Project Assignment 2

Steve Mazza

November 11, 2011

The following table summarizes the analysis of maintainability and availability of the ACIDS system. See the accompanying spreadsheet for details of the calculations.

A_o	0.176295589
MTBM	2.837684449
MDT	13.25848941
\overline{M}	0.239193152
M_{ct}	1.25
M_{pt}	0.177083333
$\dot{LDT_c}$	33.88235294
LDT_s	7.0
LDT	8.556186152
ADT_c	12.0
ADT_s	4.0
ADT	4.463110102
$MTBM_u$	49.01960784
$MTBM_s$	3.012048193
λ	0.0204
fpt	0.332

 A_o is well below the threshold of 0.8 and the goal of 0.9 however a quick calculation for the probability of mission completion reveals that, given the mission parameters on Slide #6, one (1) spare is sufficient to raise the probability of mission completion to over 0.99.

$$\lambda = 0.0204$$

$$t = 2 \text{ hours}$$

$$n = 1 \text{ system}$$

$$n\lambda t = 0.0408$$

Using Figure 15.7 on page 517 of $B\mathscr{E}F$ we find that with zero (0) spares there is a slightly better than 90% probability of mission completion. With one spare the percentage climbs to over 99%. So while the system does not meet the criteria for A_o , one (1) spare is sufficient to exceed the METAL-V required reliability of 0.96.