

BSM 313

NESNELERIN INTERNETI VE UYGULAMALARI

(Internet of Things (IoT) and Applications)

NESNELERİN İNTERNETİ UYGULAMALARINDA SIKLIKLA KULLANILAN KABLOSUZ TEKNOLOJİLER Bluetooth Low Energy (BLE)

Prof. Dr. Cüneyt BAYILMIŞ

Bluetooth

- □ Bluetooth, kişisel, ofis ve endüstri ortamlarında kısa mesafeli, hızlı, güvenilir, düşük maliyetli bir kablosuz ağ modelidir.
- ☐ Bluetooth açık bir standart olup, üretici bağımsız bir teknolojidir.
- ☐ Temel Bluetooth standardı, lisans gerektirmeyen 2.4 GHz ISM (Industrial, Scientific, Medical) bandında maksimum 1 Mbit/s veri iletim hızı ile 10m gibi kısa mesafede ses ve veri transferini desteklemektedir.
- □ İlk Bluetooth sürümü olan 1.0 2001 yılında, Bluetooth 1.1, 2002'de ve Bluetooth 1.2 versiyonu 2003 yılında tanıtılmıştır.
- □ Bluetooth 2.0, 2 Mbit/s, 2.0 EDR versiyonu ise 3 Mbit/s veri iletim hızını desteklemekte ve eski versiyonlar ile uyumlu olarak çalışmaktadır.
- □ Bluetooth 3.0 2009 yılında sunulmuş ve önceki versiyonlardan farkları arasında daha düşük enerji tüketimi ve yüksek hızlı veri taşıyıcı olarak 802.11'in eklenmesidir.
- Bluetooth 4.0 versiyonunun öne çıkan özelliği ise yüksek güvenlik için 128 bit AES şifreleme kullanmasıdır.
- Bluetooth 5.0 versiyonu ise 48 Mbit/s veri iletim hızı ve 300m'ye kadar mesafeye sahiptir. Ancak, önceki versiyonlar ile uyumluluk problemi vardır.

Bilgi: Bluetooth, IEEE 802.15 standart ailesinin temeli olarak kabul edilir.

Bluetooth Ağ Mimarisi

- Yakınlık ağ mantığına dayanan eşe-eş (peer to peer, ad-hoc) topolojiyi destekler.
- ☐ İki eleman birbirlerinin alanı içerisine girdiğinde otomatik olarak haberleşme bağlantısı kurarlar.
- □ Bluetooth cihazlar Master ve Slave olarak çalışır. Master'ın görevi, Bluetooth cihazlar arasındaki Frekans Atlamalı Geniş Spektrum (Frequency Hopping Spread Spectrum, FHSS) haberleşmenin senkronizasyonunu yönetmektir.
- □ Birbirleri ile haberleşen Bluetooth cihazların oluşturduğu en küçük ağ birimi Piconet olarak adlandırılır. İki veya daha fazla Piconet kısmen üst üste bindiğinde oluşan yapıya Scatternet denir.
- □ Bir Piconet maksimum 8 aktif cihazdan oluşur ve bunlardan biri Master diğerleri Slave olarak ağ içerisinde çalışırlar. Ayrıca Master, park modundaki 255 Slave'e kadar bağlantı kurabilir.

Bluetooth Teknolojisi

Mesafe	10 m	
Frekans Aralığı	2402-2480 MHz	
Kanal Sayısı ve Bant Genişliği	1 MHz'lik bant genişliğine sahip 79 kanal	
Modülasyon	Gaussian Frequency Shift Keying (GFSK)	
Sembol Hızı	1 M sembol/sn	Binary GFSK kullanır, bağlantı hızı 1 Mbps ve bit gönderme zamanı 1µsn
Frekans Atlama Oranı	1600 atlama/sn	Kanalda kalma zamanı 625μsn
	Sınıf 3 : 0 dBm (1 mW)	
Gönderme Gücü	Sınıf 2 : 4 dBm (2,5 mW)	
	Sınıf 1 : 20 dBm (100 mW)	
Alıcı Hassasiyeti	Bir Bluetooth alıcı, -70 dBm veya daha düşük bir giriş sinyal seviyesinin %0.1 oranında ham bit hata oranına (BER) ulaşmalı	-70 dBm hassasiyet seviyesi herhangi bir eş Bluetooth gönderici tarafından üretilen giriş sinyeli için elde edilecek

