Standard values

Model parameters

Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) – Model development and stoichiometric analysis

Submitted to Bioresource Technology

Sören Weinrich $^{\mathrm{a},\star}$ and Michael Nelles $^{\mathrm{a},\mathrm{b}}$

List of Tables

1.1	Model parameters of the original COD-based ADM1	:
1.2	Model parameters of the mass-based ADM1 (variable stoichiometric yield coefficients) .	4
1.3	Model parameters of the mass-based ADM1 (fixed stoichiometric yield coefficients) $$. $$	Ę
1.4	Model parameters of the mass-based ADM1-R1	Ę
1.5	Model parameters of the mass-based ADM1-R2	6
1.6	Model parameters of the mass-based ADM1-R3	7
1.7	Model parameters of the mass-based ADM1-R4	7

^a DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Biochemical Conversion Department, Torgauer Straße 116, 04347 Leipzig, Germany

University of Rostock, Faculty of Agricultural and Environmental Sciences
 Chair of Waste and Resource Management, Justus-von-Liebieg-Weg 6, 18059, Germany

^{*} Corresponding author: soeren.weinrich@dbfz.de

Symbols

С	Carbon content	$[\mathrm{mol}\mathrm{C}\mathrm{g}^{\text{-}1}\mathrm{COD}]$
COD	Chemical oxygen demand	
f	Yield coefficient	$[g COD g^{-1} COD]$
k	First-order reaction constant	$[d^{-1}]$
K_{a}	Dissociation constant (acid)	$[\operatorname{mol} \operatorname{L}^{-1}]$
k_{AB}	Kinetic dissociation rate (acid/base)	$[L \text{ mol}^{-1} \text{ d}^{-1}]$
K_{H}	Henry's law constant	$[\mathrm{mol}\mathrm{L}^{\text{-}1}\mathrm{bar}^{\text{-}1}]$
$K_{\rm I}$	Inhibition constant	$[g L^{\text{-}1}] \mid [g COD L^{\text{-}1}] \mid [mol L^{\text{-}1}]$
k_{La}	Volumetric mass transfer coefficient	$[d^{-1}]$
$k_{\rm m}$	Maximum uptake rate (MONOD)	$[\mathrm{gCODg^{\text{-}1}CODd^{\text{-}1}}]$
$k_{\rm p}$	Pipe friction coefficient	$[L bar^{-1} d^{-1}]$
K_{S}	Half-saturation constant (Monod)	$[g L^{\text{-}1}] \mid [g COD L^{\text{-}1}] \mid [mol L^{\text{-}1}]$
K_{w}	Ionic product (water)	$[\operatorname{mol} \operatorname{L}^{-1}]$
N	Nitrogen content	$[\text{mol N g}^{-1} \text{ COD}]$
p	Pressure	[bar]
pK_a	Negative logarithmic dissociation constant	[-]
$pH_{\rm LL}\mid pH_{\rm UL}$	Lower and upper pH limit	[-]
R	Ideal gas constant	$[\mathrm{bar}\mathrm{L}\mathrm{mol^{\text{-}1}}\mathrm{K^{\text{-}1}}]$
Y	Biomass yield coefficient	$[g g^{-1}] \mid [g \operatorname{COD} g^{-1} \operatorname{COD}]$
_		
$\mu_{\rm m}$	Maximum growth rate (MONOD)	$[d^{-1}]$

Indices

aa

	1 9
ac	Acetic acid
$_{ m atm}$	Atmosphere
bac	Microorganisms
bu	Butyric acid
c4	Valeric and butyric acid
ch	Carbohydrates
ch4	Methane
co2	Carbon dioxide
dec	Decay
dis	Disintegration
fa	Long-chain fatty acids
h2	Hydrogen
hyd	Hydrolysis
I	Inerts
IN	Inorganic nitrogen
li	Lipids
pr	Proteins
pro	Propionic acid
sI	Soluble inerts
su	Sugars
va	Valeric acid
xc	Particulate composites
хI	Particulate inerts

Amino acids | acido- and acetogenesis

Table 1.1a: Model parameters of the original COD-based ADM1 [3]

