

What's your biggest concern for this semester (online learning)?

Quality of online classes
Technology issues (Zoom, internet connection not working, etc.)
Lack of campus experience and social interactions
Falling behind / Not keeping up with class pace
Other:

What's the biggest advantage/opportunity of online learning?

Can do it from my home/where I am	
Can (re-)play recorded lectures/classes at my ow	n pace
Can use technology (online resources, electronic	notes, etc.)
Other:	

Zoom etiquette

Mute yourself when not talkingLimit background noise

- Turn on your webcam if you have one
- Use the "raise your hand" function
- Use the chat for non-urgent questions and general discussion
 Keep it in English and be polite: everyone can read

Zoom UofG login

Sign in with SSO

Domain: uofglasgow

GUID & password

Format of teaching

- Recorded lectures
 - Cover all course, theoretical background, lecture notes
- Live sessions (Zoom)
 - •Q&A, examples, numerical exercises, tutorials, past exam papers, etc.
 - Flexible
- 2 Live tutorial sessions (Zoom)
 - •Weeks 9~10
 - Past exam papers, Q&A, etc.
- + Experimental laboratory for ENG5022
- Feedback welcome

How should I watch pre-recorded lectures?

How should I watch pre-recorded lectures?

- Allocate time for watching lecture videos
- Focus on the lecture only, video in full-screen, notifications off
- Other online devices (phone) out of reach
- Take notes, as if you were in a lecture
- Take a break when you need to
 - Do not carry watching if you can't focus
 - You do not have to watch a whole section at once
- Do it at a time that is convenient for you

Why pre-recorded lectures?

- Fail-safe solution, in these uncertain times
 - •Internet connection fail, illness, ...
- Teaching via Zoom takes longer
- In my experience (8+ years), I have received very few questions while lecturing
 - •Most questions were due to my own mistake explaining!
- You can (re-)watch & learn at a time convenient for you
- Frees live class time (Zoom) for Q&A, interactive activities, numerical examples, solutions of tutorial questions, past exam papers, ...
- Cover entire lecture notes

The warning

- Do not procrastinate
- Pre-recorded video lectures will be available until the end of term but:
 - •The interactive live classes will be meaningless if you have not followed the video lectures beforehand

•If you cram during revision week:

Therefore, you should **promise to yourself now** that you'll watch the lectures week by week

Resources: Moodle

https://moodle.gla.ac.uk/course/view.php?id=21118

- Full lecture notes
- Forum
 - •Please use it for any course-related question I will answer there
- Reading list (core textbook available in PDF through library)
- Practice exercises (will go live later)
- Past exam papers
- Feedback form: let me know anonymously

Lecture notes

- Available on Moodle in full right now
- Cover all theoretical material of the course
- Exercises showing applications to real-world problems and practice for exam
 - •Do try them by yourself or with your mates (adhere to COVID restrictions)!
- References to related textbook sections

2 – Introduction to Digital Control

The equation found substituting $u_k \to z^k$ is called the <u>characteristic equation</u>, and is a polynomial in z:

$$u_k = u_{k-1} + u_{k-2}$$

$$\updownarrow$$

 $z^k = z^{k-1} + z^{k-2}$ Characteristic Equation

The roots of this equation determine the stability of the ΔE . If the magnitude of all roots < 1, ΔE is stable.

Exercise 8 Stability of autonomous difference equation

Determine the stability of $u_k = 0.9u_{k-1} - 0.2u_{k-2}$.

2.4 Difference equations with input: Numerical Integration

We now move on to difference equations with an input, e. As an example, let us consider the case of numerical integration.

Given a continuous signal e(t), we want to approximate with a ΔE :

$$I = \int_{0}^{t} e(t) dt$$

Using only the values e(0), $e(t_1)$, ... $e(t_{k-1})$, $e(t_k)$

0(4)

Assessment

ENG5022

- Coursework (10%)
 - Design a controller for servo-motor
 - Remote-controlled (TBC)
 - Quiz on Moodle + Report
 - •3 groups with different timing, check your timetable/Moodle
- Final (90%)
 - •Online (timed (?) 2 hours)
- •Theory + Numerical exercises

ENG4042

- Final (100%):
- Online (timed (?) 2 hours)
- Theory + Numerical exercises

Prerequisites

- Basics of continuous-time dynamical systems
- Laplace transform, frequency domain
- Meaning of Transfer Function, Poles, Zeros, etc.
- Continuous-time control system theory
 - Basics of feedback control design: root locus, Nyquist plo

- Optional for ENG4042 (but highly advised)
- Compulsory ENG5022 (due to experimental coursework)
 - •"On ramp" courses with certificate

Contents of the course

- 1. Review of Continuous/Analogue Systems and Control
- 2. Introduction to Digital Control
- 3. Z-transform and Discrete Transfer Function
- 4. Signal Analysis and Dynamic Response
- 5. Modelling of Systems with Digital Control
- 6. Stability
- 7. Design of digital controllers
- 8. Sampled-data systems

Analogue control systems

All signals are real-valued and continuous in time

Mechanical

Electric/electronic

Continuous (analogue)

Digital (discrete and quantised)

Why digital control (-lers)?

Advantages

- Flexibility
- Multi-tasking
- Resilience to noise
- Cost
- Volume/Mass
- Depending on hardware:
 - Accuracy
 - Implementation errors
 - Speed

Feedback control systems

Analogue:

Digital:

Examples of digital controllers

From: M. Sami Fadali, Antonio Visioli, "Digital control engineering: analysis and design", 2019

Examples of digital controllers

Aircraft turbojet engine control system

From: M. Sami Fadali, Antonio Visioli, "Digital control engineering: analysis and design", 2019

Examples of digital controllers

Robotic manipulator

From: M. Sami Fadali, Antonio Visioli, "Digital control engineering: analysis and design", 2019

Homework

- Watch pre-recorded video lectures:
- 00 Introduction
- 01 Review of continuous systems
- 02 Introduction to digital control
- Take your own notes
- Write down questions/issues/sticky points
 - Discuss on these next week

Digital Control

- I have done our best for delivering the usual UofG teaching experience
- Feedback on online learning welcome

I hope that you'll enjoy this course and the rest of your studies!

STAY SAFE!

