

FCC PART 15C TEST REPORT

No. I16Z40969-SRD02

for

TCL Communication Ltd

GSM/WCDMA/LTE mobile phone

Model Name: 40600

FCC ID: 2ACCJB039

with

Hardware Version: 02

Software Version: A3RUCR0

Issued Date: 2016-05-26

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl_terminals@catr.cn, website: www.chinattl.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I16Z40969-SRD02	Rev.0	1st edition	2016-05-26

CONTENTS

1. TEST LABORATORY	4
1.1. TESTING LOCATION	4
1.1. TESTING ENVIRONMENT	4
1.2. PROJECT DATA	
1.3. SIGNATURE	4
2. CLIENT INFORMATION	
2.1. APPLICANT INFORMATION	
2.2. MANUFACTURER INFORMATION	5
3. EQUIPMENT UNDERTEST (EUT) AND ANCILLARY EQUIPM	ENT (AE) 6
3.1. ABOUT EUT	6
3.2. INTERNAL IDENTIFICATION OF EUT	6
3.3. INTERNAL IDENTIFICATION OF AE	6
3.4. NORMAL ACCESSORY SETTING	7
3.5. GENERAL DESCRIPTION	
4. REFERENCE DOCUMENTS	7
4.1. DOCUMENTS SUPPLIED BY APPLICANT	
4.2. REFERENCE DOCUMENTS FOR TESTING	
5. TEST RESULTS	
5.1. SUMMARY OF TEST RESULTS	
5.2. Statements	
6. TEST FACILITIES UTILIZED	9
ANNEX A: DETAILED TEST RESULTS	10
A.1. MEASUREMENT METHOD	10
A.2. PEAK OUTPUT POWER – CONDUCTED	11
A.3. Frequency Band Edges – Conducted	
A.4. CONDUCTED EMISSION	19
A.5. RADIATED EMISSION	44
A.6. TIME OF OCCUPANCY (DWELL TIME)	63
A.7. 20dB Bandwidth	73
A.8. CARRIER FREQUENCY SEPARATION	79
A.9. Number of Hopping Channels	82
A.10. AC POWERLINE CONDUCTED EMISSION	86
ANNEY R. ACCREDITATION CERTIFICATE	01

1. Test Laboratory

1.1. Testing Location

Location 1:CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Location 2:CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road,

Haidian District, Beijing, P. R. China100191

1.2. Testing Environment

Normal Temperature: 15-35°C Extreme Temperature: -10/+55°C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2015-12-30 Testing End Date: 2016-05-25

1.4. Signature

Sun Zhenyu

(Prepared this test report)

Li Zhuofang

(Reviewed this test report)

Lv Songdong

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd

Address /Post: 5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China. 201203

City: Shanghai Postal Code: 201203 Country: China

Contact Person: Gong Zhizhou

Contact Email zhizhou.gong@tcl.com
Telephone: 0086-21-31363544
Fax: 0086-21-61460602

2.2. Manufacturer Information

Company Name: TCL Communication Ltd

Address /Post: 5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China. 201203

City: Shanghai Postal Code: 201203 Country: China

Telephone: 0086-21-31363544 Fax: 0086-21-61460602

3. Equipment UnderTest (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description GSM/WCDMA/LTE mobile phone

Model Name 4060O

FCC ID 2ACCJB039

Frequency Band ISM 2400MHz~2483.5MHz Type of Modulation GFSK/π/4 DQPSK/8DPSK

Number of Channels 79

Power Supply 3.8V DC by Battery

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	/	02	A3RUCR0
EUT2	/	02	A3RUCR0

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description		
AE1	Battery	/	Inbuilt

AE1

Model CAB1780002C1

Manufacturer BYD

Capacitance 1780 mAh

Nominal voltage 3.8V

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. Normal Accessory setting

Fully charged battery should be used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of GSM/WCDMA/LTE mobile phone mobile phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	2015
FCC Part15	15.209 Radiated emission limits, general requirements;	2015
	15.247 Operation within the bands 902–928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANSI C63.10	American National Standard for Testing Unlicensed	June,2013
,	Wireless Devices	34.15,2010

5. Test Results

5.1. Summary of Test Results

Abbreviations used in this clause:

- **P** Pass, The EUT complies with the essential requirements in the standard.
- **F** Fail, The EUT does not comply with the essential requirements in the standard
- NA Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by CTTL

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	Verdict
Peak Output Power - Conducted	15.247 (b)(1)	Р
Frequency Band Edges	15.247 (d)	Р
Conducted Emission	15.247 (d)	Р
Radiated Emission	15.247, 15.205, 15.209	Р
Time of Occupancy (Dwell Time)	15.247 (a) (1)(iii)	Р
20dB Bandwidth	15.247 (a)(1)	NA
Carrier Frequency Separation	15.247 (a)(1)	Р
Number of hopping channels	15.247 (a)(b)(iii)	Р
AC Powerline Conducted Emission	15.107, 15.207	Р

Please refer to ANNEX A for detail.

The measurement is made according to ANSI C63.10.

5.2. Statements

CTTL has evaluated the test cases requested by the applicant /manufacturer as listed in section 5.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

This model is a variant product which model name is 4060A; all the test result has been derived from test report of 4060A.

Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Vector Signal Analyzer	FSQ26	200136	Rohde & Schwarz	1 year	2017-01-06
2	Bluetooth Tester	CBT32	100649	Rohde & Schwarz	1 year	2017-02-09
3	Shielding Room	S81	/	ETS-Lindgren	/	/
4	LISN	ENV216	101200	Rohde & Schwarz	1 year	2016-07-07
5	Test Receiver	ESCI	100344	Rohde & Schwarz	1 year	2017-03-03

Radiated emission test system

ita	Radiated emission test system					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Test Receiver	ESCI 7	100948	Rohde & Schwarz	1 year	2016-07-16
2	Loop antenna	HFH2-Z2	829324/00 7	Rohde & Schwarz	3 year	2017-12-16
3	BiLog Antenna	VULB9163	234	Schwarzbeck	3 year	2016-09-15
4	Dual-Ridge Waveguide Horn Antenna	3115	6914	EMCO	3 year	2017-12-15
5	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	3 year	2017-06-30
6	Vector Signal Analyzer	FSV	101047	Rohde & Schwarz	1 year	2016-07-03
7	Semi-anechoic chamber	/	CT000332 -1074	Frankonia German	/	/
8	Bluetooth Tester	CBT	100153	Rohde & Schwarz	1 year	2016-09-18

ANNEX A: Detailed Test Results

A.1. Measurement Method

A.1.1. Conducted Measurements

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

The measurement is made according to ANSI C63.10

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

In the case of radiated emission, the used settings are as follows,

Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz;

Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 1MHz;

A.2. Peak Output Power - Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.5

a) Use the following spectrum analyzer settings:

Span: 6MHzRBW: 3MHzVBW: 3MHz

Sweep time: 2.5msDetector function: peak

• Trace: max hold

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power.

Measurement Limit:

Standard	Limit (dBm)
FCC Part 15.247(b)(1)	< 30

Measurement Results:

For GFSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted				
Output Power	5.70	5.52	5.58	Р
(dBm)				

Forπ/4 DQPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	6.61	6.45	6.49	Р

For 8DPSK

Channel	Ch 0	Ch 39	Ch 78	Conclusion
Channel	2402 MHz	2441 MHz	2480 MHz	Conclusion
Peak Conducted				
Output Power	6.95	6.77	6.82	Р
(dBm)				

Conclusion: PASS

A.3. Frequency Band Edges – Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.6

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer).

- Span: 10 MHz

Resolution Bandwidth: 100 kHzVideo Bandwidth: 300 kHz

Sweep Time: 5msDetector: PeakTrace: max hold

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel.

Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an absolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	< -20

Measurement Result:

For GFSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.1	-56.00	Р
0	Hopping ON	Fig.2	-56.55	Р
70	Hopping OFF	Fig.3	-63.92	Р
78	Hopping ON	Fig.4	-65.19	Р

Forπ/4 DQPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.5	-55.66	Р
0	Hopping ON	Fig.6	-55.60	Р
70	Hopping OFF	Fig.7	-62.86	Р
78	Hopping ON	Fig.8	-60.36	Р

For 8DPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.9	-56.71	Р
U	Hopping ON	Fig.10	-54.29	Р

78	Hopping OFF	Fig.11	-62.07	Р
70	Hopping ON	Fig.12	-63.21	Р

Conclusion: PASS
Test graphs as below

Date: 4.JAN.2016 15:25:27

Fig.1. Frequency Band Edges: GFSK, Channel 0, Hopping Off

Date: 4.JAN.2016 15:27:47

Fig.2. Frequency Band Edges: GFSK, Channel 0, Hopping On

Date: 4.JAN.2016 15:25:45

Fig.3. Frequency Band Edges: GFSK, Channel 78, Hopping Off

Date: 4.JAN.2016 15:29:50

Fig.4. Frequency Band Edges: GFSK, Channel 78, Hopping On

Fig.5. Frequency Band Edges: π/4 DQPSK, Channel 0, Hopping Off

Date: 4.JAN.2016 15:35:43

Date: 4.JAN.2016 15:38:02

Fig.6. Frequency Band Edges: $\pi/4$ DQPSK, Channel 0, Hopping On

Fig.7. Frequency Band Edges: π/4 DQPSK, Channel 78, Hopping Off

Date: 4.JAN.2016 15:36:00

Fig.8. Frequency Band Edges: $\pi/4$ DQPSK, Channel 78, Hopping On

Date: 4.JAN.2016 16:13:59

Fig.9. Frequency Band Edges: 8DPSK, Channel 0, Hopping Off

Date: 4.JAN.2016 16:16:19

Fig.10. Frequency Band Edges: 8DPSK, Channel 0, Hopping On

Date: 4.JAN.2016 16:14:16

Fig.11. Frequency Band Edges: 8DPSK, Channel 78, Hopping Off

Date: 4.JAN.2016 16:18:21

Fig.12. Frequency Band Edges: 8DPSK, Channel 78, Hopping On

A.4. Conducted Emission

Method of Measurement: See ANSI C63.10-clause 7.8.8

Measurement Procedure - Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW = 300 kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz
1 00 47 CFR1 att 13.247 (d)	bandwidth

Measurement Results:

For GFSK

Channel	Frequency Range	Test Results	Conclusion
Ch 0	Center Frequency	Fig.13	Р

2402 MHz	30 MHz ~ 1 GHz	Fig.14	Р
	1 GHz ~ 3 GHz	Fig.15	Р
	3 GHz ~ 10 GHz	Fig.16	Р
	10 GHz ~ 26 GHz	Fig.17	Р
	Center Frequency	Fig.18	Р
Ch 20	30 MHz ~ 1 GHz	Fig.19	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.20	Р
211111112	3 GHz ~ 10 GHz	Fig.21	Р
	10 GHz ~ 26 GHz	Fig.22	Р
	Center Frequency	Fig.23	Р
Oh 70	30 MHz ~ 1 GHz	Fig.24	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.25	Р
	3 GHz ~ 10 GHz	Fig.26	Р
	10 GHz ~ 26 GHz	Fig.27	Р

For $\pi/4$ DQPSK

Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.28	Р
Ch O	30 MHz ~ 1 GHz	Fig.29	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	Fig.30	Р
2 102 11112	3 GHz ~ 10 GHz	Fig.31	Р
	10 GHz ~ 26 GHz	Fig.32	Р
	Center Frequency	Fig.33	Р
Oh 20	30 MHz ~ 1 GHz	Fig.34	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.35	Р
	3 GHz ~ 10 GHz	Fig.36	Р
	10 GHz ~ 26 GHz	Fig.37	Р
	Center Frequency	Fig.38	Р
Oh 70	30 MHz ~ 1 GHz	Fig.39	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.40	Р
2.00 1/11/2	3 GHz ~ 10 GHz	Fig.41	Р
	10 GHz ~ 26 GHz	Fig.42	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.43	Р
Ch 0	30 MHz ~ 1 GHz	Fig.44	Р
2402 MHz	1 GHz ~ 3 GHz	Fig.45	Р
2402 WII 12	3 GHz ~ 10 GHz	Fig.46	Р
	10 GHz ~ 26 GHz	Fig.47	Р

01.00	Center Frequency	Fig.48	Р
	30 MHz ~ 1 GHz	Fig.49	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.50	Р
	3 GHz ~ 10 GHz	Fig.51	Р
	10 GHz ~ 26 GHz	Fig.52	Р
	Center Frequency	Fig.53	Р
Ch 70	30 MHz ~ 1 GHz	Fig.54	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.55	Р
	3 GHz ~ 10 GHz	Fig.56	Р
	10 GHz ~ 26 GHz	Fig.57	Р

Conclusion: PASS
Test graphs as below

Date: 5.JAN.2016 15:23:53

Fig.13. Conducted spurious emission: GFSK, Channel 0,2402MHz

Date: 5.JAN.2016 15:24:10

Fig.14. Conducted spurious emission: GFSK, Channel 0, 30MHz - 1GHz

Date: 5.JAN.2016 15:24:41

Fig.15. Conducted spurious emission: GFSK, Channel 0, 1GHz - 3GHz

Date: 5.JAN.2016 15:24:58

Fig.16. Conducted spurious emission: GFSK, Channel 0, 3GHz - 10GHz

Date: 5.JAN.2016 15:25:14

Fig.17. Conducted spurious emission: GFSK, Channel 0,10GHz - 26GHz

Date: 5.JAN.2016 15:25:31

Fig.18. Conducted spurious emission: GFSK, Channel 39, 2441MHz

Date: 5.JAN.2016 15:25:48

Fig.19. Conducted spurious emission: GFSK, Channel 39, 30MHz - 1GHz

Fig.20. Conducted spurious emission: GFSK, Channel 39, 1GHz – 3GHz

Fig.21. Conducted spurious emission: GFSK, Channel 39, 3GHz – 10GHz

Date: 5.JAN.2016 15:26:36

Date: 5.JAN.2016 15:26:52

Fig.22. Conducted spurious emission: GFSK, Channel 39, 10GHz – 26GHz

Date: 5.JAN.2016 15:27:09

Fig.23. Conducted spurious emission: GFSK, Channel 78, 2480MHz

Date: 5.JAN.2016 15:27:25

Fig.24. Conducted spurious emission: GFSK, Channel 78, 30MHz - 1GHz

Date: 5.JAN.2016 15:27:57

Fig.25. Conducted spurious emission: GFSK, Channel 78, 1GHz - 3GHz

Fig.26. Conducted spurious emission: GFSK, Channel 78, 3GHz - 10GHz

Date: 5.JAN.2016 15:28:14

Fig.27. Conducted spurious emission: GFSK, Channel 78, 10GHz - 26GHz

Fig.28. Conducted spurious emission: π/4 DQPSK, Channel 0,2402MHz

Fig.29. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 30MHz - 1GHz

Date: 5.JAN.2016 15:33:04

Date: 5.JAN.2016 15:33:36

Fig.30. Conducted spurious emission: π/4 DQPSK, Channel 0, 1GHz - 3GHz

Date: 5.JAN.2016 15:33:52

Fig.31. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 3GHz - 10GHz

Date: 5.JAN.2016 15:34:09

Date: 5.JAN.2016 15:34:26

Fig.32. Conducted spurious emission: π/4 DQPSK, Channel 0,10GHz - 26GHz

Fig.33. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 2441MHz

Date: 5.JAN.2016 15:34:42

Fig.34. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 30MHz - 1GHz

Date: 5.JAN.2016 15:35:14

Fig.35. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 1GHz - 3GHz

Fig.36. Conducted spurious emission: π/4 DQPSK, Channel 39, 3GHz - 10GHz

Date: 5.JAN.2016 15:35:47

Date: 5.JAN.2016 15:35:30

Fig.37. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 10GHz - 26GHz

Fig.38. Conducted spurious emission: π/4 DQPSK, Channel 78, 2480MHz

Fig.39. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 30MHz - 1GHz

Date: 5.JAN.2016 15:36:20

Date: 5.JAN.2016 15:36:52

Fig.40. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 1GHz - 3GHz

Date: 5.JAN.2016 15:37:08

Fig.41. Conducted spurious emission: π/4 DQPSK, Channel 78, 3GHz - 10GHz

Date: 5.JAN.2016 15:37:25

Fig.42. Fig.30 Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 10GHz - 26GHz

