Webgestütztes GPIO Management am Beispiel des BeagleBone Black

Bachelorarbeit im Fachbereich Medienproduktionstechnik an der Fachhochschule Köln

Caspar Friedrich Geboren am 16. Oktober 1986 Mat.-Nr. 11062078

Köln, den 1. November 2014

Betreut durch Prof. Dr. Klaus Ruelberg Zweitprüfer: Prof. Dr. Luigi Lo Iacono

Inhaltsverzeichnis

1.	Einleitung	9
	1.1. Zielsetzung	
	1.2. Definitionen	S
I.	Grundlagen	11
2.	Hardware	13
	2.1. Single-board Computer (SBC)	13
	2.2. System on a Chip (SOC)	
	2.2.1. BeagleBone Black	14
3.	Betriebsysteme	17
	3.1. Linux	17
	3.1.1. Linux Distributionen	17
4.	Webtechnologien	19
	4.1. Webserver	19
	4.1.1. Lighttpd	19
	4.1.2. Weitere Webserver	19
	4.2. WebSockets	19
	4.2.1. WebSockets vs. PHP	19
	4.3. Node.js	19
11.	. Konfiguration des Betriebssystems	21
5.	Betriebssystem	23
6.	Zusätzliche Software	25
	6.1. nodejs	25
111	I. Implementierung	27
7.	Implementierung	29
	7.1 honosorvor	20

Inhaltsverzeichnis

7.2. Webinterface	 29
IV. Fazit	31
V. Anhang	33
A. Tabellen	35

Abbildungsverzeichnis

7.1.	Test figure.																	2)(

Tabellenverzeichnis

A.1.	BeagleBone	Black Expansion	Header	(P8)	 						36
A.2.	BeagleBone	Black Expansion	Header	(P9)	 						37

1. Einleitung

Das Internet of Things ist ein rasant wachsender Anwendungsbereich. Angetrieben von einer zunehmenden Akzeptanz digitaler Systeme und der günstigen Entwicklung der Baugröße, Leistung und Zuverlässigkeit und nicht zuletzt der sinkende Preis haben dazu geführt, dass digitale Systeme heute in allen Lebensbereichen anzutreffen sind. Durch die Annäherung der Hardware-Hersteller an die "Hobby"-Entwickler und den Erfolg von Arduino und Co. ist der Entwicklungsaufwand eigener Hardware-Projekte erheblich kleiner als noch vor wenigen Jahren.

1.1. Zielsetzung

Nach dieser Entwicklung ist es naheliegend, auch den Laboralltag dergestalt zu digitalisieren, dass die verschiedenen Anforderungen und Aufgaben mit einem einzigen flexiblen System realisiert werden können. Heute sind viele Geräte und Programme sehr spezialisiert, so dass man in komplexen Arbeitszusammenhängen viele verschiedene Systeme braucht. Dadurch ist oft ein hoher finanzieller Aufwand erforderlich.

Ziel dieser Arbeit ist es, ein Steuersystem für Messanwendungen zu entwickeln, das sich einfach konfigurieren lässt, flexibel in der Anwendung ist und gleichzeitig kostengünstig bleibt. Besonderes Augenmerk soll dabei auf der ausreichenden Verfügbarkeit verschiedener GPIO¹ liegen. Insbesondere Pulsbreitenmodulation und Analog/Digital-Konverter sind für Messanwendungen interessant. Die anfallenden Messdaten sollen protokolliert werden und extern verwendbar sein. Die zu entwickelnde Applikation soll auf keinen bestimmten Anwendungsfall spezialisiert sein. Sie soll vielmehr dem Anwender die Möglichkeit geben, sich eine für sein jeweiliges Projekt passende Umgebung zusammenzustellen. Weiter soll das System ohne ständige Ünerwachung und ohne Anbindung an ein Labornetzwerk autark arbeiten können. Es soll möglich sein, eine entfernte Messstation aufzubauen, die nach belieben via LAN, WLAN oder auch GSM konfiguriert und überwacht werden kann.

[GRAFIK!!!]

1.2. Definitionen

In dieser Arbeit wird ein Singleboard-Computer des Typs **BeagleBone Black Rev. A5C** verwendet. Andere Versionen dieses Computers sind, sofern kompatibel, ebenfalls

¹General Purpose Input/Output

1. Einleitung

verwendbar, allerdings nicht getestet. Um eine gut Lesabrkeit zu ermöglichen ist mit "BeagleBone" im Folgenden immer diese Version gemeint.

Teil I.

Grundlagen der verwendeten Technologien und Hardware

2. Hardware

2.1. Single-board Computer (SBC)

Ein Single Board Computer oder auch SBC, zu deutsch ein Einplatinenrechner, ist ein Computersystem bei dem alle für die Verwendung nötigen Bauteile auf einer einzelnen Platine verbaut sind. Hierbei sind sind neben den essenziellen Komponenten wie Prozessor, RAM und ROM auch Controller für verschiedene I/O-Schnittstellen, Oszillatoren oder Co-Prozessoren verbaut. Single Board Computer werden vor allem in der Industrie als Steuersysteme eingesetzt, da sie oft billiger und flexibler sind als fest verdrahtete Steuersysteme. Mit zunehmender Miniaturisierung und steigender Leistungsfähigkeit finden SBC's heute auch in alltäglichen Geräten wie Autos, Waschmaschienen oder Fernbedienungen verwendung.

Technisch gesehen sind auch erste Heimcomputer wie der C64 oder Atari ST Single Board Computer, allerdings lassen sich diese ohne Ein- und Ausgeabegräte wie Maus, Tastatur, Bildschirm nicht sinnvoll einsetzen und werden in der Regel nicht als solche Bezeichnet.

Schnittstellen

Single Board Computer verfügen, je nach Anwendungsgebiet, über eine Vielzahl verschiedener analoger und digitaler I/O-Schnittstellen.

Übliche Schnittstellen sind

- GPIO, darunter digitale I/O, PWM und Analog/Digital Converter (ADC)
- UART¹
- SPI
- I²C

Aktuelle (Entwickler-)Systeme haben in der Regel einen oder mehrere USB-Anschlüsse (sowohl Client als auch Host Ports sind üblich), oder zumindest einen JTAG-Port, was die Programmierung wesendlich vereinfacht. Des weiteren verfügen leistungsstärkere Systeme oft auch über einen Grafikausgang².

¹Hierüber ist eine Implementierung der verbreiteten RS232/422/485-Schnittstelle möglich und auch üblich

²Meist HDMI oder eine der Miniaturvarianten

2.2. System on a Chip (SOC)

Eng verknüpft mit der Entwicklung der SBC ist das Konzept der System-on-a-Chip bzw. SOC. Hierbei werden die meisten oben genannten Komponenten eines Systems direkt in einem Einzelnen IC verbaut. Meist sind nur ROM und Controller für höhere Schnittstellen USB oder LAN (in manchen Fällen auch Grafik) extern angebunden.

Heutige Single-board Computer mit einem SOC können sehr leistungsstark sein, sind als Mehrkernsystem aufgebaut und haben Taktraten von mehreren GHz. Diese Computer sind vom Design her stark an Desktop-Systeme angepasst und können oft mit einem vollwertigen Linux- oder Windows-System betrieben werden.

Gerade bei diesen leistungsstarken SOCs hat sich die ARM-Architektur durchgesetzt. 1983 als Nebenprojekt gegründet hatte die 32-Bit-Architektur bereits 2002 einen Marktanteil von fast 80% (2)

Single Board Computer lassen sich (sehr) grob in zwei Klassen unterteilen:

1. Leistungsschwache Systeme

Die Taktraten dieser Prozessoren liegen überlicherweise unter 50MHz, in seltenen Fällen über 100MHz. Diese Systeme werden meist direkt programmiert und finden vor allem im low energy-Sektor anwendung.

2. Leistungsstarke Systeme

Hier ligen die Taktraten meist im GHz-Bereich. Hauptanwendungsbereiche sind Mobilfunksysteme und embedded computing in der Industrie. Gerade im Mobilfunkbereich sind oft Mehrkernsysteme anzutreffen und es wird bis auf wenige Ausnahmen oberhalb eines Betriebssystems, meist Linux bzw. Android, programmiert.

2.2.1. BeagleBone Black

Für diese Arbeit verwende ich einen BeagleBone Black Rev. A5C (im Folgenden BeagleBone), Ein quelloffenes Entwickler-Board Mit einem ARM® CortexTM-A8 Prozessor (Single Core) von Texas Instruments.

