Matlab Code Explanation

Matpower

simulating and optimizing steady-state operations of electric power systems

Offers

- Power Flow (PF): Solving AC and DC power flow problems to determine voltage magnitudes and angles across the network.
- Continuation Power Flow (CPF): Analyzing voltage stability and system loading limits.
- Optimal Power Flow (OPF): Determining the most economical operating conditions while satisfying system constraints.
- Unit Commitment (UC): Scheduling generation units to meet demand over a time horizon at minimal cost.
- Stochastic and Security-Constrained OPF/UC: Incorporating uncertainties and contingencies into planning and operation.

Structure

- MP-Core: The object-oriented core providing a flexible framework for modeling and simulation.
- MIPS (MATPOWER Interior Point Solver): A solver for nonlinear programming problems, particularly OPF.
- MP-Opt-Model: A tool for constructing and solving mathematical optimization problems.
- MOST (MATPOWER Optimal Scheduling Tool): A framework for generalized steady-state electric power scheduling problems.

CODE

Some defs.

Bus Data

% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin

•	Field	Description
	bus_i	Bus number (unique integer ID)
	type	Bus type: 1 = PQ (load), 2 = PV (generator), 3 = Slack (reference)

Field	Description
Pd	Real power demand at bus (MW)
Qd	Reactive power demand at bus (MVAr)
Gs	Shunt conductance (MW at V = 1.0 p.u.)
Bs	Shunt susceptance (MVAr at V = 1.0 p.u.)
area	Area number (for area-based control; rarely used)
Vm	Voltage magnitude (p.u.)
Va	Voltage angle (degrees)
baseKV	Base voltage level of the bus (kV)
zone	Loss zone (used in some optimization cases)
Vmax	Maximum voltage magnitude (p.u.)
Vmin	Minimum voltage magnitude (p.u.)

Generator Data

%bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1,Pc2,Qc1min,Qc1max,Qc2min,Qc2max,ramp_agc,ramp_10,ramp_30,ramp_q,apf

Field	Description
bus	Bus number at which the generator is connected
Pg	Real power output (MW)
Qg	Reactive power output (MVAr)
Qmax	Maximum reactive power output (MVAr)
Qmin	Minimum reactive power output (MVAr)
Vg	Voltage magnitude setpoint (p.u.)
mBase	Machine base MVA (used for per-unit conversion; often same as system base)
status	Generator status (1 = in service, 0 = out of service)
Pmax	Maximum real power output (MW)
Pmin	Minimum real power output (MW)
Pc1- Qc2max	Piecewise linear cost and reactive power curve (optional; for OPF)
ramp_*	Ramping limits (AGC, 10-min, 30-min, Q, etc.)
apf	Area participation factor (for AGC control)

Branch Data

Field	Description
fbus	"From" bus number
tbus	"To" bus number
r	Resistance (p.u. on system base)
x	Reactance (p.u.)
b	Total line charging susceptance (p.u.)
rateA	MVA rating A (continuous thermal limit)
rateB	MVA rating B (emergency/short-term limit)
rateC	MVA rating C (worst-case limit)
ratio	Transformer off-nominal turns ratio (if not a transformer, use 0 or 1)
angle	Transformer phase shift angle (degrees)
status	Branch status (1 = in service, 0 = out of service)
angmin	Minimum angle difference across branch (degrees)
angmax	Maximum angle difference across branch (degrees)

How it works/What it does.

```
function mpc = case33Loss202
```

- Matlab function defined called "case33Loss202", outputs a specific mpc struct
- represents a standard 33-bus test system used in loss minimization studies in distribution systems.

```
mpc.version = '2';
mpc.baseMVA = 100;
```

- mpc version 2 mentioned but newer versions exsist?
- All power values are normalised to 100MVA
 After this bus data, generator data and branch data are used <u>Here</u>

Output

```
case33Loss202

ans =
```

```
[struct](matlab:helpPopup\('struct'\)) with fields:

version: '2'
baseMVA: 100
bus: [33×13 double]
gen: [33×21 double]
branch: [32×13 double]
gencost: [66×7 double]
```

- All the input given is being read correctly by matpower
- For more details look into <u>run_case33loss202</u>, Contains a basic test case

MVO Code:

- For details on MVO look into <u>Optimisation</u>.
- Most of this code is well documented so this can be skipped and directly the .m file can be looked into

```
sd = 2:33;
```

Mentions the available number of buses, bus 1 is ignored as it is usually a slack bus

```
dim1 = 3;
```

tells that 3 devices need to be placed

```
Saizi = 0.15:0.15:4.05;
```

Capacitor Size changes.

The above can be classified as the search space.

```
Max_iteration = 100;
SearchAgents_no = 10;
WEP_Max = 1;
WEP_Min = 0.2;
```

MVO Parameters

- After this boundaries are defined for
 - Bus Combination
 - Capacitor banks

```
Best_universe = zeros(1,dim1);
Best_universe1 = zeros(1,dim1);
Best_universe_Inflation_rate = inf;
```

Contains the solutions both position and actual value

- After this randomly bus positions are assigned and snapped to nearest bus number as defined.
- Similarly capacitors are randomly initialised and snapped to nearest size as defined.
- After this MVO optimisation takes place WEP, TDR are updated with p = 6
- Fitness is evaluated using case33Loss202.
- Voltage constraints are checked.
- Fitness function evaluated
 - Minimizes total real power losses across branches.
 - If voltage constraints are not met, penalty is applied to fitness:
- Universe sorted, inflation rates normalised.
- Position update (MVO).
- Final results displayed
- Output came first time but after that didnt come

References

MATPOWER Documentation — MATPOWER Documentation 8.0 documentation