Controlli Automatici T

Parte 6: Sistemi di controllo: stabilità e prestazioni

Prof. Giuseppe Notarstefano Prof. Andrea Testa

Department of Electrical, Electronic, and Information Engineering
Alma Mater Studiorum Università di Bologna
giuseppe.notarstefano@unibo.it

a.testa@unibo.it

Queste slide sono ad uso interno del corso Controlli Automatici T dell'Università di Bologna a.a. 22/23.

Schema di controllo in retroazione

Consideriamo il seguente schema di controllo in retroazione.

Obiettivo: garantire che l'uscita y(t) segua il riferimento w(t) (scelto dall'utente) in presenza di

- disturbi (non misurabili) in uscita d(t) e disturbi di misura n(t)
- ullet incertezze sul modello G(s) del sistema fisico (impianto) considerato soddisfacendo opportune specifiche di prestazione.

$$L(s)=R(s)G(s)$$
 funzione d'anello (funzione di trasferimento in anello aperto)

Lo schema precedente cattura anche strutture più complesse che includono attuatori e trasduttori.

Nota: il riferimento w viene filtrato con una replica della dinamica del sensore T(s) in modo che sia "compatibile" con la dinamica dell'uscita y retroazionata.

Usando le proprietà di schemi a blocchi interconnessi, si può riscrivere lo schema precedente in modo equivalente.

Ridefinendo opportunamente i vari blocchi e segnali lo schema semplificato cattura anche lo schema generale.

Sistemi:
$$R(s) = T(s)\tilde{R}(s)$$
, $G(s) = A(s)\tilde{G}(s)$.

Segnali:
$$W(s) = \tilde{W}(s)$$
, $N(s) = T^{-1}(s)\tilde{N}(s)$, $D(s) = D_a(s)\tilde{G}(s) + D_u(s)$.

Nota: il disturbo sull'attuatore $d_a(t)$ viene filtrato del sistema. Bisogna tenerne conto quando si fanno considerazioni sul disturbo in uscita d(t).

Disaccoppiamento frequenziale dei segnali

Nelle applicazioni di interesse ingegneristico tipicamente le bande dei segnali di ingresso w(t), d(t), n(t) sono limitate in opportuni range.

- w(t) e d(t) hanno bande a "basse frequenze" (e.g., posizioni, rotazioni, velocità, etc. di sistemi meccanici)
- n(t) hanno bande ad "alte frequenze" (e.g., disturbi termici in componenti elettronici, accoppiamenti con campi e.m., etc.)

Requisiti di un sistema di controllo: stabilità

Stabilità nominale

Requisito fondamentale è l'asintotica stabilità o stabilità BIBO (esterna) se solo rappresentazione ingresso-uscita.

Stabilità robusta

La stabilità deve essere garantita anche in condizioni perturbate (errori di modello o incertezze nei parametri).

Requisiti di un sistema di controllo: prestazioni

Requisiti di un sistema di controllo: prestazioni

Prestazioni statiche

Prestazioni a transitorio esaurito ($t \to \infty$): tipicamente e(t) limitato o nullo a fronte di ingressi w, d, n con determinate caratteristiche.

Esempi:

- errore in risposta ad un ingresso a gradino (transizione ad un nuovo riferimento o disturbi costanti su attuatori/sensori) o rampa,
- risposta a un ingresso sinusoidale a date frequenze (disturbi con certe componenti frequenziali).

Requisiti di un sistema di controllo: prestazioni

Prestazioni dinamiche

Prestazioni del sistema in transitorio relative a

- risposta a un riferimento w, date in termini di tempo di assestamento $T_{a,\epsilon}$ e sovraelongazione S% massimi;
- risposta a disturbi d ed n, date in termini di attenuazione in certi range di frequenze (bande di frequenza dei disturbi)
- moderazione della variabile di controllo u, date in termini di contenimento dell'ampiezza (per evitare saturazione attuatori, uscita da range in cui la linearizzazione è valida, costi eccessivi).

Stabilità robusta del sistema retroazionato

Poichè la stabilità di un sistema lineare non dipende dagli ingressi, consideriamo il seguente schema a blocchi.

