VII. VARIABLES ALEATORIAS DISTRIBUIDAS CONJUNTAMENTE.

7.1 Definiciones

Caso de V.A. Discretas:

Para cualquier par de V.A. X e Y, la función de distribución acumulada conjunta de X e Y es definida como:

$$F(a,b) = P\{X \mathbf{f} a, Y \mathbf{f} b\}$$
, para todo $-\infty < a,b < +\infty$

La función de distribución de *X* puede ser obtenida desde la función de distribución conjunta de *X* e *Y* de la siguiente manera:

$$F_{X}(a) = P(X \mathbf{f} a) = P\{X \mathbf{f} a, Y \mathbf{f} + \mathbf{f} \} = F(a, \mathbf{f})$$

De manera similar se obtiene $F_Y(b) = F(\mathbf{Y}, b)$.

La función de densidad de la conjunta viene dada por:

$$p(x,y) = P\{X = x, Y = y\}$$

con la cual puede ser obtenida la f.d.p. de *X e Y* de la manera siguiente:

$$p_{X}(x) = \sum_{y/p((x,y)>0} p(x,y) \quad y \quad p_{Y}(y) = \dot{a}_{x/p((x,y)>0} p(x,y)$$

Caso de V.A. Continuas:

Definición 7.1

X e Y son V.A. continuas conjuntamente distribuidas si f(x,y), conocida como función de densidad conjunta de X e Y, definida para todo $x,y \in R$ y que cumple con, $\forall A,B \subseteq R$,

$$P\{X \hat{I} A, Y \hat{I} B\} = \int_{A} \int_{B} f(x, y) dx dy.$$

Con la función de densidad conjunta podemos obtener la f.d.p. de X de la manera siguiente:

$$P\{X\,\widehat{\boldsymbol{I}}\,A\} = P\{X\,\widehat{\boldsymbol{I}}\,A,\,Y\,\widehat{\boldsymbol{I}}\,(-\boldsymbol{Y},+\boldsymbol{Y}\} = \iint_{A} f(x,y)\,dx\,dy = \int_{A} f_{X}(x)\,dx$$
 Donde $f_{X}(x) = \int_{-\infty} f(x,y)\,dy$ de la misma forma tenemos $f_{Y}(y) = \int_{-\infty} f(x,y)\,dx$.

Esperanza matemática de una función g(x,y) de dos V.A. X e Y.

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y)p(x,y) : para \ el \ caso \ discreto$$

$$E[g(X,Y)] = \int_{x}^{\infty} \int_{y}^{\infty} g(x,y)f(x,y)dxdy : para \ el \ caso \ continuo$$

$$E[X + Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + y)f(x, y)dxdy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x, y)dxdy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x, y)dxdy = \int_{-\infty}^{\infty} x(\int_{-\infty}^{\infty} f(x, y)dy)dx + \int_{-\infty}^{\infty} y(\int_{-\infty}^{\infty} f(x, y)dx)dy$$
$$= \int_{-\infty}^{\infty} x f_X(x)dx + \int_{-\infty}^{\infty} f_Y(y)dy = E[X] + E[Y]$$

e1) Si g(x,y) = x + y, entonces:

Igualmente se trata el caso discreto.

Este último resultado, combinado con la propiedad E[aX] = aE[X] produce:

$$E[aX+bY] = aE[X] + bE[Y]$$

En el caso de tener distribuciones conjuntas definidas para n V.A., digamos $X_1, X_2, ..., X_n$, tendremos que para todo $a_1, a_2, ..., a_n$ se cumple:

$$E[a_1X_1 + a_2X_2 + ... + a_nX_n] = a_1E[X_1] + a_2E[X_2] + ... + a_nE[X_n]$$

7.2 Variables Aleatorias Independientes

Definición 7.2

X e Y son independientes si para todo a,b tenemos:

$$P\{X \, \mathbf{\pounds} \, a, \, Y \, \mathbf{\pounds} \, b\} = P\{X \, \mathbf{\pounds} \, a\} * P\{Y \, \mathbf{\pounds} \, b\}.$$

Luego podemos decir que X e Y son independientes sii los eventos $E_a = \{x/x \pounds a\} y F_b = \{y/y \pounds b\}$ son independientes, para todo a, b.