Bluetooth Low Energy (BLE)

- Bluteooth smart veya Bluetooth 4.0 olarak ta bilinir.
- Bluetooth teknolojisi ile aynı kapsama alanına sahip olup düşük enerji tüketimi sunar.
- □ Teknik Özellikleri
 - Frekans Atlamalı Geniş Spektrum (Frequency Hopping Spread Spectrum, FHSS),
 - 2.4 GHz frekans bandı (Industrial Scientific Medical, ISM),
 - Zaman Bölmeli Çoklu Erişim (Time Division Multiple Access, TDMA) ortam erişim yöntemi,
 - 1 Mbit/s veri iletim hızı,
 - 5917 slave ile ölçeklenebilirlik,
 - 0.01 0.5 w güç tüketimi,

Bluetooth Low Energy (BLE)

- ☐ BLE 7 profil sunar.
 - Health care profiles
 - Sports and fitness profiles,
 - Internet Connectivity,
 - Generic Sensor,
 - HID Connectivity,
 - Proximity sensing,
 - Alert and time profiles,

Bluetooth Low Energy (BLE)

 Bluetooth Düşük Enerji (BLE) teknolojisinin kısa mesafeli diğer kablosuz teknolojiler ile karşılaştırılması

Kablosuz teknoloji	Veri iletim hızı	Çalışma frekansı	Kapsama alanı	Ortalama ağ ömrü
BLE IEEE802.15.1 (v4)	1 Mbit/s	2.4GHz	10-50 m	1-2 yıl
Bluetooth IEEE802.15.1	1-24 Mbit/s	2.4GHz	10-100m	Gün – ay
UWB IEEE802.15.3a	110–480 Mbit/s	3.1 -10.6 GHz	10 m	1 – 2 yıl
ZigBee IEEE802.15.4	20–250 Kbit/s	2.4GHz	100 m	6 ay – 1 yıl
Z-Wave	40 Kbit/s	868/908MHz 2.4 GHz	100 m	1 yıl

Kaynak: C. Bayılmış, M. Özdemir, "Bluetooth Düşük Enerji Teknolojisine Sahip İşaretçi ve Akıllı Telefon Temelli Öğrenci Yoklama Sistemi", Gazi Üniversitesi Bilişim Teknolojileri Dergisi, 9 (3), 249–254, 2016.

Beacon: BLE Teknolojisine Sahip İşaretçi Cihazlar

- □ Beacon cihazlar, BLE teknolojisi ile donatılmış, düşük güçlü ve düşük maliyetli yakınlık mantığına dayalı kablosuz bildirim sağlayan elektronik vericilerdir/cihazlardır.
- □ Android ve iOS cihazlar ile haberleşebilmektedir. iOS 7
- Beacon cihazlar, BLE Advertising olarak ta adlandırılan belirli sıklıkta kablosuz sinyaller yayar.
- Mobil cihazlar, Beacon cihazlardan aldıkları verilere göre tepki vermektedirler. (uygulama çalıştırmaktadır)
- □ Böylelikle mikro konum belirleme, bulunulan mekana göre aktivitelerde bulunma gibi yakınlığa duyarlı uygulamalar gerçekleştirilmektedir.

