

SEQUENCE LISTING

<110> PEETERS, PIETER J.
GOHLMANN, HINRICH W. H.
SWAGEMAKERS, SIGRID M. A.
KASS, STEFAN U.
STECKLER, THOMAS H. W.
FIERENS, FREDERIK L. P.

<120> CRH RESPONSIVE GENES IN CNS

<130> PRD-2009-USPCT1

<140> 10/533,054
<141> 2005-04-27

<150> PCT/EP03/11792
<151> 2003-10-23

<150> PCT/EP02/12274
<151> 2002-10-31

<160> 65

<170> PatentIn Ver. 3.3

<210> 1
<211> 171
<212> DNA
<213> Mus musculus

<400> 1
ttttttttt ttttttacc aaaaatatca ttttattctt taatggaaaa aggcatataat 60
attcaaacaa aggaatcaca tttaataac cctatagata agaaacaggc tccaggaaca 120
ttcaaggcagc agtcatgagg gaaaaatgtt tcaatagccc agttttcttc a 171

<210> 2
<211> 365
<212> DNA
<213> Mus musculus

<400> 2
ttttttttt ttttttcca acttaacgtt ttttttaatt tagaatataa ttttaacac 60
aaaaggcagt cattttattc agcaaaataa atttaacaag ttcatttaaa taaggtaaat 120
tctagactct gtaacttttt ttttccttag ctacttgctt ttctgcacct tggaatccat 180
agctgctata ctaggttgct ttccaaggta acacagctgt aagggaagga actgttcatt 240
cattcatata tatatatata tatatatata tatatatata tatataattt gaatgactca 300
aatacaccca cgttctcatt caaccaccag tgtgttttagt gaagcagaag gagggagcac 360
aggga 365

<210> 3
<211> 210
<212> DNA
<213> Mus musculus

```

<400> 3
ttttttttt ttttttgga catgaagtgt gtttatttagg aagaacactc caagcactca 60
caaatggctt tcacaaacac ttagcctagg ctggaacaca aaaggatatac acaacagagt 120
ccattgggtt ttacttgctt acatcaccaa agaatgttca tggcagttaa tttcaggct 180
gtaaaaacta catctatggc accaacatggc 210

<210> 4
<211> 234
<212> DNA
<213> Mus musculus

<400> 4
atatttaact caaggcagag gaaagattat cccagcta atattccattc agctgatgaa 60
atacttgatt attagagagc agtcccaata agcagctta agtttccgt attcattta 120
aacatcgatg cattaccttc aatatggtaa agatgtttt ttcagtgaa tggttcatat 180
tttggtgca g tggatgt tcacaaaaaa atgttacaat aataaactaa cata 234

<210> 5
<211> 306
<212> DNA
<213> Mus musculus

<220>
<221> modified_base
<222> (269)
<223> a, c, t, g, unknown or other

<400> 5
gaaggcaaaag atcatttgca tggtttat taaaatgtaa ac agctgttaa ag atagaaggc 60
agatgtttc tttattgtaa agacagcgt tacaaaagag ttacaagtta caagtcaa at 120
aaatatgaca ttaagaat ttgggttgg tttgttaaa aaataacaaca cccccctccc 180
caggtattt tgagaagtcc caagaaactc aagataaaaa aatctgtctc atgggcgaga 240
atacatttct ttcagttctc tggaactgnt tgtcagacac gggaaatttgg tcatgattc 300
aaaaga 306

<210> 6
<211> 435
<212> DNA
<213> Mus musculus

<220>
<221> modified_base
<222> (20)
<223> a, c, t, g, unknown or other

<400> 6
ttttttttt ttttttggn ttttatcaca ttattgtta catttat tttttttt 60
cagtaataga tgaggcacaa acacccctcg ctctccatc actgcaacag aaaggacaat 120
agtcaagggt aacagtggaa taaaaaaaaa aaaaaaaaaa acaaacgcct aaggctggg 180
agaaaacctga ctacaatcta cgtggagaaa cttgttaatg actccagcct ggtctccga 240
ttgcaccact tcacagacca cagaggagg gtgtcccagc agaaaaggaca cagccaggct 300
cagctcgcca ggggggtggg cctctgccc tccacctgctt ttctgctcag ctatgtcaag 360
ttcacatctt gctactcaca tgctgccttc tggtttcaa agtgcgtt acaaacggc 420
agtctccctcg tgccg 435

```

```
<210> 7
<211> 583
<212> DNA
<213> Mus musculus

<220>
<221> modified_base
<222> (390)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (481)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (505)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (509)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (514)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (527)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (534)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (551)
<223> a, c, t, g, unknown or other

<220>
<221> modified_base
<222> (569)
<223> a, c, t, g, unknown or other

<400> 7
gtggcaacac aggaaactca cagaccttgg tttatttagat tatttaata tgccagacca 60
atagaaaagga aggacggagc acacaggAAC acctgtgttt gcaggacaga gggcagatgt 120
ccacagcctt gggcatgcat gtatctcctg tgtaattagg caaatgaata cttaaatacc 180
acacaaccgc cagacttggg ggtggggaga atcacaggCC acaggggacc atgctttaaa 240
ggcagtcaGA ggcttAAAT acaggggCTG aaccttCTCA ctttatacaa aacttatata 300
ttaaaAGTAA ggataccACG gtatatacat gcaAGCAGCT ttgggtggag aaaaatgacc 360
```

aagggaggtg gagcctgaat aggaaggcgc tgccatataa tgtctatctt cttcatcctc 420
 acaaagtca ctgggattat agaataaaatc agctggtctc agtaagatat taaaagtc 480
 ngtctggtgt cctaagtgtc taaangccnc cgtnngcagg gaagggncct tttncgagat 540
 actgaaacct ngaaggaaca gctggactng attgtgggtg act 583

<210> 8
 <211> 211
 <212> DNA
 <213> Mus musculus

<400> 8
 ttatggat catttataa tgccaggta atggaaagga aggacagagc acacaggaac 60
 acctgttattt gcaggacgga gggcagatgt ccacagcctt gggcatgat gtatctcctg 120
 ttaatttagg caaataaaata cttaaatacc acagcacagc cagacttggg ggtgggggg 180
 aatcacaggc cacagggac catgcttaa g 211

<210> 9
 <211> 7608
 <212> DNA
 <213> Mus musculus

<400> 9
 ttaataaga agtcaagatc tggggactg tgataggcag cctattttag ttgaatgggg 60
 cttgctctgg tgacccaata gagaatcta caagggatga aaaggtagc catattccca 120
 gaatcaggag cctgtccata attctgttac tatcagtctg gcagacaatg tcccaagctt 180
 ctggcattct ggttagactc cacccccaca gccacctgac tataagctac tataagaggg 240
 gctgcttggc ccctcctcgc tctttagccc tcagggttct tactctctag cctcctcctc 300
 ctctctctct ctctctctcc ctccccat ctccacat ggcacatggct ggttctctc 360
 tcttctacc ttcttcttct tctccctgcc ttcttacaat aaagctctaa aaccataaaac 420
 tgcgtctgtat catgaaggcc tgccatgtt gaactggcat gcttagctt tctcctaagg 480
 agccgagctt aacctccac cagaaggcca tcctgtgtc cagccacaga cctgaccaag 540
 gactctcgcc cgagtggaa ccatccatg ccctctcccc cagccctctc ctcccttcat 600
 ccctggggcc aagtgcacc cccggccctt attctgttct ctgttctt gctgtatcca 660
 gcctgggatg tcggaggccg agaatctgtt acctggggct gcccctgtc taccacccgc 720
 tgggtgggt tagtggttc ctacagcaga caccacccgg gggccgtgt gaaagcgtga 780
 acagtccccc tccgaccacc cgccccagagc actggatctc tggcggtaca cgggttctc 840
 cccactcccc tctttcccccc acatccacag ccctgcaaaag atcaggctt gcaagacacca 900
 ctgttgcctt ttggcgctt ctgaagcaat gatcaacccc accgcgttct tcctggggcc 960
 acgtctcctt ttagctgttt gcagacaaaat ttccaaagac agcagaaaac tttcatgctc 1020
 tggactgaa agagaaggaa ttggctata agggttcctc ctttcacaga attgtccctc 1080
 gattcatgtg ccagggttgt gacttcacac gccgtaatgg cactgtatggc aggtccatct 1140
 acggagagaa atctgaggat gacaattca tcctgaagca tacaggctt ggcacatctgt 1200
 ccatggcaaa tgctggacca aacacaaaatg gttcccagtt ttttatctgc actgccaaga 1260
 ctgaatggct cgatggcaag catttggtct ttggaaaggt gaaagaaggc aatgaacatt 1320
 gtcgaagcca tggagcgttt tgggtccaag aatggcaaga ccagcaagaa gatcaccatt 1380
 tggactgtg gacaagtcta atttcttttgc atttctggc attttaccca tcaaaccatt 1440
 ctttctgtat ctcataagaa cacccttacc ccatctgctc tcaatgtctt gtaatctctg 1500
 ctctcaactga agtctttgg gttccatatt ttcccttattc cccttcaagt ctagctggat 1560
 tgcaaagttt agcttatgtat tatgaataaa aactaaataa gaaaaaaaaaag tcaagatcag 1620
 atttagaatt taaaacaact atacagaggtt accattaact aaattcaatt tatatgttct 1680
 taagatgtat aaaaaataaa gtttggat ttcgtgaaat ttttggat ttttggat ttttggat 1740
 gaaaaaaaaa ataaaaaggaa ttttttgc aaaaacacata tccaccaagt agtttatcta 1800
 aatatataaa agaatatgtat tatagcacag cagaaaggaa aaaaaaaaaacc ccaactttaa 1860
 agtaggaaaaa tatttacata gtcactgtcat gaacggattt caaaacccag aaaaatcacat 1920
 taaaaaaatg ttcaactgtcc tttagtgcgaaat gggaaatgca aatttgcgtt tggatggat 1980
 ctggtttcca agagatcctt tgagaacagt gtggtagctg ctgctaaaga atcaggcaaa 2040

gccaaggat gctcacattt aggaggctt tgcgtgggg gttgggagga tgactgtaa 2100
atactgggaa agcaaaaatga gctaagtctt tacagcaact gtcatttgt agagtaaac 2160
attagaaacg gacggcagg tttgtttaga ttccacaagg tggtggaaact agtcgcata 2220
gtagttcaga cttgaaggca cacacgtatg gggacagttc tgggtttac gataaacagg 2280
tatgctgcc tccagctagc acagcactag gctaaagcgt actgaccct tgcgttccgt 2340
gggagctgca gagtgggatg catgcgttgc gagctgaggc tcaagctcg ctggcagaag 2400
agcagggtt gccttgcag actccagggt ctcttctct tgcagctgg gaaagtgc 2460
ctttatttgg tctataaaagc cggggggggg ggggggggg ggaatctcaa ggtgaagagg 2520
aagttcacag acccctctaa cgcccttattt agaaccttcc agctatctc tcataacttgc 2580
acactgagct ggacacacagt ataggcaagt tctattcgca tcacccctctc agttccgtc 2640
tccctggta tgcagccctc atattttagt agatgtgacc ttaggaaacc aaaatctct 2700
ttaagatctt actaactgtt tgcctgtca gctttccac attgatctg tagccccctc 2760
gaggaggtg aaaaaaaaaa cccattctgg tctgggtcgt acattctgag aaacacactg 2880
gcactctgta aggttccctt tccctagcta cactgtctgt cacattgtatg ctctgagtag 2940
tgggggtt gagagttggc atatatttc actcacactc tgtatctt cctagttgg 3000
ggacagggtt catctaggaa catattctag tctgcatttg gctctctgtt taaatataaa agaaaactaa aacacaccct 3060
tcagacgcct atgtctgaaa aatctggcat ttccgtggg ttttcttaa ggaggccctc 3120
atttgttaacc aacaccatgc ttcctttaag gaaatcaatc tcaatgcctt attatccctc 3180
cctttcttt cctcccgatt tgaggctgca gttgccttt ttttcttat ccctgctga 3240
acctgaaaaa ccctctctt tctacagttt tctgttccca ggccccctg acttccttta 3300
gagcatgggg gggggggggg atcaggattt tgatgtgtga actgggagga tcttgaccta 3360
ctccgctaac ccagtggcct cttcccccacg gcagcctgtc cccgcttctt ctctaaataa gagaagagac aagttagtca ttcaaatgtatg tggctttttg 3480
aattacgggt gtgggtaa gcaaggatcc tccaggttcc tccagttccct gccttatttc agctgacttag 3600
gcgggtaagg atgtagatg tgggttaggtt aaaaataagac ctgacagaca gtcaagaattt 3660
tgatgagttc atgaaagctc acccccccattt tttctgcgc aaccctggaaag gtactgtttt ctctttaact 3720
ctgtattttt atccttagaa aacttttttgc tttttttttt tttttttttt tttttttttt 3780
agcacatgt gtaatttttgc tttttttttt tttttttttt tttttttttt tttttttttt 3840
gtattttctt gccttcttgc atgtgaagct tttttttttt tttttttttt tttttttttt 3900
tgcctatggc tagtgagttt tttttttttt tttttttttt tttttttttt tttttttttt 3960
caattctgg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4020
ctgcgcttgc tccctttgtc tgaccaaacc aactgtgatt tttttttttt tttttttttt 4080
gcacattcaa gaacacagag tagatgacat aaactgttaa tttttttttt tttttttttt 4140
tcccattctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4200
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4260
tagatgacat aaactgttaa tttttttttt tttttttttt tttttttttt tttttttttt 4320
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4380
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4440
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4500
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4560
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4620
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4680
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4740
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4800
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4860
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4920
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc agagtatttgc accatgttttca tttttttttt 4980
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc accatgttttca tttttttttt 5040
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc accatgttttca tttttttttt 5100
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc accatgttttca tttttttttt 5160
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc accatgttttca tttttttttt 5220
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc accatgttttca tttttttttt 5280
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc accatgttttca tttttttttt 5340
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc accatgttttca tttttttttt 5400
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc accatgttttca tttttttttt 5460
tcccaatctc tccacagaca gaaggagcca gagctaacat ccagagccaa acttgcaggc accatgttttca tttttttttt 5520

tttcaagat atgtccaggc acagctaggc atataaaat cctaagatag aaaataattt 5580
tataaataat ttccctcatg atagaagttt ggcccttgatc tagacctgta gagacaattt 5640
taaaaataga aatatttaga tgatagtgat atgggtaagt ttgattatta ctcttgagga 5700
tgtctgggt tcccttacaa actcctgcta agattttcta gctgccttgc tagtgcctt 5760
ctggctgctg gtacagaata gattgctcac ttctttacta tcacagtcag aactattctg 5820
tacttaaata cacttcttct cacatgtaga atgttggaga gcagggagca gagatttttc 5880
ttgaataatc aacaagaaaa agagttcatt tctaacaatt atcctaaagt tatctttta 5940
tgtagtagcct tgattccctt cttgtttata caaagctaga gcaagctcat ctttagaaat 6000
cctgactgtg gtcaggcaag actgagttct gcaagaactc agattacaga aaggcatact 6060
gaattctgag ggttacccaa tgcttggAAC gtcttgggt aaaaacctaa tactttttt 6120
ttttagtaat tcttcacttt cagagtaaga gcatcaaaaat tcagtgcccc tgccacctaa 6180
gcatctagat tatgttcaca tgagctaaac atgacagtca aagttagagag aacaccgtac 6240
tggcatgtcc ttgtcgagct taaaataagt cactcctgat accatgagct caaaggcttg 6300
tatTTTctaa agaaacccat caggattgtg gatagaaaac tgttatgaaa atctatgaaa 6360
aatcgaatc ccttccaag cagacaattt gggccacagt gacatgatgc gttttcttg 6420
gatccaattt ctctctggtc ccttagcaat ttacaggaa aggaatttt taaaccatag 6480
tttccaattt agtttctact tcctttcat cttcataaat ttgaataaga tgagcatgct 6540
tttcaactt taaaacatgag catcttttg ttgggtttagg aaacaatgaa tatatgcaac 6600
atTTAatgtc tgctctatgtc ctcattttt ggtctaataat ttaagtctata taaatgacaa 6660
tgTTTaaaat ttccagcagtg aatggctta ggtaaaacga ttcaatttac tttggactat 6720
ttcagactct taccttggg gatategtt ctgttcgctg ttatgaaaag gcatagaaga 6780
gatgacagga ctTTTgacaa ctgggttcc tggagtccca gagttagcca gctaatgaag 6840
cactggtcac taattataag ttgtcttgc gtgtggaggt agaaaaattt aattctaaga 6900
tgttcttac caagcaattt atgggatttt gatatgcaaa ttactgttt tccattttt 6960
ttaaataatt ttacaatact ttttataagaa atgggaatat actttagact ttctttggaa 7020
tgcaaaccaa attgaaataa aaaatacaca cacatatgat agctgggtgt catttttaat 7080
accgtcaatc tatcttgaat ttccataca gtagccttgc ttatagcata aagttaggct 7140
ggaaaaaaagt ctgttatct gtataagata ctcatcata agatagctt atgaccggaga 7200
aaaatatgg aatgccacat atttgagact atgatgaaga acctggaaatt agtaagttca 7260
tctggtcagg acctaaggaa gttggttata gtaagactac aaaaatgatc ttttgcattt 7320
aaaaacagta taaaaggaaaa aaaaacaggc ttcaacatgt gaccacaggt aatataatc 7380
aagtgcctatg gaatcacagt gccattttac aaagttttat agcaaagaca attgaaaaaa 7440
agaagtcaat ttatcctcc actcttagca cgagtctcca aacactgcac tacactgaac 7500
tttacaaagt caagaatggt acaatgaagc ctatacagag aatccatgaa aatgttccaa 7560
ttccactttt ttccagggggtt aggaagaaca ggttaatttga acagagct 7608

```
<210> 10  
<211> 131  
<212> PRT  
<213> Mus musculus
```

```

<400> 10
Met Val Asp Ala Phe Cys Ala Thr Trp Lys Leu Thr Asp Ser Gln Asn
      1           5           10          15

Phe Asp Glu Tyr Met Lys Ala Leu Gly Val Gly Phe Ala Thr Arg Gln
      20          25          30

Val Gly Asn Val Thr Lys Pro Thr Val Ile Ile Ser Gln Glu Gly Gly
      35          40          45

Lys Val Val Ile Arg Thr Gln Cys Thr Phe Lys Asn Thr Glu Ile Asn
      50          55          60

Phe Gln Leu Gly Glu Glu Phe Glu Glu Thr Ser Ile Asp Asp Arg Asn
      65          70          75          80

```

```
<210> 11  
<211> 3648  
<212> DNA  
<213> Mus musculus
```

<400> 11
agcacagtgc tgccctccgt aggctccggg ttgtgctggg tgaggcattgg gttgggttgg 60
cccggcggt gcgtgaactg cggagctgga cctagcaggc ttacagttcc tccttagcatg 120
accgagatct gatcagccaa cccgcgcatt gctttttgtg cctggcaactg cagtcgcagg 180
ggcctctca tcgccccaaa ctacagcaact gtcatggcag ctgcctctac ttccagccct 240
gtaatttcac agccccagg t cacagccatg aacaacaac agtgcttcta caatgagtct 300
atgcctctt ttataaaccg g gatggggaaa tatcttagcca cagaatggaa cacagtgagc 360
aagctgtga tggactctggg catcaactgtt tgcgttca tcatgttggc caatctccctg 420
gtcatgttgg caatctacgt caaccggcgc ttccatttcc ctatttatta ctgtatggcc 480
aacctggctg ctgcagactt ctgcgttggg ttggcctact tctacctgtat gtcaataca 540
ggacctaata cccggagact gactgttaac acgtggctcc tccggcaggg cctcattgac 600
accagctgtg cagtttctgt ggccaacactg ctggcttattg ctatcgagag gcacatcagc 660
gtttccgtca tgcagctcca tacacgaatg acaaccggc gctgttgggt ggtattgtt 720
gtcatctgg ctatggccat t gatgggtt gctatggcca ctgtgggttgc gaactgcattc 780
tgtgatatcg atcaactgttc caacatggca cccctctaca gtgactccta cttagtcattc 840
tgggccattt tcaacctggg gacctttgtt gcatgttggg ttctctacgc tcacatcttt 900
ggctatgttc gccagaggac tatgaggatg tctccggcata gttctggacc caggagaaat 960
cgggacacca tgatgagct tctgaagact gtggtcattt tgcttgggtc ctttattgtc 1020
tgctggactc cggatttggg ctgttattt ctggatgtgt gtcgcccgc gtcgatgtc 1080
ctggcctatg agaagttctt cccctctctg gccaggttca actctgttat gaaccccatc 1140
atctactcct accgcgacaa agagatgagc gccaccttca ggcagatcct gtgttgcag 1200
cgcaacgaga accctaatgg cccacggaa ggctctgacc gctctgcctc ctcctcaac 1260
cacaccattc tggctggagt tcacagcaac gaccactctg tggtttagaa ggaagcagcc 1320
ggcctctgtg gatctgtgaa cccaccccta ccccccttattg ccagggcaag gtggggagcc 1380
agaggagatg aggacactcc t gtaacttaac actaaccat ggcagtattt gtccctagac 1440
ccaagagact tgaggatgaa ttatttggc aggccccatc ttctccctt gaaaacagaa 1500
ggggaccgtc ttgtgggttga attgagaaat ggactctggg gtgaccgtgt agcattca 1560
aactagactt aaaagatttt atgtgggtt gcttaagcca ggaaaaaaa atctgctgaa 1620
ttgagtatac aatcgagttt acacaggctt cccctttaaa gaacaaacaa tacattgtcat 1680
ttattaatga gtatgtttat tttttttttt tttttttttt ttttacatga tggagaaaaa 1800
acatagatga gttgtttttt gtgtgttggg tagaaagcaa gcatgttggg tgtgtattca 1860
gtataaaattt gaatgatttt gtatgcctt cttaaagat aaaaggccac tattttaaat cttcttaggaa atagaagaat 1920
cttagaaaaa ccgtattca ttttaggttac agggaaaaacc atatccta at cattttttttt 1980
ttaattaaag taatgaaata tacatgaaag gcaaagtaat gtgagctgtt caccctaaaga 2040
gtgtgtgtc tccaaacgtt ggaggagatg aagctgttagc gttgtccctg catagtgaag 2100
atacccacgt gcgttctcag tgccagaccc tcagtggtt gatccatgaccc ttgtttttaaa gctgttgggtt 2160
ttccaagttt gaaaataata cctacttact atagaaaaact tggaaaattgc agaactgtgtt 2220
gaaaaaaagaa aaaagaaaaga aagattgtt gatatacgacc tggaaagtagc catctttccc 2280
tgctcaccctt cqtatgcctt tagacatata ttatataacct tttttttttt ttacataatc 2340

gggttgatat tgtaaaatgt tttgtactt tttcttcag aattgccagg ttttctatg 2400
 gcatttttt tcaaaaacgt tagcggttat ataataattcc attaatatggc tgtagctcag 2460
 tttathtag accattcctg tattgttgac tatgttttg gctttttt cataatattg 2520
 gaagaatctt gtgtatataa aactttgcca gtatcattga tgatttactt gggctccatt 2580
 cccatgaagg acctacttt aaaatgtgaa atgcctcat gtgttgtcac tttataaaaa 2640
 gggatattct accctcaaac tgcaggggtg accatgctga caaaaagctc agaaaattacc 2700
 ttttacaaa agaaacacag tggctactt agttgcgaat gggttcttga caagatgttt 2760
 cccaataacc cagaccctta acataactag caaattact ttagtaggaa ctggtgatcc 2820
 ctttctggac acaagaaaac acaaagacat caagcatcag agtgaatcca gcaatgcagt 2880
 accaagcagc ctgggtgggg tgtgctagca actggctgt gtgtggctc cagcaatcac 2940
 ccaatggaca ccctgtgttc agagatgccc agtacagtgt cctggagact aaggtctcta 3000
 atgtcatgt atgaggaaca aggaggaaga agaataatgtcc tgaaggcagg gtggagaggt 3060
 caggaggacg tctgagagaa ggcagtcctg ccaagagtgg cattctaggg aggaggaagg 3120
 cagggtgtgg cttgtgtctg gacagtcatg ggttaggcatt tgacatttgc ctggtgaaa 3180
 aaaaataagt aggccgagat ccagttagca ggacaaagat tttgctcgag gattccccca 3240
 atccaagaaa tttaaactgg aaatgagtga accgaacttg gacttttatt gattccccctt 3300
 ttatggggga ggtaaggact atttgaattt aaaaagcatac taattgaacc ttaataaaatc 3360
 attctcaatc agtgtttggc gatgtgtgg tctggctgt gcttttttc tattttcgag 3420
 aaggctctgg ctgtgctgt atggcttctc tctctgaccc tcttaacag tctgaggcag 3480
 cccaacaact gttcctttag ctcagatact ggttcctcat ccatgagatt catgagagac 3540
 gtgttacctc aatggaaatga gtactagagc aaggtattta gagagatttt ttttattttt 3600
 tatttattta ttttgaataa aatgtatgtaa taaaataagat aaaataaaa 3648

<210> 12
 <211> 364
 <212> PRT
 <213> Mus musculus

<400> 12
 Met Ala Ala Ala Ser Thr Ser Ser Pro Val Ile Ser Gln Pro Gln Phe
 1 5 10 15

Thr Ala Met Asn Glu Gln Gln Cys Phe Tyr Asn Glu Ser Ile Ala Phe
 20 25 30

Phe Tyr Asn Arg Ser Gly Lys Tyr Leu Ala Thr Glu Trp Asn Thr Val
 35 40 45

Ser Lys Leu Val Met Gly Leu Gly Ile Thr Val Cys Val Phe Ile Met
 50 55 60

Leu Ala Asn Leu Leu Val Met Val Ala Ile Tyr Val Asn Arg Arg Phe
 65 70 75 80

His Phe Pro Ile Tyr Tyr Leu Met Ala Asn Leu Ala Ala Ala Asp Phe
 85 90 95

Phe Ala Gly Leu Ala Tyr Phe Tyr Leu Met Phe Asn Thr Gly Pro Asn
 100 105 110

Thr Arg Arg Leu Thr Val Asn Thr Trp Leu Leu Arg Gln Gly Leu Ile
 115 120 125

Asp Thr Ser Leu Thr Ala Ser Val Ala Asn Leu Leu Ala Ile Ala Ile
 130 135 140

Glu Arg His Ile Thr Val Phe Arg Met Gln Leu His Thr Arg Met Ser
 145 150 155 160
 Asn Arg Arg Val Val Val Val Ile Val Val Ile Trp Thr Met Ala Ile
 165 170 175
 Val Met Gly Ala Met Pro Thr Val Gly Trp Asn Cys Ile Cys Asp Ile
 180 185 190
 Asp His Cys Ser Asn Met Ala Pro Leu Tyr Ser Asp Ser Tyr Leu Val
 195 200 205
 Phe Trp Ala Ile Phe Asn Leu Val Thr Phe Val Val Met Val Val Leu
 210 215 220
 Tyr Ala His Ile Phe Gly Tyr Val Arg Gln Arg Thr Met Arg Met Ser
 225 230 235 240
 Arg His Ser Ser Gly Pro Arg Arg Asn Arg Asp Thr Met Met Ser Leu
 245 250 255
 Leu Lys Thr Val Val Ile Val Leu Gly Ala Phe Ile Val Cys Trp Thr
 260 265 270
 Pro Gly Leu Val Leu Leu Leu Asp Val Cys Cys Pro Gln Cys Asp
 275 280 285
 Val Leu Ala Tyr Glu Lys Phe Phe Leu Leu Leu Ala Glu Phe Asn Ser
 290 295 300
 Ala Met Asn Pro Ile Ile Tyr Ser Tyr Arg Asp Lys Glu Met Ser Ala
 305 310 315 320
 Thr Phe Arg Gln Ile Leu Cys Cys Gln Arg Asn Glu Asn Pro Asn Gly
 325 330 335
 Pro Thr Glu Gly Ser Asp Arg Ser Ala Ser Ser Leu Asn His Thr Ile
 340 345 350
 Leu Ala Gly Val His Ser Asn Asp His Ser Val Val
 355 360

