

UNIVERSIDAD NACIONAL DE ROSARIO

Maestría en Estadística Aplicada

Tesis: Evaluación de métodos de pronóstico del precio de cierre diario y volatilidad de Ether (ETH/USD).

Maestrando: Aldo Sebastián Bellittieri Director: Dr. Martín Masci Co Directora: Mag. Fernanda Mendez

Resumen:

En el presente trabajo de tesis de Maestría en Estadística Aplicada se aplican métodos de pronóstico de series temporales a la serie de precios históricos de cierre de la criptomoneda Ether en dólares estadounidenses (en adelante ETH/USD), en el período de tiempo definido entre 01/01/2017 y 30/12/2021, generando pronósticos para 5, 15 y 30 días del mes de enero de 2022. Se trabaja con métodos paramétricos de suavizado exponencial (ETS), autorregresivos integrados de medias móviles (ARIMA), autorregresivos fraccionalmente integrados de medias móviles (ARFIMA), y con métodos no paramétricos de redes neuronales autorregresivas de alimentación hacia adelante (NNETAR) y redes neuronales recurrentes de memoria de corto y largo plazo (LSTM), comparando las métricas de raíz cuadrada del error cuadrático medio (RMSE), error absoluto medio (MAE) y error porcentual absoluto medio (MAPE). Se utiliza un esquema de validación cruzada aplicado a series de tiempo para la calibración de los modelos. Se observa leptocurtosis en los residuos de los modelos paramétricos. Los resultados muestran comportamiento heterogéneo, donde en el horizonte de 5 días y 15 días se generan pronósticos con mejores métricas con los modelos ETS y ARFIMA respectivamente y para el plazo de 30 días los modelos no paramétricos obtienen mejor perfomance.

Se estudia además la volatilidad de la serie de retornos logarítmicos del precio de ETH/USD y se generan pronósticos fuera de la muestra a un día con una muestra de tamaño 300 utilizando los modelos autorregresivos de varianza condicional heterocedástica (ARCH), generalizados autorregresivos de varianza condicional heterocedástica (GARCH) y exponenciales generalizados autorregresivos de varianza condicional heterocedástica (EGARCH). Para la comparación de modelos se utilizan las métricas RMSE, MAE y MAPE, el test basado en regresión de Mincer-Zarnowitz y el test de Diebold-Mariano. Se seleccionan los modelos considerando distintas distribuciones de densidad condicional para las innovaciones en los modelos propuestos. Se presenta leptocurtosis en los residuos de los modelos. Los resultados para comparación de modelos de volatilidad presentan la dificultad de la función de aproximación de la volatilidad real y las métricas de error deben ser consideradas con cautela. No se detectan resultados significativos en la comparación por test de Diebold-Mariano, tampoco en el test de regresión de Mincer-Zarnowitz. Los criterios de información indican el modelo ARCH(4) para la volatilidad de la serie mientras que en base a las métricas se selecciona el GARCH(1,1).

Palabras clave: Ether, series de tiempo, pronósticos, precio de cierre, volatilidad.

Abstract:

In the present Master's in Applied Statistics thesis, time series forecasting methods are used in a series of historical closing prices of the cryptocurrency Ether (ETH/USD), during the period of time between 01/01/2017 and 30/12/2021, generating forecasts for 5, 15 and 30 days of the month of January 2022. It is worked with exponential smoothing (ETS), autoregresive integrated moving averages (ARIMA) and autoregresive fractional integrated moving averages (ARFIMA), parametric methods and with feed-forward neural networks with a single hidden layer and lagged inputs (NNETAR) and long short time memory recurrent neural networks (LSTM) non-parametric methods, comparing the root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) metrics. It is used a cross-validation scheme applied to time series for the calibration of the models. Leptokurtosis is observed in the residuals of the parametric models. The results show heterogeneous behavior, where in the 5-day and 15-day horizon forecasts with better metrics are generated with the ETS and ARFIMA models respectively and for the 30-day term the non-parametric models obtain better performance.

The volatility of the series of logarithmic returns of the ETH/USD price is also studied and one-day out-of-sample forecasts are generated with a sample of size 300 using the autoregresive conditional heteroskedasticity (ARCH), generalized autoregressive conditional heteroskedasticity (EGARCH) and exponential generalized autoregressive conditional heteroskedasticity (EGARCH). The RMSE, MAE and MAPE metrics, the Mincer-Zarnowitz regression-based test, and the Diebold-Mariano test are used to compare models. The models are selected considering different distributions of conditional density for the innovations in the proposed models. Leptokurtosis is present in the residuals of the models. The results for the comparison of volatility models present the difficulty of the approximation function of the real volatility and the error metrics must be considered with caution. No significant results were detected in the comparison by the Diebold-Mariano test, nor in the Mincer-Zarnowitz regression test. The information criteria indicate the ARCH(4) model for the volatility of the series, while the GARCH(1,1) model is selected based on the metrics.

Key words: Ether, time series, forecasts, closing price, volatility.

Agradecimientos:

Quiero mencionar mi especial agradecimiento a mi familia, a mi esposa Natalia y a mi hija Nina por impulsarme a terminar este trabajo.

A mis compañeros y compañeras de la carrera por permitirme compartir, aprender y trabajar en distintos grupos de manera totalmente enriquecedora.

A todos los docentes de la carrera. Tanto a nivel humano como profesional he tenido una maravillosa experiencia durante el cursado y ampliamente recomendaría la Maestría.

A mi Director de tesis y Co Directora por la guía a través del proceso de confección del trabajo final.

Índice general

Resumen:	
Abstract:	I
Agradecimientos:	II
Índice de General	IV
Índice de Figuras	V
Índice de Tablas	V
Capítulo 1 - Introducción	1
Capítulo 2 - Objetivos e Hipótesis	8
Objetivos Generales:	8
Objetivos Específicos:	8
Hipótesis:	ć
Capítulo 3 - Metodología	10
Modelos Paramétricos:	12
Suavizado exponencial (ETS):	12
ARIMA:	18
ARFIMA:	22
Modelos No Paramétricos utlizados en predicción de precio de cierre:	24
NNETAR:	25
LSTM:	28

Modelos empleados para el pronóstico de la volatilidad:	30
ARCH:	38
GARCH:	39
EGARCH:	41
Métricas de comparación:	42
Validación Cruzada:	43
Capítulo 4 - Resultados	45
Análisis Exploratorio:	46
Modelo ETS:	51
Modelo ARIMA:	59
Modelo ARFIMA:	67
Modelo ARCH:	74
Modelo GARCH:	81
Modelo EGARCH:	85
Redes neuronales-NNETAR:	89
Redes neuronales recursivas-LSTM:	110
Capítulo 5 - Conclusiones y discusión	118
Modelos Paramétricos:	119
Modelos no paramétricos utilizados para predicción de precio de cierre:	120
Comparación de métricas en horizonte objetivo para precio de cierre:	121
Métodos empleados para la evaluación de la volatilidad	122
Capítulo 6 - Futuras Investigaciones	124
Bibliografía	125

Apéndice 1					
ETS:		130			
ARIMA:		131			
ARFIMA:		132			
ARCH:		133			
GARCH:		134			
EGARCH:		135			
LSTM:		136			
Github:		136			

Índice de figuras

1.	Red neuronal simple	25
2.	Red neuronal multicapa	26
3.	Red neuronal recurrente LSTM	28
4.	Comportamiento dentro de cada módulo de cadena LSTM	29
5.	Esquema de valización cruzada	44
6.	Precios de cierre diario de ETH/USD (2017-2021)	46
7.	Gráfico de FAC de precios de cierre de ETH/USD	47
8.	Gráfico de distribución de densidad. Precios de cierre de ETH/USD	48
9.	Gráfico de Retornos logarítmicos de ETH/USD	49
10.	Distribución de densidad de retornos logarítmicos de ETH/USD vs normal. Diagrama QQ para retornos logarítmicos ETH/USD. Fuente: Elaboración Propia	50
11.	Componentes del modelo ajustado ${\rm ETS}(M,\!A,\!N).$	52
12.	Pronóstico de precio de cierre de ETH/USD con horizonte de 5 días con modelo ETS(M,A,N)	53
13.	Pronóstico de precio de cierre de ETH/USD con horizonte de 15 días con modelo ETS(M,A,N)	53
14.	Pronóstico de precio de cierre de ETH/USD con horizonte de 30 días con modelo ETS(M,A,N)	54
15.	Residuos modelo $ETS(M,A,N)$	55
16.	Esquema de validación cruzada (h=30 días)	57
17.	Gráfico de serie diferenciada de logaritmo de precios de cierre de ETH/USD (2017-	
	2022)	59

18.	FAC y FACP retorno logarítmico de precios de cierre de ETH/USD $(2017-2022)$.	60
19.	Gráfico de residuos de modelo SARIMA(1,1,2) $(1,0,0)$ (7) de retornos logarítmicos ETH/USD (2017-2022)	61
20.	ACF y distribución de residuos de modelo SARIMA(1,1,2) (1,0,0)(7)	62
21.	Gráfico raíces características del modelo ARIMA(1,1,2) $(1,0,0)(7)$ retornos logarítmicos ETH/USD (2017-2022)	63
22.	Pronóstico a 5 días del modelo SARIMA $(1,1,2)(1,0,0)(7)$ retornos logarítmicos de ETH/USD (2017-2022)	64
23.	Pronóstico a 15 días del modelo SARIMA $(1,1,2)(1,0,0)(7)$ retornos logarítmicos de ETH/USD (2017-2022)	64
24.	Pronóstico a 30 días del modelo SARIMA $(1,1,2)(1,0,0)(7)$ ajustado a logaritmo de precios de cierre de ETH/USD $(2017-2022)$	65
25.	Función de Autocorrelación ETH/UDS cierre diario (retardo 200 días)	68
26.	Residuos modelo ARFIMA $(0,0.5,5)$	68
27.	Pronóstico a 5 días del Precio de cierre de ETH/USD. Modelo ARFIMA $(0,0.5,5)$.	70
28.	Pronóstico a 15 días del Precio de cierre de ETH/USD. Modelo ARFIMA $(0,0.5,5)$.	71
29.	Pronóstico a 30 días del Precio de cierre de ETH/USD. Modelo ARFIMA $(0,0.5,5)$.	73
30.	Gráfico de retornos logarítmicos de precios de cierre de ETH/USD (2017-2022) y Función de Autocorrelación y Autocorrelación Parcial	75
31.	Gráfico residuos al cuadrado de modelo ARIMA de precios de cierre de ETH/USD (2017-2022)	76
32.	ACF Residuos al cuadrado ARCH(4)	78
33.	ACF Residuos estandarizados ARCH(4)	78
34.	Pronósticos a un día fuera de la muestra (n=300) ARCH(4) $\dots \dots \dots$	79
35.	Pronósticos a un día y serie de valor absoluto de log retornos - modelo $\operatorname{ARCH}(4)$.	79
36.	Gráfico valor absoluto de residuos de modelo ARFIMA y desvío estandar condicional estimado con $GARCH(1,1)$	82
37.	FAC Residuos Estandarizados al cuadrado Modelo GARCH(1,1)	82

38.	FAC Residuos estandarizados $GARCH(1,1)$	83
39.	Pronósticos a un día fuera de la muestra (n=300) GARCH(1,1) $\ \ldots \ \ldots \ \ldots$	83
40.	Pronósticos a un día y serie de valor absoluto de log retornos - modelo $\operatorname{GARCH}(1,1)$	84
41.	Gráfico residuos al cuadrado de modelo ARFIMA y EGARCH(1,1) $\ \ldots \ \ldots \ \ldots$	86
42.	FAC Residuos estandarizados al cuadrado EGARCH(1,1)	87
43.	FAC Residuos estandarizados EGARCH(1,1)	87
44.	Pronósticos a un día fuera de la muestra (n=300) EGARCH(1,1)	88
45.	Pronósticos a un día y serie de valor absoluto de log retornos - modelo EGARCH(1,1)	88
46.	Gráfico de Esquema de Validación Cruzada (h=30 días)	90
47.	Gráfico de conjuntos de entrenamiento y testeo (h=30 días)	91
48.	Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 1 (h=30 días)	94
49.	Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 2 (h=30 días)	96
50.	Pronóstico a 30 días con NNETAR(4,8)	97
51.	Gráfico de Esquema de Validación Cruzada (h=15 días)	98
52.	Gráfico de conjuntos de entrenamiento y testeo (h=5 días) NNETAR \dots	99
53.	Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 1 (h=15 días)	
	NNETAR	101
54.	Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 2 (h=5 días) NNE-	
	TAR	102
55.	Pronóstico a 15 días con NNETAR(2,2)	103
56.	Gráfico de Esquema de Validación Cruzada (h=5 días) NNETAR	104
57.	Gráfico de conjuntos de entrenamiento y testeo (h=5 días) NNETAR \dots	105
58.	Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 1 (h=5 días) NNE-	
	TAR	106
59.	Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 2 (h=5 días) $$	108
60.	Pronóstico a 5 días con NNETAR(4,1)	109
61.	Función de autocorrelación de ETH/USD (200 rezagos)	110

62.	Esquema de Validación Cruzada para pronostico a 30 dias	111
63.	RMSE versus Hiperparámetros configurados en la calibración de LSTM a lo largo	
	de 8 pasos de validación cruzada.	114
64.	Pronóstico con LSTM ETH/USD (30 días-100 corridas)	116
65.	Pronóstico con LSTM ETH/USD (15 días-100 corridas)	116
66.	Pronóstico con LSTM ETH/USD (5 días-100 corridas)	117
67.	Gráficos de ajuste modelo ARCH(4)	133
68.	Gráficos de ajuste modelo GARCH(1,1)	134
69.	Gráficos de ajuste modelo EGARCH(1,1)	135

Índice de cuadros

1.	Resumen de estadísticos descriptivos para precio de cierre de ETH/USD	47
2.	Resumen de precios anuales ETH/USD. Elaboración Propia	48
3.	Resumen de estadísticos descriptivos para retorno logarítmico ETH/USD	50
4.	Resumen de métricas pronóstico a 5 días ETH/USD (cierre diario) modelo ETS $$.	56
5.	Resumen de métricas pronóstico a 15 días ETH/USD (cierre diario) modelo ETS .	56
6.	Resumen de metricas pronóstico a 30 días ETH/USD (cierre diario) metodo ETS.	56
7.	Resumen de metricas de CV en pronóstico a 5 días ETH/USD (cierre diario) método ETS	58
8.	Resumen de metricas de CV en pronóstico a 15 días ETH/USD (cierre diario) método ETS	58
9.	Resumen de metricas de CV en pronóstico a 30 días ETH/USD (cierre diario) método ETS	58
10.	Resumen de metricas pronóstico a 5 días con ARIMA de ETH/USD (cierre diario)	65
11.	Resumen de metricas pronóstico a 15 días con modelo ARIMA ETH/USD (cierre diario)	65
12.	Resumen de metricas pronóstico a 30 días con modelo ARIMA ETH/USD (cierre diario)	66
13.	Resumen de metricas de CV en pronóstico a 5 días con ARIMA de ETH/USD (cierre diario)	66
14.	Resumen de metricas de CV en pronóstico a 15 días con ARIMA de ETH/USD (cierre diario)	66
15.	Resumen de metricas de CV en pronóstico a 30 días con ARIMA ETH/USD (cierre diario)	66

16.	Pronóstico a 5 días con ARFIMA ETH/USD (cierre diario)	69
17.	Metricas de Pronóstico a 5 días con ARFIMA ETH/USD (cierre diario)	69
18.	Pronóstico a 15 días con ARFIMA ETH/USD (cierre diario)	70
19.	Metricas de Pronóstico a 15 días con ARFIMA ETH/USD (cierre diario)	70
20.	Pronóstico a 30 días con ARFIMA ETH/USD (cierre diario)	72
21.	Metricas de Pronóstico a 30 días con ARFIMA ETH/USD (cierre diario)	72
22.	Resumen de metricas de CV en pronóstico a 5 días con ARFIMA de ETH/USD (cierre diario)	73
23.	Resumen de metricas de CV en pronóstico a 15 días con ARFIMA de ETH/USD (cierre diario)	73
24.	Resumen de metricas de CV en pronóstico a 30 días con ARFIMA ETH/USD (cierre diario)	74
25.	Resumen de tests en $ARCH(4)$	77
26.	Resumen de metricas para el pronóstico de volatilidad con ARCH(4) fuera de la muestra a un día con horizonte deslizante de tamaño 300	80
27.	Resumen de tests en ajuste de modelos $GARCH(1,1)$	81
28.	Resumen de metricas para el pronóstico de volatilidad con GARCH(1,1) fuera de la muestra a un día con horizonte deslizante de tamaño 300	84
29.	Resumen de tests en ajuste de modelos e $GARCH(1,1)$	85
30.	Resumen de metricas para el pronóstico de volatilidad con EGARCH(1,1) fuera de la muestra a un día con horizonte deslizante de tamaño 300	89
31.	Primera grilla de hiper-parámetros para modelo NNETAR	92
32.	Resultados de primera ronda de calibración con NNETAR (h=30 días)	93
33.	Primera grilla de hiper-parámetros para modelo NNETAR	95 95
34.	Resultados de segunda ronda de calibración con NNETAR (h=30 días)	95
35.	Métricas de resultados de pronóstico con NNEAR(4,8) (h=30 días)	97
36.	Resultados de primera ronda de calibración con NNETAR (h=15 días)	100
37.	Resultados de primera ronda de calibración con NNETAR (h=15 días)	102

38.	Métricas de resultados de pronóstico con NNEAR(2,2) (h=15 días)	103
39.	Resultados de primera ronda de calibración con NNETAR (h=5 días)	106
40.	Resultados de segunda ronda de calibración con NNETAR (h=5 días)	107
41.	Métricas de resultados de pronóstico con NNEAR(4,1) (h=5 días)	109
42.	Grilla de hiper parámetros para calibración LSTM	113
43.	Resultados de calibración LSTM en conjunto de entrenamiento	115
44.	Métricas promedio obtenidas con 100 corridas de LSTM para los horizontes de pronóstico definidos	117
45.	Métricas modelos paramétricos en pronostico de precio de cierre de ETH/USD	119
46.	Métricas modelos paramétricos en pronostico con validación cruzada de precio de cierre de ETH/USD	119
47.	Métricas modelos no paramétricos utlizados en pronostico con validación cruzada de precio de cierre de ETH/USD	121
48.	Métricas en horizontes estudiados para pronóstico de precio de cierre de ETH/USD.	122
49.	Criterios de información de modelos $ARCH(4)$, $GARCH(1,1)$ y $EGARCH(1,1)$ aplicados al modelo de volatilidad de retornos logarítmicos de ETH/USD	123
50.	Métricas de pronóstico de volatilidad 1 día fuera de la muestra (n=300). \dots	123
51.	Pronóstico precio de Cierre ETH/USD modelo ETS (M,A,N) (h=5 días) $\ \ldots \ \ldots$	130
52.	Pronóstico precio de Cierre ETH/USD modelo ETS (M,A,N) (h=15 días)	130
53.	Pronóstico precio de Cierre ETH/USD modelo ETS (M,A,N) (h=30 días)	131
54.	Criterios de informacion modelo ETS alicado a la predicción de ETH/USD	131
55.	Coeficientes modelo ARIMA $(1,1,2)(1,0,0)(7)$	131
56.	Pronóstico precio de Cierre ETH/USD modelo ARIMA(1,1,2)(1,0,0)(7) (h=5 días)	131
57.	Pronóstico precio de Cierre ETH/USD modelo ARIMA $(1,1,2)(1,0,0)(7)$ (h=15 días)	.132
58.	Pronóstico precio de Cierre ETH/USD modelo ARIMA $(1,1,2)(1,0,0)(7)$ (h=30 días)	132
59.	Coeficientes modelo ARFIMA utilizado en la predicción de precio de cierre de ETH/USD	132

Coeficientes de modelos ARCH(4) - distintas distribuciones	137
Criterios de información modelos ARCH(4) - distintas distribuciones	138
Test de Ljung-Box modelos para residuos estandarizados modelos $ARCH(4)$ - distintas distribuciones condicionales	138
Test de Ljung-Box modelos para residuos estandarizados al cuadrado modelos ARCH(4) - distintas distribuciones condicionales	138
Test ARCH para rezagos superiores, modelos ARCH(4) - distintas distribuciones condicionales	139
Test de bondad de ajuste de residuos, modelo ARCH(4) - distintas distribuciones condicionales (Ho: ajuste a la distribución de referencia)	139
Coeficientes de modelos $GARCH(1,1)$ - distintas distribuciones	140
Criterios de información modelos $GARCH(1,1)$ - distintas distribuciones	141
Test de Ljung-Box modelos para residuos estandarizados modelos $GARCH(1,1)$ - distintas distribuciones condicionales	141
Test de Ljung-Box modelos para residuos estandarizados al cuadrado modelos $GARCH(1,1)$ - distintas distribuciones condicionales	141
Test ARCH para rezagos superiores, modelos $GARCH(1,1)$ - distintas distribuciones condicionales	142
Test de bondad de ajuste de residuos, modelo GARCH(1,1) - distintas distribuciones condicionales (Ho: ajuste a la distribución de referencia)	142
Coeficientes de modelos EGARCH $(1,1)$ - distintas distribuciones	143
Criterios de información modelos EGARCH(1,1) - distintas distribuciones	144
Test de Ljung-Box modelos para residuos estandarizados modelos EGARCH $(1,1)$ - distintas distribuciones condicionales	144
Test de Ljung-Box modelos para residuos estandarizados al cuadrado modelos $EGARCH(1,1)$ - distintas distribuciones condicionales	144
Test ARCH para rezagos superiores, modelos EGARCH(1,1) - distintas distribuciones condicionales	145
Test de bondad de ajuste de residuos, modelo EGARCH(1,1) - distintas distribuciones condicionales (Ho: ajuste a la distribución de referencia)	
	Criterios de información modelos ARCH(4) - distintas distribuciones

Capítulo 1 - Introducción

En la actualidad se debate con frecuencia sobre quién es el sostén de confianza de las monedas fiduciarias dando como respuesta a los roles gubernamentales y de los bancos centrales de los diferentes países. En la época del respaldo monetario en oro era el sistema Bretton Woods a escala global, en la actualidad varias instituciones influencian la dinámica del competitivo mundo financiero como el Fondo Monetario Internacional, el Banco Mundial, el Banco Central Europeo, El Banco Asiático de inversión en Infraestructura y otros dependiendo en la región y el punto de vista (Pichl et al., 2020). El dinero fiduciario es la moneda que utilizada en las transacciones comerciales gracias a la confianza de pago de la entidad emisora ya que, al carecer valor intrínseco, el emisor debe liquidarla con los bienes de valor que la respaldan (R.A.E., 2024). Sobre la confianza en el dinero fiduciario (Desai y Said, 2004) mencionan a las crisis cambiarias de Checoslovaquia de 1953 y la de Rusia en 1993 como generadoras de destrucción del valor de los ahorros de la población general, con una combinación de restricciones cambiarias y alta tasa de inflación. En igual situación la economía argentina con las sucesivas crisis cambiarias y pérdida de confianza en la moneda nacional (Padinger, 2022).

Cuando un sistema de dinero fiduciario se vuelve completamente digital, cosa que no ha ocurrido aún, la institución central gana la capacidad de intervenir a cada individuo del sistema financiero y la información sobre su comportamiento debido al flujo de información que las transacciones involucran. A medida que se sofistican los sistemas digitales de finanzas, los riesgos asociados con el mal funcionamiento de los mismos aumentan. "La relación asimétrica de un individuo y la institución financiera puede ser conveniente cuando existe la protección de la privacidad y las medidas de seguridad funcionen correctamente pero puede ser un desastre en casos de ciberataques exitosos" (Pich et al., 2020). Una definición de activo digital es "instrumento digital emitido o representado mediante el uso de un registro distribuido o una tecnología similar. Se excluyen las representaciones digitales de monedas fiduciarias" (Fondo Monetario Internacional [FMI], 2022).

Continuando con los conceptos elementales relacionados con las criptomonedas, FMI define a la

cadena de bloques como "un registro distribuido en el que los detalles de las transacciones se guardan en bloques de información. Un bloque nuevo se anexa a una cadena de bloques existente mediante un proceso computarizado que valida las transacciones" (FMI, 2022). Una criptomoneda es un activo digital del sector privado que depende primordialmente de la criptografía y de un registro distribuido (cadena de bloques) o tecnología similar (FMI, 2022).

En relación a los pros y contras de las criptomonedas, Pich et al (2020) mencionan el trabajo de Nakamoto (2008), el creador de Bitcoin (en adelante BTC), que resuelve el problema del doble gasto del dinero digital (cómo garantizar que el dinero digital no es gastado varias veces publicando el evento de transacciones de manera encriptada en la cadena de bloques). El incentivo para mantener la integridad de la cadena de bloques es dado por la recompensa al creador de un nuevo bloque con un monto fijo de BTC (proceso de minado) o por comisiones en las transacciones. A medida que más diversificado está el sistema más robusto se vuelve al ataque que intente alterar los registros de la cadena de bloques (Nakamoto, 2008). Las características distintivas de BTC como criptomoneda son la falta de una entidad financiera regulatoria, la cantidad fija de monedas y la disponibilidad de un completo registro de transacciones entre direcciones. Todas las criptomonedas tienen la propiedad de no tener un valor específicamente económico a diferencia del dinero fiduciario, la falta de confianza en el sistema financiero de monedas fiduciarias no necesariamente implica confiar en un activo digital. Las fluctuaciones de precio de los valores de BTC en el tiempo y de otras criptomonedas confirman el hecho de que el valor intrínseco de las criptomonedas no está en los bienes y servicios de la economía. Las criptomonedas también enfrentan un problema ambiental debido a la enorme cantidad de energía que requieren para los cálculos que inducen a una gran huella de carbono. Al mes de septiembre de 2020, existen más de 7100 criptomonedas diferentes según la plataforma Coinmarketcap.com. Consultado el 20/09/2020. (https://coinmarketcap.com/)

Ethereum es una plataforma de fuente abierta para contratos inteligentes basada en la plataforma de cadena de bloques. Tiene la ventaja de que puede ser aplicada a lo que se denomina contratos inteligentes como la verificación de votos en elecciones, la verificación de documentos, el combate a la piratería digital. Ethereum corre en aplicaciones que no tienen posibilidades de falta de tiempo, censura, fraude o interferencia de terceras partes. Es una plataforma blockchain con funcionalidad de contratos inteligentes creada en el año 2013 por Vitalik Buterin. Las aplicaciones corren de manera descentralizada entre una red de diferentes computadoras sumando el potencial de todas y pagadas por Ether (la criptomoneda asociada a la plataforma Ethereum). Una de las aplicaciones más populares de Ethereum como plataforma incluye la creación de tókenes transables que se

pueden usar como monedas (Ether), donde Ether es un activo digital en el tope de la cadena de bloques de Ethereum (Zhang et.al, 2019). Al momento del presente trabajo Ether es la segunda criptomoneda con mayor capitalización de mercado.

El proyecto Ethereum trajo innovaciones sustanciales a las criptomonedas como el de la habilidad de script completo de Turing en 15 segundos, comparado con BTC que tarda 10 minutos en este proceso, la creación de contratos para mantener la participación de cada miembro de un grupo de inversores grupales o la creación de lugares de votación seguros. Uno de las ventajas más importantes de Ethereum es que puede ayudar a empresas con la transformación hacía el internet de las cosas. Dado que la red no tiene falta de tiempo es extremadamente útil para aplicaciones básicas que tienen que estar continuamente funcionando como por ejemplo termostatos o sistemas de iluminación (Zhang et al., 2019).

El proyecto de la presente tesis se centra en la aplicación de métodos de predicción del precio y la volatilidad de la criptomoneda Ether en relación al dólar estadounidense (ETH-USD), una de las aplicaciones de la plataforma Ethereum. No se considerarán las otras aplicaciones de Ethereum en lo referido al desarrollo de soluciones informáticas más allá de esta breve mención.

La serie de valores de cierre diario de ETH-USD (código definido para el precio de la criptomoneda en dólares) presenta gran variabilidad a lo largo del tiempo. Se define a las burbujas como una desviación persistente del precio de un activo económico de sus valores fundamentales (Diba y Grossman, 1988). Se referencia a las burbujas en el precio para dar una referencia de la variabilidad existente en los precios de las criptomonedas.

Kroll et al.,(2013) proveen una descripción detallada del proceso de minado de criptomonedas. Los mineros agregan transacciones verificadas a un libro de contabilidad distribuido públicamente, o cadena de bloques, y son incentivados a hacerlo por la recompensa de tarifas de transacción y nuevas criptomonedas. El proceso de minado de criptomonedas no está en los alcances de este trabajo más allá de esta breve mención.

Corbet et al.,(2017) analizan los fundamentales del precio tanto de Bitcoin como de Ethereum, los precios y las fechas de potenciales burbujas de precio de las dos criptomonedas. Generan ratios que son económica y computacionalmente sensibles para detección de burbujas en los precios. Seleccionan 3 variables que representan los componentes clave en la estructura de precios de las criptomonedas: la primer medida se relaciona con la dificultad de minar en relación a la dificultad que se tenía en el pasado, la segunda medida se relaciona con la tasa de hash, que es la velocidad a la que una computadora completa una operación en el código Bitcoin. Una alta tasa de hash en el

proceso de minado aumenta la oportunidad de encontrar el próximo bloque y de recibir pagos. En tercer lugar la relación entre los retornos de las criptomonedas, volatilidad y liquidez establecida por Donier y Bouchaud (2017).

La aleatoriedad y los tests de aleatoriedad (Ljung Box-Bartels) son utilizados porque en mercados eficientes los precios tienen un comportamiento de paseo aleatorio. Urquhart et al. (2015) encontraron evidencia para sugerir que los retornos de BTC son guiados por los compradores y vendedores internamente y no por factores económicos. Utilizando ratios sin tendencia los autores determinaron que BTC tiene retornos 26 veces más volátiles que el índice Standard and Poor (S&P), lo que sugiere que BTC es un vehículo de inversión especulativo. Cheung et al. (2015) utilizaron una investigación econométrica utilizando la metodología de Phillips et. al. (2015) que resulta robusta en la detección de burbujas. Se analizó en este caso, para ETH-USD, 826 observaciones desde el 30/6/2015 al 9/11/2017. En la metodología utilizan la técnica de Phillips et. al. (2015) que se basa en un proceso recursivo ex ante que detecta señales de burbuja de manera preventiva con procedimientos de testeo basados en análisis de raíces unitarias de Dickey Fuller aumentado (ADF) para testear la presencia de una burbuja con la inclusión de una secuencia de tests recursivos de raíces unitarias (de cola derecha). Se presenta luego una estrategia de fechas basada en la técnica de regresión hacía atrás para encontrar los puntos de inicio y final de la burbuja. Cuando se suceden gran cantidad de eventos en una serie de tiempo se utiliza el método del supremo generalizado de ADF (GSADF) para chequear la presencia de burbujas y la regresión recursiva para la identificación de las fechas de origen y final de las mismas.

El trabajo de Corbet et al. (2017) indica que en el caso de Ethereum se dieron burbujas en el período de inicio del 2016 y la mitad de 2017 pero no con una marcada explosividad y concluye que no se detectan evidencias suficientes de que la serie de precios de Ethereum o BTC presente comportamiento de burbuja. Dados los vínculos teóricos entre los precios ETH y BTC con la posición de la cadena de bloques, la tasa de hash y la liquidez respectivamente, los autores afirman que en ciertos períodos cortos de tiempo cada fundamental influencia la dinámica del precio de las criptomonedas, pero éstos efectos desaparecen rápidamente. Se menciona el trabajo de Corbet et al. (2017) respecto a las burbujas en el precio para dar una referencia de la volatilidad existente en los precios de las criptomonedas. No se alcanza en el presente trabajo el análisis de los fundamentales del precio de Ethereum.

Dada la volatilidad en el nivel de los precios de BTC y Ether, Mensi et. al. (2018) plantean modelos autorregresivos condicionales heterocedásticos, con modelado de la presencia de quiebres estructurales y larga memoria para el pronóstico de la serie de retornos de precios. Urquhart (2016)

estudia la ineficiencia de los mercados con un conjunto de tests (Ljung–Box test, Runs, Bartels, AVR, BDS, and R/S Hurst) para probar la ineficiencia del mercado en el caso de BTC. Gregoriu (2015) examina la literatura de uso de pruebas de raíz unitaria para detectar formas débiles de eficiencia del mercado en los mercados financieros, menciona el bajo poder para rechazar la raíz unitaria nula en presencia de heteroscedasticidad, particularmente problemática en las finanzas de alta frecuencia de datos.

La hipótesis de mercados eficientes es importante para predecir si los inversores pueden generar ganancias a través del intercambio de acciones o criptomonedas en este caso. Si los mercados son eficientes, los precios reflejan toda la información presente en el mercado y por lo tanto no tiene sentido generar ganancias extraordinarias haciendo análisis técnicos o fundamentales en este tipo de mercados (Fama, 1970, 1991). Si los mercados no son eficientes existe el potencial para que se generen predicciones basados en cambios históricos de precio. La hipótesis de mercados eficientes también tiene implicancia en la asignación de recursos. Si los mercados son eficientes permite que el inversor asigne sus ahorros a inversión de manera eficaz, y, en caso contrario los precios no reflejan toda la información disponible en el mercado y la asignación eficiente de recursos se vuelve cuestionable.

Para testear la hipótesis de eficiencia de mercados se utilizan los tests de raíces unitarias. Si los precios del activo presentan raíces unitarias o exhiben comportamiento de paseo aleatorio se presenta una situación en la que los precios escapan a un equilibrio a largo plazo (serie no estacionaria) y por lo tanto no es posible predecir con precisión el precio futuro de la serie en base a información de precios pasados. Pero sin embargo, si la serie es estacionaria se produce una reversión a la media a largo plazo haciendo posibles los pronósticos. Gregoriu (2015) menciona que en los estudios originales de hipótesis de eficiencia de mercados se utilizan tests de raíces unitarias sin quiebres estructurales y, presentan el problema de que al aparecer en la serie quiebres estructurales, los tests convencionales tienen baja potencia para rechazar la presencia de raíces unitarias. Aplica test de raíces unitarias GARCH. La metodología comienza estableciendo un punto de comparación con el test de Dickey Fuller Aumentado y el de Phillips Perron (Kwiatkowski test) que son tests que no tienen elevada potencia para rechazar la hipótesis nula de raíz unitaria en presencia de uno o más quiebres estructurales. Gregoriu (2015) aplica el test de multiplicadores de Lagrange de raíces unitarias con quiebres estructurales. Narayán y Liu (2013) en el análisis de un conjunto de activos financieros relajan el supuesto de errores independientes e idénticamente distribuidos y proponen un modelo GARCH (1,1) de raíz unitaria que se acomoda a dos quiebres estructurales en el intercepto en presencia de errores heterocedásticos.

Se incluye en el análisis descriptivo la evaluación de existencia de larga memoria junto con tests para determinar la ineficiencia de mercado en términos de medias y varianzas en la serie histórica de precios de Ether en la presente tesis.

Por otro lado, se modela la serie con técnicas autorregresivas integradas de medias móviles (del inglés, ARIMA). Azari (2019) utiliza ARIMA para la predicción de BTC en horizontes de tiempo corto y largo comparando los resultados con la performance de redes neuronales recursivas (RNN). Bukhari et al. (2020) utilizan métodos autorregresivos fraccionalmente integrados (ARFIMA) para el pronóstico de acciones en donde el órden de integración es fraccionario, a diferencia del ARIMA de orden entero. En este caso se estudia el orden de integración del proceso marcando la importancia de las constantes de los procesos integrados que representan los efectos deterministas (Peña, 2010). Se modela la serie de precios de ETH con método ARFIMA y ARIMA en el presente trabajo y se presentan los pronósticos en los horizontes de tiempo definidos con las correspondientes métricas de error.

En relación a métodos tradicionales de pronóstico de series de tiempo, Kurniawan y Madelan (2022) utilizan la técnica de Holt Winters para la predicción del precio de cierre de BTC, Ripple y Litecoin.

En el presente trabajo se plantea la técnica tradicional de suavizado de Holt-Winters (1960), donde se construye el pronóstico utilizando suavizado exponencial que pondera las observaciones con un decaimiento exponencial a medida que las observaciones son más lejanas en el pasado (Hyndman, 2014).

Bush (2019) aplica la técnica de pronóstico con RNN y LSTM de periodo corto y largo de memoria con corrección de pérdida de gradiente para realizar la comparación del pronóstico de la serie de tiempo. Se construyen modelos RNN y LSTM con calibrado de hiperparámetros para el pronóstico de la serie de cierre de precios de Ether en el período definido en estudio.

Se considera la introducción precedente como una primera aproximación al contenido de este trabajo. Se comparan las técnicas para la predicción RNN, LSTM, Holt-Winters, ARFIMA y ARIMA para la serie de tiempo de precios de cierre de Ether en dólares estadounidenses (ETH-USD), en el período de tiempo comprendido entre el 01/01/2017 y el 31/12/2021, en tres horizontes de pronóstico definidos en 5, 15 y 30 días, mediante los criterios de raíz cuadrada del error cuadrático medio (del inglés RMSE), error absoluto medio (del inglés MAE) y del error medio absoluto porcentual (del inglés, MAPE). Se busca entonces, construir un marco metodológico acorde al fenómeno en estudio, realizar un análisis descriptivo y encontrar calibraciones adecuadas en los

modelos mencionados para la serie de tiempo en estudio.

Capítulo 2 - Objetivos e Hipótesis

Objetivos Generales:

Realizar un análisis comparativo de métodos de pronóstico paramétricos y no paramétricos aplicados a la predicción de la serie de precios de cierre de la criptomoneda ETH/USD para los horizontes de 5, 15 y 30 días y de la volatilidad del precio de ETH/USD con pronóstico fuera de la muestra a un día.

Objetivos Específicos:

- Construir, en base a la selección y sistematización de la literatura existente, un marco metodológico que sustente la aplicabilidad de los métodos de pronóstico en la serie de datos de cierre diario de Ether y de los métodos de pronóstico de la volatilidad de los retornos logarítmicos de ETH/USD.
- Realizar un análisis descriptivo de las series de tiempo de valores de cierre de Ether y retornos logarítmicos de precio de cierre en el período de estudio.
- Desarrollar los pronósticos de la serie de valores de cierre y de la volatilidad de Ether (ETH/USD) para los horizontes de tiempo fijados con las técnicas seleccionadas. Presentar en forma ordenada y sistematizada los resultados de la aplicación de las técnicas de pronóstico.
- Comparar los resultados obtenidos de manera empírica y determinar la/s técnica/s que presenten mayor precisión de pronóstico contra los datos reales registrados en el mes de enero de 2022 en la cotización de cierre diario de Ether. Para la volatilidad, los pronósticos se comparan con la volatilidad aproximada por los residuales de los retornos logarítmicos al cuadrado en el periodo de estudio.

 Realizar un análisis crítico de los resultados en relación al cumplimiento de las hipótesis planteadas.

Hipótesis:

Se plantea que las series de tiempo de precio de cierre de ETH/USD y de retornos logarítmicos de ETH/USD presentan características que cumplen los supuestos necesarios para la aplicación de las técnicas de pronóstico detalladas en el presente trabajo.

Se postula que al desarrollar las técnicas de pronóstico de series temporales y aplicadas al caso particular de la series de precios de cierre y retornos logarítmicos de ETH/USD se obtendrán resultados útiles para la aplicación práctica en la negociación con la criptomoneda estudiada.

Capítulo 3 - Metodología

La metodología que se emplea para el desarrollo de la presente tesis se centra en los aspectos de comparación de modelos estadísticos utilizados para la predicción de una serie de tiempo diaria con alta volatilidad. Se utilizará para el pronóstico los datos de cierre diarios de la cotización de Ether recopilados en el período de tiempo entre 01/01/2017 y el 30/12/2021. Como período de comparación se utilizarán las cotizaciones de cierre diario de Ether correspondientes al mes de enero de 2022 y la aplicación de un esquema de validación cruzada a lo largo de la serie completa. Para la comparación de la volatilidad se utilizan los residuales de los retornos logarítmicos al cuadrado como aproximación a la volatilidad con pronósticos fuera de la muestra a un horizonte de un día y un tamaño muestral de 300 (del 5/4/2021 al 30/1/2022).

