```
In [1]: %matplotlib inline
    import numpy as np
    import matplotlib.pyplot as plt
    plt.style.use('ggplot')
    import pandas as pd
    import statsmodels.api as sm
    import pystan
```

第1章 p.18,19

混合正規分布

$$p(x|w) = (1 - a)\mathcal{N}(x) + a\mathcal{N}(x - b)$$

$$\mathcal{N}(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

$$W = \{(a, b) \mid 0 \le a \le 1, |b| \le 5\}$$

$$\varphi(w) = \frac{1}{10}$$

真の分布

$$q(x) = p(x|a_0, b_0)$$

(a₀, b₀) = (0.5, 3.0), (0.5, 1.0), (0.5, 0.5)

サンプル数

$$n = 100$$

n = 100のサンプルを作成する

```
In [3]: np.random.seed(seed=123)
    sample1 = gen_mixed_gaussian(0.5, 3.0, 100)
    sample2 = gen_mixed_gaussian(0.5, 1.0, 100)
    sample3 = gen_mixed_gaussian(0.5, 0.5, 100)
```

プロットしてみる

```
In [5]: plt.hist(sample1. bins=20. range=(-5.0. 5.0))
```

plt.plot(xs, mg(0.5, 3.0, 50)(xs))
plt.title('(a0,b0)=(0.5,3.0)')
plt.show()
plt.hist(sample2, bins=20, range=(-5.0, 5.0))
plt.plot(xs, mg(0.5, 1.0, 50)(xs))
plt.title('(a0,b0)=(0.5,1.0)')
plt.show()
plt.hist(sample3, bins=20, range=(-5.0, 5.0))
plt.plot(xs, mg(0.5, 0.5, 50)(xs))
plt.title('(a0,b0)=(0.5,0.5)')
plt.title('(a0,b0)=(0.5,0.5)')
plt.show()

混合正規分布で当てはめするが、精度はでない。

```
In [6]: | from sklearn.mixture import GaussianMixture
        gm1 = GaussianMixture(n components=2, covariance type='spherical')
        gml.fit([[x] for x in sample1])
        print(gm1.weights )
        print(gm1.means )
        print(gm1.covariances )
        [ 0.51323679  0.48676321]
        [[ 3.14557991]
         [-0.15162801]
        [ 0.76946106  0.92362133]
In [7]: gm2 = GaussianMixture(n_components=2, covariance_type='spherical')
        gm2.fit([[x] for x in sample2])
        print(gm2.weights_)
        print(gm2.means_)
        print(gm2.covariances )
        [ 0.4115779  0.5884221]
        [[-0.55853118]
         [ 0.91471121]]
        [ 0.36718427  0.64473308]
In [8]: | gm3 = GaussianMixture(n_components=2, covariance_type='spherical')
        gm3.fit([[x] for x in sample3])
        print(gm3.weights )
        print(gm3.means )
        print(gm3.covariances )
        [ 0.45176392  0.54823608]
        [[-0.25324619]
         [ 0.83559722]]
        [ 0.87647464  0.69496225]
```

PyStanで混合正規分布を推定してみる

```
In [10]: data1 = {'N':100, 'Y':sample1.tolist()}
```

```
In [11]: fit1 = pystan.stan(model_code=model, data=data1, iter=1000, chains=4)
    print(fit1)
```

INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_6bdc421632bf ad283cf5b68dafff39e6 NOW.

Inference for Stan model: anon_model_6bdc421632bfad283cf5b68dafff39e
6.

4 chains, each with iter=1000; warmup=500; thin=1; post-warmup draws per chain=500, total post-warmup draws=2000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff
Rhat									
a	0.49	1.5e-3	0.06	0.39	0.45	0.49	0.53	0.6	1463
1.0									
b	3.15	4.2e-3	0.16	2.81	3.03	3.15	3.26	3.45	1509
1.0									
lp	-195.7	0.04	1.04	-198.5	-196.2	-195.4	-195.0	-194.7	859
1.0									

Samples were drawn using NUTS at Thu Jun 8 18:04:35 2017. For each parameter, n_eff is a crude measure of effective sample siz e, and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

In [12]: data2 = {'N':100, 'Y':sample2.tolist()}
 fit2 = pystan.stan(model_code=model, data=data2, iter=1000, chains=4)
 print(fit2)

INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_6bdc421632bf ad283cf5b68dafff39e6 NOW.

Inference for Stan model: anon_model_6bdc421632bfad283cf5b68dafff39e
6.

4 chains, each with iter=1000; warmup=500; thin=1; post-warmup draws per chain=500, total post-warmup draws=2000.

	mean s	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff
Rhat									
a	0.53	0.01	0.27	0.02	0.31	0.57	0.75	0.94	354
1.02									
b	0.76	0.02	0.48	0.14	0.42	0.67	1.01	1.96	543
1.01									
lp	-146.4	0.07	1.3	-150.0	-146.9	-146.0	-145.4	-145.1	335
1.0									

Samples were drawn using NUTS at Thu Jun 8 18:04:56 2017.

For each parameter, n_{eff} is a crude measure of effective sample siz e_{r}

and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

In [13]: data3 = {'N':100, 'Y':sample3.tolist()}
 fit3 = pystan.stan(model_code=model, data=data3, iter=1000, chains=4)
 print(fit3)

INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_6bdc421632bf ad283cf5b68dafff39e6 NOW.

Inference for Stan model: anon_model_6bdc421632bfad283cf5b68dafff39e
6.

4 chains, each with iter=1000; warmup=500; thin=1; post-warmup draws per chain=500, total post-warmup draws=2000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff
Rhat									
a	0.44	9.5e-3	0.23	0.03	0.26	0.45	0.61	0.84	567
1.01									
	0.64	0.01	0.28	0.24	0.44	0.59	0.81	1.33	397
1.01									
lp	-146.9	0.04	1.1	-149.8	-147.3	-146.6	-146.1	-145.8	640
1.01									

Samples were drawn using NUTS at Thu Jun 8 18:05:17 2017.

For each parameter, n_{eff} is a crude measure of effective sample siz e,

and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

事後分布の可視化

```
In [14]: from scipy.misc import logsumexp
def lp(a,b,Y):
    lp = 0
    for y in Y:
        lp += logsumexp([np.log(1-a)-y*y/2, np.log(a)-(y-b)*(y-b)/2])
    return lp
```

```
In [15]: from mpl toolkits.mplot3d import Axes3D
          def draw graphs(sample):
              Z = np.array([[lp(a,b,sample) for b in np.linspace(-5, 5, 51)] for
              fig, ax = plt.subplots()
              im = ax.pcolor(Z)
              fig.colorbar(im, ax=ax)
              plt.xlabel('b=(-5,5)')
              plt.ylabel('a=(0.005,0.995)')
              plt.show()
              Ze = np.exp(Z)
              fig, ax = plt.subplots()
              im = ax.pcolor(Ze)
              fig.colorbar(im, ax=ax)
              plt.xlabel('b=(-5,5)')
              plt.ylabel('a=(0.005,0.995)')
              plt.show()
              fig = plt.figure()
              ax = Axes3D(fig)
              X, Y = \text{np.meshgrid}(\text{np.linspace}(-5, 5, 51), \text{np.linspace}(0.005, 0.99)
              surf=ax.plot surface(X,Y,Ze,cmap='bwr', linewidth=0)
              fig.colorbar(surf)
              plt.show()
```


$$p(x|w) = (1 - a)\mathcal{N}(x) + a\mathcal{N}(x - b)$$

In [17]: draw_graphs(sample2)

In []:	