

#### Curso de Licenciatura em Ciência de Dados

1° ano/ 2° semestre - 2023/2024

Unidade Curricular: Análise Exploratória de Dados

Docentes: Maria do Carmo Botelho

## Relatório Final

## Caso Prático Nº7

**TURMA:** CDA2

António Santos, nº 123434

Francisco Rosa, nº 123418

Gonçalo Henriques, nº 123422

José Alberto, nº 121959

Pedro Silva, nº 123404



# Sumário

| INTRODUÇÃO                                              |
|---------------------------------------------------------|
| Primeira Parte – Excel                                  |
| Opção de Filtragem                                      |
| Atribuição de código a uma variável com valores omissos |
| Atribuição de texto a variáveis numéricas               |
| Correção de Erros                                       |
| Criação de Tabelas Descritivas                          |
| Regra de Validação para Variáveis                       |
| Tabelas de Frequências Absolutas                        |
| Tabelas de Frequências Dinâmicas                        |
| Tabelas de Cruzamento Dinâmica                          |
| SEGUNDA PARTE – JAMOVI                                  |

# INTRODUÇÃO

No âmbito da unidade curricular Análise Exploratória de Dados, durante o segundo trimestre 2023/2024, foi-nos atribuída a elaboração do relatório técnico, com o propósito de retratar o percurso adotado no tratamento dos dados recolhidos através do inquérito realizado em Portugal e Espanha, como parte do Estudo sobre os Valores Europeus. Foi nos atribuído o Caso Prático Nº7 que engloba um vasto número de variáveis tais como, dados demográficos, opiniões, emoções e atividades dos inquiridos, com o objetivo de compreender as diferenças culturais e sociais que influenciam os valores contemporâneos nestes países vizinhos.

A metodologia aplicada consistiu em várias etapas de tratamento e análise de dados, inicialmente utilizando o Excel para a preparação e organização dos dados brutos, seguido pela aplicação do Jamovi para análises estatísticas mais profundas. O processo e as ferramentas escolhidas permitiram-nos uma manipulação eficiente dos dados, facilitando uma interpretação detalhada das variáveis em estudo.

Embora a análise específica da informação extraída seja apresentada no relatório complementar em R Markdown, as imagens ilustradas neste documento mostram as etapas metodológicas e os insights obtidos ao longo do projeto. O objetivo deste relatório é, portanto, fornecer uma descrição transparente e sistemática das tarefas realizadas, desde a preparação dos dados até a sua análise exploratória, ilustrando a integração das várias ferramentas e técnicas utilizadas.

## Primeira Parte – Excel

#### Opção de Filtragem

Para facilitar a observação dos dados, a primeira linha onde se encontram os nomes das 15 variáveis foi congelada para permanecer visível enquanto se percorre a tabela. Foram também inseridas opções de filtragem em todas as colunas para se poder escolher e ordenar os dados conforme necessário.



Fig.1 – Opção de filtragem utilizada.

#### Atribuição de código a uma variável com valores omissos

Seguidamente, para que a variável "v234" não ficasse com 10 espaços em branco, atribuiu-se o código de 99, para uma melhor compreensão imediata destes espaços correspondentes. Para tal, foi selecionada a respetiva variável, e no separador HOME escolheu-se o comando FIND & SELECT e a funcionalidade FIND AND REPLACE, a barra "Find What" deixou-se em branco, de modo que fosse selecionado todos os espaços omissos e com o código usado na barra "Replace with" fosse substituído por "99".



Fig.2 – Utilização do comando Find and Replace para valores omissos

É importante salientar que as restantes variáveis que, mesmo após o tratamento em Excel, apresentavam espaços omissos foram trabalhadas posteriormente em R.

