LI S3

TD 1 Architecture des ordinateurs

Table des matières

1)	Question
2)	Question
3)	Question
4)	Question
5)	Question
6)	Question
7)	Question
8)	Question
9)	Question
10)	Question5
11)	Question5
12)	Question5
13)	Question6
14)	Question6
15)	Question6
16)	Question6
17)	Question6
18)	Question
19)	Question
20)	Question

1) Question

Pourquoi a-t-on un circuit d'horloge dans une machine informatique ?

A quoi sert une carte mère, donnez les deux caractéristiques principales

Qu'est ce que le BIOS d'une carte mère?

2) Question

Expliquez cette suite de schéma

3) Question

Expliquez ce schéma, quelle est son origine?

4) Question

Expliquez ce que sont les bus dans ce schéma, rappelez leur rôle

5) Question

Expliquez les flèches dans ce schéma

6) Question

Expliquez ce schéma ci-dessous

7) Question

Transformez les nombres en passant d'une base à une autre Transformez :

- 1. 10₁₀ en binaire sur 8 bits
- 2. 0110₂ en décimal
- 3. 129₁₀ en binaire
- 4. 10110010₂ en décimal
- 5. 524_{10} en binaire
- 6. 110100110010₂ en décimal

8) Question

Transformez les nombres en passant d'une base à une autre Transformez :

- 1. 123₁₀ en hexadécimal
- 2. 111 0000 0110₂ en hexadécimal
- 3. 129₁₆ en binaire
- 4. AF0₁₆ en décimal
- 5. 524₁₆ en binaire
- 6. 110100110010010011100110011100110111₂ en hexadécimal
- 7. 192.168.0.252₁₀ en hexadécimal

9) Question

Quelles sont les différences entre un kibioctet et un kilooctet ? Quelles sont les différences entre un mébioctet et un mégaoctet ?

10) Question

Quelles sont les différences entre un kibioctet et un kilooctet ? Quelles sont les différences entre un mébioctet et un mégaoctet ?

11) Question

Avec 10 chiffres binaires, quel est le nombre maxi pouvant être codé en base 10 ? Combien de nombre peuvent être codés ?

12) Question

Pour une addition en binaire, effectuez une addition simple sur 1 bit avec en entrée 2 entrées sur 1 bit, avec toutes les valeurs possibles. Dans une ALU, il y a deux indicateurs un bit de retenue, et un bit indicateur de 0.

Faites une table avec en entrée les 2 bits, en sortie sur 1 bit le résultat et les valeurs, pour chaque cas, du bit de « carry flag » et du bit de « zero flag »

13) Question

Pour un codage de nombre négatif, on utilise la représentation « signe et valeur absolue » Quel est l'inconvénient d'opérations avec une représentation signe et valeur absolue ? Vous rappellerez le principe de cette représentation.

Par exemple $10010011_2 = -19_{10}$

14) Question

Un nombre négatif est le complément à 2 d'un nombre positif. Un complément à 2 est le complément à 1 d'un nombre puis l'ajout d'un 1 sur le bit de poids faible. Le complément à 1 d'un nombre binaire est l'inversion de tous les bits d'un nombre binaire.

Pour des entiers dans un système informatique, des « INT » sur 16 bits, utilisés dans un langage C, les nombres négatifs sont codés en complément à 2.

Trouvez -52₁₀ en binaire (codage sur 16 bits) en utilisant le complément à 2.

15) Question

En représentation en complément à 2, pourquoi y'a-t-il un nombre différent de représentation de nombres négatifs et positifs. Pour vous aider, prenez un exemple sur 8 bits.

16) Question

En utilisant l'arithmétique en complément à 2, effectuez l'addition de 118 et de -36

17) Question

Lorsqu'ils sont stockés en mémoire dans un ordinateur, les nombres binaires ont une taille limitée : souvent 1, 2 ou 4 octets.

Parfois, le résultat d'une opération arithmétique, par exemple d'une addition, ne peut pas tenir dans la taille imposée. On dit alors qu'il y a **débordement (overflow).** Comment le détecter ? Cela dépend de la représentation des nombres.

Effectuez avec **des nombres non signés** l'opération 156 + 168 après les avoir transcodés en binaire.

Effectuez le même chose pour 27 – 100

Comment allez vous voir s'il y a un débordement ?

18) Question

Pour continuer à étudier l'overflow.

Effectuez avec des **nombres en complément à 2** l'opération -60 + (-61) après les avoir transcodés en binaire.

Effectuez le même chose pour 77 + 68

19) Question

Codez en notation virgule fixe de 78,187510 suer 12 bits, 8 bits partie entière, 4 bits partie fractionnaire

20) Question

Codez sur 32 bits IEEE 754 en virgule flottante -1039,0. Vous vous servez de ce format.

Utilisé pour le type "float" (simple précision)

Vous le mettrez aussi en hexadécimal.