

LOVATO ELECTRIC S.P.A.

24020 GORLE (BERGAMO) ITALIA
VIA DON E. MAZZA, 12
TEL. 035 4282111
TELEFAX (Nazionale): 035 4282200
TELEFAX (International): +39 035 4282400
Web www.LovatoElectric.com
E-mail info@LovatoElectric.com

CONTROLLORE
GRUPPI ELETTROGENI

PROTOCOLLO DI COMUNICAZIONE MODBUS®

RGK SERIES

GENERATING SET CONTROLLER

MODBUS® COMMUNICATION PROTOCOL

ПРОТОКОЛ MODBUS®

Устройства управления генераторными установками серия RGK700 поддерживает протоколы связи Modbus RTU®, Modbus ASCII ® и Modbus TCP ® на последовательных портах RS-232 и оптическом интерфейсе.

Устройства управления генераторными установками серии RGK800 поддерживают протоколы связи Modbus RTU®, Modbus ASCII® и Modbus TCP ® на последовательных портах RS-485, оптическом

интерфейсе и модулях расширения:

EXM 10 11 RS 232

EXM 10 12 RS485

EXM 10 20 RS 485 + 2 rele

EXM 10 10 USB

EXM 10 13 Ethernet

Благодаря этой функции можно считывать состояние оборудования и управлять им с помощью стандартного программного обеспечения для контроля, предоставляемого третьими сторонами (SCADA), или с помощью оборудования с интерфейсом Modbus®, такого как PLCs и интеллектуальные терминалы

НАСТРОЙКА ПАРАМЕТРОВ

Чтобы настроить протокол Modbus®, перейдите в меню Настройки и выберите меню M20.

Только для RGK800 можно настроить 3 порта связи (n =1..3).

Меню М20-последовательная связь

PAR	PAR Funzione		Default
P20.n.01	Indirizzo	1255	1
P20.n.02	Velocità RS-232 (baud)	1200 2400 4800 9600 19200 38400 57600 115200	9600 baud
P20.n.03	P20.n.03 Formato dati		8 bit Nessuna
P20.n.04	Stop bit	1 2	1
P20.n.05	Protocollo	Modbus RTU Modbus ASCII Modbus TCP Propr. ASCII	Modbus RTU

Только RGK800:

Для модуля расширения EXP 10 13 (Ethernet) есть еще три параметра.

PAR	Funzione	Range	Default
P20.n.06	Indirizzo IP	000.000.000.000	000.000.000.000
		255.255.255.255	
P20.n.07	Subnet	000.000.000.000	000.000.000.000
	MASK	255.255.255.255	
P20.n.08	TCP-IP	0 - 9999	1001
	Port		

MODBUS® PROTOCOL

The RGK700 series of generating set controller support the communication protocols Modbus RTU®, Modbus ASCII®, ModbusTCP® on the RS-232 and optical interface.

The RGK800 series of generating set controller support the communication protocols

Modbus RTU® , Modbus ASCII® , ModbusTCP® on the RS-485, optical interface and the expansion modules.

- EXM 10 11 RS 232
- EXM 10 12 RS485
- EXM 10 20 RS 485 + 2 relè
- EXM 10 10 USB
- EXM 10 13 Ethernet

Using this function it is possible to read the device status and to control the units through third-party supervision software (SCADA) or through other intelligent devices supporting Modbus®, like PLCs.

PARAMETER SETTING

To configure the Modbus® protocol, enter SETUP MENU and choose the M20 menu:

Only for RGK800 it is possible to configure 3 different serial communication (n=1..3).

MENU M20 - SERIAL COMMUNICATION

PAR	Function	Range	Default
P20.n.01	Address	1255	1
P20.n.02	RS-232 Baud Rate	1200 2400 4800 9600 19200 38400 57600 115200	9600 baud
P20.n.03	Data format	8 bit None 8 bit Odd 8 bit Even 7 bit Odd 7 bit Even	8 bit None
P20.n.04	Stop bit	1 2	1
P20.n.05	Protocol	Modbus RTU Modbus ASCII Modbus TCP Propr. ASCII	Modbus RTU

Only for RGK800:

For expansion module EXP 10 13 (Ethernet), there are other three parameters.

PAR	Function	Range	Default
P20.n.06	IP Address	000.000.000.000	000.000.000.000
		255.255.255.255	
P20.n.07	Subnet	000.000.000.000	000.000.000.000
	MASK	255.255.255.255	
P20.n.08	TCP-IP	0 - 9999	1001
	Port		

ПРОТОКОЛ MODBUS® RTU

При использовании протокола Modbus® RTU структура коммуникационных сообщений выглядит следующим образом:

	T1 T2 T3	Indirizzo (8 bit)	Funzione (8 bit)	Dati (N x 8 bit)	CRC (16 bit)	T1 T2 T3
--	----------------	-----------------------	---------------------	---------------------	-----------------	----------------

• Поле Адрес содержит адрес подчиненного инструмента, которому отправляется сообщение.

Поле функции содержит код функции, который должен выполняться ведомым устройством.

Поле данных содержит данные, отправленные ведомому устройству, или данные, отправленные ведомым устройством в качестве ответа на вопрос.

Для серии RGK максимально допустимая длина поля данных составляет 80 16-битных регистров (160 байты)

- Поле CRC позволяет как ведущему, так и ведомому устройству проверять наличие ошибок передачи.
 Это позволяет в случае помех на линии передачи игнорировать отправленное сообщение, чтобы избежать проблем как со стороны ведущего, так и со стороны ведомого.
- Последовательность Т1 Т2 Т3 соответствует времени, в течение которого данные не должны обмениваться на шине связи, чтобы подключенные инструменты могли распознать конец одного сообщения и начало следующего. Это время должно быть равно 3.5 символов.

RGK измеряет время, прошедшее между приемом одного символа и следующего, и если это время превышает время, необходимое для передачи 3.5 символов, относящихся к установленной скорости передачи, следующий символ считается началом нового сообщения.

функции MODBUS®

Доступные функции

доступные функции.	
03 = Read input register	Позволяет считывать измерения, доступные в RGK
04 = Read input register	Позволяет считывать измерения, доступные в RGK.
06 = Preset single register	Позволяет писать параметры
07 = Read exception	Позволяет читать статус прибора
10 = Preset multiple register	Позволяет писать несколько параметров
17 = Report slave ID	Позволяет читать информацию о приборе

Например, если вы хотите, чтобы прочитать из РГК с адресом 01 значение активной мощности L2 сети, которая находится на месте 36 (24 Hex), сообщение будет отправлено следующим образом:

ı	01	04	00	23	00	02	80	01	l
---	----	----	----	----	----	----	----	----	---

Где:

01= подчиненный адрес

04 = функция чтения аренды

00 23 = адрес аренды уменьшен на единицу, содержит значение активной мощности L2 сети

00 02 = количество журналов для чтения по адресу

80 01 = контрольная сумма CRC

MODBUS® RTU PROTOCOL

If one selects the Modbus® RTU protocol, the communication message has the following structure:

T1	Address	Function	Data	CRC	T1
T2	(8 bit)		(N x 8 bit)		T2
T3	, ,	, ,	,	,	T3

- The Address field holds the serial address of the slave destination device.
- •The Function field holds the code of the function that must be executed by the slave.
- The Data field contains data sent to the slave or data received from the slave in response to a guery.
- For the RGK series, the maximum length for the data field is 80 16-bit registers (160 bytes)
- The CRC field allows the master and slave devices to check the message integrity. If a message has been corrupted by electrical noise or interference, the CRC field allows the devices to recognize the error and thereby to ignore the message.
- The T1 T2 T3 sequence corresponds to a time in which data must not be exchanged on the communication bus to allow the connected devices to recognize the end of one message and the beginning of another. This time must be at least 3.5 times the time required to send one character.

The RGK measures the time that elapses from the reception of one character and the following. If this time exceeds the time necessary to send 3.5 characters at the selected baudrate, then the next character will be considered as the first of a new message.

MODBUS® FUNCTIONS

The available functions are

THE available full clions are	··
03 = Read input register	Allows to read the RGK measures.
04 = Read input register	Allows to read the RGK measures.
06 = Preset single register	Allows writing parameters
07 = Read exception	Allows to read the device status
10 = Preset multiple register	Allows writing several parameters
17 = Report slave ID	Allows to read information about the device.

For instance, to read the value of active power of line L2 of mains , which resides at location 36 (24 Hex), from the RGK with serial address 01, the message to send is the following:

01 0	00	23	00	02	80	01	l
------	----	----	----	----	----	----	---

Whereas:

01= slave address

04 = Modbus® function 'Read input register'

00 23 = Address of the required register (active power of L2 of mains) <u>decreased by one</u>

00 02 = Number of registers to be read beginning from address 22

80 01 = CRC Checksum

Ответ DMG выглядит следующим образом:

01 04 04 00 01 8D C0 CF 44

Где: 01 = адрес RGK (Slave 01) 04 = функция, запрошенная мастером 04 = количество байтов, отправленных RGK

00 01 8d C0 = шестнадцатеричное значение активная мощность L2 сети = 101824 = 1,01824 кBT CF 44 = контрольная сумма CRC

ФУНКЦИЯ 04: СЧИТЫВАНИЕ ВХОДНОГО РЕГИСТРА

Функция 04 позволяет считывать одну или несколько последовательных величин в памяти. Адрес каждой величины указан в таблице 2 на последних страницах данного руководства. Согласно стандарту Modbus®, адрес, указанный в сообщении, должен быть уменьшен на 1 по сравнению с фактическим адресом, указанным в таблице. Если запрошенный адрес не указан в таблице или количество необходимых журналов больше, чем допустимое число RGK возвращает сообщение об ошибке (см. таблицу ошибок).

