```
public class PrintValues{
private int x,y,z;
public void printX(int a){
         if (a==0) System.out.println("x is not initialized");
         else System.out.println(x=a);
public void printY(int a){
         if (a=0) System.out.println("y is not initialized");
         else System.out.println(y=a);
public void printXZ(int a,int b){
         printX(a);
         if (b==0) System.out.println("z is not initialized");
         else System.out.println(z=a);
public void printYZ(int a,int b){
         printY(a);
         if (b=0) System.out.println("z is not initialized");
         else System.out.println(z=a);
public void printXZY(int a,int b,int c){
         printXZ(a,b);
         printY(c);
```

including Transitive Interactions

	x	y	z
printX	1	0	0
printY	0	1	0
printXZ	1	0	1
printYZ	0	1	1
printXZY	1	1	1

matrix has rows indexed by the methods and columns indexed by the a so for $1 \le i \le k, \ 1 \le j \le l,$

$$m_{ij} = \left\{ \begin{array}{ll} 1 & \text{if ith method references jth attribute,} \\ 0 & \text{otherwise} \end{array} \right.$$

The information required to construct this matrix is obtained by analyzi