New simulations of the paper to be submitted to JPA (2014)

Christophe Bontemps, Celine Nauges, Vincent Requillart, & Michel Simioni May 28, 2014

1 Simulation framework

We present a single output - single input simulation exercice allowing us to compare DEA frontiers and Bias-corrected frontiers efficiencies.

1.1 Parameters

The parameters used in this simulation are:

- Sample size (initial): 200
- Size of the evaluation sample¹: 100
- Number of bootstraps for Bias correction 99
- Level for the bias correction $\alpha = 0.05$

1.2 Recalling simulation case (1: Regress)

We start by generating a dataset of N=200 single-input single-output firms over three years from the following equation:

$$y_t = x_t^{0.5} \times \exp\{-0.25 \times (t-1)\}/(1+u_t)$$
 (1)

with $x_t \sim U[0,1]$ and $u_t \sim \mathcal{N}^+(0.2,0.25)$. This procedure generates inputoutput pairs for year 1, year 2, and year 3, and incorporates an assumption of technical regress.

First we simulate a technical **regress** from year 1 to year 2 and from year 2 to year 3. We simulate the true frontier each year by y = F(x):

- For year 1 : $y = x^{1/2}$
- For year 2 : $y = x^{1/2} \cdot e^{-0.25}$
- For year $3: y = x^{1/2} \cdot e^{-0.5}$

 $^{^1\}mathrm{Randomly}$ drawn from the complete sample of all firms all years

2 Bias-corrected frontiers

2.1 Comparing the Biais-Corrected DEA Frontier with the DEA-frontier

We use here the sample of **200** firms on year 2 (x_2) , and compute the DEA frontier (VRS) as well as the bias-corrected frontier.

Variable	n	Min	$\bar{\mathbf{x}}$	$\widetilde{\mathbf{x}}$	Max
DEA.efficiencyvrs.	200	0.370	0.750	0.742	1.000
Bias.corrected.efficiency	200	0.366	0.730	0.729	0.989

Table 1: Efficiencies and bias-corrected efficiencies (ns= 200)

DEA and Bias-corrected DEA frontiers

2.2 Computing Bias-Frontier efficiencies with FEAR

Variable	\mathbf{n}	\mathbf{Min}	$\bar{\mathbf{x}}$	$\widetilde{\mathbf{x}}$	Max
DEA.efficiencyvrs.	200	0.370	0.750	0.742	1.000
Bias.corrected.efficiency	200	0.366	0.730	0.729	0.989
Bias.corrected.efficiencyverif.	200	0.366	0.730	0.729	0.988
Bias corrected efficiency FEAR	200	0.365	0.726	0.727	0.987

Table 2: Efficiencies and bias-corrected efficiencies (ns= 200)

DEA and Bias-corrected DEA frontiers

2.3 Is the Biais changing with sample size?

2.3.1 In the case where we increase the number of points by replicating the sample

We first use the same sample of points (x_2, y_2) replicated so that the total sample size is doubled (n = 400), with absolute no changes in the points and thus in the initial DEA frontier estimated.²

Variable	\mathbf{n}	\mathbf{Min}	$\bar{\mathbf{x}}$	$\widetilde{\mathbf{x}}$	Max
DEA.efficiencyvrs.	400	0.370	0.750	0.742	1.000
Bias.corrected.efficiency	400	0.367	0.737	0.734	0.993

Table 3: Efficiencies and bias-corrected efficiencies (n=400)

²Using a new draw from the distribution of (x_2, y_2) induces changes in the estimated frontier, and thus on the bias corrected frontier. I found that it was more accurate to see the "pure" effect of sample size using a replication of the initial sample.

DEA and Bias-corrected DEA frontiers with augmented sample (ns= 400)

We now increase 6 time the size of the original sample (still by replicating the points) so that n=1200

Variable	\mathbf{n}	\mathbf{Min}	$\bar{\mathbf{x}}$	$\tilde{\mathbf{x}}$	Max
DEA.efficiencyvrs.	1200	0.370	0.750	0.742	1.000
Bias.corrected.efficiency	1200	0.369	0.745	0.738	0.997

Table 4: Efficiencies and bias-corrected efficiencies (ns= 1200)

DEA and Bias-corrected DEA frontiers with augmented sample (n= 1200)

2.3.2 In the case where we increase the number of points by adding points from another year

We now add the points from year 3 $(x_3, y_3, \text{ in blue})$ to our sample (n=400)

Variable	\mathbf{n}	\mathbf{Min}	$\bar{\mathbf{x}}$	$\widetilde{\mathbf{x}}$	Max
DEA.efficiencyvrs.	400	0.304	0.663	0.649	1.000
Bias.corrected.efficiency	400	0.297	0.646	0.637	0.989

Table 5: Efficiencies and bias-corrected efficiencies when adding year 3 to year 2 (ns= 400)

DEA and Bias-corrected DEA frontiers with augmented sample (ns= 400)

3 Computing Bias-Frontrier efficiencies for points not in the sample used for frontier construction

Variable	\mathbf{n}	$\bar{\mathbf{x}}$	\mathbf{Min}	$\widetilde{\mathbf{x}}$	Max	$\bar{N}b_{Eff}$	$\bar{N}b_{Super}$	\bar{X}_{not}	#NA
Efficiency.to.DEA.Frontier	100	0.965	0.552	0.948	1.456	0	39	0.836	0
Efficiency.to.BC.DEA.Frontier	100	0.932	0.542	0.914	1.350	0	36	0.819	0

Table 6: Efficiencies and bias-corrected efficiencies (ns= 100)

DEA and Bias-corrected DEA frontiers

NB: This program runned for 227.73 seconds.

4 FIPS and BIPS with Bias -corrected Frontiers

TO DO (In another program) !!