This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Amendments to the Claims

This listing of claims will replace all prior listings of claims in the application.

Listing of Claims

1. (Presently Amended) A method of preventing or treating inflammatory response associated with atherosclerosis or restenosis in a mammal, comprising administering to said mammal an effective amount of a compound selected from the group consisting of structures of Formula VI, Formula VII, Formula VIII and Formula IX, wherein Formula VI is:

or a pharmaceutically acceptable salt thereof wherein, \cdot A^{VI} is

- .a) Cl,
- b) Br,
- c) CN,ss
- d) NO_2 , or
- e) F;

R^{VI-1} ⋅is

- a) R^{VI-5} , or
- b) SO_2R^{VI-9}

 R^{VI-2} , R^{VI-3} and R^{VI-4} may be the same or different and are selected from the group consisting of:

- a) H,
- b) halo, vI,
- c) aryl^{vi},
- d) $S(0)_m R^{VI-6}$,
- e) $(C=0) R^{VI-6}$,

- f) (C=0)·OR^{VI-9},
- g) cyano,
- h) het VI, wherein said het VI is bound via a carbon atom,
- i) OR $^{VI-10}$,
- j) Ohet^{VI},
- k) $NR^{VI-7}R^{VI-8}$
- 1) SR^{VI-10} ,
- m) Shet^{VI},
- n) NHCOR^{VI-12},
- o) $NHSO_2R^{VI-12}$,
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group R^{VI-11} , OR^{VI-13} , SR^{VI-10} , SR^{VI-13} , $NR^{VI-7}R^{VI-8}$, halo, $(C=0)C_{1-7}$ alkyl, or SO_mR^{VI-9} , and
- q) R^{VI-3} together with R^{VI-2} or R^{VI-4} form a carbocyclic or VI -het which may be optionally substituted by $NR^{VI-7}R^{VI-8}$, or C_{1-7} alkyl which may be optionally substituted by OR^{VI-14} ;

R^{VI-5} is

- a) $(CH_2CH_2O)_iR^{VI-10}$,
- b) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from a group consisting of $NR^{VI-7}R^{VI-8}$, R^{VI-11} , SO_mR^{VI-9} , or OC_{2-4} alkyl which may be further substituted by het^{VI}, OR^{VI-10} , or $NR^{VI-7}R^{VI-8}$, or
- c) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from a group consisting of R^{VI-11} , $NR^{VI-7}R^{VI-8}$, $SO_m^{VI}R^{VI-9}$, or C_{1-7} alkyl optionally substituted by R^{VI-11} , $NR^{VI-7}R^{VI-8}$, or $SO_m^{VI}R^{VI-9}$;

\cdot R^{VI-6} is

- a) C_{1-7} alkyl,
- b) $NR^{VI-7}R^{VI-8}$,
- c) aryl^{vi}, or
- d) het vI, wherein said het vI is bound via a carbon atom;

R^{VI-7} and R^{VI-8} are independently

- a) H,
- b) aryl^{VI},
- c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from a group consisting of aryl^{VI}, $NR^{VI-10}R^{VI-10}$, R^{VI-11} , SO_mR^{VI-9} , $CONR^{VI-10}R^{VI-10}$, or halo, or;
- d) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from a group consisting of R^{VI-11} , $NR^{VI-7}R^{VI-8}$, $SO_m^{VI}R^{VI-9}$, or C_{1-7} alkyl optionally substituted by R^{VI-11} , $NR^{VI-7}R^{VI-8}$, or $SO_m^{VI}R^{VI-9}$, or
- e) R^{VI-7} and R^{VI-8} together with the nitrogen to which they are attached form a het^{VI};

R^{VI-9} is

- a) aryl^{VI},
- b) het^{VI},
- c) C₃₋₈cycloalkyl,
- d) methyl, or
- e) C_{2-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from a group consisting of $NR^{VI-10}R^{VI-10}$, R^{VI-11} , SH, $CONR^{VI-10}R^{VI-10}$, or halo;

R^{VI-10} is

- a) H,
- b) methyl, or
- c) C₂₋₇alkyl optionally substituted by OH;

R^{VI-11} is

- a) OR^{VI-10} ,
- b) Ohet^{vi},
- c) Oaryl^{VI},
- d) CO_2R^{VI--10} ,
- e) het^{vi},
- f) VI-aryl^{VI},
- g) CN, or

```
C<sub>3-8</sub>cycloalkyl which may be partially unsaturated and
        h)
              optionally substituted by one or more substituents
              selected from a group consisting of R^{VI-11}, NR^{VI-7}R^{VI-8},
              SO_m^{IV}R^{VI-9}, or
              C_{1-7}alkyl optionally substituted by R^{VI-11}, NR^{VI-7} R^{VI-8},
              or SOmR<sup>VI-9</sup>;
 R^{VI-12} is
        a)
              Η,
              het<sup>VI</sup>,
        b)
              aryl<sup>VI</sup>,
        c)
        d)
              C<sub>3-8</sub>cycloalkyl,
              methyl, or
        e)
              C_{2-7}alkyl optionally substituted by NR^{VI-7}R^{VI-8}
        f)
              or R<sup>VI-11</sup>;
 R^{VI-13} is
              (P=0) (OR^{VI-14})_{2}
        a)
              CO(CH_2)_n^{IV}CON(CH_3) - (CH_2)_nSO_3^{IV}M^{VI+}
        b)
              an amino vi acid,
        c)
              C (=0) aryl^{VI},
        d)
              C (=0) C_{1-7}alkyl optionally substituted by NR^{VI-7} R^{VI-8},
        e)
              aryl<sup>VI</sup>, het<sup>VI</sup>, CO_2H, or O(CH_2)_nCO_2R^{VI-14}, or
              C (=0) NR^{VI-7} R^{VI-8}
        f)
 R^{VI-14} is
        a)
              H, or
        b)
              C_{1-7}alkyl;
 each i<sup>VI</sup> is independently 2, 3, or 4;
 each n^{VI} is independently 1, 2, 3, 4 or 5;
 each m<sup>VI</sup> is independently 0, 1, or 2;
 M<sup>VI</sup> is sodium, potassium, or lithium;
aryl is a phenyl radical or an ortho-fused bicyclic
        carbocyclic radical wherein at least one ring is
        aromatic;
 wherein any aryl vi is optionally substituted with one or
        more substituents selected from the group consisting of
        halo, OH, cyano, CO_2R^{VI-14}, CF_3, C_{1-6}alkoxy, and C_{1-6} alkyl
```

which maybe further substituted by one to three SR^{VI-14} , $NR^{VI-14}R^{VI-14}$, OR^{VI-14} , or CO_2R^{VI-14} ;

het^{VI} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;

wherein any het^{VI} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{VI-14} , CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which maybe further substituted by one to three SR^{VI-14} , $NR^{VI-14}R^{VI-14}$, OR^{VI-14} , or CO_2R^{VI-14} ;

wherein Formula VII is

VII

or a pharmaceutically acceptable salt thereof, wherein

 A^{VII} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

 R^{VII-1} is

- a) aryl^{VII},
- b) $S(0)_{m}^{VII}R^{VII-6}$,
- c) (C=O) R^{VII-6} , with the proviso that if R^{VII-6} is NR^{VII-7} $^{7}R^{VII-8}$, then R^{VII-7} and R^{VII-8} do not both equal H,
- d) $(C=0)OR^{VII-9}$,
- e) cyano,

- f) het^{VII}, wherein said het^{VII} is bound via a carbon atom,
- g) Ohet^{VII},
- h) $NR^{VII-7}R^{VII-8}$ with the proviso that R^{VII-7} and R^{VII-8} do not both equal H,
- i) SR^{VII-10} ,
- j) Shet^{VII},
- k) NHCOR^{VII-12},
- 1) $NHSO_2R^{VII-12}$,
- m) C_{1-7} alkyl which is partially unsaturated and optionally substituted by one or more substituents of the group R^{VII-11} , OR^{VII-13} , SR^{VII-10} , SR^{VII-13} , NR^{VII-7} , halo, $(C=0)C_{1-7}$ alkyl, or SO_mR^{VII-9} , or
- n) C_{1-7} alkyl which is substituted by one or more substituents of the group R^{VII-11} , OR^{VII-13} , SR^{VII-10} , SR^{VII-13} , $NR^{VII-7}R^{VII-8}$, halo, (C=O) C_{1-7} alkyl, or $SO_m^{VII}R^{VII-9}$;

