Basi di Dati Introduzione

Corso B

Basi di Dati – Corso B

Progettazione, programmazione e architetture delle basi di dati

a.a. 2018-2019

Ruggero G. Pensa (pensa@di.unito.it)

Ricevimento: giovedì 16-18

Sito Moodle: Basi di Dati (2018/19), Corso B (BD-B-18-19)

TESTO:

• Atzeni, Ceri, Fraternali, Paraboschi, Torlone
"Basi di dati", McGraw-Hill, Quinta edizione, 2018.

Contenuti

Basi di Dati relazionali

- Modello Relazionale
- Algebra e calcolo relazionale
- SQL

Progettazione di Basi di Dati

- Metodologie e modello Entità Associazioni
- Progettazione concettuale e logica
- La normalizzazione

Sistemi per la gestione dei dati

- Metodi di accesso e indici
- Ottimizzatore logico e fisico
- Gestione della concorrenza
- Gestione del ripristino

Contenuti - Roadmap

Lab (progettazione)	Corso di Teoria	Lab (SQL)
 Metodologie e modello Entità Associazioni Progettazione concettuale e logica 	 Modello Relazionale Algebra e calcolo relazionale Ottimizzazione logica La normalizzazione Metodi di accesso e indici Ottimizzatore fisico Gestione della concorrenza Gestione del ripristino 	• Linguaggio SQL

Dove contestualizzare gli argomenti del corso: Sistema informativo di una organizzazione

Componente (sottosistema) di una organizzazione che gestisce (acquisisce, elabora, conserva, produce) le informazioni di interesse (cioè le informazioni utilizzate per il perseguimento degli scopi dell'organizzazione)

Sistema informativo, commenti

- Ogni organizzazione ha un sistema informativo, eventualmente non esplicitato.
- Quasi sempre, il sistema informativo è di supporto ad altri sottosistemi (amministrazione, produzione, magazzino,...), va quindi studiato nel contesto in cui è inserito.
- Il sistema informativo è di solito suddiviso in sottosistemi (in modo gerarchico o decentrato), più o meno fortemente integrati.
- Il concetto di "sistema informativo" è indipendente da qualsiasi automatizzazione.

Sistema organizzativo

 Insieme di risorse e regole per lo svolgimento coordinato delle attività (processi) al fine del perseguimento degli scopi.

- Risorse di un'azienda (ente, amministrazione,...):
 - risorse umane
 - risorse finanziarie
 - materiali
 - informazioni

Sistema organizzativo e sistema informativo

Il sistema informativo è parte del sistema organizzativo

 Il sistema informativo esegue/gestisce processi informativi (cioè i processi che coinvolgono varie risorse: personale, flussi finanziari, materiale, informazioni)

Sistema Informatico

 Porzione automatizzata del sistema informativo:

la parte del sistema informativo che gestisce informazioni con tecnologia informatica.

Sistema informatico

Paradigma generale di riferimento

- Visione sistemica: ogni organizzazione ha degli input (ordini, richieste di servizi, ecc...) e degli output (prodotti venduti, utile, erogazione di servizi, ecc...)
- Focalizzazione sui dati, o meglio ancora sulle informazioni: tutto ciò che non è espresso nei dati non esiste o meglio non interessa all'organizzazione. Es.: Quando lo studente si immatricola non dichiara il colore dei capelli.
- Strutturare il sistema in sottosistemi interconnessi da interfacce. Es.: La didattica comprende studenti e docenti con relativi sottosistemi.
- Disporre di modelli formali per rappresentare dati e funzioni
 Ci occuperemo dei modelli dei dati rinviando l'analisi delle funzioni ai corsi di ingegneria del software.

Gestione delle informazioni

• Raccolta, acquisizione

• Archiviazione, conservazione

• Elaborazione, trasformazione, produzione

• Distribuzione, comunicazione, scambio

Informazioni e dati

- Nei sistemi informatici (e non solo), le informazioni vengono rappresentate in modo essenziale, spartano: attraverso i dati.
- Nei sistemi informatici sono informazioni i dati che assumono un significato specifico in un determinato contesto. In altre parole i dati interpretati e correlati tra loro diventano informazioni.

Dati e informazioni

• Un esempio:

Mario 275

su un foglio di carta sono due dati e non significano molto.

Se il foglio di carta viene fornito in risposta alla domanda "A chi mi devo rivolgere per il problema X; qual è il suo numero di telefono?", allora i dati possono essere interpretati per fornire informazione e arricchire la conoscenza.

