

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Variable Compleja I Examen VI

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Variable Compleja I.

Curso Académico 2019-20.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Javier Merí de la Maza.

Descripción Prueba Intermedia.

Fecha 20 de Abril de 2020.

Duración 120 minutos.

Ejercicio 1 (3 puntos). Estudiar la convergencia puntual, absoluta y uniforme de la serie $\sum_{n\geq 0} f_n$ donde:

$$f_n(z) = \left(\frac{z^2 - i}{z^2 + i}\right)^n \quad \forall z \in \mathbb{C} \setminus \left\{\pm \frac{-1 + i}{\sqrt{2}}\right\}.$$

Ejercicio 2 (3 puntos). Estudiar la derivabilidad de las funciones $f, g : \mathbb{C} \to \mathbb{C}$ dadas por:

$$f(z) = z^2 e^{\overline{z}}$$
 $g(z) = \operatorname{sen}(z) f(z)$ $\forall z \in \mathbb{C}$

Ejercicio 3 (1 punto). Calcular

$$\int_{C(0,1)} \frac{\cos(z)}{z(z-2)^2} \, dz.$$

Ejercicio 4 (3 puntos). Sean $a, b \in \mathbb{C}$ con $a \neq b$ y sea R > 0 de modo que $R > \max\{|a|, |b|\}$. Probar que, si f es una función entera, se tiene que:

$$\int_{C(0,R)} \frac{f(z)}{(z-a)(z-b)} dz = 2\pi i \cdot \frac{f(b) - f(a)}{b-a}.$$

Deducir que toda función entera y acotada es constante (Teorema de Liouville).

Ejercicio 5 (Extra: 1.5 puntos). Sea $\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}$ y sean $g, g_n : \Omega \to \mathbb{C}$ para cada $n \in \mathbb{N}$. Probar que $\{g_n\}$ converge uniformemente a g en cada compacto de Ω si, y sólo si, para cada $a \in \Omega$ existe un entorno de a en el que $\{g_n\}$ converge uniformemente a g.

Ejercicio 1 (3 puntos). Estudiar la convergencia puntual, absoluta y uniforme de la serie $\sum_{n\geq 0} f_n$ donde:

$$f_n(z) = \left(\frac{z^2 - i}{z^2 + i}\right)^n \quad \forall z \in \mathbb{C} \setminus \left\{\pm \frac{-1 + i}{\sqrt{2}}\right\}.$$

Se trata de una serie geométrica de razón φ , donde:

$$\varphi: \ \mathbb{C} \setminus \left\{ \pm \frac{-1+i}{\sqrt{2}} \right\} \longrightarrow \mathbb{C}$$

$$z \longmapsto \frac{z^2 - i}{z^2 + i}$$

Sabemos que esta converge puntualmente si la razón tiene módulo menor que uno. Fijado $z \in \mathbb{C} \setminus \left\{ \pm \frac{-1+i}{\sqrt{2}} \right\}$, tenemos que:

$$\left|\frac{z^2 - i}{z^2 + i}\right| < 1 \iff |z^2 - i|^2 < |z^2 + i|^2$$

$$\iff \underbrace{\left(\operatorname{Re}^2 z - \operatorname{Im}^2 z\right)^2} + \left(2\operatorname{Re} z\operatorname{Im} z - 1\right)^2 < \underbrace{\left(\operatorname{Re}^2 z - \operatorname{Im}^2 z\right)^2} + \left(2\operatorname{Re} z\operatorname{Im} z + 1\right)^2 \iff$$

$$\iff 4\operatorname{Re}^2 z\operatorname{Im}^2 z - 4\operatorname{Re} z\operatorname{Im} z + 1 < 4\operatorname{Re}^2 z\operatorname{Im}^2 z + 4\operatorname{Re} z\operatorname{Im} z + 1 \iff$$

$$\iff \operatorname{Re} z\operatorname{Im} z > 0$$

Definimos por tanto tanto el siguiente conjunto:

$$\Omega = \{ z \in \mathbb{C} : \operatorname{Re} z \operatorname{Im} z > 0 \}.$$

Tenemos por tanto que converge puntualmente y absolutamente en Ω y no converge en $\mathbb{C} \setminus \Omega$.

Respecto a la convergencia uniforme, dado $B \subset \mathbb{C}$, veamos que la serie converge uniformemente en B si y solo si:

$$\sum_{n \geq 0} f_n \text{ converge uniformemente en } B \subseteq \Omega \Longleftrightarrow \rho = \sup\{|\varphi(z)| \mid z \in B\} < 1$$

 \iff Supuesto que $\rho < 1$, es fácil probar la convergencia uniforme de la serie en B:

$$|f_n(z)| = |\varphi(z)|^n \leqslant \rho^n \quad \forall z \in B, n \in \mathbb{N}$$

Y sabemos que $\sum_{n\geqslant 0} \rho^n$ converge por ser $\rho<1$. Por el Test de Weierstrass, tenemos que $\sum_{n\geqslant 0} f_n$ converge uniformemente en B.

 \Longrightarrow) Supuesto que $\sum_{n\geqslant 0} f_n$ converge uniformemente en un conjunto $B\subseteq \Omega$, por reducción al absurdo, supongamos que $\rho\geqslant 1$, en cuyo caso (por la definición de supremo), tendremos la existencia de una sucesión $\{|\varphi(z_n)|\}$ con $z_n\in B$ para todo $n\in\mathbb{N}$ de forma que:

$$\{|\varphi(z_n)|\}\to\rho\geqslant 1$$

En cuyo caso, para dicha sucesión tendremos que:

$$|f_n(z_n)| = |\varphi(z_n)|^n$$

Y esta sucesión no podrá converger a 0, por ser $\rho \geq 1$, lo que contradice que la serie $\sum_{n\geq 0} f_n$ converja uniformemente en B, por no converger uniformemente su término general a 0 en B.

Ejercicio 2 (3 puntos). Estudiar la derivabilidad de las funciones $f, g : \mathbb{C} \to \mathbb{C}$ dadas por:

$$f(z) = z^2 e^{\overline{z}}$$
 $g(z) = \operatorname{sen}(z) f(z)$ $\forall z \in \mathbb{C}$.

Distinguimos en función del valor de $z \in \mathbb{C}$:

• Si $z \neq 0$:

Definimos la siguiente función:

Además, sabemos que:

$$h(z) = \frac{f(z)}{z^2}$$

Supuesto que f es derivable en z, entonces h también lo es. Pero se ha visto que h no es derivable en ningún punto de \mathbb{C} . Por tanto, f no es derivable en z.

• Si z = 0:

$$f'(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{z \to 0} \frac{z^2 e^{\overline{z}}}{z} = \lim_{z \to 0} z e^{\overline{z}} = 0.$$

Por tanto, f es derivable en 0 y no lo es en ningún otro punto de \mathbb{C} .

Para g, distinguimos también en función del valor de $z \in \mathbb{C}$. Para ello, veamos antes dónde se anula el seno:

$$\operatorname{sen}(x+iy) = 0 \iff \left\{ \begin{array}{l} \operatorname{sen} x \cosh y = 0 \iff \operatorname{sen} x = 0 \\ \cos x \operatorname{senh} y = 0 \end{array} \right\} \iff \left\{ \begin{array}{l} \operatorname{sen} x = 0 \\ \operatorname{senh} y = 0 \end{array} \right\} \iff x+iy \in \pi \mathbb{Z}$$

Distinguimos por tanto en función de si $z \in \pi \mathbb{Z}$ o no:

• Si $z \notin \pi \mathbb{Z}$:

$$f(z) = \frac{g(z)}{\sin z}$$

Si g es derivable en z, entonces f también lo es. Pero se ha visto que f no es derivable en ningún punto de \mathbb{C}^* . Por tanto, g no es derivable en z.

• Si z = 0:

Como f es derivable en 0, también lo es q en 0, con:

$$q'(0) = \cos(0) f(0) + \sin(0) f'(0) = f(0)$$

Observación. Este caso no habría por qué distinguirlo (puesto que estña incluido en el siguiente), pero se incluye por ser el más directo.

• Si $\exists k \in \mathbb{Z}$ tal que $z = 2k\pi$:

$$\frac{g(z) - g(2k\pi)}{z - 2k\pi} = \frac{\operatorname{sen}(z)f(z)}{z - 2k\pi} = \forall z \in \mathbb{C} \setminus \{2k\pi\}$$

Por la definición formal de derivada del seno en $2\pi k$, se tiene que:

$$1 = \cos(2\pi k) = \lim_{z \to 2\pi k} \frac{\sin(z) - \sin(2\pi k)}{z - 2\pi k} = \lim_{z \to 2\pi k} \frac{\sin(z)}{z - 2\pi k}$$

Por tanto:

$$g'(2\pi k) = \lim_{z \to 2\pi k} \frac{\sin(z)f(z)}{z - 2k\pi} = \lim_{z \to 2\pi k} \frac{\sin(z)}{z - 2k\pi} \cdot \lim_{z \to 2\pi k} f(z) = f(2\pi k)$$

• Si $\exists k \in \mathbb{Z}$ tal que $z = (2k+1)\pi$:

$$\frac{g(z) - g((2k+1)\pi)}{z - (2k+1)\pi} = \frac{\operatorname{sen}(z)f(z)}{z - (2k+1)\pi} \qquad \forall z \in \mathbb{C} \setminus \{(2k+1)\pi\}$$

Por la definición formal de derivada del seno en $(2k+1)\pi$, se tiene que:

$$-1 = \cos((2k+1)\pi) = \lim_{z \to (2k+1)\pi} \frac{\sin(z) - \sin((2k+1)\pi)}{z - (2k+1)\pi} \lim_{z \to (2k+1)\pi} \frac{\sin(z)}{z - (2k+1)\pi}$$

Por tanto:

$$g'((2k+1)\pi) = \lim_{z \to (2k+1)\pi} \frac{\sin(z)f(z)}{z - 2k\pi} = \lim_{z \to (2k+1)\pi} \frac{\sin(z)}{z - 2k\pi} \cdot \lim_{z \to (2k+1)\pi} f(z) = -f((2k+1)\pi)$$

Por tanto, q es derivable en z si y solo si $z \in \pi \mathbb{Z}$.

Ejercicio 3 (1 punto). Calcular

$$\int_{C(0,1)} \frac{\cos(z)}{z(z-2)^2} \, dz.$$

Definimos la función f como:

$$f: D(0, \frac{3}{2}) \longrightarrow \mathbb{C}$$

$$z \longmapsto \frac{\cos(z)}{(z-2)^2}$$

Como f es racional, $f \in \mathcal{H}(D(0, 3/2))$. Por tanto, por la fórmula de Cauchy para la circunferencia, tenemos que:

$$\int_{C(0,1)} \frac{f(z)}{z} dz = 2\pi i \cdot f(0) = \frac{2\pi}{4} \cdot i = \frac{\pi}{2} \cdot i$$

Ejercicio 4 (3 puntos). Sean $a, b \in \mathbb{C}$ con $a \neq b$ y sea R > 0 de modo que $R > \max\{|a|, |b|\}$. Probar que, si f es una función entera, se tiene que:

$$\int_{C(0,R)} \frac{f(z)}{(z-a)(z-b)} dz = 2\pi i \cdot \frac{f(b) - f(a)}{b-a}.$$

Deducir que toda función entera y acotada es constante (Teorema de Liouville).

Descomponemos el integrando en fracciones simples:

$$\frac{1}{(z-a)(z-b)} = \frac{A}{z-a} + \frac{B}{z-b} = \frac{A(z-b) + B(z-a)}{(z-a)(z-b)}$$

- Para z = a: $1 = A(a b) \Longrightarrow A = \frac{1}{a b}$.
- Para z = b: $1 = B(b a) \Longrightarrow B = \frac{1}{b-a} = -\frac{1}{a-b}$

Por tanto, la integral queda:

$$\int_{C(0,R)} \frac{f(z)}{(z-a)(z-b)} dz = \frac{1}{a-b} \left(\int_{C(0,R)} \frac{f(z)}{z-a} dz - \int_{C(0,R)} \frac{f(z)}{z-b} dz \right)$$

$$\stackrel{(*)}{=} \frac{1}{a-b} \left(2\pi i f(a) - 2\pi i f(b) \right)$$

$$= 2\pi i \cdot \frac{f(b) - f(a)}{b-a}$$

donde (*) se debe a que la función f(z) es entera y que $a, b \in D(0, R)$, por lo que se puede aplicar la Fórmula de Cauchy para la circunferencia considerando como función f(z).

Sea ahora f entera y acotada. Entonces, $\exists M \in \mathbb{R}^+$ tal que $|f(z)| \leq M$ para todo $z \in \mathbb{C}$. Por tanto, se tiene que:

$$\left| \frac{f(z)}{(z-a)(z-b)} \right| \leqslant \frac{M}{|z-a||z-b|} \leqslant \frac{M}{||z|-|a||\,||z|-|b||} \leqslant \frac{M}{|R-|a||\,|R-|b||} \leqslant \frac{M}{(R-|a|)(R-|b|)} \quad \forall z \in C(0,R)^*$$

donde hemos usado que $z \in C(0,R)^*$, por lo que |z| = R; y que $R > \max\{|a|,|b|\}$, por lo que R - |a| > 0 y R - |b| > 0. Por tanto, se tiene que:

$$\left| \int_{C(0,R)} \frac{f(z)}{(z-a)(z-b)} dz \right| \leqslant 2\pi R \cdot \frac{M}{(R-|a|)(R-|b|)} = \frac{2\pi MR}{(R-|a|)(R-|b|)}$$

Como la anterior expresión es válida para todo $R \in \mathbb{R}^+$ tal que $R > \max\{|a|, |b|\}$, podemos hacer tender $R \to \infty$. Por el Lema del Sándwich, se tiene que:

$$\lim_{R \to \infty} \int_{C(0,R)} \frac{f(z)}{(z-a)(z-b)} dz = 0$$

Por la expresión anterior a la que habíamos llegado, se tiene que:

$$\lim_{R\to\infty}\int_{C(0,R)}\frac{f(z)}{(z-a)(z-b)}dz=\lim_{R\to\infty}2\pi i\cdot\frac{f(b)-f(a)}{b-a}=2\pi i\cdot\frac{f(b)-f(a)}{b-a}$$

Por la unicidad del límite, se tiene que:

$$f(b) = f(a) \qquad \forall a, b \in \mathbb{C}$$

Por tanto, f es constante.

Ejercicio 5 (Extra: 1.5 puntos). Sea $\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}$ y sean $g, g_n : \Omega \to \mathbb{C}$ para cada $n \in \mathbb{N}$. Probar que $\{g_n\}$ converge uniformemente a g en cada compacto de Ω si, y sólo si, para cada $a \in \Omega$ existe un entorno de a en el que $\{g_n\}$ converge uniformemente a g.

Demostramos por doble implicación:

- \Longrightarrow) Fijado $a \in \Omega$, por ser Ω abierto $\exists r \in \mathbb{R}^+$ tal que $a \in D(a,r) \subset \Omega$. Consideramos ahora $\overline{D}(a,r/2)$ compacto, luego $\{g_n\}$ converge uniformemente a g en $\overline{D}(a,r/2)$. Consideramos por tanto D(a,r/4), y vemos que este es un entorno de a en el que $\{g_n\}$ converge uniformemente a g, demostrando así lo pedido.
- \iff Sea $K \subset \Omega$ compacto. Para cada $a \in K \subset \Omega$, $\exists N_a$ entorno de a en el que $\{g_n\}$ converge uniformemente a g. Por ser N_a un entorno de a, $\exists U_a \subset N_a$ abierto con $a \in U_a$, y $\{g_n\}$ converge uniformemente a g en U_a .

Consideramos ahora el recubrimiento de K por abiertos dado por $K \subset \bigcup_{a \in K} U_a$. Por ser K compacto, $\exists I \subset K$ finito tal que $K \subset \bigcup_{a \in I} U_a$. Ahora, para cada $a \in I$, como la convergencia en U_a es uniforme, aplicamos la definición:

$$\forall \varepsilon \in \mathbb{R}^+, \exists M_a \in \mathbb{N} : \forall n \geqslant M_a, |g_n(z) - g(z)| < \varepsilon \qquad \forall z \in U_a$$

Por tratarse de una cantidad finita, podemos considerar el mínimo:

$$M = \max\{M_a : a \in I\}$$

Por tanto, para cada $a \in I$, se tiene que:

$$\forall \varepsilon \in \mathbb{R}^+, \ \exists M \in \mathbb{N} : \forall n \geqslant M, \ |g_n(z) - g(z)| < \varepsilon \qquad \forall z \in U_a$$

Como $K \subset \bigcup_{a \in I} U_a$, se tiene que:

$$\forall \varepsilon \in \mathbb{R}^+, \exists M \in \mathbb{N} : \forall n \geqslant M, |q_n(z) - q(z)| < \varepsilon \qquad \forall z \in K$$

Por tanto, se tiene la convergencia uniforme en K.