Домашнее задание №1

- 1. Пусть объекты (0,1) и (0,-1) принадлежат одному классу, а объект (2,0) другому. Получить аналитическую формулу разделяющей поверхности для метода одного ближайшего соседа с ℓ_2 метрикой.
- 2. Решить предыдущую задачу для ℓ_1 метрики.
- 3. Привести пример обучающего и тестового множества минимальной мощности, для которых при k>1:
 - (а) метод 1-ближайшего соседа даёт точность на тесте больше, чем метод k-ближайших соседей,
 - (b) метод k-ближайших соседей даёт точность на тесте больше, чем метод 1-ближайшего соседа.
- 4. Привести пример обучающего и тестового множества минимальной мощности, для которых при k>1:
 - (a) обычный метод k-ближайших соседей даёт точность на тесте больше, чем метод k-ближайших взвешенных соседей (веса, например, обратно пропорциональны расстояниям),
 - (b) метод k-ближайших взвешенных соседей даёт точность на тесте больше, чем обычный метод k-ближайших соседей.
- 5. Для метода классификации одного ближайшего соседа получились следующие разделяющие поверхности. Примести пример обучающего множества и метрики, на которых метод мог бы выучить такое разделяющее правило.

- 6. Опишите преимущества и недостатки k-fold валидации и LOO валидации. Приведите примеры, когда предпочтительнее использовать LOO вместо 5-fold валидации, и наоборот.
- 7. Для объектов $x_1, ..., x_n$ с правильными ответами $y_1, ..., y_n$ из \mathbb{R} постройте константную модель a(x) = c для функции потерь:

a)
$$MSE$$
 (mean squared error) = $\frac{1}{N} \sum_{i=1}^{n} (y_i - c)^2$;

b)
$$MSA \ (mean \ absolute \ error) = \frac{1}{N} \sum_{i=1}^{n} |y_i - c|.$$

8. Для объектов $x_1, ..., x_n$ из \mathbb{R} с правильными ответами $y_1, ..., y_n$ из \mathbb{R} постройте константную модель a(x) = kx + b для функции потерь

$$MSE (mean squared error) = \frac{1}{N} \sum_{i=1}^{n} (y_i - kx_i - b)^2.$$