习题课

一、选择题

1. 在整数集 Z 中,被整数 t 除所得余数为 $k(t>k\geq 0)$ 的所有整数组成一个"类",记为 $[k]_t = \{at+k \mid a\in Z\}, k=0,1,2,\cdots,t-1, \text{比如}[3]_5 = \{5a+3 \mid a\in Z\}, \text{则下列结论正确的为}($

②
$$Z = [0]_2 \cup [0]_3$$

③ 整数 a,b 满足 $a \in [1]_5$ 且 $b \in [2]_5$ 的充要条件是 $a + b \in [3]_5$

$$(4)$$
 $[0]_3 \cap [1]_2 = [3]_6$

【解析】 $[1]_2 = \{2n+1 | n \in Z\}$, $[1]_4 = \{4n+1 | n \in Z\}$, $[3]_4 = \{4n+3 | n \in Z\}$, 显然 $[1]_2 = [1]_4 \cup [3]_4$,①对;

②显然错;

对于(3),必要性不成立

事实上,取 $a \in [0]_5$, $b \in [3]_5$,则 $a+b \in [3]_5$,但显然 $a \notin [1]_5$, $b \notin [2]_5$,故③错。显然, $[0]_3$ 是由能被3整除的数构成的集合,而 $[1]_2$ 是奇数构成的集合,因此 $[0]_3 \cap [1]_2$ 为被6除余数为3的整数构成的集合,即 $[0]_3 \cap [1]_2 = [3]_6$,故④对;

综上,选① (4)

2. 已知[x]表示不超过x的最大整数,例如[2.3] = 2,[-1.8] = -2,方程[1+|x-1|] = 3的解集为A,集合B = $\{x|-2x^2+11kx-15k^2<0\}$,且 $A\cup B$ = R,则实数k 的取值范围是(

$$A.\left[\frac{6}{5}, \frac{4}{3}\right) \cup \left(-\frac{4}{3}, -\frac{6}{5}\right]$$

B.
$$(\frac{6}{5}, \frac{4}{3}] \cup [-\frac{2}{3}, -\frac{2}{5})$$

$$C.\left[\frac{6}{5}, \frac{4}{3}\right] \cup \left[-\frac{2}{3}, -\frac{2}{5}\right]$$

$$D.[\frac{6}{5}, \frac{4}{3}) \cup (-\frac{2}{3}, -\frac{2}{5}]$$

【解析】由题意知 $2 \le |x-1| < 3$,即 $2 \le x-1 < 3$ 或 $-3 < x-1 \le -2$,解得 $3 \le x < 4$ 或 $-2 < x \le -1$,故 $A = \left(-2, -1\right] \cup \left[3, 4\right)$;

$$\pm -2x^2 + 11kx - 15k^2 < 0 \Rightarrow (2x - 5k)(x - 3k) > 0$$

当
$$k>0$$
 时,得 $B=\left(-\infty,\frac{5k}{2}\right)\cup\left(3k,+\infty\right)$,因 $A\cup B=R$,故 $3\leq\frac{5k}{2}<3k<4$,解得

$$\frac{6}{5} \le k < \frac{4}{3}$$

当k=0时,得 $B=\left\{x\in R\mid x\neq 0\right\}$,此时 $A\cup B=R$ 不成立,故k=0不可取;

当
$$k < 0$$
 时,得 $B = (-\infty, 3k) \cup (\frac{5k}{2}, +\infty)$,则 $-2 < 3k < \frac{5k}{2} \le -1$,解得 $-\frac{2}{3} < k \le -\frac{2}{5}$,

综上, k 的取值范围为 $\left[\frac{6}{5}, \frac{4}{3}\right] \cup \left(-\frac{2}{3}, -\frac{2}{5}\right]$

【法二】特殊值法。观察选择支,取 $k = \frac{4}{3}$,解 $-2x^2 + 11kx - 15k^2 < 0$ 得

$$B = \left(-\infty, \frac{10}{3}\right) \cup \left(4, +\infty\right)$$
,显然 $A \cup B \neq R$ (元素 4 不在里面),故排除 B、C;

再 取
$$k=-1$$
 , 解 $-2x^2+11kx-15k^2<0$ 得 $B=(-\infty,-3)\cup\left(-\frac{5}{2},+\infty\right)$, 结 合

 $A = (-2, -1] \cup [3, 4)$, 显然 $A \cup B \neq R$, 排除 A。

综上, 只能选 D。

- 3. 设集合 $S,T,S \subseteq N^*,T \subseteq N^*,S,T$ 中至少有两个元素,且 S,T 满足:
- ①对任意 $x, y \in S$, 若 $x \neq y$, 都有 $xy \in T$
- ②对任意 $x, y \in T$, 若x < y, 则 $\frac{y}{x} \in S$;

下列情况中可能出现的有(

- A. S有4个元素, $S \cup T$ 有7个元素 B. S有4个元素, $S \cup T$ 有6个元素
- C. S有3个元素, $S \cup T$ 有5个元素 D. S有3个元素, $S \cup T$ 有4个元素

【解析】取 $S = \{1,2,4\}$,则 $T = \{2,4,8\}$, $S \cup T = \{1,2,4,8\}$,D对;

取 $S = \{2,4,8\}$, 则 $T = \{8,16,32\}$, $S \cup T = \{2,4,8,16,32\}$, $C \not \exists j \in S$

取 $S = \{2,4,8,16\}$,则 $T = \{8,16,32,64,128\}$, $S \cup T = \{2,4,8,16,32,64,128\}$,A 对;

对于 B, \diamondsuit $S = \{a,b,c,d\}$, 则 $T = \{ab,ac,ad,bc,bd,cd\}$, 其中 $a < b < c < d\}$

如 a=1, 此时 $S = \{1,b,c,d\}$, $T = \{b,c,d,bc,bd,cd\}$, 此时 B 不可能;

如a≠1,则S∪T仍至少含 7 个元素,B 不可能;

综上,选ACD。

 $M = \{-3, -2, -1, 0, 1, 2, 3\}$, 非空集合 P 满足: (1) $P \subseteq M$; (2) 若 $x \in P$, 则 $-x \in P$,

A. 7 B.8 C.15 D.16

【解析】考虑 $\{0\}$, $\{-1,1\}$, $\{-2,2\}$, $\{-3,3\}$,这4个集合显然都满足要求;

另外,这4个集合中,任意2个的并集也满足要求,有6个

同理,这4个集合中,任意3个集合的并集也满足要求,有4个

最后,这4个集合的并集也满足要求,有1个

因此, 共有4+6+4+1=15个, 选C。

5. 某小学对小学生课外活动进行调查。调查结果显示;参加舞蹈课外活动的有 57 人,参加唱歌课外活动的有 82 人,参加体育课外活动的有 53 人,三种课外活动都参加的有 20 人,只选择两种课外活动参加的有 36 人,不参加其中任何一项活动的有 10 人,则接受调查的小学生一共有()人

A.116 B.126 C.146 D.160

【解析】参考右边的韦恩图。令只参加舞蹈的有a人,只参加唱歌的有b人,只参加体育的

有
$$c$$
 人,由题意得
$$\begin{cases} a+x+y+20=57\\ b+x+z+20=82\\ c+y+z+20=53 \end{cases} \Rightarrow a+b+c=60$$

$$x+y+z=36$$

故,参加调查的小学生总共有(a+b+c)+(x+y+z+20)+10=60+(36+20)+10=126人,选 B

二、填空题

6. 集合 $A = \{a \mid 1 \le a \le 2000, a = 4k + 1, k \in Z\}, B = \{b \mid 1 \le b \le 3000, b = 3k - 1, k \in Z\}$,则 $|A \cap B|$ =

【解析】 3k-1=(3k-3)+2,因此集合 B 是由 1—3000 中除 3 余 2 的整数构成的;

现在分析集合A里面的数,看满足除3余2这个要求、

当k=3r时, 4k+1=12r+1, 除 3 余 1, 不满足要求;

当k=3r+1时, 4k+1=12r+5=(12r+3)+2, 除3余2, 满足要求;

当k=3r+2时, 4k+1=12r+9, 能被3整除, 不满足要求;

故,集合A中形如 $12r+5(r \in \mathbb{Z})$ 的数满足要求,

由 $1 \le 12r + 5 \le 2000$,解得 $0 \le r \le 166$

故, $|A \cap B| = 167$.

