(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

FΙ

(11)特許出願公開番号

特開平5-9334

(43)公開日 平成5年(1993)1月19日

(51)Int.Cl.5

識別記号

庁内整理番号

技術表示箇所

C08L 3/00

LAV

6770-4 J

23/26

29/04

LDM

6904-4 J

審査請求 未請求 請求項の数3(全 6 頁)

(21)出願番号

特顯平3-188016

(71)出願人 000004101

日本合成化学工業株式会社

大阪府大阪市北区野崎町9番6号

平成3年(1991)7月1日 (22)出願日

(72)発明者 上村 知義

大阪府茨木市山手台 6 丁目19-18

(72)発明者 赤松 吉美

兵庫県尼崎市下坂部 3 丁目18番12号

(72)発明者 吉田 裕一

兵庫県神戸市垂水区歌敷山4丁目7-18

(74)代理人 弁理士 大石 征郎

(54) 【発明の名称】 生分解性樹脂組成物

(57)【要約】

【目的】 エチレン一酢酸ビニル共重合体ケン化物とデ ンプン系高分子との併用系でありながらも、工業的に採 用しうる良好な成形性を有すると同時に、好ましい基礎 的物性および所期の生分解性ないし崩壊性を有する成形 物を与えることのできる生分解性樹脂組成物を提供する ことを目的とする。

【構成】 エチレン-酢酸ビニル共重合体ケン化物とデ ンプン系高分子とからなる樹脂組成物を溶融成形して生 分解性を有する成形物を得るにあたり、上記エチレンー 酢酸ビニル共重合体ケン化物として含水率20~60重 量%のものを用いる。

【特許請求の範囲】

【請求項1】エチレン含量が20~60モル%、酢酸ビ ニル単位のケン化度が90モル%以上の組成を有しかつ 含水率が20~60重量%である含水エチレン-酢酸ビ ニル共重合体ケン化物(A)と、デンプン系高分子(B)と からなる生分解性樹脂組成物。

【請求項2】含水エチレン-酢酸ビニル共重合体ケン化 物(A)が、エチレン-酢酸ビニル共重合体ケン化物の水 ーメタノール混合溶剤溶液を水中に導入して凝固させ、 記載の生分解性組成物。

【請求項3】 含水エチレン-酢酸ビニル共重合体ケン化 物とデンプン系髙分子の配合割合が、乾燥基準の重量比 で80:20~20:80である請求項1記載の生分解 性樹脂組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、エチレン-酢酸ビニル 共重合体ケン化物とデンプン系高分子とからなり、成形 加工性および物性にすぐれた成形物を与えることのでき 20 る生分解性樹脂組成物に関するものである。

[0002]

【従来の技術】包装材料としてのプラスチックス製のフ ィルムや容器、農業用資材としてのプラスチックスフィ ルムや結束用テープをはじめとするプラスチックス成形 物は、正規の処理ルート以外で廃棄されることがある。 この場合、該成形物は長年その形状を維持するため、深 刻な廃棄物公害を生じている。そこで、野外、田畑、河 川等に廃棄されるおそれのある成形物は、使用目的が達 成された後は土中や水中の微生物によりすみやかに分解 30 されることが望まれる。

【0003】このような背景から、生分解性成形物を得 るための生分解性組成物の研究開発が盛んに行われてい る。これらの研究開発のうちエチレン-酢酸ビニル共重 合体ケン化物(つまりエチレン-ビニルアルコール共重 合体) とデンプン系高分子とからなる生分解性ないし崩 壊性組成物については、次のような出願がなされてい

【0004】特開平3-31333号公報には、エチレ ンノビニルアルコール共重合体および変性澱粉を含んで 40 なる生分解性プラスチック物品製造用ポリマー組成物で あって、該エチレン/ビニルアルコール共重合体のエチ レン含量が10~90重量%であり、メルトフローイン デックス(230℃、**2.16kq**で測定)が2~50である ポリマー組成物が示されている。

