Protocole TCP

Dominique SERET

TCP: Transmission Control Protocol

- transport fiable de la technologie TCP/IP
 - fiabilité = illusion assurée par le service
 - découpage en segments
 - connexions bidirectionnelles et simultanées
- service en mode connecté
- garantie de remise de messages et d'ordonnancement

I Initropositá Daná

La connexion TCP

- une connexion de type circuit virtuel est établie
- connexion = une paire d'extrémités de connexion
- extrémité de connexion = couple (adresse IP, numéro port)
- Exemple de connexion : ((124.32.12.1, 1034), (19.24.67.2, 21))
- Une extrémité de connexion peut être partagée par plusieurs autres extrémités de connexions (multi-instanciation)
- La mise en oeuvre de la connexion se fait en deux étapes :
 - une application (extrémité) effectue une ouverture passive en indiquant qu'elle accepte une connexion entrante,
 - une autre application (extrémité) effectue une ouverture active pour demander l'établissement de la connexion.

I Isairragaitá Dagá

Qualité de service

- Segmentation, contrôle de flux
 - les données transmises à TCP constituent un flot d'octets de longueur variable
 - TCP divise ce flot de données en segments en utilisant un mécanisme de fenêtrage
 - chaque segment est émis dans un datagramme IP
- Acquittement de messages
 - TCP garantit l'arrivée des messages, c'est-à-dire qu'en cas de perte, les deux extrémités sont prévenues
 - Ce concept repose sur les techniques d'acquittement de message : lorsqu'une source S émet un message Mi vers une destination D, S attend un acquittement Ai de D avant d'émettre le message suivant Mi+1.
 - Si l'acquittement Ai ne parvient pas à S, S considère au bout d'un certain temps que le message est perdu et réémet Mi

TCP: gestion des acquittements

La fenêtre

La technique acquittement simple pénalise les performances puisqu'il faut attendre un acquittement avant d'émettre un nouveau message. La fenêtre améliore le rendement des réseaux.

La technique : une fenêtre de taille T permet l'émission d'au plus T messages "non acquittés" avant de ne plus pouvoir émettre

Gestion de la fenêtre (1)

Source

Emission de Mi

Emission de Mi+1

Emission de Mi+2

Réception de Ai

Octobre 2000

Fenêtre de taille 3

Dominique SERET -

I Indragatá Daná

Destination

Réception de Mi Emission de Ai

Gestion de la fenêtre (2)

- fenêtre glissante permettant d'optimiser la bande passante
- permet également au destinataire de faire diminuer le débit de l'émetteur donc de gérer le contrôle de flux
- Le mécanisme de fenêtre mis en oeuvre dans TCP opère au niveau de l'octet et non pas au niveau du segment ; il repose sur :
 - la numérotation séquentielle des octets de données,
 - la gestion de trois pointeurs par fenêtre

1 2 3 4 5 6 7 8 9 10 11...

Octets émis et acquittés

Octets émis et non acquittés

Octets émissibles Octets non émissibles pour l'instant

Octobre 2000

Dominique SERET -

Hairranaitá Daná

Format du segment TCP

- Segment : unité de transfert du protocole TCP
 - pour établir les connexions
 - transférer les données et émettre des acquittements
 - fermer les connexions

10 24 31

	Port source		Port destination		
	Numéro de séquence				
32bits	Numéro d'acquittement				
7	HLEN	réservé	Codes	fenêtr	е
	Checksum			pointeur urgence	
	Options éventuelles bourrage				
0 . 1	Données				
Octobre	e 2000 Dominique SEKET -				

I Initropositá Daná

N * 32bits

Le contenu du segment (1)

Numéro de séquence : le numéro de séquence du premier octet (NSP) de ce segment. Généralement à la suite d'octets O1, O2, ..., On (données du message) est associée la suite de numéros de séquence NSP, NSP+1, ..., NSP+n.

Il existe deux exceptions à cette règle

- lorsque le bit SYN est mis à 1, le NSP représente cette donnée de contrôle et par conséquent la suite NSP, NSP+1, NSP+2, ..., NSP+n+1, associe la suite de données SYN, O1, O2, ..., On.
- lorsque le bit FIN est mis à 1, le NSP+n représente cette donnée de contrôle et par conséquent la suite NSP, NSP+1, NSP+2, ..., NSP+n, associe la suite de données O1, O2, ..., On, FIN.

I January and the Done

Le contenu du segment (2)

- Numéro d'acquittement : le prochain numéro de séquence NS attendu par l'émetteur de cet acquittement. Acquitte implicitement les octets NS-1, NS-2, etc.
- <u>Fenêtre</u>: la quantité de données que l'émetteur de ce segment est capable de recevoir ; ceci est mentionné dans chaque segment (données ou acquittement).
- CODE BITS : indique la nature du segment :
 - URG : le pointeur de données urgentes est valide, les données sont émises sans délai, les données reçues sont remises sans délai
 - SYN: utilisé à l'initialisation de la connexion pour indiquer où la numérotation séquentielle commence. [SYN occupe lui-même un numéro de séquence bien que ne figurant pas dans le champ de données]. Le Numéro de séquence inscrit dans le datagramme (correspondant à SYN) est un *Initial Sequence Number* (ISN) produit par un générateur garantissant l'unicité de l'ISN sur le réseau (indispensable pour identifier les duplications).

