Funktionalanalysis - Übungsblatt 1

Wintersemester 2023

Dr. Jan Fuhrmann, Christian Düll

Abgabe: 27.Oktober 2023, bis 11.00 Uhr in die Zettelkästen

Aufgabe 1.1 4 Punkte

Es sei a < b. Zeigen Sie, dass

$$||f||_{\infty} := \sup_{a \le t \le b} |f(t)|$$

auf $V := C([a, b]; \mathbb{R})$ eine Norm definiert. Zeigen Sie weiterhin, dass $(V, \|\cdot\|_{\infty})$ ein Banach-Raum ist.

Aufgabe 1.2 4 Punkte

Es sei $p \in [1, \infty)$. Zeigen Sie, dass $\|\cdot\|_p$ auf $\ell_p^{\mathbb{K}}$ eine Norm definiert.

Hinweis: Verwenden Sie für die Dreiecksungleichung die Hölder Ungleichung A.19 mit dem Zählmäβ.

Aufgabe 1.3 4 Punkte

Der Raum der Nullfolgen in K sei definiert durch

$$c_0 := \left\{ b \in \ell_\infty \mid \lim_{n \to \infty} b_n = 0 \right\} \subset \ell_\infty.$$

Zeigen Sie, dass der Abschluss von c_{00} in ℓ_{∞} durch c_0 gegeben ist.

Hinweis: Zeigen Sie zunächst

$$c_{00} \subset c_0 \subset \overline{c_{00}}$$
.

Aufgabe 1.4 4 Punkte

Sei (X,d) ein metrischer Raum und $\mathbb{R}_+ = [0,\infty)$. Zeigen Sie die folgenden Aussagen.

- (a) Ist $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ eine stetig differenzierbare, strikt monoton wachsende Funktion mit $\varphi(0) = 0$ sowie monoton fallender Ableitung φ' , so ist auch $\varphi \circ d$ eine Metrik auf X.
- (b) Ist $X = \mathbb{R}$ mit $d_2(x, y) = |\arctan(x) \arctan(y)|$, so induziert d_2 eine Metrik auf X. Außerdem stimmt die durch d_2 induzierte Topologie mit der Standardtopologie von (\mathbb{R}, d) für d(x, y) = |x y| überein. Jedoch ist (\mathbb{R}, d_2) nicht vollständig.

Hinweis. Sie können ohne Beweis verwenden, dass arctan : $\mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ ein Homöomorphismus ist.