

Created by:
Aziz Prabowo
azizprabowo128@gmail.com
linkedin.com/in/aziz-prabowo

A fresh graduate in Data Science with high interest artificial intelligence, data science, and business analytics. Experienced in data cleaning, exploratory data analysis, visualization, machine learning, and basic deep learning through academic, bootcamps, courses, and personal projects.

Supported by:
Rakamin Academy
Career Acceleration School
www.rakamin.com

Project Overview

Background

Human resources (HR) are the company's most valuable asset and must be managed effectively to achieve business goals. In this project, we focus on understanding how to retain employees and reduce turnover, which otherwise leads to high recruitment and training costs. By identifying the key factors that drive attrition, the company can design relevant programs to improve employee satisfaction and retention.

Goal

Understand and analyze employee behavior using historical HR data to identify the key factors influencing attrition.

Objective

Develop a predictive model that identifies employees at risk of resigning by leveraging demographic, performance, and engagement data, allowing the company to implement proactive, data-driven HR interventions that reduce turnover and optimize workforce management.

Dataset Information

ata	columns (total 25 columns):		
#	Column	Non-Null Count	Dtype
0	Username	287 non-null	object
1	EnterpriseID	287 non-null	int64
2	StatusPernikahan	287 non-null	object
3	JenisKelamin	287 non-null	object
4	StatusKepegawaian	287 non-null	object
5	Pekerjaan	287 non-null	object
6	JenjangKarir	287 non-null	object
7	PerformancePegawai	287 non-null	object
8	AsalDaerah	287 non-null	object
9	HiringPlatform	287 non-null	object
10	SkorSurveyEngagement	287 non-null	int64
11	SkorKepuasanPegawai	282 non-null	float6
12	JumlahKeikutsertaanProjek	284 non-null	float6
13	JumlahKeterlambatanSebulanTerakhir	286 non-null	float6
14	JumlahKetidakhadiran	281 non-null	float6
15	NomorHP	287 non-null	object
16	Email	287 non-null	object
17	TingkatPendidikan	287 non-null	object
18	PernahBekerja	287 non-null	object
19	IkutProgramLOP	29 non-null	float6
20	AlasanResign	221 non-null	object
21	TanggalLahir	287 non-null	object
22	TanggalHiring	287 non-null	object
23	TanggalPenilaianKaryawan	287 non-null	object
24	TanggalResign	287 non-null	object

The dataset contains **25 columns** and **287 rows**. Several columns, such as Employee
Satisfaction Score, Number of Projects Joined,
Recent Monthly Lateness, Absenteeism,
Participation in the LOP Program, and
Resignation Reason, contain missing values.
These missing values must be handled before moving forward with eda.

Data Cleaning for EDA

USELLIAME	0
EnterpriseID	0
StatusPernikahan	0
JenisKelamin	0
StatusKepegawaian	0
Pekerjaan	0
JenjangKarir	0
PerformancePegawai	0
AsalDaerah	0
HiringPlatform	0
SkorSurveyEngagement	0
SkorKepuasanPegawai	5
JumlahKeikutsertaanProjek	3
JumlahKeterlambatanSebulanTerakhir	1
JumlahKetidakhadiran	6
NomorHP	0
Email	0
TingkatPendidikan	0
PernahBekerja	0
IkutProgramLOP	258
AlasanResign	66
TanggalLahir	0
TanggalHiring	0
TanggalPenilaianKaryawan	0
TanggalResign	0
dtype: int64	

The column *IkutProgramLOP* (Participation in LOP Program) has over 90% missing values and was removed from the dataset. For the AlasanResign column, missing values were imputed with "Unknown." Columns with smaller portions of missing data, such as SkorKepuasanPegawai, JumlahKeikutsertaanProjek, JumlahKeterlambatanSebulanTerakhir, dan JumlahKetidakhadiran, were imputed using statistical measures.

