#### **Artificial Potential Fields**



Constructing Artificial Potential Fields

# **SECTION 4.1**



- The basic idea is to try to construct a smooth function over the extent of the configuration space which has high values when the robot is near to an obstacle and lower values when it is further away.
- We also want this function to have it's lowest value at the desired goal location and it's value should increase as we move to configurations that are further away.



- If we can construct such a function we can use it's gradient to guide the robot to the desired configuration.
- As usual it's easiest to start with an example in a 2 dimensional configuration space where we can more easily visualize what is happening.
- This figure shows a typical 2 dimensional configuration space where the black regions correspond to configuration space obstacles and the red dot indicates the desired goal configuration.



### **Example 2D Configuration Space**





#### Constructing an Attractive Potential Field

• An attractive potential function,  $f_a(\mathbf{x})$ , can be constructed by considering the distance between the current position of the robot,  $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ , and the desired goal location,  $\mathbf{x}_g = \begin{pmatrix} x_1^g \\ x_2^g \end{pmatrix}$ , as follows:

$$f_a(\mathbf{x}) = \xi(\|\mathbf{x} - \mathbf{x}_g\|^2)$$

• Here  $\xi$  is simply a constant scaling parameter



### Visualizing the Attractive Potential Field





#### Constructing a Repulsive Potential Field

• A repulsive potential function in the plane,  $f_r(\mathbf{x})$ , can be constructed based on a function,  $\rho(\mathbf{x})$ , that returns the distance to the closest obstacle from a given point in configuration space,  $\mathbf{x}$ .

$$f_r(\mathbf{x}) = \begin{cases} \eta(\frac{1}{\rho(\mathbf{x})} - \frac{1}{d_0})^2 & \text{if } \rho(\mathbf{x}) \le d_0 \\ 0 & \text{if } \rho(\mathbf{x}) > d_0 \end{cases}$$

• Here  $\eta$  is simply a constant scaling parameter and  $d_0$  is a parameter that controls the influence of the repulsive potential



## Visualizing the Repulsive Potential Field





### Visualizing the Combined Potential field





#### **Gradient Based Control Strategy**

- While robot position is not close enough to goal
  - Choose direction of robot velocity based on the gradient of the artificial potential field:

$$\mathbf{v} \propto -\nabla f(\mathbf{x}) = -\left(\frac{\frac{\partial f(\mathbf{x})}{\partial x_1}}{\frac{\partial f(\mathbf{x})}{\partial x_2}}\right) \tag{1}$$

- Choose an appropriate robot speed,  $\|\mathbf{v}\|$ 



#### **Animation of Gradient Based Control Scheme**





#### **Quiver Plot**

 The arrows in this figure denote the direction of the gradient vector at various points in the configuration space.





### Trajectory Plot

Example gradient based trajectory.





### **Trajectory Plot**

Example gradient based trajectory.





### **Trajectory Plot**

Example gradient based trajectory.



