Операции загрузки и передачи

14

Обзор главы

В разделе	Вы найдете	на стр.
14.1	Обзор	14–2
14.2	Загрузка и передача	14–3
14.3	Чтение или передача слова состояния	14–6
14.4	Загрузка значений времени и счетчиков как целых чисел	14–7
14.5	Загрузка значений времени и счетчиков в формате BCD	14–9
14.6	Загрузка и передача между адресными регистрами	14–11
14.7	Загрузка данных из блока данных	14–12

14.1. Обзор

Определение

Операции загрузки (L) и передачи (T) позволяют программировать обмен информацией между модулями ввода или вывода и областями памяти или между областями памяти. СРU выполняет эти операции в каждом цикле как безусловные операции, т.е. результат логической операции на них не влияет.

Обмен информацией

Операции загрузки и передачи позволяют производить обмен информацией между следующими периферийными областями и областями памяти:

- Модули ввода и вывода и следующие области памяти:
 - отображения процесса на входах и выходах
 - меркеры
 - таймеры и счетчики
 - области данных
- Отображения процесса на входах и выходах и следующие области памяти:
 - меркеры
 - таймеры и счетчики
 - области данных
- Таймеры и счетчики и следующие области памяти:
 - отображения процесса на входах и выходах
 - меркеры
 - области памяти

Процесс обмена

Операции загрузки и передачи производят обмен информацией через аккумулятор. Операция загрузки L записывает (загружает) содержимое соответствующего исходного адреса в АККИ 1, перемещая все содержащиеся в нем данные в АККИ 2. Старое содержимое АККИ 2 заменяется. Операция передачи Т копирует содержимое АККИ 1 и записывает его в соответствующую целевую память. Так как операция передачи только копирует данные, находящиеся в АККИ 1, последние остаются доступными также и для других операций.

Операции загрузки и передачи могут обрабатывать информацию байтами (8 бит), словами (16 бит) и двойными словами (32 бита).

Аккумулятор содержит 32 бита. Данные длиной менее 32 бит располагаются в аккумуляторе справа. Остальные биты аккумулятора заполняются нулями.

14.2. Загрузка и передача

Описание

С помощью операций загрузки и передачи можно передавать информацию из AKKU 1 или в него. Данные при этом могут иметь следующие размеры:

- байт (В, 8 бит)
- слово (W, 16 бит)
- двойное слово (D, 32 бита)

Байт загружается в младший байт младшего слова AKKU 1. Слово загружается в младшее слово AKKU 1. Неиспользуемые байты при загрузке в AKKU 1 сбрасываются в ноль.

Непосредственная

Операция загрузки может обращаться к константам в 8, 16 и 32 бита, а **адресация** также к символам ASCII. Этот вид адресации называется непосредственной адресацией (см. гл. 9.1 и таблицу 14–1.

Таблица 14–1. Операнды операций загрузки: непосредственная адресация

Операнд	Пример	Пояснение
±	L +5	Загрузить константу (целое число, 16 бит) в АККU 1.
B#(,)	L B#(1,10)	Загрузить константу как 2 байта в АККИ 1. (В этом примере 10 находится в младшем байте младшего слова АККИ 1; 1 находится в старшем байте младшего слова АККИ 1, см. рис. 2–1.
	L B#(1,10,5,4)	Загрузить константу как 4 байта в АККИ 1. (В этом примере 4 и 5 находятся соответственно в младшем и старшем байтах младшего слова АККИ 1; 10 и 1 находятся в младшем и старшем байтах старшего слова АККИ 1, см. рис. 2–1.)
L#	L L#+5	Загрузить 32-битную целую константу в АККU 1.
16#	L B#16#EF	Загрузить 16-ричную константу (8 бит) в АККU 1.
	L W#16#FAFB	Загрузить 16-ричную константу (16 бит) в АККИ 1.
	L DW#16#1FFE_1ABC	Загрузить 16-ричную константу (32 бита) в АККU 1.
2#	L 2#1111_0000_1111_0000	Загрузить двоичную константу (16 бит) в АККU 1.
	L 2#1111_0000_1111_0000 _1111_0000_1111_0000	Загрузить двоичную константу (32 бита) в AKKU 1.
· · ·	L 'AB'	Загрузить 2 символа в АККИ 1.
	L 'ABCD'	Загрузить 4 символа в АККИ 1.
C#	L C#1000	Загрузить константу счетчика (16 бит) в AKKU 1.
S5TIME#	L S5TIME#2S	Загрузить константу S5TIME (16 бит) в AKKU 1.
	L 1.0E+5	Загрузить вещественное число (32 бита, IEEE–FP) в АККИ 1.
P#	L P#E1.0	Загрузить указатель (32 бита) в АККИ 1.
	L P##Start	Загрузить указатель (32 бита) на локальную переменную (Start) в АККИ 1.
D#	L D#1994-3-15	Загрузить дату (16 бит) в АККИ 1.
T#	L T#0D_1H_1M_0S_0MS	Загрузить значение времени (32 бита) в АККU 1.
TOD#	L TOD#1:10:3.3	Загрузить время суток (32 бита) в АККИ 1.

