

Paul Zivich,¹ Rachael Ross,² Bonnie Shook-Sa¹

¹University of North Carolina, ²Columbia University

Acknowledgements

Funding: K01Al177102 (PNZ), R01DA056407 (RKR), K01Al182506 (BES), R01Al157758 (PNZ, BES)

Disclaimer: views are ours and not those of NIH, DHHS, US government

rachael.k.ross@columbia.edu

? rachael-k-ross

Overview

Section 1: introduction

Break (15min)

Section 2: applied examples

Break (15min)

Section 3: in context

Overview: Section 2 - Applied Examples

- 1. Logistic regression
- Standardization
 - Outcome model based standardization
 - Inverse probability weighting
- 3. Transporting a risk
 - Outcome model based standardization
 - Inverse odds weighting

Each section will include time to work with code

As the goal is to illustrate implementation, we will not dwell on identification assumptions of these examples $^{\rm I}$

¹Hernan & Robins Causal Inference: What If; Cole et al. AJE 2012

Overview: Section 2 - Applied Examples

- 1. Logistic regression
- 2. Standardization
 - Outcome model based standardization
 - Inverse probability weighting
- 3. Transporting a risk
 - Outcome model based standardization
 - Inverse odds weighting

These examples have been published in an IJE Education Corner²

²Ross et al. M-estimation for common epidemiological measures: introduction and applied examples *IJE*, 2024, 53(2):1-6.

Notation – Reminder

 O_i : observed data for unit i

$$O_i = (W_i, X_i, Y_i)$$

$$O_i = (S_i, W_i, X_i, S_i \times Y_i)$$

$$\mathsf{expit}(a) = 1/(1 + \exp(-a))$$

Notation – Reminder

Estimating function

$$\psi(O_i;\theta)$$

Estimating equation

$$\sum_{i=1}^{n} \psi(O_i; \theta) = 0$$

Logistic regression

Example

Data from the Zambia Preterm Birth Prevention Study (ZAPPS)³ $O_i = (W_i, X_i, Y_i)$ W_i , elevated blood pressure

 X_i , anemia

 Y_i , preterm birth

We want to estimate the parameters of this model

$$Pr(Y_i = 1 | X_i, W_i) = expit(\beta_0 + \beta_1 X_i + \beta_2 W_i)$$
$$= expit(\mathbf{Z}_i \boldsymbol{\beta}^T)$$

where
$$\boldsymbol{Z}_i = (1, X_i, W_i)$$
 and $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2)$

³Castillo et al. Gates Open Research 2019

ZAPPS data

- n=826 pregnant people
- 14.2% delivered preterm
- 14.3% diagnosed with early-pregnancy anemia
- 18.9% diagnosed with early-pregnancy elevated blood pressure

Estimating β by MLE

Let $\hat{oldsymbol{eta}}_{mle}$ be the estimate of $oldsymbol{eta}$ by MLE

 $\hat{oldsymbol{eta}}_{mle}$ are the values that maximize the log-likelihood

$$\sum_{i=1}^n \ln \bigl(L(\boldsymbol{O_i}, \hat{\boldsymbol{\beta}}_{mle})\bigr)$$

$$= \sum_{i=1}^n \left\{ Y_i \mathsf{In} \big(\mathsf{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}_{mle}^T) \big) + (1-Y_i) \mathsf{In} \big(1 - \mathsf{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}_{mle}^T) \big) \right\}$$

Estimating $oldsymbol{eta}$ by root-finding

Maximum of likelihood is where slope (derivative) is zero ("root")

Estimating β by root-finding

Maximum of likelihood is where slope (derivative) is zero ("root")

Estimating $oldsymbol{eta}$ by root-finding

Our log-likelihood is

$$\mathsf{In}\big(L(\boldsymbol{O_i},\boldsymbol{\beta})\big) = Y_i \mathsf{In}\big(\mathsf{expit}(\boldsymbol{Z}_i\boldsymbol{\beta}^T)\big) + (1-Y_i) \mathsf{In}\big(1-\mathsf{expit}(\boldsymbol{Z}_i\boldsymbol{\beta}^T)\big)$$

