Common Useful Formulas & Identities

1 List of physical constants

Physical Constant Speed of light Planck's constant Standard gravity Elementary charge Electron mass Proton mass Universal gravitational	$\begin{array}{c} c \\ c \\ h \\ g \text{ or } g_0 \\ e \\ m_e \\ m_p \end{array}$	$\begin{array}{l} \textbf{Precise value} \\ 299,792,458\text{m/s} \\ 6.62607015\times10^{-34}\text{J}\cdot\text{Hz} \\ 9.80665\text{m/s}^2 \\ 1.602176634\times10^{-19}\text{C} \\ 9.1093837139\times10^{-31}\text{kg} \\ 1.67262192595\times10^{-27}\text{kg} \end{array}$	Rounded value $3 \times 10^8 \mathrm{m/s}$ 6.63×10^{-34} $9.81 \mathrm{m/s}^2$ $1.60 \times 10^{-19} \mathrm{C}$ $9.11 \times 10^{-31} \mathrm{kg}$ $1.67 \times 10^{-27} \mathrm{kg}$
constant Vacuum permittivity	G	$6.67430 \times 10^{-11} \mathrm{m^3kg^{-1}s^{-2}}$	$6.67 \times 10^{-11} \mathrm{m^3kg^{-1}s^{-2}}$
(electric constant) Vacuum permeability	ε_0	$8.8541878188 \times 10^{-12}\mathrm{C^2kg^{-1}m^{-3}s^2}$	$8.85\!\times\!10^{-12}\mathrm{C^2kg^{-1}m^{-3}s^2}$
(magnetic constant) Avogadro's number Ideal gas constant Boltzmann constant	$egin{array}{l} \mu_0 \ N_A \ R \ k_B \end{array}$	$\begin{array}{c} 1.25663706127\times 10^{-6}\mathrm{N\cdot A^{-2}} \\ 6.02214076\times 10^{23}\mathrm{mol^{-1}} \\ 8.31446261815324\mathrm{J\cdot K^{-1}\cdot mol^{-1}} \\ 1.380649\times 10^{-23}\mathrm{J\cdot K^{-1}} \end{array}$	$\begin{aligned} &1.26\times 10^{-6}\mathrm{N\cdot A^{-2}}\\ &6.02\times 10^{23}\mathrm{mol^{-1}}\\ &8.31\mathrm{J\cdot K^{-1}\cdot mol^{-1}}\\ &1.38\times 10^{-23}\mathrm{J\cdot K^{-1}}\end{aligned}$

Table 1. Common universal physical constants

2 Vectors & Geometry

- Position vector: $\vec{r} = \langle x, y, z \rangle$
- Basis vectors: $\hat{i}, \hat{j}, \hat{k}$ (also written $\hat{x}, \hat{y}, \hat{z}$)
- Cross product: $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A & A & A \\ B & B & B \end{vmatrix}$ (3D case), $\vec{A} \times \vec{B} = (A_x B_y A_y B_x) \hat{k}$ (2D case), $\vec{A} \times \vec{B} = 0$ when \vec{A} , \vec{B} are **parallel**
- Dot product: $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$, $\vec{A} \cdot \vec{B} = 0$ when \vec{A}, \vec{B} are **perpendicular**
- Cylindrical coordinates: (ρ, ϕ, z) where ρ is distance from z-axis, ϕ is rotation around z-axis and z is elevation.

Conversions to Cartesian: $x = \rho \cos \phi, y = \rho \sin \phi, z = z$

• Spherical coordinates: (r, θ, ϕ) where r is distance from origin, θ is elevation angle, and ϕ is rotation around the vertical axis (physics convention)

Conversions to Cartesian: $x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \theta$

3 Vector calculus

3.1 Partial derivatives

• Scalar-valued functions: $f(\vec{r}) = f(x, y, z)$

- Vector-valued functions: $\vec{F}(\vec{r}) = \vec{F}(x, y, z)$
- Chain rule for operators: $\frac{\partial}{\partial s} = \frac{\partial x}{\partial s} \frac{\partial}{\partial x}$
- Chain rule for functions given scalar-valued f(v(x,y),w(x,y)):

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} + \frac{\partial f}{\partial w} \frac{\partial w}{\partial x}, \quad \frac{\partial f}{\partial y} = \frac{\partial f}{\partial v} \frac{\partial v}{\partial y} + \frac{\partial f}{\partial w} \frac{\partial w}{\partial y}$$

