УТВЕРЖДЕНО

Проректор по учебной работе А. А. Воронов 15 июня 2022 г.

ΠΡΟΓΡΑΜΜΑ

по дисциплине: Теория поля по направлению подготовки:

03.03.01 «Прикладные математика и физика»

физтех-школа: ФПМИ

кафедра: теоретической физики

 $\begin{array}{cc} \text{курс:} & \underline{3} \\ \text{семестр:} & \underline{5} \end{array}$

лекции – 30 часов Экзамен – 5 семестр

практические (семинарские)

занятия – 30 часов

ВСЕГО АУДИТОРНЫХ ЧАСОВ — 60 Самостоятельная работа

<u>— 45 часов</u>

Программу и задание составил

ассистент А.В. Корибут

Программа принята на заседании кафедры теоретической физики 21 мая 2022 года

Заведующий кафедрой

Э. Т. Ахмедов

д.ф.-м.н.

ТЕОРИЯ ПОЛЯ И МИКРОСКОПИЧЕСКАЯ ЭЛЕКТРОДИНАМИКА

1. Пространство Минковского и принцип относительности. Тензорные поля и их преобразования. Пространство Минковского. Интервал. Световой конус. Метрика. Группа симметрий метрики Минковского. Собственная ортохронная группа Лоренца. Закон сложения скоростей. Сокращение длин, замедление времени и собственное время. Релятивистское сложение скоростей и преобразование направлений. Эффект прожектора. Аберрация света.

2. Релятивистская точечная частица.

Безмассовая и массивная частицы. Энергия, импульс и гамильтониан свободной релятивистской частицы. 4-вектор импульса. Ультрарелятивистское движение. Теорема Нётер. Глобальные симметрии. Закон сохранения 4-импульса замкнутой системы как следствие однородности пространства-времени. Лабораторная система и система центра масс. Частицы с нулевой массой. Волновой 4-вектор. Эффект Доплера. Применение закона сохранения 4-импульса для описания упругих столкновений частиц. Эффективная масса системы. Неупругие столкновения и распады с образованием новых частиц. Дефект массы для составных систем. Порог реакции.

3. Движение частицы во внешнем электромагнитном поле. Действие для заряженной релятивисткой частицы. Функции Лагранжа и Гамильтона. Уравнения движения. Тензор электромагнитного поля, 4-потенциал. Калибровочная инвариантность.

4. Электромагнитное поле.

Уравнения Эйлера-Лагранжа для полей. Действие для электромагнитного поля, уравнения движения. Степени свободы. Фиксация калибровки. Инварианты поля. Взаимодействие с внешним током. Условие совместности. Первая и вторая пара уравнений Максвелла.

5. Скалярная электродинамика. Взаимодействие полей с внешними источниками. Сохраняющийся ток. Заряд. Сохранение заряда. Калибровочная инвариантность, длинная (ковариантная) производная. Тензор напряженности электромагнитного поля. Преобразование Лоренца для потенциалов (φ, \mathbf{A}) и напряженностей (\mathbf{E}, \mathbf{H}) из одной системы отсчета в другую.

6. Симметрии и законы сохранения.

Теорема Нётер для полевых систем. Тензор энергии-импульса скалярного и электромагнитного поля. Плотность энергии поля и вектор плотности потока энергии (вектор Пойнтинга). Баланс энергии системы заряженных частиц и электромагнитного поля. Плотность импульса поля, тензор плотности потока импульса и тензор напряжений Максвелла.

7. Уравнения для потенциалов. Электростатика.

Вид уравнений для 4-потенциалов в кулоновской калибровке и в калибровке Лоренца. Оператор Д'Аламбера. Основные уравнения электро- и магнитостатики. Электростатический потенциал точечного заряда. Уравнение Пуассона и его решение. Функция Грина уравнения Пуассона. Электрическое поле системы неподвижных зарядов на больших расстояниях. Мультипольное разложение потенциалов. Электрический квадрупольный момент. Энергия электростатического взаимодействия.

8. Уравнения для потенциалов. Магнитостатика.

Решение уравнения Пуассона для векторного потенциала стационарной системы токов. Закон Био-Савара. Магнитное поле усредненного по времени стационарного движения зарядов на больших расстояниях. Магнитный дипольный момент. Энергия магнитного момента во внешнем магнитном поле. Гиромагнитное отношение. Прецессия магнитного момента во внешнем поле и теорема Лармора.

9. Свободное поле. Неоднородные волновые уравнения.

Однородные волновые уравнения для потенциалов свободного электромагнитного поля в пустом пространстве и их решения. Плоские монохроматические электромагнитные волны и их поляризация. Линейная, круговая и эллиптическая поляризации. Усреднение по времени и по поляризации. Решение неоднородных волновых уравнений с помощью функции Грина. Функция Грина в Фурье-представлении по времени. Функция Грина волнового уравнения и принцип причинности. Определение запаздывающей функции Грина.

10. Излучение произвольно движущейся частицы.

Излучение релятивистски движущихся частиц. Потенциалы Лиенара—Вихерта. Поля ${\bf E}$ и ${\bf H}$ в волновой и квазистационарной зонах. Дипольное приближение, его физический смысл и критерии

применимости. Потенциалы поля излучения в дипольном приближении. Интенсивность излучения в дипольном приближении. Угловое и спектральное распределения дипольного излучения и его поляризация. Потери энергии за счет излучения. Формула Лармора. Синхротронное излучение.

11. Излучение в мультипольном приближении.

Волновая зона. Мультипольное приближение для потенциала в волновой зоне. Поля в волновой зоне и поляризация. Интенсивность излучения.

12. Реакция излучения и рассеяние электромагнитных волн.

Сила радиационного трения. Затухание, вызываемое излучением. Естественная (классическая) ширина спектральной линии. Пределы применимости классической электродинамики на малых расстояниях и в сильных полях. Постановка задачи о рассеянии. Дифференциальное и полное сечение рассеяния монохроматической волны на заряде. Рассеяние света на свободном электроне. Томсоновское сечение рассеяния и классический радиус электрона. Поляризация рассеянного света. Рассеяние электромагнитных волн на связанном электроне как на осцилляторе с затуханием. Резонансное рассеяние.

13. <u>Безмассовые поля высших спинов.</u>

Классификация Вигнера элементарных частиц. Уравнение Фронсдала. Калибровочные преобразования. Подсчет числа степеней свободы. Действие Фронсдала.

Литература

Основная

- 1. $\mathit{Ландау}\ \mathit{Л.Д.}$, $\mathit{Лифшиц}\ E.M.$ Теоретическая физика. Т. 2. Теория поля. Москва : Физматлит, 2014, 2016.
- 2. Батыгин В.В., Топтыгин И.Н. Сборник задач по электродинамике. Москва : НИЦ «Регулярная и хаотическая динамика», 2002.
- 3. *Белоусов Ю.М.*, *Бурмистров С.Н.*, *Тернов А.И.* Задачи по теоретической физике. Долгопрудный : ИД «Интеллект», 2013.

Дополнительная

1. Pамон Π . Теория поля. Современный вводный курс. — Москва : Мир, 1984.

- Алексеев А.И. Сборник задач по классической электродинамике.
 — Москва: Наука, 1977.
- 3. *Кузнецов В.П., Смилга В.П.* Движение заряженной частицы во внешнем слабонеоднородном магнитном поле. Дрейфовая теория: учебнометодическое пособие. Москва: МФТИ, 2001.
- Белоусов Ю.М., Кузнецов В.П., Смилга В.П. Практическая математика. Руководство для начинающих изучать теоретическую физику.

 Долгопрудный: ИД «Интеллект», 2009.

ФОРМУЛЬНОЕ ПРИЛОЖЕНИЕ

1 НЕКОТОРЫЕ ФОРМУЛЫ ИЗ КУРСА МАТЕМАТИКИ

1.1 Тензорный анализ на многообразиях

Правило суммирования Эйнштейна: по повторяющимся индексам подразумевается суммирование

$$A_{\mu}B^{\mu} \equiv \sum_{\mu=1}^{d} A_{\mu}B^{\mu}.$$

Индексы μ, ν нумеруют компоненты векторов и координаты пространства(-времени).