Главный Запрос:

Подчиненный адрес	08h
Функция	04h
MSB адрес регистра	00h
LSB адрес регистра	0Fh
MSB количество журналов	00h
LSB количество регистров	08h
LSB CRC	C1h
MSB CRC	56h

В этом примере для ведомого номера 8 требуется 8 последовательных регистров, начиная с адреса 10h.

Затем читаются журналы с 10 до 17 часов. Команда всегда заканчивается значением контрольной суммы CRC.

Подчиненный Ответ:

Подчиненный адрес 08h	08h
Функция	04h
Количество байтов	10h
MSB дано 10h	00h
LSB дано 10h	00h
MSB Dato 17h	00h
LSB Dato 17h	00h
LSB CRC	5Eh
MSB CRC	83h

Ответ всегда состоит из адреса ведомого устройства, функции, требуемой ведущим устройством, и данных запрошенных регистров. Ответ всегда заканчивается значением контрольной суммы CRC.

The DMG answer is the following:

-									
I	01	04	04	00	01	FB	00	E9	74

Where:

01 = RGK address (Slave 01)

04 = Function requested by the master

04 = Number of bytes sent by the RGK

00 01 8D C0 = Hex value of the active power L2 of mains =101824 = 1,01824 KW
CF 44 = CRC checksum

FUNCTION 04: READ INPUT REGISTER

The Modbus® function 04 allows to read one or more consecutive registers from the slave memory. The address of each measure is given in the table 2 on the final pages of this manual.

As for Modbus® standard, the address in the query message must be decreased by one from the effective address reported in the table.

If the measure address is not included in the table or the number of requested registers exceeds the acceptable max number, the RGK will return an error code (see error table).

Master query:

Slave address	08h
Function	04h
MSB address	00h
LSB address	0Fh
MSB register number	00h
LSB register number	08h
LSB CRC	C1h
MSB CRC	56h
	-

In the above example, slave 08 is requested for 8 consecutive registers beginning with address 10h. Thus, registers from 10h to 17h will be returned. As usual, the message ends with the CRC checksum.

Slave response:

Slave response.				
Slave address	08h			
Function	04h			
Byte number	10h			
MSB register 10h	00h			
LSB register 10h	00h			
MSB register 17h	00h			
LSB register 17h	00h			
LSB CRC	5Eh			
MSB CRC	83h			

The response is always composed of the slave address, the function code requested by the master and the contents of the requested registers. The answer ends with the CRC.

ФУНКЦИЯ 06: ПРЕДУСТАНОВЛЕННЫЙ ЕДИНЫЙ РЕГИСТР

Эта функция позволяет записывать в регистры. Он может быть использован только с адресными регистрами выше 1000 Нех. Например, можно задать параметры установки. Если заданное значение не входит в минимальное и максимальное значения таблицы, RGK ответит сообщением об ошибке. При запросе параметра на несуществующий адрес будет отвечено сообщение об ошибке. Адрес и диапазон действительны для различные параметры можно найти в таблицах 5, 6 и 7.

Richiesta Master:

The mode and the control of the cont				
Indirizzo slave	08h			
Funzione	06h			
MSB Indirizzo registro	2Fh			
LSB Indirizzo registro	0Fh			
MSB Dato	00h			
LSB Dato	0Ah			
LSB CRC	31h			
MSB CRC	83h			

Подчиненный Ответ:

Ответ-это эхо вопроса, т. е. мастеру отправляется адрес изменяемых данных и новое значение параметра.

ФУНКЦИЯ 07: READ EXCEPTION STATUS

Эта функция позволяет считывать состояние, в котором находится линейный переключатель.

Richiesta Master:

Indirizzo slave	08h
Funzione	07h
LSB CRC	47h
MSB CRC	B2h

В следующей таблице указано значение байта, отправленного RGK в качестве ответа:

BIT	SIGNIFICATO
0	Режим работы OFF / Reset
1	Рабочий режим MAN
2	Режим работы AUT
3	режим работы TEST
4	в ошибке
5	запрос на передачу двигателя
6	
7	глобальная сигнализация активирована

ФУНКЦИЯ 17: REPORT SLAVE ID

Эта функция позволяет определить тип устройства.

Richiesta Master.

Indirizzo slave	08h			
Funzione	11h			
LSB CRC	C6h			
MSB CRC	7Ch			

FUNCTION 06: PRESET SINGLE REGISTER

This function allows to write in the registers.

It can be used only with registers with address higher than 1000 Hex. For instance, it is possible to change setup parameters. If the value is not in the correct range, the RGK will answer with an error message. In the same way, if the parameter address is not recognised, the RGK will send an error response.

The address and the valid range for each parameter are indicated in Tables 5, 6 and 7.

Master message:

Waster message:				
Indirizzo slave	08h			
Funzione	06h			
MSB Indirizzo registro	2Fh			
LSB Indirizzo registro	0Fh			
MSB Dato	00h			
LSB Dato	0Ah			
LSB CRC	31h			
MSB CRC	83h			

Slave response:

The slave response is an echo to the query, that is the slave sends back to the master the address and the new value of the variable.

FUNCTION 07: READ EXCEPTION STATUS

This function allows to read the status of the automatic transfer switch.

Master query:

	Slave address	08h		
	Function	07h		
	LSB CRC	47h		
	MSB CRC	B2h		

The following table gives the meaning of the status byte sent by the RGK as answer:

	BIT	MEANING
	0	Operative mode OFF / Reset
ſ	1	Operative mode MAN
ſ	2	Operative mode AUT
ſ	3	Operative mode TEST
ſ	4	Error on
ſ	5	Engine starting request
ſ	6	
	7	Global alarm on
+ +	3 4 5	Operative mode AUT Operative mode TEST Error on Engine starting request

FUNZIONE 17: REPORT SLAVE ID

This function allows to identify the device type.

Master query.

maotor quory:				
Slave address	08h			
Function	11h			
LSB CRC	C6h			
MSB CRC	7Ch			

Risposta Slave:

Indirizzo slave	08h
Funzione	11h
Contatore bytes	08h
Dato 01 (Tipo) ●	B4h
Dato 02 (Revisione software)	04h
Dato 03 (Revisione hardware)	00h
Dato 04 (Revisione parametri)	01h
Dato 05 (tipoolgia di prodotto) 2	00h
Dato 06 (riservato)	00h
Dato 07 (riservato)	00h
Dato 08 (riservato)	00h
LSB CRC	h
MSB CRC	h

170 - AAh = RGK700 AMF

171 - ABh = RGK700 SA

180 - B4h = RGK800 AMF

181 - B5h = RGK800 SA

0 – 00h= Serie RGK

ОШИБКИ

В случае, если ведомый получает неправильное сообщение, он сообщает об условии ведущему, отвечая сообщением, состоящим из функции, запрошенной в ОR с 80 Нех, за которым следует код ошибки.
В следующей таблице приведены коды ошибок, отправленные от подчиненного к ведущему:

TABELLA 1: CODICI ERRORE

COD	ERRORE				
01	Недопустимая функция				
02	2 Адрес незаконного реестра				
03 Значение параметра вне диапазона					
04	Невозможно выполнить операцию				
06	Занят раб, функция временно				
	недоступна				

Slave response:

Giavo reeponeer	
Slave address	08h
Function	11h
Contatore bytes	08h
Data 01 (Type) ●	B4h
Data 02 (Sw revision)	04h
Data 03 (Hardware revision)	00h
Data 04 (Parameter revision)	01h
Data 05 (type of device) 2	00h
Data 06 (reserved)	00h
Data 07 (reserved)	01h
Data 08 (reserved)	01h
LSB CRC	h
MSB CRC	h

170 - AAh = RGK700 AMF

171 - ABh = RGK700 SA

180 - B4h = RGK800 AMF

181 - B5h = RGK800 SA

0 - 00h= RGK series

ERRORS

In case the slave receives an incorrect message, it answers with a massage composed by the queried function ORed with 80 Hex, followed by an error

In the following table are reported the error codes sent by the slave to the master:

TABLE 1: ERROR CODES

CODE	ERROR
01	Invalid function
02	Invalid address
03	Parameter out of range
04	Function execution impossible
06	Slave busy, function momentarily not available

Функция 16: PRESET MULTIPLE REGISTER эта

функция позволяет изменять несколько параметров последовательно или параметры, состоящие из более чем 2 байт. Адрес и допустимый диапазон для различных параметров можно найти в таблице 8

Richiesta Master:

Niciliesta waster.	
Indirizzo slave	08h
Funzione	10h
MSB Indirizzo registro	20h
LSB Indirizzo registro	01h
MSB Numero registri	00h
LSB Numero registri	02h
MSB Dato	00h
LSB Dato	00h
MSB Dato	00h
LSB Dato	00h
LSB CRC	85h
MSB CRC	3Eh

Risposta Slave:

Maposta Olave.	
Indirizzo slave	08h
Funzione	10h
MSB Indirizzo registro	20h
LSB Indirizzo registro	01h
MSB Numero byte	00h
LSB Numero byte	02h
LSB CRC	1Bh
MSB CRC	51h

FUNZIONE 16: PRESET MULTIPLE REGISTER

This function allows to modify multiple parameters with a single message, or to preset a value longer than one register. The address and the valid range for each parameter are stated in Table 8.

