Tutorial on Mutational Analysis

Mutational processes, DDR mutations and Visualization

Alex Goncearenco
June 16, 2020

Goals:

- 1. Identify endogenic and exogenic mutational processes active in the samples using mutational data
- 2. Identify mutated DNA damage repair (DDR) genes that may be responsible for the endogenic mutagenesis

Outline:

- 1. Mutational data
- 2. Software and resources
- 3. Running the calculations
- 4. Visualizing the results

Data

Required (any of the following):

- GDC / TCGA somatic mutations in MAF format
- MAF or VCF files from MSKCC, ICGC or any other repository
- Or Custom-made MAF (e.g. sequenced cell lines)

Required:

• List of DDR genes

Optional:

- Annotation of signatures
- Additional sample annotations (e.g. CIMP status)

Mutation data specifics

- Germline or somatic
- "Simple" mutations vs structural changes and copy number variation
- NGS mutation callers (MuTect 1,2; Strelka, GATK, Somatic Sniper, VarScan2, VarDict, ...)
- VCF files Variant call format
- MAF files Mutation annotation format (vcf2maf)
- Genome assembly (hg19, hg38)
- One file per sample vs multiple samples in one file

Software and resources

- MutaGene analysis of mutational signatures and motifs
 - https://www.ncbi.nlm.nih.gov/research/mutagene/
 - https://pypi.org/project/mutagene/
- COSMIC mutational signatures
 - https://cancer.sanger.ac.uk/cosmic/signatures
- DNA Damage Repair (DDR) genes
 - https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.html
 - https://gist.github.com/neksa/df619d78cbc42c9a1abab8aa4807bfe7
- Clustergrammer
 - http://amp.pharm.mssm.edu/clustergrammer/
- Python, Jupyter notebook and Anaconda
 - https://www.anaconda.com/products/individual
 - https://github.com/MaayanLab/clustergrammer-widget

Download mutational data (TCGA)

https://portal.gdc.cancer.gov/repository

cases.project.project_id in ["TCGA-COAD"] and files.access in ["open"] and files.data_format in ["maf"]

-	Access	File Name	Cases	Project	Data Category	Data Format	File Size	Annotations
	⊆ open	TCGA.COAD.somaticsniper.70835251-ddd5-4c0d-968e-1791bf6379f6.DR-10.0.somatic.maf.gz	<u>433</u>	TCGA-COAD	Simple Nucleotide Variation	MAF	41.62 MB	85
	⊆ open	TCGA.COAD.varscan.8177ce4f-02d8-4d75-a0d6-1c545 0ee08b0.DR-10.0.somatic.maf.gz	<u>433</u>	TCGA-COAD	Simple Nucleotide Variation	MAF	59.93 MB	85
	⊆ open	TCGA.COAD.muse.70cb1255-ec99-4c08-b482-415f837 5be3f.DR-10.0.somatic.maf.gz	432	TCGA-COAD	Simple Nucleotide Variation	MAF	51.14 MB	85
	⊆ open	TCGA.COAD.mutect.03652df4-6090-4f5a-a2ff-ee28a37f 9301.DR-10.0.somatic.maf.gz	<u>433</u>	TCGA-COAD	Simple Nucleotide Variation	MAF	65.59 MB	85

Download and unpack files

gunzip TCGA.COAD.mutect.03652df4-6090-4f5a-a2ff-ee28a37f9301.DR-10.0.somatic.maf.gz

Download metadata (TCGA)

Download JSON and save as TCGA_COAD_cases.json

What is MutaGene?

I Explore

Compare

← Analyze gene Identify

Contact

MutaGene: analysis of mutations and mutational processes in cancer

Explore mutational profiles and signatures

Browse context-dependent mutational profiles in cancer samples, within-cancer heterogeneity, and signatures of mutagenic processes

Compare and cluster mutational profiles

Find similarities between cancer types. Identify clusters of tumor samples based on the similarities of their mutational processes

Identify mutational processes updated!

Calculate mutational profile for a given set of mutations. Identify the most likely mutagenic processes (mutational signatures). Find the best matching cancer type, primary site, and patient cohort

Analyze gene updated!

Apply mutational profile/signature to a given gene to calculate expected DNA and protein mutability. Identify potential driver mutations by comparing exepected mutability to observed recurrence in cancer patients

News

March 1, 2019 MutaGene Python package

Mutation ranking functionality is now available as MutaGene Python package for stand-alone

The benchmark has been updated to include a recent study on systematic functional annotation of somatic mutations in cancer.

May 29, 2018 Cancer driver prediction

Analyze Gene module predicts mutations to be drivers, potential drivers and passengers by adjusting the number of reoccurences of a mutation in cancer patients by its mutability accoring to the expected background mutagenesis. These predictions were validated with a benchmark compiled from multiple experimental studies. Our BioArxiv preprint describes the method and the benchmark in detail.

