In the Claims

Please amend Claims 1, 3, 5, 21, 23 and 25 as shown in the following listing.

- (Currently Amended). An apparatus, for measuring concentration, distribution and flow of solids
 suspended in a flowing liquid, which comprises:
- a transmitter emitting at least one directional beam of an acoustical waveform;
- 4 at least one detector receiving echo signals of said waveform backscattered from said solids;
- 5 means for gathering measured intensity value values of said echo signals;
- 6 means for measuring Doppler frequency shifts of said echo signals; and
- data processing equipment comprising means for translating said intensity values into
- 8 concentration values of said solids, and means for interpreting said frequency shifts into flow
- 9 measurements of said solids.
- 1 2. (Original). The apparatus of Claim 1, wherein said flowing liquid is contained in a conduit
- 2 having a directional flow, and said transmitter and detector are located inside said conduit.
- 3. (Currently Amended). An apparatus, for measuring concentration, distribution and flow of solids
- 2 <u>suspended in a flowing liquid, which comprises:</u>
- a transmitter emitting at least one directional beam of an acoustical waveform;
- 4 <u>at least one detector receiving echo signals of said waveform backscattered from said solids;</u>
- 5 means for gathering measured intensity values of said echo signals;
- 6 means for measuring Doppler frequency shifts of said echo signals:
- data processing equipment comprising means for translating said intensity values into

. 8	concentration values of said solids, and means for interpreting said frequency shifts into flow		
9	measurements of said solids;		
10	wherein said flowing liquid is contained in a conduit having a directional flow, and said		
11	transmitter and detector are located inside said conduit; and		
12	The apparatus of Claim 2, wherein said transmitter emits at least a first pair of said beams		
13	from substantially the same location, a second beam in said pair being aimed downstream from		
14	first beam and at a longitudinal angle from said first beam.		
1	4. (Original). The apparatus of Claim 3 which further comprises a second of said pair of beams		
2	aimed at a transversal angle from said first pair of beams.		
1	5. (Currently Amended). An apparatus, for measuring concentration, distribution and flow of solids		
2	suspended in a flowing liquid, which comprises:		
3	a transmitter emitting at least one directional beam of an acoustical waveform;		
4	at least one detector receiving echo signals of said waveform backscattered from said solids;		
5	means for gathering measured intensity values of said echo signals;		
6	means for measuring Doppler frequency shifts of said echo signals;		
7	data processing equipment comprising means for translating said intensity values into		
8	concentration values of said solids, and means for interpreting said frequency shifts into flow		
9	measurements of said solids; and		
10	The apparatus of Claim 1 which further comprises means for generating samplings of said		
11	echo signals corresponding to discrete volumes of said liquid distributed along said beam.		

- 1 6. (Original). The apparatus of Claim 5, wherein said means for translating comprises means for
- 2 calibrating said intensity values by imputing site specific environmental information.
- 7. (Original). The apparatus of Claim 5, wherein said means for translating further comprises
- 2 means for entering suspended solids concentration values obtained from a previous measurement.
- 8. (Original). The apparatus of Claim 6, wherein said site specific environmental information
- 2 comprises water temperature, salinity and acoustical system constants, and an echo signal assignment
- 3 ratio between concentration and particle size.
- 9. (Original). The apparatus of Claim 6, wherein said data processing equipment further comprises
- 2 program means for adjusting at least one calibration parameter in translating intensity value from one
- of said volumes using values obtained from another volume along the same beam.
- 1 10. (Original). The apparatus of Claim 6, wherein said means for calibrating comprises means for
- 2 automatically entering information, and means for manually entering information.
- 1 11. (Original). The apparatus of Claim 5, wherein said means for translating comprise means for
- computing a mass concentration of solid $M_{(R)}$ per unit volume at a range r according to the formula:

$$\log_{10} M(r) = K_s + S \left[dB + 2r \left(\alpha_w + \alpha_s \right) \right]$$

4	wherein	K_s is a site and instrument constant,
5		S is a relative backscattered coefficient defining the relationship between solid
6		concentration and particle size,
7		dB is the measured relative backscattered intensity,
8		α_{w} is a water attenuation coefficient, and
9		α_s is an attenuation coefficient due to the presence of solids.
1	12. (Original). The apparatus of Claim 11, wherein said means for translating further comprise:
2	means	for using $M_{(0)}$ values obtained in connection with one of said volumes to compute said
3	attenuation co	pefficient α_s ; and,
4	means	for imputing said α_s value in translating said intensity value into an $M_{(\!\scriptscriptstyle m I\!\!\! E)}$ value for the
5	next of said v	olume farther away from said transmitter.
1	13. (Original)). The apparatus of Claim 4 which further comprises means for generating samplings
2	of said echo s	ignals corresponding to discrete volumes of said liquid distributed along said beams.
1	14. (Original)). The apparatus of Claim 13, wherein said means for translating comprises means for
2	calibrating sa	id intensity values by imputing site specific environmental information.
1	15. (Original). The apparatus of Claim 13, wherein said means for translating further comprises
2	means for ent	ering concentration values obtained from a previous measurement.

- 16. (Original). The apparatus of Claim 15, wherein said site specific environmental information
- 2 comprises water temperature, salinity and acoustical system constants, and echo signal assignment
- 3 ratio between concentration and particle size.
- 1 17. (Original). The apparatus of Claim 14, wherein said data processing equipment further
- 2 comprises program means for adjusting at least one calibration parameter in translating intensity
- 3 value from one of said volumes using values obtained from another volume along the same beam.
- 1 18. (Original). The apparatus of Claim 14, wherein said means for calibrating comprises means for
- 2 automatically entering information, and means for manually entering information.
- 1 19. (Original). The apparatus of Claim 13, wherein said means for translating comprise means for
- computing a mass concentration of solid $M_{(0)}$ per unit volume at a range r according to the formula:

$$\log_{10} M(r) = K_s + S \left[dB + 2r \left(\alpha_w + \alpha_s \right) \right]$$

- 4 wherein K_s is a site and instrument constant,
- 5 S is a relative backscattered coefficient defining the relationship between solid
- 6 concentration and particle size,
- 7 dB is the measured relative backscattered intensity,
- 8 α_w is a water attenuation coefficient, and
- 9 α_s is an attenuation coefficient due to the presence of solids.

means for using M_r , values obtained in connection with one of said volumes to compute said 2 attenuation coefficient α_s ; and 3 means for imputing said α_s value in translating said intensity value into an $M_{(R)}$ value for the 4 next of said volume farther away from said transmitter. 5 21. (Currently Amended). A method for measuring concentration, distribution and flow of solids 1 suspended in a flowing liquid, which comprises: 2 emitting at least one directional beam of an acoustical waveform across said liquid; 3 detector-receiving range-gated samplings of echo signals of said waveform backscattered 4 from said solids; 5 6 gathering measured intensity value of said echo samplings signals; measuring Doppler frequency shifts of said echo-samplings signals; and 7 translating said intensity values into estimated concentration values of said solids; and 8 9 interpreting said frequency shifts into flow measurements of said solids. 22. (Original). The method of Claim 21, wherein said flowing liquid is contained in a conduit 1 having a directional flow, and said transmitter and detector are located inside said conduit. 2 23. (Currently Amended). A method for measuring concentration, distribution and flow of solids 1 suspended in a flowing liquid, which comprises: 2 emitting at least one directional beam of an acoustical waveform across said liquid; 3

20. (Original). The apparatus of Claim 13, wherein said means for translating further comprise:

1

4	receiving echo signals of said waveform backscattered from said solids;		
5	gathering measured intensity value of said echo signals;		
6	measuring Doppler frequency shifts of said echo signals;		
7	translating said intensity values into concentration values of said solids;		
8	interpreting said frequency shifts into flow measurements of said solids;		
9	wherein said flowing liquid is contained in a conduit having a directional flow, and said		
10	transmitter and detector are located inside said conduit; and		
1	The method of Claim 22, wherein said emitting comprises transmitting at least a first pair		
12	of said beams from substantially the same location, a second beam in said pair being aimed		
13	downstream from a first beam and at a longitudinal angle from said first beam.		
1	24. (Original). The method of Claim 23 which further comprises emitting a second of said pair or		
2	beams aimed at a transversal angle from said first pair of beams.		
1	25. (Currently Amended). A method for measuring concentration, distribution and flow of solids		
2	suspended in a flowing liquid, which comprises:		
3	emitting at least one directional beam of an acoustical waveform across said liquid;		
4	receiving echo signals of said waveform backscattered from said solids;		
5	gathering measured intensity value of said echo signals;		
6	measuring Doppler frequency shifts of said echo signals;		
7	translating said intensity values into concentration values of said solids;		
Q	interpreting said frequency shifts into flow measurements of said solids: and		

