Gate-level Minimization

CS207 Lecture 3

James YU

Mar. 4, 2020

Gate-level minimization

- The complexity of digital logic gates to implement a Boolean function is directly related to the complexity of algebraic expression.
- Gate-level minimization is the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.
 - Difficult by hand for more than few inputs.
 - Typically by computer, need to understand the underlying principle.

The map method

- The map method, first proposed by Veitch and slightly improvised by Karnaugh, provides a simple, straightforward procedure for the simplification of Boolean functions.
 - Called Karnauph map.
- The map is a diagram consisting of *squares*. For n variables on a Karnaugh map there are 2n numbers of squares.
 - Each square or cell represents one of the minterms.
 - Since any Boolean function can be expressed as a sum of minterms, it is
 possible to recognize a Boolean function graphically in the map from the area
 enclosed by those squares whose minterms appear in the function.

Two-variable K-map

• A two-variable system can form four minterms

B		B					B					
		0	1			0	1				0	1
4	0	m_0	m_1		0	A'B'	A'B		4	0	0	1
A	1	m_2	m_3	A	1	AB'	AB		A	1	1	1

- The two-variable Karnaugh map is a useful way to represent any of the 16 Boolean functions.
 - Example: A + B = A(B + B') + B(A + A')= AB + AB' + AB + A'B = AB + AB' + A'B
 - So the squares corresponding to AB, AB', and A'B are marked with 1.

- Since there are eight minterms for three variables, the map consists of eight cells or squares.
 - Minterms are arranged, not according to the binary sequence, but according to the sequence similar to the gray code.
 - Between two consecutive rows or columns, only one single variable changes its logic value from 0 to 1 or from 1 to 0.

		BC			
		00	01	11	10
A	0	m_0	m_1	m_3	m_2
	1	m_4	m_5	m_7	m_6

- To understand the usefulness of the map for simplifying the Boolean functions, we must observe the basic properties of the adjacent squares.
 - Any two adjacent squares in the Karnaugh map differ by only one variable, which is complemented in one square and uncomplemented in one of the adjacent squares.
 - The sum of two minterms can be simplified to a single AND term consisting of less number of literals.

•
$$m_1 + m_5 = A'B'C + AB'C = (A' + A)B'C = B'C$$

A

• Example: Simplify the Boolean function F = A'BC + A'BC' + AB'C' + AB'C.

- The first row: A'BC + A'BC' = A'B.
- The second row: AB'C' + AB'C = AB'.
- F = A'B + AB'.

• Example: Simplify the Boolean function F = A'BC + AB'C' + ABC + ABC'.

- The third column: A'BC + ABC = BC.
- The second row: AB'C' + ABC' = AC'.
- F = BC + AC'.

• Example: Simplify the Boolean function $F = \sum (1, 2, 3, 5, 7)$.

		BC			
		00	01	11	10
A	0	0	1	1	1
	1	0	1	1	0

• F = C + A'B.

• Example: Simplify the Boolean function $F = \sum (0, 2, 4, 5, 6)$.

• F = C' + AB'.

 Similar to the method used for two-variable and three-variable Karnaugh maps, four-variable Karnaugh maps may be constructed with 16 squares consisting of 16 minterms.

		cd			
		00	01	11	10
ab	00	m_0	m_1	m_3	m_2
	01	m_4	m_5	m_7	m_6
	11	m_{12}	m_{13}	m_{15}	m_{14}
	10	m_8	m_9	m_{11}	m_{10}

- Two, four, or eight adjacent squares can be combined to reduce the number of literals in a function.
- The squares of the top and bottom rows as well as leftmost and rightmost columns may be combined.
 - When two adjacent squares are combined, it is called a pair and represents a term with three literals.
 - Four adjacent squares, when combined, are called a quad and its number of literals is two.
 - If eight adjacent squares are combined, it is called an octet and represents a term with one literal.
 - If, in the case all sixteen squares can be combined, the function will be reduced to 1.

• Example: Simplify the Boolean function $F = m_1 + m_5 + m_{10} + m_{11} + m_{12} + m_{13} + m_{15}$.

- A'B'C'D + A'BC'D = A'C'D,
- ABC'D' + ABC'D = ABC',
- F = A'C'D + ABC' + ACD + AB'C.
- This reduced expression is not a unique one.
 - If pairs are formed in different ways, the simplified expression will be different.

- Example: Simplify the Boolean function $F = m_1 + m_5 + m_{10} + m_{11} + m_{12} + m_{13} + m_{15}$.
- F = A'C'D + ABC' + ABD + AB'C.

• Example: Simplify the Boolean function $F = \sum (7, 9, 10, 11, 12, 13, 14, 15)$.

• F = AB + AC + AD + BCD.