R^{VII-2} is

- a) H,
- b) halo,
- c) aryl^{VII},
- d) $S(0)_{m}^{VII}R^{VII-6}$
- e) $(C=0)R^{VII-6}$,
- f) (C=O) OR^{VII-9} ,
- g) cyano,
- h) het^{VII}, wherein said het^{VII} is bound via a carbon atom,
- i) OR^{VII-10},
- j) Ohet^{VII},
- k) $NR^{VII-7}R^{VII-8}$
- 1) SR^{VII-10} ,
- m) Shet^{VII},
- n) NHCOR VII-12,
- o) NHSO₂R^{VII-12}, or
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents

of the group R^{VII-11} , OR^{VII-13} , SR^{VII-10} , SR^{VII-13} , $NR^{VII-7}R^{VII-8}$, halo, (C=O) C_{1-7} alkyl, or $SO_m^{VII}R^{VII-9}$, or

q) $R^{\text{VII-1}}$ together with $R^{\text{VII-2}}$ form a carbocyclic or het which may be optionally substituted by $NR^{\text{VII-7}}R^{\text{VII-8}}$, or C_{1-7} alkyl which may be optionally substituted by $OR^{\text{VII-14}}$;

R^{VII-6} is

- a) C_{1-7} alkyl,
- b) $NR^{VII-7}R^{VII-8}$
- c) aryl^{VII}, or
- d) het^{VII}, wherein said het^{VII} is bound via a carbon atom;

 R^{VII-7} and R^{VII-8} are independently

- a) H,
- b) aryl^{VII},
- C) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VII-10}R^{VII-10}$, R^{VII-11} , SO_mR^{VII-9} , $CONR^{VII-10}R^{VII-10}$, or halo, or,
- d) R^{VII-7} and R^{VII-8} together with the nitrogen to which they are attached form a het^{VII};

R^{VII-9} is

- a) aryl^{VII},
- b) het^{VII},
- c) C_{3-8} cycloalkyl,
- d) methyl, or
- e) C_{2-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VII-10}R^{VII-10}$, R^{VII-11} , SH, $CONR^{VII-10}R^{VII-10}$, or halo;

R^{VII-10} is

- a) H,
- b) methyl, or
- c) C_{2-7} alkyl optionally substituted by OH;

R^{VII-11} is

a) OR^{VII-10} ,

```
Ohet<sup>VII</sup>,
       b)
             Oaryl<sup>VII</sup>,
       c)
             CO<sub>2</sub>R<sup>VII-10</sup>,
       d)
             het<sup>VII</sup>,
       e)
             aryl<sup>VII</sup>,
       f)
             CN, or
       g)
              C<sub>3-8</sub>cycloalkyl which may be partially unsaturated and
       h)
              optionally substituted by one or more substituents
              seleted from a group consisting of R^{VII-11}, NR^{VII-7}R^{VII-8},
              SOm VIIR VIII-9, or C1-7alkyl optionally substituted by
              R^{VII-11}, NR^{VII-7}R^{VII-8}, or SO_mR^{VII-9};
R^{VII-12} is
       a)
              Η,
              het<sup>VII</sup>,
       b)
              aryl<sup>VII</sup>,
       c)
       d)
             C_{3-8}cycloalkyl,
       e)
             methyl, or
              C_{2-7}alkyl optionally substituted by NR^{VII-7}R^{VII-8}
       f)
              or R<sup>VII-11</sup>;
R^{VII-13} is
             (P=0) (OR^{VII-14})_{2}
       a)
              CO(CH_2)_nCON(CH_3) - (CH_2)_nSO_3^-M^+,
       b)
             an amino acid,
       C)
             C(=0) aryl<sup>VII</sup>, or
       d)
              C(=0)C_{1-7}alkyl optionally substituted by NR^{VII-7}R^{VII-8},
              aryl<sup>VII</sup>, het<sup>VII</sup>, CO<sub>2</sub>H, or O(CH<sub>2</sub>)_n^{VII}CO<sub>2</sub>R<sup>VII-14</sup>;
R^{VII-14} is
       a)
              H, or
             C_{1-7}alkyl;
       b)
each n<sup>VII</sup> is independently 1, 2, 3, 4 or 5;
each m<sup>VII</sup> is independently 0, 1, or 2;
M<sup>VII</sup> is sodium, potassium, or lithium;
aryl is a phenyl radical or an ortho-fused bicyclic
       carbocyclic radical wherein at least one ring is
       aromatic;
wherein any aryl vii is optionally substituted with one or
```

more substituents selected from the group consisting of halo, OH, cyano, CO_2R^{VII-14} , CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which may be further substituted by one to three SR^{VII-14} , $NR^{VII-14}R^{VII-14}$, OR^{VII-14} , or CO_2R^{VII-14} groups;

- het^{VII} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;
- wherein any het^{VII} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{VII-14} , CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three SR^{VII-14} , $NR^{VII-14}R^{VII-14}$, OR^{VII-14} , or CO_2R^{VII-14} groups;

wherein Formula VIII is

and pharmaceutically acceptable salts thereof, wherein

A^{VIII} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

 R^{VIII-1} is

- a) R^{VIII-5} ,
- b) $NR^{VIII-7}R^{VIII-8}$, or
- c) SO_2R^{VIII-9} ;

 R^{VIII-2} is

- a) aryl^{VIII},
- b) het^{VIII},
- c) SO_mR^{VIII-6} ,
- d) OC_{2-7} alkyl substituted by OH,
- e) SC_{2-7} alkyl substituted by OH, or
- f) C_{2-8} alkyl which is partially unsaturated and is optionally substituted by one or more substituents selected from $R^{VIII-11}$, $OR^{VIII-13}$, $SR^{VIII-13}$, $NR^{VIII-7}R^{VIII-8}$, halo, $(C=0)C_{1-7}$ alkyl or $SO_m^{VIII}R^{VIII-9}$;

with the proviso that when $R^{\text{VIII-1}} = R^{\text{VIII-5}} = (CH_2CH_2O)_i^{\text{VIII}}R^{\text{VIII-10}}$, then $R^{\text{VIII-2}}$ may additionally represent

- a) H,
- b) halo,
- c) $(C=0)R^{VIII-6}$,
- d) $(C=0) OR^{VIII-9}$
- e) cyano,
- f) OR^{VIII-10},
- g) het^{VIII},
- h) NR^{VIII-7}R^{VIII-8},
- i) SR^{VIII-10},
- j) het^{VIII},
- k) NHCOR^{VIII-12},
- 1) NHSO₂R^{VIII-12}, or
- m) $R^{\text{VIII-2}}$ together with $R^{\text{VIII-3}}$ or $R^{\text{VIII-4}}$ form a carbocyclic or het which may be optionally substituted by $NR^{\text{VIII-7}}R^{\text{VIII-8}}$, or C_{1-7} alkyl which may be optionally substituted by $OR^{\text{VIII-14}}$;

R^{VIII-3} and R^{VIII-4} are independently:

- a) H,
- b) halo,
- c) aryl^{VIII},
- d) $S(0)_{m}^{vIII}R^{vIII-6}$,
- e) $(C=O) R^{VIII-6}$,

- f) (C=O) OR^{VIII-9} ,
- g) cyano,
- h) het^{VIII}, wherein said het^{VIII} is bound via a carbon atom,
- i) OR^{VIII-10},
- j) Ohet^{VIII},
- k) $NR^{VIII-7}R^{VIII-8}$,
- 1) SR^{VIII-10},
- m) Shet^{VIII},
- n) NHCOR VIII-12,
- o) NHSO₂R^{VIII-12},
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group $R^{VIII-11}$, $OR^{VIII-13}$, $SR^{VIII-10}$, $SR^{VIII-13}$, $NR^{VIII-7}R^{VIII-8}$, halo, $(C=0)C_{1-7}$ alkyl, or $SO_m^{VIII}RVIII^{-9}$, or
- q) R^{VIII-4} together with R^{VIII-3} form a carbocyclic or het which may be optionally substituted by $NR^{VIII-7}R^{VIII-8}$, or C_{1-7} alkyl which may be optionally substituted by $OR^{VIII-14}$;

R^{VIII-5} is

- a) $(CH_2CH_2O)_i R^{VIII-10}$,
- b) het^{VIII}, wherein said het^{VIII} is bound via a carbon atom,
- c) aryl^{VIII},
- d) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VIII-7}R^{VIII-8}$, $R^{VIII-11}$, SO_mR^{VIII-9} , or OC_{2-4} alkyl which may be further substituted by NR^{VIII-7} , or NR^{VIII-7} , or NR^{VIII-8} , or
- e) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from $R^{VIII-11}$, $NR^{VIII-7}R^{VIII-8}$, $SO_m^{VIII}R^{VIII-9}$, or C_{1-8}

7alkyl optionally substituted by $R^{VIII-11}$, $NR^{VIII-7}R^{VIII-8}$, or $SO_m^{VIII}R^{VIII-9}$;

R^{VIII-6} is

- a) C_{1-7} alkyl,
- b) $NR^{VIII-7}R^{VIII-8}$,
- c) aryl^{VIII}, or
- d) het^{VIII}, wherein said het^{VIII} is bound via a carbon atom;

