

Introdução à Ciência da Computação - 113913

Gabarito da Lista de Exercícios 1 Variáveis, Entrada e Saída de Dados

Observações:

- As listas de exercícios serão corrigidas por um corretor automático, portanto é necessário que as entradas e saídas do seu programa estejam conforme o padrão especificado em cada questão (exemplo de entrada e saída). Por exemplo, a não ser que seja pedido na questão, não use mensagens escritas durante o desenvolvimento do seu código como "Informe a primeira entrada". Estas mensagens não são tratadas pelo corretor, portanto a correção irá resultar em resposta errada, mesmo que seu código esteja correto.
- As Instâncias de Entrada serão as usadas pelo corretor e suas saídas devem estar **iguais** às apresentadas em Instâncias de Saída.
- Assim como as listas, as provas devem ser feitas em Python 3.5. Use essa versão do Python.

Questão A.

```
num1 = float(input())
num2 = float(input())

media = (num1 + num2)/2
print("%.2f" %media)
```

Instâncias de Entrada	Instâncias de Saída
3	3.00
3	
0	0.00
0	
5.5	5.62
5.75	
4.25	4.12
4	
24	32.00
40	
1.5	3.05
4.6	
3.6	3.90
4.2	
20	15.00
10	
3.05	2.58
2.11	
2.15	2.63
3.11	

Questão B.

```
pes = float(input())
metros = pes * 0.3048
print("%.2f"%metros)
```

Instâncias de Entrada	Instâncias de Saída
79	24.08
0	0.00
12	3.66
15	4.57
30	9.14
20	6.10
25	7.62
39	11.89
49	14.94
18	5.49

Questão C.

```
distancia = int(input())

tempo = (60*distancia)/15
print("%.0f minutos"%tempo)
```

Instâncias de Entrada	Instâncias de Saída
31	124 minutos
40	160 minutos
6	24 minutos
4	16 minutos
3	12 minutos
0	0 minutos
15	60 minutos
29	116 minutos
18	72 minutos
14	56 minutos

```
import math #Importamos a bilioteca math para poder usar a função math.sqrt()

x1, y1 = input().split()
x2, y2 = input().split()
x1, y1 = [float(x1), float(y1)]
x2, y2 = [float(x2), float(y2)]
z = complex(input())

distancia_quadrado = ((x2 - x1) ** 2) + ((y2 - y1) ** 2)

# ** operador de exponenciação
distancia = math.sqrt(distancia_quadrado)
#sqrt é a raiz quadrada, função da biblioteca math
#Note que também poderiamos usar distancia = distancia_quadrado ** (1/2)
print("%.4f"%distancia)
z = z.real**2 + z.imag**2
#z.real acessa a parte real do número, e z.imag a parte imaginária
print("%.4f"%(math.sqrt(z)))
```

Instâncias de Entrada	Instâncias de Saída
1.5 2.0	2.8284
3.5 4.0	1.0000
1j	
1.75 2.05	4.1067
4.5 -1	0.0000
0	
0.5 -1	8.7321
2.5 7.5	1.4142
1+1j	
-1 0.5	10.2208
4.75 8.95	5.0000
3+4j	
-10.5 19	21.3898
0.15 0.45	5.0000
-5j	
-9.9 0.4	13.1187
3.2 1.1	1.0000
1	
-15 -20	20.6700
-4 -2.5	2.6926
1-2.5j	
-10 -2	7.0711
-3 -1	3.1623
-3-1j	
-80.1 -50	149.1412
42.1 35.5	15.0000
-15j	
-5.2 -4.1	11.4560
3.0 3.9	1.5000
1.5j	

Questão E.

```
num = float(input())
media = num

num = float(input())
media += 2*num
num = float(input())
media += 3*num
num = float(input())
media += 4*num
num = float(input())
media += 5*num
media += 5*num
media /= 15
print("%.3f"%media)
```

Instâncias do Entrada	Instâncias do Saída
Instâncias de Entrada	Instâncias de Saída
5.2	2.347
4	
3 2	
2	
1	1 222
4	1.333
3 2	
2	
1	
0	0.000
0	0.000
0	
0	
0	
0	5.000
5	5.000
5	
) T	
5	
5 5 5 5 5 3	2.140
3	3.148
3.5	
4.25	
3.75	
1.8954	2.007
3.19254 4.5672	2.887
3.415	
3.31 1.5	
	0.760
3.2 1.6	0.760
0.8	
0.8	
0.4	
1.594842	3.772
2.192942	3.772
2.132342	

3.19823	
4	
5	
9899	2356.700
5000	
4500.5	
300	
150	
4.0943983492	2.353
2.1	
5	
3	
0	

Questão F.

