〈习题一〉作业参考答案

1.4 如何判断一个7位二进制正整数 A=a1a2 a3 a4 a5 a6 a7是否是4的倍数。

答: 只要 a 。 a 7=00, A 即可被 4 整除。

1.10 设[x] **=01101001,[y] **=10011101,求: $[\frac{1}{2}x]_{\#}$, $[\frac{1}{4}x]_{\#}$, $[\frac{1}{2}y]_{\#}$, $[\frac{1}{4}y]_{\#}$, $[-x]_{\#}$,

 $[-y]_{i \downarrow k}$.

答: (1) 如[x]_{*}=x₀x₁x₂····x_n. 则[$\frac{1}{2}$ x]_※ = x₀x₀x₁x₂····x_{n-1}. x_n。

所以,
$$[\frac{1}{2}x]_{\%}$$
 =00110100.1, $[\frac{1}{4}x]_{\%}$ =00011010.01, $[\frac{1}{2}y]_{\%}$ =11001110.1, $[\frac{1}{4}y]_{\%}$ =11100111.01。

(2) $y_1[x] = x_0x_1x_2...x_n$, $[-x] = x_0x_1x_2...x_n + 1$.

所以,
$$[-x]_{35} = 10010111$$
, $[-y]_{35} = 01100011$ 。

注意: 公式 (1) $[x]_{*}=x_0x_1x_2\cdots x_n$, 则 $[\frac{1}{2}x]_{*}=x_0x_0x_1x_2\cdots x_{n-1}$. x_n

(2)
$$[x]_{*}=x_0x_1x_2\cdots x_n$$
, $[-x]_{*}=\overline{x_0}\overline{x_1}\overline{x_2}...\overline{x_n}+1$

一定要掌握。

- 1.11 根据原码和补码的定义回答下列问题:
- (1) 已知[x]*>[y]*, 是否有 x>y?
- (2) 设-2ⁿ⟨x⟨0, x 为何值时, 等式[x]*=[x] 應成立。
- 答: (1) 否。如果 x<0 且 y>0,则[x]**>[y]*。但显然 x<y。
 - (2) 因为 x<0, 所以[x]_{**}=2^{**1}+x, [x]_#=2ⁿ-x; 要使[x]_{**}=[x]_#, 则 2^{**1}+x=2ⁿ-x。从而可以得到: X=-2⁽ⁿ⁻¹⁾。

注意: 因为-2°(x, 所以 x 的数据位有 n 位, 加上一个符号位为 n+1 位。所以, 其补码为 2°1+x。

1.12 设 x 为二进制整数, [x]*=11x1 x2 x3 x4 x5, 若要 x <-16, 则 x1~x5应满足什么条件?

答: [x - (-16)]**=[x+16]**=[x]**+10000, 若要x <-16, 则[x - (-16)]**>1000000,

即[x]**+10000>1000000。根据补码加法,则 x_1 =0, x_2 *x5任意。

或:

 $[x]_{\text{#}}=2^7+x$,所以 $x=[x]_{\text{#}}-2^7<-16$,即 $11x_1$ x_2 x_3 x_4 $x_5<112$,因此 x_1 x_2 x_3 x_4 $x_5<16。所以 <math display="inline">x_1$ =0, x_2 x_3 x_4 x_5 任意。

- 1.16 完成下列代码之间的转换:
- (1) (0101 1001 1001 0111.0111) $_{8421800}\!=$ (5997.7) $_{10}\!\circ$
- (2) (359.25) $_{10}$ = (0110 1000 1100.01011) $_{\pm3}$.
- (3) (1010001110010101) ±3= (0111 0000 0110 0010) 84ZIBCD

@子传东海

- 1.17 试写出下列二进制数的典型格雷码: 101010, 10111011。
- 答: 典型格雷码的编码规则为:

$$\begin{cases} G_n = B_n \\ G_i = B_{i+1} \oplus B_i \end{cases}$$

所以 101010 对应的格雷码为: 1111111。10111011 对应的格雷码为: 11100110。

- 1.18 试给出一位余3码的奇校验海明码。
- 答: 1) 根据公式 $(2^r-1)-r=k$ 且余 3 码对应的 k=4, 确定校验码位数 r=3;
 - 2) 设置校验位 b_1 , b_2 , b_3 , 将他们分别置于 1, 2, 4 码位上, 并根据分组规则将它们分成 3 组, 如下表所示:

	1	2	3	4	5	6	7
S ₁	b ₁		a ₁		a ₂		a ₄
S2		b ₂	a ₁			аз	a ₄
S ₃				b₃	a ₂	аз	a ₄

3) 列出校验位的表达式(奇校验):

 $b_2 = a_1 \oplus a_3 \oplus a_4 \oplus 1$ $b_3 = a_2 \oplus a_3 \oplus a_4 \oplus 1$

计算每组余 3 码相应的校验位值。完整的余 3 码海明码表如下表所示:

信息码序号	b ₁	b ₂	a ₁	b₃	a ₂	a ₃	a ₄
0	0	1	0	1	0	1	1
1	0	1	0	0	1	0	0
2	1	0	0	1	1	0	1
3	0	0	0	1	1	1	0
4	1	1	0	0	1	1	1
5	0	0	1	1	0	0	0
6	1	1	1	0	0	0	1
7	0	1	1	0	0	1	0
8	1	0	1	1	0	1	1
9	1	0	1	0	1	0	0

注意:不能把余3码转换成8421BCD码,然后再求其海明码。

1.19 设有一信息码字 a1a2a3a4=1010, 需用偶校验的海明码进行传送, 使给出该信息的海明 码。若接收端 a3 变为 0, 如何发现? 如何纠正?

