Math 131A Homework 1

Jiaping Zeng

8/3/2020

1.1 Prove $1^2 + 2^2 + ... + n^2 = \frac{1}{6}n(n+1)(2n+1)$ for all positive integers n.

Answer: By induction

Base case (n = 1): $1 = \frac{1}{6}(1+1)(2+1) \implies 1 = 1$ which is true.

Inductive step: Assume $1^2+2^2+\ldots+n^2=\frac{1}{6}n(n+1)(2n+1)$ is true, we want to show that $1^2+2^2+\ldots+n^2+(n+1)^2=\frac{1}{6}(n+1)(n+2)(2n+3)$ is true. We can do so by adding $(n+1)^2$ to both sides of the equation as follows:

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{1}{6}n(n+1)(2n+1) + (n+1)^{2}$$

Expanding the right hand side results in the following:

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{1}{3}n^{3} + \frac{3}{2}n^{2} + \frac{13}{6}n + 1$$

Which indeed factors into

$$\implies 1^2 + 2^2 + \dots + n^2 + (n+1)^2 = \frac{1}{6}(n+1)(n+2)(2n+3).$$

Therefore $1^2 + 2^2 + ... + n^2 = \frac{1}{6}n(n+1)(2n+1)$ for all positive integers n by mathematical induction.

1.9 (a) Decide for which integers the inequality $2^n > n^2$ is true.

Answer: $2^n > n^2, n \in \mathbb{Z}$ is true for n = 0, 1 and $n \ge 5$.

(b) Prove your claim in (a) by mathematical induction.

Answer: We will first show n = 0 and n = 1 case-by-case, then $n \ge 5$ by induction.

n=0: $2^n > n^2 \implies 1 > 0$ which is true

 $n=1: 2^n > n^2 \implies 2 > 1$ which is true

 $n \geq 5$: By induction as follows.

Base case: $(n = 5) 2^n > n^2 \implies 32 > 25$ which is true

Indcutive step: Assume $2^n > n^2$ is true, we want to show that $2^{n+1} > (n+1)^2$ is also true. We can start by multiplying 2 to both sides of the inequality: $2*2^n > 2*n^2 \implies 2^{n+1} > 2n^2$. Then, if we could show that $2n^2 > (n+1)^2$ for $n \ge 5$, $2^{n+1} > (n+1)^2$ would be also true. By expanding the right hand side and subtracting n^2 from both sides, $2n^2 > (n+1)^2$ simplifies to $n^2 > 2n+1$. We will prove this inequality for n > 5 using another proof by induction:

1

Base case: (n = 5): $n^2 > 2n + 1 \implies 25 > 11$ which is true

Inductive step: Assume $n^2 > 2n + 1$ is true, we want to show that $(n + 1)^2 > 2n + 3$. By expanding the left hand side and canceling terms, we have $n^2 > 2$ which is clearly true for n > 5.

Therefore $n^2 > 2n + 1$, and by extension $2^{n+1} > (n+1)^2$, so $2^n > n^2$ is true for n = 0, 1 and $n \ge 5$ by mathematical induction.

- 1.11 For each $n \in \mathbb{N}$, let P_n denote the assertion " $n^2 + 5n + 1$ is an even integer."
 - (a) Prove P_{n+1} is true whenever P_n is true.

Answer: Using the definition of P_n , P_{n+1} corresponds to the expression $(n+1)^2 + 5(n+1) + 1$. To show that it is even, we can first expand it into $(n+1)^2 + 5(n+1) + 1 = n^2 + 7n + 7$. Then, $P_{n+1} - P_n = n^2 + 7n + 7 - n^2 - 5n - 1 = 2n + 6$ which is always even for $n \in \mathbb{N}$. Therefore, if P_n is even, then $P_n + (P_{n+1} - P_n) = P_{n+1}$ must also be even.

(b) For which n is P_n actually true? What is the moral of this exercise?

Answer: For $n^2 + 5n + 1$ to be even, $n^2 + 5n = n(n+5)$ must be odd. However, this is not possible for $n \in \mathbb{N}$. On one hand, if n is even, n(n+5) would have a factor of 2 from n and would therefore be even; on the other hand, if n is odd, then (n+5) would be even and n(n+5) as well. The moral of this exercise is that finding a true base case is important in mathematical induction.

3.1 (a) Which of the properties A1-A4, M1-M4, DL, O1-O5 fail for N?

