ЛАБОРАТОРНА РОБОТА №2

ПОРІВНЯННЯ МЕТОДІВ КЛАСИФІКАЦІЇ ДАНИХ

Мета заняття: використовуючи спеціалізовані бібліотеки та мову програмування Python дослідити різні методи класифікації даних та навчитися їх порівнювати.

Хід роботи

Пулеко І. В.

Перевір.

Керівник

Н. контр. Зав. каф.

GitHub репозиторій: https://github.com/AlexanderHorielko/SAI_Horielko_PI-59

Завдання 2.1. Класифікація за допомогою машин опорних векторів (SVM)

Назва	Опис	Тип значень
age	Вік	Числове
workclass	Вид працевлаштування	Категоріальне
fnlwgt	Кількість осіб з такими ж ознаками	Числове
education	Навчання	Категоріальне
education-num	Років навчання	Числове
marital-status	Сімейне положення	Категоріальне
occupation	Професія	Категоріальне
relationship	Відносини	Категоріальне
race	Paca	Категоріальне
sex	Стать	Категоріальне
capital-gain	Приріст капіталу	Числове
capital-loss	Втрата капіталу	Числове
hours-per-week	Кількість робочих годин на тиждень	Числове
native-country	Країна походження	Категоріальне

Звіт з

лабораторної роботи

ФІКТ Гр. ПІ-59

 -						
f	from sk	learn.svm im	port Li lass im	nearS port	VC OneVsOneClassifier	
		Горєлко О. В.				Арк.
3мі	н. Арк.	Пулеко І. В. № докум.	Підпис	Дата	ЖИТОМИРСЬКА ПОЛІТЕХНІКА.21.121.05.000 — Лр2	2

```
input file = 'income data.txt'
X = []
max datapoints = 25000
X = np.array(X)
label encoder = []
X encoded = np.empty(X.shape)
X = X encoded[:, :-1].astype(int)
y = X encoded[:, -1].astype(int)
classifier = OneVsOneClassifier(LinearSVC(random state=0))
X_train, X_test, y_train, y_test = train_test split(X, y, test size=0.2, ran-
classifier.fit(X train, y train)
y test pred = classifier.predict(X test)
accuracy = cross_val_score(classifier, X, y, scoring='accuracy', ev=3)
print("Accuracy score: " + str(round(100 * accuracy.mean(), 2)) + "%")
precision = cross_val_score(classifier, X, y, scoring='precision', cv=3)
print("Precision score: " + str(round(100 * precision.mean(), 2)) + "%")
recall = cross_val_score(classifier, X, y, scoring='recall', cv=3)
print("Recall score: " + str(round(100 * recall.mean(), 2)) + "%")
```

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата

Рисунок 1. Код програми

Accuracy score: 62.64% Precision score: 69.18% Recall score: 38.24% F1 score: 56.15%

Тестова точка - <=50К. Отже тестова точка має дохід менше 50 тисяч в рік.

Завдання 2.2. Порівняння якості класифікаторів SVM з нелінійними ядрами

Поліноміальне ядро

Accuracy score: 58.41%

Precision score: 41.6%

Recall score: 33.05%

F1 score: 46.5%

>50K

Гаусове ядро

Accuracy score: 78.61% Precision score: 98.72%

Recall score: 14.26%

F1 score: 71.95%

>50K

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата

Сигмоїдальне ядро

Accuracy score: 63.89% Precision score: 27.01%

Recall score: 26.48%

F1 score: 63.77%

<=50K

Найбільш точним виявився SVM класифікатор з гаусовим ядром.

Завдання 2.3. Порівняння якості класифікаторів на прикладі класифікації сортів ірисів

```
ち task2_1.py
               < 🐔 task2_2.py
                             🛵 task2_3.py
iris_dataset = load_iris()
print("Назва ознак: \n{}".format(iris_dataset['feature_names']))
print("Тип масиву data: {}".format(type(iris_dataset['data'])))
print("Тип масиву target:{}".format(type(iris_dataset['target'])))
print("Відповіді:\n{}".format(iris_dataset['target']))
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
     :Number of Attributes: 4 numeric, pre
Назви відповідей:['setosa' 'versicolor' 'virginica']
Назва ознак:
 Тип масиву target:<class 'numpy.ndarray'>
```

Рисунок 1. Код структури даних

		Горєлко О. В.			
		Пулеко I. B.			ЖИТОІ
Змн.	Арк.	№ докум.	Підпис	Дата	

Рисунок 2. Одновимірні графіки

Рисунок 3. Діаграма розмаху атрибутів вхідних даних

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата

Рисунок 4. Матриця діаграм розсіювання

```
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = read_csv(url, names=names)

dataset.plot(kind='box', subplots=True, layout=(2, 2), sharex=False, sharey=False)
pyplot.show()

dataset.hist()
pyplot.show()

scatter_matrix(dataset)
pyplot.show()
```


Рисунок 5. Порівняння алгоритмів

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата

Проаналізувавши ортиманий графік, я обрав метод класифікації SVM, тому що він показав найвищу якість.

```
ру × 🕻 task2_1.py × 🕻 task2_2.py × 🕻 task2_3.py ×
# оцінюємо модель на кожній іїерації
   for name, model in models:
       kfold = StratifiedKFold(n_splits=10, random_state=1, shuffle=True)
      results.append(cv_results)
   pyplot.boxplot(results, labels=names)
   pyplot.title('Algorithm Comparison')
   pyplot.show()
   print("форма массива X_new: {}".format(X_new.shape))
   prediction = model.predict(X_new)
    D:\University\4(2)\AI\lab2\Scripts\python.exe D:/University/4(2)/AI/lab2/task3.py
= LDA: 0.975000 (0.038188)
KNN: 0.958333 (0.041667)
EL CART: 0.941667 (0.053359)
SVM: 0.983333 (0.0333333)
    0.9666666666666667
    Iris-setosa 1.00 1.00 1.00
Iris-versicolor 1.00 0.92 0.96
Iris-virginica 0.86 1.00 0.92
           macro avg 0.95 0.97
ighted avg 0.97 0.97
        weighted avg
     форма массива X_new: (1, 4)
     Прогноз: ['Iris-setosa']
     Спрогнозована мітка: Iris-setosa
     Process finished with exit code 0
```

Рисунок 6. Результат

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата

Завдання 2.4. Порівняння якості класифікаторів для набору даних завдання 2.1

Рисунок 7. Порівняння алгоритмів **Завдання 2.5.** Класифікація даних лінійним класифікатором Ridge

Рисунок 8. Класифікатор Ridge

		Горєлко О. В.		
		Пулеко I. B.	·	
3мн.	Арк.	№ докум.	Підпис	Дата

Рисунок 9. Confusion.jpg

Класифікатор має наступні параметри:

- tol точність класифікації
- solver алгоритм, який виконує класифікацію

На зображені Confusion.jpg наведені результати класифікації. На вертикальній шкалі відкладені наявні класи ірису в числовій репрезентації, а на горизонтальній передбаченя класи ірису. Цифра на перетині – кількість результатів системи при справжньому і передбаченому класі.

Коефіцієнт кореляції Метьюза — коефіцієнт, який на основі матриці помилок вираховує коефіцієнт від -1 до 1, де $1-\varepsilon$ результатом ідеальної класифікації, а 0- рівень випадкового вибору.

Коефіцієнт Коена Каппа – коефіцієнт, якй також за основу бере матрицю помилок, але замість загальної якості, звертає увагу на нерівноцінне розподілення класів.

Висновок: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідив різні методи класифікації даних та навчився їх порівнювати.

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата