Algorytmy i Struktury Danych II ZESTAW 01

Autor: Marcin Wolski

Typ danych setSimple

Typ danych setSimple reprezentuje matematyczny zbiór oraz operacje które dla dwóch zbiorów realizują:

- sumę zbiorów
- część wspólną zbiorów
- różnicę zbiorów
- sprawdzanie identyczności zbiorów

oraz dla elementu zbioru realizują:

- wstawanie elementu do zbioru
- usuwanie elementu ze zbioru
- sprawdzanie czy element należy do zbioru

Badanie złożoności operacji

Czas wykonania operacji zmierzony został dla zbiorów o rozmiarach [1, 500]. Dla każdej wielkości obliczona została średnia z 1000 powtórzeń działania. Wygenerowane zostały pliki z danymi które zwizualizowane zostały za pomocą programu gnuplot.

Teoretyczna złożoność operacji - Notacja duże O

v i v	U	
Operacja	Tablica	Lista wiązana
Wstawianie elementu	O(1)	O(n)
Usuwanie elementu	O(1)	O(n)
Sumowanie dwóch zbiorów	O(n)	O(n)
Przecięcie dwóch zbiorów	O(n)	O(n)
Różnica dwóch zbiorów	O(n)	O(n)
Sprawdzanie identyczności dwóch zbiorów	O(1)	O(n)

Wykresy

Wykresy przedstawiające złożoność obliczeniową operacji.

Typ danych setLinked

Typ danych set Linked reprezentuje matematyczny zbiór zaimplementowany na bazie list wiązanych i realizuje te same operacje co set Simple.

Wykresy

Wykresy przedstawiające złożoność obliczeniową operacji.

Porównanie implementacji

Porównanie implementacji zbiorów na bazie tablic i implementacji zbiorów na bazie list wiązanych.

Cechy tablicowej implementacji zbioru:

- a. Stały, odgórnie nałożony rozmiar zbioru.
- Alokowana pamięć jest równa górnemu limitowi niezależnie od wykorzystania
- c. Łatwy dostęp do losowych węzłów.
- d. Wstawianie elementu jest kosztowne, ponieważ musimy stworzyć miejsce dla nowego elementu i wszystkie inne przesunąć.

Cechy implementacji zbioru na bazie list wiązanych:

- a. Dynamiczny rozmiar zbioru.
- b. Łatwe wstawianie/usuwanie. Wstawianie elementu nie jest kosztowne, ponieważ mamy wskaźnik na głowę i możemy przejść przez niego do dowolnego węzła i wstawić nowy węzeł w wybranej pozycji.
- c. Trudny dostęp do losowych węzłów. Musimy sekwencyjnie przejść do wybranego węzła zaczynając od głowy.
- d. Każdy element zbioru wymaga dodatkowego miejsca w pamięci na wskaźnik do niego.

Wnioski

Która implementacja jest lepsza?

Jeśli operacje dodawania lub usuwania są ważniejsze niż prędkość odczytu, warto korzystać z list wiązanych.

Jeśli zbiór ma dużo elementów, to lepiej skorzystać z implementacji tablicowej, ponieważ rozmiar który zajmuje w pamięci jest stały. W przypadku list wiązanych, każdy wezeł trzyma dodatkowo wskaźnik do siebie w pamięci.