# Increasing Values with Red alder **Chris Rasor** Washington Dept. of Natural Resources Chris.Rasor@dnr.wa.gov

# Motivations for Growing Red alder: NW OR LOG PRICES & U.S. HOUSING STARTS



Sources: Glenn Ahrens summary from Housing - NAHB, Logs - ODF NW Oregon



# Prerequisites to Maximizing Alder Value

- Manage only on most productive sites Predicted 50-year SI > 27m/89ft. (Harrington 1986)
- 2. Manage for high quality saw logs on a short rotation (30-35 years)
  - 3. Optimize regeneration, density management
- Capitalize on smaller operational units (5-10 acre scale)
- 5. Retain natural red alder where compatible with your objectives

### **Step 1: Select Your Best Sites**

Red alder grows almost anywhere: Well-drained gravelly flood plains to poorly drained clay soils, BUT productivity is only optimal on the ideal sites. Proper site selection is prerequisite to success.

#### Key Physical Site Characteristics<sup>1</sup>:

- > Topography:
  - ➤ Low elevation < 1000' (Summarizes length of growing season and temperature)
  - ➤ Slopes <20% (allows for ground-based harvesting)
  - > Aspect: Key = sheltered from sun, wind
    - North or NE best, South worst, West aspects risk wind exposure
    - ➤ Effects of aspect greatly reduced when slopes <10%
- > Soils:
  - ➤ Well drained, good rooting depth (>30 inches)
  - > Loam, silt loam, clay loam (high water holding capacity)

# Site Selection Steps

#### **Productivity assessment**

- ARCGIS-based DNR model
  - Initial Screening tool
- Field verify all sites using these steps:
  - 1. Use GTR PNW-192 (Harrington)
  - 2. Identify understory plant association
  - 3. Measure red alder site trees (when available)
  - 4. Map frost pockets, root disease
  - 5. Delineate any other areas unsuitable for alder



#### **ARCGIS-based Site Selection**





### Frost Pocket Screening

- Cold air settling: Any depressions on flat (<5%) topography
- Macro cold-air drainage: Draws connecting areas of high to low elevation that drain large masses of cold air (valley bottoms)
- 3. <u>Cold-air damming:</u> Lower portions of units where cold air backs-up from vegetative barriers such as riparian areas, or topographical obstructions such as ridges or road fills

# Frost Damage Illustration

Freeze damage prior to lifting in nursery, noticed in the field!



Frost kill in field (year 1)



# Step 2: Site Preparation

#### **GOALS OF SITE PREPARATION:**

- 1) Create plantable spots (every 8-9 feet)
  - a) Include an 18-24" cylinder free of obstruction around each plantable spot
- 2) Control competing vegetation (<20% 1<sup>st</sup> growing season)
  - a) Chemically site prep twice before planting on tough sites if Atrazine cannot be used?
  - b) Minimize green-up to maximize herbaceous weed control

# Step 3: Seedling Selection

#### **Target Seedling Characteristics**

- 1. 1-year bare-root seedlings: P+½
   (Webster) or 1+0 (Weyerhaeuser, IFA)
- 2. Sturdy (H/D < 120), well-branched seedling; buds all along the main stem
- 3. Seedling height: 24-48+ inches
- 4. Caliper (> 8mm, min. 6mm ) Caliper is key!
- 5. Dense fine roots, healthy root systems with *Frankia* nodules
- 6. Minimal large diameter woody roots
- 7. Free of botrytis, frost damage
- 8. Do not top-mow seedlings



# **Planting Execution**

#### Timing:

Plant mid-March to mid-April (after risk of damaging frost)

#### Planting Spot Characteristics (define in contract):

- Plant in mineral soil avoiding close proximity to stumps or slash piles (risks damage from reflective heat or mechanical abrasion)
  - Do not plant where obstructions intersect an imaginary 1-2 foot cylinder around seedling
- Avoid excess scalping (minimizes reflective heat around stem)
- Depth: settled groundline at root collar to 1 inch above

