1 The Expectation-Maximization Algorithm

The Expectation-Maximization (EM) Algorithm is an algorithm that solves the optimization (maximization) problem for a marginal likelihood (or probability):

$$L(\theta; X) = p(X \mid \theta) = \int p(X, Z \mid \theta) dZ$$

More specifically, the EM Algorithm attempts to compute:

$$\widehat{\theta} \ := \ \operatorname{argmax}_{\theta} \left\{ \, L(\theta \, ; \, X) \, \right\} \ = \ \operatorname{argmax}_{\theta} \left\{ \, p(X \, | \, \theta) \, \right\} \ = \ \operatorname{argmax}_{\theta} \left\{ \, \int p(X, Z \, | \, \theta) \, \mathrm{d}Z \, \right\}$$

Here, $L(\theta; X, Z) = p(X, Z | \theta)$ is a likelihood, where θ is the random vector of model parameters, X is the (non-random) vector of observed data, and Z is the random vector of unobservable variables. In practice, the EM Algorithm should produce estimates of a local maximum $\hat{\theta}$ of $L(\theta; X)$.

The Expectation-Maximization (EM) Algorithm

Choose (arbitrarily) an initial value θ_0 for θ . Choose (arbitrarily) a termination threshold $\tau > 0$. Generate the sequence $\{\theta_t\}$, for $t = 1, 2, 3, \ldots$, by iterating through the following two-step procedure:

1. **Expectation Step:** Compute the following expectation value (as a function of θ):

$$Q(\theta \,|\, \theta_t) := E_{Z|X,\theta_t} \{ \log L(\theta \,;\, X, Z) \} = \int [\log L(\theta \,;\, X, Z)] \, p(Z \,|\, X, \theta_t) dZ \tag{1.1}$$

2. Maximization Step: Solve the following optimization (maximization) problem to obtain θ_{t+1} :

$$\theta_{t+1} := \underset{\theta}{\operatorname{argmax}} \{ Q(\theta \mid \theta_t) \}$$
 (1.2)

Terminate the EM Algorithm when

$$\left| \frac{\log p(X \mid \theta_{t+1}) - \log p(X \mid \theta_t)}{\log p(X \mid \theta_t)} \right| \leq \tau \tag{1.3}$$

Remark 1.1 We remark that the "Expectation Step" is really an integration "along the Z-direction," with respect to the measure $p(Z \mid X, \theta_t) dZ$. This yields a function $Q(\theta \mid \theta_t)$ of θ . The "Maximization Step" then produces a (local) maximum $\widehat{\theta}$ of the function $Q(\theta \mid \theta_t)$.

Theorem 1.2 The sequence $\theta_1, \theta_2, \theta_3, \dots$ produced by the EM Algorithm satisfies the following:

$$\log p(X \mid \theta_{t+1}) \geq \log p(X \mid \theta_t)$$
, for each $t = 1, 2, 3, \dots$

PROOF First, observe that:

$$\log p(X \mid \theta) = \log \left(\frac{p(X, \theta)}{p(\theta)}\right) = \log \left(\frac{p(X, Z, \theta)}{p(\theta)} \frac{p(X, \theta)}{p(X, Z, \theta)}\right)$$
$$= \log (p(X, Z \mid \theta)) - \log (p(Z \mid X, \theta))$$

Taking expectation on both sides with respect to $p(Z | X, \theta_t) dZ$ yields:

$$\begin{split} E_{Z|X,\theta_t} \left\{ \log p(X \,|\, \theta) \right\} &= E_{Z|X,\theta_t} \left\{ \log \left(p(X,Z \,|\, \theta) \right) \right\} - E_{Z|X,\theta_t} \left\{ \log \left(p(Z \,|\, X,\theta) \right) \right\} \\ \int \left\{ \log p(X \,|\, \theta) \right\} p(Z \,|\, X,\theta_t) \, \mathrm{d}Z &= \int \left\{ \log \left(p(X,Z \,|\, \theta) \right) \right\} p(Z \,|\, X,\theta_t) \, \mathrm{d}Z - \int \left\{ \log \left(p(Z \,|\, X,\theta) \right) \right\} p(Z \,|\, X,\theta_t) \, \mathrm{d}Z \\ \log p(X \,|\, \theta) &= Q(\theta \,|\, \theta_t) + H(\theta \,|\, \theta_t) \end{split}$$

where $H(\theta \mid \theta_t)$ is defined as follows:

$$H(\theta \mid \theta_t) := -\int \{\log (p(Z \mid X, \theta))\} p(Z \mid X, \theta_t) dZ$$

CLAIM 1: $H(\theta \mid \theta_t) \ge H(\theta_t \mid \theta_t)$, for any θ .

