II - Généralités sur l'Optimisation

Jean-Philippe Préaux

EOAA - 2009/10

Cobhight: Jean-bhilipr

1 - Conditions suffisantes d'existence d'extrema

1 - Conditions suffisantes d'existence d'extrema.
 Nous voyons deux conditions globales - compacité du domaine, coercivité de l'application - assurant de l'existence d'extrema globaux.

- 1 Conditions suffisantes d'existence d'extrema.
 Nous voyons deux conditions globales compacité du domaine, coercivité de l'application - assurant de l'existence d'extrema globaux.
- 2 Recherche d'extrema locaux.

- 1 Conditions suffisantes d'existence d'extrema.
 Nous voyons deux conditions globales compacité du domaine, coercivité de l'application assurant de l'existence d'extrema globaux.
- 2 Recherche d'extrema locaux. Nous passons en revue les outils de calcul différentiel pour la recherche d'extrema locaux d'une application $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ sur un ouvert \mathcal{U} de \mathbb{R}^n .

- 1 Conditions suffisantes d'existence d'extrema.
 Nous voyons deux conditions globales compacité du domaine, coercivité de l'application assurant de l'existence d'extrema globaux.
- 2 Recherche d'extrema locaux. Nous passons en revue les outils de calcul différentiel pour la recherche d'extrema locaux d'une application $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ sur un ouvert \mathcal{U} de \mathbb{R}^n .
- 3 Programmation convexe.

- 1 Conditions suffisantes d'existence d'extrema.
 Nous voyons deux conditions globales compacité du domaine, coercivité de l'application assurant de l'existence d'extrema globaux.
- 2 Recherche d'extrema locaux. Nous passons en revue les outils de calcul différentiel pour la recherche d'extrema locaux d'une application $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ sur un ouvert \mathcal{U} de \mathbb{R}^n .
- 3 Programmation convexe.
 Nous passons en revue les diverses notions de <u>convexité</u> et ce qu'elles apportent en optimisation.

- 1 Conditions suffisantes d'existence d'extrema.
 Nous voyons deux conditions globales compacité du domaine, coercivité de l'application assurant de l'existence d'extrema globaux.
- 2 Recherche d'extrema locaux. Nous passons en revue les outils de calcul différentiel pour la recherche d'extrema locaux d'une application $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ sur un ouvert \mathcal{U} de \mathbb{R}^n .
- 3 Programmation convexe.
 Nous passons en revue les diverses notions de <u>convexité</u> et ce qu'elles apportent en optimisation.
- 4 Programmation quadratique.

- Conditions suffisantes d'existence d'extrema.
 Nous voyons deux conditions globales compacité du domaine, coercivité de l'application - assurant de l'existence d'extrema globaux.
- 2 Recherche d'extrema locaux. Nous passons en revue les outils de calcul différentiel pour la recherche d'extrema locaux d'une application $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ sur un ouvert \mathcal{U} de \mathbb{R}^n .
- 3 Programmation convexe.
 Nous passons en revue les diverses notions de <u>convexité</u> et ce qu'elles apportent en optimisation.
- 4 Programmation quadratique.

 Nous appliquons ces notions au cas de la programmation quadratique sans contrainte.

Théorème (Existence d'extrema sur un domaine compact.)

Exercices

Si \mathcal{K} est un compact (i.e. est fermé et borné) de \mathbb{R}^n , et $f:\mathcal{K}\longrightarrow\mathbb{R}$ est continue, alors f admet un minimum ainsi qu'un maximum global sur \mathcal{K} .

Théorème (Existence d'extrema sur un domaine compact.)

Exercices

Si \mathcal{K} est un compact (i.e. est fermé et borné) de \mathbb{R}^n , et $f:\mathcal{K}\longrightarrow\mathbb{R}$ est continue, alors f admet un minimum ainsi qu'un maximum global sur \mathcal{K} .

Programmation quadratique

Théorème (Existence d'extrema sur un domaine compact.)

Exercices

Si \mathcal{K} est un compact (i.e. est fermé et borné) de \mathbb{R}^n , et $f:\mathcal{K}\longrightarrow\mathbb{R}$ est continue, alors f admet un minimum ainsi qu'un maximum global sur \mathcal{K} .

$$\exists \ \boldsymbol{x}_{min} \in \mathcal{K}, \quad f(\boldsymbol{x}_{min}) = \inf_{\boldsymbol{x} \in \mathcal{K}} \ f(\boldsymbol{x}) = \min_{\boldsymbol{x} \in \mathcal{K}} \ f(\boldsymbol{x}) \ .$$

Théorème (Existence d'extrema sur un domaine compact.)

Si \mathcal{K} est un compact (i.e. est fermé et borné) de \mathbb{R}^n , et $f:\mathcal{K}\longrightarrow\mathbb{R}$ est continue, alors f admet un minimum ainsi qu'un maximum global sur \mathcal{K} .

$$\exists \ x_{min} \in \mathcal{K}, \quad f(x_{min}) = \inf_{x \in \mathcal{K}} \ f(x) = \min_{x \in \mathcal{K}} \ f(x) \ .$$

$$\exists \ \mathbf{x}_{\max} \in \mathcal{K}, \quad f(\mathbf{x}_{\max}) = \sup_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x}) = \max_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x}) \ .$$

Sur un domaine compact ∃ min & max.

Théorème (Existence d'extrema sur un domaine compact.)

Exercices

Si \mathcal{K} est un compact (i.e. est fermé et borné) de \mathbb{R}^n , et $f:\mathcal{K}\longrightarrow\mathbb{R}$ est continue, alors f admet un minimum ainsi qu'un maximum global sur \mathcal{K} .

$$\exists \ x_{min} \in \mathcal{K}, \quad f(x_{min}) = \inf_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x}) = \min_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x}) \ .$$

$$\exists \mathbf{x}_{\max} \in \mathcal{K}, \quad f(\mathbf{x}_{\max}) = \sup_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x}) = \max_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x}) .$$

Théorème (Existence d'extrema sur un domaine compact.)

Si \mathcal{K} est un compact (i.e. est fermé et borné) de \mathbb{R}^n , et $f:\mathcal{K}\longrightarrow\mathbb{R}$ est continue, alors f admet un minimum ainsi qu'un maximum global sur \mathcal{K} .

Preuve. Sur un compact de \mathbb{R}^n une application continue réelle est bornée et atteint ses bornes.

$$\exists \ x_{min} \in \mathcal{K}, \quad f(x_{min}) = \inf_{x \in \mathcal{K}} \ f(x) = \min_{x \in \mathcal{K}} \ f(x) \ .$$

$$\exists \ \mathbf{x}_{\max} \in \mathcal{K}, \quad f(\mathbf{x}_{\max}) = \sup_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x}) = \max_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x}) \ .$$

N'est utile qu'en optimisation sous contrainte : un ouvert non vide de \mathbb{R}^n n'est jamais compact.

Programmation quadratique

Exercices

Compacité du domaine Applications coercives

Applications coercives.

(□) (□) (□) (□) (□) (□)

Applications coercives.

Définition. Une application $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ continue est <u>coercive</u> si \mathcal{D} est un fermé non borné et si :

Exercices

$$\lim_{\|\mathbf{x}\|\to+\infty}f(\mathbf{x})=+\infty$$

(souvent
$$\mathcal{D} = \mathbb{R}^n$$
).

Applications coercives.

Définition. Une application $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ continue est <u>coercive</u> si \mathcal{D} est un fermé non borné et si :

Exercices

$$\lim_{\|\mathbf{x}\|\to+\infty}f(\mathbf{x})=+\infty$$

(souvent
$$\mathcal{D} = \mathbb{R}^n$$
).

Une application coercive $f: \mathbb{R} \longrightarrow \mathbb{R}$.

Théorème (Une application coercive a un minimum.)

Exercices

Un fonction $f: \mathcal{D} \longrightarrow \mathbb{R}$ coercive admet un minimum global (et aucun maximum global).

Exercices

Théorème (Une application coercive a un minimum.)

Théorème (Une application coercive a un minimum.)

Exercices

Un fonction $f: \mathcal{D} \longrightarrow \mathbb{R}$ coercive admet un minimum global (et aucun maximum global). Si -f est coercive, f admet un maximum global (et aucun minimum global).

Preuve. Soit $a \in \mathbb{R}$ suffisamment grand pour que $f^{-1}(]-\infty,a]) = \mathcal{K}$ soit non vide.

Exercices

Théorème (Une application coercive a un minimum.)

Un fonction $f: \mathcal{D} \longrightarrow \mathbb{R}$ coercive admet un minimum global (et aucun maximum global). Si -f est coercive, f admet un maximum global (et aucun minimum global).

Preuve. Soit $a \in \mathbb{R}$ suffisamment grand pour que $f^{-1}(]-\infty,a]) = \mathcal{K}$ soit non vide. f est continue et $]-\infty,a]$ fermé de $\mathbb{R} \implies \mathcal{K}$ est un fermé de \mathbb{R}^n .

Exercices

Théorème (Une application coercive a un minimum.)

Un fonction $f: \mathcal{D} \longrightarrow \mathbb{R}$ coercive admet un minimum global (et aucun maximum global). Si -f est coercive, f admet un maximum global (et aucun minimum global).

Preuve. Soit $a \in \mathbb{R}$ suffisamment grand pour que $f^{-1}(]-\infty,a]) = \mathcal{K}$ soit non vide. f est continue et $]-\infty,a]$ fermé de $\mathbb{R} \implies \mathcal{K}$ est un fermé de \mathbb{R}^n . De plus \mathcal{K} est borné

Exercices

Programmation quadratique

Théorème (Une application coercive a un minimum.)

```
Preuve. Soit a \in \mathbb{R} suffisamment grand pour que f^{-1}(]-\infty,a]) = \mathcal{K} soit non vide. f est continue et ]-\infty,a] fermé de \mathbb{R} \implies \mathcal{K} est un <u>fermé</u> de \mathbb{R}^n. De plus \mathcal{K} est <u>borné</u>: sinon \mathcal{K} contiendrait une suite (\mathbf{x}_n)_{n\in\mathbb{N}} avec \lim_{n\longrightarrow\infty}\|\mathbf{x}_n\|=+\infty et \forall n\in\mathbb{N}, f(\mathbf{x}_n)\leqslant a: contredirait f coercive.
```

Exercices

Théorème (Une application coercive a un minimum.)

```
Preuve. Soit a \in \mathbb{R} suffisamment grand pour que f^{-1}(]-\infty,a]) = \mathcal{K} soit non vide. f est continue et ]-\infty,a] fermé de \mathbb{R} \implies \mathcal{K} est un fermé de \mathbb{R}^n. De plus \mathcal{K} est borné : sinon \mathcal{K} contiendrait une suite (\mathbf{x}_n)_{n \in \mathbb{N}} avec \lim_{n \to \infty} \|\mathbf{x}_n\| = +\infty et \forall n \in \mathbb{N}, \ f(\mathbf{x}_n) \leqslant a: contredirait f coercive. \implies \mathcal{K} est un compact de \mathbb{R}^n.
```

Exercices

Théorème (Une application coercive a un minimum.)

```
Preuve. Soit a \in \mathbb{R} suffisamment grand pour que f^{-1}(]-\infty,a])=\mathcal{K} soit non vide. f est continue et ]-\infty,a] fermé de \mathbb{R} \implies \mathcal{K} est un fermé de \mathbb{R}^n. De plus \mathcal{K} est borné : sinon \mathcal{K} contiendrait une suite (\mathbf{x}_n)_{n\in\mathbb{N}} avec \lim_{n\longrightarrow\infty}\|\mathbf{x}_n\|=+\infty et \forall\,n\in\mathbb{N},\,f(x_n)\leqslant a: contredirait f coercive. \implies \mathcal{K} est un compact de \mathbb{R}^n. (Théorème précédent) \implies f admet un min global \mathbf{u} sur \mathcal{K}.
```

Théorème (Une application coercive a un minimum.)

Exercices

Un fonction $f: \mathcal{D} \longrightarrow \mathbb{R}$ coercive admet un minimum global (et aucun maximum global). Si -f est coercive, f admet un maximum global (et aucun minimum global).

Preuve. Soit $a \in \mathbb{R}$ suffisamment grand pour que $f^{-1}(]-\infty,a])=\mathcal{K}$ soit non vide. f est continue et $]-\infty,a]$ fermé de $\mathbb{R} \implies \mathcal{K}$ est un fermé de \mathbb{R}^n . De plus \mathcal{K} est borné : sinon \mathcal{K} contiendrait une suite $(\mathbf{x}_n)_{n \in \mathbb{N}}$ avec $\lim_{n \to \infty} \|\mathbf{x}_n\| = +\infty$ et $\forall n \in \mathbb{N}, \ f(\mathbf{x}_n) \leqslant a$: contredirait f coercive. $\implies \mathcal{K}$ est un compact de \mathbb{R}^n . (Théorème précédent) $\implies f$ admet un \min global \mathbf{u} sur \mathcal{K} .

Par construction $\forall \mathbf{x} \in \mathcal{D} \setminus \mathcal{K}, f(\mathbf{x}) \geqslant a \geqslant f(\mathbf{u})$

Exercices

Programmation quadratique

Théorème (Une application coercive a un minimum.)

Un fonction $f: \mathcal{D} \longrightarrow \mathbb{R}$ coercive admet un minimum global (et aucun maximum global). Si -f est coercive, f admet un maximum global (et aucun minimum global).

Preuve. Soit $a \in \mathbb{R}$ suffisamment grand pour que $f^{-1}(]-\infty,a]) = \mathcal{K}$ soit non vide. f est continue et $]-\infty,a]$ fermé de $\mathbb{R} \implies \mathcal{K}$ est un fermé de \mathbb{R}^n . De plus \mathcal{K} est borné : sinon \mathcal{K} contiendrait une suite $(\mathbf{x}_n)_{n\in\mathbb{N}}$ avec

 $\lim_{n\to\infty} \|\mathbf{x}_n\| = +\infty$ et $\forall n \in \mathbb{N}, \ f(x_n) \leq a$: contredirait f coercive.

 $\implies \mathcal{K}$ est un compact de \mathbb{R}^n . (Théorème précédent) $\implies f$ admet un $\underline{\min}$ global \mathbf{u} sur \mathcal{K} .

Par construction $\forall \mathbf{x} \in \mathcal{D} \setminus \mathcal{K}, \ f(\mathbf{x}) \geqslant a \geqslant f(\mathbf{u}) \implies \forall \mathbf{x} \in \mathcal{D}, \ f(\mathbf{x}) \geqslant f(\mathbf{u}).$

Exercices

Théorème (Une application coercive a un minimum.)

Un fonction $f: \mathcal{D} \longrightarrow \mathbb{R}$ coercive admet un minimum global (et aucun maximum global). Si -f est coercive, f admet un maximum global (et aucun minimum global).

Preuve. Soit $a \in \mathbb{R}$ suffisamment grand pour que $f^{-1}(]-\infty,a]) = \mathcal{K}$ soit non vide. f est continue et $]-\infty,a]$ fermé de $\mathbb{R} \implies \mathcal{K}$ est un fermé de \mathbb{R}^n . De plus \mathcal{K} est borné : sinon \mathcal{K} contiendrait une suite $(\mathbf{x}_n)_{n \in \mathbb{N}}$ avec $\lim_{n \longrightarrow \infty} \|\mathbf{x}_n\| = +\infty$ et $\forall n \in \mathbb{N}, \ f(x_n) \leqslant a$: contredirait f coercive. $\implies \mathcal{K}$ est un compact de \mathbb{R}^n . (Théorème précédent) $\implies f$ admet un min

global \mathbf{u} sur \mathcal{K} . Par construction $\forall \mathbf{x} \in \mathcal{D} \setminus \mathcal{K}$, $f(\mathbf{x}) \ge a \ge f(\mathbf{u}) \implies \forall \mathbf{x} \in \mathcal{D}$, $f(\mathbf{x}) \ge f(\mathbf{u})$.

Par construction $\forall \mathbf{x} \in \mathcal{D} \setminus \mathcal{K}$, $f(\mathbf{x}) \geqslant a \geqslant f(\mathbf{u}) \implies \forall \mathbf{x} \in \mathcal{D}$, $f(\mathbf{x}) \geqslant f(\mathbf{u})$. i.e. \mathbf{u} est un min global de f sur \mathcal{D} .

Théorème (Une application coercive a un minimum.)

Un fonction $f: \mathcal{D} \longrightarrow \mathbb{R}$ coercive admet un minimum global (et aucun maximum global). Si -f est coercive, f admet un maximum global (et aucun minimum global).

Preuve. Soit $a \in \mathbb{R}$ suffisamment grand pour que $f^{-1}(]-\infty,a]) = \mathcal{K}$ soit non vide. f est continue et $]-\infty$, a fermé de $\mathbb{R} \implies \mathcal{K}$ est un fermé de \mathbb{R}^n . De plus \mathcal{K} est borné : sinon \mathcal{K} contiendrait une suite $(\mathbf{x}_n)_{n\in\mathbb{N}}$ avec $\lim_{n\to\infty} \|\mathbf{x}_n\| = +\infty$ et $\forall n \in \mathbb{N}, f(x_n) \leq a$: contredirait f coercive. $\implies \mathcal{K}$ est un compact de \mathbb{R}^n . (Théorème précédent) $\implies f$ admet un min

global **u** sur \mathcal{K} .

Par construction $\forall \mathbf{x} \in \mathcal{D} \setminus \mathcal{K}, f(\mathbf{x}) \geqslant a \geqslant f(\mathbf{u}) \implies \forall \mathbf{x} \in \mathcal{D}, f(\mathbf{x}) \geqslant f(\mathbf{u}).$ *i.e.* \mathbf{u} est un min global de f sur \mathcal{D} .

Utile en programmation sous contrainte et sans contrainte

Une fonction polynomiale $f:\mathbb{R}\longrightarrow\mathbb{R}$ de degré >0 :

Exercices

Une fonction polynomiale $f: \mathbb{R} \longrightarrow \mathbb{R}$ de degré > 0:

Exercices

– de degré pair est coercive sur $\mathbb R$ si et seulement si le coef. de son terme de + haut degré est >0,

Une fonction polynomiale $f: \mathbb{R} \longrightarrow \mathbb{R}$ de degré > 0

Exercices

- de degré pair est coercive sur $\mathbb R$ si et seulement si le coef. de son terme de + haut degré est > 0,
- de degré impair (de coef. du terme de plus haut degré α) n'est jamais coercive sur $\mathbb R$

Une fonction polynomiale $f: \mathbb{R} \longrightarrow \mathbb{R}$ de degré > 0

Exercices

- de degré pair est coercive sur $\mathbb R$ si et seulement si le coef. de son terme de + haut degré est > 0,
- de degré impair (de coef. du terme de plus haut degré α) n'est jamais coercive sur $\mathbb R$

```
(est coercive sur [c, +\infty[ si \alpha > 0 et sur ]-\infty, c] si \alpha < 0.)
```

Une fonction polynomiale $f: \mathbb{R} \longrightarrow \mathbb{R}$ de degré > 0

Exercices

- de degré pair est coercive sur $\mathbb R$ si et seulement si le coef. de son terme de + haut degré est > 0,
- de degré impair (de coef. du terme de plus haut degré α) n'est jamais coercive sur $\mathbb R$

(est coercive sur $[c, +\infty[$ si $\alpha>0$ et sur $]-\infty, c]$ si $\alpha<0$.)

