Lecture 7
Segment 2

NHST: A closer look

NHST: A closer look

- Important concepts/topics
 - Logic of NHST
 - NHST problems
 - NHST alternatives

- Null Hypothesis Significance Testing (NHST)
 - $-H_0$ = null hypothesis: e.g., r = 0
 - $\overline{-H_A}$ = alternative hypothesis: e.g., r > 0

- Null Hypothesis Significance Testing (NHST)
 - $-H_0$ = null hypothesis: e.g., B = 0
 - $\overline{-H_A}$ = alternative hypothesis: e.g., B > 0

- Null Hypothesis Significance Testing (NHST)
 - -Assume H_0 is true, then calculate the probability of observing data with these characteristics, given that H_0 is true
 - Thus, $p = P(D|H_0)$
 - If $p < \alpha$ then Reject H_0 , else Retain H_0

Experimenter Decision

		_	
101	IT'	1	h
	' 1°1	rm	'riit]

	Retain H ₀	Reject H ₀	
H ₀ true	Correct	Type I error	
	Decision	(False alarm)	
H ₀ false	Type II error	Correct	
	(Miss)	Decision	

The normal distribution

Experimenter Decision

Truth

		Retain H ₀	Reject H ₀
H_0 true		$p = (1 - \alpha)$	$p = \alpha$
H_0 fals	se	$p = \beta$ (1 - POWER)	$p = (1 - \beta)$ POWER

The normal distribution

- $p = P(D|H_0)$
- Given that the null hypothesis is true, the probability of these, or more extreme data, is p
 - NOT: The probability of the null hypothesis being true is p
 - In other words, $P(D|H_0) \Leftrightarrow P(H_0|D)$

NHST can be applied to:

- y
 - Is the correlation significantly different from zero?
- B
 - Is the slope of the regression line for X significantly different from zero?

NHST for B

- t = B / SE
 - B is the unstandardized regression coefficient
 - -SE = standard error
 - $-SE = \sqrt{SS.RESIDUAL/(N-2)}$

NHST: Problems!

- Biased by N
- Binary outcome
- Null "model" is a weak hypothesis

NHST: Problems!

- Biased by N
 - p-value is based on t-value
 - -t = B / SE
 - $-SE = \sqrt{SS.RESIDUAL/(N-2)}$

The normal distribution

NHST: Problems!

- Binary outcome
 - Technically speaking, one must Reject or Retain the Null Hypothesis
 - What if p = .06?

NHST: Problems!

- Null "model" is a weak hypothesis
 - Demonstrating that your model does better than NOTHING is not very impressive

- Effect size
- Confidence intervals
- Model comparison

- Effect size
 - Correlation coefficient (r)
 - Standardized regression coefficient (B)
 - Model R²

- Confidence intervals
 - Sample statistics are "point estimates"
 - Specific to the sample
 - Will vary as a function of sampling error

- Confidence intervals
 - Instead report "interval estimates"
 - Width of interval is a function of standard error

- Model comparison
 - Propose multiple models
 - Model A
 - Model B
 - Compare Model R²

NHST: A closer look

- Important concepts/topics
 - Logic of NHST
 - NHST problems
 - NHST alternatives

Image in slides 7 and 9 was retrieved from http://www.syque.com/quality_tools/toolbook/Variation/Image375.gif

© 2012 Andrew Conway