

Inverse scattering transform for the Toda lattice with steplike initial data

Ag.Kh. Khanmamedov^{1,2}

¹ Institute of Mathematics and Mechanics of NAS of Azerbaijan, 9 F Agayev str., AZ1141, Baku, Azerbaijan

² Institute Applied Mathematics, Baku State University, 23 Z Khalilov str., AZ1148, Baku, Azerbaijan

E-mail: agil_khanmamedov@yahoo.com

Abstract. We study the solution of the Toda lattice Cauchy problem with steplike initial data. The initial data are supposed to tend to zero as $n \rightarrow +\infty$. By the inverse scattering transform method formulas allowing us to find solution of the Toda lattice is obtained.

AMS classification scheme numbers: 34K29; 35Q58

1. Introduction

The Toda lattice has some very important applications in the theory of physics of nonlinear processes (see [1]). It is known the inverse scattering method allows one to investigate in detail the Cauchy problem for the Toda lattice in the different classes of initial data (see [1]-[15] and references therein). The last problem for the doubly-infinite Toda lattice

$$\begin{cases} \dot{a}_n = \frac{a_n}{2} (b_{n+1} - b_n), & \cdot = \frac{d}{dt}, a_n = a_n(t) > 0, \\ \dot{b}_n = a_n^2 - a_{n-1}^2, & b_n = b_n(t), n = 0, \pm 1, \pm 2, \dots \end{cases} \quad (1.1)$$

with fast stabilized or steplike fast stabilized initial data is investigated in [1]-[9] (see also references therein) by the method of inverse scattering transform. However, this problem is not studied in the case of steplike initial data, where a_n tend to zero as $n \rightarrow +\infty$ (or $n \rightarrow -\infty$).

In this paper we study the Cauchy problem for the system (1.1) with initial data

$$\begin{aligned} a_n(0) &\rightarrow 0, b_n(0) \rightarrow 0 \quad \text{as } n \rightarrow +\infty, \\ \sum_{n<0} |n| \{ |a_n(0) - 1| + |b_n(0)| \} &< \infty. \end{aligned} \quad (1.2)$$

The solution is considered in the class

$$\begin{aligned} \|a_n(t)\|_{C[0,T]} &\rightarrow 0, \|b_n(t)\|_{C[0,T]} \rightarrow 0, \quad \text{as } n \rightarrow +\infty, \\ \|Q(t)\|_{C[0,T]} &< \infty, \end{aligned} \quad (1.3)$$

for arbitrary $T > 0$, where

$$Q(t) = \sum_{n<0} |n| (|a_n(t) - 1| + |b_n(t)|).$$

Note, we cannot apply directly method given in [1]-[9] for the case $\inf_n a_n > 0$, because the Jost solution with the asymptotic behaviour on an $+\infty$ does not exist in our case. On the other hand, method of inverse problem is used (see [10]) in the case when Jacobi operator associated with (1.1) has the continuous spectrum $[a, b]$ of multiplicity two. But this method cannot be used when the spectrum of the Jacobi operator has a continuous spectrum of multiplicity one and a discrete spectrum.

The paper is organized as follows. In section 2 we formulate some auxiliary facts to the inverse scattering problem for the Jacobi operator associated with (1.1)-(1.2). In section 3 we describe the evolution of the scattering data of problem (1.1)-(1.2).

In the last section we prove existence of the solution of the problem (1.1)-(1.2) in class (1.3).

2. The scattering problem

Consider Jacobi operator L generated in $\ell^2(-\infty, \infty)$ by the finite-difference operations

$$(Ly)_n = a_{n-1}y_{n-1} + b_n y_n + b_n y_{n+1},$$

in which the real coefficients $a_n > 0$, b_n satisfy the conditions

$$a_n \rightarrow 0, \quad b_n \rightarrow 0 \quad \text{as} \quad n \rightarrow +\infty,$$

$$\sum_{n<0} |n| \{ |a_n - 1| + |b_n| \} < \infty.$$

The interval $[-2, 2]$ is the continuous spectrum of multiplicity one of operator L (see [16],[17]). Beyond the continuous spectrum, L can have a finite number of simple eigenvalues $\mu_k(t)$, $k = 1, \dots, p$.

