Решение одномерного параболического уравнения методом сеток. (Простейшая явная и неявная схемы)

Постановка задачи

Решить одномерное уравнение теплопроводности методом сеток с помощью явной и неявной схемы. Уравнение имеет вид:

$$\frac{\partial u}{\partial t} = a_0(x, t) \frac{\partial^2 u}{\partial x^2} + a_1(x, t) \frac{\partial u}{\partial x} + a_2(x, t) u + f(x, t)$$
(1)

граничные условия:

$$\frac{\partial u}{\partial x}(a,t) = \psi_0; \quad \frac{\partial u}{\partial x}(b,t) = \psi_1$$
 (2)

начальные данные:

$$u(x,0) = \phi(x) \tag{3}$$

Условие данной задачи:

$$a_0 = 1$$
 $a_1 = 0$ $a_2 = -1$ $f = 0$

$$\phi(x) = \frac{1}{(1+x^2)^2} \quad \psi_0 = \psi_1 = 0$$
(4)

Вывод формул

Введем сетку: $x_i=ih,\ t_k=k\tau,\ i=0\dots n;\ k=0\dots M,$ где $h=\frac{1}{n};\ \tau=\frac{1}{2M}.$ Область: $x\in[0,1];\ t\in[0,1].$ Численное решение ищут в виде: $u_i^k\approx u(x_i,t_k)$ Сеточные уравнения:

$$\mathcal{L}_h u_i^k = a_0 \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h^2} + a_1 \frac{u_{i+1}^k - u_{i-1}^k}{h} + a_2 u_i^k$$
(5)

Аппроксимация граничных условий:

$$\frac{-u_2^k + 4u_1^k - 3u_0^k}{2h} = \psi_0(t_k) \tag{6}$$

$$\frac{u_{n-2}^k - 4u_{n-1}^k + 3u_n^k}{2h} = \psi_1(t_k) \tag{7}$$

1. Простейшая явная схема:

$$\frac{u_i^{k+1} - u_i^k}{\tau} = \mathcal{L}_h u_i^k + f(x_i, t_k) \tag{8}$$

$$u_i^{k+1} = A_i^k u_{i-1}^k + B_i^k u_i^k + C_i^k u_i^{k+1} + D_i^k$$
(9)

здесь:

$$A_{i}^{k} = \sigma a_{0} - \frac{h}{2}\sigma a_{1} \quad B_{i}^{k} = 1 - 2\sigma a_{0} + \tau a_{2} \quad \sigma = \frac{\tau}{h^{2}}$$

$$C_{i}^{k} = \sigma a_{0} + \frac{h}{2}\sigma a_{1} \quad D_{i}^{k} = \tau f(x_{i}, t_{k})$$
(10)

Схема устойчива при условии: $\sigma = \frac{\tau}{h^2} < 0.5$

2. Простейшая неявная схема:

$$\frac{u_i^k - u_i^{k-1}}{\tau} = \mathcal{L}_h u_i^k + f(x_i, t_k)$$
 (11)

Прямой счет невозможен. Необходимо решать систему с тремя неизвестными:

$$A_i^k u_{i-1}^k - B_i^k u_i^k + C_i^k u_{i+1}^k = D_i^k (12)$$

здесь:

$$A_{i}^{k} = \sigma a_{0} - \frac{h}{2}\sigma a_{1} \quad B_{i}^{k} = 1 + 2\sigma a_{0} - \tau a_{2} \qquad \sigma = \frac{\tau}{h^{2}}$$

$$C_{i}^{k} = \sigma a_{0} + \frac{h}{2}\sigma a_{1} \quad D_{i}^{k} = -\tau f(x_{i}, t_{k}) - u_{i}^{k-1}$$
(13)

На каждом слое дополняем систему уравнений граничными условиями. Затем используем метод матричной прогонки, приводя систему к виду:

$$u_i^k = \alpha_i u_{i+1}^k + \beta_i \tag{14}$$

где:

$$\alpha_i = \frac{C_i^k}{B_i^k - A_i^k \alpha_{i-1}}; \ \beta_i = \frac{A_i^k \beta_{i-1} - D_i^k}{B_i^k - A_i^k \alpha_{i-1}}$$

Текст программы

Явная схема

```
import math
import numpy as np
from numpy import *
egin{array}{lll} n = & raw\_input(\ 'n = \ ') \ ; \ n = & int(n) \ M = & raw\_input(\ 'M = \ ') \ ; \ M = & int(M) \end{array}
a = 0.0; b = 1.0; T = 1.0
h = (b - a) / n; tau = T / M; sigma = tau / h**2
if (sigma > 0.5) is True:
       print 'sigma = ', sigma, ' -- disturbed stability condition warning'
def fi(x):
       return 1.0 / (1.0 + x**2)**2
uk = zeros(n+1); ukk = zeros(n+1)
for i in range (n+1):
       uk[i] = fi(a+i*h)
for k in range(M):
       for i in range (1,n):
              ukk[i] = sigma * uk[i-1] + (1 - 2*sigma-tau) * uk[i] + sigma * uk[i+1]
       ukk[0] = (4.0*ukk[1] - ukk[2]) / 3.0
       ukk[n] = (4.0*ukk[n-1] - ukk[n-2]) / 3.0
       for i in range (n+1):
              uk[i] = ukk[i]
       if ((k+1)\%(M/10)==0):
               print k+1,
                                 ', uk
```

