Advanced modeling, properties, and state space reduction

David Basin, Cas Cremers, Jannik Dreier, Ralf Sasse

Overview

- Recap
- Induction
- State space reduction by sources lemmas
- Equational theories and adversary rules
- Observational equivalence

Modeling in Tamarin

- Multiset rewriting
- Basic ingredients:

```
    Terms (think "messages")
    Facts (think "sticky notes on the fridge")
    Special facts: Fr(t), In(t), Out(t), K(t)
```

- System state is a multiset of facts
 - **Initial state** is the empty multiset
 - Rules specify the transitions ("moves")
- Rules are of the form:

```
- l --> r == l --[ ]-> r
- l --[ a ]-> r
```

Semantics

Transition relation

$$S - [a] \rightarrow_R ((S \mid I) \cup \# r)$$

where $I - [a] \rightarrow r$ is a ground instance of a rule and $I \subseteq \# S$

Executions

Exec(R) =
$$\{ \oslash -[a_1] \rightarrow ... -[a_n] \rightarrow S_n$$

| $\forall n . Fr(n)$ appears only once on rhs $\}$

Traces

Traces(R) = {
$$[a_1,...,a_n]$$

 $| \oslash -[a_1] \rightarrow ... -[a_n] \rightarrow S_n \in Exec(R)$ }

Trace properties

- For now: trace properties (but more later!):
 - ∀ tr ∈ traces(System) . P(tr)

Intersection empty?

Induction

$$R_{loop} := \left\{ \begin{array}{l} {\sf Fr}(x) \\ {\sf A}(x) \end{array} [{\sf Start}(x)], \ \frac{{\sf A}(x)}{{\sf A}(x)} [{\sf Loop}(x)] \end{array} \right\}$$

- Proof goal: $\forall x \ i. \mathsf{Loop}(x)@i \Rightarrow \exists j. \mathsf{Start}(x)@j$
 - -j < i ? Not needed in formula, but will hold
- Naive constraint solving does not work
- Such properties are needed:
 - "Reuse" lemmas
 - "Sources" lemmas

Constraint solving failure

Demo

Induction – on time points

- Informally, induction works on previous slide
- Formally, for IH ϕ
 - 1) Check if ϕ holds for empty trace
 - 2) Consider special last rule index on trace
 - Assume ϕ holds at all non-last indices, and prove for last
- Added constraint reduction rules for last atoms
- Allows proof of previous example

Example – solved by induction

Demo – using induction

Induction in general

- Required for all "sources" lemmas
- Often required for "reuse" lemmas
- Helps for all looping constructs, used in e.g.:
 - YubiKey
 - TPM
 - PKCS11
 - Group protocols
 - Counters

State space reduction

Pre-computation

Partial deconstructions

Sources lemmas

Precomputation

- Idea: for all facts in rule premises compute their possible sources
- sources are (combinations of) rules yielding such a fact as (part of the) result
- Initial precomputations are called raw sources
- Sometimes these precomputations are incomplete, and give partial deconstructions
- GUI shows both raw and refined sources

Demo

```
theory sources begin

Message theory
Multiset rewriting rules (5)

Raw sources (8 cases, 6 partial deconstructions left)

Refined sources (8 cases, deconstructions complete)
```

Partial deconstruction – derive any value

See demo for detail

Partial deconstructions – issues

- Proofs much more complicated
 - Possibly non-termination due to partial deconstructions
- Need to resolve such partial deconstructions
- Claim (and then prove) such deconstructions are not possible, by sources lemma

Example protocol

```
1. I \rightarrow R: \{ni, I\}pk(R)
    2. I <- R: \{ni\}pk(I)
rule I 1:
 let m1 = aenc{-ni, $I}pkR in
    [ Fr(~ni) , !Pk($R, pkR) ]
  --[ OUT I 1(m1) ]->
    [ Out( m1 ) ]
rule R 1:
 let m1 = aenc{ni, I}pk(ltkR)
      m2 = aenc{ni}pkI in
    [ !Ltk($R, ltkR) , In( m1 ), !Pk(I, pkI) ]
  --[ IN_R_1_ni( ni, m1 ) ]->
    [ Out( m2 ) ]
```

This looks like a decryption oracle for values ni

Really? Extract everything?