Let us formulate some auxiliary facts related to the inverse scattering problem for the equation

$$(Ly)_n = \lambda y_n, \quad n = 0, \pm 1, \dots, \quad \lambda \in \mathbf{C} \quad (2.1)$$

Many of these facts can be found in [16],[17].

Let $P_n(\lambda)$ and $Q_n(\lambda)$ be solutions of Eq. (2.1) with initial conditions

$$P_{-1}(\lambda) = 0, \quad P_0(\lambda) = 1,$$

$$Q_0(\lambda) = 0, \quad Q_1(\lambda) = \frac{1}{a_0}.$$

We denote by L_0 semi-infinite Jacobi operator generated $\ell^2[0, \infty)$ by Eq. (2.1) as $n \geq 0$ and the boundary condition $y_{-1} = 0$. This operator is completely continuous. Moreover, the spectral function $\rho(\lambda)$ of L_0 represented [18] in the form

$$\rho(\lambda) = \sum_{\lambda_n < \lambda} \beta_n^{-2}$$

where λ_n is the eigenvalue of L_0 and β_n is the norm of the eigenfunction corresponding to the λ_n .

As is known from [18]-[19], the right Weyl function of the problem (2.1) has the form

$$m(\lambda) = \int_{-\infty}^{\infty} \frac{d\rho(\tau)}{\tau - \lambda}, \quad (2.2)$$

or

$$m(\lambda) = \sum_{n=1}^{\infty} \frac{\beta_n^{-2}}{\lambda_n - \lambda}.$$

where $\lambda_n \rightarrow 0$ as $n \rightarrow \infty$. It follows from [12]-[13] that for $\lambda \neq \lambda_k$, $k = 1, 2, \dots$, Eq.(2.1) has Weyl solution

$$\psi_n(\lambda) = Q_n(\lambda) + m(\lambda)P_n(\lambda), \quad (2.3)$$

“on the right semiaxis” (such that $\sum_{n=0}^{\infty} |\psi_n(\lambda)|^2 < \infty$).

Suppose that Γ is the complex λ -plane with cut along the interval $[-2, 2]$. In the plane Γ , consider the function

$$z(\lambda) = \frac{\lambda}{2} + \sqrt{\frac{\lambda^2}{4} - 1}$$

choosing the regular branch of the radical so that $\sqrt{\frac{\lambda^2}{4} - 1} < 0$ for $\lambda > 2$. We often omit the dependence of $z(\lambda)$ on λ in what follows. Thus, in the formulas involving z and λ , we always assume that z is as in the above equation.

It is well known (see, for example, [20]) that Eq.(2.1) has a Jost solution represented in the form

$$f_n(\lambda) = \alpha_n z^{-n} \left(1 + \sum_{m<0} A_{nm} z^{-m} \right). \quad (2.4)$$

The coefficients are given by

$$a_n = \frac{\alpha_n}{\alpha_{n+1}}, \quad b_n = A_{n,-1} - A_{n+1,-1}. \quad (2.5)$$

Without restriction of generality we can suppose that $\lambda_m \in (-2, 2)$ for any $m = 1, 2, \dots$. As known [16],[17], for $\lambda \in \partial\Gamma$, $\lambda^2 \neq 4$, $\lambda \neq \lambda_m$ identity

$$\psi_n(\lambda) = a(\lambda) \overline{f_n(\lambda)} + \overline{a(\lambda)} f_n(\lambda) \quad (2.6)$$

holds, where the function $a(\lambda)$ can be regularly continued to Γ . Note also, $a(\lambda)$ can have a finite number of coinciding simple zeros outside the interval $[-2, 2]$, because, these zeros constitute the discrete spectrum μ_k , $k = 1, \dots, p$, of the operator L .

