Nota importante. Cuando termine con este problema, asegúrese de dar el comando clf (doc clf) para limpiar la ventana de gráficas antes de comenzar otro problema.

3.2 Propiedades de los determinantes

Existen algunos problemas en matemáticas que, en estricta teoría, son sencillos pero que en la práctica son imposibles. Piense por ejemplo en el caso de un determinante de una matriz de 50×50 . Se puede calcular expandiendo por **cofactores**. Esto implica 50 determinantes de 49×49 , que a su vez implican $50 \cdot 49$ determinantes de 48×48 , que implican a su vez... $50 \cdot 49 \cdot 48 \cdot 47$... $\cdot 3$ determinantes de 2×2 . Ahora bien, $50 \cdot 49 \cdot ... \cdot 3 = 50!/2 \approx 1.5 \times 10^{64}$ determinantes de 2×2 . Suponga que se cuenta con una computadora que puede calcular un millón $= 10^6$ determinantes de 2×2 por segundo. Tomaría alrededor de 1.5×10^{58} segundos $\approx 4.8 \times 10^{50}$ años terminar el cálculo (el universo tiene alrededor de 15 000 millones de años $= 1.5 \times 10^{10}$ años según la versión teórica más reciente). Es obvio que, si bien el cálculo de un determinante de 50×50 , siguiendo la definición de expansión por cofactores, es teóricamente directo, en la práctica es imposible.

Por otra parte, una matriz de 50×50 no es tan rara. Piense en 50 tiendas en las que se ofrecen 50 productos diferentes. De hecho, las matrices de $n \times n$ con n > 100 surgen con frecuencia en la práctica. Por fortuna, existen cuando menos dos maneras de reducir de forma significativa la cantidad de trabajo necesaria para calcular un determinante.

El primer resultado que se necesita es quizá el teorema más importante sobre determinantes. Este teorema establece que el determinante de un producto es igual al producto de los determinantes.

Teorema 3.2.1

Sean A y B dos matrices de $n \times n$. Entonces

$$\det AB = \det A \det B$$

(3.2.1)

Es decir, el determinante del producto es el producto de los determinantes.

Demostración

Si se utilizan matrices elementales, la prueba está dada en la sección 3.5. En el problema 49 de esta sección se pide que verifique este resultado para el caso 2×2 .

Note que el producto de la izquierda es un producto de matrices mientras que el de la derecha es de escalares.

EJEMPLO 3.2.1 Illustración de la propiedad det $AB = \det A \det B$

Verifique el teorema 3.2.1 para

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 4 \\ 0 & -2 & 5 \end{pmatrix} \quad y \quad B = \begin{pmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ 2 & 0 & -2 \end{pmatrix}$$