Beacon: BLE Teknolojisine Sahip İşaretçi Cihazlar

Beacon Cihazlar

Google

- Phoneist
- □ İşaretçi (Beacon) cihazlar, BLE teknolojisi ile donatılmış, düşük güçlü ve düşük maliyetli elektronik vericilerdir.
- Örneğin, bazı Beacon cihazlarda kullanılan bluegiga BLE 113 çipi gönderim işleminde maksimum 18,2 mA, alımda maksimum 14.3 mA, uyku modunda ise 0,4 μA enerji tüketimine sahiptir.
- Beacon geliştiren bazı firmalar
 - Apple: iBeacon for developers, https://developer.apple.com/ibeacon/
 - Estimote beacon, https://estimote.com
 - Google beacon eddystone, https://developers.google.com/beacons/
 - Blesh beacon, https://www.blesh.com
 - Boni beacon, https://www.boni.me
 - Phoneist beacon, https://www.phoneist.com

iBeacon Paket Formatı

- Beacon cihazlarda yayılan Bluetooth Sinyaller 4 farklı veri taşımaktadır.
- ☐ Global Tekil Kimlik (Universal Unique Identifier, UUID)
 - Tüm bir beacon ağını tanımlamak için kullanılır (Üretici firma bilgisi)
 - 16 bayt uzunluğundadır.
 - Örneğin, mobil cihazdaki uygulama kendine ait UUID algıladığında veri paketinin geri kalan kısmını dinlemeye başlar.
- Major
 - Üst ağ adresidir. 2 bayt uzunluğundadır.
- Minor
 - Alt ağ adresidir. 2 bayt uzunluğundadır.
 - Aynı üst ağ içerisindeki ilgili cihazı göstermek için kullanılır.
- ☐ TX Power
 - Beacon cihazın uzaklığını tespit etmek için kullanılan RSSI (Received Signal Strength Indication) değerini içerir. (1m'deki RSSI bilgisidir)
 - Örnek: Fakültemize beacon yerleştirdiğimizi düşünecek olursak, fakülte bilgisi UUID, birinci kat, major 1, birinci kattaki 1003 nolu sınıf minör 03 bilgisine sahip olacak.

Beacon Nasıl Çalışır

Beacon Nedir ve Nasıl Çalısır?

Using Beacons — an example retail implementation

John is headed to his favorite retail store. He has the store's mobile app on his smartphone and although it's in his pocket, it's picking-up signals from beacons located in the store.

Using Beacons — an example retail implementation As John approaches the entrance, the violet beacon positioned in the window, sends a personalized message to his phone engaging him to read the welcome message.

Using Beacons — an example retail implementation John sees some great jeans and wants to learn more about them. Thanks to another beacon located near the product, he can immediately receive more information and a special offer. Jeans are on sale today. Today they can be purchased at a 20% discount!

Beacon Nasıl Çalışır?

Beacon Kullanım Alanları

- □ Alış-veriş merkezlerindeki işyerlerinin ürün ve reklam tanıtımı (kişiye özel bildirim ve kampanya mesajları),
- Sergi, müze ve tarihi mekanların tanıtımı,
- ☐ Toplantı katılım, yoklama sistemleri,
- □ Kapalı alan konum belirleme (navigasyon)
- Bankacılık işlemleri (kartsız ATM kullanımı, gişe sıra işlemleri vb.)

Beacon Eddystone

- Eddystone Google'ın geliştirdiği açık kaynaklı ve birden çok platform destekli (Şuan için Android ve iOS) BLE Beacon formatıdır.
 - https://github.com/google/eddystone
- ☐ Google Eddystone Temmuz 2015'de tanıtılmıştır.
- Kısaca Google Eddystone beacon üreten firmalar için açık kaynak platformudur.
- ☐ Google Eddystone, birçok farklı beacon üreticisinin (Estimote, Kontak.io, Blesh, Radius Networks [Altbeacon] vd.) ürünleri ile çalışabilmektedir.
- □ ibeacon ve Eddystone aslında BLE cihazları ile benzer yapıda tanımlama paketleri yayınlamak için kullanılmaktadır.

Not: Eddystone'un diğer BLE Beaconlar'dan en önemli farkı BLE paket içerisinde URL bilgisi gönderimidir.

