

Model Development Phase Template

Date	09 July 2024	
Team ID	SWTID1720023141	
Project Title	Prediction and Analysis of Liver Patient Data Using Machine Learning	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Logistic Regression	Logistic Regression is a linear model used for binary classification tasks. It estimates the probability that a given input belongs to a particular class by fitting a logistic function (sigmoid) to the linear combination of	random_state=42	Accuracy score = 74%

K neighbors Classifier	input features. It's simple, interpretable, and works well for linearly separable data. The KNeighbors Classifier (k-NN) is a non-parametric, instance-based learning algorithm. It classifies a data point based on the majority class among its k-nearest neighbors in the feature space. The value of k determines the number of neighbors considered.	n_neighbors=6, weights='uniform' , algorithm='kd_tre e', leaf_size=20	Accuracy score = 77%
Random Forest Classifier	Random Forest Classifier is an ensemble learning method that combines the predictions of multiple decision trees to improve accuracy and prevent overfitting. Each tree is trained on a random subset of the data and features, and their results are aggregated for final classification. This approach leverages the diversity of the individual	n_estimators=500,cri terion='entropy',r and om_state=18	Accuracy score = 72%

SVC	trees to enhance robustness and accuracy. Support Vector Classifier (SVC) is a supervised learning model that constructs a hyperplane or set of hyperplanes in a highdimensional space to classify data points. SVC aims to maximize the margin between different classes, making it	kernel="rbf",rand om _state=100,gamm a=' auto',verbose=2,d eci sion_function_sh ape ='ovo'	Accuracy score = 78%