En términos de la función de densidad conjunta podemos decir que:

X e Y son independientes sii
$$F(a,b) = F_X(a) * F_Y(b)$$
, para todo a,b .

Entonces,

para el caso discreto, $p(x,y) = p_X(x) * p_Y(y)$ y

para el caso continuo, $f(x,y) = f_X(x) * f_Y(x)$.

Lema.

Si X e Y son independientes, entonces para cualquier par de funciones h(.) y g(.), en X y en Y respectivamente tendremos: E[g(X)h(Y)] = E[g(X)]*E[h(Y)].

Demostración.

Supongamos que X e Y son continuas y que existe una distribución conjunta f(x,y) para ellas, entonces:

$$E[g(X)h(Y)] = \iint g(x)h(y)f(x,y)dxdy =$$

(por independencia) =
$$\iint g(x)h(y)f_X(x)f_Y(y)dxdy = \int h(y)f_Y(y)dy * \int g(x)f_X(x)dx$$

= $E[h(Y)]*E[g(X)].$

(El caso discreto se muestra de manera similar).

Calculo de $F_{X+Y}(a)$ cuando F_X y F_Y son conocidas y X e Y son independientes $(F_{X+Y}$ se le conoce como Convolución de F_X y F_Y).

Sean $f_X(.)$ y $f_Y(.)$ f.d.p de X e Y respectivamente. Luego,

$$F_{X+Y}(a) = P(X+Y \le a) = \iint_{X+Y \le a} f(x,y) dx dy$$

$$= \iint_{X+Y \le a} f_X(x) f_Y(y) dx dy$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{a-y} f_X(x) dx \right] f_Y(y) dy = \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy$$

$$f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy$$

$$= \int_{-\infty}^{\infty} \frac{dF_X(a-y)}{da} f_Y(y) dy = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$$

A continuación obtendremos la f.d.p. de X+Y diferenciando $F_{X+Y}(a)$.

Ejemplo 1.

Sean XyY V.As. independientes uniformemente distribuidas en el intervalo (0,1). Encontrar la función de densidad f_{X+Y} .

Solución.

$$f_X(a) = f_Y(a) = \begin{cases} 1 & \text{si } 0 < a < 1 \ y \\ 0 & \text{en caso contrario} \end{cases}$$

$$\Rightarrow f_{X+Y}(a) = \int_{0}^{1} f_{X}(a-y)dy$$

Analizando por intervalos donde podría estar "a":

para $0 \le a \le 1$ tenemos que:

$$f_{X+Y}(a) = \int_{0}^{a} dy = a$$

y para $1 < a \le 2$ tenemos que:

$$f_{X+Y}(a) = \int_{a-1}^{1} dy = 2 - a$$

$$- > f_{X+Y}(a) = \begin{cases} a & 0 \le a \le 1 \\ 2 - a & 1 < a < 2 \\ o & \text{en caso contrario} \end{cases}$$

Ejemplo 2.

Sean X e Y V.A.s del tipo Poisson independientes con parámetros λ_1 y λ_2 respectivamente. Encuentre $f_{X+Y}(a)$.

Solución.

$$P(X + Y = n) = \sum_{k=0}^{n} P(X = k, Y = n - k)$$
ya que $\{(X, Y) / X + Y = n\} = \bigcup_{k=0}^{n} \{(X, Y) / X = k, Y = n - k\}$

