Simultaneous Statistical Inference in Dynamic Factor Models Estimation, Simulation and Application

Thorsten Dickhaus, Marcus Pauly and Natalia Sirotko-Sibirskaya

University of Bremen Faculty of Mathematics Institute for Statistics

April 29, 2016

Motivation

Figure: An example of a financial network of 200 U. S. financial companies based on semi-parametric single-index quantile regression with variable selection, Härdle, Wang and Sirotko-Sibirskaya 2014 SFB 649 Discussion paper.

Dynamic Factor Model

$$\mathbf{X}(t) = \sum_{s=-\infty}^{\infty} \Lambda(s) \mathbf{f}(t-s) + \varepsilon(t), \quad 1 \leq t \leq T,$$

- $\mathbf{X} = \left(\mathbf{X}(t): 1 \leq t \leq T\right)$, a *p*-dimensional, covariance-stationary stochastic process with mean zero,
- $\mathbf{f}(t-s) = \left(f_1(t-s), \cdots, f_k(t-s)\right)^\mathsf{T}$, a k-dimensional vector of "common factors", k < p,
- $\varepsilon(t) = \left(\varepsilon_1(t), \cdots, \varepsilon_p(t)\right)^\mathsf{T}$, a *p*-dimensional vector of "specific factors",
- $f \perp \varepsilon$.

Dynamic Factor Model

Example: s = 0, 1, i. e. AR (1)-type DFM.

$$\underset{p\times 1}{x} = \sum_{s=0}^{1} \underset{p\times k}{\Lambda(s)} f(t-s) + \underset{p\times 1}{\varepsilon} = \underset{p\times k}{\Lambda(0)} f(t) + \underset{p\times k}{\Lambda(1)} f(t-1) + \underset{p\times 1}{\varepsilon}$$

$$\begin{bmatrix} x_{1,1} \\ x_{2,1} \\ \vdots \\ x_{p,1} \end{bmatrix} = \begin{bmatrix} \lambda_{1,1}^{(0)} & \cdots & \lambda_{1,k}^{(0)} \\ \lambda_{2,1}^{(0)} & \cdots & \lambda_{2,k}^{(0)} \\ \vdots & & \vdots \\ \lambda_{p,1}^{(0)} & \cdots & \lambda_{p,k}^{(0)} \end{bmatrix} \begin{bmatrix} f_{1,t} \\ f_{2,t} \\ \vdots \\ f_{k,t} \end{bmatrix} + \begin{bmatrix} \lambda_{1,1}^{(1)} & \cdots & \lambda_{1,k}^{(1)} \\ \lambda_{2,1}^{(1)} & \cdots & \lambda_{2,k}^{(1)} \\ \vdots & & \vdots \\ \lambda_{p,1}^{(1)} & \cdots & \lambda_{p,k}^{(1)} \end{bmatrix} \begin{bmatrix} f_{1,(t-1)} \\ f_{2,(t-1)} \\ \vdots \\ f_{k,(t-1)} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1,1} \\ \varepsilon_{2,1} \\ \vdots \\ \varepsilon_{p,1} \end{bmatrix}$$

$$x_{1,1} = \lambda_{1,1}^{(0)} f_{1,t} + \dots + \lambda_{1,k}^{(0)} f_{k,t} + \lambda_{1,1}^{(1)} f_{1,(t-1)} + \dots + \lambda_{1,k}^{(1)} f_{k,(t-1)} + \varepsilon_{1,1}$$

Dynamic Factor Model

$$\mathbf{X}(t) = \sum_{s=-\infty}^{\infty} \Lambda(s)\mathbf{f}(t-s) + \varepsilon(t), \quad 1 \leq t \leq T,$$

- $\Sigma_{\varepsilon} = diag$ (here), or $\Sigma_{\varepsilon} \neq diag$ (future work),
- $\Sigma_f = diag$, or $\Sigma_f \neq diag$,
- $\varepsilon \neq WN$ and $\Gamma_f \neq diag$.

Testing in Dynamic Factor Model

Dickhaus and Pauly 2015

Example 1: Which of the common factors have a lagged influence on *X*?

Example 2: Which of the specific factors have a non-trivial autocorrelation structure?

Overview

Introduction

Testing Approach

Estimation Method

Simulation Results

Summary

References

Definition 1 [Empirical Fourier Transform]

$$\tilde{\mathbf{X}}(\omega_j) = (2\pi T)^{-1/2} \sum_{t=1}^T X(t) \exp(it\omega_j),$$

where $\omega_i = 2j\pi/T$ and -T/2 < j < T/2.

