Q9 ANSWER

```
In [1]: import pandas as pd
        import matplotlib.pyplot as plt
        import folium
        import os, re
        from sklearn.preprocessing import StandardScaler
        from sklearn.preprocessing import normalize
        from IPython.display import IFrame
        from sklearn.cluster import AgglomerativeClustering
        import scipy.cluster.hierarchy as shc
        %matplotlib inline
        import warnings
        warnings.filterwarnings('ignore')
In [2]: path to data = './crime'
        cd = os.path.dirname(os.path.abspath(path to data))
        i = 0
        columns = range(1,100)
        dfList = []
        for root, dirs, files in os.walk(cd):
            for fname in files:
                if re.match("^.*.csv$", fname):
                    frame = pd.read csv(os.path.join(root, fname))
                    frame['key'] = "file{}".format(i)
                    dfList.append(frame)
                    i += 1
        dataset = pd.concat(dfList)
```

In [3]: dataset.head()

Out[3]:

	Crime ID	Month	Reported by	Falls within	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type	
0	NaN	2021- 06	Essex Police	Essex Police	0.864094	51.971811	On or near Bear Street	E01029906	Babergh 009D	Anti- social behaviour	_
1	NaN	2021- 06	Essex Police	Essex Police	0.436057	51.639952	On or near Coach Mews	E01021237	Basildon 001A	Anti- social behaviour	
2	d91fddaaae8b0664cf330fc1a85bfdcddc57256d0bd2b3	2021- 06	Essex Police	Essex Police	0.437217	51.642455	On or near Bridleway	E01021238	Basildon 001B	Vehicle crime	I
3	f5104dc9cd4aaa31f162b0bed7b7f7714f0bdf266fa388	2021- 06	Essex Police	Essex Police	0.435880	51.643391	On or near Penwood Close	E01021238	Basildon 001B	Violence and sexual offences	
4	faa6b0a7146e1e2816512d2f2505d98c384451518f3935	2021- 06	Essex Police	Essex Police	0.435880	51.643391	On or near Penwood Close	E01021238	Basildon 001B	Violence and sexual offences	
4										•	

In [4]: print(dataset.shape)

(4231520, 13)

In [5]: name_number = 'PreciousAdaugoReginald2-2325671.csv'
dataset.to_csv(name_number, index=False)

```
In [6]: data = pd.read_csv(name_number)
In [7]: data['town'] = data['LSOA name'].str.split(' ').str[0]
In [8]: data.head()
Out[8]:
```

	Crime ID	Month	Reported by	Falls within	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type
0	NaN	2021- 06	Essex Police	Essex Police	0.864094	51.971811	On or near Bear Street	E01029906	Babergh 009D	Anti- social behaviour
1	NaN	2021- 06	Essex Police	Essex Police	0.436057	51.639952	On or near Coach Mews	E01021237	Basildon 001A	Anti- social behaviour
2	d91fddaaae8b0664cf330fc1a85bfdcddc57256d0bd2b3	2021- 06	Essex Police	Essex Police	0.437217	51.642455	On or near Bridleway	E01021238	Basildon 001B	Vehicle crime
3	f5104dc9cd4aaa31f162b0bed7b7f7714f0bdf266fa388	2021- 06	Essex Police	Essex Police	0.435880	51.643391	On or near Penwood Close	E01021238	Basildon 001B	Violence and sexual offences
4	faa6b0a7146e1e2816512d2f2505d98c384451518f3935	2021- 06	Essex Police	Essex Police	0.435880	51.643391	On or near Penwood Close	E01021238	Basildon 001B	Violence and sexual offences
4										•

```
In [9]: towns = ['Basildon']
    filtered_data = data[data.town.str.contains('|'.join(towns), na=False)]
    filtered_data.head()
```

Out[9]:

	Crime ID	Month	Reported by	Falls within	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type	
1	NaN	2021- 06	Essex Police	Essex Police	0.436057	51.639952	On or near Coach Mews	E01021237	Basildon 001A	Anti- social behaviour	
2	d91fddaaae8b0664cf330fc1a85bfdcddc57256d0bd2b3	2021- 06	Essex Police	Essex Police	0.437217	51.642455	On or near Bridleway	E01021238	Basildon 001B	Vehicle crime	I
3	f5104dc9cd4aaa31f162b0bed7b7f7714f0bdf266fa388	2021- 06	Essex Police	Essex Police	0.435880	51.643391	On or near Penwood Close	E01021238	Basildon 001B	Violence and sexual offences	
4	faa6b0a7146e1e2816512d2f2505d98c384451518f3935	2021- 06	Essex Police	Essex Police	0.435880	51.643391	On or near Penwood Close	E01021238	Basildon 001B	Violence and sexual offences	
5	009729cbc836771f2f96b686541993ef683a04928b6c23	2021- 06	Essex Police	Essex Police	0.432812	51.642519	On or near Robin Close	E01021238	Basildon 001B	Violence and sexual offences	
4										>	

Preparation of data for clustering¶¶

Column selection

```
In [10]: | filtered important data = filtered data[['LSOA code', 'Crime type']]
         filtered important data = pd.get dummies(filtered important data, columns=['Crime type'])
         clustering data = filtered important data.groupby(['LSOA code']).agg(
              {'Crime type Anti-social behaviour': 'sum',
           'Crime type Bicycle theft': 'sum',
           'Crime type Burglary': 'sum',
           'Crime type Criminal damage and arson': 'sum',
           'Crime type Drugs': 'sum',
           'Crime type Other crime': 'sum',
           'Crime type Other theft': 'sum',
          'Crime type Possession of weapons': 'sum',
           'Crime type Public order':'sum',
           'Crime type Robbery': 'sum',
          'Crime type Shoplifting':'sum',
           'Crime type Theft from the person': 'sum',
           'Crime type Vehicle crime':'sum',
           'Crime type Violence and sexual offences':'sum'
          ).reset index()
```

In [11]: clustering_data[:5]

Out[11]:

	LSOA code	Crime type_Anti- social behaviour	Crime type_Bicycle theft	Crime type_Burglary	Crime type_Criminal damage and arson	Crime type_Drugs	Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order	type_Ro
0	E01021237	20.0	0.0	20.0	0.0	20.0	0.0	60.0	40.0	160.0	_
1	E01021238	40.0	0.0	20.0	60.0	0.0	0.0	0.0	0.0	80.0	
2	E01021239	80.0	0.0	40.0	80.0	80.0	20.0	80.0	20.0	40.0	
3	E01021240	400.0	40.0	40.0	200.0	60.0	0.0	140.0	20.0	200.0	
4	E01021241	200.0	0.0	60.0	260.0	60.0	20.0	40.0	0.0	220.0	
◀											>

Out[12]:

	LSOA code	Crime type_Anti- social behaviour	Crime type_Bicycle theft	Crime type_Burglary	Crime type_Criminal damage and arson	Crime type_Drugs	Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order	type_Ro
0	E01021237	20.0	0.0	20.0	0.0	20.0	0.0	60.0	40.0	160.0	
1	E01021238	40.0	0.0	20.0	60.0	0.0	0.0	0.0	0.0	80.0	
2	E01021239	80.0	0.0	40.0	80.0	80.0	20.0	80.0	20.0	40.0	
3	E01021240	400.0	40.0	40.0	200.0	60.0	0.0	140.0	20.0	200.0	
4	E01021241	200.0	0.0	60.0	260.0	60.0	20.0	40.0	0.0	220.0	
4											•

```
In [13]: clustering_data.drop(['LSOA code'], axis = 1, inplace = True, errors = 'ignore')
    clustering_data.head()
```

Out[13]:

