Исследование метода дистилляции данных

Медведев Дмитрий Владимирович

МГУ имени М. В. Ломоносова, факультет ВМК, кафедра ММП

ДHК

- Дано: алгоритм дистилляции данных.
- Найти:
 - исследовать работу алгоритма при менее экстремальном сжатии, чем в оригинальной статье (сжатие в 3 раза против сжатия в 600 раз).
 - исследовать обобщаемость данных не только на другие инициализации, но и на другие архитектуры.
- Критерий: средняя точность решения задачи на 10 перезапусках.

Алгоритм Дистилляции

$$\begin{cases} \theta_0 \sim P_0(\theta) \\ \theta_{k+1} = \theta_k - \tilde{\eta}_k \nabla_{\theta} I(\tilde{x}_{i(k)}, \theta_k); k = 1, ..., n; i(k) = k \mod s \\ \mathcal{L} = I(x, \theta_n) \rightarrow \min_{\tilde{x}, \tilde{\eta}} \end{cases}$$

$$\begin{split} d\mathcal{L} &= \frac{\partial \mathcal{L}}{\partial \theta_{n}} d\theta_{n} = \frac{\partial \mathcal{L}}{\partial \theta_{n}} d\left(\theta_{n-1} - \underbrace{\tilde{\eta}_{n-1} \nabla_{\theta} I(\tilde{x}_{i(n-1)}, \theta_{n-1})}_{g(\tilde{\eta}_{n-1}, \tilde{x}_{i(n-1)}, \theta_{n-1}) = g_{n-1}} \right) = \\ &= \left(\frac{\partial \mathcal{L}}{\partial \theta_{n}} - \frac{\partial \mathcal{L}}{\partial \theta_{n}} \frac{\partial g_{n-1}}{\partial \theta_{n-1}} \right) d\theta_{n-1} - \left(\frac{\partial \mathcal{L}}{\partial \theta_{n}} \frac{\partial g_{n-1}}{\partial \tilde{\eta}_{n-1}} \right) d\tilde{\eta}_{n-1} - \left(\frac{\partial \mathcal{L}}{\partial \theta_{n}} \frac{\partial g_{n-1}}{\partial \tilde{x}_{i(n-1)}} \right) d\tilde{x}_{i(n-1)} \end{split}$$

Алгоритм Дистилляции

$$abla_{ ilde{\eta}_k} \mathcal{L} = \left[egin{array}{c} rac{\partial \mathcal{L}}{\partial heta_{k+1}} \end{array}
ight] \cdot \left[egin{array}{c} rac{\partial \mathsf{g}_k}{\partial ilde{\eta}_k} \end{array}
ight];$$

$$\nabla_{\tilde{x}_i(k)}\mathcal{L} = \sum_{j=1}^n I[j=i(k)] \cdot \left[\frac{\partial \mathcal{L}}{\partial \theta_{k+1}} \right] \cdot \left[\frac{\partial g_k}{\partial \tilde{x}_i(k)} \right];$$

$$\frac{\partial \mathcal{L}}{\partial \theta_k} = \boxed{\frac{\partial \mathcal{L}}{\partial \theta_{k+1}}} \cdot \boxed{\left(1 - \frac{\partial g_k}{\partial \theta_k}\right)}$$

Проблема обобщаемости

Step: 0
LRs: 0.0598, 0.0361, 0.0109

Step: 5
LRs: 0.0804, 0.0330, 0.0163

Step: 9
LRs: 0.0551, 0.0829, 0.0107

(b) CIFAR10. These distilled images unknown random initializations to $36.79\% \pm 1.18\%$ test accuracy.

Figure 3: Distilled images trained for *random initialization* with ten GD steps and three epochs (100 images in total). We show images from selected GD steps and the corresponding learning rates for all three epochs.

į

Качество на синтетических данных

Рис.: Тренировачная и тестовая части оригинальной выборки.

Модель	Качество ориг.	Качество дистилл.
LinearNet	0.766 ± 0.089	0.871 ± 0.003
NonLinearNet	0.877 ± 0.006	0.941 ± 0.043
MoreNonLinearNet	0.995 ± 0.015	0.906 ± 0.054

Таблица: Итоговая точность (и её среднеквадратичное отклонение) на тестовой выборке при обучении на оригинальных и синтетических данных.

Решающее правило

дистил. выборка

Синтетические объекты

Обучаемые длины шага

Рис.: Обученные длины шагов, усредненные для 10-и различных инициализаций.

Обобщаемость

Модели Данных	Тестовые Модели		
модели данных	LinearNet	NonLinearNet	MoreNonLinearNet
LinearNet	0.871 ± 0.003	0.869 ± 0.004	0.864 ± 0.006
NonLinearNet	0.808 ± 0.014	0.941 ± 0.043	0.691 ± 0.182
MoreNonLinearNet	0.825 ± 0.014	0.879 ± 0.013	0.906 ± 0.054
Strategy1 + LinearNet	0.867 ± 0.005	0.860 ± 0.008	0.860 ± 0.010
Strategy1 + NonLinearNet	0.808 ± 0.010	0.937 ± 0.039	0.985 ± 0.015
Strategy1 + MoreNonLinearNet	0.818 ± 0.012	0.911 ± 0.059	0.926 ± 0.055

Таблица: Итоговая точность (и её среднеквадратичное отклонение) на тестовой выборке для разных наборов синтетических данных и моделей. Жирным выделено наибольше значение в столбце.

.

Обучение на всех трех архитектурах

Модели Данных	Тестовые Модели			
тодели данных	LinearNet	NonLinearNet	MoreNonLinearNet	
raw steps	0.859 ± 0.005	0.881 ± 0.004	0.867 ± 0.122	
strategy 1	0.851 ± 0.007	0.970 ± 0.028	0.986 ± 0.014	

Таблица: Итоговая точность (и её среднеквадратичное отклонение) на тестовой выборке для разных моделей, для данных обученных на всех трёх архитектурах. Жирным выделено наибольше значение в столбце.

Рис.: Синтетические объекты, при обучении на всех трёх архитектурах.

Список литературы

- Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. "Dataset Distillation arXiv preprint, 2018.
- D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradientbased hyperparameter optimization through reversible learning. In ICML, 2015.