

RESULTADO DE APRENDIZAJE

RdA de la asignatura:

- **RdA 1:** Comprender los conceptos básicos del Álgebra Lineal y Geometría Analítica en el campo de la Ingeniería.
- **RdA 2:** Analizar los problemas relacionados al Álgebra Lineal y Geometría Analítica en el campo de la Ingeniería.

RdA de la actividad:

- Reconocer cuándo un conjunto con operaciones dadas forma un espacio vectorial.
- Verificar si un subconjunto dado es un subespacio vectorial.
- Analizar ejemplos concretos y abstractos de espacios y subespacios vectoriales.

INTRODUCCIÓN

Pregunta inicial: ¿Qué otros tipos de objetos matemáticos sabes sumar? ¿Se cumplen las mismas propiedades que con los números reales? ¿Y con los vectores?

DESARROLLO

Actividad 1: Explorando definiciones a través de ejemplos

¿Cómo lo haremos?

- **Discusión guiada:** Se iniciará con preguntas sobre los ejemplos de la lectura asignada:
 - ¿Qué condiciones cumplen las flechas en el espacio tridimensional para formar un espacio vectorial?
 - ¿Qué se suma en el espacio de secuencias infinitas? ¿Cómo se define la multiplicación escalar?
 - ¿Por qué el conjunto de polinomios de grado menor o igual a $\mathfrak n$ forma un espacio vectorial?
 - ¿Cuál es la diferencia entre un espacio vectorial y un subespacio vectorial?
 - ¿Por qué \mathbb{R}^2 no es subespacio de \mathbb{R}^3 ?
- Clase magistral: Se presentarán las definiciones formales de espacio vectorial y subespacio vectorial, haciendo énfasis en la verificación de axiomas. Se utilizará el Resumen05.pdf.

- Resolución de ejercicios: Ejercicios similares a los del documento Ejercicios05.pdf.
- Visualización de videos:
 - Vectores Capítulo 1 3Blue1Brown
 - Espacios vectoriales abstractos 3Blue1Brown
- Lectura adicional recomendada: Álgebra Lineal I: Subespacios vectoriales El blog de Leo

Verificación de aprendizaje:

- ¿Por qué el conjunto de todas las funciones reales es un espacio vectorial?
- ¿Cuál es la condición para que un subconjunto sea subespacio?
- ¿Qué propiedad impide que \mathbb{R}^2 sea subespacio de \mathbb{R}^3 ?

CIERRE

Tarea: Resolver del libro Álgebra lineal y sus aplicaciones de David C. Lay, sección 4.1, los ejercicios: 1, 3, 5, 7, 9, 11, 23.

Pregunta de investigación:

- 1. ¿Qué relación existe entre subespacios vectoriales y soluciones de sistemas homogéneos?
- 2. ¿Cómo se representan gráficamente los subespacios vectoriales en \mathbb{R}^2 y \mathbb{R}^3 ?
- 3. ¿Qué aplicaciones prácticas tienen los espacios vectoriales en la ingeniería y la informática?

Para la próxima clase: Visualizar el video Combinaciones lineales, espacio generado y vectores base. Realizar la actividad de clase invertida: 02Est-Independencia.pdf.