Sentiment Analysis

CE807-25-SP

Name: Samia Rahman Misty Student ID: 2400570

Approach

Unsupervised

Discriminative

Unsupervised Approach

Unsupervised Approach

1. Why BERTopic for topic modeling?

Uses transformer embeddings + HDBSCAN

Extracts interpretable, high-quality topics from unstructured text

2. Why HDBSCAN after clustering training dataset based on their semantic content?

Detects dense clusters in semantic space

No need to predefine number of clusters

Great for variable-length, noisy data

3. Why ADASYN for oversampling?

Creates synthetic samples for minority classes

Improves class balance and model performance

4. Why finally using KMeans for prediction?

Efficiently clusters encoded data

Maps clusters to sentiment labels

Scalable and fast for inference

Discriminative Approach

Bidirectional Long Short-Term Memory (BiLSTM)

BiLSTM Model Configuration

Component	Details			
Input	10,000-word vocab, max length: 100 tokens			
Embedding Layer	128-dimensional vectors			
BiLSTM Layer	64 hidden units			
Dense Layer	64 units, ReLU activation			
Dropout	0.5 to prevent overfitting			
Output Layer	Sigmoid (binary classification)			

Training Setup

Parameter	Value					
Optimizer	Adam (learning rate: 0.01)					
Loss Function	Binary Cross-Entropy					
Batch Size	64					
Epochs	5 (early stopping at epoch 5)					
Observation	Training PRF peaked, val PRF plateaued → early signs of overfitting					

Discriminative Approach

1. Why not RNN?

- Struggles with long-range dependencies
- Poor performance on noisy, short text

2. Why not GAN?

Designed for generation, not classification

3. Why not LSTM?

- Unidirectional; misses backward context

4. Why BiLSTM?

- Captures context in both directions
- Handles noisy, imbalanced short texts well
- Efficient and robust for sentiment tasks

Data Set & Feature Analysis

Feature	Description
Syllable Count Distribution	Right-skewed; most under 100 syllables. Outliers suggest complex/noisy data.
Sentence Length Distribution	Peaks around 15 words; rare short/long sentences affect tokenization.
Root Word and Lemmatization	140k words in root form; 10k inflected forms may benefit from lemmatization.
Suffixes and Pluralization	150k root words; fewer than 25k have suffixes/plurals. Stemming improves uniformity.

Data Preprocessing(Contd.)

Common Preprocessing

- Lemmatization (e.g., "running" → "run") to preserve meaning
- Lowercasing, punctuation/URL/whitespace removal
- Stopwords removed; only meaningful tokens retained

Discriminative Approach

Tokenization

- Text → Integer sequences
- Vocabulary capped at **10,000** (frequent words only)

Padding

 Padded to 90th percentile length to avoid over/underfitting

Label Encoding

- Positive = 1, Negative = 0
- Simple binary classification setup

Data Preprocessing(Contd.)

Unsupervised Approach

Sentence Embedding

- Uses all-MiniLM-L6-v2 for speed + accuracy
- Alternatives (BERT, RoBERTa) more accurate but slower

Feature Extraction

- CountVectorizer with unigrams & bigrams
- No TF-IDF lacks contextual depth

Clustering

- HDBSCAN + KMeans used for semantic clustering
- DBSCAN & Agglomerative are options but less scalable

Class Balancing

- ADASYN oversampling for hard-to-classify minorities
- SMOTE is an alternative, but ADASYN is more adaptive

Hyperparameter Tuning

Threshold Calibration

• Tested Range: 0.3 to 0.8

Optimal Threshold: 0.7

- o Best precision-recall trade-off
- Minimizes false positives/negatives
- Tuned for 79.1% positive class imbalance

KMeans Clustering

Cluster Count Tested: 2 to 7

• Best Performance: n_clusters = 2

- Clear separation of positive vs. negative sentiment
- → Higher cluster counts → confusion & drop in true negatives
- n=2 ensures best F1-score, accuracy, and generalization

Model Performance

Metric	Model 1	Model 2	SOTA	Explanation
Precision vs Recall	Recall ≈ Precision	Recall > Precision	Balanced	Model 1 balances both; Model 2 favors recall; SOTA typically maintains balance.
Bias Toward Positive	Moderate	Strong	Low	KMeans helps reduce bias in Model 1; Model 2 suffers due to high threshold.
Overfitting Signs	None	None	None	All show stable train/validation performance; no signs of overfitting.
Generalization Ability	Moderate	Strong	Strong	Model 2 generalizes well; SOTA trained on diverse data, boosting adaptability.
Class Imbalance Handling	Moderate	Weak	Strong	KMeans + ADASYN help Model 1; SOTA more robust due to architecture and tuning.
F1 Score (Validation)	69.90%	87.16%	~90%	Model 1 is moderate; Model 2 excels with threshold tuning; SOTA slightly better.

Model Comparison

Unsupervised Approach (Model 1) & Discriminative Approach (Model 2)

Example & Justification

Text	GT	SoTA	Model 1	Model 2	Explanation
great received quickly	Positive	Positive	Positive	Positive	All models correctly identify positive sentiment. "Received quickly" is well-handled by semantic clustering, BiLSTM, and SoTA transformers.
work messed ever thing	Negative	Negative	Positive	Positive	Both custom models misclassify due to ambiguity in "work." SoTA's contextual depth correctly captures the negative tone.
better paper filter mess	Negative	Neutral	Negative	Negative	Model 1 & 2 detect negative hints. SoTA labels neutral, possibly due to short length and missed subtle cues.
easy install water taste good	Positive	Positive	Negative	Positive	Model 1 misclassifies, likely confused by neutral phrasing. Model 2 and SoTA identify "taste good" as a strong positive indicator.
needed needed thank dm	Positive	Neutral	Positive	Negative	Model 1 captures sentiment through gratitude cues. Model 2 misclassifies due to strict thresholding; SoTA stays neutral due to vagueness.

Discussion & Summary

Limitations Highlighted

Standard Metrics Fall Short

Accuracy, F1-score, and precision/recall can **mislead** in imbalanced datasets.

Model Bias

- Unsupervised clustering → prone to biased groupings.
- Deep learning models tend to favor majority class.

Threshold Calibration

- Effective for tuning decision boundaries.
- Improves precision, recall, and F1-score on imbalanced data.

Future Improvements

- Contrastive Learning
 - → Better representation of **minority classes**.
- Variational Autoencoders (VAEs)
 - → Unsupervised **feature disentanglement** for diverse patterns.
- Adaptive Reweighting (e.g., Focal Loss)
 - → Handles class imbalance by **emphasizing hard examples**.

Thank You