Functions for the slope (derivative⁴)

$$\psi(\boldsymbol{O_i},\boldsymbol{\beta}) = \frac{\partial \text{ln}\big(L(\boldsymbol{O_i},\boldsymbol{\beta})\big)}{\partial \boldsymbol{\beta}} = \begin{bmatrix} \big(Y_i - \text{expit}(\boldsymbol{Z}_i\boldsymbol{\beta}^T)\big)1 \\ \big(Y_i - \text{expit}(\boldsymbol{Z}_i\boldsymbol{\beta}^T)\big)X_i \\ \big(Y_i - \text{expit}(\boldsymbol{Z}_i\boldsymbol{\beta}^T)\big)W_i \end{bmatrix}$$

⁴first-order partial derivatives, called the "score" functions

Estimating β by root-finding

Let $\hat{oldsymbol{eta}}_{me}$ be the estimate of $oldsymbol{eta}$ by root finding (M-estimation)

Our estimating equation

$$\sum_{i=1}^{n} \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\beta}}_{me}) = \sum_{i=1}^{n} \begin{bmatrix} Y_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}_{me}^T) \\ (Y_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}_{me}^T)) X_i \\ (Y_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}_{me}^T)) W_i \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Estimating $\hat{\boldsymbol{\beta}}_{me}$: Code

To implement, we need to define the estimating functions

Under Defining estimating equation

R

```
\begin{array}{lll} p <& -p \, logis \, (beta \, [1] \, + \, beta \, [2] \, * \, dat \, \$ \, anemia \, + \, beta \, [3] \, * \, dat \, \$ \, bp) \\ \\ ef_{-1} <& - \, (dat \, \$ \, ptb \, - \, p) \\ ef_{-2} <& - \, (dat \, \$ \, ptb \, - \, p) \, * \, dat \, \$ \, anemia \\ ef_{-3} <& - \, (dat \, \$ \, ptb \, - \, p) \, * \, dat \, \$ \, bp \end{array}
```

$\hat{oldsymbol{eta}}_{mle}$ and $\hat{oldsymbol{eta}}_{me}$ from R

	eta_0	eta_1	β_2
$\hat{oldsymbol{eta}}_{mle}$	-1.89450081814 3	0.1187353484 2 8	0.3605113262 7 6
$\hat{\boldsymbol{\beta}}_{me}$	-1.89450081814 8	0.1187353484 3 2	0.3605113262 8 3

Difference is result of algorithm/tolerance

Variance

Let $V(\hat{oldsymbol{eta}})$ be the 3 imes 3 covariance matrix of $\hat{oldsymbol{eta}}$

$$\boldsymbol{V}(\boldsymbol{\hat{\beta}}) = \begin{bmatrix} \operatorname{var}(\hat{\beta}_0) & \operatorname{cov}(\hat{\beta}_0, \hat{\beta}_1) & \operatorname{cov}(\hat{\beta}_0, \hat{\beta}_2) \\ \operatorname{cov}(\hat{\beta}_0, \hat{\beta}_1) & \operatorname{var}(\hat{\beta}_1) & \operatorname{cov}(\hat{\beta}_1, \hat{\beta}_2) \\ \operatorname{cov}(\hat{\beta}_0, \hat{\beta}_2) & \operatorname{cov}(\hat{\beta}_1, \hat{\beta}_2) & \operatorname{var}(\hat{\beta}_2) \end{bmatrix}$$

The diagonal vector of $m{V}/n$ (i.e., $\mathrm{diag}(m{V}/n)$) are the finite sample variances

For Wald-type confidence intervals, we use $\mathsf{SE}(\hat{\pmb{\beta}}) = \sqrt{\mathsf{diag}(\pmb{V}/n)}$

Estimating $oldsymbol{V}(\hat{oldsymbol{eta}}_{mle})$ by MLE

$$oldsymbol{V}(\hat{oldsymbol{eta}}_{mle}) = oldsymbol{I}(\hat{oldsymbol{eta}}_{mle})^{-1}$$

where $I(\hat{m{eta}}_{mle})$ is the observed information matrix at $\hat{m{eta}}_{mle}$