Die wichtigsten Features:

- 1GHz Taktrate
- 512MB DDR3 RAM
- 2GB³ Onboard Flash Memory
- 10/100 Mbit/s Ethernet

 $^{^34\}mathrm{GB}$ ab Rev. C

- $\bullet~69^4$ GPIO mit mehreren PWM-Ausgängen und analogen Eingängen.
- \bullet Verhältnismäßig geringer Preis von ca
. $45 \, {\in}$

⁴Laut Dokumentation. 27 sind ohne weitere Konfiguration direkt verfügbar

3. Betriebsysteme

Da die Recourcen des BeagleBone Black sehr begrenzt sind, wird für diese Arbeit ein schlankes Betriebssystem benötigt, welches nur wenig Speicher benötigt und geringen Leistungs-Overhead verursacht. Für diesen Zweck gibt es spezielle Versionen der bekannten Betriebssysteme wie Microsoft Windows oder Linux sowie verschiedene "uin-xoide"Betriebssysteme.

3.1. **Linux**

Linux hat den Vorteil, dass nahzu alle Software als source code verfügbar ist und im Zweifel angepasst werden kann. Zu dem ist es üblich Lizenzen zu verwenden, die eine nicht-komerzielle Anwendung sowie Anpassungen kostenfrei zulassen.

Ein eigenes Linux zu entwickeln oder ein build system¹ zu verwenden wäre aus Sicht der Performance sicherlich die beste Wahl und ist auch in der Industrie weitgehend üblich, würde allerdings den Rahmen dieser Arbeit sprengen. Zu dem gibt es einige sehr schlanke und bereits für den BeagleBone angepasste Linux Distributionen.

3.1.1. Linux Distributionen

BeagleBoard.org bietet auf für den BeagleBone Black zwei verschiedene Distributionen an: Ångström und Debian. Beide Distributionen haben ihre Vor- und Nachteile. Ein weiteres Projekt, welches sich unter Entwicklern großer Beliebtheit erfreut ist Arch Linux, welches auch als Basis für diese Anwendung dienen soll.

The Ångström Distribution ist auf dem BeagleBone vorinstalliert und stellt die Hauptdistribution dar. Diese Distribution nutzt ein build system und findet im wesendlichen
Anwendung bei Speichersystemen wie NAS oder FTP-Server, wichtigstes feature ist daher der geringe Leistungs- und Speicherbedarf. Bei dieser Distribution muss allerdings
nahezu jede nicht-standard Software selbst kompiliert und eigerichtet werden.

Debian Linux gilt im allgemeinen ans (rock-)stable und ist eine der verbreitetsten Distributionen, zu dem basieren einige weitere namhafte Distributionen aud Debian Linux. Stärke und gleichzeitig auch Schwäche dieser Distribution sind die langen und umfangreichen Softwaretests. Wenn ein Paket in den offiziellen repositories verfügbar ist kann

¹Einige Distributionen verwenden ein sog. build system bei dem die benötigten Kernel-Module und Software-Pakete selbst zusammengestellt werden können.

3. Betriebsysteme

man zwar davon ausgehen, dass es fehlerfrei funktioniert und zu allen anderen angebotenen Pakete kompatibel ist, allerdings liegt es meist nicht mehr in der aktuellen Version vor. Das kann gerade bei Software aus dem Bereich Netzwerk/Internet problematisch werden.

Arch Linux Arch Linux hat gegenüber den oben genannten Distributionen zwei wesendliche Vorteile: Zum einen gibt es eine (Sub-)Distribution speziell für ARM-Prozessoren, bei der das Basissystem mit ca. 500MB sehr schlank ist und zum anderen ein sehr umfangreiches software repository mit sehr hoher Aktulaität. Zusätzlich gibt es das Arch User Repository, ein freies Repository in dem jeder Nutzer seine Pakete einstellen kann. Sämtliche in diesem Projekt verwendete Software lässt sich entweder direkt aud den offiziellen Repositories installieren oder aus den User Repositories kompilieren. Zwar kann es durchaus passieren, dass die eingestellte software nicht out-of-the-box funktioniert aber in der sehr aktiven Community hinter Arch Linux bekommt man relativ schnell Hilfe.

Arch Linux ARM verwendet ein sog. Rolling Release² es ist daher wesendlich einfacher das System aktuell und sicher zu halten. Da die Kernel-Entwicklung derzeit sehr schnell vorran schreitet, wird praktischerweise, zusätlich zur regulären Kernel-Entwicklung, ein legacy-Paket mit einer stabilen Version gepflegt. Es muss nach einem Update des Kernel-Paketes nicht erst die Kompatibilität wieder hergestellt werden.

²Kontinuierliche Software-Entwicklung bei der Pakete separat aktuell gehalten und weiter entwickelt werden, gibt keine explizite Betriebssystemversion (Wikipedia)

4. Webtechnologien

4.1. Webserver

Was ist ein Webserver? Welche sind die verbreitetsten und was sind ihre Besonderheiten.

4.1.1. Lighttpd

Warum wird Lighttpd verwendet?

4.1.2. Weitere Webserver

Apache

4.2. WebSockets

4.2.1. WebSockets vs. PHP

4.3. Node.js

Was ist Node.js, wie wird es verwendet.

Teil II. Konfiguration des Betriebssystems

5. Betriebssystem

Abweichend von der regulären Kernel-Entwicklung wird ein etwas älterer Kernel der Version 3.8 verwendet. Dieser wird über das Paket legacybla bereitgestellt.

6. Zusätzliche Software

Zusätzlich zu den mitgelieferten Pakteten der Distribution werden noch ein HTTP server, ein FTP server und die JavaScript/Node.js engine benötigt. Zusätzlich wird noch ein Proxy server benötigt um mit geringem Aufwand SSL-Verschlüsselte Verbindungen zu ermöglichen und nach außen über einen einzigen Netzwerk-Port zu kommunizieren zu können.

haproxy HAProxy ist ein Proxy server, der eigentlich eingesetzt wird um TCP-Anfragen auf mehrere Server zu verteilen. Wesendlich interessanter für diese Arbeit ist allerdings, dass der HAProxy nativ SSL-Verschlüsselte Verbindungen verarbeiten kann und dabei in der Basis sehr leicht zu konfigurieren ist.(1)

In diesem wird wird HAProxy eingesetzt um WebSocket requests von regulären HTTP requests zu trennen und auf unterschiedliche Dienste weiterzuleiten. Ziel dieser Maßnahme ist es nach außen die gesamte Website hinter einem Port zu betreiben obwohl die beiden Prozessen völlig von einander getrennt sind. So ist die gefahr, dass, bei einem Feldeinsatz, der Port für den WebSocket server von einer Firewall blockiert wird minimal. Die website ist entweder vollständig oder überhaupt nicht zu erreichen. Auch ist der der WebSocket server, der systembedingt mit root-Rechten laufen muss, ausschließlich per WebSocket über den Proxy zu erreichen und ist so gegenüber Angriffen von außen weitgehend sicher.

Ein weiterer wichtiger Punkt ist, dass sich für jeden Server die maximale Anzahl der aktiven Verbindungen bequem per Config File einstellen lassen. So kann ohne besondere Programmierung sichergestellt werden, dass immer nur eine Verbindung zum WebSocket server besteht. Alle weiteren verbindungsanfragen werden auf eine Warteliste gesetzt und weitergeleitet sobald der Websocket Server wieder frei wird.

lighttpd Lighttpd ist ein sehr leichtgewichtiger Webserver, der

vsftpd Ein ftp-server...

6.1. nodejs

Zusätzlich zu den von Google mitgelieferten Modulen werden noch einige Module benötigt um einen WebSocket Server zur verfügung zu stellen und die Steuerung der GPIO zu übernehmen.

6. Zusätzliche Software

ws Eine der einfachsten aber auch eine der schnellsten (wenn nicht die schnellste) WebSocket-Implemtierung. WS wird von vielen komplexeren WebSocket-Modulen als Grundlage bzw. als WebSocket-Unterstützung verwendet. Das Modul ist sehr einfach zu verwenden, fehlende Funktionalität gegenüber z. B. Socket.IO fällt in diesem Projekt nicht ins Gewicht, da der Webserver separat via Lighttpd zur Verfügung gestellt wird.

shelljs

bonescript

Beschreibung der bonescript¹ library.

