WHERE SITS THE DATA: STORAGE MEDIA

Decades of technology advances

Economics of storage

\$1000 can buy:

- ~200GB of server-class RAM
- ~2.5TB of enterprise-class SSD
- ~30TB of HDD

TB/ \$1000

A computer architecture

Storage hierarchy

Storage hierarchy - latencies

Latency numbers every programmer should know

```
L1 cache reference ..... 0.5 ns
Branch mispredict ..... 5 ns
L2 cache reference ..... 7 ns
Mutex lock/unlock ...... 25 ns
Main memory reference ...... 100 ns
3 us
Send 2K bytes over 1 Gbps network ..... 20,000 ns
                                        = 20 µs
SSD random read ..... 150,000 ns
                                        = 150 \mu s
Read 1 MB sequentially from memory ..... 250,000 ns
                                        = 250 \mu s
Round trip within same datacenter ..... 500,000 ns
                                        = 0.5 \text{ ms}
Read 1 MB sequentially from SSD* .... 1,000,000 ns
                                           1 ms
Disk seek ...... 10,000,000 ns
                                          10 ms
Read 1 MB sequentially from disk .... 20,000,000 ns
                                          20 ms
Send packet CA->Netherlands->CA .... 150,000,000 ns = 150 ms
```

Assuming ~1GB/sec SSD

Latency Numbers Every Programmer Should Know

Visual chart provided by ayshen

Data by Jeff Dean

Originally by Peter Norvig

L1 cache reference	0.5 s	One heart beat (0.5 s)
Branch mispredict	5 s	Yawn
L2 cache reference	7 s	Long yawn
Mutex lock/unlock	25 s	Making a coffee

Hour:

Main memory reference	100 s	Brushing your teeth
Compress 1K bytes with Zippy	50 min	One episode of a TV show (including ad breaks)

Day:

Send 2K bytes over 1 Gbps network	5.5 hr	From lunch to end of work day
-----------------------------------	--------	-------------------------------

Week

SSD random read	1.7 days	A normal weekend
Read 1 MB sequentially from memory	2.9 days	A long weekend
Round trip within same datacenter	5.8 days	A medium vacation
Read 1 MB sequentially from SSD	11.6 days	Waiting for almost 2 weeks for a delivery

Year

Disk seek	sk seek 16.5 weeks A semester in u	
Read 1 MB sequentially from disk	7.8 months	Almost producing a new human being
The above 2 together	1 year	

Platters spin (say 15000 rpm)

- Arm assembly moved in / out to place head on desired track
 - Tracks under heads make a "cylinder" (imaginary)
 - Only one head reads/writes at any one time

Platters spin (say 15000 rpm)

Arm assembly moved in / out to place head on desired track

- Tracks under heads make a "cylinder" (imaginary)
- Only one head reads/writes at any one time
- Block/page size is a multiple of (fixed) sector size

Accessing a disk page

- Time to access (read/write) a disk block:
 - seek time (moving arms to position disk head on track)
 - ~2-3 ms on average
 - rotational delay (waiting for block to rotate under head)
 - ~0-4 ms (15000 RPM)
 - transfer time (actually moving data to/from disk surface)
 - ~0.25 ms per 64KB page
- Key to lower I/O cost: reduce seek/rotational delays

Conclusion on spinning disks

- A lot of databases still use such disks
 - Spinning disks are a mechanical anachronism!
- Major implications
 - No byte-level access. Instead, an API:
 - READ: transfer "page" of data from disk to RAM
 - WRITE: transfer "page" of data from RAM to disk
 - Both API calls are very, very slow
 - Plan carefully

Quick quizz

Which of the following operations is slowest?

- A. Access all the blocks found on a single track in order
- B. Access an equivalent amount of data but on randomly-located disk blocks
- C. Transfer an entire track of data into RAM
- D. Overwrite an entire track-worth of data found in RAM with 0s
- E. They are all the same

А	В	С	D	Е
		COMP7104-DASC7104		19

Flash disk (SSD)

- Issues in current generation (NAND)
 - Fine-grain reads (4-8K reads), coarse-grain writes (1-2 MB writes)
 - Only 2k-3k erasures before failure, so keep moving hot write units around ("wear leveling")
 - Write amplification: big units, need to reorganize for wear & garbage collection

Flash disk (SSD)

- Issues in current generation (NAND)
 - Fine-grain reads (4-8K reads), coarse-grain writes (1-2 MB writes)
 - Only 2k-3k erasures before failure, so keep moving hot write units around ("wear leveling")
 - Write amplification: big units, need to reorganize for wear & garbage collection
- So... read is fast and predictable
 - Single read access time: 0.03 ms
 - 4KB random reads: ~500MB/sec
 - Sequential reads: ~525MB/sec
 - 64K: 0.12 ms

Notes on flash disk (SSD)

- Issues in current generation (NAND)
 - Fine-grain reads (4-8K reads), coarse-grain writes (1-2 MB writes)
 - Only 2k-3k erasures before failure, so keep moving hot write units around ("wear leveling")
 - Write amplification: big units, need to reorganize for wear & garbage collection

MP7104-DASC7104

- So... read is fast and predictable
 - Single read access time: 0.03 ms
 - 4KB random reads: ~500MB/sec
 - Sequential reads: ~525MB/sec
 - 64K: 0.12 ms
- But... write is not! Slower for random
 - Single write access time: 0.03 ms
 - 4KB random writes: ~120 MB/sec
 - Sequential writes: ~480 MB/sec

Quick quizz

Why might SSD writes take a long time

- A. In order to postpone media failure
- B. The transfer size is very large
- C. SSD media suffers from write amplification
- D. Writing a single unit might require writing multiple ones, if we need to move units around
- E. All of the above

Α	В	С	D	E
		COMP7104-DASC7104		23

Flash is faster than spinning disk, but...

- SSD is faster than HDD
 - Can be 1-10x the bandwidth (bytes / sec) of ideal HDD
 - Note: Ideal HDD performance hard to achieve. Expect 10-100x bandwidth for non-sequential read
- "Locality" matters for both
 - Reading / writing two "far away" blocks on disk requires slow seek
 / rotation delay
 - Writing two "far away" blocks on SSD may require writing multiple much larger units
 - High-end flash drives are getting much better at this
- Spinning disk offers about 10x the capacity per \$

Storage debate

- Many significant DBs are not really that big
 - Daily weather, round the globe, 1929-2009: 20GB
 - 2000 US Census: 200GB
 - 2009 English Wikipedia: 14GB
- But data sizes grow faster than Moore's Law
 - "Big Data" is real: can generate & archive data cheaply and easily
 - Boeing 787 generates ½ TB of data per flight
 - Walmart handles 1M transactions/hour, maintains 2.5 PB data warehouse
- So... what is the role of disk, flash, RAM?
 - The subject of some debate!

Bottom line

- Very large DBs: relatively traditional
 - Disk still the best cost / MB by a lot
 - SSDs improve performance and performance variance
 - Both still have good price per performance tradeoff
- Smaller DB story is changing quickly
 - Entry cost for disk is not cheap, so flash wins at the low end
 - Many interesting databases may even fit in RAM!
 - Emergence of persistent memory ?