Higher-Order Probabilistic Programming

A Tuotorial at POPL 2019

Part III

Ugo Dal Lago

(Based on joint work with Flavien Breuvart, Raphaëlle Crubillé, Charles Grellois, Davide Sangiorgi,...)

POPL 2019, Lisbon, January 14th

Equivalence and Distance Checking

▶ How could we check two higher-order probabilistic programs to be (context) equivalent?

Equivalence and Distance Checking

- ▶ How could we check two higher-order probabilistic programs to be (context) equivalent?
- ▶ How about their distance?

Equivalence and Distance Checking

- ▶ How could we check two higher-order probabilistic programs to be (context) equivalent?
- ▶ How about their distance?
- Contextual equivalence and contextual distance are good answers, definitionally.
 - They are the coarsest compatible and adequate relation and metric between programs.
 - ► There is however an explicit quantification over all contexts, which make argument inherently complicated.

 $I \oplus \Omega$ vs. I

Not Context Equivalent: $C = [\cdot]$.

Context Distance? Consider $C_n = (\lambda x. \ \underline{x \dots x})[\cdot]$.

n times

 $I \oplus \Omega$

Б.

 $I \oplus \Omega$ vs. I

 $I \oplus \Omega$ vs. Ω

$$I\oplus\Omega$$
 vs. I $I\oplus\Omega$ vs. Ω

 $(\lambda x.I) \oplus (\lambda x.\Omega)$ vs. $\lambda x.I \oplus \Omega$

$$I\oplus\Omega \qquad \text{vs.} \qquad I$$
 Not Context Equivalent in CBV: $C=(\lambda x.x(xI))[\cdot]$ Apparently Context Equivalent in CBN.
$$I\oplus \mathfrak{sl} \qquad \text{vs.} \qquad \mathfrak{sl}$$

$$(\lambda x.I)\oplus(\lambda x.\Omega) \qquad \text{vs.} \qquad \lambda x.I\oplus\Omega$$

$$I \oplus \Omega$$
 vs. I $I \oplus \Omega$ vs. Ω $(\lambda x.I) \oplus (\lambda x.\Omega)$ vs. $\lambda x.I \oplus \Omega$ Y_1 vs. Y_2

$$I \oplus \Omega$$
 vs. I

$$Y_1M \to^* M(Y_2M) \oplus M(Y_3M)$$
 $Y_2M \to^* M(Y_1M) \oplus M(Y_3M)$
 $Y_3M \to^* M(Y_1M) \oplus M(Y_2M)$
 $Y_1 \qquad \text{VS.} \qquad Y_2$

Probabilistic Bisimulation in the Abstract [LS1992]

- ▶ Labelled Markov Chain (LMC): a triple $\mathcal{M} = (\mathcal{S}, \mathcal{L}, \mathcal{P})$, where
 - \triangleright S is a countable set of *states*;
 - \triangleright \mathcal{L} is a set of *labels*;
 - ▶ \mathcal{P} is a transition probability matrix, i.e., a function $\mathcal{P}: \mathcal{S} \times \mathcal{L} \times \mathcal{S} \to \mathbb{R}$ such that for every state t and for every label ℓ , $\mathcal{P}(t,\ell,\mathcal{S}) = \sum_{s \in \mathcal{S}} \mathcal{P}(t,\ell,s) \leq 1$;
- ▶ **Bisimulation**: equivalence relation \mathcal{R} on \mathcal{S} such that whenever $t \mathcal{R} s$, it holds that $\mathcal{P}(t,\ell,E) = \mathcal{P}(s,\ell,E)$ for every equivalence class E of \mathcal{S} modulo \mathcal{R} .
- ▶ Variation: **Simulation**, which is required to be a preorder.
- ▶ Bisimilarity and Similarity can always be formed.

Proposition

$$\sim = \preceq \cap \preceq^{op}$$
.

Terms

Terms Values

Terms Values

M

Terms Values

:

 $\overline{\text{Terms}}$

 $\lambda x.N$

Values

Terms		Values
$N\{W/x\} \longleftarrow$	W,1	$ \lambda x.N$

 $\lambda x.M \mathcal{R} \lambda x.N$

Applicative Bisimilarity vs. Context Equivalence

- **Bisimilarity**: the union \sim of all bisimulation relations.
- ▶ Is it that \sim is included in \equiv ? How to prove it?
- ▶ Natural strategy: is \sim a congruence?
 - ▶ If this is the case:

$$M \sim N \implies C[M] \sim C[N] \implies \sum \llbracket C[M] \rrbracket = \sum \llbracket C[N] \rrbracket$$

 $\implies M \equiv N.$

- ▶ This is a necessary sanity check anyway.
- ▶ The naïve proof by induction **fails**, due to application: from $M \sim N$, one cannot directly conclude that $LM \sim LN$.