#### Atribuição de texto a variáveis numéricas

Seguidamente, passou-se à atribuição de texto (valor nominal) a variáveis que continham código (valor numérico), criando-se novas variáveis ao lado das mesmas. Para tal, foi usada a sheet "Variáveis e Códigos" que continha os códigos respetivos e as funções *HLOOKUP* e *VLOOKUP*. O seguinte procedimento foi realizado para a variável v1 e aplicado de modo semelhante (mudando apenas o Lookup\_value e a Table\_array) para as variáveis v2, v3, v4, v5, v6 e v234 criando-se assim as variáveis: *Work*, *Family*, *Friends*, *Leisure*, *Politics*, *Religion* e *Status*, respetivamente.

Este procedimento consiste em criar uma nova coluna à direita da variavél v1, selecionando a opção "Insert" após a seleção da coluna encontrada à direita da mesma (variável v2). Após isto, na primeira célula desta nova coluna (D2) foi introduzida a seguinte função:

[fx] =VLOOKUP(C2; Variáveis e códigos !! \$C\$5:\$D\$10;2; FALSE)

| VLOOKUP |               |                                     |   |   |                                                                      |
|---------|---------------|-------------------------------------|---|---|----------------------------------------------------------------------|
|         | Lookup_value  | C2                                  | 1 | = | 2                                                                    |
|         | Table_array   | 'Variáveis e códigos'!\$C\$5:\$D\$1 | 1 | = | $\label{lem:continuous} $$\{1\ "very important"; 2\ "quite importa$$ |
|         | Col_index_num | 2                                   | 1 | = | 2                                                                    |
|         | Range_lookup  | FALSE                               | 1 | = | FALSE                                                                |

Fig.3 – Utilização da função VLOOKUP para atribuição de texto

Tal como na função *HLOOKUP*, a função *VLOOKUP*, recebe como parâmetros; a célula com o código que é pretendido substituir; a tabela com a respetiva correspondência do código (fixando as linhas, pois o código foi copiado em linha); a coluna onde se encontra a correspondência do código e opcionalmente foi utilizado para as variáveis de v1 a v6 e v234 o parâmetro "Range\_lookup", pois estas apresentavam valores negativos/valores não possíveis de resposta, especificando-se "FALSE" para que a correspondência fosse exata do valor devolvido, evitando assim a indução em erro (que poderia acontecer se não fosse especificado este parâmetro).

Seguindo a mesma ideologia para as variáveis numéricas v21 e v225 foi utilizado o mesmo procedimento, com a diferença de que o código para valor nominal encontravase na horizontal e, como tal, foi utilizada a função HLOOKUP do seguinte modo:

fx = HLOOKUP(P2;'Variáveis e códigos'!\$C\$15:\$D\$16;2)

Criou-se, assim, as novas variáveis, *Voluntary* e *Gender*, respetivamente.

#### Correção de Erros

Após a criação destas novas variáveis por atribuição de valor nominal às variáveis com valor numérico, às quais faria sentido a sua correspondência, verificou-se o erro #N/A (como indicação de uma impossibilidade de correspondência), nas variáveis *Work* e *Status* devido a um "erro" que se encontrava na sua coluna de código correspondente. Na variável v1 (correspondente à variável *Work*) identificou-se um valor que não se encontrava nas "possíveis respostas" sendo este o atributo "11", que assumimos como um erro, assim apagou-se este valor (desaparecendo o erro #N/A) e mais tarde, como já mencionado, este atributo foi trabalhado em R. De modo semelhante, na variável v234 (correspondente à variável *Status*) como já era de esperar, identificou-se os 10 valores de código 99 atribuído, pelo que, apagou-se os 10 erros #N/A correspondentes na variável *Status* (ficando estes em branco).

Outros erros foram corrigidos nas variáveis v7 e v226 correspondentes ao grau de felicidade com que as pessoas se avaliam e o ano de nascimento das mesmas, respetivamente. Na variável v7, foi aplicado o mesmo método para a variável v1, mas desta vez o atributo encontrado foi "happy" que também não era uma "possível resposta" e, como tal, foi apagado este valor, totalizando 7 valores omissos desta variável.

