GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE

Goniometrické (též trigonometrické) funkce jsou $\sin x$, $\cos x$, $\tan x$ a $\cot x$. Funkce k nim inverzní, $\tan x$, arccos x, arctg x a arccotg x nazýváme **cyklometrické**. Souhrnné grafy cyklometrických funkcí jsou na obrázcích 5 a 6.

Arkussinus

Graf funkce $\sin x$ je na obrázku 1 vlevo. Platí $D(\sin x) = \mathbb{R}$ a $H(\sin x) = [-1,1]$. Nyní potřebujeme vybrat interval, na kterém je tato funkce prostá, abychom k ní mohli nalézt inverzní. Zároveň chceme pokrýt "co největší obor hodnot". Nabízí se interval $[-\pi/2, \pi/2]$. Definujeme tedy funkci **arkussinus** arcsin x jako funkci inverzní, takže

$$\arcsin(x) = y \Longleftrightarrow x = \sin y. \tag{1}$$

Definiční obor a obor hodnot se prohazují:

$$D(\arcsin x) = H(\sin x) = [-1, 1], \quad H(\arcsin x) = [-\pi/2, \pi/2].$$
 (2)

Graf funkce $\arcsin x$ je na obrázku 1 vpravo.

Obrázek 1: Vlevo: graf funkce sinus. Zeleně je vyznačen interval, kde je funkce prostá. Ten zvolíme jako obor hodnot funkce arkussinus. Vpravo: graf funkce arkussinus. Definiční obor a obor hodnot se prohazují. Grafy funkcí sinus a arkussinus jsou osově symetrické podle osy y = x.

Arkuskosinus

Stejným způsobem postupujeme u funkce cos x. Graf této funkce je na obrázku 2. Platí $D(\cos x) = \mathbb{R}$ a $H(\cos x) = [-1,1]$. Opět se chceme omezit na interval, kde je funkce prostá. Správný interval bude $[0,\pi]$. Definujeme funkci **arkuskosinus** arccos x předpisem

$$D(\arccos x) = H(\cos x) = [-1, 1], \quad H(\arccos x) = [0, \pi], \quad \arccos(x) = y \iff x = \cos y.$$
 (3)

Verze: 26. září 2021

Obrázek 2: Graf funkce kosinus. Zeleně je vyznačen interval, kde je funkce prostá. Ten zvolíme opět jako obor hodnot funkce arkuskosinus.

Arkustangens

Graf funkce t
gxje na obrázku 3. Platí $D(\operatorname{tg} x) = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$ a
 $H(\operatorname{tg} x) = \mathbb{R}$. Interval, na kterém je funkce prostá, je
 $(-\pi/2, \pi/2)$. Definujeme funkci **arkustangens** arct
gx předpisem

$$D(\operatorname{arctg} x) = H(\operatorname{tg} x) = \mathbb{R}, \quad H(\operatorname{arctg} x) = (-\pi/2, \pi/2), \quad \operatorname{arctg}(x) = y \Longleftrightarrow x = \operatorname{tg} y. \tag{4}$$

Obrázek 3: Graf funkce tangens. Zeleně je vyznačen interval, kde je funkce prostá. Ten zvolíme jako obor hodnot funkce arkustangens. Povšimněme si, že v bodech $-\frac{\pi}{2}$ a $\frac{\pi}{2}$ jsou svislé asymptoty. Z nich se stanou vodorovné asymptoty funkce arkustangens.

Arkuskotangens

Graf funkce cot
gxje na obrázku 4. Platí $D(\cot x)=\mathbb{R}\setminus\{k\pi,k\in\mathbb{Z}\}$
a $H(\cot x)=\mathbb{R}.$ Interval, na kterém je funkce prostá, je
 $(0,\pi).$ Definujeme funkci **arkuskotangens** arccot
gxpředpisem

$$D(\operatorname{arccotg} x) = H(\operatorname{cotg} x) = \mathbb{R}$$
, $H(\operatorname{arccotg} x) = (0, \pi)$, $\operatorname{arccotg}(x) = y \iff x = \operatorname{cotg} y$. (5)

Obrázek 4: Graf funkce kotangens. Zeleně je vyznačen interval, kde je funkce prostá. Ten zvolíme jako obor hodnot funkce arkustangens. Povšimněme si, že v bodech 0 a π jsou svislé asymptoty. Z nich se stanou vodorovné asymptoty funkce arkuskotangens.

Obrázek 5: Graf funkcí arkussinus a arkuskosinus.

Obrázek 6: Graf funkcí arkustangens a arkuskotangens.