

SCC.121: Fundamentals of Computer Science Sorting, Trees and Graphs

Shortest Paths in Graphs

Today's Lecture

Aim:

- Distances and Shortest Paths in graphs
- BFS in directed graphs
- Computing shortest paths in weighted graphs using Dijkstra's algorithm

Paths

- Path between nodes u and v:
 - Sequence of (non-repeating) nodes: $u, w_1, w_2, ..., v$
 - In the example, (1,2,3,5,4) is a path between 1 to 4

Shortest Paths

• Shortest path between nodes u and v = among all paths between u and v, the path that has the smallest total edge weight

Example:

- (1,2,3,5,4) is a path between 1 and 4 but not a shortest path
- (1,4) is a shortest path between 1 and 4
- (5,3) is a path between 5 and 3 but not a shortest path
- (5,4,1,3) is a shortest path between 5 and 3
- (1,2) is a shortest path between 1 and 2
- (1,3,2) is **also** a shortest path between 1 and 2

Shortest Path Problems

1. Shortest distances (to source):

Given a graph G = (V, E) and a source node s, compute the distance from all nodes $v \in V$ to s

2. Shortest paths (to source):

Given a graph G = (V, E) and a source node s, compute for each node $v \in V$ the shortest path from v to s.

3. Pathfinding (from source to target):

Given a graph G = (V, E), a source node s and a target node t, compute the shortest path from s to t.

Shortest Paths in Unweighted Graphs

Consider an unweighted graph G.

- ullet **BFS search** can compute shortest paths when G is an **unweighted** graph
 - Shortest path: contains less edges than any other paths
 - Even on directed graphs.

• Consider a directed, unweighted graph G.

	(1)	(2)	(3)	(4)	(5)	(6)
(1)	0	0	0	1	1	0
(2)	1	0	0	1	1	0
(3)	0	0	0	0	0	1
(4)	0	0	1	0	1	0
(5)	0	1	0	1	0	0
(6)	0	0	0	0	0	0

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

Queue 2 6

Traversal
4, 3, 5, 6, 2

Traversed edges

(4,3), (4,5), (3, 6), (5,2)

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

Traversal

4, 3, 5, 6, 2

Traversed edges

(4,3), (4,5), (3, 6), (5,2)

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

Traversal

4, 3, 5, 6, 2, 1

Traversed edges

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

Traversal

4, 3, 5, 6, 2, 1

Traversed edges

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

Traversal

4, 3, 5, 6, 2, 1

Traversed edges

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

Traversal

4, 3, 5, 6, 2, 1

Traversed edges

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

Traversal

4, 3, 5, 6, 2, 1

Traversed edges

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

Traversal

4, 3, 5, 6, 2, 1

Traversed edges

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

Traversal

4, 3, 5, 6, 2, 1

Traversed edges

(4,3), (4,5), (3,6), (5,2), (2,1)

BFS is done now.

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

BFS tree spans all nodes because all nodes can be reached from 4.

When Graphs are not Strongly Connected

When Graphs are not Strongly Connected

When Graphs are not Strongly Connected

When Graphs are not Strongly Connected

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

When Graphs are not Strongly Connected

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

When Graphs are not Strongly Connected

• Consider a directed, unweighted graph G. Compute BFS tree rooted at 4.

• When the graph is **not strongly-connected**, the **BFS may not visit all nodes**

Shortest Paths in Unweighted Graphs

BFS tree rooted at node 5

• BFS tree **contains** shortest paths from s to any node in G, when G is an (edge) unweighted graph.

Shortest Paths in Weighted Graphs?

- Shortest path in weighted graph:
 - The sum of weights on that path should be smaller than the sum of weights on any other path.

Shortest Paths in Weighted Graphs?

• Shortest path from source (5) to node 3 in G'?

$$(5,4,1,3)$$
 or $5 \rightarrow 4 \rightarrow 1 \rightarrow 3$

Shortest path when you consider weights (or distances), not hops.

Shortest Paths in Weighted Graphs?

- How do you compute shortest paths on weighted graph?
 - BFS does not work. Why?
 - Because BFS tree does not take edge weights into account.

Shortest Paths in Weighted Graphs

- Use Dijkstra's algorithm to solve the three shortest path problems
 - Shortest distances (from source)
 - Shortest paths (from source)
 - Pathfinding (from source)
- Linked to network routing protocols or robot exploration (or search) algorithms.
- Several extensions:
 - A* search algorithm
 - Bellman-Ford algorithm
 - Floyd-Warshall algorithm

Shortest Distances via Dijkstra's Algorithm

- Keep two arrays: visited[] and distanceToSource[]
- 1. Start at source, and initialize:
 - Initialize visited status of all nodes (besides source) to unvisited.
 - Initialize distances to source to ∞ for all nodes (except source), and to 0 for the source.
- 2. While not all nodes have been visited:
 - Visit (unvisited) node v with smallest distanceToSource.
 - For all neighbors of v, if the path going through v is shorter, then update distance.

Return distanceToSource.

For visited node v and neighbor u: If distToS[u] > distToS[v] + weight(u,v), then distToS[u] = distToS[v] + weight(u,v)

Shortest Distances via Dijkstra's Algorithm

Some intuition:

- 1. At the start, and through most of the algorithm, these are "approximate distances"
 - ∞ implies the node is "very far", or more precisely unreachable,
 - 0 implies the node is the source.
- 2. The **key idea** of Dijkstra's algorithm is to **improve these approximations, as you visit more and more nodes, until all distances to the source are accurate.**

3. (Invariant) When a node is visited, their distance to the source is accurate.

Shortest Distances via Dijkstra's algorithm


```
function Dijkstra(int source){
    for(int i = 1; i <= graph.size; i++){
        distanceToSource[i-1] = infinity
        visited[i-1] = false
    distToS[source-1] = 0;
    while(there remains unvisited vertices){
        visitedNode = unvisited node with min distanceToSource
                                                                   // Nodes are ints from 1 to size
        visited[visitedNode-1] = true;
        for(each neighborNode of visitedNode){
            estimatedDistance = distanceToSource[visitedNode] + weight(visitedNode, neighborNode);
            if(estimatedDistance < distanceToSource[visitedNode])</pre>
                 distanceToSource[visitedNode] = estimatedDistance;
    return distanceToSource; }
```


• Source is node 5.

visited

Look at neighbors of 5.

visited

Look at neighbors of 5.

visited

Next, visit node with smallest distance to source among unvisited nodes.

• Next, visit node with smallest distance to source among unvisited nodes.

Now, we visit node 4 and update the distance to source of its (unvisited) neighbors.

Now, we visit node 4 and update the distance to source of its (unvisited) neighbors.

visited

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
--	---

Next, visit node with smallest distance to source among unvisited nodes.

• Now, we visit node 1 and update the distance to source of its (unvisited) neighbors.

visited

• Now, we visit node 1 and update the distance to source of its (unvisited) neighbors.

visited

2 6	5	1	0
-----	---	---	---

Now, we visit node 1 and update the distance to source of its (unvisited) neighbors.

visited

T F F T T

DistanceToSource

distanceToSource[node 1] + weight(node 1, node 3) < distanceToSource[node 3]

Now, we visit node 1 and update the distance to source of its (unvisited) neighbors.

visited

T F F T T

DistanceToSource

distanceToSource[node 1] + weight(node 1, node 3) < distanceToSource[node 3]

Next, visit node with smallest distance to source among unvisited nodes.

visited

2 6	3	1	0
-----	---	---	---

Next, visit node with smallest distance to source among unvisited nodes.

Now, we visit node 3 and update the distance to source of its (unvisited) neighbors.

visited

2 6 3	1 0
-------	-----

Now, we visit node 3 and update the distance to source of its (unvisited) neighbors.

visited

T F T T T

DistanceToSource

distanceToSource[node 3] + weight(node 3, node 2) < distanceToSource[node 2]

Now, we visit node 3 and update the distance to source of its (unvisited) neighbors.

visited

2 6	3	1	0
-----	---	---	---

Next, visit node with smallest distance to source among unvisited nodes.

visited

2 6	3	1	0
-----	---	---	---

Next, visit node with smallest distance to source among unvisited nodes.

Now, we visit node 3 and update the distance to source of its (unvisited) neighbors.

visited

2 6	3	1	0
-----	---	---	---

• There are no unvisited neighbors, but also no unvisited nodes remaining.

visited

2 6	3 1	0
-----	-----	---

• There are no unvisited neighbors, but also no nodes remains unvisited.

visited

' ' ' ' '	Т	Т	Т	Т	Т
-------------------	---	---	---	---	---

DistanceToSource

2 6	3	1	0
-----	---	---	---

Dijkstra's algorithm terminates by returning distanceToSource

Shortest Paths via Dijkstra's Algorithm

- Keep three arrays: visited[], previousNode[] and distanceToSource[]
- 1. Start at source, and initialize:
 - Initialize visited status of all nodes (besides source) to unvisited.
 - Initialize distances to source to ∞ for all nodes (except source), and to 0 for the source.
 - Initialize previousNodes entries to null.
- 2. While not all nodes have been visited:
 - Visit (unvisited) node v with smallest distanceToSource.
 - For all neighbors of v, if the path going through v is shorter, then update distance **and set** previousNode[neighbor] to v
- Return distanceToSource and previousNode.

