

Modul

- Internet of Things (IoT) -

05 - Vorlesung *Big Data

Prof. Dr. Marcel Tilly

Fakultät Informatik, Cloud Computing

Überblick

21. März	Einführung in das Internet der Dinge	
28. März	IoT Architekturen	
4. April	Things und Sensoren	
11. April	From Device to Cloud	
18. April	Vorlesungsfrei – Ostern	
25. April	IoT Analytics	DC+ A
02. Mai	Big Data in IoT	POLA
9. Mai	Data Exploration	
16. Mai	IoT Platformen	
23. Mai	Entwicklung einer IoT Lösung	
30. Mai	Vorlesungsfrei; Christi Himmelfahrt	
05. Juni	opt. Gastvortrag – Digitalisierung	
13. Juni	Data Science in IoT	
20. Juni	Vorlesungsfrei – Fronleichnam	
27. Juni	Intelligente Cloud und intelligente Edge	
04. Juli	PStA Abschlusspraesentationen	

Gephi makes graphs hand

FlockDB

GraphBuilder

InfiniteGraph

AllegroGraph® 4.9

Gremlin

MPERGROPHDB*dex

Document Store

HAZELCAST

Motivation

- Process lots of data
 - •Google processed > 24 petabytes of data per day
- A single machine cannot serve all the data
 - You need a distributed system to store and process in parallel
- Parallel programming?
 - •Threading is hard!
 - How do you facilitate communication between nodes?
 - •How do you scale to more machines?
 - How do you handle machine failures?

MapReduce

- MapReduce provides
 - Automatic parallelization, distribution
 - I/O scheduling
 - Load balancing
 - Network and data transfer optimization
 - Fault tolerance
 - Handling of machine failures
- Need more power: Scale out, not up!
 - Large number of commodity servers as opposed to some high end specialized servers

Introduction into MapReduce

MapReduce: Map

MapReduce: Reduce

Typical problem solved by MapReduce

- Read a lot of data
- Map: extract something you care about from each record
- Shuffle and Sort

Reduce: aggregate, summarize, filter, or transform

Write the results

How it started?

- Extension to Google File
 System (GFS, 2003)
- MapReduce paper published
 2004 at OSDI
 - Used to recalculate search indices
- Became synonymous for

BigData

→ Hadoop

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay@google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate key. Many real world tasks are expressible in this model, as shown in the paper.

Programs written in this functional style are automatically parallelized and executed on a large cluster of commodity machines. The run-time system takes care of the details of partitioning the input data, scheduling the progiven day, etc. Most such computations are conceptually straightforward. However, the input data is usually large and the computations have to be distributed across hundreds or thousands of machines in order to finish in a reasonable amount of time. The issues of how to parallelize the computation, distribute the data, and handle failures conspire to obscure the original simple computation with large amounts of complex code to deal with these issues.

As a reaction to this complexity, we designed a new abstraction that allows us to express the simple computations we were trying to perform but hides the messy details of parallelization, fault-tolerance, data distribution and load balancing in a library. Our abstraction is in-

MapReduce workflow

Input Data

Output Data

Map

extract something you care about from each record

Reduce

aggregate, summarize, filter, or transform

Example: Word Count

Input Files

Apple Orange Mango Orange Grapes Plum

Apple Plum Mango Apple Apple Plum

Hadoop Distributed File System (HDFS)

•Split data and store 3 replica on commodity servers

λ Lambda Architecture

- Created by Nathan Marz (worked at BackType, Twitter, Developed Storm)
- Architecture for generic, scalable and fault-tolerant data processing
- Robust system that is fault-tolerant against hardware failures and human mistakes

Addresses the problem of timely insights

Lambda Architecture

- All data entering the system is dispatched to both the batch layer and the speed layer for processing.
- The **batch layer** has two functions: (i) managing the master dataset (an immutable, append-only set of raw data), and (ii) to pre-compute the batch views.
- The **serving layer** indexes the batch views so that they can be queried in low-latency, ad-hoc way.
- The **speed layer** compensates for the high latency of updates to the serving layer and deals with recent data only.

• Any incoming query can be answered by merging results from batch views and real-time views.