Ebony (t) Page 1 of 3

Designation

Diospyros spp. (T)

Typical uses

Fancy articles; inlays; shuttles; turnery; piano keys; finger boards of stringed instruments; bowls.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (tropical)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Wood	100	%
Price		

* 6.7

10.8

USD/kg

Physical properties

Price

• • •				
Density	940	- 1.14e3	kg/m^3	

Mechanical properties

Mechanical properties				
Young's modulus	* 6.75	-	7.54	GPa
Yield strength (elastic limit)	* 2.04	-	2.52	MPa
Tensile strength	3.4	-	4.2	MPa
Elongation	* 0.15	-	0.18	% strain
Compressive strength	9.54	-	11.7	MPa
Flexural modulus	6.14	-	6.85	GPa
Flexural strength (modulus of rupture)	* 3.4	-	4.2	MPa
Shear modulus	* 0.698	-	0.96	GPa
Shear strength	* 34.9	-	42.5	MPa
Rolling shear strength	* 1.29	-	3.87	MPa
Bulk modulus	* 3.22	-	3.63	GPa
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.7			
Hardness - Vickers	6.3	-	7.7	HV
Hardness - Brinell	* 62.1	-	75.9	MPa
Hardness - Janka	6.3	-	7.7	kN
Fatigue strength at 10^7 cycles	* 1.02	-	1.26	MPa

Ebony (t)
Page 2 of 3

* 0.009	-	0.012	
0.04			
0.24	-	0.3	%
* 0.44	-	0.54	%
* 3.2	-	7	%
9.6	-	11.7	%
20.8	-	23.1	%
* 16.6	-	20.3	kJ/m^3
_	* 3.2 9.6 20.8	* 3.2 - 9.6 - 20.8 -	* 3.2 - 7 9.6 - 11.7 20.8 - 23.1

Impact & fracture properties

Thermal properties

Glass temperature	77	-	102	°C
Maximum service temperature	120	-	140	°C
Minimum service temperature	* -73	-	-23	°C
Thermal conductivity	* 0.19	-	0.232	W/m.°C
Specific heat capacity	1.66e3	-	1.71e3	J/kg.°C
Thermal expansion coefficient	* 40.6	-	52.7	μstrain/°C

Electrical properties

Electrical resistivity	* 2.1e14	-	7e14	µohm.cm
Dielectric constant (relative permittivity)	* 5.51	-	6.73	
Dissipation factor (dielectric loss tangent)	* 0.083	-	0.101	
Dielectric strength (dielectric breakdown)	* 1	-	2	MV/m

Magnetic properties

Magnetic type	Non-magnetic

Optical properties

Transparency	Opaque
--------------	--------

Durability

Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good

Flammability

	Highly flammable				
Primary production energy, CO2 and water					
Embodied energy, primary production	* 1	11.6	-	12.8	MJ/kg
CO2 footprint, primary production	* C).574	-	0.633	kg/kg
Water usage	* 6	665	-	735	l/kg
Processing energy, CO2 footprint & water					
Coarse machining energy (per unit wt removed)	* 0).572	-	0.632	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0	0.0429	-	0.0474	kg/kg
Fine machining energy (per unit wt removed)	* 1	1.44	-	1.6	MJ/kg
Fine machining CO2 (per unit wt removed)	* C).108	-	0.12	kg/kg
Grinding energy (per unit wt removed)	* 2	2.41	-	2.67	MJ/kg
Grinding CO2 (per unit wt removed)	* C).181	-	0.2	kg/kg
Recycling and end of life					
Recycle		×			
Recycle fraction in current supply	8	3.55	-	9.45	%
Downcycle	,	/			
Combust for energy recovery	,	/			
Heat of combustion (net)	* 1	19.8	-	21.3	MJ/kg
Combustion CO2	* 1	1.69	-	1.78	kg/kg
Landfill	,	/			
Biodegrade	,	/			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse			
Reference			
Shape			