Report of Project 1 — Topic 2

YE Rougang, Department of Mathematics
May 14, 2019

1 Introduction

This topic considers using Bayesian variable selection methods to analyze regression problems of large-scale data sets.

Specifically, consider a linear model that relates covariates $Z_1, ..., Z_m$ and variables $X_1, ..., X_p$ to the response Y:

$$Y = \sum_{j} Z_{j} \alpha_{j} + \sum_{j} X_{j} \beta_{j} + \epsilon, \tag{1.1}$$

where α_j s are fixed effects, β_j s are random effects and $\epsilon \sim \mathcal{N}(0, \sigma_\epsilon^2)$. Let γ_j be the variable indicating whether β_j is zero or not. We assume the following spike-slab prior:

$$\begin{cases} \beta_j \sim \mathcal{N}(0, \sigma_{\beta}^2), & \text{if } \gamma_j = 1\\ \beta_j = 0, & \text{if } \gamma_j = 0 \end{cases}$$

where $Pr(\gamma_j = 1) = \pi$ and $Pr(\gamma_j = 0) = 1 - \pi$.

Thus γ is a Bernoulli distribution. Small values of π encourage sparse regression models, where a small proportion of the candidate variables X_i help predict the response Y. Denote hyperparameter vector $\boldsymbol{\theta} = \{\pi, \sigma_{\beta}^2, \sigma_{\epsilon}^2\}$. I will use the mean-field approximation to estimate the hyperparameter vector $\boldsymbol{\theta}$ and the posterior distribution of $\{\beta_j\}$.

2 METHOD

Consider a Bayesian model which involves observed variables X and latent variables Z. Idea of mean-field approximation starts from the decomposition of the log marginal probability of observed variables, that is,

$$\log p(X) = \mathcal{L}(q) + KL(q||p)$$

where

$$\mathcal{L}(q) = \int q(Z) \log \left\{ \frac{p(X,Z)}{q(Z)} \right\} dZ,$$

$$KL(q||p) = -\int q(Z) \log \left\{ \frac{p(Z|X)}{q(Z)} \right\} dZ.$$

 $\mathcal{L}(q)$ is the variational lower bound and KL(q||p) is the Kullback-Leibler divergence. Thus the lower bound obtains its maximum value when the KL divergence vanishes, which occurs when q(Z) equals to the posterior distribution p(Z|X).

Put it into the framework here, latent variables Z are β, γ . I restrict $q(\beta, \gamma)$ to be of the form

$$q(\beta, \gamma) = \prod_{j=1}^{p} q(\beta_j, \gamma_j). \tag{2.1}$$

The individual factors have the form

$$q(\beta_j, \gamma_j) = \begin{cases} \alpha_j N(\mu_j, \sigma_j^2) & \text{if } \gamma_j = 1\\ (1 - \alpha_j) \delta_0(\beta_j) & \text{if } \gamma_j = 0 \end{cases}$$
 (2.2)

where δ_0 is the delta mass (or "spike") at 0. With probability α_j , the additive effect β_j is normal with mean μ_j and variance s_j^2 (the "slab"), and with probability 1- α_j , the variable has no effect on Y.

Using the same transformation mentioned in *varbvs: Fast Variable Selection for Large-scale Regression*, I analytically integrate out the fixed effects $\{\alpha_j, j=1,2,...,m\}$ in the linear model by using:

$$|\Sigma_0|^{1/2} P(y|X, Z, \beta, \sigma_{\epsilon}^2) = |Z^T Z|^{-1/2} P(\hat{y}|\hat{X}, \beta, \sigma_{\epsilon}^2),$$

in which $P(y|X,Z,\beta,\sigma^2)$ is the multivariate normal likelihood of the linear regression model 1.1, while $P(\hat{y}|\hat{X},\beta,\sigma^2)$ is the likelihood given by linear regression $\hat{y}=\hat{X}\beta+\epsilon, \alpha$ is assigned a multivariate normal prior with zero mean and covariance Σ_0 such that $|\Sigma_0^{-1}|$ is close to zero and define $\hat{X}=X-Z(Z^TZ)^{-1}Z^TX$ and $\hat{y}=y-Z(Z^TZ)^{-1}Z^Ty$.

Then one can discard the linear effects of covariates Z by replacing all instances of X with \hat{X} and y with \hat{y} , and by multiplying the likelihood by $|Z^TZ|^{-1/2}$. Thus, in the following calculation, I assume the simpler linear regression $y = X\beta + \epsilon$, replace X with \hat{X} and Y with \hat{Y} . Multiplying by $|Z^TZ|^{-1/2}$ can generate the final solution.

By the "fully-factorized" class of approximating distributions 2.1 and 2.2, the variational lower bound can be derived as follows:

$$\begin{split} F(\theta,X,y) &= \mathcal{L}(q) = \int \int q(\beta,\gamma) \log \left\{ \frac{p(y,\beta,\gamma)}{q(\beta,\gamma)} \right\} d\beta d\gamma \\ &= \int \int \prod_{j=1}^{p} q(\beta_{j},\gamma_{j}) \left(\log p(y,\beta,\gamma) - \log q(\beta,\gamma) \right) d\beta d\gamma \\ &= -\frac{n}{2} \log(2\pi\sigma_{\epsilon}^{2}) - \frac{\|y - Xr\|_{2}^{2}}{2\sigma_{\epsilon}^{2}} - \frac{1}{2\sigma_{\epsilon}^{2}} \sum_{j=1}^{p} (X^{T}X)_{jj} (\alpha_{j}(s_{j}^{2} + \mu_{j}^{2}) - \alpha_{j}^{2}\mu_{j}^{2})) \\ &- \sum_{j=1}^{p} \alpha_{j} \log(\frac{\alpha_{j}}{\pi}) - \sum_{j=1}^{p} (1 - \alpha_{j}) \log(\frac{1 - \alpha_{j}}{1 - \pi}) + \sum_{j=1}^{p} \frac{\alpha_{j}}{2} \left[1 + \log \frac{s_{j}^{2}}{\sigma_{\beta}^{2}} - \frac{s_{j}^{2} + \mu_{j}^{2}}{\sigma_{\beta}^{2}} \right] \end{split} \tag{2.3}$$