【说明】 $5 \notin M$ 隐含了条件 $5^2 - a = 0$,这一点很容易被忽略。

7. 已知 $m \in R$,集合 $A = \{x \mid m \le x \le 3m-1\}$,若 $A \cap Z$ 恰有一个元素,则实数 m 的取值范围为_____。

【解析】由题意知:集合 A 中含有一个整数,故 $A \neq \emptyset$,故 $m \leq 3m-1 \Rightarrow m \geq \frac{1}{2}$,如 $1 \in A$,则 $1 \leq 3m-1 < 2$ ($3m-1 \neq 2$,否则 m=1,A 中含有 2 个整数,不合题意),解得 $\frac{2}{3} \leq m < 1$;

如果 $2 \in A$,则必有 $1 < m < 2 \le 3m - 1 < 3$,解得 $1 < m < \frac{4}{3}$;

其他情况均不符合要求。

综上, m 的取值范围为 $\left[\frac{2}{3},1\right] \cup \left(1,\frac{4}{3}\right)$

8. 已知集合 $A = \{x \mid x^2 + 2x - 8 \ge 0\}$, $B = \{x \mid x^2 - 2ax + 4 \le 0\}$, 若 a > 0, 且 $A \cap B \cap N$ 中恰有 2 个元素,则 a 的取值范围为

【解析】 易知
$$A = (-\infty, -4] \cup [2, +\infty)$$

由题意: B中至少有 2个元素,故 $4a^2-16>0$,得a>2。

 $\diamondsuit f(x) = x^2 - 2ax + 4$, 对称轴为直线 x = a ,

故,由题意知
$$\begin{cases} f(2) = 8 - 4a \le 0 \\ f(3) = 9 - 6a + 4 \le 0 \\ f(1) = 5 - 2a > 0 \\ f(4) = 16 - 8a + 4 > 0 \end{cases}$$
,解得 $\frac{13}{6} \le a < \frac{5}{2}$,

故实数a的取值范围为 $\left[\frac{13}{6},\frac{5}{2}\right)$ 。

$$A_i$$
中所有元素之积为 a_i ,则 $\sum_{i=1}^{1023} a_i =$ _____。

【解析】用公式,如实数集 $X = \{x_1, x_2, x_3, \cdots, x_n\}$,则其所有非空子集的元素之积之和为 $(1+x_1)(1+x_2) \bullet \cdots \bullet (1+x_n) - 1$ 。本题中 $A = \{1,99,-1,0,25,-36,-91,19,-2,11\}$,

$$\sum_{i=1}^{1023} a_i = (1+1)(1+99)(1-1)(1+0)(1+25) \times (1-36)(1-91)(1-2)(1+11) - 1 = -1$$

10. 设 $A = \{x \mid x^2 + 4x = 0\}, B = \{x \mid x^2 + 2(a+1)x + a^2 - 1 = 0\}$,其中 $x \in R$,如果 $A \cap B = B$,则实数 a 的取值范围为_____。

【解析】: 由 $A \cap B = B$ 得 $B \subseteq A$, 而 $A = \{-4, 0\}$, $\Delta = 4(a+1)^2 - 4(a^2-1) = 8a + 8$

当
$$\Delta$$
=8 a +8<0,即 a <−1时, B = ϕ ,符合 B ⊆ A ;

当
$$\Delta$$
=8 a +8=0,即 a =−1时, B ={0},符合 B ⊆ A ;

当 $\Delta=8a+8>0$,即a>-1时,B中有两个元素,而 $B\subseteq A=\{-4,0\}$;

$$∴ B = \{-4, 0\}$$
 $∉ a = 1$

∴ a = 1或 $a \le -1$.

