

Chapter 4.5 Binomial Theorem

Instructor: Abhishek Santra Email: abhishek.santra@uta.edu

1

Coefficients of Expansion

➤ What are the expansions of following expressions?

$$(a + b)^{0} = 1$$

$$(a + b)^{1} = a + b$$

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$(a + b)^{5} = a^{5} + 5a^{4}b^{1} + 10a^{3}b^{2} + 10a^{2}b^{3} + 5a^{1}b^{4} + b^{5}$$

 $(a+b)^n=?$

Fall 2022

CSE2315: Abhishek Santra

2

Pascal's Triangle

Coefficients							Power	
			1					0
		1	1	L				1
	1	1	2	1				2
	1	3	3		1			3
1	4		6	4		1		4
1	5	10	10		5		1	5

Fall 2022

CSE2315: Abhishek Santra

3

3

Pascal's Triangle

- Row n of the triangle $(n \ge 0)$ consists of all the values C(n, r) for $0 \le r \le n$. Thus, the Pascal's Triangle looks like this:

C(0 .0)	Row/Power (n)
C(1,0) $C(1,1)$	1
C(2,0) $C(2,1)$ $C(2,2)$	2
C(3,0) $C(3,1)$ $C(3,2)$ $C(3,3)$	3
C(4,0) $C(4,1)$ $C(4,2)$ $C(4,3)$ $C(4,4)$	4
C(5,0) $C(5,1)$ $C(5,2)$ $C(5,3)$ $C(5,4)$ $C(5,5)$	5
C(n,0) $C(n,1)$	C(n,n) n

Fall 2022

CSE2315: Abhishek Santra

4

4

Binomial Theorem

- The binomial theorem provides us with a formula for the expansion of $(a + b)^n$.
- It states that for every nonnegative integer n:

$$(a+b)^n = C(n,0)a^nb^0 + C(n,1)a^{n-1}b^1 + C(n,2)a^{n-2}b^2 + \dots + C(n,k)a^{n-k}b^k + \dots + C(n,n-1)a^1b^{n-1} + C(n,n)a^0b^n$$

$$= \sum_{k=0}^{n} C(n,k)a^{n-k}b^k$$

- \triangleright The terms C(n,k) in the above series is called the binomial coefficient
- What is the kth term? How many terms are there?
 - C(n, k-1) a^{(n-(k-1)} b^(k-1)
 - There are (n+1) terms
- > Binomial theorem can be proved using mathematical induction.

Fall 2022

CSE2315: Abhishek Santra

6

6

Exercises

- Expand $(x + 1)^5$ using the binomial theorem $C(5,0)x^5 + C(5,1)x^4 + C(5,2)x^3 + C(5,3)x^2 + C(5,4)x^1 + C(5,5)x^0 \sum_{k=0}^{n} C(n,k)a^{n-k}b^k$
- Expand $(x-3)^4$ using the binomial theorem $C(4,0)x^4(-3)^0 + C(4,1)x^3(-3)^1 + C(4,2)x^2(-3)^2 + C(4,3)x^1(-3)^3 + C(4,4)x^0(-3)^4$
- What is the **fifth** term of $(3a + 2b)^7$? How many terms are there? $C(7,4)(3a)^{7-4}(2b)^4 = 15120 \ a^3b^4$
- What is the coefficient of $x^5y^2z^2$ in the expansion of $(x + y + 2z)^9$? (hint: group (x+y))

 $C(9,2)(x+y)^{9-2}(2z)^2 = C(9,2)[C(7,2)(x)^5(y)^2](2z)^2 = 3024x^5y^2z^2$ Therefore, the answer: 3024

Use binomial theorem to prove that: (Hint: Think, what can be "a" and "b")

$$C(n,0) - C(n,1) + C(n,2) - \dots + (-1)^n C(n,n) = 0$$

Try to find $(a+b)^n C(n,0) - C(n,1) + C(n,2) - \dots + (-1)^n C(n,n) = (1+(-1))^n = 0^n = 0$

Fall 2022

CSE2315: Abhishek Santra

7

Summary: Module 4

- Set Theory Basics (4.1)
 - Curly Brace: {}, No Ordering, No Duplicates
 - Notations: N, Z, ...
 - **Terminologies:** Set, Subset, Power Set, Super Set, Proper Subset, Proper Superset, Cardinality (|A|), Empty Set, Universal Set
 - Set Operations: Union, Intersection, Difference, Cartesian Product, Complement
- Counting, Permutations and Combinations (4.2, 4.3, 4.4)
 - Addition, Multiplication, Inclusion and Exclusion Principles(for 2 and 3 sets)
 - Pigeon Hole Principle
 - **Permutations** P(n,r): Orderings / Arrangements
 - Combinations C(n, r): Selections / Choices
- Binomial Theorem (4.5)
 - Expansion, kth term, number of terms, coefficients
- > The concept of Boolean Algebra (8.1)

Fall 2022

CSE2315: Abhishek Santra

9

C

