

SIMULATION OF OIL SLICK TRANSPORT IN GREAT LAKES CONNECTING CHANNELS

Volume II: User's Manual for the River Oil Spill Simulation Model

H.T. Shen P.D. Yapa M.E. Petroski

S ELECTE OCT, 26 1989

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

Report No. 86-2
March 1986
Department of Civil and Environmental Engineering
Clarkson University
Potsdam · New York · 13676

Detroit District P.O. Box 1027 Detroit, MI 48231 11. ITHE (Include Security Classification) Simulation of 0il Slick Transport on Great Lakes Connecting Channels; Volume II: User's Manual for the River 0il Spill Simulation Model (ROSS) 12. PERSONAL AUTHOR(S) Shen, H.T., P.D. Yapa, and M.E. Petroski 13a. TYPE OF REPORT Final FROM TO HADTON HADDON TO HADDON TO HADDON TO HERD FROM TO HADTON HADDON TO HERD FROM TO HADDON TO HADDON TO HERD FROM TO HADDON TO HADDON TO HERD FROM TO HADDON TO HADD	REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188	
Approved for public release; distribution unlimited 4. PENDORMING ORGANIZATION REPORT NUMBER(S) Report No. 86-2 5. MAME OF PERFORMING ORGANIZATION Clarkson University 6. ADDRESS (Cny. State, and ZIP Code) Department of Civil and Environmental Engineering Potsdam, NY 13676 B. NAME OF FUNDING/SPONSORING ORGANIZATION U.S. Army CORGANIZATION U.S. ARMS CORGANIZATION NUMBER CORGANIZATION U.S. ARMS CORGANIZATION NUMBER CORGANI			1b. RESTRICTIVE	MARKINGS		
APRFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)	2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	/AVAILABILITY	OF REPORT	
Report No. 86-2 65. NAME OF PERFORMING ORGANIZATION Clarkson University (if applicable) CLARKSON University (if applicable) CLARKSON University (if applicable) CLARKSON University (if applicable) Department of Civil and Environmental Engineering Potsdam, NY 13676 85. ADDRESS (City, State, and ZIP Code) Department of Civil and Environmental Engineering Potsdam, NY 13676 86. ADDRESS (City, State, and ZIP Code) Department of Civil and Environmental Engineering Potsdam, NY 13676 87. ADDRESS (City, State, and ZIP Code) DACA 33-85-C-0001 88. OFFICE SYMBOL (if applicable) DACA 33-85-C-0001 10. SOURCE OF FUNDING NUMBERS DETOIL BY State, and ZIP Code) Detroit District P.O. Box 1027 Potroit, NI 48231 11. ITIE (include Security Classification) Simulation of 911 Slick Transport on Great Lakes Connecting Channels; Volume II: User's Manual for the River 0il Spill Simulation Model (ROSS) 12. PERSONAL AUTHOR(S) Shen, H. T., F. D. Yapa, and M. E. Petroski 13a. TYPE OF REPORT Final 13b. TIME COVERED FROM TO March 1986 19. ABSTRACT (Continue on reverse if necessary and identify by block number) In this study, two computer models named as ROSS and LROSS are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Creat Lakes, including evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes. The programs are written in Forman programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers. 20. DETERBUTION VANALABLIT, UF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Diclassified 22. MAME OF REPORT	2b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE	-	_		;
66. ADDRESS (CN), State, and ZIP Code) Department of Civil and Environmental Engineering Paradam, NY B. ADDRESS (CN), State, and ZIP Code) Department of Civil and Environmental Engineering Paradam, NY B. OFFICE SYMBOL (If applicable) 7b. ADDRESS (CN), State, and ZIP Code) Department of Civil and Environmental Engineering Paradam, NY B. OFFICE SYMBOL (If applicable) 7b. ADDRESS (CN), State, and ZIP Code) Department of Civil and Environmental Engineering Paradam, NY B. OFFICE SYMBOL (If applicable) 8c. ADDRESS (CN), State, and ZIP Code) Detroit District P.O. Box 1027 Detroit, NI 48231 11 THE (Include Security Classification) Simulation of Oil Silck Transport on Great Lakes Connecting Channels; Volume II: User's Nanual for the River Oil Spill Simulation Model (ROSS) 12. PERSONAL AUTHORS) Shen, H.T., P.D. Yapa, and M.E. Petroski 13a. TYPE OF REPORT 13b. TIME COVERED FROM 15b. TIME COVERED FROM 15c. Supplementary NOTATION 17c. COSATI CODES FRED FROM 17d. Subject TERMS (Continue on reverse if necessary and identify by block number) NOSS, oil slick, grid boxes, ice regions velocity distributions, plot of slick locations 17d. COSATI CODES FRED FRED GROUP SUB-GROUP ROSS, oil slick, grid boxes, ice regions velocity distributions, plot of slick transformation processes considered in these models in and as ROSS and LROSS are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models cam be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the median and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers. 20 DISTRIBUTION ANDLESS STATES 21 ABSTRACT SECURITY CLASSIFICATION Unclassified 221 ABSTRACT SECUR	4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION	REPORT NU	MBER(S)
Clarkson University 6c ADDRESS (City, State, and ZiP Code) Department of Civil and Environmental Engineering Porsdam, NY 13676 8. ADDRESS (City, State, and ZiP Code) Department of Civil and Environmental Engineering Porsdam, NY 13676 8. ANAME of FunDink(Syponsorania ORGANIZATION U.S. Army Corps of Engineers 8c. ADDRESS (City, State, and ZiP Code) Detroit District P.O. Box 1027 Detroit, MI 48231 10. THE Gende Security Castification) Simulation of Oil Slick Transport on Great Lakes Connecting Channels; Volume II: User's Manual for the River Oil Spill Simulation Model (ROSS) Shen, H.T., P.D. Yapa, and M.E. Petroski 13a. TYPE OF REPORT Final FROM 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ROSS, oil slick, grid boxes, ice regions velocity distributions, plot of slick locations 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ROSS, oil slick, grid boxes, ice regions velocity distributions, plot of slick locations 18. ABSTRACT (Continue on reverse if necessary and identify by block number) ROSS, oil slick, grid boxes, ice regions velocity distributions, plot of slick locations 19. ABSTRACT (Continue on reverse if necessary and identify by block number) ROSS, oil slicks, grid boxes, ice regions velocity distributions, plot of slick locations 19. ABSTRACT (Continue on reverse if necessary and identify by block number) ROSS and LROSS are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporian and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent	R eport No. 86-2					
Department of Civil and Environmental Engineering Potsdam, NY 13676 8a. NAME OF FUNDING (SPONSORING ORGANIZATION U.S. Army Corps of Engineers 8b. Office Symbol ORGANIZATION U.S. Army Corps of Engineers 8c. ADDRESS (Civil, State, and JPP Code) Detroit District P.O. Box 1027 Detroit, MI 48231 11. ITIE (Include Security Classification) Simulation of Oil Spill Simulation Model (ROSS) 12. PERSONAL AUTHORIS) Shen, H.T., P.D. Yapa, and M.E. Petroski 13a. TYPE OF REPORT Final 13b. TIME COVERED FROM 10 SUB-GROUP 10 SUB-GROUP 10 SUB-GROUP 11 ADTE OF REPORT (Year, Month, Day) 15. PAGE COUNT Final 16. SUPPLEMENTARY NOTATION 17. COSATI CODE FROM 18. SUB-ECT TERMS (Continue on reverse if necessary and identify by block number) In this study, two computer models named as ROSS and LROSS are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Creat Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers. 20 Distribution/AVALABILIT, G. ABSITACT © UNCLASSIFICATION Unclassified 121 ABSIRACT SECURITY CLASSIFICATION Unclassified	1 _		7a. NAME OF MO	ONITORING ORG	ANIZATION	
Engineering Potsdam, NY 13676 8a. MAME OF FUNDING ISPONSORING ORGANIZATION U.S. Army (organization) South District Detroit District Detroit District P.O. Box 1027 Detroit District P.O. Box 1027 Detroit, MI 48231 11. ITIE (Include Security Classification) Simulation of Oil Slick Transport on Great Lakes Connecting Channels; Volume II: User's Manual for the River Oil Spill Simulation Model (ROSS) 12. PRESONAL AUTHOR(S) Shen, H.T., P.D. Yapa, and M.E. Petroski 13a. TYPE OF REPORT ISB TIME COVERED FROM TO 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT March 1986 16. SUPPLEMENTARY NOTATION 17. COSAT! CODES ROSS, oil slick, grid boxes, ice regions velocity distributions, plot of slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. In this study, two computer models named as ROSS and LROSS are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers. 20. DISTRIBUTION AVARABILT, Of ABSTRACT DITIC USERS 21. ABSTRACT SECURITY CLASSIFICATION Unclassified Unclassified Unclassified Unclassified			7b. ADDRESS (Cit	y, State, and Zi	P Code)	
8. NAME OF FUNDING (SPONSORING ORGANIZATION U.S. Army Corps of Engineers 8. ADDRÉSS (City, State, and ZiP Code) Detroit District P.O. Box 1027 Detroit, MI 48231 11. ITLE (include Security Classification) Simulation of Dil Slick Transport on Great Lakes Connecting Channels; Volume II: User's Manual for the River Oil Spill Simulation Model (ROSS) 12. PERSONAL AUTHOR(S) Shen, H.T., P.D. Yapa, and M.E. Petroski 13a. TYPE OF REPORT Final To III SUB-ECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP To III Sub-ECT TERMS (Continue on reverse if necessary and identify by block number) II. The Study, two computer models named as ROSS and LROS3 are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers.	Engineering	onmental				!
BC. ADDRESS (City, State, and ZIP Code) Detroit District P.O. Box 1027 Detroit, MI 48231 11. ITILE (include Security Classification) Simulation of '0il Slick Transport on Great Lakes Connecting Channels; Volume II: User's Manual for the River Oil Spill Simulation Model (ROSS) 12. PERSONAL AUTHOR(S) Shen, H.T., P.D. Yapa, and M.E. Petroski 13a. TYPE OF REPORT Final FROM TO 14. DATE OF REPORT (Vest, Month, Day) March 1986 15. PAGE COUNT March 1986 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP SUB-GROUP SUB-GROUP SUB-GROUP SUB-GROUP SUB-GROUP FIELD GROUP SUB-GROUP SUB-GROUP SUB-GROUP In this study, two computer models named as ROSS and LROSS are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers. 20. DISTRIBUTION/AVALABILITY Of ABSICACI SANKE OF REPORT (Vest, Month, Day) SIGNED FORDING NUMBERS PROGRAM PROJECT NO. 10. SOURCE OF INDING NUMBERS PROGRAM PROJECT NO. 10. SOURCE OF INDING NUMBERS PROJECT NO. 12. ABSTRACT SECURITY CLASSIFICATION SIMILAR SIGNED NUMBERS 13. STREET SYMBOLE 14. ABSTRACT SECURITY CLASSIFICATION SIMILAR SIGNED NUMBERS 15. TELEPHORE (Include Area Code) 222. OFFICE SYMBOL	8a. NAME OF FUNDING/SPONSORING		9. PROCUREMENT	TINSTRUMENT	IDENTIFICATI	ON NUMBER
Detroit District P.O. Box 1027 Detroit, MI 48231 11. ITIE (Include Security Classification) Simulation of 0il Slick Transport on Great Lakes Connecting Channels; Volume II: User's Manual for the River 0il Spill Simulation Model (ROSS) 12. PERGONAL AUTHORIG) Shen, H.T., P.D. Yapa, and M.E. Petroski 13a. TYPE OF REPORT Final To		(If applicable)	DACA 33-8	35-C-0001		
P.O. Box 1027 Detroit, MI 48231 11 TITLE (Include Security Classification) Simulation of 911 Slick Transport on Great Lakes Connecting Channels; Volume II: User's Manual for the River Oil Spill Simulation Model (ROSS) 12. PERSONAL AUTHORS; Shen, H.T., P.D. Yapa, and M.E. Petroski 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ROSS, oil slick, grid boxes, ice regions velocity distributions, plot of slick locations 19. ABSTRACT (Continue on reverse if necessary and identify by block number) In this study, two computer models named as ROSS and LROSS are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers. 20. DISTRIBUTION: AVALABLET OF ABSTRACT STECURITY CLASSIFICATION Under Original Stame As ART. DIC USERS Unclassified Area Code) [22c. OFFICE SYMBOL 22b. TELEPHONE (Include Area Code) [22c. OFFICE SYM	8c. ADDRESS (City, State, and ZIP Code)	<u> </u>	10. SOURCE OF F	UNDING NUMBI	ERS	
11. TITLE (Include Security Classification) Simulation of 9il Slick Transport on Great Lakes Connecting Channels; Volume II: User's Manual for the River 0il Spill Simulation Model (ROSS) 12. PERSONAL AUTHOR(S) Shen, H.T., P.D. Yapa, and M.E. Petroski 13a. TYPE OF REPORT 13b. TIME COVERD 15 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ROSS, oil slick, grid boxes, ice regions velocity distributions, plot of slick locations 19. ABSTRACT (Continue on reverse if necessary and identify by block number) In this study, two computer models named as ROSS and LROSS are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marrys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers. 20 DISTRIBUTION VANILABILITY OF ABSTRACT EDITIONERS SPECIALIZED CAPPICES SYMBOL 21 NAME OF RESPONSIBLE INDIVIDUAL 22 NAME OF RESPONSIBLE INDIVIDUAL 22 NAME OF RESPONSIBLE INDIVIDUAL	P.O. Box 1027					
Simulation of Oil Slick Transport on Great Lakes Connecting Channels; Volume II: User's Manual for the River Oil Spill Simulation Model (ROSS) 12. PERSONAL AUTHOR(S) Shen, H.T., P.D. Yapa, and M.E. Petroski 131. TYPE OF REPORT Final 13b. TIME COVERED FROM TO 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Final FOM TO 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. ROSS, oil slick, grid boxes, ice regions velocity distributions, plot of slick locations 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT Security CLASSIFICATION 19. ABSTRACT SECURITY			<u> </u>	<u> </u>		
Shen, H.T., P.D. Yapa, and M.E. Petroski 13a. TYPE OF REPORT Final	Simulation of Oil Slick Trans			ing Channe	ls; Vol	ume II: User's
16. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if nec	12. PERSONAL AUTHOR(S) Shen, H.T., P.D. Yapa, and M.	E. Petroski				
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ROSS, oil slick, grid boxes, ice regions velocity distributions, plot of slick locations 19. ABSTRACT (Continue on reverse if necessary and identify by block number) In this study, two computer models named as ROSS and LROS3 are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers.	Man-1, 1000					
ROSS, oil slick, grid boxes, ice regions velocity distributions, plot of slick locations 19. ABSTRACT (Continue on reverse if necessary and identify by block number) In this study, two computer models named as ROSS and LROS3 are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers. 20. DISTRIBUTION/AVAILABILITY OF ABSICACT						
tions, plot of slick locations 19. ABSTRACT (Continue on reverse if necessary and identify by block number) In this study, two computer models named as ROSS and LROSS are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers. 20. DISTRIBUTION AVAILABILITY OF ABSIRACT DITIC USERS Unclassified 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. NAME OF RESPONSIBLE INDIVIDUAL	The state of the s					
19. ABSTRACT (Continue on reverse if necessary and identify by block number) In this study, two computer models named as ROSS and LROSS are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers. 20. DISTRIBUTION AVAILABILITY OF ABSICACT DITIC USERS Unclassified 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. NAME OF RESPONSIBLE INDIVIDUAL 22. OFFICE SYMBOL					ions vel	ocity distribu-
In this study, two computer models named as ROSS and LROS3 are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers. 20 DISTRIBUTION AVAILABILITY OF ABSICACT UNCLASSIFIED U	Trong, prot of street tocatrons					
☑ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	In this study, two computer models named as ROSS and LROS3 are developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers.					
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	20 DISTRIBUTION AVAILABILITY OF ABSTRACT	PT Drie verse			CATION	
	22a. NAME OF RESPONSIBLE INDIVIDUAL	LI DIIC USERS	226 TELEPHONE (I	nclude Area Coo		

SECURITY CLASSIFICATION OF THIS PAGE

SIMULATION OF OIL SLICK TRANSPORT IN GREAT LAKES CONNECTING CHANNELS

Volume II: User's Manual for the River Oil Spill Simulation Model (ROSS)

bу

Hung Tao Shen, Poojitha D. Yapa, and Mark E. Petroski

Report No. 86-2

Department of Civil and Environmental Engineering Clarkson University Potsdam, New York 13676

March 1986

Sponsored by

U.S. Army Corps of Engineers Contract No. DACA33-85-C-0001 This program is furnished by the Government and is accepted and used by the recipient upon the express understanding that the United States Government makes no warranties, express or completeness, reliability, usability, or suitability for any particular purpose of the information and data contained in this program or furnished in connection therewith, and the United States Government shall be under no liability whatsoever to any person by reason of any use made thereof.

The program herein belongs to the Government. Therefore, the recipient further agrees not to assert any proprietary rights therein or to represent this program to anyone as other than a Government program.

PREFACE

The growing concern over the possible impacts of oil spills on aquatic environments has led to the development of a large number of computer models for simulating the transport and spreading of oil slicks in surface water bodies. Almost all of these models were developed for coastal environments. With the increase in inland navigation activities, oil slick simulation models for rivers and lakes are needed.

In this study, two computer models named as ROSS and LROSS are developed for simulating oil slick transport in rivers and lakes, respectivley. The study was originated by the Detroit District, U.S. Army Corps of Engineers in relation to the Great Lakes limited navigation season extension study. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Mary's River, these models are site independent and can be used to other rivers and lakes.

The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. In addition, a user-friendly, menu driven program with graphics capability is developed for the IBM-PC AT computer, so that these models can be easily used to assist the oil spill cleanup action in the connecting channels should a spill occur.

This report series is organized in four volumes, to provide a complete description of the analytical formulation of the models, the logic and structures of the computer programs, and the instructions for using the

models. The title of these volumes are:

Volume I:

Theory and Model Formulation

Volume II:

User's Manual for the River Oil Spill Simulation

Model (ROSS)

Volume III:

User's Manual for the Lake-River Oil Spill Simulation

Model (LROSS)

Volume IV:

User's Manual for the Microcomputer-Based Interactive

Program

Acces	ion For				
NTIS	GPA&I	DB.			
DTIC '	TAB				
Unami	ownced				
Just 1:	Clestion_				
By					
Avai	Availability Codes				
Dist	Avail and Special	•			

ACK NOWLEDGEMENTS

This study was supported by the U.S. Army Corps of Engineers under Contract No. DACA33-85-C-0001. Steve F. Daly and Mike Ferrick of the U.S. Army Cold Regions Research and Engineering Laboratory are the contracting officer's technical representatives. The writers would like to thank both of them as well as Dan Thompson and Don Williams of the Detroit District, U.S. Army Corps of Engineers, for their cooperation and assistance throughout the study period.

The writers would also like to acknowledge the assistance provided by the following individuals during various stages of this study: J.R. Weiser and R. Thomas, Detroit District, U.S. Army Corps of Engineers; F.H. Quinn and D.J. Schwab, Great Lakes Environmental Research Laboratory, NOAA; J. Galt and T. Kaiser, NOAA; M. Sydor, Inland Water Directorage, Canada; G. Tsang and R.O. Ramseir, Environment Canada; D. Mackay, University of Toronto; J.A. McCorquodale, University of Windsor; and S. Venkatesh, Atmospheric Environment Service, Canada.

TABLE OF CONTENTS

VOLUME II. USER'S MANUAL FOR THE RIVER OIL SPILL SIMULATION MODEL (ROSS)

	Page
PREFACE	ii
ACK NOWLED GEMENTS	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	ví
I. INTRODUCTION Model Implementation The Grid System	1 1 13
II. THE COMPUTER MODEL Subroutine Cross References Main Program and Subroutines	14 14 20
III. INPUT DATA FILES Data File Creation Input Adjustments	54 54 72
IV. MODEL OUTPUT	89
APPENDIX I. CROSS SECTIONAL GEOMETRY OF RIVERS	118
APPENDIX II. PROGRAM LISTING OF ROSS AND SUBPROGRAMS	135
APPENDIX III. DIGITIZED GRID SYSTEMS FOR CONNECTING CHANNELS	183

LIST OF FIGURES

		•	Page
Fig.	1	Block Diagram of Computer Model ROSS	,3
Fig.	2	Techniques for representing a river when islands are present	5
Fig.	3	Branch Configuration for Detroit River	6
Fig.	4	Branch Configuration for St. Clair River	7
Fig.	5	Branch Configuration for Upper St. Mary's River	8
Fig.	6	Branch Configuration for Lower St. Mary's River	9
Fig.	7	Grid Boxes and River Boundary Representation	11
Fig.	8	Labelling of Boundaries	13
Fig.	9	Sketch of Detroit River with Numbering System	56
Fig.	10	Defining Ice Regions	64
Fig.	11	Velocity Distribution in St. Clair River	100
Fig.	12	Plot of Slick Locations at t = 15 min, 30 min, 45 min, 1 hr. and 1 hr. 15 min.	114
Fig.	13	Plot of Slick Location at t = 1 hr. 30 min.	115
Fig.	14	Plot of Slick Location at t = 1 hr. 45 min.	116
Fig.	15	Plot of Slick Location at t = 2 hrs.	117

CHAPTER I

INTRODUCTION

The computer model ROSS for simulating the spreading of an oil slick in rivers is presented. The model first constructs the two-dimensional, depth averaged velocity distribution for the river and subsequently simulates an oil spill as identified by user supplied input. Analytical formulations used in the computer model for describing the physical processes affecting the oil and its transport are presented in Volume I. The flow chart presented in Fig. 1 outlines the structure of the computer model. discussions on the computer logic and techniques will be given in this chapter. Detailed discussions on the implementation of the analytical formulation code are presented in later chapters along with input and output instructions. The model described in this manual is developed for the Great Lakes Connecting Channels, including the St. Clair River, the Detroit River, and the St. Mary's River. However, the model is programmed in a genear! manner such that it can be utilized on other rivers as well. A thorough description of the model input and output is given to aid the users in adaptation of the model to rivers other than those which are presented. program is also designed so that the refinement of the model elements expansion of the model to include addition of physical and chemical processes can easily be made.

I.1 Model Implementation

Oil Slick Representation

The oil slick is represented by a user specified number of particles up to 1000. Each particle can be considered as a parcel of oil which represents an equal fraction of the entire oil slick volume. If, for

example, the user chooses 500 particles for a 50,000 barrel spill, each particle would represent 100 barrels of oil (1 barrel = 55 U.S. gal.). Treatment of the instantaneous or continuous spill cases differ only in the manner in which the particles are released and will be further explained in a later section. Whether a given spill is to be treated as instantaneous or continuous is decided automatically by the model based on spill duration and the time step to be used.

Velocity Distribution

Analysis of the transport of oil spill particles in a river requires a well defined water velocity distribution. The water velocity is eventually combined with the wind velocity to advect the oil (as will be discussed in the section on advection). To calculate these water velocities, various information of the river need to be considered. These include the total discharge, river stages, cross section geometries, river shoreline characteristics, ice conditions, and the existence of islands.

Computing the two dimensional velocity distribution in the river is done in two stages. First, a one dimensional unsteady flow model is used to generate discharge and river stages at specified cross sections referred to as nodes. The oil spill model utilizes this generated information to compute two-dimensional velocity distribution. In the oil spill model, branches are used to describe the channel configuration. The beginning and ending of these branches are selected to coincide with nodes of the one-dimensional model in most cases. In cases where it is necessary to have more branches in the oil spill model than in unsteady flow model the water levels at intermediate points are obtained through interpolation.

Figure 1. Block Diagram of Computer Model ROSS

Figure 1. Block Diagram of Computer Model ROSS

Figures 2 through 6 show one-dimensional schematizations for the connecting channels of the Great Lakes.

In the event an island is encountered, it becomes necessary to divide the discharge accordingly (Fig. 2). One or more branches extend around each side of the island. Each of these branches include a portion of the total number of streamtubes in the river. No new streamtubes are added (i.e. the total number remains the same but is split bettween the upper and lower island branches according to the ratio of flow split). After the magnitude of velocities and their center point locations are computed, the direction of velocity can be obtained by connecting corresponding streamtube boundaries in two successive cross sections. The information available at this stage is the magnitude and direction (or alternatively x and y components) of velocities of the specified streamtubes at the cross sections.

a) b)

Fig. 2 Techniques for representing a river when islands are present; a) nodes b) branches

Fig. 3 Branch Configuration for Detroit River

Fig. 4 Branch Configuration for St. Clair River

Fig. 5 Branch Configuration for Upper St. Mary's River

Fig. 6 Branch Configuration for Lower St. Mary's River

The assignment of velocities through the entire river plan area requires the establishment of a grid system, as shown in Fig. 7. The depth-averaged velocites obtained from the streamtube analysis are interpolated to all the grid boxes. The river boundaries for this grid system is defined by boundary grid boxes.

For each grid in the x-direction, two corresponding y grids for boxes at the upper and lower river shorelines are used to define the location of the river boundaries. When there is an island, two more y grids define the upper and lower boundaries of the island (see section on input output for more details). The model can handle any number of islands in the river. However, if two or more islands intersected a vertical line along which the x coordinate is constant, only one can be handled by the above mentioned input data. Other islands can be artificially handled by defining zero velocities for the island area (see section on input for more details). The disadvantage in this case is that oil deposition on shorelines may not be handled accurately.

Defining islands in the grid system is independent of defining islands for branch configuration. This allows for greater flexibility in the simulation of oil slick transformation. For example, a small island that covers about 3 or 4 grid boxes, which may be too small to be defined in the branch configuration, can be easily defined in the grid box system. The user must make sure that if an island is defined in the branch configuration, the area is appropriately defined in the grid box system as well.

Fig. 7. Grid boxes and river boundary representation.

The velocity within each box is assumed to be constant. Only the boxes found within the defined river boundaries are assigned Generally, the spacing between cross sections in the stream tube computation area much larger than the grid spacing Δx . The following procedure is adopted for assigning velocities to grid boxes based on the velocities computed at cross sections. The description that follows use the term "velocity point" to represent a point at which a computed velocity is acting. First, all velocity points computed from the streamtube analysis will be assigned to the boxes within which they lie. If more than one velocity point fall into a box, the average of the velocities is assigned to that box. In the next step, extra velocity points will be obtained by interpolating between two successive cross sections. The number of interpolation points between two successive cross sections can be changed through user defined input data. These velocity points obtained through interpolation will now be assigned to grid boxes by using the same method as before. In the last stage if there are any boxes without an assigned velocity, an average velocity based on it's neighboring boxes will be assigned to them. Upon completion of these steps, the entire river is

scanned for boxes requiring assignment of a velocity, and a velocity is assigned based on the average velocity of the neighboring boxes.

Oil Slick Orientation

The oil slick can be expected to spread either axisymmetrically or in a one dimensional manner. Determination of which type of spreading prevails depends upon the shape of the slick (i.e. aspect ratio). Therefore, after the oil particles have been moved to a new position, the centroid of the oil slick, aspect ratio and orientation are calculated, but only from consideration of those particles which have not hit the boundary.

For the case where an island is encountered, particles may move along either side of the island. Since the model only handles one slick at a time, the particles moving along the top of the island are shifted to the bottom of the island by a distance equal to the island width. A single slick is now used for the determination of the slick orientation and aspect ratio. The shifted particles are moved back after the spreading phase has taken place in a separate subroutine.

Boundary Conditions

As discussed in Volume I, a parameter known as the "half life" is used to describe the ability of the shore to retain any oil. Currently, ten different half life values are built into the program. These values are:

For the ease of refering to a particular shoreline, the boundaries are designated according to Fig. 8.

Fig. 8. Labeling of boundaries.

I.2 The Grid System

In the computer simulation, a two-dimensional reference is used to discretize the river. This reference is required to identify the locations of oil patches and their velocity. The finite-difference grids in this model must be squares of equal size. The location of each grid square is identified by their x and y indices. Detailed charts describing grid systems for all of the four connecting channels, with a grid size of 500 ft. x 500 ft., are given in Appendix II along with x,y indices. The user may refer to these charts to locate coordinates of oil spill site and locations of oil patches.

CHAPTER II

THE COMPUTER MODEL

The computer code has been tested on both FORTG1 and FORTRAN77 compilers. The listing given in this manual is the FORTRAN77 version. To run on FORTG1 the user needs to modify several statements in the main program.

All variables are dimensioned to have sufficient storage to run for any of the four rivers. However, the number of particles (NTOTAL) is a user defined input. If a number larger than 1000 is needed for NTOTAL, the dimensions of PARTCL, IMOVIN, YSHIFT, RADIUS and NTRACK must be appropriately increased.

II.1 Subroutine Cross Reference

A cross reference to the subroutines is provided to show the connectionbetween the subroutines. Also, the associated input files are given where applicable.

Program (Main/Sub)	Calls	Input Files
ROSS	NDCONV, PRINT, VELDIS, PRELSE, ADVECT, ORIENT, SPRDAX, SPRD1Y, SPRD1X, EVAPOR, DISOLU, BOUNDR, PLOTNU	Geometry Spill data Shore conditions Ice Regions
ADVECT	GAUSS, RANDU*	none
BOUNDR	none	none
DISOLU	none	none
EVAPOR	none	none
NDCONV	none	flow data

ORIENT	. none	none
PLOTNU	none	none
PRELSE	GAUSS, RANDU*	none
PRINT	none	none
SPRDAX	none	none
SPRD1X	none	none
SPRD1Y	none	none
VELDIS	none	none

*RANDU and GAUSS are standard subroutines available on IBM computers for generating uniform and gaussian random numbers respectively. On other systems they must be replaced by their equivalent.

COMMON BLOCKS

Common	"VEL"
--------	-------

/ Variable / Algebraic Name Name	• •	Definition /
CORDLB(I)		lower bank coordinates of the I th section
CORDV(I,J)	COMPLEX	coordinates at which VSTRM is acting
KINTM	INTEGER	number of interpolations between two velocity points of two consecutive cross sections, in the same streamtube.
LCSTSQ(I)	Integer	last cross section number of branch I
NFIRCO(I)	integer	next cross section connecting to cross section in question. For a divided channel around island, this represents the first cross section connected to in the lower division from the main channel cross section
NSECO(I)	integer	for a divided channel around an island, this represents the first cross section connected to in the upper division from the main channel cross section (if no island = 0, if lower division complete

		and returning back to upper division = 888. if both divisions are complete and resuming main channel = 999.)
NSLSCT(I)	INTEGER	number of sounding depths used to describe the channel geometry
NSTUBE(I)	INTEGER	total number of stream tubes at cross section I.
NUMCON(I)	Integer	Condition number of Section I. If all streamtubes continue to next cross section undivided = 11, if streamtubes divide into two channels from main channel = 12, if streamtubes from divided channel connect back to main channel = 21
Q(I)	REAL	discharge in the I th branch
SCTANG(I)	REAL	angle I th cross section makes with the positive x-direction. In the default version this angle is in radians. If it is needed to input in degrees, activate the comment statements in the DO loop in main program.
TICE(I,J)	REAL	equivalent ice thickness of J th sounding depth in I th cross section
VSTRM(I,J)	COMPLEX	stream velocity of the I^{th} cross section and J^{th} streamtube
WL(I)	REAL	water level at upstream end of branch I
AMID(1'1)	REAL	distance along the cross section from the reference bank to the J^{th} sounding depth in the I^{th} cross section
Z(I,J)	REAL	J th sounding depth for the I th cross section
ZD(I)	REAL	reference datum for section I from which the sounding depth is evaluated

	Common_"VA"		
	/ Variable / Algebraic / Name Name	Type /	Definition /
	VCAR(I)	COMPLEX	water velocity in grid box I of the cartesian system (Note: Two-D grid box system is converted to 1-D counting for storing)
	VDRIFT	COMPLEX	drift velocity of oil
	VWIND	COMPLEX	x and y components of wind velocity
0	Common "VASB"		
	/ Variable / Algebraic / Name Name	Type /	Definition /
	IGRILB(I)	INTEGER	y-direction grid box number of lower river boundary in column I (water side grid box)
	IGRIUB(I)	INTEGER	y-direction grid box number of upper river boundary in column I (water side grid box)
	IGRLB1(I)	INTEGER	y-direction grid box number of lower island boundary in column I (land side grid box)
	IGRUB1(I)	INTEGER	y-direction grid box number of upper island boundary in column I (land side grid box)
	Common_"ASB"		
	/ Variable / Algebraic / Name Name	Type /	Definition /
	IHITB(I)	INTEGER	particle ID number or index of the I th particle to hit the boundary
	NHITB	INTEGER	number of particles which have hit the boundary.
	NPTCL	INTEGER	number of particles in the system

PARTCL(I)	COMPLEX	cartesian coordinates of Ith oil particle
SPCEN	COMPLEX	cartesian coordinates of the center of the spill
TYPBND(I,J)	REAL	oil rejection rate from I th shore in J th grid box

Common "BLOCK7"

/ Variable / Name	Algebraic / Name	Type /	Definition /
AK2I	k _{2i}	REAL	Fay's gravity-inertia phase spreading coefficient (axisymmetrical)
AK2T	^k 2t	REAL	Fay's surface tension-viscous phase spreading coefficient (axisymmetrical)
AK2V	^k 2v	REAL	Fay's gravity-viscous phase spreading coefficient (axisymmetrical)
ANIU	v _w	REAL	kinematic viscosity of water (sq. ft. /sec.)
SIGMA	σ	REAL	surface tension of oil (lbs. /ft.)
SLICKR(I)		REAL	slick radius in I th pie segment
SPGOIL		REAL	specific gravity of oil
VOLPAR		REAL	volume of one oil particle (cu. ft.)
VOLPIE(I)		REAL	volume of oil in the I^{th} pie segment (cu. ft.)

Common "BLOCK8"

/ Variable Name	/ Algebraic / Name	Туре	/	Definition	/
AKC10	C ₁₀	REAL		(Fay's or Waldman's) gravity -	inertia
				spreading phase coefficient (one-dimensional)	·

AKC20	с ₂₀ .	REAL REAL	gravity - viscous phase spreading coefficient (one-dimensional) surface tension - viscous phase spreading coefficient (one-dimensional)
Common "SO" / Variable / Name	Algebraic / Name	Type /	Definition /
IMOVIN(I)		INTEGER	ID no. of the Ith moving particle
NMOVIN		INTEGER	total number of moving particles in system
SSHIFT		REAL	sum of all YSHIFT
YSHIFT(I)		REAL	distance I th particle is shifted down from the upper island channel. (Applicable only when the spill is split by an island.)
			•
/ Variable / Name	Algebraic / Name	Type /	Definition /
FEVP1		REAL	fraction evaporated at the end of previous time step
FEVP2	F	REAL	fraction evaporated at the end of present time step.
CEVP	С	REAL	coefficient C (at 283°K) required for evaporation characteristics

TO

To

REAL

boiling point temperature of oil (${}^{\rm O}$ K)

Common "ICE"

/ Variable / Name	Albegraic / Name	Type /	Definition /
NICERG		INTEGER	No. of ice regions
NICEX1(I)		INTEGER	x-grid box of the starting point of ice region I
NICEY1(I)		integer	y-grid box of the starting point of ice region I
NICEX2(I)		INTEGER	x-grid box of the ending point of ice region I
NICEY2(I)		INTEGER	y-grid box of the ending point of ice region I
IPOS1(I)		INTEGER	to save space and time the program internally works with a 1-D array for storing most 2-D information, such as VELCAR(). IPOS1(I) contains the 1-D array location corresponding to NICEX1(I), NICEY1(I).
IPOS2(I)		INTEGER	same as above (replace 1 by 2)
AMIUO	μ _ο .	REAL	viscosity of oil (gms/cm-sec)
ANICE	n _i	REAL	Manning's roughness coefficient for ice
SPAICE		REAL	Spill Area under ice cover (ft ²)

II.2 Main Program And Subroutines

ROSS

The main program ROSS is the main controlling code for the oil spill model. Through ROSS the fixed river geometry and oil spill parameter data are read into the program, variables are initialized and initial data manipulation and conversion is performed. Next, the appropriate subroutine calls are made to perform the required oil spill analysis and produce the final results as detailed in the Output section of each routine.

Input

The input data for ROSS, and the model in general, is found in four files. The file format is xxxx.yyy. The first four characters identify the river (e.g. STCL, DETR, STMU, STML). The last three characters are (i) GEO, (ii) FLW, (iii) BND, (iv) SPL and (v) ICE. Setup of input files is detailed in Chapter III.

Output

The output consists of printing of the following.

- i.) Messages if errors are encountered during some checking procedures.
- ii.) Headers, messages identifying spill type, spill location and spill duration.
- iii.) Input parameters that describe spill material.
- iv.) Stage and discharge conditions.
- v.) Environmental conditions such as wind velocity and air temperature.
- vi.) Locations of all particles (to a file) if this option is selected.

Common Blocks Referenced

VEL, VA, VASB, ASB, BLOCK7, BLOCK8, SE, V, SO, ICE

Subroutines Called

PRINT, VELDIS, ADVECT, ORIENT, PRELSE, SPRDAX, SPRD1X, SPRD1Y, BOUNDR, PLOTNU, NDCONV, EVAPOR, DISOLU

Major Variables (not included in common blocks)

/ Variable / Name	Algebraic / Name	Type	/ 	Definition	
API		REAL	API value	of oil	
DIFFUD		REAL	_ horizonta river (ft		coefficient for the
DX	$\Delta \mathbf{x}$	REAL	size of g	rid box (ft)	

FUELTP		CHARACTER	identification of fuel type
FULLTI		REAL	ice thickness of fully covered cross section, only one thickness assigned
HLIFE(I)	λ	REAL	halflife of oil spill retention on boundary, choice of one of ten possible values
HR		REAL	hydraulic radius of IY th trapezoid in cross section
ICINFO		INTEGER	number of cross sections with ice covers
ICODE		INTEGER	integer identifying which of the ten halflife values to be assigned to a grid
IEVERY		INTEGER	frequency of obtaining output from PLOTNU and other subroutines (i.e. value of two (2)) gives output every other time step
INDPRN		INTEGER	two possible values: zero (0) results in no printout, one (1) results in printout
INDX1D	•	INTEGER	This variable can have values ranging from 0 to 5 (see also subroutine ORIENT). INDX1D = 0: axi-symmetrical spreading INDX1D = 1: 1-D spreading in y-dir; use SPRD1Y INDX1D = 2: 2-D spreading in x-dir; use SPRD1X INDX1D = 3.4, or 5 indicate that the slick is very short. If the slick is on free surface INDX1D will be set to INDX1D-3. If more than half the slick is under ice then INDX1D will be set to zero. After resetting INDX1D the procedures described above that correspond to 0, 1 or 2 will be followed.
IOPT1		INTEGER	two possible values: one (1) results in printout of fixed data like cross section geometry and shore conditions, zero (0) results in no printout
IOPT2		INTEGER	two possible values: one (1) results in output of computed velocities to be used for plotting, zero (0) results in no output
IOPT3		INTEGER	two possible values: one (1) results in output of particle locations to be used in plotting, zero (0) results in no output

IOPT4	Integer	two possible values: one (1) results in number plot of particle distribution (see PLOTNU) , zero(0) results in no printout
IPARTX(I)	INTEGER	dummy variable used to transfer particle coordinates in integer format
IPARTY(I)	INTEGER	dummy variable used to transfer particle coordinates in integer format
IS	INTEGER	cross section number referencing ICINFO
ISPTYP	Integer	Spill Type; 0 - Instantaneous, 1 - Continuous. Computed by the model based on: if SPLTIM 0.5 * SPILDT, ISPTYP = 1, ELSE = 0.
IX	INTEGER	odd random number seed for random number generator
KINTM	INTEGER	no. of interpolations between two cross sections
LFROM	INTEGER	beginning limit (grid box number) for halflife designation to shore
LTO	INTEGER	ending limit (grid box number) for halflife designation to shore
NBRNCH	INTEGER	number of branches used in oil spill model
NBRP1	INTEGER	NBRNCH plus one
NGRIDX	INTEGER	total number of grid boxes in the x-direction
NTOTAL	INTEGER	total no. of paticles to be used
NTSTEP	INTEGER	total number of time steps for this run
OSTPS	INTEGER	No. of oilspill steps per UFDT
PERI	REAL	wetted perimeter of IY th trapezoid in the cross section
REJRAT	REAL	oil rejection rate from boundary as calculated from HLIFE and SPILDT data
SOLBLT	REAL	solubility of oil (g/m ³)
SOLUNI	REAL	solubility of oil (lbs/ft ³)

SPAREA	REAL	spill area (ft ²)
SPCENO	COMPLEX	location of spill
SPILDT	REAL	magnitude of time step for spill simulation (seconds)
SPLRAT	REAL	rate of spilling (ft ³ /s)
SPVOL	REAL	total volume of oil spill (U.S. gallons)
TENVF	REAL	air temperature (°F)
THETA	REAL	wind direction, angle measured clockwise from north in degrees
THETAO(I)	REAL	the clockwise angle the y-axis makes with north in degrees for the four respective rivers (ex., THETAO(1) = 109.0)
TIMET	REAL	elapsed time of simulation (sec.)
TOTDIS	REAL	Total amount of dissolved oil (grams)
TOTIME	REAL	total time of oil spill simulation (sec.)
TTTT	REAL	elapsed time of simulation (hr.)
UFDT	REAL	1-D model time step (hrs.)
UFSTPS	INTEGER	No. of 1-D model steps
VMOL	REAL	molar volume of oil (m³/mol.)
VMUNI	REAL	molar volume of oil (ft ³ /mol.)
VWMAG	REAL	wind speed (ft/sec)
VWX	REAL	x-component of wind velocity (ft. /sec.)
VWY	REAL	y-component of wind velocity (ft. /sec.)
WNDSPD	REAL	wind speed (m/sec)
WORD	CHARACTER	cross section ice cover condition, "FULL" = fully covered, "PART" = partially covered, "OPEN" = open water

SUBROUTINE ADVECT

The subroutine ADVECT will utilize the wind and water velocities to calculate new positions of the oil spill particles. Two subroutine calls are made for each particle: one to RANDU to generate a uniformly distributed random number and one to GAUSS to generate a normally distributed (gaussian) random number. This information is used to calculate the turbulent fluctuation component of the water velocity.

Input

Data transferred into **ADVECT** from **ROSS** includes the spill simulation time step (SPILDT), grid box size (DX), particle ID no. from (N1) particle ID no. to (N2) to be considered for moving and random number generator seed (IX)

Information utilized by ADVECT includes:

- 1.) Locations of all particles.
- 2.) Wind and water velocities.
- 3.) Boundary information.
- 4.) Information on ice regions

Output

The new particle locations and the new number of particles which have hit the boundary (if any) are generated.

Procedure

- 1.) Check for particles which have hit the boundary (since only particles which have not hit the boundary will be advected.)
- 2.) Find the grid box where a particle is located.
- 3.) Determine whether the particle is under ice or not.
- 4.) Calculate the drift velocity for that grid box.
- Calculate the random velocity component and add to the drift velocity.