					_			
Carbon a	and nitrog	gen contents						
	0.02786	$[\operatorname{mol} \operatorname{Cg}^{-1} \operatorname{COD}]$	C_{su}	0.0313	[mol C g ⁻¹ COD]	C_{ch4}	0.0156	[mol C g ⁻¹ COD]
C_{ch}	0.0313	[mol C g ⁻¹ COD]	C_{aa}	0.03	[mol C g ⁻¹ COD]	N_{xc}	0.0027	[mol N g ⁻¹ COD]
C_{pr}	0.03	$[\text{mol C g}^{-1} \text{ COD}]$	C_{fa}	0.0217	[mol C g ⁻¹ COD]	$N_{\rm I}$	0.0043	$[\text{mol N g}^{-1} \text{ COD}]$
C_{li}	0.022	$[\mathrm{mol}\mathrm{C}\mathrm{g}^{\text{-}1}\mathrm{COD}]$	$C_{\rm va}$	0.024	$[\mathrm{mol}\mathrm{C}\mathrm{g}^{\text{-}1}\mathrm{COD}]$	N_{bac}	0.0057	$[\text{mol N g}^{-1} \text{ COD}]$
C_{xI}	0.03	$[\mathrm{mol}\mathrm{C}\mathrm{g}^{\text{-}1}\mathrm{COD}]$	C_{bu}	0.025	$[\mathrm{mol}\mathrm{C}\mathrm{g}^{\text{-}1}\mathrm{COD}]$	N_{aa}	0.007	$[\text{mol N g}^{-1} \text{ COD}]$
C_{sI}	0.03	$[\mathrm{mol}\mathrm{C}\mathrm{g}^{\text{-}1}\mathrm{COD}]$	C_{pro}	0.0268	$[\mathrm{mol}\mathrm{C}\mathrm{g}^{\text{-}1}\mathrm{COD}]$			
C_{bac}	0.0313	$[\mathrm{mol}\mathrm{C}\mathrm{g}^{\text{-}1}\mathrm{COD}]$	C_{ac}	0.0313	$[\mathrm{mol}\mathrm{C}\mathrm{g}^{\text{-}1}\mathrm{COD}]$			
Stoichion	netric coe	efficients						
$f_{ch,xc}$	0.2	[g COD g ⁻¹ COD]	$f_{\mathrm{fa,li}}$	0.95	[g COD g ⁻¹ COD]	f _{bu,aa}	0.26	[g COD g ⁻¹ COD
$f_{ m pr,xc}$	0.2	[g COD g ⁻¹ COD]	$f_{ m bu,su}$	0.13	[g COD g ⁻¹ COD]	$f_{va,aa}$	0.23	[g COD g ⁻¹ COD
$f_{ m li,xc}$	0.3	[g COD g ⁻¹ COD]	$f_{ m pro,su}$	0.27	[g COD g ⁻¹ COD]	$f_{ m pro,aa}$	0.05	[g COD g ⁻¹ COD
$f_{xI,xc}$	0.2	[g COD g ⁻¹ COD]	$f_{\rm ac,su}$	0.41	[g COD g ⁻¹ COD]	$f_{ac,aa}$	0.04	[g COD g ⁻¹ COD
$f_{\rm sI,xc}$	0.1	$[g COD g^{-1} COD]$	$f_{\rm h2,su}$	0.19	$[g COD g^{-1} COD]$	$f_{\rm h2,aa}$	0.06	$[g COD g^{-1} COD]$
Microbia	l biomass	yields						
Y_{su}	0.1	[g COD g ⁻¹ COD]	Y _{c4}	0.06	[g COD g ⁻¹ COD]	Y_{h2}	0.06	[g COD g ⁻¹ COD
Y_{aa}	0.08	[g COD g ⁻¹ COD]	Y_{pro}	0.04	[g COD g ⁻¹ COD]	- 112	0.00	[8 8
Y_{fa}	0.06	[g COD g ⁻¹ COD]	Y_{ac}	0.05	[g COD g ⁻¹ COD]			
Kinetic p	arameter							
$k_{\rm m,su}$	30	$[g \operatorname{COD} g^{-1} \operatorname{COD} d^{-1}]$	$K_{S,su}$	0.5	[g COD L ⁻¹]	k _{dis}	0.5	[d ⁻¹]
k _{m,aa}	50	$[g COD g^{-1} COD d^{-1}]$	$K_{S,aa}$	0.3	[g COD L ⁻¹]	k_{ch}	10	[d ⁻¹]
k _{m,fa}	6	$[g COD g^{-1} COD d^{-1}]$	$K_{S,fa}$	0.4	[g COD L ⁻¹]	k _{pr}	10	[d ⁻¹]
$k_{m,c4}$	20	$[g COD g^{-1} COD d^{-1}]$	$K_{S,c4}$	0.2	[g COD L ⁻¹]	k _{li}	10	$[d^{-1}]$
k _{m,pro}	13	$[g COD g^{-1} COD d^{-1}]$	$K_{S,pro}$	0.1	[g COD L ⁻¹]	$k_{ m dec}$	0.02	$[d^{-1}]$
$k_{m,ac}$	8	$[g COD g^{-1} COD d^{-1}]$	$K_{S,ac}$	0.15	[g COD L ⁻¹]			. ,
$k_{m,h2}$	35	$[g \operatorname{COD} g^{-1} \operatorname{COD} d^{-1}]$	${ m K_{S,h2}}$	$7 \cdot 10^{-6}$	[g COD L ⁻¹]			
Inhibition	n constan	ts						
$K_{S,IN}$	0.0001	$[\operatorname{mol} L^{-1}]$	$_{\mathrm{pH_{LL,aa}}}$	4	[-]	$\mathrm{pH}_{\mathrm{UL,aa}}$	5.5	[-]
$K_{I,h2,fa}$	5.10^{-6}	$[\mathrm{gCODL^{-1}}]$	$\mathrm{pH}_{\mathrm{LL,ac}}$	6	[-]	$\mathrm{pH}_{\mathrm{UL,ac}}$	7	[-]
$K_{I,h2,c4}$	1.10^{-5}	$[g \operatorname{COD} L^{-1}]$	$\mathrm{pH}_{\mathrm{LL},\mathrm{h2}}$	5	[-]	$\mathrm{pH}_{\mathrm{UL},\mathrm{h2}}$	6	[-]
$K_{I,h2,pro}$	$3.5 \cdot 10^{-6}$	$[g \operatorname{COD} L^{-1}]$						
$K_{I,nh3}$	0.0018	$[\mathrm{mol}\mathrm{L}^{\text{-}1}]$						
Dissociat	ion const	ants and rates a,b						
K _{a,va}	1.10-4.86	[mol L ⁻¹]	$k_{AB,va}$	1.10^{10}	[L mol ⁻¹ d ⁻¹]	K _w	1.10-13.7	[mol L ⁻¹]
$ m K_{a,bu}$	$1.10^{-4.82}$		k _{AB,bu}	1.10^{10}	$[L \text{ mol}^{-1} \text{ d}^{-1}]$	**	-	. ,
$K_{a,pro}$		$[\operatorname{mol} L^{-1}]$	k _{AB,pro}	1.10^{10}	$[L \text{mol}^{-1} d^{-1}]$			
$K_{a,ac}$		[mol L ⁻¹]	$k_{AB,ac}$	1.10^{10}	$[L \text{ mol}^{-1} \text{ d}^{-1}]$			
,				1.10^{10}				
$K_{a,co2}$	$1.10^{-6.29}$	mol L ⁻¹	$\rm k_{AB,co2}$	1.10	$[L \text{ mol}^{-1} \text{ d}^{-1}]$			

