«Дискретная математика: множества и логика»

Домашнее задание

Байдаков Илья

10 марта 2022 г.

Задание 1

Какие из следующих равенств выполнены для любых множеств A, B и C? Если равенство верно, то докажите его. Если не выполнено, то приведите контрпример.

a) $A \setminus (A \cap B) = A \cap (A \setminus B)$.

Равенство верно, выполняется для любых множеств A и B. Доказательство. Заменим множества A и B на высказывания a, b; операции со множествами на операции с высказываниями:

- $-A \cap B$ заменим на $a \wedge b$,
- $-A\setminus B$ заменим на $\neg(a\to b)$ (известно с занятия), и так далее.

Выражение приводится к виду:

$$a \wedge (\neg(a \wedge b)) = a \wedge (\neg(a \rightarrow b))$$

По виду выражения можно утверждать, что проверить его верность можно, проверив верность выражения

$$a \wedge x = a \wedge y,$$
 (*)

где
$$x = \neg(a \land b)$$
, а $y = \neg(a \rightarrow b)$.

Для этого воспользуемся таблицей истинности:

a	b	$x = \neg(a \land b)$	$y = \neg(a \to b)$	$a \wedge x$	$a \wedge y$
0	0	1	0	0	0
0	1	1	0	0	0
1	0	1	1	1	1
1	1	0	0	0	0

Выражение (*) верно для всех пар значений a, b, следовательно, исходное выражение тоже верно для любых множеств A и B.

6)
$$(A \cup B) \triangle (A \cap B) = A \triangle B$$
;

Равенство верно, выполняется для любых множеств A и B. Доказательство. Построим диаграмму Эйлера-Венна для левой части равенства:

Из диаграммы видно, что область значений $(A \cup B) \triangle (A \cap B)$ совпадает с областью значений $A \triangle B$ (последнее не обозначено на диаграмме отдельно). Это значит, что равенство верно.

в)
$$((A \backslash B) \cup (A \backslash C)) \cap (A \backslash (B \cap C)) = A \backslash (B \cup C)$$
. Равенство не верно.

Доказательство. Для контрпримера возьмём множества $A=\{1,2\}, B=\{2,3\}, C=\{3,4\}.$ Тогда

$$(\{1\} \cup \{1,2\}) \cap (\{1,2\} \setminus \{3\}) = \{1,2\} \setminus \{2,3,4\};$$
$$\{1,2\} \cap \{1,2\} \neq \{1\},$$

значит, равенство не выполнено для любых множеств A, B и C.

Ответ: Равенства (а), (б) выполнены для любых множеств A, B и C.

Задание 2

Верно ли, что для любых множеств A и B выполняется включение

$$(A \cup B) \setminus B \subseteq A$$
?

Верно, включение выполняется для любых A и B.

Решение:

по определению, $A \cup B$ помимо всех элементов A содержит все элементы B. Так же по определению, $(A \cup B) \setminus B$ содержит все элементы из $A \cup B$, кроме элементов, содержащихся в B.

Возможны характерные случаи:

- Если A и B имеют общие элементы, то $(A \cup B) \setminus B$ будет иметь меньше элементов, чем A, но принадлежащих A;
- Если A и B состоят из одинаковых элементов, и/или A пустое множество, то $(A \cup B) \setminus B$ будет пустым множеством;
- Если A и B не имеют общих элементов, $(A \cup B) \setminus B$ будет состоять только из элементов A.

Таким образом, в каждом из возможных случаев включение будет выполняться.

Задание 3

Докажите, что $\neg(a \lor (b \oplus 1)) \land (a \to 1) = \neg a \land b$.

Доказательство.

Подстановкой констант в $b \oplus 1$ получаем $b \oplus 1 = \neg b$.

Согласно таблице истинности, $a \to 1 = 1$.

