Appello – Parte 1

$$03/09/2021$$
 — versione 1 —

♦♣♥♠♦♥♣♠♣

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 15 pt

1-1 pt

Dato l'insieme dei numeri floating point $\mathbb{F}(2,6,-4,U)$, con il parametro $U\geq 4$, si stimi l'errore relativo $\frac{|x-fl(x)|}{|x|}$ commesso tra il numero reale x e la sua rappresentazione fl(x) in artimetica floating point.

$$2^{-6} = 0.0156$$

2 — 1 pt

Si consideri il seguente algoritmo: dati a_1 e $b_1 \in \mathbb{R}$ positivi si pongano

$$a_{2n} = \frac{2 a_n b_n}{a_n + b_n}$$
 e $b_{2n} = \sqrt{a_{2n} b_n}$ per $n = 1, 2, 4, 8, \dots$

Il valore a_{2n} fornisce un'approssimazione (dall'alto) di π per n "grande". Posti $a_1=4$ e $b_1=2\sqrt{2}$, si riporti il valore approssimato a_{16} ottenuto applicando l'algoritmo precedente.

3.1441

3 — 2 pt

Dato il sistema lineare $A \mathbf{x} = \mathbf{b}$, con $A = \begin{bmatrix} 9 & 3 & -3 \\ 3 & 1 & 4 \\ 2 & 2 & 1 \end{bmatrix}$ e $\mathbf{b} = (3\ 4\ 5)^T$, si

consideri la sua risoluzione tramite il metodo della fattorizzazione LU con pivoting per righe (permutazione della seconda e terza riga). Si riportino gli elementi $l_{21}=(L)_{21}$ e $u_{33}=(U)_{33}$ dei fattori L ed U della matrice permutata e la seconda componente y_3 del vettore ausiliario ${\bf y}$ associato alla soluzione del sistema triangolare inferiore che compare durante l'applicazione del metodo.

$$l_{21} = \frac{2}{9} \qquad u_{33} = 5 \qquad y_3 = 3$$

4 - 2 pt (***) No Multichance

Sia data una matrice $A=\left[\begin{array}{ccc} 4 & -1 & 0 \\ -1 & \gamma & 1 \\ 0 & 0 & 1 \end{array}\right]$ dipendente da un parametro $\gamma\in\mathbb{R}$

con $\gamma \neq \frac{1}{4}$. Si determinino i valori di tale parametro γ per cui il metodo di Jacobi applicato alla soluzione di un sistema lineare $A\mathbf{x} = \mathbf{b}$ converge per ogni scelta dell'iterata iniziale.

$$|\gamma| > \frac{1}{4}$$

5 — 2 pt

Dato il sistema lineare A \mathbf{x} = \mathbf{b} , dove A = $\begin{bmatrix} 9 & -2 & -2 & -1 \\ -2 & 7 & -1 & -1 \\ -2 & -1 & 7 & -1 \\ -1 & -1 & -1 & 5 \end{bmatrix}$ e \mathbf{b} =

 $(1, 1, 1)^T$, si consideri il metodo del gradiente coniugato precondizionato con precondizionatore P = tridiag(-1, 2, -1) per l'approssimazione di \mathbf{x} . Si utilizzi opportunamente la funzione Matlab[®] pcg e si riporti il valore di $\mathbf{x}^{(2)}$ avendo posto l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{0}$.

$$(0.3209, 0.3240, 0.3406, 0.3705)^T$$

6-1 pt

Si consideri un sistema lineare $A \mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{n \times n}$ è una matrice simmetrica e definita positiva con numero di condizionamento $K_2(A) = 50$. Per la sua risoluzione si consideri il metodo del gradiente e, sapendo che l'errore iniziale è $\|\mathbf{x}^{(0)} - \mathbf{x}\|_A = 1$, si fornisca una stima dell'errore commesso all'iterata k = 100, ovvero $\|\mathbf{x}^{(100)} - \mathbf{x}\|_A$.

0.0183

7-1 pt

Si consideri la matrice $A = \begin{bmatrix} 5 & \gamma \\ \gamma & 3 \end{bmatrix}$, dipendente dal parametro $\gamma > 0$. Assumendo che $\mathbf{x} = (1 \ 1)^T$ sia un'approssimazione di uno dei suoi autovettori, si riporti l'approssimazione dell'autovalore corrispondente λ in termini di γ .

$$4 + \gamma$$

8 — 2 pt

Si consideri la matrice $A=\begin{bmatrix} 3 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 5 \end{bmatrix}$. Si applichi il metodo delle potenze

(dirette) per l'approssimazione di $\lambda_1(A)$ a partire dal vettore iniziale $\mathbf{x}^{(0)} = \mathbf{1}$. Si riportino i valori delle approssimazioni $\lambda^{(0)}$ e $\lambda^{(3)}$ di tale autovalore.

2, 5.2873

$$9 - 2 \text{ pt}$$
 (***) No Multichance

Si consideri la matrice
$$A=\left[\begin{array}{ccc}2&(\sqrt{10}-1)&0\\-(\sqrt{10}+1)&2&0\\0&0&6\end{array}\right]$$
. Per quali valori

dello shift $s \in \mathbb{R}$ è possibile applicare il metodo delle potenze inverse con shift per l'approssimazione dell'autovalore 6 di A?

$$s > \frac{23}{8} = 2.8750 \text{ e } s \neq 6$$

$$10-1$$
 pt (***) No Multichance

Si consideri la funzione $f(x) = \sin(x+\sqrt{2})$ e il metodo di bisezione per l'approssimazione dello zero $\alpha \in [-2,0]$. Si riporti il valore dell'iterata $x^{(2)}$ ottenuta applicando il metodo.

