CLAIMS:

- 1. A waveguide structure for upconversion of IR wavelength laser radiation comprising a) at least one base substrate layer made essentially out of a moisture-stable mechanically- and/or temperature-stable material; b) at least one active layer made essentially out of a halide glass, preferably a fluoride glass located on the base substrate layer whereby the material of the at least one base substrate layer has a different composition from the material of the at least one active layer
- A waveguide structure according to Claim 1, whereby the efficacy of the waveguide structure is ≥10 % and ≤90%, the efficacy being defined as
 radiated and/or emitted power of usable radiation out of the waveguide structure
 10 IR-power absorbed in the waveguide structure
 and usable radiation being defined as upconverted light in red, green and/or blue
 - 3. A waveguide structure according to claim 1 or 2, whereby the thickness of the active layer is ≥ 0 and $\leq 5 \mu m$.

layer material is selected out of a group containing: - ZBLAN, consisting essentially of the components ZrF₄, BaF₂, LaF₃, AlF₃ and NaF, doped with one or more rare earth ions from the group Er, Yb, Pr, Tm, Ho, Dy, Eu, Nd or a combination thereof, - one or more of the crystals LiLuF₄, LiYF₄, BaY₂F₈, SrF₂, LaCl₃, KPb₂Cl₅, LaBr₃ doped with one or more rare earth ions from the group Er, Yb, Pr, Tm, Ho, Dy, Eu, Nd or a combination thereof, - one or more of the rare earth doped metal fluorides Ba-Ln-F and Ca-Ln-F, where Ln is one or more rare earth ions from the group Er, Yb, Pr, Tm, Ho, Dy, Eu, Nd or a combination thereof, or mixtures thereof.

20

15

20

- 5. A waveguide structure according to any of the claims 1 to 3, whereby the base substrate layer material has a weakening temperature of ≥300 °C and ≤2000 °C and/or has a lower refractive index than the active layer material.
- A waveguide structure according to claims 1 to 5, whereby the base substrate layer material is selected out of a group comprising quartz glass, hard glass, MgF₂ and mixtures thereof.
- 7. A waveguide structure according to claims 1 to 6, whereby the active layer is coated on the base substrate layer by hot dip spin coating.
- 8. A waveguide structure according to claims 1 to 7, whereby a length of the active layer is \geq 100 μ m and \leq 100,000 μ m, preferably \geq 200 μ m, more preferably \geq 500 μ m and most preferably \geq 1000 μ m and \leq 50,000 μ m; and/or a width of the active layer is \geq 1 μ m and \leq 200 μ m
 - 9. A waveguide structure according to claims 1 to 8, furthermore comprising a sealing layer located on the active layer in such a way, that the active layer is between the base substrate layer and the sealing layer, the sealing layer material being preferably selected out of a group comprising SiO₂, higher index of refraction materials, preferably Al₂O₃ and/or Si₃N₄, polymers, spin on glass or mixtures thereof, either alone or in combination with an optical isolation layer, preferably from undoped ZBLAN.
- 10. A lighting unit comprising at least one of the waveguide structures according to one of the claims 1 to 9, being designed for the usage in one of the following applications: shop lighting, home lighting, accent lighting, spot lighting, theater lighting, automotive headlighting, fiber-optics applications, and projection systems.