Medição

Métricas

- Tempo de conversão
 - Utilizado um batch com start_time e end_time (Disponível no Repositório)
- Memória em uso
 - Utilizado Gerenciador de Recursos do Windows (Prints no Repositório)
- CPU em uso
 - Utilizado Gerenciador de Recursos do Windows (Prints no Repositório)

Fatores e níveis

- Formato do vídeo na saída
 - Configurável via FFMPEG
 - MP4
 - AVI
- Tempo total do vídeo a ser convertido
 - Seleção manual do vídeo de entrada
 - 1 minuto
 - 30 minutos
- Memória ram total
 - o Utilização de limitador de RAM no Setup Bios
 - 8 Gb
 - 4 Gb

Computador utilizado

- Windows 10 (64 bits)
- Processador Intel Core i5-7600K @ 3.8 GHz
- RAM 16 GB DDR4 @ 2400 MHz

Observação: O monitor de recursos foi configurado para atualizar a cada 500ms. Portanto, as medições de uso de CPU e Memória foram coletadas com, no máximo, 500ms de atraso ou adiantamento. As conversões foram executadas sem programas abertos no momento, apenas com os recursos do próprio sistema operacional em execução.

Dados dos vídeos de entrada

Vídeo de 1 minuto (1min.flv)

```
Metadata:
format: flv
major_brand: mp42
minor_version: 0
compatible_brands: isommp42
encoder: Lavf55.34.101
Duration: 00:01:15.05, bitrate: 1321 kb/s
Audio: mp3, 44100 Hz, stereo, fltp, 128 kb/s
```

Audio. 111p3, 44 100 Hz, Stereo, 11tp, 126 kb/s

Video: flv1, yuv420p, 1280x720, 768 kb/s, 29.97 fps, 29.97 tbr, 1k tbn

Vídeo de 30 minutos (30min.flv)

```
Metadata:
format: flv
major_brand : mp42
minor_version : 0
compatible_brands: isommp42
encoder : Lavf55.34.101

Duration: 00:30:15.11, bitrate: 928 kb/s
Audio: mp3, 44100 Hz, stereo, fltp, 128 kb/s
Video: flv1, yuv420p, 1280x720, 768 kb/s, 29.97 fps, 29.97 tbr, 1k tbn

Stream mapping:
Stream #0:1 -> #0:0 (flv1 (flv) -> h264 (libx264))
Stream #0:0 -> #0:1 (mp3 (mp3float) -> aac (native))
```

Análise 1-1-1

- Tempo de conversão
 - o Tempo total: 16.17 segundos
- Memória em uso
 - Antes da execução: 34% em uso (~2785 mb)
 - Durante a execução (Início): 36% em uso (~2949 mb)
 - Durante a execução (Fim): 36% em uso (~2949 mb)
 - Após a execução: 34% em uso (~2785 mb)
- CPU em uso
 - o Antes da execução: 5% em uso
 - Durante a execução (Início): 87% em uso
 - o Durante a execução (Fim): 100% em uso
 - o Após a execução: 23% em uso

Tempo de execução alto se comparado a conversão para AVI. Utilizou bastante recurso de CPU, o que inviabilizaria o uso do sistema enquanto a conversão era realizada. O sistema, por alguma razão, manteve um alto uso da CPU (18-23%) durante alguns segundos mesmo após o fim da conversão.

Análise 1-2-1

- Tempo de conversão
 - o Tempo total: 5.93 segundos
- Memória em uso
 - Antes da execução: 34% em uso (~2785 mb)
 - Durante a execução (Início): 34% em uso (~2785 mb)
 - Durante a execução (Fim): 34% em uso (~2785 mb)
 - Após a execução: 34% em uso (~2785 mb)
- CPU em uso
 - o Antes da execução: 2% em uso
 - o Durante a execução (Início): 52% em uso
 - o Durante a execução (Fim): 50% em uso
 - o Após a execução: 2% em uso

Tempo de execução 3x inferior ao da conversão para MP4, além de utilizar a mesma quantidade de memória média durante a conversão e menos CPU (Cerca de 30% abaixo). Mostrou-se uma conversão mais eficiente do que para o MP4.