答:该信息的海明码为: 1011010。若接收端 as 变为 0,那么 SsS2S1=110(因为 as 对应的码 位为 6)。直接将第 6 位(即 a3)取反即可。

注意: S₃S₂S₁指出了错码的码位, 而不是 a 的下标。

@子传东海 Bai d 文库

复制

〈习题二〉作业参考答案

- 2.4 用逻辑代数公理和定理证明:
- (1) $A\overline{B} \oplus \overline{A}B = A\overline{B} + \overline{A}B$
- 证明: $A\overline{B} \oplus \overline{A}B$
 - $=A\overline{B}g\overline{AB}+\overline{AB}g\overline{AB}$ 异或运算的定义
 - $=A\overline{B}$ g $(A+\overline{B})+(\overline{A}+B)g\overline{A}B$ 摩根律
 - $=A\overline{B}A+A\overline{B}\overline{B}+\overline{A}\overline{A}B+B\overline{A}B$ 交換律、分配律
 - $=A\overline{B}+A\overline{B}+\overline{A}B+\overline{A}B$ 重叠律、交換律
 - $=A\overline{B}+A\overline{B}$ 重叠律
- (2) $(A \oplus B) e AB = \overline{A}\overline{B}$
- 证明: $(A \oplus B)$ e AB
 - $=(A\overline{B}+\overline{A}B)$ e AB 异或运算的定义
 - $=(A\overline{B}+\overline{A}B)QAB+\overline{(A\overline{B}+\overline{A}B)}Q\overline{AB}$ 同或运算的定义
 - $=A\overline{B}AB+\overline{A}BAB+\overline{A}\overline{B}\overline{Q}\overline{A}\overline{B}\overline{Q}\overline{A}\overline{B}$ 分配律、摩根律
 - $=\overline{AB}\overline{gAB}\overline{gAB}$ 互补律
 - $=\overline{AB}+\overline{AB}+AB$ 摩根律
 - $=\overline{A\overline{B}+B}$ 分配律、互补律
 - $=\overline{A+B}$ 吸收律
 - = AB 摩根律
- (3) $A\overline{g}\overline{ABC} = A\overline{BC} + A\overline{BC} + AB\overline{C}$
- 证明: AgABC
 - $=Ag\overline{A}+\overline{B}+\overline{C})$ 摩根律
 - $=Ag(\overline{B}+\overline{C})$ 吸收律
 - $=Ag\overline{B}+Ag\overline{C}$ 分配律
 - $=Ag\overline{B}g(C+\overline{C})+Ag\overline{C}g(B+\overline{B})$ 互补律、0-1律
 - $=A\overline{B}C+A\overline{B}\overline{C})+AB\overline{C}+A\overline{B}\overline{C}$ 分配律、交换律
 - $=A\overline{BC}+A\overline{BC}+AB\overline{C}$ 分配律、交换律
- (4) $A\overline{B} + B\overline{C} + \overline{A}C = \overline{A}B + \overline{B}C + A\overline{C}$
- 证明: $A\overline{B}(C+\overline{C})+(A+\overline{A})B\overline{C}+\overline{A}(B+\overline{B})C$ 互补律、0-1 律
 - $=A\overline{B}C+A\overline{B}\overline{C}+AB\overline{C}+\overline{A}B\overline{C}+\overline{A}BC+\overline{A}BC$ 分配律、交换律
 - $=\overline{A}B+\overline{B}C+A\overline{C}$
- (5) $AB + A\overline{B} + \overline{A}B + \overline{A}\overline{B} = 1$

证明:
$$AB + A\overline{B} + \overline{AB} + \overline{AB}$$

= $(AB + A\overline{B}) + (\overline{AB} + \overline{AB})$ 结合律
= $A(B + \overline{B}) + \overline{A}(B + \overline{B})$ 分配律

@子传东海 Baid 文庫

=1 互补律

- 2.5 写出下列表达式的对偶式(最好利用对偶定义来求解)
- (1) $F = (A+B)(\overline{A}+C)(C+DE)+F$

答:
$$F' = (AB + \overline{A}C + C(D + E))F$$

(2)
$$F = \overline{\overline{A} + B + \overline{C} + \overline{B}} + \overline{A + C + \overline{B} + \overline{C}}$$

答: $F' = \overline{\overline{ABCBACBC}}$

(3)
$$F = \overline{AB} g \overline{CD} g \overline{DAB}$$

答:
$$F' = \overline{A} + \overline{B} + \overline{C} + \overline{D} + \overline{D} + \overline{A} + \overline{B}$$

- (4) $F = B\overline{(A \oplus B)} + B(A \oplus C)$
- 答: 需要了解同或的对偶式为异或,异或的对偶式为同或。 $F' = (B + \overline{(A \in B)})(B + (A \in C))$

(5)
$$F = \overline{(\overline{C} \oplus A)} \oplus (B \oplus \overline{D})$$

答:
$$F' = \overline{\overline{(Ce\ A)}e\ (Be\ \overline{D})}$$

2.6 写出下列表达式的反函数 (最好利用取反规则来求解)

(1)
$$F = ((\overline{x_1}x_2 + \overline{x_3})x_4 + \overline{x_5})x_6$$

答:
$$\overline{F} = ((x_1 + \overline{x_2})gx_3 + \overline{x_4})gx_5 + \overline{x_6}$$