Неявная схема

```
n = raw input('n = '); n = int(n)
_{2}|_{M} = raw input('M = '); M = int(M)
 a = 0.0; b = 1.0; T = 1.0
 h = (b - a) / n; tau = T / M; sigma = tau / h**2
 def fi(x):
        return 1.0 / (1.0 + x**2)**2
 u minus = zeros(n+1); u = zeros(n+1)
 for i in range (n+1):
        u \min [i] = fi(a+i*h)
 for k in range (1, M+1):
        alpha = [0]; beta = [0]
        alpha.append(2.0*sigma / (2.0*sigma + 3.0*tau + 3.0))
        beta.append( 3.0*u \text{ minus}[1] / (2.0*sigma + 3.0*tau + 3.0) )
        for i in range (2,n):
              alpha.append(sigma / (2.0*sigma + tau + 1.0 - sigma * alpha[i-1]))
              beta.append ( (sigma*beta[i-1] + u_minus[i]) / ( 2.0*sigma + tau + 1.0
     -\operatorname{sigma} * \operatorname{alpha}[i-1] )
        u[n] = ((4.0 - alpha[n-2])*beta[n-1] - beta[n-2])/(3.0 + alpha[n-1]*(alpha[n-1])
     -2[-4.0)
        for i in range (n-1,0,-1):
              u[i] = alpha[i]*u[i+1]+beta[i]
        u[0] = (4.0 * u[1] - u[2]) / 3.0
        for i in range (n+1):
              u \min us[i] = u[i]
        if ((k+1)\%(M/10)==0):
              print k+1,
```

Результаты

Явная схема

```
0.70458405
                                                   0.65513983
                                                               0.62139643
                                                                            0.58396558
                         0.69890241
                                      0.68185749
  0.54654555
               0.51283034
                           0.48614708
                                        0.46912919
                                                     0.46345656
100
         [0.56955818]
                        0.56762369
                                     0.56182022
                                                  0.55272134
                                                              0.54122624
                                                                           0.52847091
                                                     0.48738587
  0.5157158
               0.50422127
                           0.49512309
                                        0.48932017
150
         [0.49223038]
                        0.49157115
                                     0.48959346
                                                  0.48649274
                                                              0.48257539
                                                                           0.4782285
  0.47388162
               0.46996428
                           0.46686357
                                        0.46488589
                                                     0.46422667
200
         [0.437534]
                        0.43730934
                                     0.43663536
                                                  0.43557866
                                                              0.43424366
                                                                           0.43276227
               0.42994588
  0.43128088
                           0.42888918
                                        0.4282152
                                                     0.42799054
250
                                                                           0.3916186
         0.39324477
                        0.39316821
                                     0.39293852
                                                  0.39257841
                                                              0.39212345
  0.39111376
              0.3906588
                           0.39029868
                                        0.39006899
                                                     0.38999243
                                                              0.3545586
300
         0.35494074
                        0.35491465
                                     0.35483637
                                                  0.35471365
                                                                           0.35438655
  0.35421451
               0.35405946
                           0.35393674
                                        0.35385846
                                                     0.35383237
         [ 0.3208831
                        0.32087421
                                     0.32084754
                                                  0.32080571
                                                              0.32075287
                                                                           0.32069424
  0.32063561
               0.32058277
                           0.32054095
                                        0.32051427
                                                     0.32050538
400
         [0.29026949]
                       0.29026646
                                     0.29025737
                                                  0.29024312
                                                              0.29022511
                                                                           0.29020513
  0.29018515
               0.29016714
                           0.29015289
                                        0.2901438
                                                     0.29014077
450
         [0.26263662]
                        0.26263559
                                     0.26263249
                                                  0.26262763
                                                              0.26262149
                                                                           0.26261468
  0.26260788
               0.26260174
                           0.26259688
                                        0.26259378
                                                     0.26259275
                                                                           0.23764733
500
         0.2376548
                        0.23765445
                                     0.23765339
                                                  0.23765174
                                                              0.23764965
  0.237645
               0.23764291 \quad 0.23764126
                                        0.2376402
                                                     0.23763985
```

Неявная схема

	50	[0.6	69773927	0.6922835	0.67591621	0.65025395	0.61783133	0.58185086
İ	0.	54586704	0.513435	69 0.487762	277 0.47138	709 0.46592	853]	
İ	100	[0	.56499475	0.56317861	0.55773019	0.54918786	0.53839572	0.52642016
						126 0.48784		
5						0.48385432		0.47627685
	0.	4722912	0.468699	39 0.465856	0.46404	301 0.46343	856]	
	200	[0	.43518274	0.43498157	0.43437807	0.43343186	0.43223645	0.43090997
						836 0.42663		
						0.39070375		0.38986442
						933 0.38844		
						0.35300793		0.35272859
						76 0.35225		
						0.31922304		0.31913007
	0.	31908117	0.319037	1 0.319002	0.31897	998 0.31897	256]	
15						0.28876286		0.28873192
						196 0.288679		
						0.26123958		0.26122928
	0.	26122387	0.261218	99 0.261215	0.26121	266 0.26121	184]	
	500	[0	.23635217	0.2363519	0.23635108	0.23634979	0.23634817	0.23634636
20	0.	23634456	0.236342	94 0.236341	0.23634	083 0.23634	056]	