Conclusion. Une application polynomiale sur $\mathbb R$ admet :

Une fonction polynomiale $f: \mathbb{R} \longrightarrow \mathbb{R}$ de degré > 0

Exercices

- de degré pair est coercive sur $\mathbb R$ si et seulement si le coef. de son terme de + haut degré est > 0,
- de degré impair (de coef. du terme de plus haut degré lpha) n'est jamais coercive sur $\mathbb R$

(est coercive sur $[c, +\infty[$ si $\alpha>0$ et sur $]-\infty, c]$ si $\alpha<0$.)

Conclusion. Une application polynomiale sur $\mathbb R$ admet :

Si son degré est pair :

Une fonction polynomiale $f: \mathbb{R} \longrightarrow \mathbb{R}$ de degré > 0:

Exercices

- de degré pair est coercive sur $\mathbb R$ si et seulement si le coef. de son terme de + haut degré est > 0,
- de degré impair (de coef. du terme de plus haut degré α) n'est jamais coercive sur $\mathbb R$

(est coercive sur $[c, +\infty[$ si $\alpha > 0$ et sur $]-\infty, c]$ si $\alpha < 0$.)

Conclusion. Une application polynomiale sur $\mathbb R$ admet :

Si son degré est pair :

ullet Si le coef. de son terme de plus haut degré est >0 : un min global et aucun max global.

Une fonction polynomiale $f: \mathbb{R} \longrightarrow \mathbb{R}$ de degré > 0:

Exercices

- de degré pair est coercive sur $\mathbb R$ si et seulement si le coef. de son terme de + haut degré est > 0,
- de degré impair (de coef. du terme de plus haut degré α) n'est jamais coercive sur $\mathbb R$

(est coercive sur $[c, +\infty[$ si $\alpha>0$ et sur $]-\infty, c]$ si $\alpha<0$.)

Conclusion. Une application polynomiale sur $\ensuremath{\mathbb{R}}$ admet :

Si son degré est pair :

- ullet Si le coef. de son terme de plus haut degré est >0 : un min global et aucun max global.
- ullet Si le coef, de son terme de plus haut degré est <0 : un max global et aucun min global.

Une fonction polynomiale $f:\mathbb{R}\longrightarrow\mathbb{R}$ de degré >0:

- de degré pair est coercive sur $\mathbb R$ si et seulement si le coef. de son terme de + haut degré est > 0,
- de degré impair (de coef. du terme de plus haut degré α) n'est jamais coercive sur $\mathbb R$

(est coercive sur $[c, +\infty[$ si $\alpha>0$ et sur $]-\infty, c]$ si $\alpha<0$.)

Conclusion. Une application polynomiale sur $\ensuremath{\mathbb{R}}$ admet :

Si son degré est pair :

- ullet Si le coef. de son terme de plus haut degré est >0 : un min global et aucun max global.
- ullet Si le coef. de son terme de plus haut degré est <0 : un max global et aucun min global.

Si son degré est impair : ni minimum ni maximum global.

• Ne s'applique qu'à une fonction <u>différentiable</u> (1 ou 2 fois)

- Ne s'applique qu'à une fonction différentiable (1 ou 2 fois)
- Ne détermine que les extrema locaux dans l'intérieur du domaine
- ou sur un domaine ouvert—.

- Ne s'applique qu'à une fonction différentiable (1 ou 2 fois)
- Ne détermine que les extrema locaux dans l'intérieur du domaine
- ou sur un domaine <u>ouvert</u>

Plan.

- Ne s'applique qu'à une fonction différentiable (1 ou 2 fois)
- Ne détermine que les extrema <u>locaux</u> dans l'<u>intérieur</u> du domaine ou sur un domaine ouvert-.

Plan.

1. Condition du 1^{er} ordre condition nécessaire portant sur les dérivées premières.

- Ne s'applique qu'à une fonction différentiable (1 ou 2 fois)
- Ne détermine que les extrema locaux dans l'intérieur du domaine
- ou sur un domaine <u>ouvert</u>—.

Plan.

- Condition du 1^{er} ordre. condition nécessaire portant sur les dérivées premières.
- 2. Conditions du 2nd ordre.

Condition nécessaire, condition suffisante, portant sur les dérivées secondes.

Vecteur gradient

Soit \mathcal{U} est un ouvert de \mathbb{R}^n , $\mathbf{x}_0 \in \mathbb{R}^n$ et $f: \mathcal{U} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ une application différentiable en \mathbf{x}_0 on note :

Vecteur gradient

Soit \mathcal{U} est un ouvert de \mathbb{R}^n , $\mathbf{x}_0 \in \mathbb{R}^n$ et $f: \mathcal{U} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ une application différentiable en \mathbf{x}_0 on note :

$$abla f(\mathbf{x}_0) riangleq \left(egin{array}{c} rac{\partial f}{\partial \mathbf{x_1}}(\mathbf{x}_0) \ dots \ rac{\partial f}{\partial \mathbf{x}_n}(\mathbf{x}_0) \end{array}
ight) \in \mathbb{R}^n$$

le vecteur gradient de f en \mathbf{x}_0 (on prononce "nabla f de \mathbf{x}_0 ").

Vecteur gradient

Soit \mathcal{U} est un ouvert de \mathbb{R}^n , $\mathbf{x}_0 \in \mathbb{R}^n$ et $f: \mathcal{U} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ une application différentiable en \mathbf{x}_0 on note :

$$abla f(\mathbf{x}_0) riangleq \left(egin{array}{c} rac{\partial f}{\partial \mathbf{x}_1}(\mathbf{x}_0) \ dots \ rac{\partial f}{\partial \mathbf{x}_n}(\mathbf{x}_0) \end{array}
ight) \in \mathbb{R}^n$$

le vecteur gradient de f en \mathbf{x}_0 (on prononce "nabla f de \mathbf{x}_0 "). On a alors le développement de Taylor-Young de f à l'ordre 1 au voisinage de \mathbf{x}_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle + o(\|\mathbf{x} - \mathbf{x}_0\|).$$

Théorème (Equation d'Euler)

Soit $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, différentiable en $\mathbf{x}_0 \in \operatorname{Int}(\mathcal{D})$. \mathbf{x}_0 extremum local de $f \Longrightarrow \nabla f(\mathbf{x}_0) = \mathbf{0}$.

 \mathbf{x}_0 extremum local de f

Théorème (Equation d'Euler)

Soit $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, différentiable en $\mathbf{x}_0 \in \operatorname{Int}(\mathcal{D})$. \mathbf{x}_0 extremum local de $f \implies \nabla f(\mathbf{x}_0) = \mathbf{0}$.

x₀ extremum local de f

Preuve. On applique en x_0 le développement de Taylor-Young (ordre 1) :

$$\underbrace{f(\mathbf{x}) - f(\mathbf{x}_0)} = \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle + o(\|\mathbf{x} - \mathbf{x}_0\|) .$$

de signe constant

Théorème (Equation d'Euler)

Soit $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, différentiable en $\mathbf{x}_0 \in \operatorname{Int}(\mathcal{D})$.

$$\mathbf{x}_0$$
 extremum local de $f \implies \nabla f(\mathbf{x}_0) = \mathbf{0}$

Preuve. On applique en x_0 le développement de Taylor-Young (ordre 1) :

$$\underbrace{f(\mathbf{x}) - f(\mathbf{x}_0)}_{\text{de signe constant}} = \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle + o(\|\mathbf{x} - \mathbf{x}_0\|) \ .$$

• Si $\nabla f(x_0) \neq \mathbf{0}$: pour \mathbf{x} suffisamment proche de \mathbf{x}_0 , $o(\|\mathbf{x} - \mathbf{x}_0\|)$ est négligeable devant $(\nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0)$

Théorème (Equation d'Euler)

Soit $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, différentiable en $\mathbf{x}_0 \in \operatorname{Int}(\mathcal{D})$.

$$\mathbf{x}_0$$
 extremum local de $f \implies \nabla f(\mathbf{x}_0) = \mathbf{0}$

Preuve. On applique en x_0 le développement de Taylor-Young (ordre 1) :

$$\underbrace{f(\mathbf{x}) - f(\mathbf{x}_0)}_{\text{de signe constant}} = \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle + o(\|\mathbf{x} - \mathbf{x}_0\|) .$$

• Si $\nabla f(\mathbf{x}_0) \neq \mathbf{0}$: pour \mathbf{x} suffisamment proche de \mathbf{x}_0 , $o(\|\mathbf{x} - \mathbf{x}_0\|)$ est négligeable devant $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$

$$\implies f(\mathbf{x}) - f(\mathbf{x}_0)$$
 a le signe de $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$

Théorème (Equation d'Euler)

Soit $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, différentiable en $\mathbf{x}_0 \in \operatorname{Int}(\mathcal{D})$.

$$\mathbf{x}_0$$
 extremum local de $f \implies \nabla f(\mathbf{x}_0) = \mathbf{0}$

Preuve. On applique en x_0 le développement de Taylor-Young (ordre 1) :

$$\underbrace{f(\mathbf{x}) - f(\mathbf{x}_0)}_{\text{de signe constant}} = \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle + o(\|\mathbf{x} - \mathbf{x}_0\|) .$$

• Si $\nabla f(\mathbf{x}_0) \neq \mathbf{0}$: pour \mathbf{x} suffisamment proche de \mathbf{x}_0 , $o(\|\mathbf{x} - \mathbf{x}_0\|)$ est négligeable devant $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$

$$\implies f(\mathbf{x}) - f(\mathbf{x}_0)$$
 a le signe de $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$

Or quand x décrit un voisinage de x_0 , par bilinéarité du produit scalaire $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$ ne garde pas un signe constant.

Théorème (Equation d'Euler)

Soit $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, différentiable en $\mathbf{x}_0 \in \operatorname{Int}(\mathcal{D})$.

$$\mathbf{x}_0$$
 extremum local de $f \implies \nabla f(\mathbf{x}_0) = \mathbf{0}$

Preuve. On applique en x_0 le développement de Taylor-Young (ordre 1) :

$$\underbrace{f(\mathbf{x}) - f(\mathbf{x}_0)}_{\text{de signe constant}} = \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle + o(\|\mathbf{x} - \mathbf{x}_0\|) \ .$$

• Si $\nabla f(\mathbf{x}_0) \neq \mathbf{0}$: pour \mathbf{x} suffisamment proche de \mathbf{x}_0 , $o(\|\mathbf{x} - \mathbf{x}_0\|)$ est négligeable devant $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$

$$f(\mathbf{x}) - f(\mathbf{x}_0)$$
 a le signe de $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$

Or quand x décrit un voisinage de x_0 , par bilinéarité du produit scalaire $\langle \nabla f(x_0), x - x_0 \rangle$ ne garde pas un signe constant. Contradiction.

Théorème (Equation d'Euler)

Soit $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, différentiable en $\mathbf{x}_0 \in \operatorname{Int}(\mathcal{D})$.

$$\mathbf{x}_0$$
 extremum local de $f \implies \nabla f(\mathbf{x}_0) = \mathbf{0}$

Preuve. On applique en x_0 le développement de Taylor-Young (ordre 1) :

$$\underbrace{f(\mathbf{x}) - f(\mathbf{x}_0)}_{\text{de signe constant}} = \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle + o(\|\mathbf{x} - \mathbf{x}_0\|) \ .$$

• Si $\nabla f(x_0) \neq \mathbf{0}$: pour \mathbf{x} suffisamment proche de \mathbf{x}_0 , $o(\|\mathbf{x} - \mathbf{x}_0\|)$ est négligeable devant $(\nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0)$

$$f(\mathbf{x}) - f(\mathbf{x}_0)$$
 a le signe de $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$

Or quand x décrit un voisinage de x_0 , par bilinéarité du produit scalaire $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$ ne garde pas un signe constant. Contradiction. $\nabla f(\mathbf{x}_0) = \mathbf{0}$.

x₀ est appelé point critique ou point stationnaire.

x₀ est appelé point critique ou point stationnaire.

L'équation d'Euler est une condition nécessaire non suffisante.

x₀ est appelé point critique ou point stationnaire.

L'équation d'Euler est une condition nécessaire non suffisante.

max local

$$-y^2 x^2 + y^2$$

point-selle

 $x^{2} - y^{2}$

Matrice hessienne :

$$\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

min local

$$\begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

Si $f:\mathcal{U}\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ est 2 fois différentiable en \mathbf{x}_0 on note :

Si $f: \mathcal{U} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ est 2 fois différentiable en \mathbf{x}_0 on note :

$$\nabla^{2} f(\mathbf{x}_{0}) \triangleq \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(\mathbf{x}_{0}) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\mathbf{x}_{0}) \\ \vdots & & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\mathbf{x}_{0}) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}(\mathbf{x}_{0}) \end{pmatrix}$$

la matrice Hessienne de f en x_0 .

Si $f: \mathcal{U} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ est 2 fois différentiable en \mathbf{x}_0 on note :

$$\nabla^{2} f(\mathbf{x}_{0}) \triangleq \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(\mathbf{x}_{0}) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\mathbf{x}_{0}) \\ \vdots & & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\mathbf{x}_{0}) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}(\mathbf{x}_{0}) \end{pmatrix}$$

la matrice Hessienne de f en x_0 .

C'est une matrice symétrique; en particulier elle est diagonalisable.

Si $f: \mathcal{U} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ est 2 fois différentiable en \mathbf{x}_0 on note :

$$\nabla^{2} f(\mathbf{x}_{0}) \triangleq \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(\mathbf{x}_{0}) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\mathbf{x}_{0}) \\ \vdots & & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\mathbf{x}_{0}) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}(\mathbf{x}_{0}) \end{pmatrix}$$

la matrice Hessienne de f en x_0 .

C'est une matrice symétrique; en particulier elle est diagonalisable.

On a <u>le développement de Taylor-Young à l'ordre 2</u> de f en \mathbf{x}_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + o(\|\mathbf{x} - \mathbf{x}_0\|^2)$$

Définitions.

Définitions.

• Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est <u>semi-définie positive</u> si $\forall \mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^\top A \mathbf{x} \ge 0$.

Définitions.

- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est <u>semi-définie positive</u> si $\forall \mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^\top A \mathbf{x} \ge 0$.
- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est <u>définie positive</u> si $\forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, \mathbf{x}^\top A \mathbf{x} > 0$.

Définitions.

- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est <u>semi-définie positive</u> si $\forall \mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^\top A \mathbf{x} \ge 0$.
- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est <u>définie positive</u> si $\forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$, $\mathbf{x}^\top A \mathbf{x} > 0$.
- Et de façon analogue (semi)-définie négative.

Définitions.

- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est <u>semi-définie positive</u> si $\forall \mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^\top A \mathbf{x} \ge 0$.
- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est <u>définie positive</u> si $\forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, \mathbf{x}^\top A \mathbf{x} > 0$.
- Et de façon analogue (semi)-définie négative.

Proposition

Si $A \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable, alors :

- A est semi-définie positive ssi toutes ses valeurs propres sont $\geqslant 0$.
- A est définie positive ssi toutes ses valeurs propres sont > 0.

Définitions.

- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est <u>semi-définie positive</u> si $\forall \mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^\top A \mathbf{x} \ge 0$.
- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est <u>définie positive</u> si $\forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, \mathbf{x}^\top A \mathbf{x} > 0$.
- Et de façon analogue (semi)-définie négative.

Proposition

Si $A \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable, alors :

- A est semi-définie positive ssi toutes ses valeurs propres sont $\geqslant 0$.
- A est définie positive ssi toutes ses valeurs propres sont > 0.

Théorème

 $A \in \mathcal{M}_n(\mathbb{R})$ symétrique \implies A diagonalisable.

Conditions du 2^e ordre

Théorème

Soit $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, et $\mathbf{u} \in \operatorname{Int}(\mathcal{D})$, avec f 2 fois différentiable en \mathbf{u} .

Conditions du 2^e ordre

Théorème

Soit $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, et $\mathbf{u} \in \operatorname{Int}(\mathcal{D})$, avec f 2 fois différentiable en \mathbf{u} .

1. (Condition nécessaire du 2^e ordre.)
Si u est un minimum local de f, alors $\nabla f(\mathbf{u}) = \mathbf{0}$ et $\nabla^2 f(\mathbf{u})$ est semi-définie positive.

Conditions du 2^e ordre

Théorème

Soit $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, et $\mathbf{u} \in \operatorname{Int}(\mathcal{D})$, avec f 2 fois différentiable en \mathbf{u} .

Exercices

- 1. (Condition nécessaire du 2^e ordre.) Si u est un minimum local de f, alors $\nabla f(\mathbf{u}) = \mathbf{0}$ et $\nabla^2 f(\mathbf{u})$ est semi-définie positive.
- 2. (Condition suffisante du 2^e ordre.) $Si \nabla f(\mathbf{u}) = \mathbf{0}$ et $\nabla^2 f(\mathbf{u})$ est définie positive, alors \mathbf{u} est un minimum local strict de f.

Conditions du 2^e ordre

Théorème

Soit $f: \mathcal{D} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, et $\mathbf{u} \in \operatorname{Int}(\mathcal{D})$, avec f 2 fois différentiable en \mathbf{u} .

- 1. (Condition nécessaire du 2^e ordre.) Si u est un minimum local de f, alors $\nabla f(\mathbf{u}) = \mathbf{0}$ et $\nabla^2 f(\mathbf{u})$ est semi-définie positive.
- (Condition suffisante du 2^e ordre.)
 Si ∇f(u) = 0 et ∇²f(u) est définie positive, alors u est un minimum local strict de f.
- La condition suffisante du 2^e ordre s'utilise pour montrer qu'un point critique est un extremum local.
- La condition nécessaire du 2e ordre s'utilise pour montrer qu'un point critique n'est pas un extremum local.

1.

Jean-Philik

. reuve. 1. Puisque ${\bf u}$ est un extremum local alors $abla f({\bf u})={\bf 0}$ (équation d'Euler).

1. Puisque ${\bf u}$ est un extremum local alors $\nabla f({\bf u})={\bf 0}$ (équation d'Euler). La formule de Taylor-Young à l'ordre 2 s'écrit :

$$\underbrace{f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u})}_{>0} = \mathbf{x}^{\top} \nabla^{2} f(\mathbf{u}) \mathbf{x} + \phi(\|\mathbf{x}\|^{2})$$

1. Puisque ${\bf u}$ est un extremum local alors $\nabla f({\bf u})={\bf 0}$ (équation d'Euler). La formule de Taylor-Young à l'ordre 2 s'écrit :

$$\underbrace{f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u})}_{>0} = \mathbf{x}^{\top} \nabla^{2} f(\mathbf{u}) \mathbf{x} + o(\|\mathbf{x}\|^{2})$$

Il existe une boule ouverte $B(\mathbf{0},r)$ dans \mathcal{D} sur laquelle $o(\|\mathbf{x}\|^2)$ est négligeable $\Rightarrow \mathbf{x}^\top \nabla^2 f(\mathbf{u}) \mathbf{x} \geqslant 0$.

1. Puisque ${\bf u}$ est un extremum local alors $\nabla f({\bf u})={\bf 0}$ (équation d'Euler). La formule de Taylor-Young à l'ordre 2 s'écrit :

$$\underbrace{f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u})}_{>0} = \mathbf{x}^{\top} \nabla^{2} f(\mathbf{u}) \mathbf{x} + o(\|\mathbf{x}\|^{2})$$

Il existe une boule ouverte $B(\mathbf{0},r)$ dans \mathcal{D} sur laquelle $o(\|\mathbf{x}\|^2)$ est négligeable $\Longrightarrow \mathbf{x}^\top \nabla^2 f(\mathbf{u}) \mathbf{x} \geqslant 0$.

Soit $\mathbf{y} \in \mathbb{R}^n$; alors $\exists k > 0$, $\mathbf{x} = \mathbf{y}/k$ est dans $B(\mathbf{0}, r)$.

1. Puisque ${\bf u}$ est un extremum local alors $\nabla f({\bf u})={\bf 0}$ (équation d'Euler). La formule de Taylor-Young à l'ordre 2 s'écrit :

Exercices

$$\underbrace{f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u})}_{\geq 0} = \mathbf{x}^{\top} \nabla^{2} f(\mathbf{u}) \mathbf{x} + o(\|\mathbf{x}\|^{2})$$

Il existe une boule ouverte $B(\mathbf{0}, r)$ dans \mathcal{D} sur laquelle $o(\|\mathbf{x}\|^2)$ est négligeable \Longrightarrow $\mathbf{x}^{\top} \nabla^2 f(\mathbf{u}) \mathbf{x} \geq 0$.

Soit $\mathbf{y} \in \mathbb{R}^n$; alors $\exists \, k > 0$, $\mathbf{x} = \mathbf{y}/k$ est dans $B(\mathbf{0}, r)$. Alors $\mathbf{y}^\top \nabla^2 f(\mathbf{u}) \, \mathbf{y} = k^2 \mathbf{x}^\top \nabla^2 f(\mathbf{u}) \, \mathbf{x} \geqslant 0 \implies \nabla^2 f(\mathbf{u})$ est semi-définie positive.

1. Puisque ${\bf u}$ est un extremum local alors $\nabla f({\bf u})={\bf 0}$ (équation d'Euler). La formule de Taylor-Young à l'ordre 2 s'écrit :

Exercices

$$\underbrace{f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u})}_{>0} = \mathbf{x}^{\top} \nabla^{2} f(\mathbf{u}) \mathbf{x} + o(\|\mathbf{x}\|^{2})$$

Il existe une boule ouverte $B(\mathbf{0}, r)$ dans \mathcal{D} sur laquelle $o(\|\mathbf{x}\|^2)$ est négligeable \Longrightarrow $\mathbf{x}^{\top} \nabla^2 f(\mathbf{u}) \mathbf{x} \geq 0$.

Soit $\mathbf{y} \in \mathbb{R}^n$; alors $\exists \, k > 0$, $\mathbf{x} = \mathbf{y}/k$ est dans $B(\mathbf{0}, r)$. Alors $\mathbf{y}^\top \nabla^2 f(\mathbf{u}) \, \mathbf{y} = k^2 \mathbf{x}^\top \nabla^2 f(\mathbf{u}) \, \mathbf{x} \geqslant 0 \implies \nabla^2 f(\mathbf{u})$ est semi-définie positive.

2.

1. Puisque ${\bf u}$ est un extremum local alors $\nabla f({\bf u})={\bf 0}$ (équation d'Euler). La formule de Taylor-Young à l'ordre 2 s'écrit :

Exercices

$$\underbrace{f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u})}_{>0} = \mathbf{x}^{\top} \nabla^{2} f(\mathbf{u}) \mathbf{x} + o(\|\mathbf{x}\|^{2})$$

Il existe une boule ouverte $B(\mathbf{0},r)$ dans \mathcal{D} sur laquelle $o(\|\mathbf{x}\|^2)$ est négligeable $\Longrightarrow \mathbf{x}^\top \nabla^2 f(\mathbf{u}) \mathbf{x} \geqslant 0$.

Soit $\mathbf{y} \in \mathbb{R}^n$; alors $\exists k > 0$, $\mathbf{x} = \mathbf{y}/k$ est dans $B(\mathbf{0}, r)$.

Alors $\mathbf{y}^{\top} \nabla^2 f(\mathbf{u}) \mathbf{y} = k^2 \mathbf{x}^{\top} \nabla^2 f(\mathbf{u}) \mathbf{x} \geqslant 0 \implies \nabla^2 f(\mathbf{u})$ est semi-définie positive.

2.Puisque $\nabla f(\mathbf{u}) = \mathbf{0}$ et $\nabla^2 f(\mathbf{u})$ est définie positive la formule de Taylor-Young à l'ordre 2 s'écrit :

$$f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u}) = \underbrace{\mathbf{x}^{\top} \nabla^{2} f(\mathbf{u}) \mathbf{x}}_{>0} + o(\|\mathbf{x}\|^{2})$$

1. Puisque ${\bf u}$ est un extremum local alors $\nabla f({\bf u})={\bf 0}$ (équation d'Euler). La formule de Taylor-Young à l'ordre 2 s'écrit :

Exercices

$$\underbrace{f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u})}_{\geq 0} = \mathbf{x}^{\top} \nabla^{2} f(\mathbf{u}) \mathbf{x} + o(\|\mathbf{x}\|^{2})$$

Il existe une boule ouverte $B(\mathbf{0},r)$ dans \mathcal{D} sur laquelle $o(\|\mathbf{x}\|^2)$ est négligeable $\Longrightarrow \mathbf{x}^\top \nabla^2 f(\mathbf{u}) \mathbf{x} \geqslant 0$.

Soit $\mathbf{y} \in \mathbb{R}^n$; alors $\exists k > 0$, $\mathbf{x} = \mathbf{y}/k$ est dans $B(\mathbf{0}, r)$.

Alors $\mathbf{y}^{\top} \nabla^2 f(\mathbf{u}) \mathbf{y} = k^2 \mathbf{x}^{\top} \nabla^2 f(\mathbf{u}) \mathbf{x} \geqslant 0 \implies \nabla^2 f(\mathbf{u})$ est semi-définie positive.

2.Puisque $\nabla f(\mathbf{u}) = \mathbf{0}$ et $\nabla^2 f(\mathbf{u})$ est définie positive la formule de Taylor-Young à l'ordre 2 s'écrit :

$$f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u}) = \underbrace{\mathbf{x}^{\top} \nabla^{2} f(\mathbf{u}) \mathbf{x}}_{>0} + o(\|\mathbf{x}\|^{2})$$

Il existe un ouvert de \mathbb{R}^n contenant u sur lequel $o(\|\mathbf{x}\|^2)$ est négligeable

1. Puisque ${\bf u}$ est un extremum local alors $\nabla f({\bf u})={\bf 0}$ (équation d'Euler). La formule de Taylor-Young à l'ordre 2 s'écrit :

$$\underbrace{f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u})}_{>0} = \mathbf{x}^{\top} \nabla^{2} f(\mathbf{u}) \mathbf{x} + o(\|\mathbf{x}\|^{2})$$

Il existe une boule ouverte $B(\mathbf{0},r)$ dans \mathcal{D} sur laquelle $o(\|\mathbf{x}\|^2)$ est négligeable $\Longrightarrow \mathbf{x}^\top \nabla^2 f(\mathbf{u}) \mathbf{x} \geqslant 0$.

Soit $\mathbf{y} \in \mathbb{R}^n$; alors $\exists k > 0$, $\mathbf{x} = \mathbf{y}/k$ est dans $B(\mathbf{0}, r)$.

Alors $\mathbf{y}^{\top} \nabla^2 f(\mathbf{u}) \mathbf{y} = k^2 \mathbf{x}^{\top} \nabla^2 f(\mathbf{u}) \mathbf{x} \geqslant 0 \implies \nabla^2 f(\mathbf{u})$ est semi-définie positive.

2.Puisque $\nabla f(\mathbf{u}) = \mathbf{0}$ et $\nabla^2 f(\mathbf{u})$ est définie positive la formule de Taylor-Young à l'ordre 2 s'écrit :

$$f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u}) = \underbrace{\mathbf{x}^{\top} \nabla^{2} f(\mathbf{u}) \mathbf{x}}_{>0} + o(\|\mathbf{x}\|^{2})$$

Il existe un ouvert de \mathbb{R}^n contenant \mathbf{u} sur lequel $o(\|\mathbf{x}\|^2)$ est négligeable $\Rightarrow f(\mathbf{x} + \mathbf{u}) - f(\mathbf{u}) \ge 0$: \mathbf{u} est donc un minimum local (strict) de f.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

(i) A est définie positive.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est définie positive.
- (ii) Toutes les valeurs propres de A sont > 0.

Soit $A = (a_{ii})_{i,i=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

Exercices

- (i) A est définie positive.
- (ii) Toutes les valeurs propres de A sont
- (iii) $\forall i = 0, ..., n, c_i > 0$, où $p_A(\lambda) = \sum_{i=0}^n (-1)^i c_i \lambda_i^n$ est le polynôme caractéristique de A.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est définie positive.
- (ii) Toutes les valeurs propres de A sont > 0.
- (iii) $\forall i = 0, ..., n, c_i > 0$, où $p_A(\lambda) = \sum_{i=0}^n (-1)^i c_i \lambda_i^n$ est le polynôme caractéristique de A.
- (iv) Les déterminants $det(A_k)$ où A_k désigne $A_k = (a_{ij})_{i,j=1...k}$ sont tous > 0.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est définie positive.
- (ii) Toutes les valeurs propres de A sont > 0.
- (iii) $\forall i = 0, ..., n, c_i > 0$, où $p_A(\lambda) = \sum_{i=0}^n (-1)^i c_i \lambda_i^n$ est le polynôme caractéristique de A.
- (iv) Les déterminants $det(A_k)$ où A_k désigne $A_k = (a_{ij})_{i,j=1...k}$ sont tous > 0.
- (v) Il existe une matrice M inversible tel que $M^{\top}M = A$.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est définie positive.
- (ii) Toutes les valeurs propres de A sont > 0.
- (iii) $\forall i = 0, ..., n, c_i > 0$, où $p_A(\lambda) = \sum_{i=0}^n (-1)^i c_i \lambda_i^n$ est le polynôme caractéristique de A.
- (iv) Les déterminants $det(A_k)$ où A_k désigne $A_k = (a_{ij})_{i,j=1..k}$ sont tous > 0.
- (v) Il existe une matrice M inversible tel que $M^{\top}M = A$.

De plus .

(a) Si A est définie positive alors $\forall i = 1, ..., n, a_{ii} > 0$.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est définie positive.
- (ii) Toutes les valeurs propres de A sont > 0.
- (iii) $\forall i = 0, ..., n, c_i > 0$, où $p_A(\lambda) = \sum_{i=0}^n (-1)^i c_i \lambda_i^n$ est le polynôme caractéristique de A.
- (iv) Les déterminants $det(A_k)$ où A_k désigne $A_k = (a_{ij})_{i,j=1..k}$ sont tous > 0.
- (v) Il existe une matrice M inversible tel que $M^{\top}M = A$.

De plus

- (a) Si A est définie positive alors $\forall i = 1, ..., n$, $a_{ii} > 0$.
- (b) Si $A \in \mathcal{M}_2(\mathbb{R})$, A est définie positive si et seulement si det(A) > 0 et tr(A) > 0.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

(i) A est semi-définie positive.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est semi-définie positive.
- (ii) Toutes les valeurs propres de A sont $\geqslant 0$.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est semi-définie positive.
- (ii) Toutes les valeurs propres de A sont $\geqslant 0$.
- (iii) $\forall i = 0, ..., n, c_i \geqslant 0$, où $p_A(\lambda) = \sum_{i=0}^n (-1)^i c_i \lambda_i^n$ est le polynôme caractéristique de A.

Soit $A = (a_{ij})_{i,j=1...n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est semi-définie positive.
- (ii) Toutes les valeurs propres de A sont $\geqslant 0$.
- (iii) $\forall i = 0, ..., n, c_i \geqslant 0$, où $p_A(\lambda) = \sum_{i=0}^n (-1)^i c_i \lambda_i^n$ est le polynôme caractéristique de A.
- (iv) Les mineurs principaux de A sont tous $\geqslant 0$.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est semi-définie positive.
- (ii) Toutes les valeurs propres de A sont $\geqslant 0$.
- (iii) $\forall i = 0, ..., n, c_i \ge 0$, où $p_A(\lambda) = \sum_{i=0}^n (-1)^i c_i \lambda_i^n$ est le polynôme caractéristique de A.
- (iv) Les mineurs principaux de A sont tous ≥ 0 .
- (v) Il existe une matrice M tel que $M^{\top}M = A$.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est semi-définie positive.
- (ii) Toutes les valeurs propres de A sont $\geqslant 0$.
- (iii) $\forall i = 0, ..., n, c_i \ge 0$, où $p_A(\lambda) = \sum_{i=0}^n (-1)^i c_i \lambda_i^n$ est le polynôme caractéristique de A.
- (iv) Les mineurs principaux de A sont tous ≥ 0 .
- (v) Il existe une matrice M tel que $M^{\top}M = A$.

De plus :

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est semi-définie positive.
- (ii) Toutes les valeurs propres de A sont $\geqslant 0$.
- (iii) $\forall i = 0, ..., n, c_i \ge 0$, où $p_A(\lambda) = \sum_{i=0}^n (-1)^i c_i \lambda_i^n$ est le polynôme caractéristique de A.
- (iv) Les mineurs principaux de A sont tous ≥ 0 .
- (v) Il existe une matrice M tel que $M^{\top}M = A$.

De plus :

(a) Si A est semi-définie positive alors $\forall i = 1, ..., n, a_{ii} \ge 0$.

Soit $A = (a_{ij})_{i,j=1..n}$ une matrice symétrique. Les assertions suivantes sont équivalentes :

- (i) A est semi-définie positive.
- (ii) Toutes les valeurs propres de A sont $\geqslant 0$.
- (iii) $\forall i = 0, ..., n, c_i \ge 0$, où $p_A(\lambda) = \sum_{i=0}^n (-1)^i c_i \lambda_i^n$ est le polynôme caractéristique de A.
- (iv) Les mineurs principaux de A sont tous ≥ 0 .
- (v) Il existe une matrice M tel que $M^{\top}M = A$.

De plus :

- (a) Si A est semi-définie positive alors $\forall i = 1,...,n$, $a_{ii} \ge 0$.
- (b) Si $A \in \mathcal{M}_2(\mathbb{R})$, A est définie positive si et seulement si $\det(A) \geqslant 0$ et $tr(A) \geqslant 0$.

Exemple.

Soit l'application f de classe C^{∞} (i.e. infiniment différentiable) :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longrightarrow f(x,y) = x^3 + y^3 - 9xy$

Exemple.

Soit l'application f de classe C^{∞} (i.e. infiniment différentiable) :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longrightarrow f(x,y) = x^3 + y^3 - 9xy$

Son vecteur gradient en un point (x,y) est :

ent en un point
$$(x, y)$$
 est :
$$\nabla f(x, y) = \begin{pmatrix} 3x^2 - 9y \\ 3y^2 - 9x \end{pmatrix} ,$$

Exemple.

Soit l'application f de classe C^{∞} (i.e. infiniment différentiable) :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longrightarrow f(x,y) = x^3 + y^3 - 9xy$

Son vecteur gradient en un point (x, y) est :

$$\nabla f(x,y) = \begin{pmatrix} 3x^2 - 9y \\ 3y^2 - 9x \end{pmatrix} ,$$

et sa matrice Hessienne :

$$\nabla^2 f(x,y) = \left(\begin{array}{cc} 6x & -9 \\ -9 & 6y \end{array}\right)$$

Les points critiques, solutions de $\nabla f(x,y) = 0$ sont les 2 points (0,0) et (3,3).

$$abla^2 f(0,0) = \left(\begin{array}{cc} 0 & -9 \\ -9 & 0 \end{array} \right) \qquad
abla^2 f(3,3) = \left(\begin{array}{cc} 18 & -9 \\ -9 & 18 \end{array} \right)$$

$$abla^2 f(0,0) = \left(egin{array}{cc} 0 & -9 \ -9 & 0 \end{array}
ight) \qquad
abla^2 f(3,3) = \left(egin{array}{cc} 18 & -9 \ -9 & 18 \end{array}
ight)$$

• $\nabla^2 f(0,0)$ a une trace nulle et un déterminant strictement négatif, elle n'est donc ni semi-définie positive, ni semi-définie négative : (0,0) n'est pas un extremum local.

$$abla^2 f(0,0) = \left(egin{array}{cc} 0 & -9 \ -9 & 0 \end{array}
ight) \qquad
abla^2 f(3,3) = \left(egin{array}{cc} 18 & -9 \ -9 & 18 \end{array}
ight)$$

- $\nabla^2 f(0,0)$ a une trace nulle et un déterminant strictement négatif, elle n'est donc ni semi-définie positive, ni semi-définie négative : (0,0) n'est pas un extremum local.
- $\nabla^2 f(3,3)$ a une trace et un déterminant strictement positifs : (3,3) est un minimum local.

$$abla^2 f(0,0) = \left(egin{array}{cc} 0 & -9 \ -9 & 0 \end{array} \right) \qquad
abla^2 f(3,3) = \left(egin{array}{cc} 18 & -9 \ -9 & 18 \end{array} \right)$$

- $\nabla^2 f(0,0)$ a une trace nulle et un déterminant strictement négatif, elle n'est donc ni semi-définie positive, ni semi-définie négative : (0,0) n'est pas un extremum local.
- $\nabla^2 f(3,3)$ a une trace et un déterminant strictement positifs : (3,3) est un minimum local.
- f n'admet aucun extremum global puisque :

$$\lim_{x \to +\infty} f(x,0) = +\infty \qquad \lim_{x \to -\infty} f(x,0) = -\infty.$$

Convexité: définitions, propriétés Programmation convexe Ellipticité: définition, propriétés Programmation elliptique

Programmation convexe.

Plan.

Convexité: définitions, propriétés Programmation convexe Ellipticité: définition, propriétés Programmation elliptique

Programmation convexe.

Plan.

1. Applications convexes, strictement convexe

Programmation convexe.

- 1. Applications convexes, strictement convexe
- 1.1. Définitions Propriétés

Programmation convexe.

