7. Unterrichtseinheit zur Dynamik Impuls und Kraftstoß

Heiko Schröter

7. Juni 2021

Ziele für die heutige Unterrichtseinheit

Impuls und Kraftstoß

- Was versteht man unter einem Impuls?
- Wie ist der Kraftstoß definiert?
- Wann tritt eine Änderung des Impulses ein?
- Beispielaufgabe zum Stoß
- Übungsaufgaben

Die Bewegungsgröße (Impuls)

Impuls

Unter der Bewegungsgröße bzw. dem Impuls p eines Körpers versteht man das Produkt seiner Masse m und seiner Geschwindigkeit v. Einheit: $\frac{\text{kg m}}{\text{s}}$.

$$p = m \cdot v$$
 $[p] = [m] \cdot [v] = kg \cdot \frac{m}{s} = \frac{kg m}{s}$

Beispiel Impuls einer fallenden Kugel

Abbildung: Bewegungsenergie fallender Kugeln

Kraftstoß und Impulsänderung

$$F = m \cdot a = m \cdot \frac{\Delta v}{\Delta t} = m \cdot \frac{v_t - v_0}{\Delta t} = \frac{\Delta p}{\Delta t}$$

 v_0 Geschwindigkeit vor der Impulsänderung v_t Geschwindigkeit nach der Impulsänderung

Impulsänderung

Der Kraftstoß entspricht der Anderung des Impulses eines bewegten Körpers.

$$\Delta p = F \cdot \Delta t$$
 Kraftstoß I :
$$I = \Delta p = F \cdot \Delta t = m \cdot v_t - m \cdot v_0$$

Simulation mit Algodoo

Abbildung: Beispiel Impulsänderung

Beispielaufgabe Impulsänderung I

An einem Eisenbahnzug mit der Masse $m=960\,000\,\mathrm{kg}$ wirkt eine Zugkraft $F_Z=120\,\mathrm{kN}$. Die Gesamte Fahrwiderstandskraft (Reibung und Luftwiderstand) ist $F_F=47.1\,\mathrm{kN}$. Berechnen Sie

- a) die resultierende Kraft F_r ,
- b) v_t nach $t = 5 \min$ (horizontale Strecke und $v_0 = 0$).

Beispielaufgabe Impulsänderung II

Lösung:

a) Das Bild zeigt die zeichnerische Lösung. Danach ist:

$$F_r = F_Z - F_F = 120 \,\mathrm{kN} - 47.1 \,\mathrm{kN} = \underline{72.9 \,\mathrm{kN}}$$

Beispielaufgabe Impulsänderung III

$$F_r \cdot t = m \cdot v_t - m \cdot v_0 \text{ Mit } v_0 = 0 : F_r \cdot t = m \cdot v_t.$$
Somit:
$$v_t = \frac{F_r \cdot t}{m} = \frac{72\,900\,\frac{\text{kg m}}{\text{s}^2} \cdot (5 \cdot 60)\text{s}}{960\,000\,\text{kg}} = 22,78\,\frac{\text{m}}{\text{s}}$$

$$v_t = \underbrace{82\,\frac{\text{km}}{\text{h}}}_{}$$

Impulserhaltung

Impulserhaltungssatz

Ist die Summe aller äußeren am Körper angreifenden Kräfte Null, dann ändert sich der Impuls des Körpers nicht.

Impulserhaltung
$$\Delta p = 0 = m \cdot v_t - m \cdot v_0$$

Der Stoß I

Der Stoß II

Stoß

Die Geschwindigkeitsänderungen beim Stoß zweier Massen sind entgegengesetzt gerichtet und verhalten sich umgekehrt proportional zu den Massen.

Der Stoß III

Dabei ist die Summe aller auf das Körpersystem wirkenden Kräfte Null, d.h., dass der Impulserhaltungssatz angewendet werden kann. Dies bedeutet:

Impulserhaltungssatz

Beim Stoß ändert sich der Gesamtimpuls, d.h. die Summe aller Einzelimpulse in einem System bewegter Körper, nicht.

$$\Delta p = 0 = m \cdot v_t - m \cdot v_0$$

Der unelastische Stoß

Beim unelastischen, d.h. plastischen Stoß verformt sich mindestens einer der beiden Körper vollkommen plastisch.

Geschwindigkeit beider Massen nach einem unelastischen Stoß

$$v = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2}$$

Beispielaufgabe unelastischer Stoß

Ein Körper mit der Masse $m_1=10\,\mathrm{kg}$ bewegt sich mit $v_1=10\,\frac{\mathrm{m}}{\mathrm{s}}$ auf einen Körper mit der Masse $m_2=100\,\mathrm{kg}$, der sich in Ruhe befindet, zu. Wie groß ist die gemeinsame Endgeschwindigkeit v, wenn sich die Masse m_1 vollkommen plastisch verhält?

