

Description

The VSM12P06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

V_{DS} =-60V,I_D =-12A

 $R_{DS(ON)}$ <100m Ω @ V_{GS} =-10V

 $R_{DS(ON)}$ <125m Ω @ V_{GS} =-4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- High side switch for full bridge converter
- DC/DC converter for LCD display

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM12P06-T2	VSM12P06	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	Vos	-60	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	-12	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	-8.5	А
Pulsed Drain Current	I _{DM}	-30	А
Maximum Power Dissipation	P _D	60	W
Derating factor		0.4	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	50	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	$R_{ heta JC}$	2.5	°C/W

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	1					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=-250\mu A$	-1	-1.5	-2.2	V
Drain-Source On-State Resistance	Б	V _{GS} =-10V, I _D =-12A	-	84	100	mΩ
Diam-Source On-State Resistance	R _{DS(ON)}	V_{GS} =-4.5V, I_D =-8A	-	100	125	mΩ
Forward Transconductance	g FS	V _{DS} =-5V,I _D =-12A	-	10	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =-30V,V _{GS} =0V,	-	1630.7	-	PF
Output Capacitance	C _{oss}	F=1.0MHz	-	90.6	-	PF
Reverse Transfer Capacitance	C _{rss}	1 – 1.0101112	-	77.3	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	11	-	nS
Turn-on Rise Time	t _r	V_{DD} =-30V, R_L =1.5 Ω ,	-	14	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =-10 V , R_{G} =3 Ω	-	33	-	nS
Turn-Off Fall Time	t _f		-	13	-	nS
Total Gate Charge	Qg	V _{DS} =-30,I _D =-12A,	-	37.6		nC
Gate-Source Charge	Q_{gs}	V_{DS} 30, I_{D} 12A, V_{GS} =-10V	-	4.3		nC
Gate-Drain Charge	Q_{gd}	V GS10 V	-	7.2		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-12A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-12	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =- 12A	-	35		nS
Reverse Recovery Charge	Qrr	$di/dt = -100A/\mu s^{(Note3)}$	-	38		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}\text{C}$,V_{DD}=-20V,V_G=-10V,L=1mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 2 Transfer Characteristics

Rdson On-Resistance(m 🛭)

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance