1 Infinite Words

Theorem 1.1. Every non-empty ω -regular language contains an ultimately periodic word.

Theorem 1.2. For a Kripke structure K with initial state s and $\varphi \in LTL$, the model checking problem $L(K, s) \subseteq L(\varphi)$? is PSPACE-complete.

Proof. **PSPACE** Compute the intersection automaton for $L(K, s) \cap L(\neg \varphi)$ and test it for emptiness. **PSPACE-hard** Encode a poly.-length Turing tape as a Kripke structure and its correct behavior in LTL.

Theorem 1.3 (Büchi). The MSO theory of $(\mathbb{N}, +1, <, 0)$ is decidable.

Proof. Corresponds to S1S formula. Can be checked with NBA emptiness test.

Theorem 1.4. The FO theory of $(\mathbb{R}, +, <, 0)$ is decidable.

Proof. Encode real numbers x by triples of sets (X_s, X_i, X_f) with the number's sign $(X_s = \emptyset)$ or $\{0\}$, the positive decimal digits in binary encoding, and the positive fractional digits in binary encoding. Then an FO sentence can be transformed to an equi-satisfiable MSO sentence over $(\mathbb{N}, +1, <, 0)$.

Theorem 1.5. Subset-construction does not suffice to determinize NBAs.

Theorem 1.6. For every n, there is $L_n \subseteq \Sigma^{\omega}$ s.t. there is an NBA that recognizes L_n with n+2 states, but every det. Rabin automaton that recognizes L_n has at least n! states.

Theorem 1.7. There is a DBA-recog. language which does not have a unique minimal DBA. DBAs minimized with the DFA minimization algorithm can be arbitrarily bad compared to a minimal DBA.

Theorem 1.8. Weak DBAs can be minimized uniquely in polynomial time.

Theorem 1.9. Given an ABA \mathcal{A} , the dual $\tilde{\mathcal{A}}$ is an alternating co-Büchi automaton which accepts $\overline{L(\mathcal{A})}$, with $\tilde{F} = Q \setminus F$ and $\tilde{\delta}$ exchanging true/false and \wedge/\vee .

1.1 Simulation Game

Definition 1. Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$ be an NBA. We define the delayed simulation game $\mathcal{G}_{\mathcal{A}}(G_{\mathcal{A}}, Win)$ as follows

- $G_A = (V_0, V_1, E, c)$
- $V_0 = \Sigma \times Q \times Q$
- $V_1 = Q \times Q$
- Player 0 moves from (a, p, q) to a(p, p') with $(q, a, p') \in \Delta$
- Player 1 moves from (q, q') to a (a, p, q') with $(q, a, p) \in \Delta$

•
$$c: V \to \{-1, 0, 1\}$$
 with $c(v) = \begin{cases} -1 & \text{if } v \in F \times (Q \setminus F) \\ 1 & \text{if } v \in Q \times F \\ 0 & \text{otherwise} \end{cases}$

• $\alpha \in Win \ iff \ after \ every -1 \ in \ \alpha, \ there \ is \ a \ 1 \ later \ on.$

Write $q \leq_{de} q'$ if player 0 has a winning strategy from (q, q').

Idea: Player 1 chooses symbols in Σ and transitions on the second state. Player 0 has to answer with transition on the first state which lead to a run of the same acceptance.

Theorem 1.10. If $q \leq_{de} q'$ and $q' \leq_{de} q$, then q and q' can be merged in A without changing the language of the automaton.

Theorem 1.11. The delayed simulation game can be reduced to a Büchi game in linear time.

2 Finite Trees

Theorem 2.1 (Pumping Principle). Let $T \subseteq T_{\Sigma}$ be a regular ranked tree language. There is a $n \in \mathbb{N}$ such that for all trees $t \in T$, all m > n, and all paths $\pi_1 \dots \pi_m$, there are $1 \le i < j \le m$ such that for all $k \in \mathbb{N}$:

$$t[\circ/u] \cdot (t[\circ/v]|_u)^k \cdot t|_v \in T$$

where $u = \pi_1 \dots \pi_i$ and $v = \pi_1 \dots \pi_j$.

