U-NEEDS

UNEEDS Commerce Co.,Ltd.

Digital Empire II, 486, Shin Dong, Yongtonng Gu, Suwon, Gyeonggi Do, Korea Tel: 82-31-695-7760 Fax: 82-31-695-7764 E-mail: Bluetooth@u-needs.co.kr

RF Exposure information

Federal Communication Commission Equipment Authorization Division, Application Processing Branch 7435 Oakland Mills Road Columbia, MD 21048

Aug 11, 2011

Attention: Reviewing Engineer

RE: RF exposure information for the equipment (Bluetooth Stereo Headset/UM-1100)

The device *Bluetooth Stereo Headset*/ **UM-1100** is designed as stand along type and it is to be used for person's head side and must not be co-located or operating in conjunction with any other antenna or transmitter and also use of a permanently attached antenna that user a unique coupling to the intentional radiator comply with the FCC Rule

according to this product's antenna type is a Chip and it's gain is 1.0dBi

the table below is excepted from Table 1B of 47 CFR 1.1310 titled Limits for Maximum Permissible Exposure (MPE), Limits for General Population /Uncontrolled Exposure

Frequency Range (MHz)	Powr Density (mW/cm ²)	Averaging Time (minutes)
300 – 1 500	f/1500	30
1 500 – 10 000	1.0	30

The equipment *Bluetooth Stereo Headset/* **UNB-2000** transmits in the following frequency ranges So that the applicable limits are:

Frequency range Limit 2 402 – 2 480 MHz 1 mW/cm²

The equipment is a Bluetooth class 0, and it's duty cycle = 1

Under conditions stated above MPE limits can be guaranteed as the calculation below shows:

Maximum conducted output power: 4.71 mW (0.00471 W) measured by test Engineer Duty cycle: 1

Equivalent conducted output power = Maximum conducted output power x Duty cycle = 0.000471 X 1 = 0.000471 = 4.71 mW

Maximum antenna gain (as stated in the User manual and test report) = 1.0 dBi (numerical gain)

 \therefore Using the equation: P.G/4.pi.R² = 4.71 m W• 3/4• pi• $(20 \text{cm}^2) = 0.00283 \text{mW/cm}^2$ (1.0 mW^2)

Where,

 $S = power density in mW/cm^2$

P = power input to the antenna in mW

G = power gain of the antenna in the direction of interest relative to an isotropic radiation

R = distance to the centre of radiation of the antenna in cm (20 cm prediction distance)