

U.S. Serial No. 09/776,466
 Attorney Docket No. P-087-US1
 Customer Number 27038
 Page 2

II. AMENDMENTS TO THE CLAIMS

1. (Previously Amended) A compound of formula I:

I

wherein

R^2 is hydrogen or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

R^3 is $-OR^c$, $-NR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$, $-NR^c-R^a-Y-R^b-(Z)_x$, $-NR^cR^c$, or

$-O-R^c$;

R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 3

R⁵ is selected from the group consisting of hydrogen, halo, -CH(R^c)-NR^cR^c, -CH(R^c)-NR^cR^c and -CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x;

R⁶ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, -R^a-Y-R^b-(Z)_x, -C(O)R^d and a saccharide group optionally substituted with -NR^c-R^a-Y-R^b-(Z)_x, or R⁵ and R⁶ can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with -NR^c-R^a-Y-R^b-(Z)_x;

R⁷ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, -R^a-Y-R^b-(Z)_x, and -C(O)R^d;

R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R⁸ and R¹⁰ are joined to form -Ar¹-O-Ar²-, where Ar¹ and Ar² are independently arylene or heteroarylene;

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

R¹² is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, -C(O)R^d, -C(NH)R^d, -C(O)NR^cR^c, -C(O)OR^d, -C(NH)NR^cR^c and -R^a-Y-R^b-(Z)_x, or R¹¹ and R¹² are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

U.S. Serial No. 09/776,466
 Attorney Docket No. P-087-US1
 Customer Number 27038
 Page 4

R^{13} is selected from the group consisting of hydrogen or $-OR^{14}$;
 R^{14} is selected from hydrogen, $-C(O)R^d$ and a saccharide group;
 R^{15} is hydrogen or $-R^a-Y-R^b-(Z)_x$;
 R^{16} is hydrogen or methyl;
 R^{17} is hydrogen, alkyl or substituted alkyl;
 each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene;
 each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;
 each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(O)R^d$;
 each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;
 R^e is a saccharide group;
 W is selected from the group consisting of $-SR^e$, $-S-S-R^d$, $-NR^eR^e$, $-S(O)R^d$, $-SO_2R^d$, $-NR^eC(O)R^d$, $-OSO_2R^d$, $-OC(O)R^d$, $-NR^eSO_2R^d$, $-C(O)NR^eR^e$, $-C(O)OR^e$, $-C(NR^e)OR^e$, $-SO_2NR^eR^e$, $-SO_2OR^e$, $-P(O)(OR^e)_2$, $-P(O)(OR^e)NR^eR^e$, $-OP(O)(OR^e)_2$, $-OP(O)(OR^e)NR^eR^e$, $-OC(O)OR^d$, $-NR^eC(O)OR^d$, $-NR^eC(O)NR^eR^e$, $-OC(O)NR^eR^e$, $-NR^eSO_2NR^eR^e$, $-N^+(R^e)=CR^eR^e$, $-N=P(R^d)_3$, $-N^+(R^d)_3$, $-P^+(R^d)_3$, $-C(S)OR^d$, and $-C(S)SR^d$;
 X^1 , X^2 and X^3 are independently selected from hydrogen or chloro;
 each Y is independently selected from the group consisting of oxygen, sulfur, $-S-S-$, $-NR^e-$, $-S(O)-$, $-SO_2-$, $-NR^eC(O)-$, $-OSO_2-$, $-OC(O)-$, $-NR^eSO_2-$, $-C(O)NR^e-$, $-C(O)O-$, $-SO_2NR^e-$, $-SO_2O-$, $-P(O)(OR^e)O-$, $-P(O)(OR^e)NR^e-$, $-OP(O)(OR^e)O-$, $-OP(O)(OR^e)NR^e-$, $-OC(O)O-$, $-NR^eC(O)O-$, $-NR^eC(O)NR^e-$, $-OC(O)NR^e-$ and $-NR^eSO_2NR^e-$;

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 5

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2;

x is 1 or 2;

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof;

provided that at least one of R¹⁵, R², R³, R⁴, R⁵, R⁶, R⁷ or R¹² has a substituent of the formula -R^a-Y-R^b-(Z)_x;

and further provided that:

- (i) when Y is -NR^c-, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (ii) when Y is -C(O)NR^c-, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and
- (iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.

