

HIGH THERMAL STABILITY MICROPOWER SHUNT VOLTAGE REFERENCE

- LOW Tc: 50 ppm/°C MAXIMUM
- 1.225V OUTPUT VOLTAGE
- LOW OPERATING CURRENT: 45µA max @ 25°C
- HIGH PRECISION AT 25°C: ±1%
- STABLE WHEN USED WITH CAPACITIVE LOADS
- INDUSTRIAL TEMPERATURE RANGE: -40 to +85°C

DESCRIPTION

The TS824 is a low power shunt voltage reference featuring a very low temperature coefficient of 50ppm/°C as a maximum value. Providing 1.225V output voltage, the TS824 operates over the industrial temperature range (-40 to +85°C). Ideal for battery-powered equipments where power conservation is critical, the TS824 is housed in a tiny SOT23-3 package allowing space saving.

The TS824 is typically stable with any capacitive loads within the entire temperature range. The product is thus easy to use and the design simplified.

APPLICATION

- Instrumentation,
- Data acquisition systems,
- Portable, Battery powered equipments
- Power management

ORDER CODE

Voltage	Precision	SOT23-3	SOT23 Marking			
1.225V	1%	TS824ILT-1.2	L251			
Single temperature range: -40 to +85°C						

LT = Tiny Package (SOT23-3) - only available in Tape & Reel (LT)

PIN CONNECTIONS (top view)

March 2002 1/5

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
I _K	Reverse Breakdown Current	20	mA
I _F	Forward Current	10	mA
P _D	Power Dissipation (note 1) SOT23-3	360	mW
T _{Std}	Storage Temperature	-65 to +150	°C
TJ	Junction Temperature	+150	°C
T _{Lead}	Lead Temperature (soldering, 10 seconds)	+260	°C
ESD	Human Body Model (HBM) (note 2)	2	kV
	Machine Model (MM) (note 2)	200	V

Note 1: The maximum power dissipation must be derated at high temperature. It can be calculated using T_{JMAX} (maximum junction temperature), R_{THJA} (Thermal resistance junction to ambient) and T_A (Ambient temperature). The maximum power dissipation formula at any temperature is $P_{DMAX} = (T_{JMAX} - T_A) / R_{THJA}$. $R_{THJA} = 340 \, \text{C/W}$ for the SOT23-3 package.

Note 2: The Human Body Model (HBM) is defined as a 100pF capacitor discharge through a $1.5 \mathrm{k}\Omega$ resistor into each pin. The Machine Mode (MM) is defined as a 200pF capacitor discharge directly into each pins.

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
I _{min}	Minimum Operating Current	40	μΑ
I _{max}	Maximum Operating Current	12	mA
T _{oper}	Operating Free Air Temperature Range	-40 to +85	°C

ELECTRICAL CHARACTERISTICS (note 3)

 $T_{amb} = 25$ °C (unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
	Reverse Breakdown Voltage	I _K = 100μA	1.213	1.225	1.237	V
V _K	Reverse Breakdown Voltage Tolerance	$I_{K} = 100\mu A$ -40°C < T_{amb} < +85°C	-12 -16		+12 +16	mV
1	Minimum Operating Current	T _{amb} = 25°C		40	45	
'KMIN	$V_{K} \ \ \text{Reverse Breakdown Voltage Tolerance} \ \ \frac{I_{K} = 100 \mu A}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{KMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{KMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C} < T_{amb}} < +85^{\circ} \text{C}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C}} < I_{CMIN}}{-40^{\circ} \text{C} < I_{CMIN}} < I_{CMIN}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C}} < I_{CMIN}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C}} < I_{CMIN}}{-40^{\circ} \text{C}} < I_{CMIN}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C}} < I_{CMIN}}{-40^{\circ} \text{C}} < I_{CMIN}} \ \ \frac{I_{CMIN}}{-40^{\circ} \text{C}} < I_{CMIN}} \$			50	μΑ	
$\Delta V_{K}/\Delta T$		I _K = 100μA			50	ppm/°C
A)/ /AI	Reverse Breakdown Voltage Change			0.3	1 1.5	mV
ΔνκιΔικ	with Operating Current Range	1.		2.5	8 10	IIIV
В	Ctatic Immediance			0.3	1 1.5	
INKA	Static impedance	7.5		0.25	0.7 0.9	Ω
K _{VH}	Long Term Stability	$I_K = 100 \mu A, t = 1000 hrs$		120		ppm
E _N	Wide Band Noise	$I_K = 100\mu A$ 100Hz < f < 10kHz		200		nV/√Hz

Note 3: Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation and by design.

Note 4: The total tolerance within the industrial range, where the maximum ΔT versus 25°C is 65°C, is explained hereafter: \pm 1 % + (\pm 50 ppm/°C x 65°C) = \pm 1.325 %

Reference voltage versus cathode current

Reference voltage versus cathode current

Test circuit

Reference voltage versus Temperature

Static impedance for lk < 1mA

Static impedance for Ik > 1mA

Start-Up characteristics with low lk (100µA)

Start-Up schematic with low lk (100µA)

Noise versus frequency

4/5

PACKAGE MECHANICAL DATA

3 PINS - TINY PACKAGE (SOT23-3)

Dimensions -	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	0.890		1.120	0.035		0.044	
A1	0.010		0.100	0.0004		0.004	
A2	0.880	0.950	1.020		0.037	0.040	
b	0.300		0.500	0.012		0.020	
С	0.080		0.200	0.003		0.008	
D	2.800	2.900	3.040	0.110	0.114	0.120	
Е	2.100		2.640	0.083		0.104	
E1	1.200	1.300	1.400	0.047	0.051	0.055	
е		0.950			0.037		
e1		1.900			0.075		
L	0.400	0.500	0.600	0.016	0.020	0.024	
L1		0.540			0.021		
k	0°		8°				

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States © http://www.st.com - United Kingdom