- 1. Applications convexes, strictement convexe
- 1.1. Définitions Propriétés
- 1.2. Caractérisations à l'ordre 1 et 2

Programmation convexe.

- 1. Applications convexes, strictement convexe
- 1.1. Définitions Propriétés
- 1.2. Caractérisations à l'ordre 1 et 2
- 1.3. Programmation convexe

Programmation convexe.

- 1. Applications convexes, strictement convexe
- 1.1. Définitions Propriétés
- 1.2. Caractérisations à l'ordre 1 et 2
- 1.3. Programmation convexe
- 2. Applications elliptiques (ou fortement convexes)

- 1. Applications convexes, strictement convexe
- 1.1. Définitions Propriétés
- 1.2. Caractérisations à l'ordre 1 et 2
- 1.3. Programmation convexe
- 2. Applications elliptiques (ou fortement convexes)
- 2.1. Définition Propriétés

- 1. Applications convexes, strictement convexe
- 1.1. Définitions Propriétés
- 1.2. Caractérisations à l'ordre 1 et 2
- 1.3. Programmation convexe
- 2. Applications elliptiques (ou fortement convexes)
- 2.1. Définition Propriétés
- 2.2. Caractérisation à l'ordre 2

- 1. Applications convexes, strictement convexe
- 1.1. Définitions Propriétés
- 1.2. Caractérisations à l'ordre 1 et 2
- 1.3. Programmation convexe
- 2. Applications elliptiques (ou fortement convexes)
- 2.1. Définition Propriétés
- 2.2. Caractérisation à l'ordre 2
- 2.3. Programmation elliptique

Ensemble convexe - Définition

Définition. Un sous-ensemble \mathcal{C} de \mathbb{R}^n est <u>convexe</u> si

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}, \ \forall t \in [0, 1], \ t\mathbf{x} + (1 - t)\mathbf{y} \in \mathcal{C}$$

Ensemble convexe - Définition

Définition. Un sous-ensemble \mathcal{C} de \mathbb{R}^n est <u>convexe</u> si

$$\forall\, \mathbf{x},\mathbf{y}\in\mathcal{C},\,\,\forall\,t\in[0,1],\,\,t\mathbf{x}+(1-t)\mathbf{y}\in\mathcal{C}$$

i.e. $\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}$ le segment $[\mathbf{x}, \mathbf{y}]$ est inclus dans \mathcal{C} .

convexe

non-convexe

Ensemble convexe - Propriétés

Ensemble convexe - Propriétés

Propriétés.

– Tout sous-espace affine de \mathbb{R}^n (en particulier \mathbb{R}^n) est convexe.

Ensemble convexe - Propriétés

- Tout sous-espace affine de \mathbb{R}^n (en particulier \mathbb{R}^n) est convexe.
- Toute boule de \mathbb{R}^n , ouverte ou fermée, est un convexe de \mathbb{R}^n .

Ensemble convexe - Propriétés

- Tout sous-espace affine de \mathbb{R}^n (en particulier \mathbb{R}^n) est convexe.
- Toute boule de \mathbb{R}^n , ouverte ou fermée, est un convexe de \mathbb{R}^n .
- L'intersection de convexes de \mathbb{R}^n est un convexe de \mathbb{R}^n .

Ensemble convexe - Propriétés

- Tout sous-espace affine de \mathbb{R}^n (en particulier \mathbb{R}^n) est convexe.
- Toute boule de \mathbb{R}^n , ouverte ou fermée, est un convexe de \mathbb{R}^n .
- L'intersection de convexes de \mathbb{R}^n est un convexe de \mathbb{R}^n .
- Si C_1 , C_2 sont deux convexes de \mathbb{R}^n , et $\lambda \in \mathbb{R}$, alors $C_1 + C_2$ et λC_1 sont des convexes de \mathbb{R}^n .

Ensemble convexe - Propriétés

- Tout sous-espace affine de \mathbb{R}^n (en particulier \mathbb{R}^n) est convexe.
- Toute boule de \mathbb{R}^n , ouverte ou fermée, est un convexe de \mathbb{R}^n .
- L'intersection de convexes de \mathbb{R}^n est un convexe de \mathbb{R}^n .
- Si C_1 , C_2 sont deux convexes de \mathbb{R}^n , et $\lambda \in \mathbb{R}$, alors $C_1 + C_2$ et λC_1 sont des convexes de \mathbb{R}^n .
- Si \mathcal{C}_1 est un convexe de \mathbb{R}^p et \mathcal{C}_2 est un convexe de \mathbb{R}^q , leur produit cartésien $\mathcal{C}_1 \times \mathcal{C}_2 = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^p \times \mathbb{R}^q \, | \, \mathbf{x} \in \mathcal{C}_1, \, \mathbf{y} \in \mathcal{C}_2\}$ est un convexe de $\mathbb{R}^p \times \mathbb{R}^q \approx \mathbb{R}^{p+q}$.

Applications convexes - Définitions

Définitions. Soit $C \subset \mathbb{R}^n$ un ensemble convexe non vide et $f: C \longrightarrow \mathbb{R}$.

Définitions. Soit $C \subset \mathbb{R}^n$ un ensemble convexe non vide et $f: C \longrightarrow \mathbb{R}$.

Exercices

• L'application f est <u>convexe</u> si :

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}, \ \forall \ t \in [0, 1], \quad tf(\mathbf{x}) + (1 - t)f(\mathbf{y}) \geqslant f(t\mathbf{x} + (1 - t)\mathbf{y})$$

Définitions.Soit $C \subset \mathbb{R}^n$ un ensemble convexe non vide et $f: C \longrightarrow \mathbb{R}$.

Exercices

• L'application f est <u>convexe</u> si :

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}, \ \forall \ t \in [0, 1], \quad tf(\mathbf{x}) + (1 - t)f(\mathbf{y}) \geqslant f(t\mathbf{x} + (1 - t)\mathbf{y})$$

(i.e. dans \mathbb{R}^{n+1} le segment joignant $(\mathbf{x}, f(\mathbf{x}))$ et $(\mathbf{y}, f(\mathbf{y}))$ reste au-dessus de la nappe représentative de la fonction.)

Définitions. Soit $C \subset \mathbb{R}^n$ un ensemble convexe non vide et $f: C \longrightarrow \mathbb{R}$.

• L'application f est $\underline{convexe}$ si :

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}, \ \forall \ t \in [0, 1], \quad tf(\mathbf{x}) + (1 - t)f(\mathbf{y}) \geqslant f(t\mathbf{x} + (1 - t)\mathbf{y})$$

(*i.e.* dans \mathbb{R}^{n+1} le segment joignant $(\mathbf{x}, f(\mathbf{x}))$ et $(\mathbf{y}, f(\mathbf{y}))$ reste au-dessus de la nappe représentative de la fonction.)

• L'application f est <u>strictement convexe</u> si :

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}, \mathbf{x} \neq \mathbf{y}, \ \forall \ t \in]0,1[, \quad tf(\mathbf{x})+(1-t)f(\mathbf{y}) > f(t\mathbf{x}+(1-t)\mathbf{y})$$

Définitions.Soit $C \subset \mathbb{R}^n$ un ensemble convexe non vide et $f: C \longrightarrow \mathbb{R}$.

• L'application f est $\underline{convexe}$ si :

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}, \ \forall \ t \in [0, 1], \quad tf(\mathbf{x}) + (1 - t)f(\mathbf{y}) \geqslant f(t\mathbf{x} + (1 - t)\mathbf{y})$$

(i.e. dans \mathbb{R}^{n+1} le segment joignant $(\mathbf{x}, f(\mathbf{x}))$ et $(\mathbf{y}, f(\mathbf{y}))$ reste au-dessus de la nappe représentative de la fonction.)

ullet L'application f est $\underline{strictement\ convexe}$ si :

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{C}, \mathbf{x} \neq \mathbf{y}, \ \forall \ t \in]0,1[, \quad tf(\mathbf{x})+(1-t)f(\mathbf{y}) > f(t\mathbf{x}+(1-t)\mathbf{y})$$

(i.e. dans \mathbb{R}^{n+1} le segment joignant $(\mathbf{x}, f(\mathbf{x}))$ et $(\mathbf{y}, f(\mathbf{y}))$ reste strictement au dessus de la nappe représentative de la fonction.)

Applications convexes

convexe

non-convexe

Applications convexes - Propriétés

Applications convexes - Propriétés

Propriétés.

 Toute application affine, définie sur un convexe, est convexe et non strictement convexe.

Applications convexes - Propriétés

- Toute application affine, définie sur un convexe, est convexe et non strictement convexe.
- La somme d'application (resp. strictement) convexes est (resp. strictement) convexe.

Applications convexes - Propriétés

- Toute application affine, définie sur un convexe, est convexe et non strictement convexe.
- La somme d'application (resp. strictement) convexes est (resp. strictement) convexe.
- Si f est (resp. strictement) convexe et $\lambda \in \mathbb{R}_+$ (resp. $\lambda \in \mathbb{R}_+^*$) alors λf est (resp. strictement) convexe.

Applications convexes - Propriétés

- Toute application affine, définie sur un convexe, est convexe et non strictement convexe.
- La somme d'application (resp. strictement) convexes est (resp. strictement) convexe.
- Si f est (resp. strictement) convexe et $\lambda \in \mathbb{R}_+$ (resp. $\lambda \in \mathbb{R}_+^*$) alors λf est (resp. strictement) convexe.
- Si f est (resp. strictement) convexe et $a, b \in \mathbb{R}$, $a \neq 0$, alors l'application $\mathbf{x} \longrightarrow f(a\mathbf{x} + b)$ est (resp. strictement) convexe.

Applications convexes - Propriétés

- Toute application affine, définie sur un convexe, est convexe et non strictement convexe.
- La somme d'application (resp. strictement) convexes est (resp. strictement) convexe.
- Si f est (resp. strictement) convexe et $\lambda \in \mathbb{R}_+$ (resp. $\lambda \in \mathbb{R}_+^*$) alors λf est (resp. strictement) convexe.
- Si f est (resp. strictement) convexe et $a, b \in \mathbb{R}$, $a \neq 0$, alors l'application $\mathbf{x} \longrightarrow f(a\mathbf{x} + b)$ est (resp. strictement) convexe.
- Une application convexe sur $\mathcal C$ est continue en tout point de $\operatorname{Int}(\mathcal C).$

Caractérisation de la convexité.

Théorème (Caractérisations de la convexité.) Soit \mathcal{U} un ouvert convexe de \mathbb{R}^n et $f: \mathcal{U} \longrightarrow \mathbb{R}$.

Caractérisation de la convexité.

Théorème (Caractérisations de la convexité.)

Soit \mathcal{U} un ouvert convexe de \mathbb{R}^n et $f:\mathcal{U}\longrightarrow \mathbb{R}$

- 1. Si f est différentiable sur \mathcal{U} , alors
 - a. $\forall x, y \in \mathcal{U}, f(y) \geqslant f(x) + \langle \nabla f(x), y x \rangle \iff f \text{ est convexe}$
 - **b.** $\forall \mathbf{x}, \mathbf{y} \in \mathcal{U}, \mathbf{x} \neq \mathbf{y}, f(\mathbf{y}) > f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle \iff f \text{ est strictement convexe sur } \mathcal{U}.$

Caractérisation de la convexité.

Théorème (Caractérisations de la convexité.)

Soit \mathcal{U} un ouvert convexe de \mathbb{R}^n et $f:\mathcal{U}\longrightarrow \mathbb{R}$.

- 1. Si f est différentiable sur U, alors
 - **a.** $\forall \mathbf{x}, \mathbf{y} \in \mathcal{U}$, $f(\mathbf{y}) \geqslant f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle \iff f \text{ est convexe sur } \mathcal{U}$,
 - **b.** $\forall \mathbf{x}, \mathbf{y} \in \mathcal{U}, \mathbf{x} \neq \mathbf{y}, f(\mathbf{y}) > f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle \iff f \text{ est strictement convexe sur } \mathcal{U}.$

Géométriquement : en tout point la nappe représentative de f est au dessus de son hyperplan tangent.

Caractérisation de la convexité.

Théorème (Caractérisations de la convexité.)

Soit \mathcal{U} un ouvert convexe de \mathbb{R}^n et $f:\mathcal{U}\longrightarrow \mathbb{R}$.

- 1. Si f est différentiable sur \mathcal{U} , alors
 - **a.** $\forall \mathbf{x}, \mathbf{y} \in \mathcal{U}$, $f(\mathbf{y}) \geqslant f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle \iff f \text{ est convexe sur } \mathcal{U}$,
 - **b.** $\forall \mathbf{x}, \mathbf{y} \in \mathcal{U}, \mathbf{x} \neq \mathbf{y}, f(\mathbf{y}) > f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle \iff f \text{ est strictement convexe sur } \mathcal{U}.$

Géométriquement : en tout point la nappe représentative de f est au dessus de son hyperplan tangent.

- 2. Si f est 2 fois différentiable sur U, alors
 - **a.** $\forall \mathbf{x} \in \mathcal{U}$, $\nabla^2 f(\mathbf{x})$ est semi-définie positive \iff f est convexe sur \mathcal{U} .
 - **b.** $\forall \mathbf{x} \in \mathcal{U}, \nabla^2 f(\mathbf{x})$ définie positive \implies f est strictement convexe.

Programmation convexe.

On parle de programmation convexe lorsque :

On parle de programmation convexe lorsque :

 $-f:\mathbb{R}^n\longrightarrow\mathbb{R}$ est une application convexe, à optimiser sur

$$\mathcal{D} = \{ \mathbf{x} \in \mathcal{U} \subset \mathbb{R}^n | \varphi_i(\mathbf{x}) = 0, \forall i = 1, \dots, p, \\ \psi_j(\mathbf{x}) \leqslant 0, \forall j = 1, \dots, q \}$$

où:

On parle de programmation convexe lorsque :

 $-f:\mathbb{R}^n\longrightarrow\mathbb{R}$ est une application <u>convexe</u>, à optimiser sur

$$\mathcal{D} = \{ \mathbf{x} \in \mathcal{U} \subset \mathbb{R}^n | \varphi_i(\mathbf{x}) = 0, \forall i = 1, \dots, p, \\ \psi_j(\mathbf{x}) \leqslant 0, \forall j = 1, \dots, q \}$$

où:

- L'ensemble $\mathcal U$ est un sous-ensemble <u>convexe</u> non vide de $\mathbb R^n$,
- les applications $\varphi_1, \ldots, \varphi_p : \mathbb{R}^n \longrightarrow \mathbb{R}$ sont <u>affines</u>,
- les applications $\psi_1, \dots, \psi_q : \mathbb{R}^n \longrightarrow \mathbb{R}$ sont <u>convexes</u>.

Proposition (Convexité du domaine.)

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_q$ convexes,
- $-\mathcal{U}$ convexe,

Proposition (Convexité du domaine.)

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_q$ convexes,
- − *U* convexe,
- $\implies \mathcal{D}$ est un ensemble convexe de \mathbb{R}^q .

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_q$ convexes,
- -U convexe,
- $\implies \mathcal{D}$ est un ensemble convexe de \mathbb{R}^n .

Démonstration. ψ_j étant convexe, $C_j = \{ \mathbf{x} \in \mathbb{R}^n \mid \psi_j(\mathbf{x}) \leq 0 \}$ est un convexe de \mathbb{R}^n . En effet :

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_q$ convexes,
- -U convexe,
- $\implies \mathcal{D}$ est un ensemble convexe de \mathbb{R}^n .

Démonstration. ψ_j étant convexe, $C_j = \{\mathbf{x} \in \mathbb{R}^n \mid \psi_j(\mathbf{x}) \leq 0\}$ est un convexe de \mathbb{R}^n . En effet : Soient $\mathbf{x}, \mathbf{y} \in C_j : \psi_j(\mathbf{x}) \leq 0$, et $\psi_j(\mathbf{y}) \leq 0$.

Exercices

Proposition (Convexité du domaine.)

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_q$ convexes,
- $-\mathcal{U}$ convexe,
- $\implies \mathcal{D}$ est un ensemble convexe de \mathbb{R}^n .

Démonstration. ψ_j étant convexe, $\mathcal{C}_j = \{\mathbf{x} \in \mathbb{R}^n \mid \psi_j(\mathbf{x}) \leqslant 0\}$ est un convexe de \mathbb{R}^n . En effet : Soient $\mathbf{x}, \mathbf{y} \in \mathcal{C}_j : \psi_j(\mathbf{x}) \leqslant 0$, et $\psi_j(\mathbf{y}) \leqslant 0$. Par convexité de ψ_j , pour $t \in [0,1]$, $\psi_j(t\mathbf{x} + (1-t)\mathbf{y}) \leqslant t\psi_j(\mathbf{x}) + (1-t)\psi_j(\mathbf{y})$

Exercices

Proposition (Convexité du domaine.)

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_q$ convexes,
- − U convexe,
- $\implies \mathcal{D}$ est un ensemble convexe de \mathbb{R}^n

Démonstration. ψ_j étant convexe, $\mathcal{C}_j = \{\mathbf{x} \in \mathbb{R}^n \mid \psi_j(\mathbf{x}) \leqslant 0\}$ est un convexe de \mathbb{R}^n . En effet : Soient $\mathbf{x}, \mathbf{y} \in \mathcal{C}_j : \psi_j(\mathbf{x}) \leqslant 0$, et $\psi_j(\mathbf{y}) \leqslant 0$. Par convexité de ψ_j , pour $t \in [0,1]$, $\psi_j(t\mathbf{x} + (1-t)\mathbf{y}) \leqslant t\psi_j(\mathbf{x}) + (1-t)\psi_j(\mathbf{y}) \leqslant 0$.

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_q$ convexes,
- − U convexe,
- $\implies \mathcal{D}$ est un ensemble convexe de \mathbb{R}^n .

Démonstration. ψ_j étant convexe, $\mathcal{C}_j = \{\mathbf{x} \in \mathbb{R}^n \mid \psi_j(\mathbf{x}) \leqslant 0\}$ est un convexe de \mathbb{R}^n . En effet : Soient $\mathbf{x}, \mathbf{y} \in \mathcal{C}_j : \psi_j(\mathbf{x}) \leqslant 0$, et $\psi_j(\mathbf{y}) \leqslant 0$. Par convexité de ψ_j , pour $t \in [0,1]$, $\psi_j(t\mathbf{x} + (1-t)\mathbf{y}) \leqslant t\psi_j(\mathbf{x}) + (1-t)\psi_j(\mathbf{y}) \leqslant 0$. Ainsi $[\mathbf{x}, \mathbf{y}] \subset \mathcal{C}_j$

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_q$ convexes,
- − U convexe,
- $\implies \mathcal{D}$ est un ensemble convexe de \mathbb{R}^n

Démonstration. ψ_j étant convexe, $\mathcal{C}_j = \{\mathbf{x} \in \mathbb{R}^n \mid \psi_j(\mathbf{x}) \leqslant 0\}$ est un convexe de \mathbb{R}^n . En effet : Soient $\mathbf{x}, \mathbf{y} \in \mathcal{C}_j : \psi_j(\mathbf{x}) \leqslant 0$, et $\psi_j(\mathbf{y}) \leqslant 0$. Par convexité de ψ_j , pour $t \in [0,1]$, $\psi_j(t\mathbf{x} + (1-t)\mathbf{y}) \leqslant t\psi_j(\mathbf{x}) + (1-t)\psi_j(\mathbf{y}) \leqslant 0$. Ainsi $[\mathbf{x},\mathbf{y}] \subset \mathcal{C}_j \Longrightarrow \mathcal{C}_i$ est un convexe.

