Ejercicio puntuable del Tema 3

Geometría II, Doble Grado en Matemáticas e Ingeniería Informática, Curso 2020/2021

9 de junio de 2021

Ejercicio 1.- [3.5 puntos] En \mathbb{R}^3 se consideran la métrica euclídea g y el endomorfismo f cuyas matrices en la base usual son

$$\mathcal{M}(g, B_u) = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \qquad \mathcal{M}(f, B_u) = \begin{pmatrix} 1 & -2 & -4 \\ 4 & 7 & 8 \\ -4 & -4 & -5 \end{pmatrix}.$$

- (a) [1 punto] Prueba que f es un endomorfismo autoadjunto respecto de la métrica euclídea q.
- (b) [2.5 puntos] Encuentra una base ortonormal para la métrica euclídea g formada por vectores propios del endomorfismo f.

Ejercicio 2.- [3.5 puntos] Se consideran en \mathbb{R}^3 la métrica euclídea usual g_u y el endomorfismo f cuya matriz en la base usual es

$$\mathcal{M}(f, B_u) = \begin{pmatrix} \frac{1}{3} & -\frac{\sqrt{2}}{3} & \frac{\sqrt{6}}{3} \\ -\frac{\sqrt{2}}{3} & \frac{2}{3} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} & 0 \end{pmatrix}.$$

- (a) [1 punto] Comprueba que f es una simetría ortogonal de (\mathbb{R}^3, g_u) .
- (b) [2.5 puntos] Si denotamos por \mathcal{U} el subespacio vectorial de \mathbb{R}^3 tal que $f = \mathcal{S}_{\mathcal{U}}$ calcula una base ortonormal de \mathcal{U} y otra de \mathcal{U}^{\perp} .

Ejercicio 3.- [3 puntos] Sean (V,g) un espacio vectorial métrico euclídeo de dimensión dos y f un endomorfismo no nulo de V autoadjunto respecto de g con traza(f) = 0. Prueba que existe una base ortonormal para la métrica g tal que la matriz de f en dicha base tiene las dos entradas de la diagonal principal iguales a 0.