¹https://github.com/jadonk/bonescript

Teil III. Implementierung

7. Implementierung

Das webinterface besteht im aus zwei Teilen: Einem WebSocket server, der die Steuerung der GPIO erledigt und einem Webserver, der die Dokumente ausliefert.

7.1. boneserver

Der Web Socket server ist via Node.
js implementiert und und verwendet die $bonescript^1$ library zur steuerung der GPIO.

7.2. Webinterface

¹https://github.com/jadonk/bonescript

Abbildung 7.1.: Test figure

Teil IV.

Fazit und Erweiterungsmöglichkeiten

Teil V. Anhang

A. Tabellen

parag	parious	Head on Board (Gr	T9 Used on Board (Group: pinning emmc2_pins)			R7	77	Т6	ne	R12	112	T10	11	U13 V13	U12	V12		V9 Used on Board (Group: pinmux_emmc2_pins)	Used on Board (Group: pinmux_emmcz_pins)		V7 Used on Board (Group: pinmux_emmc2_pins)			US Allocated (Group: nxp_hdmi_bonelt_pins)	V5 Allocated (Group: nxp_hdmi_bonet_pins) D5 Allocated (Group: nxp_hdmi_bonet_pins)	R6 Allocated (Group: nxp_initin_bonelt_pins)				U4 Allocated (Group: nxp_hdmi_bonelt_pins)		U1 Allocated (Group: nxp_hdmi_bonelt_pins)		T3 Allocated (Group: nxp_hdmi_bonelt_pins)		11 Allocated (Group: nxp_ndml_bonett_pins) T2 Allocated (Group: nxp_hdmi_bonett_pins)			R1 Allocated (Group: nxp_hdmi_bonelt_pins)	R2 Allocated (Group: nxp_hdmi_boneIt_pins)	CPU Updates Available at www.derekmolloy.ie	Nid						
		anmr ad6	gpmc_ad7	gpmc ad2		gpmc_advn_ale		<u>e</u>			21			gpmc_ad15		ç			gpmc_csn1							lcd ac bias en				lcd_data11						lcd_data5		lcd_data3	lcd_data0	lcd_data1	Mode 0				Bit 2,1,0	Mux Mode	000 Mode 0 to	
		mmc1 dat6	mmc1_dat7	mmc1 dat2	mmc1_dat3					lcd_data18	LCD_DATA19	lcd_data22	lcd_data21	lcd_data16	lcd data20	lcd_memony_clk	lcd_data23	gpmc_be1n	gpmc_cik	mmc1 dat4	mmc1_dat1	mmc1_dat0		gpmc_a8	gpmc_a10	gpmc a11	gpmc_a18	gpmc_a19	gpmc_a17	gpmc_a15	gpmc_a10	gpmc_a12	gpmc_a13	gpmc_a6	gpmc_a7	gpmc_a4	gpmc_a2	gpmc_a3	gpmc_a0	gpmc_a1	Mode 1				Bit 3	Enable Pullup/down	0 Enabled	Dalabera and Time Ad
						timer4	timer7	timer5	timer6	mmc1_dat5	MMC1_DAT4	mmc1_dat1	mmc1_dat2	mmc1_dat7	mmc1 dat3	gpmc_wait1	mmc1_dat0	mmc1_cmd	mmc1_cik								eQEP1_index	eQEP1_strobe	eQEP1B_in	ehrpwm1B	ohmwm1A	ehrpwm1_tripzone_in	ehrpwm0_synco								Mode 2			GPIO Settings	Bit 4	Pullup/Pulldown	0 Pulldown select	Thispie Total and the military one military and the military dates
										mmc2_dat1	MMC2_DAT0	mmc2_dat5	mmc2_dat6	mmc2_dat3	mmc2_dat7	mmc2_clk	mmc2_dat4										mcasp0_axr1	mcasp0_ahclkx	mcasp0_fsr	mcasp0_ahclkr	mesend syn	mcasp0_aclkx	mcasp0_fsx	eQEP2_index	eQEP2_strobe	eQEPZA_III	ehrpwm2_tripzone_in	ehrpwm0_synco	ehrpwm2A	ehrpwm2B	Mode 3				Bit5	Receiver Active	0 Disable	T LIIGUIC