Data Cleaning for EDA


```
Value Counts - PernahBekerja

1 286

yes 1

Name: count, dtype: int64
```

Value Counts - StatusPernikahan
Belum_menikah 132
Menikah 57
Lainnya 48
Bercerai 47
- 3
Name: count, dtype: int64

One category in the PernahBekerja column only contained a single value, so the column was removed. Additionally, the "—" category in StatusPernikahan was merged with Lainnya since both categories carry similar meaning.

Exploratory Data Analysis

2017 Was a Turning Point for Employee Retention

Between 2006 and 2016, the company consistently experienced positive growth in employee numbers, as new hires always exceeded resignations. However, 2017 marked a turning point: the number of resignations began to surpass new hires.

Exploratory Data Analysis

The **Data Analyst** role has the highest resignation rate, with 50% of employees leaving, followed by other strategic positions such as Front End Engineer (40%) and UI/UX Designer (37.5%). High attrition in these technical roles signals serious retention challenges, risking project continuity and increasing the workload for remaining staff.

Exploratory Data Analysis

Toxic Culture is the Main Reason Top Talent Resigns

Distribution of Resignations Based on Career Level, Performance, and Reason for Resignation (Division of Resignation (Division of Resignation (Division of Resignation of Resignation (Division of Resignation of Resignation of Resignation (Division of Resignation of Resignation (Division of Resignation of Resignation (Division of Resignation of Resignation of Resignation (Division of Resignation of Resignation (Division of Resignation of Resignation (Division of Resignation of Resignation of Resignation (Division of Resignation of Resignation of Resignation of Resignation (Division of Resignation of Resignation of Resignation of Resignation of Resignation of Resignation (Division of Resignation of Resign

A large proportion of employees who resigned actually came from high-performance groups. The leading cause is toxic work culture (38%), followed by internal conflict (13%). Toxic culture appears consistently across most categories, making it the primary driver of attrition among top talent.

Data Cleaning for Modeling

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 287 entries, 0 to 286
Data columns (total 18 columns):
Column

Data	columns (total 18 co	olumns):			
#	Column		Non	-Null Count	Dtype
0	StatusPernikahan		287	non-null	object
1	JenisKelamin		287	non-null	object
2	StatusKepegawaian		287	non-null	object
3	Pekerjaan	From 25	287	non-null	object
4	JenjangKarir	to 18	287	non-null	object
5	PerformancePegawai	features	287	non-null	object
6	AsalDaerah	leatures	287	non-null	object
7	HiringPlatform		287	non-null	object
8	SkorSurveyEngagement		287	non-null	int64
9	SkorKepuasanPegawai		287	non-null	float64
10	JumlahKeikutsertaanF	Projek	287	non-null	float64
11	JumlahKeterlambatanS	SebulanTerakhir	287	non-null	float64
12	JumlahKetidakhadirar	1	287	non-null	float64
13	TingkatPendidikan		287	non-null	object
14	TanggalLahir		287	non-null	object
15	TanggalHiring		287	non-null	object
16	TanggalPenilaianKary	/awan	287	non-null	object
17	TanggalResign		287	non-null	object
dtvne	es: float64(4), int64	(1), object(13)			

dtypes: float64(4), int64(1), object(13)

memory usage: 40.5+ KB

The IkutProgramLOP feature was removed due to excessive missing values. Non-informative features such as Username, EnterpriseID, NomorHP, Email, AlasanResign were also dropped. For skewed numeric features such as JumlahKeikutsertaanProjek, JumlahKeterlambatanSebulanTerakhir, and JumlahKetidakhadiran missing values were imputed with the median to avoid distortion from outliers. Categorical features with missing values were imputed with the mode. Features like AlasanResign and TanggalResign were excluded to prevent data leakage.