Introduce reflection $R(\lambda)$ coefficient by the formula

$$R(\lambda) = \frac{\overline{a(\lambda)}}{a(\lambda)}.$$

The function $R(\lambda)$ is continuous for $\lambda \in \partial\Gamma$. Setting $n = -1$ and $n = 0$ in the identity (2.6) yields the expression

$$m(\lambda) = -\frac{1}{a_{-1}} \frac{\overline{f_0(\lambda)} + R(\lambda) f_0(\lambda)}{\overline{f_{-1}(\lambda)} + R(\lambda) f_{-1}(\lambda)} \quad (2.7)$$

The norming constants $M_k(t)$ corresponding to the $\mu_k(t)$ are given as

$$M_k^{-2} = \sum_{n=-\infty}^{\infty} f_n^2(\mu_k), \quad k = 1, \dots, p.$$

The set of quantities $\{R(\lambda); \mu_k; M_k, k = 1, \dots, p\}$ is called the scattering data for the Jacobi operator L . The inverse scattering problem for L is to recover the coefficients a_n , b_n from the scattering data.

In solving the inverse problem, an important role is played by the Marchenko-type basic equation. Define

$$F_n = \sum_{k=1}^p M_k^{-2} z_k^{-n} + \frac{1}{2\pi i} \int_{\partial\Gamma} \frac{R(\lambda)}{z^{-1} - z} z^{-n} d\lambda, \quad (2.8)$$

where $z_k = z(\mu_k)$, $k = 1, \dots, p$.

Then A_{nm} and α_n involved in (2.4) satisfy the relations

$$F_{2n+m} + A_{nm} + \sum_{k<0} A_{nk} F_{2n+m+k} = 0, \quad m < n \leq 0, \quad (2.9)$$

$$\alpha_n^{-2} = 1 + F_{2n} + \sum_{k<0} A_{nk} F_{2n+k}, \quad n \leq 0. \quad (2.10)$$

To reconstruct the operator L , we consider Eq.(2.8) which is constructed by the scattering data. We find A_{nm} and α_n from Eqs.(2.9) and (2.10), respectively, the first one having a unique solution with respect to A_{nm} . The coefficients a_n and b_n are defined for $n < 0$ by (2.5). $f_n(\lambda)$ for $n \leq 0$ are defined by (2.4). From the formula (2.7) we obtain Weyl function $m(\lambda)$. The spectral measure $d\rho(\lambda)$ can be found by the formula

$$d\rho(\lambda_n) = \lim_{\lambda \rightarrow \lambda_n} (\lambda_n - \lambda)m(\lambda), \quad n = 1, 2, \dots$$

Using the approach in [12],[13],[19], we can reconstruct semi-infinite Jacobi operator L_0 by its spectral measure $d\rho(\lambda)$. Therefore, we find a_n , b_n for $n \geq 0$.

3. Evolution of the scattering data

In this section we use the inverse scattering transform method to solve the problem (1.1)-(1.2). Let $a_n(t)$, $b_n(t)$ be a solution of the problem (1.1)-(1.2) satisfying (1.3). Consider the Jacobi operator $L = L(t)$ associated with $a_n = a_n(t)$, $b_n = b_n(t)$. Jost and Weyl solutions, reflection coefficient, spectral measure now depend on the additional parameter $t \in [0, \infty)$.

