Quiz 7, Advanced C	Calculus	s I, Yur	ig Fu Fang
Nov. 27, 2023 Show All Wor	k Name:	Id:	igg Group
4.8 Theorem let f be a mapping from a metric space X into a metric space Y.			
Then f is continuous on X \iff $f^{-1}(V)$ is open in X for every open set V in Y .			
Proof. For " \Longrightarrow ",			
Suppose that	and V is an open set in Y .		
To show $f^{-1}(V)$ is open in $X \iff$			
Suppose that $p \in f^{-1}(V) \subset X$, then			
Since V is open in Y, there is an $\varepsilon > 0$ such that the ball .			
Since f is continuous at p, given $\varepsilon > 0$, there is a $\delta > 0$ such that implies that			
,			
thus $f(x) \in V$, that is $x \in f^{-1}(V)$. Hence the ball $\subset f^{-1}(V)$, that is			
p is an . Final	lly	is open in	X.
For " \Leftarrow ", suppose that \Box .			
To show \iff Given an $\varepsilon > 0$, there is a $\delta > 0$ such that			
implies that .			
Let us fix a $p \in X$ and $\varepsilon > 0$. Denote the ball $V = \{y \in Y : d_Y(f(p), y) < \varepsilon\}$ which is			
Following the assumption,	an	d	
Then there is a $\delta > 0$ such that			
Thus $d_X(x,p) < \delta \Rightarrow \qquad \Rightarrow f(x)$	$) \in V \Rightarrow$. Н	ence f is continuous at p .
The argument works for . F	inally f is		