Entonces:

$$f_{X+Y}(n) = \sum_{k=0}^{n} P(X = k)P(Y = n - k)$$

$$= \sum_{k=0}^{n} \left[e^{-\mathbf{1}_{I}} \frac{\mathbf{1}_{I}^{k}}{k!} \right] \left[e^{-\mathbf{1}_{2}} \frac{\mathbf{1}_{2}^{n-k}}{(n-k)!} \right] = e^{-(\mathbf{1}_{I}+\mathbf{1}_{2})} \sum_{k=0}^{n} \frac{\mathbf{1}_{I}^{k} \mathbf{1}_{2}^{n-k}}{k!(n-k)!}$$

$$= \frac{e^{-(\mathbf{1}_{I}+\mathbf{1}_{2})}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \mathbf{1}_{I}^{k} \mathbf{1}_{2}^{n-k} = \frac{e^{-(\mathbf{1}_{I}+\mathbf{1}_{2})}}{n!} \sum_{k=0}^{n} \binom{n}{k} \mathbf{1}_{I}^{k} \mathbf{1}_{2}^{n-k}$$

$$= \frac{e^{-(\mathbf{1}_{I}+\mathbf{1}_{2})}}{n!} (\mathbf{1}_{I}+\mathbf{1}_{2})^{n}$$

lo que representa una Poisson con parámetro $\lambda = \lambda_1 + \lambda_2$.

7.3 Distribuciones de V.A Condicionadas.

Caso discreto:

La función de densidad condicional de una V.A. discreta viene dada por:

$$|P\{X=x/Y=y\} = P\{X=x,Y=y\} / p\{Y=y\} = p(x,y)/p_Y(y), \quad \text{para } p_Y(y) > 0$$

$$|p_{x/y}(x/y)| = < 0 \quad \text{si no}$$

Asimismo la función acumulada condicional viene dada por:

$$F_{X/Y}(x/y) = P\{X \mathbf{f} x / Y = y\} = \dot{\mathbf{a}}_{a \mathbf{f} x} p_{x/y}(a/y).$$

Ejemplo 1.

Sean X e Y V.As. con p(x,y) definidas por:

$$p(0,0) = 0.4$$
, $p(0,1) = 0.2$, $p(1,0) = 0.1$ y $p(1,1) = 0.3$.

Calcule
$$P(X = x / Y = 1)$$
.

Solución.

$$P(X = x / Y = 1) = P(x, 1) / P_Y(1)$$
. Ahora calculamos,

$$P_{Y}(1) = \dot{a}_{x} p(x,1) = p(0,1) + p(1,1) = 0.5$$
, por lo tanto:

$$p_{x/y}(0/1) = p(0,1) / 0.5 = 2/5$$
 $p_{x/y}(1/1) = p(1,1) / 0.5 = 3.5$

Ejemplo 2.

Sean X e Y V.As. que siguen distribuciones Poisson independientes con parámetros $\mathbf{l}_1 y \mathbf{l}_2$ respectivamente. Encuentre la función de distribución condicional de X dado que X + Y = n

Solución:

 $P\{X=k/X+Y=n\} = P\{X=k,X+Y=n\} / P\{X+Y=n\} = P\{X=k,Y=n-k\} / P\{X+Y=n\}$ y por independencia es

$$= (P\{X=k\} P\{Y=n-k\}) / P\{X+Y=n\}.$$

Como $P\{X+Y=n\}$ es conocida ya que fue encontrada en un ejercicio de la sección anterior, tendremos:

$$P\{X=k/X+Yn\}=\frac{e^{-\mathbf{1}_{1}}\mathbf{1}_{1}^{k}}{k!}\frac{e^{-\mathbf{1}_{2}}\mathbf{1}_{2}^{n-k}}{(n-k)!}\left[\frac{e^{-(\mathbf{1}_{1}+\mathbf{1}_{2})}(\mathbf{1}_{1}+\mathbf{1}_{2})^{n}}{n!}\right]^{1}$$

$$\frac{n!}{(n-k)!k!}\frac{\mathbf{1}_{1}^{k}\mathbf{1}_{2}^{n-k}}{(\mathbf{1}_{1}+\mathbf{1}_{2})^{n}}=\binom{n}{k}\left[\frac{\mathbf{1}_{1}}{\mathbf{1}_{1}+\mathbf{1}_{2}}\right]^{k}\left[\frac{\mathbf{1}_{2}}{\mathbf{1}_{1}+\mathbf{1}_{2}}\right]^{n-k}$$