(2)
$$F = S(\overline{W} + I(T + \overline{C})) + H$$

答:
$$\overline{F} = (\overline{S} + W g(\overline{I} + \overline{T}gC))g\overline{H}$$

(3)
$$F = A\overline{B} + (C\overline{D} + \overline{E}F)G$$

$$\stackrel{\text{\tiny (A)}}{\underline{F}} = (\overline{A} + B)g((\overline{C} + D)gE + \overline{F}) + \overline{G})$$

(4)
$$F = \overline{A}B + B\overline{C} + A(C + \overline{D})$$

答:
$$\overline{F} = (A + \overline{B})g\overline{B} + C)g\overline{A} + \overline{C}D$$

- 2.7 回答下列问题:
- (1) 已知 X+Y=X+Z, 那么 Y=Z 正确吗? 为什么?
- 答: 不正确。若 X=1,则 Y, Z 任意取值等式都成立。
- (2) 己知 XY=XZ, 那么 Y=Z 正确吗? 为什么?
- 答:不正确。如 X=0,则 Y,Z 任意取值等式都成立。
- (3) 已知 X+Y=X+Z, 且 XY=XZ, 那么 Y=Z 正确吗? 为什么?
- 答: 正确。因为 X+Y=X+Z,则 X=1 或 X=0 且 Y=Z。若 X=1,则由 XY=XZ 可得 Y=Z。

②子传东海Bai (**) 文庫

(4) 已知 X+Y=X•Y, 那么 X=Y 正确吗? 为什么?

答: 正确。X 只能取 1 或 0。若 X=1,则等式右边为 1,左边为 Y,因此,Y=1,可得 X=Y;

若 X=0,则等式左边为 Y,右边为 0,因此,Y=0,可得 X=Y。所以,成立。

2.11 用卡诺图判断函数 F (A, B, C, D) 和 G (A, B, C, D) 的关系。

$$F = \overline{B}\overline{D} + \overline{A}\overline{D} + \overline{C}\overline{D} + AC\overline{D}$$
$$G = \overline{B}D + CD + \overline{A}\overline{C}D + ABD$$

答: F的卡诺图如图 1. 化简后 $F=\overline{D}$

G 的卡诺图如图 2,化简后 F=D

由此可见, $F = \overline{G}$

2.12 用卡诺图化简包含无关最小项的函数和多输出函数:

(1) $F(A,B,C,D) = \sum m(0,2,7,13,15) + \sum d(1,3,4,5,6,8,10)$

答: F 的卡诺图如下:

AB CD	00	01	11	10
00	1	×	×	1
01	×	×	1	×
11		1	1	
10	×			×

所以, $F(A,B,C,D) = \overline{A} + BD$ 。

@子传东海 Baidix庫

$$(2) \begin{cases} F_1 = \sum m^4(0,2,4,7,8,10,13,15) \\ F_2 = \sum m^4(0,1,2,5,6,7,8,10) \\ F_3 = \sum m^4(2,3,4,7) \end{cases}$$

		F_2		
CD				
AB	00	01	_11_	10
00	1	1		1
01		ı		1
11				
10	1			1

多输出函数的化简关键在于充分利用各函数之间的共享部分。如上图虚线框所示。 所以化简后的多输出函数应该为:

$$\int F_1 = \overline{BD} + ABD + \overline{A}B\overline{CD} + \overline{A}BCD$$

$$\begin{cases} F_2 = \overline{BD} + \overline{ACD} + \overline{ABC} \\ F_3 = \overline{ABC} + \overline{ABCD} + \overline{ABCD} \end{cases}$$

对于 F_2 的化简,还要注意化简的标准:不同的与项个数应该最少,不同的变量个数应该最

〈习题四〉作业参考答案

4.4 试分析图 4.60 所示的码制转换电路的工作原理

@子传东海 Bai d 文库

图 4.60 题 4.4 的逻辑电路图

答: ①写出逻辑表达式

 $G_0 = B_0 \oplus B_1$

 $G_1 = B_1 \oplus B_2$

 $G_2 = B_2 \oplus B_3$

 $G_3 = B_3$

② 列出 直 值 表

	1具值表						
Вз	B ₂	B ₁	Во	G ₃	G_2	G ₁	Go
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

③由真值表可以发现, 任意相邻的两个代码之间只有一位不同, 而其余各位均相同。 因此,上述逻辑电路的功能是把一个四位二进制数转换成了 Gray 码。

4.7 设二进制补码 [x]*=xox1x2x3x4, 写出下列要求的判断条件:

$$(1) \ \frac{1}{2} \le x \vec{x} x < -\frac{1}{2}$$

(2)
$$\frac{1}{4} \le x < \frac{1}{2} \cancel{x} - \frac{1}{2} \le x < -\frac{1}{4}$$

@子传东海 Bai d 文庫

(3)
$$\frac{1}{8} \le x < \frac{1}{4} \overrightarrow{y} - \frac{1}{4} \le x < -\frac{1}{8}$$

$$(4) \ 0 \le x < \frac{1}{8} \overrightarrow{B} - \frac{1}{8} \le x < 0$$

(4) $0 \le x < \frac{1}{8}$ 或 $-\frac{1}{8} \le x < 0$ 答:根据补码定义,若 x>y 且 x、y 同号,则 $[x]_{+}$ > $[y]_{+}$ 。 xo符号位,小数点在 xo后。

(1)
$$\frac{1}{2} \le x \vec{x} x < -\frac{1}{2}$$

 $(x_0=0, x_1=1)$

(x₀=1 且 x₀. x₁x₂x₃x₄<1.1即 x₀=1 且 x₁=0)