Se abarcan los fundamentos de los métodos de pronóstico a emplear y su justificación de aplicación al problema. Además, se eligen los criterios de comparación, definiendo así la estructura conceptual a emplear empíricamente.

En la aplicación empírica se comienza con el análisis descriptivo de las series de tiempo estudiadas, se modelan los pronósticos utilizando las distintas técnicas y posteriormente se realiza la comparación de los resultados con los criterios definidos previamente.

Se desarrollan los conceptos téoricos necesarios para el posterior trabajo empírico. Se busca mantener un orden en la complejidad de las técnicas que se desarrollan. Se comienza por una descripción de los modelos paramétricos utilizados para el pronóstico del precio de cierre de ETH/USD. Entre ellos en la presente tesis se trabaja con el modelo de suavizado exponencial, luego por los modelos autorregresivos integrados de medias móviles, los fraccionalmente integrados. Entre lo modelos no paramétricos para pronosticar el precio de cierre de ETH/UDS se desarrolla la descripción de conceptos relacionados con las redes neuronales autorregresivas NNETAR y los modelos de aprendizaje profundo de memoria larga LSTM.

Por otro lado, se desarrollan los conceptos de los modelos ARCH, GARCH y EGARCH para el modelado de la heterocedasticidad condicional ya que generan un aporte necesario a la hora de la

modelización y predicción de la volatilidad.

Además de los modelos se mencionan las métricas aplicadas para el tratamiento de los pronósticos, el esquema de validación cruzada empleado, los estimadores de volatilidad y las consideraciones a emplear al momento de la evaluación de la performance del los modelos.

Se comunican los resultados junto con la interpretación de los mismos. Se desarrollan las conclusiones del trabajo en relación a la crítica sobre los resultados obtenidos y a se plantean posibles investigaciones futuras.

Modelos Paramétricos:

Suavizado exponencial (ETS):

En Hyndman y Athanasopoulos (2018) se introduce el tema de los métodos de suavizado exponencial con un primer contraste sobre lo que ocurre al aplicar el método naive (todos los pronósticos del futuro son iguales al último valor observado de la serie) y el método de promedio (en donde todos los futuros pronósticos son iguales al promedio simple de los datos observados). Naive da importancia justamente al último valor de la serie, mientras que el promedio da igual importancia a todos los valores de la serie sin importar la distancia al pasado remoto. Hyndman et. al (2008) diferencian el concepto de método de pronóstico y modelo estadístico de pronóstico. Un método de pronóstico es un algoritmo que provee una estimación puntual de un valor futuro mientras que un modelo estadístico provee un proceso de generación de datos estocásticos que puede ser utilizado para producir una distribución completa de probabilidades para un período futuro de tiempo. Un modelo de estadístico permite la predicción de intervalos de predicción a un determinado nivel de confianza. Dentro de la familia de métodos de pronóstico se encuentran los suavizados exponenciales.

Entre los primeros aportes a estos métodos está el trabajo de Holt (1957) donde se trabaja con suavizado estacional aditivo y multiplicativo. Winters (1960) hace uso empírico del trabajo de Holt y en adelante los métodos son generalmente conocidos como Holt-Winters.

En un modelo de espacio de estados, la variable observada en la serie de tiempo y_t es suplementada por variables auxiliares no observables llamadas estados. Se representan a las variables auxiliares con un solo vector x_t que es llamado vector de estados (Hyndman et al. 2003).

Considerando Y_t a la observación de la variable en estudio en el tiempo t y X_t un vector de estados que contiene componentes no observados que describen el nivel, la tendencia y la estacionalidad de la serie.

$$\mathbf{Y_t} = \mathbf{w}' \mathbf{X_t} + \epsilon_{\mathbf{t}} \tag{1}$$

$$\mathbf{X_t} = \mathbf{F}\mathbf{X_{t-1}} + \mathbf{g}\epsilon_{\mathbf{t}} \tag{2}$$

Donde ϵ_t es una serie de ruido blanco, F, g y w son coeficientes. La primera de las ecuaciones

anteriores es la ecuación de observación y la segunda es conocida como ecuación de transición (o estado). El término ϵ_t hace que sea un modelo de espacio de estados en las innovaciones.

Varios modelos de pronósticos de suavizado exponencial son equivalentes a casos especiales del modelo de la ecuaciones 1 y 2.

Los modelos de espacio de estado como el anterior encajan correctamente con los de suavizado exponencial ya que el nivel, la tendencia y el comportamiento estacional se encuentran incluidos explícitamente en el modelo. Esto no ocurre en modelos como por ejemplo el ARIMA (Box et al., 1994). Una de las ventajas de los modelos de suavizado exponencial para pronósticos es su simplicidad para ser ejecutados de manera completamente automática (Hyndman et. al., 2008).

Una serie de tiempo puede plantearse como una combinación de componentes como la tendencia (T), el ciclo (C), el componente estacional (S) y el irregular o error (E). Los mismos componentes se definen a continuación.

Tendencia: dirección a largo plazo de la serie.

Componente estacional (S): un patrón que se repite con una periodicidad conocida (7 días por semana o 12 meses al año).

Ciclo: un patrón que se repite con cierta regularidad pero con una desconocida periodicidad (un ciclo de crecimiento económico).

Irregular o Error (E): es el componente impredecible de la serie.

Estos componentes pueden ser combinados de diferentes maneras, ya sea, de forma aditiva o multiplicativa para formar la serie temporal. También puede darse una combinación de modelo aditivo pero con el término del error de forma multiplicativa. En Hyndman et. al (2008) se menciona que los métodos de suavizado exponencial comienzan con la descripción de la tendencia, que resulta una combinación del nivel inicial (l) y el término de crecimiento (b). Si T_h es la tendencia en los h próximos períodos y ϕ es el parámetro de amortiguación que varía entre 0 y 1. Existen 5 tipos distintos de tendencias o patrones de crecimiento:

Ninguno:
$$T_h = l$$

Aditivo:
$$T_h = l + bh$$

Aditivo amortiguado:
$$T_h = l + (\phi + \phi^2 + ... + \phi^h)b$$

Multiplicativo:
$$T_h = lb^h$$

Multiplicativo Amortiguado: $T_h = l(\phi + \phi^2 + ... + \phi^h)$

Los métodos amortiguados mitigan la tendencia a medida que el horizonte de pronóstico se prolonga. Una vez que se selecciona el componente de la tendencia Hyndman et. al (2008) indican que debe seleccionarse el componente estacional ya sea aditivo o multiplicativo y el correspondiente error que también puede incluirse de manera aditiva o multiplicativa pero en el caso de estimaciones puntuales de métodos de pronóstico no genera diferencias. Todas estas diferentes formas de considerar la tendencia y la estacionalidad dan lugar a distintas combinaciones de métodos (Taylor et al. 2003).

El método de Holt-Winters está basado en tres ecuaciones de suavizado: una para el nivel, una para la tendencia y otra para la estacionalidad. Existen 2 variantes del método dependiendo de la manera de representación de la estacionalidad, ya sea, aditiva o multiplicativa.

Cuando la estacionalidad es multiplicativa:

Siendo Y_t el valor de la serie en el tiempo t, $\hat{Y}_{t+h|t}$ la estimación puntual del pronóstico de la serie en el tiempo t+h, l_t es el término del nivel en el momento t, b_t el crecimiento en tiempo t, S_t es el término estacional, α , β son constantes de suavizado con valores entre 0 y 1 y , γ es una constante de suavizado variando entre 0 y $1-\alpha$.

Nivel:

$$\mathbf{l_t} = \alpha \frac{\mathbf{Y_t}}{\mathbf{S_{t-m}}} + (\mathbf{1} - \alpha)(\mathbf{l_{t-1}} + \mathbf{b_{t-1}})$$
(3)

Crecimiento:

$$\mathbf{b_t} = \beta^* (\mathbf{l_t} - \mathbf{l_{t-1}}) + (\mathbf{1} - \beta^*) \mathbf{b_{t-1}}$$
(4)

Estacional:

$$\mathbf{s_t} = \frac{\gamma \mathbf{y_t}}{\mathbf{l_{t-1}} + \mathbf{b_{t-1}}} + (\mathbf{1} - \gamma) \mathbf{s_{t-m}}$$
 (5)

Pronóstico:

$$\mathbf{\hat{Y}_{t+h|t}} = (\mathbf{l_t} + \mathbf{b_t}\mathbf{h})\mathbf{s_{t-m+h_{m'}^+}}$$
 (6)

Cuando la estacionalidad es aditiva:

Nivel:

$$\mathbf{l_t} = \alpha(\mathbf{y_t} - \mathbf{s_{t-m}}) + (\mathbf{1} - \alpha)(\mathbf{l_{t-1}} + \mathbf{b_{t-1}})$$
(7)

Crecimiento:

$$\mathbf{b_{t}} = \beta^{*}(\mathbf{l_{t}} - \mathbf{l_{t-1}}) + (1 - \beta^{*})\mathbf{b_{t-1}}$$
(8)

Estacionalidad:

$$\mathbf{s_t} = \gamma (\mathbf{Y_t} - \mathbf{l_{t-1}} - \mathbf{bt} - \mathbf{1}) + (\mathbf{1} - \gamma) \mathbf{s_{t-m}}$$
(9)

Pronóstico:

$$\hat{\mathbf{Y}}_{\mathbf{t}+\mathbf{h}|\mathbf{t}} = \mathbf{l}_{\mathbf{t}} + \mathbf{b}_{\mathbf{t}}\mathbf{h} + \mathbf{s}_{\mathbf{t}-\mathbf{m}+\mathbf{h}_{\mathbf{m}'}^{+}}$$
 (10)

Los modelos de espacio de estados fundamentan a los métodos de suavizado exponencial. Para cada método existen 2 modelos (uno con errores aditivos y otro con errores multiplicativos), la estimación puntual es la misma para los 2 modelos, pero los intervalos de predicción difieren. Se expresan los modelos de suavizado exponencial como ETS (error, tendencia, estacionalidad) y dentro de cada subclase cada componente ya sea aditivo o multiplicativo. Una vez que el modelo está especificado en términos de sus componentes se puede estudiar la distribución de probabilidades de los valores futuros de la serie o la media condicional de una futura observación teniendo en cuenta las observaciones pasadas.

$$\mu_{t+h} = \mathbf{E}(\mathbf{y_{t+h}}|\mathbf{x_t}) \tag{11}$$

Donde x_t contiene los componentes no observables como l_t , b_t y s_t . Para la mayoría de los modelos ETS estas medias condicionales son idénticas a las estimaciones puntuales, sin embargo, para otros modelos con tendencia multiplicativa o estacionalidad multiplicativa las medias condicionales y las estimaciones puntuales pueden diferir para h >= 2 (Hyndman et.al 2008).

Un modelo general de espacio de estados para todos los métodos de suavizado exponencial involucra un vector de estados (Ecuación 12) y ecuaciones de espacio de estado (Ecuaciones 13 y 14)

de la siguiente forma:

$$\mathbf{x_t} = (\mathbf{l_t}, \mathbf{b_t}, \mathbf{s_t}, \mathbf{s_{t-1}}, ..., \mathbf{s_{t-m}})'$$
 (12)

$$\mathbf{y_t} = \mathbf{w}(\mathbf{x_{t-1}}) + \mathbf{r}(\mathbf{x_{t-1}})\epsilon_{\mathbf{t}} \tag{13}$$

$$\mathbf{x_t} = \mathbf{f}(\mathbf{x_{t-1}}) + \mathbf{g}(\mathbf{x_{t-1}})\epsilon_{\mathbf{t}} \tag{14}$$

Donde ϵ_t es un ruido blanco gaussiano con varianza σ^2 y media $\mu_t = w(x_{t-1})$, f , g y w son constantes. El modelo con errores aditivos tiene $r(x_{t-1}) = 1$ entonces $y_t = \mu_t + \epsilon_t$ y el modelo con errores multiplicativos tiene $r(x_{t-1}) = \mu_t$, entonces $y_t = \mu_t(1+\epsilon_t)$. Entonces $\epsilon_t = (y_t - \mu_t)/\mu_t$ es el error relativo del error multiplicativo. Los modelos de error multiplicativo son útiles cuando los datos son estrictamente positivos pero no son estables numéricamente con la presencia de ceros o valores negativos. Para la aplicación de estos modelos en pronósticos es necesaria una inicialización en la que se presentan componentes iniciales de estacionalidad, un nivel inicial y una tendencia inicial con técnica heurística propuesta por Hyndman et al, 2002. Luego se procede a una estimación de los parámetros mediante la minimización de la función de máxima verosimilitud de los errores:

$$\mathbf{L}^*(\theta, \mathbf{x_0}) = \mathbf{nlog}(\sum_{t=1}^{n} \epsilon_t^2) + 2\sum_{t=1}^{n} \mathbf{log}|\mathbf{r}(\mathbf{x_{t-1}})|$$
(15)

que es igual al doble del logaritmo negativo de la función de verosimilitud (sin los términos constantes) condicional en los parámetros $\theta = (\alpha, \beta, \gamma, \phi \text{ y en los estados iniciales } x_o = (l_0, b_0, s_0, s_1, ..., s_{t-m+1})'$, donde n es el número de observaciones. Los parámetros θ y los estados iniciales x_0 son obtenidos minimizando la verosimilitud L. En un pronóstico de un intervalo hacia adelante ϵ_t es el error de predicción a un paso. $E(y_t|y_{t-1}, ..., y_1, x_0) = E(y_t|x_{t-1}) = wx_{t-1}$ entonces la predicción de y_t dados el valor inicial x_0 y las observaciones $y_1, ..., y_{t-1}$ es wx_{t-1} Entonces las innovaciones pueden ser calculadas recursivamente utilizando: $\hat{y}_{t|t-1} = w'x_{t-1}$ $\epsilon_t = y_t - \hat{y}_{t|t-1} x_t = Fx_{t-1} + g\epsilon_t D = F - gw'$. Esta transformación se llama suavizado exponencial general (Box et al. 1994). Los pronósticos obtenidos con esta transformación son funciones lineales de las observaciones pasadas. Cuando los pronósticos y_t no están afectados

por observaciones del pasado distante se describe al modelo como "pronosticable". Siendo $a_t = wD_{t-1}x_0$ y $c_j = wD_j^{-1}g$ un modelo pronosticable es el que: $sum_{j=1}^{\infty}|c_j| < \infty$ lím $_{t\to\infty}a_t = a$ Esto impide que el efecto de observaciones del pasado distante tengan efecto en este tipo de modelos. La condición de estabilidad del modelo corresponde que los autovalores de la matriz D estén dentro del círculo unitario. Es importante mencionar que un modelo puede ser estable y pronosticable pero algunos modelos pueden ser pronosticables pero no estables (Hyndman et al, 2003). La condición de estabilidad de la matriz D está relacionada con la restricción de invertibilidad de los modelos ARIMA. La estacionariedad proviene de la matriz de transición, al iterar: $x_t = Fx_{t-1} + g\epsilon_t = F^2x_{t-2} + Fg\epsilon_{t-1} + g\epsilon_t = \dots = F^tx_0 + \sum_{j=0}^{t-1} F^jg\epsilon_{t-j}$ Sustituyendo $y_t = d_t + \sum_{j=0}^{t-1} k_j\epsilon_{t-j}$ Donde $d_t = w'F^{t-1}x_0$, $k_0 = 1$ y $k_j = w'F^{j-1}g$ para j=1,...,2... Entonces la observación es una función lineal del estado original x_0 y errores pasados y presentes. El modelo se define estacionario si: $\sum_{j=0}^{\infty} |k_j| < \infty \ lim_{t\to\infty} d_t = d$. Siendo un ejemplo de descomposición de Wold (Brockwell y Davis, 1991).

Se ve entonce que la $E(y_t) = d$ y $V(y_t) = \sigma^2 \sum_{j=0}^{\infty} k_j^2$

$$\mathbf{y_t} = \mathbf{d} + \sum_{j=0}^{\infty} \mathbf{k_j} \epsilon_{t-j}$$
 (16)

Generalmente se puede aplicar modelos de suavizado exponencial a series presentan raíces unitarias y no son estacionarias. Para la selección de los modelos una ventaja que presentan los modelos de suavizado exponencial es la posibilidad de utilizar los criterios de información para determinar cual es el más apropiado para una determinada serie temporal. Para los modelos de suavizado exponencial el criterio de información de Akaike (AIC) se define como: AIC = -2log(L) + 2k Donde L es la función de verosimilitud y k es el número total de parámetros y estados iniciales (incluida la varianza residual). El criterio de Akaike corregido para el sesgo en pequeñas muestras se define como: $AIC_c = AIC + \frac{2k(k+1)}{T-k-1}$ El criterio de información Bayesiano BIC se define como: BIC = AIC + k[log(T) - 2]. Donde T es el tamaño de la muestra. Se menciona además que la técnica de suavizado exponencial es utilizada habitualmente por automatismos de intercambio (comunmente llamado por su término inglés, trading) de criptomonedas, que sin buscar un objetivo de pronóstico utilizan los cruces de medias móviles para detectar cambios en el comportamiento del mercado y accionar operaciones de compra o venta en función de determinadas estrategias.

ARIMA:

Hyndman y Athanasopoulos (2018) inician la descripción de los modelos ARIMA con la definición de estacionariedad mencionada en los párrafos anteriores y la diferenciación como una primera forma de hacer estacionaria una serie de tiempo. Las transformaciones como el logaritmo ayudan a estabilizar la varianza mientras que la diferenciación ayuda a estabilizar la media de la serie. También la estacionariedad se observa en los gráficos de autocorrelación. En una serie estacionaria los valores van a caer cercanos a cero en pocos intervalos, mientras que en una serie no estacionaria la autocorrelación decrece lentamente. Cuando una serie se comporta como un paseo aleatorio la serie puede ser escrita de la siguiente manera:

$$\mathbf{y_t} = \mathbf{y_{t-1}} + \epsilon_{\mathbf{t}} \tag{17}$$

Los pronósticos de los modelos de paseo aleatorio son iguales a la última observación disponible ya que los movimientos futuros son impredecibles e igualmente probables de ir hacia arriba o hacia abajo, entonces muestran el mismo comportamiento que un modelo naive. Hyndman y Athanasopoulos (2018) mencionan también a las series cuyas diferencias entre períodos sucesivos no tienen media igual a cero como caminos aleatorios con deriva.

En el caso de que la primera diferencia no presente comportamiento estacionario es necesaria una segunda diferenciación. Otra forma de diferenciación que puede conducir a un pronóstico naive en caso de que el modelo de los datos ajuste correctamente se da en la diferenciación estacional, o sea, la diferenciación con respecto a determinado período en la misma estación. La diferenciación estacional da un modelo para los datos originales de la forma:

$$\mathbf{y_t} = \mathbf{y_{t-m}} + \epsilon_{\mathbf{t}} \tag{18}$$

Donde m es el número de estaciones.

Es importante que al diferenciar los datos se pueda mantener una interpretabilidad de la información que se genera. Los tests de raíces unitarias son generalmente efectivos para determinar si una serie es o no estacionaria. Como se mencionó en la introducción los tests de raíces unitarias se emplean en este caso para probar la eficiencia de mercado. Entre los tests habitualmente utilizados se encuentran el contraste de Dickey Fuller (1979), Dickey Fuller Aumentado (1996) y el de KPSS (Kwiatkowsky et al, 1992), que son tests que no tienen elevada potencia para rechazar la

hipótesis nula de raíz unitaria en presencia de uno o más quiebres estructurales. Gregoriu (2015) aplica el test de multiplicadores de Lagrange de raíces unitarias con quiebres estructurales. La presencia de quiebres estructurales en la serie afecta la potencia de los tests de raíces unitarias (Enders, 2015). Hyndman y Athanasopoulos (2018) utilizan la notación de la letra B para indicar los retardos, por ejemplo, $By_t = y_{t-1}$. Una indicación del tipo $B^2y_t = y_{t-2}$ o si se refiere a un retraso anual $B^12y_t = y_{t-12}$. También se utiliza el operador de retardo para identificar el proceso de diferenciación, donde una primera diferencia puede ser escrita como:

$$\mathbf{y}_{t}' = \mathbf{y}_{t} - \mathbf{y}_{t-1} = \mathbf{y}_{t} - \mathbf{B}\mathbf{y}_{t} = (1 - \mathbf{B})\mathbf{y}_{t}$$

$$(19)$$

En general la diferencia de orden d se escribe como $(1-B)^d y_t$.

Continuando la línea de descripción de los componentes de los modelos ARIMA se detalla el componente autorregresivo de los mismos. Un modelo autorregresivo genera un pronóstico de la variable de interés utilizando una combinación lineal de valores pasados de la variable. Un modelo autorregresivo (AR) tiene la forma:

$$\mathbf{y_t} = \mathbf{c} + \phi_1 \mathbf{y_{t-1}} + \phi_2 \mathbf{y_{t-2}} + \dots + \phi_p \mathbf{y_{t-p}} + \epsilon_t$$
 (20)

Donde ϵ_t es ruido blanco. Este modelo utiliza p retardos para estimar el valor de y_t con lo que se denomina AR(p). La varianza del término del error solamente afecta la escala de la serie, no los patrones de comportamiento de la misma. Los valores de los parámetros ϕ se pueden restringir para el modelado de series estacionarias.

Los modelos de promedios móviles (MA) pueden ser interpretados como modelos que realizan un promedio ponderado de los últimos errores de pronóstico. Un modelo de promédios móviles entonces es de la forma:

$$\mathbf{y_t} = \mathbf{c} + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q}$$
 (21)

Donde ϵ_t es ruido blanco. Es posible escribir un proceso estacionario AR(p) como un MA(∞). El proceso inverso lleva de un MA(q) a un AR(∞). Cuando $|\theta| > 1$ los pesos de los errores aumentan a medida que se vuelven más distantes en el tiempo, cuando $|\theta| = 1$ los pesos de los errores tienen igual importancia sin distinguir el paso del tiempo. La situación que mayor sentido matemático

tiene se da cuando los efectos del pasado son de menor importancia $|\theta < 1|$ que justamente es cuando el proceso es invertible.

Al combinar un proceso integrado (inverso a la diferenciación) con los modelos autorregresivos y los modelos de medias móviles se obtiene un modelo ARIMA (Hyndman y Athanasopoulos (2018)). El modelo puede escribirse en notación como se describe a continuación:

$$\mathbf{y}_{\mathbf{t}}' = \mathbf{c} + \phi_{\mathbf{1}} \mathbf{y}_{\mathbf{t-1}}' + \dots + \phi_{\mathbf{p}} \mathbf{y}_{\mathbf{t-p}}' + \theta_{\mathbf{1}} \epsilon_{\mathbf{t-1}} + \dots + \theta_{\mathbf{q}} \epsilon_{\mathbf{t-q}} + \epsilon_{\mathbf{t}}$$
(22)

Donde y'_t es la serie diferenciada (puede estar diferenciada más de una vez). Este modelo se denomina ARIMA(p,d,q) donde p es el orden de la parte autorregresiva, d es el grado de diferenciación involucrado y q es el orden de la parte de medias móviles. Con esta notación un modelo de ruido blanco corresponde a un ARIMA(0,0,0), un paseo aleatorio a un ARIMA(0,1,0), un paseo aleatorio con deriva es un ARIMA (0,1,0) con una constante, un modelo autorregresivo AR(p) es un ARIMA (p,0,0) y un modelo de medias móviles MA(q) es un ARIMA(0,0,q). Utilizando la notación del componente de retardo el modelo ARIMA(p,d,q) se escribe:

$$(1 - \phi_1 \mathbf{B} - \dots - \phi_p \mathbf{B}^p)(1 - \mathbf{B})^d \mathbf{y_t} = \mathbf{c} + (1 + \theta_1 \mathbf{B} + \dots + \theta_q \mathbf{B}^q) \epsilon_t$$
(23)

Tal como se describe previamente la identificación tanto de raíces unitarias como de quiebres estructurales en la serie de tiempo en estudio permite encontrar intervalos temporales en los que no se manifieste el comportamiento de mercado eficiente que se evidencian como paseos aleatorios y, por lo tanto, no permiten en teoría mejorar la predicción obtenida mediante el método naive.

Mediante los gráficos de autocorrelación y autocorrelación parcial es posible identificar los valores de p y q apropiados para el modelado en una serie estacionaria o transformada en estacionaria. La función de autocorrelación (ACF, sus siglas en inglés) muestra la correlación entre valores sucesivos de la serie de tiempo. El valor de r_n mide la correlación entre y_t y y_{t-k} . Se define entonces la autocorrelación de una serie de tiempo mediante la siguiente ecuación:

$$\mathbf{r_k} = \frac{\sum_{t=k+1}^{T} (\mathbf{y_t} - \bar{\mathbf{y}})(\mathbf{y_{t-k}} - \bar{\mathbf{y}})}{\sum_{t=1}^{T} (\mathbf{y_t} - \bar{\mathbf{y}})}$$
(24)

Cuando una serie no tiene autocorrelación se llama ruido blanco. Para series de ruido blanco se espera que el 95 % de los picos de la función de autocorrelación se encuentren entre $\pm \frac{1.96}{\sqrt{T}}$ donde T es la longitud de la serie de tiempo. Estas bandas en general se grafican en la función

de autocorrelación (ACF). Si uno o más picos se encuentran fuera de las bandas, entonces la serie probablemente no es un ruido blanco . Si ACF muestra la relación entre y_t e y_{t-k} para diferentes valores de k, cuando y_t e y_{t-1} están correlacionados entonces y_{t-1} e y_{t-2} deben estar correlacionados, sin embargo y_t e y_{t-2} pueden estar correlacionados simplemente porque ambos están conectados a y_{t-1} en lugar de que algo de la información de y_{t-2} esté relacionada con y_t (Hyndman, 2013). Para solucionar este problema se utilizan las autocorrelaciones parciales que miden la relación entre y_t e y_{t-k} luego de remover los efectos de los retardos 1, 2, 3, ..., k-1. Las autocorrelaciones parciales tienen los mismos valores críticos de $\pm 1.96/\sqrt{T}$. Los gráficos de ACF y PACF pueden ayudar a identificar los coeficientes de un modelo ARIMA cuando el modelo sea de la forma ARIMA(o,d,q) o ARIMA(p,d,0). Si ambos p y q son positivos los gráficos no permiten identificar de manera simple los valores de los coeficientes.

Una vez que el orden del modelo está identificado se estiman los parámetros del mismo. Dependiendo del tipo de software y del algoritmo utilizado puede haber alguna diferencia en los valores de los coeficientes. El software R utiliza la estimación de máxima verosimilitud. También se utilizan los criterios de información. El criterio de información AIC para un modelo ARIMA se escribe como:

$$AIC = -2Log(L) + 2(p + q + k + 1)$$
(25)

Donde L es la verosimilitud de los datos, k=1 si $c\neq 0$ y k=0 si c=0 El criterio de información de Akaike corregido para los modelos ARIMA se define como:

$$AIC_{c} = AIC + \frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
(26)

El criterio de información Bayesiano:

$$BIC = AIC + [log(T) - 2](p + q + k + 1)$$
(27)

El criterio de información de Hannan-Quinn:

$$\mathbf{HQC} = \mathbf{n} \, \log \left(\frac{\mathbf{RSS}}{\mathbf{n}} \right) + 2\mathbf{k} \, \log \, \mathbf{n} \tag{28}$$

Donde k es el número de parámetros, n es el número de observaciones, y RSS es la suma residual

de cuadrados que resulta de una regresión lineal u otro modelo estadístico.

El criterio de información de Shibata:

$$\mathbf{Shibata} = \hat{\sigma^2} + (\mathbf{1} + \frac{\mathbf{2K}}{\mathbf{n}}) \tag{29}$$

Donde $\sigma^2 = \frac{1}{n} \sum \epsilon_t^2$, n es el número de observaciones, K es el número de parámetros.

Hyndman(2013) recomienda utilizar un método para encontrar el orden de integración d del modelo (correspondiente al término integral) y luego utilizar los criterios de información para la determinación de los órdenes p y q. Si se escribe el modelo ARIMA como:

$$\phi(\mathbf{B})(\mathbf{1} - \mathbf{B})^{\mathbf{d}}\mathbf{y_t} = \mathbf{c} + \theta(\mathbf{B}) + \epsilon_{\mathbf{t}}$$
(30)

Donde $\phi(B) = (1-\phi_1B-+...+\phi_pB^p)$ es un polinomio de orden p en B y $\theta(B) = (1+\theta_1B+...+\theta_qB^q)$ es un polinomio de orden q en B, las condiciones de estacionariedad del modelo son que las raíces complejas de $\phi(B)$ caigan fuera del círculo unitario y las condiciones de invertibilidad corresponden a que las raíces del polinomio $\theta(B)$ caigan fuera del círculo unitario. Hyndman y Khandakar (2008) utilizan una función en el software R que grafica la inversa de las raíces dentro del círculo unitario para probar estacionariedad e invertibilidad del modelo.

Los modelos ARIMA también pueden representar la estacionalidad de los datos. En ese caso se modela además la parte estacional de los datos $ARIMA(p,d,q)(P,D,Q)_m$ donde m es el número de observaciones al año. El componente estacional del modelo involucra a los retardos de la parte estacional del modelo. Esto se ve en los componentes estacionales de las funciones de autocorrelación y autocorrelación parcial. Se deben analizar los residuos que deja el modelo seleccionado, los mismos deben parecer ruido blanco. Se debe complementar el análisis de los residuos utilizando el test de Ljung-Box (1978) para comprobar si los residuos presentan autocorrelación.

ARFIMA:

La propiedad de memoria larga de las series de tiempo está relacionada con el lento decrecimiento de las autocorrelaciones muestrales hasta que finalmente convergen a cero. En las series de tiempo que presentan memoria larga las innovaciones tienen efectos transitorios pero estos perduran durante largo tiempo. En el modelo de estas series el trabajar con diferenciación es excesivo pero no diferenciar tampoco genera un comportamiento adecuado. Granger (1980), Granger y

Joyeux(1980) y Hosking (1981) proponen una serie de modelos con orden de integración fraccionario. Son procesos ARMA fraccionalmente integrados denominados ARFIMA (p,d,q) donde des un número real. Baillie y Bollerslev (1994) encuentran la presencia de memoria larga en series de activos financieros.

Un proceso y_t es integrado de orden d, y se denota por I(d), si se verifica que $(1-B)^d$, $y_t = u_t$, donde B es el operador retardo y u_t es un proceso estacionario con densidad espectral acotada en la frecuencia cero. Si d=0, y_t es estacionario; si d=1, y_t tiene una raíz unitaria; si d es otro número entero, y_t tiene d raíces unitarias; y si d es un número real no entero, y_t es un proceso fraccionalmente integrado. Si la estructura de la media es además ARMA se dice que el proceso fraccionalmente integrado es un ARFIMA. El caso más sencillo, donde p=0 y q=0 se llama ruido blanco fraccionalmente integrado o ARFIMA(0,d,0).

Hosking(1981) demuestra que si -0.5 < d < 0.5 el proceso y_t es invertible y estacionario y, además admite la representación $AR(\infty)$. Brockwell y Davies (1991) demuestran que los coeficientes de la representación de Wold de un ARFIMA(0,d,0) convergen hiperbólicamente hacía cero a diferencia del decrecimiento exponencial típico de los procesos ARMA. Los coeficientes safisfacen la condición de estacionariedad pero no son absolutamente sumables.

La propiedad más característica de los procesos ARFIMA estacionarios $(d < \frac{1}{2})$ es el comportamiento asintótico de su función de autocorrelación. Robinson (1994) y Baillie (1996) muestran que cuando el orden de diferenciación está entre 0.5 y 1 el proceso puede modelizar el comportamiento de series no estacionarias pero que en el largo plazo tienen reversión a la media, algo que no es posible de modelar con procesos que tienen raíces unitarias. La ecuación del proceso ARFIMA (p,d,q) resulta entonces:

$$\phi(\mathbf{B})(\mathbf{1} - \mathbf{B})^{\mathbf{d}}\mathbf{y_t} = \theta(\mathbf{B})\epsilon_{\mathbf{t}}$$
(31)

Donde $\phi(B)$ y $\theta(B)$ son polinomios de grado p y q respectivamente cuyas raíces están fuera del círculo unitario.

El comportamiento a largo plazo del proceso ARFIMA(p,d,q) es similar al del proceso ARFIMA(0,d,0), ya que para observaciones muy distantes, los efectos de los parámetros ARMA son casi despreciables. Hosking (1981) prueba que si $d < \frac{1}{2}$ y todas las raíces de $\phi(B) = 0$ están fuera del círculo unidad, y_t es estacionario, y si $d > \frac{1}{2}$ y todas las raíces de $\theta(B) = 0$ están fuera del círculo unidad, y_t es invertible.

Perez y Ruiz (2001) afirman que las diferencias entre los modelos ARFIMA, los modelos ARMA de memoria corta y los modelos integrados ARIMA, pueden establecerse analizando la forma en que la serie y_t responde a un cambio unitario en la perturbación del modelo. Mientras en un modelo ARIMA, el efecto sobre el nivel futuro de la serie de un shock sobre la perturbación es permanente y no hay reversión a la media, en un ARFIMA dicho efecto finalmente desaparece, aunque a un ritmo más lento que el exponencial de los procesos ARMA.

Para contrastar la presencia de memoria larga en una serie temporal existen distintos contrastes. El contraste de Geweke y Porter-Hudak (1983) se deriva de la estimación MCO del modelo de regresión en el logaritmo del periodograma. La pendiente de este modelo es precisamente d, y por tanto, para contrastar la hipótesis $H_0: d=0$ (memoria corta) frente a la alternativa $H_1: d\neq 0$, se realiza el contraste habitual de significación sobre el parámetro d con una distribución t-Student. Haubrich y Lo (1989) y Lo (1991) proponen un contraste de memoria corta basado en una modificación del estadístico R/S (rango reescalado) introducido por Hurst (1951). El estadístico R/S es el rango de las sumas parciales de las desviaciones de una serie a su media, normalizado por su desviación típica muestral. Robinson (1991) desarrolla un estadístico basado en los multiplicadores de Lagrange para contrastar la hipótesis de ruido blanco frente a una familia muy general de alternativas que incluye a los procesos ARFIMA(0,d,0). En este caso, el estadístico admite una expresión muy sencilla de la forma $\Lambda_1=2\lambda_1$, donde $\lambda_1=\sqrt{(\frac{6T}{\pi^2}\sum_{j=1}^{T-1}\frac{r(j)}{j}},$ siendo r(j)=c(j)/c(0) la autocorrelación muestral de orden j. Bajo la hipótesis $H_0: d=0, \lambda_1$ tiene una distribución asintótica normal N(0,1), y por tanto, Λ_1 se distribuye asintóticamente como una χ^2 . Sowell (1990) deriva la distribución asintótica del estadístico del contraste de Dickey-Fuller para series fraccionalmente integradas I(d), con 1/2 < d < 3/2, y demuestra que ésta depende del orden de integración d.

Además de los contrastes mencionados, una herramienta muy utilizada para detectar memoria larga en una serie temporal es la función de autocorrelación muestral. Las autocorrelaciones de un proceso con memoria larga decaen muy lentamente hacia cero, dicho comportamiento en las autocorrelaciones muestrales suele considerarse como indicio de integración fraccional.

Modelos No Paramétricos utlizados en predicción de precio de cierre:

NNETAR:

Las redes neuronales artificiales son métodos de pronóstico que se basan en modelos matemáticos simples del cerebro. Permiten modelizar relaciones complejas no lineales entre la variable de respuesta y sus predictores. Se puede pensar en una red neuronal como una red de neuronas que están organizadas en capas. Los predictores (o entradas) forman la capa inferior y los pronósticos (o salidas) forman la capa superior. También puede haber capas intermedias que contengan "neuronas ocultas" (Hyndman y Athanasopoulos, 2018).

Masci y Del Rosso (2020): Una red neuronal (RNN) se ocupa de los problemas de secuencia porque sus conexiones forman un ciclo dirigido. En otras palabras, pueden retener el estado de una iteración a la siguiente utilizando su propia salida como entrada para el siguiente paso.

Las redes más simples no contienen capas ocultas y son equivalentes a regresiones lineales.

Figura 1: Red neuronal simple. Fuente: Masci, Del Rosso, Unidades 9 y 10, página 6, 2020)

La figura precedente muestra una versión de red neuronal de una regresión lineal con cuatro predictores. Los coeficientes adjuntos a estos predictores se denominan pesos. Los pronósticos se obtienen mediante una combinación lineal de las entradas. Los pesos se seleccionan en el marco de la red neuronal utilizando un "algoritmo de aprendizaje" que minimiza una función de costo como el ECM.

Si se incorporan capas intermedias con neuronas ocultas, la red neuronal se vuelve no lineal. Esto se conoce como red de múltiples capas de alimentación hacia adelante, donde cada capa de nodos recibe entradas de las capas anteriores. Las salidas de los nodos en una capa son entradas

para la siguiente capa. Las entradas de cada nodo se combinan mediante una combinación lineal ponderada. Luego, el resultado es modificado por una función no lineal antes de ser emitido.

Figura 2: Red neuronal multicapa. Fuente: Hyndman y Athanosopoulos (2018), Unidad 12, Figura 12.15

Por ejemplo las entradas en la neurona oculta j se combinan linealmente para dar la ecuación (30):

$$\mathbf{z_j} = \mathbf{b_j} + \sum_{k=1}^{x} \mathbf{w_{kj}} \mathbf{y_k}$$
 (32)

Donde z_j son los valores calculados de la capa oculta, $w_{i,j}$ es la matriz de pesos, b es la ganancia escalar.

Cuando se usa una red neuronal de retroalimentación para pronosticar una serie de tiempo, las entradas pueden ser valores observados previamente de la serie de tiempo y_t . Esto se denomina red neuronal de autorregresión. Por ejemplo, podrían utilizarse los últimos cuatro valores previos para predecir el próximo valor de la serie temporal. Los nodos ocultos estarían dados por la ecuación (31):

$$\mathbf{z_j} = \mathbf{b_j} + \sum_{k=1}^{4} \mathbf{w_{kj}} \mathbf{y_{t-k}}$$
 (33)

En la capa oculta se aplica una función de activación a los nodos ocultos la cual es una función no lineal, como una función sigmoidea-logística:

$$\phi(\mathbf{z}) = \frac{1}{1 + \mathbf{e}^{-\mathbf{z}}} \tag{34}$$

Esta ecuación se aplica para dar la entrada a la siguiente capa de la red neuronal. La aplicación de esta función tiende a reducir el efecto de valores de entrada extremos, lo que hace que toda la red sea más robusta a los efectos de valores atípicos. El parámetro que restringe los pesos se conoce como parámetro de decaimiento.

Los pesos "aprenden" eligiendo primero valores aleatorios para ellos inicialmente, y estos pesos elegidos al azar se actualizan luego utilizando los datos observados o series temporales. Debido a que los pesos se eligen inicialmente al azar, existe un elemento de aleatoriedad en las predicciones producidas por una red neuronal. Por lo tanto, la red generalmente se entrena varias veces utilizando diferentes puntos de partida aleatorios, y luego se promedian los resultados. El número de capas ocultas y el número de nodos en cada capa oculta deben especificarse de antemano.

Con datos de series de tiempo, los valores rezagados se pueden usar como entradas a una red neuronal, al igual que en un modelo AR(p). A esto se denomina un modelo autorregresivo de red neuronal (modelo NNAR(p,k)), el cual tiene dos componentes p y k, Solamente se considerará red de múltiples capas de alimentación hacia adelante con una capa oculta, y se utilizará la notación NNAR(p, k), donde, p denota el número de valores rezagados que se utilizan como entradas y k denota el número de nodos ocultos que están presentes.

