Final Deliverable

Recommendation System
Through Association Rule
Analysis

Khoa Nguyen, Leah Huynh, Trang Nguyen, Vy Ho, Harry Tan, John Tran

Team Members

Harry TanData Science
& Economics

Lea Huynh Data Science

Khoa NguyenData Science

Vy HoData Science & Statistics

John Tran
Data Science
& Economics

Trang Nguyen
Data Science &
Economics

Introduction

Revolutionize personalized product recommendations through a combination of Clustering and Association Rule Mining techniques.

Introduction

Top picks for you

Aviation Metal & Alloys Pure Titanium Wire 0.50mm x 5M For Medical Uses or High Strength...

★★★☆☆ 13 ₹701.00

Sabine's Notebook: In Which the Extraordinary Correspondence of Griffin & Sabine Continues (Griffin and Sabine)

**** 167

Customers Who Bought This Item Also Bought

<

The Little Schemer - 4th Edition Daniel P. Friedman

常常常常公 64 Paperback

\$36.00 \Prime

Instructor's Manual t/a Structure and Interpretation of Computer Programs...

Gerald Jay Sussman 金金金金金5

Paperback \$28.70 Prime

The Pragmatic Programmer: From Journeyman to Master 3 Andrew Hunt

全全全全 328 Paperback \$32.59 \Prime

Introduction to Algorithms, 3rd Edition (MIT Press) Thomas H. Comen

常常常常了313

#1 Best Seller in Computer

Algorithms Hardcover

\$66.32 Prime

An Introduction to Functional Programming Through Lambda...

Greg Michaelson

常常常常 23

Paperback \$20.70 \Prime

Frequently Bought Together

Total price: \$83.09

Add both to Cart

Add both to List

This item: Structure and Interpretation of Computer Programs - 2nd Edition (MIT Electrical Engineering and... by Harold Abelson Paperback \$50.50

The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt Paperback \$32.59

Objectives

- Using ML algorithms and Data Mining, we identify customer segments to refine product recommendations, elevating the overall shopping experience
- Generated insights benefit Sales Analysts, Marketing Leads, Product Managers, and Business Owners, aiding in achieving goals like sales revenue growth and retention rate improvement
- ML/DMA enables the understanding of customer behavior via unsupervised learning (e.g., K-means clustering, RFM, and MBA) and empowers handling extensive data volumes, crucial for comprehensive data mining techniques in our project

Dataset Overview

Online Retail Transaction

Number of row: 522064

Number of attribute: 7

1. **BillNo:** 6-digit number, transaction identifier

2. **Itemname:** Product name

3. **Quantity:** Units per transaction

4. **Date:** Transaction timestamp

5. **Price:** Product price

6. **CustomerID**: 5-digit number, customer identifier

7. **Country:** Customer's residence

1	BillNo	Itemname	Quantity	Date	Price	CustomerID	Country	
2	536365	WHITE HANGING HEART T-LIGHT HOLDER	6	01.12.2010 08:26	2,55	17850	United Kingdom	
3	536365	WHITE METAL LANTERN	6	01.12.2010 08:26	3,39	17850	United Kingdom	
4	536365	CREAM CUPID HEARTS COAT HANGER	8	01.12.2010 08:26	2,75	17850	United Kingdom	
5	536365	KNITTED UNION FLAG HOT WATER BOTTLE	6	01.12.2010 08:26	3,39	17850	United Kingdom	
6	536365	RED WOOLLY HOTTIE WHITE HEART.	6	01.12.2010 08:26	3,39	17850	United Kingdom	

Source: Kagale

Data Cleaning

- Filter out countries (ie. UK) with too many data points to prevent kernel from crashing
- Handle missing values by dropping rows labeled 'NaN' or null
- Remove purchases that were not successful, or having 'Invoice_No' labeled 'C' for 'Cancellation'
- Correct date/time columns to appropriate date/time type and price columns to float
- Perform string manipulation to fix misspellings and extract Item names

Customer Activity Dashboard

Created an interactive dashboard that summarizes statistics for different users

- 1.) Enter UserID
- 2.) Created 3 views
 - 1. Most purchased items
 - 2. Total amount spent
 - 3. Most recent transaction

Would you like to look at anything else?: Yes

Select which categories to view:

