МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Физический факультет Кафедра общей физики

Федоров Вячеслав Васильевич

ОТЧЕТ о лабораторной работе

«Статистическая обработка результатов измерений»

Измерительный практикум, 1 курс, группа 16362

Преподаватель	измерительного
практикума	_О. А. Брагин
« <u> </u> »	_ 2016 г.
Преподаватель	компьютерного
практикума	
	_ Л. Ю. Прокопьева
« »	2016 г.

Аннотация. В работе измерена интенсивность α -источника, оценена погрешность измерений, как случайная, так и систематическая. Методика измерений включает следующие этапы (а) настройку рабочего напряжения (б) исследование зависимости погрешности от количества измерений для нахождения оптимального количества измерений. Результат измерений хорошо согласуется с теоретическим распределением Пуассона (согласно рассчитанному критерию Пирсона).

1. Введение

В данной лабораторной работе исследуется интенсивность изотопного источника α -частиц, то есть измеряется количество α -частиц v, испускаемых источником за фиксированный промежуток времени τ . Величина v является случайной, так как испускание α -частиц происходит в результате спонтанного распада ядер (239 Pu). Каждое радиоактивное ядро характеризуется определенной вероятностью распада за любой определенный временной интервал. Образовавшаяся в результате вероятностного слияния нуклонов в ядре α -частица совершает вероятностный туннельный переход под потенциальным барьером ядерных сил и вылетает из ядра. Если бы удалось узнать эту вероятность и число ядер в нашем образце, то удалось бы рассчитать ожидаемое среднее число распадов за определенный временной интервал. Но каждое ядро распадается в случайный момент времени, и число распадов за любой определенный промежуток времени может отличаться от ожидаемого среднего числа.

Очевидно, вопрос, который требует ответа, состоит в следующем: если повторять данный эксперимент много раз, то, какое распределение для числа распадов, за определенный промежуток времени, должно получиться?

Таким образом, *цель работы* состоит в измерении среднего количества распадов α -частиц за одну секунду и определении закона распределения для потока α -частиц, возникающих при радиоактивном распаде ядер. Полученный результат требуется проверить с помощью известных статистических закономерностей.

При выполнении лабораторной работы и подготовке отчетной работы использовались учебные пособия [1-4].

2. Описание эксперимента

Описание эксперимента разделим на три части. Вначале, опишем используемые метод измерений и экспериментальную установку; затем, приведем полученные результаты.

2.1. Методика измерений

В эксперименте требуется подсчитать количество α -частиц. Для этого достаточно поместить источник частиц под материал, где α -частицы могут породить фотоны, потеряв свою энергию. Затем нужно усилить сигнал фотоэлектронного умножителя (ФЭУ) и посчитать количество сигналов с помощью компьютера со специальным программным обеспечением. К сожалению, детектор не идеальный и, создаваемый детектором шум, вносит систематическую ошибку в результаты измерений. Чтобы минимизировать данную ошибку, определяется оптимальное напряжение ФЭУ. Также, окружающая среда мешает получить точные данные. Систематическую ошибку вносят, например, различные космические частицы, которые бомбардируют детектор так же, как и данный изотопный источник. Для ограничения влияния посторонней среды, детектор был накрыт непроницаемой плотной тканью.

2.2. Описание установки

Блок-схема экспериментальной установки для регистрации и счета α -частиц приведена на рис. 1. Здесь, α -источник помещается под детектором, который состоит из сцинтиллятора, фотоэлектронного умножителя (ФЭУ) и пересчетного устройства. Попадая в сцинтиллятор, α -частица вызывает вспышку света, которая регистрируется ФЭУ. От ФЭУ импульс тока поступает на пересчетное устройство, сопряженное с ЭВМ. При оптимальном значении напряжения на ФЭУ количество импульсов ФЭУ соответствует числу α -частиц, которые попали в сцинтиллятор.

Рис. 1. Блок-схема экспериментальной установки

В работе используется изотопный источник № 2417 «1П9-83», в котором α -частицы образуются в результате радиоактивного распада изотопа плутония 239 Pu с полураспада ≈ 24360 лет энергией периодом И частиц. равной \approx 5 МэВ. α -частицы — это ядра гелия ${}^{4}\text{He}^{++}$. Источник α -частиц изображен на рис. 2 и представляет собой алюминиевую подложку 1, в углублении которой нанесен слой радиоактивного вещества 2. Активный слой покрыт защитной металлической пленкой 3 (алюминия толщиной ~ 10 мкм). Средний пробег α -частиц с данной энергией в воздухе составляет ≈ 3.5 см (в алюминии и стекле ≈ 0.05 мм). Каждый источник снабжен паспортом, в котором указаны его параметры. Цифрами на источнике отмечена его активность (надпись «83» на источнике соответствует $8 \cdot 10^3$ распад/с).