(2)
$$\frac{1}{4} \le x < \frac{1}{2}$$
 或 $\frac{1}{2} \le x < -\frac{1}{4}$ (0.01 \le [x] ** (0.1, 所以 x₀=0 \land x₁=0 \land x₂=1)

(1.1≤[x]*<1.11, 所以 x₀=1 ∧ x₁=1 ∧ x₂=0)

因此, $F = \overline{x_0} \overline{x_1} x_2 + x_0 x_1 \overline{x_2}$

(3)
$$\frac{1}{8} \le x < \frac{1}{4} \overrightarrow{x} - \frac{1}{4} \le x < -\frac{1}{8}$$

(3) $\frac{1}{8} \le x < \frac{1}{4}$ 成 $-\frac{1}{4} \le x < -\frac{1}{8}$ (0.001 \le [x]_{**}<0.01, 所以 x₀=0 \land x₁=0 \land x₂=0 \land x₃=1)

因此, $F = \overline{x_0} \overline{x_1} \overline{x_2} x_3 + x_0 x_1 x_2 \overline{x_3}$

(4)
$$0 \le x < \frac{1}{8} \, \text{arg} - \frac{1}{8} \le x < 0$$

(0.0000 $\!\!\!<\!\!\! [x]_{\Re}$ (0.001, 所以 $x_0\!\!=\!\!0$ \wedge $x_1\!\!=\!\!0$ \wedge $x_2\!\!=\!\!0$ \wedge $x_3\!\!=\!\!0)$

(1.111≤[x]*√2, 所以 x₀=1 ∧ x₁=1 ∧ x₂=1 ∧ x₃=1)

因此,
$$F = \overline{x_0} \overline{x_1} \overline{x_2} \overline{x_3} + x_0 x_1 x_2 x_3$$

4.12 设计一个能接收两位二进制数 $Y=y_1y_0$, $X=x_1x_0$, 并输出 $Z=z_1z_0$ 的逻辑电路。当 Y=X 时, Z=11; 当 Y>X 时, Z=10; 当 Y<X 时, Z=01。用与非门实现该逻辑电路。

答:①根据逻辑要求,建立真值表。

H . CHANG	112111	III P V V			
У1	Уо	X ₁	X_0	Z ₁	Z ₀
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	1	0
1	0	1	0	1	1
1	0	1	1	0	1
1	1	0	0	1	0

Bai d 文库

1	1	0 1 1	1	1	0
1	1	1	0	1	0
1	1	1	1	1	1

②画出 zo、z1对应的卡诺图,进行化简。

由此可得, $z_0 = \overline{y_1} \overline{y_0} + x_1 x_0 + \overline{y_1} x_0 + \overline{y_1} x_1 + \overline{y_0} x_1$ 。

由此可得, $z_1 = \overline{x_1} \overline{x_0} + y_1 y_0 + y_0 \overline{x_1} + y_1 \overline{x_1} + y_1 \overline{x_0}$ 。

③根据要求的逻辑门类型,进行转换并画出逻辑电路图。

$$z_0 = \overline{\overline{\overline{y_1} y_0} + x_1 x_0 + \overline{y_1} x_0 + \overline{y_1} x_1 + \overline{y_0} x_1} = \overline{\overline{\overline{y_1} y_0}} \overline{x_1 x_0} \overline{\overline{y_1} x_0} \overline{\overline{y_1} x_1} \overline{\overline{y_0} x_1}$$

$$z_1 = \overline{\overline{\overline{\overline{x_1}}} \overline{\overline{y_1}} \overline{y_0} + y_1 \overline{y_0} + y_0 \overline{\overline{x_1}} + y_1 \overline{\overline{x_1}} + y_1 \overline{\overline{x_0}}} = \overline{\overline{\overline{x_1}} \overline{\overline{y_1}} \overline{y_1} \overline{y_0} \overline{\overline{y_1}} \overline{y_1} \overline{\overline{x_1}} \overline{y_1} \overline{\overline{x_0}}}$$

@子传东海 Baid 文库

复制

根据上述与非形式,可以用与非门实现该逻辑电路。(图略)

4.13 已知 $[x]_{m}=x_0x_1x_2$,试设计一个逻辑电路,以原码作为输入,要求: 当 AB=01 时,输出反码; 当 AB=10 时,输出补码。

答:①根据逻辑要求,建立真值表。

A	В	Χo	X 1	X2	Уо	у 1	У 2
0	1	0	0	0	0	0	0
0	1	0	0	1	0	0	1
0	1	0	1	0	0	1	0
0	1	0	1	1	0	1	1
0	1	1	0	0	1	1	1
0	1	1	0	1	1	1	0
0	1	1	1	0	1	0	1
0	1	1	1	1	1	0	0
1	0	0	0	0	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	1	0
1	0	0	1	1	0	1	1
1	0	1	0	0	0	0	0
1	0	1	0	1	1	1	1
1	0	1	1	0	1	1	0
1	0	1	1	1	1	0	1

②画出 y_0 、 y_1 、 y_2 对应的卡诺图,进行化简。

$$y_0 \text{ (AB=10)}$$
 $y_0 \text{ (AB=10)}$
 $y_0 \text{ (AB=10)}$

@子传东海 Baid 文庫

所以,
$$y_0 = (\overline{A}B)x_0 + (A\overline{B})(x_0x_2 + x_0x_1)$$

 y_1 和 y_2 的处理方法同上。

所以,
$$y_1 = (\overline{A}B)(\overline{x_0}x_1) + (A\overline{B})(\overline{x_0}x_1 + x_1\overline{x_2} + x_0\overline{x_1}x_2)$$