Тензорным полем ранга (p,q) на многообразии M называется величина, преобразующаяся как

$$T'^{\mu_1\dots\mu_p}_{\nu_1\dots\nu_q}(x') = \frac{\partial x'^{\mu_1}}{\partial x^{\rho_1}} \cdots \frac{\partial x'^{\mu_p}}{\partial x^{\rho_p}} \frac{\partial x^{\sigma_1}}{\partial x'^{\nu_1}} \cdots \frac{\partial x^{\sigma_q}}{\partial x'^{\nu_q}} T^{\rho_1\dots\rho_p}_{\sigma_1\dots\sigma_q}(x(x')),$$

при произвольном невырожденном преобразовании координат $x'^{\mu} = x'^{\mu}(x)$.

Например:

1. Скаляр: тензор ранга (0,0)

$$\phi'(x') = \phi(x(x')),$$

2. Вектор: тензор ранга (1,0)

$$A'^{\mu}(x') = \frac{\partial x'^{\mu}}{\partial x^{\nu}} A^{\nu}(x(x')),$$

3. Ковектор: тензор ранга (0,1)

$$A'_{\mu}(x') = \frac{\partial x^{\nu}}{\partial x'^{\mu}} A_{\nu}(x(x')).$$

Пример ковекторного поля: производная от скалярной функции

$$\frac{\partial f(x)}{\partial x^{\mu}} =: \partial_{\mu} f(x).$$

 $\delta_{\mu}{}^{\nu}$ — символ Кронекера, единичный оператор в любой размерности d является инвариантом невырожденных преобразований.

Симметричный тензор второго ранга $g_{\mu\nu}(x) = g_{\nu\mu}(x)$ определяет расстояние между точками и называется метрикой. Расстояние между бесконечно близкими точками с координатами x^{μ} и $x^{\mu} + dx^{\mu}$ равно

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}.$$

Метрика используется для поднятия и опускания индексов

$$A_{\mu} = g_{\mu\nu}A^{\nu},$$

$$A^{\mu} = g^{\mu\nu}A_{\nu}.$$

Обратная метрика $g^{\mu\nu}$ задается соотношениями

$$g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}{}_{\rho}.$$

1.2 Линейные преобразования и группа Лоренца

Если компоненты метрики $g_{\mu\nu}(x) = \eta_{\mu\nu} = \text{const}$, то пространство плоское (обратное неверно!).

Постоянные тензоры остаются постоянными при линейных преобразованиях координат

$$x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu},$$

где $\Lambda^{\mu}_{\ \nu}=$ const — постоянные коэффициенты невырожденной матрицы. Они образуют группу $\mathrm{GL}(d)$ (General Linear).

Преобразования векторов и ковекторов

$$A'^{\mu} = \Lambda^{\mu}{}_{\nu} A^{\nu},$$

$$A'_{\mu} = (\Lambda^{-1})_{\mu}{}^{\nu} A_{\nu}.$$

Требование инвариантности метрики

$$\eta_{\mu\nu} = (\Lambda^{-1})_{\mu}{}^{\rho} (\Lambda^{-1})_{\nu}{}^{\sigma} \eta_{\rho\sigma},$$

ограничивает группу $\mathrm{GL}(d)$ до ортогональной группы $\mathrm{O}(d)$. Отсюда следует соотношение ортогональности для матрицы $||\Lambda^{\mu}{}_{\nu}||$

$$(\Lambda^{-1})_{\mu}{}^{\nu} = \Lambda_{\mu}{}^{\nu}.$$

Метрика и интервал пространства Минковского:

$$||\eta_{\mu\nu}|| = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{bmatrix},$$

$$ds^{2} = (dx^{0})^{2} - (dx^{1})^{2} - (dx^{2})^{2} - (dx^{3})^{2}.$$

Абсолютно антисимметричный тензор в d–мерном пространстве $\epsilon_{\mu_1...\mu_d}$ определен правилами:

- 1. $\epsilon^{012...d-1} = +1$.
- 2. антисимметричен при перестановке любых двух индексов.

Требование инвариантности абсолютно антисимметричного тензора

$$\epsilon_{\mu_1\dots\mu_d} = \Lambda_{\mu_1}{}^{\nu_1} \cdots \Lambda_{\mu_d}{}^{\nu_d} \epsilon_{\nu_1\dots\nu_d}$$

ограничивает ортогональную группу до специальной ортогональной группы $\mathrm{SO}(d)$. Это эквивалентно требованию

$$\det ||\Lambda^{\mu}{}_{\nu}|| = +1.$$

1.3 Векторный анализ в трехмерном пространстве

Метрика в плоском трехмерном пространстве

$$\eta_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

определяет элемент длины

$$ds^{2} = \eta_{ij}dx^{i}dx^{j} = (x^{1})^{2} + (x^{2})^{2} + (x^{3})^{2}$$
$$= dx^{2} + dy^{2} + dz^{2}.$$

 e_{ijk} — абсолютно антисимметричный тензор, инвариант группы вращений *теммерного* пространства, индексы $i, j, k, \ldots = 1, 2, 3$.

$$\epsilon_{ijk} = -\epsilon_{jik} = \epsilon_{kij}, \quad \epsilon_{123} = \epsilon_{xyz} = 1,$$

Свойство для сверток

$$\begin{split} \epsilon_{ijk}\epsilon^{ijk} &= 3!\,,\\ \epsilon_{ikl}\epsilon^{jkl} &= 2!\,\delta_i{}^j\,,\\ \epsilon_{ijk}\epsilon^{mnk} &= 2!\,\delta_i{}^{[m}\delta_j{}^{n]} \equiv \delta_i{}^m\delta_j{}^n - \delta_i{}^n\delta_j{}^m\,,\\ \epsilon_{ijk}\epsilon^{mnl} &= 3!\delta_i{}^{[m}\delta_j{}^n\delta_k{}^l]\\ &\equiv \delta_i{}^m\delta_j{}^n\delta_k{}^l + \delta_i{}^l\delta_j{}^m\delta_k{}^n + \delta_i{}^n\delta_j{}^l\delta_k{}^m\\ &- \delta_i{}^n\delta_j{}^m\delta_k{}^l - \delta_i{}^l\delta_j{}^n\delta_k{}^m - \delta_i{}^m\delta_j{}^l\delta_k{}^n \end{split}$$

Компоненты векторного произведения

$$[\mathbf{a} \times \mathbf{b}]_i = e_{ijk} a^j b^k \,,$$

Усреднение по единичному радиус-вектору $\mathbf{n} \equiv \mathbf{r}/r$ по всем направлениям

$$\begin{split} \overline{n_i} &= 0; \\ \overline{n_i n_j} &= \frac{1}{3} \eta_{ij}; \\ \overline{n_i n_j n_k} &= 0; \\ \overline{n_i n_j n_k n_l} &= \frac{1}{15} (\eta_{ij} \eta_{kl} + \eta_{ik} \eta_{jl} + \eta_{il} \eta_{jk}) \,. \end{split}$$

Векторный оператор дифференцирования (набла):

$$\mathbf{\nabla} = \left\{ \frac{\partial}{\partial x} \,, \, \frac{\partial}{\partial y} \,, \, \frac{\partial}{\partial z} \right\} = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \equiv \eta^{ij} \mathbf{e}_i \partial_j \,,$$

Дифференциальные операторы на векторных и скалярных полях

$$\partial_{m} = \frac{\partial}{\partial x^{m}}, \qquad \Delta = \eta^{mn} \partial_{m} \partial_{n}$$

$$\operatorname{grad} \varphi \equiv \nabla \varphi = \eta^{mn} \mathbf{e}_{m} \partial_{n} \varphi, \qquad \operatorname{div} \mathbf{a} \equiv (\nabla \cdot \mathbf{a}) = \partial_{m} a^{m},$$

$$(\mathbf{a} \cdot \nabla) = a^{m} \partial_{m}. \qquad \operatorname{rot} \mathbf{a} \equiv [\nabla \times \mathbf{a}] = \mathbf{e}_{n} e^{a\beta\gamma} \partial_{\beta} a_{\gamma},$$

