S&DS 265 / 565 Introductory Machine Learning

Some Context and Concepts

Thursday, September 9

Logistics

- Recordings posted to Canvas under Media Library
- Assignment 1 posted on Tuesday
- Quiz 0 available on Canvas at noon today, for 24 hours
- Check Canvas / EdD for office hours

Plan for Today

- Continue Python elements
- Basics of classification, regression, overfitting
- Linear regression example

Some Terminology

- supervised vs. unsupervised
- classification vs. regression
- prediction vs. inference

Supervised Learning vs. Unsupervised Learning

Supervised learning:

- Given a set of (x, y), learn to predict y using x.
- e.g.
 - Predicting whether a loan will default based on customer characteristics

Supervised Learning vs. Unsupervised Learning

Supervised learning:

- Given a set of (x, y), learn to predict y using x.
- e.g.
 - Predicting whether a loan will default based on customer characteristics

Unsupervised learning:

- Given a set of x, learn underlying structure or relationships of x.
- e.g.
 - Identifying market segments with similar spending patterns.

Classification vs. Regression

The Income dataset:

21.58621 113.1034 99.91717 18.27586 119.3103 92.57913 12.06897 100.6897 34.67873			
18.27586 119.3103 92.57913 12.06897 100.6897 34.67873	Education	Seniority	Income
12.06897 100.6897 34.67873	21.58621	113.1034	99.91717
	18.27586	119.3103	92.57913
17.03448 187.5862 78.7028	12.06897	100.6897	34.67873
	17.03448	187.5862	78.70281
19.93103 20.0000 68.00992	19.93103	20.0000	68.00992
18.27586 26.2069 71.50449	18.27586	26.2069	71.50449

Information for 30 *simulated individuals*.

Classification vs. Regression

The Income dataset:

Education	Seniority	Income
21.58621	113.1034	99.91717
18.27586	119.3103	92.57913
12.06897	100.6897	34.67873
17.03448	187.5862	78.70281
19.93103	20.0000	68.00992
18.27586	26.2069	71.50449

Regression: Model income based on other characteristics.

Information for 30 *simulated individuals*.

Classification vs. Regression

The Income dataset:

Education	Seniority	Income
21.58621	113.1034	99.91717
18.27586	119.3103	92.57913
12.06897	100.6897	34.67873
17.03448	187.5862	78.70281
19.93103	20.0000	68.00992
18.27586	26.2069	71.50449

Information for 30 *simulated individuals*.

Regression: Model income based on other characteristics.

Classification: Model whether someone will earn above the median income based on other characteristics.

Inference vs. Prediction

The Income dataset:

Education	Seniority	Income
21.58621	113.1034	99.91717
18.27586	119.3103	92.57913
12.06897	100.6897	34.67873
17.03448	187.5862	78.70281
19.93103	20.0000	68.00992
18.27586	26.2069	71.50449

Information for 30 *simulated individuals*.

Prediction: accurately predict *Y* for new observations

Inference vs. Prediction

The Income dataset:

Education	Seniority	Income
21.58621	113.1034	99.91717
18.27586	119.3103	92.57913
12.06897	100.6897	34.67873
17.03448	187.5862	78.70281
19.93103	20.0000	68.00992
18.27586	26.2069	71.50449

Information for 30 *simulated individuals*.

Prediction: accurately predict *Y* for new observations

Inference: explain the underlying relationship between *Y* and *X*

Example: Handwritten Digit Recognition

- Data: images of handwritten digits (grayscale pixel values)
- Classify images as digits 0 to 9.

Example: Handwritten Digit Recognition

- Data: images of handwritten digits (grayscale pixel values)
- Classify images as digits 0 to 9.

8

Regression Example

The Income dataset:

Quantitative response Y

Predictors
$$X = (X_1, \dots, X_p)$$

Assume the relationship can be expressed by:

$$Y = f(X) + \epsilon,$$

where f is a fixed, unknown function and ϵ is error term.

