

Machine learning, ALAMO, and constrained regression

Nick Sahinidis

Acknowledgments:

Alison Cozad, David Miller, Zach Wilson

MACHINE LEARNING PROBLEM

Build a model of output variables z as a function of input variables x over a specified interval

Independent variables:
Operating conditions, inlet flow properties, unit geometry

Dependent variables: Efficiency, outlet flow conditions, conversions, heat flow, etc.

DESIRED MODEL ATTRIBUTES

- Accurate
 - We want to reflect the true nature of the system
- Simple
 - Interpretable
 - Usable for algebraic optimization
- Generated from a minimal data set
 - Reduce experimental and simulation requirements

FITTING MODELS TO DATA

$$z = x^2$$

FITTING MODELS TO DATA

$$z = \exp(x)$$

FITTING MODELS TO DATA

$$z = x^2 + \exp(x)$$

EXAMPLE ALAMO INPUT FILE

```
ninputs 1
noutputs 1
xmin -5
xmax 5
xlabel x
zlabel z
ndata 11
BEGIN DATA
        16
-3
-2
-1
        25
END_DATA
logfcns 1
expfcns 1
                           128 alternative models
sinfcns 1
cosfcns 1
monomialpower 1 2 3
```

ALAMO OUTPUT

```
Step 1: Model building using BIC
Model building for variable z
BIC = -0.100E+31 with z = x**2.0
Calculating quality metrics on observed data set.
Quality metrics for output z
SSE OLR:
                   0.00
SSE:
                   0.00
RMSE:
                   0.00
R2:
                   1.00
Model size:
BIC:
                   -0.100E+31
                   -9.00
Cp:
AICc:
                   -0.100E+31
                   -0.100E+31
HQC:
MSE:
                   0.00
                   0.00
SSEp:
RIC:
                   3.89
```

Total execution time 0.30E-02 s

ALAMO

Automated Learning of Algebraic Models

MODEL COMPLEXITY TRADEOFF

MODEL IDENTIFICATION

- Identify the functional form and complexity of the surrogate models z=f(x)
- Seek models that are combinations of basis functions
 - 1. Simple basis functions

Category		$X_j(x)$
I.	Polynomial	$(x_d)^{\alpha}$
II.	Multinomial	$\prod_{d \in \mathcal{D}' \subseteq \mathcal{D}} (x_d)^{\alpha_d}$
III.	Exponential and logarithmic	$\exp\left(\frac{x_d}{\gamma}\right)^{\alpha}, \log\left(\frac{x_d}{\gamma}\right)^{\alpha}$

- 2. Radial basis functions for parametric regression
- 3. User-specified basis functions for tailored regression

OVERFITTING AND TRUE ERROR

• Step 1: Define a large set of potential basis functions

MODEL SELECTION CRITERIA

 Balance fit (sum of square errors) with model complexity (number of terms in the model; denoted by p)

Corrected Akaike Information Criterion

$$AIC_c = N \log \left(\frac{1}{N} \sum_{i=1}^{N} (z_i - X_i \beta)^2 \right) + 2 p + \frac{2 p (p+1)}{N - p - 1}$$

Mallows' Cp

$$C_p = \frac{\sum_{i=1}^{N} (z_i - X_i \beta)^2}{\widehat{\sigma^2}} + 2\mathbf{p} - N$$

Hannan-Quinn Information Criterion

$$HQC = N \log \left(\frac{1}{N} \sum_{i=1}^{N} (z_i - X_i \beta)^2\right) + 2 \mathbf{p} \log(\log(N))$$

Bayes Information Criterion

$$BIC = \frac{\sum_{i=1}^{N} (z_i - X_i \beta)^2}{\widehat{\sigma^2}} + \mathbf{p} \log(N)$$

Mean Squared Error

$$MSE = \frac{\sum_{i=1}^{N} (z_i - X_i \beta)^2}{N - p - 1}$$

BRANCH-AND-BOUND

Falk and Soland, 1969; Soland 1971

BRANCH-AND-REDUCE

- Constraint propagation and duality-based bounds tightening
 - Ryoo and Sahinidis, 1995, 1996
 - Tawarmalani and Sahinidis, 2004
- Finite branching rules
 - Shectman and Sahinidis, 1998
 - Ahmed, Tawarmalani and Sahinidis, 2004
- Convexification
 - Tawarmalani and Sahinidis, 2001, 2002, 2004, 2005
 - Khajavirad and Sahinidis, 2012, 2013, 2014, 2016
 - Zorn and Sahinidis, 2013, 2013, 2014
- Implemented in BARON
 - First deterministic global optimization solver for NLP and MINLP

GLOBAL MINLP SOLVERS IN GAMS

Carnegie Mellon University

GLOBAL MINLP SOLVERS ON MINLPLIB2

Con: 1893 (1—164,321), Var: 1027 (3—107,223), Disc: 137 (1—31,824)

CPU TIME COMPARISON OF METRICS

- Eight benchmarks from the UCI and CMU data sets
- Seventy noisy data sets were generated with multicolinearity and increasing problem size (number of bases)

- BIC solves more than two orders of magnitude faster than AIC, MSE and HQC
 - Optimized directly via a single mixed-integer convex quadratic model

MODEL QUALITY COMPARISON

- BIC leads to smaller, more accurate models
 - Larger penalty for model complexity

ALAMO

Automated Learning of Algebraic Models

ERROR MAXIMIZATION SAMPLING

- Search the problem space for areas of model inconsistency or model mismatch
- Find points that maximize the model error with respect to the independent variables

$$\max_{x} \left(\frac{z(x) - \hat{z}(x)}{z(x)} \right)^{2}$$

- Optimized using derivative-free solver SNOBFIT (Huyer and Neumaier, 2008)
- SNOBFIT outperforms most derivative-free solvers (Rios and Sahinidis, 2013)

COMPUTATIONAL RESULTS

Goal – Compare methods on three target metrics

- **1** Model accuracy
- 2 Data efficiency
- **3** Model simplicity

- Modeling methods compared
 - ALAMO modeler Proposed best subset methodology
 - The LASSO The lasso regularization
 - Ordinary regression Ordinary least-squares regression
- Sampling methods compared (over the same data set size)
 - ALAMO sampler Proposed error maximization technique
 - Single LH Single Latin hypercube (no feedback)

Fraction of problems solved

1 Model accuracy

2 Data efficiency

Results over a test set of 45 known functions treated as black boxes with bases that are available to all modeling methods.

KEY INGREDIENT: OPTIMIZATION

- Surrogate model identification
 - Simple, accurate model identification
 - Integer optimization
- Error maximization sampling
 - More information found per simulated data point
 - Derivative-free optimization

CONSTRAINED REGRESSION

$$0 \le [A]_t \le [A]^{\max}$$

Safe extrapolation

CONSTRAINED REGRESSION

Standard regression

Constrained regression

- Challenging due to the semi-infinite nature of the regression constraints
- Use intuitive restrictions among predictor and response variables to infer nonintuitive relationships between regression parameters

IMPLIED PARAMETER RESTRICTIONS

Find a model \hat{z} such that $\hat{z}(x) \geq 0$ with a fixed model form:

$$\hat{z}(x) = \beta_1 x + \beta_2 x^3$$

Step 1: Formulate constraint in z- and x-space

Step 2: Identify a sufficient set of β-space constraints

$$\min_{\beta_1,\beta_2} \quad \sum_{i=1}^4 \left(z_i - \left[\beta_1 \, x + \beta_2 \, x^3\right]\right)^2 \qquad \qquad \min_{\beta_1,\beta_2} \quad \sum_{i=1}^4 \left(z_i - \left[\beta_1 \, x + \beta_2 \, x^3\right]\right)^2 \\ \text{s.t.} \quad \beta_1 \, x + \beta_2 \, x^3 \geq 0 \quad x \in [0,1] \qquad \qquad \text{s.t.} \quad \begin{cases} 0.240 \, \beta_1 + 0.0138 \, \beta_2 \geq 0 \\ 0.281 \, \beta_1 + 0.0223 \, \beta_2 \geq 0 \\ 0.120 \, \beta_1 + 0.00173 \, \beta_2 \geq 0 \\ 0.138 \, \beta_1 + 0.00263 \, \beta_2 \geq 0 \end{cases}$$

Global optimization problems solved with BARON

TYPES OF RESTRICTIONS

Response bounds

Individual responses

Multiple responses

Response derivatives

Alternative domains

Boundary conditions

CARBON CAPTURE SYSTEM DESIGN

Discrete decisions: How many units? Parallel trains?
 What technology used for each reactor?

Continuous decisions: Unit geometries

 Operating conditions: Vessel temperature and pressure, flow rates, compositions

BUBBLING FLUIDIZED BED

Bubbling fluidized bed adsorber diagram

- Model inputs (16 total)
 - Geometry (3)
 - Operating conditions (5)
 - Gas mole fractions (2)
 - Solid compositions (2)
 - Flow rates (4)

- Model outputs (14 total)
 - Geometry required (2)
 - Operating condition required (1)
 - Gas mole fractions (3)
 - Solid compositions (3)
 - Flow rates (2)
 - Outlet temperatures (3)

Model created by Andrew Lee at the National Energy Technology Laboratory

EXAMPLE MODELS - ADSORBER

$$P_{\text{in}} = \frac{1.0 \, P_{\text{out}} + 0.0231 \, L_b - 0.0187 \, \ln(0.167 \, L_b) - 0.00626 \, \ln(0.667 \, v_{\text{gi}}) - \frac{51.1 \, \text{xHCO3}_{\text{in}}^{\text{ads}}}{F_{\text{in}}^{\text{gas}}}$$

$$T_{\rm out}^{\rm sorb} = 1.0\,{\rm T_{in}^{gas}} - \frac{\left(1.77\cdot 10^{-10}\right)\,{\rm NX}^2}{\gamma^2} - \frac{3.46}{{\rm NX}\,{\rm T_{in}^{gas}}\,{\rm T_{in}^{sorb}}} + \frac{1.17\cdot 10^4}{{\rm F}^{\rm sorb}\,{\rm NX}\,{\rm xH2O_{in}^{ads}}}$$

$$\begin{array}{ll} F_{\rm out}^{\rm gas} & = & 0.797\,{\rm F_{in}^{\rm gas}} - \frac{9.75\,{\rm T_{in}^{\rm sorb}}}{\gamma} - 0.77\,{\rm F_{in}^{\rm gas}}\,{\rm xCO2_{in}^{\rm gas}} + 0.00465\,{\rm F_{in}^{\rm gas}}\,{\rm T_{in}^{\rm sorb}} - \\ & & 0.0181\,{\rm F_{in}^{\rm gas}}\,{\rm T_{in}^{\rm sorb}}\,{\rm xH2O_{in}^{\rm gas}} \end{array}$$

Carnegie Mellon University

SUPERSTRUCTURE OPTIMIZATION

MINLP solved with BARON

Carnegie Mellon University 33

CONCLUSIONS

- ALAMO provides algebraic models that are
 - ✓ Accurate
 - ✓ Simple
 - **✓** Generated from a minimal number of data points
- ALAMO's constrained regression facility allows modeling of
 - ✓ Bounds on response variables
 - ✓ Convexity/monotonicity of response variables
 - √ Variable groups
- Built on top of state-of-the-art optimization solvers
- ALAMO site: archimedes.cheme.cmu.edu/?q=alamo