

## 3.1.8 Face tracking

In this course, we will complete face tracking, which will use PID. Code path:

/home/pi/Yahboom\_Project/3.AI\_Visual\_course/08.Face\_tracking/Face\_tracking.ipy nb

```
#bgr8 to jpeg format
import enum
import cv2
def bgr8 to jpeg(value, quality=75):
     return bytes(cv2.imencode('.jpg', value)[1])
## Import related packages and create camera instances
import cv2
import ipywidgets.widgets as widgets
import threading
import time
import sys
image_widget = widgets.Image(format='jpeg', width=320, height=240)
display(image widget)
# Add PID slider to adjust PID value
import ipywidgets as widgets
XServo P = widgets.FloatSlider(
value=1.1,
min=0,
max=10.0,
step=0.1,
description='XServo-P:',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout format='.1f',
)
XServo I = widgets.FloatSlider(
value=0.2,
min=0,
max = 10.0,
step=0.1,
description='XServo-I:',
disabled=False,
```



```
continuous_update=False,
orientation='horizontal',
readout=True,
readout format='.1f',
XServo_D = widgets.FloatSlider(
value=0.8,
min=0,
max = 10.0,
step=0.1,
description='XServer-D:',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',
YServo P = widgets.FloatSlider(
value=0.8,
min=0,
max=10.0,
step=0.1,
description='YServo-P:',
disabled=False,
continuous update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',
YServo_I = widgets.FloatSlider(
value=0.2,
min=0,
max=10.0,
step=0.1,
description='YServo-I:',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',
```



```
YServo D = widgets.FloatSlider(
value=0.8,
min=0,
max=10.0,
step=0.1,
description='YServer-D:',
disabled=False,
continuous update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',
display(XServo_P, XServo_I, XServo_D, YServo_P, YServo_I, YServo_D)
## Create related control variables
global face x, face y, face w, face h
face_x = face_y = face_w = face h = 0
global target valuex
target_valuex = 2048
global target valuey
target valuey = 2048
## Create a PID control instance
import PID
# xservo pid = PID.PositionalPID(1.1, 0.2, 0.8)
# yservo_pid = PID.PositionalPID(0.8, 0.2, 0.8)
xservo pid = PID.PositionalPID(XServo P.value, XServo I.value, XServo D.value)
yservo pid = PID.PositionalPID(YServo P.value, YServo I.value, YServo D.value)
# Import Raspblock drive board function
from Raspblock import Raspblock
robot = Raspblock()
## Load the "Haar"" cascade classifier
import cv2
face haar = cv2.CascadeClassifier('haarcascade profileface.xml')
# Open camera
image = cv2.VideoCapture(0)
image.set(3,320)
image.set(4,240)
image.set(5, 120) #Set frame rate
image.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter.fourcc('M', 'J', 'P', 'G'))
image.set(cv2.CAP PROP BRIGHTNESS, 40) #set brightness -64 - 64 0.0
image.set(cv2.CAP PROP CONTRAST, 50)
                                            #set contrast -64 - 64 2.0
```



image.set(cv2.CAP PROP EXPOSURE, 156) #set exposure 1.0 - 5000 ## The main process of the head movement while 1: ret, frame = image.read() try: image widget.value = bgr8 to jpeg(frame) except: continue # Convert the image to black-white image gray\_img = cv2.cvtColor(frame, cv2.COLOR\_BGR2GRAY) faces = face haar.detectMultiScale(gray img, 1.1, 3) xservo pid = PID.PositionalPID(XServo P.value, XServo I.value, XServo D.value) yservo\_pid = PID.PositionalPID(YServo\_P.value, YServo\_I.value, YServo\_D.value) if len(faces) > 0: (face\_x, face\_y, face\_w, face\_h) = faces[0] #cv2.rectangle(frame,(face\_x+10,face\_y),(face\_x+face\_w-10,face\_y+face\_h+20),(0,25 5,0),2) cv2.rectangle(frame,(face x,face y),(face x+face w,face y+face h),(0,255,0),2) try: image\_widget.value = bgr8\_to\_jpeg(frame) except: continue #Proportion-Integration-Differentiation Arithmetic # Input X axis direction parameter PID control input xservo pid.SystemOutput = face x + face w/2xservo pid.SetStepSignal(150) xservo pid.SetInertiaTime(0.01, 0.1) target valuex = int(1500 + xservo pid.SystemOutput) # Input Y axis direction parameter PID control input yservo\_pid.SystemOutput = face\_y + face\_h/2 yservo pid.SetStepSignal(120) yservo pid.SetInertiaTime(0.01, 0.1) target valuey = int(1500 - yservo pid.SystemOutput) # Rotate the camera pan to the PID adjustment and calibration position robot.Servo control(target valuex,target valuey)

After run above program, we can see following picture, the face in the camera screen



## will be detected.

