ECE430.217 Data Structures

Prim's Algorithm

Textbook: Weiss Chapter 9.5

Byoungyoung Lee

https://compsec.snu.ac.kr

byoungyoung@snu.ac.kr

Outline

This topic covers Prim's algorithm:

- Finding a minimum spanning tree (MST)
- The idea and the algorithm
- An example

Observation

Suppose we take a vertex

- Given a single vertex v_1 , it forms a minimum spanning tree (MST) on one vertex

Observation

Add the adjacent vertex v_2 that has a connecting edge e_1 of minimum weight

This forms a MST on these two vertices

Strategy

Strategy:

- Suppose we have a known MST on k < n vertices
- How could we extend this MST?

Strategy

Suppose you add e_{k_i} , which has the minimum weight out of all edges connected to this MST

- Adding e_k does create an MST with k+1 nodes to connect v_{k+1}
 - Given the current MST, no lighter edges would connect to v_{k+1}
- However, can any edge other than e_k be used to connect v_{k+1} in an MST with n nodes later?

Proof by Contradiction

Proof by contradiction:

Assume the previous claim is false.

- Thus, vertex v_{k+1} is connected to the MST via another sequence of edges
- Out of such sequence of edges, let's call \tilde{e} as the edge out connecting to the existing MST

Proof by Contradiction

Let w be the weight of this MST (with \tilde{e})

- Recall that we picked e_k because $|\tilde{e}| > |e_k|$
 - |e| denotes the weight of the edge e

Suppose we add e_k and exclude \tilde{e} to the MST

The result is still a spanning tree, but the weight is now

•
$$w + |e_k| - |\tilde{e}| \le w$$

This contradicts our assumption that the MST with \tilde{e} is minimal

Therefore, our MST must contain e_k

From Strategy to Prim's Algorithm

We keep this strategy for all vertices, starting with k=1

→ Prim's algorithm

Prim's Algorithm

Prim's algorithm for finding the MST:

- Start with an arbitrary vertex to form a MST on one vertex
- At each step, add the vertex v not yet in the MST
 - Vertex v is connected with an edge with least weight to the existing minimum spanning sub-tree
- Continue until we have n-1 edges and n vertices

Note: Prim's algorithm is a greedy algorithm

- → A greedy algorithm does not always yield the optimal solution
- Q. Does Prim's algorithm guarantee the MST (i.e., the optimal solution)?

Prim's Algorithm: Data Structures

Associate each vertex with:

- A Boolean flag indicating if the vertex has been visited,
- The minimum distance to the partially constructed MST, and
- A pointer to that vertex which will form the parent node in the resulting tree

Prim's Algorithm: Initialization

Initialization:

- Select a root node and set its distance as 0
- Set the distance to all other vertices as ∞
- Set all vertices to being unvisited
- Set the parent pointer of all vertices to 0

Iterate while there exists an unvisited vertex with distance < ∞

- Select that unvisited vertex with minimum distance
- Mark that vertex as having been visited
- For each adjacent vertex, if the weight of the connecting edge is less than the current distance to that vertex:
 - Update the distance to be the weight of the connecting edge
 - Set the current vertex as the parent of the adjacent vertex

Prim's Algorithm: Halting Condition

Halting Conditions:

There are no unvisited vertices which have a distance < ∞

If all vertices have been visited, we have a spanning tree of the entire graph

If at any point, all remaining vertices had a distance of ∞, this indicates that the graph is not connected → No MST

Let us find the minimum spanning tree for the following undirected weighted graph

First we set up the appropriate table and initialize it

- Suppose the root is the vertex 1

		Distance	Parent
1	F	0	0
2	F	8	0
3	F	8	0
4	F	8	0
5	F	8	0
6	F	8	0
7	F	8	0
8	F	8	0
တ	F	8	0

Visit vertex 1

- We update vertices 2, 4, and 5
- MST: {1}

		Distance	Parent
1	F → T	0	0
2	F	∞→ 4	0 → 1
3	H	8	0
4	H	∞ →1	0 → 1
5	F	∞→ 8	0 → 1
6	H	8	0
7	H	8	0
8	F	8	0
9	F	8	0

Visit vertex 4, because vertex 4 has the minimum distance (among unvisited vertices)

- Update vertices 2, 7, 8
- Don't update vertex 5
- MST: {1,4}

		Distance	Parent
1	Т	0	0
2	F	4→ 2	1 → 4
3	F	8	0
4	F → T	1	1
5	F	8	1
6	F	8	0
7	F	∞→ 9	0 → 4
8	F	∞→ 8	0 → 4
9	F	8	0

