Artificial Intelligence – Week 3 (Homework Assignment)

Instructor: Teerapong Panboonyuen

Course Repository:

https://github.com/kaopanboonyuen/SC310005_ArtificialIntelligence_2025s1

Dataset: Fictional Characters

o Objective

This week, you will practice supervised machine learning techniques using the provided cancer_med_dataset. Your task is to improve upon the models developed in class by exploring at least **five different machine learning algorithms or techniques**, fine-tuning hyperparameters, or testing new models.

Optionally, you may experiment with modern AI approaches like Convolutional Neural Networks (CNNs) or other deep learning models, but your final models must **outperform the accuracy baseline** achieved in class.

Dataset Description

The dataset contains patient medical data related to cancer diagnosis with features such as:

- Age
- Gender
- BMI
- Smoking habits
- Genetic Risk
- Physical Activity
- Alcohol Intake
- Cancer History
- Diagnosis (target variable)
- Symptom (categorical textual feature)

Assignment Instructions

You must:

- Load the dataset (cancer_med_dataset.csv) into a pandas DataFrame.
- Experiment with at least **five different supervised learning techniques** (e.g., Decision Tree, Random Forest, Logistic Regression, Support Vector

Machines, k-NN, Gradient Boosting, Neural Networks).

- Fine-tune hyperparameters for each model to improve performance (e.g., tree depth, number of estimators, regularization strength, learning rate).
- Optionally, try modern AI models, such as CNNs or other deep architectures, but ensure they outperform the class baseline.
- Convert categorical features properly (e.g., one-hot encoding for symptoms and gender as taught).
- Split your data into train/test sets with a fixed random seed use random_state=42 everywhere to ensure reproducibility.
- Document your model training, evaluation metrics (accuracy, precision, recall, F1), and insights.
- Present a summary table comparing all models.
- Visualize results using confusion matrices, ROC curves, and AUC scores.
- Provide clear explanations of how to interpret these metrics and visualizations.

Examples of ML Techniques You May Explore

- Decision Tree Classifier
- Random Forest Classifier
- Logistic Regression
- Support Vector Machine (SVM)

- k-Nearest Neighbors (k-NN)
- Gradient Boosting Machines (XGBoost, LightGBM)
- Multi-layer Perceptron (Neural Networks)
- Convolutional Neural Networks (CNN) optional and advanced

∇ Deliverables

Submit a Jupyter notebook or Google Colab file that includes:

- Code implementing the ML models and training process.
- Comments explaining your approach and reasoning.
- Clear outputs displaying evaluation metrics and comparisons.
- Visualizations (confusion matrices, ROC curves, etc.).
- A summary section with a results comparison table.
- (Optional) A section detailing any advanced techniques or deep learning models used.

© Evaluation Criteria

- Correctness and completeness of your ML pipeline.
- Effectiveness in improving accuracy beyond the class baseline.
- Proper data preprocessing and encoding techniques.

- Use of random_state=42 or equivalent seed to ensure reproducibility.
- Quality of explanations and code readability.
- Creativity and use of advanced techniques for bonus credit.
- Clear and insightful visualizations of results.

Getting Started: Dataset Access

You can download the dataset here:

https://github.com/kaopanboonyuen/SC310005_ArtificialIntelli gence_2025s1/raw/main/dataset/cancer_med_dataset.csv (Provided via class repository or link)

Submission Deadline

The final submission date will be announced and agreed upon during class. Please ensure you note this date and plan your work accordingly.