1. KHÔNG GIAN VECTOR

Problem 1.1. Giả sử A là một ma trận vuông cấp n, và $C(A) = \{B \mid BA = AB\}$ là tập hợp tất cả các ma trận vuông phức cấp n giao hoán được với A. Chứng minh rằng: C(A) là không gian vector con của không gian vector $M_{n\times n}$ và dim $C(A) \geq n$.

Hint. Xét ánh xạ tuyến tính:

$$T: M_{n \times n} \longrightarrow M_{n \times n}$$
$$B \mapsto AB - BA.$$

Khi đó $S = \ker T$ là không gian vector con của không gian các ma trận $M_{n \times n}$. Để ý rằng, nếu C là ma trận khả nghịch thì

$$AB = BA$$

khi và chỉ khi $C^{-1}ACC^{-1}BC = C^{-1}BCC^{-1}AC$. Nếu D_1, \ldots, D_n là các ma trận độc lập tuyến tính thì $C^{-1}D_1C, \ldots, C^{-1}D_nC$ cũng độc lập tuyến tính. Do đó để đơn giản ta giả sử A có dạng Jordan, với khối Jordan thứ i cấp k là:

$$A_i = \begin{pmatrix} a & 1 & \dots & 0 \\ & \ddots & \ddots & \\ 0 & & a & 1 \\ 0 & & 0 & a \end{pmatrix}.$$

Khi đó A_i giao hoán với

$$B_i = \begin{pmatrix} b_1 & b_2 & \dots & b_k \\ & \ddots & \ddots & \\ 0 & & b_1 & b_2 \\ 0 & & 0 & b_1 \end{pmatrix}.$$

Do đó A giao hoán với

$$B = \begin{pmatrix} B_1 & & \\ & \ddots & \\ & & B_r \end{pmatrix}.$$

Vì trong B có n biến nên dim $C(A) \ge n$.

Problem 1.2. Cho S là không gian con của không gian $M_n(\mathbb{C})$ sinh bởi tập tất cả các ma trận có dạng AB - BA. Chứng minh rằng: dim $S = n^2 - 1$.

Hint. Ta cần chỉ ra S có n^2-1 vector độc lập tuyến tính. Đó là các ma trận: $M_{ij}=M_{ik}M_{kj}-M_{kj}M_{ik},\ i\neq j\ (\text{có }n^2-n\ \text{phần tử})$

 $M_{11}-M_{jj}=M_{ij}M_{j1}-M_{j1}M_{ij},\ j\neq 1$ (có n-1 phần tử), trong đó ma trận M_{ij} là ma trận có phần tử 1 ở vị trí ij, các vị trí khác đều bằng 0. Do đó dim $S\geq n^2-1$, mặt khác $S\neq M_{n\times n}$ nên dim $S< n^2$. Suy ra: dim $S=n^2-1$.

Problem 1.3. Cho A, B là các không gian vector con của không gian vector hữu hạn chiều V sao cho A + B = V. Gọi $n = \dim V, a = \dim A, b = \dim B$. Lấy S là tập tất cả các tự đồng cấu f của V mà $f(A) \subset A, f(B) \subset B$. Chứng minh rằng S là không gian con của không gian tất cả các tự đồng cấu của V và hãy biểu thị số chiều của S qua a, b, n.

Hint. Lấy $f,g \in S$ và $r,s \in \mathbb{R}$. Khi đó ta có: $\forall v \in A, (rf+sg)(v) = f(rv) + g(sv) \in A$ vì f,g bất biến đối với A. Tương tự ta cũng có $(rf+sg)(v) \in B$. Vậy $rf+sg \in S$, hay S là không gian vector con của không gian vector các tự đồng cấu của V. Để tính số chiều của S ta chỉ cần tính số chiều của không gian các ma trận bất biến với A và B. Gọi A_1, B_1 là không gian vector con của V sao cho $A = (A \cap B) \bigoplus A_1, B = (A \cap B) \bigoplus B_1$. Khi đó $\dim(A \cap B) = r = a + b - n, \dim A_1 = a - r, \dim B_1 = b - r$. Lấy $\{u_1, ..., u_{a-r}\}$ là cở sở của $A_1, \{v_1, ..., v_r\}$ là cở sở của $A \cap B, \{w_1, ..., w_{b-r}\}$ là cở sở của B_1 , Mỗi tự đồng cấu bất biến đối với A, B thì phải bất biến đối với $A \cap B$. Do đó $f(u_i)$ được biểu thị tuyến tính qua

 $\{u_1,...,u_{a-r},v_1,...,v_r\}$, $f(v_i)$ chỉ có thể biểu diễn tuyến tính qua $\{v_1,...,v_r\}$, $f(w_i)$ được biểu diễn tuyến tính qua $\{v_1,...,v_r,w_1,...,w_{b-r}\}$. Suy ra ma trận của f có dạng:

$$\begin{array}{cccc}
 & a-r & r & b-r \\
 & a-r & M_1 & 0 & 0 \\
 & r & M_2 & M_3 & M_4 \\
 & b-r & 0 & 0 & M_5
\end{array}$$

trong đó số phần tử khác 0 nhiều nhất là $(a-r)^2+rn+(b-r)^2=a^2+b^2+n^2-(a+b)n$. Vậy dim $S=a^2+b^2+n^2-(a+b)n$. \heartsuit

Problem 1.4. Cho T là tự đồng cấu của không gian vector V. Giả sử $x \in V$ mà $T^m x = 0, T^{m-1} x \neq 0$ với m là số nguyên nào đó. Chứng minh rằng: $x, Tx, T^2 x, \ldots, T^{m-1} x$ độc lập tuyến tính.

Hint. Giả sử rằng có:

$$a_0x + a_1Tx + \dots + a_kT^kx + \dots + a_{m-1}T^{m-1}x = 0.$$

Tác động T^{m-1} vào hai vế ta có: $a_0T^{m-1}x=0$, suy ra $a_0=0$. Bằng quy nạp ta có $a_k=0, \forall k=0, m-1$ suy ra điều phải chứng minh

Problem 1.5. Cho E là một không gian Euclide n chiều. Chúng ta nói hai cơ sở (a_i) và (b_i) cùng hướng nếu ma trận chuyển từ cơ sở (a_i) sang cơ sở (b_i) có định thức dương. Giả sử (a_i) và (b_i) là hai cơ sở trực chuẩn cùng hướng. Chứng minh rằng $(a_i + 2b_i)$ cũng là một cơ sở của E cùng hướng với (a_i) .

Hint. Gọi P là ma trận chuyển từ (a_i) sang (b_i) . Khi đó I+2P là ma trận chuyển từ (a_i) sang (a_i+2b_i) . Ta có λ là giá trị riêng của I+2P khi và chỉ khi $\frac{1}{2}(\lambda-1)$ là giá trị riêng của P. Do (a_i) và (b_i) là các cơ sở trực chuẩn nên P là ma trận trực giao và các giá trị riêng của P là ∓ 1 , suy ra các giá trị riêng của I+2P là 3,-1. Do đó 0 không phải là giá trị riêng của I+2P nên I+2P khả nghịch và (a_i+2b_i) là cơ sở. Hơn nữa det $P=(-1)^{\alpha}1^{\beta}$ với α,β là bội của các giá trị riêng 1,-1 của P. Do đó det $(I+2P)=(-1)^{\alpha}3^{\beta}$. Vì det p>0 nên α là số chẳn. Vậy det(I+2P)>0, hay (a_i) và (a_i+2b_i) cùng hướng với nhau.

Problem 1.6. Cho V là không gian vector n chiều và W là một không gian con m chiều của V, (m < n). CMR, tồn tại một cơ sở của V không chứa một vector nào của W.

Hint. Gọi $\{v_1,\ldots,v_m\}$ là cơ sở của W và $\{u_1,\ldots,u_{n-m}\}$ là cơ sở của phần bù tuyến tính của W trong V. Khi đó cơ sở $\{v_1+u_1,\ldots,v_m+u_1,u_1,\ldots,u_{n-m}\}$ chính là cơ sở cần tìm.

Problem 1.7. Cho φ là ánh xạ tuyến tính từ V vào W, trong đó V và W là các không gian vector hữu hạn chiều. Gọi L, Z là không gian vector con của V và W. Chứng minh rằng:

- a) $\dim \varphi(L) + \dim(\ker \varphi \cap L) = \dim L$
- b) $\dim L \dim \ker \varphi \leq \dim \varphi(L) \leq \dim L$
- c) dim $Z \le \dim \varphi^{-1}Z \le \dim Z + \dim \ker \varphi$

Hint. a) Xét ánh xạ tuyến tính hạn chế của φ lên L ta có:

$$\varphi|_L:L\longrightarrow \varphi L,$$

 $\ker \varphi|_L = \ker \varphi \cap L$. Do đó: $\dim \varphi(L) + \dim(\ker \varphi \cap L) = \dim L$.

- b) Suy ra từ a) với chú ý rằng dim $(\ker \varphi \cap L) \leq \dim \ker \varphi$.
- c) Đặt $L = \varphi^{-1}Z$ và chú ý rằng: $\varphi L \subset Z$. Từ câu b) ta có: $\dim \varphi^{-1}Z \leq \dim \varphi(\varphi^{-1}Z) + \dim \ker \varphi \leq \dim Z + \dim \ker \varphi$.

Mặt khác: $\ker \varphi \subset L$ nên từ a) ta có:

$$\dim \varphi(L) + \dim \ker \varphi = \dim L (1).$$

 \bigcirc

 \Diamond

 \Diamond

Ta cũng có: $\varphi(L) = Z \cap \varphi(V)$ nên

$$\dim \varphi(L) = \dim(Z \cap \varphi(V))$$

$$= \dim Z + \dim \varphi(V) - \dim(Z + \varphi(V))$$

$$\geq \dim Z + \dim \varphi(V) - \dim W$$

$$= \dim Z - \dim \ker \varphi. (2)$$

Từ (1) và (2) ta có điều phải chứng minh.

Problem 1.8. Cho các đồng cấu của các \mathbb{K} -không gian vector hữu hạn chiều $\varphi:V\longrightarrow W,\psi:W\longrightarrow Z.$ Chứng minh rằng:

- a) $\dim \ker(\psi.\varphi) = \dim \ker \varphi + \dim(\operatorname{Im} \varphi \cap \ker \psi)$
- b) $\dim \ker(\psi.\varphi) \leq \dim \ker \varphi + \dim \ker \psi$
- c) $\operatorname{rank}(\psi.\varphi) = \operatorname{rank}\varphi \dim(\ker\psi \cap \operatorname{Im}\varphi)$
- d) $\operatorname{rank}(\psi.\varphi) \ge \operatorname{rank} \varphi + \operatorname{rank} \psi \dim W$

Hint. a) Đặt $L = \text{Im } \varphi$ và áp dụng bài tập 1.6.a ta có:

$$\dim \psi(L) + \dim(\ker \psi \cap L) = \dim L$$

hay

$$\dim \operatorname{Im}(\psi.\varphi) + \dim(\ker \varphi \cap L) = \dim V - \dim \ker \varphi$$

 $\dim \ker \varphi + \dim (\ker \varphi \cap L) = \dim V - \dim \operatorname{Im}(\psi \cdot \varphi) = \dim \ker (\psi \cdot \varphi)$

- b) Suy ra từ câu a) với chú ý rằng: $\ker \varphi \cap L \subset \ker \varphi$
- c) Suy ra từ lập luận ở chứng minh của câu a).
- d) Suy ra từ câu c) với chú ý rằng: $\ker \psi \cap \operatorname{Im} \varphi \subset \ker \psi$.

