Hydrogen and the Hydrides

SINGLE CORRECT CHOICE TYPE QUESTIONS

- Hydrogen atom is almost _____ times larger than H⁺ ion.
 - (A) 50
 - (B) 500
 - (C) 5000
 - (D) 50000
- 2. The ionization energy order for H, H+, H- is
 - (A) H < H+ < H-
 - (B) H⁻ > H > H⁺
 - (C) H- < H
 - (D) H+>H>H-
- The most common way by which the hydrogen atom may attain stability is
 - (A) forming covalent band.
 - (B) forming H⁺.
 - (C) forming H⁻.
 - (D) Both (B) and (C).
- 4. The most abundant element in the Universe is
 - (A) hydrogen.
 - (B) oxygen.
 - (C) nitrogen.
 - (D) helium.
- 5. Which of the following is/are the properties of H₂?
 - (A) H₂ is the lightest gas known.
 - (B) H, is not very reactive under normal conditions.
 - (C) The bond energy of the H—H bond is very high.
 - (D) None is incorrect.
- 6. Which of the following statements is incorrect regarding the use of H₂ as fuel?
 - (A) It produces a lot of heat during burning.
 - (B) Burning H, causes pollution.
 - (C) Burning H2 involves the risk of an explosion.
 - (D) Burning of hydrogen produces water.
- 7. Proton and deuteron are differentiated by their
 - (A) number of protons.
 - (B) number of neutrons.

- (C) number of electrons.
- (D) charges.
- If the oxidation state of central atom in BH₃ is +3, then the oxidation states of the central atom in SiH₄ and CH₄ are, respectively,
 - (A) + 4, -4
 - (B) + 4, + 4
 - (C) 4, +4
 - (D) 4, -4
- 9. Choose the correct lattice energy order.
 - (A) LiH < NaH < KH
 - (B) MgH₂ > CaH₂ < SrH₃
 - (C) LiH < NaH > KH
 - (D) $MgH_2 > CaH_2 > SrH_2$
- 10. At what temperature will water act as acid if K_w value of water at different temperature is as follows:
 - (A) $K_w = 10^{-14} (\text{at } 25^{\circ}\text{C})$
 - (B) $K_w = 10^{-10} (at 80 ^{\circ}C)$
 - (C) $K_w = 10^{-16} (at 4 \,{}^{\circ}C)$
 - (D) None of these.
- 11. Choose the correct statement.
 - (A) HCl is the most volatile among all halogen acids.
 - (B) HCl is less easily liquefiable as compared to NH3.
 - (C) Water has higher boiling point than that of HF.
 - (D) All are correct.
- Choose the correct statement regarding maleic acid and fumeric acid.
 - (A) pK_{a1} of maleic acid is greater than pK_{a1} of fumeric acid.
 - (B) Both maleic acid and its first conjugate base have intramolecular hydrogen bonding.
 - (C) Fumeric acid cannot form hydrogen bonding.
 - (D) K_a, of fumeric acid is less than that of maleic acid.

MULTIPLE CORRECT CHOICE TYPE QUESTIONS

1. Which of the following representation of hydrogen bonding is(are) incorrect?

(C)
$$CH_3 - C = O - H - C - CH_2 - OH - H - CH_3 - CH_2 - OH$$

- Hydrogen atom may attain stability by
 - (A) forming an electron pair (covalent) bond with another atom.
 - (B) losing an electron to form H⁺.
 - (C) gaining an electron to form H⁻.
 - (D) None of these.

- 3. Which of the following properties of hydrogen atom are similar to those of halogens?
 - (A) Formation of H⁺ like X⁺.
 - (B) Formation of H⁻ like X⁻.
 - (C) Formation of H, like X,.
 - (D) None of these.
- 4. Which of the following processes can be used for preparation of H2 gas?
 - (A) Dissolving LiH in water.
 - (B) Reaction of Al with NaOH solution.
 - (C) Reaction of Zn with dilute H₂SO₄.
 - (D) Electrolysis of H₂O in the presence of KOH.
- 5. Which of the following properties of metallic hydrides are similar to those of their parent metal?
 - (A) Hardness
 - (B) Metallic lustre
 - (C) Electrical conductivity
 - (D) Magnetic property
- 6. Which of the following statements is correct regarding the conversion of metal into metallic hydride?
 - (A) The density of metallic hydride is less than that of parent metal.
 - (B) The crystal lattice expands through the inclusion of hydride.
 - (C) A solid piece of a metal turns into powdered hydride.
 - (D) None of these.

COMPREHENSION TYPE QUESTIONS

Passage 1: For Questions 1-3

H2, D2, T2 are isotopes of each other.

