

Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro

Matemática Básica 2009/1 – EP5

Olá a todos! Nesta semana iniciamos um assunto que vai dar uma ótima base para os cursos de Cálculo, e auxiliar no raciocínio para fazer comparações: inequações. É importante que vocês mantenham o ritmo e estudem bastante. Os que acumularam matéria, está em tempo de retomarem seus estudos, pegando o módulo, os EP's anteriores e tentando fazer as questões que estão disponíveis da AD1. Não se esqueçam do envio da AE2 até o dia 15/3. Boa semana!

Coordenadores da disciplina

Maria Helena

Ion Moutinho

Questão 1: Escreva um número inteiro tal que:

- a) o quíntuplo desse número é menor que 20.
- b) a soma desse número com 12 é menor que zero.
- c) o produto da terça parte desse número por −2 é maior que 4.
- d) a soma desse número com seu consecutivo é maior que -10.

Solução:

- a) Uma solução pode ser o número 2, pois $5\times2=10<20$. Observe que este problema pode ter várias soluções. Por exemplo, -33 é um solução, pois $5\times-33=-165<20$. Só por curiosidade, você sabe dizer qual é a maior de todas as soluções? Existe uma menor solução?
- b) Podemos proceder como no item anterior buscando valores que satisfaçam o pedido. Ou, podemos interpretar o problema matematicamente para depois resolvê-lo. Se x representa o número inteiro que procuramos, o enunciado diz que x + 12 < 0. Somando

-12 dos dois lados da desigualdade, temos x < -12. Assim, a solução é qualquer número inteiro menor do que -12. Por exemplo, -13 é uma solução.

Note que podemos verificar nossa resposta. De fato, -13 é um número que somado com 12 é -13 + 12 = -1, que é um número menor do 0.

Observação: Você consegue resolver o item (a) representando o enunciado através de uma expressão matemática?

c) Se x representa o número inteiro que procuramos, o enunciado diz que $\frac{x}{3}$.(-2) > 4. Multiplicando os dois membros da desigualdade por 3, temos -2x > 12. Multiplicando os dois membros da desigualdade por $-\frac{1}{2}$, temos x < -6 (lembre que a multiplicação por um número negativo inverte o sinal da desigualdade). Logo, qualquer número inteiro menor do que -6 é uma solução do problema.

Escolha um número inteiro menor do que -6 e verifique se ele realmente satisfaz o enunciado.

d) Se x representa o número inteiro que procuramos, o enunciado diz que x + (x + 1) > -10. Ou seja, 2x + 1 > -10, donde 2x > -11, donde x > -11/2. Assim, x = 2 é uma solução, por exemplo. Note que não era preciso resolver o problema através da Álgebra. Você poderia simplesmente imaginar um número que somado ao seu sucessor fosse maior do que -10. Verifique que 2 satisfaz esta solução. Uma pergunta: qual é o menor inteiro que satisfaz o enunciado?

Questão 2: Resolva, 3x - 1 < 5, considerando que x é:

a) um número Natural.

b) um número Real.

Solução:

- a) Se 3x 1 < 5 então 3x < 5 + 1 = 6, donde x < 2. Assim, o conjunto solução, S, é dado por $S = \{1\}$.
- b) Vimos, no item (a), que 3x 1 < 5 é equivalente a x < 2. Em **R**, o conjunto solução para esta inequação é $S = \{x \in \mathbb{R} \mid x < 2\} = (-\infty, 2)$ (em notação de intervalo).

Questão 3: Considerando que $y \in Z^*$ e que $5(y-2) \le -10$, determine o conjunto solução desta inequação e responda:

- a) 1 é solução dessa inequação?
- b) 0 é solução dessa inequação?
- c) -50 é solução dessa inequação?

Solução: Basta substituir o valor dado.

a) Se
$$y = 1$$
 então $5(y - 2) = 5(1 - 2) = -5$. Como $-5 > -10$, $y = 1$ não é solução.

b) Se y = 0 então $y \notin Z^*$, logo, não pode ser solução da inequação.

c) Se
$$y = -50$$
 então $5(y - 2) = 5(-50 - 2) = -260$. Como $-260 \le -10$, $y = -50$ é solução.

