BayesPy Documentation

Release 0.1

Jaakko Luttinen

CONTENTS

1		1
	1.1 Project information	
	1.2 Similar projects	
2	2.1 Installation	5
3	3.1 Regression 3.2 Gaussian mixture model 3.3 Bernoulli mixture model 3.4 Discrete hidden Markov model 3.5 Hidden Markov model 3.6 Principal component analysis 3.7 Linear state-space model	27 34 35 35 39 39
4		45
5	4.1 Variational message passing	45 46 47 47 47
5	4.1 Variational message passing 4.2 Implementing nodes 5 User API 5.1 bayespy.nodes 5.2 bayespy.inference 5.3 bayespy.plot 6 Developer API 6.1 Developer nodes 6.2 Moments 6.3 Distributions	
5	4.1 Variational message passing 4.2 Implementing nodes 5 User API 5.1 bayespy.nodes 5.2 bayespy.inference 5.3 bayespy.plot 6 Developer API 6.1 Developer nodes 6.2 Moments 6.3 Distributions 6.4 Utility functions	
5 6	4.1 Variational message passing 4.2 Implementing nodes 5 User API 5.1 bayespy.nodes 5.2 bayespy.inference 5.3 bayespy.plot 6 Developer API 6.1 Developer nodes 6.2 Moments 6.3 Distributions 6.4 Utility functions 7 Indices and tables	astallation 3 buck start guide 5 constructing the model 8 erforming inference 15 xamining the results 20 les 27 eegression 27 aussian mixture model 34 eerroulli mixture model 34 eincipal component analysis 39 rincipal component analysis 39 inear state-space model 39 atent Dirichlet allocation 43 ver guide 45 ariational message passing 45 mplementing nodes 46 PI 47 ayespy.inference 136 ayespy.inference 136 ayespy.inference 136 doments 153 beveloper nodes 153 foments 153 sistributions 191 titity functions 229 and tables 259
5 6 7 Bil	4.1 Variational message passing 4.2 Implementing nodes 5 User API 5.1 bayespy.nodes 5.2 bayespy.inference 5.3 bayespy.plot 6 Developer API 6.1 Developer nodes 6.2 Moments 6.3 Distributions 6.4 Utility functions 7 Indices and tables Bibliography	

Index 265

INTRODUCTION

BayesPy provides tools for Bayesian inference with Python. The user constructs a model as a Bayesian network, observes data and runs posterior inference. The goal is to provide a tool which is efficient, flexible and extendable enough for expert use but also accessible for more casual users.

Currently, only variational Bayesian inference for conjugate-exponential family (variational message passing) has been implemented. Future work includes variational approximations for other types of distributions and possibly other approximate inference methods such as expectation propagation, Laplace approximations, Markov chain Monte Carlo (MCMC) and other methods. Contributions are welcome.

It is recommended to use the latest version from the GitHub master branch. The version in PyPI is quite outdated.

1.1 Project information

Copyright (C) 2011-2014 Jaakko Luttinen, Aalto University

BayesPy including the documentation is licensed under Version 3.0 of the GNU General Public License. See LICENSE file for a text of the license or visit http://www.gnu.org/copyleft/gpl.html.

- Documentation:
 - http://bayespy.org
 - PDF file
 - RST format in doc directory
- · Repository: https://github.com/bayespy/bayespy.git
- Bug reports: https://github.com/bayespy/bayespy/issues
- Mailing list: bayespy@googlegroups.com
- IRC: #bayespy @ freenode
- Author: Jaakko Luttinen jaakko.luttinen@iki.fi
- Latest release:
- Build status:
- Unit test coverage:

1.2 Similar projects

VIBES (http://vibes.sourceforge.net/) allows variational inference to be performed automatically on a Bayesian network. It is implemented in Java and released under revised BSD license.

Bayes Blocks (http://research.ics.aalto.fi/bayes/software/) is a C++/Python implementation of the variational building block framework. The framework allows easy learning of a wide variety of models using variational Bayesian learning. It is available as free software under the GNU General Public License.

Infer.NET (http://research.microsoft.com/infernet/) is a .NET framework for machine learning. It provides message-passing algorithms and statistical routines for performing Bayesian inference. It is partly closed source and licensed for non-commercial use only.

PyMC (https://github.com/pymc-devs/pymc) provides MCMC methods in Python. It is released under the Academic Free License.

OpenBUGS (http://www.openbugs.info) is a software package for performing Bayesian inference using Gibbs sampling. It is released under the GNU General Public License.

Dimple (http://dimple.probprog.org/) provides Gibbs sampling, belief propagation and a few other inference algorithms for Matlab and Java. It is released under the Apache License.

Stan (http://mc-stan.org/) provides inference using MCMC with an interface for R and Python. It is released under the New BSD License.

PBNT - Python Bayesian Network Toolbox (http://pbnt.berlios.de/) is Bayesian network library in Python supporting static networks with discrete variables. There was no information about the license.

CHAPTER

TWO

USER GUIDE

2.1 Installation

BayesPy is a Python 3 package and it can be installed from PyPI or the latest development version from GitHub. The instructions below explain how to set up the system by installing required packages, how to install BayesPy and how to compile this documentation yourself. However, if these instructions contain errors or some relevant details are missing, please file a bug report at https://github.com/bayespy/bayespy/issues.

2.1.1 Installing requirements

BayesPy requires Python 3.2 (or later) and the following packages:

- NumPy (>=1.8.0),
- SciPy (>=0.13.0)
- matplotlib (>=1.2)
- h5py

Ideally, a manual installation of these dependencies is not required and you can skip to the next section "Installing Bayespy". However, there are several reasons why the installation of BayesPy as described in the next section won't work because of your system. Thus, this section tries to give as detailed and robust a method of setting up your system such that the installation of BayesPy should work.

A proper installation of the dependencies for Python 3 can be a bit tricky and you may refer to http://www.scipy.org/install.html for more detailed instructions about the SciPy stack. If your system has an older version of any of the packages (NumPy, SciPy or matplotlib) or it does not provide the packages for Python 3, you may set up a virtual environment and install the latest versions there. To create and activate a new virtual environment, run

```
virtualenv -p python3 --system-site-packages ENV
source ENV/bin/activate
```

If you have relevant system libraries installed (C compiler, Python development files, BLAS/LAPACK etc.), you may be able to install the Python packages from PyPI. For instance, on Ubuntu (>= 12.10), you may install the required system libraries for each package as:

```
sudo apt-get build-dep python3-numpy
sudo apt-get build-dep python3-scipy
sudo apt-get build-dep python3-matplotlib
sudo apt-get build-dep python-h5py
```

Then installation/upgrade from PyPI should work:

```
pip install distribute --upgrade
pip install numpy --upgrade
pip install scipy --upgrade
pip install matplotlib --upgrade
pip install h5py
```

Note that Matplotlib requires a quite recent version of Distribute (>=0.6.28). If you have problems installing any of these packages, refer to the manual of that package.

2.1.2 Installing BayesPy

If the system has been properly set up and the virtual environment is activated (optional), latest release of BayesPy can be installed from PyPI simply as

```
pip install bayespy
```

If you want to install the latest development version of BayesPy, use GitHub instead:

```
pip install https://github.com/bayespy/bayespy/archive/master.zip
```

It is recommended to run the unit tests in order to check that BayesPy is working properly. Thus, install Nose and run the unit tests:

```
pip install nose nosetests bayespy
```

2.1.3 Compiling documentation

This documentation can be found at http://bayespy.org/. The documentation source files are readable as such in reStructuredText format in doc/source/ directory. It is possible to compile the documentation into HTML or PDF yourself. In order to compile the documentation, Sphinx is required and a few extensions for it. Those can be installed as:

```
pip install sphinx sphinxcontrib-tikz sphinxcontrib-bayesnet
```

In addition, the numpydoc extension for Sphinx is required. However, the latest stable release (0.4) does not support Python 3, thus one needs to install the development version:

```
pip install https://github.com/numpy/numpydoc/archive/master.zip
```

In order to visualize graphical models in HTML, you need to have pnmcrop. On Ubuntu, it can be installed as

```
sudo apt-get install netpbm
```

The documentation can be compiled to HTML and PDF by running the following commands in the doc directory:

```
make html
make latexpdf
```

2.1.4 Converting notebooks

The documentation uses IPython notebooks for the examples. This is a convenient format for sharing Python examples with comments. The notebooks can be converted, for instance, to documentation files or Python scripts. BayesPy repository contains those notebook files (.ipynb) and their conversions to RST format for the documentation. If you

want to convert the notebooks into RST files, Python scripts or some other format yourself, follow these instructions. First, the following packages are required:

```
pip install ipython pyzmq
```

You need quite a recent IPython. You may also need to install Pandoc. In Ubuntu, this can be done as:

```
sudo aptitude install pandoc
```

Now, the notebooks can be converted to RST for the documentation by running the following command in the doc directory:

```
make notebooks
```

Or you can convert the notebooks to RST or Python (or something else) for your own use:

```
ipython nbconvert --to rst doc/source/_notebooks/*.ipynb
ipython nbconvert --to python doc/source/_notebooks/*.ipynb
```

The Python scripts can be used to run the examples as such. There are also more formats available in case you want the examples in HTML, LaTeX, or some other format.

You can also open the notebooks interactively in a web browser by going to the notebooks directory and running the IPython notebook:

```
cd doc/source/_notebooks
ipython notebook
```

This should run a simple server and open a web browser.

You can also run doctest to test code snippets in the documentation:

```
make doctest
```

or in the docstrings:

```
nosetests --with-doctest bayespy
```

2.2 Quick start guide

This short guide shows the key steps in using BayesPy for variational Bayesian inference by applying BayesPy to a simple problem. The key steps in using BayesPy are the following:

- · Construct the model
- Observe some of the variables by providing the data in a proper format
- Run variational Bayesian inference
- Examine the resulting posterior approximation

To demonstrate BayesPy, we'll consider a very simple problem: we have a set of observations from a Gaussian distribution with unknown mean and variance, and we want to learn these parameters. In this case, we do not use any real-world data but generate some artificial data. The dataset consists of ten samples from a Gaussian distribution with mean 5 and standard deviation 10. This dataset can be generated with NumPy as follows:

```
>>> import numpy as np
>>> data = np.random.normal(5, 10, size=(10,))
```

2.2.1 Constructing the model

Now, given this data we would like to estimate the mean and the standard deviation as if we didn't know their values. The model can be defined as follows:

$$p(\mathbf{y}|\mu,\tau) = \prod_{n=0}^{9} \mathcal{N}(y_n|\mu,\tau)$$
$$p(\mu) = \mathcal{N}(\mu|0, 10^{-6})$$
$$p(\tau) = \mathcal{G}(\tau|10^{-6}, 10^{-6})$$

where \mathcal{N} is the Gaussian distribution parameterized by its mean and precision (i.e., inverse variance), and \mathcal{G} is the gamma distribution parameterized by its shape and rate parameters. Note that we have given quite uninformative priors for the variables μ and τ . This simple model can also be shown as a directed factor graph: This model can be

Figure 2.1: Directed factor graph of the example model.

constructed in BayesPy as follows:

```
>>> from bayespy.nodes import GaussianARD, Gamma
>>> mu = GaussianARD(0, 1e-6)
>>> tau = Gamma(1e-6, 1e-6)
>>> y = GaussianARD(mu, tau, plates=(10,))
```

This is quite self-explanatory given the model definitions above. We have used two types of nodes <code>GaussianARD</code> and <code>Gamma</code> to represent Gaussian and gamma distributions, respectively. There are much more distributions in <code>bayespy.nodes</code> so you can construct quite complex conjugate exponential family models. The node y uses keyword argument <code>plates</code> to define the plates $n=0,\ldots,9$.

2.2.2 Performing inference

Now that we have created the model, we can provide our data by setting y as observed:

```
>>> y.observe(data)
```

Next we want to estimate the posterior distribution. In principle, we could use different inference engines (e.g., MCMC or EP) but currently only variational Bayesian (VB) engine is implemented. The engine is initialized by giving all the nodes of the model:

```
>>> from bayespy.inference import VB
>>> Q = VB(mu, tau, y)
```

The inference algorithm can be run as long as wanted (max. 20 iterations in this case):

```
>>> Q.update(repeat=20)

Iteration 1: loglike=-6.020956e+01 (... seconds)

Iteration 2: loglike=-5.820527e+01 (... seconds)

Iteration 3: loglike=-5.820290e+01 (... seconds)

Iteration 4: loglike=-5.820288e+01 (... seconds)

Converged at iteration 4.
```

Now the algorithm converged after four iterations, before the requested 20 iterations. VB approximates the true posterior $p(\mu, \tau | \mathbf{y})$ with a distribution which factorizes with respect to the nodes: $q(\mu)q(\tau)$.

2.2.3 Examining posterior approximation

The resulting approximate posterior distributions $q(\mu)$ and $q(\tau)$ can be examined, for instance, by plotting the marginal probability density functions:

```
>>> import bayespy.plot as bpplt
>>> bpplt.pyplot.subplot(2, 1, 1)
<matplotlib.axes.AxesSubplot object at 0x...>
>>> bpplt.pdf(mu, np.linspace(-10, 20, num=100), color='k', name=r'\mu')
[<matplotlib.lines.Line2D object at 0x...>]
>>> bpplt.pyplot.subplot(2, 1, 2)
<matplotlib.axes.AxesSubplot object at 0x...>
>>> bpplt.pdf(tau, np.linspace(1e-6, 0.08, num=100), color='k', name=r'\tau')
[<matplotlib.lines.Line2D object at 0x...>]
>>> bpplt.pyplot.tight_layout()
>>> bpplt.pyplot.show()
```


This example was a very simple introduction to using BayesPy. The model can be much more complex and each phase contains more options to give the user more control over the inference. The following sections give more details about the phases.

2.3 Constructing the model

In BayesPy, the model is constructed by creating nodes which form a directed network. There are two types of nodes: stochastic and deterministic. A stochastic node corresponds to a random variable (or a set of random variables) from a specific probability distribution. A deterministic node corresponds to a deterministic function of its parents. For a list of built-in nodes, see the *User API*.

2.3.1 Creating nodes

Creating a node is basically like writing the conditional prior distribution of the variable in Python. The node is constructed by giving the parent nodes, that is, the conditioning variables as arguments. The number of parents and their meaning depend on the node. For instance, a Gaussian node is created by giving the mean vector and the precision matrix. These parents can be constant numerical arrays if they are known:

```
>>> from bayespy.nodes import Gaussian
>>> X = Gaussian([2, 5], [[1.0, 0.3], [0.3, 1.0]])
```

or other nodes if they are unknown and given prior distributions:

```
>>> from bayespy.nodes import Gaussian, Wishart
>>> mu = Gaussian([0, 0], [[1e-6, 0], [0, 1e-6]])
>>> Lambda = Wishart(2, [[1, 0], [0, 1]])
>>> X = Gaussian(mu, Lambda)
```

Nodes can also be named by providing name keyword argument:

```
>>> X = Gaussian(mu, Lambda, name='x')
```

The name may be useful when referring to the node using an inference engine.

For the parent nodes, there are two main restrictions: non-constant parent nodes must be conjugate and the parent nodes must be mutually independent in the posterior approximation.

Conjugacy of the parents

In Bayesian framework in general, one can give quite arbitrary probability distributions for variables. However, one often uses distributions that are easy to handle in practice. Quite often this means that the parents are given conjugate priors. This is also one of the limitations in BayesPy: only conjugate family prior distributions are accepted currently. Thus, although in principle one could give, for instance, gamma prior for the mean parameter mu, only Gaussian-family distributions are accepted because of the conjugacy. If the parent is not of a proper type, an error is raised. This conjugacy is checked automatically by BayesPy and NoConverterError is raised if a parent cannot be interpreted as being from a conjugate distribution.

Independence of the parents

Another a bit rarely encountered limitation is that the parents must be mutually independent (in the posterior factorization). Thus, a node cannot have the same stochastic node as several parents without intermediate stochastic nodes. For instance, the following leads to an error:

```
>>> from bayespy.nodes import Dot
>>> Y = Dot(X, X)
Traceback (most recent call last):
...
ValueError: Parent nodes are not independent
```

The error is raised because X is given as two parents for Y, and obviously X is not independent of X in the posterior approximation. Even if X is not given several times directly but there are some intermediate deterministic nodes, an error is raised because the deterministic nodes depend on their parents and thus the parents of Y would not be independent. However, it is valid that a node is a parent of another node via several paths if all the paths or all except one path has intermediate stochastic nodes. This is valid because the intermediate stochastic nodes have independent posterior approximations. Thus, for instance, the following construction does not raise errors:

```
>>> from bayespy.nodes import Dot
>>> Z = Gaussian(X, [[1,0], [0,1]])
>>> Y = Dot(X, Z)
```

This works because there is now an intermediate stochastic node Z on the other path from X node to Y node.

2.3.2 Effects of the nodes on inference

When constructing the network with nodes, the stochastic nodes actually define three important aspects:

- 1. the prior probability distribution for the variables,
- 2. the factorization of the posterior approximation,

3. the functional form of the posterior approximation for the variables.

Prior probability distribution

First, the most intuitive feature of the nodes is that they define the prior distribution. In the previous example, mu was a stochastic GaussianARD node corresponding to μ from the normal distribution, tau was a stochastic Gamma node corresponding to τ from the gamma distribution, and y was a stochastic GaussianARD node corresponding to y from the normal distribution with mean μ and precision τ . If we denote the set of all stochastic nodes by Ω , and by π_X the set of parents of a node X, the model is defined as

$$p(\Omega) = \prod_{X \in \Omega} p(X|\pi_X),$$

where nodes correspond to the terms $p(X|\pi_X)$.

Posterior factorization

Second, the nodes define the structure of the posterior approximation. The variational Bayesian approximation factorizes with respect to nodes, that is, each node corresponds to an independent probability distribution in the posterior approximation. In the previous example, mu and tau were separate nodes, thus the posterior approximation factorizes with respect to them: $q(\mu)q(\tau)$. Thus, the posterior approximation can be written as:

$$p(\tilde{\Omega}|\hat{\Omega}) \approx \prod_{X \in \tilde{\Omega}} q(X),$$

where $\tilde{\Omega}$ is the set of latent stochastic nodes and $\hat{\Omega}$ is the set of observed stochastic nodes. Sometimes one may want to avoid the factorization between some variables. For this purpose, there are some nodes which model several variables jointly without factorization. For instance, GaussianGammaISO is a joint node for μ and τ variables from the normal-gamma distribution and the posterior approximation does not factorize between μ and τ , that is, the posterior approximation is $q(\mu, \tau)$.

Functional form of the posterior

Last, the nodes define the functional form of the posterior approximation. Usually, the posterior approximation has the same or similar functional form as the prior. For instance, Gamma uses gamma distribution to also approximate the posterior distribution. Similarly, GaussianARD uses Gaussian distribution for the posterior. However, the posterior approximation of GaussianARD uses a full covariance matrix although the prior assumes a diagonal covariance matrix. Thus, there can be slight differences in the exact functional form of the posterior approximation but the rule of thumb is that the functional form of the posterior approximation is the same as or more general than the functional form of the prior.

2.3.3 Using plate notation

Defining plates

Stochastic nodes take the optional parameter plates, which can be used to define plates of the variable. A plate defines the number of repetitions of a set of variables. For instance, a set of random variables y_{mn} could be defined as

$$\mathbf{y}_{mn} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Lambda}), \qquad m = 0, \dots, 9, \quad n = 0, \dots, 29.$$

This can also be visualized as a graphical model:

The variable has two plates: one for the index m and one for the index n. In BayesPy, this random variable can be constructed as:

```
>>> y = Gaussian(mu, Lambda, plates=(10,30))
```

Note: The plates are always given as a tuple of positive integers.

Plates also define indexing for the nodes, thus you can use simple NumPy-style slice indexing to obtain a subset of the plates:

```
>>> y_0 = y[0]
>>> y_0.plates
(30,)
>>> y_even = y[:,::2]
>>> y_even.plates
(10, 15)
>>> y_complex = y[:5, 10:20:5]
>>> y_complex.plates
(5, 2)
```

Note that this indexing is for the plates only, not for the random variable dimensions.

Sharing and broadcasting plates

Instead of having a common mean and precision matrix for all y_{mn} , it is also possible to share plates with parents. For instance, the mean could be different for each index m and the precision for each index n:

$$\mathbf{y}_{mn} \sim \mathcal{N}(\boldsymbol{\mu}_m, \boldsymbol{\Lambda}_n), \qquad m = 0, \dots, 9, \quad n = 0, \dots, 29.$$

which has the following graphical representation:

This can be constructed in BayesPy, for instance, as:

```
>>> from bayespy.nodes import Gaussian, Wishart
>>> mu = Gaussian([0, 0], [[1e-6, 0], [0, 1e-6]], plates=(10,1))
>>> Lambda = Wishart(2, [[1, 0], [0, 1]], plates=(1,30))
>>> X = Gaussian(mu, Lambda)
```

There are a few things to notice here. First, the plates are defined similarly as shapes in NumPy, that is, they use similar broadcasting rules. For instance, the plates (10,1) and (1,30) broadcast to (10,30). In fact, one could use plates (10,1) and (30,1) to get the broadcasted plates (10,30) because broadcasting compares the plates from right to left starting from the last axis. Second, X is not given plates keyword argument because the default plates are the plates broadcasted from the parents and that was what we wanted so it was not necessary to provide the keyword argument. If we wanted, for instance, plates (20,10,30) for X, then we would have needed to provide plates=(20,10,30).

The validity of the plates between a child and its parents is checked as follows. The plates are compared plate-wise starting from the last axis and working the way forward. A plate of the child is compatible with a plate of the parent if either of the following conditions is met:

- 1. The two plates have equal size
- 2. The parent has size 1 (or no plate)

Table below shows an example of compatible plates for a child node and its two parent nodes:

node	plates							
parent1		3	1	1	1	8	10	
parent2			1	1	5	1	10	
child	5	3	1	7	5	8	10	

Plates in deterministic nodes

Note that plates can be defined explicitly only for stochastic nodes. For deterministic nodes, the plates are defined implicitly by the plate broadcasting rules from the parents. Deterministic nodes do not need more plates than this because there is no randomness. The deterministic node would just have the same value over the extra plates, but it is not necessary to do this explicitly because the child nodes of the deterministic node can utilize broadcasting anyway. Thus, there is no point in having extra plates in deterministic nodes, and for this reason, deterministic nodes do not use plates keyword argument.

Plates in constants

It is useful to understand how the plates and the shape of a random variable are connected. The shape of an array which contains all the plates of a random variable is the concatenation of the plates and the shape of the variable. For instance, consider a 2-dimensional Gaussian variable with plates (3,). If you want the value of the constant mean vector and constant precision matrix to vary between plates, they are given as (3,2)-shape and (3,2,2)-shape arrays, respectively:

```
>>> import numpy as np
\rightarrow \rightarrow mu = [[0,0], [1,1], [2,2]]
>>> Lambda = [ [[1.0, 0.0],
                 [0.0, 1.0]],
                 [[1.0, 0.9],
                  [0.9, 1.0]],
                 [[1.0, -0.3],
                 [-0.3, 1.0]]
. . .
>>> X = Gaussian(mu, Lambda)
>>> np.shape(mu)
(3, 2)
>>> np.shape(Lambda)
(3, 2, 2)
>>> X.plates
(3,)
```

Thus, the leading axes of an array are the plate axes and the trailing axes are the random variable axes. In the example above, the mean vector has plates (3,) and shape (2,2), and the precision matrix has plates (3,) and shape (2,2).

Factorization of plates

It is important to undestand the independency structure the plates induce for the model. First, the repetitions defined by a plate are independent a priori given the parents. Second, the repetitions are independent in the posterior approximation, that is, the posterior approximation factorizes with respect to plates. Thus, the plates also have an effect on the independence structure of the posterior approximation, not only prior. If dependencies between a set of variables need to be handled, that set must be handled as a some kind of multi-dimensional variable.

Irregular plates

The handling of plates is not always as simple as described above. There are cases in which the plates of the parents do not map directly to the plates of the child node. The user API should mention such irregularities.

For instance, the parents of a mixture distribution have a plate which contains the different parameters for each cluster, but the variable from the mixture distribution does not have that plate:

```
>>> from bayespy.nodes import Gaussian, Wishart, Categorical, Mixture
>>> mu = Gaussian([[0], [0], [0]], [[[1]], [[1]], [[1]]])
>>> Lambda = Wishart(1, [ [[1]], [[1]], [[1]]])
>>> Z = Categorical([1/3, 1/3, 1/3], plates=(100,))
>>> X = Mixture(Z, Gaussian, mu, Lambda)
>>> mu.plates
(3,)
>>> Lambda.plates
(3,)
>>> Z.plates
(100,)
>>> X.plates
(100,)
```

The plates (3,) and (100,) should not broadcast according to the rules mentioned above. However, when validating the plates, Mixture removes the plate which corresponds to the clusters in mu and Lambda. Thus, X has plates which are the result of broadcasting plates () and (100,) which equals (100,).

Also, sometimes the plates of the parents may be mapped to the variable axes. For instance, an automatic relevance determination (ARD) prior for a Gaussian variable is constructed by giving the diagonal elements of the precision matrix (or tensor). The Gaussian variable itself can be a scalar, a vector, a matrix or a tensor. A set of five 4×3 -dimensional Gaussian matrices with ARD prior is constructed as:

```
>>> from bayespy.nodes import GaussianARD, Gamma
>>> tau = Gamma(1, 1, plates=(5,4,3))
>>> X = GaussianARD(0, tau, shape=(4,3))
>>> tau.plates
(5, 4, 3)
>>> X.plates
(5,)
```

Note how the last two plate axes of tau are mapped to the variable axes of X with shape (4,3) and the plates of X are obtained by taking the remaining leading plate axes of tau.

2.3.4 Example model: Principal component analysis

Now, we'll construct a bit more complex model which will be used in the following sections. The model is a probabilistic version of principal component analysis (PCA):

$$\mathbf{Y} = \mathbf{C}\mathbf{X}^T + \text{noise}$$

where \mathbf{Y} is $M \times N$ data matrix, \mathbf{C} is $M \times D$ loading matrix, \mathbf{X} is $N \times D$ state matrix, and noise is isotropic Gaussian. The dimensionality D is usually assumed to be much smaller than M and N.

A probabilistic formulation can be written as:

$$p(\mathbf{Y}) = \prod_{m=0}^{M-1} \prod_{n=0}^{N-1} \mathcal{N}(y_{mn} | \mathbf{c}_m^T \mathbf{x}_n, \tau)$$

$$p(\mathbf{X}) = \prod_{n=0}^{N-1} \prod_{d=0}^{D-1} \mathcal{N}(x_{nd} | 0, 1)$$

$$p(\mathbf{C}) = \prod_{m=0}^{M-1} \prod_{d=0}^{D-1} \mathcal{N}(c_{md} | 0, \alpha_d)$$

$$p(\boldsymbol{\alpha}) = \prod_{d=0}^{D-1} \mathcal{G}(\alpha_d | 10^{-3}, 10^{-3})$$

$$p(\tau) = \mathcal{G}(\tau | 10^{-3}, 10^{-3})$$

where we have given automatic relevance determination (ARD) prior for C. This can be visualized as a graphical model:

Now, let us construct this model in BayesPy. First, we'll define the dimensionality of the latent space in our model:

```
>>> D = 3
```

Then the prior for the latent states **X**:

```
>>> X = GaussianARD(0, 1,
... shape=(D,),
... plates=(1,100),
... name='X')
```

Note that the shape of X is (D,), although the latent dimensions are marked with a plate in the graphical model and they are conditionally independent in the prior. However, we want to (and need to) model the posterior dependency of the latent dimensions, thus we cannot factorize them, which would happen if we used plates=(1,100,D) and shape=(). The first plate axis with size 1 is given just for clarity.

The prior for the ARD parameters α of the loading matrix:

```
>>> alpha = Gamma(1e-3, 1e-3, ... plates=(D,), ... name='alpha')
```

The prior for the loading matrix C:

```
>>> C = GaussianARD(0, alpha,
... shape=(D,),
... plates=(10,1),
... name='C')
```

Again, note that the shape is the same as for X for the same reason. Also, the plates of alpha, (D,), are mapped to the full shape of the node C, (10, 1, D), using standard broadcasting rules.

The dot product is just a deterministic node:

```
>>> F = Dot(C, X)
```

However, note that Dot requires that the input Gaussian nodes have the same shape and that this shape has exactly one axis, that is, the variables are vectors. This the reason why we used shape (D,) for X and C but from a bit different perspective. The node computes the inner product of D-dimensional vectors resulting in plates (10,100) broadcasted from the plates (1,100) and (10,1):

```
>>> F.plates (10, 100)
```

The prior for the observation noise τ :

```
>>> tau = Gamma(1e-3, 1e-3, name='tau')
```

Finally, the observations are conditionally independent Gaussian scalars:

```
>>> Y = GaussianARD(F, tau, name='Y')
```

Now we have defined our model and the next step is to observe some data and to perform inference.

2.4 Performing inference

Approximation of the posterior distribution can be divided into several steps:

- Observe some nodes
- Choose the inference engine
- Initialize the posterior approximation
- Run the inference algorithm

In order to illustrate these steps, we'll be using the PCA model constructed in the previous section.

2.4.1 Observing nodes

First, let us generate some toy data:

```
>>> c = np.random.randn(10, 2)
>>> x = np.random.randn(2, 100)
>>> data = np.dot(c, x) + 0.1*np.random.randn(10, 100)
```

The data is provided by simply calling observe method of a stochastic node:

```
>>> Y.observe(data)
```

It is important that the shape of the data array matches the plates and shape of the node Y. For instance, if Y was Wishart node for 3×3 matrices with plates (5, 1, 10), the full shape of Y would be (5, 1, 10, 3, 3). The data array should have this shape exactly, that is, no broadcasting rules are applied.

Missing values

It is possible to mark missing values by providing a mask which is a boolean array:

```
>>> Y.observe(data, mask=[[True], [False], [False], [True], [True], ... [False], [True], [True], [True], [False]])
```

True means that the value is observed and False means that the value is missing. The shape of the above mask is (10,1), which broadcasts to the plates of Y, (10,100). Thus, the above mask means that the second, third, sixth and tenth rows of the 10×100 data matrix are missing.

The mask is applied to the *plates*, not to the data array directly. This means that it is not possible to observe a random variable partially, each repetition defined by the plates is either fully observed or fully missing. Thus, the mask is applied to the plates. It is often possible to circumvent this seemingly tight restriction by adding an observable child node which factorizes more.

The shape of the mask is broadcasted to plates using standard NumPy broadcasting rules. So, if the variable has plates (5,1,10), the mask could have a shape (),(1,),(1,1),(1,1,1),(10,),(1,10),(1,10),(5,1,1) or (5,1,10). In order to speed up the inference, missing values are automatically integrated out if they are not needed as latent variables to child nodes. This leads to faster convergence and more accurate approximations.

2.4.2 Choosing the inference method

Inference methods can be found in bayespy.inference package. Currently, only variational Bayesian approximation is implemented (bayespy.inference.VB). The inference engine is constructed by giving the stochastic nodes of the model.

```
>>> from bayespy.inference import VB
>>> Q = VB(Y, C, X, alpha, tau)
```

There is no need to give any deterministic nodes. Currently, the inference engine does not automatically search for stochastic parents and children, thus it is important that all stochastic nodes of the model are given. This should be made more robust in future versions.

A node of the model can be obtained by using the name of the node as a key:

```
>>> Q['X']
<bayespy.inference.vmp.nodes.gaussian.GaussianARD object at 0x...>
```

Note that the returned object is the same as the node object itself:

```
>>> Q['X'] is X True
```

Thus, one may use the object X when it is available. However, if the model and the inference engine are constructed in another function or module, the node object may not be available directly and this feature becomes useful.

2.4.3 Initializing the posterior approximation

The inference engines give some initialization to the stochastic nodes by default. However, the inference algorithms can be sensitive to the initialization, thus it is sometimes necessary to have better control over the initialization. For VB, the following initialization methods are available:

- initialize_from_prior: Use the current states of the parent nodes to update the node. This is the default initialization.
- initialize_from_parameters: Use the given parameter values for the distribution.
- initialize from value: Use the given value for the variable.
- initialize_from_random: Draw a random value for the variable. The random sample is drawn from the current state of the node's distribution.

Note that initialize_from_value and initialize_from_random initialize the distribution with a value of the variable instead of parameters of the distribution. Thus, the distribution is actually a delta distribution with a peak on the value after the initialization. This state of the distribution does not have proper natural parameter values nor normalization, thus the VB lower bound terms are np.nan for this initial state.

These initialization methods can be used to perform even a bit more complex initializations. For instance, a Gaussian distribution could be initialized with a random mean and variance 0.1. In our PCA model, this can be obtained by

```
>>> X.initialize_from_parameters(np.random.randn(1, 100, D), 10)
```

Note that the shape of the random mean is the sum of the plates (1, 100) and the variable shape (D,). In addition, instead of variance, GaussianARD uses precision as the second parameter, thus we initialized the variance to $\frac{1}{10}$. This random initialization is important in our PCA model because the default initialization gives C and X zero mean. If the mean of the other variable was zero when the other is updated, the other variable gets zero mean too. This would lead to an update algorithm where both means remain zeros and effectively no latent space is found. Thus, it is important to give non-zero random initialization for X if C is updated before X the first time. It is typical that at least some nodes need be initialized with some randomness.

By default, nodes are initialized with the method initialize_from_prior. The method is not very time consuming but if for any reason you want to avoid that default initialization computation, you can provide initialize=False when creating the stochastic node. However, the node does not have a proper state in that case, which leads to errors in VB learning unless the distribution is initialized using the above methods.

2.4.4 Running the inference algorithm

The approximation methods are based on iterative algorithms, which can be run using update method. By default, it takes one iteration step updating all nodes once:

```
>>> Q.update()
Iteration 1: loglike=-9.305259e+02 (... seconds)
```

The loglike tells the VB lower bound. The order in which the nodes are updated is the same as the order in which the nodes were given when creating Q. If you want to change the order or update only some of the nodes, you can give as arguments the nodes you want to update and they are updated in the given order:

```
>>> Q.update(C, X)
Iteration 2: loglike=-8.818976e+02 (... seconds)
```

It is also possible to give the same node several times:

```
>>> Q.update(C, X, C, tau)
Iteration 3: loglike=-8.071222e+02 (... seconds)
```

Note that each call to update is counted as one iteration step although not variables are necessarily updated. Instead of doing one iteration step, repeat keyword argument can be used to perform several iteration steps:

```
>>> Q.update(repeat=10)

Iteration 4: loglike=-7.167588e+02 (... seconds)

Iteration 5: loglike=-6.827873e+02 (... seconds)

Iteration 6: loglike=-6.259477e+02 (... seconds)

Iteration 7: loglike=-4.725400e+02 (... seconds)

Iteration 8: loglike=-3.270816e+02 (... seconds)

Iteration 9: loglike=-2.208865e+02 (... seconds)

Iteration 10: loglike=-1.658761e+02 (... seconds)

Iteration 11: loglike=-1.469468e+02 (... seconds)

Iteration 12: loglike=-1.420311e+02 (... seconds)

Iteration 13: loglike=-1.405139e+02 (... seconds)
```

The VB algorithm stops automatically if it converges, that is, the relative change in the lower bound is below some threshold:

```
>>> Q.update(repeat=1000)
Iteration 14: loglike=-1.396481e+02 (... seconds)
...
Iteration 488: loglike=-1.224106e+02 (... seconds)
Converged at iteration 488.
```

Now the algorithm stopped before taking 1000 iteration steps because it converged. The relative tolerance can be adjusted by providing tol keyword argument to the update method:

```
>>> Q.update(repeat=10000, tol=1e-6)
Iteration 489: loglike=-1.224094e+02 (... seconds)
...
Iteration 847: loglike=-1.222506e+02 (... seconds)
Converged at iteration 847.
```

Making the tolerance smaller, may improve the result but it may also significantly increase the iteration steps until convergence.

Instead of using update method of the inference engine VB, it is possible to use the update methods of the nodes directly as

```
>>> C.update()
or
>>> Q['C'].update()
```

However, this is not recommended, because the update method of the inference engine VB is a wrapper which, in addition to calling the nodes' update methods, checks for convergence and does a few other useful minor things. But if for any reason these direct update methods are needed, they can be used.

Parameter expansion

Sometimes the VB algorithm converges very slowly. This may happen when the variables are strongly coupled in the true posterior but factorized in the approximate posterior. This coupling leads to zigzagging of the variational parameters which progresses slowly. One solution to this problem is to use parameter expansion. The idea is to add an auxiliary variable which parameterizes the posterior approximation of several variables. Then optimizing this auxiliary variable actually optimizes several posterior approximations jointly leading to faster convergence.

The parameter expansion is model specific. Currently in BayesPy, only state-space models have built-in parameter expansions available. These state-space models contain a variable which is a dot product of two variables (plus some noise):

$$y = \mathbf{c}^T \mathbf{x} + \text{noise}$$

The parameter expansion can be motivated by noticing that we can add an auxiliary variable which rotates the variables \mathbf{c} and \mathbf{x} so that the dot product is unaffected:

$$y = \mathbf{c}^T \mathbf{x} + \text{noise} = \mathbf{c}^T \mathbf{R} \mathbf{R}^{-1} \mathbf{x} + \text{noise} = (\mathbf{R}^T \mathbf{c})^T (\mathbf{R}^{-1} \mathbf{x}) + \text{noise}$$

Now, applying this rotation to the posterior approximations $q(\mathbf{c})$ and $q(\mathbf{x})$, and optimizing the VB lower bound with respect to the rotation leads to parameterized joint optimization of \mathbf{c} and \mathbf{x} .

The available parameter expansion methods are in module transformations:

```
>>> from bayespy.inference.vmp import transformations
```

First, you create the rotation transformations for the two variables:

```
>>> rotX = transformations.RotateGaussianARD(X)
>>> rotC = transformations.RotateGaussianARD(C, alpha)
```

Here, the rotation for C provides the ARD parameters alpha so they are updated simultaneously. In addition to RotateGaussianARD, there are a few other built-in rotations defined, for instance, RotateGaussian and RotateGaussianMarkovChain. It is extremely important that the model satisfies the assumptions made by the rotation class and the user is mostly responsible for this. The optimizer for the rotations is constructed by giving the two rotations and the dimensionality of the rotated space:

```
>>> R = transformations.RotationOptimizer(rotC, rotX, D)
```

Now, calling rotate method will find optimal rotation and update the relevant nodes (X, C and alpha) accordingly:

```
>>> R.rotate()
```

Let us see how our iteration would have gone if we had used this parameter expansion. First, let us re-initialize our nodes and VB algorithm:

```
>>> alpha.initialize_from_prior()
>>> C.initialize_from_prior()
>>> X.initialize_from_parameters(np.random.randn(1, 100, D), 10)
>>> tau.initialize_from_prior()
>>> Q = VB(Y, C, X, alpha, tau)
```

Then, the rotation is set to run after each iteration step:

```
>>> Q.callback = R.rotate
```

Now the iteration converges to the relative tolerance 10^{-6} much faster:

```
>>> Q.update(repeat=1000, tol=1e-6)
Iteration 1: loglike=-9.363500e+02 (... seconds)
...
Iteration 18: loglike=-1.221354e+02 (... seconds)
Converged at iteration 18.
```

The convergence took 18 iterations with rotations and 488 or 847 iterations without the parameter expansion. In addition, the lower bound is improved slightly. One can compare the number of iteration steps in this case because the cost per iteration step with or without parameter expansion is approximately the same. Sometimes the parameter expansion can have the drawback that it converges to a bad local optimum. Usually, this can be solved by updating the nodes near the observations a few times before starting to update the hyperparameters and to use parameter expansion. In any case, the parameter expansion is practically necessary when using state-space models in order to converge to a proper solution in a reasonable time.

2.5 Examining the results

After the results have been obtained, it is important to be able to examine the results easily. The results can be examined either numerically by inspecting numerical arrays or visually by plotting distributions of the nodes. In addition, the posterior distributions can be visualized during the learning algorithm and the results can saved into a file.

2.5.1 Plotting the results

The module plot offers some plotting basic functionality:

```
>>> import bayespy.plot as bpplt
```

The module contains matplotlib.pyplot module if the user needs that. For instance, interactive plotting can be enabled as:

```
>>> bpplt.pyplot.ion()
```

The plot module contains some functions but it is not a very comprehensive collection, thus the user may need to write some problem- or model-specific plotting functions. The current collection is:

- pdf (): show probability density function of a scalar
- contour (): show probability density function of two-element vector
- hinton(): show the Hinton diagram
- plot (): show value as a function

The probability density function of a scalar random variable can be plotted using the function pdf ():

```
>>> bpplt.pyplot.figure()
<matplotlib.figure.Figure object at 0x...>
>>> bpplt.pdf(Q['tau'], np.linspace(60, 140, num=100))
[<matplotlib.lines.Line2D object at 0x...>]
```


The variable tau models the inverse variance of the noise, for which the true value is $0.1^{-2}=100$. Thus, the posterior captures the true value quite accurately. Similarly, the function contour () can be used to plot the probability density function of a 2-dimensional variable, for instance:

```
>>> V = Gaussian([3, 5], [[4, 2], [2, 5]])
>>> bpplt.pyplot.figure()
<matplotlib.figure.Figure object at 0x...>
>>> bpplt.contour(V, np.linspace(1, 5, num=100), np.linspace(3, 7, num=100))
<matplotlib.contour.QuadContourSet object at 0x...>
```


Both pdf() and contour() require that the user provides the grid on which the probability density function is computed. They also support several keyword arguments for modifying the output, similarly as plot and contour in matplotlib.pyplot. These functions can be used only for stochastic nodes. A few other plot types are also available as built-in functions. A Hinton diagram can be plotted as:

```
>>> bpplt.pyplot.figure()
<matplotlib.figure.Figure object at 0x...>
>>> bpplt.hinton(C)
```


The diagram shows the elements of the matrix C. The size of the filled rectangle corresponds to the absolute value of the element mean, and white and black correspond to positive and negative values, respectively. The non-filled rectangle shows standard deviation. From this diagram it is clear that the third column of C has been pruned out and the rows that were missing in the data have zero mean and column-specific variance. The function $\min()$ is a simple wrapper for node-specific Hinton diagram plotters, such as $\mathtt{gaussian_hinton}()$ and $\mathtt{dirichlet_hinton}()$. Thus, the keyword arguments depend on the node which is plotted.

Another plotting function is plot (), which just plots the values of the node over one axis as a function:

```
>>> bpplt.pyplot.figure()
<matplotlib.figure.Figure object at 0x...>
>>> bpplt.plot(X, axis=-2)
```


Now, the axis is the second last axis which corresponds to $n=0,\ldots,N-1$. As D=3, there are three subplots. For Gaussian variables, the function shows the mean and two standard deviations. The plot shows that the third component has been pruned out, thus the method has been able to recover the true dimensionality of the latent space. It also has similar keyword arguments to plot function in matplotlib.pyplot. Again, plot () is a simple wrapper over node-specific plotting functions, thus it supports only some node classes.

2.5.2 Monitoring during the inference algorithm

It is possible to plot the distribution of the nodes during the learning algorithm. This is useful when the user is interested to see how the distributions evolve during learning and what is happening to the distributions. In order to utilize monitoring, the user must set plotters for the nodes that he or she wishes to monitor. This can be done either when creating the node or later at any time.

The plotters are set by creating a plotter object and providing this object to the node. The plotter is a wrapper of one of the plotting functions mentioned above: PDFPlotter, ContourPlotter, HintonPlotter or FunctionPlotter. Thus, our example model could use the following plotters:

```
>>> tau.set_plotter(bpplt.PDFPlotter(np.linspace(60, 140, num=100)))
>>> C.set_plotter(bpplt.HintonPlotter())
>>> X.set_plotter(bpplt.FunctionPlotter(axis=-2))
```

These could have been given at node creation as a keyword argument plotter:

```
>>> V = Gaussian([3, 5], [[4, 2], [2, 5]],
... plotter=bpplt.ContourPlotter(np.linspace(1, 5, num=100),
... np.linspace(3, 7, num=100)))
```

When the plotter is set, one can use the plot method of the node to perform plotting:

```
>>> V.plot()
<matplotlib.contour.QuadContourSet object at 0x...>
```

Nodes can also be plotted using the plot method of the inference engine:

```
>>> Q.plot('C')
```

This method remembers the figure in which a node has been plotted and uses that every time it plots the same node. In order to monitor the nodes during learning, it is possible to use the keyword argument plot:

```
>>> Q.update(repeat=5, plot=True, tol=np.nan)

Iteration 68: loglike=-1.221354e+02 (... seconds)

Iteration 69: loglike=-1.221354e+02 (... seconds)

Iteration 70: loglike=-1.221354e+02 (... seconds)

Iteration 71: loglike=-1.221354e+02 (... seconds)

Iteration 72: loglike=-1.221354e+02 (... seconds)
```

Each node which has a plotter set will be plotted after it is updated. Note that this may slow down the inference significantly if the plotting operation is time consuming.

2.5.3 Posterior parameters and moments

If the built-in plotting functions are not sufficient, it is possible to use matplotlib.pyplot for custom plotting. Each node has get_moments method which returns the moments and they can be used for plotting. Stochastic exponential family nodes have natural parameter vectors which can also be used. In addition to plotting, it is also possible to just print the moments or parameters in the console.

2.5.4 Saving and loading results

The results of the inference engine can be easily saved and loaded using VB.save() and VB.load() methods:

```
>>> Q.save(filename='tmp.hdf5')
>>> Q.load(filename='tmp.hdf5')
```

The results are stored in a HDF5 file. The user may set an autosave file in which the results are automatically saved regularly. Autosave filename can be set at creation time by autosave_filename keyword argument or later using VB.set_autosave() method. If autosave file has been set, the VB.save() and VB.load() methods use that file by default. In order for the saving to work, all stochastic nodes must have been given (unique) names.

However, note that these methods do *not* save nor load the node definitions. It means that the user must create the nodes and the inference engine and then use VB.load() to set the state of the nodes and the inference engine. If there are any differences in the model that was saved and the one which is tried to update using loading, then loading does not work. Thus, the user should keep the model construction unmodified in a Python file in order to be able to load the results later. Or if the user wishes to share the results, he or she must share the model construction Python file with the HDF5 results file.

CHAPTER

THREE

EXAMPLES

3.1 Regression

3.1.1 Linear regression

```
import numpy as np
k = 2
c = 5
s = 2
x = np.arange(10)
y = k*x + c + s*np.random.randn(10)
from bayespy.nodes import GaussianARD
B = GaussianARD(0, 1e-6, shape=(2,))
X = np.vstack([x, np.ones(len(x))]).T
from bayespy.nodes import SumMultiply
F = SumMultiply('i,i', B, X)
from bayespy.nodes import Gamma
tau = Gamma(1e-3, 1e-3)
Y = GaussianARD(F, tau)
Y.observe(y)
from bayespy.inference import VB
Q = VB(Y, B, tau)
Q.update(repeat=100)
import bayespy.plot as bpplt
# These two lines are needed to enable inline plotting IPython Notebooks
%matplotlib inline
bpplt.pyplot.plot([])
xh = np.linspace(-5, 15, 100)
Xh = np.vstack([xh, np.ones(len(xh))]).T
Fh = SumMultiply('i,i', B, Xh)
bpplt.plot(Fh, x=xh, scale=2)
bpplt.plot(y, x=x, color='r', marker='x', linestyle='None')
bpplt.plot(k*xh+c, x=xh, color='r');
```

```
Iteration 1: loglike=-4.515537e+01 (0.000 seconds)
Iteration 2: loglike=-4.429472e+01 (0.010 seconds)
Iteration 3: loglike=-4.428241e+01 (0.000 seconds)
Iteration 4: loglike=-4.428197e+01 (0.000 seconds)
Iteration 5: loglike=-4.428195e+01 (0.010 seconds)
Converged.
```



```
bpplt.pdf(tau, np.linspace(1e-6,1,100), color='k')
bpplt.pyplot.axvline(s**(-2), color='r')
# Add labels
bpplt.pyplot.title(r'$q(\tau)$')
bpplt.pyplot.xlabel(r'$\tau$');
```



```
\label{eq:bpplt.contour} \begin{split} & \text{bpplt.contour(B, np.linspace(1,3,1000), np.linspace(1,9,1000), n=10, colors='k')} \\ & \text{bpplt.plot(c, x=k, color='r', marker='x', linestyle='None', markersize=10, markeredgewidth=2)} \\ & \# \ \textit{Add labels} \\ & \text{bpplt.pyplot.title(r'$q(k,c)$')} \\ & \text{bpplt.pyplot.xlabel(r'$k$')} \\ & \text{bpplt.pyplot.ylabel(r'$c$');} \end{split}
```

3.1. Regression 29

3.1.2 Improving accuracy

```
from bayespy.nodes import GaussianGammaISO
B_tau = GaussianGammaISO(np.zeros(2), 1e-6*np.identity(2), 1e-3, 1e-3)
F_tau = SumMultiply('i,i', B_tau, X)
Y = GaussianARD(F_tau, 1)
Y.observe(y)
from bayespy.inference import VB
Q = VB(Y, B_tau)
Q.update(repeat=10)
Iteration 1: loglike=-4.594957e+01 (0.000 seconds)
Iteration 2: loglike=-4.594957e+01 (0.000 seconds)
Converged.
bpplt.pdf(B_tau.get_marginal_logpdf(gaussian=None, gamma=True),
         np.linspace(1e-6,1,100), color='k')
bpplt.pyplot.axvline(s**(-2), color='r')
# Add labels
bpplt.pyplot.title(r'$q(\tau)$')
bpplt.pyplot.xlabel(r'$\tau$');
```


3.1. Regression 31

return plot_gaussian(Y, axis=axis, scale=scale, center=center, **kwargs)

 $q(k,\tau)$

1.0

125 126 --> 127

128

129

AttributeError: 'SumMultiply' object has no attribute 'get_mean_and_variance'

(mu, var) = Y.get_mean_and_variance()

std = np.sqrt(var)

3.1. Regression 33

3.1.3 Multivariate regression

3.1.4 Non-linear regression

3.2 Gaussian mixture model

Do some stuff:

```
from bayespy.nodes import Dirichlet
alpha = Dirichlet([1e-3, 1e-3, 1e-3])
print(alpha._message_to_child())

[array([-666.66994695, -666.66994695, -666.66994695])]
```

Nice!

3.3 Bernoulli mixture model

blaa blaa blaa

```
import numpy as np
D = 10
p0 = [0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9]
p1 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
p2 = [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]
p = np.array([p0, p1, p2])
from bayespy.utils import random
N = 100
z = random.categorical([1/3, 1/3, 1/3], size=N)
x = random.bernoulli(p[z])
from bayespy.nodes import Categorical, Dirichlet
K = 5
R = Dirichlet(K*[1e-3],
              name='R')
Z = Categorical(R,
                plates=(N,1),
                name='Z')
from bayespy.nodes import Mixture, Bernoulli, Beta
P = Beta([1e-1, 1e-1],
         plates=(D,K),
         name='P')
X = Mixture(Z, Bernoulli, P)
X.observe(x)
from bayespy.inference import VB
Q = VB(Z, R, X, P)
P.initialize_from_random()
Q.update(repeat=10)
Iteration 1: loglike=nan (0.005 seconds)
Iteration 2: loglike=nan (0.003 seconds)
```

```
Iteration 6: loglike=nan (0.003 seconds)
Iteration 7: loglike=nan (0.003 seconds)
Iteration 8: loglike=nan (0.003 seconds)
Iteration 9: loglike=nan (0.003 seconds)
Iteration 10: loglike=nan (0.003 seconds)
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/nodes/dirichlet.py:91: RuntimeWarning: divide
 logp = np.log(p)
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/nodes/expfamily.py:71: RuntimeWarning: invalid
 L = L + np.sum(phi_i * u_i, axis=axis_sum)
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/nodes/expfamily.py:71: RuntimeWarning: invalid
 L = L + np.sum(phi_i * u_i, axis=axis_sum)
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/nodes/mixture.py:229: UserWarning: The natural
 warnings.warn("The natural parameters of mixture distribution "
import bayespy.plot.plotting as bpplt
bpplt.beta_hinton(P)
import matplotlib.pyplot as plt
plt.show()
/home/jluttine/workspace/bayespy/bayespy/plot/plotting.py:204: RuntimeWarning: invalid value encount
 _w = np.abs(w)
```

3.4 Discrete hidden Markov model

Iteration 3: loglike=nan (0.003 seconds)
Iteration 4: loglike=nan (0.003 seconds)
Iteration 5: loglike=nan (0.003 seconds)

This example is also available as an IPython notebook or a Python script.

