

Decompositions & Normal Forms

Announcements/reminders

- Prelim being graded Friday night H3 is out
 - ER diagrams & Functional Dependencies
 - Material up to and including today
 - Due Friday next week

Functional Dependencies (FDs)

- Suppose X and Y are sets of attributes,
- $\fbox{ }$ Functional dependency $X \rightarrow Y$ holds over R if:

$$\forall t \in R, s \in R, \pi_X(t) = \pi_X(s) \Rightarrow \pi_Y(t) = \pi_Y(s)$$

- given two tuples in R, if their X values agree, then the Y values must also agree
- A generalization of keys

Closures

- ${f ?}$ Starting set of FDs F
- The closure F^+ of F is the set of all FDs implied by FDs in F

$$F^+ = \{D \mid F \vDash D\}$$

- Can be computed using Armstrong's axioms
- Can be very large

Attribute closures

- Typically, we just want to check if a specific FD is in the closure of a set of FDs *F*.
- TE.g. suppose

$$F = \{A \rightarrow D, AB \rightarrow E, BI \rightarrow E, CD \rightarrow I, E \rightarrow C\}$$

? And I want to know: does F imply $AE \rightarrow D$?

Attribute closures

Want to see whether

$$F \vDash AE \rightarrow D$$

- ${
 m ? No}$ need to compute entire closure F^+
- Will instead compute the attribute closure
- ② Denote this as $(AE)^+$
- ealso This is the set of all attributes Ksuch that

$$(AE \to K) \in F^+$$

Then can just check if $D \in (AE)^+$

Finding all keys of a relation

- ? How to do this?
- Iterate over all subsets X of attributes
 - Check if U (set of all attributes) is in attribute closure of X
 - If yes, X is a key
 - ☑ If not, X is not a key

Covers

- Sometimes two different sets of FDs may have the same closure
- If $F^+ = G^+$ then F is a *cover* for G and vice versa

Summary so far

- FDs are a marker of redundancy
- To detect redundancy, need to find all FDs that hold over a relation
- Armstrong's axioms can help with that
- We can take a set of FDs and compute:
 - Closures
 - Attribute closures
 - Covers

Relation Decomposition

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Wages

R	W
8	10
5	7

Decomposition

- ② A <u>decomposition</u> of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
 - Every attribute of R appears as an attribute of one of the new relations.

Decomposition

- ② Decompositions can lead to trouble!
- Performance issues
 - Some queries now require a join
- Also, some more subtle and/or more serious problems

A Lossy Decomposition

A	В	C
1	2	3
4	5	6
7	2	8

A	В
1	2
4	5
7	2

A	В	C
1	2	3
4	2 5	6
7	2	6 8
1	2	8
7	2	3

Lossless Join Decompositions

② Decomposition into X and Y is <u>lossless-join</u> w.r.t. a set of FDs F if, for every instance R that satisfies F:

$$\pi_X(R)\bowtie \pi_Y(R)=R$$

Note: it is always true that

$$\pi_X(R)\bowtie\pi_Y(R)\supseteq R$$

Lossless Join Decompositions

It is essential that all decompositions used to deal with redundancy be lossless!

More on Lossless Join

The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:

$-\chi \cap \gamma \rightarrow$	X, or
---------------------------------	-------

$$- \chi \cap \gamma \rightarrow \gamma$$

A	В	C
1	2	3
4	5	6
7	2	8

	7	D
1	1	2
4	1	5
7	7	2

В	$ \mathbf{C} $
2	3
5	6
2	8

A	В	\mathbf{C}
1	2	3
4	2 5	6
7	2	8
1	2	6 8 8
7	2	3

Dependency Preserving Decomposition

- - Decomposition: CSJDQV and SDP
 - Lossless join because SD is key for one of the tables
 - Problem: Checking JP → C requires a join!

Dependency Preserving Decomposition

Dependency preserving decomposition (Intuitive):

- If R is decomposed into X and Y,
- and we enforce the FDs that hold just on X, and just on Y,
- then all FDs that were given to hold on R must also hold.

Projection of a set of FDs

② If F is a set of FDs and X a subset of attributes, then the projection of F onto X (denoted F_X) is the set of FDs U → V in F⁺ such that U, V are in X.

Intuitively, these are the FDs implied by F that can be enforced by looking at the attributes in X in isolation.