#### Stocking Levels:

- Target 540 tpa (9'x9') to 680 (8' x 8') evenly spaced
- Increase density on sites where vegetation cannot be controlled <20% during 1<sup>st</sup> season or if seedling quality is low

# Results of Poor Planting

Mechanical abrasion caused by slash pile edges



Shallow plant wind-rocked out of planting hole in year 2



#### Finalizing Establishment: 1ST YEAR MONITORING

#### **Trigger Necessary Actions:**

- 1. Measure total vegetation cover mid-July
  - a. <u>Herbicide release</u> if total cover >50% and overtopping
- 2. Live stocking in late summer
  - a. <u>Interplant</u> next spring if <440 live TPA or specific areas with trees greater than 13 feet apart.
  - b. <u>Identify, prevent causes of mortality-</u> sun scald, frost, botrytis and drought stress most common agents
- 3. Map frost pocket mortality
  - a. Re-plant frost pockets with conifer

# Optimize Density Management Precommercial Thinning (PCT)

PCT Timing: Year 5 to 9 when the following stand conditions are met:

- > HLC = 8-12 feet (lower if pruning live branches)
- ➤ Live crown ratio of CROP TREES: Target 60%
- Diameter growth trend of CROP TREES: Avoid decreases
- > Tree height: 25-35 feet
- Season: Anytime leaves are off so PCT crew can visually assess defect, spacing.

# **PCT Timing Critical!**



Hardwood Silviculture year 17 data projected to final harvest age:

- PCT to 230 tpa age 5 vs. age 8 vs. control

# Current Density Management Regimes

#### **With Commercial Thinning**

- Plant 540-680 TPA
- PCT age 5-9 to 230-300 tpa at 60% LCR
- Thin to 150-180 tpa at age
   15-19 at 50-60% LCR
- Harvest at age 30-35 years
  - 17-20 mbf/ac on best sites
  - 11-12 inch average diameter

#### **Without Commercial Thinning**

- Plant 540 TPA
- PCT age 5-9 to 230-250 tpa at 60% LCR
- Harvest at age 25-35 years
  - 13-20 mbf/ac
  - Lower diameters, higher %
     pulp, smaller sawlogs

# The Future of Alder Management

- Growth Models
  - RAP ORGANON growth model now available
     <a href="http://www.cof.orst.edu/cof/fr/research/organon/downld.htm">http://www.cof.orst.edu/cof/fr/research/organon/downld.htm</a>
- Yield & Value validation:
  - Commercial thinnings just beginning (Weyerhaeuser last year, WA DNR in the next few years)
  - Age 30+ measurements for many plantations to occur by 2025 will allow growth models to be adjusted for actual yields
- Further advancements in alder management depend on participation and support in cooperative alder research such as the Hardwood Silviculture Cooperative (HSC)



#### **References Cited**

- 1. C.A. Harrington, 1986. A Method of Site Quality Evaluation for Red Alder. <a href="http://www.treesearch.fs.fed.us/pubs/5556">http://www.treesearch.fs.fed.us/pubs/5556</a>
- 2. A. Dobkowski., 2006. Red Alder Plantation Establishment: Site Selection, Site Preparation, Planting Stock, and Regeneration *In* Red alder: A State of Knowledge, 2006 PNW- GTR 669. http://www.fs.fed.us/pnw/publications/gtr669/
- 3. Harrington, C.A.; Curtis, R.O., 1985. Height growth and site index curves for red alder. Res. Pap. PNW-358. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 14 p.
- 4. R. Wagner, 2000. Competition and critical-period thresholds for vegetation management decisions in young conifer stands. November/December Vol. 76, No. 6, The Forestry Chronicle.
- 5. Washington DNR 1996. Policy for Sustainable Forests.
- 6. P. Holmberg, 2006. Red alder- Regeneration and Stand Initiation: Techniques and Field Craft as Related to Final Returns on Early Investments. *In* Red alder: A State of Knowledge, 2006 PNW- GTR 669D. Pp. 137-143. http://www.fs.fed.us/pnw/publications/gtr669/