3.4.1 Known parameters

This example follows the one presented in Wikipedia. Each day, the state of the weather is either 'rainy' or 'sunny'. The weather follows a first-order discrete Markov process with the following initial state probability and state transition probabilities:

However, instead of observing this process directly, we observe whether Bob is 'walking', 'shopping' or 'cleaning'. The probability of each activity depends on the current weather as follows:

```
# Observed process
Y = Mixture(Z, Categorical, P)
```

In order to test our method, we'll generate artificial data using this model:

```
# Draw realization of the weather process
weather = Z.random()
# Using this weather, draw realizations of the activities
activity = Mixture(weather, Categorical, P).random()
```

Now, using this data, we set our variable Y to be observed:

```
Y.observe(activity)
```

In order to run inference, we construct variational Bayesian inference engine:

```
from bayespy.inference import VB
Q = VB(Y, Z)
```

Note that we need to give all random variables to VB. In this case, the only random variables were Y and Z. Next we run the inference, that is, compute our posterior distribution:

```
Q.update()
Iteration 1: loglike=-1.091583e+03 (0.090 seconds)
```

In this case, because there is only one unobserved random variable, we recover the exact posterior distribution and there is no need to iterate more than one step.

3.4.2 Unknown parameters

Next, we consider the case when we do not know the parameters of the weather process (initial state probability and state transition probabilities). We give these parameters quite non-informative priors, but it is possible to provide more informative priors if such information is available. First, the weather process:

Second, the emission probabilities are also given quite non-informative priors:

We use the same data as before:

```
Y.observe(activity)
```

Because VB takes all the unknown variables, we need to provide A, a0 and P also:

```
Q = VB(Y, Z, A, a0, P)
```

If we ran the VB algorithm now, we would get a result where all both states would have identical emission probability distribution. This happens because of a non-random default initialization. P is initialized in such a way that both states have the same distribution, and Z is initialized in such a way that each state has equal probability. Thus, the VB algorithm won't separate them. In such cases, it is necessary to use a random initialization. In principle, it is possible to use random initialization for either variable and then update the other variable first. In the case of mixture distributions, it might be better to initialize the parameters (P) randomly and update the state assignments (Z) first.

```
P.initialize_from_random()
Q.update(Z, A, a0, P, repeat=20)
Iteration 1: loglike=-1.115941e+03 (0.090 seconds)
Iteration 2: loglike=-1.115671e+03 (0.090 seconds)
Iteration 3: loglike=-1.115603e+03 (0.100 seconds)
Iteration 4: loglike=-1.115574e+03 (0.090 seconds)
Iteration 5: loglike=-1.115555e+03 (0.090 seconds)
Iteration 6: loglike=-1.115538e+03 (0.100 seconds)
Iteration 7: loglike=-1.115521e+03 (0.090 seconds)
Iteration 8: loglike=-1.115504e+03 (0.090 seconds)
Iteration 9: loglike=-1.115487e+03 (0.090 seconds)
Iteration 10: loglike=-1.115469e+03 (0.090 seconds)
Iteration 11: loglike=-1.115451e+03 (0.100 seconds)
Iteration 12: loglike=-1.115433e+03 (0.090 seconds)
Iteration 13: loglike=-1.115413e+03 (0.090 seconds)
Iteration 14: loglike=-1.115394e+03 (0.090 seconds)
Iteration 15: loglike=-1.115374e+03 (0.090 seconds)
Iteration 16: loglike=-1.115354e+03 (0.100 seconds)
Iteration 17: loglike=-1.115333e+03 (0.090 seconds)
Iteration 18: loglike=-1.115312e+03 (0.090 seconds)
Iteration 19: loglike=-1.115290e+03 (0.090 seconds)
Iteration 20: loglike=-1.115268e+03 (0.090 seconds)
```

In order to update the variables in that order, one may explicitly give the nodes in that order to the update method. However, the default update order is the one used when constructing Q, which is the same in this case, thus we could have ignored listing the nodes to the update method.

Plot the estimated state transition probabilities:

```
# NOTE: These three lines are just to enable inline plotting in IPython Notebooks.
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot([])
# Plot the state transition matrix
import bayespy.plot.plotting as bpplt
bpplt.dirichlet_hinton(A)
```


Plot the estimated emission probabilities:

bpplt.dirichlet_hinton(P)

It is interesting that these estimated parameters are very different from the true parameters. This happens because of un-identifiability: different parameters lead to similar marginal distributions over the observed process.

3.5 Hidden Markov model

blaa blaa

3.6 Principal component analysis

Yeah.

Figure 3.1: Directed factor graph of the example model.

```
from bayespy.nodes import GaussianARD
GaussianARD(0, 1)
<br/>
<br/>
<br/>
<br/>
daussianARD at 0x7fa3343bce90>
```

3.7 Linear state-space model

This example is also available as an IPython notebook or a Python script.

In linear state-space models a sequence of M-dimensional observations $\mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_N)$ is assumed to be generated from latent D-dimensional states $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ which follow a first-order Markov process:

$$\mathbf{x}_n = \mathbf{A}\mathbf{x}_{n-1} + \text{noise},$$

 $\mathbf{y}_n = \mathbf{C}\mathbf{x}_n + \text{noise},$

where the noise is Gaussian, A is the $D \times D$ state dynamics matrix and C is the $M \times D$ loading matrix. Usually, the latent space dimensionality D is assumed to be much smaller than the observation space dimensionality M in order to model the dependencies of high-dimensional observations efficiently.

First, let us generate some toy data:

```
0,
                                      0, 0]])
              [0,
c = np.random.randn(M, 4)
x = np.empty((N, 4))
f = np.empty((M,N))
y = np.empty((M,N))
x[0] = 10*np.random.randn(4)
f[:,0] = np.dot(c,x[0])
y[:,0] = f[:,0] + 3*np.random.randn(M)
for n in range (N-1):
    x[n+1] = np.dot(a,x[n]) + np.random.randn(4)
    f[:,n+1] = np.dot(c,x[n+1])
    y[:,n+1] = f[:,n+1] + 3*np.random.randn(M)
The linear state-space model can be constructed as follows:
from bayespy.inference.vmp.nodes.gaussian_markov_chain import GaussianMarkovChain
from bayespy.inference.vmp.nodes.gaussian import GaussianARD
from bayespy.inference.vmp.nodes.gamma import Gamma
from bayespy.inference.vmp.nodes.dot import SumMultiply
D = 10
# Dynamics matrix with ARD
alpha = Gamma(1e-5,
              1e-5,
              plates=(D,),
              name='alpha')
A = GaussianARD(0,
                alpha,
                shape=(D,),
                plates=(D,),
                name='A')
# Latent states with dynamics
X = GaussianMarkovChain(np.zeros(D),
                                             # mean of x0
                        1e-3*np.identity(D), # prec of x0
                                              # dynamics
                        np.ones(D),
                                             # innovation
                        n=N,
                                              # time instances
                        name='X',
                        initialize=False)
X.initialize_from_value(np.zeros((N,D))) # just some empty values, X is
                                          # updated first anyway
# Mixing matrix from latent space to observation space using ARD
gamma = Gamma(1e-5,
              1e-5,
              plates=(D,),
              name='gamma')
C = GaussianARD(0,
                gamma,
                shape=(D,),
                plates=(M, 1),
                name='C')
# Initialize nodes (must use some randomness for C, and update X before C)
C.initialize_from_random()
# Observation noise
```

An inference machine using variational Bayesian inference with variational message passing is then construced as

```
from bayespy.inference.vmp.vmp import VB
Q = VB(X, C, gamma, A, alpha, tau, Y)
```

Observe the data partially (80% is marked missing):

```
from bayespy.utils import random
```

```
# Add missing values randomly (keep only 20%)
mask = random.mask(M, N, p=0.2)
Y.observe(y, mask=mask)
```

Then inference (100 iterations) can be run simply as

```
Q.update(repeat=10)
```

```
Iteration 1: loglike=-3.118644e+04 (0.210 seconds)
Iteration 2: loglike=-1.129540e+04 (0.210 seconds)
Iteration 3: loglike=-9.139376e+03 (0.210 seconds)
Iteration 4: loglike=-8.704676e+03 (0.220 seconds)
Iteration 5: loglike=-8.531889e+03 (0.200 seconds)
Iteration 6: loglike=-8.386198e+03 (0.210 seconds)
Iteration 7: loglike=-8.255826e+03 (0.210 seconds)
Iteration 8: loglike=-8.176274e+03 (0.210 seconds)
Iteration 9: loglike=-8.139579e+03 (0.210 seconds)
Iteration 10: loglike=-8.117779e+03 (0.210 seconds)
```

3.7.1 Speeding up with parameter expansion

VB inference can converge extremely slowly if the variables are strongly coupled. Because VMP updates one variable at a time, it may lead to slow zigzagging. This can be solved by using parameter expansion which reduces the coupling. In state-space models, the states \mathbf{x}_n and the loadings \mathbf{C} are coupled through a dot product $\mathbf{C}\mathbf{x}_n$, which is unaltered if the latent space is rotated arbitrarily:

$$\mathbf{y}_n = \mathbf{C}\mathbf{x}_n = \mathbf{C}\mathbf{R}^{-1}\mathbf{R}\mathbf{x}_n$$
.

Thus, one intuitive transformation would be $C \to CR^{-1}$ and $X \to RX$. In order to keep the dynamics of the latent states unaffected by the transformation, the state dynamics matrix **A** must be transformed accordingly:

$$\mathbf{R}\mathbf{x}_n = \mathbf{R}\mathbf{A}\mathbf{R}^{-1}\mathbf{R}\mathbf{x}_{n-1}$$
,

resulting in a transformation $A \to RAR^{-1}$. For more details, refer to *Fast Variational Bayesian Linear State-Space Model (Luttinen, 2013).

In BayesPy, the transformations can be used as follows:

```
# Import the parameter expansion module
from bayespy.inference.vmp import transformations

# Rotator of the state dynamics matrix
rotA = transformations.RotateGaussianARD(Q['A'], Q['alpha'])
# Rotator of the states (includes rotation of the state dynamics matrix)
rotX = transformations.RotateGaussianMarkovChain(Q['X'], rotA)
# Rotator of the loading matrix
rotC = transformations.RotateGaussianARD(Q['C'], Q['gamma'])
# Rotation optimizer
R = transformations.RotationOptimizer(rotX, rotC, D)
```

Note that it is crucial to select the correct rotation class which corresponds to the particular model block exactly. The rotation can be performed after each full VB update:

```
for ind in range(10):
    Q.update()
    R.rotate()

Iteration 11: loglike=-8.100983e+03 (0.210 seconds)
Iteration 12: loglike=-7.622913e+03 (0.210 seconds)
Iteration 13: loglike=-7.452057e+03 (0.200 seconds)
Iteration 14: loglike=-7.385975e+03 (0.200 seconds)
Iteration 15: loglike=-7.351449e+03 (0.210 seconds)
Iteration 16: loglike=-7.331026e+03 (0.210 seconds)
Iteration 17: loglike=-7.317997e+03 (0.200 seconds)
Iteration 18: loglike=-7.309212e+03 (0.200 seconds)
Iteration 19: loglike=-7.303074e+03 (0.210 seconds)
Iteration 20: loglike=-7.298661e+03 (0.210 seconds)
```

If you want to implement your own rotations or check the existing ones, you may use debugging utilities:

Gradient relative error = 6.78117e-05 and absolute error = 0.270191

Iteration 24: loglike=-7.289243e+03 (0.210 seconds)

Norm of numerical gradient: 13053.7

```
for ind in range(10):
    Q.update()
    R.rotate(check_bound=True,
             check_gradient=True)
Iteration 21: loglike=-7.295401e+03 (0.210 seconds)
Norm of numerical gradient: 3905.05
Norm of function gradient: 3905.05
Gradient relative error = 6.39002e-05 and absolute error = 0.249533
Iteration 22: loglike=-7.292861e+03 (0.210 seconds)
Norm of numerical gradient: 6245.37
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/transformations.py:142: UserWarning: Rotation
 warnings.warn("Rotation gradient has relative error %g" % err)
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/transformations.py:142: UserWarning: Rotation
 warnings.warn("Rotation gradient has relative error %q" % err)
Norm of function gradient: 6245.43
Gradient relative error = 7.56396e-05 and absolute error = 0.472397
Iteration 23: loglike=-7.290841e+03 (0.210 seconds)
Norm of numerical gradient: 3984.43
Norm of function gradient: 3984.43
```

```
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/transformations.py:142: UserWarning: Rotation
 warnings.warn("Rotation gradient has relative error %g" % err)
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/transformations.py:142: UserWarning: Rotation
 warnings.warn("Rotation gradient has relative error %g" % err)
Norm of function gradient: 13053.8
Gradient relative error = 2.65118e-05 and absolute error = 0.346078
Iteration 25: loglike=-7.287794e+03 (0.200 seconds)
Norm of numerical gradient: 4144.61
Norm of function gradient: 4144.59
Gradient relative error = 7.02612e-05 and absolute error = 0.291205
Iteration 26: loglike=-7.286531e+03 (0.210 seconds)
Norm of numerical gradient: 5821.72
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/transformations.py:142: UserWarning: Rotation
 warnings.warn("Rotation gradient has relative error %g" % err)
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/transformations.py:142: UserWarning: Rotation
 warnings.warn("Rotation gradient has relative error %g" % err)
Norm of function gradient: 5821.73
Gradient relative error = 4.57892e-05 and absolute error = 0.266572
Iteration 27: loglike=-7.285469e+03 (0.210 seconds)
Norm of numerical gradient: 15766.4
Norm of function gradient: 15766.4
Gradient relative error = 3.5184e-05 and absolute error = 0.554724
Iteration 28: loglike=-7.284584e+03 (0.200 seconds)
Norm of numerical gradient: 5782.51
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/transformations.py:142: UserWarning: Rotation
 warnings.warn("Rotation gradient has relative error %g" % err)
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/transformations.py:142: UserWarning: Rotation
 warnings.warn("Rotation gradient has relative error %g" % err)
Norm of function gradient: 5782.51
Gradient relative error = 5.61705e-05 and absolute error = 0.324807
Iteration 29: loglike=-7.283818e+03 (0.210 seconds)
Norm of numerical gradient: 9067.22
Norm of function gradient: 9067.21
Gradient relative error = 2.4973e-05 and absolute error = 0.226435
Iteration 30: loglike=-7.283121e+03 (0.200 seconds)
Norm of numerical gradient: 9594.54
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/transformations.py:142: UserWarning: Rotation
 warnings.warn("Rotation gradient has relative error %g" % err)
/home/jluttine/workspace/bayespy/bayespy/inference/vmp/transformations.py:142: UserWarning: Rotation
 warnings.warn("Rotation gradient has relative error %g" % err)
Norm of function gradient: 9594.62
Gradient relative error = 5.43175e-05 and absolute error = 0.521151
```

3.8 Latent Dirichlet allocation

blaa blaa blaa..

DEVELOPER GUIDE

How to document: https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

How to contribute: http://docs.scipy.org/doc/numpy/dev/gitwash/development workflow.html

4.1 Variational message passing

The general update equation for factorized approximation:

$$\log q(\boldsymbol{\theta}) = \langle \log p(\boldsymbol{\theta}|\operatorname{pa}(\boldsymbol{\theta})) \rangle + \sum_{\mathbf{x} \in \operatorname{ch}(\boldsymbol{\theta})} \langle \log p(\mathbf{x}|\operatorname{pa}(\mathbf{x})) \rangle + \operatorname{const}, \tag{4.1}$$

where $pa(\theta)$ and $ch(\theta)$ are the set of parents and children of θ , respectively. The expectations are over the approximate distribution of all other variables than θ . Actually, not all the variables are needed, because the non-constant part uses only the Markov blanket of θ . Thus, the optimization can be done locally using messages from neighbouring nodes.

The messages are simple for conjugate-exponential models. Exponential-family distributions have the form

$$\log p(\mathbf{x}|\mathbf{\Theta}) = \mathbf{u}_{\mathbf{x}}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\phi}_{\mathbf{x}}(\mathbf{\Theta}) + g_{\mathbf{x}}(\mathbf{\Theta}) + f_{\mathbf{x}}(\mathbf{x}), \tag{4.2}$$

where $\Theta = \{\theta_j\}$ is the set of parents. If a parent has a conjugate prior, (4.2) is linear with respect to the parent's natural statistics. Thus, (4.2) can be re-organized with respect to θ_j as

$$\log p(\mathbf{x}|\boldsymbol{\Theta}) = \mathbf{u}_{\boldsymbol{\theta}_j}(\boldsymbol{\theta}_j)^{\mathrm{T}} \boldsymbol{\phi}_{\mathbf{x} \to \boldsymbol{\theta}_j}(\mathbf{x}, \{\boldsymbol{\theta}_k\}_{k \neq j}) + \mathrm{const},$$

where \mathbf{u}_{θ_j} is the natural statistics of θ_j . Thus, the update equation (4.1) can be given as

$$\log q(\boldsymbol{\theta}_j) = \mathbf{u}_{\boldsymbol{\theta}_j}(\boldsymbol{\theta}_j)^{\mathrm{T}} \left(\langle \boldsymbol{\phi}_{\boldsymbol{\theta}_j} \rangle + \sum_{\mathbf{x} \in \mathrm{ch}(\boldsymbol{\theta}_j)} \langle \boldsymbol{\phi}_{\mathbf{x} \to \boldsymbol{\theta}_j} \rangle \right) + f_{\boldsymbol{\theta}_j}(\boldsymbol{\theta}_j) + \mathrm{const},$$

where the summation is over all the child nodes of θ_j . Because of the conjugacy, $\langle \phi_{\theta_j} \rangle$ depends (multi)linearly on the expectations of the parents' natural statistics. Similarly, $\langle \phi_{\mathbf{x} \to \theta_j} \rangle$ depends (multi)linearly on the expectations of the children's and co-parents' natural statistics.

The required expectations can be computed locally by using messages from the parents and the children. The message from a parent node θ_i to a child node x is

$$\mathbf{m}_{\boldsymbol{\theta}_{\mathbf{j}} \rightarrow \mathbf{x}} = \langle \mathbf{u}_{\boldsymbol{\theta}_{j}} \rangle = \tilde{\mathbf{u}}_{\boldsymbol{\theta}_{j}} (\tilde{\boldsymbol{\phi}}_{\boldsymbol{\theta}_{\mathbf{j}}}),$$

and the message from a child node x to a parent node θ_i is

$$\mathbf{m}_{\mathbf{x} \rightarrow \boldsymbol{\theta}_j} = \langle \boldsymbol{\phi}_{\mathbf{x} \rightarrow \boldsymbol{\theta}_j} \rangle = \boldsymbol{\phi}_{\mathbf{x} \rightarrow \boldsymbol{\theta}_j} \left(\langle \mathbf{u}_{\mathbf{x}} \rangle, \{ \mathbf{m}_{\boldsymbol{\theta}_k \rightarrow \mathbf{x}} \}_{k \neq j} \right).$$

Using the messages, the natural parameters of $q(\theta)$ can be updated as

$$\tilde{\phi}_{\boldsymbol{\theta}} = \phi_{\boldsymbol{\theta}} \left(\{ \mathbf{m}_{\mathbf{z} \rightarrow \boldsymbol{\theta}} \}_{\mathbf{z} \in \mathrm{pa}(\boldsymbol{\theta})} \right) + \sum_{\mathbf{x} \in \mathrm{ch}(\boldsymbol{\theta})} \mathbf{m}_{\mathbf{x} \rightarrow \boldsymbol{\theta}}.$$

4.2 Implementing nodes

CHAPTER

FIVE

USER API

bayespy.nodes	Package for nodes used to construct the model.
bayespy.inference	Package for Bayesian inference engines
bayespy.plot	Functions for plotting nodes.

5.1 bayespy.nodes

Package for nodes used to construct the model.

5.1.1 Stochastic nodes

Nodes for Gaussian variables:

Gaussian(mu, Lambda, **kwargs)	Node for Gaussian variables.
<pre>GaussianARD(mu, alpha[, ndim, shape])</pre>	Node for Gaussian variables with ARD prior.

bayespy.nodes.Gaussian

class bayespy.nodes.Gaussian (mu, Lambda, **kwargs)

Node for Gaussian variables.

The node represents a *D*-dimensional vector from the Gaussian distribution:

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Lambda}),$$

where μ is the mean vector and Λ is the precision matrix (i.e., inverse of the covariance matrix).

$$\mathbf{x}, \boldsymbol{\mu} \in \mathbb{R}^D, \quad \boldsymbol{\Lambda} \in \mathbb{R}^{D \times D}, \quad \boldsymbol{\Lambda}$$
 symmetric positive definite

Parameters mu: Gaussian-like node or GaussianGammaISO-like node or GaussianWishart-like node or array

Mean vector

Lambda: Wishart-like node or array

Precision matrix

See also:

Wishart, GaussianARD, GaussianWishart, GaussianGammaARD, GaussianGammaISO

Methods

```
_init__(mu, Lambda, **kwargs)
                                                  Create Gaussian node
add_plate_axis(to_plate)
                                                  Delete this node and the children
delete()
get_mask()
get_moments()
get_shape(ind)
                                                  Return True if the node has a plotter
has plotter()
initialize_from_parameters(mu, Lambda)
initialize from prior()
initialize_from_random()
                                                  Set the variable to a random sample from the current distribution.
initialize from value(x, *args)
                                                  Load the state of the node from a HDF5 file.
load(group)
logpdf(X[, mask])
                                                  Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                                  Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                                  Compute the probability density function of this node.
plot(**kwargs)
                                                  Plot the node distribution using the plotter of the node
                                                  Draw a random sample from the distribution.
random()
rotate(R[, inv, logdet, Q])
rotate_matrix(R1, R2[, inv1, logdet1, inv2, ...])
                                                  The vector is reshaped into a matrix by stacking the row vectors.
                                                  Save the state of the node into a HDF5 file.
save(group)
set_plotter(plotter)
show()
unobserve()
update()
```

Gaussian.__init__ (mu, Lambda, **kwargs) Create Gaussian node bayespy.nodes.Gaussian.add_plate_axis Gaussian.add_plate_axis (to_plate) bayespy.nodes.Gaussian.delete Gaussian.delete() Delete this node and the children

bayespy.nodes.Gaussian.get mask

Gaussian.get_mask()

bayespy.nodes.Gaussian.__init__

48 Chapter 5. User API

```
bayespy.nodes.Gaussian.get moments
Gaussian.get_moments()
bayespy.nodes.Gaussian.get shape
Gaussian.get_shape (ind)
bayespy.nodes.Gaussian.has_plotter
Gaussian.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.Gaussian.initialize_from_parameters
Gaussian.initialize_from_parameters(mu, Lambda)
bayespy.nodes.Gaussian.initialize from prior
Gaussian.initialize_from_prior()
bayespy.nodes.Gaussian.initialize_from_random
Gaussian.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.Gaussian.initialize_from_value
Gaussian.initialize_from_value(x, *args)
bayespy.nodes.Gaussian.load
Gaussian.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Gaussian.logpdf
Gaussian.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Gaussian.lower_bound_contribution
Gaussian.lower_bound_contribution(gradient=False)
```

bayespy.nodes.Gaussian.lowerbound

```
Gaussian.lowerbound()
```

bayespy.nodes.Gaussian.move plates

```
Gaussian.move_plates (from_plate, to_plate)
```

bayespy.nodes.Gaussian.observe

```
Gaussian.observe(x, *args, mask=True)
```

Fix moments, compute f and propagate mask.

bayespy.nodes.Gaussian.pdf

```
Gaussian.pdf (X, mask=True)
```

Compute the probability density function of this node.

bayespy.nodes.Gaussian.plot

```
Gaussian.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Gaussian.random

```
Gaussian.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Gaussian.rotate

```
Gaussian.rotate(R, inv=None, logdet=None, Q=None)
```

bayespy.nodes.Gaussian.rotate_matrix

```
Gaussian.rotate_matrix(R1, R2, inv1=None, logdet1=None, inv2=None, logdet2=None, Q=None)
```

The vector is reshaped into a matrix by stacking the row vectors.

Computes R1*X*R2', which is identical to kron(R1,R2)*x (??)

Note that this is slightly different from the standard Kronecker product definition because Numpy stacks row vectors instead of column vectors.

Parameters R1: ndarray

A matrix from the left

R2: ndarray

A matrix from the right

bayespy.nodes.Gaussian.save

```
Gaussian. save (group)
Save the state of the node into a HDF5 file.
group can be the root
```

bayespy.nodes.Gaussian.set plotter

```
Gaussian.set_plotter(plotter)
```

bayespy.nodes.Gaussian.show

```
Gaussian.show()
```

bayespy.nodes.Gaussian.unobserve

```
Gaussian.unobserve()
```

bayespy.nodes.Gaussian.update

```
Gaussian.update()
```

Attributes

```
dims
plates
```

bayespy.nodes.Gaussian.dims

```
Gaussian.dims = None
```

bayespy.nodes.Gaussian.plates

```
\texttt{Gaussian.plates} = None
```

bayespy.nodes.GaussianARD

```
class bayespy.nodes.GaussianARD (mu, alpha, ndim=None, shape=None, **kwargs)
    Node for Gaussian variables with ARD prior.
```

The node represents a *D*-dimensional vector from the Gaussian distribution:

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \operatorname{diag}(\boldsymbol{\alpha})),$$

where μ is the mean vector and $\operatorname{diag}(\alpha)$ is the diagonal precision matrix (i.e., inverse of the covariance matrix).

$$\mathbf{x}, \boldsymbol{\mu} \in \mathbb{R}^D$$
, $\alpha_d > 0$ for $d = 0, \dots, D-1$

Note: The form of the posterior approximation is a Gaussian distribution with full covariance matrix instead of a diagonal matrix.

Parameters mu: Gaussian-like node or GaussianGammaISO-like node or GaussianGammaARD-like node or array

Mean vector

alpha: gamma-like node or array

Diagonal elements of the precision matrix

See also:

```
Gamma, Gaussian, GaussianGammaARD, GaussianGammaISO, GaussianWishart
```

```
__init__ (mu, alpha, ndim=None, shape=None, **kwargs)
Create Gaussian ARD node.
```

Methods

```
Create GaussianARD node.
  init (mu, alpha[, ndim, shape])
add_plate_axis(to_plate)
                                                          Delete this node and the children
delete()
get_mask()
get_moments()
get_shape(ind)
has_plotter()
                                                          Return True if the node has a plotter
initialize_from_mean_and_covariance(mu, Cov)
initialize_from_parameters(mu, alpha)
initialize_from_prior()
initialize_from_random()
                                                          Set the variable to a random sample from the current distribution.
initialize from value(x, *args)
load(group)
                                                          Load the state of the node from a HDF5 file.
logpdf(X[, mask])
                                                          Compute the log probability density function Q(X) of this node.
lower bound contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                                          Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                                          Compute the probability density function of this node.
plot(**kwargs)
                                                          Plot the node distribution using the plotter of the node
random()
                                                          Draw a random sample from the distribution.
rotate(R[, inv, logdet, axis, Q])
rotate_plates(Q[, plate_axis])
                                                          Approximate rotation of a plate axis.
                                                          Save the state of the node into a HDF5 file.
save(group)
set_plotter(plotter)
show()
unobserve()
update()
```

```
bayespy.nodes.GaussianARD. init
GaussianARD.__init__(mu, alpha, ndim=None, shape=None, **kwargs)
    Create GaussianARD node.
bayespy.nodes.GaussianARD.add plate axis
GaussianARD.add_plate_axis(to_plate)
bayespy.nodes.GaussianARD.delete
GaussianARD.delete()
    Delete this node and the children
bayespy.nodes.GaussianARD.get_mask
GaussianARD.get_mask()
bayespy.nodes.GaussianARD.get_moments
GaussianARD.get_moments()
bayespy.nodes.GaussianARD.get_shape
GaussianARD.get_shape (ind)
bayespy.nodes.GaussianARD.has_plotter
GaussianARD.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.GaussianARD.initialize_from_mean_and_covariance
GaussianARD.initialize_from_mean_and_covariance (mu, Cov)
bayespy.nodes.GaussianARD.initialize_from_parameters
GaussianARD.initialize from parameters (mu, alpha)
bayespy.nodes.GaussianARD.initialize_from_prior
GaussianARD.initialize_from_prior()
```

```
bayespy.nodes.GaussianARD.initialize from random
GaussianARD.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.GaussianARD.initialize from value
GaussianARD.initialize_from_value(x, *args)
bayespy.nodes.GaussianARD.load
GaussianARD.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.GaussianARD.logpdf
GaussianARD.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.GaussianARD.lower_bound_contribution
GaussianARD.lower_bound_contribution(gradient=False)
bayespy.nodes.GaussianARD.lowerbound
GaussianARD.lowerbound()
bayespy.nodes.GaussianARD.move_plates
GaussianARD.move_plates (from_plate, to_plate)
bayespy.nodes.GaussianARD.observe
GaussianARD.observe(x, *args, mask=True)
    Fix moments, compute f and propagate mask.
bayespy.nodes.GaussianARD.pdf
GaussianARD.pdf (X, mask=True)
    Compute the probability density function of this node.
```

bayespy.nodes.GaussianARD.plot

```
GaussianARD.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.GaussianARD.random

```
GaussianARD.random()
```

Draw a random sample from the distribution.

bayespy.nodes.GaussianARD.rotate

```
GaussianARD.rotate(R, inv=None, logdet=None, axis=-1, Q=None)
```

bayespy.nodes.GaussianARD.rotate_plates

```
GaussianARD.rotate_plates(Q, plate_axis=-1)
```

Approximate rotation of a plate axis.

Mean is rotated exactly but covariance/precision matrix is rotated approximately.

bayespy.nodes.GaussianARD.save

```
GaussianARD.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.nodes.GaussianARD.set_plotter

```
GaussianARD.set_plotter(plotter)
```

bayespy.nodes.GaussianARD.show

```
GaussianARD.show()
```

bayespy.nodes.GaussianARD.unobserve

```
GaussianARD.unobserve()
```

bayespy.nodes.GaussianARD.update

```
GaussianARD.update()
```

Attributes

```
dims plates
```

bayespy.nodes.GaussianARD.dims

GaussianARD.dims = None

bayespy.nodes.GaussianARD.plates

```
GaussianARD.plates = None
```

Nodes for precision and scale variables:

Gamma(a, b, **kwargs)	Node for gamma random variables.
Wishart(n, V, **kwargs)	Node for Wishart random variables.
<pre>Exponential(l, **kwargs)</pre>	Node for exponential random variables.

bayespy.nodes.Gamma

class bayespy.nodes.Gamma (a, b, **kwargs)

Node for gamma random variables.

Parameters a: scalar or array

Shape parameter

b : gamma-like node or scalar or array

Rate parameter

__init__(a, b, **kwargs)

Create gamma random variable node

Methods

init(a, b, **kwargs)	Create gamma random variable node
add_plate_axis(to_plate)	
as_diagonal_wishart()	
delete()	Delete this node and the children
get_mask()	
get_moments()	
get_shape(ind)	
has_plotter()	Return True if the node has a plotter
<pre>initialize_from_parameters(*args)</pre>	
<pre>initialize_from_prior()</pre>	
<pre>initialize_from_random()</pre>	Set the variable to a random sample from the current distribution.
$initialize_from_value(x, *args)$	
load(group)	Load the state of the node from a HDF5 file.
	Continued on next page

Table 5.8 – continued from previous page

```
Compute the log probability density function Q(X) of this node.
logpdf(X[, mask])
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                              Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                               Compute the probability density function of this node.
plot(**kwargs)
                                               Plot the node distribution using the plotter of the node
                                              Draw a random sample from the distribution.
random()
save(group)
                                               Save the state of the node into a HDF5 file.
set_plotter(plotter)
                                              Print the distribution using standard parameterization.
show()
unobserve()
update()
```

```
bayespy.nodes.Gamma. init
Gamma.___init___(a, b, **kwargs)
    Create gamma random variable node
bayespy.nodes.Gamma.add_plate_axis
Gamma.add_plate_axis(to_plate)
bayespy.nodes.Gamma.as diagonal wishart
Gamma.as_diagonal_wishart()
bayespy.nodes.Gamma.delete
Gamma.delete()
    Delete this node and the children
bayespy.nodes.Gamma.get mask
Gamma.get_mask()
bayespy.nodes.Gamma.get_moments
Gamma.get_moments()
bayespy.nodes.Gamma.get_shape
Gamma.get_shape (ind)
```

```
bayespy.nodes.Gamma.has plotter
Gamma.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.Gamma.initialize from parameters
Gamma.initialize_from_parameters(*args)
bayespy.nodes.Gamma.initialize_from_prior
Gamma.initialize_from_prior()
bayespy.nodes.Gamma.initialize_from_random
Gamma.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.Gamma.initialize from value
Gamma.initialize_from_value(x, *args)
bayespy.nodes.Gamma.load
Gamma.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Gamma.logpdf
Gamma.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Gamma.lower bound contribution
Gamma.lower_bound_contribution(gradient=False)
bayespy.nodes.Gamma.lowerbound
Gamma.lowerbound()
bayespy.nodes.Gamma.move_plates
Gamma.move_plates (from_plate, to_plate)
```

bayespy.nodes.Gamma.observe

```
Gamma.observe(x, *args, mask=True)
```

Fix moments, compute f and propagate mask.

bayespy.nodes.Gamma.pdf

```
Gamma.pdf (X, mask=True)
```

Compute the probability density function of this node.

bayespy.nodes.Gamma.plot

```
Gamma.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Gamma.random

```
Gamma.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Gamma.save

```
Gamma.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.nodes.Gamma.set_plotter

```
Gamma.set_plotter(plotter)
```

bayespy.nodes.Gamma.show

```
Gamma.show()
```

Print the distribution using standard parameterization.

bayespy.nodes.Gamma.unobserve

```
Gamma.unobserve()
```

bayespy.nodes.Gamma.update

```
Gamma.update()
```

Attributes

dims	tuple() -> empty tuple
plates	

bayespy.nodes.Gamma.dims

Gamma.dims = ((), ())

bayespy.nodes.Gamma.plates

Gamma.plates = None

bayespy.nodes.Wishart

class bayespy.nodes.Wishart (n, V, **kwargs)

Node for Wishart random variables.

The random variable Λ is a $D \times D$ positive-definite symmetric matrix.

$$p(\mathbf{\Lambda}) = \text{Wishart}(\mathbf{\Lambda}|N, \mathbf{V})$$

Parameters n : scalar or array

N, degrees of freedom, N > D - 1.

V : Wishart-like node or (...,D,D)-array

V, scale matrix.

Methods

init(n, V, **kwargs)	Create Wishart node.
add_plate_axis(to_plate)	
delete()	Delete this node and the children
get_mask()	
get_moments()	
get_shape(ind)	
has_plotter()	Return True if the node has a plotter
<pre>initialize_from_parameters(*args)</pre>	
<pre>initialize_from_prior()</pre>	
<pre>initialize_from_random()</pre>	Set the variable to a random sample from the current distribution.
<pre>initialize_from_value(x, *args)</pre>	
load(group)	Load the state of the node from a HDF5 file.
logpdf(X[, mask])	Compute the log probability density function $Q(X)$ of this node.
<pre>lower_bound_contribution([gradient])</pre>	
lowerbound()	
<pre>move_plates(from_plate, to_plate)</pre>	
	Continued on next page

Table 5.10 – continued from previous page

observe(x, *args[, mask])

pdf(X[, mask])

plot(**kwargs)

random()

save(group)

set_plotter(plotter)

show()

unobserve()

update()

Fix moments, compute f and propagate mask.

Compute the probability density function of this node.

Plot the node distribution using the plotter of the node

Draw a random sample from the distribution.

Save the state of the node into a HDF5 file.

```
bayespy.nodes.Wishart.__init__
```

Wishart.__init__(n, V, **kwargs)
Create Wishart node.

bayespy.nodes.Wishart.add plate axis

Wishart.add_plate_axis(to_plate)

bayespy.nodes.Wishart.delete

Wishart.delete()

Delete this node and the children

bayespy.nodes.Wishart.get_mask

Wishart.get_mask()

bayespy.nodes.Wishart.get_moments

Wishart.get_moments()

bayespy.nodes.Wishart.get_shape

Wishart.get_shape(ind)

bayespy.nodes.Wishart.has_plotter

Wishart.has_plotter()

Return True if the node has a plotter

$bayes py. nodes. Wishart. in itialize_from_parameters$

Wishart.initialize_from_parameters(*args)

```
bayespy.nodes.Wishart.initialize from prior
Wishart.initialize_from_prior()
bayespy.nodes.Wishart.initialize_from_random
Wishart.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.Wishart.initialize_from_value
Wishart.initialize_from_value(x, *args)
bayespy.nodes.Wishart.load
Wishart.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Wishart.logpdf
Wishart.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Wishart.lower bound contribution
Wishart.lower_bound_contribution(gradient=False)
bayespy.nodes.Wishart.lowerbound
Wishart.lowerbound()
bayespy.nodes.Wishart.move plates
Wishart.move_plates (from_plate, to_plate)
bayespy.nodes.Wishart.observe
Wishart.observe(x, *args, mask=True)
    Fix moments, compute f and propagate mask.
bayespy.nodes.Wishart.pdf
Wishart.pdf(X, mask=True)
    Compute the probability density function of this node.
```

bayespy.nodes.Wishart.plot

```
Wishart.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Wishart.random

```
Wishart.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Wishart.save

```
Wishart.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.nodes.Wishart.set_plotter

```
Wishart.set_plotter(plotter)
```

bayespy.nodes.Wishart.show

```
Wishart.show()
```

bayespy.nodes.Wishart.unobserve

```
Wishart.unobserve()
```

bayespy.nodes.Wishart.update

```
Wishart.update()
```

Attributes

dims plates

bayespy.nodes.Wishart.dims

```
Wishart.dims = None
```

bayespy.nodes.Wishart.plates

```
Wishart.plates = None
```

bayespy.nodes.Exponential

```
class bayespy.nodes.Exponential (l, **kwargs)
```

Node for exponential random variables.

Warning: Use Gamma instead of this. Exponential(l) is equivalent to Gamma(1, l).

Parameters 1: gamma-like node or scalar or array

Rate parameter

See also:

Gamma, Poisson

Notes

For simplicity, this is just a gamma node with the first parent fixed to one. Note that this is a bit inconsistent with the BayesPy philosophy which states that the node does not only define the form of the prior distribution but more importantly the form of the posterior approximation. Thus, one might expect that this node would have exponential posterior distribution approximation. However, it has a gamma distribution. Also, the moments are gamma moments although only E[x] would be the moment of a exponential random variable. All this was done because: a) gamma was already implemented, so there was no need to implement anything, and b) people might easily use Exponential node as a prior definition and expect to get gamma posterior (which is what happens now). Maybe some day a pure Exponential node is implemented and the users are advised to use Gamma(1,b) if they want to use an exponential prior distribution but gamma posterior approximation.

```
__init__(l, **kwargs)
```

Methods

```
init__(l, **kwargs)
add_plate_axis(to_plate)
as_diagonal_wishart()
                                           Delete this node and the children
delete()
get_mask()
get_moments()
get_shape(ind)
has plotter()
                                          Return True if the node has a plotter
initialize from parameters(*args)
initialize_from_prior()
initialize from random()
                                           Set the variable to a random sample from the current distribution.
initialize_from_value(x, *args)
load(group)
                                          Load the state of the node from a HDF5 file.
                                           Compute the log probability density function Q(X) of this node.
logpdf(X[, mask])
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
                                                                            Continued on next page
```

Table 5.12 – continued from previous page

	14510 0.12	continued nom provided page
observe(x, *args[, mask])		Fix moments, compute f and propagate mask.
pdf(X[, mask])		Compute the probability density function of this node.
plot(**kwargs)		Plot the node distribution using the plotter of the node
random()		Draw a random sample from the distribution.
save(group)		Save the state of the node into a HDF5 file.
<pre>set_plotter(plotter)</pre>		
show()		Print the distribution using standard parameterization.
unobserve()		
update()		

```
bayespy.nodes.Exponential.__init__
Exponential.__init__(l, **kwargs)
bayespy.nodes.Exponential.add plate axis
Exponential.add_plate_axis (to_plate)
bayespy.nodes.Exponential.as_diagonal_wishart
Exponential.as_diagonal_wishart()
bayespy.nodes.Exponential.delete
Exponential.delete()
    Delete this node and the children
bayespy.nodes.Exponential.get_mask
Exponential.get_mask()
bayespy.nodes.Exponential.get moments
Exponential.get_moments()
bayespy.nodes.Exponential.get_shape
Exponential.get_shape(ind)
bayespy.nodes.Exponential.has_plotter
Exponential.has_plotter()
```

Return True if the node has a plotter

```
bayespy.nodes.Exponential.initialize from parameters
Exponential.initialize_from_parameters(*args)
bayespy.nodes.Exponential.initialize_from_prior
Exponential.initialize_from_prior()
bayespy.nodes.Exponential.initialize_from_random
Exponential.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.Exponential.initialize_from_value
Exponential.initialize_from_value(x, *args)
bayespy.nodes.Exponential.load
Exponential.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Exponential.logpdf
Exponential.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Exponential.lower_bound_contribution
Exponential.lower_bound_contribution(gradient=False)
bayespy.nodes.Exponential.lowerbound
Exponential.lowerbound()
bayespy.nodes.Exponential.move_plates
Exponential.move_plates (from_plate, to_plate)
bayespy.nodes.Exponential.observe
Exponential.observe(x, *args, mask=True)
    Fix moments, compute f and propagate mask.
```

bayespy.nodes.Exponential.pdf

```
Exponential.pdf (X, mask=True)
```

Compute the probability density function of this node.

bayespy.nodes.Exponential.plot

```
Exponential.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Exponential.random

```
Exponential.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Exponential.save

```
Exponential.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.nodes.Exponential.set_plotter

```
Exponential.set_plotter(plotter)
```

bayespy.nodes.Exponential.show

```
Exponential.show()
```

Print the distribution using standard parameterization.

bayespy.nodes.Exponential.unobserve

```
Exponential.unobserve()
```

bayes py. nodes. Exponential. update

```
Exponential.update()

Continued on next page
```

Table 5.13 – continued from previous page

Attributes

dims	tuple() -> empty tuple
plates	

bayespy.nodes.Exponential.dims

```
Exponential.dims = ((), ())
```

bayespy.nodes.Exponential.plates

```
Exponential.plates = None
```

Nodes for modelling Gaussian and precision variables jointly (useful as prior for Gaussian nodes):

GaussianGammaISO(*args, **kwargs)	Node for Gaussian-gamma (isotropic) random variables.
GaussianGammaARD(mu, alpha, a, b, **kwargs)	Node for Gaussian and gamma random variables with ARD form.
<pre>GaussianWishart(*args, **kwargs)</pre>	Node for Gaussian-Wishart random variables.

bayespy.nodes.GaussianGammalSO

 ${\bf class} \ {\tt bayespy.nodes.GaussianGammaISO} \ (*args, **kwargs)$

Node for Gaussian-gamma (isotropic) random variables.

The prior:

$$p(x, \alpha | \mu, \Lambda, a, b)$$
$$p(x | \alpha, \mu, \Lambda) = \mathcal{N}(x | \mu, \alpha Lambda)$$
$$p(\alpha | a, b) = \mathcal{G}(\alpha | a, b)$$

The posterior approximation $q(x,\alpha)$ has the same Gaussian-gamma form.

Currently, supports only vector variables.

Methods

Table 5.15 – continued from previous page

```
initialize from parameters(*args)
initialize_from_prior()
initialize_from_random()
                                               Set the variable to a random sample from the current distribution.
initialize_from_value(x, *args)
load(group)
                                               Load the state of the node from a HDF5 file.
logpdf(X[, mask])
                                               Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                               Fix moments, compute f and propagate mask.
                                               Compute the probability density function of this node.
pdf(X[, mask])
plot(**kwargs)
                                               Plot the node distribution using the plotter of the node
plotmatrix()
                                               Creates a matrix of marginal plots.
                                               Draw a random sample from the distribution.
random()
save(group)
                                               Save the state of the node into a HDF5 file.
set_plotter(plotter)
show()
                                               Print the distribution using standard parameterization.
unobserve()
update()
```

```
bayespy.nodes.GaussianGammalSO. init
GaussianGammaISO.__init__(*args, **kwargs)
bayespy.nodes.GaussianGammalSO.add plate axis
GaussianGammaISO.add_plate_axis(to_plate)
bayespy.nodes.GaussianGammalSO.delete
GaussianGammaISO.delete()
    Delete this node and the children
bayespy.nodes.GaussianGammalSO.get gaussian mean and variance
GaussianGammaISO.get_gaussian_mean_and_variance()
    Return the mean and variance of the distribution
bayespy.nodes.GaussianGammalSO.get marginal logpdf
GaussianGammaISO.get_marginal_logpdf(gaussian=None, gamma=None)
    Get the (marginal) log pdf of a subset of the variables
        Parameters gaussian: list or None
             Indices of the Gaussian variables to keep or None
           gamma: bool or None
             True if keep the gamma variable, otherwise False or None
```

```
Returns function
```

A function which computes log-pdf

```
bayespy.nodes.GaussianGammalSO.get_mask
```

```
GaussianGammaISO.get_mask()
```

bayespy.nodes.GaussianGammalSO.get_moments

```
GaussianGammaISO.get_moments()
```

bayespy.nodes.GaussianGammalSO.get_shape

```
GaussianGammaISO.get_shape (ind)
```

bayespy.nodes.GaussianGammalSO.has plotter

```
GaussianGammaISO.has_plotter()
Return True if the node has a plotter
```

bayespy.nodes.GaussianGammalSO.initialize_from_parameters

```
GaussianGammaISO.initialize_from_parameters(*args)
```

bayespy.nodes.GaussianGammalSO.initialize_from_prior

```
GaussianGammaISO.initialize_from_prior()
```

bayespy.nodes.GaussianGammalSO.initialize from random

```
GaussianGammaISO.initialize_from_random()

Set the variable to a random sample from the current distribution.
```

bayespy.nodes.GaussianGammalSO.initialize from value

```
GaussianGammaISO.initialize_from_value(x, *args)
```

bayespy.nodes.GaussianGammalSO.load

70

```
GaussianGammaISO.load (group)

Load the state of the node from a HDF5 file.
```

bayespy.nodes.GaussianGammalSO.logpdf

```
GaussianGammaISO.logpdf(X, mask=True)
```

Compute the log probability density function Q(X) of this node.

bayespy.nodes.GaussianGammalSO.lower_bound_contribution

GaussianGammaISO.lower bound contribution(gradient=False)

bayespy.nodes.GaussianGammalSO.lowerbound

GaussianGammaISO.lowerbound()

bayespy.nodes.GaussianGammalSO.move_plates

GaussianGammaISO.move_plates (from_plate, to_plate)

bayespy.nodes.GaussianGammalSO.observe

```
GaussianGammaISO.observe(x, *args, mask=True)
```

Fix moments, compute f and propagate mask.

bayespy.nodes.GaussianGammalSO.pdf

```
GaussianGammaISO.pdf (X, mask=True)
```

Compute the probability density function of this node.

bayespy.nodes.GaussianGammalSO.plot

```
GaussianGammaISO.plot (**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.GaussianGammalSO.plotmatrix

```
GaussianGammaISO.plotmatrix()
```

Creates a matrix of marginal plots.

On diagonal, are marginal plots of each variable. Off-diagonal plot (i,j) shows the joint marginal density of x_i and x_j .

bayespy.nodes.GaussianGammalSO.random

```
GaussianGammaISO.random()
```

Draw a random sample from the distribution.

bayespy.nodes.GaussianGammalSO.save

GaussianGammaISO.save (group)
Save the state of the node into a HDF5 file.
group can be the root

bayespy.nodes.GaussianGammalSO.set_plotter

GaussianGammaISO.set_plotter(plotter)

bayespy.nodes.GaussianGammalSO.show

GaussianGammaISO.show()

Print the distribution using standard parameterization.

bayespy.nodes.GaussianGammalSO.unobserve

GaussianGammaISO.unobserve()

bayespy.nodes.GaussianGammalSO.update

GaussianGammaISO.update()

Attributes

dims plates

bayespy.nodes.GaussianGammalSO.dims

GaussianGammaISO.dims = None

bayespy.nodes.GaussianGammalSO.plates

GaussianGammaISO.plates = None

bayespy.nodes.GaussianGammaARD

class bayespy.nodes.**GaussianGammaARD** (*mu*, *alpha*, *a*, *b*, **kwargs)

Node for Gaussian and gamma random variables with ARD form.

The prior:

72

$$p(x,\tau|\mu,\alpha,a,b) = p(x|\tau,\mu,\alpha)p(\tau|a,b)$$
$$p(x|\alpha,\mu,\alpha) = \mathcal{N}(x|\mu,\mathrm{diag}(\alpha \tau))$$
$$p(\tau|a,b) = \mathcal{G}(\tau|a,b)$$

The posterior approximation $q(x,\tau)$ has the same Gaussian-gamma form.

Warning: Not yet implemented.

See also:

```
Gaussian, GaussianARD, Gamma, GaussianGammaISO, GaussianWishart
__init__(mu, alpha, a, b, **kwargs)
```

Methods

```
__init___(mu, alpha, a, b, **kwargs)
add_plate_axis(to_plate)
                                             Delete this node and the children
delete()
get_mask()
get_moments()
get_shape(ind)
has_plotter()
                                             Return True if the node has a plotter
initialize_from_parameters(*args)
initialize_from_prior()
initialize from random()
                                             Set the variable to a random sample from the current distribution.
initialize_from_value(x, *args)
load(group)
                                             Load the state of the node from a HDF5 file.
logpdf(X[, mask])
                                             Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                             Fix moments, compute f and propagate mask.
                                             Compute the probability density function of this node.
pdf(X[, mask])
plot(**kwargs)
                                             Plot the node distribution using the plotter of the node
                                             Draw a random sample from the distribution.
random()
save(group)
                                             Save the state of the node into a HDF5 file.
set_plotter(plotter)
unobserve()
update()
```

bayespy.nodes.GaussianGammaARD.__init__

```
GaussianGammaARD.__init__(mu, alpha, a, b, **kwargs)
```

bayespy.nodes.GaussianGammaARD.add_plate_axis

```
GaussianGammaARD.add_plate_axis(to_plate)
```

bayespy.nodes.GaussianGammaARD.delete

```
GaussianGammaARD.delete()

Delete this node and the children
```

```
bayespy.nodes.GaussianGammaARD.get_mask
GaussianGammaARD.get_mask()
bayespy.nodes.GaussianGammaARD.get moments
GaussianGammaARD.get_moments()
bayespy.nodes.GaussianGammaARD.get_shape
GaussianGammaARD.get_shape(ind)
bayespy.nodes.GaussianGammaARD.has_plotter
GaussianGammaARD.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.GaussianGammaARD.initialize from parameters
GaussianGammaARD.initialize_from_parameters(*args)
bayespy.nodes.GaussianGammaARD.initialize_from_prior
GaussianGammaARD.initialize_from_prior()
bayespy.nodes.GaussianGammaARD.initialize from random
GaussianGammaARD.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.GaussianGammaARD.initialize from value
GaussianGammaARD.initialize_from_value(x, *args)
bayespy.nodes.GaussianGammaARD.load
GaussianGammaARD.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.GaussianGammaARD.logpdf
GaussianGammaARD.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
```

bayespy.nodes.GaussianGammaARD.lower bound contribution

GaussianGammaARD.lower_bound_contribution(gradient=False)

bayespy.nodes.GaussianGammaARD.lowerbound

GaussianGammaARD.lowerbound()

bayespy.nodes.GaussianGammaARD.move_plates

GaussianGammaARD.move_plates (from_plate, to_plate)

bayespy.nodes.GaussianGammaARD.observe

GaussianGammaARD.**observe**(*x*, **args*, *mask=True*) Fix moments, compute f and propagate mask.

bayespy.nodes.GaussianGammaARD.pdf

GaussianGammaARD.pdf (X, mask=True)

Compute the probability density function of this node.

bayespy.nodes.GaussianGammaARD.plot

```
GaussianGammaARD.plot (**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.GaussianGammaARD.random

```
GaussianGammaARD.random()
```

Draw a random sample from the distribution.

bayespy.nodes.GaussianGammaARD.save

```
GaussianGammaARD.save (group)
Save the state of the node into a HDF5 file.
group can be the root
```

bayespy.nodes.GaussianGammaARD.set_plotter

GaussianGammaARD.set_plotter(plotter)

bayespy.nodes.GaussianGammaARD.unobserve

GaussianGammaARD.unobserve()

bayespy.nodes.GaussianGammaARD.update

GaussianGammaARD.update()

Attributes

dims plates

bayespy.nodes.GaussianGammaARD.dims

GaussianGammaARD.dims = None

bayespy.nodes.GaussianGammaARD.plates

GaussianGammaARD.plates = None

bayespy.nodes.GaussianWishart

class bayespy.nodes.GaussianWishart(*args, **kwargs)

Node for Gaussian-Wishart random variables.

The prior:

$$\begin{split} p(x,\Lambda|\mu,\alpha,V,n) \\ p(x|\Lambda,\mu,\alpha) &= (N)(x|\mu,\alpha^{-1}Lambda^{-1}) \\ p(\Lambda|V,n) &= (W)(\Lambda|n,V) \end{split}$$

The posterior approximation $q(x, \Lambda)$ has the same Gaussian-Wishart form.

Currently, supports only vector variables.

