如何自学计算机?

计算机专业的自学路线图

• 为什么要啃书?

这些基础知识就像武功内功,技术相当于外功。

可以训练自己的思维, 提升自学能力。

破除35岁危机,避免成为青春饭的程序员。

• 业余时间可以自学计算机专业课程吗?

网络上书籍上的资源完全够用。

• 计算机专业学了些什么?

骨干核心课程一致:可以参考美国计算机科学体系报告。

核心内容: 所有人必须掌握、拿学位的必须掌握

衡量计算机科学知识的掌握程度:了解(是什么)、会用(怎么做)、评估宇断绝(找到多种解决方

案、选择一种最好的方式、为什么要这么做)。

计算机自学路线图

		计算机专业「	疾风计划-实训班」课程安排		
阶段	类别	课程	课程名称	院校	授课教师
第一阶段 (3个月)	专业基础课	程序设计基础	程序设计基础	清华	徐明星
		面向对象程序设计	面向对象程序设计(C++)	清华	徐明星
		离散数学	离散数学	华南理工大学	陈琼
			WL10/+1-/1		
第二阶段	专业必修课	数据结构	数据结构(上) 数据结构(下)	清华	邓俊辉
(3个月)		算法设计与分析	算法设计与分析	清华	王振波
		计算机组成原理	计算机组成原理	电子科技大学	纪禄平
ᢡ᠆ᢊᡘ	专业必修课	操作系统	操作系统	清华	向勇、陈渝
第三阶段 (3个月)		计算机网络	计算机网络	华南理工大学	袁华
		数据库系统	数据库系统原理与开发	电子科技大学	陆鑫、张凤荔
	专业必修课	编译原理	编译原理	中南大学	陈志刚
		软件工程	软件工程	清华	刘强
	专业选修课	2门选修课	自选		
		Linux操作系统	Linux 内核分析与应用	西安邮电大学	陈莉君
		嵌入式系统	ARM微控制器与嵌入式系统	清华	曾鸣
		网络安全	网络安全技术	南开	张玉
		软件理论基础	软件理论基础	清华	罗贵明
		软件测试	软件测试	西北工业大学	郑炜
			大数据机器学习	清华	袁春
第四阶段	专业选修(2门)	人工智能	机器学习概论	清华	张敏
(3个月)			人工智能原理	北大	王文敏
			深度学习基础	哈工大	刘远超
			自然语言处理	上海交通大学	赵海
		大数据系统	大数据平台核心技术	清华	武永卫
			大数据技术与应用	清华	李军
		数据科学	R语言数据分析	北京邮电大学	艾新波
			科学计算与MATLAB语言	中南大学	刘卫国
		物联网	物联网概论	清华	何源
		汇编	汇编语言程序设计	清华	张悠慧
		数学	组合数学	清华	马昱春
			计算几何	清华	邓俊辉
第五阶段 (10周)	小学期	专项能力训练	Python开发工程师训练营	企业导师	朔宁夫

学习和认知的规律

大脑的工作模式

工作记忆-----内存

长期记忆------外部存储器

吸收的知识转换为组块,并将其移入长期记忆的过程

零碎的组块通过理解重组,建立成相互关联的组块,这个过程需要多次反复

学习需要适当休息与及时调整, 让信息有条理且彼此之间联结紧密

培训班的问题就是,在短时间内向大脑灌入过多的知识,不给消化吸收的时间,神经元之间的连接难以形成 和巩固

基于组块的场景式学习方式

对于特定的问题, 主动学习特定的组块, 然后应用组块解决问题。

(1)针对具体的常见,搜集各站资源,构建知识框架。

比如要自己搭建一个网站,需要搜集,用哪些技术,这些技术用来解决哪些问题。数据使用SQL来存储,访问数据使用什么等等。

找到要用的,为什么用,搭建框架,即学习路线。后期再细化。

(2) 学习, 向知识框架中不断填充知识组块。

在知识框架中,一步一步学习,补充细节。

(3) 图拼完了, 意味着姚解决问题需要的知识组块以及全部就位, 现在就可以着手解决实际问题了。

有效学习的基本原则

- 学习必须循序渐进,并且通常需要多次反复(构建知识之网)需要看不懂的,先去去补充知识,补充完基础后回购头来学习。
- 学习需要高度可靠、及时反馈和一个进度条学习要有目标,生成进度条,完成可以给奖励
- 学习需要明确目标,不同的目标导致不同的学习策略 应付考试,考纲就是框架
 应付工作就不一样

学习要遵循人的认知规律

- 从感性到理性
- 从具体到抽象

比如计算机网络,可以买几个路由器,抓包,看看自己玩游戏的数据发送过程

• 理论必须在实践中才能真正学好

数学、编程需要动手去刷题

"知识之网"与"课程"

有效学习的成果是构成网络知识

• 知识的"互联网"

孤立的知识是没用的,也容易忘记,需要建立知识之间的联系,构建知识网络成网的知识,是一个"组块",课作为一个整体构架出更大的"知识互联网"学习的过程,是简历新知识与已有知识的连接