R

 \mathfrak{R}^H

Howe's Technique

Our Neighborhood

 \blacktriangleright Λ , where we observe **convergence**

	\sim \subseteq \equiv	\equiv \subseteq \sim
CBN	√	✓
CBV	✓	✓

[Abramsky1990, Howe1993]

▶ Λ_{\oplus} with nondeterministic semantics, where we observe **convergence**, in its **may** or **must** flavors.

	= =	~ □
CBN	√	×
CBV	√	×

[Ong1993, Lassen1998]

	\sim \subseteq \equiv	\equiv \subseteq \sim
CBN	✓	×
CBV	√	√

	$\equiv \\ \subseteq \\ \sim$	~ ∪
CBN	✓	×
CBV	✓	✓

- ▶ Counterexample for CBN: $(\lambda x.I) \oplus (\lambda x.\Omega) \nsim \lambda x.I \oplus \Omega$
- ▶ Where these discrepancies come from?

	\sim	\equiv \subseteq \sim
CBN	✓	×
CBV	✓	✓

- ▶ Counterexample for CBN: $(\lambda x.I) \oplus (\lambda x.\Omega) \nsim \lambda x.I \oplus \Omega$
- ▶ Where these discrepancies come from?
- ► From **testing!**

	\sim \subseteq \equiv	\equiv \subseteq \sim
CBN	✓	×
CBV	✓	✓

- ▶ Counterexample for CBN: $(\lambda x.I) \oplus (\lambda x.\Omega) \nsim \lambda x.I \oplus \Omega$
- ▶ Where these discrepancies come from?
- ► From **testing!**
- ▶ Bisimulation can be characterized by testing equivalence as follows:

Calculus	Testing	
Λ	$T ::= \omega \mid a \cdot T$	
probabilistic Λ_{\oplus}	$T ::= \omega \mid a \cdot T \mid \langle T, T \rangle$	
nondeterministic Λ_{\oplus}	$T ::= \omega \mid a \cdot T \mid \wedge_{i \in I} T_i \mid \dots$	

	$\lesssim \subseteq \leq$	\leq \subseteq \lesssim
CBN	✓	×
CBV	√	×

▶ Λ_{\oplus} with probabilistic semantics.

	$\lesssim \subseteq \leq$	\leq \subseteq \lesssim
CBN	✓	×
CBV	✓	×

▶ Probabilistic simulation can be characterized by testing as follows:

$$T ::= \omega \mid a \cdot T \mid \langle T, T \rangle \mid T \vee T$$

▶ Λ_{\oplus} with probabilistic semantics.

	$\preceq \subseteq \leq$	\leq \subseteq \lesssim
CBN	✓	×
CBV	√	×

▶ Probabilistic simulation can be characterized by testing as follows:

$$T ::= \omega \mid a \cdot T \mid \langle T, T \rangle \mid T \vee T$$

▶ Full abstraction can be recovered if endowing Λ_{\oplus} with parallel disjunction [CDLSV2015].

	$\lesssim \subseteq \leq$	\leq \subseteq \lesssim
CBN	✓	×
CBV	✓	✓

▶ Let us consider a simple fragment of Λ_{\oplus} , first.

- ▶ Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ Preterms: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M \mid \Omega;$

- ▶ Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ Preterms: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M \mid \Omega;$
- ▶ **Terms**: any preterm M such that $\Gamma \vdash M$.

$$\frac{x, \Gamma \vdash M}{\Gamma, x \vdash x} \quad \frac{x, \Gamma \vdash M}{\Gamma \vdash \lambda x. M} \quad \frac{\Gamma \vdash M}{\Gamma, \Delta \vdash MN} \quad \frac{\Gamma \vdash M}{\Gamma \vdash M \oplus N} \quad \frac{\Gamma \vdash M}{\Gamma \vdash M \oplus N}$$

- ▶ Preterms: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M \mid \Omega;$
- ▶ **Terms**: any preterm M such that $\Gamma \vdash M$.