<210> 13
 <211> 1038
 <212> DNA
 <213> Mus musculus

<400> 13
 cccagagata agctgacgct gggcaaacccttggggaaag gttgcttcgg gcaaggtagtc 60
 atggcttgaag cagtggaaat cgataaagac aaacccaagg aggcggtcac cgtggcagtg 120
 aagatgttga aagatgtatgc cacagagaag gacctgtctg atctggatc agagatggag 180
 atgatgaaga tgattggaa acataagaac attatcaacc tcctggggc ctgcacgcag 240
 gatggacctc tctacgtcat agttgaatat gcatcgaaag gcaaccccg ggaataacctc 300
 cgagccccga ggcccacctgg catggagtac tcctatgaca ttaaccgtgt ccccgaggag 360
 cagatgaccc tcaaggactt ggtgtcctgc acctaccagc tggcttagagg catggagttac 420
 ttggcttccc aaaaatgttat ccatcgagat ttggctgcca gaaacgtgtt ggtAACAGAA 480
 aacaatgttga tgaagatagc agactttggc ctggccaggaa atatcaacaa catacgactac 540

tataaaaaga ccacaaatgg gcgacttcca gtcaagtgg a tggctcctga agccctttt 600
 gatagagttt acactcatca gagcgatgtc tggcccttcg ggggttaat gtgggagatc 660
 ttacttttag gggctcacc ctacccaggg attcccgtgg aggaacttt taagctgctc 720
 aaagagggac acaggatgg a caagccacc aactgcacca atgaactgta catgatgatg 780
 agggattgtt ggcacatgtt accctcacag agacccacat tcaagcagtt ggtcgaagac 840
 ttggatcgaa ttctgactct cacaaccaat gaggaatact tggatctcac ccagcctctc 900
 gaacagtatt ctccatgtt ccccgacaca agtagctttt gttttcagg ggacgattct 960
 gtgttttctc cagacccat gccttatgaa ccctgtctgc ctcagtatcc acacataaac 1020
 ggcagtgtt a aacatga 1038

<210> 14
 <211> 345
 <212> PRT
 <213> Mus musculus

<400> 14
 Pro Arg Asp Lys Leu Thr Leu Gly Lys Pro Leu Gly Glu Gly Cys Phe
 1 5 10 15
 Gly Gln Val Val Met Ala Glu Ala Val Gly Ile Asp Lys Asp Lys Pro
 20 25 30
 Lys Glu Ala Val Thr Val Ala Val Lys Met Leu Lys Asp Asp Ala Thr
 35 40 45
 Glu Lys Asp Leu Ser Asp Leu Val Ser Glu Met Glu Met Met Lys Met
 50 55 60
 Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu Gly Ala Cys Thr Gln
 65 70 75 80
 Asp Gly Pro Leu Tyr Val Ile Val Glu Tyr Ala Ser Lys Gly Asn Leu
 85 90 95
 Arg Glu Tyr Leu Arg Ala Arg Arg Pro Pro Gly Met Glu Tyr Ser Tyr
 100 105 110
 Asp Ile Asn Arg Val Pro Glu Glu Gln Met Thr Phe Lys Asp Leu Val
 115 120 125
 Ser Cys Thr Tyr Gln Leu Ala Arg Gly Met Glu Tyr Leu Ala Ser Gln
 130 135 140
 Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Thr Glu
 145 150 155 160
 Asn Asn Val Met Lys Ile Ala Asp Phe Gly Leu Ala Arg Asp Ile Asn
 165 170 175
 Asn Ile Asp Tyr Tyr Lys Lys Thr Thr Asn Gly Arg Leu Pro Val Lys
 180 185 190
 Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val Tyr Thr His Gln Ser
 195 200 205
 Asp Val Trp Ser Phe Gly Val Leu Met Trp Glu Ile Phe Thr Leu Gly
 210 215 220

Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu Leu Phe Lys Leu Leu
 225 230 235 240
 Lys Glu Gly His Arg Met Asp Lys Pro Thr Asn Cys Thr Asn Glu Leu
 245 250 255
 Tyr Met Met Met Arg Asp Cys Trp His Ala Val Pro Ser Gln Arg Pro
 260 265 270
 Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg Ile Leu Thr Leu Thr
 275 280 285
 Thr Asn Glu Glu Tyr Leu Asp Leu Thr Gln Pro Leu Glu Gln Tyr Ser
 290 295 300
 Pro Ser Tyr Pro Asp Thr Ser Ser Ser Cys Ser Ser Gly Asp Asp Ser
 305 310 315 320
 Val Phe Ser Pro Asp Pro Met Pro Tyr Glu Pro Cys Leu Pro Gln Tyr
 325 330 335
 Pro His Ile Asn Gly Ser Val Lys Thr
 340 345

<210> 15
 <211> 2620
 <212> DNA
 <213> Mus musculus

<400> 15
 ctcgagttct cacggcgtgc accatgagcg gccccgaagt ggtttgcgtc ggatggctcc 60
 gcaagtgcgc cccggagaag aagttgaagc gttatgcgtg gaagagaagg tggtttgtt 120
 tgcgcgtgg ccgtttact ggagacccgg atgccttggaa gtattacaaa aacgatcatg 180
 ccaagaagcc tattcggatt attgatttaa atttatgtca gcaagttgtat gctgggttga 240
 cattcaacaa aaaggagttt gaaaacagct atatcttga tatcaacacc atcgaccgg 300
 ttttctactt ggtggcagat agtgaggaa acatgaacaa gtgggtccgt tttatctgtg 360
 acatctgtgg attcaatccc acagaagaag atcctgtgaa gccgctgact ggctcctcac 420
 aaggccccgt cgattcacct ttgcgtataa gtacagcacc agcctccagt cagatggaaag 480
 cttcttcagt cgcgtcacct ctccttacc aggtcatcag cttccggcca caccaggaca 540
 ccctcgccct ccaggacgat ccacaagact acctcttgcgt gatcaactgt caaagcaaga 600
 agcctgaacc taacagaacc ctctttact ctgccaagcc cacctttct gagacagact 660
 gcaatgacaa cgtcccttcc caccagactc ctgcttcctc ccagagaaaa cacggaatga 720
 atggcttttt gcagcaacaa atgatgtatg actgcccacc gtcccgctg acatctgtct 780
 cgggagagtc caggctctat aacctggcca ggagctattc ccatgacgtg ttgccaaagg 840
 aatccccatc aagcacggag gcccacgggg agctgtacac cttaaacacc ccatctggga 900
 ctgcaggtgt agaaacgcag atgagacatg tattccatcag ttacgacatt ccgccaacac 960
 ctggcaacac ttaccagatc ccacggacat ttccagaaaa cacactggga cagtcatcaa 1020
 agctggacac cattccctgat atccccccac ctggccacc aaagccacat ccaagtcatg 1080
 accggctcc tggggaaacg tggggactcc caegcaccggc ctcggacact gacagcgtt 1140
 actgtatccc tcctccagta ggcacgtgc cctccggag taataccatt tccaccgtgg 1200
 atttgaacaa gttggggaaa gatgttagt ctcagattt ctatgtatatt ccacggacct 1260
 ttccggcga tagatcttagt tccctggaaag gctccatag ccagtataaa atcaaaaagcg 1320
 tggggactcc ggggggtgtc tggggtaag agctggatga gaactacgtt cccatgaacc 1380
 ccaactcgcc acctcgacaa cattccggca gctttaccga gccaaatccag gagccaaact 1440
 atgtgccaat gaccccgagg acctttact tttttccctt tggaaatgcaa gtccctcc 1500
 ctgctcatat gggcttcagg tccagccaa agacccctcc caggaggcca gtccctgtt 1560

ctgactgtga accaccccg gtggatagga atctcaagcc agacagaaaa gtcaagccgg 1620
 cacctttaga cataaaacac 1680
 ccatcaccag gagcttcgct cgggactcct 1740
 ctgtgcacag tacgacatcg agcagcact ctcacatgacag tgaagagaac tatgtcccc 1800
 tgaatccaaa tctgtctggc gaagaccga atctcttgc cagcaacagc cttgatgggg 1860
 gaagcagccc gatgaataaa cccaaaggag acaaacaagt cgaataacctg gatttagacc 1920
 tagattctgg gaagtccacg ccaccacgg aagaaaagag cagtggctt ggcagcagca 1980
 tggcagacga gagggtggat tacgttgtgg tggaccaaca gaagactctg gcccgtgaaga 2040
 gtaccagaga agcttggacg gatgggaggc agtccacaga gtccgagaca cccacaaaga 2100
 atgtgaagtg aagacatgcc gtcgcctcg cggaaagacg agatctgagt gaaaagagag 2160
 atgccaagtg aagatgttcc cactctcagt ggacgcctcg a cagagggga agagagaagg 2220
 atctctaca catgttcaag caaatttaggt tggatgtt gctgtgtgtt attggattta 2280
 taacgtgtaa ataacccggg gaaatagtgt ttttagttca cagagaagct ttctgtccct 2340
 aattaacaca cctgttagtat tactatactg atgcacgtt tcatttaaaa ctttggttt 2400
 ggtctcccg atctaccta acagacttc cttgggaggt ctggcct cctcacacta 2460
 ctctatataa caatactaag tgaactgagc tacttgaat tctggaaatt ccagttgaag 2520
 ctacaggct aacaccatta aaacaagaag taagttgaca cattcgctt tctcttgaag 2580
 gtggtagcca ttagcttaag ctgtagaaca tagttggccg 2620

<210> 16

<211> 695

<212> PRT

<213> Mus musculus

<400> 16

Met	Ser	Gly	Gly	Glu	Val	Val	Cys	Ser	Gly	Trp	Leu	Arg	Lys	Ser	Pro
1					5				10					15	

Pro	Glu	Lys	Lys	Leu	Lys	Arg	Tyr	Ala	Trp	Lys	Arg	Arg	Trp	Phe	Val
									25					30	

Leu	Arg	Ser	Gly	Arg	Leu	Thr	Gly	Asp	Pro	Asp	Val	Leu	Glu	Tyr	Tyr
									35				40		45

Lys	Asn	Asp	His	Ala	Lys	Lys	Pro	Ile	Arg	Ile	Ile	Asp	Leu	Asn	Leu
									50				55		60

Cys	Gln	Gln	Val	Asp	Ala	Gly	Leu	Thr	Phe	Asn	Lys	Lys	Glu	Phe	Glu
									65				70		80

Asn	Ser	Tyr	Ile	Phe	Asp	Ile	Asn	Thr	Ile	Asp	Arg	Ile	Phe	Tyr	Leu
									85				90		95

Val	Ala	Asp	Ser	Glu	Glu	Asp	Met	Asn	Lys	Trp	Val	Arg	Cys	Ile	Cys
									100				105		110

Asp	Ile	Cys	Gly	Phe	Asn	Pro	Thr	Glu	Glu	Asp	Pro	Val	Lys	Pro	Leu
									115				120		125

Thr	Gly	Ser	Ser	Gln	Ala	Pro	Val	Asp	Ser	Pro	Phe	Ala	Ile	Ser	Thr
									130				135		140

Ala	Pro	Ala	Ser	Ser	Gln	Met	Glu	Ala	Ser	Ser	Val	Ala	Leu	Pro	Pro
									145				150		160

Pro	Tyr	Gln	Val	Ile	Ser	Leu	Pro	Pro	His	Pro	Asp	Thr	Leu	Gly	Leu
									165				170		175

Gln Asp Asp Pro Gln Asp Tyr Leu Leu Leu Ile Asn Cys Gln Ser Lys
 180 185 190
 Lys Pro Glu Pro Asn Arg Thr Leu Phe Asp Ser Ala Lys Pro Thr Phe
 195 200 205
 Ser Glu Thr Asp Cys Asn Asp Asn Val Pro Ser His Gln Thr Pro Ala
 210 215 220
 Ser Ser Gln Ser Lys His Gly Met Asn Gly Phe Leu Gln Gln Gln Met
 225 230 235 240
 Met Tyr Asp Cys Pro Pro Ser Arg Leu Thr Ser Val Ser Gly Glu Ser
 245 250 255
 Ser Leu Tyr Asn Leu Pro Arg Ser Tyr Ser His Asp Val Leu Pro Lys
 260 265 270
 Glu Ser Pro Ser Ser Thr Glu Ala Asp Gly Glu Leu Tyr Thr Phe Asn
 275 280 285
 Thr Pro Ser Gly Thr Ala Gly Val Glu Thr Gln Met Arg His Val Ser
 290 295 300
 Ile Ser Tyr Asp Ile Pro Pro Thr Pro Gly Asn Thr Tyr Gln Ile Pro
 305 310 315 320
 Arg Thr Phe Pro Glu Ser Thr Leu Gly Gln Ser Ser Lys Leu Asp Thr
 325 330 335
 Ile Pro Asp Ile Pro Pro Pro Arg Pro Pro Lys Pro His Pro Ser His
 340 345 350
 Asp Arg Ser Pro Val Glu Thr Cys Gly Val Pro Arg Thr Ala Ser Asp
 355 360 365
 Thr Asp Ser Ser Tyr Cys Ile Pro Pro Pro Val Gly Met Thr Pro Ser
 370 375 380
 Arg Ser Asn Thr Ile Ser Thr Val Asp Leu Asn Lys Leu Arg Lys Asp
 385 390 395 400
 Ala Ser Ser Gln Asp Cys Tyr Asp Ile Pro Arg Thr Phe Pro Ser Asp
 405 410 415
 Arg Ser Ser Ser Leu Glu Gly Phe His Ser Gln Tyr Lys Ile Lys Ser
 420 425 430
 Val Leu Thr Ala Gly Gly Val Ser Gly Glu Glu Leu Asp Glu Asn Tyr
 435 440 445
 Val Pro Met Asn Pro Asn Ser Pro Pro Arg Gln His Ser Gly Ser Phe
 450 455 460
 Thr Glu Pro Ile Gln Glu Pro Asn Tyr Val Pro Met Thr Pro Gly Thr
 465 470 475 480