Eddystone Paket Formati

- ☐ Eddystone ise 3 farklı paket tipine (UID,URL,TLM) sahiptir ve Google tarafından hem Android hem de iOS platformunda desteklenmektedir.
 - UID, beacon UUID ile aynı görevi görür. 10 baytlık beacon tanımlayıcı bilgisi (Namespace) ve 6 baytlık aynı grup ya da üreticiye ait beaconların ayrımını belirten bilgi alanı (instance) olmak üzere iki alandan oluşur.
 - URL paket (17 bayt) ile uygulamalar doğrudan URL'ye gider. (Sıkıştırılmış URL)
 - > TLM (telemetry) ise beaconın pil, sıcaklık, nem gibi sensörlerden elde edilen verileri içerir.

Fiziksel Web

- Mobil uygulama yükleme gereksinimi olmaksızın, web tarayıcılar (Chrome) aracılığıyla BLE teknolojisine sahip nesneler (beacon) ile iletişim kurmamızı ve onları kontrol edebilmemizi sağlayan bir teknolojidir.
- ☐ Google Eddystone-URL paket yapısından yararlanmaktadır.
- □ Fiziksel Web kısaca şu şekilde çalışmaktadır. BLE teknolojisi ile donatılmış nesnelerin (beacon) yaymış oldukları URL bilgisine sahip BLE sinyaller/paketler akıllı telefonlarda Chrome aracılığıyla alınmakta ve ilgili web sayfası açılmaktadır.

iBeacon ile Eddystone Karşılaştırması

Özellik	ibeacon	Eddystone
Platform Desteği	Yalnızca iOS	Android ve iOS
Paket Formatı Çeşitliliği	Tek Tip Paket (UUID)	3 Farklı Paket Tipi UID, URL, TLM
Son Kullanıcı İçin Mobil Uygulama Gereksinimi	Gerekli	Eddystone-URL paket formatı ile mobil uygulama gerekmemekte

Beacon Mesajların Android Uygulama ile Alınması

☐ Android uygulamasında beacon mesajların alınması/dinlenmesi

```
...BeaconManager.getInstance(context).registerRangingListener(new ...BeaconListener() {

@Override
public void onNearestRangedBeacon(...Region ...Region,
...Beacon ...Beacon)
```

- !!! ... yerine Beacon üretici firma ismi kullanılmaktadır.
- ...Beacon sınıfından oluşturulan nesne ile beacon'a ait bilgiler çekilir. Bu işlem onNearestRangedBeacon metodu içerisinde yapılmalıdır.
- □ ...Beacon.getMinor() ile sinyalini aldığımız beaconın minor adresini elde ederiz.
- ☐ ...Beacon.getRssi() ile de beacondan gelen sinyalin gücü ölçülebilir.

Beacon Cihazlar Nasıl Programlanabilir?

☐ Geliştirme Kitleri ya da programlayıcılar aracılığıyla Beacon cihazların major, minor gibi adres değerleri, TX gibi gönderim güçleri ayarlanabilir.

☐ Bluegiga BLE113 çiplerini programlamak için DKBLE113 geliştirme kiti

kullanılmaktadır.

Uygulama Örnekleri: Beacon Mikro Konum Belirleme Programı

Beacon cihazının kapsama alanına girdiğinizde ve çıktığınızda bildirim gönderen ya

Beacon

da müzik çalan uygulama.

Bildirim Gönderen Uygulama

Müzik Çalan Uygulama

Öğrenci Adı: Ahmet

Soyadı: YILMAZ

Tarih: 06/02/2017

Giriş Saati : 16:50:25

Çıkış Saati: 16:51:22

Uygulamayı hazırlayan Fatma KOÇ

Uygulama Örnekleri: Şanslı Beacon

☐ İşletmeye belirli bir sırada (beacon kapsama alanına) giren kullanıcı şanslı kullanıcı olarak kabul edilmekte ve ilgili kullanıcıya firma tarafında hediye verilmekte ya da indirim yapılmadır.