Definition 2 [Spectral Density Matrix]

$$S_{\mathbf{X}}(\omega) = \tilde{\Lambda}(\omega)S_{\mathbf{f}}(\omega)\tilde{\Lambda}^{\mathsf{T}}(\omega) + S_{\varepsilon}(\omega),$$

where
$$\omega_j = 2j\pi/T$$
 and $-T/2 < j < T/2$.

$$S_{\mathbf{X}}(\omega) = (2\pi)^{-1} \sum_{u=-\infty}^{\infty} \Gamma_{\mathbf{X}}(u) \exp(-i\omega u)$$

$$\Gamma_{\mathbf{X}}(u) = \mathbb{E}[\mathbf{X}(t)\mathbf{X}(t+u)^{\mathsf{T}}]$$

$$= \sum_{u=-\infty}^{\infty} \Lambda(s) \sum_{v=-\infty}^{\infty} \Gamma_{f}(u+s-v)\Lambda(v)^{\mathsf{T}} + \Gamma_{\varepsilon}(u)$$

Piecewise Constant Spectrum Assumption

 \exists B disjoint frequency bands $\Omega_1, \dots, \Omega_B$ centred at $w^{(b)} \notin \{0, \pi\}$, $1 \le b \le B$, s.t. S_X can be assumed approximately constant and different from zero within each of these bands.

Let $n_b = n_b(T)$ be a number of harmonic frequencies $(\omega_{j,b})_{1 \leq j \leq n_b}$ of the form $2\pi j_u/T$ which are as near as possible to $\omega^{(b)}$ with j_u , $1 \leq u \leq n_b$.

Theorem 1 [Convergence of Multivariate Fourier Transforms]

Under Assumptions (1) to (3) (See Appendix)

$$((\tilde{\mathbf{X}}(\omega_{j,b}))_{1\leq j\leq n_b},0_{\mathbb{N}})\to (Z_{j,b})_{j\in\mathbb{N}},\quad \min(n_b(T),T)\to\infty,$$

where
$$(Z_{j,b})_{j\in\mathbb{N}} \sim N(0, S_{\mathbf{X}}(\omega^{(b)}))$$
.

Proof. Dickhaus and Pauly 2015

Definition 3 [Complex Normal Likelihood]

$$I_b(\theta_b, x) = \pi^{-p \times n_b} |ivech(\theta_b)|^{-n_b} \exp\left(-\sum_{j=1}^{n_b} \tilde{x}(\omega_{j,b})^{\mathsf{T}} ivech(\theta_b)^{-1} \tilde{x}(\omega_{j,b})\right),$$

- $\theta_b = ivech(S_{\mathbf{x}}(\omega^{(b)}))$.
- $w^{(b)}$ is the center of one of the b bands, $1 \le b \le B$,
- n_b is a number of frequencies in a respective band b, $1 < i_{u} < n_{b}$.

Asymptotic Normality of MLE and Theorem 1 imply

$$\sqrt{n_b}(\widehat{\theta}_b - \theta_b) \to T_b \sim N_d(0, V_b)$$
 as $\min(n_b(T), T) \to \infty$,

- V_b , a covariance matrix of θ_b , is estimated by \widehat{V}_b ,
- T_b 's are independent for $1 \le b \le B$.

Let

$$H: C\theta = \xi,$$

where $C \in \mathbb{R}^{r \times Bd}$ is a contrast matrix and $d = 2pk + p^2 + p$ is the number of parameters to estimate, $\xi \in \mathbb{R}^r$, $\theta = (\theta_1, \dots, \theta_B)$.

Then

$$W = N(C\widehat{\theta} - \xi)^{T}(C\widehat{V}C)^{+}(C\widehat{\theta} - \xi),$$

- $N = \sum_{b=1}^{B} n_b$,
- \widehat{V} is a block-diagonal matrix consisting of $N\widehat{V}_b/n_b$, $1 \le b \le B$,
- A⁺ is a Moore-Penrose inverse of a matrix A.

Testing Approach

Theorem 2 [Distribution of Wald Statistic]

Under Assumptions (1) to (3) (See Appendix) W has multivariate χ^2 -distribution with rank(C) degrees of freedom under the null hypothesis H provided that V is positive-definite and $N/n_b \leq K \leq \infty$ for all $1 \leq b \leq B$.