Basi di dati

- Accezione generica, metodologica:
 - Insieme organizzato di dati utilizzati per il supporto allo svolgimento delle attività di un ente pubblico o privato (azienda, società, associazione, ecc..., ma anche solo un ufficio)

- Accezione specifica, metodologica e tecnologica:
 - Insieme di dati gestito da un DBMS

Base di dati

Approfondiamo l'accezione generica, metodologica.

 Una base di dati è un insieme di dati atomici strutturati e persistenti, raggruppati in <u>insiemi</u> <u>omogenei in relazione tra loro</u> organizzati con la minima ridondanza per essere utilizzati da applicazioni diverse in modo sicuro e controllato.

Classificazione

 I dati vengono prima di tutto raggruppati secondo il sistema della classificazione ovvero per omogeneità

• Esempio: in un ospedale abbiamo dottori, pazienti, reparti, attrezzature mediche, cancelleria, ecc.

 Le basi di dati offrono gli strumenti per classificare la realtà del dominio di interesse (e al relativo sistema informativo)

Relazioni tra classi

 Le classi devono poter essere messe in relazione fra loro

• Esempio: correlazione tra medici e reparti ma non tra attrezzature mediche e pazienti

Le basi di dati sono ... condivise

 Ogni organizzazione (specie se grande) è divisa in settori o comunque svolge diverse attività

 Ciascun settore/attività ha un (sotto)sistema informativo (non necessariamente disgiunto dagli altri sottosistemi)

Un esempio /1

Un esempio /2

Archivi vs basi di dati

Problemi

- Ridondanza:
 - informazioni ripetute

- Rischio di incoerenza:
 - versioni diverse delle stesse informazioni possono non coincidere

Basi di dati

Le basi di dati sono condivise

 Una base di dati è una risorsa integrata, condivisa fra applicazioni.

Conseguenze:

Attività svolte da soggetti diversi su dati condivisi:

meccanismi di autorizzazione

Accessi da parte di più soggetti ai dati condivisi:

controllo della concorrenza

Sviluppo basato su archivi indipendenti

Si giunge rapidamente al collasso del sistema informatico e quindi informativo!

Sviluppo basato su archivi indipendenti

Criticità

- Eterogeneità dei sistemi: fornitori e tecnologie diverse che inducono costi di gestione
- Difficoltà nell'interscambio di dati: incompatibilità di formati e incompletezze
- Ridondanza e incoerenza delle informazioni
- Assenza di una visione unitaria

Sviluppo basato su archivi indipendenti

Crescita quadratica della complessità!

Sviluppo integrato

- Data la struttura organizzativa si inizia con un'analisi attenta e il più possibile esaustiva del sistema informativo indipendentemente dalle applicazioni
- Definiti lo schema e i dati e le informazioni di interesse dell'organizzazione si sviluppa l'applicazione
- 3. L'applicazione si interfaccerà con il DBMS (sistema di gestione della basi di dati) in base alle sue esigenze

Prima i dati, poi le applicazioni!

Sviluppo integrato

Data Base Management System (DBMS)

DBMS: sistema centralizzato o distribuito che consente di:

- definire schemi di basi di dati (necessari per interpretare i dati),
- specificare i vincoli di integrità dei dati,
- scegliere le strutture dati per la memorizzazione e l'accesso ai dati,
- memorizzare, recuperare e modificare i dati (interattivamente o da programma) da utenti autorizzati.

Data Base Management System (DBMS)

Componenti tipici:

- Linguaggi per definire gli schemi logici dei dati (DDL, data definition language);
- Vincoli d'integrità;
- Linguaggi per manipolare i dati (DML, data manipulation language): interrogare, inserire, cancellare, modificare;
- Strutture per un accesso efficiente;
- Gestione automatica delle transazioni;
- Meccanismi di autorizzazione;
- Concorrenza;
- Ripristino da guasti;
- Meccanismi di protezione dei dati personali (privacy).

Architettura standard (ANSI/SPARC) a tre livelli per DBMS - 1975

Architettura standard (ANSI/SPARC) a tre livelli per DBMS - 1975

Architettura standard (ANSI/SPARC) a tre livelli per DBMS

Indipendenza fisica (garantita nei sistemi attuali)
 I programmi applicativi o le attività interattive devono
 rimanere logicamente inalterate a fronte di eventuali
 modifiche delle strutture di memorizzazione dei dati o delle
 vie di accesso.

