Théorie des langages

Lionel Rieg (TL1)
Marie-Laure Potet (TL1)

Xavier Nicollin (TL2)

Grenoble INP - Ensimag, 1re année

Année 2022-2023

.. Rieg (Ensimag 1A)

Théorie des langages

Année 2022-2023

1 / 22

Motivations et objectifs

- Théorie des langages : étude des langages formels
- Langage formel : ensemble de *mots, phrases, textes, énoncés* défini « formellement », sans considération sémantique a priori
- Objectif : trouver des moyens de *définir* des langages formels, et des moyens de les *reconnaître* (savoir si un mot appartient au langage)

L. Rieg (Ensimag 1A

Théorie des langage

Année 2022-2023

À quoi ça sert?

- Définition de langages de programmation
 → Analyse lexicale, syntaxique d'un programme (cf. TL2)
- Calculabilité, complexité (cf. TL2)
- Description de la structure de documents XML
- Recherche de texte dans un document
- Génération automatique d'images
- Bioinformatique
- Traitement automatique des langues naturelles
- Cryptographie
- Contrôle de systèmes

. . . .

La référence

Noam Chomsky (1928-), États-Unis

- Linguiste, philosophe, logicien, activiste
- 1956 : définition des grammaires formelles
 - Ensemble de règles permettant d'engendrer des langages formels
 - Classification des grammaires (et des langages engendrés) en fonction de la forme de leurs règles
 - ► Hiérarchie de Chomsky

L. Rieg (Ensimag 1A) Théorie des langages Année 2022-2023 3/22 L. Rieg (Ensimag 1A) Théorie des langages Année 2022-2023 4

Hiérarchie de Chomsky

Туре	Langage	Engendré par	Reconnu par	
0	Calculatoirement énumérable	Grammaire générale	Machine de Turing	
1	Sous-contexte	Grammaire sous-contexte	Machine de Turing linéairement bornée	
2	Hors-contexte	Grammaire hors-contexte	Automate à pile	
3	Régulier	Grammaire linéaire à droite	A <mark>utomate fini</mark>	
L. Rieg	(Ensimag 1A)	Théorie des langages	Année 2022-2023 5 /	/ 22

Théorie des langages 1

Cours 1: Vocabulaires, mots, langages, induction

L. Rieg

Grenoble INP - Ensimag, 1^{re} année

Année 2022-2023

Description du cours de TL1

- 11 CM en amphis, 10 séances de TD, 1 séance de TP/projet
 - ▶ 7 CM sur les langages réguliers et automates
 - ▶ 4 CM sur les grammaires
 - ▶ Horaires : on commence à l'heure, on finit 10 minutes en avance
- Matériel disponible en ligne sur Chamilo
 - Quizz (non notés, ouverts 15 jours après chaque cours)
 - ▶ Diapos à trous sans animation (disponible à l'avance)
 - ▶ Diapos (en ligne chaque semaine après le 2^e CM)
 - ► Sujets d'exercices de TD (également en papier)
 - Polycopié
- Permanences (office hours)
 - ▶ 1h30 par groupe
 - ► Chaque intervenant de TD place sa permanence

L. Rieg (Ensimag 1A)

héorie des langages

Année 2022-2023

Définitions

Définitions (Vocabulaire, mot)

- Un vocabulaire (ou alphabet) est un ensemble fini quelconque. Ses éléments sont appelés des symboles (ou lettres).
- ullet Un mot sur un vocabulaire V est une séquence finie de symboles de V.

Exemples

V	$mot\;sur\;V$	notations abrégées
a, b, \ldots, z	[b, r, o, c, c, c, o, l, i]	$brocccoli$, $broc^3oli$
$\{0,\ldots,9\}$	[2, 0, 2, 0]	2020 , $(20)^2$
$\{a,b,ab\}$	[ab], $[a,b]$	ab?

Définition

• On note ε le mot correspondant à la séquence vide (« mot vide »).

L. Rieg (Ensimag 1A) Théorie des langages 1 Année 2022-2023 7/22 L. Rieg (Ensimag 1A) Théorie des langages 1 Année 2022-2023 8/2

Définitions (suite)

Définition (longueur d'un mot)

Soit V un vocabulaire et soit $u=u_1\cdots u_n$ un mot sur V. La longueur de u est alors n, et on note |u|=n.

Remarque

En particulier, on a $|\varepsilon| = 0$.

