日本国特許

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2001年 9月20日

出願番号 Application Number:

特願2001-287444

出 願 人 Applicant(s):

日東電工株式会社

2001年10月26日

特許庁長官 Commissioner, Japan Patent Office

【書類名】・

特許願

【整理番号】

P13-645

【提出日】

平成13年 9月20日

【あて先】

特許庁長官

【国際特許分類】

G02B 5/02

G02F 1/1335

【発明者】

【住所又は居所】

大阪府茨木市下穂積1丁目1番2号 日東電工株式会

社内

【氏名】

八木 伸圭

【発明者】

【住所又は居所】

大阪府茨木市下穂積1丁目1番2号 日東電工株式会

社内

【氏名】

梅原 俊志

【特許出願人】

【識別番号】

000003964

【氏名又は名称】

日東電工株式会社

【代表者】

竹本

正道

【電話番号】

0726-22-2981

【先の出願に基づく優先権主張】

【出願番号】

特願2000-370808

【出願日】

平成12年12月 6日

【手数料の表示】

【予納台帳番号】

010294

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【物件名】

図面 1

【プルーフの要否】 要

【書類名】 . 明細書

【発明の名称】 樹脂シートとその製造方法および液晶表示装置

【特許請求の範囲】

【請求項1】少なくともガスバリア層、基材層、および2層のハードコート層からなり、2層のハードコート層がそれぞれ最外層にある樹脂シートにおいて、2層のうち1層のハードコート層が外側表面に凹凸構造を有し、且つ、少なくとも1層のハードコート層が透明粒子を含有することを特徴とする樹脂シート。

【請求項2】少なくともガスバリア層、基材層、および1層のハードコート層からなり、ハードコート層が最外層にある樹脂シートにおいて、上記ハードコート層が外側表面に凹凸構造を有し、且つ、上記ハードコート層が透明粒子を含有することを特徴とする樹脂シート。

【請求項3】前記凹凸構造の表面粗さが80nm~500nmであることを 特徴とする請求項1~2に記載の樹脂シート。

【請求項4】前記凹凸構造の山谷間隔が20nm~80nmであることを特徴とする請求項1~3に記載の樹脂シート。

【請求項5】前記透明粒子がハードコート層形成樹脂との屈折率差が0.0 3~0.10である球形粒子であることを特徴とする請求項1~4に記載の樹脂シート。

【請求項6】前記基材層がエポキシ系樹脂よりなることを特徴とする請求項 1~5に記載の樹脂シート。

【請求項7】前記ハードコート層がウレタン系樹脂よりなることを特徴とする請求項1~6に記載の樹脂シート。

【請求項8】請求項1~7に記載の樹脂シートを製造する方法において、支持体に形成した凹部を転写することによりハードコート層表面に凹凸構造を形成する工程を含むことを特徴とする樹脂シートの製造方法。

【請求項9】請求項1~7に記載の樹脂シートを用いることを特徴とする液晶表示装置。

【請求項10】請求項1~7に記載の樹脂シートを用いることを特徴とする 有機エレクトロルミネッセンス表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】

本発明はゴーストやギラツキを防止し、防眩性や光拡散性に優れた樹脂シート、その樹脂シートの製造方法、およびその樹脂シートを用いた液晶表示装置に関する。

[0002]

【従来の技術】

液晶表示装置等の表示装置においては、透明粒子を有する光拡散シートを液晶 セルの視認側に貼り付け照明光や液晶表示装置内臓のバックライトに起因するギ ラツキを防止し視認性を向上させる方法が知られていた。また表面に凹凸構造を 有する防眩シートを液晶セルの視認側に貼り付け、蛍光灯や太陽光等の照明光や キーボーダーなどの外部環境が画面上に映り込む、いわゆるゴースト現象を防止 する方法が知られていた。

しかし液晶表示装置の薄型化、軽量化の点から光拡散シートや防眩シートを液晶セルの視認側に貼り付ける代わりに、光拡散機能や防眩機能を液晶セル基板に付与することが検討されている。

[0003]

【発明が解決しようとする課題】

本発明は蛍光灯や太陽光等の照明光やキーボーダーなどの外部環境が画面上に映り込む、いわゆるゴースト現象を防止する防眩機能と、照明光や液晶表示装置内臓のバックライトに起因するギラツキを防止する光拡散機能を有し、薄型で軽量な樹脂シート、その樹脂シートの製造方法、およびその樹脂シートを用いた液晶表示装置を提供することを課題とする。

[0004]

【課題を解決するための手段】

本発明は少なくともガスバリア層、基材層、および2層のハードコート層からなり、2層のハードコート層がそれぞれ最外層にある樹脂シートにおいて、2層のうち1層のハードコート層が外側表面に凹凸構造を有し、且つ、少なくとも1

層のハードコート層が透明粒子を含有することを特徴とする樹脂シートを提供するものである。

また本発明は少なくともガスバリア層、基材層、および1層のハードコート層 からなり、ハードコート層が最外層にある樹脂シートにおいて、上記ハードコート層が外側表面に凹凸構造を有し、且つ、上記ハードコート層が透明粒子を含有 することを特徴とする樹脂シートを提供するものである。

