Notas de mecánica y computación cuántica

Gabriel Acosta

March 31, 2017

Qubits

Justo como en computación clásica el bit es el concepto fundamental con el que se describe la información, existe un análogo al mismo en computación cuántica.: el bit cuántico o *qubit*

Qubits

Podemos tratar en un principio a los qubits como objetos matemáticos con un *estado* que lo describe. Así como computación clásica el estado de un bit puede ser representado por medio de θ o θ 1, dos posibles estados pueden describir a un qubit: $|0\rangle$ o $|1\rangle$

Superposición

Se pueden formar una combinación lineal de los estados de un qubit, llamado *superposición*:

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

Donde α y β son números complejos. En otras palabras, un qubit es un espacio vectorial de dos elementos. Los estados $|0\rangle$ y $|1\rangle$ son los *estados base computacionales* y forman una base ortornormal para este espacio vectorial.

Observación

No es posible examinar un qubit en busca del estado exacto en que se encuentra, es decir obtener los valores α y β . En cambio, al *medir* un qubit haremos colapsarlos a uno de sus estados. Podremos obtener 0, con una probabilidad de $|\alpha|^2$; o ,en su defecto, 1 con una probabilidad de $|\beta|^2$. Debe cumplirse que $|\alpha|^2 + |\beta|^2 = 1$.

Esfera de Blosch

La esfera de Bloch es una representación geométrica del espacio de estados puros de un sistema cuántico de dos niveles.

Compuertas de un solo qubit

A diferencia de la computación clásica, donde solo existe una compuerta lógica no trivial de un solo bit (NOT), en computación cuántica existe más de una.

Compuerta NOT

Sea

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

al aplicar la compuerta NOT sobre los estados sucede que

$$|\Psi\rangle = \alpha |1\rangle + \beta |0\rangle$$

De manera que la compuerta actúa de manera lineal sobre el sistema.

Compuerta NOT

Así, es conveniente representar la compuerta NOT cuántica como una matriz.

$$X \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Si escribimos $\alpha \left| 1 \right\rangle + \beta \left| 0 \right\rangle$ usando notación de vectores

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Entonces, la compuerta NOT actuando sobre el sistema y su respectiva salida es:

$$X\begin{bmatrix}\alpha\\\beta\end{bmatrix}=\begin{bmatrix}\beta\\\alpha\end{bmatrix}$$

Esfera Blosch de X

Gabriel Acosta

Notas de mecánica y computación cuántica

Circuito de la plataforma de IBM para X

Resultado de la plataforma de IBM para X

Gabriel Acosta

Creando superposiciones

Ahora que se ha abordado como cambiar entre los estados $|0\rangle$ y $|1\rangle$, podemos explorar el concepto de superposición; se refiere a crear un nuevo estado cuántico el cual es una combinación lineal de los estados base $|0\rangle$ y $|1\rangle$.

La compuerta Hadamard H

La compuerta Hadamard es descrita con la siguiente matriz

$$H \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Si ahora hacemos pasar el estado $|0\rangle$ a través de la compuerta H, tenemos como resultado:

$$|+
angle = rac{1}{\sqrt{2}}(|0
angle + |1
angle)$$

 $|+\rangle$ puede decirse que está 'a la mitad del estado $|0\rangle$ y a la mitad del $|1\rangle$ ', lo cuál es una clara *superposición de estados*.

Ahora bien, hacemos pasar a $|1\rangle$ través de la compuerta H, dando como resultado:

$$|-
angle=rac{1}{\sqrt{2}}(|0
angle-|1
angle)$$

 $|+\rangle$ y $|-\rangle$ forman así mismo una nueva base computacional (o una nueva dirección de medición), llamada la base de superposición.

Se puede observar a la compuerta H como un intercambio en los ejes X+Z

Experimento con la CNOT en la plataforam de IBM

Resultados

Quantum State: Computation Basis