Рис. 2. Источник α -частиц

2.3. Результаты измерений

Перед измерениями следует обратить внимание на то, что пересчетное устройство регистрирует количество электрических импульсов, а не количество α -частиц непосредственно. Чтобы количество α -частиц и количество импульсов совпадали, требуется подобрать величину рабочего напряжения (U_n) на блоке питания. При меньшем напряжении эффективность ФЭУ понижается, а при большем — возникают ложные срабатывания. Для выбора оптимальной величины U_n была проведена серия измерений, в которой напряжение менялось от 1200 В до 1450 В с шагом 50 В.

На каждом из значений напряжения производилась выборка из 20 измерений числа вспышек в течении 200 мс. Измерения проводился как с источником, так и без него (для определения темнового тока). Полученные данные и зависимость скорости счета от напряжения питания приведены в таблице 1 и на рис. 3, соответственно.

Рис. 3. Зависимость счетной характеристики от напряжения

На рис. З участок кривой в диапазоне изменения напряжения от 1250 В до 1400 В (значения счетной характеристики от 950 шт. до 1150 шт.) имеет малый наклон и называется рабочим плато характеристики. Обычно U_n выбирают близким к середине плато. Из полученного графика видно, что наилучшее напряжение для работы ФЭУ $U_n = 1325$ В. Темновой ток (N_t) является одним из главных источников систематической погрешности в эксперименте. Его источником является случайное излучение электронов с катода, например, от действия космических лучей или от естественной радиации. Из рис. З и таблицы 1 видно, что при выбранном U_n , N_t достаточно малая величина, можем считать $N_t = 5$.

Таблица 1. Зависимость счетной характеристики от напряжения N(U)

$\overline{}$ Напряжение U , B	N(U) с источником, шт.	N(U) без источника, шт.
1200	826,9	0
1250	957,95	0,05
1300	1005,95	0,15
1350	1031,85	4,45
1400	1149,45	5
1450	1825,5	65

Во второй части нам нужно измерить интенсивность α -источника. Перед обработкой результатов измерений следует обсудить следующие понятия.

Среднее значение, или среднее \bar{x} найденных значений. В теории погрешностей доказывается, что если погрешности следуют принятому закону нормального распределения, то наилучшей оценкой μ измеряемой величины является \bar{x} , где

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \approx \mu \tag{1}$$

для серии измерений x_i , $i=\overline{1,N}$, т.к. по мере увеличения числа измерений \overline{x} сходится по вероятности к μ .

Стандартное отклонение (СО) результатов измерений x_i , $i=\overline{1,N}$ — это оценка средней погрешности результатов измерений x_i , $i=\overline{1,N}$, которое определяется по формуле

$$S_{x} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (\overline{x} - x_{i})^{2}} . \tag{2}$$

Отметим, что если результаты измерений распределены нормально и если повторить измерение x очень большое число раз (всегда с той же аппаратурой), то приблизительно 68,3 % результатов измерений будут лежать в интервале $\overline{x} \pm S_x$. Эти параметры определяются коэффициентами Стьюдента (см. [4]).

Однако результат $\mu = \overline{x}$ есть простая функция всех измеренных значений и поскольку предполагается, что каждое из измеренных значений x_i , $i = \overline{1,N}$ распределено нормально, то тоже самое справедливо и для функции \overline{x} , определяемой формулой (1), следовательно, можно найти распределение для \overline{x} , для которого осью симметрии является $\overline{x} = \mu$, а CO оценивается величиной

$$S_{\bar{x}} = \frac{S_x}{\sqrt{N}} \,. \tag{3}$$

Эта величина называется *стандартным отклонением среднего* (СОС) и обозначается $S_{\overline{x}}$. Следовательно, в отсутствии систематических ошибок, можем сформулировать окончательный результат как $\mu = \overline{x} \pm S_{\overline{x}}$, т.е. 68,3 % результатов измерений будут лежать в интервале $\overline{x} \pm S_{\overline{x}}$.

Важной величиной в СОС является множитель \sqrt{N} в знаменателе. СО характеризует разброс значений от среднего в индивидуальных измерениях, поэтому все последующие измерения не приведут к заметному изменению СО. С другой стороны, СОС уменьшается с увеличением N. Это обстоятельство обеспечивает очевидный способ повышения точности измерений. К сожалению, \sqrt{N} возрастает чрезвычайно медленно с увеличением N. Подробные описания и доказательства к приведенным выше утверждениям можно найти в книге [3].

В качестве способа оценки близости распределения выборки экспериментальных данных к принятой аналитической модели закона распределения используются критерии согласия. Наибольшее распространение в практике получил *критерий Пирсона* или *хиквадрат* (χ^2), который используется для проверки гипотезы при числе наблюдений больше пятидесяти. Идея метода состоит в контроле отклонений гистограммы экспериментальных данных от теоретической гистограммы. В общем случае χ^2 – это сумма квадратов, записываемая как

$$\chi^2 = \sum_{1}^{n} \left(\frac{\text{наблюдаемое значение - ожидаемое значение}}{\text{стандартное отклонениe}} \right)^2,$$
 (4)

где n — число бинов на гистограмме. Подробное описание функций распределения и критерия согласия можно прочитать в учебном пособии [1] и книге [3].

Теперь проследим изменения значений CO и COC, в зависимости от числа измерений для разных временных интервалов счета τ .

