

### SWEN90016

# Software Processes & Project Management

Project Planning & Scheduling

2021 – Semester 2 Tutorial 5



### MELBOURNE Formal approaches

MIELDUUKNE

#### Become familiar with

Scheduling – PERT and GANTT charts

Function Point Analysis and COCOMO II



### Project Initialization Phase



### How to plan and control the schedule of software projects.





### Software Projects

#### Formal PM Stages:

- » Initiate
- » Plan
- » Execute
- » Monitor & Control



#### Agile PM Stages:

- » Initiate
- » Sprint Plan
- » Scrum (or Sprint)
- » Review & Retrospective (or Adapt)
- » Release





### MELBOURNE Formal Project Schedule

What steps are involved in developing a project schedule?





### MELBOURNE Formal Project Scheduling

#### 1. Work Breakdown Structure



#### 3. Gantt Chart



A Gantt chart created using Microsoft Project (MSP). Note (1) the critical path is in red, (2) the slack is the black lines connected to non-critical activities, (3) since Saturday and Sunday are not work days and are thus excluded from the schedule, some bars on the Gantt chart are longer if they cut through a weekend.



### Identify Tasks - Work Breakdown

MIELDOUKNE



|    | Activity                 | Work Breakdown                                                                                                                                                                                                                                                                        |
|----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | 1.1<br>1.2<br>1.3<br>1.4 | Concept Phase Concept Planning Initial Research Problem definition with client Initial Project Plan                                                                                                                                                                                   |
| 2. | 2.1<br>2.2<br>2.3<br>2.4 | Requirements Requirements Iteration 1 2.1.1 Requirement Elicitation 2.1.2 Requirements Analysis 2.1.3 Requirement Model Requirements Iteration 2 2.2.1 Requirement Elicitation 2.2.2 Requirements Analysis 2.2.3 Requirement Model Requirements Specification Requirements Validation |
|    | 2.5                      | Requirements Sign-off                                                                                                                                                                                                                                                                 |
| 3. | 3.1                      | Project Planning<br>Technological Risk Assessment                                                                                                                                                                                                                                     |



### **Identify Dependencies**

|    | Activity                 | Work Breakdown                                                                                                                                                                      | <b>Dependencies</b> predecessor                     | Duration                   |
|----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|
| 1. | 1.1<br>1.2<br>1.3<br>1.4 | Concept Phase Concept Planning Initial Research Problem definition with client Initial Project Plan                                                                                 | 1.1, 1.2, 1.3                                       | 1<br>4<br>2<br>1           |
| 2. | 2.1                      | Requirements Requirements Iteration 1 2.1.1 Requirement Elicitation 2.1.2 Requirements Analysis 2.1.3 Requirement Model                                                             | 1.4<br>2.1.1<br>2.1.2                               | 2<br>3<br>3                |
|    | 2.2<br>2.3<br>2.4<br>2.5 | Requirements Iteration 2 2.2.1 Requirement Elicitation 2.2.2 Requirements Analysis 2.2.3 Requirement Model Requirements Specification Requirements Validation Requirements Sign-off | 2.1.2<br>2.2.1<br>2.2.2<br>2.2.3<br>2.3<br>3.1, 2.4 | 3<br>3<br>4<br>5<br>4<br>4 |
| 3. | 3.1                      | Project Planning Technological Risk Assessment                                                                                                                                      | 2.1.2                                               | 4                          |



### **Identify Dependencies**

Develop a task network

(activity on node)

given dependencies





|    | activity | predecessor | duration |  |  |
|----|----------|-------------|----------|--|--|
| 1  | 1.1      |             | 1        |  |  |
| 2  | 1.2      |             | 4        |  |  |
| 3  | 1.3      |             | 2        |  |  |
| 4  | 1.4      | 1.1 1.2 1.3 | 1        |  |  |
|    |          |             |          |  |  |
| 5  | 2.1.1    | 1.4         | 2        |  |  |
| 6  | 2.1.2    | 2.1.1       | 3        |  |  |
| 7  | 2.1.3    | 2.1.2       | 3        |  |  |
|    |          |             |          |  |  |
| 8  | 2.2.1    | 2.1.2       | 3        |  |  |
| 9  | 2.2.2    | 2.2.1       | 3        |  |  |
| 10 | 2.2.3    | 2.2.2       | 4        |  |  |
|    |          |             |          |  |  |
| 11 | 2.3      | 2.2.3       | 5        |  |  |
|    |          |             |          |  |  |
| 12 | 2.4      | 2.3         | 4        |  |  |
|    |          |             |          |  |  |
| 13 | 2.5      | 2.4 3.1     | 4        |  |  |
|    |          |             |          |  |  |
| 14 | 3.1      | 2.1.2       | 4        |  |  |