Note that **CLAIM 1** is an immediate consequence of Gibb's Inequality (see Appendix).

Now, the following equation

$$\log p(X \mid \theta) = Q(\theta \mid \theta_t) + H(\theta \mid \theta_t) \tag{1.4}$$

holds for any value of θ ; in particular, it holds for θ_t :

$$\log p(X \mid \theta_t) = Q(\theta_t \mid \theta_t) + H(\theta_t \mid \theta_t) \tag{1.5}$$

Subtracting Equation (1.5) from Equation (1.4) yields:

$$\log p(X \mid \theta) - \log p(X \mid \theta_t) = (Q(\theta \mid \theta_t) - Q(\theta_t \mid \theta_t)) + (H(\theta \mid \theta_t) - H(\theta_t \mid \theta_t))$$
(1.6)

Thus, **CLAIM 1** implies:

$$\log p(X \mid \theta) - \log p(X \mid \theta_t) \ge Q(\theta \mid \theta_t) - Q(\theta_t \mid \theta_t) \tag{1.7}$$

Since, by definition, $\theta_{t+1} := \underset{\theta}{\operatorname{argmax}} \{ Q(\theta \mid \theta_t) \}$, we therefore have:

$$\log p(X \mid \theta_{t+1}) - \log p(X \mid \theta_t) \geq Q(\theta_{t+1} \mid \theta_t) - Q(\theta_t \mid \theta_t) \geq 0 \tag{1.8}$$

This proves the Theorem. \Box

A Gibbs' Inequality & Jensen's Inequality

Theorem A.1 (Jensen's Inequality)

Suppose

- $(\Omega, \mathcal{A}, \mu)$ is a probability space (i.e. measure space with $\mu(\Omega) = 1$).
- $\varphi:(a,b)\longrightarrow \mathbb{R}$ is a convex function, i.e.

$$\varphi(t x_1 + (1 - t)x_2) \le t \varphi(x_1) + (1 - t)\varphi(x_2), \text{ for any } t \in [0, 1], x_1, x_2 \in (a, b),$$

where $-\infty \le a < b \le \infty$.

• $g: \Omega \longrightarrow (a,b)$ is a μ -integrable function.

Then, the following inequality holds:

$$\varphi\left(\int_{\Omega} g \,\mathrm{d}\mu\right) \leq \int_{\Omega} \varphi \circ g \,\mathrm{d}\mu$$

Corollary A.2 (Jensen's Inequality (Expectation Form))

Suppose

- $X: (\Omega, \mathcal{A}, \mu) \longrightarrow (a, b)$ is a \mathbb{R} -valued random variable defined on the probability space $(\Omega, \mathcal{A}, \mu)$ with range contained in the open interval (a, b), where $-\infty \leq a < b \leq \infty$.
- $\varphi:(a,b)\longrightarrow \mathbb{R}$ is a convex function.

Then, the following inequality holds:

$$\varphi(E[X]) \leq E[\varphi(X)]$$

Theorem A.3 (Gibbs' Inequality)

Suppose

- (Ω, A) is a measurable space.
- $f,g:\Omega \longrightarrow [0,\infty)$ are two nowhere-vanishing probability density functions defined on (Ω,\mathcal{A}) .

Then, the following inequality holds:

$$-\int_{\Omega} (\log f) f \, \mathrm{d}x \leq -\int_{\Omega} (\log g) f \, \mathrm{d}x$$

PROOF First, note that $\varphi := -\log : (0, \infty) \longrightarrow \mathbb{R}$ is a convex function defined on the open unit interval (0,1), and that the domain of φ contains the range of f and g. Hence, by Jensen's Inequality, we have:

$$\int_{\Omega} \left[-\log \left(\frac{g(x)}{f(x)} \right) \right] \cdot f(x) \, \mathrm{d}x \ \geq \ -\log \left(\int_{\Omega} \frac{g(x)}{f(x)} \cdot f(x) \, \mathrm{d}x \right) = -\log \left(\int_{\Omega} g(x) \, \mathrm{d}x \right) = -\log \left(1 \right) = 0$$

The above inequality immediately implies:

$$-\int_{\Omega} (\log g(x)) \cdot f(x) dx \ge -\int_{\Omega} (\log f(x)) \cdot f(x) dx,$$

which completes the proof of Gibbs' Inequality.