Per studiare la stabilità robusta (in presenza di incertezze) del sistema retroazionato enunceremo un risultato fondamentale

Criterio di Bode

lega la stabilità del sistema retroazionato a quella del sistema in anello aperto L(s)

Margini di fase e ampiezza

Margine di fase:

$$M_f = 180^o + {
m arg}(L(j\omega_c)) \ {
m con} \ \omega_c \ {
m t.c.} \ |L(j\omega_c)|_{{
m dB}} = 0$$

Nota:
$$M_f = \arg(L(j\omega_c)) - (-180^o) = 180^o + \arg(L(j\omega_c))$$

Margini di fase e ampiezza

Margine di fase:

$$M_f = 180^o + \arg(L(j\omega_c)) \text{ con } \omega_c \text{ t.c. } |L(j\omega_c)|_{\text{dB}} = 0$$

Nota: ω_c è detta pulsazione critica.

Margini di fase e ampiezza

Margine di fase:

$$M_f = 180^o + {
m arg}(L(j\omega_c)) \ {
m con} \ \omega_c \ {
m t.c.} \ |L(j\omega_c)|_{{
m dB}} = 0$$

Margine di ampiezza:

$$M_a = -|L(j\omega_\pi)|_{\text{dB}} \text{ con } \omega_\pi \text{ t.c. } \arg(L(j\omega_\pi)) = -180^o$$

Margini di fase e ampiezza: casi patologici

Ci sono casi in cui ${\cal M}_f$ e ${\cal M}_a$ non sono definiti o non sono informativi.

Intersezioni multiple: il diagramma delle ampiezze $|L(j\omega)|_{\rm dB}$ attraversa l'asse a 0 dB più di una volta.

Assenza di intersezioni: il diagramma delle ampiezze $|L(j\omega)|_{\rm dB}$ non attraversa l'asse a 0 dB.

Segni discordi: margini di fase e ampiezza M_f e M_a hanno segno discorde (per essere informativi M_f e M_a devono avere lo stesso segno).

Criterio di Bode

Teorema (Criterio di Bode) Si supponga che

- 1. L(s) non abbia poli a parte reale (strettamente) positiva
- 2. il diagramma di Bode del modulo di $L(j\omega)$ attraversi una sola volta l'asse a 0 dB.

Allora, condizione necessaria e sufficiente perché il sistema retroazionato sia asintoticamente stabile è che risulti $\mu>0$ (con μ guadagno statico di $L(j\omega)$) e $M_f>0$.

Nota: la stabilità del sistema in retroazione è determinata dalla lettura di un solo punto sul diagramma di Bode di $L(j\omega)$.

Nota: M_f e M_a in genere vanno considerati simultaneamente e forniscono una misura della robustezza rispetto a incertezze su L(s).

Robustezza rispetto a incertezze sul guadagno

Il margine di ampiezza M_a rappresenta la massima incertezza tollerabile sul guadagno statico μ .

Nota: variazioni di μ determinano traslazioni del diagramma delle ampiezza e non alterano il diagramma delle fasi.

Robustezza rispetto a ritardi temporali

Un sistema che ritarda di τ ha funzione di trasferimento $e^{-s\tau}$.

Il diagramma di Bode delle ampiezze di un ritardo è costante a $0~\mathrm{dB}.$

Lo sfasamento è $-\omega \tau$ che nel diagramma di Bode delle fasi, in scala semi-logaritmica, ha un andamento di tipo esponenziale.

Nota: se $L(s)=e^{-s\tau}\tilde{L}(s)$ la pulsazione critica ω_c non cambia, ovvero quella di L(s) è la stessa di $\tilde{L}(s)$.

Nota: un ritardo riduce quindi il margine di fase in quanto per $\omega = \omega_c$ riduce la fase, ovvero

$$\arg(L(j\omega_c)) = \arg(\tilde{L}(j\omega_c)) - \tau\omega_c.$$

Quindi il massimo ritardo tollerabile au_{max} deve soddisfare

$$au_{\mathsf{max}} < \frac{M_f}{\omega_a}$$
.