- 6.) Calculate the new position of the particle.
- 6.) Repeat 2-6 for each particle.
- 7.) Count the number of particles hitting the boundary after advection, and store their ID no's.

Common Blocks Referenced

VA, VASB, ASB

Subroutines Called

GAUSS, RANDU

Internal Variables

/ Variable Name	/ Algebraic Name	/ Type /	Definition /
ANG		REAL	angle of random component from the positive x-direction
DELEQ	$^{\delta}$ eq	REAL	equilibrium thickness required for ice covered case (ft)
DIFFUD	$\mathtt{E}_{\mathbf{T}}$	REAL	horizontal diffusion coefficeint (ft ² /s)
FRAMFA	k	REAL	friction amplification factor denoted by 'k' in text
IPOS		INTEGER	grid location in 1-D array VCAR
IX		INTEGER	random number generator seed
NPTCL		INTEGER	number of particles now in the system (Moving + Hit) NOTE: In the case of a continuous spill the no. of particles increase every time step for some period.
UFAIL	^u f1	REAL	<pre>failure velocity under rough ice cover (ft/sec)</pre>
UWATER		REAL	speed of water current (ft/s)
UTH	uth	REAL	threshold current speed for slick movement (ft/sec)
VRAND		REAL	after return from GAUSS, VRAND = magnitude of random velocity component

VX REAL x-component of VRAND

VY REAL y-component of VRAND

SUBROUTINE BOUNDR

The subroutine BOUNDR handles the adsorption and rejection of oil at the river shorelines. This subroutine determines how many particles can remain on the appropriate land grid of a shoreline.

Input

Data transferred into **BOUNDR** from **ROSS** includes the grid box size (DX), the number of grid boxes in the x-direction (NGRIDX) and the printout indicator (INDPRN).

Information utilized by BOUNDR includes:

- 1.) Current particle locations including indices of particles which have hit the boundary.
- 2.) Boundary information.

Output

The output includes

- 1.) The locations of oil spill particles on the boundary.
- 2.) Recomputed oil volumes in boundary grid boxes.
- 3.) Relocation of rejected particles.

Procedure

- 1.) If a particle is below boundary one (1), move particle to appropriate boundary land grid.
- 2.) If a particle is above boundary two (2), move particle to appropriate boundary land grid.
- If neither 1.) or 2.) occurs, since these checks are performed only for hit particles, the particle is trapped between boundary three
 and four (4). Therefore, assign particle to nearest island boundary.
- 4.) Repeat 1-3 for all particles which have hit the boundary.

- 5.) Check the boundary grid rejection rate and re-entrain the excess particles.
 - a.) First m particles of total m+n particles hitting the shore are retained and next n are pushed back out.
 - b.) If pushed out, particle is assigned to centroid of adjacent water grid.
- 6.) If particle is removed from shore, NHITB is reduced and remaining particle indices in array IMOVIN are shifted up to make up for the empty spot in the array.
- 7.) Repeat 5-6 for all x grid numbers checking each shore as required.
- 8.) Write output. (If NHITB \neq 0)

Common Blocks Referenced

VASB, ASB

Subroutines Called

none

/ Variable / Algebraic Name Name	/ Type /	Definition /
IALOWD	INTEGER	number of particles allowed in a grid box
IDUM1	INTEGER	temporary storage
IDUM2	INTEGER	temporary storage
J	INTEGER	temporary storage
К	INTEGER	temporary storage
K1	INTEGER	temporary storage
К2	INTEGER	temporary storage
L	INTEGER	temporary storage
M	INTEGER	temporary storage
NBNDR	INTEGER	boundary number(shore number)
NPTBND(K,I)	INTEGER	number of particles in boundary K of x-grid I.

X1	REAL	temporary storage
хсо	REAL	x-coordinate of the center of water grid adjoining first land boundary grid
XXX	REAL	used for checking location of particle in island
Y1	REAL	temporary storage
¥2	REAL.	temporary storage
Y3	REAL	temporary storage
YCO	REAL	y-coordinate of the center of water grid adjoining first land boundary grid

SUBROUTINE DISOLU

The subroutine DISOLU computes the amount of oil dissolved in water.

The solubility of oil is so low that it has very little affect on the trajectory (spreading), but it is important for environmental impact assessment. The working units in this subroutine are metric to make the cross reference with original theory easier.

Input

Data transferred to **DISOLU** from **ROSS** include spill area exposed to air (SPAREA,ft²), spill area under ice (SPAICE, ft²), solubility of fresh oil (SOLBLT,gram/ m^3), time elapsed (TIMET,secs), Spill simulation time step (SPILDT,secs).

On Return

On return to main program it provides

- 1.) Amount dissolved during this time step (grams)
- 2.) Total amount dissolved (grams)

Grams are converted to 1bs. in the main program.

Procedure

Theory by Cohen, Mackay and Shiu (1980) is used here. The subroutine

is self explanatory.

Common Blocks Referenced

ICE

Subroutines Called

None

/ Variable Name	/ Algebraic / Type / Name	Definition	/
ARBAR	REAL	Mean area of slick during the (m^2) ARBAR = (SPAR1 + SPAR2)/2	time step
DELDIS	REAL	Amount of oil dissolved during step (grams)	ng the time
DISOLK	REAL	Dissolution mass transfer convertly set at 1 cm/hr	pefficient,
SPAR2	REAL	total slick area at the end time step (in m ²) SPAR2 = SPAICE)/10.76	• -
SPAR1	REAL	Total slick area at the end time step (m^2)	of previous
TOTDIS	REAL	Total amount of dissolved oil	(grams)

SUBROUTINE EVAPOR

In this subroutine metric units are used. The reason for using units different from other subroutines is to make cross reference with theory (Mackay, et al. 1980) easier.

Input

Data transferred into EVAPOR from ROSS include API index of oil. (API), Environmental temp (TENV, O K), Windspeed (WNDSPD,m/s), molar volume of oil (VMOL,m 3 /mol), Initial volume of spill (VZERO,m 3), Spill area exposed to air (SPAREA,ft 2), Spill simulation time step (SPILDT) and step no. (JSTEP).

On Return

On return to main program it provides

1.) Fraction of oil evaoporated

Procedure

Theory by Mackay, Patterson and Nadeau is used here. The subroutine is self-explanatory.

Common Blocks Referenced

BLOCK7, SE

Subroutines Called

None

/ Variable Name	/ Algebraic Name	/ Type /	Definition /
AKM	K m	REAL	Mass Transfer coefficient (m/s)
С	С	REAL	Coefficient C at TENV
FEVP2		REAL	Fraction evaporated at present time step
JSTEP		INTEGER	Current Time Step
PO	Po	REAL	Vapor Pressure at TENV (atm)

RGAS	R	REAL	Gas Constant e.g., 8.3147 Joules/deg mole
TENV	T _E	REAL	Air temperature (^O K)
WNDSPD	U wind	REAL	Wind Speed (m/s)

SUBROUTINE NDCONV

This subroutine is necessary only if branch configuration in the oil spill model does not match exactly with 1-D flow model*. Currently the four rivers built into the model are: (i) St. Clair (IRCODE = 1); (ii) Detroit (IRCODE = 2); and (iii) lower St. Mary's (IRCODE = 3) and (iv) upper St. Mary's (IRCODE = 4). The branch configurations in oil spill model were slightly changed from those in the 1-D model to improve the computations of velocity distribution. In the case of upper St. Mary's River the branch configuration in 1-D flow model matches exactly with that in the oil spill model. Nevertheless, upper St. Mary's River is included in this subroutine for the convenience of the user. This subroutine also performs the function of reading in the water level and discharge data.

Input

Information utilized by NDCONV includes

- 1.) Water levels and discharge read as data
- 2.) River code (IRCODE)

On Return

On return, water levels and discharges at upstream and downstream ends of the branches in oil spill model are passed to the main program.

^{*}If the branch configuration of oil spill model and unsteady flow model are indentical this program is not needed. See the section on DETR.FLW in Chapter III for more details.

Procedure

Conversion scheme is built into the subroutine through data in arrays RIV1, RIV2, RIV3 and RIV4. Depending on the value of river code the discharges and water levels will be assigned to match with the branch configuration of the river used.

Common Blocks References

VEL, VA

Subroutines Called

None

Internal Variables

/ Variable / Algebraic Name Name	/ Type /	Definition /
DWL	REAL	Temporary storage of water levels read in as data
DQ	REAL	Temporary storage of discharge read in as data
NPTS(I)	INTEGER	No. of data to read for river I
RIV1,RIV2,RIV3,RIV4	REAL	Transformation data for St. Clair, Detroit, upper St. Mary's and lower St. Mary's Rivers, respectively. Ex. RIV2(2) = 14 which means in Detroit River the 14th node from 1-D model corresponds to 2nd node of Oilspill Model.

SUBROUTINE ORIENT

The subroutine ORIENT calculates the oil slick orientation and aspect ratio. These values are then used to determine if axisymmetrical or one-dimensional spreading will be used.

Input

Data transferred into ORIENT from ROSS includes the grid box size (DX).

Information utilized by ORIENT includes:

- 1.) Current particle locations.
- 2.) Boundary information.

On Return

On return to main program it provides

- 1.) Oil slick orientation, aspect ratio and whether the slick is short, i.e., average radius DX/2
- 2.) Oil spill centroid.
- 3.) Locations of shifted particles from the upper side of island (if the slick is split by an island) and the distance that each particle has been shifted.

Procedure

- 1.) Find the particle ID numbers (indices) of those particles which have not hit the boundary. Assign these numbers to the array IMOVIN(I). [This information is used repeatedly, hence, this storing saves execution time.]
- 2.) Compute the spill centroid.
- 3.) If an island is encountered:
 - a.) Shift particles in upper channel to lower channel by a distance equal to the island width at x-coordinate of the particle while keeping track of the amount of shift and which particles were shifted.
 - b.) Recompute the spill centroid if particles were shifted.
- 4.) Calculate the angle of the slick between the principal axis of the slick and the river cartesian x-axis.
- 5.) Transform coordinates to have positions relative to the principal axis and compute aspect ratio.
- 6.) Using slick orientation (θ) and aspect ratio (a.r.) assign a value between 0 and 5 to INDX1D

$$INDX1D = 0 : a.r. < 3$$

INDX1D = 1 : a.r. > 3,
$$0^{\circ}$$
 < θ < 45°

INDX1D = 2 : a.r. > 3,
$$45^{\circ} < \theta < 90^{\circ}$$

INDX1D = 3 : a.r. \leq 3, ... short slick

INDX1D = 4 : a.r. > 3, $0^{\circ} \le \theta \le 45^{\circ}$, ... short slick

INDX1D = 5 : a.r. > 3, 45° < $\theta \leq 90^{\circ}$, ... short slick

Short slick is a slick having an average radius less than DX/2.

Common Blocks Referenced

SO, ASB, VASB

Subroutines Called

none

/ Variable Name	/ Algebraic Name	/ Type /	Definition /
ASPECT		REAL	aspect ratio = SALONG/SNORMAL
вот		REAL	temorary storage
COUNT	•	REAL	counter
CTHETA		REAL	cosine of the angle THETA
DEG		REAL	THETA in degrees
J		INTEGER	<pre>index for moving particles in IMOVIN(I)</pre>
L		INTEGER	temporary storage
М		INTEGER	temporary storage
SALONG		REAL	sum of particle distances from one of the transformed axis, as you move along the other axis
SNORML		REAL	sum of particle distances from the axis opposite to the one used to calculate SALONG
SPX		REAL	temporary storage
SPY		REAL	temporary storage
STHETA		REAL	sine of the angle THETA
SUMIX	I	REAL	sum of $(XX)^2$

SUMIXY	Pxy	REAL	sum of (XX) x (YY)
SUMIY	I _x	REAL	sum of (YY) ²
THETA		REAL	angle from cartesian x-axis to major spill axis
TOP		REAL	temporary storage
xx		REAL	x-distance from spill centroid to the particle
YY		REAL	y-distance from spill centroid to the particle

SUBROUTINE PLOTNU

The subroutine, PLOTNU, generates a numerical description of oil concentrations. This is accomplished by printing an area of size twenty columns of grids by twenty rows of grids. The printing area is centered over the oil spill centroid. If the grid box is included in or between the river boundaries, it will contain the number of oil particles currently contained there. If the grid box is not part of the river i.e. land, the grid box will be printed out containing "***". Since each column is formatted to be three characters wide, the maximum number of particles that will be printed out as a number for any given grid box is 999. If this number is exceeded, '***' will be printed for that grid box.

Input

Data transferred into **PLOTNU** from **ROSS** includes the grid box size (DX).

Information read into ROSS and utilized by PLOTNU includes:

- 1.) Current particle locations, spill centroid.
- 2.) River shore and island shore boundary information.

Output

Oil concentrations written as numbers of particles in a twenty by

twenty block of grid boxes centered over the current spill centroid. A sample output is given in Chapter III.

Procedure

- 1.) Assign all KOUNT a four digit number i.e. 1001 (note: format to write KOUNT is I3 so a four digit integer written in this format will appear as '***'.
- 2.) Find maximum and minimum x and y grid boxes (10 boxes away from spill centroid) and corresponding coordinates of the boxes centroid.
- 3.) Assign grid boxes (or KOUNT) which are contained within the river boundaries a concentration of zero (0) oil particles.
- 4.) Count how many oil particles in the grid boxes are contained within the grid box boundaries.
- 5.) Write the twenty by twenty block with the oil concentrations and the x and y ranges for the block.

Common Blocks Referenced

VASB, ASB, SO

Subroutines Called

none

/ Variable / A Name	lgebraic / Type / Name	Definition	/
IMAX	INTEGER	IMIN + 19	
IMIN	INTEGER	x-grid box number 9 grids back centroid.	from spill
JMAX	INTEGER	JMIN + 19	
JMIN	INTEGER	y-grid box number 9 grids dow spill centroid.	n from
KOUNT(1,J)	INTEGER	stores the number of particles box	in grid
L,M	INTEGER	temporary storage	
M1	INTEGER	lower grid box number describi boundary	ng river

м2	INTEGER	upper grid box number describing river boundary
SPCEN1	COMPLEX	centroid of all moving particles computed based on their actual locations
XMIN	REAL	<pre>x-coordinate for centroid of leftmost grid boxes</pre>
XMAX	REAL	<pre>x-coordinate for centroid of rightmost grid boxes</pre>
YMIN	REAL	y-coordinate for centroid of upper grid boxes
YMAX	REAL	y-coordinate for centroid of lower grid boxes
XMIN1	REAL	minimum x-grid box number in twenty by twenty block centered over the spill
YMIN1	REAL	minimum y-grid box number in twenty by twenty block centered over the spill

SUBROUTINE PRELSE

The subroutine PRELSE is used to release particles in continuods spills at equal time intervals during the leak. For example, when a 30-minute spill is represented by a total of 600 particles, this subroutine will release a particle every 3 secs. Note that if SPILDT is 15 mins., it takes two time steps to release all the particles, with 300 particles released in each time step. Particles 1 to 300 have no effect from this subroutine during the second time step.

Input

Data transferred to **PRELSE** from **ROSS** includes grid box size (DX), spill simulation time step (SPILDT) random number generator seed (IX), particle ID no. from (N1), particle ID no. to (N2) to be considered for moving and initial spill site (SPCENO)

Information utilized by PRELSE includes

1.) Wind and water velocities

- 2.) Boundary information
- 3.) Information on ice regions

On Return

On return to the main program this subroutine provides the locations of released particles at the end of the time step and the number of particles that have hit the boundary (if any).

Procedure

- 1.) Find the grid box where the spill site is located.
- 2.) Determine whether that location is under ice or not.
- 3.) Calculate the drift velocity for that box.
- 4.) Calculate the random velocity component and add that to the drift velocity.
- 5.) Release a particle and move to it's location at the end of the time step.
- 6.) Advance time by (SPILDT)/(N2-N1+1).
- 7.) Repeat steps 4 to 6 for all particles from N1 to N2 (both inclusive).
- 8.) Count the number of particles hitting the boundary at the end of the time step, and store their ID no's.

/ Variable Name	/ Algebraio Name	: / Type /	Definition /
ANG		REAL	angle of random component from the positive x-direction
DELEQ	δ eq	REAL	<pre>equilibrium thickness required for ice covered case (ft)</pre>
DIFFUD	E _T	REAL	horizontal diffusion coefficient for river (ft ² /s)
DTPTCL		REAL	time the particle has to travel from release time to the end of the current oil spill model time step

DTSMAL	δt	REAL	the smaller time step for advection computed based on stability criteria
FDELTA	\mathbf{F}_{δ}	REAL	eq. (26), Vol. I
FRAMFA	k	REAL	friction amplification factor denoted by 'k' in text
IPASS		INTEGER	this is a counter to keep track of the loops within SPILDT
IX		INTEGER	random number generator seed
ROUGH		REAL	roughness height of ice (ft)
UFAIL	U _{f1}	REAL	<pre>failure velocity under rough ice cover (ft/sec)</pre>
UTH	u _{th}	REAĻ	threshold current speed for slick movement (ft/sec)
UWATER		REAL	water current speed (ft/s)
VRAND		REAL	after return from GAUSS, VRAND = magnitude of random velocity component
. VX		REAL	x-component of VRAND
VY		REAL	y-component of VRAND

SUBROUTINE PRINT

The subroutine, PRINT, writes all fixed data describing the river configuration. This output could be directed to a terminal, printer or file. In most systems defining a value 6 will direct the output to a terminal or printer. Other values of IUT should be defined as a file. The fixed data is primarily the input for the computer model found in file XXXX.GEO and XXXX.BND as described in sections on ROSS and Chapter III. The choice of whether the output from PRINT will be written to a file or not depends upon the variable IOPT1. If IOPT1 equals one (1), information is written to a file, terminal or printer if IOPT1 equals zero (0) and no output is generated from PRINT.

Input

Data transferred into **PRINT** from **ROSS** includes the grid box size (DX), the unit number for printing the output (IUT), the number of branches (NBRNCH) and the number of grid boxes in the x-direction (NGRIDX).

Information read into ROSS and utilized by PRINT includes:

- 1.) River shore and island shore boundary information.
- 2.) Cross section locations, geometry and connection information.
- 3.) Boundary types and rejection rates.

Output

A heading and the fixed river configuration (geometry) is written to file OILPRT.OUT (if IUT = 2) and to the console if IUT = 6. Also included in the output is shore (boundary) type information. Value of IUT can be changed by changing the corresponding value in CALL PRINT statement.

Procedure

- 1.) Write the heading with date and time of program execution.
- 2.) Write number of branches, grid boxes in x-direction, grid box size and number of interpolations between sections.
- 3.) Write the information on sections for each branch.
- 4.) Write
 - a.) cross section reference coordinates, orientation and width
 - b.) number of streamtubes at that section
 - c.) connecting conditions to the next streamtube
- 5.) Write the geometry of the cross sections i.e. The distance from the reference coordinates and corresponding sounding depth.
- 6.) Write the grid configuration for schematized river i.e. for every grid box in the x-direction, there exists an upper and lower y-grid for the river boundary and an upper and lower y-grid for an island. If no island, y-grids for island equal zero (0).
- 7.) Write rejection rates for each grid box.

Common Blocks Referenced

VA, VASB, ASB, VEL

Subroutines Called

none

Internal Variables

-	Variable / Algebraic / Name Name	/ Type /	. Definition /
	DATRUN	STRING	system generated date of execution
	KNUM	INTEGER	number of river boundaries equal 2 without islands, equals 4 with islands
	IN	INTEGER	temporary storage
	IS2	INTEGER	temporary storage
	IWIDTH	INTEGER	temporary storage of YWID(I,J)
	IUT	INTEGER	defines the unit number to which the output will be printed.
	TIMRUN	CHARACTER	system generated time of execution

SUBROUTINE SPRDAX

The subroutine SPRDAX handles the axisymmetrical spreading of moving oil particles. The slick area is divided into eight pie segments and the axisymmetrical spreading equations are applied to particles in each pie.

Input

Data transferred into SPRDAX from ROSS includes the grid box size (DX), oil spill simulation time step (SPILDT), elapsed time of simulation (TIMET), the printout indicator (INDPRN), duration of the spill (SPLTIM) and volume rate of spill (SPLRAT).

Information utilized by SPRDAX includes:

1.) Current particle locations and spill centroid.

- 2.) Boundary information.
- 3.) Spreading law constants.
- 4.) Shifted particle information.
- 5.) Oil evaporation information.
- 6.) Information on ice regions.

Output

The following information is generated:

- 1.) New particle locations are calculated after spreading phase.
- 2.) Mean radius of slick in each pie is computed and printed
- 3.) Any shifted particles are placed back on the upper side of the island.
- 4.) Spill Area exposed to air, SPAREA, and spill area under ice SPAICE is computed.

Procedure

- 1.) Calculate the constant terms for spreading rate equations.
- 2.) Calculate the average radius of all moving particles.
- 3.) Locate numbers (indices) of particles which belong to a pie rejecting any outside of a calculated range.
- 4.) Calculate the mean pie radius.
- 5.) Determine whether the pie is under ice or not. If it is not under ice, skip Step. 6.
- 6.) Determine if the oil is still leaking. If leaking has stopped, no spreading, otherwise go to Step 9 and determine spreading under ice conditions.
- 7.) Calculate the transition times based upon the mean pie radius and eight times the oil volume in the pie segment.
- 8.) Determine the spreading phase of oil particles, and the mean pie radius.
- 9.) Determine the spreading rate.
- 10.) Calculate new particle locations.
- 11.) Calculate SPAREA and/or SPAICE

- 12.) Repeat 3-11 for each pie segment.
- 13.) Check to make sure no particles shifted from the top side of the island have spread through the island (if necessary).
- 14.) Shift particles back to upper side of island (if necessary).
- 15.) Check for particles hitting river or island shoreline.

Common Blocks Referenced

VASB, SO, BLOCK7, ASB, SE

Subroutines Called

none

/ Variable Name	/ Algebraic / Name	Туре	/	Definition	/
AKINER		REAL		combined constants for gravity spreading rate equation	phase
AK SURF		REAL		combined constants for surface phase spreading rate equation	tension
AKVISC		REAL		combined constants for viscous spreading rate equation	phase
ANG		REAL		angle a line that connects the location to spill center makes positive x-direction	~
ANG1		REAL		upper angle limit of pie segmen	nt
ANG2		REAL		lower angle limit of pie segmen	nt
ATX1		REAL		temporary storage	
ATX2		REAL		temporary storage	
DELTA	$1 - \frac{\rho_o}{\rho_w}$	REAL		difference in specific gravity oil and water	between
DRDT	dr/dt	REAL		axisymmetrical spreading rate a	at mean pie
DVDT	dv/dt	REAL		time rate of change of oil vol	ume
G	g	REAL		gravitational acceleration	•

ICOND	INTEGER	<pre>ICOND = 0: oil in the pie has free surface conditions ICOND = 1: oil in the pie is under ice</pre>
IPIE	INTEGER	pie number
J	INTEGER	temporary storage of IMOVIN(I)
L	INTEGER	temporary storage
М	INTEGER	temporary storage
NPTPIE	INTEGER	number of particles in the pie, no more than 1000 particles allowed in a pie at one time
NTRACK(I)	INTEGER	keeps track of particle numbers in the pie
RADIUS(I)	REAL	distance to particles (radius) in the pie from spill center
RADOLD	REAL	radius before spreading (ft)
RADNEW	REAL	radius after spreading (ft)
RMEAN r	REAL	mean pie radius (ft)
ROWAT P	REAL	density of water (slugs/ft ³)
SPRATE	REAL	spreading distance in SPILDT time (per unit radius)
SPX	REAL	temporary storage
SPY	REAL	temporary storage
TERMIN	REAL	time at which spreading terminates (sec)
TIMBAR	REAL	average of previous total simulation time plus current simulation time
TOTRAD	REAL	mean radius for all moving particles
TSURFT	REAL	transition time from viscous to surface tension phases (sec)
TVISC	REAL	transition time from irertia to viscous phases (sec)
VOLBAR	REAL	average of previous pie volume plus current pie volume
VOLNOW	REAL	current pie volume

X REAL temporary storage

Y REAL temporary storage

SUBROUTINE SPRD1X

The subroutine SPRD1X handles the one-dimensional spreading of moving oil particles. The slick is divided into strips and the one-dimensional spreading equations are applied to each individual strip.

Input

Data transferred into SPRD1% from ROSS includes the grid box size (DX), oil spill simulation time step (SPILDT), elapsed time of simulation (TIMET), the printout indicator (INDPRN), and spill area exposed to air (SPAREA).

Information utilized by SPRD1X includes:

- 1.) Current particle locations and spill centroid.
- 2.) Boundary information.
- '3.) Spreading law constants.
- 4.) Shifted particle information.
- 5.) Oil evaporation information.
- 6.) Information on Ice regions.

Output

The following information is generated:

- 1.) New particle locations are calculated after spreading phase.
- 2.) Mean position of the edge of the slick in each strip is computed and printed.
- Any shifted particles are placed back on the upper side of the island.
- 4.) Spill area exposed to air, SPAREA, and spill area under ice (SPAICE) is computed.

Procedure

- 1.) Calculate the constants needed for spreading rate equations.
- 2.) Locate the strip farthest downstream (LMAX) and the strip farthest upstream (LMIN).
- 3.) Calculate strip centroid with relation to y-coordinates of particles in strip.
- 4.) Determine particle ID numbers which belong to a strip, with a minimum of two particles required in a strip for spreading to take place.
- 5.) If more than half the particles in the strip are under ice then ICOND = 1; otherwise, ICOND = 0.
- 6.) If ICOND = 1, no spreading
- 7.) Calculate the mean spreading distance (width) of the slick in the strip (XLE) based upon the distance to particles from the strip centroid.
- 8.) Calculate the transition times based upon the oil volume in the strip.
- 9.) Determine in what phase oil particles at the mean width (XLE) are spreading and calculate the appropriate spreading rate.
- 10.) Calculate new particle locations.
- 11.) Repeat 7-10 for both sides of the slick centroid.
- 12.) Repeat 3-11 for each strip.
- 13.) Check to make sure no particles shifted from the top side of the island have spread through the island (if necessary).
- 14.) Shift particles back to upper side of island (if necessary).
- 15.) Check for particles hitting river or island shoreline.

Common Blocks Referenced

VASB, SO, BLOCK7, BLOCK8, ASB, SE

Subroutines Called

none

/ Variable Name	/ Algebraic / Name	' Type /	Definition	/
AKINER		REAL	combined constants for gravity spreading rate equation	phase
AKSURF		REAL	combined constants for surface phase spreading rate equation	tension
AKVISC		REAL	combined constants for viscous spreading rate equation	phase
DRDT	dr/dt	REAL	one-dimensional spreading rate strip width	at mean
DVDT	dv/dt	REAL	time rate of change of oil volu	ıme
ICOND		INTEGER	if ICOND = 0, the strip is treaffree surface. If ICOND = 1, the strip is treafunder ice	
ISTRIP		INTEGER	strip number	
LMAX		INTEGER	number of the strip farthest de	ownstream
LMIN		INTEGER .	number of the strip farthest u	pstream
NPT(I)		INTEGER	if I = 1, NPT is the number of on (+) side of YBAR; if I = 2, number of particles on the (-) YBAR	NPT is the
NPTSTR		INTEGER	number of particles in a strip	
NTRACK(I)		INTEGER	keeps track of particle numbers	s in the
RADIUS(I)		REAL	distances of particles from YB	AR
SPRATE(I)		REAL	spreading distance in SPILDT to unit distance to mean edge. I is for (+) side. If I = 2 it side.	f I = 1 it
TERMIN		REAL	time at which spreading termina	ates (sec)
TIMBAR		REAL	average of previous total simulation time (
TSURFT		REAL	transition time from viscous tension phases (sec)	o surface

TVISC	REAL	transition time from inertia to viscous phases (sec)
UTHICK	REAL	thickness at the temination of spreading (ft)
VOLBAR	REAL	average of previous strip volume plus current strip volume
VOLNOW	REAL	current strip volume
X	REAL	temporary storage
XLE(I)	INTEGER	mean strip width on $(+)$ side of YBAR if I = 1 or on $(-)$ side if I = 2
YBAR	REAL	centroid of strip width respect to the y-direction

SUBROUTINE SPRD1Y

This subroutine is very similar to SPRD1X. In this subroutine the strips are for a y-grid box, running in the direction of x-axis. The explanation is the same as SPRD1X.

SUBROUTINE VELDIS

The subroutine, VKLDIS, calculates the two-dimensional depth-averaged velocity distribution in the river. The water velocity is determined for each grid box representing the river.

Input

Data transferred into **VKLDIS** from **ROSS** includes the printing option (IOPT2), number of branches (NBRNCH), number of grid boxes in the x-direction (NGRIDX), and the grid box size (DX).

Information read into ROSS and utilized by VKLDIS includes:

- 1.) branch connections, discharges and stages
- 2.) cross section locations, geometry, connecting information and ice thickness (if applicable)

- 3.) river shore and island shore boundary grid boxes
- 4.) information on the grid boxes to have zero velocities

Output

X and y components of velocity and coordinates where they act are computed and written (optional) to datafiles as follows:

- a.) for each streamtube across all cross sections.
- b.) for each grid box in the cartesian system representing the river.

Procedure

- 1.) For each branch:
 - a.) Go from cross section to cross section and calculate the streamtube velocities across the river width.
 - b.) Store the magnitude of the streamtube's velocity as complex variable VSTRM's x-component.
 - c.) Calculate the coordinates of the point at which the streamtube velocity acts.
- 2.) Calculate the direction in which the streamtube velocities act.
 - a.) Use the coordinates of velocities in the same streamtube for two consecutive cross sections and calculate the distance between them in x and y direction
 - b.) Use these distances to resolve the magnitude of streamtube velocity into x and y components by using similar triangles
- 3.) Print x and y velocity components and corresponding coordinates to a file if variable IPROPT = 1. (transferred from main program as IOPT2)
- 4.) The streamtube velocities computed at the cross sections are used to assign velocities to each grid box representing the river.
 - a.) Assign streamtube velocity to a grid box (across the cross section) if its coordinates are within a box (using averaging if two velocities fall into the same box.)
 - b.) Between two cross sections along the same streamtube, interpolate between the streamtube velocities at each section a set number (KINTM) of times using weighted averages and obtain KINTM interpolated velocities and corresponding coordinates.

- c.) Using these interpolated velocities, assign velocities to the grid boxes between the cross sections using the same technique as described in a.)
- d.) Search the river for grid boxes containing no velocities and assign velocities to them by taking an average of the velocities of the surrounding boxes.
- 5.) For the specified NZRVB boxes set velocities to zero
- 6.) If IPROPT =1, the x and y coordinates and the velocity assigned to these coordinates are printed to a file.

Common Blocks Referenced

VEL, VASB, VA, V

Subroutines Called

none

	/ Algebraic Name	/ Type /	Definition /
ANGL .		REAL	temporary storage of SCTANG(I)
ARIY	$\sum_{p=0}^{p} A_{p} R_{p}^{2/3}$	REAL	area x (hydraulic radius) ^{2/3}
ATUBE		REAL	cumulative area up to and including tube
ATUBE1		REAL	cumulative area up to tube n
COUNT		INTEGER	number of boxes with assigned velocities surrounding the current box
DYRS		REAL	distance between sounding depth points defining the cross section
IBCON		INTEGER	next connecting branch
ICEIND		INTEGER	ice indicator; ice covered ICEIND = 1 for open water, ICEIND = 0
IPOS		INTEGER	keeps track of position in one-dimensional array for storing grid box velocities
IROW		INŢEGER	used when checking to see if the island is inside the boundary or not

IS		INTEGER	cross section number
ISCON		INTEGER	temporary storage of cross section number of next connecting cross section
ITB		INTEGER	streamtube number
ITBCON		INTEGER	next connecting streamtube (island case)
IY1		INTEGER	lower y-direction grid box for a particular x-direction grid box
IY2		INTEGER	upper y-direction grid box for a particular x-direction grid box
J1		INTEGER	temporary storage of IY1
Ј2		INTEGER	temporary storage of IY2
L		INTEGER	x-direction grid box number
LASTSC		INTEGER	last cross section in branch
М		INTEGER	y-direction grid box number
MM		INTEGER	temporary storage
NFIRST		INTEGER	temporary storage of NFIRCO
NIY	•	INTEGER	number of sounding depths describing cross section geometry
NSTB		INTEGER	temporary storage of NSTUB
NSTUB1		INTEGER	NSTB - 1
PSARIY		REAL	partial sum of area x (hydraulic radius) ^{2/3}
QIY	$Q_{\mathbf{p}}$	REAL	cumulative discharge up to n th sounding depth
QI¥1		REAL	cumulative discharge up to $n-1$ th sounding depth
QSET		REAL	set discharge for streamtube
QSTUBE	$Q_{\mathbf{g}}$	REAL	computed discharge for any one streamtube
RAD	P	REAL	temporary storage
SAIY	ΣΑ	REAL	partial sum of areas

SARIY	$\sum_{p}^{N} A_{p} R_{p}^{2/3}$	REAL	total sum of area x (hydraulic radius) 2/3
SCTLEN		REAL	length from the beginning of a branch to a particular cross section in the branch. (For interpolation purpose only. Used only with TBRLEN.)
SPERI	v	REAL	sum of wetted perimeters
SXAREA	N ΣA p	REAL	total cross sectional area
TBRLEN		REAL	total branch length (For interpolation purpose only. Used only with SCTLEN.)
TISUM		REAL	sum of ice thicknesses at two successive points (sounding depth locations) across the cross section
VMAG	V _P	REAL .	magnitude of velocity in streamtube
vvx		REAL	temporary storage
VVY		REAL	temporary storage
WLSCT		REAL	water level (stage) at cross section
x		REAL	x-coordinate of center of the box
Y		REAL	y-coordinate of center of the box
YSTB		REAL	distance from cross section reference point to center of stream tube
YSTB1		REAL	distance from cross section reference point to far side of streamtube
YSTB2		REAL	distance from cross section reference point to near side of streamtube

CHAPTER III

INPUT DATA FILES

There are two categories of input data that are required to run the model. The first category deals with what can be considered as fixed data. This is the information required to describe the river's shoreline and cross sectional geometry. Normally, there is no need to adjust this data once it has proven to give satisfactory results. The second category includes various parameters, constants, etc... which are to be adjusted depending upon the river discharge, spill location, spill type, spill volume, etc.

To completely understand the set up of the data files, it is helpful to go through the step by step procedure in the Section III.1. Sample input data files are given in Section III.3. This is especially important if the model is to be run for a river for which the data file has not been set up before. If the user is only interested in adjusting parameters, changing the spill location, or establishing new stage discharge conditions on a previously modeled river, section III.2 will be helpful in establishing the guidelines to follow. Note that formatting procedures for data input are not covered in this section, III.2.

III.1 Data File Creation

As a demonstration of the model's capabilities, the Detroit River will be used as an example in this Manual. Where the data files for Detroit River is not sufficient to describe the detail, other river data will be presented. This river was selected since it shows the complexity of river which the model can handle. All discussions on input and output data will refer to the Detroit River (Fig. 3.) from here on.

Five data files exist for inputting information into the computer

model. The first file DETR.GEO supplies all the necessary data for describing the river geometry and boundaries. The second file DETR.FLW contains discharge, elevation data at the nodes of one-dimensional model. The third file DETR.BND contains the half life data for the banks of the river. The fourth file DETR.SPL contains all data pertinent to the governing equations for the spreading of oil on the river surface. The fifth file DETR.ICE, contains the data describing the ice parameters and ice regions.

The first step in preparing the data file is to draw up a sketch similar to Fig. 9a and 9b. The intent of this sketch is to completely describe the branch and cross section numbering system used in the data file. The procedure to obtain this sketch is as follows:

- 1.) Determine the number of branches. Each branch must contain at least two cross sections. End branches (e.g. 15) must contain at least three cross sections.
- Number the cross sections in consecutive order from the upstream to the downstream end of the river. Around islands, number the bottom side up to the last cross section prior to convergence into a single channel then go back to the top side and continue the numbering sequence.
- 3.) Determine the number of streamtubes in each branch. The total number of streamtubes always remains constant so on each side of an island, the streamtubes must be divided up according to the ratio of the flow split around the island.

Once the branches and cross sections for the river is established, scaled maps of the river and cross sections are used to:

1.) Establish the overall x-y cartesian coordinates to be superimposed over the river.

Fig. 9. Sketch of Detroit River with Numbering System

Fig. 9. Sketch of Detroit River with Numbering System

- 2.) Establish which side of the river the cross section locations (reference coordinates) will be referenced to.
- Digitize the entire river boundary and cross section locations simultaneously.
- 4.) Digitize the cross section geometries by measuring a distance from the reference coordinates to a corresponding sounding depth.
- 5.) Schematize the river into boundary boxes i.e. for every x-grid there exists corresponding upper and lower river (and island) shore boxes.

XXXX.GEO

The file DETR.GEO consists of five blocks of information with a varying or nonvarying number of cards in each. All blocks are listed below with the components and description. Most of the data read into the model is in list directed I/O (free format). If column numbers are shown, the data must be formatted accordingly, otherwise it is necessary to put only one space or comma between each number in a card. A sample DETR.GEO file is presented in Section III.3.

DETR.GEO; Block 1 -- branch and grid information

Card 1

example:

DETR Detroit River

/ Variable / Type and / Column / Definition /
Name Length Number

WORD A4 1-4 keyword to define river.
Example: STCL, DETR, STMU, STML

TEXT 19A4 5-80 Any text to identify the purpose for computer run.

Card 2

example:

15 250 500. 7

/ Variable Name	/ Type and / Length	Column / Number	Definition /
NBRNCH	Integer		number of branches
NGRIDX	Integer		number of grid boxes
DX .	Real		grid box size
KINTM	Integer		number of velocity interpolations between cross sections in a streamtube

Card 3 (1 number for each branch)

example:

3 6 8 13 16 20 25 27 29 31 33 39 42 48 50

/	Variable /	Type and /	Column /	Definition	/
	Name	Length	Number		

LCSTSQ(I) Integer -- last cross section in each branch. Last branch - use second last cross section.

There must be NBRNCH numbers (data). If line is not long enough, continue in the following line.

DETR.GEO; $\underline{\text{Block 2}}$ -- cross section location and connection information

Card 1 (1 card for each cross section)

example:

1 (1895.4,31874.9) 0.80316770 9 11 2 0

/ Variable / Name	Type and / Length	Column / Number	Definition /
J	Integer		cross section number (for checking)
CORDLB(I)	Complex		complex variable giving x and y coordinate locating cross section on reference shore
SCTANG(I)	Real		angle (radians) cross section makes with positive x-axis
NSTUBE(I)	Integer		number of streamstubes at current cross section
NUMCON(I)	Integer		if all streamtubes continue to next cross section undivided = 11, if streamtubes divide into two channels from main channel = 12, if streamtubes from this channel and another channel connect to next section which is in main channel = 21
NFIRCO(I)	Integer	- -	next cross section connecting to current cross section. For a divided channel around an island, this represents the first cross section connected to in the lower division from the main channel cross section
NSECO(I)	Integer		for a divided channel around an island, this represents the first section connected to in the upper division from the main channel cross section (if no island = 0. If this is first cross section in upper branch = 888. If this is last section in upper branch = 999.)

DETR.GEO; Block 3 -- cross section geometry

Card 1

example:

3 9 574.91

/ Variable /	Type and / Length		Definition /
J	Integer		cross section number (for checking)
NSLSCT(J)	Integer		number of sounding depths used to describe the cross section geometry
ZD(J)	Rea1		reference datum for section J from which the sounding depth is evaluated
<pre>Card 2 (as ma example:</pre>	ny cards as	required	to input all sets of YWID,Z)
			50.00 21.00 1250.00 22.00 1350.00 28. 50.00 4.00 3425.00 0.00
	Type and /		Definition /
YWID(I,J)	Real		distance from the reference shore to the J th sounding depth in the I th cross section
Z(I,D)	Real		J th sounding depth for the I th section
NOTE: Block 3 sections defi		peated LCS	STSQ(NBRNCH) times (i.e. = no. of cross
DETR.GEO; Blo	ck 4 bou	ndary grid	l boxes
<u>Card 1</u> (1 for	each grid	in a x-dir	rection)
example:			
14 54	74	64 65	
	Name ar / Length		. Definition /
J	Integer	· ~-	x-grid box number

igrilb(J)	Integer	 y-direction grid box numer of lower river boundary for J th x-grid (water side grid box)
IGRIUB(J)	Integer	 y-direction grid box number of upper river boundary for J th x-grid (water side grid box)
IGRLB1(J)	Integer	 y-direction grid box number of lower island boundary for J th x-grid (land side grid box)
IGRIB1(J)	Integer	 y-direction grid box number of upper island boundary for J th x-grid (land side grid box)

NOTE: Block 4 must be repeated NGRIDX (no. of grids in x-direction) times.

DETR.GEO; Block 5 -- Define any specific grid boxes to have zero velocity.

Card 1

example:

67

	Type and / Column / Length Number	Definition	/
NZRVB	Integer	No. of boxes to assign zero	velocities
example:			
/ Variable /	143 33 144 16 Type and / Column / Length Number	Definition	/
IZRBX(I)	Integer	x-grid no. of Ith box to have	ve zero
IZRBY(I)	Integer	y-grid no. of Ith box to have velocity	ve zero

There must be NZRVB pairs of IZRBX(I) and IZRBY(I). Data may be continued to as many lines as needed.

THIS IS THE END OF DATAFILE DETR.GEO.

XXXX.ICE

The DETR.ICE file contains information identifying ice regions which the user will have to adjust as ice conditions develop. An ice region is a range of grid boxes containing ice (Fig. 10). (Example, an ice region may be identified as extending from grid (15,7) to grid (18,12). The ice region then covers every grid from (15,7) to the upper shoreline of x column (15), all grids in X columns (16) and (17), and from the lower shoreline in x column (18) up to and including grid (18,12). In another example, an ice region may be identified as grid (21,7) to (21,9). Then, the ice region will only extend between y grids (7) and (9) in x grid column (21).) This information is used when determining if spreading and advection takes place under ice or on open water. A sample file listing is given in Section III.3.

DETR.ICE; Block 1

Card 1

Example: .

0.035 12.5

/	Variable / Name	Type and / Length	Column / Number	Definition	1

ANICE

REAL

Manning's n for ice roughness

OUIMA

REAL

viscosity of oil (gm cm/sec)(poise)

Card.2

Example:

1

/	Variable /	Type and /	Column /	Definition	/	
	Name	Length	Number			

NICERG

INTEGER

total number of ice regions

Card 3 (1 card. If card is not long enough continue on next card)
Example:

15 7 18 9

/	Variable / Name	Type and / Length	Column / Number				Def:	inition 		/
NI	CFX1(I)	INTEGER		x	grid	at	the	beginning of	ice	region
NI	CEY1(I)	INTEGER		у	grid	at	the	beginning of	ice	region
NI	CEX2(I)	INTEGER		x	grid	at	the	end of ice re	gion	L
NI	CEY2(I)	INTEGER		у	grid	at	the	end of ice re	gion	L

^{*}NOTE: Cards 2 and 3 must be repeated for each time step in Unsteady Flow Model

Fig. 10. Defining Ice Regions

XXXX.FLW

The DETR.FLW file contains the water level and discharge at each node in the river as defined by the one-dimensional flow model (Thomas, 1984). Also included are the ice conditions for each cross section in the river. This data is separate from the ice region data in DETR.ICE. The oil spill simulation model converts this information into boundary conditions for each river branch.