Feature Engineering

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 287 entries, 0 to 286
Data columns (total 16 columns):

memory usage: 36.0+ KB

Data	columns (total 16 col	Lumns):		
#	Column		Non-Null Count	Dtype
0	StatusPernikahan		287 non-null	object
1	JenisKelamin	From 18	287 non-null	object
2	StatusKepegawaian	to 16	287 non-null	object
3	Pekerjaan	features	287 non-null	object
4	JenjangKarir	routur oo	287 non-null	object
5	PerformancePegawai		287 non-null	object
6	AsalDaerah		287 non-null	object
7	9		287 non-null	object
8			287 non-null	float64
9	TingkatPendidikan		287 non-null	object
10	Attrition		287 non-null	int64
11	Usia		287 non-null	int64
12	LamaBekerja		287 non-null	int64
13	BulanSejakPenilaian		287 non-null	int64
14	AktifScore		287 non-null	float64
15	SkorGabungan		287 non-null	float64
dtyp	es: float64(3), int64	(4), object(9)		

The target variable Attrition was created based on whether the TanggalResign exists (1 = resigned, 0 = stayed). Date fields were converted to datetime and transformed into new features: Usia, LamaBekerja, and BulanSejakPenilaian.

Additional features included:

- AktifScore = JumlahKeikutSertaanProyek JumlahKetidakhadiran
- SkorGabungan = 60%
 SkorSurveyEngagement + 40%
 SkorKepuasanPegawai
- Irrelevant or redundant columns were then removed to simplify the dataset.

Preprocessing

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 287 entries, 0 to 286
Data columns (total 40 columns):

Data	columns (total 40 columns):		
#	Column	Non-Null Count	Dtype
	200000 WILLIAM IN W		
0	scaleJumlahKeterlambatanSebulanTerakhir	287 non-null	float64
1	scale_Usia	287 non-null	float64
2	scale_LamaBekerja	287 non-null	float64
3	scaleBulanSejakPenilaian	287 non-null	float64
4	scaleAktifScore	287 non-null	float64
5	scaleSkorGabungan	287 non-null	float64
6	ord_encJenjangKarir	287 non-null	float64
7	ord_encPerformancePegawai	287 non-null	float64
8	ord_encTingkatPendidikan	287 non-null	float64
9	nom enc JenisKelamin Wanita	287 non-null	float64
10	nom_encStatusPernikahan_Bercerai	287 non-null	float64
11	nom enc StatusPernikahan Lainnya	287 non-null	float64
12	nom enc StatusPernikahan Menikah	287 non-null	float64
13	nom enc Pekerjaan Data Engineer	287 non-null	float64
14	nom_enc_ Pekerjaan DevOps Engineer	287 non-null	float64
15	nom enc Pekerjaan Digital Product Manager	287 non-null	float64
16	nom enc Pekerjaan Machine Learning Engineer	287 non-null	float64
17	nom enc Pekerjaan Product Design (UI & UX)	287 non-null	float64
18	nom enc Pekerjaan Product Design (UX Researcher)	287 non-null	float64
19	nom enc Pekerjaan Product Manager	287 non-null	float64
20	nom_encPekerjaan_Scrum Master	287 non-null	float64
21	nom enc Pekerjaan Software Architect	287 non-null	float64
22	nom enc Pekerjaan Software Engineer (Android)	287 non-null	float64
23	nom enc Pekerjaan Software Engineer (Back End)	287 non-null	float64
24	nom_encPekerjaan_Software Engineer (Front End)	287 non-null	float64
25	nom enc Pekerjaan Software Engineer (iOS)	287 non-null	float64
26	nom enc StatusKepegawaian Internship	287 non-null	float64
27	nom_enc_StatusKepegawaian_Outsource	287 non-null	float64
28	nom enc AsalDaerah Jakarta Pusat	287 non-null	float64
29	nom enc AsalDaerah Jakarta Selatan	287 non-null	float64
30	nom enc AsalDaerah Jakarta Timur	287 non-null	float64
31	nom enc AsalDaerah Jakarta Utara	287 non-null	float64
32	nom enc HiringPlatform Diversity Job Fair	287 non-null	float64
33	nom enc HiringPlatform Employee Referral	287 non-null	float64
34	nom enc HiringPlatform Google Search	287 non-null	float64
35	nom enc HiringPlatform Indeed	287 non-null	float64
36	nom enc HiringPlatform LinkedIn	287 non-null	float64
37	nom_enc_ HiringPlatform_On-line Web_application	287 non-null	float64
38	nom enc HiringPlatform Other	287 non-null	float64
39	nom_enc_HiringPlatform_Website	287 non-null	float64
	es: float64(40)		
J P			