Answer: A3 fails since there is no $0 \in \mathbb{N}$; A4 fails since there are no negative numbers in \mathbb{N} ; M4 fails since there are no fractions.

(b) Which of these properties fail for \mathbb{Z} ?

Answer: M4 fails since there are no fractions in \mathbb{Z} .

3.6 (a) Prove $|a + b + c| \le |a| + |b| + |c|$ for all $a, b, c \in \mathbb{R}$.

Answer: Let m = a + b, then since $|a + b| \le |a| + |b|$ (triangle inequality), $|m| \le |a| + |b|$. Then we can add |c| to both sides of the inequality, resulting in $|m| + |c| \le |a| + |b| + |c|$. Since $|m + c| \le |m| + |c|$, we have $|m + c| \le |m| + |c| \le |a| + |b| + |c| \implies |m + c| \le |a| + |b| + |c|$. Then by substituting m = a + b we have $|a + b + c| \le |a| + |b| + |c|$.

(b) Use induction to prove

$$|a_1 + a_2 + \ldots + a_n| \le |a_1| + |a_2| + \ldots + |a_n|$$

for n numbers $a_1, a_2, ..., a_n$.

Answer:

Base case: (n = 1): $|a_1| \le |a_1|$ which is true.

Inductive step: Assume the statement holds for n numbers a_1, a_2, \ldots, a_n . Let $m = a_1 + a_2 + \ldots + a_n$, then we have $|m| \leq |a_1| + |a_2| + \ldots + |a_n|$. Adding $|a_{n+1}|$ to both sides of the inequality gives us $|m| + |a_{n+1}| \leq |a_1| + |a_2| + \ldots + |a_n| + |a_{n+1}|$. Then using $|m + a_{n+1}| \leq |m| + |a_{n+1}|$ (similar to previous part), we have $|m + a_{n+1}| \leq |a_1| + |a_2| + \ldots + |a_n| + |a_{n+1}|$. Then by substitution,

 $|a_1 + a_2 + \ldots + a_n + a_{n+1}| \le |a_1| + |a_2| + \ldots + |a_n| + |a_{n+1}|.$

Therefore $|a_1 + a_2 + \ldots + a_n| \le |a_1| + |a_2| + \ldots + |a_n|$ by mathematical induction.

3.7 (a) Show |b| < a if and only if -a < b < a.

Answer:

 \Rightarrow : Case $b \ge 0$: we have |b| = b by definition of aboslute value. Then, $|b| < a \implies b < a$.

Case b < 0: |b| = -b, then $|b| < a \implies -b < a \implies b > -a$.

Therefore -a < b < a.

 \Leftarrow : Case $b \ge 0$: b = |b| by definition; then -a < |b| < a.

Case b < 0: $-a < b < a \implies a > -b > -a$ (multiply by -1). Since -b = |b|, $a > -b > -a \implies a > |b| > -a \implies -a < |b| < a$.

Therefore |b| < a.

(b) Show |a-b| < c if and only if b-c < a < b+c.

Answer: $b-c < a < b+c \implies -c < a-b < c$ (subtract b). Then, let m=a-b. By substitution, the original statement is equivalent to "|m| < c if and only if -c < m < c", which is true by part (a).

(c) Show $|a-b| \le c$ if and only if $b-c \le a \le b+c$.

Answer: Let m = a - b, then by substitution we would need to prove that $|m| \le c$ if and only if $-c \le m \le c$ (subtract b).

 \Rightarrow : Case $m \ge 0$: Since |m| = m in this case, we have $m = |m| \le c \implies m \le c$.

Case m < 0: |m| = -m, then similarly we have $-m \le c \implies m \ge -c$.

Therefore $-c \le m \le c$.

 \Leftarrow : Case $m \ge 0$: Since m = |m| in this case, we have $-c \le |m| \le c \implies |m| \le c$.

Case m < 0: Since -m = |m| here, we have $-c \le -|m| \le c \implies c \ge |m| \ge -c$ (multiply by -1). Then $|m| \le c$.

Therefore $|m| \leq c$ in both cases.

3.8 Let $a, b \in \mathbb{R}$. Show if $a \leq b_1$ for every $b_1 > b$, then $a \leq b$.

Answer: By contradiction. Suppose $a \le b_1$ for every $b_1 > b$ and a > b. Since a > b, there must exist a $b_1 \in \mathbb{Q}(\in \mathbb{R})$ where $b < b_1 < a$ (Since \mathbb{Q} is dense in \mathbb{R}). However, that would imply that there exists a b_1 where $a > b_1$ which contradicts our assumption. Therefore if $a \le b_1$ for every $b_1 > b$, then $a \le b$.