- Realization: only values actually sent by legitimate party (whose private key must be compromised) or adversary-generated terms
 - which are known to the adversary previously

```
lemma types [sources]:

" (All ni m1 #i.

IN_R_1_ni( ni, m1) @ i

==>

( (Ex #j. K(ni) @ j & j < i)
 | (Ex #j. OUT_I_1( m1 ) @ j) ) ) "
```

Demo

Problems with partial deconstructions

Sources lemma removes partial deconstructions for refined sources

Automatic proof of sources lemma

Sources lemmas

- Explain where terms can come from or what their form must be
- Tamarin actions in order:
- 1) Determine possible sources (raw)
- 2) Apply sources lemma to raw sources to get refined sources
- 3) Prove sources lemma WRT raw sources
- 4) Prove other lemmas WRT refined sources

Sources lemmas

- Important for termination
- Reduces state space to manageable size
- See more in following hands-on session

Equational theories

- Equational theories are used in symbolic protocol verification to model the algebraic properties of the cryptographic primitives.
- Example (asymmetric encryption):

$$adec(aenc(m,pk(k),k) = m$$

- Subterm convergent
 - Right-hand side is subterm of left hand side (or constant)
- Built-in: Diffie-Hellman, bilinear pairing, multiset
- Recent extension: any FVP theory
 - Example: blind signatures

Finite Variant Property

- FVP is a property of an equational theory
 - Theory must be confluent and terminating
 - For all terms there is a bound so that all instantiations of the term reach their normal form in at most bound number of steps.
 - Allows computation of complete set of variants
 - Set of variants represents the term modulo theory
- Any subterm-convergent theory has FVP
- Built-ins are proven to have FVP as well

Protocol modulo equational theory

- Inefficient to compute protocol execution modulo equational theory
- Compute variants of rules modulo equational theory
- Adversary: Construction and deconstruction rules
 - Construction rules allow adversary to apply any operator
 - Deconstruction rules represent applying those operators where the result changes modulo the equational theory
 - e.g.: applying decryption operator to encrypted term with correct key
- Adversary rules are automatically derived

Message deduction

The adversary is specified using multiset rewrite rules

$$\mathrm{MD} = \left\{ \begin{array}{ll} \frac{\mathrm{Out}(x)}{\mathsf{K}(x)} & \frac{\mathsf{K}(x)}{\mathsf{In}(x)} [\mathsf{K}(x)] & \frac{\mathsf{Fr}(x:fr)}{\mathsf{K}(x:fr)} & \frac{\mathsf{K}(x:pub)}{\mathsf{K}(x:pub)} \\ \\ \frac{\mathsf{K}(x_1) \dots \mathsf{K}(x_k)}{\mathsf{K}(f(x_1,\dots,x_k))} & \text{for all } f \in \Sigma \end{array} \right\}$$

Example:

$$\frac{\operatorname{Out}(\operatorname{aenc}(m,\operatorname{pk}(k)))}{\operatorname{K}(\operatorname{aenc}(m,\operatorname{pk}(k)))} \frac{\operatorname{Out}(k)}{\operatorname{K}(k)}$$

$$\frac{\operatorname{K}(\operatorname{aenc}(m,\operatorname{pk}(k)))}{\operatorname{K}(\operatorname{dec}(\operatorname{aenc}(m,\operatorname{pk}(k)),k))}$$

$$\frac{\operatorname{K}(\operatorname{dec}(\operatorname{aenc}(m,\operatorname{pk}(k)),k))}{\operatorname{In}(\operatorname{dec}(\operatorname{aenc}(m,\operatorname{pk}(k)),k))} [\operatorname{K}(\operatorname{dec}(\operatorname{aenc}(m,\operatorname{pk}(k)),k))]$$

Message deduction

The adversary is specified using multiset rewrite rules

$$\mathrm{MD} = \left\{ \begin{array}{ll} \frac{\mathrm{Out}(x)}{\mathsf{K}(x)} & \frac{\mathsf{K}(x)}{(x)} [\mathsf{K}(x)] & \frac{\mathsf{Fr}(x:fr)}{\mathsf{K}(x:fr)} & \frac{\mathsf{K}(x:pub)}{\mathsf{K}(x:pub)} \\ \\ \frac{\mathsf{K}(x_1) \dots \mathsf{K}(x_k)}{\mathsf{K}(f(x_1,\dots,x_k))} & \text{for all } f \in \Sigma \end{array} \right\}$$

