

Bases de Dados

T13 - Normalização Parte II

Prof. Daniel Faria

Prof. Flávio Martins

Sumário

- Decomposição de Relações
 - Perda de Informação
 - Perda de Dependências Funcionais
 - Decomposição na Forma Normal Boyce-Codd
 - Decomposição na Terceira Forma Normal

- Decomposição de relações é o mecanismo através do qual normalizamos o desenho de uma base de dados por forma a evitar anomalias
- Para cada relação r que não esteja na Forma Normal Boyce-Codd ou Terceira Forma Normal, tentamos decompô-la em n relações $r_1,...,r_n$ tais que:
 - \circ Cada r_i esteja na Forma Normal Boyce-Codd ou Terceira Forma Normal
 - Não haja perda de informação
 - Não haja perda de dependências funcionais
- A decomposição de uma relação r corresponde a criar n projeções de r de forma a que cada atributo de r esteja presente em pelo menos uma projeção

Perda de Informação na Decomposição

 Uma decomposição diz-se sem perdas de informação (lossless join) quando a relação original pode ser obtida através da junção natural das relações decompostas

Teorema de Heath:

○ Seja R uma relação com uma dependência funcional $X \rightarrow Y$ e seja Z o conjunto dos atributos restantes de R (i.e. não em X ou Y):

$$\blacksquare R = \mathbf{\Pi}_{XY}(R) \bowtie \mathbf{\Pi}_{XZ}(R)$$

 Podemos decompor uma relação sem perdas de informação se e só se os atributos comuns são chave em pelo menos uma das relações resultantes

Decomposição com Perda de Informação

- Seja R1(A,B,C), e $A \rightarrow B$ e $C \rightarrow B$.
- Consideremos a decomposição de R1 em R2(A,B) e R3(B,C), e a sua posterior restituição em R'1: existe perda de informação!

Decomposição com Perda de Informação

Exemplo

 O atributo comum é name, que não é chave em nenhuma das relações, portanto temos perda de informação

name	street	city	salary
Kim	Main	Perryridge	75000
Kim	North	Hampton	67000
Kim	Main	Perryridge	75000
Kim	North	Hampton	67000
	Kim Kim Kim	Kim Main Kim North Kim Main	Kim Main Perryridge Kim North Hampton Kim Main Perryridge

Decomposição sem Perda de Informação

- Seja R1(A,B,C), e $A \rightarrow B$ e $C \rightarrow B$.
- Consideremos a decomposição de R1 em R2(A,B) e R3(A,C), e a sua posterior restituição em R'1: não existe perda de informação!

Mas perdemos a dependência funcional C→B!

- É sempre possível decompor uma relação que não está na 3FN num conjunto de relações na 3FN tal que:
 - A decomposição é sem perdas de informação
 - As dependências funcionais são preservadas
 - Contudo, pode haver redundância e anomalias
- É sempre possível decompor uma relação que não está na FNBC num conjunto de relações na FNBC tal que:
 - A decomposição é sem perdas de informação
 - Contudo, pode haver perdas de dependências funcionais

- Na generalidade dos casos, os esquemas Relacionais gerados a partir de diagramas E-A corretos estão na 3FN, podendo não estar na FNBC
 - Decomposição na FNBC é mais relevante para quem tem a prática de modelação E-A
- Mas há casos em que é impossível a decomposição na FNBC sem perda de dependências funcionais
 - Por exemplo, casos de dependências funcionais {AB→C, C→B} não podem ser representados num esquema na FNBC sem perda de dependências funcionais

Perda de Dependências Funcionais

- Uma decomposição tem perda de dependências funcionais sempre que o dependente e o determinante de uma dependência funcional (não trivial) não co-ocorrem em nenhuma das relações resultantes da decomposição
- A perda de dependências funcionais leva também a anomalias, pois nada impede a inserção independente de valores do determinante e do dependente

Perda de Dependências Funcionais

Exemplo

- Relação à direita, com chaves candidatas
 (Person, Shop type) e (Person, Nearest shop)
- Está na 3FN pois todos os atributos são chave,
 mas não na FNBC pois Nearest shop→Shop type
- Podemos ter anomalias: nada impede que o shop type de Eagle Eye na linha Davidson seja diferente de na linha Fuller

Nearest Shop

Person	Shop type	Nearest shop		
Davidson	Optician	Eagle Eye		
Davidson	Hairdresser	Snippets		
Wright	Bookshop	Merlin Books		
Fuller	Bakery	Doughy's		
Fuller	Hairdresser	Sweeney Todd's		
Fuller	Optician	Eagle Eye		

Perda de Dependências Funcionais

Exemplo

- A decomposição na FNBC resulta nas relações à direita: perdemos a dependência funcional {Person, Shop type}→Shop
- Podemos ter anomalias: nada impede que uma pessoa seja associada a várias lojas do mesmo tipo
- Solução: relação original + relação shop (Forma Normal "Elementary Key", entre a 3FN e a FNBC, para lá do âmbito desta disciplina)

Shop Near Person

Person	Shop
Davidson	Eagle Eye
Davidson	Snippets
Wright	Merlin Books
Fuller	Doughy's
Fuller	Sweeney Todd's
Fuller	Eagle Eye

Shop

Shop	Shop type
Eagle Eye	Optician
Snippets	Hairdresser
Merlin Books	Bookshop
Doughy's	Bakery
Sweeney Todd's	Hairdresser

Decomposição na Forma Normal Boyce-Codd

- Seja R uma relação em que a dependência funcional X→A (sendo X e A conjuntos de atributos) viola a FNBC:
- 1. Decompor R em R1 e R2 tal que:
 - \circ R1 = $(X \cup A)$
 - \circ R2 = R-(A-X) [subtraímos o A de R exceto a parte de A contida em X]
- 2. Verificar se R2 está na FNBC, e repetir o processo caso não esteja

Decomposição na Forma Normal Boyce-Codd

Exemplo:

Não está na FNBC devido às duas primeiras dependências

Decomposição na Forma Normal Boyce-Codd

- 1. Decomposição de *class* dado *course_id→title, dept_name, credits*:
 - course(<u>course_id</u>, title, dept_name, credits)
 - class1(<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>, building, room_number,
 capacity, time_slot_id)
 - class1 não está na FNBC devido a building, room number→capacity
- 2. Decomposição de *class1* dado *building, room number→capacity*:
 - classroom(<u>building</u>, <u>room number</u>, capacity)
 - section(<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>, building, room_number, time_slot_id)
 - Estão ambas na FNBC e não houve perda de dependências

Decomposição na Terceira Forma Normal

- Seja R uma relação em que a dependência funcional X→A (sendo X e A conjuntos de atributos) viola a 3FN:
- 1. Decompor R em R1 e R2 tal que:
 - \circ R1 = X^+ [garante que não há perda de dependências funcionais]
 - \circ R2 = $(R-X^+) \cup X$ [a união garante que não há perda de informação]
- 2. Verificar se R2 está na 3FN, e repetir o processo caso não esteja

Decomposição na Terceira Forma Normal

Exemplo:

F(F#, Estado, Cidade) com: Cidade $\rightarrow Estado$

- Não está na 3FN pois nem *Cidade* é superchave nem *Estado* é chave
- Decomposição de F dado Cidade→Estado:
 - F1(<u>Cidade</u>, Estado) [o fecho de Cidade]
 - F2(<u>F#</u>, Cidade) [o fecho de F# unido com Cidade]
 - F2 está 3FN e não temos perda de dependências funcionais

Exemplo

- Se existir uma dependência funcional código→encomenda, a relação que implementa a associação "compra" viola a FNBC
- A solução implica que código seja um identificador de uma entidade "compra".

Exemplo

```
Cliente(<u>id</u>)
Produto(<u>ean</u>)
Compra(<u>id</u>, <u>ean</u>, código, data)
id FK Cliente
ean FK produto
código→data viola a FNBC
```


Decomposição FNBC

```
Cliente(<u>id</u>)
Produto(<u>ean</u>)
Encomenda(<u>código</u>, data)
Compra(<u>id</u>, <u>ean</u>, código)
id: FK Cliente
ean: FK Produto
código: FK Encomenda
```


Cliente(<u>id</u>)
Produto(<u>ean</u>)
Encomenda(<u>códiqo</u>, data, id, ean)
 id: FK Cliente
 ean: FK Produto