Dependency Preserving Decomposition

A decomposition of R into X and Y is <u>dependency</u> <u>preserving</u> if

$$(F_X \cup F_Y)^+ = F^+$$

- That is, if we consider only
 - dependencies in the closure F + that can be checked in X without considering Y,
 - and those that can be checked in Y without considering X,
- Then these dependencies imply all FDs in F⁺.

Dependency Preserving Decompositions (Contd.)

- ② Dependency preserving does not imply lossless join:
 - ABC, A \rightarrow B, decomposed into AB and BC.
 - Not lossless join as shown previously
- Also, lossless join does not imply dependency-preserving

Decompositions

- ② Decompositions remove redundancy
- But bring problems of their own
 - Some queries require a join
 - May lose information if not careful
 - Checking FDs may require a join

Now finally back to our goal!

- Want to remove redundancy
- ② Given a set of dependencies F, we can compute its closure using Armstrong's axioms
 - So we know all the dependencies that hold
- We are ready to decompose, hopefully avoiding the major pitfalls of decomposition

Normal Forms

- The "end goal" of decomposition
- There is a variety of *normal forms* for relations
 - All have formal definitions
- Decompose until reach desired normal form
- Main normal forms of practical interest: BCNF and 3NF

BCNF (Boyce-Codd NF)

- Motivation: no redundancy due to FDs
- Only FDs allowed are keys

BCNF

- ② A relation R with FDs F is in BCNF if, for all $X \to A$ in F^+ (X = set of attrs, A = single attr.) either:
 - $A \in X$ (called a *trivial* FD), or
 - X contains a key for R.

The only non-trivial FDs that hold over R are key constraints.

Decomposition into BCNF

② If X → A is in closure of F and violates BCNF, decompose R into R - A and XA, repeating if needed

Example decomposition

- ?CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
- To deal with SD →P, decompose into SDP, CSJDQV.

Order in which we process FDs may lead to different decompositions

Decomposition into BCNF

- ② Consider relation R with FDs F. If X →A is in the closure of F and violates BCNF, decompose R into R A and XA, repeating if needed
- Is this guaranteed to terminate?
- Is this guaranteed to produce a lossless-join decomposition?

Reminder

The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:

- $\chi \cap \gamma \rightarrow \chi$, or
- $\chi \cap \gamma \rightarrow \gamma$
- In particular, the decomposition of R into UV and R - V is lossless-join if $U \rightarrow V$ holds over R.

A	В	C
1	2	3
4	5	6
7	2	8

A	В	C
1	2	3
4	5	6
7	2	8

A	В
1	2
4	5
7	2

В	\mathbf{C}
2	3
5	6
2	8

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., SBD, SB →D, D →B
 - Not in BCNF because D is not a key.
 - Can't decompose while preserving SB →D

Third Normal Form (3NF)

- Allows slightly more redundancy than BCNF
 - If a schema is in BCNF, it is in 3NF, but not necessarily vice versa
- There is always a dependency-preserving decomposition into 3NF

Third Normal Form (3NF)

- - $A \in X$ (called a *trivial* FD), or
 - X contains a key for R, or
 - A is part of some **key** for R.
- ② Minimality of a key is crucial in third condition above!
- If R is in BCNF, obviously in 3NF.

The gap between 3NF and BCNF

- This is in 3NF (because CBD is also a key)
- ② But for each reservation of sailor S, same (S, C) pair is stored.

Decomposition into 3NF

- ②Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier).
- To ensure dependency preservation, one idea:
 - If $X \rightarrow A$ is not preserved, add relation XA.
 - Problem is that XA may violate 3NF!
- ☑ Refinement: Instead of the given set of FDs F, start
 with a minimal cover for F.

Minimal Cover for a Set of FDs

- Minimal cover G for a set of FDs F:
 - Closure of F = closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and ``as small as possible'' in order to get the same closure as F.

Minimal Cover Example

- ② Algorithms to compute minimal cover are known (see textbook)
- For example

$$F = \{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow G, EF \rightarrow H, ACDF \rightarrow EG\}$$

This has a minimal cover

$$G = \{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G, EF \rightarrow H\}$$

Using minimal covers for 3NF

- ☑ Compute G to be the minimal cover of the original set F
- ② Compute a lossless join decomposition using algorithm similar to BCNF
- This is guaranteed to satisfy 3NF
- ② Explanation why in textbook if you're interested.

Summary of Schema Refinement

- BCNF implies free of redundancies due to FDs
- If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
- If a lossless-join, dependency preserving decomposition into BCNF is not possible, consider 3NF
- ② Decompositions should be carried out and/or reexamined keeping *performance issues* in mind