

RIP (ROUTING INFORMATION PROTOCOL)

MẠNG MÁY TÍNH NÂNG CAO

Inson@fit.hcmus.edu.vn

- Routing Information Protocol (RIP)
- Interior Gateway Routing Protocol (IGRP)
- Enhanced Interior Gateway Routing Protocol (EIGRP)

Ý nghĩa của Distance Vector:

- Router sử dụng giao thức định tuyến distance vector cần biết 2 thứ:
 - Khoảng cách (Distance) đến đích.
 - Hướng (Vector) mà traffic sẽ đi.

Đặc điểm giao thức định tuyến Distance Vector:

- Định kỳ cập nhật
- Biết thông tin từ các hàng xóm
- Broadcast updates

Thuật toán Routing Protocol:

- Gửi và nhận các gói cập nhật
- Tính toán đường đi tốt nhất
- Phát hiện và cập nhật khi topology thay đối

Network	Interface	Hope
172.16.1.0/24	Fa0/0	0
172.16.2.0/24	S0/0/0	0
172.16.3.0/24	S0/0/0	- 1

Network	Interface	Hope
172.16.3.0/24	Fa0/0	0
172.16.2.0/24	S0/0/0	0
172.16.1.0/24	S0/0/0	1

- Tiêu chuẩn để so sánh các giao thức định tuyến:
 - Thời gian hội tụ
 - Khả năng mở rộng
 - Tài nguyên
 - Cài đặt và bảo trì
- Thuận lợi của giao thức định tuyến Distance Vector
 - Dễ dàng cài đặt và bảo trì
 - Tốn ít tài nguyên
- Hạn chế của giao thức định tuyến Distance Vector
 - Hội tụ chậm
 - Khó mở rộng
 - Routing loops

Router khởi động

 Khởi tạo: Các kết nối vật lý sẽ có đầu tiên trong bảng định tuyến

Network Discovery - Cold Start

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	S0/0/0	0

Network	Interface	Нор
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/1	0

Network	Interface	Нор
10.3.0.0	S0/0/1	0
10.4.0.0	Fa0/0	0

- Trao đổi thông tin định tuyến: Nếu Router được cấu hình định tuyến:
 - Các Router sẽ trao đổi thông tin định tuyến
 - Nhận thông tin cập nhật định tuyến từ các Router khác.
- Router kiểm tra, cập nhật thông tin mới. Nếu có thông tin mới:
 - Cập nhật Metric
 - Lưu trữ thông tin mới vào bảng định tuyến

Network Discovery - Initial Exchange

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/0	1

Network	Interface	Нор
10.2.0.0	\$0/0/0	0
10.3.0.0	S0/0/1	0
10.1.0.0	\$0/0/0	1
10.4.0.0	S0/0/1	1

Network	Interface	Нор
10.3.0.0	S0/0/1	0
10.4.0.0	Fa0/0	0
10.2.0.0	S0/0/1	1

- Router hội tụ khi tất cả các bảng định tuyến trong mạng đều có thông tin về các đường mạng giống nhau.
- Các Router tiếp tục trao đổi thông tin định tuyến nếu như có thông tin mới. Nếu không có thì mạng hội tụ.

Network Discover - Next Update

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/0	1
10.4.0.0	S0/0/0	2

Network	Interface	Нор
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/1	0
10.1.0.0	S0/0/0	1
10.4.0.0	S0/0/1	1

Network	Interface	Нор
10.3.0.0	S0/0/1	0
10.4.0.0	Fa0/0	0
10.2.0.0	S0/0/1	1
10.1.0.0	S0/0/1	2

- Tốc độ hội tụ phụ thuộc vào 2 yếu tố:
 - Tốc độ broadcast thông tin định tuyến
 - Tốc độ tính toán đường đi

 Router sẽ gửi thông tin định tuyến và cập nhật sau những khoảng thời gian định kỳ.