Robustezza rispetto a ritardi temporali

Consideriamo il sistema $\tilde{L}(s) = \frac{1}{s(s+1)(s+10)}.$

Il sistema con un ritardo di τ sarà $L(s)=e^{-s\tau}\tilde{L}(s).$

Matlab: margini di stabilità

```
Esempio: G(s)=\frac{\mu}{(1+T_1s)(1+T_2s)(1+T_2s)} con \mu=2 e T_1=1, T_2=T_3=0.5
```

```
mu = 2;
T1 = 1;
T2 = 0.5;
T3 = 0.5;

s = tf('s');
G = mu/(1+T1*s)/(1+T2*s)/(1+T3*s);

% se richiediamo l'output non viene fatto alcun plot
[M_a,M_f,omega_pi,omega_c] = margin(G);
M_a_db = 20*log10(M_a);
```

Risultato: $M_a=13$ dB, $M_f=72^\circ$, $\omega_\pi=2.82$ rad/s, $\omega_c=1.13$ rad/s.

```
% = 1000 \, \mathrm{margin} sul diagramma di Bode \mathrm{margin}(G);
```


Ingressi (del sistema in anello chiuso):

- w(t) riferimento (andamento desiderato per y(t))
- d(t) disturbo in uscita
- n(t) disturbo di misura

Uscite di interesse:

- e(t) = w(t) y(t) errore di inseguimento
- y(t) uscita controllata
- u(t) ingresso di controllo del sistema in anello aperto (impianto)

Funzioni di sensitività:

funzioni di trasferimento tra ingressi e uscite di interesse.

$$S(s) = \frac{1}{1 + R(s)G(s)} \qquad \text{Funzione di sensitività}$$

$$F(s) = \frac{R(s)G(s)}{1 + R(s)G(s)} \qquad \text{Funzione di sensitività complementare}$$

$$Q(s) = \frac{R(s)}{1 + R(s)G(s)} \qquad \text{Funzione di sensitività del controllo}$$

Sfruttando il principio di sovrapposizione degli effetti

$$Y(s) = Y_w(s) + Y_d(s) + Y_n(s),$$

con

- $Y_w(s)$ uscita con ingresso W(s) e ponendo D(s) = 0 e N(s) = 0;
- $Y_d(s)$ uscita con ingresso D(s) e ponendo W(s) = 0 e N(s) = 0;
- $Y_n(s)$ uscita con ingresso N(s) e ponendo W(s)=0 e D(s)=0.

In modo analogo possiamo definire

$$E(s) = E_w(s) + E_d(s) + E_n(s),$$

e

$$U(s) = U_w(s) + U_d(s) + U_n(s).$$

Funzione di sensitività complementare

Calcoliamo $Y_w(s)$ come

$$Y_w(s) = R(s)G(s)(W(s) - Y_w(s))$$

Quindi

$$Y_w(s) = \frac{R(s)G(s)}{1 + R(s)G(s)}W(s)$$
$$Y_w(s) = F(s)W(s)$$

Funzione di sensitività complementare

$$F(s) = \frac{R(s)G(s)}{1 + R(s)G(s)}$$

Con calcoli analoghi possono essere ottenute tutte le altre relazioni

$$S(s)=rac{1}{1+R(s)G(s)}$$
 Funzione di sensitività $F(s)=rac{R(s)G(s)}{1+R(s)G(s)}$ Funzione di sensitività complementare $Q(s)=rac{R(s)}{1+R(s)G(s)}$ Funzione di sensitività del controllo

$$\begin{bmatrix} Y(s) \\ U(s) \\ E(s) \end{bmatrix} = \begin{bmatrix} F(s) & S(s) & -F(s) \\ Q(s) & -Q(s) & -Q(s) \\ S(s) & -S(s) & F(s) \end{bmatrix} \begin{bmatrix} W(s) \\ D(s) \\ N(s) \end{bmatrix}$$

$$F(s) \qquad S(s) \qquad d(t) \qquad Q(s)$$

$$F(s) \qquad G(s) \qquad Q(s)$$

$$F(s) \qquad G(s) \qquad G(s)$$

Funzioni di sensitività: considerazioni

Stabilità

Il denominatore di tutte le funzioni di sensitività è lo stesso. Si ricordi che la stabilità è determinata dai poli della funzione di trasferimento.

Nota: Questo è consistente con il fatto che la stabilità del sistema (retroazionato) non dipende dal particolare ingresso considerato.

Relazioni tra le funzioni di sensitività

Le funzioni di sensitività S(s) e F(s) dipendono dal prodotto L(s)=R(s)G(s), mentre Q(s) dipende esplicitamente da R(s).

Le funzioni di sensitività S(s) e F(s) sono legate tra loro, infatti

$$F(s) + S(s) = 1.$$

Per seguire fedelmente il riferimento w(t) vorremmo F(s)=1 e per annullare l'effetto del disturbo d(t) vorremmo S(s)=0.

