

Credit Card Customers - Predicting Customer Churn

WQD 7005: Data Mining - Group Assignment

Instructor: Prof. Dr. Loh Yuen Peng

Group Members	Student ID
Nicholas Tan Yu Zhe	S2180436
Yap Jia Xian	S2150857
Touhid Ahmed Choudhury	S2150778
Nasir Uddin Ahmed	S2015449

Intro & Recap

Problem Statement

The problem at hand is customer churn, which is a significant concern for businesses, particularly financial service providers such as banks. Customer attrition can have adverse effects on a bank's earnings and reputation. To address this issue, it is crucial for banks to forecast customer churn accurately. The objective of this project is to utilize data mining techniques on the Credit Card Customers dataset available on Kaggle to create a predictive model that can identify consumers likely to churn.

Analysis Goal

Develop accurate customer churn prediction model for credit card firms to optimize marketing and retention efforts.

Applying the SEMMA Methodology

Evaluate the performance of the model

Data Overview

Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit	Type	Format	Informat	Length
Attrition_Flag	Input	Nominal	No		No	3.6		Character	\$17.	\$17.	17
Avg_Open_To_	EInput	Interval	No		No			Numeric	BEST12.0	BEST32.0	8
Avg_Utilization	Input	Nominal	No		No			Character	\$20.	\$20.	20
Card_Category	Input	Nominal	No		No			Character	\$8.	\$8.	8
CLIENTNUM	Input	Interval	No		No			Numeric	BEST12.0	BEST32.0	8
Contacts_Coun	tInput	Nominal	No		No	(*)		Character	\$1.	\$1.	1
Credit_Limit	Input	Interval	No		No			Numeric	BEST12.0	BEST32.0	8
Customer_Age	Input	Interval	No		No			Numeric	BEST12.0	BEST32.0	8
Dependent_cou	u/Input	Nominal	No		No			Character	\$1.	\$1.	1
Education_Leve	Input	Nominal	No		No	240		Character	\$13.	\$13.	13
Gender	Input	Nominal	No		No	1180		Character	\$6.	\$6.	6
Income_Catego	Input	Nominal	No		No			Character	\$14.	\$14.	14
Marital_Status	Input	Nominal	No		No			Character	\$8.	\$8.	8
Months_Inactiv	∈Input	Nominal	No		No	1.0		Character	\$1.	\$1.	1
Months_on_boo	Input	Interval	No		No			Numeric	BEST12.0	BEST32.0	8
Naive_Bayes_C	Input	Interval	No		No			Numeric	BEST12.0	BEST32.0	8
Total_Amt_Chn	Input	Interval	No		No			Numeric	BEST12.0	BEST32.0	8
Total_Ct_Chng	Input	Interval	No		No			Numeric	BEST12.0	BEST32.0	8
Total_Relations	Input	Interval	No		No			Numeric	BEST12.0	BEST32.0	8
Total_Revolving	Input	Nominal	No		No			Character	\$4.	\$4.	4
Total_Trans_Ar	Input	Interval	No		No			Numeric	BEST12.0	BEST32.0	8
Total_Trans_Ct	Input	Interval	No		No			Numeric	BEST12.0	BEST32.0	8
VAR23	Input	Interval	No		No	743		Numeric	BEST12.0	BEST32.0	8

Property	Value
Data Source	https://www.kaggle.com/datasets/sakshigoyal7/credit-card-customers ?resource=download
Data Name	Credit Card Customers
Data Size	1.44 MB
Year	2020
Dimension	10,000 Rows and 23 Columns

Analysis Data

Demographic data (age, gender, income, education) can reveal correlations between customer demographics and churn behavior.

Credit card usage data (type, limit, transactions, utilization) provides insights into churn likelihood based on customer behavior.

Customer tenure, product count, and account status offer insights into the relationship with the bank and churn potential.

Churn label identifies customers who have churned, enabling the development of accurate predictive models for churn.

