63.01 / 83.01 Química

Departamento de Química

Química Orgánica

Hidrocarburos

- Compuestos orgánicos constituidos por C e H.
- Esqueleto: cadena de C.

Hidrocarburos

CLASIFICACION DE LOS HIDROCARBUROS SEGUN SU ESTRUCTURA

1. HC alifáticos

1.1. Alcanos

- Enlaces C-C son simples
- C_nH_{2n+2}
- Terminación "-ano"
- Se los llama HC saturados, parafinas
- Todos C hibridación sp₃
- Son los HC menos reactivos
- Reacciones x sustitución (se reemplaza un H por otro grupo).

1.1. Alcanos

Nomenclatura:

-1C: met-

-2C: et- -9C: non-

-3C: prop- -10C: dec-

-4C: but- -11C: undec-

-5C: pent- -12C: dodec-

-6C: hex-

-7C: hept- -14C: tetradec -

Grupos funcionales: se nombran primero, con un número indicando el C de la cadena al que están unidos. Los números en el nombre deben ser los más pequeños.

1.1. Alcanos

Ejemplos:

3-metil-1-cloro-butano

1,2-difluoro-etano

F | CH₃ – CH | F

1,1-difluoro-etano

1.1. Alcanos

Otra forma de representarlos:

3-metil-1-cloro-butano

En cada vértice hay un carbono (excepto en el q se dibuja el Cl). Los enlaces q no se diferencian se completan con H.

1,2-difluoro-etano

pentano

Hibridación sp₃

QUÍMICA - 63.01/83.01-2020

El número de orbitales hibridados es igual al número de orbitales "normales" que los generaron.

Forma de los orbitales:

(recordar q son "zonas" del espacio donde es probable encontrar el electrón)

Este modelo explica por qué el metano tiene 4 enlaces de igual energía, en lugar de iguales y uno más fuerte.

- Uno o más enlaces C-C son dobles
- C_nH_{2n} (con un enlace doble)
- Terminación "-eno"
- Se los llama HC insaturados, etilénicos, olefinas
- C = C: hibridación sp₂
- Reacciones x adición, al abrirse el doble enlace.

- Nomenclatura y ejemplos:
- Eteno o etileno H₂C = CH₂
- Propeno $H_2C = CH CH_2$
- 1- buteno H₂C = CH − CH₂ − CH₃
- 2-buteno $H_3C CH = CH CH_3$
- 2-penteno H₃C CH = CH CH₂ CH₃ (no es 3-penteno, se elige el numeral menor posible).

Otra forma de representarlos:

3-hexeno

5-cloro-2-penteno

(la función más importante aquí es el doble enlace, debe llevar el nº más pequeño)

Hibridación sp₂

Forma de los orbitales:

Hibridación sp₂ en el eteno
Combinación de s y

- dos orbitales p.
- Dirección: vértices de un triángulo beomettia
- Ángulo: 120°
- Un enlace π y otro σ.
- Con hidrógenos: σ

Para cada C, los 3 orbitales sp2 (celeste) quedan en un plano, formando enlaces σ ; y los orbitales pz sin hibridar (rojo), perpendiculares al plano, forman un enlace π . Puede notarse q el enlace π es más débil (menor energía de enlace). Por eso es sencillo romperlo para adicionar otros grupos funcionales. Incluso, este detalle será importante en la formación de polímeros.

- Dienos
- Presentan 2 dobles enlaces
- Si estos están separados por un enlace simple: enlaces conjugados: C=C-C=C
- 4 C seguidos con hibridación sp2
- Muy importantes en la industria de polímeros (adición 1,4)

Adición 1-2

- Se presenta en alquenos, por apertura del doble enlace.
- Importante en la industria de polímeros.

Eteno o etileno

polietileno

Los doble enlaces se abren

El enlace se repite n veces

Adición 1-4

- Se presenta en alquenos con doble enlaces conjugados.
- Importante en la industria de polímeros.

