Decision Tree Classifier for Biopsy Prediction

Overview

This repository contains code for training and evaluating a Decision Tree classifier on a biomedical dataset (Dataset 1) to predict the likelihood of biopsy based on features such as 'Age' and 'Smokes (years)'. Additionally, it includes cross-validation metrics and an ROC curve analysis for a comprehensive model evaluation.

Files

- decision_tree_classifier.py: Python script implementing the Decision Tree classifier and visualization for Dataset 1.
- cross_val_metrics.py: Python script performing 5-fold cross-validation and plotting the ROC curve for model evaluation.

Usage

Ensure you have the necessary Python libraries installed (pandas, numpy, scikit-learn, and matplotlib).

Update the data loading logic in both scripts to point to your Dataset 1 (replace pd.read_csv('path_to_dataset1.csv')).

Run decision_tree_classifier.py to train the Decision Tree model and visualize decision boundaries.

Run cross_val_metrics.py to perform cross-validation and generate evaluation metrics along with an ROC curve.

Notes

- Handle non-numeric values and impute missing values with the mean of the column before training the model.
- The visualization script creates a decision boundaries plot showcasing how the model distinguishes between different classes based on selected features.

Decision Tree Classifier for Fetal Health Prediction

Overview

This repository contains code for training and evaluating a Decision Tree classifier on a fetal health dataset (Dataset 2). The implementation includes both cross-validated evaluation metrics and a visualization of decision boundaries for selected features.

Files

- cross_val_metrics.py: Python script performing 5-fold cross-validation and printing cross-validated evaluation metrics.
- decision_boundaries_visualization.py: Python script training a Decision Tree classifier on selected features and visualizing decision boundaries.

Usage

Ensure you have the necessary Python libraries installed (pandas, numpy, scikit-learn, seaborn, and matplotlib).

Update the data loading logic in both scripts to point to your Dataset 2 (replace pd.read_csv('path_to_dataset2.csv')).

Run cross_val_metrics.py to perform cross-validation and print evaluation metrics. Run decision_boundaries_visualization.py to train the Decision Tree model, evaluate accuracy, and visualize decision boundaries.

Notes

- Handle non-numeric values and impute missing values with the mean of the column before training the model.
- The visualization script creates a decision boundaries plot showcasing how the model distinguishes between different classes based on selected features.

Decision Tree Classifier with AUC-ROC Curve and Decision Boundaries Visualization

Introduction

This repository contains code for a Decision Tree classifier implemented on Dataset 2. The classifier employs the One-vs-Rest (OvR) strategy for multiclass classification, and its

performance is evaluated through an AUC-ROC curve for each class. Additionally, the decision boundaries of the model are visualized in a 2D plot.

Code Overview

1. Data Preprocessing

- The dataset (dataset2) is loaded and preprocessed to handle non-numeric values and missing data.
- The target variable fetal_health is binarized for multiclass classification.

2. Train-Test Split

The data is split into training and testing sets.

3. Decision Tree Classification (One vs Rest)

A Decision Tree classifier is trained using the One-vs-Rest strategy.

4. AUC-ROC Curve

 An AUC-ROC curve is plotted for each class, providing insights into the model's discrimination ability.

5. Decision Boundaries Visualization

• The decision boundaries of the trained classifier are visualized in a 2D plot.

6. Debugging Information

- Minimum and maximum feature values are printed for debugging purposes.
- Adjustments are made for better visualization of decision boundaries.

Usage

Ensure the required libraries (e.g., pandas, numpy, sklearn) are installed.

Replace path_to_dataset2.csv with the actual path to your dataset.

Run the code to train the Decision Tree classifier, plot the AUC-ROC curve, and visualize decision boundaries.

Results

- The AUC-ROC curve provides insights into the model's discrimination performance.
- Decision boundaries visualization helps understand how the model separates different classes based on selected features.

Notes

• This code assumes Dataset 2 is formatted appropriately for the task.

XGBoost Classifier with AUC-ROC Curve and Decision Boundaries Visualization

Introduction

This repository contains code for an XGBoost classifier implemented on Dataset 1. The classifier's performance is evaluated through an AUC-ROC curve for each class. Additionally, the decision boundaries of the model are visualized in a 2D plot.

Code Overview

1. Data Preprocessing

- The dataset (dataset1) is loaded and preprocessed to handle non-numeric values and missing data.
- The target variable Biopsy is formatted appropriately for the task.

2. Train-Test Split

The data is split into training and testing sets.

3. XGBoost Classification

• An XGBoost classifier is trained.

4. AUC-ROC Curve

 An AUC-ROC curve is plotted for each class, providing insights into the model's discrimination ability.

5. Decision Boundaries Visualization

The decision boundaries of the trained classifier are visualized in a 2D plot.

6. Debugging Information

- Minimum and maximum feature values are printed for debugging purposes.
- Adjustments are made for better visualization of decision boundaries.

Usage

Ensure the required libraries (e.g., pandas, numpy, xgboost) are installed. Replace path_to_dataset1.csv with the actual path to your dataset. Run the code to train the XGBoost classifier, plot the AUC-ROC curve, and visualize decision boundaries.

Results

- The AUC-ROC curve provides insights into the model's discrimination performance.
- Decision boundaries visualization helps understand how the model separates different classes based on selected features.

Notes

• This code assumes Dataset 1 is formatted appropriately for the task.

Adaboost Classifier

Adaboost Classifier with AUC-ROC Curve and Decision Boundaries Visualization

Introduction

This repository contains code for an Adaboost classifier implemented on Dataset 1. The classifier's performance is evaluated through an AUC-ROC curve for each class. Additionally, the decision boundaries of the model are visualized in a 2D plot.

Code Overview

1. Data Preprocessing

- The dataset (dataset1) is loaded and preprocessed to handle non-numeric values and missing data.
- The target variable Biopsy is formatted appropriately for the task.

2. Train-Test Split

• The data is split into training and testing sets.

3. Adaboost Classification

An Adaboost classifier is trained.

4. AUC-ROC Curve

 An AUC-ROC curve is plotted for each class, providing insights into the model's discrimination ability.

5. Decision Boundaries Visualization

• The decision boundaries of the trained classifier are visualized in a 2D plot.

6. Debugging Information

- Minimum and maximum feature values are printed for debugging purposes.
- Adjustments are made for better visualization of decision boundaries.

Usage

Ensure the required libraries (e.g., pandas, numpy, sklearn) are installed. Replace path_to_dataset1.csv with the actual path to your dataset. Run the code to train the Adaboost classifier, plot the AUC-ROC curve, and visualize decision boundaries.

Results

- The AUC-ROC curve provides insights into the model's discrimination performance.
- Decision boundaries visualization helps understand how the model separates different classes based on selected features.

Notes

This code assumes Dataset 1 is formatted appropriately for the task.