```
___init___(*args, **kwargs)
```

Methods

76

Table 5.19 – continued from previous page

```
initialize_from_parameters(*args)
initialize_from_prior()
initialize_from_random()
                                             Set the variable to a random sample from the current distribution.
initialize_from_value(x, *args)
load(group)
                                             Load the state of the node from a HDF5 file.
logpdf(X[, mask])
                                             Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                             Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                             Compute the probability density function of this node.
plot(**kwargs)
                                             Plot the node distribution using the plotter of the node
                                             Draw a random sample from the distribution.
random()
                                             Save the state of the node into a HDF5 file.
save(group)
set_plotter(plotter)
                                             Print the distribution using standard parameterization.
show()
unobserve()
update()
```

```
bayespy.nodes.GaussianWishart.__init__

GaussianWishart.__init__(*args, **kwargs)

bayespy.nodes.GaussianWishart.add_plate_axis

GaussianWishart.add_plate_axis(to_plate)

bayespy.nodes.GaussianWishart.delete

GaussianWishart.delete()
    Delete this node and the children

bayespy.nodes.GaussianWishart.get_mask

GaussianWishart.get_mask()

bayespy.nodes.GaussianWishart.get_moments

GaussianWishart.get_moments()

bayespy.nodes.GaussianWishart.get_shape

GaussianWishart.get_shape(ind)
```

78

```
bayespy.nodes.GaussianWishart.has_plotter
GaussianWishart.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.GaussianWishart.initialize from parameters
GaussianWishart.initialize_from_parameters(*args)
bayespy.nodes.GaussianWishart.initialize_from_prior
GaussianWishart.initialize_from_prior()
bayespy.nodes.GaussianWishart.initialize from random
GaussianWishart.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.GaussianWishart.initialize from value
GaussianWishart.initialize_from_value(x, *args)
bayespy.nodes.GaussianWishart.load
GaussianWishart.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.GaussianWishart.logpdf
GaussianWishart.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.GaussianWishart.lower bound contribution
GaussianWishart.lower_bound_contribution(gradient=False)
bayespy.nodes.GaussianWishart.lowerbound
GaussianWishart.lowerbound()
bayespy.nodes.GaussianWishart.move_plates
GaussianWishart.move_plates (from_plate, to_plate)
```

bayespy.nodes.GaussianWishart.observe

```
GaussianWishart.observe (x, *args, mask=True) Fix moments, compute f and propagate mask.
```

bayespy.nodes.GaussianWishart.pdf

```
GaussianWishart.pdf(X, mask=True)
```

Compute the probability density function of this node.

bayespy.nodes.GaussianWishart.plot

```
GaussianWishart.plot (**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.GaussianWishart.random

```
GaussianWishart.random()
```

Draw a random sample from the distribution.

bayespy.nodes.GaussianWishart.save

```
GaussianWishart.save (group)
Save the state of the node into a HDF5 file.
group can be the root
```

bayespy.nodes.GaussianWishart.set_plotter

```
GaussianWishart.set_plotter(plotter)
```

bayespy.nodes.GaussianWishart.show

```
GaussianWishart.show()
```

Print the distribution using standard parameterization.

bayespy.nodes.GaussianWishart.unobserve

```
GaussianWishart.unobserve()
```

bayespy.nodes.GaussianWishart.update

```
GaussianWishart.update()
```

Attributes

```
dims
plates
```

bayespy.nodes.GaussianWishart.dims

```
GaussianWishart.dims = None
```

bayespy.nodes.GaussianWishart.plates

```
GaussianWishart.plates = None
```

Nodes for discrete count variables:

Bernoulli(p, **kwargs)	Node for Bernoulli random variables.
Binomial(n, p, **kwargs)	Node for binomial random variables.
Categorical(p, **kwargs)	Node for categorical random variables.
<pre>Multinomial(n, p, **kwargs)</pre>	Node for multinomial random variables.
Poisson(l, **kwargs)	Node for Poisson random variables.

bayespy.nodes.Bernoulli

```
class bayespy.nodes.Bernoulli(p, **kwargs)
```

Node for Bernoulli random variables.

The node models a binary random variable $z \in \{0,1\}$ with prior probability $p \in [0,1]$ for value one:

```
z \sim \text{Bernoulli}(p).
```

Parameters p: beta-like node

Probability of a successful trial

Examples

```
_init__(p, **kwargs)
                                             Create Bernoulli node.
add_plate_axis(to_plate)
                                             Delete this node and the children
delete()
get_mask()
get_moments()
get_shape(ind)
has_plotter()
                                             Return True if the node has a plotter
initialize_from_parameters(*args)
initialize from prior()
initialize from random()
                                             Set the variable to a random sample from the current distribution.
initialize_from_value(x, *args)
                                             Load the state of the node from a HDF5 file.
load(group)
logpdf(X[, mask])
                                             Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                             Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                             Compute the probability density function of this node.
plot(**kwargs)
                                             Plot the node distribution using the plotter of the node
random()
                                             Draw a random sample from the distribution.
save(group)
                                             Save the state of the node into a HDF5 file.
set_plotter(plotter)
                                             Print the distribution using standard parameterization.
show()
unobserve()
update()
```

bayespy.nodes.Bernoulli.__init__

```
Bernoulli.__init__(p, **kwargs)
    Create Bernoulli node.
```

bayespy.nodes.Bernoulli.add plate axis

```
Bernoulli.add_plate_axis(to_plate)
```

bayespy.nodes.Bernoulli.delete

```
Bernoulli.delete()
```

Delete this node and the children

bayespy.nodes.Bernoulli.get mask

Bernoulli.get_mask()

bayespy.nodes.Bernoulli.get_moments

Bernoulli.get_moments()

```
bayespy.nodes.Bernoulli.get_shape
Bernoulli.get_shape(ind)
bayespy.nodes.Bernoulli.has plotter
Bernoulli.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.Bernoulli.initialize_from_parameters
Bernoulli.initialize_from_parameters(*args)
bayespy.nodes.Bernoulli.initialize_from_prior
Bernoulli.initialize_from_prior()
bayespy.nodes.Bernoulli.initialize from random
Bernoulli.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.Bernoulli.initialize_from_value
Bernoulli.initialize_from_value(x, *args)
bayespy.nodes.Bernoulli.load
Bernoulli.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Bernoulli.logpdf
Bernoulli.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Bernoulli.lower bound contribution
Bernoulli.lower_bound_contribution(gradient=False)
bayespy.nodes.Bernoulli.lowerbound
Bernoulli.lowerbound()
```

bayespy.nodes.Bernoulli.move plates

```
Bernoulli.move_plates (from_plate, to_plate)
```

bayespy.nodes.Bernoulli.observe

```
Bernoulli.observe(x, *args, mask=True)
```

Fix moments, compute f and propagate mask.

bayespy.nodes.Bernoulli.pdf

```
Bernoulli.pdf(X, mask=True)
```

Compute the probability density function of this node.

bayespy.nodes.Bernoulli.plot

```
Bernoulli.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Bernoulli.random

```
Bernoulli.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Bernoulli.save

```
Bernoulli.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.nodes.Bernoulli.set plotter

```
Bernoulli.set_plotter(plotter)
```

bayespy.nodes.Bernoulli.show

```
Bernoulli.show()
```

Print the distribution using standard parameterization.

bayespy.nodes.Bernoulli.unobserve

```
Bernoulli.unobserve()
```

bayespy.nodes.Bernoulli.update

```
Bernoulli.update()
```

Attributes

```
dims
plates
```

bayespy.nodes.Bernoulli.dims

```
Bernoulli.dims = None
```

bayespy.nodes.Bernoulli.plates

```
Bernoulli.plates = None
```

bayespy.nodes.Binomial

```
class bayespy.nodes.Binomial (n, p, **kwargs)
```

Node for binomial random variables.

The node models the number of successes $x \in \{0, \dots, n\}$ in n trials with probability p for success:

```
x \sim \text{Binomial}(n, p).
```

Parameters n: scalar or array

Number of trials

p: beta-like node or scalar or array

Probability of a success in a trial

See also:

```
Bernoulli, Multinomial, Beta
```

Examples

Methods

```
_init___(n, p, **kwargs)
                                             Create binomial node
add_plate_axis(to_plate)
                                             Delete this node and the children
delete()
get_mask()
get_moments()
get_shape(ind)
has plotter()
                                             Return True if the node has a plotter
initialize_from_parameters(*args)
initialize_from_prior()
initialize_from_random()
                                             Set the variable to a random sample from the current distribution.
initialize from value(x, *args)
                                             Load the state of the node from a HDF5 file.
load(group)
logpdf(X[, mask])
                                             Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                             Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                             Compute the probability density function of this node.
plot(**kwargs)
                                             Plot the node distribution using the plotter of the node
                                             Draw a random sample from the distribution.
random()
                                             Save the state of the node into a HDF5 file.
save(group)
set_plotter(plotter)
                                             Print the distribution using standard parameterization.
show()
unobserve()
update()
```

bayespy.nodes.Binomial. init

```
Binomial.__init__(n, p, **kwargs)
Create binomial node
```

bayespy.nodes.Binomial.add_plate_axis

```
Binomial.add_plate_axis(to_plate)
```

bayespy.nodes.Binomial.delete

```
Binomial.delete()

Delete this node and the children
```

bayespy.nodes.Binomial.get_mask

```
Binomial.get_mask()
```

bayespy.nodes.Binomial.get_moments

```
Binomial.get_moments()
```

```
bayespy.nodes.Binomial.get_shape
Binomial.get_shape(ind)
bayespy.nodes.Binomial.has plotter
Binomial.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.Binomial.initialize_from_parameters
Binomial.initialize_from_parameters(*args)
bayespy.nodes.Binomial.initialize_from_prior
Binomial.initialize_from_prior()
bayespy.nodes.Binomial.initialize from random
Binomial.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.Binomial.initialize_from_value
Binomial.initialize_from_value(x, *args)
bayespy.nodes.Binomial.load
Binomial.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Binomial.logpdf
Binomial.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Binomial.lower bound contribution
Binomial.lower_bound_contribution(gradient=False)
bayespy.nodes.Binomial.lowerbound
Binomial.lowerbound()
```

bayespy.nodes.Binomial.move plates

```
Binomial.move_plates (from_plate, to_plate)
```

bayespy.nodes.Binomial.observe

```
Binomial.observe(x, *args, mask=True)
```

Fix moments, compute f and propagate mask.

bayespy.nodes.Binomial.pdf

```
Binomial.pdf (X, mask=True)
```

Compute the probability density function of this node.

bayespy.nodes.Binomial.plot

```
Binomial.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Binomial.random

```
Binomial.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Binomial.save

```
Binomial.save (group)
Save the state of the node into a HDF5 file.
```

group can be the root

bayespy.nodes.Binomial.set plotter

```
Binomial.set_plotter(plotter)
```

bayespy.nodes.Binomial.show

```
Binomial.show()
```

Print the distribution using standard parameterization.

bayespy.nodes.Binomial.unobserve

```
Binomial.unobserve()
```

bayespy.nodes.Binomial.update

```
Binomial.update()
```

Attributes

dims plates

bayespy.nodes.Binomial.dims

Binomial.dims = None

bayespy.nodes.Binomial.plates

Binomial.plates = None

bayespy.nodes.Categorical

class bayespy.nodes.Categorical(p, **kwargs)

Node for categorical random variables.

The node models a categorical random variable $x \in \{0, \dots, K-1\}$ with prior probabilities $\{p_0, \dots, p_{K-1}\}$ for each category:

$$p(x = k) = p_k$$
 for $k \in \{0, \dots, K - 1\}$.

Parameters p: Dirichlet-like node or (...,K)-array

Probabilities for each category

See also:

Bernoulli, Multinomial, Dirichlet

init(p, **kwargs)	Create Categorical node.
<pre>add_plate_axis(to_plate)</pre>	
delete()	Delete this node and the children
get_mask()	
get_moments()	
get_shape(ind)	
has_plotter()	Return True if the node has a plotter
<pre>initialize_from_parameters(*args)</pre>	
<pre>initialize_from_prior()</pre>	
<pre>initialize_from_random()</pre>	Set the variable to a random sample from the current distribution.
	Continued on next page

Table 5.26 – continued from previous page

```
initialize_from_value(x, *args)
                                              Load the state of the node from a HDF5 file.
load(group)
logpdf(X[, mask])
                                              Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                              Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                              Compute the probability density function of this node.
plot(**kwargs)
                                              Plot the node distribution using the plotter of the node
random()
                                              Draw a random sample from the distribution.
                                              Save the state of the node into a HDF5 file.
save(group)
set plotter(plotter)
show()
                                              Print the distribution using standard parameterization.
unobserve()
update()
```

```
bayespy.nodes.Categorical.__init__
```

```
Categorical.__init__(p, **kwargs)
Create Categorical node.
```

bayespy.nodes.Categorical.add_plate_axis

```
Categorical.add_plate_axis(to_plate)
```

bayespy.nodes.Categorical.delete

```
Categorical.delete()

Delete this node and the children
```

bayespy.nodes.Categorical.get_mask

```
Categorical.get_mask()
```

bayespy.nodes.Categorical.get_moments

```
Categorical.get_moments()
```

bayespy.nodes.Categorical.get_shape

```
Categorical.get_shape(ind)
```

bayespy.nodes.Categorical.has_plotter

```
Categorical.has_plotter()
Return True if the node has a plotter
```

```
bayespy.nodes.Categorical.initialize from parameters
Categorical.initialize_from_parameters(*args)
bayespy.nodes.Categorical.initialize_from_prior
Categorical.initialize_from_prior()
bayespy.nodes.Categorical.initialize_from_random
Categorical.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.Categorical.initialize from value
Categorical.initialize_from_value(x, *args)
bayespy.nodes.Categorical.load
Categorical.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Categorical.logpdf
Categorical.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Categorical.lower_bound_contribution
Categorical.lower_bound_contribution (gradient=False)
bayespy.nodes.Categorical.lowerbound
Categorical.lowerbound()
bayespy.nodes.Categorical.move_plates
Categorical.move_plates (from_plate, to_plate)
bayespy.nodes.Categorical.observe
Categorical.observe(x, *args, mask=True)
    Fix moments, compute f and propagate mask.
```

bayespy.nodes.Categorical.pdf

```
Categorical.pdf(X, mask=True)
```

Compute the probability density function of this node.

bayespy.nodes.Categorical.plot

```
Categorical.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Categorical.random

```
Categorical.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Categorical.save

```
Categorical.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.nodes.Categorical.set_plotter

```
Categorical.set_plotter(plotter)
```

bayespy.nodes.Categorical.show

```
Categorical.show()
```

Print the distribution using standard parameterization.

bayespy.nodes.Categorical.unobserve

```
Categorical.unobserve()
```

bayespy.nodes.Categorical.update

```
Categorical.update()

Continued on next page
```

Table 5.27 – continued from previous page

Attributes

dims plates

bayespy.nodes.Categorical.dims

Categorical.dims = None

bayespy.nodes.Categorical.plates

Categorical.plates = None

bayespy.nodes.Multinomial

class bayespy.nodes.Multinomial(n, p, **kwargs)

Node for multinomial random variables.

Assume there are K categories and N trials each of which leads a success for exactly one of the categories. Given the probabilities p_0, \ldots, p_{K-1} for the categories, multinomial distribution is gives the probability of any combination of numbers of successes for the categories.

The node models the number of successes $x_k \in \{0, ..., n\}$ in n trials with probability p_k for success in K categories.

$$\text{Multinomial}(\mathbf{x}|N,\mathbf{p}) = \frac{N!}{x_0! \cdots x_{K-1}!} p_0^{x_0} \cdots p_{K-1}^{x_{K-1}}$$

Parameters n: scalar or array

N, number of trials

p: Dirichlet-like node or (...,K)-array

p, probabilities of successes for the categories

See also:

```
Dirichlet, Binomial, Categorical
```

init(n, p, **kwargs)	Create Multinomial node.	
<pre>add_plate_axis(to_plate)</pre>		
delete()	Delete this node and the children	
get_mask()		
<pre>get_moments()</pre>		
		Continued on next page

Table 5.28 – continued from previous page

```
get_shape(ind)
                                             Return True if the node has a plotter
has_plotter()
initialize_from_parameters(*args)
initialize_from_prior()
initialize_from_random()
                                             Set the variable to a random sample from the current distribution.
initialize_from_value(x, *args)
load(group)
                                             Load the state of the node from a HDF5 file.
                                             Compute the log probability density function Q(X) of this node.
logpdf(X[, mask])
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                             Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                             Compute the probability density function of this node.
plot(**kwargs)
                                             Plot the node distribution using the plotter of the node
random()
                                             Draw a random sample from the distribution.
                                             Save the state of the node into a HDF5 file.
save(group)
set_plotter(plotter)
                                             Print the distribution using standard parameterization.
show()
unobserve()
update()
```

bayespy.nodes.Multinomial. init

```
Multinomial.__init__ (n, p, **kwargs)
Create Multinomial node.
```

bayespy.nodes.Multinomial.add_plate_axis

```
Multinomial.add_plate_axis(to_plate)
```

bayespy.nodes.Multinomial.delete

```
Multinomial.delete()

Delete this node and the children
```

bayespy.nodes.Multinomial.get_mask

```
Multinomial.get_mask()
```

bayespy.nodes.Multinomial.get_moments

Multinomial.get_moments()

bayespy.nodes.Multinomial.get_shape

Multinomial.get_shape(ind)

```
bayespy.nodes.Multinomial.has_plotter
Multinomial.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.Multinomial.initialize from parameters
Multinomial.initialize_from_parameters(*args)
bayespy.nodes.Multinomial.initialize_from_prior
Multinomial.initialize_from_prior()
bayespy.nodes.Multinomial.initialize_from_random
Multinomial.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.Multinomial.initialize from value
Multinomial.initialize_from_value(x, *args)
bayespy.nodes.Multinomial.load
Multinomial.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Multinomial.logpdf
Multinomial.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Multinomial.lower bound contribution
Multinomial.lower_bound_contribution(gradient=False)
bayespy.nodes.Multinomial.lowerbound
Multinomial.lowerbound()
bayespy.nodes.Multinomial.move_plates
Multinomial.move_plates (from_plate, to_plate)
```

bayespy.nodes.Multinomial.observe

```
Multinomial.observe(x, *args, mask=True) Fix moments, compute f and propagate mask.
```

bayespy.nodes.Multinomial.pdf

```
Multinomial.pdf (X, mask=True)
```

Compute the probability density function of this node.

bayespy.nodes.Multinomial.plot

```
Multinomial.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Multinomial.random

```
Multinomial.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Multinomial.save

```
Multinomial.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.nodes.Multinomial.set_plotter

```
Multinomial.set_plotter(plotter)
```

bayespy.nodes.Multinomial.show

```
Multinomial.show()
```

Print the distribution using standard parameterization.

bayespy.nodes.Multinomial.unobserve

```
Multinomial.unobserve()
```

bayespy.nodes.Multinomial.update

```
Multinomial.update()
```

Attributes

```
dims plates
```

bayespy.nodes.Multinomial.dims

Multinomial.dims = None

bayespy.nodes.Multinomial.plates

Multinomial.plates = None

bayespy.nodes.Poisson

class bayespy.nodes.Poisson(l, **kwargs)

Node for Poisson random variables.

The node uses Poisson distribution:

$$p(x) = Poisson(x|\lambda)$$

where λ is the rate parameter.

Parameters 1: gamma-like node or scalar or array

 λ , rate parameter

See also:

```
Gamma, Exponential
__init__(l, **kwargs)
Create Poisson random variable node
```

init(l, **kwargs)	Create Poisson random variable node
add_plate_axis(to_plate)	
delete()	Delete this node and the children
get_mask()	
<pre>get_moments()</pre>	
get_shape(ind)	
has_plotter()	Return True if the node has a plotter
<pre>initialize_from_parameters(*args)</pre>	
initialize_from_prior()	
initialize_from_random()	Set the variable to a random sample from the current distribution.
<pre>initialize_from_value(x, *args)</pre>	
load(group)	Load the state of the node from a HDF5 file.
logpdf(X[, mask])	Compute the log probability density function $Q(X)$ of this node.
<pre>lower_bound_contribution([gradient])</pre>	
	Continued on next page

Table 5.30 – continued from previous page

```
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                               Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                               Compute the probability density function of this node.
plot(**kwargs)
                                               Plot the node distribution using the plotter of the node
                                               Draw a random sample from the distribution.
random()
save(group)
                                               Save the state of the node into a HDF5 file.
set_plotter(plotter)
show()
                                               Print the distribution using standard parameterization.
unobserve()
update()
```

```
bayespy.nodes.Poisson.__init__
Poisson.__init__(l, **kwargs)
    Create Poisson random variable node
bayespy.nodes.Poisson.add plate axis
Poisson.add_plate_axis(to_plate)
bayespy.nodes.Poisson.delete
Poisson.delete()
    Delete this node and the children
bayespy.nodes.Poisson.get mask
Poisson.get_mask()
bayespy.nodes.Poisson.get_moments
Poisson.get_moments()
bayespy.nodes.Poisson.get_shape
Poisson.get_shape(ind)
bayespy.nodes.Poisson.has_plotter
Poisson.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.Poisson.initialize_from_parameters
Poisson.initialize_from_parameters(*args)
```

```
bayespy.nodes.Poisson.initialize from prior
Poisson.initialize_from_prior()
bayespy.nodes.Poisson.initialize from random
Poisson.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.Poisson.initialize_from_value
Poisson.initialize_from_value(x, *args)
bayespy.nodes.Poisson.load
Poisson.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Poisson.logpdf
Poisson.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Poisson.lower bound contribution
Poisson.lower_bound_contribution(gradient=False)
bayespy.nodes.Poisson.lowerbound
Poisson.lowerbound()
bayespy.nodes.Poisson.move_plates
Poisson.move_plates (from_plate, to_plate)
bayespy.nodes.Poisson.observe
Poisson.observe(x, *args, mask=True)
    Fix moments, compute f and propagate mask.
bayespy.nodes.Poisson.pdf
Poisson.pdf(X, mask=True)
    Compute the probability density function of this node.
```

bayespy.nodes.Poisson.plot

```
Poisson.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Poisson.random

```
Poisson.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Poisson.save

```
Poisson.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.nodes.Poisson.set_plotter

```
Poisson.set_plotter(plotter)
```

bayespy.nodes.Poisson.show

```
Poisson.show()
```

Print the distribution using standard parameterization.

bayespy.nodes.Poisson.unobserve

```
Poisson.unobserve()
```

bayespy.nodes.Poisson.update

```
Poisson.update()
```

Attributes

dims tuple() -> empty tuple
plates

bayespy.nodes.Poisson.dims

```
Poisson.dims = ((),)
```

bayespy.nodes.Poisson.plates

```
Poisson.plates = None
```

Nodes for probabilities:

Beta(alpha, **kwargs)	Node for beta random variables.
Dirichlet(*args, **kwargs)	Node for Dirichlet random variables.

bayespy.nodes.Beta

```
class bayespy.nodes.Beta (alpha, **kwargs)
    Node for beta random variables.
```

Trode for beta fandom variables.

The node models a probability variable $p \in [0, 1]$ as

$$p \sim \text{Beta}(a, b)$$

where a and b are prior counts for success and failure, respectively.

Parameters alpha: (...,2)-shaped array

Two-element vector containing a and b

Examples

```
_init__(alpha, **kwargs)
                                           Create beta node
add_plate_axis(to_plate)
delete()
                                           Delete this node and the children
get_mask()
get_moments()
get_shape(ind)
has_plotter()
                                           Return True if the node has a plotter
initialize_from_parameters(*args)
initialize_from_prior()
                                           Set the variable to a random sample from the current distribution.
initialize_from_random()
initialize_from_value(x, *args)
load(group)
                                           Load the state of the node from a HDF5 file.
                                                                             Continued on next page
```

Table 5.33 – continued from previous page

```
Compute the log probability density function Q(X) of this node.
logpdf(X[, mask])
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                              Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                               Compute the probability density function of this node.
plot(**kwargs)
                                               Plot the node distribution using the plotter of the node
                                              Draw a random sample from the distribution.
random()
save(group)
                                               Save the state of the node into a HDF5 file.
set_plotter(plotter)
                                              Print the distribution using standard parameterization.
show()
unobserve()
update()
```

```
bayespy.nodes.Beta. init
Beta.__init__(alpha, **kwargs)
    Create beta node
bayespy.nodes.Beta.add plate axis
Beta.add_plate_axis(to_plate)
bayespy.nodes.Beta.delete
Beta.delete()
    Delete this node and the children
bayespy.nodes.Beta.get_mask
Beta.get_mask()
bayespy.nodes.Beta.get moments
Beta.get_moments()
bayespy.nodes.Beta.get shape
Beta.get_shape (ind)
bayespy.nodes.Beta.has_plotter
Beta.has_plotter()
    Return True if the node has a plotter
```

```
bayespy.nodes.Beta.initialize from parameters
Beta.initialize_from_parameters(*args)
bayespy.nodes.Beta.initialize_from_prior
Beta.initialize_from_prior()
bayespy.nodes.Beta.initialize_from_random
Beta.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.Beta.initialize_from_value
Beta.initialize_from_value(x, *args)
bayespy.nodes.Beta.load
Beta.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Beta.logpdf
Beta.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Beta.lower_bound_contribution
Beta.lower_bound_contribution(gradient=False)
bayespy.nodes.Beta.lowerbound
Beta.lowerbound()
bayespy.nodes.Beta.move_plates
Beta.move_plates (from_plate, to_plate)
bayespy.nodes.Beta.observe
Beta.observe(x, *args, mask=True)
    Fix moments, compute f and propagate mask.
```

bayespy.nodes.Beta.pdf

```
Beta.pdf(X, mask=True)
```

Compute the probability density function of this node.

bayespy.nodes.Beta.plot

```
Beta.plot (**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Beta.random

```
Beta.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Beta.save

```
Beta.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.nodes.Beta.set_plotter

```
Beta.set_plotter(plotter)
```

bayespy.nodes.Beta.show

```
Beta.show()
```

Print the distribution using standard parameterization.

bayespy.nodes.Beta.unobserve

```
Beta.unobserve()
```

bayespy.nodes.Beta.update

```
Beta.update()
```

Continued on next page

Table 5.34 – continued from previous page

Attributes

dims plates

bayespy.nodes.Beta.dims

Beta.dims = None

bayespy.nodes.Beta.plates

Beta.plates = None

bayespy.nodes.Dirichlet

class bayespy.nodes.Dirichlet (*args, **kwargs)

Node for Dirichlet random variables.

The node models a set of probabilities $\{\pi_0, \dots, \pi_{K-1}\}$ which satisfy $\sum_{k=0}^{K-1} \pi_k = 1$ and $\pi_k \in [0,1] \ \forall k = 0, \dots, K-1$.

$$p(\pi_0, \dots, \pi_{K-1}) = Dirichlet(\alpha_0, \dots, \alpha_{K-1})$$

where α_k are concentration parameters.

The posterior approximation has the same functional form but with different concentration parameters.

Parameters alpha: (...,K)-shaped array

Prior counts α_k

See also:

Beta, Categorical, Multinomial, CategoricalMarkovChain
__init___(*args, **kwargs)

Table 5.35 – continued from previous page

```
initialize_from_value(x, *args)
                                              Load the state of the node from a HDF5 file.
load(group)
logpdf(X[, mask])
                                              Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                              Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                              Compute the probability density function of this node.
plot(**kwargs)
                                              Plot the node distribution using the plotter of the node
random()
                                              Draw a random sample from the distribution.
                                              Save the state of the node into a HDF5 file.
save(group)
set plotter(plotter)
                                              Print the distribution using standard parameterization.
show()
unobserve()
update()
```

```
bayespy.nodes.Dirichlet. init
Dirichlet.___init___(*args, **kwargs)
bayespy.nodes.Dirichlet.add plate axis
Dirichlet.add_plate_axis(to_plate)
bayespy.nodes.Dirichlet.delete
Dirichlet.delete()
    Delete this node and the children
bayespy.nodes.Dirichlet.get_mask
Dirichlet.get_mask()
bayespy.nodes.Dirichlet.get_moments
Dirichlet.get_moments()
bayespy.nodes.Dirichlet.get_shape
Dirichlet.get_shape(ind)
bayespy.nodes.Dirichlet.has plotter
Dirichlet.has_plotter()
    Return True if the node has a plotter
```

```
bayespy.nodes.Dirichlet.initialize from parameters
Dirichlet.initialize_from_parameters(*args)
bayespy.nodes.Dirichlet.initialize_from_prior
Dirichlet.initialize_from_prior()
bayespy.nodes.Dirichlet.initialize_from_random
Dirichlet.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.Dirichlet.initialize_from_value
Dirichlet.initialize_from_value(x, *args)
bayespy.nodes.Dirichlet.load
Dirichlet.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Dirichlet.logpdf
Dirichlet.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Dirichlet.lower_bound_contribution
Dirichlet.lower_bound_contribution(gradient=False)
bayespy.nodes.Dirichlet.lowerbound
Dirichlet.lowerbound()
bayespy.nodes.Dirichlet.move_plates
Dirichlet.move_plates (from_plate, to_plate)
bayespy.nodes.Dirichlet.observe
Dirichlet.observe(x, *args, mask=True)
    Fix moments, compute f and propagate mask.
```

bayespy.nodes.Dirichlet.pdf

```
Dirichlet.pdf(X, mask=True)
```

Compute the probability density function of this node.

bayespy.nodes.Dirichlet.plot

```
Dirichlet.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Dirichlet.random

```
Dirichlet.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Dirichlet.save

```
Dirichlet.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.nodes.Dirichlet.set_plotter

```
Dirichlet.set_plotter(plotter)
```

bayespy.nodes.Dirichlet.show

```
Dirichlet.show()
```

Print the distribution using standard parameterization.

bayespy.nodes.Dirichlet.unobserve

```
Dirichlet.unobserve()
```

bayespy.nodes.Dirichlet.update

```
Dirichlet.update()

Continued on next page
```

Table 5.36 – continued from previous page

Attributes

dims plates

bayespy.nodes.Dirichlet.dims

Dirichlet.dims = None

bayespy.nodes.Dirichlet.plates

Dirichlet.plates = None

Nodes for dynamic variables:

CategoricalMarkovChain(pi, A[, states])	Node for categorical Markov chain random variables.
<pre>GaussianMarkovChain(mu, Lambda, A, nu[, n])</pre>	Node for Gaussian Markov chain random variables.
SwitchingGaussianMarkovChain(mu, Lambda, B,)	Node for Gaussian Markov chain random variables with switching d
VaryingGaussianMarkovChain(mu, Lambda, B, S, nu)	Node for Gaussian Markov chain random variables with time-varying

bayespy.nodes.CategoricalMarkovChain

class bayespy.nodes.CategoricalMarkovChain(pi, A, states=None, **kwargs)

Node for categorical Markov chain random variables.

The node models a Markov chain which has a discrete set of K possible states and the next state depends only on the previous state and the state transition probabilities. The graphical model is shown below:

where π contains the probabilities for the initial state and **A** is the state transition probability matrix. It is possible to have **A** varying in time.

$$p(x_0, \dots, x_{N-1}) = p(x_0) \prod_{n=1}^{N-1} p(x_n | x_{n-1}),$$

where

$$p(x_0 = k) = \pi_k, \quad \text{for } k \in \{0, \dots, K - 1\},$$

$$p(x_n = j | x_{n-1} = i) = a_{ij}^{(n-1)} \quad \text{for } n = 1, \dots, N - 1, \ i \in \{1, \dots, K - 1\}, \ j \in \{1, \dots, K - 1\}$$

$$a_{ij}^{(n)} = [\mathbf{A}_n]_{ij}$$

This node can be used to construct hidden Markov models by using Mixture for the emission distribution.

```
Parameters pi: Dirichlet-like node or (...,K)-array
```

 π , probabilities for the first state. K-dimensional Dirichlet.

A: Dirichlet-like node or (K,K)-array or (...,1,K,K)-array or (...,N-1,K,K)-array

A, probabilities for state transitions. K-dimensional Dirichlet with plates (K,) or (...,1,K) or (...,N-1,K).

states: int, optional

N, the length of the chain.

See also:

Categorical, Dirichlet, GaussianMarkovChain, Mixture, SwitchingGaussianMarkovChain

__init__ (pi, A, states=None, **kwargs)
Create categorical Markov chain

Methods

```
_init___(pi, A[, states])
                                             Create categorical Markov chain
add_plate_axis(to_plate)
delete()
                                             Delete this node and the children
get_mask()
get_moments()
get_shape(ind)
has_plotter()
                                             Return True if the node has a plotter
initialize_from_parameters(*args)
initialize_from_prior()
initialize_from_random()
                                             Set the variable to a random sample from the current distribution.
initialize_from_value(x, *args)
                                             Load the state of the node from a HDF5 file.
load(group)
logpdf(X[, mask])
                                             Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                             Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                             Compute the probability density function of this node.
plot(**kwargs)
                                             Plot the node distribution using the plotter of the node
                                             Draw a random sample from the distribution.
random()
save(group)
                                             Save the state of the node into a HDF5 file.
set_plotter(plotter)
                                             Print the distribution using standard parameterization.
show()
unobserve()
update()
```

bayespy.nodes.CategoricalMarkovChain.__init__

```
CategoricalMarkovChain.__init__(pi, A, states=None, **kwargs)
Create categorical Markov chain
```

```
bayespy.nodes.CategoricalMarkovChain.add_plate_axis
CategoricalMarkovChain.add_plate_axis(to_plate)
bayespy.nodes.CategoricalMarkovChain.delete
CategoricalMarkovChain.delete()
    Delete this node and the children
bayespy.nodes.CategoricalMarkovChain.get mask
CategoricalMarkovChain.get_mask()
bayespy.nodes.CategoricalMarkovChain.get moments
CategoricalMarkovChain.get_moments()
bayespy.nodes.CategoricalMarkovChain.get_shape
CategoricalMarkovChain.get shape(ind)
bayespy.nodes.CategoricalMarkovChain.has_plotter
CategoricalMarkovChain.has_plotter()
    Return True if the node has a plotter
bayes py. nodes. Categorical Markov Chain. initialize\_from\_parameters
CategoricalMarkovChain.initialize_from_parameters(*args)
bayespy.nodes.CategoricalMarkovChain.initialize from prior
CategoricalMarkovChain.initialize_from_prior()
bayespy.nodes.CategoricalMarkovChain.initialize_from_random
CategoricalMarkovChain.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.CategoricalMarkovChain.initialize from value
CategoricalMarkovChain.initialize_from_value(x, *args)
```

bayespy.nodes.CategoricalMarkovChain.load

```
CategoricalMarkovChain.load(group)

Load the state of the node from a HDF5 file.
```

bayespy.nodes.CategoricalMarkovChain.logpdf

```
CategoricalMarkovChain.logpdf(X, mask=True)
Compute the log probability density function Q(X) of this node.
```

$bayes py. nodes. Categorical Markov Chain. lower_bound_contribution$

```
CategoricalMarkovChain.lower_bound_contribution(gradient=False)
```

bayespy.nodes.CategoricalMarkovChain.lowerbound

```
CategoricalMarkovChain.lowerbound()
```

bayespy.nodes.CategoricalMarkovChain.move plates

```
CategoricalMarkovChain.move_plates (from_plate, to_plate)
```

bayespy.nodes.CategoricalMarkovChain.observe

```
CategoricalMarkovChain.observe(x, *args, mask=True) Fix moments, compute f and propagate mask.
```

bayespy.nodes.CategoricalMarkovChain.pdf

```
CategoricalMarkovChain.pdf (X, mask=True)

Compute the probability density function of this node.
```

bayespy.nodes.CategoricalMarkovChain.plot

```
CategoricalMarkovChain.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.CategoricalMarkovChain.random

```
CategoricalMarkovChain.random()

Draw a random sample from the distribution.
```

bayespy.nodes.CategoricalMarkovChain.save

```
CategoricalMarkovChain.save (group)
Save the state of the node into a HDF5 file.
group can be the root
```

bayespy.nodes.CategoricalMarkovChain.set_plotter

CategoricalMarkovChain.set_plotter(plotter)

bayespy.nodes.CategoricalMarkovChain.show

```
CategoricalMarkovChain.show()

Print the distribution using standard parameterization.
```

bayespy.nodes.CategoricalMarkovChain.unobserve

CategoricalMarkovChain.unobserve()

bayespy.nodes.CategoricalMarkovChain.update

CategoricalMarkovChain.update()

Attributes

dims plates

bayespy.nodes.CategoricalMarkovChain.dims

 ${\tt Categorical Markov Chain. dims} = None$

bayespy.nodes.CategoricalMarkovChain.plates

CategoricalMarkovChain.plates = None

bayespy.nodes.GaussianMarkovChain

class bayespy.nodes.GaussianMarkovChain (mu, Lambda, A, nu, n=None, **kwargs)
Node for Gaussian Markov chain random variables.

In a simple case, the graphical model can be presented as:

where μ and Λ are the mean and the precision matrix of the initial state, \mathbf{A} is the state dynamics matrix and ν is the precision of the innovation noise. It is possible that \mathbf{A} and/or ν are different for each transition instead of being constant.

The probability distribution is

$$p(\mathbf{x}_0, \dots, \mathbf{x}_{N-1}) = p(\mathbf{x}_0) \prod_{n=1}^{N-1} p(\mathbf{x}_n | \mathbf{x}_{n-1})$$

where

$$p(\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_0 | \boldsymbol{\mu}, \boldsymbol{\Lambda})$$
$$p(\mathbf{x}_n | \mathbf{x}_{n-1}) = \mathcal{N}(\mathbf{x}_n | \mathbf{A}_{n-1} \mathbf{x}_{n-1}, \operatorname{diag}(\boldsymbol{\nu}_{n-1})).$$

Parameters mu: Gaussian-like node or (...,D)-array

 μ , mean of x_0 , D-dimensional with plates (...)

Lambda: Wishart-like node or (...,D,D)-array

 Λ , precision matrix of x_0 , $D \times D$ -dimensional with plates (...)

A: Gaussian-like node or (D,D)-array or (...,1,D,D)-array or (...,N-1,D,D)-array

A, state dynamics matrix, D-dimensional with plates (D,) or (...,1,D) or (...,N-1,D)

nu: gamma-like node or (D,)-array or (...,1,D)-array or (...,N-1,D)-array

 ν , diagonal elements of the precision of the innovation process, plates (D,) or (...,1,D) or (...,N-1,D)

n: int, optional

N, the length of the chain. Must be given if **A** and ν are constant over time.

See also:

Gaussian, GaussianARD, Wishart, Gamma, SwitchingGaussianMarkovChain, VaryingGaussianMarkovChain, CategoricalMarkovChain

__init__ (mu, Lambda, A, nu, n=None, **kwargs)
Create GaussianMarkovChain node.

Methods

init(mu, Lambda, A, nu[, n])	Create GaussianMarkovChain node.	
<pre>add_plate_axis(to_plate)</pre>		
delete()	Delete this node and the children	
get_mask()		
<pre>get_moments()</pre>		
get_shape(ind)		
has_plotter()	Return True if the node has a plotter	
		Continued on next page

Table 5.40 – continued from previous page

```
initialize_from_parameters(*args)
initialize_from_prior()
initialize_from_random()
                                             Set the variable to a random sample from the current distribution.
initialize_from_value(x, *args)
load(group)
                                             Load the state of the node from a HDF5 file.
logpdf(X[, mask])
                                             Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                             Fix moments, compute f and propagate mask.
                                             Compute the probability density function of this node.
pdf(X[, mask])
plot(**kwargs)
                                             Plot the node distribution using the plotter of the node
random()
                                             Draw a random sample from the distribution.
rotate(R[, inv, logdet])
save(group)
                                             Save the state of the node into a HDF5 file.
set_plotter(plotter)
show()
unobserve()
update()
```

bayespy.nodes.GaussianMarkovChain. init

```
GaussianMarkovChain.__init__ (mu, Lambda, A, nu, n=None, **kwargs)
Create GaussianMarkovChain node.
```

bayespy.nodes.GaussianMarkovChain.add plate axis

```
GaussianMarkovChain.add_plate_axis(to_plate)
```

bayespy.nodes.GaussianMarkovChain.delete

```
GaussianMarkovChain.delete()

Delete this node and the children
```

bayespy.nodes.GaussianMarkovChain.get_mask

```
GaussianMarkovChain.get_mask()
```

bayespy.nodes.GaussianMarkovChain.get_moments

```
GaussianMarkovChain.get_moments()
```

bayespy.nodes.GaussianMarkovChain.get_shape

```
GaussianMarkovChain.get_shape (ind)
```

```
bayespy.nodes.GaussianMarkovChain.has_plotter
GaussianMarkovChain.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.GaussianMarkovChain.initialize from parameters
GaussianMarkovChain.initialize_from_parameters(*args)
bayespy.nodes.GaussianMarkovChain.initialize_from_prior
GaussianMarkovChain.initialize_from_prior()
bayespy.nodes.GaussianMarkovChain.initialize_from_random
GaussianMarkovChain.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.GaussianMarkovChain.initialize from value
GaussianMarkovChain.initialize_from_value(x, *args)
bayespy.nodes.GaussianMarkovChain.load
GaussianMarkovChain.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.GaussianMarkovChain.logpdf
GaussianMarkovChain.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.GaussianMarkovChain.lower bound contribution
GaussianMarkovChain.lower_bound_contribution(gradient=False)
bayespy.nodes.GaussianMarkovChain.lowerbound
GaussianMarkovChain.lowerbound()
bayespy.nodes.GaussianMarkovChain.move_plates
GaussianMarkovChain.move_plates(from_plate, to_plate)
```

bayespy.nodes.GaussianMarkovChain.observe

```
GaussianMarkovChain.observe(x, *args, mask=True) Fix moments, compute f and propagate mask.
```

bayespy.nodes.GaussianMarkovChain.pdf

```
GaussianMarkovChain.pdf (X, mask=True)

Compute the probability density function of this node.
```

bayespy.nodes.GaussianMarkovChain.plot

```
GaussianMarkovChain.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.GaussianMarkovChain.random

```
GaussianMarkovChain.random()
```

Draw a random sample from the distribution.

bayespy.nodes.GaussianMarkovChain.rotate

```
GaussianMarkovChain.rotate(R, inv=None, logdet=None)
```

bayes py. nodes. Gaussian Markov Chain. save

```
GaussianMarkovChain.save (group)
Save the state of the node into a HDF5 file.
group can be the root
```

bayespy.nodes.GaussianMarkovChain.set plotter

```
GaussianMarkovChain.set_plotter(plotter)
```

bayespy.nodes.GaussianMarkovChain.show

```
GaussianMarkovChain.show()
```

bayespy.nodes.GaussianMarkovChain.unobserve

```
GaussianMarkovChain.unobserve()
```

bayespy.nodes.GaussianMarkovChain.update

GaussianMarkovChain.update()

Attributes

dims plates

bayespy.nodes.GaussianMarkovChain.dims

GaussianMarkovChain.dims = None

bayespy.nodes.GaussianMarkovChain.plates

GaussianMarkovChain.plates = None

bayespy.nodes.SwitchingGaussianMarkovChain

Node for Gaussian Markov chain random variables with switching dynamics.

The node models a sequence of Gaussian variables :math: $\{x\}_0$, in the factorial Markovian dynamics. The dynamics may change in time, which is obtained by having a set of matrices and at each time selecting one of them as the state dynamics matrix. The graphical model can be presented as:

where μ and Λ are the mean and the precision matrix of the initial state, ν is the precision of the innovation noise, and \mathbf{A}_n are the state dynamics matrix obtained by selecting one of the matrices $\{\mathbf{B}_k\}_{k=0}^{K-1}$ at each time.

The selections are provided by $z_n \in \{0, \dots, K-1\}$. The probability distribution is

$$p(\mathbf{x}_0,\ldots,\mathbf{x}_{N-1}) = p(\mathbf{x}_0) \prod_{n=1}^{N-1} p(\mathbf{x}_n|\mathbf{x}_{n-1})$$

where

$$p(\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_0 | \boldsymbol{\mu}, \boldsymbol{\Lambda})$$

$$p(\mathbf{x}_n | \mathbf{x}_{n-1}) = \mathcal{N}(\mathbf{x}_n | \mathbf{A}_{n-1} \mathbf{x}_{n-1}, \operatorname{diag}(\boldsymbol{\nu})), \quad \text{for } n = 1, \dots, N-1,$$

$$\mathbf{A}_n = \mathbf{B}_{z_n}, \quad \text{for } n = 0, \dots, N-2.$$

Parameters mu: Gaussian-like node or (...,D)-array

 μ , mean of x_0 , D-dimensional with plates (...)

Lambda: Wishart-like node or (...,D,D)-array

 Λ , precision matrix of x_0 , $D \times D$ -dimensional with plates (...)

B: Gaussian-like node or (...,D,D,K)-array

 $\{\mathbf{B}_k\}_{k=0}^{K-1}$, a set of state dynamics matrix, $D \times K$ -dimensional with plates (...,D)

Z: categorical-like node or (...,N-1)-array

 $\{z_0, \dots, z_{N-2}\}$, time-dependent selection, K-categorical with plates (...,N-1)

nu: gamma-like node or (...,D)-array

 ν , diagonal elements of the precision of the innovation process, plates (...,D)

n: int, optional

N, the length of the chain. Must be given if **Z** does not have plates over the time domain (which would not make sense).

See also:

Gaussian, GaussianARD, Wishart, Gamma, GaussianMarkovChain, VaryingGaussianMarkovChain, Categorical, CategoricalMarkovChain

Notes

Equivalent model block can be constructed with GaussianMarkovChain by explicitly using Gate to select the state dynamics matrix. However, that approach is not very efficient for large datasets because it does not utilize the structure of A_n , thus it explicitly computes huge moment arrays.

```
__init__ (mu, Lambda, B, Z, nu, n=None, **kwargs)
Create SwitchingGaussianMarkovChain node.
```

Methods

Table 5.42 - continued from previous page

```
has plotter()
                                             Return True if the node has a plotter
initialize_from_parameters(*args)
initialize_from_prior()
initialize_from_random()
                                             Set the variable to a random sample from the current distribution.
initialize_from_value(x, *args)
load(group)
                                             Load the state of the node from a HDF5 file.
logpdf(X[, mask])
                                             Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                             Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                             Compute the probability density function of this node.
plot(**kwargs)
                                             Plot the node distribution using the plotter of the node
                                             Draw a random sample from the distribution.
random()
rotate(R[, inv, logdet])
                                             Save the state of the node into a HDF5 file.
save(group)
set_plotter(plotter)
show()
unobserve()
update()
```

bayespy.nodes.SwitchingGaussianMarkovChain.__init__

```
SwitchingGaussianMarkovChain.__init__ (mu, Lambda, B, Z, nu, n=None, **kwargs) Create SwitchingGaussianMarkovChain node.
```

bayespy.nodes.SwitchingGaussianMarkovChain.add_plate_axis

SwitchingGaussianMarkovChain.add_plate_axis(to_plate)

bayespy.nodes.SwitchingGaussianMarkovChain.delete

```
SwitchingGaussianMarkovChain.delete()

Delete this node and the children
```

$bayes py. nodes. Switching Gaussian Markov Chain. get_mask$

SwitchingGaussianMarkovChain.get_mask()

bayespy.nodes.SwitchingGaussianMarkovChain.get_moments

SwitchingGaussianMarkovChain.get_moments()

bayespy.nodes.SwitchingGaussianMarkovChain.get_shape

SwitchingGaussianMarkovChain.get_shape(ind)

```
bayespy.nodes.SwitchingGaussianMarkovChain.has plotter
SwitchingGaussianMarkovChain.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.SwitchingGaussianMarkovChain.initialize_from_parameters
SwitchingGaussianMarkovChain.initialize_from_parameters(*args)
bayespy.nodes.SwitchingGaussianMarkovChain.initialize_from_prior
SwitchingGaussianMarkovChain.initialize_from_prior()
bayespy.nodes.SwitchingGaussianMarkovChain.initialize from random
SwitchingGaussianMarkovChain.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.SwitchingGaussianMarkovChain.initialize from value
SwitchingGaussianMarkovChain.initialize_from_value(x, *args)
bayespy.nodes.SwitchingGaussianMarkovChain.load
SwitchingGaussianMarkovChain.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.SwitchingGaussianMarkovChain.logpdf
SwitchingGaussianMarkovChain.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.SwitchingGaussianMarkovChain.lower_bound_contribution
SwitchingGaussianMarkovChain.lower_bound_contribution(gradient=False)
bayespy.nodes.SwitchingGaussianMarkovChain.lowerbound
SwitchingGaussianMarkovChain.lowerbound()
bayespy.nodes.SwitchingGaussianMarkovChain.move_plates
SwitchingGaussianMarkovChain.move_plates(from_plate, to_plate)
```

bayespy.nodes.SwitchingGaussianMarkovChain.observe

```
SwitchingGaussianMarkovChain.observe(x, *args, mask=True) Fix moments, compute f and propagate mask.
```

bayespy.nodes.SwitchingGaussianMarkovChain.pdf

```
SwitchingGaussianMarkovChain.pdf (X, mask=True)
Compute the probability density function of this node.
```

bayespy.nodes.SwitchingGaussianMarkovChain.plot

```
SwitchingGaussianMarkovChain.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.SwitchingGaussianMarkovChain.random

```
SwitchingGaussianMarkovChain.random()
```

Draw a random sample from the distribution.

bayes py. nodes. Switching Gaussian Markov Chain. rotate

```
SwitchingGaussianMarkovChain.rotate(R, inv=None, logdet=None)
```

bayes py. nodes. Switching Gaussian Markov Chain. save

```
SwitchingGaussianMarkovChain.save (group)
Save the state of the node into a HDF5 file.
group can be the root
```

bayespy.nodes.SwitchingGaussianMarkovChain.set plotter

```
SwitchingGaussianMarkovChain.set_plotter(plotter)
```

bayespy.nodes.SwitchingGaussianMarkovChain.show

SwitchingGaussianMarkovChain.show()

bayespy.nodes.SwitchingGaussianMarkovChain.unobserve

SwitchingGaussianMarkovChain.unobserve()

bayespy.nodes.SwitchingGaussianMarkovChain.update

SwitchingGaussianMarkovChain.update()

Attributes

dims plates

bayespy.nodes.SwitchingGaussianMarkovChain.dims

SwitchingGaussianMarkovChain.dims = None

bayespy.nodes.SwitchingGaussianMarkovChain.plates

SwitchingGaussianMarkovChain.plates = None

bayespy.nodes.VaryingGaussianMarkovChain

class bayespy.nodes.**VaryingGaussianMarkovChain** (*mu*, *Lambda*, *B*, *S*, *nu*, *n=None*, **kwargs) Node for Gaussian Markov chain random variables with time-varying dynamics.

The node models a sequence of Gaussian variables :math: $\{x\}_0$, $\{x\}_0$, $\{x\}_1$, with linear Markovian dynamics. The time variability of the dynamics is obtained by modelling the state dynamics matrix as a linear combination of a set of matrices with time-varying linear combination weights [R6]. The graphical model can be presented as:

where μ and Λ are the mean and the precision matrix of the initial state, ν is the precision of the innovation noise, and A_n are the state dynamics matrix obtained by mixing matrices B_k with weights $s_{n,k}$.

The probability distribution is

$$p(\mathbf{x}_0, \dots, \mathbf{x}_{N-1}) = p(\mathbf{x}_0) \prod_{n=1}^{N-1} p(\mathbf{x}_n | \mathbf{x}_{n-1})$$

where

$$p(\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_0 | \boldsymbol{\mu}, \boldsymbol{\Lambda})$$

$$p(\mathbf{x}_n | \mathbf{x}_{n-1}) = \mathcal{N}(\mathbf{x}_n | \mathbf{A}_{n-1} \mathbf{x}_{n-1}, \operatorname{diag}(\boldsymbol{\nu})), \quad \text{for } n = 1, \dots, N-1,$$

$$\mathbf{A}_n = \sum_{k=0}^{K-1} s_{n,k} \mathbf{B}_k, \quad \text{for } n = 0, \dots, N-2.$$

Parameters mu: Gaussian-like node or (...,D)-array

 μ , mean of x_0 , D-dimensional with plates (...)

Lambda: Wishart-like node or (...,D,D)-array

 Λ , precision matrix of x_0 , $D \times D$ -dimensional with plates (...)

B: Gaussian-like node or (...,D,D,K)-array

 $\left\{\mathbf{B}_{k}
ight\}_{k=0}^{K-1}$, a set of state dynamics matrix, $D \times K$ -dimensional with plates (...,D)

S: Gaussian-like node or (...,N-1,K)-array

 $\{s_0, \dots, s_{N-2}\}$, time-varying weights of the linear combination, K-dimensional with plates (...,N-1)

nu: gamma-like node or (...,D)-array

 ν , diagonal elements of the precision of the innovation process, plates (...,D)

n: int, optional

N, the length of the chain. Must be given if **S** does not have plates over the time domain (which would not make sense).

See also:

Gaussian, GaussianARD, Wishart, Gamma, GaussianMarkovChain, SwitchingGaussianMarkovChain

Notes

Equivalent model block can be constructed with GaussianMarkovChain by explicitly using SumMultiply to compute the linear combination. However, that approach is not very efficient for large datasets because it does not utilize the structure of A_n , thus it explicitly computes huge moment arrays.

References

[R6]

__init__ (mu, Lambda, B, S, nu, n=None, **kwargs)
Create VaryingGaussianMarkovChain node.

Methods

```
_init__(mu, Lambda, B, S, nu[, n])
                                             Create VaryingGaussianMarkovChain node.
add_plate_axis(to_plate)
                                             Delete this node and the children
delete()
get_mask()
get_moments()
get_shape(ind)
                                             Return True if the node has a plotter
has_plotter()
initialize_from_parameters(*args)
initialize from prior()
initialize from random()
                                             Set the variable to a random sample from the current distribution.
initialize_from_value(x, *args)
load(group)
                                             Load the state of the node from a HDF5 file.
logpdf(X[, mask])
                                             Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                             Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                             Compute the probability density function of this node.
plot(**kwargs)
                                             Plot the node distribution using the plotter of the node
random()
                                             Draw a random sample from the distribution.
rotate(R[, inv, logdet])
save(group)
                                             Save the state of the node into a HDF5 file.
set_plotter(plotter)
show()
unobserve()
update()
```

bayespy.nodes.VaryingGaussianMarkovChain.__init__

```
VaryingGaussianMarkovChain.__init__ (mu, Lambda, B, S, nu, n=None, **kwargs)
Create VaryingGaussianMarkovChain node.
```

$bayes py. nodes. Varying Gaussian Markov Chain. add_plate_axis$

 ${\tt Varying Gaussian Markov Chain.add_plate_axis} \ ({\it to_plate})$

bayespy.nodes.VaryingGaussianMarkovChain.delete

```
VaryingGaussianMarkovChain.delete()
Delete this node and the children
```

bayespy.nodes.VaryingGaussianMarkovChain.get_mask

VaryingGaussianMarkovChain.get_mask()

bayespy.nodes.VaryingGaussianMarkovChain.get moments

VaryingGaussianMarkovChain.get_moments()

```
bayespy.nodes.VaryingGaussianMarkovChain.get shape
VaryingGaussianMarkovChain.get_shape(ind)
bayespy.nodes.VaryingGaussianMarkovChain.has_plotter
VaryingGaussianMarkovChain.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.VaryingGaussianMarkovChain.initialize from parameters
VaryingGaussianMarkovChain.initialize_from_parameters(*args)
bayespy.nodes.VaryingGaussianMarkovChain.initialize from prior
VaryingGaussianMarkovChain.initialize_from_prior()
bayespy.nodes.VaryingGaussianMarkovChain.initialize from random
VaryingGaussianMarkovChain.initialize from random()
    Set the variable to a random sample from the current distribution.
bayespy.nodes.VaryingGaussianMarkovChain.initialize_from_value
VaryingGaussianMarkovChain.initialize from value(x, *args)
bayespy.nodes.VaryingGaussianMarkovChain.load
VaryingGaussianMarkovChain.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.VaryingGaussianMarkovChain.logpdf
VaryingGaussianMarkovChain.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.VaryingGaussianMarkovChain.lower bound contribution
VaryingGaussianMarkovChain.lower_bound_contribution(gradient=False)
bayespy.nodes.VaryingGaussianMarkovChain.lowerbound
VaryingGaussianMarkovChain.lowerbound()
```

bayespy.nodes.VaryingGaussianMarkovChain.move_plates

VaryingGaussianMarkovChain.move_plates (from_plate, to_plate)

bayespy.nodes.VaryingGaussianMarkovChain.observe

VaryingGaussianMarkovChain.observe (x, *args, mask=True) Fix moments, compute f and propagate mask.

bayespy.nodes.VaryingGaussianMarkovChain.pdf

VaryingGaussianMarkovChain.**pdf** (*X*, *mask=True*) Compute the probability density function of this node.

bayespy.nodes.VaryingGaussianMarkovChain.plot

```
VaryingGaussianMarkovChain.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.VaryingGaussianMarkovChain.random

```
VaryingGaussianMarkovChain.random()

Draw a random sample from the distribution.
```

bayespy.nodes.VaryingGaussianMarkovChain.rotate

VaryingGaussianMarkovChain.rotate(R, inv=None, logdet=None)

bayespy.nodes.VaryingGaussianMarkovChain.save

```
VaryingGaussianMarkovChain.save (group)
Save the state of the node into a HDF5 file.
group can be the root
```

bayespy.nodes.VaryingGaussianMarkovChain.set plotter

VaryingGaussianMarkovChain.set_plotter(plotter)

bayespy.nodes.VaryingGaussianMarkovChain.show

VaryingGaussianMarkovChain.show()

bayespy.nodes.VaryingGaussianMarkovChain.unobserve

VaryingGaussianMarkovChain.unobserve()

bayespy.nodes.VaryingGaussianMarkovChain.update

VaryingGaussianMarkovChain.update()

Attributes

dims plates

bayespy.nodes.VaryingGaussianMarkovChain.dims

VaryingGaussianMarkovChain.dims = None

bayespy.nodes.VaryingGaussianMarkovChain.plates

VaryingGaussianMarkovChain.plates = None

Other stochastic nodes:

Mixture(z, node_class, *params[, cluster_plate]) Node for exponential family mixture variables.

bayespy.nodes.Mixture

class bayespy.nodes.Mixture(z, node_class, *params, cluster_plate=-1, **kwargs)
 Node for exponential family mixture variables.