 $\longrightarrow \{C - C = C - C\}_{n}$ $\downarrow H H H H$

1,3-butadieno

Los doble enlaces se abren y se forma uno en el medio

polibutadieno

(Caucho sintético)

1.3. Alquinos

- Uno o más enlaces C-C son triples
- C_nH_{2n-2} (con un enlace triple)
- Terminación "-ino"
- C ≡ C: hibridación sp
- Se los llama HC insaturados, acetilénicos
- Reacciones x adición al abrirse el triple enlace (muy reactivo)

1.3. Alquinos

- Ejemplos:

Estructura	Nombre IUPAC
$HC \equiv CH$ $CH_3C \equiv CH$ $CH_3CH_2C \equiv CH$ $CH_3C \equiv CCH_3$ $CH_3CHC \equiv CH$	Etino(acetileno) Propino 1-Butino 2-Butino 3-Metil-1-butino
CH_3 $CH_3CHCH_2C \equiv CCHCH_2CH_3$ CH_3 CH_3 CH_3	2-Cloro-6-metil- 4-octino

Forma de los orbitales:

Hibridación sp en el etino o acetileno

Para cada C, los 2 orbitales sp (violeta) quedan en una línea, formando enlaces σ ; los orbitales py y pz sin hibridar (rosa), perpendiculares a la línea y entre sí, forman dos enlaces π . De nuevo, los enlaces π son más débiles. Será sencillo romperlos para adicionar otros grupos funcionales.

Misma mietaa distinto olat

HC ramificados Grupos alquilo (cadenas menores adicionadas)

2-cloro-4-metil-2-hexino

Fenil-eteno

Momento de humor (nerd)...

"Casa alquilada"

2. HC cíclicos

- Cadena cerrada
- Se nombran igual que los lineales, anteponiendo el prefijo "ciclo-"
- Propiedades similares a los alifáticos
- Los de cadena más corta son más reactivos, debido a la inestabilidad de los ángulos de enlace

3-metil-ciclobuteno

3. HC aromáticos

- Diferentes a los cíclicos!
- Se los llama bencénicos
- Cadena cerrada con dobles y simples enlaces alternados (conjugados)
- Los C del anillo: hibridación sp2
- Se da un fenómeno de "resonancia": los electrones del orbital **p** no hibridado de cada C forman un orbital molecular en forma de toroide ("dona") por encima y por debajo del anillo

3. HC aromáticos

Benceno: estructuras resonantes:

Los enlaces π se van alternando entre cada par de C.

(Se suele utilizar este esquema para simbolizar la resonancia)

Orbitales p sin – hibridar

Está comprobado que la energía de enlace en este caso esta entre la de un enlace simple y uno doble... ("un enlace v medio"??)

3. HC aromáticos

Algunos ejemplos

Metil-benceno

Naftaleno

(tolueno)

Fenantreno

Antraceno

Pireno

4. Derivados de HC

Algunos H de la cadena son reemplazados por otros grupos funcionales

4.1.1. Halogenuros de alquilo

F-	Cl-	Br-	 -
fluoro-	cloro-	bromo-	iodo-

1,2-difluoro-etano

5-cloro-2-penteno

4.2. Funciones oxigenadas 4.2.1 Alcoholes

• Grupo: HO-

Nomenclatura: "-ol"

Tipo	Estructura	Ejemplos
alcohol primario	H - RCOH - H	H CH ₃ -C-OH (etanol) H
alcohol secundario	R' R—C—OH H	CH ₃ CH ₃ CH ₂ —C—OH (2-butanol) H
alcohol terciario	R ⁷ R—Ç—OH	CH ₃ CH ₃ —C−OH (2-metil-2-propanol)

 CH_3

Ŕ"

Fenol

4.2.1 Dioles y trioles

- 2 o 3 grupos HO-
- Muy importantes para industria

1,2-Ethanediol (Ethylene glycol, or glycol)

1,2,3-Propanetriol (Glycerol, or glycerin)

4.2.2. Aldehídos y Cetonas

- Aldehído: "-al"
- Cetona: "-ona"
- Ejemplos:

Metanal (formaldehído)

Propanona (acetona)

Aldehído

(Grupo en la punta)

Cetona

(Grupo en el medio)

Benzaldehído

Momento de humor (nerd)...

