Formative Assessmber #7

BORROMEO, S, MAYO, Z, MERCADO, C, SINOCRUZ, A, & TAGAYTAY, G 2025-04-10

Github Link: https://github.com/sophiaborromeo/Probability-FA7/blob/main/fa7.md

Campus-Related Issues Using Exponential Distribution

1. Identify a Practical Campus Problem

For this assessment, the group identified the time between students arriving to queue for an elevator in the Education Building inside the FEU Manila campus—a practical campus problem where events occur randomly over time.

2. Collect Data

The data collection started at 1:40 PM and ended at 2:10 PM.

The table below shows the time intervals between the arrival of each person. The time is standardized.

Table 1: Time Between Student Arrivals at the Elevator Queue (in Seconds)

Person	Arrival_Time_Seconds
1	62.00
2	45.00
3	22.78
4	2.00
5	104.20
6	43.00
7	104.20
8	115.34
9	91.63
10	29.25
11	36.01
12	7.36
13	13.82
14	61.91
15	11.75
16	2.81
17	15.46
18	75.10
19	85.47

Person	Arrival_Time_Seconds
20	10.99
21	13.60
22	131.94
23	41.26
24	28.84
25	46.69
26	21.80
27	53.86
28	202.49
29	120.00
30	40.91

3. Verify if Exponential Distribution is Applicable

Instruction 1: Check if events occur randomly and independently over time.

Because the group recorded interarrival times, this implies independence—since each record is a time interval not influenced by the last one. Since students come from random locations with different purposes in queueing, this also indicates random occurrence. It's safe to assume the events are independent and random over time. Therefore, we can apply the exponential distribution.

Instruction 2: Identify the average rate of event occurrence per unit of time.

The formula for lambda is:

$$Lambda = \frac{n}{\sum (arrival times)}$$

Where n is the number of events, and \sum (waiting times) is the sum of all the arrival times. Through manual calculation, we get:

Lambda =
$$\frac{30}{1,641.47}$$

Lambda = 0.0182763

For number 4, we will be calculating lambda using a statistical tool.

4. Compute Key Parameters

Mean (Expected Value)

For the exponential distribution, the mean (expected value μ) is the reciprocal of the rate λ :

$$\lambda = \frac{\text{Number of Observations}}{\text{Total Arrival Time}}$$

$$\mu = \frac{1}{\lambda}$$

Mean arrival time: 54.716 seconds.

Probability Density Function (PDF)

$$f(x) = \lambda e^{-\lambda x}$$
, for $x \ge 0$

Table 2: PDF Values for Each Data Point

Time_Seconds	PDF
62.00	0.00589
45.00	0.00803
22.78	0.01205
2.00	0.01762
104.20	0.00272
43.00	0.00833
104.20	0.00272
115.34	0.00222
91.63	0.00342
29.25	0.01071
36.01	0.00946
7.36	0.01598
13.82	0.01420
61.91	0.00590
11.75	0.01474
2.81	0.01736
15.46	0.01378
75.10	0.00463
85.47	0.00383
10.99	0.01495
13.60	0.01425
131.94	0.00164
41.26	0.00860
28.84	0.01079
46.69	0.00779
21.80	0.01227
53.86	0.00683
202.49	0.00045
120.00	0.00204
40.91	0.00865

Cumulative Distribution Function (CDF)

$$F(x) = 1 - e^{-\lambda x}$$
, for $x \ge 0$

Table 3: CDF Values for Each Data Point

Time_Seconds	CDF
62.00	0.67798
45.00	0.56064
22.78	0.34054
2.00	0.03589
104.20	0.85109
43.00	0.54428

$Time_Seconds$	CDF
104.20	0.85109
115.34	0.87852
91.63	0.81263
29.25	0.41409
36.01	0.48218
7.36	0.12586
13.82	0.22320
61.91	0.67745
11.75	0.19325
2.81	0.05006
15.46	0.24614
75.10	0.74654
85.47	0.79030
10.99	0.18197
13.60	0.22008
131.94	0.91031
41.26	0.52956
28.84	0.40968
46.69	0.57400
21.80	0.32862
53.86	0.62632
202.49	0.97530
120.00	0.88844
40.91	0.52654

5. Interpret the Results

Determine the likelihood of an event happening within a specific timeframe.