Proof. Dickhaus and Pauly 2015

Estimation

- 0 (relevant for empirical application) Pre-whitening of data
- 1 Imposition of restrictions and identification scheme*
- 2 Change-point estimation**
- 3 Estimation of the model by Fletchell-Powell algorithm (1963)***

References:

Fletcher and Powell (1963),
(*) Geweke and Singleton 1981,
(**) Laviere and Ludena 2000, Reschnehofer 2008,
(***) Geweke 1977, Geweke and Singleton 1981, Joereskog 1966,
Joereskog 1967, Joereskog 1969.

Identification

Let $M(\omega)$ be any nonsingular $p \times p$ matrix, then

$$\tilde{\Lambda}(\omega)S_f(\omega)\tilde{\Lambda}(\omega)^{\mathsf{T}} = \Lambda^*S_f(\omega)^*\Lambda^{\mathsf{T}},$$

where
$$\Lambda^*(\omega) = \tilde{\Lambda}(\omega)M(\omega)$$
 and $S_f^*(\omega) = M(\omega)^{-1}S_f(\omega)(M(\omega)^{-1})^{\mathsf{T}}$.

Identication Schemes: Geweke and Singleton 1981

Change-Point Estimation

Let \mathcal{T}_Q be the set of configurations of change-points and Γ_Q the space of parameters.

$$\mathcal{T}_Q = \{ t = (t_0, t_1, \dots, t_Q), \quad t_0 = 0 < t_1 < t_2 < \dots < t_Q = n \},$$

 $\Gamma_Q = \{ \gamma = (\gamma_1, \gamma_2, \dots, \gamma_Q), \quad \gamma_q \in \Gamma \},$

where Q is the number of change-points and n is the number of frequency points at which spectrum is evaluated.

Change-Point Estimation

The negative Whittle log likelihood of $(\tilde{\mathbf{x}}, t \in T_q)$ evaluated at γ_q is

$$W_n(T_q, \gamma_q) = \int_{(0,\pi)} \left(\log f(\omega, \gamma_q) + \frac{I_n(\omega, T_q)}{f(\omega, \gamma_q)} \right) d\omega$$

- $I_n(T_q, \omega) = \frac{1}{n_q} |\sum_{q \in T_q} x_t \exp^{-it\omega}|$ is the periodogram computed over the window T_q ,
- $f(\omega, \gamma_q) = a(b_1 \mathbb{1}_{[t_0, t_1)} + b_2 \mathbb{1}_{[t_1, t_2)} + \ldots + b_{Q-1} \mathbb{1}_{[t_{Q-2}, t_{Q-1})} + \mathbb{1}_{[t_{Q-1}, t_Q]})$ is the piecewise linear function with $\gamma_q = (a, b_1, \ldots, b_{Q-1})$.

Change-Point Estimation

If the number of change-points is known in advance, the estimates for the parameters of the piecewise linear function are obtained by minimising

$$J_n(\mathbf{t}, \gamma) = \frac{1}{n} \sum_{q=1}^{Q} n_q W_n(T_q, \gamma_q).$$

Change-Point Estimation

Piecewise Constant Spectrum

Figure : Piecewise constant spectrum estimation with one change-point for U. S. GDP 1947 - 2014, Reschenhofer 2008.

Change-Point Estimation

Piecewise Constant Spectrum, 2 CP's

Figure: Piecewise constant spectrum estimation with 2 change-points for U. S. GDP 1947 - 2014, Reschenhofer 2008.

Change-Point Estimation

Piecewise Constant Spectrum, 3 CP's

Figure : Piecewise constant spectrum estimation with 3 change-points for U. S. GDP 1947 - 2014, Reschenhofer 2008.

Model Estimation

Objective function:

 $\widehat{\theta}_h = \arg\min f(\theta_h, x)$

$$\begin{split} I_b(\theta_b, x) &= \pi^{-p \times n_b} |ivech(\theta_b)|^{-n_b} \exp \Big(- \sum_{j=1}^{n_b} \tilde{x}(\omega_{j,b})^\mathsf{T} ivech(\theta_b)^{-1} \tilde{x}(\omega_{j,b}) \Big) \\ &\ln I_b(\theta_b, x) = n_b \Big(- p \ln \pi - \ln |S_\mathbf{X}| - tr(SS_\mathbf{X}^{-1}) \Big), \\ &f(\theta_b, x) = - \ln I_b(\theta_b, x) = \ln |S_\mathbf{X}| + tr(SS_\mathbf{X}^{-1}) - \ln |S| - p \end{split}$$

- n_b are frequencies in a respective band b, $1 \le b \le B$,
- $S = (n_b)^{-1} \sum_{i=1}^{n_b} \tilde{x}(\omega_{i,b}) \tilde{x}(\omega_{i,b})^{\mathsf{T}}$.

