf{i}} = \frac{1}{|d\mathbf{r}/dx|} \frac{d\mathbf{r}}{dx}$$

and

$$\hat{\mathbf{j}} = \frac{1}{|d\mathbf{r}/dy|} \frac{d\mathbf{r}}{dy}$$

Velocity and acceleration in Cartesian

Velocity
$$\vec{v} = \frac{d\vec{r}}{dt}$$

Velocity in Cartesian coordinate

$$\vec{\boldsymbol{v}} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (x \hat{\boldsymbol{x}} + y \hat{\boldsymbol{y}})$$

$$= \dot{x}\widehat{x} + x \frac{d\widehat{x}}{dt} + \dot{y}\widehat{y} + y \frac{d\widehat{y}}{dt}$$

$$\overrightarrow{v} = \dot{x}\widehat{x} + \dot{y}\widehat{y}$$
Since,
$$\frac{d\widehat{x}}{dt} = \frac{d\widehat{x}}{dt}$$

Since,
$$\frac{d\hat{x}}{dt} = \frac{d\hat{y}}{dt} = 0$$

Acceleration
$$\overrightarrow{a} = \frac{d\overrightarrow{v}}{dt} = \ddot{x}\hat{x} + \ddot{y}\hat{y}$$

Newton's second law in vector form

$$\overrightarrow{F} = F_x \widehat{x} + F_y \widehat{y} = m \frac{d\overrightarrow{v}}{dt} = m(\ddot{x}\widehat{x} + \ddot{y}\widehat{y})$$

Standard Notations:

$$\frac{dx}{dt} = \dot{x}$$

$$\frac{dr}{dt} = \dot{r}$$

$$\frac{d^2\theta}{dt^2} = \ddot{\theta}$$

Polar Coordinates

Each point P = (x, y) of a plane can also be specified by its distance from the origin, O and the angle that the line OP makes with x-axis.

• Transformations:

$$r = +\sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

 (r,θ) are called Plane Polar Coordinates.

• Inverse Transformations:

$$x = r \cos \theta$$
$$y = r \sin \theta$$

• $\tan \theta = \tan (\theta + \pi)$ suggests to replace θ by $\theta + \pi$, for x < 0, y < 0.

• Discontinuity in θ at origin.

Polar Coordinates

Constant r curves

Constant r and θ curves

• Unit vectors are perpendicular to constant coordinate curves

Unit Vectors

In Cartesian coordinate, PV of P is $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$. We find a set of two unit vectors $\hat{\mathbf{r}}$ and $\hat{\theta}$.

- By Coordinate transformation, $\mathbf{r} = r \cos \theta \hat{\mathbf{i}} + r \sin \theta \hat{\mathbf{j}}$
- Unit vectors are defined as,

$$\hat{\mathbf{r}} = \frac{1}{\left|\frac{d\mathbf{r}}{dr}\right|} \frac{d\mathbf{r}}{dr} = \hat{\mathbf{i}} \cos \theta + \hat{\mathbf{j}} \sin \theta$$

$$\hat{\theta} = \frac{1}{\left|\frac{d\mathbf{r}}{d\theta}\right|} \frac{d\mathbf{r}}{d\theta} = -\hat{\mathbf{i}} \sin \theta + \hat{\mathbf{j}} \cos \theta$$

And

$$\hat{\mathbf{i}} = \cos \theta \hat{\mathbf{r}} - \sin \theta \hat{\theta}
\hat{\mathbf{j}} = \sin \theta \hat{\mathbf{r}} + \cos \theta \hat{\theta}$$

Unit Vectors

- Unit vectors at a point P depend on θ coordnate of P
- Example: If $P \equiv (1, \pi/6)$, then

$$\hat{\mathbf{r}} = \frac{1}{2} \left(\sqrt{3}\hat{\mathbf{i}} + \hat{\mathbf{j}} \right)$$

$$\hat{\theta} = \frac{1}{2} \left(-\hat{\mathbf{i}} + \sqrt{3}\hat{\mathbf{j}} \right)$$

• Example: Let $P \equiv (1, \pi/4)$, then

$$\hat{\mathbf{r}} = \frac{1}{\sqrt{2}} \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} \right)$$

$$\hat{\theta} = \frac{1}{\sqrt{2}} \left(-\hat{\mathbf{i}} + \hat{\mathbf{j}} \right)$$

• Note that everywhere, $\hat{\mathbf{r}} \perp \hat{\theta}$.

