Understanding Molecular Simulation

From Algorithms to Applications

Daan Frenkel

FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands

> Department of Chemical Engineering, Faculty of Sciences University of Amsterdam Amsterdam, The Netherlands

Berend Smit

Department of Chemical Engineering
Faculty of Sciences
University of Amsterdam
Amsterdam, The Netherlands

A Division of Harcourt, Inc.

San Diego San Francisco New York Boston London Sydney Tokyo

Contents

Pr	eface	to the	Second Edition		xiii
Pr	eface				xv
Li	st of S	Symbo	ols		xix
1	Intr	oductio	on		1
P	art I	Basi	ics		7
2	Stat	istical I	Mechanics		9
	2.1	Entro	py and Temperature		9
	2.2	Classi	ical Statistical Mechanics		13
		2.2.1	Ergodicity		15
	2.3	Quest	tions and Exercises	•	17
3	Mor	nte Car	lo Simulations		23
	3.1	The M	Monte Carlo Method		23
		3.1.1	Importance Sampling		24
		3.1.2	The Metropolis Method		27
	3.2	A Bas	sic Monte Carlo Algorithm		31
		3.2.1	The Algorithm		31
		3.2.2	Technical Details		32
		3.2.3	Detailed Balance versus Balance		42
	3.3	Trial N	Moves		43
		3.3.1	Translational Moves		4 3
		3.3.2	Orientational Moves		48
	3.4	Appli	ications		51
	3.5		tions and Exercises		58

4	Mol	ecular	Dynamics Simulations	63
	4.1	Molec	rular Dynamics: The Idea	63
	4.2		rular Dynamics: A Program	64
		4.2.1	Initialization	65
		4.2.2	The Force Calculation	67
		4.2.3	Integrating the Equations of Motion	69
	4.3	Equat	ions of Motion	71
		$4.\bar{3}.1$	Other Algorithms	74
		4.3.2	Higher-Order Schemes	77
		4.3.3	Liouville Formulation of Time-Reversible Algorithms.	77
		4.3.4	Lyapunov Instability	81
		4.3.5	One More Way to Look at the Verlet Algorithm	82
	4.4	Comp	outer Experiments	84
		4.4.1	Diffusion	87
		4.4.2	Order-n Algorithm to Measure Correlations	90
	4.5	Some	Applications	97
	4.6	Quest	ions and Exercises	105
Pa	art II	Ens	sembles	109
5	Mor	ata Cari	lo Simulations in Various Ensembles	111
3	5.1			
	5.2		ral Approach	
	9.4	5.2.1	Monte Carlo Simulations	
		5.2.2	Justification of the Algorithm	
	5.3		canonical Monte Carlo	
	5.4		ric-Isothermal Ensemble	
	J. 4	5.4.1	Statistical Mechanical Basis	
		5.4.3	Monte Carlo Simulations	
	5.5		sion-Isothermal Ensemble	125
	5.6		d-Canonical Ensemble	
	5.0	5.6.1	Statistical Mechanical Basis	
		5.6.2	Monte Carlo Simulations	
		5.6.3	Justification of the Algorithm	
		5.6.4		
	5.7		Applications	
	5.7	Quest	ions and Exercises	133
6	Mol	ecular	Dynamics in Various Ensembles	139
	6.1		cular Dynamics at Constant Temperature	140
		6.1.1	The Andersen Thermostat	
		6.1.2	Nosé-Hoover Thermostat	

Contents

		6.1.3 Nosé-Hoover Chains	155		
	6.2	Molecular Dynamics at Constant Pressure	158		
	6.3	Questions and Exercises			
		, market			
Pa	rt II	I Free Energies and Phase Equilibria	165		
7	Free	Energy Calculations	167		
	7.1	Thermodynamic Integration			
	7.2	Chemical Potentials			
		7.2.1 The Particle Insertion Method			
		7.2.2 Other Ensembles			
		7.2.3 Overlapping Distribution Method			
	7.3	Other Free Energy Methods	183		
		7.3.1 Multiple Histograms	183		
		7.3.2 Acceptance Ratio Method			
	7.4	Umbrella Sampling			
		7.4.1 Nonequilibrium Free Energy Methods	196		
	7.5	Questions and Exercises	199		
8	The Gibbs Ensemble				
	8.1	The Gibbs Ensemble Technique			
	8.2	The Partition Function			
	8.3	Monte Carlo Simulations			
		8.3.1 Particle Displacement			
		8.3.2 Volume Change			
		8.3.3 Particle Exchange			
		8.3.4 Implementation	208		
		8.3.5 Analyzing the Results	214		
	8.4	Applications	220		
	8.5	Questions and Exercises	223		
9	Oth	er Methods to Study Coexistence	225		
	9.1	Semigrand Ensemble	225		
	9.2	Tracing Coexistence Curves	233		
10		Energies of Solids	241		
	10.1	Thermodynamic Integration	242		
	10.2	Free Energies of Solids	24 3		
		10.2.1 Atomic Solids with Continuous Potentials	244		
	10.3	Free Energies of Molecular Solids	245		
		10.3.1 Atomic Solids with Discontinuous Potentials			
		10.3.2 General Implementation Issues			
	10.4	Vacancies and Interstitials			