# Identify dependencies (task network tool)

|    | activity | predecessor | duration |
|----|----------|-------------|----------|
| 1  | 1.1      |             | 1        |
| 2  | 1.2      |             | 4        |
| 3  | 1.3      |             | 2        |
| 4  | 1.4      | 1.1 1.2 1.3 | 1        |
|    |          |             |          |
| 5  | 2.1.1    | 1.4         | 2        |
| 6  | 2.1.2    | 2.1.1       | 3        |
| 7  | 2.1.3    | 2.1.2       | 3        |
|    |          |             |          |
| 8  | 2.2.1    | 2.1.2       | 3        |
| 9  | 2.2.2    | 2.2.1       | 3        |
| 10 | 2.2.3    | 2.2.2       | 4        |
|    |          |             |          |
| 11 | 2.3      | 2.2.3       | 5        |
|    |          |             |          |
| 12 | 2.4      | 2.3         | 4        |
|    |          |             |          |
| 13 | 2.5      | 2.4 3.1     | 4        |
|    |          |             |          |
| 14 | 3.1      | 2.1.2       | 4        |



### **Network Diagram**

- Sequential nodes
- Few details





### Pert Chart

#### PERT: Program Evaluation & Review Technique



The activity node

Earliest start time (ES)
Duration in people days
Earliest finish time (EF)

Latest start time (LS)
Slack time
Latest finish time (LF)



### Pert Chart: example

#### Show a PERT chart: use task durations & task network diagram





#### Forward Pass





### PERT Chart: activity

#### Use duration estimates & task network to construct PERT chart





### Construct Resource Schedule

Play the Project Management Game:

http://thatpmgame.com/



Use a Gantt chart to assign staff to various tasks. Is the project completed on time and on budget?



### MELBOURNE Monitoring and Control quiz

Planned Value (PV)

Earned Value Actual Cost (AC)

how to control

Planned Value assignment Section 7= 120 marks

assigned value of activity

Earned Value assignment neglected, ...
- what is it worth?

the current value of the work, given 1) the expected work rate, and 2) the work done up until now

**Actual Cost** 



final actual value of activity



### MELBOURNE Cost estimation (Formal)

#### Become familiar with

**Formal** 

Function Point Analysis and COCOMO II



### **Functional Points**

MIEILIDWWIKINIE

#### What are they?

**PMBOK** 

**Historic Data** 

Done at any time in project lifecycle





### FP Computation Steps





### FP Computation Steps

1. Categorize functional requirements and count

Example: Category = {internal file, external file, input, output, query}

2. Estimate a *Complexity Level* for each category

Complexity Level = {simple, average, complex}

Count functions from the Software Requirements Specification (SRS)





### MELBOURNE Step 2: Set Complexity Values



Factors published from 2,192 recent Function Point projects

http://www.qsm.com/resources/function-point-languages-table



### Step 3: Calculate Functional Points

MELEUUKNE

Given the following business functions, how many *Unadjusted* Function Points exist?

Fill in the table.

| Category                   | Simple<br>Function<br>Count | Weight | Average<br>Function<br>Count | Weight | Complex<br>Function<br>Count | Weight | Sub<br>total |
|----------------------------|-----------------------------|--------|------------------------------|--------|------------------------------|--------|--------------|
| Internal Logical File      | 5                           | 3      |                              | 4      | 2                            | 6      |              |
| External Interface File`   |                             | 4      |                              | 5      | 1                            | 7      |              |
| External Input             | 2                           | 3      |                              | 4      |                              | 6      |              |
| External Output            | 5                           | 7      | 2                            | 10     | 2                            | 15     |              |
| External Inquiries/Queries | 2                           | 5      |                              | 7      |                              | 10     |              |
| Unadjusted Total           |                             |        |                              |        |                              |        |              |

### Step 4: Calculate VAF

#### **Historic Data**

Give the 14 system characteristics, estimate how relevant they are to your system, use the *typical weights* 

0 = no effect

1 = incidental

2 = moderate

3 = average

4 = significant

5 = essential

Total VAF = 40

#### TABLE 6-2 Function Point System Characteristics

System Characteristic

| System Characteristic                    |    |
|------------------------------------------|----|
| Data communications required             | 2  |
| Distributed processing                   | 1  |
| Performance needs                        | 5  |
| Heavily utilized operating environment   | 4  |
| On-line data entry                       | 4  |
| Backup and recovery                      | 4  |
| Master file access online                | 3  |
| Transaction input complexity             | 2  |
| Internal processing complexity           | 2  |
| Reusable code                            | 2  |
| Input, outputs, files, inquiries complex | 2  |
| Designed for multiple sites              | 4  |
| Designed to facilitate change            | 3  |
| Installation complexity                  | 2  |
| Total                                    | 40 |



### COCOMO II – another strategy

MATERIDA MIKUMIE

#### The Constructive Cost Model:

Here is a playpen to try: http://softwarecost.org/tools/COCOMO/

Fill in the details for the VR simulator (Medic case study)

Extra details to get started: let there be:

Sizing method: 135 Function Points

The Java development language

The cost per person-month is \$1500



## Thank You!