The node represents a random variable which is sampled from a mixture distribution. It is possible to mix any exponential family distribution. The probability density function is

$$p(x|z=k,\boldsymbol{\theta}_0,\ldots,\boldsymbol{\theta}_{K-1})=\phi(x|\boldsymbol{\theta}_k),$$

where ϕ is the probability density function of the mixed exponential family distribution and $\theta_0, \dots, \theta_{K-1}$ are the parameters of each cluster. For instance, ϕ could be the Gaussian probability density function $\mathcal N$ and $\theta_k = \{\mu_k, \Lambda_k\}$ where μ_k and Λ_k are the mean vector and precision matrix for cluster k.

Parameters z: categorical-like node or array

z, cluster assignment

node_class: stochastic exponential family node class

Mixed distribution

params: types specified by the mixed distribution

Parameters of the mixed distribution. If some parameters should vary between clusters, those parameters' plate axis *cluster_plate* should have a size which equals the number of clusters. For parameters with shared values, that plate axis should have length 1. At least one parameter should vary between clusters.

cluster_plate: int, optional

Negative integer defining which plate axis is used for the clusters in the parameters. That plate axis is ignored from the parameters when considering the plates for this node. By default, mix over the last plate axis.

See also:

Categorical, CategoricalMarkovChain

Examples

A simple 2-dimensional Gaussian mixture model with three clusters for 100 samples can be constructed, for instance, as:

Methods

save(group)

unobserve()
update()

set_plotter(plotter)

```
_init__(z, node_class, *params[, cluster_plate])
add_plate_axis(to_plate)
delete()
                                                   Delete this node and the children
get_mask()
get_moments()
get_shape(ind)
                                                   Return True if the node has a plotter
has plotter()
initialize_from_parameters(*args)
initialize_from_prior()
initialize_from_random()
                                                   Set the variable to a random sample from the current distribution.
initialize from value(x, *args)
integrated logpdf from parents(x, index)
                                                   Approximates the posterior predictive pdf int p(x|parents) q(parents) dparent
load(group)
                                                   Load the state of the node from a HDF5 file.
logpdf(X[, mask])
                                                   Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                                   Fix moments, compute f and propagate mask.
                                                   Compute the probability density function of this node.
pdf(X[, mask])
plot(**kwargs)
                                                   Plot the node distribution using the plotter of the node
random()
                                                   Draw a random sample from the distribution.
```

Save the state of the node into a HDF5 file.

128 Chapter 5. User API

```
bayespy.nodes.Mixture. init
Mixture.__init__(z, node_class, *params, cluster_plate=-1, **kwargs)
bayespy.nodes.Mixture.add_plate_axis
Mixture.add_plate_axis(to_plate)
bayespy.nodes.Mixture.delete
Mixture.delete()
    Delete this node and the children
bayespy.nodes.Mixture.get_mask
Mixture.get_mask()
bayespy.nodes.Mixture.get_moments
Mixture.get_moments()
bayespy.nodes.Mixture.get_shape
Mixture.get_shape(ind)
bayespy.nodes.Mixture.has plotter
Mixture.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.Mixture.initialize from parameters
Mixture.initialize_from_parameters(*args)
bayespy.nodes.Mixture.initialize_from_prior
Mixture.initialize_from_prior()
bayespy.nodes.Mixture.initialize_from_random
Mixture.initialize_from_random()
    Set the variable to a random sample from the current distribution.
```

```
bayespy.nodes.Mixture.initialize from value
Mixture.initialize_from_value(x, *args)
bayespy.nodes.Mixture.integrated_logpdf_from_parents
Mixture.integrated_logpdf_from_parents(x, index)
    Approximates the posterior predictive pdf int p(x|parents) q(parents) dparents in log-scale as int
    q(parents_i) exp( int q(parents_i) log p(xlparents) dparents_i ) dparents_i.
bayespy.nodes.Mixture.load
Mixture.load(group)
    Load the state of the node from a HDF5 file.
bayespy.nodes.Mixture.logpdf
Mixture.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.nodes.Mixture.lower bound contribution
Mixture.lower_bound_contribution(gradient=False)
bayespy.nodes.Mixture.lowerbound
Mixture.lowerbound()
bayespy.nodes.Mixture.move_plates
Mixture.move_plates (from_plate, to_plate)
bayespy.nodes.Mixture.observe
Mixture.observe(x, *args, mask=True)
    Fix moments, compute f and propagate mask.
bayespy.nodes.Mixture.pdf
Mixture.pdf (X, mask=True)
    Compute the probability density function of this node.
```

bayespy.nodes.Mixture.plot

```
Mixture.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.nodes.Mixture.random

```
Mixture.random()
```

Draw a random sample from the distribution.

bayespy.nodes.Mixture.save

```
Mixture.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.nodes.Mixture.set_plotter

```
Mixture.set_plotter(plotter)
```

bayespy.nodes.Mixture.unobserve

```
Mixture.unobserve()
```

bayespy.nodes.Mixture.update

```
Mixture.update()
```

Attributes

dims plates

bayespy.nodes.Mixture.dims

```
Mixture.dims = None
```

bayespy.nodes.Mixture.plates

Mixture.plates = None

5.1.2 Deterministic nodes

Dot(*args, **kwargs)	Node for computing inner product of several Gaussian vectors.
<pre>SumMultiply(*args[, iterator_axis])</pre>	Node for computing general products and sums of Gaussian nodes.
<pre>Gate(Z, X[, gated_plate, moments])</pre>	Deterministic gating of one node.

bayespy.nodes.Dot

```
bayespy.nodes.Dot(*args, **kwargs)
```

Node for computing inner product of several Gaussian vectors.

This is a simple wrapper of the much more general SumMultiply. For now, it is here for backward compatibility.

bayespy.nodes.SumMultiply

```
class bayespy.nodes.SumMultiply(*args, iterator_axis=None, **kwargs)
```

Node for computing general products and sums of Gaussian nodes.

The node is similar to *numpy.einsum*, which is a very general function for computing dot products, sums, products and other sums of products of arrays.

For instance, the equivalent of

```
np.einsum('abc,bd,ca->da', X, Y, Z)
would be given as
SumMultiply('abc,bd,ca->da', X, Y, Z)
or
SumMultiply(X, [0,1,2], Y, [1,3], Z, [2,0], [3,0])
```

which is similar to the other syntax of numpy.einsum.

This node operates similarly as numpy.einsum. However, you must use all the elements of each node, that is, an operation like np.einsum('ii->i',X) is not allowed. Thus, for each node, each axis must be given unique id. The id identifies which axes correspond to which axes between the different nodes. Also, Ellipsis ('...') is not yet supported for simplicity. It would also have some problems with constant inputs (because how to determine ndim), so let us just forget it for now.

Each output axis must appear in the input mappings.

The keys must refer to variable dimension axes only, not plate axes.

The input nodes may be Gaussian-gamma (isotropic) nodes.

The output message is Gaussian-gamma (isotropic) if any of the input nodes is Gaussian-gamma.

Notes

This operation can be extremely slow if not used wisely. For large and complex operations, it is sometimes more efficient to split the operation into multiple nodes. For instance, the example above could probably be computed faster by

```
XZ = SumMultiply(X, [0,1,2], Z, [2,0], [0,1])

F = SumMultiply(XZ, [0,1], Y, [1,2], [2,0])
```

because the third axis ('c') could be summed out already in the first operation. This same effect applies also to numpy.einsum in general.

Examples

```
Sum over the rows: 'ij->j'

Inner product of three vectors: 'i,i,i'

Matrix-vector product: 'ij,j->i'

Matrix-matrix product: 'ik,kj->ij'

Outer product: 'i,j->ij'

Vector-matrix-vector product: 'i,ij,j'

__init___(Node1, map1, Node2, map2, ..., NodeN, mapN[, map_out])
```

Methods

bayespy.nodes.SumMultiply. init

```
SumMultiply.__init__(Node1, map1, Node2, map2, ..., NodeN, mapN[, map_out])
```

bayespy.nodes.SumMultiply.add_plate_axis

```
SumMultiply.add_plate_axis(to_plate)
```

bayespy.nodes.SumMultiply.delete

```
SumMultiply.delete()

Delete this node and the children
```

bayespy.nodes.SumMultiply.get_mask

```
SumMultiply.get_mask()
```

```
bayespy.nodes.SumMultiply.get_moments
SumMultiply.get_moments()
bayespy.nodes.SumMultiply.get_parameters
SumMultiply.get_parameters()
bayespy.nodes.SumMultiply.get_shape
SumMultiply.get_shape(ind)
bayespy.nodes.SumMultiply.has_plotter
SumMultiply.has_plotter()
    Return True if the node has a plotter
bayespy.nodes.SumMultiply.lower bound contribution
SumMultiply.lower_bound_contribution(gradient=False)
bayespy.nodes.SumMultiply.move_plates
SumMultiply.move_plates (from_plate, to_plate)
bayespy.nodes.SumMultiply.plot
SumMultiply.plot(**kwargs)
    Plot the node distribution using the plotter of the node
    Because the distributions are in general very difficult to plot, the user must specify some functions which
    performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is,
    functions that perform plotting for a node.
bayespy.nodes.SumMultiply.set_plotter
SumMultiply.set_plotter(plotter)
Attributes
                         plates
bayespy.nodes.SumMultiply.plates
SumMultiply.plates = None
```

bayespy.nodes.Gate

```
class bayespy.nodes.Gate(Z, X, gated_plate=-1, moments=None, **kwargs)
    Deterministic gating of one node.
```

Gating is performed over one plate axis.

Note: You should not use gating for several variables which parents of a same node if the gates use the same gate assignments. In such case, the results will be wrong. The reason is a general one: A stochastic node may not be a parent of another node via several paths unless at most one path has no other stochastic nodes between them.

```
__init__(Z, X, gated_plate=-1, moments=None, **kwargs)
```

Methods

```
bayespy.nodes.Gate.__init__
```

```
Gate.__init__(Z, X, gated_plate=-1, moments=None, **kwargs)
```

bayespy.nodes.Gate.add_plate_axis

```
Gate.add_plate_axis(to_plate)
```

bayespy.nodes.Gate.delete

```
Gate.delete()
```

Delete this node and the children

$bayespy.nodes. Gate.get_mask$

```
Gate.get_mask()
```

$bayespy.nodes. Gate.get_moments$

```
Gate.get_moments()
```

```
bayespy.nodes.Gate.get shape
Gate.get_shape(ind)
bayespy.nodes.Gate.has_plotter
Gate.has_plotter()
     Return True if the node has a plotter
bayespy.nodes.Gate.lower_bound_contribution
{\tt Gate.lower\_bound\_contribution}~(\textit{gradient=False})
bayespy.nodes.Gate.move_plates
Gate.move_plates (from_plate, to_plate)
bayespy.nodes.Gate.plot
Gate.plot(**kwargs)
     Plot the node distribution using the plotter of the node
     Because the distributions are in general very difficult to plot, the user must specify some functions which
     performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is,
     functions that perform plotting for a node.
bayespy.nodes.Gate.set plotter
Gate.set_plotter(plotter)
Attributes
                          plates
bayespy.nodes.Gate.plates
Gate.plates = None
```

5.2 bayespy.inference

Package for Bayesian inference engines

5.2.1 Inference engines

```
VB(*nodes[, tol, autosave_filename, ...]) Variational Bayesian (VB) inference engine
```

bayespy.inference.VB

Methods

```
_init___(*nodes[, tol, autosave_filename, ...])
compute_lowerbound()
compute_lowerbound_terms(*nodes)
get iteration by nodes()
load(*nodes[, filename])
loglikelihood lowerbound()
                                             Plot the distribution of the given nodes (or all nodes)
plot(*nodes)
plot_iteration_by_nodes()
                                             Plot the cost function per node during the iteration.
save([filename])
set autosave(filename[, iterations])
update(*nodes[, repeat, plot, tol, verbose])
bayespy.inference.VB. init
VB.__init__ (*nodes, tol=1e-05, autosave_filename=None, autosave_iterations=0, callback=None)
bayespy.inference.VB.compute lowerbound
VB.compute lowerbound()
```

```
bayespy.inference.VB.compute lowerbound terms
\verb|VB.compute_lowerbound_terms| (*nodes)|
bayespy.inference.VB.get_iteration_by_nodes
VB.get_iteration_by_nodes()
bayespy.inference.VB.load
VB.load(*nodes, filename=None)
bayespy.inference.VB.loglikelihood lowerbound
VB.loglikelihood_lowerbound()
bayespy.inference.VB.plot
VB.plot(*nodes)
    Plot the distribution of the given nodes (or all nodes)
bayespy.inference.VB.plot_iteration_by_nodes
VB.plot_iteration_by_nodes()
    Plot the cost function per node during the iteration.
    Handy tool for debugging.
bayespy.inference.VB.save
VB.save(filename=None)
bayespy.inference.VB.set_autosave
VB.set_autosave(filename, iterations=None)
bayespy.inference.VB.update
VB.update(*nodes, repeat=1, plot=False, tol=None, verbose=True)
```

5.2.2 Parameter expansions

```
vmp.transformations.RotationOptimizer(...)Optimizer for rotation parameter expansion in state-spansion in state-spansion for bayespy.nodes.vmp.transformations.RotateGaussianARD(X, *alpha)Rotation parameter expansion for bayespy.nodes.vmp.transformations.RotateGaussianMarkovChain(X, ...)Rotation parameter expansion for bayespy.nodes.vmp.transformations.RotateSwitchingMarkovChain(X, ...)Rotation parameter expansion for bayespy.nodes.vmp.transformations.RotateVaryingMarkovChain(X, ...)Rotation for bayespy.nodes.SwitchingGaussianvmp.transformations.RotateMultiple(*rotators)Rotation for bayespy.nodes.SwitchingGaussian
```

```
bayespy.inference.vmp.transformations.RotationOptimizer
class bayespy.inference.vmp.transformations.RotationOptimizer(block1, block2, D)
     Optimizer for rotation parameter expansion in state-space models
     Rotates one model block with \mathbf{R} and one model block with \mathbf{R}^{-1}.
          Parameters block1: rotator object
                  The first rotation parameter expansion object
              block2: rotator object
                  The second rotation parameter expansion object
              D: int
                  Dimensionality of the latent space
     References
     [R4], [R5]
      __init__ (block1, block2, D)
     Methods
             (block1, block2, D)
   rotate([maxiter, check_gradient, verbose, ...]) Optimize the rotation of two separate model blocks jointly.
     bayespy.inference.vmp.transformations.RotationOptimizer.__init__
     RotationOptimizer.__init__(block1, block2, D)
     bayespy.inference.vmp.transformations.RotationOptimizer.rotate
     RotationOptimizer.rotate(maxiter=10,
                                                           check_gradient=False,
                                                                                        verbose=False,
                                       check bound=False)
```

Optimize the rotation of two separate model blocks jointly.

If some variable is the dot product of two Gaussians, rotating the two Gaussians optimally can make the inference algorithm orders of magnitude faster.

First block is rotated with \mathbf{R} and the second with \mathbf{R}^{-T} .

Blocks must have methods: bound(U,s,V) and rotate(R).

bayespy.inference.vmp.transformations.RotateGaussian

```
class bayespy.inference.vmp.transformations.RotateGaussian (X) Rotation parameter expansion for bayespy.nodes.Gaussian __init__(X)
```

Methods

bayespy.inference.vmp.transformations.RotateGaussian. init

```
RotateGaussian.__init__(X)
```

bayes py. in ference. vmp. transformations. Rotate Gaussian. bound

RotateGaussian.bound(R, logdet=None, inv=None)

bayespy.inference.vmp.transformations.RotateGaussian.get_bound_terms

RotateGaussian.get_bound_terms(R, logdet=None, inv=None)

bayespy.inference.vmp.transformations.RotateGaussian.nodes

```
RotateGaussian.nodes()
```

bayespy.inference.vmp.transformations.RotateGaussian.rotate

RotateGaussian.rotate(R, inv=None, logdet=None)

bayespy.inference.vmp.transformations.RotateGaussian.setup

```
RotateGaussian.setup()
```

This method should be called just before optimization.

bayespy.inference.vmp.transformations.RotateGaussianARD

class bayespy.inference.vmp.transformations.RotateGaussianARD (X, *alpha, axis=-1, precompute=False)
Rotation parameter expansion for bayespy.nodes.GaussianARD
The model:
 alpha ~ N(a, b) X ~ N(mu, alpha)
 X can be an array (e.g., GaussianARD).
Transform q(X) and q(alpha) by rotating X.
Requirements: * X and alpha do not contain any observed values
 __init__ (X, *alpha, axis=-1, precompute=False)
 Precompute tells whether to compute some moments once in the setup function instead of every time in the bound function. However, they are computed a bit differently in the bound function so it can be useful too. Precomputation is probably beneficial only when there are large axes that are not rotated (by R nor Q)

and they are not contained in the plates of alpha, and the dimensions for R and Q are quite small.

Methods

```
\begin{tabular}{ll} $\_\_init\_(X, *alpha[, axis, precompute])$ & Precompute tells whether to compute some moments once in the setup function instead bound(R[, logdet, inv, Q]) & get\_bound\_terms(R[, logdet, inv, Q]) & nodes() & rotate(R[, inv, logdet, Q]) & setup([plate\_axis]) & This method should be called just before optimization. \\ \end{tabular}
```

bayespy.inference.vmp.transformations.RotateGaussianARD. init

```
RotateGaussianARD.__init__(X, *alpha, axis=-1, precompute=False)
```

Precompute tells whether to compute some moments once in the setup function instead of every time in the bound function. However, they are computed a bit differently in the bound function so it can be useful too. Precomputation is probably beneficial only when there are large axes that are not rotated (by R nor Q) and they are not contained in the plates of alpha, and the dimensions for R and Q are quite small.

bayespy.inference.vmp.transformations.RotateGaussianARD.bound

RotateGaussianARD.**bound**(*R*, *logdet=None*, *inv=None*, *Q=None*)

bayespy.inference.vmp.transformations.RotateGaussianARD.get bound terms

RotateGaussianARD.get_bound_terms (R, logdet=None, inv=None, Q=None)

bayespy.inference.vmp.transformations.RotateGaussianARD.nodes

RotateGaussianARD.nodes()

bayespy.inference.vmp.transformations.RotateGaussianARD.rotate

```
RotateGaussianARD.rotate(R, inv=None, logdet=None, Q=None)
```

bayespy.inference.vmp.transformations.RotateGaussianARD.setup

```
RotateGaussianARD.setup(plate_axis=None)
```

This method should be called just before optimization.

For efficiency, sum over axes that are not in mu, alpha nor rotation.

If using Q, set rotate_plates to True.

bayespy.inference.vmp.transformations.RotateGaussianMarkovChain

```
class bayespy.inference.vmp.transformations.RotateGaussianMarkovChain(X,
```

*args)

 $\textbf{Rotation parameter expansion for } \verb|bayespy.nodes.Gaussian| \verb|MarkovChain| \\$

Assume the following model.

Constant, unit isotropic innovation noise. Unit variance only?

Maybe: Assume innovation noise with unit variance? Would it help make this function more general with respect to A.

TODO: Allow constant A or not rotating A.

A may vary in time.

Shape of A: (N,D,D) Shape of AA: (N,D,D,D)

No plates for X.

```
___init___(X, *args)
```

Methods

```
__init__(X, *args)
bound(R[, logdet, inv])
get_bound_terms(R[, logdet, inv])
nodes()
rotate(R[, inv, logdet])
setup()
This method should be called just before optimization.
```

bayespy.inference.vmp.transformations.RotateGaussianMarkovChain.__init__

```
RotateGaussianMarkovChain.__init__(X, *args)
```

bayespy.inference.vmp.transformations.RotateGaussianMarkovChain.bound

RotateGaussianMarkovChain.bound(R, logdet=None, inv=None)

bayespy.inference.vmp.transformations.RotateGaussianMarkovChain.get bound terms

RotateGaussianMarkovChain.get_bound_terms(R, logdet=None, inv=None)

bayespy.inference.vmp.transformations.RotateGaussianMarkovChain.nodes

RotateGaussianMarkovChain.nodes()

bayespy.inference.vmp.transformations.RotateGaussianMarkovChain.rotate

RotateGaussianMarkovChain.rotate(R, inv=None, logdet=None)

bayespy.inference.vmp.transformations.RotateGaussianMarkovChain.setup

RotateGaussianMarkovChain.setup()

This method should be called just before optimization.

bayes py. inference. vmp. transformations. Rotate Switching Markov Chain

 $B_rotator)$

Rotation for bayespy.nodes.VaryingGaussianMarkovChain

Assume the following model.

Constant, unit isotropic innovation noise.

$$A_n = B_{z_n}$$

Gaussian B: (..., K, D) x (D) Categorical Z: (..., N-1) x (K) GaussianMarkovChain X: (...) x (N,D)

No plates for X.

init $(X, B, Z, B \ rotator)$

Methods

```
__init__(X, B, Z, B_rotator)
bound(R[, logdet, inv])
get_bound_terms(R[, logdet, inv])
nodes()
rotate(R[, inv, logdet])
setup()
This method should be called just before optimization.
```

bayespy.inference.vmp.transformations.RotateSwitchingMarkovChain.__init__

RotateSwitchingMarkovChain. $_$ init $_$ ($X, B, Z, B_$ rotator)

bayespy.inference.vmp.transformations.RotateSwitchingMarkovChain.bound

RotateSwitchingMarkovChain.bound(R, logdet=None, inv=None)

$bayes py. inference. vmp. transformations. Rotate Switching Markov Chain. get_bound_terms$

RotateSwitchingMarkovChain.get_bound_terms(R, logdet=None, inv=None)

bayespy.inference.vmp.transformations.RotateSwitchingMarkovChain.nodes

RotateSwitchingMarkovChain.nodes()

bayespy.inference.vmp.transformations.RotateSwitchingMarkovChain.rotate

RotateSwitchingMarkovChain.rotate(R, inv=None, logdet=None)

bayespy.inference.vmp.transformations.RotateSwitchingMarkovChain.setup

RotateSwitchingMarkovChain.setup()

This method should be called just before optimization.

bayespy.inference.vmp.transformations.RotateVaryingMarkovChain

class bayespy.inference.vmp.transformations.RotateVaryingMarkovChain(X, B, S, B rotator)

Rotation for bayespy.nodes.SwitchingGaussianMarkovChain

Assume the following model.

Constant, unit isotropic innovation noise.

$$A_n = \sum_k B_k s_{kn}$$

Gaussian B: (1,D) x (D,K) Gaussian S: (N,1) x (K) MC X: () x (N+1,D)

No plates for X.

Methods

```
__init__(X, B, S, B_rotator)
bound(R[, logdet, inv])
get_bound_terms(R[, logdet, inv])
nodes()
rotate(R[, inv, logdet])
setup()
This method should be called just before optimization.
```

```
bayespy.inference.vmp.transformations.RotateVaryingMarkovChain. init
     RotateVaryingMarkovChain.__init__(X, B, S, B_rotator)
     bayespy.inference.vmp.transformations.RotateVaryingMarkovChain.bound
     RotateVaryingMarkovChain.bound(R, logdet=None, inv=None)
     bayespy.inference.vmp.transformations.RotateVaryingMarkovChain.get_bound_terms
     RotateVaryingMarkovChain.get_bound_terms(R, logdet=None, inv=None)
     bayespy.inference.vmp.transformations.RotateVaryingMarkovChain.nodes
     RotateVaryingMarkovChain.nodes()
     bayespy.inference.vmp.transformations.RotateVaryingMarkovChain.rotate
     RotateVaryingMarkovChain.rotate(R, inv=None, logdet=None)
     bayespy.inference.vmp.transformations.RotateVaryingMarkovChain.setup
     RotateVaryingMarkovChain.setup()
         This method should be called just before optimization.
bayespy.inference.vmp.transformations.RotateMultiple
class bayespy.inference.vmp.transformations.RotateMultiple(*rotators)
     Identical parameter expansion for several nodes simultaneously
     Performs the same rotation for multiple nodes and combines the cost effect.
     ___init___(*rotators)
     Methods
                               _init___(*rotators)
                             bound(R[, logdet, inv])
                             get_bound_terms(R[, logdet, inv])
                             nodes()
                             rotate(R[, inv, logdet])
                             setup()
     bayespy.inference.vmp.transformations.RotateMultiple.__init__
     RotateMultiple. init (*rotators)
```

bayespy.inference.vmp.transformations.RotateMultiple.bound

RotateMultiple.bound(R, logdet=None, inv=None)

bayespy.inference.vmp.transformations.RotateMultiple.get_bound_terms

RotateMultiple.get_bound_terms (R, logdet=None, inv=None)

bayespy.inference.vmp.transformations.RotateMultiple.nodes

RotateMultiple.nodes()

bayespy.inference.vmp.transformations.RotateMultiple.rotate

RotateMultiple.rotate(R, inv=None, logdet=None)

bayespy.inference.vmp.transformations.RotateMultiple.setup

RotateMultiple.setup()

5.3 bayespy.plot

Functions for plotting nodes.

5.3.1 Functions

pdf(Z, x, *args[, name])	Plot probability density function of a scalar variable.
contour(Z, x, y[, n])	Plot 2-D probability density function of a 2-D variable.
<pre>plot(Y[, axis, scale, center])</pre>	Plot a variable or an array as 1-D function with errorbars
hinton(X, **kwargs)	Plot the Hinton diagram of a node

bayespy.plot.pdf

bayespy.plot.pdf (Z, x, *args, name=None, **kwargs) Plot probability density function of a scalar variable.

Parameters Z: node or function

Stochastic node or log pdf function

x: array

Grid points

bayespy.plot.contour

```
bayespy.plot.contour (Z, x, y, n=None, **kwargs)
Plot 2-D probability density function of a 2-D variable.
```

Parameters Z: node or function

Stochastic node or log pdf function

x: array

Grid points on x axis

y: array

Grid points on y axis

bayespy.plot.plot

```
bayespy.plot.plot (Y, axis=-1, scale=2, center=False, **kwargs)
Plot a variable or an array as 1-D function with errorbars
```

bayespy.plot.hinton

```
bayespy.plot.hinton(X, **kwargs)

Plot the Hinton diagram of a node
```

The keyword arguments depend on the node type. For some node types, the diagram also shows uncertainty with non-filled rectangles. Currently, beta-like, Gaussian-like and Dirichlet-like nodes are supported.

Parameters X: node

5.3.2 Plotters

Plotter(plotter, *args, **kwargs)	Wrapper for plotting functions and base class for node plotters
PDFPlotter(x_grid, **kwargs)	Plotter of probability density function of a scalar node
ContourPlotter(x1_grid, x2_grid, **kwargs)	Plotter of probability density function of a two-dimensional node
HintonPlotter(**kwargs)	Plotter of the Hinton diagram of a node
FunctionPlotter(**kwargs)	Plotter of a node as a 1-dimensional function
<pre>GaussianTimeseriesPlotter(**kwargs)</pre>	Plotter of a Gaussian node as a timeseries
CategoricalMarkovChainPlotter(**kwargs)	Plotter of a Categorical timeseries

bayespy.plot.Plotter

```
class bayespy.plot.Plotter (plotter, *args, **kwargs)
```

Wrapper for plotting functions and base class for node plotters

The purpose of this class is to collect all the parameters needed by a plotting function and provide a callable interface which needs only the node as the input.

Plotter instances are callable objects that plot a given node using a specified plotting function.

Parameters plotter: function

Plotting function to use

args: defined by the plotting function

5.3. bayespy.plot 147

Additional inputs needed by the plotting function

kwargs: defined by the plotting function

Additional keyword arguments supported by the plotting function

Examples

First, create a gamma variable:

```
>>> import numpy as np
>>> from bayespy.nodes import Gamma
>>> x = Gamma(4, 5)
```

The probability density function can be plotted as:

```
>>> import bayespy.plot as bpplt
>>> bpplt.pdf(x, np.linspace(0.1, 10, num=100))
[<matplotlib.lines.Line2D object at 0x...>]
```

However, this can be problematic when one needs to provide a plotting function for the inference engine as the inference engine gives only the node as input. Thus, we need to create a simple plotter wrapper:

```
>>> p = bpplt.Plotter(bpplt.pdf, np.linspace(0.1, 10, num=100))
```

Now, this callable object p needs only the node as the input:

```
>>> p(x)
[<matplotlib.lines.Line2D object at 0x...>]
```

Thus, it can be given to the inference engine to use as a plotting function:

```
>>> x = Gamma(4, 5, plotter=p)
>>> x.plot()
[<matplotlib.lines.Line2D object at 0x...>]
__init__(plotter, *args, **kwargs)
```

Methods

```
__init__(plotter, *args, **kwargs)
```

bayespy.plot.Plotter.__init__

```
Plotter.__init__(plotter, *args, **kwargs)
```

bayespy.plot.PDFPlotter

```
class bayespy.plot.PDFPlotter (x_grid, **kwargs)

Plotter of probability density function of a scalar node
```

Parameters x grid: array

Numerical grid on which the density function is computed and plotted

See also:

```
pdf
     ___init___(x_grid, **kwargs)
     Methods
                                 _init___(x_grid, **kwargs)
     bayespy.plot.PDFPlotter. init
     PDFPlotter.__init__(x_grid, **kwargs)
bayespy.plot.ContourPlotter
class bayespy.plot.ContourPlotter(x1_grid, x2_grid, **kwargs)
     Plotter of probability density function of a two-dimensional node
          Parameters x1_grid: array
                  Grid for the first dimension
              x2_grid: array
                  Grid for the second dimension
     See also:
     contour
     ___init__ (x1_grid, x2_grid, **kwargs)
     Methods
                                 _init___(x1_grid, x2_grid, **kwargs)
     bayespy.plot.ContourPlotter. init
     ContourPlotter.__init__(x1_grid, x2_grid, **kwargs)
bayespy.plot.HintonPlotter
class bayespy.plot.HintonPlotter(**kwargs)
     Plotter of the Hinton diagram of a node
     See also:
     hinton
     ___init___(**kwargs)
     Methods
```

5.3. bayespy.plot

```
init
                                      (**kwargs)
     bayespy.plot.HintonPlotter.__init__
     HintonPlotter.__init__(**kwargs)
bayespy.plot.FunctionPlotter
class bayespy.plot.FunctionPlotter(**kwargs)
     Plotter of a node as a 1-dimensional function
     See also:
     plot
     ___init___(**kwargs)
     Methods
                               init__(**kwargs)
     bayespy.plot.FunctionPlotter.__init__
     FunctionPlotter.__init__(**kwargs)
bayespy.plot.GaussianTimeseriesPlotter
class bayespy.plot.GaussianTimeseriesPlotter(**kwargs)
     Plotter of a Gaussian node as a timeseries
     ___init___(**kwargs)
     Methods
                               init
                                      (**kwargs)
     bayespy.plot.GaussianTimeseriesPlotter. init
     GaussianTimeseriesPlotter.__init__(**kwargs)
bayespy.plot.CategoricalMarkovChainPlotter
class bayespy.plot.CategoricalMarkovChainPlotter(**kwargs)
     Plotter of a Categorical timeseries
     ___init___(**kwargs)
```

Methods

init_	_(**kwargs)	

bayespy.plot.CategoricalMarkovChainPlotter.__init__

CategoricalMarkovChainPlotter.__init__(**kwargs)

5.3. bayespy.plot

152 Chapter 5. User API

CHAPTER

SIX

DEVELOPER API

This chapter contains API specifications which are relevant to BayesPy developers and contributors.

6.1 Developer nodes

The following base classes are useful if writing new nodes:

```
node.Node(*parents, **kwargs)
stochastic.Stochastic(*args[, initialize, dims])
expfamily.ExponentialFamily(*args, **kwargs)
deterministic.Deterministic(*args, **kwargs)

Base class for all nodes.

Base class for nodes that are stochastic.

A base class for nodes using natural parameterization phi.

Base class for deterministic nodes.
```

6.1.1 bayespy.inference.vmp.nodes.node.Node

add_plate_axis(to_plate)

delete()
get_mask()
get_moments()

```
class bayespy.inference.vmp.nodes.node.Node(*parents, **kwargs)

Base class for all nodes.

mask dims plates parents children name

Sub-classes must implement: 1. For computing the message to children:
    get_moments(self):

2.For computing the message to parents: _get_message_and_mask_to_parent(self, index)

Sub-classes may need to re-implement: 1. If they manipulate plates:
    _compute_mask_to_parent(index, mask) _plates_to_parent(self, index) _plates_from_parent(self, index)

__init__(*parents, **kwargs)

Methods

__init__(*parents, **kwargs)
```

Delete this node and the children

Continued on next page

Table 6.2 – continued from previous page

```
get_shape(ind)
has_plotter()
move_plates(from_plate, to_plate)
plot(**kwargs)
set_plotter(plotter)

Return True if the node has a plotter
Plot the node distribution using the plotter of the node
```

bayespy.inference.vmp.nodes.node.Node.__init__

```
Node.__init__(*parents, **kwargs)
```

bayespy.inference.vmp.nodes.node.Node.add_plate_axis

```
Node.add_plate_axis(to_plate)
```

bayespy.inference.vmp.nodes.node.Node.delete

```
Node.delete()
```

Delete this node and the children

bayespy.inference.vmp.nodes.node.Node.get_mask

```
Node.get_mask()
```

bayespy.inference.vmp.nodes.node.Node.get moments

```
Node.get_moments()
```

bayespy.inference.vmp.nodes.node.Node.get shape

```
Node.get_shape(ind)
```

bayespy.inference.vmp.nodes.node.Node.has plotter

```
Node.has_plotter()
```

Return True if the node has a plotter

bayespy.inference.vmp.nodes.node.Node.move_plates

```
Node.move_plates (from_plate, to_plate)
```

bayespy.inference.vmp.nodes.node.Node.plot

```
Node.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.inference.vmp.nodes.node.Node.set_plotter

```
Node.set_plotter(plotter)
```

Attributes

```
plates
```

bayespy.inference.vmp.nodes.node.Node.plates

Node.plates = None

6.1.2 bayespy.inference.vmp.nodes.stochastic.Stochastic

Base class for nodes that are stochastic.

u observed

Sub-classes must implement: _compute_message_to_parent(parent, index, u_self, *u_parents) _up-date_distribution_and_lowerbound(self, m, *u) lowerbound(self) _compute_dims initialize_from_prior()

If you want to be able to observe the variable: _compute_fixed_moments_and_f

Sub-classes may need to re-implement: 1. If they manipulate plates:

```
_compute_mask_to_parent(index, mask) _plates_to_parent(self, index) _plates_from_parent(self, index)
```

```
___init__ (*args, initialize=True, dims=None, **kwargs)
```

Methods

```
_init___(*args[, initialize, dims])
add_plate_axis(to_plate)
delete()
                                      Delete this node and the children
get mask()
get_moments()
get shape(ind)
                                      Return True if the node has a plotter
has_plotter()
load(group)
                                      Load the state of the node from a HDF5 file.
lowerbound()
move_plates(from_plate, to_plate)
observe(x[, mask])
                                      Fix moments, compute f and propagate mask.
plot(**kwargs)
                                      Plot the node distribution using the plotter of the node
                                      Draw a random sample from the distribution.
random()
                                      Save the state of the node into a HDF5 file.
save(group)
set_plotter(plotter)
unobserve()
update()
```

```
bayespy.inference.vmp.nodes.stochastic. Stochastic. init
Stochastic.__init__(*args, initialize=True, dims=None, **kwargs)
bayespy.inference.vmp.nodes.stochastic.Stochastic.add plate axis
Stochastic.add_plate_axis(to_plate)
bayespy.inference.vmp.nodes.stochastic.Stochastic.delete
Stochastic.delete()
    Delete this node and the children
bayespy.inference.vmp.nodes.stochastic.Stochastic.get_mask
Stochastic.get_mask()
bayespy.inference.vmp.nodes.stochastic.Stochastic.get moments
Stochastic.get_moments()
bayespy.inference.vmp.nodes.stochastic.Stochastic.get shape
Stochastic.get_shape(ind)
bayespy.inference.vmp.nodes.stochastic.Stochastic.has_plotter
Stochastic.has_plotter()
    Return True if the node has a plotter
bayespy.inference.vmp.nodes.stochastic.Stochastic.load
Stochastic.load(group)
    Load the state of the node from a HDF5 file.
bayespy.inference.vmp.nodes.stochastic.Stochastic.lowerbound
Stochastic.lowerbound()
bayespy.inference.vmp.nodes.stochastic.Stochastic.move plates
Stochastic.move_plates (from_plate, to_plate)
bayespy.inference.vmp.nodes.stochastic.Stochastic.observe
Stochastic.observe(x, mask=True)
    Fix moments, compute f and propagate mask.
```

bayespy.inference.vmp.nodes.stochastic.Stochastic.plot

```
Stochastic.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.inference.vmp.nodes.stochastic.Stochastic.random

```
Stochastic.random()
```

Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.stochastic.Stochastic.save

```
Stochastic.save(group)
```

Save the state of the node into a HDF5 file.

group can be the root

bayespy.inference.vmp.nodes.stochastic.Stochastic.set_plotter

```
Stochastic.set_plotter(plotter)
```

bayespy.inference.vmp.nodes.stochastic.Stochastic.unobserve

```
Stochastic.unobserve()
```

bayespy.inference.vmp.nodes.stochastic.Stochastic.update

```
Stochastic.update()
```

Attributes

plates

bayespy.inference.vmp.nodes.stochastic.Stochastic.plates

Stochastic.plates = None

6.1.3 bayespy.inference.vmp.nodes.expfamily.ExponentialFamily

```
class bayespy.inference.vmp.nodes.expfamily.ExponentialFamily(*args, **kwargs)
    A base class for nodes using natural parameterization phi.
```

phi

```
Sub-classes must implement the following static methods: _compute_message_to_parent(index, u_self, *u_parents) _compute_phi_from_parents(*u_parents, mask) _compute_moments_and_cgf(phi, mask) _compute_fixed_moments_and_f(x, mask=True)

Sub-classes may need to re-implement: 1. If they manipulate plates:
    _compute_mask_to_parent(index, mask) _plates_to_parent(self, index) _plates_from_parent(self, index)
    _init__ (*args, **kwargs)
```

Methods

```
_init__(*args, **kwargs)
add plate axis(to plate)
delete()
                                            Delete this node and the children
get_mask()
get_moments()
get shape(ind)
has plotter()
                                            Return True if the node has a plotter
initialize_from_parameters(*args)
initialize_from_prior()
initialize_from_random()
                                             Set the variable to a random sample from the current distribution.
initialize_from_value(x, *args)
                                             Load the state of the node from a HDF5 file.
load(group)
logpdf(X[, mask])
                                             Compute the log probability density function Q(X) of this node.
lower_bound_contribution([gradient])
lowerbound()
move_plates(from_plate, to_plate)
observe(x, *args[, mask])
                                            Fix moments, compute f and propagate mask.
pdf(X[, mask])
                                             Compute the probability density function of this node.
plot(**kwargs)
                                             Plot the node distribution using the plotter of the node
random()
                                            Draw a random sample from the distribution.
save(group)
                                             Save the state of the node into a HDF5 file.
set_plotter(plotter)
unobserve()
update()
```

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily. init

```
ExponentialFamily.__init__(*args, **kwargs)
```

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.add_plate_axis

```
ExponentialFamily.add_plate_axis(to_plate)
```

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.delete

```
ExponentialFamily.delete()

Delete this node and the children
```

```
bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.get mask
ExponentialFamily.get_mask()
bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.get moments
ExponentialFamily.get_moments()
bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.get shape
ExponentialFamily.get_shape (ind)
bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.has_plotter
ExponentialFamily.has_plotter()
    Return True if the node has a plotter
bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.initialize from parameters
ExponentialFamily.initialize_from_parameters(*args)
bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.initialize from prior
ExponentialFamily.initialize_from_prior()
bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.initialize from random
ExponentialFamily.initialize_from_random()
    Set the variable to a random sample from the current distribution.
bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.initialize from value
ExponentialFamily.initialize_from_value(x, *args)
bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.load
ExponentialFamily.load(group)
    Load the state of the node from a HDF5 file.
bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.logpdf
ExponentialFamily.logpdf(X, mask=True)
    Compute the log probability density function Q(X) of this node.
bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.lower bound contribution
```

ExponentialFamily.lower_bound_contribution(gradient=False)

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.lowerbound

```
ExponentialFamily.lowerbound()
```

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.move plates

```
ExponentialFamily.move_plates(from_plate, to_plate)
```

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.observe

```
ExponentialFamily.observe(x, *args, mask=True) Fix moments, compute f and propagate mask.
```

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.pdf

```
ExponentialFamily.pdf (X, mask=True)

Compute the probability density function of this node.
```

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.plot

```
ExponentialFamily.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.random

```
ExponentialFamily.random()
```

Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.save

```
ExponentialFamily.save (group)
Save the state of the node into a HDF5 file.
group can be the root
```

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.set plotter

```
ExponentialFamily.set_plotter(plotter)
```

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.unobserve

```
ExponentialFamily.unobserve()
```

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.update

```
ExponentialFamily.update()
```

Attributes

```
dims
plates
```

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.dims

ExponentialFamily.dims = None

bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.plates

ExponentialFamily.plates = None

6.1.4 bayespy.inference.vmp.nodes.deterministic.Deterministic

Sub-classes must implement: 1. For implementing the deterministic function:

```
_compute_moments(self, *u)
```

2.One of the following options: a) Simple methods:

```
_compute_message_to_parent(self, index, m, *u) not? _compute_mask_to_parent(self, index, mask)
```

```
(a)More control with: _compute_message_and_mask_to_parent(self, index, m, *u)
```

Sub-classes may need to re-implement: 1. If they manipulate plates:

```
\_compute\_mask\_to\_parent(index, \ mask) \ \_plates\_to\_parent(self, \ index) \ \_plates\_from\_parent(self, \ index)
```

```
___init___(*args, **kwargs)
```

Methods

```
__init__(*args, **kwargs)
add_plate_axis(to_plate)
delete()
get_mask()
get_moments()
get_shape(ind)
has_plotter()
lower_bound_contribution([gradient])

Delete this node and the children

Return True if the node has a plotter
```

Table 6.8 – continued from previous page

move_plates(from_plate, to_plate)
plot(**kwargs)
Plot the node distribution using the plotter of the node
set_plotter(plotter)

bayespy.inference.vmp.nodes.deterministic.Deterministic. init

Deterministic. init (*args, **kwargs)

bayespy.inference.vmp.nodes.deterministic.Deterministic.add plate axis

Deterministic.add_plate_axis(to_plate)

bayespy.inference.vmp.nodes.deterministic.Deterministic.delete

Deterministic.delete()

Delete this node and the children

bayespy.inference.vmp.nodes.deterministic.Deterministic.get_mask

Deterministic.get_mask()

bayespy.inference.vmp.nodes.deterministic.Deterministic.get_moments

Deterministic.get moments()

bayespy.inference.vmp.nodes.deterministic.Deterministic.get_shape

Deterministic.get_shape(ind)

bayespy.inference.vmp.nodes.deterministic.Deterministic.has_plotter

Deterministic.has_plotter()
Return True if the node has a plotter

bayespy.inference.vmp.nodes.deterministic.Deterministic.lower_bound_contribution

Deterministic.lower_bound_contribution(gradient=False)

bayespy.inference.vmp.nodes.deterministic.Deterministic.move_plates

Deterministic.move_plates (from_plate, to_plate)

bayespy.inference.vmp.nodes.deterministic.Deterministic.plot

```
Deterministic.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.inference.vmp.nodes.deterministic.Deterministic.set_plotter

```
Deterministic.set_plotter(plotter)
```

Attributes

plates

bayespy.inference.vmp.nodes.deterministic.Deterministic.plates

Deterministic.plates = None

The following nodes are examples of special nodes that remain hidden for the user although they are often implicitly used:

```
constant.Constant(moments, x, **kwargs)

gaussian.GaussianToGaussianGammaISO(X, **kwargs)

gaussian.GaussianGammaISOToGaussianGammaARD(X, ...)

gaussian.WrapToGaussianGammaARD(mu_alpha, ...)

gaussian.WrapToGaussianGammaARD(mu_alpha, ...)

gaussian.WrapToGaussianWishart(X, Lambda, ...)

Wraps Gaussian tvalues.

Converter for Gaussian moments to Gaussian-gamma ISO moments to Gaussian-gamma ISO
```

6.1.5 bayespy.inference.vmp.nodes.constant.Constant

```
class bayespy.inference.vmp.nodes.constant.Constant(moments, x, **kwargs)
    Node for presenting constant values.
```

The node wraps arrays into proper node type.

```
__init__ (moments, x, **kwargs)
```

Methods

Table 6.11 – continued from previous page

has_plotter()	Return True if the node has a plotter
<pre>move_plates(from_plate, to_plate)</pre>	
plot(**kwargs)	Plot the node distribution using the plotter of the node
set_plotter(plotter)	

bayespy.inference.vmp.nodes.constant.Constant.__init__

```
Constant.__init__(moments, x, **kwargs)
```

bayespy.inference.vmp.nodes.constant.Constant.add_plate_axis

```
Constant.add_plate_axis(to_plate)
```

bayespy.inference.vmp.nodes.constant.Constant.delete

```
Constant.delete()
```

Delete this node and the children

bayespy.inference.vmp.nodes.constant.Constant.get_mask

```
Constant.get_mask()
```

bayespy.inference.vmp.nodes.constant.Constant.get moments

```
Constant.get_moments()
```

bayespy.inference.vmp.nodes.constant.Constant.get shape

```
Constant.get_shape (ind)
```

bayespy.inference.vmp.nodes.constant.Constant.has plotter

```
Constant.has_plotter()
```

Return True if the node has a plotter

bayespy.inference.vmp.nodes.constant.Constant.move_plates

```
Constant.move_plates (from_plate, to_plate)
```

bayespy.inference.vmp.nodes.constant.Constant.plot

```
Constant.plot(**kwargs)
```

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.inference.vmp.nodes.constant.Constant.set_plotter

Constant.set_plotter(plotter)

Attributes

plates

bayespy.inference.vmp.nodes.constant.Constant.plates

Constant.plates = None

6.1.6 bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO

 ${f class}$ bayespy.inference.vmp.nodes.gaussian. ${f GaussianToGaussianGammaISO}$ (X,

**kwargs)

Converter for Gaussian moments to Gaussian-gamma isotropic moments

Combines the Gaussian moments with gamma moments for a fixed value 1.