Définitions

- ullet Pour $n\in\mathbb{N},\,V^n$ est l'ensemble des mots sur V de longueur n. Par abus de notation, on identifie V et $V^1.$
- ullet V^+ est l'ensemble des mots sur V de longueur au moins 1.
- V^* est l'ensemble des mots sur V.
- Pour $w \in V^*$ et $a \in V$, $|w|_a$ est le nombre d'occurrences de a dans w.

L. Rieg (Ensimag 1A)

Théorie des langages

nnée 2022-2023

9 / 22

Exemples

Exemples

- Soient $V = \{a, b\}$ et w = ababbb.
- Soient $V = \{cd, dc\}$ et w = cdcddc.

Proposition

On a les égalités suivantes :

$$V^* = \bigcup_{n \ge 0} V^n$$
$$V^+ = \bigcup_{n > 0} V^n$$

L. Rieg (Ensimag 1A

l héorie des langages :

Année 2022-2023

Concaténation

Définition

Soit V un vocabulaire, $u=u_1\cdots u_n$ et $v=v_1\cdots v_m$ deux mots de V^* . La concaténation de u et v, notée u.v, est le mot de V^* défini par $u.v=u_1\cdots u_nv_1\cdots v_m$

Exemple

Soient u = bac et v = aacb.

Théorème

 $(V^*,.,\varepsilon)$ est un monoïde (. associative, ε élément neutre).

Notation

On pourra noter uv au lieu de u.v.

Concaténation (suite)

Proposition

Si |u| = i et |v| = j, alors |uv| = i + j.

Définitions

Soient $v,z\in V^*.$ On dit que v est un :

- $\bullet \ \, \text{sous-mot} \,\, \text{de} \,\, z \,\, \text{ssi} \,\, \exists u,w \in V^* \,\, \text{tels que} \,\, z = u.v.w$
- préfixe de z ssi $\exists w \in V^*$ tel que z = v.w
- ullet suffixe de z ssi $\exists u \in V^*$ tel que z=u.v

L. Rieg (Ensimag 1A) Théorie des langages 1 Année 2022-2023 11/22 L. Rieg (Ensimag 1A) Théorie des langages 1 Année 2022-2023 12

Langages

Définition

On appelle langage sur V tout sous-ensemble de V^* .

Exemples

- $\bullet \ \emptyset \subseteq \{a,b\}^*$
- $\{a,b\}^* \subseteq \{a,b\}^*$
- $\{abab, ab, abba\} \subseteq \{a, b\}^*$
- $\{a^nb^n \mid n > 0\} \subset \{a,b\}^*$ $(\{\varepsilon,ab,aabb,aaabbb,\ldots\})$
- « Ensemble des programmes Python » ⊂ Unicode*

Remarque

On s'intéressera en TL à définir et reconnaître des sous-ensembles de V^* .

L. Rieg (Ensimag 1A)

Année 2022-2023

Définition par induction structurelle

Principe général : on définit un ensemble en spécifiant :

- Des cas de base : quels sont les éléments les « plus simples » de l'ensemble?
- Des règles de construction : comment peut-on, en partant d'éléments de l'ensemble, en construire de nouveaux?

Exemples

Définitions inductives de V^* et $L \stackrel{\text{def}}{=} \{a^n b^n \mid n \geq 1\}$:

Comment définir un langage / un ensemble?

- Par extension
 - On énumère les éléments de l'ensemble.

 - $P = \{0, 2, 4, 6, 8, 10, \ldots\}$
- Par compréhension
 - On décrit les caractéristiques des éléments de l'ensemble.
 - $P = \{ n \in \mathbb{N} \mid \exists k \in \mathbb{N}, n = 2k \}$
- Par induction structurelle.
 - ▶ On explique comment construire les éléments de l'ensemble.
 - ► Fréquemment utilisé en informatique
 - ightharpoonup P est le **plus petit** ensemble (pour l'inclusion) tel que :
 - ★ $0 \in P$. et
 - \star si $n \in P$ alors $n+2 \in P$.

Rieg (Ensimag 1A)

Définition générale

Définition (Ensemble inductif)

Soit U un ensemble ; définir un ensemble $E\subseteq U$ par induction structurelle consiste à donner :

- un ensemble non vide d'atomes $B = \{b_1, \ldots, b_n\} \subseteq U$
- un ensemble $K = \{\kappa_1, \dots, \kappa_m\}$ de constructeurs inductifs, où $\kappa_i: U^{a_i} \to U$ et $a_i > 0$ pour tout i $(a_i: arité de \kappa_i)$

E est alors le plus petit ensemble tel que :

- \bullet $B \subseteq E$
- $\forall i \in [1, m]$, si $(e_1, \dots, e_{a_i}) \in E^{a_i}$, alors $\kappa_i(e_1, \dots, e_{a_i}) \in E$

Exemples

 V^* , listes, arbres, formules logiques, ...