Theorem 1. *If the coefficients $a_n = a_n(t)$, $b_n = b_n(t)$ of Eq.(2.1) are solutions to problem (1.1)-(1.2) in the class (1.3), then the evolution of the scattering data is described by the formulas*

$$R(\lambda, t) = R(\lambda, 0) e^{(z^{-1}-z)t} \quad (3.1)$$

$$\mu_k(t) = \mu_k(0), \quad k = 1, \dots, p \quad (3.2)$$

$$M_k^{-2}(t) = M_k^{-2}(0) e^{(z_k^{-1}-z_k)t}, \quad z_k = z(\mu_k), \quad k = 1, \dots, p. \quad (3.3)$$

Proof. System (1.1) is represented (see, for example [8],[13]) in the Lax form

$$\dot{L} = [L, A] = AL - LA, \quad (3.4)$$

where $A = A(t)$ are Jacobi operator in $\ell^2(-\infty, \infty)$:

$$(Ay)_n = \frac{1}{2} a_n y_{n+1} - \frac{1}{2} a_{n-1} y_{n-1}.$$

Since (3.4) implies that the family of operators $L = L(t)$ are unitarily equivalent (see [5],[8]), the spectrum of $L = L(t)$ does not depend on n and (3.2) is valid.

Let $f_n(\lambda, t)$ and $\psi_n(\lambda, t)$ respectively be the Jost and Weyl solutions of the Eq.(2.1) with the parameter t . Consider the identity (2.6) with the parameter t . As follows from [8],[12] the function $\frac{d}{dt}\psi_n - (A\psi)_n$ is also a solution of the Eq.(2.1) with the parameter t . Applying the operator $\frac{d}{dt} - A$ to (2.6), taking into account that the Jost solution $f_n(\lambda, t)$ does not depend (see [8], on t asymptotically, we obtain

$$\begin{aligned} \frac{d}{dt}\psi_n - (A\psi)_n &= \left(\dot{a}(\lambda, t) + \frac{1}{2}(z^{-1} - z)a(\lambda, t) \right) \overline{f_n(\lambda, t)} + \\ &+ \left(\overline{\dot{a}(\lambda, t)} - \frac{1}{2}(z^{-1} - z)\overline{a(\lambda, t)} \right) f_n(\lambda, t). \end{aligned} \quad (3.5)$$

On the other hand, we find

$$\frac{d}{dt}P_0 - (AP)_0 = \frac{b_0 - \lambda}{2}, \quad \frac{d}{dt}P_{-1} - (AP)_{-1} = -a_{-1}.$$

Since $P_n(\lambda, t)$ and $Q_n(\lambda, t)$ are linearly independent, the function $\frac{d}{dt}P_n - (AP)_n$ can be represented as

$$\frac{d}{dt}P_n - (AP)_n = A(\lambda, t)P_n + D(\lambda, t)Q_n.$$

Setting $n = -1$ and $n = 0$ in the last relation, we find that

$$A(\lambda, t) = \frac{b_0 - \lambda}{2}, \quad D(\lambda, t) = a_{-1}^2.$$

Therefore,

$$\frac{d}{dt}P_n - (AP)_n = \frac{b_0 - \lambda}{2}P_n + a_{-1}^2Q_n.$$

The same arguments are valid for solution $Q_n(\lambda, t)$. Thus, we have the formula

$$\frac{d}{dt}Q_n - (AQ)_n = -P_n + \frac{\lambda - b_0}{2a_0}Q_n.$$

Now by the formula (2.3) with the parameter t we find that

$$\begin{aligned} \frac{d}{dt}\psi_n - (A\psi)_n &= \left(a_{-1}^2m(\lambda, t) + \frac{\lambda - b_0}{2a_0} \right) Q_n + \\ &+ \left(\dot{m}(\lambda, t) + \frac{b_0 - \lambda}{2}m(\lambda, t) - 1 \right) P_n. \end{aligned} \quad (3.6)$$