Тождества для двойных дифференциальных операторов

rot rot
$$\mathbf{a} = \operatorname{grad} \operatorname{div} \mathbf{a} - \Delta \mathbf{a}$$
,
 $\operatorname{div} [\mathbf{a} \times \mathbf{b}] = \mathbf{b} \cdot \operatorname{rot} \mathbf{a} - \mathbf{a} \cdot \operatorname{rot} \mathbf{b}$,
 $\operatorname{rot} [\mathbf{a} \times \mathbf{b}] = \mathbf{a} \operatorname{div} \mathbf{b} - \mathbf{b} \operatorname{div} \mathbf{a} - (\mathbf{a} \cdot \nabla) \mathbf{b} + (\mathbf{b} \cdot \nabla) \mathbf{a}$,
 $\operatorname{grad} (\mathbf{a} \cdot \mathbf{b}) = [\mathbf{a} \times \operatorname{rot} \mathbf{b}] + [\mathbf{b} \times \operatorname{rot} \mathbf{a}] + (\mathbf{a} \cdot \nabla) \mathbf{b} + (\mathbf{b} \cdot \nabla) \mathbf{a}$,
 $\operatorname{rot} f \mathbf{a} = [\operatorname{grad} f \times \mathbf{a}] + f \operatorname{rot} \mathbf{a}$,
 $\operatorname{div} f \mathbf{a} = (\operatorname{grad} f \cdot \mathbf{a}) + f \operatorname{div} \mathbf{a}$.

Формулы для величин, содержащих радиус-вектор и его модуль $r\equiv |{f r}|=\sqrt{x^2+y^2+z^2}$:

$$\nabla r = \mathbf{r}/r \equiv \mathbf{n}; \quad \nabla f(r) = df/dr \cdot \mathbf{n}; \quad \text{div } \mathbf{r} = 3; \quad \text{rot } \mathbf{r} = 0;$$

 $(\mathbf{a} \cdot \nabla)\mathbf{r} = \mathbf{a}; \quad \nabla(\mathbf{a} \cdot \mathbf{r}) = \mathbf{a}; \quad \text{rot}[\mathbf{a} \times \mathbf{r}] = 2\mathbf{a} \quad (\mathbf{a} = \text{const}).$

Лапласиан от сферически-симметричной функции:

$$\Delta f(r) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) \equiv \frac{1}{r} \frac{\partial^2 (rf)}{\partial r^2}.$$

Теоремы Гаусса и Стокса:

$$\iiint_V \operatorname{div} \mathbf{a} = \oiint_\S (\mathbf{a} \cdot d\S); \quad \oint_L (\mathbf{a} \cdot d\mathbf{l}) = \iint_\S (\operatorname{rot} \mathbf{a} \cdot d\S).$$

Разложение в ряд Тейлора

$$\mathbf{F}(\mathbf{r} + \mathbf{a}) = \mathbf{F}(\mathbf{r}) + (\mathbf{a} \cdot \nabla)\mathbf{F}(\mathbf{r}) + \frac{1}{2!}(\mathbf{a} \cdot \nabla)^2\mathbf{F}(\mathbf{r}) + \dots =$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} (\mathbf{a} \cdot \nabla)^n\mathbf{F}(\mathbf{r}) = e^{(\mathbf{a} \cdot \nabla)}\mathbf{F}(\mathbf{r}).$$

1.4 Четырехмерные векторы и тензоры

4-вектор контравариантный $A^{\mu} \equiv (A^0, \mathbf{A}) \equiv (A^0, A^i)$, 4-вектор ковариантный $A_{\mu} \equiv (A^0, -\mathbf{A}) \equiv (A^0, -A^i)$. Скалярное произведение 4-векторов

$$A^{\mu}B_{\mu} = A^{0}B_{0} + A^{i}B_{i}$$
$$= A^{0}B^{0} - A^{i}B^{i}$$
$$= A^{0}B^{0} - (\mathbf{A} \cdot \mathbf{B}).$$

Преобразование Лоренца (скорость направлена параллельно оси x, а также $\beta = v/c = \operatorname{th} \psi$, $\gamma = 1/\sqrt{1-\beta^2} = \operatorname{ch} \psi$, $\beta \gamma = \operatorname{sh} \psi$):

$$\begin{pmatrix} A'^0 \\ A'^1 \\ A'^2 \\ A'^3 \end{pmatrix} = \begin{pmatrix} \gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A^0 \\ A^1 \\ A^2 \\ A^3 \end{pmatrix} \qquad A'^{\mu} = \Lambda^{\mu}_{\ \nu} A^{\nu} \,,$$

$$\begin{pmatrix} A^0 \\ A^1 \\ A^2 \\ A^3 \end{pmatrix} = \begin{pmatrix} \gamma & \beta \gamma & 0 & 0 \\ \beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A'^0 \\ A'^1 \\ A'^2 \\ A'^3 \end{pmatrix} \qquad A^{\mu} = \Lambda_{\nu}^{\ \mu} A'^{\ \nu} \,,$$

$$\begin{pmatrix} A'_0 \\ A'_1 \\ A'_2 \\ A'_3 \end{pmatrix} = \begin{pmatrix} \gamma & \beta \gamma & 0 & 0 \\ \beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{pmatrix} \qquad A'_{\mu} = \Lambda_{\mu}^{\ \nu} A_{\nu} \,,$$

$$\begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{pmatrix} = \begin{pmatrix} \gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A'_0 \\ A'_1 \\ A'_2 \\ A_3 \end{pmatrix} \qquad A_{\mu} = \Lambda^{\nu}_{\ \mu} A'_{\nu} \,.$$

4-радиус-вектор $x^{\mu}=(ct,{\bf r}).$ Конечный интервал $s^2=\eta_{\mu\nu}x^{\mu}x^{\nu}$, $s^2=(ct)^2-{\bf r}^2,~$ Собственное время

$$ds^2 = c^2 dt^2 - d\mathbf{r}^2$$
, $ds \equiv c d\tau = c dt \sqrt{1 - \left(\frac{v}{c}\right)^2}$.

1.5 Преобразование Фурье (разложение по плоским волнам)

$$\mathbf{A}(\mathbf{k},\omega) = \iiint_{-\infty}^{+\infty} \mathbf{A}(\mathbf{r},t) e^{-i(\mathbf{k}\mathbf{r}-\omega t)} d^3 \mathbf{r} dt,$$

$$\mathbf{A}(\mathbf{r},t) = \iiint_{-\infty}^{+\infty} \mathbf{A}(\mathbf{k},\omega) e^{i(\mathbf{k}\mathbf{r}-\omega t)} \frac{d^3\mathbf{k} d\omega}{(2\pi)^4}.$$

1.6 Разложение плоской волны и кулоновского потенциала по полиномам Лежандра

$$e^{i\mathbf{k}\mathbf{r}} = e^{ikr\cos\theta} = \sum_{l=0}^{\infty} i^l (2l+1)j_l(kr)P_l(\cos\theta),$$

$$\frac{1}{|\mathbf{R} - \mathbf{r}|} = \frac{1}{\sqrt{R^2 + r^2 - 2rR\cos\theta}} = \sum_{l=0}^{\infty} \frac{r^l}{R^{l+1}} P_l(\cos\theta), \ (R > r).$$

Здесь $P_l(x)$ — полиномы Лежандра, $j_l(z)$ — сферические функции Бесселя:

$$j_l(z) = \sqrt{\frac{\pi}{2z}} J_{l+1/2}(z).$$

Ортогональность полиномов Лежандра:

$$\int_{-1}^{1} P_l(x) P_{l'}(x) dx = \delta_{l \, l'} \frac{2}{(2l+1)}, \quad P_l(1) = 1.$$

$$P_1(x) = x$$
, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, $P_3(x) = \frac{1}{2}(5x^3 - 3x)$.

