### Convolutional Neural Networks (CNNs)



<u>CNN</u>'s, also known as ConvNets, consist of multiple layers and are mainly used for image processing and object detection.

•

#### **CNN Layers**



There are four layers in CNN:

- 1. Convolutional Layer CNN has a convolution layer that has several filters to perform the convolution operation.
- 2.ReLU Layer it brings non-linearity to the network and converts all the negative pixels to zero. The output is a rectified feature map.
- 3.Pooling Layer pooling is a down-sampling operation that reduces the dimensionality of the feature map.
- The pooling layer then converts the resulting two-dimensional arrays from the pooled feature map into a single, long, continuous, linear vector by flattening it.
- 4. Fully Connected Layer this layer recognizes and classifies the objects in the image.

#### In CNN, every image is represented in the form of an array of pixel values





black and white pixels

form of a matrix of numbers

#### Feature map Extraction

**Filters** – like a weight matrix with which we multiply a part of the input image to generate a convoluted output. Assume we have an image of size 28\*28. Here filter is a 3\*3 matrix which is multiplied with each 3\*3 section of the image to form the convolved feature.

The filter values are updated like weight values during back propagation for cost minimization.



#### Convolution operation using two matrices, a and b, of 1 dimension



Convolution between two functions in mathematics produces a third function expressing how the shape of one function is modified by other

| Original                                                            | Gaussian Blur                                                                    | Sharpen                                                                 | Edge Detection                                                              |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ | $\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ | $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$ | $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ |
|                                                                     |                                                                                  |                                                                         |                                                                             |

# CNN and Feature Mapping





### ReLu Layer







## Pooling

#### Pooling

- Used to reduce the spatial dimensions of a CNN
- Performs down-sampling operation to reduce the dimensionality
- Creates a pooled feature map by sliding a filter matrix over the input matrix



To reduce a number of parameters and prevent over-fitting.

Type of pooling is a pooling layer of filter size(2,2) using the MAX operation, Average pooling



Identifies the edges, corners and other features of the bird

#### Flattering



### CNN - Summary



### **CNN- Applications**





To identify satellite images, process medical images, forecast time series, and detect anomalies