Predictive Modelling Group 2

Outline:

Part I. Feature Extraction
Part II. Baseline Model Training
Part III. Advanced Model Selection
Part IV. Outcome Comparison

Part I.

Feature Extraction

For featMat:

Green Color: Original Matrix

Red Color: Matrix after Parallel Translation

1	2	3	
4	5 1	6 2	3
7	8 4	9 5	6
	7	8	9

```
mat_1 <- abind(array(rep(0, row-1), c(row-1,1,3)), array(img[-row,-col,], c(row-1, col-1, 3)), along=2)
mat_1 <- abind(array(rep(0, col), c(1,col,3)), array(mat_1, c(row-1, col, 3)), along=1)
mat_1_channel <- mat_1[,,color.i] - mat_base[,,color.i]
#mat_1_channel <- mat_1[,,color.i]</pre>
```

For labMat:

2 4	1	3	
	2	4	

11	13	31	33
12	14	32	34
21	23	41	43
22	24	42	44

11	12	13	14
21	22	23	24
31	32	33	34
41	42	43	44

```
lab_mat[,1,] <- imgHR[seq(1,dim(imgHR)[1],2),seq(1,dim(imgHR)[2],2),]
lab_mat[,2,] <- imgHR[seq(2,dim(imgHR)[1],2),seq(1,dim(imgHR)[2],2),]
lab_mat[,3,] <- imgHR[seq(1,dim(imgHR)[1],2),seq(2,dim(imgHR)[2],2),]
lab_mat[,4,] <- imgHR[seq(2,dim(imgHR)[1],2),seq(2,dim(imgHR)[2],2),]</pre>
```

Part II.

Baseline Model Training

For Baseline Model:

Potential Choices: 5, 11

Optimal Depth: 11

Part III.

Advanced Model Selection

For Advanced Model:

```
## xgboost model
xqboost <- NULL
if(run_xgb){
  if( !require("xgboost" )){
    install.packages("xgboost")
  library("xgboost")
  #featMat <- feat_train[, , 1]</pre>
  #labMat <- label_train[, 1, 1]
  dtrain <- xgb.DMatrix(data=as.matrix(featMat),label=labMat)</pre>
  #xgboost.fit <- xgb.cv(data = dtrain, objective = "reg:linear",</pre>
                          metrics ="rmse",
                          eta = 0.5, max_depth = 8.
                          nthread= 2, nfold = 5, nrounds = 10)
  xgboost_fit <- xgboost(data = dtrain, objective = "reg:linear",</pre>
                          metrics ="rmse".
                          eta = 0.6, max_depth = 8,
                          nthread= 2, nfold = 5, nrounds = 10)
  modelList[[i]] <- list(fit= xgboost_fit)</pre>
```

Part IV.

Outcome Comparison

For 1500 training data:

For GBM Model:

For XGBoost Model:

```
> mean(MSE)
[1] 0.003413879
> sd(MSE)
[1] 0.002885994
```

```
> mean(MSE)
[1] 0.002530288
> sd(MSE)
[1] 0.002383752
```

For GBM Model

Train Error By GBM 0.020 gbm MSE 0.010 0.000 500 1000 1500 Img Index

For XGBoost Model

Running Time Comparison:

	Time	Model Type
Tm_train	>6h	Training time of baseline
Tm_test	320s	Testing time of baseline
Tm_train_xgb	244s	Training time of xgb
Tm_test_xgb	36s	Testing time of xgb

For 50 Test Data:

For GBM Model:

> mean(MSE) [1] 0.004563295

> sd(MSE)

[1] 0.002278968

[1] 24.1222 > sd(PSNR) [1] 2.785592 For XGBoost Model:

> mean(MSE)

[1] 0.003645735

> sd(MSE)

[1] 0.002002531

> mean(PSNR)

[1] 25.21666

> sd(PSNR)

[1] 2.991024

For GBM Model

For XGBoost Model

For GBM Model

For XGBoost Model

Performance Comparison:

Thank You!