Прямая и косвенная адресация

Операции загрузки и передачи могут обращаться к байту (B), слову (W) или двойному слову (D) посредством прямой или косвенной адресации в следующих областях памяти (см. также главы 9.2, 9.3, 9.5):

- Отображение процесса на входах и выходах (обозначения операндов ЕВ, ЕW, ЕD, AB, AW, AD).
- Внешние входы и выходы (обозначения операндов PEB, PEW, PED, PAB, PAW, PAD). Внешние входы могут использоваться только в качестве операндов операций загрузки, внешние выходы только как операнды операций передачи.
- Битовая память (обозначения операндов MB, MW, MD).
- Блок данных (обозначения операндов DBB, DBW, DBD, DIB, DIW, DID).
- Локальные данные (временные локальные данные, обозначения операндов LB, LW, LD)

В таблице 14—2 перечислены операнды операций загрузки и передачи, применяющие прямую и косвенную адресацию.

Таблица 14–2. Операнды операций загрузки и передачи: прямая и косвенная адресация

Обозна-	Максимальная адресная область в зависимости от вида				
чение	адресации				
операнда	прямая	косвен	ная через	косвенная	через регистр,
	_	па	мять	внутр	оизонная
EB	0 до 65 535	[DBD]	0 до	[AR 1,	0 до 8 191
EW	0 до 65 534	[DID]	65 532	P#byte.bit]	
ED	0 до 65 532	[LD]			
		[MD]		[AR 2,	
AB	0 до 65 535			P#byte.bit]	
AW	0 до 65 534				
AD	0 до 65 532				
PEB	0 до 65 535	[DBD]	0 до	[AR 1,	0 до 8 191
PEW	0 до 65 534	[DID]	65 532	P#byte.bit]	
PED	0 до 65 532	[LD]			
(только L)		[MD]		[AR 2,	
				P#byte.bit]	
PAB	0 до 65 535				
PAW	0 до 65 534				
PAD	0 до 65 532				
(только Т)					
MB	0 до 65535	[DBD]	0 до	[AR 1,	0 до 8 191
MW	0 до 65534	[DID]	65 532	P#byte.bit]	
MD	0 до 65532	[LD]			
		[MD]		[AR 2,	
				P#byte.bit]	
DBB	0 до 65 535	[DBD]	0 до	[AR 1,	0 до 8 191
DBW	0 до 65 534	[DID]	65 532	P#byte.bit]	
DBD	0 до 65 532	[LD]			
		[MD]		[AR 2,	
DIB	0 до 65 535			P#byte.bit]	
DIW	0 до 65 534				
DID	0 до 65 532				
T.D.	0 65.535				
LB	0 до 65 535				
LW	0 до 65 534				
LD	0 до 65 532				

Косвенная адресация с указанием области памяти в регистре Операции загрузки и передачи могут обращаться к байту (B), слову (W) или двойному слову (D) посредством косвенной адресации с указанием области памяти в регистре (см. гл. 9.6).

Таблица 14–3. Операнды операций загрузки и передачи: косвенная адресация через регистр с указанием области памяти

Обозначение операнда ¹⁾		Адресная область			
	В (байт), W (слово), D (двойное слово)	[AR 1, P#byte.bit] 0 до 8 191 [AR 2, P#byte.bit]			

1) Эта область памяти закодирована в битах от 24 до 31 адресного регистра AR 1 или AR 2 (см. гл. 9.6).

Байт, слово или двойное слово как параметры

Операции загрузки и передачи могут использовать в качестве операндов также байт, слово или двойное слово, передаваемые как параметры

Таблица 14–4. Операнды операций загрузки и передачи: байт, слово или двойное слово, передаваемые как параметры

Операнд	Формат адресного параметра
Символи-	Байт, слово или двойное слово, передаваемые как параметры
ческое имя	

14.3. Чтение или передача слова состояния

Загрузка слова состояния

С помощью операции загрузки L можно загрузить в AKKU 1 биты с 0 по 8 слова состояния (см. рис. 14-1). биты с 9 по 31 AKKU 1 сбрасываются на "0". Эту команду Вы можете взять из примера, следующего за рис. 14-1.

Указание

В CPU семейства S7–300 биты слова состояния /ER, STA и OR не загружаются командой L STW. Только биты 1, 4, 5, 6, 7 и 8 загружаются на позиции соответствующих битов младшего слова AKKU 1.