Model Estimation

Normal equations:

$$\begin{split} \frac{\partial f}{\partial \Lambda} &= 2S_{\mathbf{X}}^{-1}(S_{\mathbf{X}} - S)S_{\mathbf{X}}^{-1}\tilde{\Lambda}S_{f} = 0, \\ \frac{\partial f}{\partial S_{f}} &= 2\tilde{\Lambda}^{\mathsf{T}}S_{\mathbf{X}}^{-1}(S_{\mathbf{X}} - S)S_{\mathbf{X}}^{-1}\tilde{\Lambda} = 0, \\ \frac{\partial f}{\partial S_{\varepsilon}} &= diag(S_{\mathbf{X}}^{-1}(S_{\mathbf{X}} - S)S_{\mathbf{X}}^{-1}) = 0, \end{split}$$

- $S = (n_b)^{-1} \sum_{i=1}^{n_b} \tilde{x}(\omega_{j,b}) \tilde{x}(\omega_{j,b})^{\mathsf{T}}$,
- $S_{\mathbf{X}} = S_{\mathbf{X}}(\omega^{(b)})$, $\tilde{\Lambda} = \tilde{\Lambda}(\omega^{(b)})$ and $S_f = S_f(\omega^{(b)})$.

Algorithm

Fletcher and Powell (1963)

- 0 Choose initial values $\widehat{\gamma_0}^T = [\theta_1^T \theta_2^T]$, where r_1 is dimension of a real part, θ_1 , and r_2 is dimension of imaginary part, θ_2 .
- 1 Compute a $(r_1 + r_2)$ -dimensional gradient vector g at $\widehat{\gamma_0}$.
- 2 Update $\widehat{\gamma_0}$ to $\widehat{\gamma_1}$ as follows

$$\widehat{\gamma}_{j+1} = \widehat{\gamma}_j - d_j E_j \mathbf{g}_j,$$

where d is a step-size and E is an approximation to an inverse of the matrix of second derivatives with dimensions $(r_1 + r_2) \times (r_1 + r_2)$.

Simulation Set-Up

- 0 Choose Σ_f , Σ_{ε} and $\Lambda \sim U(0,1)$'s.
- 1 Let $f \sim N(0, \Sigma_f)$ with $\Sigma_f = diag$ and $\varepsilon \sim N(0, \Sigma_\varepsilon)$ with $\Sigma_\varepsilon = 0.011_{p \times p}$, simulate time series f and ε with T = 100.
- 2 Check identification scheme.
- 3 Compute Γ_f , Γ_ε and $S_X(\omega)$.
- 4 Estimate the change-point(s) t_k .
- 5 Estimate the model and compare \widehat{S}_X to S_X in each segment.

Simulation Results

Figure : Averages of the norms of the true (green) and estimated spectra (magenta), true spectrum - red.

Simulation Results

Figure: Averages of the norms of the true (green) and estimated spectra (magenta), true spectrum - red.

Simulation Results

Figure: Averages of the norms of the true (green) and estimated spectra (magenta), true spectrum - red.

Test 1

Example 1: Which of the common factors have a lagged influence on X?

$$W_{ij} = (\textit{C}_{\textit{Dunett}} |\tilde{\textit{N}_{ij}}|^2)^T [\textit{C}_{\textit{Dunett}} \hat{\textit{V}}_{|\tilde{\textit{N}_{ij}}|^2} \textit{C}_{\textit{Dunett}}^T]^+ (\textit{C}_{\textit{Dunett}} |\tilde{\textit{N}_{ij}}|^2),$$

where C_{Dunett} is a $(B-1) \times B$ contrast matrix and $W = (W_{ii} : 1 \le i \le p, 1 \le j \le k) \sim \chi^2_{R-1}$

$$H_{ij}: C_{Dunett} |\tilde{\Lambda_{ij}}|^2 = 0.$$

Test 2

Example 2: Which of the specific factors have a non-trivial autocorrelation structure?

$$W_i = (C_{Dunett} \hat{s}_{\varepsilon_i})^{\mathsf{T}} [C_{Dunett} \hat{V}_{\varepsilon_i} C_{Dunett}^{\mathsf{T}}]^{+} (C_{Dunett} \hat{s}_{\varepsilon_i}),$$

where C_{Dunett} is a $(B-1) \times B$ contrast matrix and

$$\mathbf{W} = (W_i : 1 \le i \le p) \sim \chi^2_{B-1}.$$

$$H_i$$
: $C_{Dunett}\varepsilon_i = 0$.