【0005】該公報には、エチレン/ピニルアルコール 共重合体のより好ましい性質は以下の通りであるとして

極限粘度 [n] (ジメチルスルホキシド中30

で): 0.5~0.9、好ましくは0.65~0.80

· 分子量分布M。/M。 (テトラヒドロフラン中のGP C): 1.3~4

2

融点:180℃未満、好ましくは160~170℃ 加水分解度90~99.9%

【0006】また、この公報には高沸点可塑剤について の記述があり、特許請求の範囲の請求項4においては高 沸点塑剤を澱粉成分に対して0.05~100重量%の濃度 含むこと、請求項5においては髙沸点可塑剤を澱粉成分 に対して20~100重量%の濃度含むことが示されて 洗浄精製処理後に含水率を調整したものである請求項1 10 いる。そして実施例1には、エチレン/ビニルアルコー ル共重合体に対して15重量%のグリセリンを配合した 押出混合物 5 0 重量部を、澱粉 7 0 重量部、水 5 0 重量 部および尿素15重量部と混合して押出機でペレット加 工した後、インフレート用ヘッドを備えた押出機にてフ ィルムに成形する例が、実施例2には、含水率11重量 %の澱粉63重量%、グリセリン25重量%、尿素7重 量%およびエチレン-アクリル酸共重合体5重量%を押 出してペレット化した後、得られたペレット60重量% とエチレンーピニルアルコール共重合体40重量%とを 混合して押出成形した例が、実施例3~8には、含水率 11重量%の澱粉39重量%、エチレン/ビニルアルコ ール共重合体37重量%、グリセリン12.8重量%、水 3.2重量%、エチレン-アクリル酸共重合体3重量%お よび尿素5重量%を実施例1と同様にしてペレット化お よびフィルムに成形した例が示されている。なお、エチ レンーピニルアルコール共重合体は実質的に無水のもの を用いていると考えられる。

> 【0007】特開平3-24101号公報には、澱粉 を、高沸点可塑剤と尿素、アルカリ土類またはアルカリ 金属水酸化物およびこれらの混合物から選ばれた変性剤 と共に、可塑剤の沸点以下で120~170℃の温度に おいて澱粉を変性するのに十分な時間混合することから なる生分解性プラスチック物品製造用変性澱粉組成物の 製法が示されており、該公報の実施例の直前の個所に は、この変性澱粉組成物はエチレン/ビニルアルコール 共重合体と混合するのに適しているとの記載がある。

> 【0008】この公報の特許請求の範囲の請求項2には 高沸点可塑剤を澱粉重量に対して0.05~100重量%加 えること、請求項4には高沸点可塑剤を澱粉重量に対し て20~100重量%加えることが示されている。そし て実施例1~4には含水率11重量%の澱粉63重量% にグリセリン25重量%を配合して押出成形して変性設 粉を得ること、実施例5にはこの変性澱粉ペレット60 重量%とエチレン/ビニルアルコール共重合体40重量 %とを混合して押出成形した例が示されている。

【0009】特開平2-14228号公報には、水を含 む分解澱粉および少なくとも1種の実質的に水不溶性の 合成熱可塑性ポリマーを含む溶融体から得られる配合ポ リマー材料が示されている。この公報の出願の特許請求 50 の範囲の請求項4には、熱可塑性ポリマーとして、エチ

レン/酢酸ビニルーコポリマー、エチレン/ビニルアル コールーコポリマー、エチレン/アクリル酸ーコポリマ ー、エチレン/アクリル酸エチルーコポリマー、エチレ ン/アクリル酸メチルーコポリマー、ABS-コポリマ ー、スチレン/アクリロニトリルーコポリマー、ポリア セタールが用いられるとしてあり、このようにエチレン /ビニルアルコールーコポリマーについても言及がある が、エチレン/ビニルアルコールーコポリマーを用いた 実施例はあげられていない。

り、特許請求の範囲の請求項14には全成分の約 0.5~ 15重量%の可塑化剤が加えられること、請求項16に は可塑化剤および水の含有量の合計が全成分の25重量 %以下であることが示されている。

【0011】そして請求項20には、澱粉/水成分を基 準として5~30重量%の含水率を有する澱粉を密閉容 器内で昇温下に溶融体を生成するのに十分な長さの時間 加熱することによってポリマー材料を製造するにあた り、溶融体生成の前またはその間に該澱粉/水材料を実 記載があり、該公報の5頁右下欄8~12行には、

「【実質的に水不溶性の合成熱可塑性ポリマー』として は、ポリマーは、好ましくは室温においてポリマー10 0gあたり最大で5%の割合、より好ましくは最大で約 2%の割合で水を溶解すると理解される。」と述べられ ている。

[0012]