 $\textbf{R}^{\text{VIII-7}}$ and $\textbf{R}^{\text{VIII-8}}$ are independently

- a) H,
- b) aryl^{VIII},
- c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VIII-10}R^{VIII-10}$, $R^{VIII-11}$, $SO_m^{VIII}R^{VIII-9}$, $CONR^{VIII-10}R^{VIII-10}$, or halo, or,
- d) R^{VIII-7} and R^{VIII-8} together with the nitrogen to which they are attached form a het^{VIII};

R^{VIII-9} is

- a) aryl^{VIII},
- b) het^{VIII},
- c) C_{3-8} cycloalkyl,
- d) methyl, or
- e) C_{2-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VIII-10}R^{VIII-10}$, $R^{VIII-11}$, SH, $CONR^{VIII-10}R^{VIII-10}$, or halo;

R^{VIII-10} is

- a) H,
- b) methyl, or
- c) C_{2-7} alkyl optionally substituted by OH; $R^{\text{VIII-11}}$ is
 - a) OR^{VIII-10},

```
Ohet<sup>VIII</sup>,
      b)
           Oaryl<sup>VIII</sup>,
      c)
           CO_2R^{VIII-10},
      d)
             het<sup>VIII</sup>,
      e)
             aryl<sup>VIII</sup>, or
       f)
             CN;
      g)
R<sup>VIII-12</sup> is
      a)
             Η,
             het<sup>VIII</sup>,
      b)
             aryl<sup>VIII</sup>,
      c)
            C_{3-8}cycloalkyl,
      d)
       e)
             methyl, or
             C_{2-7}alkyl optionally substituted by NR^{VIII-7}R^{VIII-8} or
       f)
R^{VIII-13} is
      a)
             (P=0) (OR^{14})_{2}
             CO(CH_2)_n^{VIII}CON(CH_3) - (CH_2)_n^{VIII}SO_3^-M^+
      b)
             an amino acid,
      c)
           C(=0) aryl<sup>VIII</sup>, or
      d)
             C(=0)C_{1-7}alkyl optionally substituted by NR^{VIII-7}R^{VIII-8},
      e)
             aryl^{VIII}, het^{VIII}, CO_2H, or O(CH_2)_n^{VIII}CO_2R^{VIII-14};
R<sup>VIII-14</sup> is
             H, or
      a)
      b) C_{1-7}alkyl;
each i<sup>VIII</sup> is independently 2, 3, or 4;
each n<sup>VIII</sup> is independently 1, 2, 3, 4 or 5;
each m<sup>VIII</sup> is independently 0, 1, or 2;
M<sup>VIII</sup> is sodium, potassium, or lithium;
aryl viii is a phenyl radical or an ortho-fused bicyclic
       carbocyclic radical wherein at least one ring is
      aromatic;
wherein any aryl viii is optionally substituted with one
```

or more substituents selected from halo, OH, cyano, $CO_2R^{VIII-14}$, CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which may be further substituted by one to three $SR^{VIII-14}$, $NR^{VIII-14}R^{VIII-14}$, $OR^{VIII-14}$, or $CO_2R^{VIII-14}$ groups;

het^{VIII} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;

wherein any het^{VIII} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, $CO_2R^{VIII-14}$, CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three $SR^{VIII-14}$, $NR^{VIII-14}R^{VIII-14}$, $OR^{VIII-14}$, or $CO_2R^{VIII-14}$ groups;

wherein Formula IX is

ΙX

and pharmaceutically acceptable salts thereof, wherein,

 R^{IX-1} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

 $\textbf{R}^{\text{IX-2}}\text{, }\textbf{R}^{\text{IX-3}}$ and $\textbf{R}^{\text{IX-4}}$ are independently selected from:

- a) H,
- b) halo,
- c) aryl^{IX},

- d) $S(0)_{m}^{IX}R^{IX-6}$,
- e) $(C=0) R^{IX-6}$,
- f) (C=O) OR^{IX-9} ,
- g) cyano,
- h) het^{IX}, wherein said ^{IX-}het is bound via a carbon atom,
- i) OR^{IX-10} ,
- j) Ohet^{IX},
- \ddot{k}) NR^{IX-7}R^{IX-8}
- 1) SR^{IX-10} ,
- m) Shet^{IX},
- n) NHCOR^{IX-12},
- o) $NHSO_2R^{IX-12}$, or
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group R^{IX-11} , OR^{IX-13} , SR^{IX-10} , SR^{IX-13} , $NR^{IX-7}R^{IX-8}$, halo, $(C=0)C_{1-7}$ alkyl, or $SO_m^{IX}R^{IX-9}$;

R^{IX-6} is

- a) C_{1-7} alkyl,
- b) $NR^{IX-7}R^{IX-8}$,
- c) aryl^{IX}, or
- d) het IX , wherein said het IX is bound via a carbon atom; R^{IX-7} and R^{IX-8} are independently
 - a) H,
 - b) aryl^{IX},
 - c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{IX-10}R^{IX-10}$, R^{IX-11} , SO_mR^{IX-9} , $CONR^{IX-10}R^{IX-10}$, or halo, or,
 - d) R^{IX-7} and R^{IX-8} together with the nitrogen to which they are attached form a ^{IX-}het;

R^{IX-9} is

- a) aryl^{IX},
- b) het^{IX},

```
C)
              C_{3-8}cycloalkyl,
       d)
              methyl, or
               C_{2-7}alkyl which may be partially unsaturated and is
       e)
               optionally substituted by one or more substituents
               selected from NR^{IX-10}R^{IX-10}, R^{IX-11}, SH, CONR^{IX-10}R^{IX-10}, or
               halo;
R^{IX-10} is
               Η,
       a)
       b)
              methyl, or
               C<sub>2-7</sub>alkyl optionally substituted by OH;
       C)
R^{IX-11} is
               ORIX-10,
       a)
              Ohet<sup>IX</sup>,
       b)
              Oaryl<sup>IX</sup>,
       c)
              CO_2R^{IX-10},
       d)
              het<sup>IX</sup>,
       e)
               aryl<sup>IX</sup>, or
       f)
               CN;
       g)
R^{IX-12} is
       a)
              Η,
              het<sup>IX</sup>,
       b)
              aryl<sup>IX</sup>,
       C)
       d)
              C<sub>3-8</sub>cycloalkyl,
       e)
              methyl, or
               C<sub>2-7</sub>alkyl optionally substituted by NR<sup>IX-7</sup>R<sup>IX-8</sup> or
       f)
               R<sup>IX-11</sup>:
R^{IX-13} is
               (P=0) (OR^{IX-14})_{2}
       a)
               CO(CH_2)_n^{IX}CON(CH_3) - (CH_2)_n^{IX}SO_3^-M^{IX+},
       b)
               an amino acid,
       C)
               C(=0)aryl<sup>IX</sup>, or
       d)
               C(=0)C_{1-7}alkyl optionally substituted by NR^{IX-7}R^{IX-8},
       e)
               aryl<sup>IX</sup>, het<sup>IX</sup>, CO_2H, or O(CH_2)_nCO_2R^{IX-14};
```

R^{IX-14} is

- a) H, or
- b) C_{1-7} alkyl;

each n^{IX} is independently 1, 2, 3, 4 or 5; each m^{IX} is independently 0, 1, or 2;

 M^{IX} is sodium, potassium, or lithium;

- aryl^{IX} is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic;
- wherein any aryl^{IX} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, CO_2R^{IX-14} , CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which may be further substituted by one to three SR^{IX-14} , $NR^{IX-14}R^{IX-14}$, OR^{IX-14} , or CO_2R^{IX-14} groups;
- het^{IX} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;
- wherein any het^{IX} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{IX-14} , CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three SR^{IX-14} , $NR^{IX-14}R^{IX-14}$, OR^{IX-14} , or CO_2R^{IX-14} groups.