Análise 1-1-2

- Tempo de conversão
 - o Tempo total: 19.46 segundos
- Memória em uso
 - Antes da execução: 58% em uso (~2394 mb)
 - Durante a execução (Início): 62% em uso (~2559 mb)
 - Durante a execução (Fim): 60% em uso (~2476 mb)
 - Após a execução: 57% em uso (~2352 mb)
- CPU em uso
 - o Antes da execução: 18% em uso
 - o Durante a execução (Início): 105% em uso
 - o Durante a execução (Fim): 99% em uso
 - Após a execução: 11% em uso

O tempo de conversão foi levemente superior se comparado a máquina com 8GB, apenas 3 segundos a mais. A memória em uso padrão é maior no geral devido ao uso do sistema operacional no background, mas a faixa de uso na conversão se manteve apenas levemente superior ao comparar com os de 8gb.

Análise 1-2-2

- Tempo de conversão
 - Tempo total: 5.46 segundos
- Memória em uso
 - Antes da execução: 59% em uso (~2435 mb)
 - Durante a execução (Início): 60% em uso (~2476 mb)
 - Durante a execução (Fim): 60% em uso (~2476 mb)
 - Após a execução: 59% em uso (~2435 mb)
- CPU em uso
 - Antes da execução: 12% em uso
 - o Durante a execução (Início): 72% em uso
 - O Durante a execução (Fim): 65% em uso
 - Após a execução: 14% em uso

O tempo de conversão foi quase o mesmo se compararmos com a máquina com 8GB, indicando que essa conversão utilizou mais CPU do que ram. Mostrou-se mais eficiente em tempo e em uso de recursos do que a conversão em MP4.

Análise 2-1-1

- Tempo de conversão
 - o Tempo total: 234.82 segundos
- Memória em uso
 - Antes da execução: 33% em uso (~2703 mb)
 - Durante a execução (Início): 37% em uso (~3031 mb)
 - Durante a execução (Fim): 37% em uso (~3031 mb)
 - Após a execução: 33% em uso (~2703 mb)
- CPU em uso
 - o Antes da execução: 11% em uso
 - o Durante a execução (Início): 96% em uso
 - o Durante a execução (Fim): 103% em uso
 - o Após a execução: 4% em uso

O tempo de conversão alto devido ao tamanho do vídeo. Houve pouco uso de recursos de memória ram (Leve aumento), mas um drástico uso de CPU: inviabilizaria o uso do sistema enquanto a conversão é realizada.

Análise 2-1-2

- Tempo de conversão
 - o Tempo total: 277.02 segundos
- Memória em uso
 - Antes da execução: 53% em uso (~2187 mb)
 - Durante a execução (Início): 57% em uso (~2352 mb)
 - Durante a execução (Fim): 59% em uso (~2435 mb)
 - Após a execução: 56% em uso (~2311 mb)
- CPU em uso
 - o Antes da execução: 13% em uso
 - Durante a execução (Início): 102% em uso
 - o Durante a execução (Fim): 105% em uso
 - Após a execução: 11% em uso

Tempo de conversão levemente superior se comparado a mesma máquina com 8GB de ram. Observou-se, também, um aumento no uso geral de CPU. Entretanto, a média de uso da CPU antes da execução já se encontrava superior se comparado com a pré e pós execução do mesmo processo na máquina de 8GB.

Análise 2-2-2

- Tempo de conversão
 - o Tempo total: 116.73 segundos
- Memória em uso
 - Antes da execução: 59% em uso (~2435 mb)
 - Durante a execução (Início): 61% em uso (~2518 mb)
 - Durante a execução (Fim): 61% em uso (~2518 mb)
 - Após a execução: 56% em uso (~2311 mb)
- CPU em uso
 - o Antes da execução: 16% em uso
 - o Durante a execução (Início): 62% em uso
 - o Durante a execução (Fim): 72% em uso
 - Após a execução: 15% em uso

Tempo de conversão sendo quase metade do tempo de conversão para MP4 na mesma máquina. Houve um uso menor de recursos de CPU e memória, apresentando-se uma conversão mais eficiente.

Análise 2-2-1

- Tempo de conversão
 - o Tempo total: 102.96 segundos
- Memória em uso
 - Antes da execução: 34% em uso (~2785 mb)
 - Durante a execução (Início): 34% em uso (~2785 mb)
 - Durante a execução (Fim): 34% em uso (~2785 mb)
 - Após a execução: 34% em uso (~2785 mb)
- CPU em uso
 - o Antes da execução: 5% em uso
 - Durante a execução (Início): 45% em uso
 - o Durante a execução (Fim): 45% em uso
 - Após a execução: 7% em uso

Diferença de tempo de conversão leve se comparado com o de 4GB, mostrando que o processo continua eficiente mesmo com uma máquina que dispõe de metade dos recursos da primeira análise. Houve uso praticamente irrelevante da memória (Manteve-se na faixa dos 34% em nível decimal) e um aumento considerável nos recursos de CPU.