Problem 1.9. Giả sử P,Q,R là các ma trận vuông cấp n. Chứng minh rằng: $\operatorname{rank}(PQ) + \operatorname{rank}(QR) \leq \operatorname{rank}Q + \operatorname{rank}(PQR)$.

Hint. Sử dung bài tập 1.7 câu c) ta có:

$$\operatorname{rank}(PQR) = \operatorname{rank}(PQ) - \dim(\ker(PQ) \cap \operatorname{Im} R)$$
$$\operatorname{rank}(QR) = \operatorname{rank} Q - \dim(\ker Q \cap \operatorname{Im} R)$$

Suy ra:

$$\operatorname{rank}(PQ) + \operatorname{rank}(QR) = \operatorname{rank}(PQR) + \operatorname{rank}Q + \operatorname{dim}(\ker Q \cap \operatorname{Im}R)$$
$$- \operatorname{dim}(\ker(PQ) \cap \operatorname{Im}R)$$
$$\leq \operatorname{rank}(PQR) + \operatorname{rank}Q$$

Problem 1.10. Cho V và W là các không gian vector hữu hạn chiều. $T:V\longrightarrow W$ là ánh xạ tuyến tính, X là không gian vector con của không gian vector W Chứng minh: $\dim(T^{-1}X) \ge \dim V - \dim W + \dim X$. Hơn nữa nếu T toàn ánh thì ta có đẳng thức.

Hint. Xét ánh xạ tuyến tính: $F: V/_{T^{-1}X} \longrightarrow W/_X$ được cho bởi: $F(\overline{x}) = \overline{T(x)}$. Khi đó F là đơn ánh. Thật vậy, nếu $F(\overline{y}) = 0$ thì $T(y) \in X$ do đó $y \in T^{-1}X$ hay $\overline{y} = \overline{0}$. Từ đó suy ra:

$$\dim(V/_{T^{-1}X}) \le \dim(W/_X)$$

hay

$$\dim V - \dim T^{-1}X < \dim W - \dim X.$$

Vây

$$\dim T^{-1}X \ge \dim V - \dim W + \dim X.$$

 \Diamond

 \Diamond

 \Diamond

 \Diamond

Problem 1.11. Cho $f:E\longrightarrow E$ là một tự đồng cấu tuyến tính của không gian vector hữu hạn chiều E. Chứng minh rằng

$$\dim \ker f^2 \le 2\dim \ker f.$$

Hint. Áp dụng bài tập 1.10 với $X = \ker f$.

Problem 1.12. Cho A và B là các ma trận vuông cấp n. Chứng minh rằng không gian nghiệm của hai phương trình AX = 0 và BX = 0 bằng nhau khi và chỉ khi tồn tại ma trận C khả nghịch sao cho A = CB.

Problem 1.13. Cho A là ma trận vuông phức cấp n sao cho tr $A^k = 0$ với $k = 1, \ldots, n$. Chứng minh rằng A là ma trận luỹ linh.

Hint. Giả sử A có dạng chéo hoá Jordan với các khối Jordan tương ứng với các giá trị riêng $\lambda_1, \ldots, \lambda_m$ phân biệt. Khi đó A^k là ma trận có các phần tử trên đường chéo chính là các giá trị riêng λ_i^k . Từ giả thiết $\operatorname{tr}(A^k) = 0, 1 \le k \le m$ ta có hệ phương trình:

$$\sum_{i=1}^{m} \mu_i \lambda_i^k = 0, \forall k = 1, ..., n.$$

Từ hệ này ta suy ra $\lambda_i=0, 1\leq i\leq m$. Vậy A sẽ là ma trận luỹ linh.

Problem 1.14. Cho A, B là các ma trận vuông cấp n sao cho AB - BA = B. Chứng minh rằng

- (1) $A^k B = B^k (A + kI_n)$, với mọi $k \in \mathbb{N}$.
- (2) $\det(B) = 0$ và $\operatorname{tr}(B^k) = 0$, với mọi $k \in \mathbb{N}$.
- (3) B là ma trận lũy linh.

Problem 1.15. Cho A, B là các ma trận vuông cấp n, thoả mãn điều kiện: AB = BA = 0 và $\operatorname{Im} A \cap \ker A = \{0\}, \operatorname{Im} B \cap \ker B = \{0\}.$ Chứng minh rằng: $\operatorname{rank}(A + B) = \operatorname{rank}(A) + \operatorname{rank}(B).$

Hint. Ta có $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$. Giả sử e_1, e_2, \ldots, e_k và u_1, u_2, \ldots, u_s là các cơ sở của $\operatorname{Im}(A)$ và $\operatorname{Im}(B)$ tương ứng. Ta chứng minh hệ vector $e_1, e_2, \ldots, e_k, u_1, u_2, \ldots, u_s$ độc lập tuyến tính trong $\operatorname{Im}(A+B)$. Thật vậy, giả sử $\sum \lambda_i e_i + \sum \mu_j u_j = 0$, ta suy ra $\sum \lambda_i A e_i + \sum \mu_j A u_j = 0$. Từ giả thiết AB = 0 ta có $\operatorname{Im}(B) \subset \ker(A)$, do đó ta suy ra $\sum \lambda_i A e_i = 0$, hay $A(\sum \lambda_i e_i) = 0$. Từ đó ta có $\sum \lambda_i e_i = 0$. Vậy $\lambda_i = 0$. Tương tự ta cũng có $\mu_j = 0$. Tóm lại ta có hệ vector $e_1, e_2, \ldots, e_k, u_1, u_2, \ldots, u_s$ là cơ sở của $\operatorname{Im}(A+B)$.

$$V_{ay} \operatorname{rank}(A+B) = \operatorname{rank}(A) + \operatorname{rank}(B).$$

Problem 1.16. Cho A_1, A_2, \ldots, A_m là các ma trận vuông đối xứng cấp n thoả mãn điều kiện $A_i A_j = 0, \forall i \neq j$. Chứng minh rằng:

$$\operatorname{rank}(A_1) + \operatorname{rank}(A_2) + \dots + \operatorname{rank}(A_m) \le n.$$

Problem 1.17. Ma trận A được gọi là pseudoreflection nếu $\operatorname{rank}(A-I)=1$. Chứng minh rằng mọi ma trận A cấp n là tích của không quá n+1 ma trận pseudoreflection.

Problem 1.18. Cho A là ma trận phức và k là một số tự nhiên. Chứng minh rằng tồn tại ma trân X sao cho $X^k = A$.

Problem 1.19. Cho A là ma trận phức cấp m sao cho dãy $(A^n)_{n=1}^{\infty}$ hội tụ đến ma trận B. Chứng minh rằng B đồng dạng với ma trận đường chéo mà các phần tử trên đường chéo chính bằng 0 hoặc 1.

Hint. Do
$$A^{2n} = A^n A^n$$
 suy ra $B^2 = B$. Vậy ta có điều cần chứng minh.

Problem 1.20. Cho W là không gian vector n-chiều, U và V là các không gian con của W sao cho $U \cap V = \{0\}$. Giả sử $u_1, u_2, \ldots, u_k \in U$ và $v_1, v_2, \ldots, u_k \in V$ với $k > \dim U + \dim V$. Chứng minh rằng tồn tại các số $\lambda_1, \lambda_2, \ldots, \lambda_k$ không đồng thời bằng 0 sao cho

$$\sum_{i=1}^{k} \lambda_i u_i = \sum_{i=1}^{k} \lambda_i v_i = 0.$$

Khẳng định trên còn đúng không nếu $k \leq \dim U + \dim V$.

Hint. Chú ý rằng ta có đơn cấu $U \times V \longrightarrow W$ nên số chiều của $U \times V$ không quá n.

Problem 1.21. Cho f là đa thức hệ số thực có bậc n > 0 và $p_0, p_1, p_2, \ldots, p_n$ là các đa thức hệ số thực và có bậc dương. CMR, tồn tại các số thực $a_0, a_1, a_2, \ldots, a_n$ không đồng thời bằng n

không sao cho đa thức $Q(x) = \sum_{i=0}^{n} a_i(p_i(x))^i$ chia hết cho f.

Problem 1.22. Cho V là một không gian vector trên trường vô hạn \mathbb{K} và V_1, V_2, \dots, V_n là các không gian vector con của V. Giả sử

$$V = \bigcup_{i=1}^{n} V_i.$$

Chứng minh rằng tồn tại i sao cho $V = V_i$.

Hint. Đặt $A = V_1 \cup \ldots \cup V_{n-1}$. Ta sẽ chứng minh rằng $V_n = V$ hoặc $V_n \subset A$. Từ đó suy ra điều phải chứng minh. Thật vậy, giả sử $V_n \neq V$ và $V_n \not\subset A$. Khi đó tồn tại các vector $x \in V \setminus V_n$ và $y \in V_n \setminus A$. Khi đó ta có $x + \lambda y \notin V_n$, với mọi $\lambda \neq 0$. Do đó ta có $x + y, x + 2y, \ldots, x + ny \in A = V_1 \cup \ldots \cup V_{n-1}$. Do đó tồn tại các số nguyên k, l sao cho $x + ky, x + ly \in V_l$, từ đó suy ra $y \in V_l \subset A$. Điều này là mâu thuẫn.

Problem 1.23. Cho dãy các tự đồng cấu

$$V_0 \xrightarrow{f_1} V_1 \xrightarrow{f_2} V_2 \xrightarrow{f_1} \cdots \xrightarrow{f_m} V_m.$$

Chứng minh rằng

$$\sum_{i=1}^{m} \dim \ker f_i - \sum_{i=1}^{m} \dim(V_i/\operatorname{Im} f_i) = \dim V_0 - \dim V_m.$$

Hint. Trước hết ta chứng minh cho trường hợp m=1. Tức là $f_1:V_0\longrightarrow V_1$, ta có dim $V_0=\dim\operatorname{Im} f_1+\dim\ker f_1=\dim V_1-\dim(V_1/\operatorname{Im} f_1)+\dim\ker f_1$. Do đó

$$\dim V_0 - \dim V_1 = \dim \ker f_1 - \dim(V_1/\operatorname{Im} f_1).$$

Tương tự, ta có

$$\dim V_0 - \dim V_1 = \dim \ker f_1 - \dim(V_1/\operatorname{Im} f_1)$$

$$\dim V_1 - \dim V_2 = \dim \ker f_2 - \dim(V_2/\operatorname{Im} f_2)$$

$$\dim V_{m-1} - \dim V_m = \dim \ker f_m - \dim(V_m/\operatorname{Im} f_m).$$

Cộng vế theo vế các đẳng thức trên, ta có điều cần chứng minh.

