Explainable Prediction of Cell Events in Microscopic Videos

Florian Bürger^{1,2,3}, Adrián E. Granada⁴, Katarzyna Bozek^{1,2,5}

¹Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany

- ²Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
- ³Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
- ⁴Charité Universitätsmedizin, Charité Comprehensive Cancer Center, Berlin, Germany
- ⁵Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany

Introduction

- Time-lapse microscopy enables direct observation of dynamic cellular behaviors over time [1]
- Understanding how individual cells progress toward division or death is fundamental in biological systems
- Rules that determine individual cell fate are poorly understood [2]
- Goal: Given a temporal sequence of a cell, can we predict whether the cell is about to divide or die?
 - If so, why?
- Explainable models help identify key morphological cues driving cellular decision processes

Explainability

Permutation Test of

Morphological

Features

+ Effect Size

Cliff's Delta

Take most

important

frames

Method

- Cell fate classification by Transformer Encoder architecture + Final Attention Layer + Classification Head
- Random masking of 10 50% of the sequence tail during training
- Attention-based Explainability framework:
 - Extract attention weights from the Final Attention Layer
 - Group frames into "Top 10%" (high attention) and "Others"
 - Perform permutation tests on morphological features to identify significant visual cues

- 21,898 sequences
- 4,456 deaths

• 17,442 division

Extract cell sequences

Other Frames

ResNet50 Backbone

Transformer Encoder

Transformer Encoder

Transformer Encoder

Mitosis?

Random Masking

Conclusion

- Reliable cell fate prediction, even when truncating up to 20 frames
- Apoptosis
 - Focus already on earlier frames
 - Features related to cell size are most crucial: Area, Equivalent Diameter Area
- Mitosis
 - Very last frames most important
 - Cell shape features are most crucial: Eccentricity, Circularity
- Beyond morphology, the cell fitness reporter p53 provides a distinctive marker of cell fate

References

[1] Granada, Adrián E., et al. "The effects of proliferation status and cell cycle phase on the responses of single cells to chemotherapy." Molecular Biology of the Cell (2020) [2] Soelistyo, Christopher J., et al. "Learning biophysical determinants of cell fate with deep neural networks.", Nature machine intelligence (2022)