Example:

$$\frac{\operatorname{Out}(\operatorname{aenc}(m,\operatorname{pk}(k)))}{\operatorname{K}(\operatorname{aenc}(m,\operatorname{pk}(k)))} \frac{\operatorname{Out}(k)}{\operatorname{K}(k)}$$

$$\frac{\operatorname{K}(\operatorname{aenc}(m,\operatorname{pk}(k)))}{\operatorname{K}(m)}$$

$$\frac{\operatorname{K}(m)}{\operatorname{In}(m)} [\operatorname{K}(m)] \quad \text{as } \operatorname{dec}(\operatorname{aenc}(m,\operatorname{pk}(k)),k) = m$$

Prevent loops and redundant derivation

Split adversary knowledge into K^{\uparrow} and K^{\downarrow}

$$\frac{\mathsf{K}(\langle a, b \rangle)}{\mathsf{K}(a)}$$

$$\frac{\mathsf{K}(a)}{\mathsf{K}(\langle a, c \rangle)}$$

$$\frac{\mathsf{K}(\langle a, c \rangle)}{\mathsf{K}(\langle a, c \rangle)}$$

$$\frac{\mathsf{K}(\langle a, c \rangle)}{\mathsf{K}(a)}$$

$$\frac{\mathsf{K}(\langle a, c \rangle)}{\mathsf{K}(\langle a, d \rangle)}$$

$$rac{\mathsf{K}^{\pitchfork}(a) \quad \mathsf{K}^{\pitchfork}(c)}{\mathsf{K}^{\pitchfork}(\langle a,c
angle)} \ rac{\mathsf{K}^{\Downarrow}(\langle a,c
angle)}{\mathsf{K}^{\Downarrow}(a)}$$

Normal deduction – equivalent to MD

$$ND = \begin{cases} \frac{\mathsf{Cut}(x)}{\mathsf{K}^{\Downarrow}(x)} \\ \frac{\mathsf{K}^{\Downarrow}(\langle x,y\rangle)}{\mathsf{K}^{\Downarrow}(x)} & \frac{\mathsf{K}^{\Downarrow}(\langle x,y\rangle)}{\mathsf{K}^{\Downarrow}(y)} & \frac{\mathsf{K}^{\Downarrow}(aenc(m,pk(k)))}{\mathsf{K}^{\Downarrow}(m)} \\ \frac{\mathsf{K}^{\Downarrow}(x)}{\mathsf{K}^{\pitchfork}(x)} & \frac{\mathsf{Fr}(x:fr)}{\mathsf{K}^{\pitchfork}(x:fr)} & \frac{\mathsf{K}^{\pitchfork}(x:pub)}{\mathsf{K}^{\pitchfork}(x:pub)} \\ \frac{\mathsf{K}^{\pitchfork}(x)}{\mathsf{K}^{\pitchfork}(\langle x,y\rangle)} & \frac{\mathsf{K}^{\pitchfork}(p)}{\mathsf{K}^{\pitchfork}(fst(p))} & \frac{\mathsf{K}^{\pitchfork}(p)}{\mathsf{K}^{\pitchfork}(snd(p))} \\ \frac{\mathsf{K}^{\pitchfork}(m)}{\mathsf{K}^{\pitchfork}(aenc(m,k))} & \frac{\mathsf{K}^{\pitchfork}(c)}{\mathsf{K}^{\pitchfork}(adec(c,k))} & \frac{\mathsf{K}^{\pitchfork}(k)}{\mathsf{K}^{\pitchfork}(pk(k))} \\ \frac{\mathsf{K}^{\pitchfork}(x)}{\mathsf{In}(x)} [\mathsf{K}(x)] \end{cases}$$

Deconstruction rules for subterm-convergent equations

$$a(b(c(x,y),1),y) \rightarrow x$$

Yields two deconstruction rules:

$$\frac{\mathsf{K}^{\Downarrow}(c(x,y))\ \mathsf{K}^{\Uparrow}(1)\ \mathsf{K}^{\Uparrow}(y)}{\mathsf{K}^{\Downarrow}(x)} \qquad \frac{\mathsf{K}^{\Downarrow}(b(c(x,y),1))\ \mathsf{K}^{\Uparrow}(y)}{\mathsf{K}^{\Downarrow}(x)}$$

