5

Eigenvalues and Eigenvectors

5.8

ITERATIVE ESTIMATES FOR EIGENVALUES

• The power method applies to an $n \times n$ matrix A with a strictly dominant eigenvalue λ_1 , which means that λ_1 must be larger in absolute value than all the other eigenvalues.

- The power method for estimating a strictly dominant eigenvalue
- 1. Select an initial vector \mathbf{x}_0 , whose largest entry is 1.
- 2. For $k = 0, 1, \ldots$,
 - a) Compute Ax_k .
 - b) Let μ_k be an entry in Ax_k whose absolute value is as large as possible.
 - c) Compute $x_{k+1} = (1/\mu_k) A x_k$.
- 3. For almost all choices of x_0 , the sequence $\{\mu_k\}$ approaches the dominant eigenvalue, and the sequence $\{x_k\}$ approaches a corresponding eigenvector.

- Example 1 Let $A = \begin{bmatrix} 1.8 & .8 \\ .2 & 1.2 \end{bmatrix}$.
- A has eigenvalues 2 and 1, and the eigenspace for $\lambda_1 = 2$ is the line through 0 and $v_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$.
- Start from $x = \begin{bmatrix} -.5 \\ 1 \end{bmatrix}$.
- For k = 0, ..., 8, compute $A^k x$ and construct the line through 0 and $A^k x$. What happens as k increases?

Solution The first three calculations are

$$Ax = \begin{bmatrix} 1.8 & .8 \\ .2 & 1.2 \end{bmatrix} \begin{bmatrix} -.5 \\ 1 \end{bmatrix} = \begin{bmatrix} -.1 \\ 1.1 \end{bmatrix}$$

$$A^{2}x = \begin{bmatrix} 1.8 & .8 \\ .2 & 1.2 \end{bmatrix} \begin{bmatrix} -.1 \\ 1.1 \end{bmatrix} = \begin{bmatrix} .7 \\ 1.3 \end{bmatrix}$$

$$A^{3}x = \begin{bmatrix} 1.8 & .8 \\ .2 & 1.2 \end{bmatrix} \begin{bmatrix} .7 \\ 1.3 \end{bmatrix} = \begin{bmatrix} 2.3 \\ 1.7 \end{bmatrix}$$

Analogous calculations complete Table 1.

TABLE 1 Iterates of a Vector

k	0	1	2	3	4	5	6	7	8
$A^k \mathbf{x}$	$\begin{bmatrix}5 \\ 1 \end{bmatrix}$	$\begin{bmatrix}1 \\ 1.1 \end{bmatrix}$	[.7 [1.3]	$\left[\begin{array}{c} 2.3 \\ 1.7 \end{array} \right]$	$\begin{bmatrix} 5.5 \\ 2.5 \end{bmatrix}$	[11.9] 4.1]	$\left[\begin{array}{c} 24.7 \\ 7.3 \end{array} \right]$	[50.3] 13.7]	$\left[\begin{array}{c} 101.5 \\ 26.5 \end{array} \right]$

• The vectors x, Ax, ..., A^4x are shown in Fig. 1 below:

FIGURE 1 Directions determined by x, Ax, A^2x , ..., A^7x .

The angle between the line (subspace) determined by A^kx and the line (eigenspace) determined by v_1 goes to zero as $k \mapsto \infty$.

• The inverse power method for estimating an eigenvalue λ of A

- 1. Select an initial estimate α sufficiently close to λ .
- 2. Select an initial vector \mathbf{x}_0 whose largest entry is 1.
- 3. For $k = 0, 1, \ldots$,
 - a) Solve $(A \alpha I)y_k = x_k$ for y_k .
 - b) Let μ_k be an entry in y_k whose absolute value is as large as possible.
 - c) Compute $v_k = \alpha + (1/\mu_k)$
 - d) Compute $x_{k+1} = (1/\mu_k)y_k$.
- 4. For almost all choices of x_0 , the sequence $\{v_k\}$ approaches the eigenvalue λ of A, and the sequence $\{x_k\}$ approaches a corresponding eigenvector.

- Example 3 It is not uncommon in some applications to need to know the smallest eigenvalue of a matrix A and to have at hand rough estimates of the eigenvalues.
- Suppose 21, 3.3, and 1.9 are estimates for the eigenvalues of the matrix A below.
- Find the smallest eigenvalue, accurate to size decimal places.

$$A = \begin{bmatrix} 10 & -8 & -4 \\ -8 & 13 & 4 \\ -4 & 5 & 4 \end{bmatrix}$$

• **Solution** The smallest eigenvalues seem close together so we use the inverse power method for A - 1.9I. Results of a MATLAB calculation are shown in Table 3 below:

The Inverse Power Method TABLE 3 0 3 4 .5054 .5004 .50003 .5736 .0646.0045 .0003.00002 X_k 5.000006 4.45 5.0131 5.0012 5.0001 .50 .0442.0031.0002.000015 \mathbf{y}_k 9.9949 7.76 9.9197 9.9996 9.999975 7.76 9.9197 9 9949 9.9996 9.999975 μ_k 2.03 2.0008 2.00005 2.000004 2.0000002 ν_k

Here:

- \bullet \mathbf{x}_0 was chosen arbitrarily,
- $y = (A 1.9I)^{-1}x_k$
- μ_k is the largest entry in y_k ,
- $v_k = 1.9 + 1/\mu_k$, and
- $x_{k+1} = (1/\mu_k) y_k$.
- The smallest eigenvalue is 2.
 - The estimated value is 2.0000002.