Рис. 4. Зависимость S_x и $S_{\overline{x}}$ от числа измерений, полученных при 5 мс

Рис. 5. Зависимость S_x и $S_{\overline{x}}$ от числа измерений, полученных при 500 мс

Для этого я провел серию из 500 измерений в режиме непосредственного счета для двух разных значений временного интервала: 5 и 500 мс. Специальное программное обеспечение на компьютере в лаборатории выдало мне данные, по которым были построены графики на рис. 4-5.

Изучая данные графики видно, что СОС $S_{\overline{x}}$ перестает значительно колебаться уже при $N \ge 100$. Это количество измерений (100) примем за оптимальное при проведении эксперимента.

Подсчет количества импульсов с ФЭУ и статистическая обработка данных, а именно подсчет величин \bar{x} , S_x , $S_{\bar{x}}$, $\chi^2_{\Gamma \text{аусс}}$, $\chi^2_{\Pi \text{уассон}}$, в работе автоматизированы. В режиме непосредственного счета программа считывает число импульсов, накопленных пересчетным устройством за заданный мною промежуток времени и заданное количество измерений. Результаты каждой выборки добавляются в таблицу на экране монитора.

N	τ, MC	\overline{x}	S_x	$S_{\overline{x}}$	χ^2 Γ aycc	χ^2 Пуассон
100	1	10,67	5,16	0,516	183,00	$2,6 \cdot 10^{7}$
100	10	50,52	8,71	0,871	1,22	2,03
100	100	497,51	22,31	0,223	1,50	1,50
100	1000	4975,25	73,64	0,736	3,20	5,32

Таблица 2. Результаты измерений

3. Анализ результатов измерений

Для вычисления интенсивности α -источника воспользуемся данными, приведенными в таблице 2 для случая N=100 и $\tau=1000$ мс. Это измерение будем считать «лучшим» (в таблице 2 оно выделено жирным шрифтом), т.к. в этом измерении наибольшее количество зарегистрированных импульсов.

3.1. Обработка результатов

Посчитаем количество v распадов за одну секунду для «лучшего» измерения

$$v = \frac{\mu}{\tau} = \frac{\overline{x} \pm S_{\overline{x}}}{\tau}.$$
 (5)

Откуда после простых вычислений интенсивность α -источника равна $v = 4975 \pm 7$ распадов за одну секунду.

Прежде, я принял Гауссово распределение (в частности при больших N распределение Пуассона не отличить от распределения Гаусса). Теперь определю соответствие экспериментального и принятого законов распределения, используя критерий согласия Пирсона. Но буду использовать несколько более удобную приведенную форму критерия Пирсона – χ^2 на одну степень свободы $d(\tilde{\chi}^2)$

$$\tilde{\chi}^2 = \frac{\chi^2}{d} \,. \tag{6}$$

Здесь d = n - 1 - c (c = 1 — для Пуассона, c = 2 — для Гаусса, n — число бинов), где n целесообразно определить, как

$$n = \left(\frac{4}{3} - \frac{1}{2}\right) \cdot N^{\frac{2}{5}},\tag{7}$$

T.e. n = 25.

Поскольку ожидаемое значение $\chi^2 = d$, следовательно, ожидаемое значение $\tilde{\chi}^2 = 1$, т.е. согласие между теоретическим распределением и экспериментальной выборкой можно считать удовлетворительным, если значение $\tilde{\chi}^2$ порядка единицы или меньше, в противном случае, когда значение $\tilde{\chi}^2$ много больше единицы соответствие эксперимента и теории сомнительно. Доказательство приведено в книге [3].

Для «лучшего» измерения критерий Пирсона, найденный по формуле (6), составил $\tilde{\chi}^2_{\Gamma \text{аусс}} = 0.15$ и $\tilde{\chi}^2_{\Pi \text{уассон}} = 0.23$.

3.2. Оценка погрешностей

В данном эксперименте проводился подсчет количества импульсов установкой, которая систематически давала завышенные или заниженные результаты. Ни одна из этих систематических ошибок не выявлялась в процедуре сравнения результатов. Отсюда следует, что $S_{\overline{x}}$ является случайной составляющей $\delta k_{c.n.}$ погрешности δk . Систематической составляющей $\delta k_{cucm.}$ является темновой ток ФЭУ. Погрешность δk находится путем квадратичного сложения $\delta k_{c.n.} = 7$ и $\delta k_{cucm.} = 5$

$$\delta \kappa = \sqrt{\delta \kappa_{c.n.}^2 + \delta \kappa_{cucm}^2} \ . \tag{8}$$

В результате, в соответствии с формулой (8) погрешность есть $\delta k = 9$. Формула (8) доказывается в книге [3].

