

HUAWEI DEVELOPER CONFERENCE 2021

基于软时钟的软总线网络架构及关键技术

分布式软总线为用户使用超级终端提供哪些不一样的体验

无感发现与连接让多个设备自动组成超级终端, 用户无需操作

首次发现时延:单设备 0.5s,4个设备1.5s,

非首次:实时在线,无时延

关键手段:

占空比调整:占空比动态调速,加速发现;

优先级控制:基于场景的优先级控制VO、VI、BE、BK

异构混组网: 蓝牙和WiFi混合组网,可信设备自组网

设备信息交换: 组网后设备间信息交换, 及时感知上下线及信息管理

策略控制:基于场景感知的发现策略:亮灭屏、前后台、夜间、运动等多种场景

••••

华为开发者大会2021

逼近空口速率的传输速度,让G级文件秒传完成

关键措施:

快速唤醒与启动芯片, 进入高性能模式

精准流控算法,调整传输速率

极简协议支持,传输功耗降低10%

多径双路并发,提升文件吞吐

多级动态缓冲池技术, 合理调度提升端到端运力

分布式业务场景蓬勃发展带来的挑战

华 为 开 发 者 大 会 2 0 2 1

关于分布式系统的误解

华为开发者大会2021

挑战:分布式系统里的设备越多,通信能力要求越高

挑战: 空口资源如何合理、且最大程度的使用

华 为 开 发 者 大 会 2 0 2 1

分布式系统的问题解决钥匙之一: 软时钟

软时钟:以异构网络拓扑与结构为基础,以时间同步方式为超级终端分布式系统构建一个统一的时钟源,协调各设备业务时钟,并保持高精度时钟进行分布式业务

关键指标:频率、周期、抖动、漂移

华 为 开 发 者 大 会 2 0 2 1

业界的网络时钟机制与同步方式

瞬时同步&持续同步

- 每个设备都有自己的独立时钟源,晶源质量决定时钟偏移不同
- 瞬时单次测量要求双端在线,否则无法进行交换与对比
- 持续同步将带来功耗与通信消耗,如何在精度与成本间平衡

精度范围1-ρ≤dC/dt≤1+ρ

 $\delta = [(T2-T1) + (T3-T4)]/2$ $B \qquad T_2 \qquad T_3 \qquad T_4$

 dT_{res}

[1]NTP

	SYNCHRONIZATION ISSUES				
Protocol	Master-slave vs.	Internal vs.	Probabilistic vs.	Sender-to-receiver vs.	Clock
	Peer-to-Peer	External	Deterministic	Receiver-to-receiver	Correction
RBS [19]	Peer-to-peer	Both	Deterministic	Receiver-to-receiver	No
Romer [56]	Peer-to-peer	Internal	Deterministic	Sender-to-receiver	No
Mock et al. [49]	Master/slave	Internal	Deterministic	Receiver-to-receiver	Yes
Ganeriwal et al. [25]	Master/slave	Both	Deterministic	Sender-to-receiver	Yes
Ping [54]	Master/slave	Both	Deterministic	Sender-to-receiver	Yes
PalChaudhuri et al. [53]	Peer-to-peer	Both	Probabilistic	Receiver-to-receiver	No
Sichitiu and Veerarittiphan [58]	Peer-to-peer	Internal	Deterministic	Sender-to-receiver	Yes
Time-diffusion protocol [62]	Peer-to-peer	Internal	Deterministic	Receiver-to-receiver	Yes
Asynchronous diffusion [42]	Peer-to-peer	Internal	Deterministic	Sender-to-receiver	Yes

华为开发者大会202

软时钟算法&同步

A节点和B节点上的数据包接收时间:

$$T_{2,i}^{(A)} = T_{1,i} + \theta_{offset}^{(PA)} + \theta_{skew}^{(PA)} \cdot (T_{1,i} - T_{1,1}) + d^{(PA)} + X_i^{(PA)}$$
$$T_{2,i}^{(B)} = T_{1,i} + \theta_{offset}^{(PB)} + \theta_{skew}^{(PB)} \cdot (T_{1,i} - T_{1,1}) + d^{(PB)} + X_i^{(PB)}$$

A节点和B节点上的数据包接收时间差值:

$$\theta_{offset}^{(\mathrm{BA})} = \theta_{offset}^{(\mathrm{PA})} - \theta_{offset}^{(\mathrm{PB})} \,, \quad \theta_{skew}^{(\mathrm{BA})} = \theta_{skew}^{(\mathrm{PA})} - \theta_{skew}^{(\mathrm{PB})}$$

数据包通信时延的确定性部分

数据包通信时延的不确定性部分

坐为开发者大<u>会</u>2021

软时钟用途: 多设备自动组网体系及动态拓扑

拓扑相关的树形时钟同步体系

无感自发现组网

基于路径的传输能力调度

在智能家居中,让端端之间的软总线网络中分时连接更多设备 在智能出行与运动健康场景中,快速准确及时连接,并能抗干扰

WiFi干扰简介

WiFi 2.4G信道分布图

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 Channel

 2.412
 2.417
 2.422
 2.427
 2.432
 2.442
 2.447
 2.452
 2.457
 2.462
 2.467
 2.472
 2.484
 Center Frequency

 T
 T
 T
 T
 T
 T
 T
 T
 GHz)

WiFi 5G信道分布图

信道与频宽关系

≱ 为 开 发 者 大 会 2 0 2 1

软时钟用途: 无线干扰及抗干扰技术

软总线网络的全局资源管理与协同处理

基于网络时钟、QoS与业务协同管理与联动

华为开发者大会202

软时钟用途: 多设备业务协同的功耗控制

退让->时分与频分复用 ①A-B ②C-D **3**D-Е ①A-B ②C-D 3D-E **←---→** 功耗&性能收益 **←----→**

华 为 开 发 者 大 会 2 0 2 1

精准软时钟的演进

华为开发者大会202

扫码参加1024程序员节

〈解锁HarmonyOS核心技能, 赢取限量好礼〉

开发者训练营

Codelabs 挑战赛

HarmonyOS技术征文

HarmonyOS开发者创新大赛

扫码了解1024更多信息

报名参加HarmonyOS开发 者创新大赛

华 为 开 发 者 大 会 2 0 2 1

谢谢

欢迎访问HarmonyOS开发者官网

欢迎关注HarmonyOS开发者微信公众号