Elijah Taeckens https://etaeckens.github.io/research/

(315) 200-7461

Education

University of Maryland, College Park

B.S. Electrical Engineering

• Honors College and ECE Departmental Honors

Expected May 2024

GPA: 3.991/4.0

Publications

E. Taeckens and S. Shah. "A Spiking Neural Network with Continuous Local Learning for Robust Online Brain Machine Interface." J. Neural Eng. 2023. doi: https://doi.org/10.1088/1741-2552/ad1787

E. Taeckens, R. Dong and S. Shah, "A Biologically Plausible Spiking Neural Network for Decoding Kinematics in the Hippocampus and Premotor Cortex," 2023 IEEE/EMBS Conference on Neural Engineering, Baltimore, MD, USA, 2023, pp. 1-4, doi: https://doi.org/10.1109/NER52421.2023.10123745

Skills

- **Programming Languages:** Python, MATLAB, C, C++, Verilog
- Machine Learning: PyTorch, SNNs, RNNs, LSTMs, SVMs, PCA, LDA
- **Electrical Engineering:** FPGAs, FIR & IIR Filter Design, Arduino, Altium PCB Design
- **Neuroscience:** Live EEG Recording, Kinematic Decoding, Computational Modelling

Research Experience

Shah Lab – Undergraduate Research Assistant

Sept. 2021 – Present

- Developed novel neural decoding algorithms using biologically inspired spiking neural networks under the supervision of Dr. Sahil Shah.
- Published as first author and presented research at multiple conferences and workshops.

Spiking Neural Networks for Neural Decoding

June 2022 – November 2022

- Designed spiking neural network for predicting arm velocity from neural recordings using Python.
- Matched state-of-the-art accuracy when compared to Kalman filter, LSTM decoder.
- Presented at **IEEE Conference on Neural Engineering** 2023.
- Received ASPIRE Outstanding Research Award for the best semester-long undergraduate engineering research project.

Low Power FPGA Implementation of SNN

September 2022 – May 2023

- Developed FPGA implementation of SNN decoder using Verilog.
- Designed asynchronous event-based logic for reduced power consumption.
- Defended ECE Departmental Honors Thesis, May 2023.
- Funded by SRC URP Intel Research Scholarship.

Continuous Learning SNN for Online BMI

January 2023 – *October* 2023

- Derived novel machine learning algorithm for SNNs to enable continuous learning during online BMI tasks without performing backpropagation.
- Enabled **92% reduction in memory** used during training.
- Increased resilience to neural disruptions; 27% faster than state-of-the-art ReFIT Kalman filter and LSTM decoders when performing reaching tasks after a neural disruption.
- Demonstrated ability to train a decoder from scratch in a closed loop environment, allowing for a more intuitive calibration procedure for BMI users.
- Submitted for publication to Journal of Neural Engineering.

Unsupervised Adaptive BMI with STDP

August 2023 - Present

- Developing unsupervised learning mechanisms for long-term stable brain machine interfaces using biologically inspired spike timing dependent plasticity learning rule.
- Increased performance by 60% after a simulated neural disruption without any need for recalibration.
- Presented at IEEE Brain Discovery and Neurotechnology Workshop 2023.

Music Decoding with EEG

March 2023 - Present

- Proposed experimental procedure for decoding musical notes from EEG recordings with audio feedback.
- Used linear discriminant analysis to classify "expected" and "unexpected" notes from EEG data with 72% accuracy.
- Obtained IRB approval to perform a larger study in Spring 2024.

UMD Gemstone Honors Research Program

May 2021 - Present

- Undergraduate research team using neuromorphic vision sensors to study bee colony health.
- Wrote original research topic proposal that was selected by peers as a final project.
- Developed novel algorithm to track the flight of bees in real time.
- Won **Best Poster** at UMD Undergraduate Research Day.

Work Experience

National Institutes of Health – Circuit Design Intern

June 2023 – August 2023

- Worked in instrumentation lab to develop tools needed for NIH experimental research.
- Implemented sensor processing circuit, 24V power regulating system, op-amp for scaling analog output, and programmed Arduino to issue commands to control a mouse tracking apparatus.
- Assisted neuroscience researchers on neural stimulation experiments on live monkeys.
- Attended journal club focusing on neuroscience.

Relevant Coursework

- Current and Planned Courses: ENEE 620: Random Processes (graduate level), ENEE 436: Machine Learning, NEUR 200: Introduction to Neuroscience, MATH 403: Abstract Algebra
- Previous Courses: ENEE 425: Advanced Digital Signal Processing, ENEE 324: Engineering Probability, ENEE 322: Signals and Systems Theory, MATH 461: Linear Algebra, MATH 246: Differential Equations, MATH 241: Calculus III, BSCI 170 & 171: Molecular and Cellular Biology and Lab

Outreach

Maryland Science Olympiad Volunteer

December 2021 – Present

• Volunteered to support a science competition for high school students from across the state of Maryland. January 2023 – Present

UMD ECE Student Tutor

- Tutored fellow ECE students in courses on signal processing and analog circuit design.
- Explained lecture topics, developed study plans, and assisted on homework and exam preparation.

Awards and Scholarships	
ECE Undergraduate Research Assistantship Award	2023
• \$5,000 in funding, awarded to two ECE undergraduates for achievement in research.	
UMD ASPIRE Outstanding Student Research Award	2023
 Awarded for the top undergraduate engineering summer research project. 	
SRC URP Intel Research Scholarship	2022
Banneker-Key Scholarship	2020
 University of Maryland's most prestigious academic scholarship, \$52,000/yr (full cost of atte 	endance)
National Merit Scholarship Recipient	2020

National Merit Scholarship Recipient

U.S. Presidential Scholar Semifinalist 2020