This file consists of three blocks of information. All blocks are listed below with descriptions and corresponding components. Blocks 2 and 3 must be repeated every time the velocities are updated in the Lodel, i.e., every time step of the one dimensional flow model. Therefore, the data in this file needs to be adjusted on a more regular basis.

If the format and/or column numbers are shown, the data must be formatted accordingly, otherwise it is necessary to have only one space or comma between the data. A sample file listing of the DETR.FLW is given in Section III.3.

For St. Clair, Detroit and St. Mary's Rivers the difference in branch configuration between oil spill model and unsteady flow model is built onto the oil spill model through subroutine NDCONV. Hence, no. of branches for this datafile should be interpretted as the no. of branches in the unsteady flow model. If this model is used for other rivers the following steps are needed:

- i) interpret no. of branches as the no. of branches in the oil spill model
- ii) remove subroutine NDCONV
- iii) activate the following three lines already in main program (presently given as comments)

```
DETR.FLW; Block 1 -- Time step in 1-D model.
Card 1 (one card)
example:
        3.0
/ Variable / Type and / Column / Definition
    Name Length Number
UFDT Real -- Time in 1-D flow model in (Hrs.)
DETR.FLW; Block 2 -- discharge and storage
Card 1 (1 for each branch +1, the +1 comes due to downstream end)
example:
        573.72
                 149190.
/ Variable / Type and / Column /
                                Definition
    Name
                      Number
            Length
WL(I)
              Real
                               water level at upstream end of each
                               branch (ft. above datum)
Q(I)
         Real
                              discharge at upstream end of each branch
                               (cfs)
DETR.FLW; Block 3 -- ice conditions (thickness information)
Card 1
example:
```

DO 230 I = 1, NBRP1

CONTINUE

1

READ (7,*)WL(I),Q(I)

/ Variable / Type and / Column / Definition Name Length Number ICINFO Integer number of cross sections with ice covered conditions. If no ice covered sections set ICINFO = 1 and then in Card 2, define the section to be open in the next card. Card 2 example: 2 OPEN / Variable / Type and / Column / Definition Name Length Number 14 IS 1-4 number of cross section with ice covered conditions WORD A4 6-9 cross section ice cover condition, "FULL" = fully covered, "PART" = partially covered, "OPEN" = open water. If WORD = "FULL", then Card 3 has only one value and that is the ice thickness across the river for that x-section. If WORD = "PART", then Card 3 must have an ice thickness defined at each vertical line defining the x-section = NSLSCT(IS). If all numbers don't fit into one card as many cards as necessary may be used. Card 3 (for fully covered cross section) (NOTE: Card 3 must follow every Card 2 if WORD = "FULL" or WORD = "PART". If WORD = "OPEN", card 3 is not needed.) example: 0.6 / Variable / Type and / Column / Definition Name Length Number FULLTI REAL Ice thickness (ft) of fully covered cross section. Only one value is read as input and it will be assigned to the entire

cross section.

Card 3 (for partially covered cross section)

example:

0.3 0.4 0.6 0.6 0.6 0.5 0.2

/ Variable / Type and / Column / Definition /
Name Length Number

TICE(I,J) Real --

Ice thickness (ft) of partially covered cross section. There must be one value for each sounding depth of the cross section with one additional for the extreme left of the cross section where depth sounding is not input through data because it is always assumed to be zero.

Block 2 followed by 3 must be repated for every 1-D model time step.

THIS IS THE END OF DATAFILE DETR.FLW.

XXXX.BND

The DETR.BND file consists of three blocks of information. All blocks are listed below with components and description. Most of the data read into the model are in free format. If the format and/or column numbers are shown, the data must be formatted accordingly, otherwise, it is necessary to have only one space or comma between the data. A sample file listing is given in Section III.3. All files with BND extension follow the same format.

DETR.BND; Block 1 -- half life data

Card 1 (1 card for each range of grid boxes)

example:

1 1 5 3

/ 	Variable / Name	Type and / Length		Definition /						
К		Integer		Shore number. Lower y (river) = 1; upper y (river) = 2; lower y (island) = 3; upper y (island) = 4.						
L	FROM	Integer		beginning limit (grid box number) for half life designation to shore						
L	то	Integer		ending limit (grid box number) for half life designation to shore						
I	CODE	Integer		integer identifying which of the ten half life values to be assigned to a grid						
Ca	Card LAST (must be included).									
ex	ample:									
	0	0	0	0						

XXXX.SPL

The DETR.SPL file consists of three blocks of information with a varying or nonvarying number of cards in each block. All blocks are listed below with the components and description. Most of the data read into the model are in free format. Guidelines for the length of the variables are given when necessary. If column numbers are shown, the data must be formatted accordingly, otherwise it is necessary to have only one space between each number in a card. A sample listing is given in Section III.3.

Block 1 -- oil spill and simulation parameters
Card 1 (Type of oil - Identification only)
Example:

Fuel Oil No. 2

/	Variable Name		Type and Length			Definition	/
	UELTP		CHARACTI	ΞR	1-16	text for identifying the oil type	
ex	ample:						
	24.0	1	0		0	0 18001.0	
/	Variable Name		Type and Length			Definition	/ -
T	OTIME	•	Real			total time of oil spill simulation (hrs.). This value must equal or the time step in unsteady flow mod i.e. in FLW file	exceed
I	EVERY		Integer			frequency of obtaining output from and other subroutines. Ex., value (2) gives output every other time	of two
I	OPT1		Integer			two possible values: one (1) resul output of fixed data such as cross section geometry and shore conditizero (0) results in no output	
I	OPT2		Integer			two possible values: one (1) resul output of computed velocities to a datafile to be used for plotting, (0) results in no output	
I	OPT3		Integer			two possible values: one (1) resul output of particle locations to a datafile to be used in plotting, z results in no output	
I	OPT4		Integer			two possible values: one (1) resul number plot of particle distributing PLOTNU), zero(0) results in no primary.	on (see
S	PLTIM		Rea1			Duration of oil spill in (secs), emight have been leaking for 15 min (i.e., SPLTIM = 900). This variable SPLDT determines whether spill to treated as continuous or instantant SPLTIM = 0 is also allowed.	s. e and be
D	IFFUR		Rea1		 .	Horizontal diffusion coefficient (for river. If the default formula described in Vol. I is desired set value to -1.0	tion as

Card 3

examp.	le	:
--------	----	---

500	10000.	900.	0.84	1.411E-5	2.06E-3	1.14	.98	1.6	1.39	1.39	1.43

/ Variable Name	Variable / Type and / Name Length		Definition /
NTOTAL	Integer		Total number of particles defined in the system (current maximum is 1000)
SPVOL	Real		total volume of oil spill (U.S. gal.)
SPILDT	Rea1		<pre>magnitude of time step for spill simulation (seconds)</pre>
SPGOIL	Real		specific gravity of oil
ANIU	Real		<pre>kinematic viscosity of water (sq. ft./sec.)</pre>
SIGMA	Real		surface tension of oil (lbs/ft)
AK2I	Real		Fay's gravity-inertia phase spreading coefficient (axisymmetrical)
AK:2V	Rea1		Fay's gravity-viscous phase spreading coefficient (axisymmetrical)
AK2T	Rea1		Fay's surface tension-viscous phase spreading coefficient (axisymmetrical)
AKC10	Rea1		(Fay's or Waldman's) gravity - inertia spreading phase coefficient (one-dimensional)
AK C20	Real		<pre>gravity - viscous phase spreading coefficient (one-dimensional)</pre>
AK C30	Rea1	~~	<pre>surface tension - viscous phase spreading coefficient (one-dimensional)</pre>
Card 4			
example:			
40000.	60000.	.7063E-2	.1873E-2 7.88 465.0

/ Variable Name	/ Type and , Length	/ Column / Number	Definition /	
SPX	Real		x-coordinate of spill site	
SPY	Real		y-coordinate of spill site	
VMUNI	Real		molar volume of oil ft ³ /mol.	
SOLUNI	Rea1		solubility of fresh oil lbs/ft3	
CEVP	Rea1		coefficient C of evaporation characteristics of oil	
TOEVP	Real		boiling point temperature of oil (^O K)	

If you define a value of less than 1.0 for TOEVP the program defines the evaporation characteristics, using fitted curves. Therefore, the input values of CEVP and TOEVP have no influence on computations although they are read.

Block 2 -- wind and environmental temperature

Card 1 (1 card for each oil spill model time step)

example:

10.0 270.0 50.0

/	Variable / Name		Column / Number	Definition /
7	/WMAG	Rea1		wind speed (ft/s)
THETA		Rea1		wind direction. Clockwise angle measured from north in degrees. ex., wind out of west = 270°
נ	CENVF	Rea1		air temperature in ^O F

II.2 Input Adjustments

For a river which already has the necessary input files, very little has to be modified to run the model under different conditions, i.e. new river discharge, different oil properties, new spill location etc. Conditions that are most likely to require modification is cited below with

some guidelines and suggested values for input. No attempt is made to explain the formatting of the data changes although references are made to the previous section "Create a Data File" concerning where the change is to be made.

Velocity

Assigning velocities to boxes has some dependency on the variable KINTM (DETRGEO, Block 1, Card 2). As KINTM increases, more velocity interpolations are made between cross sections. If the cross sections are spaced far apart, KINTM should be in the range of 5-8, otherwise KINTM can be 5 or less. The problem with using too small a value of KINTM is that more grid boxes will end up without assigned velocities after the interpolation stage. They will be assigned a velocity based on their neighboring boxes. This is less accurate than assigning a velocity based on interpolation between two cross sections. The target should be to get as many boxes as you can in the former stage. On the other hand a large value of KINTM will use more computing time.

Another factor which affects the assigning of velocities to grid boxes is the number of streamtubes selected. The choice of the number of streamtubes (NSTUBE, DETRGEO, Block 2, Card 1) depends upon the amount of computer time available and the accuracy desired. A river with highly irregular cross sections (versus nearly rectangular) or a desired high degree of accuracy in velocity computation will require the use of more streamtubes.

Stage Discharge

Stage and discharges (DETR.FLW, Block 2, Card 1) in river branches are unlikely to remain constant over time. Therefore this information will require updating as the need arises. The one-dimensional unsteady flow model can be used to obtain this information.

Oil Spill Parameters

The oil spill parameters (DETR.SPL, Block 1, Card 1,2,3,4) will require the most modification from spill to spill. Each spill will have its own simulation time, simulation time step, printing options, number of particles, volume, physical properties, and location, so it will be necessary to adjust this data each time the simulation is done.

Suggested guidelines for parameters:

NTOTAL is at least 500, maximum of 1000 is possible in the current version. The larger number will give a smoother result at the expense of longer execution time.

The time step suggested for SPILDT is 900 secs (15 mins.). However, this does not suit all situations. An example is a spill occurring near a narrow bend. In this case a smaller value for SPILDT is needed. A large value for SPILDT under these situations will lead to uncealistic results. On a different situation, where a spill occurs in a fairly straight and wide section of the river, one may use a larger value for SPILDT to speed up computation. This is a situation where the user is willing to sacrifice accuracy to obtain results quickly.

In the absence of data, the following values may be used.

SPGOIL = 0.7 to 0.98

ANIU = 1.411E-5, ft^2/sec .

SIGMA = 2.06E-3, 1bs/ft.

AK2I = 1.14

AK2V = 0.98

AK2T = 1.6

AKC10 = 1.39

AKC20 = 1.39

ACK30 = 1.43

VMNUI = $0.7063E-2 \text{ ft}^3/\text{mol}$ SOLUNI = $0.1873E-2 \text{ lbs/ft}^3$

Wind Data

The computer model reads in wind data (DETR.SPL, Block 2, Card 1) at each time step of the simulation. This allows for forecasted wind speed and direction to be utilized by the model.

III.3 Sample Input Data Files

Sample data files included in this section are:

- 1. STCL.BND (Shoreline half life data file for St. Clair River)
- 2. LDETR.FLW (Flow data for Detroit River)
- 3. LDETR.GEO (Geometric data for Detroit River)
- 4. DETR.ICE (This file has the ice region information. The file is needed even when the model is run for open water conditions. Two samples are listed here; one corresponds to open water and the second one to when there is one ice region. Program allows you to have up to 20 regions.)
- 5. DETR.SPL (Spill information for Detroit River)

File STCL.BND

(This is the shoreline half-life data file for St. Clair River. STCL.BND is illustrated here instead of DETR.BND because DETR.BND is not very descriptive.)

0 0 0

File DETR.FLW

(This is the flow data file for medium flow conditions in Detroit River for open water conditions.)

```
24.0
573.72 149190.
573.61
       149190.
573.61
       184150.
573.61
       120810.
573.46
       120810.
573.45
       184140.
573.14
       194140.
573,01
       194140,
573.01
       153050,
572.67 153050.
572.57
       115400.
572,31
       115400,
572.31
       146450,
573.69
        34970.
573.61
        34970.
5/3.61
         63340.
573.46
         63340.
573.01
         31070.
572.31
         31050.
572.67
         37640.
571.97
         37540.
571.35
         37530.
 1
  2 OPEN
573.72 149190.
573.61 149180.
       184150.
573,61
573.61
       120810.
573.46
       120910.
573.46
       184140,
573.14
        124140.
573.01
       184140.
573.01
       153050.
572.67
        153050.
572.67
       115400.
572.31
       115400.
572.31
        146450.
573.69
        34970.
573.61
         34970.
573.61
         63340.
573.46
         63340.
573.01
         31070.
572.31
         31050.
572.67
         37640.
571.97
         37540.
571.35
         37630.
  1
  2 OPEN
```

File DETR.GEO
(This is the geometric data file for the Detroit River)

```
DETR
           Detroit River
15 250 500. 7
      8 13 16 20 25 27 29 31 33 39
                                               42
                                                   48 50
       (1895.4,31874.9)
                            0.80316770
       (3572.5,30227.7)
                            0.57252250
                                                      3
                                                             (j
                                               11
       (4329.2,29235.3)
                                                     7
                            0.85065230
                                               21
                                                             0
    4
       (6348, 3, 35251, 1)
                                                     5
                            0.32890491
                                           2
                                               11
                                                           888
    5
       (6573.7,34687.7)
                            0.27566774
                                               11
       (6880.6,31783.6)
                            0.19895402
                                           2
                                               21
                                                           999
       (5218.9,28193.0)
                                                     8
                            0.60033042
                                                             Û
                                          11
                                               11
       (6206.0, 26230, 4)
                            0.78546520
                                               12
                                                     9
                                          11
                                                            14
    Ç
       (7367.3, 25185.9)
                                               11
                            0.38429453
                                                    10
   10 (11648.1, 19916.6)
                            0.89099240
                                               11
                                                    11
       (16161.9, 17594.4)
   11
                            1.06953870
                                               11
                                                    12
   12
       (16630.9,17489.5)
                            1.03244550
                                               11
                                                    13
                                                            û
   13
       (18895.3,16717.3)
                                           4
                                               21
                                                    17
                            1.29700210
                                                            0
       (10545.8, 29130.4)
                            1.50359930
                                               11
                                                    15
                                                           888
   15
      (15909.5,24317.5)
                            0.89085370
                                                    16
                                                            Ō
                                               11
   16
       (19678.2, 19845.3)
                            0.56874187
                                          7
                                               21
                                                    17
                                                          999
       (20184.2,16200.2)
   17
                            0.65250602
                                         11
                                               11
                                                    18
                                                            0
   18
      (23601.6,14140.2)
                            1.01761670
                                                    19
   19
       (27935.0,10834.1)
                            0.84731720
                                                    20
                                                            0
                                               11
                                         11
  20
      (32096.4,7511.7)
                            1.11644090
                                               11
                                                    21
                                         11
  21
      (36555.3,5553.7)
                            1.31789400
                                                    22
                                         11
                                               11
                                                            0
  22
      (43737.9,4722.7)
                            1.29165360
                                                    23
      (48111.9,4367.3)
                            1.73312770
                                                    24
                                         11
                                               11
  24
       (52259.0,4974.1)
                                                    25
                           1.70696930
                                               11
                                                            0
  25
      (58891.5,5063.2)
                            1,74159230
                                                    26
                                                            0
                                         11
                                               11
  26
      (60821.2,5100.4)
                                                    27
                           1.89850420
                                               11
  27
      (63193.4,5908.6)
                            1.85897050
                                         11
                                               12
                                                    28
                                                           34
  29
      (64445.5,5579.9)
                                                    29
                                                            0
                           1,40498040
                                               11
  29
      (67199.6,4282.9)
                            1.55881210
                                               11
                                                    30
                                                            0
  70
      (75744.0,8530.3)
                           2.07408520
                                                    31
                                                            0
                                               11
      (81028.9,9757.1)
                                                    43
                                                           32
                            2.01051160
                                               12
      (83712.4,12984.0)
                                          7
                                                    33
                           1.85562200
                                                          888
                                               11
  33
      (87888.6,14941.0)
                           1.97159570
                                          7
                                               21
                                                    40
                                                            0
  34
      (63732.4,10102.1)
                                                    35
                                                          888
                           2.37748450
                                              11
  35
      (67304.8,12605.3)
                           1.95566550
                                              11
                                                            0
  36
      (75490.2,17058.0)
                           2.08554860
                                          2
                                                    37
                                                            Ô
                                              11
  37
      (79227.9, 19754.3)
                           1.69594960
                                          2
                                              21
                                                    38
                                                            Õ
  38
      (82248.9,18595.8)
                                          2
                                                    39
                                                            0
                                              11
                           1.63638540
  39
      (85910.8,19608.0)
                           1.96796920
                                              21
                                                    40
                                                          999
      (95603.0,21152.6)
                                                    41
                           1.98250300
                                              11
                                                            0
  41
      (99230.8,23402.3)
                           2.09447510
                                          9
                                              11
                                                    42
                                                            0
  42
      (101000.3,24459.3)
                           2,10296690
                                          9
                                              11
                                                    41
                                                            0
  43
      (84015.6, 10618.3)
                           1.97403760
                                              11
                                                    44
                                                            0
  44
      (89415.8,11292.4)
                           1.55666850
                                                    45
                                                            0
                                              11
  45
     (94336.8,12152.4)
                           2.10658900
                                              11
                                                    46
                                                            0
  46 (98678.7,13600.2)
                                                   47
                           1.41654700
                                              11
                                                            0
  47
      (105015.3,14880.9)
                           1.97177820
                                              11
                                                    48
                                                            0
  48
     (109190.4,16653.8)
                           1.89456780
                                                    49
                                                            0
                                              11
  49
      (114985.3,17882.1)
                                                    50
                                          2
                           2.00199130
                                              11
                                                            Û
  50
      (121352.6,20917.5)
                           2,37169800
                                          2
                                              11
                                                   51
                                                            Ü
      (125494.9,23487.9)
                           2.67019810
                                              11
             10 574,87
          14.00 125.00
                           28.00 500.00 36.00 1000.00 37.00 1200.00
```

	32.00 2000.00	30.00 2250.00	10.00 3000.00	8.50 3425.00	0.0
2	10 574.94	CA 4005 AA	71 66 4875 65	40 60 4400 60	35.5
	25.00 900.00	27.50 1025.00	36.00 1275.00		
1700.00 3	43.00 2125.00 9 574.91	30,00 2375.00	10,00 3250.00	5.00 33/5.00	0.0
	12.00 125.00	20.00 750.00	21.00 1250.00	22.00 1350.00	28.0
2425.00	28.00 2525.00		4.00 3425.00		201
4	5 574.45	41		- • • •	
75.00		22.00 250.00	27.00 925.00	27.00 1400.00	0,0
5	5 574.50			2	
75.00	12.00 175.00	22.00 250.00	27.00 825.00	27.00 1250.00	0.0
5	10 574,91	2011	2.100 0221	2	
	11.00 141.60	26,30 197,80	28.80 373.00	29.50 527.40	30.8
	30,00 1123,80		21.10 1233.10		
7	15 574,72				
125.00	12,00 250.00	25,00 500,00	21.00 900.00	19.50 1000.00	27,5
	23,00 2050.00				
	43,00 4550.00				
	11 574,87		21		
	4,00 275,00	18.00 575.00	24.00 1250.00	18.00 2075.00	12.6
	27.00 3825.00				
5075.00	0,00				
ą	7 574.82	•			
101.10	25.00 255.10	24.80 505.50	29.10 756.20	33.00 1222.90	31.0
1360.00		0.00			
10	11 574.54				
25.00	12.00 75.00	25.00 475.00	23.00 575.00	12.00 800.00	5.0
1250.00	2.00 1875.00	5,00 2050,00	22.00 2550.00	27,00 2750.00	5,0
5400.00	0,00	•	•		
11	7 574.27				
87,50	22.20 159.00	26.90 1105.90	20.90 1092.90	26.40 1997.50	23.4
2073.50	11.70 2110.70	0.00			
12	10 574.57				
1.90	9.50 135.00	25.40 550.10	30.50 695.30	24.30 882.50	29.0
1000,00	20.00 1373,70	22.30 1691.80	26.30 1843.60	21.10 1923.20	0.0
13	11 574.16				
24,20	19.70 607.00	21.90 1004.50	28.50 1207.70	10.00 1389.10	32,7
1578.30	27.00 1684.20	19.90 1862.20	12.90 1891.40	7.30 2194.30	5.9
2203.80	0.00				
14	12 574.85				
125.00	25.50 250.00	35.00 350.00	33.00 680.00	47.50 825.00	42.0
1250.00	45.00 1525.00	35.00 1625.00	35.00 1825.00	9.00 2125.00	7:5
2533.00	9.00 2550.00	0.00			
15	8 574.18				
109,80	31.40 317.30	39.10 529.20	35.30 754.70	39.60 1003.90	36.5
1560.30	42.20 1931.30	24.10 1920.80	0.00		
16	12 574.47				
30,00	4,50 63.00	13.50 250.00	14.50 475.00	41.50 553.00	32.0
1125.00	32.50 1375.00	40.50 1525.00	42,50 1750.00	34.50 1825.00	39,0
1950.00	23.00 2000.00	0.00			
17	15 574.53				
	12.00 375.00				
	37,00 1500,00				
	29.00 2750.00	28.00 3125.00	32.00 3500.00	35.00 3750.00	0,00
	9 574,59				
10.00	27,00 550,00	28.00 625.00	37.00 1375.00	35,50 1750,00	36.0

2125.00 19	48.00 2310.00 8 574.02	43.00 2525.00	38.00 2910.00	0.00	
117.80		21.70 634.20	31.80 811.10	50.80 1337.70	38.5
1657.20		40.50 2372.80	0.00	30100 100/1/0	00,0
20	13 574.40				
25.00		27.50 200.00	23.80 475.00	34.00 600.00	29.5
750.00		49,80 1250,00	43,00 1600,00	47,40 1750,00	36,6
2000,00	45.00 2125.00	42.00 2250.00	0.00		
21	9 574.50				
125.00			41.00 1375.00		47.0
1625.00		18.00 1875.00	6.00 2050.00	0.00	
22	7 573.60	4/ DA 717 7A	#2 00 1101 FO	70 00 1507 /0	40.0
197,00 1673.50		46.20 717.30 0.00	40.40 1188.30	39.80 1593.60	42.8
23	7 573.90	0.00			
25.00		38.00 1000.00	38,00 1500.00	31.00 2250.00	32.0
2500.00		0,00			
24	9 574.19				
25,00	8.50 510.00	45.00 1120.00	37.50 2075.00	34.75 2375.00	37.5
2600.00	33.75 2710.00	8.00 2825.00	0.00		
25	9 574.14				
25.00		25.00 300.00		39.00 1500.00	32.0
1750,00	35.00 2375.00	36.00 2625.00	24.00 2650.00	0.00	
26 26	11 574.12	47 20 4425 00	7/ 00 1405 00	7E AA 17EA AA	40.0
250.00 2090.00	38.30 680.00 37.20 2500.00	43,20 1125,00 37,50 2850,00		35.00 1750.00 5.20 3750.00	
4250.00	0.00	21.14 1904.44	10:00 3020100	5114 5124144	0.0
27	9 573.97				
•		33.00 2175.00	29.00 2500.00	13.00 2575.00	25.0
3300.00	27,00 3425,00			0.00	
28	13 573.82				
185,00	28.50 375.00	40,00 500.00		40.20 850.00	
1150,00	37,00 1500,00	35.80 1650.00		29.50 2125.00	8.5
2310.00	4.80 2450.00	6.80 2510.00	0.00	•	
29	11 573.40	/ AA 45A 1A	SA AA OZE (A	70 00 4E40 70	74.0
27.10 1842.40		5.00 450.10 31.00 2586.60		30.00 1548.30 8.10 3354.00	
3400.00	0.00 0.00	31.00 2300.00	24,40 7084,0 0	0:10 0004:00	0.3
30	14 573.39				
		37.20 803.50	30.00 996.90	10.90 1503.20	6.0
1829.30		31.00 2550.50	39.20 3194.90	35.00 3392.00	16.9
4179.00	4.30 4207.60	9.00 4276.50	8.20 4776.60	0.00	
31	19 573.51				
		34.60 327.40		36.00 864.00	9.4
1149.70		9.50 1254.40			
2000.90			6.20 2983.60		
4 075,00 32	38.00 44 09.10 12 5 73.75	7.30 0203.8	6.00 6715.40	0.40 0/00./0	0.0
300.00		31.00 780 00	4.50 1310.00	4.60 1790.00	35.0
2090.00			36.00 3680.00		6.8
5650.00		0.00			- · -
33	10 572.40				
4 50,00			36,00 1750.00		
2725.00		5.00 4500.00	3.00 5000.00	2.00 5025.00	0.0
34				** ** ***	5. 5
120.00	9,10 174,00	19.60 451.30	34.90 951.00	32.00 986.20	21.9

1040.00 35	13.40 1106.00 5 573.30	5.30 1175	.30 0.00				
24.40 36	14.40 573.00 8 573.40	33.40 722	.30 31.00	896.10	16.00	975.80	0.0
198.80	23.50 501.90	25.50 853	.90 24.10	952,30	8.50	1987,40	7,0
1980.10	25.80 2265.30	21.40 2428	.00 0.00				
37	9 573.68						
92.20	24.90 301.20	31,00 445		580.50			22.0
1051.70	8.10 1707.00	7.20 2242	.90 4.30	2375,20	0.00		
28	11 573.76						
1500.00	0.01 1625.00	25.00 2000		2100.00			
3750.00		5.00 3900	.00 32.00	4225.00	32.00	43/5,00	2.0
4675.00 39	0,00 10 573,8 3						
25,00	2.00 625.00	1 00 750	.00 27.00	1125 00	27,00	1175 66	# 29 0
1250,00	30.00 1750.00	32.00 1925		2125.00			
40	17 573.91	22107 1722	144 2144	2122400	2100	£124144	. 919
50,00	3,00 475,00	3.00 1000	.00 25.50	2000.00	27.20	2100.00	35.0
2800,00	35,00 3100,00			3750.00			
4500,00	27,80 5100,00	28.00 5500		5900.00			
7000,00	12.00 7100.00	0,00					
41	15 572.64						
72.80	3.30 292.90	6.40 2564		2709.50			
3771.70	28.70 4424.00			4996.00		5150.60	
5327,90	27.80 5482.00	28.30 5796	.10 11.00	6110.80	13.10	6345.80	0,0
42	12 572.70						
575,00	6.00 750.00						
3375.00	18.00 4300.00		.00 27.00	4950.00	27,00	5400,00	19.0
5900.00 43	6.00 6050.00 8 573.76	0.00					
16.70	4.70 129.10	30.40 283	.70 35.10	47A 1A	74 9 0	657.20	30,0
912.00	8.70 866.90		1.10 0.00	7/7:19	99.10	001120	2010
44	10 573.23	7,12 2.5					
4,00	3.00 44.90	3.50 243	.80 32.30	536.30	33,00	779.30	31.4
992.50		4.30 1849				2002.90	
45	11 573.45						
55,40	19,00 277,50	18,00 433	.60 23.00	450.00	15,10	501.60	32.6
772.50	34.60 822.90	21.00 848	.20 25.30	978.40	10.50	1095.20	7.5
1246.00	0.00						
46	10 572.93		0: 0: 0:		5.54	EBA 74	
	2.20 70.40						
8/6.40 47	27.30 1237.90 10 573.12	24.30 1378	.70 7.70	1476.30	4.50	1525.20	0.0
47.90		27 90 474	.30 16.10	754 00	10 00	937 70	17 6
981.80	29.60 1143.90		.10 20.00				
48	4 572.83	20100 1100	110 20100	10//11	111/0	1720100	V. V
31.30	25.20 209.10	29.00 990	.20 27.10	1145.90	0.00		
49	10 572.82						
226.10	7.50 274.60	5.50 765	.00 7.80	1245.50	21.80	1345.30	19.1
1805.80	15.70 1921.90	20.40 2395	.50 15.50	2471.90	9.80	2638.50	0.0
50	19 572.68						•
319.50			.00 9.30				
1508.20							
2542.30		13.60 2708	.50 7.80	2770.80	7,10	3015.40	1.9
	5,90 3431,90	7,20 3674	.50 0.00				
51	11 572.60						

875	.00	4.0	0 100	00.00		2000.00		2175.00		2550.00	0.0
4125	.00	0.(0 462	25.00	2.00	4875.00	14.00	5125.00	14,00	5500.00	4.0
4500	.00	0.0)Ó								
1	65	135	Ò	0							
2	65	126	ý	0							
3	65	117	Ô	0							
4	65	108	0	0							
		99	0	0							
5	54										
á	53	91	0	0							
7	62	90	0	0							
9	61	89	i)	0							
q	50	89	70	71							
10	59	36	59	72							
11	57	85	69	72							
12	55	33	59	72							
13	55	80	δó	71							
14	54	74	54	65							
15	52	72	9	0							
	50	70	à	Ů							
16											
17	49	54	54	56							
18	45	63	52	57							
19	45	62	50	57							
20	44	51	48	56							
21	43	61	47	56							
22	42	51	47	56							
23	42	61	47	56							
24	41	61	46	56							
25	40	61	46	56							
26	39	51	45	54	•						
27	38	60	46	53							
				53							
28	28	50 50	46								
29	28	58	45	51							
30	37	57	45	50							
31	37	55	4.4	50							
32	36	54	43	49							
33	36	53	42	48							
34	36	52	41	47							
35	36	52	40	46							•
36	36	51	39	46							
37	35	50	39	44							
38	35	49	39	43							
39	34	48	39	41							
40	34	47	39	39							
41	33	46	0	0							
42	33	44	0	Ò							
				0							
43	32	42	0								
44	32	40	ŷ	0							
45	31	39	0	Ó							
46	20	38	0	0							
47	30	37	Ò	Ú.							
48	29	36	Ģ	Û							
49	2ē	35	0	Û.							
50	29	7.4	Ó.	()							
51	27	33	ė)	Ú.							
52	26	32	Ú.	ý							
50	25	31	Ó	ġ.							
			-								

5 4 55 56	25 24 23	30 29 25	0 0	0 0 0
56 57 58 59 60	22 21 21 20	27 26 25 24 23 22 21 20 20 19	0 0 0 0	0 0 0
61 52 53	19 18 17	24 23 22	0 0 0	0 0
54 65 56 57	16 16 15	21 20 20	0 0 0	0 0 0
67 68 59	15 15 14	:9	0 0	0 0
70 71 72	14 13 13 12	17 15	() () ()	0 0 0
73 74 75	12 12	16 15 15	() () ()	0 0 0
58 59 70 71 72 73 74 75 76 77 78 79	12 11 11	15 15 14	0 0 0	0 0 0
81	11	14 14	0 0	0
92 93 84 85	11	14 14 14	0 0 0	0 0 0
85 87 88	11 11 10	14 14 13) 0 0	0 0 0
89 90 91	10 10 10	13 13 13	0	0
92 93 94	10 10 10	13 13	0	0
95 96 97	10 10 10	14 14 14	0 0 0	0 0 0
98 99 100 101	10 10 10 11	15 15 15 15	0	0
101 102 103 104	11 11	15 15 16	0	0
105 105 106	11 11	16 15	0	0 0 0
109	12	1.5		() ()

110	10	. 7	^	^
110	12	17	0	0
111	12	17	Ó.	0
112	13	17	0	0
113	13	17	0	0
114	13	18	Ú	0
115	13	18	0	0
116	13	18	0	ō
117	13	19	0	Û
118	13	19	()	0
119	13	19	0	0
120	13	20	Û	0
121	13	21	0	Û
122	13	21	0	0
	13			
123		21	û	0
124	13	21	0	0
125	13	22	Ō.	Q.
126	13	23	0	0
		2.5		
127	13	24	0	0
129	13	24 25	19	21
129	13	26	19	22
130	12	27	18	23
131	12	27	18	24
132	11	28	18	25
133	11	28	17	25
				20
134	10	28	17	25
135	10	30	18	25
136	9	31	18	26
137	8	31	19	26.
139	8	32		
			20	25
139	8	32	20	26
140	8	32	21	27
141	8	33	22	27
142	B	34	22	20
				28
143	9	35	23	29
144	9	36	24	29
145	10	36	24	30
146		37		
			25	31
147	12	37	26	31
148	13	38	27	32
149	15	38	28	32
150	18	39	29	
				33
151	18	40	30	34
152	18	41	30	35
153	18	42	31	36
154	19	42		
			21	36
155	19	43	32	37
156	19	43	33	38
157	20	43	33	39
159	20	44	34	39
159	20	4.4	34	40
160	20	45	35	40
151	20	45	36	40
			23	
162	20	46		25
163	21	47	23	24
164	21	46	23	24
155	21	45	23	24
		-		- ·

166	21	46	23	25
167	22	44	24 24	25
148	22	46	24	26
159	22	45	24	27
170	23	44	24 24	27
171	23	47	25	28
172	23	47	25	28
173	24	49	25	29
174	24	48	25	29
175	24 24 24 24 24 24 24 23	48	25 25 25 25 26 27 27 27 27 27 27 27	29 29 29 29 30
17 <u>6</u>	24	48 48	27	30 20
177 178	24	52	1! 57	30
179	24	52 52	27 27	30
180 180	27	52	27	31 32 33 35 36
181	23	55	27	33
192	23 23	55	27	35
193	23	55	25	36
184	23	55	25	37
185	23	55	26	38
186	23	55	25	39
187	23	55	26 26	40
188	24	56 56	27	41
189	25	56	27	41
190	25	57 57	28	42
171	26	57 57	27 28 29 29	42 43
192	26 57	57 58	29 30	43
193	27 27	58 58	30 30	44
194 195 196	27 27	5 9	<u>70</u>	44
196	27 28	50	70	45
197	28	60	70)	45
198	28	60	31	45
199	28	61	31	47
200	28	<i>5</i> 2	7 <u>1</u> 31	47
201	28	52	31	48
202	27	83	31	48
203	23	54	31	49
204	28	50 50	32	50 50
205	29	50 50	32 70	50 50
206	29 30	50	32 32	50 51
207 263	30	51 51	33 33	51
209	70	51 51	33	51
216	31	51	34	51
211	31	52	33 34 34	52
212	31	52	35	5.2
213	37	52 52 53	35	55
214	32	53	36	53
210 211 212 213 214 215	33	53 53 54	36	55 53 53 53
216	33	53	36	53
21 <i>6</i> 217 213	34	54	3.6	54
213	34	54	37	54 54
219	30 30 31 31 32 33 33 34 34 34 35	54 54 57 57	35 35 36 36 36 36 37 37 37	54 84
220 221	ুট কুল]+ 55	7.3	54 55
411	3.7	13	7.0	ل ل

```
222
     35
        55
             38
                  55
             23
223
     36
         55
                  56
224
     36
         56
             40
                  56
225
         57
     36
              40
                  57
         57
225
     36
             41
                  57
227
     35
         58
             41
                  58
228
         58
             42
     38
                  58
229
     35
         53
             42
                  58
     37
230
         58
             43
                  58
     37
         59
             43
                  59
231
232
     38
         60
             44 60
233
             45 60
     38
         60
234
     33
             45 50
         60
235
     33
             45
         50
                60
238
     33
             45
         60
                  50
217
     35
             47
         50
                  \Phi()
238
     39
              43
         <u>5</u>()
                  60
239
     30
         59
             49
                  59
240
     40
         53
             51
                  53
241
     41
         53
             Û.
                  0
242
     42
         52 - 0
                   0
             0 0
247
     4.5
         51
244
     44
         51
             50 51
245
     44
         52
             50 52
246
     45
         53
             50
                  53
247
     46
        55
             50 55
248
     47
         56
             52 56
249
     47
         57
             54 57
150
     43
        58
            55
                  58
47
138 9 138 10 138 29 138 30 139 30 139 31 140 30 140 31 141 32 142 32
143 16 143 33 144 16 144 17 144 18 144 34 145 16 145 17 145 18 145 35
145 18 145 19 145 36 147 19 148 19 148 20 149 19 162 36 162 39 162 42
163 36 163 42 163 43 164 36 164 37 164 41 164 42 164 43 164 44 165 36
165 37 165 38 165 41 165 42 165 43 165 44 166 37 166 38 166 42 166 43
166 44 167 38 167 39 167 43 167 44 168 39 168 43 169 40 170 40 171 44
171 45 172 44 173 44 173 45 174 44 174 45 175 45
```

File DETR.ICE (This file can be used for any river if open water conditions exist.) $0.035 \qquad 0.34$

0.035 0.84. 1 9 19 122 21

File DETR.SPL (This is the spill information file for the Detroit River)

```
No. 2 Fuel 011
       1 0
               0 1 0 10.
                                -1.0
500 10000, 900, 0.84 1.411E-5 2.06E-3 1.14 0.98 1.6 1.39 1.39 1.43
        6000. .7063E-02 .1873E-02 7.88 465.0
5.866
      270.0 50.0
5.856
       270.0 50.0
5.866
       270.0
              50.0
5.866
       270.0
              50.0
5,866
       270.0
              50.0
5.866
       270.0
              50.0
5.866
       270.0
              50.0
5.866
       270.0
            50.0
5.866
       270.0
              50.0
5.866
       270.0
             50.0
5.866
       270.0
              50.0
5.866
       270.0
              50.0
5.866
       270.0
              50.0
       270.0
5.866
              50.0
5,866
       270.0
              50.0
5.866
       270.0
              50.0
5.866
       270.0 - 50.0
5.866
      270.0
              50.0
5.866
       270.0
              50.0
5.866
       270.0
              50.0
5.856
       270.0
              50.0
5.866
       270.0
              50.0
5.866
       270.0
              50.0
       270.0 50.0
5.866
5.856
       270.0 50.0
5.866
       270.0 50.0
5.866 270.0 50.0
```

CHAPTER IV

MODEL OUTPUT

Output from the model can be directed to different devices, i.e. console, printer and files.

