CSE 2202 Design and Analysis of Algorithms – I

Greedy Algorithms

Greedy Algorithm

- Algorithms for optimization problems typically go through a sequence of steps, with a set of choices at each step.
- Greedy algorithms make the choice that looks best at the moment
 - That is, it makes such a decision in the hope that this will lead to a globally optimal solution
- This locally optimal choice may lead to a globally optimal solution (i.e., an optimal solution to the entire problem).

When can we use Greedy algorithms?

We can use a greedy algorithm when the following are true:

- 1) The greedy choice property: A A(greedy) choice.
- 2) The optimal substructure property: The optimal solution contains within its optimal solutions to subproblems.

An Activity Selection Problem (Conference Scheduling Problem)

- Input: A set of activities $S = \{a_1, ..., a_n\}$
- We have n proposed activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.
- Each activity has start time and a finish time

$$-a_i=(s_i,f_i)$$

- Two activities are compatible if and only if their interval does not overlap
- Output: a maximum-size subset of mutually compatible activities

Here are a set of start and finish times

- What is the maximum number of activities that can be completed?
 - $\{a_3, a_9, a_{11}\}$ can be completed
 - But so can $\{a_1, a_4, a_8, a_{11}\}$ which is a larger set
 - But it is not unique, consider {a₂, a₄, a₉, a₁₁}

Input: list of time-intervals L

Output: a non-overlapping subset S of the intervals

Input: list of time-intervals L

Output: a non-overlapping subset S of the intervals

- 1. sort the activities by the starting time
- 2. pick the first activity "a"
- 3. remove all activities conflicting with "a"
- 4. repeat

- 1. sort the activities by the starting time
- 2. pick the first activity "a"
- 3. remove all activities conflicting with "a"
- 4. repeat

- 1. sort the activities by the starting time
- 2. pick the first activity "a"
- 3. remove all activities conflicting with "a"
- 4. repeat

- 1. sort the activities by length
- 2. pick the shortest activity "a"
- 3. remove all activities conflicting with "a"
- 4. repeat

- 1. sort the activities by length
- 2. pick the shortest activity "a"
- 3. remove all activities conflicting with "a"
- 4. repeat

- 1. sort the activities by length
- 2. pick the shortest activity "a"
- 3. remove all activities conflicting with "a"
- 4. repeat

- 1. sort the activities by ending time
- 2. pick the activity which ends first
- 3. remove all activities conflicting with a
- 4. repeat

- 1. sort the activities by ending time
- 2. pick the activity which ends first
- 3. remove all activities conflicting with a
- 4. repeat

- 1. sort the activities by ending time
- 2. pick the activity which ends first
- 3. remove all activities conflicting with a
- 4. repeat

- 1. sort the activities by ending time
- 2. pick the activity which ends first
- 3. remove all activities conflicting with a
- 4. repeat

Algorithm 3:

- 1. sort the activities by ending time
- 2. pick the activity "a" which ends first
- 3. remove all activities conflicting with "a"
- 4. repeat

Theorem:

Algorithm 3 gives an optimal solution to the activity selection problem.

Activity Selection Algorithm

Idea: At each step, select the activity with the smallest finish time that is compatible with the activities already chosen.

```
Greedy-Activity-Selector(s, f)
```

```
\begin{array}{ll} n <- \ length[s] \\ A <- \ \{1\} \\ j <- 1 \\ \text{for } i <- 2 \ to \ n \ do \\ if \ s_i >= f_j \ then \\ A <- A \ U \ \{i\} \\ j <- i \\ \end{array} \qquad \begin{array}{ll} \{Automatically \ select \ first \ activity\} \\ \{Last \ activity \ selected \ so \ far\} \\ \{Add \ activity \ i \ to \ the \ set\} \\ \{record \ last \ activity \ added\} \\ \end{array}
```

The idea is to always select the activity with the earliest finishing time, as it will free up the most time for other activities.

Here are a set of start and finish times

i	1	2	3	4	5	6	7	8	9 8 12	10	11
$\overline{s_i}$	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

- What is the maximum number of activities that can be completed?
 - $\{a_3, a_9, a_{11}\}$ can be completed
 - But so can $\{a_1, a_4, a_8, a_{11}\}$ which is a larger set
 - But it is not unique, consider $\{a_2, a_4, a_9, a_{11}\}$

Interval Representation

i	1	2	3	4	5	6	7	8	9 8	10	11
$\overline{s_i}$	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

Not Observed yet

Added in optimal Solution

Removed from the list

 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14_{22}15$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 23 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 24 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 25 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 26 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 215

Why this Algorithm is Optimal?

- We will show that this algorithm uses the following properties
 - The problem has the optimal substructure property_
 - The algorithm satisfies the greedy-choice property
- Thus, it is Optimal

Optimal Substructure Property

- Base Case: For the smallest subproblem of size 1 (only one activity), the optimal solution is trivially the activity itself.
- Inductive Hypothesis: Assume that we have already proven that the optimal solution can be constructed for any subset of activities with size k, where 1 ≤ k ≤ n - 1.

Optimal Substructure Property

Inductive Step: Now we want to prove that the optimal solution can be constructed for a subset of activities with size k + 1.

Let's consider the set of activities $\{A_1, A_2, ..., A_{k+1}\}$. Since the activities are sorted by finishing times.

the last activity in this set, A_{k+1} , will have the maximum finish time among all activities.

We have two cases:

First case: Activity A_{k+1} is included in the optimal solution.