- 4.6 Let S be a nonempty bounded subset of \mathbb{R} .
 - (a) Prove $\inf S \leq \sup S$.

Answer: By definition, sup $S \ge s$ and inf $S \le s$ for all $s \in S$. Then we have inf $S \le s \le \sup S$ which implies that inf $S \le \sup S$.

(b) What can you say about S if inf $S = \sup S$?

Answer: Again by definition, if $S = \sup S$, we must have $\inf S = s = \sup S$ for all $s \in S$. Then there can only be a single element in S which is also both the supremum and infimum of S.

4.7 Let S and T be nonempty bounded subsets of \mathbb{R} .

(a) Prove if $S \subseteq T$, then inf $T \le \inf S \le \sup S \le \sup T$.

Answer: By definition of upper bound, sup $T \ge t$ for all $t \in T$. Then by definition of subset, $s \in T$ for all $s \in S$. Therefore sup T is an upper bound of S, i.e. sup $T \ge s$ for all $s \in S$. We also have that sup $S \ge s$ for all $s \in S$, with the added requirement of being the least upper bound by definition of supremum. Therefore sup $S \le \sup T$.

Similarly, since inf $T \leq t$ for all $t \in T$ and $s \in T$ for all $s \in S$, inf T is a lower bound of S; therefore the greatest lower bound inf S must be greater or equal to inf T, i.e. inf $T \leq \inf S$.

By 4.6(a), we also have inf $S \leq \sup S$. Therefore inf $T \leq \inf S \leq \sup S \leq \sup T$.

(b) Prove $\sup(S \cup T) = \max\{\sup S, \sup T\}$

Answer: By cases sup $S \leq \sup T$ and sup $S > \sup T$.

Case $\sup S \leq \sup T$: Then $\max \{\sup S, \sup T\} = \sup T$. By definition of union, $S \cup T$ contains all elements from S or T. Since $\sup T \geq \sup S$, $\sup T \geq s$ for all $s \in S$. By definition of supremum, we also have $\sup T \geq t$ for all $t \in T$. Therefore $\sup T$ is the supremum of the union.

Case sup $S > \sup T$: We have $\max\{\sup S, \sup T\} = \sup S$. Similar to the previous case, sup $S \ge s$ for all $s \in S$ by definition of supremum. In addition, sup $S \ge t$ for all $t \in T$ since sup $S > \sup T$. Therefore sup S is the supremum of the union.

- 4.8 Let S and T be nonempty subsets of \mathbb{R} with the following property: $s \leq t$ for all $s \in S$ and $t \in T$.
 - (a) Observe S is bounded above and T is bounded below.

Answer: Since $s \le t$ for all $s \in S$ and $t \in T$, we can select any $t \in T$ to be an upper bound of S (there is at least one such t since T is nonempty). Similarly, we can also select any $s \in S$ to be a lower bound of T. Therefore S is bounded above and T is bounded below.

(b) Prove sup $S \leq \inf T$.

Answer: By contradiction. Assume $\sup S > \inf T$. As shown in part (a), any $t \in T$ is an upper bound of S. Therefore the least upper bound $\sup S \leq t$ for all $t \in T$, in other words, $\sup S$ is a lower bound of T. However, since $\sup S > \inf T$, $\inf T$ cannot be the greatest lower bound of T. Therefore our assumption is false and $\sup S \leq \inf T$.

(c) Give an example of such sets S and T where $S \cap T$ is nonempty.

Answer: S = [-1, 0], T = [0, 1].

(d) Give an example of sets S and T where sup $S = \inf T$ and $S \cap T$ is the empty set.

Answer: S = [-1, 0), T = (0, 1].

- 4.14 Let A and B be nonempty bounded subsets of \mathbb{R} , and let A + B be the set of all sums a + b where $a \in A$ and $b \in B$.
 - (a) Prove $\sup(A+B) = \sup A + \sup B$.

Answer: By definition of supremum, sup $A \ge a$ and sup $B \ge b$ for every $a \in A, b \in B$. Then, sup $A+\sup B \ge a+b$. Since a+b is also an arbitrary member of the set A+B, sup $A+\sup B$ is an upper bound of the set. Then, $\sup(A+B) \le \sup A+\sup B$ since it is the least upper bound of the set A+B.