2. (Original) The method of claim 1, wherein the compound administered has the Formula

or a pharmaceutically acceptable salt thereof, wherein,

 A^{VI} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

 R^{VI-1} is

- a) R^{VI-5} , or
- b) SO_2R^{VI-9}

 R^{VI-2} , R^{VI-3} and R^{VI-4} may be the same or different and are selected from the group consisting of:

- a) H,
- b) halo,
- c) aryl^{VI},
- d) $S(0)_{m}^{VI}R^{VI-6}$
- e) $(C=0) R^{VI-6}$,
- f) (C=O) OR^{VI-9} ,
- g) cyano,
- h) het VI, wherein said het VI is bound via a carbon atom,
- i) OR $^{VI-10}$,
- j) Ohet^{VI},
- k) $NR^{VI-7}R^{VI-8}$
- 1) SR^{VI-10} ,
- m) Shet^{VI},
- n) NHCOR^{VI-12},
- o) $NHSO_2R^{VI-12}$,

- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group R^{VI-11} , OR^{VI-13} , SR^{VI-10} , SR^{VI-13} , $NR^{VI-7}R^{VI-8}$, halo, $(C=0)C_{1-7}$ alkyl, or $SO_m^{VI}RVI^{-9}$, and
- q) R^{VI-3} together with R^{VI-2} or R^{VI-4} form a carbocyclic or het which may be optionally substituted by $NR^{VI-7}R^{VI-8}$, or C_{1-7} alkyl which may be optionally substituted by OR^{VI-14} :

R^{VI-5} is

- a) $(CH_2CH_2O)_i^{vi}R^{vi-10}$,
- b) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from a group consisting of $NR^{VI-7}R^{VI-8}$, R^{VI-11} , $SO_m^{VI}R^{VI-9}$, or OC_{2-4} alkyl which may be further substituted by het^{VI}, OR^{VI-10} , or $NR^{VI-7}R^{VI-8}$, or
- C) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from a group consisting of R^{VI-11} , $NR^{VI-7}R^{VI-8}$, $SO_m^{VI}R^{VI-9}$, or C_{1-7} alkyl optionally substituted by R^{VI-11} , $NR^{VI-7}R^{VI-8}$, or $SO_m^{VI}R^{9}$;

R^{VI-6} is

- a) C_{1-7} alkyl,
- b) $NR^{VI-7}R^{VI-8}$,
- c) aryl^{VI}, or
- d) het^{VI}, wherein said het^{VI} is bound via a carbon atom; R^{VI-7} and R^{VI-8} are independently
 - a) H,
 - b) aryl^{vi},
 - c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from a group consisting of aryl^{VI}, $NR^{VI-10}R^{VI-10}$, R^{VI-11} , $SO_m^{VI}R^{VI-9}$, $CONR^{VI-10}R^{VI-10}$, or halo, or;
 - d) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents

a)

b)

H, het^{VI},

```
selected from a group consisting of R^{\text{VI-11}}, NR^{\text{VI-7}}R^{\text{VI-8}},
             SO_m^{VI}R^{VI-9}, or
             C_{1-7}alkyl optionally substituted by R^{VI-11},
             NR^{VI-7}R^{VI-8}, or SO_m^{VI}R^{VI-9}, or
      e) R^{VI-7} and R^{VI-8} together with the nitrogen to which
             they are attached form a het vi;
R^{VI-9} is
             aryl<sup>VI</sup>,
      a)
             het<sup>VI</sup>,
      b)
            C_{3-8}cycloalkyl,
      C)
             methyl, or
      d)
             C_{2-7}alkyl which may be partially unsaturated and is
      e)
             optionally substituted by one or more substituents
             selected from a group consisting of NR^{VI-10}R^{VI-10}, R^{VI-}
             11, SH, CONR<sup>VI-10</sup>R<sup>VI-10</sup>, or halo;
R<sup>VI-10</sup> is
      a)
             Η,
             methyl, or
      b)
             C_{2-7}alkyl optionally substituted by OH;
       C)
R^{VI-11} is
             OR<sup>10</sup>,
      a)
             Ohet<sup>VI</sup>,
      b)
             Oaryl<sup>VI</sup>,
      c)
             CO_2R^{10},
      d)
             het^{VI},
      e)
             aryl<sup>VI</sup>,
       f)
             CN, or
      g)
             C<sub>3-8</sub>cycloalkyl which may be partially unsaturated and
      h)
             optionally substituted by one or more substituents
             selected from a group consisting of RVI-11, NRVI-7RVI-8,
             SO_m^{VI}R^{VI-9}, or
             C_{1-7}alkyl optionally substituted by R^{VI-11},
             NR^{VI-7} R^{VI-8}, or SO_m^{VI}R^{VI-9};
R<sup>VI-12</sup> is
```

- c) aryl^{VI},
- d) C₃₋₈cycloalkyl,
- e) methyl, or
- f) C_{2-7} alkyl optionally substituted by $NR^{VI-7}R^{VI-8}$ or R^{VI-11} ;

R^{VI-13} is

- a) $(P=0) (OR^{VI-14})_{2}$
- b) $CO(CH_2)_n^{VI}CON(CH_3) (CH_2)_nSO_3^{-M^{VI+}}$,
- c) an amino acid,
- d) $C(=0) \operatorname{aryl}^{VI}$,
- e) $C(=O)C_{1-7}alkyl$ optionally substituted by $NR^{VI-7}R^{VI-8}$, $aryl^{VI}$, het^{VI} , CO_2H , or $O(CH_2)_n^{VI}CO_2R^{VI-14}$, or
- f) $C (=0) NR^{VI-7} R^{VI-8}$

R^{VI-14} is

- a) H, or
- b) $C_{1-7}alkyl;$

each i^{VI} is independently 2, 3, or 4;

each n^{VI} is independently 1, 2, 3, 4 or 5;

each m^{VI} is independently 0, 1, or 2;

M^{VI} is sodium, potassium, or lithium;

- aryl^{VI} is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic;
- wherein any aryl^{VI} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, CO_2R^{VI-14} , CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which maybe further substituted by one to three SR^{VI-14} , $NR^{VI-14}R^{VI-14}$, OR^{VI-14} , or CO_2R^{VI-14} ;
- het^{VI} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;

wherein any het vi is optionally substituted with one or

more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{VI-14} , CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which maybe further substituted by one to three SR^{VI-14} , $NR^{VI-14}R^{VI-14}$, OR^{VI-14} , or CO_2R^{VI-14} .

