Numerical analysis(SI211)_{Fall 2021-22} Homework 3

Prof. Jiahua Jiang

Name: xxx Student No.: xxx E-mail: xxx@shanghaitech.edu.cn

Acknowledgements:

- 1. Deadline: **2021-12-24 11:59:00**, no late submission is allowed.
- 2. No handwritten homework is accepted. You should submit your homework in Blackboard with PDF format, we recommend you use LATEX.
- 3. Giving your solution in English, solution in Chinese is not allowed.
- 4. Make sure that your codes can run and are consistent with your solutions, you can use any programming language.
- 5. Your PDF should be named as "your_student_id+HW3.pdf", package all your codes into "your_student_id+_Code3.zip" and upload. Don't put your PDF in your code file
- 6. All the results from your code should be shown in pdf but please do not inset your code into LATEX.
- 7. Plagiarism is not allowed. Those plagiarized solutions and codes will get 0 point. If the results on the pdf are inconsistent with the results of code, your coding problem will get 0 point.

1. Euler's Method(20 points.)

For initial-value problem:

$$y'(x) = ax + b$$

$$y(0) = 0,$$
 (1)

use Euler's method and Taylor's method of order 2 to derive the approximation of y_{i+1} with step size h respectively. Besides, compare your results with the exact solution $y = \frac{1}{2}ax^2 + bx$ (i.e. compare y_{i+1} and $y(x_{i+1})$).

Solution:

Exact solution:

$$y(x_{i+1}) = \frac{1}{2}a(x_i+h)^2 + b(x_i+h) = (\frac{1}{2}ax_i^2 + bx_i) + (ax_i+b)h + \frac{1}{2}ah^2 = y_i + (ax_i+b)h + \frac{1}{2}ah^2$$

Euler's method:

$$y_{i+1} = y_i + y'(x_i)h = y_i + (ax_i + b)h$$

$$y(x_{i+1}) - y_{i+1} = \frac{1}{2}ah^2 = \mathcal{O}(h^2)$$

Taylor's method:

$$y_{i+1} = y_i + y'(x_i)h + \frac{1}{2}y''(x_i)h^2 = y_i + (ax_i + b)h + \frac{1}{2}ah^2$$
$$y(x_{i+1}) - y_{i+1} = 0$$

2. Runge-Kutta Methods(20 points.)

Prove the following Runge-kutta method is of order 3(i.e. has truncation error $\mathcal{O}(h^4)$)

$$y_{i+1} = y_i + \frac{h}{4}(K_1 + 3K_3)$$

$$K_1 = f(x_i, y_i)$$

$$K_2 = f(x_i + \frac{h}{3}, y_i + \frac{h}{3}K_1)$$

$$K_3 = f(x_i + \frac{2}{3}h, y_i + \frac{2}{3}hK_2)$$
(2)

Solution:

$$y''(x) = f(x,y)$$

$$y''(x) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}y'(x)$$

$$y'''(x) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial f}{\partial x} \frac{\partial f}{\partial y}y'(x) + \frac{\partial^2 f}{\partial x^2}y'(x) + \frac{\partial f}{\partial y}y''(x)$$

$$= \frac{\partial^2 f}{\partial x^2} + \frac{\partial f}{\partial x} \frac{\partial f}{\partial y}y'(x) + (\frac{\partial f}{\partial y} \frac{\partial f}{\partial x} + \frac{\partial^2 f}{\partial y^2}y'(x))y'(x) + \frac{\partial f}{\partial y}y''(x)$$

$$= \frac{\partial^2 f}{\partial x^2} + 2\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}y'(x) + \frac{\partial^2 f}{\partial y^2}(y'(x))^2 + \frac{\partial f}{\partial y}y''(x)$$

$$K_1 = f(x_i, y_i) = y'(x_i)$$

$$K_2 = f(x_i + \frac{h}{3}, y_i + \frac{h}{3}K_1) = f(x_i, y_i) + \left[\frac{h}{3} \frac{\partial f}{\partial x} + \frac{h}{3}K_1 \frac{\partial f}{\partial y}\right]\Big|_{x_i, y_i} + \mathcal{O}(h^2)$$