• General chain rule:
$$\frac{\partial f}{\partial x_i} = \sum_j \frac{\partial f}{\partial x_j} \frac{\partial x_j}{\partial x_i}$$

3.2 Vector differential operators

$$\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$$
 (del operator)

grad
$$f = \nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$$
 (gradient operator)

- in cylindrical coordinates: $\nabla f = \left\langle \frac{\partial f}{\partial \rho}, \frac{1}{\rho} \frac{\partial f}{\partial \phi}, \frac{\partial f}{\partial z} \right\rangle$
- in spherical coordinates: $\nabla f = \left\langle \frac{\partial f}{\partial r}, \frac{1}{r} \frac{\partial f}{\partial \theta}, \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \right\rangle$

$$\operatorname{div} \vec{F} = \nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \text{ (divergence operator)}$$

- in cylindrical coordinates: $\nabla \cdot \vec{F} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho F_{\rho}) + \frac{1}{\rho} \frac{\partial F_{\phi}}{\partial \phi} + \frac{\partial F_{z}}{\partial z}$
- in spherical coordinates: $\nabla \cdot \vec{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_{\theta}) + \frac{1}{r \sin \theta} \frac{\partial F_{\phi}}{\partial \phi}$

$$\operatorname{curl} \vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F & F & F \end{vmatrix} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \hat{i} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \hat{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \hat{k} \text{ (curl operator)}$$

2D case for curl:
$$\nabla \times \vec{F} = \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \hat{k}$$

$$\nabla^2 f = \nabla \cdot (\nabla \, f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \; (\text{scalar Laplacian})$$

- in cylindrical coordinates: $\nabla^2 f = \frac{1}{\rho} \left(\frac{\partial f}{\partial \rho} + \rho \frac{\partial^2 f}{\partial \rho^2} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$
- $\bullet \quad \text{in spherical coordinates: } \nabla^2 f = \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right) f + \frac{1}{r^2 \mathrm{sin}\,\theta} \left[\frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta}\right) f\right] + \frac{1}{r^2 \mathrm{sin}^2\,\theta} \frac{\partial^2 f}{\partial \varphi^2} \right] + \frac{1}{r^2 \mathrm{sin}^2\,\theta} \frac{\partial^2 f}{\partial \varphi^2} + \frac{1}{r^2 \mathrm{sin}^2\,\theta} \frac{\partial^2 f}{\partial$

$$\nabla^2 \vec{F} = \nabla (\nabla \cdot \vec{F}) - \nabla \times (\nabla \times \vec{F}) = \frac{\partial^2 \vec{F}}{\partial x^2} + \frac{\partial^2 \vec{F}}{\partial y^2} + \frac{\partial^2 \vec{F}}{\partial z^2} \text{ (vector Laplacian)}$$

3.3 Vector derivative identities

 $(\vec{F} \cdot \nabla) \phi = \vec{F} \cdot (\nabla \phi)$ for scalar-valued ϕ and vector-valued \vec{F}

 $(\vec{F}\times\nabla)\phi\!=\!\vec{F}\times(\nabla\phi)$ for scalar-valued ϕ and vector-valued \vec{F}

 $\nabla (\phi \varphi) = \phi \nabla \varphi + \varphi \nabla \phi$ for scalar-valued ϕ, φ

 $\nabla \cdot (\phi \vec{F}) = \phi (\nabla \cdot \vec{F}) + (\nabla \phi) \cdot \vec{F}$ for scalar-valued ϕ and vector-valued \vec{F}

 $\nabla\times(\phi\,\vec{F}) = \phi\,(\nabla\times\vec{F}) + (\nabla\phi)\times\vec{F} \text{ for scalar-valued } \phi \text{ and vector-valued } \vec{F}$

 $\nabla \cdot (\nabla \times \vec{F}) \!=\! 0$ for any vector-valued \vec{F}

 $\nabla \times (\nabla \phi) = 0$ for any scalar-valued ϕ

Line integral:
$$\int_C f(\vec{r}) ds = \int f(t) |\vec{r}| dt$$
 (scalar), $\int_C \vec{F} \cdot d\vec{r} = \int \vec{F} \cdot \vec{r}'(t) dt$ (vector)

Area integral: $\iint f dA$

- in Cartesian coordinates: $\iint f dA = \int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x,y) dy dx$
- in cylindrical coordinates: $\iint f dA = \int_{z_1}^{z_2} \int_0^{2\pi} f(\phi, z) \rho d\phi dz$
- in spherical coordinates: $\iint f dA = \int_0^{2\pi} \int_0^\pi f(\theta,\phi) \, r^2 \sin\theta \, d\theta \, d\phi$

