

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Please use	this identifier to cite or link to this item: http://hdl.handle.net/123456789/4410
Title:	Simulating open quantum dynamics on an NMR quantum processor using the SzNagy dilation algorithm
Authors:	Gaikwad, Akshay (/jspui/browse?type=author&value=Gaikwad%2C+Akshay) Arvind (/jspui/browse?type=author&value=Arvind)
	Dorai, Kavita (/jspui/browse?type=author&value=Dorai%2C+Kavita)
Keywords:	Simulating
	Quantum dynamics
	NMR quantum
	Nagy dilation algorithm
Issue Date:	2022
Publisher:	American Physical Society
Citation:	Phys. Rev. A 106, 022424
Abstract:	We experimentally implement the SzNagy dilation algorithm to simulate open quantum dynamics on a nuclear magnetic resonance quantum processor. The SzNagy algorithm enables the simulation of the dynamics of an n -qubit system using n + 1 qubits. We experimentally simulate the action of three nonunitary processes, namely, a phase damping channel acting independently on two qubits, a two-qubit correlated amplitude damping channel, and a magnetic-field-gradient pulse acting on an ensemble of two coupled nuclear spin- 1 2 particles. To evaluate the quality of the experimentally simulated quantum process, we perform convex-optimization-based full quantum process tomography to reconstruct the quantum process from the experimental data and compare it with the target quantum process to be simulated.
Description:	Only IISER Mohali authors are available in the record.
URI:	https://doi.org/10.1103/PhysRevA.106.022424 (https://doi.org/10.1103/PhysRevA.106.022424) http://hdl.handle.net/123456789/4410 (http://hdl.handle.net/123456789/4410)

Files	in	This	Item

Appears in Collections:

THES HITTHIS ICHII.				
File	Description	Size	Format	
Need To AddFull Text_PDFpdf (/jspui/bitstream/123456789/4410/1/Need%20To%20Add%e2%80%a6Full%20Text_PDFpdf)		15.36 kB	Adobe PDF	View/Open (/jspt

Show full item record (/jspui/handle/123456789/4410?mode=full)

Research Articles (/jspui/handle/123456789/9)

. (/jspui/handle/123456789/4410/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.