CS 161

Propositional Logic

Logic

- Logic: knowledge representation language
 - Represent human knowledge as "sentences" (a.k.a axiom)
 - Knowledge base (KB): a set of sentences
- Example
 - Propositional logic
 - Boolean logic
 - First-order logic
 - Quantifiers ∀, ∃, objects and relations
- Key components in Logic
 - Syntax
 - Semantics
 - Reasoning/Inference

Key Components of Logic

- **Syntax:** how to write sentences
 - What kind of sentences are well-formed?
 - Example Arithmetic system:
 - x + y = 4 ok, x4y = + wrong
- **Semantics**: how to interpret sentences
 - Is this sentence True given this possible world(model)?
 - Example Arithmetic system:
 - Sentence: x + y = 4
 - Possible world 1: $\{x = 2, y = 2\}$
 - sentence is True for possible world 1
 - Possible world 2: $\{x = 1, y = 0\}$
 - sentence is False for possible world 2
- Reasoning/Inference
 - We have some known facts. What new knowledge can we derive from those known facts?
 - $x \mod 4 = 0 => x \mod 2 = 0$
 - Will get to details later

Propositional Logic

A.k.a. Boolean logic

- Syntax
- Semantics
- Inference Entailment
 - How to prove it?
 - Proof by enumeration Model Checking
 - Theorem proving Proof by refutation (use resolution)

Syntax

- Atomic sentence
 - A single propositional symbol, like A (A can be True or False)
- Logical connectives
 - ¬ not
 - ↑ and (conjunction)
 - V or (disjunction)
 - \Rightarrow (or \rightarrow) implication
 - $\bullet \Leftrightarrow$ if and only if
- Complex sentence
 - $A \vee B$, $A \vee \neg C \Rightarrow B$, ...

A special type of sentence: Horn clause

Syntactic Forms – CNF, DNF

- CNF (Conjunction Normal Form): $(A \lor \neg B) \land (A \lor \neg C \lor D)$
 - CNF consists of clauses that are connective by <u>conjunction</u>. Within each clause, literals are connected by <u>disjunction</u>
 - $(A \lor \neg B) \land (A \lor \neg C \lor D)$
 - 4 variables: A, B, C, D
 - Literals: A, $\neg B$, $\neg C$, D
 - 2 clauses: $(A \lor \neg B)$, $(A \lor \neg C \lor D)$
- DNF (Disjunction Normal Form): $(A \land \neg B) \lor (A \land \neg C \land D)$

Completeness

All propositional sentences can be converted to CNF/DNF. (complete)

We will mainly use CNF.

For most algorithms, you will need to standardize the sentence by converting it to CNF first.

Syntactic Forms – Horn Clause

- Horn clause
 - A <u>subset</u> of CNF
 - Each clause has at most one positive literal
 - Not all sentences can be converted to Horn clause! (Not complete)

Why do we care about Horn clause?

It's a special type! If the sentences are Horn clauses, inference can be done in linear time (exponential for general sentences)

Inference algorithm for Horn clause:

- Forward Chaining
- Backward Chaining

(Will discuss later)

Syntactic Forms – Horn Clause

- Horn clause
 - A <u>subset</u> of CNF
 - Each clause has at most one positive literal
 - Not all sentences can be converted to Horn clause! (Not complete)

Why do we care about Horn clause?

It's a special type! If the sentences are Horn clauses, inference can be done in linear time (exponential for general sentences)

Inference algorithm for Horn clause:

- Forward Chaining
- Backward Chaining

(Will discuss later)

$$A \lor B \lor \neg C X$$

 $\neg A \lor B \lor \neg C \checkmark \equiv A \land C \Rightarrow B$
 $\neg A \lor \neg B \lor \neg C \checkmark$
A typical form (before converting to CNF)

When is this sentence True?

Semantics

 $P \Rightarrow Q$ is equivalent to $\neg P \lor Q$

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
$false \\ false \\ true \\ true$	$false \ true \ false \ true$	$true \ true \ false \ false$	$false \\ false \\ false \\ true$	$false \ true \ true \ true$	$true \ true \ false \ true$	$true \ false \ false \ true$

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for example, the value of $P \vee Q$ when P is true and Q is false, first look on the left for the row where P is true and Q is false (the third row). Then look in that row under the $P \vee Q$ column to see the result: true.

Semantics – Logical Equivalence

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

Figure 7.11 Standard logical equivalences. The symbols α , β , and γ stand for arbitrary sentences of propositional logic.

Exercise – Convert a Sentence to CNF

$$B \iff (P \lor Q)$$

Exercise – Convert a Sentence to CNF

```
B \Leftrightarrow (P \lor Q)
4. (B \Rightarrow P \( Q \) \( \) (P \( Q \) \Rightarrow B)
2. (7B \( \) P \( \) \( \) (\( \) (P \( Q \) \) \( \) B)
3. (7B \( \) P \( \) \( \) \( \) (7P \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \(
```

Some Very Important Definitions -Model

- Model (a.k.a. possible world)
 - In propositional logic, a model is an assignment for this sentence

$$f = (\neg A \land B) \leftrightarrow C$$

$$w = \{A : 1, B : 1, C : 0\}$$

- If a sentence α is true in model m, we say that model m satisfies α
- $M(\alpha) :=$ the set of all the models that satisfy α

Model

We say two sentences are α and β equivalent iff $M(\alpha) = M(\beta)$

 α and β are inconsistent $M(\alpha \wedge \beta) = \emptyset$

 α and β are consistent $M(\alpha \wedge \beta) \neq \emptyset$

 α and β are mutually exclusive

•
$$M(\alpha) \wedge M(\beta) = \emptyset$$

•
$$M(\alpha \wedge \beta) = \emptyset$$

$$M(\alpha \wedge \beta) = \emptyset$$

$$M(\alpha \wedge \beta) = \emptyset$$

$$A \wedge (A \vee B) \wedge A \wedge (A \vee^2 B)$$

$$B$$

Some Very Important Definitions

- Knowledge Base Δ
 - A set of sentences $\{\alpha_1, \alpha_2, ...\}$
 - We can consider the whole knowledge base as a single long sentence $\alpha_1 \wedge \alpha_2 \wedge \cdots$
 - All sentences are connected by conjunction

Example – Knowledge Base

Determine models for the following (variables R, S, C (rainy, sunny, cloudy)

KB= RYJVC,

$$R \Rightarrow (C\Lambda^{7S}),$$

 $C \Leftrightarrow {}^{7S}$

Example – Knowledge Base

Determine models for the following (variables R, S, C (rainy, sunny, cloudy)

KB= RYJVC,

$$R \Rightarrow (C\Lambda^{75}),$$

 $C \Leftrightarrow {}^{75}$

$$KB = \{(R = 1, S = 0, C = 1), (R = 0, C = 1, S = 0), (R = 0, C = 0, S = 1)\}$$

Some Very Important Definitions -Entailment

Entailment

- $\Delta \models \beta$ iff for every model in which Δ is True β is also True
 - Essentially, whenever Δ is True, β must be True
 - Formal definition: $M(\Delta) \subseteq M(\beta)$, or $M(\Delta \land \beta) = M(\Delta)$
- Why is entailment so important?
 - We have some known facts represented as a knowledge base Δ
 - Now we make a new claim β
 - Does our known facts support this new claim β ?
- Why do we only consider the case where Δ is True?

Some Very Important Definitions -Satisfiability

Satisfiability

- α is **satisfiable** if $M(\alpha) \neq \emptyset$
 - There is some assignment (model) that makes α true.
 - For example, $\alpha \land \neg \alpha$ is unsatisfiable.

Validity

- α is **valid** if α is *always true* in all models
 - For example, $\alpha \vee \neg \alpha$ is valid.

Some More Definitions

KB entails a sentence α denoted as $\Delta \models \alpha$ if $M(\Delta \land \alpha) = M(\Delta)$

KB is consistent with sentence α if $M(\Delta \wedge \alpha)$ is non-empty.

KB contradicts sentence α if $\Delta \wedge \alpha$ is not satisfiable.

Inference

- Determine entailment
 - Given two sentence Δ , β , does $\Delta \models \beta$ hold?

Inference method

- Proof by enumeration Model Checking
 - List all the models where Δ is True, check whether β is also True
- Theorem proving Proof by refutation (resolution)
 - Use resolution rule
- **Soundness**: is this inference rule/algorithm correct in all cases
- Completeness: can it determine entailment for any $\Delta \models \beta$
 - (For example, forward chaining and backward chaining are not complete because it only works for Horn clause)

Equivalence Review

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

Figure 7.11 Standard logical equivalences. The symbols α , β , and γ stand for arbitrary sentences of propositional logic.

Inference Rules

We assume that we work on CNF.

We can omit the conjunction connectives among clauses and use commas.

- Modus Ponen: $\frac{\alpha, \alpha \to \beta}{\beta}$
 - Example: $\Delta = \{A, B, B \lor C, B \rightarrow D\}$
- And-Elimination $\frac{\alpha \wedge \beta}{\alpha}$
- Resolution $\frac{\alpha \vee \beta, \neg \beta \vee \delta}{\therefore \alpha \vee \delta} \longleftarrow (\alpha \vee \beta) \wedge (\neg \beta \vee \delta)$

(1) Model Checking -Example

 $\Delta: \{A, A \vee B \to C\}$ $\alpha: c$

Determine if $\Delta \models \alpha$

- Draw a truth table
- For every model (assignment):
 - If Δ is True:
 - if α is True:
 - Continue to next model
 - else (α is False):
 - Return False (no entailment)
 - else (Δ is False):
 - skip
- Return True (after scanning the whole table without returning False)

(2)Theorem Proving – Proof by Refutation (Resolution)

How do we determine whether $\Delta \models \alpha$?

Proof by refutation: $\Delta \models \alpha$ if and only if the sentence $(\Delta \land \neg \alpha)$ is unsatisfiable.

How do we determine whether $(\Delta \wedge \neg \alpha)$ is unsatisfiable? **Proof by Resolution** (a.k.a. a resolution-based algorithm): Use the resolution inference rule. This algorithm is sound and complete. It applies to any kind of Δ and α .

This algorithm is **sound and complete!**

$$\Delta : A \lor \neg B \to C$$
$$(C \to D) \lor \neg E$$
$$E \lor D$$

$$\alpha: A \to D$$

Determine if $\Delta \models \alpha$

- Convert sentences to CNF first!
- Use resolution rule

$$\Delta : A \lor \neg B \to C$$
 $(C \to D) \lor \neg E$
 $E \lor D$

W: TAVD

$$\alpha: A \to D$$

Determine if
$$\Delta \models \alpha$$

- Convert sentences to CNF first!
- Use resolution rule

$$\Delta : A \lor \neg B \to C$$
 $(C \to D) \lor \neg E$
 $E \lor D$

$$\alpha: A \to D$$

Determine if $\Delta \models \alpha$

- Convert sentences to CNF first!
- Use resolution rule

$$\Delta : A \lor \neg B \to C$$
 $(C \to D) \lor \neg E$
 $E \lor D$

$$\alpha: A \to D$$

Determine if
$$\Delta \models \alpha$$

- Convert sentences to CNF first!
- Use resolution rule

$$\Delta: A \wedge B \rightarrow C, A, C \rightarrow D$$

 α : C

Determine if $\Delta \models \alpha$

 $\Delta: A \wedge B \rightarrow C, A, C \rightarrow D$

 α : C

Determine if $\Delta \models \alpha$

A: 7AY BYC, A, CVD.

C A TAYBYL
D TBYC

A=1, B=0, C=1, D=1.

$$\Delta: P \lor Q, P \rightarrow R, Q \rightarrow R$$

 $\alpha: R$

Determine if $\Delta \models \alpha$

$$\Delta: P \lor Q,$$
 $7P \lor R,$ $Q \to R$ $7Q \lor R.$

Determine if $\Delta \models \alpha$

 $\alpha: R$

Horn Clause – Forward, Backward Chaining

```
\triangleright \alpha:

∀x King(x) ⇒ Person(x)

∀x, y Person(x) ∧ Brother(x, y) ⇒ Person(y)

King(Richard)

Brother(Richard, John)

\triangleright \beta: Person(John)
```

Horn Clause – Forward, Backward Chaining

```
\geq \alpha:
 \forall x \text{ King}(x) \Rightarrow \text{Person}(x)
 \forall x, y \text{ Person}(x) \land \text{Brother}(x, y) \Rightarrow \text{Person}(y)
 King(Richard)
 Brother(Richard, John)
 \triangleright \beta: Person(John)
Forward
King (Richard)
King(X) \gg Person(A)
 X = Richard
  Person (Richard)
Brother (Richard, John)
Person (x) Abrother (x,y) => Person (y)
X = Richard, y = John
  Person ( John)
```

Back Word. y= John Person (x) A Brother (x, y) > Person (y) Yx, Person (X) A Brother(x, John) => Person (John) x= tichard Brother (x, John) Person (Richard) ? King (A)=>Person (X) X=Richard

Person (Richard) V

Horn Clause – Forward, Backward Chaining

```
\triangleright \alpha:

\forall x \text{ King}(x) \Rightarrow \text{Person}(x)

\forall x, y \text{ Person}(x) \land \text{Brother}(x, y) \Rightarrow \text{Person}(y)

\text{King}(\text{Richard})

\text{Brother}(\text{Richard}, \text{John})
```

 $\triangleright \beta$: Person(John)

Figure 7.16 (a) A set of Horn clauses. (b) The corresponding AND–OR graph.