Phe Asp Phe Ser Ser Phe Gly Met Gln Val Pro Pro Pro Ala His Met
 485 490 495

Gly Phe Arg Ser Ser Pro Lys Thr Pro Pro Arg Arg Pro Val Pro Val
 500 505 510

Ala Asp Cys Glu Pro Pro Pro Val Asp Arg Asn Leu Lys Pro Asp Arg
 515 520 525

Lys Val Lys Pro Ala Pro Leu Asp Ile Lys Pro Leu Ser Glu Trp Glu
 530 535 540

Glu Leu Gln Ala Pro Val Arg Ser Pro Ile Thr Arg Ser Phe Ala Arg
 545 550 555 560

Asp Ser Ser Arg Phe Pro Met Ser Pro Arg Pro Asp Ser Val His Ser
 565 570 575

Thr Thr Ser Ser Asp Ser His Asp Ser Glu Glu Asn Tyr Val Pro
 580 585 590

Met Asn Pro Asn Leu Ser Gly Glu Asp Pro Asn Leu Phe Ala Ser Asn
 595 600 605

Ser Leu Asp Gly Gly Ser Ser Pro Met Asn Lys Pro Lys Gly Asp Lys
 610 615 620

Gln Val Glu Tyr Leu Asp Leu Asp Leu Asp Ser Gly Lys Ser Thr Pro
 625 630 635 640

Pro Arg Lys Gln Lys Ser Ser Gly Ser Gly Ser Ser Met Ala Asp Glu
 645 650 655

Arg Val Asp Tyr Val Val Asp Gln Gln Lys Thr Leu Ala Leu Lys
 660 665 670

Ser Thr Arg Glu Ala Trp Thr Asp Gly Arg Gln Ser Thr Glu Ser Glu
 675 680 685

Thr Pro Thr Lys Asn Val Lys
 690 695

<210> 17
 <211> 1565
 <212> DNA
 <213> Mus musculus

<400> 17
 gtcgaccac gcgtccgggc ggccggctgcg ggtgggtggac ctgcagacgg ccgtcgccca 60
 cacctcgctc tctcttgggc cggcgatcc ttttgtctct ccgagccgc aaggtcgcag 120
 agcaggcgcg gcggctgcgg gacgcaaact cccgctctct cggtcacctc cccagcctcg 180
 gccaccgcag aacctgggtt cgagaagcca gcggaccgcg tccagctcca gagccggttt 240
 agtctccact gccagctgcc atgggaagc agaacagcaa gctgcgtcct gaggtgctgc 300
 aggacctgcg ggaacacacg gaattcaccg accatgagct tcaggagtgg tacaagggtt 360
 tcctcaagga ctggccccact ggccacactga ctgtggacga gttcaagaag atctacgcca 420
 acttcttccc ctacggcgat gcctccaagt tcgctgaaca cgtctccgc accttcgaca 480
 ccaacagcga tggcaccatc gacttccggg agttcatcat tgctctgagt gtgacctctc 540

```

ggggcaagct ggaacagaag ctcaagttgg ccttagcat gtacgacctg gacggcaatg 600
gctacatccag ccgcagtcaa atgctggaga tagtgcaggc catctacaag atggtgtcct 660
ccgtgatgaa gatgccttag gacgagtcac cgccccagaa gcgaacagac aagatcttca 720
ggcagatgga cacaacaat gatggcaaac tgcccctgga agaattcatc aaagggtgcca 780
agagcgaccc atccattgtc cggttgcgtc achtgtatcc cagcagtgtc agccagttct 840
gaggggaatg ggctttgga catttgcgtgaa aacacacaggc ttggcctgcc atcttcagct 900
ttgcttgtaa aagtggatt ctccgtgatc tctccctgtct tcccaggacc tgggtccagg 960
cagcaatccg accctcctgaa cctggccaaac tgggtttcc tcctcccttcca gtccaggctg 1020
gtcccttcca atggttcaag tgggttcggc tggcgggtct cttccctgccc acagagggcc 1080
tggcggccct taaggacacc agacaggact ttccgtatc ttaccaagac cagctaattt 1140
attctatgtat cccaggtgac ttgtgtggaa tgaaaaagat ggagagtaga caggcaagcc 1200
cttccctgtgc atggcttccac cttccctgtt cattttctct gaccaaagcc gtttgcattt 1260
ataacccgtg gtatcccttac ttttaatata tgatgttattt gtatggtgag atggactata 1320
atgttcagcc cctgtattta atgcctctga ctgccttga agcatggtcc cctgtggcct 1380
gtgattcccc ccaccccccac gtctggctgt gctgtggtat ttatgcattt atgatttgcc 1440
tgattccaca ggagatacat gcatgcccag ggctgtggac atctgccttc cgtccctgaa 1500
atgcagggtgt ttctgtgtgc tctgtcttc ctgtcgattt gtatggcata taaaaatgtat 1560
caaat

```

<210> 18
<211> 193
<212> PRT
<213> *Mus musculus*

<400> 18
 Met Gly Lys Gln Asn Ser Lys Leu Arg Pro Glu Val Leu Gln Asp Leu
 1 5 10 15
 Arg Glu His Thr Glu Phe Thr Asp His Glu Leu Gln Glu Trp Tyr Lys
 20 25 30
 Gly Phe Leu Lys Asp Cys Pro Thr Gly His Leu Thr Val Asp Glu Phe
 35 40 45
 Lys Lys Ile Tyr Ala Asn Phe Phe Pro Tyr Gly Asp Ala Ser Lys Phe
 50 55 60
 Ala Glu His Val Phe Arg Thr Phe Asp Thr Asn Ser Asp Gly Thr Ile
 65 70 75 80
 Asp Phe Arg Glu Phe Ile Ile Ala Leu Ser Val Thr Ser Arg Gly Lys
 85 90 95
 Leu Glu Gln Lys Leu Lys Trp Ala Phe Ser Met Tyr Asp Leu Asp Gly
 100 105 110
 Asn Gly Tyr Ile Ser Arg Ser Glu Met Leu Glu Ile Val Gln Ala Ile
 115 120 125
 Tyr Lys Met Val Ser Ser Val Met Lys Met Pro Glu Asp Glu Ser Thr
 130 135 140
 Pro Glu Lys Arg Thr Asp Lys Ile Phe Arg Gln Met Asp Thr Asn Asn
 145 150 155 160
 Asp Gly Lys Leu Ser Leu Glu Glu Phe Ile Lys Gly Ala Lys Ser Asp
 165 170 175

Pro Ser Ile Val Arg Leu Leu Gln Cys Asp Pro Ser Ser Ala Ser Gln
 180 185 190

Phe

<210> 19
 <211> 1350
 <212> DNA
 <213> Mus musculus

<400> 19
 ggatgagaca gaaggataga gaggaggaga gagagagaga gaagagaagc aaccagaaat 60
 aggccgc当地 taaaaggag ccgcacttat ctgaagcctc aaggggcctg agccaggtcc 120
 ctgttgc当地 gcagttatga aaaattacct cttccgc当地 ctgggtgc当地 ccctggc当地 180
 ctactactat tctacaaatg aagagttcag accagaaatg ctccagggaa agaaaagtat 240
 tgtcaactggg gccagcaaag ggattgaaag agaaaatggca tatcatctgt caaaaatggg 300
 agccc当地 gtattgactg ccaggtc当地 ggaaggctc cagaaggtag tgtctcgctg 360
 ccttgaactc ggagcagc当地 ctgctc当地 cattgctggc actatgaaag acatgacatt 420
 tgc当地 ggcaaa tttattgtca aggc当地 gggaaagc gctcatggc ggactggaca tgcttattct 480
 aaaccacatc actc当地 gagacct cgctgtctc cttccatgac gacatccact ctgtgc当地 540
 agtcatggag gtcaacttcc tcagctacgt ggtcatgagc acagccgc当地 tgcccatgct 600
 gaagcagagc aatggcagca ttgccgtcat ctc当地 ctttgc当地 gctggaaaaa tgacccagcc 660
 tatgattgct cc当地 tactctg caagcaagtt tgctctggat gggttctttt cc当地 cattag 720
 aacagaactc tacataacca aggtcaacgt gtccatcact ctctgtgtcc ttggc当地 cat 780
 agacacagaa acagctatga aggaaatctc tggataatt gacccctag ct当地 tccccaa 840
 ggaggagtgcc cccctggaga tcatcaaagg cacagctctc cgccaaaagcg aggtgtacta 900
 tgacaaaatttgc ccttgc当地 caatcctctc tggaaaccca ggaaggaaaga tcatgaaatt 960
 ttttccatc ccatattata ataaggacat gtttgc当地 aacttagaaac tc当地 tggagccc 1020
 tggtgatgg tcttagaaaca gtc当地 cctgc当地 atacttc当地 aagccctacc cacaaggta 1080
 tctttccaga gatacacaaa ttttgggta cacctcatca tgagaaatttgc当地 acact 1140
 tgc当地 acatgtca aatgttaatt gtaataaaatg tc当地 caaaacca ct当地 tgggc当地 ct当地 gatgtga 1200
 acttgatgtt aactatggat ataaacacat agtggatgtca tc当地 ggcttac ctc当地 acactgaa 1260
 atgaaacaat gataactaat gtaacattaa atataataaa ggtatataatca acttc当地 taaa 1320
 tgcaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 1350

<210> 20
 <211> 292
 <212> PRT
 <213> Mus musculus

<400> 20
 Met Ala Val Met Lys Asn Tyr Leu Leu Pro Ile Leu Val Leu Ser Leu
 1 5 10 15

Ala Tyr Tyr Tyr Tyr Ser Thr Asn Glu Glu Phe Arg Pro Glu Met Leu
 20 25 30

Gln Gly Lys Lys Val Ile Val Thr Gly Ala Ser Lys Gly Ile Gly Arg
 35 40 45

Glu Met Ala Tyr His Leu Ser Lys Met Gly Ala His Val Val Leu Thr
 50 55 60

Ala Arg Ser Glu Glu Gly Leu Gln Lys Val Val Ser Arg Cys Leu Glu
 65 70 75 80

Leu Gly Ala Ala Ser Ala His Tyr Ile Ala Gly Thr Met Glu Asp Met
 85 90 95

Thr Phe Ala Glu Gln Phe Ile Val Lys Ala Gly Lys Leu Met Gly Gly
 100 105 110

Leu Asp Met Leu Ile Leu Asn His Ile Thr Gln Thr Ser Leu Ser Leu
 115 120 125

Phe His Asp Asp Ile His Ser Val Arg Arg Val Met Glu Val Asn Phe
 130 135 140

Leu Ser Tyr Val Val Met Ser Thr Ala Ala Leu Pro Met Leu Lys Gln
 145 150 155 160

Ser Asn Gly Ser Ile Ala Val Ile Ser Ser Leu Ala Gly Lys Met Thr
 165 170 175

Gln Pro Met Ile Ala Pro Tyr Ser Ala Ser Lys Phe Ala Leu Asp Gly
 180 185 190

Phe Phe Ser Thr Ile Arg Thr Glu Leu Tyr Ile Thr Lys Val Asn Val
 195 200 205

Ser Ile Thr Leu Cys Val Leu Gly Leu Ile Asp Thr Glu Thr Ala Met
 210 215 220

Lys Glu Ile Ser Gly Ile Ile Asp Ala Leu Ala Ser Pro Lys Glu Glu
 225 230 235 240

Cys Ala Leu Glu Ile Ile Lys Gly Thr Ala Leu Arg Lys Ser Glu Val
 245 250 255

Tyr Tyr Asp Lys Leu Pro Leu Thr Pro Ile Leu Leu Gly Asn Pro Gly
 260 265 270

Arg Lys Ile Met Glu Phe Phe Ser Leu Arg Tyr Tyr Asn Lys Asp Met
 275 280 285

Phe Val Ser Asn
 290

<210> 21
 <211> 1554
 <212> DNA
 <213> Mus musculus

<400> 21
 ggagatcagg ccaccacgag acagagatgg agaccagcag cctgtggccc ccgaggccca 60
 gccccagtgc aggctgagc ctggaggcgc ggctggcggt ggacactcgc ctctggccca 120
 aggtgctgtt caccgcgc tcattcgctca tttcgctcg tggcacagcc ggcaatgcgc 180
 tgcccggtca cgtgggtgctg aaggcgcgg a cgggtcgccc cgggcgcctg cgctaccacg 240
 tgctcagcct ggcactgtca gcccgtgc tactgctgat cagcgtgccc atggagctct 300
 acaacttcgt gtggtcccac taccctggg tcttcggcga tctcggctgt cgtggctatt 360