@子传东海 Baid 文庫

所以, $y_2 = (\overline{A}B)(\overline{x_0}x_2 + x_0\overline{x_2}) + (A\overline{B})(x_2)$

根据上述 yo 、y1 、y2的函数表达式,可画出相应的逻辑电路图(略)。

4.14 设计一个 8421BCD 码十进制数对 9 的变补电路。要求:写出真值表;给出最简逻辑表达式;画出电路图。

答:①根据逻辑要求,建立真值表。

A	В	С	D	F ₁	F_2	Fз	F4
0	0	0	0	1	0	0	1
0	0	0	1	1	0	0	0
0	0	1	0	0	1	1	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	0	0
0	1	1	0	0	0	1	1
0	1	1	1	0	0	1	0
1	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	d	d	d	d
1	0	1	1	d	d	d	d
1	1	0	0	d	d	d	d
1	1	0	1	d	d	d	d
1	1	1	0	d	d	d	d
1	1	1	1	d	d	d	d

②画出 F₁、F₂、F₃和 F₄对应的卡诺图,进行化简。

@子传东海

\mathbf{F}_1	AB CD	00	01	11	10
	00	1		d	
	01	1		d	
	11			d	d
	10			d	d

所以, $F_1 = \overline{ABC}$.

F_2	AB CD	00	01	11	10
	00		1	d	
	01		1	d	
	11	1		d	d
	10	1		d	d

所以, $F_2 = B\overline{C} + \overline{B}C = B \oplus C$

F ₃	AB CD	00	01	11	10
	00			d	
	01			d	
	11	1	1	d	d
	10	1	1	d	d

所以, $F_3 = C$ 。

@子传东海 Baidix庫

复制

F_4	AB CD	00	01	11	10
	00	l	1	d	1
	01			d	
	11			d	d
	10	1	1	d	d

所以, $F_4 = \overline{D}$ 。 电路图略。

4.17 设计一个组合逻辑电路,其输入为三位二进制数 $A=A_2$ A_1 A_0 ,输出也为一个三位二进制数 $Y=Y_2Y_1Y_0$ 。当 A 的值小于 2 时,Y=0;当 $2 \leqslant A \leqslant 5$ 时,Y=A+3;当 $A \geqslant 5$ 时,Y=A-3。要求用与非门实现该电路。

答: ①根据逻辑要求,建立真值表。

A2	A 1	Αo	Y ₂	Y 1	Yo
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	1	1	0
1	0	0	1	1	1
1	0	1	d	d	d
1	1	0	0	1	1
1	1	1	1	0	0

②画出 Yo、Y1 、Y2 对应的卡诺图,进行化简。

Y_2	A_0	A ₁ 00	01	. 11	10
	0		1		1
	1		1	1	d

Baidx库

所以, $Y_2 = \overline{A_2}A_1 + A_2\overline{A_1} + A_1A_0 = \overline{\overline{A_2}A_1 + A_2\overline{A_1} + A_1A_0} = \overline{\overline{A_2}A_1}\overline{A_2\overline{A_1}}\overline{A_1\overline{A_0}}$ 。

所以 $Y_0 = A_1 \overline{A_0} + A_2 \overline{A_1} = \overline{A_1 \overline{A_0} + A_2 \overline{A_1}} = \overline{A_1 \overline{A_0}} \overline{A_2 \overline{A_1}}$ 。

上述表达式已经进行了适当的转换,可以很方便地用与非门来实现。电路图略。

- 4.18 一组合电路有 4 个输入 A、B、C 和 D (表示 4 位二进制数, A 为最高位, D 为最低位), 两个输出为 X 和 Y。当且仅当该数被 3 整除时, X=1; 当且仅当该数被 4 整除时, Y=1。求出 X 和 Y 的逻辑函数, 画出最简逻辑电路。
- 答: ①根据逻辑要求,建立真值表。

A	В	В	D	X	Y
0	0	0	0	1	1
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	0	0

@子传东海

Bai d 文庫

				1		
0	1	1	0	1	0	
0	1	1	1	0	0	
1	0	0	0	0	1	
1	0	0	1	1	0	
1	0	1	0	0	0	
1	0	1	1	0	0	
1	1	0	0	1	1	
1	1	0	1	0	0	
1	1	1	0	0	0	
1	1	1	1	1	0	

②画出 X、Y 对应的卡诺图,进行化简。

X	AB CD	00	01	11	10
	00	1		1	
	01				1
	11	1		1	
	10		1		

所以, $X = \sum m(0,3,6,9,12,15)$ 。

复制

@子传东海 Baidix庫

所以, $Y = \overline{C}\overline{D}$.

