# 0.1 有理标准型的几何与应用

回顾有理标准型和循环子空间相关理论.

### 命题 0.1

设 n 阶矩阵 A 有 n 个不同的特征值, 求证: A 的特征多项式和极小多项式相等.

证明 证法一:设 A 的 n 个不同的特征值为  $\lambda_1, \lambda_2, \dots, \lambda_n$ ,则由推论??可知,特征多项式  $f(\lambda)$  和极小多项式  $m(\lambda)$ 有相同的根(不计重数),因此

$$f(\lambda) = m(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

证法二: 由于 A 有 n 个不同的特征值, 故 A 相似于对角矩阵. 又因为相似矩阵有相同的特征多项式和极小多项式,所以只要对对角矩阵证明此结论即可. 设  $A = \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$ , 则  $\lambda I_n - A = \operatorname{diag}\{\lambda - \lambda_1, \lambda - \lambda_2, \cdots, \lambda - \lambda_n\}$ , 这是一个主对角元素两两互素的对角矩阵,由 $\lambda$ -矩阵和初等因子的基本性质 (1) 以及数学归纳法可知其法式为  $\operatorname{diag}\{1, \cdots, 1, (\lambda - \lambda_1)(\lambda - \lambda_2)\cdots(\lambda - \lambda_n)\}$ . 因此,A 的特征多项式和极小多项式相等.

### 命题 0.2

设 n 阶矩阵 A 有 n 个不同的特征值, 且特征值  $\lambda_i$  对应的特征向量为  $\alpha_i$ , 由推论??可知  $\{\alpha_1, \cdots, \alpha_n\}$  为  $\mathbb{C}^n$  的一组基. 则  $\alpha = \alpha_1 + \cdots + \alpha_n$  是 A 的循环空间  $\mathbb{C}^n$  的循环向量, 即  $\mathbb{C}^n = L(\alpha, A\alpha, \cdots, A^{n-1}\alpha) = C(A, \alpha)$  为循环空间, $\alpha$  是循环向量.

证明 事实上, 由  $A^k \alpha = \lambda_1^k \alpha_1 + \dots + \lambda_n^k \alpha_n$ , 利用 Vandermonde 行列式容易证明  $\{\alpha, A\alpha, \dots, A^{n-1}\alpha\}$  是  $\mathbb{C}^n$  的一组基, 从而  $\mathbb{C}^n = L(\alpha, A\alpha, \dots, A^{n-1}\alpha) = C(A, \alpha)$  为循环空间, $\alpha$  是循环向量.

### 命题 0.3

设数域  $\mathbb{K}$  上的 n 阶矩阵 A 的特征多项式  $f(\lambda) = P_1(\lambda)P_2(\lambda)\cdots P_k(\lambda)$ , 其中  $P_i(\lambda)(1 \le i \le k)$  是  $\mathbb{K}$  上互异的 首一不可约多项式. 求证:A 的有理标准型只有一个 Frobenius 块, 并且 A 在复数域上可对角化.

注 我们也可以利用定理??和初等因子证明这个命题. 若利用不变因子在基域扩张下的不变性, 则这个命题也可由命题 0.1得到.

证明 设 A 的不变因子组为  $d_1(\lambda), d_2(\lambda), \cdots, d_n(\lambda)$ , 其中  $d_i(\lambda) \mid d_{i+1}(\lambda), i = 1, 2, \cdots, n-1$ , 则有

$$f(\lambda) = P_1(\lambda)P_2(\lambda)\cdots P_k(\lambda) = d_1(\lambda)d_2(\lambda)\cdots d_n(\lambda)$$
(1)

由于  $P_i(\lambda)$  是不可约多项式, 故存在某个 j, 使得  $P_i(\lambda)$  |  $d_j(\lambda)$ , 否则, 由不可约多项式的基本性质 (1) 可知  $(P_i(\lambda), d_j(\lambda))$  =  $1, j = 1, 2, \cdots, n$ . 再由互素多项式和最大公因式的基本性质 (5) 可知  $(P_i(\lambda), d_1(\lambda)d_2(\lambda) \cdots d_n(\lambda))$  = 1, 这与(1)矛盾! 从而  $P_i(\lambda)$  |  $d_n(\lambda)$ ( $1 \le i \le k$ ). 由互素多项式和最大公因式的基本性质 (1) 可知,  $P_1(\lambda)P_2(\lambda) \cdots P_k(\lambda)$  |  $d_n(\lambda)$ , 因此只能是  $d_1(\lambda) = \cdots = d_{n-1}(\lambda) = 1$ ,  $d_n(\lambda) = f(\lambda)$ , 从而 A 的有理标准型只有一个 Frobenius 块. 由于特征多项式  $f(\lambda) = P_1(\lambda)P_2(\lambda) \cdots P_k(\lambda)$  在  $\mathbb{K}$  上无重因式, 故  $(f(\lambda), f'(\lambda)) = 1$ , 从而  $f(\lambda)$  在复数域上无重根, 即 A 有 n个不同的特征值, 于是 A 在复数域上可对角化.

