KAMAU LYNN MWENDE

658884

APT3010A FALL SEMESTER 2021

DR. LAWRENCE NDERU

JUPYTER DATASET ASSIGNMENT

The dataset used is <u>dccrdcoachpking.cvs</u> Transport and Infrastructure Parking meters for Dublin City. 'Includes location, code, No of spaces per street(PD-Pay and Display D Disc Parking), exact location, data install, tariff (cost per hour), nearest location of pay and display, clarway, if clearway conditions in operation(No parking or stopping during the hours indicated on the street sign), Coach Bay locations, further information, finished, x coordinate, y coordinate, tariff zone and Parking Voucher outlets and locations Spatial project. I edited the dataset to get rid of all 'nan' values and the new dataset <u>newparking.cvs.</u>

The link to the data set is-> https://data.gov.ie/dataset/parking-meters-location-tariffs-and-zones-in-dublin-city

Reasons for using the dataset

The dataset has many numeric data

The data is easy to translate

It is easy to plot graphs with the data set

No nan values

Interpreting the data using python in Jupyter

a) Importing functions and extracting data from the dataset newparking.

b) Displaying column names, changing 'Road_Markings' column name to 'Markings' and 'Time_Restrictions' to 'Restrictions'.

Perfoming integer division of the parking dataframe, since X_end values are constant.

d) Plotting X_end and Y_end values as lines with X_end values on x-axis and Y_end values on the y-axis. Identifying the type of data on X_end values nad Y_end values

e) Describing the parking dataframe. '.shape' property gets the current shape of an X_end and Y_end array.

f) Displaying X_end and Y_end values. Importing train_test_split from the sklearn.model_selection. Splitting the train_test_split dataframe, then reshapping the parking dataframe values of X_end and Y_end arrays with a random state of -11. Displaying X_test shape and X_test.shape.

g) Importing LinearRegression from the sklearn.linear_model. Assigning liner_regression to the imported LinearRegression dataframe. Estimating the best representative function for the the

data points. '.coef_' targets are the values to be predicted. intercept_ is the point where the function crosses the y-axis. Predicted values are the X_test and the expected values are y_test.

 h) 'zip' prints both the predicted and expected value. Importing sns from seamodel and predicting the lamda of the liner_regression.coef_ (coefficient) and the liner_regression.intercept_.
Displaying the predict.

i) Plotting a scatter plot from the parking dataframe with x-axis being assigned X_end values and y-axis being assigned Y_end values. 'hue' parameter determines Y_end column in the parking data frame will be used for colour encoding. Palette uses winter column to set an interface, legend=false removes the legend. 'axes.set_ylim' set the y-limits of the current axes.