Unit Vectors

These unit vectors are functions of the polar coordinates, only of θ in fact.

$$\hat{\mathbf{r}} = \mathbf{i}\cos\theta + \mathbf{j}\sin\theta$$

$$\hat{\theta} = -\mathbf{i}\sin\theta + \mathbf{j}\cos\theta$$

$$egin{array}{lll} rac{\partial \hat{\mathbf{r}}}{\partial heta} &=& \hat{ heta} \ rac{\partial \hat{ heta}}{\partial heta} &=& -\hat{\mathbf{r}} \end{array}$$

Time derivates

$$egin{array}{lll} \dot{\hat{\mathbf{r}}} &=& \dot{ heta}\hat{ heta} \ \dot{\hat{ heta}} &=& -\dot{ heta}\hat{\mathbf{r}} \end{array}$$

Motion in Polar Coordinates

Suppose a particle is travelling along a trajectory given by $\mathbf{r}(t)$. Now the position vector

$$\mathbf{r}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}}$$

$$= r(t)(\hat{\mathbf{i}}\cos(\theta(t)) + \hat{\mathbf{j}}\sin(\theta(t)))$$

$$= r(t)\hat{\mathbf{r}}(\theta(t))$$

 $\mathbf{r}(t)$ depends on θ implicitly through $\hat{\mathbf{r}}$ vector.

We need to know θ to see how \mathbf{r} is oriented. We need to know \mathbf{r} to see how far we are from the origin.

Motion in Polar Coordinates

• Then the velocity vector

$$\mathbf{v} = \frac{d\mathbf{r}}{dt}$$

$$= \frac{d}{dt} [r(t) \,\hat{\mathbf{r}} (\theta (t))]$$

$$= \frac{dr}{dt} \hat{\mathbf{r}} + r \frac{d\hat{\mathbf{r}}}{d\theta} \frac{d\theta}{dt}$$

$$= \dot{r} \hat{\mathbf{r}} + r \dot{\theta} \hat{\theta}$$

- Radial velocity = $\dot{r}\hat{\mathbf{r}}$
- Tangential velocity = $r\dot{\theta}\hat{\theta}$
- $\dot{\theta}$ is called the angular speed.

Motion in Polar Coordinates

• The Acceleration vector

$$\mathbf{a} = \frac{d\mathbf{v}}{dt}$$

$$= \ddot{r}\mathbf{\hat{r}} + \dot{r}\frac{d\mathbf{\hat{r}}}{dt} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\dot{\theta}\frac{d\hat{\theta}}{dt}$$

$$= \ddot{r}\mathbf{\hat{r}} + \dot{r}\dot{\theta}\hat{\theta} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} - r\dot{\theta}^{2}\mathbf{\hat{r}}$$

$$= \left(\ddot{r} - r\dot{\theta}^{2}\right)\mathbf{\hat{r}} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\hat{\theta}$$

- Radial component: $\ddot{\mathbf{r}}$ is the linear acceleration in radial direction. The term $-\mathbf{r}\dot{\theta}^2\hat{\mathbf{r}}$ is usual centripetal acceleration.
- Tangential component: $r\ddot{\theta}$ is the linear acceleration in the tangential direction. The term $2\dot{r}\dot{\theta}\hat{\theta}$ is called Coriolis acceleration.

Newton's law in plane polar coordinate

$$\vec{F} = m \frac{d\vec{v}}{dt}$$

$$\vec{F} = F_r \hat{r} + F_\theta \hat{\theta} = m[(\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta}]$$

Force component in **radial** direction: $F_r = m(\ddot{r} - r\dot{\theta}^2)$

Force component in **tangential** direction: $F_{\theta} = m(2\dot{r}\dot{\theta} + r\ddot{\theta})$

Note: Newton's law in polar coordinates does not follow its **Cartesian form** as,

$$F_r \neq m\ddot{r}$$
 or $F_{\theta} \neq m\ddot{\theta}$

Circular Motion

In a circular motion, r = R = Constant. Then, $\dot{r} = \ddot{r} = 0$. Thus

$$v = R\dot{\theta}\hat{\theta}$$

$$a = -R\dot{\theta}^2\hat{\mathbf{r}} + R\ddot{\theta}\hat{\theta}$$

Consider a special case of uniform circular motion: $\ddot{\theta} = 0$.

- Speed is constant, and velocity is tangential
- Acceleration is radial (central)

Circular Motion

Consider a case of a non-uniform circular motion in which $\ddot{\theta} = \alpha = \text{Constant}$

Here,

$$v = R\dot{\theta}\hat{\theta} = R\alpha t\hat{\theta}$$

$$a = -R\dot{\theta}^2\hat{\mathbf{r}} + R\ddot{\theta}\hat{\theta}$$

$$= -R\alpha^2 t^2 \hat{r} + R\alpha\hat{\theta}$$

Spiral Motion

Consider a particle moving on a spiral given by $\mathbf{r} = a\theta$ with a uniform angular speed ω . Then $\dot{r} = a\dot{\theta} = a\omega$.