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_q$ convexes,
- $-\mathcal{U}$ convexe,
- $\implies \mathcal{D}$ est un ensemble convexe de \mathbb{R}^n

Démonstration. ψ_j étant convexe, $\mathcal{C}_j = \{\mathbf{x} \in \mathbb{R}^n \, | \, \psi_j(\mathbf{x}) \leqslant 0\}$ est un convexe de \mathbb{R}^n . En effet : Soient $\mathbf{x}, \mathbf{y} \in \mathcal{C}_j : \psi_j(\mathbf{x}) \leqslant 0$, et $\psi_j(\mathbf{y}) \leqslant 0$. Par convexité de ψ_j , pour $t \in [0,1]$, $\psi_j(t\mathbf{x} + (1-t)\mathbf{y}) \leqslant t\psi_j(\mathbf{x}) + (1-t)\psi_j(\mathbf{y}) \leqslant 0$. Ainsi $[\mathbf{x},\mathbf{y}] \subset \mathcal{C}_j \Longrightarrow \mathcal{C}_j$ est un convexe. Puisque φ_i est affine, $\{\mathbf{x} \in \mathbb{R}^n \, | \, \varphi_i(\mathbf{x}) = 0\}$ est un sous-espace

Puisque φ_i est affine, $\{\mathbf{x} \in \mathbb{R}^n \mid \varphi_i(\mathbf{x}) = 0\}$ est un sous-espace affine

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_q$ convexes,
- $-\mathcal{U}$ convexe,
- $\implies \mathcal{D}$ est un ensemble convexe de \mathbb{R}^n .

Démonstration. ψ_j étant convexe, $\mathcal{C}_j = \{\mathbf{x} \in \mathbb{R}^n \mid \psi_j(\mathbf{x}) \leq 0\}$ est un convexe de \mathbb{R}^n . En effet : Soient $\mathbf{x}, \mathbf{y} \in \mathcal{C}_j : \psi_j(\mathbf{x}) \leq 0$, et $\psi_j(\mathbf{y}) \leq 0$. Par convexité de ψ_j , pour $t \in [0,1]$, $\psi_j(t\mathbf{x} + (1-t)\mathbf{y}) \leq t\psi_j(\mathbf{x}) + (1-t)\psi_j(\mathbf{y}) \leq 0$. Ainsi $[\mathbf{x}, \mathbf{y}] \subset \mathcal{C}_j$ $\Longrightarrow \mathcal{C}_j$ est un convexe.

Puisque φ_i est affine, $\{\mathbf{x} \in \mathbb{R}^n \mid \varphi_i(\mathbf{x}) = 0\}$ est un sous-espace affine donc un convexe de \mathbb{R}^n .

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_a$ convexes,
- − U convexe.
- $\implies \mathcal{D}$ est un ensemble convexe de \mathbb{R}^n

Démonstration. ψ_i étant convexe, $C_i = \{ \mathbf{x} \in \mathbb{R}^n | \psi_i(\mathbf{x}) \leq 0 \}$ est un convexe de \mathbb{R}^n . En effet : Soient $\mathbf{x}, \mathbf{y} \in \mathcal{C}_i : \psi_i(\mathbf{x}) \leq 0$, et $\psi_i(\mathbf{y}) \leq 0$. Par convexité de ψ_i , pour $t \in [0,1]$, $\psi_i(t\mathbf{x}+(1-t)\mathbf{y})\leqslant t\psi_i(\mathbf{x})+(1-t)\psi_i(\mathbf{y})\leqslant 0$. Ainsi $[\mathbf{x},\mathbf{y}]\subset\mathcal{C}_i$

 $\implies C_i$ est un convexe.

Puisque φ_i est affine, $\{\mathbf{x} \in \mathbb{R}^n \mid \varphi_i(\mathbf{x}) = 0\}$ est un sous-espace affine donc un convexe de \mathbb{R}^n .

D est une intersection de convexes

- $-\varphi_1,\ldots,\varphi_p$ affines,
- $-\psi_1,\ldots,\psi_a$ convexes,
- $-\mathcal{U}$ convexe.
- $\implies \mathcal{D}$ est un ensemble convexe de \mathbb{R}^n

Démonstration. ψ_i étant convexe, $C_i = \{ \mathbf{x} \in \mathbb{R}^n \mid \psi_i(\mathbf{x}) \leq 0 \}$ est un convexe de \mathbb{R}^n . En effet : Soient $\mathbf{x}, \mathbf{y} \in \mathcal{C}_i : \psi_i(\mathbf{x}) \leq 0$, et $\psi_i(\mathbf{y}) \leq 0$. Par convexité de ψ_i , pour $t \in [0,1]$,

$$\psi_j(t\mathbf{x} + (1-t)\mathbf{y}) \leqslant t\psi_j(\mathbf{x}) + (1-t)\psi_j(\mathbf{y}) \leqslant 0$$
. Ainsi $[\mathbf{x}, \mathbf{y}] \subset \mathcal{C}_j$

 $\implies C_i$ est un convexe.

Puisque φ_i est affine, $\{\mathbf{x} \in \mathbb{R}^n \mid \varphi_i(\mathbf{x}) = 0\}$ est un sous-espace affine donc un convexe de \mathbb{R}^n .

 \mathcal{D} est une intersection de convexes $\implies \mathcal{D}$ est convexe.

Convexité : définitions, propriétés Programmation convexe Ellipticité : définition, propriétés Programmation elliptique

Théorème (Fondamental en programmation convexe) Soient \mathcal{C} un sous-ensemble convexe de \mathbb{R}^n , $f:\mathcal{C} \longrightarrow \mathbb{R}$ une application convexe et $\mathbf{x}_0 \in \mathcal{C}$.

1. Les conditions suivantes sont équivalentes

Convexité: définitions, propriétés Programmation convexe Ellipticité: définition, propriétés Programmation elliptique

Théorème (Fondamental en programmation convexe)

Soient C un sous-ensemble convexe de \mathbb{R}^n , f:Capplication convexe et $\mathbf{x}_0 \in \mathcal{C}$.

- 1. Les conditions suivantes sont équivalentes :
- (i) \mathbf{x}_0 est un minimum local de f, (ii) \mathbf{x}_0 est un minimum global de f.

Théorème (Fondamental en programmation convexe)

Soient \mathcal{C} un sous-ensemble convexe de \mathbb{R}^n , $f:\mathcal{C}\longrightarrow\mathbb{R}$ une application convexe et $\mathbf{x}_0\in\mathcal{C}$.

- 1. Les conditions suivantes sont équivalentes :
- (i) \mathbf{x}_0 est un minimum local de f,
- (ii) \mathbf{x}_0 est un minimum global de f.

Si de plus f est différentiable en $\mathbf{x}_0 \in \mathcal{C}$, (i), (ii) sont équivalents à :

(iii) si
$$\mathbf{x}_0 \in \operatorname{Int}(\mathcal{C})$$
, $\nabla f(\mathbf{x}_0) = \mathbf{0}$.

Théorème (Fondamental en programmation convexe)

Soient $\mathcal C$ un sous-ensemble convexe de $\mathbb R^n$, $f:\mathcal C\longrightarrow\mathbb R$ une application convexe et $\mathbf x_0\in\mathcal C$.

- 1. Les conditions suivantes sont équivalentes :
- (i) \mathbf{x}_0 est un minimum local de f,
- (ii) \mathbf{x}_0 est un minimum global de f.

Si de plus f est différentiable en $\mathbf{x}_0 \in \mathcal{C}$, (i), (ii) sont équivalents à :

(iii) si
$$\mathbf{x}_0 \in \operatorname{Int}(\mathcal{C})$$
, $\nabla f(\mathbf{x}_0) = \mathbf{0}$.

(iv)
$$\forall \mathbf{x} \in \mathcal{C}$$
, $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle \geqslant 0$

Théorème (Fondamental en programmation convexe) Soient C un sous-program

Soient $\mathcal C$ un sous-ensemble convexe de $\mathbb R^n$, $f:\mathcal C\longrightarrow \mathbb R$ une application convexe et $\mathbf x_0\in\mathcal C$.

- 1. Les conditions suivantes sont équivalentes :
- (i) x₀ est un minimum local de f,
- (ii) \mathbf{x}_0 est un minimum global de f.

Si de plus f est différentiable en $\mathbf{x}_0 \in \mathcal{C}$, (i), (ii) sont équivalents à :

(iii) si
$$\mathbf{x}_0 \in \operatorname{Int}(\mathcal{C})$$
, $\nabla f(\mathbf{x}_0) = \mathbf{0}$.

(iv)
$$\forall \mathbf{x} \in \mathcal{C}$$
, $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle \geqslant 0$

2. Si f est strictement convexe, f admet au plus un minimum, et un minimum de f est toujours strict.

Théorème (Fondamental en programmation convexe) Soient C un sous-promble

Soient $\mathcal C$ un sous-ensemble convexe de $\mathbb R^n$, $f:\mathcal C\longrightarrow \mathbb R$ une application convexe et $\mathbf x_0\in\mathcal C$.

- 1. Les conditions suivantes sont équivalentes :
- (i) \mathbf{x}_0 est un minimum local de f,
- (ii) \mathbf{x}_0 est un minimum global de f.

Si de plus f est différentiable en $\mathbf{x}_0 \in \mathcal{C}$, (i), (ii) sont équivalents à :

(iii) si
$$\mathbf{x}_0 \in \operatorname{Int}(\mathcal{C}), \ \nabla f(\mathbf{x}_0) = \mathbf{0}.$$

(iv)
$$\forall \mathbf{x} \in \mathcal{C}$$
, $\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle \geqslant 0$

2. Si f est strictement convexe, f admet au plus un minimum, et un minimum de f est toujours strict.

Remarque. $f(x) = e^x$ est strictement convexe $(f''(x) = e^x > 0)$ et n'admet aucun minimum (puisque $f'(x) = e^x \neq 0$).

Application elliptique - Définition

Définition. Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ de classe C^1 . L'application f est *elliptique* ou encore α -*elliptique*, s'il existe un réel $\alpha > 0$, tel que :

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \quad \langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y})(\mathbf{x} - \mathbf{y}) \geq \alpha \|\mathbf{x} - \mathbf{y}\|^2$$

Application elliptique - Définition

Définition. Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ de classe C^1 . L'application f est *elliptique* ou encore α -*elliptique*, s'il existe un réel $\alpha > 0$, tel que :

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \quad \langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \geqslant \alpha \|\mathbf{x} - \mathbf{y}\|^2$$

Proposition. Si f est deux fois différentiable, f est α -elliptique si et seulement si : $\forall \mathbf{x}, \mathbf{u} \in \mathbb{R}^n$, $\mathbf{x}^\top \nabla^2 f(\mathbf{u}) \mathbf{x} \geqslant \alpha \|\mathbf{x}\|^2$.

Convexité : définitions, propriétés Programmation convexe Ellipticité : définition, propriétés Programmation elliptique

Application elliptique - Définition

Définition. Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ de classe C^1 . L'application f est *elliptique* ou encore α -*elliptique*, s'il existe un réel $\alpha > 0$, tel que :

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \quad \langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \geqslant \alpha \|\mathbf{x} - \mathbf{y}\|^2$$

Proposition. Si f est deux fois différentiable, f est α -elliptique si et seulement si : $\forall \mathbf{x}, \mathbf{u} \in \mathbb{R}^n$, $\mathbf{x}^\top \nabla^2 f(\mathbf{u}) \mathbf{x} \geqslant \alpha \|\mathbf{x}\|^2$.

strict, convexe

elliptique

Programmation elliptique

Théorème

Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ une application α -elliptique.

Convexité : définitions, propriétés Programmation convexe Ellipticité : définition, propriétés Programmation elliptique

Programmation elliptique

Théorème

Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ une application α -elliptique. Alors f est coercive et strictement convexe.

Convexité : définitions, propriétés Programmation convexe Ellipticité : définition, propriétés Programmation elliptique

Programmation elliptique

Théorème

Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ une application α -elliptique. Alors f est coercive et strictement convexe. Sur un domaine convexe fermé et non vide de \mathbb{R}^n , elle admet un unique minimum.

Applications quadratiques

Définition. Une application $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ est <u>quadratique</u> lorsque c'est un polynôme de degré 2.

Applications quadratiques

Définition. Une application $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ est <u>quadratique</u> lorsque c'est un polynôme de degré 2.

Une application quadratique est de la forme

$$f(x_1, x_2, \dots, x_n) = \underbrace{\frac{1}{2} \sum_{i=1}^{n} a_{ii} x_i^2 + \sum_{i < j} a_{ij} x_i x_j}_{\text{forme quadratique}} - \underbrace{\sum_{i=1}^{n} b_i x_i}_{\text{forme linéaire}} + \underbrace{c}_{\text{constante}}$$

Applications quadratiques

Définition. Une application $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ est *quadratique* lorsque c'est un polynôme de degré 2.

Une application quadratique est de la forme

$$f(x_1, x_2, \dots, x_n) = \underbrace{\frac{1}{2} \sum_{i=1}^{n} a_{ii} x_i^2 + \sum_{i < j} a_{ij} x_i x_j}_{\text{forme quadratique}} - \underbrace{\sum_{i=1}^{n} b_i x_i}_{\text{forme linéaire}} + \underbrace{c}_{\text{constante}}$$

En posant $A=(a_{ij})_{\substack{i=1,\ldots,n\\j=1,\ldots,n}}\in\mathcal{M}_n(\mathbb{R}),\ \mathbf{b}=(b_1,\ldots,b_n)\in\mathbb{R}^n$ et $\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$, on l'écrit sous <u>forme matricielle</u>:

$$f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$$

Exercices

Théorème

Soit $f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$ une application quadratique. Alors f est infiniment différentiable et.

$$\nabla f(\mathbf{x}) = A\mathbf{x} - b,$$
$$\nabla^2 f(\mathbf{x}) = A.$$

Exercices

Théorème

Soit $f(\mathbf{x}) = \frac{1}{2}\langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$ une application quadratique. Alors f est infiniment différentiable et,

$$\nabla f(\mathbf{x}) = A\mathbf{x} - b,$$

 $\nabla^2 f(\mathbf{x}) = A.$

Exercices

Théorème

Soit $f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$ une application quadratique. Alors f est infiniment différentiable et,

$$\nabla f(\mathbf{x}) = A\mathbf{x} - b,$$
$$\nabla^2 f(\mathbf{x}) = A.$$

Démonstration. It polynomiale $\implies C^{\infty}$.

Pour tout $i=1,2,\ldots,n$, le calcul donne $\frac{\partial f}{\partial x_i}(\mathbf{x})=\sum_{j=1}^n a_{ij}x_j-b_i$, donc $\nabla f(\mathbf{x})=A\mathbf{x}-b$.

Théorème

Soit $f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$ une application quadratique. Alors f est infiniment différentiable et,

$$\nabla f(\mathbf{x}) = A\mathbf{x} - b,$$
$$\nabla^2 f(\mathbf{x}) = A.$$

Démonstration. f polynomiale $\implies C^{\infty}$.

Pour tout $i=1,2,\ldots,n$, le calcul donne $\frac{\partial f}{\partial x_i}(\mathbf{x})=\sum_{j=1}^n a_{ij}x_j-b_i$, donc $\nabla f(\mathbf{x})=A\mathbf{x}-b$.

Pour tout
$$i, j = 1, 2, ..., n$$
, $\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}) = a_{ij}$, et l'on obtient $\nabla^2 f(\mathbf{x}) = A$.

Convexité d'une application quadratique

Théorème

Soit l'application quadratique $f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$. Alors :

- f convexe \iff A semi-définie positive
- f strictement convexe \iff f elliptique \iff A définie positive.

Convexité d'une application quadratique

Théorème

Soit l'application quadratique $f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$. Alors :

- f convexe \iff A semi-définie positive
- f strictement convexe \iff f elliptique \iff A définie positive.

Preuve (esquisse). Utiliser la caractérisation des diverses convexités à l'ordre 2.

Théorème Soit
$$f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$$
.

Théorème

Soit $f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$. Si A est semi-définie positive (resp. négative), alors les propositions suivantes sont équivalentes :

- u est un minimum (resp. maximum) local de f,
- u est un minimum (resp. maximum) global de f,
- $A\mathbf{u} = \mathbf{b}$, i.e. \mathbf{u} est solution du système d'équations linéaires $A\mathbf{x} = \mathbf{b}$.

Théorème

Soit $f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$. Si A est semi-définie positive (resp. négative), alors les propositions suivantes sont équivalentes :

- u est un minimum (resp. maximum) local de f,
- u est un minimum (resp. maximum) global de f,
- $A\mathbf{u} = \mathbf{b}$, i.e. \mathbf{u} est solution du système d'équations linéaires $A\mathbf{x} = \mathbf{b}$.

Exercices

Si A est définie positive f admet un unique minimum (resp. maximum) global.

Théorème

Soit $f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$. Si A est semi-définie positive (resp. négative), alors les propositions suivantes sont équivalentes :

- u est un minimum (resp. maximum) local de f,
- u est un minimum (resp. maximum) global de f,
- $A\mathbf{u} = \mathbf{b}$, i.e. \mathbf{u} est solution du système d'équations linéaires $A\mathbf{x} = \mathbf{b}$.

Si A est définie positive f admet un unique minimum (resp. maximum) global.

Si A n'est pas semi-définie positive (resp. négative) f n'admet aucun minimum (resp. maximum) local ou global.

Théorème

Soit $f(\mathbf{x}) = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$. Si A est semi-définie positive (resp. négative), alors les propositions suivantes sont équivalentes :

- u est un minimum (resp. maximum) local de f,
- u est un minimum (resp. maximum) global de f,
- $A\mathbf{u} = \mathbf{b}$, i.e. \mathbf{u} est solution du système d'équations linéaires $A\mathbf{x} = \mathbf{b}$.

Si A est définie positive f admet un unique minimum (resp. maximum) global.

Si A n'est pas semi-définie positive (resp. négative) f n'admet aucun minimum (resp. maximum) local ou global.

Preuve (esquisse). Découle immédiatement des théorèmes

Soit
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} - \mathbf{b}^{\top}\mathbf{x}$$
 avec $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ et $\mathbf{b} = (-3, 1, -2)$.