前記凹凸構造の表面粗さは $80nm\sim500nm$ であることが好ましく、前記凹凸構造の山谷間隔は $20nm\sim80nm$ であることが好ましい。

前記透明粒子はハードコート層形成樹脂との屈折率差が 0.03~0.10である球形粒子であることが好ましい。

前記基材層はエポキシ系樹脂からなることが好ましく、前記ハードコート層は ウレタン系樹脂からなることが好ましい。

また本発明は支持体に形成した凹部を転写することによりハードコート層表面 に凹凸構造を形成する工程を含むことを特徴とする樹脂シートの製造方法や本発 明の樹脂シートを用いることを特徴とする液晶表示装置を提供するものである。

[0005]

【発明の実施の形態】

本発明の樹脂シートは、少なくともガスバリア層、基材層、および2層のハードコート層からなり、2層のハードコート層がそれぞれ最外層にある樹脂シートにおいて、2層のうち1層のハードコート層が外側表面に凹凸構造を有し、且つ、少なくとも1層のハードコート層が透明粒子を含有することを特徴とする。

[0006]

少なくとも1層のハードコート層が透明粒子を含有するとは、2層のうち表面 に凹凸構造を有するハードコート層のみが透明粒子を含有する場合、2層のうち 表面に凹凸構造を有さないハードコート層のみが透明粒子を含有する場合、表面 に凹凸構造を有するハードコート層と表面に凹凸構造を有さないハードコート層 の両方とも透明粒子を含有する場合がある。

[0007]

この場合、基材層とガスバリア層の積層する順は特に限定されない。すなわち

、本発明は最外層から凹凸構造を有するハードコート層、ガスバリア層、基材層 、およびハードコート層からなる樹脂シートもしくは最外層から凹凸構造を有す るハードコート層、基材層、ガスバリア層、およびハードコート層からなる樹脂 シートを提供できる。

[0008]

また本発明の樹脂シートは、ガスバリア層、基材層、および少なくとも1層の ハードコート層からなり、ハードコート層が最外層にある樹脂シートにおいて、 上記ハードコート層が外側表面に凹凸構造を有し、且つ、上記ハードコート層が 透明粒子を含有することを特徴とする。

[0009]

この場合においても、基材層とガスバリア層の積層する順は特に限定されない。すなわち、本発明は最外層からハードコート層、ガスバリア層、基材層からなる樹脂シートもしくは最外層からハードコート層、基材層、ガスバリア層からなる樹脂シートを提供できるが、ガスバリア層はハードコート層や基材層に比べて耐衝撃性、耐薬品性が劣ることがあるのでガスバリア層は最外層にないほうがよい。つまり最外層からハードコート層、ガスバリア層、基材層からなる樹脂シートからなる樹脂シートがより好ましい。

[0010]

本願発明においてハードコート層を形成する材料としては、ウレタン系樹脂、 アクリル系樹脂、ポリエステル系樹脂、ポリビニルアルコールやエチレン・ビニ ルアルコール共重合体の如きポリビニルアルコール系樹脂、塩化ビニル系樹脂や 塩化ビニリデン系樹脂が挙げられる。

[0011]

また、ポリアリレート系樹脂、スルホン系樹脂、アミド系樹脂、イミド系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルイミド系樹脂、ポリカーボネート系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリオレフィン系樹脂、スチレン系樹脂、ビニルピロリドン系樹脂、セルロース系樹脂やアクリロニトリル系樹脂なども樹脂層の形成に用いることができる。これらの樹脂の中ではウレタン系樹脂が好ましく、ウレタンアクリレートが特に好ましく用いられる。なお樹脂層の形

成には、適宜な樹脂の2種以上のブレンド物なども用いることができる。

[0012]

また、本発明におけるガスバリア層の材料としてはポリビニルアルコール及びその部分ケン化物、エチレン・ビニルアルコール共重合体等のビニルアルコール系ポリマーや、ポリアクリロニトリル、ポリ塩化ビニリデン等の酸素透過が小さい材料が用いられるが、高ガスバリア性の点よりビニルアルコール系ポリマーが特に好ましい。

[0013]

ガスバリア層の厚みは 2~10μmが好ましく、さらに好ましくは 3~5μmがよい。有機ガスバリア層の厚みが 2μm未満であると十分なガスバリア機能を付与することができず、10μmを超えると樹脂シートの黄色度指数 (Υ I 値)が大きくなる。

[0014]

本発明において、基材層として展開される樹脂としては、ポリカーボネート、ポリアリレート、ポリエーテルスルホン、ポリスルホン、ポリエステル、ポリメチルメタクリレート、ポリエーテルイミドやポリアミド等の熱可塑性樹脂、エポキシ系樹脂、不飽和ポリエステル、ポリジアリルフタレートやポリイソボニルメタクリレート等の熱硬化樹脂が挙げられる。これらの樹脂は一種または二種以上を用いることができ、他成分との共重合体や混合物などとして用いうる。これらの樹脂の中ではエポキシ系樹脂が最も好ましく用いられる。

[0015]

