The η invariant under cone-edge degeneration

Nelvis Fornasin

Albert-Ludwig-Universität Freiburg

The η invariant under cone-edge degeneration

- Introduction
- 2 Results
- 3 An application
- Further directions

Introduction

Let (M^n, g) be a spin manifold. We will consider two operators:

- The Hodge operator $d + d^*$ acting on forms;
- The spin Dirac operator acting on spinors.

Let D be either of these operators¹. Then

$$\eta(D) := \int_0^\infty \frac{\operatorname{tr} D e^{-tD^2}}{\sqrt{\pi t}} dt = \int_0^\infty \frac{\sum_{i=0}^\infty \lambda_i e^{-t\lambda_i^2}}{\sqrt{\pi t}} dt$$

Here:

- e^{-tD^2} is the heat kernel of D, acting on the same bundle as D;
- $\{\lambda_i\}_{i\in\mathbb{N}}$ is the set of eigenvalues of D;
- tr $De^{-tD^2} = \sum_{i=0}^{\infty} \lambda_i e^{-t\lambda_i^2}$.

¹Assume that D is (essentially) self adjoint.

The η invariant

Takeaway 1

There exist two equivalent theories for treating the η invariant: microlocal analysis and spectral theory.

$$\eta(D) := \underbrace{\int_0^\infty \frac{\operatorname{tr} D e^{-tD^2}}{\sqrt{\pi t}} dt}_{\text{Microlocal analysis}} = \underbrace{\int_0^\infty \frac{\sum_{i=0}^\infty \lambda_i e^{-t\lambda_i^2}}{\sqrt{\pi t}} dt}_{\text{Spectral theory}} \tag{1}$$

Both are important for my thesis. Following Sher [S15], I split $\eta(D)$ in two summands and treat each of them in the most convenient framework:

$$\eta(D) = \underbrace{\int_0^1 \frac{\operatorname{tr} D e^{-tD^2}}{\sqrt{\pi t}} dt}_{\text{Short time component}} + \underbrace{\int_1^\infty \frac{\sum_{i=0}^\infty \lambda_i e^{-t\lambda_i^2}}{\sqrt{\pi t}} dt}_{\text{Long time component}}$$

Conic degeneration

Introduction

Use surgery to resolve a conic singularity:

Comments

 $\{\rho = 0\} \subseteq \Omega_0$ is the singular set. In this case $S = \{pt\}$. Ω_0 has a conic singularity at p iff in a neighbourhood of p it is isometric to the cone $(C(Y), d\rho^2 + \rho^2 h)$, where (Y, h) is a smooth Riemannian manifold. (Y, h) is called *link*.

Conic degeneration

Use surgery to resolve a conic singularity:

As $\varepsilon \to 0$, Ω_ε degenerates to Ω_0 :

Cone-edge degeneration

Introduction

Use surgery to resolve a cone-edge singularity:

Comments

 $\{\rho = 0\} \subseteq \Omega_0$ is the singular set. In this case S = (B, k). Ω_0 has a cone-edge singularity at B iff in a neighbourhood of B it is isometric to $(C(Y) \times B, d\rho^2 + \rho^2 h + k)$, where (Y, h) and (B, k)are smooth Riemannian manifolds. (B, k) is called edge.

Cone-edge degeneration

Use surgery to resolve a cone-edge singularity:

As $\varepsilon \to 0$, Ω_ε degenerates to Ω_0 :

Aim of my phd project

I studied the behaviour of the η invariant under cone-edge degeneration. Let D_{ε} be the Hodge or spin Dirac operator on Ω_{ε} ,

General aim

Compute $\lim_{\varepsilon\to 0} \eta(D_{\varepsilon}) - \eta(D_{0})$ under degeneration.

Takeaway 2

Spectral invariants don't behave well under degeneration. Easy example: topologically $\Omega_{\varepsilon}=\Omega_1 \ \forall \varepsilon \in (0,1]$, so for the k^{th} Betti number $b^k(\varepsilon)$ of Ω_{ε} we have

$$\lim_{arepsilon o 0}b^k(arepsilon)-b^k(0)=b^k(1)-b^k(0)
eq 0$$
 in general

Characterising this defect is an interesting problem!

First, a definition

Definition (Generalised Witt condition)

Let dim Z = n, D_Y the Hodge/spin Dirac operator of the link Y.

