A CURIOUS SEQUENCE §2.3

Copy the following picture onto the board:

This gives the list of points

$$(0,1), (-1,1), (0,2), (1,1), (-2,1), (-1,2), (0,3), (1,2), (2,1), (-3,1), \dots$$

Now convert these to a list of rational numbers by changing (m,n) to $\frac{m}{n}$ to get the sequence

$$\frac{0}{1}, \frac{-1}{1}, \frac{0}{2}, \frac{1}{1}, \frac{-2}{1}, \frac{-1}{2}, \frac{0}{3}, \frac{1}{2}, \frac{2}{1}, \frac{-3}{1}, \dots$$

of rational numbers. Call this sequence $\{w_n\}_{n=1}^{\infty}$.

- (1) True or false: Every rational number occurs in this sequence. That is, for every $q \in \mathbb{Q}$, there is some $n \in \mathbb{N}$ such that $w_n = q$.
- (2) True or false: Every rational number occurs in this sequence infinitely many times. That is, for every $q \in \mathbb{Q}$, there are *infinitely many* natural numbers $n \in \mathbb{N}$ such that $w_n = q$.
- (3) True or false: For every rational number $q \in \mathbb{Q}$, the constant sequence $\{q\}_{n=1}^{\infty}$ is a subsequence of $\{w_n\}_{n=1}^{\infty}$.
- (4) True or false: For every real number $r \in \mathbb{R}$, the constant sequence $\{r\}_{n=1}^{\infty}$ is a subsequence of $\{w_n\}_{n=1}^{\infty}$.
- (5) True or false: Every sequence of rational numbers $\{q_n\}_{n=1}^{\infty}$ is a subsequence of $\{w_n\}_{n=1}^{\infty}$.
- (6) True or false: For every real number $r \in \mathbb{R}$, there is a subsequence of $\{w_n\}_{n=1}^{\infty}$ that converges to r.

THEOREM 21.1: There exists a sequence of rational numbers such that

- •
- •
- •

A CURIOUS IMPOSSIBILITY §2.3

THEOREM 21.2 (CANTOR'S THEOREM): There is no sequence of real numbers such that every real number r occurs in the sequence.

By contradiction, suppose $\{a_n\}_{n=1}^{\infty}$ is a sequence such that every real number occurs as some a_n and write out the decimal expansions (where each $d_{i,j} \in \{0,1,\ldots,9\}$ is a digit).

```
\begin{array}{l} a_1 = (\text{integer part}).d_{1,1}d_{1,2}d_{1,3}d_{1,4}d_{1,5}d_{1,6} \cdots \\ a_2 = (\text{integer part}).d_{2,1}d_{2,2}d_{2,3}d_{2,4}d_{2,5}d_{2,6} \cdots \\ a_3 = (\text{integer part}).d_{3,1}d_{3,2}d_{3,3}d_{3,4}d_{3,5}d_{3,6} \cdots \\ a_4 = (\text{integer part}).d_{4,1}d_{4,2}d_{4,3}d_{4,4}d_{4,5}d_{4,6} \cdots \\ a_5 = (\text{integer part}).d_{5,1}d_{5,2}d_{5,3}d_{5,4}d_{5,5}d_{5,6} \cdots \\ a_6 = (\text{integer part}).d_{6,1}d_{6,2}d_{6,3}d_{6,4}d_{6,5}d_{6,6} \cdots \\ a_7 = (\text{integer part}).d_{7,1}d_{7,2}d_{7,3}d_{7,4}d_{7,5}d_{7,6} \cdots \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \end{array}
```