2. (Original) The compound of Claim 1, wherein R² is hydrogen and R¹³ is -OH.
3. (Original) The compound of Claim 2, wherein R⁴, R⁶ and R⁷ are each hydrogen.
4. (Original) The compound of Claim 3, wherein R⁸ is -CH₂C(O)NH₂.
5. (Original) The compound of Claim 4, wherein R⁹ is hydrogen; R¹⁰ is isobutyl; R¹¹ is methyl; and R¹² is hydrogen.

U.S. Serial No. 09/776,466
 Attorney Docket No. P-087-US1
 Customer Number 27038
 Page 6

6. (Original) The compound of Claim 5, wherein R⁵ is hydrogen, -CH₂-NHR^c, -CH₂-NR^cR^c and -CH₂-NH-R^a-Y-R^b-(Z)_x.

7. (Original) The compound of Claim 6, wherein R³ is -OR^c or -NR^cR^c.

8. (Original) The compound of Claim 7, wherein R³ is -OH and R⁵ is hydrogen.

9. (Original) The compound of Claim 8, wherein R¹⁵ is -R^a-Y-R^b-(Z)_x.

10. (Previously Amended) A compound of formula II:

II

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 7

wherein

R¹⁵ is hydrogen or -R^a-Y-R^b-(Z)_x;

R¹⁶ is hydrogen or methyl;

R²² is -OR^c, -NR^cR^c, -O-R^a-Y-R^b-(Z)_x or -NR^c-R^a-Y-R^b-(Z)_x;

R²³ is selected from the group consisting of hydrogen, halo, -CH(R^c)-NR^cR^c, -CH(R^c)-R^c and -CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x;

R²⁴ is selected from the group consisting of hydrogen and lower alkyl;

R²⁵ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R²⁶ is selected from the group consisting of hydrogen and lower alkyl; or R²⁵ and R²⁶ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

R²⁷ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, -C(O)R^d, -C(NH)R^d, -C(O)NR^cR^c, -C(O)OR^d, -C(NH)NR^cR^c and -R^a-Y-R^b-(Z)_x, or R²⁶ and R²⁷ are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and -C(O)R^d;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl,

U.S. Serial No. 09/776,466
 Attorney Docket No. P-087-US1
 Customer Number 27038
 Page 8

cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R^c is an aminosaccharide group;

W is selected from the group consisting of $-SR^c$, $-S-S-R^d$, $-NR^cR^c$, $-S(O)R^d$, $-SO_2R^d$, $-NR^cC(O)R^d$, $-OSO_2R^d$, $-OC(O)R^d$, $-NR^cSO_2R^d$, $-C(O)NR^cR^c$, $-C(O)OR^c$, $-C(NR^c)OR^c$, $-SO_2NR^cR^c$, $-SO_2OR^c$, $-P(O)(OR^c)_2$, $-P(O)(OR^c)NR^cR^c$, $-OP(O)(OR^c)_2$, $-OP(O)(OR^c)NR^cR^c$, $-OC(O)OR^d$, $-NR^cC(O)OR^d$, $-NR^cC(O)NR^cR^c$, $-OC(O)NR^cR^c$, $-NR^cSO_2NR^cR^c$, $-N^+(R^d)=CR^cR^c$, $-N=P(R^d)_3$, $-N^+(R^d)_3$, $-P^+(R^d)_3$, $-C(S)OR^d$, and $-C(S)SR^d$;

each Y is independently selected from the group consisting of oxygen, sulfur, $-S-S-$, $-NR^c-$, $-S(O)-$, $-SO_2-$, $-NR^cC(O)-$, $-OSO_2-$, $-OC(O)-$, $-NR^cSO_2-$, $-C(O)NR^c-$, $-C(O)O-$, $-SO_2NR^c-$, $-SO_2O-$, $-P(O)(OR^c)O-$, $-P(O)(OR^c)NR^c-$, $-OP(O)(OR^c)O-$, $-OP(O)(OR^c)NR^c-$, $-OC(O)O-$, $-NR^cC(O)O-$, $-NR^cC(O)NR^c-$, $-OC(O)NR^c-$ and $-NR^cSO_2NR^c-$;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2;

x is 1 or 2;

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof;

provided that at least one of R^{15} , R^{22} , R^{23} or R^{27} has a substituent of the formula

$-R^a-Y-R^b-(Z)_x$;

and further provided that:

- (i) when Y is $-NR^c-$, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (ii) when Y is $-C(O)NR^c-$, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and
- (iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 9

11. (Original) The compound of Claim 10, wherein R²⁴ is hydrogen; R²⁵ is isobutyl; R²⁶ is methyl; and R²⁷ is hydrogen.