RIP dùng 4 timer:

- Update timer
- Invalid timer
- Holddown timer
- Flush timer

- Bounded Updates: EIGRP
- EIGRP cập nhật định tuyến:
 - Cập nhật một phần
 - Được kích hoạt khi topology thay đổi

Bounded

Không định kỳ

Bounded Updates: EIGRP

- **-**
- Triggered Updates. Những điều kiện để kích hoạt cập nhật:
 - Interface thay đổi trạng thái
 - Đường đi bị cùng
 - Đường đi bị thay thế trong bảng định tuyến

Random Jitter

- Cập nhật đồng bộ: Nhiều Router cùng gửi cập nhật thông tin định tuyến tại một thời điểm.
 - Vấn đề phát sinh:
 - Bandwidth
 - Packet collisions
 - Giải quyết

Sử dụng biến ngẫu nhiên

RIP_JITTER

Routing Loops

- Routing loops là tình trạng gói tin truyền đi qua nhiều Router (lặp đi lặp lại, thành vòng)mà không đến được đích.
- Bài tập về nhà + giải thích trên lớp:
 - Tìm hiểu nguyên nhân routing loops trong định tuyến distance vector
 - Phương pháp để ngăn ngừa routing loops trong distance vector

Giới thiệu RIP

- ☐ Là giao thức định tuyến distance vector
- □ Lựa chọn đường đi tốt nhất dựa vào số hop đi qua.
- Đường đi có số lượng hop đi qua lớn hơn 15 là đường đi không thể đến được.
- Cập nhật thông tin toàn bộ bảng định tuyến định kì 30 giây bằng việc gửi broadcast ra tất cả các cổng.
- □Có 2 loai:
 - RIP version 1: Giao thức định tuyến classful
 - RIP version 2: Giao thức định tuyến classless

RIPv1

 Không gửi subnet mask trong các gói tin quảng bá thông tin đường đi. Default Subnet Masks for Address Classes

8 bits	8 bits	8 bits	8 bits
Network	Host	Host	Host
255 .	Δ.	. 0	. 0

	Network	k Network		Host		Host	
1	255	_	255	 0	_	0	

Class C:

Class B:

Class A:

Network	Network	Network	Host		
255	. 255	. 255	. 0		

Class A Address Range: 1.0.0.0 to 126.255.255.255 Class B Address Range: 128.0.0.0 to 191.255.255.255 Class C Address Range: 192.0.0.0 to 223.255.255.255

RIPv1 - Load balancing

- RIP có khả năng hỗ trợ load balancing tối đa 6 đường có metric bằng nhau
- Router(config-router)# maximum-paths [number]

RIPv1 – Router biên

- ☐ RIP tự động tổng hợp các mạng classful
- Các router biên tổng hợp các subnet thành mạng gốc và gửi đường mạng gốc cho các router láng giềng.
 RIP BOUNDAITY ROUTER

RIP Topology: Scenario B

Device	Interface	IP Address	Subnet Mask		
R1	Fa0/0	172.30.1.1	255.255.255.0		
K1	S0/0/0	172.30.2.1	255.255.255.0		
	Fa0/0	172.30.3.1	255.255.255.0		
R2	S0/0/0	172.30.2.2	255.255.255.0		
	S0/0/1	192.168.4.9	255.255.255.252		
Do	Fa0/0	192.168.5.1	255.255.255.0		
R3	S0/0/1	192.168.4.10	255.255.255.252		

- □RIP tổng hợp các mạng classful thành mạng gốc tại các router biên.
 - R2 có các interface có 2 đường mạng gốc khác nhau
 →R2 là router biên.
 - Cống Serial 0/0/0 và FastEthernet 0/0 trên router 2 nằm bên trong biên 172.30.0.0
 - Cổng Serial 0/0/1 nằm bên trong biên 192.168.4.0

