الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2009

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات + تقني رياضي

المدة: 04 ساعات ونصف

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (03) نقاط)

لغرض متابعة تطور التحول الكيميائي بين حمض الايثانويك CH_3COOH والايثانول $n_0(mol)$ و $n_0(mol)$ من الحمض و $n_0(mol)$ من الحمض و $n_0(mol)$ من الحمول السابقين بنمذج التحول الحادث بالتفاعل ذي المعادلة :

 $CH_3COOH_{(l)} + C_2H_3OH_{(l)} = CH_3COOC_2H_{5(l)} + H_2O_{(l)}$

عايرنا عند درجة حرارة ثابتة وفي لحظات زمنية متعاقبة محتوى الأنابيب الواحد تلو الآخر من أجل معرفة كمية مادة الحمض المتبقي (n) بواسطة محلول هيدروكسيد الصوديوم ($Na^+ + OH^-$). سمحت هذه العملية بالحصول على جدول القياسات التالى :

t(h)	0	1	2	3	4	5	6	7
n(mol)	1,00	0,61	0,45	0,39	0,35	0,34	0,33	0,33
n'(mol)								

أنجز جدو لا لتقدم التفاعل و احسب التقدم الأعظمي x_{max}.

-2استنتج العلاقة التي تعطى كمية مادة الاستر المتشكل (n) بدلالة كمية مادة الحمض المتبقي (n).

-3 أكمل الجدول أعلاه ، و باختيار سلم مناسب أرسم المنحنى الذي يمثل تغيرات كمية مادة الأستر المتشكل بدلالة الزمن n'=f(t) .

4-أحسب قيمة سرعة التفاعل عند اللحظة t=3h .كيف تتطور سرعة التفاعل مع الزمن؟علل.

5 احسب النسبة النهائية للتقدم (τ_r) وماذا تستنتج ?

التمرين الثاني: (03 نقاط)

نربط على التسلسل العناصر الكهربائية التالية:

- مولد ذي تونر ثابت (E = 12V)
- وشیعة ذاتیتها (L=300mH) ومقاومتها ($r=10\Omega$).
 - افل أومي مقاومته (R = 110Ω).
 - قاطعة (م).(الشكل-1-)

(k) غلق اللحظة ((k) نخلق القاطعة ((k)

أوجد المعادلة التفاضلية التي تعطى شدة التيار الكهربائي في الدارة .

 I_0 كيف يكون سلوك الوشيعة في النظام الدائم ؟ وما هي عندئذ عبارة شدة التيار الكهربائي I_0 الذي يجتاز الدارة ؟

-1-اعتبار العلاقة $i=A\left(1-e^{-rac{t}{\tau}}
ight)$ حلا للمعادلة التفاضلية المطلوبة في السؤال -3

أوجد العبارة الحرفية لكل من A و ع.

ب/ استنتج عبارة التوتر الكهربائي u_{BC} بين طرفي الوشيعة.

4.أ /أحسب قيمة التوتر الكهربائي $u_{\rm sc}$ في النظام الدائم .

 $u_{sc} = f(t)$ البيان سكل الميان بـ/ارسم كيفيا

التمرين الثالث: (03 نقاط)

بتكون نواس مرن من جسم صلب نقطي (S) كتلته m = 250g = m يمكنه الحركة على مستو أفقي، ومن نابض حلقاته غير متلاصقة، كتلته مهملة، $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ الشكل المقابل) k = 25N/m

عند التوازن يكون (S) عند النقطة 0 (مبدأ الفواصل للمحور (xx).

نزيح الجسم (S) عن وضع توازنه بمقدار $X_{max} = 2cm$ ، في اتجاه $X_{max} = 2cm$ ابتدائية في اللحظة (S = 1).

1/ بفرض الاحتكاكات مهملة:

أ / مَثَّلُ القوى المؤثرة على الجسم (8) في لحظة كيفية (1).

ب/ بتطبيق القانون الثاني لنيوتن أوجد المعادلة التفاضلية للحركة.

x = f(t) الدور الذاتي T_0 للجملة المهتزة ثم أكتب المعادلة الزمنية للحركة T_0

2/ في الحقيقة الاحتكاكات غير مهملة، حيث يخضع (S) اثناء حركته لقوة احتكاك فتصبح المعادلة

 $\frac{d^2x}{dt^2} + \alpha \frac{dx}{dt} + \lambda x = 0$: التفاضلية للحركة من الشكل التفاضلية الحركة المتحددة المتحدد المتحدد المتحدد المتحددة المتحدد المتحددة المتحددة المتحددة المتحددة المتحددة المتحددة ال

نَاقِشَ حسب قيم قوة الاحتكاك النظام الذي تكون عليه حركة (S)، ثم مثل عندئذ تغيرات الفاصلة ع بدلالة الزمن الموافق لكل حالة.

