Basistechnologie: Virtualisierung Ein Vortrag zum Cloudseminar im WS09/10

Maximilian Hoecker

Fakultät für Informatik,
Hochschule Mannheim,
Paul-Wittsack-Straße 10,
68163 Mannheim
maximilian.hoecker@stud.hs-mannheim.de

20.10.2009

- Begriffsabgrenzung Virtualisierung
 - Definition
- 2 Virtualisierungsarten
 - Hardwarevirtualisierung
 - Softwarevirtualisierung
 - Anwendungsvirtualisierung
 - Virtualisierung von Peripherie-Geräten
 - Virtualisierung auf Betriebssystemebene
- Virtualisierung von Betriebssystemen/Rechnern
 - Allgemeines
 - User Mode Linux
 - Emulation auf Applikationsebene
 - Para-Virtualized-Machines @ Xen
 - Hypervisor-Virtualized-Machines @ Xen
 - Vergleich der 3 Virtualisierungsarten (Xen, VMware, UML)

- Begriffsabgrenzung Virtualisierung
 - Definition
- Virtualisierungsarten
 - Hardwarevirtualisierung
 - Softwarevirtualisierung
 - Anwendungsvirtualisierung
 - Virtualisierung von Peripherie-Geräten
 - Virtualisierung auf Betriebssystemebene
- Virtualisierung von Betriebssystemen/Rechnern
 - Allgemeines
 - User Mode Linux
 - Emulation auf Applikationsebene
 - Para-Virtualized-Machines @ Xen
 - Hypervisor-Virtualized-Machines @ Xen
 - Vergleich der 3 Virtualisierungsarten (Xen, VMware, UML)

Definition

Eine wage Begriffsdefinition

Definition von Virtualisierung

Virtualization is a framework or methodology of dividing the resources of a computer into multiple execution environments, by applying one or more concepts or technologies such as hardware and software partitioning, time-sharing, partial or complete machine simulation, emulation, quality of service, and many others.

Eine wage Begriffsdefinition

... und nochmal auf Deutsch

Virtualisierung ist...

- ein Framework bzw. Methodik
- zur Aufteilung von Computerresourcen in viele Ausführungsumgebungen z.B.
 - Hardware-/Softwarepartitioning
 - Timesharing
 - Teil- oder Vollsimulierung von Maschinen
 - Emulation
 - Quality of Service
 - uvm.

Definition

Aber

Die Definition sollte man nicht zu genau nehmen

- Virtualisierung bedeutet nicht immer Aufteilen von Resourcen
- Man kann z.B. X Hardwarefestplatten zu einer logischen Partition zusammenfassen durch einen Virtualizationlayer
- Grid Computing virtualisiert durch das Nutzen verschiedener verteilter Resourcen

- Begriffsabgrenzung Virtualisierung
 - Definition
- Virtualisierungsarten
 - Hardwarevirtualisierung
 - Softwarevirtualisierung
 - Anwendungsvirtualisierung
 - Virtualisierung von Peripherie-Geräten
 - Virtualisierung auf Betriebssystemebene
- Virtualisierung von Betriebssystemen/Rechnern
 - Allgemeines
 - User Mode Linux
 - Emulation auf Applikationsebene
 - Para-Virtualized-Machines @ Xen
 - Hypervisor-Virtualized-Machines @ Xen
 - Vergleich der 3 Virtualisierungsarten (Xen, VMware, UML)

Historisches

- Idee der Virtualisierung ist schon 50 Jahre alt
- Christopher Strachey veröffentlichte 1959 Time Sharing in Large Fast Computers
- Am MIT in den 1950er Jahren:
 - Konzept zur gleichzeitigen Bedienung von Rechnern
 - Ohne Leistungseinbußen
 - Name: Time Stealing
- Damit waren die ersten Konzepte zur CPU-Virtualisierung geboren.

