Лабораторная работа №1. Установка и конфигурация операционной системы на виртуальную машину

Выполнила: Лебедева Ольга Андреевна

Преподаватель Кулябов Дмитрий Сергеевич д.ф.-м.н., профессор кафедры прикладной информатики и кибербезопасности

2024

Российский университет дружбы народов, Москва, Россия

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Теоретическое введение

Программа VirtualBox предоставляет широкий спектр возможностей для работы с виртуальными машинами. Это решение подходит для тестирования новых операционных систем, запуска старых приложений или изоляции потенциально опасного программного обеспечения. Благодаря интуитивно понятному интерфейсу и богатому функционалу, VirtualBox стал выбором многих пользователей по всему миру[1].

Запускаем виртуальную машину, нажимаем кнопку "создать" и выбираем скаченный образ ISO: См. рис. 1

Рис. 1: Создание виртуальной машины

Задаём настройки гостевой ОС: См. рис. 2

Рис. 2: Настройки гостевой ОС

Настраиваем оборудование ВМ, изменяя размер ОЗУ: См. рис. 3

Рис. 3: Оборудование VB

Создаём новый виртуальный жёсткий диск размером 40 Гб: См. рис. 4

Рис. 4: Размер памяти

Проверям итоговую конфигурацию для виртуальной машины: См. рис. 5

Рис. 5: Итоговые настройки

Меняем контроллер на скаченный образ Rocky: См. рис. 6

Рис. 6: Носители

Попадаем в стартовое меню установки, выбираем английский язык: См. рис. 7

Рис. 7: Стартовое меню установки

В Installation Destination выбираем диск: См. рис. 8

Рис. 8: Выбор диска

B Softwear Selection выбираем Server with GUI. В дополнительном ПО отмечаем Development Tools: См. рис. 9

Рис. 9: Server with GUI

Заходим в KDUMP и отключаем его: См. рис. 10

Рис. 10: Отключение KDUMP

Заходим в Network&Host Name и прописываем host name: См. рис. 11

Рис. 11: Имя хоста

В разделе Root Password задаём пароль: См. рис. 12

Root Password:	•••••	•
		Strong
Confirm:	•••••	•
Lock root acc	ount	

Рис. 12: Root password

Завершаем настройки во вкладке Create User: См. рис. 13

Full name	oalebedeva	
User name	oalebedeva	
	Make this user administrator	
	Require a password to use this account	
Password	•••••	•
Ţ,		Strong
onfirm password	••••••	•
	Advanced	

Рис. 13: Create User

Запускаем установку и дожидаемся перезагрузки системы: См. рис. 14

Рис. 14: Завершение установки

Заходим в созданный аккаунт: См. рис. 15

Рис. 15: Вход в аккаунт

Запускаем образ диска дополнений гостевой ОС: См. рис. 16

Рис. 16: Подключение гостевых настроек

Домашнее задание

Просмотрим последовательность загрузки системы, выполнив команду dmesg: См. рис. 17

Рис. 17: Последовательность загрузки системы

Получим следующую информацию: См. рис. 18, См. рис. 19, См. рис. 20, См. рис. 21

- 1. Версия ядра Linux (Linux version).
- 2. Частота процессора (Detected Mhz processor).
- 3. Модель процессора (CPU0).
- 4. Объем доступной оперативной памяти (Memory available).
- 5. Тип обнаруженного гипервизора (Hypervisor detected).
- 6. Тип файловой системы корневого раздела.
- 7. Последовательность монтирования файловых систем

Рис. 18: Версия ядра Linux, частота процессора, модель процессора

```
[oalebedeva@oalebedeva ~]$ dmesg | grep ~i "memory"

0.001012] ACP1: Reserving FACP table memory at [mem 0xdfff00f0-0xdfff01e3]
0.001013] ACP1: Reserving DSDT table memory at [mem 0xdfff00f0-0xdfff0262]
0.001013] ACP1: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
0.001014] ACP1: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
0.001014] ACP1: Reserving AP1C table memory at [mem 0xdfff0200-0xdfff023f]
0.001015] ACP1: Reserving AP1C table memory at [mem 0xdfff0240-0xdfff0293]
0.001015] ACP1: Reserving AP1C table memory at [mem 0xdfff0240-0xdfff060b]
0.001239] Early memory node ranges
0.011095] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000
```

Рис. 19: Объем доступной оперативной памяти

```
[oalebedeva@oalebedeva ~]$ dmesg | grep -i "hypervisor"
    0.000000] Hypervisor detected: KVM
    0.065535] GDS: Unknown: Dependent on hypervisor status
    1.691648] vmwgfx 0000:00:02.0: [drm] *ERROR* vmwgfx seems to be running on
an unsupported hypervisor.
[oalebedeva@oalebedeva ~]$ df -T
Filesystem Type
                          1K-blocks
                                      Used Available Use% Mounted on
devtmpfs
                  devtmpfs
                               4096
                                                      0% /dev
tmpfs
                  tmpfs
                            2004976
                                            2004976 0% /dev/shm
tmpfs
                  tmpfs
                                            792648 2% /run
/dev/mapper/rl-root xfs
                           36683776 6261720 30422056 18% /
/dev/sdal
                            983040 277640 705400 29% /boot
                                           400872 1% /run/user/1000
tmpfs
/dev/sr0
                                                  0 100% /run/media/oalebed
                  iso9660
                              52196 52196
eva/VBox_GAs_7.0.12
```

Рис. 20: Тип обнаруженного гипервизора, тип файловой системы корневого раздела

Рис. 21: Последовательность монтирования файловых систем

Приобрели практические навыки установки операционной системы на виртуальную машину, настроили минимально необходимые для дальнейшей работы сервисы.

Библиографическая справка

[1] Документация по VirtualBox: https://www.virtualbox.org/