SEMMA Methodology

Platform: SAS Enterprise Miner Client 15.2

Modify - Importance

Spend Less Time & Money

As the likelihood of receiving inaccurate results after data cleansing is reduced.

Boost Data Quality

Improves the completeness, consistency, and reliability of data.

Enhance Decision Making

Quality of conclusions relies heavily on the quality of used data.

Data Quality Issues Faced

Incomplete

Marital Status

Noisy

Income Category

Inconsistent

Total_Revolving_Bal,
Total_Amt_Chng_Q4_Q1
Dependent_count,
Months_Inactive_12_mon, Gender,
Contacts_Count_12_mon,
Avg_Utilization_Rati

Data Cleaning & Solving Quality Issues

Cleaning Results for Data

Modelling

Decision Tree

Model Accuracy: 93.68%

Findings

The top 5 variables that have the highest importance to customer attrition are Total Transaction Count, Total Revolving Balance, Total Relationship Count, Total Transaction Amount, and Total Change of Count in Quarter 4 to Quarter 1

Variable Name	Label	Number of Splitting Rules	Importance	Validation importance	Ratio of Validation to Training Importance
LG10 Total Trans Ct LG10 Total Revolving Bal Total Relationship Count	Transformed Total Trans Ct Transformed Total Revolving Bal		4 1.0000 2 0.8309 4 0.5533	1.0000 0.8382 0.5495 0.503 0.273 0.238 0.1106	1.000 1.008 0.993 1.013 0.703 0.863 0.538 1.122
LG10 Total Trans Amt LG10 Total Ct Chng Q4 Q1	Transformed Total Trans Amt Transformed Total Ct Chng Q4 Q1 Transformed Total Amt Chng Q4 Q1		2 0.8309 4 0.5533 5 0.4939 3 0.3895 1 0.2767 1 0.2053	0.5003 0.2739	1.0130 0.7032
Gender LG10 Months Inactive 12 mon	Transformed Months Inactive 12 mon		0.2053 1 0.1951	0.1106 0.2190	0.5386 1.1227
LG10 Credit Limit	Transformed Customer Age Transformed Credit Limit Transformed Months on book		0.0000 0.0000 0.0000	0.0000	
Dependent count Card Category	Transformed Avg. Utilization Ratio		0.0000	0.0000 0.0000	
LG10 Contacts Count 12 mon LG10 Avg Open To Buy	Transformed Avg Otilization Ratio Transformed Contacts Count 12 mon Transformed Avg Open To Buy		0.0000	0.0000 0.0000	
Education Level Marital Status Income Category			0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	

Gradient Boosting

Model Accuracy:
93.39%

Properties

- a. Ensembled Method
- b. Combination of Multiple Weak Learners
- c. Uses Decision tree as base model

Neural Network

- a. Non-linear decision boundaries
- b. High model capacity
- c. Can automatically learn features from the data

Logistic Regression

- a. Linear decision boundaries
- b. Simple and interpretable
- c. Fast and efficient training and prediction times

Model Accuracy: 92.43%

Model Accuracy: 90.35%

Hidden Patterns Found

Sl.	Hidden Patterns	Phase
1	Most Customer Age range is between 35-54	Explore
2	The number of months the customer has been a credit card holder was 30.2 to 38.8.	Explore
3	The client transaction amount was 1000 to 2500 range.	Explore
4	Most of the customer majority is in the blue category	Explore
5	Most of the customers have at least "Graduate" education level.	Explore
6	Total Change of Amount in Quarter 4 to Quarter 1 is having 28 times the odds of having customer attrition than existing customers.	Model
7	Average Open to Buy is having 24 times the odds of having customer attrition than existing customers.	Model

Conclusion

We applied SEMMA methodology to mine impactful insights from Credit Card Customer Dataset.

We sampled the data into SAS Enterprise Miner to begin the mining process, and Talend was used to clean it.

We have developed four distinct models to forecast customer churn by analyzing customer demographics and predicting whether the customer churn or not.