BA111

适用于水质总溶解性固体(TDS)和水温检测的专用芯片,内部集成高精密振荡电路、模数转换电路和浮点运算单元。采用专利电导率-TDS 转换算法和温度校正算法(Atombit®),快速实现水质 TDS 的检测,并在较宽的温度范围内实现自动温度校正,降低 TDS 值随温度变化带来的测量误差。适合于生活用水的水质检测。

SOP8 封装

特性

- 0-3000 ppm TDS 测量范围,测量误差 <2%F.S.
- 0-100 °C 水温测量范围, ± 0.5 °C
- TDS 值温度校正
- TDS 单通道检测
- 双极性驱动,有效防止探针极化
- UART 指令控制
- 极简的外围电路

应用场景

- 反渗透等各种净水机
- 商用及家用饮水机
- 宠物饮水机
- 智能水杯
- 自来水水质检测

参考设计

电气参数

- 供电电压 3.3V (电源纹波<20mV)
- 工作电流 < 3mA
- 存储环境温度: -10~75℃

UART 通信

- 波特率: 9600 bps
- 校验位:无
- 数据位:8
- 停止位: 1

通信指令

- 指令格式: 命令(1B) + 参数(4B) + 校验和(1B)
- 1. 检测指令: A0 00 00 00 00 A0

返回 1: TDS 值和温度值: AA 00 64 0A 96 40

TDS 值: 00 64 = 0x0064

温度值: 0A 96 = 0x0A96/100 = 27.1

校验和: 40

- 基线校准: A6 00 00 00 00 A6
 成功时返回: AC 00 00 00 00 AC
 使用该指令时需保证,探头放入 25℃±5 ℃的纯 净水中
- 3. 设置 NTC 常温电阻值: A3 00 01 86 A0 CA NTC 电阻值: 00 01 86 A0 = 0x000186A0 成功时返回: AC 00 00 00 00 AC
- 4. 设置 NTC B 值: A5 OF OA OO OO BE NTC B 值: OF OA = OxOFOA 成功时返回: AC OO OO OO OO AC

上述指令执行异常情况下返回: AC XX 00 00 00 AE

异常代码 XX:

01: 命令帧异常

02: 忙碌中

03: 校正失败

04: 检测温度超出范围

...

硬件说明

- 1. TDS 传感器如果不带温度检测 NTC, 芯片也可正常工作, 但是 TDS 的检测无温度校正效果。
- 2. 电阻 R2 的阻值大小应该与选用的 TDS 检测探头中内置的 NTC 的**电阻值相同**,用户注意自行调整阻值,并通过指令设定 NTC 参数,否则无法正常检测。
- 3. 默认的 NTC 参数为:
 NTC 常温电阻值: 10K
 NTC B 值: 3435

测试结果参考:

10 mg/L 氯化钠标准溶液

50 mg/L 氯化钠标准溶液

引脚说明

序号	符号	类型	说明	
1	VDD	电源	芯片供电电源, 电压 3.3V (电源纹波<20mV)	
2	TDS1-ACT1	数字 I0	探针驱动信号引脚,连接 TDS 探针 1	
3	TDS1-ACT2	数字 I0	探针驱动信号引脚,通过一个 1%精度的电阻连接 TDS 探针 2	
4	UART-RXD	数字 I0	UART 信号数据接收端,连接外部 MCU 的 TX 引脚	
5	UART-TXD	数字 I0	UART 信号数据发送端,连接外部 MCU 的 RX 引脚	
6	TDS1-AD	模拟输入	TDS 模拟信号输入端口	
7	TDS1-NTC	模拟输入	温度信号输入端口	
8	GND	电源地	电源地	

- *芯片供电电源最高可以为5V,但测试检测结果会在量程范围内成倍数变大,用户需要自行修正(结果乘以系数1.52).
- *当芯片为 3. 3V 供电时, 芯片的通信引脚 (4,5 脚) 的电压最高为 3. 3+0. 3V, 超过此电压会导致芯片工作不稳定或者永久损坏。
- *当两个 TDS 探头同时检测同一个水体时,互相会产生干扰,建议这种情况下两个探针的距离间隔不小于 1 米
- *检测时,TDS 探头浸入水中的位置,装水的容器的形状会对检测结果带来一定的影响,但这个影响在量程范围内为线性变换,用户可以自行根据某一点的检测值进行修正。
- *供电电源的稳定性会直接影响检测结果的稳定性,建议在复杂电磁环境下使用隔离电源以提高检测的稳定性。
- *建议匹配我司的 TDS 探头以实现精准的、即插即用的检测

封装尺寸

C	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
Е	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
е	1.270 (BSC)		0.050 (BSC)	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°