Spring 2022 EE214 Experiment 4 Impedance Measurement and Complex Power

Ahmet Akman 2442366 Yusuf Toprak Yıldıran 2444149 Assistant: Onur Selim Kılıç

May 1, 2022

Contents

Exp	erimer																						
2.1	Step 1																						
	2.1.1	a																					
	2.1.2	b																					
	2.1.3	c																					
	2.1.4																						
2.2	Step 2																						
2.3	Step 3																				 		
	2.3.1	F	irs	st	M	et	hc	$_{\rm d}$															
	2.3.2	S	ec	on	d	M	et	hc	d												 		

1 Introduction

In this experiment, rms values of voltages and currents will be measured then, phase difference between current and voltage will be calculated and complex power and power factor will be measured beside of the the apparent power S, the real power and the reactive power wti the efficiency of the system. Capacitance is aimed to be calculated using voltage and current rms values. Afterwards, 2 different modes of DSO will be used and explained to calculate impedance Z for different frequencies.

2 Experimental Results and Discussion

The results of the experiment are discussed in the following steps.

Student 2: Yusuf Toprak Yıldıran 2444149 Date: May 1, 2022

Assistant: Onur Selim Kılıç Group: Wednesday Morning - 5

2.1 Step 1

In this part, circuit in figure 1 is set with $R_{line} = 100\Omega$ and $Z_{load} = 560\Omega + j0.1w$ and inductor L = 0.1H.

Figure 1: Circuit schematic for the step 1

For the parts below (a-b-c), magnitude of the voltage source is adjusted such that $V_{load}(t)$ always equals to $5sin(2000\pi t)$ V.

2.1.1 a.

For this part, rms values of V_{in} , V_{line} , V_{load} , i_{load} and phase difference between V_{load} and i_{load} are measured and recorded in table 1. Rms value of voltages is obtained by using rms measurement tool of DSO and rms current is obtained by measuring the voltage across 100Ω resistor. To calculate phase difference, the difference between peak values of the signals is measured in μs and a proportionality with the 1/frequency value is found.

Then, to find P_{line} , i_{load} is multiplied by V_{line} , and power factor is found by using phase difference and found as cos(phase difference(54 deg)) leading. Afterwards, total apparent power on the load $|S|_{load}$ is found by multiplying i_{load} with V_{load} and recorded in table 2 and total real power on the load P_{load} is found by multiplying $|S|_{load}$ with power factor(cos(54 deg)) and recorded in table 2. Then, total reactive power on the load Q_{load} is found by multiplying $|S|_{load}$ with sin(54 deg) and noted in table 2.

2.1.2 b.

In this part, 100nF capacitor is connected parallel with the load, and same measurements and calculations with part a. are made. Then, results are recorded in table 1 and table 2.

2.1.3 c.

For this part, $1\mu F$ capacitor is replaced with the 100nF capacitor in part a. and same calculations and measurements are made for this part too.

Student 1: Ahmet Akman 2442366

Student 2: Yusuf Toprak Yıldıran 2444149 Date: May 1, 2022

Assistant: Onur Selim Kılıç Group: Wednesday Morning - 5

2.1.4 d.

Table 1: Power Measurements

Part	$V_{in}(Vrms)$	$V_{line}(Vrms)$	$V_{Load}(Vrms)$	$i_{Load}(\text{mArms})$	$\phi_{Load}(\text{degree})$	$\phi_{in}(\text{degree})$
a.						
b.						
c.						

Table 2: Power Calcuations

Part	$P_{in}(mW)$	$P_{line}(\mathrm{mW})$	$P_{Load}(mW)$	$Q_{Load}(mVAR)$	$ S _{Load}$ (mVA)
a.					
b.					
c.					

Table 3: Load Parameters

Par	rt a. (Load	.)	Par	t b. Load		Part c. Load							
pf	lead/lag	eff %	pf	lead/lag	eff %	pf	lead/lag	eff %					

2.2 Step 2

In this step, circuit in figure 2 is set by adjusting signal generator output to sine wave with 500 Hz frequency and 6 Volt peak to peak voltage value using $1\mu F$ capacitor and $1k\Omega$ resistor to obtain current. Then, rms value of the voltage V across capacitor is measured as 1.23 V and rms value of the current passing through capacitor is measured as 3.70 mA. Afterwards, by doing following calculations capacitance C1 is calculated:

$$\frac{V_{rms}}{i_{rms}} = |Z| = \frac{(-j)^2}{w^2 C^2}$$

where Z is the impedance and $w = 2\pi(500Hz)$.

$$C1 = \frac{i_{rms}}{V_{rms}w} = \frac{3.79mA}{1.23V.1000\pi} \approx 0.98x10^{-6} = 0.98\mu F$$

Then by adjusting LC meter to proper scale, nominal capacitance of the capacitor is measured as 1.03 μF

Student 2: Yusuf Toprak Yıldıran 2444149 Date: May 1, 2022

Assistant: Onur Selim Kılıç Group: Wednesday Morning - 5

Figure 2: Circuit schematic for the step 2

2.3 Step 3

In this step, circuit in figure 4 is set with 1.5 kHz and 3 kHz frequency sine wave respectively and 0.1 μF capacitor and 1k Ω resistor and 0.1 H inductor are used , then by using 2 different method, impedance Z in figure 3 is measured.

2.3.1 First Method

2.3.2 Second Method

Figure 3: Circuit schematic for the step 3

Assistant: Onur Selim Kılıç Group: Wednesday Morning - 5

Figure 4: Outside circuit schematic for the step 3

3 Conclusion

In this experiment, rms values of voltages and currents are measured. Phase difference between current and voltage are calculated and complex power and power factor are measured beside of the the apparent power S,the real power and the reactive power with the efficiency of the system. Capacitance is calculated using voltage and current rms values. Lastly, 2 different modes of DSO are used and explained to calculate impedance Z for 2 different frequencies.

Appendix A

- PreLab Preparation 3 hours
- Experimental Work 2 hours
- Report Writing 8 hours