Table 1.1b: Model parameters of the original COD-based ADM1 [3]

Physicochemical parameters ^{c,d}										
k_{La}	200	$[d^{-1}]$	${ m K_{H,ch4}}$	0.0011	$[\mathrm{mol}\mathrm{L}^{\text{-}1}\mathrm{bar}^{\text{-}1}]$	$p_{\rm h2o}$	0.0657	[bar]		
k_{p}	5.10^{4}	$[\mathrm{L}\ \mathrm{bar}^{\text{-}1}\mathrm{d}^{\text{-}1}]$	$\mathrm{K}_{\mathrm{H,co2}}$	0.025	$[\mathrm{mol}\mathrm{L}^{\text{-}1}\mathrm{bar}^{\text{-}1}]$	$\mathrm{p}_{\mathrm{atm}}$	1.0133	[bar]		
R	0.08315	$[\mathrm{bar}\mathrm{L}\mathrm{mol}^{\text{-}1}\mathrm{K}^{\text{-}1}]$	$\mathrm{K}_{\mathrm{H},\mathrm{h2}}$	0.00072	$[\mathrm{mol}\mathrm{L}^{\text{-}1}\mathrm{bar}^{\text{-}1}]$					

 $[^]a$ Dissociation constants K_a in mol $L^{\text{-}1}$ at 293.15 K (20°C) and $K_a=1\cdot 10^{\text{-}pK_a}$ according to [2].

Table 1.2: Model parameters of the mass-based ADM1 (variable stoichiometric yield coefficients)