9

Regression Example

The Income dataset:

Quantitative response Y

Predictors
$$X = (X_1, \ldots, X_p)$$

Assume the relationship can be expressed by:

$$Y = f(X) + \epsilon,$$

where f is a fixed, unknown function and ϵ is error term.

9

Regression Example

Back to regression with p = 1:

$$Y = f(X) + \epsilon$$

Modeling:

Use a procedure to get \widehat{f} . Derive estimates $\widehat{Y} = \widehat{f}(X)$.

- linear regression
 - Fitting a straight line through the data.
- *k*-nearest neighbors regression
 - ightharpoonup Average together the y_i for x_i close to x

Measuring performance via **Mean Squared Error**

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{f}(x_i))^2$$

Measuring performance via **Mean Squared Error**

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

MSEs for three methods:

Linear Regression	29.829
k-Nearest Neighbors (k=10)	23.519
k-Nearest Neighbors (k=5)	16.21

A k-nearest neighbors model with k = 5 achieves lowest error. Is it the best?

Training MSE vs. Test MSE

MSE in the previous table, **training MSE**, was computed based on data used in fitting the model.

We are more interested in **test MSE** computed on *unseen data*.

Training MSE vs. Test MSE

MSE in the previous table, **training MSE**, was computed based on data used in fitting the model.

We are more interested in **test MSE** computed on *unseen data*. What if we don't have other data?

Training MSE vs. Test MSE

MSE in the previous table, **training MSE**, was computed based on data used in fitting the model.

We are more interested in **test MSE** computed on *unseen data*. What if we don't have other data?

We can randomly split our data into a test set and a training set.

Compute MSE on the test set:

$$MSE = \frac{1}{n} \sum_{i} (y_i - \widehat{f}(x_i))^2$$

Linear Regression	37.807
k-Nearest Neighbors (k=10)	197.809
k-Nearest Neighbors (k=5)	48.682

Compute MSE on the test set:

$$MSE = \frac{1}{n} \sum (y_i - \widehat{f}(x_i))^2$$

Linear Regression	37.807
k-Nearest Neighbors (k=10)	197.809
k-Nearest Neighbors (k=5)	48.682

So it appears that linear regression wins.

Compute MSE on the test set:

$$MSE = \frac{1}{n} \sum (y_i - \widehat{f}(x_i))^2$$

Linear Regression	37.807
k-Nearest Neighbors (k=10)	197.809
k-Nearest Neighbors (k=5)	48.682

So it appears that linear regression wins. Does it?

Compute MSE on the test set:

$$MSE = \frac{1}{n} \sum (y_i - \widehat{f}(x_i))^2$$

Linear Regression	37.807
k-Nearest Neighbors (k=10)	197.809
k-Nearest Neighbors (k=5)	48.682

So it appears that linear regression wins. Does it? With different random splits of test vs. training, we could have gotten different results.

Compute MSE on the test set:

$$MSE = \frac{1}{n} \sum_{i} (y_i - \widehat{f}(x_i))^2$$

Linear Regression	37.807
k-Nearest Neighbors (k=10)	197.809
k-Nearest Neighbors (k=5)	48.682

So it appears that linear regression wins. Does it? With different random splits of test vs. training, we could have gotten different results. We'll talk about ways around this later.

A method is **overfitting** the data when it has a small training MSE but a large test MSE.

A method is **overfitting** the data when it has a small training MSE but a large test MSE.

Let's examine this phenomenon using a bigger dataset:

Simulated Data

A method is **overfitting** the data when it has a small training MSE but a large test MSE.

Let's examine this phenomenon using a bigger dataset:

Simulated Data

A method is **overfitting** the data when it has a small training MSE but a large test MSE.

Let's examine this phenomenon using a bigger dataset:

A method is **overfitting** the data when it has a small training MSE but a large test MSE.

Let's examine this phenomenon using a bigger dataset:

Overfitting via k-Nearest Neighbors

Summary

- Two cultures: model based and prediction based
- Prediction based approaches are sometimes not interpretable
- Overfitting is easy with very flexible models and algorithms

Next week: Linear regression and classification