- Most purchased items
- 2. Total amount spent
- 3. Most recent transaction

```
2
You have spent a total of: $5391.21
```

```
/usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: Depre
  and should run async(code)
Enter the your UserID: 17850
Select which categories to view:
 1. Most purchased items
 2. Total amount spent
 Most recent transaction
1
                                        Quantity
            Top 5 most purchased items
                   WHITE METAL LANTERN
                                             122
    WHITE HANGING HEART T-LIGHT HOLDER
                                             122
   KNITTED UNION FLAG HOT WATER BOTTLE
                                             110
        CREAM CUPID HEARTS COAT HANGER
                                             108
             HAND WARMER RED POLKA DOT
                                             108
Would you like to look at anything else?: Yes
Select which categories to view:
 1. Most purchased items
 2. Total amount spent
 3. Most recent transaction
Your most recent transaction was 02.12.2010 15:27.
You bought the following items:
                                 Price
      HAND WARMER RED POLKA DOT
                                  1.85
         HAND WARMER UNION JACK
                                  1.85
Would you like to look at anything else?: No
```

Exploratory Data Analysis

In conclusion, given the wide range of transactions and diverse product categories observed in the dataset, implementing customer segmentation is a strategic move

RFM - Customer Segmentation and K-Mean Clustering Results

Recency Frequency Monetary Theory (RFM)

Recency: Measures how recently a customer made a purchase or interacted with the business.

Frequency: Analyzes how often a customer engages or makes purchases within a specified timeframe

Monetary: Evaluates the total value or monetary contribution of a customer's purchases over a period

Application:

- Use the three factors above to segment customers into tiers or groups depending on their purchase behavior
- This helps businesses improve their marketing strategies, which in turn increases sales revenue and customer loyalty

Recency Frequency Monetary Implementation (RFM)

<u> </u>	<u></u>										
0	Recency int64	Frequency int64	MonetaryValue flo	R category	F category	M category	RFM_Segment obj	RFM_Score int64			
123	326	1	77183.6	1	1	4	1.01.04.0	6			
123	3	182	4310	4	4	4	4.04.04.0	12			
123	19	73	1757.55	3	3	4	3.03.04.0	10			
123	311	17	334.4	1	1	2	1.01.02.0	4			
123	37	85	2506.04	3	3	4	3.03.04.0	10			

Recency: use order_date to count the number of days between hypothetical today and the last transaction

Frequency: count the total BillNo

Monetary: sum of totalPrice

RFM_score: sum of Recency, Frequency, and Monetary

Customer Segmentation

K-Mean Clustering Implementation

Perform K-mean clustering over 'Recency', 'Frequency', 'Monetary Value'

RFM vs K-Mean Clustering

Item-Based Recommendation System

Promoting Sales with an Item-Based Recommendation System

Apriori Algorithm Theory

- ML algorithm that widely used method for association rule mining and mining frequent itemsets in transactional data.
 - Uses an iterative approach to find frequent itemsets based on the "Apriori property."
 - If {Milk, Bread} is a frequent itemset (appearing in at least X transactions), then all its subsets ({Milk} and {Bread}) must also be frequent

Benefits:

- Simplicity and ease of implementation.
 - Efficient pruning technique for reducing computational complexity.
 - Scalability to handle large datasets.
- Widely used in industry & studied in academia.

Recommendation System Implementation

1.) Association Rules Filtering:

 Filters rules based on input items to identify relevant associations. (Lift > 1, Min_support > 0.1)

2.) Lift-Based Sorting:

 Sorts filtered rules by lift in descending order for stronger associations.

3.) Top Recommendations Extraction:

Extracts consequents from rules, representing recommended items.