Hardwarevirtualisierung

Die erste Abstraktion

- Erster Großrechner Atlas (1962) mit Stracheys Time Sharing
- Neuer Architekturansatz im Betriebssystem
- Dort wurde separiert zwischen:
 - Prozessen des Betriebssystems (Supervisor)
 - Darunter eine Komponente die zuständig war für ausgeführte Programme
- Ebenfalls neu waren Virtuelle Speicher/One Level Store und Paging

Hardwarevirtualisierung

Schritt zur ersten Emulation

- Mit der Veröffentlichung von IBM OS/360 (1967) hatte IBM ein Problem
- Die Programme die aktuell beim Kunden liefen konnten nicht auf der neuen Architektur ausgeführt werden
- Zur Erleichterung des Umstiegs von den alten IBM 7070
 Rechnern wurde im OS/360 eine Erweiterung eingebaut
- Die Erweiterung übersetzte die 7070er Befehle in S/360 Befehle
- Der Erfinder der Erweiterung taufte diese "Emulator"
- Die Emulation der 7070 Maschine beanspruchte viel Rechenleistung (bis zu 25% Overhead)

Server Partitioning

- Bis heute wurde die Architektur der S/360 beibehalten und erweitert
- Aktuelle Systeme: IBM z10 Business/Enterpise 1-64 CPUs 64GB-1,5TB RAM
- Diese Systeme haben 2 verschiedene Modi mit denen gearbeitet werden kann
 - LPAR Mode (Logical Partition Mode)
 - VM Mode (Virtual Machine Mode)
- Diese Modi können auch gemischt werden, also auf einer Partition mehrere VMs

Hardwarevirtualisierung

Zusammenfassung Hardwarevirtualisierung

- Lässt man CPU-Scheduling als Virtualisierung außen vor gibt es 3 Virtualisierungsmöglichkeiten von Hardware:
 - Domaining/Partitioning z.B. mit LPAR/PRISM von IBM in dem z-Systemen (ganz nativ ohne SW-Zusätze im Betriebssystem)
 - Virtualierung von Hardware mit Hypervisorn (nativ, aber mit Hypervisor(später mehr dazu))
 - Emulation von Hardware (pure SW-Lösung)

Der Unterschied zwischen Virtualisierung und Emulation von Hardware

- Bei der Virtualisierung von Hardware darf die abgebildete Architektur in der VM nicht abweichen von der des Host-Systems.
- Bei der Emulation ist dies nicht nötig, da jeder Aufruf von in die darunter liegende Architektur, von einen Programm übersetzt wird

Hardwarevirtualisierung

Zusammenfassung Hardwarevirtualisierung

Vorteile von Hardware-Virtualisierung gegenüber Emulation

- Der Zugriff auf die Hardware kann direkt an die phy. Addresse durchgereicht werden
- durch das fehlende Übersetzen hat man weniger Overhead
- und dadurch ist ein solches System schneller als ein Emuliertes
- man hat dadurch auch weniger Kompatibilitätsprobleme

Vorteile von Emulation gegenüber Virtualisierung

- Man kann auf einer Hardware viele verschiedene andere Hardware emulieren (zur Konsolidierung)
- Falls ein Emulator existiert, kann die darunter liegende Hardware getauscht werden

- Begriffsabgrenzung Virtualisierung
 - Definition
- Virtualisierungsarten
 - Hardwarevirtualisierung
 - Softwarevirtualisierung
 - Anwendungsvirtualisierung
 - Virtualisierung von Peripherie-Geräten
 - Virtualisierung auf Betriebssystemebene
- Virtualisierung von Betriebssystemen/Rechnern
 - Allgemeines
 - User Mode Linux
 - Emulation auf Applikationsebene
 - Para-Virtualized-Machines @ Xen
 - Hypervisor-Virtualized-Machines @ Xen
 - Vergleich der 3 Virtualisierungsarten (Xen, VMware, UML)

Softwarevirtualisierung

WABI

WABI

- Sun veröffentlichte 1993 das Windows Application Binary Interface
- Windows Programme in Solaris (unverändert)
- Sowohl auf SPARC als auch auf x86-Architektur

Softwarevirtualisierung

WINE

WINE

- WINE Projekt startet 1993 (Wine Is Not an Emulator)
- Keine Emulatorschicht
- x86 Architektur ist Vorraussetzung
- Aufrufe werden nur zu den entsprechenden Linux-Kernel Funktionen umgeleitet

Microsoft App-V

 Bei App-V werden Anwendungen in Packages virtualisiert und lokal auf den Clients/Terminal-Servern ausgeführt

¹Quelle: http://i.technet.microsoft.com/cc904189.fig01_L.gif

Virtualisierung von Peripherie-Geräten

- Bei der Peripherie-Geräten wird im Betriebssystem ein Treiber/Modul geladen
- Dieses Modul simuliert ein Gerät, das am Rechner angeschlossen ist
- Bespiele:
 - Virtuelle CD-Laufwerke (Daemon Tools, Virtual CD)
 - Drucker Spooler
 - RAID/LVM
 - iSCSI
 - rCAPI
 - usw.