Problem 1.24. Cho f,g là các tự đồng cấu tuyến tính của không gian vector V n-chiều thoả mãn điều kiện $f \circ g = g \circ f$, g luỹ linh và $\operatorname{rank}(f \circ g) = \operatorname{rank}(f)$. Chứng minh các khẳng định sau:

- a) $\operatorname{Im}(f) \cap \ker(q \circ f) = \{0\},\$
- b) $Im(f) \cap \ker(g^2 \circ f) = \{0\},\$
- c) Từ đó suy ra f = 0.

Problem 1.25. Cho f là một đẳng cấu tuyến tính của không gian vector V n-chiều. Giả sử $V = L \bigoplus N$, $\dim(N) = m, 0 < m < n$. Chứng minh rằng tồn tại số nguyên $k, (k \le n^{2m})$ sao cho $V = f^k(L) \bigoplus N$.

Problem 1.26. Cho φ là một tự đồng cấu tuyến tính của không gian vector hữu hạn chiều V.

- a) Giả sử đa thức tối tiểu của φ có phân tích p(t) = h(t)g(t), trong đó h, g là các đa thức nguyên tố cùng nhau. Chứng minh rằng: $V = L_1 \bigoplus L_2$, với $L_1 = \ker(h(\varphi)), L_2 = \ker(g(\varphi))$.
- b) Giả sử đa thức tối tiểu của φ có phân tích $p(t) = h_1(t) \dots h_k(t)$, trong đó $h_i(t), 1 \le i \le k$ là các đa thức đôi một nguyên tố cùng nhau. Chứng minh rằng:

$$V = \bigoplus_{i=1}^{k} L_i,$$

với $L_i = \ker(h_i(\varphi)), 1 \le i \le k$.

Hint. a) Do h(t) và g(t) là hai đa thức nguyên tố cùng nhau nên tồn tại các đa thức u(t) và v(t) sao cho 1 = h(t)u(t) + g(t)v(t). Khi đó mỗi vector x đều có phân tích duy nhất thành $x = h(\varphi)u(\varphi)(x) + g(\varphi)v(\varphi)(x)$ trong đó $h(\varphi)u(\varphi)(x) \in L_2$ và $g(\varphi)v(\varphi)(x) \in L_1$.

2. HANG VÀ ĐỊNH THỰC

Problem 2.1. Cho ma trận vuông cấp n

$$A = \begin{pmatrix} x & y & \cdots & y \\ y & x & \cdots & y \\ \vdots & \vdots & \ddots & \vdots \\ y & y & \cdots & x \end{pmatrix}$$

với x, y là các số thực cho trước. Tính A^k , với k là một số nguyên dương.

Hint. Đặt

$$B = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}.$$

Ta có $A = (x - y)I_n + yB$. Từ đây ta tính A^n .

Problem 2.2. Cho $f_1(x)$, $f_2(x)$, $f_n(x)$ là các đa thức có bậc không vượt quá n-2, $n \ge 2$. Tính định thức sau

$$\begin{vmatrix} f_1(a_1) & f_1(a_2) & \cdots & f_1(a_n) \\ f_2(a_1) & f_2(a_2) & \cdots & f_2(a_n) \\ \vdots & \vdots & \ddots & \vdots \\ f_n(a_1) & f_n(a_2) & \cdots & f_n(a_n) \end{vmatrix}$$

Hint. Xét không gian vector $\mathbb{R}_{n-2}[x]$ gồm các đa thức với hệ số thực và có bậc không quá n-2. Ta có dim $\mathbb{R}_{n-2}[x]=n-1$. Do đó các vector $f_1(x), f_2(x), \cdots, f_n(x)$ là phụ thuộc tuyến tính, tức là tồn tại các số thực $\lambda_1, \lambda_2, \ldots, \lambda_n$ không đồng thời bằng không sao cho $\lambda_1 f_1(x) + \lambda_2 f_2(x) + \cdots + \lambda_n f_n(x) = 0$ với mọi $x \in \mathbb{R}$. Từ kết quả này ta suy ra định thức của ma trân

$$\begin{vmatrix} f_1(a_1) & f_1(a_2) & \cdots & f_1(a_n) \\ f_2(a_1) & f_2(a_2) & \cdots & f_2(a_n) \\ \vdots & \vdots & \ddots & \vdots \\ f_n(a_1) & f_n(a_2) & \cdots & f_n(a_n) \end{vmatrix}$$

bằng 0.

 \Diamond

 \Diamond

Problem 2.3. Cho a_1, a_2, \ldots, a_n là các số thực. Chứng minh rằng định thức

$$\begin{vmatrix} a_1 & a_2 & \cdots & a_n \\ a_n & a_1 & \cdots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & \cdots & a_1 \end{vmatrix}$$

bằng tích $f(\epsilon_1)f(\epsilon_2)\cdots f(\epsilon_n)$, trong đó ϵ_i là các căn bận n của đơn vị, với $f(x)=a_1+a_2x+\cdots+a_nx^{n-1}$.

Hint. Gọi $\epsilon_1 = 1, \epsilon_2, \dots, \epsilon_n$ là n căn bậc n của 1. Ta có biểu diễn

$$\begin{vmatrix} a_1 & a_2 & \cdots & a_n \\ a_n & a_1 & \cdots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & \cdots & a_1 \end{vmatrix} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & \epsilon_2 & \cdots & \epsilon_n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \epsilon_2^{n-1} & \cdots & \epsilon_n^{n-1} \end{vmatrix} = \begin{vmatrix} f(1) & f(\epsilon_2) & \cdots & f(\epsilon_n) \\ f(1) & \epsilon_2 f(\epsilon_2) & \cdots & \epsilon_n f(\epsilon_n) \\ \vdots & \vdots & \ddots & \vdots \\ f(1) & \epsilon_2^{n-1} f(\epsilon_2) & \cdots & \epsilon_n^{n-1} f(\epsilon_n) \end{vmatrix}$$

Problem 2.4. Cho A là ma trận vuông thực cấp n và A^t là ma trận chuyển vị của nó. Chứng minh rằng A^tA và A cùng hạng.

Hint. Trước hết ta chứng minh: dim(ker A^tA) = dim ker A. Rõ ràng: ker $A \subset \ker A^tA$, ngược lại giả sử $v \in \ker A^tA$ thì $A^tAv = 0$, suy ra $\langle A^tAv, v \rangle = \langle Av, Av \rangle = 0$ hay Av = 0, tức là $v \in \ker A$. Do vậy dim(ker A^tA) = dim ker A, từ đó ta có $\operatorname{rank}(A^tA) = \operatorname{rank} A$.

Problem 2.5. Giả sử P và Q là các ma trận vuông cấp n thỏa mãn các điều kiện sau: $P^2 = P, Q^2 = Q$ và I - (P + Q) khả nghịch. Chứng minh rằng P và Q có hạng bằng nhau.

Hint. Ta có:

$$\operatorname{rank} P = \operatorname{rank} P(I - P - Q) = \operatorname{rank} PQ$$

$$\operatorname{rank} Q = \operatorname{rank} (I - P - Q)Q = \operatorname{rank} PQ$$

Vậy ta có điều phải chứng minh.

Problem 2.6. Cho A, B là hai ma trận có tính chất $A^2 = A, B^2 = B$. Chứng minh rằng A đồng dạng với B khi và chỉ khi rank(A) = rank(B).

Problem 2.7. Cho

$$T = \begin{pmatrix} a_1 & b_1 & 0 & 0 & \dots & 0 & 0 \\ b_1 & a_2 & b_2 & 0 & \dots & 0 & 0 \\ 0 & b_2 & a_3 & b_3 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{n-1} & b_{n-1} \\ 0 & 0 & 0 & 0 & \dots & b_{n-1} & a_n \end{pmatrix}.$$

Giả sử $b_i \neq 0$, với mọi i. Chứng minh rằng:

- a) rank $T \geq n 1$,
- b) T có n giá tri riêng phân biêt.

Hint. a) Ma trận con có được bằng cách bỏ dòng 1, cột n có hạng bằng (n-1).

b) Giả sử λ là giá trị riêng của A tức là $\det(A - \lambda I) = 0$. Theo câu a) $\operatorname{rank}(A - \lambda I) = n - 1$ nên dim $\ker(A - \lambda I) = 1$, suy ra không gian con riêng ứng với giá trị riêng λ là một chiều. Do A là ma trận đối xứng nên A có đủ n giá trị riêng kể cả bội. Vậy A có n giá trị riêng khác nhau

Problem 2.8. Cho (a_{ij}) là ma trận vuông cấp n với các a_{ij} là các số nguyên.

a) Chứng minh rằng nếu số nguyên k là một giá trị riêng của A thì định thức của A chia hết cho k.

b) Giả sử m là một số nguyên và mỗi dòng của A có tổng bằng m

$$\sum_{j=1}^{n} a_{ij} = m, \quad i = 1, 2, \dots, n.$$

Chúng minh rằng định thức của A chia hết cho m.

Hint. a) Ta có $\det(A - \lambda I) = (-1)^n \lambda^n + ... + c_i (-1)^i \lambda^i + ... + c_n$ trong đó $c_n = \det A$ (a_{ij} nguyên nên c_i nguyên). Nếu k là giá trị riêng nên

$$(-1)^n k^n + \dots + c_i (-1)^i k^i + \dots + \det A = 0$$

suy ra k là ước của $\det A$.

b) Lấy x=(1,...,1) ta có Ax=mx nên m là giá trị riêng của A. Theo câu a) ta có m là ước của det A.

Problem 2.9. Cho định thức Vandermonde (phức)

$$A = \begin{pmatrix} 1 & a_0 & a_0^2 & \dots & a_0^n \\ 1 & a_1 & a_1^2 & \dots & a_1^n \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^n \end{pmatrix},$$

với a_i là các số phức.

- a) Chứng minh rằng A khả nghịch khi và chỉ khi các a_i đôi một khác nhau.
- b) Nếu các a_i đôi một khác nhau và b_1, b_2, \ldots, b_n là các số phức tùy ý. Chứng minh rằng tồn tại duy nhất đa thức f bậc n với hệ số phức sao cho $f(a_i) = b_i$, $\forall i = 1, 2, \ldots, n$.

Hint. a) Ta có: det $A = \prod_{i>j} (a_i - a_j)$, do đó A khả nghịch khi và chỉ khi các a_i khác nhau từng đôi một.

b) Giả sử $f = c_0 + c_1 x + \cdots + c_n x^n$ là một đa thức bậc n hệ số phức sao cho $f(a_i) = b_i$, ta có hệ phương trình ẩn là c_i , i = 0, n

$$\begin{cases} c_0 + c_1 a_1 + \dots + c_n a_1^n = b_1 \\ c_0 + c_1 a_2 + \dots + c_n a_2^n = b_2 \\ \dots \\ c_0 + c_1 a_n + \dots + c_n a_n^n = b_n \end{cases}$$

hệ phương trình trên có định thức Crame khác 0 nên có nghiệm duy nhất. Vậy tồn tại duy nhất đa thức f bậc n với hệ số phức sao cho $f(a_i) = b_i$.