- Numerical features (e.g., JumlahKeterlambatanSebulanTerakhir, Usia, LamaBekerja) → scaled with RobustScaler to reduce outlier impact.
- Ordinal features (e.g., JenjangKarir, PerformancePegawai, dan TingkatPendidikan) → encoded with OrdinalEncoder.
- Nominal features (e.g., JenisKelamin, StatusPernikahan, Pekerjaan) → encoded with OneHotEncoder, dropping the first category to avoid dummy trap.

Data Sampling

Imbalance Class

The dataset is imbalanced, with 31% attrition vs. 69% non-attrition. To address this, oversampling and undersampling methods were tested. The evaluation focused on the **F2-score**, prioritizing recall (detecting employees at risk of resigning) as an early warning system.

Data Sampling

Data Sampling Result

	Sampling Method	precision	recall	f1	f2	roc_auc
12	SMOTEENN	0.310 ± 0.027	0.744 ± 0.139	0.436 ± 0.047	0.579 ± 0.082	0.511 ± 0.114
9	AllKNN	0.278 ± 0.108	0.675 ± 0.258	0.393 ± 0.151	0.524 ± 0.200	0.489 ± 0.105
7	EditedNearestNeighbours	0.322 ± 0.059	0.574 ± 0.112	0.411 ± 0.074	0.495 ± 0.091	0.510 ± 0.083
11	InstanceHardnessThreshold	0.334 ± 0.063	0.554 ± 0.163	0.412 ± 0.083	0.485 ± 0.117	0.511 ± 0.098
8	RepeatedEditedNearestNeighbours	0.299 ± 0.051	0.565 ± 0.229	0.376 ± 0.098	0.465 ± 0.153	0.502 ± 0.070
5	RandomUnderSampler	0,310 ± 0.096	0.475 ± 0.161	0.373 ± 0.116	0.427 ± 0.137	0.493 ± 0.119
10	NeighbourhoodCleaningRule	0.306 ± 0.056	0.463 ± 0.130	0.365 ± 0.077	0.417 ± 0.103	0.487 ± 0.102
2	SMOTE	0.310 ± 0.103	0.440 ± 0.151	0.362 ± 0.120	0.405 ± 0.135	0.492 ± 0.126
3	BorderlineSMOTE	0.315 ± 0.092	0.418 ± 0.149	0.357 ± 0.113	0.391 ± 0.132	0.505 ± 0.106
13	SMOTETomek	0.292 ± 0.119	0.407 ± 0.183	0.338 ± 0.142	0.375 ± 0.164	0.491 ± 0.127
1	RandomOverSampler	0.289 ± 0.106	0.393 ± 0.158	0.330 ± 0.122	0.364 ± 0.140	0.512 ± 0.143
4	SVMSMOTE	0.313 ± 0.124	0.351 ± 0.164	0.328 ± 0.137	0.341 ± 0.151	0.499 ± 0.113
6	TomekLinks	0.227 ± 0.248	0.126 ± 0.141	0.153 ± 0.163	0.135 ± 0.146	0.493 ± 0.098
0	No Sampling	0.194 ± 0.267	0.081 ± 0.122	0.103 ± 0.143	0.087 ± 0.126	0.497 ± 0.133

The experimental results show that the **SMOTEENN** data sampling method delivers the best performance compared to other methods, with an **F2 score of 0.679**, a recall of 0.744, and a **ROC AUC of 0.511**.

