Validation of the block Radiation_on_Inclined_Surface

TABLE OF CONTENTS

1	Sof	tware versions	2
2	Des	scription of the model	2
	2.1	Block	2
	2.2	Model File	5
	2.3	Incidence angles	6
3	Res	sults	7
	3.1	Annual Solar Radiation	7
	3.2	Incidence angles	8
4	Lite	rature	8

Author

Bernd Hafner, Viessmann Werke, Germany

Complete path of the block in the Carnot Library

Carnot/weather/radiation_on_inclinded surface

Changes in the document

11/04/2012 created

19/04/2012 added incidence angles verification

Document	Project	Revision 1.1	Hafner
Validation_Report_inclined_surface.docx	-	Date: 19/04/19	Page 1 / 8

1 Software versions

Meteonorm Version 6.1

Version of Model, Carnot, Matlab and Operation system

surfrad.c (V 5.1.0), Carnot 5.2, Matlab R2010b, Windows XP surfrad.c V 7.0, Carnot 7.0, Matlab R2018b, Windows 10

2 Description of the model

2.1 Block

Detailed description of the equations is given by Duffie (2006).

Model for the comparison:

Document	Project	Revision 1.1	Hafner
Validation_Report_inclined_surface.docx	-	Date: 19/04/19	Page 2 / 8

"Look under Mask" of the Block:

Block parameters:

Document	Project	Revision 1.1	Hafner
Validation_Report_inclined_surface.docx	-	Date: 19/04/19	Page 3 / 8

The Position is varied:

Document	Project	Revision 1.1	Hafner
Validation_Report_inclined_surface.docx	-	Date: 19/04/19	Page 4 / 8

2.2 Model File

Comparison of horizontal and inclined solar radiation for the location Wuerzburg (Germany), results of Meteonorm and Carnot are compard. The input for Carnot is the Meteonorm weather data file generated for the same location using the 5.x Carnot weather data format (including direct normal radiation).

Solver parameters:

Document	Project	Revision 1.1	Hafner
Validation_Report_inclined_surface.docx	-	Date: 19/04/19	Page 5 / 8

2.3 Incidence angles

According to ISO 9806:2017 the longitudinal and transversal incidence angles are:

$$\theta_{\rm L}(\theta,\gamma) = \tan^{-1}\!\left(\!\frac{\sin(\theta)\!\cos(\gamma)}{\cos(\theta)}\!\right)$$

$$\theta_{\rm T}(\theta,\gamma) = \tan^{-1}\left(\frac{\sin(\theta)\sin(\gamma)}{\cos(\theta)}\right)$$

With

γ Solarazimutwinkel °

heta Einfallswinkel $^{\circ}$

The calculation of the incidence angle θ can be taken from literature (e.g. Duffie, Beckmann: Solar Engineering of Thermal Processes, 2006).

The validation was done with the calculation results of Meteonorm.

Document	Project	Revision 1.1	Hafner
Validation_Report_inclined_surface.docx	-	Date: 19/04/19	Page 6 / 8

3 Results

3.1 Annual Solar Radiation

Annual sum of solar radiation in kWh/m²

Perez Sky Model, ground reflectance 0.2

Azimut	Inclination	Meteonorm	CARNOT	Meteonorm	CARNOT
		Global	Global	Diffuse	Diffuse
0	0	1093	1092	594	593
0	30	1257	1255	628	629
0	60	1178	1178	583	585
0	90	882	883	471	474
45	30	1192	1190	614	614
45	60	1102	1101	565	567
45	90	846	846	461	464
-90	30	1041	1044	574	576
-90	60	906	912	511	516
-90	90	699	707	421	427
120	30	903	901	545	544
120	60	715	715	470	471
120	90	547	548	388	391
-180	30	775	774	512	512
-180	60	484	486	414	415
-180	90	373	376	350	351

Document	Project	Revision 1.1	Hafner
Validation_Report_inclined_surface.docx	-	Date: 19/04/19	Page 7 / 8

3.2 Incidence angles

 $Results \ of \ verify_RadiationInclinedSurface$

4 Literature

Duffie, J., Beckman, W.: Solar Engineering of thermal processes, John Wiley & Sons Inc, 2006

ISO 9806:2017 Solar energy – Solar thermal collectors – Test methods (ISO 9806:2017)

Document	Project	Revision 1.1	Hafner
Validation_Report_inclined_surface.docx	-	Date: 19/04/19	Page 8 / 8