Let $\mathbb F$ be a field. Recall that a column vector in $\mathbb F^n$ is denoted by $\vec u = \begin{bmatrix} u^1 \\ \vdots \\ u^n \end{bmatrix}$ and $\vec e_i \in \mathbb F^n$ is the column vector whose i-th entry is 1 and other entries are zero. Let $(\mathbb F^m)^*$ denote the linear space of row vectors with m entries in $\mathbb F$. A row vector in $(\mathbb F^m)^*$ shall be denoted by $\mu = (\mu_1, \cdots, \mu_m)$ and $\hat e^i \in (\mathbb F^m)^*$ denote the transpose of $e_i \in \mathbb F^m$. We write an $m \times n$ -matrix A as $[\vec a_1, \cdots, \vec a_n]$ with $\vec a_j$ being the j-th column of A or as $\begin{bmatrix} \hat \alpha^1 \\ \vdots \\ \hat \alpha^m \end{bmatrix}$ with $\hat \alpha^i$ being the i-th row of A. The (i,j)-entry of A is denoted by $a^i{}_j$. Recall that the j-th column of A is the column matrix $A\vec e_j$.

1. Show that

- (a) for any $m \times n$ -matrix A, the map $(\mathbb{F}^m)^* \to (\mathbb{F}^n)^*$ that sends α to αA is a linear map.
- (b) any linear map $\phi: (\mathbb{F}^m)^* \to (\mathbb{F}^n)^*$ is of the form $\phi(\alpha) = \alpha A$ for a unique matrix A.
- (c) the *i*-th row of A is the row matrix $\hat{e}^i A$.
- (d) $a^i{}_j = \hat{e}^i A \vec{e}_j$.
- (e) $A = \sum_{1 \le i \le m, 1 \le j \le n} a^i{}_j E_i{}^j$ where $E_i{}^j = e_i \hat{e}^j$

In class we have shown that an elementary row operation on a column matrix in \mathbb{F}^m is an invertible linear map from \mathbb{F}^m to itself (we call it an automorphism of the linear space \mathbb{F}^m), thus it is the multiplication from left by an invertible matrix E of order m. Then, if $A=[\vec{a}_1,\cdots,\vec{a}_n]\in M_{m\times n}(\mathbb{F})$, this elementary row operation on A is the simultaneous elementary row operation on all columns of A, thus it turns A into $[E\vec{a}_1,\ldots,E\vec{a}_n]$ which is EA, so it defines an automorphism of the linear space $M_{m\times n}(\mathbb{F})$.

Dually, an elementary column operation on a row matrix in $(\mathbb{F}^n)^*$ is an automorphism of the linear space $(\mathbb{F}^n)^*$, thus it is the multiplication from right by an invertible matrix F of order n. Then, if $A \in M_{m \times n}(\mathbb{F})$, this elementary column operation on A is the simultaneous elementary column operation on all rows of A, thus it turns A

into
$$\begin{bmatrix} \hat{lpha}^1 F \\ \vdots \\ \hat{lpha}^m F \end{bmatrix}$$
 which is AF , so it defines an automorphism of the linear space $M_{m imes n}(\mathbb{F})$.

2. Show that an elementary matrix E that corresponds to an elementary row operation is also an elementary matrix F that corresponds to an elementary column operation. Prove by induction that any matrix can be turned into a matrix of the block form $\begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$ by finitely many elementary row or column operations. Here, I_r denotes the identity matrix of order r and matrices O denote zero matrices.

- 3. Let $r \leq s \leq n$ be non-negative integers. Denote by A_r the square matrix of order n of the block form $\begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$. Show that, if there are invertible matrices P and Q such that $PA_rQ^{-1}=A_s$, then r=s.
- 4. Let $T: V \to W$ be a linear map between finite dimensional linear spaces over \mathbb{F} . Show that T is injective $\iff T$ has a left inverse, and dually T is surjective $\iff T$ has a right inverse.
- 5. Conitnuing Exercise 3 in Assignment 1, please show that both T_* and T^* are linear maps. Please also show that, if T is a bijection, then both T_* and T^* are linear equivalences.
- 6. Let V be an n-dimensional linear space, and $S = (v_1, \ldots, v_k)$ be an ordered set of k vectors in V. Let $\phi_S : \mathbb{F}^k \to V$ be the linear map that sends $\vec{x} \in \mathbb{F}^k$ to $x^1v_2 + \cdots + x^kv_k$. Show that
 - (a) S is a linearly independent set $\iff \phi_S$ is injective.
 - (b) S is a spanning set for $V \iff \phi_S$ is surjective.
 - (c) S is a minimal spanning set for $V \iff \phi_S$ is invertible. Note: a minimal ordered spanning set is called a basis.

In case S is a basis, the inverse ϕ_S^{-1} is written as $[\,]_S$ and is called the coordinate map with respect to basis S. The coordinate map $[\,]_S$ is also called the trivialisation of V with respect to basis S.