Estimating $oldsymbol{V}(\hat{oldsymbol{eta}}_{mle})$

There are two ways to estimate $I(\hat{oldsymbol{eta}}_{mle})$

1. Hessian-based estimator

$$I(\hat{\boldsymbol{\beta}}_{mle}) = \frac{1}{n} \sum_{i=1}^{n} \left[-\boldsymbol{\psi}'(\boldsymbol{O_i}, \hat{\boldsymbol{\beta}}_{mle}) \right]$$

where
$$\psi' = rac{\partial \psi(O_i, \hat{eta}_{mle})}{\partial \hat{eta}_{mle}} = rac{\partial^2 \ln\left(L(O_i, \hat{eta}_{mle})\right)}{\partial \hat{eta}_{mle}^2}$$

Estimating $oldsymbol{V}(\hat{oldsymbol{eta}}_{mle})$

There are two ways to estimate $I(\hat{oldsymbol{eta}}_{mle})$

2. Residual-based estimator

$$\boldsymbol{I}(\hat{\boldsymbol{\beta}}_{mle}) = \frac{1}{n} \sum_{i=1}^{n} \left[\boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\beta}}_{mle}) \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\beta}}_{mle})^T \right]$$

Estimating $oldsymbol{V}(\hat{oldsymbol{eta}}_{mle})$

There are two ways to estimate $I(\hat{oldsymbol{eta}}_{mle})$

1. Hessian-based estimator

$$oldsymbol{I}(\hat{oldsymbol{eta}}_{mle}) = rac{1}{n} \sum_{i=1}^{n} \left[-oldsymbol{\psi}'(oldsymbol{O_i}, \hat{oldsymbol{eta}}_{mle})
ight]$$

2. Residual-based estimator

$$m{I}(\hat{m{eta}}_{mle}) = rac{1}{n} \sum_{i=1}^{n} \left[m{\psi}(m{O_i}, \hat{m{eta}}_{mle}) m{\psi}(m{O_i}, \hat{m{eta}}_{mle})^T
ight]$$

Asymptotically equal when chosen parametric family is correct Hessian is more efficient and default (logistic, glm, GLM)

Estimating $oldsymbol{V}(\hat{oldsymbol{eta}}_{me})$ by sandwich variance estimator

$$\boldsymbol{V}(\hat{\boldsymbol{\beta}}_{me}) = \boldsymbol{B}(\hat{\boldsymbol{\beta}}_{me})^{-1} \boldsymbol{F}(\hat{\boldsymbol{\beta}}_{me}) \big[\boldsymbol{B}(\hat{\boldsymbol{\beta}}_{me})^{-1} \big]^T$$

Recall

- $m{eta}(\hat{m{eta}}) = rac{1}{n} \sum_i \left[-m{\psi}'(m{O_i}, \hat{m{eta}})
 ight]$ This corresponds to the Hessian-based info matrix estimator
- $F(\hat{m{eta}}) = \frac{1}{n} \sum_i \left[\psi(m{O_i}, \hat{m{eta}}) \psi(m{O_i}, \hat{m{eta}})^T \right]$ This corresponds to the residual-based info matrix estimator

Asymptotic equivalence

When chosen parametric family is correct

$$V(\hat{\boldsymbol{\beta}}) = \boldsymbol{B}(\hat{\boldsymbol{\beta}})^{-1} \boldsymbol{F}(\hat{\boldsymbol{\beta}}) \left[\boldsymbol{B}(\hat{\boldsymbol{\beta}})^{-1} \right]^{T}$$
$$\sim \boldsymbol{I}(\hat{\boldsymbol{\beta}})^{-1} \boldsymbol{I}(\hat{\boldsymbol{\beta}}) \left[\boldsymbol{I}(\hat{\boldsymbol{\beta}})^{-1} \right]^{T}$$
$$= \boldsymbol{I}(\hat{\boldsymbol{\beta}})^{-1}$$

Estimating $oldsymbol{V}(\hat{oldsymbol{eta}})$

- 1. Use the same code for the estimating equation
- 2. Baking the bread
 - Use software to estimate the Hessian
- 3. Cooking the filling
 - Use transpose and dot product functions
- 4. Assembling the sandwich
 - Use inverse function

Standard errors from R

	eta_0	eta_1	eta_2
MLE, Hessian-based	0.01 4 96046	0.077 6 4837	0.056 6 0453
MLE, Residual-based	0.01 5 08328	0.077 6 1366	0.056 7 0628
Sandwich estimator	0.01 4 84043	0.077 7 2035	0.056 5 2969

