22. fejezet: Valós euklideszi terek I.

Matematikai alapozás, 2023-2024/I.

Motiváció: skaláris szorzat általánosítása.

Legyen V egy vektortér $\mathbb R$ feletti. A V vektorteret valós ($\mathbb R$ feletti) euklideszi térnek nevezünk, ha definiálva van benne egy harmadik $x\cdot y=\langle x,y\rangle$ művelet, melyre teljesülnek az alábbi tulajdonságok:

- 1. $\forall x, y \in V : \langle x, y \rangle \in \mathbb{R}$,
- 2. $\forall x, y \in V: \langle x, y \rangle = \langle y, x \rangle,$
- 3. $\forall x, y \in V, \forall \lambda \in \mathbb{R}: \langle \lambda x, y \rangle = \lambda \langle x, y \rangle,$
- 4. $\forall x, y, z \in V: \langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$,
- 5. $\forall x \in V: \langle x, x \rangle \geq 0$ és $\langle x, x \rangle = 0$ pontosan akkor, ha x = 0.

Példák.

- $\blacktriangleright \ \mathbb{R}^2 \colon \langle x,y \rangle = |x| \cdot |y| \cdot \cos(\gamma),$ ahol γ az xés yáltal közbezárt szög,
- $\mathbb{R}^n: \langle x, y \rangle := \sum_{i=1}^n x_k y_k.$

skaláris szorzat alaptulajdonságai

Legyen V egy valós euklideszi tér. Ekkor minden $x,x_i,y,y_j,z\in V$ és minden $\lambda,\lambda_i,\mu_j\in\mathbb{R}$ esetén igazak az alábbiak:

- 1. $\langle x, \lambda y \rangle = \lambda \cdot \langle x, y \rangle$,
- 2. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$,
- 3. $\langle \sum_{i=1}^k \lambda_i x_i, \sum_{j=1}^m \mu_j y_j \rangle = \sum_{i=1}^k \sum_{j=1}^m \lambda_i \mu_j \langle x_i, y_j \rangle,$
- 4. $\langle x, 0 \rangle = \langle 0, x \rangle = 0$.

Legyen V valós euklideszi tér, $x \in V$. Az x vektor normája:

$$||x|| := \langle x, x \rangle.$$

A $\|\cdot\|:V\to\mathbb{R},\,x\mapsto\|x\|$ leképezést (szintén) normának hívjuk.

Példák.

 $ightharpoonup \mathbb{R}^2$:

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{|x| \cdot |x| \cdot \cos(0)} = |x|,$$

 $ightharpoonup \mathbb{R}^n$:

$$||x|| = \sqrt{\langle x, x \rangle} := \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}.$$

- ▶ A norma pozitív definit, azaz minden $x \in V$ esetén $||x|| \ge 0$ és ||x|| = 0 pontosan akkor igaz, ha x = 0.
- ▶ A norma homogén, azaz minden $x \in V$ és minden $\lambda \in \mathbb{R}$ esetén $\|\lambda x\| = |\lambda| \cdot \|x\|$.

Bizonyítás: Az első állítás következik az 5. axiómából.

A második állítás igazolása:

$$\|\lambda x\|^2 = \langle \lambda x, \lambda x \rangle = \lambda^2 \langle x, x \rangle = \lambda^2 \|x\|^2,$$

gyököt vonva:

$$\|\lambda x\| = |\lambda| \|x\|.$$

Megjegyzés: minden $x \in V \setminus \{0\}$ esetén ||x|| > 0.

Az $x \in V$ vektort egységvektornak nevezzük, ha ||x|| = 1.

Megjegyzés: normálás: ha $x \in V \setminus \{0\}$, akkor az

$$x^0 := \frac{x}{\|x\|}$$

vektor az x-szel párhuzamos egységvektor.

Ortogonalitás

Az $x,y\in V$ vektorokat ortogonálisnak (egymásra merőlegesnek) nevezzük, ha $\langle x,y\rangle=0.$ Jelölés: $x\perp y.$

Legyen $\emptyset \neq H \subseteq V$, $x \in V$. Azt mondjuk, hogy az x vektor ortogonális (merőleges) a H halmazra, ha $\langle x,y \rangle = 0$ minden $y \in H$ esetén. Jelölés: $x \perp H$.

altérre való merőlegesség

Legyen $e_1, \ldots, e_n \in V$ egy vektorrendszer, $W := \operatorname{Span}(e_1, \ldots e_n)$, és $x \in V$. Ekkor

$$x \perp W \iff x \perp e_i \ (i = 1, \dots, n).$$

Bizonyítás:

 (\Longrightarrow) Trivi, $y:=e_i$ választással.

