Statistics 5350/7110 Forecasting

Lecture 18 Building ARIMA Models

Professor Robert Stine

Preliminaries

- Questions?
- Assignments
 - Assignment questions
 - Dataset issues
 - Due Thursday
- Quick review
 - Forecasting ARIMA models
 - Forecasts diverge, uncertainty grows
 - RW vs AR(1) when ϕ approaches 1

Today's Topics

- Exponential smoothing
 - Popular "model-free" smoothing method for a time series
 - One-sided moving average with geometric weights
 - Equivalent to IMA(1,1)
- Building ARIMA models
 - Review diagnostic process
 - Interpreting residual ACF
 - Portmanteau test of residuals, Box-Pierce-Ljung test
 - Parameter drift, process changes
- Examples
 - US GDP time series

Exponential Smoothing

Example 5.5

Exponential Smoothing

- Geometric average
 - One-sided smoothing of data, using only values from past
 - Weights fall off geometrically (sound familiar?)
 - Divide by sum of weights so that we have a weighted average of the past values

as if we had the infinite history of the process

$$S_{t} = \frac{X_{t} + \lambda X_{t-1} + \lambda^{2} X_{t-2} + \cdots}{1 + \lambda + \lambda^{2} + \cdots} = \frac{\sum_{h=0}^{\infty} \lambda^{h} X_{t-h}}{\sum_{h=0}^{\infty} \lambda^{h}} = (1 - \lambda) \sum_{h=0}^{\infty} \lambda^{h} X_{t-h} \quad \text{for } 0 < \lambda < 1$$

- Larger the value of λ , the smoother the sequence S_t
- Re-express as a recursion
 - · Write down expression for adjacent values

$$S_{t} = (1 - \lambda) (X_{t} + \lambda X_{t-1} + \lambda^{2} X_{t-2} + \cdots)$$

$$S_{t-1} = (1 - \lambda) (X_{t-1} + \lambda X_{t-2} + \lambda^{2} X_{t-3} + \cdots)$$

Recognize that

$$S_t - \lambda S_{t-1} = (1 - \lambda) X_t \quad \Rightarrow \quad S_t = \lambda S_{t-1} + (1 - \lambda) X_t$$

Recursive spreadsheet formula, provided you start with a reasonable choice for S₀.

resembles "Gauss" derivation of the sum of a geometric series

Examples of Exponential Smoothing

- Exponential smooths of differenced quarterly log GDP
 - Several choices of the smoothing parameter

$$S_t = \lambda S_{t-1} + (1 - \lambda) X_t$$

Which is the best choice for the smoothing parameter?

Example 5.5

Exponential Smoothing as ARIMA

- Forecasts of an ARIMA(0,1,1) process
 - Write process as (change sign on MA term, $\lambda = -\theta$)

$$\nabla X_t = X_t - X_{t-1} = w_t - \lambda w_{t-1}$$

and note that

$$w_t = \nabla X_t + \lambda w_{t-1}$$

· Re-express the forecasts of the process

$$\hat{X}_{t} = X_{t-1} - \lambda w_{t-1}
= X_{t-1} - \lambda (\nabla X_{t-1} + \lambda w_{t-2})
= X_{t-1} - \lambda X_{t-1} + \lambda (X_{t-2} - \lambda w_{t-2})
= (1 - \lambda) X_{t-1} + \lambda \hat{X}_{t-1}$$

which is an exponential smooth if we identify $\widehat{X}_t = S_t$ with a <u>time shift</u> (forecast vs smooth)

- Implications
 - Reminder that forecasts from ARIMA(0,1,1) model are geometrically weighted average
 - · Suggests method for estimating the smoothing parameter

Comparing Smooth vs Forecast

Example

- Slice of nominal GDP data
- Smoothing uses Xt to compute St

$$S_t = \lambda S_{t-1} + (1 - \lambda) X_t$$

• IMA interpretation treats S_t as a forecast of the next value

$$\hat{X}_t = \lambda \, \hat{X}_{t-1} + (1 - \lambda) \, X_{t-1}$$

Estimate

$$\hat{\lambda} = -\hat{\theta} \approx 0.6$$

Coefficients:

Estimate SE t.value p.value ma1 -0.5895 0.1777 -3.3173 0.0012 constant -0.0001 0.0005 -0.1902 0.8495

Model Diagnostics

Illustrated with models for GDP

Diagnostics for the GDP Model

- Familiar time series diagnostics
 - Sequence plot of model residuals

 Standardizing mainly affects initial values (textbook p 107, eq 5.12)
 - ACF of residuals
 Caution: For most models, standard error is less than 1/√n
 - QQ plot of residuals
 Residuals tend to look more Gaussian than actual errors
- Portmanteau test
 - Accumulates squared residual autocorrelations
 - Plot shows p-values of tests with increasing amount of accumulation

Portmanteau Test

- Residual autocorrelation
 - Ideal model errors are white noise, uncorrelated with vaguely normal distribution
 - Estimated residual autocorrelations summarize dependence, but encounter multiplicity issues
 - Avoid looking individually by summing them...
 - Box-Pierce-Ljung statistic (equation 5.13)

$$Q_H = n(n+2) \sum_{h=1}^{H} \frac{\hat{\rho}_e^2(h)}{n-h} \quad \Rightarrow \quad H < < n \quad \Rightarrow \quad Q_H \approx n \sum_{h} \hat{\rho}_e^2(h)$$