逻辑电路图略。

〈习题五〉作业参考答案

5.5 给出逻辑电路图如图 5.24 所示, 试分析该电路的逻辑功能, 并给出逻辑功能的真值表。

图 5.24 题 5.5 的逻辑电路图

答:逻辑功能的真值表

R	S	Q ⁿ	Q ⁿ⁺¹
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	×
1	1	1	×

$$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ S \bullet R = 0 \end{cases}$$

这是一个与由或非门构成的基本 R-S 触发器功能一样的触发器。

@子传东海 Bai (数) 文庫

复制

@子传东海 Baidi文库

5.8 写出图 5.27 所示的各触发器的次态方程。

答: 1、
$$Q^{n+1} = D = \overline{Q^n}$$

2.
$$Q^{n+1} = D = Q^n$$

3.
$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n = \overline{Q^n}\overline{Q^n} + Q^nQ^n = \overline{Q^n} + Q^n = 1$$

4.
$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n = Q^n\overline{Q^n} + \overline{Q^n}Q^n = 0 + 0 = 0$$

5.
$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n = \overline{Q^n}\overline{Q^n} + 0Q^n = \overline{Q^n} + 0 = \overline{Q^n}$$

6.
$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n = Q^n\overline{Q^n} + 0Q^n = 0 + 0 = 0$$

5.9 有一触发器的电路结构如图 5.28 所示,试给出该触发器的状态转移真值表,写出其特征方程。

答: 当 CP=1 时, 电路不接受输入信号 X, $Q^{n+1} = Q^n$ 。

@子传东海 Baid 文庫

当 CP=0 时, 电路接收输入信号 X, $Q^{n+1} = X$ 。

其状态转移真值表如下:

CP	X	Q ⁿ	Q^{n+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

画出卡诺图,进行化简。

由此可得其特征方程为: $Q^{n+1} = \overline{CP} \bullet X + CP \bullet Q^n$ 。

〈习题六〉作业参考答案

6.5 某一电路有一个输入端 x 和一个输出端 Z。当 x 连续出现 3 个 0 或 2 个 1 时,输出 Z=1, 且第 4 个 0 或第 3 个 1 使输出 Z=0。试作出该电路的同步时序逻辑电路的原始状态表。

答: Mealy 型原始状态图为:

复制

Mealy 型原始状态表为:

*II -L-	次态/输出		
现态	x=0	x=1	
S ₀	S ₃ /0	S ₁ /0	
S ₁	S ₃ /0	S ₂ /1	
S ₂	S ₃ /0	S ₁ /0	
S ₃	S ₄ /0	S ₁ /0	
S ₄	S ₅ /1	S ₁ /0	
S ₅	S ₃ /0	S ₁ /0	

6.7 试分析图 6.59 所示的同步时序逻辑电路。写出该电路的激励函数和输出函数表达式,做出状态图和状态表,并说明该电路的逻辑功能。

答: 1、激励函数表达式: J₁=K₁=1; J₂=K₂=y₁; J₃=K₃=y₁y₂

该电路是 Moore 型电路,状态变量就是电路的输出。可不必单独列出输出函数。

2、建立状态表

	现态			次态	
у 3	у2	у ₁	y ₃ ⁽ⁿ⁺¹⁾	y ₂ (n+1)	y ₁ ⁽ⁿ⁺¹⁾
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

3、状态图

输入始终为1。是一个模8加1计数器。

6.9 图 6.1 为一个串行加法器逻辑框图,试作出其状态图和状态表。

答: 状态图为:

状态表为:

P *** G * P * P * P * P * P * P * P * P		
输入	现态	次态/输出
x y	С	$c^{(n+1)}/s$
0 0	0	0/0
0 1	0	0/1
1 0	0	0/1
1 1	0	1/0
0 0	1	0/1
0 1	1	1/0
1 0	1	1/0
1 1	1	1/1

6.13 设计一个1011序列检测器,一直典型输入输出序列为:

输入: 001011011101011110

输出: 000001001000001000

答: 1、作出原始状态图和状态表。

状态表:

现态	次态/输出		
	X=0	x=1	
S ₀	S ₀ /0	S ₁ /0	
S ₁	S ₂ /0	S ₁ /0	
S ₂	S ₀ /0	S ₃ /0	
S ₃	S ₂ /0	S ₄ /1	
S ₄	S ₂ /0	S ₁ /0	

2、状态化简

@子传东海 Baid 文庫

找出最大等效类: (S_0) 、 $(S_1$, S_4)、 (S_2) 、 (S_3) 以 a 代表 (S_0) , b 代表 (S_2) , c 代表 (S_3) , d 代表 $(S_1$, S_4),则最小化状态表为:

现态	次态/	輸出		
	x=0	x=1		
a	a/0	d/0		
b	a/0	c/0		
С	b/0	d/1		
d	b/0	a/0		

3、状态编码

根据状态分配必须遵循的基本原则:

- (1) a、b 相邻; c、d 相邻;
- (2) a、d 相邻; a、c 相邻; b、d 相邻;
- (3) a、b 相邻; a、d 相邻; b、d 相邻;
- (4) a 应分配为逻辑 0

所以,编码方案如下:

对应的二进制状态表为:

11 / H1 XZ (P1) (NO. 10 / V)	7 ·							
现态	次态/输出 ($y_2^{(n+1)}y_1^{(n+1)}$ / 输出)							
$y_2 y_1$	x=0	x=1						
00	00/0	11/0						
01	00/0	10/0						
10	01/0	11/1						
11	01/0	00/0						

4、确定激励函数和输出函数

选用D触发器

复制

所以:

$$D_2 = x\overline{y_2} + x\overline{y_1}$$
; $D_1 = x\overline{y_2} + y_2\overline{y_1} + x\overline{y_1}$; $Z = x\overline{y_2} + y_2\overline{y_1} + x\overline{y_2}$;

- 5、逻辑电路图略。
- 6.16设计一个具有下述特点的计数器
 - 1) 计数器有两个控制输入 C_1 和 C_2 , C_1 用于控制计数器的模板,而 C_2 用以控制计数器的 m_1 m_2
 - 2) 若 C₁=0, 计数器为模 3 计数器; 若 C₁=1, 计数器为模 4;
 - 3) 若 $C_2=0$, 则为加 1 计数器; $C_2=1$, 为减 1 计数器。
- 答:模3计数器选00、01、10三个状态。则其状态表为:

现态		次	态	
	Mod 3+1	Mod 3-1	Mod 4 -1	Mod 4+1
	C ₁ C ₂ =00	C ₁ C ₂ =01	C ₁ C ₂ =11	C ₁ C ₂ =10
00	01	10	11	01
01	10	00	00	10
11	dd	dd	10	00
10	00	01	01	11

第七章 课后习题参考答案

7.7 试分析图 7.44 所示的脉冲型异步时序逻辑电路。

答: 1、求输出函数和控制函数:

 $J_1=K_1=1$, $CP_1=CP=1$;

J₂=K₂=1, CP₂=CP₁ • Q₁=Q₁;

 $\texttt{J}_3 \texttt{=} \texttt{K}_3 \texttt{=} \texttt{1}, \quad \texttt{CP}_3 \texttt{=} \texttt{CP}_2 \, \bullet \, \texttt{Q}_2 \texttt{=} \, \ \texttt{Q}_1 \, \bullet \, \texttt{Q}_2;$

@子传东海 Baid 文庫

 $\texttt{J}_{4} \texttt{=} \texttt{K}_{4} \texttt{=} \texttt{1}, \quad \texttt{CP}_{4} \texttt{=} \texttt{CP}_{3} \, \bullet \, \texttt{Q}_{3} \texttt{=} \ \, \texttt{Q}_{1} \, \bullet \, \texttt{Q}_{2} \, \bullet \, \texttt{Q}_{3} \, ;$

2、列次态方程

$$Q_1^{n+1} = (J_1 \overline{Q_1^n} + \overline{K_1} Q_1^n) \mathfrak{g} C P_1 + Q_1^n \mathfrak{g} \overline{C P_1} = \overline{Q_1^n}$$

$$Q_2^{n+1} = (J_2 \overline{Q_2^n} + \overline{K_2} Q_2^n) \mathfrak{G}CP_2 + Q_2^n \overline{\mathfrak{G}CP_2} = \overline{Q_2^n} \mathfrak{Q}Q_1^n + Q_2^n \overline{Q_1^n} = Q_1^n \oplus Q_2^n$$

$$Q_{3}^{n+1} = (J_{3}\overline{Q_{3}^{n}} + \overline{K_{3}}Q_{3}^{n}) \mathfrak{G}CP_{3} + Q_{3}^{n} \mathfrak{G}\overline{CP_{3}} = \overline{Q_{3}^{n}}Q_{2}^{n}Q_{1}^{n} + Q_{3}^{n}\overline{Q_{2}^{n}Q_{1}^{n}} = Q_{3}^{n} \oplus Q_{2}^{n}Q_{1}^{n}$$

$$Q_4^{n+1} = (J_4 \overline{Q_4^n} + \overline{K_4} Q_4^n) \mathcal{G}CP_4 + Q_4^n \overline{\mathcal{G}CP_4} = \overline{Q_4^n} Q_3^n Q_2^n Q_1^n + Q_3^n \overline{Q_3^n Q_2^n Q_1^n} = Q_3^n \oplus Q_3^n Q_2^n Q_1^n Q_2^n Q_2^n Q_2^n Q_3^n Q_3$$

3、列出状态转移真值表, 画出状态图

		输入					输出	
Q_4	Q_3	Q_2	$Q_{\scriptscriptstyle 1}$	CP	Q_4^{n+1}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	1	0	0	0	1
0	0	0	1	1	0	0	1	0
0	0	1	0	1	0	0	1	1
0	0	1	1	1	0	1	0	0
0	1	0	0	1	0	1	0	1
0	1	0	1	1	0	1	1	0
0	1	1	0	1	0	1	1	1
0	1	1	1	1	1	0	0	0
1	0	0	0	1	1	0	0	1
1	0	0	1	1	1	0	1	0
1	0	1	0	1	1	0	1	1
1	0	1	1	1	1	1	0	0
1	1	0	0	1	1	1	0	1
1	1	0	1	1	1	1	1	0
1	1	1	0	1	1	1	1	1
1	1	1	1	1	0	0	0	0

状态图:

4、功能描述: 16 进制加1 计数器。

7.8 试分析图 7.45 所示的脉冲型异步时序逻辑电路。

答: 1、求输出函数和控制函数:

 $\texttt{J}_{1}\!\!=\!\!\texttt{K}_{1}\!\!=\!\!\texttt{1}, \quad \texttt{CP}_{1}\!\!=\!\!\texttt{CP}\!\!=\!\!\texttt{1}\,;$

@子传东海 Bai 🕳 🗯

 $J_2 = \overline{Q_3}$, $K_2 = 1$, $CP_2 = CP_1 \cdot Q_1 = Q_1$;

 $J_3 = \overline{Q_3}Q_2$, $K_3 = 1$, $CP_3 = CP_1 \cdot Q_1 = Q_1$;

2、列次态方程

$$Q_1^{n+1} = (J_1 \overline{Q_1^n} + \overline{K_1} Q_1^n) \mathfrak{G}CP_1 + Q_1^n \mathfrak{G}\overline{CP_1} = \overline{Q_1^n}$$

$$Q_2^{n+1} = (J_2\overline{Q_2^n} + \overline{K_2}Q_2^n)\mathfrak{G}CP_2 + Q_2^n\overline{\mathfrak{G}CP_2} = \overline{Q_3^n}\overline{Q_2^n}\mathfrak{Q}_1^n + Q_2^n\overline{Q_1^n}$$

$$Q_{3}^{n+1} = (J_{3}\overline{Q_{3}^{n}} + \overline{K_{3}}Q_{3}^{n}) \text{gCP}_{3} + Q_{3}^{n} \text{gCP}_{3} = \overline{Q_{3}^{n}}Q_{2}^{n}Q_{1}^{n} + Q_{3}^{n}\overline{Q_{1}^{n}}$$