$$K_3 = f(x_i + \frac{2}{3}h, y_i + \frac{2}{3}hK_2) = f(x_i, y_i) + \left[\frac{2h}{3} \frac{\partial f}{\partial x} + \frac{2h}{3}K_2 \frac{\partial f}{\partial y}\right]\Big|_{x_i, y_i} +$$

$$\frac{1}{2} \left[\frac{4}{9}h^2 \frac{\partial^2 f}{\partial x^2} + \frac{8}{9}h^2 K_2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} + \frac{4}{9}h^2 K_2^2 \frac{\partial^2 f}{\partial y^2}\right]\Big|_{x_i, y_i} + \mathcal{O}(h^3)$$

$$= y'(x_i) + \frac{2h}{3} \left[\frac{\partial f}{\partial x} + (y'(x) + \frac{h}{3}y''(x)) \frac{\partial f}{\partial y}\right]\Big|_{x_i, y_i} + \mathcal{O}(h^3)$$

$$= y'(x_i) + \frac{2h}{3}y''(x_i) + \frac{2h^2}{9} \left[\frac{\partial^2 f}{\partial x^2} + 2y'(x) \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} + (y'(x))^2 \frac{\partial^2 f}{\partial y^2}\right] + y''(x) \frac{\partial f}{\partial y}\Big|_{x_i, y_i} + \mathcal{O}(h^3)$$

$$= y'(x_i) + \frac{2h}{3}y''(x_i) + \frac{2h^2}{9} \left[\frac{\partial^2 f}{\partial x^2} + 2y'(x) \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} + (y'(x))^2 \frac{\partial^2 f}{\partial y^2} + y''(x) \frac{\partial f}{\partial y}\Big|_{x_i, y_i} + \mathcal{O}(h^3)$$

Above shows that

$$y_{i+1} = y_i + \frac{h}{4}(K_1 + 3K_3) = y_i + hy'(x_i) + \frac{h^2}{2}f''(x_i) + \frac{h^3}{6}f'''(x_i) + \mathcal{O}(h^4)$$

From Taylor expansion, we have

$$y(x_{i+1}) = y_i + hy'(x_i) + \frac{h^2}{2}f''(x_i) + \frac{h^3}{6}f'''(x_i) + \mathcal{O}(h^4),$$

therefore, We conclude that

$$y(x_{i+1}) - y_{i+1} = \mathcal{O}(h^4).$$

3. CodingRunge-Kutta Order Four(10 points.) Use Runge-Kutta Fourth-Order method to solve the following initial-value problem:

$$y'(x) = x + y(0 \le x \le 1)$$

y(0) = 1. (3)

The exact solution of the problem is $y(x) = -x - 1 + 2e^x$. With step size h = 0.1, give your predictions within the interval $x \in [0, 1]$. List the Runge-Kutta 4 method results and their errors in the following table.

x_i	$\operatorname{Exact}(y_i = y(x_i))$	Runge-Kutta Order 4 (w_i)	$\operatorname{Error}(y_i - w_i)$
0.0	1.0	1.0	0

Solutions:

x_i	$\operatorname{Exact}(y_i = y(x_i))$	Runge-Kutta Order 4 (w_i)	$\operatorname{Error}(y_i - w_i)$
0.0	1.0	1.0	0
0.1	1.11034184	1.11034167	1.69484629e-07
0.2	1.24280552	1.24280514	3.74618951e-07
0.3	1.39971762	1.39971699	6.21026931e-07
0.4	1.5836494	1.58364848	9.15121169e-07
0.5	1.79744254	1.79744128	1.26420658e-06
0.6	2.0442376	2.04423592	1.67659715e-06
0.7	2.32750541	2.32750325	2.16174740e-06
0.8	2.65108186	2.65107913	2.73040030e-06
0.9	3.01920622	3.01920283	3.39475376e-06
1.0	3.43656366	3.43655949	4.16864776e-06