206 Exemples d'utilisation de la notion de dimension finie en analyse.

I - Espaces vectoriels normés

1. Complétude

Soit (E, d) un espace métrique.

[**DAN**] p. 52

Définition 1. On dit que E est complet si toute suite de Cauchy de E est convergente dans E.

Exemple 2. $-(\mathbb{R},|.|)$ est complet.

— $(\mathbb{R}^p, |.|)$ est complet pour tout $p \in \mathbb{N}^*$.

Proposition 3. On suppose que E est un espace métrique complet. Soit $A \subseteq E$. Alors (A, d) est complet si et seulement si A est une partie fermée de E.

Proposition 4. On suppose que E est un espace vectoriel sur \mathbb{R} de dimension finie $n \ge 1$ muni de la norme infinie $\|.\|_{\infty}$. Alors E est un espace vectoriel normé complet.

Contre-exemple 5. L'espace des fonctions polynômiales définies sur [-1,1] et muni de la norme $\|.\|_{\infty}$ n'est pas complet.

Application 6 (Théorème du point fixe de Banach). Soient (E, d) un espace métrique complet et $f: E \to E$ une application contractant (ie. $\exists k \in]0,1[$ tel que $\forall x,y \in E, d(f(x),f(y)) \le d(x,y)$). Alors,

$$\exists ! x \in E \text{ tel que } f(x) = x$$

De plus la suite des itérés définie par $x_0 \in E$ et $\forall n \in \mathbb{N}, x_{n+1} = f(x_n)$ converge vers x.

Application 7 (Théorème de prolongement des applications uniformément continues). Soient (E, d_E) et (F, d_F) des espaces métriques. On suppose F complet. Soient $A \subseteq E$ dense et $f: A \to F$ une application uniformément continue. Alors, il existe une unique application $\widehat{f}: E \to F$ uniformément continue et telle que $\widehat{f}_{|A} = f$.

2. Compacité

Soit (*E*, *d*) un espace métrique.

[**DAN**] p. 51

[LI] p. 15

Définition 8. Un espace métrique est **compact** s'il vérifie la propriété de Bolzano-Weierstrass:

De toute suite de l'espace on peut extraire une sous-suite convergente dans cet espace.

Exemple 9. Tout segment [a, b] de \mathbb{R} est compact, mais \mathbb{R} n'est pas compact.

Proposition 10. (i) Un espace métrique compact est complet.

(ii) Un espace métrique compact est borné.

Proposition 11. Soit $A \subseteq E$.

- (i) Si *A* est compacte, alors *A* est une partie fermée bornée de *E*.
- (ii) Si *E* est compact et *A* est fermée, alors *A* est compacte.

Proposition 12. Un produit d'espaces métriques compacts est compact pour la distance produit.

Proposition 13. On suppose que E est un espace vectoriel de dimension finie $n \ge 1$ muni de la norme infinie $\|.\|_{\infty}$. Les compacts de cet espace vectoriel normé sont les parties fermées et bornées.

Application 14. Un intervalle de $\mathbb R$ est compact si et seulement si c'est un segment.

3. Équivalence des normes

Soit *E* un espace vectoriel.

Définition 15. On dit que deux normes $\|.\|_1$ et $\|.\|_2$ sur E sont équivalentes si

 $\exists \alpha, \beta > 0 \text{ tels que } \forall x \in E, \alpha \|x\|_2 \leq \|x\|_1 \leq \beta \|x\|_2$

Remarque 16. Deux normes équivalentes sur E définissent la même topologie sur E.

Théorème 17. En dimension finie, toutes les normes sont équivalentes.

[DEV]

Le corollaire suivant justifie l'étude de la compacité dans la Section 2.

Corollaire 18. Les parties compactes d'un espace vectoriel normé de dimension finie sont les parties fermées bornées.

Et le corollaire suivant justifie l'étude de la complétude dans la Section 1.

Corollaire 19. (i) Tout espace vectoriel de dimension finie est complet.

- (ii) Tout espace vectoriel de dimension finie dans un espace vectoriel normé est fermé dans cet espace.
- (iii) Si E est un espace vectoriel normé, alors toute application linéaire $T: E \to F$ (où F désigne un espace vectoriel normé arbitraire) est continue.

Application 20 (Théorème de d'Alembert-Gauss). Tout polynôme non constant de $\mathbb C$ admet une racine dans $\mathbb C$.