31

General deconstruction rule example

$$\texttt{unblind}(\texttt{sign}(\texttt{blind}(\textcolor{red}{m}, r), \textcolor{red}{k}), r) \rightarrow \texttt{sign}(\textcolor{red}{m}, \textcolor{red}{k})$$

Yields two deconstruction rules (2nd twice):

$$\frac{\mathsf{K}^{\Downarrow}(blind(m,r)) \ \mathsf{K}^{\Uparrow}(k) \ \mathsf{K}^{\Uparrow}(r)}{\mathsf{K}^{\Downarrow}(sign(m,k))} \ \frac{\mathsf{K}^{\Downarrow}(sign(blind(m,r),k)) \ \mathsf{K}^{\Uparrow}(r)}{\mathsf{K}^{\Downarrow}(sign(m,k))}$$

Protocol by Fujioka, Okamoto, and Ohta [FOO92]

Protocol combines

- Blind signatures
 unblind(sign(blind(x,r),k),r) = sign(x,k)
- Commitments: open(commit(v,r),r) = v

to ensure:

- vote privacy (equivalence property)
- eligibility (trace property)

FOO92

Runs in three **phases**:

- Eligibility check
- Voting
- Counting

Authorities:

- Administrator
- Collector

Assumption:

Anonymous channel to the collector

Eligibility check

Demo

Message theory
Multiset rewriting rules
Heuristics vs user-guided

Restrictions

- Restrictions exclude undesired traces
 - Take care not to exclude attacks!
- Safe to use for certain checks:
 - Equality
 - Inequality
 - LessThan
 - GreaterThan
 - OnlyOnce
- Use same format as lemmas
- Essentially: Conditional Rewriting

Restriction Example

restriction once:

```
"All #i #j. OnlyOnce()@#i & OnlyOnce()@#j ==> #i=#j"
```

Rules

```
    rule 1: [] —[OnlyOnce()] → [A('5')]
    rule 2: [A(x)] –[Step(x)] → [B(x)]
```

- Execution removed by restriction
 - []
 - -[OnlyOnce()] → [A('5')]
 - -[OnlyOnce()] → [A('5'), A('5')]
 - -[Step('5')] → [A('5'), B('5')]
- Execution still allowed
 - []
 - –[Init()] → [A('5'), A('5')]
 - -[Step('5')] → [A('5'), B('5')]

Restriction Example 2

restriction InEq:

```
"All x #i. Neq(x,x)@#i ==> F"
```

Rules

- Execution removed by restriction valid without restriction
 - []
 - -[A1()]→ [A('1')]
 - -[A1()]→ [A('1'), A('1')]
 - -[Neq('1','1')] → [B('1','1')]
- Execution allowed
 - []
 - -[A1()]→ [A('1')]
 - $-[A2()] \rightarrow [A('1'), A('2')]$
 - -[Neq('1','2')] → [B('1','1')]

Observational equivalence

Two types of properties:

- Trace properties
 - (Weak) secrecy as reachability
 - Authentication as correspondence

Observational equivalence

Why observational equivalence?

• Consider classic **Dolev-Yao** adversary for deterministic public-key encryption: enc(x,pk(k)) k

 \mathcal{X}

- Adversary can only decrypt if he knows the secret key
 - Consider a simple voting system:
 - Voter chooses v="Yes" or v="No"
 - Encrypt v using server's public key pk(k):
 - c = enc(v, pk(k))
 - Send c to server

Is the vote secret?

- Dolev-Yao: Yes, adversary does not know server's secret key
- Reality: **No**, encryption is deterministic and there are only two choices
 - Attack: encrypt "Yes", and compare to c

Observational equivalence vs reachability

- Reachability-based (weak) secrecy is insufficient
- Stronger notion: adversary cannot distinguish
 - a system where the voter votes "Yes" from
 - a system where the voter votes "No"
- Observational equivalence between two systems
- Can be used to express
 - Strong secrecy
 - Privacy notions

Running example

- Auction system for a shout-out auction
- Property: strong secrecy of bids
- Property violated:
 - Broadcast bid (e.g., A or B)
 - Send "A" in first system
 - Send "B" in second system
 - Observer knows if he is observing first or second system
- Property holds using shared symmetric key:
 - Shared symmetric key k between bidder and auctioneer
 - Send "{A}_k" in first system
 - Send "{B}_k" in second system
 - Observer has no access to k, does not know which system he observes