• The Hodge operator is admissible if and only if:

$$\begin{cases} \sigma(D_Y^2|_{\Lambda^{n/2-1}}) \cap \{0\} = \sigma(D_Y^2|_{\Lambda^{n/2}}) \cap [0,1] = \emptyset & \text{if } n \text{ is even} \\ \sigma(D_Y^2|_{\Lambda^{(n-1)/2}}) \cap \left[0,\frac{3}{4}\right] = \emptyset & \text{if } n \text{ is odd} \end{cases}$$

• The Dirac operator is admissible if and only if:

$$\sigma(D_Y^2) \cap \left[0, \frac{9}{4}\right] = \emptyset$$

Remark

For $Y = S^{n-1}/\Gamma$, n > 4, both operators are admissible.

Results

Theorem (N. - Conic degeneration)

Let dim $Z \geq 3$. Assume that D_{ε} is admissible, then:

$$\lim_{\varepsilon \to 0} \eta(D_{\varepsilon}) = \eta(D_0) + \eta_R(D_Z) \tag{2}$$

where $\eta_R(D_Z)$ is the rescaled η invariant of D_Z .

The result about conic degeneration is non-trivial not only because it shows that there is additional term appearing in the limit, but also for the sheer fact that the limit exists!

Results

Theorem (N. - Cone-edge degeneration)

Let dim $Z \geq 3$. Assume that D_{ε} is admissible, then:

$$\lim_{\varepsilon \to 0} \eta(D_{\varepsilon}) = \eta(D_{0}) + \operatorname{ind}_{R}(D_{Z})\eta(D_{B}) + \operatorname{ind}(D_{B})\eta_{R}(D_{Z})$$
 (3)

where $\operatorname{ind}_R(D_Z) = \operatorname{ind}_{L^2}(D_Z)$, and $\eta_R(D_Z)$ is the rescaled η invariant.

The form of the extra term is a generalisation of the product formula for the η invariant. Non-trivial: $\operatorname{ind}_R(D_Z) = \operatorname{ind}_{L^2}(D_Z)$.

$$\begin{array}{c}
\rho \\
1 \\
\varepsilon \\
0
\end{array}$$

$$\begin{array}{c}
1 \\
\varepsilon \\
0
\end{array}$$

$$\begin{array}{c}
1 \\
\varepsilon \\
0
\end{array}$$

$$\begin{array}{c}
1 \\
0 \\
0
\end{array}$$

$$\begin{array}{c}
0 \\
0 \\
0
\end{array}$$

The general idea

These theorems are analytical in nature. In the spirit of Index Theory, they are better used when paired with integrality conditions:

Sample input

For a given family of Ω_{ε} , $\eta(D_{\varepsilon}) \in \mathbb{Z} \ \forall \varepsilon \in (0,1]$.

This turns the limit expressions into exact formulas, e.g.

$$\exists \varepsilon_0 > 0 : \eta(D_\varepsilon) = \eta(D_0) + \operatorname{ind}_R(D_Z) \eta(D_B) + \operatorname{ind}(D_B) \eta_R(D_Z) \ \forall \varepsilon \leq \varepsilon_0$$

Results similar to the Sample Input exist, as we'll see soon; we want to use the equation to compute $\eta(D_{\varepsilon})$, so one also needs to find a way to compute the rest of the terms.

Torus orbifolds

- The family of manifolds Ω_{ε} we'll consider comes from Joyce's generalisation [J96] of the Kummer construction;
- We consider a quotient T^7/Γ , with Γ a given finite group. In this case unlike in the picture we get actual singularities;
- More precisely, we get a cone-edge singularity with edge S¹.

Here we use the theorem

This is the integrality result we'll use, stemming from previous work of [CGN15]:

Theorem (Scaduto, '18)

Let $\Omega_0 = T^7/\Gamma$, let Ω_ε be the corresponding degenerating family. Then

$$\bar{\nu}(\Omega_{\varepsilon}) = 3\eta(B_{\varepsilon}) - 24\eta(D_{\varepsilon}) \in \mathbb{Z} \ \forall \varepsilon \in (0,1]$$
 (4)

where B_{ε} is the signature operator on Ω_{ε} , D_{ε} the spin Dirac operator on Ω_{ε} .

