CS499 Homework 9 (First Draft)

Intersteller

Exercise 9.1

We define $f_1: N \to N$

$$f_1(0) = 0, f_1(1) = 1, \dots, f_1(n) = n.$$

We define $f_2:N\to N^2$ based on this graph:

	0	/	2	う	4	5	13.4
0	(0,0)	(0 -1)	(O, 2)	(0, 3)	(0,4)	(0,5)	v1)
1	(1,0)	(1/1)	(1/2)	(ルう)	(1/ 4)	(1,5)	111
2	(2)0)	(2/1)	(2,2)	(2,3)	(2,4)	(2,5)	174
3	(3.0)	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(1)
:	Ę	Ę	Ę	÷	E	11.	.,,

Figure 1:

$$f_2(0) = (0,0), f_2(1) = (0,1), f_2(2) = (1,0) \cdots$$

We define $f_3: N \to N^3$ based on this graph:

	0	/	2	3	4	5	11.1
£(0)=(0,0)	(0,0,0)	(0,0,1)	(0,0,2)	(0,0,3)	(0,0,4)	(0,0,5)	、 1)
£(1)=(0,1)	(0,10)	(1,1,0)	(2/1/2)	(6,1,0)	(0,1,4)	(3,1,5)	111
f=(2)=(1,0)	(1,0,0)	(101)	(پسوه دا)	(1,0/3)	(104)	(1.05)	171
f= (3)=(2,0)	(100,0)	(,0,1)	(2,0,2)	(جرەر2)	(2,0,4)	(2,0,5)	111
:	į.	Ę	3	Ę	Ē	1.11	.,,

Figure 2:

$$f_2(0) = (0,0,0), f_2(1) = (0,0,1), f_2(2) = (0,1,0) \cdots$$

And so on, we can define f_k , $k \in N$. Now we can define a bijection $N \to N^*$ base on this graph:

	0	/	2	3	4	5	11.1
f,	f,(0)	f (1)	f(2)	fico	f,(4)	f,(5)	NI)
f ₂	f. (0)	f_(1)	f.(2)	f_(3,)	f.(4)	£(5)	щ
	f3(0)	f_(1)	f3(2)	f3(3)	f3(4)	f ₃ (5)	11/
-f4	f4(0)	f4(1)	£(2)	£()	f4(4)	<i>f</i> ₄ (5)	(1)
:	-	***	E	<i>m,</i>	1111	6.7	'',

Figure 3:

We have $0 \to f_1(0)$, $1 \to f_1(1)$, $2 \to f_2(0) \cdots$. This is a bijection $N \to N^*$.

Exercise 9.2

We can define a bijection from $\{0,1\}^N$ to $\{0,1\}^N \times \{0,1\}^N$ as follows. Given $A=(a_1a_2a_3a_4\cdots,b_1b_2b_3b_4\cdots)$, we define $f(A)=a_1b_1a_2b_2a_3b_3a_4b_4\cdots$. To be more precisely,

$$f(A)[i] = \begin{cases} A[1][\frac{i+1}{2}], \ i \ is \ odd \ number \\ A[2][\frac{i}{2}], \ i \ is \ even \ number \end{cases}$$

Obviously, for each $A \in \{0,1\}^N \times \{0,1\}^N$, there is only one $f(A) \in \{0,1\}^N$. For each $B \in \{0,1\}^N$, there is only one $B = f^{-1}(B) \in \{0,1\}^N \times \{0,1\}^N$. Therefore, f is a bijection and $\{0,1\}^N \cong \{0,1\}^N \times \{0,1\}^N$. Using the fact that $R \cong \{0,1\}^N$, we can get $R \cong R \times R$.

Exercies 9.3

We use the Cantor's method to proove that. For any $A \in (\{0,1\}^N)^N$, we define that f(A) is the $\{0,1\}^N$ sequence we get by following the blue line as follows.

Figure 4:

It is obvious that for any $B \in \{0,1\}^N$, we can get to $f^{-1} \in (\{0,1\}^N)^N$ by writing it down following the blue line. Therefore, f is a bijection and $\{0,1\}\cong (\{0,1\}^N)^N$. Using the fact that $R\cong \{0,1\}^N$, we can get $R\cong R^N$. **Exercise 9.4**

We know that one continuous function can be expressed by an infinite sequence of real numbers. Thus we have $\mathcal{F} \cong \mathbb{R}^{\mathbb{N}}$. According to **Exercise 9.3**, $\mathbb{R} \cong \mathbb{R}^{\mathbb{N}}$. So we have $\mathcal{F} \cong \mathbb{R}^{\mathbb{N}} \cong \mathbb{R}$.

Exercise 9.5

 $000\cdots,100\cdots,1100\cdots,11100\cdots$ According to this rule, the first n bits of the n_{th} sequence are 1, and the remaining bits are 0. Obviously, these sequences constitute a countably and infinite chain.

Exercise 9.6

 $100\cdots,0100\cdots,00100\cdots,000100\cdots$ According to this rule, the n_{th} bit of the n_{th} sequence is 1, and the remaining bits are 0. Obviously, these sequences constitute a countably and infinite antichain. **Exercise 9.7**

We can form a bijection f from $\{0,1\}^{\mathbb{N}}$ to set A, which is a subset of $\{0,1\}^{\mathbb{N}}$ as follow: Assume a string s is an element of $\{0,1\}^{\mathbb{N}}$ and t=f(s), the k digit of s determines the (2k-1)-th to 2k-th digits of t as the following rule:

If k digit of s is 0, then (2k-1)-th to 2k-th digits of t are 01. If k digit of s is 1, then (2k-1)-th to 2k-th digits of t are 10.

Here is an example:

$$s = 1011010......$$

 $f(s) = 10, 01, 10, 10, 01, 10, 01,$

Obviously, f is a bijection and A is uncountable. Also, any two elements t_1, t_2 of A is not comparable since 01 and 10 can not be comparable. Thus A is antichain required.

Exercise 9.8

We can form a bijection f from $0, 1^N$ to set A, which is a subset of $0, 1^N$ as follow: Assume a string s is an element of $0, 1^N$ and t = f(s), the first k digit of s_1 (we call it s_k) determines the $(2^k + 1) - th$ to $2^{k+1} - th$ digits of t (we call them $t_{2^k + 1} to t_{2^{k+1}}$ as the following rule:

Consider the first k digits as a binary number a_k , then t_{2^k+1} to $t_{2^k+a_k}$ are 1 and the $t_{2^k+a_k+1}$ to t_{2^k+1} are 0. Specially, we define that the first 2 digits of t are always '00'.

Here is an example:

s=1011.....

Obviously, f is a bijection and A is uncountable. Also, any two elements t_1, t_2 of A is comparable. Assume two elements s_1, s_2 is different and their first different digit is the k-th digit. The k-th element of s_1 is 1. Then for any m such that $m \ge k$, the binary number of the first m digit of s_1 is greater than that of s_2 , which leads to the conclusion that the according string of t_1 is "greater" than t_2 . Thus A is the chain required.