Since $L = L(t)$ is selfadjoint and bounded, $\frac{d}{dt}\psi_n - (A\psi)_n$ must satisfy the relation

$$\frac{d}{dt}\psi_n - (A\psi)_n = \theta(\lambda, t)\psi_n. \quad (3.7)$$

Hence, we can represent the function $\frac{d}{dt}\psi_n - (A\psi)_n$ as

$$\frac{d}{dt}\psi_n - (A\psi)_n = \theta(\lambda, t)Q_n + \theta(\lambda, t)m(\lambda, t)P_n. \quad (3.8)$$

Comparing this identity with (3.6), we have

$$\theta(\lambda, t) = a_{-1}^2 m(\lambda, t) + \frac{\lambda - b_0}{2a_0}, \quad (3.9)$$

Further, according to (2.6), (3.5), (3.7),

$$\begin{aligned} \theta(\lambda, t) a(\lambda, t) \overline{f_n} + \theta(\lambda, t) \overline{a(\lambda, t)} f_n &= \left(\dot{a}(\lambda, t) + \frac{1}{2} (z^{-1} - z) a(\lambda, t) \right) \overline{f_n} + \\ &+ \left(\overline{\dot{a}(\lambda, t)} - \frac{1}{2} (z^{-1} - z) \overline{a(\lambda, t)} \right) f_n. \end{aligned}$$

Since f_n and $\overline{f_n}$ are linearly independent, so substituting (3.9) into the last identity, we obtain

$$\dot{a}(\lambda, t) + \frac{1}{2} (z^{-1} - z) a(\lambda, t) = \left(a_{-1}^2 m(\lambda, t) + \frac{\lambda - b_0}{2a_0} \right) a(\lambda, t),$$

$$\overline{\dot{a}(\lambda, t)} - \frac{1}{2} (z^{-1} - z) \overline{a(\lambda, t)} = \left(a_{-1}^2 m(\lambda, t) + \frac{\lambda - b_0}{2a_0} \right) \overline{a(\lambda, t)}.$$

From this relations, we get

$$\dot{R}(\lambda, t) = (z^{-1} - z) R(\lambda, t),$$

which imply (3.1).

Now, let $g_n(\mu_k, t)$ be a normalized eigenfunction of L . Since the eigenvalues $\mu_k, k = 1, \dots, p$, of this operator are simple, we have

$$\frac{d}{dt} g_n - (Ag)_n = cg_n.$$

Taking the scalar products of g_n with both sides of this equality in $\ell^2(-\infty, \infty)$ and using $\|\psi_n\|_{\ell^2(-\infty, \infty)} = 1$ and $A^* = -A$, we obtain $c = 0$. Therefore,

$$\frac{d}{dt} g_n - (Ag)_n = 0 \quad (3.10)$$

On the other hand, if a normalized eigenfunction $g_n(\mu_k, t)$ corresponds to the eigenvalue μ_k , then

$$g_n(\mu_k, t) = c_k(t) f_n(\mu_k, t).$$

This implies that $M_k^2(t) = c_k^2(t)$. By virtue of (2.4), we find that

$$\frac{d}{dt} g_n - (Ag)_n \sim \left(\dot{c}_k(t) + \frac{z_k - z_k^{-1}}{2} c_k(t) \right) z_k^{-n}$$

as $n \rightarrow -\infty$. Taking into account (3.10), we have

$$\dot{c}_k(t) + \frac{z_k - z_k^{-1}}{2} c_k(t) = 0$$

This equation implies the relation (3.3).

The theorem is proved.

Using Theorem 1, we obtain the following procedure for solving problem (1.1),(1.2) based on the inverse scattering transform method: Initial data (1.2) is given. Construct $R(\lambda, 0), \mu_k(0), M_k(0)$, $k = 1, \dots, p$. Calculate $R(\lambda, t), \mu_k(t), M_k(t)$ using formulas (3.1)-(3.3). Construct a solution by solving the inverse problem by applying approach of the section 2 with $R(\lambda, 0), \mu_k(0), M_k(0)$, $k = 1, \dots, p$ replaced by (3.1)-(3.3).

