Notes on Homodyne Measurement

Arnab Ghorui

January 15, 2025

1 Notations

- $\hat{\mathbf{x}} = (\hat{x}_1, \hat{p}_1, \dots, \hat{x}_n, \hat{p}_n)^T$, vector of cannonical operators.
- $\Omega = \bigoplus_{j=1}^n \Omega_1$, where $\Omega_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Note that, for n = 1, $[\hat{x}_i, \hat{x}_j] = i[\Omega_1]_{ij}$. Compactly,

$$[\hat{\mathbf{x}}, \hat{\mathbf{x}}^T] = i\Omega,$$
 (Canonical Commutation Relation)

where, think the commutation relation as element wise commutator.

- Borrowing from the optical and field-theoretical terminologies, canonical degrees of freedom are also referred to as 'modes'.
- $\hat{a}_j = \frac{\hat{x}_j + \hat{p}_j}{\sqrt{2}}$, annihilation operator.
- BCH formula: $e^{A+B} = e^A e^B e^{-\frac{1}{2}[A,B]}$ for operators A,B if [A,[A,B]] = [B,[B,A]] = 0

2 Prerequisits

2.1 Displacement operators

Definition 1 (Weyl operators).

$$\hat{D}_{\xi} = e^{i\xi^{T}\Omega\hat{x}} = e^{i(\hat{x}_{1}\xi_{2} - \hat{p}_{1}\xi_{2})} \otimes \cdots \otimes e^{i(\hat{x}_{n}\xi_{2n} - \hat{p}_{n}\xi_{2n-1})}, \tag{1}$$

where, $\xi \in \mathbb{R}^{2n}$.

Properties:

- $\hat{D}_{\xi}^{\dagger}\hat{D}_{\xi} = 1$ (Unitary operator).
- $\hat{D}_{\xi}\hat{D}_{\xi} = \hat{D}_{2\xi}$.
- $\hat{D}_{\xi} + \hat{D}_{\eta} = e^{-\frac{i}{2}\xi^T\Omega\eta} \hat{D}_{\xi+\eta}$. (Prove!)
- $\hat{D}_{-\bar{\xi}}\hat{\mathbf{x}}\hat{D}_{\bar{\xi}} = \hat{\mathbf{x}} \bar{\xi}$ (Prove!)
- $\bullet \ \hat{D}_{-\bar{\xi}} = \hat{D}_{\bar{\xi}}^{\dagger}.$

Using the above fourth property we can write,

$$\hat{H}' = \frac{1}{2} (\hat{\mathbf{x}} - \bar{\xi})^T H (\hat{\mathbf{x}} - \bar{\xi}) = \frac{1}{2} (\hat{D}_{-\bar{\xi}} \hat{\mathbf{x}} \hat{D}_{\bar{\xi}})^T H (\hat{D}_{-\bar{\xi}} \hat{\mathbf{x}} \hat{D}_{\bar{\xi}})$$

$$= \frac{1}{2} \hat{D}_{-\bar{\xi}} \hat{\mathbf{x}}^T H \hat{\mathbf{x}} \hat{D}_{\bar{\xi}}$$

$$(3)$$

See Serafini (eq. 3.17) for proof.

2.2 Symplectic Group

TODO: Linear canonical transformation and Symplectic group, Canonical transformations are those which respect **CCR**.

Definition 2 (Symplectic group).

$$S \in Sp_{2n,\mathbb{R}} \iff S\Omega S^T = \Omega \tag{4}$$

2.3 Normal Modes

TODO: Definition, etc.

3 Gaussian States

3.1 Quadratic Hamiltonian and Gaussian States

The most general quadratic/second-order hamiltonian can be written as follows.

$$\hat{H} = \frac{1}{2}\hat{\mathbf{x}}^T H \hat{\mathbf{x}} + \hat{\mathbf{x}}^T \xi. \tag{5}$$

Here, ξ is a 2n-dimensional real vector. H is a $2n \times 2n$ symmetric matrix called $Hamiltonian\ matrix$, not to be confused with Hamiltonian. It can alsways be taken as a symmetric matrix because, the antisymmetric part with give a term proportional to identity matrix due to \mathbf{CCR} , which can always be discarded. If we take $\bar{\xi} = H^{-1}\xi$, then $\hat{H}' = \frac{1}{2}(\hat{\mathbf{x}} - \bar{\xi})^T H(\hat{\mathbf{x}} - \bar{\xi})$ is equivalent to \hat{H} up to some additive constant term.

Definition 3 (Gaussian State). Gaussian states are defined as all the ground and thermal states of second-order Hamiltonians [eq.5] with positive definite Hamiltonian matrix H > 0.

Thus a Gaussian state can be written as,

$$\rho_G = \frac{e^{-\beta \hat{H}}}{\text{Tr}\left[e^{-\beta \hat{H}}\right]},\tag{6}$$

where, $\beta > 0$ and \hat{H} is defined in Eq. 5. Ground state is the limiting value,

$$\rho_G = \lim_{\beta \to \infty} \frac{e^{-\beta \hat{H}}}{\text{Tr} \left[e^{-\beta \hat{H}} \right]}.$$
 (7)

Note:

- All Gaussian states are mixed state by construction, except for the ground state.
- Gaussian states are parametrized by β , ξ and H. Though β is redundant and can be absorbed into H, it allows one to single out pure Gausian states as a limiting case like in Eq. 7.
- Gaussian states can be generated First and second moment of quadrature. We'll talk about them later.