- 1. The isotope effect arises due to
 - (A) difference in number of electrons.
 - (B) difference in number of protons.
 - (C) difference in mass.
 - (D) difference in properties.
- Which of the following pairs shows maximum isotope effect?
 - (A) ¹H and ²D
 - (B) ¹⁶_oO and ¹⁸₈O
 - (C) 35 Cl and 37 Cl
 - (D) 12 C and 14 C
- 3. Which of the following properties has incorrect order?
 - (A) $H_1 < D_2 < T_3$
- : Boiling point order
- (B) H₂ < D₂ < T₂ (C) H₂ < D₂ < T₂
- : Freezing point order : Latent heat of vapourization
- (D) T,O > H,O > D,O : Equilibrium constant for
 - dissociation

Passage 2: For Questions 4-6

Ortho hydrogen (o-H2) and para hydrogen (p-H2) have different energy contents and are related by the equilibrium relation.

$$o-H_2 \Longrightarrow p-H_2 + 0.09 \text{ kJ}$$

- 4. Which of the following statements is correct?
 - (A) The percentage of o-H, decreases with increase in temperature.
 - (B) The percentage of p-H₂ increases with decrease in temperature.
 - (C) At absolute zero Kelvin, the percentage of o-H, is maximum.
 - (D) At room temperature, D₂ cannot show $o-D_2 \rightleftharpoons p-D_2$ equilibrium.
- 5. o-H, and p-H, differ in which of the following properties?
 - (A) Spin of nucleus.
 - (B) Nuclear magnetic moment.
 - (C) Boiling point.
 - (D) All of these.
- Choose the incorrect statement.
 - (A) Ortho hydrogen has protons of parallel spin.
 - (B) Ortho hydrogen is adsorbed more readily than para hydrogen by metal surface.
 - (C) Both (A) and (B) are correct.
 - (D) Neither (A) nor (B) is correct.

Passage 3: For Questions 7-9

Water on cooling to $0\,^{\circ}\mathrm{C}$ becomes ice. The main reason for this conversion is the hydrogen bonding.

- 7. Which of the following statements is correct?
 - (A) In ice, the hydrogen bonded H atoms are at equal distance from the other two covalently bonded H atoms around each O atom due to resonance.
 - (B) In ice, the hydrogen bonded H atoms are at longer distance as compared to the other two covalently bonded H atoms around each O atom.
 - (C) In ice, the hydrogen bonded H atoms are at shorter distance as compared to the other two covalently bonded H atoms around each O atom.
 - (D) None of these.
- Two ice cubes when pressed against each other join together. This kind of joining phenomenon occurs
 - (A) just during pressing.
 - (B) after pressing when the pressure is released.
 - (C) during the whole process of pressing and releasing pressure.
 - (D) Cannot be predicted.
- 9. Which of the following curves is the correct representation of the density vs. temperature plot for water?

ASSERTION-REASONING TYPE QUESTIONS

In the following set of questions, a Statement I is given and a corresponding Statement II is given below it. Mark the correct answer as:

- (A) If both Statement I and Statement II are true and Statement II is the correct explanation of Statement I
- (B) If both Statement I and Statement II are true but Statement II is not the correct explanation for Statement I.
- (C) If Statement I is true but Statement II is false.
- (D) If Statement I is false but Statement II is true.
- Statement I: H⁻ is a stronger reducing agent as compared to H atom.

Statement II: The electronic configuration of H and H^- is $1s^1$ and $1s^2$ respectively.

 Statement I: Free protons (H⁺) do not exist under normal conditions. Statement II: H⁺ ion is extremely small in size and has a very high polarizing power.

Statement I: The abundance of H₂ in the earth's atmosphere is very small.

Statement II: The Earth's gravitational field is too small to hold a light element such as hydrogen.

4. Statement I: H- and He are stable to an equal extent.

Statement II: H⁻ and He both have 1s² electronic configuration.

Statement I: Hydride shift and methyl shift occur in a similar manner during a carbocation rearrangement.

Statement II: The structure of hydrogen resembles that of the Group 14 elements.

 Statement I: D₂ is more rapidly adsorbed chemically on the metal surface than H₂. Statement II: Van der Waal's forces of attraction are more in D₂ than in H₃.

 Statement I: Ti is prepared in an atmosphere of Argon not H₂.

Statement II: Ti dissolves H2 and becomes brittle.

 Statement I: Trimethyl ammonium hydroxide (compound A) is a weaker base compared to tetramethyl ammonium hydroxide (compound B).

Statement II: The release of OH⁻from (compound B) is faster than that from (compound A) due to presence of hydrogen bonding in (compound A) and absence of such bonding in (compound B).