	Crime type_Anti- social behaviour	Crime type_Bicycle theft	Crime type_Burglary	Crime type_Criminal damage and arson	Crime type_Drugs	Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order	Crime type_Robbery	type_
0	20.0	0.0	20.0	0.0	20.0	0.0	60.0	40.0	160.0	20.0	
1	40.0	0.0	20.0	60.0	0.0	0.0	0.0	0.0	80.0	0.0	
2	80.0	0.0	40.0	80.0	80.0	20.0	80.0	20.0	40.0	0.0	
3	400.0	40.0	40.0	200.0	60.0	0.0	140.0	20.0	200.0	20.0	
4	200.0	0.0	60.0	260.0	60.0	20.0	40.0	0.0	220.0	0.0	
4											•

Normalization step

```
In [14]: data_scaled = normalize(clustering_data)
    data_scaled = pd.DataFrame(data_scaled, columns=clustering_data.columns)
    data_scaled.head()
```

Out[14]:

	Crime type_Anti- social behaviour	Crime type_Bicycle theft	Crime type_Burglary	Crime type_Criminal damage and arson	Crime type_Drugs	Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order	Crime type_Robbery	type_
0	0.057544	0.000000	0.057544	0.000000	0.057544	0.000000	0.172631	0.115087	0.460348	0.057544	
1	0.081992	0.000000	0.040996	0.122988	0.000000	0.000000	0.000000	0.000000	0.163984	0.000000	
2	0.317221	0.000000	0.158610	0.317221	0.317221	0.079305	0.317221	0.079305	0.158610	0.000000	
3	0.427765	0.042776	0.042776	0.213882	0.064165	0.000000	0.149718	0.021388	0.213882	0.021388	
4	0.159516	0.000000	0.047855	0.207371	0.047855	0.015952	0.031903	0.000000	0.175467	0.000000	
4											

Determination of number of clusters with the use of the Dendogram

```
In [15]: plt.figure(figsize=(10, 7))
    plt.title("Dendrograms")
    dend = shc.dendrogram(shc.linkage(data_scaled, method='ward'))
```

Dendrograms


```
In [16]: plt.figure(figsize=(10, 7))
    plt.title("Dendrograms")
    dend = shc.dendrogram(shc.linkage(data_scaled, method='ward'))
    plt.axhline(y=1.150, color='r', linestyle='--')
Out[16]: <matplotlib.lines.Line2D at 0x27acd7e0be0>
```

Dendrograms

Agglomerative clustering

```
In [17]: cluster = AgglomerativeClustering(n_clusters=4, affinity='euclidean', linkage='ward')
cluster_ids = cluster.fit_predict(data_scaled)
```

In [18]: clustering_data['cluster'] = cluster_ids
 clustering_data.head()

Out[18]:

•	Crime type_Anti- social behaviour	Crime type_Bicycle theft	Crime type_Burglary		Crime type_Drugs	Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order		type_
0	20.0	0.0	20.0	0.0	20.0	0.0	60.0	40.0	160.0	20.0	
1	40.0	0.0	20.0	60.0	0.0	0.0	0.0	0.0	80.0	0.0	
2	80.0	0.0	40.0	80.0	80.0	20.0	80.0	20.0	40.0	0.0	
3	400.0	40.0	40.0	200.0	60.0	0.0	140.0	20.0	200.0	20.0	
4	200.0	0.0	60.0	260.0	60.0	20.0	40.0	0.0	220.0	0.0	
4											•

```
In [19]: hierarchical_cluster = pd.DataFrame(round(clustering_data.groupby('cluster').mean(),1))
hierarchical_cluster
```

Out[19]:

	Crime type_Anti- social behaviour	Crime type_Bicycle theft	Crime type_Burglary	Crime type_Criminal damage and arson	Crime type_Drugs	Crime type_Other crime	Crime type_Other theft	Crime type_Possession of weapons	Crime type_Public order	Crime type_Robbery
cluster										
0	683.8	33.4	133.4	398.5	164.8	92.2	241.0	46.6	515.7	57.7
1	1044.3	8.6	108.6	374.3	81.4	51.4	212.9	35.7	352.9	37.1
2	220.0	3.1	107.7	178.5	76.9	49.2	106.2	23.1	121.5	16.9
3	840.0	15.0	205.0	380.0	190.0	130.0	455.0	35.0	495.0	55.0
4										+