1.7 Формула Сохотского. Дельта-функция

$$\lim_{\delta \to +0} \frac{1}{x - i\delta} = \mathcal{P} \frac{1}{x} + i\pi \delta(x).$$

$$\int_{a}^{b} f(x) \, \delta(x - x_0) \, dx = \begin{cases} f(x_0), & a < x_0 < b, \\ 0, & x_0 < a, x_0 > b; \end{cases}$$

$$\delta(x) = \int_{-\infty}^{+\infty} e^{ikx} \frac{dk}{2\pi}, \qquad \delta(ax) = \frac{1}{|a|} \delta(x),$$
$$\delta(f(x)) = \sum_{n} \frac{1}{|f'(x_n)|} \delta(x - x_n), \quad (f(x_n) = 0).$$

1.8 Функции Грина

Уравнение Пуассона:

$$\Delta G(\mathbf{r}) = -4\pi \delta(\mathbf{r}), \quad G(\mathbf{r}) = \frac{1}{r}.$$

Уравнение Гельмгольца:

$$(\Delta + k^2) G(\mathbf{r}) = -4\pi \delta(\mathbf{r}), \quad G(\mathbf{r}) = \frac{e^{ikr}}{r}.$$

Волновое уравнение:

$$\begin{split} \Box \, G(\mathbf{r},t) & \equiv \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \Delta\right) G(\mathbf{r},t) = 4\pi \delta(\mathbf{r}) \delta(t) \,, \\ G_{ret}(\mathbf{r},t) & = \frac{\delta(t-r/c)}{r} \,. \end{split}$$

1.9 Ковариантные производные

Производная от вектора $\partial_{\mu}A^{\nu}(x)$ не является тензором ранга (1,1). Ковариантная производная:

$$D_{\mu}A^{\nu} := \partial_{\mu}A^{\nu} + \Gamma_{\mu\rho}{}^{\nu}A^{\rho}.$$

Преобразования символов Кристоффеля $\Gamma_{\mu\rho}{}^{\nu} = \Gamma_{\rho\mu}{}^{\nu}$

$$\Gamma'(x')_{\mu\rho}{}^{\nu} = \frac{\partial x^{\sigma}}{\partial x'^{\mu}} \frac{\partial x^{\kappa}}{\partial x'^{\rho}} \frac{\partial x'^{\nu}}{\partial x^{\lambda}} \Gamma(x)_{\sigma\kappa}{}^{\lambda} + \frac{\partial x'^{\nu}}{\partial x^{\sigma}} \frac{\partial^{2} x^{\sigma}}{\partial x^{\mu} \partial x^{\rho}}$$

обеспечивают правильный закон преобразования

$$D'_{\mu}A'(x')^{\nu} = \frac{\partial x^{\rho}}{\partial x'^{\mu}} \frac{\partial x'^{\nu}}{\partial x^{\sigma}} D_{\rho}A(x)^{\sigma}.$$

2 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

2.1 Кинематика релятивистской частицы

Действие и лагранжиан для свободной частицы:

$$S = -mc \int_{1}^{2} ds = \int_{1}^{2} L dt \quad \Rightarrow \quad L = -mc^{2} \sqrt{1 - \left(\frac{v}{c}\right)^{2}}.$$

4-скорость частицы:

$$u^{i} = \frac{dx^{i}}{ds} = \left(\frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^{2}}}, \frac{\mathbf{v}/c}{\sqrt{1 - \left(\frac{v}{c}\right)^{2}}}\right), \quad u^{i}u_{i} = 1.$$

4-импульс:

$$p^i = mcu^i = \left(\frac{\mathcal{E}}{c}, \mathbf{p}\right), \mathbf{p} = \frac{\mathcal{E}\mathbf{v}}{c^2}, p^i p_i = \left(\frac{\mathcal{E}}{c}\right)^2 - \mathbf{p}^2 = m^2 c^2,$$

m — масса, \mathcal{E} — энергия, \mathbf{p} — импульс частицы. $\mathcal{E}_0 = mc^2$.

$$\mathcal{E} = \frac{mc^2}{\sqrt{1 - v^2/c^2}}, \quad \mathbf{p} = \frac{m\mathbf{v}}{\sqrt{1 - v^2/c^2}}, \quad d\mathcal{E} = (\mathbf{v} \cdot d\mathbf{p}).$$

Эффективная масса системы N частиц соответствует их квадрату энергии в системе ц.м.:

$$s \equiv m_{s \oplus \Phi}^2 = (p_{1i} + p_{2i} + \dots + p_{Ni})(p_1^i + p_2^i + \dots + p_N^i)/c^2$$
.

Для встречных пучков (2 частицы, c=1)

$$s = m_1^2 + m_2^2 + 2(\varepsilon_1 \varepsilon_2 + |\mathbf{p}_1||\mathbf{p}_2|); \quad s \simeq 4\varepsilon_1 \varepsilon_2$$
 (у.-р. предел).

Для фиксированной мишени (частица 2 покоится, c=1)

$$s = m_1^2 + m_2^2 + 2\varepsilon_1 m_2$$
; $s \simeq 2\varepsilon_1 m_2$ (у.-р. предел).

2.2 Электромагнитное поле и взаимодействие с частицами

Действие и лагранжиан для частиц в электромагнитном поле:

$$S = -\int_{1}^{2} \left(-mcds - \frac{e}{c} A_{i} dx^{i} \right) = \int_{1}^{2} Ldt ,$$

$$L = -mc^2 \sqrt{1 - \left(\frac{v}{c}\right)^2} - e\varphi + \frac{e}{c} (\mathbf{A} \cdot \mathbf{v}) \,.$$

4-потенциал $A^i=(\varphi,{\bf A})$, где φ — скалярный, а ${\bf A}$ — векторный потенциалы, электрическое и магнитное поля

$$\mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} - \nabla \varphi, \qquad \mathbf{H} = \operatorname{rot} \mathbf{A}.$$

Калибровочные преобразование и инвариантность:

$$\mathbf{A}' = \mathbf{A} + \operatorname{grad} f, \quad \varphi' = \varphi - \frac{1}{c} \frac{\partial f}{\partial t}; \quad A'_i = A_i - \frac{\partial f}{\partial x^i} \Rightarrow$$

$$\Rightarrow \quad \mathbf{E}' = \mathbf{E}, \quad \mathbf{H}' = \mathbf{H}, \quad \text{if} \quad F'_{ik} = F_{ik}.$$

Тензор электромагнитного поля:

$$\begin{split} F_{ik} &= \frac{\partial A_k}{\partial x^i} - \frac{\partial A_i}{\partial x^k} \,, \quad \frac{\partial}{\partial x_i} \equiv \nabla^i; \quad \frac{\partial}{\partial x^i} \equiv \nabla_i \,. \\ F_{ik} &= \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & -H_z & H_y \\ -E_y & H_z & 0 & -H_x \\ -E_z & -H_y & H_x & 0 \end{pmatrix} = \begin{pmatrix} 0 & \mathbf{E} \\ -\mathbf{E} & -e_{a\beta\gamma}H_\gamma \end{pmatrix} \,, \\ F^{ik} &= \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -H_z & H_y \\ E_y & H_z & 0 & -H_x \\ E_z & -H_y & H_x & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\mathbf{E} \\ \mathbf{E} & -e_{a\beta\gamma}H_\gamma \end{pmatrix} \,. \end{split}$$

Дуальный тензор:

$$\begin{split} \widetilde{F}_{ik} &= \frac{1}{2} e_{iklm} F^{lm} \,, \quad e^{0123} = -e_{0123} = 1 \,. \\ \widetilde{F}_{ik} &= \begin{pmatrix} 0 & H_x & H_y & H_z \\ -H_x & 0 & E_z & -E_y \\ -H_y & -E_z & 0 & E_x \\ -H_z & E_y & -E_x & 0 \end{pmatrix} = \begin{pmatrix} 0 & \mathbf{H} \\ -\mathbf{H} & e_{a\beta\gamma} E_\gamma \end{pmatrix} \,, \\ \widetilde{F}^{ik} &= \begin{pmatrix} 0 & -H_x & -H_y & -H_z \\ H_x & 0 & E_z & -E_y \\ H_y & -E_z & 0 & E_x \\ H_z & E_y & -E_x & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\mathbf{H} \\ \mathbf{H} & e_{a\beta\gamma} E_\gamma \end{pmatrix} \,. \\ \widetilde{F}_{ik}(\mathbf{E}, \mathbf{H}) \Rightarrow F^{ik}(\mathbf{E} \to -\mathbf{H}, \mathbf{H} \to -\mathbf{E}) \,. \end{split}$$

