1.

a. Lists are vertical

0	1	2	3	4	5	6	7	8	9	10
	20			16	44	94	12		13	
				5	88	39	23			
					11					
	b.									
0	1	2	3	4	5	6	7	8	9	10
11	39	20	5	16	44	88	12	23	13	94

c.

0	1	2	3	4	5	6	7	8	9	10
20		16	11	39	44	88	12	23	13	94

d. Assuming the mod11 is applied last

0	1	2	3	4	5	6	7	8	9	10
11	23	20	16	44	5	94	12	88	13	39

```
2.
put(k,v):
    i <- h(k)
    j <- 0
    while A[i] != NULL or A[i] = SpecialMarker do
        if A[i].key = k then
                 A[i] <- (k,v) //replace the old value with same key
        j <- j+1
        i <- h(k) + j*j
    A[i] <- (k,v) //found a nice empty index
get(k):
    i <- h(k)
    j <- 0
    while A[i] != NULL do
        if (A[i].key = k) then
                 return A[i]
        j <- j+1
        i <- h(k) +j*j
    return NULL //not found
remove(k):
    i <- h(k)
```

```
\begin{split} &j <- 0 \\ &\text{while A[i] != NULL do} \\ &\quad &\text{if (A[i].key = k) then} \\ &\quad &temp <- A[i] \\ &\quad &A[i] <- \text{SpecialMarker //a non-NULL key that will never be used by regular values to} \\ &\quad &\text{represent a removed element} \\ &\quad &\text{return temp} \\ &j <- j + 1 \\ &i <- h(k) + j *j \\ &\text{return NULL //key not found} \end{split}
```

3.

Algorithm matrixDFS(G, v, P)

Input: A graph G, with n vertices labeled 0, ..., n-1, represented as an adjacency matrix, a starting vertex v, and an array C of size n that is initially 0s

Output: An integer array of size n, containing the preorder labelling of the vertices.

- 1. P[0] <- v
- 2. C[v] <- 1
- 3. for i from 0 to n do
- 4. if G[v][i] is not 0 then
- 5. if C[i] = 1 then skip
- 6. Else append DFS(G,i,C) to P
- 7. return P

4.

- 1. Takes 1 unit of time to append
- 2. Takes 1 unit of time
- 3. Loops n times per iteration
- 4. Takes 1 time per loop
- 5. Takes 1 unit of time to check
- 6. Recursive call
- 7. Takes 1 unit of time

This algorithm is $O(n^2)$ in the best and worst case, because it will always conduct n loops over n iterations.

The adjacency list representation has a best/worst case of O(|V| + |E|), where |V| is the number of vertices in the graph and |E| is the number of edges in the graph.

5.

a.

(-
U ()	_

G ₀ –							
	1	2	3	4	5	6	
1	0	1	0	0	1	0	
2	0	0	0	0	0	0	
3	1	0	0	1	0	0	
4	0	0	0	0	1	0	
5	0	0	0	0	0	1	
6	0	0	1	0	0	0	

Rows are from, columns are to.

b.

G_1	=

G_1 –							
	1	2	3	4	5	6	
1	0	1	0	0	1	0	
2	0	0	0	0	0	0	
3	1	1	0	1	1	0	
4	0	0	0	0	1	0	
5	0	0	0	0	0	1	
6	0	0	1	0	0	0	

 G_2 has no changes since 2 has no outgoing edges

G	3	=

• 5						
	1	2	3	4	5	6
1	0	1	0	0	1	0

2	0	0	0	0	0	0
3	1	1	0	1	1	0
4	0	0	0	0	1	0
5	0	0	0	0	0	1
6	1	1	1	1	1	0

 G_4 has no changes since its only incoming edges, (3,4) and now (6,4), already have outgoing edges towards 5.

G₅ =

- 3							
	1	2	3	4	5	6	
1	0	1	0	0	1	1	
2	0	0	0	0	0	0	
3	1	1	0	1	1	1	
4	0	0	0	0	1	1	
5	0	0	0	0	0	1	
6	1	1	1	1	1	0	•

G₆ =

-0							
	1	2	3	4	5	6	
1	0	1	1	1	1	1	
2	0	0	0	0	0	0	
3	1	1	0	1	1	1	
4	1	1	1	0	1	1	
5	1	1	1	1	0	1	
6	1	1	1	1	1	0	