- 3. (Original) The method of Claim 2, wherein A^{VI} is Cl.
- 4. (Original) The method of Claim 2, wherein the compound administered is selected from the group consisting of N-(4-chlorobenzyl)-6-iodo-1-methyl-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-6-(3-hydroxy-1-propynyl)-1-methyl-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-6-(hydroxymethyl)-1-methyl-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-6-(4-hydroxy-1-butynyl)-1-methyl-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-8-{[(1R,2R)-1-hydroxy-2-methylcyclohexyl]ethynyl}-1-methyl-4-oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-8-(cyclopropylethynyl)-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propynyl]-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

```
N-(4-chlorobenzyl)-1-methyl-4-oxo-8-{4-[(4R)-2-oxo-1,3-
oxazolidin-4-yl]-1-butynyl}-6-(tetrahydro-2H-pyran-4-
ylmethyl) -1, 4-dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-(4-\text{hydroxy}-1-\text{butynyl})-1-\text{methyl}-6-(4-\text{hydroxy}-1-\text{hydroxy})
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[(1-hydroxycyclohexyl)ethynyl]-1-methyl-
6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3,3-dicyclopropyl-3-hydroxy-1-propynyl)-
1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[(3S)-3-hydroxy-1-butynyl]-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
8-{3-[(aminocarbonyl)amino]-3-methyl-1-butynyl}-N-(4-
chlorobenzyl) -1-methyl-6-(4-morpholinylmethyl) -4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-1-\text{methyl}-8-[3-\text{methyl}-3-(4-\text{thioxo}-1,3,5-
triazinan-1-yl)-1-butynyl]-6-(4-morpholinylmethyl)-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[(3R)-3-\text{hydroxy}-1-\text{butynyl}]-1-\text{methyl}-6-(4-\text{methyl}-6)
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-oxo-8-
\{4-[(4R)-2-oxo-1,3-oxazolidin-4-yl]-1-butynyl\}-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(1,1-\text{dioxido}-4-\text{thiomorpholinyl})-1-
propynyl]-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-
3-cinnolinecarboxamide;
```

```
N-(4-\text{chlorobenzyl})-8-(5-\text{hydroxy}-1-\text{pentynyl})-1-\text{methyl}-6-(4-\text{methyl}-6)
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-{[(1R,2S)-2-hydroxycyclopentyl]ethynyl}-
1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-3-methyl-1-butynyl)-1-methyl-
6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide:
N-(4-\text{chlorobenzyl})-8-[3-(4,5-\text{dichloro}-1H-\text{imidazol}-1-yl)-1-
propynyl]-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-
3-cinnolinecarboxamide:
N-(4-chlorobenzyl)-8-(3-hydroxy-1-propynyl)-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-4-oxo-8-(phenylethynyl)-6-
(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-3-phenyl-1-propynyl)-1-methyl-
4-oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-1-propynyl)-1-methyl-4-oxo-
1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(4-hydroxy-1-butynyl)-1-methyl-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-1-propynyl)-1-methyl-4-oxo-6-
(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
```

```
N-(4-chlorobenzyl)-8-(4-hydroxy-1-butynyl)-1-methyl-4-oxo-6-
(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propynyl]-1-methyl-
4-oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-[3-(methylsulfonyl)propyl]-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-[3-(methylsulfanyl)propyl]-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-[(2-hydroxyethoxy)methyl]-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-4-oxo-1-tetrahydro-
3-furanyl-1, 4-dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-1-(1,2-\text{diethyl}-4-\text{pyrazolidinyl})-6-(4-\text{diethyl}-4-\text{pyrazolidinyl})
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-6-(4-\text{morpholinylmethyl})-1-(3-\text{oxetanyl})-4-
oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-1-\{3-[(3-\text{hydroxypropyl})\,\text{sulfonyl}]\,\text{propyl}\}-6-
(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-[2-(2-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxy)ethyl]-6-(4-ethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxyethoxy
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-4-oxo-1-
 [(phenylsulfinyl)methyl]-1,4-dihydro-3-cinnolinecarboxamide;
```

```
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-4-oxo-1-
[(phenylsulfonyl)methyl]-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-4-oxo-1-
[(phenylsulfanyl)methyl]-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-4-oxo-1-tetrahydro-
2H-pyran-3-yl-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-[(methylsulfanyl)methyl]-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-1-\{[(4-\text{chlorophenyl})\text{sulfinyl}]\text{methyl}\}-6-(4-\text{chlorobenzyl})
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-morpholinylmethyl)-4-oxo-1-tetrahydro-
2H-pyran-4-yl-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-oxo-8-
(4-thiomorpholinylmethyl)-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[(4-hydroxy-1-piperidinyl)methyl]-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-\{[(3R)-3-hydroxypyrrolidinyl]methyl\}-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[(3-hydroxy-1-piperidinyl)methyl]-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
```

```
[3-{[(4-chlorobenzyl)amino]carbonyl}-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-8-cinnolinyl]methyl 4-
morpholinecarboxylate;
N-(4-chlorobenzyl)-8-(hydroxymethyl)-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[(3-cyanobenzyl)amino]-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-6,8-bis(4-morpholinylmethyl)-4-
oxo-1, 4-dihydro-3-cinnolinecarboxamide;
8-[(1-acetyl-4-piperidinyl)amino]-N-(4-chlorobenzyl)-1-methyl-
6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-8-{[1-methyl-2-
(phenylsulfonyl) ethyl]amino}-6-(4-morpholinylmethyl)-4-oxo-
1,4-dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-\{[3-(4-\text{methoxyphenyl})-1-
methylpropyl]amino}-1-methyl-6-(4-morpholinylmethyl)-4-oxo-
1,4-dihydro-3-cinnolinecarboxamide;
8-amino-N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-
oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-8-[(3-
nitrobenzyl)amino]-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-oxo-8-
(tetrahydro-2H-pyran-4-ylamino)-1,4-dihydro-3-
cinnolinecarboxamide;
```

```
N-(4-chlorobenzyl)-6-(3-hydroxy-1-propyl)-1-methyl-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-6-(4-hydroxy-1-butyl)-1-methyl-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-\{[(1R,2R)-1-\text{hydroxy-}2-
methylcyclohexyl]ethyl}-1-methyl-4-oxo-6-(tetrahydro-2H-pyran-
4-ylmethyl)-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(cyclopropylethyl)-1-methyl-6-(4-
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propyl]-1-methyl-6-
(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-4-oxo-8-\{4-[(4R)-2-oxo-1,3-(4-chlorobenzyl)]\}
oxazolidin-4-yl]-1-butyl}-6-(tetrahydro-2H-pyran-4-ylmethyl)-
1,4-dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-(4-\text{hydroxy}-1-\text{butyl})-1-\text{methyl}-6-(4-\text{hydroxy}-1-\text{butyl})
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[(1-hydroxycyclohexyl)ethyl]-1-methyl-6-
(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-(3,3-\text{dicyclopropyl}-3-\text{hydroxy}-1-\text{propyl})-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[(3S)-3-\text{hydroxy}-1-\text{butyl}]-1-\text{methyl}-6-(4-\text{methyl}-6)
morpholinylmethyl) -4-oxo-1, 4-dihydro-3-cinnolinecarboxamide;
```

cinnolinecarboxamide;

```
8-{3-[(aminocarbonyl)amino]-3-methyl-1-butyl}-N-(4-
chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-1-\text{methyl}-8-[3-\text{methyl}-3-(4-\text{thioxo}-1,3,5-
triazinan-1-yl)-1-butyl]-6-(4-morpholinylmethyl)-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[(3R)-3-hydroxy-1-butyl]-1-methyl-6-(4-butyl)
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-6-(4-morpholinylmethyl)-4-oxo-8-
\{4-[(4R)-2-oxo-1,3-oxazolidin-4-yl]-1-butyl\}-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(1,1-\text{dioxido}-4-\text{thiomorpholinyl})-1-
propyl]-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(5-hydroxy-1-pentyl)-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-{[(1R,2S)-2-hydroxycyclopentyl]ethyl}-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-3-methyl-1-butyl)-1-methyl-6-
(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(4,5-dichloro-1H-imidazol-1-yl)-1-
```

propyl]-1-methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-

```
N-(4-\text{chlorobenzyl})-8-[3-(1H-\text{imidazol}-1-\text{yl})-1-\text{propyl}]-1-\text{methyl}-
6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(1H-\text{imidazol}-1-\text{yl})-1-\text{propynyl}]-1-
methyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-1-propyl)-1-methyl-6-(4-
morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-1-methyl-4-oxo-8-(phenylethyl)-6-
(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-3-phenyl-1-propyl)-1-methyl-4-
oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-1-propyl)-1-methyl-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(4-hydroxy-1-butyl)-1-methyl-4-oxo-1,4-
dihydro-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3-hydroxy-1-propyl)-1-methyl-4-oxo-6-
(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(4-hydroxy-1-butyl)-1-methyl-4-oxo-6-
(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propyl]-1-methyl-4-
oxo-6-(tetrahydro-2H-pyran-4-ylmethyl)-1,4-dihydro-3-
cinnolinecarboxamide;
```

N-(4-chlorobenzyl)-1-methyl-8-{[methyl(tetrahydro-2-furanylmethyl)amino]methyl}-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro-3-cinnolinecarboxamide;

and pharmaceutically acceptable salts thereof.

5. (Original) The method of Claim 1, wherein the compound administered has the Formula VII

VII

or a pharmaceutically acceptable salt thereof, wherein,

 A^{VII} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

 R^{VII-1} is

- a) aryl^{VII},
- b) $S(0)_{m}^{VII}R^{VII-6}$
- c) (C=O) R^{VII-6} , with the proviso that if R^{VII-6} is NR^{VII-7} $^7R^{VII-8}$, then R^{VII-7} and R^{VII-8} do not both equal H
- d) $(C=0)OR^{VII-9}$,
- e) cyano,
- f) het^{VII} , wherein said het^{VII} is bound via a carbon atom,
- g) Ohet^{VII},
- h) $NR^{\text{VII-7}}R^{\text{VII-8}}$ with the proviso that $R^{\text{VII-7}}$ and $R^{\text{VII-8}}$ do not both equal H
- i) SR^{VII-10},
- j) Shet^{VII},

- k) NHCOR^{VII-12},
- 1) $NHSO_2R^{VII-12}$,
- m) C_{1-7} alkyl which is partially unsaturated and optionally substituted by one or more substituents of the group R^{VII-11} , OR^{VII-13} , SR^{VII-10} , SR^{VII-13} , NR^{VII-7} , halo, $(C=0)C_{1-7}$ alkyl, or SO_mR^{VII-9} , or
- n) C_{1-7} alkyl which is substituted by one or more substituents of the group R^{VII-11} , OR^{VII-13} , SR^{VII-10} , SR^{VII-13} , $NR^{VII-7}R^{VII-8}$, halo, $(C=O)C_{1-7}$ alkyl, or $SO_m^{VII}R^{VII-9}$;

R^{VII-2} is

- a) H,
- b) halo,
- c) aryl^{VII},
- d) $S(0)_{m}^{vii}R^{vii-6}$
- e) $(C=0) R^{VII-6}$,
- f) (C=O) OR^{VII-9} ,
- g) cyano,
- h) het^{VII}, wherein said het^{VII} is bound via a carbon atom,
- i) OR^{VII-10},
- j) Ohet^{VII},
- k) $NR^{VII-7}R^{VII-8}$
- 1) SR^{VII-10} ,
- m) Shet^{VII},
- n) NHCOR VII-12,
- o) $NHSO_2R^{VII-12}$, or
- c₁₋₇alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group R^{VII-11} , OR^{VII-13} , SR^{VII-10} , SR^{VII-13} , $NR^{VII-7}R^{VII-8}$, halo, (C=O)C₁₋₇alkyl, or $SO_m^{VII}R^{VII-9}$, or
 - q) $R^{\text{VII-1}}$ together with $R^{\text{VII-2}}$ form a carbocyclic or het which may be optionally substituted by $NR^{\text{VII-7}}R^{\text{VII-8}}$, or C_{1-7} alkyl which may be optionally substituted by $OR^{\text{VII-14}}$:

Oaryl^{VII},

CO₂R^{VII-10},

het^{VII},

aryl^{VII},

CN, or

C)

d)

e)

f)

g)

R^{VII-6} is a) C_{1-7} alkyl, NR^{VII-7}R^{VII-8} b) aryl^{VII}, or c) het^{VII}, wherein said het^{VII} is bound via a carbon d) atom; R^{VII-7} and R^{VII-8} are independently a) Η, b) aryl^{VII}, c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from NR^{VII-10}R^{VII-10}, R^{VII-11}, SO_mR^{VII-9}, CONR^{VII-10}R^{VII-10}, or halo, or, R^{VII-7} and R^{VII-8} together with the nitrogen to which d) they are attached form a het vii; R^{VII-9} is aryl^{VII}, a) het^{VII}, b) C_{3-8} cycloalkyl, C) methyl, or d) e) C_{2-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from NRVII-10RVII-10, RVII-11, SH, CONRVII-10RVII-10, or halo; R^{VII-10} is Η, a) methyl, or b) C₂₋₇alkyl optionally substituted by OH; C) R^{VII-11} is OR^{VII-10}, a) Ohet^{VII}, b)

h) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents seleted from a group consisting of R^{VII-11} , $NR^{VII-7}R^{VII-8}$, $SO_m^{VII}R^{VII-9}$, or C_{1-7} alkyl optionally substituted by R^{VII-11} , $NR^{VII-7}R^{VII-8}$, or $SO_m^{VII}R^{VII-9}$;

R^{VII-12} is

- a) H,
- b) het^{VII},
- c) aryl^{VII},
- d) C₃₋₈cycloalkyl,
- e) methyl, or
- f) C_{2-7} alkyl optionally substituted by $NR^{VII-7}R^{VII-8}$ or R^{VII-11} ;

R^{VII-13} is

- a) $(P=0) (OR^{VII-14})_{2}$
- b) $CO(CH_2)_n^{VII}CON(CH_3) (CH_2)_nSO_3^{-M^{VII+}}$,
- c) an amino acid,
- d) $C(=0) \operatorname{aryl}^{VII}$, or
- e) $C(=O)C_{1-7}alkyl$ optionally substituted by $NR^{VII-7}R^{VII-8}$, $aryl^{VII}$, het VII , CO_2H , or $O(CH_2)_n^{VII}CO_2R^{VII-14}$;

R^{VII-14} is

- a) H, or
- b) C_{1-7} alkyl;

each n^{VII} is independently 1, 2, 3, 4 or 5;

each m^{VII} is independently 0, 1, or 2;

M^{VII} is sodium, potassium, or lithium;

- aryl^{VII} is a phenyl radical or an ortho-fused bicyclic
 carbocyclic radical wherein at least one ring is
 aromatic;
- wherein any aryl^{VII} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, CO_2R^{VII-14} , CF_3 , C_{1-6} alkoxy, and C_{1-6} alkyl which may be further substituted by one to three SR^{VII-14} , $NR^{VII-14}R^{VII-14}$, OR^{VII-14} , or CO_2R^{VII-14} groups;

 het^{VII} is a four- (4), five- (5), six- (6), or seven- (7)

membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;

wherein any het^{VII} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{VII-14} , CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three SR^{VII-14} , $NR^{VII-14}R^{VII-14}$, OR^{VII-14} , or CO_2R^{VII-14} groups.

- 6. (Original) The method of Claim 5, wherein \mathbf{A}^{VII} is Cl.
- 7. (Original) The method of Claim 6, wherein R^{VII-1} is selected from the group consisting of CH_2 -morpholine, alkynl-CH₂OH, CH_2 -(tetrahydro-2H-pyran-4-yl) and $(CH_2)_3$ OH.
- 8. (Original) The compound of Claim 6, wherein the compound administered is selected from the group consisting of

N-(4-chlorobenzyl)-4-hydroxy-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;

Methyl 3-{[(4-chlorobenzyl)amino]carbonyl}-4-hydroxy-6-cinnolinecarboxylate;

N-(4-chlorobenzyl)-4-hydroxy-6-(hydroxymethyl)-3-cinnolinecarboxamide N-(4-chlorobenzyl)-8-(cyclopropylethynyl)-4-hydroxy-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;

```
N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propynyl]-4-hydroxy-
6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-4-\text{hydroxy}-8-(4-\text{hydroxy}-1-\text{butynyl})-6-(4-\text{hydroxy}-1)
morpholinylmethyl) -3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-[(1-hydroxycyclohexyl)ethynyl]-
6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3,3-dicyclopropyl-3-hydroxy-1-propynyl)-
4-hydroxy-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-[(3S)-3-hydroxy-1-butynyl]-6-
(4-morpholinylmethyl)-3-cinnolinecarboxamide;
8-\{3-[(aminocarbonyl)amino]-3-methyl-1-butynyl\}-N-(4-
chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-4-\text{hydroxy}-8-[3-\text{methyl}-3-(4-\text{thioxo}-1,3,5-
triazinan-1-yl)-1-butynyl]-6-(4-morpholinylmethyl) -3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-4-\text{hydroxy}-8-[(3R)-3-\text{hydroxy}-1-\text{butynyl}]-6-
(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-8-{4-
[(4R)-2-oxo-1,3-oxazolidin-4-yl]-1-butynyl}-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(1,1-\text{dioxido}-4-\text{thiomorpholinyl})-1-
propynyl]-4-hydroxy-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(5-hydroxy-1-pentynyl)-6-(4-
morpholinylmethyl)-3-cinnolinecarboxamide;
```

```
N-(4-chlorobenzyl)-4-hydroxy-8-{[(1R,2S)-2-
hydroxycyclopentyl]ethynyl}-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-3-methyl-1-butynyl)-
6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(4,5-\text{dichloro-1H-imidazol-1-yl})-1-
propynyl]-4-hydroxy-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-1-propynyl)-6-(4-
morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(cyclopropylethyl)-4-hydroxy-6-(4-
morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propyl]-4-hydroxy-6-
(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzy1)-4-hydroxy-8-(4-hydroxy-1-buty1)-6-(4-hydroxy-1-buty1)
morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-[(1-hydroxycyclohexyl)ethyl]-6-
(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-(3,3-dicyclopropyl-3-hydroxy-1-propyl)-4-
hydroxy-6-(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-[(3S)-3-hydroxy-1-butyl]-6-(4-butyl)
morpholinylmethyl)-3-cinnolinecarboxamide;
8-{3-[(aminocarbonyl)amino]-3-methyl-1-butyl}-N-(4-
chlorobenzyl) -4-hydroxy-6-(4-morpholinylmethyl) -3-
cinnolinecarboxamide;
```

```
N-(4-\text{chlorobenzyl})-4-\text{hydroxy}-8-[3-\text{methyl}-3-(4-\text{thioxo}-1,3,5-
triazinan-1-yl)-1-butyl]-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-[(3R)-3-hydroxy-1-butyl]-6-(4-butyl)
morpholinylmethyl) -3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-6-(4-morpholinylmethyl)-8-{4-
[(4R)-2-oxo-1,3-oxazolidin-4-yl]-1-butyl}-3-
cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(1,1-\text{dioxido}-4-\text{thiomorpholinyl})-1-
propyl]-4-hydroxy-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(5-hydroxy-1-pentyl)-6-(4-
morpholinylmethyl) -3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-{(1R,2S)-2-
hydroxycyclopentyl]ethyl}-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-3-methyl-1-butyl)-6-
(4-morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-\text{chlorobenzyl})-8-[3-(4,5-\text{dichloro}-1H-\text{imidazol}-1-yl)-1-
propyl]-4-hydroxy-6-(4-morpholinylmethyl)-3-
cinnolinecarboxamide:
N-(4-\text{chlorobenzyl})-4-\text{hydroxy}-8-(3-\text{hydroxy}-1-\text{propyl})-6-(4-\text{chlorobenzyl})
morpholinylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-1-propynyl)-3-
cinnolinecarboxamide;
```

```
N-(4-chlorobenzyl)-4-hydroxy-8-(4-hydroxy-1-butynyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-1-propynyl)-6-
(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(phenylethynyl)-6-(tetrahydro-
2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-3-phenyl-1-
propynyl)-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(4-hydroxy-1-butynyl)-6-
(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propynyl]-4-hydroxy-
6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzy1)-4-hydroxy-8-{[(1R,2R)-1-hydroxy-2-
methylcyclohexyl]ethynyl}-6-(tetrahydro-2H-pyran-4-ylmethyl)-
3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-\{4-\{(4R)-2-oxo-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3-oxazolidin-1,3
4-yl]-1-butynyl}-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-
cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-1-propyl)-6-
(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(phenylethyl)-6-(tetrahydro-2H-
pyran-4-ylmethyl)-3-cinnolinecarboxamide;
N-(4-chlorobenzyl)-4-hydroxy-8-(3-hydroxy-3-phenyl-1-propyl)-
6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;
```

N-(4-chlorobenzyl)-4-hydroxy-8-(4-hydroxy-1-butyl)-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-8-[3-(dimethylamino)-1-propyl]-4-hydroxy-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-4-hydroxy-8-{[(1R,2R)-1-hydroxy-2-methylcyclohexyl]ethyl}-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

N-(4-chlorobenzyl)-4-hydroxy-8-{4-[(4R)-2-oxo-1,3-oxazolidin-4-yl]-1-butyl}-6-(tetrahydro-2H-pyran-4-ylmethyl)-3-cinnolinecarboxamide;

and pharmaceutically acceptable salts thereof.