Softwarevirtualisierung

Virtualisierung auf Betriebssystemebene

Siehe nächstes Kapitel

- Begriffsabgrenzung Virtualisierung
 - Definition
- Virtualisierungsarten
 - Hardwarevirtualisierung
 - Softwarevirtualisierung
 - Anwendungsvirtualisierung
 - Virtualisierung von Peripherie-Geräten
 - Virtualisierung auf Betriebssystemebene
- Virtualisierung von Betriebssystemen/Rechnern
 - Allgemeines
 - User Mode Linux
 - Emulation auf Applikationsebene
 - Para-Virtualized-Machines @ Xen
 - Hypervisor-Virtualized-Machines @ Xen
 - Vergleich der 3 Virtualisierungsarten (Xen, VMware, UML)

Allgemeine Überlegung

- Ein Betriebssystem versucht immer auf Hardware (egal ob virtualisiert oder nicht) zuzugreifen.
- Virtualisiert man also ein Betriebssystem, muss man dafür sorgen, dass das Betriebssystem denkt, es greift direkt auf Hardware zu.
- Es versucht ebenfalls immer auf die gleiche Weise auf Peripheriegeräte zuzugreifen.

Grundlagen der x86 Architektur

- Der x86 Prozessor hat ein Ringschutzkonzept
- Es gibt 4 Ringe, der innerste ist Ring 0, der äußerste Ring 3
- Je innerer der Ring desto mehr Privilegien hat der Prozess auf Hardware zuzugreifen
- In Ring 0 (Kernel-Space) läuft meistens der Kernel/Module/Treiber eines Betriebssystems
- In Ring 3 (User-Space) die Anwendungen
- Die meisten Betriebssysteme benutzen nur 2 Ringe (0 und 3)

- Ein Prozess kann zu einem Zeitpunkt nur auf einem Ring laufen
- Ein Prozess kann nicht selbst "den Ring wechseln"
- Möchte ein Prozess eine Operation aufrufen, die in einem inneren Ring liegt, erzeugt der Prozessor eine Exception, die behandelt werden muss
- Wird diese nicht behandelt: Schutzverletzung, Prozessabsturz

- Begriffsabgrenzung Virtualisierung
 - Definition
- Virtualisierungsarten
 - Hardwarevirtualisierung
 - Softwarevirtualisierung
 - Anwendungsvirtualisierung
 - Virtualisierung von Peripherie-Geräten
 - Virtualisierung auf Betriebssystemebene
- Virtualisierung von Betriebssystemen/Rechnern
 - Allgemeines
 - User Mode Linux
 - Emulation auf Applikationsebene
 - Para-Virtualized-Machines @ Xen
 - Hypervisor-Virtualized-Machines @ Xen
 - Vergleich der 3 Virtualisierungsarten (Xen, VMware, UML)

Der Anfang von Betriebssystemvirtualisierung

User Mode Linux

- 1999 veröffentlichte Jeff Dike einen Patch mit dem sich der Linux-Kernel sich selbst als unprivilegierten Prozess aufrufen kann
- Folge: man konnte mehrere Instanzen des Betriebssystems auf dem selben Rechner fahren
- Implementierung (User Mode) wurde mit der arch-Schnittstelle im architekturunabhängigen Teil des Linux Kernels umgesetzt
- Startet man den Kernel also im User Mode, werden alle hardwareunabhängigen Aufrufe aus der VM vom Host Kernel angenommen und bedarfsweise an den Gast-Kernel durchgereicht (gleich mehr dazu)

Gesamtarchitektur eines UML Systems

http://www.lrr.in.tum.de/stodden/teaching/sem/virt/ss06/doc/virt06 - 07 - 20060531 - kern - doc%20 - %20 Paravirtualisierung.pdf

