Capacitores

Capacitor = dispositivo usado para armazenar energia elétrica na forma de campo elétrico.

Formado por duas placas metálicas planas de áreas S separadas por um isolante (dielétrico) de espessura d.

Capacitores

$$C = K.\varepsilon_0.\frac{S}{d}$$

C = capacitância (em Farads – F)

K = constante dielétrica do material; ex.: K = 1 no vácuo e 4.5 no vidro

E0 = permissibilidade dielétrica do vácuo = 8.85 pF/m

S = área das placas

D = espessura do dielétrico

Associações...

Alguns tipos...

Cerâmicos

Filme de Poliéster Polipropileno Mica

..

Tântalo

Filme de Poliestireno

Energizando Capacitores em CC

Aplicando uma tensão CC: quando houver ddp => elétrons se deslocarão de uma placa para a outra;

Quando tensão entre as placas == à tensão da fonte => cessará o movimento de elétrons => capacitor carregado com uma carga Q (resistência do capacitor → infinita).

Q é dado em função da tensão aplicada e da capacitância do capacitor: Q= V * C (Q = Coulombs; V = Volts; F = Farads)

Energizando Capacitores

Com uma resistência em série com o capacitor => tempo de carga do capacitor aumenta

Constante de Tempo: Uma medida da velocidade de carga (ou de descarga) é dada pela **constante de tempo** do circuito definida como sendo:

T = R * C (T = segundos; R = Ohms; C = Farads) Fisicamente, uma constante de tempo é definido como sendo o tempo que a tensão leva para ir de zero até 63% da tensão da fonte $(0,63.V_{cc})$.

Descarregando Capacitores

Energizando em Capacitores em CA

Capacitor:

- carrega-se e descarrega-se acompanhando as inversões da polaridade da tensão aplicada
- corrente circulando para a carga e descarga do capacitor
- intensidade da corrente depende do valor do capacitor e frequência da fonte

Reatância Capacitiva

Reatância = "resistência" à passagem da corrente alternada

$$Xc = 1/(2 \times p \times f \times C)$$

Xc = reatância capacitiva (Ohms);

f = frequência (Hertz);

C= capacitância (Farads);

p = constante PI

Exemplos de Valores de Reatância Capacitiva

f (kHz)	1 uF	1,5 uF	2 uF	2,5 uF
10	159,236	106,157	79,618	63,694
20	76,618	53,079	39,809	31,848
30	53,079	35,836	26,539	21,232
40	39,809	26,540	19,905	14,924
50	31,847	21,230	15,924	12,740
60	26,539	17,693	13,270	10,616
70	22,748	15,165	11,374	9,098
80	19,905	13,270	9,953	7,962
90	17,693	11,795	8,847	7,078
100	15,924	10,615	7,962	5,370

Indutores

Indutor ideal → resistência nula

Na prática: a corrente não atinge sua intensidade máxima imediatamente;

Corrente → criação de um campo magnético → linhas de força cortam as outras espiras do mesmo indutor.

Portanto: indução de uma corrente que tende a se opor à corrente injetada → a corrente não pode aumentar instantaneamente → indutor se opõe a uma variação rápida da intensidade da corrente.

Reatância Indutiva

Reatância = "resistência" à passagem da corrente alternada

$$XL = 2 \times p \times f \times L$$

XL = reatância indutiva (Ohms);f = frequência (Hertz);L = indutância (Henry);p = constante PI

Exemplos de Valores de Reatância Indutiva

f (kHz)	10 mH	20 mH	30 mH	40 mH
1	62,8	125,6	188,4	255,2
2	125,6	251,2	376,8	502,5
3	188,4	376,8	565,2	753,6
4	251,2	502,4	753,6	1004,8
5	314	628	942	1 256
6	376,8	753,6	1 130,4	1507
7	439,6	879,2	1 318,8	1 758,4
8	502,4	1 004,8	1 507,2	2 009,6
9	565,2	1 130,4	1 695,6	2 260,8
10	628	1 256	1 884	2 512

Observações sobre Capacitores e Indutores

Capacitores → pequena oposição à alta frequência

Indutores → pequena oposição à baixa frequência

Exemplo de uso da união de capacitores e indutores: filtros

- * Passa-baixas → pouca oposição aos sinais de baixas freqüências / bloqueiam os sinais de altas freqüências;
- * Passa-altas → forte oposição aos sinais de baixas freqüências / deixam passar os sinais de altas freqüências;
- * Passa-faixas ou Passa-Bandas → deixam passar somente sinais dentro de um faixa de frequência;
- * Rejeitores → bloqueiam os sinais que estão dentro de uma certa faixa de frequências.

Filtros – exemplos de uso

Aplicados também em imagens, EEG, automação e controle (processamento de sinais) etc

Filtros – circuitos básicos

Passa-baixa

Passa-alta