随机算法

Las Vegas型随机算法

问题	算法	期望运行时间	
排序问题	随机快速排序	$T(n) \leq 2nlnn$	
选择问题	RandSelect	$T(n) \leq cn$	
n皇后问题	BoolQueen -> QueenLV + 回溯	$t = s + e \frac{1 - p}{p}$	

Monte Carlo型随机算法

问题	算法	正确概率	时间复杂 度	错误类型
主元素测试	Majority -> BoolMajority -> MCMajority	$> \frac{1}{2}$ $> \frac{3}{4}$ $> 1 - \epsilon$		弃真型单 侧错误
串相等测试	StringEqualityTest -> StringTest	$> 1 - rac{1}{n}$ $\geq 1 - rac{1}{n^k}$		
模式匹配	PatternMatching	$>1-rac{1}{n}$	O(m+n)	
素数测试	PremalityTest	$\geq 1 - rac{1}{n}$	$O(log^4n)$	取伪型单 侧错误

两种算法的比较

- · Las Vegas型随机算法
 - 如果得到解,总是给出正确的结果,区别只在于<mark>运行时间的长短. 不是一次发出的来</mark>
 - 拉斯维加斯型随机算法的运行时间本身是一个随机变量
 - 期望运行时间是输入规模的多项式且总是给出正确答案的 随机算法称为有效的拉斯维加斯型算法.
- Monte Carlo型随机算法
 - 这种算法有时会给出错误的答案. 泛远后山神, 但不 这对,
 - 其运行时间和出错概率都是随机变量,通常需要分析算法的出错概率. △ Los Vegos 沒有
 - 多项式时间内运行且出错概率不超过1/3的随机算法称为 有效的蒙特卡洛型算法

随机算法的分类与局限性

- 拉斯维加斯型随机算法
 - 零错误概率多项式时间算法(有效的),ZPP
- 蒙特卡洛型随机算法
 - 错误概率有界的有效算法(多项式时间),BPP
 - <mark>弃真型</mark>单侧错误概率有界的有效算法,RP
 - 取伪型单侧错误概率有界的有效算法,coRP
- 随机算法的局限性
 - 错误概率有界的多项式时间随机算法<u>不太可能解决NP</u> 完全问题

可应用

る研