Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática – ICEI Arquitetura de Computadores I

ARQ1 - Recuperação 02

Tema: Circuitos sequenciais e máquinas de estados finitos

Exercícios:

Dada a tabela para uma máquina de Mealy abaixo:

estado	entrada x=0/saída	entrada x = 1/saída
>00	00 / 0	01 / 0
01	10 / 0	00 / 0
10	00 / 0	11 / 1
11	vv / v	ww /w

Determinar as equações e implementar os circuitos equivalentes em Verilog e no Logisim: OBS.: Definir módulos de testes para as expressões em Verilog.

- a.) expressão simplificada por mintermos para Da
- b.) expressão simplificada por MAXTERMOS para Db
- c.) expressão simplificada por mintermos para JaKa (SR)
- d.) expressão simplificada por MAXTERMOS JbKb (SR)
- e.) expressão simplificada por mintermos para Ta
- f.) expressão simplificada por MAXTERMOS para Tb
- 02.) Dada a expressão PoS (1,3,6,7)
 - a.) expressão simplificada por mintermos
 - b.) expressão SoP em Verilog, com módulo de testes
 - c.) expressão PoS em Verilog, com módulo de testes
- 03.) Implementar no Logisim um circuito com dois *flip-flops* JK montados em sequência tal que $J=K=1 \pmod{toggle}$, clock2=Q1.
- 04.) Implementar no Logisim um circuito com dois *flip-flops* JK montados em sequência tal que J2 = Q1, K2 = Q1'.
- 05.) Implementar no Logisim um circuito com dois *flip-flops* D montados em sequência tal que J1 = Q2', K1 = Q2, J2 = Q1 e K2 = Q1'.

EXTRAS

06.) Implementar no JFLAP a seguinte máquina de Turing:

ab	Х	ab	S	m	ab	Х	ab	S	m	ab	Х	ab	S	m
00	0	00	0	R	01	0	00	0	L	10	0	10	1	L
00	1	00	1	R	01	1	10	1	L	10	1	10	0	L
00	#	01	#	L	01	#	01	#	S	10	#	10	#	S

07.) Implementar um contador módulo 33 e simular no Logisim.