 (\longleftarrow) Legyen $y = \sum_{i=1}^{n} \lambda_i e_i \in W$ egy tetszőleges elem.

$$\langle x, y \rangle = \langle x, \sum_{i=1}^{n} \lambda_i e_i \rangle = \sum_{i=1}^{n} \lambda_i \langle x, e_i \rangle = \sum_{i=1}^{n} \lambda_i \cdot 0 = 0.$$

Legyen $x_1, \ldots x_n \in V$ egy véges vektorrendszer. Az x_1, \ldots, x_n rendszert

ortogonális rendszernek (OR) nevezzük, ha bármely két tagja merőleges egymásra:

$$\forall i, j \in \{1, \dots, n\}, i \neq j : \langle x_i, x_j \rangle = 0,$$

▶ ortonormált rendszernek (ONR) nevezzük, ha ortogonális rendszer és minden tagja egységvektor:

$$\langle x_i, x_j \rangle = \begin{cases} 1 & (i = j) \\ 0 & (i \neq j) \end{cases}$$

- ▶ ortogonális bázisnak nevezzük, ha OR és (B),
- ▶ ortonormált bázisnak nevezzük, ha ONR és (B).

Megjegyzés: OR-ből normálással ONR-t tudunk csinálni (ha a 0 nem tagja a vektorrendszernek).

Példák: szokásos

Legyen $x_1, \ldots, x_n \in V \setminus \{0\}$ egy OR. Ekkor x_1, \ldots, x_n F. Minden ONR egyben F.

Bizonyítás: Legyen $j \in \{1, ..., n\}$ tetszőleges, és szorozzuk be a

$$0 = \sum_{i=1}^{n} \lambda_i x_i$$

összefüggőségi egyenletet x_j -vel:

$$0 = \langle 0, x_j \rangle = \langle \sum_{i=1}^n \lambda_i x_i, x_j \rangle = \sum_{i=1}^n \lambda_i \langle x_i, x_j \rangle = \lambda_j \langle x_j, x_j \rangle.$$

Mivel $x_j \neq 0$, ezért $\langle x_j, x_j \rangle \neq 0$, így $\lambda_j = 0$. Ezzel megmutattuk, hogy az összefüggőségi egyenletben minden együttható 0.

Pitagorasz-tétel

Legyen $x_1, \ldots, x_n \in V$ egy véges OR. Ekkor

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \|x_i\|^2.$$

Bizonyítás:

$$\left\| \sum_{i=1}^{n} x_{i} \right\|^{2} = \left\langle \sum_{i=1}^{n} x_{i}, \sum_{j=1}^{n} x_{j} \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle x_{i}, x_{j} \rangle =$$

$$= \sum_{i,j=1}^{n} \langle x_{i}, x_{j} \rangle = \sum_{\substack{i,j=1 \ j \neq i}}^{n} \langle x_{i}, x_{j} \rangle + \sum_{\substack{i,j=1 \ j \neq i}}^{n} \langle x_{i}, x_{j} \rangle =$$

$$= \sum_{\substack{i,j=1 \ i \neq i}}^{n} 0 + \sum_{i=1}^{n} \langle x_{i}, x_{i} \rangle = \sum_{i=1}^{n} \|x_{i}\|^{2}$$

Fourier-együtthatók

Legyen V egy valós euklideszi tér, $e_1, \ldots, e_n \in V$ egy véges vektorrendszer, $x \in \operatorname{Span}(e_1, \ldots, e_n)$.

Tudjuk, hogy x előállítható az e_1, \ldots, e_n vektorok segítségével:

$$x = \sum_{i=1}^{n} \lambda_i e_i.$$

Kérdés:

$$\lambda_i = ? \quad (i \in \{1, \dots, n\}).$$

Legyen $e_1, \ldots e_n \in V$ ONR, $x \in \text{Span}(e_1, \ldots, e_n)$. A

$$c_i := \langle x, e_i \rangle \qquad (i \in \{1, \dots, n\})$$

számokat az x Fourier-együtthatóinak, az

$$x = \sum_{i=1}^{n} c_i e_i = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$$

előállítást pedig az x Fourier-kifejtésének nevezzük.

Hol jön ez elő?

Mindenhol. :)