Преобразование Лоренца для полей:

$$E'_{\parallel} = E_{\parallel}, \quad \mathbf{E}'_{\perp} = \gamma \left(\mathbf{E}_{\perp} + \frac{1}{c} [\mathbf{V} \times \mathbf{H}] \right),$$

$$H'_{\parallel} = H_{\parallel}, \quad \mathbf{H}'_{\perp} = \gamma \left(\mathbf{H}_{\perp} - \frac{1}{c} [\mathbf{V} \times \mathbf{E}] \right).$$

Инварианты электромагнитного поля — 4-скаляры:

$$F^{ik}F_{ik} = 2(\mathbf{H}^2 - \mathbf{E}^2), \quad F^{ik}\widetilde{F}_{ik} = -4(\mathbf{E} \cdot \mathbf{H}).$$

Уравнения движения заряженной частицы:

$$mc\frac{du^i}{ds} = \frac{e}{c}F^{ik}u_k; \quad \frac{d\mathbf{p}}{dt} = e\mathbf{E} + \frac{e}{c}\left[\mathbf{v}\times\mathbf{H}\right], \quad \frac{d\mathcal{E}}{dt} = e(\mathbf{E}\cdot\mathbf{v}).$$

Радиус орбиты и угловая частота обращения в магнитном поле:

$$R = \frac{cp_{\perp}}{eH}; \quad \omega = \frac{eHc}{\mathcal{E}} \xrightarrow{\text{vec}} \frac{eH}{mc}.$$

Адиабатический инвариант: $p_{\perp}^2/H = \mathrm{const}$.

2.3 Уравнения электромагнитного поля

Действие для электромагнитного поля, взаимодействующего с частицами:

$$S = -\frac{1}{16\pi c} \int_{ct_{\rm A}}^{ct_{\rm B}} \iiint_{-\infty}^{\infty} d^4x F^{ik} F_{ik} - \frac{1}{c^2} \int_{ct_{\rm A}}^{ct_{\rm B}} \iiint_{-\infty}^{\infty} d^4x A_i j^i.$$

Уравнения Максвелла:

Первая пара

$$\operatorname{div} \mathbf{H} = 0, \quad \operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t};$$

$$\frac{\partial \widetilde{F}^{ik}}{\partial x^{k}} = 0 \quad \Leftrightarrow \quad \frac{\partial F_{ij}}{\partial x^{k}} + \frac{\partial F_{jk}}{\partial x^{i}} + \frac{\partial F_{ki}}{\partial x^{j}} = 0.$$

Вторая пара

$$\operatorname{div} \mathbf{E} = 4\pi\rho, \qquad \operatorname{rot} \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{c} \mathbf{j};$$
$$\frac{\partial F^{ik}}{\partial x^k} = -\frac{4\pi}{c} j^i, \quad j^i = (c\rho, \mathbf{j}).$$

Микроскопические плотности заряда и тока

$$\rho(\mathbf{r},t) = \sum_{a} e_{a} \delta\left(\mathbf{r} - \mathbf{r}_{a}(t)\right), \ \mathbf{j}(\mathbf{r},t) = \sum_{a} e_{a} \mathbf{v}_{a}(t) \delta\left(\mathbf{r} - \mathbf{r}_{a}(t)\right);$$
$$\delta(\mathbf{r}) = \delta(x) \delta(y) \delta(z), \ \delta(\mathbf{r}) = \iiint e^{i\mathbf{k}\mathbf{r}} \frac{d^{3}\mathbf{k}}{(2\pi)^{3}}.$$

Уравнение непрерывности

$$\frac{\partial j^i}{\partial x^i} \equiv \frac{\partial \rho}{\partial t} + \operatorname{div} \mathbf{j} = 0.$$

2.4 Постоянное электромагнитное поле

Электростатические и магнитостатические поля и потенциалы:

$$\begin{split} & \varphi(\mathbf{r}) = \int \frac{\rho(\mathbf{r}')dV'}{|\mathbf{r} - \mathbf{r}'|} \,, \quad \mathbf{E}(\mathbf{r}) = -\boldsymbol{\nabla}\varphi(\mathbf{r}) = \int \frac{(\mathbf{r} - \mathbf{r}')\rho(\mathbf{r}')dV'}{|\mathbf{r} - \mathbf{r}'|^3} \,, \\ & \overline{\mathbf{A}}(\mathbf{r}) = \frac{1}{c} \int \frac{\mathbf{\bar{j}}(\mathbf{r}')dV'}{|\mathbf{r} - \mathbf{r}'|} \,, \quad \overline{\mathbf{H}}(\mathbf{r}) = \operatorname{rot} \overline{\mathbf{A}}(\mathbf{r}) = \frac{1}{c} \int \frac{\left[\mathbf{\bar{j}}(\mathbf{r}') \times (\mathbf{r} - \mathbf{r}')\right]dV'}{|\mathbf{r} - \mathbf{r}'|^3} \,. \end{split}$$

Электрический (**d**) и магнитный (\mathfrak{m}) дипольные моменты системы зарядов:

 $\mathbf{d} = \sum_{a} e_a \mathbf{r}_a$, $\mathbf{m} = \frac{1}{2c} \sum_{a} e_a [\mathbf{r}_a \times \mathbf{v}_a]$.

Для нерелятивистской частицы: $\mathbf{m} = g\mathbf{M}$ (\mathbf{M} — момент импульса, g — гиромагнитное отношение). В классике g = e/(2mc).

Тензор квадрупольного момента

$$D_{a\beta} = \sum_{a} e_a \left(3x_{aa} x_{a\beta} - (\mathbf{r}_a)^2 \delta_{a\beta} \right).$$

Мультипольное разложение электрического потенциала и электрического поля

$$\varphi = \frac{e}{r} + \frac{(\mathbf{d} \cdot \mathbf{n})}{r^2} + \frac{D_{a\beta} n_a n_{\beta}}{2r^3} + \dots;$$

$$\mathbf{E} = -\nabla \varphi = \frac{e}{r^2} + \frac{3(\mathbf{d} \cdot \mathbf{n})\mathbf{n} - \mathbf{d}}{r^3} + \dots$$

Поле магнитного диполя

$$\bar{\mathbf{A}} = \frac{[\bar{\mathbf{m}} \times \mathbf{r}]}{r^3}, \quad \bar{\mathbf{H}} = \frac{3(\bar{\mathbf{m}} \cdot \mathbf{n})\mathbf{n} - \bar{\mathbf{m}}}{r^3}.$$

Система зарядов во внешнем электрическом поле

$$U_{\rm e} = e\varphi - (\mathbf{d} \cdot \mathbf{E}) + \frac{1}{6} \frac{\partial^2 \varphi}{\partial x_a \partial x_\beta} D_{a\beta} , \, \mathbf{F}_{\rm e} = (\mathbf{d} \cdot \mathbf{\nabla}) \mathbf{E} , \, \mathbf{K}_{\rm e} = [\mathbf{d} \times \mathbf{E}].$$

Энергия магнитного диполя, сила и момент сил, действующих на него во внешнем магнитном поле:

$$ar{U}_{\mathrm{m}} = -(\bar{\mathbf{m}} \cdot \mathbf{H}) \,, \quad \bar{\mathbf{F}}_{\mathrm{m}} = (\bar{\mathbf{m}} \cdot \nabla) \mathbf{H} \,, \quad \overline{\mathbf{K}}_{\mathrm{m}} = [\bar{\mathbf{m}} \times \mathbf{H}] \,.$$

Угловая скорость прецессии магнитного диполя: $\mathbf{\Omega} = -g\mathbf{H}$.

