# Index

| Preface                                     | 2  |
|---------------------------------------------|----|
| 1st Chapter Installation and First-time Use | 3  |
| 1.1 Download and Installation               | 3  |
| 1.2 Interface Introduction                  | 4  |
| 1.3 Connection                              | 5  |
| 1.3.1 Krypton 0/1/2                         | 5  |
| 1.3.2 Krypton 3 - Krypton 9                 | 6  |
| 1.4 Program Download                        | 8  |
| 2nd ChapterAbilix Chart Module Lab          | 9  |
| 2.1 Main                                    | g  |
| 2.2 Actuator modulelab                      | g  |
| 2.3 Sensor ModuleLab                        | 15 |
| 2.4 Command ModuleLab                       | 18 |
| 2.5 Tracing Module Lab                      | 20 |
| 2.6 Variable ModuleLab                      | 27 |
| 3rd Chapter Program Coding                  | 28 |
| 3.1 Move module                             | 28 |
| 3.1.1 Move module and background            | 28 |
| 3.1.2 Connect 2 modules                     | 29 |
| 3.1.3 Insert a module                       | 29 |
| 3.2 Delete module                           | 30 |
| 3.3 Code program                            | 30 |
| 3.4 How to usesub-program                   | 33 |
| 3.5 How to usevariables                     | 36 |
| 3.6 Judgement module                        | 39 |
| 3.7 Tracing program                         | 42 |
| 4th ChanterC language programming           | 48 |

## **Preface**

The Manual introduces how to use Krypton controller and Abilix Chart 2.0 and offers some simple examples for your better understanding to make the use effectively. Please read through the whole manual after you have our product.

Abilix Chart 2.0 is an App for flow chart programming and greatly upgraded on the basis of Abilix chart 1.0. It supports wire and wireless download and makes the interaction more convenient. Software on PC end supports MAC/Windows.

Wish you a great experience!

# 1st Chapter Installation and First-time Use

Abilix chart 2.0 is upgraded on the basis of 1.0 version and supports various types of Krypton products. Please select the correct type before use. The full name of Abilix chart is Abilix flowchart programming software. It supports standard flowchart and C language programming and is characterized by being easy for beginners to pick up and challenging for advanced learners to explore its potential functions.

#### 1.1 Download and Installation

You can visit www.abilix.com and download installation package: Abilix chart Setup\_X.X.X.X from "Tech Service/Material Download", decompress the file after downloading and follow the instructions to complete the installation.

Installation details are as below: the default installation directory of Abilix Chart is in the root of C:\. You can alter installation directory according to the instructions during the procedure. A

quick-start of "Abilix Chart" will be generated respectively on the Desk and in the Quick Launch after installation. Double tap the quick-start to open Abilix Chart.

### 1.2 Interface Introduction



#### **Toolbar Icon List:**

| Icon | Function          |
|------|-------------------|
|      | Choose Type       |
|      | Choose Controller |
|      | New               |
|      | Open              |
|      | Save              |
|      | Save as           |
| K    | Cursor            |
| •    | Hand Cursor       |

| •        | Zoom in   |
|----------|-----------|
|          | Zoom out  |
| <b>@</b> | Original  |
| C        | C editor  |
| <b>②</b> | Thumbnail |
| © C      | Notes     |
| •        | Support   |
|          | Download  |

### 1.3 Connection

2 ways to connect Abilix chart to controller: wire and wireless connection. Proceed data communication and download programs after connecting successfully.

### 1.3.1 Krypton 0/1/2

Wire connection is applicable to Krypton 0/1/2:



- 1. Open Abilix chart, tap
- to select correct product type;
- 2. Use cable to connect controller to computer. (One end of the cable connects to a random sensor port of the controller and the other connects to USB port on the computer.)





to choose connection method - > choose "wire connection";





will turn



4. A prompt of "Connect Successfully" will pop up and

## 1.3.2 Krypton 3 - Krypton 9

#### 1. Wire connection

- 1. Open Abilix chart, tap to select correct product type;
- 2. Choose "USB debug On" in controller "Setting" "About";
- Use cable to connect controller to computer; (One end of the cable connects to CAM and the other connects to USB port on the computer.)
- 4. The following prompt will pop up at the first-time use, tick "Always allow to use this computer to debug", press "OK";



- 5. Tap to choose connection method > choose "Wire connection";
- 6. A prompt of "Connect successfully" will pop up and



#### 2. Wireless connection

- 1. Turn on hotspot in controller "Setting" "Wifi";
- 2. Turn on Wifi connection to find hotspot's name partnerX-GUEST and enter the password, tap "OK" to make computer join controller's hotspot as below:

Abilix-C-KURxyJ





4. A prompt of "Connect successfully" will pop up and



Notes: If there is a prompt of "Connection Failed", please check whether robot's hotspot and networks work normally; you also can turn off firewall on computer end and antivirus software as well as forbid wire connection (The default of firewall forbids wire connection.) to try again.

### 1.4 Program Download

- 1. Abilix chart has connected to Krypton 9 controller successfully;
- Tap to see a pop-up interface to modify program name, the default name is Program A;



3. Tap "OK"; if program is downloaded to the controller, a prompt of "Download successful" will appear.

Krypton 9 controller can save multi user programs simultaneously. Customized program name is allowed and requires a combination of 1-10 letters, digits or underlines, or no more than 5 Chinese characters. Corresponding program name will appear on the screen.

# 2nd Chapter Abilix Chart Module Lab

A robot consists of controller, sensor, actuator and programs. Sensor and actuator are both connected to different ports on the controller while the controller also contains inherent sensors, such as: gyroscope. Programs will run and collect returned value from controller ports.

After computing, commands are sent to actuator to facilitate motions through dedicated ports.

Abilix Chart Module Lab is categorized into actuator, sensor, command, tracing and variable module lab.

#### 2.1 Main

Main is in editing area and can not be deleted. All modules must be dragged below "Main" to be downloaded to the controller.