Microbia	l biomass	yields						
Y _{su}	0.08	$[g g^{-1}]$	Y_{va}	0.09	[g g ⁻¹]	Y_{ac}	0.04	[g g ⁻¹]
Y_{aa}	0.09	$[g g^{-1}]$	Y_{bu}	0.08	$[g g^{-1}]$	Y_{h2}	0.34	$[g g^{-1}]$
Y_{fa}	0.12	$[g g^{-1}]$	Y_{pro}	0.04	$[g g^{-1}]$			
Kinetic p	oarameter	rs ^a						
$\mu_{\mathrm{m,su}}$	3	$[d^{-1}]$	$ m K_{S,su}$	0.47	$[g L^{-1}]$	k_{ch}	0.25	[d ⁻¹]
$\mu_{\rm m,aa}$	4	$[d^{-1}]$	$\mathrm{K_{S,aa}}$	0.20	$[g L^{-1}]$	$\rm k_{\rm pr}$	0.2	$[d^{-1}]$
$\mu_{\rm m,fa}$	0.36	$[d^{-1}]$	$\rm K_{S,fa}$	0.14	$[g L^{-1}]$	k_{li}	0.1	$[d^{-1}]$
$\mu_{ m m,va}$	1.2	$[d^{-1}]$	$K_{\rm S, va}$	0.10	$[g L^{-1}]$	$\rm k_{\rm dec}$	0.02	$[d^{-1}]$
$\mu_{\rm m,bu}$	1.2	$[d^{-1}]$	${ m K_{S,bu}}$	0.11	$[g L^{-1}]$			
$\mu_{\rm m,pro}$	0.52	$[d^{-1}]$	$\rm K_{S,pro}$	0.07	$[\mathrm{gL^{ ext{-}1}}]$			
$\mu_{\rm m,ac}$	0.4	$[d^{-1}]$	$K_{\mathrm{S,ac}}$	0.14	$[\mathrm{gL^{ ext{-}1}}]$			
$\mu_{\rm m,h2}$	2.1	$[d^{-1}]$	$\mathrm{K}_{\mathrm{S},\mathrm{h2}}$	$8.8 \cdot 10^{-7}$	$[\mathrm{g}\mathrm{L}^{\text{-}1}]$			
Inhibitio	n constan	its						
$ m K_{S,IN}$	0.0017	$[g L^{-1}]$	$\mathrm{pH}_{\mathrm{LL,aa}}$	4	[-]	$\mathrm{pH}_{\mathrm{UL,aa}}$	5.5	[-]
$ m K_{I,h2,fa}$	$6.3 \cdot 10^{-7}$	$[g L^{-1}]$	$\mathrm{pH}_{\mathrm{LL,ac}}$	6	[-]	$\mathrm{pH}_{\mathrm{UL},\mathrm{ac}}$	7	[-]
$ m K_{I,h2,c4}$	$1.3 \cdot 10^{-6}$	$[g L^{-1}]$	$\mathrm{pH}_{\mathrm{LL},\mathrm{h2}}$	5	[-]	$\mathrm{pH}_{\mathrm{UL},\mathrm{h2}}$	6	[-]
${ m K_{I,h2,pro}}$	$4.4 \cdot 10^{-7}$	$[g L^{-1}]$						
$K_{I,nh3}$	0.0306	$[g L^{-1}]$						
Dissociat	ion const	ants and rates b,c						
$K_{a,va}$	1.10-4.86	$[\operatorname{mol} L^{-1}]$	$k_{AB,va}$	1.10^{10}	$[L \text{ mol}^{-1} \text{ d}^{-1}]$	$K_{\rm w}$	$1.10^{-13.7}$	$[\operatorname{mol} L^{-1}]$
$K_{a,bu}$	$1.10^{-4.82}$	$[\mathrm{mol}\mathrm{L}^{\text{-}1}]$	$k_{\rm AB,bu}$	1.10^{10}	$[\mathrm{L}\mathrm{mol^{\text{-}1}}\;\mathrm{d^{\text{-}1}}]$			
$K_{a,pro}$	$1.10^{-4.88}$	$[\mathrm{mol}\mathrm{L}^{\text{-}1}]$	$k_{\rm AB,pro}$	1.10^{10}	$[\mathrm{L}\mathrm{mol^{\text{-}1}}\;\mathrm{d^{\text{-}1}}]$			
$K_{a,ac}$	$1.10^{-4.76}$	$[\mathrm{mol}\mathrm{L}^{\text{-}1}]$	$k_{\rm AB,ac}$	1.10^{10}	$[L\mathrm{mol^{\text{-}1}}\;\mathrm{d^{\text{-}1}}]$			
$K_{a,co2}$		$[\mathrm{mol}\mathrm{L}^{\text{-}1}]$	$k_{\rm AB,co2}$	1.10^{10}	$[L\mathrm{mol^{\text{-}1}}\;\mathrm{d^{\text{-}1}}]$			
$K_{a,IN}$	$1.10^{-8.87}$	$[\operatorname{mol} L^{-1}]$	$k_{\mathrm{AB},\mathrm{IN}}$	1.10^{10}	$[L\mathrm{mol}^{\text{-}1}\mathrm{d}^{\text{-}1}]$			
Physicoc	hemical p	parameters ^{d,e}						
$ m k_{La}$	200	[d ⁻¹]	$ m K_{H,ch4}$	0.0011	[mol L ⁻¹ bar ⁻¹]	P _{h2o}	0.0657	[bar]
k_{p}	5.10^{4}	[L bar ⁻¹ d ⁻¹]	$ m K_{H,co2}$	0.025	$[\operatorname{mol} \operatorname{L}^{-1} \operatorname{bar}^{-1}]$	p_{atm}	1.0133	[bar]
R	0.08315	[bar L mol ⁻¹ K ⁻¹]	$K_{H,h2}$	0.00072	[mol L ⁻¹ bar ⁻¹]			=

 $^{^{\}rm a} \ {\rm Recommended} \ {\rm first-order} \ {\rm reaction} \ {\rm constants} \ {\rm for} \ {\rm mesophilic} \ ({\rm high-rate}) \ {\rm hydrolysis} \ {\rm of} \ {\rm individual} \ {\rm nutrients} \ [1]$

 $^{^{\}rm b}$ Correction for mesophilic process temperatures at 311.15 K (38°C) according to [3].

 $^{^{\}rm c}$ Calculation of water vapour pressure $p_{\rm h2o}$ based on [1].

^d Correction of Henry coefficients $K_{H,i}$ for mesophilic process temperatures at 311.15 K (38°C) based on the VAN'T HOFF equation [4, 1].

 $[^]b$ Dissociation constants K_a in $mol\,L^{\text{--}1}$ at 293.15 K (20°C) and $K_a=1\cdot 10^{\text{--p}K_a}$ according to [2].

 $^{^{\}rm c}$ Correction for mesophilic process temperatures at 311.15 K (38°C) according to [3].

^d Calculation of water vapour pressure p_{h2o} based on [1].

^e Correction of Henry coefficients $K_{H,i}$ for mesophilic process temperatures at 311.15 K (38°C) based on the VAN'T HOFF equation [4, 1].