### 推论 0.1

设数域  $\mathbb{K}$  上的 n 阶矩阵 A 的特征多项式  $f(\lambda) = P_1(\lambda)P_2(\lambda)\cdots P_k(\lambda)$ , 其中  $P_i(\lambda)(1 \le i \le k)$  是  $\mathbb{K}$  上互异的 首一不可约多项式. 并且  $\alpha_i$  为线性方程组  $P_i(A)x = 0$  的非零解, 则  $\alpha = \alpha_1 + \cdots + \alpha_k$  是 A 的循环空间  $\mathbb{K}^n$  的循环向量.

证明 由命题 0.3及定理??可知  $\mathbb{K}^n$  就是一个循环空间.(未完成证明)

## 命题 0.4

设  $\varphi$  是数域  $\mathbb{K}$  上 n 维线性空间 V 上的线性变换, $\varphi$  的特征多项式为  $f(\lambda)$ , 证明以下 3 个结论等价:

- (1) V 只有平凡的  $\varphi$ -不变子空间;
- (2) V 中任一非零向量都是循环向量, 使 V 成为循环空间;
- (3)  $f(\lambda)$  是  $\mathbb{K}$  上的不可约多项式.

证明 (1)  $\Rightarrow$  (2): 任取 V 中非零向量  $\alpha$ , 则循环子空间  $C(\varphi,\alpha)$  是非零  $\varphi$ -不变子空间. 由于 V 只有平凡的  $\varphi$ -不变子空间, 故  $C(\varphi,\alpha) = V$ , 即 V 中任一非零向量都是循环向量, 使 V 成为循环空间.

(2) ⇒ (3): 用反证法, 假设  $f(\lambda) = g(\lambda)h(\lambda)$ , 其中  $g(\lambda), h(\lambda)$  是  $\mathbb{K}$  上次数小于 n 的首一多项式. 由 Cayley - Hamilton 定理可知  $\mathbf{0} = f(\varphi) = g(\varphi)h(\varphi)$ , 故由命题??(1) 的逆否命题可知  $g(\varphi), h(\varphi)$  中至少有一个是奇异 (不可逆/非双射) 线性变换, 不妨设为  $g(\varphi)$ , 由推论??可知  $\ker g(\varphi) \neq 0$ . 任取  $\ker g(\varphi)$  中的非零向量  $\alpha$ , 设  $\ker g(\varphi) = r$ , 则不妨设

$$g(\varphi) = a_r \varphi^r + a_{r-1} \varphi^{r-1} + \dots + a_1, \quad \sharp \vdash a_r \neq 0.$$

由  $\alpha \in \ker g(\varphi)$  可知

$$g(\varphi)(\alpha) = a_r \varphi^r(\alpha) + a_{r-1} \varphi^{r-1}(\alpha) + \dots + a_1 \alpha = 0.$$

于是

$$\varphi^{r}(\alpha) = -\frac{a_{r-1}}{a_r}\varphi^{r-1}(\alpha) - \dots - \frac{a_1}{a_r}\alpha. \tag{2}$$

假设对  $k \ge r$  且  $k \in \mathbb{N}$ , 成立  $\varphi^k(\alpha)$  可由  $\{\alpha, \varphi(\alpha), \cdots, \varphi^{r-1}(\alpha)\}$  线性表示, 则对(2)式两边同时作用  $\varphi^{k-r+1}$  可得

$$\varphi^{k+1}(\alpha) = -\frac{a_{r-1}}{a_r} \varphi^k(\alpha) - \dots - \frac{a_1}{a_r} \varphi^{k-r+1}(\alpha).$$

