Module Langages Formels TD 4 : Minimisation, nombres et congruences

Exercice 1 Automates finis

Soit L un langage sur Σ reconnaissable par automate fini.

1.1. Montrer que les deux langages suivants sont aussi reconnaissables par automate fini.

$$L_r = \{a_2 a_1 a_4 a_3 \dots a_{2n} a_{2n-1} \mid a_i \in \Sigma, a_1 a_2 \dots a_{2n-1} a_{2n} \in L\}$$

$$L_i = \{a_1 a_3 \dots a_{2n-1} \mid a_i \in \Sigma, a_1 a_2 \dots a_{2n-1} a_{2n} \in L\}$$

1.2. Soit K un langage quelconque sur le même alphabet. Montrer que $K^{-1}L$ est reconnaissable par automate fini.

Exercice 2 Langages rationnels

- **2.1**. Soit L un langage rationnel sur un alphabet Σ . Montrer que les langages suivants sont rationnels.
 - 1. CYCLE(*L*) = $\{x_1x_2, x_1, x_2 \in \Sigma^* \text{ et } x_2x_1 \in L\}$
 - 2. $INIT(L) = \{x \in \Sigma^*, \exists y \in \Sigma^*, xy \in L\}$
 - 3. $MAX(L) = \{x \in L, \forall y \neq \epsilon, xy \notin L\}$
 - 4. $MIN(L) = \{x \in L, \text{ aucun préfixe propre de } x \text{ n'est dans } L\}$
 - 5. $\overline{L} = \{x, \overline{x} \in L\}$
 - 6. $\frac{1}{2}L = \{x \in \Sigma^*, \exists y \in \Sigma^* \text{ avec } xy \in L \text{ et } |y| = |x|\}$
 - 7. SQRT(L) = $\{x \in \Sigma^*, \exists y \in \Sigma^* \text{ avec } xy \in L \text{ et } |y| = |x|^2\}$
- **2.2**. Montrer que pour un langage *L* rationnel le langage suivant n'est pas nécessairement rationnel.

BORD(*L*) = {
$$w \in \Sigma^*$$
, $\exists x, y, z \in \Sigma^*$, $|x| = |y| = |z|$, $w = xz$ et $xyz \in L$ }

Exercice 3 Automates et nombres

On a vu au TD2 un automate reconnaissant les mots multiples de 3 en base 2.

3.1. Peut-on généraliser au cas des mots multiples de k en base b, où k et b sont des entiers quelconques?

On définit (informellement) un transducteur de la façon suivante : dans le graphe d'un automate, on ajoute sur les transitions, en plus des lettres d'un alphabet d'entrée Σ , des mots d'un alphabet de sortie Γ . Un transducteur peut donc représenter une fonction de Σ^* dans Γ^* (ou plus généralement $\mathcal{P}(\gamma^*)$). Par exemple, le transducteur suivant compte (en unaire!) le nombre de a dans un mot sur $\{a,b\}$.

- **3.2**. Donner un transducteur qui calcule la division entière par 3 d'un nombre écrit en binaire.
- **3.3**. Peut-on généraliser à la division par k en base b?
- **3.4**. L'ensemble des codages des puissances de 2 en base 2 est-il reconnaissable par un automate sur $\{0,1\}$? Et les puissances de 3 en base 2?

Exercice 4 Caractérisation de Nérode

Définition : Congruences

Une relation d'équivalence \equiv est une **congruence à droite** ssi $\forall t \in \Sigma^*$, $u \equiv v \Rightarrow ut \equiv vt$. C'est une **congruence à gauche** ssi $\forall t \in \Sigma^*$, $u \equiv v \Rightarrow tu \equiv tv$. On parle de **congruence** si elle est compatible à droite et à gauche.

Une congruence est d'index fini ssi l'ensemble de ses classes d'équivalence est fini.

Nous allons prouver le théorème suivant :

Théorème (Myhill-Nérode):

Il y a équivalence entre les assertions suivantes :

- 1. *L* est rationnel.
- 2. *L* est une union de classes d'une congruence d'index fini.
- 3. *L* est une union de classes d'une congruence à droite d'index fini.
- 4. La relation \sim_L définie par $u \sim_L v \Leftrightarrow \forall t \in \Sigma^* (ut \in L \Leftrightarrow vt \in L)$ est une congruence à droite d'index fini.
- **4.1**. $1 \Rightarrow 2$ Soit un langage L rationnel, reconnu par un automate fini déterministe complet $A = (Q, \Sigma, \delta, q_0, F)$. On définit $u \sim_A v$ par $\forall q \in Q, \ \delta(q, u) = \delta(q, v)$.
- **4.1. 1.** Montrer que \sim_A est une congruence.

On considère l'application

$$\varphi: \begin{array}{ccc} \Sigma^*/_{\sim_A} & \to & Q^{\mathbb{Q}} \\ \overline{u}^A & \mapsto & (q \mapsto \delta(q, u)) \end{array}$$

- **4.1. 2**. Montrer que φ est injective. En déduire que \sim_A est d'index fini, et que L est l'union de certaines de ses classes d'équivalence.
- **4.2.** $3 \Rightarrow 4$

Soit \equiv la congruence à droite d'index fini donnée par hypothèse. On sait que $L = \bigcup_{x \in X} \overline{x}$.

- **4.2. 1.** Montrer que \sim_L est une congruence à droite.
- **4.2. 2.** Montrer que $\forall u, v \in \Sigma^*$, $u \equiv v \Rightarrow u \sim_L v$. En déduire que \sim_L est d'index fini.
- **4.3**. $4 \Rightarrow 1$

On suppose que \sim_L est une congruence à droite d'index fini, montrer que $u \sim_L v \Leftrightarrow u^{-1}L = v^{-1}L$. En conclure que L est rationnel.

4.4. Utiliser le théorème de Myhill-Nérode pour montrer que $\{a^nb^n\mid n\in\mathbb{N}\}$ n'est pas rationnel.

Exercice 5 Nérode et le monoïde syntaxique

Nous allons maintenant faire le lien entre la caractérisation de Nérode et la notion de monoïde syntaxique vue en cours.

- **5.1**. Lorsque *L* est rationnel, faire le lien entre \sim_L et l'automate minimal reconnaissant *L*.
- **5.2.** Si \equiv est une congruence, montrer que l'on peut obtenir un monoïde en quotientant Σ^* par \equiv .
- **5.3**. On définit la congruence \equiv_L par

$$u \equiv_L v \iff (\forall t, s \in \Sigma^*, tus \in L \Leftrightarrow tvs \in L)$$

Montrer que *L* est reconnaissable si et seulement si son monoïde syntaxique est fini, et dans ce cas montrer qu'il est isomorphe au monoïde de transition de l'automate minimal.