Fraud Detection Case

Marcelo Bianchi Barata Ribeiro

Presentation summary

- Introduction
- EDA & Data Cleansing
- Feature Engineering
- Modeling
- Strategies

Good practices

- Agile
 - MVP (Minimum Viable Product)
- 6 sigma
 - Pareto Analysis (80/20)
- SoC (Separation of Concerns)

EDA and Cleansing

Data Cleansing

- Missing values:
 - We can't assume beforehand if those are Missing at Random (MAR) or Missing not at Random (MNAR). I am assuming they are Missing at Random until further investigation.
 - Threshold for column removal: 30%
 - Threshold for row removal: 50%
 - Median applied for the remaining missing data
 - I saved a functions for KNN (K nearest neighbor), but didn't use it because of processing speed.

Outliers

- Isolation Forest
 - Contamination threshold: 1%
 - 1603 annotated outliers
 - There wasn't a rational to justify outlier removal
 - Alternative: usa a band of values instead of removing.

Boxplots

Distributions

2 = solteiro, 4 = comunhão parcial

C S R H	0.131920 0.093750 0.038031 0.029491	discover mastercard visa american express	0.105882 0.042241 0.034385 0.010000	credit debit	0.069500 0.026811
W	0.021142				

Distributions

Distributions

Imbalance

Ratio between classes: 26.6

Proportions:

0 0.96

1 0.04

Feature Engineering

Feature engineering (continuation)

- Encoding
 - Ordinal Encoding: tree models
 - One-Hot Encoding: linear regression
- New features
 - ...
- Feature selection
 - Visualizations and intuition
 - Multicollinearity: Variance Inflation Factor (VIF)
 - Attention to non-linear relationships!
 - Feature Importances: tree models

Correlação com variáveis numéricas

Variable correlations

Multicollinearity

- Variance Inflation Factor (VIF)
 - Threshold: VIF = 5
- Important step for linear regression models
- Potentially removable variables:

• ...

Feature Selection

All variables

Only 'c' and card variables ...

Feature Importances

F1: 0.466

Modeling

Modeling

- Occam's razor (parcimony): the simplest solution is usually the best one.
- Algorithm choice depends on optimizations depend on several criteria:
 - Prediction score
 - Explainability
 - Time of development (train and prediction)
 - Computational cost: Big-O notation, memory use
 - Reprodutibility
- The choice depends on the business problem and stakeholder's knowledge.

Modeling

- Score metric: F1 (harmonic mean between precision and recall)
- Validation
 - Train-validation-test split
 - k-fold cross-validation
 - Hyperparameter tuning: gridsearchcv
 - Grids: data/04 models
 - Final metrics: data/05_model_outputs
- Models (fixed seed for reproducibility)
 - Logistic Regression with no tuning (baseline)
 - Logistic Regression
 - Random Forest
 - Xgboost

Model selection (validation phase)

Final model

Model: Xgboost com 5 variáveis

Validation

• **F1**: 0.466

Features: C... Card...

Test

• **F1**: 0.364

• Accuracy: 0.971

• Recall: 0.25

• Precision: 0.71

• Log Loss: 0.368

Sample comparison of estimation and true value

	estimated	true_value
id		
3300259	0.954047	0.0
3390348	0.939576	1.0
3241013	0.935662	1.0
3494143	0.930268	1.0
3378721	0.919951	1.0
3485599	0.005046	0.0
3182041	0.004997	0.0
3233681	0.004978	0.0
3294267	0.004927	0.0
3179811	0.004874	0.0

Histogram of probabilities

- In a real business problem, we have key metrics to use so that we can establish final decisions.
- By contrast, on kaggle problems, generally business data are missing.
 So we need to work on assumptions. So let's consider:
 - \$5,000 as the median cost of fraud: how much the company loses from a fraudulent transaction.
 - \$1,000 as the median remaining lifetime value of users.

Precision vs. Recall

4 comparações

theoretical baseline (80% TN, 40% TP)			
Description	obs	value	total
fraudulent transactions correctly classified (TP)	20	0	0
normal transactions correctly classified (TN)	776	1000	776000
normal transactions misclassified (FP)	194	0	0
fraudulent transactions misclassified (FN)	14	-5000	-68000
Total			708000

threshold .3 Recall .32, Precision .62				
Description	obs		value	total
fraudulent transactions correctly classified (TP)		11	0	0
normal transactions correctly classified (TN)		960	1000	960000
normal transactions misclassified (FP)		7	0	0
fraudulent transactions misclassified (FN)		23	-5000	-115000
Total				845000

threshold .5 Recall .24, Precision .77			
Description	obs	value	total
fraudulent transactions correctly classified (TP)	8	0	0
normal transactions correctly classified (TN)	964	1000	964000
normal transactions misclassified (FP)	2	2 0	0
fraudulent transactions misclassified (FN)	26	-5000	-130000
Total			834000

threshold .15, Recall .37, Precision .44			
Description	obs	value	total
fraudulent transactions correctly classified (TP)	12	2 0	0
normal transactions correctly classified (TN)	952	1000	951000
normal transactions misclassified (FP)	16	5 0	0
fraudulent transactions misclassified (FN)	22	-5000	-105000
Total			846000

Hipothetical median remaining lifetime value of users = 1000 Hipothetical median cost of fraud = 5000

theoretical baseline (80% TN, 40% TP)			
Description	obs	value	total
fraudulent transactions correctly classified (TP)	20	0	0
normal transactions correctly classified (TN)	776	1000	776000
normal transactions misclassified (FP)	194	0	0
fraudulent transactions misclassified (FN)	14	-5000	-68000
Total			708000

threshold .5 Recall .24, Precision .77				
Description	obs		value	total
fraudulent transactions correctly classified (TP)		8	0	0
normal transactions correctly classified (TN)		964	1000	964000
normal transactions misclassified (FP)		2	0	0
fraudulent transactions misclassified (FN)		26	-5000	-130000
Total				834000

18% improvement over theoretical baseline

threshold .3 Recall .32, Precision .62			
Description	obs	value	total
fraudulent transactions correctly classified (TP)	11	0	0
normal transactions correctly classified (TN)	960	1000	960000
normal transactions misclassified (FP)	7	0	0
fraudulent transactions misclassified (FN)	23	-5000	-115000
Total			845000

19% improvement over theoretical baseline.

19% improvement over theoretical baseline.

Final Threshold

1.5% improvement over original threshold.

Stress test

What if we set an aggressive threshold?

threshold .01, Recall .85, Precision .11				
Description	obs		value	total
fraudulent transactions correctly classified (TP)		33	0	0
normal transactions correctly classified (TN)	1	188	1000	188000
normal transactions misclassified (FP)	7	779	0	0
fraudulent transactions misclassified (FN)		1	-5000	-5000
Total				183000

74% loss over theoretical baseline.

Thanks

Marcelo B. Barata Ribeiro

•

marcelobbribeiro@gmail.com

linkedin.com/in/marcelobarataribeiro

https://github.com/Marcelobbr