

Comparison with DK1.1_RF_mmW model(s)

Please use the bookmark to navigate

General information on EGRVT models

- Maximum supply voltage is 1.8 V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 150nm to 10um.
 - ✓ Drawn transistor width varies from 0.16um to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

dormieub

Output parameters definitions

- Model(s): egnfet_acc, egpfet_acc
 - ✓ Gm_ana: Drain transconductance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Sv@1hz: Gate noise voltage spectral density at 1Hz, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Gds_ana: Drain conductance at Ids = iana*M*W/L, Vds = Vdd/4, f = 100k
 - ✓ Vgs_ana: Vgs value for which drain current is iana*M*shrink_iana*W/(shrink_iana*L+dlshrink_iana+plashrink_iana*p_la) at Vds=Vdd/4V.
 - ✓ Id_sv: Drain current at Vgs = Vgs_ana and Vds = Vdd/4V for which noise voltage and current spectral densities Sv, Si are extracted.
 - ✓ Cbd_off: Bulk-to-Drain capacitance at Vgs = 0V, Vds = 0V, f = 100kHz.
 - ✓ Cdg_ana: Drain-to-Gate transcapacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Ft_ana: Transition frequency at Ids = iana*M*W/L, Vds = Vdd/4V
 - ✓ Sv@th: Gate thermal noise voltage spectral density, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Rg : Total gate resistance at Vgs = 1.8V, Vds = 0V, f = 1GHz
 - ✓ Cdd_ana: Total drain capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Gdc_ana: Voltage gain at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgg_ana: Total gate capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgd_0v: Gate-to-Drain capacitance at Vgs = 0V, Vds = vds_cggV, f = 100kHz.
 - ✓ Vtgmmax : Threshold voltage at Vds = 0.05 derived from Gm max method.

egnfet_acc Electrical characteristics per geometry

egnfet_acc@ w=2e-6, l=0.15e-6, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=0, vdd=1.8, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	572.6 0.0mV	501 0.0mV	429.2 0.0mV
Vgs_ana [mV]	784.3 0.0mV	691.5 0.0mV	-8969 0.0mV
GDC_ana []	63.83 0.0%	65.57 0.0%	0.92 0.0%
GBW_QS [GHz]	121.1 0.0%	128.8 0.0%	625.8 0.0%
Ft_ana [GHz]	36.14 0.0%	38.28 0.0%	8.07e-05 0.0%
Gm_ana [μS]	540.4 0.0%	582.8 0.0%	-3.31 -0.0%
Gds_ana [μS]	8.47 0.0%	8.89 0.0%	19.06 0.0%
Cgg_ana [fF]	2.38 0.0%	2.42 0.0%	1.11 0.0%
Cdg_ana [fF]	1.25 0.0%	1.25 0.0%	0.41 0.0%
Cdd_ana [aF]	708.7 0.0%	719.4 0.0%	615.7 0.0%
Sv@1Hz [V/√Hz]	9.55e-06 0.0%	2.91e-05 0.0%	nan nan%
Sv@th [V/√Hz]	5.31e-09 0.0%	5.05e-09 0.0%	2.52e-08 0.0%

egnfet_acc@ w=2e-6, l=2.0e-6, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=0, vdd=1.8, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	608.5 0.0mV	540.1 0.0mV	470.8 0.0mV
Vgs_ana [mV]	775.6 0.0mV	699.3 0.0mV	-7200 0.0mV
GDC_ana []	1133 0.0%	1085 0.0%	0.76 0.0%
GBW_QS [GHz]	12.7 0.0%	12.76 0.0%	2069 0.0%
Ft_ana [GHz]	0.42 0.0%	0.43 0.0%	9.24e-05 0.0%
Gm_ana [μS]	48.16 0.0%	49.78 0.0%	-1.42 -0.0%
Gds_ana [μS]	4.25e-02 0.0%	4.59e-02 0.0%	5.04 0.0%
Cgg_ana [fF]	18.18 0.0%	18.49 0.0%	4.34 0.0%
Cdg_ana [fF]	7.01 0.0%	7.13 0.0%	0.44 0.0%
Cdd_ana [aF]	603.6 0.0%	620.9 0.0%	574.4 0.0%
Sv@1Hz [V/√Hz]	4.05e-06 0.0%	7.15e-06 0.0%	nan nan%
Sv@th [V/√Hz]	1.62e-08 0.0%	1.58e-08 0.0%	1.1e-07 0.0%