4.2.3. Ácidos Carboxílicos

- Nomenclatura: "ácido –oico"
- Son ácidos débiles
- Ejemplos:

Grupo carboxilo

```
H-CO.OH (ácido) metan<u>oic</u>o o ácido «fórmico» (de las hormigas)

H<sub>3</sub>C-CO.OH (ácido) etan<u>oico</u> o ácido «acético» (del vinagre)

H<sub>35</sub>C<sub>17</sub>-CO.OH (ácido) octadecan<u>oico</u> o ácido «esteárico» (de la estearina)

H<sub>5</sub>C<sub>6</sub>-CO.OH (ácido) benceno<u>carboxílico</u> o ácido «benzoico» (del benjuí)
```


4.2.3. Ácidos Dicarboxílicos

- Nomenclatura: "ácido –dioico"
- Ejemplos:

Ácido etanodioico

(Ácido oxálico)

Ácido butanodioico

(Ácido succínico)

Ácido 1,4-bencenodioico (Ácido tereftálico)

4.2.4. Éteres

- Grupo: R − O − R'
- Se forman de 2 alcoholes con pérdida de agua (condensación):

$$CH_3 - CH_2 - OH$$

+ $CH_3 - CH_2 - O - CH_2 - CH_3 + H_2O$
 $CH_3 - CH_2 - CH_3$ dietil-éter (éter etílico)

Etanol

4.2.4. Éteres

- Nomenclatura: se nombran los grupos alquilo por orden alfabético, y se agrega la palabra "éter".
- Ejemplos:

$$CH_3 - CH_2 - O - CH_2 - CH_3$$

dietil-éter (éter etílico)

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$

etil-propil-éter

etil-fenil-éter

4.2.5. Ésteres

 Se forman de un alcohol y un ácido, con pérdida de agua (condensación):

Nomenclatura: "R ato de R'-ilo"

4.2. Funciones oxigenadas

4.2.5. Ésteres

• Ejemplos:

$$CH_2 = CH - C - Q - CH_3$$

$$O$$

Benzoato de etilo

Etanoato de fenilo

Propenoato de metilo

2-metilpropanoato de metilo

4.2. Funciones oxigenadas 4.2.5. Ésteres (información adicional)

- Triésteres derivados de la glicerina (1,2,3propanotriol) y ácidos carboxílicos de cadena larga y par: triglicéridos.
- *Saponificación*: Reaccionan con NaOH dando carboxilatos de Na ("jabones"):

triestearato de glicerilo, un triglicérido (grasa) (se recupera la glicerina)

estearato de sodio (jabón)

4.3.1. Aminas

- Derivan del amoníaco. Son bases débiles.
- Grupo:

• Nomenclatura: "R-il-amina"

4.3.1. Aminas

Ejemplos:

CH ₃ -NH ₂	metilamina
СН ₃ -Й-СН ₃ СН ₃	trimetilamina
CH ₃ -NH-CH ₂ -CH ₃	etilmetilamina
СН ₃ -Й-СН ₂ -СН ₃ СН ₃	etildimetilamina
(O)-"NH ₂	fenilamina (anilina)

4.3.2. Amidas

Se forman de un ácido y una amina, con pérdida de agua (condensación):

41 3

4.3.2. Amidas

Nomenclatura:

- Si R2 = H: Amida primaria (no sustituida) → "R1anamida"
- Amida secundaria → "N-R2-il-R1-anamida"
- Si se reemplaza el H con un grupo alquilo: Amida terciaria → "..."