Soit
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} - \mathbf{b}^{\top}\mathbf{x}$$
 avec $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ et

 $\mathbf{b} = (-3, 1, -2)$. Le polynôme caractéristique de A est

$$p_A(\lambda) = 8 - 12\lambda + 6\lambda^2 - \lambda^3$$

Soit
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} - \mathbf{b}^{\top}\mathbf{x}$$
 avec $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ et

 $\mathbf{b} = (-3, 1, -2)$. Le polynôme caractéristique de A est

$$p_{\mathcal{A}}(\lambda)=8-12\lambda+6\lambda^2-\lambda^3$$
 A est définie positive

Soit
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} - \mathbf{b}^{\top}\mathbf{x}$$
 avec $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ et

 $\mathbf{b} = (-3, 1, -2)$. Le polynôme caractéristique de A est

$$p_A(\lambda) = 8 - 12\lambda + 6\lambda^2 - \lambda^3$$

 $p_A(\lambda)=8-12\lambda+6\lambda^2-\lambda^3$ \implies A est définie positive \implies f a un unique minimum global qui est l'unique solution de $A\mathbf{x} = \mathbf{b}$.

Soit
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} - \mathbf{b}^{\top}\mathbf{x}$$
 avec $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ et

 $\mathbf{b} = (-3, 1, -2)$. Le polynôme caractéristique de A est

$$p_A(\lambda) = 8 - 12\lambda + 6\lambda^2 - \lambda^3$$

 $p_A(\lambda)=8-12\lambda+6\lambda^2-\lambda^3$ \implies A est définie positive \implies f a un unique minimum global qui est l'unique solution de $A\mathbf{x} = \mathbf{b}$.

$$A\mathbf{x} = \mathbf{b} \iff \begin{cases} 2x & -y & = -3 \\ -x & +2y & -z & = 1 \\ -y & +2z & = -2 \end{cases} \implies \mathbf{x}_{\min} = \begin{pmatrix} -9/4 \\ -3/2 \\ -7/4 \end{pmatrix}$$

Exercices

Exercice 1.

▶ Exercice 2.

► Exercice 3.

Exercise 4

Exercise 5

《四》《圖》《意》《意》

Exercice 1. Déterminer les extrema locaux et globaux de l'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par :

$$f(x,y) = x^3 + y^3 + x^2 + y^2 - 12$$

◆ Retour.

Exercice 1. Déterminer les extrema locaux et globaux de l'application $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par :

$$f(x,y) = x^3 + y^3 + x^2 + y^2 - 1$$

Retour.

f est C^{∞} . On détermine en chaque point son gradient et sa matrice Hessienne.

matrice Hessienne.
$$\nabla f(x,y) = \begin{pmatrix} 3x^2 + 2x \\ 3y^2 + 2y \end{pmatrix} \qquad \nabla^2 f(x,y) = \begin{pmatrix} 6x + 2 & 0 \\ 0 & 6y + 2 \end{pmatrix}$$

Exercice 1. Déterminer les extrema locaux et globaux de l'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par :

$$f(x,y) = x^3 + y^3 + x^2 + y^2 - 1$$

Retour.

f est C^{∞} . On détermine en chaque point son gradient et sa matrice Hessienne.

$$\nabla f(x,y) = \begin{pmatrix} 3x^2 + 2x \\ 3y^2 + 2y \end{pmatrix} \qquad \nabla^2 f(x,y) = \begin{pmatrix} 6x + 2 & 0 \\ 0 & 6y + 2 \end{pmatrix}$$

$$\nabla f(x,y) = \begin{pmatrix} 3x^2 + 2x \\ 3y^2 + 2y \end{pmatrix} = 0 \iff \begin{cases} x = 0 \text{ ou } x = -\frac{2}{3} \\ y = 0 \text{ ou } y = -\frac{2}{3} \end{cases}$$

Les points critiques sont :

$$(0,0), (0,-2/3), (-2/3,0), (-2/3,-2/3).$$

Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5

$$abla^2 f(0,0) = \left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right) \text{ définie positive : (0,0) } \underline{\text{min local}}.$$

$$abla^2 f(0,0) = \left(egin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right) \mbox{ définie positive} : (0,0) \mbox{ \underline{min local}}.$$

$$abla^2 f(0,-rac{2}{3}) = \left(egin{array}{cc} 2 & 0 \\ 0 & -2 \end{array}
ight)$$
 non-semi-définie : n'est pas un extremum.

$$abla^2 f(0,0) = \left(egin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right) \mbox{ définie positive} \ \vdots \ (0,0) \ \underline{\mbox{min local}}.$$

$$abla^2 f(0, -\frac{2}{3}) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$
 non semi-définie : n'est pas un extremum

$$\nabla^2 f(0, -\frac{2}{3}) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \text{ non-semi-définie : n'est pas un extremum.}$$

$$\nabla^2 f(-\frac{2}{3}, 0) = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} \text{ non-semi-définie : n'est pas un extremum.}$$

$$abla^2 f(0,0) = \left(egin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right) \mbox{ définie positive} : (0,0) \mbox{ \underline{min local}}.$$

$$abla^2 f(0, -\frac{2}{3}) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$
 non semi-définie : n'est pas un extremum

$$\nabla^2 f(-\frac{2}{3},0) = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$$
 non semi-définie : n'est pas un extremum.

$$\nabla^2 f(0,-\frac{2}{3}) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \text{ non semi-définie} : \text{n'est pas un extremum.}$$

$$\nabla^2 f(-\frac{2}{3},0) = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} \text{ non semi-définie} : \text{n'est pas un extremum.}$$

$$\nabla^2 f(-\frac{2}{3},-\frac{2}{3}) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} \text{ définie négative} : \left(-\frac{2}{3},-\frac{2}{3}\right) \underline{\text{max local.}}$$

L'application f n'admet pas d'extremum global, car elle est surjective sur $\mathbb R$:

$$\lim_{x \to +\infty} f(x,0) = +\infty \qquad \lim_{x \to -\infty} f(x,0) = -\infty.$$

Retour.

Exercice 2.

On considère l'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par :

$$f(x,y) = x^4 + y^4 - x^3 - y^3$$

- a. Que peut-on dire de l'existence d'extrema globaux pour f?
- **b.** Déterminer tous les extrema globaux de f.
- c. Montrer le résultat :

Soit $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ une application différentiable et \mathbf{u} un point critique de g, alors \mathbf{u} est un minimum local de g si et seulement si g est convexe sur une boule ouverte centrée en \mathbf{u} .

d. En déduire tous les extrema locaux de f.

$$f(x,y) = x^4 + y^4 - x^3 - y^3$$
.

a. Que peut-on dire de l'existence d'extrema globaux pour f?

$$f(x,y) = x^4 + y^4 - x^3 - y^3$$
.

a. Que peut-on dire de l'existence d'extrema globaux pour f? Montrons que f est coercive. Formons :

trons que
$$f$$
 est coercive. Formons :
$$f(x,y) - \|(x,y)\|^2 = x^2(x^2 - x - 1) + y^2(y^2 - y - 1) \ .$$

$$f(x,y) = x^4 + y^4 - x^3 - y^3$$
.

a. Que peut-on dire de l'existence d'extrema globaux pour f? Montrons que f est coercive. Formons :

$$|f(x,y) - ||(x,y)||^2 = x^2(x^2 - x - 1) + y^2(y^2 - y - 1)$$

 $f(x,y)-\|(x,y)\|^2=x^2(x^2-x-1)+y^2(y^2-y-1)\;.$ Le trinôme t^2-t-1 est minoré par $-\frac14$ et positif lorsque $t\not\in]\frac{-1-\sqrt5}2,\frac{-1+\sqrt5}2[$.

$$f(x,y) = x^4 + y^4 - x^3 - y^3$$
.

a. Que peut-on dire de l'existence d'extrema globaux pour f? Montrons que f est coercive. Formons :

$$|f(x,y) - ||(x,y)||^2 = x^2(x^2 - x - 1) + y^2(y^2 - y - 1)$$

 $f(x,y)-\|(x,y)\|^2=x^2(x^2-x-1)+y^2(y^2-y-1)\ .$ Le trinôme t^2-t-1 est minoré par $-\frac14$ et positif lorsque $t \notin]\frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}[...]$

Ainsi lorsque x ou y est suffisamment grand, $f(x,y) \ge ||(x,y)||^2$.

$$f(x, y) = x^4 + y^4 - x^3 - y^3$$
.

a. Que peut-on dire de l'existence d'extrema globaux pour f? Montrons que f est coercive. Formons :

$$f(x,y) - ||(x,y)||^2 = x^2(x^2 - x - 1) + y^2(y^2 - y - 1)$$
.

Le trinôme t^2-t-1 est minoré par $-\frac{1}{4}$ et positif lorsque $t\not\in]\frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}[.$

Ainsi lorsque x ou y est suffisamment grand, $f(x,y) \ge \|(x,y)\|^2$. Lorsque $\|(x,y)\|$ tend vers $+\infty$, $f(x,y) \ge \|(x,y)\|$ tend aussi vers $+\infty$. Donc f est coercive.

$$f(x,y) = x^4 + y^4 - x^3 - y^3$$
.

a. Que peut-on dire de l'existence d'extrema globaux pour f? Montrons que f est coercive. Formons :

$$f(x,y) - ||(x,y)||^2 = x^2(x^2 - x - 1) + y^2(y^2 - y - 1)$$
.

Le trinôme t^2-t-1 est minoré par $-\frac{1}{4}$ et positif lorsque $t\not\in]\frac{-1-\sqrt{5}}{2},\frac{-1+\sqrt{5}}{2}[.$

Ainsi lorsque x ou y est suffisamment grand, $f(x,y) \ge ||(x,y)||^2$. Lorsque ||(x,y)|| tend vers $+\infty$, $f(x,y) \ge ||(x,y)||$ tend aussi vers $+\infty$. Donc f est coercive.

On en déduit l'existence d'un minimum global et d'aucun maximum global.

Exercice 1
Exercice 2
Exercice 3
Exercice 4
Exercice 5

b. Déterminer tous les extrema globaux de f. On cherche les extrema locaux.

b. Déterminer tous les extrema globaux de f. On cherche les extrema locaux. L'application f est C^{∞} ; son gradient est :

$$\nabla f(x,y) = \begin{pmatrix} 4x^3 - 3x^2 \\ 4y^3 - 3y^2 \end{pmatrix}$$

On cherche les extrema locaux. L'application f est C^{∞} ; sor gradient est :

$$\nabla f(x,y) = \begin{pmatrix} 4x^3 - 3x^2 \\ 4y^3 - 3y^2 \end{pmatrix}$$

Ainsi f a 4 points critiques A = (0,0), $B = (0,\frac{3}{4})$, $C = (\frac{3}{4},0)$ et $D = (\frac{3}{4},\frac{3}{4})$.

On cherche les extrema locaux. L'application f est C^{∞} ; sor gradient est :

$$\nabla f(x,y) = \begin{pmatrix} 4x^3 - 3x^2 \\ 4y^3 - 3y^2 \end{pmatrix}$$

Ainsi f a 4 points critiques A=(0,0), $B=(0,\frac{3}{4})$, $C=(\frac{3}{4},0)$ et $D=(\frac{3}{4},\frac{3}{4})$.

Sa matrice hessienne est

$$\nabla^2 f(x,y) = \begin{pmatrix} 12x^2 - 6x & 0 \\ 0 & 12y^2 - 6y \end{pmatrix} .$$

On cherche les extrema locaux. L'application f est C^{∞} ; sor gradient est :

$$\nabla f(x,y) = \begin{pmatrix} 4x^3 - 3x^2 \\ 4y^3 - 3y^2 \end{pmatrix}$$

Ainsi f a 4 points critiques A = (0,0), $B = (0,\frac{3}{4})$, $C = (\frac{3}{4},0)$ et $D = (\frac{3}{4},\frac{3}{4})$.

Sa matrice hessienne est

$$abla^2 f(x,y) = \left(\begin{array}{cc} 12x^2 - 6x & 0 \\ 0 & 12y^2 - 6y \end{array} \right) \ .$$

 $\nabla^2 f(D)$ est définie positive : D est un min local. En A, B, C, $\nabla^2 f(.)$ est semi-définie positive : on ne peut rien déduire...

Pour déterminer le(s) minimum(s) de f il suffit d'évaluer f en A, B, C, D.

$$f(0,0) = 0$$
; $f\left(0,\frac{3}{4}\right) = f\left(\frac{3}{4},0\right) = -\frac{3^3}{4^4}$; $f\left(\frac{3}{4},\frac{3}{4}\right) = -2\frac{3^3}{4^4}$.

Ainsi le minimum de f est $D = (\frac{3}{4}, \frac{3}{4})$.

Soit $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ une application différentiable et \mathbf{u} un point critique de g, alors \mathbf{u} est un minimum local de g si et seulement si g est convexe sur une boule ouverte centrée en \mathbf{u} .

Soit $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ une application différentiable et \mathbf{u} un point critique de g, alors \mathbf{u} est un minimum local de g si et seulement si g est convexe sur une boule ouverte centrée en \mathbf{u} .

Soit **u** un point critique de g, *i.e.* $\nabla g(\mathbf{u}) = \mathbf{0}$.

Soit $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ une application différentiable et \mathbf{u} un point critique de g, alors \mathbf{u} est un minimum local de g si et seulement si g est convexe sur une boule ouverte centrée en \mathbf{u} .

Soit \mathbf{u} un point critique de g, *i.e.* $\nabla g(\mathbf{u}) = \mathbf{0}$. \mathbf{u} min local de $g \implies \exists$ une boule ouverte \mathcal{B} centrée en \mathbf{u} tel que,

$$\forall \mathbf{x} \in \mathcal{B}, \quad g(\mathbf{x}) \geqslant g(\mathbf{u})$$

Soit $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ une application différentiable et \mathbf{u} un point critique de g, alors \mathbf{u} est un minimum local de g si et seulement si g est convexe sur une boule ouverte centrée en \mathbf{u} .

Soit \mathbf{u} un point critique de g, i.e. $\nabla g(\mathbf{u}) = \mathbf{0}$. \mathbf{u} min local de $g \implies \exists$ une boule ouverte \mathcal{B} centrée en \mathbf{u} tel que,

$$\forall \mathbf{x} \in \mathcal{B}, \quad g(\mathbf{x}) \geqslant g(\mathbf{u}) = g(\mathbf{u}) + \langle \nabla g(\mathbf{u}), \mathbf{x} - \mathbf{u} \rangle .$$

 \implies la restriction de g à $\mathcal B$ est une application convexe.

Soit $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ une application différentiable et \mathbf{u} un point critique de g, alors \mathbf{u} est un minimum local de g si et seulement si g est convexe sur une boule ouverte centrée en \mathbf{u} .

Soit \mathbf{u} un point critique de g, *i.e.* $\nabla g(\mathbf{u}) = \mathbf{0}$. \mathbf{u} min local de $g \implies \exists$ une boule ouverte \mathcal{B} centrée en \mathbf{u} tel que,

$$\forall \, \mathbf{x} \in \mathcal{B}, \quad g(\mathbf{x}) \geqslant g(\mathbf{u}) = g(\mathbf{u}) + \langle \nabla g(\mathbf{u}), \mathbf{x} - \mathbf{u} \rangle \ .$$

 \implies la restriction de g à \mathcal{B} est une application convexe.

Réciproquement, si g est convexe sur une boule $\mathcal B$ centrée en $\mathbf u$, alors

$$\forall \mathbf{x} \in \mathcal{B}, \quad g(\mathbf{x}) \geqslant g(\mathbf{u}) + \langle \nabla g(\mathbf{u}), \mathbf{x} - \mathbf{u} \rangle$$

Soit $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ une application différentiable et \mathbf{u} un point critique de g, alors \mathbf{u} est un minimum local de g si et seulement si g est convexe sur une boule ouverte centrée en \mathbf{u} .

Soit \mathbf{u} un point critique de g, *i.e.* $\nabla g(\mathbf{u}) = \mathbf{0}$. \mathbf{u} min local de $g \implies \exists$ une boule ouverte \mathcal{B} centrée en \mathbf{u} tel que,

$$\forall \, \mathbf{x} \in \mathcal{B}, \quad g(\mathbf{x}) \geqslant g(\mathbf{u}) = g(\mathbf{u}) + \langle \nabla g(\mathbf{u}), \mathbf{x} - \mathbf{u} \rangle \ .$$

 \implies la restriction de g à \mathcal{B} est une application convexe.

Réciproquement, si g est convexe sur une boule $\mathcal B$ centrée en $\mathbf u$, alors

$$\forall \mathbf{x} \in \mathcal{B}, \quad g(\mathbf{x}) \geqslant g(\mathbf{u}) + \langle \nabla g(\mathbf{u}), \mathbf{x} - \mathbf{u} \rangle = g(\mathbf{u})$$

 \implies **u** est un min local de g.

d. En déduire tous les extrema locaux de f.

d. En déduire tous les extrema locaux de f.

Nous avons déterminé :

luire tous les extrema locaux de
$$f$$
.

Ins déterminé:
$$\nabla^2 f(x,y) = \begin{pmatrix} 12x^2 - 6x & 0 \\ 0 & 12y^2 - 6y \end{pmatrix}.$$

d. En déduire tous les extrema locaux de f. Nous avons déterminé :

$$\nabla^2 f(x,y) = \begin{pmatrix} 12x^2 - 6x & 0 \\ 0 & 12y^2 - 6y \end{pmatrix} .$$

Le binôme $12t^2-6t$ ne garde pas un signe constant sur un voisinage de 0

d. En déduire tous les extrema locaux de *f* . Nous avons déterminé :

$$\nabla^2 f(x,y) = \begin{pmatrix} 12x^2 - 6x & 0 \\ 0 & 12y^2 - 6y \end{pmatrix} .$$

Le binôme $12t^2-6t$ ne garde pas un signe constant sur un voisinage de $0 \implies$ sur aucun voisinage de A, B et C, la matrice hessienne ne reste semi-définie positive ou négative.

d. En déduire tous les extrema locaux de *f* . Nous avons déterminé :

$$\nabla^2 f(x,y) = \begin{pmatrix} 12x^2 - 6x & 0 \\ 0 & 12y^2 - 6y \end{pmatrix} .$$

Le binôme $12t^2-6t$ ne garde pas un signe constant sur un voisinage de $0 \implies$ sur aucun voisinage de A, B et C, la matrice hessienne ne reste semi-définie positive ou négative. $\implies f$ n'est ni localement convexe ni localement concave sur un voisinage convexe de A, B ou C.

d. En déduire tous les extrema locaux de *f* . Nous avons déterminé :

$$\nabla^2 f(x,y) = \begin{pmatrix} 12x^2 - 6x & 0 \\ 0 & 12y^2 - 6y \end{pmatrix} .$$

Le binôme $12t^2-6t$ ne garde pas un signe constant sur un voisinage de $0 \implies$ sur aucun voisinage de A, B et C, la matrice hessienne ne reste semi-définie positive ou négative. $\implies f$ n'est ni localement convexe ni localement concave sur un voisinage convexe de A, B ou C.