²Quelle:

Funktionsweise der Architektur

UML im TT-Mode

- Für jeden Gast betreibt der UML-Host einen Tracing Thread
- Für jeden Prozess eines Gasts wird ein Host Prozess angelegt
- d.h. jeder Prozess läuft im Prinzip auf dem Host Kernel (nur unterschieden durch den Tracing Thread)

Aufgabe des Tracing Threads

- Setzt ein Gast ein Signal ab, wird dieses für den Hostkernel, falls es ein HW-unabhängiges Signal ist, immer in einen getpid() Call umgewandelt/"nullifiziert"
- Der gleiche Call wird aber unmodifiziert an den Gastkernel weitergereicht.

Hää??Wieso mit getpid() überschrieben?

- Die Theorie eines solchen Systems ist oft ideell
- In der Realität existiert ein UML-Debug-Handler im Host Kernel
- Die Debugschnittstelle wurde extra für UML in den Kernel eingepflegt
- Dieser Handler springt vor jedem Systemcall an und greift diesen Call auf
- Interessanterweise gibts aber keine Möglichkeit den Handler zu deaktivieren
- Es gibt auch keine Möglichkeit den Systemaufruf im Hostkernel abzubrechen oder zu löschen
- Deswegen wird dieser Call mit einem getpid() Call überschrieben

Vorteile und Probleme von UML

Vorteile im Allgemeinen

- VMs laufen fast ohne Overhead (Im Vergleich zu emulierten Systemen)
- Keine eigenen Treiber auf der VM benötigt
- Keine Modifikation des Gast- oder Hostsystems nötig (da UM-Kernel wie ein normaler Prozess behandelt wird)

Probleme im TT-Mode

- Prozessverwaltung ist mit Host gekoppelt:
 - Für jeden Prozess im Gast wird ein entsprechender Prozess im Host angelegt. (Prozesskopplung)
 - Folge bei vielen Gästen und vielen Prozessen: Performanceprobleme
- Speichervirtualisierung kaum umgesetzt: Einem Gast ist es möglich den Kernelspeicher zu überschreiben und aus dem Gast-Speicherbereich auszubrechen
- Kontextwechsel im Gastsystem können zu Leistungseinbußen führen, da jeder Wechsel explizit genehmigt werden muss vom Hostkernel (4 Stück: Syscall <-> TracingThread <-> Hostkernel) ^a

^aQuelle: http://www.uni - koblenz.de/vnuml/docs/vnuml/uml.pdf

Problemlösung mit dem SKAS Patch

Seperate Kernel Address Space Eigenschaften:

- Wird auf dem Kernel des Hosts implementiert
- Löst die Probleme mit Prozessverwaltung, fehlende
 Speichervirtualisierung und auch das Kontextwechselproblem

Prozessarchitektur eines UML-Systems Prozesse im UML-Bereich sind für den Host-Kernel sichtbar

Prozessarchitektur eines UML-Systems mit SKAS-Patch UML-Bereich wird hinter vier Prozessen verborgen: Kernel- und User-Bereich, Blockgerätetreiber und Signalvermittlung für Ein-/Ausgabe

³Quelle: http://markus-gerstel.de/files/2005 - Xen.pdf

Folgen durch den SKAS Patch

- Durch die vorhandene Speichervirtualisierung wird pro Gast ein seperater Kernel-Datenspeicher verwendet
- Der Host-Kernel Speicher wird durch das nun vorhandene Memory Management geschützt
- Durch eine modifizierte ptrace() Funktion (Prozesstracing) im Kernel werden nun nur noch 2 Kontextswitches benötigt
- Insgesamt ist das System ca. doppelt so schnell (gemessen bei Kernel-Compiling) 4
- Es gibt nun nur noch 4 Prozesse auf dem Host System für alle UML Gäste
 - UML Kernel Thread führt Code im UML Kernelspace aus
 - UML Userspace Thread führt Code im UML Userspace aus
 - Asyncroner I/O Treiber Thread virtuelle Block Devices
 - Emulator-Thread für WRITE-SIGIO Hilfsprozess, der Signale für write() calls

⁴ http://user - mode - linux.sourceforge.net/old/skas.html

- Begriffsabgrenzung Virtualisierung
 - Definition
- 2 Virtualisierungsarten
 - Hardwarevirtualisierung
 - Softwarevirtualisierung
 - Anwendungsvirtualisierung
 - Virtualisierung von Peripherie-Geräten
 - Virtualisierung auf Betriebssystemebene
- Virtualisierung von Betriebssystemen/Rechnern
 - Allgemeines
 - User Mode Linux
 - Emulation auf Applikationsebene
 - Para-Virtualized-Machines @ Xen
 - Hypervisor-Virtualized-Machines @ Xen
 - Vergleich der 3 Virtualisierungsarten (Xen, VMware, UML)

Virtual Machine Monitor (VMM)

- VMware veröffentlichte 1999 ihre Software VMware Workstation
- Virtualisierung eines kompletten x86 Rechners auf einem anderen x86er
- Neu: Eigenes BIOS, Eigene Hardware (begrenzt)
- Auch Neu: Virtual Machine Monitor, eine Anwendung überhalb des Betriebssystems, dass die vorhandene Hardwareresourcen an die VMs durch Emulation verteilt

VMM - Scan-before-Execution / PreScan

- Der VMM überprüft parallel zur Laufzeit den Programmcode der VM bevor der ausgeführt wird
- wird dabei ein abzufangender Befehl erkannt, wird dort ein Breakpoint gesetzt und die Suche endet erstmal
- Gibt es konditionale Sprünge, werden beide verfolgt (bis maximale Suchtiefe erreicht)
- Falls etwas nicht gescannt werden konnte, wird der Rest der Sprünge emuliert
- Dieses Verfahren wird Scan-before-Execution genannt

Weitere wichtige Teile in der VMware Architektur

VMDriver / VMXDriver

- Modul im Hostsystem
- dient als Kommunikationsschnittstelle f
 ür I/O Verkehr und Gast
 VMApp
- Speicherverwaltung
- Gerätemanagement

VMApp

- Oberfläche für den Endanwender
- Kommunikationsschnittstelle f

 ür Treiber
- Kommunikationsweg Hosttreiber <-> VMApp <-> VMXDriver

Emulation auf Applikationsebene

Architekturübersicht VMware Workstation

⁵Quelle: http://www.spies.informatik.tu — muenchen.de/lehre/seminare/WS0506/hauptsem/Ausarbeitung02.pdf

Agenda

- Begriffsabgrenzung Virtualisierung
 - Definition
- 2 Virtualisierungsarten
 - Hardwarevirtualisierung
 - Softwarevirtualisierung
 - Anwendungsvirtualisierung
 - Virtualisierung von Peripherie-Geräten
 - Virtualisierung auf Betriebssystemebene
- 3 Virtualisierung von Betriebssystemen/Rechnern
 - Allgemeines
 - User Mode Linux
 - Emulation auf Applikationsebene
 - Para-Virtualized-Machines @ Xen
 - Hypervisor-Virtualized-Machines @ Xen
 - Vergleich der 3 Virtualisierungsarten (Xen, VMware, UML)

Para, was?

- Paravirtualisierung ist ein Verfahren zur effizienten Virtualisierung von x86 Architekturen mit einem Hypervisor und einem modifizierten Gast-Kernel
- Seit neustem auch modifizierte Kernel für Windows XP, 2003 und 2008 verfügbar

Hypervisor

- Ein Hypervisor ist im Grunde ein Virtual Machine Monitor
- Er besteht aus einem minimalen Betriebssystem, das im Ring 0 des CPUs arbeitet
- Die Aufgaben sind ebenfalls Speicherverwaltung, Scheduling, Geräteverwaltung
- Ein Hypervisor emuliert im Paravirtualisierungsmodus keine Resourcen, aber Geräte (Netzwerkkarte, Festplatten...)