- https://www.ncbi.nlm.nih.gov /research/mutagene/
- https://pypi.org/project/mut agene/

Identify mutational processes in mutagene

Identify mutational processes in mutagene

What are COSMIC signatures?

Proposed aetiology

An endogenous mutational process initiated by spontaneous or enzymatic deamination of 5-methylcytosine to thymine which generates G:T mismatches in double stranded DNA. Failure to detect and remove these mismatches prior to DNA replication results in fixation of the T substitution for C.

Associated mutation classes and signatures

The activity of $\underline{SBS1}$ is closely correlated with the activity of $\underline{SBS5}$ within many types of cancer. However, between cancer types, mutation burdens of $\underline{SBS1}$ and $\underline{SBS5}$ do not clearly correlate consistent with them being due to different underlying processes.

What are COSMIC signatures?

• '1': 5mC>T

• '2': AID/APOBEC

• '13': AID/APOBEC

• '3': HR DDR defect

• '4': Tobacco

• '10a': Polymerase epsilon

• '10b': Polymerase epsilon

• '14': Polymerase epsilon + MMR

• '15': MMR

• '7b': UV light

• '18': reactive oxygen species

• '24': guanine repair by NER

• '5': Unknown

• '6': DDR MSI

• '19': Unknown

• '20': MMR, POLD1

• '21': MMR

• '26': MMR

• '32': Azathioprine

• '44': MMR

• '46': Sequencing artifact

• '54': Sequencing artifact

• '84': AID

Download COSMICv3_labels.yml:

https://gist.github.com/neksa/089af7bea566f76ceabd7337b497bb96

What are DDR genes?

- DNA Damage Repair (DDR) genes
 - https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.html

Download and save DDR_genes.yml file:

https://gist.github.com/neksa/df619d78cbc42c9a1abab8aa4807bfe7

MMR:	PARP:	Direct-reversal:
- MSH2	- PARP1	- MGMT
- MSH3	- ADPRT	- ALKBH2
- MSH6	- PARP2	- ABH2
- MLH1	- ADPRTL2	- ALKBH3
- PMS2	- PARP3	- DEPC1
- MSH4	- ADPRTL3	
- MSH5		Topo-crosslinks:
- MLH3		- TDP1
- PMS1		- TDP2
- PMS2P3		- TTRAP
- PMS2L3		

Consider Missense or Nonsense mutations

Do not differentiate between mutations

What is Clustergrammer?

- Clustergrammer
 - http://amp.pharm.mssm.edu/clustergrammer/

What is Anaconda and Jupyter notebook?

- Python, Jupyter notebook and Anaconda
 - https://www.anaconda.com/products/individual
 - https://github.com/MaayanLab/clustergrammer-widget
- Jupyter

https://jupyter-notebook.readthedocs.io/en/stable/ui_components.html

What is Anaconda and Jupyter notebook?

What is Anaconda and Jupyter notebook?

Setup conda

```
# open terminal
# if your Anaconda is installed you should have "(base)" prefix in your terminal prompt
conda create -n mutations python=3.7 jupyter
conda activate mutations
pip install mutagene
pip install pyyaml
pip install pandas==0.25.1
pip install clustergrammer-widget
jupyter nbextension enable --py --sys-prefix widgetsnbextension
jupyter nbextension enable --py --sys-prefix clustergrammer widget
mutagene --version
# change directory to where you will be analyzing data and storing files
jupyter notebook
```

Setup mutagene package

```
# change directory to where you will be analyzing data and storing files
# choose appropriate genome assembly
# -g hg38 for GRCh38
# -g hg19 for GRCh37
mutagene fetch genome -g hg38
```

Run MutaGene to identify mutational signatures

```
mutagene identify
-g hg38
-i TCGA.COAD.mutect.03652df4-6090-4f5a-a2ff-ee28a37f9301.DR-10.0.somatic.maf
-o COAD.txt
-f MAF
-s COSMICv3

# for other options see
mutagene identify --help

mutagene identify --help
```

mutational decomposition into signatures results are now in COAD.txt file

(mutations) HG-02113788-LM4:MutationalAnalysisDemo gonceare\$ head COAD.txt

	5 - 8	chipotal c			
TCGA-AA-39	966-01A-01D-	1981-10	COSMICv3-SBS15	0.223284	201
TCGA-AA-39	966-01A-01D-	1981-10	COSMICv3-SBS6	0.125008	113
TCGA-AA-39	966-01A-01D-	1981-10	COSMICv3-SBS20	0.114956	104
TCGA-AA-39	966-01A-01D-	1981-10	COSMICv3-SBS54	0.0984864	89

signature exposure mutations

...

sample

Run jupyter notebook

to run notebook server and open a browser window: jupyter notebook

https://github.com/elnitskilab/MutationalAnalysisDemo