

cours CC4 - J. Joubert

- ▶ Plan du cours
- 1. Réacteur parfaitement agité continu
 - 1.1. Rappels sur les modèles de réacteur
 - 1.2. Écoulements dans un RPAC
 - 1.3. équation de fonctionnement d'un **RPAC**
 - 1.4. Étude d'une loi de vitesse
- 2. Associations de réacteurs
 - 2.1. Association en parallèle
 - 2.2. Association en série

- ► Compétences spécifiques
 - ▶ Exprimer la vitesse de disparition d'un réactif ou de formation d'un produit à l'aide d'un bilan de matière instantané.
 - ▶ Établir la loi de vitesse à partir de mesures fournies.

J. JOUBERT - COURS CC4 - PLAN DU COURS

1. Réacteur parfaitement agité continu

1.1. Rappels sur les modèles de réacteur

Copyrighted free use, https://commons.wikimedia.org/w/index.php?curid=1528809

Exemples:

► Réacteur fermé parfaitement agité

▶ Réacteur parfaitement agité continu

Réacteur semi-ouvert

▶ Réacteur piston

J. JOUBERT – COURS CC4 – 1. RÉACTEUR PARFAITEMENT AGITÉ CONTINU

3

1.2. Écoulements dans un RPAC

Un réacteur ouvert est caractérisé par des **flux de matières**.

<u>Définition</u>: on appelle **débit volumique**, Q, le volume entrant (ou sortant) dans le réacteur par unité de temps.

<u>Définition</u>: on appelle **débit molaire** du constituant physico-chimique A_k , F_k , la quantité de matière entrant (ou sortant) dans le réacteur par unité de temps.

 $\underline{\textit{Gropriété}}$: pour un fluide incompressible, il y a conservation du débit volumique :

<u>Propriété</u>: lien entre les débits volumiques et molaires

<u>Remarque</u>: le flux entrant peut être réalisé par plusieurs tubes indépendants. On a alors

$$Q_e = Q_{e,1} + Q_{e,2} + ...$$

J. JOUBERT – COURS CC4 – 1. RÉACTEUR PARFAITEMENT AGITÉ CONTINU

1.3. équation de fonctionnement d'un RPAC	<u>Définition</u> : on appelle temps de passage la grandeur		
<u>Propriété</u> : pour un réacteur parfaitement agité, la concentration de sortie d'un constituant physicochimique est égale à sa concentration à l'intérieur du réacteur.			
	En régime continu, pour un réactif A, on a donc		
Bilan de matière :			
Pour un réactif A :			
$\frac{dn_A}{dt} =$			
$\frac{1}{dt}$	Pour un produit B, $\frac{dn_B}{dt}$ =		
en régime continu, $\frac{dn_A}{dt}=0$	en régime continu,		
J. JOUBERT – COURS CC4 – 1. RÉACTEUR PARFAITE	MENT AGITÉ CONTINU		
	5		
1.4. Étude d'une loi de vitesse	<u> Kypothėse</u> : ordre 0		
Exemple: on considère la réaction			
d'hydrodésulfuration en phase gaz			
CH_3CH_2 -S- $CH_2CH_3 + 2H_2 = 2CH_3CH_3 + H_2S$			
CH3CH2 3 CH2CH3 + ZH2 - Z CH3CH3 + H23			
The second of Parallel Land of PIC decree 12 and the second			
Il y a conservation de la quantité de matière de gaz, donc il y a conservation du débit volumique.			
denon'y a conservanch ac acchiveningee.	CV		
Le dibudre gène III est introduit en grand eve ès III y	<u> Kypothėse</u> : ordre 1		
Le dihydrogène, $H_{2(g)}$, est introduit en grand excès. Il y a dégénérescence de l'ordre.			
Loi de vitesse :			
201 00 1110000 1			

J. JOUBERT – COURS CC4 – 1. RÉACTEUR PARFAITEMENT AGITÉ CONTINU

1.4. Étude d'une loi de vitesse

Hypoth	ièse :	ordre	2
- 111			

τ	[R]	1/[R]	[R].τ
(h)	(mol.m ⁻³)	(mol ⁻¹ .m ³)	(h.mol.m ⁻³)
1,2	17,3	5,78E-02	20,8
2,1	13,3	7,52E-02	27,9
2,8	11,2	8,93E-02	31,4
3,9	9,0	1,11E-01	35,1
5,0	7,5	1,33E-01	37,5
9,0	4,7	2,13E-01	42,3

Résumé :

- si ordre 0, $[R] = f(\tau)$ est une droite.
- si ordre 1, $\frac{1}{|R|} = f(\tau)$ est une droite.
- si ordre 2, $[R]\tau = f\left(\frac{1}{[R]}\right)$ est une droite.

Conclusion: La réaction est d'ordre 1

J. JOUBERT – COURS CC4 – 1. RÉACTEUR PARFAITEMENT AGITÉ CONTINU

7

2. Associations de réacteurs

2.1. Association en parallèle

<u>Définition</u>: on appelle taux de conversion la grandeur

Tous les réacteurs ont un fonctionnement identique :

$$[A]_{s,1} = [A]_{s,2} = \dots = [A]_{s,N} = [A]_s$$

Conclusion: l'association en parallèle permet d'augmenter le volume de production mais ne modifie pas le taux de conversion.

On étudie l'association de N réacteurs identiques en parallèle

 $Q=\sum_{k=1}^{N}Q_{k}$ et $Q_{k}=rac{Q}{N}$ pour des réacteurs identiques.

$$\tau_k = \frac{v_k}{Q_k} = \frac{v}{Q} = \tau \; \text{car} \; V_k = \frac{v}{N}$$

J. JOUBERT – COURS CC4 – 2. ASSOCIATION DE RÉACTEURS

2.2. Association en série

On étudie l'association de N réacteurs identiques en série

$$V_k = \frac{V}{N}$$

Par conservation du débit

$$Q = Q_1 = Q_2 = \dots = Q_N$$

Temps de passage : pour chaque réacteur, on a

$$\tau_k = \frac{V}{NQ} = \tau/N$$

$[4]_{j-1} -$	$[A]_i$
2	$A]_{j-1} -$

Exemple: pour une cinétique d'ordre 1

-	

Conclusion: l'association en série n'est pas équivalente à un seul réacteur de volume V. On peut améliorer le taux de conversion par l'association en série.

J. JOUBERT – COURS CC4 – 2. ASSOCIATION DE RÉACTEURS