4. Обсуждение полученных результатов

Из полученных результатов ясно, что нет необходимости проводить больше 100 измерений, т.к. СОС за 100 измерений сильно уменьшается, и при дальнейшем увеличении количества измерений СОС лишь незначительно изменяет свое значение. Тем не менее СОС по формуле (3) стремится к нулю при стремлении N к бесконечности, и можно сделать вывод, что при выполнении огромного количества измерений, будет бесконечно уменьшаться погрешность. Теперь можно видеть, что это не так, увеличение N приведет лишь к уменьшению $\delta k_{c.n.}$, тогда как систематическая ошибка останется. Из формулы (8) ясно, что увеличивать количество измерений стоит до того момента, когда $\delta k_{c.n.} \sim \delta k_{c.u.m.}$

Таким образом, для значительного уменьшения погрешности измерений требуются улучшения в методе измерений и в оборудовании.

5. Выводы и заключения

В данном эксперименте интенсивность α -источника составила $\nu = 4975\pm 9$ распадов за одну секунду.

Также из эксперимента был получен критерий согласия Пирсона, а затем и его более удобная версия, по которому стало возможно определить соответствие эксперимента и теории. В эксперименте, $\tilde{\chi}^2 < 1$, как для распределения Пуассона, так и для распределения Гаусса, что свидетельствует о хорошей близости распределения экспериментальных данных к принятой аналитической модели закона нормального распределения и к ожидаемому распределению Пуассона (в частности, получена эквивалентность распределений Пуассона и Гаусса при больших μ , т.к. $\tilde{\chi}^2_{\Gamma \text{аусс}} \approx \tilde{\chi}^2_{\Pi \text{уассон}}$). Из этого следует, что радиоактивный распад является *случайным процессом*.

Список литературы

- [1] Начала обработки экспериментальных данных, Князев Б. А., Черкасский В. С. Новосибирск: НГУ, 1993.
- [2] Методы физических измерений (лабораторный практикум по физике) /Под ред. Р. И. Солоухина. Новосибирск: Наука. Сиб. отд. 1975.
- [3] Дж. Тейлор. Введение в теорию ошибок. Пер. с англ. М., Мир, 1985. 272 с.
- [4] Измерительный практикум. Сборник лабораторных работ для студентов. Новосибирск; НГУ, 2001.

Приложение 1

Таблица 3. Зависимость S_x и $S_{\overline{x}}$ от числа измерений при 5 и 500 мс

Номер	$\tau = 5$ мс		$\tau = 500 \text{ MC}$		
измерения	$S_{\overline{x}}$	S_x	$S_{\overline{x}}$	S_x	
1	2	2,828	58	82,024	
2	7,753	13,429	33,493	58,011	
3	5,605	11,21	24,473	48,946	
4	7,984	17,852	24,614	55,038	
5	6,54	16,021	23,089	56,556	
6	5,587	14,781	19,974	52,845	
7	5,11	14,452	18,825	53,246	
8	4,534	13,601	17,276	51,829	
9	4,066	12,859	18,751	59,296	
10	4,075	13,516	16,994	56,362	
11	3,821	13,235	15,693	54,363	
12	3,541	12,766	14,443	52,076	
13	3,282	12,279	13,378	50,056	
14	3,194	12,372	13,127	50,839	
15	2,988	11,953	12,298	49,191	
16	2,978	12,28	12,617	52,021	
17	3,725	15,804	12,021	51	
18	3,526	15,369	11,541	50,306	
19	3,36	15,024	11,099	49,637	
20	3,296	15,104	11,405	52,264	
21	3,144	14,747	10,967	51,439	
22	3,167	15,188	10,55	50,597	
23	3,22	15,777	10,102	49,489	
24	3,329	16,646	9,769	48,847	
25	3,211	16,371	9,638	49,147	
26	3,138	16,307	9,31	48,374	
27	3,028	16,024	9,176	48,553	
28	2,923	15,741	9,337	50,283	
29	2,827	15,485	9,046	49,545	
30	2,736	15,235	8,749	48,712	
31	2,753	15,571	8,768	49,598	
32	2,668	15,329	8,568	49,22	
33	2,589	15,098	8,316	48,493	
34	2,518	14,896	8,554	50,605	
35	2,447	14,682	8,313	49,88	
36	2,426	14,756	8,135	49,481	
37	2,362	14,563	7,988	49,239	
38	2,302 2,392	14,373	7,78	48,589	
39 40	•	15,128 15,048	7,653	48,401	
41	2,35 2,294	14,867	7,48 7,41	47,893 48,023	
42	2,49	16,326	7,253	47,563	
43	2,435	16,155	7,233	47,023	
44	2,383	15,983	7,037	47,203	
45	2,342	15,885	6,893	46,749	
46	2,361	16,184	6,892	47,248	
47	2,315	16,042	6,804	47,137	
48	2,27	15,891	6,936	48,551	
49	2,226	15,738	6,844	48,391	
50	2,189	15,633	6,731	48,071	