于是由归纳假设可知, $\varphi^{k+1}(\alpha)$  可由  $\{\alpha, \varphi(\alpha), \cdots, \varphi^{r-1}(\alpha)\}$  线性表示. 故由数学归纳法可得, 对  $\forall k \geq r$  且  $k \in \mathbb{N}$ , 都 有  $\varphi^k(\alpha)$  可由  $\{\alpha, \varphi(\alpha), \cdots, \varphi^{r-1}(\alpha)\}$  线性表示. 因此  $C(\varphi, \alpha) = L(\alpha, \varphi(\alpha), \cdots) = L(\alpha, \varphi(\alpha), \cdots, \varphi^{r-1}(\alpha))$ , 其维数  $\leq r < n$ , 故  $C(\varphi, \alpha) \neq V$ , 这与 V 中任一非零向量都是循环向量矛盾!

(3)  $\Rightarrow$  (1): 用反证法,假设存在非平凡的  $\varphi$ -不变子空间 U, $\dim U = r$ , 则  $\varphi$  在一组基下的表示矩阵为分块上三角矩阵  $M = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$ , 其中 A 是  $\varphi|_U$  的表示矩阵. 于是特征多项式

$$f(\lambda) = |\lambda \mathbf{I}_V - \varphi| = |\lambda \mathbf{I}_n - M| = |\lambda \mathbf{I}_r - A| \cdot |\lambda \mathbf{I}_{n-r} - \mathbf{B}|.$$

是两个低次多项式的乘积, 这与  $f(\lambda)$  的不可约性矛盾!

# 命题 0.5

设  $\varphi$  是数域  $\mathbb{K}$  上 n 维线性空间 V 上的线性变换, $\varphi$  的极小多项式为  $m(\lambda)$ . 证明: $m(\lambda)$  是  $\mathbb{K}$  上的不可约多项式的充要条件是 V 的任一非零  $\varphi$ -不变子空间 U 必为如下形式:

$$U = C(\varphi, \alpha_1) \oplus C(\varphi, \alpha_2) \oplus \cdots \oplus C(\varphi, \alpha_k)$$

并且  $\varphi|_{C(\varphi,\alpha_i)}$  的极小多项式都是  $m(\lambda)$ . 此时, $\varphi|_U$  的极小多项式也是  $m(\lambda)$ .

**证明 必要性**: 设  $\varphi|_U$  的极小多项式为  $n(\lambda)$ , 则  $m(\varphi|_U) = m(\varphi)|_U = \mathbf{0}$ , 从而  $n(\lambda) \mid m(\lambda)$ . 因为  $m(\lambda)$  不可约, 所以  $n(\lambda) = m(\lambda)$ . 又由于  $\varphi|_U$  的所有不变因子都要整除  $m(\lambda)$  且  $m(\lambda)$  不可约, 故所有的非常数不变因子都等于  $m(\lambda)$ . 最后, 由有理标准型的几何意义即得

$$U = C(\varphi, \alpha_1) \oplus C(\varphi, \alpha_2) \oplus \cdots \oplus C(\varphi, \alpha_k).$$

并且  $\varphi|_{C(\varphi,\alpha_i)}$  在基  $\{\alpha_i,\varphi(\alpha_i),\cdots,\varphi^{r_i-1}(\alpha_i)\}$  下的表示矩阵就是友阵  $C(m(\lambda))$ , 其中  $r_i=\dim C(\varphi,\alpha_i)$ . 于是  $\varphi|_{C(\varphi,\alpha_i)}$  的极小多项式就是其表示矩阵  $C(m(\lambda))$  的极小多项式. 又由引理??可知, $C(m(\lambda))$  的极小多项式就是  $m(\lambda)$ , 并且  $n(\lambda)=m(\lambda)$ , 故结论得证.