Visit vertex 2

- Update 3, 5, and 6
- MST: {1, 4, 2}

		Distance	Parent
1	Т	0	0
2	F → T	2	4
3	IL	∞ → 2	0 → 2
4	Т	1	1
5	H	8 → 6	1 → 2
6	H	∞→ 1	0 → 2
7	F	9	4
8	F	8	4
9	F	8	0

Next, we visit vertex 6:

- update vertices 5, 8, and 9
- MST: {1, 4, 2, 6}

		Distance	Parent
1	Т	0	0
2	Т	2	4
3	F	2	2
4	Т	1	1
5	F	6 → 3	2 → 6
6	F → T	1	2
7	F	9	4
8	F	8 -> 7	4 → 6
9	F	8 → 8	0 → 6

Visit vertex 3, and update vertex 5 - MST: {1, 4, 2, 6, 3}

		Distance	Parent
1	Т	0	0
2	Т	2	4
3	F → T	2	2
4	Τ	1	1
5	IL	3 → 2	6 → 3
6	Τ	1	2
7	IL	9	4
8	L	7	6
9	F	8	6

Visit vertex 5

- No need to update other vertices
- MST: {1, 4, 2, 6, 3, 5}

		Distance	Parent
1	Т	0	0
2	Т	2	4
3	Т	2	2
4	Т	1	1
5	F → T	2	3
6	Т	1	2
7	F	9	4
8	F	7	6
9	F	8	6

Visiting vertex 8, we only update vertex 9

- MST: {1, 4, 2, 6, 3, 5, 8}

		Distance	Parent
1	Т	0	0
2	Т	2	4
3	Τ	2	2
4	Τ	1	1
5	Τ	2	3
6	Τ	1	2
7	L	4	5
8	F → T	1	5
9	F	5 → 3	5 → 8

Visit vertex 9. No need to update other vertices.

- MST: {1, 4, 2, 6, 3, 5, 8, 9}

		Distance	Parent
1	Т	0	0
2	Т	2	4
3	Т	2	2
4	Τ	1	1
5	Т	2	3
6	Т	1	2
7	ш	4	5
8	Т	1	5
9	F → T	3	8

Visit vertex 7, then done.

- MST: {1, 4, 2, 6, 3, 5, 8, 9, 7}

		Distance	Parent
1	Т	0	0
2	Т	2	4
3	Т	2	2
4	Т	1	1
5	Т	2	3
6	Т	1	2
7	F → T	4	5
8	Т	1	5
9	Т	3	8

Using the parent pointers, we can now construct the minimum spanning tree

		Distance	Parent
1	Т	0	0
2	Τ	2	4
3	H	2	2
4	7	1	1
5	Т	2	3
6	Т	1	2
7	T	4	5
8	Т	1	5
9	Т	3	8

Implementation and analysis

The initialization requires $\Theta(|V|)$ memory and run time

Iteration: We iterate |V| - 1 times, each time finding the *min. distance* vertex

- Iterating through the table (to find the min. distance vertex) requires is $\Theta(|V|)$ time
- Each time we find a min. distance vertex, we must check all of its neighbors (to update distance)

With an adjacency matrix, the run time is $O(|V|(|V| + |V|)) = O(|V|^2)$

- Each call of find_min_dist_vertex() takes O(|V/)
- Enumerating adj vertices for each vertex take O(|V/)

With an adjacency list, the run time is $O(|V|^2 + |E|) = O(|V|^2)$ as $|E| = O(|V|^2)$

- Each call of find_min_dist_vertex() takes O(|V/)
- Enumerating all adj vertices in the end would take O(|E|) for all enumerations

Implementation and analysis

Can we do better?

- Recall, we only need the next shortest edge
- How about a priority queue?
 - Assume we are using a binary heap
 - We will have to update the heap structure

Implementation and analysis: Binary Heap

The table is maintained with a min heap, where the key is a min. distance associated with vertex

- find_min_dist_vertex() takes ln(|V|), which is executed |V| times
- table.set_dist() takes ln(|V|), which is executed |E| times

Thus, the total run time with binary heap is $O(|V| \ln(|V|) + |E| \ln(|V|)) = O(|E| \ln(|V|))$

Summary

We have seen an algorithm for finding minimum spanning trees

- Start with a trivial minimum spanning tree and grow it
- An alternate algorithm, Kruskal's algorithm, uses a different approach

Prim's algorithm finds an edge with least weight which grows an already existing tree

References

Wikipedia, http://en.wikipedia.org/wiki/Minimum_spanning_tree Wikipedia, http://en.wikipedia.org/wiki/Prim's_algorithm