Problem 2.10. Cho ví dụ một hàm liên tục $f: \mathbb{R} \longrightarrow \mathbb{R}^3$ với tính chất là $f(v_1), f(v_2), f(v_3)$ lập thành một cơ sở của \mathbb{R}^3 , trong đó v_1, v_2, v_3 là các số thực phân biệt.

Hint. Xét hàm $f(t)=(1,t,t^2)$ thì f là hàm liên tục. Khi đó nếu $t_i,\ i=1,2,3$ khác nhau từng đôi một thì

$$\det\begin{pmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ 1 & t_3 & t_3^2 \end{pmatrix} \neq 0.$$

Problem 2.11. Cho f_1, f_2, \ldots, f_n là các hàm nhận các giá trị thực liên tục trên [a, b]. Chứng minh rằng $\{f_1, f_2, \ldots, f_n\}$ phụ thuộc tuyến tính khi và chỉ khi

$$\det\left(\int_a^b f_i(x)f_j(x)dx\right) = 0.$$

 \Diamond

Hint. Xét tích vô hướng trên C[a,b] xác định bởi

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx.$$

Ta có C[a, b] là không gian Euclid và

$$\det\left(\int_a^b f_i(x)f_j(x)dx\right)$$

chính là định thức Gram của hệ vector $\{f_1, f_2, \dots, f_n\}$. Từ đó suy ra điều phải chứng minh. \heartsuit

Problem 2.12. Ký hiệu $M_2(\mathbb{R})$ là không gian các ma trận vuông thực cấp 2. Cho

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix}.$$

Xét phép biến đổi tuyến tính $L: M_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$ xác định bởi L(X) = AXB. Hãy tính vết và định thức của L.

Hint. Xét các ánh xạ tuyến tính

$$L_A(X) = AX$$
$$L_B(X) = XB.$$

Ma trận của L_A và L_B lần lược là:

$$M_A = \begin{pmatrix} = 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ -1 & 0 & 3 & 0 \\ 0 & -1 & 0 & 3 \end{pmatrix} M_B = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 4 \end{pmatrix}.$$

Suy ra det $L = \det L_A$. det $L_B = 2^6.5^2$, $Tr(L) = Tr(M_A.M_B) = 24$

Problem 2.13. Ký hiệu $M_3(\mathbb{R})$ là không gian các ma trận vuông thực cấp 3. Cho

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Xét phép biến đổi tuyến tính $L: M_3(\mathbb{R}) \longrightarrow M_3(\mathbb{R})$ xác định bởi $L(X) = \frac{1}{2}(AX + XA)$. Hãy tính định thức của L.

Hint. Lấy $X = (x_{ij})$, ta có:

$$L(X) = \begin{pmatrix} x_{11} & \frac{3}{2}x_{12} & x_{13} \\ \frac{3}{2}x_{21} & 2x_{22} & \frac{3}{2}x_{23} \\ x_{31} & \frac{3}{2}x_{32} & x_{33} \end{pmatrix}.$$

Dễ thấy mỗi ma trận M_{ij} đều là vector riêng của L. Suy ra $\det L = 2.(\frac{3}{2})^4 = \frac{81}{8}$.

Problem 2.14. Ký hiệu $M_3(\mathbb{R})$ là không gian các ma trận vuông thực cấp 3. Giả sử $A \in M_3(\mathbb{R})$, det A = 32 và đa thức tối tiểu của A là $(\lambda - 4)(\lambda - 2)$. Xét ánh xạ tuyến tính: $L_A : M_3(\mathbb{R}) \longrightarrow M_3(\mathbb{R})$ xác định bởi $L_A(X) = AX$. Hãy tính vết của L_A .

Problem 2.15. Ký hiệu $M_7(\mathbb{R})$ là không gian các ma trận vuông thực cấp 7. Giả sử $A \in M_7(\mathbb{R})$ là một ma trận chéo với đường chéo chính gồm 4 hạng tử +1 và 3 hạng tử -1. Xét ánh xạ tuyến tính $L_A: M_7(\mathbb{R}) \longrightarrow M_7(\mathbb{R})$ xác định bởi $L_A(X) = AX - XA$. Hãy tính rank L_A .

Problem 2.16. Cho F là một trường, n và m là hai số nguyên, $M_{m \times n}$ là không gian các ma trận cấp $m \times n$ trên trường F. Giả sử A và B là hai ma trận cố định của $M_{m \times n}$. Xét ánh xạ tuyến tính $L: M_{m \times n} \longrightarrow M_{m \times n}$ xác định bởi L(X) = AXB. Chứng minh rằng nếu $m \neq n$ thì L suy biến.

Hint. Trường hợp m > n. Ta viết $T = T_1 \circ T_2$, trong đó $T_2 : M_{n \times m} \longrightarrow M_{n \times n}$ được xác định bởi: $T_2(X) = XB$ và $T_1 : M_{n \times n} \longrightarrow M_{m \times n}$ được cho bởi: $T_1(Y) = AY$. Vì dim $M_{n \times m} = nm > n^2 = \dim M_{n \times n}$ nên T_2 không đơn ánh, suy ra T cũng không đơn ánh hay T không khả nghịch. Trường hợp m < n xét tương tự.

Problem 2.17. Giả sử $A_1, A_2, \ldots, A_{n+1}$ là các ma trận cấp n. Chứng minh rằng tìm được n+1 số $x_1, x_2, \ldots, x_{n+1}$ không đồng thời bằng 0 sao cho ma trận $x_1A_1 + x_2A_2 \cdots + x_{n+1}A_{n+1}$ suy biến.

Hint. Gọi $v_1, v_2, \ldots, v_{n+1}$ là các vector có toạ độ là cột đầu tiên của các ma trận $A_1, A_2, \ldots, A_{n+1}$ tương ứng. Khi đó n+1 vector này phụ thuộc tuyến tính. Do đó tồn tại n+1 số thực $x_1, x_2, \ldots, x_{n+1}$ không đồng thời bằng 0 sao cho

$$x_1v_1 + x_2v_2 + \dots + v_{n+1}x_{n+1} = 0.$$

Lúc đó ma trận $x_1A_1 + x_2A_2 + \cdots + x_{n+1}A_{n+1}$ có cột đầu tiên bằng 0 nên ma trận $x_1A_1 + x_2A_2 + \cdots + x_{n+1}A_{n+1}$ suy biến.

Problem 2.18. Cho A là ma trận vuông cấp n. Chứng minh rằng nếu $A^2 = E$ thì tổng hạng của các ma trận A - E và A + E bằng n (E là ma trận đơn vị).

Hint. Xem A là tự đồng cấu tuyến tính của \mathbb{R}^n . Điều cần chứng minh $\operatorname{rank}(A-E) + \operatorname{rank}(A+E) = n$ tương đương với $\dim(\ker(A-E)) + \dim(\ker(A+E)) = n$. Thật vậy, với mọi $x \in \mathbb{R}^n$ ta có

$$x = \frac{1}{2}(x + Ax) + \frac{1}{2}(x - Ax)$$

trong đó $\frac{1}{2}(x+Ax) \in \ker(A-E)$ và $\frac{1}{2}(x-Ax) \in \ker(A+E)$.

Mặt khác $\ker(A+E) \cap \ker(A-E) = \{0\}$ nên

$$\mathbb{R}^n = \ker(A + E) \bigoplus \ker(A - E),$$

suy ra $\dim(\ker(A-E)) + \dim(\ker(A+E)) = n$.

Problem 2.19. Cho A là ma trận vuông thực cấp n. Chứng minh rằng: $\det(A^2 + E) \ge 0$. Khi nào thì đẳng thức xảy ra.

Problem 2.20. Ta viết

$$A^{2} + E = (A + iE)(A - iE) = (A + iE)\overline{(A + iE)}.$$

Suy ra

$$\det(A^2 + E) = \det(A + iE) \det(\overline{(A + iE)})$$
$$= \det(A + iE) \overline{\det(A + iE)} = |\det(A + iE)|^2 \ge 0.$$

Vậy $\det(A^2 + E) \ge 0$ đẳng thức xảy ra khi và chỉ khi đa thức đặc trung của A nhận $\pm i$ làm nghiệm.

Problem 2.21. Cho tam thức bậc hai $p(x) = x^2 + ax + b$ thoả mãn $p(x) \ge 0$, $\forall x \in \mathbb{R}$ và A là một ma trận vuông thực cấp n. Chứng minh rằng: $\det p(A) \ge 0$.

Hint. Từ giả thiết ta có p(x) có hai nghiệm phức liên hợp λ và $\overline{\lambda}$, do đó

$$p(x) = (x - \lambda)(x - \overline{\lambda}),$$

$$p(A) = (A - \lambda E)(A - \overline{\lambda}E) = (A - \lambda E)\overline{(A - \lambda E)}.$$

Suy ra

$$\det p(A) = |\det(A - \lambda E)|^2 \ge 0.$$

Problem 2.22. Cho f(x) là đa thức hệ số thực có bậc dương, hệ số dẫn đầu bằng 1 và $f(x) \ge 0$, $\forall x \in \mathbb{R}$, A là một ma trận vuông thực cấp n. Chứng minh rằng det $f(A) \ge 0$.

Hint. Do $f(x) \ge 0 \ \forall x \in \mathbb{R}$ và hệ số dẫn đầu bằng 1 nên f(x) là tích của các tam thức bậc hai có dạng $x^2 + ax + b$ không âm với mọi x. Theo bài 2.21 ta có đpcm.

Problem 2.23. Cho A là ma trận vuông cấp n. Chứng minh rằng: $\det(AA^t + E) > 0$, trong đó A^t là ma trận chuyển vị của ma trận A và E là ma trận đơn vị cùng cấp với A.

Hint. Ta có $(AA^t + E)$ là ma trận đối xứng nên nó là ma trận của một dạng toàn phương. Hơn nữa, dang toàn phương này xác định dương. Thất vậy, với mọi $x \in \mathbb{R}^n$ ta có

$$\langle (AA^t + E)x, x \rangle = \langle AA^tx, x \rangle + \langle x, x \rangle = \langle Ax, Ax \rangle + \langle x, x \rangle > 0.$$

Do đó các giá trị riêng của A đều dương, vì vậy định thức của A bằng tích các giá trị riêng của A cũng dương.

Problem 2.24. Cho A và B là các ma trận thực cấp n. Chứng minh rằng: $\det(AA^t + BB^t) \geq 0$.