Methods

bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO. init

GaussianToGaussianGammaISO.__init__(X, **kwargs)

bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO.add plate axis

GaussianToGaussianGammaISO.add_plate_axis(to_plate)

bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO.delete

GaussianToGaussianGammaISO.delete()

Delete this node and the children

bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO.get_mask
<pre>GaussianToGaussianGammaISO.get_mask()</pre>
bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO.get_moments
<pre>GaussianToGaussianGammaISO.get_moments()</pre>
bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO.get_shape
GaussianToGaussianGammaISO.get_shape(ind)
bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO.has_plotter
GaussianToGaussianGammaISO.has_plotter() Return True if the node has a plotter
bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO.lower_bound_contribution
GaussianToGaussianGammaISO.lower_bound_contribution(gradient=False)
bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO.move_plates
GaussianToGaussianGammaISO.move_plates (from_plate, to_plate)
bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO.plot
GaussianToGaussianGammaISO.plot (**kwargs) Plot the node distribution using the plotter of the node
Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.
bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGammalSO.set_plotter
GaussianToGaussianGammaISO.set_plotter(plotter)
Attributes
nlates

bayes py. inference. vmp. nodes. gaussian. Gaussian To Gaussian Gammal SO. plates

 ${\tt GaussianToGaussianGammaISO.plates = None}$

6.1.7 bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOToGaussianGammaARD

Methods

init(X, **kwargs)	
add_plate_axis(to_plate)	
delete()	Delete this node and the children
get_mask()	
<pre>get_moments()</pre>	
get_shape(ind)	
has_plotter()	Return True if the node has a plotter
<pre>lower_bound_contribution([gradient])</pre>	
<pre>move_plates(from_plate, to_plate)</pre>	
plot(**kwargs)	Plot the node distribution using the plotter of the node
set_plotter(plotter)	

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOToGaussianGammaARD.__init__

GaussianGammaISOToGaussianGammaARD.__init__(X, **kwargs)

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOToGaussianGammaARD.add_plate_axis

GaussianGammaISOToGaussianGammaARD.add_plate_axis(to_plate)

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOToGaussianGammaARD.delete

GaussianGammaISOToGaussianGammaARD.**delete**()

Delete this node and the children

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOToGaussianGammaARD.get mask

GaussianGammaISOToGaussianGammaARD.get_mask()

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOToGaussianGammaARD.get moments

GaussianGammaISOToGaussianGammaARD.get_moments()

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOToGaussianGammaARD.get shape

 ${\tt GaussianGammaISOToGaussianGammaARD.} \textbf{get_shape} \ (ind)$

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOToGaussianGammaARD.has_plotter

GaussianGammaISOToGaussianGammaARD.has_plotter()
Return True if the node has a plotter

$bayes py. inference. vmp. nodes. gaussian. Gaussian Gammal SOTo Gaussian Gamma ARD. lower_bound_contributed for the contributed for the contribu$

GaussianGammaISOToGaussianGammaARD.lower_bound_contribution(gradient=False)

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOToGaussianGammaARD.move plates

GaussianGammaISOToGaussianGammaARD.move_plates(from_plate, to_plate)

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOToGaussianGammaARD.plot

GaussianGammaISOToGaussianGammaARD.plot (**kwargs)
Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

$bayes py. inference. vmp. nodes. gaussian. Gaussian Gammal SOTo Gaussian Gamma ARD. set_plotter$

GaussianGammaISOToGaussianGammaARD.set_plotter(plotter)

Attributes

plates

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOToGaussianGammaARD.plates

GaussianGammaISOToGaussianGammaARD.plates = None

6.1.8 bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart

 ${\bf class} \ {\bf bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart} \ (X_alpha, \\ **kwargs)$

```
__init__ (X_alpha, **kwargs)
```

Methods

__init__(X_alpha, **kwargs)
add_plate_axis(to_plate)
delete()

Delete this node and the children

Continued on next page

Table 6.17 – continued from previous page

```
get_mask()
get_moments()
get_shape(ind)
has_plotter()
lower_bound_contribution([gradient])
move_plates(from_plate, to_plate)
plot(**kwargs)
set_plotter(plotter)
Return True if the node has a plotter

Plot the node distribution using the plotter of the node
set_plotter(plotter)
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart.__init__

GaussianGammaARDToGaussianWishart.__init__(X_alpha, **kwargs)

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart.add plate axis

GaussianGammaARDToGaussianWishart.add_plate_axis(to_plate)

bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ARD To Gaussian Wishart. delete

GaussianGammaARDToGaussianWishart.delete()
 Delete this node and the children

$bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ARD To Gaussian Wishart. get_mask$

GaussianGammaARDToGaussianWishart.get_mask()

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart.get moments

GaussianGammaARDToGaussianWishart.get_moments()

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart.get_shape

GaussianGammaARDToGaussianWishart.get_shape (ind)

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart.has_plotter

```
GaussianGammaARDToGaussianWishart.has_plotter()
Return True if the node has a plotter
```

$bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ARD To Gaussian Wishart. lower_bound_contribution$

GaussianGammaARDToGaussianWishart.lower_bound_contribution(gradient=False)

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart.move plates

GaussianGammaARDToGaussianWishart.move_plates(from_plate, to_plate)

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart.plot

GaussianGammaARDToGaussianWishart.plot(**kwargs)

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart.set_plotter

GaussianGammaARDToGaussianWishart.set_plotter(plotter)

Attributes

plates

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart.plates

GaussianGammaARDToGaussianWishart.plates = None

6.1.9 bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO

```
{\bf class} \ {\bf bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaISO} \ (*parents, **kwargs)
```

__init__ (*parents, **kwargs)

Methods

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.__init__

WrapToGaussianGammaISO.__init__(*parents, **kwargs)

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.add_plate_axis

WrapToGaussianGammaISO.add_plate_axis(to_plate)

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.delete

WrapToGaussianGammaISO.delete()

Delete this node and the children

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.get mask

WrapToGaussianGammaISO.get_mask()

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.get moments

WrapToGaussianGammaISO.get_moments()

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.get_shape

WrapToGaussianGammaISO.get_shape (ind)

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.has plotter

WrapToGaussianGammaISO.has_plotter()
Return True if the node has a plotter

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.lower_bound_contribution

WrapToGaussianGammaISO.lower_bound_contribution(gradient=False)

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.move plates

WrapToGaussianGammaISO.move_plates (from_plate, to_plate)

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.plot

WrapToGaussianGammaISO.plot(**kwargs)

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.set plotter

WrapToGaussianGammaISO.set_plotter(plotter)

Attributes

plates		

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSO.plates

WrapToGaussianGammaISO.plates = None

6.1.10 bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD

```
{\bf class} \ {\bf bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD} \ ({\it mu\_alpha, tau, **kwargs})
```

```
__init__ (mu_alpha, tau, **kwargs)
```

Methods

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD. init

```
WrapToGaussianGammaARD.__init__(mu_alpha, tau, **kwargs)
```

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD.add plate axis

 ${\tt WrapToGaussianGammaARD.add_plate_axis}~({\it to_plate})$

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD.delete

```
WrapToGaussianGammaARD.delete()

Delete this node and the children
```

$bayes py. inference. vmp. nodes. gaussian. Wrap To Gaussian Gamma ARD. get_mask$

```
WrapToGaussianGammaARD.get_mask()
```

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD.get_moments

WrapToGaussianGammaARD.get_moments()

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD.get_shape

WrapToGaussianGammaARD.get_shape(ind)

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD.has plotter

WrapToGaussianGammaARD.has_plotter()
Return True if the node has a plotter

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD.lower_bound_contribution

WrapToGaussianGammaARD.lower_bound_contribution(gradient=False)

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD.move_plates

WrapToGaussianGammaARD.move_plates (from_plate, to_plate)

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD.plot

WrapToGaussianGammaARD.plot(**kwargs)

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD.set_plotter

WrapToGaussianGammaARD.set_plotter(plotter)

Attributes

plates

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaARD.plates

WrapToGaussianGammaARD.plates = None

6.1.11 bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart

class bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart (X, Lambda, **kwargs) Wraps Gaussian and Wishart nodes into a Gaussian-Wishart node.

The following node combinations can be wrapped:

- · Gaussian and Wishart
- Gaussian-gamma and Wishart
- · Gaussian-Wishart and gamma

```
__init__(X, Lambda, **kwargs)
```

Methods

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.__init__

```
WrapToGaussianWishart.__init__(X, Lambda, **kwargs)
```

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.add plate axis

WrapToGaussianWishart.add_plate_axis(to_plate)

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.delete

```
WrapToGaussianWishart.delete()

Delete this node and the children
```

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.get_mask

```
WrapToGaussianWishart.get_mask()
```

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.get_moments

```
WrapToGaussianWishart.get_moments()
```

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.get shape

```
WrapToGaussianWishart.get_shape(ind)
```

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.has_plotter

WrapToGaussianWishart.has_plotter()
Return True if the node has a plotter

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.lower_bound_contribution

WrapToGaussianWishart.lower_bound_contribution(gradient=False)

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.move_plates

WrapToGaussianWishart.move_plates (from_plate, to_plate)

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.plot

WrapToGaussianWishart.plot(**kwargs)

Plot the node distribution using the plotter of the node

Because the distributions are in general very difficult to plot, the user must specify some functions which performs the plotting as wanted. See, for instance, bayespy.plot.plotting for available plotters, that is, functions that perform plotting for a node.

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.set_plotter

WrapToGaussianWishart.set_plotter(plotter)

Attributes

plates

bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart.plates

WrapToGaussianWishart.plates = None

6.2 Moments

node.Moments	Base class for defining the expectation of the s
gaussian.GaussianMoments(ndim)	Class for the moments of Gaussian variables.
gaussian_markov_chain.GaussianMarkovChainMoments	
gaussian.GaussianGammaISOMoments(ndim)	Class for the moments of Gaussian-gamma-IS
gaussian.GaussianGammaARDMoments(ndim)	Class for the moments of Gaussian-gamma-Al
gaussian.GaussianWishartMoments	Class for the moments of Gaussian-Wishart va
gamma.GammaMoments	Class for the moments of gamma variables.
wishart.WishartMoments	
beta.BetaMoments	Class for the moments of beta variables.
dirichlet Dirichlet Moments	Class for the moments of Dirichlet variables

Continu

6.2. Moments 175

Table 6.25 – continued from previous page

bernoulli.BernoulliMoments()	Class for the moments of Bernoulli variables.
$\verb binomial.BinomialMoments (N) $	Class for the moments of binomial variables
categorical.CategoricalMoments(categories)	Class for the moments of categorical variables
categorical_markov_chain.CategoricalMarkovChainMoments()	Class for the moments of categorical Markov of
multinomial.MultinomialMoments	Class for the moments of multinomial variable
poisson.PoissonMoments	Class for the moments of Poisson variables

6.2.1 bayespy.inference.vmp.nodes.node.Moments

class bayespy.inference.vmp.nodes.node.Moments

Base class for defining the expectation of the sufficient statistics.

The benefits:

- •Write statistic-specific features in one place only. For instance, covariance from Gaussian message.
- •Different nodes may have identically defined statistic so you need to implement related features only once. For instance, Gaussian and GaussianARD differ on the prior but the moments are the same.
- •General processing nodes which do not change the type of the moments may "inherit" the features from the parent node. For instance, slicing operator.
- •Conversions can be done easily in both of the above cases if the message conversion is defined in the moments class. For instance, GaussianMarkovChain to Gaussian and VaryingGaussianMarkovChain to Gaussian.

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

```
add_converter(moments_to, converter)
compute_dims_from_values(x)
compute_fixed_moments(x)
get_converter(moments_to)
Finds conversion to another moments type if possible.
```

bayespy.inference.vmp.nodes.node.Moments.add_converter

classmethod Moments.add_converter (moments_to, converter)

bayespy.inference.vmp.nodes.node.Moments.compute dims from values

Moments.compute_dims_from_values(x)

bayespy.inference.vmp.nodes.node.Moments.compute fixed moments

Moments.compute_fixed_moments(x)

bayespy.inference.vmp.nodes.node.Moments.get_converter

```
Moments.get_converter(moments_to)
```

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.2 bayespy.inference.vmp.nodes.gaussian.GaussianMoments

```
class bayespy.inference.vmp.nodes.gaussian.GaussianMoments (ndim)
    Class for the moments of Gaussian variables.
```

```
___init___(ndim)
```

Methods

init(ndim)	
<pre>add_converter(moments_to, converter)</pre>	
$compute_dims_from_values(x)$	Return the shape of the moments for a fixed value.
$compute_fixed_moments(x)$	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.gaussian.GaussianMoments.__init__

```
GaussianMoments.__init__(ndim)
```

bayespy.inference.vmp.nodes.gaussian.GaussianMoments.add converter

```
{\tt Gaussian Moments.add\_converter} \ ({\it moments\_to}, {\it converter})
```

bayespy.inference.vmp.nodes.gaussian.GaussianMoments.compute dims from values

```
GaussianMoments.compute_dims_from_values(x)
```

Return the shape of the moments for a fixed value.

bayespy.inference.vmp.nodes.gaussian.GaussianMoments.compute_fixed_moments

```
GaussianMoments.compute_fixed_moments(x)
Compute the moments for a fixed value
```

6.2. Moments 177

bayespy.inference.vmp.nodes.gaussian.GaussianMoments.get_converter

```
GaussianMoments.get_converter(moments_to)
```

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.3 bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainMoments

class bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainMoments

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

```
add_converter(moments_to, converter)
compute_dims_from_values(x)
compute_fixed_moments(x)
get_converter(moments_to)
Finds conversion to another moments type if possible.
```

bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainMoments.add_converter

GaussianMarkovChainMoments.add converter (moments to, converter)

 $bayes py. inference. vmp. nodes. gaussian_markov_chain. Gaussian Markov Chain Moments. compute_dims_from_chain. Gaussian Markov Chain Markov Chain Moments. Compute_dims_from_chain. Gaussian Markov Chain Markov Chain$

GaussianMarkovChainMoments.compute_dims_from_values(x)

bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainMoments.compute_fixed_mom

GaussianMarkovChainMoments.compute_fixed_moments(x)

bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainMoments.get_converter

```
GaussianMarkovChainMoments.get_converter(moments_to)
```

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.4 bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOMoments

```
___init___(ndim)
```

Create moments object for Gaussian-gamma isotropic variables

ndim=0: scalar ndim=1: vector ndim=2: matrix ...

Methods

init(ndim)	Create moments object for Gaussian-gamma isotropic variables
<pre>add_converter(moments_to, converter)</pre>	
<pre>compute_dims_from_values(x, alpha)</pre>	Return the shape of the moments for a fixed value.
$compute_fixed_moments(x, alpha)$	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOMoments.__init__

```
GaussianGammaISOMoments.__init__(ndim)
Create moments object for Gaussian-gamma isotropic variables
ndim=0: scalar ndim=1: vector ndim=2: matrix ...
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOMoments.add converter

GaussianGammaISOMoments.add_converter (moments_to, converter)

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOMoments.compute dims from values

```
GaussianGammaISOMoments.compute_dims_from_values (x, alpha)
Return the shape of the moments for a fixed value.
```

$bayes py. inference. vmp. nodes. gaussian. Gaussian Gammal SOM oments. compute_fixed_moments$

```
GaussianGammaISOMoments.compute_fixed_moments(x, alpha)
Compute the moments for a fixed value

x is a mean vector. alpha is a precision scale
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSOMoments.get converter

```
GaussianGammaISOMoments.get_converter(moments_to)
Finds conversion to another moments type if possible.
```

6.2. Moments 179

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.5 bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDMoments

class bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDMoments(ndim)
 Class for the moments of Gaussian-gamma-ARD variables.

```
___init___(ndim)
```

Create moments object for Gaussian-gamma isotropic variables

ndim=0: scalar ndim=1: vector ndim=2: matrix ...

Methods

init(ndim)	Create moments object for Gaussian-gamma isotropic variables
<pre>add_converter(moments_to, converter)</pre>	
<pre>compute_dims_from_values(x, alpha)</pre>	Return the shape of the moments for a fixed value.
<pre>compute_fixed_moments(x, alpha)</pre>	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDMoments. init

```
GaussianGammaARDMoments.__init__(ndim)
Create moments object for Gaussian-gamma isotropic variables
ndim=0: scalar ndim=1: vector ndim=2: matrix ...
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDMoments.add converter

GaussianGammaARDMoments.add_converter (moments_to, converter)

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDMoments.compute dims from values

```
GaussianGammaARDMoments.compute_dims_from_values (x, alpha)
Return the shape of the moments for a fixed value.
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDMoments.compute_fixed_moments

```
GaussianGammaARDMoments.compute_fixed_moments (x, alpha)
Compute the moments for a fixed value

x is a mean vector. alpha is a precision scale
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDMoments.get_converter

GaussianGammaARDMoments.get_converter (moments_to)

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.6 bayespy.inference.vmp.nodes.gaussian.GaussianWishartMoments

class bayespy.inference.vmp.nodes.gaussian.GaussianWishartMoments
 Class for the moments of Gaussian-Wishart variables.

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

add_converter(moments_to, converter)	
<pre>compute_dims_from_values(x, Lambda)</pre>	Return the shape of the moments for a fixed value.
<pre>compute_fixed_moments(x, Lambda)</pre>	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.gaussian.GaussianWishartMoments.add_converter

GaussianWishartMoments.add_converter (moments_to, converter)

bayespy.inference.vmp.nodes.gaussian.GaussianWishartMoments.compute dims from values

```
GaussianWishartMoments.compute_dims_from_values (x, Lambda)
Return the shape of the moments for a fixed value.
```

bayespy.inference.vmp.nodes.gaussian.GaussianWishartMoments.compute fixed moments

```
GaussianWishartMoments.compute_fixed_moments (x, Lambda)
Compute the moments for a fixed value

x is a vector. Lambda is a precision matrix
```

bayespy.inference.vmp.nodes.gaussian.GaussianWishartMoments.get converter

```
GaussianWishartMoments.get_converter (moments_to) Finds conversion to another moments type if possible.
```

6.2. Moments 181

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.7 bayespy.inference.vmp.nodes.gamma.GammaMoments

```
class bayespy.inference.vmp.nodes.gamma.GammaMoments
    Class for the moments of gamma variables.
```

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

add_converter(moments_to, converter)	
$compute_dims_from_values(x)$	Return the shape of the moments for a fixed value.
$compute_fixed_moments(x)$	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.gamma.GammaMoments.add converter

```
GammaMoments.add_converter (moments_to, converter)
```

bayespy.inference.vmp.nodes.gamma.GammaMoments.compute dims from values

```
GammaMoments.compute_dims_from_values (x)
Return the shape of the moments for a fixed value.
```

bayespy.inference.vmp.nodes.gamma.GammaMoments.compute fixed moments

```
GammaMoments.compute_fixed_moments (x)
Compute the moments for a fixed value
```

bayespy.inference.vmp.nodes.gamma.GammaMoments.get_converter

```
GammaMoments.get_converter(moments_to)
```

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.8 bayespy.inference.vmp.nodes.wishart.WishartMoments

class bayespy.inference.vmp.nodes.wishart.WishartMoments

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

bayespy.inference.vmp.nodes.wishart.WishartMoments.add_converter

WishartMoments.add_converter (moments_to, converter)

bayespy.inference.vmp.nodes.wishart.WishartMoments.compute_dims_from_values

```
WishartMoments.compute_dims_from_values (x) Compute the dimensions of phi and u.
```

bayespy.inference.vmp.nodes.wishart.WishartMoments.compute fixed moments

```
WishartMoments.compute_fixed_moments(Lambda)
Compute moments for fixed x.
```

bayespy.inference.vmp.nodes.wishart.WishartMoments.get_converter

```
WishartMoments.get_converter(moments_to)
```

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.9 bayespy.inference.vmp.nodes.beta.BetaMoments

6.2. Moments 183

Methods

add_converter(moments_to, converter)	
<pre>compute_dims_from_values(p)</pre>	Return the shape of the moments for a fixed value.
<pre>compute_fixed_moments(p)</pre>	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.beta.BetaMoments.add converter

BetaMoments.add_converter (moments_to, converter)

bayespy.inference.vmp.nodes.beta.BetaMoments.compute_dims_from_values

```
BetaMoments.compute_dims_from_values (p)
Return the shape of the moments for a fixed value.
```

bayespy.inference.vmp.nodes.beta.BetaMoments.compute fixed moments

```
BetaMoments.compute_fixed_moments(p)
Compute the moments for a fixed value
```

bayespy.inference.vmp.nodes.beta.BetaMoments.get converter

```
BetaMoments.get_converter(moments_to)
```

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.10 bayespy.inference.vmp.nodes.dirichlet.DirichletMoments

```
class bayespy.inference.vmp.nodes.dirichlet.DirichletMoments
    Class for the moments of Dirichlet variables.
```

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

add_converter(moments_to, converter)	
$compute_dims_from_values(x)$	Return the shape of the moments for a fixed value.
<pre>compute_fixed_moments(p)</pre>	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.dirichlet.DirichletMoments.add_converter

```
DirichletMoments.add_converter (moments_to, converter)
```

bayespy.inference.vmp.nodes.dirichlet.DirichletMoments.compute_dims_from_values

```
DirichletMoments.compute_dims_from_values (x)
Return the shape of the moments for a fixed value.
```

bayespy.inference.vmp.nodes.dirichlet.DirichletMoments.compute_fixed_moments

```
DirichletMoments.compute_fixed_moments(p)
Compute the moments for a fixed value
```

bayespy.inference.vmp.nodes.dirichlet.DirichletMoments.get converter

```
DirichletMoments.get_converter(moments_to)
```

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.11 bayespy.inference.vmp.nodes.bernoulli.BernoulliMoments

```
class bayespy.inference.vmp.nodes.bernoulli.BernoulliMoments
    Class for the moments of Bernoulli variables.
```

```
___init___()
```

Methods

init()	
<pre>add_converter(moments_to, converter)</pre>	
$compute_dims_from_values(x)$	Return the shape of the moments for a fixed value.
$compute_fixed_moments(x)$	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.bernoulli.BernoulliMoments. init

```
BernoulliMoments.__init__()
```

bayespy.inference.vmp.nodes.bernoulli.BernoulliMoments.add converter

BernoulliMoments.add_converter(moments_to, converter)

6.2. Moments 185

bayespy.inference.vmp.nodes.bernoulli.BernoulliMoments.compute dims from values

```
BernoulliMoments.compute_dims_from_values(x)
```

Return the shape of the moments for a fixed value.

The realizations are scalars, thus the shape of the moment is ().

bayespy.inference.vmp.nodes.bernoulli.BernoulliMoments.compute_fixed_moments

```
BernoulliMoments.compute_fixed_moments(x)
```

Compute the moments for a fixed value

bayespy.inference.vmp.nodes.bernoulli.BernoulliMoments.get converter

```
BernoulliMoments.get_converter(moments_to)
```

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.12 bayespy.inference.vmp.nodes.binomial.BinomialMoments

```
class bayespy.inference.vmp.nodes.binomial.BinomialMoments(N)
    Class for the moments of binomial variables
```

```
___init___(N)
```

Methods

init(N)	
<pre>add_converter(moments_to, converter)</pre>	
$compute_dims_from_values(x)$	Return the shape of the moments for a fixed value.
$compute_fixed_moments(x)$	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.binomial.BinomialMoments. init

```
BinomialMoments.__init__(N)
```

bayespy.inference.vmp.nodes.binomial.BinomialMoments.add converter

BinomialMoments.add_converter (moments_to, converter)

bayespy.inference.vmp.nodes.binomial.BinomialMoments.compute_dims_from_values

```
BinomialMoments.compute_dims_from_values(x)
```

Return the shape of the moments for a fixed value.

The realizations are scalars, thus the shape of the moment is ().

bayespy.inference.vmp.nodes.binomial.BinomialMoments.compute_fixed_moments

```
BinomialMoments.compute_fixed_moments(x)
```

Compute the moments for a fixed value

bayespy.inference.vmp.nodes.binomial.BinomialMoments.get_converter

```
BinomialMoments.get_converter(moments_to)
```

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.13 bayespy.inference.vmp.nodes.categorical.CategoricalMoments

```
__init__(categories)
```

Create moments object for categorical variables

Methods

init(categories)	Create moments object for categorical variables
<pre>add_converter(moments_to, converter)</pre>	
$compute_dims_from_values(x)$	Return the shape of the moments for a fixed value.
$compute_fixed_moments(x)$	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.categorical.CategoricalMoments.__init__

```
Categorical Moments.__init__(categories)

Create moments object for categorical variables
```

bayespy.inference.vmp.nodes.categorical.CategoricalMoments.add converter

```
CategoricalMoments.add_converter (moments_to, converter)
```

6.2. Moments 187

bayespy.inference.vmp.nodes.categorical.CategoricalMoments.compute_dims_from_values

CategoricalMoments.compute_dims_from_values(x)

Return the shape of the moments for a fixed value.

The observations are scalar.

bayespy.inference.vmp.nodes.categorical.CategoricalMoments.compute_fixed_moments

```
CategoricalMoments.compute_fixed_moments(x)
```

Compute the moments for a fixed value

bayespy.inference.vmp.nodes.categorical.CategoricalMoments.get_converter

CategoricalMoments.get_converter(moments_to)

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.14 bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainMome

class bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainMoments(categorical Markov chain variables.

```
___init___(categories)
```

Create moments object for categorical Markov chain variables.

Methods

init(categories)	Create moments object for categorical Markov chain variables.
<pre>add_converter(moments_to, converter)</pre>	
$compute_dims_from_values(x)$	Return the shape of the moments for a fixed value.
$compute_fixed_moments(x)$	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainMoments.__init__

```
{\tt Categorical Markov Chain Moments.} \underline{\quad \  } {\tt init} \underline{\quad \  } {\tt (} {\it categories} {\tt )}
```

Create moments object for categorical Markov chain variables.

bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainMoments.add_converter

CategoricalMarkovChainMoments.add_converter(moments_to, converter)

bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainMoments.compute_dims_f

```
CategoricalMarkovChainMoments.compute_dims_from_values (x) Return the shape of the moments for a fixed value.
```

bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainMoments.compute_fixed_n

```
CategoricalMarkovChainMoments.compute_fixed_moments(x)
Compute the moments for a fixed value
```

bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainMoments.get_converter

```
CategoricalMarkovChainMoments.get_converter(moments_to)
```

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.15 bayespy.inference.vmp.nodes.multinomial.MultinomialMoments

class bayespy.inference.vmp.nodes.multinomial.MultinomialMoments
 Class for the moments of multinomial variables.

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

add_converter(moments_to, converter)	
$compute_dims_from_values(x)$	Return the shape of the moments for a fixed value.
$compute_fixed_moments(x)$	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.multinomial.MultinomialMoments.add_converter

```
MultinomialMoments.add_converter (moments_to, converter)
```

bayespy.inference.vmp.nodes.multinomial.MultinomialMoments.compute_dims_from_values

```
MultinomialMoments.compute_dims_from_values (x)
Return the shape of the moments for a fixed value.
```

6.2. Moments 189

bayespy.inference.vmp.nodes.multinomial.MultinomialMoments.compute_fixed_moments

```
MultinomialMoments.compute_fixed_moments (x)
Compute the moments for a fixed value

x must be a vector of counts.
```

bayespy.inference.vmp.nodes.multinomial.MultinomialMoments.get_converter

```
MultinomialMoments.get_converter(moments_to)
Finds conversion to another moments type if possible.
```

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.2.16 bayespy.inference.vmp.nodes.poisson.PoissonMoments

```
class bayespy.inference.vmp.nodes.poisson.PoissonMoments
    Class for the moments of Poisson variables
    __init__()
         x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

add_converter(moments_to, converter)	
$compute_dims_from_values(x)$	Return the shape of the moments for a fixed value.
$compute_fixed_moments(x)$	Compute the moments for a fixed value
<pre>get_converter(moments_to)</pre>	Finds conversion to another moments type if possible.

bayespy.inference.vmp.nodes.poisson.PoissonMoments.add_converter

```
PoissonMoments.add_converter (moments_to, converter)
```

bayespy.inference.vmp.nodes.poisson.PoissonMoments.compute_dims_from_values

```
PoissonMoments.compute_dims_from_values (x)
Return the shape of the moments for a fixed value.
```

The realizations are scalars, thus the shape of the moment is ().

bayespy.inference.vmp.nodes.poisson.PoissonMoments.compute fixed moments

```
PoissonMoments.compute_fixed_moments(x)
Compute the moments for a fixed value
```

bayespy.inference.vmp.nodes.poisson.PoissonMoments.get_converter

```
PoissonMoments.get_converter(moments_to)
```

Finds conversion to another moments type if possible.

Note that a conversion from moments A to moments B may require intermediate conversions. For instance: A->C->D->B. This method finds the path which uses the least amount of conversions and returns that path as a single conversion. If no conversion path is available, an error is raised.

The search algorithm starts from the original moments class and applies all possible converters to get a new list of moments classes. This list is extended by adding recursively all parent classes because their converters are applicable. Then, all possible converters are applied to this list to get a new list of current moments classes. This is iterated until the algorithm hits the target moments class or its subclass.

6.3 Distributions

stochastic.Distribution	A base class for the VMP for
expfamily.ExponentialFamilyDistribution	Sub-classes implement distri
gaussian.GaussianDistribution	Class for the VMP formulas
gaussian.GaussianARDDistribution(shape, ndim_mu)	
gaussian.GaussianGammaISODistribution	Class for the VMP formulas
gaussian.GaussianGammaARDDistribution()	
gaussian.GaussianWishartDistribution	Class for the VMP formulas
gaussian_markov_chain. ${ t Gaussian Markov Chain Distribution}(N,D)$	Sub-classes implement distri
$\verb"gaussian_markov_chain.SwitchingGaussianMarkovChainDistribution" (N, D, K)$	Sub-classes implement distri
$ exttt{gaussian_markov_chain.VaryingGaussianMarkovChainDistribution}(N,D)$	Sub-classes implement distri
gamma.GammaDistribution	Class for the VMP formulas
wishart.WishartDistribution	Sub-classes implement distri
beta.BetaDistribution	Class for the VMP formulas
dirichlet.DirichletDistribution	Class for the VMP formulas
bernoulli.BernoulliDistribution()	Class for the VMP formulas
$\verb binomial.BinomialDistribution (N) $	Class for the VMP formulas
categorical.CategoricalDistribution(categories)	Class for the VMP formulas
categorical_markov_chain.CategoricalMarkovChainDistribution()	Class for the VMP formulas
multinomial.MultinomialDistribution(trials)	Class for the VMP formulas
poisson.PoissonDistribution	Class for the VMP formulas

6.3.1 bayespy.inference.vmp.nodes.stochastic.Distribution

```
class bayespy.inference.vmp.nodes.stochastic.Distribution
    A base class for the VMP formulas of variables.
```

Sub-classes implement distribution specific computations.

If a sub-class maps the plates differently, it needs to overload the following methods:

```
compute_mask_to_parent
plates_to_parent
plates_from_parent
__init___()
_x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

compute_mask_to_parent(index, mask)	Maps the mask to the plates of a parent.
<pre>compute_message_to_parent(parent, index,)</pre>	Compute the message to a parent node.
<pre>plates_from_parent(index, plates)</pre>	Resolve the plate mapping from a parent.
<pre>plates_to_parent(index, plates)</pre>	Resolves the plate mapping to a parent.
random(*params[, plates])	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.stochastic.Distribution.compute mask to parent

```
Distribution.compute_mask_to_parent(index, mask)

Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.stochastic.Distribution.compute_message_to_parent

```
Distribution.compute_message_to_parent (parent, index, u_self, *u_parents)

Compute the message to a parent node.
```

bayespy.inference.vmp.nodes.stochastic.Distribution.plates_from_parent

```
Distribution.plates_from_parent (index, plates)
Resolve the plate mapping from a parent.
```

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.stochastic.Distribution.plates to parent

```
Distribution.plates_to_parent (index, plates)
Resolves the plate mapping to a parent.
```

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.stochastic.Distribution.random

```
Distribution.random(*params, plates=None)
Draw a random sample from the distribution.
```

6.3.2 bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution

```
class bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution
    Sub-classes implement distribution specific computations.
```

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution.compute_cgf_from_parents

ExponentialFamilyDistribution.compute_cgf_from_parents(*u_parents)

bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution.compute_fixed_moments_and_f

ExponentialFamilyDistribution.compute_fixed_moments_and_f(x, mask=True)

bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution.compute logpdf

ExponentialFamilyDistribution.compute_logpdf (u, phi, g, f, ndims)Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.

bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution.compute mask to parent

ExponentialFamilyDistribution.compute_mask_to_parent(index, mask)

Maps the mask to the plates of a parent.

bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution.compute message to parent

ExponentialFamilyDistribution.compute_message_to_parent (parent, index, u_self, *u_parents)

bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution.compute_moments_and_cgf

ExponentialFamilyDistribution.compute_moments_and_cqf(phi, mask=True)

bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution.compute phi from parents

ExponentialFamilyDistribution.compute_phi_from_parents(*u_parents, mask=True)

bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution.plates_from_parent

 ${\tt ExponentialFamilyDistribution.plates_from_parent}~(\textit{index}, \textit{plates})$

Resolve the plate mapping from a parent.

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution.plates to parent

ExponentialFamilyDistribution.plates_to_parent (index, plates)

Resolves the plate mapping to a parent.

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistribution.random

ExponentialFamilyDistribution.random(*params, plates=None)

Draw a random sample from the distribution.

6.3.3 bayespy.inference.vmp.nodes.gaussian.GaussianDistribution

class bayespy.inference.vmp.nodes.gaussian.GaussianDistribution
 Class for the VMP formulas of Gaussian variables.

Currently, supports only vector variables.

Notes

Message passing equations:

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Lambda}),$$

 $\mathbf{x}, \boldsymbol{\mu} \in \mathbb{R}^D$, $\boldsymbol{\Lambda} \in \mathbb{R}^{D \times D}$, $\boldsymbol{\Lambda}$ symmetric positive definite

$$\log \mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda}) = -\frac{1}{2}\mathbf{x}^{\mathrm{T}}\boldsymbol{\Lambda}\mathbf{x} + \mathbf{x}^{\mathrm{T}}\boldsymbol{\Lambda}\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{\mu}^{\mathrm{T}}\boldsymbol{\Lambda}\boldsymbol{\mu} + \frac{1}{2}\log|\boldsymbol{\Lambda}| - \frac{D}{2}\log(2\pi)$$

$$\begin{aligned} \mathbf{u}(\mathbf{x}) &= \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \mathbf{x}^{\mathrm{T}} \end{bmatrix} \\ \boldsymbol{\phi}(\boldsymbol{\mu}, \boldsymbol{\Lambda}) &= \begin{bmatrix} \boldsymbol{\Lambda} \boldsymbol{\mu} \\ -\frac{1}{2} \boldsymbol{\Lambda} \end{bmatrix} \\ \boldsymbol{\phi}_{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\Lambda}) &= \begin{bmatrix} \boldsymbol{\Lambda} \mathbf{x} \\ -\frac{1}{2} \boldsymbol{\Lambda} \end{bmatrix} \\ \boldsymbol{\phi}_{\boldsymbol{\Lambda}}(\mathbf{x}, \boldsymbol{\mu}) &= \begin{bmatrix} -\frac{1}{2} \mathbf{x} \mathbf{x}^{\mathrm{T}} + \frac{1}{2} \mathbf{x} \boldsymbol{\mu}^{\mathrm{T}} + \frac{1}{2} \boldsymbol{\mu} \mathbf{x}^{\mathrm{T}} - \frac{1}{2} \boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}} \end{bmatrix} \\ g(\boldsymbol{\mu}, \boldsymbol{\Lambda}) &= -\frac{1}{2} \operatorname{tr}(\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{\Lambda}) + \frac{1}{2} \log |\boldsymbol{\Lambda}| \\ g_{\boldsymbol{\phi}}(\boldsymbol{\phi}) &= \frac{1}{4} \boldsymbol{\phi}_{1}^{\mathrm{T}} \boldsymbol{\phi}_{2}^{-1} \boldsymbol{\phi}_{1} + \frac{1}{2} \log |\boldsymbol{-2} \boldsymbol{\phi}_{2}| \\ f(\mathbf{x}) &= -\frac{D}{2} \log(2\pi) \\ \overline{\mathbf{u}}(\boldsymbol{\phi}) &= \begin{bmatrix} -\frac{1}{2} \boldsymbol{\phi}_{2}^{-1} \boldsymbol{\phi}_{1} \\ \frac{1}{4} \boldsymbol{\phi}_{2}^{-1} \boldsymbol{\phi}_{1} \boldsymbol{\phi}_{1}^{T} \boldsymbol{\phi}_{2}^{-1} - \frac{1}{2} \boldsymbol{\phi}_{2}^{-1} \end{bmatrix} \end{aligned}$$

__init__()
x.__init__(...) initializes x; see help(type(x)) for signature

Methods

compute_cgf_from_parents(u_mu_Lambda)	Compute $E_{q(p)}[g(p)]$
$compute_fixed_moments_and_f(x[, mask])$	Compute the moments and $f(x)$ for a fixed value.
<pre>compute_logpdf(u, phi, g, f, ndims)</pre>	Compute $E[\log p(X)]$ given $E[u]$, $E[phi]$, $E[g]$ and $E[f]$.
<pre>compute_mask_to_parent(index, mask)</pre>	Maps the mask to the plates of a parent.
<pre>compute_message_to_parent(parent, index, u,)</pre>	Compute the message to a parent node.
<pre>compute_moments_and_cgf(phi[, mask])</pre>	Compute the moments and $g(\phi)$.
<pre>compute_phi_from_parents(u_mu_Lambda[, mask])</pre>	Compute the natural parameter vector given parent moments.
<pre>plates_from_parent(index, plates)</pre>	Resolve the plate mapping from a parent.
<pre>plates_to_parent(index, plates)</pre>	Resolves the plate mapping to a parent.
random(*phi[, plates])	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.gaussian.GaussianDistribution.compute_cgf_from_parents

```
\label{eq:compute_cgf_from_parents} \textbf{GaussianDistribution.compute\_cgf\_from\_parents} \ (\textit{u\_mu\_Lambda}) \\ \textbf{Compute} \ \mathbf{E}_{q(p)}[g(p)]
```

bayespy.inference.vmp.nodes.gaussian.GaussianDistribution.compute_fixed_moments_and_f

```
GaussianDistribution.compute_fixed_moments_and_f (x, mask=True)
Compute the moments and f(x) for a fixed value.
```

bayespy.inference.vmp.nodes.gaussian.GaussianDistribution.compute logpdf

```
GaussianDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.gaussian.GaussianDistribution.compute_mask_to_parent

GaussianDistribution.compute_mask_to_parent(index, mask)

Maps the mask to the plates of a parent.

bayespy.inference.vmp.nodes.gaussian.GaussianDistribution.compute message to parent

GaussianDistribution.compute_message_to_parent (parent, index, u, u_mu_Lambda) Compute the message to a parent node.

bayespy.inference.vmp.nodes.gaussian.GaussianDistribution.compute_moments_and_cgf

GaussianDistribution.compute_moments_and_cgf (phi, mask=True)

Compute the moments and $g(\phi)$.

bayespy.inference.vmp.nodes.gaussian.GaussianDistribution.compute_phi_from_parents

GaussianDistribution.compute_phi_from_parents (u_mu_Lambda, mask=True)

Compute the natural parameter vector given parent moments.

bayespy.inference.vmp.nodes.gaussian.GaussianDistribution.plates from parent

GaussianDistribution.plates_from_parent (index, plates)
Resolve the plate mapping from a parent.

Given the plates of a parent's moments, this method returns the plates that the moments has for this distri-

bayespy.inference.vmp.nodes.gaussian.GaussianDistribution.plates to parent

GaussianDistribution.plates_to_parent (index, plates)
Resolves the plate mapping to a parent.

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.gaussian.GaussianDistribution.random

GaussianDistribution.random(*phi, plates=None)
Draw a random sample from the distribution.

6.3.4 bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution

Log probability density function:

bution.

$$\log p(x|\mu,\alpha) = -\frac{1}{2}x^T \operatorname{diag}(\alpha)x + x^T \operatorname{diag}(\alpha)\mu - \frac{1}{2}\mu^T \operatorname{diag}(\alpha)\mu + \frac{1}{2}\sum_i \log \alpha_i - \frac{D}{2}\log(2\pi)$$

Parent has moments:

$$\begin{bmatrix} \alpha \circ \mu \\ \alpha \circ \mu \circ \mu \\ \alpha \\ \log(\alpha) \end{bmatrix}$$

```
__init__ (shape, ndim_mu)
```

Methods

```
_init__(shape, ndim_mu)
compute_cqf_from_parents(u_mu_alpha)
                                                     Compute the value of the cumulant generating function.
                                                     Compute u(x) and f(x) for given x.
compute_fixed_moments_and_f(x[, mask])
compute_logpdf(u, phi, g, f, ndims)
                                                     Compute E[\log p(X)] given E[u], E[phi], E[g] and E[f].
                                                     Maps the mask to the plates of a parent.
compute_mask_to_parent(index, mask)
compute_message_to_parent(parent, index, u, ...)
compute_moments_and_cqf(phi[, mask])
compute_phi_from_parents(u_mu_alpha[, mask])
plates_from_parent(index, plates)
                                                     Resolve the plate mapping from a parent.
                                                     Resolves the plate mapping to a parent.
plates_to_parent(index, plates)
random(*phi[, plates])
                                                     Draw a random sample from the Gaussian distribution.
```

bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution. init

```
GaussianARDDistribution.__init__(shape, ndim_mu)
```

bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution.compute cgf from parents

```
GaussianARDDistribution.compute_cgf_from_parents(u_mu_alpha)
Compute the value of the cumulant generating function.
```

bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution.compute_fixed_moments_and_f

```
GaussianARDDistribution.compute_fixed_moments_and_f (x, mask=True)
Compute u(x) and f(x) for given x.
```

bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution.compute_logpdf

```
GaussianARDDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution.compute_mask_to_parent

```
GaussianARDDistribution.compute_mask_to_parent(index, mask) Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution.compute_message_to_parent

 $\texttt{GaussianARDDistribution.compute_message_to_parent} \ (\textit{parent}, \textit{index}, \textit{u}, \textit{u_mu_alpha})$

$$m = \begin{bmatrix} x \\ \left[-\frac{1}{2}, \dots, -\frac{1}{2}\right] \\ -\frac{1}{2} \operatorname{diag}(xx^T) \\ \left[\frac{1}{2}, \dots, \frac{1}{2}\right] \end{bmatrix}$$

bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution.compute_moments_and_cgf

GaussianARDDistribution.compute_moments_and_cgf(phi, mask=True)

bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution.compute_phi_from_parents

GaussianARDDistribution.compute_phi_from_parents(u_mu_alpha, mask=True)

bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution.plates from parent

GaussianARDDistribution.plates_from_parent (index, plates)

Resolve the plate mapping from a parent.

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution.plates to parent

GaussianARDDistribution.plates_to_parent (index, plates)

Resolves the plate mapping to a parent.

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution.random

 ${\tt Gaussian ARDDistribution.random\,(*phi,plates=None)}$

Draw a random sample from the Gaussian distribution.

6.3.5 bayespy.inference.vmp.nodes.gaussian.GaussianGammalSODistribution

class bayespy.inference.vmp.nodes.gaussian.GaussianGammaISODistribution
 Class for the VMP formulas of Gaussian-Gamma-ISO variables.

Currently, supports only vector variables.

__init__()
x.__init__(...) initializes x; see help(type(x)) for signature

Methods

```
Compute E_{q(p)}[g(p)]
compute_cgf_from_parents(u_mu_Lambda, u_a, u_b)
compute_fixed_moments_and_f(x, alpha[, mask])
                                                          Compute the moments and f(x) for a fixed value.
compute_logpdf(u, phi, g, f, ndims)
                                                          Compute E[\log p(X)] given E[u], E[phi], E[g] and E[f].
                                                          Maps the mask to the plates of a parent.
compute_mask_to_parent(index, mask)
compute_message_to_parent(parent, index, u, ...)
                                                         Compute the message to a parent node.
compute_moments_and_cgf(phi[, mask])
                                                         Compute the moments and g(\phi).
compute_phi_from_parents(u_mu_Lambda, u_a, u_b)
                                                         Compute the natural parameter vector given parent moments.
                                                          Resolve the plate mapping from a parent.
plates_from_parent(index, plates)
plates_to_parent(index, plates)
                                                          Resolves the plate mapping to a parent.
                                                         Draw a random sample from the distribution.
random(*params[, plates])
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSODistribution.compute_cgf_from_parents

```
GaussianGammaISODistribution.compute_cgf_from_parents(u\_mu\_Lambda, u\_a, u\_b)

Compute E_{q(p)}[g(p)]
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSODistribution.compute_fixed_moments_and_f

```
GaussianGammaISODistribution.compute_fixed_moments_and_f(x, alpha, mask=True)

Compute the moments and f(x) for a fixed value.
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSODistribution.compute_logpdf

```
GaussianGammaISODistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSODistribution.compute_mask_to_parent

```
GaussianGammaISODistribution.compute_mask_to_parent (index, mask)

Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSODistribution.compute message to parent

```
GaussianGammaISODistribution.compute_message_to_parent (parent, index, u, u_mu_Lambda, u_a, u_b)
```

Compute the message to a parent node.

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSODistribution.compute moments and cgf

```
GaussianGammaISODistribution.compute_moments_and_cgf (phi, mask=True) Compute the moments and g(\phi).
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSODistribution.compute phi from parents

```
GaussianGammaISODistribution.compute_phi_from_parents (u\_mu\_Lambda, u\_a, u\_b, mask=True)

Compute the natural parameter vector given parent moments.
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSODistribution.plates_from_parent

```
GaussianGammaISODistribution.plates_from_parent (index, plates)
Resolve the plate mapping from a parent.
```

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSODistribution.plates_to_parent

```
GaussianGammaISODistribution.plates_to_parent (index, plates)
Resolves the plate mapping to a parent.
```

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.gaussian.GaussianGammalSODistribution.random

```
GaussianGammaISODistribution.random(*params, plates=None)
Draw a random sample from the distribution.
```

6.3.6 bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution

class bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution

```
__init__()
```

Methods

```
init ()
compute_cgf_from_parents(*u_parents)
compute fixed moments and f(x[, mask])
                                                   Compute E[\log p(X)] given E[u], E[phi], E[g] and E[f].
compute_logpdf(u, phi, g, f, ndims)
compute_mask_to_parent(index, mask)
                                                   Maps the mask to the plates of a parent.
compute_message_to_parent(parent, index, ...)
compute_moments_and_cgf(phi[, mask])
compute_phi_from_parents(*u_parents[, mask])
plates_from_parent(index, plates)
                                                   Resolve the plate mapping from a parent.
                                                   Resolves the plate mapping to a parent.
plates_to_parent(index, plates)
random(*params[, plates])
                                                   Draw a random sample from the distribution.
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution.__init__

```
GaussianGammaARDDistribution.__init__()
```

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution.compute_cgf_from_parents

GaussianGammaARDDistribution.compute_cgf_from_parents(*u_parents)

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution.compute_fixed_moments_and_f

GaussianGammaARDDistribution.compute_fixed_moments_and_f(x, mask=True)

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution.compute_logpdf

GaussianGammaARDDistribution.compute_logpdf (u, phi, g, f, ndims)Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution.compute_mask_to_parent

GaussianGammaARDDistribution.compute_mask_to_parent (index, mask)

Maps the mask to the plates of a parent.

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution.compute message to parent

GaussianGammaARDDistribution.compute_message_to_parent(parent, index, u_self, *u_parents)

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution.compute moments and cgf

GaussianGammaARDDistribution.compute_moments_and_cgf(phi, mask=True)

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution.compute phi from parents

GaussianGammaARDDistribution.compute_phi_from_parents(*u_parents, mask=True)

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution.plates_from_parent

GaussianGammaARDDistribution.plates_from_parent (index, plates)
Resolve the plate mapping from a parent.

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution.plates to parent

GaussianGammaARDDistribution.plates_to_parent (index, plates)
Resolves the plate mapping to a parent.

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDistribution.random

GaussianGammaARDDistribution.random(*params, plates=None)
Draw a random sample from the distribution.

6.3.7 bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribution

class bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribution
 Class for the VMP formulas of Gaussian-Wishart variables.

Currently, supports only vector variables.

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

compute_cgf_from_parents(u_mu_alpha, u_V, u_n)	Compute $E_{q(p)}[g(p)]$
<pre>compute_fixed_moments_and_f(x, Lambda[, mask])</pre>	Compute the moments and $f(x)$ for a fixed value.
<pre>compute_logpdf(u, phi, g, f, ndims)</pre>	Compute $E[\log p(X)]$ given $E[u]$, $E[phi]$, $E[g]$ and $E[f]$.
<pre>compute_mask_to_parent(index, mask)</pre>	Maps the mask to the plates of a parent.
<pre>compute_message_to_parent(parent, index, u,)</pre>	Compute the message to a parent node.
<pre>compute_moments_and_cgf(phi[, mask])</pre>	Compute the moments and $g(\phi)$.
<pre>compute_phi_from_parents(u_mu_alpha, u_V, u_n)</pre>	Compute the natural parameter vector given parent moments.
<pre>plates_from_parent(index, plates)</pre>	Resolve the plate mapping from a parent.
<pre>plates_to_parent(index, plates)</pre>	Resolves the plate mapping to a parent.
random(*params[, plates])	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribution.compute cgf from parents

```
\label{eq:compute_cgf_from_parents} \textbf{GaussianWishartDistribution.compute\_cgf\_from\_parents} \ (\textit{u\_mu\_alpha}, \textit{u\_V}, \textit{u\_n}) \\ \textbf{Compute} \ \mathbf{E}_{q(p)}[g(p)]
```

bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribution.compute fixed moments and f

```
GaussianWishartDistribution.compute_fixed_moments_and_f(x, Lambda, mask=True)

Compute the moments and f(x) for a fixed value.
```

$bayes py. inference. vmp. nodes. gaussian. Gaussian Wishart Distribution. compute_log pdf$

```
GaussianWishartDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribution.compute_mask_to_parent

```
GaussianWishartDistribution.compute_mask_to_parent (index, mask) Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribution.compute message to parent

Compute the message to a parent node.

bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribution.compute_moments_and_cgf

```
GaussianWishartDistribution.compute_moments_and_cgf (phi, mask=True) Compute the moments and g(\phi).
```

bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribution.compute phi from parents

```
GaussianWishartDistribution.compute_phi_from_parents(u_mu_alpha, u_v, u_n, mask=True)

Compute the natural parameter vector given parent moments.
```

bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribution.plates from parent

```
GaussianWishartDistribution.plates_from_parent (index, plates)
Resolve the plate mapping from a parent.
```

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribution.plates_to_parent

```
GaussianWishartDistribution.plates_to_parent (index, plates)
Resolves the plate mapping to a parent.
```

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribution.random

```
GaussianWishartDistribution.random(*params, plates=None)
Draw a random sample from the distribution.
```

6.3.8 bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainDistribution

```
 \textbf{class} \ \texttt{bayespy.inference.vmp.nodes.gaussian\_markov\_chain.GaussianMarkovChainDistribution} \ (N, \\ \textbf{Sub-classes implement distribution specific computations}.
```

```
\underline{\hspace{1cm}}init\underline{\hspace{1cm}}(N, D)
```

Methods

Table 6.50 – continued from previous page

<pre>plates_from_parent(index, plates)</pre>	Compute the plates using information of a parent node.
<pre>plates_to_parent(index, plates)</pre>	Computes the plates of this node with respect to a parent.
random(*params[, plates])	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainDistribution.__init__

```
GaussianMarkovChainDistribution. init (N, D)
```

bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainDistribution.compute_cgf_from

```
GaussianMarkovChainDistribution.compute_cgf_from_parents(u_mu, u_Lambda, u_LA, u_LV)
```

Compute CGF using the moments of the parents.

bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainDistribution.compute_fixed_mo

```
GaussianMarkovChainDistribution.compute_fixed_moments_and_f (x, mask=True)
Compute u(x) and f(x) for given x.
```

$bayes py. inference. vmp. nodes. gaussian_markov_chain. Gaussian Markov Chain Distribution. compute_log pdf$

```
GaussianMarkovChainDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[\log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

$bayes py. inference. vmp. nodes. gaussian_markov_chain. Gaussian Markov Chain Distribution. compute_mask_torong the compute_$

```
GaussianMarkovChainDistribution.compute_mask_to_parent(index, mask)
```

$bayes py. in ference. vmp. nodes. gaussian_markov_chain. Gaussian Markov Chain Distribution. compute_message and the computer of the compute$

```
GaussianMarkovChainDistribution.compute_message_to_parent (parent, index, u, u_mu, u_Lambda, u_A, u_V)
```

Compute a message to a parent.

$bayes py. inference. vmp. nodes. gaussian_markov_chain. Gaussian Markov Chain Distribution. compute_moments and the property of the property$

```
GaussianMarkovChainDistribution.compute_moments_and_cgf (phi, mask=True)

Compute the moments and the cumulant-generating function.
```

This basically performs the filtering and smoothing for the variable.

Parameters phi

Returns u

g

bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainDistribution.compute_phi_from

```
GaussianMarkovChainDistribution.compute_phi_from_parents(u_mu, u_Lambda, u_LA, u_Lv, mask=True)
```

Compute the natural parameters using parents' moments.

Parameters u_parents: list of list of arrays

List of parents' lists of moments.

Returns phi: list of arrays

Natural parameters.

dims: tuple

Shape of the variable part of phi.

bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianMarkovChainDistribution.plates_from_parer

```
GaussianMarkovChainDistribution.plates_from_parent (index, plates)
```

Compute the plates using information of a parent node.

If the plates of the parents are: mu: (...) Lambda: (...) A: (...,N-1,D) v: (...,N-1,D) N: ()

the resulting plates of this node are (...)

Parameters index: int

Index of the parent to use.

$bayes py. inference. vmp. nodes. gaussian_markov_chain. Gaussian Markov Chain Distribution. plates_to_parent$

```
GaussianMarkovChainDistribution.plates_to_parent(index, plates)
```

Computes the plates of this node with respect to a parent.

If this node has plates (...), the latent dimensionality is D and the number of time instances is N, the plates with respect to the parents are:

```
mu: (...) Lambda: (...) A: (...,N-1,D) v: (...,N-1,D)
```

bayespy.inference.vmp.nodes.gaussian markov chain.GaussianMarkovChainDistribution.random

```
{\tt Gaussian Markov Chain Distribution. random (*params, plates=None)}
```

Draw a random sample from the distribution.

6.3.9 bayespy.inference.vmp.nodes.gaussian_markov_chain.SwitchingGaussianMarkovChainD

class bayespy.inference.vmp.nodes.gaussian_markov_chain.SwitchingGaussianMarkovChainDistribut

Sub-classes implement distribution specific computations.