Ringbelegung und Hypercalls

- Gastkernel weicht aus Ring 0 in Ring 1
- Problem: Gastkernel in Ring 1, will aber auf Hardware zugreifen!
- Lösung: Hypercalls

^aQuelle:Informatik Spektrum 32 3/2009 S.205

XEN Architektur

http://www.lrr.in.tum.de/stodden/teaching/sem/virt/ss06/doc/virt06 - 07 - 20060531 - kern - doc%20 - %20 Paravirtualisierung.pdf

⁶Quelle:

Agenda

- Begriffsabgrenzung Virtualisierung
 - Definition
- Virtualisierungsarten
 - Hardwarevirtualisierung
 - Softwarevirtualisierung
 - Anwendungsvirtualisierung
 - Virtualisierung von Peripherie-Geräten
 - Virtualisierung auf Betriebssystemebene
- Virtualisierung von Betriebssystemen/Rechnern
 - Allgemeines
 - User Mode Linux
 - Emulation auf Applikationsebene
 - Para-Virtualized-Machines @ Xen
 - Hypervisor-Virtualized-Machines @ Xen
 - Vergleich der 3 Virtualisierungsarten (Xen, VMware, UML)

Unmodifizierte Gäste auf einem Hypervisor??

- Unterstützt ein Prozessor entweder die Intel Virtual Machine Extenstion (VMX) oder den AMD Secure Virtual Machine (SVM) Befehlssatz
 - 2 Modi des Prozessors möglich
 - VMX-Root-Modus (Hypervisor, Ring -1 am rechnen)
 - VMX-Non-Root-Modus (Gast-OS, Ring 0-3 am rechnen)

7

CPU Befehle bei VT bzw. SVM

- VMON: CPU in Virtualisierungsmodus schicken
- VMENTRY (von VMM aus): Übergabe der Ringe(0-3) an Gast
- VMEXIT (von VMM aus): Abgabe der Ringe an VMM
- VMOFF: CPU aus Virtualisierungsmodus holen

⁷Quelle

Hypervisor-Virtualized-Machines @ Xen

Ringaufbau und Zeitliches Beispiel

http: //www.lrr.in.tum.de/stodden/teaching/sem/virt/ss06/doc/virt06-07-20060531-kern-doc%20-%20Paravirtualisierung.pdf

⁸Quelle:

Folgen von VMX/SVM

- Eine VM kann nicht mehr unterscheiden, ob sie nativ oder virtualisiert betrieben wird (Ring 0 steht immer zur Verfügung)
- Kein Performanceverlust, da keine Emulation von Hardware nötig ist

Unterschiede Vanderpool / Pacifica

- Technologien nicht kompatibel
- AMD's Pacifica virtualisiert ebenfalls den bei Intel hardwaretechnisch gelösten Speichercontroller
- Pacifica hat ebenfalls einen Device Exclusion Vector (DEV) integriert, der es VMs ermöglicht auch Geräte zu benutzen, die ohne CPU auf Speicher zugreifen können.

Agenda

- Begriffsabgrenzung Virtualisierung
 - Definition
- Virtualisierungsarten
 - Hardwarevirtualisierung
 - Softwarevirtualisierung
 - Anwendungsvirtualisierung
 - Virtualisierung von Peripherie-Geräten
 - Virtualisierung auf Betriebssystemebene
- Virtualisierung von Betriebssystemen/Rechnern
 - Allgemeines
 - User Mode Linux
 - Emulation auf Applikationsebene
 - Para-Virtualized-Machines @ Xen
 - Hypervisor-Virtualized-Machines @ Xen
 - Vergleich der 3 Virtualisierungsarten (Xen, VMware, UML)

Relativer Performancevergleich aller Systeme zu Linux

Figure 3: Relative performance of native Linux (L), XenoLinux (X), VMware workstation 3.2 (V) and User-Mode Linux (U).

⁹Quelle:

Fazit

- Virtualisierung eignet sich f
 ür viele Bereiche, bei der keine spezielle Hardware benötigt wird
- Virtualisierung birgt kaum Risiken oder Nachteile, wenn man sie richtig Einsetzt
- Administratoren brauchen fachübergreifendes Wissen z.B.:Netzwerk-Utils in Linux
- Große Probleme bekommt man bei allen Geräten, die nicht blockorientiert Arbeiten: ISDN Karten, USB Dongles für Lizenzen, alle A/V-USB-Geräte
- XEN ist inzwischen altbewährt, aber auf dem Rückmarsch.
 Neues Produkt ähnliche Technologie: Kernel Based Virtual Machine (KVM)

Gibt es Fragen

