a. Sea $C_S = \{\Psi_P^{(n)} \mid P \text{ es un programa en } S, n \geq 1\}$ la clase de funciones S -parciales computables. Mostrar que C_S es una clase PRC .				
			r composición y después ver lo mismo iciones iniciales son P.C.)
	strar (sin definir un programa e omputable.	n S) que la función $*$: $\mathbb{N}^2 \to \mathbb{N}$ definida por $*(x,y) = x \cdot y$	_
				_
*(x, y) re pude obterer words.	Comparisión y recursi	ó de mor PR. => *(x,y) ar PR.	
→ *(×	Cy) e COMPUTABLE			
	• MPUT ABLE			
de un	programa en el lenguaje S q		podemos decir acerca de la existencia Clausura por recursión primitiva	_
Exite.	Clausura por composición —	_	- Clausura por recursion primitiva	
	Teorema Si h se obtiene a partir de las funcior f, g_1, \ldots, g_k por composición entonco		Teorema Si h se obtiene a partir de g por recursión primitiva y g es computable entonces h es computable.	
	Demostración. El siguiente programa computa <i>h</i> :	_	Demostración. El siguiente programa computa h : $Y \leftarrow k$ (es una macro, se puede hacer fácil)	
	$Z_1 \leftarrow g_1(X_1 \ dots \ Z_k \leftarrow g_k(X_1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		[A] IF $X=0$ GOTO E (otra macro, condición del IF por $=$) $Y \leftarrow g(Z,Y)$ $Z \leftarrow Z+1$	
	$Y \leftarrow f(Z_1,)$	$\ldots, Z_k)$	$X \leftarrow X - 1$ GOTO A	
	Si f, g_1, \ldots, g_k son totales entonces f		Si g es total entonces h es total.	
	Las	s tunciones computable Teorema	es forman una clase PRC	
		La clase de funciones compu	utables es una clase PRC.	
			nciones computables está cerrada por sión primitiva (p. 69). Veamos que las	
		> s(x) = x + 1 se comput		
		n(x) = 0 se computa co	$Y \leftarrow X + 1$	
		$u_i^n(x_1,\ldots,x_n)=x_i \text{ se computa } cc$. •	
			$Y \leftarrow X_i$	_
		Corolario Toda función primitiva recur	rsiva es computable.	

Ejercicio 2.

Ejercicio 3. Decimos que un programa P es autocontenido si en cada instrucción $IF V \neq 0 GOTO L$ que ocurre en P, L es una etiqueta definida en P.

a. Demostrar que todo programa P tiene un programa autocontenido P' equivalente (P y P' son programas equivalentes si $\Psi_P^{(n)} = \Psi_{P'}^{(n)} \ \forall n \ge 1$).

Si un programa no es autocontenido => tiene un salto que va a una etiqueta inexistente. Cuando eso pasa el programa termina con el valor que Y tuviera al momento del salto. Podemos agarrar P y agregarle la instruccion Y <- Y bajo esa etiqueta que antes se salia del programa. Asi el programa P' quedaria autocontenido y su comportamiento seria igual al de P.

- b. Sean P v Q dos programas autocontenidos con etiquetas disjuntas v sea $r: \mathbb{N}^n \to \{0,1\}$ un predicado primitivo recursivo. Definir macros para las siguientes pseudo-instrucciones (con su interpretación natural):
 - IF $r(V_1, \ldots, V_n)$ GOTO L
 - IF $r(V_1, \ldots, V_n)$ THEN P ELSE Q
 - WHILE $r(V_1, \ldots, V_n)$ P

· IF r(V) GOTO []	· If r (v) then P ELSE Q
$Z_i \leftarrow r(\bar{v})$	if r(v) goto [P]
il 21 = 1 got [L]	gsto [Q]

[X] if r(V) gsto [P]

En P leng que defini el rolto a X.

c. Dadas las funciones $f, g: \mathbb{N} \to \mathbb{N}$ definidas por

$$f(x) = \begin{cases} 1 & \text{si } x = 3 \\ \uparrow & \text{en otro caso} \end{cases} \quad \mathbf{y} \qquad g(x) = 2x$$

Demostrar que es S-parcial computable la función

$$h(x) = \begin{cases} f(x) & \text{si } x \ge 5 \ \lor \ x = 3\\ g(x) & \text{en otro caso} \end{cases}$$

$$\begin{array}{ccccc}
\downarrow & \chi_1 \geq 5 & \chi_1 = 3 & \text{goto} & A \\
& \chi \leftarrow g(\chi_1) & \\
& \text{goto} & F \\
\hline
[A] & \chi \leftarrow f(\chi_1) & \\
& \text{a.t.} & F
\end{array}$$

Ejercicio 5.

a. Demostrar que si $p: \mathbb{N}^{n+1} \to \{0,1\}$ es un predicado S-computable (total), entonces es S-parcial computable:

$$\label{eq:minimonap} \text{minimoNA}_p(x_1,\dots,x_n,y) = \begin{cases} \min\{t \mid y \leq t \land p(x_1,\dots,x_n,t)\} & \text{si existe algún tal } t \\ \uparrow & \text{en otro caso} \end{cases}$$