Kullanılan Teknolojiler

- ✓ Android Platformu
- √ BoniBeaconSDK.jar
- ✓ NodeJS
- ✓ MongoDB

Uygulama Örnekleri: Şanslı Beacon

Uygulamaya ait kod parçası

```
BoniBeaconManager.getInstance(context).registerRangingListener(new BoniBeaconListener() {
    @Override
   public void onNearestRangedBeacon(BoniRegion boniRegion, BoniBeacon boniBeacon) {
        if (boniBeacon.getMinor().equals("0002") && boniBeacon.getRssi() > -70) {
            //JSON object oluşturulyor
            try {
                JSONObject jsonObject = new JSONObject();
                jsonObject.accumulate("phone", file.getString("PlaceControl", null));
                jsonObject.accumulate("address", boniBeacon.getDeviceAddress().toString());
                String json = jsonObject.toString();
                //Sunucu ile bağlantı kurulup servis de kullanıcı kontrolü yapılıyor
                String result = new ServiceGetCaller(json).execute(Connection.getWebServiceURL() +
                                                                                     "campaignControl").get();
                if (new JSONObject(result).getString("result").equals("LUCKY")) {
                    notifications = new Notifications(getApplicationContext(),
                                    "Şanslı Kişi Sizsiniz", "Tüm ürünlerimizde %50 İNDİRİM");
                    notifications.sendNotification();
                } else {
                    if (region != null) {
                        BoniBeaconManager.getInstance(context).stopRangingBeacons(region);
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (ExecutionException e) {
                e.printStackTrace();
            } catch (JSONException e) {
                e.printStackTrace();
```


Uygulamayı hazırlayan Ergun ALATEŞ

Uygulama Örnekleri: Öğrenci Yoklama Sistemi

□ Sınıflara yerleştirilen beacon ve akıllı telefonlar aracılığıyla otomatik öğrenci yoklama sistemi ile devam takip işlemleri öğrencinin derse katılım süresine göre belirlenebilir.

Ders Bilgileri		Ders Açıklaması
Adı	: MİKROİŞLEMCİLİ SİSTEMLER VE LABARATUVAR	Bu derste, günümüz bilgisayar teknolojileri içerisinde programları işleyen ve çalıştıran mikroişlemcili
Öğretim Görevlisi	: Doç.Dr. Cüneyt Bayılmış	sistemler hakkında bilgi verilmesi; endüstride yaygın kullanılan 8085 mikrolşlemci ve 8051 denetleyici
Yarıyıl	:6	mimari yapılarını ve kodlarını inceleyerek, laboratua ortamında uygulamalı örnekler ile öğrencilerin teorik
Gün	: Salı	ve pratik bilgiler kazanması hedeflenmektedir.
Saat	: 13:00:00 - 17:00:00	
Sinif	: 1201	
Hafta Durumu	:6/14	
**		
Öğrenci No	Öğrenci Adı	Katılım Durumu
	Öğrenci Adı Mehmet Özdemir	Katılım Durumu % 45.83
Öğrenci No	107-000000	

Kaynaklar

❖ Temel Kaynaklar

■ Prof. Dr. Cüneyt BAYILMIŞ ve Prof. Dr. Kerem KÜÇÜK, "Nesnelerin İnternet'i: Teori ve Uygulamaları", Papatya Yayınevi, 2019.

❖ Diğer Kaynaklar

 C. Bayılmış, M. Özdemir, "Bluetooth Düşük Enerji Teknolojisine Sahip İşaretçi ve Akıllı Telefon Temelli Öğrenci Yoklama Sistemi", Gazi Üniversitesi Bilişim Teknolojileri Dergisi, 9 (3), 249– 254, 2016.

Beacon Geliştiren Firmalar

- > Apple: iBeacon for developers, https://developer.apple.com/ibeacon/
- Estimote beacon, https://estimote.com
- Blesh beacon, https://www.blesh.com
- Boni beacon, https://www.boni.me
- Phoneist beacon, https://www.phoneist.com
- ➤ Google beacon eddystone, https://developers.google.com/beacons/

BLE Çip Üretici firmalar

Bluegiga BLE113, https://www.bluegiga.com/en-US/products/ble113-bluetooth-smart-module/