Tuttavia se F(s) = 1 il disturbo n(t) non sarebbe per niente attenuato.

Funzioni di sensitività: considerazioni

Sarà fondamentale la separazione di banda vista in precedenza:

- riferimento w(t) e disturbo in uscita d(t) in basse frequenze
- disturbo di misura n(t) ad alte frequenze.

Importante

Per $F(j\omega) = \frac{L(j\omega)}{1+L(j\omega)}$ cercheremo di avere

- $|F(j\omega)| \approx 1$ a basse frequenze (inseguimento di w(t))
- $|F(j\omega)| \approx 0$ ad alte frequenze (abbattimento di n(t))

Quindi progetteremo $R(j\omega)$ in modo che

- $|L(j\omega)| \gg 1$ a basse frequenze
- $|L(j\omega)| \ll 1$ ad alte frequenze

È utile effettuare una analisi in frequenza delle funzioni di sensitività.

Funzione di sensitività complementare

Funzione di sensitività del controllo

Nota: a basse frequenze il modulo di $Q(j\omega)$ dipende da $G(j\omega)$, quindi non possiamo influenzarlo con il regolatore. Occorre evitare valori di ω_c "troppo elevati".

Funzione di sensitività del controllo

Nota: è importante progettare regolatori che attenuino a frequenze alte.

Matlab: funzioni di sensitività (I)

```
Esempio: L(s)=\frac{\mu}{(1+T_1s)(1+T_2s)(1+T_2s)} con \mu=40 e T_1=10, T_2=2, T_3=0.2
```

```
mu = 40;
T1 = 10;
T2 = 2;
T3 = 0.2;
s = tf('s');
L = mu/(1 + T1*s)/(1 + T2*s)/(1 + T3*s); % sistema
```

Calcoliamo la funzione di sensitività complementare F(s).

Alternativa 1: usare la funzione connect

```
L.OutputName = 'y'; % chiamiamo 'y' l'uscita di L
L.InputName = 'e'; % chiamiamo 'e' l'ingresso di L
Sum = sumblk('e = w - y'); % nodo sommatore
F_connect = connect(L, Sum, 'w', 'y'); % sistema interconnesso
```

Con il precedente codice creiamo un nodo sommatore e=w-y e creiamo l'interconnessione del sistema ottenendo la funzione di trasferimento da w a y.

Matlab: funzioni di sensitività (II)

F_connect è un modello nello spazio degli stati e potrebbe richiedere delle cancellazioni poli/zeri. Per effettuarle usiamo minreal e successivamente convertiamo in un oggetto transfer function:

Risultato:
$$F(s) = \frac{10}{s^3 + 5.6s^2 + 3.05s + 10.25}$$

Si può anche convertire la funzione di trasferimento in forma fattorizzata usando zpk:

Risultato:
$$F(s) = \frac{10}{(s+5.387)(s^2+0.213s+1.903)}$$

Matlab: funzioni di sensitività (III)

Altri modi per calcolare F(s):

Alternativa 2: usare feedback per fare la retroazione unitaria (cioè senza alcun blocco sul ramo di retroazione)

```
F_feedback = feedback(L, 1); % retroazione unitaria
F_feedback.InputName = 'w'; % correggiamo il nome dell'ingresso
F_connect = tf(minreal(F_connect));
```

```
Alternativa 3: usare la formula F(s) = \frac{L(s)}{1 + L(s)}
```

```
F = L / (1 + L);
F.OutputName = 'y';
F.InputName = 'w';
F = tf(minreal(F));
```

Nota: il risultato nei tre casi è perfettamente identico

Poli c.c. di F(s) e margine di fase

La funzione di sensitività complementare può avere una coppia di poli c.c. dominanti.

Mettiamo in relazione il picco di risonanza di $F(j\omega)$ con lo smorzamento ξ associato, assumendo che $\omega_n \approx \omega_c$.

