

ANÁLISIS MATEMÁTICO

GRADO EN CC. MATEMÁTICAS, 2018-2019

Convocatoria ordinaria, 8 de enero de 2019

APELLIDOS: GRUPO:

Nombre :

3/10 puntos

1.

1. Determinar los valores de λ para los que el sistema de ecuaciones

$$\begin{cases} x_1 x_3^3 + x_2 x_4 + \lambda x_1 = 1, \\ 2 x_1 x_2^3 + x_3 x_4^2 + \lambda (x_2 - 1) = 0, \end{cases}$$

define a (x_1, x_2) como función implícita diferenciable de los (x_3, x_4) en un entorno de los puntos a = (0, 1) y b = (0, 1).

- 2. Si designamos dicha función mediante $(x_1, x_2) = F(x_3, x_4)$, calcular los valores de λ para los cuales F admite una inversa local de clase C^1 en un entorno de b.
- 3. Demostrar que para los valores de λ no obtenidos en el primer apartado no puede existir tal función F .

2/10 puntos

2. Considérese el conjunto M de los $x=(x_1\,,x_2\,,x_3)\in\mathbb{R}^3$ que verifican

$$x_2^3 - x_1 x_2 - x_3 = 0.$$

Α.

- 1. Demostrar que M es una C^{∞} -subvariedad 2-dimensional de \mathbb{R}^3 .
- 2. Demostrar que $X : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, dada por

$$X(u) = (u_1, u_2, u_2^3 - u_1 u_2), \qquad u = (u_1, u_2) \in \mathbb{R}^2,$$

satisface:

- a. X es inyectiva en \mathbb{R}^2 y $M = X(\mathbb{R}^2)$.
- b. DX(u) tiene rango 2 en todo $u \in \mathbb{R}^2$.
- c. $X^{-1}: M \longrightarrow \mathbb{R}^2$ es continua.
- B. Siendo $\pi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la proyección ortogonal $\pi(x) = (x_1, 0, x_3)$, considérese

$$Y = \pi \circ X$$
.

1. Hallar

$$S = \left\{ u \in \mathbb{R}^2 : \operatorname{rango} DY(u) \neq 2 \right\}$$

y comprobar que $\Gamma = Y(S)$ es

$$\Gamma = \left\{ x \in \mathbb{R}^3 : 4x_1^3 = 27x_3^2, \quad x_2 = 0 \right\}.$$

2. ¿Es Γ una subvariedad 1-dimensional de \mathbb{R}^3 ?

3/10 puntos

3. Sean (X,d) un espacio métrico, $\Omega \subset X$ un abierto en (X,d) y $K \subset \Omega$ un compacto en (X,d). Considérese

 $d(K\,,\partial\Omega)=$ distancia entre los conjuntos K y $\partial\Omega\,.$

A. Demostrar:

- 1. $\partial\Omega$ es cerrado en (X,d).
- 2. $K \cap \partial \Omega = \emptyset$.
- 3. Para cada $x \in K$ existe $\varepsilon = \varepsilon(x) > 0$ tal que

$$d(x,y) \ge \varepsilon$$
 para todo $y \in \partial \Omega$.

4. Utilizar que K es compacto para demostrar que existe $\delta > 0$ tal que

$$d(x,y) \ge \delta > 0$$
 para todo $x \in K$ y todo $y \in \partial \Omega$.

- 5. Demostrar que $d(K, \partial \Omega) \ge \delta > 0$.
- B. Dar un ejemplo en \mathbb{R}^2 en el que se tiene $K \subset \Omega$ con K cerrado pero no compacto y Ω abierto y las conclusiones de los apartados A.4 y A.5 son falsas.

2/10 puntos

4. Elegir una de las dos opciones:

Opción A. Sea, para cada $x \in \mathbb{R}^n$

$$f(x) = \left(\sum_{j=1}^{n} a_j |x_j|^p\right)^{1/p},$$

donde $a_1, \ldots, a_n > 0$ son constantes y $p \ge 1$ otra constante. Probar:

- 1. f(x) define una norma de vectores en \mathbb{R}^n . Indicación: reducir el problema al caso conocido de las normas $\|\cdot\|_p$, $p \ge 1$.
- 2. En el caso $a_1, \ldots, a_n = 1$ (ésto es, la norma $\|\cdot\|_p$ usual) y con p > 1, usar el Método de Multiplicadores de LAGRANGE para calcular la constante óptima $C_{n,p}$ para la cual se cumple

$$||x||_p \le C_{n,p} ||x||_2$$
, para todos los $x \in \mathbb{R}^n$.

Opción B. 1. Dadas las formas diferenciales

$$\omega_1 = -y \, dx + x z \, dy$$
, $\omega_2 = dx + x^3 \, dz$,

y la función

$$X(u, v) = (\cos u, \sin u, v),$$

calcular

$$X^*\omega_1$$
, $X^*(d\omega_1)$, $X^*(\omega_1 \wedge \omega_2)$, $X^*(\omega_1 \wedge d\omega_2)$.

2. Dado el sistema de coordenadas (X, U) en el hiperboloide

$$\mathcal{H} = \{ (x, y, z, t) \in \mathbb{R}^4 : x^2 + y^2 + z^2 - t^2 = 1 \},$$

determinar una normal unitaria N compatible con X , siendo

$$\mathbf{X}(\theta,\varphi,u) = \left(\sqrt{1+u^2} \, \cos\varphi \, \sin\theta \,, \sqrt{1+u^2} \, \sin\varphi \, \sin\theta \,, \sqrt{1+u^2} \, \cos\theta \,, u \,\right)$$

у

$$\mathbf{U}: \quad 0 < \theta < \pi \,, \; 0 < \varphi < 2\pi \,, \; u \in \mathbb{R} \,.$$