STAT215: Assignment 1

Due: January 30, 2020 at 11:59pm PT

Problem 1: *The negative binomial distribution.*

Consider a coin with probability p of coming up heads. The number of coin flips before seeing a 'tails' follows a geometric distribution with pmf

$$Pr(X = k; p) = p^{k} (1 - p).$$

The number of coin flips before seeing r tails follows a *negative binomial* distribution with parameters r and p.

- (a) Derive the probability mass function Pr(X = k; r, p) of the negative binomial distribution. Explain your reasoning.
- (b) The geometric distribution has mean p/(1-p) and variance $p/(1-p)^2$. Compute the mean and variance of the negative binomial distribution. Plot the variance as a function of the mean for fixed p and varying r. How does this compare to the Poisson distribution?
- (c) Rewrite the negative binomial pmf in terms of the mean μ and the dispersion parameter r. Show that as $r \to \infty$ with μ fixed, the negative binomial converges to a Poisson distribution with mean μ .
- (d) The gamma distribution is a continuous distribution on $(0, \infty)$ with pdf

$$p(x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x},$$

where $\Gamma(\cdot)$ denotes the gamma function, which has the property that $\Gamma(n) = (n-1)!$ for positive integers n. Show that the negative binomial is the marginal distribution over X where $X \sim \text{Poisson}(\mu)$ and $\mu \sim \text{Gamma}(r,(1-p)/p)$, integrating over μ . In other words, show that the negative binomial is equivalent to an infinite mixture of Poissons with gamma mixing measure.

(e) Suppose $X_n \sim \operatorname{NB}(r,p)$ for $n=1,\ldots,N$ are independent samples of a negative binomial distribution. Write the log likelihood $\mathcal{L}(r,p)$. Solve for the maximum likelihood estimate (in closed form) of \hat{p} for fixed r. Plug this into the log likelihood to obtain the profile likelihood $\mathcal{L}(r,\hat{p}(r))$ as a function of r alone.

Problem 2: The multivariate normal distribution.

(a) In class we introduced a multivariate Gaussian distribution via its representation as a linear transformation $x = Az + \mu$ where z is a vector of independent standard normal random variates. Using the change of variables formula, derive the multivariate Gaussian pdf,

$$p(x; \mu, \Sigma) = (2\pi)^{-D/2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(x - \mu)^{\mathsf{T}} \Sigma^{-1}(x - \mu)\right\},\,$$

where $\mu \in \mathbb{R}^D$ and $\Sigma = AA^T \in \mathbb{R}^{D \times D}$ is a positive semi-definite covariance matrix.

- (b) Let $r = ||z||_2 = (\sum_{d=1}^D z_d^2)^{1/2}$ where z is a vector of standard normal variates, as above. We will derive its density function.
 - (i) Start by considering the D = 2 dimensional case and note that p(r) dr equals the probability mass assigned by the multivariate normal distribution to the infinitesimal shell at radius r from the origin.
 - (ii) Generalize your solution to D > 2 dimensions, using the fact that the surface area of the D-dimensional ball with radius r is $2r^{D-1}\pi^{D/2}/\Gamma(D/2)$.
 - (iii) Plot this density for increasing values of dimension *D*. What does this tell your about the distribution of high dimensional Gaussian vectors?
 - (iv) Now use another change of variables to derive the pdf of r^2 , the sum of squares of the Gaussian variables. The squared 2-norm follows a χ^2 distribution with D degrees of freedom. Show that it is a special case of the gamma distribution introduced in Problem 1.
- (c) Rewrite the multivariate Gaussian density in natural exponential family form with parameters J and h. How do its natural parameters relate to its mean parameters μ and Σ ? What are the sufficient statistics of this exponential family distribution? What is the log normalizer? Show that the derivatives of the log normalizer yield the expected sufficient statistics.
- (d) Consider a directed graphical model on a collection of scalar random variables (x_1, \ldots, x_D) . Assume that each variable x_d for d > 1 has exactly one parent in the directed graphical model, and let the index of the parent of x_d be denoted by $\mathsf{par}_d \in \{1, \ldots, d-1\}$. The joint distribution is then given by,

$$x_1 \sim \mathcal{N}(0, \beta^{-1}),$$

 $x_d \sim \mathcal{N}(x_{\mathsf{par}_d} + b_d; \beta^{-1})$ for $d = 2, ..., D.$