4.3.2. Amidas

Ejemplos:

4.3.3. Nitrilos

- Grupo: C ≡ N "ciano"
- Se obtienen al deshidratar una amida primaria:

44

4.3.3. Nitrilos

Ejemplos:

$$H - C \equiv N$$

 $CH_3 - CH_2 - C \equiv N$

$$CH_3 - CH - C \equiv N$$
 CH_3

Metanonitrilo (cianuro de hidrógeno)

Propanonitrilo

2 - metilpropanonitrilo

4.4. Aminoácidos

(información adicional)

- Compuestos que tienen los grupos ac. carboxílico y amina a la vez.
- Los más importantes son los naturales, que son todos αaminoácidos (el grupo amino esta unido al C que le sigue al grupo carboxilo).
- Ejemplo:

ácido 2-aminopropanoico, ácido α -aminopropanoico, ácido α -aminopropiónico, «alanina»

Forma «iónica» (catión y anión a la vez)

4.4. Aminoácidos

 Unión peptídica: el grupo amino de una molécula se une al grupo carboxilo de otra

 Mediante sucesivas uniones peptídicas se forman los polipéptidos. Cuando su masa molecular es elevada (Mr > 10000) se llaman proteínas.

5. Otras reacciones de condensación

- Importantes en la industria de polímeros.
- Formaldehído + fenol:

fenol formaldehído fenol

 La reacción continúa con los H en azul y otros formaldehídos y fenoles. (Resinas fenólicas).

5. Otras reacciones de condensación

- Siliconas: El Si puede formar enlaces similares al C.
- Silanos: SiH₄, Si₂H₆

siloxano

Silicona

La reacción continúa con los H y OH en azul.

6. Combustión de HC

• Cómo balancear la ecuación (combustión completa):

$$C_2H_6(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$$

• 1) Balanceo los C:

$$C_2H_6 (g) + O_2 (g) \longrightarrow 2 CO_2 (g) + H_2O (I)$$

• 2) Balanceo los H:

$$C_2H_6 (g) + O_2 (g) \longrightarrow 2 CO_2 (g) + 3 H_2 O_{(I)}$$

• 3) Balanceo los O:

C₂H₆ (g) +
$$\frac{7}{2}$$
O₂ (g) \longrightarrow 2 CO₂ (g) + 3 H₂O_(I)

Conviene que el combustible quede con valor estequiométrico 1

6. Combustión de HC

• Cómo balancear la ecuación (combustión completa):

$$C_2H_5OH(I) + O_{2(g)} \longrightarrow CO_{2(g)} + H_2O_{(I)}$$

• 1) Balanceo los C:

C₂H₅OH (I) + O_{2 (g)}
$$\longrightarrow$$
 2 CO_{2 (g)} + H₂O (I)

• 2) Balanceo los H:

$$C_2H_5OH(I) + O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(I)$$

3) Balanceo los O:

$$C_2H_5OH(I) + 3O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(I)}$$

No te olvides del O en reactivos

Isómeros: dos sustancias con la misma fórmula química y distintas propiedades físicas y/o químicas

Isomería topológica b) De cadena c) Funcional

Estereoisomería d) Geométrica e) Óptica

a) Isomería de posición:

Varía la posición de un grupo funcional

b) Isomería de cadena: lineal - ramificada

c) Isomería funcional: Los átomos están distribuidos en diferentes grupos funcionales

Ácido propanoico

2-hidroxipropanal

Etanol

$$H_3C$$
 CH_3

dimetil- éter

d) Isomería geométrica: en un doble enlace (no puede rotar) cada C tiene 2 sustituyentes distintos

trans-2-Buteno

cis-2-penteno

trans-2-penteno

e) Isomería óptica: cuando un C tiene 4 sustituyentes distintos se le llama *quiral o asimétrico*.

Forma un tetraedro que no se puede superponer a su imagen especular, como los guantes o los zapatos.

En solución, estos isómeros desvían la luz polarizada hacia la derecha o hacia la izquierda, con el mismo ángulo. Se llaman respectivamente, dextrógiros (D-) o levógiros (L-).

Aminoácidos L y D

D de dextrogiros

L de levogiros

Todos los aminoácidos biológicamente activos son L-αaminoácidos, pues sólo ellos pueden formar parte de las proteínas.

