Analysis of Algorithms: Growth of functions and Time Complexity

Maunendra Sankar Desarkar IIT Hyderabad

CS1353: Introduction to Data Structures

Acknowledgements

- Slides adapted from lectures on same topic by
 - Dr. Zahoor Jan
 - Dr. Jeyakesavan Veerasamy
 - Jeremy Johnson

Other bounds

- Lower bound
 - Omega Notation $f(n) = \Omega(g(n))$
- Tight bound
 - -Theta notation: $f(n) = \Theta(g(n))$

Strict bounds: small-o and small-omega

- Small-o
 - Strict upper bound

- Small-omega
 - Strict lower bound

- Small-o and Big-O are not same
- Similarly, Small-omega and Big-omega are not same

Recursion

- Calling a function from itself
 - Finding n^4
 - Finding binary representation of a positive integer
 - Sum of array elements
 - Finding minimum in an array
 - Linear search
 - Binary search

Example #1: Finding Sum

```
int sum(int a[], n) {
  if (n==1) {
    return a[0];
  else
    return (sum(a, n-1)+ a[n-1]);
}
```

Example #2: Finding max

```
int max(int a[], n) {
if (n==1) {
  return a[0];
else {
  int m = max(a, n-1);
  return (m>a[n-1)? m, a[n-1]));
```

Example #3: Linear Search

Write linear search as a recursive routine.

Example #4: Binary Search

• Write binary search as a recursive routine.

Example #5: Towers of Hanoi

- There are three towers
- 64 gold disks, with decreasing sizes, placed on the first tower
- You need to move all of the disks from the first tower to the last tower
- Restrictions:
 - Larger disks can not be placed on top of smaller disks
 - The third tower can be used to temporarily hold disks

Recursive Solution

Recursive algorithm

```
// ...
void Move(int n, char src, char dest, char aux)
  if (n > 1)
    Move(n-1, src, aux, dest);
    Move(1, src, dest, aux);
    Move(n-1, aux, dest, src);
  else
    cout << "Move the top disk from "</pre>
         << src << " to " << dest << endl;
```

Testing

The Hanoi Towers

Enter how many disks: 1
Move the top disk from A to B

Testing (Ct'd)

The Hanoi Towers

```
Enter how many disks: 2
Move the top disk from A to C
Move the top disk from A to B
Move the top disk from C to B
```

Testing (Ct'd)

The Hanoi Towers

```
Enter how many disks: 3

Move the top disk from A to B

Move the top disk from A to C

Move the top disk from B to C

Move the top disk from A to B

Move the top disk from C to A

Move the top disk from C to B

Move the top disk from A to B
```

Testing (Ct'd)

The Hanoi Towers

```
Enter how many disks: 4
move a disk from needle A to needle B
move a disk from needle C to needle B
move a disk from needle A to needle C
move a disk from needle B to needle A
move a disk from needle B to needle C
move a disk from needle A to needle C
move a disk from needle A to needle B
move a disk from needle C to needle B
move a disk from needle C to needle A
move a disk from needle B to needle A
move a disk from needle C to needle B
move a disk from needle A to needle C
move a disk from needle A to needle B
move a disk from needle C to needle B
```

Analysis

Let's see how many moves" it takes to solve this problem, as a function of *n*, the number of disks to be moved.

<u>n</u>	Number of disk-moves required
1	1
2	3
3	7
4	15
5	31
•••	
i	2 ⁱ -1
64	2 ⁶⁴ -1 (a big number)

How big?

Suppose that our computer and "super-printer" can generate and print 1,048,576 (2²⁰) instructions/second.

How long will it take to <u>print</u> the priest's instructions?

- There are 2⁶⁴ instructions to print.
 - Then it will take $2^{64}/2^{20} = 2^{44}$ seconds to print them.
- 1 minute == 60 seconds.
 - Let's take $64 = 2^6$ as an approximation of 60.
 - Then it will take $\cong 2^{44} / 2^6 = 2^{38}$ minutes to print them.

Hmm. 2³⁸ minutes is hard to grasp. Let's keep going...

- 1 hour == 60 minutes.
 - Let's take $64 = 2^6$ as an approximation of 60.
 - Then it will take $\cong 2^{38} / 2^6 = 2^{32}$ hours to print them.
- 1 day == 24 hours.
 - Let's take $32 = 2^5$ as an approximation of 24.
 - Then it will take $\cong 2^{32} / 2^5 = 2^{27}$ days to print them.

Hmm. 2²⁷ days is hard to grasp. Let's keep going...

- 1 year == 365 days.
 - Let's take $512 = 2^9$ as an approximation of 365.
 - Then it will take $\cong 2^{27} / 2^9 = 2^{18}$ years to print them.
- 1 century == 100 years.
 - Let's take $128 = 2^7$ as an approximation of 100.
 - Then it will take $\cong 2^{18} / 2^7 = 2^{11}$ centuries to print them.

Hmm. 2¹¹ centuries is hard to grasp. Let's keep going...

- 1 millenium == 10 centuries.
 - Let's take $16 = 2^4$ as an approximation of 10.
 - Then it will take $\cong 2^{11} / 2^4 = 2^7 = 128$ millenia just to print the instructions (assuming our computer doesn't crash, in which case we have to start all over again).

Hanoi Towers: time complexity

- Number of moves: M(n)
 - Parameterizing by n as time depends on the number of disks
- If each move takes a constant time, then time taken by the algorithm is T(n) = M(n)
- T(n) = 2T(n-1) + 1
- T(1) = 1
- Solution: $T(n) = 2^n 1$