Master message:

maotor moccago.	
Slave address	08h
Function	10h
MSB register address	20h
LSB register address	01h
MSB register number	00h
LSB register number	02h
MSB data	00h
LSB data	00h
MSB data	00h
LSB data	00h
LSB CRC	85h
MSB CRC	3Eh

Slave response:

Ciaro i coponico:	
Slave address	08h
Function	10h
MSB register address	20h
LSB register address	01h
MSB byte number	00h
LSB byte number	02h
LSB CRC	1Bh
MSB CRC	51h

ΠΡΟΤΟΚΟΠ MODBUS® ASCII

Используется протокол Modbus ® ASCII обычно в приложениях, требующих связь через модем.

Доступные функции и адреса одинаковы версии RTU, но переданные символы находятся в ASCII и завершение сообщения не выполняется по времени, но с символами возврата к начальник

Если выбран параметр Р7.х. 05 или Р7. 05 или как протокол Modbus ® ASCII, структура сообщение связи на соответствующем порту связь состоит таким образом:

	Indirizzo 2 chars	Funzione 2 chars			CR LF
--	----------------------	---------------------	--	--	----------

• Поле Адрес содержит адрес подчиненного инструмента, которому отправляется сообщение.

Поле функции содержит код функции, который должен выполняться ведомым устройством.

Поле данных содержит данные, отправленные ведомому устройству, или данные, отправленные ведомым устройством в качестве ответа на вопрос . Максимально допустимая длина - (см. Стр. 3) последовательные журналы.

Поле LRC позволяет как ведущему, так и ведомому устройству проверять наличие ошибок передачи. Это позволяет в случае помех на линии передачи игнорировать отправленное сообщение, чтобы избежать проблем как со стороны ведущего, так и со стороны ведомого.

Сообщение всегда заканчивается управляющими символами CRLF (0D 0A).

Пример

Например, если вы хотите прочитать из DMG с адресом 8 значение эквивалентного фазового тока L3, который находится на месте 12 (0С Hex), сообщение, которое будет отправлено, выглядит следующим образом:

l: 08 04 00 0B 00 02 E7 CRLI
--

Где:

: = ASCII 3AH = разделитель начало сообщения

08 = подчиненный адрес.

04 = функция чтения аренды.

00~0B = адрес аренды уменьшен на единицу, со-держащий значение фазового тока L3

00.02 =количество журналов для чтения, начиная с адреса 04.

E7 = контрольная сумма LRC.

CRLF = ASCII 0Dh 0Ah = разделитель конца сооб-

Ответ DMG выглядит следующим образом:

					_				\sim
	Λo	04	04	\cap	\cap	۸٥	۸⊏	ΩD	CR
	00	04	04	00	00	Ao	AL	ЭD	LF

Где:

: = ASCII 3AH = разделитель начало сообщения

08 = адрес DMG (Slave 08).

04 = функция, требуемая мастером.

04 = количество байтов, отправленных ведомым.

00 00 A8 AE = шестнадцатеричное значение

фазного тока L3 = 4.3182 A.

9B = контрольная сумма LRC.

CRLF = ASCII 0Dh 0Ah = разделитель конца сообщения

MODBUS® ASCII PROTOCOL

The Modbus® ASCII protocol is normally used in application that require to communicate through a couple of modems.

The functions and addresses available are the same as for the RTU version, but the transmitted characters are in ASCII and the message end is delimited by Carriage return/ Line Feed instead of a transmission pause.

If one selects the parameter P7.x.05 or P7.05 as Modbus® ASCII protocol, the communication message on the correspondent communication port has the following structure:

:	Address (2 chars)	Dates (N chars)	`	CR LF
			chars)	

- The Address field holds the serial address of the slave destination device.
- •The Function field holds the code of the function that must be executed by the slave.
- The Data field contains data sent to the slave or data received from the slave in response to a query.
 The maximum allowable length is of (read pag. 3) consecutive registers.
- The LRC field allows the master and slave devices to check the message integrity. If a message has been corrupted by electrical noise or interference, the LRC field allows the devices to recognize the error and thereby ignore the message.
- The message terminates always with CRLF control character (0D 0A).

Example:

For instance, to read the value of the current phase L3, which resides at location 12 (0C Hex) from the slave with serial address 08, the message to send is the following:

	08	04	00	0B	00	02	F7	CRLF	

Whereas:

: = ASCII 3Ah message start delimiter

08 = slave address

04 = Modbus® function 'Read input register'

00 0B = Address of the required register (L3 current phase) decreased by one

00 02 = Number of registers to be read beginning from address 04

E7= LRC Checksum

CRLF = ASCII 0Dh 0Ah = Message end delimiter

The DMG answer is the following:

:	08	04	04	00	00	A8	AE	9B	CR LF
---	----	----	----	----	----	----	----	----	----------

Whereas:

: = ASCII 3Ah message start delimiter

08 = DMG address (Slave 08)

04 = Function requested by the master

04 = Number of bytes sent by the multimeter

00 00 A8 AE = Hex value of the current phase of L3 (= 4.3182 A.)

9B = LRC checksum

CRLF = ASCII 0Dh 0Ah = Message end delimiter

Algoritmo di calcolo del CRC CRC calculation algorithm

Расчет CRC (контрольная сумма для RTU) пример расчета: Кадр = 0207h

Inizializzazione CRC	1111	1111	1111 0000	1111 0010	
Carica primo byte Esegue xor con il primo	1111	1111	1111	1101	
Byte della frame Esegue primo shift a dx	0111	1111	1111	1110	1
Carry=1,carica polinomio	1010	0000	0000	0001	
Esegue xor con il	1101	1111	1111	1111	
polinomio					
Esegue secondo shift dx	0110	1111	1111	1111	1
Carry=1,carica polinomio	1010	0000	0000	0001	
Esegue xor con il	1100	1111	1111	1110	
polinomio	0440	0444			
Esegue terzo shift	0110	0111	1111	1111	0
Esegue quarto shift	0011 1010	0011	1111	1111	1
Carry=1, carica polinomio Esegue xor con il	1001	0000	1111	1110	
Polinomio					
Esegue quinto shift dx	0100	1001	1111	1111	0
Esegue sesto shift dx	0010	0100	1111	1111	1
Carry=1, carica polinomio	1010	0000	0000	0001	
Esegue xor con polinomio	1000	0100	1111	1110	
Esegue settimo shift dx	0100	0010	0111	1111	0
Esegue ottavo shift dx	0010	0001	0011	1111	1
Carry=1, carica polinomio	1010	0000	0000	0001	
Carica secondo byte della frame			0000	0111	
Eseque xor con il	1000	0001	0011	1001	
Secondo byte della frame	1000	0001	0011	1001	
Esegue primo shift dx	0100	0000	1001	1100	1
Carry=1, carica polinomio	1010	0000	0000	0001	•
Esegue xor con il	1110	0000	1001	1101	
polinomio					
Esegue secondo shift dx	0111	0000	0100	1110	1
Carry=1, carica polinomio	1010	0000	0000	0001	
Esegue xor con il	1101	0000	0100	1111	
polinomio	0440	4000	0040	0444	
Esegue terzo shift dx	0110	1000	0010	0111	1
Carry=1, carica polinomio Esegue xor con il	1010 1100	0000 1000	0000 0010	0001 0110	
polinomio	1100	1000	0010	0110	
Esegue quarto shift dx	0110	0100	0001	0011	0
Esegue quinto shift dx	0010	0100	0000	1001	1
Carry=1, carica polinomio	1010	0000	0000	0001	•
Esegue xor con il	1001	0010	0000	1000	
polinomio					
Esegue sesto shift dx	0100	1001	0000	0100	0
Esegue settimo shift dx	0010	0100	1000	0010	0
Esegue ottavo shift dx	0001	0010	0100	0001	0
	001	001			
	00 2h	000 41h			
	411	411	1		

41h Nota: Il byte 41h viene spedito per primo (anche se

e' il LSB), poi viene trasmesso 12h.

CALCOLO LRC (CHECKSUM per ASCII)

Esempio di calcolo:

Indirizzo	01	00000001
Funzione	04	00000100
Start address hi.	00	00000000
Start address lo.	00	00000000
Numero registri	08	00001000
ŭ	Somma	00001101
Comp	lemento a 1	11110010
•	+ 1	00000001
Comp	lemento a 2	11110101

Risultato LRC F5

CRC CALCULATION (CHECKSUM for RTU)

Example of CRC calculation: Frame = 0207h

CRC initialization	1111	1111	1111	1111	
Load the first byte Execute xor with the first Byte of the frame	1111	1111	0000 1111	0010 1101	
Execute 1st right shift	0111	1111	1111	1110	1
Carry=1,load polynomial	1010	0000	0000	0001	•
Execute xor with the	1101	1111	1111	1111	
polynomial					
Execute 2 nd right shift	0110	1111	1111	1111	1
Carry=1,load polynomial	1010	0000	0000	0001	
Execute xor with the	1100	1111	1111	1110	
polynomial					
Execute 3rd right shift	0110	0111	1111	1111	0
Execute 4th right shift	0011	0011	1111	1111	1
Carry=1,load polynomial	1010	0000	0000	0001	
Execute xor with the	1001	0011	1111	1110	
polynomial					
Execute 5th right shift	0100	1001	1111	1111	0
Execute 6th right shift	0010	0100	1111	1111	1
Carry=1,load polynomial	1010	0000	0000	0001	
Execute xor with the	1000	0100	1111	1110	
polynomial					
Execute 7th right shift	0100	0010	0111	1111	0
Execute 8th right shift	0010	0001	0011	1111	1
Carry=1,load polynomial	1010	0000	0000	0001	
Load the second byte			0000	0111	
of the frame	1000	0004	0044	4004	
Execute xor with the	1000	0001	0011	1001	
Second byte of the frame	0400	0000	1001	4400	
Execute 1st right shift	0100	0000	1001	1100	1
Carry=1,load polynomial	1010	0000	0000	0001	
Execute xor with the	1110	0000	1001	1101	
polynomial Execute 2 nd right shift	0111	0000	0100	1110	1
Carry=1,load polynomial	1010	0000	0000	0001	'
Execute xor with the	1101	0000	0100	1111	
polynomial	1101	3000	5100		
Execute 3 rd right shift	0110	1000	0010	0111	1
Carry=1,load polynomial	1010	0000	0000	0001	·
Execute xor with the	1100	1000	0010	0110	
polynomial					
Execute 4th right shift	0110	0100	0001	0011	0
Execute 5th right shift	0010	0100	0000	1001	1
Carry=1,load polynomial	1010	0000	0000	0001	
Execute xor with the	1001	0010	0000	1000	
polynomial					
Execute 6th right shift	0100	1001	0000	0100	0
Execute 7th right shift	0010	0100	1000	0010	0
Execute 8th right shift	0001	0010	0100	0001	0
	001	001			
	100	000			
	12h	41h			
Blocks: The hute 47h ic cor	at tirct(a	won it if	ic tho		

Note: The byte 41h is sent first(even if it is the

LSB), then12h is sent.