-1.2500

ESERCIZIO – 17 pt

Si consideri la funzione

$$f(x) = \cos(\pi x) \left(x - \frac{1}{2}\right) \tag{1}$$

e, tra gli altri, in particolare il suo zero $\alpha = \frac{1}{2}$.

Punto 1) — 2 pt

Si applichino i metodi di Newton e Newton modificato all'approssimazione di α con tolleranza sul criterio d'arresto basato sulla differenza tra iterate successive $tol=10^{-6}$ e iterata iniziale $x^{(0)}=0.9$. Si riportino i numeri delle iterazioni effettuate dai due metodi e si giustifichi il risultato ottenuto. Si riportino inoltre i comandi Matlab® utilizzati.

Spazio per risposta lunga (num. it. Newton: 18 , num. it. Newton modificato: 4)

Punto 2) — 1 pt

Si discuta l'affidabilità del criterio d'arresto basato sulla differerenza tra iterate successive per il metodo di Newton applicandolo allo zero α della funzione f(x) di Eq. (1).

Spazio per risposta lunga

Punto 3) — 3 pt

Il metodo delle secanti approssima lo zero α di f(x) tramite una sequenza di iterate $\left\{x^{(k)}\right\}$ ottenute come segue:

$$x^{(k+1)} = x^{(k)} - \frac{f\left(x^{(k)}\right)}{q_k} \quad \text{per } k = 1, 2, \dots, \quad \text{con } q_k = \frac{f\left(x^{(k)}\right) - f\left(x^{(k-1)}\right)}{x^{(k)} - x^{(k-1)}},$$

dove le iterate iniziali $\boldsymbol{x}^{(0)}$ e $\boldsymbol{x}^{(1)}$ sono entrambe assegnate.

Si applichi tale metodo alla funzione f(x) di Eq. (1) precedentemente assegnata fino ad ottenere l'iterata $x^{(10)}$, a partire da $x^{(0)}=0.9$ e $x^{(1)}=0.7$. Si riportino i valori di $x^{(2)}$, $x^{(3)}$ e $x^{(10)}$.

Si stimi inoltre l'ordine di convergenza p del metodo ad α , illustrando la procedura seguita. Si riportino i comandi Matlab[®] usati.

Spazio per risposta lunga (
$$x^{(2)}=0.6106,\,x^{(3)}=0.5684,\,x^{(10)}=0.5023,\,p=1)$$

Punto 4) — 3 pt

Si consideri ora la funzione di iterazione

$$\phi(x) = x + \frac{\mu}{2\pi} \cos(\pi x) \tag{2}$$

dipendente dal parametro $\mu \in \mathbb{R}$ e dotata del punto fisso $\alpha = \frac{1}{2}$ coincidente con lo zero di f(x).

Si determinino i valori di μ tali per cui il metodo delle iterazioni di punto fisso converge ad α per $x^{(0)}$ "sufficientemente" vicino ad α . Si determini inoltre per quale valore di μ il metodo delle iterazioni di punto fisso converge con ordine p almeno pari a 2. Si giustifichino le risposte alla luce della teoria riportando il procedimento svolto.

Spazio per risposta lunga $(0 < \mu < 4, \mu = 2)$

Punto 5) — 2 pt (***) No Multichance

Per la funzione di iterazione $\phi(x)$ di Eq. (2) si determinino i valori di μ tali per cui è garantita una convergenza monotona ad α per ogni $x^{(0)}$ "sufficientemente" vicino ad α . Si giustifichi la risposta data.

Spazio per risposta lunga $(\mu < 2)$

Punto 6) — 3 pt (***) No Multichance

Per la funzione di iterazione $\phi(x)$ di Eq. (2) con $\mu=1$, si determinino i valori di $a<\alpha$ e $b>\alpha$ tali per cui la convergenza del metodo delle iterazioni di punto fisso è garantita per ogni scelta dell'iterata iniziale $x^{(0)}\in[a,b]$. Si giustifichi la risposta data sulla base della teoria.

Spazio per risposta lunga (0 < a e b < 1)

Si consideri ora il seguente sistema di equazioni non lineari

$$\mathbf{F}(\mathbf{x}) = \begin{pmatrix} \sin(\pi x_1) - x_2 \\ x_2^2 - x_3 \\ -x_1 - x_2 + x_3^2 \end{pmatrix} = \mathbf{0},$$

dove $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ e $\mathbf{x} = (x_1, \, x_2, \, x_3)^T \in \mathbb{R}^3$. Si approssimi lo zero $\boldsymbol{\alpha} = \mathbf{0} \in \mathbb{R}^3$ del precedente sistema di equazioni non lineari implementando opportunamente il metodo di Newton in Matlab[®]. Si riportino:

- l'espressione della generica matrice Jacobiana $J_{\mathbf{F}}(\mathbf{x})$;
- i valori della prima e seconda iterata, ovvero $\mathbf{x}^{(1)}$ e $\mathbf{x}^{(2)}$, ottenute applicando il metodo di Newton a partire dal vettore iniziale $\mathbf{x}^{(0)} = (1/5, 1/5, 1/5)^T$;
- i comandi Matlab® utilizzati.

Spazio per risposta lunga $(\mathbf{x}^{(1)} = (-0.0392, -0.0201, -0.0480)^T, \mathbf{x}^{(2)} = (-0.0004, -0.0019, -0.0003)^T)$