LEÇON 7:CONVECTION FORCEE SUR LES OBSTACLES

Cylindres, sphères,...

- Transferts de chaleur sur des obstacles:
 - ☐ Transferts de chaleur entre:
 - la surface extérieure d'un corps compact
 - un fluide en mouvement (convection forcée)

- Transferts de chaleur sur des obstacles: géométrie complexe:
 - ☐ Bord d'attaque des ailes d'avion
 - ☐ Aubes de turbines

- □ Certains types d'échangeurs de chaleur
- □ Composants électroniques

- Déterminations précises:
 - ☐ Mesures expérimentales
 - Modélisation numérique (à valider)
- Schématisation des cas réels:
 - ⇒ Configurations simplifiées
 - ⇒ Dégagement d'ordre de grandeur

- Schématisation des cas réels:
 - □ Exemples de schématisation:
 - Faisceaux de tubes (échangeurs)

■ Fils chauffés (anémométrie)

Cylindres de révolution

- Schématisation des cas réels:
 - □ Exemples de schématisation:
 - soudures de thermocouples

Gouttelettes d'un « spray »

- Aspects dynamiques autour d'un cylindre
- Aspects thermiques détaillés autour d'un cylindre
- Aspects thermiques globaux: corrélations
- Echangeurs à tubes

Hypothèses :

- le fluide s'écoule perpendiculairement aux axes des objets
- les surfaces sont supposées à une température imposée, uniforme et connue,
- □ les propriétés du fluide sont supposées uniformes

- Ecoulement autour d'un cylindre:
 - □ 3 points notables:
 - La couche limite peut décoller
 - ⇒Apparition de tourbillons dans le sillage
 - La présence et le rôle de la turbulence

- Ecoulement autour d'un cylindre :
 - □ L'écoulement potentiel est caractérisé par:
 - Un point d'arrêt (A),
 - Suivi d'une accélération (zone 1)
 - Puis un ralentissement dans la zone arrière (zone 2).

- Ecoulement autour d'un cylindre :(Bernouilli)
 - □ Zone d'accélération (zone 1)
 - gradient de pression favorable $(\partial p/\partial x < 0)$
 - ⇒ Accélération des vitesses dans la couche limite
 - □ Zone de décélération (zone 2)
 - gradient de pression défavorable ($\partial p/\partial x > 0$)
 - ⇒ Décélération des vitesses dans la couche limite

- Ecoulement autour d'un cylindre:
 - □ Décollement:
 - Lors de la décélération, manque de quantité de mouvement pour vaincre les forces de pression
 - ⇒le gradient pariétal peut localement s'annuler: point de séparation $\left(\frac{\partial u}{\partial y}\right|_{y=0} = 0$

- Ecoulement autour d'un cylindre:
 - □ Décollement:
 - Manque de quantité de mouvement
 - point de séparation
 - le débit de fluide ne permet pas un retour amont
 - la seule solution réside dans un décollement de la couche limite

- Ecoulement autour d'un cylindre:
 - □ Décollement:
 - En aval, présence d'un sillage:
 - Recirculation
 - Tourbillons
 - □ ...
 - ⇒Intensification des transferts de quantité de mouvement et de chaleur

Généralisation:

- □ Sur un obstacle de forme quelconque on retrouve des conséquences importantes au sein de la couche limite :
 - point d'arrêt
 - zone de gradient de pression favorable et adverse
 - décollement de la couche limite

- Ecoulement autour d'un cylindre:
 - □ Influence du nombre de Reynolds: $Re = \frac{\rho U_{\infty}D}{\mu}$
 - Nature de l'écoulement
 - Coefficient de traînée: $C_D = \frac{F_D}{\left(A_p \frac{\rho U_\infty^2}{2}\right)}$

Ecoulement autour d'un cylindre:

- □ Re<1:
 - Ecoulement adhère à l'obstacle
 - Pas de décollement

Re=0.16

Ecoulement autour d'un cylindre:

