CSC110 Fall 2022 Assignment 4: Number Theory, Cryptography, and Algorithm Running Time Analysis

Shivesh Prakash

November 21, 2022

Part 1: Proofs

1. Statement to prove: $\forall a, b, n \in \mathbb{Z}, (n \neq 0 \land a \equiv b \pmod{n}) \Rightarrow (\forall m \in \mathbb{Z}, a \equiv b + mn \pmod{n})$

Definition of divisibility: $d \mid n \iff \exists k \in \mathbb{Z}, n = dk \text{ where } n, d \in \mathbb{Z}$ Definition of modular equivalence: $a \equiv b \pmod{n} \iff n \mid a - b$

Proof. Fix $a, b, n \in \mathbb{Z}$.

Let us assume that $n \neq 0$ and $a \equiv b \pmod{n}$.

Fix $m \in \mathbb{Z}$.

Since $a \equiv b \pmod{n}$, using definition of modular equivalence and divisibility,

there exists an integer $k = k_1$ such that $a - b = nk_1$.

Subtracting mn on both sides of this equation gives:

$$a - b - mn = nk_1 - mn$$

$$\implies a - b - mn = n(k_1 - m)$$

Since $k_1, m \in \mathbb{Z}$, $k_1 - m \in \mathbb{Z}$. Let $k_2 = k_1 - m$, observe that $k_2, m \in \mathbb{Z}$. Thus the equation becomes:

$$a - b - mn = nk_2$$

$$\implies a - (b + mn) = nk_2$$

$$\implies n \mid a - (b + mn)$$

$$\implies a \equiv b + mn \pmod{n}$$

2. Statement to prove: $\forall f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}, \ \left(g \in \mathcal{O}(f) \land \left(\forall m \in \mathbb{N}, \ f(m) \geq 1\right)\right) \Rightarrow g \in \mathcal{O}(\lfloor f \rfloor)$

Definition of $g \in \mathcal{O}(f)$: $\exists c, n_0 \in \mathbb{R}^+ \ s.t \ \forall n \in \mathbb{N}, n \geq n_0 \implies g(n) \leq c \cdot f(n)$

Proof. Fix $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$.

Let us assume that $g \in \mathcal{O}(f)$ and $\forall m \in \mathbb{N}, f(m) \geq 1$.

That means: $\exists c_1, n_{01} \in \mathbb{R}^+ \ s.t \ \forall n \in \mathbb{N}, n \geq n_{01} \implies g(n) \leq c_1 \cdot f(n)$.

Also $\forall m \in \mathbb{N}, f(m) \geq 1 \implies |f(m)| \geq 1$, from the definition of floor function.

A property of floor function states that: $\forall x \in \mathbb{R}, \lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$.

Substituting f(n) for x, this gives the inequality: $|f(n)| \le f(n) < |f(n)| + 1$.

Observe that c_1 is positive, multiplying c_1 on all parts of the above inequality gives us:

$$c_1 \cdot \lfloor f(n) \rfloor \le c_1 \cdot f(n) < c_1 \cdot (\lfloor f(n) \rfloor + 1)$$

$$\implies c_1 \cdot f(n) < c_1 \cdot \lfloor f(n) \rfloor + c_1$$

$$\implies c_1 \cdot f(n) < (c_1 + \frac{c_1}{\lfloor f(n) \rfloor}) \cdot \lfloor f(n) \rfloor$$

Let $c_1 + \frac{c_1}{[f(n)]}$ be represented by c_2 . Since $c_1 \in \mathbb{R}^+$ and $n \in \mathbb{N}$, $c_2 \in \mathbb{R}^+$. Modifying the definition statement of $g \in \mathcal{O}(f)$ with the inequality:

$$\exists c_1, n_{01} \in \mathbb{R}^+ \ s.t \ \forall n \in \mathbb{N}, n \ge n_{01} \implies g(n) \le c_1 \cdot f(n) < (c_1 + \frac{c_1}{\lfloor f(n) \rfloor}) \cdot \lfloor f(n) \rfloor$$

$$\implies \exists c_2, n_{01} \in \mathbb{R}^+ \ s.t \ \forall n \in \mathbb{N}, n \ge n_{01} \implies g(n) \le c_2 \cdot \lfloor f(n) \rfloor$$

$$\implies g \in \mathcal{O}(\lfloor f \rfloor)$$

Part 2: Running-Time Analysis

1. Function to analyse:

```
def f1(n: int) -> int:
    """Precondition: n >= 0"""
    total = 0

for i in range(0, n): # Loop 1
        total += i ** 2

for j in range(0, total): # Loop 2
    print(j)

return total
```

The statement assigning total to 0 takes 1 step. The statement under Loop 1 take 1 step and the loop runs n times, thus Loop 1 takes a total of n steps. After Loop 1 the value of total is sum of squares of first (n-1) integers. From Appendix C.1, this is equivalent to $\frac{(n-1)(n)(2n-1)}{6}$. The statement under Loop 2 take 1 step and the loop runs total = $\frac{(n-1)(n)(2n-1)}{6}$ times, thus Loop 2 takes a total of $\frac{(n-1)(n)(2n-1)}{6}$ steps. Hence the function runs a total of $1 + n + \frac{(n-1)(n)(2n-1)}{6}$ times. This expression is equivalent to $\frac{n^3}{3} - \frac{n^2}{2} + 7n + 6$, which $\in \Theta(n^3)$. Thus from our running-time analysis, the exact expression for $RT_{func}(n)$ is $\frac{n^3}{3} - \frac{n^2}{2} + 7n + 6$, which $\in \Theta(n^3)$.