### 2.2 Actuator modulelab

Actuator module lab includes big motor, small motor, speaker, LED, intelligent LED and motor, etc to respond to controller's commands to make corresponding actions. Name, parameter and function of actuator modules are as below:

| No | Name | Parameter | Function |
|----|------|-----------|----------|
|----|------|-----------|----------|

|   |           |                                   | Port: Connect the motor to a certain port of the |
|---|-----------|-----------------------------------|--------------------------------------------------|
|   |           |                                   | controller;                                      |
|   |           |                                   | Mode: Decide speed, degree, loop and time of     |
|   |           |                                   | the motor;                                       |
|   |           | Big Motor Setting X               | Value: Value of degree, loop and time. If user   |
|   |           | Port A B C D                      | chooses "Loop" in mode, the value refers to the  |
| 1 | Big Motor | Mode: Speed ▼  Value:             | loop that motor rotates; (When speed is          |
|   |           | Speed: -20                        | chosen, the value doesn't need to be set.)       |
|   |           | Effective?                        | Speed: Speed of rotation, ranging in -100~100;   |
|   |           |                                   | Effective: When ticked, the corresponding port   |
|   |           |                                   | will be on;                                      |
|   |           |                                   | If A and B ports are both ticked, 2 motors are   |
|   |           |                                   | activated simultaneously.                        |
|   |           |                                   | Port: Connect the motor to a certain port of the |
|   |           |                                   | controller;                                      |
|   |           |                                   | Mode: Decide speed, degree, loop and time of     |
|   |           |                                   | the motor;                                       |
|   |           | Small Motor Setting ×             | Value: Value of degree, loop and time. If user   |
|   | Small     | Port: A B C D  Mode: Speed ▼      | chooses "Loop" in mode, the value refers to the  |
| 2 | Motor     | Value:                            | loop that motor rotates; (When speed is          |
|   |           | Speed: -20                        | chosen, the value doesn't need to be set.)       |
|   |           | Ellectives                        | Speed: Speed of rotation, ranging in -100~100;   |
|   |           |                                   | Effective: When ticked, the corresponding port   |
|   |           |                                   | will be on;                                      |
|   |           |                                   | If A and B ports are both ticked, 2 motors are   |
|   |           |                                   | activated simultaneously.                        |
| 2 |           | Speaker                           | Speaker is used to play music.                   |
| 3 | Speaker   | Sound: Greet ▼ Select: Hello ▼ 40 | Sound type: 8 categories include greeting,       |
|   |           | Wait                              | animal, musical instrument, etc;                 |
|   | <u> </u>  |                                   |                                                  |

|   |         |               | Channel the lift of                               |
|---|---------|---------------|---------------------------------------------------|
|   |         |               | Choose sound: choose different types of           |
|   |         |               | sounds;                                           |
|   |         |               | Wait: If "wait" is ticked, the next sentence will |
|   |         |               | be executed after playing the current audio.      |
|   |         |               | Turn on "Record".                                 |
|   |         | Record X      | Record: Set the name of the recording;            |
|   |         | Record: 1 ▼   | Seconds: Set the time of recording.               |
| 4 | Record  | Seconds: 1 s  | Tap the corresponding name of the recording       |
|   |         | s d           | to play in the controller "Multi Media" ->        |
|   |         |               | "Record" after the recording is finished.         |
|   |         | ButtonLight × |                                                   |
|   | Button  | ButtonLight   | Set the button LED of controller.                 |
| 5 |         | Status: On ▼  | Status: Turn on/off button LED;                   |
|   | LED     | Color: Red ▼  | Color: Set LED color: Red, Blue, Green.           |
|   |         |               |                                                   |
|   |         |               | Display text or image on the controller screen.   |
|   |         |               | Type: text, image, animation and custom, 4        |
|   |         |               | types in total.                                   |
|   |         |               | When choosing "text", characters or sensor's      |
|   |         |               | variables are displayed:                          |
|   |         | Display       | Row: It displays in which row the chosen          |
|   |         | Row: 1 2 3 4  | content lies and each row displays a maximum      |
| 6 | Display | 5 6 7 8       | of 20 characters.                                 |
|   | 2.00    | Content:      | Content: Manually enter characters or select      |
|   |         | Type: Text ▼  | variables.                                        |
|   |         |               |                                                   |
|   |         |               | Tap or on the right side of the                   |
|   |         |               | enter frame to switch.                            |
|   |         |               | Variable represents the returned value of         |
|   |         |               | sensor or customized value.                       |
|   |         |               | When choosing "image", shot photos when           |
|   | I       | 1             | mage , and photos when                            |

|    |                    |                                                                  | program is running will display;  Choose image: Decide an image for display through ID. ID of image is decided by "Camera" and can be checked in controller "Multi Media" interface.  When choosing "animation", emoticon will display.  When choosing "custom", lead in images from local disk. A single image can not exceed 2M, R.P. is recommended in 320*320 and a maximum of 10 images can be led in. |
|----|--------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | Close<br>Display   | ⊕off<br>⊕off                                                     | Close "Display" of controller.                                                                                                                                                                                                                                                                                                                                                                              |
| 8  | Animation          | Animation ×  Animation: Coward •                                 | Play inherent animation.  Animation: coward, happy, cheer up, lovely, cry, aggrieved, blink.                                                                                                                                                                                                                                                                                                                |
| 9  | Intelligent<br>LED | Intelligent LED × ID: ID-1 ▼ Status: On ▼ Color: Cycle Time: 0.1 | ID: ID of intelligent LED  Status: Status of intelligent LED  Color: Choose the color of intelligent LED;  Cycle time: Decide the cycle of "Breathe" or  "Flash", ranging in 0.1s - 60s; and only under the status of "Breathe" or "Flash" does the value work.                                                                                                                                             |
| 10 | Smart<br>Motor     | Smart Motor  Motor ID: 1   Degree: 0  Motor Speed: 20            | Motor ID: ID of smart motor;  Degree: Degree of rotation;  Speed: Speed of rotation.                                                                                                                                                                                                                                                                                                                        |

