### Distance Measures for Quantum Information

Aaryan Gupta and Siddhant Midha

Last updated on August 27, 2022

#### Classical Measures of Distance

We have two different measures of similarity or distance between two probability distributions/states  $\{p_x\}$  and  $\{q_x\}$  over the same index set x. They are -

- **1** Trace Distance  $= D(p_x, q_x) = \frac{1}{2} \sum_x |p_x q_x|$  Properties:
  - It is a metric on probability distributions.
  - $D(p_x, q_x) = \max_S |\sum_{x \in S} p_x \sum_{x \in S} q_x|$  over all subsets S of the index set  $\{x\}$ ,  $\to$  relation to distinguishability.
- ② Fidelity =  $F(p_x, q_x) = \sum_x \sqrt{p_x q_x}$ Properties:
  - It is not a metric but  $\cos^{-1}(F)$  is a metric
  - It can be geometrically interpreted as the inner product between the unit vectors  $\sqrt{\rho_{\scriptscriptstyle X}}$  and  $\sqrt{q_{\scriptscriptstyle X}}$

Note that these are *static* measures of distance between probability distributions.

#### Classical Measures of Distance

Now let us consider a dynamic measure of distance which encapuslates how well information is preserved by a physical process i.e. noise.



Figure 9.2. Given a Markov process  $X \to Y$  we may first make a copy of X,  $\tilde{X}$ , before subjecting X to the noise which turns it into Y.

Suppose you have the state X and you subject it to a Markov process to get Y. A natural measure would be  $P(X \neq Y)$ . Now make a perfectly correlated copy  $\hat{X}$  of X. It turns out trace has an intimate relation with this dynamic measure of distance which is

$$D(X,\hat{X}) = P(X \neq Y)$$

#### Quantum Trace Distance

Define the quantum trace distance between two density operators as

$$D(
ho,\sigma) = \frac{1}{2} Tr(|
ho - \sigma|)$$

where  $|A| = \sqrt{A^T A}$  (positive square root) We have,

- The tuple  $(Dens(\mathcal{H}), D)$  is a metric space.
- For commuting states,

$$D(\rho,\sigma)=D(\lambda_i,\mu_i)$$

### Quantum Trace Distance

Bloch sphere. Let  $\rho \equiv \vec{r}, \sigma \equiv \vec{s}$ . Then,

$$D(\rho,\sigma)=\frac{|\vec{r}-\vec{s}|}{2}$$

- Converts to euclidean distance.
- 4 Hints towards rotation invariance.
- Helpful visualization.

Relation to distinguishability via measurement.

$$D(\rho,\sigma) = \max_{P:P \leq I} tr(P(\rho - \sigma))$$

Proof. Key step,  $\rho - \sigma \rightarrow Q - S$ .

### More properties

#### Quantum Trace distance as an upper bound

Let  $\{E_m\}$  be any POVM, and let  $p_m = Tr(\rho E_m)$  and  $q_m = Tr(\sigma E_m)$ . Then the following holds,

$$D(\rho,\sigma) = max_{E_m}D(p_m,q_m)$$

Proof - Show the inequality, and then show existence.

#### Contractiveness

Suppose  ${\mathcal E}$  is a TP map. Then the following holds

$$D(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \leq D(\rho, \sigma) \forall \rho, \sigma$$

Proof - Along similar lines, use the previous properties. Corollary:

$$D(\rho_A, \sigma_A) \leq D(\rho_{AB}, \sigma_{AB})$$

## Quantum Fidelity

Define the quantum fidelity as

$$F(\rho,\sigma) = Tr\sqrt{\rho^{1/2}\sigma\rho^{1/2}}$$

- Observe,
  - **1** If  $\rho$  and  $\sigma$  commute, then

$$F(\rho, \sigma) = F(\lambda_i, \mu_i)$$

- $P(|\psi\rangle, \rho) = \sqrt{\langle \psi | \rho | \psi \rangle}$

## More on Fidelity

#### Theorem (Uhlmann's Theorem)

Suppose  $\rho, \sigma \in Dens(\mathcal{H}_Q)$ . Let R be a copy of Q. Then,

$$F(\rho,\sigma) = \max_{|\psi\rangle, |\varphi\rangle} |\langle \psi \mid \varphi\rangle |$$

where  $|\psi\rangle$  and  $|\varphi\rangle$  are purifications of  $\rho$  and  $\sigma$  in  $\mathcal{H}_Q\otimes\mathcal{H}_R$ .

This theorem is quite nice for showing properties of the fidelity. Also, we have

- $F(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \geq F(\rho, \sigma)$
- **3**  $A(\rho, \sigma) := \arccos F(\rho, \sigma)$  is a metric on  $Dens(\mathcal{H})$

## Relationship between Distance Measures

Quantum trace distance and fidelity are qualitatively equivalent measures of distance. In case of pure states, they are exactly equal.