**充分性**: 用反证法, 设  $m(\lambda) = g(\lambda)h(\lambda)$ , 其中  $g(\lambda)$ ,  $h(\lambda)$  是  $\mathbb{K}$  上次数小于  $m(\lambda)$  次数的首一多项式, 则  $\mathbf{0} = m(\varphi) = g(\varphi)h(\varphi)$ , 故由命题??(1) 的逆否命题可知  $g(\varphi)$ ,  $h(\varphi)$  中至少有一个是奇异线性变换, 不妨设为  $g(\varphi)$ , 于是由推论??可知  $\operatorname{Kerg}(\varphi) \neq 0$ . 任取  $\operatorname{Kerg}(\varphi)$  中的非零向量  $\alpha$ , 得到循环子空间  $U = C(\varphi, \alpha)$ ,

由  $g(\varphi)(\alpha) = \mathbf{0}$  可知, 对  $\forall k \in \mathbb{N}$ , 都有  $\varphi^k(g(\varphi)(\alpha)) = 0$ . 从而对  $\forall \beta \in U = C(\varphi, \alpha)$ , 存在不全为零的  $a_i$  使得

$$g(\varphi)(\beta) = g\left(a_1\alpha + a_2\varphi(\alpha) + a_3\varphi^2(\alpha) + \cdots\right)$$

$$= a_1g(\alpha) + a_2g(\varphi(\alpha)) + a_3g(\varphi^2(\alpha)) + \cdots$$

$$= a_1g(\alpha) + a_2\varphi(g(\alpha)) + a_3\varphi^2(g(\alpha)) + \cdots$$

$$= 0 + 0 + 0 + \cdots = 0.$$

因此  $g(\varphi|_U) = g(\varphi)|_U = \mathbf{0}$ , 于是  $\varphi|_U$  的极小多项式  $m(\lambda)$  整除  $g(\lambda)$ , 从而其次数  $\leq \deg g(\lambda) < \deg m(\lambda)$ , 这与条件矛盾!

# 定理 0.1 (基于初等因子组的有理标准型)

设数域  $\mathbb{K}$  上的 n 阶矩阵 A 的初等因子组为  $P_1(\lambda)^{r_1}, P_2(\lambda)^{r_2}, \cdots, P_k(\lambda)^{r_k}$ , 证明: A 相似于分块对角矩阵

$$\widetilde{F} = \operatorname{diag}\{F(P_1(\lambda)^{r_1}), F(P_2(\lambda)^{r_2}), \cdots, F(P_k(\lambda)^{r_k})\}$$

 $\widetilde{\boldsymbol{C}} = \operatorname{diag}\{\boldsymbol{C}(P_1(\lambda)^{r_1}), \boldsymbol{C}(P_2(\lambda)^{r_2}), \cdots, \boldsymbol{C}(P_k(\lambda)^{r_k})\}$ 

称为 A 的基于初等因子组的有理标准型.

证明 由 Frobenius 块和友阵的性质可知, $\lambda I_n - \widetilde{F}$  和  $\lambda I_n - \widetilde{C}$  都相抵于

diag
$$\{1, \dots, 1, P_1(\lambda)^{r_1}; 1, \dots, 1, P_2(\lambda)^{r_2}; \dots; 1, \dots, 1, P_k(\lambda)^{r_k}\}$$

再由 $\lambda$ -矩阵和初等因子的基本性质 (2) 可知, $\widetilde{F}$ , $\widetilde{C}$  与 A 有相同的初等因子组,从而它们相似.

### 定理 0.2

设  $\varphi$  是数域  $\mathbb{K}$  上 n 维线性空间 V 上的线性变换, $\varphi$  的初等因子组为  $P_1(\lambda)^{r_1}$ ,  $P_2(\lambda)^{r_2}$ ,  $\cdots$ ,  $P_k(\lambda)^{r_k}$ . 证明: 存在  $\alpha_1,\alpha_2,\cdots,\alpha_k\in V$ , 使得

$$V = C(\varphi, \alpha_1) \oplus C(\varphi, \alpha_2) \oplus \cdots \oplus C(\varphi, \alpha_k)$$

证明 由基于初等因子组的有理标准型和定理??即得.

**例题 0.1** 求证: 存在 n 阶实方阵 A, 满足  $A^2 + 2A + 5I_n = O$  的充要条件是 n 为偶数. 当  $n \ge 4$  时, 验证满足上述条件的矩阵 A 有无限个不变子空间.

**证明 必要性**: 注意到 A 适合多项式  $g(\lambda) = \lambda^2 + 2\lambda + 5$ , 故 A 的极小多项式  $m(\lambda) \mid g(\lambda)$ , 又因为  $g(\lambda)$  在实数域上不可约, 故只能是  $m(\lambda) = g(\lambda)$ . 同理可证 A 所有的非常数不变因子都等于  $g(\lambda)$ , 从而 A 的不变因子组为  $1, \dots, 1, g(\lambda), \dots, g(\lambda)$  ( $k \uparrow g(\lambda)$ ). 因此 A 的特征多项式  $f(\lambda) = g(\lambda)^k$ , 于是  $n = \deg f(\lambda) = 2k$  为偶数.

