Sorting in O(n) time:

Assume all keys are integers in a bounded range 0...m.

Example: Exam scores are typically in range 0...100

Example: ASCII characters convert to range 0...127

```
CountingSort (A[1...n], m) \{ // each A[k] in range 0...m
    allocate new arrays B[1...n] and C[0...m];
    for (j=0; j<=m; j++)
         C[i] = 0;
    for (k=1; k<=n; k++)
         C[A[k]]++
    // now each C[j] = number of copies of key j in array A
    for (j=1; j<=m; j++)
         C[i] += C[j-1];
    // now each C[j] = total number of elements <= j in array A
    for (k=n; k>=1; k--) {
         B[C[A[k]]] = A[k];
         C[A[k]] --;
    for (k=1; k<=n; k++)
         A[k] = B[k];
    }
```

Analysis of counting sort:

- θ (m+n) time, which is θ (n) if m is O(n)
- θ (m+n) space

Example: n=14, m=3

Bin sort (also called Bucket sort):

Each bin or bucket is a queue with duplicate keys from A

Analysis of bin sort:

- Total number of iterations of the while-loop is n
- θ (m+n) time, which is θ (n) if m is O(n)
- θ (m+n) space
- The array B is similar data structure to the hash table with separate chaining

Example: n=14, m=3

Any sorting algorithm is said to be <u>stable</u> if duplicate keys always remain in the same relative order that they were originally (such as 1, 1', 1", 1"', 1"'').

- Counting sort is a stable sorting algorithm.
- Bin sort is a stable sorting algorithm.

Radix sort:

Assume all keys are integers in a bounded range 0...rd-1

- r = radix (or base)
- d = number of digits, each digit is in range 0...r-1

Examples:

- CWID are 8-digit numbers \Rightarrow range $0...10^8-1$
- SSN are 9-digit numbers \Rightarrow range $0...10^9-1$
- Unsigned 32-bit integers \Rightarrow range $0...2^{32}-1$ or $0...16^8-1$
- ASCII character strings of fixed length L (or padded with blanks or null up to maximum length L) \Rightarrow range 0...128^L-1

```
RadixSort (A[1...n], r, d) { // each A[k] in range 0...r^d-1 for (k=1; k<=d; k++) do any stable sort using the k<sup>th</sup> rightmost digit as key; }
```

Analysis of radix sort:

```
If repeat either counting sort or bin sort d times,
then the total time for radix sort is \theta(d(m+n)),
which is \theta(d(r+n)) time because m = r-1.
```

Example: keys in range 0...9999, which is $0...10^4-1$

A:	k=1:	k=2:	k=3:	k=4:
3579	<mark>3578</mark>	3568	3468	2468
<mark>3578</mark>	<mark>3568</mark>	3468	2468	2469
3569	<mark>3478</mark>	2568	3469	2478
<mark>3568</mark>	<mark>3468</mark>	2468	2469	2479
3479	<mark>2578</mark>	3569	3478	2568
<mark>3478</mark>	<mark>2568</mark>	3469	2478	2569
3469	<mark>2478</mark>	2569	3479	2578
<mark>3468</mark>	<mark>2468</mark>	2469	2479	2579
2579	3579	3578	3568	3468
<mark>2578</mark>	3569	3478	2568	3469
2569	3479	2578	3569	3478
<mark>2568</mark>	3469	2478	2569	3479
2479	2579	3579	3578	3568
<mark>2478</mark>	2569	3479	2578	3569
2469	2479	2579	3579	3578
<mark>2468</mark>	2469	2479	2579	3579

Why does radix sort work?

At end of k iterations, A has been sorted by rightmost k digits