Date: 5.JAN.2016 15:41:38

Fig.43. Conducted spurious emission: 8DPSK, Channel 0,2402MHz

Date: 5.JAN.2016 15:41:55

Fig.44. Conducted spurious emission: 8DPSK, Channel 0, 30MHz - 1GHz

Date: 5.JAN.2016 15:42:26

Fig.45. Conducted spurious emission: 8DPSK, Channel 0, 1GHz - 3GHz

Date: 5.JAN.2016 15:42:43

Fig.46. Conducted spurious emission: 8DPSK, Channel 0, 3GHz - 10GHz

Date: 5.JAN.2016 15:43:00

Fig.47. Conducted spurious emission: 8DPSK, Channel 0,10GHz - 26GHz

Fig.48. Conducted spurious emission: 8DPSK, Channel 39, 2441MHz

Fig.49. Conducted spurious emission: 8DPSK, Channel 39, 30MHz - 1GHz

Fig.50. Conducted spurious emission: 8DPSK, Channel 39, 1GHz - 3GHz

Date: 5.JAN.2016 15:44:04

Date: 5.JAN.2016 15:44:21

Fig.51. Conducted spurious emission: 8DPSK, Channel 39, 3GHz - 10GHz

Date: 5.JAN.2016 15:44:37

Fig.52. Conducted spurious emission: 8DPSK, Channel 39, 10GHz - 26GHz

Date: 5.JAN.2016 15:44:54

Fig.53. Conducted spurious emission: 8DPSK, Channel 78, 2480MHz

Date: 5.JAN.2016 15:45:11

Date: 5.JAN.2016 15:45:42

Fig.54. Conducted spurious emission: 8DPSK, Channel 78, 30MHz - 1GHz

Fig.55. Conducted spurious emission: 8DPSK, Channel 78, 1GHz - 3GHz

Fig.56. Conducted spurious emission: 8DPSK, Channel 78, 3GHz - 10GHz

Date: 5.JAN.2016 15:45:59

Fig.57. Conducted spurious emission: 8DPSK, Channel 78, 10GHz - 26GHz

A.5. Radiated Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

The measurement is made according to ANSI C63.10

Limit in restricted band:

Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)
(MHz)		
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	100KHz/300KHz	5
1000-4000	1MHz/1MHz	15
4000-18000	1MHz/1MHz	40
18000-26500	1MHz/1MHz	20

Measurement Results:

Result=P_{Mea}+ARPL

For GFSK

Channel	Frequency Range	Test Results	Conclusion
Ch 0	1 GHz ~ 3 GHz	Fig.58	Р
2402 MHz	3 GHz ~ 18 GHz	Fig.59	Р
	9 kHz ~ 30 MHz	Fig.60	Р
Ch 39	30 MHz ~ 1 GHz	Fig.61	Р
2441 MHz	1 GHz ~ 3 GHz	Fig.62	Р
	3 GHz ~ 18 GHz	Fig.63	Р
Ch 78	1 GHz ~ 3 GHz	Fig.64	Р
2480 MHz	3 GHz ~ 18 GHz	Fig.65	Р
Power	2.38GHz~2.4GHzL	Fig.66	Р

Power	2.45GHz~2.5GHzH	Fig.67	Р
For all channels	18 GHz ~ 26 GHz	Fig.68	Р

Forπ/4 DQPSK

Channel	Frequency Range	Test Results	Conclusion
Ch 0	1 GHz ~ 3 GHz	Fig.69	Р
2402 MHz	3 GHz ~ 18 GHz	Fig.70	Р
Ch 20	30 MHz ~ 1 GHz	Fig.71	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.72	Р
2441 101112	3 GHz ~ 18 GHz	Fig.73	Р
Ch 78	1 GHz ~ 3 GHz	Fig.74	Р
2480 MHz	3 GHz ~ 18 GHz	Fig.75	Р
Power	2.38GHz~2.4GHzL	Fig.76	Р
Power	2.45GHz~2.5GHzH	Fig.77	Р
For all channels	18 GHz ~ 26 GHz	Fig.78	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
Ch 0	1 GHz ~ 3 GHz	Fig.79	Р
2402 MHz	3 GHz ~ 18 GHz	Fig.80	Р
Ch 20	30 MHz ~ 1 GHz	Fig.81	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.82	Р
2771 1011 12	3 GHz ~ 18 GHz	Fig.83	Р
Ch 78	1 GHz ~ 3 GHz	Fig.84	Р
2480 MHz	3 GHz ~ 18 GHz	Fig.85	Р
Power	2.38GHz~2.4GHzL	Fig.86	Р
Power	2.45GHz~2.5GHzH	Fig.87	Р
For all channels	18 GHz ~ 26 GHz	Fig.88	Р

GFSK Ch 0 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	PMea(dBuv/m)	Polarization
2386.715	35.5	-11.1	46.600	Н
17959.000	50.9	27.9	23.000	Н
17927.000	50.8	27.9	22.900	Н
17892.000	50.8	27.1	23.700	Н
17960.000	50.7	27.9	22.800	Н
17932.000	50.7	27.9	22.800	V

GFSK Ch 39 - Average

<u> </u>				
Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
17988.000	50.9	27.9	23.000	V
17973.500	50.9	27.9	23.000	V
17995.500	50.7	27.9	22.800	Н
17970.500	50.7	27.9	22.800	V
17956.500	50.7	27.9	22.800	Н

©Copyright. All rights reserved by CTTL.