[A] if
$$P(X,Z_1)$$
 goto F

$$Z_1 \leftarrow Z_1 + 1$$

goto A

 $f(x) = y$
 $f^{\dagger}(y) = x$
 $y \leftarrow Z_1$

b. Mostrar, usando el resultado anterior, que si $f: \mathbb{N} \to \mathbb{N}$ es biyectiva y S-computable (total), entonces también lo es su inversa, f^{-1} .

$$\int_{0}^{1}(x) = \min_{t} \int_{0}^{1}(t) = x$$
 Vale rate for bigedivided y 5-COMPUTABLE TOTAL

Ejercicio 6. Un programa P en el lenguaje S con instrucciones $I_1, I_2, ..., I_n$ se dice optimista si $\forall i = 1, ..., n$, si I_i es la instrucción IF $V \neq 0$ GOTO L entonces L no aparece como etiqueta de ninguna instrucción I_j con $j \leq i$.

Demostrar que el siguiente predicado es primitivo recursivo:

$$r(x) = \begin{cases} 1 & \text{si el programa cuyo número es } x \text{ es optimista} \\ 0 & \text{caso contrario} \end{cases}$$

$$\overline{P}(x,y) = \begin{cases} 1 & \text{is to instruction } y \text{ del programs } x \in \text{optimisto} \end{cases}$$

$$\overline{\Gamma}(x,y) = \left[ex | F(y) \wedge \overline{\gamma(f_t)}_{t \leq |x|} \right] = expres_{t}(t) = gsts_{t} = f_{t}(y)$$

$$r(x) = (\forall t)_{t \leq |x|} \left[\bar{r}(x, (x+1)[t]) \right]$$

Ejercicio 7. Utilizando las funciones primitivas-recursivas $STP^{(n)}$ y $SNAP^{(n)}: \mathbb{N}^{n+2} \to \mathbb{N}$ vistas en clase, mostrar que las siguientes son funciones S -parciales computables:
$f_1(x,y) = \begin{cases} 1 & \text{si } y \in \text{Dom } \Phi_x^{(1)} \\ \uparrow & \text{si no} \end{cases} \qquad f_2(x) = \begin{cases} 1 & \text{si Dom } \Phi_x^{(1)} \neq \emptyset \\ \uparrow & \text{si no} \end{cases}$
$f_3(x,y) = \begin{cases} 1 & \text{si } y \in \text{Im } \Phi_x^{(1)} \\ \uparrow & \text{si no} \end{cases} \qquad f_4(x,y) = \begin{cases} 1 & \text{si Dom } \Phi_x^{(1)} \cap \text{Im } \Phi_y^{(1)} \neq \emptyset \\ \uparrow & \text{si no} \end{cases}$
$\left\{I\left(x,Y\right) = \left(\exists \langle t, x; \rangle\right) \left[STP(x; x, t) = I \wedge \Gamma(SNAP(x; x, t))[1] = 7\right]$
$\int_{\mathcal{I}} z(x) = \left(\exists \langle t, x_i \rangle \right) \left[STP(x_i, x, t) = 1 \right]$
$\{3(x,y) = (\exists t) [STP(y,x,t)=1]$
$\begin{cases} 4(x,y) = (\exists \langle x_i,t,x_j,t'\rangle) \left[S\Gamma P(x_i,y,t) = 1 \\ non \text{ foil} = (\exists t) \left[\{ P(x,t) \\ n \} \} \left(x,t \right) \right] \end{cases}$
Ejercicio 8. Sea $f: \mathbb{N} \to \mathbb{N}$ una función S -parcial computable en tiempo polinomial (i.e., existe un programa P tal que $\Psi_P^{(1)}(x) = f(x)$ y tal que, para algún polinomio $Q(x)$, P no requiere más que $Q(\lceil \log_2 x \rceil)$ pasos para terminar).
a. Mostrar que f es primitiva recursiva.
b. ¿Sucede lo mismo si la cota es exponencial, doblemente exponencial, etc.?
c. ¿Qué podemos decir, en general, sobre la complejidad temporal de una función computable que no sea primitiva recursiva?
a) $f(x) = r(snap(x, P, Q(\Gamma l_{y_2}x_1)))[1]$
f es PR porque es composicion de cosas PR. (r y SNAP son funciones que sabemos son PR. Ademas, la cota $Q(ceil(log_{2}(x)))$ la podemos conseguir de forma PR.)
b) Sucede lo mismo ya que estas cotas siguen siendo obtenibles de forma PR y vimos recien que siempre que la cota se pueda conseguir de forma PR, f va a ser PR.
c) Tiene una complejidad temporal tan alta que no es obtenible de forma PR.

Ejercicio 9. Se dice que un programa P en el lenguaje S se pisa con n entradas si para alguna entrada $x_1, x_2,, x_n$ y algún tiempo t , la variable de salida Y luego de t pasos de la ejecución de P con entradas $x_1, x_2,, x_n$ vale $\#P$. Demostrar que para cualquier $n \in \mathbb{N}$ es S -parcial computable la función:
$f_n(x) = \begin{cases} 1 & \text{si el programa cuyo número es } x \text{ se pisa con n entradas} \\ \uparrow & \text{caso contrario} \end{cases}$
$f_n(x) = (\exists \langle x_{t-1}, x_{n}, t \rangle) \left[f(sNAP(\bar{x}, x_{t}, t)) \left[1 \right] = x \right]$