No que diz respeito ao ano de nascimento dos inquiridos (v226), primeiramente foi criada a variável Age à direita da mesma, pois para uma análise mais imediata é preferível a utilização das idades, subtraindo a data atual no momento (2017) e o respetivo ano de nascimento. Seguidamente identificou-se um valor de "1800" na variável v226 e uma idade de 217 para a nova coluna criada (Age), pelo que considerou-se um erro e então apagou-se estes atributos. Como ainda existiam 2 valores omissos na variável v226 a sua correspondência era 2017 para a nova variável criada, pelo que também foram apagados estes valores, totalizando 3 valores omissos nestas variáveis.



Fig.5 – "Erro" na variável Status

#### Criação de Tabelas Descritivas

Após a criação da variável *Age*, foram criadas tabelas descritivas para uma melhor compreensão das idades dos inquiridos. Para tal foram criadas 3 tabelas descritivas (uma para as idades em geral dos inquiridos, outra para Portugal e uma última para Espanha) e 1 PivotTable (tabela dinâmica) com o agrupamento de idades, na sheet "Descrição Idades".

Para a criação das tabelas descritivas, foi utilizado o add-in "Data Analysis" e o tool "Descriptive Statistics" encontrado no separador DATA após a seleção da variável *Age*, filtrando pelo país desejado. Para a tabela dinâmica, selecionou-se a mesma variável; inseriu-se uma PivotTable; agrupou-se as idades (através da ferramenta "Group") em intervalos de 10 em 10 começando na idade mínima (15) até aos 75 anos; adicionou-se o filtro para a variável *Country*, e foram usados os valores de contagem (coluna n) e de percentagem acumulativa (coluna % acum), como mostra a figura 9.



Fig.8 – Criação das Tabelas Descritivas

| Country            | (Al  | l) 🔻 |        |
|--------------------|------|------|--------|
|                    |      |      | 0/     |
| Row Labels         | -T n |      | %acum  |
| 15-24              |      | 209  | 8,6%   |
| 25-34              |      | 303  | 21,1%  |
| 35-44              |      | 404  | 37,8%  |
| 45-54              |      | 397  | 54,2%  |
| 55-64              |      | 438  | 72,3%  |
| 65-75              |      | 409  | 89,2%  |
| >75                |      | 261  | 100,0% |
| <b>Grand Total</b> | 2    | 2421 |        |

Fig.9 - Tabela Dinâmica de frequências

### Regra de Validação para Variáveis

No que diz respeito às regras de validação, foram criadas para as variáveis v1 (qualitativa ordinal) e  $v239_r$  (quantitativa discreta), de modo que se fosse inserido qualquer valor indesejado aparecesse uma mensagem de erro.

Assim, para a variável *v1* aplicou-se o critério que o valor inserido teria de estar na lista de valores possíveis para esta variável, encontrada no range de C5:C10 na sheet 'Variáveis e códigos'.



Fig.10 - Validação para a variável v1

Para a variável *v239\_r*, que diz respeito ao número de filhos dos inquiridos, aplicou-se o critério que o valor inserido não poderia ser negativo para esta variável, logo teria de ser maior ou igual a 0.



Fig.11 – Validação para a variável v239\_r

### Tabelas de Frequências Absolutas

Posteriormente para a construção de tabelas de frequências foi utilizado como recurso as funções de contagem (*COUNTIF* E *COUNIFS*) para a criação das colunas "n" e para a percentagem selecionou-se a célula à esquerda correspondente e dividiu-se pelo total, por fim, formatou-se a célula como percentagem. Após as formatações manuais obteve-se as tabelas encontradas na sheet "Tabela Freq Abs".

