- 1. 判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.
 - (1) 上海市控江中学 2022 年入学的全体高一年级新生;
 - (2) 中国现有各省的名称;
 - (3) 太阳、2、上海市;
 - (4) 大于 10 且小于 15 的有理数;
 - (5) 末位是 3 的自然数;
 - (6) 影响力比较大的中国数学家;
 - (7) 方程 $x^2 + x + 3 = 0$ 的所有实数解;
 - (8) 函数 $y = \frac{1}{x}$ 图像上所有的点;
 - (9) 在平面直角坐标系中, 到定点 (0,0) 的距离等于 1 的所有点;
 - (10) 不等式 3x 10 < 0 的所有正整数解;
 - (11) 所有的平面四边形.
- 2. 用 "∈" 或 " ∉" 填空:
 - $(1) -3_{--}N;$
 - $(2) \ 3.14_{\mathbf{Q}};$
 - (3) 5___**Z**;
 - (4) $\frac{1}{2}$ _N;
 - $(5) -2_{\mathbf{Q}};$

 - (6) π ___R; (7) $0.\dot{1}\dot{3}$ __Q; (8) $\frac{1}{\sqrt{2}-1} \sqrt{2}$ __Z; (9) $\frac{\pi}{2}$ _Q; (10) $\frac{1}{1 \frac{1}{1 \frac{1}{2}}}$ _N;
 - $(11) 0 \varnothing;$
 - (12) 0___**N**.
- 3. 对于一个确定的实数 x, 由 x, -x, |x|, $-\sqrt{x^2}$ 中的一个值或几个值组成的所有集合中, 元素的个数最多有多 少个?
- 4. 已知关于 x 的方程 $\sqrt{x^2+4x+a}=x+2$,若以该方程的所有解为元素组成的集合是无限集,求实数 a 满足 的条件.
- 5. 用列举法表示下列集合:
 - (1) 12 以内的素数组成的集合;
 - (2) 绝对值小于 3 的所有整数的集合;
 - (3) $\{x | \frac{6}{3-x} \in \mathbf{N}, \ x \in \mathbf{Z}\};$
 - (4) $\{y|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\};$

- (5) $\{(x,y)|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\};$
- (6) $\{(x,y)|x+y=5, x \in \mathbb{N}, y \in \mathbb{N}\}.$
- 6. 用描述法表示下列集合:
 - (1) 所有奇数组成的集合;
 - (2) 被 3 除余数等于 2 的正整数的集合;
 - (3) 不小于 10 的实数组成的集合;
 - (4) 绝对值大于 4 的所有整数组成的集合;
 - (5) 平面直角坐标系内 y 轴上的点的坐标组成的集合;
 - (6) 在直线 y = 2x + 1 上所有的点的坐标组成的集合.
- 7. 用区间表示下列集合:
 - (1) $\{x | -2 < x < 7\};$
 - (2) $\{x | -2 \le x \le 7\};$
 - (3) $\{x | -2 \le x < 7\};$
 - (4) 不等式 2x < 5 的解集;
 - (5) 不等式 -x < 5 的解集;
 - (6) 非负实数集.
- 8. 用适当的方法表示下列集合:
 - (1) 能整除 10 的所有正整数组成的集合;
 - (2) 能整除 10 的所有正整数组成的集合;
 - (3) 方程 $x^2 + 2 = 0$ 的实数解组成的集合;

(4) 方程组
$$\begin{cases} 2x + y = 0, & \text{的所有解组成的集合:} \\ x - y + 3 = 0 & \end{cases}$$

- (5) 两直线 y = 2x + 1 和 y = x 2 的交点组成的集合.
- 9. 下面写法正确的有_____
 - ① $\emptyset \in \{a\}; ② (0,1) \in \{0,1\}; ③ 1 \in \{(0,1)\}; ④ (0,1) \in \{(0,1)\}; ⑤ 0 \in \{0,1\}; ⑥ 0 \notin \{0,1\}.$
- 10. 集合 $\{(x,y)|xy \ge 0, x \in \mathbb{R}, y \in \mathbb{R}\}$ 是指 ().
 - A. 第一象限内的所有点

- B. 第三象限内的所有点
- C. 第一象限和第三象限内的所有点
- D. 不在第二象限、第四象限内的所有点
- 11. 若集合 $M = \{0, 2, 3, 7\}, P = \{x | x = ab, a, b \in M, a \neq b\}$. 用列举法写出集合 P.
- 12. 已知集合 $A = 2, a^2, a,$ 且 $1 \in A,$ 求实数 a 的值.
- 13. 设集合 $M = \{a | a = x^2 y^2, x, y \in \mathbb{Z}\}$, 下列数中不属于 M 的为 ().
 - A. 3