Problem 2.25. Chứng minh tính chất sau của định thức Gram

$$G(a_1, a_2, \dots, a_k, b_1, \dots, b_k) \ge G(a_1, \dots, a_k)G(b_1, \dots, b_l).$$

Đẳng thức xảy ra khi và chỉ khi

$$\langle a_i, b_i \rangle = 0 \ (i = 1, \dots, k; j = 1, \dots, l)$$

hoặc một trong hai hệ vector $\{a_1, \ldots, a_k\}; \{b_1, \ldots, b_l\}$ là phụ thuộc tuyến tính.

Hint. Trực giao hóa hệ vector $\{a_1, ..., a_k, b_1, ..., k_l\}$ thành hệ vector trực giao $\{\alpha_1, ..., \alpha_k, \beta_1, ..., \beta_l\}$ và $\{b_1, ..., b_l\}$ thành $\{\rho_1, ..., \rho_l\}$.

Gọi $L_i = \langle a_1, ..., a_k, b_1, ..., b_{k-1} \rangle$ và N_i là phần bù trực giao của L_i trong V. Ta có

$$V = L_i \bigoplus^{\perp} N_i.$$

Quá trình trực giao hóa ta có

$$b_i = y_i + \rho_i$$

với
$$y_i = \sum_{j=1}^{i-1} \rho_j \in \langle b_1, ..., b_{i-1} \rangle$$
 và $y_i \perp \rho_i$.

Mặt khác, ta có phân tích

$$\rho_i = y_i' + z_i,$$

với $y_i' \in L_i, x_i \in N_i$.

Hơn nữa, ta có $b_i = \beta_i + x_i$, với $x_i \in L_i$ và β_i trực giao với L_i nên $\beta_i \in N_i$. Vậy ta có 2 biểu diễn $b_i = x_i + \beta_i$ và $b_i = (y_i' + y_i) + z_i$. Suy ra $\beta_i = z_i$ và do đó $\|\beta_i\| = \|z_i\| \le \|\rho_i\|$.

Ta lại có

$$Gr(a_1, ..., a_k, b_1, ..., b_l) = \langle \alpha_1, \alpha_1 \rangle ... \langle \alpha_k, \alpha_k \rangle \langle \beta_1, \beta_1 \rangle ... \langle \beta_l, \beta_l \rangle$$

$$= Gr(a_1, ..., a_k). \langle \beta_1, \beta_1 \rangle ... \langle \beta_l, \beta_l \rangle$$

$$\leq Gr(a_1, ..., a_k). \langle \rho_1, \rho_1 \rangle ... \langle \rho_l, \rho_l \rangle$$

$$= Gr(a_1, ..., a_k). Gr(\rho_1, ..., \rho_l) = Gr(a_1, ..., a_k). Gr(b_1, ..., b_l)$$

Problem 2.26. Cho A là ma trận đối xứng thực cấp n với các định thức con chính đều không âm, A_1 là một ma trận con cấp k (k < n) ở góc trên trái của ma trận A và A_2 là ma trận con cấp k - n ở góc dưới phải của ma trận A. CMR,

$$\det(A) \leq \det(A_1) \det(A_2)$$
.

Problem 2.27. Cho A là ma trận vuông cấp n, gọi B và C là các ma trận tạo bởi k cột đầu và n-k cột cuối tương ứng của ma trận A. Chứng minh rằng $\det(A)^2 \leq \det(B^t B) \det(A^t A)$.

 \Diamond

 \Diamond

 \Diamond

Problem 2.28. Cho A, B là 2 ma trận vuông thực cấp n, giả sử $\det(A+B)$ và $\det(A-B)$ khác không. Chứng minh rằng ma trận

$$M = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$$

khả nghịch.

Hint. Ta có biểu diễn

$$\begin{pmatrix} I_n & 0 \\ I_n & I_n \end{pmatrix} \begin{pmatrix} A & B \\ B & A \end{pmatrix} \begin{pmatrix} I_n & 0 \\ -I_n & I_n \end{pmatrix} = \begin{pmatrix} A - B & 0 \\ 0 & A + B \end{pmatrix}$$

Có thể chứng minh trực tiếp nếu

$$\begin{pmatrix} A & B \\ B & A \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

thì x = y = 0.

Problem 2.29. Cho $f:V\longrightarrow V$ là một tự đồng cấu tuyến tính. Chứng minh rằng tồn tại $k \in \mathbb{N}$ sao cho $V = \operatorname{Im} f^k \oplus \ker f^k$.

Problem 2.30. Cho A là một ma trận vuông cấp 2. Giải phương trình sau

$$AX - XA = 0.$$

3. DANG CHÍNH TẮC

Problem 3.1. Cho

$$A = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}.$$

Hãy biểu thị A^{-1} như là một đa thức của A với hệ số thực.

Hint. Ta có đa thức đặc trưng của A là:

$$\chi_A(\lambda) = \lambda^2 - 3$$

. Do đó: $A^2 - 3I = 0$ hay $A^2 = 3I$, suy ra A khả nghịch và $A^{-1} = \frac{1}{3}A$.

Problem 3.2. Với $x \in \mathbb{R}$, đặt

$$A_x = \begin{pmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{pmatrix}.$$

- a) Chứng minh rằng det $A_x = (x-1)^3(x+3)$. b) Chứng minh rằng nếu $x \neq 1, 3$, thì $A_x^{-1} = (x-1)^{-1}(x+3)^{-1}A_{-x-2}$.

Hint. a) Tính toán trực tiếp ta có det $A_x = (x-1)^3(x+3)$.

b) Nếu $x \neq 1,3$ thì A_x khả nghịch và đa thức đặc trưng của A_x là:

$$\chi(t) = (x - t - 1)^3(x - t + 3).$$

Suy ra đa thức tối tiểu của A_x là: m(t) = (x-t-1)(x-t+3), do đó: $((x-1)I - A_x)((x+t)I)$ $(3)I - A_x = 0$, khai triển ta có được: $(x-1)(x+3)I - 2(x-1)A_x + A_x^2 = 0$. Nhân hai vế với A_x^{-1} và biến đổi ta có

$$A_x^{-1} = -(x-1) - 1(x+3)^{-1}A_{-x-2}.$$

Problem 3.3. Tính A^{10} với

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}.$$

Problem 3.4. Chứng minh hoặc đưa ra phản ví dụ: Với mọi ma trận vuông phức A cấp 2, tồn tại ma trận vuông phức B cấp 2 sao cho $A = B^2$.

Hint. Chọn $A=\left(\begin{smallmatrix}0&1\\0&0\end{smallmatrix}\right)$ thì sẽ không có một ma trận vuông phức B cấp 2 nào mà $A=B^2$. \heartsuit

Problem 3.5. Cho

Với số nguyên n nào thì sẽ tồn tại ma trận vuông phức X cấp 4 sao cho $X^n = A$.

Problem 3.6. Khẳng định sau đúng hay không:

Tồn tại ma trận vuông thực A cấp n sao cho

$$A^2 + 2A + 5I = 0$$
,

nếu và chỉ nếu n là số chẵn.

Hint. Khẳng định đúng.

Giả sử A tồn tại, suy ra A có đa thức tối tiểu chia hết $t^2 + 2t + 5$ là đa thức bất khả qui trên \mathbb{R} Vậy $m_A(t) = t^2 + 2t + 5$. Vì đa thức đặc trưng và đa thức tối tiểu có cùng nhân tử bất khả qui nên

$$\chi_A(t) = m_A(t)^k$$

suy ra $n = \deg \chi_A(t)$ phải là số chẵn.

Ngược lại, n
 chắn, ta thấy $A_0 = \begin{pmatrix} 0 & -5 \\ 1 & -2 \end{pmatrix}$ là một nghiệm của phương trình $t^2 + 2t + 5 = 0$. Do đó ma trận khối gồm $\frac{n}{2}$ khối A_0 trên đường chéo chính là ma trận thỏa mãn yêu cầu của đề bài.

Problem 3.7. Phương trình nào có nghiệm là một ma trận vuông thực (không nhất thiết phải chỉ ra nghiệm):

$$X^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 3 & 0 \end{pmatrix}$$
$$2X^{5} + X = \begin{pmatrix} 3 & 5 & 0 \\ 5 & 1 & 9 \\ 0 & 9 & 0 \end{pmatrix}$$
$$X^{6} + 2X^{4} + 10X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$X^{4} = \begin{pmatrix} 3 & 4 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix}.$$

Problem 3.8. Cho A và B là hai ma trận thực cấp n thoả mãn điều kiện tồn tại ma trận phức V sao cho $A = VBV^{-1}$. Chứng minh rằng tồn tại một ma trận thực U sao cho $A = UBU^{-1}$.

Hint. Giả sử V = X + iY, trong đó X,Y là các ma trận thực. Từ đẳng thức AV = VB, ta có A(X+iY) = (X+iY)B, suy ra AX = XB và AY = YB, do đó A(X+tY) = (X+tY)B với mọi $t \in \mathbb{R}$. Mặt khác xét đa thức $p(z) = \det(X+zY)$, $z \in \mathbb{C}$. Ta có $p(i) \neq 0$ nên tồn tại một giá trị thực t_0 sao cho $p(t_0) \neq 0$. Vậy ta có $A(X+t_0Y) = B(X+t_0Y)$ trong đó $X+t_0Y$ là ma trận khả nghịch.

Problem 3.9. Cho x là số thực dương. Hỏi có tồn tại hay không một ma trận vuông thực cấp 2 sao cho

$$A^{2004} = \begin{pmatrix} -1 & 0 \\ 0 & -1 - x \end{pmatrix}.$$

Problem 3.10. Cho ma trân:

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

Chứng minh rằng: mỗi ma trận B sao cho AB = BA có dạng:

$$B = aI + bA + cA^2,$$

với a, b, c là các số thực nào đó.

Problem 3.11. Cho A là ma trận cấp n có n giá trị riêng phân biệt. Chứng minh rằng: mỗi ma trận B giao hoán được với ma trận A đều biểu diễn được dưới dạng: B = f(A), với f là một đa thức hệ số thực, bậc không quá n-1.

Hint. Do A có n giá trị riêng phân biệt nên A chéo hóa được, tức là tồn tại ma trận C khả nghịch sao cho $C^{-1}AC = P$ là ma trận chéo. Khi đó, ma trận B giao hoán được với A khi và chỉ khi ma trận $Q = C^{-1}BC$ giao hoán được với P. Giả sử:

$$P = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

trong đó λ_i là các giá trị thực khác nhau từng đôi một. Bằng cách thử trực tiếp ta có: Q giao hoán được với P khi và chỉ khi Q có dạng:

$$Q = \begin{pmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & \mu_n \end{pmatrix}$$

trong đó μ_i là các giá trị thực nào đó. Bây giờ ta cần tìm các số thực $\alpha_0, \alpha_1, ..., \alpha_{n-1}$ sao cho

$$Q = \alpha_0 I + \alpha_1 P + \dots + \alpha_{n-1} P^{n-1}$$

Điều này thực hiện được nhờ việc giải hệ phương trình tuyến tính:

$$\begin{cases} x_0 + \lambda_1 x_1 + \dots + \lambda_1^{n-1} x_{n-1} = \mu_1 \\ x_0 + \lambda_2 x_1 + \dots + \lambda_2^{n-1} x_{n-1} = \mu_2 \\ \dots \\ x_0 + \lambda_n x_1 + \dots + \lambda_n^{n-1} x_{n-1} = \mu_n \end{cases}$$

Từ đó ta suy ra:

$$B = \alpha_0 I + \alpha_1 A + \dots + \alpha_{n-1} A^{n-1}$$

Problem 3.12. Cho A, B là các ma trận vuông cấp n. Chứng minh rằng nếu B giao hoán với mọi ma trận giao hoán được với A thì tồn tại một đa thức f(t) sao cho B = f(A).