【発明が解決しようとする課題】エチレンービニルアル コール共重合体とデンプン系高分子とからなる生分解性 組成物は、溶融成形時に熱分解しやすいデンプン系高分 30 子を多量に含む上、エチレンービニルアルコール共重合 体自身が汎用の熱可塑性樹脂の中では比較的溶融成形が 難しい樹脂の一つであるので、両者の併用系においては 成形トラブルを生じたり成形物に欠陥を生じやすいとい う問題点がある。そこで工業的な生産に際しては、多価 アルコールや尿素などの高沸点可塑剤を相当量配合して 溶融成形に供することが不可欠となるが、このような高 沸点可塑剤の配合は成形物の性質(たとえば可塑剤の成 形物表面への移行によるべたつきの発生、成形物の基礎 的物性の低下)にとってマイナスとなる上、衛生上の問 40 題を起こすおそれがある。このようなトラブルを防ぐた めには可塑剤の使用量を抑えなければならないが、その 場合は先に述べたように溶融成形性が悪くなる。

【0013】特開平3-31333号公報や特開平3-24101号公報において、広い範囲の高沸点可塑剤の 使用が示されているにかかわらずその実施例では相当量 の高沸点可塑剤を配合しているのは、高沸点可塑剤の配 合量を多くしないと成形性そのものが損なわれるという 事情があるからである。なお特開平2-14228号公 報においては、実際にエチレンービニルアルコール共重 50 ~105℃程度)となる。

合体を用いた実施例がなく、該共重合体とデンプン系高 分子との配合系における検討がなされていない。

【0014】そしてこれらの公報において配合に用いら れる水は、未乾燥デンプン系高分子等に含有されている 水分や系外から新たに加えられる水に由来するものであ り、このような水分の供給方式が従来のエチレンービニ ルアルコール共重合体/デンプン系高分子からなる組成 物を溶融成形するときの手法となっている。

【0015】結局、上に引用した特開平3-31333 【0010】この公報には可塑化剤についても記述があ 10 号公報、特開平2-14228号公報および特開平3-24101号公報は、エチレン一酢酸ビニル共重合体ケ ン化物 (エチレンービニルアルコール共重合体) とデン プン系高分子とからなる生分解性ないし崩壊性組成物に 関するバックグラウンドとしての技術を示しているにと どまり、工業的に採用しうるに足る良好な成形性を保ち ながら、成形物に要求される性質(可塑剤の移行防止 性、好ましい基礎的物性、好ましい生分解性)を確保す ることは未解決事項となっている。

【0016】本発明は、このような背景下において、エ 質的に水不溶性の合成熱可塑性ポリマーを混合するとの 20 チレン-酢酸ビニル共重合体ケン化物とデンプン系高分 子との併用系でありながらも、工業的に採用し得る良好 な成形性を有すると同時に、可塑剤の移行防止性、好ま しい基礎的物性および所期の生分解性ないし崩壊性を有 する成形物を与えることのできる生分解性樹脂組成物を 提供することを目的とするものである。

[0017]

【課題を解決するための手段】本発明の生分解性樹脂組 成物は、エチレン含量が20~60モル%、酢酸ビニル 単位のケン化度が90モル%以上の組成を有しかつ含水 率が20~60重量%である含水エチレン-酢酸ビニル 共重合体ケン化物(A) と、デンプン系高分子(B) とから なるものである。

【0018】以下本発明を詳細に説明する。

【0019】本発明においては、含水エチレン-酢酸ビ ニル共重合体ケン化物(A) として、エチレン含量が20 ~60モル%、酢酸ビニル単位のケン化度が90モル% 以上の組成のものを用いる。エチレン含量、ケン化度が この範囲からはずれるときは、機械的性質やガスパリア 性が不足するようになる。

【0020】含水エチレン-酢酸ビニル共重合体ケン化 物(A) の含水率は20~60重量%に設定される。含水 率が20重量%未満の場合には、デンプン系高分子(B) との相溶分散性が劣って円滑な溶融成形性が達成しえな くなり、可塑剤の併用が不可避となる。一方含水率が6 0重量%を越えると、溶融成形時に発泡が起こって円滑 な成形が困難となったり、得られる成形物の表面特性が 悪くなったりする。なお、上記で規定の含水率の含水工 チレン-酢酸ビニル共重合体ケン化物(A) のDSCによ るピーク温度(融点に相当)は110℃以下、特に90

【0021】上記共重合組成を有するエチレン-酢酸ビ ニル共重合体ケン化物は、本発明の趣旨を損なわない限 りにおいて、他の共重合可能なモノマー、たとえば、他 のαーオレフィン、エチレン性不飽和カルポン酸系化合 物(酸、無水物、塩、エステル、アミド、ニトリル 等)、ビニルエーテル、酢酸ビニル以外のビニルエステ ル、エチレン性不飽和スルホン酸系化合物(酸、塩 等)、オキシアルキレン基含有モノマーなどで共重合変 性されていてもよく、またオキシアルキレンエーテル 化、シアノエチル化、アセタール化、ウレタン化などの 10 「後変性」されたものであってもよい。