egpfet_acc Electrical characteristics per geometry

egpfet_acc@ w=2e-6, l=0.15e-6, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=0, vdd=1.8, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	666.6 0.0mV	545.5 0.0mV	435.1 0.0mV
Vgs_ana [mV]	-4.081e+04 0.0mV	-2.053e+04 0.0mV	-1.173e+04 0.0mV
GDC_ana []	2.22e-02 0.0%	5.59e-02 0.0%	0.12 0.0%
GBW_QS [GHz]	628.6 0.0%	1169 0.0%	1198 0.0%
Ft_ana [GHz]	0.17 0.0%	0.42 0.0%	0.91 0.0%
Gm_ana [μS]	-1.34 -0.0%	-3.42 -0.0%	-7.65 -0.0%
Gds_ana [μS]	60.48 0.0%	61.27 0.0%	63.39 0.0%
Cgg_ana [fF]	1.24 0.0%	1.29 0.0%	1.33 0.0%
Cdg_ana [aF]	475.6 0.0%	503.9 0.0%	531.4 0.0%
Cdd_ana [aF]	681 0.0%	705.4 0.0%	724.7 0.0%
Sv@1Hz [V/√Hz]	nan nan%	nan nan%	nan nan%
Sv@th [V/√Hz]	2.18e-06 0.0%	8.54e-07 0.0%	3.82e-07 0.0%

egpfet_acc@ w=2e-6, l=2.0e-6, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=0, vdd=1.8, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	701.7 0.0mV	579.2 0.0mV	466 0.0mV
Vgs_ana [mV]	-1.463e+04 0.0mV	-9172 0.0mV	-6163 0.0mV
GDC_ana []	9.21e-02 0.0%	0.18 0.0%	0.29 0.0%
GBW_QS [GHz]	1322 0.0%	2687 0.0%	2778 0.0%
Ft_ana [GHz]	1.51e-02 0.0%	2.99e-02 0.0 %	5.41e-02 0.0%
Gm_ana [μS]	-0.43 -0.0%	-0.86 -0.0%	-1.56 -0.0%
Gds_ana [μS]	4.68 0.0%	4.9 0.0%	5.29 0.0%
Cgg_ana [fF]	4.56 0.0%	4.57 0.0%	4.58 0.0%
Cdg_ana [aF]	479.7 0.0%	507.7 0.0%	535.4 0.0%
Cdd_ana [aF]	629.5 0.0%	649.1 0.0%	669.1 0.0%
Sv@1Hz [V/√Hz]	nan nan%	nan nan%	nan nan%
Sv@th [V/√Hz]	1.86e-06 0.0%	9.32e-07 0.0 %	5.15e-07 0.0%

dormieub

egnfet_acc Electrical characteristics scaling

Scaling versus Length (T=25C)

dormieub

egnfet_acc, VtGmmax [mV] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

egnfet_acc, Vgs_ana [mV] vs l [m]

egnfet_acc, GDC_ana [] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

egnfet_acc, GBW_QS [GHz] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

egnfet_acc, Ft_ana [GHz] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

egnfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

egnfet_acc, Gm_ana/w [S/um] vs l [m]

egnfet_acc, Gds_ana/w [S/um] vs l [m]

egnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

dormieub

egnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

egnfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

egnfet_acc, Cgg_ana/l [fF/um] vs l [m]

egnfet_acc, Cdg_ana/w [fF/um] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

dormieub

egnfet_acc, Cdd_ana/w [fF/um] vs l [m]

egnfet_acc, Cgd_0V/w [fF/um] vs l [m]

egnfet_acc, Cbd_off/w [fF/um] vs l [m]

Scaling versus Width (T=25C)

egnfet_acc, VtGmmax [mV] vs w [m]

egnfet_acc, Vgs_ana [mV] vs w [m]

egnfet_acc, GDC_ana [] vs w [m]