LRC CALCULATION (CHECKSUM for ASCII)

Example of LRC calculation:

Address	01		0000001
Function	04		00000100
Start address hi.	00		00000000
Start address lo.	00		00000000
Number of registe	ers 08		00001000
•		Sum	00001101
1.	complement	t	11110010
		+ 1	0000001
2.	complemen	t	11110101

LRC result F5

Таблица 2: ИЗМЕРЕНИЯ ОБЕСПЕЧЕННЫЕ ПРОТОКОЛОМ СОМ. (Можно использовать с функциями 03 и 04) TABLE 2: MEASURES SUPPLIED BY SERIAL COMMUNICATION PROTOCOL (To be used with functions 03 and 04)

Indirizzo Address	WORDS	MISURA	MEASURE	UNITA' UNIT	FORMATO FORMAT	RGK 800 AMF	RGK 800 SA	RGK 700 AMF	RGK 700 SA
		MISURA MEDIA (AV)	AVARAGE MEASURE (AV)						
0002H	2	Фазовое напряжение L1-сеть	L1 Phase Voltage - Mains	V/100	Unsigned long	•		•	
0004H	2	Фазовое напряжение L2-сеть	L2 Phase Voltage - Mains	V/100	Unsigned long	•		•	
0006H	2	Фазовое напряжение L3-сеть	L3 Phase Voltage - Mains	V/100	Unsigned long	•		•	
0008H	2	Фазовое напряжение L1-генератор	L1 Phase Voltage - Generator	V/100	Unsigned long	•	•	•	•
000A	2	Фазовое напряжение L2-генерато	L2 Phase Voltage - Generator	V/100	Unsigned long	•	•	•	•
000CH	2	фзовое напряжение L3-генератор	L3 Phase Voltage - Generator	V/100	Unsigned long	•	•	•	•
000EH	2	Фазовый ток L1	L1 Current	A/10000	Unsigned long	•	•	•	•
0010H	2	Фазовый ток L1	L2 Current	A/10000	Unsigned long	•	•	•	•
0012H	2	Фазовый ток L1	L3 Current	A/10000	Unsigned long	•	•	•	•
0014H	2	Ток нейтрали	Neutral Current	A/10000	Unsigned long	•	•	•	•
0016H	2	Напряжение L1 - L2-Сеть	L1-L2 Voltage - Mains	V/100	Unsigned long	•	<u> </u>	•	
0018H	2	Напряжение L2 - L3-Сеть	L2-L3 Voltage - Mains	V/100	Unsigned long	•		•	
001AH	2	Напряжение L3 - L1-Сеть	L3-L1 Voltage - Mains	V/100	Unsigned long	•		•	
001CH	2	Напряжение L1-L2-Генератор	L1-L2 Voltage - Generator	V/100	Unsigned long	•	•	•	•
001EH	2	Напряжение L2-L3-Генератор	L2-L3 Voltage - Generator	V/100	Unsigned long	•	•	•	•
0020H	2	Напряжение L3-L1-Генератор	L3-L1 Voltage - Generator	V/100	Unsigned long	•	•	•	•
0022H	2	Активная Мощность L1-Сеть	L1 Active Power - Mains	W/100	Signed long	•		•	
0024H	2	Активная Мощность L2-Сеть	L2 Active Power - Mains	W/100					
		,			Signed long	•		•	
0026H	2	Активная Мощность L3-Сеть	L3 Active Power - Mains	W/100	Signed long	•		•	
0028H	2	Активная Мощность L1-Генератор	L1 Active Power - Generator	W/100	Signed long	•	•	•	•
002AH	2	Активная Мощность L2-Генератор	L2 Active Power - Generator	W/100	Signed long	•	•	•	•
002CH	2	Активная Мощность L3-Генератор	L3 Active Power - Generator	W/100	Signed long	•	•	•	•
002EH	2	Реактивная Мощность L1-Сеть	L1 Reactive Power - Mains	Var/100	- 3 3	•		•	
0030H	2	Реактивная Мощность L2-Сеть	L2 Reactive Power - Mains	Var/100	0.9.00	•		•	
0032H	2	Реактивная Мощность L3-Сеть	L3 Reactive Power - Mains	Var/100	Signed long	•		•	
0034H	2	Реактивная Мощность L1-Генератор	L1 Reactive Power - Generator	Var/100	Signed long	•	•	•	•
0036H	2	Реактивная Мощность L2-Генератор	L2 Reactive Power - Generator	Var/100	Signed long	•	•	•	•
0038H	2	Реактивная Мощность L3-Генератор	L3 Reactive Power - Generator	Var/100	Signed long	•	•	•	•
003AH	2	Полная Мощность L1-Сеть	L1 Apparent Power - Mains	VA/100	Unsigned long	•		•	
003CH	2	Полная Мощность L2-Сеть	L2 Apparent Power - Mains	VA/100	Unsigned long	•		•	
003EH	2	Полная Мощность L3-Сеть	L3 Apparent Power - Mains	VA/100	Unsigned long	•		•	
0040H	2	Полная Мощность L1-Генератор	L1 Apparent Power - Generator	VA/100	Unsigned long	•	•	•	•
0042H	2	Полная Мощность L2-Генератор	L2 Apparent Power - Generator	VA/100	Unsigned long	•	•	•	•
0044H	2	Полная Мощность L3-Генератор	L3 Apparent Power - Generator	VA/100	Unsigned long	•	•	•	•
0046H	2	Коэффициент Мощности L1-Сеть	L1 Power Factor - Mains	/10000	Signed long	•		•	
0048H	2	Коэффициент Мощности L2-Сеть	L2 Power Factor - Mains	/10000	Signed long	•		•	
004AH	2	Коэффициент Мощности L3-Сеть	L3 Power Factor - Mains	/10000	Signed long	•		•	
004CH	2	Коэффициент Мощности L1-Генератор	L1 Power Factor - Generator	/10000	Signed long	•	•	•	•
004EH	2	Коэффициент Мощности L2-Генератор	L2 Power Factor - Generator	/10000	Signed long				
004EH 0050H	2	Коэффициент Мощности L2-I енератор	L3 Power Factor - Generator		Signed long Signed long	•	•	•	•
	†			/10000		•	•	•	•
0052H	2	Эквивалентное напряжение LN-сеть	Eqv. Phase Voltage - Mains	V/100	Unsigned long	•		•	
0054H	2	Эквивалентное напряжение LL-сеть	Eqv. Phase-To-Phase Voltage - Mains	V/100	Unsigned long	•		•	
0056H	2	Частота-Сеть	Frequency - Mains	Hz/1000	Unsigned long	•	-	•	
0058H	2	Эквивалентное напряжение LN-генератор	Eqv. Phase Voltage - Generator	V/100	Unsigned long	•	•	•	•
005AH	2	Эквивалентное напряжение LL-генератор	Eqv. Phase-To-Phase Voltage -Generator	V/100	Unsigned long	•	•	•	•
005CH	2	Частота-Генератор	Frequency - Generator	Hz/1000	Unsigned long	•	•	•	•