Si el conjunto de datos es estacional, se expresa como NNAR(p, P, k), donde P denota la cantidad de lags estacionales.

El valor de p se elige en función de los criterios de información. Las redes neuronales tienen un componente aleatorio inherente.

Luego, el pronóstico se presenta como media o mediana. También se sabe que las redes neuronales no funcionan bien con tendencias presentes en los datos. Por lo tanto, debemos eliminar la tendencia o diferenciar los datos antes de ejecutar el modelo de red neuronal.

Hyndman y Athanasopoulos (2018) mencionan que al realizar pronósticos a un período se utilizan los datos históricos de la serie temporal en estudio y al pronosticar más de un período es necesario utilizar la información historica junto con el/los pronóstico/s anterior/es realizados.

En relación a los intervalos de pronóstico para las redes neuronales es necesario realizar simulaciones de los residuos. Si la red neuronal se escribe:

$$\mathbf{y_t} = \mathbf{f}(\mathbf{y_{t-1}}) + \epsilon_t \tag{35}$$

Donde $\mathbf{y_{t-1}} = (y_{t-1}, y_{t-2}, ..., y_{t-r})'$ es un vector que contiene valores previos de la serie y f es una

red neuronal con 1 capa oculta. Si se supone que los errores ϵ_t son homocedásticos y posiblemente esten distribuidos normalmente, se puede generar una distribución de los errores de una normal o sino con remuestreo de los valores históricos. Al repetir cientos o miles de veces este proceso se generan los intervalos de confianza para los modelos de redes neuronales autorregresivas (NNETAR, sus siglas en inglés).

LSTM:

Masci y Del Rosso (2020) explican en su apunte de clases que el proceso de memoria de corto y largo plazo fue introducido por Hochreiter y Schmidhuber (1997) como una red neuronal recurrente (RNN) que se entrena mediante la retropropagación a través del tiempo y supera el problema del gradiente de desaparición (vanishing gradient problem). Que sea recurrente significa que mediante bucles permiten que la información persista.

Una red neuronal recurrente se puede considerar como múltiples copias de la misma red, cada una de las cuales pasa un mensaje a un sucesor. Uno de los atractivos de los RNN es la idea de que podrían conectar la información anterior a la tarea actual. Donde la brecha entre la información relevante y el lugar donde se necesita es pequeña, los RNN pueden aprender a usar la información pasada. También hay casos en los que se necesita más contexto y es muy posible que la brecha entre la información relevante y el punto donde se necesita se vuelva muy grande. En la Figura 3:

Figura 3: Red neuronal recurrente LSTM. Fuente: Masci y Del Rosso, (unidades 9 y 10, página 16, 2020)

Una de las mayores diferencias entre RNN y LSTM es que los RNN son incapaces de aprender a conectar la información de largo plazo mientras que los LSTM pueden cumplir con este objetivo.

Los LSTM también tienen esta estructura similar a una cadena, pero el módulo repetido tiene una estructura diferente.

Figura 4: Comportamiento dentro de cada módulo de cadena LSTM. Fuente: Masci y Del Rosso, (unidades 9 y 10, página 18, 2020)

- Cada línea lleva un vector completo, desde la salida de un nodo hasta las entradas de otros.
- Los círculos rosas representan operaciones puntuales, como la suma de vectores, mientras que los cuadros amarillos son capas de redes neuronales aprendidas.
- Las líneas que se fusionan denotan concatenación, mientras que una bifurcación de líneas denota que su contenido se está copiando y las copias van a diferentes ubicaciones.

El estado de la celda es como una cinta transportadora. Corre directamente a lo largo de toda la cadena, con solo algunas interacciones lineales menores.

El LSTM tiene la capacidad de eliminar o agregar información al estado de la celda, regulada cuidadosamente por estructuras llamadas puertas. Las puertas son una forma de dejar pasar información opcionalmente. Están compuestos por una capa de red neuronal sigmoidea y una operación de multiplicación puntual.

La capa sigmoidea genera números entre cero y uno, que describen cuánto de cada componente debe dejarse pasar. Un valor de cero significa "no dejar pasar nada", mientras que un valor de uno significa "dejar pasar todo". Un LSTM tiene tres de estas puertas para proteger y controlar el estado de la celda.

En lugar de neuronas, las redes LSTM tienen bloques de memoria que están conectados a través de capas.

- Un bloque tiene componentes que lo hacen más inteligente que una neurona clásica y una memoria para secuencias recientes.
- Un bloque contiene puertas que administran el estado y la salida del bloque.

• Un bloque opera sobre una secuencia de entrada y cada puerta dentro de un bloque utiliza las unidades de activación sigmoidea para controlar si se activan o no, lo que condiciona el cambio de estado y la adición de información que fluye a través del bloque.

Hay tres tipos de puertas dentro de una unidad:

- Puerta de olvido: decide condicionalmente qué información desechar del bloque.
- Puerta de entrada: decide condicionalmente qué valores de la entrada actualizar el estado de la memoria.
- Puerta de salida: decide condicionalmente qué generar en función de la entrada y la memoria del bloque.

Modelos empleados para el pronóstico de la volatilidad:

La volatiliad es frecuentemente medida como la desviación estándard muestral de la serie de retornos de un determinado activo financiero (Poon, 2005).

En este caso la ecuación:

$$\hat{\sigma} = \sqrt{\frac{1}{\mathbf{T} - 1} \sum_{t=1}^{\mathbf{T}} (\mathbf{r_t} - \mu)^2}$$
 (36)

Donde r_t es el retorno en el día t y μ es el retorno medio sobre el período de T días.

A veces se utiliza la varianza como una medida de la volatilidad. Sin embargo la varianza resulta menos estable que el desvío estándar para los cálculos computacionales y la evaluación de los pronósticos de volatilidad. La desviación estandar tiene además la misma unidad que la media lo que resulta ventajoso. La volatilidad está relacionada con el riesgo pero no es exactamente lo mismo ya que la volatilidad es una medida que puede ser relacionada con un resultado positivo y en general el riesgo se asocia con un resultado no deseado. La volatilidad no es una medida perfecta para medir el riesgo porque la desviación estandar es una medida de variabilidad de una distribución pero no brinda información sobre la forma de la distribución (a excepción de la distribución normal o lognormal donde la media y el desvío son estadísticos suficientes).

Los hechos que se manifiestan empíricamente en los mercados financieros de manera regular se denominan hechos estilizados. En el caso de la volatilidad, Poon (2005) menciona que los retornos

de los activos financieros tienen largas colas comparadas con la distribución normal, lo que implica que gran parte del tiempo los retornos de los activos financieros fluctúan en un rango menor que una distribución normal. Otra de las características más importantes para el presente trabajo es la naturaleza de variabilidad temporal de las fluctuaciones en los retornos que justamente fue lo que originó los modelos de heterocedasticidad condicional detallados más adelante. Otro hecho estilizado es la presencia de clústers de volatilidad donde un día de alta volatilidad en los mercados tiende a estar seguido por otro día de alta volatilidad.

Poon (2005) además menciona los siguiente hechos estilizados: los retornos de los activos financieros (r_t) no están generalmente autocorrelacionados a excepción de la autocorrelación a un retardo. La función de autocorrelación del valor absoluto de los retornos $|r_t|$ y la de r_t^2 decae lentamente y la correlación $corr(|r_t|, |r_{t-1}) > corr(r_t^2, r_{t-1}^2)$. La autocorrelación para las potencias $corr(|r_t|, |r_{t-1}) > corr(r_t^d, r_{t-1}^d)$ con $d \neq 1$. Los retornos al cuadrado y el valor absoluto de los retornos son aproximaciones de la volatilidad diaria. La volatilidad presenta asimetría, situación que se observa en general luego de un día de retornos negativos lo cual se conoce como efecto Leverage. Otro hecho estilizado mencionado por Poon(2005) es que la volatilidad de diferentes activos financieros y diferentes mercados tienden a moverse en la misma dirección.

La volatilidad no es directamente observable. Para estimar la volatilidad diaria se podría trabajar con modelos que ajustan la volatilidad intradiaria pero lamentablemente los retornos intradiarios contienen muy poca información sobre la volatilidad del día siguiente (Tsay, 2010). A pesar de no ser directamente observable se presentan ciertas características comunes a los retornos de los activos financieros. Existen clústeres de volatilidad (momentos en los que se presenta alta volatilidad y momentos en los que presenta baja volatilidad agrupados), la volatilidad evoluciona a lo largo del tiempo de manera continua (los saltos de volatilidad son raros), la volatilidad no diverge hacia el infinito. Estadísticamente hablando puede considerarse a la volatilidad como estacionaria. La volatilidad parece reaccionar de manera diferente a una gran suba de precios o a una gran baja (efecto leverage). Este último punto se puede observar en los modelos EGARCH.

Hay 2 grupos de modelos de heterocedasticidad condicional. Los que tienen una ecuación para la evolución de σ_t^2 y los que utilizan una ecuación estocástica para modelar σ_t^2 .

Tsay (2010) describe el proceso de construcción de un modelo de volatilidad con los siguientes 4 pasos:

- 1-Especificar la ecuación de la media de la serie de retornos con un modelo ARMA o ARIMA.
- 2-Utilizar la ecuación de la media para testear los efectos ARCH.

3-Especificar un modelo de volatilidad si los efectos ARCH resultan significativos y realizar la estimación de las ecuaciones del mismo.

4-Chequear el ajuste del modelo y re definir en caso necesario.

La estimación de la volatilidad: Si se considera una serie de tiempo de los retornos r_t con t variando de 1...T la desviación estandard σ corresponde a la volatilidad incondicional en el período T. Dado que la volatilidad no se mantiene constante en el tiempo es necesario utilizar la volatilidad condicional $\sigma_{t,T}$. La estimación de la volatilidad depende de la información disponible, al haber información intradiaria para las transacciones la estimación de la volatilidad se vuelve más precisa. El uso del retorno diario para aproximar la volatilidad resultó ser un estimador muy ruidoso. Mientras la ecuación (34) al cuadrado resulta ser un estimador insesgado de la varianza no condicional σ^2 , la raíz cuadrada de σ^2 resulta ser un estimador sesgado de σ debido a la desigualdad de Jensen que establece que si el retorno $r_t \sim N(0,\sigma^2)$ entonces $E(|r_t|) = \sigma_t \sqrt{2/\pi}$, por lo tanto $\hat{\sigma}_t = |r_t|/\sqrt{2/\pi}$ tiene una distribución condicional normal. Ding, Granger y Engle (1993) sugieren medir la volatilidad directamente desde el valor absoluto de los retornos. Hay trabajos empíricos de Taylor (1986), Ederington y Guan, (2000) y McKenzie (1999) que muestran que los valores absolutos de los retornos permiten mejores pronósticos que los retornos al cuadrado. Sin embargo los modelos de la familia ARCH son modelos de retornos al cuadrado.

Lopez(2001) demostró que los retornos al cuadrado calculados con los precios de cierre de los activos financieros son estimadores insesgados pero muy imprecisos de σ_t^2 debido a la asimetría de su distribución (demostración en Poon, 2005).

El uso de la información del precio máximo y mínimo del día para la aproximación de la volatilidad. El estimador de la volatilidad que trabaja con precios mínimos, máximos, de apertura y de cierre fue estudiado por Parkinson (1980), Garman y Klass (1980), Beckers (1993), Rogers y Satchel (1991), Wiggins (1992), Rogers, Satchel y Yoon (1994), Alizadeth, Brandt y Diebold (2002). Se basa en el supuesto de que el retorno está normalmente distribuido con volatilidad condicional σ_t . Sean H_t y L_t los precios máximos y mínimos en el día t. El estimador de Parkinson (1980) H-L presenta un proceso de movimiento Browniano que resulta en el siguiente estimador desarrollado por Bollen e Inder (2002) con la siguiente ecuación:

$$\hat{\sigma_t}^2 = \frac{(\ln H_t - \ln L_t)^2}{4\ln 2} \tag{37}$$

El estimador de Garman y Klass (1980) es una extensión del estimador de Parkinson (1980) con

información del precio de la apertura p_{t-1} y precio de cierre p_t con la siguiente ecuación:

$$\hat{\sigma_t}^2 = 0.5 \left(\ln \frac{H_t}{L_t} \right)^2 - 0.39 \left(\ln \frac{p_t}{p_{t-1}} \right)^2$$
(38)

Como se mencionó anteriormente existe el hecho estilizado de que los retornos en los mercados financieros no presentan una distribución normal y tienen largas colas en general. El estimador H-L es sensible a la presencia de outliers y por esto Poon (2005) recomienda aplicar truncamiento. Siempre que no haya valores atípicos desestabilizadores el estimador H-L es muy eficiente y está menos afectado por la microestructura del mercado. Poon (2005) menciona que como característica de los mercados financieros, el uso de datos intradiarios de frecuencia menor a 5 minutos tienen correlación serial espúria causado por la microestructura del mercado como el intercambio no sincrónico, observaciones de precio discretas, patrones de volatilidad intradiaria y el rebote de precios por oferta y demanda.

Poon (2005) menciona que el pronóstico de la volatilidad a través de múltiples períodos $\sigma_{T,T+j}$ para un período j se toma como la suma de pronósticos de múltiples pasos $\sum_{j=1}^{s} h_{T+j|T}$. Estos pronósticos se realizan por sustituciones recursivas utilizando el hecho de que $\epsilon_{T+i|T}^2 = h_{T+i|T}$ para i mayores que cero y $\epsilon_{T+i|T}^2 = \epsilon_{T+i}^2$ para $T+i \leq 0$. Como la volatilidad de una serie de tiempo financiera tiene una estructura compleja, Diebold, Hickman, Inoue y Schuermann (1998) advierten que los pronósticos pueden diferir dependiendo el nivel de volatilidad actual de la serie, la estructura de volatilidad de la misma y el horizonte de tiempo empleado. Andersen, Bollerslev y Lange(1999) mencionan que en general la precisión de un pronóstico de volatilidad mejora cuando la frecuencia del muestreo de datos para la volatilidad aumenta en relación al horizonte de pronóstico.

El segundo capítulo del libro de Poon (2005) desarrolla criterios para la evaluación de pronósticos de volatilidad. Llamando \hat{X}_t la volatilidad predicha y a X_t el valor estimado de la volatilidad define el error de pronóstico como $\epsilon_t = \hat{X}_t - X_t$. El autor menciona cinco puntos importantes a considerar a la hora de la evaluación de un pronóstico de volatilidad.

1- Si la forma de X_t tiene que ser σ_t o σ_t^2 . Poon (2005) justifica el uso de σ_t porque indica que σ_t tiene mejor capacidad para capturar los hechos estilizados. Además el cuadrado del error de la varianza es la cuarta potencia del mismo error medido con la desviación estandar. Esto genera complicaciones de estimación porque deben existir los cuartos momentos de las distribuciones y además los intervalos de confianza resultantes son muy amplios y se genera dificultad a la hora de comparar métodos de pronóstico.

- 2- Al ser la volatilidad una variable latente, cual es el impacto de utilizar determinado estimador para la volatilidad. Selección del estimador de la volatilidad.
- 3- La forma del ϵ_t es más importante para la selección de un modelo de volatilidad y qué métricas utilizar en relación a penalizar el sub pronóstico $\hat{X}_t < X_t$ o sobre pronóstico $\hat{X}_t > X_t$. Entre las métricas que Poon (2005) menciona se encuentran:

Error cuadrático medio (RMSE):

$$\sqrt{\frac{1}{n}\sum_{t=1}^{N}\epsilon_{t}^{2}} = \sqrt{\frac{1}{N}\sum_{t=1}^{N}(\hat{\sigma}_{t}^{2} - \sigma_{t}^{2})}$$
(39)

Que presenta una medida global del error pero no indica la dirección y es aplica la raíz cuadrada para disminuir el efecto de observaciones extremas y el nivel de volatilidad de los retornos. Esto se interpreta en la misma unidad que la variable en estudio.

Error Absoluto Medio (MAE):

$$\mathbf{MAE} = \frac{1}{\mathbf{N}} \sum_{t=1}^{\mathbf{N}} |\hat{\sigma}_{t} - \sigma_{t}|$$
 (40)

Los valores ideales de esta métrica aproximan a cero. No brinda una magnitud de la dirección del error porque las diferencias de signo contrario no se cancelan, es una medida de la magnitud del error global de pronóstico. Penaliza los errores en proporción a su magnitud.

El error porcentual absuluto medio (MAPE):

$$MAPE = \frac{1}{N} \sum_{t=1}^{N} \frac{|\hat{\sigma_t} - \sigma_t|}{\sigma_t}$$
(41)

No permite dar información sobre la dirección del error y penaliza las diferencias en forma proporcional.

4- La comparación del error de diferentes modelos. Poon (2005) menciona que la mayoría de las veces las comparaciones entre pronósticos se realizan con métricas estadísticas como las mencionadas en el punto anterior, pero aclara que las métricas están sujetas a ruido y a error. Con esto menciona que si una métrica de error para el modelo A es mayor que una métrica de error para un modelo B no es posible concluir que B es más preciso que A sin realizar tests de significación. West (1996), West y Cho (1995) y West y Mc Craken (1998) muestran como los errores estandard que se

utilizan en métricas de comparación pueden haber sido obtenidos con pronosticos con correlación serial o incertidumbre en la estimación de los parámetros de volatilidad.

Si hay T observaciones en la muestra y T es suficientemente grande, hay 2 maneras de realizar un pronóstico fuera de la muestra. Si se asumen n observaciones para la estimación y se realizan T-n pronósticos. El esquema recursivo de pronósticos comienza con una muestra 1, ..., n y realiza el primer pronóstico en n+1, el segundo pronóstico incluye a la ultima información y forma el conjunto de entrenamiento con 1, ..., n + 1, y así sucesivamente hasta que el pronóstico para T incluya a todas las observaciones excepto a la última utilizando como conjunto de información 1, ..., T-1. Poon (2005) menciona que en la práctica el esquema de pronóstico por fuera de la muestra con barrido de la información es el más utilizado ya que se utiliza un número fijo de observaciones en la estimación. De esta forma el pronóstico para n+2 se hace con la información de conjunto 2, ..., n+1 y el último pronóstico se hace basándose en T-n, ..., T-1 lo cual omite utilizar información sobre el pasado distante. También se menciona que este esquema por barrido resulta más eficiente computacionalmente hablando cuando el número de elementos de T es grande. Diebold y Mariano (1995) propusieron 3 tests para comparación de modelos de pronóstico. Los tests incluyen un test asintótico que corrige por correlación serial y dos tests exactos para muestras finitas basados en un test de signos y el test de ranking de signos de Wilcoxon. Los resultados de los mismos por simulación probaron ser robustos contra pronósticos de distribución no normal, contra media distinta de cero y contra correlación serial. Se presentan a continuación los tests.

Primer Test: sea $\hat{X}_{i,t_{t=1}}^t$ y $\hat{X}_{j,t_{t=1}}^t$ dos conjuntos de pronósticos de $X_{t=1}^T$ de dos modelos i y j respectivamente. Si los errores asociados a los pronósticos son $e_{i,t_{t=1}}^T$ y $e_{j,t_{t=1}}^T$, sea g(.) una función de pérdida (cualquiera de las métricas mencionadas arriba) tal que $g(X_t, \hat{X}_{i,t}) = g(e_{i,t})$. Se define un diferencial de pérdida como $d_t \equiv g(e_{i,t}) - g(e_{j,t})$. Entonces, la hipótesis nula es que los 2 pronósticos tienen la misma precisión y la función de diferencial de pérdida es cero, o sea $E(d_t) = 0$.

El primer test es para la media:

$$\bar{\mathbf{d}} = \frac{1}{\mathbf{T}} \sum_{t=1}^{\mathbf{T}} |\mathbf{g}(\mathbf{e}_{i,t} - \mathbf{g}(\mathbf{e}_{j,t}))|$$
(42)

con el estadístico:

$$\mathbf{S_1} = \frac{\mathbf{\bar{d}}}{\sqrt{\frac{1}{\mathbf{T}} 2\pi \hat{\mathbf{f_d}}(\mathbf{0})}} \tag{43}$$

con $S1 \sim N(0, 1)$

$$2\pi \hat{\mathbf{f}}_{\mathbf{d}}(\mathbf{0}) = \sum_{\tau = -(\mathbf{T} - \mathbf{1})}^{\mathbf{T} - \mathbf{1}} \mathbf{1}(\frac{\tau}{\mathbf{S}(\mathbf{T})} \hat{\gamma}_{\mathbf{d}}(\tau))$$
(44)

$$\hat{\gamma}_{\mathbf{d}}(\tau) = \frac{1}{\mathbf{T}} \sum_{\mathbf{t}=|\tau|+1}^{\mathbf{T}} (\mathbf{d}_{\mathbf{t}} - \bar{\mathbf{d}}) (\mathbf{d}_{\mathbf{t}-|\tau|-\bar{\mathbf{d}}})$$
(45)

El operador $1(\tau/S(T))$ es la ventana de retardo y S(T) es el retardo de truncamiento con:

$$\mathbf{1}(\frac{\tau}{\mathbf{S}(\mathbf{T})}) = \begin{cases} 1 \text{ si } \left| \frac{\tau}{S(T)} \right| \le 1\\ 0 \text{ de cualquier otra forma} \end{cases}$$
 (46)

Asumiendo que los pronósticos de k pasos hacia adelante tienen dependencia en a lo sumo k-1 se recomienda que S(T) = k-1. No es probable que $\hat{f}_d(0)$ sea negativa pero si eso sucede se debe rechazar la hipotesis nula de que ambos pronósticos tienen la misma precisión inmediatamente.

Segundo test: el segundo test de Diebold-Mariano (1995) es el test de signos. El test de signos trabaja sobre la mediana con la hipótesis nula de que $Med(d) = Med(g(e_{i,t}) - g(e_{j,t})) = 0$

Asumiendo que d_t es independiente e idénticamente distribuida el estadístico del test resulta

$$\mathbf{S2} = \sum_{\mathbf{t}=1}^{\hat{\mathbf{T}}} \mathbf{I}_{+}(\mathbf{d_t}) \tag{47}$$

donde

$$\mathbf{I}_{+}(\mathbf{d_{t}}) = \begin{cases} & 1 \text{ si } d_{t} > 0 \\ & 0 \text{ de cualquier otra forma} \end{cases}$$
 (48)

Para una muestra pequeña S2 se debe buscar en las tablas de distribución binomial acumulada. En una gran muestra la versión studentizada de S2 es asintóticamente normal.

$$S_{2a} = \frac{S_2 - 0.5T}{\sqrt{0.25T} N(0, 1)}$$
 (49)

Tercer test: test de rangos de signos de Wilcoxon. Este test está basado en el signo y el rango de la función de pérdida diferencial con estadístico de prueba:

$$S3 = \sum_{t=1}^{T} I_{+}(d_{t}) rank(|d_{t}|)$$
(50)

que representa la suma de los rangos de los valores absolutos para las observaciones positivas. Los valores críticos de S3 han sido tabulados para muestras pequeñas. Para muestras más grandes la versión studentizada de S3 es asíntóticamente normal.

5-Como tener en consideración cuando X_t y X_{t-1} y de manera similar ϵ_t y \hat{X}_t son solapados y están seriamente correlacionados: el test de eficiencia y ortogonalidad basado en la regresión es, según Poon (2005), el más popular en la evaluación de los pronósticos de volatilidad.

Se basa en la regresión de la volatilidad estimada X_t con la volatilidad pronosticada \hat{X}_t

$$\mathbf{X_t} = \alpha + \beta \mathbf{\hat{X}_t} + \mathbf{v_t} \tag{51}$$

Con lo que la predicción sería insesgada sólo si $\alpha=0$ y $\beta=1.$

Dado que el término del error v_t es heterocedástico y está correlacionado de manera serial cuando pronósticos superpuestos son evaluados los errores estándar de los parámetros de regresión se computan bajo la teoría de Hansen y Hodrick (1980).

Sea Y la matriz fila de regresores incluyendo el término constante $Y_t = (1\hat{X}_t)$ es una matrix de 1x2. Entonces, el error estandard se estima con la siguiente expresión:

$$\mathbf{\hat{\Phi}} = \mathbf{T}^{-1} \sum_{i=1}^{T} \mathbf{v}_{t}^{2} \mathbf{Y}_{t}^{\prime} \mathbf{Y}_{t} + \mathbf{T}^{-1} \sum_{k=1}^{T} \sum_{t=k+1}^{T} \mathbf{Q}(\mathbf{k}, t) \mathbf{v}_{k} \mathbf{v}_{t} (\mathbf{Y}_{t}^{\prime} \mathbf{Y}_{k} + \mathbf{Y}_{k}^{\prime} \mathbf{Y}_{t})$$
(52)

donde v_k y v_t son los residuos de la observación k y t de la regresión. El operador Q(k,t) es una función indicadora que toma el valor 1 si hay solapamiento de información entre Y_k e Y_t . La matriz de covarianza ajustada entonces para los coeficientes de regresión resulta entonces:

$$\hat{\omega} = (\mathbf{Y}'\mathbf{Y})^{-1}\hat{\mathbf{\Phi}}(\mathbf{Y}'\mathbf{Y})^{-1} \tag{53}$$

ARCH:

En los procesos lineales ARIMA tanto la varianza marginal como la varianza condicional del error son constantes. En los procesos financieros pueden darse casos en los que la varianza condicional no es constante y representa la incertidumbre en las predicciones. Estos procesos van a reflejar un riesgo variable (Peña, 2010). Son los modelos de varianza condicional heterocedástica. Engle (1982) introdujo los modelos autorregresivos de varianza condicional heterocedástica (ARCH) donde la varianza condicional depende del pasado con estructura autorregresiva. Poon(2005) destaca que a diferencia de los modelos de volatilidad histórica, los modelos ARCH no utilizan las desviaciones estandar pasadas sino que formulan la varianza condicional de los retornos de un activo financiero con procedimientos de máxima verosimilitud. Los procesos ARCH relajan la hipótesis de normalidad de residuos y permiten procesos de ruido blanco formados por variables dependientes en los residuos. Una clase de modelos con esta propiedad es $e_t = \sigma_t \epsilon_t$, donde ϵ_t y σ_t son procesos estacionarios independientes entre sí. Tsay(2010) menciona que en la práctica ϵ_t puede asumir una distribución normal, o una t-student estandarizada o una distribución de error generalizada. El proceso e_t es un ruido blanco normal estandarizado. El proceso σ_t es estacionario con estructura dinámica siendo su valor en el tiempo función de $e_t - i$ los valores de la serie previos a t. Al ser independientes σ y ϵ la serie de e_t tiene media marginal y media condicional igual a cero.

$$\mathbf{E}(\mathbf{e_t}) = \mathbf{E}(\sigma_t)\mathbf{E}(\epsilon_t) = \mathbf{0} \tag{54}$$

$$\mathbf{E}(\mathbf{e_t}|\mathbf{e_{t-1}}) = \mathbf{E}(\sigma_t|\mathbf{e_{t-1}})\mathbf{E}(\epsilon_t) = \mathbf{0}$$
(55)

El proceso tiene una varianza marginal constante σ^2 y una varianza condicional que varía con el tiempo.

$$Var(e_t^2|e_{t-1}) = E(\sigma_t^2|e_{t-1})E(\epsilon_t^2) = \sigma_t^2$$
(56)

Donde σ_t^2 representa la varianza condicionada de la serie en cada instantante que varía con una estructura estacionaria (Peña, 2010). La independencia de los procesos σ_t y ϵ_t garantizan que la serie e_t forma un ruido blanco y no tiene autocorrelación. Como el proceso ϵ_t es independiente de su pasado y de los valores previos y actuales del proceso σ_t , el modelo ARCH(1) tiene una varianza condicional σ_t^2 que depende sólo del último valor observado mediante la ecuación:

$$\mathbf{E}(\mathbf{e_t^2}|\mathbf{e_{t-1}}) = \sigma_t^2 = \alpha_0 + \alpha_1 \mathbf{e_{t-1}^2}$$
(57)

Este caso se puede generalizar al ARCH(q) donde la varianza del error depende de q rezagos de los errores al cuadrado, en este caso:

$$\sigma_{\mathbf{t}}^{2} = \alpha_{0} + \alpha_{1} \mathbf{e}_{\mathbf{t-1}}^{2} + \alpha_{2} \mathbf{e}_{\mathbf{t-2}}^{2} + \dots + \alpha_{q} \mathbf{e}_{\mathbf{t-q}}^{2}$$
 (58)

Peña(2010) demuestra que el modelo ARCH(1) conduce a distribuciones con colas pesadas por las rachas de valores altos en la varianza de los datos aunque globalmente sea un proceso estacionario. Se utiliza la letra η para la varianza condicional σ_t^2 . Si se considera un modelo ARMA(1,0) y la ecuación del ARCH(1) se puede escribir el conjunto como:

$$\mathbf{y_t} = \beta_0 + \beta_1 \mathbf{y_{t-1}} + \mathbf{u_t} \tag{59}$$

Donde $u_t N(0, \eta)$ y $\eta_t = w + \alpha_1 u_{t-1}^2$

Los modelos ARCH deben complir que la varianza condicional sea siempre positiva. Se debe satisfacer que w > 0 y que los $\alpha_i > 0$ $\forall i = 1...q$. Se debe confirmar que existe el comportamiento autorregresivo de la serie identificando si alguno de los q rezagos de los errores al cuadrado resulta significativo. Por último la suma de los parámetros del modelo ARCH no puede ser mayor a 1 porque en ese caso se genera un comportamiento explosivo de la volatilidad y el modelo entonces se vuelve inestable.

Entre las limitaciones de los modelos ARCH se encuentra que no hay una forma óptima de encontrar el número de rezagos q para el modelo ARCH, existe una relación entre lo parsimonioso que puede resultar el modelo y la cantidad de términos que tenga el modelo en relación justamente a la cantidad de rezagos. Un modelo con mayor cantidad de parámetros resulta menos parsimonioso.

GARCH:

Los modelos generalizados autorregresivos condicionales heterocedásticos GARCH son una extensión de los modelos ARCH con la diferencia de que σ_t^2 se vuelve recursivo. Son un desarrollo de Bollerslev (1986) y Taylor (1986), en estos modelos se permite que la varianza condicional sea

dependiente de sus propios rezagos. Esto se usa para aproximar un modelo ARCH de orden alto con una media móvil en las varianzas.

Para la serie de retornos logarítmicos r_t , se considera $a_t = r_t - \mu_t$ la innovación en el momento t. Entonces a_t sigue un modelo GARCH(m,s) si $a_t = \sigma_t \epsilon_t$ y

$$\sigma_{\mathbf{t}}^{2} = \alpha_{\mathbf{0}} + \sum_{\mathbf{i}=1}^{\mathbf{m}} \alpha_{\mathbf{i}} \mathbf{a}_{\mathbf{t}-\mathbf{i}}^{2} + \sum_{\mathbf{i}=1}^{\mathbf{s}} \beta_{\mathbf{j}} \sigma_{\mathbf{t}-\mathbf{j}}^{2}$$

$$(60)$$

donde ϵ_t es una secuencia de variables aleatorias independientes e idénticamente distribuidas con media cero y varianza 1, $\alpha_0 > 0$, $\alpha_i \ge 0, \beta_j \ge 0$ y $\sum_{i=1}^{max(m,s)} (\alpha_i + \beta_j) < 1$. α_i es el parámetro ARCH y β_j es el parámetro GARCH.

Un valor grande de a_{t-1}^2 o de σ_{t-1}^2 dan origen a una gran varianza. El valor grande de a_{t-1} tiende a ser seguido por otro valor grande de a_t y esto ocasiona comportamiento de clúster de volatilidad que se mencionó anteriormente.

De manera similar a los modelos ARCH la distribución de un modelo GARCH tiene colas más pesadas que la distribución normal. El modelo provee al igual que el ARCH una ecuación paramétrica para evaluar la evolución de la volatilidad. Los pronósticos de más de un paso en adelante con GARCH convergen a la varianza no condicional del mismo modo que en el caso de los ARCH. Dentro de las desventajas del modelo se menciona que tiene el mismo efecto que el ARCH en relación a los shocks positivos y negativos.

El modelo GARCH más simple es el GARCH(1,1) con ecuación:

$$\sigma_{\mathbf{t}}^2 = \alpha_0 + \alpha_1 \mathbf{e}_{\mathbf{t}-1}^2 + \beta_1 \sigma_{\mathbf{t}-1}^2 \tag{61}$$

Donde σ_t^2 es la varianza condicional que es una estimación anticipada de la varianza calculada. Este modelo permite interpretar la varianza ajustada ($\eta_t = \sigma_t^2$), como una función ponderada de un proceso de largo plazo α_0 , la información de la volatilidad previa representada por $\alpha_1 e_{t-1}^2$ y la varianza ajustada del modelo del período anterior $\beta_1 \sigma_{t-1}^2$ (por esto el caracter recursivo mencionado previamente). Si se escribe el modelo en la representación de los cuadrados de las variables, introduciendo el proceso de ruido blanco $v_t = e_t^2 - \sigma_t^2$ que es por construcción un proceso estacionario de media cero, de la misma forma que en los modelos ARCH las variables v_t a pesar de no estar correlacionadas no son independientes. Si se sustituye $\sigma_t^2 = e_t^2 - v_t$ en la ecuación del modelo GARCH (1,1) se obtiene:

$$\mathbf{e_t^2} = \alpha_0 + (\alpha_1 + \beta_1)\mathbf{e_{t-1}^2} + \mathbf{v_t} + \beta_1\mathbf{v_{t-1}}$$
 (62)

Ecuación que muestra que los cuadrados de las observaciones siguen una estructura de dependencia similar a un ARMA(1,1). El coeficiente $\lambda = (\alpha_1 + \beta_1)$ se llama persistencia y en series financieras es próximo a la unidad (Peña, 2010). El modelo GARCH se puede generalizar con una estructura autorregresiva de orden r en la dependencia de la varianza de los cuadrados de la serie y una estructura de medias móviles de orden s en la varianza condicional obteniéndose el modelo:

$$\sigma_{\mathbf{t}}^{2} = \alpha_{0} + \sum_{\mathbf{i}=1}^{\mathbf{r}} \alpha_{\mathbf{i}} \mathbf{e}_{\mathbf{t}-\mathbf{i}}^{2} + \sum_{\mathbf{j}=1}^{\mathbf{s}} \beta_{\mathbf{j}} \sigma_{\mathbf{t}-\mathbf{j}}^{2}$$

$$(63)$$

Los parámetros de la ecuación deben verificar ciertas restricciones para que la varianza de la ecuación sea positiva y existan los momentos de órden superior, $\alpha_0 > 0$, $\alpha_i > 0$, $\beta_i > 0$ y $\sum_{i=1}^{maxr,s} (\alpha_i + \beta_i) < 1$ (Peña, 2010).

Para la construcción de modelos ARCH o GARCH Peña (2010) recomienda seguir tres pasos fundamentales: reconocer la estructura, estimar los parámetros y comprobar su adecuación a los datos. Primero se ajusta un modelo ARIMA para eliminar la dependencia en la media, si los residuos no son independientes se observa ese comportamiento en la función de autocorrelación de los residuos al cuadrado del modelo ARIMA. La cantidad de residuos significativos en la FACP de los residuos al cuadrado permite aproximar la cantidad de términos del modelo ARCH. Peña (2010) recomienda utilizar un tratamiento a los valores atípicos previo al modelado de la heterocedasticidad condicional para evitar la confusión entre los efectos de los valores atípicos y la volatilidad que se intenta explicar con los ARCH o GARCH.

EGARCH:

Nelson (1991) propone el modelo exponencial GARCH con el objetivo de evitar una de las debilidades de los modelos ARCH y GARCH que es permitir los efectos asimétricos de los retornos positivos y negativos en la modelización de la volatilidad.

Considerando una innovación ponderada:

$$\mathbf{g}(\epsilon_{\mathbf{t}}) = \theta \epsilon_{\mathbf{t}} + \gamma [|\epsilon_{\mathbf{t}}| - \mathbf{E}(\epsilon_{\mathbf{t}})]$$
(64)

Donde θ y γ son constantes reales. Tanto ϵ_t como $|\epsilon_t| - E(\epsilon_t)$ tienen media cero y son independientes e identicamente distribuidas con distribuciones continuas. Con esto $E[g(\epsilon_t)] = 0$. Si se reescribe la ecuación de una innovación ponderada del siguiente modo se puede ver la asimetría que describe:

$$\mathbf{g}(\epsilon_{\mathbf{t}}) \begin{cases} (\theta + \gamma)\epsilon_{t} - \gamma E(|\epsilon_{t})|) \ si \ \epsilon_{t} \ge 0 \\ (\theta - \gamma)\epsilon_{t} - \gamma E(|\epsilon_{t})|) \ si \ \epsilon_{t} < 0 \end{cases}$$
(65)

Se define un modelo EGARCH(p,q) con las ecuaciones a continuación:

$$\mathbf{a_t} = \sigma_{\mathbf{t}} \epsilon_{\mathbf{t}} \tag{66}$$

$$\ln(\sigma_{\mathbf{t}}^{2}) = \omega + \frac{1 + \beta_{1}\mathbf{B} + \dots + \beta_{\mathbf{p}-1}\mathbf{B}^{\mathbf{p}-1}}{1 - \alpha_{1}\mathbf{B} - \dots - \alpha_{\mathbf{q}}\mathbf{B}^{\mathbf{q}}}\mathbf{g}(\epsilon_{\mathbf{t}-1})$$

$$(67)$$

Donde ω es constante, B es el operador de retardo, y $1+\beta_1B+...+\beta_{p-1}B^{p-1}$ y $1-\alpha_1B-...-\alpha_qB^q$ son polinomios con raíces fuera del círculo unitario y no tienen factores comunes. La ecuación utiliza parametrización ARMA para describir la varianza condicional de la innovación a_t . La media de la varianza no condicional es ω .

Las diferencias entre este modelo y el GARCH son que utiliza el logaritmo de la varianza condicional para relajar la restricción de positividad de los coeficientes del modelo y el uso de la función $g(\epsilon_t)$ para responder de manera asimétrica a valores positivos y negativos de las innovaciones.

Métricas de comparación:

La idea general de todas las métricas utilizadas en este presente trabajo es comparar la situación observada en el fenómeno que se desarrolla en la serie de tiempo contra lo que los distintos modelos estiman y calcular alguna medida de error sobre esa comparación.

Raíz del error cuadrático medio:

Toma las diferencias al cuadrado entre los valores observados y predichos, a través de todos los datos y los promedia:

$$MSE = \sum_{i=1}^{n} \frac{(\hat{\mathbf{y}}_i - \mathbf{y}_i)^2}{n}$$
 (68)

En el presente trabajo se utiliza para comparación la raíz cuadrada o RMSE:

$$\mathbf{RMSE} = \sqrt{\sum_{i=1}^{n} \frac{(\hat{\mathbf{y}}_i - \mathbf{y}_i)^2}{\mathbf{n}}}$$
 (69)

Desviación media absoluta:

Se define entonces la desviación media absoluta:

$$\mathbf{MAE} = \sum_{i=1}^{n} \frac{|\hat{\mathbf{y}}_i - \mathbf{y}_i|}{\mathbf{n}}$$
 (70)

Error porcentual medio absoluto:

El MAPE es un indicador que mide el tamaño del error absoluto de fácil interpretación porque es una medida relativa.

$$\mathbf{MAPE} = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{\mathbf{y_i} - \hat{\mathbf{y}_i}}{\mathbf{y_i}} \right|$$
 (71)

En las 3 métricas definidas arriba los valores de \hat{y}_i corresponden al valor pronosticado para el período i y y_i es el valor observado (real) de la variable en el período i.

Validación Cruzada:

Para los pronósticos del presente trabajo se aplica además un esquema de validación cruzada con el objetivo de obtener una comparación más robusta entre modelos. Se elige un esquema de validación cruzada por bloques, en donde se selecciona distintos intervalos de tiempo dentro de la historia de la serie, se pronostica en los plazos identificados en los objetivos y se promedian las métricas obtenidas para cada bloque en cada modelo aplicado.

