STAT 206B

Chapter 4: Bayesian Point Estimation
Chapter 5: Hypothesis Testing & Confidence
Regions

Winter 2022

† Bayesian Inference

- The posterior distribution supposedly contains all the available information about θ .
- The *entire* posterior distribution $\pi(\theta \mid x)$ is the extensive summary of the information available on the parameter θ .
- A visual inspection of the graph of the posterior will often provide the best insight concerning θ (at least in low dimensions)
- More standard uses of the posterior are still helpful e.g. point estimation, interval estimation, testing, prediction...
- CR Chapter 4 and JB Chapter 4.3

† Bayesian Point Estimation: the simplest inferential use of the posterior distribution

- Report a point estimate for $h(\theta)$, with an associated measure of accuracy
 - \Rightarrow Find $\pi(h(\theta) \mid x)$ and then the *Bayes rule d*, i.e., a solution of

$$\min \mathsf{E}^{\pi} \left\{ L(\theta, d) \mid x \right\} \ \text{ for } d \in \mathcal{D} \text{ and } \theta \in \Theta.$$

- ** Recall we found the Bayes actions under standard loss functions such as the quadratic loss, the absolute error loss and the 0-1 loss.
- ** The mean and median of the posterior are frequently better estimates of θ than the mode (i.e., MAP).

† Estimation Error

- We evaluate the precision of $\delta^{\pi}(x)$
- For example, we may use the posterior squared error:

$$\mathsf{E}^{\pi}[(\delta^{\pi}(\mathsf{x}) - \mathsf{h}(\theta))^2 \mid \mathsf{x}].$$

** If we use $E^{\pi}[h(\theta) \mid x]$ as the estimate of $h(\theta)$, report $\sqrt{\operatorname{Var}^{\pi}(h(\theta) \mid x)}$ as the standard error (posterior standard deviation).

• JB Example 1 (p136) Consider the situation wherein a child is given an intelligence test. Assume that the tet result X is $N(\theta, 100)$, where θ is the true IQ (intelligence) level of the child, as measured by the test. Assume also that, in the population as a whole, θ is distributed according to a N(100, 225) distribution. Suppose that we observe a student who scores 115 on the test.

** We can find

$$\theta \mid x \sim N((1/100+1/225)^{-1}(x/100+100/225), (1/100+1/225)^{-1}).$$

$$\Rightarrow \mu^{\pi}(115) = 110.39 \text{ and } \sqrt{V^{\pi}(115)} = \sqrt{69.23} = 8.32.$$

- JB Example 8(p137) Assume $X \sim N(\theta, \sigma^2)$ (σ^2 known) and the noninformative prior $\pi(\theta) = 1$ is used, then the posterior distribution of θ given x is $N(x, \sigma^2)$. Hence the posterior mean is $\mu^{\pi}(x) = x$ and the posterior variance and standard deviation are σ^2 and σ , respectively.
 - ** The same as the usual classical estimate with standard error.
 - ** Their interpretations are different!

- Sampling Properties
 - ** Sampling properties: behavior of an estimator under hypothetically repeatable surveys or experiments.
 - ****** Suppose θ_0 = the true value of the population mean.
 - ** To evaluate how close an estimator $\delta(x)$ is likely to be to θ_0 , we use the mean square error(MSE)

$$\begin{split} \mathsf{MSE}(\delta \mid \theta_0) &= \mathsf{E}\{(\delta - \theta_0)^2 \mid \theta_0\} \\ &= \mathsf{E}\{(\delta - m)^2 \mid \theta_0\} + \mathsf{E}\{(m - \theta_0)^2 \mid \theta_0\} \\ &= \mathsf{Var}(\delta \mid \theta_0) + \mathsf{Bias}^2(\delta \mid \theta_0), \end{split}$$

where $m = \mathsf{E}(\delta \mid \theta_0)$

- PH p82 Recall the IQ example (similar but different!).
 - ** $X \sim N(100, 225)$ for the general population.
 - ** Suppose that we sample n individuals from a particular town and estimate θ , the town-specific mean IQ score based on the sample of size n.
 - ** In fact, people in the town are extremely exceptional so $\theta_0 = 112$ and $\sigma^2 = 169$.
 - ** Consider $x_i \mid \theta \stackrel{iid}{\sim} N(\theta, \sigma^2)$, where $\sigma^2 = 169$ but θ is unknown
 - ** Assume $\theta \sim N(\mu_0, \tau_0^2)$, where $\tau_0 = \sigma/\sqrt{\kappa_0}$
 - ** For Bayesian inference, we lack the information about the town a natural choice of $\mu_0 = 100$.

- PH p82 Example: IQ Scores.
 - ** Let $\kappa_0 = \sigma^2/\tau^2$ and compare $\mathsf{MSE}(\delta_n^\pi \mid \theta_0)$ and $\mathsf{MSE}(\delta_n \mid \theta_0)$ by varying n and κ_0 .
 - ****** MSE errors and sampling distribution of different $\delta_n^{\pi}(x)$

- Comments on unbiasedness
 - ** No Bayes estimate with respect to the squared error loss can be unbiased, except in a case when its Bayes' risk is 0 (that is, the perfect estimation is possible).
 - \Leftrightarrow If $\delta^{\pi}(x)$ is unbiased for θ , then $\delta^{\pi}(x)$ is not Bayes under the squared error loss unless its Bayes risk is zero.

For your practice, show this.

** No problem! Even frequentist agree that insisting on unbiasedness can lead to bad estimators, and that in their quest to minimize the risk by trading off between variance and biassquared a small dosage of bias can help.