本発明においてエポキシ樹脂層を形成するエポキシ系樹脂としては、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型やそれらの水添加の如きビスフェノール型、フェノールノボラック型やクレゾールノボラック型の如きノボラック型、トリグリシジルイソシアヌレート型やヒダントイン型の如き含窒素環型、脂環式型、脂肪族型、ナフタレン型の如き芳香族型、グリシジルエーテル型、ビフェニル型の如き低吸水率タイプ、ジシクロ型、エステル型、エーテルエステル型やそれらの変成型などが挙げられる。これらは単独で使用してもあるいは併用してもよい。上記各種エポキシ系樹脂の中でも、変色防止性など

の点よりビスフェノールA型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレート型を用いることが好ましい。

[0016]

このようなエポキシ系樹脂としては、一般にエポキシ当量100~1000、軟化点120℃以下のものが、得られる樹脂シートの柔軟性や強度等の物性などの点より好ましく用いられる。さらに塗工性やシート状への展開性等に優れるエポキシ樹脂含有液を得る点などよりは、塗工時の温度以下、特に常温において液体状態を示す二液混合型のものが好ましく用いうる。

[0017]

またエポキシ系樹脂は、硬化剤、硬化促進剤、および必要に応じて従来から用いられている老化防止剤、変成剤、界面活性剤、染料、顔料、変色防止剤、紫外線吸収剤等の従来公知の各種添加物を適宜に配合することができる。

[0018]

前記、硬化剤についても特に限定はなく、エポキシ系樹脂に応じた適宜な硬化剤を1種または2種以上用いることができる。ちなみにその例としては、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、ヘキサヒドロフタル酸やメチルヘキサヒドロフタル酸の如き有機酸系化合物類、エチレンジアミン、プロピレンジアミン、ジエチレントリアミン、トリエチレンテトラミンやそれらのアミンアダクト、メタフェニレンジアミン、ジアミノジフェニルメタンやジアミノジフェニルスルホンの如きアミン系化合物類が挙げられる。

[0019]

またジシアンジアミドやポリアミドの如きアミド系化合物類、ジヒドラジットの如きヒドラジド系化合物類、メチルイミダゾール、2-エチルー4-メチルイミダゾール、エチルイミダゾール、イソプロピルイミダゾール、2,4-ジメチルイミダゾール、フェニルイミダゾール、ウンデシルイミダゾール、ヘプタデシルイミダゾールや2-フェニルー4-メチルイミダゾールの如きイミダゾール系化合物類も前記硬化剤の例として挙げられる。

[0020]

さらに、メチルイミダゾリン、2-エチル-4-メチルイミダゾリン、エチル

イミダゾリン、イソプロピルイミダゾリン、2,4-ジメチルイミダゾリン、フェニルイミダゾリン、ウンデシルイミダゾリン、ヘプタデシルイミダゾリンや2-フェニルー4-メチルイミダゾリンの如きイミダゾリン系化合物、その他、フェノール系化合物、ユリア系化合物類やポリスルフィド系化合物類も前記硬化剤の例として挙げられる。

[0021]

加えて、酸無水物系化合物類なども前記硬化剤の例として挙げられ、変色防止性などの点より、かかる酸無水物硬化剤が好ましく用いうる。その例としては無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、無水ナジック酸、無水グルタル酸、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物、ジクロロコハク酸無水物、ベンゾフェノンテトラカルボン酸無水物やクロレンディック酸無水物などが挙げられる。

[0022]

特に、無水フタル酸、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物やメチルヘキサヒドロフタル酸無水物の如く無色系ないし淡黄色系で、分子量が約140~約200の酸無水物系硬化剤が好ましく用いられる。

[0023]

前記エポキシ系樹脂と硬化剤の配合割合は、硬化剤として酸無水物系硬化剤を用いる場合、エポキシ系樹脂のエポキシ基1当量に対して酸無水物当量を0.5~1.5当量となるように配合することが好ましく、さらに好ましくは0.7~1.2当量がよい。酸無水物が0.5当量未満では、硬化後の色相が悪くなり、1.5当量を超えると、耐湿性が低下する傾向がみられる。なお他の硬化剤を単独で又は2種以上を併用して使用する場合にも、その使用量は前記の当量比に準じる。

[0024]

前記硬化促進剤としては、第三級アミン類、イミダゾール類、第四級アンモニウム塩類、有機金属塩類、リン化合物類や尿素系化合物類等が挙げられるが、特

に第三級アミン類、イミダゾール類やリン化合物類を用いることが好ましい。これらは単独であるいは併用して使用することができる。

[0025]

前記硬化促進剤の配合量は、エポキシ系樹脂100重量部に対して0.05~7.0重量部であることが好ましく、さらに好ましくは0.2~3.0重量部がよい。硬化促進剤の配合量が0.05重量部未満では、充分な硬化促進効果が得られず、7.0重量部を超えると硬化体が変色するおそれがある。

[0026]

前記老化防止剤としては、フェノール系化合物、アミン系化合物、有機硫黄系 化合物やホスフィン系化合物等の従来公知のものが挙げられる。

[0027]