Time to work with code

Standardization

Data and estimand

Using the same data as the prior example

$$O_i = (Y_i, X_i, W_i)$$

 Y_i , preterm birth

 X_i , anemia

 W_i , elevated blood pressure

We want to estimate the marginal risk difference and risk ratio of anemia on preterm birth, standardized by elevated blood pressure.

$$E(E(Y|X = 1, W)|W) - E(E(Y|X = 0, W)|W)$$
$$E(E(Y|X = 1, W)|W)/E(E(Y|X = 0, W)|W)$$

We will illustrate two standardization approaches

- Outcome model based standardization (i.e., g-computation)
- Inverse probability weighting

1. Estimate outcome model (from prior example)

$$\Pr(Y_i = 1 | X_i, W_i) = \expit(\beta_0 + \beta_1 X_i + \beta_2 W_i) = \expit(\boldsymbol{Z}_i \boldsymbol{\beta}^T)$$

1. Estimate outcome model (from prior example)

$$\Pr(Y_i = 1 | X_i, W_i) = \operatorname{expit}(\beta_0 + \beta_1 X_i + \beta_2 W_i) = \operatorname{expit}(\boldsymbol{Z}_i \boldsymbol{\beta}^T)$$

2. Use $\hat{\beta}$ to predict outcome when $X_i = 1$. Take the mean.

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n \operatorname{expit}(\hat{\beta}_0 + \hat{\beta}_1 \times 1 + \hat{\beta}_2 W_i)$$

1. Estimate outcome model (from prior example)

$$\Pr(Y_i = 1 | X_i, W_i) = \operatorname{expit}(\beta_0 + \beta_1 X_i + \beta_2 W_i) = \operatorname{expit}(\boldsymbol{Z}_i \boldsymbol{\beta}^T)$$

2. Use $\hat{\beta}$ to predict outcome when $X_i = 1$. Take the mean.

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n \operatorname{expit}(\hat{\beta_0} + \hat{\beta_1} \times 1 + \hat{\beta_2} W_i)$$

3. Use $\hat{\beta}$ to predict outcome when $X_i = 0$. Take the mean.

$$\hat{\mu}_2 = \frac{1}{n} \sum_{i=1}^n \operatorname{expit}(\hat{\beta_0} + \hat{\beta_1} \times 0 + \hat{\beta_2} W_i)$$

1. Estimate outcome model (from prior example)

$$\Pr(Y_i = 1 | X_i, W_i) = \expit(\beta_0 + \beta_1 X_i + \beta_2 W_i) = \expit(\mathbf{Z}_i \boldsymbol{\beta}^T)$$

2. Use $\hat{\beta}$ to predict outcome when $X_i = 1$. Take the mean.

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n \operatorname{expit}(\hat{\beta_0} + \hat{\beta_1} \times 1 + \hat{\beta_2} W_i)$$

3. Use $\hat{\beta}$ to predict outcome when $X_i = 0$. Take the mean.

$$\hat{\mu}_2 = \frac{1}{n} \sum_{i=1}^n \operatorname{expit}(\hat{\beta}_0 + \hat{\beta}_1 \times 0 + \hat{\beta}_2 W_i)$$

4. Calculate the risk difference $\hat{\delta_1}=\hat{\mu}_1-\hat{\mu}_2$ & log risk ratio $\hat{\delta_2}=\ln(\hat{\mu}_1/\hat{\mu}_2)$

Our stacked estimating equation

$$\sum_{i=1}^n \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^n \begin{bmatrix} Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T) \\ (Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T)) X_i \\ (Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T)) W_i \\ \operatorname{expit}(\hat{\beta_0} + \hat{\beta_1} \times 1 + \hat{\beta_2} W_i) - \hat{\mu}_1 \\ \operatorname{expit}(\hat{\beta_0} + \hat{\beta_1} \times 0 + \hat{\beta_2} W_i) - \hat{\mu}_2 \\ (\hat{\mu}_1 - \hat{\mu}_2) - \hat{\delta}_1 \\ \ln(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

where $\boldsymbol{\theta} = (\boldsymbol{\beta}, \boldsymbol{\mu}, \boldsymbol{\delta})$

