AUTOTUNING HLS FOR FPGAS USING OPENTUNER AND LEGUP

Pedro Bruel (phrb@ime.usp.br)
Alfredo Goldman (gold@ime.usp.br)
Sai Rahul Chalamalasetti (gold@ime.usp.br)
Dejan Milojicic (gold@ime.usp.br)
ReConFig. December 5, 2017

Institute of Mathematics and Statistics University of São Paulo

INDEX

- 1. FPGAs, HLS & Autotuning
- 2. Background
- 3. Experiments & Results
- 4. Conclusion

The slides and all source code are hosted at GitHub:

- Code & Data: github.com/phrb/legup-tuner
- Slides: github.com/phrb/slides-reconfig-2017-autotuning

FPGAs:

- Logic Blocks and Interconnections
- Reconfigurable

Tradeoff:

- Energy Efficiency and Performance
- Programmability

FPGAs

Using FPGAs in Bing:

1,632 Servers with FPGAs Running Bing Page Ranking Service (~30,000 lines of C++)

 $Image: \verb|enterprise| tech.com/2014/09/03/microsoft-using-fpgas-speed-bing-search/| [Accessed in 27/11/17] | tech.com/2014/09/03/microsoft-using-search/| [Accessed in 27/11/17]$

LegUp HLS flow:

 $Image: Canis, Andrew \ Christopher. \ Leg Up: Open-Source \ High-Level \ Synthesis \ Research \ Framework. \ Diss. \ University of \ Toronto, 2015.$

HLS can generate lower-latency applications:

Qualitatively, with less effort:

Image: Blott, Michaela, et al. "Achieving 10Gbps line-rate key-value stores with FPGAs." Presented as part of the 5th USENIX Workshop on Hot Topics in Cloud Computing. 2013.

This is an old issue:

Image: Smith, Steven W. "The scientist and engineer's guide to digital signal processing." 1997

FPGAs: AUTOTUNING

Why use autotuning for HLS?

AUTOTUNING LLVM FOR HLS

Compare with Huang's work

AUTOTUNING INDUSTRY DESIGNS FOR VTR

Describe Xu's work with OpenTuner

BENCHMARK AND HARDWARE METRICS

Describe CHStone and Metric Composition Strategy

WEIGHTED OPTIMIZATION SCENARIOS

An Optimization Scenario consists of:

- An optimization objective: performance, area, . . .
- Weights for hardware metrics

Our scenarios:

- 3 specific scenarios & 1 balanced scenario
- Weights: powers of two from 1: irrelevant to 8: high

WEIGHTED OPTIMIZATION SCENARIOS

Table 1: Weights for Optimization Scenarios (High = 8, Medium = 4, Low = 2)

Metric	Area	Perf. & Lat	Performance	Balanced
LUT	High	Low	Low	Medium
Registers	High	High	Medium	Medium
BRAMs	High	Low	Low	Medium
DSPs	High	Low	Low	Medium
FMax	Low	High	High	Medium
Cycles	Low	High	Low	Medium

RESULTS

Present the heatmaps for each optimization scenario $\,$

LIMITATIONS OF THIS WORK

Discuss the issues with the weighted cost function

FUTURE WORK

Discuss all future work topics

AUTOTUNING HLS FOR FPGAS USING OPENTUNER AND LEGUP

Pedro Bruel (phrb@ime.usp.br)
Alfredo Goldman (gold@ime.usp.br)
Sai Rahul Chalamalasetti (gold@ime.usp.br)
Dejan Milojicic (gold@ime.usp.br)
ReConFig, December 5, 2017

Institute of Mathematics and Statistics University of São Paulo