Le contenu du segment (3)

CODE BITS :

- FIN : utilisé lors de la libération de la connexion
- ACK : utilisé lorsque le segment transporte un acquittement
- PSH : fonction « push ». Normalement, en émission, TCP reçoit les données depuis l'application, les transforme en segments à sa guise puis transfère les segments sur le réseau ; un récepteur TCP décodant le bit PSH, transmet à l'application réceptrice, les données correspondantes sans attendre plus de données de l'émetteur. Exemple : émulation terminal, pour envoyer chaque caractère entré au clavier (mode caractère asynchrone).
- RST: utilisé par une extrémité pour indiquer à l'autre extrémité qu'elle doit réinitialiser la connexion. Ceci est utilisé lorsque les extrémités sont désynchronisées.

Désynchronisation

Octobre 2000

Dominique SERET -

13

Les options

- Permet de négocier la taille maximale des segments échangés.
 Cette option n'est présente que dans les segments d'initialisation de connexion (avec bit SYN)
- TCP calcule une taille maximale de segment de manière à ce que le datagramme IP résultant corresponde au MTU du réseau. La recommandation est de 536 octets
- La taille optimale du segment correspond au cas où le datagramme IP n'est pas fragmenté mais :
 - il n'existe pas de mécanisme pour connaître le MTU,
 - le routage peut entraîner des variations de MTU,
 - la taille optimale dépend de la taille des en-têtes (options).

I January

Gestion des acquittements

- Le mécanisme d'acquittement de TCP est cumulatif
 - il indique le numéro de séquence du prochain octet attendu : tous les octets précédents cumulés sont implicitement acquittés
 - Si un segment a un numéro de séquence supérieur au numéro de séquence attendu (bien que dans la fenêtre), le segment est conservé mais l'acquittement référence toujours le numéro de séquence attendu
- Pour tout segment émis, TCP s'attend à recevoir un acquittement
 - Si le segment n'est pas acquitté, le segment est considéré comme perdu et TCP le retransmet
 - Un réseau d'interconnexion offre des temps de transit variables nécessitant le réglage des temporisations
 - TCP gère des temporisations variables pour chaque connexion en utilisant un algorithme de retransmission adaptative

Retransmissions adaptatives

- enregistre la date d'émission d'un segment
- enregistre la date de réception de l'acquittement correspondant
- calcule le temps A/R écoulé
- détermine le temps A/R moyen RTT (Round Trip Time) :

[a proche de 1 : RTT insensible aux variations brèves a proche de 0 : RTT très sensible aux variations rapides]

- calcule la valeur du temporisateur en fonction de RTT
- Les premières implémentations de TCP ont choisi un coefficient constant B pour déterminer cette valeur :
 Temporisation = B * RTT avec B >1 (généralement B=2).
- Aujourd'hui de nouvelles techniques sont appliquées pour affiner la mesure du RTT : l'algorithme de Karn

Octobre 2000 Dominique

Algorithme de Karn

- en cas de retransmission d'un segment, l'émetteur ne peut savoir si l'acquittement s'adresse au segment initial ou retransmis (ambiguïté des acquittements)
 - => RTT ne peut donc être calculé correctement
- => TCP ne doit pas mettre à jour le RTT pour les segments retransmis
- L'algorithme de Karn combine les retransmissions avec l'augmentation des temporisations associées (timer backoff):
 - une valeur initiale de temporisation est calculée
 - si une retransmission est effectuée, la temporisation est augmentée (généralement le double de la précédente, jusqu'à une valeur plafond).
- Cet algorithme fonctionne bien même avec des réseaux qui perdent des paquets.

Octobre 2000

Dominique SERET -

Gestion de la congestion

Gestion de la congestion

- TCP gère le contrôle de flux de bout en bout mais également les problèmes de congestion liés à l'interconnexion
- La congestion correspond à la saturation de noeud(s) dans le réseau provoquant des délais d'acheminement de datagrammes jusqu'a leur pertes éventuelles.
- Les extrémité ignorent tout de la congestion sauf les délais Habituellement, les protocoles retransmettent les segments ce qui aggrave encore le phénomène.
- Dans la technologie TCP/IP, les passerelles (niveau IP) utilisent la réduction du débit de la source mais <u>TCP participe également à la gestion</u> <u>de la congestion</u> en diminuant le débit lorsque les délais s'allongent :
- En cas de congestion, TCP applique une diminution dichotomique :
 - à chaque segment perdu, la fenêtre de congestion est diminuée par 2 (minimum 1 segment)
 - la temporisation de retransmission est augmentée exponentiellement.

La vie d'une connexion TCP

Une connexion TCP est établie en trois temps de manière à assurer la synchronisation nécessaire entre les extrémités

TCP source	TCP destination
Syn seq=x	
	Syn seq=y, ack=x+1
Ack y+1	

I January and the Done

La déconnexion

Une connexion TCP est libérée en un processus dit "trois temps modifié"

Time keep alive

- Cette fonction permet de détecter les « absences » : si aucune donnée ne circule, la connexion est silencieuse
- permet de refermer les connexions que les utilisateurs ont laissé ouvertes
- (exemple : si 9 segments « sondes » consécutifs, émis avec des intervalles de 75 secondes restent sans réponse, la connexion est fermée)

TCP: ports standards

No port Mot-clé Description

- 20 FTP-DATA File Transfer [Default Data]
- 21 FTP File Transfer [Control]
- 23 TELNET Telnet
- 25 SMTP Simple Mail Transfer
- 37 TIME Time
- 42 NAMESERVER Host Name Server
- 43 NICNAME Who Is
- 53 DOMAIN Domain Name Server
- 79 FINGER Finger
- 80 HTTP WWW
- 110 POP3 Post Office Protocol Version 3
- 111 SUNRPC SUN Remote Procedure Call

Octobre 2000 Dominique SERET -

Llaireanité Dané