2.5 Волновые уравнения и их решения

$$\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} - \Delta \varphi \equiv \Box \varphi = 4\pi \rho, \quad \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} - \Delta \mathbf{A} \equiv \Box \mathbf{A} = \frac{4\pi}{c} \mathbf{j},$$

$$\frac{1}{c} \frac{\partial \varphi}{\partial t} + \operatorname{div} \mathbf{A} = 0, \quad \nabla^i \nabla_i = \Box = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \Delta.$$

Запаздывающие потенциалы:

$$\varphi(\mathbf{r},t) = \iiint \frac{\rho\left(\mathbf{r}', t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}\right)}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r}';$$

$$\mathbf{A}(\mathbf{r},t) = \frac{1}{c} \iiint \frac{\mathbf{j} \left(\mathbf{r}', t - \frac{|\mathbf{r} - \mathbf{r}'|}{c} \right)}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}'.$$

Потенциалы Лиенара—Вихерта:

$$\mathbf{A}(\mathbf{r}, t) = \frac{e\mathbf{v}}{cR\left(1 - \frac{(\mathbf{n} \cdot \mathbf{v})}{c}\right)} \bigg|_{t'}, \quad \varphi(\mathbf{r}, t) = \frac{e}{R\left(1 - \frac{(\mathbf{n} \cdot \mathbf{v})}{c}\right)} \bigg|_{t'}.$$

$$\mathbf{R}(t') = \mathbf{r} - \mathbf{r}(t'), \quad \mathbf{n}(t') = \mathbf{R}(t')/R(t'), \quad t = t' + R(t')/c.$$

Электромагнитное поле релятивистски-движущейся частицы:

$$\begin{split} \mathbf{H}(\mathbf{r},\,t) &= \frac{e\{c\left[\mathbf{w}\times\mathbf{n}\right] + \left[\mathbf{n}\times\left[\left[\mathbf{v}\times\mathbf{w}\right]\times\mathbf{n}\right]\right]\}}{c^3R\left(1 - \frac{(\mathbf{n}\cdot\mathbf{v})}{c}\right)^3} + \frac{e\left(1 - \frac{v^2}{c^2}\right)\left[\mathbf{v}\times\mathbf{n}\right]}{cR^2\left(1 - \frac{(\mathbf{n}\cdot\mathbf{v})}{c}\right)^3}\bigg|_{t'},\\ \mathbf{E}(\mathbf{r},\,t) &= \frac{e\left[\mathbf{n}\times\left[\left(\mathbf{n} - \frac{\mathbf{v}}{c}\right)\times\mathbf{w}\right]\right]}{c^2R\left(1 - \frac{(\mathbf{n}\cdot\mathbf{v})}{c}\right)^3} + \frac{e\left(1 - \frac{v^2}{c^2}\right)\left(\mathbf{n} - \frac{\mathbf{v}}{c}\right)}{R^2\left(1 - \frac{(\mathbf{n}\cdot\mathbf{v})}{c}\right)^3}\bigg|_{t'}. \end{split}$$

2.6 Энергия и импульс электромагнитного поля

Плотность W и поток $\mathbf S$ энергии электромагнитного поля

$$\frac{\partial W}{\partial t} + \operatorname{div} \mathbf{S} = 0, \quad W = \frac{\mathbf{E}^2 + \mathbf{H}^2}{8\pi}, \quad \mathbf{S} = \frac{c}{4\pi} \left[\mathbf{E} \times \mathbf{H} \right].$$

Плотность импульса ${\bf g}$ и тензор напряжений $\sigma_{a\beta}$ электромагнитного поля

$$\begin{split} \frac{\partial \mathbf{g}_a}{\partial t} + \frac{\partial \sigma_{a\beta}}{\partial x_\beta} &= 0 \;, \\ \mathbf{g} &= \frac{1}{4\pi c} \left[\mathbf{E} \times \mathbf{H} \right] = \frac{\mathbf{S}}{c^2} \,, \quad \sigma_{a\beta} &= W \delta_{\alpha\beta} - \frac{E_a E_\beta + H_\alpha H_\beta}{4\pi} \,. \end{split}$$

Тензор энергии-импульса электромагнитного поля

$$T^{ik} = \frac{1}{4\pi} \begin{pmatrix} \frac{1}{4} g^{ik} F_{lm} F^{lm} - F^{il} F^{k}_{l} \end{pmatrix};$$

$$T^{ik} = \begin{pmatrix} W & S_x/c & S_y/c & S_z/c \\ S_x/c & \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ S_y/c & \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ S_z/c & \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} = \begin{pmatrix} W & \mathbf{S}/c \\ \mathbf{S}/c & \sigma_{a\beta} \end{pmatrix}.$$

Баланс энергии-импульса электромагнитного поля и частиц

$$\begin{split} \frac{\partial T^{ik}}{\partial x^k} + \frac{1}{c} F^{ik} j_k &= 0 \,, \\ \frac{\partial W}{\partial t} + \text{div} \mathbf{S} + (\mathbf{j} \cdot \mathbf{E}) &= 0 \,, \quad \frac{\partial \mathbf{g}_a}{\partial t} + \frac{\partial \sigma_{a\beta}}{\partial x_\beta} + \rho E_a + \frac{1}{c} \, [\mathbf{j} \times \mathbf{H}]_a &= 0 \,. \end{split}$$

2.7 Плоская монохроматическая волна

$$\begin{split} \mathbf{E}(\mathbf{r},t) &= \mathrm{Re}\left\{\mathbf{E}_0 e^{(i\mathbf{k}\cdot\mathbf{r}-i\omega t)}\right\} \;, \quad \mathbf{E} = \left[\mathbf{H}\times\mathbf{n}\right] \;, \\ \mathbf{H} &= \left[\mathbf{n}\times\mathbf{E}\right] \;, \quad \left(\mathbf{n}\cdot\mathbf{H}\right) = 0 \;, \quad \mathbf{n} = \frac{\mathbf{k}}{k} \;, \quad k = \frac{\omega}{c} \;, \quad k = \frac{2\pi}{\lambda} \;. \end{split}$$

Вектор поляризации

$$\mathbf{e} = \frac{\mathbf{E}_0}{|\mathbf{E}_0|} = e_1 \mathbf{e}^{(1)} + e_2 \mathbf{e}^{(2)}, \quad ((\mathbf{e}^{(1)} \cdot \mathbf{e}^{(2)*}) = 0, (\mathbf{e}^{(1,2)} \cdot \mathbf{n}) = 0).$$

Линейный базис

$$\mathbf{e}^{(1)} = \mathbf{e}^{(x)}, \ \mathbf{e}^{(2)} = \mathbf{e}^{(y)}, \ (\mathbf{n} \parallel z),$$

циркулярный базис

$$\mathbf{e}^{(+1)} = -\frac{1}{\sqrt{2}} \left(\mathbf{e}^{(x)} + i \mathbf{e}^{(y)} \right) , \ \mathbf{e}^{(-1)} = \frac{1}{\sqrt{2}} \left(\mathbf{e}^{(x)} - i \mathbf{e}^{(y)} \right) .$$

Усреднение по времени

$$\overline{(\operatorname{Re}\left\{\mathbf{A}_{0}e^{-i\omega t}\right\}\cdot\operatorname{Re}\left\{\mathbf{B}_{0}e^{-i\omega t}\right\})} = \frac{1}{2}\operatorname{Re}(\mathbf{A}_{0}\cdot\mathbf{B}_{0}^{*}).$$

Усреднение по поляризации: $\overline{e_a e_{\beta}^*} = \left(\delta_{a\beta} - n_a n_{\beta}\right)/2$.

2.8 Излучение и рассеяние электромагнитных волн

Интенсивность мультипольного излучения

$$\begin{split} \frac{dI_d}{d\Omega} &= \frac{[\ddot{\mathbf{d}} \times \mathbf{n}]^2}{4\pi c^3} \,, \quad I_d = \int \frac{dI_d}{d\Omega} \, d\Omega = \frac{2}{3c^3} \, \ddot{\mathbf{d}}^2 \,; \\ I_m &= \frac{2}{3c^3} \, \ddot{\mathbf{m}}^2 \,; \quad I_q = \frac{1}{180c^5} \, \dddot{D}_{a\beta} \, \dddot{D}_{a\beta} \,. \end{split}$$

Полная интенсивность излучения релятивистской частицы

$$I = \frac{2e^2\gamma^6}{3c^3} \left\{ \mathbf{w}^2 - \frac{[\mathbf{v} \times \mathbf{w}]^2}{c^2} \right\}.$$

Сила радиационного трения

$$\mathbf{F}_{fr} = \frac{2e^2}{3c^3} \ddot{\mathbf{v}} \,.$$

Сечение рассеяния

$$\sigma_T = \frac{8\pi}{3} r_0^2; \qquad r_0 = \frac{e^2}{mc^2}; \qquad \sigma = \sigma_T \frac{\omega^4}{(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}.$$

ЗАДАНИЕ

ТЕОРИЯ ПОЛЯ И ЭЛЕКТРОДИНАМИКА

1-е задание

1. С Начало координат системы K' движется со скоростью $\mathbf{V} = (V_x, V_y)$ относительно системы K, а оси координат составляют со скоростью \mathbf{V} те же самые углы, что и оси системы K. Записать матрицу преобразований Лоренца от системы K к системе K' (а также обратного преобразования). Определить положение осей (x', y') в системе K в момент времени t=0 по часам системы K.