9. Statement I: The correct presentation of exist-

Statement II: The polarity of O—H bond is more than that of the N—H bond.

 Statement I: The heat of vapourization of HF is higher than that of H₂O.

Statement II: The hydrogen bond strength in HF is higher than that in H_2O .

11. Statement I: Boric acid is slippery in nature.

Statement II: Boric acid is monobasic in water.

 Statement I: CsCl (solid) can absorb HCl vapour while NaCl (solid) cannot do so.

Statement II: Absorbing HCl vapour, CsCl forms Cs⁺[HCl₂]⁻ through hydrogen bond.

Statement I: Glycerol is more viscous than ethanol.
 Statement II: Intermolecular hydrogen bonding is present in glycerol molecule.

INTEGER ANSWER TYPE QUESTIONS

The answer to each of the following questions is a non-negative integer.

- The total number of neutrons present in D₂O¹⁸ molecule is
- The mass number of the element obtained when tritium undergoes β-decay is ______.
- The number of compounds among the following, which are monobasic in nature is ______.

H₃PO₃, H₃PO₂, HClO₄, HNO₂, H₂CO₃

- The number of protons that can be accepted by hydrazine is
- The number of moieties available for H-bonding in one molecule of H₂SO₄ is ______.

MATRIX-MATCH TYPE QUESTIONS

In each of the following questions, statements are given in two columns, which have to be matched. The statements in Column I are labelled as **(A)**, **(B)**, **(C)** and **(D)**, while those in Column II are labelled as **(P)**, **(Q)**, **(R)**, **(S)** and **(T)**. Any given statement in Column I can have correct matching with *one or more* statements in Column II.

1. Match the metal hydrides with their properties.

Column I	Column II		
(A) LiH (B) BeH ₂		Conducts electricity when melted. The concept of hybridization is	
(C) CH ₄	(R)	applicable. Liberates hydrogen at the anode on electrolysis in molten condition.	
(D) CaH ₂	(S)	Produces hydrogen when dissolved in water.	
	(T)	Negative oxidation state of hydrogen atom.	

2. Match the compounds with type of hydrogen bond.

Column I	Column II		
(A) Maleic acid	(P)	Intermolecular hydrogen bond is present	
(B) NaHCO ₃ (s)	(Q)	Intramolecular hydrogen bond is present.	
(C) N ₂ H ₄ (liquid)	(R)	Hydrogen bonding through ion-dipole interaction is present.	
(D) o-fluorophenol	(S)	Hydrogen bonding through dipole-dipole interaction is present.	

3. Match the order of compounds with the property.

Column I	Column II
(A) HCl < HBr < HI < HF	(P) The boiling point order.
(B) $PH_3 < A_5H_3 < SbH_3 < NH_3$	(Q) The melting point order.

Column I	Column II
(C) $H_2S < H_2Se < H_2Te$	(R) The bond polarity order. (S) The acidic strength order.

ANSWERS

Single Correct Choice Type Questions

- 1. (D) 4. (A)
- 2. (C) 5. (D)
- 3. (A)
 - 6. (B)
- 7. (B) 8. (A)
- 9. (D)
- 11. (D) 12. (B)

10. (D)

Multiple Correct Choice Type Questions

- **1.** (A), (B), (C), (D)
- 2. (A), (B), (C)
- 3. (B), (C)

- **4.** (A), (B), (C), (D)
- **5.** (A), (B), (C), (D)
- 6. (A), (B), (C)

Comprehension Type Questions

- 1. (C)
- 3. (D)
- 5. (D)
- 7. (B)
- 9. (A)

- 2. (A)
- 4. (B)
- 6. (D)
- 8. (B)

- Assertion-Reasoning Type Questions
- 1. (B)
- 4. (D)
- 7. (A)
- **10.** (D)
- 13. (B)

- 2. (A)
- 5. (A)
- 8. (A)
- 11. (B)

- 3. (A)
- 6. (D)
- 9. (A)
- 12. (A)

Integer Answer Type Questions

- 1. 12
- **2.** 3
- **3.** 3
- 4. 2
- **5.** 10

Matrix-Match Type Questions

1. (A) \rightarrow (P), (R), (S), (T)

 $(B) \rightarrow (Q), (T)$

- 2. $(A) \rightarrow (Q), (S)$

 - $(B) \rightarrow (P), (R)$
- 3. $(A) \rightarrow (P)$ $(B) \rightarrow (Q), (R)$

 $(C) \rightarrow Q$

 $(C) \rightarrow (P), (S)$

 $(C) \rightarrow (P), (Q), (S)$

- $(D) \rightarrow (P), (R), (S), (T)$
- $(D) \rightarrow (Q), (S)$