PC update 3-19-21

Goals for this update:

- Do some Data/MC comparison with Minimum Bias
- Show Data/MC efficiencies and purity with p_T, X_+, R_{xy}
- Show $1/X_0$ as a function of R

Datasets:

There are many Minimum Bias data samples Here are the options I considered (samples I processed on UNL: \checkmark):

- /L1MinimumBias/Run2018B-PromptReco-v2/AOD √
 - On tape
 - \circ small O(10)GB
 - Low PU
- /HIMinimumBias0/HIRun2018A-PromptReco-v1/AOD
 - o On disk
 - HI = Heavy Ion?
- MinimumBias/Run2018A-12Nov2019_UL2018-v1/AOD √
 - o On disk
 - OUL data?
 - standard PU, so not compatible with this RecoSIM
- MinimumBias0/Run2018B-PromptReco-v2/AOD √ (tape recall/ run in progress)
 - On tape
 - Low PU
 - o includes lumi mask
 - found it here: https://twiki.cern.ch/twiki/bin/view/Main/VertexCompositeTrees2019

NOTE:

Results shown here will use /L1MinimumBias/Run2018B-PromptReco-v2/AOD. There is significant discrepancy between MC and Data. Maybe this dataset is L1 trigger only and lacks additional processing that is applied in MC or other refined datasets.

The /MinimumBias0/Run2018B-PromptReco-v2/AOD dataset looks more promising in terms of the correct sample to look at. If it turns out bad, probably need to ask Suvankar for appropriate dataset.

Also, new trick -- If you submit a crab job with dataset on tape, crab will already submit a tape recall request and then automatically run over the sample when it has been transferred off tape.

We define radial regions BPIX1 + BP [1,5) cm BPIX2 [5,9) cm BPIX3 [9,13) cm BPIX4 [13,18) cm OUTER [18,20) cm

These serve as bins of efficiencies for later computation

Efficiency and purity (note efficiency errors are from Divide and not properly propagated)

Efficiency is defined as:

N Reconstructed Conv. matched to a Sim Vertex

N Sim Conversion Vertices

Purity is defined as:

N Reconstructed Conv. matched to a Sim Vertex

N Reconstructed Conv.

The cuts/acceptance applied are

The standard Reco. selection criteria

 $\sigma_R < 0.25$ cm $|z_{pc}| < 25$ cm $|\cos\theta_\gamma| < 0.85$ $P_{\rm fit} > 0.01$ 0 Hits before Vtx. $\min(p_{T1},p_{T2}) > 0.2$ GeV

Gen. acceptance criteria:

 $|z_{pc}| < 25$ cm $|\cos \theta| < 0.85$ $\min(p_{T1}, p_{T2}) > 0.2$ GeV

Hungarian algo. is applied to reconstructed conversions after selection

For more details refer to DPG talk: Photon_Conversions_Update_Nov2-20.pdf

https://indico.cern.ch/event/934826/contributions/4088970/attachments/2134433/3596215/Photon_Conversions_Update_Nov2-20.pdf

Weights for monte carlo include

MC nPV distribution weighted to data nPV distribution

MC weighted to data total number of events

All efficiencies require $R < 20 \, \mathrm{cm}$

10

12

18 20 R [cm]

16

0.7

For the $1/X_0$ measurement I used the $N_\gamma=6159$ from my previous talk and $f_{geom}=2\pi(z_2-z_1)\ln(r_2/r1)$. Bin size is 0.2 cm and data uses the BP centered radius (
ho)

Flux of Prompt Gen. Photons through the barre	Flux of Prompt	Gen.	Photons	through	the	barre
---	----------------	------	----------------	---------	-----	-------

Region	Prompt	Converted	Converted &	Fraction	Fraction			
	Photons	$(\times 10^4)$	can Reco.	Converted	converted			
	$(\times 10^4)$		$(\times 10^4)$		can Reco.			
S_1	6159	385	15	6.2%	4.0%			
S_2	5718	93	14	1.6%	15.0%			
<i>S</i> ₃	5551	62	14	1.1%	23.1%			
S_4	5337	44	14	0.82%	31.8%			
S_5	5096	65	21	1.3%	33.1%			
Totals								
$S_{1 o 5}$	6159	649	79	2.3%	12.2%			

- Prompt photons defined by production in $R < 1 {\rm cm}, \ |z| < 15 {\rm cm}, \ {\rm with} \ p_T > 0.4 {\rm GeV}$ and $|\cos \theta| < 0.85$
- Converted represents total conversions without acceptance criteria applied
- Converted & can reco is the number of conversions that pass acceptance pair min. $p_T > 0.2 \text{GeV}$

Sanity Checks:

Can predict number of conversions in S_2 : $5718 \times (7/9) \times (0.0074 + 0.011) = 81(93)$

Total
$$x/X_0$$
 in $R < 25$ observed by prompt photon: $x/X_0 = 649/(6159 \times 7/9) = 13.5\%$

12 / 14

The $1/X_0$ is overestimated from data because there is significantly more conversions at low p_T . However looking at MC we find reasonable agreement in BPIX1 and BPIX 2 of $1/X_0\approx 1\%$. BPIX3, BPIX4, and OUTER look a bit high.