

جامعة مواري بومدين العلوه و التكن ولوجيا

Université des Sciences et de la Technologie Houari Boumediene Faculté d'Electronique et d'Informatique Département d'Informatique

*Concours d'accès au Doctorat LMD Informatique (Option : Intelligence Artificielle)

Epreuve Résolution de Problèmes

Exercice Soit les assertions suivantes :

1-Toute personne faite en bois est une sorcière

2-Tous les canards sont faits en bois

3- Toute chose qui pèse la même chose qu'un canard est faite en bois

4- La dame (A) pèse la même chose que le canard (D)

Et les faits suivants:

5- Ali est une personne

6- Bahia est une personne

7- La dame (A) est une personne

8- D est un canard

9- Le canard (D) n'est pas une personne

Peut-on prouver l'expression « la dame est une sorcière », en utilisant la logique des prédicats et la réfutation par résolution. ?

N.B. utiliser uniquement la fonction: poids(x), les prédicats: personne(x), bois(x), sorcière(x), canard(x), equal(x,y) et les constantes; Ali, Bahia, A et D. (si nécessaire, on suppose que equal est commutatif).

On dispose d'une carte topographique des routes (entre les villes) où on peut rouler avec différentes vitesses. Il y a des parties où on traverse des agglomérations et donc on peut rouler avec une vitesse de 60 km/h, des parties autoroute où on peut rouler à 120 km/h et des parties de route nationale où on peut rouler à 90 km/h. Dans le tableau suivant sont indiqués pour chaque route, le nombre de kilomètres entre deux villes pour différents types de vitesses (60 km/h, 120 km/h et 90 km/h). Par exemple entre A et C, il y a 55 km (20km en agglomération, 20km en autoroute et 15km en route nationale).

- Calculer les différents temps de parcours en minutes des différentes distances.

Chemin	A,C	A,I	C,D	C,F	D,E	E,J	E,B	F,E	F,G	G,B	I,J	J,B
Agglomération	20	50	10	20	0	0	20	0	50	0	0	10
Autoroute	20	10	20	0	10	0	30	20	0	60	10	10
Route nationale	15	30	9	21	9	30	0	21	0	0	30	21

On veut trouver le chemin le plus court en temps (en minutes) entre A et B. Pour cela on applique l'algorithme A*. On dispose de l'information heuristique suivante : Pour chaque ville X on connaît les distances à vol d'oiseau des parties traverse d'agglomération, parties autoroute et parties route nationale entre la ville X et la ville B.

- Calculer les différents temps de parcours des différentes distances à vol d'oiseau (direct).

Chemin Direct entre	A ,B	C,B	D,B	E,B	F,B	G,B	I,B	J,B
Agglomération	40	30	30	40	40	20	20	10
Autoroute	40	30	20	0	10	30	0	10
Route nationale	30	18	12	0	12	0	12	12

- L'heuristique associant à X le temps de parcours du chemin à vol d'oiseau de X à B est-elle admissible?. Justifier.

On prend maintenant comme heuristique h le temps de parcours si toute la distance était autoroute.

- Cette heuristique est elle admissible ? Justifier.
- Donner l'espace de recherche avec cette heuristique ainsi que le coût du chemin optimale de A à B en utilisant l'algorithme A*.
- Soient 2 heuristiques h1 et h2 admissibles. Montrer lesquelles des heuristiques suivantes sont admissibles min(h1,h2), max(h1,h2), σ *h1 avec $0 < \sigma < 1$, σ *h1 avec $1 < \sigma$ (σ un nombre réel). Justifier vos réponses.

جامعة مواري بومدين العلوم و التكن ولوجيا

Université des Sciences et de la Technologie Houari Boumediene Faculté d'Électronique et d'Informatique Département d'Informatique

Concours d'accès au Doctorat LMD Informatique, 2013-2014 (Option : Intelligence Artificielle)

Épreuve : Représentation des connaissances et Raisonnement

SUJET Nº1

Exercice 1:

Nous voulons mettre sous forme d'une théorie de défaut $\Delta = \langle W, D \rangle$ les connaissances correspondant aux phrases :

- a- En général, les jours non fériés, il y a cours ; il n'y a jamais cours les jours fériés.
- b- Tous les samedis sont non fériés ; en général, il n'y a pas cours le samedi.
- c- En vacances, il n'y a jamais cours.

Nous considérons les propositions F (férié), K (cours), S (samedi), V (vacances).

- 1- Calculez les extensions des théories $W \cup \{S, V\}$, D> et $W \cup \{S, \neg V\}$, D>.
- 2- Dans ce dernier cas, montrez qu'il existe une extension contenant K.

Exercice 2:

Considérez le problème de conception d'un réseau possibiliste concernant les véhicules. Les paramètres à considérer sont: l'âge du conducteur, accident, airbag, facteurs socio-économique, robustesse du véhicule, qualité de la conduite, année du véhicule, marque véhicule.

- 1- Spécifiez la structure du réseau possibiliste en précisant, selon la nature des connaissances, s'il est qualitatif (basé sur le min) ou quantitatif (basé sur le produit).
- 2- Quel est l'algorithme de propagation à utiliser ? Justifiez.
- 3- Explicitez les différentes étapes du processus de propagation.