17831.500	50.7	27.1	23.600	V
-----------	------	------	--------	---

GFSK Ch 78 - Average

	Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
	2484.915	36.2	-11.2	47.4	П
Ī	17914.000	51.0	27.1	23.9	Н
Ī	17953.000	50.7	27.9	22.8	Н
ſ	17917.000	50.6	27.9	22.7	Н
ſ	17985.000	50.6	27.9	22.7	V
Ī	17935.000	50.6	27.9	22.7	V

π/4 DQPSK Ch 0 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2384.815	35.5	-11.1	46.600	Н
17979.500	50.9	27.9	23.000	Н
17977.500	50.8	27.9	22.900	V
17987.500	50.8	27.9	22.900	Н
17988.000	50.8	27.9	22.900	Н
17973.500	50.8	27.9	22.900	Н

π/4 DQPSK Ch 39 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
17973.500	50.9	27.9	23.000	V
17985.000	50.8	27.9	22.900	Н
17904.500	50.8	27.1	23.700	Н
17981.000	50.7	27.9	22.800	V
17991.500	50.7	27.9	22.800	Н
17959.000	50.7	27.9	22.800	Н

π/4 DQPSK Ch 78 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2491.735	35.9	-11.2	47.1	Н
17952.500	50.8	27.9	22.9	Н
17984.500	50.7	27.9	22.8	Н
17974.000	50.7	27.9	22.8	V
17980.500	50.7	27.9	22.8	Н
17929.500	50.7	27.9	22.8	V

8DPSK Ch 0 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2387.780	35.6	-11.1	46.700	Н
17896.000	50.8	27.1	23.700	Н
17943.500	50.8	27.9	22.900	Н
17988.000	50.8	27.9	22.900	Н
17978.500	50.7	27.9	22.800	V

٧

22.800

8DF	PSK Ch 39 - Averag	е			
	Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
	17968.000	50.7	27.9	22.800	Н
	17976.500	50.7	27.9	22.800	Н
	17996.500	50.7	27.9	22.800	V
	17892.000	50.7	27.1	23.600	Н
	17917.000	50.7	27.9	22.800	V
	17014 000	50.6	27.1	23 500	П

27.9

50.7

8DPSK Ch 78 - Average

17973.000

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2489.750	36.0	-11.2	47.2	Н
17959.000	51.0	27.9	23.1	Н
17857.500	50.8	27.1	23.7	Н
17946.000	50.7	27.9	22.8	V
17971.500	50.7	27.9	22.8	V
17965.000	50.7	27.9	22.8	Н

Conclusion: PASS
Test graphs as below:

RE_BT_1G-3GHz

Fig.58. Radiated emission: GFSK, Channel 0, 1 GHz - 3 GHz

Fig.59. Radiated emission: GFSK, Channel 0, 3 GHz - 18 GHz

RE 9kHz-30MHz

Fig.60. Radiated emission: GFSK, Channel 39, 9 kHz - 30 MHz

Fig.61. Radiated emission: GFSK, Channel 39, 30 MHz - 1 GHz

Fig.62. Radiated emission: GFSK, Channel 39, 1 GHz - 3 GHz

Fig.63. Radiated emission: GFSK, Channel 39, 3 GHz - 18 GHz

Fig.64. Radiated emission: GFSK, Channel 78, 1 GHz - 3 GHz

Fig.65. Radiated emission: GFSK, Channel 78, 3 GHz - 18 GHz

Fig.66. Radiated emission (Power): GFSK, low channel

Fig.67. Radiated emission (Power) GFSK, high channel

Fig.68. Radiated emission: GFSK, 18 GHz - 26 GHz

Fig.69. Radiated emission: $\pi/4$ DQPSK, Channel 0, 1 GHz - 3 GHz

Fig.70. Radiated emission: $\pi/4$ DQPSK, Channel 0, 3 GHz - 18 GHz

Fig.71. Radiated emission: $\pi/4$ DQPSK, Channel 39, 30 MHz - 1 GHz

Fig.72. Radiated emission: $\pi/4$ DQPSK, Channel 39, 1 GHz - 3 GHz

Fig.73. Radiated emission: $\pi/4$ DQPSK, Channel 39, 3 GHz - 18 GHz

Fig.74. Radiated emission: $\pi/4$ DQPSK, Channel 78, 1 GHz - 3 GHz

Fig.75. Radiated emission: $\pi/4$ DQPSK, Channel 78, 3 GHz - 18 GHz

Fig.76. Radiated emission (Power): $\pi/4$ DQPSK, low channel

Fig.77. Radiated emission (Power): π/4 DQPSK, high channel

Fig.78. Radiated emission: $\pi/4$ DQPSK, 18 GHz - 26 GHz

Fig.79. Radiated emission: 8DPSK, Channel 0, 1 GHz - 3 GHz

Fig.80. Radiated emission: 8DPSK, Channel 0, 3 GHz - 18 GHz

©Copyright. All rights reserved by CTTL.