11. (北京高联赛) S 是集合 $\{1,2,3,\cdots,2023\}$ 的子集,满足任意两个元素的平方和不是9的倍数,则 |S| 的最大值是____。(这里 |S| 表示 S 的元素个数)

【解析】整数x及其平方 x^2 除以9的余数情况如下表:

$x \pmod{9}$	0	±1	±2	±3	<u>±</u> 4
$x^2 \pmod{9}$	0	1	4	0	7

由此可知: $\left[\frac{2023}{3}\right]$ = 674 个 3 的倍数只能人选 1 个,其它所有数均可选入。

故
$$|S|_{\text{max}} = 2023 - 674 + 1 = 1350$$

12. **(全国高联赛)**设集合 $\left\{\frac{3}{a}+b\middle|1\le a\le b\le 2\right\}$ 中的最大元素与最小元素分别为M,m,则

M-m的值为

【解析】由 $1 \le a \le b \le 2$ 知, $\frac{3}{a} + b \le \frac{3}{1} + 2 = 5$,当a = 1, b = 2时,得最大元素M = 5。

因此 $M - m = 5 - 2\sqrt{3}$

13. 设集合 $A = \{x | x^2 - [x] = 2\}$ 和 $B = \{x | |x| < 2\}$,其中 [x] 表示不大于 x 的最大整数,则 $A \cap B =$ _____。

【解析】因|x| < 2, [x]的值可取-2,-1,0,1

当
$$[x]=-2$$
,则 $x^2=0$ 无解;

当
$$[x]=-1$$
,则 $x^2=1$,所以 $x=-1$;

当
$$[x]=0$$
,则 $x^2=2$ 无解;

当
$$[x]=1$$
,则 $x^2=3$,所以 $x=\sqrt{3}$;

所以
$$x = -1$$
或 $x = \sqrt{3}$ 。

所以,
$$A \cap B = \{-1, \sqrt{3}\}$$

14. 满足下列两个条件的非空集合 S ,① $S \subseteq \{1,2,3,4,5\}$; ② 若 $a \in S$,则 $6-a \in S$ 。则 非空集合 S 的个数为

【解析】我们按S中元素的个数进行讨论

- (1) S 为单元集,显然此时只有 1 个集合 $\{3\}$
- (2) S 为 2 元集,由定义易知 $\{1,5\}$, $\{2,4\}$ 满足要求,有 2 个
- (3) S 为 3 元集, 只需把"3"加到 2 元集中即可, 有 $\{1,3,5\}$, $\{2,3,4\}$ 共 2 个
- (4) S 为 4 元集,有 $\{1,2,4,5\}$ 共 1 个
- (5) S 为 5 元集,有 $\{1,2,3,4,5\}$ 共 1 个

综上,满足要求的S有7个。

15. 由 1, 2, 3 组成的 n 位数,要求 n 位数中 1, 2 和 3 每一个至少出现一次,所有这种 n 位数的个数为_____。

【解析】设所有由 1,2,3 组成的 n 位数的全体为集合 S ,不含 i(i=1,2,3) 的 n 位数的集合记为 A_i ,则 $|S|=3^n$, $|A_1|=|A_2|=|A_3|=2^n$, $|A_1A_2|=|A_1A_3|=|A_2A_3|=1$, $|A_1A_2A_3|=0$,故 $|A_1\cup A_2\cup A_3|=|A_1|+|A_2|+|A_3|-|A_1A_2|-|A_1A_3|-|A_2A_3|+|A_1A_2A_3|=3\times 2^n-3$

故、符合要求的n 位数的个数为: $3^n - 3 \times 2^n + 3$ 。

16. (天津高联赛) 设 $A = \{1, 2, 3, 4, \dots, 10\}, B = \{1, 2, 3, 4\}, C \in A$ 的子集,且 $C \cap B \neq \emptyset$,

则这样的C有 个

【解析】由题意,C一定含有 1, 2, 3, 4 四个元素中的至少一个,由于集合 A 的不含 1, 2, 3, 4 中任何一个元素的子集有 2^6 = 64 个(由 $\{5,6,7,8,9,10\}$ 的子集构成),故,含有 1, 2, 3, 4 中至少一个元素的子集有 2^{10} – 64 = 960 个,因此,满足要求的 C 有 960 个

17. **(重庆高联赛)** 设 a_i (i=1,2,3,4) 均为实数,若集合 $\{a_1,a_2,a_3,a_4\}$ 的所有非空真子集的元素之和为 28,则 $a_1+a_2+a_3+a_4=$

【解析】: 含有元素 $a_i(i=1,2,3,4)$ 的非空真子集有 $2^3-1=7$ 个 ,故 $\{a_1,a_2,a_3,a_4\}$ 的所有非空真子集的元素之和为 $7(a_1+a_2+a_3+a_4)=28$,从而 $a_1+a_2+a_3+a_4=4$ 。

18. (全国高联赛) 已知实数集合 $\{1,2,3,x\}$ 的最大元素与最小元素之差等于该集合所有元素之和,则 x = 。

【解析】: 如果 $x \ge 0$, 则 $\{1,2,3,x\}$ 的最大元与最小元之差 $\le \max\{3,x\}$, 而 $\max\{3,x\} < x+6$, 不合题意,故 x < 0 ,从而 3-x=6+x ,解得 $x=-\frac{3}{2}$ 。

19. (山西高联赛) 设 $M = \{1, 2, 3, \dots, 2018\}$ 中,末尾数字为 8 的元素之和为

【解析】我们将 $8,18,28,38,\cdots,2008,2018$ 的末位去掉,得到 $0,1,2,3,\cdots,200,201$ 共 202 个数,因此,集合 M 中,末位为 8 的元素之和为

$$10(0+1+2+3+\cdots+200+201)+202\times8=204626$$

20. 设 $n \in N$ 且 $n \ge 15$, A, B 是 集 合 $M = \{1, 2, 3, 4, \dots, n\}$ 的 一 个 划 分 (即 $A \cap B = \emptyset, A \cup B = M$),证明: A 或 B 中必有两不同数之和为完全平方数。

【证明】. 假设结论不成立,则不管是A还是B,其中任意两数之和均不是完全平方数。 不妨设 $1 \in A$,则 $3 \in B$, $6 \in A$, $10 \in B$, $15 \in A$,

但因 $1 \in A$,而15+1=16为完全平方数,因此,假设不成立,从而原结论成立。 证毕。

三、解答题

21. 设集合
$$M = \{x \mid \frac{ax-5}{x^2-a} < 0, x \in R\}$$
.

- (1) 当a=4时, 化简集合M
- (2) 如 $3 \in M$, 且 $5 \notin M$, 求实数a的取值范围。

【解析】(1) 当
$$a=4$$
时,有 $\frac{4x-5}{x^2-4}<0$,即 $(4x-5)(x+2)(x-2)<0$,参考下图

得
$$x < -2$$
或 $\frac{5}{4} < x < 2$,故 $M = (-\infty, -2) \cup (\frac{5}{4}, 2)$

(2)
$$\exists 3 \in M \notin \frac{3a-5}{3^2-a} < 0$$
, $\exists (3a-5)(a-9) > 0$,

由 5 ∉ M 得
$$\frac{5a-5}{5^2-a}$$
 ≥ 0, 或 $5^2-a=0$,

故
$$1 \le a \le 25$$
 ②

由①②得:
$$a \in [1, \frac{5}{3}) \cup (9, 25]$$

22. 已 知 集 合 $A = \{(x,y) | \frac{y-3}{x-2} = a+1\}, B = \{(x,y) | (a^2-1)x + (a-1)y = 15\}$, 且 $A \cap B = \emptyset$,求 a 的值。

【解析】由
$$\frac{y-3}{x-2}$$
= $a+1$ 得 $(a+1)x-y-2a+1=0$ ($x \neq 2$) ①

故,集合A表示一条直线,点(2,3)除外;

$$\overrightarrow{m}(a^2-1)x+(a-1)y=15$$
 2

当a≠1时也表示一条直线,a=1时②不成立,

因此,当且仅当发生下列三种情况之一时, $A \cap B = \emptyset$

- (1) a=1, 此时 $B=\emptyset$, 故 $A\cap B=\emptyset$
- (2) a=-1,此时 A 表示直线 $y=3(x\neq 2)$, B 表示直线 $y=-\frac{15}{2}$,他两互相平行,故 $A\cap B=\varnothing$;
- (3) a ≠ ±1时,直线①②相交,但交点刚好是直线①上所缺的那个点(2,3) 也能满足要

求,将其带入直线② 得
$$2(a^2-1)+3(a-1)=15$$
,解得 $a=-4$ 或 $a=\frac{5}{2}$

综上,
$$a = -4$$
, ± 1 , $\frac{5}{2}$.