Gráficamente, la validación cruzada por bloques se muestra a continuación:

Figura 5: Esquema de valización Cruzada. Fuente: Elaboración propia.

En la figura (5) se observa como se configuran diferentes intervalos temporales (bloques) en los que se entrenan los modelos (zona marcada en azul) y luego se realizan pronósticos (zonas marcadas en rojo). Luego las métricas son calculadas contra los valores reales de la serie y se realizan los promedios.

En las pruebas que se realizan empíricamente se confeccionan pronósticos a 5, 15 y 30 días para la serie de precios de cierre de los primeros días de 2022 y luego se informan los resultados obtenidos con el esquema de validación cruzada en cada tramo de la serie según la figura (5) para tener otro elemento de comparación.

Capítulo 4 - Resultados

En el estudio de los métodos de pronóstico para la serie de precios de cierre diario de ETH/USD y la volatilidad de ETH/USD se trabaja con la aplicación empírica de lo desarrollado en la metodología para generar las predicciones que luego serán comparadas.

Como primer punto se desarrolla un análisis descriptivo de la serie de precios de cierre diario de ETH/USD. En el presente trabajo de tesis se desarrollan modelos sobre series de tiempo univariantes, todos los modelos trabajan sobre el comportamiento histórico de la misma serie, aunque en el caso de ARIMA, ARCH, GARCH y EGARCH se aplica la transformación de la serie de precios de cierre diario a retornos logarítmicos.

Luego se construyen los modelos ETS, ARIMA, ARFIMA, NNETAR y LSTM, se generan los pronósticos para los precios de cierre en los horizontes fijados y los modelos ARCH, GARCH, EGARCH para el pronóstico de la volatilidad de la serie de retornos logarítmicos diarios. Se registran los resultados de las métricas obtenidas.

Análisis Exploratorio:

Se presenta el gráfico de la serie de precios de cierre diario de Ether en la Figura 6 :

Figura 6: Precios de cierre diario de ETH/USD (2017-2021). Fuente: Elaboracion Propia

En la Figura anterior se muestran los precios de cierre Ether (ETH/USD) entre el 01/01/2017 y el 01/01/2022.

Se observa un comportamiento no estacionario de la serie, con una marcada tendencia ascendente a partir del 2021, un período de precios de cierre estables entre los 250 y 800 dólares que se extiende entre los años 2019 y 2021. También se aprecia otra etapa de fuerte crecimiento desde 2017 hasta el fin del primer cuarto del 2018 para luego una caída del precio hasta comienzos del 2019. Se observan períodos de baja del precio durante los meses del segundo cuarto de 2018 y en el segundo cuarto de 2021, donde las bajas fueron superiores al 100 %. Por otro lado en el período que comienza en el último cuarto de 2019 hasta el comienzo del año 2021 la serie presenta menor variabilidad y los precios se ubican entre los 200 y los 500 dólares.

A continuación se estudia el gráfico de la función de autocorrelación de la serie de precios de cierre diario. En la FAC se observa el comportamiento de disminución lenta de los valores de

autocorrelación típico de las series no estacionarias.

Figura 7: Gráfico de FAC de precios de cierre de ETH/USD. Fuente: Elaboración Propia.

Para testear la estacionariedad de la serie de precios de cierre se realizan las pruebas de raíz unitaria Aumentada de Dickey-Fuller y KPSS (Kwiatkowski,Phillips,Schmidt,Shin). El valor p del la prueba de Dickey Fuller aumentada es $p=1.809.10^{-14}$ con lo cual se rechaza la hipótesis nula de estacionariedad de la serie. Del mismo modo el test de KPSS rechaza la hipótesis nula de estacionariedad a un nivel de significación menor al 1%.

Las medidas básicas de resumen de los datos de la serie de precios de cierre diario en estudio son las siguientes:

Tabla 1: Resumen de estadísticos descriptivos para precio de cierre de ETH/USD. Elaboración Propia

Medidas	Valores	Medidascont	Valorescont
Tamaño (n)	1826	Máximo	4891.7000
Faltantes	0	Desvío Std	1110.2900
Mínimo	7.9800	Varianza	1232743.0570
1erQ	177.0060	Error Estandar Medio	25.9830
Media	794.5610	Rango Intercuartílico	542.8220
Mediana	292.8530	Rango	4803.9150
3erQ	719.8280	Kurtosis	2.7900
Valor p SW	0.0000	Asimetría	1.9700

En esta tabla se observa la variabilidad que presenta el precio de cierre de ETH, donde el mínimo

valor registrado es 7.98 USD y el precio más alto registrado en el momento del estudio es 4891.70 USD. La serie cuenta con 1826 observaciones sin valores faltantes.

La distribución de los valores de cotización de cierre de Eth/USD en el período en estudio (01-01-2017 a 01-01-2022) tiene una distribución asimétrica a la derecha como se muestra en la figura:

Figura 8: Gráfico de distribución de densidad. Precios de cierre de ETH/USD. Elaboración Propia.

En la tabla a continuación se muestran los valores máximos y mínimos de cotización para cada año en estudio junto con el porcentaje de variación anual.

Tabla 2: Resumen de precios anuales ETH/USD. Elaboración Propia.

Año	Apertura	Cierre	Mínimo	Máximo	Cambio %
2017	7.98	756.73	7.98	881.94	9380.1253
2018	755.76	133.37	82.83	1432.88	-82.3530
2019	133.42	129.61	102.93	361.40	-2.8536
2020	129.63	737.80	95.18	754.30	469.1581
2021	737.71	3682.63	718.11	4891.70	399.1990
2022	3683.05	3769.70	3682.29	3769.92	2.3527

Se observa en la tabla el crecimiento explosivo del primer año de estudio, con una corrección a la baja marcada en el segundo año. Durante los años 2020 y 2021 otra fase de crecimiento explosivo.

Para el trabajo empirico con el modelo ARIMA y los modelos ARCH, GARCH y EGARCH se utiliza la serie de retornos logarítmicos de precios de ETH/USD porque la serie original no es estacionaria. Se define la misma como:

$$\mathbf{Z_t} = \log(\mathbf{P_t}) - \log(\mathbf{P_{t-1}}) \tag{72}$$

Donde Z_t es el retorno logarítmico en el tiempo t, P_t y P_{t-1} son los precios de cierre en el tiempo t y el día anterior (t-1).

La serie del retorno logarítmico para los precios de cierre de ETH/USD:

Figura 9: Gráfico de Retornos logarítmicos de ETH/USD. Fuente: Elaboración Propia

La Figura 9 muestra el comportamiento de los retornos logarítmicos del precio de ETH/USD. En general la serie aparenta presentar el comportamiento estacionario esperable en los hechos estilizados de retornos de activos financieros, aunque se observa un valor fuertemente atípico en el año 2020 y los tests de KPSS y Dickey Fuller Aumentado rechazan la hipotesis de estacionariedad. No se observa comportamiento cíclico ni estacional en esta serie.

Figura 10: Distribución de densidad de retornos logarítmicos de ETH/USD vs normal. Diagrama QQ para retornos logarítmicos ETH/USD. Fuente: Elaboración Propia.

En las Figuras precedentes se puede observar el comportamiento leptocúrtico de los retornos logarítmicos del precio de ETH/USD, lo que concuerda con lo mencionado como hecho estilizado.

Tabla 3: Resumen de estadísticos descriptivos para retorno logarítmico ETH/USD. Elaboración Propia

Medidas	Valores	Medidas.cont	Valores.cont
Tamaño (n)	1825	Máximo	0.2788
Faltantes	0	Desvío Std	0.0560
Mínimo	-0.5510	Varianza	0.0030
1erQ	-0.0210	Error Estandar Media	0.0010
Media	0.0030	Rango Intercuartílico	0.0500
Mediana	0.0020	Rango	0.8410
3erQ	0.0290	Kurtosis	8.6130
Valor p SW	0	Asimetría	-0.4420

La serie de retornos logaritmicos de ETH/USD contiene 1825 valores (por utilizar una diferenciación tiene un valor menos), no presenta faltantes, se rechaza con un valor p de 0 el supuesto de normalidad en la distribución mediante la prueba de Shapiro Wilk. El valor medio de 0.0030 muy cercano a cero es característico de los retornos logarítmicos de series financieras.

Modelo ETS:

A continuación se realiza el modelado y pronóstico de la serie de precios de cierre de ETH/USD con el método ETS y el paquete "Forecast" en R versión 4.0.4 (2021-02-15).

En primer lugar se produce la selección de un modelo apropiado para la serie de tiempo. En base a los criterios desarrollados en el marco teórico el paquete Forecast (versión 8.18) en el software R determina cual es mejor modelo dentro de la familia de suavizado exponencial para realizar el pronóstico.

Se selecciona para toda la serie un modelo que contempla error multiplicativo, tendencia aditiva y no contempla componente estacional, ETS(M,A,N).

Las ecuaciones del modelo son:

$$\mathbf{l_t} = \alpha \mathbf{y_t} + (\mathbf{1} - \alpha)(\mathbf{l_{t-1}} + \mathbf{b_{t-1}}) \tag{73}$$

$$\mathbf{b_t} = \beta(\mathbf{l_t} - \mathbf{l_{t-1}}) + (\mathbf{1} - \beta)\mathbf{b_{t-1}}$$
(74)

$$\mathbf{\hat{y}_{t+h|t}} = \mathbf{l_t} + \mathbf{hb_t} \tag{75}$$

Donde en este caso $\alpha = 0.9546$, $\beta = 0.0023$, los estados iniciales $l_0 = 7.8559$, $b_0 = 0.2812$.

Los criterios de información AIC=24683.5000, AICc=24683.5300 y BIC=24711.0500.

La representación de los componentes que identifica el modelo se observa en el gráfico a continuación:

Descomposición ETS(M,A,N)

Figura 11: Componentes del modelo ajustado ETS(M,A,N). Fuente: elaboración propia.

La descomposición precedente muestra que el modelo seleccionado tiene una combinación de tendencia y nivel aditivos junto con un componente de error multiplicativo.

A continuación se realiza el pronóstico para 5, 15 y 30 días para los primeros días del mes de enero de 2022.

Las gráficas a continuación muestran los pronósticos calculados.

Precio de cierre de ETH/USD (h=5 días)

Figura 12: Pronóstico de precio de cierre de ETH/USD con horizonte de 5 días con modelo ETS(M,A,N). Fuente: elaboración propia.

Precio de cierre de ETH/USD (h=15 días) Nivel de Confianza 3000 2000 2000 2001 - 2021 - 2022

Figura 13: Pronóstico de precio de cierre de ETH/USD con horizonte de 15 días con modelo ETS(M,A,N). Fuente: elaboración propia.

Figura 14: Pronóstico de precio de cierre de ETH/USD con horizonte de 30 días con modelo ${\rm ETS}({\rm M,A,N}).{\rm Fuente}:$ elaboración propia.

Los residuos del modelo ETS ajustado se muestran en la gráfica a continuación:

Figura 15: Residuos modelo ETS(M,A,N). Fuente Elaboración propia.

Se observa que los residuos presentan un comportamiento que difiere levemente de un ruido blanco, la función de autocorrelación de residuos presenta valores inferiores a 0.0500, lo cual es indicio de que existe leve autocorrelación de residuos y la distribución de los residuos es leptocúrtica.

Las métricas para el modelo ETS(M,A,N) en el periodo y los horizontes seleccionados son: Horizonte de 5 días: pronóstico desde el 1/1/2022 al 5/1/2022:

Horizonte de 15 días: pronóstico desde el 1/1/2022 al 15/1/2022:

Tabla 4: Resumen de métricas pronóstico a 5 días ETH/USD (cierre diario). Fuente: Elaboración propia.

Métrica	Valor
RMSE	111.4981
MAE	106.0277
MAPE %	2.8501

Tabla 5: Resumen de métricas pronóstico a 15 días ETH/USD (cierre diario). Fuente: Elaboración propia

Métrica	Valor
RMSE	410.9421
MAE	359.1125
MAPE	11.0130

Horizonte de 30 días: pronóstico desde el 1/1/2022 al 30/1/2022:

Tabla 6: Resumen de metricas pronóstico a 30 días ETH/USD (cierre diario). Fuente: Elaboración propia

Métrica	Valor
RMSE	839.4285
MAE	709.9851
MAPE	25.9284

Al trabajar con el modelo de validación cruzada propuesto en el marco teórico se subdivide la serie en tramos de 300 observaciones consecutivas, separándose entre sí por 200 observaciones y en cada una de los tramos definidos se calcula el pronóstico en los horizontes fijados, las métricas con respecto a la serie original y finalmente se promedian las métricas para tener los valores que se muestran a continuación.

En el gráfico a continuación se muestra el esquema de validación cruzada aplicado para el horizonte de 30 días. En los otros horizontes de pronóstico los intervalos seleccionados son los mismos, con la variación obvia del intervalo de testeo.

Figura 16: Esquema de validación cruzada (h=30 días). Fuente: Elaboración propia

Obteniéndose los siguientes promedios

Para un pronóstico de precio de cierre con horizonte de 5 días:

Tabla 7: Resumen de metricas de CV en pronóstico a 5 días ETH/USD (cierre diario). Fuente: Elaboración propia

Métrica	Valor
RMSE	92.8000
MAE	35.8000
MAPE	4.8600

Para un pronóstico a 15 días:

Tabla 8: Resumen de metricas de CV en pronóstico a 15 días ETH/USD (cierre diario). Fuente: Elaboración propia

Métrica	Valor
RMSE	148.0100
MAE	72.8100
MAPE	9.4900

Para un pronóstico a 30 días:

Tabla 9: Resumen de metricas de CV en pronóstico a 30 días ETH/USD (cierre diario). Fuente: Elaboración propia

Métrica	Valor
RMSE	158.0100
MAE	96.3100
MAPE	15.8100

Modelo ARIMA:

Retomando la gráfica de la serie de precios de cierre de ETH/USD para el período en estudio se identifico en el análisis exploratorio la presencia de raíz unitaria y la necesidad de diferenciar la serie.

Dada la naturaleza no estacionaria de la serie, se procede de acuerdo a la metodología planteada por Hyndman y Athanasopoulos (2018) y se estudian las propiedades del la primer diferencia del logaritmo de la serie, o retorno logarítmico, definida como ya se mencionó anteriormente como $Z_t = log(P_t) - log(P_{t-1})$.

Donde P_t es el precio de cierre en el día t. Se interpreta en base a la ecuación precedente que la serie diferenciada tiene una observación menos (porque en el momento inicial no se puede calcular). Se grafica a continuación la serie diferenciada del logaritmo del precio cierre de ETH en dólares estadounidenses partiendo desde el 02/01/2017 al 01/01/2022, conocida como retorno logarítmico. Se aplica la transformación logaritmo a los datos, además de la diferenciación, para estabilizar la varianza.

Figura 17: Gráfico de serie diferenciada de logaritmo de precios de cierre de ETH/USD (2017-2022). Fuente: Elaboración Propia.

Figura 18: Función de Autocorrelación y Autocorrelación parcial del retorno logarítmico de precios de cierre de ETH/USD (2017-2022). Fuente: Elaboración Propia.

Se testea a continuación la estacionariedad de la serie diferenciada de logaritmos de precios diarios de ETH/USD. Del mismo modo que con la serie original se aplican Dickey Fuller Aumentado y KPSS. Ambas pruebas indican la estacionariedad de la serie modificada a un nivel $\alpha=0.05$

El gráfico de autocorrelación parcial presenta autocorrelaciones muy bajas para ser consideradas en modelización. Por otro lado la función de autocorrelación presenta un comportamiento similar con autocorrelaciones muy bajas y límites definidos en relación a la longitud de la serie. Siguiendo la metodología propuesta por Hyndman y Athanasopuolos (2018) se prueba con modelos ejecutados automáticamente por el paquete Forecasts.

El sistema realiza 2 tipos de búsquedas una paso a paso y otra en función de la minimización de AICc, coincidiendo en la selección de un modelo SARIMA(1,1,2)(1,0,0)[7]. Los valores de los

criterios de información AICc = 5324 y BIC = 5291

El modelo resulta entonces:

$$(1 - \phi_1)(1 - \Phi_1 \mathbf{B}^7)(1 - \mathbf{B})(1 - \mathbf{B}^7)\mathbf{y_t} = (1 - \theta_1 \mathbf{B} - \theta_2 \mathbf{B}^2)\epsilon_t + \mathbf{c}$$
 (76)

Donde: $\phi_1 = 0.9169$, $\Phi_1 = -0.9515$, $\theta_1 = 0.0686$, $\theta_2 = -0.0460$, c = 0.0003. Todos significativos a un nivel $\alpha = 0.10$.

Se realiza la comprobación de los residuos del modelo ajustado:

Figura 19: Gráfico de residuos de modelo SARIMA(1,1,2) (1,0,0)(7) de retornos logarítmicos ETH/USD (2017-2022). Fuente: Elaboración Propia

Figura 20: ACF y distribución de residuos de modelo SARIMA(1,1,2)(1,0,0)(7). Fuente: Elaboración Propia

Los residuos parecen no estar correlacionados, si bien los límites del gráfico de autocorrelación no contienen a todos los puntos, los límites indican correlaciones muy débiles y solamente se ve una observación fuera de los límites en 30 rezagos (menos del 5%). Se observan algunos valores atípicos en los residuos, pero en general parece ser un ruido blanco. La distribución de los residuos

es leptocúrtica, centrada en cero.

A continuación se realiza el test de Ljung-Box para determinar si es posible considerar a los residuos como ruido blanco. El valor p=0.0567 no permite rechazar con un nivel $\alpha=0.05$ la hipótesis nula de que los residuos no están correlacionados.

Figura 21: Gráfico raíces características del modelo ARI-MA(1,1,2) (1,0,0)(7) retornos logarítmicos de ETH/USD (2017-2022). Fuente: Elaboración Propia

Se observan que el modelo ajustado automáticamente presenta raíces que no están cerca de los límites del círculo unidad, lo que es recomendable porque el comportamiento es estable. El modelo es entonces, pronosticable y estable.

A continuación se grafica el pronóstico de la serie para 5 días:

Figura 22: Pronóstico a 5 días del modelo SARIMA(1,1,2)(1,0,0)(7) retornos logarítmicos de ETH/USD (2017-2022). Fuente: Elaboración Propia.

Donde los intervalos de confianza del $80\,\%$ 95 % se muestran en color sombreado claro y oscuro respectivamente en los pronósticos ARIMA de todos los horizontes planteados.

El pronóstico con ARIMA para 15 días resulta:

Figura 23: Pronóstico a 15 días del modelo SARIMA(1,1,2)(1,0,0)(7) retornos logarítmicos de cierre de ETH/USD (2017-2022). Fuente: Elaboración Propia

Para un horizonte de 30 días:

Figura 24: Pronóstico a 30 días del modelo SARIMA(1,1,2)(1,0,0)(7) ajustado a logaritmo de precios de cierre de ETH/USD (2017-2022). Fuente: Elaboración Propia

Las métricas del modelo seleccionado para el mes de enero 2022 son:

Horizonte de 5 días: pronóstico desde el 1/1/2022 al 5/1/2022:

Tabla 10: Resumen de metricas pronóstico a 5 días con ARIMA de ETH/USD (cierre diario). Fuente: Elaboración Propia.

Métrica	Valor
RMSE	117.8213
MAE	108.3372
MAPE	2.9215

Horizonte de 15 días: pronóstico desde el 1/1/2022 al 15/1/2022:

Tabla 11: Resumen de metricas pronóstico a 15 días con modelo ARIMA ETH/USD (cierre diario). Fuente Elaboración: Propia

Métrica	Valor
RMSE	470.5689
MAE	409.8491
MAPE	12.5723

Horizonte de 30 días: pronóstico desde el 1/1/2022 al 30/1/2022:

Se utiliza el mismo esquema de validación cruzada que en el modelo ETS para los distintos horizontes de pronóstico (ver Figura 9, con el ejemplo del esquema para 30 días). Se obtienen los siguientes resultados:

Tabla 12: Resumen de metricas pronóstico a 30 días con modelo ARIMA ETH/USD (cierre diario). Fuente: Elaboración Propia.

Métrica	Valor
RMSE	1026.5031
MAE	861.8827
MAPE	31.5266

Para un pronóstico a 5 días:

Tabla 13: Resumen de metricas de CV en pronóstico a 5 días con ARIMA de ETH/USD (cierre diario). Fuente: Elaboración Propia

Métrica	Valor
RMSE	82.1100
MAE	34.8900
MAPE	5.4500

Para un pronóstico a 15 días:

Tabla 14: Resumen de metricas de CV en pronóstico a 15 días con ARIMA de ETH/USD (cierre diario). Fuente: Elaboración Propia

Métrica	Valor
RMSE	145.1000
MAE	80.7100
MAPE	12.4200

Para un pronóstico a 30 días:

Tabla 15: Resumen de metricas de CV en pronóstico a 30 días con ARIMA ETH/USD (cierre diario). Fuente: Elaboración Propia

Métrica	Valor
RMSE	275.0300
MAE	152.0200
MAPE	19.5000

Modelo ARFIMA:

En este punto del trabajo se busca evaluar la performance para pronóstico de un modelo autorregresivo fraccionalmente integrado de medias móviles y continuar con el modelado de la media del proceso.

En relación con el modelo ARIMA ajustado surge la posibilidad de cuestionar si el modelo fue sobrediferenciado y presentarse un proceso de memoria larga en la media. De acuerdo a lo presentado en la metodología, Crato y Ray (1996) basándose en un extenso estudio realizado mediante simulación concluyen que únicamente cuando el número de observaciones es elevado y la persistencia muy fuerte puede estar justificado el uso de los modelos ARFIMA.

En relación a la cantidad de observaciones disponibles, el conjunto total de precios de cierre entre los años 2017 y 2022 contiene 1826 observaciones con lo que se considera un conjunto de longitud apropiada para la técnica. Del resultado de la modelización se obtiene la persistencia.

Se modela entonces el ARFIMA utilizando el paquete Forecast en R. El modelo se selecciona de manera automática utilizando todos los datos disponibles de la serie. La identificación analítica de los parámetros de este modelo están fuera de los alcances del presente trabajo.

El modelo obtenido mediante Forecast es el siguiente:

$$(1 - B)^{d}y_{t} = (1 - \theta_{1}B)(1 - \theta_{2}B^{2})(1 - \theta_{3}B^{3})(1 - \theta_{4}B^{4})(1 - \theta_{5}B^{5})\epsilon_{t}$$
 (77)

Donde: d = 0.4996, $\theta_1 = -0.5779$, $\theta_2 = -0.4768$, $\theta_3 = -0.3780$, $\theta_4 = -0.3349$, $\theta_5 = -0.1022$.

Al ser d < 0.5000 se observa un proceso de memoria larga en el que las autocorrelaciones decrecen lentamente como se observa en la figura a continuación. Los criterios de información del modelo son AIC=21064,6300 y AICc=21064,4500 y BIC=21103,2000.

Figura 25: Función de Autocorrelación ETH/UDS cierre diario (retardo 200 días). Fuente: Elaboración Propia.

Se muestran a continuación los residuos del modelo ARFIMA seleccionado:

Figura 26: Residuos modelo ARFIMA(0,0.5,5). Fuente: Elaboración propia

Se observa en los gráficos anteriores que los residuos no presentan características de ruido blanco. La variabilidad de los mismos no es constante a lo largo del tiempo, existe autocorrelación significativa en los rezagos y se ve un comportamiento leptocúrtico en su distribución. Estos aspectos sugieren que no se está modelando correctamente la varianza de la serie y que los intervalos de confianza obtenidos con este modelo no van a representar correctamente la realidad por ser demasiado estrechos.

Igualmente, se procede a realizar los pronósticos puntuales para los horizontes de tiempo en estudio para evaluar las métricas propuestas.

Para el horizonte propuesto de 5 días:

Tabla 16: Pronóstico a 5 días con ARFIMA ETH/USD (cierre diario)

Fecha	Valor	Valor_Real
2022-01-01	3643.33	3769.70
2022-01-02	3636.31	3829.57
2022-01-03	3652.56	3761.38
2022-01-04	3624.26	3794.06
2022-01-05	3584.53	3550.39

Las métricas obtenidas para el pronóstico de los 5 primeros cierres de 2022 son las siguientes:

Tabla 17: Metricas de Pronóstico a 5 días con ARFIMA ETH/USD (cierre diario)

RMSE	MAE	MAPE
137.9526	126.4764	3.3457

Gráficamente el pronóstico para los 5 primeros días de enero 2022 resulta (se muestran los últimos 200 registros de la serie para mejor visualización):

Figura 27: Pronóstico a 5 días del Precio de cierre de ETH/USD. Modelo ARFIMA(0,0.5,5). Fuente: Elaboración Propia.

Al extender el horizonte de pronóstico a los primeros 15 días de 2022 se obtienen las siguientes estimaciones puntuales:

Tabla 18: Pronóstico a 15 días con ARFIMA ETH/USD (cierre diario)

Fecha	Valor	Valor_Real
2022-01-01	3643.33	3769.70
2022-01-02	3636.31	3829.57
2022-01-03	3652.56	3761.38
2022-01-04	3624.26	3794.06
2022-01-05	3584.53	3550.39
2022-01-06	3554.83	3418.41
2022-01-07	3529.61	3193.21
2022-01-08	3506.59	3091.97
2022-01-09	3485.07	3157.75
2022-01-10	3464.70	3083.10
2022-01-11	3445.27	3238.11
2022-01-12	3426.66	3372.26
2022-01-13	3408.75	3248.29
2022-01-14	3391.48	3310.00
2022-01-15	3374.78	3330.53

Las métricas obtenidas para el pronóstico de los 15 primeros cierres de 2022 son las siguientes:

Tabla 19: Metricas de Pronóstico a 15 días con ARFIMA ETH/USD (cierre diario)

RMSE	MAE	MAPE
220.8792	185.0994	5.6098

Gráficamente el pronóstico para los 15 primeros días de enero 2022 resulta:

Figura 28: Pronóstico a 15 días del Precio de cierre de ETH/USD. Modelo ARFIMA(0,0.5,5). Fuente: Elaboración Propia.

Si el horizonte de pronóstico es de 30 días se obtienen las siguientes estimaciones puntuales para los primeros días de 2022:

Las métricas obtenidas para el pronóstico de los 30 primeros cierres de 2022 son las siguientes:

Tabla 20: Pronóstico a 30 días con ARFIMA ETH/USD (cierre diario)

Fecha	Valor	Valor_Real
2022-01-01	3643.33	3769.70
2022-01-02	3636.31	3829.57
2022-01-03	3652.56	3761.38
2022-01-04	3624.26	3794.06
2022-01-05	3584.53	3550.39
2022-01-06	3554.83	3418.41
2022-01-07	3529.61	3193.21
2022-01-08	3506.59	3091.97
2022-01-09	3485.07	3157.75
2022-01-10	3464.70	3083.10
2022-01-11	3445.27	3238.11
2022-01-12	3426.66	3372.26
2022-01-13	3408.75	3248.29
2022-01-14	3391.48	3310.00
2022-01-15	3374.78	3330.53
2022-01-16	3358.60	3350.92
2022-01-17	3342.90	3212.30
2022-01-18	3327.65	3164.03
2022-01-19	3312.81	3095.83
2022-01-20	3298.36	3001.12
2022-01-21	3284.27	2557.93
2022-01-22	3270.52	2405.18
2022-01-23	3257.09	2535.04
2022-01-24	3243.97	2440.35
2022-01-25	3231.14	2455.93
2022-01-26	3218.58	2468.03
2022-01-27	3206.28	2423.00
2022-01-28	3194.24	2547.09
2022-01-29	3182.43	2597.08
2022-01-30	3170.85	2603.47

Tabla 21: Metricas de Pronóstico a 30 días con ARFIMA ETH/USD (cierre diario)

RMSE	MAE	MAPE
455.1857	360.6290	13.3452

Gráficamente el pronóstico para los 30 primeros días de 2022 resulta:

Figura 29: Pronóstico a 30 días del Precio de cierre de ETH/USD. Modelo ARFIMA(0,0.5,5). Fuente: Elaboración Propia.

Validación cruzada para el modelo ARFIMA: se aplica el mismo esquema que en los modelos estudiados anteriormente con 8 cortes de la serie de tiempo. Se evalúa cada instancia y se promedian las métricas, resultando:

Para un pronóstico a 5 días:

Tabla 22: Resumen de metricas de CV en pronóstico a 5 días con ARFIMA de ETH/USD (cierre diario)

Métrica	Valor
RMSE	88.0600
MAE	75.4400
MAPE %	5.1700

Para un pronóstico a 15 días:

Tabla 23: Resumen de metricas de CV en pronóstico a 15 días con AR-FIMA de ETH/USD (cierre diario)

Métrica	Valor
RMSE	112.2200
MAE	92.8500
MAPE %	8.6200

Para un pronóstico a 30 días:

Tabla 24: Resumen de metricas de CV en pronóstico a 30 días con AR-FIMA ETH/USD (cierre diario)

Métrica	Valor
RMSE	157.4900
MAE	141.0200
MAPE %	14.2300

Modelo ARCH:

En esta sección del se trabaja sobre modelos que pueden captar la variabilidad condicional no constante de la serie de en estudio. Se comienza con el modelo autorregresivo de heterocedasticidad condicional. Estos modelos, como se detalla en la metodología fueron propuestos por Engle (1982) para representar la volatilidad de las series en los mercados financieros. La volatilidad es la desviación estandard condicional del precio de un activo. Tiene un importante rol para el cálculo del riesgo de una posición financiera. Modelar la volatilidad de una serie temporal mejora la estimación de parámetros y la precisión de pronósticos de intervalos (Tsay,2010).

Con esto se intenta capturar información existente en la serie que no puede ser correctamente modelada con los ARIMA o ARFIMA anteriormente aplicados, justamente porque son modelos que modelan la media de la serie. En esta caso se busca complementar el estudio con el modelado de la heterocedasticidad condicional.

El método que se aplica a continuación incluye la prueba de multiplicador de Lagrange para determinar la presencia de efectos ARCH. Se estima una ecuación para la media, se obtienen los residuos y sus cuadrados \hat{e}_t^2 y se ajusta una regresión de los errores al cuadrado con los errores al cuadrado rezagados.

En la sección en la que se modela ARIMA se observa que la serie de las diferencias de los logaritmos de los precios de cierre de ETH/USD presentan el siguiente comportamiento (Figura 18).

Figura 30: Gráfico de retornos logarítmicos de precios de cierre de ETH/USD (2017-2022) y Función de Autocorrelación y Autocorrelación Parcial

Al visualizar la serie de los rendimientos se detecta que la varianza de los mismos no es constante. Al observar la función de autocorrelacion parcial de los retornos al cuadrado se observa en los 4 primeros retardos que la serie de retornos al cuadrado no es serialmente independiente y existe la presencia de comportamiento ARCH.

Recordando la ecuación de la media estimada con el ARIMA(1,1,2)(1,0,0)[7] a continuación se grafican los residuos del modelo.

Figura 31: Gráfico residuos al cuadrado de modelo ARIMA de precios de cierre de ETH/USD (2017-2022)

En el gráfico anterior se observa que los residuos al cuadrado presentan momentos de mayor volatilidad, principalmente entre 2017 y 2018, el primer trimestre de 2020 y mitad de año del 2021. La varianza es heterocedástica. Se debe tener en cuenta que el estimador de la varianza condicional de los residuos al cuadrado no es un estimador eficiente de la varianza condicional como se menciona en el marco teórico pero sirve como aproximación para determinar el orden del modelo ARCH.

Se testea si los residuos al cuadrado rezagados son significativos para explicar el comportamiento de los residuos al cuadrado. Esto corresponde a realizar un ajuste por regresión entre los valores de residuos en el momento t y t-l donde l es el retardo que de ser significativo daría el orden del modelo ARCH. Para hacer esto, se utiliza una función en R del paquete FinTS (ArchTest) que computa el test de los multiplicadores de Lagrange. El test muestra valores de rechazo de la hipótesis nula (la misma afirma que no se presenta comportamiento ARCH) para los primeros 4 rezagos, con valor p cercano a cero.

Para el ajuste del modelo ARCH(4) se utilizó el paquete RUGARCH(Ghalanos, 2015) en R. Se realizó una comparación de diferentes variantes de modelos ARCH(4) considerando las distintas distribuciones de densidad para las innovaciones. Los resultados se resumen en la tabla a continuación.

Tabla 25: Resumen de tests en ARCH(4)

Dist. Densidad	Coef. Modelo	Ljung-Box	Ljung Box	ARCH Test	Bondad de
Cond.		Residuos	Residuos al	rezagos	Ajuste Pearson
Innovación		Estandarizados	cuadrado	superiores	
NORM	OK	OK	OK	OK	NOK
SNORM	NOK	OK	OK	OK	NOK
SGED	NOK	NOK	OK	OK	NOK
GED	NOK	NOK	OK	OK	NOK
GHYP	NOK	NOK	OK	OK	OK
NIG	NOK	NOK	OK	OK	OK
STD	NOK	NOK	OK	OK	NOK
SSTD	NOK	NOK	OK	OK	OK

Donde las distribuciones empleadas son NORM para la distribución normal, SNORM la distribución normal sesgada, STD la distribución t-Student, SSTD la t-Student sesgada, GED la distribución de error generalizada sesgada, NIG la distribución normal inversa, GHYP la distribución generalizada hiperbólica. De acuerdo a la información resumida en el cuadro anterior, se pudo obtener coeficientes significativos del modelo sólo en el caso de ARCH(4) bajo el supuesto de distribución de densidad condicional normal par las innovaciones y los residuos obtenidos del modelo son leptocúrticos y se rechaza el test de bondad de ajuste de Pearson. Por otro lado en el ARCH (4) con distribución de innovaciones normal no se rechazan las hipótesis nulas en los test de correlación de residuos ni de residuos al cuadrado, tampoco el test ARCH de rezagos superiores con lo que se considera que el orden del modelo ARCH seleccionado es correcto.

Se ajusta entonces un modelo ARCH(4) y el mismo tiene la ecuación:

$$\sigma_{t}^{2} = \omega + \alpha_{1} a_{t-1}^{2} + \alpha_{2} a_{t-2}^{2} + \alpha_{3} a_{t-3}^{2} + \alpha_{4} a_{t-4}^{2}$$
(78)

Donde los valores estimados de $\omega=0.0016,~\alpha_1=0.1392,\alpha_2=0.0968,~\alpha_3=0.0629,~\alpha_4=0.1805$ todos significativos a un nivel $\alpha=0.05$. Con estos valores en los coeficientes del modelo el desvío estandard no condicional resulta $\sqrt{\frac{0.0016}{1-0.1392+0.0968+0.0629+0.1805}}=0.0582$

El valor de $\hat{\alpha_1}^2 = 0.0191 < 1/3$ con lo que el cuarto momento no condicional de los retornos diarios existe.

En el gráfico anterior se observa que el modelo ARCH(4) muestra los picos de varianza condicional estimada de manera coincidente con los picos de los residuos al cuadrado, con lo que se considera apropiado para el modelo de la varianza heterocedástica de la serie. Bajo el marco de modelos ARCH los grandes shocks tienden a ser seguidos por otro gran shock. Además se observa que los residuos al cuadrado presentan mayor amplitud que los valores ajustados del modelo ARCH(4)

y esto coincide con las observaciones realizadas en Poon (2005) de acuerdo a utilizar residuos al cuadrado como aproximación de la volatilidad.

Se muestran a continuación las funciones de autocorrelación de los residuos estandarizados y de los residuos estandarizados al cuadrado.

Figura 32: ACF Residuos al cuadrado ARCH(4). Elaboración Propia

Figura 33: ACF Residuos estandarizados ARCH(4). Elaboración Propia

En relación a los gráficos se puede observar por la cantidad de puntos fuera de los límites en el total de rezagos que el modelo parecería ser adecuado para describir la dependencia lineal tanto en la serie de los retornos como en la volatilidad.

Se realiza el pronóstico del desvío estándar condicional fuera de la muestra con un horizonte de pronóstico de 1 día y dejando 300 observaciones fuera de la muestra. El método utilizado es de horizonte deslizante de tiempo.

Figura 34: Pronósticos a un día fuera de la muestra (n=300) ARCH(4). Elaboración Propia

En el gráfico anterior se observa el comportamiento de los pronósticos a un día con horizonte deslizante para un conjunto fuera de la muestra de tamaño 300. Se muestran los intervalos de confianza al $95\,\%$ para los valores pronosticados.

Figura 35: Pronósticos a un día y serie de valor absoluto de log retornos - modelo ARCH(4). Elaboración Propia

Aquí se observa como los pronósticos fuera de la muestra para la serie replican con un leve retraso las variaciones de los retornos logarítmicos.

Las métricas obtenidas para el modelo ARCH (4) seleccionado en el pronóstico propuesto se muestran el el siguiente cuadro:

Tabla 26: Resumen de metricas para el pronóstico de volatilidad con ARCH(4) fuera de la muestra a un día con horizonte deslizante de tamaño 300

Métrica	Valor
RMSE	0.0540
MAE	0.0510
MAPE %	0.9520

Dentro de las debilidades de los modelos ARCH se pueden mencionar que el modelo asume que los shocks positivos y negativos tienen el mismo efecto en la volatilidad porque dependen del cuadrado de los shocks previos. Esto no se observa en la serie donde los shocks se ven al alza y a la baja de precio. Otro aspecto a considerar es la leptocurtosis en los residuos detectada en el modelado con ARCH(4), situación descripta como hecho estilizado en la bibliografía empleada en la metodología.

El modelo ARCH es restrictivo donde por ejemplo α_1 en un ARCH(1) debe estar en el [0,1/3]. El modelo ARCH no provee información sobre la fuente que ocasiona la variación del precio de la serie temporal. ARCH tiende a sobre predecir la volatilidad porque responde lentamente a grandes shocks aislados en las series de tiempo (Tsay, 2010).

Modelo GARCH:

Continuando con la modelización de la varianza condicional se aplica el modelo ARCH generalizado de Bollerslev (1986).

Del mismo modo que en el modelo ARCH se estudia el ajuste del modelo con diferentes distribuciones de densidad condicional para las innovaciones. En la tabla a continuación se detallan los resultados de los tests sobre los residuos de los modelos con un nivel de confianza del 5 %.

Dist. Densidad	Coef. Modelo	Ljung-Box	Ljung Box	ARCH Test	Bondad de
Cond.		Residuos	Residuos al	rezagos	Ajuste Pearson
Innovación		Estandarizados	cuadrado	superiores	
NORM	OK	OK	OK	OK	NOK
SNORM	NOK	OK	OK	ОК	NOK
SGED	OK	NOK	OK	ОК	OK
GED	OK	NOK	OK	ОК	OK
GHYP	NOK	NOK	OK	ОК	OK
NIG	NOK	NOK	OK	ОК	OK
STD	NOK	NOK	OK	ОК	OK
SSTD	NOK	NOK	OK	OK	OK

Tabla 27: Resumen de tests en ajuste de modelos GARCH(1,1)

De acuerdo a la información resumida en el cuadro anterior, se pudo obtener coeficientes significativos del modelo sólo en el caso de GARCH(1,1) bajo el supuesto de distribución de densidad condicional normal par las innovaciones y los residuos obtenidos del modelo son leptocúrticos y se rechaza el test de bondad de ajuste de Pearson con valor p de cero. Por otro lado, en el GARCH (1,1) con distribución de innovaciones normal no se rechazan las hipótesis nulas en los test de correlación de residuos ni de residuos al cuadrado, tampoco el test ARCH de rezagos superiores con lo que se considera que el orden del modelo GARCH (1,1) seleccionado es apropiado en relación al orden del modelo.

