Regresión lineal y logística

Víctor Mijangos

Facultad de Ingeniería

La **regresión lineal** [1] se puede considerar un método de aprendizaje de máquina: Predice valores reales a partir de datos observables.

La idea general es encontrar una función lineal que describa el comportamiento de los datos.

Dado un conjunto de datos X, descrito por variables $X_1, X_2, ..., X_d$, queremos predecir la dependencia de una variable de salida Y.

Buscamos encontrar una función f tal que:

$$f(x) = y$$

Donde x es un vector de entrada, y y es un valor continuo de Y.

Fundamentos de la regresión 00000000

El problema de regresión busca determinar una función continua, de la forma:

$$f: X \subseteq \mathbb{R}^d \to Y \subseteq \mathbb{R}$$

Donde X es un conjunto de datos observados. La variable Y es una variable **continúa**.

Esta función puede determinarse como:

$$f(x_1,...,x_d) = p(Y = y|x_1,...,x_d)$$

Donde el vector $x = (x_1, ..., x_d) \in X$ es un dato observado.

Se busca una función linea que describa estos datos. Una función lineal es aquella que cumple:

Relación con la teoría de la información

$$f(\lambda x + x') = \lambda f(x) + f(x')$$

Y puede verse que las funciones lineales de \mathbb{R}^d a \mathbb{R} son de la forma:

$$f(x) = wx$$

Tal que $w \in (\mathbb{R}^d)^*$.

En la práctica se utiliza un parámetro de sesgo o bias, tal que las funciones son:

$$f(x) = wx + b$$

 $\operatorname{con} w \in (\mathbb{R}^d)^*, b \in \mathbb{R}.$

Regresión lineal y media

La relación de esta función lineal con la distribución de probabilidad es la **media**:

$$\mu := \mathbb{E}[Y|x_1, ..., x_d]$$

$$= w_1x_1 + ... + w_dx_d + b = wx + b$$

Ejemplo de regresión lineal

Ejempĺo

Supóngase que se tiene una lista de casas, tal que se conoce el número promedio de cuarto (X) y el precio

de la casa (Y):

	Х	Y
Casa 1	6	22.9
Casa 2	7.14	36.2
Casa 3	6.4	21.6
Casa 4	6.7	30.5
Casa 5	5.1	16.3
Casa 6	7.15	37.3
Casa 7	8.3	50
Caa 8	8.2	48

Ejemplo de regresión lineal

000000000

Figura: Visualización de los datos de los precios de casas según el número de cuartos.

Regresión lineal y dependencia lineal

Pueden plantearse la preguntas:

- Existe una correlación (lineal) entre las variables X e Y.
- ► Si existe ¿cómo se comporta esta correlación?

A partir de la regresión lineal, podemos estimar la correlación que existe entre una y otra variable.

00000000

Una correlación estima la dependencia entre dos variables aleatorias. Una alta correlacion asegura que la regresión lineal se acople a los datos adecuadamente.

Residuos en regresión lineal

El objetivo es entonces predecir el valor de salida y de un valor de entrada x. Podemos estimar que el valor y es [1]:

$$y = wx + b + \epsilon_y$$

Aquí, ϵ_v es un residuo.

Residuos en regresión lineal

Despejando la función anterior, obtenemos que los residuos se calculan como:

$$\epsilon_y = y - wx + b$$

O bien, como:

$$\epsilon_y = y - f(x)$$

Función de riesgo en regresión

Para garantizar que la regresión es adecuada, se busca que la suma de los residuos sea pequeña. Surgen dos aproximaciones:

Least-absolute value (LAV):

$$R(f) = \sum_{S} |y - f(x)|$$

Least-squares:

$$R(f) = \sum_{S} (y - f(x))^2$$

El método de least-squares representa mayor sencillez para resolverse.

Hasta ahora contamos con los siguientes elementos:

- 1. Un conjunto de datos supervisados $S = \{(x,y) : x \in \mathbb{R}^d, y \in \mathbb{R}\}$ (se espera que exista una correlación lineal entre X y Y).
- 2. Una función que define la ML:

$$f(x) = wx + b$$

tal que $w \in \mathbb{R}^d$ y $b \in \mathbb{R}$ son los parámetros a aprender.

3. Una función de riesgo:

$$R(f) = \frac{1}{2} \sum_{\mathcal{S}} (y - f(x))^2$$

(El factor $\frac{1}{2}$ ayuda a simplificar la derivación).

Regresión lineal como problema de aprendizaje

El objetivo es encontrar una función \hat{f} (dependiente de w y b) que minimice la función de riesgo. Asumimos que R es convexa, entonces buscamos su punto de inflexión tal que:

Relación con la teoría de la información

De aquí que:

$$\nabla_w R(f) = 0$$

$$\nabla_{w} \frac{1}{2} \sum_{S} (y - f(x))^{2} = 0$$

$$\nabla_{w} \frac{1}{2} ||Y - Xw||^{2} = 0$$

$$X^{T}Y - X^{T}Xw = 0$$

$$(X^{T}X)^{-1}X^{T}Y = w$$

Regresión lineal como problema de aprendizaje

Se ha incorporado el bias al vector w([w; b]). Y es el vector de valores esperados y X la matriz

cuyos renglones son los ejemplos.

Tenemos, entonces que:

$$\arg \min_{w} \frac{1}{2} ||Y - Xw||^2 = (X^T X)^{-1} X^T Y$$

Regresión lineal y distribución normal

Regresión como modelo paramétrico

La regresión lineal es un modelo paramétrico, en tanto asume propiedades de la distribución de los datos.

Desde una perspectiva probabilística, la regresión lineal busca estimar $\mathbf{p}(\mathbf{y}|\mathbf{x})$ asumiendo que:

$$y \sim N(\mu, 1)$$

Es decir, asume una distribución normal.

Distribución normal

En este sentido, la función de probabilidad depende de dos parámetros: media y varianza. Esta última se asume igual a 1, tal que:

$$p(y|x) = \frac{1}{\sqrt{2\pi}} exp[-\frac{1}{2}(y-\mu)^2]$$

El objetivo entonces es estimar la media μ con respecto a los datos X de entrada determinada como:

$$\mu = \mathbb{E}[Y|X] = wx + b$$

Relación con la entropía

Dada la función de probabilidad (que depende de μ , ergo de w) se busca minimizar la entropía:

$$R(w) = -\frac{1}{N} \sum_{y} \ln p(y|x)$$

Es decir, encontrar la mejor función de distribución p(y|x) se reduce a encontrar los valores w que mejor describen la media.

Objetivo: Minimizar la función R(w), que depende de w.

Deducción de la función de riesgo

$$\arg \min R(w) = \arg \min - \sum_{y} \ln \frac{1}{\sqrt{2\pi}} exp[-\frac{1}{2}(y-\mu)^{2}]$$

$$= \arg \min - \sum_{y} [\ln \frac{1}{\sqrt{2\pi}}] - \ln exp[\frac{1}{2}(y-\mu)^{2}]$$

$$= \arg \min - \sum_{y} [\ln \frac{1}{\sqrt{2\pi}}] - \frac{1}{2}(y-\mu)^{2}$$

$$= \arg \min \frac{1}{2} \sum_{S} (y-\mu)^{2}$$

$$= \arg \min \frac{1}{2} \sum_{S} (y-(wx+b))^{2}$$

Fundamentos de regresión logística

Muy ligado a la regresión logística, otro modelo de estimación es la regresión logística [2].

Relación con la teoría de la información

En este caso, se busca estimar una variable Y discreta. Esto es, buscamos una función f:

$$f: X \subseteq \mathbb{R}^d \to \{0,1\}$$

Se trata de una función de **clasificación**. ¿Se puede aproximar por una función lineal?

Se puede realizar una estimación lineal; sin embargo, no es del todo satisfactoria.

Relación con la teoría de la información

Por tanto, una función lineal no es suficiente para el problema de clasificación.

Una mejor aproximación a los datos de clasificación se da al "doblar" la recta.

Una función de este tipo, toca más puntos en las clases observadas.

Relación con la teoría de la información

Calculo de la probabilidad

Se asume que se tienen dos clases, 1 y 0. Si denotamos p := p(Y = 1|X = x), entonces, el logaritmo del cociente de las probabilidades es:

$$\ln \frac{p}{1-p} = b + \sum_{i} w_{i}x_{i} = wx + b$$

De aquí podemos observar que:

$$\frac{p}{1-p}=e^{wx+b}$$

Despejando p obtenemos la probabilidad de que se obtenga el valor 1.

Función logística

Se define la función logística como:

$$f(\mu)$$

$$f(\mu) = \frac{1}{1 + e^{-\mu}}$$

$$=\frac{e^{\mu}}{e^{\mu}+1}$$

Donde:

$$\mu = wx + b$$

Ya que esta función depende de x, podemos denotar la función logística como f(x).

Regresión logística y probabilidad

Dentro de las propiedades de la función logística, vemos se que cumple que para toda $x \in X$:

$$0 \le f(x) \le 1$$

Se puede ver esta función, como una probabilidad determinada como:

$$p(Y = 1|x) = \frac{1}{1 + e^{-wx - b}} = f(x)$$

Y por otra parte:

$$p(Y = 0|x) = 1 - p(Y = 1|x) = \frac{1}{1 + e^{wx + b}} = f(-x)$$

Regresión logística y probabilidad

Puede observarse que esta función cumple que:

References

Applied regression analysis and generalized linear models.

Sage Publications, 2015.

David G Kleinbaum, K Dietz, M Gail, Mitchel Klein, and Mitchell Klein.

Logistic regression.

Springer, 2002.

