RINEX nawigacyjny

mgr inż. Maciej Paśnikowski maciej.pasnikowski@pw.edu.pl

29 marca 2017

1 Format

Plik depeszy nawigacyjnej zorganizowany jest w formacie tekstowym o stałej szerokości 80 znaków, gdzie w każdym bloku odpowiadającym danemu satelicie dane są uporządkowane w tabeli o 8 wierszach i 4 kolumnach o szerokości 19 znaków każda.

Oto przykład danych z pliku nawigacyjnego w formacie RINEX:

- 1 17 3 15 0 0 0.0 5.130842328072D-05 7.958078640513D-13 0.00000000000D+00
 - 4.2000000000D+01-6.90625000000D+00 4.884846305231D-09-1.853569827595D-01
 - -4.116445779800D-07 6.330839940347D-03 3.587454557419D-06 5.153684074402D+03
 - 2.59200000000D+05 2.048909664154D-08-1.138373338733D+00 8.381903171539D-08
 - 9.664897510232D-01 3.099062500000D+02 5.362716950344D-01-8.501782389203D-09
 - -1.307197267097D-10 1.00000000000D+00 1.9400000000D+03 0.000000000D+00
 - 2.0000000000D+00 0.0000000000D+00 5.122274160385D-09 4.2000000000D+01
 - 2.59200000000D+05

Poniżej w tabeli objaśniono poszczególne elementy rejestru danych w pliku nawigacyjnym, a na zielono zaznaczono elementy niezbędne do obliczenia pozycji satelity.

Tabela 1: Wyjaśnienie elementów pliku nawigacyjnego w formacie RINEX

PRN	Epoka t_{oc}	a_0	a_1	a_2
1	17 3 15 0 0 0.0	5.130842328072D-05	7.958078640513D-13	0.0000000000D+00
	IODE	C_{rs}	Δ_n	M_0
	4.20000000000D+01	-6.90625000000D+00	4.884846305231D-09	-1.853569827595D-01
	C_{uc}	е	C_{us}	\sqrt{a}
	-4.116445779800D-07	6.330839940347D-03	3.587454557419D-06	5.153684074402D+03
	t_{oe}	C_{ic}	Ω_0	C_{is}
	2.59200000000D+05	2.048909664154D-08	-1.138373338733D+00	8.381903171539D-08
	i_0	C_{rc}	ω	$\dot{\Omega}$
	9.664897510232D-01	3.099062500000D+02	5.362716950344D-01	-8.501782389203D-09
	IDOT	kody na L2	Tydzień GPS	flaga danych L2 P
	-1.307197267097D-10	1.00000000000D+00	1.94000000000D+03	0.0000000000D+00
	Dokładność pozycji	Zdrowie SV	T_{GD}	IODC
	2.00000000000D+00	0.00000000000D+00	5.122274160385D-09	4.20000000000D+01
	Czas transmisji depeszy			
	2.59200000000D+05			