51	2,168	15,637	6,819	49,173
52	2,141	15,584	6,692	48,716
53	2,25	16,534	6,641	48,8
54	2,209	16,383	6,525	48,391
55				
	2,169	16,234	6,464	48,372
56	2,132	16,096	6,407	48,375
57	2,106	16,036	6,305	48,021
58	2,077	15,951	6,212	47,714
59	2,087	16,166	6,116	47,376
60	2,239	17,484	6,028	47,083
61	2,204	17,353	6,218	48,963
62	2,17	17,226	6,12	48,577
63	2,268	18,144	6,078	48,627
64	2,233	18,005	6,021	48,543
65	2,266	18,407	5,948	48,324
66	2,251	18,422	5,914	48,407
67	2,218	18,293	5,827	48,047
68	2,195	18,233	5,769	47,922
69	2,163	18,1	5,734	47,972
70	2,135	17,993	5,753	48,477
71	2,106	17,868	5,673	48,135
72	2,099	17,937	5,653	48,296
73	2,072	17,821	5,583	48,028
74	2,046	17,719	5,558	48,137
7 5	2,021	17,619	5,515	48,083
76	1,995	17,508	5,445	47,775
77 70	1,97	17,403	5,415	47,821
78	1,975	17,552	5,347	47,529
79	1,95	17,443	5,291	47,328
80	1,933	17,398	5,238	47,139
81	1,912	17,314	5,177	46,884
82	1,904	17,35	5,128	46,717
83	1,9	17,41	5,143	47,134
84	1,945	17,933	5,116	47,168
85	1,922	17,827	5,074	47,056
86	1,902	17,743	5,017	46,794
87	1,881	17,641	5,126	48,088
88	1,862	17,563	5,088	48,004
89	1,841	17,469	5,108	48,459
				·
90	1,821	17,372	5,104	48,693
91	1,801	17,277	5,127	49,175
92	1,783	17,198	5,083	49,018
93	1,766	17,121	5,091	49,357
94	1,749	17,049	5,045	49,17
95	1,732	16,97	5,014	49,131
96	1,715	16,896	5	49,239
97	1,777	17,587	5	49,498
98	1,761	17,519	4,95	49,251
99	1,744	17,439	4,912	49,116
100	1,731	17,395	4,954	49,79
100	1,719	17,358	4,907	•
			•	49,556
102	1,702	17,275	4,86	49,329
103	1,686	17,191	4,824	49,194
104	1,67	17,115	4,783	49,01
105	1,656	17,051	4,744	48,841
106	1,641	16,973	4,714	48,767
107	1,672	17,371	4,698	48,828

108	1,657	17,295	4,671	48,77
109	1,642	17,219	4,632	48,58
110	1,627	17,144	4,704	49,558
111	1,613	17,071	4,662	49,341
112	1,599	17,001	4,63	49,213
113	1,585	16,928	4,593	49,042
114	1,583	16,97	4,602	49,352
115	1,569	16,896	4,57	49,219
116	1,559	16,861	4,534	49,047
117	1,546	16,793	4,498	48,857
118	1,548	16,89	4,587	50,043
119	1,536	16,823	4,569	50,056
120	1,524	16,762	4,532	49,855
121	1,519	16,783	4,495	49,648
122	1,507	16,714	4,462	49,49
123	1,495	16,648	4,535	50,504
124	1,484	16,587	4,573	51,132
125	1,476	16,568	4,582	51,434
126	1,467	16,531	4,55	51,271
127	1,47	16,636	4,516	51,096
128	1,462	16,606	4,529	51,442
129	•		4,494	
	1,451	16,548	•	51,242
130	1,443	16,514	4,467	51,125
131	1,433	16,47	4,52	51,929
132	1,423	16,409	4,486	51,737
133	1,413	16,351	4,454	51,553
134	1,408	16,356	4,446	51,662
135	1,397	16,297	4,417	51,512
136	1,388	16,245	4,387	51,351
137	1,379	16,197	4,373	51,377
138	1,369	16,142	4,368	51,501
139	1,36	16,089	4,346	51,421
140	1,351	16,046	4,315	51,239
141	1,382	16,47	4,289	51,111
142	1,373	16,414	4,281	51,188
143	1,37	16,443	4,257	51,083
144	1,361	16,388	4,23	50,942
145		•		
	1,352	16,332	4,205	50,811
146	1,342	16,276	4,192	50,827
147	1,334	16,226	4,208	51,189
148	1,332	16,263	4,18	51,021
149	1,324	16,21	4,155	50,894
150	1,315	16,156	4,13	50,746
151	1,306	16,105	4,103	50,585
152	1,298	16,052	4,078	50,441
153	1,294	16,052	4,054	50,309
154	1,299	16,169	4,075	50,739
155	1,291	16,124	4,054	50,631
156	1,308	16,384	4,057	50,836
157	1,299	16,331	4,033	50,69
158	1,292	16,285	4,02	50,692
159	1,293	16,36	4,005	50,657
160	1,286	16,314	3,992	50,648
161	1,279	16,278	3,982	50,688
162	1,271	16,228	4,019	51,307
163	1,266	16,218	4	51,23
164	1,259	16,174	4,003	51,419

