GRAVITATION
phenomenon due to which object having masses attract each other
The force with which they altract is called the
force of gravitation. Newton's law of gravitation Force of gravitation is directly propostional to the product of their masses
the product of their masses
F & m1m2
Force of gravitation is inversely proportional to the square of distance between the bodies
$F \sim \frac{1}{\sigma^2}$
F & m1 m2 (acts along the line joening their CM's
$F = G_1 m_1 m_2.$
Gravitational Cornet. (Universal Corne

(G= 6.67 ×10-11 N m2 kg-2

Force of granty

Gorce) by the Earth.

Re a 6400 km

= GiMe Re2

$$= \frac{G_1 Me}{Re^2} = 9 = 9.81 \text{ m/s}^2$$

$$= \frac{g_1 s_2}{g_1 s_2} = 9.81 \text{ m/s}^2$$

near the surface of the

ii) When 'h' is comparable but not negligible.

h -> 5/48°/0 of Re.

$$gh = \frac{GMe}{(Re+h)^2}$$

$$\int_{Re}^{\infty} \frac{GMe}{Re^2(1+h)^2}$$

$$gh = \frac{g}{(1+h)^2}$$

$$g_{n} = g\left(1 + \frac{h}{Re}\right)^{-2}$$

$$= g\left(1 - \frac{2h}{Re}\right)$$

approximate.

(will give close
sesults to actual

If h < 7-8% Re.

$$g_{n} = \frac{G_{1}Me}{Re_{1}+h^{2}}$$

$$g_{n} = \frac{G_{1}Me}{Re_{2}(1+h)^{2}}$$

$$g_{n} = \frac{G_{2}Me}{Re_{2}(1+h)^{2}}$$

$$g_{n} = \frac{g}{Re_{2}(1+h)^{2}}$$

actual gove actual gove acceleration due to gravity at height h.

distance

from center

0) What is the value of g at a height
$$h = Re/4$$
 above surface of earth.

$$g_{n} = g_{1}$$

$$\frac{1}{1 + h} = g_{2}$$

$$\frac{1}{1 + h} = \frac{1}{2}$$

$$\frac{1}{1 + h} = \pm 2$$

$$\frac{1 + h}{Re} = \pm 2$$

$$\frac{1 + h}{Re} = \pm 2$$

$$\frac{1 + h}{Re} = -2$$

$$\frac{1 + h}{Re} = -2$$

Re
$$h = Re$$

$$h = -3Re$$

$$g_{-h} = g\left(1 - \frac{h}{Re}\right) = f$$

$$1 - \frac{h}{Re} = \frac{1}{4}$$

$$\frac{3}{4} = \frac{h}{Re} \implies h = \frac{3Re}{4}$$

$$\frac{g_{h^{2}}}{g_{h^{2}}} = \frac{g}{(1+\frac{h}{Re})^{2}} = \frac{g}{(1+\frac{1}{4})^{2}} = \frac$$

$$\frac{1}{2} \frac{m v^2}{\sigma} = m w^2 r$$

$$w = \frac{2\pi}{24 \times 60 \times 60} \text{ ad } | s.$$

Fruit =
$$mg - mw^2 x 6s \lambda$$
.
 $mg_{\lambda} = mg - mw^2 x 6s \lambda$.

If
$$\lambda = 90^{\circ}$$
 poles.

g is maximum.

$$\lambda = 0^{\circ}$$
 reguetos

g is maximum.

$$\lambda = 0^{\circ}$$
 equator.

g is minimum.

in) due to shape of earth.

Rp < Reg

equator \Rightarrow gp? geg