- □ Re<1:
 - Ecoulement adhère à l'obstacle
 - Pas de décollement
 - Les forces d'inertie négligeables
 - Trainée:
 - □ Résistance= forces de viscosité
 - Au plan thermique, chaleur transmise par conduction

Ecoulement autour d'un cylindre:

- □ 1<Re<70:
 - décollement pour Re ≈ 5
 - Apparition de 2 tourbillons

Re=9.6

- Ecoulement autour d'un cylindre:
 - □ 1<Re<70:
 - Traînée:
 - □ 50 % du frottement pariétal
 - 50 % de la différence de pression amont/aval

Re=9.6

- Ecoulement autour d'un cylindre:
 - □ Re≈100:
 - files de tourbillons alternés: « allées de Karman »

Re=100

- Ecoulement autour d'un cylindre:
 - □ Re≈100:
 - Traînée:
 - □ Résistance de pression domine

Re=100

- Ecoulement autour d'un cylindre:
 - □ 200<Re<10⁵:
 - Couche limite laminaire jusqu'au point de décollement
 - Point de décollement: θ≈ 80 à 85°

Re=2000

- Ecoulement autour d'un cylindre:
 - □ 200<Re<10⁵:
 - Traînée:
 - Résistance de pression domine largement
 - □ Coefficient de traînée constant

Re=2000

- Ecoulement autour d'un cylindre:
 - □ Re>10⁶:
 - Ecoulement turbulent dans la couche limite
 - Point de décollement se déplace vers l'arrière
 - Traînée:
 - □ Résistance des forces de pression ⊔

- Rôle de la turbulence:
 - □ Turbulence ⇒décollement repoussé vers l'aval

- Rôle de la turbulence:
 - □ Turbulence ⇒décollement repoussé vers l'aval

Sans promoteur de turbulence

Avec promoteur de turbulence

- Transferts locaux:
 - ☐ Grandeurs & nombres importants:
 - Nombre de Reynolds global: $Re = \frac{\rho U_{\infty} D}{\mu}$
 - **Coordonnée angulaire:** θ
 - Nombre de Nusselt: $Nu_{\theta} = \frac{h_{\theta}D}{\lambda}$

- Transferts locaux:
 - □ 2 cas possibles:
 - Re<10⁵
 - Re>10⁵

- Transferts locaux:
 - □ Re<10⁵
 - Nu i jusqu'au point de décollement
 - □ régime laminaire⇒variation classique(cf. plaque plane)
 - Nu ¬ après décollement
 - renforcement des transferts par sillage

- Transferts locaux:
 - □ Re>10⁵
 - Nu i jusqu'à la transition
 - Nu 刁
 - □ Zone de transition
 - Nu 凶
 - □ Régime pleinement turbulent
 - Epaississement de la couche limite
 - Nu 7 après décollement
 - □ Très en aval
 - □ Renforcement des transferts par sillage

Transferts globaux: corrélations

□ Avec:

Re_{D}	С	m
0.4-4	0.989	0.330
4-40	0.911	0.385
40-4 000	0.683	0.466
4 000-40 000	0.193	0.618
40 000-400 000	0.027	0.805

$$\Box T_{ref\ propriétés} = \frac{T_{\infty} + T_{p}}{2}$$

□ fiables à 25 %

Transferts globaux: Cylindre non de révolution

- Transferts globaux: Corrélations
 - □ Churchill et Bernstein

$$\square \overline{Nu}_D = 0.3 + \frac{0.62 \operatorname{Re}_D^{1/2} \operatorname{Pr}^{1/3}}{\left[1 + (0.4/\operatorname{Pr})^{2/3}\right]^{1/4}} \left[1 + \left(\frac{\operatorname{Re}_D}{282000}\right)^{5/8}\right]^{4/3}$$