【0022】上記の含水エチレン-酢酸ビニル共重合体 ケン化物(A) は、典型的には、エチレン-酢酸ビニル共 重合体をアルカリケン化した後のエチレン-酢酸ビニル 共重合体ケン化物のメタノール溶液に水を加えて水ーメ タノール混合溶媒溶液となし、ついでその溶液を水中に 導入して凝固させ、さらにその凝固物をペレット化また は粉砕した後、洗浄精製することにより取得される。洗 浄精製に際しては、酸、特に弱酸の水溶液または稀薄な 強酸またはその酸性塩の水溶液で充分に洗浄し、さらに 20 必要に応じ水洗によって樹脂の付着した酸を除去した 後、所望の含水率となるような乾燥条件で乾燥するよう にすることが望ましい。

【0023】ここで弱酸としては、酢酸、プロピオン 酸、グリコール酸、乳酸、アジピン酸、アゼライン酸、 グルタール酸、コハク酸、安息香酸、イソフタル酸、テ レフタル酸をはじめ通常oKa(25℃)が 3.5以上の ものが用いられる。強酸としては、シュウ酸、マレイン 酸などp K a (25℃)が 2.5以下の有機酸やリン酸、 硫酸、硝酸、塩酸などの無機酸があげられ、これらの強 30 酸の酸性塩も用いることができる。強酸(またはその酸 性塩)による処理は、弱酸による処理を行った後、水洗 の前または後に行うのが通常である。

【0024】 デンプン系高分子(B) としては、生デンプ ン(トウモロコシデンプン、馬鈴薯デンプン、甘藷デン プン、コムギデンプン、キッサバデンプン、サゴデンプ ン、タピオカデンプン、モロコシデンプン、コメデンプ ン、マメデンプン、クズアンプン、ワラビデンプン、ハ スデンプン、ヒシデンプン等);物理的変性デンプン (αーデンプン、分別アミロース、湿熱処理デンプン 等) ;酵素変性デンプン (加水分解デキストリン、酵素 分解デキストリン、アミロース等);化学分解変性デン プン (酸処理アンプン、次亜塩素酸酸化アンプン、ジア ルデヒドデンプン等);化学変性デンプン誘導体(エス テル化デンプン、エーテル化デンプン、カチオン化デン プン、架橋アンプン等) などが用いられる。なお、化学 変性デンプン誘導体のうちエステル化デンプンとして は、酢酸エステル化デンプン、コハク酸エステル化デン プン、硝酸エステル化デンプン、リン酸エステル化デン ブン、尿素リン酸エステル化デンブン、キサントゲン酸 50 る。前段の押出機はベント付き押出機を用いるのが通常

エステル化デンプン、アセト酢酸エステル化デンプンな ど、エーテル化デンプンとしては、アリルエーテル化デ ンプン、メチルエーテル化デンプン、カルポキシメチル エーテル化デンプン、ヒドロキシエチルエーテル化デン プン、ヒドロキシプロピルエーテル化アンプンなど、カ チオン化アンプンとしては、アンプンと2-ジエチルア ミノエチルクロライドの反応物、デンプンと2. 3-エ ポキシプロビルトリメチルアンモニウムクロライドの反 応物など、架橋デンプンとしては、ホルムアルデヒド架 橋デンプン、エピクロルヒドリン架橋デンプン、リン酸 架橋デンプン、アクロレイン架橋デンプンなどがあげら

6

【0025】 デンプン系高分子(B) は、含水物として含 水エチレン-酢酸ビニル共重合体ケン化物(A) との配合 に供することもできる。

【0026】含水エチレン-酢酸ビニル共重合体ケン化 物(A) とデンプン系高分子(B) との配合割合は、乾燥基 準の重量比で80:20~20:80、殊に70:30 ~30:70とすることが望ましく、デンプン系高分子 (B) の割合が余りに少ないときは生分解性ないし崩壊性 が損なわれ、一方その割合が余りに多いときは成形物の 機械的物性が不足するようになる。ただし用途によって は、上記配合割合から若干はずれても差し支えないこと もある。

【0027】本発明の樹脂組成物は、さらに多価アルコ ール(グリセリン、トリメチロールプロパン、ペンタエ リスリトール、エチレングリコール、ジエチレングリコ ール、トリエチレングリコール、ポリエチレングリコー ル、プロピレングリコール、ジプロピレングリコール、 ポリプロピレングリコール、マンニトール、ソルビトー ル等)や尿素などの可塑剤を適当量配合することもでき るが、可塑剤無添加または少量添加であっても円滑な溶 融成形ができる点が本発明の特長である。

【0028】そのほか、必要に応じ上記以外の樹脂成分 (ポリビニルアルコールやその誘導体、エチレン共重合 体やその他のポリオレフィン、水素添加スチレンーブタ ジエンゴム、ポリウレタン、ポリアミド、ポリヒドロキ シプチレート等)、デンプン系高分子以外の天然高分子 (多糖類系高分子、セルロース系高分子、タンパク質系 40 高分子等)、熱安定剤、自動酸化剤、充填剤、着色剤、 耐水化剤などを配合することもできる。

【0029】溶融成形法としては、押出成形法(ブロー 成形法を含む)や射出成形法が採用されるが、カレンダ 一成形法、その他の成形法も採用することができる。溶 融成形に際しては、含水エチレン-酢酸ビニル共重合体 ケン化物(A)およびデンプン系高分子(B) を別々にある いは同時に押出機に供給して溶融混練を行って一旦ペレ ット化し、ついでこのペレットを目的に応じた成形機に 供給して所期の形状に成形する方法が好適に採用され

7

である。後段の溶融成形温度は150℃以下に設定する ことが多い。

【0030】本発明の生分解樹脂組成物により得られる 成形物は、包装用資材(フィルム、シート、ポトル、カ ップ、トレイ、缶キャリア等);農業用資材(農業用フ ィルム、結束テープ等);民生用資材(おむつのパック シート、買物袋、ゴミ袋等)をはじめ、種々の用途に用 いることができる。

[0031]

共重合体ケン化物(A) として、含水率が20~60重量 %のものを用いているため、成形物の諸性質および衛生 性の点で不利となる可塑剤の配合を省略したり大幅に減 少しても良好な成形性が確保される。

[0032]

【実施例】次に実施例をあげて本発明をさらに説明す

【0033】実施例1~5、比較例1~4

<含水または無含水エチレン-酢酸ビニル共重合体ケン*

* 化物の製造〉エチレン含量が29.0モル%、38.0モル%ま たは44.0モル%であるエチレン-酢酸ビニル共重合体の メタノール溶液に触媒としての水酸化ナトリウムのメタ ノール溶液を加えて塔内で連続ケン化反応を行い、得ら れたケン化物のメタノール溶液に水を加えてメタノール -水混合溶媒溶液とした後、20℃以下の水中にノズル から吐出した。これにより溶液は約3mm径のストランド 状に凝固したので、該凝固物を水中から引き上げて切断

8

【作用】本発明においては、含水エチレン一酢酸ビニル 10 【0034】このストランド状凝固物をペレタイザーに よりペレット化し、水洗によりポリマー中に含まれる酢 酸ナトリウムを除去し、さらに酢酸の希薄水溶液による 洗浄、ついでリン酸の稀薄水溶液による洗浄を行った 後、種々の乾燥条件で乾燥して目標含水率に調整した。 【0035】得られた含水または無含水エチレン-酢酸 ビニル共重合体ケン化物の組成、含水率、融点(DSC によるピーク温度)を表1に示す。

[0036]

表 1							
	A-1	A-la	A-2	A-3	A'-1	A'-2	A'-3
エチレン含量 (モル%)	44.0	44.0	38.0	29.0	44.0	38.0	29.0
ケン化度(モル%)	99.5	99.5	99.5	99.5	99.5	99.5	99.5
含水率 (重量%)	53	26	30	55	0.5	1.0	0.5
融占 (℃)	96	100	98	93	164	172	186

【0037】 (コンパウンドのペレット化)

上記で製造した含水または無含水エチレン-酢酸ビニル 共重合体ケン化物のペレット、生 デンプン(含水率12 重量%のコーンスターチ)および必要に応じグリセリン 30 スクリュー回転数 を後述の表2に示す割合および組み合わせでヘンシェル ミキサーに投入して混合し、ついでベント付き二軸押出 機に供給してストランド状に溶融押出すると共に、ペレ※

