MPU-6050 六軸感測器實驗

Rev.0.00 Sep 14, 2015

Introduction

我們介紹當下最流行的一款六軸感測器(三軸加速度計+三軸陀螺儀):MPU-6050,該感測器廣泛用於四軸飛行器設計,具有非常廣泛的應用範圍。本章我們將使用 RX63T 來驅動 MPU-6050,讀取其感測資料。

Target Device

QB-RX63TH-21x

----- Rev.0.00 Page 1 of 13

Contents

1. MPU-6050 簡介	3
2. 範例程式目錄	4
2.1 Workspace Structure	4
2.1.1 RX63T_MPU6050 目錄	4
2.1.2 BSP 目錄	4
3. QB-RX63TH-21x 與周邊結線方式	5
3.1 MPU-6050 (GY-521) - I2C Bus Interface (RIIC)	5
3.2 Serial Port (UART to USB) - Serial Communications Interface (SCIc)	5
3.3 結線示意圖	6
4. MPU6050 初始化的 暫存器 設定	7
4.1 主要暫存器	
4.2 暫存器介紹與設置	
4.2.1 PWR_MGMT_1	7
4.2.2 SMPLRI_DIV	8
4.2.3 CONFIG	8
4.2.4 GYRO_CONFIG	8
4.2.5 ACCEL_CONFIG	8
5. 程式 內容與 流程	9
5.1 Main loop	9
5.2 MPU-6050 initialize	11
6. 操作流程	12
6.1 啟動範例程式	12
6.2 程式運行阅结里	12

1. MPU-6050 簡介

16 位元三軸加速度器和三軸陀螺儀,

支援 400KHz IIC 匯流排通訊方式。

加速度和角速度測量範圍可程式化設計。

加速度的測量範圍±2g、±4g、±8g 和 ±16g。

角速度測量範圍為±250、±500、±1000 和 ±2000°/sec。

內建數位運動處理器(DMP)可減少 MCU 融合演算資料的負荷。 輸出值為 16 位元數值的補數。

內建溫度感測器。

從機位址 0xD0

----- Rev.0.00 Page 3 of 13

2. 範例程式目錄

2.1 Workspace Structure

RX63T_MPU6050 Workspace file structure

2.1.1 RX63T_MPU6050 目錄

這是專案主目錄,本目錄包含內容如下:

- 專案檔案與設定資料
- 主程式
- 硬體設定程式
- 系統定義檔: qbrx63th_if.h

2.1.2 BSP 目錄

本目錄為 MCU 周邊功能應用設定程式,內容如下:

- UART driver
- I2C driver

----- Rev.0.00 Page 4 of 13

3. QB-RX63TH-21x 與周邊結線方式

RX63T 使用 I2C 介面 (RIIC) 連接 MPU-6050 · 接收 MPU-6050 回傳的感測結果 · 再通過序列埠 (SCIc) 上傳給電腦終端機。

3.1 MPU-6050 (GY-521) - I2C Bus Interface (RIIC)

Channel	Pin Name	Function	QB-RX63TH-21x Connector	
RIIC1	P26 – SDA1	RIIC1 serial data I/O pin	J2 Pin41	
KIICI	P25 – SCL1	RIIC1 serial clock I/O pin.	J2 Pin 42	

3.2 Serial Port (UART to USB) - Serial Communications Interface (SCIc)

Channel	Pin Name	Function	QB-RX63TH-21x Connector		
PD5 – RXD1		SCI1 receive data input	J1 Pin 26		
3011	PD3 – TXD1	SCI1 transmit data output	J1 Pin 29		

----- Rev.0.00 Page 5 of 13

3.3 結線示意圖

----- Rev.0.00 Page 6 of 13

4. MPU6050 初始化的**暫存器**設定

- 1. 啟動感測器;
- 2. 設置陀螺儀採樣頻率;
- 3. 設置低通濾波器頻率;
- 4. 設置陀螺儀自檢測和測量範圍;
- 5. 設置加速度自檢測、測量範圍;
- 6. 讀取感測值;

4.1 主要暫存器

名稱	地址	功能				
PWR_MGMT_1	0x6B	啟動感測器				
SMPLRI_DIV	0x19	設置陀螺儀採樣頻率				
CONFIG	0x1A	設置低通濾波器頻率				
GYRO_CONFIG	0x1B	設置陀螺儀自檢測和測量範圍				
ACCEL_CONFIG	0x1C	設置加速度自檢測和測量範圍				
ACCEL_XOUT_H	0x3B	存放 X 軸加速度的高 8 位				
ACCEL_XOUT_L	0x3C	存放 X 軸加速度的低 8 位				
ACCEL_YOUT_H 0x3D		存放 Y 軸加速度的高 8 位				
ACCEL_YOUT_L 0x3E		存放 Y 軸加速度的低 8 位				
ACCEL_ZOUT_H 0x3F		存放 Z 軸加速度的高 8 位				
ACCEL_ZOUT_L	0x40	存放 Z 軸加速度的低 8 位				
TEMP_OUT_H	0x41	存放溫度高8位元				
TEMP_OUT_L	0x42	存放溫度低8位元				
GYRO_XOUT_H	0x43	存放 X 軸角速度的高 8 位				
GYRO_XOUT_L 0x44		存放 X 軸角速度的低 8 位				
GYRO_YOUT_H	0x45	存放 Y 軸角速度的高 8 位				
GYRO_YOUT_L	0x46	存放 Y 軸角速度的低 8 位				
GYRO_ZOUT_H	0x47	存放 Z 軸角速度的高 8 位				
GYRO_ZOUT_L	0x48	存放 Z 軸角速度的低 8 位				