```
\_init\_(N, D, K)
```

Methods

```
_{\text{init}}_{\text{(N, D, K)}}
compute_cgf_from_parents(u_mu, u_Lambda, ...)
                                                       Compute CGF using the moments of the parents.
                                                       Compute u(x) and f(x) for given x.
compute_fixed_moments_and_f(x[, mask])
compute_logpdf(u, phi, g, f, ndims)
                                                       Compute E[\log p(X)] given E[u], E[phi], E[g] and E[f].
compute_mask_to_parent(index, mask)
compute_message_to_parent(parent, index, u, ...)
                                                       Compute a message to a parent.
compute_moments_and_cgf(phi[, mask])
                                                       Compute the moments and the cumulant-generating function.
                                                       Compute the natural parameters using parents' moments.
compute_phi_from_parents(u_mu, u_Lambda, ...)
plates_from_parent(index, plates)
                                                       Compute the plates using information of a parent node.
plates to parent(index, plates)
                                                       Computes the plates of this node with respect to a parent.
random(*params[, plates])
                                                       Draw a random sample from the distribution.
```

bayespy.inference.vmp.nodes.gaussian_markov_chain.SwitchingGaussianMarkovChainDistribution.__init_

```
SwitchingGaussianMarkovChainDistribution. \underline{\underline{\quad}} init\underline{\quad} (N, D, K)
```

$bayes py. inference. vmp. nodes. gaussian_markov_chain. Switching Gaussian Markov Chain Distribution. compute the property of the property o$

```
SwitchingGaussianMarkovChainDistribution.compute_cgf_from_parents(u\_mu, u\_Lambda, u\_B, u\_Z, u\_v)
```

Compute CGF using the moments of the parents.

$bayes py. inference. vmp. nodes. gaussian_markov_chain. Switching Gaussian Markov Chain Distribution. compute the property of the property o$

```
\label{lem:compute_fixed_moments_and_f} Switching \textit{Gaussian} \textit{MarkovChainDistribution.} \textbf{compute\_fixed\_moments\_and\_f} \ (x, \\ \textit{mask=True}) \\ Compute \ \textit{u}(x) \ \text{and} \ \textit{f}(x) \ \text{for given } x.
```

bayespy.inference.vmp.nodes.gaussian_markov_chain.SwitchingGaussianMarkovChainDistribution.compute

```
SwitchingGaussianMarkovChainDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

$bayes py. inference. vmp. nodes. gaussian_markov_chain. Switching Gaussian Markov Chain Distribution. compute the property of the property o$

```
SwitchingGaussianMarkovChainDistribution.compute_mask_to_parent (index, mask)
```

bayespy.inference.vmp.nodes.gaussian_markov_chain.SwitchingGaussianMarkovChainDistribution.compute

```
SwitchingGaussianMarkovChainDistribution.compute_message_to_parent (parent, index, u, u_mu, u_mu, u_Lambda, u_B, u_Z, u_v)
```

Compute a message to a parent.

bayespy.inference.vmp.nodes.gaussian_markov_chain.SwitchingGaussianMarkovChainDistribution.compute

```
SwitchingGaussianMarkovChainDistribution.compute_moments_and_cgf (phi, mask=True)

Compute the moments and the cumulant-generating function.

This basically performs the filtering and smoothing for the variable.

Parameters phi

Returns u

g
```

$bayes py. inference. vmp. nodes. gaussian_markov_chain. Switching Gaussian Markov Chain Distribution. compute the property of the property o$

```
SwitchingGaussianMarkovChainDistribution.compute_phi_from_parents (u\_mu, u\_Lambda, u\_B, u\_Z, u\_v, u\_v, mask=True)
```

```
Parameters u_parents: list of list of arrays
List of parents' lists of moments.

Returns phi: list of arrays
Natural parameters.
dims: tuple
```

Shape of the variable part of phi.

$bayes py. inference. vmp. nodes. gaussian_markov_chain. Switching Gaussian Markov Chain Distribution. plates_files and the property of the p$

```
SwitchingGaussianMarkovChainDistribution.plates_from_parent (index, plates)
Compute the plates using information of a parent node.

If the plates of the parents are: mu: (...) Lambda: (...) B: (...,D) S: (...,N-1) v: (...,N-1,D) N: ()
the resulting plates of this node are (...)

Parameters index: int
```

Index of the parent to use.

$bayes py. inference. vmp. nodes. gaussian_markov_chain. Switching Gaussian Markov Chain Distribution. plates_tolerance and the property of t$

```
SwitchingGaussianMarkovChainDistribution.plates_to_parent (index, plates)

Computes the plates of this node with respect to a parent.
```

If this node has plates (...), the latent dimensionality is D and the number of time instances is N, the plates with respect to the parents are:

```
mu: (...) Lambda: (...) A: (...,N-1,D) v: (...,N-1,D)
```

bayespy.inference.vmp.nodes.gaussian_markov_chain.SwitchingGaussianMarkovChainDistribution.random

SwitchingGaussianMarkovChainDistribution.random(*params, plates=None)

Draw a random sample from the distribution.

6.3.10 bayespy.inference.vmp.nodes.gaussian_markov_chain.VaryingGaussianMarkovChainDis

 ${\bf class} \ {\tt bayespy.inference.vmp.nodes.gaussian_markov_chain.Varying Gaussian Markov Chain Distribution of the contraction of the contractio$

Sub-classes implement distribution specific computations.

```
\underline{\hspace{1cm}}init\underline{\hspace{1cm}}(N,D)
```

Methods

init(N, D)	
<pre>compute_cgf_from_parents(u_mu, u_Lambda,)</pre>	Compute CGF using the moments of the parents.
$compute_fixed_moments_and_f(x[, mask])$	Compute $u(x)$ and $f(x)$ for given x.
<pre>compute_logpdf(u, phi, g, f, ndims)</pre>	Compute $E[\log p(X)]$ given $E[u]$, $E[phi]$, $E[g]$ and $E[f]$.
<pre>compute_mask_to_parent(index, mask)</pre>	
<pre>compute_message_to_parent(parent, index, u,)</pre>	Compute a message to a parent.
<pre>compute_moments_and_cgf(phi[, mask])</pre>	Compute the moments and the cumulant-generating function.
<pre>compute_phi_from_parents(u_mu, u_Lambda,)</pre>	Compute the natural parameters using parents' moments.
<pre>plates_from_parent(index, plates)</pre>	Compute the plates using information of a parent node.
<pre>plates_to_parent(index, plates)</pre>	Computes the plates of this node with respect to a parent.
random(*params[, plates])	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.gaussian_markov_chain.VaryingGaussianMarkovChainDistribution.__init_

```
VaryingGaussianMarkovChainDistribution.\_init\_(N, D)
```

bayespy.inference.vmp.nodes.gaussian_markov_chain.VaryingGaussianMarkovChainDistribution.compute_c

```
\label{lem:compute_cgf_from_parents} Varying \textit{Gaussian} \textit{MarkovChainDistribution.} \textbf{compute\_cgf\_from\_parents} (u\_\textit{mu}, u\_\textit{Lambda}, u\_\textit{B}, u\_\textit{S}, u\_\textit{v})
```

Compute CGF using the moments of the parents.

```
Compute u(x) and f(x) for given x.
bayespy.inference.vmp.nodes.gaussian markov chain.VaryingGaussianMarkovChainDistribution.compute le
VaryingGaussianMarkovChainDistribution.compute_logpdf(u, phi, g, f, ndims)
    Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
bayespy.inference.vmp.nodes.gaussian_markov_chain.VaryingGaussianMarkovChainDistribution.compute_r
VaryingGaussianMarkovChainDistribution.compute_mask_to_parent(index,
bayespy.inference.vmp.nodes.gaussian_markov_chain.VaryingGaussianMarkovChainDistribution.compute_n
VaryingGaussianMarkovChainDistribution.compute_message_to_parent(parent,
                                                                             dex, u,
                                                                             u mu,
                                                                             u_Lambda,
                                                                             u\_B,
                                                                             u\_S,
                                                                             u_v)
    Compute a message to a parent.
bayespy.inference.vmp.nodes.gaussian_markov_chain.VaryingGaussianMarkovChainDistribution.compute_r
VaryingGaussianMarkovChainDistribution.compute_moments_and_cgf (phi,
                                                                           mask=True)
    Compute the moments and the cumulant-generating function.
    This basically performs the filtering and smoothing for the variable.
        Parameters phi
        Returns u
           g
bayespy.inference.vmp.nodes.gaussian_markov_chain.VaryingGaussianMarkovChainDistribution.compute_p
VaryingGaussianMarkovChainDistribution.compute_phi_from_parents(u_mu,
                                                                            u_Lambda,
                                                                            u B,
                                                                            u_S, u_v,
```

bayespy.inference.vmp.nodes.gaussian markov chain.VaryingGaussianMarkovChainDistribution.compute f

VaryingGaussianMarkovChainDistribution.compute_fixed_moments_and_f(x,

mask=True)

mask=True)

Compute the natural parameters using parents' moments.

Parameters u_parents: list of list of arrays

List of parents' lists of moments.

```
Returns phi: list of arrays
```

Natural parameters.

dims: tuple

Shape of the variable part of phi.

bayespy.inference.vmp.nodes.gaussian_markov_chain.VaryingGaussianMarkovChainDistribution.plates_from

```
VaryingGaussianMarkovChainDistribution.plates_from_parent (index, plates)

Compute the plates using information of a parent node.
```

```
If the plates of the parents are: mu: (...) Lambda: (...) B: (...,D) S: (...,N-1) v: (...,N-1,D) N: ()
```

the resulting plates of this node are (...)

Parameters index: int

Index of the parent to use.

bayespy.inference.vmp.nodes.gaussian_markov_chain.VaryingGaussianMarkovChainDistribution.plates_to_i

```
VaryingGaussianMarkovChainDistribution.plates_to_parent(index, plates)
```

Computes the plates of this node with respect to a parent.

If this node has plates (...), the latent dimensionality is D and the number of time instances is N, the plates with respect to the parents are:

```
mu: (...) Lambda: (...) A: (...,N-1,D) v: (...,N-1,D)
```

$bayes py. inference. vmp. nodes. gaussian_markov_chain. Varying Gaussian Markov Chain Distribution. random and the contraction of the contractio$

```
VaryingGaussianMarkovChainDistribution.random(*params, plates=None)
Draw a random sample from the distribution.
```

6.3.11 bayespy.inference.vmp.nodes.gamma.GammaDistribution

```
class bayespy.inference.vmp.nodes.gamma.GammaDistribution
   Class for the VMP formulas of gamma variables.
```

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

```
compute_cgf_from_parents(*u_parents)
                                                    Compute E_{q(p)}[g(p)]
compute fixed moments and f(x[, mask])
                                                    Compute the moments and f(x) for a fixed value.
                                                    Compute E[\log p(X)] given E[u], E[phi], E[g] and E[f].
compute_logpdf(u, phi, g, f, ndims)
                                                    Maps the mask to the plates of a parent.
compute_mask_to_parent(index, mask)
compute_message_to_parent(parent, index, ...)
                                                    Compute the message to a parent node.
compute_moments_and_cgf(phi[, mask])
                                                    Compute the moments and g(\phi).
compute_phi_from_parents(*u_parents[, mask])
                                                    Compute the natural parameter vector given parent moments.
plates_from_parent(index, plates)
                                                    Resolve the plate mapping from a parent.
                                                                                   Continued on next page
```

Table 6.53 – continued from previous page

	· · · · · · · · · · · · · · · · · · ·
<pre>plates_to_parent(index, plates)</pre>	Resolves the plate mapping to a parent.
random(*phi[, plates])	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.gamma.GammaDistribution.compute_cgf_from_parents

```
GammaDistribution.compute_cgf_from_parents (*u_parents) Compute \mathrm{E}_{q(p)}[g(p)]
```

bayespy.inference.vmp.nodes.gamma.GammaDistribution.compute fixed moments and f

```
GammaDistribution.compute_fixed_moments_and_f (x, mask=True)
Compute the moments and f(x) for a fixed value.
```

bayespy.inference.vmp.nodes.gamma.GammaDistribution.compute logpdf

```
GammaDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.gamma.GammaDistribution.compute_mask_to_parent

```
GammaDistribution.compute_mask_to_parent(index, mask)

Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.gamma.GammaDistribution.compute_message_to_parent

```
GammaDistribution.compute_message_to_parent (parent, index, u_self, *u_parents)

Compute the message to a parent node.
```

bayespy.inference.vmp.nodes.gamma.GammaDistribution.compute moments and cgf

```
GammaDistribution.compute_moments_and_cgf (phi, mask=True)

Compute the moments and g(\phi).
```

bayespy.inference.vmp.nodes.gamma.GammaDistribution.compute phi from parents

```
GammaDistribution.compute_phi_from_parents (*u_parents, mask=True)

Compute the natural parameter vector given parent moments.
```

bayespy.inference.vmp.nodes.gamma.GammaDistribution.plates from parent

```
GammaDistribution.plates_from_parent (index, plates)
Resolve the plate mapping from a parent.
```

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.gamma.GammaDistribution.plates_to_parent

```
GammaDistribution.plates_to_parent (index, plates)
```

Resolves the plate mapping to a parent.

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.gamma.GammaDistribution.random

```
GammaDistribution.random(*phi, plates=None)
```

Draw a random sample from the distribution.

6.3.12 bayespy.inference.vmp.nodes.wishart.WishartDistribution

```
class bayespy.inference.vmp.nodes.wishart.WishartDistribution
    Sub-classes implement distribution specific computations.
```

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

```
compute_cgf_from_parents(*u_parents)
compute_fixed_moments_and_f(Lambda[, mask])
                                                     Compute u(x) and f(x) for given x.
compute_logpdf(u, phi, g, f, ndims)
                                                     Compute E[\log p(X)] given E[u], E[phi], E[g] and E[f].
                                                     Maps the mask to the plates of a parent.
compute mask to parent(index, mask)
compute_message_to_parent(parent, index, ...)
compute_moments_and_cgf(phi[, mask])
compute_phi_from_parents(*u_parents[, mask])
plates_from_parent(index, plates)
                                                     Resolve the plate mapping from a parent.
plates_to_parent(index, plates)
                                                     Resolves the plate mapping to a parent.
random(*params[, plates])
                                                     Draw a random sample from the distribution.
```

bayespy.inference.vmp.nodes.wishart.WishartDistribution.compute cgf from parents

```
WishartDistribution.compute_cgf_from_parents(*u_parents)
```

bayespy.inference.vmp.nodes.wishart.WishartDistribution.compute fixed moments and f

```
WishartDistribution.compute_fixed_moments_and_f(Lambda, mask=True)
Compute u(x) and f(x) for given x.
```

bayespy.inference.vmp.nodes.wishart.WishartDistribution.compute logpdf

```
WishartDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.wishart.WishartDistribution.compute_mask_to_parent

WishartDistribution.compute_mask_to_parent(index, mask)

Maps the mask to the plates of a parent.

bayespy.inference.vmp.nodes.wishart.WishartDistribution.compute message to parent

WishartDistribution.compute_message_to_parent(parent, index, u_self, *u_parents)

bayespy.inference.vmp.nodes.wishart.WishartDistribution.compute moments and cgf

WishartDistribution.compute_moments_and_cqf(phi, mask=True)

bayespy.inference.vmp.nodes.wishart.WishartDistribution.compute_phi_from_parents

WishartDistribution.compute_phi_from_parents(*u_parents, mask=True)

bayespy.inference.vmp.nodes.wishart.WishartDistribution.plates_from_parent

WishartDistribution.plates_from_parent (index, plates)

Resolve the plate mapping from a parent.

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.wishart.WishartDistribution.plates_to_parent

```
WishartDistribution.plates_to_parent (index, plates)
```

Resolves the plate mapping to a parent.

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.wishart.WishartDistribution.random

```
WishartDistribution.random(*params, plates=None)
Draw a random sample from the distribution.
```

6.3.13 bayespy.inference.vmp.nodes.beta.BetaDistribution

class bayespy.inference.vmp.nodes.beta.BetaDistribution
 Class for the VMP formulas of beta variables.

Although the realizations are scalars (probability p), the moments is a two-dimensional vector: [log(p), log(1-p)].

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

```
Compute E_{q(p)}[g(p)]
compute_cgf_from_parents(u_alpha)
                                                   Compute the moments and f(x) for a fixed value.
compute_fixed_moments_and_f(p[, mask])
compute_logpdf(u, phi, g, f, ndims)
                                                   Compute E[\log p(X)] given E[u], E[phi], E[g] and E[f].
                                                   Maps the mask to the plates of a parent.
compute_mask_to_parent(index, mask)
compute_message_to_parent(parent, index, ...)
                                                   Compute the message to a parent node.
compute_moments_and_cgf(phi[, mask])
                                                   Compute the moments and q(\phi).
compute_phi_from_parents(u_alpha[, mask])
                                                   Compute the natural parameter vector given parent moments.
plates_from_parent(index, plates)
                                                   Resolve the plate mapping from a parent.
plates_to_parent(index, plates)
                                                   Resolves the plate mapping to a parent.
                                                   Draw a random sample from the distribution.
random(*phi[, plates])
```

bayespy.inference.vmp.nodes.beta.BetaDistribution.compute_cgf_from_parents

```
BetaDistribution.compute_cgf_from_parents (u\_alpha) Compute \mathbf{E}_{q(p)}[g(p)]
```

bayespy.inference.vmp.nodes.beta.BetaDistribution.compute_fixed_moments_and_f

```
BetaDistribution.compute_fixed_moments_and_f (p, mask=True)
Compute the moments and f(x) for a fixed value.
```

bayespy.inference.vmp.nodes.beta.BetaDistribution.compute_logpdf

```
BetaDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.beta.BetaDistribution.compute mask to parent

```
BetaDistribution.compute_mask_to_parent(index, mask)

Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.beta.BetaDistribution.compute message to parent

BetaDistribution.compute_message_to_parent (parent, index, u_self, u_alpha) Compute the message to a parent node.

bayespy.inference.vmp.nodes.beta.BetaDistribution.compute moments and cgf

```
BetaDistribution.compute_moments_and_cgf (phi, mask=True)
Compute the moments and g(\phi).
```

bayespy.inference.vmp.nodes.beta.BetaDistribution.compute phi from parents

```
BetaDistribution.compute_phi_from_parents (u_alpha, mask=True)
Compute the natural parameter vector given parent moments.
```

bayespy.inference.vmp.nodes.beta.BetaDistribution.plates_from_parent

```
BetaDistribution.plates_from_parent(index, plates)
```

Resolve the plate mapping from a parent.

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.beta.BetaDistribution.plates to parent

```
BetaDistribution.plates_to_parent (index, plates)
```

Resolves the plate mapping to a parent.

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.beta.BetaDistribution.random

```
BetaDistribution.random(*phi, plates=None)
```

Draw a random sample from the distribution.

6.3.14 bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution

```
class bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution
    Class for the VMP formulas of Dirichlet variables.
```

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

compute_cgf_from_parents(u_alpha)	Compute $E_{q(p)}[g(p)]$
$compute_fixed_moments_and_f(x[, mask])$	Compute the moments and $f(x)$ for a fixed value.
<pre>compute_logpdf(u, phi, g, f, ndims)</pre>	Compute $E[\log p(X)]$ given $E[u]$, $E[phi]$, $E[g]$ and $E[f]$.
<pre>compute_mask_to_parent(index, mask)</pre>	Maps the mask to the plates of a parent.
<pre>compute_message_to_parent(parent, index,)</pre>	Compute the message to a parent node.
<pre>compute_moments_and_cgf(phi[, mask])</pre>	Compute the moments and $g(\phi)$.
<pre>compute_phi_from_parents(u_alpha[, mask])</pre>	Compute the natural parameter vector given parent moments.
<pre>plates_from_parent(index, plates)</pre>	Resolve the plate mapping from a parent.
<pre>plates_to_parent(index, plates)</pre>	Resolves the plate mapping to a parent.
random(*phi[, plates])	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution.compute_cgf_from_parents

```
\label{eq:compute_cgf_from_parents} \begin{tabular}{ll} $\operatorname{Compute} \to \operatorname{Compute} (u\_alpha)$ \\ &\operatorname{Compute} \to \operatorname{E}_{q(p)}[g(p)] \end{tabular}
```

bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution.compute fixed moments and f

```
DirichletDistribution.compute_fixed_moments_and_f(x, mask=True)
    Compute the moments and f(x) for a fixed value.
```

bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution.compute logpdf

```
DirichletDistribution.compute_logpdf(u, phi, g, f, ndims)
     Compute E[\log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution.compute mask to parent

```
DirichletDistribution.compute_mask_to_parent(index, mask)
    Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution.compute_message_to_parent

```
DirichletDistribution.compute_message_to_parent (parent, index, u_self, u_alpha)
    Compute the message to a parent node.
```

bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution.compute moments and cgf

```
DirichletDistribution.compute_moments_and_cgf (phi, mask=True)
    Compute the moments and g(\phi).
```

bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution.compute_phi_from_parents

```
DirichletDistribution.compute_phi_from_parents(u_alpha, mask=True)
    Compute the natural parameter vector given parent moments.
```

bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution.plates from parent

```
DirichletDistribution.plates_from_parent (index, plates)
    Resolve the plate mapping from a parent.
```

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution.plates to parent

```
DirichletDistribution.plates_to_parent (index, plates)
    Resolves the plate mapping to a parent.
```

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution.random

```
DirichletDistribution.random(*phi, plates=None)
    Draw a random sample from the distribution.
```

6.3.15 bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution

```
class bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution
    Class for the VMP formulas of Bernoulli variables.
```

```
___init___()
```

Methods

init()	
<pre>compute_cgf_from_parents(u_p)</pre>	Compute $E_{q(p)}[g(p)]$
$compute_fixed_moments_and_f(x[, mask])$	Compute the moments and $f(x)$ for a fixed value.
<pre>compute_logpdf(u, phi, g, f, ndims)</pre>	Compute $E[\log p(X)]$ given $E[u]$, $E[phi]$, $E[g]$ and $E[f]$.
<pre>compute_mask_to_parent(index, mask)</pre>	Maps the mask to the plates of a parent.
<pre>compute_message_to_parent(parent, index,)</pre>	Compute the message to a parent node.
<pre>compute_moments_and_cgf(phi[, mask])</pre>	Compute the moments and $g(\phi)$.
$compute_phi_from_parents(u_p[, mask])$	Compute the natural parameter vector given parent moments.
<pre>plates_from_parent(index, plates)</pre>	Resolve the plate mapping from a parent.
<pre>plates_to_parent(index, plates)</pre>	Resolves the plate mapping to a parent.
random(*phi)	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution. init

```
BernoulliDistribution.__init__()
```

bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution.compute_cgf_from_parents

```
BernoulliDistribution.compute_cgf_from_parents (u_p) Compute \mathrm{E}_{q(p)}[g(p)]
```

bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution.compute fixed moments and f

```
BernoulliDistribution.compute_fixed_moments_and_f (x, mask=True)
Compute the moments and f(x) for a fixed value.
```

bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution.compute logpdf

```
BernoulliDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution.compute_mask_to_parent

```
BernoulliDistribution.compute_mask_to_parent(index, mask)

Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution.compute message to parent

```
BernoulliDistribution.compute_message_to_parent (parent, index, u_self, u_p) Compute the message to a parent node.
```

bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution.compute_moments_and_cgf

```
BernoulliDistribution.compute_moments_and_cgf (phi, mask=True)
Compute the moments and g(\phi).
```

bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution.compute_phi_from_parents

```
BernoulliDistribution.compute_phi_from_parents (u_p, mask=True)

Compute the natural parameter vector given parent moments.
```

bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution.plates_from_parent

```
BernoulliDistribution.plates_from_parent (index, plates)
```

Resolve the plate mapping from a parent.

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution.plates_to_parent

```
BernoulliDistribution.plates_to_parent (index, plates)
```

Resolves the plate mapping to a parent.

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution.random

```
BernoulliDistribution.random(*phi)
```

Draw a random sample from the distribution.

6.3.16 bayespy.inference.vmp.nodes.binomial.BinomialDistribution

```
class bayespy.inference.vmp.nodes.binomial.BinomialDistribution (N) Class for the VMP formulas of binomial variables.
```

```
init (N)
```

Methods

init(N)	
$compute_cgf_from_parents(u_p)$	Compute $E_{q(p)}[g(p)]$
$compute_fixed_moments_and_f(x[, mask])$	Compute the moments and $f(x)$ for a fixed value.
<pre>compute_logpdf(u, phi, g, f, ndims)</pre>	Compute $E[\log p(X)]$ given $E[u]$, $E[phi]$, $E[g]$ and $E[f]$.
<pre>compute_mask_to_parent(index, mask)</pre>	Maps the mask to the plates of a parent.
<pre>compute_message_to_parent(parent, index,)</pre>	Compute the message to a parent node.
<pre>compute_moments_and_cgf(phi[, mask])</pre>	Compute the moments and $g(\phi)$.
<pre>compute_phi_from_parents(u_p[, mask])</pre>	Compute the natural parameter vector given parent moments.
<pre>plates_from_parent(index, plates)</pre>	Resolve the plate mapping from a parent.
	Continued on next page

T 1 0 F0		•	•	
12010 6 68 -	- continuod	trom	nravialie	naga
1000 0.00 -		11()111	IN EAIM	nauc
Table 6.58 -		•	p. 0	P~9~

plates_to_parent(index, plates)	Resolves the plate mapping to a parent.
random(*phi)	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.binomial.BinomialDistribution.__init__

bayespy.inference.vmp.nodes.binomial.BinomialDistribution.compute cgf from parents

```
BinomialDistribution.compute_cgf_from_parents (u\_p)
Compute \mathrm{E}_{q(p)}[g(p)]
```

bayespy.inference.vmp.nodes.binomial.BinomialDistribution.compute_fixed_moments_and_f

```
BinomialDistribution.compute_fixed_moments_and_f (x, mask=True)
Compute the moments and f(x) for a fixed value.
```

bayespy.inference.vmp.nodes.binomial.BinomialDistribution.compute_logpdf

```
BinomialDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.binomial.BinomialDistribution.compute_mask_to_parent

```
BinomialDistribution.compute_mask_to_parent (index, mask)

Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.binomial.BinomialDistribution.compute message to parent

```
BinomialDistribution.compute_message_to_parent (parent, index, u\_self, u\_p)

Compute the message to a parent node.
```

bayespy.inference.vmp.nodes.binomial.BinomialDistribution.compute moments and cgf

```
BinomialDistribution.compute_moments_and_cgf (phi, mask=True)

Compute the moments and g(\phi).
```

bayespy.inference.vmp.nodes.binomial.BinomialDistribution.compute phi from parents

```
BinomialDistribution.compute_phi_from_parents (u_p, mask=True)

Compute the natural parameter vector given parent moments.
```

bayespy.inference.vmp.nodes.binomial.BinomialDistribution.plates_from_parent

```
BinomialDistribution.plates_from_parent (index, plates)
```

Resolve the plate mapping from a parent.

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.binomial.BinomialDistribution.plates_to_parent

```
BinomialDistribution.plates_to_parent(index, plates)
```

Resolves the plate mapping to a parent.

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.binomial.BinomialDistribution.random

```
BinomialDistribution.random(*phi)
```

Draw a random sample from the distribution.

6.3.17 bayespy.inference.vmp.nodes.categorical.CategoricalDistribution

```
__init__(categories)
```

Create VMP formula node for a categorical variable

categories is the total number of categories.

Methods

init(categories)	Create VMP formula node for a categorical variable
compute_cgf_from_parents(u_p)	Compute $E_{q(p)}[g(p)]$
$compute_fixed_moments_and_f(x[, mask])$	Compute the moments and $f(x)$ for a fixed value.
<pre>compute_logpdf(u, phi, g, f, ndims)</pre>	Compute $E[\log p(X)]$ given $E[u]$, $E[phi]$, $E[g]$ and $E[f]$.
<pre>compute_mask_to_parent(index, mask)</pre>	Maps the mask to the plates of a parent.
<pre>compute_message_to_parent(parent, index, u, u_p)</pre>	Compute the message to a parent node.
<pre>compute_moments_and_cgf(phi[, mask])</pre>	Compute the moments and $g(\phi)$.
<pre>compute_phi_from_parents(u_p[, mask])</pre>	Compute the natural parameter vector given parent moments.
<pre>plates_from_parent(index, plates)</pre>	Resolve the plate mapping from a parent.
<pre>plates_to_parent(index, plates)</pre>	Resolves the plate mapping to a parent.
random(*phi[, plates])	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.categorical.CategoricalDistribution. init

```
CategoricalDistribution.__init__(categories)
```

Create VMP formula node for a categorical variable

categories is the total number of categories.

bayespy.inference.vmp.nodes.categorical.CategoricalDistribution.compute_cgf_from_parents

```
CategoricalDistribution.compute_cgf_from_parents (u\_p) Compute \mathbf{E}_{q(p)}[g(p)]
```

bayespy.inference.vmp.nodes.categorical.CategoricalDistribution.compute fixed moments and f

```
CategoricalDistribution.compute_fixed_moments_and_f (x, mask=True)
Compute the moments and f(x) for a fixed value.
```

bayespy.inference.vmp.nodes.categorical.CategoricalDistribution.compute_logpdf

```
CategoricalDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.categorical.CategoricalDistribution.compute_mask_to_parent

```
CategoricalDistribution.compute_mask_to_parent(index, mask)

Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.categorical.CategoricalDistribution.compute message to parent

```
CategoricalDistribution.compute_message_to_parent (parent, index, u, u_p)

Compute the message to a parent node.
```

bayespy.inference.vmp.nodes.categorical.CategoricalDistribution.compute moments and cgf

```
CategoricalDistribution.compute_moments_and_cgf (phi, mask=True) Compute the moments and g(\phi).
```

bayespy.inference.vmp.nodes.categorical.CategoricalDistribution.compute phi from parents

```
CategoricalDistribution.compute_phi_from_parents (u_p, mask=True)

Compute the natural parameter vector given parent moments.
```

bayespy.inference.vmp.nodes.categorical.CategoricalDistribution.plates from parent

```
CategoricalDistribution.plates_from_parent (index, plates)
Resolve the plate mapping from a parent.
```

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.categorical.CategoricalDistribution.plates_to_parent

```
CategoricalDistribution.plates_to_parent (index, plates)
Resolves the plate mapping to a parent.
```

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.categorical.CategoricalDistribution.random

CategoricalDistribution.random(*phi, plates=None)
Draw a random sample from the distribution.

6.3.18 bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainDistrik

 ${\bf class} \ {\bf bayespy.inference.vmp.nodes.categorical_markov_chain. {\bf CategoricalMarkovChainDistribution} and {\bf class} \ {\bf bayespy.inference.vmp.nodes.categorical_markov_chain.} \\$

Class for the VMP formulas of categorical Markov chain variables.

```
__init__ (categories, states)
```

Create VMP formula node for a categorical variable

categories is the total number of categories. states is the length of the chain.

Methods

init(categories, states)	Create VMP formula node for a categorical variable
$ exttt{compute_cgf_from_parents}(u_p0,u_P)$	Compute $E_{q(p)}[g(p)]$
<pre>compute_fixed_moments_and_f(x[, mask])</pre>	Compute the moments and $f(x)$ for a fixed value.
<pre>compute_logpdf(u, phi, g, f, ndims)</pre>	Compute $E[log p(X)]$ given $E[u]$, $E[phi]$, $E[g]$ and $E[f]$.
<pre>compute_mask_to_parent(index, mask)</pre>	Maps the mask to the plates of a parent.
<pre>compute_message_to_parent(parent, index, u,)</pre>	Compute the message to a parent node.
<pre>compute_moments_and_cgf(phi[, mask])</pre>	Compute the moments and $g(\phi)$.
<pre>compute_phi_from_parents(u_p0, u_P[, mask])</pre>	Compute the natural parameter vector given parent moments.
<pre>plates_from_parent(index, plates)</pre>	Resolve the plate mapping from a parent.
<pre>plates_to_parent(index, plates)</pre>	Resolves the plate mapping to a parent.
random(*phi[, plates])	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainDistribution.__init__

```
CategoricalMarkovChainDistribution.__init__(categories, states)

Create VMP formula node for a categorical variable
```

categories is the total number of categories. states is the length of the chain.

bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainDistribution.compute_cgf_

bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainDistribution.compute_fixed

```
CategoricalMarkovChainDistribution.compute_fixed_moments_and_f (x, mask=True)
```

Compute the moments and f(x) for a fixed value.

bayespy.inference.vmp.nodes.categorical markov chain.CategoricalMarkovChainDistribution.compute logp

```
CategoricalMarkovChainDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainDistribution.compute_mas

```
CategoricalMarkovChainDistribution.compute_mask_to_parent(index, mask)

Maps the mask to the plates of a parent.
```

$bayes py. inference. vmp. nodes. categorical_markov_chain. Categorical Markov Chain Distribution. compute_mession and the property of the pr$

```
CategoricalMarkovChainDistribution.compute_message_to_parent (parent, index, u, u\_p0, u\_P)
```

Compute the message to a parent node.

$bayes py. inference. vmp. nodes. categorical_markov_chain. Categorical Markov Chain Distribution. compute_more and the compute_more a$

```
\label{lem:compute_moments_and_cgf} \mbox{CategoricalMarkovChainDistribution.} \mbox{compute\_moments\_and\_cgf} \ (phi, \\ mask=True) \mbox{Compute the moments and} \ g(\phi).
```

$bayes py. inference. vmp. nodes. categorical_markov_chain. Categorical Markov Chain Distribution. compute_phi_inference. vmp. nodes. categorical Markov Chain Distribution. categorical Markov$

bayespy.inference.vmp.nodes.categorical markov chain.CategoricalMarkovChainDistribution.plates from p

```
CategoricalMarkovChainDistribution.compute_phi_from_parents (u\_p0, u\_P, mask=True)

Compute the natural parameter vector given parent moments.
```

```
CategoricalMarkovChainDistribution.plates_from_parent (index, plates)
Resolve the plate mapping from a parent.
```

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.categorical markov chain.CategoricalMarkovChainDistribution.plates to pare

```
CategoricalMarkovChainDistribution.plates_to_parent (index, plates)
Resolves the plate mapping to a parent.
```

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.categorical_markov_chain.CategoricalMarkovChainDistribution.random

```
CategoricalMarkovChainDistribution.random(*phi, plates=None)
Draw a random sample from the distribution.
```

6.3.19 bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution

__init__(trials)

Create VMP formula node for a multinomial variable

trials is the total number of trials.

Methods

init(trials)	Create VMP formula node for a multinomial variable
compute_cgf_from_parents(u_p)	Compute $E_{q(p)}[g(p)]$
<pre>compute_fixed_moments_and_f(x[, mask])</pre>	Compute the moments and $f(x)$ for a fixed value.
<pre>compute_logpdf(u, phi, g, f, ndims)</pre>	Compute $E[\log p(X)]$ given $E[u]$, $E[phi]$, $E[g]$ and $E[f]$.
<pre>compute_mask_to_parent(index, mask)</pre>	Maps the mask to the plates of a parent.
<pre>compute_message_to_parent(parent, index, u, u_p)</pre>	Compute the message to a parent node.
<pre>compute_moments_and_cgf(phi[, mask])</pre>	Compute the moments and $g(\phi)$.
<pre>compute_phi_from_parents(u_p[, mask])</pre>	Compute the natural parameter vector given parent moments.
<pre>plates_from_parent(index, plates)</pre>	Resolve the plate mapping from a parent.
<pre>plates_to_parent(index, plates)</pre>	Resolves the plate mapping to a parent.
random(*phi)	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution.__init__

```
MultinomialDistribution.__init__(trials)
```

Create VMP formula node for a multinomial variable

trials is the total number of trials.

bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution.compute cgf from parents

```
MultinomialDistribution.compute_cgf_from_parents (u\_p) Compute \mathrm{E}_{q(p)}[g(p)]
```

bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution.compute fixed moments and f

```
MultinomialDistribution.compute_fixed_moments_and_f (x, mask=True) Compute the moments and f(x) for a fixed value.
```

bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution.compute_logpdf

```
MultinomialDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution.compute_mask_to_parent

```
MultinomialDistribution.compute_mask_to_parent(index, mask)

Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution.compute_message_to_parent

```
MultinomialDistribution.compute_message_to_parent (parent, index, u, u_p) Compute the message to a parent node.
```

bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution.compute_moments_and_cgf

```
MultinomialDistribution.compute_moments_and_cgf (phi, mask=True)

Compute the moments and g(\phi).
```

bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution.compute_phi_from_parents

```
MultinomialDistribution.compute_phi_from_parents (u_p, mask=True) Compute the natural parameter vector given parent moments.
```

bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution.plates_from_parent

```
MultinomialDistribution.plates_from_parent (index, plates)
Resolve the plate mapping from a parent.
```

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution.plates_to_parent

```
MultinomialDistribution.plates_to_parent (index, plates)
Resolves the plate mapping to a parent.
```

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution.random

```
MultinomialDistribution.random(*phi)

Draw a random sample from the distribution.
```

6.3.20 bayespy.inference.vmp.nodes.poisson.PoissonDistribution

```
class bayespy.inference.vmp.nodes.poisson.PoissonDistribution
    Class for the VMP formulas of Poisson variables.
```

```
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
```

Methods

compute_cgf_from_parents(u_lambda)	Compute $E_{q(p)}[g(p)]$
$compute_fixed_moments_and_f(x[, mask])$	Compute the moments and $f(x)$ for a fixed value.
<pre>compute_logpdf(u, phi, g, f, ndims)</pre>	Compute $E[\log p(X)]$ given $E[u]$, $E[phi]$, $E[g]$ and $E[f]$.
	Continued on next page

Table 6.62 – continued from previous page

compute_mask_to_parent(index, mask)	Maps the mask to the plates of a parent.
<pre>compute_message_to_parent(parent, index, u,)</pre>	Compute the message to a parent node.
<pre>compute_moments_and_cgf(phi[, mask])</pre>	Compute the moments and $g(\phi)$.
<pre>compute_phi_from_parents(u_lambda[, mask])</pre>	Compute the natural parameter vector given parent moments.
<pre>plates_from_parent(index, plates)</pre>	Resolve the plate mapping from a parent.
<pre>plates_to_parent(index, plates)</pre>	Resolves the plate mapping to a parent.
random(*phi)	Draw a random sample from the distribution.

bayespy.inference.vmp.nodes.poisson.PoissonDistribution.compute_cgf_from_parents

```
PoissonDistribution.compute_cgf_from_parents (u_lambda) Compute \mathrm{E}_{q(p)}[g(p)]
```

bayespy.inference.vmp.nodes.poisson.PoissonDistribution.compute_fixed_moments_and_f

```
PoissonDistribution.compute_fixed_moments_and_f(x, mask=True)
Compute the moments and f(x) for a fixed value.
```

bayespy.inference.vmp.nodes.poisson.PoissonDistribution.compute logpdf

```
PoissonDistribution.compute_logpdf (u, phi, g, f, ndims)
Compute E[log p(X)] given E[u], E[phi], E[g] and E[f]. Does not sum over plates.
```

bayespy.inference.vmp.nodes.poisson.PoissonDistribution.compute mask to parent

```
PoissonDistribution.compute_mask_to_parent(index, mask)

Maps the mask to the plates of a parent.
```

bayespy.inference.vmp.nodes.poisson.PoissonDistribution.compute_message_to_parent

PoissonDistribution.compute_message_to_parent (parent, index, u, u_lambda)
Compute the message to a parent node.

bayespy.inference.vmp.nodes.poisson.PoissonDistribution.compute moments and cgf

```
PoissonDistribution.compute_moments_and_cgf (phi, mask=True)
Compute the moments and g(\phi).
```

bayespy.inference.vmp.nodes.poisson.PoissonDistribution.compute phi from parents

```
PoissonDistribution.compute_phi_from_parents(u_lambda, mask=True)
Compute the natural parameter vector given parent moments.
```

bayespy.inference.vmp.nodes.poisson.PoissonDistribution.plates_from_parent

PoissonDistribution.plates_from_parent (index, plates)

Resolve the plate mapping from a parent.

Given the plates of a parent's moments, this method returns the plates that the moments has for this distribution.

bayespy.inference.vmp.nodes.poisson.PoissonDistribution.plates_to_parent

```
PoissonDistribution.plates_to_parent (index, plates)
```

Resolves the plate mapping to a parent.

Given the plates of the node's moments, this method returns the plates that the message to a parent has for the parent's distribution.

bayespy.inference.vmp.nodes.poisson.PoissonDistribution.random

PoissonDistribution.random(*phi)

Draw a random sample from the distribution.

6.4 Utility functions

linalg	General numerical functions and methods.
random	General functions random sampling and distributions.
optimize	
misc	General numerical functions and methods.

6.4.1 bayespy.utils.linalg

General numerical functions and methods.

Functions

block_banded_solve(A, B, y)	Invert symmetric, banded, positive-definite matrix.
chol(C)	
chol_inv(U)	
chol_logdet(U)	
<pre>chol_solve(U, b[, out, matrix])</pre>	
dot(*arrays)	Compute matrix-matrix product.
<pre>inner(*args[, ndim])</pre>	Compute inner product.
inv(A[, ndim])	General array inversion.
$logdet_chol(U)$	
logdet_cov(C)	
logdet_tri(R)	Logarithm of the absolute value of the determinant of a triangular matrix.
$m_dot(A,b)$	
$\operatorname{mmdot}(A,B)$	Compute matrix-matrix product.
mvdot(A, b)	Compute matrix-vector product.
	Continued on next page

6.4. Utility functions

Table 6.64 – continued from previous page

```
outer(A, B[, ndim]) Computes outer product over the last axes of A and B.
solve_triangular(U, B, **kwargs)
tracedot(A, B) Computes trace(A*B).
```

bayespy.utils.linalg.block_banded_solve

```
bayespy.utils.linalg.block_banded_solve(A, B, y)
```

Invert symmetric, banded, positive-definite matrix.

A contains the diagonal blocks.

B contains the superdiagonal blocks (their transposes are the subdiagonal blocks).

Shapes: A: (..., N, D, D) B: (..., N-1, D, D) y: (..., N, D)

The algorithm is basically LU decomposition.

Computes only the diagonal and super-diagonal blocks of the inverse. The true inverse is dense, in general.

Assume each block has the same size.

Return: * inverse blocks * solution to the system * log-determinant

bayespy.utils.linalg.chol

```
bayespy.utils.linalg.chol(C)
```

bayespy.utils.linalg.chol_inv

```
bayespy.utils.linalg.chol_inv(U)
```

bayespy.utils.linalg.chol_logdet

```
bayespy.utils.linalg.chol_logdet(U)
```

bayespy.utils.linalg.chol_solve

```
bayespy.utils.linalg.chol_solve(U, b, out=None, matrix=False)
```

bayespy.utils.linalg.dot

```
bayespy.utils.linalg.dot(*arrays)
```

Compute matrix-matrix product.

You can give multiple arrays, the dot product is computed from left to right: A1*A2*A3*...*AN. The dot product is computed over the last two axes of each arrays. All other axes must be broadcastable.

bayespy.utils.linalg.inner

```
bayespy.utils.linalg.inner(*args, ndim=1)
Compute inner product.
```

The number of arrays is arbitrary. The number of dimensions is arbitrary.

bayespy.utils.linalg.inv

```
bayespy.utils.linalg.inv(A, ndim=1)
General array inversion.
```

Supports broadcasting and inversion of multidimensional arrays. For instance, an array with shape (4,3,2,3,2) could mean that there are four (3*2) x (3*2) matrices to be inverted. This can be done by inv(A, ndim=2). For inverting scalars, ndim=0. For inverting matrices, ndim=1.

bayespy.utils.linalg.logdet_chol

```
bayespy.utils.linalg.logdet_chol(U)
```

bayespy.utils.linalg.logdet cov

```
bayespy.utils.linalg.logdet_cov(C)
```

bayespy.utils.linalg.logdet_tri

```
bayespy.utils.linalg.logdet_tri(R)
```

Logarithm of the absolute value of the determinant of a triangular matrix.

bayespy.utils.linalg.m_dot

```
bayespy.utils.linalg.m_dot(A, b)
```

bayespy.utils.linalg.mmdot

```
bayespy.utils.linalg.mmdot (A, B)
Compute matrix-matrix product.
```

Applies broadcasting.

bayespy.utils.linalg.mvdot

```
\verb|bayespy.utils.linalg.mvdot|(A,b)|
```

Compute matrix-vector product.

Applies broadcasting.

bayespy.utils.linalg.outer

```
bayespy.utils.linalg.outer(A, B, ndim=1)
```

Computes outer product over the last axes of A and B.

The other axes are broadcasted. Thus, if A has shape (..., N) and B has shape (..., M), then the result has shape (..., N, M).

Using the argument *ndim* it is possible to change that how many axes trailing axes are used for the outer product. For instance, if ndim=3, A and B have shapes (...,N1,N2,N3) and (...,M1,M2,M3), the result has shape (...,N1,M1,N2,M2,N3,M3).

bayespy.utils.linalg.solve_triangular

```
bayespy.utils.linalg.solve_triangular(U, B, **kwargs)
```

bayespy.utils.linalg.tracedot

```
bayespy.utils.linalg.tracedot (A, B)
Computes trace(A*B).
```

6.4.2 bayespy.utils.random

General functions random sampling and distributions.

Functions

alpha_beta_recursion(logp0, logP)	Compute alpha-beta recursion for Markov chain
bernoulli(p[, size])	Draw random samples from the Bernoulli distribution.
<pre>categorical(p[, size])</pre>	Draw random samples from a categorical distribution.
correlation(D)	Draw a random correlation matrix.
covariance(D[, size])	Draw a random covariance matrix.
dirichlet(alpha[, size])	Draw random samples from the Dirichlet distribution.
gamma_entropy(a, log_b, gammaln_a, psi_a,)	Entropy of $\mathcal{G}(a,b)$.
<pre>gamma_logpdf(bx, logx, a_logx, a_logb, gammaln_a)</pre>	Log-density of $\mathcal{G}(x a,b)$.
<pre>gaussian_entropy(logdet_V, D)</pre>	Compute the entropy of a Gaussian distribution.
<pre>gaussian_gamma_to_t(mu, Cov, a, b[, ndim])</pre>	Integrates gamma distribution to obtain parameters of t distribution
<pre>gaussian_logpdf(yVy, yVmu, muVmu, logdet_V, D)</pre>	Log-density of a Gaussian distribution.
<pre>intervals(N, length[, amount, gap])</pre>	Return random non-overlapping parts of a sequence.
$invwishart_rand(nu, V)$	
mask(*shape[, p])	Return a boolean array of the given shape.
orth(D)	Draw random orthogonal matrix.
sphere([N])	Draw random points uniformly on a unit sphere.
svd(s)	Draw a random matrix given its singular values.
t_logpdf(z2, logdet_cov, nu, D)	
wishart_rand (nu, V)	Draw a random sample from the Wishart distribution.

bayespy.utils.random.alpha_beta_recursion

```
bayespy.utils.random.alpha_beta_recursion(logp0, logP)
```

Compute alpha-beta recursion for Markov chain

Initial state log-probabilities are in p0 and state transition log-probabilities are in P. The probabilities do not need to be scaled to sum to one, but they are interpreted as below:

```
logp0 = log P(z_0) + log P(y_0|z_0) logP[...,n,;;] = log P(z_{n+1}|z_n) + log P(y_{n+1}|z_n+1)
```

bayespy.utils.random.bernoulli

```
bayespy.utils.random.bernoulli (p, size=None)

Draw random samples from the Bernoulli distribution.
```

bayespy.utils.random.categorical

```
bayespy.utils.random.categorical (p, size=None)

Draw random samples from a categorical distribution.
```

bayespy.utils.random.correlation

```
bayespy.utils.random.correlation(D)

Draw a random correlation matrix.
```

bayespy.utils.random.covariance

```
bayespy.utils.random.covariance(D, size=())
```

Draw a random covariance matrix.

Draws from inverse-Wishart distribution. The distribution of each element is independent of the dimensionality of the matrix.

```
C \sim Inv-W(I, D)
```

Parameters D: int

Dimensionality of the covariance matrix.

bayespy.utils.random.dirichlet

```
bayespy.utils.random.dirichlet (alpha, size=None)
Draw random samples from the Dirichlet distribution.
```

bayespy.utils.random.gamma_entropy

```
bayespy.utils.random.gamma_entropy (a, log\_b, gammaln\_a, psi\_a, a\_psi\_a)
Entropy of \mathcal{G}(a, b).
```

If you want to get the gradient, just let each parameter be a gradient of that term.

```
Parameters \mathbf{a}: ndarray a \log_{\mathbf{b}} \mathbf{b}: ndarray \log(b) \mathbf{gammaln_a}: ndarray \log\Gamma(a) \mathbf{psi_a}: ndarray \psi(a) \mathbf{a_psi_a}: ndarray
```

 $a\psi(a)$

bayespy.utils.random.gamma_logpdf

```
bayespy.utils.random.gamma_logpdf(bx, logx, a_logx, a_logb, gammaln_a)
      Log-density of \mathcal{G}(x|a,b).
      If you want to get the gradient, just let each parameter be a gradient of that term.
           Parameters bx: ndarray
                    bx
                logx: ndarray
                    \log(x)
                a_logx: ndarray
                    a \log(x)
                a_logb: ndarray
                    a \log(b)
                gammaln_a: ndarray
                    \log \Gamma(a)
bayespy.utils.random.gaussian entropy
bayespy.utils.random.gaussian_entropy(logdet_V, D)
      Compute the entropy of a Gaussian distribution.
      If you want to get the gradient, just let each parameter be a gradient of that term.
           Parameters logdet_V: ndarray or double
                    The log-determinant of the precision matrix.
                D: int
                    The dimensionality of the distribution.
bayespy.utils.random.gaussian gamma to t
bayespy.utils.random.gaussian_gamma_to_t (mu, Cov, a, b, ndim=1)
      Integrates gamma distribution to obtain parameters of t distribution
bayespy.utils.random.gaussian logpdf
bayespy.utils.random.gaussian_logpdf(yVy, yVmu, muVmu, logdet_V, D)
      Log-density of a Gaussian distribution.
      \mathcal{G}(\mathbf{y}|\boldsymbol{\mu}, \mathbf{V}^{-1})
           Parameters yVy: ndarray or double
                    \mathbf{y}^T \mathbf{V} \mathbf{y}
                yVmu: ndarray or double
                    \mathbf{y}^T \mathbf{V} \boldsymbol{\mu}
                muVmu: ndarray or double
```

```
\mu^T \mathbf{V} \mu
```

logdet_V: ndarray or double

Log-determinant of the precision matrix, $\log |\mathbf{V}|$.

D: int

Dimensionality of the distribution.

bayespy.utils.random.intervals

```
bayespy.utils.random.intervals(N, length, amount=1, gap=0)
```

Return random non-overlapping parts of a sequence.

For instance, N=16, length=2 and amount=4: [0, |1, 2|, 3, 4, 5, |6, 7|, 8, 9, |10, 11|, |12, 13|, 14, 15] that is, [1,2,6,7,10,11,12,13]

However, the function returns only the indices of the beginning of the sequences, that is, in the example: [1,6,10,12]

bayespy.utils.random.invwishart_rand

```
bayespy.utils.random.invwishart_rand(nu, V)
```

bayespy.utils.random.mask

```
bayespy.utils.random.mask(*shape, p=0.5)
```

Return a boolean array of the given shape.

Parameters d0, d1, ..., dn: int

Shape of the output.

p: value in range [0,1]

A probability that the elements are *True*.

bayespy.utils.random.orth

```
bayespy.utils.random.orth(D)
```

Draw random orthogonal matrix.

bayespy.utils.random.sphere

```
bayespy.utils.random.sphere(N=1)
```

Draw random points uniformly on a unit sphere.