Surface (flux) integral: $\iint \vec{F} \cdot d\vec{A}$, $d\vec{A} = \hat{n} dA$

Volume integral: $\iiint f \, dV$

- in Cartesian coordinates: $\iiint f dV = \int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} f(x,y,z) \, dz \, dy \, dx$
- in cylindrical coordinates: $\iiint f \, dV = \int_{z_1}^{z_2} \int_0^{2\pi} \int_0^R f(\rho,\phi,z) \, \rho \, d\rho \, d\phi \, dz$
- in spherical coordinates: $\iiint f\,dV = \int_0^{2\pi} \int_0^\pi \int_0^R f(r,\theta,\phi)\,r^2 \sin\theta\,dr\,d\theta\,d\phi$

Gradient theorem: $\int_{C} \nabla f \cdot d\vec{s} = f(b) - f(a), \oint \nabla f \cdot d\vec{s} = 0$

Stoke's theorem: $\iint_S (\nabla \times \vec{F}) \cdot d\vec{A} = \int_C \vec{F} \cdot d\vec{s}$ where curve C is the boundary of surface S

Note: when \vec{F} is a 2D vector field this is called Green's theorem.

Divergence theorem: $\iiint_V (\nabla \cdot \vec{F}) \cdot dV = \iint_S \vec{F} \cdot d\vec{A}$ where surface S is the boundary of volume V

4 Tensors

Indices: usually either Roman letters (e.g. i, j, k) or Greek letters (e.g. μ, ν, λ),

typically roman letters range from 1 to 3 and roman letters range from 0 to 3

- Basis vectors: written e_i , in Cartesian $e_1 = \hat{x}$, $e_2 = \hat{y}$, $e_3 = \hat{z}$
- Vectors: written V^i , in Cartesian $V^1 = V^x$, $V^2 = V^y$, $V^3 = V^z$
- Dot product: written $\sum_i A_i B^i = A_1 B^1 + A_2 B^2 = A_3 B^3 = A_x B^x + A_y B^y + A_z B^z$

Note: when using the *Einstein summation convention*, we assume a summation sign whenever there is the same letter used in a lower and an upper index. So instead of $\sum_i A_i B^i$ we can just write $A_i B^i$. We will use this convention for the rest of this sheet.

- Metric tensor: g_{ij} which is a square matrix (3×3 for Euclidean space and 4×4 for spacetime)
- Converting between upper and lower indices: $V_i = g^{ij}V_j$ and $V_i = g_{ij}\,V^j$
- Line element: $ds^2 = g_{ij} dx^i dx^j$

Note: in Cartesian coordinates, there is no difference between upper & lower indices

- Gradient: $\partial_i f$ where f is a scalar field
- Divergence: $\partial_i F^i$ where F^i is a vector field
- Laplacian: $\partial^i \partial_i f$ where $\partial^i = g^{ij} \partial_j$. In Cartesian coordinates $\partial^i = \partial_i$.
- Kronecker delta: δ_{ij} , essentially the identity matrix (it is equal to 1 when i=j and 0 otherwise)
- Contraction: $B_i^i = B_1^1 + B_2^2 + B_3^3$ (self-contraction), with another tensor: $A^j B_{ij} = C_i$

5 Electromagnetics

- Poisson's equation: $\nabla^2 V = \rho / \varepsilon_0$
- Maxwell's equations:
 - Gauss's law for electricity: $\nabla \cdot \vec{E} = \rho / \varepsilon_0$
 - Gauss's law for magnetism: $\nabla \cdot \vec{B} = 0$
 - Faraday's law: $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
 - $\circ \quad \text{Maxwell-Ampere law: } \nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$
- Conservation of charge (continuity equation): $\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0$
- Electromagnetic wave equation:
 - $\circ \quad \text{For electric fields: } \frac{\partial^2 \vec{E}}{\partial t^2} \!=\! c^2 \, \nabla^2 \, \vec{E} \!=\! c^2 \! \left(\frac{\partial^2 \vec{E}}{\partial x^2} \!+\! \frac{\partial^2 \vec{E}}{\partial y^2} \!+\! \frac{\partial^2 \vec{E}}{\partial z^2} \right)$