[DAN] p. 58

Application 21. L'exponentielle d'une matrice est un polynôme en la matrice.

[**C-G**] p. 407

Théorème 22 (Riesz). La boule unité fermée d'un espace vectoriel normé est compacte si et seulement s'il est dimension finie.

[**LI**] p. 17

4. Applications linéaires

Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

[GOU20] p. 48

Notation 23. On note L(E,F) l'ensemble des applications linéaires de E dans F et $\mathcal{L}(E,F)$ l'ensemble des applications linéaires continues de E dans F. Si E=F, on note L(E,F)=L(E) et $\mathcal{L}(E,F)=\mathcal{L}(E)$.

Théorème 24. Soit $f \in L(E, F)$. Les assertions suivantes sont équivalentes.

- (i) $f \in \mathcal{L}(E, F)$.
- (ii) f est continue en 0.
- (iii) f est bornée sur $\overline{B}(0,1) \subseteq E$.
- (iv) f est bornée sur $S(0,1) \subseteq E$.
- (v) Il existe $M \ge 0$ tel que $||f(x)||_F \le M ||x||_E$.
- (vi) *f* est lipschitzienne.
- (vii) f est uniformément continue sur E.

Proposition 25. Toute application linéaire d'un espace vectoriel normé de dimension finie dans un espace vectoriel normé quelconque est continue.

Contre-exemple 26. La dérivation sur $\mathbb{K}[X]$, $P \mapsto P'$ n'est pas continue.

II - Espaces de Hilbert

1. Espaces de Hilbert et dimension finie

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

[**LI**] p. 31

Définition 27. Un espace vectoriel H sur le corps \mathbb{K} est un **espace de Hilbert** s'il est muni d'un produit scalaire $\langle .,. \rangle$ et est complet pour la norme associée $\|.\| = \sqrt{\langle .,. \rangle}$.

Exemple 28. Tout espace préhilbertien (ie. muni d'un produit scalaire) de dimension finie est un espace de Hilbert.

Théorème 29 (Projection sur un convexe fermé). Soit $C \subseteq H$ un convexe fermé non-vide. Alors :

$$\forall x \in H, \exists ! y \in C \text{ tel que } d(x, C) = \inf_{z \in C} \|x - z\| = d(x, y)$$

On peut donc noter $y = P_C(x)$, le **projeté orthogonal de** x **sur** C. Il s'agit de l'unique point de C vérifiant

$$\forall z \in C, \langle x - P_C(x), z - P_C(x) \rangle \le 0$$

Théorème 30. Si F est un sous espace vectoriel fermé dans H (par exemple, si F est de dimension finie), alors P_F est une application linéaire continue. De plus, pour tout $x \in H$, $P_F(x)$ est l'unique point $y \in F$ tel que $x - y \in F^{\perp}$.

Théorème 31. Si F est un sous espace vectoriel fermé dans H (par exemple, si F est de dimension finie), alors

$$H = F \oplus F^{\perp}$$

et P_F est la projection sur F parallèlement à F^{\perp} : c'est la **projection orthogonale** sur F.

Remarque 32. En reprenant les notations précédentes, en supposant F de dimension finie et en notant (e_1, \ldots, e_n) une base orthonormée de F, alors

$$\forall x \in H, p_F(x) = \sum_{i=1}^n \langle x, e_i \rangle e_i$$

[**BMP**] p. 93

2. Séries de Fourier

Notation 33. — Pour tout $p \in [1, +\infty]$, on note $L_p^{2\pi}$ l'espace des fonctions $f : \mathbb{R} \to \mathbb{C}$, 2π -périodiques et mesurables, telles que $||f||_p < +\infty$.

— Pour tout $n \in \mathbb{Z}$, on note e_n la fonction 2π -périodique définie pour tout $t \in \mathbb{R}$ par $e_n(t) = e^{int}$.

Remarque 34.

$$1 \le p < q \le +\infty \implies L_q^{2\pi} \subseteq L_p^{2\pi} \text{ et } \|.\|_p \le \|.\|_q$$

Proposition 35. $L_2^{2\pi}$ est un espace de Hilbert pour le produit scalaire

$$\langle .,. \rangle : (f,g) \mapsto \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt$$

Théorème 36. La famille $(e_n)_{n\in\mathbb{Z}}$ est une base hilbertienne (totale et orthonormée) de $L_2^{2\pi}$.