• Example: Plot the logical expression F(A,B,C,D)=ABCD+AB'C'D'+AB'C+AB on a four-variable Karnaugh map.

$$F(A, B, C, D)$$
= $ABCD + AB'C'D' + AB'C + AB$
= $ABCD + AB'C'D' + AB'C(D + D')$
+ $AB(C + C')(D + D')$
= ...
= $\sum (8, 10, 11, 12, 13, 14, 15)$
= $AB + AC + AD'$

• Simplify the expression $F(W, X, Y, Z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14).$

• Simplify the expression F(W, X, Y, Z) = W'X'Y' + X'YZ' + W'XYZ' + WX'Y'.

$$F(W, X, Y, Z)$$

$$= W'X'Y'(Z + Z') + X'YZ'(W + W')$$

$$+ W'XYZ' + WX'Y'(Z + Z')$$

$$= W'X'Y'Z + W'X'Y'Z' + WX'YZ'$$

$$+ W'X'YZ' + W'XYZ' + WX'Y'Z$$

$$+ WX'Y'Z'$$

$$= \sum (0, 1, 2, 6, 8, 9, 10)$$

$$= X'Y' + X'Z' + W'YZ'$$

• Simplify the expression $F(W, X, Y, Z) = \sum (3, 4, 5, 7, 9, 13, 14, 15).$

- It may be noted that one quad can also be formed, but it is redundant as the squares contained by the quad are already covered by the pairs which are essential.
- F = W'XY' + W'YZ + WY'Z + WXY.

- Simplify the expression $F(W, X, Y, Z) = \prod (0, 1, 4, 5, 6, 8, 9, 12, 13, 14).$
 - The above expression is given in respect to the maxterms.
 - O's are to placed instead of 1's at the corresponding maxterm squares.
- $F' = Y' + XZ' \to F = Y(X' + Z)$.

- Simplify the expression $F(W, X, Y, Z) = \prod (0, 1, 4, 5, 6, 8, 9, 12, 13, 14).$
 - The other way to achieve the minimized expression is to consider the 1's of the Karnaugh map.
- F = YZ + X'Y = Y(X' + Z).

		YZ			
		00	01	11	10
	00	0	0	1	1
WX	01	0	0	1	0
VV A	11	0	0	1	0
	10	0	0	1	1

Five-variable K-map

- Karnaugh maps with more than four variables are not simple to use.
 - The number of cells or squares becomes excessively large and combining the adjacent squares becomes complex.
 - A five-variable Karnaugh map contains 2^5 or 32 cells.

Prime Implicants

- A prime implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map.
- The prime implicants of a function can be obtained from the map by combining all possible maximum numbers of squares.
 - If a minterm in a square is covered by only one prime implicant, that prime implicant is said to be *essential*.
- Gate-level minimization:
 - Determine all essential prime implicants.
 - Find other prime implicants that cover remaining minterms.
 - · Logical sum all prime implicants.

Don't care conditions

- In practice, Boolean function is not specified for certain combinations of input variables.
 - Input combinations never occur during the process of a normal operation.
 - Those input conditions are guaranteed never to occur.
- Such input combinations are called don't-care conditions.
- These input combinations can be plotted on the Karnaugh map for further simplification.
 - The don't care conditions are represented by d or X in a K-map.
 - They can be either 1 or 0 upon needed.

Don't care conditions

• Simplify the expression $F(A, B, C, D) = \sum (1, 3, 7, 11, 15), d = \sum (0, 2, 5).$

• F = A'B' + CD.

		CD			
		00	01	11	10
	00	X	1	1	X
AB	01		X	1	
AD	11			1	
	10			1	

Don't care conditions

• Simplify the expression $F(A, B, C, D) = \sum (1, 3, 7, 11, 15), d = \sum (0, 2, 5).$

• F = A'D + CD.

Verilog user defined primitives

- Verilog has built-in primitives like gates, transmission gates, and switches.
 - This is a rather small number of primitives.
 - If we need more complex primitives, Verilog provides <u>User Defined Primitives</u> (UDP).
- UDP begins with reserve word primitive and ends with endprimitive.
 - Similar to what we do for module definition, ports/terminals of primitive should follow.
- UDPs should be defined outside module and endmodule.

```
primitive udp_syntax (a, b, c, d);
output a;
input b,c,d;

// UDP function code here
endprimitive
```


UDP ports rules

- An UDP can contain only one output and up to 10 inputs.
- Output port should be the first port followed by one or more input ports.
- All UDP ports are scalar, i.e. Vector ports are not allowed.
- UDPs can not have bidirectional ports.
- It is illegal to declare a reg for the output terminal of a combinational UDP.
- The output terminal of a sequential UDP requires an additional declaration as type reg.

UDP body

 Functionality of primitive is described inside a table, and it ends with reserved word endtable as shown in the code below.

```
primitive udp syntax (a, b, c);
2 output a;
3 input b,c;
  // UDP function code here
_{6} // A = B | C:
7 table
 ? 1 : 1;
1 ? : 1;
10
     0 0 : 0;
11
12 endtable
13 endprimitive
```

UDP body

- Table is used for describing the function of UDP.
- Each line inside a table is one condition.
 - When an input changes, the input condition is matched and the output is evaluated to reflect the new change in input.
 - An UDP cannot use z in the input table.
- UDP uses special symbols to describe functions like rising edge, don't care and so on.

UDP body

Symbol	Interpretation	Explanation
5	0 or 1 or x	
b	<pre>0 or 1</pre>	
f	(10)	Falling edge on an input
r	(01)	Rising edge on an input
р	(01) or (0x) o	or (x1) or (1z) or (z1)
n	(10) or (1x) o	or (x0) or (0z) or (z0)
*	(??)	All transitions
-	-	No change

