1. (a)

Yit = M+ Ti+ Eit, i = A, P. C, t=1, 2.

note: C stands-for "control".

A stands for "drug A" L B stands for clarug B".

(C) For [Yit], i = A, B, C, t = 1, 2 $Y_{A} = \frac{-14-4}{2} = -9$ $Y_{B} = \frac{5-1}{2} = 2$ $Y_{C} = \frac{-2+6}{2} = 2$. $Y_{...} = \frac{-14-4+5-1-2+6}{6} = -\frac{5}{3}$

 $SST = 2x(-9+\frac{5}{3})^2 + 2x(2+\frac{5}{3})^2 + 2x(2+\frac{5}{3})^2 = \frac{484}{3}$

SSTOT = (14+\frac{1}{3})^2 + (4+\frac{1}{3})^2 + (5+\frac{1}{3})^2 + (1+\frac{1}{3})^2 + (2+\frac{1}{3})^2 + (6+\frac{1}{3})^2 = \frac{784}{3}

SSE = SSTOT - SSE = 100

(b) E(ABPofB)= M+ TB = \bar{Y}_B. = 2.

ABP of B ~ N(2, %) since YB. ~N(2, %)

(d) $\hat{\sigma}^2 = \frac{SSE}{n-v}$ where n=6, v=3 $= \frac{100}{6-2} = \frac{100}{3}$

(e) E(ABP of A - ABP of () = (u+ Ta)- (u+ Tc) = Ya. - Yc. = -11.

ABP of A - ABP of C ~ $N(-11, \sigma^2)$ since $Y_A - Y_C \sim N(-9-2, \frac{\sigma^2}{2} + \frac{\sigma^2}{2}) = N(-11, \sigma^2)$

- (f) When $T_A = T_C$, $(u+T_A) (u+T_C) = 0$. Then, $\hat{Y}_A - \hat{Y}_C \sim N(0, \sigma^2)$.
- (g) Let $K(\sigma) = \sigma$.

 Then, $\frac{\hat{Y}_{A} \hat{Y}_{C}}{K(\sigma)} \sim N(0/\sigma^{2}, 0/\sigma^{2}) = N(0.1)$.
- $(h) \frac{SSE}{\sigma^2} = \frac{\frac{7}{2} \frac{1}{5} (Y_{i4} Y_{i.})^2}{\sigma^2}$ $= \left[\frac{\frac{7}{2} \frac{1}{5} (Y_{i4} Y_{i.})}{\sigma} \right]^2 = \frac{7}{2} \frac{1}{5} \left(\frac{Y_{i4} Y_{i.}}{\sigma} \right)^2$

Since Yit-(U+7;)~ N(O,1) where Yit iid N(U+7;, 02),

(Yit-(U+7;))~ X2,

Then, $\overline{\xi} = \frac{\chi_{i+-\mu+\gamma_{i}}}{\sqrt{2}}$ ~ χ_{i}^{2} Now, replace $\mu+\gamma_{i}$ with χ_{i}^{2} , we have $\frac{\zeta}{\zeta} = \frac{1}{2} = \frac{\chi_{i}^{2}}{\sqrt{2}} = \frac{\chi_{i}^{2}}{\sqrt{2}} = \frac{\chi_{i}^{2}}{\sqrt{2}} = \frac{\chi_{i}^{2}}{\sqrt{2}}$.

(i) Since $\frac{SSE}{\sigma^2}$ is chi-square distribution with degree of freedom 3 and $\frac{\hat{v}_0 - \hat{v}_0}{K(\sigma)}$ is standard normal distribution, $\frac{(\hat{v}_0 - \hat{v}_0)/K(\sigma)}{SSE/(m-v)\sigma^2]} \sim t_3$

(j) ANOVA (one-way):

Source	Deg of Freedom	Sum of Square	Mean Square	Ratio
Treatment	3-1=2	484/3	(484/3 1/2 = 243/3	(24%)/(10%) = 2.42
Error	6-3=3	100	100/3	
Total	6-1=5	784/3		

Ho: there are no differences in mean blood pressure change between women getting any treatment.

Under null hypothesis, test statistic T* = 2.42
Test statistic is F distribution (ie. F2.3)