Programming with Categories - Problem Set 1

Alex Klibisz - aklibisz@gmail.com

January 21, 2019

Original questions are here: http://brendanfong.com/programmingcats_files/ps1.pdf

Question 1

```
f :: Int -> Int
   f x = x * x
  g :: Int -> Int
   g x = x + 1
  h :: Int -> Int
   h x = f (g x)
   i :: Int -> Int
10
   i x = g (f x)
11
12
   main = do
13
        print (h 2) -- apply g, then f to get 9
14
       print (i 2) -- apply f, then g to get 5
   h := f \circ g means to apply g first, then f, which is f(g(2)) = 9.
   i := f; g means to apply f, then g, which is g(f(2)) = 5
```

Question 2

- a) Objects, morphisms, composition, and identity
 - 1. The objects are $Ob(\mathcal{C}) = \{1, 2\}.$
 - 2. The morphisms are: $C(1,1) = id_1$, $C(1,2) = \{f\}$, $C(2,1) = \emptyset$, $C(2,2) = \{id_2\}$.

- 3. Composition is defined: id_1 ; f = f; $id_2 = f$.
- 4. Identity morphisms are $id_1: 1 \to 1$ and $id_2: 2 \to 2$.

b) Proof for unit and associative laws

Unit laws $f: 1 \to 2$ is the only non-identity morphism. According to composition, $id_1; f = f$ and $f; id_2 = f$, satisfying the unit laws.

Associative The only sequence of three non-identity morphisms is id_1, f, id_2 . So we can check the two possible associative arrangement for equality:

- $(id_1; f)$; $id_2 = f$; $id_2 = f$, using composition to substitute $(id_1; f) = f$.
- id_1 ; $(f; id_2) = id_1$; f = f, using composition to substitute $(f; id_2) = f$.

Question 3

Yes; In order for \mathcal{C} to be a category, there must exist composites of morphisms f and g. For $f:c\to d$ and $g:d\to c$, there are two composites: $f;g:c\to c$ and $g;f:d\to d$. We assume two identity morphisms: $id_c:c\to c$ and $id_d:d\to d$. As stated in the question, f and g are the only non-identity morphisms. Since there can't be any other morphisms $c\to c$ and $d\to d$, $f;g:c\to c$ must be $id_c:c\to c$ and $g;f:d\to d$ must be $id_d:d\to d$.

Question 4

- a) An almost category satisfying associative laws but not unit law
 - Single object is a
 - Morphisms are the natural numbers $\mathbb{N} = 1, 2, \dots$
 - Identity morphism $id_a = 1$
 - Composition of morphisms $f_1; f_2 = min(f_1, f_2)$.

Associative laws hold because

- $(f_1; f_2); f_3 = f_1; (f_2, f_3) = f_1 \text{ for } f_1 < f_2 < f_3$
- $(f_1; f_2)$; $f_3 = f_1$; $(f_2, f_3) = f_2$ for $f_1 > f_2 < f_3$
- $(f_1; f_2); f_3 = f_1; (f_2, f_3) = f_3 \text{ for } f_1 > f_2 > f_3$

Unit law is violated because

• id_a ; $f_1 = f_1$; $id_a = id_a = 1$ since f_1 can be no less than 2.

b) An almost category satisfying unit laws but not associative

- Single object is a.
- Three non-identity morphisms: rock, paper, scissors, abbreviated r, p, s.
- Identity morphism $id_a = forfeit$, abbreviated f.
- Composition is defined
 - -r; p=p; r=p (paper beats rock).
 - -r; s = s; r = r (rock beats scissors).
 - -s; p = p; s = s (scissors beats paper).
 - $-f; m=m; f=m, \forall m \in \{r, p, s\}$ (anything beats forfeit).

Unit law holds because any morphism $f; m = m; f = m, \forall m \in r, p, s$.

Associative laws are violated because (r; s); p = r; $p = p \neq r$; (s; p) = r; s = r.

The idea was inspired by this response on the Math StackExchange.

Question 5

a) Show that $(\mathbb{N}, +, 0)$ forms a monoid.

This forms a monoid because it satisfies the unit and associative laws:

- Unit: $0 + n = n + 0 = n \forall n \in \mathbb{N}$.
- Associative: $(0+n_1)+n_2=n_1+n_2=0+(n_1+n_2)\forall n\in\mathbb{N}$.
- b) Show that $(List_{0,1}, ++, [])$ forms a monoid.

Note: ++ denotes string concatenation.

This forms a monoid because it satisfies the unit and associative laws:

- Unit: $[] + +s = s + +[] = s \forall sin List_{0,1}.$
- Associative: $(s_1 + +s_2) + +s_3 = s_1 + +(s_2 + +s_3) = s_1 + +s_2 + +s_3 \forall s_i in \text{List}_{0,1}$
- c) Prove that every monoid is a category with a single object

Enumerate the translation from a monoid (M, *, e) to a single-object category C.

• $Ob(C) = \{1\}.$

- Morphisms C(e, e) = M.
- Identity morphism e from the set M.
- Composition for any $m_1: a \to b, m_2: b \to c$ is $m_3: a \to c = m_1; m_2 = m_1 * m_2$.

Then show the unit and associative laws hold.