Included in this chapter are:

- 1. The output generated as a file by subroutine PRINT for St. Clair River.
- 2. The graphical output of velocity distribution corresponding to low flow (Q \approx 130,000 cfs) in St. Clair River as generated by program VELDIS.GRP. Input data for these plots were generated by ROSS.
- 3. A sample computer printout generated by an instantaneous spill of 5000 gallons of No. 2 fuel oil. Wind is 2 mph from West. Air temperature = 70°F.
- 4. Graphical output that corresponds to above mentioned simulation.

```
## SIMULATION MODEL FOR OIL SPILLS IN RIVERS ##

## DEVELOPED AT - CIVIL & ENVIR. ENG. DEPT., CLARKSON UNIVERSITY ##

SPONSERED BY - U.S. ARMY CORPS OF ENGINEERS, DETROIT DISTRICT ##

## DATE AND TIME OF RUN : THU SEP 26, 1985 10.36.56 ##

##
```

GEOMETRIC PROPERTIES OF RIVER

1

NO. OF BRANCHES IN UNSTEADY FLOW MODEL = 10
NO. OF GRIDS IN X-DIRCTION = 286
GRID SIZE IN ft. = 500.
NO. OF INTERPOLATIONS BETWN SECTIONS = 3

SECTIONS IN EACH BRANCH

BRANCH	SECTIONS	INVOLVE
	FROM	TO
1	1	2
2	3	13
3	14	23
• 4	24	-33
5	34	37
6	38	41
7	42	54
8	55	76
9	77	86
10	87	96

INFORMATION ON RIVER SECTIONS

SECTION	Lower bank	intersection	Angle	Width	Ref datum	No str	Cond.	Connect
	X-CORD	Y-CORD	(rad)	(ft.)	for depth	tubes	No.	next 1st
1	1657.1	8801.2	1.334	1929	578.90	10	11	2
2	2124.4	8880.5	1.384	1401	577.50	10	11	3
3	2727.6	8955.7	1.479	1019	577.50	10	11	4
4	3535.5	8773.5	1.427	996	577.50	10	11	5
5	4142.4	8645.2	1.338	808	577.20	10	11	6
6	4902,3	8476.0	1.661	979	577.40	10	11	7
7	5756.3	8374.3	1.782	1291	577.20	10	11	8
8	6747.7	8636.6	1.884	1458	577.40	10	11	9
9	8305.2	9623.1	2.075	1442	577.30	10	11	10
10	9054.2	10231.8	2.110	1335	577.20	10	11	11
11	9562.1	10823.5	2.160	1782	577.20	10	11	12
12	10787.6	11865.3	2.164	1719	577.20	10	11	13
13	11230.4	12114.5	2.150	1756	577.20	10	11	14
14	12198.4	12440.6	1.561	2582	578.25	10	11	15 .
15	12869.2	12384.6	1.502	2601	577.00	10	11	16
16	14185.5	12364.6	1.586	2618	577.00	10	11	17
17	15218.0	12383.8	1.521	2466	576.90	10	11	18
18	16695.8	12261.1	. 1.334	2061	576.80	10	11	19
19	17659.3	11888.4	1.336	1862	576.70	10	11	20
20	19116.4	11449.2	1.226	1773	578.11	10	11	21
21	20471.3	10940.3	1.189	1806	578.03	10	11	22
22	21707.2	10344.3	1.121	1942	578.01	10	11	23
23	22938.9	9429.6	1.010	2028	577.96	10	11	24
24	24484.8	8328.0	1.035	2103	577.91	10	11	25

25	27014.5	7034.9	1.261	1979	577.73	10	11	26
26	28357.9	6572.7	1.460	2022	577.70	10	11	27
27	30181.4	6104.7	1.401	2191	577.76	10	11	28
28	31991.9	5981.3	1.486	2084	577.67	10	11	29
29	33275.0	6075.3	1.539	1909	577.23	10	11	30
30	35026.1	6050.9	1.560	1952	577.51	10	11	31
31	36112.8	6037.8	1.559	2037	577 , 46	10	11	32
32	38110.1	5822.8	1.557	2257	577.37	10	11	33
33	41859.1	5235.6	1.758	3506	577.41	10	12	34
34	44008.9	5126.0	1.614	2547	577.35	7	11	35
35	46628.1	5270.0	1.773	1601	577.30	7	11	36
36	49075.2	56/0.2	1.832	1644	577.25	7	11	37 42
37	51118.5	6422.0	1.840	1903	577.20	7	21 11	39
38	43470.6	8575.7	2.008	1168	577.35	3 3	11	40
39	45877.8	9273.2	1.683	1169	577.30	.3	11	41
40	48178.3	9084.9	1.564	1203 1205	577.25 577.20	13	21	42
41	50466.6	8963.7	1.713 1.726	3608	577.20	10	11	43
42	53074.5	6858.2	1.720	3081	577.26	10	11	44
43	55524.8	7870.6 8596.4	1.784	2613	577.14	10	ii	45
44	57538.3 58289.1	8843.8	1.713	2385	576.93	10	11	46
45	59233.9	9127.0	1.663	2074	576.93		11	47
46	60694.0	9215.6	1.649	2138	576.94	10	11	48
47 48	61790.0	9223.5	1.617	2352	576.90	10	. 11	49
49	63184.9	9122.9	1.556	2561	576.83	10	11	50
50	64699.0	8770.7	1.429	3078	576.80	10	11	51
51	66265.6	8390.1	1.396	3392	576.83	10	11	52
52	67608.9	8095.2	1.438	3498	576.75	10	11	53
53	68695.2	8109.0	1.492	3418	576.80	10	11	54
54	69944.2	8199.7	1.566	3338	576.80	10	11	55
55	71124.4	8504.7	1.633	2922	576.75	10	11	56
56	72084.0	8834.2	1.664	2532	576.73	10	11	57
57	73475.3	8991.3	1.689	2302	576.72	10	11	58
58	74713.6	9179.9	1.711	2185	576.71	10	11	59
59	75893.3	9490.0	1.859	2087	576.68	10	11	60
60	77210.9	10295.0	1.991	1704	576.65	. 10	11	61
61	79155.4	11809.9	2.19	€99	576.66	10	11	62
62	80228.7	12565.7	2.12	1305	576.58	10	11	63
63	81605.8	13436.2	2.112	11 40	576.58	10	11	64
64	83527.2	14610.7	1.969	. 14	576.50	10	11	65
65	85018.3	15230.4	1.933	1593	576.50	10	11	66
66	86346.9	15929.5	1.912	1666	576.46	10	11	67
67	87968.7	16466.3	1.925	1935	576.43	10	11	68
68	89593.0	17077.4	1.778	1910	576.32	10	11	69
69	91777.0	17153.1	1.596	2376	576.37	10	11	70 71
70	93564.7	16713.2	1.434	2330	576.35	10 10	11 11	72
71	94994.2	16394.8	1.347	2727	576.33	10	11	73
72	97192.3	15533.5	1.381 1.431	2819 2996	576.35 576.12	10	11	74
73	99502.3	15015.0	1.813	2912	576.14	10	îì	75
74	102673.3	15286.4 15863.5	1.828	3100	576.20	10	ii	76
75 76	104778.3 106070.0	16235.7	1.664	3293	576.27	10	11	77
77	107397.9	16237.6	1.454	3306	575.96	10	11	78
78	111246.2	15533.3	1,478	3935	575.86	10	11	79
79	113869.5	14790.8	1.479	4286	575.86	10	11	80
80	116941.9	14816.9	1.525	2863	575.76	10	11	81
81	118933.9	14945.5	1.515	2823	575.74	10	11	82
82	120905.9	14707.9	1.516	2744	575.70	10	11	83
83	123254.1	14625.2	1.559	2425	575.65	10	11	84
84	125696.6	14531.3	1.605	2349	575.62	10	11	85
85	127595.8	14777.3	1.672	2041	575.58	10	11	86
86	128395.6	14875.7	1.776	2070	575.57	10	11	87
87	129381.7	15216.8	1.797	2008	575.53	10	. 11	88
88	131323.3	15706.9	1.812	2180	575.51	10	. 11	89
89	133200.6	16322.5	1.799	2296	575.27	10	11	90
90	134812.4	16907.3	1.776	2269	575.20	10	11	91
91	135705.2	16957.1	1.771	2614	575.21	10	11	92
92	136895.9	17044.1	1.698	2582	575.16	10	11	93
93	137777.1	17058.2	1.617	2246	575.12	10	11	94
94	140042.9	17187.0	1.671	2371	575.12	. 10	11 11	95 96
95	140798.6	17079.9	1.613	2670	575.14 875.12	10	11	97
96	141405.6	16845.7	1.342	2931	575.12 575.04	10 10	11	98
97	143773.4	15244.5	1.203	3973	375.04	10		,,

Geometry of X-Sections

SCT	N	D	istance and Dep	oth (ft.) in pa	irs of data					
1	0.:	0.0	212.: 41.6	280.: 41.9	354.: 33.7	906.: 34.5	1230.: 77.8	1377.: 23.3	1625.: 8.4	1929.: 0.0
2	0.: 115.: 4		185.: 11.0 1245.: 6.7	343.: 38.4 1401.: 0.0	451.: 31.8	600.: 31.5	806.: 39.2	839.: 51.7	998.: 68.6	1041.: 60.3
3	0.:	0.0	70.: 24.0	241.: 41.8	345.: 37.6	568.: 66.6	936.: 5.8	1020.: 0.0		
4	0.: 845.:		73.: 7.5 996.: 0.0	141.: 17.6	157.: 37.5	284.: 65.4	350.: 65.9	420.: 61.0	525.: 60.6	617.: 47.4
5	0.: 710.:		18.: 10.1 809.: 0.0	76.: 17.7	116.: 33.0	266.: 45.0	362.: 46.0	465.: 56.5	529.: 51.9	619.: 42.1
6	0.: 741.:		12.: 27.6 817.: 41.6	49.: 35.6 980.: 0.0	144.: 39.7	186.: 38.4	285.: 43.8	402.: 39.5	470.: 41.8	677.: 41.6
7	0.: 820.: :		11.: 19.4 873.: 54.5	56.: 33.4 909.: 51.2	141.: 43.3 977.: 53.3	223.: 38.5 1169.: 26.5	310.: 42.6 1227.: 24.2	367.: 42.0 1292.: 0.0	502.: 33.6	575.: 34.0
8	0.: 1413.: :		54.: 23.9 1458.: 0.0	135.: 30.8	179.: 47.6	462.: 41.0	590.: 34.5	895.: 51.9	1039.: 43.7	1178.: 30.0
9	0.: 1276.:		127.: 44.7 1443.: 0.0	384.: 53.4	561.: 49.5	653.: 53.4	798.: 54.4	956.: 43.5	1062.: 25.4	1158.: 26.3
10	0.: 1336.:		10.: 14.3	155.: 46.4	272.: 43.4	444.: 49.8	537.: 46.4	855.: 46.3	995.: 32.8	1079.: 31.9
11	0.: 1613.: :		84.: 35.1 1772.: 9.0	219.: 40.4 1782.: 0.0	299.: 38.4	524.: 49.3	720.: 44.3	930.: 46.4	1147.: 27.9	1535.: 27.0
12	0.:	0.0	183.: 36.1	397.: 33.3	611.: 41.0	781.: 41.9	1312.: 33.0	1567.: 23.3	1719.: 0.0	
13	0.:	0.0	25.: 20.3	146.: 32.3	382.: 36.8	727.: 41.1	1009.: 33.6	1441.: 30.1	1749.: 1.7	1756.: 0.0
14	0.: 2583.:		127.: 23.0	639.: 30.0	1203.: 35.8	1432.: 30.8	1730.: 36.5	1956.: 30.4	2383.: 33.1	2486.: 29.6
15	0.: 2031.: :		97.: 26.7 2275.: 46.0	280.: 32.1 2368.: 19.4	420.: 29.1 2549.: 14.7	660.: 36.3 2602.: 0.0	778.: 30.7	1119.: 28.3	1672.: 34.0	1842.: 36.0
16	0.: 2419.: :		180.: 24.8 2531.: 18.6	384.: 33.4 2618.: 0.0	582.: 28.5	720.: 34.7	840.: 29.0	1662.: 29.5	1794.: 26.5	2225.: 39.5
	0.: 2123.: :		8.: 27.5 2375.: 17.8	90.: 31.5 2466.: 0.0	299.: 27.9	477.: 39.7	619.: 29.1	982.: 36.6	1556.: 33.1	1807.: 37.6
18	0.: 1922.: :		240.: 30.1 2055.: 22.3	430.: 31.9 2062.: 0.0	489.: 37.9	532.: 31.6	883.: 28.9	1134.: 32.5	1345.: 39.9	1763.: 35.8
19	0.: 1776.: :		103.: 8.9 1853.: 27.1	122.: 19.7 1863.: 0.0	241.: 30.7	711.: 32.2	1141.: 28.3	1443.: 32.4	1580.: 27.1	1724.: 28.8
20	0.:	0.0	54.: 13.1	292.: 35.4	682.: 30.8	1061.: 39.3	1201.: 36.8	1396.: 47.3	1773.: 0.0	
21	0.:	0.0	237.: 32.5	731.: 38.4	930.: 35.0	1176.: 41.4	1692.: 23.6	1806.: 0.0		
22	0.:	0.0	11.: 10.0	174.: 31.6	1203.: 37.0	1581.: 32.6	1757.: 19.8	1848.: 4.0	1943.: 0.0	
23	0.:	0.0	125.: 25.4	307.: 26.2	673.: 35.2	997.: 32.7	1644.: 36.0	1930.: 19.8	2028.: 0.0	

24	0.: 0.0	0.: 6.7	213.: 26.5	546.: 28.8	1186.: 40.9	1461.: 34.1	1683.: 35.9	1948.: 27.2	2103.: 0.0
25	0.: 0.0	11.: 11.7	102.: 23.4	734.: 38.8	1184.: 43.3	1720.: 30.0	1910.: 5.1	1980.: 0.0	
26	0.: 0.0	60.: 13.4	140.: 30.9	734.: 37.7	885.: 36.9	1048.: 39.4	1864.: 30.6	2023.: 0.0	
27	0.: 0.0	119.: 21.5	577.: 34.7	1173.: 34.4	1737.: 33.5	2045.: 23.8	2192.: 0.0		
28	0.: 0.0	9.: 10.2	329.: 32.0	1083.: 36.1	1897.: 31.9	2085.: 0.0			
29	0.: 0.0	7.: 21.9	257.: 31.6	691.: 31.6	933.: 44.5	1174.: 37.3	1339.: 39.3	1671.: 54.5	1910.: 0.0
30	0.: 0.0	168.: 29.0	1051.: 39.9	1296.: 38.5	1408.: 35.3	1605.: 36.3	1825.: 22.4	1953.: 0.0	
31	0.: 0.0	221.: 31.9	971.: 40.8	1294.: 41.9	1523.: 31.7	1675.: 37.0	2037.: 0.0		
32	0.: 0.0	6.: 3.9	138.: 6.5	320.: 32.8	1033.: 34.2	1877.: 39.5	2135.: 32.7	2166.: 8.6	2257.: 0.0
33	0.: 0.0 2221.: 12.0	39.: 42.5 2350.: 18.0	470.: 31.6 2493.: 29.5	836.: 37.3 2680.: 33.2	912.: 32.7 2808.: 31.0	1114.: 32.3 2924.: 41.6	1753.: 18.0 3221.: 35.9	1870.: 12.0 3507.: 0.0	2026.: 9.0
34	0.: 0.0	92.: 7.0	196.: 26.6	564.: 31.6	829.: 28.2	1068.: 30.2	2048.: 10.3	2132.: 3.8	2547.: 0.0
35	0.: 0.0 1508.: 13.6	5.: 6.2 1601.: 0.0	218.: 32.2	314.: 28.6	405.: 31.1	700.: 28.0	920.: 30.8	1142.: 25.6	1236.: 26.2
36	0.: 0.0	97.: 26.6	704.: 32.5	927.: 27.2	1033.: 28.1	1183.: 22.7	1537.: 19.2	1644.: 0.0	
37	0.: 0.0	229.: 24.9	657.: 31.1	1034.: 28.9	1174.: 23.8	1608.: 18.7	1643.: 23.1	1734.: 3.6	1903.: 0.0
38	0.: 0.0	258.: 23.9	619.: 26.6	865.: 26.3	910.: 29.4	1053.: 6.6	1169.: 0.0		
39	0.: 0.0	361.: 25.9	507.: 24.8	758.: 31.5	953.: 27.7	1060.: 8.2	1169.: 0.0		
40	0.: 0.0 1203.: 0.0	94.: 3.8	197.: 23.9	319.: 21.9	400.: 24.3	661.: 27.5	898.: 30.5	1069.: 18.1	1138.: 2.4
41	0.: 0.0	178.: 4.8	342.: 22.0	560.: 32.5	761.: 29.2	993.: 21.6	1107.: 2.5	1205.: 0.0	
42	0.: 0.0 3125.: 30.0	41.: 3.9 3512.: 22.4	225.: 33.7 3573.: 5.7	1392.: 30.5 3608.: 0.0	1439.: 23.3	2088.: 3.7	2395.: 3.4.	2464.: 2.9	2872.: 38.0
43	0:: 0.0 2624:: 37.5	35.: 6.0 2745.: 25.1	125.: 32.7 2963.: 6.5	1390.: 32.9 3082.: 0.0	1416.: 24.4	1776.: 22.9	1866.: 23.0	1977.: 16.1	2350.: 43.6
44	0.: 0.0 2613.: 0.0	78.: 3.9	264.: 34.8	1470.: 33.0	1729.: 40.2	1973.: 39.1	2206.: 22.1	2340.: 25.2	2505.: 16.8
45	0.: 0.0 1994.: 25.4	101.: 4.1 2207.: 17.4	212.: 31.2 2385.: 0.0	389.: 35.5	616.: 31.4	864.: 37.5	1208.: 31.1	1389.: 41.4	1840.: 35.9
46	0.: 0.0	206.: 34.6	583.: 32.3	832.: 38.1	1046.: 31.7	1184.: 39.3	1743.: 31.6	2075.: 0.0	
47	0.: 0.0 2139.: 0.0	9.: 2.9	108.: 6.1	201.: 35.9	656.: 31.3	935.: 39.1	1696.: 38.7	1924.: 19.5	2002.: 4.8
48	0.: 0.0	130.: 3.4	265.: 33.7	941.: 39.6	1318.: 27.7	1479.: 39.1	2018.: 39.9	2209.: 5.3	2352.: 0.0
49	0.: 0.0 2353.: 2.9	67.: 8.8 2555.: 3.5	174.: 33.1 2561.: 0.0	879.: 36.3	1101.: 27.2	1316.: 26.1	1815.: 38.4	2064.: 39.9	2263.: 27.5
50	0.: 0.0 2706.: 30.3	43.: 4.5 2078.: 79.0	166.: 5.7 2831.: 5.7	272.: 32.1 3061.: 4.4	1126.: 34.3 3078.: 0.0	1228.: 18.4	1336.: 25.8	1866.: 26.1	2008.: 34.0
51	0.: 0.0 2836.: 33.2	20.: 4.3 3127.: 26.6	110.: 5.4 3222.: 7.1	256.: 32.6 3393.: 0.0	1159.: 35.6	1183.: 19.6	1311.: 10.6	1453.: 18.6	1889.: 28.0

52	0 .: 2398 .:	0.0	124.: 6.6 2791.: 35.3	208.: 31.2 3111.: 35.9	666.: 32.5 3357.: 8.4	1089.: 32.4 3498.: 0.0	1183.: 10.1	1579.: 9.4	1722.: 23.2	2014.: 28.4
53	0.: 3066.:	0.0 35.8	31.: 22.6 3309.: 7.1	439.: 41.4 3419.: 0.0	726.: 31.6	988.: 31.0	1097.: 6.3	1501.: 6.5	1673.: 34.8	2106.: 20.9
54	0.: 3050.:	0.0	113.: 33.4 3218.: 5.7	992.: 31.8 3339.: 0.0	1152.: 5.7	1300.: 40.0	1560.: 33.7	1650.: 22.5	2257.: 21.9	2424.: 29.3
55	0.:	0.0	210.: 34.1	661.: 33.8	1131.: 46.1	1311.: 24.2	1757.: 16.9	2221.: 29.5	2771.: 30.0	2922.: 0.0
56	0.: 1287.:	0.0 13.8	47.: 23.4 1467.: 22.6	232.: 31.9 1662.: 23.7	400.: 40.8 2219.: 28.4	520.: 35.3 2259.: 27.1	703.: 33.6 2533.: 0.0	781.: 43.0	1081.: 16.2	1175.: 18.1
57	0.: 2302.:		95.: 7.5	330.: 48.8	480.: 48.9	880.: 33.9	1216.: 32.4	1259.: 26.6	1593.: 33.1	2091.: 30.5
58	0.:	0.0	57.: 25.5	263.: 42.7	480.: 46.2	902.: 33.9	1888.: 30.2	2185.: 0.0		
59	0 2068.:		77.: 5.0 2087.: 0.0	296.: 36.4	895.: 52.6	997.: 44.2	1117.: 46.0	1331.: 34.7	1736.: 31.4	1911.: 7.1
60	0.:	0.0	86.: 26.9	498.: 40.1	984.: 37.8	1181.: 49.7	1551.: 26.6	1637.: 5.6	1701.: 3.3	1704.: 0.0
61	0 .: 1548 .:	0.0 5.7	1.: 3.1 1700.: 0.0	73.: 4.5	308.: 50.2	436.: 44.4	612.: 49.9	793.: 45.1	1017.: 52.6	1387.: 37.3
62	0.:	0.0	338.: 44.5	700.: 45.0	880.: 53.0	1436.: 25.4	1806.: 0.0			
63	0.:	0.0	375.: 40.6	906.: 59.5	1171.: 55.4	1452.: 27.9	1580.: 25.5	1726.: 0.0		
64	0.:	0.0	250.: 46.6	595.: 52.2	1047.: 45.9	1270.: 27.5	1556.: 7.8	1675.: 0.0		
65	0.:	0.0	178.: 21.3	524.: 44.4	828.: 57.2	1281.: 49.2	1450.: 7.0	1594.: 0.0	•	
66	0.:	0.0	117.: 25.8	739.: 52.8	1278.: 44.8	1448.: 20.7	1532.: 5.7	1633.: 4.4	1667.: 0.0	
67	0.:	0.0	140.: 20.3	354.: 32.7	901.: 47.2	1172.: 49.6	1611.: 34.9	1765.: 11.4	1935.: 0.0	
68	0.:	0.0	0.: 20.1	39.: 27.4	953.: 48.1	1358.: 46.8	1578.: 23.0	1666.: 4.7	1863.: 4.0	1910.: 0.0
69	0.:	0.0	10.: 27.2	608.: 41.9	951.: 43.2	1765.: 30.3	2026.: 5.9	2351.: 4.1	2376.: 0.0	
70	0.: 2331.:	0.0	125.: 5.3	298.: 31.7	745.: 42.1	973.: 40.2	1286.: 46.9	1660.: 33.5	2050.: 30.1	2230.: 7.1
71	0.: 2718.:	0.0 3.9	146.: 4.9 2727.: 0:0	247.: 28.1	628.: 35.8	1090.: 38.0	1433.: 48.8	1750.: 32.9	2094.: 32.1	2339.: 5.8
72	0.: 2820.:	0.0	20.: 3.6	196.: 5.2	297.: 30.6	1061.: 32.6	1604.: 39.5	2228.: 31.8	2476.: 23.8	2535.: 6.0
73	0.: 2969.:		21.: 5.2 2997.: 0.0	183.: 5.2	324.: 26.8	1295.: 37.1	1878.: 33.7	2193.: 36.3	2665.: 23.5	2714.: 5.6
74	0.: 2721.:		10.: 2.9 2904.: 3.3	71.: 3.5 2912.: 0.0	254.: 26.6	838.: 31.1	1430.: 33.8	1907.: 46.9	2387.: 27.1	2560.: 28.0
75	0.: 3101.:		88.: 20.6	319.: 32.1	921.: 35.1	1143.: 45.8	1418.: 42.7	1731.: 28.5	2458.: 24.2	2602.: 5.5
76	0.: 2809.:		79.: 26.7 3067.: 6.9	492.: 46.3 3291.: 3.7	820.: 43.6 3293.: 0.0	1034.: 32.5	1389.: 25.9	2126.: 24.8	2424.: 26.3	2531.: 7.7
77	0 . : 2406 . :		153.: 41.8 2550.: 27.0	289.: 45.1- 2677.: 7.6	472.: 38.1 2858.: 4.5	1112.: 32.7 3071.: 7.8		1820.: 19.4 3307.: 0.0	2030.: 24.4	2194.: 37.4

78	0.: 0.0 3000.: 6.0	117.: 27.0 3460.: 20.0	660.: 33.0 3740.: 4.0	1208.: 27.0 3935.: 0.0	1403.: 6.0	1579.: 6.0	1753.: 18.0	2065.: 18.0	2494.: 2.0
79	0.: 0.0 4167.: 2.0	312. 6.0 4286.: 0.0	545.: 27.0	1519.: 27.0	1792.: 29.0	2299.: 0.0	3429.: 0.0	3584.: 27.0	4013.: 26.0
80	0.: 0.0 2394.: 45.3	236.: 38.4 2631.: 31.0	388.: 33.4 2722.: 6.3	539.: 38.3 2855.: 5.4	1174.: 34.8 2864.: 0.0	1288.: 28.4	1974.: 32.0	2128.: 8.1	2206.: 26.9
81	0.: 0.0 2574.: 4.0	133.: 31.8 2823.: 0.0	669.: 36.7	1107.: 35.5	1234.: 23.6	1560.: 22.9	1873.: 39.5	2322.: 52.6	2512.: 25.7
82	0.: 0.0 2256.: 42.8	6.: 5.3 2519.: 5.8	220.: 30.8 2744.: 0.0	666.: 37.3	1235.: 34.1	1304.: 28.0	1438.: 40.9	1700.: 27.4	19'0.: 47.7
83	0.: 0.0 2426.: 0.0	66.: 5.0	340.: 33.5	1082.: 35.2	1349.: 48.0	1712.: 47.9	1954.: 30.2	2201.: 22.7	2302.: 6.1
84	0 0.0 2350.: 0.0	64.: 5.6	169.: 6.5	404.: 26.9	910.: 41.6	1013 52.3	1428.: 52.6	194 .: 27.9	2212.: 7.7
85	0.: 0.0	69.: 5.0	136.: 18.2	359.: 30.9	596.: 33.4	1138.: 59.2	1526.: 56.4	2042.: 0.0	
86	0.: 0.0 1928.: 7.8	7.: 3.3 2071.: 0.0	161.: 4.5	329.: 33.4	717.: 34.7	992.: 53.2	1318.: 46.3	1534.: 55.7	1810.: 40.8
87	0:: 0.0 1531:: 47.9	2:: 5:1 1782:: 26:4	49.: 5.6 1879.: 5.3	110.: 17.9 2008.: 0.0	309.: 34.2	587.: 34.8	775.: 40.3	978.: 53.1	1289.: 43.8
88	0.: 0.0 2072.: 6.7	97.: 5.2 2181.: 0.0	193.: 22.4	397.: 33.6	686.: 33.1	883.: 38.3	1092.: 51.0	1369.: 47.4	1782.: 49.0
89	0.: 0.0	215.: 23.9	446.: 33.0	852.: 35.6	1345.: 53.2	1764.: 50.7	2098.: 4.5	2296.: 0.0	
90	0.: 0.0	98.: 4.5	225.: 42.1	459.: 62.2	822.: 44.4	1598.: 33.9	1941.: 6.6	2270.: 0.0	
91	0.: 0.0	50.: 5.3	239.: 51.0	417.: 54.5	1551.: 31.3	2049.: 27.8	2137.: 5.7	2615.: 0.0	
92	0.: 0.0	175.: 46.3	660.: 47.0	1554.: 25.3	2044.: 21.9	2180.: 5.7	2583.: 0.0		
93	0:: 0.0 1919:: 27.4	83.: 3.5 2108.: 5.4	217.: 31.6 2246.: 0.0	386.: 37.8	702.: 44.9	876.: 56.9	1051.: 49.0	1348.: 46.5	1707.: 26.5
94	0.: 0.0	255.: 33.4	787.: 33.9	1272.: 47.3	1574.: 43.5	1758.: 35.8	1988.: 33.1	2090.: 6.6	2372.: 0.0
95	0.: 0.0	48.: 10.3	403.: 32.7	884.: 43.5	1581.: 40.6	1702.: 35.2	1990.: 38.3	2250.: 5.7	2671.: 0.0
96	0.: 0.0 2394.: 28.6	1.: 5.1 2491.: 5.1	105.: 4.4 2932.: 0.0	268.: 40.8	594.: 39.3	1211.: 32.5	1459.: 37.2	1697.: 32.4	2152.: 46.3
97	0.: 0.0 2520.: 16.4	31.: 25.2 2547.: 33.3	131.: 40.1 2831.: 41.5	569.: 46.3 3240.: 36.4	914.: 33.5 3556.: 35.9	1125.: 30.9 3681.: 14.8	1528.: 10.7 3963.: 10.8	2138.: 5.1 3973.: 0.0	2356.: 6.0

GRID CONFIGURATION and BOUNDARY TYPES OF SCHEMATIZED RIVER

X		Y GRI	D OF		REJECT	ION RATE	PER TIM	E STEP
GRID	Bank l	Bank 2	Bank 3	Bank 4	Bank 1	Bank 2	Bank 3	Bank 4
1	17	28	0	0	.1591	.1591		
2	18	26	0	0	.1591	.1591		
3	18	24	0	0	.1591	.1591		
4	19	23	0	0	.1591	.0000		
5	19	21	0	0	.1591	.9948		
6	19	20	0	0	.0000	.9948		
7	19	20	0	0	.0000	.9948		
8	18	19	0	0	.9948	.9948		
9	18	19	0	0	.9948	.9948		
10	18	19	0	0	.9948	.9948		
11	18	13	0	0	.9940	,9948		

```
.9948
                                                   .9948
                                        0
12
         18
                   20
                              0
13
         18
                   20
                              0
                                        0
                                                    .9948
                                                             .9948
14
         18
                   20
                              0
                                                   .9948
                                                             .9948
15
                                                   .9948
                                                             .9948
         19
                   21
                                        0
                              0
                                                    .9948
                                                             .9948
16
         19
                   22
                              0
                                        0
17
         20
                   24
                              0
                                        0
                                                   .9948
                                                             .9948
                                                   .9948
                                                            ..0000
18
         21
                   26
                              0
                                        0
                             27
                                       28
                                                   .9948
                                                             .9948
                                                                       .0
                                                                                 .0
19
         22
                   30
20
         23
                   30
                             27
                                       27
                                                   .9948
                                                             .9948
                                                                       .0
                                                                                 .0
                                        0
                                                   .9948
                                                             .0000
21
         24
                   30
                              0
                                                   .9948
                                        0
22
         25
                   30
                              0
                                                             .0000
23
         25
                   30
                              0
                                        0
                                                   .9948
                                                             .0000
                   30
                              0
                                        0
                                                   .9948
                                                             .9948
24
         26
                                                             .9948
25
         26
                   30
                              0
                                        0
                                                   .9948
                                                   .9948
                                                             .9948
26
         26
                   30
                              0
                                        0
27
         26
                   30
                              0
                                        0
                                                   .9948
                                                             .9948
                                                   .1591
28
                   30
                              0
                                        0
                                                             .9948
         26
29
                   30
                                        0
                                                   .1591
                                                             .9948
         26
                              0
30
         26
                   30
                              0
                                        0
                                                   .1591
                                                             .9948
31
                   29
                              0
                                        0
                                                   .1591
                                                             .9948
         26
                                        n
                                                   .1591
                                                             .9948
32
         26
                   29
                              0
33
         26
                   29
                              0
                                        0
                                                   .1591
                                                             .9948
34
         25
                   28
                              0
                                        0
                                                   .1591
                                                             .9948
                                                   .1591
35
                                                             .9948
         25
                                        0
                   28
                              0
                                                   .1591
                                                             .9948
36
         25
                   28
                              0
                                        0
37
         24
                   27
                              0
                                        0
                                                   .1591
                                                             .9948
                                        0
                                                   .1591
                                                             .1591
38
         24
                   27
                              0
                                                   .1591
                                        0
39
         24
                   26
                              0
                                                             .1591
40
         23
                   26
                              0
                                        0
                                                   .1591
                                                             .1591
41
                                                   .1591
                                                             .1591
         23
                                        0
                   26
                              0
42
         23
                   26
                              0
                                        0
                                                    .0072
                                                             .1591
43
         22
                   25
                              0
                                        0
                                                   .0072
                                                             .0000
44
                                                   .0072
                                                             .0000
         22
                   25
                                        0
                              0
45
                                                    .0072
                                                             .0000
         21
                   24
                              0
                                        0
46
         20
                   24
                              ņ
                                        0
                                                   .0000
                                                             .0000
47
         19
                   23
                              0 .
                                        0
                                                   .0000
                                                             .0000
                                                    .0000
                                        0
                                                             .0000
48
         19
                   23
                              0
49
         18
                   22
                              0
                                        0
                                                   .0072
                                                             .9948
         17
                                                             .9948
                   21
                                        0
                                                   .0072
50
                              0
                                                             .9948
51
                              0
                                        0
                                                    .0072
         17
                   20
52
          16
                   20
                              0
                                        0
                                                   .1591
                                                             .9948
53
                                                   .1591
                                                             .9948
                              0
                                        0
         16
                   19
                                                             .0000
54
                              0
                                        0
                                                   .1591
         15
                   19
55
         15
                   18
                              0
                                        0
                                                   .1591
                                                             .9948
                                                   .1591
                                                             .9948
56
         15
                              0
                                        0
                   18
                                        0
                                                             .9948
57
         14
                   17
                              0
                                                    .1591
58
         14
                   17
                              0
                                        0
                                                   .1591
                                                             .1591
59
         14
                   17
                              0
                                                   .1591
                                                             .1591
         13
                                        0
                                                             .1591
                              0
                                                   .1591
60
                   17
61
         13
                   17
                              0
                                        0
                                                   .1591
                                                             .1591
62
                              0
                                        0
                                                   .1591
                                                             .1591
         13
                   16
                              0
                                        0
                                                   .1591
                                                             .1591
63
         13
                   16
64
         13
                   16
                              0
                                        0
                                                   .1591
                                                             .1591
65
         13
                              0
                                        0
                                                   .1591
                                                             .1591
                   16
         13
                              0
                                        0
                                                    .9948
66
                   16
                                                             .1591
67
         13
                   16
                              0
                                        0
                                                    .9948
                                                             .1591
                                                             .1591
68
         13
                                        0
                                                   .9948
                   16
                              0
69
         13
                              .0
                                        0
                                                    .9948
                   16
                                                             .1591
70
         13
                   16
                              0
                                        0
                                                    .9948
                                                             .1591
71
         13
                              0
                                                   .9948
                                                             .1591
                   16
72
                              0
                                        0
         13
                   16
                                                    .9948
                                                             .1591
73
         13
                   16
                              0
                                        0
                                                    .9948
                                                             .1591
74
         13
                   16
                              0
                                                   .9948
                                                             .1591
75
         13
                              0
                                        0
                                                    .0072
                   16
                                                             .1591
76
         13
                   16
                              0
                                        0
                                                   .0072
                                                             .1591
77
         13
                   16
                                        0
                                                   .0072
                                                             .0072
78
                              0
                                                             .0072
         13
                                        0
                                                    .0072
                   16
79
         13
                                                   .0072
                                                             .0072
                   16
                              0
                                        0
80
         12
                   16
                              0
                                        0
                                                   .0000
                                                             .0072
81
         12
                              0
                                        0
                                                   .1591
                                                             .1591
                   17
82
         12
                   17
                              0
                                        0
                                                   .1591
                                                             .1591
                                                           .1591
83
         12
                   17
                              0
                                                   .1591
```

0.4	110	10	^	^	1501	1501		
84	12	18	0	0	.1591	.1591		
85	12	18	. 0	0	. 9948	.1591		
86	11	19	0	0	.9948	.1591		
87	11	19	16	17	.9948	.1591	.1591	.1591
88								
	11	20	16	17	.9948	.0072	.1591	.0072
89	11	20	16	18	.9948	.0072	.0072	.0072
90	11	21	15	18	.1591	.0072	.0072	.0072
91	11	21	15	18	.1591	.0072	.0072	.0072
92	11	21	15	19	.0072	.0072	.0072	.0072
93	11	21	15	19	.0072	.0072	.0072	.0072
94	12	21	15	19	.0072	.0072	.1591	.0072
95	12	21	15	18	.0072	.0072	.1591	.0072
96	12	20	16	18	.1591	.0072	.1591	.0072
97	12	20	16	18	.1591	.1591	.1591	.0072
98	13	20	16	18	. 1591	.1591	.1591	.0072
99	13	20	16	18	.1591	.1591	.1591	.0072
100	13	20	17	18	.1591	.1591	.1591	.0072
	13							
101		20	17	18	.1591	.1591	.1591	.1591
102	14	20	18	18	.0072	.1591	.1591	.1591
103	14	21	18	18	.0072	.1591	.1591	.1591
104	14	21	18	18	.0072	.0072	.1591	.1591
105	14	21	18	18	.0072	.0072	.1591	.1591
	_						.1351	.1771
106	14	21	0	0	.0072	.0072		
107	15	21	0	0	.0072	.0072		
108	15	21	0	0	.0072	.0072		
109	16	21	Ó	0	.9948	.0072		
110	16	21	0	0	.9948	.0072		
111	16	22	0	0	.0072	.0072		
112	17	22	0	0	.0072	.0072		-
113	17	22	Ö	Ó	.0072	.0072		
114			ŏ	ŏ				
	18	22			.0072	.0072		
115	18	22	0	0	.0072	.0072		
116	18	22	0	0	.0072	.1591		
117	19	22	0	0	.0072	.1591		
118		. 22	ŏ	Ŏ	.0072	.1591		
	19							
119	19	22	0	0	.0072	.1591		
120	19	22	0	0	.0072	.1591		
121	19	22	0	0	.0072	.1591		
				Ŏ		.0072		
122	19	23	0		.0072			
123	19	23	0	0	.0072	.0072		
124	19	23	0	0	.0072	.0072		
125	19	23	0	0	.0072	0072		
126	19	23	Ŏ	Ŏ	.0072	.0000		
127	19	23	0	0	.0072	.0000		
128	19	24	n	0	.0072	.0000		
129	19	24	0	0	.0072	.0000		
130	19	24	0	0	.0072	.1591		
131	18	23	ŏ	ŏ	.0072	.1591		
152	18	23	0	0	.0072	.1591		
133	18	23	0	0	.0072	.1591		
134	18	23	0	0	.0072	.1591		
135	17	23	Ō	0	.0072	.1591		
				ŏ	.0072			
136	17	23	0			.1591		
137	17	23	0	0	.0072	.1591		
138	17	23	0	0	.9948	.1591		
139	17	23	0	0	.9948	.1591		
140	17	23	Ö	Ō	.9948	.1591		
141	17	23	0	0	.9948	.1591		
142	18	23	0	0	.9948	.0000		
143	18	23	0	0	.9948	.9948		
144	18	23	Ō	0	.9948	.9948		
145	19	23	ŏ	ŏ	.9948	.9948		
146	19	23	0	0	.9948	.9948		
147	19	23	0	0	.9948	.9948		
146	19	23	0	0	.0072	.1591		
149	19	23	ŏ	Ŏ	.0072	.1591		
150			ŏ	ŏ	.0072	.1591		
	19	23						
151	20	23	0	0	.0072	.1591		
152	20	23	0	0	.0072	.1591		
153	20	24	0	0	.0072	.1591		
154	21	24	ŏ	ŏ	.0072	.1591		
					.0072			
155	22	25	0	0	/4	159 <u>1</u>		

156	22	25	0	0	.9948	.1591		
157	23	26	0	0	.9948	.1591		
158	24	27	0	0	.9948	.1591		
159	25	28	0	0	.9948	.9948		
160	25	29	0	0	.9948	.9948		
161	26	29	0	0	.9948	.9948		
162	27	30	0	0	.9948 .0072	.9948 .9948		
163 164	27 28	30 31	0	0	.0072	.9948		
165	29	32	ŏ	Ö	.0072	.9948		
166	29	32	Ö	Ö	.0072	.9948		
167	30	33	ŏ	ŏ	.0072	.9948		
168	31	33	õ	ō	.0072	.9948		
169	31	33	0	0	.0072	.9948		
170	31	34	0	0	.0072	.9948		
171	32	34	0	0	.0072	-9948		
172	32	35	0	0	.3072	.9948		
173	33	35	0	0	.0072	.9948		
174	33	36	0	0	.0072	.9948		
175	34	36	0	0	.0072	.9948		
176	34	37	0	0	.0072	.9948		
177	34	37	0	0	.0072	.9948		
178 179	34 35	37 38	0	0	.0072 .0072	.9948 .1591		
180	35	38	Ö	0	.9948	.1591		
181	35	38	Ö	Ŏ	.9948	.1591		
182	35	39	Ö	ŏ	.9948	.1591		
183	35	39	ŏ	ŏ	.9948	.1591		
184	35	39	ŏ	Ŏ	.0072	.1591		
185	35	39	Ō	0	.0072	.1591		
186	35	39	0	0	.0072	.1591		
187	35	39	0	0	.0072	.1591		
188	34	39	0	0	.0072	.1591		
189	34	39	0	0	.0072	.1591		
190	34	39	0	0	.0072	.1591		
191	34	38	0	0	.0072	.1591		
192	33	38	0	0	.0072	.1591		
193	33	38	0	0	.0072	.1591		
194	33	37	0	0	.0072	.1591		
195	32 32	37 · 37	0 0	0	.0072 .0072	.1591 .1591		
196 197	32	37	0	0	.0072	.1591		
198	31	36	Ö	Ö	.1591	.1591		
199	31	36	ŏ	ŏ	.1591	.1591		
200	31	36	ŏ	ō	.1591	.1591		
201	31	36	Ŏ	ŏ	.1591	.1591		
202	31	36	Ö	Ö	.1591	.1591		
203	31	36	Ō	Ō	.1591	.1591		
204	31	36	0	0	.9948	.1591		
205	31	36	0	0	.9948	.1591		
206	32	37	0	0	.9948	.1591		
207	32	37	0	. 0	.9948	.1591		
208	32	37	0	0	.9948	.1591		
209	32	38	0	0	.9948	.1591		
210	33	38	0	0	.9948	.1591		
211	33	30	0	0	.9948	.1591		
212 213	33	39 39	0	0	.9948 .9948			
214	33 33	39	0	0	.9948	.1591 .1591		
215	33	39	Ö	Ö	.9948	.1591		
216	33	39	0	ŏ	.9948	.1591		
217	33	39	ŏ	ŏ	.9948	.1591		
218	33	39	Ö	ŏ	.9948	.1591		
219	33	39	ŏ	ŏ	.9948	.1591		
220	33	39	0	Ö	.9948	.1591		
221	32	39	0	0	.9948	.1591		
222	32	39	0	0	.9948	.1591		
223	32	39	0	0	.9948	.1591		
224	32	39	0	0	.9948	.1591		
225	32	39	0	0	.9948	.9948	1,,,,	0010
226	32	39	37	37	.9948	.9948	.1591	.9948
227	31	39	36	37	.9948	.9948	.1591	.9948

•					2000	.9948	1601	.9948
228	31	39	35	37	.0000		.1591	
229	30	38	35	36	.0000	.9948	.1591	.9948
230	30	38	35	36	.0000	.9948	.1591	.9948
	30	37	Ö	Ö	.0000	.9948		
231								
232	30	36	0	0	.0000	.0072		
233	31	36	0	0	.0000	.0072		
234	31	36	0	0	.0000	.0072		
	31	36	ō	ō	.0000	.0072		
235								
236	31	36	0	0	.0000	.0072		
237	31	36	0	0	.0000	.0072		
238	31	36	С	c	.0000	.0072		
239	31	35	Ö	Ō	.0072	.0072		
					.0072	.0072		
240	31	35	0	0				
241	30	35	0	0	.0072	.0072		
242	30	35	0	0	.0072	.0072		
243	30	35	Ö	Ó	.0072	.1591		
						1591		
244	30	35	0	0	.0072			
245	30	35	Ð	0	.0072	.1591		
246	30	34	0	0	.0072	.1591		
247	30	34	Ô	0	.0072	.1591		
					.0072	.1591		
248	30	34	0	0 -				
249	30	34	0	0	.0072	.1591		
250	30	34	0	0	.0072	.1591		
251	30	34	0	0	.0072	.1591		
		34	ŏ	Ŏ	.0072	.1591		
252	30							
253	30	34	0	0	.0072	.1591		
254	30	34	0	0	.0072	.1591		
255	31	34	0	0	.0072	.1591		
	31	34	Ö	Ö	,0072	.1591		
256								
257	31	34	. 0	0	.0072	.0072		
258 、	31	34	0	0	.0072	.0072		
259	31	34	0	0	.0072	.0072		
260	31	35	ō	ō	.0072	.0072		
261	32	35	0	0	.9948	.0072		
262	32	35	0	0	.9948	.0072		
263	32	36	0	0	.9948	.0072		
264	33	36	0	0	.9948	.0072		
				ŏ	.9948	.0072		
265	33	37	0					
266	33	37	0	0	.9948	.0072		
267	34	38	0	0	.9948	.0072		
268	34	38	Ó	0	.9948	.0072		
				ō	.9948	.0072		
269	34	38	0					
270	35	38	0	0	.9948	.0072		
271	35	39	0	0	.0072	.0072		
272	35	39	0	0	.0072	.0072		
	35	40	ŏ	ŏ	.0072	.0072		
273								
274	35	39	0	0	.0072	.1591		
275	35	39	0	0	.0072	.1591		
276	35	39	0	0	.0072	.1591		
	35	39	. 0	Ŏ	.0072	.1591		
277								
278	35	39	0	0	.0072	.1591		
279	35	39	0	0	.0072	.1591		
280	35	39	0	0	.0072	.1591		
281	35	39	Ŏ	Ŏ	.0072	.1591		
						.1591		
282	35	40	0	0	.0072			
283	35	40	0	0	.0072	.1591		
284	34	40	0	0	.0072	.1591		
285	34	39	Ö	Ó	.9948	.1591		
				ŏ	.9948	.1591		
286	33	39	0	U	.7740	*1721		

Fig. 11 Velocity Distribution in St. Clair River

Fig. 11. Velocity Distribution in St. Clair River

Fig. 11. Velocity Distribution in St. Clair River

Fig. 11. Velocity Distribution in St. Clair River

Fig. 11, Velocity Distribution in St. Clair River

Fig. 11. Velocity Distribution in St. Clair River

Fig. 11. Velocity Distribution in St. Clair River

St. Clair River

- * INSTANTANEOUS SPILL *
- t AT
- *‡* 71750., 9250.
- ******************

SIMULATION PERIOD = 2.0 Hrs

Characteristics of spill

- No. of particles : 1000
- Dil spilled : 5000, gals of No. 2 Fuel Dil
- DT for spill simulation : 900. Secs.
- Specific gravity of oil : 0.84 (API index = 37.0)
- Kinematic Visco. of Water :0.1411E-04 sq ft/sec Surafce Tension :0.2060E-02 lbs/ft

Spreading Coefficients

- K2i K2v K2t c10 c20 c30 1.14 0.98 1.60 1.39 1.39 1.43
- Molar volume :0.7063E-02 cu ft/mol Solubility of fresh oil :0.1873E-02 lbs/cu ft
- Viscosity of Oil : 0.841bs/ft-sec
- Manning's Roughness of Ice: 0.035
- API option is not selected . Evap. constants are C = 7.88 T0 = 465.0
- Surface Diffusion Default formulation is used
- Time step for river flow computation = 2.00 Hrs

572.66

572.35

Open Water Conditions

9

Flow and Discharge Conditions in River

IOM and	vischarge	L000111005
Branch	Q (cfs)	Stage (ft
1	129980.	574.99
2	129980.	574.85
3	129970.	574.54
4	129950.	574.28
5	90916.	573.91
6	38964.	573.91
7	129810.	573.60
8	129880.	573.18

129810.