التمرين الرابع: (04) نقاط)

قام لاعب في مقابلة لكرة السلة ، بتسديد الكرة نحو السلة من نقطة A منطبقة على مركز الكرة الموجود على ارتفاع $h_0=2.10m$ من سطح الأرض بسرعة ابتدائية $(V_0=8m\,s^{-1})$ يصنع حاملها الموجود على ارتفاع $(x_c=4.50m, z_c)$ من الأفق ، ليمر مركز الكرة G بمركز السلة C الذي إحداثيياه: $(x_c=4.50m, z_c)$ الذي المعلم الأرضى $(\overline{ox}, \overline{oz})$ الذي نعتبره غاليليا.

الكرة مركز عطالة الكرة في المعلم $(\overline{ox}, \overline{oz})$ معتبرا مبدأ الأزمنة لحظة تسديد الكرة وإهمال تأثير الهواء.

 v_0 v_0

2/أحسب (z_e) . (z_e) .

التمرين الخامس: (04 نقاط)

lpha إن نواة الراديوم $lpha^{226}Ra$ مشعة وتصدر جسيما

1/ماذا تمثل الأرقام 226 و 88 بالنسبة للنواة Ra ؟ عمد المرافع المرقام 226 عمد المرافع المرقام الأرقام

النواة الابن $^2_{z}X$ من بين الانوية التالية مستنتجا النواة الابن $^2_{z}X$ من بين الانوية التالية $^2_{88}Ra$ مستنتجا النواة الابن $^2_{z}X$ من بين الانوية التالية $^2_{89}Ac$, $^2_{80}Rn$, $^2_{82}Pb$, $^2_{83}Bi$

 $\lambda_{88}^{226}Ra$ استنتج زمن نصف حياة الراديوم المشع $10^{-11} s^{-1}$ استنتج زمن نصف حياة الراديوم $10^{-226}Ra$ عند اللحظة $10^{-21} s$ ولتكن $10^{-21} s$ العينة العينة عند اللحظة $10^{-21} s$ ولتكن $10^{-21} s$ العينة عند اللحظة $10^{-21} s$ ولتكن $10^{-21} s$ العينة عند اللحظة $10^{-21} s$ ولتكن $10^{-21} s$ العينة عند اللحظة $10^{-21} s$

أ عرف زمن نصف الحياة $\frac{1}{2}$. أوجد العلاقة بين عدد الانوية N وكتلة العينة في اللحظة 1 ثم اكمل الجدول التالي :

t	t_0	t _{1/2}	21/2	3t 1/2	41/2	5t _{1/2}
m (mg)		-				

ب/ ما هي كتلة العينة المتفككة عند اللحظة f=5 (حيث τ تابت الزمن) ؟ ماذا تستنتج ؟ f=0 أرسم البيان : f(t)

التمرين التجريبي : (03 نقاط)

يُحقَظُ الماء الاكسجيني (محلول لبروكسيد الهيدروجين $(H_2O_2(aq))$ في قارورات خاصة بسبب تفكك الذاتي البطيء . تحمل الورقة الملصقة على قارورته في المختبر الكتابة ماء اكسجيني (10V)، وتعني أن (1L)من الماء الاكسجيني بنتج بعد تفككه 10L من غاز ثنائي الأكسجين فسي السشرطي النظاميين حيث الحجم المولي $V_m = 22.4 \ L.mol^{-1}$

الذاتي المعادلة الكيميائية التالية: -1 ينمذج التفكك الذاتي الماء الاكسجيني بالتفاعل ذي المعادلة الكيميائية التالية: $2H_2O_{2(m)}=2H_2O_{(l)}+O_{2(g)}$

 $C=0.893\ mol \times L^{+}$: هو التركيز المولى المجمى الماء الاكسجيني هو أ- بين أن التركيز المولى

 V_1 نضع في حوجلة حجما V_2 من الماء الاكسجيني و نكمل الحجم بالماء المقطر إلى V_2

- كيف تسمى هذه العملية ؟
- $C_1 = 0.1 mol \times L^{-1}$ استنتج الحجم الما أن المحلول الناتج تركيزه المولى •
- -2 المحلول الممدد بواسطة محلول -2 المحلول الممدد بواسطة محلول -2 المحلول الممدد بواسطة محلول برمنغنات البوتاسيوم $(K_{(qq)}^+ + MnO_{4(qq)}^-)$ المحمض ، تركيزه المولي -2 فكان الحجم المضاف عند التكافؤ -38mL
- أ- اكتب معادلة التفاعل أكسدة إرجاع المنمذج لتحول المعايرة علما أن الثنائيتين الداخلتين في التفاعل هما: $\left(O_{2(s)}/H_2O_{2(t)}\right)$ و $\left(O_{2(s)}/Mn_{(ap)}^{2+}\right)$ و $\left(O_{2(s)}/H_2O_{2(t)}\right)$.
- ب- استنتج التركيز المولي الحجمي لمحلول الماء الاكسجيني الابتدائي وهل تتوافق هذه النتيجة التجريبية مع ما كتب على ملصوقة القارورة؟