4

$$\circ \quad \text{For magnetic fields: } \frac{\partial^2 \vec{B}}{\partial t^2} \!=\! c^2 \nabla^2 \, \vec{B} \!=\! c^2 \! \left(\frac{\partial^2 \vec{B}}{\partial x^2} \!+\! \frac{\partial^2 \vec{B}}{\partial y^2} \!+\! \frac{\partial^2 \vec{B}}{\partial z^2} \right)$$

- Helmholtz equation: $\nabla^2 \vec{E} = k^2 \vec{E}$, $\nabla^2 \vec{B} = k^2 \vec{B}$ (eigenvalue problem for ∇^2 operator)
- Poynting vector: $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$
- Intensity of EM radiation: $I = |\vec{S}|$ where \vec{S} is Poynting vector
- Electromagnetic energy density: $u = \frac{1}{2} \varepsilon_0 |\vec{E}|^2 + \frac{1}{2\mu_0} |\vec{B}|^2$

6 Quantum physics

6.1 General quantum physics

- Time-dependent Schrödinger equation: $i\frac{\partial}{\partial t}|\Psi\rangle = \hat{H}|\Psi\rangle$ where $\Psi = \Psi(\vec{r},t)$
- Schrödinger equation: $\hat{H}|\psi\rangle = E|\psi\rangle$ where $|\psi\rangle$ is the quantum state. In position space we can also write this as $\hat{H}\psi = E\psi$ with a wavefunction $\psi(x,y,z)$.
- $\vec{\Psi}(\vec{r}) = \sum_i c_i \psi_i e^{-iEt/\hbar}$ relationship between time-dependent and time-independent wavefunctions and $\sum_i |c_i|^2 = 1$
- Classical Hamiltonian: $\hat{H} = \hat{K} + \hat{V} = \frac{2}{2m} \nabla^2 + V(\vec{r})$ where $\vec{V}(\vec{r})$ is the potential energy
- Normalization condition: $\langle \Psi | \Psi \rangle = \int_{-\infty}^{\infty} \Psi(x) \Psi^*(x) dx = 1$
- Expectation (average) value of operator \hat{A} : $\langle \Psi | \hat{A} | \Psi \rangle = \int_{-\infty}^{\infty} \Psi(x) \hat{A} \Psi(x) dx$

6.2 Laser physics

- Time-dependent Hamiltonian: $\hat{H} = \hat{H}_0 + \hat{H}_1(t)$ where \hat{H}_0 is the time-independent Hamiltonian (Hamiltonian at t=0)
- Two-state system with ground state $|1\rangle$ and excited state $|2\rangle$: $|\Psi\rangle = c_1 e^{-i\omega t} |1\rangle + c_2 e^{-i\omega t} |2\rangle$
- Einstein coefficients: $A_{12} = \frac{\omega_{12}^3 e^2}{3\pi\varepsilon h c^3} |\langle 1|\vec{r}|2\rangle|^2$ where $\omega_{12} = \frac{E_1 E_2}{2}$ and $B_{12} = A_{12} \frac{\pi^2 c^3}{\omega_{12}^3}$
- Rate equations: $\frac{dN_2}{dt} = -\frac{dN_1}{dt} = B_{12} \rho(\nu) N_1$ where N_1, N_2 is the population (number of atoms in) each state

7 Orbital mechanics

- Universal gravitation: $\vec{g} = \frac{d^2\vec{r}}{dt^2} = \sum_i \frac{Gm_i}{|\vec{r} \vec{r}_i|} \vec{r} \vec{r}_i$ where r_i is location of a gravitating body
- Poisson's equation for the gravitational potential: $\nabla^2 \phi = 4\pi G \rho$ where ϕ is the gravitational potential

• Gravitational field: $\vec{g} = -\nabla \phi$

• Gauss's law for gravity: $\nabla \cdot \vec{g} = -4\pi G \rho$

• Two-body orbit equation (for small mass m orbiting big(ger) mass M) $r(\theta) = \frac{\ell^2}{m^2 \mu} \frac{1}{1 + e \cos \theta}$ where e is the eccentricity of the orbit, $\mu = G(M + m) \approx GM$, and ℓ is the angular momentum (a conserved quantity)

8 Fluid & heat dynamics

• Stefan-Boltzmann law: $I = \sigma T^4$ where I is the intensity, σ is the Sefan-Boltzmann constant, and T is the absolute temperature in Kelvin

• Planck's law: $\rho(\nu,T) = \frac{8\pi h \nu^3}{c^3} \frac{1}{e^{\left(\frac{h\nu}{k}T - 1\right)}}$

where u is the energy density, $\rho(\nu)$ is the spectral energy density, and T is also the absolute temperature in Kelvin