12. (Original) The compound of Claim 11, wherein R²² is -OH.

13. (Original) The compound of Claim 12, wherein R²³ is hydrogen.

14. (Original) The compound of Claim 13, wherein R¹⁵ is -R^a-Y-R^b-(Z)_x.

15. (Original) The compound of Claim 9 or 14, wherein W is -NH₂.

16. (Original) The compound of Claim 15, wherein the -R^a-Y-R^b-(Z)_x group is selected from the group consisting of:

- CH₂CH₂-NH-(CH₂)₉CH₃;
- CH₂CH₂CH₂-NH-(CH₂)₈CH₃;
- CH₂CH₂CH₂CH₂-NH-(CH₂)₇CH₃;
- CH₂CH₂-NHSO₂-(CH₂)₉CH₃;
- CH₂CH₂-NHSO₂-(CH₂)₁₁CH₃;
- CH₂CH₂-S-(CH₂)₈CH₃;
- CH₂CH₂-S-(CH₂)₉CH₃;
- CH₂CH₂-S-(CH₂)₁₀CH₃;
- CH₂CH₂CH₂-S-(CH₂)₈CH₃;
- CH₂CH₂CH₂-S-(CH₂)₉CH₃;
- CH₂CH₂CH₂-S-(CH₂)₃-CH=CH-(CH₂)₄CH₃ (*trans*);
- CH₂CH₂CH₂CH₂-S-(CH₂)₇CH₃;
- CH₂CH₂-S(O)-(CH₂)₉CH₃;
- CH₂CH₂-S-(CH₂)₆Ph;

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 10

-CH₂CH₂-S-(CH₂)₈Ph;
-CH₂CH₂CH₂-S-(CH₂)₈Ph;
-CH₂CH₂-NH-CH₂-4-(4-Cl-Ph)-Ph;
-CH₂CH₂-NH-CH₂-4-[4-CH₃)₂CHCH₂-]-Ph;
-CH₂CH₂-NH-CH₂-4-(4-CF₃-Ph)-Ph;
-CH₂CH₂-S-CH₂-4-(4-Cl-Ph)-Ph;
-CH₂CH₂-S(O)-CH₂-4-(4-Cl-Ph)-Ph;
-CH₂CH₂CH₂-S-CH₂-4-(4-Cl-Ph)-Ph;
-CH₂CH₂CH₂-S(O)-CH₂-4-(4-Cl-Ph)-Ph;
-CH₂CH₂CH₂-S-CH₂-4-[3,4-di-Cl-PhCH₂O-]-Ph;
-CH₂CH₂-NHSO₂-CH₂-4-[4-(4-Ph)-Ph]-Ph;
-CH₂CH₂CH₂-NHSO₂-CH₂-4-(4-Cl-Ph)-Ph;
-CH₂CH₂CH₂-NHSO₂-CH₂-4-(Ph-C≡C-)-Ph;
-CH₂CH₂CH₂-NHSO₂-4-(4-Cl-Ph)-Ph; and
-CH₂CH₂CH₂-NHSO₂-4-(naphth-2-yl)-Ph.

17. (Currently Amended) A pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a compound of Claim 1 or 10.

18. (Currently Amended) A pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a cyclodextrin in combination with a compound of Claim 1 or 10.

19. (Canceled).