Получаем:

$$\neg (a \lor \neg b) \land 1 = \neg a \land b.$$

По закону поглащения, $x \wedge 1 = x$:

$$\neg(a \vee \neg b) = \neg a \wedge b.$$

По законам Моргана, $\neg(a \lor b) = \neg a \land \neg b; \neg(\neg b) = b$:

$$\neg a \wedge b = \neg a \wedge b$$
.

Задание 4

Для каких из ниже приведенных чисел ложно высказывание: «Число четно \wedge (В числе 7 цифр $\rightarrow \neg$ (Третий разряд числа четный))»?

a) 0

б) 1234567,

в) 2222222,

г) 123457.

Решение: Упростим высказывание. Для этого выведем вспомогательную формулу

$$b \to \neg c = \neg (b \land c).$$
 (*)

Формула (*) следует из таблицы истинности:

a	b	$a \to \neg b$	$\neg(a \land b)$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Обозначим высказывания:

а=«Число чётно»,

b=«В числе 7 цифр»,

с=«Третий разряд числа чётный».

Получаем формулу $a \wedge (b \rightarrow \neg c)$. Из (*) следует:

$$a \wedge (b \rightarrow \neg c) = a \wedge \neg (b \wedge c).$$

Нам необходимо указать те числа, для которых это высказывание ложно. Высказывание $a \wedge \neg (b \wedge \neg c)$ ложно, когда его отрицание $\neg (a \wedge \neg (b \wedge \neg c))$ истинно. Используя законы Моргана

$$\neg(a \land \neg(b \land c)) = \neg a \lor \neg \neg(b \land c) = \neg a \lor (b \land c).$$

Т.е. подходят те слова, для которых верно или $\neg a$, или $(b \land c)$.

Поскольку $\neg a = \neg$ «Число четно» = «Число нечетно», то осталось найти нечетные числа, или те, в которых 7 цифр и третий разряд чётный.

Такими числами являются 1) 1234567, 2) 123457, 3) 2222222.

Задание 5

Пусть $A = \{7, 5, 1, 4, 2, 6, 3\}, B = \{x \mid x = 2k, k \in \mathbb{Z}\}, C = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$ Для каких $x \in C$ предикат « $(x \in A) \rightarrow \neg (x \in B)$ » обращается в истину?

Решение: Упростим предикат « $(x \in A) \to \neg (x \in B)$ » = $a(x) \to \neg b(x)$, где a(x) и b(x) обозначают предикаты $(x \in A)$ и $(x \in B)$.

Согласно формуле (*) из предыдущего задания

$$a(x) \to \neg b(x) = \neg (a(x) \land b(x)).$$

Предикату $\neg(a(x) \land c(x))$ соответствует множество $x \notin (A \cap B)$. Итак, для решения задачи нужно найти элементы из C, которые не являются элементами множества $A \cap B$, т.е. найти множество $C \setminus (A \cap B)$. B - множество чётных чисел, A - множество целых чисел от 1 до 7 включительно. Значит, $A \cap B = \{2,4,6\}$. Таким образом, $C \setminus \{2,4,6\} = \{0,1,3,5,7,8,9\}$.

Ответ: Для 0,1,3,5,7,8,9.

Задание 6

Докажите, что сумма первых n четных натуральных чисел равняется

$$2+4+6+8+\ldots+2n = n(n+1).$$

Доказательство.

Обозначим равенство через A_n и докажем его по индукции.

• Базис индукции (A_1) : Докажем утверждение для n=1:

$$2 = 1(1+1)$$
.

• Шаг индукции (A_{n+1}) : Предположим, что A_n верно, то есть

$$2+4+6+8+\ldots+2n=n(n+1).$$

Докажем утверждение для n+1. Прибавим к обеим частям равенства число 2(n+1):

 $2+4+6+8+\ldots+2n+2(n+1)=n(n+1)+2(n+1)=n^2+3n+2=(n+1)(n+2),$ то есть A_{n+1} . Шаг индукции и всё доказательство завершены.