Raport z Ćwiczenia 2

Bartłomiej Rasztabiga 304117

17 listopada 2021

1 Treść zadania

Zaimplementuj strategię ewolucyjną typu $(\mu/\mu, \lambda)$ -ES, w której rozważysz dwa mechanizmy adaptacji zasięgu mutacji:

- samoadaptację (ang. Self-Adaptation, SA)
- metodę logarytmiczno-gaussowską (ang. Log-Normal Mutation Rule, LMR).

Następnie zbadaj zbieżność obu metod w zależności od rozmiaru populacji potomnej oraz początkowej wartości zasięgu mutacji.

2 Opis implementowanego algorytmu

Poniżej przedstawiam pseudokod wykorzystanej strategii ewolucyjnej. Zastosowanym warunkiem zakończenia ewolucji jest osiągnięcie maksymalnej liczby iteracji.

```
iteration = 0
avg_point = Individual(initial_point, initial_sigma)
while iteration < max_iteration:
    generate_lambda_individuals()
                                       \# generowanie \lambda kopii avg_point
                                       \# adaptacja \sigma: LMR lub SA
    sigma_adaptation()
    mutation()
                                       \# mutacja: x + \sigma * \mathcal{N}_i(0, \mathbf{I}_D)
                                       \# ocena populacji
    grade_population()
    succession()
                                       \# sukcesja - \mu najlepszych osobnikow
                                       # wyliczenie avg_point
    recombination()
    update_best_so_far()
                                       # aktualizacja najlepszego osobnika
return best_so_far, iteration
```

3 Opis planowanych eksperymentów numerycznych

3.1 Porównanie najlepszych osobników z algorytmów LMR i SA

Pierwszym planowanym eksperymentem będzie porównanie wyjściowego najlepszego osobnika dla obu algorytmów adaptacji: samoadaptacji i LMR. Zastosowano różne wartości μ i σ . $\mu \in \{2, 10, 100\}, \sigma \in \{0.1, 1, 10\}$

Do celów porównania jakości obu algorytmów adaptacji sigmy wykorzystałem poniższe dwie funkcje:

- f(x) funkcja sferyczna wyrażona wzorem $f(\mathbf{x}) = \sum_{i=1}^n x_i^2, \; \mathbf{x} \in [-100, 100]^D$
- g(x) funkcja "happy cat" wyrażona wzorem $q(\boldsymbol{x}) = [(\|\boldsymbol{x}\|^2 D)^2]^{1/8} + D^{-1}(\frac{1}{2}\|x\|^2 + \sum_{i=1}^D x_i) + \frac{1}{2}, \ \boldsymbol{x} \in [-100, 100]^D$

W obu przypadkach parametr D (wymiarowość) równy jest 10.

3.2 Porównanie zbieżności algorytmów LMR i SA

Drugim planowanym eksperymentem będzie porównanie ocen uśrednionych osobników w czasie dla obu algorytmów adaptacji. Zastosowano takie same wartości μ i σ oraz funkcje kosztu jak w eksperymencie numer 1.

4 Opis uzyskanych wyników

4.1 Porównanie najlepszych osobników z algorytmów LMR i SA

W kolumnach LMR i SA podane są finalne oceny uśrednionych osobników, odpowiednio dla algorytmu LMR i samoadaptacji. Porównanie dokonane jest dla obu funkcji: f(x) i q(x).

Tablica 1: f(x) - funkcja sferyczna

mi	sigma	LMR	SA
2	0.1	9.241e+03	1.285e-03
2	1	1.610e + 03	1.180e-11
2	10	4.989e + 01	9.722e-13
10	0.1	1.083e + 04	3.717e-25
10	1	3.196e+01	1.626e-38
10	10	2.068e-01	1.426e-41
100	0.1	2.242e+03	1.306e-38
100	1	2.046e-04	3.339e-48
100	10	6.267 e-04	1.207e-51

Tablica 2: $\mathbf{q}(\mathbf{x})$ - funkcja happy cat

			~ .
mi	sigma	LMR	SA
2	0.1	2.075e + 02	1.579e + 00
2	1	7.426e + 01	1.541e+00
2	10	4.746e + 00	1.596e + 00
10	0.1	4.535e + 02	1.003e+00
10	1	2.048e+01	1.046e+00
10	10	7.903e-01	1.032e+00
100	0.1	4.191e+02	5.574e-01
100	1	6.744e-01	5.780e-01
100	10	9.391e-01	5.592e-01