L==0.15e-6 and nf==2 and devType=="PCELLwoWPE"

egnfet_acc, GBW_QS [GHz] vs w [m]

egnfet_acc, Ft_ana [GHz] vs w [m]

egnfet_acc, Gm_ana/Id_Sv [1/V] vs w [m]

egnfet_acc, Gm_ana/w [S/um] vs w [m]

egnfet_acc, Gds_ana/w [S/um] vs w [m]

egnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs w [m]

egnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs w [m]

L==0.15e-6 and nf==2 and devType=="PCELLwoWPE"

dormieub

egnfet_acc, Sv@th [V/sqrt(Hz)] vs w [m]

egnfet_acc, Cgg_ana/l [fF/um] vs w [m]

egnfet_acc, Cdg_ana/w [fF/um] vs w [m]

egnfet_acc, Cdd_ana/w [fF/um] vs w [m]

egnfet_acc, Cgd_0V/w [fF/um] vs w [m]

egnfet_acc, Cbd_off/w [fF/um] vs w [m]

Scaling versus Length @ W/L=10&&W/nf<5um

egnfet_acc, VtGmmax [mV] vs l [m]

egnfet_acc, Vgs_ana [mV] vs l [m]

egnfet_acc, GDC_ana [] vs l [m]

egnfet_acc, GBW_QS [GHz] vs l [m]

egnfet_acc, Ft_ana [GHz] vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

ST Confidential

egnfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

egnfet_acc, Gm_ana/w [S/um] vs l [m]

egnfet_acc, Gds_ana/w [S/um] vs l [m]

egnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

dormieub

egnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

egnfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

egnfet_acc, Cgg_ana/l [fF/um] vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

ST Confidential

egnfet_acc, Cdg_ana/w [fF/um] vs l [m]

egnfet_acc, Cdd_ana/w [fF/um] vs l [m]

egnfet_acc, Cgd_0V/w [fF/um] vs l [m]

egnfet_acc, Cbd_off/w [fF/um] vs l [m]

Scaling versus gate finger width L=150nm

egnfet_acc, 1e9*Cgd_0V/W vs "W/NF [m]"

L==150e-9 and NF==1 and devType=="PCELLwoWPE"

egnfet_acc, Rg*NF vs "W/NF [m]"

L==150e-9 and NF==1 and devType=="PCELLwoWPE"

egpfet_acc Electrical characteristics scaling

Scaling versus Length (T=25C)

egpfet_acc, VtGmmax [mV] vs l [m]

egpfet_acc, Vgs_ana [mV] vs l [m]

egpfet_acc, GDC_ana [] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

ST Confidential

egpfet_acc, GBW_QS [GHz] vs l [m]

egpfet_acc, Ft_ana [GHz] vs l [m]

egpfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

egpfet_acc, Gm_ana/w [S/um] vs l [m]

egpfet_acc, Gds_ana/w [S/um] vs l [m]

W==2e-6 and nf==2 and devType=="PCELLwoWPE"

dormieub

egpfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

egpfet_acc, Cgg_ana/l [fF/um] vs l [m]

egpfet_acc, Cdg_ana/w [fF/um] vs l [m]

egpfet_acc, Cdd_ana/w [fF/um] vs l [m]

egpfet_acc, Cgd_0V/w [fF/um] vs l [m]

egpfet_acc, Cbd_off/w [fF/um] vs l [m]

Scaling versus Width (T=25C)

dormieub

egpfet_acc, VtGmmax [mV] vs w [m]

egpfet_acc, Vgs_ana [mV] vs w [m]

egpfet_acc, GDC_ana [] vs w [m]

egpfet_acc, GBW_QS [GHz] vs w [m]

egpfet_acc, Ft_ana [GHz] vs w [m]

egpfet_acc, Gm_ana/Id_Sv [1/V] vs w [m]

egpfet_acc, Gm_ana/w [S/um] vs w [m]

egpfet_acc, Gds_ana/w [S/um] vs w [m]

egpfet_acc, Sv@th [V/sqrt(Hz)] vs w [m]

egpfet_acc, Cgg_ana/l [fF/um] vs w [m]

egpfet_acc, Cdg_ana/w [fF/um] vs w [m]

egpfet_acc, Cdd_ana/w [fF/um] vs w [m]

egpfet_acc, Cgd_0V/w [fF/um] vs w [m]

egpfet_acc, Cbd_off/w [fF/um] vs w [m]