Указание: представить радиус-вектор в виде суммы параллельного и перпендикулярного скорости ${\bf V}$ векторов: ${\bf r}={\bf r}_{\parallel}+{\bf r}_{\perp}$, где ${\bf r}_{\parallel}=({\bf r}\cdot{\bf V}){\bf V}/V^2$, ${\bf r}_{\perp}={\bf r}-({\bf r}\cdot{\bf V}){\bf V}/V^2$.

- 2. Вычислить свертки
 - a) $\delta_a{}^{\beta}\delta_{\beta}{}^{\gamma}$, $\delta_a{}^a$;
 - б) $\epsilon_{ijk}\epsilon^{mnk}$, $\epsilon^{ijk}\epsilon_{jkl}$, $\epsilon_{ijk}\epsilon^{ijk}$;
 - в) $\epsilon_{\mu\nu\rho\sigma}\epsilon^{\mu\nu\kappa\lambda}$ (сигнатура Минковского).

Покомпонентно проверить, что $\mathbf{c} = [\mathbf{a}, \mathbf{b}]$ эквивалентно $c_i = \epsilon_{ijk} a^j b^k$. Доказать, что трехмерные тензоры δ_{ij} и ϵ_{ijk} являются инвариантными тензорами относительно определенного класса преобразований (какого?).

Показать, что элемент объема $d^4x = cdtdxdydz$ инвариантен при поворотах, преобразованиях Лоренца и их комбинациях. (При произвольном преобразовании из группы Лоренца SO(1,3)).

- 3. Раскрыть в тензорных обозначениях выражения: $\operatorname{rot}\operatorname{rot}\mathbf{A}$, $\operatorname{rot}\left[\mathbf{a},\mathbf{b}\right]$, $\operatorname{rot}(f\mathbf{A})$, $\operatorname{div}(f\mathbf{A})$, $\operatorname{div}\left[\mathbf{a},\mathbf{b}\right]$, $\operatorname{grad}(\mathbf{a}\cdot\mathbf{b})$. Вычислить:
 - a) $\operatorname{rot}(\mathbf{k} e^{i\mathbf{k} \mathbf{r}}), \operatorname{grad}(\mathbf{k} \cdot \mathbf{r});$
 - 6) grad $\frac{1}{r}$, div $\frac{\mathbf{r}}{r}$, $(\mathbf{a} \cdot \nabla)\mathbf{r}$, grad f(r), rot $\frac{[\mathbf{k}, \mathbf{r}]}{r}$, div $(\mathbf{k} r)$,

где $r \equiv |\mathbf{r}|$, а k, а — постоянные векторы;

4. Покажите, что матрицы $\Lambda^{\mu}{}_{\nu},$ удовлетворяющие условию

$$\Lambda^{\mu}{}_{\nu}\Lambda^{\rho}{}_{\sigma}\eta_{\mu\rho}=\eta_{\nu\sigma},$$

образуют группу (группу псевдоортогональных преобразований O(1,3)). Покажите, что матрицы, удовлетворяющие дополнительно условиям: $\det |\Lambda^{\mu}{}_{\nu}| = 1$ и $\Lambda^{0}{}_{0} \geq 1$, также образуют группу (собственную ортохронную группу Лоренца $SO_{+}(1,3)$).

- 5. Покажите, что мера интегрирования в импульсном пространстве $\frac{d^3p}{\sqrt{{\bf p}^2+m^2}} \ {\rm является} \ {\rm Лоренц} \ {\rm инвариантной}.$
- 6. Символ Леви-Чивиты $\epsilon^{\mu_1...\mu_d}$ в d измерениях определяется как $\epsilon^{012...(d-1)}=+1$. Чему равен $\epsilon_{012...(d-1)}$? Тензор дуальный по Ходжу к некоторому антисимметричному тензору $T_{\mu_1...\mu_s}$ определяется как

$$\star T^{\mu_1...\mu_{d-s}} = \frac{1}{s!} \epsilon^{\mu_1...\mu_{d-s}\mu_{d-s+1}...\mu_d} T_{\mu_{d-s+1}...\mu_d}.$$

Вычислить $\star\star T_{\mu_1...\mu_s}$. Индексы поднимаются и опускаются мет-

рикой Минковского $\eta_{\mu\nu}=\eta^{\mu\nu}=diag(1,\overbrace{-1,\ldots,-1})$. Используя полученный результат, покажите, что в d=4 решением уравнений

$$F_{\mu\nu} = \pm \star F_{\mu\nu}, \ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

являются чисто калибровочные конфигурации, т.е. $A_{\mu}(x) = \partial_{\mu} f(x)$.

7. Покажите, что решения уравнений (анти)самодуальности

$$F_{\mu\nu} = \pm i \star F_{\mu\nu}$$

обращают в ноль тензор энергии-импульса для свободного электромагнитного поля.

8. Получить уравнения движения, соответсвующие лагранжиану

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^2A_{\mu}A^{\mu} - A_{\mu}J^{\mu},$$

где $F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}$. Используя то, что ток сохраняется $\partial_{\mu}J^{\mu}=0$, получить ограничение на A_{μ} . Сколько степеней свободы описывает данный лагранжиан? Решить уравнения движения для A_0 в том случае, когда ток соответствует точечной покоящейся частице (т.е. $J^0=\delta({\bf r})$).

9. Используя результат задачи 1, получить формулы для преобразования полей **E** и **H** при бусте в движущуюся систему отсчета.

- 10. С Какой энергии E' нужно достичь в ускорителе с неподвижной мишенью, чтобы в системе центра инерции получить такую же энергию, как и в ускорителе на встречных пучках 7 ТэВ х 7 ТэВ, $m_1c^2=m_2c^2=1$ ГэВ (Большой адронный коллайдер)? Определить относительную скорость сталкивающихся частиц. Какова должна быть энергия налетающих частиц, чтобы столкновение с покоящейся мишенью происходило с той же относительной скоростью?
- 11. $^{\rm C}$ В ускорителе на встречных пучках идет реакция

$$e^+ + e^- \to \mu^+ + \mu^-$$
.

Зная энергию \mathcal{E}^+ и \mathcal{E}^- каждого из пучков e^+ и e^- соответственно, найти энергию и импульсы μ^+ и μ^- . Каков энергетический порог этой реакции? Рассмотреть общий случай $\mathcal{E}^+ \neq \mathcal{E}^-$. Сравнить порог реакции в частном случае $\mathcal{E}^+ = \mathcal{E}^-$ с порогом в случае, когда ускоренные позитроны падают на неподвижные электроны.

- 12. С Для нейтрино, образующихся при распаде π -мезонов с энергией 6 ГэВ (масса π -мезона \approx 140 МэВ, масса μ -мезона \approx 105 МэВ), определить энергетический спектр, их максимальную и среднюю энергии и угловое распределение, если известно, что в системе покоя π -мезона распад $\pi \to \mu + \nu$ происходит изотропно. Чему равна функция распределения нейтрино по импульсам в системе покоя π -мезона? Используя математический пакет, постройте график углового распределения энергии нейтрино.
- 13. С Плоское зеркало движется со скоростью V в направлении своей нормали. На зеркало падает монохроматическая волна под углом θ к нормали. Определить направление и частоту отраженной волны, считая, что для покоящегося зеркала справедлив обычный закон отражения.
- 14. ^С Определить траекторию движения заряженной частицы массы m и заряда e во взаимно перпендикулярных однородных и постоянных электрическом и магнитном полях \mathbf{E} и \mathbf{H} . Отдельно рассмотреть случаи $|\mathbf{E}| < |\mathbf{H}|, |\mathbf{E}| > |\mathbf{H}|, |\mathbf{E}| = |\mathbf{H}|$. В случае $|\mathbf{E}| < |\mathbf{H}|$ определить скорость дрейфа. Используя математический пакет, постройте графики траекторий.
- 15. * Решить предыдущую задачу без предположения о перпендикулярности полей ${\bf E}$ и ${\bf B}$ с использованием спинорного представле-

ния. Т.е. когда 4-вектору ставится в соответствие эрмитова матрица 2×2 по следующему правилу

$$V^{\mu} \rightarrow V^{\mu} \sigma_{\mu} := V^{0} I + V^{1} \sigma_{1} + V^{2} \sigma_{2} + V^{3} \sigma_{3},$$

где I – единичная матрица 2×2 , а σ_i – матрицы Паули.