前記変性剤としては、グリコール類、シリコーン類やアルコール類等従来公知のものが挙げられる。

[0028]

前記界面活性剤は、エポキシ系樹脂シートを流延法でエポキシ樹脂を空気に触れながら成形する場合に、シートの表面を平滑にするために添加される。界面活性剤としてはシリコーン系、アクリル系やフッ素系等が挙げられるが、とくにシリコーン系が好ましい。

[0029]

本発明においてはハードコート層が凹凸構造を有することにより防眩機能が付与される。本発明において凹凸構造を有するハードコート層の表面粗さ(Ra)は80nm~500nmであることが好ましい。凹凸構造を有するハードコート層の表面粗さ(Ra)が80nmよりも小さい場合や500nmよりも大きい場合は十分な防眩機能を付与することができない。なお本発明における表面粗さはJIS B 0601に記載の「算術平均粗さRa」のことである。

[0030]

また本発明において凹凸構造を有するハードコート層の山谷間隔は20μm~ 80μmであることが好ましい。山谷間隔が20μmよりも小さい場合や80μ mよりも大きい場合は十分な防眩機能を付与することができない。なお本発明に

おける山谷間隔はJIS B 0601に記載の「凹凸の平均間隔Sm」のことである。

[0031]

また本発明においては最外層のハードコート層が透明粒子を含有することにより光拡散機能が付与される。本発明における透明粒子は、ガラスやシリカ等の無機材料、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、メラニン系樹脂、ウレタン系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、シリコーン系樹脂、ベンゾグアナミン、メラニン・ベンゾグアナミン縮合物やベンゾグアナミン・ホルムアルデヒド縮合物等の有機材料が挙げられ、より好ましくはハードコート層を形成する樹脂との屈折率差が0.03~0.10の範囲である球形粒子がよい。前記屈折率差が0.03よりも小さい場合や0.10よりも大きい場合は十分な光拡散機能を付与することができない。

[0032]

透明粒子の粒子径は0.5~30μmの範囲が好ましい。粒子径が0.5μm より小さい場合は光の拡散性が不十分であり、30μmより大きい場合は光の拡 散性が不均一となるので好ましくない。

[0033]

透明粒子のハードコート層に対する体積比率は1~50%であることが好ましい。体積比率は(透明粒子の体積/ハードコート層の体積)×100で算出することができる。ここでのハードコート層の体積とは透明粒子を含んだハードコート層の体積のことである。透明粒子のハードコート層に対する体積比率が1%よりも小さい場合や50%より大きい場合は十分な光拡散機能を付与することができない。

[0034]

また本発明における樹脂シートの製造方法は、支持体に形成した凹部を転写することにより、ハードコート層表面に凹凸構造を形成する工程を含むことを特徴とする。

[0035]

支持体は通常、ベルト状や板状であり、具体的には流延用のエンドレスベルト

や注型用の平板金型等が挙げられる。

ハードコート層上に凹凸構造を形成するためには、支持体の表面粗さ(R a)は80 n m~500 n mであることが好ましく、支持体に形成された凹凸の山谷間隔は20μm~80μmであることが好ましい。

[0036]

流延法においては、凹凸部が形成された支持体上にハードコート層形成樹脂溶液を塗布後乾燥してハードコート層を形成し、ガスバリア層や基材層を積層させた後にこれらの積層体を支持体から剥離することにより、ハードコート層上に凹凸構造が形成された樹脂シートを得ることができる。

また支持体側とは反対の最外層にもう1層ハードコート層を積層させることにより2層のハードコート層を有する樹脂シートが得られる。この場合、このハードコート層は凹凸構造を有さない。

[0037]

また本発明においてはハードコート層形成樹脂溶液に透明粒子を含有させ、塗布後乾燥させることにより透明粒子を含有したハードコート層を形成することができる。

[0038]

注型法においては、まず凹凸部が形成された金型と表面無垢な金型にハードコート層形成樹脂溶液を塗布後乾燥してハードコート層を形成する。次にどちらか1方の金型にガスバリア層形成樹脂含有液を塗布後乾燥しガスバリア層を形成させた後、2枚の金型を樹脂塗布面が向かい合うようにしてスペーサーやシーリング材を介して型組を行う。次にその隙間に基材層形成樹脂含有液を注入後硬化させ基材層を形成し、2枚の金型から剥離することにより、支持体に形成された凹部の転写でハードコート層上に凹凸構造が形成された樹脂シートを得ることができる。

[0039]

注型法においてもハードコート層形成樹脂溶液に透明粒子を含有させ、塗布後 乾燥させることにより透明粒子を含有したハードコート層を形成することができ る。

[0040]

注型法においても凹凸が形成された金型の表面粗さ(Ra)は80 n m \sim 50 0 n m \sim 5 o c n m \sim 6 o n m \sim 7 o n m \sim 8 o n m \sim 9 o n m \sim 8 o n m \sim 9 o n m \sim 8 o n m \sim 9 o n m \sim 9

[0041]

本発明による製造工程例の1実施例を図1に示した。図1に例示の製造工程は、支持体にエンドレスベルトを用いて流延法により樹脂シートを連続製造するものである。

[0042]