•
$$\mathbf{v} = a\omega\hat{\mathbf{r}} + a\omega^2t\hat{\theta}$$
 and $\mathbf{a} = -a\omega^3t\hat{\mathbf{r}} + 2a\omega^2\hat{\theta}$

Central Acceleration

• Central Accelerations

When the acceleration of a particle points to the origin at all times and is only function of distance of the particle from the origin, the acceleration is called central acceleration.

$$a = f(r)\mathbf{\hat{r}}$$

- Examples are $1/r^2$ (Gravitational and Electrostatic), $1/r^6$ (Van-dar-Waals), kr (Spring) etc.
- Angular momentum of the particle remains constant.

$$r\ddot{\theta} + 2\dot{r}\dot{\theta} = \frac{d}{dt}(r^2\dot{\theta}) = 0$$

 $r^2\dot{\theta} = \text{constant during motion.}$

Choice of proper coordinate system makes analysis easier

Motion in non-uniform circular trajectory with $\dot{\theta} = \omega + \alpha t$ where ω and α are constants.

Equation of trajectory in polar coordinate

$$r = R = constant$$
$$\theta = \omega t + \frac{1}{2}\alpha t^{2}$$

The velocity components are

$$v_r = \dot{r} = 0$$
; $v_\theta = r\dot{\theta} = R(\omega + \alpha t) = v$
Acceleration components are

$$a_r = \ddot{r} - r\dot{\theta}^2 = -R(\omega + \alpha t)^2$$

$$a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta} = R\alpha = a_t$$

Equation of trajectory in Cartesian coordinate

$$x = R \cos \left(\omega t + \frac{1}{2}\alpha t^2\right); y = R \sin \left(\omega t + \frac{1}{2}\alpha t^2\right);$$
 velocity components are

$$v_x = -R(\omega + \alpha t) \sin\left(\omega t + \frac{1}{2}\alpha t^2\right); v_y = R(\omega + \alpha t) \cos\left(\omega t + \frac{1}{2}\alpha t^2\right)$$

Cylindrical coordinate system

Why the name cylindrical?

 \square Point 'P' is the intersection of three surfaces: A plane $\mathbf{z} = \mathbf{constant}$, a cylindrical surface $\mathbf{r} = \mathbf{constant}$ and a half plane containing \mathbf{z} -axis with $\mathbf{\theta} = \mathbf{constant}$.

Coordinate transformation: Cartesian to cylindrical

Transformation equation is very similar to polar coordinate with additional z-coordinate.

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

Reverse transformation

$$r = (x^2 + y^2)^{1/2}$$
$$\theta = \tan^{-1} \frac{y}{x}$$
$$z = z$$

Note: Instead of (r, θ) many books use notation (ρ, φ) .

Unit vectors in cylindrical coordinate system

 \hat{r} , $\hat{\theta}$ and \hat{z} are orthogonal but their directions depend on location.

 \hat{r} , $\hat{\theta}$ and \hat{z} are perpendicular to surfaces r = constant; $\theta = constant$ and z = constant respectively.

Position, Velocity, Acceleration, Newton's law in cylindrical coordinate system

Vector components are very similar to polar coordinate + z - component

Position vector
$$\vec{r} = r\hat{r} + z\hat{z}$$

Velocity $\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + \dot{z}\hat{z}$

Acceleration
$$\overrightarrow{a} = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta} + \ddot{z}\hat{z}$$

Newton's law
$$\vec{F} = F_r \hat{r} + F_\theta \hat{\theta} + F_z \hat{z}$$
$$= m[(\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta} + \ddot{z}\hat{z}]$$

Summery

- A point in plane can be represented by Cartesian coordinate P(x, y) or polar coordinate $P(r, \theta)$. A point in space can be represented by (x, y, z) or (r, θ, z) or (r, θ, φ) .
- ☐ Coordinate transformation relation between *Cartesian* and *cylindrical coordinate* is given by

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

- \square For plane polar coordinate, transformation relation is $x = r \cos \theta$; $y = r \sin \theta$
- ☐ Unit vector in plane polar coordinate:

$$\hat{r} = \cos \theta \ \hat{x} + \sin \theta \ \hat{y} \ ; \hat{\theta} = -\sin \theta \ \hat{x} + \cos \theta \ \hat{y}$$

☐ Unit vectors in cylindrical coordinate:

$$\hat{r} = \cos\theta \ \hat{x} + \sin\theta \ \hat{y} \ ; \hat{\theta} = -\sin\theta \ \hat{x} + \cos\theta \ \hat{y}, z = z$$

☐ Form of Newton's law is different in different coordinate systems.

Questions please