9. (Original) A method of Claim 1, wherein the compound administered is Formula VIII

and pharmaceutically acceptable salts thereof, wherein \mathbf{A}^{VIII} is

- a) Cl,
- b) Br,
- c) CN,
- d) NO_2 , or
- e) F;

 R^{VIII-1} is

- a) R^{VIII-5}
- b) NR^{VIII-7}R^{VIII-8}, or
- c) SO_2R^{VIII-9} ;

 R^{VIII-2} is

- a) aryl^{VIII},
- b) het^{VIII},
- c) $SO_m^{VIII}R^{VIII-6}$,
- d) OC_{2-7} alkyl substituted by OH,
- e) SC₂₋₇ alkyl substituted by OH, or
- f) C_{2-8} alkyl which is partially unsaturated and is optionally substituted by one or more substituents selected from $R^{VIII-11}$, $OR^{VIII-13}$, $SR^{VIII-13}$, $NR^{VIII-7}R^{VIII-8}$, halo, $(C=0)C_{1-7}$ alkyl or $SO_m^{VIII}R^{VIII-9}$;

with the proviso that when $R^{\text{VIII-1}} = R^{\text{VIII-5}} = (CH_2CH_2O)_i R^{\text{VIII-10}}$, then $R^{\text{VIII-2}}$ may additionally represent

- a) H,
- b) halo,
- $(C=0) R^{VIII-6}$
- d) $(C=0) OR^{VIII-9}$,
- e) cyano,
- f) OR^{VIII-10},
- g) Ohet^{VIII},
- h) NR^{VIII-7}R^{VIII-8},
- i) SR^{VIII-10},
- j) Shet^{VIII},
- k) NHCOR^{VIII-12},
- 1) $NHSO_2R^{VIII-12}$, or
- m) $R^{\text{VIII-2}}$ together with $R^{\text{VIII-3}}$ or $R^{\text{VIII-4}}$ form a carbocyclic or het which may be optionally substituted by $NR^{\text{VIII-7}}R^{\text{VIII-8}}$, or C_{1-7} alkyl which may be optionally substituted by $OR^{\text{VIII-14}}$;

 R^{VIII-3} and R^{VIII-4} are independently:

- a) H,
- b) halo,
- c) aryl^{VIII},
- d) $S(0)_{m}^{VIII}R^{VIII-6}$,
- e) (C=O) R^{VIII-6} ,

- f) (C=O) OR^{VIII-9} ,
- g) cyano,
- h) het^{VIII}, wherein said het^{VIII} is bound via a carbon atom,
- i) OR^{VIII-10},
- j) Ohet^{VIII},
- k) $R^{VIII-7}R^{VIII-8}$,
- 1) $SR^{VIII-10}$,
- m) Shet^{VIII},
- n) NHCOR VIII-12,
- o) $NHSO_2R^{VIII-12}$,
- p) C_{1-7} alkyl which may be partially unsaturated and optionally substituted by one or more substituents of the group $R^{VIII-11}$, $OR^{VIII-13}$, $SR^{VIII-10}$, $SR^{VIII-13}$, $NR^{VIII-7}R^{VIII-8}$, halo, (C=O) C_{1-7} alkyl, or $SO_m^{VIII}R^{VIII-9}$, or
- q) R^{VIII-4} together with R^{VIII-3} form a carbocyclic or het VIII which may be optionally substituted by $NR^{VIII-7}R^{VIII-8}$, or C_{1-7} alkyl which may be optionally substituted by $OR^{VIII-14}$;

R^{VIII-5} is

- a) $(CH_2CH_2O)_i^{VIII}R^{VIII-10}$,
- b) het^{VIII}, wherein said het^{VIII} is bound via a carbon atom,
- c) aryl^{VIII},
- d) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VIII-7}R^{VIII-8}$, $R^{VIII-11}$, $SO_m^{VIII}R^{VIII-9}$, or OC_{2-4} alkyl which may be further substituted by het VIII, $OR^{VIII-10}$, or VIII-10, or VIII-10, or VIII-10, or
- e) C_{3-8} cycloalkyl which may be partially unsaturated and optionally substituted by one or more substituents selected from $R^{\text{VIII-11}}$, $NR^{\text{VIII-7}}R^{\text{VIII-8}}$, $SO_m^{\text{VIII-9}}$, or C_{1-}

7alkyl optionally substituted by R^{VIII-11}, NR^{VIII-7}R^{VIII-8}, or SO_mR^{VIII-9};

R^{VIII-6} is

- a) C_{1-7} alkyl,
- b) NR^{VIII-7}R^{VIII-8},
- c) aryl^{VIII}, or
- d) het^{VIII}, wherein said het^{VIII} is bound via a carbon atom;

$R^{\text{VIII-7}}$ and $R^{\text{VIII-8}}$ are independently

- a) H,
- b) aryl^{VIII},
- c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VIII-10}R^{VIII-10}$, $R^{VIII-11}$, SO_mR^{VIII-9} , $CONR^{VIII-10}R^{VIII-10}$, or halo, or,
- d) R^{VIII-7} and R^{VIII-8} together with the nitrogen to which they are attached form a het VIII ;

R^{VIII-9} is

- a) aryl^{VIII},
- b) het^{VIII},
- c) C₃₋₈cycloalkyl,
- d) methyl, or
- e) C_{2-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{VIII-10}R^{VIII-10}$, $R^{VIII-11}$, SH, $CONR^{VIII-10}R^{VIII-10}$, or halo;

R^{VIII-10} is

- a) H,
- b) methyl, or
- c) C_{2-7} alkyl optionally substituted by OH;

R^{VIII-11} is

- a) OR^{VIII-10},
- b) Ohet VIII,

```
Oaryl<sup>VIII</sup>,
      c)
      d) CO_2R^{VIII-10},
             het<sup>VIII</sup>,
       e)
              aryl<sup>VIII</sup>, or
       f)
              CN;
      g)
R<sup>VIII-12</sup> is
      a)
             Η,
             het<sup>VIII</sup>,
      b)
             aryl<sup>VIII</sup>,
      c)
      d)
             C_{3-8}cycloalkyl,
      e)
             methyl, or
             C_{2-7}alkyl optionally substituted by NR^{VIII-7}R^{VIII-8} or
       f)
R<sup>VIII-13</sup> is
             (P=0) (OR^{14})_{2}
      a)
             CO(CH_2)_n^{VIII}CON(CH_3) - (CH_2)_n SO_3^{-M^{VIII+}}
      b)
             an amino acid,
      c)
             C(=0) aryl<sup>VIII</sup>, or
      d)
              C(=0)C_{1-7}alkyl optionally substituted by NR^{VIII-7}R^{VIII-8}.
      e)
              aryl<sup>VIII</sup>, het<sup>VIII</sup>, CO<sub>2</sub>H, or O(CH<sub>2</sub>)<sub>n</sub><sup>VIII</sup>CO<sub>2</sub>R<sup>VIII-14</sup>;
R^{VIII-14} is
             H, or
      a)
      b) C_{1-7}alkyl;
each i^{VIII} is independently 2, 3, or 4;
each n<sup>VIII</sup> is independently 1, 2, 3, 4 or 5;
each m<sup>VIII</sup> is independently 0, 1, or 2;
M<sup>VIII</sup> is sodium, potassium, or lithium;
aryl is a phenyl radical or an ortho-fused bicyclic
carbocyclic radical wherein at least one ring is aromatic;
wherein any aryl viii is optionally substituted with one or
      more substituents selected from halo, OH, cyano,
      CO_2R^{VIII-14}, CF_3, C_{1-6}alkoxy, and C_{1-6} alkyl which may be
```

further substituted by one to three $SR^{VIII-14}$, $NR^{VIII-14}R^{VIII-14}$, $OR^{VIII-14}$, or $CO_2R^{VIII-14}$ groups;