Our stacked estimating equation

$$\sum_{i=1}^{n} \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^{n} \begin{bmatrix} Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T) \\ (Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T)) X_i \\ (Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T)) W_i \\ \operatorname{expit}(\hat{\beta}_0 + \hat{\beta}_1 \times 1 + \hat{\beta}_2 W_i) - \hat{\mu}_1 \\ \operatorname{expit}(\hat{\beta}_0 + \hat{\beta}_1 \times 0 + \hat{\beta}_2 W_i) - \hat{\mu}_2 \\ (\hat{\mu}_1 - \hat{\mu}_2) - \hat{\delta}_1 \\ \ln(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

where $oldsymbol{ heta} = (oldsymbol{eta}, oldsymbol{\mu}, oldsymbol{\delta})$

Our stacked estimating equation

$$\sum_{i=1}^{n} \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^{n} \begin{bmatrix} Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T) \\ (Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T)) X_i \\ (Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T)) W_i \\ \operatorname{expit}(\hat{\beta_0} + \hat{\beta_1} \times 1 + \hat{\beta_2} W_i) - \hat{\mu}_1 \\ \operatorname{expit}(\hat{\beta_0} + \hat{\beta_1} \times 0 + \hat{\beta_2} W_i) - \hat{\mu}_2 \\ (\hat{\mu}_1 - \hat{\mu}_2) - \hat{\delta}_1 \\ \ln(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

where $\boldsymbol{\theta} = (\boldsymbol{\beta}, \boldsymbol{\mu}, \boldsymbol{\delta})$

Our stacked estimating equation

$$\sum_{i=1}^{n} \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^{n} \begin{bmatrix} Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T) \\ (Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T)) X_i \\ (Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T)) W_i \\ \operatorname{expit}(\hat{\beta_0} + \hat{\beta_1} \times 1 + \hat{\beta_2} W_i) - \hat{\mu}_1 \\ \operatorname{expit}(\hat{\beta_0} + \hat{\beta_1} \times 0 + \hat{\beta_2} W_i) - \hat{\mu}_2 \\ (\hat{\mu}_1 - \hat{\mu}_2) - \hat{\delta}_1 \\ \ln(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Our stacked estimating equation

$$\sum_{i=1}^{n} \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^{n} \begin{bmatrix} Y_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T) \\ (Y_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T)) X_i \\ (Y_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T)) W_i \\ \operatorname{expit}(\hat{\beta}_0 + \hat{\beta}_1 \times 1 + \hat{\beta}_2 W_i) - \hat{\mu}_1 \\ \operatorname{expit}(\hat{\beta}_0 + \hat{\beta}_1 \times 0 + \hat{\beta}_2 W_i) - \hat{\mu}_2 \\ (\hat{\mu}_1 - \hat{\mu}_2) - \hat{\delta}_1 \\ \ln(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

where
$$\boldsymbol{\theta} = (\boldsymbol{\beta}, \boldsymbol{\mu}, \boldsymbol{\delta})$$

Note: we estimate the log risk ratio because 1) it does not have bounds which is better for root-finding and 2) we want to estimate the variance of the log risk ratio for constructing confidence intervals

Our stacked estimating equation

$$\sum_{i=1}^n \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^n \begin{bmatrix} Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T) \\ (Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T)) X_i \\ (Y_i - \operatorname{expit}(\boldsymbol{Z_i} \hat{\boldsymbol{\beta}}^T)) W_i \\ \operatorname{expit}(\hat{\beta_0} + \hat{\beta_1} \times 1 + \hat{\beta_2} W_i) - \hat{\mu}_1 \\ \operatorname{expit}(\hat{\beta_0} + \hat{\beta_1} \times 0 + \hat{\beta_2} W_i) - \hat{\mu}_2 \\ (\hat{\mu}_1 - \hat{\mu}_2) - \hat{\delta}_1 \\ \ln(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

where $\boldsymbol{\theta} = (\boldsymbol{\beta}, \boldsymbol{\mu}, \boldsymbol{\delta})$