U.S. Serial No. 09/776,466
 Attorney Docket No. P-087-US1
 Customer Number 27038
 Page 11

20. (Previously Amended) A compound of formula III:

III

or a pharmaceutically-acceptable salt thereof; wherein:

W is $-\text{NH}_2$;

R¹⁷ is hydrogen;

R²² is $-\text{OH}$; and

R¹⁵ is selected from the group consisting of:

- CH₂CH₂-NH-(CH₂)₉CH₃;
- CH₂CH₂-N[(CH₂)₉CH₃]₂;
- CH₂CH₂-NH-(CH₂)₇CH₃;
- CH₂CH₂-NH-(CH₂)₅CH₃;

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 12

-CH₂CH₂-NH-CH₂Ph;
-CH₂CH₂-NH-CH₂-4-Ph-Ph;
-CH₂CH₂-NH-CH₂-4-(4-Cl-Ph)-Ph;
-CH₂CH₂-NH-(CH₂)₈CH₃;
-CH₂CH₂-NH-CH₂-cyclohexyl;
-CH₂CH₂CH₂-NH-(CH₂)₈CH₃;
-CH₂CH₂CH₂CH₂CH₂-NH-(CH₂)₇CH₃;
-CH₂CH₂CH₂CH₂CH₂-NH-(CH₂)₆CH₃;
-CH₂CH₂-N(CH₃)-(CH₂)₉CH₃;
-CH₂CH₂-NH-(CH₂)₃CH=CH(CH₂)₄CH₃ (*trans*);
-CH₂CH₂-NH-CH₂CH=C(CH₃)(CH₂)₂-CH=C(CH₃)₂ (*trans, trans*);
-CH₂CH₂-NH-(CH₂)₈CH(OH)CH₃;
-CH₂CH₂-NH-(CH₂)₈CH=CH₂;
-CH₂CH₂-NH-CH₂-cyclopropyl;
-CH₂CH₂-NHC(O)-(CH₂)₆CH(CH₃)CH₃;
-CH₂CH₂-NHC(O)-(CH₂)₈CH₃;
-CH₂CH₂-OC(O)-(CH₂)₈CH₃;
-CH₂-C(O)O-(CH₂)₉CH₃;
-CH₂-C(O)NH-(CH₂)₉CH₃;
-CH₂-C(O)O-(CH₂)₇CH₃;
-CH₂CH₂-NHSO₂-(CH₂)₇CH₃;
-CH₂CH₂-OSO₂-(CH₂)₇CH₃;
-CH₂CH₂-S-(CH₂)₉CH₃;
-CH₂CH₂-NHC(O)-(CH₂)₆CH₃;
-CH₂CH₂-NHC(O)-(CH₂)₇CH₃;
-CH₂CH₂-NHC(O)-(CH₂)₉CH₃;
-CH₂-C(O)NH-(CH₂)₆CH₃;
-CH₂-C(O)NH-(CH₂)₇CH₃;

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 13

-CH₂-C(O)NH-(CH₂)₈CH₃;
-CH₂CH₂-NH-(CH₂)₆Ph;
-CH₂CH₂-NH-(CH₂)₈Ph;
-CH₂CH₂-NH-CH₂Ph;
-CH₂CH₂-NH-CH₂-4-Cl-Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₂O-]Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₄O-]Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₆O-]Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₈O-]Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₂-]Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₃-]Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₄-]Ph;
-CH₂CH₂-NH-CH₂-4-(PhO-)Ph;
-CH₂CH₂-NH-CH₂-4-(PhS-)Ph;
-CH₂CH₂-NH-CH₂-3-(PhO-)Ph;
-CH₂CH₂-NH-CH₂-4-(cyclohexyl-)Ph;
-CH₂CH₂-NH-CH₂-4-{4-[CH₃(CH₂)₄O-]-Ph}-Ph;
-CH₂CH₂-NH-CH₂-4-CF₃-Ph;
-CH₂CH₂-NH-CH₂-4-(PhCH₂O-)Ph;
-CH₂CH₂-NH-CH₂-4-(4-CH₃-PhCH₂O-)Ph;
-CH₂CH₂-NH-(CH₂)₇CH(CH₃)₂;
-(CH₂)₅-NH-(CH₂)₆CH₃;
-(CH₂)₃-NH-(CH₂)₉CH₃;
-(CH₂)₄-NH-(CH₂)₉CH₃;
-(CH₂)₅-NH-(CH₂)₉CH₃;
-CH₂CH₂-NH-(CH₂)₇CH₃;
-CH₂CH₂-NH-CH₂-cyclohexyl;
-CH₂CH₂-S-(CH₂)₇CH₃;