4. Solvability of the Cauchy problem for the Toda lattice

In section 3, while constructing a solution to problem (1.1)-(1.2), we assumed that this solution exists in the class (1.3). Let us now investigate its existence.

Theorem 2. *The problem (1.1)-(1.2) has a unique solution in the class (1.3).*

Proof. Denote by B the Banach space of pairs of sequences $y = (y_{1,n}, y_{2,n})_{n=-\infty}^{\infty}$ for which the norm $\|y\|_B = \sup_{n \geq 0} (|y_{1,n}| + |y_{2,n}|) + \sum_{n < 0} |n| (|y_{1,n}| + |y_{2,n}|)$ is finite. Then (see [21]) the set $C([0, T]; B)$ of the continuous on an interval $[0, T]$ with respect to the norm $\|\cdot\|_B$ functions is the Banach space.

Let us assume that

$$x_{1,n} = \begin{cases} a_n(t) & \text{for } n \geq 0, \\ a_n(t) - 1 & \text{for } n < 0, \end{cases} \quad (4.1)$$

$$x_{2,n} = b_n(t).$$

Then system (1.1) is equivalent to the system

$$\begin{cases} \dot{x}_{1,n} = \frac{1}{2} x_{1,n} (x_{2,n+1} - x_{2,n}) + \frac{1}{2} (1 - \delta_{n,|n|}) (x_{2,n+1} - x_{2,n}), \\ \dot{x}_{2,n} = x_{1,n}^2 - x_{1,n-1}^2 + 2 (1 - \delta_{n,|n|}) (x_{1,n} - x_{2,n-1}), \end{cases} \quad (4.2)$$

where $\delta_{n,m}$ is the Kronecker symbol.

Denote by F the operator generated the right-hand sides of system (4.2). Note, operator F is strongly continuously differentiable in the space $C([0, T]; B)$.

Now passing to the integral equation in the standard manner, we find problem (4.2) with initial conditions

$$x_{1,n}(0) = \begin{cases} a_n(0) & \text{for } n \geq 0, \\ a_n(0) - 1 & \text{for } n < 0, \end{cases} \quad (4.3)$$

$$x_{2,n}(0) = b_n(0).$$

is equivalent to the equation

$$x(t) = x(0) + \int_0^t F(x(\tau)) d\tau \quad (4.4)$$

Applying the principle of compressed maps, we find that problem (4.4) on some interval $[0, \delta]$ has a unique solution $x(t)$ with finite norm $\|x(t)\|_{C([0, \delta]; B)} < \infty$. Let us show that this solution can be extended to the entire positive semiaxis. Assume the opposite. Then there exists a point $t^* \in (0, \infty)$ such that problem (4.2)-(4.3) has a solution $x(t) = (x_{1,n}(t), x_{2,n}(t))$ on the interval $[0, t^*)$ but $\overline{\lim}_{t \rightarrow t^*-0} \|x(t)\|_B = \infty$. It follows from [8], [13] problem (1.1)-(1.2) has a unique solution $(a_n(t), b_n(t))$ in $C^\infty([0, \infty); M)$,

where $M = \ell^\infty(-\infty, \infty) \oplus \ell^\infty(-\infty, \infty)$. Hence, according to the (4.1) problem (4.2)-(4.3) has a unique solution $x(t) = (x_{1,n}(t), x_{2,n}(t))$ satisfying

$$|x_{1,n}(t)| + |x_{2,n}(t)| < C$$

for any $t \in [0, \infty)$, where C does not depend on t . We integrate the system (4.2) over a interval $[0, t]$. Then, using the last inequality, after some simple transformations , we get

$$\|x(t)\|_B \leq 2 \|x(0)\|_B + (4C + 4) \int_0^t \|x(\tau)\|_B d\tau, \quad 0 < t < t^*,$$

which, according to the Gronwall's inequality implies

$$\|x(t)\|_B \leq 2 \|x(0)\|_B e^{(4C+4)t}.$$

Therefore, our assumption that $\overline{\lim_{t \rightarrow t^*-0}} \|x(t)\|_B = \infty$ is not correct and problem (4.2)-(4.3) has a unique solution $x(t) = (x_{1,n}(t), x_{2,n}(t)) \in C([0, T]; B)$ for any $T > 0$. Integrating the system (1.1) over a interval $[0, t]$ and using (4.1), we obtain that problem (1.1)-(1.2) be uniquely solvable in the class (1.3).