Indirizzo Address	WORDS	MISURA	MEASURE	UNITA' UNIT	FORMATO FORMAT	RGK 800 AMF	RGK 800 SA	RGK 700 AMF	RGK 700 SA
005EH	2	Эквивалентный коэффициент мощности-сеть	Eqv Power Factor - Mains	/10000	Signed long	•		•	
0060H	2	Пустой	Free						
0062H	2	Пустой	Free						
0064H	2	Эквивалентный коэффициент мощности генератор	Eqv Power Factor - Generator	/10000	Signed long	•	•	•	•
0066H	2	Пустой	Free						
0068H	2	Пустой	Free						
006AH	2	Эквивалентная активная мощность-сеть	Eqv. Active Power - Mains	W/100	Signed long	•		•	
006CH	2	Эквивалент реактивной мощности-сеть	Eqv. Reactive Power - Mains	Var/100	Signed long	•		•	
006EH	2	Эквивалентная кажущаяся мощность-сеть	Egv. Apparent Power - Mains	VA/100	Unsigned long	•		•	
0070H	2	Эквивалентная активная мощность-генератор	Eqv. Active Power - Generator	W/100	Signed long	•	•	•	
0072H	2	Эквивалент реактивной мощности - Генератор	Eqv. Reactive Power - Generator	Var/100	Signed long	•	•	•	•
0074H	2	Эквивалент кажущейся мощности - генератор	Eqv. Apparent Power - Generator	VA/100	Unsigned long	•	•	•	•
0076H	2	Активная Мощность % - Сеть	% Active Power - Mains	%/100	Signed long	•		•	
0078H	2	Реактивная Мощность % - Сеть	% Reactive Power - Mains	%/100	Signed long	•		•	
007AH	2	Кажущаяся Мощность % - Сеть	% Apparent Power - Mains	%/100	Unsigned long	•		•	
007EH	2	Реактивная Мощность % - Генератор	% Reactive Power - Generator	%/100	Signed long	•	•	•	•
0080H	2	Полная Мощность % - Генератор	% Apparent Power - Generator	%/100	Unsigned long	•	•	•	•
0082H	2	Асимметрия Напряжения Фаза-Фаза-Сеть	Phase-Phase Voltage Asymmetriy - Mains	%/100	Unsigned long	•		•	
0084H	2	Асимметрия Напряжения Фаза-Нейтраль-Сеть	Phase-Neural Voltage Asymmetriy- Mains	%/100	Unsigned long	•		•	
0086H	2	Текущая Асимметрия-Сеть	Current Asymmetry - Mains	%/100	Unsigned long	•		•	
0088H	2	Асимметрия напряжения LL-генератор	Phase-Phase Voltage Asymmetriy - Generator	%/100	Unsigned long	•	•	•	•
008AH	2	Асимметрия напряжения LN-генератор	Phase-Neural Voltage Asymmetriy - Generator	%/100	Unsigned long	•	•	•	•
008CH	2	Асимметрия Тока-Генератор	Current Asymmetry - Generator	%/100	Unsigned long	•	•	•	•
008EH	2	Скорость двигателя	Engine speed	Rpm/10	Unsigned long	•	•	•	•
0090H	2	Thd Напряжение L1-2-Генератор	L1-2 Voltage Thd - Generator	%/100	Unsigned long	•	•	•	•
0092H	2	Thd Напряжение L2-3-Генератор	L2-3 Voltage Thd - Generator	%/100	Unsigned long	•	•	•	•
0094H	2	Thd Напряжение L3-1-Генератор	L3-1 Voltage Thd - Generator	%/100	Unsigned long	•	•	•	•
0096H	2	Thd Напряжение L1-Генератор	L1 Voltage Thd - Generator	%/100	Unsigned long	•	•	•	•
0098H	2	Thd Напряжение L2-Генератор	L2 Voltage Thd - Generator	%/100	Unsigned long	•	•	•	•
009AH	2	Thd Напряжение L3-Генератор	L3 Voltage Thd - Generator	%/100	Unsigned long	•	•	•	•
009CH	2	Thd Ток L1-Генератор	L1 Current Thd - Generator	%/100	Unsigned long	•			
009EH	2	Thd Ток L1-Генератор	L2 Current Thd - Generator	%/100		•	•	•	•
00A0H	2	Thd Ток L1-Генерато	L3 Current Thd - Generator	%/100	Unsigned long	•	•	•	•
00A2H	2	Thd Ток N-Генератор	N Current Thd - Generator	%/100	Unsigned long	•	•	•	•
00A4H	2	CosPhi L1-Генератор	L1 CosPhi - Generator	/10000	Signed long				
00A6H	2	CosPhi L2-Генератор	L2 CosPhi - Generator	/10000	Signed long	•	•	•	•
00A011	2	CosPhi L3-Генератор	L3 CosPhi - Generator	/10000	Signed long	•	•	•	•
00A6H	2	Фазовый ток L1 - отображается -	L1 Current - view -	A/10000	Unsigned long	•	•	•	•
00AAH 00ACH	2	Фазовый ток L2 - отображается -	L2 Current – view -	A/10000	Unsigned long	•	•	•	•
00ACH	2	Фазовый ток L2 - отображается -	L3 Current – view -	A/10000 A/10000	Unsigned long	•	•	•	•
	†	'	Neutral Current - view -		ŭ	•	•	•	•
00B0H 00B2H	2	Ток нейтрали - отображается - Скорость двигателя W или Pick-UP		A/10000 Pnm/10	Unsigned long	•	•	•	•
1102H	2	Время, отсутствующее при переключении с	Engine speed W or Pick-UP Time remaining before switchover (GEN1-GEN2)	Rpm/10 h	Unsigned long Unsigned long	•	•	•	•
1100H	2	GEN2 a GEN1 Время, отсутствующее при переключении с GEN1 a GEN2	Time remaining before switchover (GEN2-GEN1)	h	Unsigned long	•	•	•	•
1104H	2	Время, отсутствующее при переключении с GEN1 a GEN2	Time remaining before switchover (GEN1-GEN2)	min	Unsigned long	•	•	•	•
1106H	2	Время, отсутствующее при переключении с GEN2 a GEN1	Time remaining before switchover (GEN2-GEN1)	min	Unsigned long	•	•	•	•

Indirizzo Address	WORDS	MISURA	MEASURE	UNITA' UNIT	FORMATO FORMAT	RGK 800 AMF	RGK 800 SA	RGK 700 AMF	RGK 700 SA
		MISURA ISTANTANEA (IN)	ISTANTANEOUS MEASURE (IN)						
0200H	2	Фазовое напряжение L1-сеть	L1 Phase Voltage - Mains	V/100	Unsigned long	•		•	
0202H	2	Фазовое напряжение L2-сеть	L2 Phase Voltage - Mains	V/100	Unsigned long	•		•	
02B0H	2	Скорость двигателя W или Pick-UP	Engine speed W or Pick-UP	Rpm/10	Unsigned long	•	•	•	•
		MISURA MASSIMA (HI)	MAXIMUM MEASURE (HI)						
0400H	2	Фазовое напряжение L1-сеть	L1 Phase Voltage - Mains	V/100	Unsigned long	•		•	
0402H	2	Фазовое напряжение L2-сеть	L2 Phase Voltage - Mains	V/100	Unsigned long	•		•	
04B0H	2	Скорость двигателя W или Pick-UP	Engine speed W or Pick-UP	Rpm/10	Unsigned long	•	•	•	•
		MISURA MINIMA (LO)	MINIMUM MEASURE (LO)						
0600H	2	Фазовое напряжение L1-сеть	L1 Phase Voltage - Mains	V/100	Unsigned long	•		•	
0602H	2	Фазовое напряжение L2-сеть	L2 Phase Voltage - Mains	V/100	Unsigned long	•		•	
			_						
06B0H	2	Скорость двигателя W или Pick-UP	Engine speed W or Pick-UP	Rpm/10	Unsigned long	•			•

Indirizzo Address	WORDS	MISURA	MEASURE	UNITA' UNIT	FORMATO FORMAT	RGK 800 AMF	RGK 800 SA	RGK 700 AMF	RGK 700 SA
1D00H	2	Счетчик CNT 1	Counter CNT 1	UM1	long	•	•	•	•
1D02H	2	Счетчик CNT 2	Counter CNT 2	UM2	long	•	•	•	•
1D04H	2	Счетчик CNT 3	Counter CNT 3	UM3	long	•	•	•	•
1D06H	2	Счетчик CNT 4	Counter CNT 4	UM4	long	•	•	•	•
1D08H	2	Счетчик CNT 5	Counter CNT 5	UM5	long	•	•		
1D0AH	2	Счетчик CNT 6	Counter CNT 6	UM6	long	•	•		
1D0CH	2	Счетчик CNT 7	Counter CNT 7	UM1	long	•	•		
1D0EH	2	Счетчик CNT 8	Counter CNT 8	UM2	long	•	•		
0F50H	2	Аналоговый вход 1	Analog input 1	UM1	long	•	•		
0F52H	2	Аналоговый вход 2	Analog input 2	UM2	long	•	•		
0F54H	2	Аналоговый вход 3	Analog input 3	UM3	long	•	•		
0F56H	2	Аналоговый вход 4	Analog input 4	UM4	long	•	•		
0F58H	2	Аналоговый вход 5	Analog input 5	UM5	long	•	•		
0F5AH	2	Аналоговый вход 6	Analog input 6	UM6	long	•	•		
0F60H	2	Аналоговый выход 1	Analog output 1	UM1	long	•	•		
0F62H	2	Аналоговый выход 2	Analog output 2	UM2	long	•	•		
0F64H	2	Аналоговый выход 3	Analog output 3	UM3	long	•	•		
0F66H	2	Аналоговый выход 4	Analog output 4	UM4	long	•	•		
0F68H	2	Аналоговый выход 5	Analog output 5	UM5	long	•	•		
0F6AH	2	Аналоговый выход 6	Analog output 6	UM6	long				