acttcgtgcg cgagctgtgc gcctacgcca cggtgctgag cgtggccagc ctgagcgcag 420
 agcgctgcct ggccgtgtgc cagccgtgc gcccggccg cctgctacc cgcgcggca 480
 cctgccgcct gctgtcaactg gtctgggtcg cctctctggg cttgcctcg cccatggcgg 540
 ttatcatggg acagaagcac gaaatggaga gggccgacgg ggagcctgag cctgcctcg 600
 gtgtgtgcac ggtgcttagta agtcgcgcca gctccaggta tacattccag gtgaaacgtg 660
 ctggtctcct tcgttctccc ctttggaaac tcaactgtat tctgaatggg atcaactgtca 720
 accacctggt ggcctctac tcccaggta catcagcttc tgcccaagtc aactccatcc 780
 ccagccgcct ggagctctg agtgaggaaag gcctcctggg cttcatcaca tgagaaaaga 840
 ccctctccct ggggtccaa gccagcctgg tgagacacaa ggatgcgcagc cagatccgca 900
 gcctccagca cagccccag gttctcagag ccatacgatg tttgtatgtc atctgctggc 960
 tgccgtacca tgcccgagg ctcatactgact gctacatccc cgtatgttggg tggactgtatg 1020
 agcttatga ctttatcac tatttttaca tgggaccaa cacgcttcc tatgtcagct 1080
 cggcagtac cccagtcctc tacaatggcg ttttttcctc cttcagaaag ctcttctgg 1140
 aatctctcag ttccctgtgt ggtgaacagc gctccgtggt gccccttaccc caagaagccc 1200
 cagagtcaac tactagtagc tacagttcc ggcttgggg atccccaaaga aaccccagcc 1260
 tgggtgaaaat acaagtgtga agagaacaaa caatggctgc ttgggacaca cccatcagat 1320
 aagccatgcc attactaaca gtctaagcgg acctactgac ccagcgcagt cattgaccag 1380
 tgcataactgc aggcaagcca cgtaaacacct cctgcctca gcttccacc tttgtcaacca 1440
 aggtgtagaa taggacaaat tgccttagtga tgaaggtgcc cagtgcgcagc ctgggtacaga 1500
 accagtactc cataaaatttt agctgggtct atttttaaaa aaaaaaaaaaaaa 1554

<210> 22

<211> 417

<212> PRT

<213> Mus musculus

<400> 22

Met	Glu	Thr	Ser	Ser	Leu	Trp	Pro	Pro	Arg	Pro	Ser	Pro	Ser	Ala	Gly
1					5				10				15		

Leu	Ser	Leu	Glu	Ala	Arg	Leu	Gly	Val	Asp	Thr	Arg	Leu	Trp	Ala	Lys
					20			25				30			

Val	Leu	Phe	Thr	Ala	Leu	Tyr	Ser	Leu	Ile	Phe	Ala	Leu	Gly	Thr	Ala
					35			40			45				

Gly	Asn	Ala	Leu	Ser	Val	His	Val	Val	Leu	Lys	Ala	Arg	Thr	Gly	Arg
					50			55			60				

Pro	Gly	Arg	Leu	Arg	Tyr	His	Val	Leu	Ser	Leu	Ala	Leu	Ser	Ala	Leu
					65			70			75			80	

Leu	Leu	Leu	Ile	Ser	Val	Pro	Met	Glu	Leu	Tyr	Asn	Phe	Val	Trp
					85			90			95			

Ser	His	Tyr	Pro	Trp	Val	Phe	Gly	Asp	Leu	Gly	Cys	Arg	Gly	Tyr	Tyr
					100			105			110				

Phe	Val	Arg	Glu	Leu	Cys	Ala	Tyr	Ala	Thr	Val	Leu	Ser	Val	Ala	Ser
					115			120			125				

Leu	Ser	Ala	Glu	Arg	Cys	Leu	Ala	Val	Cys	Gln	Pro	Leu	Arg	Ala	Arg
					130			135			140				

Arg	Leu	Leu	Thr	Pro	Arg	Arg	Thr	Cys	Arg	Leu	Leu	Ser	Leu	Val	Trp
					145			150			155			160	

Val Ala Ser Leu Gly Leu Ala Leu Pro Met Ala Val Ile Met Gly Gln
 165 170 175

 Lys His Glu Met Glu Arg Ala Asp Gly Glu Pro Glu Pro Ala Ser Arg
 180 185 190

 Val Cys Thr Val Leu Val Ser Arg Ala Ser Ser Arg Ser Thr Phe Gln
 195 200 205

 Val Lys Arg Ala Gly Leu Leu Arg Ser Pro Leu Trp Glu Leu Thr Ala
 210 215 220

 Ile Leu Asn Gly Ile Thr Val Asn His Leu Val Ala Leu Tyr Ser Gln
 225 230 235 240

 Val Pro Ser Ala Ser Ala Gln Val Asn Ser Ile Pro Ser Arg Leu Glu
 245 250 255

 Leu Leu Ser Glu Glu Gly Leu Leu Gly Phe Ile Thr Trp Arg Lys Thr
 260 265 270

 Leu Ser Leu Gly Val Gln Ala Ser Leu Val Arg His Lys Asp Ala Ser
 275 280 285

 Gln Ile Arg Ser Leu Gln His Ser Ala Gln Val Leu Arg Ala Ile Val
 290 295 300

 Ala Val Tyr Val Ile Cys Trp Leu Pro Tyr His Ala Arg Arg Leu Met
 305 310 315 320

 Tyr Cys Tyr Ile Pro Asp Asp Gly Trp Thr Asp Glu Leu Tyr Asp Phe
 325 330 335

 Tyr His Tyr Phe Tyr Met Val Thr Asn Thr Leu Phe Tyr Val Ser Ser
 340 345 350

 Ala Val Thr Pro Val Leu Tyr Asn Ala Val Ser Ser Phe Arg Lys
 355 360 365

 Leu Phe Leu Glu Ser Leu Ser Ser Leu Cys Gly Glu Gln Arg Ser Val
 370 375 380

 Val Pro Leu Pro Gln Glu Ala Pro Glu Ser Thr Thr Ser Thr Tyr Ser
 385 390 395 400

 Phe Arg Leu Trp Gly Ser Pro Arg Asn Pro Ser Leu Gly Glu Ile Gln
 405 410 415

 Val

<210> 23
 <211> 761
 <212> DNA
 <213> Mus musculus

<400> 23

ggcgctcgcc ctcgctcgcc atggagaaga ccgagctgat ccagaaggcc aagctggccg 60
 agcaggccga gcgcctacgac gacatggcca cctgcatgaa agccgtgacg gagcagggcg 120
 ccgagctgtc caacgaggag cgcaacctgc tgcgtggc ctacaaaaac gtggtagggg 180
 gcccgcggc tcgcctggagg gtcatctcga gcattgagca gaagaccgac acctctgaca 240
 agaagtgcgca gctgatcaag gactatcggg agaaagtgg a gtcggagctg aggtccatct 300
 gcaccacggc cctggaattt ttggataagt attaatagc caatgcaact aatccagaga 360
 gtaaggtctt ctatctgaaa atgaagggag attatccg g tstatctgct gaagtagctt 420
 gtggcgatga tcgaaaacaa acaatagaaa atccccagg agcctaccaa gaggcgttt 480
 atataagcaa gaaggagatg cagcctacgc atccaatccg cctgggctg gctcttaact 540
 ttctgtatt ttactatgg atccctaata atccagact tgcctgcaca ctggctaaaa 600
 cggcttta tgaggccatc gcagagctt atacactgaa cgaagactcc tacaagaca 660
 gcaccctcat catcgatgg ctttagagaca acttaacatt atggacatca gacagtgcag 720
 gagaagaatg tgatgcagca gagggggccg aaaactaaac c 761

<210> 24

<211> 245

<212> PRT

<213> Mus musculus

<400> 24

Met	Glu	Lys	Thr	Glu	Leu	Ile	Gln	Lys	Ala	Lys	Leu	Ala	Glu	Gln	Ala
1				5					10				15		

Glu	Arg	Tyr	Asp	Asp	Met	Ala	Thr	Cys	Met	Lys	Ala	Val	Thr	Glu	Gln
					20			25				30			

Gly	Ala	Glu	Leu	Ser	Asn	Glu	Glu	Arg	Asn	Leu	Leu	Ser	Val	Ala	Tyr
					35			40				45			

Lys	Asn	Val	Val	Gly	Gly	Arg	Arg	Ser	Ala	Trp	Arg	Val	Ile	Ser	Ser
					50			55			60				

Ile	Glu	Gln	Lys	Thr	Asp	Thr	Ser	Asp	Lys	Lys	Leu	Gln	Leu	Ile	Lys
					65			70			75			80	

Asp	Tyr	Arg	Glu	Lys	Val	Glu	Ser	Glu	Leu	Arg	Ser	Ile	Cys	Thr	Thr
					85			90				95			

Val	Leu	Glu	Leu	Leu	Asp	Lys	Tyr	Leu	Ile	Ala	Asn	Ala	Thr	Asn	Pro
					100			105				110			

Glu	Ser	Lys	Val	Phe	Tyr	Leu	Lys	Met	Lys	Gly	Asp	Tyr	Phe	Arg	Tyr
						115		120			125				

Leu	Ala	Glu	Val	Ala	Cys	Gly	Asp	Asp	Arg	Lys	Gln	Thr	Ile	Glu	Asn
						130			135			140			

Ser	Gln	Gly	Ala	Tyr	Gln	Glu	Ala	Phe	Asp	Ile	Ser	Lys	Lys	Glu	Met
						145		150			155			160	

Gln	Pro	Thr	His	Pro	Ile	Arg	Leu	Gly	Leu	Ala	Leu	Asn	Phe	Ser	Val
					165			170				175			

Phe	Tyr	Tyr	Glu	Ile	Leu	Asn	Asn	Pro	Glu	Leu	Ala	Cys	Thr	Leu	Ala
					180			185				190			

Lys Thr Ala Phe Asp Glu Ala Ile Ala Glu Leu Asp Thr Leu Asn Glu
 195 200 205

Asp Ser Tyr Lys Asp Ser Thr Leu Ile Met Gln Leu Leu Arg Asp Asn
 210 215 220

Leu Thr Leu Trp Thr Ser Asp Ser Ala Gly Glu Glu Cys Asp Ala Ala
 225 230 235 240

Glu Gly Ala Glu Asn
 245

<210> 25

<211> 417

<212> DNA

<213> Mus musculus

<400> 25

tttttttttt tttttttccc atccccgtct ggcttttatta ctggggcaggg gaaacagatc 60
 cttggcagtg gtaggactga gagtacaaga gttggaaagcc ctggggctca gccttcacta 120
 ggcagggtgg gcacactagc aagtgcagag aggaggcctg tatatatgtc aaccccacgg 180
 agaaaatataat cctcatgcag ccgttcattta tggtcatgtt gcaggacagg tggcggttc 240
 atgggcgaga agcccagagc tgggatcccc accgcccggtaaaagcggct gtcagtggca 300
 gcaggaaaga tctctggctc cagagtggagg ttcattgcct tgcaggctcc gctgaaagct 360
 gcccaccagg gatctgaatc atccgtgggt gtcattcgag gctctgtaaa ctctgtga 417

<210> 26

<211> 715

<212> DNA

<213> Mus musculus

<220>

<221> modified_base

<222> (613)

<223> a, c, t, g, unknown or other

<400> 26

gccatcaatg ctttattcct tcattcttgt cctgtccaaactactgttgcacactct 60
 ggctcattaa ggaagtgaca tgcagatgag caactaggat agaaaacatca ttcacacact 120
 ctttctcagg tggctctccg gtgcacactc acacgagttt gcacatacta taagcctgaa 180
 taatgatgcc cattatctgc acaggtaaa actgattcca tactggtgca acctgggtgg 240
 agtcttcagg acacttaaca aaattatatt ctgatttattt atttctttaga ttggggatg 300
 aaaatagaaa agaatataaa caaagcatgc tttttgaggt ttcttgggtc agtttagt 360
 aaaataggtg ttttctttaga gaggtttttt taattgttta tcttatattta tttaatgtg 420
 gagaactgtg aaactggaaat tcctgagggtt tttttttcc ccacttcattc agtctttaag 480
 agagtggtag gcttggcag tcccgcgttt gacaaagtctt gttttctttaa actgagcctt 540
 cttataggcg tgatgcagct ctgtatgtgc ccacagagag taaaggagga cagaagctgc 600
 ttgcgttgc ttngtggggc atagccttcc cctatgctga tgtcatattt tctgcaaaac 660
 ctcgggtcca gagggctgtt gattttttt aactatattt cattaaatgt tcaac 715

<210> 27

<211> 201

<212> DNA

<213> Mus musculus

<400> 27
gtgacaggac gcctcccca cacccatatt ctaagctta tcttctagta gcctgagggc 60
tggagagagg tagtttctgc cgattgtgt catctggagt cgttcctgtg gcctccttt 120
tctctggttt ttgcatttt tcttggtccg atgaaagcat ttcccttttc taaccaataa 180
agtgatcgct tttagcaatg g 201

<210> 28
<211> 490
<212> DNA
<213> Mus musculus

<400> 28
agcaatgaat gtgaaacatg aagttaacct cctgggtggag gaaattcattc gcctgggttc 60
cagaaatgtt gatggaaaat taagtgtgaa gtttgggtc ctcttcaggatg acagatg 120
tgccaatctc tttagcgt tgtaggaac tctgaaagct gcaaaacgaa ggaagattgt 180
tacatacgtca gggaaactac ttttgcaggatgatgatgttgcata ttgtattgt 240
gcaagattaa tgggtttgc atggcttggatgatctgata aactgaaata actaagttaa 300
gagactagcg tgaatttcct tatgtatTTT tatagaactt tgtaaacaaa ggggggcttg 360
ttgagaagtc ctgttttat accttgcaggatc aaaaacattac aatgtaaaat gagacaaacc 420
tattatTTT cttaagaagg taatttggaa aatgttaggtt atgaaacattt tttggaggt 480
gtgaaaaaaggc 490