2. Function to analyse:

```
def f2(n: int) -> int:
    """Precondition: n >= 0"""
    sum_so_far = 0

for i in range(0, n): # Loop 1
    sum_so_far += i

    if sum_so_far >= n:
        return sum_so_far

return 0
```

The statement assigning sum_so_far to 0 takes 1 step. The innermost if loop early returns when sum_so_far exceeds n. After k + 1 iterations of for Loop 1, sum_so_far is $\frac{(k)(k+1)}{2}$. For this to be \geq n \Longrightarrow

$$\frac{(k)(k+1)}{2} \ge n$$

$$\implies k^2 + k \ge 2n$$

$$\implies k^2 + k - 2n \ge 0$$

$$\implies k \ge \frac{-1 + \sqrt{1+8n}}{2} \text{ or } k \le \frac{-1 - \sqrt{1+8n}}{2}$$

$$\implies k \ge \sqrt{\frac{1}{4} + 2n} - \frac{1}{2} \text{ Since number of iterations must be positive}$$

This is calculated using quadratic formula while ensuring that k is positive and less than n. To maintain k as an integer and taking into account \geq n for the expression, finally we take k as $\lceil \sqrt{\frac{1}{4} + 2n} - \frac{1}{2} \rceil$. Hence the function runs for a total of 1 + (k+1) + 1 times. This expression is equivalent to $3 + \lceil \sqrt{\frac{1}{4} + 2n} - \frac{1}{2} \rceil$, which $\in \Theta(\sqrt{n})$. Thus from our running-time analysis, the exact expression for $RT_{func}(n)$ is $3 + \lceil \sqrt{\frac{1}{4} + 2n} - \frac{1}{2} \rceil$, which $\in \Theta(\sqrt{n})$.

Part 3: Extending RSA

Complete this part in the provided a4_part3.py starter file. Do not include your solutions in this file.

Part 4: Digital Signatures

Part (a): Introduction

Complete this part in the provided a4_part4.py starter file. Do not include your solutions in this file.

Part (b): Generalizing the message digests

Complete most of this part in the provided a4_part4.py starter file. Do **not** include your solutions in this file, *except* for the following two questions:

```
3b. def find_collision_len_times_sum(message: str) -> str:
```

"""Return a new message, not equal to the given message, that can be verified using the same signature when using the RSA digital signature scheme with the len_times_sum message digest.

```
Preconditions:
```

```
- len(message) >= 2
- any({ord(c) < 1114111 for c in message})
"""
m = [ord(c) for c in message]
m[0] = m[0] + 1
m[-1] = m[-1] - 1
characters = [chr(c) for c in m]
return ''.join(characters)</pre>
```

The idea here is to return a string of the same length and same sum of ord() values for each character. I have achieved this by adding and subtracting 1 to the first and last character of the message respectively. I assigned variable m to the list of ord() values for each character in message by iterating over it. I reassigned the elements of m to modify some ord() values while maintaining their sum as a constant. I assigned variable m to the list of characters to be merged and returned. Lastly, my function returns the string by joining the list of characters using str.join().

4b. def find_collision_ascii_to_int(public_key: tuple[int, int], message: str) -> str:

"""Return a new message, distinct from the given message, that can be verified using the same signature, when using the RSA digital signature scheme with the ascii_to_int message digest and the given public_key.

The returned message must contain only ASCII characters, and cannot contain any leading chr(0) characters.

Preconditions:

- signature was generated from message using the algorithm in rsa_sign and digest len_times_sum, with a valid RSA private key
- len(message) >= 2
- ord(message[0]) > 0

NOTES:

- Unlike the other two "find_collision" functions, this function takes in the public key used to generate signatures. Use it!
- You may NOT simply add leading chr(0) characters to the message string. (While this does correctly produces a collision, we want you to think a bit harder to come up with a different approach.)
- You may find it useful to review Part 1, Question 1.

11 11 11

```
n = public_key[0]
modified_int = ascii_to_int(message) + n
num_in_base = a4_part3.int_to_base128(modified_int)
characters = [chr(c) for c in num_in_base]
return ''.join(characters)
```

The idea here is to return a string whose signature matches that of message, determined using rsa_sign(). On inspection of the rsa_sign() function, it is evident that the sign produced will be same when the digest computed using digest = compute_digest(message) % n is the same. For our case, compute_digest() is ascii_to_int(). If ascii_to_int(returned_string) is of the form ascii_to_int(message) + mn where m is an integer and n is the first element of public_key, then using Proof 1 from Part 1, digest will be the same form message and returned_message.

In my function, I added n to ascii_to_int(message) to implement the concept explained above. Then I used this modified_int to reverse it into a string using a4_part3.int_to_base128() and chr() along with str.join().