Preprocessing and Analysis

BUSI 722: Data-Driven Finance II

Kerry Back, Rice University

Outline

- 1. Build dataset of features, returns, and targets as before
- 2. Add preprocessing of features
- Standardize features relative to other stocks at the same date
- Add interactions of features
- 3. Train, predict, and form portfolios in loop as before
- 4. Interpret model
- Feature importances
- Shapley values
- Features of best and worst portfolios 5. Analyze portfolio returns
- Mean-variance frontiers of SPY, best, and worst.

- Build dataset of features, returns, and targets as before
- Add preprocessing of features
 - Features standardized relative to other stocks at the same date
 - Add interactions of features
- Interpret model
 - Feature importances
 - Shapley values
 - Features of best and worst portfolios
- Evaluate portfolio returns

1. Create dataset as before


```
import numpy as np
import pandas as pd
from sqlalchemy import create_engine
from sklearn.ensemble import RandomForestRegressor
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("whitegrid")
```



```
In [2]:
    server = 'fs.rice.edu'
    database = 'stocks'
    username = 'stocks'
    password = '6LAZH1'
    driver = 'SQL+Server'
    string = f"mssql+pyodbc://{username}:{password}@{server}/{database}"
    try:
        conn = create_engine(string + "?driver='SQL+Server'").connect()
    except:
        try:
        conn = create_engine(string + "?driver='ODBC+Driver+18+for+SQL+Server
        except:
        import pymssql
        string = f"mssql+pymssql://{username}:{password}@{server}/{database}"
        conn = create_engine(string).connect()
```



```
In [3]:
        sep_weekly = pd.read_sql(
            select date, ticker, closeadj, closeunadj, volume, lastupdated from sep we
            where date >= '2010-01-01'
            order by ticker, date, lastupdated
              •
            conn,
        sep_weekly = sep_weekly.groupby(["ticker", "date"]).last()
        sep weekly = sep weekly.drop(columns=["lastupdated"])
        ret = sep_weekly.groupby("ticker", group_keys=False).closeadj.pct_change()
        ret.name = "ret"
        price = sep_weekly.closeunadj
        price.name = "price"
        volume = sep_weekly.volume
        volume.name = "volume"
```



```
ret_annual = sep_weekly.groupby("ticker", group_keys=False).closeadj.pct_changetet_monthly = sep_weekly.groupby("ticker", group_keys=False).closeadj.pct_changetet_mom = (1 + ret_annual) / (1 + ret_monthly) - 1
mom.name = "mom"
```



```
In [5]: weekly = pd.read_sql(
    """
    select date, ticker, pb, marketcap, lastupdated from weekly
    where date>='2010-01-01'
    order by ticker, date, lastupdated
    """,
    conn,
)
    weekly = weekly.groupby(["ticker", "date"]).last()
    weekly = weekly.drop(columns=["lastupdated"])

pb = weekly.pb
    pb.name = "pb"
    marketcap = weekly.marketcap
    marketcap.name = "marketcap"
```



```
In [6]: sf1 = pd.read_sql(
            select datekey as date, ticker, assets, netinc, equity, lastupdated from
            where datekey>='2010-01-01' and dimension='ARY' and assets>0 and equity>0
            order by ticker, datekey, lastupdated
            conn,
        sf1 = sf1.groupby(["ticker", "date"]).last()
        sf1 = sf1.drop(columns=["lastupdated"])
        # change dates to Fridays
        from datetime import timedelta
        sf1 = sf1.reset_index()
         sf1.date =sf1.date.map(
            lambda x: x + timedelta(4 - x.weekday())
        sf1 = sf1.set index(["ticker", "date"])
        sf1 = sf1[~sf1.index.duplicated()]
        assets = sf1.assets
        assets.name = "assets"
        netinc = sf1.netinc
        netinc.name = "netinc"
        equity = sf1.equity
        equity.name = "equity"
        equity = equity.groupby("ticker", group_keys=False).shift()
        roe = netinc / equity
```

```
In [7]: df = pd.concat(
                ret,
                mom,
                volume,
                price,
                pb,
                marketcap,
                roe,
                assetgr
                axis=1
        df["ret"] = df.groupby("ticker", group_keys=False).ret.shift(-1)
        df["roe"] = df.groupby("ticker", group_keys=False).roe.ffill()
        df["assetgr"] = df.groupby("ticker", group keys=False).assetgr.ffill()
        df = df[df.price >= 5]
        df = df.dropna()
        df = df.reset index()
        df.date = df.date.astype(str)
        df = df[df.date >= "2012-01-01"]
        df["target1"] = df.groupby("date", group keys=False).ret.apply(
            lambda x: x - x.median()
        df["target2"] = df.groupby("date", group_keys=False).ret.apply(
            lambda x: 100*x.rank(pct=True)
```

2. Preprocessing of Features

Features relative to peers

We are predicting relative performance. It makes sense to use relative features: how does a stock compare to other stocks at the same date? There are multiple options:

- standard scaler (subtract mean and divide by std dev)
- quantile transformer (map to normal or uniform distribution)
- rank (quantile transformer to uniform distribution)


```
In [23]: features = [
    "mom",
    "volume",
    "pb",
    "marketcap",
    "roe",
    "assetgr"
]

for f in features:
    df[f] = df.groupby("date", group_keys=False)[f].apply(
        lambda x: x.rank(pct=True)
    )
```


Interactions

It may be useful to include interactions of features (x1*x2 for all features x1 and x2). For example, a high value of x1 may predict a high return only if it is coupled with a high value of x2. We could add interactions manually to the dataframe but it is easier to use PolynomialFeatures.

