

PROJECT

EXPEDIA USER BEHAVIOR PREDICTION

DATE

10/21/2016

CHENG JI

Agenda

- * Overview
- * Dealing with big data with AWS
- * Dealing missing values with big data
- * Model selection / optimization with big data
- * Conclusion / Next Step

Overview

* The goal: predict hotel choices of Expedia users based on previous activities and characteristics.

Data

- * (insanely) huge dataset: 4g csv file with over 37 million rows, 24 columns.
- * Features:
- * date_time, site_name, posa_continent, user_location_country, user_location_region, user_location_city, orig_destination_distance, user_id, is_mobile, is_package, channel, srch_ci, srch_co, srch_adults_cnt, srch_children_cnt, srch_rm_cnt, srch_destination_id, srch_destination_type_id, hotel_continent, hotel_country, hotel_market, is_booking, cnt, hotel_cluster.
- * A lot missing values (about 1/3) in orig_destination_distance, which I believe intuitively will be very important in predicting hotel choices.
- * Everything label encoded.

Dealing with big data

- * Utilize AWS EC2 and S3 services
- * Machine: 64 cores, 256g ram
- * Write a script to ping AWS server every 120s to keep connection alive

Dealing with big data

- * Game Plan:
- * Take a small sample from the dataset
- * Build a missing value imputation model based on the sample, and impute the whole dataset
- * Conduct feature selection, model selection, model optimization with the sample
- * Use the best optimized model to fit the whole dataset and make prediction

Dealing with big data

- * Initially tried 10% sample (3.7 million rows), still too much to handle. Go with 1% in the end.
- * All computationally expensive methods are unavailable due to budget / time constraint: cross validation, grid search, etc.

Dealing with missing value

- * Over 13 million missing value in orig_destination_distance, which I believe is too important to drop.
- * Solution: Random Forest Regressor imputation.
- * Why Random Forest Regressor: easy to handle categorical features
- * Features used: user_location_country, user_location_region, srch_destination_id, hotel_continent, hotel_country, hotel_market
- * r2 on test set: 0.99
- * Build model on non-missing value subset of sample data, and impute values on the whole dataset

EDA

* Booking numbers by hotel cluster and hotel continent

EDA

made with MicroStrategy

Feature Selection

* Random Forest Feature Importances

Model Selection

- * Random Forest, Gradient Boosting, Neural Network, XGBoost.
- * Also tried SVM, too computationally expensive, never finished training.

Model Selection

- * Model performance with default parameters:
- * RF: accuracy=0.0897, map5=0.1480
- * XGB: accuracy = 0.1271, map5 = 0.2131
- * GB: accuracy=0.1370, map5=0.2279
- * NN (tuned): accuracy=0.1013, map5=0.1766
- * map5: mean average precision at cutoff 5

Model Optimization

- * Choose the best models (Gradient Boosting and XGBoost) to optimize.
- * Assumption: the model performed the best with default parameters will perform the best after optimization, which may not necessarily be the case. Again, have to take efficiency / budget into consideration.
- * Why neural network performed poorly: possibly stuck in local minima.

- * How to optimize model when gird search is too expensive? Apply yourself!
- * manually tune gradient boosting and XGBoost:
- * Tree based parameters: max_depth, min_samples_split, min_samples_leaf, max_features, subsamples
- Boosting setting parameters: learning rate,
 n_estimators

- * Tree based parameters: underfit vs overfit.
- * Boosting setting: lower learning rate always better given sufficient trees. However, too many trees may overfit.

- * Model performance after tuning:
- * GB: accuracy=0.1339, map5=0.2268
- * XGB: accuracy=0.1468, map5=0.2453
- * Certainly not achieve optimum due to time / budget constraint.

* ROC curve of XGBoost

Make prediction

- * make prediction with the tuned model on the whole dataset.
- * It took 1 hour to complete one training of the best model on the 1% sample. Too poor to fit the whole dataset.

Conclusion / Next Step

- * Don't tell me you know computational expense if you haven't handle big data.
- * Most efficient model on big data: Random Forest (parallelized), least efficient: SVM (serialized and based on distance)
- * Boosting performs better than neural network
- * Next Steps (if I get rich):
- * build models on 10% samples
- * optimize all models