Оглавление

1			2
	1.1	Связность	2
		1.1.1 Компоненты связности	4

Глава 1

1.1 Связность

Определение 1. X – топологическое пространство. X называется несвязным, если

$$\exists\, U_1, U_2 \in \Omega_X : \begin{cases} U_1 \cap U_2 = \emptyset \\ U_1 \cup U_2 = X \end{cases}$$

Иначе - связное

Замечание. Несвязность означает, что U_1, U_2 одновременно и открытые, и замкнутые Связность означает, что нет нетривиальных открыто-замкнутых подмножеств

Определение 2. (X,Ω) – топологическое пространство, $A \subset X$. A называется связным, если оно связно в индуцированной топологии, т. е.

$$\forall U_1, U_2 \in \Omega_X \quad \begin{array}{c} U_1 \cup U_2 \supset A \\ U_1 \cap U_2 \cap A = \emptyset \end{array} \Longrightarrow \begin{bmatrix} U_1 \cap A = \emptyset \\ U_2 \cap A = \emptyset \end{array}$$

Примеры.

- 1. Дискретное пространство более чем из одной точки несвязно (любое множество будет открытым и замкутым одновременно)
- 2. Аннидискретное пространство **связно** (всего два открытых множества \emptyset и X)
- 3. Стрелка связна (любые два непустых открытых множества пересекаются)
- 4. Зариского:
 - Если пространство бесконечно связно
 - Если пространство конечно несвязно (конечное пространство Зариского то же самое, что дискретное пространство)
- 5. Стандартная топология:
 - \mathbb{R} связно
 - [a, b] связно

$$\mathbb Q$$
 несвязно Доказательство. $U_1=(-\infty,\sqrt{2})\cap \mathbb Q,\quad U_2=(\sqrt{2},+\infty)\cap Q$ – граница не принадлежит ни $U_1,$ ни U_2

Замечание. Отсюда видно, что любое подмножество $\mathbb Q$ несвязно

Теорема 1. *A* связно, $A \subset B \subset \operatorname{Cl} A \implies B$ связно **Доказательство.** Пусть B несвязно, т. е.

$$\exists U_1, U_2 \in \Omega_X : \begin{cases} U_1 \cup U_2 \supset B \\ U_1 \cap U_2 \cap B = \emptyset \\ U_1 \cap B \neq \emptyset \\ U_2 \cap B \neq \emptyset \end{cases}$$

$$A \subset B \implies \begin{cases} U_1 \cup U_2 \supset A \\ U_1 \cap U_2 \cap A = \emptyset \end{cases} \xrightarrow{\text{(A связно)}} \text{ считаем } A \cap U_1 = \emptyset \implies U_2 \supset A$$

Возьмём $F \coloneqq \operatorname{Cl} A \setminus U_1$

F замкнуто, F ⊃ A − ⅓ (замыкание не наименьшее)

Следствие. A связно \Longrightarrow $\operatorname{Cl} A$ связно

Теорема 2. A,B связны, $A\cap B\neq\emptyset \implies A\cup B$ связно

Доказательство. Пусть U_1, U_2 открытые, $U_1 \cup U_2 \supset A \cup B$, $U_1 \cap U_2 \cap (A \cup B) = \emptyset$, $U_1 \cap (A \cup B) \neq \emptyset$, $U_2 \cap (A \cup B) \neq \emptyset$

Возьмём $x_0 \in A \cup B$

НУО считаем, что $\begin{cases} x_0 \in U_1 \\ x_0 \notin U_2 \end{cases}$

$$\begin{array}{c} U_1 \cup U_2 \supset A \\ U_1 \cap U_2 \cap A = \emptyset \end{array} \xrightarrow{\overline{A \text{ связно}}} \begin{bmatrix} U_1 \cap A = \emptyset \\ U_2 \cap A = \emptyset \end{bmatrix}$$

Следствие. $A_1, A_2, ..., A_n$ — связные Построим граф с вершинами из $\{A_n\}$ Если $A_i \cap A_j \neq \emptyset$, то проводим ребро Если граф связный, то $\bigcup_{i=1}^n A_i$ связно

Теорема 3. (0,1) связен

Доказательство. Пусть (0,1) несвязен $\implies \exists$ открытые $U_1,U_2: \begin{cases} U_1 \cup U_2 \supset (0,1) \\ U_1 \cap U_2 \cap (0,1) = \emptyset \end{cases}$

Возьмём $a \in U_1 \cap (0,1), \quad b \in U_2 \cap (0,1).$ Считаем a < b Положим $x_* \coloneqq \sup \{ x \in U_1 \mid x < b \}$

$$\begin{bmatrix} x_* \in U_1 \implies \exists \, \varepsilon > 0 : (x_* - \varepsilon, x_* + \varepsilon) \subset U_1 \implies b > x_* + \varepsilon \quad \not \sharp \quad \text{sup} \\ x_* \in U_2 \implies \exists \, \varepsilon > 0 : (x_* - \varepsilon, x_* + \varepsilon) \subset U_2 \implies x_* \text{ не точная верхняя граница } (x_* - \varepsilon \text{ точнее}) \end{cases}$$

Следствие. [0,1] связен (как замыкание [0,1])

Теорема 4. $f: X \to Y$ – непрерывная, $A \subset X$ – связно $\implies f(A)$ связно в Y

Доказательство. Пусть f(A) несвязно, т. е.

$$\begin{cases} f(A) \subset U_1 \cup U_2 \\ U_1 \cap U_2 \cap f(A) = \emptyset \\ U_1 \cap f(A) \ni y_1 \\ U_2 \cap f(A) \ni y_2 \end{cases}$$

Положим $V_1 := f^{-1}(U_1), \quad V_2 := f^{-1}(U_2)$

$$V_1 \cup V_2 = f^{-1}(U_1) \cup f^{-1}(U_2) = f^{-1}(U_1 \cup U_2) \supset f^{-1}(f(A)) \supset V_1 \cup V_2 \cup A = \emptyset \supset A$$

Следствие. $X \simeq Y$, X связно $\Longrightarrow Y$ связно

Теорема 5. $X \times Y$ связно $\iff X, Y$ связны

Доказательство.

- \Longrightarrow Возьмём отображения $\begin{cases} p_X: X \times Y \to X & p_X(x,y) = x \\ p_Y: X \times Y \to Y & p_Y(x,y) = y \end{cases}$

1.1.1 Компоненты связности

Определение 3 (компонента связности точки).

$$K_a \coloneqq \bigcup_{\substack{a \in A \ A \text{ связно}}} A$$
 – связно

Утверждение 1. $K_a = K_b$ или $K_a \cap K_b = \emptyset$

Доказательство. Если $K_a \neq K_b, K_a \cap K_b \neq \emptyset \implies K_a \cup K_b$ связно

Утверждение 2. K_a замкнута