We can use the exponential Cumulative Distribution Function (CDF) to find the probabilities,

a. Probability of a student arriving within 30 seconds:

$$F(x) = 1 - e^{-\lambda x}$$

```
lambda <- 30 / sum(time_secs)
time_30 <- 30
prob_within_30 <- 1 - exp(-lambda * time_30)</pre>
```

Probability a student arrives within 30 seconds: 42.21%

b. Probability of student arriving more than 60 seconds:

$$P(X > x) = e^{-\lambda x}$$

```
time_60 <- 60
prob_more_than_60 <- exp(-lambda * time_60)</pre>
```

Probability of student arriving more than 60 seconds: 33.4%

Implications

a. Expected Arrival Time: Based on the data, the mean waiting time between student arrivals is approximately:

mean_wait <- 1 / lambda

On average, a student arrives every 54.72 seconds.

b. Real-World Implications on Campus

Factor Affecting Queuing

• It was observed that the intervals between arrivals of the FEU community, especially students arriving at the elevator were shorter at around 1:30 PM to 1:45 PM since it was the usual starting time of classes (Peak Periods). This means that the queue was longer. As time passed by, specifically after 1:45 PM (Off-Peak Periods), the intervals between student arrivals started to increase. This is because, as more professors and students proceeded to their respective classes, fewer students or professors required the use of the elevator, causing a larger interval between arrivals. As a result, the queue got thinner, and waiting times between students grew, as can be inferred from the data obtained.

Elevator Usage Efficiency:

• There is only a 42% chance that a student or professor arrives within 30 seconds and as the group observed there is a chance that elevators often leave with only one or two students resulting in a wastage of energy and time.

$Queue\ Management:$

• With a mean student arrival time of 54.7 seconds, a line can form during peak hours. This implies that during rush hours, such as at the beginning of classes, the intervals between student arrivals can be shorter, resulting in a more congested queue and possibly faster boarding times. Conversely, at off-peak times, when students are arriving in smaller numbers, waiting times between arrivals can become longer. The average waiting time of 54.7 seconds serves as a valuable benchmark for estimating how long a group of students will have to wait to enter the elevator. By knowing these trends, the school can better predict peak periods and schedule the elevator system appropriately, resulting in smoother operations and reduced wait times during peak periods.

Facility Optimization:

- Elevator scheduling or idle-time automation could be improved using real-time arrival predictions.
- Digital displays showing estimated wait times could enhance the student experience.

Energy Efficiency:

• Since there is a 33% chance of waiting more than 60 seconds, the elevator could delay activation unless more people arrive, optimizing both energy and time.

Visualization:

```
library(ggplot2)
# Define lambda
lambda <- 30 / sum(time_secs)</pre>
\# Define a sequence of time values (x)
x_{vals} \leftarrow seq(0, 250, by = 1)
\# Compute PDF and CDF for each x
pdf_vals <- lambda * exp(-lambda * x_vals)</pre>
cdf_vals <- 1 - exp(-lambda * x_vals)</pre>
# Combine into a data frame
exp_data <- data.frame(</pre>
 Time = x_vals,
 PDF = pdf_vals,
 CDF = cdf_vals
# Plot
ggplot(exp_data, aes(x = Time)) +
  geom_line(aes(y = PDF, color = "PDF"), linewidth = 1.2) +
  geom_line(aes(y = CDF, color = "CDF"), linewidth = 1.2, linetype = "dashed") +
  labs(title = "Exponential Distribution: PDF vs. CDF",
       x = "Time (seconds)",
       y = "Value",
       color = "Function") +
  theme minimal() +
  scale_color_manual(values = c("PDF" = "steelblue", "CDF" = "darkorange"))
```


Interpretation

The graph shows the relationship between the Cumulative Distribution Function (CDF) and the Probability Density Function (PDF) of an exponential distribution. The CDF, in the orange dashed line, rises slowly and approaches 1 asymptotically, showing that as time goes by, the likelihood of the event increases. Conversely, the PDF, shown as the blue solid line, starts with a larger value and then decays exponentially, consistent with the fact that the chance of occurrence of the event decreases as time increases. This is an example or characteristic of exponential distributions, in which events have higher chances of occurrence earlier than later.