 \square Pour : Re_D Pr > 0,2

□ fiables à 20 %

ASPECTS THERMIQUES DÉTAILLÉS AUTOUR D'UNE **SPHÈRE**

- Transferts globaux: Corrélations
 - □ Pour les gaz:

$$\overline{Nu}_D = 0.37 \text{ Re}_D^{0.6}$$

Avec:
$$\operatorname{Re}_D = \frac{U_{\infty}D}{v}$$
 $T_{ref\ propriétés} = \frac{T_{\infty} + T_p}{2}$

- Pour $25 < Re_D < 10^5$
- □ Plus généralement:

■
$$\overline{Nu}_D = 2 + (0.4 \text{Re}_D^{1/2} + 0.06 \text{Re}_D^{2/3}) \text{Pr}^{0.4} \left(\frac{\mu}{\mu_p}\right)^{0.25}$$
■ Avec les propriétés à évaluer à T_{∞} , sauf μ_p qui est prise à

- Pour 0.7 < Pr < 380, $3.5 < Re_D < 76000$, $1 < \mu/\mu_D < 3.2$
- Fiabilité 30%

ECHANGEURS À TUBES

- Présentation:
 - □ Echangeur de chaleur:
 - dispositif permettant de transférer de l'énergie thermique d'un fluide vers un autre
 - ☐ Echangeur à tubes:
 - Type d'échangeur de chaleur
 - Très courant dans les installations lourdes

(raffinerie, usine chimique,...)

- Présentation:
 - □ Echangeurs à tubes:
 - Plusieurs sous-types:
 - □ Echangeur à tubes en U
 - □ Echangeur à faisceau tubulaire horizontal
 - Mais même principe du point de vue local

U-tube heat exchanger shell-side fluid in outlet tube sheet baffle shell plenum tube-side fluid shell side baffle inlet tube bundle with U-tubes plenum fluid out

- Principe local:
 - □ 1 fluide à l'intérieur des tubes
 - □ 1 fluide à l'extérieur des tubes
 - □ Convection à l'intérieur des tubes
 - Cf. chapitre précédent

- □ Convection à l'extérieur des tubes:
 - Proche de la convection sur un cylindre
 - Mais également des effets de sillage

- 2 configurations classiques:
 - □ Alignée
 - □ En quinconce

- Aspects dynamiques:
 - □ Première rangée:
 - Comportement similaire au cylindre
 - □ Puis développement de la turbulence due au sillage
 - □ A partir de la 4 7^{ième} rangée:
 - écoulement pleinement turbulent et quasi périodique

- Aspects dynamiques:
 - □ Grandeur caractéristique de l'écoulement:

$$Re_{D,max} = \frac{\rho V_{max}}{\mu}$$

 V_{max} dépend de la configuration

- Aspects dynamiques:
 - □ Configuration alignée:
 - Vitesse maximale dans la section A1

$$\square S_T V = (S_T - D) V_{max}$$

- *V* =*vitesse* en amont
- S_T =distance inter cylindre

- Aspects dynamiques:
 - □ Configuration en quinconce :
 - 2 positions de Vitesse maximale possible
 - □ Dans la section A1:

$$V_{\text{max}} = \frac{S_T}{S_T - D} V$$

- Aspects dynamiques:
 - □ Configuration en quinconce :

Dans la section A2:

• A1
$$\geq$$
 2xA2 \Leftrightarrow $\frac{S_T - D}{2} \geq S_D - D \Leftrightarrow S_T + D \geq 2S_D$
• Alors

Alors

$$S_T V = 2(S_D - D)V_{\text{max}} \Rightarrow V_{\text{max}} = \frac{S_T}{2(S_D - D)}V$$

- Aspects thermiques:
 - □ Première rangée:
 - Comportement thermique similaire au cylindre
 - □ Puis développement de la turbulence⇒ 7 des transferts
 - □ A partir de la 4 7^{ième} rangée:
 - écoulement pleinement turbulent ⇒stagnation des transferts

- Aspects thermiques:
 - □ Echangeurs plus de 10 rangées(N_L≥10) pour de l'air:
 - Corrélation de Grimison :

