2. Простейший вариант теоремы о неявной функции. В этом параграфе теорема о неявной функции будет получена очень наглядным, но не очень эффективным методом, приспособленным только к случаю вещественнозначных функций вещественных переменных. С другим, во многих отношениях более предпочтительным способом получения этой теоремы, как и с более детальным анализом ее структуры, читатель сможет познакомится в главе X (часть II), а также в задаче 4, помещенной в конце параграфа.

Следующее утверждение является простейшим вариантом теоремы о неявной функции.

Утверждение 1. Если функция $F: U(x_0, y_0) \to \mathbb{R}$, определенная в окрестности $U(x_0, y_0)$ точки $(x_0, y_0) \in \mathbb{R}^2$, такова, что

$$1^{\circ} F \in C^{(p)}(U; \mathbb{R}), \ \epsilon \partial e \ p \geqslant 1,$$

$$2^{\circ} F(x_0, y_0) = 0$$
,

$$3^{\circ} F'_{u}(x_0, y_0) \neq 0$$

то существуют двумерный промежуток $I = I_x \times I_y$, где

$$I_x = \{x \in \mathbb{R} \mid |x-x_0| < \alpha\}, \qquad I_y = \{y \in \mathbb{R} \mid |y-y_0| < \beta\},$$

являющийся содержащейся в $U(x_0,y_0)$ окрестностью точки (x_0,y_0) , и такая функция $f\in C^{(p)}(I_x;I_y)$, что для любой точки $(x,y)\in I_x\times I_y$

$$F(x,y) = 0 \Leftrightarrow y = f(x), \tag{4}$$

причем производная функции y = f(x) в точках $x \in I_x$ может быть вычислена по формуле

$$f'(x) = -\left[F_y'(x, f(x))\right]^{-1} \left[F_x'(x, f(x))\right]. \tag{5}$$

Прежде чем приступить к доказательству, дадим несколько возможных переформулировок заключительного соотношения (4), которые должны заодно прояснить смысл самого этого соотношения.

Утверждение 1 говорит о том, что при условиях 1° , 2° , 3° порция множества, определяемого соотношением F(x,y)=0, попавшая в окрестность $I=I_x\times I_y$ точки (x_0,y_0) , является графиком некоторой функции $f\colon I_x\to I_y$ класса $C^{(p)}(I_x;I_y)$.

Иначе можно сказать, что в пределах окрестности I точки (x_0, y_0) уравнение F(x, y) = 0 однозначно разрешимо относительно y, а функция y = f(x) является этим решением, т. е. $F(x, f(x)) \equiv 0$ на I_x .

Отсюда в свою очередь следует, что если $y=\tilde{f}(x)$ — функция, определенная на I_x , про которую известно, что она удовлетворяет соотношению $F(x,\tilde{f}(x))\equiv 0$ на I_x и что $\tilde{f}(x_0)=y_0$, то при условии непрерывности этой функции в точке $x_0\in I_x$ можно утверждать, что найдется окрестность $\Delta\subset I_x$ точки x_0 такая, что $\tilde{f}(\Delta)\subset I_y$ и тогда $\tilde{f}(x)\equiv f(x)$ при $x\in\Delta$.

Без предположения непрерывности функции \tilde{f} в точке x_0 и условия $\tilde{f}(x_0)=y_0$ последнее заключение могло бы оказаться неправильным, что видно на уже разобранном выше примере с окружностью.

Теперь докажем утверждение 1.

 \blacktriangleleft Пусть для определенности $F_y'(x_0,y_0)>0$. Поскольку $F\in C^{(1)}(U;\mathbb{R})$, то $F_y'(x,y)>0$ также в некоторой окрестности точки (x_0,y_0) . Чтобы не вводить новых обозначений, без ограничения общности можно считать, что $F_y'(x,y)>0$ в любой точке исходной окрестности $U(x_0,y_0)$.

Более того, уменьшая, если нужно, окрестность $U(x_0, y_0)$, можно считать ее кругом некоторого радиуса $r=2\beta>0$ с центром в точке (x_0,y_0) .