Rysunek 1: Wartość funkcji f(x) dla uśrednionego osobnika wynikowego ES, początkowa $\sigma{=}0.1$

Rysunek 2: Wartość funkcji f(x) dla uśrednionego osobnika wynikowego ES, początkowa $\sigma{=}1$

Rysunek 3: Wartość funkcji f(x) dla uśrednionego osobnika wynikowego ES, początkowa $\sigma{=}10$

Rysunek 4: Wartość funkcji q(x) dla uśrednionego osobnika wynikowego ES, początkowa $\sigma{=}0.1$

Rysunek 6: Wartość funkcji q(x) dla uśrednionego osobnika wynikowego ES, początkowa $\sigma=10$

4.2 Porównanie zbieżności algorytmów LMR i SA

Wyniki drugiego eksperymentu przedstawione są w postaci zgrupowanych wykresów przedstawiających wartości funkcji kosztu dla każdej iteracji, przez co można zaobserwować zbieżność lub rozbieżność metody. W kolumnach przedstawione są wykresy dla takich samych wartośći μ a w wierszach dla σ . Na osi x podane są iteracje (w tym przypadku są to wartośći od 0 do 1000), a na osi y przedstawiono wartość funkcji kosztu dla uśrednionego osobnika populacji wynikowej.

mi=10 sigma=0.1 mi=100 sigma=0.1 mi=2 sigma=0.1 10^{-2} 10-19 10⁻³⁶ LMR mi=100 sigma=1 mi=2 sigma=1 mi=10 sigma=1 10^{-2} 10⁻¹⁹ 10^{-36} LMR LMR LMR mi=100 sigma=10 mi=2 sigma=10 mi=10 sigma=10 10^{-2} 10⁻¹⁹ 10⁻³⁶ LMR LMR LMR SA SA SA 500 1000 500 1000 500 1000

Rysunek 7: Wartość funkcji f(x) dla uśrednionego osobnika w czasie

Rysunek 8: Wartość funkcji q(x) dla uśrednionego osobnika w czasie

5 Wnioski z przeprowadzonych badań

5.1 Porównanie najlepszych osobników z algorytmów LMR i SA

Algorytm samoadaptacji oferuje znacząco lepsze wyniki niż algorytm LMR. Jest to spowodowane różnicą w implementacji, polegającą na uśrednianiu sigmy podczas uśredniania populacji (w trakcie rekombinacji). Z tego powodu kolejna sigma wyliczana jest na podstawie sigmy, służącej do wyliczenia lepszej części populacji (po sukcesji elitarnej).

Ponadto można zauważyć, że wyższe wartości początkowej σ z reguły powodują szybsze zbieganie algorytmu. Jednakże w przypadku zastosowania za wysokiej σ , algorytm LMR powoduje znaczące rozbieganie kolejnych populacji. Algorytm samoadaptacji, jak nazwa wskazuje, posiada zdolności zmniejszania zbyt wysokiej σ , przez co nie ma to tak negatywnego efektu jak w przypadku LMR.

W przypadku różnych wartości μ można zaobserwować poprawę jakości działania algorytmu wraz ze wzrostem rozmiaru populacji, chociaż wiąże się to z wydłużeniem czasu działania.

5.2 Porównanie zbieżności algorytmów LMR i SA

Z wykresów zbieżności algorytmów LMR i SA można zauważyć, że algorytm samoadaptacji zachowuje się bardzo dobrze w sytuacji wysokiej μ i σ . Nie występują w nim również oscylacje ani odbieganie od minimum funkcji kosztu.

Algorytm LMR w większości przypadków od pewnej iteracji "ucieka" w zbyt wysokie wartości funkcji lub zatrzymuje się w pewnym punkcie.

W przypadku funkcji f(x) algorytm LMR jest w stanie znaleźć punkt bliski minimum globalnemu, jednakże SA uzyskuje w tych przypadkach znacząco wyższą dokładność.