| 11 | Color LED         | ColorLED X Port 1 2 3 4 5 6 7 State: Off On  | Port: Port No. of color LED connecting to the controller;  Switch: Turn on/off port of the controller.  Color LED will be lit up when being inserted into the port which is "on" All sensor ports of the controller are "on" as default. Use "Switch" to control "On/Off" of port. |
|----|-------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | Electroma<br>gnet | Port: 1 2 3 4 5 6 7 Switch: Off On           | Port: Choose Port No. of the controller to connect electromagnet;  Switch: Turn on or off port of the controller.  Magnetism will be generated when inserting electromagnet into the port which is "on".                                                                           |
| 13 | Digit<br>output   | Port: 1 2 3 4 5 6 7  Status: On   Effective? | DO of corresponding I/O port of the controller, all actuators can be controlled by this module.  Port: Choose Port No. of the controller to connect sensor;  Switch: Turn on or off port of the controller.                                                                        |
| 14 | Delay             | Delay X Seconds: 1                           | Wait for corresponding time and controller does not perform any motions in the duration.  Parameter is the time for waiting with a unit of "second" and a range in 0.00-60.00.                                                                                                     |
| 15 | Calculate         | Calculate  = + +                             | Support addition, subtraction, multiplication and division.  You can enter Numbers or select variables to perform operations, and to switch by tapping or on the right side of the enter frame.                                                                                    |

| 16 | Stop<br>"Play"       | Stop playing the audio.                                                      |
|----|----------------------|------------------------------------------------------------------------------|
| 17 | Calibrate<br>compass | As instructed, rotate the controller in 8-shaped route to calibrate compass. |

## 2.3 Sensor Module Lab

Sensor module lab includes all modules collecting environment data for the controller.

Controller can collect environment data by AI, DI and counting functions of port. Name, parameter and function of sensor modules are as below:

| No | Name                 | Parameter                                                  | Function                                                                                                                                                                                                                                                             |
|----|----------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Touch Sensor         | Port: 1 2 3 4 5 6 7  Variable: touch_1   Variable: touch_1 | Sensor is used to detect touch and Return the following values: 0:button wasn't pressed; 1:button was pressed; Port: Choose port to connect the sensor; Variable: Variable of the sensor. (In following module, the meanings of "port" and "variable" are the same.) |
| 2  | Ultrasonic<br>sensor | Port 1 2 3 4 5 6 7  Variable: ult_1                        | Measure the distance between obstacle and sensor by ultrasonic distance-measuring, ranging from 50mm to 1500mm.  Returned value of sensor ranges from 50 to 1500. The longer the distance is, the larger the value will be.                                          |
| 3  | Magnetic<br>sensor   | Magnetic Sensor  Port 1 2 3 4 5 6 7  Variable: mag_1 ▼     | Sensor is used to measure magnetic field, ranging from 0 to 4095. When magnetic sensor approaches magnet (about 1.7cm), the returned value is larger than 1000; when the sensor is far away from magnet, the returned value is less than 10.                         |

| 4 | Flame sensor             | Flame Sensor ×  Port. 1 2 3 4  5 6 7  Variable: fla_1 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sensor is used to measure the intensity of light source (e.g. flame).  Returned values ranges from 0 to 4095, the closer the sensor gets to the light source, the larger the returned value will be.   |
|---|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Temperature<br>Sensor    | Temperature Sensor  Port 1 2 3 4 5 6 7  Variable: temp_1   Variable: t | Sensor is used to measure the temperature, ranging from 0°C to 70°C Returned value ranges from 0 to 4095.  The higher the temperature is, the larger the value will be; and vice versa.                |
| 6 | Sound Test               | Sound Test ×  Variable: sound_1 ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sensor is used to test sound strength of the surrounding, with a returned value ranging from 0 to 100.                                                                                                 |
| 7 | Grayscale<br>sensor      | Grayscale Sensor  Port: 1 2 3 4 5 6 7  Variable: gra_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The module is used to collect data of grayscale sensor.  Returned value ranges from 0 to 4095.  Returned value of white is small while the darker the color is, the larger the returned value will be. |
| 8 | Photosensitive<br>sensor | Light Sensor   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | It is used to test the light intensity.  Returned value ranges from 0 to 4095,  the brighter the light is, the larger the  value will be.                                                              |

| 9  | Color sensor  Analog input | Color Sensor  Variable: color_1   Analog Input  Port: 1 2 3 4 5 6 7 | It is used to collect color data.  The tested color corresponds to the following returned value:  Red: 0; Yellow: 1; Green: 2; Blue: 3;  White: 4;  Read AI of corresponding port of the controller and collect data (Touch sensor, grayscale sensor and ultrasonic sensor                                                                                    |
|----|----------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                            | Variable: ai_1 ▼                                                    | are all analog sensors.)                                                                                                                                                                                                                                                                                                                                      |
| 11 | Photosensitive<br>test     | Photosensitive Test ×  Variable: light_1 ▼                          | Use color sensor to test light intensity, ranging in 0-255; the brighter the light is, the larger the returned value will be.                                                                                                                                                                                                                                 |
| 12 | Gyroscope                  | Gyroscope  Variable: gyro_1 ▼  XYZ: X ▼  Measure: Degree ▼          | Collect corresponding data from gyroscope in the controller.  X: Obtain the degree of looking up and stooping down, ranging in -180~180 degrees; Y: Obtain the degree of tilting left and right, ranging in -90~90 degrees;  Z: When controller faces right side up, obtain the degree of rotating clockwise and counter-clockwise, ranging in 0~359 degrees. |
| 13 | Compass                    | Compass ×  Variable: com_1 ▼                                        | It is used to detect the head of controller is pointing to what direction. The returned value ranges from 0 to 359 degrees, 0 degree indicates North; 90, East; 180, South; 270, West.                                                                                                                                                                        |

| 14 | Camera       | Camera ×                                                        | Take photos through "Camera" and the sensor is connected to CAM port.  Photo ID: Set name of the taken photo.  When "Camera" module is run, "Camera" is on and all taken photos are saved in controller "Multi Media" - > "Photo".  Long press the photo to delete. |
|----|--------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | Random digit | Random Digit  Variable: ran_1 ▼  Start Value: 0  Stop Value: 99 | Randomly generate a digit and assign it a variable.  "Start value" and "End value" confine the range of random digit.                                                                                                                                               |
| 16 | Time         | Time × Select: System Time▼  Variable: time_1 ▼                 | System Time: Obtain the time from program running till now. Reset time: Set the time as 0.                                                                                                                                                                          |

### 2.4 Command Module Lab

To read returned value from all ports is usually used for storage and judgement (in most scenarios). There are 3 judgement methods, including "while" sentence, "if...else" sentence and "for" sentence, in Chart and Command Module Lab. Name, parameter and function of sensor modules are as below:

| No | Name | Parameter | Function |   |
|----|------|-----------|----------|---|
|    |      |           |          | Ĺ |

| 1 | Condition Judgement | Condition Judgment  Variable:  Campare:  Ratio:  0  Add Conditions | "Ifelse" sentence in C language. If the condition is met, perform the left branch sentence; otherwise, perform the right branch sentence.  Choose variable: Choose different variables.  Comparison: >, <, !=, ==  Comparison value: Input value or choose variable. Tap "Add condition" to add judgement condition and parameter remains the same as previous. Logical relationship between two judgement conditions can be && or   . |
|---|---------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Multi loop          | Multiple Loop X Loop Time 20 Infinite:                             | For sentence of C language. The sentence in loop will run for designated loop.  When pressing "Infinite loop", module will become "While (1)" sentence and the sentence in loop will keep performing repetitively.                                                                                                                                                                                                                     |
| 3 | Loop<br>judgement   | Loop Judgment  Select:  Compare:  Ratio:  Add Conditions           | "While" sentence in C language.  Parameter is condition set by user by functioning in a situation of performing branch sentence repetitively if condition is met while jumping out of loop to perform the next sentence if condition is not met.                                                                                                                                                                                       |
| 4 | Break               | break                                                              | "Break" sentence in C language without parameter and within loop. When performing the module, exit the current                                                                                                                                                                                                                                                                                                                         |

|   |               |          | loop.                                    |
|---|---------------|----------|------------------------------------------|
|   | Continue loop | continue | "Continue" sentence in C language        |
| _ |               |          | without parameter and within loop.       |
| 5 |               |          | When performing the module, start from   |
|   |               |          | the first-row sentence in loop.          |
| 6 | Return        | return   | "Return" sentence in C language without  |
|   |               |          | parameter. Go back to the starting point |
|   |               |          | and do not perform the program after     |
|   |               |          | "Return".                                |

# 2.5 Tracing Module Lab

7 tracing modules, including initialization, environment collection, intersection tracing, scheduled tracing, advanced tracing, swerving and engine starting, are used to program when vehicle is doing tracing by ground grayscale. Grayscale sensors (usually 5 or 7) should be installed in the front of the vehicle in a row when using. Name, parameter and function of sensor modules are as below:

| No | Name | Parameter | Function |
|----|------|-----------|----------|
|----|------|-----------|----------|

Motor type: Choose big motor or small motor; L/R motor port: A-D are ports of controller, indicating L/R motors are connected to corresponding ports of the controller respectively. L/R motor power: Set motor power. The output speed of motor is speed value times power value (ranging in -1~1). if motor rotates clockwise and robot moves backward, set the power value negative. Initialize **Grayscale number: Number of grayscale** Motor Type: Big Motor ▼ sensors. If vehicle uses 7 grayscale L-motor Port: sensors, please choose "7 grayscale"; if L-motor Power: R-motor Port: vehicle uses 5 grayscale sensors, please R-motor Power: choose "5 grayscale"; if vehicle uses 1 **Initialize** Gray Level: 7 Grayscale ▼ neither 7 nor 5 grayscale sensors, user should write tracing program by Black Line ▼ him/herself. Venue Type: 0.50 Threshold Offset grayscale sensor should be connected to a certain I/O of controller. If "7 grayscale" is chosen, grayscale sensor should be connected to port 1-7 of controller from left side to right side. Venue type: if line on the venue (white) is black, please choose "black line"; if line on the venue (black) is white, please

|   |                         |                        |           | choose "white line". In here, "white" and    |
|---|-------------------------|------------------------|-----------|----------------------------------------------|
|   |                         |                        |           | "black" refer to grayscale sensor. If glass  |
|   |                         |                        |           | is transparent, grayscale sensor regards     |
|   |                         |                        |           | glass as "black".                            |
|   |                         |                        |           | Threshold deviation: Usually the critical    |
|   |                         |                        |           | value is (large value + small value)*0.5",   |
|   |                         |                        |           | "0.5" is threshold deviation ratio. Under    |
|   |                         |                        |           | some circumstances, the threshold needs      |
|   |                         |                        |           | to lean to the smaller value, then, reduce   |
|   |                         |                        |           | "0.5". Do not reduce it to a tiny value. For |
|   |                         |                        |           | instance: "(2+8)*0.5" = 5, if "0.5" is       |
|   |                         |                        |           | reduced to "0.1", the value is               |
|   |                         |                        |           | meaningless.                                 |
|   |                         |                        |           | The module is used to collect grayscale      |
|   | Environment-c ollection |                        |           | threshold. If robot is running on a certain  |
|   |                         |                        |           | type of venue, choose a corresponding        |
|   |                         | Environ-C              | ollection | type only. If robot is running on both       |
| 2 |                         | Black on White ▼       |           | types of venues, choose 2 types.             |
|   |                         |                        |           | There must be an initialization before       |
|   |                         |                        |           | environment-collection.                      |
|   |                         |                        |           | Please make reference to 5-1.                |
|   |                         | Intersection Tracing X |           | Intersection type: The pending-to-cross      |
|   |                         | Туре:                  | Left ▼    | intersection is on either left side or right |
|   |                         | Speed:                 | 50        | side of the vehicle. Choosing intersection   |
|   | Intersection            | L-turn Diff.:          | 0         | type should make reference to following      |
| 3 | tracing                 | R-turn Diff.:          | 0         | 2 conditions based on priorities: 1) Keep    |
|   |                         | Loop Times:            | 1         | aligned with the next swerve; 2) If there    |
|   |                         | Cross Time:            | 0         | is not a next swerve, choose the side with   |
|   |                         | Stop after end?        | Yes ▼     | less intersections.                          |
|   |                         |                        |           |                                              |

Tracing speed: When central grayscale is on the line, the motor with a higher speed (ranging from 10 to 100) out of two will limit the highest speed of the vehicle.

L/wheel differential: Set the vehicle's speed. When central grayscale is on the line, L/wheel speed = (tracing speed - L/wheel differential) x power value. R/wheel differential: Set the vehicle's speed. When the central grayscale is on the line, R/wheel differential = (tracing speed - R/wheel differential) x power value. If tracing speed is 100, set L/R wheel differential as 30 respectively, the vehicle's speed is (70 x power value). When L/R wheel differentials are different, adjust L/R wheel differentials to remain the same.

Loop times: How many intersections are pending to cross. Intersection tracing is to cross an intersection to finish a complete loop, and loop times is to cross how many intersections.

Time to cross the intersection: How long does the vehicle keep proceeding after detecting the intersection. (The time is decided by the concrete venue condition.)



|   |      |                        | value.                                     |
|---|------|------------------------|--------------------------------------------|
|   |      |                        | value.                                     |
|   |      |                        | Reference value: corresponding threshold   |
|   |      |                        | value to stop tracing module.              |
|   |      |                        | Motion of the robot is controlled by 2     |
|   |      |                        | motors and a swerve is completed by 2      |
|   |      |                        | motors' differential. If speed is regarded |
|   |      |                        | as a value (reverse speed - negative), the |
|   |      |                        | robot will swerve to the side with a       |
|   |      |                        | smaller speed. Ending mark of a swerve is  |
|   |      |                        | parts of the grayscale sensor cross a      |
|   |      |                        | certain line in order.                     |
|   |      | Turn                   | Number of crossed lines: How many lines    |
|   |      |                        | are crossed when swerving. If a            |
|   |      | No. of Lines: 1        | 90-degree turning needs to cross a line at |
| 6 | Turn | L-motor Spd: 50        | the crossroads, a 180-degree turning       |
|   |      | R-motor Spd: 50        | must cross 2 lines.                        |
|   |      | End Position: Middle ▼ |                                            |
|   |      | Stop after end? Yes ▼  | L/R motor speed: Set L/R motor speed.      |
|   |      |                        | Ending position: It decides whether the    |
|   |      |                        | robot will stop at the "center",           |
|   |      |                        | "left-of-center", or "right-of-center".    |
|   |      |                        | Robot has inertia and sometimes            |
|   |      |                        | overturns, therefore, choose               |
|   |      |                        | "left-of-center" when turning left at a    |
|   |      |                        | high speed. Finally, robot is supposed to  |
|   |      |                        | be in a stable status after completing the |
|   |      |                        | swerve.                                    |



The module is used to control the engine, divided into a control by time or acontrol by sensor. If it is controlled by time, robot stops after the module ends; if it is controlled by sensor, choose whether to stop robot after the module ends. The condition to end the module lies in whether the returned value of sensor meets the setting.

## 2.6 Variable Module Lab

Variable module lab can record generated global variables, or perform a function of customized variables.



# 3rd Chapter Program Coding

#### 3.1 Move module

Use the left side of cursor to choose an icon on the left side and drag it to the coding area on the right side. The module can be modified parameter to connected to other modules.



### 3.1.1 Move module and background

Move module: Place cursor on the module and press the left side of cursor to move around and drag module.

Move background: Place the hand cursor at blank coding area and press the left side of cursor (which has turned to be a fist) to move around and move background. Mouse wheel also can be used to move background.

#### 3.1.2 Connect 2 modules

Drag module to stay close to the connecting point of another module, when a line is generated between 2 connecting points, the 2 modules can be connected. For instance:



2 modules will be connected to each other after loosing the cursor. The line will break if a module is dragged away.

#### 3.1.3 Insert a module

If there is a module in the position pending to insert a new module, drag it away and insert the new module, then, put the dragged away module back. For instance: Insert "Display" module between "Ultrasonic Sensor" and "Big Motor" as instructed below:

- 1. Drag "Big Motor" away;
- 2. Connect "Display" to "Ultrasonic Sensor";
- 3. Connect "Big Motor" to "Display".









### 3.2 Delete module

Drag module to the left, when the trash bin appears, loose the left side of cursor and the module will be deleted. For instance:



# 3.3 Code program

The starting point is "Main", therefore, user can connect different modules to "Main" based on his/her logic to form a program.

When dragging the module to coding area, it is dissociated and invalid. Only when the module joins the module chain under "Main" can it be valid.

#### Code program as follows:

- 1. Choose the needed module from icons on the left side and drag it to the coding area on the right side;
- 2. Move the module under "Main" to join module chain;
- 3. Press the module and alter parameter in setting frame;

If user tends to code a program to let motor on Port A rotate clockwise at a speed 60 for 2 seconds and stop then, follow the instructions as below:

1. Drag a "Big Motor" from the left side to connect to "Main";



2. Press "Big Motor" and parameter setting frame will pop up. Set motor port as "A", mode as "Speed" and speed as "100", tick "Effective";



3. Drag a "Delay" below "Big Motor" according to step 1 and step 2, and set the time as "2";



4. Drag a "Big Motor" below "Delay" and set motor port as "A", mode as "speed", speed as "0", tick "Effective" to complete programming.



### 3.4 How to use sub-program

Use sub-program to cut down on code quantity and improve the readability of program. For instance: A complicated program can be divided into different function modules and each function module can be performed in sub-program. Follow the below instructions to set up a sub-program which makes controller light up for 5 seconds and then light off:

1. As instructed below, press to generate sub-program and press to unfold program list, press sub-program to switch to corresponding programming interface.



Pic 1



Pic 2

2. Place hand cursor on sub-program and will appear. Press to rename sub-program, for instance: "LED", as presented below:

(Note: Press to delete sub-program)



3. Add a "LED" in sub-program and set the status as "On", color as "blue"; add a "Delay" and set the time as 5 seconds; and then add another "LED" and set the status as "Off", as instructed below:



4. Use the sub-program in "Main"

Press "Main" to enter main interface and drag sub-program "LED" to the right side to connect to "Main", as presented below:



Download and execute the program, controller will flash blue for 5 seconds and then light off.

#### 3.5 How to usevariables

Use variables to program can make the control flexible. After setting up a variable, it can be used after being assigned a value or operating.

New variable: In variable module lab, when pressing , a customized variable will be generated with a default name "cus\_1"; user also can press blue area to re-name as presented in pic 1.

Drag sensor to coding area and the variable name will appear on the interface. For example: drag grayscale sensor to coding area, the variable name "gra\_1" will appear on the interface.







**Delete variable** 



Gra\_1: generated by system (Grayscale sensor) and can not be deleted.

Cus\_1: customized variable and can be deleted. Press on the top right corner to delete.

Variable:

Assign a value to customized variable cus\_1. Drag grayscale sensor and calculate module:



#### Follow the instruction as below:



## 3.6 Judgement module

There should be object and reference for judgement. Object is usually the returned value or updated variable from the sensor. Look at the "Speaker" program to see how to use judgement module.

Drag a "Multi Loop" module

, tick "Infinite Loop" in parameter setting frame, for



example

, and connect to "Main" as below:



1. Drag touch sensor



, connect to "Infinite Loop" as below. Choose Port 1 and a

variable air\_1 will be generated automatically in variable module lab.



2. Drag "Condition Judgement" to connect to "Touch Sensor" as below:



3. Set parameter of judgement module as below: If touch sensor is not held down, execute the program on the left side of the module, otherwise, execute the program on the right side.





- 1. Drag "Speaker" module . In parameter setting frame choose sound type as "Greet", sound as "Hello", tick "Waiting"; connecting the module to the left side of condition judgement.
- 2. Drag "Speaker" module, choose sound type as "Animal", sound as "Seal"; connecting the module to the right side of condition judgement. Please see picture as below:



3. "Speaker" program is written. Connect touch sensor to the corresponding port of controller (Port 1), download the program to the controller and press the program to turn on "Speaker".

If touch sensor is not pressed, "Speaker" will play "Hello"; if touch sensor is pressed, "Speaker" will play the sound of "Seal".

# 3.7 Tracing program

4, 5, 7 of controller from left to right. Left and right motors are inserted into port A and D of controller as below:



Collect environment data before programming, drag "Initialization"

and "Environment-collection" into coding area as below:



#### Parameter should be set as below:





#### **Collect data:**

Download program and press "On", press "OK" according to prompt. Align grayscale sensors with lines and press "OK" to collect data; then, align grayscale sensors with background, press "OK" to collect data (The height is the distance from the grayscale sensor on the vehicle to the ground); there will be 2 rows of data on controller screen, black data and background data respectively; press blank area to finish collection.

Controller will save data automatically as below:



Vehicle tracing

After completing environment data collection, drag "Initialization", "Intersection tracing" and "Swerving" into coding area as below:



Set parameter as below (For reference only, data may differ based on types of vehicles):



Press "On", as for a venue with white background and black lines, the vehicle will move along the curve and cross 2 intersections, then, stop after turning right at the 2nd intersection.



# 4th Chapter Clanguage programming

Click in toolbar to enter C language programming. Controller of Krypton 9 supports standard C language format. Function accesses of modules such as: motor, LED, speaker and sensor are provided. User can code C language programs to download to controller.

Click to gain Abilix Chart Manual, user can look up detailed function accesses and how they are used. Drag different kinds of modules to coding area to generate corresponding functions in C editor.

**Function access:** 

**Editor module C function list:** 

| Name              | Function                                                  | Parameter                            |
|-------------------|-----------------------------------------------------------|--------------------------------------|
| Initialization    | void Abilix_C_Init(void)                                  | Initialize C environment             |
| Quit C            | unid Abiliu C Fuit/unid)                                  | Analysis is done with Constrainment  |
| environment       | void Abilix_C_Exit(void)                                  | Analysis is done, quit C environment |
| Turn on           | weid Cocalla Actor (show worth interced)                  | Port: Controller motor port, A-E     |
| closed-loop motor | void SmallMotor (char port, int speed)                    | Speed: 0-100                         |
| Turn on           |                                                           | Port: Controller motor port, A-E     |
| closed-loop motor | void SmallMotor_circle (char port, int speed, int circle) | Speed: 0-100                         |
| (Loop control)    |                                                           | Circle: Rotated circles              |
| Turn on           |                                                           | Port: Controller motor port, A-E     |
| closed-loop motor | void SmallMotor_angle (char port, int speed, int angle)   | Speed: 0-100                         |
| (Angle control)   |                                                           | Angle: Rotated degree                |
| Turn on           | unid Carolla detau timo debau mont internes district      | Port: Controller motor port, A-E     |
| closed-loop motor | void SmallMotor_time (char port, int speed, int time)     | Speed: 0-100                         |