3、列出状态转移真值表, 画出状态图

Q_3	Q_2	Q_1	СР	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	1	0	0	1
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	0	0
1	0	0	1	1	0	1
1	0	1	1	0	0	0
1	1	0	1	1	1	1
1	1	1	1	0	0	0

状态图:

4、功能描述: 模 5 加 1 计数器。当电路处于无效状态 6、7 时经过 2 个或一个脉冲后即可进入正常工作状态。

复制

- 7.9 试用 J-K 触发器设计一个七进制异步加法计数器。
- 答: 1、作七进制加法计数器的原始状态表

用 3 位二进制数 000~110 表示七进制的数码 0~6。所以,原始状态表如下所示:

Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1

@子传东海

Baidi文庫

1 1 1 1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	d	d	d

2、确定控制函数(激励函数)

由于有7个有效状态,因此需要3个J-K触发器。其输出、激励状态表如下所示:

Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	J_3	K_3	J_2	K_2	J_1	K_1	CP ₃	CP_2	CP_1
0	0	0	0	0	1	d	d	d	d	1	d	0	0	1
0	0	1	0	1	0	0	d	1	d	d	1	d	1	1
0	1	0	0	1	1	d	d	d	d	1	d	0	0	1
0	1	1	1	0	0	1	d	d	1	d	1	1	1	1
1	0	0	1	0	1	d	d	d	d	1	d	0	0	1
1	0	1	1	1	0	d	d	1	d	d	1	0	d	1
1	1	0	0	0	0	d	1	d	1	d	d	1	1	0
1	1	1	d	d	d	d	d	d	d	d	d	d	d	d

激励卡诺图为:

@子传东海 Bai 公文库

复制

3、自启动检查

Q_3^n	Q_2^n	Q_1^n	J_3	K_3	J_2	K_2	\boldsymbol{J}_1	K_1	CP ₃	CP_2	CP_1	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
1	1	1	1	1	1	1	1	1	1	1	0	0	0	1
所以	电路制	能自启	动。											

4、逻辑电路图略。

7.11 设计一个脉冲型异步时序电路,该电路有三个输入端 x_1 , x_2 , x_3 ,一个输出端 Z。当

且仅当输入序列 x_1 – x_2 – x_3 出现时,输出 Z 由 0 变为 1,仅当又出现一个 x_2 脉冲时,输出 Z 才由 1 变为 0。

答: 1、由题意分析可得原始状态图和原始状态表:

@子传东海 Bai 4 文库

原始状态表为:

Q^n		Q^{n+1} / Z	
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
A	B/0	A/0	A/0
В	B/0	C/0	A/0
С	B/0	A/0	D/1
D	E/1	A/0	D/1
Е	E/1	C/0	D/1

2、状态化简

已经是最简状态。

3、状态分配

根据状态分配的基本原则,得到 A=000,B=001, C=010, D=011, E=111。 其二进制状态表如下:

Q^n		Q^{n+1}/Z	
	<i>x</i> ₁	X_2	<i>x</i> ₃
000	001/0	000/0	000/0
001	001/0	010/0	000/0
010	001/0	000/0	011/1
011	111/1	000/0	011/1
111	111/1	010/0	011/1

4、选定触发器,确定控制函数和输出函数

选用 D 触发器。根据二进制状态表和 D 触发器激励表可以得到电路的输

和激励状态表。如下:

ı			_													
	X_3	X_2	x_{l}	Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	$Q_{\rm l}^{^{n+1}}$	Q_0^{n+1}	Z	D_2	CP_2	$D_{_1}$	CP_1	D_0	CP_0

@子传东海

0	0	0	0	0	0	0	0	0	0	d	0	d	0	d	0
			0	0	1	0	0	1	0	d	0	d	0	d	0
			0	1	0	0	1	0	0	d	0	d	0	d	0
			0	1	1	0	1	1	0	d	0	d	0	d	0
			1	1	1	1	1	1	0	d	0	d	0	d	0
0	0	1	0	0	0	0	0	1	0	d	0	d	0	1	1
			0	0	1	0	0	1	0	d	0	d	0	d	0
			0	1	0	0	0	1	0	d	0	0	1	1	1
			0	1	1	1	1	1	1	1	1	d	0	d	0

			1	1	1	1	1	1	1	d	0	d	0	d	0
0	1	0	0	0	0	0	0	0	0	d	0	d	0	d	0
			0	0	1	0	1	0	0	d	0	1	1	0	1
			0	1	0	0	0	0	0	d	0	0	1	d	0
			0	1	1	0	0	0	0	d	0	0	1	0	1
			1	1	1	0	1	0	0	0	1	d	0	0	1
1	0		0	0	0	0	0	0	0	d	0	d	0	d	0
			0	0	1	0	0	0	0	d	0	d	0	0	1
		0	0	1	0	0	1	1	1	d	0	d	0	1	1
			0	1	1	0	1	1	1	d	0	d	0	d	0
			1	1	1	0	1	1	1	0	1	d	0	d	0

然后画卡诺图化简,得到控制函数和输出函数表达式。 画出逻辑电路图。

复制