We now will show that $\sup(A+B) \not< \sup A+\sup B$ by contradiction. Suppose $\sup(A+B) < \sup A+\sup B$, then there must exist an $r \in \mathbb{Q}$ such that $\sup(A+B) < r < \sup A+\sup B$ since \mathbb{Q} is dense in \mathbb{R} . Then, since $\sup A \ge a$ and $\sup B \ge b$ for every $a \in A, b \in B, r < a + b$. Therefore r is also a member of the set A+B while being greater than the supremum of the set $\sup(A+B)$, which leads to a contradiction. Then the only possibility is that $\sup(A+B) = \sup A+\sup B$.

(b) Prove $\inf(A+B) = \inf A + \inf B$.

Answer: Similar to the part (a), Since $\inf A \leq a$ and $\inf B \leq b$ for every $a \in A, b \in B$, $\inf A + \inf B \leq a + b$. Then $\inf A + \inf B$ is a lower bound of the set A + B and as a result $\inf A + \inf B$ must be less or equal to the greatest lower bound $\inf(A + B)$, i.e. $\inf A + \inf B \leq \inf(A + B)$. We will show that $\inf A + \inf B \leq \inf(A + B)$ by contradiction. Suppose $\inf A + \inf B < \inf(A + B)$, then there must exist an $r \in \mathbb{Q}$ such that $\inf A + \inf B < r < \inf(A + B)$. Since $\inf A \leq a$ and $\inf B \leq b$ for every $a \in A, b \in B, r > a + b$. Then r is a member of the set A + B while being less than the infimum $\inf(A + B)$ which contradicts. Therefore $\inf(A + B) = \inf A + \inf B$.

4.15 Let $a, b \in \mathbb{R}$. Show if $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$. Compare Exercise 3.8.

Answer: By contradiction. Suppose there exists $a, b \in \mathbb{R}$ such that $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$ and a > b. Since a > b, we have a - b > 0. Then by the Archimedean property, there exists an $n \in \mathbb{N}$ that can scale it past 1, i.e. n(a-b) > 1. Upon dividing both sides by n we have $a - b > \frac{1}{n} \implies a > b + \frac{1}{n}$, which contradicts our assumption. Therefore if $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.

4.16 Show $\sup\{r \in \mathbb{Q} : r < a\} = a \text{ for each } a \in \mathbb{R}.$

Answer: Since r < a for all r in the set, a is automatically an upper bound. To show that a is the supremum of the set, we will show that it is the least upper bound by contradiction. Suppose there exists another upper bound $b \in \mathbb{R}$ such that b < a. Then, there exists an $r \in \mathbb{Q}$ such that b < r < a since \mathbb{Q} is dense in \mathbb{R} . However, such r would be be in the set $\{r \in \mathbb{Q} : r < a\}$ and b < r implies that b is not an upper bound of the set, which contradicts our assumption. Therefore $\sup\{r \in \mathbb{Q} : r < a\} = a$ for each $a \in \mathbb{R}$.

P1 Write down the converse and the contrapositive of the following statement regarding a real number x:

If
$$x > 0$$
, then $x^2 - x > 0$.

Then determine which (if any) of the three statements are true for all real numbers x.

Answer:

Converse: if $x^2 - x > 0$, then x > 0, which is false by counterexample x = -1.

Contrapositive: if $x^2 - x \le 0$, then $x \le 0$, which is false by counterexample x = 1.

P2 Prove that $\sqrt{3}$ is not rational.

Answer: By contradiction. Suppose $\sqrt{3}$ is rational, then by definition of rational numbers, there must exist $p,q\in\mathbb{Z}$ such that $\frac{p}{q}=\sqrt{3}$, where p,q have no common factors upon simplying. Then, we also have $\frac{p^2}{q^2}=3\implies p^2=3q^2$. Since $p,q\in\mathbb{Z}$ and by extension $p^2,q^2\in\mathbb{Z}$, $p^2\mid 3$. Additionally, $p\mid 3$

because $\sqrt{3} \notin \mathbb{Z}$. Then, $p^2 \mid 9$. By substituting $p^2 = 3q^2$, we now have $3q^2 \mid 9 \implies q^2 \mid 3$, implying $q \mid 3$ by previous logic. Then p,q have common factor 3 which contradicts with our initial assumption. Therefore $\sqrt{3}$ is not rational.