| (Time control)    |                                                         | Time: Rotated time                                           |
|-------------------|---------------------------------------------------------|--------------------------------------------------------------|
| Turn on           |                                                         | Port: Controller motor port, A-E                             |
| closed-loop motor | void BigMotor (char port, int speed)                    | Speed: 0-100                                                 |
| Turn on           |                                                         | Port: Controller motor port, A-E                             |
| closed-loop motor | void BigMotor_circle (char port, int speed, int circle) | Speed: 0-100                                                 |
| (Loop control)    |                                                         | Circle: Rotated circles                                      |
| Turn on           |                                                         | Port: Controller motor port, A-E                             |
| closed-loop motor | void BigMotor_angle (char port, int speed, int angle)   | Speed: 0-100                                                 |
| (Angle control)   |                                                         | Angle: Rotated degree                                        |
| Turn on           |                                                         | Port: Controller motor port, A-E                             |
| closed-loop motor | void BigMotor_time (char port, int speed, int time)     | Speed: 0-100                                                 |
| (Time control)    |                                                         | Time: Rotated time                                           |
|                   |                                                         | File Name: Audio name, see attachment                        |
|                   |                                                         | for reference. For instance: "Greeting"                      |
| Speaker           | void playSound (char*fileName, int isWait)              | in Chinese: dazhaohu_c0                                      |
|                   |                                                         | isWait: to wait for the speaker to play or                   |
|                   |                                                         | not?                                                         |
| Stop "Play"       | void stopPlay (void)                                    | Stop playing sounds                                          |
|                   |                                                         | Use microphone to record.                                    |
| Record            | void record (int name, int time)                        | Name: Name of recording, 1-10;                               |
|                   |                                                         | Time: Record for 0-60seconds                                 |
|                   |                                                         | Switch: Turn on or off button LED, 0 off, 1                  |
| Button LED        | void setLED ( int switch, int color)                    | on.                                                          |
|                   |                                                         | Color: 1: Red, 2; Green, 3: Blue.                            |
|                   |                                                         | setDisplay() Function is formatted output                    |
|                   |                                                         | function.                                                    |
| Display           | void setDisplay ()                                      | setDisplay(" <formatted character="" sting="">",</formatted> |
|                   |                                                         | <reference>).</reference>                                    |
|                   |                                                         | The use method is the same as that of C                      |

|               |                                                           | language printf().                                                                                                                                                                                                                                                                                                                       |
|---------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Display Image | void setDisplayImage (int type, char* name)               | Type: 0 displays taken photos, 1 displays customized photos; Name: Photo ID or name.                                                                                                                                                                                                                                                     |
| Close Display | void closeDisplay (void)                                  | Close display on robot end.                                                                                                                                                                                                                                                                                                              |
| Animation     | void playAnimation (int ID)                               | Play inbuilt animation.  ID: 1. coward, 2. happy, 3. cheer up, 4.  lovely, 5 cry, 6. grieved, 7. blink                                                                                                                                                                                                                                   |
| Smart LED     | void smartLED (int mode, int R, int G, int B, float rate) | Mode: LED mode, 0-on, 1-off, 2-breathe; R/G/B: Set RGB value, 0-225; Rate: Breath rate: 0.1-60.                                                                                                                                                                                                                                          |
| Smart Motor   | void smartMotor (int ID, int angle, int speed)            | ID: Servo ID, 1-3; Angle: Servo rotated degree, -90-90; Speed: Servo rotated speed, 200-1023.                                                                                                                                                                                                                                            |
| Color LED     | void DO (int port, int switch)                            | Port: Controller Port. No.; Mode: 0-off, 1-on.                                                                                                                                                                                                                                                                                           |
| Electromagnet | void DO (int port, int switch)                            | Port: Controller Port. No.; Mode: 0-off, 1-on.                                                                                                                                                                                                                                                                                           |
| Digit Output  | void digitalOutput (int isDo, int status)                 | isDo: Choose port, Port7~Port 1 sequenced from high to low and controlled by binary form, 1-choose, 0- not choose. Parameters need to be converted into decimal. Status: whether to open the port, port 7~ port 1 sequenced from high to low and controlled by binary form, 1- on, 0- off. Parameters need to be converted into decimal. |

| Delay             | void delay (float time) | Time: Delayed time, unit: second. |
|-------------------|-------------------------|-----------------------------------|
| Compass Calibrate | void initCompass (void) | No returned value.                |

#### Sensor module C function list:

|                |                                      | Read returned value (grayscale, ultrasonic, touch,    |
|----------------|--------------------------------------|-------------------------------------------------------|
|                |                                      | photosensitive, magnetic, flame and temperature       |
| Analog output  | int AI (int port)                    | sensor).                                              |
|                |                                      | Port: controller port No. 1-7;                        |
|                |                                      | Returned value range: 0-4095.                         |
|                |                                      | Read returned value.                                  |
| Color sensor   | int getColor (void)                  | Returned value: 0: Red, 1: Yellow, 2. Green, 3. Blue, |
|                |                                      | 4. White, 5. Black, 7: Abnormal;                      |
| Sound test     | float soundDetection (void)          | Test the sound volume of surroundings.                |
| Photosensitive |                                      | Use color sensor to detect the strength of rays;      |
| detection      | int lightDetection (void)            | returned value ranges from 0 to 255.                  |
|                |                                      | Collect corresponding value of gyroscope.             |
| Gyroscope      | float getGyro (int axial, int angle) | Axial: 0: X, 1: Y, 2: Z;                              |
|                |                                      | Angle: Degree, 0                                      |
|                |                                      | Detect to which orientation the head of controller    |
| Read Compass   | float getCompass (void)              | points. Returned value ranges from 0 to 359, 0 -      |
|                |                                      | North, 90 - East, 180 - South, 270 - West.            |
|                | void camera(int pic_id)              | Use camera to take photos                             |
| Camera         |                                      | Pic_id: ID of saved photos, ID 1-10                   |
| Time Reset     | void resetTime (void)                | No returned value.                                    |
| System time    | float getTime (void)                 | Obtain the time from program starting till the        |
|                |                                      | present.                                              |
| Dandan d'all   | int antDand fint usin interest       | A random digit will be generated between min and      |
| Random digit   | int getRand (int min,int max)        | max (Range: 0-9999)                                   |
|                | l .                                  | l .                                                   |

In a situation that a function facing a motor with various ports, set as below:

void bigMotor(MotorInfo\* p\_motorRunInfo);

void smallMotor(MotorInfo\* p\_motorRunInfo);

The function allows a setting of motor with various ports to achieve a random combination of ports turned on simultaneously. (Random combination: A+B, A+C, A+B+C, ...)