System and environment

- We separate environment and system
 - System: agents running according to protocol
 - Environment: adversary acting according to its capabilities
- Environment can observe:
 - Output of the system
 - If system reacts at all

Defining observational equivalence

- Two system specifications given as set of rules
 - One rule per role action (send/receive)
 - Running example shout-out auction:

System 1:
$$\frac{}{\text{Out}_{Sys}(A)}$$
 System 2: $\frac{}{\text{Out}_{Sys}(B)}$

Interface and environment/adversary rule(s):

$$\frac{\operatorname{Out}_{Sys}(X)}{\operatorname{In}_{Env}(X)} \qquad \frac{\operatorname{Out}_{Env}(X)}{\operatorname{In}_{Sys}(X)} \qquad \frac{\operatorname{In}_{Env}(X) \quad K(X)}{\operatorname{Out}_{Env}(true)}$$

- Last rule models comparison by the adversary
- Each specification yields a labeled transition system
- Observational equivalence is a kind of bisimulation accounting for the adversaries' viewpoint and capabilities

Diff terms

- General definitions of observational equivalence difficult to verify: requires inventing simulation relation
- Idea: **specialize** for cryptographic protocols
 - Consider strong bid secrecy:
 - both systems differ in secret bid only, i.e.,
 - both specifications contain same rule(s), which differ only in some terms
 - Exploit this similarity in description and proof
- Approach: two systems described by one specification using diff-terms
 - Running example

$$\overline{Out_{Sys}(A)}$$
 $\overline{Out_{Sys}(B)}$

Is equivalent to one rule with a diff-term

$$\overline{Out_{Sys}(\mathbf{diff}(A,B))}$$

Approximating observational equivalence using mirroring

Both systems contain same rules modulo diff-terms

Idea: assume that each rule simulates itself

Compute mirrors of each execution into the other system

 If the mirrors are valid executions, we have observational equivalence (sound approximation)

Invalid mirrors and attacks

Bidder picks A/B, observer compares to public value A

Counter example to observational equivalence

Valid mirror

Observer compares system output to itself

- All mirrors need to be valid for observational equivalence

Dependency graph equivalence

- A diff-system is dependency graph equivalent if mirrors of all dependency graphs rooted in any rule on both sides are valid.
 - Sound but incomplete approximation
 - Efficient and sufficient in practice

• Input:

- Protocol specification
- Property: equivalence given two choices for some term(s)
 - Example: random value vs expected value

Output:

- Yes, observational equivalent
- No, dependency graph with invalid mirror
- Non-termination possible

The equivalence zoo

Red arrows require assumptions: determinate processes + bounded sessions (no replication)

Case studies

Feldhofer's RFID protocol

- Adversary cannot determine which RFID tag is communicating with reader
- Automatically verified in 1.6 seconds

Signed Diffie-Hellman key exchange

- Real-or-random secrecy of session key
- Needs manual guidance in one subcase
- Automatically completed proof in 2.5 minutes

TPM_Envelope

- Real-or-random secrecy
- Finds attack for deterministic encryption
 - Despite previous proof wrt trace-based secrecy
- Recommendation: use probabilistic encryption

Vote privacy for FOO92

Eligibility verified previously

Vote privacy verified automatically as well

Case studies (II)

Protocol	Property	Result	Time
Chaum	Unforgeability	√	0.2s
Chaum	Anonymity	\checkmark	7.6s
Chaum	Unlinkability	\checkmark	$1 \mathrm{m} 13.7 \mathrm{s}$
FOO	Eligibility	√	10.3s
FOO	Vote Privacy	\checkmark	4m 11.1 s
Okamoto	Eligibility	√	8.4s
Okamoto	Vote Privacy	\checkmark	1m 20.3 s
Okamoto	Receipt-Freeness	\checkmark	13m35.8s
Denning-Sacco	Session Matching	×	0.3s
Needham-Schroeder	Key Secrecy	×	24.0s

Large scale

- TLS 1.3 analyzed with Tamarin at:
 - v10
 - v10+ (fixes to v10)
 - current version
- See tomorrow at TLS:DIV (room 107, 16:00)