- The method of Claim 21 which further comprises generating samplings of said echo signals corresponding to discrete volumes of said liquid distributed along said beam.
- 1 26. (Original). The method of Claim 25, wherein said translating comprises calibrating said
- 2 intensity values by imputing site specific environmental information.
- 1 27. (Original). The method of Claim 25, wherein said translating further comprises entering
- 2 suspended solids concentration values obtained from a previous measurement.
- 1 28. (Original). The method of Claim 27, wherein said site specific environmental information
- 2 comprises water temperature, salinity and acoustical system constants, and echo signal assignment
- 3 ratio between concentration and particle size.
- 1 29. (Original). The method of Claim 26 which further comprises adjusting at least one calibration
- 2 parameter in translating intensity value from one of said volumes using values obtained from another
- 3 volume along the same beam.

9

. 10

- 1 30. (Original). The method of Claim 26, wherein said calibrating comprises automatically entering
- 2 information, and manually entering information.
- 1 31. (Original). The method of Claim 25, wherein said translating comprise computing a mass
- concentration of solid $M_{(0)}$ per unit volume at a range r according to the formula:

 $Log_{10}M(r) = K_s + S[dB + 2r(\alpha_w + \alpha_s)]$

- 4 wherein K_s is a site and instrument constant,
- S is a relative backscattered coefficient defining the relationship between solid
- 6 concentration and particle size,
- 7 dB is the measured relative backscattered intensity,
- 8 α_w is a water attenuation coefficient, and
- α_s is an attenuation coefficient due to the presence of solids.
- 32. (Original). The method of Claim 31, wherein said translating further comprise:
- using M_r values obtained in connection with one of said volumes to compute said attenuation
- 3 coefficient α_s ; and
- 4 imputing said α_s value in translating said intensity value into an $M_{(R)}$ value for the next of said
- 5 volume farther away from said transmitter.
- 1 33. (Original). The method of Claim 24 which further comprises samplings of said echo signals
- 2 corresponding to discrete volumes of said liquid distributed along said beams.
- 1 34. (Original). The method of Claim 33, wherein said translating comprises calibrating said
- 2 intensity values by imputing site specific environmental information.
- 1 35. (Original). The method of Claim 33, wherein said translating further comprises entering

- 2 concentration values obtained from a previous measurement.
- 1 36. (Original). The method of Claim 35, wherein said site specific environmental information
- 2 comprises water temperature, salinity and acoustical system constants, and echo signal assignment
- 3 ratio between concentration and particle size.
- 1 37. (Original). The method of Claim 34, wherein said data processing equipment further comprises
- 2 program adjusting at least one calibration parameter in translating intensity value from one of said
- 3 volumes using values obtained from another volume along the same beam.
- 1 38. (Original). The method of Claim 34, wherein said calibrating comprises automatically entering
- 2 information, and manually entering information.
- 1 39. (Original). The method of Claim 33, wherein said translating comprise computing a mass
- concentration of solid $M_{(0)}$ per unit volume at a range r according to the formula:

$$Log_{10} M(r) = K_s + S \left[dB + 2r \left(\alpha_w + \alpha_s \right) \right]$$

- 4 wherein K_s is a site and instrument constant,
- S is a relative backscattered coefficient defining the relationship between solid
- 6 concentration and particle size,
- 7 dB is the measured relative backscattered intensity,
- 8 α_w is a water attenuation coefficient, and

- α_s is an attenuation coefficient due to the presence of solids.
- 1 40. (Original). The method of Claim 39, wherein said translating further comprise:
- using M_r values obtained in connection with one of said volumes to compute said attenuation
- 3 coefficient a_s; and

9

- 4 imputing said a_s value in translating said intensity value into an $M_{(R)}$ value for the next of said
- 5 volume farther away from said transmitter.