The parameters of the model are β , $\{b_d\}_{d=2}^D$. Show that the joint distribution is a multivariate Gaussian and find a closed form expression the precision matrix, J. How does the precision matrix change in the two-dimensional model where each $x_d \in \mathbb{R}^2$, β^{-1} is replaced by $\beta^{-1}I$, and $b_d \in \mathbb{R}^2$?

Problem 3: Bayesian linear regression.

Consider a regression problem with datapoints $(x_n, y_n) \in \mathbb{R}^D \times \mathbb{R}$. We begin with a linear model,

$$y_n = w^\mathsf{T} x_n + \epsilon_n; \quad \epsilon_n \sim \mathcal{N}(0, \beta^{-1}),$$

where $w \in \mathbb{R}^D$ is a vector of regression weights and $\beta \in \mathbb{R}_+$ specifies the precision (inverse variance) of the errors ϵ_n .

(a) Assume a standard normal prior $w_i \sim \mathcal{N}(0, \alpha^{-1})$. Compute the marginal likelihood

$$p({x_n, y_n}_{n=1}^N; \alpha, \beta) = \int p(w; \alpha) p({(x_n, y_n)}_{n=1}^N \mid w; \beta) dw.$$

(b) Now consider a "spike-and-slab" prior distribution on the entries of w. Let $z \in \{0,1\}^D$ be a binary vector specifying whether the corresponding entries in w are nonzero. That is, if $z_i = 0$ then w_i is deterministically zero; otherwise, $w_i \sim \mathcal{N}(0, \alpha^{-1})$ as above. We can write this as a degenerate Gaussian prior

$$p(w \mid z) = \prod_{i=1}^{D} \mathcal{N}(w_i \mid 0, z_i \alpha^{-1}).$$

Compute the marginal likelihood $p(\{(x_n, y_n)\}_{n=1}^N \mid z, \alpha, \beta)$. How would you find the value of z that maximizes this likelihood?

(c) Suppose that each datapoint has its own precision β_n . Compute the posterior distribution

$$p(w \mid \{(x_n, y_n, \beta_n)\}_{n=1}^N, \alpha).$$

How does the posterior mean compare to the ordinary least squares estimate?

(d) Finally, assume the per-datapoint precisions β_n are not directly observed, but are assumed to be independently sampled from a gamma prior distribution,

$$\beta_n \sim \text{Gamma}(a, b),$$

which has the property that $\mathbb{E}[\beta_n] = a/b$ and $\mathbb{E}[\ln \beta_n] = \psi(a) - \ln b$ where ψ is the digamma function. Then, the errors ϵ_n are marginally distributed according to the Student's t distribution, which has heavier tails than the Gaussian and hence is more robust to outliers.

Compute the conditional distribution $p(\beta_n \mid x_n, y_n, w, a, b)$, and compute the expected log joint

$$\mathcal{L}(w') = \mathbb{E}_{p(\beta_n \mid x_n, y_n, w, a, b)} \left[\log p(\{(x_n, y_n, \beta_n)\}_{n=1}^N, w'; \alpha, a, b) \right].$$

What value of *w* maximizes the expected log joint probability? Describe an EM procedure to search for,

$$w^* = \arg \max p(w \mid \{(x_n, y_n)\}_{n=1}^N, \alpha, a, b).$$

Problem 4: Multiclass logistic regression applied to larval zebrafish behavior data.

Follow the instructions in this Google Colab notebook to implement a multiclass logistic regression model and fit it to larval zebrafish behavior data from a recent paper: https://colab.research.google.com/drive/1moN5CYNsyxeOSUOmN-QMyqEZwgLSBsjY. Once you're done, save the notebook in .ipynb format, print a copy in .pdf format, and submit these files along with the rest of your written assignment.