- Attack found: 18 messages, 3 modes
 - Finding it manually unlikely

The future

- Increasing scope
 - Properties
 - Much ongoing work on trace equivalence properties
- Increasing precision
 - Expanding supported equational theories
 - Tamarin is already more precise than other tools, e.g., for Diffie-Hellman representation

Tamarin: Conclusions

- Tamarin offers many unique features
 - Unbounded analysis, (guarded) FOL properties, equivalence properties, equational theories, global state, ...
 - Enables automated analysis in areas previously out of scope
- It has additional features we did not touch on today
 - Reusable lemmas, heuristics tuning, ...
- Tool and sources are free; development on Github
- Want to continue with Tamarin?
 - https://tamarin-prover.github.io for news and publications
 - https://github.com/tamarin-prover/tamarin-prover

ralf.sasse@inf.ethz.ch

Backup slides

Guarded Formulas

- All formulas (lemma, restriction) must be guarded
 - All variables quantified over **must** appear in terms

$$\forall \overline{x}.F(\overline{z})@i \Rightarrow \psi \quad \exists \overline{x}.F(\overline{z})@i \wedge \psi$$

- Where F is a fact and \overline{x} and \overline{z} are vectors of variables such that $\overline{x} \subseteq \overline{z} \cup i$
- i.e., all bound variables appear in the fact formula $F(\overline{z})@i$

Executability Lemmas

- Executability lemmas are existential properties
- These show the existence of some protocol trace satisfying the formula...
- ... instead of the usual case where all traces must satisfy the formula.
- Heuristics tuned for verification
 - Manual intervention needed more often for executability

lemma exec: exists-trace "...(formula)..."

Syntax Issues: Type Annotations

- Mark timepoint (index) variables with a hashmark (#) in quantification.
- We omit this in the slides, but it is required in the tool.
- Example:

$$\forall x \# i.F(x)@i$$

Syntax Issues: Type Annotations (ctd.)

- Mark fresh values with ~
- Mark public values with \$
- Be consistent! If a rule contains ~x, \$x, and x that is interpreted as three different variables!
 - You do get a warning about it, and should fix it.

Warnings on Loading a theory

- Warnings give good information what is wrong:
 - Mismatch of type: use of \$x and x in same rule
 - Using a fact name with different arities
 - Guardedness problems in formula
- Tamarin strict mode stops you from working with warnings, but is optional:
 - Add command-line parameter: --quit-on-warning

Storing Proofs

- Complete (or partial) proofs can be stored
 - Click the "Download" button in top right
- These can be reloaded like normal theories
 - Proof is rechecked!

Eligibility check - FOO92

```
rule V 1:
  let x = commit( vote , ~r )
      e = blind(x, \sim b)
      s = sign (e, \sim ltkV)
  in
    [ Fr( ~r ), Fr( ~b ), !Ltk( V, ~ltkV ) ]
  --[ Created vote V 1(x), Created commit V 1(e) ]->
    [ Out( <e,s> ), St V 1( V, $vote, ~r, ~b ) ]
rule A 1:
  let d = sign( e, ~ltkA )
  in
    [ In( <e,sign(e,~ltkV)> ), !AdminLtk( A, ~ltkA ), !Ltk( V, ~ltkV ) ]
  --[ Registered(e), In A 1(e) ]->
    [ Out( <e,d> ) ]
rule V 2: // Check Admin Signature & Check the commit
 let e = blind(commit(vote,~r),~b)
      d = sign(blind(commit(vote,~r),~b),~ltkA)
      y = sign(commit(vote,~r),~ltkA)
      x = commit(vote, \sim r)
  in
    [ In(\langle e, sign(e, \sim ltkA) \rangle), St V 1(V, vote, \langle r, \sim b \rangle, !AdminLtk(A, \sim ltkA)]
  --[]->
    [ Out( <x,y> ), St V 2( V, A, vote, ~r ) ]
```

Advanced modeling

- Channels
- Heuristics options

Some simple examples

- Indistinguishability of probabilistic encryption
 - Adversary cannot distinguish random value from encryption
 - Automatically verified in 0.2 seconds

- Decisional Diffie-Hellman
 - Given algebraic properties of DH exponentiation as equational theory
 - Adversary cannot distinguish g^{ab} from random g^{c}
 - Given g^a and g^b
 - Automatically verified in 15.2 seconds