**充分性**: 设 n=2k 为偶数,则由必要性的证明可知,A 的不变因子组为  $1, \dots, 1, g(\lambda), \dots, g(\lambda)$  ( $k \land g(\lambda)$ ).可用有理标准型构造满足条件的矩阵:

$$A = \operatorname{diag} \left\{ \begin{pmatrix} 0 & -5 \\ 1 & -2 \end{pmatrix}, \dots, \begin{pmatrix} 0 & -5 \\ 1 & -2 \end{pmatrix} \right\} (k \uparrow = )$$
 (3)

当  $n \ge 4$  时, 设  $\{e_1, e_2, e_3, e_4\}$  是前 4 个标准单位列向量, 则容易验证(3)式中的矩阵 A 满足  $Ae_1 = e_2, Ae_3 = e_4$ , 于是构造循环子空间  $\{C_l := C(A, e_1 + le_3) = L(e_1 + le_3, e_2 + le_4), l \in \mathbb{R}\}$ ,进一步容易验证循环子空间  $\{C_l := C(A, e_1 + le_3) = L(e_1 + le_3, e_2 + le_4), l \in \mathbb{R}\}$  是两两互异的 A-不变子空间, 故 A 有无限个不变子空间.

### 命题 0.6

设 A 是数域  $\mathbb{K}$  上的 n 阶方阵, 求证:A 的极小多项式的次数小于等于 r(A)+1.

证明 证法一:设 A 的不变因子组为  $1, \cdots, 1, d_1(\lambda), \cdots, d_k(\lambda)$ ,则极小多项式  $m(\lambda) = d_k(\lambda)$ ,并且由定理??可知 A

相似于  $F = \text{diag} \{ F(d_1(\lambda)), \cdots, F(d_k(\lambda)) \}$ . 设  $\deg d_k(\lambda) = r$ , 若  $d_k(0) \neq 0$ , 则由 Frobenius 块的基本性质 (1) 可知  $F(d_k(\lambda))$  非异; 若  $d_k(0) = 0$ , 则由 Frobenius 块的基本性质 (1) 可知  $F(d_k(\lambda))$  奇异且右上角的 r-1 阶子式非零, 从而秩为 r-1. 因此, $\mathbf{r}(A) = \mathbf{r}(F) \geq \mathbf{r}(F(d_k(\lambda))) \geq r-1 = \deg d_k(\lambda)-1$ .

证法二: 从 A 的极小多项式  $m(\lambda)$  分离出来的初等因子中, 形如  $\lambda^r$  的初等因子至多只有 1 个, 对应于零特征值的 Jordan 块  $J_r(0)$ , 其余的初等因子对应于非零特征值的 Jordan 块. 因此 r(A) 大于等于这些 Jordan 块秩的和, 后者等于  $\deg m(\lambda) - 1$  或  $\deg m(\lambda)$ .

## 命题 0.7

设数域  $\mathbb{K}$  上的 n 阶矩阵 A 的不变因子组是  $1, \dots, 1, d_1(\lambda), \dots, d_k(\lambda)$ , 其中  $d_i(\lambda)$  是非常数首一多项式,  $d_i(\lambda)$  |  $d_{i+1}(\lambda)(1 \le i \le k-1)$ . 求证: 对 A 的任一特征值  $\lambda_0$ ,

$$r(\lambda_0 \mathbf{I}_n - A) = n - \sum_{i=1}^k \delta_{d_i(\lambda_0),0}$$

其中记号  $\delta_{a,b}$  表示: 若 a = b, 取值为 1; 若  $a \neq b$ , 取值为 0.