- het^{VIII} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;
- wherein any het^{VIII} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, $CO_2R^{VIII-14}$, CF_3 , C_{1-6} alkoxy, oxo, oxime, and C_{1-6} alkyl which may be further substituted by one to three $SR^{VIII-14}$, $NR^{VIII-14}R^{VIII-14}$, $OR^{VIII-14}$, or $CO_2R^{VIII-14}$ groups.
- 10. (Original) The method of Claim 9, wherein \mathbf{A}^{VIII} is Cl.
- 11. (Original) The method of Claim 9, wherein $R^{\text{VIII-2}}$ is alkynl-CH2OH.
- 12. (Original) The method of Claim 9, wherein the compound administered is N-(4-chlorobenzyl)-6-(3-hydroxy-1-propynyl)-1,7-dimethyl-4-oxo-1,4-dihydro[1,8] naphthyridine-3-carboxamide, or <math>N-(4-chlorobenzyl)-6-(3-hydroxy-1-propynyl)-7-methoxy-1-methyl-4-oxo-1,4-dihydro[1,8] naphthyridine-3-carboxamide; or a pharmaceutically acceptable salt thereof.
- 13. (Original) The method of Claim 9, wherein the compound administered is:

N-(4-chlorobenzyl)-6-(3-hydroxy-1-propynyl)-1,7-dimethyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-6-(3-hydroxypropyl)-1,7-dimethyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

N-(4-Chlorobenzyl)-6-iodo-7-methoxy-1-methyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-1,7-dimethyl-6-(4-morpholinylmethyl)-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-1-methyl-4,7-dioxo-1,4,7,8-tetrahydro[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-6-(3-hydroxy-1-propynyl)-7-methoxy-1-methyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-6-(3-hydroxypropyl)-7-methoxy-1-methyl-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxamide;

ethyl 6-{[(4-chlorobenzyl)amino]carbonyl}-2-methoxy-8-methyl-5-oxo-5,8-dihydro[1,8]naphthyridine-3-carboxylate;

and pharmaceutically acceptable salts thereof.

14. (Original) A method of Claim 1, wherein the compound administered has the Formula IX

D

and pharmaceutically acceptable salts thereof, wherein,

a)

Η,

```
R^{IX-1} is
       a)
              C1,
              Br,
       b)
              CN,
       C)
       d)
              NO_2, or
              F;
       e)
R^{IX-2}, R^{IX-3} and R^{IX-4} are independently selected from:
       a)
              Η,
       b)
              halo,
              aryl<sup>IX</sup>,
       C)
              S(0)_{m}^{IX}R^{IX-6},
       d)
              (C=0) R^{IX-6}
       e)
              (C=O)OR^{IX-9}
       f)
              cyano,
       g)
              het<sup>IX</sup>, wherein said het<sup>IX</sup> is bound via a carbon atom,
       h)
              ORIX-10,
       i)
              Ohet<sup>IX</sup>,
       j)
              NR^{IX-7}R^{IX-8}
       k)
              SR<sup>IX-10</sup>,
       1)
              S<sup>IX-</sup>het,
       m)
              NHCORIX-12,
       n)
              NHSO_2R^{IX-12}, or
       0)
              C_{1-7}alkyl which may be partially unsaturated and
       p)
              optionally substituted by one or more substituents
              of the group R^{IX-11}, OR^{IX-13}, SR^{IX-10}, SR^{IX-13}, NR^{IX-7}R^{IX-8},
              halo, (C=O)C_{1-7}alkyl, or SO_mR^{IX-9};
R<sup>IX-6</sup> is
              C_{1-7}alkyl,
       a)
              NR^{IX-7}R^{IX-8},
       b)
              aryl<sup>IX</sup>, or
       c)
              het<sup>IX</sup>, wherein said het<sup>IX</sup> is bound via a carbon atom;
       and R<sup>IX-8</sup> are independently
```

- b) aryl^{IX},
- c) C_{1-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{IX-10}R^{IX-10}$, R^{IX-11} , SO_mR^{IX-9} , $CONR^{IX-10}R^{IX-10}$, or halo, or,
- d) R^{IX-7} and R^{IX-8} together with the nitrogen to which they are attached form a het^{IX};

R^{IX-9} is

- a) aryl^{IX},
- b) het^{IX},
- c) C_{3-8} cycloalkyl,
- d) methyl, or
- e) C_{2-7} alkyl which may be partially unsaturated and is optionally substituted by one or more substituents selected from $NR^{IX-10}R^{IX-10}$, R^{IX-11} , SH, $CONR^{IX-10}R^{IX-10}$, or halo;

R^{IX-10} is

- a) H,
- b) methyl, or
- c) C₂₋₇alkyl optionally substituted by OH;

R^{IX-11} is

- a) OR^{IX-10} ,
- b) Ohet^{IX},
- c) Oaryl^{IX},
- d) CO_2R^{IX-10} ,
- e) het^{IX},
- f) aryl^{IX}, or
- g) CN;

R^{IX-12} is

- a) H,
- b) het^{IX},
- c) aryl^{IX},
- d) C₃₋₈cycloalkyl,

- e) methyl, or
- f) C_{2-7} alkyl optionally substituted by $NR^{IX-7}R^{IX-8}$ or R^{IX-11} ; R^{IX-13} is
 - a) $(P=0) (OR^{IX-14})_{2}$
 - b) $CO(CH_2)_n^{IX}CON(CH_3) (CH_2)_n^{IX}SO_3^{-M}^{IX+}$,
 - c) an amino acid,
 - C(=0) aryl, or
 - e) $C(=0)C_{1-7}alkyl$ optionally substituted by $NR^{IX-7}R^{IX-8}$, $aryl^{IX}$, het^{IX} , CO_2H , or $O(CH_2)_nCO_2R^{IX-14}$;

R^{IX-14} is

- a) H, or
- b) $C_{1-7}alkyl;$

each n^{IX} is independently 1, 2, 3, 4 or 5; each m^{IX} is independently 0, 1, or 2; M^{IX} is sodium, potassium, or lithium;

- aryl is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic;
- wherein any $\operatorname{aryl}^{\operatorname{IX}}$ is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, $\operatorname{CO}_2R^{\operatorname{IX}-14}$, CF_3 , $\operatorname{C}_{1-6}\operatorname{alkoxy}$, and $\operatorname{C}_{1-6}\operatorname{alkyl}$ which may be further substituted by one to three $\operatorname{SR}^{\operatorname{IX}-14}$, $\operatorname{NR}^{\operatorname{IX}-14}R^{\operatorname{IX}-14}$, $\operatorname{OR}^{\operatorname{IX}-14}$, or $\operatorname{CO}_2R^{\operatorname{IX}-14}$ groups;
- het^{IX} is a four- (4), five- (5), six- (6), or seven- (7) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring, or any bicyclic heterocycle group;
- wherein any het^{IX} is optionally substituted with one or more substituents selected from the group consisting of halo, OH, cyano, phenyl, CO_2R^{IX-14} , CF_3 , C_{1-6} alkoxy, oxo,

oxime, and C_{1-6} alkyl which may be further substituted by one to three SR^{IX-14} , $NR^{IX-14}R^{IX-14}$, OR^{IX-14} , or CO_2R^{IX-14} groups.

- 15. (Original) The method of Claim 14, wherein R^{IX-1} is Cl.
- 16. (Original) The method of Claim 14, wherein the compound administered is selected from a group consisting of

N-(4-chlorobenzyl)-4-hydroxy-7-methyl[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-7-methyl-6-(tetrahydro-2H-pyran-4-ylmethyl)[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-7-methyl-6-(4-morpholinylmethyl)[1,8]naphthyridine-3-carboxamide;

6-bromo-N-(4-chlorobenzyl)-4-hydroxy-7-methyl[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-6-(3-hydroxy-1-propynyl)-7-methyl[1,8]naphthyridine-3-carboxamide;

N-(4-chlorobenzyl)-4-hydroxy-6-iodo-7-methyl[1,8]naphthyridine-3-carboxamide; and

Methyl 6-{[(4-chlorobenzyl)amino]carbonyl}-5-hydroxy-2-methyl[1,8]naphthyridine-3-carboxylate.

- 17. (Original) The method according to Claim 1, wherein said mammal is a human.
- 18. (Original) The method according to Claim 1, wherein said mammal is a livestock or companion animal.

- 19. (Original) The method according to Claim 1, wherein the amount administered is from about 0.1 to about 300 mg/kg of mammal body weight.
- 20. (Original) The method according to Claim 1, wherein the amount administered is from about 1 to about 30 mg/kg of mammal body weight.
- 21. (Currently Amended) The method according to Claim 2Claim 1, wherein the compound is administered parenterally, intravaginally, intranasally, topically, or ally, or rectally.