129780.

Time = $0.25 \text{ Hrs} \rightarrow \text{Wind :mag} \approx 2.0 \text{ mph, dir } = 270.0 \text{ deg} \rightarrow \text{Air Temp} \approx 70.0 \text{ F}$ Spill center after advection= 74022., 9638.(ft) Volume per particle = 5.00 gals

Slick Condition during this time step

Slick information by pie / strip Pie No. of particles Mean radius(ft) 175 2 138 140. 82 3 130. 4 87 134. 5 146 156. 139 Ś 143. 103 7 127. 8 102 124.

Slick condition at the end of this time step

Fraction Evaporated = .52053E-02Amount Dissolved (gals) : This Step = .64750E-01 Total = .64750E-01

Time = 0.50 Hrs -- Wind :mag= 2.0 mph, dir =270.0 deg -- Air Temp= 70.0 F Spill center after advection= 76142., 10572.(ft) Volume per particle = 4.97 gals

Slick Condition during this time step

Slick information by pie / strip Pie No. of particles Mean radius(ft) 148 1 253. 2 218 204. 3 102 226. 4 58 235. 5 114 265. 179 6 287. 7 218. 80 g 66 201.

Slick condition at the end of this time step

Fraction Evaporated = .24043E-01
Amount Dissolved (gals) : This Step = .25054 Total = .31529

Time = 0.75 Hrs -- Wind :mag= 2.0 mph, dir =270.0 deg -- Air Temp= 70.0 F Spill center after advection= 78110., 12100.(ft) = 4.88 gals Volume per particle Slick Condition during this time step Slick information by pie / strip Pie No. of particles Nean radius(ft) 190 356. 2 248 355. 3 82 317. 48 296. 5 107 354. 214 5 432. 7 50 284. 34 231. Oil in River Banks Bank 2: X-Grid 156 Particles 7 Slick condition at the end of this time step Fraction Evaporated = .58143E-01 Amount Dissolved (gals) : This Step = .54172 Total = .85701 Time = 1.00 Hrs -- Wind :mag= 2.0 mph, dir =270.0 deg -- Air Temp= 70.0 F Spill center after advection= 80173., 13639.(ft) = 4.71 gals Volume per particle Slick Condition during this time step Slick information by pie / strip Pie No. of particles Mean radius(ft) 220 495. 1 209 469. 73 3 354. 4 60 380. 5 470. 116 6 235 565.

Oil in River Banks

311.

317.

Bank 2; X-Grid 156 157 Particles 11 2

23

35

7

Slick condition at the end of this time step

 Time = 1.25 Hrs -- Wind :mag= 2.0 mph, dir =270.0 deg -- Air Temp= 70.0 F Spill center after advection= 82288., 14898.(ft) Volume per particle = 4.48 gals

Slick Condition during this time step

Slick information by pie / strip Pie No. of particles Mean radius(ft) 1 282 509. 2 151 445. 3 64 358. 4 77 550. 5 125 570. 162 611. 5 7 30 321, g. 35 339, .

Oil in River Banks

Bank 2; X-Grid 156 157 161 163 Particles 11 2 1 10

Slick condition at the end of this time step

Fraction Evaporated = .14809

Amount Dissolved (gals) : This Step = 1.3037 Total = 3.0916

Time = $1.50 \text{ Hrs} \rightarrow \text{Wind :mag} = 2.0 \text{ mph, dir } = 270.0 \text{ deg} \rightarrow \text{Air Temp} = 70.0 \text{ F}$ Spill center after advection= 84487., 16099. (ft)
Volume per particle = 4.26 gals

Slick Condition during this time step

Slick information by pie / strip Pie No. of particles Mean radius(ft) 1 321 811. 2 165 523. 3 35 372. 4 98 505. 5 163 851. 750. 131 7 27 339. 40 466.

Oil in River Banks

Bank 1; X-Grid 168 Particles 8

Bank 2; X-Grid 156 157 161 163 169 Particles 11 2 1 16 14

Slick condition at the end of this time step

Fraction Evaporated = .19416
Amount Dissolved (gals) : This Step = 1.8238 Total = 4.9154

Time = 1.75 Hrs -- Wind :mag= 2.0 mph, dir =270.0 deg -- Air Temp= 70.0 F Spill center after advection= 86822., 17160.(ft) Volume per particle = 4.02 gals

Slick Condition during this time step

Slick information by pie / strip Strip Particles -Leift) Y mean Le(ft) 167 -72. 15016. 72. -73. 15032. 148 4 73. 171 41 -166, 16035. 265. 172 71 -355. 16546. 603. 173 122 -381. 16896. 371. 174 191 -347. 17200. 305. 175 231 -276. 17445. 259. 176 139 -205. 17559. 190.

Oil in River Banks

Bank 1; X-Grid 168 175 Particles 10 2

Bank 2; Y-Grid 156 157 161 163 169 171 173 175 Particles 11 2 1 16 72 57 27 5

Slick condition at the end of this time step

Fraction Evaporated = .24656

Amount Dissolved (gals) : This Step = 2.9435 Total = 7.8589

Time = 2.00 Hrs -- Wind :mag= 2.0 mph, dir =270.0 deg -- Air Temp= 70.0 F Spill center after advection= 89002., 17805.(ft)
Volume per particle = 3.76 gals

Slick Condition during this time step

Slick information by pie / strip Strip Particles -Le(ft) Y mean Le(ft) -89. 17438. 173 6 37. 50 176 -235. 17167. 404. 177 79 -340, 17558. 520. 141 -359. 178 355. 17900. 179 172 -331. 17980. 285. 197 180 -297. 18076. 255. 181 75 -254. 18116. 212.

Oil in River Banks

Bank 1; Y-Grid 168 175 Particles 9 6

Bank 2; X-Grid 156 157 161 163 169 171 173 175 178 Particles 11 2 1 16 61 52 44 17 3

Slick condition at the end of this time step

Fraction Evaporated = .29250

Amount Dissolved (gals) : This Step = 3.6486 Total = 11.507

Fig. 12. Plot of slick locations at t = 15 min, 30 min, 45 min, 1 hr and 1 hr 15 min

Fig. 13. Plot of slick location at t = 1 hr 30 min

Fig. 14. Plot of slick location at t = 1 hr 45 min

Fig. 15. Plot of slick location at $t \approx 2$ hrs

APPENDIX I

CROSS SECTIONAL GEOMETRY OF RIVERS

This appendix contains cross-sectional geometry data at each cross section in the following rivers:

- 1. St. Clair River
- 2. Detroit River
- 3. Upper St. Mary's River
- 4. Lower St. Mary's River

м
a
Š
٠,
2
(24
14
æ
ä
S
i

X-Se	X-Sect. No.	7	m	4	~	•	Vertical Line 7 8	al Lin 8	e No.	10	::	12	13	14	15	16	17	18	19	
•	Distance(ft) Depth (ft)	212	280	354	906 34	1230 78	1377	1625 8	1929 0											
7	Distance(ft) Depth (ft)	185 11	343	451	32	39	839 52	966 69	1041	1115	1245	1401								
m	Distance(ft) Depth (ft)	70	241 42	345 38	568 67	936	1020													
*	Distance(ft) Depth (ft)	73	141 18	157 38	284 65	350 66	420	525 61	617	845	966 0									
S	Distance(ft) Depth (ft)	18 10	76 18	116 33	266 45	362	465	529 52	619	710	808 0									
•	Distance(ft) Depth (ft)	12 28	36	44	186 38	285 44	407	470	677 42	741	817 42	980								
•	Distance(ft) Depth (ft)	11 61	33	141	223 39	310 43	367	502 34	575 34	820 55	873 55	909	977 53	1169	1227	1292 0				
∞	Distance(ft) Depth (it)	24	135 31	179 48	462	590 35	895 52	1039	1178 73	1413 33	1458 0									
On.	Distance(ft) Depth (ft)	127 45	334 53	561 50	653 53	798 54	956 44	1062 25	2359	127¢ 8	1443									
2	Distance(ft) Depth (ft)	01 41	155 46	272 43	444 50	537 46	855 46	99 5 33	1079 32	1336 0										
11	Distance(ft) Depth (ft)	84 35	219	299 38	524 49	720	930	1147 28	1535 27	1613 19	1772 9	1782 0								
12	Listance(ft) Depth (ft)	183 36	33 33	611	731	1312 33	1567 23	1719 0												
13	Distance(ft) Depth (ft)	22 22	146 32	382 37	727	1009 34	1441	1749 2	1756 0											
1.	Distance(ft) Depth (ft)	127	639	1203 36	1432 31	1730 37	1956 30	2383	2486 30	2583 0										

Distance is measured from Lower Left Bank.

8 2549 2602 9 15 0	80 ()	9 0	0	<u>ق</u> 0											
75 2368 46 19	31 2618 19 0	75 2466 18 0	55 2062 22 0	53 1863 27 0											
22	22	23	70	18											
2 2031 6 32	74	21	19	17					e 0					00	
2 1842 4 36	22	18	11	17	m 0		ლ 0	& O	210	00	e 0			191	mc
9 1672 8 34	2 1794 0 27	2 1556 7 33	13	3 1580 2 27	177	90	194	202	3 1948 6 27	198	2.2	0.2		9 1671 9 34	195
3 1119	30	9 982	3 1134 3 32	1 1443 3 32	1 1396	180	184	4 1930 5 20	1 1683 4 36	1910	3 1854	219	٥ د	4 1339 7 39	3 1825
0 778 6 34	20 840 35 29	77 619 40 29	2 883 2 29)11 1141 32 28	61 1201 39 37	.76 1692 41 24	81 1757 33 20	97 1644 33 36	.86 1461 41 34	84 1720 43 30	5 1648	37 2045 33 24	208	3 1174 5 37	08 1605
420 660 29 36	582 720 29 35	299 477 28 40	489 532 38 32	241 711 31 32	682 1061 31 39	930 1176 35 41	1203 1581 37 33	673 997 35 33	546 1186 29 41	734 1184 39 43	734 £35 38 37	1173 1737 34 33	1083 1697 36 32	691 933 32 45	1296 1408
280 4	384 5	31 2	430 4	20 20	292 6 35	731 9 38	174 12 32	307 6	213 5	102 7	14: 7 31 3	57 11 35	329 10 32	32 6	1051 12
97	180 25	8 28	240 30	103	54 13	237 33	11 01	125 25	0 7	11	60 13	119 22	9 01	7 22	168 1051
Distance(ft) Depth (ft)	Distance(ft)														
23	16	17	18	19	. 20	21	22	23	24	25	37	27	28	29	30

		3507 0													
												•			
		3221 36													
٠		2924 42							•						
		2808													
		2680									3¢08 0	3082 0			
		2493 29					•				3573	2963 6		2385	
		2350		1601							3512 22	2745 25	•	2207 17	
		2221		1508 14					1203 0		3125	2624 37	2613 0	1994 25	
	2257 0	2026 · 9	25 <i>47</i> 0	1236 26		1903			1138		2£72 38	2350	2505 17	1840 36	
	2166	1870 12	2132	1142 26	1644	1734 4			1069 18	1205	2464 3	1977 16	2340 25	1389	2075
2037 5	2135	1753 18	2048 10	920 31	1537	1643 23	1169 0	1169 0	898 30	1107	2395	1866 23	2206	120 8 31	1743 32
1675 37	1877 39	1114	1068 30	700 28	1183	1608	1053	1060	661 28	993 22	20.05	1416 1776 24 23	264 1470 1729 1973 35 33 40 39	864 38	1184 39
1523	1033 34	912 33	829 28	31	1033 28	1174 24	910 29	953 28	400 24	761 29	1429 23	1416 24	1729 40	616 31	1046 32
971 1294 1523 41 42 32	320	836	564 32	314	927 27	1034	865 26	758 31	3:9	560 32	1370 30	1390 33	33	389 36	832 38
971 1	138	470	196 27	218	704 33	657 1 31	619 27	507 25	197 24	342	34	125] 33	264 3	212	583 32
221	6 4	39	92	9 0	97	229	258 24	361 26	4 4	178	14	35 6	78	101	206 35
Distance(ft) Depth (ft)	Distance(ft) Depth (ft)	Distance(ft) Deptk (ft)	Distance(ft) Depth (ft)	Distance(ft) Dept: (ft)	Distance(ft) Depti (ft)	Distance(ft) Depth (ft)	Distance(ft) Depth (ft)								
31	32	33	34	35	36	37	38	39	9	41	27	73	1	45	746

-	9 3 130	108 6 265 34	201 36 941 40	656 31 1318 28	935 39 1479 39	1696 39 2018 40	1924 20 2209 5	2002 5 2352 0	2139 0					
67.		174 33	879 36	11011	1316 26	1815 38	2064 40	2263 28	2353 3	2555	2561 0			•
63		166 6	272 32	1126 34	1228 18	1336 26	1866 26	2008	2706 30	2078 79	2831 6	3061	3078 0	
20		110	256 33	1159 36	1183	1311	1453 19	1889 28	2836 33	3127 27	3222	3393 0		
124		208 31	666 32	1089 32	1183	1579	1722 23	2014 28	2398	2791 35	3111 36	3357 8	3498 0	
31 23		439	726 32	988 31	1097 6	1501	1673 35	2106	3066 36	3309	3419 0		•	
113 33		992 1 32	1152 6	1300	1560 34	1650 23	2257 22	2424 29	3050 30	3218 6	3339			
210		661 1 34	1131	1311 24	1757 17	2221 30	2771 30	2922 0						
47		232 32	400	520 35	703 34	781 43	1081 16	1175 18	1287 14	1467 23	1662 24	2219 28	2259	2553
95		330	480	880 34	1216 32	1259 27	1593 33	2091 30	2302					
57 25		263 43	480 46	505 34	30	2185 0			•					
77		296 36	895 53	997	1117	1331 35	1736 31	1911	2068 5	2087				
86 27		498 40	984 38	1181 50	1551 27	1637 6	1701 3	1704 0						
		73	308	436	612 50	793 45	1017 53	1387 37	1548 6	1700				
338 45		700	880 53	1436 1806 25 0	1806									

														3307	
														3241 3	
														3071	
		·											3293 0	2858 5	3935
											2912 0		3291	2677	3740
								7272 0		2997 0	2504		3067	2550 27	3460
					•		2331	2718	2820	2969 4	2721 6	3101	2809. 5	2406 28	3000
					1910 0		2230 7	2339 ó	2535	2714	2550 28	2602 5	2531 8	2194 37	2494
			1667 0	1935 0	1863	2376 0	2050 30	2094	24,76 24	2665 23	2387 27	2458 24	2424 26	2030 24	2065 18
1726 0	1675 0	1594 0	1633	1765 11	1666 5	2351	1660 34	1750 33	2228 32	2193 36	1507	1731 29	2126 25	1820 19	1753 18
1580 26	1556 8	1450	1532	1611 35	1578 23	2026	1286 47	1433	1604	1878 34	1430 34	1418 43	1389 26	1202 24	1579
1452 28	1270 1556 28 8	1281	1448 21	1172 50	1358	1765 30	973 40	1090 38	1061	1295 37	236 31	1143	1034 33	1112	1403
11711 55	1047 46	828 57	1278 45	901	953 48	951 43	745 42	628 36	297 31	324	254 27	921 35	820 44	472	1208 1403 1579 27 6 6
906	595 52	524 44	739	354	39 27	608	298 32	247 28	196 5	183	71	319 32	492	289 45	33
375 41	250 47	178 21	117	140	0 O	10 27	125	146 5	70	21 5	3	88 21	79 27	153	117
Distance(ft) Depth (ft)	Distance(ft) Fepth (ft)	Distance(ft) Depth (ft)													
63	4	.	.	67	99	69	70	11	72	73	7,	75	76	11	78

79	Distance(ft) Depth (ft)	312	545 27	1519	1792 29	2299 0	3429 0	3584	4013	4167	4286			
8		236 38	388 33	539 38		1288 28	1974 32	2128	2206	2394	2631	2722 6	2855	2864
81	Distance(ft) Depth (ft)	133 32	669 37	1107 36	1234 24	1560 23	1873	2322 53	2512 26	2574	2823 0			
82	Distance(ft) Depth (ft)	9 5	220 31	37	1235 34	1304 28	1438	1700 27	1940 48	2256 43	2519	27 44 0		
83	Distance(ft) Depth (ft)	5 5	340 34	1082 35	1349	1712 48	1954 30	2201	2302	2426				
. *8	Distance(ft) Depth (ft)	49	169 6	404	910	1013 52	1428 53	1941 28	2212 8	2350				
85	Distance(ft) Depth (ft)	69	136 18	359 31	596 33	1138 59	1526 56	2042 0						
98	Distance(ft) Depth (ft)	~ €	161	329 33	717 35	992 53	1318 46	1534 56	1810 41	1928 8	2071 0			
87	Distance(ft) Depth (ft)	2 2	64	110	309	587 35	775 40	978 53	1289	1531 48	1782 26	1879	2008	
88	Distance(ft) Depth (ft)	97	193 22	397 34	686 33	883 38	1092 51	1369	1782 49	2072	2181			
68	Distance(ft) Depth (ft)	215 24	33	852 36	1345	1764 51	2098 5	2296 0		•				
90	Distance(ft) Depth (ft)	98	225	459 62	822	1598 54	1941	0727 0						
91	Distance(ft) Deptr (ft)	50	239 51	417	1551 31	2049 28	2137	2615 0						
92	Distance(ft) Depth (ft)	175 46	660	1554 25	2044	2180	2583 0							
93	Distance(ft) Depth (ft)	33	217	386 38	702 45	876 57	1051 49	1348 46	1707 26	1919. 27	2108	2246		
7 6	Distance(ft) Depth (ft)	255	787 34	1272 47	1574	1758 36	1988 33	2090	2372					

95 Distanc	Depth (ft)	96 Distanc	Depth (it)	97 Distand	Depth (ft)
e(ft)	(4 £)	e(fr)	(£t)		
84	2		\$	31	25
403	33	105	4	31 131 569	04
884	4	268	41	569	94
1581	41	594	39	914	34
1702	. 33 44 41 35 38	1211	33	914 1125	31
1990	38	1459	5 4 41 39 33 37	1528	11
2250	9	1697	32	2138	2
2671	0	2152	94	2356	•
		2394	29	2520	10
		2491 2932	5	2138 2356 2520 2547	33
		2932	0	2831	45
				3240	36
				3556 3681 3963 3973	36
				3681	15
				3963	11
				3973	0

Detroit Rives

Distance(ft) 15 12 12 12 12 12 12 12	X-Sect.	ct.	7	~	4	~	9	Vertic 7	Vertical Line No. 7 8 9	. o.	10	11	12	13	14	15	16	17	18
Distance(ft) 155 90c 10.25 1275 140c 170 2125 2375 3150 3175 Distance(ft) 25 22 22 22 28 25 400 22 22 23 25 25 25 25 25 25 22 25 25 25 25 25 25	-	Distance(ft) Depth (ft)	25 14	125 28	500 36	1000	1200	1750 32	2000 30	2250 10	3000	3425 0							
Distance(ft) 12 20 21 120 1300 1350 2425 2325 3250 3425 Distance(ft) 12 20 21 22 28 22 1400 Distance(ft) 12 22 27 27 27 20 825 1400 Distance(ft) 12 22 27 27 27 27 20 825 1250 Distance(ft) 12 22 27 27 27 27 27 20 825 1250 Distance(ft) 12 22 27 27 27 27 20 825 1250 Distance(ft) 12 22 27 27 27 27 28 22 22 22 22 22 27 27 2		Distance(ft) Depth (ft)	155 25	900 28	1025 36	1275	1400 36	1700 43	2125	2375	3250. 5	3375 0							
Distance(ft) 12 12 22 27 27 27 0 0 0 0 0 0 0 0 0 0 0 0 0	m	Distance(ft) Depth (ft)	50 12	125 20	750 21	1250 22	1350 28	2425 28	2525 5	3250	3425 0								
Distance(ft) 75 175 220 27 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	Distance(ft) Depth (ft)	75	175 22	250 27	825	1400 0				•								
Distance(ft) 81 142 198 373 627 760 1124 1184 1233 1322 Distance(ft) 113 26 29 30 31 30 24 21 10 0 Distance(ft) 125 250 500 800 1000 22 2850 2850 3500 4000 4250 4650 4825 5000 Distance(ft) 12 25 21 20 28 2 33 382 4450 4600 4675 5075 Distance(ft) 25 275 175 175 175 175 175 175 175 175 175 1	5	Distance(ft) Depth (ft)	75	175 22	250 27	825 27	1250 0												
Distance(ft) 125 250 500 800 1000 1250 235 238 380 4000 4250 4250 4655 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	φ	Distance(ft) Depth (ft)	81 11	142 26	198 29	373 30		760 30	1124 24	1184 21	1233 10	1322							
Distance(ft) 75 275 575 1250 2075 2825 3825 4450 4600 4675 5075 Depth (ft) 4 18 24 18 12 27 29 39 18 2 9 18 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	Distance(ft) Depth (ft)	125 12	250 25	500 21	800	1000 28	1250 23	2050 23	2850 38	3500 38	4000	4250 43	4650 45	4825	5000	5100		
Distance(ft) 101 266 507 756 1223 1360 1461 Depth (ft) 25 25 29 33 31 26 0 <td>∞</td> <td>Distance(ft) Depth (ft)</td> <td>75</td> <td>275 18</td> <td>575 24</td> <td>1250 18</td> <td>2075 12</td> <td>2825 27</td> <td>3825 29</td> <td>4450 39</td> <td>4600 1,8</td> <td>4675</td> <td>5075 0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	∞	Distance(ft) Depth (ft)	75	275 18	575 24	1250 18	2075 12	2825 27	3825 29	4450 39	4600 1,8	4675	5075 0						
Distance(ft) 25 75 475 575 800 1250 1875 2050 2550 2750 3400 Depth (ft) 12 25 23 12 6 2 5 22 27 5 0 Distance(ft) 22 27 21 26 23 12 0 1374 1692 1844 1923 Distance(ft) 10 25 31 24 29 20 22 26 22 20 22 26 20 20 22 26 20 20 22 26 20 20 22 26 20 20 22 26 20 20 22 26 20 20 22 26 20 20 22 26 20 20 22 26 20 20 22 20 20 20 20 20 20 20 20 20 20 20 20	6	Distance(ft) Depth (ft)	101 25	266 25	507 29	756 33	1223 31	1360 26	1461 0										
Distance(ft) 88 159 1107 1093 1998 2074 2111 Depth (ft) 22 27 21 26 23 12 0 Distance(ft) 2 135 550 655 853 1000 1374 1692 1844 1923 Distance(ft) 10 25 31 24 29 20 22 26 21 0 Distance(ft) 20 22 29 10 33 27 20 13 7 6 7 Distance(ft) 125 250 350 680 825 1250 135 16 7 6 7	10	Distance(ft) Depth (ft)	25	7 5 25	475 23	575 12		1250 2	1875 5	2050 22	2550 27.		3400						
Distance(ft) 2 135 550 655 853 1000 1374 1692 1844 1923 Depth (ft) 10 25 31 24 29 20 22 26 21 0 Distance(ft) 24 607 1005 1208 1388 1598 1684 1662 1891 2194 2204 Depth (ft) 20 22 29 10 33 27 20 13 7 6 7 Distance(ft) 125 250 350 680 825 1250 1525 1625 1825 2125 2533 De the (ft) 26 35 33 48 42 46 35 35 9 8 9	11	Distance(ft) Depth (ft)	88 22	159 27	1107 21	1093 26	1998 23	2074	2111										
Distance(ft) 24 607 1005 12C8 1388 1598 1684 1662 1891 2194 2204 Depth (ft) 20 22 29 10 33 27 20 13 7 6 7 Distance(ft) 125 250 350 680 825 1250 1525 1625 1825 2125 2533 De the ft) 26 35 33 48 42 46 35 35 9 8 9	12	Distance(ft) Depth (ft)	2 10	135 25	550 31	695		1090 20	1374	1692 26	1844 21	1923 0							
Distance(ft) 125 250 350 680 825 1250 1525 1625 1825 2125 2533 De :b (ft) 26 35 33 48 42 46 35 35 9 8 9	13	Distance(ft) Depth (ft)	24 20	607 22	1005 29	12C8 10	1388 33	1598 27	1684 20	1662	1891	2194 6	2204						
	4.		125 26	250 35				1250 46	1525 35	1625 35	1825	2125 8	2533 9	2550					

1921 0	1625 1750 1825 1950 2000 43 35 38 23 0	1725 1850 2000 2375 2750 3125 3500 3750 9 25 37 29 28 32 35 0	2625 2910 38 0	2373 0	1250 1600 1750 2000 2125 2250 43 47 36 45 42 0	1875 2050 6 0			2825 0	2625 2650 24 0	2850 3320 3750 4250 10 5 8 0	4425 4675 3 0	1650 2000 2125 2310 2450 2510 38 30 9 5 7 0	2587 2865 3354 3400 34 8 7 0
1660 1831	1125 1375	1375 1500	2125 2310	1657 2224	750 1000	1625 1800	1674 1903	2500 2550	2600 2710	1750 2375	2090 2500	3300 3425	1150 1500	1842 2331
42 24	33 41	37 9	48 43	48 41	45 50	32 18	39 0	27 0	34 8	36 36	37 38	27 4	37 36	46 31
109 317 529 755 1004	30 63 250 475 563	125 375 425 1000 1250	10 550 625 1375 1750	118 369 634 311 1338	25 125 200 475 600	125 175 375 1375 1500	197 451 717 1187 1594	25 125 1000 1500 2250	25 510 1120 2075 2375	25 125 300 1000 1500	250 680 1125 1485 1750	175 1050 2175 2500 2675	185 375 500 625 850	27 231 450 836 1548
31 39 35 40 37	5 14 15 42 32	12 18 · 25 35 37	27 28 37 36 36	26 22 32 51 39	23 28 24 34 30	18 29 41 45 47	38 46 47 40 43	28 38 38 31 32	9 45 38 35 38	19 25 40 39 32	38 43 36 35 41	34 38 28 18 25	29 40 41 40 36	3 6 20 30 34
<pre>15 Distance(ft) 10 Depth (ft) ;</pre>	16 Distance(fr) Depth (fr)	17 Distance(ft) I: Depri (ft)	18 Distance(ft) Depth (ft)	19 Distance(ft) 1. Depth (ft)	20 Distance(ft) Depth (ft)	21 Distance(ft) 1; pepth (ft)	22 Distance(ft) 19 Depth (ft)	23 Distance(ft) Depth (ft)	24 Distance(ft) Depth (ft)	25 Distance(ft) Depth (ft)	26 Distance(ft) 2 Depth (ft)	27 Distance(ft) 1 Depth (ft)	28 Distance(ft) 1 Depth (ft)	29 Distance(ft) Depth (ft)

31	Distance(ft) Depth (ft)	33	115 35	327	593 36	864 9	1149	1199 10	1254 0	1300	1337	2001	2390	2443	2984 14	3235 38	4076 38	6077	6204	6715 6
32	Distance(ft) Depth (ft)	300	31	780	780 1310 1790 5 5 35	1790 35	2090 27	2900 35	3250 36	3680	5600	5650 9	5750 0							
33	Distance(ft) Depth (ft)	450	575 28	1250 36	1750 33	2700 28	27.25 18	2825	4500	5000	5025 0									
34	Distance(ft) Depth (ft)	120	174 20	461	851 32	986 22	1640	1106	1175											
35	Distance(ft) Depth (ft)	24 14	573 33	722 31	896 16	976														
36	Distance(ft) Depth (ft)	199 24	502 26	854 24	952	952 1887 9 7	1980 26	2265 21	2428		_									
37	Distance(ft) Depth (ft)	92 25	3C.i 31	446 28	681 35	969	1052 8	1707	2243	2375										
38	Distance(ft) 1500 1625 Depth (ft) 0 25	1500	1625 25	2000 25	2000 2100 3 25 2	2300 0	3750 0	3825 5	3900 32	4225	4375	4675 0								
39	Distance(ft) Depth (ft)	25	625	750	750 1125 1 27 27	1175	1250 30	1750 32	1925 6	2125	2150									
07	Distance(ft) Depth (ft)	30	475	475 1000 2000 3 27 27	2000	2100	2800 35	3100 25	3300 32	3750 30	4250	4500 28	5100 28	5500	5900 8	8 8	7000	7100		
41	Distance(ft) Depth (ft)	73	293 6	293 2564 2 6 11	2710 27	3746 24	3772	44.24 36	45C, 27	4996 25	5151 22	5328 28	5482 28	5796 11	6111	6346				
42	Distance(ft) Depth (ft)	575 6		750 1000 2750 6 5 3	2750	3175	3375 18	430t 18	4375	4950 27	5400	9 9	6050							
43	Distance(ft) Depth (ft)	71	129 31	,284 36	474	657 30	812	867	898											
44	Distance(ft) Depth (ft)	4 W	4	244 32	536 33	779 31	993	1152	1850 3	1940 2	2003									
45	Distance(ft) Depth (ft)	55 19	278 18	434	460	502 33	773 35	823 21	848 25	973 11	1095 8	1246 0								
94	Distance(ft) Depth (ft)	16	3	240 22	10	591 10	876 27	1238 24	1377	1496 5	1523									

48 Distance(ft) 48 100 636 756 838 982 1144 1165 1379 1425 48 Distance(ft) 31 209 990 1146 49 Distance(ft) 226 275 0 18 20 1146 50 Distance(ft) 320 406 559 882 1033 1508 1676 2128 2194 2468 2542 2646 2771 3015 3209 3432 50 Distance(ft) 20 87 1000 2000 2175 2550 4125 4675 2128 2194 2468 2500 6500 51 Distance(ft) 4 18 18 5 0 0 2 14 14 14 4 0				367	
48 100 636 756 638 982 1144 1165 1379 1425 3 4 24 14 14 15 20 15 0 14 15 16 15 16 15 16 15 16 15 16 14 15 16 15 16 15 16 16 16 16 16 16 10 0 16 16 16 16 16 10 0 16 16 16 10 0 16 10 10 0 16 10 10 0 17 14 8 7 2 226 275 36 16 26 16 10 10 10 17 14 8 7 2 220 8 2 13 8 5 22 15 9 10 17 14 4 0 17 14 4				3432	
48 100 636 756 838 982 1144 1165 1379 1425 7 31 209 990 1146 30 27 20 15 27 2639 25 29 27 10				3209	
48 100 636 756 838 982 1144 1165 1379 1425 </td <td></td> <td></td> <td></td> <td>3015</td> <td></td>				3015	
48 100 636 756 838 982 1144 1165 1379 1425 </td <td></td> <td></td> <td></td> <td>1771</td> <td></td>				1771	
48 100 636 756 838 982 1144 1165 1379 1425 31 209 990 1146 30 27 0 15 7 226 275 766 1246 1345 1806 1922 2396 2472 2639 320 406 559 882 103 1508 1676 212 10 0 320 406 559 882 1033 1508 1676 2128 2468 2542 20 8 9 23 8 5 22 15 9 10 17 87 1000 2000 2175 2550 4125 4875 5125 5500 6500 87 18 5 0 2 14 4 0 0 0				2709 8	
48 100 636 756 838 982 1144 1165 1379 1425 31 209 990 1146 30 27 6 15 7				2646	
48 100 636 756 838 982 1144 1165 1379 31 209 990 1146 30 27 0 15 226 275 766 1246 1345 1806 1922 2396 2472 320 406 559 882 1033 1508 1676 10 20 406 559 882 1033 5 22 15 9 20 8 9 23 8 5 22 15 9 875 1000 2000 2175 2550 4125 4625 4875 5125 4 18 18 18 0 2 14 14				2542 17	6500 0
48 100 636 756 838 982 1144 1165 31 209 190 1146 27 20 27 20 27 20 27 20 22 23 20 23 23 23 23 23 23 23 22 23 22 23 22 23 22 23 22	1425 U		2639 0	2468 10	5500
48 100 636 756 838 982 1144 4 24 16 20 18 30 27 25 29 27 0 30 27 26 275 766 1246 1345 1806 1922 8 7 8 22 19 16 20 20 406 559 882 1033 1508 1676 20 8 9 23 8 5 22 87 1000 2000 2175 2550 4125 4625 4 18 18 5 0 0 2	1379		2472 10	2194	5125 14
48 100 636 756 838 982 4 24 16 20 18 30 31 209 990 1146 30 226 275 766 1246 1345 1806 8 7 8 22 19 16 320 406 559 882 1033 1508 20 8 9 23 8 5 4 18 18 5 0 0	1165		2396 16	2128 15	4875
48 4 4 23 22 22 8 8 320 20 20 20 4	1144		1922 20	1676 22	4625
48 4 4 23 22 22 8 8 320 20 20 20 4	982 30		1806 16	1508	4125 0
48 4 4 23 22 22 8 8 320 20 20 20 4			1345 19	1033 8	2550 0
48 4 4 23 22 22 8 8 320 20 20 20 4	756 20	1146	1246 22	882	2175
48 4 4 23 22 22 8 8 320 20 20 20 4	636 16		766 8	559 9	2000
48 4 4 23 22 22 8 8 320 20 20 20 4			275	406 8	1000
47 Distance(ft) Depth (ft) 48 Distance(ft) Depth (ft) Depth (ft) 50 Distance(ft) Depth (ft) 51 Distance(ft) Depth (ft)		31 25	226 8		875 4
4,9	Distance(ft) Depth (ft)				
	14	8	67	20	51

Upper St. Mary's River

X-Sect. No.	ct.	7	ო	4	~	Ó	Vertical 7	al Line 8	e No.	101	11	12	13	14	15	16	17	18	19
~	Distance(ft) Depth (ft)	4 70	400	800	2000	3250 24	4050	7500 28	8950 28	9480	9480 11400 40. 30	12080	12900 18	14300 12	18800	21790	21800		
~	Distance(ft) Depth (ft)	10	1030	1350 12	5000 18	6600	8000	10000 28	10230 30	12100 24	14000 18	15400	15400 18000 19750 6 2 0		19900 19990 0		20000	22950 0	
m	Distance(ft) Depth (ft)	10	550	550 1220 6 12	1320 18	1420 24	1700 30	2000	3000	7000	9000	11000 28	11200	12120 30	11000 11200 12120 13550 16050 28 46 30 24 12		22340	22350 0	
4 .	Distance(ft) Depth (ft)	10	250	500 12	650	800	1100	7350 55	9200	10950 28	11180	11180 11280 14280 18000 24 18 12 6	14280 12	18000 6	19590	19600 0			
'n	Distance(ft) Depth (ft)	4 6	580	880	3220 18	5500 21	6600	8100 18	8100 10200 18 24	11000 13900 14080 14180 14600 17300 18050 28 28 30 24 12 14 12	13900 28	14080	14180 24	14600	17300 14	18050 12	20520 22400 6 0	22400	
9	Distance(ft) Depth (ft)	12 6	830	1800	3920 16	5190 24	5350 28	6750 28	7000 38	7980 30	8150 24	8180 18	8400	8400 12300 12 6	14390 6	14400			
~	Distance(ft) Depth (ft)	∞ 4	1150	8 1150 2000 4 6 12	2150 28	3600 28	3700 17	4100	4600 8	, 6500 6	7970 4	7980 0							
∞	Distance(ft) Depth (ft)	36	420	2600 10	5700 6	6240	6250 0	0069	6910	8150 6	8200 12	8250 28	9500	9600	9650	9650 12390 6 4	12100 Ĉ		
o,	Distance(ft) Depth (ft)	9 6	1880 3	6 1880 1950 2650 3 3 0 0		2680 6	3400	3500 28	4700 28	4800	9 .	006 7							
10	Distance(ft) Depth (ct)	4 (1	880 6	1000 12	1050 25	2300	2400 24	2450 18	2550 5	2570 3	2580 C								
11	Distance(ft) Depth (ft)	7 7	680	820 18	950	1050 30	1250 26	2450 28	2480	2680 18	2880 12	3800 8	5200 10	8000	8400	9770	9780 0		
12	Distance(ft) Depth (ft)	7 7	760	850 18	96↓ 24	1150	1600 28	2550 28	3550 30	3650 24	3900 18	4000	4950 9	5700 13	6200	7396 2	7166		
13	<pre>13 · Distance(ft) Depth (ft)</pre>	7 7	450	550 12	680 18	780 24	1200 30	1650 28	3100 28	3350 30	3680 24	3950 18	5900 13	6500	7200	7380	8940	8950 0	
14	<pre>14 Distance(ft) Depth (ft)</pre>	60 4	730	850	1180 18	1380 24	1 68 0 30	2180 28	3700 28	3900 24	4250 18	4530 12	4550						

Distance is measured from Lower Left Bank.

		4750
	5750 0	4700
	5200	4400
	4400	4350
0	4100	2450
12	3900	2400
24	3200 6	1400
30	2300	1300
39	1180	1250
34	1100	1000
30	755	750
93900	750 28	650
3450 28	435 28	550
2050 28	430	450
1950 24	355 0	300
1000	350 28	185
4 71	28	040
15 Distance(ft) 4 1000 1950 2050 3450 3900 4180 4400 5500 0500 0500 0500 Depth (ft) 2 5 24 28 6 30 34 39 30 24 12 0	16 Distance(ft) 5 350 355 430 435 750 755 1100 1180 2300 3200 3900 4100 4400 5200 5750 Depth (ft) 28 28 0 0 28 28 0 0 14 12 6 6 24 12 6 0	17 Distance(ft) 40 185 300 450 550 650 750 1000 1250 1300 1400 2450 2450 4350 4400 4700 4750
15	16	17

Lower St. Mary's River

X-Sect.		7	m	4	'n	٠,	Vertic 7	Vertical Line	No.	10	11	7	13	14	15	16	17	18	19
-	Distance(ft) Depth (ft)	133 12	267	2067 28	2267 16	2400 12	2667 6	2800											
7	Distance(ft) Depth (ft)	333	467	667	800 28	2000	2133 19	2733 12	3067	0C 2 8									
m	Distance(ft) Depth (ft)	10	250	375 35	1200	1350 24	1950 23	2125 29	2310	3060 8	3250 · 0				•				
, 4 ,	Distance(ft) Depth (ft)	11 6	440	563	733 17	804	1025	1093 33	1195 35	1297 27	1372 32	1614	1781 3	2000					
8	Distance(ft) 1024 Depth (ft) 3	1024 3	1156	1156 1209 1396 9 7 28		1460 24	1515 34	1613 27	1651 30	1764 25	1803 29	1879 2	1970 0						
•	Distance(ft) Depth (ft)	15	192 3	437	622 . 13	820 27	1027 15	1120 26	1387 18	1493 29	1863 11	2057 3	2399	2416 0					
7	Distance(ft) Depth (ft)	15	399 12	657 38	1103	1334 4	1360 8	1517 5	1554 0										
œ	Distance(ft) Depth (ft)	259	400	504 12	618	688	809	918	1168 34	1327 25	1687 30	1919 21	2027 24	2458 16	2890 0				
6	Distance(ft) Depth (ft)	267	533 12	800 12	1000	1067 28	1533 28	1600 18	1667	2000	2200	2800							
10	Distance(ft) Depth (ft)	142	173 17	336 17	591 34	703	738 30	861 47	977	1070	1180 0								
=	Distance(ft) Depth (ft)	267	333 12	400 18	433	733	1000	2000	2667 3	3800 20	4200	4333	5867 0						
12	Distance(ft) Depth '(ft)	467	733 12	800 13	1867 13	2000	2667 2	5733											
13	Distance(ft) Depth (ft)	31	297	829 26	1006 16	1006 1272 16 18	1448 8	1803	2069	2246 15	2335	2366	3192						
14	Distance(ft) Depth (ft)	467	600	667 19	867 18	1867 12	2667 6	2867 0		٠									

												0 0 0 0			
				,				6125 0				9250 8			
			3800	2667 0			5760 0	5675 6				7000 8			
			3600	2133 6			5475 8	5375 5				6450 8			
	•		3333 12	2000	•		5273 29	5250 14	6175			5900 13	12000		
			2827	1933 27			5117 30	4500 21	6060	5800		5260 12	10467 6		
			2712 30	1400			4865	4300	5225 11	5375 5		5200 30	9533 12		
			2592 30	1333	1500	3400	4758 14	4125 26	5125	5250 35		4800	9300		
	1033	4400	2442	1200	1368	3375 3	4546	3750 21	5050 18	4450	8250	4750 12	9033		2650
615 0	900	4333	2287 30	867 0	1188	2625	4419 10	3625 26	4690	4125	7400	4100	9000	3000	2560
595 2	30	1133	2177	447	950	1625	3030	3350 25	4600	3950 35	5200 20	2875	8700 27	2935	2250 8
517 32	633	1067	2117	400 5	915	1550 16	2662 0	3250 35	3690 35	2600	4900	2150 10	8ċ67 12	2325	2000
410	600 18	912	2067	374	530 33	1450 13	2342 13	1750 35	3575	2550 20	4000	2000	7667 6	2250 31	1875 32
370 36	467	770	667	250	405	1300 31	1690	1625 25	3050 32	2250 20	3750 19	1400 38	2 عئند	2125	1575 32
346	333 17	712	533	175 21	227 32	1000 34	1461 32	1000	2300	1500	3250 17	1250	2333 27	1935 32	1500
105 16	200 12	490 35	10.	68	155	625 30	791 30	750 15	2125	750 10	3050	800	2002 27	1875 6	1150 1500 1575 8 9 32
58 S	67	70 31	333 3	2 5	94 8	500	569 10	625	1875 16	300	2800	50	1933 1	310	125
Distance(ft) Depth (ft)															
15	16	17	18	19	. 50	21	22	23	24	25	26	27	28	29	30

							2375									
							2125									
							2000						3810			
							1930 9			2600			3750 4			1875 0
							1625			2560	4313		3625	3350 0	1350 0	1600
							1375			2250 4	4200		3025	3125	1275 12	1375 24
•	•		•		•		935		•	2080	4075	5000	2310	2910 3	1225 10	1025 27
						1750 0	875 0	2525	810 0	1750 13	3725 12	4759 S	2050	2600 12	1125 18	1000 35
						1625 28	800	2375	1375	1690 32	3575 30	3750 8	1850 30	2250 8	950	710
2625	425 0					1500	675 27	1000	1250 23	1300 32	3100	3250 20	1600	1650 8	775 18	685 21
2200	19		302		425	1435 33	36	810 25	875 26	925	2825 29	3125	1310 13	1500 35	725 34	590 28
	350 36		290 32	302	385 35	1125	300	600 27	840 33	600 32	2700 11	2750 36	1225	825 36	610 36	370 26
	33	300	190 31	290 33	250 35	1060 16	200	500 32	310 36	375 35	2325 8	2625 33	810	625	415	225 12
	210 35	33	18 32	125 33	80 35	935	125 17	250 32	280 18	125 31	2110	500 2500 6 14	10	510 18	250 35	125 16
400	32	10 33	19	10 32	10	780 10	15 13	185	125 16	30	1825	200	500	190	125	50 12
Distance(ft) Dept: (ft)	Distance(ft) Depth (ft)	Distance(ft) : Depth (ft)	<pre>Pistance(ft) Depth (ft)</pre>	Distance(ft) Depth (ft)	Distance(ft) Depth (ft)	Distance(ft) Depth (ft)	Distance(ft) Depth (ft)									
31	32	33	34	35	36	37	38	39	07	41	42	43	4	45	46	47

APPENDIX II

PROGRAM LISTING OF ROSS AND SUBPROGRAMS

The program listing is arranged in the following sequence.

