COMP9414/9814/3411: Artificial Intelligence

Week 4: Heuristic Path Search

Russell & Norvig, Chapter 3.

UNSW (C) Alan Blair, 2013-7

COMP9414/9814/3411 17s1 Heuristic Path Search

Search Strategies

- BFS and DFS treat all new nodes the same way:
 - ▶ BFS add all new nodes to the back of the queue
 - ▶ DFS add all new nodes to the front of the queue
- (Seemingly) Best First Search uses an evaluation function f() to order the nodes in the queue; we have seen one example of this:
 - ▶ UCS $f(n) = \cos g(n)$ of path from root to node n
- Informed or Heuristic search strategies incorporate into f() an estimate of distance to goal
 - ► Greedy Search f(n) = estimate h(n) of cost from node n to goal
 - A * Search f(n) = g(n) + h(n)

COMP9414/9814/3411 17s1 Heuristic Path Search

Search Strategies

Recall the basic structure of our search algorithms:

- 1. Start with a priority queue consisting of just the initial state.
- 2. Choose a state from the queue of states which have been generated but not yet expanded.
- 3. Check if the selected state is a Goal State. If it is, STOP.
- 4. Otherwise, expand the chosen state by applying all possible transitions and generating all its children.
- 5. If the queue is empty, Stop (no solution exists).
- 6. Otherwise, go back to Step 2.

Search strategies are distinguished by the order in which new nodes are added to the queue of nodes awaiting expansion.

UNSW ©Alan Blair. 2013-7

COMP9414/9814/3411 17s1 Heuristic Path Search

Romania Street Map

UNSW © Alan Blair, 2013-7

UNSW © Alan Blair, 2013-7

Heuristic Function

There is a whole family of Best First Search algorithms with different evaluation functions f(). A key component of these algorithms is a heuristic function:

- Heuristic function h: {Set of nodes} \longrightarrow **R**:
 - h(n) = estimated cost of the cheapest path from current node n to goal node.
 - ▶ in the area of search, heuristic functions are problem specific functions that provide an estimate of solution cost.

UNSW ©Alan Blair, 2013-7

COMP9414/9814/3411 17s1 Heuristic Path Search

Straight Line Distance as a Heuristic

- $h_{SLD}(n)$ = straight-line distance between n and the goal location (Bucharest).
- Assume that roads typically tend to approximate the direct connection between two cities.
- Need to know the map coordinates of the cities:
 - $\sqrt{(Sibiu_x Bucharest_x)^2 + (Sibiu_y Bucharest_y)^2}$

Greedy Best-First Search

COMP9414/9814/3411 17s1

- Greedy Best-First Search: Best-First Search that selects the next node for expansion using the heuristic function for its evaluation function, i.e. f(n) = h(n)
- $h(n) = 0 \iff n \text{ is a goal state}$
- i.e. greedy search minimises the estimated cost to the goal; it expands whichever node *n* is estimated to be closest to the goal.
- Greedy: tries to "bite off" as big a chunk of the solution as possible, without worrying about long-term consequences.

© Alan Blair, 2013-7

COMP9414/9814/3411 17s1

UNSW

Heuristic Path Search

Properties of Greedy Best-First Search

- Complete: No! can get stuck in loops, e.g.,
 Iasi → Neamt → Iasi → Neamt → ...
 Complete in finite space with repeated-state checking
- Time: $O(b^m)$, where m is the maximum depth in search space.
- Space: $O(b^m)$ (retains all nodes in memory)
- Optimal: No! e.g., the path Sibiu → Fagaras → Bucharest is 32 km longer than Sibiu → Rimnicu Vilcea → Pitesti → Bucharest.

Therefore Greedy Search has the same deficits as Depth-First Search. However, a good heuristic can reduce time and memory costs substantially.

Greedy Search

©Alan Blair, 2013-17

Arad

Greedy Search

©Alan Blair, 2013-17

Recall: Uniform-Cost Search

- Expand root first, then expand least-cost unexpanded node
- Implementation: QUEUEINGFN = insert nodes in order of increasing path cost.
- Reduces to breadth-first search when all actions have same cost
- Finds the cheapest goal provided path cost is monotonically increasing along each path (i.e. no negative-cost steps)

Heuristic Path Search

UNSW (©)Alan Blair, 2013-7

COMP9414/9814/3411 17s1 Heuristic Path Search 10

Uniform Cost Search

Uniform Cost Search

UNSW © Alan Blair. 2013-7

COMP9414/9814/3411 17s1

Heuristic Path Search

11

Properties of Uniform Cost Search

- Complete? Yes, if b is finite and step costs $\geq \varepsilon$ with $\varepsilon > 0$.
- Optimal? Yes.
- Guaranteed to find optimal solution, but does so by exhaustively expanding all nodes closer to the initial state than the goal.