 S_T/D

$$\overline{Nu}_D = C_1 \operatorname{Re}_{D,\max}^m \begin{cases} N_L \ge 10 \\ 2000 < \operatorname{Re}_{D,\max} < 40000 \\ \operatorname{Pr} = 0.7 \end{cases}$$

	1	1.25		1.5		2.0		3.0		
S _L /D	C_1	m	C_1	m	C_1	m	C_1	m		
Alignée										
1.25	0.348	0.592	0.275	0.608	0.100	0.704	0.0633	0.752		
1.50	0.367	0.586	0.250	0.620	0.101	0.702	0.0678	0.744		
2.00	0.418	0.570	0.299	0.602	0.229	0.632	0.198	0.648		
3.00	0.290	0.601	0.357	0.584	0.374	0.581	0.286	0.608		
Quinconce	;									
0.600	_	_	_	_	_	_	0.213	0.636		
0.900	_	_	_	_	0.446	0.571	0.401	0.581		
1.000	_	_	0.497	0.558	_	_	_	_		
1.125	_	_	_	_	0.478	0.565	0.518	0.560		
1.250	0.518	0.556	0.505	0.554	0.519	0.556	0.522	0.562		
1.500	0.451	0.568	0.460	0.562	0.452	0.568	0.488	0.568		
2.000	0.404	0.572	0.416	0.568	0.482	0.556	0.449	0.570		
3.000	0.310	0.592	0.356	0.580	0.440	0.562	0.428	0.574		

- Aspects thermiques:
 - □ Echangeurs plus de 10 rangées(N_L≥10) pour les autres fluides :
 - Extension Corrélation :

$$\overline{Nu}_D = 1.13 C_1 \text{ Re}_{D,\text{max}} \text{ Pr}^{1/3}$$

- Aspects thermiques:
 - □ Echangeurs moins de 10 rangées(N_L<10):</p>
 - Effets d'entrée importants:
 - □ Turbulence non pleinement développée
 - Corrélations corrigées:

$$\overline{Nu}_D \Big|_{N_{L\langle 10}} = C_2 \overline{Nu}_D \Big|_{N_{L\rangle 10}}$$

$N_{\rm L}$	1	2	3	4	5	6	7	8	9
Aligné	0.64	0.80	0.87	0.90	0.92	0.94	0.96	0.98	0.99
Quinconce	0.68	0.75	0.83	0.89	0.92	0.95	0.97	0.98	0.99

- Aspects thermiques:
 - □ Flux échangé
 - La température de sortie:

$$\frac{T_p - T_s}{T_p - T_e} = \exp\left(-\frac{\pi D N \overline{h}}{\rho V N_T S_T c}\right)$$

- \square *N* le nombre total de tubes
- \square N_L le nombre de rangées
- \square N_T le nombre de tube dans la direction « transverse »
- □ D le diamètre d'un tube
- □ V la vitesse d'entrée

- Aspects thermiques:
 - □ Flux échangé
 - Introduction de la température logarithmique moyenne:

$$\Delta T_{lm} \frac{(T_p - T_e) - (T_p - T_s)}{\ln \frac{T_p - T_e}{T_p - T_s}}$$

$$Q = N\overline{h} \pi D \Delta T_{lm}$$

- □ N le nombre total de tubes
- $\Box h$ le h moyen

- Pertes de charges:
 - □ Résultats de Zhukauskas

$$\Delta P = N_L \chi \left(\frac{\rho V_{\text{max}}^2}{2} \right) f$$

- \square Avec coefficient de correction χ
- \Box coefficient de frottement f

- Pertes de charges:
 - □ Résultats de Zhukauskas

$$\Delta P = N_L \chi \left(\frac{\rho V_{\text{max}}^2}{2} \right) f$$

- \square Avec coefficient de correction χ
- \Box coefficient de frottement f

- Pertes de charges:
 - □ Résultats de Zhukauskas

$$\Delta P = N_L \chi \left(\frac{\rho V_{\text{max}}^2}{2} \right) f$$

- \square Avec coefficient de correction χ
- \Box coefficient de frottement f