Architettura standard (ANSI/SPARC) a tre livelli per DBMS - 1975

Dinamicità del patrimonio informativo

Lo schema logico è la descrizione del patrimonio informativo dell'organizzazione

In generale il patrimonio informativo è mediamente stabile, ma può essere rivisto e ampliato

- Nuove normative
- Nuovi requisiti
- ...

Se uno schema esterno non fa riferimento a porzioni modificate dello schema logico, la relativa applicazione continua a funzionare regolarmente

Architettura standard (ANSI/SPARC) a tre livelli per DBMS

- Indipendenza fisica (garantita nei sistemi attuali)
 I programmi applicativi o le attività interattive devono
 rimanere logicamente inalterate a fronte di eventuali
 modifiche delle strutture di memorizzazione dei dati o delle
 vie di accesso.
- Indipendenza logica (garantita solo in parte)
 I programmi applicativi o le attività interattive devono
 rimanere logicamente inalterate a fronte di variazioni dello
 schema logico che preservano le informazioni originarie.

Modelli logici

- Modello dei dati: un insieme di meccanismi di astrazione per definire una base di dati, con associato un insieme predefinito di operatori e di vincoli d'integrità.
 - Il modello è l'intermediario che permette di cogliere e rappresentare la realtà
- Adottati nei DBMS esistenti per l'organizzazione dei dati
 - utilizzati dai programmi
 - indipendenti dalle strutture fisiche
- esempi: <u>relazionale</u>, reticolare, gerarchico, a oggetti, modelli NoSQL (chiave-valore, a grafo, document-oriented, tabulare)

File vs Basi di dati /1

FILE: CRITICITA'	DBMS: VANTAGGI	STRUMENTI
Applicazioni + archivi = dati duplicati, ridondanza	Integrazione	Dati condivisi Schemi concettuali/logici
Sinonimie e omonimie	Standardizzazione	Nomi definiti dallo schema Schemi concettuali/logici
Integrità controllata da ogni applicazione	Controllo centralizzato dell'Integrità	Vincoli
Stesse informazioni aggiornate in tempi diversi	Consistenza: aggiornamenti visti subito da tutte le applicazioni	Normalizzazione; Transazioni ACID
Procedure empiriche di gestione dei malfunzionamenti	Gestione centralizzata dell'Affidabilità	Ripristino

File vs Basi di dati /2

FILE: CRITICITA'	DBMS: VANTAGGI	STRUMENTI
Variazioni di formato o di tipo devono essere riportati in ogni applicazione	Indipendenza logica	Architettura ANSI-SPARC Solo applicazioni interessate subiscono modifiche
Modalità specifiche di accesso alle periferiche	Indipendenza fisica	Architettura ANSI-SPARC Vie di accesso/indici
Accesso ai dati solo via applicazione	Facilità d'uso	Algebra e Calcolo relazionale; SQL
Dati usati esclusivamente da ogni applicazione	Concorrenza	Accesso simultaneo Serializzatore
Sicurezza gestita dalle singole applicazioni	Sicurezza centralizzata	Privilegi (Grant)

Schema metodologico di sviluppo di un sistema

Modelli concettuali

- Permettono di rappresentare i dati in modo indipendente da ogni sistema
 - cercano di descrivere i concetti del mondo reale
 - sono utilizzati nelle fasi preliminari di progettazione

• Il più diffuso è il modello **Entity-Relationship (ER)** tradotto in italiano con **Entità-Associazione**

Oltre il modello relazionale

Nuove applicazioni:

- CASE: Computer Aided Software Engineering;
- CAD: Computer Aided Design (meccanico, elettronico, ...);
- CAM: Computer Aided Manufacturing;
- CAP: Computer Aided Publishing;
- Office Automation;
- Grafica / Multimedia;
- GIS;
- Controllo della produzione in tempo reale;
- Basi di conoscenza per applicazioni di A.I.;
- Software di sistema.

Tipologie di applicazioni

Le applicazioni dei DBMS in generale possono essere classificate in tre categorie:

- Applicazioni gestionali
 caratterizzate da grandi quantità di dati di struttura semplice.
- Applicazioni navigazionali complesse
 quali applicazioni CAD e di telecomunicazioni che manipolano dati legati
 da relazioni complesse da attraversare in modo efficiente.
- Applicazioni multimediali
 che richiedono la manipolazione di immagini, testi e dati spaziali con
 operazioni specifiche dell'applicazione.

Allo stato attuale né i DBMS relazionali né altri DBMS soddisfano pienamente tutte e tre le tipologie

Evoluzione delle basi di dati

Stampare l'esempio di basi di dati presente in Moodle e portarlo a lezione!