Table 1.3: Model parameters of the mass-based ADM1 (fixed stoichiometric yield coefficients)

Kinetic I	oarameter	rs ^a						
$\mu_{ m m,su}$	3	$[d^{-1}]$	$ m K_{S,su}$	0.47	$[g L^{-1}]$	$ m k_{ch}$	0.25	[d ⁻¹]
$\mu_{\rm m,aa}$	4	$[d^{-1}]$	$\mathrm{K_{S,aa}}$	0.20	$[g L^{-1}]$	k_{pr}	0.2	$[d^{-1}]$
$\mu_{\rm m,fa}$	0.36	$[d^{-1}]$	${ m K_{S,fa}}$	0.14	$[g L^{-1}]$	k_{li}	0.1	$[d^{-1}]$
$\mu_{\rm m,va}$	1.2	$[d^{-1}]$	$\mathrm{K_{S,va}}$	0.10	$[\mathrm{gL^{ ext{-}1}}]$	$\rm k_{\rm dec}$	0.02	$[d^{-1}]$
$\mu_{\rm m,bu}$	1.2	$[d^{-1}]$	$K_{\mathrm{S,bu}}$	0.11	$[g L^{-1}]$			
$\mu_{\rm m,pro}$	0.52	$[d^{-1}]$	$K_{S,pro}$	0.07	$[g L^{-1}]$			
$\mu_{\rm m,ac}$	0.4	$[d^{-1}]$	$K_{S,ac}$	0.14	$[g L^{-1}]$			
$\mu_{\rm m,h2}$	2.1	$[d^{-1}]$	$K_{\mathrm{S,h2}}$	8.8.10 ⁻⁷	$[g L^{-1}]$			
Inhibitio	n constan	its						
${ m K}_{ m S,IN}$	0.0017	$[g L^{-1}]$	$\mathrm{pH}_{\mathrm{LL,aa}}$	4	[-]	$\mathrm{pH}_{\mathrm{UL,aa}}$	5.5	[-]
$\rm K_{\rm I,h2,fa}$	$6.3 \cdot 10^{-7}$	$[\mathrm{g}\mathrm{L}^{\text{-}1}]$	$\mathrm{pH}_{\mathrm{LL,ac}}$	6	[-]	$\mathrm{pH}_{\mathrm{UL,ac}}$	7	[-]
$K_{\rm I,h2,c4}$	$1.3 \cdot 10^{-6}$	$[g L^{-1}]$	$\mathrm{pH}_{\mathrm{LL},\mathrm{h2}}$	5	[-]	$\mathrm{pH}_{\mathrm{UL},\mathrm{h2}}$	6	[-]
$\rm K_{I,h2,pro}$	$4.4 \cdot 10^{-7}$	$[gL^{-1}]$						
$\mathrm{K}_{\mathrm{I},\mathrm{nh3}}$	0.0306	$[g L^{-1}]$						
Dissociat	ion const	ants and rates b,c						
$K_{a,va}$	1.10-4.86	$[\operatorname{mol} L^{-1}]$	$k_{\rm AB,va}$	1.10^{10}	$[L \text{ mol}^{-1} \text{ d}^{-1}]$	$K_{\rm w}$	$1.10^{-13.7}$	$[\operatorname{mol} L^{-1}]$
$K_{\mathrm{a,bu}}$	$1.10^{-4.82}$	$[\mathrm{mol}\mathrm{L}^{\text{-}1}]$	$\rm k_{AB,bu}$	1.10^{10}	$[L mol^{-1} d^{-1}]$			
$\mathrm{K}_{\mathrm{a},\mathrm{pro}}$	$1.10^{-4.88}$	$[\mathrm{mol}\mathrm{L}^{\text{-}1}]$	$k_{\rm AB,pro}$	1.10^{10}	$[L\mathrm{mol^{\text{-}1}}\;\mathrm{d^{\text{-}1}}]$			
$\mathrm{K}_{\mathrm{a,ac}}$	$1.10^{-4.76}$		$k_{\rm AB,ac}$	1.10^{10}	$[L\mathrm{mol^{\text{-}1}}\;\mathrm{d^{\text{-}1}}]$			
$\rm K_{a,co2}$	$1.10^{-6.29}$		$k_{\mathrm{AB},\mathrm{co2}}$	1.10^{10}	$[L\mathrm{mol^{\text{-}1}}\;\mathrm{d^{\text{-}1}}]$			
$K_{\mathrm{a,IN}}$	$1.10^{-8.87}$	$[\text{mol } L^{-1}]$	$k_{\mathrm{AB},\mathrm{IN}}$	1.10^{10}	$[L \text{ mol}^{-1} \text{ d}^{-1}]$			
Physicoc	hemical p	parameters ^{d,e}						
k_{La}	200	$[d^{-1}]$	${ m K_{H,ch4}}$	0.0011	$[\operatorname{mol} \operatorname{L}^{\text{-}1} \operatorname{bar}^{\text{-}1}]$	$p_{\rm h2o}$	0.0657	[bar]
k_{p}	5.10^{4}	$[L\ bar^{\text{-}1}\ d^{\text{-}1}]$	$\mathrm{K}_{\mathrm{H,co2}}$	0.025	$[\mathrm{mol}\mathrm{L}^{\text{-}1}\;\mathrm{bar}^{\text{-}1}]$	$p_{\rm atm}$	1.0133	[bar]
R	0.08315	$[\mathrm{bar}\mathrm{L}\mathrm{mol}^{\text{-}1}\mathrm{K}^{\text{-}1}]$	$\mathrm{K}_{\mathrm{H},\mathrm{h2}}$	0.00072	$[\mathrm{mol}\mathrm{L}^{\text{-}1}\mathrm{bar}^{\text{-}1}]$			

^a Recommended first-order reaction constants for mesophilic (high-rate) hydrolysis of individual nutrients [1]