165	1,252	16,126	4,073	52,483
166	1,244	16,078	4,058	52,446
167	1,24	16,075	4,082	52,91
168	1,234	16,04	4,129	53,68
169	1,233	16,078	4,11	53,594
170	1,227	16,044	4,089	53,474
171	1,22	15,999	4,1	53,776
172	1,213	15,955	4,096	53,879
172	1,215	15,909	4,077	53,781
173				53,648
	1,199	15,863	4,055	
175	1,192	15,817	4,054	53,785
176	1,186	15,78	4,034	53,669
177	1,179	15,736	4,014	53,555
178	1,173	15,699	3,995	53,447
179	1,167	15,658	3,982	53,425
180	1,161	15,622	3,987	53,634
181	1,155	15,579	4,019	54,218
182	1,149	15,541	4,052	54,818
183	1,143	15,501	4,059	55,055
184	1,14	15,511	4,039	54,939
185	1,134	15,47	4,018	54,795
186	1,13	15,45	4,028	55,086
187	1,124	15,41	4,047	55,494
188	1,119	15,387	4,043	55,579
189	1,115	15,367	4,042	55,709
190	1,109	15,326	4,023	55,597
191	1,103	15,291	4,002	55,454
192	1,098	15,255	4,008	55,676
193	1,095	15,253	4,002	55,735
194	1,09	15,215	3,982	55,606
195	1,084	15,179	3,977	55,68
196	1,085	15,229	3,958	55,552
197	1,08	15,19	3,94	55,44
198	1,075	15,158	3,949	55,701
199	1,069	15,121	3,932	55,607
200	1,064	15,086	3,913	55,481
201	1,06	15,058	3,937	55,959
202	1,055	15,029	3,919	55,831
203	1,051	15,009	3,912	55,868
204	1,046	14,972	3,914	56,037
205	1,041	14,936	3,901	55,989
206	1,055	15,184	3,886	55,912
207	1,073	15,478	3,874	55,868
208	1,078	15,585	3,857	55,764
209	1,073	15,548	3,841	55,658
210	1,069	15,531	3,823	55,53
211	1,064	15,496	3,837	55,861
212	1,059	15,461	3,833	55,947
213	1,055	15,433	3,819	55,866
214	1,05	15,401	3,801	55,735
215	1,052	15,462	3,791	55,72
216	1,047	15,429	3,775	55,612
217	1,044	15,416	3,761	55,536
218	1,046	15,482	3,744	55,41
219	1,042	15,452	3,731	55,343
220	1,038	15,431	3,749	55,738
220	1,035	15,415	3,74	55,723
221	1,033	13,713	5,74	33,123

222	1,03	15,381	3,725	55,627
223	1,025	15,347	3,709	55,504
224	1,036	15,543	3,703	55,545
225	1,032	15,515	3,717	55,883
226	1,028	15,481	3,707	55,849
227	1,037	15,659	3,702	55,895
228	1,034	15,644	3,688	55,805
229	1,034	15,686	3,676	55,743
230	1,03	15,652	3,661	55,636
231	1,025	15,618	3,645	55,516
232	1,021	15,585	3,646	55,65
233	1,017	15,553	3,68	56,286
234	1,019	15,625	3,68	56,415
235	1,015	15,592	3,666	56,313
236	1,011	15,562	3,655	56,269
237	1,007	15,53	3,644	56,218
238	1,003	15,509	3,629	56,1
239	1	15,494	3,614	55,984
240	0,997	15,473	3,6	55,883
241	0,993	15,444	3,585	55,771
242	0,99	15,434	3,587	55,912
243	0,986	15,406	3,59	56,081
244	0,982	15,378	3,596	56,284
244	0,982			
		15,35	3,59	56,303
246	0,978	15,373	3,576	56,195
247	0,974	15,343	3,563	56,11
248	0,974	15,365	3,549	55,997
249	0,97	15,335	3,534	55,885
250	0,97	15,362	3,534	55,981
251	0,966	15,335	3,529	56,014
252	0,962	15,305	3,532	56,172
253	0,963	15,355	3,518	56,062
254	0,96	15,325	3,515	56,123
255	0,957	15,31	3,516	56,251
256	0,953	15,284	3,535	56,675
257	0,95	15,254	3,525	56,622
258	0,946	15,225	3,513	56,53
259	0,942	15,196	3,499	56,422
260	0,939	15,169	3,501	56,568
261	0,936	15,143	3,501	56,672
262	0,932	15,114	3,531	57,257
263	0,928	15,086	3,517	57,148
264	0,927	15,09	3,507	57,089
			·	
265	0,924	15,062	3,494	56,991
266	0,921	15,048	3,486	56,954
267	0,918	15,024	3,473	56,858
268	0,917	15,04	3,465	56,831
269	0,92	15,117	3,459	56,834
270	0,918	15,113	3,446	56,734
271	0,915	15,092	3,451	56,919
272	0,912	15,072	3,444	56,909
273	0,912	15,102	3,433	56,819
274	0,909	15,075	3,424	56,789
275	0,907	15,061	3,412	56,692
276	0,903	15,036	3,4	56,592
277	0,9	15,009	3,403	56,743
278	0,897	14,982	3,411	56,981
	-,		- 7	,>