上記図1に例示の流延法にては、エンドレスベルト1からなる支持体を駆動ドラム4および従動ドラム5を介し、例えば0.1~50m/分、好ましくは0.2~5m/分の一定速度で走行させつつ、その上にダイ7よりハードコート層形成樹脂溶液、ダイ9よりガスバリア層形成樹脂含有液を塗布して乾燥、あるいは必要に応じ加熱または光照射等により硬化処理して皮膜10、11とする。なお図例では加熱装置3、UV硬化装置8が配置されている。

エンドレスベルト1には凹凸部が形成されており、エンドレスベルト1の表面粗さ (Ra) は80 n m \sim 500 n m であることが好ましく、エンドレスベルト1 に形成された凹凸の山谷間隔は20 μ m \sim 80 μ m であることが好ましい。

またハードコート層形成樹脂溶液に透明粒子を含有させ、塗布後乾燥させることによって透明粒子を含有したハードコート層を形成することができる。

[0043]

次に皮膜10、11の上にダイ2を介して基材層形成樹脂含有液を塗布してシート状に展開し、加熱または光照射により完全に硬化させ、皮膜6とする。図例では加熱装置3が配置されており、加熱方法は熱風、赤外線ヒーター等により行い、これらを併用してもよい。熱風風速は通常0.1~5 m/secであるが、熱可塑性もしくは熱硬化性樹脂含有液の加熱の場合は0.2~1 m/secが好ましい。

[0044]

前記加熱装置3は樹脂含有液の温度依存による低粘度化、硬化反応による増粘

化で起こる粘度変化をコントロールするため、10ゾーン程度に分かれていることが好ましい。また、各ゾーンともエンドレスベルトの上面、下面、もしくは両面で加熱が可能である。加熱温度は30~250℃が好ましい。加熱温度精度は±0.5℃/сm以下が好ましく、さらに好ましくは±0.1℃/сm以下がよい。加熱温度が30℃未満であると基材層形成樹脂が硬化しにくくなる。加熱温度が250℃を超えると基材層形成樹脂含有液の粘度が低下するため、樹脂シートの厚みの精度が悪くなる。また加熱温度精度が±0.5℃/сmより大きくなると樹脂シートの厚みの精度が悪くなり外観不良が生じやすくなる。

[0045]

基材層形成樹脂含有液を吐出させるダイ2の温度は10~40℃が好ましく、 さらに好ましくは20~30℃がよい。またダイの温度精度は±0.5℃以下が 好ましく、さらに好ましくは±0.1℃以下がよい。ダイの温度が10℃未満に なると、基材層形成樹脂含有液の粘度が上昇するため、操作性の面で問題がある 。40℃を超えるとダイ中で基材層形成樹脂の硬化が進むので塗工が困難となる 。またダイの温度精度が±0.5℃より大きくなると、樹脂シートの厚みの精度 が悪くなり外観不良が生じやすくなる。

[0046]

吐出させる基材層形成樹脂含有液の粘度は 0. 1 Pa·s~50 Pa·sが好ましく、エクストルージョンコートを行う場合は 1 5 Pa·s~30 Pa·sが好ましい。前記樹脂含有液の粘度が 0. 1 Pa·s未満の場合は樹脂シートの厚みの精度が悪くなる。前記樹脂含有液の粘度が 5 0 Pa·sを超える場合は操作性が悪くなる。

[0047]

また基材層形成樹脂含有液の塗布方法としては、カーテンコート、エクストルージョンコート、ロールコート等が好ましく、特に好ましくはエクストルージョンコートがよい。

[0048]

また加熱装置のエンドレスベルトの裏面にはガイドロールを設置しており、水 平度レベルセンサーによって水平レベルを調整することができる。支持体水平レ

ベルは1mm/(5×有効巾)mm以下が好ましく、さらに好ましくは1mm/(40×有効巾)mm以下がよい。水平レベルが1mm/(5×有効巾)mmよりも大きい場合は樹脂シートの厚みの精度が悪くなる。

[0049]

流延法でハードコート層を2層有する樹脂シートを得るためには、エンドレスベルトとは反対の最外層にハードコート層形成樹脂含有液を塗布して乾燥、あるいは必要に応じて加熱または光照射等により硬化処理すればよい。この場合、第一のハードコート層、ガスバリア層、基材層からなる積層体をエンドレスベルト1より剥離後スピンコート法や単板ダイコータ等により第二のハードコート層を形成することができる。またハードコート層形成樹脂溶液に透明粒子を含有させることにより、透明粒子を含有したハードコート層を形成することができる。

[0050]

また、支持体の両側に液流れ防止の堰を耐熱性の樹脂で設けてもよい。具体的 にはポリエチレンテレフタレート等が好ましく用いられる。

[0051]