16. Показать, что 4-потенциал может быть восстановлен по тензору Максвелла $F_{\mu\nu}$ по следующей формуле

$$A^{\mu}(x) = -\int_0^1 d\lambda \, \lambda x_{\nu} F^{\mu\nu}(\lambda x).$$

Какая калибровка используется в этом выражении? *Какое калибровочное преобразавние переводит данный 4-потенциал в 4-потенциал в калибровке Лоренца $(\partial_{\mu}A^{\mu})$?

17. * Общий вид уравнений движения для симметричного тензора второго ранга $h_{\mu\nu}(x)$ может быть записан в виде

$$\Box h_{\mu\nu} + a \Big(\partial_{\mu} \partial_{\sigma} h^{\sigma}{}_{\nu} + \partial_{\nu} \partial_{\sigma} h^{\sigma}{}_{\mu} \Big) + b \eta_{\mu\nu} \partial_{\sigma} \partial_{\rho} h^{\sigma\rho} + c \partial_{\mu} \partial_{\nu} h^{\sigma}{}_{\sigma} + d \eta_{\mu\nu} \Box h^{\sigma}{}_{\sigma} = 0.$$

Найти такие числа a, b, c, d, чтобы уравнения движения были инвариантны относительно калибровочного преобразования

$$\delta h_{\mu\nu}(x) = \partial_{\mu}\varepsilon_{\nu}(x) + \partial_{\nu}\varepsilon_{\mu}(x),$$

т.е. чтобы уравнения движения описывали динамику гравитона. Объяснить появляющуюся неоднозначность в определении a,b,c,d.

- 18. Показать, что выражение $\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}$ является полной производной.
- 19. $^{\rm C}$ Вычислить средние значения произведений компонент единичных векторов:

$$\langle n_a \rangle$$
, $\langle n_a n_\beta \rangle$, $\langle n_a n_\beta n_\gamma \rangle$, $\langle n_a n_\beta n_\gamma n_\mu \rangle$, $\langle n_a n_\beta n_\gamma n_\mu n_\nu \rangle$.

Усреднение ведется по

а) единичной сфере $n_a n^a = 1$,

- б) окружности, перпендикулярной единичному вектору $h_a h^a = 1$, при этом $n_a n^a = 1$.
- 20. С Получить формулу $\mathbf{F} = (\boldsymbol{\mu} \cdot \nabla) \mathbf{H}$ для силы, действующей на магнитный диполь в слабонеоднородном постоянном магнитном поле, и найти (в релятивистском случае) уравнение движения ведущего центра орбиты заряженной частицы и скорость дрейфа. (Поле мало меняется на расстояниях порядка радиуса орбиты.)

2-е задание

- 21. а) Магнитное поле, направленное по оси z, вдоль этой оси, убывает с постоянным градиентом $\partial H_z/\partial z=-h={
 m const.}$ Может ли поле во всем пространстве оставаться параллельным оси z? Найти радиальные компоненты поля вне оси z. Представить картину силовых линий.
 - $^{\rm C}$ б) Получить явный вид ковариантной дивергенции векторного поля

$$\nabla_i A^i = \partial_i A^i + \Gamma_{ij}{}^i A^j$$

в цилиндрических координатах. Взять $\Gamma_{ij}{}^i=\frac{1}{2}g^{-1}\partial_j g$, где $g=\det g_{ij}$ — детерминант метрики в цилиндрических координатах. Сравнить со стандартным выражением для дивергенции в цилиндрических координатах.

- 22. ^С Определить потенциальную энергию взаимодействия двух диполей с моментами \mathbf{d}_1 и \mathbf{d}_2 .
- 23. Заряд электрона распределен в основном состоянии атома водорода с плотностью электронного облака

$$\rho(r) = \frac{e}{\pi a^3} \exp\left(-\frac{2r}{a}\right),\,$$

где e — заряд электрона и $a\sim 10^{-8}$ см — боровский радиус. Найти энергию взаимодействия электронного облака с ядром:

- а) считая ядро точечным зарядом;
- б) считая ядро сферически-симметричным заряженным шаром радиуса $r_0 \sim 10^{-13}$ см с плотностью заряда $\rho_{\rm ядра}(r)$. Получить ответ для частного случая равномерно заряженного шара.

- 24. Найти тензор квадрупольного момента равномерно заряженного эллипсоида с зарядом Q и полуосями a, b и c относительно его центра. Найти электрическое поле на больших расстояниях, а также энергию взаимодействия этого эллипсоида с диполем d, расположенным в точке с радиусом-вектором r на большом расстоянии от эллипсоида (с учетом диполь-квадрупольного члена).
- 25. С Определить электрическое и магнитное поля гармонически колеблющегося диполя на расстояниях, много больших размеров диполя (но необязательно больших длины волны). Исходя из полученного общего результата, рассмотреть предельные случаи волновой и квазистатической зон.
- 26. Для теории комплексного скалярного поля с локальной U(1) симметрией найти сохраняющийся ток соответствующий этой симметрии и вычислить заряд. Лагранжеву плотность считать равной

$$\mathcal{L} = (D_{\mu}\phi)^* D^{\mu}\phi - m^2 \phi^* \phi, \quad D_{\mu} = \partial_{\mu} - ieA_{\mu}.$$

- 27. С Два одноименных заряда $(e_1, m_1; e_2, m_2; e_1e_2 > 0)$ испытывают лобовое столкновение. Определить излученную энергию, если задана относительная скорость на бесконечности $v_\infty \ll c$. Отдельно рассмотреть случай $e_1/m_1 = e_2/m_2$ (квадрупольное излучение).
- 28. * Два противоположных заряда $(e_1, m_1; e_2, m_2; e_1e_2 < 0)$ обращаются один вокруг другого по круговой орбите радиуса R. Определить энергию, теряемую на излучение за один оборот. Найти зависимость расстояния между зарядами от времени.
- 29. Тело, ограниченное близкой к сфере поверхностью (сфероид) с уравнением

$$R(\theta) = R_0 \left[1 + \beta P_2(\cos \theta) \right], \qquad (2.1)$$

- где $P_2(\cos\theta)=\frac{1}{2}\left(3\cos^2\theta-1\right)$, заряжено с постоянной плотностью. Полный заряд равен q. Малый параметр β ($\beta\ll1$) гармонически меняется во времени с частотой ω . Удерживая низшие члены разложения по β , вычислить в длинноволновом приближении отличные от нуля мултипольные моменты, угловое распределение и полную мощность излучения. Используя математический пакет, постройте динамическую модель сфероида и график распределения интенсивности излучения по углам.
- 30. ^С Найти энергию излучения релятивистского электрона в однородном магнитном поле за один оборот, а также закон изменения энергии электрона и радиуса его орбиты со временем за счет

потерь на излучение. Найти мощность синхротронного излучения в ускорителе на встречных пучках электронов и позитронов с энергией 100 ГэВ. Длина окружности ускорителя 30 км, число ускоряемых частиц в кольце — $5\cdot 10^{12}$. Оценить характерную длину волны излучения.

- 31. * Релятивистский электрон пролетает со скоростью V через плоский конденсатор, к которому приложено переменное электрическое поле с частотой ω_0 . Найти частоту излучения электрона в зависимости от угла θ между наблюдателем и направлением движения электронного пучка.
- 32. Найти дифференциальное и полное сечения рассеяния естественного света с частотой ω (а также линейно поляризованного света) осциллятором с затуханием.

Задачи со звездочкой * являются дополнительными

1-я контрольная и сдача 1-го задания:

17.10 - 24.10.2022 г.

сдача 2-го задания:

05.12 - 12.12.2022 г.