· Approximately chi-squared under null hypothesis of white noise

$$Q_H \sim \chi_{H-p-q}^2$$

- Discussion
 - What to use for H?
 Textbook advice: "... not too large." (p 107)
 - Power of the test?

denote residuals as {e_t}

GDP Example: Differences

Textbook §5.2

- Time series clearly non stationary
 - Use time period as in textbook, 1947-2002
 - Inflation adjusted, indexed to 1996 dollar

- Differenced data more stationary
 - Differencing resembles differentiation in calculus
 - Does the trend seem linear?
 - Are the variances stable?
 - Why do you care?

loess smooth

GDP Example: Log Differences

Textbook §5.2

- Switch to log scale
 - Trend is more linear in appearance

- Differenced log data
 - Interpreted as growth rate
 - Stationary? "Reverses" the pattern in differences.
 - More volatile in early period than later!

GDP Example: Model Selection

- Use differences of logs
 - Common because of the interpretation as a growth rate
 - I'll use here to match the textbook presentation
 - Heuristic
- What model to use?
 - ACF and PACF of differences of logs
- Model selection criteria
 - Textbook emphasizes ARIMA(0,1,2)
 - AIC likes an ARIMA(3,1,2)
 - BIC prefers ARIMA(1,1,0) [also in text]
 - None use the ARIMA(0,1,1) specification

BIC	q=0	q=1	q=2
p=0	21.39	6.97	0.48
p=1	0.00	4.17	5.16
p=2	3.00	5.95	8.61

GDP Example: ARIMA(0,1,2)

• Estimated model

- Differences are MA(2)
- Statistically significant parameter estimates
- Non-zero drift term

• Diagnostics

- Standardized residuals
- Sequence plot shows decreasing variation
- QQ plot shows slightly fat-tailed
- Initial ACF very small
- Portmanteau test of ACF shows p-values of test based on cumulative sum of squared residual ACF

Coefficients: Estimate SE t.value p.value ma1 0.2958 0.0653 4.5267 0e+00 ma2 0.2252 0.0625 3.6025 4e-04 constant 0.0085 0.0009 8.9360 0e+00

sigma^2 estimated as 8.635069e-05 on 220

Slightly different from results in text

GDP Example: ARIMA(1,1,0)

• Estimated model

- Differences are AR(1)
- Statistically significant estimates
- Non-zero drift term
- Larger estimated error variance

Diagnostics

- Sequence plot again shows decreasing variation
- QQ plot close to diagonal (close to normal)
- Initial ACF shows more autocorrelation, hence portmanteau test of ACF shows smaller p-values

Coefficients: **Estimate** SE t.value p.value 0.3370 0.0631 5.3416 0.0085 0.0009 8.9192 constant sigma^2 estimated as 8.829692e-05 on 221

sigma^2 estimated as 8.635069e-05

GDP Example: Model Comparison

- How similar are the fits?
 - Scatterplot of residuals from the two models
 - Hover on the X=Y diagonal
 - Thus, similar fits though not identical

• Comparison of MA weights

GDP Example: Forecast Comparison

- Forecasts of next 2 years
 - Remarkably similar forecasts and intervals

```
2003 2003.25 2003.5 2003.75 2004 2004.25 2004.5 2004.75 IMA(1,2) 9.521 9.528 9.537 9.545 9.554 9.562 9.570 9.579 ARI(1,1) 9.521 9.529 9.537 9.545 9.554 9.562 9.571 9.579
```


Modeling Process

ARIMA Modeling Process

- Understand your data
 - Am I modeling the right time series?
 - Are there changes in measurement style, definitions?
 - Has the world changed during this time period? Has the population drifted?
- Plot the time series
 - Are there outliers? Are these evident coding errors or evidence of abrupt substantive changes?
 - Does the data suggest non-linear variation? (e.g. smooth trough and sharp peak)
 - Is there missing data? Why is it missing? Inactivity or a system failure? [not in our data!]
- Transform or difference the data as needed
 - Is the process stationary?
 - Does a log transformation make sense? (percentages)
- Identify the dependence in the time series
 - What are the patterns in the ACF/PACF? Slow or fast decay? Cut-off abruptly?
 - Use model selection criteria as suggestions

Fit the same model in different time segments

ARIMA Modeling Process

Continued

- Specify and fit a model (pick p, d, and q)
 - Is fitted model stationary/invertible?
 - Are the reported estimated parameters statistically significant?

 Does the model contain redundant terms, factors that cancel in $\Phi(B)$ and $\Theta(B)$ (collinearity)
- Check the residuals {e_t}
 - Is the Q_H statistic significant? At what choice of of H?
 - Are the residuals roughly normally distributed in the QQ-plot?
 - Does the sequence plot of residuals look like white noise?
 Do you see changes in general properties of the residuals (e.g. change in mean or variance)
 - Do regression diagnostics reveal problems? (leverage, partial regression, ...)
- Compare forecasts of multiple models as needed
 - How different are the forecasts from "comparable" models?
 - Do you have a baseline for comparison?
- Pick a model, or live with model averaging...

What's next?

- Modeling examples
 - Practice with simulated data (where we know the right answer)
 - Applying these ideas to real data
- Model testing
 - How do we decide when a model is good enough?