Se ajusta a continuación el modelo GARCH (1,1) y su ecuación resulta:

$$\sigma_{t}^{2} = \alpha_{0} + \alpha_{1} a_{t-1}^{2} + \beta_{1} \sigma_{t-1}^{2}$$
(79)

Donde $\alpha_0 = 0.0002, \alpha_1 = 0.1337, \beta_1 = 0.7845$

Con estos coeficientes el desvío estándar no condicional estimado resulta $\sqrt{\frac{0.0002}{1-(0.1337+0.7845)}} = 0.0586$, similar al obtenido con el modelo ARCH(4)(0.0582).

En este caso la suma de $\alpha_1 + \beta_1 = 0.9182$, cercana a 1 lo que indica que los shocks de volatilidad son persistentes, representando que los cambios grandes de retornos tienden a ser seguidos por grandes cambios y los cambios pequeños de retornos tienden a ser seguidos por pequeños cambios.

Figura 36: Gráfico valor absoluto de residuos de modelo ARFIMA y desvío estandar condicional estimado con GARCH(1,1)

Se muestran a continuación las funciones de autocorrelación de los residuos estandarizados y de los residuos estandarizados al cuadrado.

Figura 37: FAC Residuos Estandarizados al cuadrado Modelo GARCH(1,1). Elaboración Propia

FAC de residuos estandarizados.

Figura 38: FAC Residuos estandarizados GARCH(1,1). Elaboración Propia

En relación a los gráficos anteriores y la cantidad de puntos fuera de los límites de especificación en el total de rezagos analizados se puede observar que el modelo parece ser adecuado para describir la dependencia lineal tanto en la serie de los retornos como en la volatilidad.

Del mismo modo que con el modelo ARCH se realizan los pronósticos para el desvío estandar condicional utilizando un pronóstico fuera de la muestra con un horizonte de 1 día y horizonte deslizante de 300 muestras fuera de la muestra. Se presentan a continuación las gráficas obtenidas con el pronóstico de GARCH(1,1).

Figura 39: Pronósticos a un día fuera de la muestra (n=300) GARCH(1,1). Elaboración Propia

En el gráfico anterior se observa el comportamiento de los pronósticos a un día con horizonte deslizante para un conjunto fuera de la muestra de tamaño 300. Se muestran los intervalos de confianza al $95\,\%$ para los valores pronosticados.

Figura 40: Pronósticos a un día y serie de valor absoluto de log retornos - modelo GARCH(1,1). Elaboración Propia

Aquí se observa como los pronósticos fuera de la muestra para la serie replican con un leve retraso las variaciones de los retornos logarítmicos.

Se presentan a continuación las métricas obtenidas para el pronóstico realizado.

Tabla 28: Resumen de metricas para el pronóstico de volatilidad con GARCH(1,1) fuera de la muestra a un día con horizonte deslizante de tamaño 300

Métrica	Valor
RMSE	0.0530
MAE	0.0510
MAPE %	0.9430

El modelo generalizado modela la volatilidad de la serie de retornos y estos están relacionados con momentos en los que la serie original sufre cambios de precio relativamente abruptos, aunque los shocks pueden ser positivos o negativos. En relación al modelo ARCH previamente analizado se puede destacar el hecho de que el modelo resulta potencialmente más simple y parsimonioso dado que captura los efectos ARCH(4) con 2 parámetros.

Modelo EGARCH:

Para el modelado de la varianza el paquete de R (rugarch) utiliza la siguiente función:

$$\ln(\sigma_{\mathbf{t}}^{2}) = \omega + \sum_{\mathbf{j}=1}^{\mathbf{q}} (\alpha_{\mathbf{j}} \mathbf{z_{t-j}} + \gamma_{\mathbf{j}} (|\mathbf{z_{t-j}}| - \mathbf{E}(|\mathbf{z_{t-j}}|))) + \sum_{\mathbf{j}=1}^{\mathbf{p}} \beta_{\mathbf{j}} \ln(\sigma_{\mathbf{t-j}}^{2})$$
(80)

Donde la ecuación anterior es una adaptación a la presentada por Ghalanos(2022) por el hecho de no incluir variables regresoras externas en el modelo. Los coeficientes α_j capturan el efecto de signo y γ_j el efecto de tamaño. La persistencia se da como $\hat{P} = \sum_{j=1}^p \beta_j$.

Del mismo modo que con los modelos ARCH y GARCH se estima modelos EGARCH con diferentes distribuciones de densidad condicional para las innovaciones. Los resultados se presentan en la tabla a continuación. Todos los tests a un nivel de confianza alfa del 5 %.

Dist. Densidad	Coef. Modelo	Ljung-Box	Ljung Box	ARCH Test	Bondad de
Cond.		Residuos	Residuos al	rezagos	Ajuste Pearson
Innovación		Estandarizados	$\operatorname{cuadrado}$	superiores	
NORM	PARCIAL	OK	OK	OK	NOK
SNORM	NOK	ОК	OK	OK	NOK
SGED	OK	NOK	OK	OK	OK
GED	NOK	NOK	OK	OK	OK
GHYP	NOK	NOK	OK	OK	OK
NIG	NOK	NOK	OK	OK	OK
STD	NOK	NOK	OK	OK	OK
SSTD	NOK	NOK	OK	OK	OK

Tabla 29: Resumen de tests en ajuste de modelos eGARCH(1,1)

De acuerdo a la información resumida en el cuadro anterior, se pudo obtener coeficientes significativos del modelo sólo en el caso de EGARCH(1,1), de manera parcial porque uno de los coeficientes no resulta significativo a un nivel $\alpha=0.05$, bajo el supuesto de distribución de densidad condicional normal para las innovaciones y los residuos obtenidos del modelo son leptocúrticos y se rechaza el test de bondad de ajuste de Pearson con valor p cercano a cero. Por otro lado, en el EGARCH (1,1) con distribución de innovaciones normal no se rechazan las hipótesis nulas en los test de correlación de residuos ni de residuos al cuadrado, tampoco el test ARCH de rezagos superiores con lo que se considera que el orden del modelo EGARCH (1,1) seleccionado es apropiado en relación al orden del modelo.

Se estima a continuación un modelo EGARCH(1,1). La ecuación resultante es:

$$\ln(\sigma_{\mathbf{t}}^2) = \omega + \alpha_1 \mathbf{z_{t-j}} + \gamma_1 (|\mathbf{z_{t-j}}| - \mathbf{E}(|\mathbf{z_{t-j}}|))) + \beta_1 \ln(\sigma_{\mathbf{t-j}}^2)$$
(81)

Donde los coeficientes resultan: $\omega = -0.4354$, $\alpha_1 = -0.0211$, $\beta_1 = 0.9220$, $\gamma_1 = 0.2267$. La persistencia estimada del modelo es relativamente alta en relación al nivel del coeficiente β . El efecto del leverage resulta positivo y significativo. El coeficiente α_1 no resulta significativo a un nivel del 5%, sin embargo, los demás coeficientes del modelo son significativos a ese nivel, los estadísticos de Ljung Box sobre residuos estandarizados y sobre los residuos estandarizados al cuadrado indican que no hay autocorrelación de residuos del modelo. Los residuos del modelo resultan leptocúrticos.

A continuación se grafican la varianza condicional estimada con $\mathrm{EGARCH}(1,1)$ versus los residuos al cuadrado.

Figura 41: Gráfico residuos al cuadrado de modelo ARFIMA y $\operatorname{EGARCH}(1,1)$

FAC de residuos estandarizados al cuadrado

Figura 42: FAC Residuos estandarizados al cuadrado EGARCH(1,1). Elaboración Propia

Figura 43: FAC Residuos estandarizados EGARCH(1,1). Elaboración Propia

Del mismo modo que en los modelos ARCH (4) y GARCH (1,1) se realiza el pronóstico de la volatilidad como el desvío estandar condicional. Para ello se utiliza un pronóstico fuera de la muestra a un día con horizonte deslizante de 300 muestras. Los valores pronosticados entonces corresponden a los últimos 300 días del estudio desde el 5/4/2021 al 30/1/2022.

Pronóstico con horizonte deslizante (n=300) y bandas de 2 sigma.

Figura 44: Pronósticos a un día fuera de la muestra (n=300) EGARCH(1,1)

En el gráfico anterior se observa el comportamiento de los pronósticos a un día con horizonte deslizante para un conjunto fuera de la muestra de tamaño 300. Se muestran los intervalos de confianza al 95 % para los valores pronosticados.

Pronóstico con horizonte deslizante y valor absoluto de serie.

Figura 45: Pronósticos a un día y serie de valor absoluto de log retornos - modelo EGARCH(1,1)

Aquí se observa como los pronósticos fuera de la muestra para la serie replican con un leve retraso las variaciones de los retornos logarítmicos.

Se presentan a continuación las métricas obtenidas para el pronóstico realizado.

Para un horizonte de 15 días:

Tabla 30: Resumen de metricas para el pronóstico de volatilidad con EGARCH(1,1) fuera de la muestra a un día con horizonte deslizante de tamaño 300

Métrica	Valor
RMSE	0.0540
MAE	0.0530
MAPE %	0.9460

Redes neuronales-NNETAR:

A continuación se modela la serie de precios de cierre de Ether ETH/USD con una red neuronal de una capa oculta y para la realización de los pronósticos se realiza la forma iterativa de manera de pronosticar un paso adelante y luego tomar ese pronóstico como un nuevo dato histórico y avanzar sucesivamente.

El trabajo con redes neuronales permiten identificar estructuras no lineales en el comportamiento de la serie. Se utilizará la función NNETAR del paquete Forecast de R que realiza modelos con una capa oculta de redes neuronales de alimentación y paso hacía adelante (FNN) en donde cada uno de los nodos recibe entradas de las capas anteriores. No se produce la realimentación entre capas que se da en los modelos RNN, o de redes neuronales recursivas.

Se utiliza la notación NNETAR(p,k) donde p es el número de rezagos que se utilizan como entradas y k es el número de nodos ocultos que están presentes (cantidad de neuronas en la capa oculta).

Para el trabajo con NNETAR se estableció el mismo esquema de validación cruzada que en el resto de los modelos para la media. Además para la evaluación se separó un conjunto de entrenamiento y de testeo. Al requerir para la modelización la mayor cantidad de datos disponibles se elige dividir el conjunto de entrenamiento final con todos los datos disponibles desde el 01-01-2017 al 30-12-2021 y utilizar los días del mes de enero de 2022 como conjunto de testeo para los distintos horizontes de pronóstico.

En las figuras a continuación se muestra el esquema de validación cruzada propuesto y la división de entrenamiento y testeo para el horizonte de 30 días (los demás esquemas de validación cruzada y entrenamiento/testeo se incluyen en el Apéndice).

Figura 46: Gráfico de Esquema de Validación Cruzada (h=30 días)

Figura 47: Gráfico de conjuntos de entrenamiento y testeo (h=30 días).Fuente: Elaboración propia.

Al ser un proceso de cálculo estocástico se fija una semilla para los números aleatorios a fin de poder reproducir los resultados.

Otro de los aspectos importantes en el desarrollo de pronósticos con NNETAR es la correcta hiperparametrización del modelo. En este caso se desarrollan grillas de selección de hiperparámetros para ajustar las configuraciones en relación a las métricas de error seleccionadas (RMSE, MAE y MAPE%).

Los hiper-parámetros a configurar en la red son los siguiente:

Modo: "regresión". Este hiper-parámetro es fijo y no puede ser alterado.

Período de estacionalidad: En el caso del presente trabajo como ya se indicó en el análsis exploratorio no se encontraron evidencias de comportamiento estacional, en el modelado con ARIMA se encontró comportamiento estacional en el séptimo rezago y en este caso se descarta modelar este hiperparámetro.

Coeficiente autorregresivo no estacionario: es el orden p del modelo.

Coeficiente autorregresivo estacionario: no se configura dada la naturaleza de la serie.

Unidades ocultas: representa la cantidad de neuronas en la capa oculta, es un valor entero.

Número de redes: corresponde al número de diferentes estimaciones a realizar para luego ser promediadas al producir pronósticos. Se fija en 20 en este caso.

Penalidad: corresponde a un valor no negativo que explica el grado de descenso del peso que se le otorga a cada nodo.

Épocas: un número entero que representa la cantidad de iteraciones de entrenamiento que realiza el modelo.

Con los parámetros que se eligen configurar se plantea una primer ronda de parametrización de la serie utilizando una función que genera combinaciones aleatorias entre parámetros. La tabla a continuación muestra la selección realizada.

Tabla 31: Primera grilla de hiper-parámetros para modelo NNETAR. Fuente: Elaboración Propia

Coeficiente p (AR)	Nodos en capa culta	Penalidad	Épocas
Coenciente p (AK)	Nodos en capa cuita		
1	2	0.4016	672
4	5	0.0002	437
0	5	0.0000	398
1	4	0.0000	214
5	7	0.0000	609
2	8	0.0025	981
3	1	0.0122	116
4	2	0.0000	841
3	9	0.0000	29
2	10	0.0000	201
4	4	0.0876	478
3	6	0.0000	797
2	8	0.0000	332
2	3	0.0000	904
0	8	0.0011	577

Se procede previamente a correr este modelo al tratamiento del conjunto de datos en lo que se denomina una receta de ingeniería de atributos. En esta receta se codifican las variables de tiempo codificándolas con método "one hot encoding" y se estandarizan los datos para alimentar el modelo.

Luego de una primera ronda de entrenamiento con los datos especificados en el esquema de validación cruzada se obtiene el siguiente ordenamiento de candidatos (en base al error cuadrático medio):

Tabla 32: Resultados de primera ronda de calibración con NNETAR (h=30 días). Fuente: Elaboración Propia

Coeficiente p (AR)	Nodos en capa culta	Penalidad	Épocas	Métrica	Media	Desv. STD
2	10	0.0000	201	rmse	229.8309	112.0989
1	2	0.4016	672	rmse	238.1569	98.0531
3	1	0.0122	116	rmse	252.3253	112.3559
5	7	0.0000	609	rmse	258.2746	120.8445
4	4	0.0876	478	rmse	260.5784	117.8814
4	5	0.0002	437	rmse	271.4470	130.4484
3	9	0.0000	29	rmse	271.7618	128.0567
1	4	0.0000	214	rmse	276.0890	119.8193
2	8	0.0025	981	rmse	280.2236	121.2461
2	8	0.0000	332	rmse	289.3247	118.2528
3	6	0.0000	797	rmse	291.6450	135.4654
4	2	0.0000	841	rmse	313.5644	145.9684
0	8	0.0011	577	rmse	347.2711	98.2011
0	5	0.0000	398	rmse	364.6833	107.7021
2	3	0.0000	904	rmse	368.8321	168.9959

Estos resultados permiten la configuración de una primer guilla de calibración de hiperparámetros que se muestra en la gráfica a continuación:

Figura 48: Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 1 (h=30 días).Fuente:Elaboración Propia

El gráfico anterior permite la identificación de zonas en donde los parámetros configurados presentan mejores métricas. En base a esto se trabaja en una segunda ronda de configuración en la que se toman las mejores regiones. En el parámetro de número de nodos ocultos se trabaja con la zona entre 5 y 10 nodos, el coeficiente p se deja variar entre 1 y 5, el número de épocas entre 0 y 500 y la penalidad (log-10) entre 0 y (-5).

En una segunda etapa de configuración de parámetros se utilizan los datos de la primera ronda y se obtienen la siguiente grilla de parámetros:

Tabla 33: Primera grilla de hiper-parámetros para modelo NNETAR. Fuente: Elaboración Propia.

Coeficiente p (AR)	Nodos en la capa oculta	Penalidad	Épocas
2	6	0.0000	334
5	7	0.0007	216
1	7	0.1997	196
2	7	0.0070	103
5	8	0.0021	302
3	9	0.0002	490
4	5	0.0001	54
4	6	0.0493	420
3	9	0.4325	10
3	10	0.0122	96
4	7	0.0000	236
4	8	0.4942	397
2	9	0.0044	162
2	6	0.0305	451
1	9	0.0003	286

Los resultados de la segunda ronda de calibración de modelos son los que se muestran en la tabla a continuación:

Tabla 34: Resultados de segunda ronda de calibración con NNETAR (h=30 días). Fuente: Elaboración Propia

Coeficiente p (AR)	Nodos en capa culta	Penalidad	Épocas	Métrica	Media	Desv. STD
3	9	0.4325	10	rmse	176.7874	75.4052
4	8	0.4942	397	rmse	217.1347	99.9307
1	7	0.1997	196	rmse	229.2334	102.0350
4	6	0.0493	420	rmse	233.9663	107.8953
3	9	0.0002	490	rmse	236.1167	101.2033
2	6	0.0305	451	rmse	241.6491	109.0756
1	9	0.0003	286	rmse	247.7094	106.7897
2	9	0.0044	162	rmse	250.2862	107.7001
5	8	0.0021	302	rmse	254.5567	113.7588
4	7	0.0000	236	rmse	257.7487	107.0068
2	7	0.0070	103	rmse	257.9136	119.4911
3	10	0.0122	96	rmse	259.6127	117.7826
2	6	0.0000	334	rmse	260.4929	123.6709
5	7	0.0007	216	rmse	268.4601	120.9763
4	5	0.0001	54	rmse	277.1596	120.3356

Los resultados de la segunda ronde de calibración se muestran en la siguiente gráfica:

Figura 49: Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 2 (h=30 días). Fuente:
Elaboración propia

Se calibra el modelo en función de las definiciones de parámetros determinadas previamente y se grafican los resultados del pronóstico para 30 días. Se elige el modelo NNAR(4,8) para hacer el pronóstico.

Figura 50: Pronóstico a 30 días con NNETAR(4,8). Fuente: Elaboración propia

Las métricas obtenidas para el pronóstico a 30 días se muestran en la siguiente tabla:

Tabla 35: Métricas de resultados de pronóstico con NNEAR(4,8) (h=30 días). Fuente: Elaboración Propia.

Modelo	Evaluación	MAE	MAPE %	RMSE
NNAR(4,8)	Test	240.3602	7.8075	279.9214

A continuación se aplica la misma metodología al horizonte de 15 días de pronóstico.

El esquema de validación cruzada es similar al aplicado para el horizonte de 30 días. En este caso, se realizan 8 particiones de la serie en intervalos de 90 días con un horizonte de 15 días para el testeo.

Figura 51: Gráfico de Esquema de Validación Cruzada (h=15 días). Fuente: Elaboración propia.

El testeo del método de pronóstico se hace en los primeros 15 días del mes de enero de 2022, tal como muestra la siguiente figura:

Figura 52: Gráfico de conjuntos de entrenamiento y testeo (h=5 días). Fuente: Elaboración propia.

Los resultados de la primera ronda de calibración para este horizonte de tiempo son los siguientes:

Tabla 36: Resultados de primera ronda de calibración con NNETAR (h=15 días). Fuente: Elaboración Propia

Coeficiente p (AR)	Nodos en capa culta	Penalidad	Épocas	Métrica	Media	Desy, STD
	*		-	Metrica		
2	3	0.0000	904	rmse	99.6892	46.8387
3	1	0.0122	116	rmse	104.4101	49.0753
5	7	0.0000	609	rmse	104.7152	54.9833
3	9	0.0000	29	rmse	107.1139	49.8341
1	4	0.0000	214	rmse	108.0053	54.1579
4	5	0.0002	437	rmse	108.0719	64.8273
2	8	0.0025	981	rmse	108.4895	50.3146
2	10	0.0000	201	rmse	110.8137	56.8628
2	8	0.0000	332	rmse	112.6259	58.7896
4	2	0.0000	841	rmse	113.0175	51.7771
4	4	0.0876	478	rmse	118.8901	57.7471
3	6	0.0000	797	rmse	123.5852	60.7654
1	2	0.4016	672	rmse	133.9201	50.6245
0	8	0.0011	577	rmse	187.1170	64.5121
0	5	0.0000	398	rmse	205.8067	68.4437

La grilla de hiperparámetros y métricas obtenidas durante la primera calibración se presentan en el siguiente gráfico:

Figura 53: Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 1 (h=15 días). Fuente: Elaboración propia.

En base a lo observado en los resultados de las métricas de la primera calibración se decide configurar una segunda ronda de calibración con los siguiente hiperparámetros: el termino autorregresivo variando entre 1 y 5, el nivel de regularización (en base 10 de logaritmo) entre -7,5 y -5, no se altera el rango de unidades ocultas y el número de épocas se limita entre 500 y 1000.

Los resultados de la segunda calibración para el horizonte de 15 días son:

La grilla de métricas e hiperparámetros de la segunda ronda de entrenamiento se representa en el siguiente gráfico:

Tabla 37: Resultados de primera ronda de calibración con NNETAR (h=15 días). Fuente: Elaboración Propia

Coeficiente p (AR)	Nodos en capa culta	Penalidad	Épocas	Métrica	Media	Desv. STD
2	4	0	206	rmse	75.5360	32.0967
2	2	0	669	rmse	91.2940	46.6585
3	10	0	193	rmse	94.0060	49.8856
5	7	0	605	rmse	98.9060	53.7057
3	9	0	20	rmse	99.5834	47.7449
3	8	0	981	rmse	101.3380	49.1926
1	5	0	393	rmse	101.6882	48.4779
2	8	0	326	rmse	102.2942	51.1554
2	3	0	903	rmse	102.8002	50.8797
4	4	0	473	rmse	103.0505	52.3723
4	1	0	108	rmse	105.1844	50.4390
1	8	0	573	rmse	106.2061	53.6858
5	5	0	432	rmse	107.6745	51.7390
4	6	0	795	rmse	112.7657	50.8146
4	2	0	839	rmse	127.8340	57.8883

Figura 54: Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 2 (h=5 días). Fuente: Elaboración propia.

Finalmente el pronóstico obtenido para el horizonte de 15 días:

Figura 55: Pronóstico a 15 días con NNETAR(2,2). Fuente: Elaboración Propia

Las métricas obtenidas para el pronóstico a 15 días se muestran en la siguiente tabla:

Tabla 38: Métricas de resultados de pronóstico con NNEAR(2,2) (h=15 días). Fuente: Elaboración propia.

Modelo	Evaluación	MAE	$\mathrm{MAPE}\%$	RMSE
NNAR(2,2)	Test	345.746	10.3555	421.6775

La metodología presentada para NNETAR se repite para los distintos horizontes de pronóstico. Para el pronóstico a 5 días se presenta a continuación.

El esquema de validación cruzada es similar al aplicado para el horizonte de 30 días. Se realizan 8 particiones de la serie en intervalos de 30 días con un horizonte de 5 días para el testeo.

Figura 56: Gráfico de Esquema de Validación Cruzada (h=5 días). Fuente: Elaboración propia.

El testeo del método de pronóstico se hace en los primeros 5 días del mes de enero de 2022, tal como muestra la siguiente figura:

Figura 57: Gráfico de conjuntos de entrenamiento y testeo (h=5 días). Fuente: Elaboración propia.

Los resultados de la primera ronda de calibración para este horizonte de tiempo son los siguientes: La grilla de hiperparámetros y métricas obtenidas durante la primera calibración se presentan en el siguiente gráfico:

Tabla 39: Resultados de primera ronda de calibración con NNETAR (h=5 días). Fuente: Elaboración Propia

Coeficiente p (AR)	Nodos en capa culta	Penalidad	Épocas	Métrica	Media	Desv. STD
3	1	0.0122	116	rmse	70.3928	32.8886
5	7	0.0000	609	rmse	84.8534	41.3173
4	4	0.0876	478	rmse	88.3727	42.2540
2	8	0.0000	332	rmse	89.2857	40.6912
2	10	0.0000	201	rmse	90.8746	40.1331
3	6	0.0000	797	rmse	91.1705	40.7575
1	2	0.4016	672	rmse	91.2624	40.5349
3	9	0.0000	29	rmse	92.6209	42.5269
2	3	0.0000	904	rmse	94.2777	40.7766
4	5	0.0002	437	rmse	96.0448	44.6038
2	8	0.0025	981	rmse	97.9576	42.0467
1	4	0.0000	214	rmse	110.8091	49.6085
4	2	0.0000	841	rmse	173.0704	80.8474
0	5	0.0000	398	rmse	240.9295	125.8978
0	8	0.0011	577	rmse	293.1745	158.7152

Figura 58: Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 1 (h=5 días). Fuente: Elaboración Propia.

En base a lo observado en los resultados de las métricas de la primera calibración se decide configurar una segunda ronda de calibración con los siguiente hiperparámetros: el termino autorregresivo variando entre 1 y 5, el nivel de regularización (en base 10 de logaritmo) entre -7,5 y -5, no se altera el rango de unidades ocultas y el número de épocas se limita entre 500 y 1000.

Los resultados de la segunda calibración para el horizonte de 5 días son:

Tabla 40: Resultados de segunda ronda de calibración con NNETAR (h=5 días). Fuente: Elaboración Propia

Coeficiente p (AR)	Nodos en capa culta	Penalidad	Épocas	Métrica	Media	Desv. STD
4	1	0	108	rmse	86.8601	44.2551
5	7	0	605	rmse	88.0662	41.0511
5	5	0	432	rmse	91.2186	40.9247
3	10	0	193	rmse	91.6552	41.8912
1	5	0	393	rmse	93.3713	41.3074
3	8	0	981	rmse	93.5895	43.4213
3	9	0	20	rmse	95.4009	41.7354
2	8	0	326	rmse	96.5721	41.5880
4	6	0	795	rmse	96.7393	44.1351
2	3	0	903	rmse	99.0461	46.6625
1	8	0	573	rmse	101.4885	43.1683
4	4	0	473	rmse	110.0820	53.7641
2	4	0	206	rmse	119.1411	58.1691
4	2	0	839	rmse	157.5612	66.1654
2	2	0	669	rmse	222.5466	153.0278

La grilla de métricas e hiperparámetros de la segunda ronda de entrenamiento se representa en el siguiente gráfico:

Figura 59: Gráfico de grilla de hiper-parámetros y métricas asociadas ronda 2 (h=5 días)

Finalmente el pronóstico obtenido para el horizonte de 5 días:

Figura 60: Pronóstico a 5 días con NNETAR(4,1). Fuente: Elaboración Propia

Las métricas obtenidas para el pronóstico a 5 días se muestran en la siguiente tabla:

Tabla 41: Métricas de resultados de pronóstico con NNEAR(4,1) (h=5 días). Fuente: Elaboración Propia

Modelo	Evaluación	MAE	MAPE %	RMSE
$\overline{NNAR(4,1)}$	Test	109.2215	2.8843	130.1363

Redes neuronales recursivas-LSTM:

Para aplicar la técnica LSTM es necesario evaluar que la serie original presente niveles de autocorrelación suficientes como para generar las secuencias de predicciones. Como previamente se mostró en el caso de la serie de precios de cierre este comportamiento es visible.

En la figura a continuación se puede observar que la autocorrelación de la serie es fuerte para los primeros 200 rezagos.

Figura 61: Función de autocorrelación de ETH/USD (200 rezagos). Fuente: Elaboración propia.

Para el entrenamiento y calibración de la red recurrente LSTM se utiliza el esquema de validación cruzada que divide la serie original en 8 particiones de 270 elementos cada una con los respectivos horizontes de pronóstico. En el gráfico a continuación se muestra el esquema de validación cruzada para un horizonte de pronóstico de 30 días.

Figura 62: Esquema de Validación Cruzada para pronóstico a 30 días. Fuente: Elaboración Propia.

Se procede luego a la preparación de los datos de cada partición con un centrado y escalado de los mismos, dada la especificación técnica para la aplicación. Los datos se centran con la media de cada partición y se escalan con la desviación estandar. Se escalan los datos de entrenamiento de cada sub muestra y con esos parámetros de escala luego se transforman los valores de testeo para no introducir un error de utilizar los valores de la muestra de testeo en la configuración del entrenamiento.

Se necesita además configurar los hiperparámetros del modelo, para ello se generan iteraciones en una grilla de parámetros a lo largo de los conjuntos de entrenamiento y testeo definidos. Se registran las métricas de error cuadrático medio, MAPE y MAE para cada combinación de parámetros. Los parámetros elegidos para configurar son:

Unidades: la unidad elemental de una red LSTM es una celda. Esta contiene componentes que incluyen la compuerta de entrada (que controla el flujo de información desde la entrada al estado de la celda), la compuerta de olvido (que contempla el flujo de información que pasa del estado anterior de una celda al estado actual de la misma), la compuerta de salida (que controla el flujo de información del estado de la celda a la salida), el estado de la celda (la memoria de la celda que guarda información a lo largo del tiempo) y el estado oculto (la salida de la LSTM que es pasada al próximo paso de tiempo). En el caso del presente trabajo se itera entre 25 y 200 unidades. Un número más grande de neuronas puede captar patrones complejos como los de la serie en estudio pero también ocasionar problemas de sobreajuste.

Tasa de descarte: es una técnica de regularización que previene el sobreajuste seteando aleatoriamente algunas celdas como cero. Es la probabilidad de que en una iteración determinada neurona sea "apagada" en el entrenamiento. Con esto se apunta a que el modelo tenga estimaciones un poco más robustas de los datos mejorando la generalización. En este caso se itera entre 0.01 y 0.5.

Epocas: una época se refiere a una completa pasada por los datos de entrenamiento donde cada secuencia de entrada se presenta una vez a la red recurrente. Luego de cada época los costos de la red se actualizan en función de la pérdida promedio a lo largo de la secuencia de entrada. Se decide iterar entre 25 y 200 épocas a lo largo de los subconjuntos entrenados.

Tamaño del lote: el tamaño de la muestra que se pasará a través del algoritmo en cada época. En este caso se fija en cada caso igual al horizonte de pronóstico.

Se itera a lo largo de cada conjunto de entrenamiento y validación definido generando un total de 25 combinaciones por partición de la serie. Para la generación de una grilla se utilizan números aleatorios con el objetivo de generar una grilla de prueba. A continuación se muestra la tabla

utilizada para correr en los conjuntos de validación cruzada.

Tabla 42: Grilla de hiper parámetros para calibración LSTM. Fuente: Elaboración Propia

Unidades	Tasa de Descarte	Épocas	Split de validación
122	0.3572	23	0.1270
247	0.2766	138	0.1829
152	0.3011	242	0.2645
271	0.1517	45	0.1731
285	0.0821	173	0.0889
61	0.4819	70	0.1353
182	0.4521	47	0.2838
273	0.3484	228	0.1962
188	0.3998	270	0.3259
164	0.0221	119	0.0860
289	0.2441	203	0.2022
163	0.3816	38	0.3947
219	0.1160	121	0.3626
193	0.1659	90	0.3603
76	0.1235	246	0.1113
275	0.0800	140	0.0957
112	0.2131	245	0.2786
61	0.2127	246	0.1702
132	0.1907	240	0.2799
289	0.0847	138	0.1621
272	0.0780	229	0.1157
223	0.1242	192	0.3238
210	0.2383	216	0.0828
299	0.1403	10	0.2134
214	0.4303	148	0.2290

Se generan las gráficas de los parámetros y se seleccionan las combinaciones que minimizan las métricas mencionadas. En la gráfica a continuación se visualizan los resultados de la calibración con los distintos hiper parámetros considerados.

Figura 63: RMSE versus Hiperparámetros configurados en la calibración de LSTM a lo largo de 8 pasos de validación cruzada. Fuente: Elaboración propia

En base a lo observado en las gráficas y considerando el orden obtenido para las métricas en estudio en los conjuntos de prueba mostrados en la siguiente tabla.

Tabla 43: Resultados de calibración LSTM en conjunto de entrenamiento. Fuente: Elaboración Propia

Nro Iteración	RMSE	MAPE	MAE	Unidades	Tasa de Descarte	Épocas	Split de Validación
21	161.8790	24.9129	116.6495	272	0.0780	229	0.1157
10	162.8335	24.5436	119.5927	164	0.0221	119	0.0860
15	165.0898	26.4552	120.9520	76	0.1235	246	0.1113
24	171.5995	28.4335	122.2669	299	0.1403	10	0.2134
18	174.0127	32.8194	122.7580	61	0.2127	246	0.1702
4	174.1146	27.5996	123.4074	271	0.1517	45	0.1731
1	175.1335	24.9693	117.7910	122	0.3572	23	0.1270
6	178.1584	31.3954	130.8448	61	0.4819	70	0.1353
11	181.5872	33.0141	128.2520	289	0.2441	203	0.2022
25	188.3152	29.4013	135.1187	214	0.4303	148	0.2290
8	189.1799	32.9855	134.5695	273	0.3484	228	0.1962
7	191.7279	29.1902	132.8432	182	0.4521	47	0.2838
2	193.0578	34.3543	136.1758	247	0.2766	138	0.1829
3	195.8395	31.8202	140.8405	152	0.3011	242	0.2645
9	197.6724	35.9298	143.3168	188	0.3998	270	0.3259
23	199.0717	25.0918	129.4833	210	0.2383	216	0.0828
19	199.0894	29.3120	146.6200	132	0.1907	240	0.2799
20	199.3875	31.5715	142.9785	289	0.0847	138	0.1621
17	203.4410	37.2940	148.4463	112	0.2131	245	0.2786
5	205.4706	26.7148	140.4474	285	0.0821	173	0.0889
22	207.0686	37.0277	153.6797	223	0.1242	192	0.3238
13	207.4701	35.2950	151.1610	219	0.1160	121	0.3626
14	208.3605	35.5300	152.4865	193	0.1659	90	0.3603
12	216.7980	44.9261	160.8217	163	0.3816	38	0.3947
16	224.8077	27.3841	144.9843	275	0.0800	140	0.0957

Se decide realizar el pronóstico de la serie de tiempo con los siguientes utilizando los siguientes hiper parámetros: 272 unidades, fijar la tasa de descarte en 0.0780, utilizar 229 épocas y un split de validación de 0.1157.

Se re entrena el modelo con los parámetros seleccionados a lo largo del total de los datos y se realizan los pronósticos en los horizontes definidos. Para ello se realizaron 100 corridas del modelo calibrado según la especificación obtenida en cada modelo con todos los datos disponibles para el pronóstico de la serie.

Los gráficos de pronósticos que se presentan incluyen la representación de la serie a lo largo del período 2021-enero 2022 para una mejor visualización de la información.

Figura 64: Pronóstico con LSTM ETH/USD (30 días-100 corridas). Fuente: Elaboración propia.

Figura 65: Pronóstico con LSTM ETH/USD (15 días-100 corridas). Fuente: Elaboración propia

Figura 66: Pronóstico con LSTM ETH/USD (5 días-100 corridas). Fuente: Elaboración propia

Se promedian los resultados de las métricas obtenidas en cada una de las corridas y se muestran en la siguiente tabla:

Tabla 44: Métricas promedio obtenidas con 100 corridas de LSTM para los horizontes de pronóstico definidos. Fuente: Elaboración Propia

	MAE	RMSE	MAPE
5 días	231.4878	243.9333	6.135749
15 días	310.6053	353.2538	9.299036
30 días	415.8764	467.8963	14.424983

Capítulo 5 - Conclusiones y discusión

Una vez evaluados los distintos componentes de la metodología se procede a agrupar los resultados y a presentar los mismos de manera ordenada para poder realizar una evaluación de los métodos empleados.

Como se menciona a lo largo de la metodología y resultados, para la evaluación de cada modelo de pronóstico se utilizan métricas relativas al error como el error cuadrático medio, el error absoluto medio y el error medio porcentual. A ello se suman los criterios de información y las pruebas de Mincer Zarnowitz en el caso de los modelos paramétricos.

La naturaleza de los modelos empleados permite una comparación objetiva entre técnicas paramétricas y no paramétricas en el caso de la predicción de los precios de cierre de ETH/USD a través de las métricas en el horizonte de predicción planteado. Además de las métricas calculadas, es necesario mencionar características particulares de cada método a fin de dar mayor información sobre las pruebas empíricas con las series de precios de cierre y retornos de ETH/USD.

Por esto se decide realizar la evaluación entre los modelos paramétricos, luego la evaluación de las técnicas no paramétricas para predicción del precio de cierre mencionando las características relevantes de cada uno y finalmente comparar las métricas propuestas.

En el caso del estudio de la volatilidad se presentan los resultados resumidos, particularidades y comentarios al final de este capítulo.

Modelos Paramétricos:

Se presentan a continuación las métricas obtenidas para los modelos ETS, ARIMA (SARIMA) y ARFIMA utilizados para la predicción del precio de cierre de ETH/USD. Se presentan las métricas obtenidas tanto en los horizontes objetivos del trabajo (5 días, 15 días y 30 días) tanto como durante la validación cruzada de los modelos.

En el cuadro a continuación se presentan las métricas para los pronósticos a 5,15 y 30 días en el mes de enero de 2022.

Tabla 45: Métricas modelos paramétricos en pronostico de precio de cierre de ETH/USD. Fuente: Elaboración Propia

MODELO	RMSE	MAE	MAPE %	Horizonte (días)
ETS	111.9481	106.0277	2.8500	5
ARIMA	117.8213	108.3372	2.9215	5
ARFIMA	137.9496	126.4735	3.3456	5
ETS	410.9421	359.1125	11.0130	15
ARIMA	470.5689	409.8491	12.5723	15
ARFIMA	220.8775	185.0976	5.6097	15
ETS	839.4285	709.9851	25.9284	30
ARIMA	1026.5031	861.8827	31.5266	30
ARFIMA	455.1849	360.6278	13.3451	30

En base al criterio de las métricas (RMSE, MAE y MAPE) en los horizontes previstos para el mes de enero de 2022 el modelo ARFIMA resulta más preciso en 15 y 30 días pero en el pronóstico de 5 días el modelo ETS tiene mejor performance.

Al observar la tabla de métricas promedio de los modelos durante los distintos intervalos definidos para aplicar la validación cruzada se obtienen los resultados que se muestran en la tabla:

Tabla 46: Métricas modelos paramétricos en pronostico con validación cruzada de precio de cierre de ETH/USD. Fuente: Elaboración Propia

MODELO	RMSE	MAE	MAPE	Horizontedías.
ETS	92.8000	35.8000	4.8600	5
ARIMA	82.1100	34.8900	5.4500	5
ARFIMA	88.0600	75.4400	5.1700	5
ETS	148.0100	72.8100	9.4900	15
ARIMA	145.1000	80.7100	12.4200	15
ARFIMA	112.2200	92.8500	8.6200	15
ETS	158.0100	96.3100	15.8100	30
ARIMA	275.0300	152.0200	19.5000	30
ARFIMA	157.4900	141.0200	14.2300	30

En el análisis de las métricas obtenidas de los conjuntos de validación cruzada no es posible detectar un método de pronóstico superior en ninguno de los horizontes planteados ya que no hay homogeneidad de resultados en base a las métricas y métodos empleados.

En relación a los criterios de información AICc, AIC y BIC el método con los menores valores es el ARIMA con valores de AIC=5324, AICc=5224 y BIC=5291. ARFIMA con valores de los criterios de información AICc=21064.43, AIC=21064.63 y BIC=21103.20. ETS presenta valores de AICc=24683.53, AIC=24683.60.

Al realizar los tests de Diebold-Mariano para comparar de a pares la precisión de los métodos no se observan diferencias significativas a un nivel $\alpha=0.05$ para las comparaciones realizadas en ninguno de los horizontes de pronóstico, con lo cual se concluye que no se detectan diferencias significativas en la precisión de pronósticos en base a este test.

Por otro lado, el test de Mincer-Zarnowsky evaluado en cada uno de los métodos entre los valores predichos (valores medios condicionados) y los actuales (valores reales de la serie temporal) para cada uno de los horizontes de pronóstico no presenta resultados significativos con un nivel alpha = 0.05 en ningún caso planteando como intercepto el valor original de la serie en el cierre de cotización de 01/01/2022 con lo que se concluye que los pronósticos son insesgados.

En relación a los residuos de los modelos el principal aspecto a destacar es la leptocurtosis de los mismos. El modelo ARFIMA además presenta leve autocorrelación en los residuos. Se presenta una cuestión frecuente en el análisis de series financieras como la leptocurtosis en los residuos de los modelos.

Modelos no paramétricos utilizados para predicción de precio de cierre:

En relación a los modelos no paramétricos la comparación se realiza entre NNETAR y LSTM. En ambos casos se desarrolla una calibración con configuración de los hiperparámetros de dos rondas a lo largo de un conjunto de entrenamiento y testeo con validación cruzada. Se registran las métricas tanto en los horizontes objetivo del trabajo (enero, 2022) como en la etapa de validación cruzada.