The parameter of function is a MotorInfo, including a structure with ABCD ports. The structure also includes attributes of a certain port, for example: port is set opened: 0-not now, 1-OK; motor mode: 0-closed loop, 1-open loop; value type: 0-speed, 1-degree, 2-loop, 3-time; value: value type: degree/loop/time, effective; speed: -100-100.

4.1 附录

音频文件名对照表(中文):

| 音频类型 | 音频名称 | 音频调用名称       |
|------|------|--------------|
|      | 你好   | dazhaohu_c0  |
| 打招呼  | 再见   | dazhaohu_c1  |
|      | 反对   | dazhaohu_c2  |
|      | 欢迎   | dazhaohu_c3  |
|      | 请多关照 | dazhaohu_c4  |
|      | 生气   | biaoqing_c0  |
|      | 傲慢   | biaoqing_c1  |
|      | 哭泣   | biaoqing_c2  |
| 表情   | 激动   | biaoqing_c3  |
|      | 惊吓   | biaoqing_c4  |
|      | 委屈   | biaoqing_c5  |
|      | 高兴   | biaoqing_c6  |
|      | 可爱   | biaoqing_c7  |
|      | 大笑   | biaoqing_c8  |
|      | 悲伤   | biaoqing_c9  |
|      | 愤怒   | biaoqing_c10 |
|      | 调皮   | biaoqing_c11 |
|      | 打寒颤  | dongzuo_c0   |
|      | 卖萌   | dongzuo_c1   |
| 动作   | 赞成   | dongzuo_c2   |
|      | 求抱抱  | dongzuo_c3   |
|      | 打哈欠  | dongzuo_c4   |
|      | 加油   | dongzuo_c5   |
|      | 睡觉   | dongzuo_c6   |
|      | 休闲   | dongzuo_c7   |

| 鬼鬼祟祟 dongzuo_c8 |
|-----------------|
|-----------------|

## 音频文件名对照表(中英文共用):

| 音频类型 | 音频名称  | 音频调用名称      |
|------|-------|-------------|
|      | 海豹    | dongwu_p0   |
|      | 鹦鹉    | dongwu_p1   |
| 动物   | 青蛙    | dongwu_p2   |
|      | 羊     | dongwu_p3   |
|      | 鸡     | dongwu_p4   |
|      | 鸭子    | dongwu_p5   |
|      | <br>狗 | dongwu_p6   |
|      | 天鹅    | dongwu_p7   |
|      | 蜜蜂    | dongwu_p8   |
|      | 摩托车   | jiaotong_p0 |
|      | 赛车    | jiaotong_p1 |
| 交通   | 火车    | jiaotong_p2 |
|      | 汽车    | jiaotong_p3 |
|      | 飞机    | jiaotong_p4 |
|      | 轮船    | jiaotong_p5 |
|      | 自行车   | jiaotong_p6 |
|      | 直升机   | jiaotong_p7 |
|      | 1     | gangqin_p0  |
|      | 2     | gangqin_p1  |
| 钢琴   | 3     | gangqin_p2  |
|      | 4     | gangqin_p3  |
|      | 5     | gangqin_p4  |
|      | 6     | gangqin_p5  |
|      | 7     | gangqin_p6  |
|      | 8     | gangqin_p7  |

|     | 1     | xiaotiqin_p0 |
|-----|-------|--------------|
|     | 2     | xiaotiqin_p1 |
| 小提琴 | 3     | xiaotiqin_p2 |
|     | 4     | xiaotiqin_p3 |
|     | 5     | xiaotiqin_p4 |
|     | 6     | xiaotiqin_p5 |
|     | 7     | xiaotiqin_p6 |
|     | 8     | xiaotiqin_p7 |
|     | 低音大鼓  | jiazigu_p0   |
|     | 军鼓    | jiazigu_p1   |
| 架子鼓 | 落地鼓   | jiazigu_p2   |
|     | 嗵嗵鼓1  | jiazigu_p3   |
|     | 嗵嗵鼓 2 | jiazigu_p4   |
|     | 踩镲    | jiazigu_p5   |
|     | 吊镲    | jiazigu_p6   |
|     | 节奏镲   | jiazigu_p7   |
|     | 镲片    | jiazigu_p8   |

### 音频文件名对照表(英文):

| 音频类型       | 音频名称             | 音频调用名称       |
|------------|------------------|--------------|
|            | Hello            | dazhaohu_e0  |
| Greet      | Goodbye          | dazhaohu_e1  |
|            | Reject           | dazhaohu_e2  |
|            | Welcome          | dazhaohu_e3  |
|            | Nice to meet you | dazhaohu_e4  |
|            | Angry            | biaoqing_e0  |
|            | Arrogant         | biaoqing_e1  |
|            | Wheep            | biaoqing_e2  |
| Expression | Excited          | biaoqing_e3  |
|            | Frightened       | biaoqing_e4  |
|            | Wronged          | biaoqing_e5  |
|            | Нарру            | biaoqing_e6  |
|            | Lovely           | biaoqing_e7  |
|            | Laugh            | biaoqing_e8  |
|            | Sad              | biaoqing_e9  |
|            | Wrathful         | biaoqing_e10 |
|            | Tricky           | biaoqing_e11 |
|            | Tremble          | dongzuo_e0   |
|            | Act cute         | dongzuo_e1   |
| Action     | Agree            | dongzuo_e2   |
|            | Hug              | dongzuo_e3   |
|            | Yawn             | dongzuo_e4   |
|            | Cheer up         | dongzuo_e5   |
|            | Sleep            | dongzuo_e6   |
|            | Rest             | dongzuo_e7   |
|            | Sneak into       | dongzuo_e8   |