2 ¹⁵	29	2^8	2^7	2^6	2 ⁵	2^4	2^3	2^2	2^1	2^0
		BIE	A1	A0	ov	os	OR	STA	VKE	/ER

Рис. 14-1. Структура слова состояния

AWL Объясн		Объяснение
	L STW	Загрузить биты с 0 по 8 слова состояния в младшее слово АККИ 1.

Передача в слово состояния

С помощью операции передачи Т можно передать содержимое АККU 1 в слово состояния (см. рис. 14–1). Команду Вы можете взять из следующего примера.

AWL	Объяснение
T STW	Передать содержимое АККИ 1 в слово состояния.

14.4. Загрузка значений времени и счетчиков как целых чисел

Загрузка значения времени

Значение времени хранится в слове таймера в двоичном коде. С помощью следующей операции загрузки L двоичное значение времени можно считать из слова таймера и в том же формате загрузить в младшее слово AKKU 1:

L <слово таймера>

Этот вид загрузки называют прямой загрузкой значения времени.

Значение времени в слове таймера при обработке программы в СРU уменьшается с начального значения до "0". Применяя операцию загрузки L со словом таймера в качестве операнда, Вы получаете значение между стартовым временем слова таймера и "0". Время, прошедшее с момента старта, вычисляется как разность между стартовым временем и временем, считанным в данный момент.

AWL	Объяснение
L T1	Загрузить значение времени таймера Т1 в двоичном коде прямо в АККU1-L.

Рис. 14-2. Загрузка значения времени в АККU 1 операцией L

Вы можете использовать значение, содержащееся в аккумуляторе как результат операции загрузки, для дальнейшей обработки. Однако Вы не можете передать значение из аккумулятора в слово таймера.

Указание

Когда Вы считываете слово таймера с помощью операции загрузки L. Вы получаете значение между 0 и 999. Однако Вы не получаете базиса времени, который было загружен вместе со значением времени.

Загрузка значения

Значение счетчика хранится в слове счетчика в двоичном коде. С помощью

счетчика

следующей операции загрузки L Вы можете это двоичное значение

прочитать

из слова счетчика и загрузить в том же формате в младшее слово АККИ 1:

L <слово счетчика>

Этот вид загрузки называют прямой загрузкой значения счетчика.

AWL	Объяснение
L Z1	Загрузить в двоичном коде значение счетчика Z1 прямо в АККU1–L.

Рис. 14-3. Загрузка значения счетчика в АККИ 1 с помощью операции L

Вы можете использовать значение, содержащееся в аккумуляторе как результат операции загрузки L, для дальнейшей обработки. Однако Вы не можете передать значение из аккумулятора в слово счетчика. Если Вы хотите запустить счетчик с определенным значением, то для этого Вам нужна соответствующая операция установки счетчика (см. гл. 13.2).

14.5. Загрузка значений времени и счетчика в формате ВСО

Загрузка значения времени в формате BCD AKKU 1:

Значение времени хранится в слове таймера в двоичном коде. С помощью следующей операции загрузки можно считать значение времени из слова таймера в двоично-десятичном (BCD) коде и загрузить его в младшее слово

LC <слово таймера>

Кроме значения времени загружается также и базис времени. Значение, содержащееся в младшем слове АККU 1 как результат операции LC, имеет как раз тот формат, который необходим для запуска таймера. Этот вид загрузки называют прямой загрузкой значения времени в формате BCD.

Значение времени в слове таймера уменьшается с начального значения до "0". Применяя операцию загрузки LC со словом таймера в качестве операнда, Вы получаете значение между стартовым временем слова таймера и "0". Время, прошедшее с момента старта, вычисляется как разность между стартовым временем и временем, считанным в данный момент.

AWL Объяснение

LC T1 Загрузить время и базис времени из Т1 в формате ВСD в АККИ1–L.

Рис. 14-4. Загрузка значения времени в АККU 1 с помощью операции LC

Значение, содержащееся в аккумуляторе как результат операции LC, может быть использовано для дальнейшей обработки, например, для передачи значения на выходы для управления дисплеем. Однако Вы не можете значение из аккумулятора передать в слово таймера.

Загрузка значения счетчика в формате BCD AKKU 1: Значение счетчика хранится в слове счетчика в двоичном коде. С помощью следующей операции загрузки можно считать значение счетчика из слова счетчика в двоично-десятичном (BCD) коде и загрузить его в младшее слово

LC <слово счетчика>

Этот вид загрузки называют прямой загрузкой значения счетчика в формате BCD. Значение, содержащееся в младшем слове AKKU 1 как результат операции LC, имеет как раз тот формат, который необходим для запуска счетчика.