[BMP] p. 123

[GOU21] p. 270

Corollaire 37. Soit $n \ge 1$. On note

$$\mathscr{P}_n = \text{Vect}(e_k)_{k \in [1,n]}$$

le sous-espace vectoriel des polynômes trigonométriques de degré n. Alors :

- (i) $L_2^{2\pi} = \mathscr{P}_n \oplus \mathscr{P}_n^{\perp}$.
- (ii) $P_{\mathcal{P}_n}(f) = S_n(f)$ où $S_n(f)$ est la somme partielle d'ordre n de la série de Fourier de f.
- (iii) $\inf_{g \in \mathcal{P}_n} \|f g\|^2 = \|f S_n(f)\|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 \, \mathrm{d}t \sum_{k=-n}^n |c_k(f)|^2$ où $c_k(f)$ est le k-ième coefficient de Fourier.

Application 38 (Inégalité de Beissel).

$$\sum_{k=-\infty}^{+\infty} |c_k(f)|^2 \le \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 \, \mathrm{d}t$$

Remarque 39. Cette inégalité est en fait une égalité : c'est l'égalité de Parseval.

Exemple 40. On considère $f: x \mapsto 1 - \frac{x^2}{\pi^2}$ sur $[-\pi, \pi]$. Alors,

$$\frac{\pi^4}{90} = \|f\|_2 = \sum_{n=0}^{+\infty} \frac{1}{n^4}$$

III - Calcul différentiel

1. Différentielle et dérivées partielles

Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés sur \mathbb{R} . Soient $U \subseteq E$ ouvert et $f: U \to F$ une application de U dans F.

[GOU20] p. 323

Définition 41. f est dite **différentiable** en un point a de U s'il existe $\ell_a \in \mathcal{L}(E,F)$ telle que

$$f(a+h) = f(a) + \ell_a(h) + o(\|h\|_E)$$
 quand $h \longrightarrow 0$

Si ℓ_a existe, alors elle est unique et on la note $\mathrm{d}f_a$: c'est la **différentielle** de f en a.

- Remarque 42. En dimension quelconque df_a dépend a priori des normes $\|.\|_E$ et $\|.\|_F$. Cependant, en dimension finie, l'équivalence des normes implique que l'existence et la valeur de df_a ne dépend pas des normes choisies.
 - La définition demande à ℓ_a d'être continue. En dimension finie, le problème ne se pose donc pas.

Exemple 43. Si f est linéaire et continue, alors $df_a = f$ pour tout $a \in E$.

On se place maintenant dans le cas où $E = \mathbb{R}^n$.

Définition 44. Soit $a \in U$.

— Soit $v \in E$. Si la fonction de la variable réelle $\varphi : t \mapsto f(a+tv)$ est dérivable en 0, on dit que f est **dérivable en** a **selon le vecteur** v. On note alors

$$f_v'(a) = \varphi'(0)$$

— Soit $(e_1, ..., e_n)$ la base canonique de \mathbb{R}^n et soit $i \in [1, n]$. On dit que f admet une i-ième dérivée partielle en a si f est dérivable en a selon le vecteur e_i . On note alors

$$\frac{\partial f}{\partial x_i}(a) = f'_{e_i}(a)$$

Proposition 45. Une fonction différentiable en un point est dérivable selon tout vecteur en ce point.

Contre-exemple 46. La fonction

$$\mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \mapsto \begin{cases} \frac{y^2}{x} & \text{si } x \neq 0 \\ y & \text{sinon} \end{cases}$$

est dérivable selon tout vecteur au point (0,0) mais n'est pas continue en (0,0).

Théorème 47. Si toutes les dérivées partielles de f existent et si elles sont continues en un point a de U, alors f est différentiable en a et on a

$$\mathrm{d}f_a = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) e_i^*$$

où $(e_i^*)_{i\in \llbracket 1,n\rrbracket}$ est la base duale de la base canonique $(e_i)_{i\in \llbracket 1,n\rrbracket}$ de $\mathbb{R}^n.$

Application 48. Soit $a \in U$. Si $F = \mathbb{R}^m$, la matrice de $\mathrm{d} f_a$ dans les bases canoniques de \mathbb{R}^n et \mathbb{R}^m est

$$\left(\frac{\partial f_i}{\partial x_j}(a)\right)_{\substack{i \in [1,n]\\j \in [1,m]}}$$

(où l'on a noté $f=(f_1,\ldots,f_m)$) : c'est la **matrice jacobienne** de f en a.