Lo cual corresponde a una función de densidad de una distribución Binomial con parámetros n y

$$p = \mathbf{l}_1/(\mathbf{l}_1 + \mathbf{l}_2)$$

Caso continuo:

La función de densidad de una condicional es dada por:

$$f_{x/y}(x/y) = P\{x \mathbf{\pounds} X \mathbf{\pounds} x + dx / y \mathbf{\pounds} Y \mathbf{\pounds} y + dy\}$$
$$= f(x,y) / f_Y(y), \ para f_Y(y) > 0$$

Asimismo la función acumulada condicional viene dada por:

$$P\{XeA/Y=y\} = \dot{\mathbf{q}}_{A} f_{X/Y}(x/y)dx$$

En particular con $A=(-\infty,a]$ tendremos:

$$F_{X/Y}(a/y) = P\{X \mathbf{f} a / Y = y\} = \mathbf{\hat{o}} f_{x/y}(x/y) dx.$$

Ejemplo 1.

Calcule,

$$f_{x/y}(x/y)$$
 dado $f(xy) = \begin{cases} x(2x-y) \cdot 0 < x < 1 \cdot 0 < y < 1 \\ 0 \text{ emascontrario} \end{cases}$

Solución.

$$f_{X/Y}(x/y) = \frac{f(x, y)}{f_{Y}(y)} = \frac{f(x, y)}{\int_{-\infty}^{\infty} f(x, y)dx}$$

$$= \frac{x(2 - x - y)}{\int_{1}^{1} x(2 - x - y)dx} = \frac{x(2 - x - y)}{\frac{2}{3} - \frac{y}{2}}$$

$$= \frac{6x(2 - x - y)}{4 - 3y} \quad \text{con} \quad 0 < x, y < 1$$

Ejemplo 2.

$$P\{X > 1/Y = y\} \quad con \quad f(x, y) = \begin{cases} \frac{e^{-\frac{x}{y}}e^{-y}}{y} & 0 < x, y < \infty \\ 0 \quad caso \ contrario \end{cases}$$

Calcule, Solución.

$$P\{X > 1/Y = y\} = \int_{1}^{\infty} f_{X/y}(x/y) dx$$

$$\frac{e^{-\frac{x}{y}}e^{-y}}{\int_{0}^{\infty} f_{X/y}(x/y) dx} = \frac{f(x, y)}{\int_{0}^{\infty} \frac{1}{y}e^{-\frac{x}{y}} dx} = \frac{1}{y}e^{-\frac{x}{y}}$$

entonces,

$$P\{X > 1/Y = y\} = \int_{1}^{\infty} \frac{1}{y} e^{-\frac{x}{y}} dx = -e^{-\frac{x}{y}} \Big|_{1}^{\infty} = e^{-\frac{1}{y}}$$

7.4 Covarianza, correlación y regresión

7.4.1 Covarianza

La covarianza entre dos V.A. se denota con Cov(X,Y) y se define de la manera siguiente:

$$Cov(X,Y) = E[(X-E(X))*(Y-E(Y))].$$

Nota:

Con este valor se mide en cierta forma el grado de dependencia que hay entre las dos variables.

Lema 7.

$$Cov(X,Y) = E[XY] - E[X]*E[Y]$$

Demostración.

$$Cov(X,Y) = E[(X-E(X))*(Y-E(Y))] = E[XY - XE[Y] - YE[X] + E[X]E[Y]]$$

= $E[XY] - E[X]E[Y] - E[Y]E[X] + E[X]E[Y] = E[XY] - E[X]E[Y]$

Nota

Si X e Y son independientes, entonces por el lema anterior, Cov(X,Y) = 0.

Ejemplo.

Sean X e Y dos V.A. del tipo Bernoulli, definidas de la manera siguiente:

X = 1 si A sucede y 0 en caso contrario y

Y = 1 si B sucede y 0 en caso contrario.