Значение счетчика хранится в слове счетчика в двоичном коде. Вы можете загрузить значение счетчика в младшее слово АККU 1 в двоично-десятичном (ВСD) коде (в формате ВСD, см. рис. 14–5). С помощью операции LC Вы можете считать значение счетчика в формате ВСD.

AWL	Объяснение
LC Z1	Загрузить значение счетчика Z1 в формате BCD прямо в АККU1-L.

Рис. 14-5. Загрузка значения счетчика в АККИ 1 с помощью операции LC

Значение, содержащееся в аккумуляторе как результат операции LC, может быть использовано для дальнейшей обработки, например, для передачи значения на выходы для управления дисплеем. Однако Вы не можете значение из аккумулятора передать в слово счетчика.

14.6. Загрузка и передача между адресными регистрами

Описание

С помощью следующих операций Ваша программа дает возможность CPU обменивать данные между адресными регистрами или обменивать содержимое двух регистров:

Операция	Значение	
LAR1	Загружает содержимое адресуемой области в адресный регистр	
	1. Если операнд не указан, то LAR1 загружает содержимое	
	АККU 1 в адресный регистр 1. LAR1 может также использовать	
	в качестве операнда AR 2, т.е. LAR1 может загрузить	
	содержимое AR 2 в AR 1.	
LAR2	Загружает содержимое адресуемой области в адресный регистр	
	2. Если операнд не указан, то LAR2 загружает содержимое	
	АККU 1 в адресный регистр 2.	
TAR1	Передает содержимое адресного регистра 1 в приемник, к	
	которому обращается операция. Если операнд не указан, то ТА	
	передает содержимое адресного регистра 1 в AKKU 1. TAR1,	
	кроме того, использовать в качестве операнда AR 2, т.е. TAR1	
	может передать содержимое AR 1 в AR 2.	
TAR2	Передает содержимое адресного регистра 2 в приемник, к	
	которому обращается операция. Если операнд не указан, то TAR2	
	передает содержимое адресного регистра 2 в АККИ 1.	
TAR	Обменивает содержимое AR 1 с содержимым AR 2.	

Непосредственная адресация

Операции LAR1 и LAR2 могут обращаться к 32-битным константам. Этот вид адресации называют непосредственной адресацией (см. гл. 9.1).

Непосредственный адрес применяется для непосредственной загрузки 32- битного указателя в адресный регистр (см. табл. 14–5).

LAR1
$$P\#\{\text{область}\}$$
, байт $\{.$ бит $\}$ с $\{\text{область}\}=\{\text{E, A, M, D, DX, L}\}$ байт $=0$ до 65 535 $\{.$ бит $\}=0$ до 7

Таблица 14-5. LAR1 и LAR2: непосредственная адресация			
	Пример	Описание	
LAR1	P#E 0.0	Загружает указатель с информацией об области памяти Р#Е 0.0 в адресный регистр 1.	
LAR2	P#0.0	Загружает внутризонный указатель с адресом 0 в адресный регистр 2.	
LAR1	P##Start	Загружает указатель на локальную переменную (Start), содержащую информацию об области памяти в адресный регистр 1.	

Прямая адресация

С операциями LAR1, LAR2, TAR1 и TAR2 можно использовать прямую адресацию.

Таблица 14-6. LAR1, LAR2, TAR1, TAR2: прямая адресация

Операция	Прямая адресация	Обозначение операнда и диапазон
LAR1	{ПУСТО} ¹⁾ или AR 2	DBD DID LD от 0 до 65 532 MD
LAR2	{ПУСТО} ¹⁾	
TAR1	{ПУСТО} ²⁾ или AR 2	DBD DID LD от 0 до 65 532 MD
TAR2	{ПУСТО} ²⁾	

^{1) {}ПУСТО} Если операнд не указан, то LAR1/LAR2 загружает содержимое АККИ 1 в адресный регистр.

14.7. Загрузка данных из блока данных

С помощью операции загрузки можно загрузить в АККU 1 длину или номер блока данных. В таблице 14—7 приведен обзор для загрузки этого вида. Более подробную информацию о загрузке длины или номера блока данных в АККU 1 Вы найдете в главе 21.3.

Таблица 14-7. Загрузка длины или номера блока данных в AKKU 1			
Операнд	Объяснение		
DBLG	Загружает длину (в байтах) глобального блока данных в АККU 1.		
DILG	Загружает длину (в байтах) экземпляра блока данных в АККИ 1.		
DBNO	Загружает номер глобального блока данных АККИ 1.		
DINO	Загружает номер экземпляра блока данных в АККИ 1.		

^{2) {}ПУСТО} Если операнд не указан, то TAR1/TAR2 передает содержимое адресного регистра в AKKU 1.