23. 已知非空集合
$$A = \{x \mid x^2 - (3a+1)x + 2(3a-1) < 0\}$$
 ,

 $B = \{x \mid x^2 - (a^2 + a + 2)x + a^3 + 2a < 0\}$ 。 命题 $p: x \in A$, 命题 $q: x \in B$, 若 $p \neq q$ 的充分条件,求实数 a 的取值范围。

【解析】 易知
$$A = \{x \mid (x-2)(x-(3a-1)) < 0\}$$
 , $B = \{x \mid (x-a)(x-(a^2+2)) < 0\}$

注意到
$$a^2 + 2 > a$$
, 故 $B = (a, a^2 + 2)$

由于
$$A\neq\emptyset$$
,故 $3a-1\neq2$,即 $a\neq1$

当
$$a > 1$$
时, $A = (2,3a-1)$

由题意知
$$A \subseteq B$$
,故
$$\begin{cases} a \le 2 \\ 3a - 1 \le a^2 + 2 \end{cases} \Rightarrow 1 < a \le 2$$

当
$$a < 1$$
时, $A = (3a-1,2)$,由 $A \subseteq B$ 得 $\begin{cases} a \le 3a-1 \\ 2 \le a^2+2 \end{cases} \Rightarrow \frac{1}{2} \le a < 1$

综上,实数
$$a$$
的取值范围为 $\left[\frac{1}{2},1\right]$ $\cup \left(1,2\right]$

24. 设 函 数 $f(x) = x^2 + ax + b(a, b \in R)$, 集 合 $A = \{x \mid x = f(x), x \in R\}$, $B = \{x \mid x = f(f(x)), x \in R\}$,

- (1) 证明: $A \subset B$;
- (2) 如 $A = \{-1,3\}$, 求集合 B。

【证明】(1) 对任意的 $x_0 \in A$,有 $x_0 = f(x_0), x_0 \in R$,

于是, $f(f(x_0)) = f(x_0) = x_0$,故 $x_0 \in B$,从而 $A \subseteq B$,证毕。

(2) 【解】因
$$A = \{-1,3\}$$
,所以
$$\begin{cases} (-1)^2 + a \cdot (-1) + b = -1 \\ 3^2 + a \cdot 3 + b = 3 \end{cases}$$
,解得
$$\begin{cases} a = -1 \\ b = -3 \end{cases}$$

故,
$$f(x) = x^2 - x - 3$$

曲
$$x = f(f(x))$$
 得 $(x^2 - x - 3)^2 - (x^2 - x - 3) - 3 = x$

即
$$(x^2-2x-3)(x^2-3)=0$$
,解得 $x=-1,3,\pm\sqrt{3}$

所以
$$B = \{-1, 3, \pm \sqrt{3}\}$$

25. 已知集合
$$A = \{x \mid x^2 - ax + 8 \ge 0\}$$
.

(2) 若
$$B = \{x \mid x - 2a < 0\}$$
, 且 $A \cup B = A$, 求实数 a 的取值范围。

【解】(1) 易知
$$A = (-\infty, x_1] \cup [x_2, +\infty)$$
, $B = (x_3, x_4)$;

其中 x_1, x_2 为方程 $x^2 - ax + 8 = 0$ 的根, x_3, x_4 为方程 $x^2 - 2ax - b = 0$ 的根,

由
$$A \cap B = [4,9)$$
知: $x_2 = 4, x_4 = 9$

将 $x_2 = 4$ 代入方程 $x^2 - ax + 8 = 0$,解得a = 6;

将 $x_4 = 9$ 代入方程 $x^2 - 2ax - b = 0$,解得b = -27;

(2)
$$A \cup B = A \Rightarrow B \subset A$$

当 $\Delta \le 0$ 时,得 $a^2 - 32 \le 0 \Longrightarrow -4\sqrt{2} \le a \le 4\sqrt{2}$,此时A = R,符合。

