Solutions for problems of shannon theory

January 25, 2018

Definition

Quantum Channel Capacity

$$Q(\mathcal{E}) = \lim_{m \to \infty} \sup \frac{\log d}{m}$$

where m,d satisfies: $\exists d$ dimension subspace $S\subseteq H_{input}^{\otimes n}$

$$\int_{|\phi\rangle \in \mathcal{S}} \left\langle \phi \right| \mathcal{E}(\left|\phi\right\rangle \left\langle \phi\right|) \left|\phi\right\rangle d(\left|\phi\right\rangle) \geq 1 - \varepsilon$$

Remark:

- The average fidelity criterion, which is equavelant to several other fidelity critierion, we'll use this definition throughout this solution
- Basically, the definition means the maximal ratio we can reliably transform quantum information through the quantum channel.

Definition

Coherent Information

$$Q^{(1)}(\mathcal{E}) = \max_{\phi_{AA^{\star}}} H(\rho_B) - H(\rho_{AB})$$
 where $H(\rho) = -tr(\rho \log_2 \rho)$ $\rho_{AB} = \mathcal{E}_{A^{\star} \to B}(\phi_{AA^{\star}})$ and $A = A^{\star}$ are isomorphic.

Lloyd, Shor, and Devetak (LSD) showed $Q^{(1)}(\mathcal{E})$ can be achieved, i.e.

$$Q(\mathcal{E}) \geq Q^{(1)}(\mathcal{E})$$

Problem

Show that $Q^{(n)}(\mathcal{E}) = \frac{1}{n}Q^{(1)}(\mathcal{E}^{\otimes n})$ is achievable.

- Step 1. $Q^{(1)}(\mathcal{E}^{\otimes n})$ is achievable for $\mathcal{E}^{\otimes n}$
- Step 2. By definition of quantum channel capacity, we can prove $Q(\mathcal{E}) \geq \frac{1}{n} Q^{(1)}(\mathcal{E}^{\otimes n}) = Q^{(n)}(\mathcal{E})$

Problem

Show
$$\sup_{n\in\mathbb{N}}Q^{(n)}(\mathcal{E})=\lim_{n\to\infty}Q^{(n)}(\mathcal{E})$$

Coherent information have subadditive property, i.e.

Lemma

$$Q^{(m+n)}(\mathcal{E}) \geq Q^{(m)}(\mathcal{E}) + Q^{(n)}(\mathcal{E})$$

Subadditivity of coherent information

$$Q^{(m+n)}(\mathcal{E}) \geq Q^{(m)}(\mathcal{E}) + Q^{(n)}(\mathcal{E})$$

Proof: Recall

$$Q^{(1)}(\varepsilon) = \max_{\phi_{AA^*}} H(\rho_B) - H(\rho_{AB})$$

and

$$\rho_{AB} = \mathcal{E}_{A^* \to B}(\phi_{AA^*})$$

simply take

$$\phi_{A_{m+n}A_{m+n}^{\star}} = \phi_{A_mA_m^{\star} \otimes A_nA_n^{\star}}$$

by additivity of von Neumann entropy, we can conclude

$$Q^{(m+n)}(\mathcal{E}) \geq Q^{(m)}(\mathcal{E}) + Q^{(n)}(\mathcal{E}) \quad \Box$$

Disprove the additivity conjucture

Depolarizing Channel

$$D_p(\rho) = p\rho + (1-p)\frac{I}{2}$$
, for 0

Problem

Calculate $Q^{(1)}(D_p)$

Answer: The depolarizing channel is unitarily covariant, i.e.

$$D_{\rho}(U^{\dagger}\rho U)=U^{\dagger}D_{\rho}(\rho)U$$

Consider, the form $\sqrt{\mu}\,|00\rangle + \sqrt{1-\mu}\,|11\rangle$, we can derive that maximally entangled state $\mu=1/2$ is optimal for all values of the depolarizing parameter p for which the coherent information is non-negative, and for all other values, a product state with $\mu=0$ is optimal.

When $\mu = 1/2$, $H(\rho_B) = 1$, since $\rho_B = I/2$. Similarly, we can derive

$$H(\rho_{AB}) = -(1 - \frac{3p}{4})log(1 - \frac{3p}{4}) - \frac{3p}{4}log(\frac{p}{4})$$

For more on this problem, see Chapter 24.8 on https://arxiv.org/pdf/1106.1445.pdf

Quantum Channel Capacity

Entanglement-breaking Channel

Independent of the input state ϕ_{AA^*} , the output state $\rho_{AB} = \mathcal{E}_{A^* \to B}(\phi_{AA^*})$ can be written in the form

$$\rho_{AB} = \sum_{k} p(k) \rho_{k}^{A} \otimes \rho_{k}^{B}$$

Problem

$$Q^{(n)}(\mathcal{E}) = 0 \quad \forall n \in N$$

.

Proof: W.L.O.G, we can expand ρ_k^A and ρ_k^B in orthonormal basis, i.e

$$\rho_{AB} = \sum_{x,y} p(x,y) \rho_A^x \otimes \rho_B^y$$

where $\rho_A^{\rm x}$ and $\rho_B^{\rm y}$ orthonormal to each other.

Lemma: $\rho = \sum_{x} p_{x} \rho_{x}$ and ρ_{x} are orthonormal to each other,

$$H(\rho) = H(X) + \sum_{p_X} p_X H(\rho_X)$$

As a consequence, we have

$$H(\rho_{AB}) = H(X, Y) + \sum_{x,y} p_{xy} (S(\rho_x) + H(\rho_y))$$

$$= H(X, Y) + \sum_{x} p_x S(\rho_x) + \sum_{y} p_y S(\rho_y)$$

$$\geq H(X, Y) + \sum_{x} p_x S(\rho_x)$$

$$= H(\rho_B)$$

Proof of Lemma:

$$H(\rho) = -tr(\rho\log\rho)$$

$$= -tr(\sum_{x} p_{x}\rho_{x}\log\sum_{x} p_{x}\rho_{x})$$

$$= -tr(\sum_{x} p_{x}\rho_{x}\sum_{x} \log p_{x}\rho_{x})$$

$$= -tr(\sum_{x} p_{x}\rho_{x}(\log p_{x} + \log \rho_{x}))$$

$$= -\sum_{x} p_{x}\log p_{x}tr(\rho_{x}) - \sum_{x} p_{x}tr(\rho_{x}\log \rho_{x})$$

$$= H(X) + \sum_{x} p_{x}H(\rho_{x})$$

Thanks for Listening!