Returns (latitude,longitude) in degrees.

bayespy.utils.random.svd

```
bayespy.utils.random.svd(s)
```

Draw a random matrix given its singular values.

bayespy.utils.random.t_logpdf

```
bayespy.utils.random.t_logpdf(z2, logdet_cov, nu, D)
```

bayespy.utils.random.wishart_rand

```
bayespy.utils.random.wishart_rand(nu, V)

Draw a random sample from the Wishart distribution.
```

Parameters nu: int

6.4.3 bayespy.utils.optimize

Functions

<pre>check_gradient(f, x0[, verbose])</pre>	Simple wrapper for SciPy's gradient checker.
<pre>minimize(f, x0[, maxiter, verbose])</pre>	Simple wrapper for SciPy's optimize.

bayespy.utils.optimize.check_gradient

```
bayespy.utils.optimize.check_gradient(f, x0, verbose=True)
```

Simple wrapper for SciPy's gradient checker.

The given function must return a tuple: (value, gradient).

Returns relative

bayespy.utils.optimize.minimize

```
bayespy.utils.optimize.minimize (f, x0, maxiter=None, verbose=False) Simple wrapper for SciPy's optimize.
```

The given function must return a tuple: (value, gradient).

6.4.4 bayespy.utils.misc

General numerical functions and methods.

Functions

$\mathbb{T}(X)$	Transpose the matrix.
$add_axes(X[, num, axis])$	
$add_leading_axes(x, n)$	
$add_trailing_axes(x, n)$	
array_to_scalar(x)	
$atleast_nd(X, d)$	
<pre>axes_to_collapse(shape_x, shape_to)</pre>	
$block_banded(D, B)$	Construct a symmetric block-banded matrix.
	Continued on next page

Table 6.67 – continued from previous page

```
broadcasted shape(*shapes)
                                                  Computes the resulting broadcasted shape for a given set of shapes.
                                                  Computes the resulting broadcasted shape for a given set of arrays.
broadcasted_shape_from_arrays(*arrays)
ceildiv(a, b)
                                                  Compute a divided by b and rounded up.
check\_gradient(x0, f, df, eps)
chol(C)
chol_inv(U)
chol_logdet(U)
chol_solve(U, b)
cholesky(K)
composite_function(function_list)
                                                  Construct a function composition from a list of functions.
                                                  Create a diagonal array given the diagonal elements.
diag(X[, ndim])
diagonal(A)
dist haversine(c1, c2[, radius])
first(L)
gaussian_logpdf(y_invcov_y, y_invcov_mu, ...)
                                                  Get the diagonal of an array.
get_diag(X[, ndim])
grid(x1, x2)
                                                  Returns meshgrid as a (M*N,2)-shape array.
identity(*shape)
is_callable(f)
is_numeric(a)
is_shape_subset(sub_shape, full_shape)
is_string(s)
isinteger(x)
kalman_filter(y, U, A, V, mu0, Cov0[, out])
                                                  Perform Kalman filtering to obtain filtered mean and covariance.
logdet_chol(U)
logsumexp(X[, axis, keepdims])
                                                  Compute log(sum(exp(X))) in a numerically stable way
m_{chol}(C)
m_{\text{chol}_{inv}}(U)
m_chol_logdet(U)
m chol solve(U, B[, out])
m digamma(a, d)
m_{dot}(A, b)
m_outer(A, B)
m_solve_triangular(U, B, **kwargs)
make_equal_length(*shapes)
                                                  Make tuples equal length.
                                                  Add trailing unit axes so that arrays have equal ndim
make_equal_ndim(*arrays)
mean(X[, axis, keepdims])
                                                  Compute the mean, ignoring NaNs.
moveaxis(A, axis_from, axis_to)
                                                  Move the axis axis_from to position axis_to.
multiply_shapes(*shapes)
                                                  Compute element-wise product of lists/tuples.
nans([size])
nested iterator(max inds)
remove whitespace(s)
repeat_to_shape(A, s)
rmse(y1, y2[, axis])
rts_smoother(mu, Cov, A, V[, removethis])
                                                  Perform Rauch-Tung-Striebel smoothing to obtain the posterior.
squeeze(X)
                                                  Remove leading axes that have unit length.
squeeze_to_dim(X, dim)
sum multiply(*args[, axis, sumaxis, keepdims])
sum_product(*args[, axes_to_keep, ...])
                                                  Sum leading axes of A such that A has dim dimensions.
sum_to_dim(A, dim)
sum_to_shape(X, s)
                                                  Sum axes of the array such that the resulting shape is as given.
symm(X)
                                                  Make X symmetric.
                                                                                       Continued on next page
```

6.4. Utility functions

Table 6.67 – continued from previous page

```
tempfile([prefix, suffix])
trues(shape)
unique(l)
vb_optimize(x0, set_values, lowerbound[, ...])
vb_optimize_nodes(*nodes)
write_to_hdf5(group, data, name)
zipper_merge(*lists)

Remove duplicate items from a list while preserving order.

Writes the given array into the HDF5 file.
Combines lists by alternating elements from them.
```

bayespy.utils.misc.T

```
bayespy.utils.misc.\mathbf{T}(X)
Transpose the matrix.
```

bayespy.utils.misc.add axes

```
bayespy.utils.misc.add axes (X, num=1, axis=0)
```

bayespy.utils.misc.add_leading_axes

```
bayespy.utils.misc.add_leading_axes (x, n)
```

bayespy.utils.misc.add_trailing_axes

```
bayespy.utils.misc.add_trailing_axes (x, n)
```

bayespy.utils.misc.array_to_scalar

```
bayespy.utils.misc.array_to_scalar(x)
```

bayespy.utils.misc.atleast nd

```
bayespy.utils.misc.atleast_nd(X, d)
```

bayespy.utils.misc.axes to collapse

```
bayespy.utils.misc.axes_to_collapse(shape_x, shape_to)
```

bayespy.utils.misc.block banded

```
\verb|bayespy.utils.misc.block_banded|(D,B)
```

Construct a symmetric block-banded matrix.

D contains square diagonal blocks. B contains super-diagonal blocks.

The resulting matrix is:

bayespy.utils.misc.broadcasted_shape

```
bayespy.utils.misc.broadcasted_shape(*shapes)
```

Computes the resulting broadcasted shape for a given set of shapes.

Uses the broadcasting rules of NumPy. Raises an exception if the shapes do not broadcast.

bayespy.utils.misc.broadcasted_shape_from_arrays

```
bayespy.utils.misc.broadcasted_shape_from_arrays(*arrays)
```

Computes the resulting broadcasted shape for a given set of arrays.

Raises an exception if the shapes do not broadcast.

bayespy.utils.misc.ceildiv

```
bayespy.utils.misc.ceildiv(a, b)
```

Compute a divided by b and rounded up.

bayespy.utils.misc.check_gradient

```
bayespy.utils.misc.check_gradient (x0, f, df, eps)
```

bayespy.utils.misc.chol

```
bayespy.utils.misc.chol(C)
```

bayespy.utils.misc.chol inv

```
bayespy.utils.misc.chol_inv(U)
```

bayespy.utils.misc.chol_logdet

```
bayespy.utils.misc.chol_logdet(U)
```

bayespy.utils.misc.chol_solve

```
\verb|bayespy.utils.misc.chol_solve|(U,b)|
```

bayespy.utils.misc.cholesky

```
bayespy.utils.misc.cholesky(K)
```

bayespy.utils.misc.composite_function

```
bayespy.utils.misc.composite_function(function_list)
```

Construct a function composition from a list of functions.

Given a list of functions [f,g,h], constructs a function $h \circ g \circ f$. That is, returns a function z, for which z(x) = h(g(f(x))).

bayespy.utils.misc.diag

```
bayespy.utils.misc.diag(X, ndim=1)
```

Create a diagonal array given the diagonal elements.

The diagonal array can be multi-dimensional. By default, the last axis is transformed to two axes (diagonal matrix) but this can be changed using ndim keyword. For instance, an array with shape (K,L,M,N) can be transformed to a set of diagonal 4-D tensors with shape (K,L,M,N,M,N) by giving ndim=2. If ndim=3, the result has shape (K,L,M,N,L,M,N), and so on.

Diagonality means that for the resulting array Y holds: $Y[...,i_1,i_2,...,i_n\dim,j_1,j_2,...,j_n\dim]$ is zero if $i_n!=j_n$ for any n.

bayespy.utils.misc.diagonal

```
bayespy.utils.misc.diagonal(A)
```

bayespy.utils.misc.dist haversine

```
bayespy.utils.misc.dist haversine(c1, c2, radius=6372795)
```

bavespv.utils.misc.first

```
bayespy.utils.misc.first(L)
```

bayespy.utils.misc.gaussian_logpdf

```
bayespy.utils.misc.gaussian_logpdf(y_invcov_y, y_invcov_mu, mu_invcov_mu, logdetcov, D)
```

bayespy.utils.misc.get diag

```
bayespy.utils.misc.get_diag(X, ndim=1)
```

Get the diagonal of an array.

If ndim>1, take the diagonal of the last 2*ndim axes.

bayespy.utils.misc.grid

```
bayespy.utils.misc.grid(x1, x2)
```

Returns meshgrid as a (M*N,2)-shape array.

bayespy.utils.misc.identity

bayespy.utils.misc.identity(*shape)

bayespy.utils.misc.is_callable

bayespy.utils.misc.is_callable(f)

bayespy.utils.misc.is numeric

bayespy.utils.misc.is_numeric(a)

bayespy.utils.misc.is_shape_subset

bayespy.utils.misc.is_shape_subset(sub_shape, full_shape)

bayespy.utils.misc.is string

bayespy.utils.misc.is_string(s)

bayespy.utils.misc.isinteger

bayespy.utils.misc.isinteger(x)

bayespy.utils.misc.kalman_filter

bayespy.utils.misc.kalman_filter(y, U, A, V, mu0, Cov0, out=None)

Perform Kalman filtering to obtain filtered mean and covariance.

The parameters of the process may vary in time, thus they are given as iterators instead of fixed values.

Parameters y : (N,D) array

"Normalized" noisy observations of the states, that is, the observations multiplied by the precision matrix U (and possibly other transformation matrices).

U: (N,D,D) array or N-list of (D,D) arrays

Precision matrix (i.e., inverse covariance matrix) of the observation noise for each time instance.

A: (N-1,D,D) array or (N-1)-list of (D,D) arrays

Dynamic matrix for each time instance.

V: (N-1,D,D) array or (N-1)-list of (D,D) arrays

Covariance matrix of the innovation noise for each time instance.

Returns mu: array

Filtered mean of the states.

Cov: array

Filtered covariance of the states.

```
See also:
```

```
rts smoother
```

bayespy.utils.misc.logdet chol

```
bayespy.utils.misc.logdet_chol(U)
```

bayespy.utils.misc.logsumexp

```
bayespy.utils.misc.logsumexp(X, axis=None, keepdims=False)
Compute log(sum(exp(X))) in a numerically stable way
```

bayespy.utils.misc.m chol

```
bayespy.utils.misc.m_chol(C)
```

bayespy.utils.misc.m_chol_inv

```
bayespy.utils.misc.m_chol_inv(U)
```

bayespy.utils.misc.m chol logdet

```
bayespy.utils.misc.m_chol_logdet(U)
```

bayespy.utils.misc.m chol solve

```
bayespy.utils.misc.m_chol_solve(U, B, out=None)
```

bayespy.utils.misc.m digamma

```
bayespy.utils.misc.m_digamma(a, d)
```

bayespy.utils.misc.m_dot

```
bayespy.utils.misc.m_dot(A, b)
```

bayespy.utils.misc.m_outer

```
bayespy.utils.misc.m_outer(A, B)
```

bayespy.utils.misc.m solve triangular

```
bayespy.utils.misc.m_solve_triangular(U, B, **kwargs)
```

bayespy.utils.misc.make_equal_length

```
bayespy.utils.misc.make_equal_length(*shapes)
Make tuples equal length.
```

Add leading 1s to shorter tuples.

bayespy.utils.misc.make_equal_ndim

```
bayespy.utils.misc.make_equal_ndim(*arrays)

Add trailing unit axes so that arrays have equal ndim
```

bayespy.utils.misc.mean

```
bayespy.utils.misc.mean (X, axis=None, keepdims=False)
Compute the mean, ignoring NaNs.
```

bayespy.utils.misc.moveaxis

```
bayespy.utils.misc.moveaxis (A, axis_from, axis_to)
Move the axis axis_from to position axis_to.
```

bayespy.utils.misc.multiply shapes

```
bayespy.utils.misc.multiply_shapes(*shapes)
Compute element-wise product of lists/tuples.
```

Shorter lists are concatenated with leading 1s in order to get lists with the same length.

bayespy.utils.misc.nans

```
bayespy.utils.misc.nans(size=())
```

bayespy.utils.misc.nested iterator

```
bayespy.utils.misc.nested_iterator(max_inds)
```

bayespy.utils.misc.remove_whitespace

```
bayespy.utils.misc.remove_whitespace(s)
```

bayespy.utils.misc.repeat_to_shape

```
bayespy.utils.misc.repeat_to_shape (A, s)
```

bayespy.utils.misc.rmse

```
bayespy.utils.misc.rmse(y1, y2, axis=None)
```

bayespy.utils.misc.rts smoother

```
bayespy.utils.misc.rts_smoother(mu, Cov, A, V, removethis=None)
```

Perform Rauch-Tung-Striebel smoothing to obtain the posterior.

The function returns the posterior mean and covariance of each state. The parameters of the process may vary in time, thus they are given as iterators instead of fixed values.

Parameters mu: (N,D) array

Mean of the states from Kalman filter.

Cov: (N,D,D) array

Covariance of the states from Kalman filter.

A: (N-1,D,D) array or (N-1)-list of (D,D) arrays

Dynamic matrix for each time instance.

V: (N-1,D,D) array or (N-1)-list of (D,D) arrays

Covariance matrix of the innovation noise for each time instance.

Returns mu: array

Posterior mean of the states.

Cov: array

Posterior covariance of the states.

See also:

kalman_filter

bayespy.utils.misc.squeeze

```
bayespy.utils.misc.squeeze(X)
```

Remove leading axes that have unit length.

For instance, a shape (1,1,4,1,3) will be reshaped to (4,1,3).

bayespy.utils.misc.squeeze to dim

```
bayespy.utils.misc.squeeze_to_dim(X, dim)
```

bayespy.utils.misc.sum multiply

bayespy.utils.misc.sum_multiply(*args, axis=None, sumaxis=True, keepdims=False)

bayespy.utils.misc.sum_product

```
bayespy.utils.misc.sum_product(*args, axes_to_keep=None, axes_to_sum=None, keep-dims=False)
```

bayespy.utils.misc.sum_to_dim

```
bayespy.utils.misc.sum_to_dim(A, dim)
Sum leading axes of A such that A has dim dimensions.
```

bayespy.utils.misc.sum_to_shape

```
bayespy.utils.misc.sum_to_shape (X, s)
```

Sum axes of the array such that the resulting shape is as given.

Thus, the shape of the result will be s or an error is raised.

bayespy.utils.misc.symm

bayespy.utils.misc.tempfile

```
bayespy.utils.misc.tempfile(prefix='', suffix='')
```

bayespy.utils.misc.trues

```
bayespy.utils.misc.trues(shape)
```

bayespy.utils.misc.unique

```
bayespy.utils.misc.unique(l)
```

Remove duplicate items from a list while preserving order.

bayespy.utils.misc.vb_optimize

```
bayespy.utils.misc.vb_optimize(x0, set_values, lowerbound, gradient=None)
```

bayespy.utils.misc.vb_optimize_nodes

```
bayespy.utils.misc.vb_optimize_nodes(*nodes)
```

bayespy.utils.misc.write_to_hdf5

```
bayespy.utils.misc.write_to_hdf5 (group, data, name)
Writes the given array into the HDF5 file.
```

bayespy.utils.misc.zipper_merge

```
bayespy.utils.misc.zipper_merge(*lists)
```

Combines lists by alternating elements from them.

Combining lists [1,2,3], ['a','b','c'] and [42,666,99] results in [1,'a',42,2,'b',666,3,'c',99]

The lists should have equal length or they are assumed to have the length of the shortest list.

This is known as alternating merge or zipper merge.

Classes

bayespy.utils.misc.CholeskyDense

```
{f class} bayespy.utils.misc.CholeskyDense(K)
```

```
___init___(K)
```

Methods

```
__init__(K)
logdet()
solve(b)
trace_solve_gradient(dK)
```

bayespy.utils.misc.CholeskyDense. init

```
CholeskyDense.__init__(K)
```

bayespy.utils.misc.CholeskyDense.logdet

```
CholeskyDense.logdet()
```

bayespy.utils.misc.CholeskyDense.solve

CholeskyDense.solve(b)

bayespy.utils.misc.CholeskyDense.trace solve gradient

CholeskyDense.trace_solve_gradient(dK)

bayespy.utils.misc.CholeskySparse

```
{\bf class} \; {\tt bayespy.utils.misc.CholeskySparse} \, (K)
```

```
___init___(K)
```

Methods

```
__init__(K)
logdet()
solve(b)
trace_solve_gradient(dK)
```

bayespy.utils.misc.CholeskySparse. init

```
CholeskySparse.__init__(K)
```

bayespy.utils.misc.CholeskySparse.logdet

```
CholeskySparse.logdet()
```

bayespy.utils.misc.CholeskySparse.solve

```
CholeskySparse.solve(b)
```

bayespy.utils.misc.CholeskySparse.trace solve gradient

```
CholeskySparse.trace_solve_gradient(dK)
```

bayespy.utils.misc.TestCase

```
class bayespy.utils.misc.TestCase (methodName='runTest')
```

Simple base class for unit testing.

Adds NumPy's features to Python's unittest.

```
___init___(methodName='runTest')
```

Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.

Methods

init([methodName])	Create an instance of the class that will use the named test method when
<pre>addCleanup(function, *args, **kwargs)</pre>	Add a function, with arguments, to be called when the test is completed.
<pre>addTypeEqualityFunc(typeobj, function)</pre>	Add a type specific assertEqual style function to compare a type.
assertAllClose(A, B[, msg, rtol, atol])	

```
assertAlmostEqual(first, second[, places, ...])
                                                        Fail if the two objects are unequal as determined by their difference round
assertAlmostEquals(*args, **kwargs)
assertArrayEqual(A, B[, msg])
assertCountEqual(first, second[, msg])
                                                        An unordered sequence comparison asserting that the same elements, reg
assertDictContainsSubset(subset, dictionary)
                                                        Checks whether dictionary is a superset of subset.
assertDictEqual(d1, d2[, msg])
assertEqual(first, second[, msg])
                                                        Fail if the two objects are unequal as determined by the '==' operator.
assertEquals(*args, **kwargs)
assertFalse(expr[, msg])
                                                        Check that the expression is false.
assertGreater(a, b[, msg])
                                                        Just like self.assertTrue(a > b), but with a nicer default message.
assertGreaterEqual(a, b[, msg])
                                                        Just like self.assertTrue(a \ge b), but with a nicer default message.
                                                        Just like self.assertTrue(a in b), but with a nicer default message.
assertIn(member, container[, msg])
assertIs(expr1, expr2[, msg])
                                                        Just like self.assertTrue(a is b), but with a nicer default message.
assertIsInstance(obj, cls[, msg])
                                                        Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message
assertIsNone(obj[, msg])
                                                        Same as self.assertTrue(obj is None), with a nicer default message.
assertIsNot(expr1, expr2[, msg])
                                                        Just like self.assertTrue(a is not b), but with a nicer default message.
assertIsNotNone(obj[, msg])
                                                        Included for symmetry with assertIsNone.
assertLess(a, b[, msg])
                                                        Just like self.assertTrue(a < b), but with a nicer default message.
                                                        Just like self.assertTrue(a <= b), but with a nicer default message.
assertLessEqual(a, b[, msg])
assertListEqual(list1, list2[, msg])
                                                        A list-specific equality assertion.
assertMessage(M1, M2)
assertMessageToChild(X, u)
assertMultiLineEqual(first, second[, msg])
                                                        Assert that two multi-line strings are equal.
assertNotAlmostEqual(first, second[, ...])
                                                        Fail if the two objects are equal as determined by their difference rounded
assertNotAlmostEquals(*args, **kwargs)
assertNotEqual(first, second[, msg])
                                                        Fail if the two objects are equal as determined by the '!=' operator.
assertNotEquals(*args, **kwargs)
assertNotIn(member, container[, msg])
                                                        Just like self.assertTrue(a not in b), but with a nicer default message.
assertNotIsInstance(obj, cls[, msg])
                                                        Included for symmetry with assertIsInstance.
assertNotRegex(text, unexpected_regex[, msg])
                                                        Fail the test if the text matches the regular expression.
                                                        Fail unless an exception of class excClass is raised by callableObj when i
assertRaises(excClass[, callableObj])
assertRaisesRegex(expected_exception, ...[, ...])
                                                        Asserts that the message in a raised exception matches a regex.
assertRaisesRegexp(*args, **kwargs)
assertRegex(text, expected_regex[, msg])
                                                        Fail the test unless the text matches the regular expression.
assertRegexpMatches(*args, **kwargs)
assertSequenceEqual(seq1, seq2[, msg, seq_type])
                                                        An equality assertion for ordered sequences (like lists and tuples).
assertSetEqual(set1, set2[, msg])
                                                        A set-specific equality assertion.
assertTrue(expr[, msg])
                                                        Check that the expression is true.
assertTupleEqual(tuple1, tuple2[, msg])
                                                        A tuple-specific equality assertion.
assertWarns(expected_warning[, callable_obj])
                                                        Fail unless a warning of class warnClass is triggered by callable_obj whe
assertWarnsRegex(expected_warning, ...[, ...])
                                                        Asserts that the message in a triggered warning matches a regexp.
assert_(*args, **kwargs)
countTestCases()
debug()
                                                        Run the test without collecting errors in a TestResult
defaultTestResult()
doCleanups()
                                                        Execute all cleanup functions.
fail([msg])
                                                        Fail immediately, with the given message.
failIf(*args, **kwargs)
failIfAlmostEqual(*args, **kwargs)
failIfEqual(*args, **kwargs)
failUnless(*args, **kwargs)
failUnlessAlmostEqual(*args, **kwargs)
```

```
failUnlessEqual(*args, **kwargs)
failUnlessRaises(*args, **kwargs)
id()
run([result])
setUp()
                                                          Hook method for setting up the test fixture before exercising it.
setUpClass()
                                                          Hook method for setting up class fixture before running tests in the class.
                                                          Returns a one-line description of the test, or None if no description has be
shortDescription()
skipTest(reason)
                                                          Skip this test.
                                                          Hook method for deconstructing the test fixture after testing it.
tearDown()
                                                          Hook method for deconstructing the class fixture after running all tests in
tearDownClass()
```

bayespy.utils.misc.TestCase.__init__

```
TestCase.__init__ (methodName='runTest')
```

Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.

bayespy.utils.misc.TestCase.addCleanup

```
TestCase.addCleanup (function, *args, **kwargs)
```

Add a function, with arguments, to be called when the test is completed. Functions added are called on a LIFO basis and are called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

bayespy.utils.misc.TestCase.addTypeEqualityFunc

```
TestCase.addTypeEqualityFunc(typeobj, function)
```

Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register their own type equality functions to provide nicer error messages.

Args:

typeobj: The data type to call this function on when both values are of the same type in assertE-qual().

function: The callable taking two arguments and an optional msg= argument that raises self.failureException with a useful error message when the two arguments are not equal.

bayespy.utils.misc.TestCase.assertAllClose

TestCase.assertAllClose (A, B, msg='Arrays not almost equal', rtol=0.0001, atol=0)

bayespy.utils.misc.TestCase.assertAlmostEqual

```
TestCase.assertAlmostEqual (first, second, places=None, msg=None, delta=None)
```

Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the between the two objects is more than the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).

If the two objects compare equal then they will automatically compare almost equal.

bayespy.utils.misc.TestCase.assertAlmostEquals

```
TestCase.assertAlmostEquals(*args, **kwargs)
```

bayespy.utils.misc.TestCase.assertArrayEqual

TestCase.assertArrayEqual (A, B, msg='Arrays not equal')

bayespy.utils.misc.TestCase.assertCountEqual

```
TestCase.assertCountEqual (first, second, msg=None)
```

An unordered sequence comparison asserting that the same elements, regardless of order. If the same element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

- [0, 1, 1] and [1, 0, 1] compare equal.
- [0, 0, 1] and [0, 1] compare unequal.

bayespy.utils.misc.TestCase.assertDictContainsSubset

```
TestCase.assertDictContainsSubset (subset, dictionary, msg=None)
```

Checks whether dictionary is a superset of subset.

bayespy.utils.misc.TestCase.assertDictEqual

```
TestCase.assertDictEqual (d1, d2, msg=None)
```

bayespy.utils.misc.TestCase.assertEqual

```
TestCase.assertEqual (first, second, msg=None)
```

Fail if the two objects are unequal as determined by the '==' operator.

bayes py. utils. misc. Test Case. assert Equals

```
TestCase.assertEquals(*args, **kwargs)
```

bayespy.utils.misc.TestCase.assertFalse

```
TestCase.assertFalse(expr, msg=None)
```

Check that the expression is false.

bayespy.utils.misc.TestCase.assertGreater

```
TestCase.assertGreater(a, b, msg=None)
```

Just like self.assertTrue(a > b), but with a nicer default message.

bayespy.utils.misc.TestCase.assertGreaterEqual

```
TestCase.assertGreaterEqual (a, b, msg=None)
```

Just like self.assertTrue($a \ge b$), but with a nicer default message.

bayespy.utils.misc.TestCase.assertIn

```
TestCase.assertIn (member, container, msg=None)
```

Just like self.assertTrue(a in b), but with a nicer default message.

bayespy.utils.misc.TestCase.assertls

```
TestCase.assertIs(expr1, expr2, msg=None)
```

Just like self.assertTrue(a is b), but with a nicer default message.

bayespy.utils.misc.TestCase.assertIsInstance

```
TestCase.assertIsInstance(obj, cls, msg=None)
```

Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

bayespy.utils.misc.TestCase.assertIsNone

```
TestCase.assertIsNone(obj, msg=None)
```

Same as self.assertTrue(obj is None), with a nicer default message.

bayespy.utils.misc.TestCase.assertIsNot

```
TestCase.assertIsNot (expr1, expr2, msg=None)
```

Just like self.assertTrue(a is not b), but with a nicer default message.

bayespy.utils.misc.TestCase.assertIsNotNone

```
TestCase.assertIsNotNone(obj, msg=None)
```

Included for symmetry with assertIsNone.

bayespy.utils.misc.TestCase.assertLess

```
TestCase.assertLess(a, b, msg=None)
```

Just like self.assertTrue(a < b), but with a nicer default message.

bayespy.utils.misc.TestCase.assertLessEqual

```
TestCase.assertLessEqual (a, b, msg=None)
```

Just like self.assertTrue(a <= b), but with a nicer default message.

bayespy.utils.misc.TestCase.assertListEqual

```
TestCase.assertListEqual (list1, list2, msg=None)
```

A list-specific equality assertion.

Args: list1: The first list to compare. list2: The second list to compare. msg: Optional message to use on failure instead of a list of

differences.

bayespy.utils.misc.TestCase.assertMessage

```
TestCase.assertMessage (M1, M2)
```

bayespy.utils.misc.TestCase.assertMessageToChild

```
TestCase.assertMessageToChild (X, u)
```

bayespy.utils.misc.TestCase.assertMultiLineEqual

```
TestCase.assertMultiLineEqual (first, second, msg=None)
```

Assert that two multi-line strings are equal.

bayespy.utils.misc.TestCase.assertNotAlmostEqual

```
TestCase.assertNotAlmostEqual (first, second, places=None, msg=None, delta=None)
```

Fail if the two objects are equal as determined by their difference rounded to the given number of decimal places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most significant digit).

Objects that are equal automatically fail.

bayes py. utils. misc. Test Case. assert Not Almost Equals

```
TestCase.assertNotAlmostEquals(*args, **kwargs)
```

bayespy.utils.misc.TestCase.assertNotEqual

```
TestCase.assertNotEqual (first, second, msg=None)
```

Fail if the two objects are equal as determined by the '!=' operator.

bayespy.utils.misc.TestCase.assertNotEquals

```
TestCase.assertNotEquals(*args, **kwargs)
```

bayespy.utils.misc.TestCase.assertNotIn

```
TestCase.assertNotIn (member, container, msg=None)
```

Just like self.assertTrue(a not in b), but with a nicer default message.

bayespy.utils.misc.TestCase.assertNotIsInstance

```
TestCase.assertNotIsInstance (obj, cls, msg=None) Included for symmetry with assertIsInstance.
```

bayespy.utils.misc.TestCase.assertNotRegex

```
\texttt{TestCase.assertNotRegex}~(\textit{text}, \textit{unexpected\_regex}, \textit{msg} = None)
```

Fail the test if the text matches the regular expression.

bayespy.utils.misc.TestCase.assertRaises

```
TestCase.assertRaises (excClass, callableObj=None, *args, **kwargs)
```

Fail unless an exception of class excClass is raised by callableObj when invoked with arguments args and keyword arguments kwargs. If a different type of exception is raised, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with callableObj omitted or None, will return a context object used like this:

```
with self.assertRaises(SomeException):
    do_something()
```

An optional keyword argument 'msg' can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the 'exception' attribute. This allows you to inspect the exception after the assertion:

```
with self.assertRaises(SomeException) as cm:
    do_something()
the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)
```

bayespy.utils.misc.TestCase.assertRaisesRegex

```
TestCase.assertRaisesRegex (expected_exception, expected_regex, callable_obj=None, *args, **kwargs)
```

Asserts that the message in a raised exception matches a regex.

Args: expected_exception: Exception class expected to be raised. expected_regex: Regex (re pattern object or string) expected

to be found in error message.

callable_obj: Function to be called. msg: Optional message used in case of failure. Can only be used

when assertRaisesRegex is used as a context manager.

args: Extra args. kwargs: Extra kwargs.

bayespy.utils.misc.TestCase.assertRaisesRegexp

TestCase.assertRaisesRegexp(*args, **kwargs)

bayespy.utils.misc.TestCase.assertRegex

TestCase.assertRegex (text, expected_regex, msg=None)

Fail the test unless the text matches the regular expression.

bayespy.utils.misc.TestCase.assertRegexpMatches

TestCase.assertRegexpMatches(*args, **kwargs)

bayespy.utils.misc.TestCase.assertSequenceEqual

TestCase.assertSequenceEqual (seq1, seq2, msg=None, seq_type=None)

An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length, and has an equality operator.

Args: seq1: The first sequence to compare. seq2: The second sequence to compare. seq_type: The expected datatype of the sequences, or None if no

datatype should be enforced.

msg: Optional message to use on failure instead of a list of differences.

bayespy.utils.misc.TestCase.assertSetEqual

TestCase.assertSetEqual (set1, set2, msg=None)

A set-specific equality assertion.

Args: set1: The first set to compare. set2: The second set to compare. msg: Optional message to use on failure instead of a list of

differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically (parameters must support a difference method).

bayespy.utils.misc.TestCase.assertTrue

TestCase.assertTrue(expr, msg=None)

Check that the expression is true.

bayespy.utils.misc.TestCase.assertTupleEqual

```
TestCase.assertTupleEqual (tuple1, tuple2, msg=None)
```

A tuple-specific equality assertion.

Args: tuple1: The first tuple to compare. tuple2: The second tuple to compare. msg: Optional message to use on failure instead of a list of

differences.

bayespy.utils.misc.TestCase.assertWarns

```
TestCase.assertWarns(expected_warning, callable_obj=None, *args, **kwargs)
```

Fail unless a warning of class warnClass is triggered by callable_obj when invoked with arguments args and keyword arguments kwargs. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with callable_obj omitted or None, will return a context object used like this:

```
with self.assertWarns(SomeWarning):
    do_something()
```

An optional keyword argument 'msg' can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the 'warning' attribute; similarly, the 'filename' and 'lineno' attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:

```
with self.assertWarns(SomeWarning) as cm:
    do_something()
the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)
```

bayespy.utils.misc.TestCase.assertWarnsRegex

```
TestCase.assertWarnsRegex (expected_warning, expected_regex, callable_obj=None, *args, **kwargs)
```

Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to assertWarns() with the addition that only warnings whose messages also match the regular expression are considered successful matches.

Args: expected_warning: Warning class expected to be triggered. expected_regex: Regex (re pattern object or string) expected

to be found in error message.

callable_obj: Function to be called. msg: Optional message used in case of failure. Can only be used when assertWarnsRegex is used as a context manager.

args: Extra args. kwargs: Extra kwargs.

bayespy.utils.misc.TestCase.assert

```
TestCase.assert_(*args, **kwargs)
```

bayespy.utils.misc.TestCase.countTestCases

```
TestCase.countTestCases()
bayespy.utils.misc.TestCase.debug
TestCase.debug()
    Run the test without collecting errors in a TestResult
bayespy.utils.misc.TestCase.defaultTestResult
TestCase.defaultTestResult()
bayespy.utils.misc.TestCase.doCleanups
TestCase.doCleanups()
    Execute all cleanup functions. Normally called for you after tearDown.
bayespy.utils.misc.TestCase.fail
TestCase.fail(msg=None)
    Fail immediately, with the given message.
bayespy.utils.misc.TestCase.faillf
TestCase.failIf(*args, **kwargs)
bayespy.utils.misc.TestCase.failIfAlmostEqual
TestCase.failIfAlmostEqual(*args, **kwargs)
bayespy.utils.misc.TestCase.failIfEqual
TestCase.failIfEqual(*args, **kwargs)
bayespy.utils.misc.TestCase.failUnless
TestCase.failUnless(*args, **kwargs)
bayespy.utils.misc.TestCase.failUnlessAlmostEqual
TestCase.failUnlessAlmostEqual(*args, **kwargs)
```

bayespy.utils.misc.TestCase.failUnlessEqual TestCase.failUnlessEqual(*args, **kwargs) bayespy.utils.misc.TestCase.failUnlessRaises TestCase.failUnlessRaises(*args, **kwargs) bayespy.utils.misc.TestCase.id TestCase.id() bayespy.utils.misc.TestCase.run TestCase.run(result=None) bayespy.utils.misc.TestCase.setUp TestCase.setUp() Hook method for setting up the test fixture before exercising it. bayespy.utils.misc.TestCase.setUpClass TestCase.setUpClass() Hook method for setting up class fixture before running tests in the class. bayespy.utils.misc.TestCase.shortDescription TestCase.shortDescription() Returns a one-line description of the test, or None if no description has been provided. The default implementation of this method returns the first line of the specified test method's docstring. bayespy.utils.misc.TestCase.skipTest TestCase.skipTest (reason) Skip this test. bayespy.utils.misc.TestCase.tearDown

TestCase.tearDown()

Hook method for deconstructing the test fixture after testing it.

bayespy.utils.misc.TestCase.tearDownClass

TestCase.tearDownClass()

Hook method for deconstructing the class fixture after running all tests in the class.

Attributes

longMessage	bool(x) -> bool
maxDiff	$int(x=0) \rightarrow integer$

bayespy.utils.misc.TestCase.longMessage

TestCase.longMessage = True

bayespy.utils.misc.TestCase.maxDiff

TestCase.maxDiff = 640

CHAPTER

SEVEN

INDICES AND TABLES

- genindex
- modindex
- search

- [R6] J. Luttinen, T. Raiko, A. Ilin, "Linear State-Space Model with Time-Varying Dynamics," submitted to ECML 2014.
- [R4] J. Luttinen, A. Ilin, "Transformations in variational Bayesian factor analysis to speed up learning," Neurocomputing, vol. 73, pp. 1093-1102, 2010.
- [R5] J. Luttinen, "Fast Variational Bayesian Linear State-Space Model," ECML, 2013.

262 Bibliography

PYTHON MODULE INDEX

b

bayespy.inference, 136 bayespy.nodes, 47 bayespy.plot, 146 bayespy.utils.linalg, 229 bayespy.utils.misc, 236 bayespy.utils.optimize, 236 bayespy.utils.random, 232

BayesPy Documentation, Release 0

264 Python Module Index

Symbols	$\underline{\hspace{0.3cm}} init\underline{\hspace{0.3cm}} () (bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDiagrams and a contraction of the cont$
init() (bayespy.inference.VB method), 137	method), 200
init() (bayespy.inference.vmp.nodes.bernoulli.Bernou	ulli Dinitibution ayespy.inference.vmp.nodes.gaussian.GaussianGammaARDM method), 180
init() (bayespy.inference.vmp.nodes.bernoulli.Bernou	ulliMiniten() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDTo method), 168, 169
init() (bayespy.inference.vmp.nodes.beta.BetaDistribu	oution init_() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaISODis method), 198
init() (bayespy.inference.vmp.nodes.beta.BetaMomen	ntsinit() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaISOMomethod), 179
init() (bayespy.inference.vmp.nodes.binomial.Binomi	ialDistribution hayespy.inference.vmp.nodes.gaussian.GaussianGammaISOToC method), 167
init() (bayespy.inference.vmp.nodes.binomial.Binomi	iialMinitents (bayespy.inference.vmp.nodes.gaussian.GaussianMoments method), 177
init() (bayespy.inference.vmp.nodes.categorical.Categ	gorically istriction (havespy.inference.vmp.nodes.gaussian.GaussianToGaussianGanmethod), 165
init() (bayespy.inference.vmp.nodes.categorical.Categorical.187	goricinity () (hayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribumethod), 202
init() (bayespy.inference.vmp.nodes.categorical_mark method). 224	kov_init;n.@ahayospyninferencenann nodes gaussian.GaussianWishartMomen method), 181
init() (bayespy.inference.vmp.nodes.categorical_mark method), 188	kov_init;n.@abayespyinferencerympyrodes.gaussian.WrapToGaussianGamma method), 172
init() (bayespy.inference.vmp.nodes.constant.Constant	method), 170
init() (bayespy.inference.vmp.nodes.deterministic.Det	eterministic() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishard method), 174
init() (bayespy.inference.vmp.nodes.dirichlet.Dirichle	etDisinitution bayespy.inference.vmp.nodes.gaussian_markov_chain.Gaussian method), 203, 204
init() (bayespy.inference.vmp.nodes.dirichlet.Dirichle	etMoinit _{nts} () (bayespy.inference.vmp.nodes.gaussian_markov_chain.Gaussian method), 178
init() (bayespy.inference.vmp.nodes.expfamily.Expon	nentialitami), (bayespy.inference.vmp.nodes.gaussian_markov_chain.Switching method), 205, 207
init() (bayespy.inference.vmp.nodes.expfamily.Expon	ne ntialitam()ybayespyrinfe rence.vmp.nodes.gaussian_markov_chain.VaryingC method), 209
init() (bayespy.inference.vmp.nodes.gamma.GammaI	Distribution (bayespy.inference.vmp.nodes.multinomial.MultinomialDistribut method), 226
init() (bayespy.inference.vmp.nodes.gamma.GammaN method), 182	Mominits—() (bayespy.inference.vmp.nodes.multinomial.MultinomialMoment method), 189
init() (bayespy.inference.vmp.nodes.gaussian.Gaussia method), 197	an ARD bistrib (hayespy.inference.vmp.nodes.node.Moments method), 176
init() (bayespy.inference.vmp.nodes.gaussian.Gaussia method), 195	

```
__init__() (bayespy.inference.vmp.nodes.poisson.PoissonDistribittion) (bayespy.nodes.Wishart method), 60, 61
         method), 227
                                                          __init__() (bayespy.plot.CategoricalMarkovChainPlotter
init () (bayespy.inference.vmp.nodes.poisson.PoissonMoments method), 150, 151
         method), 190
                                                          _init__() (bayespy.plot.ContourPlotter method), 149
__init__() (bayespy.inference.vmp.nodes.stochastic.Distributioinit__() (bayespy.plot.FunctionPlotter method), 150
         method), 191
                                                          _init__()
                                                                         (bayespy.plot.GaussianTimeseriesPlotter
 init () (bayespy.inference.vmp.nodes.stochastic.Stochastic
                                                                  method), 150
         method), 155, 156
                                                          _init__() (bayespy.plot.HintonPlotter method), 149, 150
__init__() (bayespy.inference.vmp.nodes.wishart.WishartDistribution() (bayespy.plot.PDFPlotter method), 149
                                                         __init__() (bayespy.plot.Plotter method), 148
         method), 213
 _init__() (bayespy.inference.vmp.nodes.wishart.WishartMomints_() (bayespy.utils.misc.CholeskyDense method),
         method), 183
                                                                  246
<u>__init__()</u> (bayespy.inference.vmp.transformations.RotateGaussittn_() (bayespy.utils.misc.CholeskySparse method),
         method), 140
                                                                   247
__init__() (bayespy.inference.vmp.transformations.RotateGaussitnARD(bayespy.utils.misc.TestCase method), 247,
         method), 141
                                                                   249
__init__() (bayespy.inference.vmp.transformations.RotateGaussianMarkovChain
         method), 142
__init__() (bayespy.inference.vmp.transformations.RotateMuditplexes() (in module bayespy.utils.misc), 238
         method), 145
                                                         add_converter() (bayespy.inference.vmp.nodes.bernoulli.BernoulliMoments
__init__() (bayespy.inference.vmp.transformations.RotateSwitchingMarkthvdhalus5
         method), 143
                                                         add_converter() (bayespy.inference.vmp.nodes.beta.BetaMoments
__init__() (bayespy.inference.vmp.transformations.RotateVaryingMarkovtGlod)n184
         method), 144, 145
                                                         add_converter() (bayespy.inference.vmp.nodes.binomial.BinomialMoments
__init__() (bayespy.inference.vmp.transformations.RotationOptimizermethod), 186
         method), 139
                                                         add_converter() (bayespy.inference.vmp.nodes.categorical.CategoricalMom
__init__() (bayespy.nodes.Bernoulli method), 80, 81
                                                                  method), 187
__init__() (bayespy.nodes.Beta method), 100, 101
                                                         add_converter() (bayespy.inference.vmp.nodes.categorical_markov_chain.C
__init__() (bayespy.nodes.Binomial method), 84, 85
                                                                  method), 188
__init__() (bayespy.nodes.Categorical method), 88, 89
                                                         add_converter() (bayespy.inference.vmp.nodes.dirichlet.DirichletMoments
               (bayespy.nodes.CategoricalMarkovChain
__init__()
                                                                  method), 185
         method), 109
                                                         add\_converter() \ (bayes py. inference. vmp. nodes. gamma. Gamma Moments
__init__() (bayespy.nodes.Dirichlet method), 104, 105
                                                                  method), 182
__init__() (bayespy.nodes.Exponential method), 64, 65
                                                         add_converter() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaA
__init__() (bayespy.nodes.Gamma method), 56, 57
                                                                  method), 180
 _init__() (bayespy.nodes.Gate method), 135
                                                         add_converter() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaIS
__init__() (bayespy.nodes.Gaussian method), 47, 48
                                                                  method), 179
__init__() (bayespy.nodes.GaussianARD method), 52, 53
                                                         add_converter() (bayespy.inference.vmp.nodes.gaussian.GaussianMoments
 _init__()
                  (bayespy.nodes.GaussianGammaARD
                                                                  method), 177
         method), 73
                                                         add converter() (bayespy.inference.vmp.nodes.gaussian.GaussianWishartM
 _init__() (bayespy.nodes.GaussianGammaISO method),
                                                                  method), 181
         68.69
                                                         add converter() (bayespy, inference.vmp.nodes.gaussian markov chain. Gau
                 (bayespy.nodes.GaussianMarkovChain
__init__()
                                                                  method), 178
         method), 113, 114
                                                         add_converter() (bayespy.inference.vmp.nodes.multinomial.MultinomialMo
 _init__() (bayespy.nodes.GaussianWishart method), 76,
                                                                  method), 189
         77
                                                         add_converter() (bayespy.inference.vmp.nodes.node.Moments
__init__() (bayespy.nodes.Mixture method), 128, 129
                                                                  class method), 176
__init__() (bayespy.nodes.Multinomial method), 92, 93
                                                         add_converter() (bayespy.inference.vmp.nodes.poisson.PoissonMoments
__init__() (bayespy.nodes.Poisson method), 96, 97
                                                                  method), 190
__init__() (bayespy.nodes.SumMultiply method), 133
                                                         add_converter() (bayespy.inference.vmp.nodes.wishart.WishartMoments
__init__() (bayespy.nodes.SwitchingGaussianMarkovChain
                                                                  method), 183
         method), 118, 119
                                                         add_leading_axes() (in module bayespy.utils.misc), 238
__init__() (bayespy.nodes.VaryingGaussianMarkovChain
                                                         add\_plate\_axis() \ (bayespy.inference.vmp.nodes.constant. Constant
         method), 123, 124
                                                                  method), 164
```

```
add plate axis() (bayespy.inference.vmp.nodes.deterministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministiaddetleministi
                                                                                                                             (bayespy.utils.misc.TestCase
              method), 162
                                                                                    addTypeEqualityFunc()
add plate axis() (bayespy.inference.vmp.nodes.expfamily.ExponentialFrathids), 249
              method), 158
                                                                                    alpha_beta_recursion() (in module bayespy.utils.random),
add plate axis() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGaussianWishart
              method), 169
                                                                                    array to scalar() (in module bayespy.utils.misc), 238
add plate axis() (bayespy.inference.vmp.nodes.gaussian.Gaussidingiamhmalistatio@aussian@ayespy.AnkaDes.Exponential
              method), 167
                                                                                                  method), 65
add plate axis() (bayespy.inference.vmp.nodes.gaussian.GaussidingToOddussislmOtt()nutbalkSOpy.nodes.Gamma method),
              method), 165
add_plate_axis() (bayespy.inference.vmp.nodes.gaussian.Wrays@rtG@ussiane@punutilsARiBe.TestCase method), 255
              method), 172
                                                                                    assertAllClose() (bayespy.utils.misc.TestCase method),
add plate axis() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaISO
              method), 171
                                                                                    assertAlmostEqual()
                                                                                                                             (bayespy.utils.misc.TestCase
add_plate_axis() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussiathVd) harto
              method), 174
                                                                                    assertAlmostEquals()
                                                                                                                             (bayespy.utils.misc.TestCase
add_plate_axis() (bayespy.inference.vmp.nodes.node.Node
                                                                                                  method), 250
              method), 154
                                                                                    assertArrayEqual()
                                                                                                                             (bayespy.utils.misc.TestCase
add plate axis() (bayespy.inference.vmp.nodes.stochastic.Stochastic method), 250
              method), 156
                                                                                    assertCountEqual()
                                                                                                                             (bayespy.utils.misc.TestCase
add_plate_axis() (bayespy.nodes.Bernoulli method), 81
                                                                                                  method), 250
add plate axis() (bayespy.nodes.Beta method), 101
                                                                                    assertDictContainsSubset() (bayespy.utils.misc.TestCase
add_plate_axis() (bayespy.nodes.Binomial method), 85
                                                                                                  method), 250
add plate axis() (bayespy.nodes.Categorical method), 89
                                                                                    assertDictEqual() (bayespy.utils.misc.TestCase method),
add plate axis() (bayespy.nodes.CategoricalMarkovChain
                                                                                                   250
              method), 110
                                                                                    assertEqual() (bayespy.utils.misc.TestCase method), 250
add_plate_axis() (bayespy.nodes.Dirichlet method), 105
                                                                                    assertEquals() (bayespy.utils.misc.TestCase method), 250
add_plate_axis() (bayespy.nodes.Exponential method),
                                                                                    assertFalse() (bayespy.utils.misc.TestCase method), 250
                                                                                    assertGreater() (bayespy.utils.misc.TestCase method),
add_plate_axis() (bayespy.nodes.Gamma method), 57
                                                                                                  251
add_plate_axis() (bayespy.nodes.Gate method), 135
                                                                                    assertGreaterEqual()
                                                                                                                             (bayespy.utils.misc.TestCase
add_plate_axis() (bayespy.nodes.Gaussian method), 48
                                                                                                   method), 251
add_plate_axis() (bayespy.nodes.GaussianARD method),
                                                                                    assertIn() (bayespy.utils.misc.TestCase method), 251
                                                                                    assertIs() (bayespy.utils.misc.TestCase method), 251
add plate axis() (bayespy.nodes.GaussianGammaARD
                                                                                    assertIsInstance() (bayespy.utils.misc.TestCase method),
             method), 73
                                                                                                   251
add plate axis()
                            (bayespy.nodes.GaussianGammaISO
                                                                                    assertIsNone()
                                                                                                            (bayespy.utils.misc.TestCase method),
              method), 69
                                                                                                   251
add_plate_axis() (bayespy.nodes.GaussianMarkovChain
                                                                                    assertIsNot() (bayespy.utils.misc.TestCase method), 251
              method), 114
                                                                                    assertIsNotNone() (bayespy.utils.misc.TestCase method),
add plate axis()
                                  (bayespy.nodes.GaussianWishart
                                                                                    assertLess() (bayespy.utils.misc.TestCase method), 251
              method), 77
add plate axis() (bayespy.nodes.Mixture method), 129
                                                                                    assertLessEqual() (bayespy.utils.misc.TestCase method),
add_plate_axis() (bayespy.nodes.Multinomial method),
                                                                                                   252
                                                                                    assertListEqual() (bayespy.utils.misc.TestCase method),
add_plate_axis() (bayespy.nodes.Poisson method), 97
                                                                                                   252
add_plate_axis() (bayespy.nodes.SumMultiply method),
                                                                                    assertMessage() (bayespy.utils.misc.TestCase method),
                                                                                                   252
add_plate_axis() (bayespy.nodes.SwitchingGaussianMarkov&haitMessageToChild()
                                                                                                                             (bayespy.utils.misc.TestCase
              method), 119
                                                                                                  method), 252
add_plate_axis() (bayespy.nodes.VaryingGaussianMarkovChasiertMultiLineEqual()
                                                                                                                             (bayespy.utils.misc.TestCase
             method), 124
                                                                                                  method), 252
add_plate_axis() (bayespy.nodes.Wishart method), 61
                                                                                    assertNotAlmostEqual()
                                                                                                                             (bayespy.utils.misc.TestCase
add trailing axes() (in module bayespy.utils.misc), 238
                                                                                                  method), 252
```

