```
Callens I - Agr. 4 (2020/21)
  1. Teste - Turmas TP4-A3 eTP4-A4
```

Resolução:

(50 pts) a) \$\frac{1}{2} = \frac{1}{2} \in \D_{-2\times+\times^2} \cdots -2\times+\times^2 \in \Danconin \frac{1}{2}

Da= 1x=R: 1-22+x21 ≤ 1 }

) x2-2x =1) g(x) := x2-2x-1 <0 22-2×3-1) h(x):= x2-2x+130

22-2x-1=0 \$P &= 2±1/444 \$P 2=1±1/2 Estudan g(x):

 $\mathcal{L} = 1 + \sqrt{2}$ $\forall \mathcal{L} = 1 - \sqrt{2}$ $\in \mathbb{R}^+$ $\in \mathbb{R}^+$

Como g"(x) = (22-27-1)=1>0

g(x) <0 \$ X \in [1-\suz, 1+\suz]

Estudan h(x):

 $\Re^2 + 2 \times H = 0 \implies x = \frac{2 \pm \sqrt{4 + 4}}{2} \implies x = 1$ Como $h^{11}(x) = (\Re^2 - 2 \times H)^{11} = 1 > 0$ h(x)>0 AR

D= = = = [1-VZ, 1+VZ] = [1-VZ, 1+VZ]

Nota: 1 C Df = L1-12, 1+12]

De [1-Vz, 1+Vz] e' limitado, fechado e não degenerado.

(Noto) f e' continua por ser a composição de função continuas
somada a uma constante (-174). (M = H)

O Teorema de Weierstrans ganante que CD; = [m, M] onde m e' o milmimo absoluto de f e Mo maximo absoluto de f.

$$f'(x) = \frac{(-2x+x^2)^1}{\sqrt{1-(x^2-2x)^2}}, 1-(x^2-2x)^2 \neq 0$$

$$f'(x) = \frac{2x-2}{\sqrt{1-(x^2-2x)^2}}, (x^2-2x)^2 + 1 + 1 |x^2-2x| + 1$$

- · Conjunto de ponto critico, &= {x∈ \$\frac{1}{2}; f'(x)=0} = }}
- · Conjunto dos pontos sem denvada, N=31-V2, 1,1+V2}
- · Conjunto dos pontos fronteiros de $\mathfrak{D}_{\overline{g}}=\mathcal{F}=\{1-\sqrt{z},1+\sqrt{z}\}$ Candidatos a extremantes rolativos $E=\{1-\sqrt{z},1,1+\sqrt{z}\}$ (E=EUNUF)

Ha' que calcular o valor de f mos postos de E. Timo fiza claro no quadro de vanação:

×	1-12		11		1+/2	
f'(x)	N.D.	_	N.D.	+	N,D,	
f(x)	7/4	A	- <u>3T</u>	tonto angulaso	1/4	

$$f(1-\sqrt{2}) = ancmin \left(-2(1-\sqrt{2})+(1-\sqrt{2})^2\right) - \frac{T}{4}$$

$$f(1-\sqrt{2}) = ancmin \left(1\right) - \frac{T}{4} = \frac{T}{2} - \frac{T}{4} = \frac{T}{4} = M = M$$

$$f(1+\sqrt{2}) = ancmin \left(-2(1+\sqrt{2})+(1+\sqrt{2})^2\right) - \frac{T}{4}$$

$$f(1+\sqrt{2}) = ancmin \left(-2(1+\sqrt{2})+(1+\sqrt{2})^2\right) - \frac{T}{4} = M$$

$$f(1+\sqrt{2}) = ancmin \left(1 - \frac{T}{4} - \frac{T}{4} - \frac{T}{4} - \frac{T}{4} \right)$$

$$f(1) = ancmin \left(-2+1^2\right) - \frac{T}{4} = ancmin \left(-1\right) - \frac{T}{4}$$

$$f(1) = -\frac{T}{2} - \frac{T}{4} = -\frac{3T}{4}$$

M= II e' máximo relativo e absoluto atingodo em dois maximizantes alternativos | Zm=1-12 | Zm=1+12

 $m = -\frac{3T}{2}$ s' o minimo relativo e absoluto atingolo no minimizante nimizo $\Re m = -\frac{3T}{2}$.

Não ha outros extremantes relativos mo interior de Dy (não ha pontos cultiros em int (24)).

104.

2. $f: [0,2] \rightarrow \mathbb{R}$, f continua em [0,2]. Ho) $2 \leq f(x) \leq 3$, $\forall x \in [0,2]$

(30) $2 \le f(x) \le 3$, $\forall x \in [0,2]$ f(0) = -1.

Aphzan o T. Lagrange para provar que \f(z) \le 5

féregular em [0,2] por ser continua em [a,5] e diferenciarel em Jo,2[(Note: f'(x) finita em J2,3[) OT. La grange é aplizarel a f em [0,2] concluindo-se que

 $\frac{f(2) - f(0)}{2 - 0} = f(\frac{1}{2}), \text{ for a algum}$ = +1

 $2 \le \frac{f(2) - f(0)}{2 - 0} = f'(\frac{2}{2}) \le 3$, poin $\frac{1}{2} \in]0,2[$

 $2 \le \frac{\cancel{+}(2) + 1}{2} \le 3$

 $4 \le f(2) + 1 \le 6$

 $3 \le f(2) \le 5$, como pretendodo.

//