APA Modulo 1 Lezione 10

Elena Zucca

28 marzo 2020

Algoritmo di Floyd e Warshall

- problema: dato grafo orientato pesato trovare cammini minimi tra tutte le coppie di nodi
- sono ammessi costi negativi ma non cicli di costo negativo
- per semplicità identifichiamo i nodi con i numeri 1..n
- idea: chiamiamo k-vincolato un cammino che passa solo per nodi in 1..k (esclusi gli estremi), per $k \le n$
- $d^k(x,y) = \text{distanza } k\text{-vincolata tra } x \in y$, cioè la lunghezza minima di un cammino k-vincolato (come al solito, ∞ se tale cammino non esiste)
- è facile vedere che possiamo considerare solo i cammini semplici (senza nodi ripetuti)

Formulazione induttiva della soluzione: base

$$d^{0}(x,y) = \begin{cases} 0 & \text{se } x = y \\ c_{x,y} & \text{se } x \neq y \text{ ed esiste l'arco } (x,y) \\ \infty & \text{altrimenti} \end{cases}$$

Passo induttivo

$$d^{k}(x,y) = \min\{d^{k-1}(x,y), d^{k-1}(x,k) + d^{k-1}(k,y)\}$$

infatti, dato un cammino minimo (semplice) k-vincolato da x a y, si hanno due casi:

- ullet non passa per k, quindi è anche un cammino minimo k-1-vincolato
- passa per k, quindi (essendo semplice) è composto da un cammino k-1-vincolato da x a k, e da un cammino k-1-vincolato da k a y

 Elena Zucca
 APA-Zucca-3
 28 marzo 2020
 4 / 25

Algoritmo di programmazione dinamica

```
utilizziamo n+1 matrici n \times n: D_0, \ldots, D_n
FloydWarshall(G)
  for each (x,y : nodi in G)
     D^0[x,y] =
          0 \text{ se } x=y
          c_{x,y} se x \neq y ed esiste arco (x,y)
          \infty altrimenti
  for (k=1: k \le n: k++)
     for each (x,y : nodi in G)
       D^{k}[x,y] = D^{k-1}[x,y]
        if (D^{k-1}[x,k] + D^{k-1}[k,y] < D^{k}[x,y])
          D^{k}[x,y] = D^{k-1}[x,k] + D^{k-1}[k,y]
  return D^n
```

Ottimizzazione di spazio

- complessità temporale e spaziale cubica
- è possibile utilizzare uno spazio quadratico anziché cubico ossia, utilizzare un'unica matrice D
- problema: in $D^k[x,y] = D^{k-1}[x,k] + D^{k-1}[k,y]$, con unica matrice questi valori potrebbero essere già stati aggiornati, cioè essere $D^k[x,k]$ e $D^k[k,y]$
- ma questo è ininfluente in quanto questi valori aggiornati sono necessariamente uguali ai precedenti

Infatti:

- stiamo calcolando la distanza vincolata da un nodo x a k (e da k a un nodo y)
- quindi aggiungere il nodo k tra quelli utilizzabili non cambia le cose formalmente:

$$d^{k}(x,k) = min\{d^{k-1}(x,k), d^{k-1}(x,k) + d^{k-1}(k,k)\} = d^{k-1}(x,k)$$

• analogamente $d^k(k, y)$

Quindi:

```
\begin{split} &\text{FloydWarshall(G)} \\ &\text{for each } (x,y : \text{nodi in G}) \\ &D[x,y] = \\ &0 \text{ se } x = y, \\ &c_{x,y} \text{ se } x \neq y \text{ ed esiste arco } (x,y) \\ &\infty \text{ altrimenti} \\ &\text{for each } (k=1; \ k <= n; \ k++) \\ &\text{for } (x,y : \text{nodi in G}) \\ &\text{ if } (D[x,k] + D[k,y] < D[x,y]) \\ &D[x,y] = D[x,k] + D[k,y] \end{aligned}
```

Matrice dei predecessori

se vogliamo ottenere, oltre alla distanza, anche il cammino minimo, definiamo

 $\pi_{xy} = \text{null se } x = y \text{ oppure non esiste un cammino da } x \text{ a } y,$ altrimenti è il predecessore di y in un cammino minimo da x a y

Formulazione induttiva del predecessore: base

$$\pi^{0}(x,y) = \begin{cases} x & \text{se } x \neq y \text{ ed esiste l'arco } (x,y) \\ null & \text{altrimenti} \end{cases}$$

Elena Zucca APA-Zucca-3 28 marzo 2020 10 / 25

Passo induttivo

$$\pi^{k}(x,y) = \begin{cases} \pi^{k}(k,y) & \text{se } D[x,k] + D[k,y] < D[x,y] \\ \pi^{k-1}(x,y) & \text{altrimenti} \end{cases}$$

 Elena Zucca
 APA-Zucca-3
 28 marzo 2020
 11 / 25

Algoritmo con matrice dei predecessori

```
FloydWarshall(G)
  for each (x,y: nodi in G)
    D[x,y] =
        0 \text{ se } x=v,
        c_{x,y} se x \neq y ed esiste arco (x,y)
        ∞ altrimenti
    \Pi[x,y] =
        x se x \neq y ed esiste arco (x,y)
        null altrimenti
  for (k=1; k \le n; k++)
    for each (x,y : nodi in G)
      if (D[x,k] + D[k,y] < D[x,y])
        D[x,y] = D[x,k] + D[k,y]
        \Pi[x,y] = \Pi[k,y]
return D,Π
```

Sottografo dei cammini minimi

- la matrice dei predecessori finale individua il sottografo dei cammini minimi:
 - i nodi sono tutti i nodi
 - gli archi sono tutti quelli da un predecessore a un nodo raggiungibile ossia della forma (π_{xy}, y) con $\pi_{xy} \neq \text{null}$

Albero dei cammini minimi a partire da un nodo

- il sottografo indotto dalla riga x della matrice Π è l'albero dei cammini minimi con radice x
 - i nodi sono tutti i nodi raggiungibili da x ossia gli y tali che $\pi_{xy} \neq \text{null}$, più x stesso
 - gli archi sono tutti quelli da un predecessore a un nodo raggiungibile ossia della forma (π_{xy}, y) con $\pi_{xy} \neq \text{null}$

Cammino minimo da x a y

```
shortest_path(\Pi,x,y)
if (x=y) return x
else if (\Pi[x,y] = null)
return ... [non esiste cammino]
else return shortest_path(\Pi,x,\Pi[x,y]) · y
```

Esempio

Passo 0: non uso nodi intermedi

			D			
	1	2	3	4	5	
1	0	00	6	3	00	
2	3	0	8	8	00	l
3	00	00	0	2	œ	l
4	00	1	1	0	00	ı
5	00	4	8	2	0	l

			п		
	1	2	3	4	5
1	1	1	1	1	/
2	2	1	1	1	1
3	1	1	1	3	1
4	1	4	4	1	1
5	1	5	1	5	1

Elena Zucca APA-Zucca-3 28 marzo 2020 17 / 25

Passo 1: uso il nodo 1

	1	2	3	4	5
1	0	80	6	3	8
2	3	0	9	6	8
3	8	00	0	2	∞
4	8	1	1	0	œ
5	8	4	8	2	0

	1	2	3	4	5
1	1	1	1	1	1
2	2	1	1	1	1
3	1	1	1	3	1
4	1	4	4	1	1
5	1	5	1	5	1

Elena Zucca

Passo 2: uso (anche) il nodo 2

Elena Zucca APA-Zucca-3 28 marzo 2020 19 / 25

Passo 3: uso (anche) il nodo 3

	1	2	3	4	5
1	0	8	6	3	∞
2	3	0	9	6	8
3	8	8	0	2	8
4	4	1	1	0	∞
5	7	4	13	2	0

	1	2	3	4	5
1	0	00	6	3	8
2	3	0	9	6	00
3	80	00	0	2	8
4	4	1	1	0	80
5	7	4	13	2	0

	1	2	3	4	5
1	1	1	1	1	1
2	2	1	1	1	1
3	1	1	1	3	1
4	2	4	4	1	1
5	2	5	1	5	1

	1	2	3	4	5
1	/	/	1	1	/
2	2	1	1	1	/
3	1	1	1	3	/
4	2	4	4	1	/
5	2	5	1	5	1

Passo 4: uso (anche) il nodo 4

	1	2	3	4	5	
1	0	00	6	3	8	1
2	3	0	9	6	00	2
3	∞	00	0	2	8	3
4	4	1	1	0	00	4
5	7	4	13	2	0	5

	1	2	3	4	5
1	1	1	1	1	1
2	2	1	1	1	1
3	1	1	1	3	1
4	2	4	4	1	1
5	2	5	1	5	1

			D		
	1	2	3	4	5
1	0	4	4	3	8
2	3	0	7	6	8
3	6	3	0	2	8
4	4	1	1	0	8
5	6	3	3	2	0

			- 11		
	1	2	3	4	5
1	/	4	4	1	/
2	2	/	4	1	/
3	2	4	/	3	/
4	2	4	4	/	/
5	2	4	4	5	/

Elena Zucca

Passo 4: uso (anche) il nodo 5

Elena Zucca APA-Zucca-3 28 marzo 2020 22 / 25

Risultato finale

D									
	1	2	3	4	5				
1	0	4	4	3	8				
2	3	0	7	6	8				
3	6	3	0	2	8				
4	4	1	1	0	80				
5	6	3	3	2	0				

	П							
	1	2	3	4	5			
1	/	4	4	1	/			
2	2	/	4	1	/			
3	2	4	/	3	/			
4	2	4	4	/	/			
5	2	4	4	5	/			

Elena Zucca APA-Zucca-3 28 marzo 2020 23 / 25

Sottografo dei cammini minimi

	П						
	1	2	3	4	5		
1	/	4	4	1	/		
2	2	/	4	1	/		
3	2	4	/	3	/		
4	2	4	4	/	/		
5	2	4	4	5	/		

Albero dei cammini minimi a partire dal nodo 1

Elena Zucca APA-Zucca-3 28 marzo 2020 25 / 25