

SÍLABO RESISTENCIA DE MATERIALES II

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: VI CURSO DE VERANO 2018-I

I. CÓDIGO DEL CURSO : 09026606040

II. CRÉDITOS : 04

III.REQUISITOS : 09026005050 Resistencia de Materiales I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de Resistencia de Materiales II está ubicado en el VI ciclo, es de naturaleza teórica y práctica. Su propósito es brindar al estudiante los conceptos básicos de los métodos de cálculo de las estructuras utilizadas en la construcción.

La asignatura comprende las siguientes unidades de aprendizaje: I. Deformación en vigas. II. Métodos energéticos. III. Vigas continuas

VI. FUENTES DE CONSULTA:

Bibliográficas

- · Villarreal, G. (2015). Resistencia de Materiales. 2da Edición. Perú: Gráfica Norte.
- Villarreal, G. (2013). Resistencia de Materiales II: Prácticas y Exámenes USMP. Perú; Gráfica Norte.

Electrónicas

· Villarreal, G.(2013). Blog de Ingeniería Estructural. <u>www.gennervillarrealcastro.blogspot.com</u>

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: DEFORMACIÓN EN VIGAS

OBJETIVOS DE APRENDIZAJE:

- Representar analítica y gráficamente las deflexiones y pendientes en vigas isostáticas generados por cargas externas.
- Resolver vigas hiperestáticas, aplicando los diversos métodos de análisis y calcular las deformaciones en cualquier punto de la viga.
- Aplicar los principios básicos del equilibrio para resolver problemas.

PRIMERA SEMANA

Primera sesión:

Método de la doble integración: vigas isostáticas.

Segunda sesión:

Método de la doble integración: vigas hiperestáticas.

SEGUNDA SEMANA

Primera sesión:

Método de la viga conjugada: vigas isostáticas.

Segunda sesión:

Método de la viga conjugada: vigas hiperestáticas.

TERCERA SEMANA

Primera sesión:

Práctica calificada Nº 1.

Segunda sesión:

Resolución de práctica calificada Nº 1.

UNIDAD II: MÉTODOS ENERGÉTICOS

OBJETIVOS DE APRENDIZAJE:

- Representar analítica y gráficamente las deflexiones y pendientes en armaduras, vigas, pórticos y arcos por los métodos del trabajo virtual y teoremas de Castigliano.
- Aplicar los principios básicos del trabajo virtual y teoremas de Castigliano para resolver problemas.

CUARTA SEMANA

Primera sesión:

Energía potencial de deformación: armaduras.

Segunda sesión:

Energía de deformación: vigas.

QUINTA SEMANA

Primera sesión:

Energía potencial de deformación: pórticos.

Segunda sesión:

Energía de deformación: arcos.

SEXTA SEMANA

Primera sesión:

Práctica calificada Nº 2.

Segunda sesión:

Resolución de práctica calificada Nº 2.

SÉPTIMA SEMANA

Primera sesión:

Energía potencial de deformación: estructuras con rótulas intermedias.

Segunda sesión:

Energía de deformación: apoyos elásticos.

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Primera sesión:

Método del trabajo virtual: armaduras y vigas.

Segunda sesión:

Método del trabajo virtual: pórticos y arcos.

DÉCIMA SEMANA

Primera sesión:

Método del trabajo virtual: efecto de temperatura y apoyos elásticos.

Segunda sesión:

Método del trabajo virtual: asentamiento o desviación de apoyos.

UNDÉCIMA SEMANA

Primera sesión:

Práctica calificada Nº 3

Segunda sesión:

Resolución de práctica calificada Nº 3

DUODÉCIMA SEMANA

Primera sesión:

Primer Teorema de Castigliano: armaduras y vigas isostáticas.

Segunda sesión:

Primer Teorema de Castigliano: pórticos y arcos isostáticos.

DECIMOTERCERA SEMANA

Primera sesión:

Segundo teorema de Castigliano: armaduras y vigas hiperestáticas.

Segunda sesión:

Segundo Teorema de Castigliano: pórticos hiperestáticos.

DECIMOCUARTA SEMANA

Primera sesión:

Práctica calificada Nº 4

Segunda sesión:

Resolución de práctica calificada Nº 4

UNIDAD III: VIGAS CONTINUAS

OBJETIVOS DE APRENDIZAJE:

- Representar analítica y gráficamente vigas continuas sometidas a cargas externas.
- Aplicar los principios básicos del equilibrio para resolver problemas.

DECIMOQUINTA SEMANA

Primera sesión:

Ecuación de los tres momentos: vigas de sección constante.

Segunda sesión:

Ecuación de los tres momentos: vigas de sección variable y asentamiento en los apoyos.

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor, ecran y proyector de multimedia.

Materiales: Texto base, separata, aplicaciones multimedia

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= 0.30*PE+0.30*EP+0.40*EF PE= (P1+P2+P3+P4)/4

PF = Promedio Final

EP = Examen Parcial

EF = Examen Final

PE =Promedio de evaluaciones

P1...P4 = Prácticas Calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería	K
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	R
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas y restricciones económicas, ambientales, sociales, políticas, éticas, de salubridad y seguridad.	R
(d)	Trabajar adecuadamente en un equipo multidisciplinario.	R
(e)	Identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional.	
(g)	Comunicarse, con su entorno, en forma efectiva.	
(h)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contexto global, económico, ambiental y social.	
(i)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.	
(j)	Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil	
(k)	Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y ramas afines	K

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase: Teoría Práctica Laboratorio
3 2 0

b) Sesiones por semana: Dos sesiones.

c) Duración: 5 horas académicas de 45 minutos

XIV. JEFE DE CURSO:

Ing. Hugo Alberto Salazar Correa

XV. FECHA:

La Molina, enero de 2018.