# QSAR biodegradation dataset classification using neural networks

Jonáš Kulhánek, Jan Uhlík

MFF, Charles University in Prague

December 2019

# QSAR biodegradation dataset Kamel et al. (2013)

- Dataset from OpenML: qsar-biodeg
- Classification dataset where the task is to predict whether a protein is bio-degradable based on its chemical properties
- Published by Milano Chemometrics and QSAR Research Group
- 41 attributes in total, some real valued, other integer valued
- Number of proteins in the dataset is 1055
- Class 0 is bio-degradable

#### Method

- Multi Layered Perceptron (2 layers)
- ▶ 40 neurons in the hidden layer
- ReLU activation function
- trained as logistic regression with NLL loss and sigmoid activation function
- optimized using Adam Kingma and Ba (2014)
- experimented with dropout (0.5) Srivastava et al. (2014)
- weight decay (0.0045) for regularization
- trained for 120 epochs
- evaluated using cross validation (10 splits)

# Single layer network training



## Two layers network training



## Confusion matrix



### Precision recall



# Our results and comparisons

| Method                       | Predictive accuracy |
|------------------------------|---------------------|
| svm.classes.SVC              | 89.19%              |
| Ours - 2 layers              | 87.76%              |
| xgboost                      | 87.68%              |
| weka.RandomForest            | 86.67%              |
| Ours - 1 layer               | 85.12%              |
| weka.VotedPerceptron         | 79.43%              |
| weka.NaiveBayes              | 75.64%              |
| neural_network.MLPClassifier | 66.26%              |

- Mansouri Kamel, Tine Ringsted, Davide Ballabio, Roberto Todeschini, and Viviana Consonni. Quantitative structure-activity relationship models for ready biodegradability of chemicals. *Journal of chemical information and modeling*, 53: 867–878, 03 2013. doi: 10.1021/ci4000213.
- Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL <a href="http://arxiv.org/abs/1412.6980">http://arxiv.org/abs/1412.6980</a>. cite arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015.
- Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. *Journal of machine learning research*, 15(1):1929–1958, 2014. URL http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.