A continuación se presentan las métricas (en los valores medios) observadas para los dos métodos.

En relación a las métricas obtenidas se observa que NNETAR tuvo mejor performance en el pronóstico a 5 días y a 30 días mientras que LSTM tuvo mejores métricas en el pronóstico a 15 días.

Un aspecto particular en NNETAR es la utilización de semillas aleatorias para establecer el estado inicial de la red. La utilización de diferentes semillas genera pronósticos distintos para los mismos

Tabla 47: Métricas modelos no paramétricos utilizados en pronostico con validación cruzada de precio de cierre de ETH/USD. Fuente: Elaboración Propia

Método	RMSE	MAE	MAPE %	Horizonte (días)
NNETAR	130.1363	109.2215	2.8842	5
LSTM	231.4878	243.9333	6.1357	5
LSTM	310.6053	353.2538	9.2990	15
NNETAR	421.6775	345.7461	10.3554	15
NNETAR	279.9214	240.3602	7.8074	30
LSTM	415.8764	467.8963	14.4249	30

hiper parámetros. Por ello se fijan las semillas para poder obtener los mismos valores en sucesivas corridas.

En relación a LSTM se realizan 100 corridas del modelo y se promedian los resultados.

Otro aspecto a considerar entre estos 2 métodos es el tiempo requerido para calibrar hiper parámetros y generar los pronósticos. En el caso de NNETAR el tiempo necesario para la calibración en el esquema de validación cruzada para cada horizonte es de 6 horas con una computadora personal (equipo AMD Ryzen 5 3400G con procesador gráfico Radeon Vega 3.70 GHz y 16 GB de memoria RAM) y aproximadamente 15 minutos para la calibración final y el pronóstico con los hiper parámetros ya configurados. En el caso de LSTM cada entrenamiento de la serie para cada una de las configuraciones de la grilla de hiperparámetros toma un tiempo aproximado de 2 horas con lo cual el tiempo total de calibración y pronóstico con LSTM ronda las 48 horas de cálculo. No se configura en el presente trabajo el procesamiento en paralelo (utilizando todos los núcleos disponibles del sistema) ni se dispone de una placa procesadora gráfica de la potencia suficiente para reducir el tiempo de las operaciones con los paquetes Keras y Tensorflow especialmente en LSTM. Este aspecto resulta importante a la hora de plantear la utilización sistemática de los métodos de pronóstico descriptos en relación con los recursos necesarios para instalar un servidor acorde o trabajar con computación en la nube.

Comparación de métricas en horizonte objetivo para precio de cierre:

Aquí se presenta el resumen en conjunto de las métricas, de modelos paramétricos y no paramétricos en los horizontes de 5, 15 y 30 días para el precio de cierre en la tabla a continuacion:

En el horizonte de 5 días (desde el 01/01 al 05/01 de 2022) el método de pronóstico que presenta mejores métricas es el ETS. Dentro de los no paramétricos el NNETAR es el más preciso en el

Tabla 48: Métricas en horizontes estudiados para pronóstico de precio de cierre de ETH/USD. Fuente: Elaboración Propia

MODELO	RMSE	MAE	MAPE %	Horizonte (días)
ETS	111.9481	106.0277	2.8500	5
ARIMA	117.8213	108.3372	2.9215	5
NNETAR	130.1363	109.2215	2.8842	5
ARFIMA	137.9496	126.4735	3.3456	5
LSTM	231.4878	243.9333	6.1357	5
ARFIMA	220.8775	185.0976	5.6097	15
LSTM	310.6053	353.2538	9.2990	15
ETS	410.9421	359.1125	11.0130	15
NNETAR	421.6775	345.7461	10.3554	15
ARIMA	470.5689	409.8491	12.5723	15
NNETAR	279.9214	240.3602	7.8074	30
LSTM	415.8764	467.8963	14.4249	30
ARFIMA	455.1849	360.6278	13.3451	30
ETS	839.4285	709.9851	25.9284	30
ARIMA	1026.5031	861.8827	31.5266	30

horizonte de 5 días. Si se considera el horizonte de 15 días (desde el 01/01 al 15/01 de 2022) el modelo ARFIMA tiene mejores métricas y el LSTM presenta mejores métricas que el NNETAR entre los no paramétricos. Para el horizonte de tiempo más largo, de 30 días (desde 01/01/2022 al 30/01/2022) los métodos no paramétricos estudiados tienen mejores métricas. En base a estos resultados, no es posible concluir que un método performa mejor en todos los horizontes de pronóstico planteados en el presente trabajo.

Métodos empleados para la evaluación de la volatilidad.

En este punto se presentan los comentarios sobre los modelos estudiados para el pronóstico de la volatilidad de la serie.

Como primera característica desarrollada tanto en la metodología como en las pruebas con los modelos la volatilidad se manifiesta como una variable no observable directamente. Tsay (2010) y Poon (2005), autores especializados en series de tiempo financieras entre otros, remarcan este hecho como un condicionante a la hora de la evaluación de los pronósticos por el ruido que las estimaciones de la volatilidad real presentan en los valores actuales contra los que se comparan los pronósticos. En el caso de los modelos ARCH(4), GARCH(1,1) y EGARCH(1,1) se trabaja con los residuales de los retornos logarítmicos al cuadrado para el modelo de la volatilidad y es por esto que se debe tener cautela en la comparación.

Una característica común desarrollada en las pruebas es el uso de diferentes funciones de densidad condicional para las innovaciones. Se decide utilizar en los 3 modelos distribución Gaussiana. Se presentó en todos los casos residuos leptocúrticos en los modelos de varianza condicional, situación

que resulta común entre series financieras de acuerdo a lo expuesto por Poon (2005).

En relación a los criterios de información de Akaike, Bayesiano, Shibata y Hannan-Quinn el modelo ARCH(4) resulta ser más apropiado que el GARCH(1,1) y el EGARCH(1,1) en relación al modelado de la volatilidad de la serie de retornos logarítmicos de ETH/USD. Los valores registrados de los criterios de información para los modelos se muestran en la siguiente tabla a continuación:

Tabla 49: Criterios de información de modelos ARCH(4), GARCH(1,1) y EGARCH(1,1) aplicados al modelo de volatilidad de retornos logarítmicos de ETH/USD. Fuente: Elaboración Propia.

Modelo	Akaike	Bayes	Shibata	Hannan-Quinn
ARCH(4)	-3.0449	-3.0139	-3.0450	-3.0334
GARCH(1,1)	-3.0356	-3.0115	-3.0356	-3.0266
EGARCH(1,1)	-3.0161	-2.9916	-3.0161	-3.0070

En relación al test de Mincer-Zarnowitz el modelo ARCH(4) tiene una ecuación en el modelo lineal que presenta un coeficiente significativo a un nivel ($\alpha=0.05$) tanto para el intercepto como para la pendiente. GARCH(1,1) y EGARCH(1,1) no presentan un componente significativo al 0.05 para la pendiente. Los 3 modelos presentan un intercepto significativo distinto de cero, lo cual indica un sesgo en los modelos respecto a la volatilidad estimada mediante los residuos al cuadrado del modelo de medias. La pendiente significativa en el modelo ARCH tiene un valor absoluto de 0.57, un valor relativamente bajo comparado con el ideal de 1.

En relación al test de Diebold-Mariano las comparaciones de a pares entre los modelos no arrojan resultados significativos a un nivel ($\alpha=0.05$) tanto para las pruebas a 2 colas (un modelo con distinta capacidad predictiva que el otro) o a una cola (un modelo es superior a otro) para los pronósticos estimados fuera de la muestra con 300 observaciones disponibles y horizonte deslizante de tiempo igual a un día.

En relación a las métricas obtenidas se presenta a continuación la tabla resumen:

Tabla 50: Métricas de pronóstico de volatilidad 1 día fuera de la muestra (n=300). Fuente: Elaboración propia.

Modelo	RMSE	MAE	MAPE	Horizonte (días)
ARCH(4)	0.0541	0.0516	0.9517	1
GARCH(1,1)	0.0528	0.0509	0.9436	1
EGARCH(1,1)	0.0542	0.0529	0.9465	1

En relación a las métricas calculadas se observa que el modelo GARCH(1,1) presenta mejores métricas en comparación con ARCH(4) y EGARCH(1,1).

Capítulo 6 - Futuras Investigaciones

El presente trabajo de tesis permite establecer potenciales investigaciones futuras que profundizan los aspectos estudiados y desarrollan nuevas oportunidades de aplicación de los pronósticos de precio de cierre y volatilidad en series de tiempo con marcada volatilidad.

En referencia a la profundización de conocimientos teóricos, la principal cuestión a abordar en futuras investigaciones es el supuesto de mercado ineficiente en las criptomonedas en general. Sobre este tema en el presente trabajo se asume que el mercado presenta oportunidades en los que se dan ineficiencias que permiten no considerar a los precios de cierre como un paseo aleatorio y desarrollar modelos de pronóstico para precios de cierre.

Otra investigación futura se basa en la extensión a múltiples variables de los modelos aplicados, como por ejemplo otras criptomonedas, principalmente como instrumento de apoyo para el armado de carteras de inversión. Además podría considerarse el uso de variables externas en los modelos, como por ejemplo el fenómeno provocado por la pandemia de Covid-19 o la guerra en Ucrania, analizando el impacto de estos eventos en las predicciones.

En relación a los modelos aplicados, una evolución lógica es el planteo de ensambles de modelos que permitan mejorar la performance de predicción. En este aspecto resulta muy importante contar con un marco teórico adecuado para el desarrollo. Además, una futura línea de investigación debería centrarse en los avances tecnológicos del aprendizaje profundo, como por ejemplo la aplicación de modelos XGBoost.

Tomando como punto de partida este trabajo puede plantearse una aplicación académica sobre series temporales con el tipo de características de extrema volatilidad que se tratan en esta tesis, como por ejemplo un curso o presentación de soporte en alguna materia específica.

Con un sentido vinculado a la operatoria de mercado una potencial aplicación de parte del código realizado para los pronósticos tanto de precio de cierre como de volatilidad puede ser empleado en la confección de programas automáticos de compra y venta de criptomonedas, específicamente para la construcción de estrategias y programas de negociación automática.

Bibliografía

Alizadeh, S., M.W. Brandt and F.X. Diebold (2002) Range-based estimation of stochastic volatility models, Journal of Finance, 57, 3, 1047–1092.

Andersen, T.G., T. Bollerslev and S. Lange (1999) Forecasting financial market volatility: Sample frequency vis-'a-vis forecast horizon, Journal of Empirical Finance, 6, 5, 457–477.

Beckers, S, (1993) Variances of security price returns based on high, low and closing prices, Journal of Business, 56, 97–112.

Bollen, B., and B., Inder (2002) Estimating daily volatility in financial markets utilizing intraday data, Journal of Empirical Finance, 9, 551–562.

Bollerslev, Tim (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327. Disponible en: https://public.econ.duke.edu/~boller/Published_Papers/joe_86.pdf

Box, G. E. P., G. M. Jenkins and G. C. Reinsel (1994). Time series analysis: forecasting and control. Prentice-Hall, Englewood Cliffs, New Jersey, 3rd ed. [6, 36, 69, 141, 142, 167, 168, 215, 231]

Brockwell, P. J. and R. A. Davis (1991). Time series: theory and methods. Springer, Berlin Heidelberg New York, 2nd ed. [37]

Bukhari et. al. (2020). Fractional Neuro-Sequential ARFIMA-LSTM for Financial Market Forecasting. IEEE.

Cheung, A. W. K., E. Roca, and J. J. Su (2015). Crypto-currency bubbles: an application of the Phillips, Shi and Yu (2013) methodology on Mt. Gox bitcoin prices. Applied Economics 47 (23), 2348–2358.

Corbet, Lucey, Yarovna (2017). Datestamping the Bitcoin and Ethereum Bubbles. Finance Research Letters.

Diba, B. T. and H. I. Grossman (1988). Explosive rational bubbles in stock prices? The American Economic Review 78 (3), 520–530.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74, 427-431. https://doi.org/10.1080/01621459.1979.10482531

Diebold, F.X., and R.S. Mariano (1995) Comparing predictive accuracy, Journal of Business and Economic Statistics, 13, 253–263.

Diebold, F.X., A. Hickman, A. Inoue and T. Schuermann (1998) Scale models, RISK Magazine, 11, 104–107.

Ding, Z., C.W.J. Granger and R.F. Engle (1993) A long memory property of stock market returns and a new model, Journal of Empirical Finance, 1, 83–106.

Donier, J. and J. P. Bouchaud (2015). Why do markets crash? Bitcoin data offers unprecedented insights. PLoS ONE 10 (10).

Ederington, L.H., and W. Guan (2000a) Forecasting volatility, Working paper, University of Oklahoma.

Ederington, L.H., and W. Guan (2000b) Measuring implied volatility: Is an average better? Working paper, University of Oklahoma.

Enders, Walter (2015). Applied Econometric Time Series. John Wiley and Sons.

Engle R (1982). Autorregresive Conditional Heteroscedasticity With Estimates of the Variance of United Kingdom Inflations. Econometrica, 50, 987-1007.

Fama E.F (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25, 383–417.

Fama, E.F. (1991). Efficient capital markets: II. The Journal of Finance, 46, 1575–1617.

Fondo Monetario Internacional (2022). Dinero Digital. https://www.imf.org/es/Publications/fandd/issues/2022/09/Digital-Money-101-explainer

Fuller, W.A. (1996): Introduction to Statistical Time Series (2nd Ed.). New York: John Wiley

Garman, M.B., and M.J. Klass (1980) On the estimation of security price volatilities from historical data, Journal of Business, 53, 1, 67–78.

Geweke, J. y S. Porter-Hudak (1983) "Estimation and application of long memory time series models", Journal of Time Series Analysis 4, pp. 221-238.

Granger, C.W.J. (1980) "Long memory relationships and the aggregation of dynamic models", Journal of Econometrics 14, pp. 227-238.

Granger, C.W.J. y R. Joyeux (1980) "An introduction to long-memory time series models and fractional differencing", Journal of Time Series Analysis 1, pp. 15-29.

Gregoriu (2015). The Handbook of High Frequency Trading. Elsevier Haubrich, J.G. y A.W. Lo (1989) "The sources and nature of long-term memory in the business cycle", NBER Working Paper 2951.

Hansen, L.P., and R.J. Hodrick (1980) Forward exchange rates as optimal predictors of future spot rates: An econometric analysis, Journal of Political Economy, 88, 829–853.

Holt, C. C. (1957). Forecasting seasonals and trends by exponentially weighted averages (O.N.R. Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA.

Hosking, J.R.M. (1981) "Fractional differencing", Biometrika 68, pp. 165-176.

Hyndman et al. (2008). Forecasting with Exponential Smoothing. Springer Kroll, J., I. Davey, and E. Felten (2013). The Economics of Bitcoin Mining, or Bitcoin in the Presence of Adversaries. The Twelfth Workshop on the Economics of Information Security (WEIS 2013) (WEIS), 1–21.

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(1), 1–22. https://doi.org/10.18637/jss.v027.i03

Hyndman, R y Athanasopoulos, G (2018). Forecasting:principles and practice, 2nd edition. OTexts: Melbourne, Australia,

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3), 159–178. https://doi.org/10.1016/0304-4076(92) 90104-Y

G. M. Ljung; G. E. P. Box (1978). "On a Measure of a Lack of Fit in Time Series Models". Biometrika. 65 (2): 297–303. doi:10.1093/biomet/65.2.297

Mensi Whalid, Khamis Hamed Al-Yahyaee, Sang Hoon Kang (2018). Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum. Finance Research Letters.

Lo, A.W. (1991). "Long-term memory in stock market prices", Econometrica 59, pp. 1279-1313. Lopez, J.A. (2001) Evaluating the predictive accuracy of volatility models, Journal of Forecasting,

20, 2, 87–109.

McKenzie M.D. (1999) Power transformation and forecasting the magnitude of exchange rate changes, International Journal of Forecasting, 15, 49–55.

Meghnad Desai, Yahia Said (2004). Global Governance and Financial Crises. Routledge

Nakamoto(2008) S., Bitcoin: A Peer-to-Peer Electronic Cash System.ReadLiberty.org

Narayan, P.K., Liu, R.(2013). New Evidence on the Weak-Form Efficient Market Hypothesis. Working Paper. Centre for Financial Econometrics, Deakin University

Padinger, G (25 de julio 2022).¿Por qué está en crisis la economía de Argentina y cómo se llegó a esta situación? https://cnnespanol.cnn.com/2022/07/25/explainer-crisis-economia-argentina-orix/

Parkinson, M. (1980) The extreme value method for estimating the variance of the rate of return, Journal of Business, 53, 61–65

Peña, D (2010). Análisis de series temporales. Alianza Editorial.

Perez, A, Ruiz E (2001). Modelos de memoria larga para series económicas y financieras. Documento de Trabajo. Serie de Estadística y Econometría. https://www.researchgate.net/publication/26420360_Modelos_de_memoria_larga_para_series_economicas_y_financieras

Pichl Lucas, Cheoljun Eom, Enrico Scalas, and Taisei Kaizoji (2020). Financial Innovations and Blockchain Applications: New Digital Paradigms in Global Cybersociety. Springer.

Phillips, P. C., S. Shi, and J. Yu (2015). Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S&P 500. International Economic Review 56 (4), 1043–1078.

Poon, S. H (2005). A practical guide to forecasting financial market volatility. Wiley 2005.

Real Academia Española (2024). Diccionario de la lengua española (23.ª edición).

Rogers, L.C.G., and S.E. Satchell (1991) Estimating variance from high, low and closing prices, Annals of Applied Probability, 1, 504–512

Rogers, L.C.G., S.E. Satchell and Y. Yoon (1994) Estimating the volatility of stock prices: A comparison of methods that use high and low prices, Applied Financial Economics, 4, 3, 241–248.

Sowell, F. (1990) "The fractional unit root distribution", Econometrica 58, pp. 495-505.

Taylor, J. W. (2003a). Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting, 19, 715–725. [12, 64]

Taylor, Stephen (1986). Modelling financial time series. John Wiley & Sons, Chichester.

Tsay, Ruey S (2010). Analysis of Financial time series third edition. John Wiley & Sons.

Urquhart, Andrew, (August 24, 2016). The Inefficiency of Bitcoin. Available at SSRN: https://ssrn.com/abstract=2828745

West, K.D., (1996) Asymptotic inference about predictive ability, Econometrica, 64, 1067–1084.

West, K.D., and D. Cho (1995) The predictive ability of several models of exchange rate volatility, Journal of Econometrics, 69, 2, 367–391.

West, K.D., H.J. Edison and D. Cho (1993) A utility based comparison of some methods of exchange rate volatility, Journal of International Economics, 35, 1–2, 23–45.

West, K.D., and M. McCracken (1998) Regression based tests of predictive ability, International Economic Review, 39, 817–840.

Wiggins, J.B. (1987) Option values under stochastic volatility: Theory and empirical estimates, Journal of Financial Economics, 19, 351–372.

Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324–342.

Yuanyuan Zhang , Jeffrey Chu , Stephen Chan , Brandon Chan (2019). The generalised hyperbolic distribution and its subclass in the analysis of a new era of cryptocurrencies: Ethereum and its financial risk. Elsevier.

Apéndice

En esta sección se presentan los modelos aplicados y gráficas complementarias al marco empírico.

ETS:

Modelo:

ETS(M,A,N) Parámetros de suavizado: alpha = 0.9546 beta = 0.0023

Estados Iniciales: l[0] b[0] 7.8559 0.2812

 σ^2 : 0.0032

Tabla 51: Pronóstico precio de Cierre ETH/USD modelo ETS (M,A,N) (h=5 días)

Fecha	Valores	Media
2022-01-01	N(3688, 42989)	3688.4760
2022-01-02	N(3693, 82579)	3692.8489
2022-01-03	N(3697, 122570)	3697.2217
2022-01-04	N(3702, 162965)	3701.5945
2022-01-05	N(3706, 203765)	3705.9674

Tabla 52: Pronóstico precio de Cierre ETH/USD modelo ETS (M,A,N) (h=15 días)

Fecha	Valores	Media
2022-01-01	N(3688, 42989)	3688.4760
2022-01-02	N(3693, 82579)	3692.8489
2022-01-03	N(3697, 122570)	3697.2217
2022-01-04	N(3702, 162965)	3701.5945
2022-01-05	N(3706, 203765)	3705.9674
2022-01-06	N(3710, 244973)	3710.3402
2022-01-07	N(3715, 286594)	3714.7131
2022-01-08	N(3719, 328628)	3719.0859
2022-01-09	N(3723, 371080)	3723.4587
2022-01-10	N(3728, 413951)	3727.8316
2022-01-11	N(3732, 457246)	3732.2044
2022-01-12	N(3737, 500966)	3736.5773
2022-01-13	N(3741, 545115)	3740.9501
2022-01-14	N(3745, 589695)	3745.3229
2022-01-15	N(3750, 634710)	3749.6958

Tabla 53: Pronóstico precio de Cierre ETH/USD modelo ETS (M,A,N) (h=30 días)

Fecha	Valores	Media
2022-01-01	N(3688, 42989)	3688.4760
2022-01-02	N(3693, 82579)	3692.8489
2022-01-03	N(3697, 122570)	3697.2217
2022-01-04	N(3702, 162965)	3701.5945
2022-01-05	N(3706, 203765)	3705.9674
2022-01-06	N(3710, 244973)	3710.3402
2022-01-07	N(3715, 286594)	3714.7131
2022-01-08	N(3719, 328628)	3719.0859
2022-01-09	N(3723, 371080)	3723.4587
2022-01-10	N(3728, 413951)	3727.8316
2022-01-11	N(3732, 457246)	3732.2044
2022-01-12	N(3737, 500966)	3736.5773
2022-01-13	N(3741, 545115)	3740.9501
2022-01-14	N(3745, 589695)	3745.3229
2022-01-15	N(3750, 634710)	3749.6958
2022-01-16	N(3754, 680163)	3754.0686
2022-01-17	N(3758, 726056)	3758.4415
2022-01-18	N(3763, 772392)	3762.8143
2022-01-19	N(3767, 819175)	3767.1871
2022-01-20	N(3772, 866407)	3771.5600
2022-01-21	N(3776, 914091)	3775.9328
2022-01-22	N(3780, 962232)	3780.3057
2022-01-23	N(3785, 1010831)	3784.6785
2022-01-24	N(3789, 1059891)	3789.0513
2022-01-25	N(3793, 1109417)	3793.4242
2022-01-26	N(3798, 1159410)	3797.7970
2022-01-27	N(3802, 1209875)	3802.1699
2022-01-28	N(3807, 1260814)	3806.5427
2022-01-29	N(3811, 1312230)	3810.9155
2022-01-30	N(3815, 1364128)	3815.2884

Tabla 54: Criterios de informacion modelo ETS alicado a la predicción de ETH/USD. Fuente: Elaboración Propia

AIC	AICc	BIC
24683.5000	24683.5300	24711.0500

ARIMA:

Tabla 55: Coeficientes modelo ARIMA(1,1,2)(1,0,0)(7). Fuente: Elaboración Propia

Término	Valor Estimado	Error Std	Estadístico	Valor p
ar1	0.9170	0.0454	20.1918	0.0000
ma1	-0.9515	0.0507	-18.7599	0.0000
ma2	0.0687	0.0241	2.8538	0.0044
sar1	-0.0459	0.0243	-1.8889	0.0591
constant	0.0003	0.0002	1.9100	0.0563

Tabla 56: Pronóstico precio de Cierre ETH/USD modelo ARI-MA(1,1,2)(1,0,0)(7) (h=5 días). Fuente: Elaboración Propia

Fecha	Valores (transformados)	Media
2022-01-01	t(N(8.2, 0.0032))	3686.7249
2022-01-02	t(N(8.2, 0.0061))	3692.7062
2022-01-03	t(N(8.2, 0.0093))	3700.4075
2022-01-04	t(N(8.2, 0.013))	3718.6019
2022-01-05	t(N(8.2, 0.016))	3735.8146

Tabla 57: Pronóstico precio de Cierre ETH/USD modelo ARI-MA(1,1,2)(1,0,0)(7) (h=15 días). Fuente: Elaboración Propia

Fecha	Valores (transformados)	Media
2022-01-01	t(N(8.2, 0.0032))	3686.7249
2022-01-02	t(N(8.2, 0.0061))	3692.7062
2022-01-03	t(N(8.2, 0.0093))	3700.4075
2022-01-04	t(N(8.2, 0.013))	3718.6019
2022-01-05	t(N(8.2, 0.016))	3735.8146
2022-01-06	t(N(8.2, 0.02))	3742.3509
2022-01-07	t(N(8.2, 0.024))	3755.4920
2022-01-08	t(N(8.2, 0.028))	3767.7434
2022-01-09	t(N(8.2, 0.032))	3780.9066
2022-01-10	t(N(8.2, 0.036))	3794.9165
2022-01-11	t(N(8.2, 0.04))	3809.2977
2022-01-12	t(N(8.2, 0.045))	3824.5327
2022-01-13	t(N(8.2, 0.049))	3841.0247
2022-01-14	t(N(8.2, 0.054))	3857.9118
2022-01-15	t(N(8.2, 0.058))	3875.5036

Tabla 58: Pronóstico precio de Cierre ETH/USD modelo ARI-MA(1,1,2)(1,0,0)(7) (h=30 días). Fuente: Elaboración Propia

Fecha	Valores (transformados)	Media
2022-01-01	t(N(8.2, 0.0032))	3686.7249
2022-01-02	t(N(8.2, 0.0061))	3692.7062
2022-01-03	t(N(8.2, 0.0093))	3700.4075
2022-01-04	t(N(8.2, 0.013))	3718.6019
2022-01-05	t(N(8.2, 0.016))	3735.8146
2022-01-06	t(N(8.2, 0.02))	3742.3509
2022-01-07	t(N(8.2, 0.024))	3755.4920
2022-01-08	t(N(8.2, 0.028))	3767.7434
2022-01-09	t(N(8.2, 0.032))	3780.9066
2022-01-10	t(N(8.2, 0.036))	3794.9165
2022-01-11	t(N(8.2, 0.04))	3809.2977
2022-01-12	t(N(8.2, 0.045))	3824.5327
2022-01-13	t(N(8.2, 0.049))	3841.0247
2022-01-14	t(N(8.2, 0.054))	3857.9118
2022-01-15	t(N(8.2, 0.058))	3875.5036
2022-01-16	t(N(8.2, 0.063))	3893.6715
2022-01-17	t(N(8.2, 0.068))	3912.3804
2022-01-18	t(N(8.2, 0.073))	3931.6174
2022-01-19	t(N(8.2, 0.078))	3951.3272
2022-01-20	t(N(8.2, 0.083))	3971.4607
2022-01-21	t(N(8.2, 0.088))	3992.0312
2022-01-22	t(N(8.3, 0.093))	4012.9984
2022-01-23	t(N(8.3, 0.098))	4034.3454
2022-01-24	t(N(8.3, 0.1))	4056.0521
2022-01-25	t(N(8.3, 0.11))	4078.0994
2022-01-26	t(N(8.3, 0.11))	4100.4717
2022-01-27	t(N(8.3, 0.12))	4123.1548
2022-01-28	t(N(8.3, 0.12))	4146.1325
2022-01-29	t(N(8.3, 0.13))	4169.3926
2022-01-30	t(N(8.3, 0.14))	4192.9230

ARFIMA:

Tabla 59: Coeficientes modelo ARFIMA utilizado en la predicción de precio de cierre de ETH/USD. Fuente: Elaboración Propia

Coeficientes	Estimado	Error Std.	z	$\Pr(> \mathbf{z})$
d	0.4996	0.0006	885490	0
ma.ma1	-0.5780	0.0233	-24806	0
ma.ma2	-0.4768	0.0258	-18464	0
ma.ma3	-0.3780	0.0258	-14655	0
ma.ma4	-0.3349	0.0234	-14343	0
ma.ma5	-0.1023	0.0267	-3833	0

ARCH:

Figura 67: Gráficos de ajuste modelo ARCH(4). Fuente: Elaboración propia.

GARCH:

Figura 68: Gráficos de ajuste modelo GARCH(1,1). Fuente: Elaboración propia.

EGARCH:

Figura 69: Gráficos de ajuste modelo EGARCH(1,1). Fuente: Elaboración propia.

LSTM:

En la gráfica a continuación se presenta un ejemplo de una corrida de datos para LSTM en el pronóstico a 30 días. Se observa estabilidad tanto en la función pérdida como en la raíz del error cuadrático medio a partir de la época 4.

Figura 47: Corrida LSTM para pronóstico a 30 días de ETH/USD. Fuente: Elaboración propia.

Github:

Repositorio de la tesis en:

https://github.com/sebastianbellittieri/sebabellittieri/tree/tesis_estadistica_aplicada

Tabla 60: Coeficientes de modelos $\operatorname{ARCH}(4)$ - distintas distribuciones. Fuente: Elaboración propia.

Coeficiente	Estimado Eri	or. Estándar	t	Valor p	Distribución densidad condiciona
mu	0.0023	0.0017	1.3695	0.1708	normal
ar1	-0.9957	0.0022	-436.0086	0.0000	normal
ma1	0.9996	0.0001	6631.4189	0.0000	normal
arfima	0.0469	0.0243	1.9292	0.0537	normal
omega	0.0016	0.0001	14.2137	0.0000	normal
alfa1 alfa2	0.1809	0.0436	4.1467	0.0000	normal
alfa3	0.0967 0.0575	0.0271 0.0266	3.5657 2.1593	0.0003	normal normal
alfa4	0.1822	0.0200	5.4731	0.0000	normal
mu	0.1822	0.0017	1.0943	0.0000	normal sesgada
ar1	0.8805	0.1876	4.6915	0.2738	normal sesgada
mal	-0.8613	0.1870	-3.9345	0.0000	normal sesgada
arfima	0.0222	0.0593	0.3742	0.7082	normal sesgada
omega	0.0016	0.0001	15.0155	0.0000	normal sesgada
alfa1	0.1732	0.0416	4.1572	0.0000	normal sesgada
alfa2	0.0918	0.0259	3.5330	0.0004	normal sesgada
alfa3	0.0605	0.0272	2.2195	0.0264	normal sesgada
alfa4	0.1764	0.0321	5.4843	0.0000	normal sesgada
sesgo	0.9737	0.0242	40.1753	0.0000	normal sesgada
mu	0.0035	0.0000	16332.4200	0.0000	error generalizado sesgado
ar1	-0.8794	0.0000	-16332.4200	0.0000	error generalizado sesgado
ma1	0.8539	0.0000	16332.4200	0.0000	error generalizado sesgado
arfima	0.2166	0.0000	16332.4100	0.0000	error generalizado sesgado
omega	0.0000	0.0000	84.0700	0.0000	error generalizado sesgado
alfa1	0.0125	0.0000	26461.8500	0.0000	error generalizado sesgado
alfa2	0.0125	0.0000	26460.1000	0.0000	error generalizado sesgado
alfa3	0.0125	0.0000	26461.1700	0.0000	error generalizado sesgado
alfa4	0.0125	0.0000	26465.8800	0.0000	error generalizado sesgado
sesgo	1.0000	0.0000	26413.2700	0.0000	error generalizado sesgado
forma	2.0000	0.0000	28870.0800	0.0000	error generalizado sesgado
mu	0.0035	0.0000	16332.3980	0.0000	error generalizado
ar1	-0.8794	0.0000	-16332.4150	0.0000	error generalizado
ma1	0.8539	0.0000	16332.4110	0.0000	error generalizado
arfima	0.2166	0.0000	16332.3980	0.0000	error generalizado
omega	0.0000	0.0000	88.4350	0.0000	error generalizado
alfa1	0.0125	0.0000	27842.2250	0.0000	error generalizado
alfa2	0.0125	0.0000	27839.6030	0.0000	error generalizado
alfa3	0.0125	0.0000	27841.2220	0.0000	error generalizado
alfa4	0.0125	0.0000	27848.4080	0.0000	error generalizado
forma	2.0000	0.0000	30801.0770	0.0000	error generalizado
mu	0.0019	0.0015	1.2573	0.2086	hiperbólica generalizada
ar1	-0.2130	0.1971	-1.0806	0.2798	hiperbólica generalizada
ma1	0.0685	0.2174	0.3152	0.7525	hiperbólica generalizada
arfima	0.0474	0.0281	1.6849	0.0919	hiperbólica generalizada
omega	0.0016	0.0001	9.0724	0.0000	hiperbólica generalizada
alfa1	0.1412	0.0577	2.4444	0.0145	hiperbólica generalizada
alfa2	0.0915	0.0427	2.1426	0.0321	hiperbólica generalizada
alfa3	0.1514	0.0569	2.6585	0.0078	hiperbólica generalizada
alfa4	0.1600	0.0533	2.9976	0.0027	hiperbólica generalizada
sesgo	0.0311	0.0370	0.8417	0.3999	hiperbólica generalizada
forma	0.3347	0.0739	4.5242	0.0000	hiperbólica generalizada
ghlambda	0.1420	0.2990	0.4751	0.6347	hiperbólica generalizada
mu	0.0019	0.0016	1.2137	0.2248	normal inversa
ar1	-0.1989	0.1955	-1.0172	0.3090	normal inversa
ma1	0.0482	0.2169	0.2224	0.8239	normal inversa
arfima	0.0540	0.0292	1.8474	0.0646	normal inversa
omega	0.0016	0.0001	8.5338	0.0000	normal inversa
alfa1	0.1407	0.0583	2.4134	0.0158	normal inversa
alfa2	0.0945	0.0457	2.0651	0.0389	normal inversa
alfa3	0.1738	0.0603	2.8823	0.0039	normal inversa
alfa4	0.1722	0.0575	2.9950	0.0027	normal inversa
sesgo	0.0329	0.0567	0.5796	0.5621	normal inversa
forma	0.3707	0.0585	6.3337	0.0000	normal inversa
mu	0.0016	0.0012	1.3904	0.1644	t-student
ar1	-0.1959	0.2002	-0.9783	0.3279	t-student
ma1	0.0460	0.2225	0.2068	0.8361	t-student
arfima	0.0589	0.0304	1.9352	0.0529	t-student
omega	0.0027	0.0008	3.0796	0.0020	t-student
alfa1	0.2356	0.1162	2.0262	0.0427	t-student
alfa2	0.1626	0.0929	1.7489	0.0803	t-student
alfa3	0.3146	0.1410	2.2312	0.0256	t-student
alfa4	0.2861	0.1322	2.1630	0.0305	t-student
forma	2.4825	0.2184	11.3659	0.0000	t-student
mu 1	0.0032	0.0016	1.9456	0.0517	t-student sesgada
ar1	-0.1915	0.2049	-0.9344	0.3500	t-student sesgada
ma1	0.0431	0.2273	0.1896	0.8495	t-student sesgada
arfima	0.0582	0.0304	1.9146	0.0555	t-student sesgada
omega	0.0027	0.0009	3.0004	0.0026	t-student sesgada
alfa1	0.2278	0.1153	1.9756	0.0482	t-student sesgada
alfa2	0.1594	0.0927	1.7181	0.0857	t-student sesgada
alfa3	0.3194	0.1443	2.2134	0.0268	t-student sesgada
. 10. 4				0.0322	t-student sesgada
	0.2922	0.1364	2.1415		~
alfa4 sesgo forma	1.0427 2.4735	0.1364 0.0319 0.2176	32.6237 11.3664	0.0000	t-student sesgada t-student sesgada

137

Tabla 61: Criterios de información modelos $\operatorname{ARCH}(4)$ - distintas distribuciones. Fuente: Elaboración propia.

Akaike	Bayes	Shibata	Hannan_Quinn	Distribución
-3.0449	-3.0139	-3.0450	-3.0334	normal
-3.0416	-3.0072	-3.0417	-3.0288	normal sesgada
22.4420	22.4800	22.4420	22.4560	error generalizado sesgado
22.4410	22.4750	22.4410	22.4530	error generalizado
-3.2719	-3.2307	-3.2721	-3.2566	hiperbólica generalizada
-3.2707	-3.2328	-3.2708	-3.2566	normal inversa
-3.2618	-3.2274	-3.2618	-3.2490	t-student
-3.2617	-3.2238	-3.2618	-3.2476	t-student sesgada

Tabla 62: Test de Ljung-Box modelos para residuos estandarizados modelos ARCH(4) - distintas distribuciones condicionales (Ho: No existe autocorrelación). Fuente: Elaboración propia.

Estadístico/Valor p	Retardo[1]	Retardo[2*(p+q)+(p+q)-1][5]	Retardo[4*(p+q)+(p+q)-1][9]	Distribución densidad condicional
Estadístico	0.2245	30591.0000	52713.0000	Normal
Valor p	0.6356	0.4352	0.3940	Normal
Estadístico	0.0453	195506.0000	405328.0000	Normal Sesgada
Valor p	0.8313	0.9659	0.6785	Normal Sesgada
Estadístico	3399.0000	4341.0000	6603.0000	Error Generalizado Sesgado
Valor p	0.0652	0.0264	0.1709	Error Generalizado Sesgado
Estadístico	3399.0000	4341.0000	6603.0000	Error Generalizado
Valor p	0.0652	0.0264	0.1709	Error Generalizado
Estadístico	17.0500	18.6400	21.3000	Hiperbólica Generalizada
Valor p	0.0000	0.0000	0.0000	Hiperbólica Generalizada
Estadístico	16.9300	18.2900	20.8900	Normal Inversa
Valor p	0.0000	0.0000	0.0000	Normal Inversa
Estadístico	15.4000	16.5200	19.0700	t-Student
Valor p	0.0000	0.0000	0.0000	t-Student
Estadístico	15.3500	16.5400	19.0800	t-Student Sesgada
Valor p	0.0000	0.0000	0.0000	t-Student Sesgada

Tabla 63: Test de Ljung-Box modelos para residuos estandarizados al cuadrado modelos ARCH(4) - distintas distribuciones condicionales (Ho: No existe autocorrelación). Fuente: Elaboración propia.

Estadístico/Valor p	Retardo[1]	Retardo[$2*(p+q)+(p+q)-1$][11]	Retardo $[4*(p+q)+(p+q)-1][19]$	Distribución de densidad condicional
Estadístico	0.3226	42937.0000	89838.0000	Normal
Valor p	0.5700	0.6887	0.5635	Normal
Estadístico	0.3169	45579.0000	93578.0000	Normal Sesgada
Valor p	0.5735	0.6482	0.5212	Normal Sesgada
Estadístico	0.7726	75833.0000	95680.0000	Error Generalizado Sesgado
Valor p	0.3794	0.2534	0.4978	Error Generalizado Sesgado
Estadístico	0.7726	75833.0000	95680.0000	Error Generalizado
Valor p	0.3794	0.2534	0.4978	Error Generalizado
Estadístico	0.1229	50782.0000	93789.0000	Hiperbólica Generalizada
Valor p	0.7259	0.5687	0.5188	Hiperbólica Generalizada
Estadístico	0.0960	518291.0000	945710.0000	Normal Inversa
Valor p	0.7566	0.5530	0.5101	Normal Inversa
Estadístico	0.1042	54486.0000	96507.0000	t-Student
Valor p	0.7469	0.5136	0.4886	t-Student
Estadístico	0.0797	530037.0000	953873.0000	t-Student Sesgada
Valor p	0.7776	0.5355	0.5010	t-Student Sesgada

Tabla 64: Test ARCH para rezagos superiores, modelos ARCH(4) - distintas distribuciones condicionales (Ho: No Existe efecto ARCH). Fuente: Elaboración propia.