Main Program

ROSS

ROSS Subroutines

ADVECT

BOUNDR

DISOLU

EVAPOR

NDCONV

ORIENT

PLOTNU

PRELSE

PRINT1

SPRDAX

SPRD1X

SPRD1Y

VELDIS

System Subroutines 1

GAUSS

RANDU

These programs were available at Clarkson University computing system. The source code is provided here for completeness. Other systems may substitute these with appropriate subprograms.

```
000000000000
                  River Oil Slick Simulation Model
                                                              ..ROSS..
          Last Date of Revision October 14, 1986
         Developed by the Department of Civil and Environmental Engineering
                     Clarkson University, Potsdam, New York 13676
          under the support of the Detroit District, U. S. Army Corps of
          Engineers, through the Cold Regions Research and Engineering
          Laboratory, Hanover, N.H.
C
       This program is furnished by the Government and is accepted and used
Č
       by the recipient upon the express understanding that
C
       the United States Government University makes no warranties, express
č
       or implied, concerning the accuracy, completeness, reliability,
C
       usability, or suitability for any particular purpose of the
       information and data contained in this program or furnished in
C
       connection therewith, and the United States Government shall be under
Č
       no liability whatsoever to any person by reason of any use made
C
       thereof. The program herein belongs to the Governmeent. Therefore,
Č
       the recipient further agrees not to assert any proprietary rights
C
    * therein or to represent this program to anyone as other than a
CCCCCC
       Government program.
      DIMENSION IPARTX(5), IPARTY(5), HLIFE(10), THETAO(4), IDUM(20)
      COMPLEX VSTRM(99,16),CORDV(99,16),VCAR(12000),CORDLB(99)
      COMPLEX SPCEN, PARTCL (1000), VWIND, VDRIFT
      COMPLEX SPCENO
      COMMON /VEL/VSTRM, CORDV, CORDLB, Q(30), WL(30), TICE(99,20),
     $ YWID(99,20),Z(99,20),ZD(99),NSLSCT(99),SCTANG(99),
     $ LCSTSQ(30),NSTUBE(99),NUMCON(99),NFIRCO(99),NSECO(99),KINTM
      COMMON /VA/ VCAR, VWIND, VDRIFT
      COMMON /VASB/IGRILB(300),IGRIUB(300),IGRLB1(300),IGRUB1(300)
      COMMON /ASB/SPCEN,PARTCL,NPTCL,NHITB,IHITB(1000),TYPBND(4,300)
      COMMON /BLOCK7/SPGOIL,ANIU,SIGMA,AK2I,AK2V,AK2T,
     $ VOLPAR, VOLPIE(8), SLICKR(8)
      COMMON /BLOCK8/AKC10,AKC20,AKC30
      COMMON /SE/FEVP1,FEVP2,CEVP,T0EVP
      COMMON /V/IZRBX(100),IZRBY(100),NZRVB
      COMMON /ICE/NICEX1(20), NICEY1(20), NICEX2(20), NICEY2(20), NICERG,
     $ AMIUO, ANICE, IPOS1(20), IPOS2(20), SPAICE
      COMMON /SO/IMOVIN(1000), YSHIFI(1000), NMOVIN, SSHIFT
      INTEGER UFSTPS, OSTPS
      character *4 FULL, PART, OPEN, STCL, DETR, STMU, STML, WORD
      character *12 finame
      character *4 TEXT(11), FUELTP(4)
      character *44 SLINFO(3)
      EXTERNAL RANDOMIZE
      DATA FULL, PART, OPEN/'FULL', 'PART', 'OPEN'/
```

```
DATA STCL, DETR, STMU, STML/'STCL', 'DETR', 'STMU', 'STML'/
      DATA HLIFE/0.033,.5,1.,6.,12.,18.,24.,48.,48.,8760./
      DATA THETAO/109.,127.1,6.0,27.2/
      DATA SLINFO(1)/' Pie No. of particles Mean radius(ft)'/
      DATA SLINFO(2)/' Strip Particles -Le(ft)
                                                 Y mean
                                                             Le(ft)'/
      DATA SLINFO(3)/' Strip Particles -Le(ft) X mean
                                                             Le(ft)'/
          open(15,file='ross.fnm')
          rewind 15
          do 2222 ifiles=1,9
         read(15,1111)iunit,finame
          open(iunit,file=finame)
          rewind junit
2222
          continue
         format(I3,A12)
1111
C
    Explanation of Variables
C
     --single varibles
C
C
       The next four variables are for controlling output. They can
C
       have the values 0-NO, 1-YES
CCC
       IOPT1-Fixed data like Geometry and Bank (shore) conditions
       IOPT2-Computed Vleocities for plotting
C
       IOPT3-Location of particles for plotting
C
       IOPT4-Number Plot(particle distribution) on print
C
č
       ISPTYP - Spill type 0-Instantaneous, 1-Continuous. Computed by
0000000
               model based on : if SPLTIM > 0.5*SPILDT ISPTYP=1 else=0
       FEVP1
              - Fraction evaporated at previous time step
       FEVP2 - Fraction evaporated at present time step
       NBRNCH No. of Branches in the 1-D Flow Model
      NGRIDX Total No. of grid boxes in X-direction
00000000
      TOTDIS - Total amount of Dissolved Oil (gms)
      UFDT
                - 1-D Model time step(hrs)
      UFSTPS - No. of 1-D model steps
      OSTPS
                - No. of Oilspill steps per UFDT
       ** Any variable with UNI as the last three characters are for
CCCC
       converting units for the purpose of printing
    --some important variable names used for intermediate computations
       AIY area of the IYth Trapezoid
000000
       PERI wetted perimeter by IYth Trapezoid
            hydraulic radius of IYth trapezoid
    --One D arrays
       IGRILB(I) y-dir grid box number of lower river boundary column I
       IGRIUB(I) y-dir grid box number of upper river boundary column I
C
      LCSTSQ(I) last section number of branch I
       NSLSCT(I) No. of slices of data for section I
C
      NSTUBE(I) No. of stream tubes for section !
C
       NUMCON(I) Condition Number (see text) for section I
C
      NFIRCO(I) Next section first connecting to section I
```

```
C
      O(I)
                 Discharge in the Ith Branch
C
       SCTANG(I) angle Ith section makes with X-direction
       THETAU(i) The clockwise angle(deg) of the Y-axis of the river I,
C
                  measured from magnetic north.
C
      WL(I)
                  water level of upstream of branch I
C
      ZD(I)
                 reference level from datum for section I at which Z's
C
                   are evaluated
C
Č
    -- Two D arrays
C
      TICE(I,J) Equivalent ice thickness of Jth vertical in Ith section
C
       YWID(I,J) Distance from lower bank of river to the Jth vertical
C
                   in Ith section
C
      Z(I,J)
                Height of Jth vertical in Ith section
C
C
    -- Complex Variables (these store X-component as real part and
C
          Y-component as imaginary part)
C
      CORDLB(I) lower bank co-ords of the Ith section
C
      CORDV(I,J) co-ords at which VSTRM(I,J) is acting
C
      VSTRM(I,J) stream velocity of the Ith section and Jth streamtube
C
                  velocity in the cartesian box grid system of box I
C
      READ(1,650)WORD, TEXT
      READ(1,*)NBRNCH,NGRIDX,DX,KINIM
      READ(1,*)(LCSTSQ(I),I=1,NBRNCH)
      IS2 = LCSTSQ(NBRNCH) + 1
      DO 100 I=1,IS2
          READ(1,*)J,CORDLB(I),SCTANG(I),NSTUBE(I),NUMCON(I),NFIRCO(I)
          ,NSECO(I)
         IF(J.NE.I)WRITE(*,700)
C
          SCTANG(I) = SCTANG(I)*3.141592/180.
100
          CONTINUE
      DO 110 I=1,IS2
         READ(1,*)J,NSLSCT(I),ZD(I)
          IF(J.NE.I)WRITE(*,710)
          NNN=NSLSCT(I)+1
          READ(1,*)(YWID(I,J),Z(I,J),J=2,NNN)
110
          CONTINUE
      DO 120 I=1,NGRIDX
          READ(1,*)J,IGRILB(I),IGRIUB(I),IGRLB1(I),IGRUB1(I)
          IF(I.NE.J)WRITE(*,720)
120
         CONTINUE
C
С
       Read the I,J values of Grid boxes in which velocity =0.0
      READ(1,*)NZRVB
      IF(NZRVB.EQ.0)GOTO 140
      IF(NZRVB.GT.100)WRITE(*,730)
      IF(NZRVB.GT.100)NZRVB=100
      READ(1,*)(IZRBX(I),IZRBY(I),I=1,NZRVB)
C
C
     Read the spill volume, spill location and wind data
C
140
        READ(12,650)FUELTP
        READ(12,*)TOTIME, IEVERY, IOPT1, IOPT2, IOPT3, IOPT4, SPLTIM, DIFFUD
```

```
READ(12,*)NTOTAL, SPVOL, SPILDT, SPGOIL, ANIU, SIGMA, AK2I, AK2V, AK2T
        ,AKC10,AKC20,AKC30
       ISPTYP = 0
       IF(SPLTIM.GT.0.5*SPILDT)ISPTYP=1
       READ(14,*)ANICE,AMUNI
C
       SPVOL IS U.S. GALLONS. VOLPAR IS CU FT. OF VOLUME PER PARTICLE
C
      SPLRAT = 0.13368*SPVOL/SPLTIM
      VOLPAR = 0.13368*SPVOL/NTOTAL
      VZERO = SPVOL*3.7850E-03
      API = 0.0
      READ(12,*)SPX,SPY,VMUNI,SOLUNI,CEVP,TOEVP
      SOLBLT = SOLUNI*16018.453
      VMOL = VMUNI*0.02831682
      AMIUO = AMUNI*14.88162
      TOUNI = TOEVP*9./5.0
      IF(TOEVP.LT.1.0)API = 141.5/SPGOIL - 131.5
      APITEM = 141.5/SPGOIL -131.5
      SPCENO = CMPLX(SPX,SPY)
C
      Check if the spill co-ordinates are in land
C
      (This is a check for input error)
      L = SPX/DX + 1.0
      M = SPY/DX + 1.0
      IF(M.LT.IGRILB(L).OR.M.GT.IGRIUB(L))GCTO 150
      IF(IGRLB1(L).EO.0)GOTO 160
      IF(M.GE.IGRLB1(L).AND.M.LE.IGRUB1(L))GOTO 150
      GOTO 160
150
      WRITE(*,800)L,M
      STOP
160
      CONTINUE
      TTTT=SPLTIM/60.
      IF(ISPTYP.EQ.1)WRITE(*,810)TEXT,SPCENO,TITT
      IF(ISPTYP.EG.0)WRITE(*,820)TEXT,SPCENO
      WRITE(*,830)TOTIME,NTOTAL,SPVOL,FUELTP,SPILDT,SPGOIL,APITEM
        ,ANIU,SIGMA
      WRITE(*,840)AK2I,AK2V,AK2T,AKC10,AKC20,AKC30,VMUNI,SOLUNI
      WRITE(*,842)AMUNI,ANICE
      IF(API.LT.1.) WRITE(*,844)CEVP,T0EVP
      IF(DIFFUD.LT.0.0)WRITE(*,846)
      IF(DIFFUD.GT.0.0)WRITE(*,847)DIFFUD
      FORMAT(' API option is not selected. Evap. constants are ',
      $ ' C= '.F6.2.' T0= '.F7.1)
      FORMAT(//' Surface Diffusion - Default formulation is used'//)
846
      FORMAT(//' Surface Diffusion Coeff. =',F6.2,' sq ft/sec'//)
847
C
C
       READ BOUNDARY TYPE INFORMATION
170
      READ(8,*)K,LFROM,LTO,ICODE
       IF(K.EO.0)GOTO 190
      AN = HLIFE(ICODE)*3600./SPILDT
       REJRAT = 1 - 0.5**(1./AN)
       DO 180 L=LFROM,LTO
```

```
180
      TYPBND(K,L)=REJRAT
      GOTO 170
      CONTINUE
190
      NSPILS=(SPLTIM+1.0)/SPILDT
      IF(ISPTYP.EQ.1)NPERDT = NTOTAL/NSPILS
      IF(ISPTYP.EQ.1)GOTO 210
      NPERDT-NTOTAL
      DO 200 I=1,NTOTAL
200
      PARTCL(I) = SPCENO
210
      CONTINUE
C
     First set Vol of each pie=8*one eighth of vol released in SPILDT
C
      DO 220 I=1,8
220
      VOLPIE(I) = VOLPAR*NPERDT
C
C
      set random number generation seed IX
\mathbf{C}
      IX=101
      CALL RANDOMIZE(IX)
      WRITE(11,650)TEXT,FUELTP
      WRITE(11,651)NTOTAL, SPVOL, SPILDT, SPGOIL, ANIU, SIGMA, VMUNI, SOLUNI
        ,AMUNI
      TIMET = 0.
      IPARTX(1)=REAL(SPCENO)
      IPARTY(1)=AIMAG(SPCEN0)
      WRITE(11,850)IPARTX(1),IPARTY(1)
      INDX1D = 0
      NST =1
      NPTCL - NPERDT
      FEVP1=0.
      FEVP2=0.
      TOTDIS=0.
      NBRP1 = NBRNCH + 1
      READ(7,*)UFDT
      WRITE(*,845)UFDT
      UFSTPS = TOTIME/UFDT
      OSTPS = (UFDT*3600.+1.0)/SPILDT
C
      DO 340 IUF=1,UFSTPS
C
C
    Read Data Created by unsteady Flow Model
C
       IF(WORD.EQ.STCL)IRCODE=1
       IF(WORD.EQ.DETR)IRCODE=2
       IF(WORD.EQ.STMU)IRCODE=3
       IF(WORD.EQ.STML)IRCODE=4
C
      If the numbering sequence of branches in oilspill model is the
C
      same as that of 1-D model the following 3 statements can be used to
C
      Read the Q & WL data. In this case subroutine NDCONV is not needed.
\mathbf{C}
      Subroutine NDCONV is specifically written for reading Q & WL from
C
      the three 1-D River models St. Clair, Detroit and St. Mary's
C
       DO 230 I=1,NBRP1
```

```
C
           READ(7,*)WL(I),Q(I)
C230
           CONTINUE
       CALL NDCONV(NBRP1, IRCODE)
C
C
     Read ice thickness information
      READ(7,*)ICINFO
      DO 270 I=1,ICINFO
          READ(7,660)IS,WORD
          NNN=NSLSCT(IS)+1
          IF(ICINFO.EQ.1.AND.WORD.EQ.OPEN) THEN
          WRITE(*,234)
           ELSE
           IF(I.EQ.1)WRITE(*,235)
           ENDIF
          IF(WORD.NE.FULL)GOTO 250
          READ(7,*)FULLTI
          DO 240 K=1,NNN
             TICE(IS,K)=FULLTI
240
             CONTINUE
         WRITE(*,236)IS,FULLTI
250
             IF(WORD.EQ.PART) THEN
             READ(7,*)(TICE(IS,J),J=1,NNN)
             DO 252 J=1,NNN
             IDUM(J) = YWID(IS,J)
252
             CONTINUE
             WRITE(*,237) IS,(IDUM(J),J=1,NNN)
             WRITE(*,238) (TICE(IS,J),J=1,NNN)
             ENDIF
          IF(WORD.NE.OPEN)GOTO 270
         DO 260 K=1,NNN
             TICE(IS,K)=0.0
260
             CONTINUE
270
      CONTINUE
      READ(14,*)NICERG
      IF(NICERG.EQ.0)GOTO 278
      DO 275 I=1,NICERG
         READ(14,*)NICEX1(I),NICEY1(I),NICEX2(I),NICEY2(I)
275
         CONTINUE
      WRITE(*,930)NICERG,(I,NICEX1(I),NICEY1(I),NICEX2(I),NICEY2(I),
     $ I=1.NICERG)
C
C
       Set up the 1D-array locations that define Ice regions
      DO 40 K=1,NICERG
        LK1=NICEX1(K)-1
         MK1 = NICEY1(K) - 1
         IPOS1(K) = 0
         IF(LK1.EQ.0)GOTO 45
         DO 44 L1=1,LK1
           IPOS1(K) = IPOS1(K) + IGRIUB(L1) - IGRILB(L1) + 3
44
           CONTINUE
45
         IPOS1(K) = IPOS1(K)+MK1-IGRILB(LK1+1)+3
         LK2=NICEX2(K)-1
```

```
MK2=NICEY2(K)-1
        IPOS2(K) = 0
        IF(LK2.EQ.0)GOTO 48
        DO 47 L1=1,LK2
          IPOS2(K) = IPOS2(K) + IGRIUB(L1) - IGRILB(L1) + 3
47
          CONTINUE
48
        IPOS2(K) = IPOS2(K)+MK2-IGRILB(LK2+1)+3
40
      CONTINUE
C
278
      WRITE(*,860)
      DO 280 I=1,NBRNCH
280
      WRITE(*,870)I,Q(I),V/L(I)
C
C
      Now call VELDIS to find the 2-D vel distribution in the river
C
      IF(IOPT1.EQ.1)CALL PRINT1(2,NBRNCH,NGRIDX,DX)
                     CALL VELDIS(IOPT2, NBRNCH, NGRIDX, DX)
C
\mathbf{C}
         NST1=(IUF-1)*OSTPS+1
         NST2= NST1 + OSTPS -1
      DO 330 I=NST1,NST2
      READ(12,*)VWMAG,THETA,TENVF
      THET = (THETAO(IRCODE)-THETA)*3.141592/180.
      VWX=VWMAG*SIN(THET)
      VWY= - VWMAG*COS(THET)
      VWIND = CMPLX(VWX,VWY)
      WNDSPD = VWMAG/3.28
      VWMPH = VWMAG*0.6818
      TENV = (TENVF-32)*5./9. + 273.
      INDPR V = 0
      IF(MOD(I-1,iEVERY).EQ.0)INDPRN = 1
      TIMET = TIMET + SPILDT
      IF(ISPTYP.NE.1)GOTO 290
C
      IF(I.LE.NSPILS)CALL PRELSE(DX,SPILDT,IX,NST,NPTCL,SPCENO,DIFFUD)
      IF(I.GT.1)CALL ADVECT(DX,SPILDT,IX,1,NST-1,DIFFUD)
290
      IF(ISPTYP.EQ.0)CALL ADVECT(DX,SPILDT,IX,1,NTOTAL,DIFFUD)
      CALL ORIENT(INDX1D,DX)
\mathbf{C}
      IF(INDX1D.LT.3)GCTO 293
      IF(NICERG.EQ.0)INDX1D=INDX1D-3
      IF(NICERG.EQ.0)GOTO 293
      NPTICE=0
      DO 292 KK=1,NMOV'N
        J= IMOVIN(KK)
        L = REAL(PARTCL(J))/DX
        M =(AIMAG(PARTCL(J))+YSHIFI(J))/DX
        IPOS = 0
        IF(L.EQ.0)GOTO 117
        DO 115 L1=1,L
          IPOS = IPOS+IGRIUB(L1)-IGRILB(L1)+3
115
        CONTINUE
117
        IPOS = IPOS+M-IGRILB(L+1)+3
        DO 118 K=1,NICERG
```

```
IF(IPOS.GE.IPOS1(K).AND.IPOS.LE.IPOS2(K))NPTICE=NPTICE+1
          CONTINUE
118
292
        CONTINUE
        RATICE=FLOAT(NPTICE)/FLOAT(NMOVIN)
        IF(RATICE.LT.0.5)INDX1D=INDX1D-3
        IF(RATICE.GE.0.5)INDX1D=0
C
293
      TTTT=TIMET/3600.
      GALPAR - VOLPAR/0.13368
      IF(INDPRN.EQ.1)WRITE(*,880)TTTT,VWMPH,THETA,TENVF,SPCEN,GALPAR,
     $ SLINFO(INDX1D+1)
      IF(INDX1D.EQ.0)CALL SPRDAX(DX,SPILDT,TIMET,INDPRN,SPAREA
     $ ,SPLTIM,SPLRAT)
      IF(INDX1D.EQ.1)CALL SPRD1Y(DX,SPILDT,TIMET,INDPRN,SPAREA)
      IF(INDX1D.EQ.2)CALL SPRD1X(DX,SPILDT,TIMET,INDPRN,SPAREA)
         FEVP1=FEVP2
      CALL EVAPOR(API, TENV, WNDSPD, VMOL, VZERO, SPAREA, SPILDT, I)
      CALL DISOLU(SPAREA, SOLBLT, TIMET, SPILDT, API, DELDIS, TOTDIS)
      DELUNI= DELDIS*264.172E-06/SPGOIL
      TOTUNI= TOTDIS*264.172E-06/SPGOIL
      VOLPAR = 0.13368*(SPVOL*(1-FEVP2)-TOTUNI)/NTOTAL
      IF(NHITB.GT.0)CALL BOUNDR(DX,NGRIDX,INDPRN)
C
      IF(I.GE.NSPILS)NST = NPTCL +1
      IF(I.GE.NSPILS)GOTO 300
      NST=NPTCL+1
      NPTCL=NST+NPERDT-1
300
      IF(INDPRN.NE.1)GOTO 330
      WRITE(*,900)FEVP2,DELUNI,TOTUNI
      IF(IOPT4.EQ.1)CALL PLOTNU(DX)
      IF(IOPT3.NE.1)GOTO 330
      IPARTX(1)=REAL(SPCEN)
      IPARTY(1)=AIMAG(SPCEN)
      WRITE(!!,910)IPARTX(1),IPARTY(1),TITT,VWX,VWY,GALPAR
      DO 320 J=1,NTOTAL,5
         DO 310 K=1,5
            IPARTX(K) = REAL(PARTCL(J+K-1))
            IPARTY(K) = AIMAG(PARTCL(J+K-1))
310
            CONTINUE
         WRITE(11,850)(IPARTX(K),IPARTY(K),K=1,5)
320
         CONTINUE
330
      CONTINUE
340
      CONTINUE
      STOP
234
      FORMAT(//' Open Water Conditions')
235
      FORMAT(//' Ice conditions at cross sections',/1H+,32('_')//
     $' X-sect',9X,'Condition (A thickness of 0.0 implies open water)').
236
       FORMAT(/14,5X,'Ice cover of uniform thickness =',F5.2,
     $ 'ft across the river')
      FORMAT(/I4,5X,'Partial or non-uniform ice cover across the river.'
237
     $,' Distances from'/9X,'the lower bank and corresponding ice'
     $ 'thickness is given below'/9X,'Dist(ft)',2015)
      FORMAT(9X, Thic(ft) ',20F5.2)
238
720
      FORMAT(' ** ERROR ** READING GRID INFO.')
```

```
FORMAT(' NZRVB is GT 100 and is reset to 100')
      FORMAT(' ** ERROR ** READING X SECTION - DATA ')
710
700
      FORMAT(' ** ERROR ** READING LOWER BOUNDARY - DATA ')
660
      FORMAT(14,1X,A4)
650
      FORMAT(20A4)
651
      FORMAT(14,F8.0,F7.0,F6.2,5E11.3)
     FORMAT(1H1,16X,11A4,//5X,25('*')/5X,'*
                                               CONTINUOUS SPILL
810
     $ /5X,'*',11X,'AT',10X,'*'/5X,'*',4X,F7.0,',',F7.0,4X,'*'/
     $ 5X,'*',5X,'FOR ',F5.0,' min.',4X,'*'/5X,25('*'))
     FORMAT(1H1,16X,11A4,//5X,25('*')/5X,'* INSTANTANEOUS SPILL
820
     $ /5X.
     $ '*',11X,'AT',10X,'*'/5X,'*',4X,F7.0,',',F7.0,4X,'*'/5X,25('*'))
830
      FORMAT(//' SIMULATION PERIOD = ',F5.1,' Hrs'///
     $ 'Characteristics of spill'/1H+,24('_')//
     $ 'No. of particles
                                     :',15,/
     $ 'Oil spilled
                                    :',F8.0,' gals of ',4A4/
                                  :',F8.0,' Secs.',/
     $ 'DT for spill simulation
     $ 'Specific gravity of oil
                                   :',F8.2,' (API index =',F5.1,')'/
     $ 'Kinematic Visco. of Water :',E10.4,' sq ft/sec',/
     $ 'Surafce Tension
                                      :',E10.4,' lbs/ft',/)
840
     FORMAT(/9X,'Spreading Coefficients' /
               K2v K2t c10
     $ ' K2i
                                           c30'/,6F6.2//
                                     c20
     $ 'Molar volume
                                       :',E10.4,' cu ft/mol'/
     $ 'Solubility of fresh oil
                                   :',E10.4,' lbs/cu ft')
     FORMAT ('Viscosity of Oil
                                             :',F8.2,'lbs/ft-sec'/
     $ 'Manning s Roughness of Ice :',F8.3/)
845
      FORMAT(/' Time step for river flow computation =',F6.2,' Hrs')
      FORMAT(18,17,F9.4,2F6.1,F8.2)
910
850
      FORMAT(5(18,17))
880
      FORMAT(///1X,78('-')/') Time = ',F6.2,' Hrs -- Wind :mag=',F5.1,
     $ 'mph, dir =',F5.1,' deg -- Air Temp=',F5.1,' F'/
     $ 'Spill center after advection= ',F7.0,',',F7.0 '(ft)'/
     $ 'Volume per particle
                                        = ',F8.2,' gals'//
                Slick Condition during this time step'//
     $ 'Slick information by pie / strip'/A44)
     FORMAT(//' Slick condition at the end of this time step'
     $ //' Fraction Evaporated = ',G10.5/' Amount Dissolved (gals)
     $: This Step = ',G10.5,' Total = ',G10.5/)
     FORMAT(//' Flow and Discharge Conditions in River'/
     $ 'Branch
                    Q (cfs) Stage (ft)
870
      FORMAT(4X,12,5X,F7.0,5X,F6.2)
800
      FORMAT(//' Spill location co-ords are in land X & Y GRID box no. s
     $ are ',14,' &',14,//' ^^ Execution terminated ^^')
      FORMAT(/20X,'No. of Ice Covered Regions =',I3/' Region
                                                                 from'
     $ 'X,Y Grid to X,Y Grid'/(I4,11X,I3,',',I3,6X,I3,',',I3))
```

Subroutine ADVECT

```
SUBROUTINE ADVECT(DX, SPILDT, IX, N1, N2, DIFFUD)
C
C
      This subroutine handles the advection of spill, in each time step
C
      Each particle is advected according to current & wind velociites
      (see text for details)
CCCC
      This routine advects moving particles in the range N1 to N2
      This version includes advection under ice covers
      Last date of revision: Jun 25, 1986
      COMPLEX VCAR(12000), SPCEN, PARTCL(1000), VWIND, VDRIFT
      COMMON /VA/ VCAR, VWIND, VDRIFT
      COMMON /VASB/IGRILB(300),IGRIUB(300),IGRLB1(300),IGRUB1(300)
      COMMON /ASB/SPCEN,PARTCL,NPTCL,NHITB,IHITB(1000),TYPBND(4,300)
      COMMON /BLOCK7/SFGOIL, ANIU, SIGMA, AK2I, AK2V, AK2T,
     $ VOLPAR, VOLPIE(8), SLICKR(8)
      COMMON /ICE/NICEX1(20), NICEY1(20), NICEX2(20), NICEY2(20), NICERG,
     $ AMIUO, ANICE, IPOS1(20), IPOS2(20), SPAICE
C
C
       Input: .. Location of each particle
Ċ
               .. Velocity distribution in river
       Output: .. New loaction of each particle
C
      DATA STDEVI/0.050/,PI /3.141592/
      IF(NICERG.EO.0)GOTO 25
C
C
       DELEQ - Equilibrium thickness (ft)
CCC
             - Threshold current speed for slick movement (ft/sec)
       UFAIL - Failure velocity under rough ice cover (ft/sec)
       FRAMFA- FRiction Amplification FActor denoted by 'K' in text
C
       AMIUO - Viscosity of Oil in g/cm-sec
      DELEO = (1.67 - 8.5*(1.0-SPGOIL))/30.48
      UTH = (205.79/(88.68-AMIUO))/30.48
      FRAMFA = 35.55*ANICE + 1.0
      IF(ANICE.GT.0.045)FRAMFA = 2.6
      TERM1 = SQRT(SIGMA*(32.2)**2*62.4*(1.-SPGOIL))
      UFAIL=1.5*SQRT(2.*(1.+SPGOIL)*TERM1/(62.4*SPGOIL))
C
C
      loop 60 operates for each moving particle in the system
C
25
      DO 60 I=N1,N2
          SUMDT = 0.
          IPASS = 1
C
       SUMDT - Sum of the samil Dt's (DTSMALL)
C
       IPASS - pass number in this loop. A prticle may move from its
C
       previous position to present position through only one pass or
C several passes depending on the magnitudes of velocities in the region
          DO 30 J=1,NHITB
          IF(I.EQ.IHITB(J))GOTO 60
        CONTINUE
30
         L = REAL(PARTCL(I))/DX
         M =AIMAG(PARTCL(I))/DX
         IPOS = 0
```

Subroutine ADVECT

```
IF(L.EQ.0)GOTO 117
        DO 115 L1=1,L
         IPOS = IPOS + IGRIUB(L1) - IGRILB(L1) + 3
115
        CONTINUE
117
        IPOS = IPOS+M-IGRILB(L+1)+3
        IF(NICERG.EO.0)GOTO 125
C
C
      determine whether the particle is under ice or not
C
        ICOND=0
        DO 120 K=1,NICERG
          IF(IPOS.GE.IPOS1(K).AND.IPOS.LE.IPOS2(K))ICOND=1
          IF(ICOND.EQ.1)GOTO 180
120
          CONTINUE
C
C
      Advection velocity in free-surface conditions
C
125
      VDRIFT = 0.03*VWIND + 1.1*VCAR(IPOS)
      GOTO 210
C
C
      Advection Velocity under Ice
C
180
      UWATER = CABS(VCAR(IPOS))
      ROUGH = (ANICE/0.034)**6
      IF(ROUGH.GT.DELEQ)GOTO 190
      IF(UWATER.LT.UTH)GOTO 60
      GOTO 200
190
      IF(UWATER.LT.JFAIL)GOTO 60
      VDRIFT = VCAR(IPOS)
200
      FDELTA = UWATER/SQRT((1.0-SPGOIL)*32.2*DELEQ)
      FK = SORT(FRAMFA/(0.115*FDELTA**2 + 1.105))
      VDRIFT = VDRIFT*(1-FK)
210
      DTSMAL = 86400.
C
      86400 is just a large number in this case equal to secs in a day
      VELUPV = ABS(REAL(VDRIFT)) + ABS(AIMAG(VDRIFT))
      IF(VELUPV.GT.0.1)DTSMAL = DX/VELUPV
      IF(DTSMAL.GT.SPILDT.AND.IPASS.EQ.1)DTSMAL = SPILDT
      IF(DTSMAL.GT.SPILDT.AND.IPASS.GT.1)DTSMAL = SPILDT - SUMDT
      IF(DTSMAL.LT.0.0)DTSMAL = 0.
      IF((SUMDT+DTSMAL).GE.SPILDT)DTSMAL = SPILDT - SUMDT
      IPASS = IPASS + 1
      IF((SUMDT+DTSMAL).GE.SPILDT) IPASS = 9999
      SUMDT = SUMDT + DTSMAL
      CALL RANDU(IX,IY,YFL)
      IX = IY
      ANG = PI*YFL
      CALL GAUSS(IX,1.0,0.0,VRAND)
      IF (DIFFUD.LT.0.0)DDD = 2.88*CABS(VDRIFT)
      IF (DIFFUD.GE.0.0)DDD = 4*DIFFUD
      VRAND = VRAND*SQRT(DDD/DTSMAL)
      VX = VRAND*COS(ANG)
      VY = VRAND*SIN(ANG)
С
      STDEV = 100.*SQRT(DDD/DTSMAL)/CABS(VDRIFT)
      VMAG = CABS(VDRIFT)
```

Subroutine ADVECT

	VDRIFT = VDRIFT+ CMPLX(VX,VY) PARTCL(I) = PARTCL(I) + DTSMAL*VDRIFT STDEV = 100.*VRAND / CABS(VDRIFT) IF(IPASS.NE.9999)GOTO 40
C C C	Check for particle hitting the boundaries
	L = REAL(PARTCL(I))/DX + 1
	M = AIMAG(PARTCL(I))/DX + 1
	IF(M.GE.IGRILB(L).AND.M.LE.IGRIUB(L))GOTO 55
	NHITB = NHITB + 1
	IHITB(NHITB) = I
55	IF(IGRLB1(L).EQ.0)GOTO 59
	IF(M.LE.IGRUB1(L).AND.M.GE.IGRLB1(L))GOTO 58
	GOTO 59
58	NHITB = NHITB+1
	IHITB(NHITB) = I
59	CONTINUE
	IF(IPASS.NE.9999)GOTO 40
60	CONTINUE
	RETURN
	END

Subroutine BOUNDR

```
SUBROUTINE BOUNDR(DX,NGRIDX,INDPRN)
      COMPLEX SPCEN, PARTCL(1000)
      COMMON /VASB/IGRILB(300), IGRIUB(300), IGRLB1(300), IGRUB1(300)
      COMMON /ASB/SPCEN,PARTCL,NPTCL,NHITB,IHITB(1000),TYPBND(4,300)
      DIMENSION NPTBND(4,300),IDUM1(300),IDUM2(300)
C
C
      This subroutine handles adsorption and rejection at the river
Č
      boundaries
C
C
      Last date of revision March 04,1985
C
      DO 10 I=1,NGRIDX
        DO 10 K=1,4
10
        NPTBND(K,I)=0
      DO 80 I=1.NHITB
      J = IHITB(I)
      L = REAL(PARTCL(J))/DX + 1
      M = AIMAG(PARTCL(J))/DX + 1
C
C
      Check if the particle is below the lower boundary, If so assign it
C
      it to the boundary grid and count
C
      IF(M.GE.IGRILB(L))GOTO 20
      IF(M.EQ.(IGRILB(L)-1))GOTO 15
      X1 = REAL(PARTCL(J))
      Y1 = IGRILB(L)*DX - 1.5*DX
      PARTCL(J) = CMPLX(X1,Y1)
15
      NPTBND(1,L) = NPTBND(1,L) + 1
      GOTO 80
C
C
      Check if the particle is above the upper boundary, If so assign it
C
      it to the boundary grid and count
C
20
      IF(M.LE.IGRIUB(L))GOTO 40
      IF(M.EQ.(IGRIUB(L)+1))GOTO 30
      X1 = REAL(PARTCL(J))
      Y1 = IGRIUB(L)*DX + DX/2.
      PARTCL(J) = CMPLX(X1,Y1)
30
      NPTBND(2,L) = NPTBND(2,L) + 1
      GOTO 80
C
C
      If it didn't belong to the two categories above it must be in the
C
      Island, therefore assign to the nearest boundary, and count.
C
40
      Y2 = AIMAG(PARTCL(J)) - IGRLB1(L)*DX + 0.75*DX
      Y3 = IGRUB1(L)*DX - 0.25*DX - AIMAG(PARTCL(J))
      IF(Y2.LT.Y3)PARTCL(J) = PARTCL(J) - CMPLX(0.,Y2)
      IF(Y2.LT.Y3)NPTBND(3,L) = NPTBND(3,L) + 1
      IF(Y3.LT.Y2)PARTCL(J) = PARTCL(J) + CMPLX(0.,Y3)
      IF(Y3.LT.Y2)NPTBND(4,L) = NPTBND(4,L) + 1
80
      CONTINUE
C
C
      No. of particles in each boundary grid has been determined
      Now check for the boundary type and re-entrain the excess particles
```

Subroutine BOUNDR

```
C
      IF(INDPRN.EQ.1)WRITE(*,300)
      DO 220 L1=1,NGRIDX
      NBNDR = 2
      IF(IGRLB1(L1).NE.0)NBNDR=4
      DO 210 K=1,NBNDR
      IF(NPTBND(K,L1).EQ.0)GOTO 210
      IALOWD = 0.5 + (1.-TYPBND(K,L1))*NPTBND(K,L1)
      IF(INDPRN.EQ.1)WRITE(*,310)K,L1,NPTBND(K,L1)
C
      KOUNT = 0
      I = 0
90
      I = I + 1
      IF(I.GT.NHITB)GOTO 205
      J = IHITB(I)
      L = REAL(PARTCL(J))/DX + 1
      IF(L.NE.L1)GOTO 90
      M = AIMAG(PARTCL(J))/DX + 1
      IF(K.NE.1)GOTO 110
      IF(M.NE.IGRILB(1)-1)GOTO 90
      KOUNT = KOUNT + 1
      IF(KOUNT.LE.IALOWD)GOTO 90
      XCO=L*DX - 0.5*DX
      YCO=M*DX + 0.5*DX
      PARTCL(J) = CMPLX(XCO,YCO)
      NHITB = NHITB - 1
      DO 105 II =I,NHITB
      IHITB(II) = IHITB(II+1)
105
      IHITB(NHITB+1)=0
          I=I-1
          GOTO 90
C
110
      IF(K.NE.2)GOTO 130
      IF(M.NE.IGRIUB(L)+1)GOTO 90
      KOUNT = KOUNT + 1
      L-(KOUNT.LE.IALOWD)GOTO 90
      XCO=L*DX - 0.5*DX
      YCO=M*DX - 1.5*DX
      PARTCL(J) = CMPLX(XCO,YCO)
      NHITB = NHITB - 1
      DO 115 II =I,NHITB
115
      IHITB(II) = IHITB(II+1)
       IHITB(NHITB+1)=0
         I=I-1
         GOTO 90
C
130
       IF(NBNDR.EQ.2)GOTO 90
       IF(K.NE:3)GOTO 150
       IF(M.NE.IGRLB1(L))GOTO 90
       IF(IGRUB1(L).NE.IGRLB1(L))GOTO 140
       XXX = AIMAG(PARTCL(J))-(IGRLB1(L)-1)*DX
       IF(XXX.GT.0.5*DX)GOTO 90 -
       KOUNT = KOUNT + 1
140
       IF(KOUNT.LE.IALOWD)GOTO 90
       XCO=L*DX - 0.5*DX
       YCO=M*DX - 1.5*DX
```

Subroutine BOUNDR

```
PARTCL(J) = CMPLX(XCO,YCO)
      NHITB = NHITB - 1
      DO 125 II -I,NHITB
      IHITB(II) = IHITB(II+1)
125
      IHITB(NHITB+1)=0
         I=I-1
         GOTO 90
C
      IF(K.NE.4)GOTO 90
150
      IF(M.NE.IGRUB1(L))GOTO 90
      IF(IGRUB1(L).NE.IGRLB1(L))GOTO 160
      XXX = IGRUB1(L)*DX - AIMAG(PARTCL(J))
      IF(XXX.GT.0.5*DX)GOTO 90
      KOUNT = KOUNT + 1
160
      IF(KOUNT.LE.IALOWD)GOTO 90
      XCO=L*DX - 0.5*DX
      YCO=M*DX + 0.5*DX
      PARTCL(J) = CMPLX(XCO,YCO)
      NHITB = NHITB - 1
      DO 135 II =I,NHITB
      IHITB(II) = IHITB(II+1)
135
      IHITB(NHITB+1)=0
         I=I-1
      GOTO 90
205
         CONTINUE
      CONTINUE
210
220
      CONTINUE.
      IF(INDPRN.EQ.0)RETURN
      DO 430 K=1,4
      KOUNT=0
      DO 410 L=1,NGRIDX
      IF(NPTBND(K,L).EQ.0)GOTO 410
      KOUNT - KOUNT+1
      IDUM1(KOUNT)=L
      IDUM2(KOUNT)=NPTBND(K,L)
       IF(KOUNT.GT.250)WRITE(420)
410
      CONTINUE
       IF(KOUNT.EQ.0)GOTO 430
      K1=1
      K2=KOUNT
       IF(KOUNT.GT.28)K2=28
      WRITE(*,440)K,(IDUM1(I),I=K1,K2)
415
      WRITE(*,450)(IDUM2(I),I=K1,K2)
       IF(K2.GE.KOUNT)GOTO 430
       K1=K2+1
       K2=K1+27
       GOTO 415
430
       CONTINUE
       RETURN
       FORMAT(/25X,'Oil in River Banks')
300
440
       FORMAT(/' Bank',I2,'; X-Grid',28I4)
       FORMAT(6X,'Particles',2814)
450
310
       FORMAT(5X,3(13,3X))
       END
```

Subroutine DISOLU

_	SUBROUTINE DISOLU(SPAREA, SOLBLT, TIMET, SPILDT, API, DELDIS, TOTDIS)
C C C C	This subroutine computes the amount of oil dissolved in water The solubility of oil is so low that it does not affect the trajectory (spreading), but is important for environmental impact assessment The working units in this subroutine is METRIC
C C	Last date of Revision: October 15, 1985
Č	Explanation of variables
C C	DISOLK - Dissolution mass transfer coefficient 1 cm/hr or 2.7777E-06 m/sec
С	SOLBLT - Solubility of fresh oil (g/cu m)
С	ARBAR mean area of slick during the time step (sq. m)
C	DELDIS - amount of oil dissolved during time step (grams)
C	SPAREA - Free surface area of spill (sq. ft)
C	SPAICE - Area of spill under ice (sq. ft)
С	COMMON /ICE/NICEX1(20),NICEY1(20),NICEX2(20),NICEY2(20),NICERG,
	\$ AMIUO,ANICE,IPOS1(20),IPOS2(20),SPAICE
	DATA DISOLK/2.7777E-06/
	SPAR2=(SPAREA+SPAICE)/10.76
	ARBAR=(SPAR1+SPAR2)/2.0
	SPAR1=SPAR2
	T1=(TIMET-SPILDT)/36000
	T2=TIMET/36000.
	DELDIS=-DISOLK*ARBAR*SOLBLT*36E3*(EXP(-T2)-EXP(-T1))
	TOTDIS=TOTDIS+DELDIS
	RETURN
	END