279	0,894	14,958	3,402	56,918
280	0,891	14,94	3,39	56,818
281	0,888	14,92	3,378	56,73
282	0,885	14,894	3,368	56,657
283	0,882	14,868	3,356	56,562
284	0,88	14,85	3,372	56,933
285	0,877	14,824	3,361	56,833
286	0,877	14,853	3,355	56,837
287	0,874	14,827	3,345	56,775
288	0,872	14,822	3,334	56,682
289	0,869	14,797	3,342	56,911
290	0,866	14,771	3,344	57,037
291	0,864	14,761	3,335	56,99
292	0,863	14,78	3,324	56,895
293	0,861	14,755	3,313	56,798
294	0,858	14,732	3,306	56,782
295	0,855	14,707	3,321	57,139
296	0,853	14,702	3,311	57,063
297	0,863	14,894	3,313	57,185
298	0,86	14,869	3,305	57,153
299	0,857	14,847	3,294	57,058
300	0,856	14,843	3,283	56,963
301	0,854	14,842	3,276	56,93
302	0,852	14,824	3,271	56,934
	· ·	·		
303	0,849	14,804	3,26	56,843
304	0,846	14,78	3,26	56,939
305	0,844	14,756	3,255	56,941
306	0,857	15,011	3,257	57,063
307	0,854	14,987	3,249	57,016
308	0,852	14,973	3,24	56,962
309	0,849	14,952	3,23	56,875
310	0,847	14,942	3,221	56,809
311	0,845	14,926	3,211	56,726
312	0,842	14,902	3,208	56,747
313	0,841	14,898	3,199	56,684
314	0,839	14,891	3,191	56,633
315	0,836	14,868	3,182	56,557
316	0,834	14,856	3,174	56,518
317	0,832	14,834	3,164	56,429
318	0,829	14,813	3,155	56,342
319	0,829	14,83	3,147	56,291
320	0,826	14,807	3,142	56,285
321	0,824	14,784	3,137	56,291
322	0,821	14,763	3,132	56,286
323	0,828	14,911	3,122	56,199
323	0,827	14,911	3,117	56,192
324				
	0,831	14,997	3,11	56,151
326	0,828	14,975	3,105	56,143
327	0,826	14,958	3,1	56,143
328	0,823	14,936	3,092	56,075
329	0,821	14,915	3,098	56,283
330	0,819	14,893	3,091	56,228
331	0,816	14,876	3,095	56,394
332	0,814	14,855	3,089	56,376
333	0,813	14,858	3,083	56,339
334	0,811	14,846	3,08	56,382
335	0,813	14,898	3,086	56,561
	•	•	•	,

336	0,81	14,876	3,08	56,534
337	0,809	14,864	3,071	56,451
338	0,819	15,071	3,065	56,434
339	0,817	15,068	3,058	56,383
340	0,816	15,06	3,052	56,358
341	0,815	15,065	3,044	56,292
342	0,812	15,044	3,041	56,329
343	0,81	15,026	3,043	56,448
344	0,809	15,018	3,036	56,392
345	0,806	14,996	3,029	56,347
346	0,805	14,989	3,023	56,459
347	0,805	15,01	3,028	56,483
348	0,803	14,996	3,024	56,484
349	0,807	15,105	3,025	56,6
350	0,805	15,089	3,025	56,675
351	0,803	15,067	3,023	56,669
352	0,801	15,051	3,012	56,592
353	0,799	15,029	3,004	56,517
354	0,798	15,039	2,996	56,451
355	0,796	15,024	2,991	56,427
356	0,794	15,004	2,984	56,383
357	0,792	14,983	2,98	56,376
358	0,792	14,964	2,98	56,298
359	0,791	15,006	2,965	56,253
	0,791			
360		15,205	2,957	56,177 56,126
361	0,798	15,184	2,95	56,126
362	0,796	15,171	2,942	56,061 55,004
363	0,796	15,187	2,935	55,994
364	0,794	15,166	2,943	56,229 56,276
365	0,792	15,158	2,942	56,276
366	0,791	15,151	2,934	56,202
367	0,789	15,136	2,926	56,131
368	0,787	15,116	2,922	56,128
369	0,785	15,096	2,924	56,247
370	0,783	15,078	2,919	56,215
371	0,781	15,058	2,913	56,178
372	0,779	15,038	2,915	56,299
373	0,779	15,065	2,907	56,225
374	0,777	15,052	2,9	56,167
375	0,775	15,032	2,898	56,19
376	0,773	15,013	2,892	56,162
377	0,771	14,998	2,885	56,088
378	0,77	14,982	2,878	56,021
379	0,768	14,964	2,875	56,049
380	0,766	14,947	2,871	56,034
381	0,764	14,933	2,863	55,961
382	0,762	14,914	2,856	55,9
383	0,76	14,894	2,85	55,84
384	0,758	14,876	2,842	55,771
385	0,756	14,857	2,842	55,842
386	0,755	14,845	2,844	55,954
387	0,754	14,848	2,838	55,91
388	0,752	14,829	2,851	56,233
389	0,75	14,81	2,849	56,257
390	0,749	14,811	2,844	56,232
391	0,747	14,792	2,839	56,218
392	0,746	14,788	2,84	56,304