Bootstrap

- 1. Given the data $\mathbf{X} = \mathbf{x}$, calculate in each band Ω_b the quantities $\hat{\vartheta}_b$ and \hat{V}_b .
- 2. For all $1 \leq b \leq B$, generate (pseudo) random numbers which behave like realizations of independent random vectors $Z_{1,b}^*, \ldots, Z_{n_b,b}^* \overset{i.i.d.}{\sim} \mathcal{N}_d(\hat{\vartheta}_b, \hat{V}_b)$.
- 3. For all $1 \leq b \leq B$, calculate $\hat{\vartheta}_b^* = n_b^{-1} \sum_{j=1}^{n_b} Z_{j,b}^*$ and $\hat{V}_b^* = n_b^{-1} \sum_{j=1}^{n_b} (Z_{j,b}^* \hat{\vartheta}_b^*) (Z_{j,b}^* \hat{\vartheta}_b^*)^\top$.
- 4. Calculate $W^* = N(\hat{\vartheta}^* \hat{\vartheta})^\top C^\top (C\hat{V}^*C^\top)^+ C(\hat{\vartheta}^* \hat{\vartheta})$, where $\hat{\vartheta}^*$ and \hat{V}^* are constructed in analogy to $\hat{\vartheta}$ and \hat{V} .
- 5. Repeat steps 2. 4. M times to obtain M pseudo replicates of W^* and approximate the distribution of W by the empirical distribution of these pseudo replicates.

Summary

- 1 Numerical comparison of bootstrap procedure with multiplicity-corrected methods.
- 2 Modelling dynamics of a certain process, i.e. a financial network, with DFM.

Dickhaus and Pauly, 2015, Simultaneous Statistical Inference in Dynamic Factor Models, Proceedings ITISE 2015, Granada 1-3 July, 2015.

Fletcher and Powell, 1963, A Rapidly Convergent Descent Method for Minimization, Computer Journal, 6, 163 - 168.

Geweke and Singleton, 1981, Maximum Likelihood "Confirmatory" Factor Analysis of Economic Time Series, International Economic Review, 22/1, 1991, 37 - 54.

Geweke, 1977, The Dynamic Factor Analysis of Economic Time-Series Models, in Contributions to Economic Analysis 'Latent Variables in Socio-Economic Models', ed. Aigner and Goldberger, 365 - 383.

Joereskog, 1967, Some Contributions to Maximum Likelihood Factor Analysis, Psychometrika, 32/4, 443 - 482.

Joereskog, 1969, A General Approach to Confirmatory Maximum Likelihood Factor Analysis, Psychometrika, 34/2, 183 - 202.

Lavielle and Ludena, 2000, Bernouilli 6(5), 845 - 869.

Reschenhofer, 2008, Frequency Domain Modelling with Piecewise Constant Spectra, Journal of Modern Applied Statistical Methods, 7/2, 467 - 470.

Appendix: Identification

1 $\Sigma_f = \text{diag}$:

Let $\Lambda^{(j)}(\omega) = [\Lambda_1^{(j)}: 0: \Lambda_2^{(j)}]$ be the $p_j \times k$ submatrix of $\tilde{\Lambda}$ consisting of those rows of $\tilde{\Lambda}$ that have zero elements in the j-th column, where p_j is the number of zeros in the j-th column of $\Lambda(\omega)$. If the $p_j \times (j-1)$ matrices $\Lambda_1^{(j)}(\omega)$ have rank equal to (j-1), for all ω , then $\tilde{\Lambda}$ is identified.

2 $\Sigma_f \neq \text{diag}$:

If the $p_j \times k$ matrices $\Lambda^{(j)}(\omega)$ have rank equal to (p-1) for all ω and j, then $\tilde{\Lambda}(\omega)$ and $S_f(\omega)$ are identified.