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 14

-CH₂CH₂-OC(O)-(CH₂)₆CH₃;
-CH₂CH₂-NHSO₂-(CH₂)₉CH₃;
-CH₂CH₂-OSO₂-(CH₂)₉CH₃;
-CH₂CH₂-NH-CH₂CH=CH-CH=CH(CH₂)₄CH₃ (*trans, trans*);
-CH₂CH₂-NH-CH₂CH=CH-CH=CH(CH₂)₃CH₃ (*trans, trans*);
-CH₂CH₂-NH-CH₂CH=CH-CH=CHCH₂CH₃ (*trans, trans*);
-CH₂CH₂-NH-CH₂CH=CH-CH₂CH₂CH₂CH=CHCH₂CH₃ (*trans, trans*);
-CH₂CH₂-NH-CH₂4-Cl-Ph;
-CH₂CH₂-NH-CH₂-4-(PhCH₂O-)Ph;
-CH₂CH₂-NH-CH₂-4-(4-CH₃-PhCH₂O-)Ph;
-CH₂CH₂-NH-CH₂-4-(4-Cl-PhCH₂O-)Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₂O-]Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₄O-]Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₆O-]Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₈O-]Ph;
-CH₂CH₂-NH-CH₂-4-[(CH₃)₂CHCH₂-]Ph;
-CH₂CH₂-NH-CH₂-4-(Ph-S-)Ph;
-CH₂CH₂-NH-CH₂-4-(4-CF₃-Ph)-Ph;
-CH₂CH₂-NH-CH₂-4-{4-[CH₃(CH₂)₄O-]-Ph}-Ph;
-CH₂CH₂-NH-(CH₂)₆Ph;
-CH₂CH₂-NH-(CH₂)₈Ph;
-CH₂CH₂-NH-CH₂CH₂-(cyclopropyl);
-CH₂-C(O)O-(CH₂)₇CH₃;
-CH₂CH₂-NH-CH₂CH=CH-CH=CHCH₃ (*trans, trans*);
-CH₂CH₂-NHSO₂-4-Ph-Ph;
-CH₂CH₂-N(C(O)CH₂NHCH₃)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)CH₃)-(CH₂)₉CH₃;
-CH₂CH₂-S(O)-(CH₂)₉CH₃;

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 15

-CH₂CH₂-N(CH₂COOH)-(CH₂)₉CH₃;
-CH₂CH₂-NHSO₂-4-(4-Cl-Ph)-Ph;
-CH₂CH₂-N(CH₂CO₂CH₃)-(CH₂)₉CH₃;
-CH₂-C(O)O-CH₂CH₃;
-CH₂CH₂-S(O)-(CH₂)₇CH₃;
-CH₂CH₂-NHSO₂-3-(4-Cl-Ph)-Ph;
-CH₂CH₂-NHSO₂-(CH₂)₇CH₃;
-CH₂CH₂CH₂-NHSO₂-4-(4-Cl-Ph)-Ph;
-CH₂CH₂-NHSO₂-4-(naphth-2-yl)-Ph;
-CH₂CH₂-NH-(CH₂)₁₁CH₃;
-CH₂CH₂-N[C(O)CH(NH₂)(CH₂)₄NH₂]- (CH₂)₉CH₃ (R isomer);
-CH₂CH₂CH₂-NH-CH₂-4-(4-CF₃-Ph)-Ph;
-CH₂CH₂CH₂-NH-CH₂-4-(4-CH₃O-Ph)-Ph;
-CH₂CH₂-NH-CH₂-4-[(CH₃)₃CO]-Ph;
-CH₂CH₂-NH-CH₂-3,4-di-(CH₃CH₂O)-Ph;
-CH₂CH₂-NH-CH₂-4-[(CH₃)₂CH]-Ph;
-CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₃C≡C]-Ph;
-CH₂CH₂-NH-CH₂-4-[(CH₃)₂CHO]-Ph;
-CH₂CH₂-NH-CH₂-4-(PhC≡C)-Ph;
-CH₂CH₂-NH-CH₂-4-[(CH₃)₃C]-Ph;
-CH₂CH₂-NH-CH₂-5-(PhC≡C)-thiophen-2-yl;
-CH₂CH₂-NH-CH₂-4-(PhCH=CH)-Ph (trans);
-CH₂CH₂-NH-CH₂-(CH=CH)₄-CH₃ (trans, trans, trans, trans);
-CH₂CH₂-N(C(O)Ph)-(CH₂)₉CH₃;
-CH₂CH₂-NH-CH₂-4-[4-(CH₃)₃C-thiazol-2-yl]-Ph;
-CH₂CH₂-N[(CH₂)₉CH₃]-C(O)CH₂-S-4-pyridyl;
-CH₂CH₂-N[(CH₂)₉CH₃]-C(O)-2-[PhCH(CH₃)NHC(O)-]Ph (R isomer);
-CH₂CH₂-N[(CH₂)₉CH₃]-C(O)-(1-PhCH₂OC(O)-2-oxoimidazolidin-5-yl) (S isomer);