viii Contents

			Free Energies	
	_			
11	Free	Energy	y of Chain Molecules	269
			ical Potential as Reversible Work	
	11.2		bluth Sampling	
			Macromolecules with Discrete Conformations	
			Extension to Continuously Deformable Molecules	
			Overlapping Distribution Rosenbluth Method	
			Recursive Sampling	
		11.2.5	Pruned-Enriched Rosenbluth Method	285
Pa	ırt IV	V Ad	lvanced Techniques	289
12			e Interactions	291
	12.1	Ewald	Sums	292
		12.1.1	Point Charges	292
	•	12.1.2	Dipolar Particles	300
		12.1.3	Dielectric Constant	301
		12.1.4	Boundary Conditions	303
			Accuracy and Computational Complexity	
	12.2	Fast M	Iultipole Method	306
	12.3	Particl	le Mesh Approaches	310
	12.4	Ewald	Summation in a Slab Geometry	316
13	Bias	ed Mo	nte Carlo Schemes	321
	13.1	Biased	l Sampling Techniques	322
		13.1.1	Beyond Metropolis	323
		13.1.2	Orientational Bias	323
	13.2	Chain	Molecules	331
		13.2.1	Configurational-Bias Monte Carlo	331
		13.2.2	Lattice Models	332
			Off-lattice Case	
	13.3	Gener	ation of Trial Orientations	341
		13.3.1	Strong Intramolecular Interactions	342
		13.3.2	Generation of Branched Molecules	350
	13.4	Fixed	Endpoints	353
		13.4.1	Lattice Models	353
		13.4.2	Fully Flexible Chain	355
		13.4.3	Strong Intramolecular Interactions	357
		13.4.4	Rebridging Monte Carlo	357
	13.5		d Polymers	
			Ensembles	

Contents ix

		13.6.1 Grand-Canonical Ensemble
		13.6.2 Gibbs Ensemble Simulations
	13.7	Recoil Growth
		13.7.1 Algorithm
		13.7.2 Justification of the Method
	13.8	Questions and Exercises
14	Acce	elerating Monte Carlo Sampling 389
		Parallel Tempering
		Hybrid Monte Carlo
		Cluster Moves
		14.3.1 Clusters
		14.3.2 Early Rejection Scheme
15	Tack	ling Time-Scale Problems 409
		Constraints
	10.1	15.1.1 Constrained and Unconstrained Averages 41
	15.2	On-the-Fly Optimization: Car-Parrinello Approach 42
		Multiple Time Steps
	_	
16		Events 43
		Theoretical Background
	16.2	Bennett-Chandler Approach
		16.2.1 Computational Aspects
		Diffusive Barrier Crossing
	16.4	Transition Path Ensemble
		16.4.1 Path Ensemble
		16.4.2 Monte Carlo Simulations
	16.5	Searching for the Saddle Point
17	Diss	ipative Particle Dynamics 46
	17.1	Description of the Technique
		17.1.1 Justification of the Method
		17.1.2 Implementation of the Method
		17.1.3 DPD and Energy Conservation 47
	17.2	Other Coarse-Grained Techniques
		·
Pa	rt V	Appendices 479
A	Lagi	rangian and Hamiltonian 48
	$A.\overline{1}$	Lagrangian
		Hamiltonian
		Hamilton Dynamics and Statistical Mechanics 48

Contents

	A.3.1 Canonical Transformation
В	Non-Hamiltonian Dynamics 3.1 Theoretical Background
С	Linear Response Theory 50 C.1 Static Response 50 C.2 Dynamic Response 51 C.3 Dissipation 51 C.3.1 Electrical Conductivity 51 C.3.2 Viscosity 51 C.4 Elastic Constants 51
D	Statistical Errors52D.1 Static Properties: System Size52D.2 Correlation Functions52D.3 Block Averages52
E	Integration Schemes53E.1 Higher-Order Schemes53E.2 Nosé-Hoover Algorithms53E.2.1 Canonical Ensemble53E.2.2 The Isothermal-Isobaric Ensemble54
F	Saving CPU Time 54 F.1 Verlet List 54 F.2 Cell Lists 55 F.3 Combining the Verlet and Cell Lists 55 F.4 Efficiency 55
G	Reference States 55 G.1 Grand-Canonical Ensemble Simulation
Н	Statistical Mechanics of the Gibbs "Ensemble" H.1 Free Energy of the Gibbs Ensemble

Contents xi

I	Overlapping Distribution for Polymers						
J	Some General Purpose Algorithms						
K	Small Research ProjectsK.1 Adsorption in Porous MediaK.2 Transport Properties in LiquidsK.3 Diffusion in a Porous MediaK.4 Multiple-Time-Step IntegratorsK.5 Thermodynamic Integration	582 583 584					
L	Hints for Programming	587					
Bi	Bibliography						
Αι	Author Index						
In	Index						