4.) Diverse Recommendations:

 Ensures a minimum number of recommendations by supplementing with top-ranked items, providing diverse and unique suggestions.

```
# Function to generate association rules from a basket of items
def generate_association_rules(basket, min_support=0.1, metric="lift", min_threshold= 1):
    # Use Apriori algorithm to find frequent itemsets
    frequent itemsets = apriori(basket, min support=min support, use colnames=True)
    # Generate association rules using frequent itemsets
    rules = association rules(frequent itemsets, metric=metric, min threshold=min threshold)
    return rules
# Function to get recommendations based on input items and association rules
def get_recommendations(rules, input_items, num_recommendations=5):
    # Filter association rules based on input items
    filtered rules = rules[rules['antecedents'].apply(lambda x: set(input items).issubset(set(x)))]
    # Sort rules by lift in descending order and extract consequents
    recommended items = filtered rules.sort values(by=['lift'], ascending=False)['consequents'].values
    # Ensure at least 'num recommendations' recommendations
    if len(recommended items) < num recommendations:
        # Get additional items from the top-ranked items (excluding duplicates)
        additional items = rules['consequents'].head(num recommendations - len(recommended items)).values
        recommended_items = np.concatenate([recommended_items, additional_items])
    # Flatten the frozensets and remove duplicates using a list
    flat_items = [item for sublist in recommended_items for item in sublist]
    unique_items = list(set(flat_items))
    # Return the top 'num_recommendations' recommended items
    return unique_items[:num_recommendations]
```

Recommendation System

- Input Tier Preference:
 - Prompt the user to specify their preferred tier (e.g., Tier 1, Tier 2, Tier 3).
 - Example: "Ask user to input the tier (Example
 1)."
- Item Selection by Shopper:
 - Allow the shopper to input a specific item of interest.
 - Example: "Ask shopper to input the item.
 (Example: Alarm Clock Bakelike Green)
- Recommendation Output:
 - Utilize the Apriori algorithm to recommend the top 5 items based on the specified tier and selected item.
 - Provide personalized recommendations tailored through associations and co-occurrences among items purchased together in transactions.

Enter the tier number (1, 2, or 3):

1

Preprocessing....

Enter items (comma-separated):

ALARM CLOCK BAKELIKE GREEN

Top 5 Recommendations for Tier 1 Customers: ['SET OF 3 REGENCY CAKE TINS', 'LUNCH BAG APPLE DESIGN', 'WOODLAND CHARLOTTE BAG', 'PLASTERS IN TIN SPACEBOY', 'RED RETROSPOT MINI CASES']

Marketing Recommendations and Insights

Unveiling Strategic Marketing Recommendations and Customer Insights

Promotional Strategies For Retail Store

- Crafting promotional strategies for each RFM segment
- Implementing cross-selling tactics based on market basket insights
- Integrate Dynamic In-App Recommendations for User based on item purchasing

Business Strategies For Retail Store

- Use Summary Dashboard and Customer Segmentation to derive more insights
- Collaboration with online banking/e-wallet companies for discount and promotion

Potential Ethical Problems

1. Unauthorized Use of Personal Information

2. Invasive Marketing Strategy

3. Data Breaches

4. Unintended Discrimination

Potential Limitations

- 1. Limited demographic data for context analysis.
- 2. Static recommendations, not dynamically adapting to customer interests.
- 3. Difficulty in recommending new or niche products.
- 4. Limited historical data may favor established products.
- → Acquire and integrate additional demographic data for richer context.
- → Collect user feedback to refine recommendations and address biases.
- → Develop algorithms that adapt to changing customer interests over time.

Conclusions 5

Project overview:

- Conducted RFM Analysis for customer insights.
- Developed personalized product recommendat
- Segmented customers into 'Tier 1', 'Tier 2', 'Tier 3'.
- Used RFM quantiles and K-Means clustering.
- Implemented Apriori Algorithm for association re
- Recommends top 5 products per segment.
- Utilizes 'lift' metric for optimization.
- Enhances sales and customer satisfaction.
- Powerful tools for targeted marketing.

Business aspect: The recommendation system can enhance the precision of product recommendations and draw insights from relevant stakeholders like Sales Analysts, Customers, and Business Owners.

Performance Metrics

A/B Testing

 Real users selected at random see the new model, and their behavior is compared to users who saw the old model

Average Order Value (AOV)

AOC should increase if the recommender system provides relevant product

Click-through rate (CTR)

 Higher CTR mean that customers find the recommendations relevant and interesting

Source

- 1. https://www.analyticsvidhya.com/blog/2022/05/market-basket-analysis/
- 2. https://medium.com/nerd-for-tech/market-basket-analysis-1c38613f https://medium.com/nerd-for-tech/market-basket-analysis-1c38613f
- 3. https://stackabuse.com/association-rule-mining-via-apriori-algorithm-in-python/

Thank You For Listening!