B. 6

C. 9

D. 12

14.	已知集合 $A = \{x x = a + \sqrt{2}b, \ a, b \in \mathbf{Z}\}, \ X \ x_1, x_2 \in A, \ 证明 \colon x_1x_2 \in A.$
15.	已知集合 $A=\{x (k+1)x^2+x-k=0\}$ 中只有一个元素, 求实数 k 的值.
16.	用符号 "⊂"、"=" 或 "⊃" 填空:
	(1) $\{a\}$ $\{a,b,c\}$;
	(2) $\{a, b, c\}$ $\{a, c\}$;
	(3) $\{1,2\}$ $\{x x^2 - 3x + 2 = 0\};$
	(4) $A = \{x x^2 - 2x + 1 = 0\}$ B = $\{x x^2 + 2x - 3 = 0\}$;
	(5) $A = \{1, 2\}$ B = $\{x x \in 2 \text$
	(6) $A = \{(x,y) xy > 0\}$ B = $\{(x,y) x > 0, y > 0\}.$
17.	(1) 集合 $\{1,2,3\}$ 的子集共有 个. (2) 已知集合 $A=\{1,2\}$, 集合 $B=\{1,2,3,4,5\}$. 若集合 M 满
	足 $A\subset M$ 且 $M\subseteq B$, 则这样的集合 M 有
	有
18.	(1) 下列写法正确的有
	$\textcircled{1} \varnothing \subset \{0\}; \textcircled{2} \varnothing = \varnothing; \textcircled{3} \varnothing \in \{0\}; \textcircled{4} 0 \in \varnothing.$
	(2) 下列各选项中, M 与 P 表示同一个集合的有
	① $M = \{(1, -3)\}, P = \{(-3, 1)\};$ ② $M = \{1, -3\}, P = \{-3, 1\};$ ③ $M = \emptyset, P = \{\emptyset\};$ ④ $M = \{y y = \{0, 1\}\};$ ② $M = \{0, 1\}$
	$x^2+1, \ x \in \mathbf{R}\}, \ P=\{(x,y) y=x^2+1, \ x \in \mathbf{R}\}; \ \mathfrak{H}=\{y y=x^2+1, \ x \in \mathbf{R}\}, \ P=\{t t=y^2+1, \ y \in \mathbf{R}\}$
	6 $M = \{y y = x^2 + 1, \ x \in \mathbf{R}\}, \ P = \{x y = \sqrt{x - 1}, \ x \in \mathbf{R}\}.$
	(3) 下列说法正确的有
	① 若 $a \in A$ 且 $A \subseteq B$, 则 $a \in B$; ② 若 $A \subseteq B$ 且 $A \subseteq C$, 则 $B = C$; ③ 若 $A \subset B$ 且 $B \subseteq C$, 则 $A \subset C$.
19.	设常数 $x, y \in \mathbb{R}$, 已知集合 $A = \{x, y\}, B = \{2x, x^2\},$ 且 $A = B$, 求集合 A .
20.	(1) 证明: 集合 $A = \{1, 2, 3\}$ 是集合 $B = \{0, 1, 2, 3, 4, 5, 6\}$ 的子集.
	(2) 判断集合 $A = \{n n = 2k-1, \ k \in \mathbf{Z}\}, \ B = \{n n = 2m+1, m \in \mathbf{Z}\}$ 的关系, 并说明理由;
	(3) 证明集合 $A=\{n n=2k-1,\ k\in\mathbf{N}\}$ 不是集合 $B=\{n n=2m+1,\ m\in\mathbf{N}\}$ 的子集, 且集合 A 真包含
	集合 B.
21.	已知集 $B=\{0,2,4\},C=\{0,2,6\},$ 若集合 A 满足 $A\subseteq B,A\subseteq C,$ 写出所有满足条件的集合 $A.$
22.	已知集合 $A=\{1\},B=\{x x\subseteq A\},$ 用列举法表示集合 $B.$ 并指出 A 与 B 的关系.
23.	若集合 $A = \{2, a, a + 3\}, B = \{2, 3, 5, 8\},$ 且 $B \supset A$, 则 a 的值为
24.	设常数 $a\in\mathbf{R}$. 若集合 $A=(-\infty,5)$ 与 $B=(-\infty,a]$ 满足 $A\subseteq B,$ 则 a 的取值范围是
	证明: 1° 当 a 时, 任取 $x \in A$, 则, 所以 $x \in B$, 即 $A \subseteq B$.
	2° 当 a , 时,取 $x_1 =$,则,所以 $x_1 \in A$ 且 $x_1 \notin B$.
	由 1°、2° 可得结论.

- 25. 设常数 $p \in \mathbb{R}$, 已知 $A = \{x | x < -1$ 或 $x > 2\}$, $B = \{x | 4x + p = 0\}$, 若 $B \subset A$, 则 p 的取值范围是______.
- 26. (1) 已知集合 $A = \{1\}$, 集合 $B = \{x|x^2 2x + a = 0\}$, 且 $A \subset B$, 求实数 a 的取值范围;
 - (2) 已知集合 $S = \{1, 2\}$, 集合 $T = \{x | ax^2 3x + 2 = 0\}$, 且 S = T, 求实数 a 的取值范围;
 - (3) 已知集合 $S = \{1,2\}$, 集合 $T = \{x|ax^2 3x + 2 = 0\}$, 且 $S \supseteq T$, 求实数 a 的取值范围.