Poli c.c. di F(s) e margine di fase

$$\begin{split} |F(j\omega_c)| &= \frac{|L(j\omega_c)|}{|1 + L(j\omega_c)|} = \frac{1}{|1 + e^{j\varphi_c}|} = \frac{1}{\sqrt{(1 + \cos\varphi_c)^2 + \sin^2\varphi_c}} \\ &= \frac{1}{\sqrt{2(1 + \cos\varphi_c)}} = \frac{1}{\sqrt{2(1 - \cos M_f^{\mathsf{rad}})}} = \frac{1}{\sqrt{4\sin^2 M_f^{\mathsf{rad}}}} = \frac{1}{2\sin\frac{M_f^{\mathsf{rad}}}{2}} \end{split}$$

Assumendo che $\omega_n pprox \omega_c$

$$|F(j\omega_c)| = \frac{1}{2\xi}$$

dove ξ è lo smorzamento dei poli c.c. di F(s). Uguagliando le due espressioni si ha

$$\xi = \sin rac{M_f^{\mathsf{rad}}}{2} pprox rac{M_f^{\mathsf{rad}}}{2} = rac{M_f}{2} rac{\pi}{180}$$

e quindi

$$\xi \approx \frac{M_f}{100}$$
.

Analisi statica: errore a un gradino

Sia $e_{\infty} = \lim_{t \to \infty} e(t)$ con e(t) = w(t) - y(t) errore in risposta a un gradino w(t) = W1(t).

Utilizzando il teorema del valore finale (sistema in anello chiuso asintoticamente stabile)

$$e_{\infty} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} sS(s) \frac{W}{s} = W \lim_{s \to 0} S(s)$$

Sia
$$L(s)=rac{N_L(s)}{D_L(s)}=rac{N_L(s)}{s^gD_I'(s)}$$
 con $N_L(0)=\mu$ e $D_L'(0)=1$ abbiamo

$$\lim_{s \to 0} S(s) = \lim_{s \to 0} \frac{D_L(s)}{N_L(s) + D_L(s)} = \lim_{s \to 0} \frac{s^g D'_L(s)}{N_L(s) + s^g D'_L(s)} = \lim_{s \to 0} \frac{s^g}{\mu + s^g}$$

Si ha quindi

$$e_{\infty} = W \lim_{s \to 0} \frac{s^g}{\mu + s^g} = \begin{cases} \frac{W}{1+\mu} & g = 0\\ 0 & g > 0 \end{cases}$$

Analisi statica: errore a ingressi $\frac{W}{s^k}$

Sia $e_{\infty}=\lim_{t\to\infty}e(t)$ con e(t)=w(t)-y(t) errore in risposta a un ingresso con trasformata $W(s)=\frac{W}{s^k}$.

$$e_{\infty} = \lim_{s \to 0} sS(s) \frac{W}{s^k} = W \lim_{s \to 0} \frac{s^{g-k+1}}{\mu + s^g} = \begin{cases} \infty & g < k-1 \\ \frac{W}{\mu} & g = k-1 \\ 0 & g > k-1 \end{cases}$$

Quindi

- se g < k-1 l'errore diverge,
- ullet se g=k-1 l'errore a regime è finito e diminuisce all'aumentare di μ
- se q > k 1 l'errore a regime è nullo.

Nota: il sistema in anello chiuso deve essere asintoticamente stabile.

Analisi statica: errore a ingressi $\frac{W}{s^k}$

Sia $e_{\infty}=\lim_{t\to\infty}e(t)$ con e(t)=w(t)-y(t) errore in risposta a un ingresso con trasformata $W(s)=\frac{W}{s^k}$.

$$e_{\infty} = \lim_{s \to 0} sS(s) \frac{W}{s^k} = W \lim_{s \to 0} \frac{s^{g-k+1}}{\mu + s^g} = \begin{cases} \infty & g < k-1 \\ \frac{W}{\mu} & g = k-1 \\ 0 & g > k-1 \end{cases}$$

Quindi

- se q < k-1 l'errore diverge,
- ullet se g=k-1 l'errore a regime è finito e diminuisce all'aumentare di μ
- se q > k 1 l'errore a regime è nullo.

Nota: affinchè l'errore a regime a $W(s) = \frac{W}{s^k}$ sia nullo occorre che L(s) abbia un numero di poli almeno pari a k (principio del modello interno).

Principio del modello interno

Il risultato precedente può essere generalizzato come segue.

Principio del modello interno

Affinché un segnale di riferimento (risp. un disturbo di misura) con una componente spettrale alla frequenza ω_0 sia inseguito (risp. neutralizzato) a regime perfettamente in uscita è necessario e sufficiente che

- 1. il sistema chiuso in retroazione sia asintoticamente stabile,
- 2. il guadagno d'anello L(s) abbia una coppia di poli c.c. sull'asse immaginario con pulsazione naturale pari a ω_0 .