الموضوع المثاتي

التمرين الأول (03 نقاط)

ينمذج التحول الكيميائي الذي يتحكم في تشغيل عمود بالتفاعل ذي المعادلة:

 $Al_{(s)} + 3Ag_{(\alpha)}^{+} = Al_{(\alpha\alpha)}^{3+} + 3Ag_{(s)}$

يُثْتِحُ العمود عند اشتغاله تيارا كهربائيا شدته ثابتة 40mA = 1 خلال مدة زمنية $\Delta t = 300min$ ويحدث عندها تناقص في التركيز المولى لشوارد +Ag.

1/ حدد قطبي العمود ؟ برر إجابتك.

2/ مثل بالرسم هذا العمود مبينا عليه اتجاه التيار الكهربائي واتجاه حركة الإلكترونات.

3/ اكتب المعادلتين النصفيتين عند المسريين.

4/ احسب كمية الكهرباء التي ينتجها العمود خلال 300 min من التشغيل.

 $\Delta t = 300min$ بالاستعانة بجدول تقدم التفاعل وبعد مدة زمنية $\Delta t = 300min$ من الاشتغال:

أ عين الثقدم x .

ب/ أحسب النقصان $(\Delta m_{(n)})$ في كتلة مسرى الألمنيوم.

-1F = 96500C ، $M_{Al} = 27g \, .mol^{-1}$: پعطی

<u>التعرين الثاتي :</u> (03 نقاط)

ينتمى القمر الاصطناعي جيوف أ (Giove - A) إلى برنامج غاليليو الأوروبي لتحديد الموقع المكمل المريكي GPS. نعتبر القمر الاصطناعي جيوف أ (Giove-A)ذي الكتلة GPS. نعتبر القمر الاصطناعي جيوف أ ونفترض أنه بخضع إلى قوة جذب الأرض فقط.

بدور القمر (Giove-A)بسرعة ثابثة في مدار دائري مركزه (Giove-A) بدور القمر (Giove-A) سطح الارض.

1/ في أي مرجع تتم دراسة حركة هذا القمر الاصطناعي ؟ و ما هي الفرضية المتعلقة بهذا المرجع والتي تسمح بتطبيق القانون الثاني لنيوتن ؟

/2 أوجد عبارة تسارع القمر (Giove - A) و عين قيمته.

داره. (Giove -A) على مداره.

4/ عرف الدور T ثم عين قيمته بالنسبة للقمر (Giove -A).

أرض). (Giove -A) أرض)، أرض).

 $G = 6,67 \times 10^{-11} SI$ last Height in the state of the

 $R_r = 6.38 \times 10^3 km$ نصف قطر الأرض

 $M_{\pi} = 5.98 \times 10^{24} \, Kg$ كثلة الأرض

التمرين الثالث: (04 نقاط)

نحقق التركيب الكهربائي التجريبي المبين في الشكل المقابل باستعمال التجهيز:

- مكثقة سعتها (C) غير مشحونة .
- ناقلین او میین مقاو متبهما $(R = R' = 470\Omega)$.
 - (E) مولد ذي توتر ثابت
 - بادلة (k) ، اسلاك توصيل .

 u_R , u_c الشكل جهة التيار الكهربائي المار في الدارة ثم مثل بالأسهم التوترين u_R . u_R بين على الشكل جهة التيار الكهربائي المار في الدارة ثم مثل بالأسهم التوترين u_R و u_C عن u_C عن u_C عن u_C بدلالة شحنة المكتفة u_R عن u_C ثم أوجد المعادلة التفاضلية التي تحققه الشحنة u_C عن u_C ع

 \mathbb{I}^{C}

 $-q(t) = A(1-e^{-\alpha t})$: قبل هذه المعادلة التفاضلية حلا من الشكل المعادلة التفاضلية علا من الشكل المعادلة المعادلة التفاضلية علا من المعادلة الم

E : R : C عبر عن $A : \alpha : A$

د / اذا كانت قيمة التوتر الكهربائي عند نهاية الشحن بين طرفي المكثفة (5V)، استنتج قيمة (E). هـ / عندما تشحن المكثفة كليا تخزن طاقة ($E_c = 5mJ$). استنتج سعة المكثفة (C).