支持体からの樹脂シートの回収に際しては、必要に応じ剥離手段を用いることができる。またかかる回収は、割れ防止などの点よりガラス転移点以上の等の高温雰囲気下で行うことが好ましい。さらに形成された連続状態の樹脂シートは、レーザー光線や超音波カッター、ダイシングやウォータージェットなどの適宜な切断手段を介し適宜な寸法に切断して回収することもできる。前記の流延法によれば、支持体を介した展開層の移動速度の調節で製造速度を容易に制御でき、またその移動速度や展開量の調節で得られる樹脂シートの厚さも容易に制御することができる。

[0052]

本発明の樹脂シートを視認側基板として液晶表示装置を形成する場合、樹脂シートの凹凸構造が最視認側になるように配置しなくてはいけない。つまり樹脂シートよりも視認側に偏光板を積層することができないので、液晶としてはコレステリック液晶やポリマー分散型液晶などの偏光を利用しない方式に限定される。また視認背面側基板として黒色に着色した樹脂シートを配置することで液晶層を

透過した光の反射反転光の発生を防止し、表示のコントラストを向上させることができる。

[0053]

本発明の樹脂シートの用途は液晶セル基板に限定されるものではなく、有機エレクトロルミネセンス表示装置用基板としても好ましく用いられる。

一般に、有機エレクトロルミネセンス装置は、透明基板上に透明電極と有機発 光層と金属電極とを順に積層して発光体(有機エレクトロルミネセンス発光体) を形成している。ここで、有機発光層は、種々の有機薄膜の積層体であり、例え ばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性 の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン 誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層,発 光層,および電子注入層の積層体等、種々の組み合わせをもった構成が知られて いる。

有機エレクトロルミネセンス装置は、透明電極と金属電極とに電圧を印加することによって、有機発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物質を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中の再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。

有機エレクトロルミネセンス装置においては、有機発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg-Ag、Al-Liなどの金属電極を用いている。

このような構成の有機エレクトロルミネセンス装置において、有機発光層は、 厚さ10nm程度ときわめて薄い膜で形成されている。このため、有機発光層も 透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表 面から入射し、透明電極と有機発光層とを透過して金属電極で反射した光が、再

び透明基板の表面側へと出るため、外部から視認したとき、有機エレクトロルミネセンス装置の表示面が鏡面のように見える。

電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光体を含む有機EL装置において、透明電極の表面側に偏光板を設けるとともに、これら透明電極と偏光板との間に位相板を設けることができる。

位相板および偏光板は、外部から入射して金属電極で反射してきた光を偏光さる作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させないという効果がある。特に、位相板を1/4波長板で構成し、かつ偏光板と位相板との偏光方向のなす角を $\pi/4$ に調整すれば、金属電極の鏡面を完全に遮蔽することができる。

すなわち、この有機エレクトロルミネセンス装置に入射する外部光は、偏光板により直線偏光成分のみが透過する。この直線偏光は位相板により一般に楕円偏光となるが、とくに位相板が1/4波長板でしかも偏光板と位相板との偏光方向のなす角がπ/4のときには円偏光となる。

この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再び有機薄膜、透明電極、透明基板を透過して、位相板に再び直線偏光となる。そして、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できない。その結果、金属電極の鏡面を完全に遮蔽することができる。

[0054]

【実施例】

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例になんら限 定されるものではない。

[0055]

実施例1:UV硬化樹脂であるNKオリゴUN-01(新中村化学製)(固形分85%)100重量部、イルガキュア#184(チバ・スペシャリティー・ケミカルズ製)3重量部、平均粒径が1.8μmの合成シリカ粒子28重量にトルエン450重量部を混合攪拌して固形分濃度20%の透明粒子含有ハードコート層樹脂溶液を得た。

UV硬化樹脂であるNKオリゴUN-01 (新中村化学製) (固形分85%) 100重量部、イルガキュア#184 (チバ・スペシャリティー・ケミカルズ製) 3重量部にトルエン450重量部を混合攪拌して固形分濃度16%のハードコート層樹脂溶液を得た。

(化1)の化学式で示される3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート400重量部と(化2)の化学式で示されるメチルヘキサヒドロ無水フタル酸500重量部、(化3)の化学式で示されるテトラーローブチルホスホニウムo,o-ジエチルホスホロジチオエート15重量部、グリセリン9重量部、界面活性剤1重量部を混合攪拌して基材層形成樹脂含有液を得た。

【化1】

【化2】

【化3】

[0056]

次に、図2に示した金型を用いて、注型法により樹脂シートを製造した。その 製造方法を図2を参照しながら説明する。

[0057]