Table 1.4a: Model parameters of the mass-based ADM1-R1

$\mu_{\mathrm{m,su}}$	3	$[d^{-1}]$	$K_{S.su}$	0.47	$[g L^{-1}]$	k_{ch}	0.25	$[d^{-1}]$
$\mu_{ m m,aa}$	4	[d ⁻¹]	$K_{S,aa}$	0.20	[g L ⁻¹]	k_{pr}	0.2	[d ⁻¹]
$\mu_{ m m,fa}$	0.36	$[d^{-1}]$	$K_{S,fa}$	0.14	$[g L^{-1}]$	k_{li}	0.1	[d ⁻¹]
$\mu_{\mathrm{m,va}}$	1.2	$[d^{-1}]$	$K_{S,va}$	0.10	$[g L^{-1}]$	$k_{ m dec}$	0.02	$[d^{-1}]$
$\mu_{ m m,bu}$	1.2	$[d^{-1}]$	${ m K_{S,bu}}$	0.11	$[\mathrm{gL^{\text{-}1}}]$			
$\mu_{\mathrm{m,pro}}$	0.52	$[d^{-1}]$	$K_{S,\mathrm{pro}}$	0.07	$[\mathrm{gL^{\text{-}1}}]$			
$\mu_{\rm m,ac}$	0.4	$[d^{-1}]$	$\mathrm{K_{S,ac}}$	0.14	$[g L^{-1}]$			
Inhibiti	on consta	nts						
$K_{S,IN}$	0.0017	$[g L^{-1}]$	$\mathrm{pH_{LL,aa}}$	4	[-]	$\mathrm{pH}_{\mathrm{UL,aa}}$	5.5	[-]
$K_{I,nh3}$	0.0306	$[g L^{-1}]$	$\mathrm{pH_{LL,ac}}$	6	[-]	$\mathrm{pH}_{\mathrm{UL,ac}}$	7	[-]

 $[^]b$ Dissociation constants K_a in $mol\,L^{\text{-}1}$ at 293.15 K (20°C) and $K_a=1\cdot 10^{\text{-}pK_a}$ according to [2].

 $^{^{\}rm c}$ Correction for mesophilic process temperatures at 311.15 K (38°C) according to [3].

 $^{^{\}rm d}$ Calculation of water vapour pressure $p_{\rm h2o}$ based on [1].

^e Correction of Henry coefficients $K_{H,i}$ for mesophilic process temperatures at 311.15 K (38°C) based on the VAN'T HOFF equation [4, 1].

Table 1.4b: Model parameters of the mass-based ADM1-R1

Dissocia	Dissociation constants and rates b,c											
$K_{ m a,va}$ $K_{ m a,bu}$ $K_{ m a,pro}$ $K_{ m a,ac}$ $K_{ m a,co2}$ $K_{ m a,IN}$	$1 \cdot 10^{-4.86} \text{ [mol L}^{-1]}$ $1 \cdot 10^{-4.82} \text{ [mol L}^{-1]}$ $1 \cdot 10^{-4.88} \text{ [mol L}^{-1]}$ $1 \cdot 10^{-4.76} \text{ [mol L}^{-1]}$ $1 \cdot 10^{-6.29} \text{ [mol L}^{-1]}$ $1 \cdot 10^{-8.87} \text{ [mol L}^{-1]}$	$ m k_{AB,va}$ $ m k_{AB,bu}$ $ m k_{AB,pro}$ $ m k_{AB,ac}$ $ m k_{AB,co2}$ $ m k_{AB,IN}$	$ \begin{array}{c} 1 \cdot 10^{10} \\ 1 \cdot 10^{10} \end{array} $	[L mol ⁻¹ d ⁻¹]	$ m K_w$	$1 \cdot 10^{-13.7} \text{ [mol L}^{-1]}$						
Physico	chemical parameters d,e											
k _{La} k _p R	$\begin{array}{ccc} 200 & [\mathrm{d}^{\text{-}1}] \\ 5 \cdot 10^4 & [\mathrm{L} \; \mathrm{bar}^{\text{-}1} \; \mathrm{d}^{\text{-}1}] \\ 0.08315 & [\mathrm{bar} \mathrm{L} \mathrm{mol}^{\text{-}1} \mathrm{K}^{\text{-}1}] \end{array}$	$ m K_{H,ch4} m K_{H,co2}$	0.0011 0.025	[mol L ⁻¹ bar ⁻¹] [mol L ⁻¹ bar ⁻¹]	p _{h2o}	0.0657 [bar] 1.0133 [bar]						

^a Recommended first-order reaction constants for mesophilic (high-rate) hydrolysis of individual nutrients [1]