L. Rieg (Ensimag 1A) Année 2022-2023 L. Rieg (Ensimag 1A) Année 2022-2023

Exemple

Posons $V = \{a, b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε , ab, ba, aabb, abab, bbaaaabb

Exercice : construire les trois derniers mots

L. Rieg (Ensimag 1A)

Théorie des langages

Année 2022-2023

17 / 22

Fonction définie inductivement

Définition

Soit E un ensemble défini inductivement par l'ensemble d'atomes B et l'ensemble de constructeurs K, et soit U^\prime un ensemble quelconque.

Pour définir une fonction $f:E \to U'$, il suffit d'expliciter :

- ullet les images des atomes $f(b_1),\ldots,f(b_n)$;
- la façon dont la fonction « interagit » avec les constructeurs : comment exprimer $f(\kappa_i(e_1,\ldots,e_{a_i}))$ en fonction de $f(e_1),\ldots,f(e_{a_i})$.

Remarque : f(E) est un ensemble inductif!

Exemple (Longueur d'un mot)

 $| \ | : V^* \to \mathbb{N}$

- ullet Cas de base : $|\varepsilon|=0$
- Constructeurs inductifs : |xw| = 1 + |w|

Énumération d'un ensemble inductif

Théorème (Admis)

Soit E un ensemble défini par induction sur l'ensemble d'atomes B et l'ensemble de constructeurs K.

Alors $E = \bigcup_{n>0} E_n$, où la suite (E_n) est définie par :

$$E_0 \stackrel{\text{def}}{=} B,$$

$$E_{n+1} \stackrel{\text{def}}{=} E_n \cup \{\kappa_i(e_1, \dots, e_{a_i}) \mid \kappa_i \in K, e_1, \dots, e_{a_i} \in E_n\}$$

```
algorithme E= n\leftarrow 0,\ E_0\leftarrow B répéter E_{n+1}\leftarrow E_n\cup\{\kappa_i(e_1,\ldots,e_{a_i})\mid \kappa_i\in K,e_1,\ldots,e_{a_i}\in E_n\} n\leftarrow n+1 jusqu'à E_{n+1}=E_n renvoyer E_n
```

Question : Est-ce que ça termine toujours ?

L. Rieg (Ensimag 1A)

Théorie des langages

Année 2022-2023

.

Exemples

Soient les fonctions dl et pa : $L_0 \to \mathbb{N}$ telles que $\forall w \in L_0$,

$$dl(w) = |w|_a$$

 $pa(w) = max\{|x| \mid x \text{ préfixe de } w \land x \in \{a\}^*\}$

Exercice: définir les fonctions dl et pa par induction structurelle L_0 est défini par 1 cas de base et 2 constructeurs donc 3 cas à considérer.

L. Rieg (Ensimag 1A) Théorie des langages 1 Année 2022-2023 19 / 22 L. Rieg (Ensimag 1A) Théorie des langages 1 Année 2022-2023 20 / 2

Preuve par induction structurelle

Définition

Soit E un ensemble défini inductivement par l'ensemble d'atomes B et l'ensemble de constructeurs K, et soit P une propriété sur E.

Pour montrer que P(e) est vraie pour tout $e \in E$, on peut :

- montrer que $P(b_1), \ldots, P(b_n)$ sont vrais;
- pour $i \in [1, m]$, montrer que si $P(e_1), \ldots, P(e_{a_i})$ sont tous vrais, alors $P(\kappa_i(e_1, \ldots, e_{a_i}))$ l'est également.

Remarque

La preuve par induction structurelle est une généralisation de la preuve par récurrence :

- Base : 0
- Constructeur : la fonction successeur $s: n \mapsto n+1$

L. Rieg (Ensimag 1A)

Théorie des langages

Année 2022-2023

21 / 22

Application

Soit $M_0 = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$. Montrer que $L_0 \subseteq M_0$.

Exercice(\star) Montrer que $M_0 \subseteq L_0$.

ieg (Ensimag 1A) Théorie des langages 1