- ▶ Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ Preterms: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M \mid \Omega;$
- ▶ **Terms**: any preterm M such that $\Gamma \vdash M$.
- ▶ Behavioural Distance δ^b .
 - ▶ The metric analogue to bisimilarity.

- ▶ Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ Preterms: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M \mid \Omega;$
- ▶ **Terms**: any preterm M such that $\Gamma \vdash M$.
- ▶ Behavioural Distance δ^b .
 - ▶ The metric analogue to bisimilarity.
- ▶ Trace Distance δ^t .
 - ▶ The maximum distance induced by traces, i.e., sequences of actions: $\delta^t(M, N) = \sup_{\mathsf{T}} |Pr(M, \mathsf{T}) Pr(N, \mathsf{T})|.$

- ▶ Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ Preterms: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M \mid \Omega;$
- ▶ **Terms**: any preterm M such that $\Gamma \vdash M$.
- ▶ Behavioural Distance δ^b .
 - ▶ The metric analogue to bisimilarity.
- ▶ Trace Distance δ^t .
 - ▶ The maximum distance induced by traces, i.e., sequences of actions: $\delta^t(M, N) = \sup_{\mathsf{T}} |Pr(M, \mathsf{T}) Pr(N, \mathsf{T})|.$
- ▶ Soundness and Completeness Results:

$\delta^b \leq \delta^c$	$\delta^c \le \delta^b$	$\delta^t \leq \delta^c$	$\delta^c \leq \delta^t$
✓	×	✓	✓

- ▶ Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ Preterms: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M \mid \Omega;$
- ▶ **Terms**: any preterm M such that $\Gamma \vdash M$.
- ▶ Behavioural Distance δ^b .
 - ▶ The metric analogue to bisimilarity.
- ▶ Trace Distance δ^t .
 - ▶ The maximum distance induced by traces, i.e., sequences of actions: $\delta^t(M, N) = \sup_{\mathsf{T}} |Pr(M, \mathsf{T}) Pr(N, \mathsf{T})|.$
- ► Soundness and Completeness Results:

$\delta^b \leq \delta^c$	$\delta^c \le \delta^b$	$\delta^t \leq \delta^c$	$\delta^c \le \delta^t$
✓	×	✓	✓

▶ Example: $\delta^t(I, I \oplus \Omega) = \delta^t(I \oplus \Omega, \Omega) = \frac{1}{2}$.

▶ None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1$.

- ▶ None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1$.
- ► The underlying LMC **does not** reflect copying.

- ▶ None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1$.
- ► The underlying LMC does not reflect copying.
- ► A Tuple LMC.
 - ▶ Preterms: $M ::= x \mid \lambda x.M \mid \lambda!x.M \mid MM \mid M \oplus M \mid !M$
 - ▶ **Terms**: any preterm M such that $\Gamma \vdash M$.
 - ▶ States: sequences of terms, rather than terms.
 - ▶ Actions not only model parameter passing, but also *copying* of terms.

Context $\frac{|\Gamma, x \vdash x|}{|\Gamma, x \vdash x|} \frac{|x, \Gamma \vdash M|}{|\Gamma \vdash \lambda x. M|} \frac{|x, \Gamma \vdash M|}{|\Gamma \vdash \lambda x. M|}$ $\frac{|\Gamma \vdash M|}{|\Gamma \vdash |M|} \frac{|\Gamma, !\Theta \vdash M|}{|\Gamma, \Delta, \Theta \vdash MN|} \frac{|\Gamma \vdash M|}{|\Gamma \vdash M \oplus N|}$

► A Tuple LMC.

- ▶ Preterms: $M ::= x \mid \lambda x.M \mid \lambda!x.M \mid MM \mid M \oplus M \mid !M$
- ▶ **Terms**: any preterm M such that $\Gamma \vdash M$.
- ▶ States: sequences of terms, rather than terms.
- ▶ **Actions** not only model parameter passing, but also *copying* of terms.