Considering that the main focus is to maximize the detection of employees who are likely to resign (recall) while maintaining a balanced penalty through the F2 score, SMOTEENN is selected as the sampling method to be used in the next stage of model training.

Model Selection

Model Selection Result

	F1-score (mean)	F2-score (mean)	Precision (mean)	Recall (mean)	ROC-AUC (mean)
KNN	0.4547	0.6389	0.3074	0.8773	0.4763
SVM	0.4242	0.5903	0.2895	0.8028	0.4363
LogReg	0.4273	0.5728	0.3011	0.7444	0.4897
CatBoost	0.4293	0.5689	0.3062	0.7306	0.5081
Ridge	0.4189	0.5532	0.2996	0.7083	0.4869
XGBoost	0.4315	0.5380	0.3267	0.6481	0.5341
RandomForest	0.4154	0.5366	0.3032	0,6699	0.5026
MLP	0.4197	0.5350	0.3105	0.6593	0.4934
ExtraTrees	0.4182	0.5329	0.3100	0.6569	0.5017
AdaBoost	0.4155	0.5275	0.3093	0.6477	0.5129
PA	0.3985	0.5113	0.2958	0.6398	0.4813
GradientBoost	0.4048	0.5091	0.3034	0.6181	0.4947
LightGBM	0.4072	0.5062	0.3105	0.6102	0.5003
DecisionTree	0.3973	0.4923	0.3025	0.5889	0.4936

Among tested models, **KNN** performed best with the highest F2-score (0.6389), followed by **SVM** (0.5903). The F2 metric was chosen because it emphasizes recall, minimizing the risk of missing at-risk employees.

Hyperparameter Tuning

Hyperparameter Tuning Result

Best Parameters	Best Score	F1	F2	ROC-AUC	Precision	Recall
{'classifier_learning_rate': 0.05, 'classifie	0.656886	0.459459	0.697674	0.407639	0.315789	1.0
{'classifier_C': 0.1, 'classifier_gamma': 's	0.691888	0.459459	0.692308	0.386806	0.310345	1.0
{'classifier_C': 0.1, 'classifier_l1_ratio':	0.693247	0.459459	0.692308	0.308333	0.310345	1.0
{'classifier_depth': 4, 'classifier_iteratio	0.692262	0.459459	0.674603	0.517361	0.314815	0.944444
{'classifier_metric': 'euclidean', 'classifie	0.674915	0.459459	0.664062	0.386806	0.303571	0.944444
	{'classifier_learning_rate': 0.05, 'classifie {'classifier_C': 0.1, 'classifier_gamma': 's {'classifier_C': 0.1, 'classifier_l1_ratio': {'classifier_depth': 4, 'classifier_iteratio	{'classifier_learning_rate': 0.05, 'classifie 0.656886 {'classifier_C': 0.1, 'classifier_gamma': 's 0.691888 {'classifier_C': 0.1, 'classifier_l1_ratio': 0.693247 {'classifier_depth': 4, 'classifier_iteratio 0.692262	{'classifier_learning_rate': 0.05, 'classifie 0.656886 0.459459 {'classifier_C': 0.1, 'classifier_gamma': 's 0.691888 0.459459 {'classifier_C': 0.1, 'classifier_l1_ratio': 0.693247 0.459459 {'classifier_depth': 4, 'classifier_iteratio 0.692262 0.459459	{'classifier_learning_rate': 0.05, 'classifie 0.656886 0.459459 0.697674 {'classifier_C': 0.1, 'classifier_gamma': 's 0.691888 0.459459 0.692308 {'classifier_C': 0.1, 'classifier_l1_ratio': 0.693247 0.459459 0.692308 {'classifier_depth': 4, 'classifier_iteratio 0.692262 0.459459 0.674603	{'classifier_learning_rate': 0.05, 'classifie 0.656886 0.459459 0.697674 0.407639 {'classifier_C': 0.1, 'classifier_gamma': 's 0.691888 0.459459 0.692308 0.386806 {'classifier_C': 0.1, 'classifier_l1_ratio': 0.693247 0.459459 0.692308 0.308333 {'classifier_depth': 4, 'classifier_iteratio 0.692262 0.459459 0.674603 0.517361	{'classifier_learning_rate': 0.05, 'classifie 0.656886 0.459459 0.697674 0.407639 0.315789 {'classifier_C': 0.1, 'classifier_gamma': 's 0.691888 0.459459 0.692308 0.386806 0.310345 {'classifier_C': 0.1, 'classifier_l1_ratio': 0.693247 0.459459 0.692308 0.308333 0.310345 {'classifier_depth': 4, 'classifier_iteratio 0.692262 0.459459 0.674603 0.517361 0.314815