Indirizzo Address	WORDS	MISURA	MEASURE	UNITA' UNIT	FORMATO FORMAT	RGK 800 AMF	RGK 800 SA	RGK 700 AMF	RGK 700 SA
0F80H	2	Часы работы двигателя	Engine working hours	h	Unsigned long	•	•	•	•
0F82H	2	Время работы двигателя	Engine working time	s	Unsigned long	•	•	•	•
0F84H	2	Частичное рабочее время	Engine partial running hours	h	Unsigned long	•	•	•	•
0F86H	2	Частичное рабочее время	Engine partial running time	s	Unsigned long	•	•	•	•
0F88H	2	Часы обслуживания 1	Maintenance time 1	h	Unsigned long	•	•	•	•
0F8AH	2	Часы обслуживания 2	Maintenance time 2	h	Unsigned long	•	•	•	•
0F8CH	2	Часы обслуживания 3	Maintenance time 3	h	Unsigned long	•	•	•	•
0F8EH	2	Аренда часов	Rent time	h	Unsigned long	•	•	•	•
0F90H	2	Количество правильных запусков	Good cranks	n	Unsigned long	•	•	•	•
0F92H	2	Общее количество запусков	Total cranks	n	Unsigned long	•	•	•	•
0F94H	2	Процент количество запусков правильные	Rate good crancks	%/10	Unsigned long	•	•	•	•
0F96H	2	Общее количество закрытий дистанционного управления генератор	Generator contactor closing counter	n	Unsigned long	•	•	•	•
0F98H	2	Репликация функции modbus 17	Modbus Function 17 clone		Unsigned long	•	•	•	•
0FA0H	2	Температура	Temperature	°C/°F	Unsigned long	•	•	•	•
0FA2H	2	Давление	Pressure	Bar /10	Unsigned long	•	•	•	•
0FA4H	2	Топливо	Fuel	%	Unsigned long	•	•	•	•
0FA6H	2	Вспомогательный датчик	Auxyliary sensor		Unsigned long	•	•	•	•
0FA8H	2	Напряжение Батареи	Battery voltage	V/100	Unsigned long	•	•	•	•
0FAAH	2	Напряжение ingress D+	D+ input voltage	V/100	Unsigned long	•	•	•	•
0FACH	2	Входное напряжение переменного тока	AC input voltage	V/100	Unsigned long	•	•	•	•
1A20H	2	Общая импортированная активная энергия-сеть	Total imp. Active Energy - Mains	kWh / 10	Unsigned long	•	•		
1A22H	2	Общая экспортируемая активная энергия-сеть	Total exported Active Energy - Mains	kWh / 10	Unsigned long	•	•		
1A24H	2	Общая импортированная реактивная энергия-сеть	Total imp. Reactive Energy - Mains	kvarh / 10	Unsigned long	•	•		
1A26H	2	Общая экспортируемая реактивная энергия-сеть	Total exp. Reactive Energy - Mains	kvarh / 10	Unsigned long	•	•		
1A28H	2	Полная кажущаяся энергия-сеть	Total Apparent Energy - Mains	kVAh / 10	Unsigned long				
1A2AH	2	Полная импортированная активная энергия- генератор	Total imp. Active Energy - Generator	kWh / 10	Unsigned long	•	•	•	•
1A2CH	2	Полная экспортированная активная энергия генератор	Total exported Active Energy - Generator	kWh / 10	Unsigned long	•	•	•	•
1A2EH	2	Полная импортированная реактивная энергия - генератор	Total imp. Reactive Energy - Generator	kvarh / 10	Unsigned long	•	•	•	•
1A30H	2	Полная экспортированная реактивная энергия - генератор	Total exp. Reactive Energy - Generator	kvarh /	Unsigned long	•	•	•	•
1A32H	2	Полная кажущаяся энергия-генератор	Total Apparent Energy - Generator	kVAh / 10	Unsigned long	•	•	•	•
1B20H	2	Частично импортированная активная энергия-сеть	Partial imp. Active Energy - Mains	kWh / 10	Unsigned long	•	•		
1B22H	2	Частичная экспортируемая активная энергия-сеть	Partial exported Active Energy - Mains	kWh / 10	Unsigned long	•	•		
1B24H	2	Частичная импортированная реактивная энергия- сеть	Partial imp. Reactive Energy - Mains	kvarh / 10	Unsigned long	•	•		
1B26H	2	Частичная экспортируемая реактивная энергия сеть	Partial exp. Reactive Energy - Mains	kvarh /	Unsigned long	•	•		
1B28H	2	Частичная кажущаяся энергия-сеть	Partial Apparent Energy - Mains	kVAh / 10	Unsigned long				
1B2AH	2	Частично импортированная активная энергия - генератор	Partial imp. Active Energy - Generator	kWh / 10	Unsigned long	•	•	•	•
1B2CH	2	Частично экспортированная активная энергия - Генератор	Partial exported Active Energy - Generator	kWh / 10	Unsigned long	•	•	•	•
1B2EH	2	Частичная импортированная реактивная энергия - генератор	Partial imp. Reactive Energy - Generator	kvarh / 10	Unsigned long	•	•	•	•
1B30H	2	Частичная экспортируемая реактивная энергия - генератор	Partial exp. Reactive Energy - Generator	kvarh / 10	Unsigned long	•	•	•	•
1B32H	2	Частичная кажущаяся энергия - генератор	Partial Apparent Energy - Generator	kVAh / 10	Unsigned long	•	•	•	•

Indirizzo Address	WORDS	MISURA	MEASURE	UNITA' UNIT	FORMATO FORMAT	RGK 800 AMF	RGK 800 SA	RGK 700 AMF	RGK 700 SA
2100H	1	OR di tutti gli ingressi	OR of all Inputs	0	Unsigned int	•	•	•	•
2101H	1	INP 1	INP 1	bool	Unsigned int	•	•	•	•
2110H	1	INP16	INP16	bool	Unsigned int	•	•	•	•
2140H	1	OR di tutti le uscite	OR of all Outputs	0	Unsigned int	•	•	•	•
2141H	1	OUT 1	OUT 1	bool	Unsigned int	•	•	•	•
2150H	1	OUT 16	OUT 16	bool	Unsigned int	•	•	•	•
2180H	1	OR di tutte le variabili remote	OR of all remote variables	0	Unsigned int	•	•	•	•
2181H	1	REM 1	REM 1	bool	Unsigned int	•	•	•	•
2190H	1	REM 16	REM 16	bool	Unsigned int	•	•	•	•
21C0H	1	OR di tutti i limiti	OR of all limits	0	Unsigned int	•	•	•	•
21C1H	1	LIM 1	LIM 1	bool	Unsigned int	•	•	•	•
21D0H	1	LIM 16	LIM 16	bool	Unsigned int	•	•	•	•

Indirizzo Address	WORDS	ALLARMI	ALARMS	UNITA' UNIT	FORMATO FORMAT	RGK 800 AMF	RGK 800 SA	RGK 700 AMF	RGK 700 SA
2200H	1	Allarmi A01-A16	Alarms A01-A16	0	•	•	•	•	•
2201H	1	Allarmi A17-A32	Alarms A17-A32	0	•	•	•	•	•
2202H	1	Allarmi A33-A48	Alarms A33-A48	0	•	•	•	•	•
2203H	1	Allarmi A49-A60-UA1-UA2-UA3-UA4	Alarms A49-A60-UA1-UA2-UA3-UA4	0	•	•	•	•	•
2204H	1	Allarmi UA5-UA6-UA7	Alarms UA5-UA6-UA7	0	•	•	•	•	•

Indirizzo Address	WORDS	STATI	STATUS		FORMATO FORMAT	RGK 800 AMF	RGK 800 SA	RGK 700 AMF	RGK 700 SA
2210H	1	Stato globale dispositivo (bit 0-bit15)	Device global status(bit 0-bit15) ❷		•	•	•	•	•
2211H	1	Stato globale dispositivo (bit 16-bit31)	Device global status(bit 16-bit31) ②		0	•	•	•	•

• Пример:

Значение по адресу 2100Н равно 0х05 (шестна-дцатеричное), = 0х00000101 означает, что входы 1 и 3 активны. Чтение word по адресам 2210h возвращает 32 бита со значением сот из таблицы

Bit 0	Modalità OFF
Bit 1	Modalità MAN
Bit 2	Modalità AUT
Bit 3	Modalità TEST
Bit 4	Tensione di rete OK
Bit 5	Tensione di generatore OK
Bit 6	Motore avviato
Bit 7	Generatore pronto
Bit 8	Allarme globale
Bit 9	Avaria meccanica
Bit 10	Avaria elettrica
Bit 11	Allarmi inseriti
Bit 12	Test automatico in corso
Bit 13	Test automatico abilitato
Bit 14	Teleruttore rete chiuso
Bit 15	Teleruttore generatore chiuso
Bit 16	(non usato)
Bit 31	(non usato)

• Example:

The value at address 2100H is 0x05 (hexadecimal) = 0x00000101 means that the inputs 1 and 3 are

❷Reading the word at address0 2210H will return 32 bits with the following meaning:

Bit 0	OFF mode
Bit 1	MAN mode
Bit 2	AUT mode
Bit 3	TEST mode
Bit 4	Mains voltage OK
Bit 5	Gen. voltage OK
Bit 6	Engine running
Bit 7	Generator ready
Bit 8	Global alarm
Bit 9	Mechanical fault
Bit 10	Electrical fault
Bit 11	Alarms enabled
Bit 12	Automatic tast running
Bit 13	Automatic test enabled
Bit 14	Mains contactor closed
Bit 15	Generator contactor closed
Bit 16	(not used)
Bit 31	(not used)
	<u> </u>

Таблица 3: КОМАНДЫ (Можно использовать с функцией 06) TABLE 3: COMMANDS (To be used with function 06)

Indirizzo Address	WORDS	STATI STATUS		RGK 800 AMF	RGK 800 SA	RGK 700 AMF	RGK 700 SA
4F00 H	1	Imposta variabile remora REM1	Set remote variable REM1 ●	•	•	•	•
4F01 H	1	Imposta variabile remora REM2	Set remote variable REM2	•	•	•	•
4F0FH	1	Imposta variabile remora REM16	Set remote variable REM16	•	•	•	•
2F00H		Cambio modalità operativa 2	Operative mode change ②				
2F0AH	1	Simulazione pressione tasti pannello frontale	Front panel keystorke simulation	•	•	•	•
		Valore 01h: Salvataggio eeprom	Value 01h: Eeprom save	•	•	•	•
		Valore 02H: Salvataggio Fram	Valore 02H: Fram save	Rev 8	Rev 8	Rev 6	Rev 6
2F03H	1	Valore 04H: Salvataggio eeprom e fram e reboot	Value 04h: Eeprom, Fram save and reboot	•	•	•	•
		Valore 08H: Salvataggio eeprom e fram	Valore 08H: EEprom, Fram save	Rev 8	Rev 8	Rev 6	Rev 6
2F07H	1	Valore 00h: Reset apparecchio Valore 01h: Reset apparecchio con salvataggio in fram	Value 00h: Reset device Value 01h: Reset device and save Fram	•	•	•	•
2FF0H	1	Esecuzione comando menu comandi	Command menu execution	•	•	•	•
28FAH	1	Valore 01h: Salvataggio impostazione orologio datario	Value 01H: Save real time clock setting	•	•	•	•