Estimating functions: Code

R

```
p <- plogis(beta[1] + beta[2]*dat$anemia + beta[3]*dat$bp)
ef_1 <- (dat$ptb - p)
ef_2 <- (dat$ptb - p)*dat$anemia
ef_3 <- (dat$ptb - p)*dat$bp

ef_r1 <- plogis(beta[1] + beta[2]*1 + beta[3]*dat$bp) - mu[1]
ef_r0 <- plogis(beta[1] + beta[2]*0 + beta[3]*dat$bp) - mu[2]

ef_rd <- (mu[1] - mu[2]) - delta[1]
ef_lnrr <- log(mu[1]/mu[2]) - delta[2]</pre>
```

1. Estimate propensity score model

$$\Pr(X_i = 1 | W_i) = \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)$$

1. Estimate propensity score model

$$\Pr(X_i = 1 | W_i) = \exp(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)$$

2. Among those with $X_i=1$, take a mean of the outcome, weighted by the inverse probability of $X_i=1$,

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n \left\{ \frac{X_i Y_i}{\operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} \right\}$$

1. Estimate propensity score model

$$\Pr(X_i = 1|W_i) = \expit(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)$$

2. Among those with $X_i = 1$, take a mean of the outcome, weighted by the inverse probability of $X_i = 1$,

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n \left\{ \frac{X_i Y_i}{\operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} \right\}$$

3. Among those with $X_i=0$, take a mean of the outcome, weighted by the inverse probability of $X_i=0$,

$$\hat{\mu}_2 = \frac{1}{n} \sum_{i=1}^n \left\{ \frac{(1 - X_i)Y_i}{1 - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} \right\}$$

1. Estimate propensity score model

$$\Pr(X_i = 1|W_i) = \expit(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)$$

2. Among those with $X_i = 1$, take a mean of the outcome, weighted by the inverse probability of $X_i = 1$,

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n \left\{ \frac{X_i Y_i}{\operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} \right\}$$

3. Among those with $X_i=0$, take a mean of the outcome, weighted by the inverse probability of $X_i=0$,

$$\hat{\mu}_2 = \frac{1}{n} \sum_{i=1}^n \left\{ \frac{(1-X_i)Y_i}{1-\mathrm{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} \right\}$$

4. Calculate the risk difference $\hat{\delta_1}=\hat{\mu}_1-\hat{\mu}_2$ & log risk ratio $\hat{\delta_2}=\ln(\hat{\mu}_1/\hat{\mu}_2)$

Our stacked estimating equation

$$\sum_{i=1}^n \psi(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^n \begin{bmatrix} X_i - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i) \\ (X_i - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)) \, W_i \\ \frac{X_i Y_i}{\operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} - \hat{\mu}_1 \\ \frac{(1 - X_i) Y_i}{1 - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} - \hat{\mu}_2 \\ (\hat{\mu}_1 - \hat{\mu}_2) - \hat{\delta}_1 \\ \ln(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Our stacked estimating equation

$$\sum_{i=1}^n \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^n \begin{bmatrix} X_i - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i) \\ (X_i - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)) W_i \\ \frac{X_i Y_i}{\operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} - \hat{\mu}_1 \\ \frac{(1 - X_i) Y_i}{1 - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} - \hat{\mu}_2 \\ (\hat{\mu}_1 - \hat{\mu}_2) - \hat{\delta}_1 \\ \ln(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Our stacked estimating equation

$$\sum_{i=1}^n \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^n \begin{bmatrix} X_i - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i) \\ (X_i - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)) \ W_i \\ \frac{X_i Y_i}{\operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} - \hat{\mu}_1 \\ \frac{(1 - X_i) Y_i}{1 - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} - \hat{\mu}_2 \\ (\hat{\mu}_1 - \hat{\mu}_2) - \hat{\delta}_1 \\ \ln(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Our stacked estimating equation

$$\sum_{i=1}^{n} \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^{n} \begin{bmatrix} X_i - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i) \\ (X_i - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)) W_i \\ \frac{X_i Y_i}{\operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} - \hat{\mu}_1 \\ \frac{(1 - X_i) Y_i}{1 - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} - \hat{\mu}_2 \\ (\hat{\mu}_1 - \hat{\mu}_2) - \hat{\delta}_1 \\ \ln(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Our stacked estimating equation

$$\sum_{i=1}^n \psi(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^n \begin{bmatrix} X_i - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i) \\ (X_i - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)) \, W_i \\ \frac{X_i Y_i}{\operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} - \hat{\mu}_1 \\ \frac{(1 - X_i) Y_i}{1 - \operatorname{expit}(\hat{\alpha}_0 + \hat{\alpha}_1 W_i)} - \hat{\mu}_2 \\ (\hat{\mu}_1 - \hat{\mu}_2) - \hat{\delta}_1 \\ \ln(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Estimating functions: Code