• 知识之王遍历(学习)方法

广度遍历, 从已掌握的节点出发

深度遍历,从已掌握的节点出发,进行深度遍历,即一个一个知识点学到底,学深学透

知识的底层和上层,是相对的,不同岗位(方向)所需要的底层知识是不同的

读书那些事

- 选择适合自己当前水平的书
- 选择已具备读懂前提的书

读书需要考量自己的知识储备

被人眼里的好书,对你不一定能读懂

- 阅读科普书籍入门、通过学习专业教材掌握基础、通过技术书籍深入特定领域
- 尽量选择最新的英文版,或者中英文对照,注意中英文术语对照表 英语和数学对学计算机是必须的
- 目的决定阅读方法理解底层----探究式阅读方法应付考试

分类阅读法

• 科普读物

了解北京,明了术语和概念,建立全局观

• 计算机专业教材

大号计算机科学理论基础, 培养学习后劲

• 21天/7天/零基础。。。。

从时实践入手,引发兴趣,带入大门

• XXX框架/XXX开发

系统介绍特点领域基础开发技巧, 教你学会使用这个框架或者工具

• 特定领域技术专著

针对典型场景,总结开发经验,解决实际问题

• 多遍阅读法

《计算机网络系统方法》 《计算机网络教材-自顶向下方法》

o 预热

初步构建知识之网,确定阅读顺序(前言、序)和学习路线可以选择多本同类型的书,构建详细的知识网络框架

- 。 第一遍
 - 仔细阅读第一章
 - 快速浏览后面章节的开头和结尾,跳读中间
- 。 第二遍
 - 挑出那些你最感兴趣的部分细度,看不懂的,可以先打个标记,跳过去
- 。 第三遍
 - 看那些还没看过的内容
- 。 第四遍以及更多
 - 重点攻克那些没有看懂的内容,比如去看两本科普的书籍,翻翻几篇papper
 - 通读全文,回顾反思、进行巩固

难书和厚书的典型

《机器学习西瓜书》、《离散数学教程》

解决方法:

• 断点继传法:

书看不懂时,不硬看,扫清障碍

先阅读相关的科普书籍,看看相关视频,了解相关知识背景,有了基础之后再回过头去看书

• 对照阅读法

对找几本书, 对照着看

比如, 计算中网络、操作系统等的分层的概念、缓存的概念, 对照着看, 这种思维理解了之后, 可以运用到自己的学习写作中

• 教学视频法

先看教学视频入门, 再看书自学

特定计算机专业课程的学习

• 数学不好, 就没法从事软件开发工作吗?

不一定,具备基本的数学能力是对所有计算机专业人员的基本要求,但是对于中高级的程序员,尤其是 科研人员,数学必须要很扎实

• 有哪些数学分支是计算机专业所必学的?

高等数学、线性代数、离散数学、概率论与数理统计

• 教材选择

国内的就是不讲应用、解决思路,不适合自学

国外的相对而言更好,《普林斯顿微积分读本》、《离散数学及应用(黑书)》、《线性代数及应用 (黄色书)》

• 学习技巧

遵循从易到难、从感性到理性、从具体到抽象的认知规律 先从科普、MOOC视频、导学入门,再学经典的教材 也可以使用EXCEL,MATLAB,R等软件将数据可视化促进数学学习

• 一门课,一门书,树立计算机系统全局观

要注意捉着视角,是怎样介绍计算机的

《计算机科学概论》 Nell Dale

《计算机科学概论》Glenn Brookshear

可以跳着读,读完之后可以看一些科普书籍

• 通过科普读物了解计算机科学

《人工智能》《智能时代》

• 著名的《深入理解计算机系统》

需要一些基础,可以建立各种知识之间的联系,形成一个体系

- 骨干课程
 - 。 数据结构与算法

先不看问题的解决方法,先自己思考。再去看书中的解决方案 合上书,自己去复现代码,用自己熟悉的语言实现算法

学习顺序:

学习算法前,一定要先学离散数学和编程语言

科普读物《算法图解》《算法基础》

通过《数据结构与算法》入门, 打基础

经典书籍:《数据结构与算法 Java (C) 语言描述(黑皮)》《算法第四版》《算法导论》

考研面试前,刷一下各公司各学校的真题就可以

。 计算机组成原理

首先需要数字电路基础

然后学习计算机组成与设计 (计算机组成原理)

接着可以学习操作系统, 编译原理

学习顺序:

《编码》、《计算机存储与外设(黑皮)》《计算机组成原理(黑皮)》、《计算机组成与设计-硬件接口》

《计算机体系结构-量化研究方法》

。 操作系统

需要数据结构与算法、计算机组成原理、编程语言的前提

学习方法:

和软件开发、动手实践结合

先学习操作系统的经典书籍,阅读一些专业书籍如《Linux内核》,《深入理解Windows》

使用C语言再Linux下编程操作,C编程完成教材作业

掌握Linux Shell编程, 玩转Linux

使用JAVA/C#等开发网络或多线程应用程序,Socket编程,安卓手机的开发(进程线程)等等使用工具完成在线试验

。 计算机网络

需要编程语言、数据结构与算法、操作系统的前提

先阅读科普读物,《网络是怎样连接的》

再看专业教材《计算机网络-自顶向下(从上往下)》《计算机网络-谢仁希版(从下往上)》《计算机网络-系统方法(横切)》

然后可以看特定领域的书籍

还可以接着开发网络应用,使用特定编程语言/平台的网络库

要点:

要搞明白三个问题:

计算机是如何连接的?数据是如何再计算机网络中传输的? 网络软件系统应该如何构建?

着重理解分层架构,为什么分层,每个层的原理

动手编写网络程序,重点学习HTTP协议,一些Web开发的框架

学会使用Wireshark之类的工具抓包