<210> 29
<211> 262
<212> DNA
<213> Mus musculus

<400> 29
attgggtgcat gtgtgtttgc tagctcaattt gtccatgaga atatTTTatg atattaaaga 60
aaaccttttgc aaatggctgc ttttcaaaaga agataattca tggcttctca tttttcagtc 120
tcttcaaaag tgggtggctggc ctgtttatg actgcagagt tggtatgtt ttaattttt 180
aatattgcct attaaagata ggacaaactt ggagattatg atgttgcctg gcacagactg 240
tattaaaaca acactccccgtt ga 262

<210> 30
<211> 367
<212> DNA
<213> Mus musculus

<400> 30
ctggcacgga catggctgtc ttctgtctgc tgggtggaa acgcttcag gcacaaagcg 60
cactccagca gcacatggag gtccacgcag gcgtgcgcag ctatatttgc agtgagtgc 120
accgcacctt cccagccac acggctctca agcgcacat tcgctcacat acaggTTTT 180
ttctccatgt gtccaccaagt gaagttgtg cttctatag caaagagaat atttttaca 240
tcctactaac agtagatTTT ttgttagtga acatTTTTG tatttttattataatgtctc 300
ataagaaaaa tagcgatgtt cagttgtata ctttgcatttgc agtttagaa gagaataaag 360
ttaactc 367

<210> 31
<211> 354
<212> DNA
<213> Mus musculus

```

<400> 31
ttttttttt ttttttgca agagtaaaag tctttaattt actgtgcacc tcagaaagct 60
acaagtaaaa tgtttgaag aatatacaca aagaattcag agtataaaat tctccatgta 120
attagtagtc atattaatat tagaactaca gtagaaaaaa atagctgtct cctagattct 180
cccaggagcc taactgtgtg gctttgagaa ggtggagttg ttctgagtga gcgggaagtc 240
aagctcaactc ctccagttct cccagcagct ccacgaagtc agtgtatgtac cacttggcgt 300
tgtccttaac ctgctgcctg atcacattgc ctccaaagcc aatgaaagca tcag 354

<210> 32
<211> 2285
<212> DNA
<213> Mus musculus

<400> 32
ggggcgggac gacggcgggc gctgcccggc gcactagccg gcttgcgggc gctgccagtc 60
tccggcgccg gtgtccggcg cgccggctgag cgaccggcgc tgccggacgga gcggcgccct 120
gctggcgccg ctgagcgccg cgccgcggcg cggagagacg cggagcgagg gacgcggccg 180
cgccggacgc ggcgacaggt cttctactta caaaggacaa tgactactga tgagggcacc 240
agtaacaatg gagagaaccc agcagccacc atgactgagc agggtaaaga tatcactacg 300
aagaaagaca gaggagtatt aaagattgtc aaaagagtgg ggactagtga cgaggcccc 360
atgtttggtg acaaagtta tgcactac aaagggatgt tgcagatgg aaagaagttt 420
gattccagtc atgacagaaa gaagccattt gccttagcc ttggccaagg ccaggttatac 480
aaagcctggg acattgggt gtctactatg aagaaaggcg agatctgcca ttattatgt 540
aaaccagaat atgcttatgg ctgcggctggc cacctccaaa aaattccatc aaatgcaact 600
ctctttttt agattggact ctttgatttc aaagggtgagg atttatttga agattcaggc 660
gttatccgta gaatcaaacg gaaaggcgag ggatactcaa acccaaacga aggagcaacg 720
gtaaaagtcc acctggaaagg ctgcgtggt ggaaggacat ttgattggccg agatgtggtg 780
ttcggttggg gggaggaga agaccacgac attcggattt ggatcgacaa agccctggtg 840
aagatgcaga gagaagaaca gtgtattcta tatcttgac cacgctatgg tttggagaa 900
gccgggaagc ctaagttgg cattgacccc aatgctgagc ttatgtacga ggtcaccctt 960
aagagctcg agaaggccaa agaatcttgg gagatggaca ccaaagaaaa gctgacgcag 1020
gctgcatcg tgaagagaaa gggaaactgtg tacttcaagg gaggcaagta cacgcaggcc 1080
gtgatttcgtt acaggaagat agtgtctgg ctggagatgg aatacggct gtcagagaag 1140
gagtccaaag cctcagatgc gttccttcgc gcaagcttcgc tgaacctggc catgtctac 1200
ctgaagctcc gagagtacaa caaagccgtg gagtgctgcg acaagggccct tggactggac 1260
agtgcacatg agaaaggctt gtacagaagg ggcgaggccc agctgctcat gaatgacttt 1320
gagtccggca agggcgactt cgagaaggtg ttggcagtca atcctcagaa cagggccgct 1380
cgccctgcaga tctccatgtg ccagaggaag gcaaggagc acaacgagcg ggaccgcagg 1440
gtgtacgcca acatgttcaa gaagttcgca gagcgggacg caaaggagga agccagcaaa 1500
gctgggagca agaaggctgt agaaggagcc gctggcaaac aacacgagag tcaggccatg 1560
gaagaaggaa aggccaagg ccatgtatga cgctgcgca cggagggaaag agagtcccaa 1620
tgaactcggc cctccatcgct gggctcgct ccaactcagg actgaacagt gtttagtga 1680
aggtttgtta cagttctgtt gattctggaa gcaaatggca taccagtagc ttcccaaatg 1740
accacctgtc gtcgcccccc ggtgggggtg ggggacatgc caggaacag cagagaaggc 1800
cgctgggtgtg aagagaccag gccagcagct cagtcacatc catttcagtt tgcacccctt 1860
cagtgtccag cacagcatcc ctgtgaacctt agggcccgac tgctgtgggt tctacatcg 1920
caactggc acactgcaga aaccgttgat aaaacaaaact cagtgtatc tgccttccta 1980
ttggtgggca tggcaggggc gggtgatgag atttgcttag cactgactga ctggcctgt 2040
aagaacacaa gcccacagcc aggggcctcc tggccacag ctgggtctca gggcccttac 2100
ctgccttcca agtccttcg cagacttgc agtgtggctt tctgtcttag ccagcatgtc 2160
ccacagactc tgggtttccct ccaacgcccgc tcatttagtga cagcttctc tctgagttc 2220
tgtgggtgtgg agagtggta gaagtaggtt tatcttccc gctgtctgcc ccactcaagg 2280
acgat 2285

```

<210> 33

<211> 456

<212> PRT

<213> Mus musculus

<400> 33

Met	Thr	Thr	Asp	Glu	Gly	Thr	Ser	Asn	Asn	Gly	Glu	Asn	Pro	Ala	Ala
1				5				10					15		

Thr	Met	Thr	Glu	Gln	Gly	Glu	Asp	Ile	Thr	Thr	Lys	Lys	Asp	Arg	Gly
	20					25					30				

Val	Leu	Lys	Ile	Val	Lys	Arg	Val	Gly	Thr	Ser	Asp	Glu	Ala	Pro	Met
		35			40					45					

Phe	Gly	Asp	Lys	Val	Tyr	Val	His	Tyr	Lys	Gly	Met	Leu	Ser	Asp	Gly
	50				55				60						

Lys	Lys	Phe	Asp	Ser	Ser	His	Asp	Arg	Lys	Lys	Pro	Phe	Ala	Phe	Ser
65				70					75			80			

Leu	Gly	Gln	Gly	Gln	Val	Ile	Lys	Ala	Trp	Asp	Ile	Gly	Val	Ser	Thr
					85			90			95				

Met	Lys	Lys	Gly	Glu	Ile	Cys	His	Leu	Leu	Cys	Lys	Pro	Glu	Tyr	Ala
	100					105				110					

Tyr	Gly	Ser	Ala	Gly	His	Leu	Gln	Lys	Ile	Pro	Ser	Asn	Ala	Thr	Leu
	115					120				125					

Phe	Phe	Glu	Ile	Glu	Leu	Leu	Asp	Phe	Lys	Gly	Glu	Asp	Leu	Phe	Glu
130					135				140						

Asp	Ser	Gly	Val	Ile	Arg	Arg	Ile	Lys	Arg	Lys	Gly	Glu	Gly	Tyr	Ser
145					150				155			160			

Asn	Pro	Asn	Glu	Gly	Ala	Thr	Val	Lys	Val	His	Leu	Glu	Gly	Cys	Cys
					165				170			175			

Gly	Gly	Arg	Thr	Phe	Asp	Cys	Arg	Asp	Val	Val	Phe	Val	Val	Gly	Glu
					180			185			190				

Gly	Glu	Asp	His	Asp	Ile	Pro	Ile	Gly	Ile	Asp	Lys	Ala	Leu	Val	Lys
	195				200				205						

Met	Gln	Arg	Glu	Glu	Gln	Cys	Ile	Leu	Tyr	Leu	Gly	Pro	Arg	Tyr	Gly
	210				215				220						

Phe	Gly	Glu	Ala	Gly	Lys	Pro	Lys	Phe	Gly	Ile	Asp	Pro	Asn	Ala	Glu
225					230				235			240			

Leu	Met	Tyr	Glu	Val	Thr	Leu	Lys	Ser	Phe	Glu	Lys	Ala	Lys	Glu	Ser
		245					250				255				

Trp	Glu	Met	Asp	Thr	Lys	Glu	Lys	Leu	Thr	Gln	Ala	Ala	Ile	Val	Lys
					260			265			270				

Glu Lys Gly Thr Val Tyr Phe Lys Gly Gly Lys Tyr Thr Gln Ala Val
 275 280 285
 Ile Gln Tyr Arg Lys Ile Val Ser Trp Leu Glu Met Glu Tyr Gly Leu
 290 295 300
 Ser Glu Lys Glu Ser Lys Ala Ser Glu Ser Phe Leu Leu Ala Ala Phe
 305 310 315 320
 Leu Asn Leu Ala Met Cys Tyr Leu Lys Leu Arg Glu Tyr Asn Lys Ala
 325 330 335
 Val Glu Cys Cys Asp Lys Ala Leu Gly Leu Asp Ser Ala Asn Glu Lys
 340 345 350
 Gly Leu Tyr Arg Arg Gly Glu Ala Gln Leu Leu Met Asn Asp Phe Glu
 355 360 365
 Ser Ala Lys Gly Asp Phe Glu Lys Val Leu Ala Val Asn Pro Gln Asn
 370 375 380
 Arg Ala Ala Arg Leu Gln Ile Ser Met Cys Gln Arg Lys Ala Lys Glu
 385 390 395 400
 His Asn Glu Arg Asp Arg Arg Val Tyr Ala Asn Met Phe Lys Lys Phe
 405 410 415
 Ala Glu Arg Asp Ala Lys Glu Glu Ala Ser Lys Ala Gly Ser Lys Lys
 420 425 430
 Ala Val Glu Gly Ala Ala Gly Lys Gln His Glu Ser Gln Ala Met Glu
 435 440 445
 Glu Gly Lys Ala Lys Gly His Val
 450 455

<210> 34
 <211> 747
 <212> DNA
 <213> Mus musculus

<400> 34
 atggcgttgtt ccaggctgat gctggcagct tgccctcctcg tcatgccttc taatgttatg 60
 gcggactgcc tgccttgcgt cttccctgtgt gcagttagga ttccaggatgg gccccgtccc 120
 atcaacccccc tgatttgctc cctggagtgc caggacctgg tgccgcctc agaggagtgg 180
 gagacatgcc ggggcttctc atcttttctc accctgacgg tctctggct ccgtggcaag 240
 gatgacttgg aagatgaggt tgctttggaa gaaggcatca gtgcacatgc caagctttg 300
 gaaccctgtcc tgaaggagct ggagaaaagc cgactccta ccagcgtccc agagaaaaag 360
 ttccagggttc tctccagcag ctggcaac ggaaaagaat ctgagctggc gggtgctgac 420
 cggatgaatg atgaagccgc acagggcgc accgtccatt ttaatgagga ggacttgaga 480
 aaacaggcca aacgctatgg cggcttttg cgcaaatacc ccaagaggag ttccgagatg 540
 gccccggatg aggacggggg ccaggatggg gatcaggtag ggcattgagga cctgtacaaa 600
 cgctatgggg gcttcctgct ggcattcgc cccaagctga agtgggacaa ccagaagcgc 660
 tatggtggtt tcctgcggcg tcagttcaag gtggtgacgc ggtcccagga gaaccccaat 720
 acctattctg aagattttaga tgtttga 747

```

<210> 35
<211> 248
<212> PRT
<213> Mus musculus

<400> 35
Met Ala Trp Ser Arg Leu Met Leu Ala Ala Cys Leu Leu Val Met Pro
 1           5          10          15

Ser Asn Val Met Ala Asp Cys Leu Ser Leu Cys Ser Leu Cys Ala Val
 20          25          30

Arg Ile Gln Asp Gly Pro Arg Pro Ile Asn Pro Leu Ile Cys Ser Leu
 35          40          45

Glu Cys Gln Asp Leu Val Pro Pro Ser Glu Glu Trp Glu Thr Cys Arg
 50          55          60

Gly Phe Ser Ser Phe Leu Thr Leu Thr Val Ser Gly Leu Arg Gly Lys
 65          70          75          80

Asp Asp Leu Glu Asp Glu Val Ala Leu Glu Glu Gly Ile Ser Ala His
 85          90          95

Ala Lys Leu Leu Glu Pro Val Leu Lys Glu Leu Glu Lys Ser Arg Leu
100          105          110

Leu Thr Ser Val Pro Glu Glu Lys Phe Arg Gly Leu Ser Ser Ser Phe
115          120          125

Gly Asn Gly Lys Glu Ser Glu Leu Ala Gly Ala Asp Arg Met Asn Asp
130          135          140

Glu Ala Ala Gln Gly Arg Thr Val His Phe Asn Glu Glu Asp Leu Arg
145          150          155          160

Lys Gln Ala Lys Arg Tyr Gly Gly Phe Leu Arg Lys Tyr Pro Lys Arg
165          170          175

Ser Ser Glu Met Ala Arg Asp Glu Asp Gly Gly Gln Asp Gly Asp Gln
180          185          190

Val Gly His Glu Asp Leu Tyr Lys Arg Tyr Gly Gly Phe Leu Arg Arg
195          200          205

Ile Arg Pro Lys Leu Lys Trp Asp Asn Gln Lys Arg Tyr Gly Gly Phe
210          215          220

Leu Arg Arg Gln Phe Lys Val Val Thr Arg Ser Gln Glu Asn Pro Asn
225          230          235          240

Thr Tyr Ser Glu Asp Leu Asp Val
 245

```

<210> 36
 <211> 1408
 <212> DNA

<213> Mus musculus

<400> 36
 gacaggcgcc cctcggagg acaggatgtc atcaggaaaa caggactccc cgtgggaaga 60
 taggataacct ccaggaagat agaatagtcc caggcatcac tagaacagca ggaaacacta 120
 gggccaaggc tctcatttag gcacccgggg aggttggttgg gttgtggcg gggctcagg 180
 aagactgtcc ctgcgtgtcc tgatccacga ccacccaccc ggcaaggc tctctaagag 240
 aaccttgca gagacacaaac gggccctac aggccgttc ttctctcta cagccatgg 300
 cgccgttccg gaggtttgc acctggctgc tggcgcttgg gtcctgcctc ctggctacag 360
 tgcaggcgga atgcagccag gactgccta aatgcacgta ccgcctgggtt cgccccaggcg 420
 acatcaattt cttggcggtc acactggaaat gtgaagggtca gtcgccttct ttcaaaaatct 480
 gggagacctg caaggatctc ctgcagggtt ccaggcccgaa gttcccttgg gataacatcg 540
 acatgtacaa agacagcagc aaacaggatg agagccactt gctagccaag aagtacggag 600
 gcttcatgaa acgtacgga ggcttcatga agaagatggc cgagctataat cccatggagc 660
 cagaagaaga agcgaacgga ggagagatcc ttgccaagag gatatggcggtt ttcatgaaga 720
 aggatgcaga tgagggagac accttggcca actcctccga tctgctgaaa gagctactgg 780
 gaacgggaga caaccgtgcg aaagacagcc accaacaaga gaggcacaac aatgacgaaag 840
 acatgagcag caagaggtat gggggcttca tgagaaggctt caaaagaagc ccccaactgg 900
 aagatgaagc aaaagagctg cagaagcgct acgggggctt catgagaagg gtgggacgccc 960
 ccgagtgggt gatggactac cagaagaggtt atgggggctt cctgaagcgc tttgctgagt 1020
 ctctgccttc cgatgaagaa ggcgaaaatt actcgaaaga agttcctgag atagagaaaa 1080
 gatacggggg ctttatgcgg ttctgaagcc ctttccagc agtgcaccccg acccccacta 1140
 gcctgctcca tcccccatga gcaactgcct tgtcaatgat gtttctgtc acatgctgct 1200
 ttgtgctgta cagttggccc cgtggcttag ataactacac tgcctgaaag ctgtgatttt 1260
 agggtctgtg ttcttttag tcttgaagct cagttatggt ctcttatggc tatgttggta 1320
 tcaatagttt gtacactcat ctctccgtac gaaacatcaa taaatgctta ttgttatata 1380
 aatataataa acccgtgacc ccaactgc 1408

<210> 37
 <211> 269
 <212> PRT
 <213> Mus musculus

<400> 37

Met	Ala	Arg	Phe	Leu	Arg	Leu	Cys	Thr	Trp	Leu	Leu	Ala	Leu	Gly	Ser
1				5					10				15		

Cys	Leu	Leu	Ala	Thr	Val	Gln	Ala	Glu	Cys	Ser	Gln	Asp	Cys	Ala	Lys
					20			25				30			

Cys	Thr	Tyr	Arg	Leu	Val	Arg	Pro	Gly	Asp	Ile	Asn	Phe	Leu	Ala	Cys
					35			40				45			

Thr	Leu	Glu	Cys	Glu	Gly	Gln	Leu	Pro	Ser	Phe	Lys	Ile	Trp	Glu	Thr
						50		55			60				

Cys	Lys	Asp	Leu	Leu	Gln	Val	Ser	Arg	Pro	Glu	Phe	Pro	Trp	Asp	Asn
					65		70			75			80		

Ile	Asp	Met	Tyr	Lys	Asp	Ser	Ser	Lys	Gln	Asp	Glu	Ser	His	Leu	Leu
					85			90				95			

Ala	Lys	Lys	Tyr	Gly	Gly	Phe	Met	Lys	Arg	Tyr	Gly	Gly	Phe	Met	Lys
						100		105				110			

Lys Met Asp Glu Leu Tyr Pro Met Glu Pro Glu Glu Ala Asn Gly
 115 120 125
 Gly Glu Ile Leu Ala Lys Arg Tyr Gly Gly Phe Met Lys Lys Asp Ala
 130 135 140
 Asp Glu Gly Asp Thr Leu Ala Asn Ser Ser Asp Leu Leu Lys Glu Leu
 145 150 155 160
 Leu Gly Thr Gly Asp Asn Arg Ala Lys Asp Ser His Gln Gln Glu Ser
 165 170 175
 Thr Asn Asn Asp Glu Asp Met Ser Ser Lys Arg Tyr Gly Gly Phe Met
 180 185 190
 Arg Ser Leu Lys Arg Ser Pro Gln Leu Glu Asp Glu Ala Lys Glu Leu
 195 200 205
 Gln Lys Arg Tyr Gly Gly Phe Met Arg Arg Val Gly Arg Pro Glu Trp
 210 215 220
 Trp Met Asp Tyr Gln Lys Arg Tyr Gly Gly Phe Leu Lys Arg Phe Ala
 225 230 235 240
 Glu Ser Leu Pro Ser Asp Glu Glu Gly Glu Asn Tyr Ser Lys Glu Val
 245 250 255
 Pro Glu Ile Glu Lys Arg Tyr Gly Gly Phe Met Arg Phe
 260 265

<210> 38
 <211> 2429
 <212> DNA
 <213> Mus musculus

<400> 38
 acccacgcgt ccggccggtt tcactgctcc cctcagtctc ttttgggctc tttccgggca 60
 tcgggacgat gaccgtcaaa gccggaggctg ctgcgaagcac ccttacacctc tccagaatga 120
 ggggaatggt akgattctc atcgctttta tgaaacagag aaggatgggc ctgaacgatt 180
 ttattcagaa gattgccagc aacacctatg catgcaaaca cgctgaagtt cagtccattt 240
 tgaaaatgtc ccatcctcag gagccggagc ttatgaacgc taaccctct cctccgcca 300
 gtccctctca acaaatac ac ctgggtccgt cctccaaccc tcacgc当地 ccctccgact 360
 ttcacttctt gaaagtgtatc ggaaaggcga gttttggaaa gtttcttctg gctaggcaca 420
 aggcagaaga agtattctat gcagtcaaag ttttacagaa gaaagcatac ctgaagaaga 480
 aagaggagaa gcatattatg tcagagcga atgttctgtt gaagaatgtg aagcaccctt 540
 tcctgggtggg ccttcacttc tcattccaga ccgctgacaa actctactt gtcctggact 600
 acattaatgg tggagagctg ttctaccatc tccagaggga ggcgtgttcc ctggaaaccac 660
 gggctcgatt ctacgcagct gaaatagcca gtgccttggg ctatctgcac tccctaaaca 720
 tcgtttatag agactaaaaa cctgagaata ttctcctaga ctcccagggg cacatcgatc 780
 tcactgactt tgggctctgc aaagagaata ttgagcataa cgggacaaca tctaccttct 840
 gtggcacgccc tgatgtatctg gtcctgagg tcctccataa gcagccgtat gaccggacgg 900
 tggactgggt gttgtcttgtt atgagatgtt ctacggctt cccccgtttt 960
 atagccggaa cacggctgag atgtacgaca atattctgaa caaggcttc cagttgaaac 1020
 caaatattac aaactcggca aggcacctcc tggaggcct cctgcagaag gaccggacca 1080
 agaggctggg tgccaaggat gactttatgg agattaagag tcatatttc ttctctttaa 1140
 ttaactgggta ttagtctcatc aataagaaga ttacacccca atttaacccca aatgtgagtg 1200

ggcccagtga	ccttcggcac	tttgcataccg	agtttaccga	ggagccggtc	cccaagctcca	1260
tccggcagggtc	ccctgacagc	atccctgtca	cggccagtg	gaaggaagca	gcagaaggct	1320
tcctcggttt	ctcctatgca	cctcctgtgg	attcccttcct	ctgagtgtc	ccggggatgtt	1380
tctgaaggac	ttccctcagcg	tttcctaaag	tgttttcctt	acccttttgtt	ggaggttgcc	1440
agctgacaga	acattttaaa	agaatttgca	cacctggaaag	cttggcagtc	tcgcctgccc	1500
ggcgtggcgc	gacgcagcgc	gcgctgttgc	atgggagctt	tccgaagagc	acaccctctt	1560
ctcaatgagc	ttgtgaggtc	ttcttttctt	cttttccttc	caacgtggtgc	ctagctccag	1620
gcgagcgcgc	gtgagagtgc	cgcctgagac	agacaccttgc	gtctcagttt	gaaggaagat	1680
gcaggctcaa	gagaaatccc	cgcagtctgt	ctgagctgttgc	atcaagaata	ttctgcaatgt	1740
tgcctttct	gagatcgtgt	tagctccaaa	gctttttctt	atcgcagagt	gttcagtttgc	1800
tgtttgtttt	tttttgtttt	gttttgtttt	tccttggcgc	gatttcccggt	gtgtgcagttgc	1860
gcgtgagttgt	gctatgcctg	atcacagacg	gttttgttgc	gagcatcaat	gtgacacttgc	1920
caggacacta	caatgtggga	cattgtttgt	ttttccacaca	tttggaaagat	aaatttatgt	1980
gttagactgtt	ttgtaaagata	tagttaataa	ctaaaacacta	ttgaaacggt	cttgcaatga	2040
cgagcatca	gatgtttaag	gaaaggcatgttgc	ctgttacaaa	tattttctatt	tttagaaagg	2100
gtttttatgg	accaatgcctt	cagttgtcag	tcaagccgt	ttgtgttttgc	attttttaaa	2160
atgtcaccta	taaaaacgggc	attattttatg	ttttttttcc	ctttgttcat	atttttttgc	2220
attcctgatt	attgtatgtt	tcgtgttaaag	gaagtctgttgc	cattgggttta	taacactaga	2280
tatTTAAACT	tacaggctta	tttgttaaacc	atcatTTTAA	tgtactgttgc	ttaacatggg	2340
ttataatatg	tacaatttcct	cctccttacc	acacaacttt	tttgggttgc	gataaaaccaa	2400
ttttgggtttg	caataaaaatc	ttgaaacct				2429

