Analysis of the current trigger and selection efficiency for the process $H \to J/\psi \gamma \to \mu \mu \gamma$ at CMS and comparison with new trigger proposals

Javier Mariño Villadamigo

Research Activities Academic year: 2021/2022 Università degli studi di Padova

October 25, 2022

Outline

Introduction

2 Objectives

3 Trigger and selection efficiencies

Introduction

Introduction •00

A word on physics motivations

The Higgs boson is considered to be discovered in 2012, when a new particle with the properties predicted by Standard Model (SM) was observed by CMS and ATLAS collaborations. Yukawa couplings to first and second-generation quarks are still to be measured.

- Rare exclusive decays of the Higgs boson to mesons in association with a photon can be used to explore these couplings.
- H \rightarrow J/ $\psi\gamma$ can be used to explore the Higgs boson coupling to the charm quark \Rightarrow test of SM predictions.
- $Z \to J/\psi \gamma$ can be used as an experimental benchmark.

Introduction

• Both decays receive contributions from direct and indirect processes

Figure: Lowest order Feynman diagrams for the Z (or H) $\to J/\psi \gamma$ decay. The left-most diagram shows the direct and the remaining diagrams the indirect processes[†].

• The cumulative yield of the decay is proportional to the branching ratio (BR).

[†]Sirunyan et al., "Search for rare decays of Z and Higgs bosons to J/ψ and a photon in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$ ".

000

- Experimental efforts have only established an upper bound 200 times the SM predicted value.
- The main challenge is the discrimination between background and signal \Rightarrow higher luminosity and more efficient trigger needed.

Figure: $m_{\mu\mu\gamma}$ in Higgs boson exotic decay[‡].

[‡]Sirunyan et al., "Search for rare decays of Z and Higgs bosons to J/ψ and a photon in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$ ".

Objectives

Trigger

In order to filter the amount of data that is recorded from each collision at the LHC, triggers are used. Current High Level Trigger requires the presence of a muon and a photon exceeding 17 and 30 GeV in the final state.

• The goal is then to design a new trigger that can outperform HLT Mu17 Photon30.

Trigger and selection efficiencies

The trigger efficiency:

Trigger and selection efficiencies

$$\varepsilon_{\text{trigger}} = \frac{\text{\# events passing HLT \& selection}}{\text{\# events passing selection}}$$

$$\varepsilon_{\text{selection}} = \frac{\# \text{ events passing selection}}{\# \text{ total events}}$$

Muons	Photons
$nMuon \ge 2$	$nPhoton \ge 1$
Opposite charges: μ^- , μ^+	-
$ \eta < 2.4$	$ \eta < 2.4$
Retain pair with min. $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$	-
$p_{\rm T}^{\mu_1} > 10 \text{ GeV}, \ p_{\rm T}^{\mu_2} > 5 \text{ GeV}$	$p_{\mathrm{T}}^{\gamma} > 15 \mathrm{~GeV}$
$\operatorname{mediumId}$	$mvaID_WP90$
-	$pixel_Seed = 0$

Figure: Kinematic, charge and quality selection criteria imposed to the muons and photons in the final state.

Example calculation of ε for $HLT_Mu17_Photon30$

References

Sirunyan, Albert M et al. "Search for rare decays of Z and Higgs bosons to J/ψ and a photon in proton-proton collisions at $\sqrt{s} = 13$ TeV". In: The European Physical Journal C 79.2 (2019), pp. 1–27.

