CS3102 Theory of Computation

Non-regular Languages

- A language is regular if:
 - There is a NFA/DFA which accepts exactly the strings in the language
 - There is a regular expression which describes exactly the strings in the language
- A lanugage is non-regular if:
 - There is no NFA/DFA which accepts exactly the strings in the language (there will always be false positives/negatives)
 - You cannot write a regular expression which describes exactly the strings in the lanuage (it always misses some or describes too many)
- Examples:
 - $\{a^n b^n \text{ for } n \in \mathbb{N}\}\$
 - $\{s \mid s \text{ is a palindrome}\}\$

Non-existence Proof!

Proving Non-Regularity

- For a language to be regular, there must be a DFA for it
- That same DFA must work for every string in the language (no matter how long)
- If the language is infinite, there must be some string in the language larger than the machine's size
- This long string it must visit at least one state twice on its way to the final state (pigeonhole principle)

"Pumping Lemma" Idea

- Any infinite regular language has a "long" string
- Any "long" string can be broken into 3 parts
 - A first part that takes you from start to some state
 - A middle part that takes you back to that same state
 - A last part that takes you to a final state
- Copying the middle part (or skipping) still takes us from start to a final state
- If we can't break up a "long" string into these parts which allows us to "pump" the middle, the language isn't regular

Pumping Lemma

- If L is a regular language, then there is a number $p \in \mathbb{N}$ such that, for any string $s \in L$ where |s| > p, we can find strings x, y, z where s = xyz satisfying all of:
 - 1. For each $i \geq 0$, $xy^iz \in L$
 - 2. |y| > 0
 - 3. $|xy| \leq p$
- Use contrapositive to show a language is not regular:
 - if you can find a long string where you can't do this, the language is not regular

$L = a^n b^n$ is not regular

- Let the "pumping length" be p
- Consider the string $a^p b^p$, note that $|a^p b^p| > p$, so if L is regular this string can be pumped
- If we had $a^p b^p = xyz$ there are 3 options for what y could be:
 - 1. $y \in a^+$
 - In this case, xy^iz has too many a's
 - 2. $y \in b^+$
 - In this case, xy^iz has too many b's
 - 3. $y \in a^+b^+$
 - In this case, xy^iz has a's and b's out of order
 - Since a^pb^p cannot be "pumped", L is not regular

$L = \{w \in \Sigma^* | w = w^R\}$ is not regular

- Let the "pumping length" be p
- Consider the string $a^p b^p a^p$, note that $|a^p b^p a^p| > p$, so if L is regular this string can be pumped
- If we had $a^p b^p a^p = xyz$ there are 3 options for what y could be:
 - 1. $y \in a^+$
 - In this case, xy^iz has too many a's before/after the b's
 - 2. $y \in a^+b^+ + b^+a^+$
 - In this case, xy^iz is not palindrome
 - 3. $y \in b^+$
 - In this case, $|xy| \ge p$ has too many b's
 - Since $a^p b^p$ cannot be "pumped", L is not regular

$L = a^n b^m$ where $n \neq m$ is not regular

- Idea: Use closure properties!
- Assume toward reaching a contradiction that L is regular
- In this case, \overline{L} is regular too (since complement preserves regularity)
- What strings are in \overline{L} ?
 - Those that have a b before an a, i.e. $(a + b)^*ba(a + b)^*$
 - Those from a^*b^* where the number of a's matches the number of b's
- Since \overline{L} is regular, so is $\overline{L} \cap a^*b^*$ (since both are regular and intersection preserves regularity)
- $\bar{L} \cap a^*b^* = a^nb^n$ which we know isn't regular!

Pumpable ≠ Regular

- The pumping lemma can only be used to show NON-regularity
 - If this languages is not pumpable, then it is not regular
- The pumping lamma cannot be used to prove a language is regular
 - Some non-regular languages are pumpable

A pumpable non-regular language

- $L = a^i b^j c^k$ where $i = 1 \Rightarrow j = k$
- $L \cap ab^*c^* = ab^nc^n$ which is not regular (it can't be pumped), so L isn't regular either
- I can pump everything of form ab^*c^* by letting y=a
- I can pump everything else by letting y have either just a's or just b's

Regexes/NFAs in Applications

- Bioinformatics
 - Read alignment
- Virus scanning
 - ClamAV
- Natural Language processing
 - Part-of-speech tagging
- Machine Learning
 - Decision Tree models
- High Energy Physics
 - Particle collider path tracing

High-performance NFA simulation

- Informally, how do NFAs transition?
- When is state q active?
- State q becomes active if when reading σ there is some state p that was active before which had a transition to q matching the input character σ
- Procedure: look at all of the active states, look at their outgoing transitions, check which ones match on σ , see if q is among those destinations

Homogeneous NFAs

- Restriction on NFAs
 - No ε transitions
 - All incoming transitions match on the same character for every state
 - Mutiple starts allowed
- Character matching is a property of the state rather than the transition

Example: α is third from last

Homgeneous NFA transition

- When is state $q\sigma$ active?
- State $q\sigma$ becomes active if when reading σ there is some state p that was active before which had a transition to $q\sigma$ matching the input character σ
- Procedure: look at all of the active states, look at their outgoing transitions, check which ones match on σ , see if $q\sigma$ is among those destinations

Bit Parallel Execution

- Use memory lookups and bitwise operations to simulate NFAs
- act: A |Q|-bit string representing which states are active
- adj: A $|Q| \times |Q|$ binary matrix representing state adjacency
- match: A $|\Sigma| \times |Q|$ binary matrix representing which states match each character

Example: α is third from last

4. Do bitwise AND on $trans_to$ and match[a]

0

0

0

next:

18

Bit Parallel Algorithm

- To find next on character σ :
- 1. $trans_to = \bigvee_{act[i]=1} adj[i]$
 - Find all states with a transition to them
 - All states adjacent to any active state
- 2. $next = match[\sigma] \land trans_to$
- 3. Find all states active after reading σ
 - All states that match on σ and are adjacent to an active state
- 4. act = next
 - Do the transition