当
$$\Delta = a^2 - 32 > 0$$
,即 $a > 4\sqrt{2}$ 或 $a < -4\sqrt{2}$ 时

$$A = (-\infty, x_1] \cup [x_2, +\infty)$$
, $\overrightarrow{m} B = (-\infty, 2a)$, \overrightarrow{w}

$$B \subseteq A \Rightarrow 2a \le x_1 = \frac{a - \sqrt{a^2 - 32}}{2} \Rightarrow a < -4\sqrt{2}$$

综上, $a \le 4\sqrt{2}$

- **26.** 已知由实数组成的集合 $A, 1 \notin A$,又满足: 若 $x \in A$,则 $\frac{1}{1-x} \in A$ 。
 - (1) 设A中含有 3个元素,且 $2 \in A$,求A;
 - (2) A 能否是只含一个元素的单元素集, 试说明理由;
- (3) A 中所含元素个数一定是 $3n(n \in N^*)$ 个吗? 若是,给出证明,若不是,说明理由。

【解】(1) 由 2 ∈ A ⇒
$$\frac{1}{1-2}$$
 ∈ A ⇒ -1 ∈ A , 从而 $\frac{1}{1-(-1)} = \frac{1}{2}$ ∈ A ,而 $\frac{1}{1-\left(\frac{1}{2}\right)} = 2$

所以,
$$A = \left\{2, -1, \frac{1}{2}\right\}$$

(2) 假设
$$A = \{a\}$$
, 由题意知 $\frac{1}{1-a} = a \in A$, $\frac{1}{1-a} = a \Rightarrow a^2 - a + 1 = 0$,

显然, $\Delta=1-4<0$, 该方程无实数解, 故 A 不可能是含单个元素的单元素集。

(3) 集合 A 中一定含有 $3n(n \in N^*)$ 个元素。

证明: 假设
$$x \in A$$
,则 $\frac{1}{1-x} \in A$,进而 $\frac{1}{1-\frac{1}{1-x}} = \frac{x-1}{x} \in A$,而 $\frac{1}{1-\frac{x-1}{x}} = x$

易验证:
$$x \neq \frac{1}{1-x}, x \neq \frac{x-1}{x}, \frac{1}{1-x} \neq \frac{x-1}{x}$$

故集合 A 中一定含有 $3n(n \in N^*)$ 个元素。

- **27.** 由实数组成的集合 A 有如下性质: 若 $a \in A, b \in A$,且 a < b,则 $1 + \frac{a}{b} \in A$ 。
 - (1) 若集合 A 恰有两个元素,且有一个元素为 $\frac{4}{3}$, 求集合 A;
- (2) 是否存在一个含有元素 0 的三元素集合,若存在,请求出该集合,若不存在,请说明理由。

【解】(1) 不妨设
$$A = \left\{x, \frac{4}{3}\right\}$$

如
$$x > \frac{4}{3}$$
 , 则 $1 + \frac{\frac{4}{3}}{x} = 1 + \frac{4}{3x} \in A$ 故 $1 + \frac{4}{3x} = x$ 或 $1 + \frac{4}{3x} = \frac{4}{3}$;

由
$$1 + \frac{4}{3x} = x$$
 解得 $x = \frac{3 + \sqrt{57}}{6}$, 得 $A = \left\{ \frac{4}{3}, \frac{3 + \sqrt{57}}{6} \right\}$

$$\pm 1 + \frac{4}{3x} = \frac{4}{3}$$
 解得 $x = 4$, 得 $A = \left\{ \frac{4}{3}, 4 \right\}$

如
$$x < \frac{4}{3}$$
 , 则 $1 + \frac{x}{\frac{4}{3}} = 1 + \frac{3x}{4} \in A$, 故 $1 + \frac{3x}{4} = x$ 或 $1 + \frac{3x}{4} = \frac{4}{3}$;

由
$$1 + \frac{3x}{4} = x$$
,解得 $x = 4$ (舍去)

$$\pm 1 + \frac{3x}{4} = \frac{4}{3}$$
, $\# R = \frac{4}{9}$, $\# A = \left\{ \frac{4}{3}, \frac{4}{9} \right\}$

