,,

Opleiding Informatica

Simplicial Coalgebras for Concurrent Regular Languages

Hessel Sieburgh

Supervisors:

Henning Basold & Marton Hablicsek

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS) www.liacs.leidenuniv.nl

Abstract

This is where you write an abstract that concisely summarizes your thesis. Keep it short. No references here — exceptions do occur.

Contents

1	Introduction	1
	1.1 The situation	
	1.2 Thesis overview	1
2	Ranked Term Graphs	2
	2.1 Definition and Structure	2
	2.2 Composition of ranked hypergraphs	2
3	Simplicial set over ranked term graphs	3
	3.1 Monoidal structure on interfaces	3
4	Related Work	4
5	Experiments	4
6	Conclusions and Further Research	4
\mathbf{R}_{0}	eferences	4

1 Introduction

In this section we give an introduction to the problem addressed in this thesis.

1.1 The situation

Sections may include subsections.

To make sure that this document renders correctly, execute these commands:

pdflatex thesis bibtex thesis pdflatex thesis pdflatex thesis

Here, the pdflatex command may need to be executed three times in order to generate the table of contents and so on. Note that a good thesis has figures and tables; examples can be found in Figure 1 and Table 1. And every thesis has references, like [DT19].

Figure 1: Every thesis should have figures. Source: www.marxbrothers.org.

Column A	Column B
Point 1	Good
Point 2	Bad

Table 1: Every thesis should have tables.

Final reminder: this template is just an example, if you want you can make adjustments; also discuss with your supervisor which layout he or she likes. But the front page should be as it is now.

TODO: quite a lot!

1.2 Thesis overview

It is recommended to end the introduction with an overview of the thesis. This chapter contains the introduction; Section ?? includes the definitions; Section 4 discusses related work; Section 5 describes the experiments and their outcome; Section 6 concludes. By the way, different section titles are certainly possible.

Also, produce a nice sentence with "bachelor thesis", LIACS and the names of the supervisors.

2 Ranked Term Graphs

2.1 Definition and Structure

Definition 2.1. A directed hypergraph (V, H) is a set of vertices V and a set of hyperarcs $H \subseteq \mathcal{P}(V)^2$.

Notation: A directed hypergraph containing no cycles is a Directed Acyclic Hypergraph (DAH)

Definition 2.2. A ranked term hypergraph $(g, r, o, \mathcal{L}, A)$ consists of:

- \bullet A DAH q,
- Sequences $r = (r_i)_{i \in [|r|]}$, $o = (o_i)_{i \in [|o|]}$ $r_i, o_i \in \mathcal{P}(V)$ denoting the root and variable interfaces. o_i contains only maximal vertices. We refer to (|r|, |o|) as the rank of this graph.
- An action set A and a hyperarc labelling function $\mathcal{L}: H \to A$

Notation: In this thesis we refer to ranked term hypergraphs as just hypergraphs as we will only be working with this kind. HG(n, m) is the set of ranked term hypergraphs of rank (n, m)

A ranked hypergraph with |r| = |o| is called symmetric.

2.2 Composition of ranked hypergraphs

Definition 2.3. Let G, F be hypergraphs such that $|o^G| = |r^F|$, their composition is defined as follows:

$$G \circ F = (g', r', o^F, L^G \cup L^F, A^G \cup A^F) \tag{1}$$

We obtain g' by the following procedure:

- 1. $g' = (V, H) := g^G \sqcup g^F$
- 2. For each $o_i^G \in o^G$, $v \in o_i^G$: $V := V \setminus \{v\}$ and for each $(U, U') \in H$ with $v \in U'$ set $U' := (U' \cup r_i^F) \setminus \{v\}$

And we obtain r' by taking over the original r^G and 'connecting through' for vertices which are both minimal and maximal:

$$r_i' = \{v \in r_i^G : v \text{ is not maximal}\} \cup \{v \in r_j^F : r_i^G \cap o_j^F \neq \varnothing, j \in [|r^F|]\}$$

This composition allows for an identity id_n namely $id_n = (([n], \emptyset), (\{i\})_{i \in n}, (\{i\})_{i \in n})$. It holds clearly from the definition that for a (n, m) ranked graph G holds:

$$id_n \circ G = G \circ id_m = G$$

3 Simplicial set over ranked term graphs

3.1 Monoidal structure on interfaces

Definition 3.1. Let V be the vertex set of a ranked hypergraph. We define the monoid $\mathcal{M} = (\mathcal{P}(V)^2, (\varnothing, \varnothing), \cup \times \cup)$.

From this monoid we define a simplicial set using the nerve construction.

Definition 3.2. The nerve $N(\mathcal{M})$ of the monoid \mathcal{M} is the simplicial set where:

$$N(\mathcal{M})_{n} = \mathcal{M}^{n}$$

$$d_{i}(m_{1}, \dots, m_{n}) = \begin{cases} (m_{1}, \dots, m_{i} \cup \times \cup m_{i+1}, \dots, m_{n}) & 0 < i < n \\ (m_{2}, \dots, m_{n}) & i = 0 \\ (m_{1}, \dots, m_{n-1}) & i = n \end{cases}$$

$$s_{i}(m_{1}, \dots, m_{n}) = (m_{1}, \dots, m_{i}, (\varnothing, \varnothing), m_{i+1}, \dots, m_{n})$$

Definition 3.3. Define the simplicial set \mathcal{H} by $\mathcal{H}_n = HG(n,n)$. The face and degeneracy maps of \mathcal{H} are defined to be the unique maps $d^{\mathcal{H}}$, $s^{\mathcal{H}}$ making the following diagrams commute:

$$\mathcal{H}_{n} \xrightarrow{d_{i}^{\mathcal{H}}} \mathcal{H}_{n-1} \qquad \mathcal{H}_{n} \xrightarrow{s_{j}^{\mathcal{H}}} \mathcal{H}_{n+1}
\downarrow_{\pi_{n}} \qquad \downarrow_{\pi_{n-1}} \qquad \downarrow_{\pi_{n}} \qquad \downarrow_{\pi_{n+1}}
N(\mathcal{M})_{n} \xrightarrow{d_{i}^{\mathcal{M}}} N(\mathcal{M})_{n-1} \qquad N(\mathcal{M})_{n} \xrightarrow{s_{j}^{\mathcal{M}}} N(\mathcal{M})_{n+1}$$

Where π_n is the projection onto the interfaces given by: $\pi_n((g, r, o, \mathcal{L}, A)) = ((r_i, o_i))_{i \in [n]}$. That is, the face and degeneracy maps of \mathcal{H} are defined by the underlying monoidal nerve on the interfaces.

 \mathcal{H} is a simplicial set precisely because we inherit the face and degeneracy maps from $N(\mathcal{M})$:

Lemma 3.1. \mathcal{H} is indeed a simplicial set.

Proof. π_n is a simplicial morphism by commutation of the given diagrams. Since $N(\mathcal{M})$ is a simplicial set by definition and the diagrams commute the simplicial identities also hold for $d^{\mathcal{H}}$ and $s^{\mathcal{H}}$. Therefore \mathcal{H} is a simplicial set.

- 4 Related Work
- 5 Experiments
- 6 Conclusions and Further Research

References

[DT19] B. Dylan and D. Trump. How to write a good thesis in three months. *International Journal of Computer Science*, 42:123–456, 2019.