2. Équations différentielles linéaires

Définition 49. Soient $n \in \mathbb{N}^*$, E un espace de Banach et $\Omega \subseteq \mathbb{R} \times E^n$ un ouvert. Soit $F : \Omega \times \mathbb{R}^n \to E$ une fonction.

— On appelle **équation différentielle** une équation de la forme

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$
 (*)

(ie. une équation portant sur les dérivées d'une fonction.)

- Toute application $\varphi: I \to E$ (où I est un intervalle de \mathbb{R}) n fois dérivable vérifiant :
 - (i) $\forall t \in I, (t, \varphi(t), \dots, \varphi^{(n-1)}(t)) \in \Omega;$
 - (ii) $\forall t \in I, F(t, \varphi(t), \dots, \varphi^{(n-1)}(t)) = \varphi^{(n)}(t);$

est une **solution** de (*). On note \mathcal{S}_* l'ensemble des solutions de (*).

- Une solution $\varphi: I \to E$ de (*) est dite **maximale** s'il n'existe pas d'autre solution $\psi: J \to E$ (où J est un intervalle de \mathbb{R}) de (*) telle que $I \subseteq J$, $I \neq J$ et $\psi = \varphi$ sir I.
- On appelle **problème de Cauchy** de (*) en $(t_0, x_0, ..., x_{n-1})$ la recherche d'une solution

p. 373

 $\varphi: I \to E$ de (*) vérifiant

$$\forall t_0 \in I, \, \varphi(t_0) = x_0, \dots, \varphi^{(n-1)}(t_0) = x_{n-1}$$

Définition 50. Toute équation différentielle sur \mathbb{K}^n d'ordre $p \ge 1$ du type

p. 377

$$Y^{(p)} = A_{p-1}(t)Y^{(p-1)} + \dots + A_0(t)Y + B(t)$$
 (L)

(où A_{p-1}, \ldots, A_0 sont des fonctions continues d'un intervalle I de \mathbb{R} non réduit à un point dans $\mathcal{M}_n(\mathbb{K})$ et $B: I \to \mathbb{K}^n$ est une fonction continue) est appelée **équation différentielle linéaire** d'ordre p.

Si de plus B = 0, alors (L) est qualifiée d'**homogène**.

[DEV]

Théorème 51 (Cauchy-Lipschitz linéaire). Soient $A: I \to \mathcal{M}_n(\mathbb{K})$ et $B: I \to \mathbb{K}^d$ deux fonctions continues. Alors $\forall t_0 \in I$, le problème de Cauchy

$$\begin{cases} Y' = A(t)Y + B(t) \\ Y(t_0) = y_0 \end{cases}$$

admet une unique solution définie sur I tout entier.

Exemple 52. Considérons l'équation y' - y = 0. Comme la fonction nulle est solution maximale, il s'agit de l'unique solution qui s'annule sur \mathbb{R} .

[ROM19-1] p. 402

p. 520

Bibliographie

Objectif agrégation [BMP]

Vincent Beck, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Nouvelles histoires hédonistes de groupes et de géométries

[C-G]

Philippe Caldero et Jérôme Germoni. *Nouvelles histoires hédonistes de groupes et de géométries. Tome 1.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/nouvelles-histoires-hedoniste-de-groupes-et-de-geometrie/.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-1-agregation-analyse-et-probabilites.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Cours d'analyse fonctionnelle

[LI]

Daniel Li. Cours d'analyse fonctionnelle. avec 200 exercices corrigés. Ellipses, 3 déc. 2013.

 $\label{limits} \verb| https://www.editions-ellipses.fr/accueil/6558-cours-damalyse-fonctionnelle-avec-200-exercices-corriges-9782729883058.html. \\$

Éléments d'analyse réelle

[ROM19-1]

Jean-Étienne Rombaldi. Éléments d'analyse réelle. 2e éd. EDP Sciences, 6 juin 2019.

https://laboutique.edpsciences.fr/produit/1082/9782759823789/elements-d-analyse-reelle.

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation*. *Agrégation/Master Mathématiques*. 5^e éd. Dunod, 26 août 2020.

 $\verb|https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.||$