获得的答案

 $\it L$ be any language and $\it x$ and $\it y$ are the strings

Distinguishable by L:

Strings x and y are distinguishable by L if \exists some z such that exactly one of the strings xz and yz belongs to L.

<u>Indistinguishable by L:</u>

Strings x and y are indistinguishable by L if for every string z, $xz \in L$ whenever $yz \in L$

If x and y are indistinguishable by L then we write $x \equiv_L y$

Now we have to show that \equiv_L is an equivalence relation.

- \bullet To show that $\equiv_{\!\scriptscriptstyle L}$ is an equivalence relation, we have to show that $\equiv_{\!\scriptscriptstyle L}$ is
- (i) Reflexive
- (ii) Symmetric
- (iii) Transitive
- According to the given data, $x \equiv_L y$ means "for every string z, xz is in L whenever yz is in L". That means, "for every string z, xz is in L iff yz is in L"
- (i) Reflexivity: $x \equiv_L x$ is true

For all strings z, xz is in L iff xz is in L

Therefore $x \equiv_L x$ is true.

Hence \equiv_L is reflexive.

(ii) Symmetry: $x \equiv_L y$ implies $y \equiv_L x$

If $x \equiv_L y$ is true then "for all z, xz is in Liff yz is in L"

Which is equivalent to "for all z, yz is in L iff xz is in L"

Therefore $y \equiv_L x$ is also true.

Hence \equiv_L is symmetric.

(iii) Transitivity: If $a \equiv_L b$ and $b \equiv_L c$ then $a \equiv_L c$

This means that

"for all \emph{z}, \emph{az} is in \emph{L} iff \emph{bz} is in \emph{L} and

For all z, bz is in L iff cz is in L''.

Therefore, "for all $\it z, \it az$ is in $\it L$ iff $\it cz$ is in $\it L$ ".

That is, $a \equiv_{L} c$ is true

Hence \equiv_L is transitive.

From (i), (ii) and (iii)

 \equiv_{L} is equivalence relation.