

CLAIMS

- 1 1. A method for selecting a coprocessor from a plurality of coprocessors to process a
- 2 packet of a predetermined size, the method comprising the steps of:
 - 3 determining a cost associated with the packet, the cost representing a load associ-
 - 4 ated with processing the packet;
 - 5 determining an anticipated load for each coprocessor in the plurality of coproces-
 - 6 sors using the cost; and
 - 7 selecting the coprocessor from the plurality of coprocessors based on the antici-
 - 8 pated load.

- 1 2. The method of claim 1 wherein the step of determining a cost further comprising
- 2 the step of:
 - 3 calculating the cost using a rate associated with processing the packet.

- 1 3. The method of claim 2 wherein the rate is stored in a lookup table.

- 1 4. The method of claim 2 wherein the step of calculating the cost further comprising
- 2 the step of:
 - 3 dividing the packet's size by the rate.

- 1 5. The method of claim 2 wherein the step of calculating the cost further comprising
- 2 the step of:
 - 3 multiplying the packet's size by a multiplicative inverse of the rate.

- 1 6. The method of claim 1 wherein the step of determining a cost further comprising
- 2 the step of:
 - 3 applying the packet's size to a lookup table containing one or more cost values to
 - 4 determine the cost.

1 7. The method of claim 1 wherein the step of determining an anticipated load further
2 comprising the step of:

3 adding the cost to a cumulative load associated with each coprocessor in the plu-
4 rality of coprocessors.

1 8. The method of claim 1 wherein the step of selecting the coprocessor further com-
2 prising the step of:

3 selecting the coprocessor from a group of one or more coprocessors whose antici-
4 pated load is a minimum load.

1 9. The method of claim 8 wherein the coprocessor is selected using a scheduling al-
2 gorithm.

1 10. The method of claim 1 wherein the step of selecting the coprocessor further com-
2 prising the step of:

3 determining if a port associated with the packet is congested.

1 11. The method of claim 10 wherein the step of selecting the coprocessor further
2 comprising the step of:

3 selecting the coprocessor from a group of one or more coprocessors whose antici-
4 pated load is not a minimum load.

1 12. The method of claim 10 wherein the step of selecting the coprocessor further
2 comprising the step of:

3 selecting the coprocessor from a group of one or more coprocessors whose antici-
4 pated load is a minimum load.

1 13. The method of claim 1 further comprising the step of:

2 incrementing a cumulative load associated with the selected coprocessor.

1 14. The method of claim 13 wherein the step of incrementing a cumulative load fur-
2 ther comprising the step of:
3 adding the cost to the cumulative load.

1 15. The method of claim 1 further comprising the step of:
2 decrementing a cumulative load associated with the selected coprocessor.

1 16. The method of claim 15 wherein the step of decrementing a cumulative load fur-
2 ther comprising the steps of:
3 subtracting the cost from the cumulative load.

1 17. An apparatus for selecting a coprocessor from a plurality of coprocessors to proc-
2 ess a packet of a predetermined size, the apparatus comprising:
3 a memory containing one or more software routines, including a software routine
4 configured to determine a cost associated with the packet, the cost representing a load
5 associated with processing the packet; and
6 a processor configured to execute the software routines to determine an antici-
7 pated load for each coprocessor in the plurality of coprocessors using the cost and to se-
8 lect the coprocessor from the plurality of coprocessors based on the anticipated load.

1 18. The apparatus of claim 17 further comprising:
2 a data structure;
3 wherein the cost is determined using information contained in the data structure.

1 19. The apparatus of claim 18 wherein the information contained in the data structure
2 includes the cost.

1 20. The apparatus of claim 18 wherein the information contained in the data structure
2 includes a rate the coprocessor can process the packet.

1 21. An intermediate device configured to select a coprocessor from a plurality of co-
2 processors to process a packet of a predetermined size, the intermediate device comprising:
3 ing:

4 means for determining a cost associated with the packet, the cost representing a
5 load associated with processing the packet;

6 means for determining an anticipated load for each coprocessor in the plurality of
7 coprocessors using the cost; and

8 means for selecting the coprocessor based on the anticipated load.

1 22. A computer readable media comprising:

2 the computer readable media containing computer executable instructions for
3 execution in a processor for the practice of the method of claim 1.