Definition 2. Let $T \subseteq T_{\Sigma}$. The Myhill-Nerode equivalence is $\sim_T \subseteq T_{\Sigma} \times T_{\Sigma}$ with

$$t_1 \sim_T t_2 \Leftrightarrow \forall s \in S_{\Sigma} : s \cdot t_1 \in T \leftrightarrow s \cdot t_2 \in T$$

The index of T is $Index(\sim_T) := |T/\sim_T|$.

Theorem 2.2. Let $T \subseteq T_{\Sigma}$. T is regular iff $Index(\sim_T)$ is finite. If T is regular, A_T is the minimal DTA

Theorem 2.3. The emptiness problem for NTAs can be reduced to HORN-SAT in linear time.

2.1 BTTs

Theorem 2.4. The equivalence problem for BTTs is undecidable.

Proof. Follows from the equivalence problem of rational word transducer.

Theorem 2.5. The emptiness problem for BTTs is decidable in polynomial time.

Proof. One can construct in polynomial time a \uparrow NTA that recognizes the domain of a given BTT. The emptiness problem of BTTs then is equivalent to the emptiness problem of \uparrow NTAs.

Theorem 2.6. The type-checking problem (given regular T, T', is $A(T) \subseteq T'$?) is decidable.

Proof. $\mathcal{A}(T) \subseteq T'$ iff $\mathcal{A}^{-1}((T')^{\complement}) \cap T = \emptyset$. If T' is regular then so is $\mathcal{A}^{-1}((T')^{\complement}) \cap T$ and this can be decided.

Theorem 2.7. If T is regular, then $A^{-1}(T)$ is regular. If A is linear, then $A(T_{\Sigma})$ is regular.

Theorem 2.8. There are BTT-definable relations R_1, R_2 such that $R_1 \circ R_2$ is not BTT-definable.

Proof. Let $\Sigma = \{f, g, h, c\}$ and for both $i \in \{1, 2\}$: $A_i = (\{q, q_f\}, \Sigma, \Sigma, \Delta_i, \{q_f\})$ where

- Δ_1 :
 - $-c \to q(c)$
- $g(q(x_1)) \to q(g(x_1))$
 - $-q(x_1) \rightarrow q_f(f(x_1))$
- Δ_2 :
 - $-c \rightarrow q(c)$
 - $-g(q(x_1)) \rightarrow q(g(x_1))$
 - $g(q(x_1)) \to q(h(x_1))$
 - $-f(q(x_1), q(x_2)) \to q_f(f(x_1, x_2))$

 \mathcal{A}_1 converts a tree $t \in T_{\{c,g\}}$ to f(t,t). \mathcal{A}_2 replaces an arbitrary number of gs by hs. $R_1 \circ R_2$ defines the set of trees $f(t_1,t_2)$ where t_1 and t_2 are of equal height.

Theorem 2.9. If A_1 is linear or A_2 is deterministic Then $R(A_1) \circ R(A_2)$ is BTT-definable.

3 Infinite Trees

Theorem 3.1 (BTA Pumping). For $t \in T_{\Sigma}, x \in \{0, 1\}^*, y \in \{0, 1\}^+, let$

$$t^*_{[x,y]}: \{0,1\}^* \to \Sigma, z \mapsto \begin{cases} t(z) & \text{if } xy \not\sqsubseteq z \\ xz' & \text{if } \exists n > 0: z = xy^nz' \text{ with } y \not\sqsubseteq z' \end{cases}.$$

Let \mathcal{A} be a BTA, $t \in T(\mathcal{A})$, ρ an accepting run of \mathcal{A} on t, and $x, y, y' \in \{0, 1\}^*$ s.t. $\rho(x) = \rho(xy)$, $y' \subseteq y$, and $\rho(xy') \in F$. Then $t^*_{[x,y]} \in T(\mathcal{A})$.

Theorem 3.2. Every non-empty regular tree language contains a regular tree.

Theorem 3.3 (Rabin's Tree Theorem). The MSO theory of $\underline{T_2}$ is decidable for formulas $\varphi(X_1, \ldots, X_n)$ and a model $X_1, \ldots X_n \subseteq \{0,1\}^*$ is computable.

Proof. Transform φ into an equivalent PTA. A model can be found by solving the emptiness game.