Cover Sheet for Submission of Maths Examinations Summer 2020

We would advise preparing your coversheets with your CID, Module Name and Code and Date, before the exams are due to take place.

CID: 01738166

Module Name: Analysis 1

Module Code: MATH40002

Date: 04/05/2020

Questions Answered (in the file):

Please tick next to the question or questions you have answered in this file.

Q1	
Q2	√
Q3	
Q4	
Q5	
Q6	

(Note: this is a coversheet for all students - not all students will have exams with 6 questions. Please tick the boxes which are appropriate for your exam and/or the file you are submitting).

(Optional) Page Numbers for each question;

Page	Question
Number	Answered

If handwritten, please complete in CAPITAL Letters, in Blue or Black Ink, ensuring the cover sheet is legible.

CID: 01738166 Module Code: MATH40002 Question 2 Page 1 (a) h_{20} $\sqrt{1+\frac{1}{n}} \leq 1+\frac{1}{2n}$ For a >0 and 6>0 we have a? 26? (=) [d](6) (=) a 2 6 (*) $\sqrt{1+\frac{1}{n}} > 0 \quad \text{and} \quad (+\frac{1}{2n} > 0 =)$ $1+\frac{1}{2n} = \sqrt{1+\frac{1}{n}} = 1+\frac{1}{2n}$ We have 4n7+4n7+n = 4n3+4n2 (as n20) (=) n(41n2+4n+1) = 4n3+4n2 (2) 4 n7 + 4n + 1 7 4 n3 + 4n? (2n+1)? 2 4n? (n+1) | 4n? (=) $\frac{(2n+1)^{2}}{4n^{2}} \geq \frac{n+1}{n} = (1+\frac{1}{2n})^{2} + (1+\frac{1}{n})^{2} = (1+\frac{1}{n$ (6) In+1 - In = 1 (=) muldiply by (Inil + In) >0 (n+1-n) < \frac{1\n11 + \sin \frac{1}{2\sin}}{2\sin} (=) \frac{1\n11 + \sin \frac{1}{2} 2\sin}{2\sin} (=) Jnil 7 m from (#) we have n+1 zn =) In+1 = In, and since nzo, =) \(\int \) = \(\int \) =) \(\int \) - \(\int \) \(\frac{1}{2\int n} \)

C	ID:01738166 Module Code: MATH40002	Question 2	Page 2
(c)			
(5)	Denote $s_n := \sum_{i=1}^n a_i$		
(;;)	$\exists S : Sn \rightarrow S.$		
	Then Suspect it is convergent : Sn = 2/ it.		
	The partial sum $(a_n) = \sum_{k=1}^n \frac{1}{\sqrt{2k}} = 2\sum_{k=1}^n \frac{1}{2\sqrt{k}}$	2 2 E VK+1	- TE from (C)
	We get $(an) \ge 2\sqrt{n+1}-2$.	= 2 \nr) -2	4 the sum
	We have that bn = In is unbounded (*)	=) an is a	inbouded \$
	Proud of (*):		
(9)	Suppose In is bounded -> 3B: B > Vr But (B+1)? > 12 and Vroll? (6)	1, + n ∈ IN 0 2. event => X	
	But $(B+1)^2 > 13$ and $(B+1)^2 \in (an)$ to $Since a_n \rightarrow a_1 + 1$ $Since a_n \rightarrow a_1 + 1$ $So a_n < \frac{a+1}{2} < 1$.	as 1-9 >0	for n2Vi,
	Similarly 3 N2 + NV: lan-all 9 0		
	So dur n > max (N1, N2), O can car) c	1. Then	
	0 66 n ((a-1) n 2 1		

CID: 01738166 MATH 40002 Question 2 Page 3

So
$$\underset{n=1}{\overset{max}{\leq}} a_n^n = \underset{n=1}{\overset{max}{\leq}} a_{n}^n + \underset{n=max}{\overset{max}{\leq}} (W_1, W_2) r_1$$
 is bounded

above by

$$max(V_1, V_2)$$
 $\sum_{n=1}^{\infty} f_n^n + \sum_{n=max(N_1, V_1)+1} \frac{(a+1)^n}{(a+1)^n}$, which obviously

converges as it is the sum of a finite number and a geometric series with rel.

So the partial sums $\sum_{n=1}^{\infty} a_n^n$ are bounded above and increasing (as anso, $s_{n+1}-s_n=a_{n+1}^{n+1}>0$, where $s_n=\sum_{i=1}^{\infty}a_i^n$), hence convergent.