Computational modeling of expressive music performance in hexaphonic guitar

Marc Siquier Peñafort

supervised by: Sergio Giraldo

Music and Machine Learning Lab
Music Technology Group
Universitat Pompeu Fabra

Contents

Motivation

Objectives

State of the art

Methodology

Results

Conclusions

Future Work

Contributions

Motivation

- I'm a guitar player, really interested into machine learning and music.
- Polyphonic expressive music modelling has been mainly done in classical piano, but not in guitar.
- Previous work on monophonic expressive guitar performance modelling. [Giraldo 2016]
- Previous work on hexaphonic guitar recording and visualization. [Angulo 2016]

Objectives

- To propose a framework for hexaphonic (polyphonic) guitar modelling
- Generate machine learning models for polyphonic guitar music.
- Automatically produce expressive performances from polyphonic guitar scores.
- To generate an analyzed Dataset of hexaphonic expressive guitar performances.

State of the art

Empirical studies: (analysis by synthesis)

Author	System	Instrument	
KTH	Director Musices	General	
Sundberg	Inter-Onset	Piano	
Bresin	DM mapped to emotions	General	

Machine learning based studies:

Author	Method	Instrument	Mono/Poly
Arcos	Case based reasoning	Saxophone	monophonic
Bantula	Several methods	Jazz ensemble	polyphonic
Bresin	ANN	Piano	monophonic
Camurri	ANN	Flute	monophonic
Giraldo	Several methods	Guitar	monophonic
Gratchen	Case based reasoning	Saxophone	monophonic
Grindlay	HMM	Piano	monophonic
Kirke	Generative models	Piano	polyphonic
Miranda	Genetic Algorithms	Piano	monophonic
Puiggros	Several methods	Bassoon	monophonic
Ramirez	Several methods	Saxophone	monophonic
Widmer	Rule-based meta-learning	Piano	monophonic

Methodology - Hexaphonic Recordings

- Roland GK-3 divided pickup
- Breakout Box
- Recordings by H.Bantula
 - Darn that dream (J.V.Heusen & E.DeLange)
 - Suite en la (M.M.Ponce)

Fig.1 - Roland Gk-3 + Breakout Box [Angulo 2016]

Methodology - Transcription

For each string:

- F0 detection → YIN algorithm
- Dynamic threshold over envelope
- F0 to midi note number
- Onset and duration
- Rules for note correction

Methodology - Transcription

Methodology - MIDI Performances

- $\bullet \quad \text{Each string} \to \text{one midi channel}$
- Velocity → power envelope.
- One single midi file

Methodology - MIDI Performances

Methodology - Scores

- Scores in machine readable format
- Single channel xml
- Chord annotation

Methodology - Feature Extraction

- Nominal descriptors
 Pitch, onset, duration, velocity, chroma, string,...
- Neighbouring descriptors

 Previous-next onset, duration, pitch, narmour, its chord, its pedal, no simultaneous...
- Contextual descriptors

 Measure, tempo, chord, is chord note, note to key,
 metrical strength,...

Methodology - Performance to score alignment

Methodology - Transcription

Methodology - Performance actions

Onset_dev = onset_perf - onset_score

Energy_ratio = energy_perf / energy_score

Methodology - Modelling

Testing different models:

Decission Trees, kNN, SVM, ANN,...

Methodology - Expressive Performances

Results - Audio Examples

Results - Quantitative

Dataset (feature)	D.Tree	k_1NN	k_2NN	k_8NN	SVM	ANN
Dataset (leature)	cv/train	cv/train	cv/ train	$\frac{\mathrm{cv}}{\mathrm{train}}$	cv/train	cv/train
'Darn (energy)'	0.37/0.53	0.18/1	0.27/0.78	0.28/0.52	0.37/0.55	0.26/0.98
'Darn (onset)'	0.70/0.87	0.35/1	0.42/0.83	0.52/0.69	0.57/0.68	0.47/0.99
'Suite (energy)'	0.35/0.59	0.24/1	0.31/0.77	0.32/0.53	0.23/0.38	0.17/0.70
'Suite (onset)'	0.77/0.88	0.28/1	0.35/0.80	0.33/0.53	0.30/0.40	0.29/0.79
'Suite2 (energy)'	0.32/0.70	0.21/1	0.24/0.77	0.17/0.45	0.19/0.31	0.18/0.66
'Suite2 (onset)'	0.83/0.92	0.43/1	0.48/0.85	0.51/0.85	0.44/0.52	0.40/0.78

Results - Quantitative

Train	Test	D.Tree		ANN	
		energy	onset	energy	onset
'Darn'	'Suite'	0.013	0.156	0.047	0.008
'Darn'	'Suite2'	0.091	0.183	0.033	0.075
'Suite'	'Darn'	0.017	0.140	0.107	0.032
'Suite'	'Suite2'	0.324	0.392	0.148	0.253
'Suite2'	'Darn'	0.043	0.099	0.079	0.027
'Suite2'	'Suite'	0.240	0.384	0.190	0.227

Results - Feature Selection

Results - Qualitative

- Online listening test: <u>marcsiq2.github.io</u>
- 4 different phrases, for each one:
 - Performance
 - Predicted
 - Score
- Rate how "human" are the audios
- 15 answers

Conclusions

- Proposed framework for hexaphonic guitar expression modelling:
 - Hexaphonic guitar transcription
 - Performance to score alignment
 - Feature extraction
 - Machine learning modelling
- Quantitative results
- Qualitative results

Contributions

- New problem (polyphonic guitar), as far as we know.
- Extended framework from monophonic guitar.
- Data-set analysis.
- GitHub with all code and data (<u>marcsiq2.github.io/masterthesis</u>)
- Paper submitted to:

MML 2017 - 10th International Workshop on Machine Learning and Music

Future work

- More hexaphonic recordings:
 - Same performer different pieces.
 - Same piece different performers.
- Interpretability of the models
- How models generalize into same style
- Musical sense behind feature selection
- Sequential modelling.
- Work on improving the synthesis

Computational modelling of expressive music performance in hexaphonic guitar

Thank you for your attention!

Marc Siquier Peñafort

supervised by: Sergio Giraldo