Visualization of clusters

```
In [20]: clustering_data_original['cluster'] = cluster_ids
    clusters = clustering_data_original[['LSOA code', 'cluster']]
```

In [21]: clusters.head()

Out[21]:

	LSOA code	cluster
0	E01021237	0
1	E01021238	2
2	E01021239	2
3	E01021240	0
4	E01021241	0

```
In [22]: clusters.shape
Out[22]: (110, 2)
In [23]: clustered_full = pd.merge(filtered_data, clusters, on='LSOA code')
clustered_full.head()
```

Out[23]:

	Crime ID	Month	Reported by	Falls within	Longitude	Latitude	Location	LSOA code	LSOA name	Crime type
0	NaN	2021- 06	Essex Police	Essex Police	0.436057	51.639952	On or near Coach Mews	E01021237	Basildon 001A	Anti- social behaviour
1	6525a41d8af97ebaf31695775731dbc9ccc618d224453e	2021- 07	Essex Police	Essex Police	0.440629	51.639767	On or near Martingale Close	E01021237	Basildon 001A	Public order
2	a653ddc246de60337163026c70c4866e3de3eec1d4a8e5	2021- 07	Essex Police	Essex Police	0.432440	51.638525	On or near Parking Area	E01021237	Basildon 001A	Violence and sexual offences
3	b33a5c1572b6cd9d3a1d2572a670e0832b28f4828ec357	2021- 09	Essex Police	Essex Police	0.439140	51.641641	On or near Derby Close	E01021237	Basildon 001A	Burglary
4	dc164a3c2be1a571b597eb38d9e15f64b325657d95098d	2021- 09	Essex Police	Essex Police	0.432440	51.638525	On or near Parking Area	E01021237	Basildon 001A	Drugs
4										•

```
In [24]: def get_color(cluster_id):
    if cluster_id == 1:
        return 'darkred'
    if cluster_id == 2:
        return 'green'
    if cluster_id == 0:
        return 'amber'
    if cluster_id == 3:
        return 'blue'
```

Creation of map with clusters

```
In [25]: #create a map
         this map = folium.Map(location =[clustered full["Latitude"].mean(),
                                          clustered full["Longitude"].mean()], zoom start=5)
         def plot dot(point):
             '''input: series that contains a numeric named latitude and a numeric named longitude
             this function creates a CircleMarker and adds it to your this map'''
             folium.CircleMarker(location=[point.Latitude, point.Longitude],
                                 radius=2,
                                 color=point.color,
                                 weight=1).add to(this map)
         clustered full["color"] = clustered full["cluster"].apply(lambda x: get color(x))
         #use df.apply(,axis=1) to iterate through every row in your dataframe
         clustered full.apply(plot dot, axis = 1)
         #Set the zoom to the maximum possible
         this map.fit bounds(this map.get bounds())
         #Save the map to an HTML file
         this map.save(os.path.join('Crime map2.html'))
         #IFrame(src='Crime map.html', width=1000, height=600)
```

This website below shows evidence of crime rates in the town of Basildon beetwen June 2021 and June 2022

https://www.varbes.com/crime/basildon-crime (https://www.varbes.com/crime/basildon-crime)

Brief discussion of results

For this task a clustering was performed for the town named Basildon which is an area covered by the Essex Police.

After having created the 4 clusters using hierarchical clustering algorithm it can be seen from the table in cell 20 that ClusterID3 contains they LSOA codes that have the highest number of crimes which means that those are very high risk areas.

ClusterID 2 has the LSOA ecodes the contain the lowest number of crimes therefore those are defined as low risk areas. ClusterID 0 has LSOA codes with a moderate number of crimes whereas ClusterID 1 has LSOA codes where the crimes are mild.

Then at the end a map file was created that contains a map full of clusters which therefore contains LSOA codes for the named Basildon.