Pathfinding via Dijkstra's Algorithm

- Find shortest paths between two nodes: source and target.
- In Dijkstra's algorithm:
 - 2. While not all nodes have been visited:
 - Visit (unvisited) node v with smallest distanceToSource.
 - If current visited node is the target node, return distanceToSource[v] and pathToSource[v], where pathToSource[v] = (previousNode[v], previousNode[previousNode[v]], ...).
 - For all neighbors of v, if the distance of the path going through v is a better approximation, ...
 - Throw an exception: "target node not found"

Complexity of Dijkstra's Algorithm

- Worst-case time complexity of $O(n^2)$:
 - We visit each node once, and during each visit, we do O(1) operations per neighbors.
 - This amounts to O(m) operations where m is the number of edges.
 - And to get each new visited node, we find the unvisited node with minimum distance to source, which takes O(n) operations.
 - In total, this amounts to $O(n^2)$ operations.
- We can use **better data structures** (priority queues based on Fibonacci heaps, or self-balanced binary search trees, or other heaps) to improve Dijkstra's algorithm to:

 $O(m + n \log n)$ worst-case time complexity

Correctness of Dijkstra's Algorithm

- Dijkstra's algorithm only works if all edge weights are non-negative
- Correctness sketch:
 - Invariant = Whenever a node is visited, its distance to the source is correct.
 - Base case: True for the source at the beginning of the algorithm.
 - Induction step:
 - 1. For each newly visited node v_i , it has minimum value in distanceToSource array among all unvisited nodes.
 - 2. If there exists a shorter path from the source to v_i , then there must be an edge in that path between a visited node and an unvisited node u.
 - 3. In distanceToSource, the value of u should be smaller than distanceToSource[v_i], which is a contradiction.

Better Shortest Path Algorithms?

- 1. When we have extra information (heuristic) on distances from some nodes to source, we can use the **A* algorithm**.
- 2. If we have edges with negative weights (but not negative cycles) then you can use **Bellman-Ford.**
- 3. If you are fine with approximating the distances (or getting some "almost" shortest paths), then there are faster algorithms...

A* Search Algorithm

- For pathfinding only (from specified source to specified target), not from the source to all other nodes
- Core idea: use heuristics (on the distance from current node to specified target) to guide (i.e., be more efficient in) the search
 - For example, if **graph weights** represent **Manhattan distances** (e.g., driving along roads)
 - Then the heuristics could be straight-line distance (e.g., distance as the bird flies)
- If d(v) is the estimated distance from source to v in Dijkstra's algorithm, and h(v) the heuristic distance from node v to the target, then in A^* we compare the values:

$$d(v) + h(v)$$

Bellman-Ford

- Computes shortest path from specified source to all other nodes (like Dijkstra's algorithm)
 - Works for wider class of graphs, as it can work for (some) graphs with negative weights
 - Still, a major problem if there is a negative cycle (with negative total weight sum)
 - When there is a negative cycle, Bellman-Ford finds that cycle (but not all shortest paths)
- Core idea (like Dijkstra's algorithm): compute (over)estimations of the distances from the source to all other nodes, which you iteratively improve upon (or relax).
 - In Dijkstra's algorithm, you use a priority queue to decide which edge to relax,
 - In Bellman-Ford, you relax all edges every iteration, for a total of n-1 iterations
- Worst-Case Time Complexity: $O(n \cdot m)$

• Consider a directed, weighted graph G.

	(1)	(2)	(3)	(4)	(5)	(6)
(1)	0	0	0	1	2	0
(2)	8	0	0	3	1	0
(3)	0	0	0	0	0	2
(4)	0	0	5	0	2	0
(5)	0	3	0	1	0	0
(6)	0	0	0	0	0	0

previousivode							
2	null	null	2	null	null		

previousivode							
2	null	null	2	2	null		

previousNode						
2	null	null	2	2	null	

previousNode								
2	null	null	2	2	null			

• Consider a directed, weighted graph G. Computes shortest paths from node 2.

previousNode
2 null null 5 2 null

• Consider a directed, weighted graph G. Computes shortest paths from node 2.

previousNode
2 null null 5 2 null

previousNode							
2	null	4	5	2	null		

• Consider a directed, weighted graph G. Computes shortest paths from node 2.

	visited							
F	Т	F	Т	Т	F			

visited							
F	Т	F	Т	T	F		

previousNode						
2	null	4	5	2	null	

• Consider a directed, weighted graph G. Computes shortest paths from node 2.

• Consider a directed, weighted graph G. Computes shortest paths from node 2.

• Consider a directed, weighted graph G. Computes shortest paths from node 2.

visited							
F	Т	Т	Т	T	F		

• Consider a directed, weighted graph G. Computes shortest paths from node 2.

• Consider a directed, weighted graph G. Computes shortest paths from node 2.

• Consider a directed, weighted graph G. Computes shortest paths from node 2.

visited							
Т	Т	Т	Т	Т	F		

• Consider a directed, weighted graph G. Computes shortest paths from node 2.

• Consider a directed, weighted graph G. Computes shortest paths from node 2.

previousNode null 4 5 2 3

2

Summary

Today's lecture:

- More examples of BFS graph traversals (undirected and directed),
- BFS graph traversals do not suffice to copmute shortest paths in weighted graphs,
- Instead, Dijkstra's algorithm can compute shortest paths (and more) on weighted graphs (with non-negative edge weights).
- Next Lecture: Greedy algorithms.
- Any questions?