Subroutine EVAPOR

```
SUBROUTINE EVAPOR(API, TENV, WNDSPD, VMOL, VZERO, SPAREA, SPILDT, JSTEP)
C
\mathbf{C}
      This subroutine computes evaporatioon rates based on
C
      Mackay, Patterson and Nadeau's theory.
\mathbf{C}
      In this subroutine metric unit system is used. The reason for
C
      for using units differnt units from other subroutine is to make
C
      cross reference with theory easier.
C
C
      Last date of revision October 29,1985
C
      Explanation of variables used in EVAPOR
C
C
            - mass transfer coeff. Km
                                           (m/s)
      AKM
C
      PO.
              - vapor pressure at TENV
                                           (atm)
C
      C
              - coefficient C at TENV
C
      FEVP2
                  - fraction evaporated
C
      JSTEP - current time step
Ċ
              - gas constant: the values of RGAS in differnt units are
      RGAS
C
                1.98720 cal/deg mole
              - 8.31470 joules/deg mole
              - 82.0597 cc-atm/deg mole
      SPAREA - Free surface area of spill (sq. ft)
C
      SPAICE - Area of spill under ice (sq. ft)
      COMMON /BLOCK7/SPGOIL, ANIU, SIGMA, AK2I, AK2V, AK2T,
     $ VOLPAR, VOLPIE(8), SLICKR(8)
      COMMON /SE/FEVP1,FEVP2,CEVP,T0EVP
      DATA RGAS/8.3147/
      DATA SCKET, SUMC, SUMPO/3*0./
       SPAR2=SPAREA/10.76
       ARBAR = (SPAR2 + SPAR1)/2.0
       SPAR1=SPAR2
       IF(WNDSPD.LT.0.0001)WNDSPD=0.001
      AKM = 0.0025*WNDSPD**0.78
          C=CEVP
          TO=TOEVP
          IF(API.LT.1.0)GOTO 50
      C = 1158.9*API**(-1.1435)
      T0=542.6-30.27*API+1.565*API**2-3.439E-02*API**3+2.604E-04*API**4
50
      P0 = EXP(10.6*(1-T0/TENV))
      CC= C*283./TENV
      SUMP0 = SUMP0 + P0
      SUMC = SUMC + CC
      POBAR = SUMPO/JSTEP
      CBAR = SUMC /JSTEP
      TOIL = TENV
      AKE = AKM*ARBAR*VMOL/(RGAS*TOIL*VZERO)
      SCKET = SCKET + CBAR*AKE*SPILDT*10.137E04
      SUME = SUME + AKE*SPILDT*10.137E04
      FEVP2 = (ALOG(POBAR) + ALOG(SCKET+1./POBAR))/CBAR
      IF(FEVP2.GT.0.6) FEVP2=0.6
      RETURN
      END
```

Subroutine NDCONV

```
SUBROUTINE NDCONV(NBRP1,IRCODE)
      This subroutine reads data on water level and discharge according
C
C
      to the sequence of ONE-D flow model and then converts to the
C
      sequence required by Oilspill model. If both have the same
C
      sequence of numbering this subroutune is not required.
C
      This subroutine is specifically for three rivers for which already
Č
      a 1-D model is availble
C
               Code
                           River
Č
                            St. Clair
C
                  2
                            Detroit
                  3
                            Upper St. mary's
                            Lower St. Mary's
Ċ
C
      Last date of revision: August 13, 1986
      DIMENSION DWL(22),DQ(22),NPTS(4)
      INTEGER RIV1(16), RIV2(16), RIV3(16), RIV4(16)
      COMPLEX VSTRM(99,16), CORDV(99,16), CORDLB(99)
      COMPLEX VWIND, VDRIFT
      COMMON /VEL/VSTRM, CORDV, CORDLB, Q(30), WL(30), TICE(99,20),
      $ YWID(99,20),Z(99,20),ZD(99),NSLSCT(99),SCTANG(99),
      $ LCSTSQ(30),NSTUBE(99),NUMCON(99),NFIRCO(99),NSECO(99),KINTM
      DATA RIV1/1,2,3,4,5,5,7,6,7,8,9,5*1/
      DATA RIV2/1,14,3,16,4,6,7,8,9,10,11,18,13,20,21,22/
      DATA RIV3/1,2,3,4,5,6,1,9*1/
      DATA RIV4/1,9,10,3,4,5,6,7,11,13,13,5*1/
      DATA NPTS/9,22,6,13/
      N=NPTS(IRCODE)
      DO 10 I=1,N
         READ(7,*)DWL(I),DQ(I)
10
         CONTINUE
      DO 20 I=1,NBRP1
         IF(IRCODE.EQ.1)K=RIV1(I)
         IF(IRCODE.EQ.2)K=RIV2(I)
         IF(JRCODE.EQ.3)K=RIV3(I)
         IF(IRCODE.EQ.4)K=RIV4(I)
         WL(I)=DWL(K)
         Q(I)=DQ(K)
20
         CONTINUE
       IF(IRCODE.EQ.2)Q(13)=Q(12)+Q(11)
       IF(IRCODE.NE.1)RETURN
      WL(7)=DWL(6)+ (DWL(5)-DWL(6))*20630./35680.
       Q(5) = DQ(6)*0.7
       Q(6) = DQ(6)*0.3
       RETURN
       END
```

Subroutine ORIENT

```
SUBROUTINE ORIENT(INDX1D,DX)
Č
      This program computes the Orientation of the oil slick
C
      and Aspect ratio.
Č
      If ASPECT >3 The Slick will be treated as 1-D.
C
      Last date of Revision: Oct 17,1985
Ċ
C
      INDX1D=0 : Axi-symmetrical spreading
C
      INDX1D=1 : One-D spreading in Y-dir use SPRD1Y
\mathsf{C}
      INDX1D=2: One-D spreading in X-dir use SPRD1X
C
      INDX1D=3: Axi-symmetrical spreading(Short slick)
Č
      INDX1D=4: One-D spreading in Y-dir use SPRD1Y (Short slick)
C
      INDX1D=5 : One-D spreading in X-dir use SPRD1X (Short slick)
      COMPLEX SPCEN, PARTCL (1000)
      COMMON /SO/IMOVIN(1000), YSHIFT(1000), NMOVIN, SSHIFT
      COMMON /ASB/SPCEN,PARTCL,NPTCL,NHITB,IHITB(1000),TYPBND(4,300)
      COMMON /VASB/IGRILB(300),IGRIUB(300),IGRLB1(300),IGRUB1(300)
      DATA PI/3.141592/
      NMOVIN=0
      INDX1D = 0
      COUNT = 0.
      SPCEN = (0.,0.)
C
C
      Find the indeces of moving particles and assign them to
C
      array IMOVINO. Also compute the spill center (SPCEN)
      DO 30 I=1,NPTCL
        DO 15 J=1,NHITB
          IF(I.EQ.IHITB(J))GOTO 30
15
          CONTINUE
        NMOVIN=NMOVIN+1
        IMOVIN(NMOVIN)=I
         SPCEN = SPCEN + PARTCL(I)
        COUNT = COUNT + 1.
30
         CONTINUE
      SPCEN = SPCEN/COUNT
C
C
    If there is an island, any particles in the Northern Island are
C
    shifted in (-)y-dir by a distance = width of island at that point.
C
    IMPORTANT: The particles are moved back by equal amounts in
C
    SPRDAX, SPRD1X or SPRD1Y subroutine.
      SSHIFT = 0.
      DO 430 I=1,NMOVIN
         J=IMOVIN(I)
         YSHIFT(J)=0.
        L=REAL(PARTCL(J))/DX+1
         IF(IGRLB1(L).EQ.0)GOTO 430
         M=AIMAG(PARTCL(J))/DX + 1
         IF(M.LE.IGRUB1(L))GOTO 430
         YSHIFT(J)=(IGRUB1(L)-IGRLB1(L)+1)*DX
         PARTCL(J)=PARTCL(J)-CMPLX(0.,YSHIFT(J))
         SSHIFT=SSHIFT+YSHIFT(J)
```

Subroutine ORIENT

```
430
        CONTINUE
C
C
     If particles are shifted, re-Compute the Spill-Center
      SPX=REAL(SPCEN)
      SPY=AIMAG(SPCEN)
      IF(SSHIFT.LT.DX)GOTO 450
      SPY=SPY - SSHIFT/NMOVIN
      SPCEN = CMPLX(SPX,SPY)
450
      SUMIX=0.
      SUMIY=0.
      SUMIXY = 0.
      AVGRAD=0.0
      SPX=REAL(SPCEN)
      SPY=AIMAG(SPCEN)
      DO 50 I=1,NMOVIN
        J=IMOVIN(I)
        XX=REAL(PARTCL(J))-SPX
        YY=AIMAG(PARTCL(J))-SPY
        AVGRAD = AVGRAD + SQRT(XX*XX+YY*YY)
        SUMIXY = SUMIXY + XX*YY
        SUMIY=SUMIY+ XX*XX
        SUMIX=SUMIX+ YY*YY
50
        CONTINUE
      AVGRAD = AVGRAD/NMOVIN
      TOP= -2*SUMIXY
      BOT= SUMIX-SUMIY
      THETA=ATAN2(TOP,BOT)
      THETA=THETA/2.0
      IF(THETA.LT.0.0)THETA=THETA+2*PI
      CTHETA = COS(THETA)
      STHETA = SIN(THETA)
      SALONG=0.
      SNORML=0.
      DO 60 I=1,NMOVIN
        J=IMOVIN(I)
        XX=REAL(PARTCL(J))-SPX
        YY=AIMAG(PARTCL(J))-SPY
        SALONG = SALONG + ABS(XX*CTHETA+YY*STHETA)
        SNORML = SNORML + ABS(YY*CTHETA-XX*STHETA)
60
        CONTINUE
      SALONG = SALONG/NMOVIN
      SNORML = SNORML/NMOVIN
      ASPECT = SALONG/SNORML
      IF(ASPECT.LT.1.0)THETA = THETA + 0.5*PI
      IF(ASPECT.LT.1.0)ASPECT = SNORML/SALONG
      IF(THETA.GT.2*PI)THETA=THETA - 2*PI
      IF(ASPECT.LT.3.0)GOTO 80
      INDX1D = 1
      IF(THETA.GT.0.25*PI.AND.THETA.LT.0.75*PI)INDX1D=2
      IF(THETA.GT.1.25*PI.AND.THETA.LT.1.75*PI)INDX1D=2
80
      DEG- THETA*180./PI
      IF(AVGRAD.LT.0.5*DX)INDX1D = INDX1D+3
      RETURN
      END
```

Subroutine PLOTNU

SUBROUTINE PLOTNU(DX) \mathbf{C} This subroutine plots oil concentrations as the no. of particles C Cin each grid defined by size DX $\overset{\circ}{C}$ Last date of revision: Apr 04, 86 COMPLEX SPCEN, PARTCL (1000), SPCEN1 COMMON /VASB/IGRILB(300), IGRIUB(300), IGRLB1(300), IGRUB1(300) COMMON /ASB/SPCEN, PARTCL, NPTCL, NHITB, IHITB(1000), TYPBNIX(4,300) COMMON /SO/IMOVIN(1000), YSHIFT(1000), NMOVIN, SSHIFT DIMENSION KOUNT(20,20) XXX=REAL(SPCEN) YYY=AIMAG(SPCEN)+SSHIFT/NMOVIN SPCEN1 = CMPLX(XXX,YYY)CCSet all array elements such that they print stars on output DO 40 I=1,20DO 40 J=1,20,2 KOUNT(I,J)=1001 KOUNT(I,J+1)=100140 CONTINUE IMIN = REAL(SPCEN1)/DX - 9 XMIN1 = (IMIN - 1)*DXIMAX = IMIN + 19JMIN=AIMAG(SPCEN1)/DX - 9 YMIN1=(JMIN-1)*DXJMAX = JMIN + 19DO 80 I=1,20 L=IMIN+I - 1 IF(L.LT.1)GOTO 80 M1 = IGRILB(L) - JMINM2 = IGRIUB(L) - JMIN + 2IF(M1.LT.1)M1=1IF(M2.GT.20)M2=20CCNow set array elements that corresponds to river+boundary to zero CDO 70 J=M1,M2 KOUNT(I,J)=070 CONTINUE HE (IGRLB1(L).EQ.0)GOTO 80 C CThis part is for setting array ments to print stars for Island \mathbf{C} M1 = IGRLB1(L) - JMIN + 2M2 = IGRUB1(L) - JMINIF(M1.LT.1)M1=1IF(M2.GT.20)M2=20IF(M1.GT.M2) GOTO 80 f(X) 75 J=M1,M2 K()UNI(I,J)=100175 CONTINUE

Subroutine PLOTNU

80	CONTINUE
C	
С	Now check and count the no. of particles in the grid boxes
С	
	DO 450 I=1,NPTCL
	L = (REAL(PARTCL(I)) - XMIN1)/DX+1
	M = (AIMAG(PARTCL(I))-YMIN1)/DX+1
	IF(L.LT.1.OR.L.GT.20) GOTO 450
	IF(M.LT.1.OR.M.GT.20) GOTO 450
	KOUNT(L,M)=KOUNT(L,M)+1
450	CONTINUE
	WRITE(*,620)JMIN,JMAX
	WRITE(*,610) (KOUNT(1,M),M=1,20),IMIN
	DO 580 L=2.19
	WRITE(*,600) (KOUNT(L,M), $M=1,20$)
580	CONTINUE
	WRITE(*,610) (KOUNT(20,M),M=1,20),IMAX
	RETURN
600	
610	
620	
~~	END

```
SUBROUTINE PRELSE(DX, SPILDT, IX, N1, N2, SPCENO, D'FFUD)
\mathbf{C}
C
      This subroutine, to be used for continuous spills, releases
C
       particles (No.s N1 to N2) at SPCENO. Note that the No. of
C
      particles released in SPILDT is NPERDT. Therefore NPERDT=N2-N1+1
C
      The release will be at equal intervals of time.
C
      This version 30 has a modified advection term
      this is version31 with modified diff. coef.
C
C
      Last date of revision: Jun 26, 1986
      COMPLEX VCAR(12000), SPCEN, PARTCL(1000), VWIND, VDRIFT
      COMPLEX SPCENO, VDR1
      COMMON /VA/ VCAR, VWIND, VDRIFT
      COMMON /VASB/IGRILB(300),IGRIUB(300),IGRLB1(300),IGRUB1(300)
      COMMON /ASB/SPCEN,PARTCL,NPTCL,NHITB,IHITB(1000),TYPBND(4,300)
      COMMON /BLOCK7/SPGOIL, ANIU, SIGMA, AK2I, AK2V, AK2T,
     $ VOLPAR, VOLPIE(8), SLICKR(8)
      COMMON /ICE/NICEX1(20), NICEY1(20), NICEX2(20), NICEY2(20), NICERG,
     $ AMIUO, ANICE, IPOS1(20), IPOS2(20), SPAICE
C
C
       Input: .. Location of spill center
C
               .. Velocity distribution in river
C
      Output: .. New location of each particle
      DATA PI /3.141592/ .
      IF(NICERG.EQ.0)GOTO 25
       DELEQ - Equilibrium thickness (ft)
C
       UTH - Threshold current speed for slick movement (ft/sec)
C
       UFAIL - Failure velocity under rough ice cover (ft/sec)
C
       FRAMFA FRiction Amplification FActor denoted by 'K' in text
C
       AMIUO - Viscosity of Oil in g/cm-sec
      DELEQ = (1.67 - 8.5*(1.0-SPGOIL))/30.48
      UTH = (305.79/(88.68-AMIUO))/30.48
      FRAMFA = 35.55*ANICE + 1.0
      IF(ANICE.GT.0.045)FRAMFA = 2.6
      TERM1=SQRT(SIGMA*(32.2)**2*62.4*(1.-SPGOIL))
      UFAIL=1.5*SQRT(2.*(1.+SPGOIL)*TERM1/(62.4*SPGOIL))
      ROUGH = (ANICE/0.034)**6
C
25
        I. = REAL(SPCENO)/DX
        M = AIMAG(SPCENO)/DX
        IPOS = 0
        IF(L.EQ.0)GOTO 117
        DO 115 L1=1,L
         IP()S = IPOS + IGRIUB(L1) - IGRILB(L1) + 3
115
        CONTINUE
117
        IPOS = IPOS+M-IGRILB(L+1)+3
        IF(NICERG.EQ.0)GOTO 125
C
C
      determine whether the spill center is under ice or not
\mathbf{C}
```

```
ICOND=0
        DO 120 K=1,NICERG
          IF(IPOS.GE.IPOS1(K).AND.IPOS.LE.IPOS2(K))ICOND=1
          IF(ICOND.EQ.1)GOTO 180
          CONTINUE
120
C
C
      Advection velocity in free-surface conditions
C
125
      VDRIFT = 0.03*VWIND + 1.1*VCAR(IPOS)
      GOTO 220
C
C
      Advection Velocity under Ice
C
180
        VDRIFT = (0.0,0.0)
      UWATER = CABS(VCAR(IPOS))
      IF(ROUGH.GT.DELEO)GOTO 190
      IF(UWATER.LT.UTH)GOTO 220
      GOTO 200
190
      IF(UWATER.LT.UFAIL)GOTO 220
200
      VDRIFT = VCAR(IPOS)
      FDELTA = UWATER/SQRT((1.0-SPGOIL)*32.2*DELEQ)
      FK = SQRT(FRAMFA/(0.115*FDELTA**2 + 1.105))
      VDRIFT = VDRIFT*(1-FK)
C
220
      VDR1 = VDRIFT
      DO 60 I=N1,N2
         DTPTCL = SPILDT*(I-N1+1)/(N2-N1+1)
         SUMDT = 0.
         IPASS = 1
         PARTCL(I) = SPCEN0
         VDRIFT = VDR1
C
40
         IF(IPASS.EQ.1)GOTO 28
         IF(NHITB.EO.0)GOTO 35
            DO 30 J=1,NHITB
                IF(I.EQ.IHITB(J))GOTO 60
30
                CONTINUE
35
        L = REAL(PARTCL(I))/DX
        M =AIMAG(PARTCL(I))/DX
        IPOS = 0
        IF(L.EQ.0)GOTO 517
        DO 515 L1=1,L
         IPOS = IPOS+IGRIUB(L1)-IGRILB(L1)+3
515
        CONTINUE
517
        IPOS = IPOS+M-IGRILB(L+1)+3
        IF(NICERG.EQ.0)GOTO 525
C
C
      determine whether the spill center is under ice or not
C
        ICOND=0
        DO 520 K=1,NICERG
          IF(IPOS.GE.IPOS1(K).AND.IPOS.LE.IPOS2(K))ICOND=1
          IF(ICOND.EQ.1)GOTO 580
520
          CONTINUE
C
```

```
C
   . Advection velocity in free-surface conditions
C
      VDRIFT = 0.03*VWIND + 1.1*VCAR(IPOS)
525
      GOTO 620
C
C
      Advection Velocity under Ice
C
580
        VDRIFT = (0.0,0.0)
      UWATER = CABS(VCAR(IPOS))
      IF(ROUGH.GT.DELEQ)GOTO 590
      IF(UWATER.LT.UTH)GOTO 620
      GOTO 600
590
      IF(UWATER.LT.UFAIL)GOTO 620
      VDRIFT = VCAR(IPOS)
600
      FDELTA = UWATER/SQRT((1.0-SPGOIL)*32.2*DELEQ)
      FK = SQRT(FRAMFA/(0.115*FDELTA**2 + 1.105))
      VDRIFT = VDRIFT*(1-FK)
620
      CONTINUE
C
28
       VELUPV = ABS(REAL(VDRIFT)) + ABS(AIMAG(VDRIFT))
C
C
       The next two statements prevent division by zero. 86400 is just a large
C
       number in this case = no. secs in a day.
C
         DTSMAL = 86400.
         IF(VELUPV.GT.0.01)DTSMAL = DX/VELUPV
         IF((DTSMAL+SUMDT).GT.DTPTCL)DTSMAL = DTPTCL - SUMDT
         IPASS = IPASS + 1
         IF((SUMDT+DTSMAL).GE.DTPTCL)IPASS = 9999
         SUMDT = SUMDT + DTSMAL
         CALL RANDU(IX,IY,YFL)
         IX = IY
         ANG = PI*YFL
         CALL GAUSS(IX,1.0,0.0,VRAND)
         IF (DIFFUD.LT.0.0) DDD = 2.88*CABS(VDRIFT)
         IF (DIFFUD.GE.0.0) DDD = 4*DIFFUD
         VRAND = VRAND*SQRT(DDD/DTSMAL)
         VX = VRAND*COS(ANG)
         VY = VRAND*SIN(ANG)
         STDEV = 100.*SQRT(DDD/DTSMAL)/CABS(VDRIFT)
         VMAG = CABS(VDRIFT)
         VDRIFT = VDRIFT + CMPLX(VX,VY)
         PARTCL(I) = PARTCL(I) + DTSMAL*VDRIFT
         STDEV = 100.*VRAND/CABS(VDRIFT)
C
C
      Check for spill hitting the boundaries
      L = REAL(PARTCL(I))/DX + 1
      M = AIMAG(PARTCL(I))/DX + 1
      IF(M.GE.IGRILB(L).AND.M.LE.IGRIUB(L))GOTO 55
      NHITB = NHITB + 1
      IHITB(NHITB) = I
55
      IF(IGRLB1(L).EQ.0)GOTO 59
      IF(M.LE.IGRUB1(L).AND.M.GE.IGRLB1(L))GOTO 58
      GOTO 59
```

- 58 NHITB = NHITB+1 IHITB(NHITB) = I 59 CONTINUE
- 59 CONTINUE IF(IPASS.NE.9999)GOTO 40
- 60 CONTINUE RETURN END

Subroutine PRINT1

```
SUBROUTINE PRINT1(IUT.NBRNCH.NGRIDX.DX)
C
C
      This subroutine prints Heading and river configuration data
C
      IUT defines the unit No. to which the info will be written
C
      Last date of revision: July 17, 1985
      character *8 DATRUN(2),TIMRUN
      COMPLEX VSTRM(99,16), CORDV(99,16), VCAR(12000), CORDLB(99)
      COMPLEX SPCEN, PARTCL (1000), VWIND, VDRIFT
      COMMON /VA/ VCAR, VWIND, VDRIFT
      COMMON /VEL/VSTRM, CORDV, CORDLB, Q(30), WL(30), TICE(99, 20),
     $ YWID(99,20),Z(99,20),ZD(99),NSLSCT(99),SCTANG(99),
     $ LCSTSQ(30),NSTUBE(99),NUMCON(99),NFIRCO(99),NSECO(99),KINTM
      COMMON /VASB/IGRILB(300),IGRIUB(300),IGRLB1(300),IGRUB1(300)
      COMMON /ASB/SPCEN, PARTCL, NPTCL, NHITB, IHITB(1000), TYPBND(4,300)
      WRITE(IUT, 10)DATRUN, TIMRUN
      WRITE(IUT, 20)NBRNCH, NGRIDX, DX, KINTM
      IS2=0
      DO 100 I=1,NBRNCH
         IS1=IS2+1
         IS2 = LCSTSO(I)
         WRITE(IUT, 30)I, IS1, IS2
100
         CONTINUE
      WRITE(IUT.40)
      IS2 = IS2 + 1
      DO 110 I=1,IS2
         J = NSLSCT(I)+1
         IWIDTH = YWID(I.J)
         WRITE(IUT,50)I,CORDLB(I),SCTANG(I),IWIDTH,ZD(I),NSTUBE(I),
         NUMCON(I), NFIRCO(I)
110
         CONTINUE
      WRITE(IUT,70)
      DO 120 I=1.IS2
         IN=NSLSCT(I)+1
         WRITE(IUT, 80)I, (YWID(I,J),Z(I,J),J=1,IN)
120
         CONTINUE
      WRITE(IUT,60)
      DO 130 I=1,NGRIDX
         KNUM=2
         IF(IGRLB1(I).NE.0)KNUM=4
         WRITE(IUT,65)I,IGRILB(I),IGRIUB(I),IGRLB1(I),IGRUB1(I),
         (TYPBND(K,I),K=1,KNUM)
130
         CONTINUE
10
      FORMAT(1H1,///2X,75('*')/2X,75('*')/' **',71X,'**'/' **',14X,
     $ 'SIMULATION MODEL FOR OIL SPILLS IN RIVERS', 16X, '**'/' **', 71X.
     $ '**'/' **',7X,'DEVELOPED AT - CIVIL & ENVIR. ENG. DEPT...'
     $ 'CLARKSON UNIVERSITY', 3X, '**'/' **', 7X, 'SPONSERED BY - U.S. ARMY
     $ CORPS OF ENGINEERS, DETROIT DISTRICT,3X,'**'
     $ /' **',71X,***'/' **',9X,'DATE AND TIME OF RUN : ',2A8,2X,A8
     $ .13X,'**',' **',71X,'**'/2X,75('*')/2X,75('*'))
     FORMAT(///' GEOMETRIC PROPERTIES OF RIVER'/1H+,1X,29('_')//
20
     $ 5X,'NO. OF BRANCHES IN UNSTEADY FLOW MODEL =',15/
     $ 5X,'NO. OF GRIDS IN X-DIRCTION
                                                      ='.I5/
     $ 5X,'GRID SIZE IN ft.',23X,'='.F6.0/
```

Subroutine PRINT1

\$ 5X.'NO. OF INTERPOLATIONS BETWN SECTIONS **-',**I5// \$ 5X,'SECTIONS IN EACH BRANCH'/1H+,4X,23('_')// (OT \$ 5X, BRANCH SECTIONS INVOLVED'/15X, FROM FORMAT(3(7X,I2))30 40 FORMAT(1H1,//11X,'INFORMATION ON RIVER SECTIONS'/1H+,10X,29('_'), \$ //2X,'SECTION Lower bank intersection Angle Width Ref datum', \$' No str Cond. Connect'/12X, \$ 'X-CORD Y-CORD (rad) (ft.) for depth tubes No.', \$, next 1st') 50 FORMAT(4X,I2,5X,F8.1,2X,F8.1,6X,F5.3,I7,F9.2,3I8) FORMAT(1H1///10X,'GRID CONFIGURATION and BOUNDARY TYPES', 60 \$ 'OF SCHEMATIZED RIVER'/1H+,9X ,58('__')// \$ ' X',15X,'Y GRID OF',17X,'REJECTION RATE PER TIME STEP'/ \$,' GRID',2(' Bank 1 Bank 2 Bank 3 Bank 4 ')) FORMAT(I4,2X,4(3X,I3,2X),5X,4(1X,F5.4,2X)) 65 70 FORMAT(///,10X,'Geometry of X-Sections'/1H+,9X,22('__')// \$ 'SCTN',10X,'Distance and Depth (ft.) in pairs of data') 80 FORMAT(/I3,1X,9(F5.0,':',F5.1,3X)/4X,9(F5.0,':',F5.1,3X)) RETURN **END**

```
SUBROUTINE SPRDAX(DX,SPILDT,TIMET,INDPRN,SPAREA,SPLTIM,SPLRAT)
C
C
      This subroutine handles the Axi-symmetrical spreading of spill
C
      due to gravity, viscous and surface tension forces
C
      This version includes spreading under ice cover.
C
C
      Last date of revision: October 18, 1985
      COMPLEX SPCEN, PARTCL(1000)
      COMMON /VASB/IGRILB(300), IGRIUB(300), IGRLB1(300), IGRUB1(300)
      COMMON /ASB/SPCEN,PARTCL,NPTCL,NHITB,IHITB(1000),TYPBND(4,300)
      COMMON /BLOCK7/SPGOIL, ANIU, SIGMA, AK2I, AK2V, AK2T,
     $ VOLPAR, VOLPIE(8), SLICKR(8)
      COMMON /SO/IMOVIN(1000), YSHIFT(1000), NMOVIN, SSHIFT
      COMMON /SE/FEVP1,FEVP2,CEVP,T0EVP
      COMMON /ICE/NICEX1(20), NICEY1(20), NICEX2(20), NICEY2(20), NICERG,
     $ AMIUO, ANICE, IPOS1(20), IPOS2(20), SPAICE
      COMMON /SPREAD/ RADIUS(1000), NTRACK(1000)
C
      The spill area is divided into 8 pie segments around the spill
C
      center. Particles in each pie sreads according to modified
C
      Fay's law's for axi-symmetrical case.
C
      (see text for details)
C
      Input: .. Spill center
Ċ
               .. Location of each particle
C
               .. oil properties
      Output: .. New loaction of each particle
C
Č
      Explanation of variables used only in this subroutine
C
      VOLPIE(I) .. an array containing the volume of oil in each pie
Č
                 segment at previous time step NOTE: volume stored is
C
                 8 times the volume in pie
      RADIUS(I) -- distance to particles in pie from spillcenter. It is
C
            assumed that no more than 500 particle are in a pie any time
Ċ
       SPAREA - Free surface area of spill (sq. ft)
C
       SPAICE - Area of spill under ice (sq. ft)
C
      ICOND = 0 - Oil in the pie has free surface conditions
C
             = 1 - Oil in the pie is under ice
C
      DATA PI,ROWAT,G/3.141592, 1.92, 32.2/
C
C
      Evaluate some constants to be used in subsequent computations
      DELTA = 1.0 - SPGOIL
      AKINER = 0.25*AK2I*(DELTA*G)**0.25
      AKVISC = AK2V*(DELTA*G/SORT(ANIU))**0.166
      AKSURF = 0.75*AK2T*(SIGMA**2/(ROWAT**2*ANIU))**0.25
      AKICE = 0.0056666*((1-SPGOIL)*32.2*SPLRAT**2)**0.16666/ANICE
\mathbf{C}
      Compute the mean radius for all moving particles
      TOTRAD=0.
      DO 7 I =1,NMOVIN
         J=IMOVIN(I)
```

```
TOTRAD = TOTRAD+CABS(PARTCL(J)-SPCEN)
7
         CONTINUE
      TOTRAD - TOTRAD/NMOVIN
      SPX = REAL(SPCEN)
      SPY = AIMAG(SPCEN)
      SPAREA = 0.0
       SPAICE = 0.0
C
      Loop 500 is working for one pie at a time
C
      DO 500 IPIE-1,8
      ANG1 = (IPIE-1)*PI/4.
      ANG2 = ANG1 + PI/4.
      NPTPIE = 0
      NPTICE = 0
      ICOND = 0
      DO 10 I=1,NPTCL
10
      NTRACK(I)=0
C
Ċ
      The next loop 20 is for finding the ID no's of particles belonging
C
      to the pie. Radial dist. to particle from center is also computed
Ċ
      and stored in RADIUSO. NTRACKO stores the ID's of particles.
C
      DO 20 I=1,NMOVIN
        J=IMOVIN(I)
        ATX2 = REAL(PARTCL(J))-SPX
        ATX1 = AIMAG(PARTCL(J))-SPY
        ANG=ATAN2(ATX1,ATX2)
        IF(ANG.LT.0.0)ANG = ANG + 2.*PI
        IF(ANG.LT.ANG1.OR.ANG.GE.ANG2)GOTO 20
        RAD = CABS(PARTCL(J)-SPCEN)
        IF(RAD.GT.2.20*TOTRAD)GOTO 20
        NPTPIE = NPTPIE+1
        RADIUS(NPTPIE) = RAD
        NTRACK(NPTPIE) = J
        IF(NICERG.EQ.0)GOTO 20
        L = REAL(PARTCL(J))/DX
        M =(AIMAG(PARTCL(J))+YSHIFT(J))/DX
        IPOS = 0
        IF(L.EQ.0)GOTO 117
        DO 115 L1=1.L
         IPOS = IPOS+IGRIUB(L.1)-IGRILB(L1)+3
115
        CONTINUE
117
        IPOS = IPOS+M-IGRILB(L+1)+3
        DO 120 K-1, NICERG
          IF(IPOS.GE.IPOS1(K).AND.IPOS.LE.IPOS2(K))NPTICE=NPTICE+1
120
          CONTINUE
20
        CONTINUE
C NO PARTICLES- NO SPREADING
      IF(NPTPIE.LT.1)GOTO 500
      RMEAN=0.
      DO 40 I=1.NPTPIE
40
        RMEAN=RMEAN+RADIUS(I)
```

```
RMEAN = RMEAN/NPTPIE
\mathbf{C}
C
     Check if this pie should spread as free-surface or ice conditions
C
     and if it is Ice conditions is the spilling still continuing.
      IF(FLOAT(NPTICE)/FLOAT(NPTPIE).GT.0.5)ICOND=1
      IF(ICOND.EO.1.AND.TIMET.GT.SPLTIM)GOTO 170
C
C
     Determine the rate of spread at pie radius
      VOLNOW = VOLPAR*NPTPIE*8
      TIMBAR = TIMET - SPILDT/2.0
      VOLBAR =(VOLNOW+VOLPIE(IPIE))/2.0
      IF(ICOND.EO.1)GOTO 47
      TVISC=(AK2V/AK2I)**4*(VOLBAR/(DELTA*G*ANIU))**0.333
      TERMIN=823.5*(ROWAT/SIGMA)**0.6666*SQRT(VOLBAR)*ANIU**0.3333
     $ /AK2T**1.3333
      IF(TIMBAR.GT.TERMIN)GOTO 500
      TSURFT = (AK2V/AK2T)**2*(DELTA*G*ANIU)**0.3333
     $ *(ROWAT/SIGMA)*VOLBAR**0.6666
      IF(TIMBAR.GT.TSURFT) GOTO 45
      DVDT = VOLNOW*(FEVP1-FEVP2)/SPILDT
      IF(TIMBAR.LE.TVISC) DRDT =
     $ AKINER*(DVDT+2*VOLBAR/TIMBAR)*SQRT(TIMBAR)/(VOLBAR**0.75)
      IF(TIMBAR.GT.TVISC)DRDT =
     $ AKVISC*(DVDT/3.+VOLBAR/(TIMBAR*4))*TIMBAR**0.25/VOLBAR**0.666
      GOTO 48
45
      DRDT = AKSURF/(TIMBAR**0.25)
47
      IF(ICOND.EQ.1)DRDT = AKICE/(TIMBAR**0.33333)
48
      VOLPIE(IPIE) = VOLNOW
      SPRATE = DRDT*SPILDT/RMEAN
C
C
      Rate of spreading at mean pie radius has been computed. Now spread
C
      the particles in the pie proportionately.
      DO 140 I=1,NPTPIE
         J=NTRACK(I)
         RADOLD = CABS(PARTCL(J)-SPCEN)
         RADNEW = RADOLD*(SPRATE+1)
         IF(RADNEW.LT.0.0)RADNEW = 0.
         RADIUS(I) = RADNEW
         X = REAL(PARTCL(J)-SPCEN)
         Y = AIMAG(PARTCL(J)-SPCEN)
         X = X*RADNEW/RADOLD
         Y = Y*RADNEW/RADOLD
         PARTCI(I) = SPCEN + CMPLX(X,Y)
140
         CONTINUE
      RMEAN=0.
      DO 160 I=1, NPTPIE
160
         RMEAN=RMEAN+RADIUS(I)
      RMEAN = RMEAN/NPTPIE
170
      SLICKR(IPIE) = RMEAN
      IF(ICOND.EQ.0)SPAREA = SPAREA + PI*RMEAN**2/8.
      IF(ICOND.EQ.1)SPAICE = SPAICE + PI*RMEAN**2/8.
      IF(INDPRN.EQ.1)WRITE(*,220)IPIE,NPTPIE,RMEAN
```

```
500
      CONTINUE
C
С
      Check for spill hitting the boundaries
      DO 60 I=1,NMOVIN
        J=IMOVIN(I)
        IF(YSHIFT(J).LT.DX)GOTO 54
        PARTCL(J)=PARTCL(J)+CMPLX(0.,YSHIFT(J))
        L=REAL(PARTCL(J))/DX + 1
        M-AIMAG(PARTCL(J))/DX +1
        IF(M.GT.IGRUB1(L))GOTO 54
        X=REAL(PARTCL(J))
        Y=IGRUB1(L)*DX-0.25*DX
        PARTCL(J)=CMPLX(X,Y)
        NHITB=NHITB+1
        IHITB(NHITB)=J
        GOTO 60
54
        L = REAL(PARTCL(J))/DX + 1
        M = AIMAG(PARTCL(J))/DX + 1
        IF(M.GE.IGRILB(L).AND.M.LE.IGRIUB(L))GOTO 55
        NHITB = NHITB + 1
        IHITB(NHITB) = J
        IF(IGRLB1(L).EQ.0)GOTO 60
55
        IF(M.LE.IGRUB1(L).AND.M.GE.IGRLB1(L))GOTO 58
        GOTO 60
58
        NHITB = NHITB+1
        IHITB(NHITB) = J
60
        CONTINUE
      RETURN
210
      FORMAT(' WARNING * MAY CAUSE ERRORS PARTICLES IN PIE EXCEED 500')
      FORMAT(13,8X,13,10X,F7.0)
220
      END
```

```
SUBROUTINE SPRD1X(DX, SPILDT, TIMET, INDPRN, SPAREA)
      COMPLEX SPCEN, PARTCL (1000)
      COMMON /VASB/IGRILB(300), IGRIUB(300), IGRLB1(300), IGRUB1(300)
      COMMON /ASB/SPCEN,PARTCL,NPTCL,NHITB,IHITB(1000),TYPBND(4,300)
      COMMON /BLOCK7/SPGOIL, ANIU, SIGMA, AK2I, AK2V, AK2T,
     $ VOLPAR, VOLPIE(8), SLICKR(8)
      COMMON /BLOCK8/AKC10,AKC20,AKC30
      COMMON /SO/IMOVIN(1000), YSHIFT(1000), NMOVIN, SSHIFT
      COMMON /SE/FEVP1,FEVP2,CEVP,T0EVP
      COMMON /ICE/NICEX1(20),NICEY1(20),NICEX2(20),NICEY2(20),NICERG,
     $ AMIUO, ANICE, IPOS1(20), IPOS2(20), SPAICE
      COMMON /SPREAD/ RADIUS(1000), NTRACK(1000)
      DIMENSION SPRATE(2), NPT(2), XLE(2)
C
      Last date of revision: april 11, 1986
CCCCCC
      This Subroutine handles one dimensional appeading in X-direction
      The spill area is divided into strips. Particles in each strip
       spreads according to spreading law for one-dimensional case.
      (see text for details)
       Input: .. Spill center
               .. Location of each particle
00000000
               .. oil properties
       Output: .. New loaction of each particle
       Explanation of variables used only in this subroutine
       RADIUS(I) -- distance to particles in a strip from stripcenter.
            A maximum of 500 particles can be in a strip at any time
      IMOVIN(I) -- Index in array PARTCL of moving particles
            ex. 1,3,4,5,7,11,12,13..... etc.
C
      NMOVIN
                  -- Number of Moving Particles
       SPAREA - Free surface area of spill (sq. ft)
C
C
       SPAICE - Area of spill under ice (sq. ft)
      ICOND = 0 - Oil in the strip has free surface conditions
C
             = 1 - Oil in the strip is under ice
C
      DATA PI,ROWAT,G/3.141592, 1.92, 32.2/
\mathbf{C}
C
      Evaluate some constants to be used in subsequent computations
C
      DELTA = 1.0 - SPGOIL
      AKINER = AKC10*(G*DELTA/DX)**0.3333
      AKVISC = AKC20*(G*DELTA)**0.25/(SQRT(DX)*ANIU**0.125)
      AKSURF = AKC30*SQRT(SIGMA/ROWAT)/(ANIU**0.25)
\mathbf{C}
C
       To minimize some later computing, determine X-grid boxes of
C
       extreme particles.
      LMAX=0
      LMIN=1000
      DO 40 I=1,NMOVIN
         J=IMOVIN(I)
        L=AIMAG(PARTCL(J))/DX+1
        IF(L.GT.I.MAX)LMAX=L
```

```
IF(L.LT.LMIN)LMIN=L
40
        CONTINUE
      SPAREA = 0.0
      SPAICE = 0.
C
      Loop 500: One strip at a time
      DO 500 ISTRIP=LMIN.LMAX
      XBAR=0.
      NPTSTR = 0
      NPTICE = 0
      ICOND = 0
      DO 50 I=1,NMOVIN
        J=IMOVIN(I)
        L=AIMAG(PARTCL(J))/DX+1
        IF(ISTRIP.NE.L)GOTO 50
        NPTSTR = NPTSTR+1
        NTRACK(NPTSTR) = J
        XBAR = XBAR + REAL(PARTCL(J))
C
        IF(NICERG.EQ.0)GOTO 50
        L = REAL(PARTCL(J))/DX
        M =(AIMAG(PARTCL(J))+YSHIFT(J))/DX
        IPOS = 0
        IF(L.EQ.0)GOTO 117
        DO 115 L1=1,L
         IPOS = IPOS+IGRIUB(L1)-IGRILB(L1)+3
115
        CONTINUE
117
        IPOS = IPOS+M-IGRILB(L+1)+3
        DO 120 K=1,NICERG
          IF(IPOS.GE.IPOS1(K).AND.IPOS.LE.IPOS2(K))NPTICE=NPTICE+1
120
          CONTINUE
50
        CONTINUE
C
C
      Musi have at least two particles in the strip for spreading
      IF(NPTSTR.LT.2)GOTO 500
      XBAR=XBAR/NPTSTR
      DO 60 I=1,NPTSTR
        J=NTRACK(I)
        RADIUS(I)= REAL(PARTCL(J))-XBAR
60
        CONTINUE
      IF(FLOAT(NPTICE)/FLOAT(NPTSTR).GT.0.5)ICOND=1
C
     XLE are the distances to the spreading edge of slick in the strip
C
      computed based on the mean distance to particles from strip center.
č
      index=1 for + dir from XBAR and 2 for - dir from XBAR
      XLE(1)=0.
      XLE(2)=0.
      NPT(2)=0
      DO 80 I=1,NPTSTR
        IF(RADIUS(I).GE.0.0)XLE(1)=XLE(1)+RADIUS(I)
        IF(RADIUS(I).GE.0.0)GOTO 80
        XLE(2)=XLE(2)+RADIUS(I)
```

```
NPI(2)=NPI(2)+1
80
        CONTINUE
      NPT(1) = NPTSTR - NPT(2)
      XLE(1) = XLE(1)/NPT(1)
      XLE(2) = XLE(2)/NPT(2)
      IF(ICOND.EO.1)GOTO 170
_{\rm C}^{\rm C}
      If slick thickness(STHICK) is less than ultimate thickness
C
       for spreading(UTHICK) then no spreading
C
      NOTE that XLE(2) is always (-)ve
      STHICK = VOLPAR*(NPT(1)+NPT(2))/(DX*(XLE(1)-XLE(2)))
      UTHICK = 1.3458E-5 * ("VOLPAR*NMOVIN)**0.25
      IF(STHICK.LT.UTHICK)GOTO 500
\mathbb{C}
C
       determine the rate of spread at mean radius(leading edge)
      DO 130 K=1,2
      VOLNOW = VOLPAR*NPT(K)
      TIMBAR = TIMET - SPILDT/2.0
C
C
       for this first development stage use VOLBAR=VOLNOW, and DVDT=0.
      VOLBAR=VOLNOW
      DVDT = VOLNOW*(FEVP1-FEVP2)/SPILDT
C
C
      TVISC -- Time in secs for transition from Inertia to Viscous
Č
       TSURFT-- Time in secs for transition from Viscous to Surf Tension
C C C
       TERMIN -- Time in secs for spreading termiation
       DRDT-- Spreading rate at leading edge (ft/sec)
      TSURFT = (AKVISC/AKSURF)**2.6666*VOLBAR**1.3333
      IF(TIMBAR.GT.TSURFT) GOTO 45
      TVISC=(AKVISC/AKINER)**3.4285*VOLBAR**0.5714
       IF(TIMBAR.LE.TVISC) DRDT =
      $ 0.3333*AKINER*(2+DVDT*TIMBAR/VOLBAR)*(VOLBAR/TIMBAR)**0.3333
      IF(TIMBAR.GT.TVISC)DRDT =
      $ AKVISC*(0.375+0.5*TIMBAR*DVDT/VOLBAR)*SQRT(VOLBAR)/TIMBAR**0.625
      GOTO 48
      DRDT = 0.75*AKSURF/(TIMBAR**0.25)
45
       SPRATE(K) = DRDT*SPILDT/ABS(XLE(K))
       IF(SPRATE(K).LT.-1.0)SPRATE(K)=-1.0
130
      CONTINUE
C
C
       Spreading rates for mean leading edges on either side has been
C
       computed. Now spread the particles proportiontely.
C
       DO 140 I=1,NPTS1R
         J=NTRACK(I)
         IF(RADIUS(I).GE.O.0)XNEW=RADIUS(I)*(SPRATE(1)+1)
         IF(RADIUS(I).LT.0.0)XNEW=RADIUS(I)*(SPRATE(2)+1)
         RADIUS(1) = XNEW
         Y = AIMAG(PARTCL(J))
         PARTCL(J) = CMPLX(XBAR+XNEW,Y)
140
         COMMNUE
```

```
C
      Compute the mean distances to leading edges after spreading.
C
      XLE(1)=0.
      XLE(2)=0.
      DO 160 I=1,NPTSTR
        IF(RADIUS(I).GE.0.0)XLE(1)=XLE(1)+RADIUS(I)
        IF(RADIUS(I).LT.0.0)XLE(2)=XLE(2)+RADIUS(I)
160
        CONTINUE
      XLE(1) = XLE(1)/NPT(1)
      XLE(2) = XLE(2)/NPT(2)
      SPAREA = SPAREA + DX*(XLE(1)+ ABS(XLE(2)))
170
      IF(INDPRN.EQ.1)WRITE(*,220)ISTRIP,NPTSTR,XLE(2),XBAR,XLE(1)
      IF(ICOND.FQ.1) SPAICE = SPAICE + DX*(XLE(1)+ ABS(XLE(2)))
      IF(ICOND.EQ.1)WRITE(*,230)
50C
      CONTINUE
C
C
     Move back the particles in the Northern channel which were
C
     shifted by ORIENT routine. Also check for the particles hitting
C
     the boundaries
      DO 460 I=1.NMOVIN
        J=IMOVIN(I)
        IF(YSHIFT(J).LT.DX)GOTO 54
        PARTCL(J)=PARTCL(J)+CMPLX(0., YSHIFT(J))
        L=REAL(PARTCL(J))/DX + 1
        M=AIMAG(PARTCL(J))/DX +1
C
C
        Check for spill hitting the boundaries
        IF(M.GT.IGRUB1(L))GOTO 54
        NHITB=NHITB+1
        IHITB(NHITB)=J
        X=REAL(PARTCL(J))
        Y=IGRUB1(L)*DX-0.25*DX
        PART L(J) = CMPLX(X,Y)
        GOTO 460
54
        L = REAL(PARTCL(J))/DX + 1
        M = AIMAG(PARTCL(J))/DX + 1
        IF(M.GE.IGRILB(L).AND.M.LE.IGRIUB(L))GOTO 55
        NHITB = NHITB + 1
        IHITB(NHITB) = J
        GOTO 460
55
        IF(IGRLB1(L).EQ.0)GOTO 460
        IF(M.LE.IGRUB1(L).AND.M.GE.IGRLB1(L))GOTO 58
        GOTO 460
        NHIIB = NHIIB+1
58
        IHILB(VHLLB) = 1
460
        CONTINUE
220
      FORMAT(14,7X,13,5X,F6.0,F9.0,F8.0)
230
      FORMAT(1H+,50X,' ICE')
      END
```

```
SUBROUTINE SPRDIY(DX, SPILDT, TIMET, INDPRN, SPAREA)
      COMPLEX SPCEN, PARTCL(1000)
      COMMON /VASB/IGRILB(300), IGRIUB(300), IGRLB1(300), IGRUB1(300)
      COMMON /ASB/SPCEN,PARTCL,NPTCL,NHITB,IHITB(1000),TYPBND(4,300)
      COMMON /BLOCK 7/SPGOIL, ANIU, SIGMA, AK2I, AK2V, AK2T,
     $ VOLPAR.VOLPIE(8).SLICKR(8)
      COMMON /BLOCK8/AKC10,AKC20,AKC30
      COMMON /SO/IMOVIN(1000), YSHIFT(1006), NMOVIN, SSHIFT
      COMMON /SE/FEVP1,FEVP2,CEVP,TOEVP
      COMMON /ICE/NICEX1(20), NICEY1(20), NICEX2(20), NICEY2(20), NICERG,
     $ AMTUO, ANICE, IPOS1(20), IPOS2(20), SPAICE
      COMMON /SPREAD/ RADIUS(1000), NTRACK(1000)
      DIMENSION SPRATE(2).NPI(2).XLE(2)
C
C
      LAST DATE OF REVISION: April 11, 1986
C
\mathbf{C}
       this Subroatine handles one dimensional spreading in Y-direction
C
      The spill area is divided into strips. Particles in each strip
C
      spreads according to spreading law for one-dimensional case.
C
      (see text for details)
C
      Taput: .. Spill center
C
               .. Location of each particle
C
               .. oil properties
C
      Output: .. New loaction of each particle
C
C
      Explanation of variables used only in this subroutine
С
      RADIUS(1) - distance to particles in a strip from stripcenter.
C
            A maximum of 500 particles can be in a strip at any time
      PMOVIN(1) -- Index in array PARTCL of moving particles
\mathbf{C}
            ex. 1,3,4,5,7,11,12,13..... etc.
C
      MMOVIN
                    Number of Moving Particles
\mathbf{C}
      SPAREA
                 Free surface area of spill (sq. ft)
C
      SPAICE Area of spill under ice (sq. ft)
C
      ICOND = 0 - Oil in the strip has free surface conditions
\mathbf{C}
             = 1 - Oil in the strip is under ice
      17A1A PI, KOWAT, G/3.141592, 1.92, 32.2/
C
      i. althate some constants to be used in subsequent computations
\mathbf{C}
      DELIA = 1.0 - SPGOIL
      AF (N L) = AE C 10*(G*DELTA/DX)**0.3333
      AKV150 = AKC30*(G*DELTA)**0.25/(SQRT(DX)*ANIU**0.125)
      AESURP = AEC30*SQRT(SIGMA/ROWAT)/(ANIU**0.25)
\mathbf{C}
C
      In almostize some later computing, determine X-grid boxes of
(
      extreme particles
      124A & 0
      1 MIN=1000
      177 40 お 1ごさ4O) T
        J. MOVISOD
        コーREAL(PARTOLOD/DA、L
        BU GIJIMAX/IMAX=L
```

```
IF(L.LT.LMIN)LMIN=L
40
        CONTINUE
      SPAREA = 0.0
        SPAICE ≈ 0.0
\mathsf{C}
      Loop 500: One strip at a time
      DO 500 ISTRIP=LMIN,LMAX
      YBAR=0.
      NPTSTR = 0
      NPTICE = 0
      ICOND = 0
      DO 50 I=1,NMOVIN
        J=IMOVIN(I)
        L=REAL(PARTCL(J))/DX+1
        IF(ISTRIP.NE.L)GOTO 50
        NPTSTR = NPTSTR+1
        NTRACK(NPTSTR) = J
        YBAR = YBAR + AIMAG(PARTCL(J))
        IF(NICERG.EQ.0)GOTO 50
        L = REAL(PARTCL(J))/DX
        M = (AIMAG(PARTCL(J)) + YSHIFT(J))/DX
        IPOS = 0
         IF(L.EQ.0)GOTO 117
         DO 115 L1=1,L
          IPOS = IPOS+IGRIUB(L1)-IGRILB(L1)+3
115
         CONTINUE
117
         IPOS = IPOS+M-IGRILB(L+1)+3
         DO 120 K=1,NICERG
           IF(IPOS.GE.IPOS1(K).AND.IPOS.LE.IPOS2(K))NPTICE=NPTICE+1
120
           CONTINUE
50
         CONTINUE
C
C
       Must have at least two particles in the strip for spreading
C
      IF(NPTSTR.LT.2)GOTO 500
      YBAR-YBAR/NPTSTR
      DO 60 I=1.NPTSTR
         J=NTRACK(I)
         RADIUS(I)= AIMAG(PARTCL(J))-YBAR
60
         CONTINUE
      IF(FI OAT(NPTICE)/FLOAT(NPTSTR).GT.0.5)ICOND=1
C
\mathbf{C}
      XLE are the distances to the spreading edge of slick in the strip
Ċ
      computed based on the mean distance to particles from strip center.
      index=1 for + dir from YBAR and 2 for - dir from YBAR
      XLE(1)=0.
      XLE(2)=0.
      NPI(2)=0
       DO 80 I=1,NPTSTR
         IF(RADIUS(I).GE.0.0)XLE(1)=XLE(1)+RADIUS(I)
         IF(RADIUS(I).GE.0.0)GOTO 80
         XLE(2)=XLE(2)+RADIUS(I)
         NPT(2)=NPT(2)+1
```

```
80
        CONTINUE
      NPT(1) = NPTSTR - NPT(2)
      XLE(1) = XLE(1)/NPI(1)
      XLE(2) = XLE(2)/NPT(2)
      IF(ICOND.EO.1)GOTO 170
C
C
      If slick thickness(STHICK) is less than ultimate thickness
      for spreading(UTHICK) then no spreading
C
      NOTE that XLE(2) is always (-)ve
      STHICK = VOLPAR*(NPT(1)+NPT(2))/(DX*(XLE(1)-XLE(2)))
      UTHICK = 1.3458E-5 * (VOLPAR*NMOVIN)**0.25
      IF(STHICK.LT.UTHICK)GOTO 500
C
C
      determine the rate of spread at mean radius(leading edge)
C
      DO 130 K=1.2
      VOLNOW = VOLPAR*NPT(K)
      TIMBAR = TIMET - SPILDT/2.0
C
      for this first development stage use VOLBAR=VOLNOW, and DVDT=0.
      VOLBAR=VOLNOW
      DVDT = VOLNOW*(FEVP1-FEVP2)/SPILDT
C
C
      TVISC -- Time in secs for transition from Inertia to Viscous
C
      TSURFT -- Time in secs for transition from Viscous to Surf Tension
C
      TERMIN -- Time in secs for spreading termiation
C
      DRDT -- Spreading rate at leading edge (ft/sec)
      TSURFT = (AKVISC/AKSURF)**2.6666*VOLBAR**1.3333
      IF(TIMBAR.GT.TSURFT) GOTO 45
      TVISC=(AKVISC/AKINER)**3.4285*VOLBAR**0.5714
      IF(TIMBAR.LE.TVISC) DRDT =
     $ 0.3333*AKINER*(2+DVDT*TIMBAR/VOLBAR)*(VOLBAR/TIMBAR)**0.3333
      IF(TIMBAR.GT.TVISC)DRDT =
     $ AKVISC*(0.375+0.5*TIMBAR*DVDT/VOLBAR)*SQRT(VOLBAR)/TIMBAR**0.625
      GOTO 48
45
      DRDT = 0.75*AKSURF/(TIMBAR**0.25)
48
      SPRATE(K) = DRDT*SPILDT/ABS(XLE(K))
      IF(SPRATE(K).LT.-1.0)SPRATE(K)=-1.3
130
      CONTINUE
C
C
       Spreading rates for mean leading edges on either side has been
C
       computed. Now spread the particles proportiontely.
      DO 140 I=1,NPTSTR
         J=NTRACK(I)
         IF(RADIUS(I).GE.0.0)YNEW=RADIUS(I)*(SPRATE(1)+1)
         IF(RADIUS(I).LT.0.0)YNEW=RADIUS(I)*(SPRATE(2)+1)
         RADIUS(I) - YNEW
        X = REAJ(PARTCL(J))
         PARTCL(J) = CMPLX(X,YBAR+YNEW)
140
        CONTINUE
C
C
       Compute the mean distances to leading edges after spreading.
```

```
\mathbf{C}
      XLE(1)=0.
      XLE(2)=0.
      DO 160 I=1,NPTSTR
         IF(RADIUS(I).GE.0.0)XLE(1)=XLE(1)+RADIUS(I)
         IF(RADIUS(I).LT.0.0)XLE(2)=XLE(2)+RADIUS(I)
160
         CONTINUE
      XLE(1) = XLE(1)/NPT(1)
      XLE(2) = XLE(2)/NPT(2)
      SPAREA = SPAREA + DX*(XLE(1)+ ABS(XLE(2)))
      IF(INDPRN.EQ.1)WRITE(*,220)ISTRIP,NPTSTR,XLE(2),YBAR,XLE(1)
170
      IF(ICOND.EQ.1) SPAICE = SPAICE + DX*(XLE(1)+ ABS(XLE(2)))
      IF(ICOND.EQ.1)WRITE(*,230)
500
      CONTINUE
C
      Move back the particles in the Northern channel which were
C
      shifted by ORIENT routine. Also check for the particles hitting
C
C
      the boundaries
      DO 460 I=1,NMOVIN
         J=IMOVIN(I)
         IF(YSHIFT(J).LT.DX)GOTO 54
         PARTCL(J)=PARTCL(J)+CMPLX(0.,YSHIFT(J))
         L=REAL(PARTCL(J))/DX + 1
         M=AIMAG(PARTCL(J))/DX +1
C
         Check for spill hitting the boundaries
         IF(M.GT.IGRUB1(L))GOTO 54
         NHITB=NHITB+1
         IHITB(NHITB)=J
         X=REAL(PARTCL(J))
         Y=IGRUB1(L)*LX-0.25*DX
         PARTCL(J)=CMPLX(X,Y)
         GOTO 460
         L = REAL(PARTCL(J))/DX + 1
54
         M = AIMAG(PARTCL(J))/DX + 1
         IF(M.GE.IGRILB(L).AND.M.LE.IGRIUB(L))GOTO 55
         NHITB = NHITB + 1
         IHITB(NHITB) = J
         GOTO 460
         IF(IGRLB1(L).EQ.0)GOTO 460
55
         IF(M.LE.IGRUB1(L).AND.M.GE.IGRLB1(L))GOTO 58
         GOTO 460
         NHITB = NHITB+1
 58
         IHITB(NHITB) = J
 460
         CONTINUE
       RETURN
       FORMAT(14,7X,13,5X,F6.0,F9.0,F8.0)
 220
       FORMAT(1H+,50X,' ICE')
 230
       END
```

