6/19/	/2021 Model Selection and Diagnostics Quiz Coursera	
1.	Suppose you are regressing $\log(price)$ on $\log(area)$, $\log(Lot.Area)$, $Bedroom.AbvGr$, $Overall.Qual$, and $Land.Slope$. Which of the following variables are included with stepwise variable selection using AIC but not BIC?	1/1 point
	O log(area)	
	O log(Lot.Area)	
	○ Bedroom.AbvGr	
	Overall.Qual	
	Land.Slope	
	Correct This question refers to the following learning objective(s):	
	Use principled statistical methods to select a single parsimonious model.	
2.	When regressing $\log(price)$ on $Bedroom.AbvGr$, the coefficient for $Bedroom.AbvGr$ is strongly positive. However, once $\log(area)$ is added to the model, the coefficient for $Bedroom.AbvGr$ becomes strongly negative. Which of the following best explains this phenomenon?	1/1 point
	The original model was misspecified, biasing our coefficient estimate for Bedroom.AbvGr	
	Bedrooms take up proportionally less space in larger houses, which increases property valuation.	
	Larger houses on average have more bedrooms and sell for higher prices. However, holding constant the size of a house, the number of bedrooms decreases property valuation.	
	Since the number of bedrooms is a statistically insignificant predictor of housing price, it is unsurprising that the coefficient changes depending on which variables are	

✓ Correct

included.

This question refers to the following learning objective(s):

Interpret the estimate for a slope (say b_1) as "All else held constant, for each unit increase in x_1 , we would expect y to be higher/lower on average by b_1 ." Run a simple linear model for $\log(price)$, with $\log(area)$ as the independent variable. Which 1/1 point of the following neighborhoods has the highest average residuals? OldTown StoneBr GrnHill **IDOTRR** Correct This question refers to the following learning objective(s): · Identify the assumptions of linear regression and assess when a model may need to be improved. · Examine the residuals of a linear model. 4. We are interested in determining how well the model fits the data for each neighborhood. 1/1 point The model from Question 3 does the worst at predicting prices in which of the following neighborhoods? GrnHill BlueSte StoneBr MeadowV

Correct

This question refers to the following learning objective(s):

Examine the residuals of a linear model.

5. Suppose you want to model $\log(price)$ using only the variables in the dataset that pertain to quality: *Overall.Qual*, *Basement.Qual*, and *Garage.Qual*. How many observations must be discarded in order to estimate this model?

1/1 point

0

() 46

64

924

Correct

This question refers to the following learning objective(s):

Identify the assumptions of linear regression and assess when a model may need to be improved.

6. *NA* values for *Basement.Qual* and *Garage.Qual* correspond to houses that do not have a basement or a garage respectively. Which of the following is the best way to deal with these *NA* values when fitting the linear model with these variables?

1 / 1 point

Drop all observations with *NA* values for *Basement.Qual* or *Garage.Qual* since the model cannot be estimated otherwise.

Recode all *NA* values as the category TA since we must assume these basements or garages are typical in the absence of all other information.

Recode all NA values as a separate category, since houses without basements or garages are fundamentally different than houses with both basements and garages.

Correct

This question refers to the following learning objective(s):

Check the assumptions of a linear model.

7.	Run a simple linear model with $\log(price)$ regressed on <i>Overall.Cond</i> and <i>Overall.Qual</i> . Which of the following subclasses of dwellings (<i>MS.SubClass</i>) has the highest median predicted prices?	1 / 1 point
	① 075: 2-1/2 story houses	
	O60: 2 story, 1946 and Newer	
	120: 1 story planned unit development	
	O90: Duplexes	
	 Correct This question refers to the following learning objective(s): 	
	Predict the value of the response variable for a given value of the explanatory variable, x^\star , by plugging in x^\star in the linear model	
3.	Using the model from Question 7, which observation has the highest leverage or potential influence on the regression model? Hint: use hatvalues, hat or <i>lm.influence</i> .	1 / 1 point
	O 125	
	268	
	O 640	
	832	
	Correct This question refers to the following learning objective(s):	
	Identify outliers and high leverage points in a linear model.	
9.	Which of the following corresponds to a correct interpretation of the coefficient k of Bedroom.AbvGr, where $\log(price)$ is the dependent variable?	1/1 point

igcup Holding constant all other variables in the dataset, on average, an additional bedroom will increase housing price by k percent.	
igodeligap Holding constant all other variables in the model, on average, an additional bedroom will increase housing price by k percent.	
igcup Holding constant all other variables in the dataset, on average, an additional bedroom will increase housing price by k dollars.	
igcup Holding constant all other variables in the model, on average, an additional bedroom will increase housing price by k dollars.	
✓ Correct	
This question refers to the following learning objective(s):	
Interpret the estimate for a slope (say b_1) as "All else held constant, for each unit increase in x_1 , we would expect y to be higher/lower on average by b_1 ."	
10. Which of the following sale condition categories shows significant differences from the normal selling condition?	1/1 point
Family	
Abnorm	
O Partial	
Abnorm and Partial	
✓ Correct	
This question refers to the following learning objective(s):	
Be cautious about using a categorical explanatory variable when one of the levels has very few observations, as these may act as influential	

points.

• List the conditions for multiple linear regression.

0/19/20	Model Selection and Diagnostics Quiz i Coursera	
	Subset ames_train to only include houses sold under normal sale conditions. What percent of the original observations remain?	1 / 1 point
(81.2%	
(83.4%	
(87.7%	
(91.8%	
	 ✓ Correct This question refers to the following learning objective(s): Use R commands to effectively manipulate data. 	
	Now re-run the simple model from question 3 on the subsetted data. True or False: Modeling only the normal sales results in a better model fit than modeling all sales (in terms	1 / 1 point
	of R^2).	
($lacktriangle$ True, restricting the model to only include observations with normal sale conditions increases the R^2 from 0.547 to 0.575.	
(True, restricting the model to only include observations with normal sale conditions increases the \mathbb{R}^2 from 0.575 to 0.603.	
(False, restricting the model to only include observations with normal sale conditions decreases the R^2 from 0.575 to 0.547.	
(False, restricting the model to only include observations with normal sale conditions decreases the R^2 from 0.603 to 0.575.	
	Correct This question refers to the following learning chiesting(s):	
	This question refers to the following learning objective(s):	
	 Be cautious about using a categorical explanatory variable when one of the levels has very few observations, as these may act as influential points. 	

by the the explanatory variable.

- Define ${\cal R}^2$ as the percentage of the variability in the response variable explained