#### Tabelas de Frequências Dinâmicas

Mais uma vez, para a criação da tabela dinâmica encontrada na sheet "Status Civil" foi selecionada a tabela por total e inseriu-se uma PivotTable, colocando em linha a variável *Status* e nos valores utilizou-se a contagem (n) e a percentagem normal (%).

| Country                                        |   | (All) 🔽 |        |
|------------------------------------------------|---|---------|--------|
|                                                |   |         |        |
| Status                                         | Ţ | n       | %      |
| divorced                                       |   | 209     | 8,7%   |
| married                                        |   | 1156    | 47,9%  |
| never married and never registered partnership |   | 614     | 25,4%  |
| registered partnership                         |   | 57      | 2,4%   |
| separated                                      |   | 80      | 3,3%   |
| widowed                                        |   | 298     | 12,3%  |
| <b>Grand Total</b>                             |   | 2414    | 100,0% |

Fig.12 – Distribuições dos Estados Civis

#### Tabelas de Cruzamento Dinâmica

Para terminar o tratamento de dados em Excel, foram elaboradas 5 tabelas de cruzamento dinâmicas entre a variável *v239\_r* (número de filhos) e algumas das que são classificadas como valorativas, nomeadamente as variáveis *Work*, *Friends*, *Leisure*, *Politics* e *Religion*. Como tal foi selecionado a tabela por total, utilizou-se o comando PivotTable, inseriu-se a variável *v239\_r* em linha em todas as 5 respetivas tabelas e em cada uma colocou-se em coluna a variável correspondente. Foi utilizado também, para uma melhor compreensão, o valor de contagem (coluna n) e a percentagem em linha (%Linha). É importante salientar que foi ordenado (através da ferramenta "Move") os diversos atributos das diferentes variáveis valorativas colocadas em coluna, seguindo a ordem encontrada na sheet "Variáveis e códigos". Assim ficaram criadas 5 tabelas dinâmicas na sheet "Tabela Cruzamentos".

#### SEGUNDA PARTE – JAMOVI

No que diz respeito ao Software Jamovi, que permite uma análise mais imediata dos dados, foi dada a importação dos dados já tratados e limpos através do R de modo a puderem serem criadas tabelas descritivas, gráficos de cruzamento entre variáveis e gráficos de barras, permitindo retirar insights valiosos e concretos.

No que toca a uma preparação de dados neste Software, apenas foi ordenado os diferentes atributos das variáveis valorativas (as variáveis em código e em texto) criadas em Excel.

Começamos por criar a tabela descritiva (univariada) referente ao número de filhos e para uma melhor análise criou-se um Survey Plot da tabela correspondente.



Fig.13 - Análise descritiva e gráfica da variável *Life.Control* 

#### | Caso Prático 7

De seguida criou-se uma tabela descritiva (bivariada) referente ao número de filhos em Portugal e Espanha e para uma melhor análise criou-se um Survey Plot da tabela correspondente.







Fig.14 - Análise descritiva e gráfica do Número de Filhos por país

#### | Caso Prático 7

Ainda analisando as diferenças entre países, cruzou-se esta variável *Country* com a variável em código que diz respeito à importância no trabalho (v1), onde foi usada a variável numérica para tornar possível este cruzamento. Elaborou-se assim a tabela descritiva e o gráfico de barras .



#### Estatística Descritiva

|               | Country  | ν1    |
|---------------|----------|-------|
| N             | Portugal | 1215  |
|               | Spain    | 1209  |
| Média         | Portugal | 1,56  |
|               | Spain    | 1.35  |
| Mediana       | Portugal | 1     |
|               | Spain    | 1     |
| Desvio-padrão | Portugal | 0.775 |
|               | Spain    | 0.618 |
| Mínimo        | Portugal | -2    |
|               | Spain    | 1     |
| Máximo        | Portugal | 4     |
|               | Spain    | 4     |



Fig.15 - Análise descritiva e gráfica da variável correspondente à importância do trabalho por país

Foi, também, feita um cruzamento entre as variáveis *Voluntary* e *Politics*, ambas categóricas. Com este cruzamento criou-se, apenas, o Survey Plot com frequência em percentagem.



#### Voluntary



Fig.16 - Análise gráfica entre Voluntary e Politics

Por fim, criou-se, ainda, um Survey Plot cruzando a variável Age com a Work.



Fig.17 - Análise gráfica entre  $\boldsymbol{Age}$  e  $\boldsymbol{Work}$