Table 1.5: Model parameters of the mass-based ADM1-R2

Kinetic	parameter	rs ^a						
$\mu_{\rm m,va}$	1.2	[d ⁻¹]	$ m K_{S,va}$	0.10	[g L ⁻¹]	k_{ch}	0.25	[d ⁻¹]
$\mu_{\rm m,bu}$	1.2	$[d^{-1}]$	$K_{\mathrm{S,bu}}$	0.11	$[g L^{-1}]$	k_{pr}	0.2	$[d^{-1}]$
$\mu_{\rm m,pro}$	0.52	$[d^{-1}]$	$\mathrm{K_{S,pro}}$	0.07	$[g L^{-1}]$	k_{li}	0.1	$[d^{-1}]$
$\mu_{\rm m,ac}$	0.4	$[d^{-1}]$	$K_{\mathrm{S},\mathrm{ac}}$	0.14	$[g L^{-1}]$	$k_{\rm dec}$	0.02	$[d^{-1}]$
Inhibitio	on constan	its						
$K_{S,IN}$	0.0017	$[g L^{-1}]$	$\mathrm{pH_{LL,aa}}$	4	[-]	$\mathrm{pH_{UL,aa}}$	5.5	[-]
$\mathrm{K}_{\mathrm{I},\mathrm{nh3}}$	0.0306	$[gL^{\text{-}1}]$	$\mathrm{pH}_{\mathrm{LL,ac}}$	6	[-]	$\mathrm{pH}_{\mathrm{UL},\mathrm{ac}}$	7	[-]
Dissocia	tion const	ants and rates b,c						
$K_{\mathrm{a,va}}$	$1.10^{-4.86}$	$[\operatorname{mol} L^{-1}]$	$k_{\mathrm{AB,va}}$	1.10^{10}	$[L \text{mol}^{-1} d^{-1}]$	$K_{\rm w}$	$1.10^{-13.7}$	[mol L ⁻¹]
$\mathrm{K}_{\mathrm{a,bu}}$	$1.10^{-4.82}$	$[\operatorname{mol} \operatorname{L}^{\text{-}1}]$	$k_{\rm AB,bu}$	1.10^{10}	$[\mathrm{L}\mathrm{mol^{\text{-}1}}\mathrm{d^{\text{-}1}}]$			
$\rm K_{a,pro}$		$[\operatorname{mol} \operatorname{L}^{\text{-}1}]$	$\rm k_{AB,pro}$	1.10^{10}	$[\mathrm{L}\mathrm{mol^{\text{-}1}}\mathrm{d^{\text{-}1}}]$			
$K_{\mathrm{a,ac}}$	$1.10^{-4.76}$	$[\text{mol L}^{-1}]$	$k_{\rm AB,ac}$	1.10^{10}	$[\mathrm{L}\mathrm{mol^{\text{-}1}}\mathrm{d^{\text{-}1}}]$			
$K_{\mathrm{a,co2}}$	$1.10^{-6.29}$	$[\operatorname{mol} L^{-1}]$	$k_{\rm AB,co2}$	1.10^{10}	$[\mathrm{L}\mathrm{mol^{\text{-}1}}\mathrm{d^{\text{-}1}}]$			
$\mathrm{K}_{\mathrm{a,IN}}$	$1.10^{-8.87}$	$[\mathrm{mol}\mathrm{L}^{\text{-}1}]$	$k_{\mathrm{AB},\mathrm{IN}}$	1.10^{10}	$[L\mathrm{mol^{\text{-}1}}\mathrm{d^{\text{-}1}}]$			
Physico	chemical p	parameters d,e						
$k_{\rm La}$	200	$[d^{-1}]$	$K_{\rm H,ch4}$	0.0011	$[\operatorname{mol} \operatorname{L}^{\text{-}1} \operatorname{bar}^{\text{-}1}]$	p _{h2o}	0.0657	[bar]
$\rm k_{\rm p}$	5.10^{4}	$[L~bar^{\text{-}1}~d^{\text{-}1}]$	$\rm K_{\rm H,co2}$	0.025	$[\mathrm{mol}\mathrm{L}^{\text{-}1}\mathrm{bar}^{\text{-}1}]$	p_{atm}	1.0133	[bar]
R	0.08315	$[\operatorname{bar} \operatorname{L} \operatorname{mol}^{\text{-}1} \operatorname{K}^{\text{-}1}]$						

^a Recommended first-order reaction constants for mesophilic (high-rate) hydrolysis of individual nutrients [1]

 $[^]b$ Dissociation constants K_a in $mol\,L^{-1}$ at 293.15 K (20°C) and $K_a=1\cdot 10^{-pK_{\rm a}}$ according to [2].

^c Correction for mesophilic process temperatures at 311.15 K (38°C) according to [3].

 $^{^{\}rm d}$ Calculation of water vapour pressure $p_{\rm h2o}$ based on [1].

 $^{^{\}rm e}$ Correction of Henry coefficients $K_{\rm H,i}$ for mesophilic process temperatures at 311.15 K (38°C) based on the VAN'T HOFF equation [4, 1].

 $^{^{\}rm b}$ Dissociation constants $\rm K_a$ in mol $\rm L^{\text{-}1}$ at 293.15 K (20°C) and $\rm K_a = 1 \cdot 10^{\text{-}pK_a}$ according to [2].

 $^{^{\}rm c}$ Correction for mesophilic process temperatures at 311.15 K (38°C) according to [3].

 $^{^{\}rm d}$ Calculation of water vapour pressure $p_{\rm h2o}$ based on [1].

 $^{^{\}rm e}$ Correction of Henry coefficients $K_{\rm H,i}$ for mesophilic process temperatures at 311.15 K (38°C) based on the VAN'T HOFF equation [4, 1].