Поскольку $F_y'(x,y) > 0$ в U, то функция $F(x_0,y)$ от y определена и монотонно возрастает на отрезке $y_0 - \beta \leqslant y \leqslant y_0 + \beta$, следовательно,

$$F(x_0, y_0 - \beta) < F(x_0, y_0) = 0 < F(x_0, y_0 + \beta).$$

В силу непрерывности функции F в U, найдется положительное число $\alpha < \beta$ такое, что при $|x-x_0| \leqslant \alpha$ будут выполнены соотношения

$$F(x, y_0 - \beta) < 0 < F(x, y_0 + \beta).$$

Покажем теперь, что прямоугольник $I = I_x \times I_y$, где

$$I_x = \{x \in \mathbb{R} \mid |x - x_0| < \alpha\}, \quad I_y = \{y \in \mathbb{R} \mid |y - y_0| < \beta\},$$

является искомым двумерным промежутком, в котором выполняется соотношение (4).

При каждом $x \in I_x$ фиксируем вертикальный отрезок с концами $(x, y_0 - \beta)$, $(x, y_0 + \beta)$. Рассматривая на нем F(x, y) как функцию от y, мы получаем строго возрастающую непрерывную функцию, принимающую значения разных знаков на концах отрезка. Следовательно, при $x \in I_x$ найдется единственная точка $y(x) \in I_y$ такая, что F(x, y(x)) = 0. Полагая y(x) = f(x), мы приходим к соотношению (4).

Теперь установим, что $f \in C^{(p)}(I_x; I_y)$.

Покажем сначала, что функция f непрерывна в точке x_0 и что $f(x_0) = y_0$. Последнее равенство, очевидно, вытекает из того, что при $x = x_0$ имеется единственная точка $y(x_0) \in I_y$ такая, что $F(x_0, y(x_0)) = 0$. Вместе с тем по условию $F(x_0, y_0) = 0$, поэтому $f(x_0) = y_0$.

Фиксировав число $\epsilon,0<\epsilon<\beta,$ мы можем повторить доказательство существования функции f(x) и найти число $\delta,0<\delta<\alpha,$ так, что в двумерном промежутке $\hat{I}=\hat{I}_x\times\hat{I}_y,$ где

$$\hat{I}_x = \{x \in \mathbb{R} \mid |x - x_0| < \delta\} \quad \hat{I}_y = \{y \in \mathbb{R} \mid |y - y_0| < \epsilon\}$$

будет выполнено соотношение

$$(F(x,y) = 0 \text{ B } \hat{I}) \Leftrightarrow (y = \hat{f}(x), x \in \hat{I}_x)$$

$$(6)$$

с некоторой вновь найденной функцией $\hat{f}:\hat{I}_x\to\hat{I}_y$.

Но $\hat{I}_x \subset I_x$, $\hat{I}_y \subset I_y$ и $\hat{I} \subset I$, поэтому из (4) и (6) следует, что $\hat{f}(x) \equiv f(x)$ при $x \in \hat{I}_x \subset I_x$. Тем самым проверено, что $|f(x) - f(x_0)| = |f(x) - y_0| < \epsilon$ при $|x - x_0| < \delta$.

Мы установили непрерывность функции f в точке x_0 . Но любая точка $(x,y) \in I$, в которой F(x,y) = 0, также может быть принята в качестве исходной точки построения, ибо в ней выполнены условия 2° , 3° . Выполнив это построение в пределах промежутка I, мы бы в силу (4) вновь пришли к соответствующей части функции f, рассматриваемой в окрестности точки x. Значит, функция f непрерывна в точке x. Таким образом, установлено, что $f \in C(I_x; I_y)$.

Покажем теперь, что $f \in C^{(1)}(I_x; I_y)$, и установим формулу (5).

Пусть число Δx таково, что $x+\Delta x\in I_x$. Пусть y=f(x) и $y+\Delta y=f(x+\Delta x)$. Применяя в пределах промежутка I к функции F(x,y) теорему о среднем, находим, что

$$0=F(x+\Delta x,f(x+\Delta x))-F(x,f(x))=$$

$$=F(x+\Delta x,y+\Delta y)-F(x,y)=$$

$$=F'_x(x+\omega\Delta x,y+\omega\Delta y)\Delta x+F'_y(x+\omega\Delta x,y+\omega\Delta y)\Delta y \qquad (0<\omega<1)$$
 откуда, учитывая, что $F_y(x,y)\neq 0$ в I , получаем

$$\frac{\Delta y}{\Delta x} = -\frac{F_x'(x + \omega \Delta x, y + \omega \Delta y)}{F_y'(x + \omega \Delta x, y + \omega \Delta y)}$$

(7)