Instâncias de Entrada	Instâncias de Saída
555	0h:9m:15s
2	0h:0m:2s
1550	0h:25m:50s
9000	2h:30m:0s
3150	0h:52m:30s
4250	1h:10m:50s
0	0h:0m:0s
60	0h:1m:0s
3600	1h:0m:0s
86401	24h:0m:1s

Questão G.

```
n = int(input())
print(n)
print(n//100, "nota(s) de R$ 100,00") #Fazemos a divisão inteira de n por 100
n = n%100
""" Pegamos o resto da divisão inteira de n por 100, ou seja, descontamos
as notas de 100 já contabilizadas e fazemos novamente a divisão inteira pela
próxima nota, e assim em diante """
print(n//50, "nota(s) de R$ 50,00")
n = n %50
print(n//20, "nota(s) de R$ 20,00")
n = n \% 20
print(n//10, "nota(s) de R$ 10,00")
n = n%10
print(n//5, "nota(s) de R$ 5,00")
n = n%5
print(n//2, "nota(s) de R$ 2,00")
n = n % 2
print(n//1, "nota(s) de R$ 1,00")
```

Instâncias de Entrada	Instâncias de Saída
575	575
	5 nota(s) de R\$ 100,00
	1 nota(s) de R\$ 50,00
	1 nota(s) de R\$ 20,00
	0 nota(s) de R\$ 10,00
	1 nota(s) de R\$ 5,00
	0 nota(s) de R\$ 2,00
	0 nota(s) de R\$ 1,00
400	400
	4 nota(s) de R\$ 100,00
	0 nota(s) de R\$ 50,00
	0 nota(s) de R\$ 20,00
	0 nota(s) de R\$ 10,00
	0 nota(s) de R\$ 5,00
	0 nota(s) de R\$ 2,00
	0 nota(s) de R\$ 1,00
98	98
	0 nota(s) de R\$ 100,00
	1 nota(s) de R\$ 50,00
	2 nota(s) de R\$ 20,00
	0 nota(s) de R\$ 10,00
	1 nota(s) de R\$ 5,00
	1 nota(s) de R\$ 2,00
505	1 nota(s) de R\$ 1,00
525	525
	5 nota(s) de R\$ 100,00
	0 nota(s) de R\$ 50,00
	1 nota(s) de R\$ 20,00
	0 nota(s) de R\$ 10,00
	1 nota(s) de R\$ 5,00
	0 nota(s) de R\$ 2,00

	0 nota(s) de R\$ 1,00
373	373
	3 nota(s) de R\$ 100,00
	1 nota(s) de R\$ 50,00
	1 nota(s) de R\$ 20,00
	0 nota(s) de R\$ 10,00
	0 nota(s) de R\$ 5,00
	1 nota(s) de R\$ 2,00
	1 nota(s) de R\$ 1,00
268	268
	2 nota(s) de R\$ 100,00
	1 nota(s) de R\$ 50,00
	0 nota(s) de R\$ 20,00
	1 nota(s) de R\$ 10,00
	1 nota(s) de R\$ 5,00
	1 nota(s) de R\$ 2,00
	1 nota(s) de R\$ 1,00
1532	1532
	15 nota(s) de R\$ 100,00
	0 nota(s) de R\$ 50,00
	1 nota(s) de R\$ 20,00
	1 nota(s) de R\$ 10,00
	0 nota(s) de R\$ 5,00
	1 nota(s) de R\$ 2,00
	0 nota(s) de R\$ 1,00
97	97
	0 nota(s) de R\$ 100,00
	1 nota(s) de R\$ 50,00
	2 nota(s) de R\$ 20,00
	0 nota(s) de R\$ 10,00
	1 nota(s) de R\$ 5,00
	1 nota(s) de R\$ 2,00
84	0 nota(s) de R\$ 1,00 84
04	0 nota(s) de R\$ 100,00
	1 nota(s) de R\$ 50,00
	1 nota(s) de R\$ 20,00
	1 nota(s) de R\$ 10,00
	0 nota(s) de R\$ 5,00
	2 nota(s) de R\$ 2,00
	0 nota(s) de R\$ 1,00
299	299
	2 nota(s) de R\$ 100,00
	1 nota(s) de R\$ 50,00
	2 nota(s) de R\$ 20,00
	0 nota(s) de R\$ 10,00
	1 nota(s) de R\$ 5,00
	2 nota(s) de R\$ 2,00
	0 nota(s) de R\$ 1,00