INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

Exame de Biomateriais

PARTE B (12 valores)

DURAÇÃO: 60 min

15/julho/2020

NOTAS IMPORTANTES

- Deduza todas as equações que tiver de utilizar, exceto se forem definições, e identifique todas as variáveis introduzidas;
- Resolva os problemas apresentando todos os cálculos e unidades, mesmo que sejam de passos intermédios.

Problema 1 (5 valores)

Considere o sólido cuja estrutura cristalina se encontra representada na figura.

- a) Indique as condições necessárias para verificar-se a razão de raios catiãoanião mínima numa estrutura cristalina. Mostre que, para a estrutura representada na figura, a razão de raios catião-anião mínima é 0,732.
- b) Qual é o número de coordenação para o catião?
- c) Determine a massa volúmica do sólido, em unidades do SI, considerando a informação constante da tabela:

ião	raio iónico (Å)	massa atómica (g/mol)
anião	1,81	35,4
catião	1,65	132,9

Problema 2 (3,5 valores)

De uma forma geral, o comprimento médio (L) das cadeias de um polímero amorfo pode ser expresso pela expressão $L=\ell\sqrt{m}$, em que ℓ é a distância interatómica (1,54 Å para a ligação C—C) e m o número de ligações C—C.

Considere o poliisobuteno cuja designação, segundo a IUPAC, é poli(2-metil-propeno).

- a) Represente a fórmula de estrutura do monómero e determine a sua massa molecular.
- b) Se a massa molecular média numérica do poli(2-metil-propeno) for 11200 g mol⁻¹ qual o comprimento médio (*L*) das cadeias do polímero, em nanómetro?

Dados: $MA(C) \cong 12 \text{ g mol}^{-1}$; $MA(H) \cong 1 \text{ g mol}^{-1}$

Problema 3 (3,5 valores)

Um provete cilíndrico de 380 mm de comprimento e 10 mm de diâmetro foi sujeito a um ensaio de tração. Se o provete não sofrer nem deformação plástica nem um alongamento superior a 0,9 mm quando aplicada uma carga de 24,5 kN, qual (ou quais) dos quatro materiais listados na tabela abaixo são possíveis candidatos. Justifique a sua escolha(s).

material	tensão de cedência (MPa)	módulo de Young (GPa)	resistência à tração (MPa)
liga de alumínio	255	70	420
latão	345	100	420
cobre	250	110	290
aço	450	207	550
-			