

TOPICS COVERED

- > APPROACH
- TIME VS ACCURACY
 - > TEMPERATURE
 - 1. DHT-11
 - 2. PI
- MPROVE SENSOR PERFORMANCE
 - **CONCLUSION**

APPROACH

- FOCUSED ON FUNCTIONALITY
- CONSIDERATION OF SENSORS
 - >INTEGRATION WITH DHT
- > ACCURACY AND PRECISION OF DATA
 - MIND IMPROVEMENTS WITH MOBILITY

APPROACH DESCRIPTIONS

- 1) FUNCTIONALITY: Ensuring the rover can move and operate along a pre-determined waypoint mission.
- 2) SENSOR: Determining which sensor could be integrated easily and have an obtainable ground for comparison.
- 3) DHT INTEGRATION: Utilizing micro-SD card to capture and export data from Arduino.
- 4) ACCURACY/PRECISION: Fine tuning the performance of the rover and its sensors to obtain the most precise and accurate data.
- 5) IMPROVE MOBILITY: Adjusting PID to provide quicker waypoint timing and waypoint accuracy.

INITIAL DATA FIXES

- > PID TUNING
- > CHANGE RADIUS SIZE WAYPOINT APPROACH
 - > CHANGE OF STEERING RATE
 - > CHANGE TO PIVOT TURNS
 - > RECALIBRATION OF COMPASS
- FIX THE INITIAL HOME POINT ALTITUDE POSITION
 - > RE-MAPPED WAYPOINT

TIME VS ACCURACY

Accuracy of the path was chosen over a faster time.

TEMPERATURE READINGS & COMPARISON

TEMPERATURE {PI READINGS}

AVERAGED 35.89 C OR 96.62 F

TEMPERATURE {DHT-11 READINGS}

AVG. EXTERIOR READING {TAKE 1}: 21.52 C

AVG. EXTERIOR READING {TAKE 2}: 18.3 C

INTERPORMOTORRESADING (TAKE 1)?

INTERIOR MOTOR READING {TAKE 2}: 21.2 C

AVG. INTERNAL BATTERY READING {TAKE 1}: 23.7 C

AVG. INTERNAL BATTERY READING {TAKE 2}: 22.4 C

ACTUAL TEMPERATURE OF MEASURED DAY:

19.44 C 67.0 F

IMPROVEMENTS

- Greater separation of DHT-11 from the Rover body (3-D printed rod/stand)
- Better insulation between inside and outside of the rover
- Further testing of the rover and DHT-11 setup in other environments

CONCLUSION

- What was learned
 - Cooperation in a team and communication with team members
 - Motor driver inputs
 - How to utilize a navio2 and raspberry pi
- Applications elsewhere
 - The sensor connections can be used in other builds and other devices and not specific or unique to the rover build.
- Communications between devices
 - How to get systems (Pi, Navio, and Arduino) to communicate and function with one another

THANK YOU!