After tuning five top models (KNN, SVM, Logistic Regression, XGBoost, CatBoost), **XGBoost** achieved the best performance with:

- Training F2 = 0.6568
- Testing F2 = 0.6977
- F1 = 0.4600, Precision = 0.3158, Recall = 1.0000

Since recall was the priority, XGBoost was selected as the final model.

Model Evaluation

XGBoost Confusion Matrix

The confusion matrix shows the model achieved perfect recall (1.00), correctly identifying all 18 employees who resigned. However, it also produced many false positives (low precision = 0.33), misclassifying non-resigners as at-risk. While the model is highly sensitive, making it useful for early intervention, it lacks specificity in distinguishing actual stayers.

Model Interpretability

SHAP Value Summary Plot

Pekerjaan Software Engineer (Front End) AsalDaerah Jakarta Timur HiringPlatform LinkedIn PerformancePegawai BulanSejakPenilaian AktifScore TingkatPendidikan HiringPlatform Google Search AsalDaerah Jakarta Selatan SkorGabungan lumlahKeterlambatanSebulanTerakhir StatusPernikahan Lainnya LamaBekeria Pekeriaan Software Engineer (Back End) AsalDaerah Jakarta Utara StatusKepegawaian Outsource Pekerjaan Product Design (UI & UX) HiringPlatform Employee Referral JenjangKarir

SHAP analysis highlighted key attrition drivers:

- Being a Front End Engineer
 significantly increases resignation risk.
- Employees from East Jakarta and those recruited via LinkedIn showed higher attrition likelihood.
- High-performing employees
 paradoxically face higher risk of leaving.
- Longer gaps since the last evaluation correlate with higher attrition.
- Lower Activity Score strongly signals risk.

Model Interpretability

An Employee's Prediction Simulation

In an example case, an employee showed a high attrition score (2.35 vs. baseline 1.52). Main risk drivers: role as Front End Engineer, long gap since last evaluation, higher education level, frequent lateness, and certain regional background. Protective factors included age, good performance, engagement score, and longer tenure—but these were insufficient to offset the risks

Recommendations

1. Focus on Front End Engineers and Young Talent

Provide structured career paths, mentorship programs, and balanced workloads to reduce burnout.

2. Accelerate Evaluations and Career Development

Conduct quarterly performance reviews with clear feedback, promotions, and project opportunities.

3. Location- and Performance-Based Interventions

- Introduce flexible policies (e.g., hybrid work, commuting support) for employees in high-cost areas like South Jakarta.
- Use lateness and absenteeism data as early warning indicators to trigger retention actions.

4. Foster a Healthy Work Culture

Address toxic cultural factors through leadership training, anonymous feedback systems, and recognition programs.

5. Leverage Predictive Analytics for HR Decisions

Integrate the model into HR systems to continuously monitor attrition risk and enable proactive management actions.