2/ نجعل البادلة الان عند الوضع (2):

أ/ماذا يحدث للمكثفة ؟

(k) قارن بين قيمتي ثابت الزمن الموافق للوضعين (1) ثم (2) للبادلة

التعرين الرابع: (03 نقاط)

إن نواة البولونيوم P_0 مشعة فتتحول إلى نواة الرصاص P_0 وتصدر جسيما.

. اكتب معادلة التفاعل المنمذج لتفكك نواة البولونيوم P_0 ، حدد طبيعة الجسيم الصادر -1

 $m_0 = 10^{-5}g$ المحتواة في عينة من البولونيوم P_0 كتلتها N_0 المحتواة في عينة من البولونيوم

N في العينة المتبقية N في العينة المتبقية N في العينة المتبقية N في العينة الميافة والمدونة في الحدول التالي :

					ر س	چ	
t(jours)	0	40	80	120	160	200	240
$\frac{N}{N_o}$	1,00	0,82	0,67	0,55	0,45	0,37	0,30

 $-l \, \mathbf{n} \frac{N}{N_0} = f(t)$: بدلالة الزمن بعطي تغير ات $\left(-ln \frac{N}{N_0}\right)$ بدلالة الزمن الذي يعطي تغير ات

$$-\ln\frac{N}{N_o}$$
: 1 cm \rightarrow 0,2 , t : 1 cm \rightarrow 40 j

 $-2^{10}Po$ برا استنتج من البيان ثابت التفكك λ ، و زمن نصف حياة البولونيوم

 $P(m_0)$ جــ/ ما هو الزمن اللازم لكي تصبح كتلة العينة تساوي $\frac{1}{100}$ من قيمتها الابتدائية M(Po) = 210g/mol ، $N_A = 6.023 \times 10^{23} mol^{-1}$ يعطى ثابت الحو غار دو M(Po) = 210g/mol ،

التمرين الخامس: (04 نقاط)

يتشكل نواس مرن أفقي من جسم نقطي (S) كتلته (m) ، مثبت إلى نابض مهمل الكتلة، حلقاته غير متلاصقة، ثابت مرونته ($K=20N\ m^{-1}$). يمكن ألله (S) المحركة دون احتكاك على مستو أفقي مزود بمحور \overline{xx} مبدأه (S) ينطبق على وضع توازن (S). الشكل \overline{xx} مبدأه (S) ينطبق على وضع توازن (S). الشكل \overline{xx}

نزيح (S) عن وضع توازنه في الاتجاه الموجب بمقدار X، ثم نتركه لحاله دون سرعة ابتدائية. سمحت دراسة تجريبية بتسجيل حركة (S)، والحصول على مخطط السرعة (S) = V الموضح بالشكل S— أرتحت أي شرط يمكن اعتبار المرجع الأرضى

غاليليا بتقريب جيد ؟

/2 بتطبيق القانون الثاني لنيوتن أوجد المعادلة التفاضلية للحركة.

3/ بالاعتماد على البيان عين:

الدور الذاتي T_0 للجملة المهتزة ، النبض الذاتي m_0 ، سعة الاهتزاز M_0 ، الكتلة M_0

x = f(t) (S) غركة الزمنية المعادلة الزمنية لمركة المعادلة الزمنية المعادلة المعا

4/ أثبت أن طاقة الجملة محفوظة (ثابتة) . احسب قيمتها.

التمرين التجريبي: (03 نقاط)

إن احتراق وقود السيارات ينتج غاز SO_2 الملوث للجو من جهة والمسبب للأمطار الحامضية من جهة أخرى .

1/ اكتب معادلة النفاعل المنمذج للمعايرة علما أن الثنائيتين الداخلتين في النفاعل هما:

 $(MnO_{4(\alpha q)}^{-}/Mn_{(\alpha q)}^{2+})$, $(SO_{4(\alpha q)}^{2-}/SO_{2(\alpha q)})$

2/ كيف تكشف تجريبياعن حدوث التكافؤ؟

 $V_{E} = 9.5 \, mL$ فأ كان حجم محلول برمنغنات البوتاسيوم $(K_{eq}^{+} + MnO_{4eq}^{-})$ المضاف عند التكافؤ (C) للمحلول المُعَايَر".

4/ عين التركيز الكتلي لغاز SO_2 المتواجد في الهواء المدروس.

5/ إذا كانت المنظمة العالمية للصحة تشترط أن لا يتعدى تركيز SO_2 في الهواء $250\mu g.m^{-3}$ ، هل الهواء المدروس ملوث ؟ برر.

 $M\left(S\right)=32\,g\times mol^{-1}$, $M\left(O\right)=16\,g\times mol^{-1}$: يعطى