Retardos	Estadístico	Forma	Scala	Valor p	Distribución densidad condicional
Retardos[5]	0.0045	0.5000	2.0000	0.9459	Normal
Retardos[7]	290.0873	1.4730	1.7460	0.3356	Normal
Retardos[9]	473.7734	2.4020	1.6190	0.2982	Normal
Retardos[5]	0.0000	0.5000	2.0000	0.9985	Normal Sesgada
Retardos[7]	309500.4790	1.4730	1.7460	0.3065	Normal Sesgada
Retardos[9]	502111.7380	2.4020	1.6190	0.2657	Normal Sesgada
Retardos[5]	0.2938	0.5000	2.0000	0.5878	Error Generalizado Sesgado
Retardos[7]	0.6160	1.4730	1.7460	0.8655	Error Generalizado Sesgado
Retardos[9]	0.7413	2.4020	1.6190	0.9627	Error Generalizado Sesgado
Retardos[5]	0.2938	0.5000	2.0000	0.5878	Error Generalizado
Retardos[7]	0.6160	1.4730	1.7460	0.8655	Error Generalizado
Retardos[9]	0.7413	2.4020	1.6190	0.9627	Error Generalizado
Retardos[5]	0.0894	0.5000	2.0000	0.7649	Hiperbólica Generalizada
Retardos[7]	15.7018	1.4730	1.7460	0.6051	Hiperbólica Generalizada
Retardos[9]	34.3999	2.4020	1.6190	0.4870	Hiperbólica Generalizada
Retardos[5]	0.1015	0.5000	2.0000	0.7500	Normal Inversa
Retardos[7]	1.3678	1.4730	1.7460	0.6570	Normal Inversa
Retardos[9]	3.2843	2.4020	1.6190	0.5140	Normal Inversa
Retardos[5]	0.1188	0.5000	2.0000	0.7303	t-Student
Retardos[7]	1.2334	1.4730	1.7460	0.6929	t-Student
Retardos[9]	3.1445	2.4020	1.6190	0.5389	t-Student
Retardos[5]	0.1044	0.5000	2.0000	0.7466	t-Student Sesgada
Retardos[7]	1.1881	1.4730	1.7460	0.7053	t-Student Sesgada
Retardos[9]	3.1223	2.4020	1.6190	0.5430	t-Student Sesgada

Tabla 65: Test de bondad de ajuste de residuos, modelo ARCH(4) - distintas distribuciones condicionales (Ho: ajuste a la distribución de referencia). Fuente: Elaboración propia.

Número	Grupo	Estadístico	Valor p	Distribución de densidad condicional
1	20	181.6000	0.0000	Normal
2	30	193.3000	0.0000	Normal
3	40	212.7000	0.0000	Normal
4	50	217.4000	0.0000	Normal
1	20	192.8000	0.0000	Normal Sesgada
2	30	210.4000	0.0000	Normal Sesgada
3	40	233.0000	0.0000	Normal Sesgada
4	50	233.2000	0.0000	Normal Sesgada
1	20	6096.0000	0.0000	Error Generalizado Sesgado
2	30	8783.0000	0.0000	Error Generalizado Sesgado
3	40	11430.0000	0.0000	Error Generalizado Sesgado
4	50	14057.0000	0.0000	Error Generalizado Sesgado
1	20	6096.0000	0.0000	Error Generalizado
2	30	8783.0000	0.0000	Error Generalizado
3	40	11430.0000	0.0000	Error Generalizado
4	50	14057.0000	0.0000	Error Generalizado
1	20	17.8000	0.5360	Hiperbólica Generalizada
2	30	25.8600	0.6332	Hiperbólica Generalizada
3	40	26.0900	0.9436	Hiperbólica Generalizada
4	50	45.2900	0.6243	Hiperbólica Generalizada
1	20	23.8400	0.2023	Normal Inversa
2	30	30.3700	0.3957	Normal Inversa
3	40	39.9800	0.4263	Normal Inversa
4	50	45.6100	0.6113	Normal Inversa
1	20	31.2800	0.0376	t-Student
2	30	42.6400	0.0491	t-Student
3	40	46.2600	0.1975	t-Student
4	50	49.4700	0.4543	t-Student
1	20	25.7700	0.1367	t-Student Sesgada
2	30	30.2900	0.3995	t-Student Sesgada
3	40	44.7700	0.2425	t-Student Sesgada
4	50	44.5200	0.6552	t-Student Sesgada

Tabla 66: Coeficientes de modelos $\mathrm{GARCH}(1,\!1)$ - distintas distribuciones. Fuente: Elaboración propia.

Coeficiente	Estimado	Error Estandar	t	Valor p	Distribución Densidad Condicional
mu	0.0029	0.0020	1.4272	0.1535	Normal
ar1	-0.4893	0.2203	-2.2208	0.0263	Normal
ma1	0.4141	0.2387	1.7348	0.0827	Normal
arfima	0.0764	0.0316	2.4163	0.0156	Normal
omega	0.0002	0.0000	4.1887	0.0000	Normal
alfa1	0.1337	0.0234	5.6937	0.0000	Normal
beta1	0.7845	0.0367	21.3366	0.0000	Normal
mu	0.0019	0.0021	0.9339	0.3503	Normal Sesgada
ar1	-0.4831	0.2232	-2.1641	0.0304	Normal Sesgada
arfima	0.4090 0.0769	0.2414 0.0316	1.6937 2.4279	0.0903 0.0151	Normal Sesgada Normal Sesgada
omega	0.0002	0.0000	4.0735	0.0000	Normal Sesgada
alfa1	0.1335	0.0239	55.6602	0.0000	Normal Sesgada
beta1	0.7830	0.0383	20.3917	0.0000	Normal Sesgada
sesgo	0.9603	0.0233	41.0428	0.0000	Normal Sesgada
mu	0.0024	0.0002	8.9244	0.0000	Distribución General de Error Sesgada
ar1	-0.2359	0.0086	-27.1404	0.0000	Distribución General de Error Sesgada
ma1	0.0928	0.0060	15.3194	0.0000	Distribución General de Error Sesgada
arfima	0.0539	0.0039	13.7419	0.0000	Distribución General de Error Sesgada
omega	0.0002	0.0000	5.6206	0.0000	Distribución General de Error Sesgada
alfa1	0.1397	0.0192	7.2634	0.0000	Distribución General de Error Sesgada
beta1	0.8001	0.0190	41.9625	0.0000	Distribución General de Error Sesgada
sesgo	1.0441	0.0117	88.7854	0.0000	Distribución General de Error Sesgada
forma	0.8859	0.0383	23.1081	0.0000	Distribución General de Error Sesgada
mu	0.0006	0.0001	3.9051	0.0000	Distribución General de Error
ar1	-0.2475	0.0085	-28.9394	0.0000	Distribución General de Error
ma1	0.1122	0.0061	18.3758	0.0000	Distribución General de Error Distribución General de Error
arfima	0.0384	0.0029 0.0000	13.0214 3.2103	0.0000 0.0013	Distribución General de Error Distribución General de Error
alfa1	0.0002 0.1456	0.0000	4.3858	0.0013	Distribución General de Error Distribución General de Error
beta1	0.7933	0.0332	19.1340	0.0000	Distribución General de Error
forma	0.8884	0.0393	22.5894	0.0000	Distribución General de Error
mu	0.0019	0.0015	1.2627	0.2066	Distribución General Hiperbólica
ar1	-0.2057	0.1824	-1.1278	0.2593	Distribución General Hiperbólica
ma1	0.0508	0.2022	0.2511	0.8016	Distribución General Hiperbólica
arfima	0.0566	0.0280	2.0190	0.0434	Distribución General Hiperbólica
omega	0.0002	0.0000	3.2546	0.0011	Distribución General Hiperbólica
alfa1	0.1461	0.0329	4.4340	0.0000	Distribución General Hiperbólica
beta1	0.8011	0.0381	21.0154	0.0000	Distribución General Hiperbólica
sesgo	0.0324	0.0376	0.8613	0.3890	Distribución General Hiperbólica
forma	0.3611	0.0744	4.8483	0.0000	Distribución General Hiperbólica
ghlambda	0.1051	0.3120	0.3369	0.7361	Distribución General Hiperbólica
mu	0.0019	0.0016	1.2229	0.2213	Normal Inversa
arl	-0.2005	0.1851	-1.0835	0.2785	Normal Inversa
ma1	0.0432	0.2055	0.2103	0.8333	Normal Inversa
arfima omega	0.0594 0.0002	0.0287 0.0000	2.0642 3.2656	0.0389	Normal Inversa Normal Inversa
alfa1	0.0002	0.0340	4.5185	0.0000	Normal Inversa
beta1	0.8036	0.0360	22.3089	0.0000	Normal Inversa
sesgo	0.0334	0.0556	0.6014	0.5475	Normal Inversa
forma	0.3925	0.0614	6.3871	0.0000	Normal Inversa
mu	0.0017	0.0012	1.4752	0.1401	t-Student
ar1	-0.2163	0.1911	-1.1317	0.2577	t-Student
ma1	0.0676	0.2114	0.3199	0.7489	t-Student
arfima	0.0595	0.0290	2.0464	0.0407	t-Student
omega	0.0002	0.0000	2.9979	0.0027	t-Student
alfa1	0.1985	0.0486	4.0803	0.0000	t-Student
beta1	0.8004	0.0358	22.3203	0.0000	t-Student
forma	2.7653	0.2147	12.8749	0.0000	t-Student
mu	0.0033	0.0016	2.0541	0.0399	t-Student Sesgada
ar1	-0.2041	0.1872	-1.0904	0.2755	t-Student Sesgada
ma1 arfima	0.0547	0.2069	0.2645	0.7913	t-Student Sesgada
	0.0609 0.0002	0.0289 0.0000	2.1044 2.9976	0.0353 0.0027	t-Student Sesgada t-Student Sesgada
alfa1	0.0002	0.0000	4.0765	0.0027	t-Student Sesgada t-Student Sesgada
beta1	0.1938	0.0355	22.5612	0.0000	t-Student Sesgada t-Student Sesgada
sesgo	1.0464	0.0333	32.7181	0.0000	t-Student Sesgada t-Student Sesgada
forma	2.7556	0.2119	12.9992	0.0000	t-Student Sesgada t-Student Sesgada
		0.2110	0002	2.3000	

Tabla 67: Criterios de información modelos GARCH(1,1) - distintas distribuciones. Fuente: Elaboración propia.

Akaike	Bayes	Shibata	Hannan-Quinn	Distribución densidad condicional
-3.0356	-3.0115	-3.0356	-3.0266	Normal
-3.0361	-3.0086	-3.0361	-3.0258	Normal Sesgada
-3.2718	-3.2409	-3.2719	-3.2603	Distribución General de Error Sesgada
-3.2716	-3.2441	-3.2717	-3.2614	Distribución General de Error
-3.2730	-3.2386	-3.2731	-3.2602	Distribución General Hiperbólica
-3.2722	-3.2412	-3.2723	-3.2607	Normal Inversa
-3.2627	-3.2352	-3.2628	-3.2525	t-Student
-3.2716	-3.2441	-3.2717	-3.2614	t-Student Sesgada

Tabla 68: Test de Ljung-Box modelos para residuos estandarizados modelos GARCH(1,1) - distintas distribuciones condicionales (Ho: No existe autocorrelación). Fuente: Elaboración propia.

Estadístico/Valor p	Lag[1]	Lag[2*(p+q)+(p+q)-1][5]	Lag[4*(p+q)+(p+q)-1][9]	Distribución densidad condicional
Estadístico	1.3480	2.0540	3.8560	Normal
Valor p	0.2456	0.9472	0.7243	Normal
Estadístico	1.2290	1.9140	3.7150	Normal Sesgada
Valor p	0.2677	0.9720	0.7559	Normal Sesgada
Estadístico	17.0100	18.8100	20.8900	Distribución General de Error Sesgada
Valor p	0.0000	0.0000	0.0000	Distribución General de Error Sesgada
Estadístico	19.3000	22.0800	24.4800	Distribución General de Error
Valor p	0.0000	0.0000	0.0000	Distribución General de Error
Estadístico	19.5900	21.4900	23.5600	Distribución General Hiperbólica
Valor p	0.0000	0.0000	0.0000	Distribución General Hiperbólica
Estadístico	19.6000	21.4000	23.4100	Normal Inversa
Valor p	0.0000	0.0000	0.0000	Normal Inversa
Estadístico	17.4100	19.0200	21.0000	t-Student
Valor p	0.0000	0.0000	0.0000	t-Student
Estadístico	17.2900	18.9000	20.8600	t-Student Sesgada
Valor p	0.0000	0.0000	0.0000	t-Student Sesgada

Tabla 69: Test de Ljung-Box modelos para residuos estandarizados al cuadrado modelos GARCH(1,1) - distintas distribuciones condicionales (Ho: No existe autocorrelación). Fuente: Elaboración propia.

Estadístico/Valor p	Lag[1]	Lag[2*(p+q)+(p+q)-1][5]	Lag[4*(p+q)+(p+q)-1][9]	Distribución densidad condicional
Estadístico	0.0679	2.9794	4.9387	Normal
Valor p	0.7943	0.4108	0.4385	Normal
Estadístico	0.0629	2.9624	4.9120	Normal Sesgada
Valor p	0.8019	0.4140	0.4424	Normal Sesgada
Estadístico	0.1526	3.0524	4.9713	Distribución General de Error Sesgada
Valor p	0.6961	0.3976	0.4336	Distribución General de Error Sesgada
Estadístico	0.1586	3.0631	4.9630	Distribución General de Error
Valor p	0.6904	0.3956	0.4349	Distribución General de Error
Estadístico	0.1718	3.0803	4.9833	Distribución General Hiperbólica
Valor p	0.6786	0.3926	0.4319	Distribución General Hiperbólica
Estadístico	0.1965	3.1092	4.9928	Normal Inversa
Valor p	0.6575	0.3875	0.4305	Normal Inversa
Estadístico	0.1945	3.1233	5.0028	t-Student
Valor p	0.6592	0.3850	0.4290	t-Student
Estadístico	0.1874	3.0926	4.9852	t-Student Sesgada
Valor p	0.6651	0.3904	0.4316	t-Student Sesgada

Tabla 70: Test ARCH para rezagos superiores, modelos GARCH(1,1) - distintas distribuciones condicionales (Ho: No Existe efecto ARCH). Fuente: Elaboración propia.

Retardos	Estadístico	Forma	Escala	Valor p	Distribución densidad condicional
Lag[3]	0.4064	0.5000	2.0000	0.5238	Normal
Lag[5]	5.1290	1.4400	1.6670	0.0959	Normal
Lag[7]	5.5124	2.3150	1.5430	0.1776	Normal
Lag[3]	0.4032	0.5000	2.0000	0.5254	Normal Sesgada
Lag[5]	5.1115	1.4400	1.6670	0.0968	Normal Sesgada
Lag[7]	5.4938	2.3150	1.5430	0.1791	Normal Sesgada
Lag[3]	0.6344	0.5000	2.0000	0.4258	Distribución General de Error Sesgada
Lag[5]	4.7765	1.4400	1.6670	0.1157	Distribución General de Error Sesgada
Lag[7]	5.1509	2.3150	1.5430	0.2097	Distribución General de Error Sesgada
Lag[3]	0.6766	0.5000	2.0000	0.4108	Distribución General de Error
Lag[5]	4.6784	1.4400	1.6670	0.1219	Distribución General de Error
Lag[7]	5.0529	2.3150	1.5430	0.2192	Distribución General de Error
Lag[3]	0.7065	0.5000	2.0000	0.4006	Distribución General Hiperbólica
Lag[5]	4.6804	1.4400	1.6670	0.1217	Distribución General Hiperbólica
Lag[7]	5.0552	2.3150	1.5430	0.2190	Distribución General Hiperbólica
Lag[3]	0.7814	0.5000	2.0000	0.3767	Normal Inversa
Lag[5]	4.5691	1.4400	1.6670	0.1291	Normal Inversa
Lag[7]	4.9458	2.3150	1.5430	0.2301	Normal Inversa
Lag[3]	0.8026	0.5000	2.0000	0.3703	t-Student
Lag[5]	4.5585	1.4400	1.6670	0.1298	t-Student
Lag[7]	4.9367	2.3150	1.5430	0.2310	t-Student
Lag[3]	0.7681	0.5000	2.0000	0.3808	t-Student Sesgada
Lag[5]	4.5982	1.4400	1.6670	0.1271	t-Student Sesgada
Lag[7]	4.9776	2.3150	1.5430	0.2268	t-Student Sesgada

Tabla 71: Test de bondad de ajuste de residuos, modelo GARCH(1,1) - dis- tintas distribuciones condicionales (Ho: ajuste a la distribución de referencia). Fuente: Elaboración propia.

Orden	Grupo	Estadístico	Valor p (g-1)	Distribución densidad condicional
1	20	209.0000	0.0000	Normal
2	30	216.9000	0.0000	Normal
3	40	225.2000	0.0000	Normal
4	50	231.4000	0.0000	Normal
1	20	214.5000	0.0000	Normal Sesgada
2	30	221.3000	0.0000	Normal Sesgada
3	40	233.0000	0.0000	Normal Sesgada
4	50	238.5000	0.0000	Normal Sesgada
1	20	17.7200	0.5412	Distribución General de Error Sesgada
2	30	28.2500	0.5047	Distribución General de Error Sesgada
3	40	34.8900	0.6578	Distribución General de Error Sesgada
4	50	37.5700	0.8830	Distribución General de Error Sesgada
1	20	19.2400	0.4417	Distribución General de Error
2	30	37.0500	0.1451	Distribución General de Error
3	40	36.8500	0.5685	Distribución General de Error
4	50	46.1300	0.5904	Distribución General de Error
1	20	14.8100	0.7344	Distribución General Hiperbólica
2	30	31.6800	0.3340	Distribución General Hiperbólica
3	40	31.9600	0.7806	Distribución General Hiperbólica
4	50	49.7300	0.4442	Distribución General Hiperbólica
1	20	14.4500	0.7566	Normal Inversa
2	30	33.5000	0.2582	Normal Inversa
3	40	46.3600	0.1947	Normal Inversa
4	50	48.2500	0.5036	Normal Inversa
1	20	30.2500	0.0487	t-Student
2	30	45.4600	0.0265	t-Student
3	40	52.9000	0.0679	t-Student
4	50	64.0000	0.0735	t-Student
1	20	24.2300	0.1875	t-Student Sesgada
2	30	41.4400	0.0629	t-Student Sesgada
3	40	45.3900	0.2231	t-Student Sesgada
4	50	53.4600	0.3070	t-Student Sesgada

Tabla 72: Coeficientes de modelos EGARCH(1,1) - distintas distribuciones. Fuente: Elaboración propia.

100	Coeficientes	Estimado	Error Estandar	t	Valor p	Distribución de densidad condicional
mate 0.4362 0.1127 3.8580 0.00001 Normal omega 0.04475 0.1210 3.5983 0.0002 Normal alfa1 0.0113 0.0179 0.7993 0.0240 Normal beta1 0.0101 0.0120 4.7881 0.0000 Normal gammal 0.2396 0.0340 6.7881 0.0000 Normal gammal 0.0309 0.0414 2.1403 0.0323 Normal Steggada garia 0.4210 0.0536 6.0124 0.0000 Normal Steggada arfina 0.0210 0.0827 3.6959 0.0002 Normal Steggada arfina 0.0100 0.0180 0.2561 0.0751 Normal Steggada beta1 0.0101 0.0183 0.0561 0.0751 Normal Steggada gammal 0.2327 0.0344 6.6626 0.0000 Normal Steggada gammal 0.2327 0.0344 0.0021 0.0000 Distribución de Error Generalizada Steggada	mu			1.6883	0.0913	
arfimal 0.1005 0.0285 3.5172 0.0004 Normal affal -0.0413 0.0179 -0.7993 0.0400 Normal betal -0.9131 0.0170 4.7228 0.0000 Normal me 0.0536 0.0540 6.7381 0.0000 Normal men 0.0509 0.0011 2.1405 0.0233 Normal Segada arl -0.5119 0.0012 2.3550 0.0000 Normal Segada arring -0.4178 0.0223 3.5550 0.0000 Normal Segada amega -0.4178 0.1223 3.5550 0.0007 Normal Segada amega -0.4478 0.1223 3.5550 0.0007 Normal Segada amana 0.0417 0.0234 41.1915 0.0000 Normal Segada sego 0.9477 0.0334 41.1915 0.0000 Normal Segada segu 0.9477 0.0344 1.0320 0.0000 Normal Segada arl <td< td=""><td>ar1</td><td>-0.5281</td><td>0.1018</td><td>-5.1851</td><td></td><td></td></td<>	ar1	-0.5281	0.1018	-5.1851		
omega 0.04475 0.1210 3.36983 0.0002 Normal betal 0.9191 0.0210 43.7228 0.0000 Normal gammal 0.9301 0.0314 2.1365 0.0000 Normal arl -0.5119 0.0612 2.3640 0.0000 Normal Segada arl -0.5119 0.0622 2.3644 0.0000 Normal Segada arfina 0.1024 0.0223 3.5050 0.0002 Normal Segada arfina 0.1024 0.1223 -5.6590 0.0002 Normal Segada arfina 0.1237 0.0449 0.0027 Normal Segada affina 0.9181 0.01234 0.0007 Normal Segada affina 0.0204 0.0002 8.2063 0.0000 Normal Segada arl -0.0234 0.0002 8.2063 0.0000 Normal Segada arl -0.0234 0.0002 8.2063 0.0000 Distribution de Error Generalizada Segada arl -0.0236<						
sifa1 0.0143 0.0779 0.7993 0.4240 Normal gammal 0.2366 0.0349 6.7381 0.0000 Normal mu 0.0030 0.0014 2.1405 0.0333 Normal Sesgada ar1 -0.5119 0.0612 8.83644 0.0000 Normal Sesgada arfina 0.1004 0.0272 3.0925 0.0002 Normal Sesgada arfina 0.1004 0.0272 3.0925 0.0002 Normal Sesgada alfa1 -0.0100 0.0180 -0.5561 0.0701 Normal Sesgada beta1 0.0101 0.0181 6.6628 0.0000 Normal Sesgada scop 0.0274 0.0074 0.0000 Normal Sesgada scop 0.0277 0.0074 0.0000 Normal Sesgada scop 0.0278 0.0000 0.0000 Normal Sesgada scop 0.0001 0.0000 0.0000 Normal Sesgada scop 0.0001 0.0000 0.0000 0						
Detail 0.9191						
Sammal 0.3356 0.0349 0.7381 0.0000 Normal						
mu 0.0303 0.0014 2.1405 0.0323 Normal Sengada ar1 -0.5119 0.0012 -0.0036 6.0124 0.0000 Normal Sengada arfina 0.1204 0.0036 6.0124 0.0000 Normal Sengada omega -0.4478 0.1223 3.0589 0.0002 Normal Sengada alfa1 -0.0191 0.0212 43.2196 0.0000 Normal Sengada sammal 0.0381 -0.0384 41.3195 0.0000 Normal Sengada seego 0.9647 0.0234 41.1915 0.0000 Normal Sengada ar1 -0.2037 0.0079 -35.0416 0.0000 Distribución de Error Generalizada Sengada ar1 -0.2037 0.0079 -35.0416 0.0000 Distribución de Error Generalizada Sengada ar1 -0.2038 0.0011 41.3201 0.0000 Distribución de Error Generalizada Sengada ar1 -0.2038 0.0011 41.3201 0.0000 Distribución de Error Generalizada Sengada feramal <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
mal 0.4210 0.0634 6.0124 0.0000 Normal Sesgada arfima 0.10478 0.1223 3.0595 0.0002 Normal Sesgada affa1 0.0100 0.0180 0.0561 0.0571 Normal Sesgada beta1 0.9191 0.0212 43.2196 0.0000 Normal Sesgada sesgo 0.9647 0.0234 41.1915 0.0000 Normal Sesgada sesgo 0.9647 0.0234 41.1915 0.0000 Normal Sesgada ar1 0.9297 0.0079 -36.9416 0.0000 Distribución de Error Generalizada Sesgada ar1 0.92937 0.0079 -36.9416 0.0000 Distribución de Error Generalizada Sesgada ar1 0.92937 0.0079 -36.9416 0.0000 Distribución de Error Generalizada Sesgada ar1 0.1023 0.0011 41.32201 0.0000 Distribución de Error Generalizada Sesgada ar1 0.0138 0.0033 11.3635 0.0000 Distribución de Error Generalizada beta1		0.0030	0.0014	2.1405	0.0323	Normal Sesgada
arfima 0.1004 0.0272 3.0595 0.0002 Normal Sengada alfal 0.04100 0.0180 3.0589 0.0000 Normal Sengada betal 0.9101 0.0212 4.32196 0.0000 Normal Sengada seego 0.9447 0.0334 4.1915 0.0000 Normal Sengada mu 0.0024 0.0002 8.2063 0.0000 Normal Sengada mu 0.0024 0.0002 8.2063 0.0000 Distribución de Error Generalizada Sengada arl 0.2937 0.0079 3.69416 0.0000 Distribución de Error Generalizada Sengada arfima 0.1602 0.0051 28.9822 0.0000 Distribución de Error Generalizada Sengada afal a 0.0103 0.0013 1.13605 0.0000 Distribución de Error Generalizada Sengada afaría 0.0126 0.0016 181.4715 0.0000 Distribución de Error Generalizada Sengada gammal 0.4220 0.0016 640.1089 0.0000 Distribución de Error Generalizada	ar1	-0.5119	0.0612	-8.3644	0.0000	Normal Sesgada
	ma1	0.4210	0.0636	6.6124	0.0000	Normal Sesgada
						~
Sammal						S
						<u> </u>
						ū.
						-
						-
arfima 0.0493 0.0011 41.3201 0.0000 Distribución de Error Generalizada Segada olfal alfal 0.0108 0.0393 1.1365 0.02476 Distribución de Error Generalizada Segada olfal betal 0.0395 1.1560 0.2476 Distribución de Error Generalizada Segada osego 1.0420 0.0266 8.1964 0.0000 Distribución de Error Generalizada Segada osego 1.0420 0.0316 640.1690 0.0000 Distribución de Error Generalizada Segada osego 1.0420 0.0016 640.1690 0.0000 Distribución de Error Generalizada Segada osego 1.0420 0.0016 640.1690 0.0000 Distribución de Error Generalizada Segada osego 0.0877 0.0377 2.2372 0.0000 Distribución de Error Generalizada Segada osego 0.0000 0.0000 Distribución de Error Generalizada osego os						-
Description	ma1	0.1502	0.0051	28.9822	0.0000	Distribución de Error Generalizada Sesgada
Internation 1.1500 0.2476 0.05476 0.05476 0.05476 0.05476 0.05476 0.05476 0.00476 0.05476 0.00476 0.05476 0.00476 0.05476 0.00476 0.05476 0.00476 0.05476 0.00476 0.05476 0.00476 0.05476 0.00476 0.005476	arfima	0.0493	0.0011	41.3201	0.0000	Distribución de Error Generalizada Sesgada
Detail 0.9385		-0.3628				
gammal 0.2429 0.0206 8.1964 0.0000 Distribución de Error Generalizada Segada forma seggo 1.0420 0.0016 640.1999 0.0000 Distribución de Error Generalizada Segada forma nu 0.00088 0.00001 6.7800 0.0000 Distribución de Error Generalizada ar1 -0.3088 0.0009 34.1993 0.0000 Distribución de Error Generalizada arfima 0.01818 0.0082 22.1876 0.0000 Distribución de Error Generalizada amal 0.1818 0.0082 12.8533 0.0000 Distribución de Error Generalizada omega -0.3735 0.1146 -3.2581 0.0001 Distribución de Error Generalizada betal 0.9368 0.0193 48.4138 0.0800 Distribución de Error Generalizada forma 0.8791 0.0389 22.5495 0.0000 Distribución de Error Generalizada arl -0.2425 0.0388 -5.7846 0.0000 Distribución Hiperbólica Generalizada arl -0.2455 0.0388 -5.7846						-
Seego						
forma 0.8777 0.0377 23.2372 0.0000 Distribución de Error Generalizada Sengada mu 0.0008 0.0001 6.7808 0.0000 Distribución de Error Generalizada ar1 -0.3085 0.0000 3.41993 0.0000 Distribución de Error Generalizada arfima 0.0313 0.0028 10.8553 0.0000 Distribución de Error Generalizada aman 0.3735 0.1146 -3.2581 0.5836 0.0001 Distribución de Error Generalizada alfa1 0.0233 0.0224 0.5481 0.5836 Distribución de Error Generalizada beta1 0.9368 0.0193 48.4138 0.5800 Distribución de Error Generalizada forma 0.8791 0.0389 22.5495 0.0000 Distribución de Error Generalizada mu 0.0202 0.0015 1.1343 0.1887 Distribución de Error Generalizada ari 0.0245 0.0388 5.57846 0.0000 Distribución Hiperbólica Generalizada ari 0.0245 0.0385 5.7846 <						<u> </u>
mi						
art						9
mai						
omega -0.3735 0.1146 -3.2581 0.0011 Distribución de Error Generalizada alfa1 0.0388 0.0193 48.4138 0.0000 Distribución de Error Generalizada gamma1 0.2476 0.0422 5.8615 0.0000 Distribución de Error Generalizada forma 0.8791 0.0389 22.5495 0.0000 Distribución de Error Generalizada mu 0.0020 0.0015 1.3143 0.1887 Distribución Hiperbólica Generalizada ar1 -0.2245 0.0388 -5.7846 0.0000 Distribución Hiperbólica Generalizada arfima 0.0749 0.0543 1.3795 0.1677 Distribución Hiperbólica Generalizada arfima 0.0493 0.0201 2.4493 0.0143 Distribución Hiperbólica Generalizada alfal 0.0107 0.0233 0.4619 0.6441 Distribución Hiperbólica Generalizada gamma1 0.2508 0.0421 5.9509 0.0000 Distribución Hiperbólica Generalizada gamma1 0.2508 0.0421 5.9509 0.00						
Alfa	arfima	0.0313	0.0028	10.8553	0.0000	Distribución de Error Generalizada
Detail	omega	-0.3735	0.1146	-3.2581	0.0011	Distribución de Error Generalizada
gammal 0.2476 0.0422 5.8615 0.0000 Distribución de Error Generalizada forma 0.0791 0.0389 22.5495 0.0000 Distribución de Error Generalizada mu 0.0020 0.0015 1.3143 0.1887 Distribución de Error Generalizada ar1 -0.2245 0.0388 -5.7846 0.0000 Distribución Hiperbólica Generalizada mal 0.0749 0.0543 1.3795 0.1677 Distribución Hiperbólica Generalizada arfima 0.0493 0.0201 2.4493 0.0143 Distribución Hiperbólica Generalizada omega -0.3505 0.1042 -3.3607 0.0007 Distribución Hiperbólica Generalizada alfal 0.0107 0.0233 0.4619 0.6441 Distribución Hiperbólica Generalizada betal 0.9404 0.0176 53.3089 0.0000 Distribución Hiperbólica Generalizada sesgo 0.0368 0.0395 0.9308 0.3519 Distribución Hiperbólica Generalizada forma 0.3585 0.0881 5.2616 0.0000	alfa1	0.0123	0.0224	0.5481	0.5836	
forma 0.8791 0.0389 22.5495 0.0000 Distribución de Error Generalizada mu 0.0020 0.0015 1.3143 0.1887 Distribución Hiperbólica Generalizada ar1 -0.2245 0.0388 -5.7846 0.0000 Distribución Hiperbólica Generalizada ma1 0.0749 0.0543 1.3795 0.1677 Distribución Hiperbólica Generalizada arfima 0.0493 0.0201 2.4493 0.0143 Distribución Hiperbólica Generalizada omega -0.3505 0.1042 -3.3607 0.0007 Distribución Hiperbólica Generalizada alfa1 0.0107 0.0233 0.4619 0.6441 Distribución Hiperbólica Generalizada gamma1 0.2508 0.0421 5.9509 0.0000 Distribución Hiperbólica Generalizada forma 0.3585 0.0681 5.2616 0.0000 Distribución Hiperbólica Generalizada ghlambda 0.0533 0.3667 0.1737 0.8620 Distribución Hiperbólica Generalizada mu 0.0019 0.0616 1.1674 0						
mi						
ar1 -0.2245 0.0388 -5.7846 0.0000 Distribución Hiperbólica Generalizada ma1 0.0749 0.0543 1.3795 0.1677 Distribución Hiperbólica Generalizada arfima 0.0493 0.0201 2.4493 0.0143 Distribución Hiperbólica Generalizada omega -0.3505 0.1042 -3.3607 0.0007 Distribución Hiperbólica Generalizada alfa1 0.0107 0.0233 0.4619 0.6441 Distribución Hiperbólica Generalizada beta1 0.9404 0.0176 53.3089 0.0000 Distribución Hiperbólica Generalizada gamma1 0.2508 0.0421 5.9509 0.0000 Distribución Hiperbólica Generalizada forma 0.3558 0.0681 5.2616 0.0000 Distribución Hiperbólica Generalizada forma 0.3585 0.0681 5.2616 0.0000 Distribución Hiperbólica Generalizada ghlambda 0.0533 0.3067 0.1737 0.8620 Distribución Hiperbólica Generalizada ari -0.2177 0.0612 -3.5541						
mal 0.0749 0.0543 1.3795 0.1677 Distribución Hiperbólica Generalizada arfima 0.0493 0.0201 2.4493 0.0143 Distribución Hiperbólica Generalizada omega -0.3505 0.1042 -3.3607 0.0007 Distribución Hiperbólica Generalizada affal 0.0107 0.0233 0.4619 0.6441 Distribución Hiperbólica Generalizada beta1 0.9404 0.0176 53.3089 0.0000 Distribución Hiperbólica Generalizada gammal 0.2508 0.0421 5.9509 0.0000 Distribución Hiperbólica Generalizada sesgo 0.0388 0.0395 0.9308 0.3519 Distribución Hiperbólica Generalizada forma 0.3585 0.0681 5.2616 0.0000 Distribución Hiperbólica Generalizada ghlambda 0.0533 0.3067 0.1737 0.8620 Distribución Hiperbólica Generalizada mari -0.0523 0.0650 1.1674 0.2430 Normal Inversa mari -0.0528 0.0650 1.0045 0.3151						-
arfima 0.0493 0.0201 2.4493 0.0143 Distribución Hiperbólica Generalizada omega -0.3505 0.1042 -3.3607 0.0007 Distribución Hiperbólica Generalizada alfa1 0.0107 0.0233 0.4619 0.6441 Distribución Hiperbólica Generalizada beta1 0.9404 0.0176 53.3089 0.0000 Distribución Hiperbólica Generalizada gamma1 0.2508 0.0421 5.9509 0.0000 Distribución Hiperbólica Generalizada forma 0.3585 0.0681 5.2616 0.0000 Distribución Hiperbólica Generalizada forma 0.3585 0.0681 5.2616 0.0000 Distribución Hiperbólica Generalizada ghlambda 0.0533 0.3067 0.1737 0.8620 Distribución Hiperbólica Generalizada ghlambda 0.0533 0.3067 0.1737 0.8620 Distribución Hiperbólica Generalizada garl -0.2177 0.0612 -3.5541 0.0003 Normal Inversa arfima 0.0528 0.0221 -3.3541 0.0003<						-
omega -0.3505 0.1042 -3.3607 0.0007 Distribución Hiperbólica Generalizada alfa1 0.0107 0.0233 0.4619 0.6441 Distribución Hiperbólica Generalizada beta1 0.9404 0.0176 53.3089 0.0000 Distribución Hiperbólica Generalizada gamma1 0.2508 0.0421 5.9509 0.0000 Distribución Hiperbólica Generalizada sesgo 0.0368 0.0395 0.9388 0.3519 Distribución Hiperbólica Generalizada forma 0.3585 0.0681 5.2616 0.0000 Distribución Hiperbólica Generalizada ghlambda 0.0533 0.3067 0.1737 0.8620 Distribución Hiperbólica Generalizada mu 0.0019 0.0016 1.1674 0.2430 Normal Inversa ar1 -0.2177 0.0612 -3.5541 0.0003 Normal Inversa arfina 0.0553 0.0650 1.0045 0.3151 Normal Inversa arfina 0.0528 0.0221 2.3841 0.0171 Normal Inversa <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td></tr<>						-
Detal						-
gamma1 0.2508 0.0421 5.9509 0.0000 Distribución Hiperbólica Generalizada sesgo 0.0368 0.0395 0.9308 0.3519 Distribución Hiperbólica Generalizada forma 0.3585 0.0681 5.2616 0.0000 Distribución Hiperbólica Generalizada ghlambda 0.0533 0.3067 0.1737 0.8620 Distribución Hiperbólica Generalizada mu 0.0019 0.0016 1.1674 0.2430 Normal Inversa ar1 -0.2177 0.0612 -3.5541 0.0003 Normal Inversa mal 0.0653 0.0650 1.0045 0.3151 Normal Inversa arfima 0.0528 0.0221 2.3841 0.0171 Normal Inversa omega -0.3280 0.0948 -3.4586 0.0005 Normal Inversa setal 0.9439 0.0161 58.5921 0.0000 Normal Inversa sesgo 0.0368 0.0587 0.6272 0.534 Normal Inversa forma 0.3800 0.0596	alfa1	0.0107	0.0233	0.4619	0.6441	Distribución Hiperbólica Generalizada
sesgo 0.0368 0.0395 0.9308 0.3519 Distribución Hiperbólica Generalizada forma 0.3585 0.0681 5.2616 0.0000 Distribución Hiperbólica Generalizada mu 0.0019 0.0016 1.1674 0.2430 Normal Inversa ar1 -0.2177 0.0612 -3.5541 0.0003 Normal Inversa mal 0.0653 0.0650 1.0045 0.3151 Normal Inversa arfima 0.0528 0.0221 2.3841 0.0171 Normal Inversa omega -0.3280 0.0948 -3.4586 0.0005 Normal Inversa beta1 0.9439 0.0161 58.5921 0.0000 Normal Inversa gamma1 0.2587 0.0418 6.1822 0.0000 Normal Inversa gamma1 0.2587 0.0418 6.1822 0.0000 Normal Inversa forma 0.3300 0.0596 6.3663 0.0000 Normal Inversa mu 0.0016 0.0007 2.2525 0.0242	beta1	0.9404	0.0176	53.3089	0.0000	Distribución Hiperbólica Generalizada
forma 0.3585 0.0681 5.2616 0.0000 Distribución Hiperbólica Generalizada ghlambda 0.0533 0.3067 0.1737 0.8620 Distribución Hiperbólica Generalizada mu 0.0019 0.0016 1.1674 0.2430 Normal Inversa ar1 -0.2177 0.0612 -3.5541 0.0003 Normal Inversa mal 0.0653 0.0650 1.0045 0.3151 Normal Inversa arfima 0.0528 0.0221 2.3841 0.0171 Normal Inversa omega -0.3280 0.0948 -3.4586 0.0005 Normal Inversa alfa1 0.0120 0.0238 0.5038 0.6143 Normal Inversa beta1 0.9439 0.0161 58.5921 0.0000 Normal Inversa gammal 0.2587 0.0418 6.1822 0.0000 Normal Inversa forma 0.3800 0.0596 6.3663 0.0000 Normal Inversa mu 0.0016 0.0007 2.2525 0.0242						
See						-
mu 0.0019 0.0016 1.1674 0.2430 Normal Inversa ar1 -0.2177 0.0612 -3.5541 0.0003 Normal Inversa ma1 0.0653 0.0650 1.0045 0.3151 Normal Inversa arfima 0.0528 0.0221 2.3841 0.0171 Normal Inversa omega -0.3280 0.0948 -3.4586 0.0005 Normal Inversa alfa1 0.0120 0.0238 0.5038 0.6143 Normal Inversa beta1 0.9439 0.0161 58.5921 0.0000 Normal Inversa gamma1 0.2587 0.0418 6.1822 0.0000 Normal Inversa sesgo 0.0368 0.0587 0.6272 0.5304 Normal Inversa forma 0.3800 0.0596 6.3663 0.0000 Normal Inversa mu 0.0016 0.0007 2.2525 0.0242 t-Student ar1 -0.2419 0.0276 8.7432 0.0000 t-Student <						*
ar1 -0.2177 0.0612 -3.5541 0.0003 Normal Inversa ma1 0.0653 0.0650 1.0045 0.3151 Normal Inversa arfima 0.0528 0.0221 2.3841 0.0171 Normal Inversa omega -0.3280 0.0948 -3.4586 0.0005 Normal Inversa alfa1 0.0120 0.0238 0.5038 0.6143 Normal Inversa beta1 0.9439 0.0161 58.5921 0.0000 Normal Inversa gamma1 0.2587 0.0418 6.1822 0.0000 Normal Inversa sesgo 0.0368 0.0587 0.6272 0.5304 Normal Inversa forma 0.3800 0.0596 6.3663 0.0000 Normal Inversa mu 0.0016 0.0007 2.2525 0.0242 t-Student ar1 -0.2419 0.0276 -8.7432 0.0000 t-Student mal 0.0966 0.0330 2.9208 0.0034 t-Student						-
ma1 0.0653 0.0650 1.0045 0.3151 Normal Inversa arfima 0.0528 0.0221 2.3841 0.0171 Normal Inversa omega -0.3280 0.0948 -3.4586 0.0005 Normal Inversa alfa1 0.0120 0.0238 0.5038 0.6143 Normal Inversa beta1 0.9439 0.0161 58.5921 0.0000 Normal Inversa gamma1 0.2587 0.0418 6.1822 0.0000 Normal Inversa sesgo 0.0368 0.0557 0.6272 0.5304 Normal Inversa mu 0.0016 0.0007 2.2525 0.0242 t-Student ar1 -0.2419 0.0276 -8.7432 0.0000 t-Student ma1 0.0966 0.0330 2.9208 0.0034 t-Student omega -0.2766 0.0832 -3.3220 0.0008 t-Student obeta1 0.9489 0.0148 64.0795 0.0000 t-Student forma<						
arfima 0.0528 0.0221 2.3841 0.0171 Normal Inversa omega -0.3280 0.0948 -3.4586 0.0005 Normal Inversa alfa1 0.0120 0.0238 0.5038 0.6143 Normal Inversa beta1 0.9439 0.0161 58.5921 0.0000 Normal Inversa gamma1 0.2587 0.0418 6.1822 0.0000 Normal Inversa sesgo 0.0368 0.0587 0.6272 0.5304 Normal Inversa forma 0.3800 0.0596 6.3663 0.0000 Normal Inversa mu 0.0016 0.0007 2.2525 0.0242 t-Student ar1 -0.2419 0.0276 -8.7432 0.0000 t-Student ar1 -0.2419 0.0276 -8.7432 0.0004 t-Student arima 0.0529 0.0180 2.9244 0.0034 t-Student omega -0.2766 0.0832 -3.3220 0.0008 t-Student beta						
alfa1 0.0120 0.0238 0.5038 0.6143 Normal Inversa beta1 0.9439 0.0161 58.5921 0.0000 Normal Inversa gammal 0.2587 0.0418 6.1822 0.0000 Normal Inversa sesgo 0.0368 0.0587 0.6272 0.5304 Normal Inversa forma 0.3800 0.0596 6.3663 0.0000 Normal Inversa mu 0.0016 0.0007 2.2525 0.0242 t-Student ar1 -0.2419 0.0276 -8.7432 0.0000 t-Student ar1 0.9966 0.0330 2.9208 0.0034 t-Student arima 0.0966 0.0330 2.9244 0.0034 t-Student arima 0.0529 0.0180 2.9244 0.0034 t-Student omega -0.2766 0.0832 -3.3220 0.0008 t-Student beta1 0.9489 0.0148 64.0795 0.0000 t-Student gamma1						
beta1 0.9439 0.0161 58.5921 0.0000 Normal Inversa gammal 0.2587 0.0418 6.1822 0.0000 Normal Inversa sesgo 0.0368 0.0587 0.6272 0.5304 Normal Inversa forma 0.3800 0.0596 6.3663 0.0000 Normal Inversa mu 0.0016 0.0007 2.2525 0.0242 t-Student ar1 -0.2419 0.0276 -8.7432 0.0000 t-Student ma1 0.0966 0.0330 2.9208 0.0034 t-Student arfima 0.0529 0.0180 2.9244 0.0034 t-Student omega -0.2766 0.0832 -3.3220 0.0008 t-Student beta1 0.9489 0.0148 64.0795 0.0000 t-Student gammal 0.3159 0.0581 5.4303 0.0000 t-Student forma 2.6280 0.2168 12.1190 0.0000 t-Student Sesgada ar1	omega	-0.3280	0.0948	-3.4586	0.0005	Normal Inversa
gamma1 0.2587 0.0418 6.1822 0.0000 Normal Inversa sesgo 0.0368 0.0587 0.6272 0.5304 Normal Inversa forma 0.3800 0.0596 6.3663 0.0000 Normal Inversa mu 0.0016 0.0007 2.2525 0.0242 t-Student ar1 -0.2419 0.0276 -8.7432 0.0000 t-Student ma1 0.0966 0.0330 2.9208 0.0034 t-Student arfima 0.0529 0.0180 2.9244 0.0034 t-Student omega -0.2766 0.0832 -3.3220 0.0008 t-Student beta1 0.9489 0.0148 64.0795 0.0000 t-Student gamma1 0.3159 0.0581 5.4303 0.0000 t-Student forma 2.6280 0.2168 12.1190 0.0000 t-Student mu 0.0034 0.0016 2.1301 0.0331 t-Student Sesgada arfima <	alfa1	0.0120	0.0238	0.5038	0.6143	Normal Inversa
sesgo 0.0368 0.0587 0.6272 0.5304 Normal Inversa forma 0.3800 0.0596 6.3663 0.0000 Normal Inversa mu 0.0016 0.0007 2.2525 0.0242 t-Student ar1 -0.2419 0.0276 -8.7432 0.0000 t-Student ma1 0.0966 0.0330 2.9208 0.0034 t-Student arfima 0.0529 0.0180 2.9244 0.0034 t-Student omega -0.2766 0.0832 -3.3220 0.0008 t-Student alfa1 0.0203 0.0276 0.7364 0.4614 t-Student beta1 0.9489 0.0148 64.0795 0.0000 t-Student gamma1 0.3159 0.0581 5.4303 0.0000 t-Student forma 2.6280 0.2168 12.1190 0.0000 t-Student Sesgada ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada arfma	beta1					
forma 0.3800 0.0596 6.3663 0.0000 Normal Inversa mu 0.0016 0.0007 2.2525 0.0242 t-Student ar1 -0.2419 0.0276 -8.7432 0.0000 t-Student ma1 0.0966 0.0330 2.9208 0.0034 t-Student arfima 0.0529 0.0180 2.9244 0.0034 t-Student omega -0.2766 0.0832 -3.3220 0.0008 t-Student alfa1 0.0203 0.0276 0.7364 0.4614 t-Student beta1 0.9489 0.0148 64.0795 0.0000 t-Student gammal 0.3159 0.0581 5.4303 0.0000 t-Student forma 2.6280 0.2168 12.1190 0.0000 t-Student mu 0.0034 0.0016 2.1301 0.0331 t-Student Sesgada ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada ar6ma 0						
mu 0.0016 0.0007 2.2525 0.0242 t-Student ar1 -0.2419 0.0276 -8.7432 0.0000 t-Student ma1 0.0966 0.0330 2.9208 0.0034 t-Student arfima 0.0529 0.0180 2.9244 0.0034 t-Student omega -0.2766 0.0832 -3.3220 0.0008 t-Student alfa1 0.0203 0.0276 0.7364 0.4614 t-Student beta1 0.9489 0.0148 64.0795 0.0000 t-Student gamma1 0.3159 0.0581 5.4303 0.0000 t-Student forma 2.6280 0.2168 12.1190 0.0000 t-Student mu 0.0034 0.0016 2.1301 0.0331 t-Student Sesgada ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada arfima 0.0573 0.0252 2.7934 0.0052 t-Student Sesgada omega <						
ar1 -0.2419 0.0276 -8.7432 0.0000 t-Student ma1 0.0966 0.0330 2.9208 0.0034 t-Student arfima 0.0529 0.0180 2.9244 0.0034 t-Student omega -0.2766 0.0832 -3.3220 0.0008 t-Student alfa1 0.0203 0.0276 0.7364 0.4614 t-Student beta1 0.9489 0.0148 64.0795 0.0000 t-Student gamma1 0.3159 0.0581 5.4303 0.0000 t-Student forma 2.6280 0.2168 12.1190 0.0000 t-Student mu 0.0034 0.0016 2.1301 0.0331 t-Student Sesgada ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada ar6ma 0.0573 0.0252 2.7934 0.0052 t-Student Sesgada arfima 0.0573 0.0212 2.6996 0.0069 t-Student Sesgada alfa1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
ma1 0.0966 0.0330 2.9208 0.0034 t-Student arfima 0.0529 0.0180 2.9244 0.0034 t-Student omega -0.2766 0.0832 -3.3220 0.0008 t-Student alfa1 0.0203 0.0276 0.7364 0.4614 t-Student beta1 0.9489 0.0148 64.0795 0.0000 t-Student gamma1 0.3159 0.0581 5.4303 0.0000 t-Student forma 2.6280 0.2168 12.1190 0.0000 t-Student mu 0.0034 0.0016 2.1301 0.0331 t-Student Sesgada ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada arfima 0.0705 0.0252 2.7934 0.0052 t-Student Sesgada arfima 0.0573 0.0212 2.6996 0.0069 t-Student Sesgada omega -0.2681 0.0798 -3.3594 0.0007 t-Student Sesgada <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
arfima 0.0529 0.0180 2.9244 0.0034 t-Student omega -0.2766 0.0832 -3.3220 0.0008 t-Student alfa1 0.0203 0.0276 0.7364 0.4614 t-Student beta1 0.9489 0.0148 64.0795 0.0000 t-Student gamma1 0.3159 0.0581 5.4303 0.0000 t-Student forma 2.6280 0.2168 12.1190 0.0000 t-Student mu 0.0034 0.0016 2.1301 0.0331 t-Student Sesgada ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada ma1 0.0705 0.0252 2.7934 0.0052 t-Student Sesgada omega -0.2681 0.0798 -3.3594 0.0007 t-Student Sesgada alfa1 0.0215 0.0276 0.7798 0.4355 t-Student Sesgada beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada						
omega -0.2766 0.0832 -3.3220 0.0008 t-Student alfa1 0.0203 0.0276 0.7364 0.4614 t-Student beta1 0.9489 0.0148 64.0795 0.0000 t-Student gamma1 0.3159 0.0581 5.4303 0.0000 t-Student forma 2.6280 0.2168 12.1190 0.0000 t-Student mu 0.0034 0.0016 2.1301 0.0331 t-Student Sesgada ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada ma1 0.0705 0.0252 2.7934 0.0052 t-Student Sesgada arfma 0.0573 0.0212 2.6996 0.0069 t-Student Sesgada omega -0.2681 0.0798 -3.3594 0.0007 t-Student Sesgada alfa1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada						
alfa1 0.0203 0.0276 0.7364 0.4614 t-Student beta1 0.9489 0.0148 64.0795 0.0000 t-Student gammal 0.3159 0.0581 5.4303 0.0000 t-Student forma 2.6280 0.2168 12.1190 0.0000 t-Student mu 0.0034 0.0016 2.1301 0.0331 t-Student Sesgada ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada ma1 0.0705 0.0252 2.7934 0.0052 t-Student Sesgada arfima 0.0573 0.0212 2.6996 0.0069 t-Student Sesgada omega -0.2681 0.0798 -3.3594 0.0007 t-Student Sesgada alfa1 0.0215 0.0276 0.7798 0.4355 t-Student Sesgada beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
gamma1 0.3159 0.0581 5.4303 0.0000 t-Student forma 2.6280 0.2168 12.1190 0.0000 t-Student mu 0.0034 0.0016 2.1301 0.0331 t-Student Sesgada ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada ma1 0.0705 0.0252 2.7934 0.0052 t-Student Sesgada arfima 0.0573 0.0212 2.6996 0.0069 t-Student Sesgada omega -0.2681 0.0798 -3.3594 0.0007 t-Student Sesgada alfa1 0.0215 0.0276 0.7798 0.4355 t-Student Sesgada beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada gamma1 0.3109 0.0575 5.4009 0.0000 t-Student Sesgada sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada		0.0203	0.0276	0.7364	0.4614	t-Student
forma 2.6280 0.2168 12.1190 0.0000 t-Student mu 0.0034 0.0016 2.1301 0.0331 t-Student Sesgada ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada ma1 0.0705 0.0252 2.7934 0.0052 t-Student Sesgada arfima 0.0573 0.0212 2.6996 0.0069 t-Student Sesgada omega -0.2681 0.0798 -3.3594 0.0007 t-Student Sesgada alfa1 0.0215 0.0276 0.7798 0.4355 t-Student Sesgada beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada gamma1 0.3109 0.0575 5.4009 0.0000 t-Student Sesgada sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada	beta1					
mu 0.0034 0.0016 2.1301 0.0331 t-Student Sesgada ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada ma1 0.0705 0.0252 2.7934 0.0052 t-Student Sesgada arfima 0.0573 0.0212 2.6996 0.0069 t-Student Sesgada omega -0.2681 0.0798 -3.3594 0.0007 t-Student Sesgada alfa1 0.0215 0.0276 0.7798 0.4355 t-Student Sesgada beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada gamma1 0.3109 0.0575 5.4009 0.0000 t-Student Sesgada sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada						
ar1 -0.2197 0.0297 -7.3775 0.0000 t-Student Sesgada ma1 0.0705 0.0252 2.7934 0.0052 t-Student Sesgada arfima 0.0573 0.0212 2.6996 0.0069 t-Student Sesgada omega -0.2681 0.0798 -3.3594 0.0007 t-Student Sesgada alfa1 0.0215 0.0276 0.7798 0.4355 t-Student Sesgada beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada gamma1 0.3109 0.0575 5.4009 0.0000 t-Student Sesgada sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada						
ma1 0.0705 0.0252 2.7934 0.0052 t-Student Sesgada arfima 0.0573 0.0212 2.6996 0.0069 t-Student Sesgada omega -0.2681 0.0798 -3.3594 0.0007 t-Student Sesgada alfa1 0.0215 0.0276 0.7798 0.4355 t-Student Sesgada beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada gamma1 0.3109 0.0575 5.4009 0.0000 t-Student Sesgada sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada						-
arfima 0.0573 0.0212 2.6996 0.0069 t-Student Sesgada omega -0.2681 0.0798 -3.3594 0.0007 t-Student Sesgada alfa1 0.0215 0.0276 0.7798 0.4355 t-Student Sesgada beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada gamma1 0.3109 0.0575 5.4009 0.0000 t-Student Sesgada sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada						
omega -0.2681 0.0798 -3.3594 0.0007 t-Student Sesgada alfa1 0.0215 0.0276 0.7798 0.4355 t-Student Sesgada beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada gamma1 0.3109 0.0575 5.4009 0.0000 t-Student Sesgada sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada						
alfa1 0.0215 0.0276 0.7798 0.4355 t-Student Sesgada beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada gamma1 0.3109 0.0575 5.4009 0.0000 t-Student Sesgada sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada						-
beta1 0.9504 0.0141 67.0732 0.0000 t-Student Sesgada gamma1 0.3109 0.0575 5.4009 0.0000 t-Student Sesgada sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada						-
gamma1 0.3109 0.0575 5.4009 0.0000 t-Student Sesgada sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada						-
sesgo 1.0501 0.0323 32.4892 0.0000 t-Student Sesgada						-
forma 2.6184 0.2143 12.2183 0.0000 t-Student Sesgada		1.0501	0.0323	32.4892		
	forma	2.6184	0.2143	12.2183	0.0000	t-Student Sesgada