(c) \implies ni A, ni B, ni C n'est un extremum local de f.

Exercice 3.

Un rayon lumineux effectue un trajet spatial d'un point A_1 situé dans un milieu ayant pour indice de réfraction n_1 à un point A_2 situé dans un milieu ayant pour indice de réfraction n_2 ; les deux milieux étant séparés par un plan \mathcal{P} .

En appliquant le principe que la lumière parcourt le trajet le plus rapide, retrouver la loi de Descartes de réfraction de la lumière : $n_1 \sin i_1 = n_2 \sin i_2$

La lumière parcourt le trajet qui minimise le temps de parcours.

La lumière parcourt le trajet qui minimise le temps de parcours. Ce dernier est :

$$\frac{A_1 M}{v_1} + \frac{A_2 M}{v_2} = \frac{n_1 A_1 M}{c} + \frac{n_2 A_2 M}{c} \ .$$

La lumière parcourt le trajet qui minimise le temps de parcours. Ce dernier est :

$$\frac{A_1 M}{v_1} + \frac{A_2 M}{v_2} = \frac{n_1 A_1 M}{c} + \frac{n_2 A_2 M}{c} .$$

Il s'agit donc de déterminer le point M de façon à minimiser le chemin optique $n_1A_1M + n_2A_2M$.

$$\min_{M\in\mathcal{P}} n_1 A_1 M + n_2 A_2 M.$$

On se donne un repère orthonormé construit de la façon suivante :

On se donne un repère orthonormé construit de la façon suivante : soit O le point d'intersection de la droite (A_1A_2) avec le plan de séparation \mathcal{P} .

On se donne un repère orthonormé construit de la façon suivante : soit O le point d'intersection de la droite (A_1A_2) avec le plan de séparation \mathcal{P} . Soient M_1 et M_2 les projetés orthogonaux respectifs de A_1 et A_2 sur \mathcal{P} .

On se donne un repère orthonormé construit de la façon suivante : soit O le point d'intersection de la droite (A_1A_2) avec le plan de séparation \mathcal{P} . Soient M_1 et M_2 les projetés orthogonaux respectifs de A_1 et A_2 sur \mathcal{P} . Le segment $[M_1M_2]$ passe par O.

On se donne un repère orthonormé construit de la façon suivante : soit O le point d'intersection de la droite (A_1A_2) avec le plan de séparation \mathcal{P} . Soient M_1 et M_2 les projetés orthogonaux respectifs de A_1 et A_2 sur \mathcal{P} . Le segment $[M_1M_2]$ passe par O. On choisit un repère orthonormal d'origine O, tel que (Oi) est confondu avec (M_1M_2) et (Oj) est dans \mathcal{P} ; alors k est orthogonal à \mathcal{P} .

Les coordonnées de M, A_1 , A_2 dans ce repère sont respectivement (x, y, 0), $(x_1, 0, z_1)$ et $(x_2, 0, z_2)$.

Les coordonnées de M, A_1 , A_2 dans ce repère sont respectivement (x, y, 0), $(x_1, 0, z_1)$ et $(x_2, 0, z_2)$. Le chemin optique s'exprime alors :

$$f(x,y) = n_1 \sqrt{(x-x_1)^2 + y^2 + z_1^2} + n_2 \sqrt{(x-x_2)^2 + y^2 + z_2^2}$$

et il s'agit de le minimiser.

Les coordonnées de M, A_1 , A_2 dans ce repère sont respectivement (x, y, 0), $(x_1, 0, z_1)$ et $(x_2, 0, z_2)$. Le chemin optique s'exprime alors :

$$f(x,y) = n_1 \sqrt{(x-x_1)^2 + y^2 + z_1^2} + n_2 \sqrt{(x-x_2)^2 + y^2 + z_2^2}$$

et il s'agit de le minimiser. L'application f est clairement coercive et admet donc un minimum.

$$\frac{\partial f}{\partial x}(x,y) = n_1 \frac{x - x_1}{\sqrt{(x - x_1)^2 + y^2 + z_1^2}} + n_2 \frac{x - x_2}{\sqrt{(x - x_2)^2 + y^2 + z_2^2}}$$
$$\frac{\partial f}{\partial y}(x,y) = n_1 \frac{y}{\sqrt{(x - x_1)^2 + y^2 + z_1^2}} + n_2 \frac{y}{\sqrt{(x - x_2)^2 + y^2 + z_2^2}}$$

$$\frac{\partial f}{\partial x}(x,y) = n_1 \frac{x - x_1}{\sqrt{(x - x_1)^2 + y^2 + z_1^2}} + n_2 \frac{x - x_2}{\sqrt{(x - x_2)^2 + y^2 + z_2^2}}$$

$$\frac{\partial f}{\partial y}(x,y) = n_1 \frac{y}{\sqrt{(x - x_1)^2 + y^2 + z_1^2}} + n_2 \frac{y}{\sqrt{(x - x_2)^2 + y^2 + z_2^2}}$$

Puisque
$$\frac{\partial f}{\partial y}(x,y) = 0$$
, on a $y = 0$.

$$\frac{\partial f}{\partial x}(x,y) = n_1 \frac{x - x_1}{\sqrt{(x - x_1)^2 + y^2 + z_1^2}} + n_2 \frac{x - x_2}{\sqrt{(x - x_2)^2 + y^2 + z_2^2}}$$

$$\frac{\partial f}{\partial y}(x,y) = n_1 \frac{y}{\sqrt{(x - x_1)^2 + y^2 + z_1^2}} + n_2 \frac{y}{\sqrt{(x - x_2)^2 + y^2 + z_2^2}}$$

Puisque
$$\frac{\partial f}{\partial y}(x,y) = 0$$
, on a $y = 0$.
 $\implies M$ est situé sur la droite (M_1M_2) .

Exercices

Etudions ses points critiques :

$$\frac{\partial f}{\partial x}(x,y) = n_1 \frac{x - x_1}{\sqrt{(x - x_1)^2 + y^2 + z_1^2}} + n_2 \frac{x - x_2}{\sqrt{(x - x_2)^2 + y^2 + z_2^2}}$$
$$\frac{\partial f}{\partial y}(x,y) = n_1 \frac{y}{\sqrt{(x - x_1)^2 + y^2 + z_1^2}} + n_2 \frac{y}{\sqrt{(x - x_2)^2 + y^2 + z_2^2}}$$

Puisque
$$\frac{\partial f}{\partial y}(x,y) = 0$$
, on a $y = 0$.

 \implies M est situé sur la droite (M_1M_2) .

Puisque
$$\frac{\partial f}{\partial x}(x, y) = 0$$
, $x - x_1$ et $x - x_2$ sont de signes opposés,

$$\frac{\partial f}{\partial x}(x,y) = n_1 \frac{x - x_1}{\sqrt{(x - x_1)^2 + y^2 + z_1^2}} + n_2 \frac{x - x_2}{\sqrt{(x - x_2)^2 + y^2 + z_2^2}}$$
$$\frac{\partial f}{\partial y}(x,y) = n_1 \frac{y}{\sqrt{(x - x_1)^2 + y^2 + z_1^2}} + n_2 \frac{y}{\sqrt{(x - x_2)^2 + y^2 + z_2^2}}$$

Puisque
$$\frac{\partial f}{\partial y}(x,y) = 0$$
, on a $y = 0$.

 \implies M est situé sur la droite (M_1M_2) .

Puisque $\frac{\partial f}{\partial x}(x,y)=0$, $x-x_1$ et $x-x_2$ sont de signes opposés,

 $\Rightarrow x_1 \leqslant x \leqslant x_2 : M$ est situé sur le segment $[M_1 M_2]$.

$$\frac{\partial f}{\partial x}(x,0) = n_1 \frac{x - x_1}{\sqrt{(x - x_1)^2 + z_1^2}} + n_2 \frac{x - x_2}{\sqrt{(x - x_2)^2 + z_2^2}}$$
$$= n_1 \frac{M_1 M}{A_1 M} - n_2 \frac{M_2 M}{A_2 M} = 0$$

au point
$$M(x,0)$$
,
$$\frac{\partial f}{\partial x}(x,0) = n_1 \frac{x - x_1}{\sqrt{(x - x_1)^2 + z_1^2}} + n_2 \frac{x - x_2}{\sqrt{(x - x_2)^2 + z_2^2}}$$

$$= n_1 \frac{M_1 M}{A_1 M} - n_2 \frac{M_2 M}{A_2 M} = 0$$

$$n_1 \frac{M_1 M}{A_1 M} = n_2 \frac{M_2 M}{A_2 M}.$$

$$\implies n_1 \frac{M_1 M}{A_1 M} = n_2 \frac{M_2 M}{A_2 M}.$$

au point
$$M(x,0)$$
,
$$\frac{\partial f}{\partial x}(x,0) = n_1 \frac{x - x_1}{\sqrt{(x - x_1)^2 + z_1^2}} + n_2 \frac{x - x_2}{\sqrt{(x - x_2)^2 + z_2^2}}$$

$$= n_1 \frac{M_1 M}{A_1 M} - n_2 \frac{M_2 M}{A_2 M} = 0$$

$$n_1 \frac{M_1 M}{A_1 M} = n_2 \frac{M_2 M}{A_2 M}.$$

$$\implies n_1 \frac{M_1 M}{A_1 M} = n_2 \frac{M_2 M}{A_2 M}.$$

 $\longrightarrow n_1 \overline{A_1 M} = n_2 \overline{A_2 M}$. Or pour k=1,2, le triangle $A_k M_k M$ étant rectangle en M_k

r
$$k=1,2$$
, le triangle $A_k M_k M$ étant rectar
$$\frac{M_k M}{A_k M} = \cos(\frac{\pi}{2} - i_k) = \sin i_k .$$

au point
$$M(x,0)$$
,
$$\frac{\partial f}{\partial x}(x,0) = n_1 \frac{x - x_1}{\sqrt{(x - x_1)^2 + z_1^2}} + n_2 \frac{x - x_2}{\sqrt{(x - x_2)^2 + z_2^2}}$$

$$= n_1 \frac{M_1 M}{A_1 M} - n_2 \frac{M_2 M}{A_2 M} = 0$$

$$\implies n_1 \frac{M_1 M}{A_1 M} = n_2 \frac{M_2 M}{A_2 M}.$$

Or pour k = 1, 2, le triangle $A_k M_k M$ étant rectangle en M_k

$$\frac{M_k M}{A_k M} = \cos(\frac{\pi}{2} - i_k) = \sin i_k .$$

On trouve donc qu'au minimum on a :

$$n_1 \sin i_1 = n_2 \sin i_2 .$$

Exercice 4.

Prouver le théorème de projection convexe :

Soit \mathcal{C} un sous-ensemble convexe fermé non vide de \mathbb{R}^n . Donné $\mathbf{u} \in \mathbb{R}^n$ il existe un unique point $P_{\mathcal{C}}(\mathbf{u}) \in \mathcal{C}$, tel que :

$$||P_{\mathcal{C}}(\mathbf{u}) - \mathbf{u}|| = \min_{\mathbf{v} \in \mathcal{C}} ||\mathbf{v} - \mathbf{u}||.$$

On l'appelle le projeté de u sur \mathcal{C} . Il est caractérisé par :

$$\forall \boldsymbol{v} \in \mathcal{C}, \ \langle P_{\mathcal{C}}(\boldsymbol{u}) - \boldsymbol{u}, \boldsymbol{v} - P_{\mathcal{C}}(\boldsymbol{u}) \rangle \geqslant 0 \ .$$

De plus l'application P_C est contractante, i.e. :

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \ \|P_{\mathcal{C}}(\mathbf{x}) - P_{\mathcal{C}}(\mathbf{y})\| \leqslant \|\mathbf{x} - \mathbf{y}\|.$$

Exercice 4.

Prouver le **théorème de projection convexe** :

Soit \mathcal{C} un sous-ensemble convexe fermé non vide de \mathbb{R}^n . Donné $\mathbf{u} \in \mathbb{R}^n$ il existe un unique point $P_{\mathcal{C}}(\mathbf{u}) \in \mathcal{C}$, tel que :

$$||P_{\mathcal{C}}(\mathbf{u}) - \mathbf{u}|| = \min_{\mathbf{v} \in \mathcal{C}} ||\mathbf{v} - \mathbf{u}||.$$

On l'appelle le projeté de u sur \mathcal{C} . Il est caractérisé par :

$$\forall \textbf{v} \in \mathcal{C}, \ \langle P_{\mathcal{C}}(\textbf{u}) - \textbf{u}, \textbf{v} - P_{\mathcal{C}}(\textbf{u}) \rangle \geqslant 0 \ .$$

De plus l'application $P_{\mathcal{C}}$ est contractante, i.e. :

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \|P_{\mathcal{C}}(\mathbf{x}) - P_{\mathcal{C}}(\mathbf{y})\| \leqslant \|\mathbf{x} - \mathbf{y}\|.$$

- **a.** Prouver l'existence et l'unicité de $P_{\mathcal{C}}(\mathbf{u})$.
- **b.** Prouver la caractérisation donnée de $P_{\mathcal{C}}(\mathbf{u})$.
- **c.** Utiliser cette caractérisation pour prouver que $P_{\mathcal{C}}$ est une application contractante.

<ロ> <部> <き> <き> <き> <き < の。

Le problème de minimisation $\min_{\mathbf{v} \in \mathcal{C}} \|\mathbf{u} - \mathbf{v}\|$ est équivalent au

problème $\min_{\mathbf{v} \in \mathcal{C}} \|\mathbf{u} - \mathbf{v}\|^2$.

Le problème de minimisation $\min_{\mathbf{v} \in \mathcal{C}} \|\mathbf{u} - \mathbf{v}\|$ est équivalent au problème $\min_{\mathbf{v} \in \mathcal{C}} \|\mathbf{u} - \mathbf{v}\|^2$. Or l'application

$$f: \mathbf{x} \mapsto \|\mathbf{u} - \mathbf{x}\|^2 = \sum_{i=1}^{n} (\mathbf{u}_i - \mathbf{x}_i)^2 = \mathbf{x}^{\top} \operatorname{Id} \mathbf{x} - 2\mathbf{u}^{\top} \mathbf{x} + \|\mathbf{u}\|^2$$

est une application quadratique de matrice hessienne 2 Id.

Le problème de minimisation $\min_{\mathbf{v} \in \mathcal{C}} \|\mathbf{u} - \mathbf{v}\|$ est équivalent au problème $\min_{\mathbf{v} \in \mathcal{C}} \|\mathbf{u} - \mathbf{v}\|^2$. Or l'application

$$f: \mathbf{x} \mapsto \|\mathbf{u} - \mathbf{x}\|^2 = \sum_{i=1}^n (\mathbf{u}_i - \mathbf{x}_i)^2 = \mathbf{x}^\top \mathrm{Id} \, \mathbf{x} - 2\mathbf{u}^\top \mathbf{x} + \|\mathbf{u}\|^2$$

est une application quadratique de matrice hessienne $2 \operatorname{Id}$. f est donc une elliptique, et donc strictement convexe et coercive.

Le problème de minimisation $\min_{\mathbf{v} \in \mathcal{C}} \|\mathbf{u} - \mathbf{v}\|$ est équivalent au problème $\min_{\mathbf{v} \in \mathcal{C}} \|\mathbf{u} - \mathbf{v}\|^2$. Or l'application

$$f: \mathbf{x} \mapsto \|\mathbf{u} - \mathbf{x}\|^2 = \sum_{i=1}^n (\mathbf{u}_i - \mathbf{x}_i)^2 = \mathbf{x}^\top \mathrm{Id} \, \mathbf{x} - 2\mathbf{u}^\top \mathbf{x} + \|\mathbf{u}\|^2$$

est une application quadratique de matrice hessienne $2\operatorname{Id}$. f est donc une elliptique, et donc strictement convexe et coercive. Le domaine $\mathcal C$ étant convexe fermé et non vide elle y admet un unique minimum, $P_{\mathcal C}(\mathbf u)$.

On est en programmation convexe, et f est différentiable. La caractérisation de $P_{\mathcal{C}}(\mathbf{u})$ est donnée par :

on de
$$P_{\mathcal{C}}(\mathbf{u})$$
 est donnée par :
$$\forall \, \mathbf{v} \in \mathcal{C}, \quad \langle \nabla f(P_{\mathcal{C}}(\mathbf{u})), \mathbf{v} - P_{\mathcal{C}}(\mathbf{u}) \rangle \geqslant 0 \; .$$

On est en programmation convexe, et f est différentiable. La caractérisation de $P_{\mathcal{C}}(\mathbf{u})$ est donnée par :

$$\forall \mathbf{v} \in \mathcal{C}, \quad \langle \nabla f(P_{\mathcal{C}}(\mathbf{u})), \mathbf{v} - P_{\mathcal{C}}(\mathbf{u}) \rangle \geqslant 0$$
.

 $\forall \, \mathbf{v} \in \mathcal{C}, \quad \langle \nabla f(P_{\mathcal{C}}(\mathbf{u})), \mathbf{v} - P_{\mathcal{C}}(\mathbf{u}) \rangle \geqslant 0 \; .$ Or f et quadratique, $\nabla f(\mathbf{x}) = 2\mathbf{x} - 2\mathbf{u}$, donc : $\nabla f(P_{\mathcal{C}}(\mathbf{u})) = 2 \left(P_{\mathcal{C}}(\mathbf{u}) - \mathbf{u} \right) \; .$

$$\nabla f(P_{\mathcal{C}}(\mathbf{u})) = 2\left(P_{\mathcal{C}}(\mathbf{u}) - \mathbf{u}\right).$$

On est en programmation convexe, et f est différentiable. La caractérisation de $P_{\mathcal{C}}(\mathbf{u})$ est donnée par :

$$\forall\, \boldsymbol{v}\in\mathcal{C},\quad \langle\nabla f(P_{\mathcal{C}}(\boldsymbol{u})),\boldsymbol{v}-P_{\mathcal{C}}(\boldsymbol{u})\rangle\geqslant 0\ .$$

Or f et quadratique, $\nabla f(\mathbf{x}) = 2\mathbf{x} - 2\mathbf{u}$, donc : $\nabla f(P_{\mathcal{C}}(\mathbf{u})) = 2\left(P_{\mathcal{C}}(\mathbf{u}) - \mathbf{u}\right) \,.$

$$\nabla f(P_{\mathcal{C}}(\mathbf{u})) = 2(P_{\mathcal{C}}(\mathbf{u}) - \mathbf{u})$$
.

On obtient done

$$\forall \mathbf{v} \in \mathcal{C}, \ 2\langle P_{\mathcal{C}}(\mathbf{u}) - \mathbf{u}, \mathbf{v} - P_{\mathcal{C}}(\mathbf{u}) \rangle \geqslant 0$$

caractérisation donnée en découle immédiatement.