Hint. Cho A là ma trận thực cấp $n \times m$. Chứng minh rằng tồn tại ma trận thực B cấp n sao cho $AA^t = B^{2004}$

Problem 3.13. Cho $A \in M_n(\mathbb{R})$ là ma trận lũy linh. Giải các phương trình sau X - AX - A = 0 và X + AX + A = 0.

Hint. Do A là ma trận lũy linh nên $A^n=0$. Khi đó I_n-A là ma trận khả nghịch và $(I_n-A)^{-1}=I+A+A^2+\cdots+A^{n-1}$. Từ phương trình X-AX-A=0 ta có $X=(I-A)^{-1}A=A+A^2+\cdots+A^{n-1}$.

Problem 3.14. Cho A là ma trận cấp n thoả $A^2 = A$. Chứng minh rằng phương trình AX - XA = 0 có nghiệm, cần và đủ là: tồn tại ma trận X_0 sao cho $X = AX_0 + X_0A - X_0$.

Hint. Đưa A về dạng chéo.

Problem 3.15. Cho A là ma trận vuông cấp n thoả mãn điều kiện $A^2 = A$. Hãy tính đa thức đặc trưng của A.

Hint. Đáp số $\chi_A(\lambda) = (1-\lambda)^r(-\lambda)^{n-r}$, với r là hạng của A.

Problem 3.16. Cho A và B là hai ma trận luỹ linh, AB = BA. Chứng minh rằng

- a) A + B cũng là một ma trận lũy linh.
- b) I A khả nghịch.
- c) $\det(I + A) = 1$.
- d) I + A + B khả nghịch.

Problem 3.17. Cho A là ma trận lũy linh và f(t) là một đa thức với hệ số tự do khác 0. Chứng minh rằng ma trận f(A) khả nghịch.

Problem 3.18. (1) Cho $A, B \in M_n(\mathbb{K}), AB = BA, B \neq 0$ và A là ma trận lũy linh. Chứng minh rằng $\operatorname{rank}(AB) \leq \operatorname{rank}(B) - 1$.

(2) Cho $A_1, A_2, \dots, A_n \in M_n(\mathbb{K})$ là các ma trận lũy linh giao hoán với nhau từng đôi một. Chứng minh rằng

$$\prod_{i=1}^{n} A_i = 0.$$

Hint. Do A là ma trận lũy linh nên dạng chéo hóa Jordan của A có dạng

$$\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \end{pmatrix}$$

Do đó tồn tại một cơ sở $\{u_1, u_2 \dots, u_n\}$ của \mathbb{R}^n sao cho $A(u_1) = u_2, A(u_2) = u_3, \dots, A(u_{n-1}) = u_n$ và $A(u_n) = 0$.

Ta sẽ chứng minh nếu $\operatorname{rank}(AB) = \operatorname{rank}(B)$ thì B = 0, tức là $\operatorname{Im}(B) = \{0\}$. Thật vậy, ta có

$$\operatorname{Im}(B) = \operatorname{Im}(AB) = A(\operatorname{Im}(B)) = A(\operatorname{span}\{Bu_1, Bu_2, \dots, Bu_n\}) = \operatorname{span}\{ABu_1, ABu_2, \dots, ABu_n\}$$

= $\operatorname{span}\{Bu_2, Bu_3, \dots, Bu_n\}$

Tương tự

$$\operatorname{Im}(B) = \operatorname{Im}(AB) = A(\operatorname{Im}(B)) = A(\operatorname{span}\{Bu_2, Bu_3, \dots, Bu_n\}) = \operatorname{span}\{ABu_2, ABu_3, \dots, ABu_n\}$$

= $\operatorname{span}\{Bu_3, Bu_4, \dots, Bu_n\}$

Tiếp tục quá trình trên, ta có $\text{Im}(B) = \text{span}\{Bu_n\} = \{0\}$. Vậy rank(AB) < rank(B). \bigcirc Suy ra từ 1).

Problem 3.19. Cho N là ma trận (phức) luỹ linh và r là một số nguyên dương. Chứng minh rằng tồn tại ma trận phức A sao cho $A^r = I + N$.

 \Diamond

4. VECTOR RIÊNG VÀ GIÁ TRỊ RIÊNG

Problem 4.1. Cho M là ma trận vuông thực cấp $3, M^3 = I$ và $M \neq I$.

- a) Tìm các giá trị riêng của M.
- b) Cho một ma trận có tính chất như thế.

Hint. a) Do M là nghiệm của đa thức x^3-1 nên đa thức tối tiểu của M phải là ước của x^3-1 . Mặt khác, M có ít nhất một giá trị riêng thực, nên đa thức tối tiểu có nhân tử (x-1). Vì $M \neq I$ nên đa thức tối tiểu của M không thể là x-1. Do đó đa thức tối tiểu của M là $m(x)=x^3-1$. Vậy M có duy nhất một giá trị riêng thực là 1.

b) Một ma trận có tính chất như vậy là:

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

Problem 4.2. Cho F là một trường, n và m là các số nguyên và A là một ma trận vuông cấp n với các phần tử trong F sao cho $A^m = 0$. Chứng minh rằng: $A^n = 0$.

Hint. Do $A^n=0$ nên đa thức tối tiểu p(x) của A phải là ước của x^m . Suy ra $p(x)=x^k$, với $k\leq n$. Vậy $A^n=0$.

Problem 4.3. Cho V là không gian vector hữu hạn chiều trên trường số hữu tỉ \mathbb{Q} , M là một tự đồng cấu của V, $M(x) \neq x$, $\forall x \in V \setminus 0$. Giả sử $M^p = Id_V$, với p là một số nguyên tố. Chứng minh rằng số chiều của V chia hết cho p-1.

Hint. Do $M^p = I$ nên đa thức tối tiểu p(x) của M phải là ước của

$$x^{p} - 1 = (x - 1)(x^{p-1} + \dots + 1)$$

Do $M(x) \neq x$ với mọi $x \neq 0$ nên 1 không là giá trị riêng, suy ra p(x) là ước của $(x^{p-1} + \ldots + 1)$. Nhưng $(x^{p-1} + \ldots + 1)$ là đa thức khả qui trên trường \mathbb{Q} nên $p(x) = (x^{p-1} + \ldots + 1)$.

Mặt khác, đa thức đặc trưng χ_M và đa thức tối tiểu có chung nhân tử bất khả qui. Do đó $\chi_M(x) = (p(x))^k, \ k \ge 1$. Vậy dim $V = \operatorname{rank} M = \deg \chi_M = k(p-1)$.

Problem 4.4. Chứng minh rằng ma trận

$$\begin{pmatrix} 1 & 1+m & 1\\ 1+m & 1 & 1+m\\ 1 & 1+m & 1 \end{pmatrix} (m>0)$$

có một giá tri riêng dương và một giá tri riêng âm.

Problem 4.5. Cho a, b, c là các phần tử bất kì của trường F, hãy tính đa thức tối tiểu của ma trận

$$\begin{pmatrix} 0 & 0 & a \\ 1 & 0 & b \\ 0 & 1 & c \end{pmatrix}.$$

Hãy tổng quát hóa kết quả trên.

Hint. Đa thức đặt trưng là

$$\chi(t) = t^3 - ct^2 - bt - a.$$

Ta sẽ chứng tỏ đây là đa thức tối tiểu. Thật vậy, chọn $x_0 = (1,0,0)$, khi đó $x_0, Ax_0 = (0,1,0), A^2x_0 = (0,0,1)$ là độc lập tuyến tính. Giả sử A là nghiệm của một đa thức bậc 2, tức là $k_1A^2 + k_2A + k_3I = 0$, suy ra $k_1A^2x_0 + k_2Ax_0 + k_3x_0 = 0$ và ta có $k_1 = k_2 = k_3 = 0$, điều này là vô lý. Vậy đa thức tối tiểu phải có bậc 3, hay $\chi(t) = t^3 - ct^2 - bt - a$.

Problem 4.6. Giả sử A, B là các tự đồng cấu của không gian vector hữu hạn chiều V trên trường F. Đúng hay sai các khẳng định sau:

- (1) Mỗi vector riêng của AB là một vector riêng của BA.
- (2) Mỗi giá riêng của AB là một giá riêng của BA.

Hint. a) Sai, chẳn hạn $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

b) Đúng. Giả sử $\lambda \neq 0$ là giá trị riêng ứng với vector riêng x của AB. Khi đó $BA(Bx) = B(ABx) = \lambda Bx$ nên λ sẽ là giá trị riêng của BA (vì $B(x) \neq 0$). Nếu $\lambda = 0$ là một giá trị riêng của AB thì BA cũng suy biến, do đó BA cũng có giá trị riêng là 0.

Problem 4.7. Cho A, B là các ma trận phức sao cho $A^2 = B^2 = I$. Chứng minh rằng tồn tại một không gian vector con 1-chiều hoặc 2-chiều bất biến đối với A và B.

Problem 4.8. Cho

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

là một ma trận thực với a, b, c, d > 0. Chứng minh rằng A có một vector riêng

$$\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbf{R}^2,$$

với x, y > 0.

Hint. Đa thức đặc trung của A:

$$\chi_A(t) = t^2 - (a+d)t + ad - bc$$

có nghiệm

$$t_{1,2} = \frac{1}{2}(a+d) \pm \frac{1}{2}\sqrt{\Delta} = \frac{1}{2}(a+d \pm \sqrt{(a-d)^2 + 4bc}).$$

Đặt $\lambda = \frac{1}{2}(a+d+\sqrt{(a-d)^2+4bc})$ và v=(x,y) là vector riêng ứng với x>0. Biểu diễn hạng tử đầu tiên của Av ta được:

$$ax + by = \frac{1}{2}(a + d + \sqrt{\Delta})x$$
$$2by = (d - a + \sqrt{\Delta})x.$$

Do b > 0 và $d - a + \sqrt{\Delta} > 0$ nên y > 0.

Problem 4.9. Cho A là ma trận vuông phức cấp n và P(t) là một đa thức bậc m. Chứng minh rằng nếu $\lambda_1, \lambda_2, \ldots, \lambda_n$ là các giá trị riêng của ma trận A thì:

- 1) $|P(A)| = P(\lambda_1).P(\lambda_2)...P(\lambda_n).$
- 2) $P(\lambda_1), P(\lambda_2), \dots, P(\lambda_n)$ là các giá trị riêng của P(A).