まず、金型として1枚は $450\,\mathrm{mm} \times 450\,\mathrm{mm}$ 、表面粗さ $\mathrm{R}\,\mathrm{a}=5\,\mathrm{n}\,\mathrm{m}$ の図 $2-13\,\mathrm{om}$ 無垢金型、もう1方は $450\,\mathrm{mm} \times 450\,\mathrm{mm}$ 、表面粗さ $\mathrm{R}\,\mathrm{a}=10\,\mathrm{on}$ の $\mathrm{n}\,\mathrm{m}$ 、山谷間隔 $45\,\mu\,\mathrm{m}$ に表面加工した図 $2-14\,\mathrm{on}$ 表面加工金型を用いた。まず図 $2-13\,\mathrm{m}$ 垢金型には透明粒子含有ハードコート層形成樹脂溶液をスピンコートにより塗布し、トルエンを乾燥後、UVを照射(中心波長 $254\,\mathrm{n}\,\mathrm{m}$ 、積算光量 $2000\,\mathrm{m}\,\mathrm{J/c}\,\mathrm{m}^2$)して、膜厚 $2\,\mu\,\mathrm{m}\,\mathrm{on}$ 透明粒子を含有したハードコート層を形成した。次に図 $2-14\,\mathrm{on}$ 表面加工金型には加工面にハードコート層形成樹脂溶液をスピンコートにより塗布し、トルエンを乾燥後、UVを照射(中心波長 $254\,\mathrm{n}\,\mathrm{m}$ 、積算光量 $2000\,\mathrm{m}\,\mathrm{J/c}\,\mathrm{m}^2$)して、凸部を除いた膜厚が $2\,\mu\,\mathrm{m}\,\mathrm{on}$ ハードコート層を形成した。

[0058]

次に図2-13の無垢金型に形成されたハードコート層上にポリビニリルアルコールの5.5重量%水溶液をスピンコート法で塗布後乾燥して硬化し膜厚3.7μmのガスバリア層を形成した。

[0059]

次にその2枚の金型の樹脂形成面を向き合わせるようにして、図2に示したように、隙間調整用スペーサー及びシーリング剤を介して、隙間の幅が400μm となるように注型用金型を組み立てた。

[0060]

そして、その隙間に前記作製した基材層形成樹脂含有液を注入し、 $120 \mathbb{C} \times 3$ 0分+ $180 \mathbb{C} \times 1$ 時間硬化させた。

その後、2枚の金型を、割り開くと同時に、樹脂層と金型の界面を剥離して、樹脂シート < a > を取り出した。

得られた樹脂シート<a>は、金型の凹凸部が転写された面は表面粗さRa=100nm、山谷間隔は 45μ mであり、もう一方は表面粗さRa=5nmであった。また樹脂シート<a>の平均厚みは 400μ m、厚みの標準偏差は 9μ mで

あった。

[0061]

次に液晶を挟んでもう一方の樹脂シートを以下のように作成した。まず2枚の表面無垢金型に上記ハードコート層形成樹脂溶液を塗布後乾燥させハードコート層を形成した。次にその2枚の金型の樹脂形成面を向き合わせるようにして、図2に示したように、隙間調整用スペーサー及びシーリング剤を介して、隙間の幅が400μmとなるように注型用金型を組み立てた。

[0062]

そしてその隙間に黒色顔料三菱カーボンブラックMA100を基材層形成樹脂含有液:MA100=10:1(重量比)で分散した黒色顔料含有基材層形成樹脂含有液を注入した後、120℃×30分+180℃×1時間硬化させ、金型より樹脂シート

ト>を取り出した。

得られた樹脂シートは、両面の表面粗さRa = 4 n m、平均厚みは400 μ m、厚みの標準偏差は 8 μ mであった。

[0063]

得られた樹脂シート<a>とを所定の形状に切り出した後、Ar雰囲気中でプラズマ処理を施し、酸化インジウム・スズ(ITO)薄膜をスパッタリングにて形成し、液晶用透明基板を作成した。

樹脂シート<a>は、凹凸が形成されていない側に、また樹脂シートはどちらか片面にITO薄膜を形成した。

その後、樹脂シート <a>のITO薄膜を2分割した後、ラビング方向が直交するように樹脂シート <a>とをITO薄膜を対向させて、球形のガラスビーズよりなるギャップ調整材を配した後、シール材で固定した。その後、トリメチルプロパントリアクリレート(TMPTA)10部、および2ーヒドロキシエチルアクリレート(HEA)10部、およびアクリルオリゴマー(東亜合成化学「M-1200」)25部、光硬化開始剤としてメルク社製「ダロキュア-1173」を0.5部、液晶としてBDH社製液晶「E7」を50部混合し、均一に溶解させた混合液を注入した。その後、樹脂シート <a>側から紫外線を照射し液晶セルを作成した。

[0064]

実施例2:図1に示す装置を用いて、流延法により樹脂シートを製造した。まず 実施例1で調整した透明粒子含有ハードコート層樹脂溶液をダイ7より吐出させ、ステンレス製エンドレスベルト1(表面粗さRa=100nm、山谷間隔40 μ m)に走行速度0.2m/分で流延塗布し、トルエンを揮発させて、UV硬化 装置8で硬化(中心波長254nm、積算光量2000mJ/cm²)し、膜厚5 μ m、幅500mmの透明粒子を含有したハードコート層を得た。

[0065]

続いて、ポリビニリルアルコールの5.5重量%水溶液を、ダイ9より吐出させ、ハードコート層上に流延塗布し、加熱乾燥(60℃×10分)させ、膜厚4μm、幅450mmのガスバリア層を得た。

[0066]