We obtain an exact expression: $\exists \varepsilon_0 \in (0,1]$ such that

$$\bar{\nu}(\Omega_{\varepsilon}) = 3(\eta(B_{0}) + \operatorname{ind}_{R}(B_{Z})\eta(B_{S^{1}}) + \operatorname{ind}(B_{S^{1}})\eta_{R}(B_{Z})) - 24(\eta(D_{0}) + \operatorname{ind}_{R}(D_{Z})\eta(D_{S^{1}}) + \operatorname{ind}(D_{S^{1}})\eta_{R}(D_{Z}))$$
(5)
$$= 3\eta(B_{0}) - 24\eta(D_{0}) = \bar{\nu}(\Omega_{0}) \quad \forall \varepsilon \leq \varepsilon_{0}$$

Introduction

Computation of $\bar{\nu}(\Omega_0)$

The group Γ is the finite group generated by α and β :

$$\begin{cases} \alpha : \ [(x_1,\ldots,x_7)] \mapsto [(x_2,x_3,x_7,-x_6,-x_4,x_1,x_5)] \\ \beta : \ [(x_1,\ldots,x_7)] \mapsto \left[\left(\frac{1}{2}-x_1,\frac{1}{2}-x_2,-x_3,-x_4,\frac{1}{2}+x_5,\frac{1}{2}+x_6,x_7\right)\right] \end{cases}$$

Both α and β commute with the orientation reversing isometry

$$\iota: [(x_1,\ldots,x_7)] \mapsto [-(x_1,\ldots,x_7)]$$

So ι descends to the quotient, hence $\eta(B_{T^7/\Gamma})=0=\eta(D_{T^7/\Gamma})$. One also shows

$$\eta(B_{T^7/\Gamma}) = \eta(B_0), \quad \eta(D_{T^7/\Gamma}) = \eta(D_0)$$

So
$$0 = \bar{\nu}(\Omega_0) = \bar{\nu}(\Omega_{\varepsilon}) \ \forall \varepsilon \leq \varepsilon_0$$
.

Main quest

Introduction

Option 1: keep following Joyce's construction and compute $\bar{\nu}(\chi)$. So far I have

$$\bar{\nu}(\chi) = 24 \left(h(T^7/\Gamma) + h_{L^2}(Z)h(S^1) - 2\operatorname{spf}\left((D_{M_s})_{s \in [0,1]} \right) - h(\chi) \right)$$

where $h(\cdot) := \dim \ker(D_{\cdot})$, spf denotes spectral flow.

Further directions

Secondary quests

Option 2: extend the definition of admissible operators to include the case $Y=\mathbb{R}P^3$: this would allow to access more of Joyce's examples. However, I expect the same formula to hold, and formal computations yield $\bar{\nu}(\Omega_{\varepsilon})=0$ for all of these examples as well.

Option 3: we saw $\operatorname{ind}_R(D_Z) = \operatorname{ind}_{L^2}(D_Z)$. From work by Gilles Carron [C01], $\operatorname{ind}_{L^2}(D_Z) = \operatorname{ind}_{APS}(D_{\hat{Z}})$, where $\hat{Z} = \{z \in Z : \rho(z) \leq 1\} \subseteq Z$. It would be interesting to obtain a similar interpretation for the rescaled η invariant $\eta_R(D_Z)$.

Option 4: W.D Gillam and S. Molcho proposed [GM15] a log-geometric reformulation of Melrose's theory, which is the theoretic foundation of this project. Working on this one would arguably lose sight of the trees, but start seeing the woods.

Bibliography

- S15 Sher, David A. "Conic degeneration and the determinant of the Laplacian." Journal d'Analyse Mathématique 126.1 (2015): 175-226;
- J96 Joyce, Dominic. "Compact Riemannian 7-manifolds with holonomy G2. II." Journal of Differential Geometry 43 (1996), 329?375
- CGN15 Crowley, Diarmuid, Sebastian Goette, and Johannes Nordström. "An analytic invariant of G2 manifolds." arXiv preprint arXiv:1505.02734 (2015);
 - C01 Carron, Gilles. "Théorèmes de l'indice sur les variétés non-compactes." Journal für die Reine und Angewandte Mathematik 541 (2001): 81-116;
 - GM15 Gillam, William D., and Samouil Molcho. "Log differentiable spaces and manifolds with corners." arXiv preprint arXiv:1507.06752 (2015).

Thank you for your attention!

Q&A