- $oldsymbol{0}$ Запись значения ААН по указанному адресу устанавливает удаленную переменную в 1, запись ВВН устанавливается в 0.
- В следующей таблице указаны значения, которые должны быть записаны по адресу 2F00H для получения соответствующих функций

VALORE	Funzione
0	Passaggio a modalità OFF
1	Passaggio a modalità MAN
2	Passaggio a modalità AUT
3	Passaggio a modalità TEST

● В следующей таблице указаны позиции битов, которые должны быть записаны по адресу 2F0AH для получения соответствующих функций

BIT	SIGNIFICATO
0	Tasto Su
1	Modalità MAN
2	Tasto destra
3	START
4	Modalità TEST
5	Modalità OFF
6	Modalità AUT
7	STOP
8	MAINS
9	Tasto Giù
10	Tasto enter
11	Tasto sinistra
12	GEN

- \bullet Writing AAh to the indicated address the remte variable will be set to 1, writing BBH the remote variable will be set to 0
- **2** The following table shows the values to be written to address 2F00H to achieve the correspondent function

VALUE	Function
0	Switch to OFF mode
1	Switch to MAN mode
2	Switch to AUT mode
3	Switch to TEST mode

● The following table shows the bit positionof the value to be written to address 2F0AH to achieve the correspondent function

BIT	MEANING
0	Key up
1	MAN mode
2	Key right
3	START
4	TEST mode
5	OFF mode
6	AUT mode
7	STOP mode
8	MAINS
9	Key down
10	Key enter
11	Key left
12	GEN

●Запись значения от 0 до 24 по указанному адресу выполняется соответствующая функция

	SIGNIFICATO (AMF)	SIGNIFICATO (SA)
0	C01 Reset intervallo	C01 Reset intervallo
	manutenzione 1	manutenzione 1
1	C02 Reset intervallo	C02 Reset intervallo
	manutenzione 2	manutenzione 2
2	C03 Reset intervallo	C03 Reset intervallo
	manutenzione 3	manutenzione 3
3	C04 Reset contagre	C04 Reset contagre
	motore par	motore par
4	C05 Reset contatore	C06 Reset contatore
-	parziale energia rete	parziale energia gen.
5	C06 Reset contatore	C07 Reset contatori
	parziale energia gen.	generici CNTx
6	C07 Reset contatori	C08 Reset Limiti
	generici CNTx	
7	C08 Reset Limiti	C09 Reset HI-LO
8	C09 Reset HI-LO	C10 Reset contagre
		motore tot
9	C10 Reset contaore	C11 Impostazione
	motore tot	contaore motore
10	C11 Impostazione	C12 Reset contatore
	contaore motore	avviamenti
11	C12 Reset contatore	C13 Reset contatori
	avviamenti	chiusure
12	C13 Reset contatori	C15 Reset contatore
	chiusure	totale energia
		generatore.
13	C14 Reset contatore	C16 Ricarica ore di
	totale energia rete	noleggio
14	C15 Reset contatore	C17 Reset lista eventi
	totale energia	
	generatore.	
15	C16 Ricarica ore di	C18 Ripristino
	noleggio	parametri a default
16	C17 Reset lista eventi	C19 Salva parametri
		nella memoria backup
17	C18 Ripristino parametri	C20 Ricarica parametri
	a default	dalla memoria backup
18	C19 Salva parametri	C21 Spurgo
	nella memoria backup	elettrovalvola
19	C20 Ricarica parametri	C22 Forced I/O
L	dalla memoria backup	
20	C21 Spurgo	C23 Regolazione
L	elettrovalvola	offset sensori resistivi
21	C22 FORCE IO	C24 Azzeramento
-00	000 D 1 : " :	Programma PLC
22	C23 Regolazione offset	C25 Sleep mode
	sensori resistivi	
23	C24 Azzeramento	
	Programma PLC	
24	C25 Sleep mode	1

●Writting value between 0 and 24 to the indicated address, the correspondent command will be executed

	MEANING (AMF)	SIGNIFICATO (SA)
0	C01 Reset maintenance	C01 Reset
	interval 1	maintenance interval 1
1	C02 Reset maintenance	C02 Reset
	interval 2	maintenance interval 2
2	C03 Reset maintenance	C03 Reset
	interval 3	maintenance interval 3
3	C04 Reset engine partial	C04 Reset engine
	hour counter	partial hour counter
4	C05 Reset mains partial	C06 Reset generator
	counter.	partial counter.
5	C06 Reset generator	C07 Reset generic
	partial counter.	counters CNTx
6	C07 Reset generic	C08 Reset High/ low
	counters CNTx	Ŭ
7	C08 Reset High/ low	C09 Reset engine total
		hour counter
8	C09 Reset engine total	C10 Engine hour
	hour counter	counter settings
9	C10 Engine hour	C11 Reset no. starts
	counter settings	counter
10	C11 Reset no. starts	C12 Reset starting
	counter	counter
11	C12 Reset starting	C13 Reset closing
	counter	counters
12	C13 Reset closing	C015 Reset generator
	counters	total counter.
13	C14 Reset mains total	C16 Reload rent hours
	counter.	
14	C015 Reset generator	C17 Reset events list
	total counter.	
45	040 D	040 D 4 1 6 19
15	C16 Reload rent hours	C18 Reset default
40	047 Decet constallat	parameters
16	C17 Reset events list	C19 Save parameters
17	C40 Danet default	in backup memory C20 Reload
17	C18 Reset default	
	parameters	parameters from
18	C19 Save parameters in	backup memory C21 Fuel purge
10	backup memory	62 i Fuel pulge
19	C20 Reload parameters	C22 Forced I/O
13	from backup memory	022 I 01000 1/0
20	C21 Fuel purge	C23 Resistive sensors
20	0211 del pulgo	offset regulation
21	C22 Forced I/O	C24 Reset PLC
- '	3_2 1 01000 1/0	program
22	C23 Resistive sensors	C25 Sleep mode
	offset regulation	0.00p000
23	C24 Reset PLC program	
24	C25 Sleep mode	
		

Таблица 6: ЧАСЫ С ДАТОЙ Можно использовать с функциями 04 и 06) Чтобы изменения вступили в силу, сохраните настройки с помощью соответствующий коммандос описан в таблице 3.

TABLE 6: **REAL TIME CLOCK**

(To be used with functions 04 and 06) To make effective the changes, store them using the dedicated command described in table 3.

Indirizzo Address	WORD S	FUNZIONE	FUNCTION	RANGE	RGK 800 AMF	RGK 800 SA	RGK 700 AMF	RGK 700 SA
28F0H	1	Anno	Year	20002099	•	•	•	•
28F1H	1	Mese	Month	1-12	•	•	•	•
28F2H	1	Giorno	Day	1-31	•	•	•	•
28F3H	1	Ora	Hours	0-23	•	•	•	•
28F4H	1	Minuti	Minutes	0-59	•	•	•	•
28F5H	1	Secondi	Seconds	0-59	•	•	•	•

ovato electric Doc. AHIT103B1110.doc 06/11/2013 P. 17/20

ЧТЕНИЕ СПИСКА СОБЫТИЙ

Чтобы прочитать события, необходимо выполнить следующую процедуру:

- Выполните чтение 1 регистра с функцией 4 по адресу 5030H, самый старший байт (msb) указывает, сколько событий хранится (значение от 0 до 250), младший байт увеличивается каждый раз, когда событие сохраняется (значение от 0 до 250).После сохранения 250 событий msb останется на уровне 250, a lsb вернется к нулю, а затем продолжит увеличиваться.
- 2. Установите индекс события, которое вы хотите прочитать (меньше максимального количества сохраненных событий), для этого вы должны выполнить функцию 6 по адресу 5030Н, указав, какое событие читать.
- Выполнить чтение 43 регистров (с одним функция 4) по адресу 5032Н
- Возвращаемое значение представляет собой 4. строку из 86 символов

ASCII, которые сообщают о том же описании события, видимого на дисплее RGK.

Индекс события, которое вы хотите прочитать, автоматически увеличивается после чтения журнала 5032Н, чтобы ускорить загрузку событий

Если вы хотите прочитать следующее событие выполнить Шаг 3, Если вы хотите прочитать любое другое событие выполнить Шаг 2.

См. пример

EVENT LOG READING

To read the events must do the following:

- Perform the read of 1 register by using the function 4 at address 5030H, the most significant byte (msb) indicates how many events are stored (value between 0 to 250), the least significant byte (Isb) is incremented each time an event is saved (value between 0 to 250). Once stored the 250 events the msb will remain at 250 while the Isb will back to zero and after will continue to increase.
- Set the index of the event that you want to read (less than the maximum number of events stored), to do this you performe the function 6 at 5030H, specifying which event read
- Perform a read of 43 registers (with a single 3. function 4) at address 5032H
- The value returned is a string of 86 ASCII characters, showing the same event description RGK visible on the display. The index of the event to be read is incremented automatically after a reading of the register 5032H, in order to speed up the download of
- If you want to read the next event performing step 4, if you want to read any other event do step 3.