С	SUBROUTINE VELDIS(IPROPT, NBRNCH, NGRIDX, DX)
CCC	This program computes the Velocity along and across the river (Two-Dimensional velocity distribution)
CC	Last Date of Revision: Jul 17, 1985
С	COMPLEX COMPXY,VSTRM(99,16),CORDV(99,16),VCAR(12000),CORDLB(99) COMPLEX VWIND,VDRIFT COMMON /VEL/VSTRM,CORDV,CORDLB,Q(30),WL(30),TICE(99,20), \$ YWID(99,20),Z(99,20),ZD(99),NSLSCT(99),SCTANG(99), \$ LCSTSQ(30),NSTUBE(99),NUMCON(99),NFIRCO(99),NSECO(99),KINTM COMMON /VA/ VCAR,VWIND,VDRIFT COMMON /VASB/IGRILB(300),IGRIUB(300),IGRLB1(300),IGRUB1(300) COMMON /V/IZRBX(100),IZRBY(100),NZRVB
C C C	Input: Q & WL both of which are arrays of size at least NBRNCH and NBRNCH+1 respec.
C C C C	Output: x & y components of velocity in the river for each grid box Also computed are velocities at sections perpendicular to stream thalweg and co-ordinates of the position at which they are acting
00000000	 This program computes velocities in the following manner 1 Go from branch to branch - (Branch here refers to branches in Unsteady flow model 2 Then do for each section in a branch 3 Finally scans across the river, stremtube by tube The above numbers also show the looping sequence where 1 is the outermost and 3 is the innermost
30	IS2=0 DO 80 IB=1,NBRNCH IS1=IS2+1 IS2=LCSTSQ(IB) TBRLEN=0. DO 30 IS=IS1,IS2 ISCON = NFIRCO(IS) TBRLEN=TBRLEN+CABS(CORDLB(IS)-CORDLB(ISCON)) CONTINUE IF(IB.EQ.NBRNCH)IS2=IS2+1 SCTILEN=0. DO 80 i=IS1,IS2 QSTUBE=Q(IB)/NSTUBE(IS) ATUBE1=0. YSTB1 = 0. ISCON = NFIRCO(IS) SCTILEN=SCTILEN+CABS(CORDLB(IS)-CORDLB(ISCON)) IBCON = IB+1 IF(NUMCON(IS2).NE.21)GOTO 38 IF(NSECO(IS2).EQ.999)GOTO 38
36	IBCON = IBCON+1 LASTSC = LCSTSQ(IBCON-1)

```
IF(NUMCON(LASTSC).NE.21)GOTO 35
        IF(IS2.EQ.NFIRCO(IS2-1).AND.(IS2-1).EQ.NFIRCO(IS2))IBCON=IB
38
        WLSCT=WL(IB)-(WL(IB)-WL(IBCON))*SCTLEN/TBRLEN
        SARIY=0.
        NIY=NSLSCT(IS)+1
        SXAREA = 0.
        DO 40 IY=2,NIY
        WRITE(*,*)IY,YWID(IS,IY),YWID(IS,IY-1)
C
         DYRS=YWID(IS,IY)-YWID(IS,IY-1)
         PERI=SORT(DYRS**2 + (Z(IS,IY)-Z(IS,IY-1))**2)
         ICEIND=0
         IF(TICE(IS,IY).GT.0.001.AND.TICE(IS,IY-1).GT.0.001)ICEIND=1
         TISUM = TICE(IS,IY)+TICE(IS,IY-1)
         IF(ICEIND.EO 1)PERI=PERI+DYRS
         IF(ICEIND, EQ.0)TISUM=0.0
         AIY=DYRS*((Z(IS,IY)+Z(IS,IY-1)-TISUM)/2.+WLSCT-ZD(IS))
         IF(AIY.LT.0.0)AIY = 0.0
         HR=AIY/PERI
          SARIY=SARIY+AIY*HR**0.6666
          SXAREA = SXAREA + AIY
40
         CONTINUE
        NSTUB1 = NSTUBE(IS)-1
        DO 70 ITB=1,NSTUB1
          OSET=OSTUBE*ITB
          PSARIY=0.
          SPERI =0.
          SAIY =0.
          DO 60 IY=2.NIY
           DYRS=YWID(IS,IY)-YWID(IS,IY-1)
           PERI=SQRT(DYRS**2 + (Z(IS,IY)-Z(IS,IY-1))**2)
           IF(TICE(IS,IY).GT.0.001.AND.TICE(IS,IY-1).GT.0.001)ICEIND=1
           TISUM = TICE(IS,IY)+TICE(IS,IY-1)
           IF(ICFIND.EQ.1)PERI=PERI+DYRS
           IF(ICEIND.EO.0)TISUM=0.0
           AIY = DYRS*((Z(IS,IY)+Z(IS,IY-1)-TISUM)/2. + WLSCT - ZD(IS))
           IF(AIY.LT.0.0)AIY = 0.0
          HR = AIY/PERI
           ARIY=AIY*HR**0.6666
           PSARIY= PSARIY + ARIY
           SPERI = SPERI + PERI
           SAIY = SAIY + AIY
                 Q(IB)*PSARIY/SARIY
           OIY
           IF(QIY.LT.QSET)GOTO 60
           QIY1 = Q(IB)*(PSARIY-ARIY)/SARIY
           YSTB2 = YWID(IS,IY-1)+DYRS*(QSET-QIY1)/(QIY-QIY1)
           YSTB = (YSTB1+YSTB2)/2.
           YSTB1 = YSTB2
           ATUBE = SAIY-AIY+AIY*(YSTB2-YWID(IS,IY-1))/DYRS
           VSTRM(IS,ITB) = CMPLX(QSTUBE (ATUBE-ATUBE1),0.)
           ATUBE1 - ATUBE
           ANGL= SCTANG(IS)
           CORDV(IS,ITB)=CORDLB(IS)+CMPLX(YSTB*COS(ANGL),YSTB*SIN(ANGL))
           GOTO 65
60
           CONTINUE
```

```
CONTINUE
65
70
       CONTINUE
       NSTB=NSTUBE(IS)
       VSTRM(IS, NSTB)=CMPLX(QSTUBE/(SXAREA-ATUBE1),0.)
       YSTB = (YWID(IS,NIY)+YSTB1)/2.
       CORDV(IS, NSTB)=CORDLB(IS)+CMPLX(YSTB*COS(ANGL), YSTB*SIN(ANGL))
80
       CONTINUE
C
C
    At this point 2-D stream velocity (Along the river section by section
      and across the river streamtube by streamtube) is assigned to
C
      VSTRM's x-component. Therefore it has the correct magnitude but not
      the direction. Later this magnitude will be correctly distributed
C
      x & y components so that it has correct direction.
CCC
    CORDV stores the location at which VSTRM is acting
    Note: CORDV and VSTRM both are 2-D COMPLEX arrays
    Now assign the correct direction to velocities
      IS2=LCSTSQ(NBRNCH)
      DO 100 IS=1,IS2
        NSTB - NSTUBE(IS)
        DO 100 ITB=1,NSTB
          NFIRST=NFIRCO(IS)
          ISCON =NFIRST
          IF(ITB.GT.NSTUBE(NFIRST))ISCON=NSECO(IS)
          ITBCON=ITB
           IF(NUMCON(IS).EQ.11)GOTO 97
           IF(NUMCON(IS).EQ.12.AND.ITB.GT.NSTUBE(NFIRST))ITBCON=
          ITB-NSTUBE(NFIRST)
     $
           IF(NUMCON(IS).NE.21)GOTO 97
          IF(NSECO(IS).NE.999)GOTO 97
          DO 95 I = 1,999
             J = IS - I
             IF(NSECO(J).NE.0)GOTO 95
93
             CONTINUE
95
           ITBCON = ITB + NSTUBE(J-1)
           VMAG=REAL(VSTRM(IS,ITB))
97
           COMPXY = CORDV(ISCON,ITBCON)-CORDV(IS,ITB)
           RAD = CABS(COMPXY)
           VVX = VMAG*REAL(COMPXY)/RAD
           VVY = VMAG*AIMAG(COMPXY)/RAD
           VSTRM(IS,ITB) = CMPLX(VVX,VVY)
100
        CONTINUE
C
C
    The next segment writes velocities and co-ords to a file if IPROPT=1
C
    This information can be used by program DIRPLOT to plot velocities
      IF(IPROPT.EQ.0)GOTO 415
      DO 110 IS=1,IS2
         NSTB = NSTUBE(IS)
        DO 110 ITB=1,NSTB
           WRITE(3,2100)CORDV(IS,ITB),VSTRM(IS,ITB)
110
           CONTINUE
C
C
    From the velocities computed at stream cross sections now assign the
C
    velocities to each grid center in the Cartesian System
```

```
C
    First assign the velocity to a grid box if co-ords are within the box
415
      DO 120 IS =1.IS2
        NSTB = NSTUBE(IS)
        DO 120 ITB = 1,NSTB
           L = REAL(CORDV(IS,ITB))/DX
           M =AIMAG(CORDV(IS, ITB))/DX
           IPOS = 0
           IF(L.EQ.0)GOTO 117
           DO 115 L1=1,L
              IPOS = IPOS + IGRIUB(L1) - IGRILB(L1) + 3
115
              CONTINUE
117
           IPOS = IPOS+M-IGRILB(L+1)+3
            VMAG = CABS(VCAR(IPOS))
            IF(VMAG.LE.0.001)VCAR(IPOS) = VSTRM(IS,ITB)
            IF(VMAG.GT.0.001)VCAR(IPOS) = (VCAR(IPOS)+VSTRM(IS,ITB))/2.
120
      CONTINUE
C
C
    Now check for the boxes with no assigned velocity yet;
C
     For KINIM intermediate Sections interpolate in Streamtube between
C
     Two adjacent X-scetions and assign a weighted mean velocity
      DO 130 IS=1,IS2
        NSTB = NSTUBE(IS)
         DO 130 ITB = 1,NSTB
           NFIRST=NFIRCO(IS)
           ISCON =NFIRST
           IF(ITB.GT.NSTUBE(NFIRST))ISCON=NSECO(IS)
           ITBCON=ITB
           IF(NUMCON(IS).EQ.11)GOTO 197
           IF(NUMCON(IS).EQ.12.AND.ITB.GT.NSTUBE(NFIRST))ITBCON=
     $
           ITB-NSTUBE(NFIRST)
           IF(NUMCON(IS).NE.21)GOTO 197
           IF(NSECO(IS).NE.999)GOTO 197
           DO 193 I =1,999
             J = IS - I
             IF(NSECO(J).NE.0)GOTO 195
193
             CONTINUE
           ITBCON = ITB + NSTUBE(J-1)
195
197
           CONTINUE
         DO 130 K=1,KINTM
           COMPXY= ((KINTM+1-K)*CORDV(IS,ITB)+K*CORDV(ISCON,ITBCON))
     $
           /(KINTM+1)
           L = REAL(COMPXY)/DX
           M = AIMAG(COMPXY)/DX
           IPOS = 0
           IF(L.EQ.0)GOTO 127
           DO 125 L1=1,L
             IPOS = IPOS+IGRIUB(L1)-IGRILB(L1)+3
125
             CONTINUE
127
           IPOS = IPOS+M-IGRILB(L+1)+3
           VMAG = CABS(VCAR(IPOS))
           IF(VMAG.LE.0.001)VCAR(IPOS)=
          ((KINTM+1-K)*VSTRM(IS, ITB)+K*VSTRM(ISCON, ITBCON))/(KINTM+1)
130
        CONTINUE
```

```
C
C
    There may still be boxes without any assigned velocities
    Now velocities will be assigned based on the average value of the
C
    surrounding bexes
C
    Start from column 2 and then move to subsequent ones. The first
C
    column is neglected. Before the process begins a value of 0.0011 is
Č
    assigned to the grids just outside the boundary (a technique used
C
    purely to simplify computations).
      IY1=1
      DO 133 I=1,NGRIDX
        IY2=IGRIUB(I)-IGRILB(I)+2+IY1
        VCAR(IY1)=0.0011
        VCAR(IY2)=0.0011
        IY1 = IY2+1
        CONTINUE
133
      IY2 = IGRIUB(1) - IGRILB(1) + 2
      DO 150 L=2,NGRIDX
        IY1 = IY2+3
        IY2 = IGRIUB(L) - IGRILB(L)+IY1
        DO 150 M = IY1,IY2
           COMPXY = (0.,0.)
           COUNT = 0.
          IROW = M-IY1+IGRILB(L)
           IF(IGRLB1(L).EQ.0)GOTO 141
           IF(IROW.GE.IGRLB1(L).AND.IROW.LE.IGRUB1(L))VCAR(M)=0.0011
           IF(CABS(VCAR(M)).GT.0.001)GOTO 150
141
C
C
           IF((IGRILB(L-1)-IGRILB(L)).GT.2)GOTO 142
C
           IF((IGRIUB(L)-IGRIUB(L-1)).GT.2)GOTO 142
           IF((IGRILB(L-1)-IROW).GT.2)GOTO 142
           IF((IROW-IGRIUB(L-1)).GT.2)GOTO 142
C
           MM = M + IGRILB(L) - IGRIUB(L-1) - 3
           IF(CABS(VCAR(MM)).LE.0.001)GOTO 142
           COMPXY=COMPXY+VCAR(MM)
           COUNT = COUNT+1
142
           MM = M + IGRIUB(L) - IGRILB(L+1) + 3
C
C
           IF((IGRILB(L+1)-IGRILB(L)).GT.2)GOTO 144
C
           IF((IGRIUB(L)-IGRIUB(L+1)).GT.2)GOTO 144
           IF((IGRILB(L+1)-IROW).GT.2)GOTO 144
           IF((IROW-IGRIUB(L+1)).GT.2)GOTO 144
C
           IF(CABS(VCAR(MM)).LE.0.001)GOTO 144
          COMPXY=COMPXY+VCAR(MM)
           COUNT = COUNT+1
144
           IF(CABS(VCAR(M-1)).LE.0.001)GOTO 146
           COMPXY=COMPXY+VCAR(M-1)
           COUNT = COUNT+1
146
           IF(CABS(VCAR(M+1)).LE.0.001)GOTO 148
           COMPXY=COMPXY+VCAR(M+1)
           COUNT - COUNT+1
           VCAR(M)=COMPXY/COUNT
148
150
         CONTINUE
```

```
For the boxes defined thru input data set VCAR=0.0
C
      DO 164 IBOX=1,NZRVB
        IF(NZRVB.GT.100)GOTO 164
        L = IZRBX(IBOX) - 1
        M = IZRBY(IBOX) - 1
        IPOS = 0
        IF(L.EQ.0)GOTO 163
        DO 160 L1=1,L
         IPOS = IPOS+IGRIUB(L1)-IGRILB(L1)+3
        CONTINUE
160
        IPOS = IPOS+M-IGRILB(L+1)+3
163
        VCAR(IPOS) = 0.0
164
      CONTINUE
      IF(IPROPT.EQ.0)RETURN
      J1=2
      DO 170 I=1,NGRIDX
      X = I*DX - 0.5*DX
      J2 = IGRIUB(I) - IGRILB(I)+J1
        DO 165 J=J1,J2
         Y = (IGRILB(I)+J-J1)*DX-0.5*DX
         WRITE(4,2100)X,Y,VCAR(J)
165
       CONTINUE
       J1 = J2 + 3
170
       CONTINUE
       RETURN
       FORMAT(315,3F8.2,2F10.0)
123
2100 FORMAT(2F9.0,2F7.2)
       END
```

Subroutine GAUSS and RANDU

SUBROUTINE GAUSS(IX,S,AM,V)
A=0.0
DO 50 I=1,12
CALL RANDU(IX,IY,Y)
IX=IY
50 A=A+Y
V=(A-6.0)*S+AM
RETURN
END

SUBROUTINE RANDU(IX,IY,YFL)
IY = IX*65539
IF(IY)5,6,6

IY = IY + 2147483647+1

YFL = IY

YFL = YFL*0.4656613E-9

YFL=RND(-1)

RETURN
END

APPENDIX III

DIGITIZED GRID SYSTEMS FOR CONNECTING CHANNELS

Index Map for Grid System in St. Clair River

											ૠ	180			97	B		23	22	2/	20	6/	-8/	17	2/	/5	14	5.	2	=	09/
			<u> </u>										28				153														153
													7	23			25														158
															26			2													15.
															1	22			3			-									12
																25			સ											Ī	155
																	2			11											154
																	F	-			à										53
			Ī														1	23			20										152
								T-	1									12			22										15/
																		23				#									150
									\vdash								_	12				छ								1	12
_	<u> </u>																	23				18					-~				8
								T										133				/6/									32 33 34 35 35 35 35 35 35 36 37 36 36 36 36 36 36 36 36 36 36 36 36 36
_							1	T										53				6/							\neg	- i	146
_								i —									_	53				6/	_								Æ
				 														গ্ন					18								44
_		Γ																23					84								12
						<u></u>	<u> </u>								_			25					/8							i	151
				<u> </u>		-												23						1	i					\rightarrow	14
				-										-				Ξ						4							9
_		-			 	_	<u> </u>	<u> </u>	\vdash								\vdash	23						4				T	\neg	$\overline{}$	-25
_	 			_	_	<u> </u>	<u> </u>		\vdash	-		 					1	23						귑						T	3
_	!	_	 	-	-	 												23						3						1	7
_					 				\vdash									23						귑			_			寸	35
_		 	\vdash	-		_	 	1	\vdash	 							1	23						重							- <u>55</u>
	-	 	-	 -		<u> </u>	 		 	i				-				52					- 8/	7						_	쿩
	 	-	 	-	-		 	 - -	\vdash			_					1	23					88	/						_	7
		 -	-	'	-		-	-	\vdash			\vdash			_		1	23					8	_					i		×
_	-	-	 	-	_	-	 	-	\vdash		_	_					H	23					9							$\overline{}$	18/
,	-		-	-	 	 	 	\vdash	+			 				-	24					بي	7							+	- <u>2</u>
-	 	 	\vdash	-	 	-	-	 	\vdash	-						-	24 2					191	/				\dashv			-	129 /30
			\vdash	-	-	-	+	+-	 	-	_					-	242					187	-								<u>'''</u>
_	 	-	 •	-	-	 	-	 -	 		-				-		7	-5				7					\dashv		-	-	7/12
	<u>'</u>	-	+	! !		-	 	+	 		<u> </u>	 										# #								-+	821 121 721 521
	-	-	 		 	-	┼	-	 			<u> </u>	\vdash	-		L.,		23,23			 										-35
- ~	-	 	-	- -		 	-	-	-			_					\vdash	23 2				bt 61								-	
_		!	-			-	-	-	├-	-		-			_			_				4	-					$\overline{\cdot}$			3/2
	-	-		-				 	\vdash			 					-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\												 +	122 123 124
		-				-	-		├-	-			\vdash			1	-	\$253			- 6	44								_	_
	<u> </u>	L	<u> </u>	L		L	<u></u>	<u> </u>	<u> </u>		L	L	Ш			55	7	S	22	51	70	Ĕ	8/	2	의	5	14	2	2		151

	 ,				, 	·		,	,	,									 ,											
8 8	3.9	(14	37	36	35	72	33	3	ñ	30	29	32	23	97	25	24	23	22	Ω.	2	5	2	17	9	15	4	1 =	2	_=	_
7			A	36					ল																					199
94,		i		36		<u> </u>			4																					\$ 2/
21.1 21.1 1.1			*					32																			[187 N. 8 185 186 197 185 183 199 195 196 18 188 198
7% CM			15	··· Carrette Allert				75												_							i			2
8			15	~~~	 -			25/	/																***		1			7
7			37	V.7.		-	33		-																				-	2
2		<u>ان</u> خ					77	1/-	-																					
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		38, 38 32			 -		17	 		_																-		. <u> </u>		5:
<u> </u>	,	أعرا				6	Security .																			, .	; 			
			(4.34	↓ /	-	-			-			{			-											: 	<u></u>
	15			· ·		1 77											-									, P. P. P	 			- 152 - 153
S {						3	 	ļ																				i * - * * **		
9	5	144 - 3				*			<u> </u>			_															 			
24 58 80	8			x1#==	13	1/		<u> </u>																			<u></u>			=
20					3.5	/	<u></u>																				 		1	<u> </u>
ă.	R	!			35			1	<u> </u>																					<u> </u>
1851/23	7)				12	1																						,		50 50
a l	32				35		1																							· **
790	\ <u>\$</u> ;				M			1																						S
	\	inc		-	\$	1																								18
(F) (38)		94		-	ली		 -	 	 											_							<u> </u>			15 18 18 18 18 18 18 18 18 18 18 18 18 18
	4	- 2			35.	1			 		-																-			79.
777		7	33			7	-	-	 	-		-																		~~
7			3,		-	न्त्र	-	 			_																	i 		=
176.477					! 	·		-				_														<u> </u>	<u>.</u>			<u> </u>
61			15			3.4 34		1	 																	<u></u> .	<u> </u>			- 5
[]			$-\lambda$	36	-	10			ļ																					_ <u>=</u>
<u>u</u>				1 %	·		K																							- 2
8				7	35		33																							
75					13			3	<u> </u>																				, , ,	
))						3.4		32	Λ																					<u> </u>
0// /9/						18			¥																	 				165 166 147 168 169 070 171 1
ĵ.					<u> </u>	1	33		3																					\$9
99							3		m																					89/
166 /67 /68							W			R																	T-	~		1.7
9					 	 	1	32	 		K																-			ر.
						-	-	K		-	29 62	_		_	_															11 59
71	<u> </u>				-	+-	├-	12	+	-	7		_				-										 	-		
2	-					<u> </u>		 `	<u>√</u> ∞			2,0																		5.
162 /43 /64 165							 	-	17	8			4																	7 10
						<u> </u>	<u> </u>		ļ	18			2													<u> </u>		-		14/16/165 164
<u>구</u>	30	ő	37	36	35	3.4	33	32	3	3	58	28	27	2,6	25	24	23	22	17	20	19	<i>∞</i> /	1	29	15	1	~?	5/		./3

062		ا نبست داد. آمامین	127	न्त्र	35	34	33	32	3	12	29	50	27	97	স্থ	24	23	22	7	20	13	8/	17	9/	15	6/	73	72	1	540
bic.	-	201		7	35		111		3	1	,,,	.,,	,,	.,,			,,,	- ,	2	- (0		>								538
528				R					3	4																				238
Y EZ	T	- +		36					B																					722
985	-	-		36				-	3																				_	236
255				2 2		-			70													aline i pres								225
PES	++			त्रि			-		=																					534
दृहर	-			3					31	1.												-							_	233
252			7	36					1 1	A																				टइट
1251			15							28											رــــــــــــــــــــــــــــــــــــ								i	155
1230		Xn	- /	12					<u> </u>	3											<u></u> j									530
525		38		36				 		क्री										******		PER 1044 PR								554
827	1/8	-	337	-	प्र				31	1																				228
FSS	15	1	TAXABLE PARTY.	7					7	/																				227
922	33	-4	S.					32	1 ('	922
इंडर	1 20		<u>دعد</u> ا					32																				; 		22
b7.2	क्र							3		_																				554
553	13			·		_		32																						523
555	नि	-·- 	. -					न		,																				ररर
1221	13		1					#										-										1	•	1551
<i>ज</i> र इ	25	Ť	_				23	1																						05.5
6121	18		- i				127	/-	 																					516
12:8	3	1					13																							812
212	ন্দ		+				77																							EIE
912	ন			-			13	_																				i		712
312	क्र						13																							312
415	1 75						133																							PIZ
213	न्ध			i			3																							213
212	क्रि						133	-																				Ī		212
115	187						為																							511
015	1	85	1				23	1																						510
905	1 1	38						X																						805
802		1	3					न्ने																						३०३
1207	1	-,4	3					325													 									202
902	1	:	VS					32																						902
505			1	28				<u> </u>	À					ĺ									·							502
209	1	<u>.</u>	+	35			1		<u>~</u>												_									♦ 03
505	1			18					3																					१०२
202	+	-+		32					31													i								२०२
105 8	1 25	38	37			3.4	33	32		30	29	28	27	56	25	24	23	22	15	50	18	81	/2	9/	15	14	13.	21		102
LL-2				لنت		رج ا		<u>''''</u>		()	النا	. 4	- 17	الانت	٠٧١	٠,٧	-,7	لت		التنسا									1	·

2	3	5	38	37	3	13	7	53	32	3	名	29	20	22	22	25	য	27	22	괴	20	ध	8	C	2	15	1	5	2	= 63
7	2	(%)		- /		33									7				\neg				1		j					166
.z		TA				স				j					$\neg \uparrow$	\neg		_												136
3		P				3																	j				}			ا يُحْدُ
ट		12		اد دست. ا		ह																								170
2		13				33																						1	Ī	ئاتىما
2) -				3					_				\neg	\neg		一											\neg	De.
	201					35													_							1				2
	; 					7.7																		1		ĺ	i		į	į r
7	\.		•		ta 1872 't.	¥										_														1
. Z			32	• ·-·- 		1 29												1										į	-	ن ا
		٤	30				ফ																							
1			1 30				刘																				i			į.
ر رود			100 100				25																							j4
73)			1-24	3	 i	 	<u> </u>	73											7											, -3
7		~ ~ .		1	·	-	_	2																				1		ثا
- -			· -	1	i X			23	1																					jr
ر ان	• (_	:	 .	1 %				A.							.	-													12
₹;			·	,	1	15			3				_																	17:
125		. ~	<u>.</u>	<u></u> -	; \	33 1	-		32																					1.1
Ξ					-	TYS.	÷			P																				ļŶ
7		 	: 	-		+	34	 		TA			 							-										10
73	-	 i	<u>.</u>		∔ 	+ +	N N			~																				13
33		<u>.</u>	 .	-) 		1 25			- M	1													Γ-						C
55			<u>: </u>	- -	÷	†	12	 -		M																				į
12			-	 	; 	-	11-			75																				F
5 ?		<u> </u>			 	+				1	क्र																			,
52				 	1-	-	12		-		1,8		\vdash																	اِ
5 2		-	 .	-	 	+	1 25		-	 	,X	_	_	_	_			_												15
ट				 	-	 	5				5		 		_		_													
72		 	1	-	 -	+	2		1	-	30		 	 	 			 			1									1
77		 	-	 -	 -	+	7		╁─	 	S	_					_				\vdash				1					1
Þ.			1-	-	 	-	3		 	-	2	 	 	 			-			-	 	1								1.
ڌو	!		-	 -	-		7.		-	+-	न्न	1	 	 	-		-		_	_		 	 							12
7 7	!		+-	-	-	+-/	77	-	├	┼	R	-	-	-	-	-		 	-	-	-	 	 	\vdash	 	_				
5 2		 	 	 	-	15		} 	-	\vdash	ब्रि	-	+-	├	+-		-	!	-	-	-	 	-	 	-		-		 	
15			+	+	-	1/2		-	+-	+-	35	-	╁─╴	 	 		-	 	 	 		\vdash	-	 	 	-		<u> </u>		
<u>ر</u> ج	<u>'</u>	<u> </u>	-	+	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-	 	+-	25	-	+-	-	 	-	-	┼	-	 	 	+-	+	╁	-	 -	-	 -	-	
₽ Z		+	+	+	+			-	┼-	+	10	 	┼	+	-	-	-	-		-	+	┼─	+	+-	+		-	 	 	12
p <u>5</u>	<u> </u>	L.,	1 2	3 2	1 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 %	2		l P		2	2	72	15.	24	2	22	 	1 5	6	<u>×</u>	2	=	7.		5		

P

Index Map for Grid System in Detroit River

() ()

<u>g</u>

Charr

Index Map for Grid System in Lower St. Mary's River

((,0)0|

Index Map for Grid System in Upper St. Mary's River

?22