ЛАБОРАТОРНАЯ РАБОТА №128

ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ СТЕРЖНЯ С ПОМОЩЬЮ МОСТА ТОМСОНА

Поляков Даниил, 19.Б23-фз

Цель работы: экспериментально определить удельное сопротивление проводящего стержня с помощью моста Томсона, с применением метода компенсации.

Схема и оборудование

- набор из 5-ти магазинов сопротивлений РЗЗ с классом точности 0.2;
- гальванометр;
- источник постоянного тока;
- реостат;
- ключ;
- катушка электрического сопротивления P310 сопротивлением $r=0.01~{\rm Om}$ с классом точности 0.02;
- металлический стержень;
- набор соединительных проводов;
- штангенциркуль (цена деления 0.05 мм).

Расчётные формулы

• Сопротивление исследуемой части стержня:

$$x = r \frac{R_x}{R_r}$$

r — плечо сравнения (сопротивление катушки);

 R_{x} , R_{r} — плечи отношения.

• Удельное сопротивление стержня:

$$\rho = \frac{S}{l}x = \frac{\pi d^2}{4l} \frac{R_x}{R_r} r$$

l — длина исследуемой части стержня;

S — площадь сечения стержня;

d — диаметр стержня;

r — плечо сравнения (сопротивление катушки);

 R_x , R_r — плечи отношения.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность прямых измерений:

$$\Delta_{\bar{x}} = \sqrt{t^2 \frac{\displaystyle\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)} + (\Delta_{x,\text{сист}})^2} \qquad n - \text{количество измерений;} \\ \Delta_{x,\text{сист}} - \text{систематическая погрешность.}$$

Порядок измерений

- 1. Измеряем диаметр стержня с помощью штангенциркуля в 5-ти разных местах.
- 2. Собираем цепь по схеме. Устанавливаем с помощью источника тока и реостата силу тока, не превышающую предельную силу тока через сопротивления. Устанавливаем сопротивления R_r и r_r одинаковыми и равными 500 Ом и не будем изменять их в течение работы. Сопротивления R_x и r_x устанавливаем равными 500 Ом. Эти сопротивления будут изменяться в течение эксперимента, чтобы скомпенсировать ток через гальванометр, при этом их сопротивления всегда будем сохранять равными друг другу. Устанавливаем максимальное сопротивление гальванометра R_3 .
- 3. Присоединяем стержень к цепи с помощью проводов, клеммы которых располагаем на расстоянии $l=50.0~{\rm cm}$ друг от друга. Замыкаем ключ. Уменьшаем сопротивление гальванометра R_3 , пока не заметим отклонение стрелки. По мере уменьшения R_3 уменьшаем сопротивления R_x и r_x , чтобы стрелка гальванометра располагалась по центру шкалы, т. е. чтобы ток через гальванометр отсутствовал. После уравновешивания гальванометра при $R_3=0$ записываем соответствующие значения R_x и r_x .
- 4. Изменяем полярность тока, переключив ключ в другое положение. Снова уравновешиваем R_x и r_x , если стрелка гальванометра немного отклонилась. Снимаем значения R_x и r_x . Размыкаем ключ.
- 5. Повторяем описанные в пунктах 3 4 измерения для других значений длины части стержня l, через которую протекает ток. Уменьшаем l с шагом 5 см.

Результаты

<u>Примечание</u>: построение графика и аппроксимация зависимости выполнены с помощью ПО MATLAB. Погрешности прямых измерений и коэффициентов аппроксимации рассчитаны с доверительной вероятностью P = 95%.

1. Диаметр стержня

Таблица 1. Диаметр стержня

Приборную погрешность штангенциркуля принимаем равной половине цены деления:

$$\Delta_d = 0.025 \text{ MM}$$

No	d, mm	
1	11.80	
2	11.80	
3	11.85	
4	11.80	
5	11.85	
Среднее	11.82	
Δ	0.04	

2. Удельное сопротивление стержня

Таблица 2. Зависимость сопротивления плеча сравнения от длины исследуемой части стержня

Сопротивления плеч R_r и r_r зафиксированы равными 500 Ом.

В таблице жирным цветом выделены средние значения сопротивления за два измерения при различной полярности.

Удельное сопротивление определим аппроксимацией линейного уравнения. Удельное сопротивление выражается формулой:

$$\rho = \frac{\pi d^2}{4(l - l_0)} \frac{R_x}{R_r} r$$

onanoi deeneeyemed raema emepsiemi			
l, cm	$R_x = r_x$, Om	l, cm	$R_x = r_x$, Om
5.0	0.9		7.5
	0.9	30.0	7.4
	0.9		7.5
10.0	2.1		8.9
	2.1	35.0	8.9
	2.1		8.9
15.0	3.8		10.1
	3.8	40.0	10.0
	3.8		10.1
20.0	4.9	45.0	11.5
	4.9		11.4
	4.9		11.5
25.0	6.1	50.0	13.0
	6.1		12.7
	6.1		12.9

Здесь введена систематическая ошибка l_0 , которая возникает из-за того, что точные положения начальной и конечной точек исследуемой части стержня неизвестны из-за особенностей установки (из-за ощутимой толщины щупов). Однако, её значение не изменяется на протяжении измерений, поэтому она компенсируется свободным членом аппроксимирующего уравнения. Преобразуем уравнение к линейному виду:

График. Зависимость сопротивления плеча сравнения от длины исследуемой части стержня

Получаем:

$$a = 0.264 \pm 0.006 \, \text{Om/cm}$$

$$b = -0.4 \pm 0.2 \text{ Om}$$

$$\rho = (5.79 \pm 0.13) \cdot 10^{-8} \, \text{Om} \cdot \text{M}$$

Полученное значение удельного сопротивления лежит между удельным сопротивлением вольфрама ($5.60 \cdot 10^{-8} \text{ Ом} \cdot \text{м}$) и цинка ($5.90 \cdot 10^{-8} \text{ Ом} \cdot \text{м}$). При этом оно ближе к цинку, и совпадает с ним в пределах погрешности.

Выводы

Экспериментально полученное удельное сопротивление стержня:

$$\rho = (5.79 \pm 0.13) \cdot 10^{-8} \text{ Om} \cdot \text{m}$$

Полученное значение удельного сопротивления совпадает с удельным сопротивлением цинка ($5.90 \cdot 10^{-8} \text{ Ом} \cdot \text{м}$) в пределах погрешности.

Метод компенсации можно применять для точного измерения сопротивлений, при этом необходимо наличие точного плеча сравнения. Двойной мост Томсона используется для измерения малых сопротивлений и позволяет уменьшить влияние сопротивлений на узлах цепи.