where $\|\cdot\|_2$ is the Euclidean norm, r is a column vector with entries $r_i = \alpha_i \mu_i$. The above result is calculated by the following details:

$$\prod_{j=1}^{p} q(\beta_j, \gamma_j) = \prod_{j=1}^{p} \left[\frac{1}{\sqrt{2\pi} s_j} e^{-\frac{(\beta_j - \mu_j)^2}{2s_j^2}} \alpha_j^{\gamma_j} (1 - \alpha_j)^{1 - \gamma_j} \right]$$
(2.4)

$$p(y, \beta, \gamma) = \prod_{j=1}^{p} p(y_j, \beta_j, \gamma_j)$$
(2.5)

$$= \prod_{j=1}^{p} \left[\frac{1}{\sqrt{2\pi}\sigma_{\epsilon}} e^{-\frac{(\gamma_{j} - \gamma_{j} \sum_{k=1}^{p} X_{jk} \beta_{k})^{2}}{2\sigma_{\epsilon}^{2}}} \frac{1}{\sqrt{2\pi}\sigma_{\beta}} e^{-\frac{\beta_{j}^{2}}{2\sigma_{\beta}^{2}}} \pi^{\gamma_{j}} (1-\pi)^{1-\gamma_{j}} \right]$$
(2.6)

For example, by $p(y, \beta, \gamma)$, using the trick of completing the square will produce the term $\frac{\|y-Xr\|_2^2}{2\sigma_\epsilon^2}$.

3 RESULT

As we need to maximize the variational lower bound or minimize the KL divergence, update for the free parameters are obtained by taking partial derivatives of the lower bound $F(\theta, X, y)$ 2.3, setting these partial derivatives to zero. That is,

$$\mu_j = \frac{s_j^2}{\sigma_{heta}^2 \sigma_{\epsilon}^2} \left((X^T y)_j - \sum_{k \neq j} (X^T X)_{jk} \alpha_k \mu_k \right)$$
(3.1)

	N	P	MFApprox	$\alpha = 10^{-10}$	$\alpha = 10^{-5}$	$\alpha = 0.001$	$\alpha = 0.1$	$\alpha = 1$	$\alpha = 5$
1	200	50	0.189341	0.292274	0.292268	0.291639	0.257792	0.205851	0.205851
2	200	200	0.167542	0.321091	0.313204	0.264296	0.207271	0.174361	0.174361
3	500	200	0.171335	0.257812	0.257802	0.256870	0.212600	0.180137	0.180137
4	500	500	0.175718	0.291719	0.289246	0.262307	0.221243	0.182700	0.182650
5	1000	300	0.170906	0.255629	0.255623	0.255006	0.220253	0.179568	0.179568
6	1000	1000	0.164817	0.264645	0.260156	0.240020	0.205532	0.170480	0.170444

Table 3.1: RMSE

$$s_j^2 = \frac{\sigma_\beta^2}{\frac{(X^T X)_{jj}}{\sigma_\epsilon^2} + \frac{1}{\sigma_\beta^2}}$$
(3.2)

 α_i satisfies the following equation

$$\frac{\alpha_j}{1 - \alpha_j} = \frac{\pi_j}{1 - \pi_j} \frac{s_j}{\sigma_\beta} e^{\frac{\mu_j^2}{2s_j^2}}$$
 (3.3)

Similarly, hyper parameters can be updated as follows, which is derived by corresponding gradients of the lower bound:

$$\sigma_{\epsilon}^{2} = \frac{\|y - Xr\|_{2}^{2} + \sum_{j=1}^{p} (X^{T}X)_{jj} (\alpha_{j}(s_{j}^{2} + \mu_{j}^{2}) - \alpha_{j}^{2}\mu_{j}^{2}))}{n}$$
(3.4)

$$\sigma_{\beta}^{2} = \frac{\sum_{j=1}^{p} \alpha_{j} (s_{j}^{2} + \mu_{j}^{2})}{\sum_{j=1}^{p} \alpha_{j}}$$
(3.5)

With the above update formulas, I do simulations to compare estimations with the mean-field approximation and Lasso, which can select variables through adding the l_1 penalty term in the regression models. Changing different sizes of samples and features, I test different α values for Lasso, results of RMSE (root-mean-square error) is given in table 3.1.

N is the number of samples and P is the number of features. Thus, one can find that mean-field approximation performs better than Lasso with different α values from the point of RMSE among different combinations of N and P. Actually, Lasso with $\alpha > 0.1$ already turns a lot of coefficients of the regression model to 0.

4 CONCLUSION

As I find the formulas in *varbvs: Fast Variable Selection for Large-scale Regression* actually require $\beta \sim N(0, \sigma_{\beta}^2 * \sigma_{\epsilon}^2)$, which is different from the set up in our project, so I used mean-field

approximation to derive the above variational lower bound, corresponding update expressions for hyper parameters $\boldsymbol{\theta}$ and the posterior distribution of random effects, $\boldsymbol{\beta}$. Simulation studies are did to compare the estimated error of $\hat{\boldsymbol{\beta}}$ through mean-field approximation and Lasso.