Tabla 73: Criterios de información modelos EGARCH(1,1) - distintas distribuciones. Fuente: Elaboración propia.

Akaike	Bayes	Shibata	Hannan-Quinn	Distribución de densidad condicional
-3.0198	-2.9918	-3.0198	-3.0094	Normal
-3.0199	-2.9884	-3.0199	-3.0082	Normal Sesgada
-3.2698	-3.2349	-3.2699	-3.2568	Distribución de Error Generalizada Sesgada
-3.2698	-3.2384	-3.2699	-3.2581	Distribución de Error Generalizada
-3.2715	-3.2330	-3.2716	-3.2572	Distribución Hiperbólica Generalizada
-3.2709	-3.2360	-3.2710	-3.2579	Normal Inversa
-3.2620	-3.2306	-3.2621	-3.2503	t-Student
-3.2622	-3.2273	-3.2623	-3.2492	t-Student Sesgada

Tabla 74: Test de Ljung-Box modelos para residuos estandarizados modelos EGARCH(1,1) - distintas distribuciones condicionales (Ho: No existe autocorrelación). Fuente: Elaboración propia.

Estadístico/Valor p	Retardos[1]	Retardos[$2*(p+q)+(p+q)-1$][5]	Retardos[$4*(p+q)+(p+q)-1$][9]	Distribución de densidad condicional
Estadístico	0.5191	1.4534	3.1334	Normal
Valor p	0.4712	0.9986	0.8694	Normal
Estadístico	0.4409	1.2724	2.9323	Normal Sesgada
Valor p	0.5067	0.9998	0.9006	Normal Sesgada
Estadístico	16.3500	18.2800	20.3400	Distribución de Error Generalizada Sesgada
Valor p	0.0000	0.0000	0.0000	Distribución de Error Generalizada Sesgada
Estadístico	17.0700	20.2700	22.7500	Distribución de Error Generalizada
Valor p	0.0000	0.0000	0.0000	Distribución de Error Generalizada
Estadístico	18.2800	20.6600	22.7600	Distribución Hiperbólica Generalizada
Valor p	0.0000	0.0000	0.0000	Distribución Hiperbólica Generalizada
Estadístico	18.1300	20.3500	22.3800	Normal Inversa
Valor p	0.0000	0.0000	0.0000	Normal Inversa
Estadístico	16.4000	18.4300	20.4400	t-Student
Valor p	0.0000	0.0000	0.0000	t-Student
Estadístico	16.2200	18.1200	20.0500	t-Student Sesgada
Valor p	0.0000	0.0000	0.0000	t-Student Sesgada

Tabla 75: Test de Ljung-Box modelos para residuos estandarizados al cuadrado modelos EGARCH(1,1) - distintas distribuciones condicionales (Ho: No existe autocorrelación). Fuente: Elaboración propia.

Estadístico/Valor p	Retardos[1]	Retardos[$2*(p+q)+(p+q)-1$][5]	Retardos[$4*(p+q)+(p+q)-1$][9]	Distribución de densidad condicional
Estadístico	0.0000	2.1159	3.6666	Normal
Valor p	1.0000	0.5913	0.6457	Normal
Estadístico	0.0012	2.1307	3.6863	Normal Sesgada
Valor p	0.9720	0.5879	0.6424	Normal Sesgada
Estadístico	0.0284	2.1866	3.6908	Distribución de Error Generalizada Sesgada
Valor p	0.8661	0.5750	0.6416	Distribución de Error Generalizada Sesgada
Estadístico	0.0244	2.1467	3.6217	Distribución de Error Generalizada
Valor p	0.8757	0.5842	0.6535	Distribución de Error Generalizada
Estadístico	0.0403	2.1725	3.6504	Distribución Hiperbólica Generalizada
Valor p	0.8407	0.5782	0.6485	Distribución Hiperbólica Generalizada
Estadístico	0.0510	2.1640	3.6033	Normal Inversa
Valor p	0.8213	0.5802	0.6566	Normal Inversa
Estadístico	0.0463	2.1273	3.4970	t-Student
Valor p	0.8295	0.5886	0.6749	t-Student
Estadístico	0.0409	2.1286	3.5254	t-Student Sesgada
Valor p	0.8397	0.5883	0.6700	t-Student Sesgada

Tabla 76: Test ARCH para rezagos superiores, modelos EGARCH(1,1) - distintas distribuciones condicionales (Ho: No Existe efecto ARCH). Fuente: Elaboración propia.

Retardos[3] 0.2315 0.5000 2.0000 0.6304 Normal Retardos[5] 4.0935 1.4400 1.6670 0.1657 Normal Retardos[7] 4.4113 2.3150 1.5430 0.2911 Normal Retardos[3] 0.2304 0.5000 2.0000 0.6312 Normal Sesgada Retardos[5] 4.1149 1.4400 1.6670 0.1638 Normal Sesgada Retardos[7] 4.4378 2.3150 1.5430 0.2878 Normal Sesgada Retardos[3] 0.4079 0.5000 2.0000 0.5230 Error Generalizado Sesgado Retardos[5] 3.8995 1.4400 1.6670 0.1832 Error Generalizado Sesgado Retardos[7] 4.1746 2.3150 1.5430 0.3221 Error Generalizado Sesgado Retardos[7] 4.048 0.5000 2.0000 0.5256 Error Generalizado Retardos[7] 4.0737 2.3150 1.5430 0.3361 Error Generalizado Retardos[3] 0.4510 0.5000	Retardos	Estadístico	Forma	Escala	Valor p	Distribución densidad condicional
Retardos[7] 4.4113 2.3150 1.5430 0.2911 Normal Retardos[3] 0.2304 0.5000 2.0000 0.6312 Normal Sesgada Retardos[5] 4.1149 1.4400 1.6670 0.1638 Normal Sesgada Retardos[7] 4.4378 2.3150 1.5430 0.2878 Normal Sesgada Retardos[3] 0.4079 0.5000 2.0000 0.5230 Error Generalizado Sesgado Retardos[5] 3.8995 1.4400 1.6670 0.1832 Error Generalizado Sesgado Retardos[7] 4.1746 2.3150 1.5430 0.3221 Error Generalizado Sesgado Retardos[3] 0.4028 0.5000 2.0000 0.5256 Error Generalizado Retardos[5] 3.8048 1.4400 1.6670 0.1924 Error Generalizado Retardos[7] 4.0737 2.3150 1.5430 0.3361 Error Generalizada Retardos[3] 0.4510 0.5000 2.0000 0.5019 Hiperbólica Generalizada Retardos[7] 4.0730 </td <td>Retardos[3]</td> <td>0.2315</td> <td>0.5000</td> <td>2.0000</td> <td>0.6304</td> <td>Normal</td>	Retardos[3]	0.2315	0.5000	2.0000	0.6304	Normal
Retardos[3] 0.2304 0.5000 2.0000 0.6312 Normal Sesgada Retardos[5] 4.1149 1.4400 1.6670 0.1638 Normal Sesgada Retardos[7] 4.4378 2.3150 1.5430 0.2878 Normal Sesgada Retardos[3] 0.4079 0.5000 2.0000 0.5230 Error Generalizado Sesgado Retardos[5] 3.8995 1.4400 1.6670 0.1832 Error Generalizado Sesgado Retardos[7] 4.1746 2.3150 1.5430 0.3221 Error Generalizado Retardos[3] 0.4028 0.5000 2.0000 0.5256 Error Generalizado Retardos[5] 3.8048 1.4400 1.6670 0.1924 Error Generalizado Retardos[7] 4.0737 2.3150 1.5430 0.3361 Error Generalizada Retardos[3] 0.4510 0.5000 2.0000 0.5019 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[8] <t< td=""><td>Retardos[5]</td><td>4.0935</td><td>1.4400</td><td>1.6670</td><td>0.1657</td><td>Normal</td></t<>	Retardos[5]	4.0935	1.4400	1.6670	0.1657	Normal
Retardos[5] 4.1149 1.4400 1.6670 0.1638 Normal Sesgada Retardos[7] 4.4378 2.3150 1.5430 0.2878 Normal Sesgada Retardos[3] 0.4079 0.5000 2.0000 0.5230 Error Generalizado Sesgado Retardos[5] 3.8995 1.4400 1.6670 0.1832 Error Generalizado Sesgado Retardos[7] 4.1746 2.3150 1.5430 0.3221 Error Generalizado Retardos[3] 0.4028 0.5000 2.0000 0.5256 Error Generalizado Retardos[5] 3.8048 1.4400 1.6670 0.1924 Error Generalizado Retardos[7] 4.0737 2.3150 1.5430 0.3361 Error Generalizada Retardos[3] 0.4510 0.5000 2.0000 0.5019 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[7]	Retardos[7]	4.4113	2.3150	1.5430	0.2911	Normal
Retardos[7] 4.4378 2.3150 1.5430 0.2878 Normal Sesgada Retardos[3] 0.4079 0.5000 2.0000 0.5230 Error Generalizado Sesgado Retardos[5] 3.8995 1.4400 1.6670 0.1832 Error Generalizado Sesgado Retardos[7] 4.1746 2.3150 1.5430 0.3221 Error Generalizado Sesgado Retardos[3] 0.4028 0.5000 2.0000 0.5256 Error Generalizado Retardos[5] 3.8048 1.4400 1.6670 0.1924 Error Generalizado Retardos[7] 4.0737 2.3150 1.5430 0.3361 Error Generalizado Retardos[3] 0.4510 0.5000 2.0000 0.5019 Hiperbólica Generalizada Retardos[5] 3.8070 1.4400 1.6670 0.1922 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[3] 0.5055 0.5000 2.0000 0.4771 Normal Inversa Retardos[Retardos[3]	0.2304	0.5000	2.0000	0.6312	Normal Sesgada
Retardos[3] 0.4079 0.5000 2.0000 0.5230 Error Generalizado Sesgado Retardos[5] 3.8995 1.4400 1.6670 0.1832 Error Generalizado Sesgado Retardos[7] 4.1746 2.3150 1.5430 0.3221 Error Generalizado Sesgado Retardos[3] 0.4028 0.5000 2.0000 0.5256 Error Generalizado Retardos[5] 3.8048 1.4400 1.6670 0.1924 Error Generalizado Retardos[7] 4.0737 2.3150 1.5430 0.3361 Error Generalizado Retardos[3] 0.4510 0.5000 2.0000 0.5019 Hiperbólica Generalizada Retardos[5] 3.8070 1.4400 1.6670 0.1922 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[3] 0.5055 0.5000 2.0000 0.4771 Normal Inversa Retardos[5] 3.6893 1.4400 1.6670 0.2042 Normal Inversa Retardos[Retardos[5]	4.1149	1.4400	1.6670	0.1638	Normal Sesgada
Retardos[5] 3.8995 1.4400 1.6670 0.1832 Error Generalizado Sesgado Retardos[7] 4.1746 2.3150 1.5430 0.3221 Error Generalizado Sesgado Retardos[3] 0.4028 0.5000 2.0000 0.5256 Error Generalizado Retardos[5] 3.8048 1.4400 1.6670 0.1924 Error Generalizado Retardos[7] 4.0737 2.3150 1.5430 0.3361 Error Generalizado Retardos[3] 0.4510 0.5000 2.0000 0.5019 Hiperbólica Generalizada Retardos[5] 3.8070 1.4400 1.6670 0.1922 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[3] 0.5055 0.5000 2.0000 0.4771 Normal Inversa Retardos[5] 3.6893 1.4400 1.6670 0.2042 Normal Inversa Retardos[7] 3.9451 2.3150 1.5430 0.3546 Normal Inversa Retardos[5]	Retardos[7]	4.4378	2.3150	1.5430	0.2878	Normal Sesgada
Retardos[7] 4.1746 2.3150 1.5430 0.3221 Error Generalizado Sesgado Retardos[3] 0.4028 0.5000 2.0000 0.5256 Error Generalizado Retardos[5] 3.8048 1.4400 1.6670 0.1924 Error Generalizado Retardos[7] 4.0737 2.3150 1.5430 0.3361 Error Generalizado Retardos[3] 0.4510 0.5000 2.0000 0.5019 Hiperbólica Generalizada Retardos[5] 3.8070 1.4400 1.6670 0.1922 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[3] 0.5055 0.5000 2.0000 0.4771 Normal Inversa Retardos[5] 3.6893 1.4400 1.6670 0.2042 Normal Inversa Retardos[7] 3.9451 2.3150 1.5430 0.3546 Normal Inversa Retardos[3] 0.5888 0.5000 2.0000 0.4429 t-Student Retardos[5] 3.4865 <td>Retardos[3]</td> <td>0.4079</td> <td>0.5000</td> <td>2.0000</td> <td>0.5230</td> <td>Error Generalizado Sesgado</td>	Retardos[3]	0.4079	0.5000	2.0000	0.5230	Error Generalizado Sesgado
Retardos[3] 0.4028 0.5000 2.0000 0.5256 Error Generalizado Retardos[5] 3.8048 1.4400 1.6670 0.1924 Error Generalizado Retardos[7] 4.0737 2.3150 1.5430 0.3361 Error Generalizado Retardos[3] 0.4510 0.5000 2.0000 0.5019 Hiperbólica Generalizada Retardos[5] 3.8070 1.4400 1.6670 0.1922 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[3] 0.5055 0.5000 2.0000 0.4771 Normal Inversa Retardos[5] 3.6893 1.4400 1.6670 0.2042 Normal Inversa Retardos[7] 3.9451 2.3150 1.5430 0.3546 Normal Inversa Retardos[3] 0.5888 0.5000 2.0000 0.4429 t-Student Retardos[5] 3.4865 1.4400 1.6670 0.2266 t-Student Retardos[7] 3.7284 2.	Retardos[5]	3.8995	1.4400	1.6670	0.1832	Error Generalizado Sesgado
Retardos[5] 3.8048 1.4400 1.6670 0.1924 Error Generalizado Retardos[7] 4.0737 2.3150 1.5430 0.3361 Error Generalizado Retardos[3] 0.4510 0.5000 2.0000 0.5019 Hiperbólica Generalizada Retardos[5] 3.8070 1.4400 1.6670 0.1922 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[3] 0.5055 0.5000 2.0000 0.4771 Normal Inversa Retardos[5] 3.6893 1.4400 1.6670 0.2042 Normal Inversa Retardos[7] 3.9451 2.3150 1.5430 0.3546 Normal Inversa Retardos[3] 0.5888 0.5000 2.0000 0.4429 t-Student Retardos[5] 3.4865 1.4400 1.6670 0.2266 t-Student Retardos[7] 3.7284 2.3150 1.5430 0.3874 t-Student Retardos[3] 0.5670 0.5000	Retardos[7]	4.1746	2.3150	1.5430	0.3221	Error Generalizado Sesgado
Retardos[7] 4.0737 2.3150 1.5430 0.3361 Error Generalizado Retardos[3] 0.4510 0.5000 2.0000 0.5019 Hiperbólica Generalizada Retardos[5] 3.8070 1.4400 1.6670 0.1922 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[3] 0.5055 0.5000 2.0000 0.4771 Normal Inversa Retardos[5] 3.6893 1.4400 1.6670 0.2042 Normal Inversa Retardos[7] 3.9451 2.3150 1.5430 0.3546 Normal Inversa Retardos[3] 0.5888 0.5000 2.0000 0.4429 t-Student Retardos[5] 3.4865 1.4400 1.6670 0.2266 t-Student Retardos[7] 3.7284 2.3150 1.5430 0.3874 t-Student Retardos[3] 0.5670 0.5000 2.0000 0.4515 t-Student Retardos[3] 0.5670 0.5000	Retardos[3]	0.4028	0.5000	2.0000	0.5256	Error Generalizado
Retardos[3] 0.4510 0.5000 2.0000 0.5019 Hiperbólica Generalizada Retardos[5] 3.8070 1.4400 1.6670 0.1922 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[3] 0.5055 0.5000 2.0000 0.4771 Normal Inversa Retardos[5] 3.6893 1.4400 1.6670 0.2042 Normal Inversa Retardos[7] 3.9451 2.3150 1.5430 0.3546 Normal Inversa Retardos[3] 0.5888 0.5000 2.0000 0.4429 t-Student Retardos[5] 3.4865 1.4400 1.6670 0.2266 t-Student Retardos[7] 3.7284 2.3150 1.5430 0.3874 t-Student Retardos[3] 0.5670 0.5000 2.0000 0.4515 t-Student Sesgada Retardos[5] 3.5630 1.4400 1.6670 0.2179 t-Student Sesgada	Retardos[5]	3.8048	1.4400	1.6670	0.1924	Error Generalizado
Retardos[5] 3.8070 1.4400 1.6670 0.1922 Hiperbólica Generalizada Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[3] 0.5055 0.5000 2.0000 0.4771 Normal Inversa Retardos[5] 3.6893 1.4400 1.6670 0.2042 Normal Inversa Retardos[7] 3.9451 2.3150 1.5430 0.3546 Normal Inversa Retardos[3] 0.5888 0.5000 2.0000 0.4429 t-Student Retardos[5] 3.4865 1.4400 1.6670 0.2266 t-Student Retardos[7] 3.7284 2.3150 1.5430 0.3874 t-Student Retardos[3] 0.5670 0.5000 2.0000 0.4515 t-Student Sesgada Retardos[5] 3.5630 1.4400 1.6670 0.2179 t-Student Sesgada	Retardos[7]	4.0737	2.3150	1.5430	0.3361	Error Generalizado
Retardos[7] 4.0730 2.3150 1.5430 0.3362 Hiperbólica Generalizada Retardos[3] 0.5055 0.5000 2.0000 0.4771 Normal Inversa Retardos[5] 3.6893 1.4400 1.6670 0.2042 Normal Inversa Retardos[7] 3.9451 2.3150 1.5430 0.3546 Normal Inversa Retardos[3] 0.5888 0.5000 2.0000 0.4429 t-Student Retardos[5] 3.4865 1.4400 1.6670 0.2266 t-Student Retardos[7] 3.7284 2.3150 1.5430 0.3874 t-Student Retardos[3] 0.5670 0.5000 2.0000 0.4515 t-Student Sesgada Retardos[5] 3.5630 1.4400 1.6670 0.2179 t-Student Sesgada	Retardos[3]	0.4510	0.5000	2.0000	0.5019	Hiperbólica Generalizada
Retardos[3] 0.5055 0.5000 2.0000 0.4771 Normal Inversa Retardos[5] 3.6893 1.4400 1.6670 0.2042 Normal Inversa Retardos[7] 3.9451 2.3150 1.5430 0.3546 Normal Inversa Retardos[3] 0.5888 0.5000 2.0000 0.4429 t-Student Retardos[5] 3.4865 1.4400 1.6670 0.2266 t-Student Retardos[7] 3.7284 2.3150 1.5430 0.3874 t-Student Retardos[3] 0.5670 0.5000 2.0000 0.4515 t-Student Sesgada Retardos[5] 3.5630 1.4400 1.6670 0.2179 t-Student Sesgada	Retardos[5]	3.8070	1.4400	1.6670	0.1922	Hiperbólica Generalizada
Retardos[5] 3.6893 1.4400 1.6670 0.2042 Normal Inversa Retardos[7] 3.9451 2.3150 1.5430 0.3546 Normal Inversa Retardos[3] 0.5888 0.5000 2.0000 0.4429 t-Student Retardos[5] 3.4865 1.4400 1.6670 0.2266 t-Student Retardos[7] 3.7284 2.3150 1.5430 0.3874 t-Student Retardos[3] 0.5670 0.5000 2.0000 0.4515 t-Student Sesgada Retardos[5] 3.5630 1.4400 1.6670 0.2179 t-Student Sesgada	Retardos[7]	4.0730	2.3150	1.5430	0.3362	Hiperbólica Generalizada
Retardos[7] 3.9451 2.3150 1.5430 0.3546 Normal Inversa Retardos[3] 0.5888 0.5000 2.0000 0.4429 t-Student Retardos[5] 3.4865 1.4400 1.6670 0.2266 t-Student Retardos[7] 3.7284 2.3150 1.5430 0.3874 t-Student Retardos[3] 0.5670 0.5000 2.0000 0.4515 t-Student Sesgada Retardos[5] 3.5630 1.4400 1.6670 0.2179 t-Student Sesgada	Retardos[3]	0.5055	0.5000	2.0000	0.4771	Normal Inversa
Retardos[3] 0.5888 0.5000 2.0000 0.4429 t-Student Retardos[5] 3.4865 1.4400 1.6670 0.2266 t-Student Retardos[7] 3.7284 2.3150 1.5430 0.3874 t-Student Retardos[3] 0.5670 0.5000 2.0000 0.4515 t-Student Sesgada Retardos[5] 3.5630 1.4400 1.6670 0.2179 t-Student Sesgada	Retardos[5]	3.6893	1.4400	1.6670	0.2042	Normal Inversa
Retardos[5] 3.4865 1.4400 1.6670 0.2266 t-Student Retardos[7] 3.7284 2.3150 1.5430 0.3874 t-Student Retardos[3] 0.5670 0.5000 2.0000 0.4515 t-Student Sesgada Retardos[5] 3.5630 1.4400 1.6670 0.2179 t-Student Sesgada	Retardos[7]	3.9451	2.3150	1.5430	0.3546	Normal Inversa
Retardos[7] 3.7284 2.3150 1.5430 0.3874 t-Student Retardos[3] 0.5670 0.5000 2.0000 0.4515 t-Student Sesgada Retardos[5] 3.5630 1.4400 1.6670 0.2179 t-Student Sesgada	Retardos[3]	0.5888	0.5000	2.0000	0.4429	t-Student
Retardos[3] 0.5670 0.5000 2.0000 0.4515 t-Student Sesgada Retardos[5] 3.5630 1.4400 1.6670 0.2179 t-Student Sesgada	Retardos[5]	3.4865	1.4400	1.6670	0.2266	t-Student
Retardos[5] 3.5630 1.4400 1.6670 0.2179 t-Student Sesgada	Retardos[7]	3.7284	2.3150	1.5430	0.3874	t-Student
	Retardos[3]	0.5670	0.5000	2.0000	0.4515	t-Student Sesgada
Retardos[7] 3.8080 2.3150 1.5430 0.3751 t-Student Sesgada	Retardos[5]	3.5630	1.4400	1.6670	0.2179	t-Student Sesgada
	Retardos[7]	3.8080	2.3150	1.5430	0.3751	t-Student Sesgada

Tabla 77: Test de bondad de ajuste de residuos, modelo EGARCH(1,1) - dis- tintas distribuciones condicionales (Ho: ajuste a la distribución de referencia). Fuente: Elaboración propia.

Orden	Grupo	Estadístico	Valor p (g-1)	Distribución densidad condicional
1	20	202.4000	0.0000	Normal
2	30	204.0000	0.0000	Normal
3	40	223.5000	0.0000	Normal
4	50	234.6000	0.0000	Normal
1	20	208.4000	0.0000	Normal Sesgada
2	30	215.1000	0.0000	Normal Sesgada
3	40	227.4000	0.0000	Normal Sesgada
4	50	252.1000	0.0000	Normal Sesgada
1	20	19.4300	0.4294	Distribución General de Error Sesgada
2	30	22.5100	0.7986	Distribución General de Error Sesgada
3	40	37.7300	0.5278	Distribución General de Error Sesgada
4	50	48.6100	0.4890	Distribución General de Error Sesgada
1	20	30.1100	0.0504	Distribución General de Error
2	30	28.6900	0.4815	Distribución General de Error
3	40	54.2000	0.0535	Distribución General de Error
4	50	64.5400	0.0674	Distribución General de Error
1	20	13.5000	0.8117	Distribución General Hiperbólica
2	30	20.0700	0.8908	Distribución General Hiperbólica
3	40	43.4500	0.2876	Distribución General Hiperbólica
4	50	48.5400	0.4916	Distribución General Hiperbólica
1	20	16.0000	0.6575	Normal Inversa
2	30	29.5500	0.4367	Normal Inversa
3	40	35.8400	0.6148	Normal Inversa
4	50	50.7700	0.4036	Normal Inversa
1	20	24.7800	0.1677	t-Student
2	30	39.3900	0.0944	t-Student
3	40	52.1000	0.0781	t-Student
4	50	57.3900	0.1920	t-Student
1	20	22.7900	0.2467	t-Student Sesgada
2	30	43.1600	0.0439	t-Student Sesgada
3	40	53.6200	0.0595	t-Student Sesgada
4	50	63.2300	0.0832	t-Student Sesgada