北京工业大学 2021——2022学年第一学期 《 模拟电子技术》 考试试卷 B 卷

考试说明:考试时间:95分钟 考试形式: 闭卷

适用专业:自动化、电子科学、电信等电类专业及生物医学工程专业

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,确保整个考试过程均在摄像头可视范围之内且监控不中断,不对试题进行截屏、拍照等,不通过手机、QQ等各种手段向他人寻求答案;若有违反,愿接受相应的处分。

阅读完毕后请将以下文字誊抄在答题纸首页,并做好答题准备。

本人已认真阅读以上要求, 知晓相关规定并遵守执行, 若有违反, 愿接受相应的处分。

承诺人:				学	学号:				班号:	班号:			
注:	本试卷共	_10	大题,	共	_7_	页,	满分	100分。	并将答案写在答题纸上	,			

卷 面 成 绩 汇 总 表 (阅卷教师填写)

如因答案写在其他位置而造成的成绩缺失由考生自己负责。

题号	_	=	三	四	五	六	七	八	九	+	总成绩
满分	20	08	08	12	08	10	12	10	06	06	
得分											

一. 选择题 (共20分)

(02 分)1. 如下电路中 VD 均可视为理想二极管,导通压降为 0.6V,则 *U*o的为()。

A. 6V

B. 9V

C. 0.7V

(02 分)2.如下为晶体三极管的三端对地电位,处于放大状态的是()

A. 3V, 3.7V, 9V B. 6V, 9V, 5V C. 10V, 0.7V, 2V

(04分)3.(1)差分放大电路是为了而 设置的。

A. 提高放大倍数 B. 提高输入电阻 C. 抑制温漂

(2)在长尾式的差分放大电路中, Re 对 有负反馈作用。

A. 差模信号 B. 共模信号 C. 任意信号

 $(04 \ \%)$ 4.在如下图所示两电路中,已知:它们的输出电压的平均值相等,即 U_{Ol} = U_{O2} =4.5V;变压器的内阻及二极管的正向电阻均可忽略不计。则

1)图(a)中变压器次级电压有效值 U₂₁≈

2)图(b)中变压器次级电压有效值 U₂₂≈

(b)

A. 5V

B. 2.03V

C. 10V

D. 4.05V

(04 分)5. 某反相放大电路的对数幅频特性如下图所示。

当信号频率 f=100kHz 时, A_u 的相位角 ϕ 约为______;

当 f=5Hz 时, ϕ 约为 ;

A. -180°

C. -90°

(04 分)6. 根据图示的反馈放大电路,选择正确的答案填空:

- (1)若将电容 C4 开路。则将_____。
- A. 影响静态工作点, 且影响电压放大倍数,
- B. 影响静态工作点, 但不影响电压放大倍数,
- C. 不影响静态工作点, 但影响电压放大倍数,
- D. 不影响静态工作点, 也不影响电压放大倍数。
- (2)若将电容 C₂ 开路。则将。
- A. 对电路的静态工作点和动态性能均有影响,
- B. 对电路的静态工作点和动态性能均无影响,
- C. 影响静态工作点, 但不影响电路的动态性能,
- D. 不影响静态工作点, 但使该支路的负反馈效果消失。

得 分

二. 填空题(共8分)

(04 分)1. 在下图(a) 所示电路中,已知 A 为理想运算放大器,该电路的电压传输特性如图(b) 所示。

稳压管的稳定电压 $\pm U_z$ = _____基准电压 U_{REF} = _____

(04 分)2. 正弦波振荡电路如下图所示。设 A 为理想集成运放, $R_2=3$ k Ω ,又知在电路振荡稳定时流过 R_1 的电流 $I_{R_1}=0.6$ mA(有效值)。

得 分

 $(08\ \mathcal{G})$ 三. 在如图所示稳压电路中,已知稳压管的稳定电压 $U_z=30V$, $U_z=10V$,最小稳定电流 $I_{zmin}=5\mathrm{mA}$,最大稳定电流 $I_{zmax}=30\mathrm{mA}$,及的变化范围 $1\mathrm{k}\Omega$ 至 $2\mathrm{k}\Omega$ 。

- (1) 求解限流电阻 R的取值范围;
- (2) 若 R_L 开路,将会出现什么现象?

 $(12~ \beta)$ 四. 单级阻容耦合放大电路如图所示,已知 $V_{\rm CC}$ =9V, R_b =420k Ω , R_c =3k Ω ,三极管的 β =50, r_{be} =1.5 $K\Omega$, $U_{\rm BEQ}$ =0.6V, $U_{\rm CES}$ =0.4V。

- (1) 画出直流通路,并估算静态工作点 I_{CO} 、 U_{CEQ} ;
 - (2)画出微变等效电路;
 - (3)估算电路的电压放大倍数 A_u ,输入电阻 R_i ,输出电阻 R_o ;
 - (4)电路的最大不失真输出电压幅值为多大?

得 分

(08 分)五. 图示放大电路中,已知 A_1 、 A_2 是理想运算放大器。 试分别写出 u_0 , u_{02} 与输入电压 u_{I1} 、 u_{I2} 的关系式。

(10 分)六. 图示电路中, A_1 、 A_2 、 A_3 都是理想运算放大器。 分别写出 u_{o1} 、 u_{o2} 及 u_o 与输入电压 u_I 的关系式。

得 分

- (12 分)七. 电路如图所示,已知 $R_1 = R_2 = R_3 = R$
- (1)为保证复合管正常工作,请用箭头标出晶体管 VT_1 、 VT_2 的发射极。
 - (2)接入信号源和反馈,组成一个输入电阻高的电压-电流转换电路,试完成各组成部分之间的连线。
 - (3) 该电路中引入了何种负反馈?
 - (4) 设 A 为理想运放,写出 $A_{iuf} = \frac{i_o}{u_s}$ 的表达式,若

 $|A_{\text{iuf}}|=0.5\text{mS}$,则 R 应取多少千欧?

(08 分)八. 如图所示串联型稳压电源

- (1)为使电路正常工作,标出集成运放 A 的同相输入端和反相输入端;
- (2) 求输出 Uo的调节范围。

得 分

(06 分)九. 在如图所示 OCL 电路中,已知三极管的饱和管压降 $|U_{CES}| \approx 4V$,输入电压 u_i 为正弦波,试问:

- 1. 负载 R_L上可能得到的最大输出功率 P_{om}≈?
- 2. 当负载 R_L 上得到的最大输出功率时, 电路的效率 $\eta \approx ?$

得 分

 $(06\ \ \ \ \ \)$ 十. 采用合适的运放和电阻设计电路,实现 u_o =-0.5 u_{i1} +0.5 u_{i2}