Scientific Computing HW 9

Ryan Chen

October 30, 2024

1. (a) Label the three factors in the claimed factorization as L, S, U. Compute

$$LS = \begin{bmatrix} L_{11} & & & \\ & L_{22} & & \\ A_{31}U_{11}^{-1} & A_{32}U_{22}^{-1} & S_{33} \end{bmatrix} \implies LSU = \begin{bmatrix} A_{11} & & A_{13} \\ & A_{22} & A_{23} \\ A_{31} & A_{32} & B \end{bmatrix}$$

where

$$B := A_{31}U_{11}^{-1}L_{11}^{-1}A_{13} + A_{32}U_{22}^{-1}L_{22}^{-1}A_{23} + S_{33}$$

Imposing A = LSU gives a formula for the Schur complement S_{33} .

$$\begin{split} A &= LSU \iff B = A_{33} \\ &\iff A_{31}U_{11}^{-1}L_{11}^{-1}A_{13} + A_{32}U_{22}^{-1}L_{22}^{-1}A_{23} + S_{33} = A_{33} \\ &\iff S_{33} = A_{33} - A_{31}U_{11}^{-1}L_{11}^{-1}A_{13} - A_{32}U_{22}^{-1}L_{22}^{-1}A_{23} \end{split}$$

(b) Given $S_{33} = L_{33}U_{33}$, the LU decomposition of A is

$$A = \begin{bmatrix} L_{11} & & & \\ & L_{22} & \\ A_{31}U_{11}^{-1} & A_{32}U_{22}^{-1} & L_{33} \end{bmatrix} \begin{bmatrix} U_{11} & & L_{11}^{-1}A_{13} \\ & U_{22} & L_{22}^{-1}A_{23} \\ & & U_{33} \end{bmatrix}$$

2.	Code:	https://github.com/RokettoJanpu/scientific-computing-1-redux/blob/main/hw9/hw9.

3. The algorithm does not compute the Cholesky decomposition of A_{11} or A_{22} until the grid size is small, so we only consider the costs of computing the Schur complement S_{33} and its Cholesky decomposition on each level

We will focus on level 0. The block sizes of the tessellation of A are

$$A_{11}, A_{22} : \frac{N}{2} \times \frac{N}{2}$$
 $A_{13}, A_{23} : \frac{N}{2} \times N^{1/2}$
 $A_{31}, A_{32} : N^{1/2} \times \frac{N}{2}$
 $A_{33} : N^{1/2} \times N^{1/2}$

We compute S_{33} via

$$S_{33} = A_{33} - A_{31}U_{11}^{-1}L_{11}^{-1}A_{13} - A_{32}U_{22}^{-1}L_{22}^{-1}A_{23}$$

According to the block sizes, a product involving the inverse of a triangular matrix, e.g. $L_{11}^{-1}A_{13}$, may be considered as solving a sparse nonsingular triangular $\frac{N}{2} \times \frac{N}{2}$ system with $N^{1/2}$ RHS vectors, and there are 4 products to compute. Being sparse gives roughly $\frac{N}{2}$ nonzero entries, and being nonsingular triangular forces at least $\frac{N}{2}$ of the nonzero entries to lie on the diagonal, so the system is roughly diagonal. Thus the cost is $\frac{N}{2}N^{1/2}4=2N^{3/2}$.

The cost of computing AB, where A is $m \times k$ sparse and B is $k \times n$ possibly nonsparse, is roughly 2nnz(A)ncols(B) with nnz(A) the number of nonzero entries of A and ncols(B) the number of columns of B. There are two products involving a sparse matrix and a possibly nonsparse matrix, e.g. $A_{31}(U_{11}^{-1}L_{11}^{-1}A_{13})$. Considering the block sizes and A_{31} sparse with roughly $\frac{N}{2}$ nonzero entries, estimate the cost as $2\frac{N}{2}N^{1/2}2 = 2N^{3/2}$.

There are two sums of $N^{1/2} \times N^{1/2}$ possibly nonsparse matrices to compute, contributing 2N to the cost. Thus the total cost of computing S_{33} is $4N^{3/2}$. Then the cost of computing the Cholesky decomposition of S_{33} , it being $N^{1/2} \times N^{1/2}$, is $\frac{1}{3}N^{3/2}$. In conclusion, the cost of level 0 is $aN^{3/2}$ where $a := \frac{13}{3}$.

Now consider the cost on level k. The meshgrid is partitioned with 2^k "dividers" of length $\left(\frac{N}{2^k}\right)^{1/2}$ each. Applying the reasoning behind the cost of level 0, the cost of level k is $a2^k \left(\frac{N}{2^k}\right)^{3/2} = aN^{3/2}(2^{-1/2})^k$. Thus the cost of the entire algorithm is estimated as

$$W \le aN^{3/2} \sum_{k=0}^{\infty} (2^{-1/2})^k = \frac{13}{3} \frac{1}{1 - 2^{-1/2}} N^{3/2}$$