Scaling versus Length @ W/L=10&&W/nf<5um

egpfet_acc, VtGmmax [mV] vs l [m]

egpfet_acc, Vgs_ana [mV] vs l [m]

egpfet_acc, GDC_ana [] vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

ST Confidential

egpfet_acc, GBW_QS [GHz] vs l [m]

egpfet_acc, Ft_ana [GHz] vs l [m]

egpfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

egpfet_acc, Gm_ana/w [S/um] vs l [m]

egpfet_acc, Gds_ana/w [S/um] vs l [m]

egpfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

egpfet_acc, Cgg_ana/l [fF/um] vs l [m]

egpfet_acc, Cdg_ana/w [fF/um] vs l [m]

egpfet_acc, Cdd_ana/w [fF/um] vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

egpfet_acc, Cgd_0V/w [fF/um] vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

egpfet_acc, Cbd_off/w [fF/um] vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

Scaling versus gate finger width L=150nm

dormieub

egpfet_acc, 1e9*Cgd_0V/W vs "W/NF [m]"

L==150e-9 and NF==1 and devType=="PCELLwoWPE"

egpfet_acc, Rg*NF vs "W/NF [m]"

L==150e-9 and NF==1 and devType=="PCELLwoWPE"

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model egnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \mathbf{x} vds_ft = Vdd V
 - \times vds_cgd = 0 V
 - $x f_{ext_rg} = 1G Hz$
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - \times ivt = 300e-9 A
 - **x** model version = 1.2.c
 - **x** vds_off = vds_sat V
 - \mathbf{X} iana = 5e-6 A
 - \mathbf{x} ams_release = 2018.3
 - \mathbf{X} vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V

Sep 24, 2018

- **x** mc_nsigma = 3
- \times shrink ivt = 1
- \times vgs_start = 0 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \mathbf{X} vds ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- **x** mc_runs = 5000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- x f ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \times eg_dev = 1
 - \mathbf{x} eglvt_dev = 1
- Model egpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \times vds_cgd = 0 V
 - $x f_{ext_rg} = 1G Hz$
 - \times mc_sens = 0

ST Confidential

- \times vds_lin = 0.05 V
- \times ivt = 70e-9 A
- **x** model_version = 1.2.c
- **x** vds_off = vds_sat V
- \mathbf{X} iana = 2e-6 A
- \mathbf{x} ams_release = 2018.3
- \mathbf{x} vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- \times vgs_start = 0 V
- **x** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- \times mc runs = 5000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V

- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 1
 - **x** eglvt_dev = 1
- Model egnfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \times vds_cgd = 0 V
 - \star f_ext_rg = 1G Hz
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V
 - \times ivt = 300e-9 A
 - **✗** model_version = 1.2.b
 - **x** vds_off = vds_sat V
 - \mathbf{X} iana = 5e-6 A
 - \mathbf{X} ams_release = 2018.3
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - **x** shrink_ivt = 1
 - \times vgs_start = 0 V
 - **x** plashrink_ivt = 1
 - \star ithslwi = 10e-9 A

- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- **x** mc_runs = 5000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \angle eg_dev = 1
 - **x** eglvt_dev = 1
- Model egpfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \times vds_cgd = 0 V
 - \star f_ext_rg = 1G Hz
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 70e-9 A
 - **✗** model_version = 1.2.b
 - **x** vds_off = vds_sat V
 - **x** iana = 2e-6 A

- \mathbf{X} ams release = 2018.3
- \times vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- \mathbf{x} vgs_start = 0 V
- **x** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \times vddmax = vdd
- **x** mc_runs = 5000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - **x** eg_dev = 1
 - \mathbf{x} eglvt_dev = 1

Sep 24, 2018