☐ Thông tin cập nhật về các đường 172.30.1.0, 172.30.2.0 và 172.30.3.0 networks sẽ tự động được tổng hợp thành 172.30.0.0 khi gửi ra cổng Serial 0/0/1 của R2


```
R2#debug ip rip
RIP protocol debugging is on
RIP: received v1 update from 172.30.2.1 on Serial0/0/0
      172.30.1.0 in 1 hops
(**output omitted**)
R2#undebug all
All possible debugging has been turned off
R2#show ip route
<output omitted>
Gateway of last resort is not set
     172.30.0.0/24 is subnetted, 3 subnets
        172.30.1.0 [120/1] via 172.30.2.1, 00:00:18, Serial0/0/0
        172.30.2.0 is directly connected, Serial0/0/0
        172.30.3.0 is directly connected, FastEthernet0/0
     192.168.4.0/30 is subnetted, 1 subnets
        192.168.4.8 is directly connected, Serial0/0/1
     192.168.5.0/24 [120/1] via 192.168.4.10, 00:00:16, Serial0/0/1
R2#
```



```
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
     (**output omitted**)
Gateway of last resort is not set
    172.30.0.0/24 is subnetted, 3 subnets
       172.30.1.0 is directly connected, FastEthernet0/0
       172.30.2.0 is directly connected, Serial0/0/0
       172.30.3.0 [120/1] via 172.30.2.2, 00:00:17, Serial0/0/0
    192.168.4.0/24 [120/1] via 172.30.2.2, 00:00:17, Serial0/0/0
    192.168.5.0/24 [120/2] via 172.30.2.2, 00:00:17, Serial0/0/0
R3#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
     (**output omitted**)
Gateway of last resort is not set
     172.30.0.0/16 [120/1] via 192.168.4.9, 00:00:15, Serial0/0/1
     192.168.4.0/30 is subnetted, 1 subnets
        192.168.4.8 is directly connected, Serial0/0/1
     192.168.5.0/24 is directly connected, FastEthernet0/0
```


RIPv1 - Lợi ích của tổng hợp

- ☐ Thông tin cập nhật định tuyến nhỏ hơn
- →Tiết kiệm được băng thông đường truyền
 - RIP chỉ gửi duy nhất thông tin tổng hợp cho toàn mạng classful thay vì gửi từng thông tin về các subnet khác nhau.
- ☐ Thời gian xử lí tại mỗi router nhanh hơn vì kích thước bảng định tuyến được thu nhỏ lại.

RIPv1 – Han chế

RIPv1 – Hạn chế

- □R1 và R3 có các subnet có cùng đường mạng gốc 172.30.0.0/16, R2 không có.
- □R1 và R3 là các router biên cho mạng gốc 172.30.0.0/16 bởi vì chúng được ngăn cách bởi một mạng gốc khác 209.165.200.0/24
- □Việc ngăn cách này tạo ra một mạng không liên tuc.

RIPv1 – Han chế

- □R1 tống hợp và quảng bá đường đi 172.30.0.0 cho R2 qua cổng S0/0/0
- □R3 tổng hợp và quảng bá đường đi 172.30.0.0 cho R2 qua cổng S0/0/1
- →R2 có 2 đường đến mạng 172.30.0.0 có chi phí bằng nhau
- □R2 sẽ cân bằng tải ra 2 đường cho các mạng đích nào là mạng con của 172.30.0.0
 - R1 và R3 sẽ nhận một nửa lưu lượng

RIPv1 – Han chế


```
R2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
    10.0.0.0/16 is subnetted, 1 subnets
       10.1.0.0 is directly connected, FastEthernet0/0
    172.30.0.0/16 [120/1] via 209.165.200.234, 00:00:14, Serial0/0/1
                [120/1] via 209.165.200.229, 00:00:19, Serial0/0/0
     209.165.200.0/30 is subnetted, 2 subnets
       209.165.200.228 is directly connected, Serial0/0/0
       209.165.200.232 is directly connected, Serial0/0/1
```


RIPv2 - Đặc điểm

- ☐ Là giao thức định tuyến classless distance vector
- → gửi thông tin subnet mask khi quảng bá đường đi.
- ☐ Hỗ trợ VLSM (Variable Length Subnet Masking) và CIDR
- ☐ Hoạt động theo cơ chế tự động tổng hợp đường đi trên các router biên.
- ☐ Hỗ trợ cơ chế xác thực (authentication)
- ☐ Gửi thông tin cập nhật đường đi theo multicast.
- Metric sử dụng là Hop-count, giá trị hop-count lớn nhất là 15
- ☐ Gói tin cập nhật gửi theo chu kì 30s tới địa chỉ multicast 224.0.0.9

□RIPv2 tự động tống hợp đường đi tại các router biên hoặc có thể tổng hợp nhiều đường thành đường có subnet mask nhỏ hơn subnetmask classful.

So sánh RIPv1 & RIPv2

Routing Protocol	Distance Vector	Classless Routing Protocol	Uses Hold- Down Timers	Use of Split Horizon or Split Horizon with Poison Reverse	Max Hop count = 15	Auto Summary	Support CIDR	Supports VLSM	Uses Authen - tication
RIPv1	Yes	No	Yes	Yes	Yes	Yes	No	No	No
RIPv2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Hỏi & Đáp

