<u>Alkenen</u>

1. Elektrofiele additie

Algemene reactie
+ HCl
+ Br₂
+ H₂O

Markovnikov

- $+ H_2SO_4$
- 2. Oxidaties
 - Bereiden van epoxiden

Opm.: in zuur milieu: syn & anti-producten, in basisch milieu: enkel anti

• met KMnO₄ of OsO₄ Opm.: enkel syn-glycolen

Ozonolyse

Opm.: oxidatieve of reductieve afwerking.

- 3. Katalytische reductie (= hydrogenatie)
- 4. Additie van BH₃ (B₂H₆) (Anti-Markovnikov)
 - + hydroborering

Alkynen

- 1. Alkylering van acetilide-ionen
- 2. Addities
 - + HC1
 - \bullet + Br₂
 - $+ H_2O$

+ Keto-enol tautomerie: mechanisme

3. Eleminatiereacties

Opm.: enkel bij vicerale of geminale halogenen

- 4. Katalytische reducties
 - H₂/Pd
 - Lindlar (Pd/BaSO₄/Quinoline)
 - Metaalkatalyse (Na in vloeibare NH₃)
- 5. Oxidatie
 - Ozonolyse met oxidatieve afwerking
 - Voorzichtige oxidatie met KMnO₄

Alcoholen

1. Eliminatie van H₂O

Opm.: Zaitsev

- 2. Oxidaties
 - Primaire/secundaire/tertiaire alcoholen

Opm. 1: tertiaire geven eliminatie!

• Sarett-oxidatie

- PCC-oxidatie
- 3. Omzetting naar halogenen
 - Geconcentreerde zuren

Zouten

• Fosforverbindingen

Opm.: inversie

• Thionylchloride (SOCl₂)

Opm.: in pyiridine-oplossing: inversie; in etheroplossing: retentie

Tosylering

Ethers

1. Williamson-ethersynthese

2. Ethersplitsing

Aldehyden & ketonen

- 1. Reducties
 - Met verschillende omstandigheden (Pd/C, Ni, PtO₂,...)
 - Met complexe hydriden (NaBH₄ & LiAlH₄)
 - Clemmensen
 - Wolff-Kishner
 - Hydrogenolyse
- 2. Stikstofnucleofielen
 - Vorming van imines
 - Vorming van oximes
 - Vorming van hydrazon
 - Vorming van semicarbazon
 - Eenamines
 - + alkylatie van eenamines
- 3. Additie van H₂O
- 4. Additie van alcoholen
- 5. Cyaanhydrines

Opm.: hydrolyse in zuur en basisch milieu

6. Organometaalverbindingen

Opm. 1: oppassen met zure H's

Opm. 2: ketenopbouw→ *meerstapsreacties!*

Carbonzuren & derivaten

- 1. Synthesemethoden
 - Oxidatie van alcoholen
 - Oxidatie van alkenen & alkynen
 - Grignardreactie met CO₂

Niet-stereospecifiek

Opm.: volgens additie-eliminatie

- Hydrolyse van nitrillen
- Oxidatie van aromatische substituenten
- 2. Zuurhalogeniden
 - Bereiding
 - Hydrolyse
 - Aminolyse
 - Alcoholyse
- 3. Zuuranhydriden
 - Bereiding
 - Hydrolyse
 - Aminolyse
 - Alcoholyse
- 4. Esters
 - Directe verestering
 - Omestering
 - Hydrolyse

Opm.: kan zowel in zuur als basisch milieu. In basisch milieu 2 zwakke punten.

- 5. Amiden
 - Hydrolyse

Opm.: kan zowel in zuur als basisch milieu.

- Acylering van eenamines
- 6. Nitrillen
 - Hydrolyse

Opm.: kan zowel in zuur als basisch milieu.

- 7. Organometaalreacties
 - $RX + Mg \longrightarrow R-Mg-X$
 - Halogeen vervangen door H
 - Invoeren van deuterium (D₂O)
 - Nitrillen
 - Esters
 - Exclusief met R-Li
- 8. Reducties met NaBH₄ & LiAlH₄

Opm.: zie eerder

- 9. Dibal
- 10. Baeyer-Villiger oxidatie

Enolen

- 1. Alkylering van een keton
- 2. Invoeren van een halogeen
- 3. Haloformreactie
- 4. Aldolcondensatie
- 5. Claisencondensatie

Opm.: nucleofiele substitutie zonder katalysator

- 6. Dieckmanncondensatie
 - Opm.: is eigenlijk een cyclische Claisencondensatie
- 7. Decarboxylering van een β-ketozuur
- 8. Hell-Volhardt-Zelinsky
- 9. Reformatsky

Polyenen

- 1. Elektrofiele additie
 - Opm.: Thermodynamische of kinetische controle nodig voor specifiek eindproduct
- 2. Diels-Alder
 - Opm.: Licht nodig voor reactie

Aromaten

- 1. Halogenering
- 2. Friedl-Crafts alkylering3. Friedl-Crafts acylering
- 4. Nitrering
- Sulfonering
 - Opm.: vaak als beschermende groep
- 6. Extra: Ar-NO₂ \longrightarrow Ar-NH₂ (in aanwezigheid van (NH₄)S_x)
- 7. Diazotatie
 - Opm.: mechanisme wordt wel eens gevraagd, Sandmeyerreacties belangrijk voor meerstapsreacties.
- 8. Polyaromaten
- 9. Uitzonderlijke nucleofiele substitutie

Radicaalreacties

- 1. Invoering van halogen op benzyllische plaats
- 2. Chlorering van methaan
- 3. Addite van HBr
 - Opm.: anti-Markovnikov
- 4. Allylische bromering met NBS

Aminen

- 1. Synthesemethoden
 - Reducties
 - Nucleofiele substitutie

• Hoffmannafbraak

Opm.: ketenverkorting

• Gabriëlsynthese

2. Hoffmanneliminatie

Opm.: anti-Zaitsev

3. Beckmannomlegging

4. Diazotatie

Opm.: zie eerder