Hint. 1) Gọi $\varphi(\lambda) = |A - \lambda E|$ là đa thức đặt trưng của ma trận A. Gọi P(t) là đa thức bậc m và $\alpha_1, \alpha_2, \dots \alpha_m$ là các nghiệm (thực hoặc phức kể cả bội) của P(t). Ta có:

$$\varphi(\lambda) = (-1)^n (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n)$$
$$P(t) = c(t - \alpha_1)(t - \alpha_2)...(t - \alpha_m).$$

Do đó

$$P(A) = c(A - \alpha_1 E)(A - \alpha_2 E)...(A - \alpha_m E),$$

$$|P(A)| = c^n |A - \alpha_1 E|.|A - \alpha_2 E|...|A - \alpha_m E| = c^n \prod_{i=1}^m \varphi(\alpha_i).$$

Mặt khác:

$$\varphi(\alpha_i) = (-1)^n (\alpha_i - \lambda_1)(\alpha_i - \lambda_2)...(\alpha_i - \lambda_n) = \prod_{i=1}^n (\lambda_i - \alpha_i)$$

Vì vậy

$$|P(A)| = c^n \prod_{i=1}^m \varphi(\alpha_i) = c^n \prod_{i=1}^m \prod_{j=1}^n (\lambda_j - \alpha_i)$$
$$= \prod_{j=1}^n c \prod_{i=1}^m (\lambda_j - \alpha_i) = \prod_{j=1}^n P(\lambda_j).$$

2) Đặt $p(t) = P(t) - \lambda$ và áp dụng kết quả trên ta có:

$$|p(A)| = p(\lambda_1).p(\lambda_2)...p(\lambda_n)$$

hay

$$|P(A) - \lambda E| = (-1)^n (\lambda - P(\lambda_1))(\lambda - P(\lambda_2))...(\lambda - P(\lambda_n)).$$

Vậy các giá trị riêng của P(A) là $P(\lambda_1), P(\lambda_2), \dots, P(\lambda_n)$.

Problem 4.10. Cho A và B là các ma trận đối xứng thực thoả mãn AB = BA. Chứng minh rằng A và B có chung 1 vector riêng trong \mathbb{R}^n .

Problem 4.11. Gọi S là tập không rỗng gồm các ma trận phức cấp n giao hoán được với nhau từng đôi một. Chứng minh rằng các phần tử của S có chung một vector riêng

Problem 4.12. Gọi A và B là các ma trận phức cấp n sao cho $AB = BA^2$. Giả sử rằng A không có các giá trị riêng có mođun bằng 1, chứng minh rằng A và B có chung một vectơ riêng.

Problem 4.13. Cho φ là tự đồng cấu tuyến tính chéo hoá được của \mathbb{R}^n . Chứng minh rằng không gian con W của \mathbb{R}^n là bất biến đối với φ khi và chỉ khi trong W chọn được một cơ sở gồm các vector riêng của φ .

Problem 4.14. Cho A và B là hai ma trận chéo hoá được và giao hoán được với nhau. Chứng minh rằng tồn tại một cơ sở của \mathbb{R}^n gồm toàn các vector riêng của A và B.

Problem 4.15. Cho A là ma trận phức cấp n và đa thức tối tiểu p có bậc k.

- 1) Chứng minh rằng nếu λ không là giá trị riêng của A thì tồn tại một đa thức p_{λ} bậc k-1 sao cho $p_{\lambda}(A)=(A-\lambda E)^{-1}$.
- 2) Gọi $\lambda_1, \lambda_2, \dots, \lambda_k$ là các số phức phân biệt và không là giá trị riêng của A. Chứng minh rằng: tồn tại các số phức c_1, c_2, \dots, c_k sao cho

$$\sum_{i=1}^{k} c_k (A - \lambda_k E)^{-1} = E.$$

Hint. Xét đẳng thức $p_{\lambda}(A)(A-\lambda E)=p(A)-p(\lambda)E=p(\lambda)E$ suy ra được đa thức p_{λ} . Với mỗi λ_i tồn tại các p_{λ_i} tương ứng. Xét hệ phương trình theo các ẩn c_i ta thu được hệ Crammer do đó tồn tại các c_i cần tìm.

Problem 4.16. Cho A là ma trận vuông cấp n và B là ma trận vuông cấp m, A và B không có giá trị riêng chung. Chứng minh rằng

- (1) Nếu ma trân X cấp $n \times m$ sao cho AX XB = 0 thì X = 0.
- (2) Phương trình AX XB = C, với C là ma trận cấp $n \times m$ có không quá một nghiệm $X \in M_{n \times m}(\mathbb{K})$.

Hint.

(1) Gọi
$$q(x)$$
 là đa thức tối tiểu của B . Giả sử $q(x) = \prod_{i=1}^k (x - \lambda_i)^{\mu_i}$. Ta có $q(B) = \prod_{i=1}^k (B - \lambda_i I_m)^{\mu_i} = 0$.
Từ giả thiết ta có $(A - \lambda I_n)^k X = X(B - \lambda I_m)^k$, với mọi λ , với mọi $k \in \mathbb{N}$.
Từ đó suy ra $\prod_{i=1}^k (A - \lambda_i I_m)^{\mu_i} X = X \prod_{i=1}^k (B - \lambda_i I_m)^{\mu_i} = 0$. Vì các giá trị riêng λ_i của B không là giá trị riêng của A nên các ma trận $(A - \lambda_i I_n)$ đều khả nghịch. Vậy $X = 0$.

 \Diamond

(2) Suy ra từ câu 1.

Problem 4.17. Cho A, B là các ma trận vuông phức cấp n sao cho $\operatorname{rank}(AB - BA) \leq 1$. Chứng minh rằng tồn tại vector riêng chung của A và B.

Problem 4.18. Cho E, F là các không gian vector hữu hạn chiều trên trường \mathbb{K} và f, g là các ánh xạ tuyến tính từ E vào F. Chứng minh rằng $\operatorname{rank}(f+g) = \operatorname{rank}(f) + \operatorname{rank}(g)$ khi và chỉ khi

$$\begin{cases} \operatorname{Im}(f) \cap \operatorname{Im}(g) = \{0\} \\ \ker f + \ker g = E \end{cases}$$

Hint. Từ giả thiết, ta có dim Im(f+g)) = dim Im(f) + dim Im(g). Mặt khác ta có

 $\dim \operatorname{Im}(f+g) \leq \dim(\operatorname{Im}(f) + \operatorname{Im}(g)) = \dim \operatorname{Im}(f) + \dim \operatorname{Im}(g) - \dim(\operatorname{Im}(f) \cap \operatorname{Im}(g)).$

Suy ra $\dim(\operatorname{Im}(f) \cap \operatorname{Im}(g)) = \{0\}$, hay $\operatorname{Im}(f) \cap \operatorname{Im}(g) = \{0\}$. Vậy $\operatorname{Im}(f+g) = \operatorname{Im}(f) \oplus \operatorname{Im}(g)$. Suy ra $\operatorname{Im}(f) \subset \operatorname{Im}(f+g)$. Do đó với mọi $x \in E$, ta có f(x) = (f+g)(t) = f(t) + g(t). Suy ra $g(t) = f(x-t) \in \operatorname{Im}(f) \cap \operatorname{Im}(g) = \{0\}$ nên $t \in \ker g$ và $x-t \in \ker f$. Vậy $x = (x-t) + t \in \ker f + \ker g$, tức là $\ker f + \ker g = E$.

Ngược lại, từ giả thiết $\ker f + \ker g = E$, ta chứng minh $\operatorname{Im}(f+g) = \operatorname{Im}(f) + \operatorname{Im}(g)$. Từ đó suy ra điều cần chứng minh. Thật vậy, ta có $\operatorname{Im}(f+g) \subset \operatorname{Im}(f) + \operatorname{Im}(g)$. Nếu $f(u) + g(v) \in \operatorname{Im}(f) + \operatorname{Im}(g)$ thì ta có phân tích u = x + y và v = z + t, với $x, z \in \ker f$ và $y, t \in \ker g$. Khi đó $f(u) + g(v) = (f+g)(y+z) \in \operatorname{Im}(f+g)$.

Problem 4.19. Cho A là ma trận vuông cấp n và $\operatorname{rank}(A) = r$. Đặt $S = \{X \in M_{n \times m}(\mathbb{K}) : AX = 0\}$. Tính $\dim(S)$.

Problem 4.20. Giả sử A là ma trận cấp n hạng r. Tìm số nghiệm độc lập tuyến tính của phương trình AX = 0 với X là ma trận cấp n.

Hint. Do A là ma trận cấp n có hạng r nên tồn tại các ma trận khả nghịch P,Q sao cho $A = PI_{n,r}Q$ với $I_{n,r}$ là ma trận có dạng:

$$I_{n,r} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix},$$

(tức là ma trận có r phần tử đầu tiên trên đường chéo chính bằng 1 các phần tử còn lại bằng 0). Ta có nhận xét sau: k ma trận X_1, \ldots, X_k độc lập khi và chỉ khi các ma trận QX_1, \ldots, QX_k độc lập tuyến tính (do Q là ma trận khả nghịch). Phương trình AX=0 tương đương với $I_{n,r}QX=0$, nên từ nhận xét trên để tìm số nghiệm độc lập tuyến tính của phương trình AX=0 ta chỉ cần đi tìm số nghiệm độc lập tuyến tính của phương trình $I_{n,r}Y=0$. Ma trận Y thoả phương trình $I_{n,r}Y=0$ phải có dạng sau:

$$Y = \begin{array}{cc} r & n-r \\ r & 0 & 0 \\ n-r & Y_1 & Y_2 \end{array}$$

Suy ra số nghiệm độc lập tuyến tính của phương trình AX=0 là n(n-r).

Problem 4.21. Cho phương trình AX = B, trong đó A là hai ma trận cho trước cấp n, X là ẩn (X là ma trận cấp n). Chứng minh rằng phương trình trên có nghiệm khi và chỉ khi $\operatorname{rank}(A) = \operatorname{rank}(A|B)$, trong đó (A|B) là ma trận cấp $n \times 2n$ có được bằng cách ghép ma trận B vào bên phải ma trận A.

Problem 4.22. Cho A, B, C, D là các ma trận cấp n, AC = CA. Đặt $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$. Chứng minh rằng $\det(M) = \det(AD - BC)$.

Hint. Giả sử A khả nghịch, ta phân tích: $M = \begin{pmatrix} I & 0 \\ CA^{-1} & I \end{pmatrix} \begin{pmatrix} A & B \\ 0 & Y \end{pmatrix}$, với $Y = D - CA^{-1}B$. Nếu A tuỳ ý thì thay A bởi $A - \lambda I$ và áp dụng lập luận trên.

Problem 4.23. Cho không gian vector E và $E = M \oplus N$, gọi p là phép chiếu lên M theo phương N. Cho u là toán tử tuyến tính của E. Chứng minh rằng:

- a) M là không gian con bất biến của u nếu và chỉ nếu pup = up.
- b) M và N đều bất biến qua u khi và chỉ khi pu = up.