4.2 暫存器介紹與設置

4.2.1 PWR_MGMT_1

PWR_MGMT_1 寫入 0x00 完成感測器的啟動。

----- Rev.0.00 Page 7 of 13

4.2.2 SMPLRI_DIV

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
19	25		SMPLRT DIV[7:0]						

Sample Rate = Gyroscope Output Rate / (1 + SMPLRT DIV)

當低通濾波器不致能(即 DLPF_CFG = 0 or 7)時,陀螺儀輸出頻率為 8kHz。

當低通濾波器致能時, 陀螺儀輸出頻率為 1kHz (參考暫存器 0x1A).

4.2.3 CONFIG

Regist (Hex)	er Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1A	26	-	-	EXT	_SYNC_SET	[2:0]	D	LPF_CFG[2:0]

設定低通濾波截止頻率

DLPF_CFG	Accelerometer (F _s = 1kHz)		Gyroscope			
	Bandwidth (Hz)	Delay (ms)	Bandwidth (Hz)	Delay (ms)	Fs (kHz)	
0	260	0	256	0.98	8	
1	184	2.0	188	1.9	1	
2	94	3.0	98	2.8	1	
3	44	4.9	42	4.8	1	
4	21	8.5	20	8.3	1	
5	10	13.8	10	13.4	1	
6	5	19.0	5	18.6	1	
7	RESER\	/ED	RESER\	/ED	8	

4.2.4 GYRO_CONFIG

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1B	27	XG_ST	YG_ST	ZG_ST	FS_S	EL[1:0]	-	-	-

 $XG_ST \times YG_ST \times ZG_ST$ 為 0 時陀螺儀在所在軸上不進行自檢測,為 1 時進行自檢測。

陀螺儀測量範圍

FS_SEL[0:1]=0 ±250°/s FS_SEL[0:1]=1 ±500°/s FS_SEL[0:1]=2 ±1000°/s FS_SEL[0:1]=3 ±2000°/s

4.2.5 ACCEL CONFIG

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1C	28	XA ST	YA ST	ZA ST	AFS S	EL[1:0]		4	

XA ST、YA ST、ZA ST 為 0 時加速度計在所在軸上不進行自檢測,為 1 時進行自檢測

加速度計測量範圍

----- Rev.0.00 Page 8 of 13

^{*}加速度計的輸出速度為 1KHz

5. 程式內容與流程

5.1 Main loop

```
/****************************
* Outline : Main
* Description :
           ********************
void main(void)
 // Sensor data.
 // data[0] : X axis
 // data[1] : Y axis
 // data[2] : Z axis
 short data[3];
 // UART initialize. BAUD RATE 115200, 8-bit data, no parity, 1 stop bit.
 UART Create();
 // IIC initialize and IIC interrupt enable.
 IIC Create();
 // MPU6050 initialize.
 InitMPU6050();
 while(1)
  // Get Gyro data.
  GetGyroData(data);
 // data output.
  printf("%d, %d, %d\r\n", data[0], data[1], data[2]);
  I2C Delay ms(10);
```

程式流程圖如下頁:

----- Rev.0.00 Page 9 of 13

------ Rev.0.00 Page 10 of 13

5.2 MPU-6050 initialize

定義 MPU-6050 暫存器 MACRO 如下

```
#define SMPLRT DIV 0x19
#define CONFIG
                          0x1A
#define GYRO_CONFIG 0x1B
#define ACCEL_CONFIG 0x1C
#define ACCEL XOUT H 0x3B
#define ACCEL XOUT L 0x3C
#define ACCEL YOUT H 0x3D
#define ACCEL YOUT L 0x3E
#define ACCEL ZOUT H 0x3F
#define ACCEL_ZOUT_L 0x40
#define TEMP_OUT_H 0x41
#define TEMP_OUT_L 0x42
#define GYRO XOUT H 0x43
#define GYRO XOUT L 0x44
#define GYRO YOUT H 0x45
#define GYRO YOUT L
                         0x46
#define GYRO_ZOUT_L
#define GYRO_ZOUT_L
#define PWR_MGMT_1
                        0x47
0x48
                          0x6B
#define WHO AM I
                          0x75
#define SlaveAddress 0x68
```

MPU-6050 初始化函數.

```
void InitMPU6050(void)
{
   Single_WriteI2C(PWR_MGMT_1, 0x00);
   Single_WriteI2C(SMPLRT_DIV, 0x07);
   Single_WriteI2C(CONFIG, 0x06);
   Single_WriteI2C(GYRO_CONFIG,0x18);
   Single_WriteI2C(ACCEL_CONFIG,0x01);
}
```

----- Rev.0.00 Page 11 of 13

6. 操作流程

6.1 啟動範例程式

- 1. 將目錄 "RX63T_MPU6050" 複製至 C:\workspace .
- 2. 雙擊 C:\workspace\ RX63T_MPU6050 \RX63T_project.mtpj, 啟動 CS+。

6.2 程式運行與結果

開啟終端機程式並設定通訊格式如下

運行範例程式後,終端機程式會顯示陀螺儀數值結果如下

----- Rev.0.00 Page 12 of 13

Revision History

Description

Rev.	Date	Page	Summary
0.00	Sep. 14, 2015	-	