Q: can we still guarantee optimality but search more efficiently, by giving priority to more "promising" nodes?

12

14

A* Search

- A* Search uses evaluation function f(n) = g(n) + h(n)
 - $ightharpoonup g(n) = \cos t$ from initial node to node n
 - h(n) =estimated cost of cheapest path from n to goal
 - f(n) = estimated total cost of cheapest solution through node n
- Greedy Search minimizes h(n)
 - efficient but not optimal or complete
- Uniform Cost Search minimizes g(n)
 - optimal and complete but not efficient

UNSW © Alan Blair, 2013-7

COMP9414/9814/3411 17s1 Heuristic Path Search

A* Search

- Heuristic h() is called admissible if $\forall n \ h(n) \le h^*(n)$ where $h^*(n)$ is true cost from n to goal
- If h is admissible then f(n) never overestimates the actual cost of the best solution through n.
- **Example:** $h_{SLD}()$ is admissible because the shortest path between any two points is a line.
- Theorem: A^* Search is optimal if h() is admissible.

A* Search

- A* Search minimizes f(n) = g(n) + h(n)
 - ▶ idea: preserve efficiency of Greedy Search but avoid expanding paths that are already expensive
- Q: is A* Search optimal and complete?
- A: Yes! provided h() is admissible in the sense that it never overestimates the cost to reach the goal.

UNSW © Alan Blair. 2013-7

COMP9414/9814/3411 17s1

Heuristic Path Search

15

Properties of A* Search

- Complete: Yes, unless there are infinitely many nodes with $f \le \cos f$ solution.
- Time: Exponential in [relative error in $h \times$ length of solution]
- Space: Keeps all nodes is memory
- Optimal: Yes (assuming h() is admissible).

EUNSW A* Search

Engineering ©Alan Blair, 2013-17

QUINSW <u>A* Search</u>
Engineering ⊚Alan Blair, 2013-17

¥UNSWA* SearchEngineering⊚Alan Blair, 2013-17

₹UNSW A* Search

Engineering ©Alan Blair, 2013-17

Proof that A*Search is Optimal

Assume G is selected for expansion.

Proof that A*Search is Optimal

Assume G is selected for expansion.

Then
$$f(G) = g(G) + h(G)$$

S f(G) = g(G)G **≩UNSW** A* Search

©Alan Blair, 2013-17

S

g(n)

f(G) = g(G)

h(n)

Proof that A*Search is Optimal

Assume G is selected for expansion.

Then
$$f(G) = g(G) + h(G)$$

= g(G) [since G is a goal]

Consider another path from S to G or G'.

©Alan Blair, 2013-17

Proof that A*Search is Optimal

Assume G is selected for expansion.

Then
$$f(G) = g(G) + h(G)$$

= g(G) [since G is a goal]

Consider another path from S to G or G'. Let n be the last unexpanded node on this alternative path from S to G or G'.

G

Assume G is selected for expansion.

Then
$$f(G) = g(G) + h(G)$$

= g(G) [since G is a goal]

Consider another path from S to G or G'.

Let n be the last unexpanded node on this alternative path from S to G or G'.

Then
$$f(G) \le f(n)$$
 [G expanded first]

Proof that A*Search is Optimal

Assume G is selected for expansion.

Then
$$f(G) = g(G) + h(G)$$

Consider another path from S to G or G'.

Let n be the last unexpanded node on this alternative path from S to G or G'.

Then $f(G) \le f(n)$ [G expanded first]

$$g(G) \le g(n) + h(n)$$

h*(n) ≝

©Alan Blair, 2013-17

Proof that A*Search is Optimal

Assume G is selected for expansion.

Then
$$f(G) = g(G) + h(G)$$

Consider another path from S to G or G'. Let n be the last unexpanded node on this alternative path from S to G or G'.

Then
$$f(G) \le f(n)$$
 [G expanded first]

$$g(G) \le g(n) + h(n)$$

$$\leq$$
 g(n) + h*(n) = g(G')

©Alan Blair, 2013-17

COMP9414/9814/3411 17s1

Proof that A*Search is Optimal

Assume G is selected for expansion.

Then
$$f(G) = g(G) + h(G)$$

Consider another path from S to G or G'. Let n be the last unexpanded node on this alternative path from S to G or G'.

Then
$$f(G) \le f(n)$$
 [G expanded first]
 $g(G) \le g(n) + h(n)$

$$\leq$$
 g(n) + h*(n) = g(G')

So, the original path to G is the shortest.