- Unit: The definition for a monoid states that e * m = m * e = m. Consequently, $id_1; m = e * m = m; id_1 = m * e$.
- Associative: The definition for a monoid states the $(m_1 * m_2) * m_3 = m_1 * (m_2 * m_3)$ holds for any three morphisms $m_1, m_2, m_3 \in M$.

Question 6

Pre-order \mathcal{P} with objects $Ob(\mathcal{P}) = \mathbb{N}_{\geq 1}$ and morphisms $\mathcal{P}(a,b) := \{x \in \mathbb{N} | x * a = b\}.$

a) Identity on 12

Identity for 12 is 1, because this is the only element $x \in Ob(\mathcal{P})$ satisfying x*12 = 12.

b) There exists a composite $y \circ x$ for morphisms $x : a \to b$ and $y : b \to c$

The morphisms $x: a \to b$ and $y: b \to c$ can be expressed as x: r*a = b and y: s*b = c for some $r, s \in \mathbb{N}_{\geq 1}$.

If there exists some $t \in \mathbb{N}_{\geq 1}$ such that t * a = c, then the composite $y \circ x : a \to c$ exists. Solve for t to show it exists.

$$t * a = c$$

$$t * \frac{b}{r} = s * b$$

$$t = s * b * \frac{r}{b}$$

$$t = r * s$$
(1)

c) Does $\mathbb{N}_{\geq 0}$ also form a preorder?

No; there is exactly one value of x satisfying $x*a = b, \forall (a,b) \in \mathbb{N}_{\geq 1}$, and therefore exactly one morphism. For $a = 0 \neq b$ and $a \neq 0 = b$ there exists no values of x and therefore no morphisms; this is still a valid a preorder. However, for a = b = 0, there are infinitely many satisfying values of x and therefore infinitely many morphisms. This violates the requirement that there must be either zero or one morphisms for any (a, b).

Question 7

Note: using Haskell-style pseudocode. '\' corresponds to λ .

```
_2 = ((p, (q, (pq)p))(T))(F) -- Replace p with T in the expression (q, (pq)p).
                             -- Replace q with F in the expression ((T q) T).
_3 = (\q.(T q) T)
_4 = (T F) T
                             -- Replace T with its definition.
_{5} = (\x.(\y.x) F) T
                             -- Replace x with F in the expression (\y.x).
                             -- Expression (y F) takes parameter T, always returns F.
_6 = (\y F) T
_7 = F
1 OR F T
_2 = ((\p.(\q.(pp)q)) F) T -- Replace p with F in the expression (\q.(pp)q)
_{3} = (\backslash q.(F.F)q)
                           -- Replace q with T in the expression ((F.F)q)
_4 = (F.F) T
                           -- Replace F with its definition.
                           -- Replace x with F in the expression (\y.y).
= (\x.(\y.y) F) T
                           -- Replace y with T.
_{6} = (\y.y) T
_7 = T
```

Question 8

```
Y g
= (\f.((\x.f(xx))(\x.f(xx)))) g -- Replace f with g in the inner terms <math>f(xx).
= (\x.g(xx)(\x.g(xx)) -- Replace x with (\x.g(xx)) in the inner term <math>g(xx).
= g((\x.g(xx))(\x.g(xx))) -- Replace x with (\x.g(xx)) in the inner term <math>g(xx).
= g(g((\x.g(xx))(\x.g(xx)))) -- Recursion ensues.
= g(g(g((\x.g(xx))(\x.g(xx)))))
= g(g(g(...(Yg)))
```

Question 9

```
{-# language FlexibleInstances #-}
   {-# language MultiParamTypeClasses #-}
    {-# language FunctionalDependencies #-}
   -- Typeclass whose instances are categories. Cateogires have objects and morphisms.
   -- Morphisms each have an input object, the domain, and an output object, the codomain.
   class Category obj mor | mor -> obj where
        -- Given a morphism you can get its input object.
       dom :: mor -> obj
10
        -- Given a morphism you can get its output object.
        cod :: mor -> obj
        -- Given an object you can get its identity morphism.
13
       idy :: obj -> mor
14
        -- Two morphisms might not compose: f: a \rightarrow b and g: b' \rightarrow c compose iff b = b'.
15
       cmp :: mor -> mor -> Maybe mor
16
17
   data Object = One | Two deriving (Show, Eq)
   data Morphism = Morphism Object Object deriving (Show, Eq)
20
   instance Category Object Morphism where
21
       dom (Morphism a b) = a
22
       cod (Morphism a b) = b
23
       idy a = Morphism a a
24
       cmp (Morphism One One) (Morphism One Two) = Just (Morphism One Two)
25
       cmp (Morphism One Two) (Morphism Two Two) = Just (Morphism Two Two)
       cmp m1 m2
27
            | m1 == m2 = Just m1
28
            | otherwise = Nothing
29
30
   main = do
31
       print (dom (Morphism One Two)) -- "One"
32
       print (cod (Morphism One One)) -- "One"
33
       print (cod (Morphism Two Two)) -- "Two"
        -- TODO: why do you have to have type annotation for idy?
35
       print (idy One :: Morphism) -- "Morphism One One"
36
       print (idy Two :: Morphism) -- "Morphism Two Two"
37
       print (cmp (Morphism One One) (Morphism One Two)) -- "Just (Morphism One Two)"
38
       print (cmp (Morphism One One) (Morphism Two Two)) -- "Nothing"
39
```