Problem 4.24. Nếu u là toán tử tuyến tính với trên không gian vector hữu hạn chiều và nếu u giao hoán với mọi phép chiếu có hạng 1, thì $u = \lambda I$.

Problem 4.25. Cho u là toán tử tuyến tính trên không gian vector hữu hạn chiều. CMR

- a) Nếu u chéo hoá được và tồn tại $n \in \mathbb{N}$ sao cho $u^{m+1} = u^m$, nếu và chỉ nếu u là phép chiếu.
- b) Nếu u chéo hoá được và $u^m = I$ với một giá trị $m \in \mathbb{N}^*$, thì $u^2 = I$.

Problem 4.26. Cho u là toán tử trên không gian vector phức n-chiều. Ma trận của u đối với một cơ sở nào đó có dạng:

$$M = \begin{pmatrix} 0 & 0 & \dots & 0 & \lambda_1 \\ 0 & 0 & \dots & \lambda_2 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \lambda_{n-1} & \dots & 0 & 0 \\ \lambda_n & 0 & \dots & 0 & 0 \end{pmatrix}$$

CMR, u chéo hoá được khi và chỉ khi với mỗi $k \in \{1, 2, ..., n\}$, nếu $\lambda_k = 0$, thì $\lambda_{n+1-k} = 0$. Tìm đa thức tối tiểu của u^2 .

Problem 4.27. Cho u và v là các toán tử chéo hoá được của không gian vector hữu hạn chiều E. CMR, tồn tại đẳng cấu tuyến tính f của E sao cho $f \circ u = v \circ f$ khi và chi khi u và v có tập các giá trị riêng trùng nhau và các không gian riêng ứng với từng giá trị riêng của u và v có cùng số chiều.

Problem 4.28. Cho u và v là các toán tử chéo hoá được trên không gian vector E n-chiều. CMR, các khẳng định sau là tương đương.

- a) uv = vu.
- b) Tồn tại một cơ sở của E gồm toàn các vector riêng của u và v.
- c) Tồn tại một toán tử w chéo hoá được của E và các đa thức $f,g\in\mathbb{R}[x],h\in\mathbb{R}[x,y]$ sao cho u=f(w),v=g(w),w=h(u,v).

Từ đó suy ra, một toán tử trên E giao hoán được với u và v khi và chỉ khi nó giao hoán được với w.

Problem 4.29. Cho u_1, u_2, \ldots, u_m là các toán tử chéo hoá được của không gian vector E n-chiều. CMR, các khẳng định sau là tương đương:

- a) $u_i u_j = u_j u_i$ với mọi $i, j \in [1, m]$.
- b) Tồn tại một cơ sở của E gồm toàn các vector riêng của u_i .
- c) Tồn tại toán tử w chéo hoá được của E và các đa thức $f_1, f_2, \ldots, f_m \in \mathbb{R}[X], h \in \mathbb{R}[X_1, X_2, \ldots, X_m]$ sao cho $f_i(w) = u_i, 1 \leq i \leq m$ và $h(u_1, u_2, \ldots, u_m) = w$.

Problem 4.30. Cho E là không gian vector hữu hạn chiều và $A \in Aut(E)$. Chứng tỏ các điều kiện sau là tương đương:

- (i) A = I + N, trong đó N là tự đồng cấu luỹ linh.
- (ii) Tồn tại một cơ sở của E sao cho ma trận của tự đồng cấu A đối với cơ sở đó có mọi phần tử nằm trên đường chéo chính bằng 1 còn mọi phần tử nằm ngoài đường chéo chính đều bằng 0
- (iii) Tất cả các nghiệm của đa thức đặc trưng của tự đồng cấu A (trong trường đóng đại số) đều bằng 1.

Problem 4.31. Cho E là không gian vector hữu hạn chiều trên trường phức. $A \in Aut(E)$. Chứng tỏ rằng tự đồng cấu A có thể phân tích dưới dạng tổng:

$$A = S + N$$
,

trong đó S chéo hoá được, N luỹ linh và SN=NS. Chứng tỏ rằng S và N có thể biểu diễn dưới dạng các đa thức theo A.

Hint. Giả sử
$$P_A(t) = \prod_{i=1}^s (t-t_i)^{m_i}$$
, E_i là hạt nhân của

 $(A-t_iI)^{m_i}$. Thế thì E là tổng trực tiếp của các E_i . Xác định S trên E sao cho $Sv = \sum t_i v_i$, đặt N = A - S. Xét đa thức $g(t) = \sum t_i g_i(t)$, trong đó $g_i(t)$ được chọn sao cho thành phần của Av trong E_i bằng $g_i(t)v_i$. Khi đó S = g(A).

Problem 4.32. Chứng minh rằng nếu φ và ψ là các phép biến đổi đối xứng, trong đó φ xác định dương, thì các giá trị riêng của $\varphi \circ \psi$ đều thực và $\varphi \circ \psi$ chéo hoá được.

Hint. Do φ xác định dương nên tồn tại phép biến đổi toạ độ cùng đưa φ và ψ về dạng chéo. Từ đó ta có kết luận.

5. BÀI TẬP BỔ SUNG

Problem 5.1 (Problem in net). I have the following PROBLEM IN LINEAR ALGEBRA, I do not know the answer. Assume that d and n are natural numbers and define $f: \mathbb{R}^d \to \mathbb{R}$ by

$$f(x) = (\prod_{l=1}^{d} \cos^{2}(x^{l})) - 1/n,$$

where $x = (x^1, ..., x^d)$. Hence x^l is the lth component of the vector x. Prove or disprove the following CONJECTURE: For any given $x_1, ..., x_n \in \mathbb{R}^d$ the (n, n)-matrix A given by

$$a_{ij} = f(x_i - x_j)$$

is positive semidefinite, i.e., the eigenvalues are nonnegative. (Comment: I know that this is true for $n \geq 2^d$. So the interesting case would be $n < 2^d$.)

11TH VIETNAMESE MATHEMATICS OLYMPIAD FOR COLLEGE STUDENTS 2003

- **A1.** A is the 4×4 matrix $a_{11} = a_{22} = a_{33} = a_{44} = a$, $a_{12} = a_{21} = a_{34} = a_{43} = b$, $a_{23} = a_{32} = -1$, other entries 0, where a, b are real with a > |b|. Show that the eigenvalues of A are positive reals.
- **A2.** B is the 3×3 matrix with $b_{11} = a, b_{22} = d, b_{33} = q, b_{12} = b^{\frac{\alpha}{\beta}}, b_{13} = c^{\frac{\alpha}{\gamma}}, b_{21} = b^{\frac{\beta}{\alpha}}, b_{23} = p^{\frac{\beta}{\gamma}}, b_{31} = c^{\frac{\gamma}{\alpha}}, b_{32} = p^{\frac{\beta}{\beta}},$ where a, b, c, d, p, q are reals and α, β, γ are non-zero reals. Show that B has real eigenvalues.
- **A3.** D_k is the $k \times k$ matrix with 0s down the main diagonal, 1s for all other entries in the first row and first column, and x for all other entries. Find det $D_2 + \det D_3 + \cdots + \det D_n$.
- **A4.** I_n denotes the $n \times n$ unit matrix (so $I_{11} = I_{22} = \ldots = I_{nn} = 1$, other entries 0). P and Q are $n \times n$ matrices such that PQ = QP and $P^r = Q^s = 0$ for some positive integers r, s. Show that $I_n + (P + Q)$ and $I_n (P + Q)$ are inverses.
- **A5.** A is a square matrix such that $A^{2003} = 0$. Show that $\operatorname{rank}(A) = \operatorname{rank}(A + A^2 + \cdots + A^n)$ for all n.
- **A6.** A is the 4×4 matrix with $a_{11} = 1 + x_1, a_{22} = 1 + x_2, a_{33} = 1 + x_3, a_4 = 1 + x_4$, and all other entries 1, where x_i are the roots of $x^4 x + 1$. Find $\det(A)$.

A7. p(x) is a polynomial of order n > 1 with real coefficients and m real roots. Show that $(x^2 + 1)p(x) + p'(x)$ has at least m real roots.

6. BÀI TẬP ĐAI SỐ ĐAI CƯƠNG

Problem 6.1. Cho R là một vành có đơn vị 1. Giả sử rằng A_1, A_2, \ldots, A_n là các Ideal trái của R sao cho $R = A_1 \bigoplus A_2 \bigoplus \cdots \bigoplus A_n$ (xem như một nhóm cộng). Chứng minh rằng tồn tại các phần tử $u_i \in A_i$ sao cho với mọi $a_i \in A_i$, $a_i u_i \in A_i$ và $a_i u_i = 0$ nếu $i \neq j$.

Problem 6.2. Chứng tỏ rằng nhóm G đẳng cấu với nhóm con (nhóm cộng) các số hữu tỉ nếu và chỉ nếu G đếm được và mọi tập con hữu hạn của G đều chứa trong một nhóm con xyclic vô hạn của G.

7. SOME ADVANCED RESULTS ON LINEAR ALGEBRA

Problem 7.1 (Spectral Resolutions theorem). Cho A là một ma trận vuông cấp n. Khi đó A có phân tích như sau

$$A = \sum_{i=1}^{k} [\lambda_i P_i + N_i],$$

trong đó λ_i là các giá trị riêng của A, P_i là các phép chiếu $(P_i^2 = P_i), N_i$ là lũy linh và thỏa mãn

$$N_i P_i = N_i, P_i P_j = N_i P_j = 0 \ (i \neq j), I = \sum_{i=1}^k P_i.$$

Hint. Gọi p(x) là đa thức tối tiểu của A và $\lambda_1, \lambda_2, \ldots, \lambda_k$ là các giá trị riêng của A. Ta có

$$p(x) = \prod_{i=1}^{k} (x - \lambda_i)^{\mu_i}$$

Gọi $q_1(x), q_2(x), \ldots, q_k(x)$ là các đa thức sao cho

$$\frac{1}{p(x)} = \sum_{i=1}^k \frac{q_i(x)}{(x - \lambda_i)^{\mu_i}}.$$

Đặt $r_l(x) = \prod_{i \neq l} (x - \lambda_i)^{\mu_i}$, ta có

$$1 = \sum_{i=1}^{k} r_l(x) q_l(x).$$

Do đó $I=\sum_{i=1}^k r_l(A)q_l(A)$. Đặt $P_l=\sum_{i=1}^k r_l(A)q_l(A)$ thì $P_iP_j=0$ với $i\neq j$ (Định lý Caley-Hamilton). Kiểm tra $P_i=P_i^2$ nên các P_i là các phép chiếu. Đặt

$$N_i = P_i(A - \lambda_i I) = r_i(A)q_i(A)(A - \lambda_i I),$$

ta có $N_i^{\mu_i} = 0$.

Cuối cùng ta có

$$A = \sum_{i} P_i A = \sum_{i} P_i (\lambda_i I + A - \lambda_i I) = \sum_{i} [\lambda_i P_i + N_i].$$

 \Diamond