Numerical Methods for Natural Sciences: Foundation Topics January - April semester, 2024

Raghunathan Ramakrishnan ramakrishnan@tifrh.res.in Tata Institute of Fundamental Research Hyderabad Hyderabad, India

Course material: https://github.com/raghurama123/nm2024

Content

		Page
References	•••	3
Chapter 1: Solutions of equations by fixed-point iteration	•••	4

References

Textbook

 David G. Moursund, Charles S. Duris, "Elementary Theory and Application of Numerical Analysis", Dover Publishers (1988).

General References

- Samuel D. Conte, Carl de Boor, "Elementary Numerical Analysis: An Algorithmic Approach", McGraw-Hill (1981).
- Lars Elden, Linde Wittmeyer-Koch and Hans Bruun Nielsen, "Introduction to Numerical Computing", Overseas Press (2006).
- Anthony J. Pettofrezzo, "Introductory Numerical Analysis", Dover Publishers (1984).
- W. Boehm, H. Prautzsch, "Numerical Methods", Universities Press (2003).
- Richard L. Burden, J. Douglas Faires, "Numerical Analysis", Cengage Learning (2011).
- Ward Cheney, David Kincaid, "Numerical Methods and Computing", Cengage Learning (2013).
- Anne Greenbaum, Timothy P. Chartier, "Numerical Methods", Princeton Univerity Press (2012).
- William Bo Rothwell, "Linux for Developers", Pearson (2018). <u>See the chapters about GitHub</u>.
- Numpy and Scipy Documentation, https://docs.scipy.org/doc/

Chapter 1: Solutions of equations by fixed-point iteration

Some definitions

Program, algorithm, elementary operation

- A program is a set of algorithms along with statements for user interaction (i.e. input/output). An algorithm is a set of pre-defined operations to convert an input to an ouput.
- For a given problem, there may not a unique way to write a program, or the algorithms involved, or even the elementary operations involved (that comprise the algorithms).

Types of Numerical Methods: Direct, Iterative, and Heuristic

- Direct methods are predefined recipes (i.e. fixed algorithms with fixed elementary steps) for solving a problem. In this case, the error in the final result is only due to finite computer precision (i.e. rounding-off the numbers involved).
 - The standard formula for finding the root of a quadratic equation is a direct method.
 - It is often the case that for a given problem, a direct method may not exist (either it has not been found, or it may not even exist mathematically). A theorem in algebra says that there is no directmethod for finding a root of a polynomial of degree ≥ 5 .
 - We will later see that Gaussian elimination is a direct method for solving systems of linear equations.
- Iterative methods require an initial guess for the final solution of a problem. This value will be given as an input to an algorithm which will be repeated until its input and output are the same.
 - Newton-Raphson method for finding the solution of non-linear equations is an iterative method.
 - Iterative methods can be shown (using a threom) that a solution (if it exists) can be found as a limit.
- Heuristic methods are methods developed based on experience. These methods are not guarateed to give a solution.
 - Simplex method (Nelder-Mead method) for optimization is a heuristic method.

Square root by fixed-point iteration

Square root of a real number

The square root of a number A can be determined using the formula $g(x) = \frac{1}{2}\left(x + \frac{A}{x}\right)$, and using it successively. The procedure involves starting with an initial value x_0 and determining $g(x_0)$ using the formula. Now, one sets $g(x_0)$ as x_1 , and continue the process until $g(x_n)$ (the output to the formula) is the same as x_n (the input).

Example

■ Find the square of 5 by applying fixed-point iteration. Let's begin with $x_0 = 1$.

- 2.236068
- You can repeat these steps by a manual calculation with the help of a pocket-calculator, smart phone, or a computer.
- Now, you are ready to try these steps in Python. Try the notebook (*Chapter01_Fixed_Point_Iteration.ipynb*) provided in the course repository¹.

for loop

■ You can refine the simple steps given in the notebook into a neat program as follows.

```
# Number, whose square root we want to find
A=5

# Maximum number of steps
MaxIter=4

# Start with a guess
xold=1

# Iterate
for n in range(MaxIter):
    xnew=g(xold,A)
    print(n,xold,xnew)
    xold=xnew
```

Self-study

- Learn about Python's built-in function **range**, and **for** loops in Python.
- Learn what a Python module is. In the following, we are calling a procedure (sqrt) from a module (numpy). Learn about how to use an alias for a module or a procedure while importing in your code.

```
import numpy
print(numpy.sqrt(5))
```

2.23606797749979

Pretty print

■ You should always use formatted strings to display any output.

```
# Number, whose square root we want to find
A=5
# Maximum number of steps
MaxIter=4
# Start with a guess
xold=1
# Iterate
for n in range(MaxIter):
    xnew=q(xold,A)
    fstr = "{:5d} {:15.8f} {:15.8f}".format(n, xold, xnew)
    print(fstr)
    xold=xnew
           1.00000000
                            3.00000000
    0
    1
           3.00000000
                            2.33333333
           2.33333333
                            2.23809524
           2.23809524
                            2.23606890
```

- How does this code differ from the one given in the previous page?
- You may also try the following two lines to print the output in the same format.

```
output = "{val1:5d} {val2:15.8f} {val3:15.8f}"
print(output.format(val1=n, val2=xold, val3=xnew))
```

■ In this code, we have limited the number of iterations to a fixed number. Suppose we do not know how many iterations. we will require. How will you modify this code by introducing a **while** loop?