Questão 4: Qual o maior número inteiro que é solução da inequação $\frac{x}{3}$ + 9 < 17?

Solução: Temos que $\frac{x}{3}$ + 9 < 17 $\Leftrightarrow \frac{x}{3}$ < 8 $\Leftrightarrow x$ < 24. Assim, o maior número inteiro que

é solução da inequação $\frac{x}{3}$ + 9 < 17 é o maior número inteiro x tal que x < 24. Ou seja, x = 23.

Questão 5: O preço de uma corrida de táxi é calculado por km rodado mais um preço fixo chamado "bandeirada". Se em uma cidade, a "bandeirada" é R\$ 2,00 e o km rodado custa R\$ 0,90 e Silvio dispõe de R\$ 20,00, descreva essa situação por meio de uma inequação para que Silvio possa pagar a corrida e sobrar um troco. Qual o maior número inteiro que é solução dessa inequação, ou seja, qual a maior quantidade inteira de km que Silvio pode rodar no táxi?

Solução: A descrição matemática do preço a pagar por uma corrida é dada por

$$v = 0.9x + 2$$

onde y representa o preço da corrida e x a distância percorrida. Como Silvio quer pagar menos de 20 reais, o passeio de Táxi de Silvio deve satisfazer y < 20, ou seja,

$$0.9x + 2 < 20$$
.

L/ogo, $\frac{9}{10}x < 18$, donde $x < \frac{18.10}{9} = 20$. Assim, Silvio pode rodar no máximo 19 Km.

Questão 6: Resolva as seguintes inequações em ${\mathbb R}$:

a)
$$2x + 1 \le x + 6$$

b)
$$2 - 3x \ge x + 14$$

c)
$$2(x+3) > 3(1-x)$$

d)
$$3(1-2x) < 2(x+1) + x - 7$$

e)
$$(5x-4)(12-x)^3 \le 0$$

f)
$$\frac{x^2-4}{2x+x^2+1} > 0$$

g)
$$(2x+1)(13x-123)^2 < 0$$

Solução:

a)
$$2x + 1 \le x + 6 \Leftrightarrow 2x - x \le 6 - 1 \Leftrightarrow x \le 5$$
.

b)
$$2 - 3x \ge x + 14 \Leftrightarrow -x - 3x \ge 14 - 2 \Leftrightarrow -4x \ge 12 \Leftrightarrow x \le \frac{12}{-4} \Leftrightarrow x \le -3$$
.

c)
$$2(x + 3) > 3(1 - x) \Leftrightarrow 2x + 6 > 3 - 3x \Leftrightarrow 5x > -3 \Leftrightarrow x > -\frac{3}{5}$$
.

d)
$$3(1-2x) < 2(x+1) + x - 7 \Leftrightarrow 3 - 6x < 2x + 2 + x - 7 \Leftrightarrow -9x < -8 \Leftrightarrow x > \frac{-8}{-9}$$

$$\Leftrightarrow x > \frac{8}{9}$$

e) Para resolver a inequação $(5x - 4)(12 - x)^3 \le 0$ é preciso fazer um estudo de sinais de cada fator da expressão. Temos dois fatores: 5x - 4 e $(12 - x)^3$.

i)
$$5x - 4$$
: Primeiro achamos a raiz da expressão: $5x - 4 = 0 \Leftrightarrow x = \frac{4}{5}$. Depois verificamos quando $5x - 4 > 0$: $5x - 4 > 0 \Leftrightarrow x > \frac{4}{5}$. Por último, verificamos

quando
$$5x - 4 < 0$$
: $5x - 4 < 0 \Leftrightarrow x < \frac{4}{5}$.