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 16

-CH₂CH₂-N[(CH₂)₉CH₃]-C(O)-1-HO-cyclopropyl;
-CH₂CH₂-N(C(O)CH₂-naphth-2-yl)-(CH₂)₉CH₃;
-CH₂CH₂-N[C(O)(CH₂)₉CH₂OH]-(CH₂)₉CH₃;
-CH₂CH₂-N[C(O)CH₂(OCH₂CH₂)₂OCH₃]-(CH₂)₉CH₃;
-CH₂CH₂-N[C(O)CH₂CH(Ph)₂]-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)CH₂-3-HO-Ph)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)CH₂-NHC(O)-3-CH₃-Ph)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)CH₂CH₂-O-Ph)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)CH₂CH₂-3-pyridyl)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)(CH₂)₃-4-CH₃O-Ph)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)-indol-2-yl)-(CH₂)₉CH₃;
-CH₂CH₂-N{C(O)-1-[CH₃COC(O)-]-pyrrolidin-2-yl}-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)CH₂-NHC(O)-CH=CH-furan-2-yl)-(CH₂)₉CH₃ (*trans*);
-CH₂CH₂-N[C(O)-1-CH₃CH₂-7-CH₃-4-oxo-1,4-dihydro[1,8]naphthyridin-3-yl]-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)-1,3-benzodioxol-5-yl)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)CH₂-4-oxo-2-thioxothiazolidin-3-yl)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)-3,4,5-tri-HO-cyclohex-1-en-1-yl)-(CH₂)₉CH₃ (R,S,R isomer);
-CH₂CH₂-N(C(O)CH₂CH₂C(O)NH₂)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)CH₂-5-CH₃-2,4-dioxo-3,4-dihydropyrimidin-1-yl)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)CH=CH-imidazol-4-yl)-(CH₂)₉CH₃ (*trans*);
-CH₂CH₂-N[C(O)CH(CH₂CH₂C(O)NH₂)-NHC(O)O-CH₂Ph]-(CH₂)₉CH₃ (S isomer);
-CH₂CH₂-N[C(O)CH(CH₂OH)NHC(O)O-CH₂Ph]-(CH₂)₉CH₃ (S isomer);
-CH₂CH₂-N[C(O)CH(CH(OH)CH₃]NH-C(O)O-CH₂Ph]-(CH₂)₉CH₃ (S isomer);
-CH₂CH₂-N(C(O)CH₂NHSO₂-4-CH₃-Ph)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)(CH₂)₃-NH₂)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)-pyrrolidin-2-yl)-(CH₂)₉CH₃ (R isomer);
-CH₂CH₂-N(C(O)-pyrrolidin-2-yl)-(CH₂)₉CH₃ (S isomer);
-CH₂CH₂-N(C(O)CH(NH₂)(CH₂)₄-NH₂)-(CH₂)₉CH₃ (S isomer);