										eQEP2B_in	EQEP2A_IN	ehrpwm2B	ehrpwm2_tripzone_in	eQEP2_strobe	ehrpwm0 synco		ehrpwm2A										uart5_rxd	mcasp0_axr3	mcasp0_axr3	mcasp0_axr2	III.dsb0_dxi z	uart5_txd	uart5_rxd		pr1_edio_data_out7						Mode 4				Bit 6	Slew Control	0 Fast	
																mcasp0_fsr											uart5_ctsn	uart5_rtsn	uart4_rtsn	uart3_rtsn	uart3 ctcn	uart2_ctsn	uart2_rtsn								Mode 6 Mode 5							
		anio1[6]	spicife]	gpio1[2]	gpio1[3]	gpio2[2]	gpio2[3]	gpio2[5]	gpio2[4]	gpio1[13]	gpio1[12]	gpio0[23]	gpio0[26]	gpio1[15]	gpio0[27]	Ш	gpio0[22]	gpio1[31]	gpio1[30]	gpio1[4]	gpio1[1]	gpio1[0]	gpio1[29]	gpio2[22]	gpi02[24]	gpi02[25]		Ш			gpiouloj ua			gpio2[12]	gpio2[13]	gpioz[10] gpio2[11]	gpio2[8]	gpio2[9]	gpio2[6]	gpi02[7]	Mode 7							
ONSO	DGND	GPIO1 6			Ш						- 1	_	ш	GPI01_15 g		ш	4		GPIO1_30		ı				GPIO2_24		-	ш		UART3_RTSN #						GPIO2_10			9.	GPIO2_7	Name					GPI01_21	GPI02_22	GBIO2 24
		38	39	34	35	99	29	69	89	45	44	23	26	47	27			89	24	36	33	32	61	98	2 88	89							79	76	77	75	72	73	70	7.1	GPIO NO.	(Mode 7)				53	86	òô
		0×818/018	0x81c/01c	0×808/008	0x80c/00c	060/068×0	0x894/094	0x89c/09c	0×898/098	0x834/034	0x830/030	0x824/024	0x828/028	0x83c/03c	0x82c/02c	0x88c/08c	0x820/020	0x884/084	0x820/080	0x810/010	0x804/004	0x800/000	0x87c/07c	0×8e0/0e0	0x8e8/0e8	0x8ec/0ec	8p0/8p8x0	0x8dc/0dc	0x8d4/0d4	0x8cc/0cc	Overs /Oce	0x8c0/0c0	0x8c4/0c4	0x8b8/0b8	0x8bc/0bc	0x8b0/0b0	0x8a8/0a8	0x8ac/0ac	0x8a0/0a0	0x8a4/0a4	ADDR +	44e10000	44e10800			0x854/054	0x858/058	0.060/060
		œ	2	. 7	3	36	37	39	38	13	12	6	10	15	11	35	œ	33	32	9 4	- 1	0	31	29	22 28	59	54	55	23	51	50	48	49	46	47	4 4	42	43	40	41	cat \$PINS					21	22	2,7
D8 01	D 0 0	D8 03	P8 04	P8 05	90 ⁻ 84	P8_07	P8 08	P8_09	P8_10	P8_11	P8_12	P8_13	P8_14	P8_15	P8 17	P8_18	P8_19	P8_20	P8_21	P8 23	P8_24	P8_25	P8_26	P8_27	87 84	P8 30	P8_31	P8_32	P8_33	P8_34	P8 36	P8_37	P8_38	P8_39	P8_40	P8 41	P8 43	P8_44	P8_45	P8_46	P9 Header				User LEDs	USRO	USR1	1100

Tabelle A.1.: BeagleBone Black Expansion Header (P8)

Tabelle A.2.: BeagleBone Black Expansion Header (P9)

Literaturverzeichnis

- [1] KÜHNAST, Charly: Passthrough und Offloading: HTTPS balancieren mit HA-Proxy 1.5. In: *ADMIN Magazin* (2014), Nr. 3, S. 32–34
- [2] STILLER, Andreas: Die ARM-Story. In: c't magazin für computertechnik (2002), Nr. 2, S. 70
- [3] Weiser, Mark: The Computer for the 21st Century. In: Scientific American (1991), Nr. 265, S. 94–104