ИССЛЕДОВАНИЕ КОМПЛЕКСООБРАЗОВАНИЯ АЦИЛГИДРАЗОНОВ АЦЕТОНА С ИОНАМИ ЦВЕТНЫХ МЕТАЛЛОВ

Рубцов И.М., Чеканова Л.Г.

Институт технической химии УрО РАН (филиал ПФИЦ УрО РАН) 614068, г. Пермь, ул. Академика Королева, д. 3

Ацилгидразоны ацетона ранее рассматривались в качестве собирателей для ионной флотации (ИФ) цветных металлов (ЦМ) [1]. Были исследованы физико-химические свойства реагентов общей формулы $RC(O)NHN=C(CH_3)_2$, где $R=C_3H_7$ -, C_5H_{11} -, C_6H_{13} -, C_7H_{15} - [2].

Цель данного исследования — изучение комплексообразования ряда ацилгидразонов ацетона с ионами Cu (II), Zn (II), Ni (II) и Co (II).

Методом осаждения установлены закономерности взаимодействия реагентов (HL) с ионами ЦМ в зависимости от времени, значений рН раствора и концентрации лиганда. Определены диапазоны рН, при которых происходит наиболее полное извлечение катионов из растворов: Cu (II) - 6,0–10,2; Zn - 8,0–9,5; Co - 9,0–11,0; Ni - 9,0–10,5. Методами молярных отношений в экстракционнофотометрическом и кондуктометрическом вариантах для всех металлов установлен состав комплексов M(II) : HL = 1:2. Рассчитаны условные значения ПР комплексов [M(L)₂] (см. табл.). Показано, что в ряду ацилгидразонов ацетона для данных комплексов выполняются зависимости: $-\lg\Pi P = 12,5 + 1,70N$ ($R^2 = 0,9208$) для ионов Cu (II), $-\lg\Pi P = 13,9 + 0,83N - Ni(II)$ ($R^2 = 0,9296$); $-\lg\Pi P = 17,2 + 0,34N - Co(II)$ ($R^2 = 0,9738$) и $-\lg\Pi P = 20,7 + 0,28N - Zn$ (II) ($R^2 = 0,9114$) (где N — число атомов углерода в заместителе), позволяющие прогнозировать собирательные свойства лигандов по растворимости образуемых ими соединений.

Произведение растворимости комплексных соединений состава $[M(L)_2]$

	1 , 1			L (/=1
R-	Cu (II)	Co (II)	Ni (II)	Zn (II)
C ₃ H ₇ -	$9.2 \cdot 10^{-18}$	5.1·10 ⁻¹⁹	2.04·10 ⁻¹⁷	2.15·10 ⁻²²
C ₅ H ₁₁ -	8.31.10-23	1.39·10 ⁻¹⁹	3.06·10 ⁻¹⁸	1.04·10 ⁻²²
C ₆ H ₁₃ -	$7.71 \cdot 10^{-24}$	6.87·10 ⁻²⁰	1.2·10 ⁻¹⁹	4.95·10 ⁻²³
C ₇ H ₁₅ -	2.15·10 ⁻²⁴	1.96·10 ⁻²⁰	1.03·10 ⁻²⁰	1.42·10 ⁻²³

- 1. Чеканова Л.Г., Радушев А.В., Ельчищева Ю.Б. Муксинова Д.А., Гидразоны ацетона потенциальные собиратели для ионной флотации цветных металлов // Химическая технология. 2011. Т.12. № 2. С. 117-122.
- 2. Chekanova L.G., Rubtsov I.M., Vaulina V.N., Kharitonova A.V., Extraction-photometric determination of acetone acylhydrazones in aqueous solutions // Journal of Analytical Chemistry .2024. V. 79. N 11, P. 1524–1529.

Работа выполнена при финансовой поддержке Российского научного фонда (грант 24-11-00269).