- ▶ None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1$.
- ► The underlying LMC does not reflect copying.
- ► A Tuple LMC.
 - ▶ Preterms: $M ::= x \mid \lambda x.M \mid \lambda!x.M \mid MM \mid M \oplus M \mid !M$
 - ▶ **Terms**: any preterm M such that $\Gamma \vdash M$.
 - ▶ States: sequences of terms, rather than terms.
 - ▶ **Actions** not only model parameter passing, but also *copying* of terms.
- ▶ Soundness and Completeness Results:

$\delta^t \leq \delta^c$	$\delta^c \leq \delta^t$	
\checkmark	✓	

- ▶ None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1$.
- ► The underlying LMC **does not** reflect copying.
- ► A Tuple LMC.
 - ▶ Preterms: $M ::= x \mid \lambda x.M \mid \lambda!x.M \mid MM \mid M \oplus M \mid !M$
 - ▶ **Terms**: any preterm M such that $\Gamma \vdash M$.
 - ▶ States: sequences of terms, rather than terms.
 - ▶ **Actions** not only model parameter passing, but also *copying* of terms.
- ▶ Soundness and Completeness Results:

δ	$t \leq \delta^c$	$\delta^c \leq \delta^t$	
✓		✓	

▶ Examples: $\delta^t(!(I \oplus \Omega), !\Omega) = \frac{1}{2}$ $\delta^t(!(I \oplus \Omega), !I) = 1$.

- ▶ None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1$.
- ► The underlying LMC **does not** reflect copying.
- ► A Tuple LMC.
 - ▶ Preterms: $M := x \mid \lambda x.M \mid \lambda!x.M \mid MM \mid M \oplus M \mid !M$
 - ▶ **Terms**: any preterm M such that $\Gamma \vdash M$.
 - ▶ States: sequences of terms, rather than terms.
 - ▶ **Actions** not only model parameter passing, but also *copying* of terms.
- ▶ Soundness and Completeness Results:

$\delta^t \le \delta^c$	$\delta^c \leq \delta^t$	
✓	✓	

- **Examples:** $\delta^t(!(I \oplus \Omega), !\Omega) = \frac{1}{2}$ $\delta^t(!(I \oplus \Omega), !I) = 1$.
- ▶ **Trivialisation** does not hold in general, but becomes true in *strongly* normalising fragments or in presence of parellel disjuction.

- ▶ Probabilistic Powerdomains [JonesPlotkin1991, JungTix1998].
 - ▶ Probabilistic effects are interpreted in *monadic* style [Moggi1989].
 - ► Inherently difficult endeavour, because the category of measurable spaces is not cartesian closed.

- ▶ Probabilistic Powerdomains [JonesPlotkin1991, JungTix1998].
 - ▶ Probabilistic effects are interpreted in *monadic* style [Moggi1989].
 - ▶ Inherently difficult endeavour, because the category of measurable spaces is not cartesian closed.
- ▶ Probabilistic Coherence Spaces [DanosEhrhard2011, EPT2016].
 - ► The difficulties with powerdomains are circumvented through Girard's quantitative semantics.
 - Proved fully abstract for discrete probabilistic choice.
 - ► Can be adapted to deal with continuous distributions [EPT2018].

- ▶ Probabilistic Powerdomains [JonesPlotkin1991, JungTix1998].
 - ▶ Probabilistic effects are interpreted in *monadic* style [Moggi1989].
 - ▶ Inherently difficult endeavour, because the category of measurable spaces is not cartesian closed.
- ▶ Probabilistic Coherence Spaces [DanosEhrhard2011, EPT2016].
 - ► The difficulties with powerdomains are circumvented through Girard's quantitative semantics.
 - ▶ Proved fully abstract for discrete probabilistic choice.
 - ► Can be adapted to deal with continuous distributions [EPT2018].
- ▶ Quasi-Borel Spaces [HKSY2017, VKS2019].
 - ▶ Another very clever way to side-step the problems one faces in the category of measurable spaces.
 - ► Can adequately model continuous distributions and conditioning.

- ▶ Probabilistic Powerdomains [JonesPlotkin1991, JungTix1998].
 - ▶ Probabilistic effects are interpreted in *monadic* style [Moggi1989].
 - ▶ Inherently difficult endeavour, because the category of measurable spaces is not cartesian closed.
- ▶ Probabilistic Coherence Spaces [DanosEhrhard2011, EPT2016].
 - ► The difficulties with powerdomains are circumvented through Girard's quantitative semantics.
 - ▶ Proved fully abstract for discrete probabilistic choice.
 - ► Can be adapted to deal with continuous distributions [EPT2018].
- ▶ Quasi-Borel Spaces [HKSY2017, VKS2019].
 - ▶ Another very clever way to side-step the problems one faces in the category of measurable spaces.
 - ► Can adequately model continuous distributions and conditioning.
- ▶ Game and GoI Models [DanosHarmer2002, DLFVY2017].
 - ▶ Higher-order programs are interpreted as strategies or automata.
 - ▶ Game models are fully abstract, in presence of states.

Thank You!

Questions?