- In this case, we need to find an optimal solution for the remaining activities $\{A_1, A_2, ..., A_k\}$ that are non-overlapping with A_{k+1} .
- By our inductive hypothesis, we know that an optimal solution can be constructed for these k activities.
- Combining A_{k+1} with this optimal solution gives us an optimal solution for the entire set $\{A_1, A_2, ..., A_{k+1}\}$.

Optimal Substructure Property

First case: Activity A_{k+1} is included in the optimal solution.

- In this case, we need to find an optimal solution for the remaining activities $\{A_1, A_2, ..., A_k\}$ that are non-overlapping with A_{k+1} .
- By our inductive hypothesis, we know that an optimal solution can be constructed for these k activities.
- Combining A_{k+1} with this optimal solution gives us an optimal solution for the entire set $\{A_1, A_2, ..., A_{k+1}\}$

Second Case: Activity A_{k+1} is not included in the optimal solution.

• In this case, we simply need to find an optimal solution for the activities $\{A_1, A_2, ..., A_k\}$, which we have already assumed possible by our inductive hypothesis.

Since we've covered both cases, we can conclude that the optimal solution for the set $\{A_1, A_2, ..., A_{k+1}\}$ can be constructed from the optimal solutions of the smaller subproblems $\{A_1, A_2, ..., A_k\}$,

32

Greedy-Choice Property

- Show there is an optimal solution that begins with a greedy choice (with activity 1, which as the earliest finish time)
- Suppose A ⊆ S in an optimal solution
 - Order the activities in A by finish time. The first activity in A is k
 - If k = 1, the schedule A begins with a greedy choice
 - If k ≠ 1, show that there is an optimal solution B to S that begins with the greedy choice, activity 1
 - Let B = $A \{k\} \cup \{1\}$
 - $f_1 \le f_k \rightarrow$ activities in B are disjoint (compatible)
 - B has the same number of activities as A
 - Thus, B is optimal

Example of Greedy Algorithm

- Fractional Knapsack
- Huffman Coding
- Minimum Spanning Tree Prims and Kruskal's
- Activity Selection Problem
- Dijkstra's Shortest Path Algorithm
- Network Routing
- Job sequencing with deadlines
- Coin change problems
- Graph Coloring: Greedy algorithms can be used to color a graph (though not necessarily optimally) by assigning the next available color to a vertex.

Designing Greedy Algorithms

1. Cast the optimization problem as one for which:

 we make a choice and are left with only one subproblem to solve

2. Prove the GREEDY CHOICE

 that there is always an optimal solution to the original problem that makes the greedy choice

3. Prove the OPTIMAL SUBSTRUCTURE:

 the greedy choice + an optimal solution to the resulting subproblem leads to an optimal solution

Example: Making Change

- Instance: amount (in cents) to return to customer
- Problem: do this using fewest number of coins
- Example:
 - Assume that we have an unlimited number of coins of various denominations:
 - 1c (pennies), 5c (nickels), 10c (dimes), 25c (quarters), 1\$ (loonies)
 - Objective: Pay out a given sum \$5.64 with the smallest number of coins possible.

The Coin Changing Problem

- Assume that we have an unlimited number of coins of various values:
 - 1c (pennies), 5c (nickels), 10c (dimes), 25c (quarters), 1\$ (loonies)
- Objective: Pay out a given sum S with the smallest number of coins possible.
- The greedy coin changing algorithm:
 - This is a $\Theta(m)$ algorithm where m = number of *values*.

```
while S > 0 do

c := value of the largest coin no larger than S;
num := S / c;
pay out num coins of value c;
S := S - num*c;
```

Example: Making Change

• E.g.: \$5.64 = \$2 +\$2 + \$1 + .25 + .25 + .10 +

.01 + .01 + .01 + .01

Making Change – A big problem

- Example 2: Coins are valued \$.30, \$.20, \$.05,
 \$.01
 - Does not have greedy-choice property, since \$.40 is best made with two \$.20's, but the greedy solution will pick three coins (which ones?)

The Fractional Knapsack Problem

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
 - In this case, we let x_i denote the amount we take of item i
 - Objective: maximize

$$\sum_{i \in S} b_i(x_i / w_i)$$

Constraint:

$$\sum_{i \in S} x_i \le W, 0 \le x_i \le w_i$$

Example

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with total weight at most W.

"knapsack"

Solution: P

- 1 ml of 5 50\$
- 2 ml of 3 40\$
- 6 ml of 4 30\$
- 1 ml of 2 4\$

•Total Profit:124\$

The Fractional Knapsack Algorithm

 Greedy choice: Keep taking item with highest value (benefit to weight ratio)

- Since
$$\sum_{i \in S} b_i(x_i / w_i) = \sum_{i \in S} (b_i / w_i) x_i$$

```
Algorithm fractionalKnapsack(S, W)
```

Input: set S of items w/ benefit b_i and weight w_i ; max. weight W

Output: amount x_i of each item i to maximize benefit w/ weight at most W

```
for each item i in S
```

```
x_i \leftarrow 0
v_i \leftarrow b_i / w_i {value}
w \leftarrow 0 {total weight}
while w < W
remove\ item\ i\ with\ highest\ v_i
x_i \leftarrow \min\{w_i\ ,\ W-w\}
w \leftarrow w\ + \min\{w_i\ ,\ W-w\}
```

The Fractional Knapsack Algorithm

- Running time: Given a collection S of n items, such that each item i
 has a benefit b_i and weight w_i, we can construct a maximum-benefit
 subset of S, allowing for fractional amounts, that has a total weight W in
 O(nlogn) time.
 - Use heap-based priority queue to store S
 - Removing the item with the highest value takes O(logn) time
 - In the worst case, need to remove all items