- 2 座標平面上を動く長さ $2l\ (l>0)$ の線分 AB を考える.この線分 AB の中点を P とする.時刻 t における P の座標を (x(t),y(t)) とし,3 点 P,A,B の速度ベクトルを それぞれ $\overrightarrow{v}(t)$, $\overrightarrow{v_A}(t)$, $\overrightarrow{v_B}(t)$ とする.また,ベクトル \overrightarrow{AB} が x 軸の正方向となす角を $\theta(t)$ とし,それに垂直な単位ベクトルを $\overrightarrow{e}(t)=(-\sin\theta(t),\cos\theta(t))$ とする.
- (1) $\overrightarrow{v}(t)$, $\theta'(t)\overrightarrow{e}(t)$ を $\overrightarrow{v_A}(t)$, $\overrightarrow{v_B}(t)$, l を用いて表せ . ただし , $\theta'(t)$ は $\theta(t)$ の導関数を表す .
- (2) 線分 AB は $\overrightarrow{v_A}(t)=t\overrightarrow{e}(t)$, $\overrightarrow{v_B}(t)=(t+2)\overrightarrow{e}(t)$ をみたしながら運動しているとする.ただし,初期時刻 t=0 のとき $(x(0),y(0))=(l,l^2)$, $\theta(0)=0$ とする.このとき, $\theta(t)$, x(t) , y(t) を t の式で表せ.また,点 P の原点からの距離 d(t) を t の式で表せ.