COMP9414/9814/3411 17s1

Heuristic Path Search

16

Heuristic Path Search

17

Optimality of A* Search

Suppose a suboptimal goal node G_2 has been generated and is in the queue. Let n be the last unexpanded node on a shortest path to an optimal goal node G.

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G)$ since G_2 is suboptimal
> $f(n)$ since h is admissible.

Optimality of A* Search

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion.

Note: suboptimal goal node G_2 may be generated, but it will never be expanded.

In other words, even after a goal node has been generated, A* will keep searching so long as there is a possibility of finding a shorter solution.

Once a goal node is selected for expansion, we know it must be optimal, so we can terminate the search.

Iterative Deepening A* Search

- Iterative Deepening A* is a low-memory variant of A* which performs a series of depth-first searches, but cuts off each search when the sum f() = g() + h() exceeds some pre-defined threshold.
- The threshold is steadily increased with each successive search.
- IDA* is asymptotically as efficient as A* for domains where the number of states grows exponentially.

UNSW © Alan Blair, 2013-7

COMP9414/9814/3411 17s1 20 Heuristic Path Search

Examples of Admissible Heuristics

e.g. for the 8-puzzle:

 $h_1(n)$ = total number of misplaced tiles

 $h_2(n)$ = total Manhattan distance = \sum distance from goal position

2 5 8

 $h_1(S) = ?$

 $h_2(S) = ?$

Why are h_1 , h_2 admissible?

Exercise

What sort of search will greedy search emulate if we run it with:

- h(n) = -g(n)?
- h(n) = g(n)?
- h(n) = number of steps from initial state to node n?

UNSW © Alan Blair, 2013-7

COMP9414/9814/3411 17s1

Heuristic Path Search

21

Examples of Admissible Heuristics

e.g. for the 8-puzzle:

 $h_1(n)$ = total number of misplaced tiles

 $h_2(n)$ = total Manhattan distance = \sum distance from goal position

 $h_1(S) = 6$

UNSW

 $h_2(S) = 4+0+3+3+1+0+2+1 = 14$

- \blacksquare h_1 : every tile must be moved at least once.
- \blacksquare h_2 : each action can only move one tile one step closer to the goal.

Dominance

- if $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search. So the aim is to make the heuristic h() as large as possible, but without exceeding $h^*()$.
- typical search costs:

14-puzzle IDS = 3,473,941 nodes
$$A^*(h_1) = 539 \text{ nodes}$$

$$A^*(h_2) = 113 \text{ nodes}$$
 24-puzzle IDS $\approx 54 \times 10^9 \text{ nodes}$
$$A^*(h_1) = 39,135 \text{ nodes}$$

$$A^*(h_2) = 1,641 \text{ nodes}$$

UNSW (©Alan Blair, 2013-7

COMP9414/9814/3411 17s1 Heuristic Path Search 24

Composite Heuristic Functions

- Let $h_1, h_2, ..., h_m$ be admissible heuristics for a given task.
- Define the composite heuristic

$$h(n) = \max(h_1(n), h_2(n), ..., h_m(n))$$

- h is admissible
- \blacksquare h dominates $h_1, h_2, ..., h_m$

How to Find Heuristic Functions?

- Admissible heuristics can often be derived from the exact solution cost of a simplified or "relaxed" version of the problem. (i.e. with some of the constraints weakened or removed)
 - ▶ If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
 - ▶ If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.

UNSW © Alan Blair. 2013-7

COMP9414/9814/3411 17s1

Heuristic Path Search

25

23

Heuristics for Rubik's Cube

- 3D Manhattan distance, but to be admissible need to divide by 8.
- better to take 3D Manhattan distance for edges only, divided by 4.
- alternatively, max of 3D Manhattan distance for edges and corners, divided by 4 (but the corners slow down the computation without much additional benefit).
- best approach is to pre-compute Pattern Databases which store the minimum number of moves for every combination of the 8 corners, and for two sets of 6 edges.
- to save memory, use IDA*.

UNSW

"Finding Optimal Solutions to Rubik's Cube using Pattern Databases" (Korf, 1997)

COMP9414/9814/3411 17s1 Heuristic Path Search 26

Summary of Informed Search

- Heuristics can be applied to reduce search cost.
- \blacksquare Greedy Search tries to minimize cost from current node n to the goal.
- A* combines the advantages of Uniform-Cost Search and Greedy Search.
- A* is complete, optimal and optimally efficient among all optimal search algorithms.
- Memory usage is still a concern for A*. IDA* is a low-memory variant.

UNSW ©Alan Blair, 2013-7