393	0,744	14,77	2,836	56,288
394	0,743	14,763	2,829	56,225
395	0,741	14,75	2,83	56,311
	· ·			
396	0,739	14,734	2,823	56,249
397	0,738	14,716	2,816	56,178
398	0,737	14,722	2,809	56,108
399	0,74	14,808	2,804	56,089
400	0,739	14,793	2,801	56,092
401	0,738	14,789	2,794	56,023
402	0,736	14,779	2,787	55,953
403	0,735	14,773	2,781	55,888
404	0,733	14,76	2,774	55,82
405	0,732	14,746	2,77	55,804
406	0,73	14,729	2,764	55,759
407	0,728	14,712	2,786	56,278
408	0,727	14,698	2,779	56,21
409	0,727	14,717	2,773	56,142
410	0,725	14,704	2,767	56,104
411	0,724	14,687	2,762	56,06
412	0,722	14,674	2,755	55,994
413	0,721	14,668	2,751	55,981
414	0,719	14,651	2,75	56,028
415	0,718	14,647	2,747	56,021
416	0,716	14,63	2,742	56,003
417	0,715	14,613	2,737	55,964
418	0,713	14,596	2,736	56,014
419	0,711	14,581	2,746	56,267
420	0,71	14,565	2,74	56,211
421				
	0,708	14,552	2,733	56,144
422	0,707	14,535	2,727	56,095
423	0,705	14,527	2,721	56,034
424	0,704	14,51	2,718	56,026
425	0,712	14,696	2,712	55,968
426	0,71	14,681	2,705	55,903
427	0,709	14,665	2,707	55,997
428	0,708	14,673	2,71	56,137
429	0,707	14,657	2,704	56,073
430	0,708	14,69	2,699	56,032
431	-	· ·	·	
	0,706	14,673	2,699	56,093
432	0,705	14,669	2,699	56,172
433	0,705	14,678	2,693	56,11
434	0,703	14,661	2,688	56,064
435	0,702	14,666	2,682	56,002
436	0,702	14,665	2,676	55,95
437	0,7	14,653	2,675	55,974
438	0,699	14,637	2,69	56,362
439	0,698	14,64	2,687	56,366
440	0,697	14,634	2,681	56,302
441				
	0,696	14,625	2,676	56,262
442	0,694	14,609	2,67	56,198
443	0,693	14,592	2,664	56,138
444	0,692	14,604	2,658	56,08
445	0,691	14,594	2,656	56,089
446	0,69	14,586	2,651	56,042
447	0,688	14,57	2,647	56,028
448	0,687	14,565	2,641	55,965
449	0,686	14,549	2,649	56,193
オサノ	0,000	17,577	2,077	50,175

450	0,685	14,54	2,645	56,162
451	0,683	14,526	2,639	56,099
452	0,683	14,542	2,633	56,037
453	0,682	14,526	2,63	56,038
454	0,68	14,514	2,626	56,006
455	0,679	14,5	2,621	55,96
456	0,679	14,51	2,616	55,932
457	0,68	14,544	2,611	55,876
458	0,678	14,53	2,607	55,849
459	0,677	14,514	2,603	55,823
460	0,676	14,507	2,597	55,77
461	0,674	14,492	2,599	55,874
462	0,673	14,477	2,595	55,838
463	0,671	14,464	2,594	55,867
464	0,67	14,45	2,589	55,818
465	0,669	14,436	2,594	55,988
466	0,667	14,423	2,596	56,107
467	0,666	14,408	2,597	56,184
468	0,665	14,394	2,592	56,126
469	0,663	14,38	2,589	56,122
470	0,663	14,39	2,583	56,063
471	0,662	14,375	2,578	56,015
471	0,66	14,362	2,578	56,077
472	0,659	14,352	2,576	56,084
473 474	0,658	14,335		
474 475	-	·	2,574	56,099 56,217
473 476	0,657	14,334	2,577	56,217
476 477	0,656	14,323	2,571	56,158 56,000
477	0,655	14,314	2,566	56,099 56,072
	0,658	14,401	2,562	56,073
479	0,657	14,39	2,559	56,075
480	0,656	14,383	2,554	56,022
481	0,654	14,368	2,549	55,964
482	0,663	14,573	2,554	56,121
483	0,662	14,566	2,556	56,234
484	0,661	14,551	2,555	56,262
485	0,659	14,536	2,551	56,238
486	0,658	14,522	2,546	56,18
487	0,657	14,524	2,541	56,133
488	0,657	14,536	2,537	56,113
489	0,656	14,522	2,536	56,128
490	0,656	14,539	2,535	56,181
491	0,655	14,528	2,531	56,138
492	0,654	14,526	2,528	56,124
493	0,659	14,642	2,523	56,073
494	0,658	14,632	2,518	56,02
495	0,656	14,62	2,516	56,039
496	0,657	14,637	2,511	55,985
497	0,655	14,623	2,506	55,933
498	0,654	14,61	2,542	56,781
499	0,653	14,611	2,537	56,731
500	0,652	14,597	2,533	56,685