Beispielaufgabe unelastischer Stoß

Ein Körper mit der Masse $m_1=10\,\mathrm{kg}$ bewegt sich mit $v_1=10\,\frac{\mathrm{m}}{\mathrm{s}}$ auf einen Körper mit der Masse $m_2=100\,\mathrm{kg}$, der sich in Ruhe befindet, zu. Wie groß ist die gemeinsame Endgeschwindigkeit v, wenn sich die Masse m_1 vollkommen plastisch verhält?

Lösung:

$$v = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} = \frac{10 \, \text{kg} \cdot 10 \, \frac{\text{m}}{\text{s}} + 100 \, \text{kg} \cdot 0}{10 \, \text{kg} + 100 \, \text{kg}} = \frac{100 \, \frac{\text{kg m}}{\text{s}}}{110 \, \text{kg}}$$
$$= 0.909 \, \frac{\text{m}}{\text{s}}$$

Der elastische Stoß

Beim elastischen Stoß unterscheidet man den ersten Teil des Stoßes vom zweiten Teil des Stoßes.

Geschwindigkeit beider Massen nach der ersten Stoßhälfte

gemeinsame Geschwindigkeit:
$$v=\frac{m_1\cdot v_1+m_2\cdot v_2}{m_1+m_2}$$
 Endgeschwindigkeit $m_1:v_{1e}=2\cdot \frac{m_1\cdot v_1+m_2\cdot v_2}{m_1+m_2}-v_1$ Endgeschwindigkeit $m_2:v_{2e}=2\cdot \frac{m_1\cdot v_1+m_2\cdot v_2}{m_1+m_2}-v_2$

Beispielaufgabe elastischer Stoß

Ein Körper mit der Masse $m_1=6\,\mathrm{kg}$ bewegt sich mit $v_1=10\,\frac{\mathrm{m}}{\mathrm{s}}$ zentrisch auf einen Körper mit der Masse $m_2=18\,\mathrm{kg}$, der sich mit $v_2=2\,\frac{\mathrm{m}}{\mathrm{s}}$ in die gleiche Richtung wie der Körper mit der Masse m_1 bewegt, zu. Berechnen Sie

- a) Die Geschwindigkeit v beider Körper nach der ersten Hälfte des Stoßes.
- b) die Endgeschwindigkeiten beider Körper am Ende eines vollkommen elastischen Stoßes.

siehe Simulation elastischer Stoß.phz

Lösung:

a)

$$v = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} = \frac{6 \, \text{kg} \cdot 10 \, \frac{\text{m}}{\text{s}} + 18 \, \text{kg} \cdot 2 \, \frac{\text{m}}{\text{s}}}{6 \, \text{kg} + 18 \, \text{kg}} = \frac{96 \, \frac{\text{kg m}}{\text{s}}}{24 \, \text{kg}}$$
$$= 4 \, \frac{\text{m}}{\frac{\text{s}}{\text{s}}}$$

b)

$$\begin{aligned} v_{1e} &= 2 \cdot \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} - v_1 \\ &= 2 \cdot \frac{6 \log \cdot 10 \frac{m}{s} + 18 \log \cdot 2 \frac{m}{s}}{6 \log + 18 \log} - 10 \frac{m}{s} = 8 \frac{m}{s} - 10 \frac{m}{s} \\ &= -2 \frac{m}{s} \\ &= \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} - v_2 \\ &= 2 \cdot \frac{6 \log \cdot 10 \frac{m}{s} + 18 \log \cdot 2 \frac{m}{s}}{6 \log + 18 \log} - 2 \frac{m}{s} = 8 \frac{m}{s} - 2 \frac{m}{s} \\ &= 6 \frac{m}{s} \end{aligned}$$

Beispielaufgabe Impulsänderung

Aus einem Kanonenrohr mit der Länge 8,3 m fliegt ein Geschoss mit der Masse $m=42\,\mathrm{kg}$ und der Geschwindigkeit $v=680\,\mathrm{\frac{m}{s}}$. Berechnen Sie

- a) Die Geschosslaufzeit bei konstanter Beschleunigung im Rohr,
- b) die wirkende Kraft auf das Geschoss im Rohr.

Lösung:

a) Es wird eine gleichmäßig beschleunigte Bewegung von $v_0 = 0$ auf $v_t = 680 \, \frac{\text{m}}{\text{s}}$ angenommen. Somit:

b)

$$F \cdot t = m \cdot \Delta v \quad \text{Somit:}$$

$$F = \frac{m \cdot \Delta v}{t} = \frac{42 \text{ kg} \cdot 680 \frac{\text{m}}{\text{s}}}{0,0244 \text{ s}}$$

$$F = 1170492 \text{ N} = 1170.5 \text{ kN}$$