Assim, temos o seguinte estudo de sinais de 5x - 4.

ii) $(12 - x)^3$: O importante neste fator é entender que sua expressão não é de um polinômio do 1° grau, mas também é importante perceber que a potência 3, sendo impar, não altera o sinal da expressão 12 - x, que é um polinômio do 1° grau. Assim, o estudo de sinal de $(12 - x)^3$ coincide com o estudo de sinal de 12 - x.

Vejamos o estudo de sinal de 12 - x.

$$12 - x = 0$$
: $12 - x = 0 \Leftrightarrow x = 12$.

$$12 - x > 0$$
: $12 - x > 0 \Leftrightarrow 12 > x$.

$$12 - x < 0$$
: $12 - x < 0 \Leftrightarrow 12 < x$.

Portanto, temos o seguinte estudo de sinais para $(12 - x)^3$.

Vamos agora determinar os sinais de $(5x - 4)(12 - x)^3$.

Portanto, o conjunto solução da inequação é dado por

$$S = \{x \in \mathbb{R} \mid x \le \frac{4}{5} \text{ ou } x \ge 12\} = (-\infty, \frac{4}{5}] \cup [12, +\infty).$$

f) Como ainda não sabemos como lidar com polinômios do 2º grau, temos que transformar a inequação $\frac{x^2-4}{2x+x^2+1} > 0$. Fatorando os polinômios envolvidos na expressão, temos

$$\frac{(x-2)(x+2)}{(x+1)^2} > 0.$$

Esta inequação tem 3 fatores. O estudo de sinal $\frac{(x-2)(x+2)}{(x+1)^2}$ é o seguinte.

Portanto, o conjunto solução da inequação é $S = \{x \in \mathbb{R} \mid x < -2 \text{ ou } 2 < x\} = (-\infty, -2) \cup (2, +\infty).$

Observação: Note que -1 não pode pertencer ao conjunto em hipótese alguma, pois a expressão da inequação não está definida para este valor.

g) Fazendo o estudo de sinais, obtemos $S = \{x \in \mathbb{R} \mid x < -\frac{1}{2}\} = (-\infty, -\frac{1}{2}).$

Questão 7: Determine a soma dos 50 primeiros termos de uma PA na qual $a_6 + a_{45} = 160$.

Solução: A soma dos 50 primeiros termos de uma PA é dada por

$$S_{50} = \frac{50(a_1 + a_{50})}{2} \, .$$

Por outro lado, temos $a_6 = a_1 + 5r$ e $a_{45} = a_{50} - 5r$. Daí, $a_6 + a_{45} = a_1 + 5r + a_{50} - 5r = a_1 + a_{50}$. Voltando para S_{50} , temos

$$S_{50} = \frac{50(a_1 + a_{50})}{2} = 25.(a_6 + a_{45}) = 25.160 = 4000.$$

Questão 8: Determine o número mínimo de termos da sequência (-133, -126, -119, -112...) para que a soma dos termos seja positiva.

Solução: Temos uma PA de primeiro termo -133 e razão 7. Temos que a soma dos n primeiros termos é dada por

$$S_n = \frac{n[-133 + (-133 + (n-1)7)]}{2} = \frac{-266n + 7(n^2 - n)}{2} = \frac{-273n + 7n^2}{2}.$$

Assim, temos que $S_n > 0 \Leftrightarrow 7n^2 - 273n > 0 \Leftrightarrow n(7n - 273) > 0$. Fazendo o estudo de sinais da inequação, obtemos que o conjunto solução da inequação é $S = \{n \in \mathbb{N} \mid n < 0 \text{ ou } n > 39\} = \{40,41,42,...\}$. Como queremos o primeiro termo que torna a soma S_n positiva, temos que o número pedido é 40.

Questão 9: Encontre o 243° termo da PA cuja razão é 4 e cujo termo inicial é 7. Quanto vale a soma dos primeiros 300 termos?

Solução: Pela relação fundamental $a_n = a_1 + (n-1)r$, temo $a_{243} = 7 + 242.4 = 975$. A soma S_{300} é dada por

$$S_{300} = \frac{300[7 + (7 + 299.4)]}{2} = 150.(7 + 1203) = 181500.$$