

For x(t) indicated in Figure P1.6, sketch the following:

- (a) x(-t)
- **(b)** x(t+2)
- (c) x(2t+2)
- **(d)** x(1-3t)

Sketch and carefully label each of the following signals:

- (i) x[n-2]
- (ii) x[4-n]
- x[2n]

What difficulty arises when we try to define a signal as x[n/2]?

Figure S2.3-3

The difficulty arises when we try to evaluate x[n/2] at n = 1, for example (or generally for n an odd integer). Since $x[\frac{1}{2}]$ is not defined, the signal x[n/2] does not exist.

Some Important Continuous and Discrete Time Signals

Continuous Time Impulse and Step functions

$$u(t) := \begin{cases} 1, t > 0 \\ 0, t < 0 \end{cases}$$

$$1$$

Integrals of u(t)

The first integral of u(t) is a unit ramp function starting a t=0.

Successive integrals of u(t) are:

$$\int_{-\infty}^{t} \int_{-\infty}^{\tau_{k-1}} \cdots \int_{-\infty}^{\tau_1} u(\tau) d\tau d\tau_1 \cdots d\tau_{k-1} = \frac{1}{k!} t^k u(t)$$

 The unit impulse, a generalized function, can be define as follows. Consider a pulse function of unit area:

$$\delta_{\Delta}(t) := \begin{cases} \frac{1}{\Delta}, & 0 \le t < \Delta \\ 0, & \text{otherwise} \end{cases}$$

The integral of this pulse is an approximation to the unit step:

As Δ tends to 0, The pulse $\delta_{\Delta}(t)$ gets taller and thinner, but keeps its unit area, while $u_{\Delta}(t)$ approaches a unit step function. At the limit,

$$\delta(t) := \lim_{\Delta \to 0} \delta_{\Delta}(t)$$

$$u(t) := \lim_{\Delta \to 0} u_{\Delta}(t)$$

Note that
$$\delta_{\Delta}(t) = \frac{d}{dt}u_{\Delta}(t)$$
, and in this sense we can write $\delta(t) = \frac{d}{dt}u(t)$ at the limit.

Conversely, we have the important relationship

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

Graphically, $\delta(t)$ is represented by an arrow "pointing to infinity" at t=0 with its length equal to its area.

Note that with definition, the area of the impulse is "to the right" of t=0, so that

integrating $A\delta(t)$ from t=0 will give A, i.e., $\int\limits_0^\infty A\delta(t)dt=A$. Had we defined the impulse

as the limit of the pulse $\tilde{\delta}_{\Delta}(t) = \frac{1}{\Delta}[u(t+\Delta) - u(t)]$ whose area lies to the left of t=0,

then we would have obtained $\int\limits_0^{} A \, \delta(t) dt = 0$. To "catch the impulse" the trick is then to

integrate from the left of the y-axis, but infinitesimally close to it. This time is denoted as $t=0^-$. There is a similar definition for $t=0^+$ to the right of the y-axis, so that for our original

definition of $\delta(t)$, the above integral would have evaluated to $\int\limits_{0^+}^\infty A\delta(t)dt=0$.

Discrete Time Impulse and Step functions

 One of the simplest discrete-time signals is the unit impulse, defined by

$$\delta[n] := \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$$

· The discrete-time unit step is defined by

$$u[n] := \begin{cases} 1, n \ge 0 \\ 0, n < 0 \end{cases}$$

The unit step is the running sum of an impulse:

$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

and conversely, the impulse is the first-difference of a unit step

$$\delta[n] = u[n] - u[n-1]$$
 Also, $u[n] = \sum_{k=0}^{\infty} \delta[n-k]$

Real Exponential signals

· Continuous-Time

$$x(t) = Ce^{at}, \quad C, a \text{ real}$$

Case a>0: The exponential tends to infinity as $t \to \infty$ (here C>0).

Case a<0: The exponential tends to zero as $t \to \infty$ (here C>0).

· Discrete-Time

$$x[n] = C\alpha^n$$
, C, α real

There are six cases to consider (apart from the trivial case $\alpha=0$): $\alpha=1$, $\alpha>1$, $0<\alpha<1$, $\alpha<-1$, $\alpha=-1$ and $-1<\alpha<0$. Here we assume that C>0.

Case $\alpha = 1$: We get a constant signal x[n] = C.

Case $\alpha > 1$: We get a positive signal that grows exponentially.

Case $0 < \alpha < 1$: The signal is positive and decays exponentially.

Case $\alpha < -1$: The signal alternates between positive and negative values and grows exponentially.

Case $\alpha = -1$: The signal alternates between +C and -C.

Case $-1 < \alpha < 0$: The signal alternates between positive and negative values and decays exponentially.

Complex Exponential Signals

· Continuous-Time

$$x(t) = Ce^{at}$$

$$C, a \text{ complex}, \quad C = |C|e^{j\theta}, \quad a = r + j\omega_0$$

$$x(t) = Ce^{at} = |C|e^{j\theta}e^{(r+j\omega_0)t} = |C|e^{rt}e^{j(\omega_0t+\theta)}$$

Using Euler's relation, we get

$$x(t) = |C|e^{nt}\cos(\omega_0 t + \theta) + j|C|e^{nt}\sin(\omega_0 t + \theta)$$

For r=0, we obtain a complex periodic signal of period $T=\frac{2\pi}{\omega_0}$ whose real and imaginary parts are sinusoidal

$$x(t) = |C|e^{j\theta}e^{j\omega_0 t} = |C|\cos(\omega_0 t + \theta) + j|C|\sin(\omega_0 t + \theta)$$

 For r<0, we get a complex periodic signal multiplied by decaying exponential whose real and imaginary parts a "damped sinusoids"

For r>0, we get a complex periodic signal multiplied by a growing exponential

Discrete-Time

$$x[n] = C\alpha^n$$

$$C, \alpha$$
 complex, $C = |C|e^{j\theta}$, $\alpha = |\alpha|e^{j\omega_0}$

$$x[n] = C\alpha^n = |C|e^{j\theta}|\alpha|^n e^{j\omega_0 n} = |C||\alpha|^n e^{j(\omega_0 n + \theta)}$$

Using Euler's relation, we obtain

$$x[n] = |C||\alpha|^n \cos(\omega_0 n + \theta) + j|C||\alpha|^n \sin(\omega_0 n + \theta)$$

 For |a|=1, we obtain a complex signal whose real and imaginary parts are sinusoidal, but not necessarily periodic!

$$x[n] = |C|\cos(\omega_0 n + \theta) + j|C|\sin(\omega_0 n + \theta)$$

 For | a|<1, we get a complex signal whose real and imaginary parts are damped sinusoidal sequences.

For | a|>1, we obtain a complex signal whose real and imaginary parts are growing sinusoidal sequences