*Proof.* Let the two pure states be  $|a\rangle$  and  $|b\rangle$ . Let  $|a\rangle = |0\rangle$  and  $|b\rangle = cos(\theta) |0\rangle + sin(\theta) |1\rangle$ . For these,  $F(a,b) = |cos(\theta)|$  and  $D(a,b) = |sin(\theta)| = \sqrt{1 - F(a,b)^2}$ .

#### Theorem

$$1 - F(\rho, \sigma) \le D(\rho, \sigma) \le \sqrt{1 - F(\rho, \sigma)^2}$$
 for any two states  $\rho, \sigma$ .

*Proof.* To prove the right side of the inequality, consider purifications  $|\psi\rangle\,, |\phi\rangle$  chosen such that  $F(\rho,\sigma)=\langle\psi|\phi\rangle=F(\psi,\phi)$ . Since  $|\psi\rangle\,, |\phi\rangle$  are pure states and tace distance is non- increasing under partial trace

$$D(\rho, \sigma) \le D(\psi, \phi) \le \sqrt{1 - F(\rho, \sigma)^2}$$

The left side of the inequality can be proved using POVMs and simple mathematical manipulation.

## How well does $\mathcal{E}$ preserve QI?

Consider the system to be in  $|\psi\rangle$  initially. Suppose it undergoes evolution under  $\mathcal{E}.$  The information preserved can be estimated by

$$F(\ket{\psi}, \mathcal{E}(\ket{\psi} \bra{\psi}))$$

If we talk about the channel alone, we can minimize over all states <sup>1</sup>

$$F_{min} = min_{|\psi\rangle} F(\ket{\psi}, \mathcal{E}(\ket{\psi}ra{\psi})$$

#### Illustrations

- Depolarizing Channel
- Phase Damping Channel
- Gate Fidelities

<sup>&</sup>lt;sup>1</sup>pure states are enough, because  $F_{min} \leq F(\rho, \mathcal{E}(\rho)) \forall \rho$  can be shown

# Defining a quantum information source - Attempt (1)

#### **Ensemble Oriented**

A QIS is an entity which produces states  $\rho_i$  with probability  $p_i$  for all  $i \in I$ .

With this and the previous slide, we can talk about how well a source is preserved under a channel with the following quantity

$$ar{F} := \sum_j p_j F(
ho_j, \mathcal{E}(
ho_j))^2$$

This is called the *ensemble average fidelity*. Provided  $\bar{F}\approx 1$  one can be confident that the source is being preserved by the channel.

# Defining a quantum information source - Attempt (2)

This notion is inspired from the idea of converting dynamic distance to correlation between a system and its copy. The correlation here translates to entanglement – A channel which preserves information well is one which preserves entanglement well.

#### **Entanglement Oriented**

A QIS (Q,R) is a system Q in some state which is entangled to some environment R. WLOG it is in the state  $\rho = Tr_R(|RQ\rangle \langle RQ|)$ .

We define entanglement fidelity,

$$F_{e}(\rho, \mathcal{E}) := F(|RQ\rangle, |RQ'\rangle)$$
  
=  $\langle RQ| [(I_{R} \otimes \mathcal{E})(|RQ\rangle \langle RQ|)] |RQ\rangle$ 

where  $\rho = Tr_R(|RQ\rangle \langle RQ|)$ . It can be shown that only the choice of  $\rho$  and  $\mathcal{E}$  affect the EF, not the choice of purification.

## Computation & Properties

**①** There exists a nice formula to compute the  $F_e$ . Let  $E_i$  be kraus elements of  $\mathcal{E} \otimes I_R$ 

$$F_{e}(\mathcal{E}, \rho) = \langle RQ | \rho_{RQ'} | RQ \rangle$$

$$= \sum_{i} |\langle RQ | E_{i} | RQ \rangle|^{2}$$

$$= \sum_{i} |tr(\rho E_{i})|^{2}$$

- ②  $F_e(\rho, \mathcal{E}) \leq (F(\rho, \mathcal{E}(\rho))^2$ . Intuitively, attempt (2) is stronger than attempt (1). It is tougher to preserve the entanglement and the state than just the state.
- F<sub>e</sub> is convex. Now, we have,

$$F_{e}(\sum_{j} p_{j}\rho_{j}, \mathcal{E}) \leq \sum_{j} p_{j}F_{e}(\rho_{j}, \mathcal{E}) \leq \sum_{j} p_{j}F(\rho_{j}, \mathcal{E}(\rho_{j}))^{2}$$

Thus,  $F_{e} < \bar{F}!$ 

## Concluding Remarks

Thus, any quantum channel  $\mathcal E$  which does a good job of preserving the entanglement between a source described by a density operator and a reference system will automatically do a good job of preserving an ensemble source described by probabilities  $p_j$  and states  $\rho_j$  such that  $\rho = \sum_j p_j \rho_j$ . In this sense the notion of a quantum source based on entanglement fidelity is a more stringent notion than the ensemble definition.