<210> 39
<211> 431
<212> PRT
<213> Mus musculus

<400> 39

Met Thr Val Lys Ala Glu Ala Ala Arg Ser Thr Leu Thr Tyr Ser Arg
1 5 10 15

Met Arg Gly Met Val Ala Ile Leu Ile Ala Phe Met Lys Gln Arg Arg
20 25 30

Met Gly Leu Asn Asp Phe Ile Gln Lys Ile Ala Ser Asn Thr Tyr Ala
35 40 45

Cys Lys His Ala Glu Val Gln Ser Ile Leu Lys Met Ser His Pro Gln
 50 55 60

Glu Pro Glu Leu Met Asn Ala Asn Pro Ser Pro Pro Pro Ser Pro Ser
65 70 75 80

Gln Gln Ile Asn Leu Gly Pro Ser Ser Asn Pro His Ala Lys Pro Ser
85 90 95

Asp Phe His Phe Leu Lys Val Ile Gly Lys Gly Ser Phe Gly Lys Val
100 105 110

Leu Leu Ala Arg His Lys Ala Glu Glu Val Phe Tyr Ala Val Lys Val
115 120 125

Leu Gln Lys Lys Ala Ile Leu Lys Lys Lys Glu Glu Lys His Ile Met
130 135 140

Ser Glu Arg Asn Val Leu Leu Lys Asn Val Lys His Pro Phe Leu Val
145 150 155 160

Gly Leu His Phe Ser Phe Gln Thr Ala Asp Lys Leu Tyr Phe Val Leu
 165 170 175

 Asp Tyr Ile Asn Gly Gly Glu Leu Phe Tyr His Leu Gln Arg Glu Arg
 180 185 190

 Cys Phe Leu Glu Pro Arg Ala Arg Phe Tyr Ala Ala Glu Ile Ala Ser
 195 200 205

 Ala Leu Gly Tyr Leu His Ser Leu Asn Ile Val Tyr Arg Asp Leu Lys
 210 215 220

 Pro Glu Asn Ile Leu Leu Asp Ser Gln Gly His Ile Val Leu Thr Asp
 225 230 235 240

 Phe Gly Leu Cys Lys Glu Asn Ile Glu His Asn Gly Thr Thr Ser Thr
 245 250 255

 Phe Cys Gly Thr Pro Glu Tyr Leu Ala Pro Glu Val Leu His Lys Gln
 260 265 270

 Pro Tyr Asp Arg Thr Val Asp Trp Trp Cys Leu Gly Ala Val Leu Tyr
 275 280 285

 Glu Met Leu Tyr Gly Leu Pro Pro Phe Tyr Ser Arg Asn Thr Ala Glu
 290 295 300

 Met Tyr Asp Asn Ile Leu Asn Lys Pro Leu Gln Leu Lys Pro Asn Ile
 305 310 315 320

 Thr Asn Ser Ala Arg His Leu Leu Glu Gly Leu Leu Gln Lys Asp Arg
 325 330 335

 Thr Lys Arg Leu Gly Ala Lys Asp Asp Phe Met Glu Ile Lys Ser His
 340 345 350

 Ile Phe Phe Ser Leu Ile Asn Trp Asp Asp Leu Ile Asn Lys Lys Ile
 355 360 365

 Thr Pro Pro Phe Asn Pro Asn Val Ser Gly Pro Ser Asp Leu Arg His
 370 375 380

 Phe Asp Pro Glu Phe Thr Glu Glu Pro Val Pro Ser Ser Ile Gly Arg
 385 390 395 400

 Ser Pro Asp Ser Ile Leu Val Thr Ala Ser Val Lys Glu Ala Ala Glu
 405 410 415

 Ala Phe Leu Gly Phe Ser Tyr Ala Pro Pro Val Asp Ser Phe Leu
 420 425 430

<210> 40
 <211> 3917
 <212> DNA
 <213> Mus musculus

<400> 40
gaagcagaag agggagaacg agggtgagca cgctggcag ccgtgcgtgc gtcctctct 60
gcccacagg ctgcggcaac gaagcacaag ccagcagggt cgccgtcctg aggacatcg 120
tgccaccagg gagtgcagag aaccaaccac agaatctgga ggtcggtgc agccccgatc 180
taggcaggct cggagccagg ggggtgccc aggaagaacc ggaaagcaga tcccagactc 240
tgaaggagaa agaagagtgg atccctgagc cggcacgtct cgagcccaag agctcccagg 300
atctcctgga tagctggctt cgccgcccga cggcacgccc cccttagctt ccacaccctc 360
tcctctgagc gcctcctcat ctgccccgg aggacttc accttcaaag gtgcaggaca 420
aagccgcata tctggcgccc accatgcacc tcaacagctc cgtgcagcag ggagccccaa 480
gtgaaccagg tgcccgcccc ttcccacatc cacagtctgg actggagacg atgtccttgg 540
cgctcagctt gagaatgtt tctggcaatt cctcagaatc catcctggag cccaacagca 600
acctggacgt gaacactgac atttattcca aggtgttgtt gaccgtgtta tacctggcac 660
tttttgtgtt gggactgtg ggcaactcg tgacagcctt cactctagcg cggagaagt 720
cgctgcagag cctgcagagc actgtgcatt accacctgg tagcctggca ctgtctgacc 780
tgctcatctt gctgtggcc atgcccgtgg agctgtacaa cttcatctgg gtgcaccatc 840
cctggcctt tgggatgtt ggctgcgtg gctactattt cctgcgagat gcctgcaccc 900
atgccacagc cctcaatgtt gccagcctga gtgtggagcg ctacttggcc atgtccatc 960
cctcaaggc caagaccctc atgtcccgca gccgcaccaa gaaattcatc atgtccatat 1020
ggctagccctc ggcgctgctg gctgtaccca tgctttcac catggccctg cagaaccgca 1080
gtgccatgg ccagcaccct ggtggcctgg tggcacacc cacggtgac acagccaccg 1140
tcaaggtcgt catccagggtt aacacccctca tgcccttcct gtttccatg ctgatcatct 1200
ccatcctaaa cactgtata gccaacaaac tgaccgtcat ggtgcaccag gctgcccggc 1260
agggccgtgg tgggtgcacc gttggcacc acaacagttt agagcacagc acgttcaaca 1320
tgtccatcga gccaggccgt gtccaggccc tgccatgg agtcctcgtc ttacgtgt 1380
tggtaatcgc ctttgtggc tgctggctgc cctaccacgt gcggcgccctc atgttctgt 1440
atatctcaga tgaacagtgg actacgttcc tcttcgactt ctaccactat ttctatatgc 1500
tgaccaacgc tctcttctac gtcagctcag ccatcaatcc catccttac aacctcgct 1560
ccgcaactt ccggcagggtc ttccgtcca cactggctt cctctgtccct gggggccg 1620
gccggccgaaa gaagaggcca acgttccca ggaagccaaa cagcatgtcc agcaaccatg 1680
cgttttccac cagcgccacc cgggaaaccc tgtaacttaggc catgaggagg tagcctgtgc 1740
acagggcagc aactccccc acccccccacc cccaccccaa agcctcccaa ggttaagtag 1800
tggcccatct aagccatggc ggtgaggctg gggcaccctc agcggaggct tcttcttcc 1860
cagtttctt ctccctccct cctctggttc tccctccct agtccttat tcttgcctt 1920
tatccctctc ctacccctcc cttaaaaaac agaaaaagagg cggtttctct cctggcccta 1980
caaaaggcct ttaacaagaa gaaattagca ctcaccaagg acggtctctt ttgggcctgg 2040
actaatggat gttttagaag caagaaatga aagcaccaca ttgggcctgg acagatgagc 2100
tgttgtaacc ataacagcac ctggactcactggcagg gcgagacagt gtcgtatgtt 2160
ggacttgggt tcagagacac aggctccatc tcagccccctt tatgcctcta ctccctgcct 2220
ggtccagcag ataccatagc actctctgag ctttatgtcc agacccttc ttggcaggct 2280
ggtaactcgc cttcccaga gtggtccaga gaagcccaa aattactgtg taaggtccag 2340
ggcccacagc tggaaagctgt gggaaatccat gccacacctg gatggctatg gcccactaaa 2400
gagaccccaa ttcccacatg cccaggaagg ataaaaggc tggcttgaa tcaacacagg 2460
acaagttca agtggctttg cacggggacc ttcaccttgg gatctgcag aaggatggaa 2520
gataagtggg gtccagccctc cccagttccag gtggctttgc tggggacatg catggttctg 2580
cgtctcatat acagatgtat agactaaggctgacatcgtt gtcacagcag ctggcttcag gctggactt 2640
ctgagaaggg gcactgagcc aggtcctcag caagatgcca gtgtctgaga ctccacaggt 2700
aaggggaggc caagcaccctc aacatcttagc tggccagcag ccctggactg aggcatatgt 2760
caattttgtt accagccccc aacatcttagc tggccagcag cctggccctgg gttcttaggc cctggaaaag 2820
caggccacct tcatctctgg gagctgtctc caaacaagac aggcccatc agctccagc 2880
caacaagctg gctggcact tggagacagt cccagggatgc catgcaccaa caaggttagaa 2940
gtagcaggag agtcaagtgt agcctttgc aaaagagcct tagctctgtt gtctgggaga 3000
gagatggctg gacatgcagc tgcctgttaa ggtgaaatt ggcacggac atggggaggct 3060
cagtacacgc ccaggctcgtc ctctgtccc tctgaactat aaaacaatgg gtgaaaagtc 3120
agggtatctg tggcaccca gagaatggg gagggtttc aagtacttga accccacaaa 3180
acactgtctac tagtaatgtt attcctcagg ccatcaaggg caggacctgg gtgagtcgg 3240
atcaaggctg acaccaggaa gatgtgatca cccaaagaggg aagccctcc tcctaagaaa 3300
tgtctgcattt ggagcccttc acagccaccc tggccactt gttggcataa ggctagcggt 3360
tggtcattt gatggactt tagactcaag ccaggcagcc cagccccagg actctaccct 3420

gggtttctag accttaagcc attcttctga gccttgattt cctcatctcg gcccggg 3480
 actgtcttga aggactcagc ctggagataca cagaagtggg acacctgagg ctgggttagag 3540
 ccaatgcctt cttacatgtat tcctcagaaa tgtggtggcc tcattataagg ggtggtccag 3600
 gcagtcacca gaagtctctg ctgttagtcta tagcatcttgc tctgtgtgct tgggtaaatt 3660
 agggacatac atccatgcac caccagacac acctgtgacc ctggctgggt atccatgtct 3720
 ctgggccaag tgaagatgaa aatagttctg gaggctgtcc tgagcatcct ggctagagtc 3780
 tcatgagccc agtcgtatgt tggaaacaag tcgtgtgccc caaatatctg tcagaatgcc 3840
 acccacccctc cacactcaa taaaagaaca ccctcctcat atgtctcaat aaagaataaa 3900
 ggaagctgtg tatatcg 3917

<210> 41
 <211> 424
 <212> PRT
 <213> Mus musculus

<400> 41
 Met His Leu Asn Ser Ser Val Gln Gln Gly Ala Pro Ser Glu Pro Gly
 1 5 10 15
 Ala Gln Pro Phe Pro His Pro Gln Phe Gly Leu Glu Thr Met Leu Leu
 20 25 30
 Ala Leu Ser Leu Ser Asn Gly Ser Gly Asn Ser Ser Glu Ser Ile Leu
 35 40 45
 Glu Pro Asn Ser Asn Leu Asp Val Asn Thr Asp Ile Tyr Ser Lys Val
 50 55 60
 Leu Val Thr Ala Val Tyr Leu Ala Leu Phe Val Val Gly Thr Val Gly
 65 70 75 80
 Asn Ser Val Thr Ala Phe Thr Leu Ala Arg Lys Lys Ser Leu Gln Ser
 85 90 95
 Leu Gln Ser Thr Val His Tyr His Leu Gly Ser Leu Ala Leu Ser Asp
 100 105 110
 Leu Leu Ile Leu Leu Ala Met Pro Val Glu Leu Tyr Asn Phe Ile
 115 120 125
 Trp Val His His Pro Trp Ala Phe Gly Asp Ala Gly Cys Arg Gly Tyr
 130 135 140
 Tyr Phe Leu Arg Asp Ala Cys Thr Tyr Ala Thr Ala Leu Asn Val Ala
 145 150 155 160
 Ser Leu Ser Val Glu Arg Tyr Leu Ala Ile Cys His Pro Phe Lys Ala
 165 170 175
 Lys Thr Leu Met Ser Arg Ser Arg Thr Lys Lys Phe Ile Ser Ala Ile
 180 185 190
 Trp Leu Ala Ser Ala Leu Leu Ala Val Pro Met Leu Phe Thr Met Gly
 195 200 205
 Leu Gln Asn Arg Ser Ala Asp Gly Gln His Pro Gly Gly Leu Val Cys
 210 215 220

Thr Pro Thr Val Asp Thr Ala Thr Val Lys Val Val Ile Gln Val Asn
 225 230 240
 Thr Phe Met Ser Phe Leu Phe Pro Met Leu Ile Ile Ser Ile Leu Asn
 245 250 255
 Thr Val Ile Ala Asn Lys Leu Thr Val Met Val His Gln Ala Ala Glu
 260 265 270
 Gln Gly Arg Gly Val Cys Thr Val Gly Thr His Asn Ser Leu Glu His
 275 280 285
 Ser Thr Phe Asn Met Ser Ile Glu Pro Gly Arg Val Gln Ala Leu Arg
 290 295 300
 His Gly Val Leu Val Leu Arg Ala Val Val Ile Ala Phe Val Val Cys
 305 310 315 320
 Trp Leu Pro Tyr His Val Arg Arg Leu Met Phe Cys Tyr Ile Ser Asp
 325 330 335
 Glu Gln Trp Thr Thr Phe Leu Phe Asp Phe Tyr His Tyr Phe Tyr Met
 340 345 350
 Leu Thr Asn Ala Leu Phe Tyr Val Ser Ser Ala Ile Asn Pro Ile Leu
 355 360 365
 Tyr Asn Leu Val Ser Ala Asn Phe Arg Gln Val Phe Leu Ser Thr Leu
 370 375 380
 Ala Cys Leu Cys Pro Gly Trp Arg Arg Arg Lys Lys Arg Pro Thr
 385 390 395 400
 Phe Ser Arg Lys Pro Asn Ser Met Ser Ser Asn His Ala Phe Ser Thr
 405 410 415
 Ser Ala Thr Arg Glu Thr Leu Tyr
 420

<210> 42
 <211> 21
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

 <400> 42
 catcttggcc tcactgtcca c

21

<210> 43
 <211> 25
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 43
 tgcttgctga tccacatctg ctgga

25

<210> 44
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 44
 gggccggact catcgta

19

<210> 45
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 45
 gggagaacag aagcgcctg

19

<210> 46
 <211> 29
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 46
 agaagggtga ggatccccca aatcagagt

29

<210> 47
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 47
cccttgtttc aatcactccc a

21

<210> 48
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 48
tttctgaaca gtgaggtccg c

21

<210> 49
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 49
ccggaagagg tggcggcga

19

<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 50
gggctctgat ggagtgcctt

20

<210> 51
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 51
cgccgcccga aagaagag

17

```

<210> 52
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide

<400> 52
ccaacgttct ccaggaagcc aaacag                                26

<210> 53
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide

<400> 53
acgcatggtt gctggacat                                19

<210> 54
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide

<400> 54
tggtgaccaa cacgctcttc t                                21

<210> 55
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide

<400> 55
tcagctcggc agtgacccca                                20

<210> 56
<211> 21
<212> DNA
<213> Artificial Sequence

```

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 56
 aggaagacac ggcgtttag a

21

<210> 57
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 57
 ggaagccgga gaacagcaa

19

<210> 58
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 58
 tgcgacgcta ccgcaaagaa ca

22

<210> 59
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 59
 ggatatgaag gctgcactcg tt

22

<210> 60
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 60
 tggaccaatg ccccagtt

18

<210> 61
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 61
tcagtcaaag ccgttggtgt tttcattg 28

<210> 62
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 62
gcccgttta taggtgacat tttaa 25

<210> 63
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 63
gggataatttta acgccccaaaggc tt 22

<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 64
cccaaggagg agtgcgccct 20

<210> 65
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 65
agagctgtgc ctttgatgat ctc