2 Algorytm wyznaczenia pozycji satelity na podstawie efemerydy

Parametr	Opis
State	· · ·
	parametr grawitacyjny Ziemi (WGS84)
$\mu = GM = 3.986005 \cdot 10^{14} \frac{m^3}{s^2}$ $\omega_e = 7.2921151467 \cdot 10^{-5} \frac{rad}{s}$	Szybkość kątowa Ziemi (WGS84)
$\frac{\omega_e - 1.2921131407 \cdot 10}{Dane \ z \ efemerydy}$	SZYDROSC KĄTOWA ZIEIIII (WGSO4)
Dane z ejemeryay	analta gagara (m. mm. dd. hh. mi. gal
Epoka t_{oc}	epoka zegara [rr mm dd hh mi se],
	zamieniamy ją na sekundy tygodnia GPS
a_0, a_1, a_2	współczynniki wielomianu do poprawki zegara satelity,
C	jednostki: $[s], [s \cdot s^{-1}], [s \cdot s^{-2}]$
C_{rs}	Amplituda wyrazu sinusowego harmoniki promienia orbity [m]
Δ_n	Poprawka ruchu średniego $[rad \cdot s^{-1}]$
M_0	Anomalia średnia na epokę odniesienia $[rad]$
C_{uc}	Amplituda wyrazu cosinusowego harmoniki argumentu szerokości [rad]
e	Mimośród orbity
C_{us}	Amplituda wyrazu sinusowego harmoniki argumentu szerokości $[rad]$
\sqrt{a}	Pierwiastek dużej półosi orbity $[\sqrt{m}]$
t_{oe}	time of ephemeris - epoka wyznaczenia efemerydy [s]
C_{ic}	Amplituda wyrazu cosinusowego harmoniki nachylenia orbity [rad]
Ω_0	Rektascenzja węzła wstępującego w tygodniu GPS [rad]
C_{is}	Amplituda wyrazu sinusowego harmoniki nachylenia orbity $[rad]$
i_0	Nachylenie orbity na epokę odniesienia $[rad]$
C_{rc}	Amplituda wyrazu cosinusowego harmoniki promienia orbity [m]
ω	Argument perigeum $[rad]$
$\dot{\Omega}$	Zmiana rektanscenzji $[rad \cdot s^{-1}]$
IDOT	Zmiana kąta nachylenia orbity $[rad \cdot s^{-1}]$
	Moment, na który wyznaczamy współrzędne
t	– w sekundach tygodnia GPS
Algorytm obliczeń	, <u> </u>
$\delta t = a_0 + a_1(t - t_{oc}) + a_2(t - t_{oc})^2$	poprawka zegara satelity
$t_k = \frac{t}{t} - \delta t - t_{oe}$	czas, jaki upłynął od epoki wyznaczenia efemerydy
$a = (\sqrt{a})^2$	duża półoś orbity
$\frac{1}{\sqrt{\mu}}$	
$n_0 = \sqrt{\frac{\mu}{a^3}}$	ruch średni satelity
$n = n_0 + \Delta_n$	poprawiony ruch średni
$M_k = M_0 + n \cdot t_k$	anomalia średnia na epokę t_k
$E_k = M_k + e \cdot \sin E_k$	iteracyjnie wyznaczana anomalia mimośrodowa,
	zaczynając od $E_k^0 = M_k$
$\vartheta_k = 2\arctan(\sqrt{rac{1+e}{1-e}} \cdot anrac{E_k}{2})$	anomalia prawdziwa
$u = \omega + \vartheta_k$	argument szerokości
$\delta u_k = C_{us} \sin 2u + C_{uc} \cos 2u$	poprawka argumentu szerokości
$\delta r_k = C_{us} \sin 2u + C_{uc} \cos 2u$ $\delta r_k = C_{rs} \sin 2u + C_{rc} \cos 2u$	poprawka argumenta szerokości poprawka promienia wodzącego
$\delta i_k = C_{is} \sin 2u + C_{ic} \cos 2u + IDOT \cdot t_k$	poprawka kata nachylenia orbity
$u_k = U_{is}\sin 2u + U_{ic}\cos 2u + IDOI \cdot t_k$ $u_k = u + \delta u_k$	poprawiony argument szerokości
$a_k - u + \delta u_k$ $r_k = a(1 - e\cos E_k) + \delta r_k$	poprawiony argument szerokości poprawiony promień wodzący
$i_k = a(1 - e\cos E_k) + \delta i_k$ $i_k = i_0 + \delta i_k$	poprawiona inklinacja orbity
$\Omega_k = \Omega_0 + (\dot{\Omega} - \omega_e)t_k - \omega_e t_{oe}$ $x' = r_k \cos u_k$	poprawiona długość węzła wstępującego
	współrzędne orbitalne
$y' = r_k \sin u_k$	-
$x = x' \cos \Omega_k - y' \cos i_k \sin \Omega_k$	
$y = x' \sin \Omega_k + y' \cos i_k \cos \Omega_k$	współrzędne geocentryczne
$z = y' \sin i_k$	