- † Interval Estimation (CR 5.5 and JB 4.3.2)
 - $(1-\alpha)100\%$ confidence intervals (Cl's)–Classical interval estimate
 - ** Generate data from the assumed model many times and for each data set to exhibit the CI.
 - ** Now, the proportion of CIs covering the unknown parameter "tends to" $1-\alpha$.
 - We will construct $C_x \subset \Theta$ where θ should be with high probability.
 - ** The distribution used to assess the credibility of an interval estimator is the posterior distribution.

† Credible Sets

• Credible Set: Assume the set C_x is a subset of Θ . Then C_x is a credible set with credibility $(1 - \alpha) \cdot 100\%$ if

$$P^{\pi}(\theta \in C_{x} \mid x) = \mathsf{E}^{\pi}\{1(\theta \in C_{x}) \mid x\} = \int_{C_{x}} \pi(\theta \mid x) d\theta > 1 - \alpha.$$

- ** If the posterior is discrete, then the integral becomes sum.
- Bayesian interpretation of a credible set C_x is natural: The probability of a parameter belonging to the set C_x is 1α .
 - ** The frequentist CI is random but our credible interval is fixed given data.

- † Credible Sets (contd)
 - For a given posterior function such set is not unique.
 - ** Q: How to choose one particular set?
 - For a given credibility level $(1 \alpha)100\%$, the shortest credible set is of interest.
 - The size of a set is simply its total length if the parameter space
 Θ is one dimensional, total area, if Θ is two dimensional, and so on.
 - To minimize the size, sets should correspond to highest posterior probability (density) areas.

† Credible Sets (contd)

• The $(1-\alpha)100\%$ HPD (high posterior density) credible set for parameter θ is a set C_x , subset of Θ of the form

$$C_{x} = \{ \theta \in \Theta \mid \pi(\theta \mid x) \ge k_{\alpha} \},\$$

where k_{α} is the largest constant for which

$$P^{\pi}(\theta \in C_{x} \mid x) \geq 1 - \alpha.$$

- Geometrically, if the posterior density is cut by a horizontal line at the height k_{α} , the set C is projection on the θ axis of the part of line inside the density, i.e., the part that lies below the density.
- See **Def 5.5.2**

• **Example 5.5.3** Consider $x \sim N(\theta, \sigma^2)$. Consider $\theta \sim N(0, \tau^2)$. Find the $100(1 - \alpha)\%$ HPD credible interval.

** Find the $100(1-\alpha)\%$ HPD credible interval with $\pi(\theta) \propto 1$.

Note that we can use improper priors in this setting and do not encounter the same difficulties as when testing the point-null hypothesis.

• **JB Example 10** (p141, with a slight change) Assume that four observations, $x_i = 2, -7, 4, -6$, i = 1, ..., 4 are sampled from Cauchy $C(\theta, 1)$ distribution with parameter of interest θ ($f(x \mid \theta) = 1/\{\pi(1 + (x - \theta)^2)\}$). Consider the flat prior $\pi(\theta) = 1$. Sketch the posterior.

• Example (contd) The posterior is bimodal!

- **Example** (contd) Four horizontal lines at levels k=0.008475, 0.0159, 0.1, and 0.2 are shown. These lines determine four credible sets,
 - ** $k_{0.01} = 0.008475$: [-8.498, 5.077] with $P^{\theta|X}(8.498 \le \theta \le 5.077) = 99\%$;
 - ** $k_{0.05} = 0.0159$: $[-8.189, -3.022] \cup [-0.615, 4.755]$ with posterior credibility of 95%;
 - ** k = 0.1: $[-7.328, -5.124] \cup [1.591, 3.120]$ with posterior credibility of 64.2%;
 - ** k = 0.2: [-6.893, -5.667] with posterior credibility of 31.3%.

• Example (contd)

- ** Observe for $\alpha=0.05$ and 0.1, the credible intervals consist of two separate intervals.
- ** This may indicate that the prior is not agreeing with the data (unimodal in the prior vs bimodal in data).
- ** There is no frequentist counterpart for the CI for θ in the above model.

• **Example** Let $x \mid \theta$ be the shifted exponential with density

$$f(x \mid \theta) = \exp\{-(x - \theta)\}1(\theta \le x).$$

Let θ be half-Cauchy,

$$\pi(\theta) = \frac{2}{\pi(1+\theta^2)}, \quad \theta > 0.$$

Find the posterior and show that $(1 - \alpha)100\%$ HPD credible set is of the form $[\beta, x]$ for some $\beta \in (0, x)$.

• **Example** Let $\eta = e^{\theta}$ and find the posterior $\pi^{\star}(\eta \mid x)$. Show that $\pi^{\star}(\eta \mid x)$ is decreasing in η and that the credible set for η is of the form $[1, \gamma]$, for some $\gamma < e^{x}$.

** Transform the interval of η back to the space of θ and observe $[\log 1, \log \gamma] = [0, \beta'] \neq [\beta, x]$.

- One undesirable property of credible sets is the lack of invariance with respect to monotone transformations.
- For a solution, read JB pages 144-145.
- A HPD credible sets can be found for multivariate cases. See JB p143

† Predictive Inference

- Predict a random variable $y \sim g(y \mid \theta)$ based on observations of $x \sim f(x \mid \theta)$.
 - $\star\star$ no need to be g=f
 - ****** easily can be extended to the case of $y \sim g(y \mid \theta, x)$.
- Find the predictive density of y given x, when the prior for θ is π ,

$$p(y \mid x) = \int_{\Theta} g(y \mid \theta) \pi(\theta \mid x) d\theta.$$

† Predictive Inference (contd)

- Point estimation: use the loss function and find the Bayes actions minimizing $E(L(y, a) \mid x)$.
- Posterior predictive interval for y.