Fig.81. Radiated emission: 8DPSK, Channel 39, 30 MHz - 1 GHz

Fig.82. Radiated emission: 8DPSK, Channel 39, 1 GHz - 3 GHz

Fig.83. Radiated emission: 8DPSK, Channel 39, 3 GHz - 18 GHz

Fig.84. Radiated emission: 8DPSK, Channel 78, 1 GHz - 3 GHz

Fig.85. Radiated emission: 8DPSK, Channel 78, 3 GHz - 18 GHz

Fig.86. Radiated emission (Power): 8DPSK, low channel

Fig.87. Radiated emission (Power): 8DPSK, high channel

Fig.88. Radiated emission: 8DPSK, 18 GHz - 26 GHz

A.6. Time of Occupancy (Dwell Time)

Method of Measurement: See ANSI C63.10-clause 7.8.4

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- Span = zero span, centered on a hopping channel
- RBW = 1 MHz
- VBW ≥ RBW
- Sweep = as necessary to capture the entire dwell time per hopping channel
- Detector function = peak
- Trace = max hold

Measure a pulse time in time domain at middle frequency and then count the hopping number in 31.6s(which equals with 0.4 multiply 79) of middle frequency ,then multiply the pulse time and hopping number and record them.

Measurement Limit:

Standard	Limit (ms)
FCC 47 CFR Part 15.247(a) (1)(iii)	< 400

Measurement Result:

For GFSK

Channel	Packet	Dwell Time (ms)		Conclusion
	DH1	Fig.89	111.57	Р
		Fig.90		
39	DH3	Fig.91	199.65	Р
		Fig.92		
	DH5	Fig.93	238.51	Р
		Fig.94		

For π/4 DQPSK

Channel	Packet	Dwell Time (ms)		Conclusion
	DH1	Fig.95	444 50	Р
		Fig.96	111.53	
39	DH3	Fig.97	186.45	Р
		Fig.98		
	DH5	Fig.99	186.15	Р
		Fig.100		

For 8DPSK

Channel	Packet	Dwell Time (ms)		Conclusion
	DH1	Fig.101	108.40	D
39	DHI	Fig.102		P
	DH3	Fig.103	178.20	Р

		Fig.104		
	DH5	Fig.105	100.45	D
		Fig.106	198.15	Р

Conclusion: PASS
Test graphs as below:

Date: 5.JAN.2016 15:29:53

Fig.89. Time of occupancy (Dwell Time): Channel 39, Packet DH1

Fig.90. Number of Transmissions Measurement: Channel 39, Packet DH1

Date: 5.JAN.2016 15:31:12

Fig.91. Time of occupancy (Dwell Time): Channel 39, Packet DH3

Date: 5.JAN.2016 15:31:01

Fig.92. Number of Transmissions Measurement: Channel 39, Packet DH3

Date: 5.JAN.2016 15:32:29

Fig.93. Time of occupancy (Dwell Time): Channel 39, Packet DH5

Date: 5.JAN.2016 15:32:17

Fig.94. Number of Transmissions Measurement: Channel 39, Packet DH5

Date: 5.JAN.2016 15:38:48

Fig.95. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH1

Date: 5.JAN.2016 15:38:36

Fig.96. Number of Transmissions Measurement: Channel 39, Packet 2-DH1

Date: 5.JAN.2016 15:40:05

Fig.97. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH3

Date: 5.JAN.2016 15:39:53

Fig.98. Number of Transmissions Measurement:Channel 39,Packet 2-DH3

Date: 5.JAN.2016 15:41:19

Fig.99. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH5

Date: 5.JAN.2016 15:41:08

Fig.100. Number of Transmissions Measurement: Channel 39, Packet 2-DH5

Date: 5.JAN.2016 15:47:39

Fig.101. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH1

Date: 5.JAN.2016 15:47:27

Fig.102. Number of Transmissions Measurement: Channel 39, Packet 3-DH1

Date: 5.JAN.2016 15:48:55

Fig.103. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH3

Date: 5.JAN.2016 15:48:43

Fig.104. Number of Transmissions Measurement: Channel 39, Packet 3-DH3

Date: 5.JAN.2016 15:50:09

Fig.105. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH5

Date: 5.JAN.2016 15:49:58

Fig.106. Number of Transmissions Measurement: Channel 39, Packet 3-DH5

A.7. 20dB Bandwidth

Method of Measurement: See ANSI C63.10-clause 6.9.2

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 20kHz.
- 2. Set VBW = 100 kHz.
- 3. Set span to 3MHz
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)(1)	NA *

Use NdB Down function of the SA to measure the 20dB Bandwidth

* Comment: This test case is not required according to the latest FCC 47 CFR Part 15.247. But the test results are necessary for "carrier frequency separation" test case, in Annex A.8.