R

```
pscore <- plogis(alpha[1] + alpha[2]*bp)
ef_1 <- (anemia - pscore)
ef_2 <- (anemia - pscore)*bp

wt <- anemia/pscore + (1-anemia)/(1-pscore)
ef_r1 <- anemia*wt*ptb - mu[1]
ef_r0 <- (1 - anemia)*wt*ptb - mu[2]

ef_rd <- (mu[1] - mu[2]) - delta[1]
ef_lnrr <- log(mu[1]/mu[2]) - delta[2]</pre>
```

Aside: IPW GEE trick for conservative SE/intervals

The propensity score parameters are excluded from the stack of estimating functions, i.e. treats α parameters as known

$$\sum_{i=1}^{n} \psi(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^{n} \underbrace{\begin{bmatrix} \widehat{X_i} - \operatorname{expit}(\hat{\alpha}_0 + \widehat{\alpha}_1 W_i) \\ \widehat{X_i} - \operatorname{expit}(\hat{\alpha}_0 + \widehat{\alpha}_1 W_i) \end{bmatrix} W_i}_{i = 1} \underbrace{\begin{bmatrix} \widehat{X_i} - \operatorname{expit}(\hat{\alpha}_0 + \widehat{\alpha}_1 W_i) \\ \widehat{X_i} Y_i \\ \operatorname{expit}(\hat{\alpha}_0 + \widehat{\alpha}_1 W_i) - \hat{\mu}_1 \\ \widehat{1} - \operatorname{expit}(\hat{\alpha}_0 + \widehat{\alpha}_1 W_i) - \hat{\mu}_2 \\ \widehat{\mu}_1 - \widehat{\mu}_2) - \hat{\delta}_1 \\ \operatorname{ln}(\hat{\mu}_1/\hat{\mu}_2) - \hat{\delta}_2 \end{bmatrix}}_{i = 1}$$

Then use sandwich variance estimator⁵

⁵Robins et al. Marginal Structural Models and Causal Inference in Epidemiology *Epidemiology* 2000.

Time to work with code

Transporting a risk

Data and estimand

Using the same data as the prior examples (ZAPPS) PLUS external target sample (simulated)

$$O_i = (S_i, X_i, W_i, S_i \times Y_i)$$

 S_i , sample indicator: $S_i = 1$ for ZAPPS, $S_i = 0$ for external target X_i , anemia

 W_i , elevated blood pressure

 Y_i , preterm birth, which is only observed when $S_i=1$

We want to estimate the risk of preterm birth in the external target sample, i.e., $\Pr(Y=1|S=0)$.

Data and estimand

We will illustrate two (standardization) approaches

- Outcome model based standardization
- Inverse odds weighting

For simplicity, we assume early-pregnancy anemia and blood pressure are sufficient to identify this transported risk

1 Estimate outcome model in the ZAPPS data (as in prior examples)

$$\begin{aligned} \Pr(Y_i = 1 | X_i, W_i, S_i = 1) &= \operatorname{expit}(\hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 W_i) \\ &= \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T) \end{aligned}$$

2 Use $\hat{\beta}$ to predict outcome in the external target. Take the mean.

$$\hat{\mu} = \frac{1}{\sum_{i=1}^{n} (1 - S_i)} \sum_{i=1}^{n} (1 - S_i) \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T)$$

Deriving the estimating equation for Step 2

$$\hat{\mu} = \frac{1}{\sum_{i=1}^{n} (1 - S_i)} \sum_{i=1}^{n} (1 - S_i) \mathsf{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T)$$

Goal: rearrange the equation so that one side is zero and the other is a summation of n individuals

Deriving the estimating equation for Step 2

$$\hat{\mu} = \frac{1}{\sum_{i=1}^{n} (1 - S_i)} \sum_{i=1}^{n} (1 - S_i) \text{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T)$$

$$\hat{\mu} \sum_{i=1}^{n} (1 - S_i) = \sum_{i=1}^{n} (1 - S_i) \text{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T)$$

$$0 = \sum_{i=1}^{n} (1 - S_i) \text{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T) - \hat{\mu} \sum_{i=1}^{n} (1 - S_i)$$

$$0 = \sum_{i=1}^{n} (1 - S_i) \left(\text{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T) - \hat{\mu} \right)$$

