(04/m/20my =	Olganomi
[ONDRINDO] > Unbro a prog- albri escriti	
PROGR. DINAMICA	DIVIDE DE CONQUER
SALVO LE CHIAMAT	
ACP, Q, MD	
[POOGR. DIMARICA]	MORDIZZAZIONE SCEEDOY
T08-	T BOMOG

LCS -> mini exectio

LCS -> m stringa COMUNT PIÙ WNOA ARCOBALLING 2 STRUM DAT LCS(X,Y)m = X.[length]2n = Y.length3 for i = 0 to m4 L[i,0] = 0for j = 0 to n6 L[0,j] = 07 for i = 1 to m8 for j = 1 to n9 if $x_i = y_j$ 10 L[i,j] = L[i-1,j-1] + 111 12 else if $L[i-1, j] \ge L[i, j-1]$ 13 L[i,j] = L[i-1,j] $B[i,j] = ' \uparrow '$ 1415 else L[i,j] = L[i,j-1]16 17 $B[i,j] = ' \leftarrow '$

Complessità

18

$$T(m,n) = \Theta(m \cdot n)$$

return (L[m,n],B)

6 REED>

SALVO LA MIGLIONE 5 0LUZIONS

< 5000 COON ベサントナブ

INPUT -> SUSUGO PRIMA ATTVITA

Versione iterativa:

Greedy-Sel(S, f)

 $1 \quad n = S. length$

 $A = \{a_1\}$

 \geqslant $\frac{1}{4} \begin{cases}
last = 1 \\
for m = 2 \text{ to } n
\end{cases}$ indice dell'ultima attività selezionata

5 if $s_m \geq f_{last}$

6

7 last = m

8 return A1 10151

9 77 17 12 200

DITITA = IN 1710/ Esempio INPUT

 $A = a_1$ last = 1 $A = a_1, a_4$ last = 4

 $A = a_1, a_4, a_6$ last = 6

6RBD7 > Efficiente

-> Tolis la sel-atima

-> SCISTE GROUDY A= { D1 - . On 3 Di -> Ai / A f CINIZIO (FINS) -AMVITA CHE DURA risho _mox=2 _SCHIA=1 $\frac{1}{2} = 0$ ATTIVITÀ 1 N = 1 1 = 1 2 = 0 2 = 0_GROSDY -> ARRAY/RIC_ - PROG. -> FOR (1 TON)

FOR (5 TO N) MARICI (OTTIME)

Esercizio 2 Scrivere una procedura di tipo divide et impera over che dato un array di interi distinti A[1..n], ordinato in modo crescente, e un intero x restituisce l'indice del più piccolo elemento in A strettamente maggiore di x. Se nessun elemento di A soddisfa la condizione, si restituisca n+1. Valutare la complessità dell'algoritmo.

Domanda 14 Dare una soluzione asintotica per la ricorrenza T(n) = 3T(n/2) + n(n+1).

$$\lim_{n\to\infty}\frac{f(n)}{n\log 2^3}=\infty$$

Master theorem.

Metodo alternativo a quello di sostituzione e non infallibile. Risolve un sottoinsieme di equazioni di ricorrenza che hanno forma:

$$\angle T(n) = \underline{a} T\left(\frac{n}{\underline{b}}\right) + \underline{f(n)}$$

Il teorema ci dice che il risultato finale sarà f(n) o $n^{\log_b a}$ e per stabilire il vincitore si

Limite	Risultato	Soluzione
$k = l$ $k = 0$ $\lim_{n \to \infty} \frac{f(n)}{n^{\log_b a}} = k$ $k = \infty$	k = l	$T(n) = \Theta\left(n^{\log_b a} \log(n)\right)$
	k = 0	$T(n) = \Theta(n^{\log_b a})$ se $\exists k > 0 \mid \lim_{n \to \infty} \frac{f(n)}{n^{\log_b a - \varepsilon}} = k$
		$T(n) = \Theta(f(n))$
	se $\exists k > 0 \mid \lim_{n \to \infty} \frac{f(n)}{n^{\log_b a - \varepsilon}} = k$	
	se $\exists k, 0 < k < 1$ $a f\left(\frac{n}{b}\right) \le k f(n)$	
	CAE	ONDIZIONS OI OSGOLARITÀ
(n) = 3T(n/2) + n(n+1).		1 = sau zione</td
$3\left(\frac{n(n+1)}{2}\right)$	2) < (2	CONDIZIONS DI DSGOLARITÀ $1 < ? = sau zione$ $S(n(n+1))$
$3\frac{m}{2}\left(\frac{m}{2}+1\right)$		2 (m (n+1))
		_> K>3

3/2+3/2 < Km2+K

Domanda A (8 punti) Si consideri la seguente funzione ricorsiva con argomento un array A di interi e due indici $1 \le p \le r \le A.length$:

Dimostrare induttivamente che la funzione calcola il minimo del sottoarray A[p..r]. Inoltre, determinare la ricorrenza che esprime la complessità della funzione e mostrare che la soluzione è $\Theta(n)$, dove n indica la lunghezza del sottoarray. Motivare le risposte.

$$T(m)=2+(\frac{m}{2})+c-\frac{3}{2}$$
 Or RIGERISMAN
 \rightarrow MASTER THEOREM & RISOLUI
 $\Rightarrow = m=1$ \Rightarrow TROV. SOLUZIONS

Domanda B (6 punti) Realizzare una funzione SearchUnique(T,k) che dato un albero binario di ricerca T (che si assume non vuoto), verifica se la chiave k è presente in un unico nodo, e, in caso affermativo restituisce il nodo, altrimenti (ovvero se la chiave non è presente oppure è presente in più nodi) restituisce nil. Si possono usare le funzioni standard degli alberi binari di ricerca. Valutarne la complessità.

Per concludere, è da osservare che l'assunzione che le chiavi duplicate siano solo nel sottoalbero destro (o in quello sinistro) o che siano adiacenti non è legittima. Ad esempio, il seguente è un BST valido:

