$oldsymbol{1}$ p-адические числа

1.1 Нормированные поля

Определение абсолютного значения (нормы) на поле. Примеры: евклидова норма на \mathbb{C} (\mathbb{R} , \mathbb{Q}), тривиальная норма. Единственная норма в конечном поле — тривиальная. p-адическая норма на \mathbb{Q} .

Неархимедовы нормы. Эквивалентное определение. Эквивалентность норм и теорема Островского. Формула произведения:

$$\prod_{2 \leqslant p \leqslant \infty} |a|_p = 1.$$

Последовательности Коши, полные поля, пополнение: определение и существование.

1.2 Представление p-адических чисел в виде степенных рядов

Свяжем с каждым «неархимедовым нормированным полем» несколько важных алгебраических объектов.

Определение 1 (+утверждение). Пусть $(K, |\cdot|)$ — нормированное поле с неархимедовой нормой.

- (1) Множество $\mathcal{O} = \{a \in K \mid |a| \leqslant 1\}$ называется кольцом нормирования $(K, |\cdot|)$ и является подкольцом K.
- (2) Множество $\mathfrak{P} = \{a \in K \mid |a| < 1\}$ называется идеалом нормирования $(K, |\cdot|)$ и является единственным максимальным идеалом \mathcal{O} .
- (3) Поле $k = \mathcal{O}/\mathfrak{P}$ называется полем вычетов нормирования $(K, |\cdot|)$.

Замечание. Кольцо с единственным максимальным идеалом называется *локальным*.

Утверждение 1. Для нормированного поля $(\mathbb{Q}, |\cdot|_p)$

$$\mathcal{O} = \mathbb{Z}_{(p)} = \left\{ \frac{a}{s} \mid s \not\equiv 0 \bmod p \right\}, \qquad \mathfrak{P} = p\mathbb{Z}_{(p)}, \qquad k \cong \mathbb{Z}/p\mathbb{Z}.$$

Доказательство. Первые два равенства очевидны. Для доказательства третьего рассмотрим гомоморфизм $\mathbb{Z} \to \mathcal{O}/\mathfrak{P}$, являющийся композицией вложения и канонического гомоморфизма в факторкольцо. Его ядро равно $p\mathbb{Z}$ и значит, гомоморфизм $\mathbb{Z}/p\mathbb{Z} \to \mathcal{O}/\mathfrak{P}$ является вложением, остаётся показать его сюръективность.

Пусть $a/s \in \mathcal{O}$, тогда s обратимо в кольце $\mathbb{Z}/p\mathbb{Z}$, а значит существует такое b, что $bs \equiv a \mod p\mathbb{Z}$. Эта сравнимость продолжается до $bs \equiv a \mod p\mathcal{O}$. Для s существует обратный элемент 1/s в R, который также принадлежит R, домножая последнее сравнение на него находим $b \equiv a/s \mod p\mathcal{O}$.

Оказывается, что в случае неархимедового нормирования поле вычетов нормирования данного нормированного поля не меняется при пополнении этого поля. Для доказательства этого сформулируем сначала одно важное свойство неархимедовых норм.

Лемма 1. Пусть $(K, |\cdot|)$ — нормированное поле с неархимедовой нормой, $a, b \in K$. Тогда

$$|a| \neq |b| \Longrightarrow |a+b| = \max(|a|, |b|).$$

Доказательство. Пусть |b| < |a| и предположим противное: |a+b| < |a|. Тогда

$$|a| = |a + b - b| \le \max(|a + b|, |b|) < |a|.$$

Противоречие.

Теорема 1. Пусть $(K, |\cdot|)$ — нормированное поле с неархимедовой нормой, а $(\hat{K}, |\cdot|)$ — его пополнение, $\mathcal{O}, \, \hat{\mathcal{O}}, \, \mathfrak{P}, \, \hat{\mathfrak{P}}, \, k, \, \hat{k}$ — соответствующие поля вычетов. Тогда $k \cong \hat{k}$.

Доказательство. Пусть $\alpha \in \hat{K}$ и последовательность $\{a_n\} \subset K$ сходится к α . Тогда начиная с некоторого номера $N \in \mathbb{N}$ для всех n > N имеем $|a_n - \alpha| < |\alpha|$, а значит $|a_n| = |a_n - \alpha + \alpha| = |\alpha|$ (по предыдущей лемме).

Пусть \mathcal{O} , $\hat{\mathcal{O}}$, $\hat{\mathfrak{P}}$, $\hat{\mathfrak{P}}$ — соответствующие кольца и идеалы нормирований. Для $\alpha \in \hat{\mathcal{O}}$ существует $a \in K$, такое что $|a| = |\alpha|$, возьмём такое a. Очевидно, $a \in \mathcal{O}$ и $|a - \alpha| \leq 1$, а значит $a \equiv \alpha \mod \hat{\mathfrak{P}}$ и a, таким образом, является прообразом α про очевидном гомоморфизме $\mathcal{O}/\mathfrak{P} \to \hat{\mathcal{O}}/\hat{\mathfrak{P}}$.

Прежде чем сформулировать основную теорему о представлении p-адических чисел степенными рядами, докажем одно важное свойство рядов в полных неархимедовых полях.

Лемма 2. Пусть $(\hat{K}, |\cdot|)$ — полное нормированное поле с неархимедовой нормой $u \{a_n\} \subset \hat{K}$. Тогда

$$\sum_{n} a_n \ cxodumcs \iff a_n \to 0.$$

Доказательство. Импликация \Rightarrow известна из классического анализа. Пусть $a_n \to 0$. Обозначим через $\{b_n = \sum_0^n a_n\}$ последовательность частичных сумм данного ряда, она является последовательностью Коши ввиду неравенства

$$|b_n - b_{n+k}| \le \max\{|a_n|, \dots, |a_{n+k}|\},\$$

а значит, имеет предел в \hat{K} — ввиду его полноты.

Следствие 1. Если $\{a_n\}\subset \hat{\mathcal{O}}\ u\ x\in \hat{K},\ mo\ для\ сходимости\ ряда\ \sum a_nx^n\ достаточно, чтобы <math>x\in \hat{\mathfrak{P}}.$

Определение 2. Кольцо нормирования поля \mathbb{Q}_p обозначается \mathbb{Z}_p и имеет специальное название — кольцо p-адических целых. (Иногда, чтобы избежать путаницы, кольцо \mathbb{Z} называют кольцом рациональных целых.)

Теорема 2. Каждое $a \in \mathbb{Z}_p$ имеет единственное представление в виде суммы $p \pi \partial a$

$$a = \sum_{n=0}^{\infty} a_i p^i, \quad a_i \in \{0, \dots, p-1\}.$$

Kаждое $a \in \mathbb{Q}_p$ имеет единственное представление в виде суммы ряда

$$a = \sum_{n=-k}^{\infty} a_i p^i, \quad k \in \mathbb{N}_0, a_i \in \{0, \dots, p-1\}.$$