证明 证法一: 设  $\deg d_i(\lambda) = r_i$ ,则由定理**??**可知 A 相似于  $F = \operatorname{diag}\{F(d_1(\lambda)), \cdots, F(d_k(\lambda))\}$ ,而相似矩阵有相同的特征多项式,故  $\lambda_0 I_n - A = \lambda_0 I_n - F$ . 由 Frobenius 块的基本性质 (2) 可知  $|\lambda_0 I_{r_i} - F(d_i(\lambda))| = d_i(\lambda_0)$ . 若  $d_i(\lambda_0) \neq 0$ ,则  $\lambda_0 I_{r_i} - F(d_i(\lambda))$  非异;若  $d_i(\lambda_0) = 0$ ,则  $\lambda_0 I_{r_i} - F(d_i(\lambda))$  奇异且右上角的  $r_i - 1$  阶子式非零,从而秩为  $r_i - 1$ .因此,

$$r(\lambda_0 \mathbf{I}_n - A) = r(\lambda_0 \mathbf{I}_n - \mathbf{F}) = \sum_{i=1}^k r(\lambda_0 \mathbf{I}_{r_i} - \mathbf{F}(d_i(\lambda)))$$
$$= \sum_{i=1}^k (r_i - \delta_{d_i(\lambda_0),0}) = n - \sum_{i=1}^k \delta_{d_i(\lambda_0),0}$$

证法二: 由定理??可知存在可逆  $\lambda$ -矩阵  $P(\lambda)$ ,  $Q(\lambda)$ , 使得

$$P(\lambda)(\lambda I_n - A)Q(\lambda) = \text{diag}\{1, \dots, 1, d_1(\lambda), \dots, d_k(\lambda)\}$$

在上式中令  $\lambda = \lambda_0$ , 注意到  $P(\lambda_0)$ ,  $Q(\lambda_0)$  是  $\mathbb{K}$  上的可逆矩阵, 故  $\lambda_0 I_n - A$  相抵于 diag $\{1, \cdots, 1, d_1(\lambda_0), \cdots, d_k(\lambda_0)\}$ , 于是  $\mathbf{r}(\lambda_0 I_n - A)$  等于 n 减去等于零的  $d_i(\lambda_0)$  的个数, 从而结论得证.

# 命题 0.8

- (1) 设 A 是数域  $\mathbb{K}$  上的 n 阶矩阵, 求证: A 相似于一个  $\mathbb{K}$  上主对角元全为零的矩阵的充要条件是  $\mathrm{tr}(A)=0$ .
- (2) 设 A 是数域  $\mathbb{R}$  上的 n 阶矩阵, 求证:A 正交相似于一个  $\mathbb{R}$  上主对角元全为零的矩阵的充要条件是  $\operatorname{tr}(A) = 0$
- (3) 设 C 是数域  $\mathbb{K}$  上的 n 阶矩阵, 求证: 存在  $\mathbb{K}$  上的 n 阶矩阵 A,B, 使得 AB-BA=C 的充要条件是 tr(C)=0.

### 证明

(1) 必要性: 由矩阵的迹是矩阵的相似不变量, 故 tr(A) = 0.

充分性: 对阶数进行归纳. 当n=1 时,A=O, 结论显然成立. 设阶数小于n 时结论成立, 现证n 阶的情形. 由于题目的条件和结论在相似关系下不改变, 故不妨从一开始就假设A 是有理标准型

$$F = \text{diag}\{F(d_1(\lambda)), \cdots, F(d_k(\lambda))\}$$

其中  $d_i(\lambda)$  是 A 的非常数不变因子, $d_i(\lambda)$  |  $d_{i+1}(\lambda)$ (1  $\leq i \leq k-1$ ), $\deg d_i(\lambda) = r_i$ . 若  $r_i$  都为 1, 则  $d_1(\lambda) = \cdots = d_n(\lambda) = \lambda - c$ , 从而  $A = cI_n$ . 又  $\operatorname{tr}(A) = 0$ , 故 c = 0, 从而 A = O, 结论成立. 以下假设存在某个  $r_i > 1$ , 将第 (1, 1) 分块与第 (i,i) 分块对换,这是一个相似变换,此时矩阵的第 (1,1) 元为零,故不妨设 A 的第 (1,1) 元为零.注意到矩阵  $A = \begin{pmatrix} 0 & \alpha' \\ \beta & B \end{pmatrix}$ ,其中  $\alpha, \beta \in \mathbb{K}^{n-1}$ , $B \in M_{n-1}(\mathbb{K})$ , $\operatorname{tr}(B) = 0$ . 由归纳假设,存在  $\mathbb{K}$  上的 n-1 阶非异阵

Q, 使得  $Q^{-1}BQ$  的主对角元全为零, 令  $P = \begin{pmatrix} 1 & O \\ O & O \end{pmatrix}$  为  $\mathbb{K}$  上的 n 阶非异阵, 则  $P^{-1}AP = \begin{pmatrix} 0 & \alpha'Q \\ O^{-1}B & O^{-1}BO \end{pmatrix}$ 的主对角元全为零,结论得证.

