Deep Learning for Side Channel Attack

Group 19 E/17/038 E/17/101 E/17/292

Contents

- What is SCA?
- Side Channel Attacks
- Countermeasures
- What is RFTC?
- Why RFTC?
- Our Aim
- Summary of literature
- Methodology
- Current work done
- Work plan
- Expected outcomes and impacts

What is SCA?

Attack that exploits information leaked through the physical implementation

Side Channel Attacks

- Power Analysis Attacks
- Differential Power Analysis (DPA)
- Simple Power Analysis (SPA)
- Timing Attacks
- Electromagnetic Radiation Analysis (e.g., Van Eck phreaking)
- Acoustic Cryptanalysis

Power Analysis Attack

- Revealing the secret information via the power dissipation of the device (proposed by Paul Kocher in 1999)
- Why?
 - CMOS gates are the most popular building blocks of IC manufacturing
 - Power dissipation of CMOS gates depend on inputs

Countermeasures

- Masking: randomizing or masking the sensitive data during cryptographic operations
- Noise Injections: introduces additional noise in the side-channel signals
- Random Delay Insertion (RDI): inserts random delays into the execution of instructions.
- Random Clock Dummy Data (RCDD): inserts random dummy data into the clock signal.

What is RFTC?

- Random Frequency Tuning Countermeasure
- Introduces random frequency variations in the clock signal during the execution of cryptographic operations
- Instead of using a fixed clock frequency, RFTC dynamically changes the clock frequency at different phases of the operation.
- For example, during the key generation phase, the clock frequency might be set to 800 kHz, and during the encryption phase, it might be set to 1.2 MHz.

Why RFTC?

- None of the countermeasures were tested and proven to be secure against
 Correlation Power Analysis (CPA) based attacks (Preprocessed methodologies):
 - Dynamic Time Warping based CPA attacks (DTW-CPA)
 - Principal Component Analysis based CPA attacks (PCA-CPA)
 - Fast Fourier Transform based CPA attacks (FFT-CPA)
- RFTC is tested against all three attacks and shown to be secure for up to four million encryptions.
- But not tested against ML attacks

Project - Our Aim

- Testing RFTC against Machine Learning models using AISY framework
- Improving MLP and CNN models to attack RFTC

Summary Of Literature Review

- What are the countermeasures taken already
- RFTC what and why
- template and deep learning approaches
- AISY

Template and Deep Learning Approach

Template Attack

- requires a pre-computation phase
- performs statistical analysis on the new set of side-channel power traces from the target device
- Issues: in high-dimensional spaces, making it difficult to estimate accurate statistical models or capture meaningful patterns

Template and Deep Learning Approach

Deep Learning Approach

- Choice of algorithm depends on the nature of the problem or issue and the characteristics of the data
- Eg: Recurrent Neural Networks (RNNs), Long Short Term Memory (LSTM), Generative Adversarial Networks (GANs), Reinforcement Learning (RL), Deep neural networks (DNNs), Convolutional neural networks (CNNs), multilayer perceptron (MLP)
- CNN and MLP has played a major role

AISY framework

- a deep learning-based framework for profiling side-channel analysis
- brings state of-the-art deep learning-based side-channel attacks
- enables the users to run the analyses and report the results efficiently
- offers all commonly used settings and allows users to extend the framework according to their needs easily.
- comes with the option to store all analysis results in an SQLite database
- web application provides a user-friendly way to visualize analysis, plots, results, and tables
- user can generate the full script used to produce results stored in the web application database

Methodology

- Create custom dataset with available traces
- Convert that to .h5 file format
- Test various models and find best ML architecture to attack unprotected AES
- Use that model to attack AES protected with RFTC (use available traces)
- Find a better model if previous model was not able to break AES protected with RFTC
- Compare the results with previous works

Current work done

- Literature Review
- Going through more papers regarding RFTC countermeasure
- Following tutorials to learn more about MLP and CNN
- Going through AISY framework code structure

Work Plan

Semester 7

Week	1	2	3	4	5	6	7	8
Finalize topic								
Literature Search				•	•			
Study AISY framework								
Project Proposal								
Make .h5 format dataset								
Report writing				1	1	1		

Work Plan

Semester 8

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Attack unprotected AES using MLP															
Attack unprotected AES using CNN															
Attack AES protected with RFTC using MLP															
Attack AES protected with RFTC using CNN															
Evaluation															
Report Writing															
Finalize report															

Expected Outcome & Impacts

- Find best ML architecture to work with RFTC
- Models and parameters
- Results of attacks
- Github repository regarding AISY

Thank You

Q & A

