Vertex of the Quadratic

Given a quadratic $n(c) = ac^2 + bc + c$ compute its value at $c_1 = -\frac{b}{2a}$ namely $n(c_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $\mathsf{c}_{1^+}\mathsf{h}$, namely $n(c_1+h) = -\frac{b^2}{4a} + ah^2 + c$

Compute $\triangle = n(c_1 + h) - n(c_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum! Example 1.

$n(c) = c^2 + 8c + 61$

However if ${\sf a<0}$ then ${\vartriangle<0}$ or vertex is the global maximum!

Example 2.