综上,
$$A = \left\{\frac{4}{3}, 4\right\}$$
 或 $A = \left\{\frac{4}{3}, \frac{4}{9}\right\}$ 或 $A = \left\{\frac{4}{3}, \frac{3 + \sqrt{57}}{6}\right\}$

(2) 假设这样的集合 A 存在,不妨设 $A = \{0, x, y\}$,由题意知: x, y 必均为正数;

从而
$$1+\frac{0}{x}=1\in A$$
,不妨修正 $A=\left\{ 0,1,y\right\} ;$

如果
$$y > 1$$
,则 $1 + \frac{1}{y} \in A$,此时必有 $1 + \frac{1}{y} = y$,解得 $y = \frac{1 + \sqrt{5}}{2}$,得 $A = \left\{0, 1, \frac{1 + \sqrt{5}}{2}\right\}$

如 0 < y < 1,则 $1 + \frac{y}{1} = 1 + y \in A$,由于 $1 + y \neq y, 1 + y \neq 1, 1 + y \neq 0$,此时不存在满足条件的 A

综上,满足题意的
$$A$$
 存在,且只能是 $A = \left\{0,1,\frac{1+\sqrt{5}}{2}\right\}$

- 28. 设S为非空数集,且满足(i) $2 \notin S$; (ii) 若 $a \in S$,则 $\frac{1}{2-a} \in S$ 。证明
- (1) 对一切的 $n \in N^*, n \geq 3$,都有 $\frac{n}{n-1} \notin S$;
- (2) S 要么是单元素集,要么是无限集。

【证明】(1) 假如存在某个 $n_0 \ge 3$, 使得 $\frac{n_0}{n_0-1} \in S$

$$\operatorname{II} \frac{1}{2 - \frac{n_0}{n_0 - 1}} = \frac{n_0 - 1}{n_0 - 2} = 1 + \frac{1}{n_0 - 2} \in S$$

进而得
$$\frac{1}{2-\frac{n_0-1}{n_0-2}} = \frac{n_0-2}{n_0-3} = 1 + \frac{1}{n_0-3} \in S$$
,继续下去,

可得
$$1+\frac{1}{n_0-(n_0-1)}=2\in S$$
 , 与题设矛盾,

故,不存在正整数 $n \ge 3$,使得 $\frac{n}{n-1} \in S$,证毕。

(2) 因为 $S \neq \emptyset$,故存在 $a \in S$,由S的性质知: $\frac{1}{2-a} \in S$,

如
$$\frac{1}{2-a} = a$$
,解得 $a = 1$,此时 $S = \{1\}$

如
$$a \neq 1$$
,由 S 的性质知 $\frac{1}{2 - \frac{1}{2 - a}} = \frac{2 - a}{3 - 2a} \in S$,进而 $\frac{1}{2 - \frac{2 - a}{3 - 2a}} = \frac{3 - 2a}{4 - 3a} \in S$

继续下去,知 $\frac{k-(k-1)a}{(k+1)-ka} \in S$,貌似S为无限集,下面证明之,

事实上,我们只需证明:对任意两个不同的正整数 n,m,都有 $\frac{n-(n-1)a}{(n+1)-na} \neq \frac{m-(m-1)a}{(m+1)-ma}$ 即可。

如存在两个不同的正整数
$$n, m$$
 , 使得 $\frac{n-(n-1)a}{(n+1)-na} = \frac{m-(m-1)a}{(m+1)-ma}$, 则

$$[n-(n-1)a][(m+1)-ma] = [(n+1)-na][m-(m-1)a]$$

化简并整理得: $(n-m)(a-1)^2=0$,

由于 $n \neq m$,故a = 1,此与 $a \neq 1$ 矛盾,

故,如
$$n \neq m$$
,则必有 $\frac{n-(n-1)a}{(n+1)-na} \neq \frac{m-(m-1)a}{(m+1)-ma}$,即此时 S 为无限集合。

综上,非空集合S要么为单元集,要么为无限集,证毕。