En appliquant la caractérisation des points $P_{\mathcal{C}}(\mathbf{x})$ et $P_{\mathcal{C}}(\mathbf{y})$:

$$\langle P_{\mathcal{C}}(\mathbf{x}) - \mathbf{x}, P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x}) \rangle \geqslant 0$$

$$\langle P_{\mathcal{C}}(\mathbf{x}) - \mathbf{x}, P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x}) \rangle \geqslant 0$$
$$\langle P_{\mathcal{C}}(\mathbf{y}) - \mathbf{y}, P_{\mathcal{C}}(\mathbf{x}) - P_{\mathcal{C}}(\mathbf{y}) \rangle \geqslant 0$$

En appliquant la caractérisation des points $P_{\mathcal{C}}(\mathbf{x})$ et $P_{\mathcal{C}}(\mathbf{y})$:

$$\langle P_{\mathcal{C}}(\mathbf{x}) - \mathbf{x}, P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x}) \rangle \geqslant 0$$

 $\langle P_{\mathcal{C}}(\mathbf{y}) - \mathbf{y}, P_{\mathcal{C}}(\mathbf{x}) - P_{\mathcal{C}}(\mathbf{y}) \rangle \geqslant 0$

En additionnant ces deux inégalités :

$$\langle P_{\mathcal{C}}(\mathbf{x}) - P_{\mathcal{C}}(\mathbf{y}) - \mathbf{x} + \mathbf{y}, P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x}) \rangle \geqslant 0$$

En appliquant la caractérisation des points $P_{\mathcal{C}}(\mathbf{x})$ et $P_{\mathcal{C}}(\mathbf{y})$:

$$\langle P_{\mathcal{C}}(\mathbf{x}) - \mathbf{x}, P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x}) \rangle \geqslant 0$$

 $\langle P_{\mathcal{C}}(\mathbf{y}) - \mathbf{y}, P_{\mathcal{C}}(\mathbf{x}) - P_{\mathcal{C}}(\mathbf{y}) \rangle \geqslant 0$

En additionnant ces deux inégalités :

$$< P_{\mathcal{C}}(\mathbf{x}) - P_{\mathcal{C}}(\mathbf{y}) - \mathbf{x} + \mathbf{y}, P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x}) \rangle \geqslant 0$$
,

soit

$$\langle \mathbf{y} - \mathbf{x}, P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x}) \rangle \geqslant \|P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x})\|^2$$

En appliquant la caractérisation des points $P_{\mathcal{C}}(\mathbf{x})$ et $P_{\mathcal{C}}(\mathbf{y})$:

$$\langle P_{\mathcal{C}}(\mathbf{x}) - \mathbf{x}, P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x}) \rangle \geqslant 0$$

 $\langle P_{\mathcal{C}}(\mathbf{y}) - \mathbf{y}, P_{\mathcal{C}}(\mathbf{x}) - P_{\mathcal{C}}(\mathbf{y}) \rangle \geqslant 0$

En additionnant ces deux inégalités :

$$\langle P_{\mathcal{C}}(\mathbf{x}) - P_{\mathcal{C}}(\mathbf{y}) - \mathbf{x} + \mathbf{y}, P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x}) \rangle \geqslant 0$$
,

soit

$$\langle \mathbf{y} - \mathbf{x}, P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x}) \rangle \geqslant \|P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x})\|^2$$

et en appliquant l'inégalité de Cauchy-Schwartz :

$$\|\mathbf{y} - \mathbf{x}\| \|P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x})\| \geqslant \langle \mathbf{y} - \mathbf{x}, P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x}) \rangle \geqslant \|P_{\mathcal{C}}(\mathbf{y}) - P_{\mathcal{C}}(\mathbf{x})\|^2$$

dont on déduit l'inégalité recherchée.

Exercice 5

Le but de l'exercice est de prouver la proposition :

Soient $\mathcal{D} \subset \mathbb{R}^n$ connexe, $f: \mathcal{D} \longrightarrow \mathbb{R}$ continue, et $\mathbf{u} \in \mathcal{D}$ un min (resp. max) local de f. Alors \mathbf{u} est un min (resp. max) global de f ssi $\forall \mathbf{x}$ tel que $f(\mathbf{x}) = f(\mathbf{u})$, \mathbf{x} est un min (resp. max) local de f.

Exercice 5

Le but de l'exercice est de prouver la **proposition** :

Soient $\mathcal{D} \subset \mathbb{R}^n$ connexe, $f: \mathcal{D} \longrightarrow \mathbb{R}$ continue, et $\mathbf{u} \in \mathcal{D}$ un min (resp. max) local de f. Alors \mathbf{u} est un min (resp. max) global de f ssi $\forall \mathbf{x}$ tel que $f(\mathbf{x}) = f(\mathbf{u})$, \mathbf{x} est un min (resp. max) local de f.

Sans perte de généralité, quitte à changer f en -f, on la montrera pour ${\bf u}$ un min local.

Soit $u = f(\mathbf{u}) \in \mathbb{R}$.

- **1.** Montrer que $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D} .
- 2. Montrer que $C_D f^{-1}(]-\infty,u[)$ est un voisinage de tout point de $f^{-1}(\{v\})$ pour v>u.
- 3. Soit $\mathbf{x} \in f^{-1}(\{u\})$; appliquer l'hypothèse que \mathbf{x} est un min local pour montrer que $\mathbb{C}_D f^{-1}(]-\infty,u[)$ est un voisinage de \mathbf{x} .
- **4.** Déduire de 2 et 3 que $f^{-1}(]-\infty,u[)$ est un fermé de $\mathcal{D}.$
- **5.** Appliquer la connexité de \mathcal{D} avec 1 et 4 pour montrer que $f^{-1}(]-\infty,u[)=\emptyset.$ Conclure.

Soit
$$u = f(\mathbf{u}) \in \mathbb{R}$$
.

1. Montrer que $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D}

Soit
$$u = f(\mathbf{u}) \in \mathbb{R}$$
.

1. Montrer que $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D}_{-}

Puisque] $-\infty$, u[est un ouvert de $\mathbb R$ et que $f:\mathcal D\longrightarrow \mathbb R$ est continue, $f^{-1}(]-\infty,u[)$ est un ouvert de $\mathcal D$.

Soit
$$u = f(\mathbf{u}) \in \mathbb{R}$$
.

- **1.** Montrer que $f^{-1}(]-\infty,u[)$ est un ouvert de $\overline{\mathcal{D}}$. Puisque $]-\infty,u[$ est un ouvert de \mathbb{R} et que $f:\mathcal{D}\longrightarrow\mathbb{R}$ est continue, $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D} .
- **2.** Montrer que $\mathbb{C}_D f^{-1}(]-\infty, y[)$ est un voisinage de tout point de $f^{-1}(\{v\})$ pour v>u.

Soit
$$u = f(\mathbf{u}) \in \mathbb{R}$$
.

1. Montrer que $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D} . Puisque $]-\infty,u[$ est un ouvert de \mathbb{R} et que $f:\mathcal{D}\longrightarrow\mathbb{R}$ est continue, $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D} .

Exercices

2. Montrer que $C_D f^{-1}(]-\infty, u[)$ est un voisinage de tout point de $f^{-1}(\{v\})$ pour v>u.

Soit r = v - u, alors tout point x de la boule ouverte B de $\mathbb R$ centrée en v et de rayon r vérifie $x \geqslant u$,

Soit
$$u = f(\mathbf{u}) \in \mathbb{R}$$
.

1. Montrer que $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D} . Puisque $]-\infty,u[$ est un ouvert de \mathbb{R} et que $f:\mathcal{D}\longrightarrow\mathbb{R}$ est continue, $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D} .

Exercices

2. Montrer que $C_D f^{-1}(]-\infty, u[)$ est un voisinage de tout point de $f^{-1}(\{v\})$ pour v>u.

Soit r = v - u, alors tout point x de la boule ouverte B de \mathbb{R} centrée en v et de rayon r vérifie $x \geqslant u$, $\Longrightarrow f^{-1}(B)$ est contenu dans $\mathcal{C}_{\mathcal{D}} f^{-1}(] - \infty, u[)$ et contient $f^{-1}(\{v\})$.

Soit
$$u = f(\mathbf{u}) \in \mathbb{R}$$
.

- **1.** Montrer que $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D} . Puisque $]-\infty,u[$ est un ouvert de \mathbb{R} et que $f:\mathcal{D}\longrightarrow\mathbb{R}$ est continue, $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D} .
- **2.** Montrer que $C_D f^{-1}(]-\infty, u[)$ est un voisinage de tout point de $f^{-1}(\{v\})$ pour v>u.

Soit r=v-u, alors tout point x de la boule ouverte B de $\mathbb R$ centrée en v et de rayon r vérifie $x\geqslant u, \Longrightarrow f^{-1}(B)$ est contenu dans $\mathcal C_{\mathcal D} f^{-1}(]-\infty,u[)$ et contient $f^{-1}(\{v\})$. Puisque B est un ouvert de $\mathbb R$ et f est continue, $f^{-1}(B)$ est un ouvert de $\mathcal D$.

Soit
$$u = f(\mathbf{u}) \in \mathbb{R}$$
.

- **1.** Montrer que $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D} . Puisque $]-\infty,u[$ est un ouvert de \mathbb{R} et que $f:\mathcal{D}\longrightarrow\mathbb{R}$ est continue, $f^{-1}(]-\infty,u[)$ est un ouvert de \mathcal{D} .
- **2.** Montrer que $C_D f^{-1}(]-\infty, u[)$ est un voisinage de tout point de $f^{-1}(\{v\})$ pour v>u.

Soit r=v-u, alors tout point x de la boule ouverte B de $\mathbb R$ centrée en v et de rayon r vérifie $x\geqslant u, \Longrightarrow f^{-1}(B)$ est contenu dans $\mathbb C_{\mathcal D}\, f^{-1}(]-\infty,u[)$ et contient $f^{-1}(\{v\})$. Puisque B est un ouvert de $\mathbb R$ et f est continue, $f^{-1}(B)$ est un ouvert de $\mathcal D$. Donc $\mathbb C_{\mathcal D}\, f^{-1}(]-\infty,u[)$ est un voisinage de tout point de $f^{-1}(\{v\})$.

3. Soit $\mathbf{x} \in f^{-1}(\{u\})$; appliquer l'hypothèse que \mathbf{x} est un min local pour montrer que $\mathbb{C}_D f^{-1}(]-\infty,u[)$ est un voisinage de \mathbf{x} .

- **3.** Soit $\mathbf{x} \in f^{-1}(\{u\})$; appliquer l'hypothèse que \mathbf{x} est un min local pour montrer que $\mathbb{C}_D f^{-1}(]-\infty,u[)$ est un voisinage de \mathbf{x} .
- Soit $\mathbf{x} \in f^{-1}(\{u\})$; puisque \mathbf{x} est un min local il existe un ouvert \mathcal{U} de \mathbb{R}^n contenant \mathbf{x} tel que $\forall \mathbf{y} \in \mathcal{U} \cap \mathcal{D}$, $f(\mathbf{y}) \geqslant f(\mathbf{x}) = u$.

- **3.** Soit $\mathbf{x} \in f^{-1}(\{u\})$; appliquer l'hypothèse que \mathbf{x} est un min local pour montrer que $\mathbb{C}_D f^{-1}(]-\infty,u[)$ est un voisinage de \mathbf{x} .
- Soit $\mathbf{x} \in f^{-1}(\{u\})$; puisque \mathbf{x} est un min local il existe un ouvert \mathcal{U} de \mathbb{R}^n contenant \mathbf{x} tel que $\forall \mathbf{y} \in \mathcal{U} \cap \mathcal{D}$, $f(\mathbf{y}) \geqslant f(\mathbf{x}) = u$. \Longrightarrow $(\mathcal{U} \cap \mathcal{D}) \subset \mathbb{C}_{\mathcal{D}} f^{-1}(]-\infty, u[)$.

3. Soit $\mathbf{x} \in f^{-1}(\{u\})$; appliquer l'hypothèse que \mathbf{x} est un min local pour montrer que $\mathbb{C}_D f^{-1}(]-\infty,u[)$ est un voisinage de \mathbf{x} . Soit $\mathbf{x} \in f^{-1}(\{u\})$; puisque \mathbf{x} est un min local il existe un ouvert \mathcal{U} de \mathbb{R}^n contenant \mathbf{x} tel que $\forall \mathbf{y} \in \mathcal{U} \cap \mathcal{D}, f(\mathbf{y}) \geqslant f(\mathbf{x}) = u. \Longrightarrow (\mathcal{U} \cap \mathcal{D}) \subset \mathbb{C}_{\mathcal{D}} f^{-1}(]-\infty,u[)$, et par définition c'est un ouvert de \mathcal{D} :

3. Soit $\mathbf{x} \in f^{-1}(\{u\})$; appliquer l'hypothèse que \mathbf{x} est un min local pour montrer que $\mathbb{C}_D f^{-1}(]-\infty,u[)$ est un voisinage de \mathbf{x} . Soit $\mathbf{x} \in f^{-1}(\{u\})$; puisque \mathbf{x} est un min local il existe un ouvert \mathcal{U} de \mathbb{R}^n contenant \mathbf{x} tel que $\forall \mathbf{y} \in \mathcal{U} \cap \mathcal{D}, f(\mathbf{y}) \geqslant f(\mathbf{x}) = u. \Longrightarrow (\mathcal{U} \cap \mathcal{D}) \subset \mathbb{C}_{\mathcal{D}} f^{-1}(]-\infty,u[)$, et par définition c'est un ouvert de \mathcal{D} ; $\mathbb{C}_{\mathcal{D}} f^{-1}(]-\infty,u[)$ est donc un voisinage de \mathbf{x} dans \mathcal{D} .

- 3. Soit $\mathbf{x} \in f^{-1}(\{u\})$; appliquer l'hypothèse que \mathbf{x} est un min local pour montrer que $\mathbb{C}_D f^{-1}(]-\infty,u[)$ est un voisinage de \mathbf{x} . Soit $\mathbf{x} \in f^{-1}(\{u\})$; puisque \mathbf{x} est un min local il existe un ouvert \mathcal{U} de \mathbb{R}^n contenant \mathbf{x} tel que $\forall \mathbf{y} \in \mathcal{U} \cap \mathcal{D}, f(\mathbf{y}) \geqslant f(\mathbf{x}) = u. \Longrightarrow (\mathcal{U} \cap \mathcal{D}) \subset \mathbb{C}_{\mathcal{D}} f^{-1}(]-\infty,u[)$, et par définition c'est un ouvert de \mathcal{D} ; $\mathbb{C}_{\mathcal{D}} f^{-1}(]-\infty,u[)$ est donc un voisinage de \mathbf{x} dans \mathcal{D} .
- **4.** Déduire de 2 et 3 que $f^{-1}(]-\infty,u[)$ est un fermé de $\mathcal{D}.$

Exercices

3. Soit $\mathbf{x} \in f^{-1}(\{u\})$; appliquer l'hypothèse que \mathbf{x} est un min local pour montrer que $\mathbb{C}_D f^{-1}(]-\infty,u[)$ est un voisinage de \mathbf{x} .

Exercices

Soit $\mathbf{x} \in f^{-1}(\{u\})$; puisque \mathbf{x} est un min local il existe un ouvert \mathcal{U} de \mathbb{R}^n contenant \mathbf{x} tel que $\forall \mathbf{y} \in \mathcal{U} \cap \mathcal{D}$, $f(\mathbf{y}) \geqslant f(\mathbf{x}) = u$. \Longrightarrow $(\mathcal{U} \cap \mathcal{D}) \subset \mathbb{C}_{\mathcal{D}} f^{-1}(] - \infty, u[)$, et par définition c'est un ouvert de \mathcal{D} ; $\mathbb{C}_{\mathcal{D}} f^{-1}(] - \infty, u[)$ est donc un voisinage de \mathbf{x} dans \mathcal{D} .

4. Déduire de 2 et 3 que $f^{-1}(]-\infty,u[)$ est un fermé de $\mathcal{D}.$

On déduit de 2 et 3 que $\mathbb{C}_{\mathcal{D}}\,f^{-1}(]-\infty,u[)$ est un voisinage de tous ses points.

3. Soit $\mathbf{x} \in f^{-1}(\{u\})$; appliquer l'hypothèse que \mathbf{x} est un min local pour montrer que $\mathbb{C}_D f^{-1}(]-\infty,u[)$ est un voisinage de \mathbf{x} .

Exercices

Soit $\mathbf{x} \in f^{-1}(\{u\})$; puisque \mathbf{x} est un min local il existe un ouvert \mathcal{U} de \mathbb{R}^n contenant \mathbf{x} tel que $\forall \mathbf{y} \in \mathcal{U} \cap \mathcal{D}$, $f(\mathbf{y}) \geqslant f(\mathbf{x}) = u$. \Longrightarrow $(\mathcal{U} \cap \mathcal{D}) \subset \mathbb{C}_{\mathcal{D}} f^{-1}(] - \infty, u[)$, et par définition c'est un ouvert de \mathcal{D} ; $\mathbb{C}_{\mathcal{D}} f^{-1}(] - \infty, u[)$ est donc un voisinage de \mathbf{x} dans \mathcal{D} .

4. Déduire de 2 et 3 que $f^{-1}(]-\infty,u[)$ est un fermé de $\mathcal{D}.$

On déduit de 2 et 3 que $\mathbb{C}_{\mathcal{D}} f^{-1}(]-\infty,u[)$ est un voisinage de tous ses points. C'est donc un ouvert de \mathcal{D} et donc son complément $f^{-1}(]-\infty,u[)$ est un fermé de \mathcal{D} .

On a montré en 1 et 4 que $f^{-1}(]-\infty,u[)$ est à la fois fermé et ouvert dans \mathcal{D} .

On a montré en 1 et 4 que $f^{-1}(]-\infty,u[)$ est à la fois fermé et ouvert dans \mathcal{D} . Puisque \mathcal{D} est connexe, $f^{-1}(]-\infty,u[)$ est soit \emptyset soit \mathcal{D} .

On a montré en 1 et 4 que $f^{-1}(]-\infty,u[)$ est à la fois fermé et ouvert dans \mathcal{D} . Puisque \mathcal{D} est connexe, $f^{-1}(]-\infty,u[)$ est soit \emptyset soit \mathcal{D} . Puisque $\mathbf{u}\in\mathcal{D}$ n'est pas dans $f^{-1}(]-\infty,u[)$, c'est l'ensemble vide.

On a montré en 1 et 4 que $f^{-1}(]-\infty,u[)$ est à la fois fermé et ouvert dans \mathcal{D} . Puisque \mathcal{D} est connexe, $f^{-1}(]-\infty,u[)$ est soit \emptyset soit \mathcal{D} . Puisque $\mathbf{u}\in\mathcal{D}$ n'est pas dans $f^{-1}(]-\infty,u[)$, c'est l'ensemble vide. Ainsi, $\forall \mathbf{x}\in\mathcal{D},\,f(\mathbf{x})\geqslant f(\mathbf{u})\,;\,\mathbf{u}$ est donc un minimum global de f sur \mathcal{D} .

▼ Retour