※タイザーでペレット化した。二軸押出条件は下記の通り とした。

3 0 mm

【0038】スクリュー径 3.0

L/D

1 5 0 rpm

オープンベント ベント

直径 3.0mmのノズル2本 ダイス

温度条件

H_ C₄ C₅ C₃ C₂ 50°C 110°C 120°C 120°C 120°C 120°C 120°C

【0039】〈溶融成形〉上記で得たコンパウンドペレ ットを型締圧100TONの射出成形機に供給し、下記 の条件で射出成形を行って、大きさ100mm×100m m、厚さ 1.5mmのシート片(平板)、JIS K-71 13に基く1号型引張試験片およびJISK-2703 に基く曲げ試験片を作成した。

温度条件

★【0040】射出圧力 1 2 0 0 kg/cm²

射出スピード 高速側

ファンゲートによる平板の金型、 金型

40 サイドゲート1号型引張試験片金型および曲げ試験片金

40℃ 金型温度 C₃ ノズル C₂ C_1 100℃ 110-140℃ 110-140℃ 110-140℃

【0041】〈結果〉結果を条件と共に表2に示す。 ☆ ☆【0042】

表 2										
							上 較 例			
	1	2	3	4	5_	1_	2	3	4	
使用EVOH	A-1	A-1	A-1a	A-2	A-3	A'-1	A'-2	A'-3	A'-1	
含水率 (重量%)	53	53	26	30	55	0.5	1.0	1.0	0.5	

10

9								10	
配合割合(重量部)									
EVOH	150	100	100	100	160	70	70	70	70
生デンプン	100	100	100	100	100	100	100	100	100
グリセリン									35
ペレット加工性	良好	良好	良好	良好	良好	不可	不可	不可	良好
加工ペレットの組成									
(重量%)									
EVOH	33	26	40	38	34	-	-	-	34
生デンプン	42	50	47	48	41	_	_	-	44
水	25	24	13	14	25	-	-	_	5
_ グリセリン			_ _						17
加工ペレットの	良好	良好	良好	良好	良好	_	_	_	良好
射出成形性									
機械的強度									
引張強度(kq/cm²)	240	300	350	360	260	-	-	-	250
伸度(%)	50	40	40	35	40	-	-	-	40
曲げ強度(kg/cm²)	220	280	350	350	250		_=_		250
ブリードの有無	なし	なし	なし	なし	なし				あり
生分解性 (崩壊性)									
6 ケ月	b	b	b	b	ь	-	-	-	С
1年	_a	a_	a	a	a				b

(注) EVOHは、エチレン-酢酸ビニル共重合体ケン 化物。ペレット加工性の項において、「良好」は混和性 良好でストランドの引き取りも良好、「不可」は混和性 不良でストランドにならず、ペレット化ができないため 射出成形に至らず。機械的強度は、JIS K-711 法)に準じて20℃で測定した。

۵

【0043】なお、生分解性(崩壊性)については、上 立て、6ヶ月後および1年後に掘り出してサンプル片の 状態を目視観察し、次の3段階で評価した。比較例1~ 3は成形性が劣るので評価を行っていない。

a:サンブル片の体積の50%以上が崩形している。

b: サンプル片の表面全面に凹凸が見られ、端部 4 辺も 凹凸となり、崩壊が進行中。

c:サンプル片の表面および端部に部分的に凹状斑点が 見られる。

[0044]

【発明の効果】本発明の生分解性樹脂組成物は、エチレ ン-酢酸ビニル共重合体ケン化物とデンプン系高分子と の併用系であるにもかかわらず、工業的に採用し得る良 記で得られた平板状のサンブル片を堆肥混合土中に埋め 30 好な溶融成形性を有する。しかも、成形物の物性および 衛生性の点で不利となる可塑剤の配合を省略したり大幅 に減ずることができるので、基礎的物性を確保しながら 所期の生分解性ないし崩壊性を発揮させることができ

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第3区分 【発行日】平成11年(1999)12月7日

【公開番号】特開平5-9334 【公開日】平成5年(1993)1月19日 【年通号数】公開特許公報5-94 【出願番号】特顯平3-188016

【国際特許分類第6版】

CO8L 3/00 LAV 23/26

29/04 LDM

[FI]

CO8L 3/00 LAV 23/26

29/04 LDM

【手統補正書】

【提出日】平成10年6月9日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 0

【補正方法】変更

【補正内容】

【0030】本発明の生分解性樹脂組成物により得られる成形物は、包装用資材(フィルム、シート、ボトル、カップ、トレイ、缶キャリア等);農業用資材(農業用フィルム、結束テープ等);民生用資材(おむつのバックシート、買物袋、ごみ袋等)をはじめ、種々の用途に用いることができる。