Measurement Results:

For GFSK

Channel	20dB Bandwidth (kHz)		Conclusion
0	Fig.107 870.19		NA
39	Fig.108	870.19	NA
78	Fig.109	870.19	NA

Forπ/4 DQPSK

Channel	20dB Bandwidth (kHz)		Conclusion
0	Fig.110 1269.23		NA
39	Fig.111	1264.42	NA
78	Fig.112	1269.23	NA

For 8DPSK

Channel	20dB Bandwidth (kHz)		Conclusion
0	Fig.113 1274.04		NA
39	Fig.114	1259.62	NA
78	Fig.115	1288.46	NA

Conclusion: NA

Test graphs as below:

Date: 4.JAN.2016 16:44:21

Fig.107. 20dB Bandwidth: GFSK, Channel 0

Date: 4.JAN.2016 16:44:53

Fig.108. 20dB Bandwidth: GFSK, Channel 39

Date: 4.JAN.2016 16:45:25

Fig.109. 20dB Bandwidth: GFSK, Channel 78

Date: 4.JAN.2016 16:52:10

Fig.110. 20dB Bandwidth: $\pi/4$ DQPSK, Channel 0

Date: 4.JAN.2016 16:52:41

Fig.111. 20dB Bandwidth: π/4 DQPSK, Channel 39

Date: 4.JAN.2016 16:53:13

Fig.112. 20dB Bandwidth: $\pi/4$ DQPSK, Channel 78

Date: 4.JAN.2016 16:59:59

Fig.113. 20dB Bandwidth: 8DPSK, Channel 0

Date: 4.JAN.2016 17:00:30

Fig.114. 20dB Bandwidth: 8DPSK, Channel 39

Date: 4.JAN.2016 17:01:02

Fig.115. 20dB Bandwidth: 8DPSK, Channel 78

A.8. Carrier Frequency Separation

Method of Measurement: See ANSI C63.10-clause 7.8.2

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- Span = 3MHz
- RBW=300kHz
- VBW=1MHz
- Sweep = auto
- Detector function = peak
- Trace = max hold
- Allow the trace to stabilize

Search the peak marks of the middle frequency and adjacent channel, then record the separation between them.

* Comment: This limit should be over 25 kHz or (2/3) * 20dB bandwidth, whichever is greater.

Measurement Limit:

Standard	Limit(kHz)
FCC 47 CFR Part 15.247(a)(1)	over 25 kHz or (2/3) * 20dB bandwidth

Measurement Result:

For GFSK

Channel	Carrier frequency separation (kHz)		Conclusion
39	Fig.116	985.58	Р

For π/4 DQPSK

Channel	Carrier frequency separation (kHz)		Conclusion
39	Fig.117	971.15	Р

For 8DPSK

Channel	Carrier frequency separation (kHz)		Conclusion
39	Fig.118	1125.00	Р

Conclusion: PASS
Test graphs as below:

Date: 4.JAN.2016 16:47:29

Fig.116. Carrier frequency separation measurement: GFSK, Channel 39

Date: 4.JAN.2016 16:55:18

Fig.117. Carrier frequency separation measurement: π/4 DQPSK, Channel 39

Date: 4.JAN.2016 17:03:07

Fig.118. Carrier frequency separation measurement: 8DPSK, Channel 39

A.9. Number of Hopping Channels

Method of Measurement: See ANSI C63.10-clause 7.8.3

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- Span = the frequency band of operation
- RBW = 500kHz
- VBW = 500kHz
- Sweep = auto
- Detector function = peak
- Trace = max hold
- Allow the trace to stabilize

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a) (1)(iii)	At least 15 non-overlapping channels

Measurement Result:

For GFSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.119	70	D
40~78	Fig.120	79	P

Forπ/4 DQPSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.121	70	D
40~78	Fig.122	79	P

For 8DPSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.123	70	D
40~78	Fig.124	79	P

Conclusion: PASS
Test graphs as below:

Date: 4.JAN.2016 16:49:33

Fig.119. Number of hopping frequencies: GFSK, Channel 0 - 39

Date: 4.JAN.2016 16:51:36

Fig.120. Number of hopping frequencies: GFSK, Channel 40 - 78

Date: 4.JAN.2016 16:57:22

Fig.121. Number of hopping frequencies: $\pi/4$ DQPSK, Channel 0 - 39

Date: 4.JAN.2016 16:59:25

Fig.122. Number of hopping frequencies: $\pi/4$ DQPSK, Channel 40 - 78

Date: 4.JAN.2016 17:05:11

Fig.123. Number of hopping frequencies: 8DPSK, Channel 0 - 39

Date: 4.JAN.2016 17:07:13

Fig.124. Number of hopping frequencies: 8DPSK, Channel 40 - 78

A.10. AC Powerline Conducted Emission

Test Condition

Voltage (V)	Frequency (Hz)				
120	60				

Measurement Result and limit:

Bluetooth (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Conclusion
0.15 to 0.5	66 to 56	
0.5 to 5	56	Р
5 to 30	60	

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Bluetooth (Average Limit)

Frequency range (MHz)	Average Limit (dBμV)	Conclusion
0.15 to 0.5	56 to 46	
0.5 to 5	46	Р
5 to 30	50	

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

The measurement is made according to ANSI C63.10

Conclusion: PASS
Test graphs as below:

Traffic:

Final Result 1

								
Frequency	QuasiPeak	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.154500	46.2	2000.0	9.000	On	L1	20.0	19.6	65.8
2.053500	32.2	2000.0	9.000	On	N	19.7	23.8	56.0
3.007500	37.8	2000.0	9.000	On	L1	19.1	18.2	56.0
3.606000	33.6	2000.0	9.000	On	N	19.5	22.4	56.0
17.610000	39.4	2000.0	9.000	On	L1	20.0	20.6	60.0
18.672000	40.5	2000.0	9.000	On	L1	19.9	19.5	60.0

Frequency	CAverage	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.361500	26.7	2000.0	9.000	On	L1	19.8	22.0	48.7
0.672000	23.5	2000.0	9.000	On	L1	19.8	22.5	46.0
1.131000	23.6	2000.0	9.000	On	L1	19.7	22.4	46.0
2.949000	24.6	2000.0	9.000	On	L1	19.0	21.4	46.0
17.443500	27.8	2000.0	9.000	On	L1	20.0	22.2	50.0
18.672000	29.6	2000.0	9.000	On	L1	19.9	20.4	50.0

Idle:

Final Result 1

Frequency	QuasiPeak	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
1.194000	31.9	2000.0	9.000	On	N	19.7	24.1	56.0
1.954500	35.4	2000.0	9.000	On	L1	19.7	20.6	56.0
3.169500	35.3	2000.0	9.000	On	L1	19.3	20.7	56.0
3.682500	34.5	2000.0	9.000	On	N	19.5	21.5	56.0
17.547000	39.8	2000.0	9.000	On	L1	20.0	20.2	60.0
18.096000	40.3	2000.0	9.000	On	L1	19.9	19.7	60.0

Liliai K62	Filial Result 2								
Frequency	CAverage	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit	
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)	
0.667500	25.6	2000.0	9.000	On	L1	19.8	20.4	46.0	
1.131000	24.5	2000.0	9.000	On	L1	19.7	21.5	46.0	
1.999500	23.3	2000.0	9.000	On	L1	19.7	22.7	46.0	
2.836500	24.4	2000.0	9.000	On	L1	18.9	21.6	46.0	
17.578500	28.9	2000.0	9.000	On	L1	20.0	21.1	50.0	
18.370500	29.5	2000.0	9.000	On	L1	19.9	20.5	50.0	

Traffic with CBA0058AG1C2:

Final Result 1

								
Frequency	QuasiPeak	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.402000	38.2	2000.0	9.000	On	L1	19.9	19.6	57.8
0.604500	41.6	2000.0	9.000	On	N	19.8	14.5	56.0
1.243500	41.1	2000.0	9.000	On	L1	19.7	14.9	56.0
1.356000	41.7	2000.0	9.000	On	L1	19.7	14.3	56.0
2.242500	40.2	2000.0	9.000	On	L1	19.3	15.8	56.0
4.236000	44.0	2000.0	9.000	On	L1	19.6	12.0	56.0

Frequency	CAverage	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.262500	35.2	2000.0	9.000	On	N	19.8	16.2	51.4
0.501000	36.5	2000.0	9.000	On	N	19.9	9.5	46.0
1.032000	36.0	2000.0	9.000	On	N	19.7	10.0	46.0
1.455000	35.8	2000.0	9.000	On	N	19.7	10.2	46.0
3.601500	33.3	2000.0	9.000	On	L1	19.5	12.7	46.0
4.159500	37.0	2000.0	9.000	On	L1	19.6	9.0	46.0

Idle with CBA0058AG1C2:

Final Result 1

Frequency	QuasiPeak	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.595500	42.2	2000.0	9.000	On	Ν	19.8	13.8	56.0
1.189500	41.7	2000.0	9.000	On	L1	19.7	14.3	56.0
1.612500	41.7	2000.0	9.000	On	L1	19.7	14.3	56.0
3.574500	42.8	2000.0	9.000	On	L1	19.5	13.2	56.0
3.903000	44.4	2000.0	9.000	On	L1	19.5	11.6	56.0
18.780000	38.5	2000.0	9.000	On	L1	19.9	21.5	60.0

-	IIIai Itoo								
	Frequency	CAverage	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit
	(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
	0.357000	34.4	2000.0	9.000	On	N	19.8	14.4	48.8
	0.703500	36.3	2000.0	9.000	On	N	19.8	9.7	46.0
	1.090500	36.3	2000.0	9.000	On	N	19.7	9.7	46.0
	1.500000	36.0	2000.0	9.000	On	N	19.7	10.0	46.0
	3.597000	34.3	2000.0	9.000	On	L1	19.5	11.7	46.0
	3.822000	36.1	2000.0	9.000	On	L1	19.5	9.9	46.0

ANNEX B: Accreditation Certificate

China National Accreditation Service for Conformity Assessment

LABORATORY ACCREDITATION CERTIFICATE

(No. CNAS L0570)

Telecommunication Technology Labs,

Academy of Telecommunication Research, MIIT

No.52, Huayuan North Road, Haidian District, Beijing, China No.51, Xueyuan Road, Haidian District, Beijing, China

to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing and calibration.

The scope of accreditation is detailed in the attached schedule bearing the same accreditation number as above. The schedule forms an integral part of this certificate.

Date of Issue: 2014-10-29
Date of Expiry: 2017-06-19

Date of Initial Accreditation: 1998-07-03

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment (CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment. CNAS is the signatory to International Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (ILAC MRA) and Asia Pacific Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (APLAC MRA).

No.CNASAL2

0011149

END OF REPORT