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 17

-CH₂CH₂-N(C(O)CH(NH₂)CH₂-3-HO-Ph)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)CH(NH₂)CH₃)-(CH₂)₉CH₃ (R isomer);
-CH₂CH₂-N[C(O)CH(CH₂OH)NHC(O)-CH₃]- (CH₂)₉CH₃ (S isomer);
-CH₂CH₂-N[C(O)CH(NHC(O)CH₃)-(CH₂)₃-NHC(NH)NH₂]- (CH₂)₉CH₃ (S isomer);
-CH₂CH₂-N(C(O)CH₂NHC(O)CH₃)-(CH₂)₉CH₃;
-CH₂CH₂-N(C(O)CH(CH₃)OC(O)CH-(NH₂)CH₃)-(CH₂)₉CH₃ (R,R isomer);
-CH₂CH₂-N(C(O)-5-oxopyrrolidin-2-yl)-(CH₂)₉CH₃ (R isomer);
-CH₂CH₂-NHC(O)-CH₂CH(CH₂CH₂Ph)-{3-[4-(9H-fluoren-9-yl)CH₂OC(O)NH(CH₂)₄-]-1,4-dioxohexahydro-1,2- α -pyrazin-2-yl} (S,S,S isomer);
-CH₂CH₂-NHSO₂-4-(2-Cl-Ph)-Ph;
-CH₂CH₂-NHSO₂-4-[4-(CH₃)₃C-Ph]-Ph;
-CH₂CH₂-NHSO₂-4-[4-(Ph)-Ph-]Ph;
-CH₂CH₂-NH-4-(4-CF₃-Ph)-Ph;
-CH₂CH₂-S-(CH₂)₈Ph;
-CH₂CH₂-S-(CH₂)₃CH=CH(CH₂)₄CH₃ (*trans*);
-CH₂CH₂-S-CH₂CH₂(CF₂)₅CF₃;
-CH₂CH₂-S-CH₂-4-[(CH₃)₂CHCH₂-]Ph;
-CH₂CH₂-S-(CH₂)₁₁CH₃;
-CH₂CH₂-S-(CH₂)₈CH₃;
-CH₂CH₂-S-CH₂-3,4-di-(PhCH₂O-)Ph;
-CH₂CH₂CH₂-S-(CH₂)₈Ph;
-CH₂CH₂CH₂-S-(CH₂)₈CH₃;
-CH₂CH₂CH₂-S-(CH₂)₆Ph;
-CH₂CH₂CH₂CH₂-S-(CH₂)₇CH₃;
-CH₂CH₂-S-(CH₂)₆Ph;
-CH₂CH₂-S-(CH₂)₁₀Ph;
-CH₂CH₂CH₂-S-CH₂-4-[(CH₃)₂CHCH₂-]Ph;

U.S. Serial No. 09/776,466
Attorney Docket No. P-087-US1
Customer Number 27038
Page 18

-CH₂CH₂-S-(CH₂)₃CH=CH(CH₂)₄CH₃ (*trans*);
-CH₂CH₂-S-CH₂-4-[3,4-di-Cl-PhCH₂O-]Ph;
-CH₂CH₂CH₂-S-CH₂-4-[3,4-di-Cl-PhCH₂O-]Ph;
-CH₂CH₂-SO-4-(4-Cl-Ph)-Ph;
-CH₂CH₂CH₂-SO-4-(4-Cl-Ph)-Ph;
-CH₂CH₂-S-(CH₂)₁₀CH₃;
-CH₂CH₂CH₂-S-(CH₂)₁₀CH₃;
-CH₂CH₂CH₂-S-CH₂-4-[CH₃(CH₂)₄O-]Ph;
-CH₂CH₂CH₂-S-CH₂CH=CH-CH=CH(CH₂)₄CH₃ (*trans, trans*);
-CH₂CH₂-S-CH₂-4-[4-Cl-PhCH₂O-]Ph;
-CH₂CH₂CH₂-S-CH₂-4-[4-Cl-PhCH₂O-]Ph;
-CH₂CH₂CH₂-S-CH₂-4-(4-CF₃-Ph)-Ph;
-CH₂CH₂CH₂-S-CH₂-4-(4-F-PhSO₂NH-)-Ph;
-CH₂CH₂CH₂-S-(CH₂)₈CH₃;
-CH₂CH₂CH₂-S(O)-(CH₂)₆Ph;
-CH₂CH₂-S(O)-(CH₂)₈Ph;
-CH₂CH₂-S-(CH₂)₃-4-Cl-Ph;
-CH₂CH₂-S-(CH₂)₆-4-Cl-Ph; and
-CH₂CH₂-SO₂-(CH₂)₉CH₃.

21. (Canceled).