- (2) 必要性: 若矩阵 A 正交相似于主对角元全为零的矩阵,则由相似变换不改变迹可知, tr(A) = 0. 充分性: 对阶数 n 进行归纳. 当 n=1 时, 结论显然成立. 假设对任意阶数小于 n 的实迹零矩阵结论成立. 考虑 n 阶实迹零矩阵 A, 令  $T=\frac{A+A'}{2}$ ,  $S=\frac{A-A'}{2}$ , 则 A=T+S, 并且 T 为实对称阵, S 为实反称阵. (i) 若 T=O, 则 A=S 是实反称矩阵, 而实反称矩阵主对角元均为 D, 结论显然成立.

  - (ii) 若  $T \neq 0$ , 则存在正交矩阵 P, 使得

$$P^{-1}TP = \begin{pmatrix} I_p & & \\ & -I_q & \\ & & O \end{pmatrix},$$

其中 p,q 分别为 T 的正、负惯性指数. 由  $T \neq O$  可知 r(T) = p + q > 0, 从而

$$p - q = \operatorname{tr}(P^{-1}TP) = \operatorname{tr}(T) = \operatorname{tr}(A) = 0 \Rightarrow p = q = \frac{\operatorname{r}(T)}{2} > 0.$$

于是  $p,q \ge 1$ . 故

$$P_{p+1,p}^{-1}P_{p+1,2}^{-1}(P^{-1}TP)P_{p+1,2}P_{p+1,p} = \begin{pmatrix} T_1 & & & \\ & I_{p-1} & & \\ & & I_{q-1} & \\ & & & O \end{pmatrix},$$

其中 
$$T_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
,记  $T_2 = \begin{pmatrix} I_{p-1} & & & \\ & I_{q-1} & & \\ & & O \end{pmatrix}$ , $P_0 = PP_{p+1,2}P_{p+1,p}$ ,则  $P_0$  为正交矩阵,并且

$$P_0^{-1}TP_0 = \begin{pmatrix} T_1 & \\ & T_2 \end{pmatrix}.$$

注意到 $T_1$ 为2阶迹零阵, $T_2$ 为n-2阶迹零阵,从而由归纳假设可得,存在正交矩阵 $P_1,P_2$ ,使得

$$P_1^{-1}T_1P_1 = T_1', \quad P_2^{-1}T_2P_2 = T_2',$$

其中  $T_1', T_2'$  都是主对角元全为 0 的矩阵. 故令  $Q = P_0 \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$ , 则 Q 也是正交矩阵, 并且

$$Q^{-1}TQ = \begin{pmatrix} T_1' & \\ & T_2' \end{pmatrix}.$$

因此  $Q^{-1}TQ$  的主对角元全都为 0. 又由 S 为反称矩阵可知  $(Q^{-1}SQ)' = -Q^{-1}SQ$ , 故  $Q^{-1}SQ$  也为反称矩阵, 从而  $Q^{-1}SQ$  的主对角元也全都为 0. 于是  $Q^{-1}AQ = Q^{-1}TQ + Q^{-1}SQ$  的主对角元也全都为 0.

(3) 必要性由矩阵迹的线性和交换性即得,下证充分性.由于题目的条件和结论在同时相似变换 $A \mapsto P^{-1}AP,B \mapsto$  $P^{-1}BP,C \mapsto P^{-1}CP$  下不改变, 故由命题 0.8(1)不妨从一开始就假设  $C = (c_{ij})$  的主对角元  $c_{ii} = 0 (1 \le i \le n)$ . 取定  $A = \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$  为  $\mathbb{K}$  上的主对角元互异的对角矩阵. 设  $B = (x_{ij})$ , 则 AB - BA = C 等价于方程  $\lambda_i x_{ij} - \lambda_j x_{ij} = c_{ij}$ . 当 i = j 时,上式恒成立,故  $x_{ii}$  可任取. 当  $i \neq j$  时, $x_{ij} = \frac{c_{ij}}{\lambda_i - \lambda_j}$  被唯一确定. 因此,一定存 在  $\mathbb{K}$  上的矩阵 A, B, 使得 AB - BA = C 成立.