See the example

ESEMPIO / EXAMPLE

Шаг 1: Чтение сохраненных событий.

Шаг 1 : Чтение хранимых событий MASTER

= 4 (04H)Funzione / Function

= 5030H (5030H - 0001H = 502FH) Indirizzo / Address

Nr. registri / Nr. registers = 1 (01H)

2F 01 04 50 00 01 11

RGK Funzione / Function

> Nr. byte / Nr. bytes. = 1 (01H)MSB = 250 (FAH) LSB (02H) = 2

01 04 02 FA 02 7A 51

Passo 2 :Impostare l'indice dell'evento da leggere.

Step 2: Set the index of the event to read.

Funzione / Function = 6(06H)MASTER

= 5030H (5030H - 0001H = 502FH) Indirizzo / Address

Valore / Value = 1 (01H)

06 50 01 2F 00 01 68 C3

RGK Funzione / Function = 6

Indirizzo / Address = 5030H (5030H - 0001H =502FH)

Valore / Value = 1 (01H)

01 50 2F 00 01 68 C3

Пассаж 3: Подготовка к событию

Шаг 3: Прочитайте о событии.

= 4 (04H)MASTER. Funzione / Function

Indirizzo / Address = 5032H (5032H - 0001H = 5031H)

Nr. registri / Nr. registers = 43 (2BH)

01 04 50 31 00 2B F0 DA

RGK Funzione / Function = 4 (04H)

= 5030H (5030H - 0001H = 502FH) Indirizzo / Address

Nr. byte / Nr. bytes = 86 (56H)

= 2012/07/18:09:34:52:E1100.CAMBIO MODALITÁ IN: MODALITÁ OFF Stringa / String

Juliy		- 20 12/	01/10,0	JJ.JT.C	<i>1</i> ∠,∟			NODAL		. IVIOD		Oll							
01	04	56	32	30	31	32	2F	30	37	2F	31	38	3B	30	39	3A	33	34	3A
35	32	3B	45	31	31	30	30	2C	43	41	4D	42	49	4F	20	4D	4F	44	41
4C	49	54	C1	20	49	4E	3A	20	4D	4F	44	41	4C	49	54	C1	20	4F	46
46	20	20	20	20	20	20	20	20	00	00	00	00	00	00	00	00	00	00	00
00	00	00	00	00	00	00	00	00	E5	78									

Doc. AHIT103B1110.doc 06/11/2013 P. 18 / 20

НАСТРОЙКА ПАРАМЕТРОВ

По протоколу Modbus® можно получить доступ к параметрам меню.

Чтобы правильно интерпретировать соответствие между числовым значением и выбранной функцией и / или единицей измерения, обратитесь к руководству по эксплуатации RGK.

ПРОЦЕДУРА СЧИТЫВАНИЯ ПАРАМЕТРОВ

- 1. Напишите значение меню, которое вы хотите прочитать
 - через функцию 6 по адресу 5000Н .
- 2.Напишите значение подменю (если оно существует), которое
 - вы хотите прочитать с помощью функции 6 по адресу 5001Н .
- 3. Запишите значение параметра, который вы хотите прочитать с помощью функции 6 по адресу 5002H. 4. Выполните функцию 4 по адресу 5004H, число регистров, соответствующее длине параметра (см. таблицу).
- 5. Если вы хотите прочитать следующий параметр, (в том же меню/подменю) повторите шаг 4, в противном случае выполните шаг 1.

ПРОЦЕДУРА ЗАПИСИ ПАРАМЕТРОВ

- Запишите значение меню, которое вы хотите изменить с помощью функции 6, по адресу 5000H
- 2. Напишите значение подменю (если оно существует), которое вы хотите изменить с помощью функции 6, по адресу 5001H
- Запишите значение параметра, которое вы хотите изменить с помощью функции 6 по адресу 5001H
- 4 Выполните **функцию** 16 по адресу 5004H, число регистров, соответствующее длине параметра
- Если вы хотите написать следующий параметр, в том же меню/подменю повторите шаг 4, в противном случае выполните шаг 1, Если вы не должны писать дополнительные параметры, выполните шаг 6.
- . Чтобы изменения вступили в силу
- меню настройки необходимо сохранить значения в EEPROM, используя соответствующую команду, описанную в таблице 3.(напишите значение 4 с функцией 6 по адресу 2F03H)

TIPO DI PARAMETRO	NUMERO REGISTRI
Testo lunghezza 6 caratteri (es. M25.01.06)	3 registri (6 byte)
Testo lunghezza 16 caratteri (es. M25.01.05)	8 registri (16 byte)
Testo lunghezza 20 caratteri (es. M01.10)	10 registri (20 byte)
Valore numerico < 32768 (es M01.07)	1 registri (2 byte)
Valore numerico > 32768 (es M02.08)	2 registri (4 byte)
Indirizzo IP (es. M20.0x.06 M20.0x.07)	2 registri (4 byte)

• Он может прочитать значение меню, подменю и параметр, хранящиеся в адресах 5000H, 5001H и 5002H с помощью функции 4

Vedere esempio

PARAMETER SETTING

Using the Modbus® protocol it is possible to access the menu parameters.

To correctly understand the correspondence between the numeric value and the selected function and/or the unit of measure, please see the RGK operating manual.

PROCEDURE FOR THE READING OF PARAMETERS

- Write the value of the menu that you want to read by using the function 6 at address 5000H.
- Write the value of the submenu (if it is present) that you want to read by using the function 6 at address 5001H •.
- Write the value of the parameter that you want to read by using the function 6 at address 5002H●.
- Perform the function 4 at the address 5004H, with a number of registers appropriate to the length of the parameter (see table).
- If you want to read the next parameter (in the same menu/submenu) repeat step 4, otherwise perform step 1.

PROCEDURE FOR THE WRITING OF PARAMETERS

- Write the value of the menu that you want to change by using the function 6 at address 5000HΦ
- 2. Write the value of the submenu (if it is present) that you want to change by using the function 6 at address 5001H ●
- Write the value of the parameter that you want to change by using the function 6 at address 5001H●
- Perform the function 16 at address 5004H, with a number of registers appropriate to the length of the parameter
- If you want to write the next parameter, in the same menu / submenu repeat step 4, otherwise perform step 1, if you do not have to write additional parameters go to step 6.
- To make effective the changes made to setup parameters it is necessary to store the values in EEPROM, using the dedicated command described in table 3 (write value 4 by using function 6 at address 2F03H)

TYPE OF PARAMETER	NUMBER OF REGISTER
Text length 6 characters (ex. M25.01.06)	3 registers (6 byte)
Text length 16 characters (ex. M25.01.05)	8 registers (16 byte)
Text length 20 characters (ex. M01.10)	10 registers (20 byte)
Numeric value < 32768 (ex M01.07)	1 registers (2 byte)
Numeric value > 32768 (ex M02.08)	2 registers (4 byte)
IP address (ex. M20.0x.06 M20.0x.07)	2 registers (4 byte)

●It's 'possible to read the menu, submenus, and parameter stored at the addresses 5000H, 5001H and 5002H by using the function 4

See the example

ПРИМЕР / EXAMPLE

Установите значение параметра М04.02.01 на

230

Set to 230 the value of parameter M04. 02. 01

Passo 1: Impostazione menu 04.

Step 1 :Set menu 04.

MASTER Funzione / Function = 6

Indirizzo / Address = 5000H (5000H – 0001H =4FFFH)

Valore / Value = 4 (04H)

01 06 4F FF 00 04 AE ED

RGK Funzione / Function = 6

Indirizzo / Address = 5000H (5000H – 0001H =4FFFH)

Valore / Value = 4 (04H)

01 06 4F FF 00 04 AE ED

Passo 2: Impostazione sottomenu 02.

Step 2: Set submenu 02.

MASTER Funzione / Function = 6

Indirizzo / Address = 5001H (5001H – 0001H = 5000H)

Valore / Value = 2 (02H)

01 | 06 | 50 | 00 | 00 | 02 | 19 | 0B

RGK Funzione / Function = 6

Indirizzo / Address = 5001H (5001H – 0001H =5000H)

Valore / Value = 2 (02H)

01 06 50 00 00 02 19 08

Passo 3: Impostazione parametro 01.

Step 3 :Set parameter 01.

MASTER Funzione / Function = 6

Indirizzo / Address = 5002H (5002H – 0001H =5001H)

Valore / Value = 1 (01H)

01 06 50 01 00 01 08 CA

RGK Funzione / Function = 6

Indirizzo / Address = 5002H (5002H – 0001H =5001H)

Valore / Value = 2 (02H)

01 06 50 01 00 01 08 CA

Passo 3: Impostazione valore 230.

Step 3 :Set value 230.

MASTER Funzione / Function = 16 (10H)

Indirizzo / Address = 5004H (5004H – 0001H =5003H)

Nr. registri / Nr. register = 2 (02H) Nr. byte / Nr. bytes = 4 (04H)

Valore / Value = 230 (000000E6H)

01 | 10 | 50 | 03 | 00 | 02 | 04 | 00 | 00 | 00 | E6 | CE | 33

RGK Funzione / Function = 16 (10H)

Indirizzo / Address = 5004H (5004H – 0001H =5003H)

Valore / Value = 2 (02H)

01 10 50 03 00 02 A0 C8

Passo 6 : Salavataggio e riavvio.

Step 6: Save and reboot.

MASTER Funzione / Function = 6 (06H)

Indirizzo / Address = 2F03H (2F03H – 0001H =2F02H)

Valore / Value = 4 (04H)

01 6 2F 02 00 04 21 1D

RGK Nessuna risposta/No answer