Thus, the theorem is proved.

References

- [1] Toda M 1989 Theory of nonlinear lattices (Berlin: Springer)
- [2] Flaschka H 1974 On the Toda lattice. Inverse transform solution Prag Theor.Phys. **51** 703-16.
- [3] Venakides S, Deift Pand Oba R 1991 The Toda shock problem Comm. Pure Appl.Math. **44** 1171-42.
- [4] Deift Pand Kriecherbauer T 1996 The Toda rarefaction problem Comm.Pure Appl.Math. **54** 1171-42.
- [5] Boutet de Monvel A, Egorova I and Khruslov E 1997 Soliton asymptotics of the Cauchy problem solution for the Toda lattice Inverse Problems **13** 323-37.
- [6] Snplace Guseinov I and Khanmamedov Ag 1999 The asymptotics of the Cauchy problem for the Toda chair with threshold – type initial data Th. and Math. Phys. **119** 739-49.
- [7] Boutet de Monvel A and Egorova I 2000 The Toda lattice with step-like initial data. Solution asymptotics Inverse Problems **16** 955-77.
- [8] Teschl G 2000 Jacobi Operators and Completely Integrable Nonlinear Lattices (Math. Surv. And Mon. 72, AMS).
- [9] Kudryavtsev M 2002 The Cauchy problem for the Toda lattice with a class of non-stabilized initial data (Mathem. Results in Quantum mechanics 307 AMS 209-214).
- [10] Khanmamedov A. Kh 2008 The solution of Cauchy's problem for the Toda lattice with limit periodic initial data Sb. Math. **199** 449-58.
- [11] Khanmamedov Ag 2009 Inverse scattering problem for Schrodinger difference equation NEWS of Baku University, ser. of phys.-math. Sci. **2** 17-22.
- [12] Khanmamedov Ag 2010 The inverse scattering problem for a discrete Sturm-Lioville operator on the whole axis Dokladi Akademii Nauk, **431** 25-26
- [13] Guseinov G 1978 The determination of on infinite Jacobi matrix form the two spectrum Math. Zametki **23** 709-20.
- [14] Berezanski Yu 1968 Expansions in Eigenfunctions of Self-adjoint Operators (Transl.Math.Monogr. 17 AMS).

- [15] Berezanski Yu 1985 The integration of semi-infinite Toda chain by means of inverse spectral problem Math. Phys. **24** 21-47.
- [16] Berezanski Yu 1985 Integration of nonlinear difference equations by the inverse spectral problem method Soviet Math. Dokl. **31** 264-67.
- [17] Guseinov G 1976 The inverse problem of scattering theory for a second – order difference equation on the whole axis Soviet Math. Dokl. **17** 1684-88.
- [18] Khanmamedov A. Kh 2005 The rapidly decreasing solution of the Cauchy problem for the Toda lattice Theoret. and Math. Phys. **142** 1-7.
- [19] Coussement J and Van Assche W 2004 An extension of the Toda lattice: a direct and inverse spectral transform connected with orthogonal rational functions Inverse Problems **20** 297-18.
- [20] Egorova I, Michor J and Teschl G 2009 Inverse scattering transform for the Toda hierarchy with steplike finite-gap backgrounds J.Math. Phys. **50** 1-10.
- [21] Krein M. 1967 Linear Differential Equations in Banach Spaces (Nauka: Moscow [in Russian]).