Entonces, como la Cov(X,Y) = E[XY] - E[X]E[Y] y XY es "1" solo si ambos simultáneamente son "1" tendremos:

$$Cov(XY) = p(X=1,Y=1) - p_X(X=1)p_Y(Y=1).$$

Luego, podemos concluir que Cov(X,Y) > 0 sii $p(X=1,Y=1) > p_X(X=1)p_Y(Y=1)$, es decir:

$$p(X=1,Y=1)/p_X(X=1) > p_Y(Y=1)$$
 ó $p(Y=1/X=1) > p(y=1)$.

En otras palabras, podemos decir que la covarianza es positiva si el resultado Y=1 se hace más probable sí X=1 y viceversa.

VARIANZA.DE LA SUMA DE V.A.

A continuación presentaremos una expresión útil para la Varianza de la suma de 2 V.A. en función de la Covarianza.

$$VAR(X+Y) =$$

$$E[(X+Y-E(X+Y))^{2}] = E[(X+Y-E(X)-E(Y))^{2}] =$$

$$E[((X-E(X))+(Y-E(Y)))^{2}] =$$

$$E[(X-E(X))^{2} + (Y-E(Y))^{2} + 2(X-E(X))(Y-E(Y))] =$$

$$E[(X-E(X))^{2}] + E[(Y-E(Y))^{2}] + 2E[(X-E(X))(Y-E(Y))] =$$

$$VAR(X) + VAR(Y) + 2Cov(X,Y).$$

Nota:

Obsérvese que si X y Y son independientes se tendremos que:

$$VAR(X+Y)=VAR(X)+VAR(Y)$$
.

Ejemplo:(Varianza de una V.A. Binomial)

Sean X_i (i=1,..n) V.A. del tipo Bernoulli independientes

y sea
$$X = X_1 + X_2 + ... + X_n$$
 entonces:

$$VAR(X) = \dot{\mathbf{a}}_n VAR(X_i)$$
 y como $VAR(X_i) = E(X_i^2) - (E(X_i))^2 = E(X_i) - (E(X_i))^2 = p - p^2$, entonces, $VAR(X) = np(1-p)$.

Caso generalizado.

$$VAR(\dot{\boldsymbol{a}}_{n}X_{i}) = \dot{\boldsymbol{a}}_{n}VAR(X_{i}) + \dot{\boldsymbol{a}}\dot{\boldsymbol{a}}_{i < j}Cov(X_{i}X_{j})$$

7.4.2 CORRELACIÓN

Como se habrá notado la definición de Covarianza entre 2 V.As. depende de la unidad en que son medidas y en consecuencia la Covarianza de dos V.A. en metros y en kilómetros varía demasiado y por ello es difícil usarlas como medida de dependencia. Igualmente pasa si intentamos comparar la dependencia de una V.A. X respecto a otras dos V.A.s Y y Z. Para evitar este inconveniente aparece un nuevo concepto independiente de la unidad de medida que nos permite disponer de un indicador del grado de dependencia entre dos variables.

Definición

Se llama Coeficiente de Correlación entre dos V.A.s, al cociente:

$$r = \frac{Cov(X, Y)}{s(X)s(Y)}, \quad con s(X), s(Y) \neq 0$$

A continuación se va a mostrar que ρ está en el intervalo [-1,1]. Considerando,

$$VAR(aX+bY) =$$

$$E[(\mathbf{a}(X - E[X]) + \mathbf{b}(Y - E[Y]))^{2}] = \mathbf{a}^{2} VAR[X] + \mathbf{b}^{2} VAR[Y] + 2\mathbf{a}\mathbf{b}Cov(XY) \ge 0$$

Por ser la esperanza matemática de un cuadrado, esta expresión es siempre positiva y por lo tanto, con:

$$a = \frac{1}{\mathbf{s}(X)}, \quad b = \frac{1}{2} \frac{1}{\mathbf{s}(y)}$$

luego,

$$\frac{VAR[X]}{\mathbf{s}^{2}(X)} + \frac{VAR[Y]}{\mathbf{s}^{2}(Y)} + \frac{2Cov(X,Y)}{\mathbf{s}(X)\mathbf{s}(Y)} \ge 0$$

de donde:

a) $-1 \le \rho \le 1$

b) Si $\rho = \pm 1$, existen valores $\mathbf{a} = \mathbf{a}_0$, $\mathbf{b} = \mathbf{b}_0$ (no ambos nulos), para los cuales