Table 1.6: Model parameters of the mass-based ADM1-R3

Kinetic	paramete	rs ^a						
$\mu_{\rm m,ac}$	0.4	$[d^{-1}]$	k_{ch}	0.25	$[d^{-1}]$	k _{li}	0.1	$[d^{-1}]$
$K_{S,ac}$	0.14	$[gL^{-1}]$	$k_{ m pr}$	0.2	$[d^{-1}]$	$k_{ m dec}$	0.02	$[d^{-1}]$
Inhibitio	on constar	nts						
${ m K_{S,IN}}$	0.0017	$[g L^{-1}]$	$\mathrm{pH}_{\mathrm{LL,ac}}$	6	[-]			
$K_{\rm I, nh3}$	0.0306	$[gL^{-1}]$	$pH_{\rm UL,ac}$	7	[-]			
Dissocia	tion const	tants and rates b,c						
$\rm K_{a,ac}$	$1.10^{-4.76}$	$[\operatorname{mol} \operatorname{L}^{-1}]$	$k_{\rm AB,ac}$	$1{\cdot}10^{10}$	$[L\mathrm{mol^{\text{-}1}}\mathrm{d^{\text{-}1}}]$	K_{w}	$1.10^{-13.7}$	$[\mathrm{mol}\mathrm{L}^{\text{-}1}]$
$K_{\rm a,co2}$		$[\operatorname{mol} \operatorname{L}^{-1}]$	$\rm k_{AB,co2}$	1.10^{10}	$[L\mathrm{mol^{\text{-}1}}\mathrm{d^{\text{-}1}}]$			
$\mathrm{K}_{\mathrm{a,IN}}$	$1.10^{-8.87}$	$[\operatorname{mol} \operatorname{L}^{-1}]$	$k_{\mathrm{AB},\mathrm{IN}}$	1.10^{10}	$[L\mathrm{mol^{\text{-}1}}\mathrm{d^{\text{-}1}}]$			
Physicoe	chemical p	parameters d,e						
k_{La}	200	$[d^{-1}]$	${ m K_{H,ch4}}$	0.0011	$[\mathrm{mol}\mathrm{L}^{\text{-}1}\mathrm{bar}^{\text{-}1}]$	$p_{\rm h2o}$	0.0657	[bar]
k_{p}	5.10^4	$[\mathrm{L~bar^{\text{-}1}~d^{\text{-}1}}]$	$\mathrm{K}_{\mathrm{H,co2}}$	0.025	$[\mathrm{mol}\mathrm{L}^{\text{-}1}\mathrm{bar}^{\text{-}1}]$	$p_{\rm atm}$	1.0133	[bar]
R	0.08315	$[\mathrm{bar}\mathrm{L}\mathrm{mol^{\text{-}1}}\mathrm{K^{\text{-}1}}]$						

^a Recommended first-order reaction constants for mesophilic (high-rate) hydrolysis of individual nutrients [1]

Table 1.7: Model parameters of the mass-based ADM1-R4

	paramete										
$ m k_{ch}$ $ m k_{pr}$	0.25 0.2	[d ⁻¹] [d ⁻¹]	$k_{ m li}$ $k_{ m dec}$	0.1 0.02	[d ⁻¹] [d ⁻¹]						
	Physicochemical parameters b,c										
$egin{aligned} k_{\mathrm{La}} \ k_{\mathrm{p}} \ R \end{aligned}$	$200 \\ 5 \cdot 10^4$		$ m K_{H,ch4}$ $ m K_{H,co2}$	0.0011		$p_{\rm h2o}$	0.0657 1.0133	[bar]			

 $^{^{\}rm a} \ {\rm Recommended} \ {\rm first-order} \ {\rm reaction} \ {\rm constants} \ {\rm for} \ {\rm mesophilic} \ ({\rm high-rate}) \ {\rm hydrolysis} \ {\rm of} \ {\rm individual} \ {\rm nutrients} \ [1]$

 $[^]b$ Dissociation constants K_a in mol $L^{\text{-}1}$ at 293.15 K (20°C) and $K_a=1\cdot 10^{\text{-}\mathrm{pK}_a}$ according to [2].

 $^{^{\}rm c}$ Correction for mesophilic process temperatures at 311.15 K (38°C) according to [3].

 $^{^{\}rm d}$ Calculation of water vapour pressure $p_{\rm h2o}$ based on [1].

 $^{^{\}rm e}$ Correction of Henry coefficients $K_{\rm H,i}$ for mesophilic process temperatures at 311.15 K (38°C) based on the VAN'T HOFF equation [4, 1].

 $^{^{\}rm b}$ Calculation of water vapour pressure $p_{\rm h2o}$ based on [1].

 $^{^{\}rm s}$ Correction of Henry coefficients $K_{\rm H,i}$ for mesophilic process temperatures at 311.15 K (38°C) based on the VAN'T HOFF equation [4, 1].

References

- [1] Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A.: *Anaerobic Digestion Model No. 1.* IWA Publishing, London, 2002
- [2] Perrin, D.D.: Dissociation constants of inorganic acids and bases in aqueous solution. Butterworth and Company, London, 1969
- [3] ROSEN, C.; JEPPSSON, U.: Aspects on ADM1 Implementation within the BSM2 Framework. Lund University, Lund, 2006
- [4] SANDER, R.: Compilation of Henry's law constants (versioon 4.0) for water as solvent. In: Atmospheric Chemistry and Physics Vol. 15 (2015), pp. 4399–4981