Learning Objectives

<u>Describe</u> three models of central tendency

<u>Compute</u> three models of central tendency from raw data

 Compare three models' responses to outliers in data & sampling variability

3 Models of Central Tendency

```
1. Mode (Mo)
```

- 2. Median (Mdn or P_{50})
- 3. Mean $(\overline{X} \text{ or } M, \mu \text{ for population})$

1. Mode is the most frequent observation

— What is the mode of this data?

ID	DV
1	9
2	5
3	10
4	5
5	10
6	5
7	1
8	10
9	10
10	8

1. Mode is the most frequent observation

- What is the mode of this data?
- **2. Median** is P_{50} or the score that splits the distribution evenly
 - 50% observations higher & 50% lower

When *N* is <u>even</u>, get the **mean** of obs. directly above & below middle

$$Mdn = \frac{(9+8)}{2} = 8.5$$

ID	DV
3	10
5	10
8	10
9	10
1	9
10	8
2	5
4	5
6	5
7	1

1. Mode is the most frequent observation

- What is the mode of this data?
- 2. Median is P_{50} or the score that splits the distribution evenly
 - 50% observations higher/50% lower

3. Mean or average:

$$\frac{\sum X_i}{N}$$

$$\frac{(10+10+10+10+9+8+5+5+1)}{10} = 7.3$$

ID	DV
3	10
5	10
8	10
9	10
1	9
10	8
2	5
4	5
6	5
7	1

\bar{X} cannot be used for ordinal data, but Mdn can!

Mean is more sensitive to skew & extreme scores

U.S. Household Net Worth

- 3 models of central tendency:
 - **-** \$692,100
 - **-** \$97,300
 - **-** \$20,000

Distribution of annual household income in the United States

Categories in \$5,000 increments with the exception of the last two groups

Mean is a fulcrum (balancing point)

Median is also a fulcrum?!

Median is also a fulcrum?!

$ar{X}$ balances the magnitude of scores above and below

- Assumes equal *intervals* separate values of variable

Mdn balances the number of scores above and below

- Assumes only that variable can be ranked lower or higher

Median is robust to skew

Bill Gates is an *Outlier*

Outliers Skew Distributions

- Outliers are highly atypical observations
 - As with wealth/income, the mean is highly sensitive to outliers

- How can we deal with outliers?
 - Use the median as a model instead
 - Compare mean with and without outliers
 - Does the pattern of the data change?
 - Determine the source of the outlier
 - Is it a measurement error? Or a legitimate observation?

"As preregistered, we excluded all RTs greater than 10,000ms..."

Robustness in the face of outliers & sampling variability

Robustness to skew & outliers

Mode > Median > Mean

Robustness to sampling variability

Mean > Median > Mode

Mean is preferred to maximize consistency (then deal w/outliers later)

When sample size increases, robustness increases!

Which graph is labeled correctly?