得られたハードコート層、ガスバリア層の両端に幅40mmの耐熱PET基材テープ (MT-3155:日東電工社製)を貼付け、前記基材層形成樹脂含有液(20Pa·s、25℃)を、ダイ2より吐出させ、上記樹脂層の表面に、塗工幅430mmで流延塗布し、加熱装置3により、90℃×5分、120℃×5分、140℃×15分で硬化させ、130℃に温調されたドラム5上でステンレス製エンドレスベルトとハードコート層間で剥離を行い430mm幅の樹脂シート
(c)を得た。尚、加熱部の支持体水平レベルを200μm/1000mm、支持体上下より熱風加熱を行い温度精度0.4℃/cmとした。

[0067]

得られた樹脂シート< c >を流れ方向に490 mm間隔で切断を行い、490 mm $\times 490$ mm $\times 490$

なお、厚みの平均値、及び標準偏差は480mm×480mmの面内で60点 測定して求めた。

また、表面粗さは、基材層側でRa=0.2 nm、ハードコート層側でRa=100 nmであった。またハードコート層表面における山谷間隔は 40μ mであった。なお、表面粗さは、 $480mm\times480mm$ の面内で10点測定した平均値

である。

[0068]

続いて、樹脂シート<c>の基材層側にITO薄膜を形成し、実施例1と同様に 樹脂シートと組合せ、図4に例示の液晶セルを作成した。

[0069]

比較例1:2枚の表面無垢な金属金型に実施例1で調製したハードコート層形成樹脂溶液を塗布した以外は実施例1と同様にして樹脂シート<d>を作成した。次に実施例1と同様に樹脂シートと組合せ、図5に例示の液晶セルを作成した。

[0070]

評価試験:実施例1~2、比較例1で作成した液晶セルを用いて液晶表示装置を組み立て、暗室中で20°の角度でリング状照明装置を照射して、液晶表示装置の電圧印加状態で黒色表示の表示品位を調べ、電圧無印加状態で白色表示の表示品位を調べた。

[0071]

実施例1、2においては、黒色表示、白色表示ともに表示品位は良好であった。一方、比較例1においては黒色表示においてリング状照明の映りこみが見られ、白色表示においては液晶表面での照明の反射が原因と思われるぎらつきが見られた。

[0072]

【発明の効果】

本発明の樹脂シートは樹脂系であるので、ガラス系基板に比べ薄型、軽量である。また本発明の樹脂シートは最外層のハードコート層が凹凸構造を有するので、蛍光灯や太陽光等の照明光やキーボーダーなどの外部環境が画面上に映り込む、いわゆるゴースト現象を防止する防眩機能を有する。また最外層のハードコート層が透明粒子を含有することにより、照明光や液晶表示装置内臓のバックライトに起因するギラツキを防止する光拡散機能を有する。以上の様に防眩機能が付与された樹脂シートを液晶セル基板として用いることにより、防眩シートや光拡散シートを液晶セルの視認側に貼り付ける必要がなくなる。その結果液晶セルの

薄型、軽量化が可能になる。

【図面の簡単な説明】

- 【図1】流延法による樹脂シートの製造方法の1例
- 【図2】注型法による樹脂シートの製造方法の1例
- 【図3】液晶セル
- 【図4】実施例2の液晶セル
- 【図5】比較例1の液晶セル

【符号の説明】

- 1:エンドレスベルト(支持体)
- 2:基材層塗布用ダイ
- 3:加熱装置
- 4:駆動ドラム
- 5:従動ドラム
- 6:基材層
- 7:ハードコート層塗布用ダイ
- 8: UV硬化装置
- 9:ガスバリア層塗布用ダイ
- 10:ガスバリア層
- 11:ハードコート層
- 12:端部補強テープ
- 13:無垢金型
- 14:表面加工金型
- 15:シーリング材
- 16:隙間調整用スペーサー
- 17:表面に凹凸構造を有するハードコート層
- 18:有機ガスバリア層
- 19:基材層
- 20:透明粒子を含有するハードコート層
- 21:ITO

22:ラビング膜

23:液晶

24: 黒色顔料を有する基材層

25:ハードコート層。

26:表面に凹凸構造を有し透明粒子を含有するハードコート層

【書類名】

図面·

【図1】

【図2】

【図3】

【図4】

【図5】

【書類名】

要約書

【要約】

【課題】本発明は蛍光灯や太陽光等の照明光やキーボーダーなどの外部環境が画面上に映り込む、いわゆるゴースト現象を防止する防眩機能と、照明光や液晶表示装置内臓のバックライトに起因するギラツキを防止しする光拡散機能を有し、薄型で軽量な樹脂シート、その樹脂シートの製造方法、およびその樹脂シートを用いた液晶表示装置を提供することを課題とする。

【解決手段】少なくともガスバリア層、基材層、および2層のハードコート層からなり、2層のハードコート層がそれぞれ最外層にある樹脂シートにおいて、2層のうち1層のハードコート層が外側表面に凹凸構造を有し、且つ、少なくとも1層のハードコート層が透明粒子を含有することを特徴とする樹脂シート。

【選択図】図1

出願人履歴情報

識別番号

[000003964]

1. 変更年月日 1

1990年 8月31日

[変更理由]

新規登録

住 所

大阪府茨木市下穂積1丁目1番2号

氏 名

日東電工株式会社