 $E[(\mathbf{a}_0(X-E[X]) + \mathbf{b}_0(Y-E[Y]))^2] = 0$, lo que exige que:

$$\mathbf{a}_0(X-E[X]) + \mathbf{b}_0(Y-E[Y]) = 0$$

Esta igualdad significa que los únicos pares de valores x_i , y_j de las variables X,Y que tienen probabilidad distinta de cero de ocurrir, son los que verifican $\mathbf{a}_0(x_i-E[X]) + \mathbf{b}_0(y_j-E[Y]) = 0$, es decir, los pares (x_i, y_j) son coordenadas de puntos pertenecientes a la recta de la ecuación anterior. Esto implica que entre X e Y hay una correspondencia funcional lineal, lo cual se puede formular en el siguiente lema.

Lema

El coeficiente de correlación es un numero real ρ comprendido entre -1 y +1, tal que $\rho=\pm 1$ implica que entre X e Y hay una dependencia funcional lineal.

Nota: Si X e Y son independientes, hemos visto que Cov(X,Y) = 0, entonces $\rho = 0$. Sin embargo esta condición necesaria no es suficiente para la independencia de las variables X e Y. Esto ultimo será mostrado en el siguiente ejemplo.

Ejemplo. Sea U la V.A. del número de un dado lanzado al azar, y sea V la variable análoga para un segundo dado, independiente del primero.

Consideremos la variable X = U+V e Y = U-V.

Tendremos que: $E[X.Y] = E[U^2-V^2] = E[U^2] - E[V^2] = 0$. Por otra parte, también es E[Y]=E[U]-E[V]=0 Por consiguiente, la Cov(X,Y)=0, de donde $\mathbf{r}=0$. Sin embargo, X e Y no son independientes, pues ellas toman valores pares o impares a la vez.

7.4.3 REGRESION (Extra Cursus)

Sean X e Y dos V.As., entonces para cada valor de X, por ejemplo $X=x_i$, la esperanza de Y, como hemos visto anteriormente, es un cierto valor:

$$y_i = E[Y / X = x_i] = \sum_j y_j f_{X/Y}(y_j / x_i)$$

$$f_{X/Y}(y_j/x_i) = \frac{f(x_i, y_j)}{f_X(x_i)}$$

donde:

Se tiene así una función y' cuyo dominio es el conjunto de valores de X, se llama la **regresión** de Y sobre X.

Si se trata de aproximar esta función mediante una expresión lineal y=ax+b, se utiliza para ello el método de mínimos cuadrados, que consiste en determinar las constantes a y b de manera que la esperanza de la diferencia de los valores de y' y la recta ax+b, es decir:

$$E[] = \sum_{i} (\sum_{j} y_{i} f_{X/Y}(y_{j}/x_{i}) - ax_{i} - b)^{2} f_{X}(x_{i})$$

sea mínima. Para determinar los valores de a y b que hacen mínimo E[], deben ser nulas las derivadas parciales de esta expresión respecto de a y b, y teniendo en cuenta las ecuaciones de que la suma de las probabilidades f(xi,yj) sobre todo su dominio es igual a 1, se puede concluir que:

$$E[Y] - b - aE[X] = 0$$
, $E[X.Y] - bE[X] - aE[X^2] = 0$

donde, aplicando la expresión de la Cov(X,Y) en función de las esperanzas de X, Y y X.Y se obtiene finalmente que:

$$a = Cov(X,Y) / VAR[X]$$
 y $b = E[Y] - (Cov(X,Y) / VAR[X])*E[X]$

Estos son los coeficientes de la llamada **recta de regresión de Y sobre X**. El coeficiente a se le conoce como el **coeficiente de regresión**.