Our estimating equation

$$\sum_{i=1}^{n} \boldsymbol{\psi}(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^{n} \begin{bmatrix} S_i \big(Y_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T) \big) \\ S_i \big(Y_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T) \big) X_i \\ S_i \big(Y_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T) \big) W_i \\ (1 - S_i) \big(\operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\beta}}^T) - \hat{\boldsymbol{\mu}} \big) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

where
$$\boldsymbol{\theta} = (\boldsymbol{\beta}, \mu)$$

Estimating functions: Code

R

Inverse odds weighting

1. Estimate selection model

$$\begin{aligned} \Pr(S_i = 1 | X_i, W_i) &= \operatorname{expit}(\hat{\gamma}_0 + \hat{\gamma}_1 X_i + \hat{\gamma}_2 W_i) \\ &= \operatorname{expit}(\boldsymbol{Z}_i \hat{\gamma}^T) \end{aligned}$$

2. Among those with $S_i=1$, take the weighted mean of the outcome, weighted by the inverse odds of $S_i=1$

$$\hat{\mu} = \frac{1}{\sum_{i=1}^{n} S_i \pi_S(Z; \hat{\gamma})} \sum_{i=1}^{n} S_i Y_i \pi_S(Z; \hat{\gamma})$$

where
$$\pi_S(Z;\hat{\gamma}) = \frac{1 - \exp{it}(m{Z}_i \hat{m{\gamma}}^T)}{\exp{it}(m{Z}_i \hat{m{\gamma}}^T)}$$

Note: This is a Hajek estimator. We used a Horvitz-Thompson estimator in the previous section

Deriving the estimating equation for Step 2

$$\hat{\mu} = \frac{1}{\sum_{i=1}^{n} S_i \pi_S(Z; \hat{\gamma})} \sum_{i=1}^{n} S_i Y_i \pi_S(Z; \hat{\gamma})$$

Goal: rearrange the equation so that one side is zero and the other is a summation of n individuals

Deriving the estimating equation for Step 2

$$\hat{\mu} = \frac{1}{\sum_{i=1}^{n} S_{i} \pi_{S}(Z; \hat{\gamma})} \sum_{i=1}^{n} S_{i} Y_{i} \pi_{S}(Z; \hat{\gamma})$$

$$\hat{\mu} \sum_{i=1}^{n} S_{i} \pi_{S}(Z; \hat{\gamma}) = \sum_{i=1}^{n} S_{i} Y_{i} \pi_{S}(Z; \hat{\gamma})$$

$$0 = \sum_{i=1}^{n} S_{i} Y_{i} \pi_{S}(Z; \hat{\gamma}) - \hat{\mu} \sum_{i=1}^{n} S_{i} \pi_{S}(Z; \hat{\gamma})$$

$$0 = \sum_{i=1}^{n} S_{i} \pi_{S}(Z; \hat{\gamma}) (Y_{i} - \hat{\mu})$$

Inverse odds weighting

Our stacked estimating equation

$$\sum_{i=1}^{n} \psi(\boldsymbol{O_i}, \hat{\boldsymbol{\theta}}) = \sum_{i=1}^{n} \begin{bmatrix} S_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\gamma}}^T) \\ (S_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\gamma}}^T) X_i \\ (S_i - \operatorname{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\gamma}}^T) W_i \\ S_i \pi_S(\boldsymbol{Z}; \hat{\boldsymbol{\gamma}}) (Y_i - \mu) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

where
$$\boldsymbol{\theta} = (\boldsymbol{\gamma}, \mu)$$
 and $\pi_S(Z; \hat{\boldsymbol{\gamma}}) = \frac{1 - \mathsf{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\gamma}}^T)}{\mathsf{expit}(\boldsymbol{Z}_i \hat{\boldsymbol{\gamma}}^T)}$

Estimating functions: Code

R

Time to work with code

Overview

Section 1: introduction

Break (15min)

Section 2: applied examples

Break (15min)

Section 3: in context