Pipeline

We can put preprocessing steps that are to be applied to the entire training set in a pipeline with the model and fit and predict from the pipeline.


```
In [21]: from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

poly = PolynomialFeatures(degree=2, interaction_only=True)
model = RandomForestRegressor(max_depth=4)
pipe = make_pipeline(poly, model)
```


3. Train, predict and form portfolios as before

• Only change is to use fit and predict using the pipeline.


```
In [24]: train_years = 5 # num years of past data to use for training
         train freq = 3 # num years between training
          target = "target2"
          years = range(2012+train years, 2024, train freq)
          df2 = None
          for i, year in enumerate(years):
              print(year)
              start train = f"{year-train years}-01-01"
              start predict = f"{year}-01-01"
              if year == years[-1]:
                  stop predict = "2100-01-01"
              else:
                  stop predict = f"{years[i+1]}-01-01"
              past = df[(df.date >= start train) & (df.date < start predict)]</pre>
              future = df[(df.date>=start predict) & (df.date<stop predict)].copy()</pre>
              pipe.fit(X=past[features], y=past[target])
              future["predict"] = pipe.predict(X=future[features])
              df2 = pd.concat((df2, future))
          df2.head()
```

2017

c:\Users\kerry\AppData\Local\Programs\Python\Python310\lib\site-packa
ges\sklearn\base.py:443: UserWarning: X has feature names, but Random
ForestRegressor was fitted without feature names
 warnings.warn(


```
In [10]: num_stocks = 50

grouped = df2.groupby("date", group_keys=False).predict
    starting_from_best = grouped.rank(ascending=False, method="first")
    best = df2[starting_from_best <= num_stocks]
    best_rets = best.groupby("date", group_keys=True).ret.mean()
    best_rets.index = pd.to_datetime(best_rets.index)

starting_from_worst = grouped.rank(ascending=True, method="first")
    worst = df2[starting_from_worst <= num_stocks]
    worst_rets = worst.groupby("date", group_keys=True).ret.mean()
    worst_rets.index = pd.to_datetime(worst_rets.index)

all_rets = df2.groupby("date", group_keys=True).ret.mean()
    all_rets.index = pd.to_datetime(all_rets.index)</pre>
```


4. Interpret

Find feature importances for last trained model


```
In [12]: importances = pd.Series(
             model.feature_importances_,
             index=features
         importances.round(3)
Out[12]:
                       0.041
          mom
          volume
                       0.304
          pb
                       0.029
          marketcap
                      0.170
                       0.456
          roe
          assetgr
                       0.000
          dtype: float64
```


Extract best, worst, and all stocks in last portfolios


```
In [13]: last_date = df2.date.max()
    best_last = best[best.date==last_date].copy()
    worst_last = worst[worst.date==last_date].copy()
    all_last = df2[df2.date==last_date].copy()

best_last["group"] = "best"
    worst_last["group"] = "worst"
    all_last["group"] = "all"

last = pd.concat((best_last, worst_last, all_last))
```


Compare features of best, worst, and all portfolios


```
In [14]: sns.boxplot(last, x="group", y="roe")
  plt.ylim((-4, 4))
```

Out[14]: (-4.0, 4.0)


```
In [15]: sns.boxplot(last, x="group", y="marketcap")
  plt.ylim((0, 0.5e6))
  plt.show()
```



```
In [16]: sns.boxplot(last, x="group", y="volume")
# plt.ylim((0, 0.5e6))
plt.show()
```


5. Evaluate

Add SPY returns

Plot performance

Find frontier of SPY, best, and worst


```
In [18]: from cvxopt import matrix
         from cvxopt.solvers import qp
         cov = rets.cov()
         means = rets.mean()
         P = cov
         A = np.array(
                  means,
                  [1., 1., 1.]
          P = matrix(P.to_numpy())
          q = matrix(np.zeros((3, 1)))
          A = matrix(A)
         mns = []
         vars = []
          ports = []
          for targ in np.linspace(0, 0.5/52, 50):
              b = matrix(
                  np.array([targ, 1]).reshape(2, 1)
              sol = qp(
                  P=P,
                  q=q,
                  A=A,
                  b=b
```

Find best portfolio with same risk as SPY


```
In [19]: stdev = np.max([s for s in sds if s <= np.sqrt(52)*rets.spy.std()])
    indx = np.where(sds==stdev)[0].item()
    mean = mns[indx]
    port = ports[indx]
    print(port.round(2))
    print(f"portfolio expected return is {mean:.1%}")

spy     0.53
    best     0.92
    worst    -0.44
    dtype: float64
    portfolio expected return is 38.8%</pre>
```


Long-only portfolios of SPY and best


```
In []:
    means = rets[["spy", "best"]].mean()
    cov = rets[["spy", "best"]].cov()
    ports = [np.array([w, 1-w]) for w in np.linspace(0, 1, 50)]
    mns = [52 * means @ w for w in ports]
    sds = [np.sqrt(52 * w @ cov @ w) for w in ports]

    plt.plot(sds, mns, label=None)
    plt.scatter(x=[np.sqrt(52)*rets.spy.std()], y=[52*rets.spy.mean()], label="SP"
    plt.scatter(x=[np.sqrt(52)*rets.best.std()], y=[52*rets.best.mean()], label="plt.xlabel("Standard Deviation")
    plt.ylabel("Expected Return")
    plt.legend()
    plt.show()
```