assertNotAlmostEquals() method), 252	(bayespy.utils.misc.TestCase	bayespy.inference	(class .vmp.nodes.binomial)	in ,
	.utils.misc.TestCase method),	220		
252		BinomialMoments	(class	in
assertNotEquals() (bayespy 253	y.utils.misc.TestCase method),	bayespy.inference 186	.vmp.nodes.binomial)	,
	s.misc.TestCase method), 253	block_banded() (in module	bayespy.utils.misc), 23	38
assertNotIsInstance() method), 253	(bayespy.utils.misc.TestCase	block_banded_solve() (in a 230	module bayespy.utils	.linalg),
assertNotRegex() (bayespy 253	v.utils.misc.TestCase method),	bound() (bayespy.inference. method), 140	vmp.transformations.I	RotateGaussian
assertRaises() (bayespy.util	s.misc.TestCase method), 253	bound() (bayespy.inference.	vmp.transformations.I	RotateGaussianARD
assertRaisesRegex() method), 253	(bayespy.utils.misc.TestCase	method), 141 bound() (bayespy.inference.	vmp.transformations.I	RotateGaussianMarkovCh
assertRaisesRegexp()	(bayespy.utils.misc.TestCase	method), 142	1	
method), 254	` 7 17	bound() (bayespy.inference.	vmp.transformations.I	RotateMultiple
	s.misc.TestCase method), 254	method), 146	1	1
assertRegexpMatches()	(bayespy.utils.misc.TestCase	bound() (bayespy.inference.	vmp.transformations.I	RotateSwitchingMarkovC
method), 254		method), 144	•	C
assertSequenceEqual() method), 254	(bayespy.utils.misc.TestCase	bound() (bayespy.inference. method), 145	vmp.transformations.I	RotateVaryingMarkovCha
assertSetEqual() (bayespy	.utils.misc.TestCase method),	broadcasted_shape() (in mo	dule bayespy.utils.mis	c), 239
254		broadcasted_shape_from_ar	rays() (in	module
assertTrue() (bayespy.utils.	misc.TestCase method), 254	bayespy.utils.misc	2), 239	
assertTupleEqual()	(bayespy.utils.misc.TestCase			
method), 255		С		
assertWarns() (bayespy.util	s.misc.TestCase method), 255	Categorical (class in bayesp	y.nodes), 88	
assertWarnsRegex()	(bayespy.utils.misc.TestCase	categorical() (in module bay		33
method), 255		CategoricalDistribution	(class	in
atleast_nd() (in module bay	= -	bayespy.inference	.vmp.nodes.categorica	nl),
axes_to_collapse() (in mod	ule bayespy.utils.misc), 238	222		
В		CategoricalMarkovChain (c CategoricalMarkovChainDi		in in
bayespy.inference (module), 136	_	.vmp.nodes.categorica	al markov chain),
bayespy.nodes (module), 4'	7	224	1	//
bayespy.plot (module), 146	;)	CategoricalMarkovChainMo	oments (class	in
bayespy.utils.linalg (modul	e), 229	bayespy.inference	.vmp.nodes.categorica	ıl_markov_chain),
bayespy.utils.misc (module	2), 236	188		
bayespy.utils.optimize (mo	dule), 236	CategoricalMarkovChainPlo	otter (class in bayesp	oy.plot),
bayespy.utils.random (mod	ule), 232	150		
Bernoulli (class in bayespy	.nodes), 80	CategoricalMoments	(class	in
bernoulli() (in module baye	espy.utils.random), 232	bayespy.inference	.vmp.nodes.categorica	nl),
BernoulliDistribution	(class in	187		
	e.vmp.nodes.bernoulli),	ceildiv() (in module bayespy	y.utils.misc), 239	
219		<pre>check_gradient() (in module</pre>		
BernoulliMoments	(class in	<pre>check_gradient() (in module</pre>		xe), 236
	e.vmp.nodes.bernoulli),	chol() (in module bayespy.u	•	
185		chol() (in module bayespy.u		
Beta (class in bayespy.node		chol_inv() (in module bayes		
BetaDistribution	(class in	chol_inv() (in module bayes		_
	e.vmp.nodes.beta), 214	chol_logdet() (in module ba		
BetaMoments	(class in	chol_logdet() (in module ba		
	e.vmp.nodes.beta), 183	chol_solve() (in module bay		
Binomial (class in bayespy	.nodes), 84	chol solve() (in module bay	espy.utils.misc), 239	

```
cholesky() (in module bayespy.utils.misc), 239
                                                                                                                                         method), 226
CholeskyDense (class in bayespy.utils.misc), 246
                                                                                                                     compute_cgf_from_parents()
CholeskySparse (class in bayespy.utils.misc), 247
                                                                                                                                         (bayespy.inference.vmp.nodes.poisson.PoissonDistribution
composite_function() (in module bayespy.utils.misc), 240
                                                                                                                                         method), 228
compute_cgf_from_parents()
                                                                                                                     compute cgf from parents()
                   (bayespy,inference,vmp,nodes,bernoulli,BernoulliDistributi@hayespy,inference,vmp,nodes,wishart,WishartDistribution
                   method), 219
                                                                                                                                         method), 213
compute_cgf_from_parents()
                                                                                                                     compute dims from values()
                   (bayespy.inference.vmp.nodes.beta.BetaDistribution
                                                                                                                                         (bayespy.inference.vmp.nodes.bernoulli.BernoulliMoments
                                                                                                                                         method), 186
                   method), 216
compute_cgf_from_parents()
                                                                                                                     compute_dims_from_values()
                   (bayespy,inference.vmp.nodes.binomial.BinomialDistribution) to the control of the
                                                                                                                                         method), 184
                   method), 221
                                                                                                                     compute_dims_from_values()
compute_cgf_from_parents()
                   (bayespy.inference.vmp.nodes.categorical.CategoricalDistrikhtivarspy.inference.vmp.nodes.binomial.BinomialMoments
                   method), 223
                                                                                                                                         method), 187
compute_cgf_from_parents()
                                                                                                                     compute_dims_from_values()
                   (bayespy.inference.vmp.nodes.categorical_markov_chain.Ca(tragorispylMfentenceChaimDistriesutiatorgorical.CategoricalMoments
                   method), 224
                                                                                                                                         method), 188
compute_cgf_from_parents()
                                                                                                                     compute dims from values()
                   (bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution(bayespy.inference.vmp.nodes.categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categor
                   method), 217
                                                                                                                                         method), 189
compute_cgf_from_parents()
                                                                                                                     compute_dims_from_values()
                   (bayespy, inference, vmp, nodes, expfamily, Exponential Family, Daytrippytinference, vmp, nodes, dirichlet, Dirichlet Moments
                   method), 193
                                                                                                                                        method), 185
compute_cgf_from_parents()
                                                                                                                     compute dims from values()
                   (bayespy.inference.vmp.nodes.gamma.GammaDistribution (bayespy.inference.vmp.nodes.gamma.GammaMoments
                   method), 212
                                                                                                                                         method), 182
                                                                                                                     compute_dims_from_values()
compute_cgf_from_parents()
                   (bayespy, inference, vmp, nodes, gaussian, Gaussian, ARDDistriction, inference, vmp, nodes, gaussian, Gaussian, Gamma, ARDMo
                   method), 197
                                                                                                                                         method), 180
compute_cgf_from_parents()
                                                                                                                     compute_dims_from_values()
                   (bayespy, inference, vmp, nodes, gaussian, Gaussian Distributio (bayespy, inference, vmp, nodes, gaussian, Gaussian Gamma ISO Mor
                   method), 195
                                                                                                                                         method), 179
compute_cgf_from_parents()
                                                                                                                     compute dims from values()
                   (bayespy, inference, vmp.nodes, gaussian, Gaussian Gamma ARDD) is tributforence, vmp.nodes, gaussian, Gaussian Moments
                   method), 200
                                                                                                                                         method), 177
compute_cgf_from_parents()
                                                                                                                     compute_dims_from_values()
                   (bayespy.inference.vmp.nodes.gaussian.GaussianGammaIS@Daistsibntitference.vmp.nodes.gaussian.GaussianWishartMoment
                   method), 199
                                                                                                                                         method), 181
compute_cgf_from_parents()
                                                                                                                     compute_dims_from values()
                   (bayespy, inference, vmp, nodes, gaussian, Gaussian Wishart Distribution, inference, vmp, nodes, gaussian markov chain, Gaussian l
                   method), 202
                                                                                                                                         method), 178
compute_cgf_from_parents()
                                                                                                                     compute_dims_from_values()
                   (bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianythosechaixeDistpihutles.multinomial.MultinomialMoments
                   method), 204
                                                                                                                                         method), 189
compute_cgf_from_parents()
                                                                                                                     compute dims from values()
                   (bayespy.inference.vmp.nodes.gaussian_markov_chain.Swittchaine@paussianeMarkovyChaiteDistudeuMomnents
                   method), 207
                                                                                                                                         method), 176
compute_cgf_from_parents()
                                                                                                                     compute_dims_from_values()
                   (bayespy.inference.vmp.nodes.gaussian_markov_chain.Vary(hay@apysiaftd/Vardtov @maintDestribitsion.PoissonMoments
                   method), 209
                                                                                                                                        method), 190
compute_cgf_from_parents()
                                                                                                                     compute dims from values()
                   (bayespy, inference, vmp.nodes, multinomial. Multinomial Dist but spy, inference, vmp.nodes, wishart. Wishart Moments
```

method), 183

```
compute_fixed_moments()
                                                        compute fixed moments and f()
         (bayespy, inference, vmp. nodes, bernoulli, Bernoulli Moments (bayespy, inference, vmp. nodes, binomial Binomial Distribution
         method), 186
                                                                 method), 221
compute_fixed_moments()
                                                        compute fixed moments and f()
         (bayespy.inference.vmp.nodes.beta.BetaMoments
                                                                 (bayespy.inference.vmp.nodes.categorical.CategoricalDistribution
         method), 184
                                                                  method), 223
compute fixed moments()
                                                        compute_fixed_moments_and_f()
         (bayespy, inference, vmp, nodes, binomial. Binomial Moments (bayespy, inference, vmp, nodes, categorical markov chain. Categorical markov chain.
                                                                 method), 224
         method), 187
compute_fixed_moments()
                                                        compute_fixed_moments_and_f()
         (bayespy.inference.vmp.nodes.categorical.CategoricalMomethatayespy.inference.vmp.nodes.dirichlet.DirichletDistribution
         method), 188
                                                                 method), 218
compute_fixed_moments()
                                                        compute_fixed_moments_and_f()
         (bayespy.inference.vmp.nodes.categorical_markov_chain.CategorispylMfankowEhainMorhesnex.pfamily.ExponentialFamilyDistr
         method), 189
                                                                  method), 193
compute_fixed_moments()
                                                        compute_fixed_moments_and_f()
         (bayespy.inference.vmp.nodes.dirichlet.DirichletMoments (bayespy.inference.vmp.nodes.gamma.GammaDistribution
         method), 185
                                                                 method), 212
compute_fixed_moments()
                                                        compute fixed moments and f()
         (bayespy.inference.vmp.nodes.gamma.GammaMoments
                                                                 (bayespy.inference.vmp.nodes.gaussian.GaussianARDDistributio
         method), 182
                                                                  method), 197
compute_fixed_moments()
                                                        compute_fixed_moments_and_f()
         (bayespy, inference, vmp, nodes, gaussian, Gaussian Gamma ARD Mespy, inference, vmp, nodes, gaussian, Gaussian Distribution
         method), 180
                                                                 method), 195
compute_fixed_moments()
                                                        compute fixed moments and f()
         (bayespy, inference, vmp, nodes, gaussian, Gaussian Gamma IS (DM) versputin ference, vmp, nodes, gaussian, Gaussian Gamma ARDDis
         method), 179
                                                                 method), 201
compute_fixed_moments()
                                                        compute_fixed_moments_and_f()
         (bayespy, inference.vmp.nodes.gaussian.GaussianMoments (bayespy, inference.vmp.nodes.gaussian.GaussianGammaISODist
         method), 177
                                                                 method), 199
compute_fixed_moments()
                                                        compute\_fixed\_moments\_and\_f()
         (bayespy.inference.vmp.nodes.gaussian.GaussianWishartMobartspy.inference.vmp.nodes.gaussian.GaussianWishartDistribu
         method), 181
                                                                 method), 202
compute_fixed_moments()
                                                        compute fixed moments and f()
         (bayespy, inference, vmp, nodes, gaussian markov chain. Gaussian) Gaussian markov chain. Gaussian daussian markov chain. Gaussian
         method), 178
                                                                 method), 204
compute_fixed_moments()
                                                        compute_fixed_moments_and_f()
         (bayespy.inference.vmp.nodes.multinomial.MultinomialMo(harytespy.inference.vmp.nodes.gaussian_markov_chain.Switching
         method), 190
                                                                 method), 207
compute_fixed_moments()
                                                        compute fixed moments and f()
         (bayespy.inference.vmp.nodes.node.Moments
                                                                  (bayespy.inference.vmp.nodes.gaussian markov chain.VaryingG
         method), 176
                                                                  method), 210
compute_fixed_moments()
                                                        compute\_fixed\_moments\_and\_f()
         (bayespy.inference.vmp.nodes.poisson.PoissonMoments
                                                                 (bayespy.inference.vmp.nodes.multinomial.MultinomialDistribut
         method), 190
                                                                  method), 226
compute_fixed_moments()
                                                        compute_fixed_moments_and_f()
         (bayespy.inference.vmp.nodes.wishart.WishartMoments
                                                                 (bayespy.inference.vmp.nodes.poisson.PoissonDistribution
         method), 183
                                                                 method), 228
compute_fixed_moments_and_f()
                                                        compute_fixed_moments_and_f()
         (bayespy.inference.vmp.nodes.bernoulli.BernoulliDistributi\\ \emptyset hayespy.inference.vmp.nodes.wishart.WishartDistribution
         method), 219
                                                                 method), 213
compute_fixed_moments_and_f()
                                                        compute_logpdf() (bayespy.inference.vmp.nodes.bernoulli.BernoulliDistrib
                                                                 method), 219
```

method), 216

270 Index

(bayespy.inference.vmp.nodes.beta.BetaDistribution

```
compute logpdf() (bayespy.inference.vmp.nodes.beta.BetaDistributiommethod), 225
              method), 216
                                                                                      compute mask to parent()
compute logpdf() (bayespy.inference.vmp.nodes.binomial.BinomialD(bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution
              method), 221
                                                                                                     method), 218
compute logpdf() (bayespy.inference.vmp.nodes.categoricalcoatputericalsolistiobpticent()
              method), 223
                                                                                                    (bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistr
compute logpdf() (bayespy.inference.vmp.nodes.categorical markov voletimo. (Dath 20 rical Markov Chain Distribution
              method), 225
                                                                                      compute mask to parent()
compute_logpdf() (bayespy.inference.vmp.nodes.dirichlet.DirichletDischalpesionninference.vmp.nodes.gamma.GammaDistribution
              method), 218
                                                                                                    method), 212
compute_logpdf() (bayespy.inference.vmp.nodes.expfamily. Examputes_timalstskm_toy_pasterib() tion
              method), 193
                                                                                                     (bayespy.inference.vmp.nodes.gaussian.GaussianARDDistributio
compute_logpdf() (bayespy.inference.vmp.nodes.gamma.GammaDistmibethiod), 197
              method), 212
                                                                                      compute_mask_to_parent()
compute_logpdf() (bayespy.inference.vmp.nodes.gaussian.GaussianARbayispybinference.vmp.nodes.gaussian.GaussianDistribution
                                                                                                     method), 196
              method), 197
compute_logpdf() (bayespy.inference.vmp.nodes.gaussian.Gaussputd_istaishuttoonparent()
              method), 195
                                                                                                     (bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDis
compute logpdf() (bayespy.inference.vmp.nodes.gaussian.GaussianGamenthaodRDDistribution
              method), 201
                                                                                      compute mask to parent()
compute_logpdf() (bayespy.inference.vmp.nodes.gaussian.GaussianGahayasianGabatiwmp.nodes.gaussian.GaussianGammaISODist
              method), 199
                                                                                                     method), 199
compute_logpdf() (bayespy.inference.vmp.nodes.gaussian.GansspiateVinshakt_Distribution
              method), 202
                                                                                                     (bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribu
compute_logpdf() (bayespy.inference.vmp.nodes.gaussian_markov_chainfl@ad)ssl@MarkovChainDistribution
              method), 204
                                                                                      compute mask to parent()
compute_logpdf() (bayespy.inference.vmp.nodes.gaussian_markov_ch(atiany\( \frac{\text{Syritycilmifere} Graces virup\( \frac{\text{More syritycilmifere} Graces virup\( \frac{\text{More 
              method), 207
                                                                                                     method), 204
compute_logpdf() (bayespy.inference.vmp.nodes.gaussian_markputechaiasWatoyipgfGatt(ssianMarkovChainDistribution
              method), 210
                                                                                                     (bayespy.inference.vmp.nodes.gaussian_markov_chain.Switching
compute_logpdf() (bayespy.inference.vmp.nodes.multinomial.Multinomialbd)tr2bution
              method), 226
                                                                                      compute_mask_to_parent()
compute_logpdf() (bayespy.inference.vmp.nodes.poisson.PoissonDistr(lbayisspy.inference.vmp.nodes.gaussian_markov_chain.VaryingG
                                                                                                     method), 210
              method), 228
compute_logpdf() (bayespy.inference.vmp.nodes.wishart.WishartDistmibarkono parent()
                                                                                                     (bayespy.inference.vmp.nodes.multinomial.MultinomialDistribution)
              method), 213
                                                                                                     method), 226
compute lowerbound() (bayespy.inference.VB method),
                                                                                      compute_mask_to_parent()
compute_lowerbound_terms()
                                                                                                     (bayespy.inference.vmp.nodes.poisson.PoissonDistribution
                                                  (bayespy.inference.VB
              method), 138
                                                                                                     method), 228
compute_mask_to_parent()
                                                                                      compute mask to parent()
              (bayes py. inference. vmp. nodes. bernoulli. Bernoulli Distributi \o hayes py. inference. vmp. nodes. stochastic. Distribution
                                                                                                    method), 192
              method), 219
compute_mask_to_parent()
                                                                                      compute_mask_to_parent()
              (bayespy.inference.vmp.nodes.beta.BetaDistribution
                                                                                                     (bayespy.inference.vmp.nodes.wishart.WishartDistribution
              method), 216
                                                                                                     method), 214
compute_mask_to_parent()
                                                                                      compute_message_to_parent()
              (bayespy, inference, vmp.nodes, binomial. Binomial Distribution bayespy, inference, vmp.nodes, bernoulli, Bernoulli, Distribution
              method), 221
                                                                                                     method), 219
compute_mask_to_parent()
                                                                                      compute_message_to_parent()
              (bayespy.inference.vmp.nodes.categorical.CategoricalDistributionspy.inference.vmp.nodes.beta.BetaDistribution
              method), 223
                                                                                                    method), 216
compute_mask_to_parent()
                                                                                      compute_message_to_parent()
              (bayespy, inference, vmp, nodes, categorical markov chain. Categorical Markov Chain Distribution (bayespy, inference, vmp, nodes, categorical markov chain. Categorical Markov Chain Distribution
```

```
method), 221
                                                                                                                                                                                                               method), 220
compute_message_to_parent()
                                                                                                                                                                                 compute moments and cgf()
                              (bayespy, inference, vmp, nodes, categorical. Categorical Distributions py, inference, vmp, nodes, beta, Beta Distribution
                              method), 223
                                                                                                                                                                                                                method), 216
compute_message_to_parent()
                                                                                                                                                                                 compute moments and cgf()
                              (bayespy,inference,vmp,nodes,categorical markov chain.CategoricalMarkov@hamDistributionmial.BinomialDistribution
                              method), 225
                                                                                                                                                                                                               method), 221
compute_message_to_parent()
                                                                                                                                                                                 compute moments and cgf()
                              (bayespy, inference, vmp, nodes, dirichlet. Dirichlet Distribution (bayespy, inference, vmp, nodes, categorical. Categorical Distribution
                             method), 218
                                                                                                                                                                                                              method), 223
compute_message_to_parent()
                                                                                                                                                                                 compute_moments_and_cgf()
                             (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.Daytrispytinference.vmp.nodes.categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categorical_markov_chain.Categoric
                              method), 193
                                                                                                                                                                                                              method), 225
                                                                                                                                                                                 compute_moments_and_cgf()
compute_message_to_parent()
                              (bayespy.inference.vmp.nodes.gamma.GammaDistribution (bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution
                              method), 212
                                                                                                                                                                                                               method), 218
compute_message_to_parent()
                                                                                                                                                                                 compute_moments_and_cgf()
                              (bayespy, inference, vmp, nodes, gaussian, Gaussian, ARDD istriction, inference, vmp, nodes, expfamily, Exponential Family Distriction, and inference vmp, nodes, expfamily, Exponential Family, Distriction, and the second secon
                             method), 198
                                                                                                                                                                                                              method), 193
                                                                                                                                                                                 compute moments and cgf()
compute_message_to_parent()
                              (bayespy.inference.vmp.nodes.gaussian.GaussianDistributio(bayespy.inference.vmp.nodes.gamma.GammaDistribution
                             method), 196
                                                                                                                                                                                                               method), 212
                                                                                                                                                                                 compute_moments_and_cgf()
compute_message_to_parent()
                              (bayespy, inference, vmp, nodes, gaussian, Gaussian Gamma ARDD istribution for expression of the control of the
                             method), 201
                                                                                                                                                                                                               method), 198
compute_message_to_parent()
                                                                                                                                                                                 compute moments and cgf()
                              (bayespy, inference, vmp.nodes, gaussian, Gaussian Gamma IS (Chaises in but inference, vmp.nodes, gaussian, Gaussian Distribution
                              method), 199
                                                                                                                                                                                                              method), 196
compute_message_to_parent()
                                                                                                                                                                                 compute_moments_and_cgf()
                              (bayespy, inference, vmp, nodes, gaussian, Gaussian Wishart Distribution, inference, vmp, nodes, gaussian, Gaussian Gamma ARDDis
                              method), 202
                                                                                                                                                                                                               method), 201
compute_message_to_parent()
                                                                                                                                                                                 compute_moments_and_cgf()
                             (bayespy.inference.vmp.nodes.gaussian_markov_chain.GaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGaussianGau
                              method), 204
                                                                                                                                                                                                               method), 199
compute_message_to_parent()
                                                                                                                                                                                 compute moments and cgf()
                              (bayespy.inference.vmp.nodes.gaussian_markov_chain.SwitchiyeschainslianeMarkovyChoindeliganibaitionGaussianWishartDistribu
                             method), 208
                                                                                                                                                                                                               method), 203
compute_message_to_parent()
                                                                                                                                                                                 compute_moments_and_cgf()
                              (bayespy.inference.vmp.nodes.gaussian_markov_chain.Vary(ing/capysiafel/lankev/chapainol/distgibutsionn_markov_chain.Gaussian]
                             method), 210
                                                                                                                                                                                                              method), 204
compute_message_to_parent()
                                                                                                                                                                                 compute moments and cgf()
                              (bayespy, inference, vmp, nodes, multinomial. Multinomial Distributispy, inference, vmp, nodes, gaussian markov chain. Switching
                              method), 227
                                                                                                                                                                                                               method), 208
compute_message_to_parent()
                                                                                                                                                                                 compute_moments_and_cgf()
                              (bayespy,inference.vmp.nodes.poisson.PoissonDistribution (bayespy,inference.vmp.nodes.gaussian_markov_chain.VaryingG
                              method), 228
                                                                                                                                                                                                               method), 210
                                                                                                                                                                                 compute_moments_and_cgf()
compute_message_to_parent()
                              (bayespy.inference.vmp.nodes.stochastic.Distribution
                                                                                                                                                                                                               (bayespy.inference.vmp.nodes.multinomial.MultinomialDistribut
                              method), 192
                                                                                                                                                                                                               method), 227
compute_message_to_parent()
                                                                                                                                                                                 compute_moments_and_cgf()
                              (bayespy.inference.vmp.nodes.wishart.WishartDistribution (bayespy.inference.vmp.nodes.poisson.PoissonDistribution
                                                                                                                                                                                                              method), 228
                             method), 214
compute_moments_and_cgf()
                                                                                                                                                                                 compute_moments_and_cgf()
                              (bayespy,inference,vmp,nodes,bernoulli,BernoulliDistributi@hayespy,inference,vmp,nodes,wishart,WishartDistribution
```

```
method), 214
                                                                                                     method), 228
compute_phi_from_parents()
                                                                                      compute phi from parents()
              (bayespy,inference,vmp,nodes,bernoulli,BernoulliDistributi@hayespy,inference,vmp,nodes,wishart,WishartDistribution
              method), 220
                                                                                                     method), 214
compute phi from parents()
                                                                                      Constant (class in bayespy.inference.vmp.nodes.constant),
              (bayespy.inference.vmp.nodes.beta.BetaDistribution
              method), 216
                                                                                      contour() (in module bayespy.plot), 147
compute phi from parents()
                                                                                      ContourPlotter (class in bayespy.plot), 149
              (bayespy, inference, vmp, nodes, binomial. Binomial Distributions) (in module bayespy, utils, random), 233
              method), 221
                                                                                      countTestCases() (bayespy.utils.misc.TestCase method),
compute_phi_from_parents()
              (bayespy.inference.vmp.nodes.categorical.CategoricalDissatiobOttóon module bayespy.utils.random), 233
              method), 223
compute_phi_from_parents()
              (bayespy.inference.vmp.nodes.categorical_markove_ghain Gategorical Markay Chair Distribution), 256
              method), 225
                                                                                       defaultTestResult()
                                                                                                                                (bayespy.utils.misc.TestCase
compute_phi_from_parents()
                                                                                                     method), 256
              (bayespy.inference.vmp.nodes.dirichlet.DirichletDistributionBayespy.inference.vmp.nodes.constant.Constant
              method), 218
                                                                                                     method), 164
compute phi from parents()
                                                                                      delete() (bayespy.inference.vmp.nodes.deterministic.Deterministic
              (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily.hightipp
              method), 193
                                                                                      delete() (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily
compute_phi_from_parents()
                                                                                                     method), 158
              (bayespy.inference.vmp.nodes.gamma.GammaDistributionbayespy.inference.vmp.nodes.gaussian.GaussianGammaARDToGa
              method), 212
                                                                                                     method), 169
compute phi from parents()
                                                                                      delete() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaISOToGau
              (bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution), 167
              method), 198
                                                                                      delete() (bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGamm
compute_phi_from_parents()
                                                                                                     method), 165
              (bayespy.inference.vmp.nodes.gaussian.Gaussian Distributionlyespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaA
              method), 196
                                                                                                     method), 172
compute_phi_from_parents()
                                                                                       delete() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammaIS
              (bayespy.inference.vmp.nodes.gaussian.GaussianGammaARhepistribution
              method), 201
                                                                                      delete() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishart
compute phi from parents()
                                                                                                     method), 174
              (bayespy.inference.vmp.nodes.gaussian.Gaussian.GangmalSODistributionsy.inference.vmp.nodes.node.Node
              method), 199
                                                                                                     method), 154
compute phi from parents()
                                                                                      delete() (bayespy.inference.vmp.nodes.stochastic.Stochastic
              (bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistricture) 156
              method), 203
                                                                                      delete() (bayespy.nodes.Bernoulli method), 81
compute phi from parents()
                                                                                      delete() (bayespy.nodes.Beta method), 101
              (bayespy.inference.vmp.nodes.gaussian_markov_chaine@aussian_Harkers Baine Pristribution), 85
              method), 205
                                                                                      delete() (bayespy.nodes.Categorical method), 89
compute_phi_from_parents()
                                                                                                              (bayespy.nodes.CategoricalMarkovChain
                                                                                      delete()
              (bayespy.inference.vmp.nodes.gaussian_markov_chain.SwitchingGaussianMarkovChainDistribution
              method), 208
                                                                                      delete() (bayespy.nodes.Dirichlet method), 105
compute phi from parents()
                                                                                      delete() (bayespy.nodes.Exponential method), 65
              (bayespy.inference.vmp.nodes.gaussian_markov_chaineVaryings Grunsian Markoy Chain Distribution
              method), 210
                                                                                      delete() (bayespy.nodes.Gate method), 135
compute_phi_from_parents()
                                                                                      delete() (bayespy.nodes.Gaussian method), 48
              (bayespy.inference.vmp.nodes.multinomial.Multinomial.Wiltinomial.Multinomial.Multinomial.Wiltinomial.Multinomial.Wiltinomial.Multinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.Wiltinomial.W
              method), 227
                                                                                      delete() (bayespy.nodes.GaussianGammaARD method),
compute phi from parents()
              (bayespy.inference.vmp.nodes.poisson.PoissonDistribution
```

delete() (bayespy.nodes.GaussianGammaISO method), 69	doCleanups() (bayespy.utils.misc.TestCase method), 256 Dot() (in module bayespy.nodes), 132
delete() (bayespy.nodes.GaussianMarkovChain method), 114	dot() (in module bayespy.utils.linalg), 230
delete() (bayespy.nodes.GaussianWishart method), 77	E
delete() (bayespy.nodes.Mixture method), 129	Exponential (class in bayespy.nodes), 64
delete() (bayespy.nodes.Multinomial method), 93	ExponentialFamily (class in
delete() (bayespy.nodes.Poisson method), 97	bayespy.inference.vmp.nodes.expfamily),
delete() (bayespy.nodes.SumMultiply method), 133	157
delete() (bayespy.nodes.SwitchingGaussianMarkovChain method), 119	ExponentialFamilyDistribution (class in bayespy.inference.vmp.nodes.expfamily),
delete() (bayespy.nodes.VaryingGaussianMarkovChain method), 124	192
delete() (bayespy.nodes.Wishart method), 61	F
Deterministic (class in	fail() (havesny utils miss TastCase method) 256
bayespy.inference.vmp.nodes.deterministic),	fail() (bayespy.utils.misc.TestCase method), 256 failIf() (bayespy.utils.misc.TestCase method), 256
161	
diag() (in module bayespy.utils.misc), 240	failIfAlmostEqual() (bayespy.utils.misc.TestCase
diagonal() (in module bayespy.utils.misc), 240	method), 256
dims (bayespy.inference.vmp.nodes.expfamily.Exponential	faillfEqual() (bayespy.utils.misc.TestCase method), 256
attribute), 161	'faffChless() (bayespy.utils.misc.TestCase method), 256
dims (bayespy.nodes.Bernoulli attribute), 84	failUnlessAlmostEqual() (bayespy.utils.misc.TestCase
dims (bayespy.nodes.Beta attribute), 104	method), 256
dims (bayespy.nodes.Binomial attribute), 88	failUnlessEqual() (bayespy.utils.misc.TestCase method),
dims (bayespy.nodes.Categorical attribute), 92	257
dims (bayespy.nodes.Categorical attribute), 92 dims (bayespy.nodes.CategoricalMarkovChain attribute),	failUnlessRaises() (bayespy.utils.misc.TestCase method),
112	257
dims (bayespy.nodes.Dirichlet attribute), 108	first() (in module bayespy.utils.misc), 240
dims (bayespy.nodes.Exponential attribute), 68	FunctionPlotter (class in bayespy.plot), 150
dims (bayespy.nodes.Exponential attribute), 60	G
dims (bayespy.nodes.Gaussian attribute), 51	G
dims (bayespy.nodes.Gaussian attribute), 56	Gamma (class in bayespy.nodes), 56
dims (bayespy.nodes.GaussianGammaARD attribute), 76	gamma_entropy() (in module bayespy.utils.random), 233
dims (bayespy.nodes.GaussianGammaISO attribute), 72	gamma_logpdf() (in module bayespy.utils.random), 234
dims (bayespy.nodes.GaussianGanniaisG attribute), 72 dims (bayespy.nodes.GaussianMarkovChain attribute),	GammaDistribution (class in
117	bayespy.inference.vmp.nodes.gamma), 211
dims (bayespy.nodes.GaussianWishart attribute), 80	GammaMoments (class in
dims (bayespy.nodes.Mixture attribute), 131	bayespy.inference.vmp.nodes.gamma), 182
dims (bayespy.nodes.Multinomial attribute), 96	Gate (class in bayespy.nodes), 135
dims (bayespy.nodes.Poisson attribute), 99	Gaussian (class in bayespy.nodes), 47
dims (bayespy.nodes.SwitchingGaussianMarkovChain attribute), 122	gaussian_entropy() (in module bayespy.utils.random), 234
dims (bayespy.nodes.VaryingGaussianMarkovChain attribute), 127	gaussian_gamma_to_t() (in module bayespy.utils.random), 234
dims (bayespy.nodes.Wishart attribute), 63	gaussian_logpdf() (in module bayespy.utils.misc), 240
Dirichlet (class in bayespy.nodes), 104	gaussian_logpdf() (in module bayespy.utils.random), 234
	GaussianARD (class in bayespy.nodes), 51
dirichlet() (in module bayespy.utils.random), 233	GaussianARDDistribution (class in
DirichletDistribution (class in	bayespy.inference.vmp.nodes.gaussian), 196
bayespy.inference.vmp.nodes.dirichlet), 217	GaussianDistribution (class in
DirichletMoments (class in	bayespy.inference.vmp.nodes.gaussian), 194
bayespy.inference.vmp.nodes.dirichlet), 184	GaussianGammaARD (class in bayespy.nodes), 72
dist_haversine() (in module bayespy.utils.misc), 240	Gaussian Gamma ARD Distribution (class in
Distribution (class in bayespy.inference.vmp.nodes.stochast	bayespy.inference.vmp.nodes.gaussian), 200
171	

GaussianGammaARDMoments (class in bayespy.inference.vmp.nodes.gaussian), 180	get_converter() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaAF method), 181
GaussianGammaARDToGaussianWishart (class in bayespy.inference.vmp.nodes.gaussian), 168	get_converter() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaIS(method), 179
GaussianGammaISO (class in bayespy.nodes), 68	$get_converter() \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Moments$
GaussianGammaISODistribution (class in	method), 178
bayespy.inference.vmp.nodes.gaussian), 198 GaussianGammaISOMoments (class in	get_converter() (bayespy.inference.vmp.nodes.gaussian.GaussianWishartMomethod), 181
bayespy.inference.vmp.nodes.gaussian), 179	get_converter() (bayespy.inference.vmp.nodes.gaussian_markov_chain.Gau
GaussianGammaISOToGaussianGammaARD (class in	method), 178
bayespy.inference.vmp.nodes.gaussian), 167	$get_converter() \ (bayes py. inference. vmp. nodes. multinomial. Multinomial Month of the property of the pr$
GaussianMarkovChain (class in bayespy.nodes), 112	method), 190
	get_converter() (bayespy.inference.vmp.nodes.node.Moments
bayespy.inference.vmp.nodes.gaussian_markov_o	
203	get_converter() (bayespy.inference.vmp.nodes.poisson.PoissonMoments
GaussianMarkovChainMoments (class in	method), 191
bayespy.interence.vmp.nodes.gaussian_markov_6	chain chain chair () (bayespy.inference.vmp.nodes.wishart.WishartMoments method), 183
GaussianMoments (class in	get_diag() (in module bayespy.utils.misc), 240
bayespy.inference.vmp.nodes.gaussian), 177	get_gaussian_mean_and_variance()
GaussianTimeseriesPlotter (class in bayespy.plot), 150	(bayespy.nodes.GaussianGammaISO method),
GaussianToGaussianGammaISO (class in	69
bayespy.inference.vmp.nodes.gaussian), 165	get_iteration_by_nodes() (bayespy.inference.VB
GaussianWishart (class in bayespy.nodes), 76	method), 138
GaussianWishartDistribution (class in	get_marginal_logpdf() (bayespy.nodes.GaussianGammaISO
bayespy.inference.vmp.nodes.gaussian), 202 GaussianWishartMoments (class in	method), 69
bayespy.inference.vmp.nodes.gaussian), 181	get_mask() (bayespy.inference.vmp.nodes.constant.Constant method), 164
	s. Reotata (Ska) (Stary espy.inference.vmp.nodes.deterministic.Deterministic
method), 140	method), 162
	s. Reotata Skills (Stary Asp Dinference. vmp. nodes. expfamily. Exponential Family
method), 141	method), 159
get_bound_terms() (bayespy.inference.vmp.transformations	s Peo<u>t</u>atraGla()s(sbany Mpn,kinnfellranire .vmp.nodes.gaussian.GaussianGammaARDT
method), 143	method), 169
method), 146	s Reo<u>t</u>ated M.()t(ple yespy.inference.vmp.nodes.gaussian.GaussianGammaISOTo method), 167
	s. Reo<u>t</u>atussk @t @haygMpyrkofeCilmic. vmp.nodes.gaussian.GaussianToGaussianGa
method), 144	method), 166
	s Reotated late) (the Mean spoint the aim ce. vmp. nodes.gaussian. Wrap To Gaussian Gamm
method), 145	method), 172
method), 186	rget <u>ıl</u> hiMskunelbusyespy.inference.vmp.nodes.gaussian.WrapToGaussianGamm method), 171
	opentsnask() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWisha
method), 184	method), 174
<pre>get_converter() (bayespy.inference.vmp.nodes.binomial.Bin</pre>	
method), 187	method), 154
get_converter() (bayespy.inference.vmp.nodes.categorical.C	Cgtetgomiuskl(M(hmyestpy.inference.vmp.nodes.stochastic.Stochastic
method), 188	method), 156
get_converter() (bayespy.inference.vmp.nodes.categorical_i	
method), 189	get_mask() (bayespy.nodes.Beta method), 101
get_converter() (bayespy.inference.vmp.nodes.dirichlet.Dir method), 185	get_mask() (bayespy.nodes.Categorical method), 85
get_converter() (bayespy.inference.vmp.nodes.gamma.Gam	
method), 182	method), 110

get_mask() (bayespy.nodes.Dirichlet method), 105	get_moments() (bayespy.nodes.Gaussian method), 49
get_mask() (bayespy.nodes.Exponential method), 65	get_moments() (bayespy.nodes.GaussianARD method),
get_mask() (bayespy.nodes.Gamma method), 57	53
get_mask() (bayespy.nodes.Gate method), 135	get_moments() (bayespy.nodes.GaussianGammaARD
get_mask() (bayespy.nodes.Gaussian method), 48	method), 74
get_mask() (bayespy.nodes.GaussianARD method), 53	get_moments() (bayespy.nodes.GaussianGammaISO
get_mask() (bayespy.nodes.GaussianGammaARD	method), 70
method), 74	get_moments() (bayespy.nodes.GaussianMarkovChain
get_mask() (bayespy.nodes.GaussianGammaISO	method), 114
method), 70	get_moments() (bayespy.nodes.GaussianWishart
get_mask() (bayespy.nodes.GaussianMarkovChain	method), 77
method), 114	get_moments() (bayespy.nodes.Mixture method), 129
get_mask() (bayespy.nodes.GaussianWishart method), 77	get_moments() (bayespy.nodes.Multinomial method), 93
get_mask() (bayespy.nodes.Mixture method), 129	get_moments() (bayespy.nodes.Poisson method), 97
get_mask() (bayespy.nodes.Multinomial method), 93	get_moments() (bayespy.nodes.SumMultiply method),
get_mask() (bayespy.nodes.Poisson method), 97	134
get_mask() (bayespy.nodes.SumMultiply method), 133	get_moments() (bayespy.nodes.SwitchingGaussianMarkovChain
get_mask() (bayespy.nodes.SwitchingGaussianMarkovCha	
method), 119	get_moments() (bayespy.nodes.VaryingGaussianMarkovChain
get_mask() (bayespy.nodes.VaryingGaussianMarkovChain	method), 124
method), 124	get_moments() (bayespy.nodes.Wishart method), 61
get_mask() (bayespy.nodes.Wishart method), 61	get_parameters() (bayespy.nodes.SumMultiply method),
get_moments() (bayespy.inference.vmp.nodes.constant.Cor	
method), 164	get_shape() (bayespy.inference.vmp.nodes.constant.Constant
get_moments() (bayespy.inference.vmp.nodes.deterministic	
method), 162	get_shape() (bayespy.inference.vmp.nodes.deterministic.Deterministic
get_moments() (bayespy.inference.vmp.nodes.expfamily.Ex	
method), 159	get_shape() (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily
get_moments() (bayespy.inference.vmp.nodes.gaussian.Ga	
method), 169	get_shape() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaARD)
get_moments() (bayespy.inference.vmp.nodes.gaussian.Gauss	ussianGam malBOTD o Ga assianGammaARD
method), 167	get_shape() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaISOTo
get_moments() (bayespy.inference.vmp.nodes.gaussian.Gau	ussian To Gamestan Cameria and
method), 166	get_shape() (bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianG
get_moments() (bayespy.inference.vmp.nodes.gaussian.Wr	apToGaussine (hand) mh(ARD
method), 173	get_shape() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGamr
get_moments() (bayespy.inference.vmp.nodes.gaussian.Wr	apToGaussinae (fiand) maTSO
method), 171	$get_shape() \ (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammann, and the property of the property $
get_moments() (bayespy.inference.vmp.nodes.gaussian.Wr	apToGaussi neWoch arlt71
method), 174	$get_shape() \ (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWishaptones.gaussian.WrapToGaussianWishaptones.gaussian.WrapToGaussianWishaptones.gaussian.WrapToGaussianWishaptones.gaussian.WrapToGaussianWishaptones.gaussian.WrapToGaussianWishaptones.gaussian.WrapToGaussianWishaptones.gaussian.WrapToGaussianWishaptones.gaussian.WrapToGaussianWishaptones.gaussian.WrapToGaussi$
get_moments() (bayespy.inference.vmp.nodes.node.Node	method), 174
method), 154	get_shape() (bayespy.inference.vmp.nodes.node.Node
get_moments() (bayespy.inference.vmp.nodes.stochastic.St	ochastic method), 154
method), 156	get_shape() (bayespy.inference.vmp.nodes.stochastic.Stochastic
get_moments() (bayespy.nodes.Bernoulli method), 81	method), 156
get_moments() (bayespy.nodes.Beta method), 101	get_shape() (bayespy.nodes.Bernoulli method), 82
get_moments() (bayespy.nodes.Binomial method), 85	get_shape() (bayespy.nodes.Beta method), 101
get_moments() (bayespy.nodes.Categorical method), 89	get_shape() (bayespy.nodes.Binomial method), 86
get_moments() (bayespy.nodes.CategoricalMarkovChain	get_shape() (bayespy.nodes.Categorical method), 89
method), 110	get_shape() (bayespy.nodes.CategoricalMarkovChain
get_moments() (bayespy.nodes.Dirichlet method), 105	method), 110
get_moments() (bayespy.nodes.Exponential method), 65	get_shape() (bayespy.nodes.Dirichlet method), 105
get_moments() (bayespy.nodes.Gamma method), 57	get_shape() (bayespy.nodes.Exponential method), 65
get moments() (bayespy.nodes.Gate method), 135	get shape() (bayespy.nodes.Gamma method), 57

get_shape() (bayespy.nodes.Gate method), 136 get_shape() (bayespy.nodes.Gaussian method), 49 get_shape() (bayespy.nodes.GaussianARD method), 53 get_shape() (bayespy.nodes.GaussianGammaARD method), 74	has_plotter() (bayespy.nodes.Gate method), 136 has_plotter() (bayespy.nodes.Gaussian method), 49 has_plotter() (bayespy.nodes.GaussianARD method), 53 has_plotter() (bayespy.nodes.GaussianGammaARD method), 74
get_shape() (bayespy.nodes.GaussianGammaISO method), 70	has_plotter() (bayespy.nodes.GaussianGammaISO method), 70
get_shape() (bayespy.nodes.GaussianMarkovChain method), 114	has_plotter() (bayespy.nodes.GaussianMarkovChain method), 115
get_shape() (bayespy.nodes.GaussianWishart method), 77	has_plotter() (bayespy.nodes.GaussianWishart method), 78
get_shape() (bayespy.nodes.Mixture method), 129	has_plotter() (bayespy.nodes.Mixture method), 129
get_shape() (bayespy.nodes.Multinomial method), 93	has_plotter() (bayespy.nodes.Multinomial method), 94
get_shape() (bayespy.nodes.Poisson method), 97 get_shape() (bayespy.nodes.SumMultiply method), 134	has_plotter() (bayespy.nodes.Poisson method), 97 has_plotter() (bayespy.nodes.SumMultiply method), 134
$get_shape() \ (bayespy.nodes. Switching Gaussian Markov Charles and $	uihas_plotter() (bayespy.nodes.SwitchingGaussianMarkovChain
method), 119	method), 120
method), 125	has_plotter() (bayespy.nodes.VaryingGaussianMarkovChain method), 125
get_shape() (bayespy.nodes.Wishart method), 61	has_plotter() (bayespy.nodes.Wishart method), 61
grid() (in module bayespy.utils.misc), 240	hinton() (in module bayespy.plot), 147
Н	HintonPlotter (class in bayespy.plot), 149
has_plotter() (bayespy.inference.vmp.nodes.constant.Const method), 164	ant id() (bayespy.utils.misc.TestCase method), 257
has_plotter() (bayespy.inference.vmp.nodes.deterministic.E method), 162	
	mittanze_nom_mean_and_covariance()
has_plotter() (bayespy.inference.vmp.nodes.expfamily.Exp	
method), 159	53
	53
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gauss	53 siimiGaliizmafARRD_FacGamestiass(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gauss method), 169 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gauss method), 168	53 siimiGaliizmafARiD_faGamestias(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammaftsOffatis(SianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.d	53 siimiGaliizmafARD_Fachanestiass(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammafacoffactiss(sianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussiattGath)malSO
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.d	53 simiGalizmafARD_BaGamestiast(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammafACDFaCsatis9ianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussiatlGaliminaISO initialize_from_parameters() (bayespy.nodes.Beta
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.d	53 simiGalizmafARD_FaGamescias(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammafAGDFaGatis9ianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussiattGdinmalSO initialize_from_parameters() (bayespy.nodes.Beta ToGaussianGathod)ARD
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.J	simiGalizmafARD_FaGamescias(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammafACDFaCGatis9ianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussiattGdinmalSO initialize_from_parameters() (bayespy.nodes.Beta ToGaussianGathod)ARD initialize_from_parameters() (bayespy.nodes.Binomial
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.J	53 simiGalizmaARD_FaGameseas(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammaHstOffoffatis9ianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussianGathod),ARD initialize_from_parameters() (bayespy.nodes.Beta ToGaussianGathod),ARD initialize_from_parameters() (bayespy.nodes.Binomial ToGaussianGathod),180
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.J	simiGalizmaARD_FaGamesias(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammaIstoGausSianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussianGammaIstoGaussianGamm
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.J	simiGalizmafARiD_FaGamesias(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammafs@fioGalis@ianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussiatl@dinmaISO initialize_from_parameters() (bayespy.nodes.Beta ToGaussianGathoda/ARD initialize_from_parameters() (bayespy.nodes.Binomial ToGaussianGathoda/ISO initialize_from_parameters() (bayespy.nodes.Categorical ToGaussianWeishod), 90
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.J	simiGalizmafARD_FaGamesciast(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammafACDGatassianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussianGathoda,ARD initialize_from_parameters() (bayespy.nodes.Beta ToGaussianGathoda,ARD initialize_from_parameters() (bayespy.nodes.Binomial ToGaussianGathoda,ISO initialize_from_parameters() (bayespy.nodes.Categorical ToGaussianWeisland), 90 initialize_from_parameters() (bayespy.nodes.CategoricalMarkovChain
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.John 169 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.John 168 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.John 166 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.John 173 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.John 171 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.John 175 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.John 175 has_plotter() (bayespy.inference.vmp.nodes.node.Nodeimethod), 154 has_plotter() (bayespy.inference.vmp.nodes.stochastic.Stochast	simiGalizmaARD_FaGameseas(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammaHstOffoffatis9ianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussiatGalimaAISO initialize_from_parameters() (bayespy.nodes.Beta ToGaussiatGalimaAIRD initialize_from_parameters() (bayespy.nodes.Binomial ToGaussiatGalimaAISO initialize_from_parameters() (bayespy.nodes.Categorical ToGaussiatMetsload), 90 initialize_from_parameters() (bayespy.nodes.CategoricalMarkovChain method), 110 chastGalize_from_parameters() (bayespy.nodes.Dirichlet
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.node.Nodeian.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Stochastic.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Johns_plotter(simiGalizmaARD_FaGamestias(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammaIstOffoGatis9ianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussiatIodhnaaISO initialize_from_parameters() (bayespy.nodes.Beta ToGaussianGathoda,ARD initialize_from_parameters() (bayespy.nodes.Binomial ToGaussianGathoda,ISO initialize_from_parameters() (bayespy.nodes.Categorical ToGaussianNetsload), 90 initialize_from_parameters() (bayespy.nodes.CategoricalMarkovChain method), 110 chanitialize_from_parameters() (bayespy.nodes.Dirichlet method), 106
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.John 169 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.John 168 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.John 166 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.John 173 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.John 171 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.John 175 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.John 175 has_plotter() (bayespy.inference.vmp.nodes.node.Nodeimethod), 154 has_plotter() (bayespy.inference.vmp.nodes.stochastic.Stochast	simiGalizmaARD_FaGamestias(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammaIstARD_Gatis9ianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussiatGathmalARD initialize_from_parameters() (bayespy.nodes.Beta ToGaussiatGathmalARD initialize_from_parameters() (bayespy.nodes.Binomial ToGaussiatGathmalASO initialize_from_parameters() (bayespy.nodes.Categorical ToGaussiatMetsload), 90 initialize_from_parameters() (bayespy.nodes.CategoricalMarkovChain method), 110 chastialize_from_parameters() (bayespy.nodes.Dirichlet
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.node.Nodeian.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Stocian.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Stocian.Johns_plotter() (bayespy.nodes.Bernoulli method), 82	simiGalizmafARiD_FaGamesias(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily sianGammafsGoffaGatas(SianGammaARD initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussiatGoffaGamestas() (bayespy.nodes.Beta ToGaussiatGoffaCamestas() (bayespy.nodes.Beta ToGaussiatGoffaCamestas() (bayespy.nodes.Binomial ToGaussiatGoffaCamestas() (bayespy.nodes.Binomial ToGaussiatGoffaCamestas() (bayespy.nodes.Categorical
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian_logoussian.gaussian	simiGalizmaARD_FaGamestast(Wishart (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily) sianGammaIst(Misto)Gatis(SianGammaARD) initialize_from_parameters() (bayespy.nodes.Bernoulli sianToGaussiat(Gali)(MalSO) initialize_from_parameters() (bayespy.nodes.Beta ToGaussianGathod), ARD initialize_from_parameters() (bayespy.nodes.Binomial ToGaussianGathod), 180 initialize_from_parameters() (bayespy.nodes.Categorical ToGaussianWeislad), 90 initialize_from_parameters() (bayespy.nodes.CategoricalMarkovChain method), 110 shaitialize_from_parameters() (bayespy.nodes.Dirichlet method), 106 initialize_from_parameters() (bayespy.nodes.Exponential method), 66 initialize_from_parameters() (bayespy.nodes.Gamma method), 58
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns_plotter() (bayespy.inference.vmp.nodes.node.Nodeian.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Stocian.Johns_plotter() (bayespy.inference.vmp.nodes.stochastic.Stocian.Johns_plotter() (bayespy.nodes.Bernoulli method), 82 has_plotter() (bayespy.nodes.Bernoulli method), 86	sianiGalizze_ARND_FaGansteins(Wishart
method), 159 has_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns.plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns.plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Johns.plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns.plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns.plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns.plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns.plotter() (bayespy.inference.vmp.nodes.gaussian.Wrapian.Johns.plotter() (bayespy.inference.vmp.nodes.node.Nodeian.Johns.plotter() (bayespy.inference.vmp.nodes.stochastic.Stocian.Johns.plotter() (bayespy.inference.vmp.nodes.stochastic.Stocian.Johns.plotter() (bayespy.nodes.Bernoulli method), 82 has_plotter() (bayespy.nodes.Betainethod), 101 has_plotter() (bayespy.nodes.Binomial method), 86 has_plotter() (bayespy.nodes.Categorical method), 89 has_plotter() (bayespy.nodes.CategoricalMarkovChain	sianiGalizzn_ARND_FaCamstens(Wishart

initialize_from_parameters() initialize_from_prior() (bayespy.nodes.GaussianWishart
(bayespy.nodes.GaussianGammaARD method), 78
method), 74 initialize_from_prior() (bayespy.nodes.Mixture method),
initialize_from_parameters() 129
(bayespy.nodes.GaussianGammaISO method), initialize_from_prior() (bayespy.nodes.Multinomial method), 94
initialize_from_parameters() initialize_from_prior() (bayespy.nodes.Poisson method),
(bayespy.nodes.GaussianMarkovChain 98
method), 115 initialize_from_prior() (bayespy.nodes.SwitchingGaussianMarkovChain
initialize_from_parameters() method), 120
(bayespy.nodes.GaussianWishart method), initialize_from_prior() (bayespy.nodes.VaryingGaussianMarkovChain
78 method), 125
initialize_from_parameters() (bayespy.nodes.Mixture initialize_from_prior() (bayespy.nodes.Wishart method),
method), 129 62
initialize_from_parameters() initialize_from_random()
(bayespy.nodes.Multinomial method), 94 (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily
initialize_from_parameters() (bayespy.nodes.Poisson method), 159
method), 97 initialize_from_random() (bayespy.nodes.Bernoulli
initialize_from_parameters() method), 82
(bayespy.nodes.SwitchingGaussianMarkovChain initialize_from_random() (bayespy.nodes.Beta method),
method), 120 102
initialize_from_parameters() initialize_from_random() (bayespy.nodes.Binomial
(bayespy.nodes.VaryingGaussianMarkovChain method), 86
method), 125 initialize_from_random() (bayespy.nodes.Categorical
initialize_from_parameters() (bayespy.nodes.Wishart method), 90
method), 61 initialize_from_random()
initialize_from_prior() (bayespy.inference.vmp.nodes.expfamily.Expo(bayespyambles.CategoricalMarkovChain
method), 159 method), 110
initialize_from_prior() (bayespy.nodes.Bernoulli initialize_from_random() (bayespy.nodes.Dirichlet
method), 82 method), 106
initialize_from_prior() (bayespy.nodes.Beta method), 102 initialize_from_random() (bayespy.nodes.Exponential initialize_from_prior() (bayespy.nodes.Binomial method), 66
method), 86 initialize_from_random() (bayespy.nodes.Gamma
initialize_from_prior() (bayespy.nodes.Categorical method), 58
method), 90 initialize_from_random() (bayespy.nodes.Gaussian
initialize_from_prior() (bayespy.nodes.CategoricalMarkovChain method), 49
method), 110 initialize_from_random() (bayespy.nodes.GaussianARD
initialize_from_prior() (bayespy.nodes.Dirichlet method), method), 54
106 initialize_from_random()
initialize_from_prior() (bayespy.nodes.Exponential (bayespy.nodes.GaussianGammaARD
method), 66 method), 74
initialize_from_prior() (bayespy.nodes.Gamma method), initialize_from_random()
58 (bayespy.nodes.GaussianGammaISO method),
initialize_from_prior() (bayespy.nodes.Gaussian 70
method), 49 initialize_from_random()
initialize_from_prior() (bayespy.nodes.GaussianARD (bayespy.nodes.GaussianMarkovChain
method), 53 method), 115
initialize_from_prior() (bayespy.nodes.GaussianGammaARDitialize_from_random()
method), 74 (bayespy.nodes.GaussianWishart method),
initialize_from_prior() (bayespy.nodes.GaussianGammaISO 78
method), 70 initialize_from_random() (bayespy.nodes.Mixture
initialize_from_prior() (bayespy.nodes.GaussianMarkovChain method), 129
method), 115 initialize_from_random() (bayespy.nodes.Multinomial method), 94
method), 94

initialize_from_random() (bayespy.nodes.Poisson method), 98	integrated_logpdf_from_parents() (bayespy.nodes.Mixture method), 130
initialize_from_random()	intervals() (in module bayespy.utils.random), 235
(bayespy.nodes.SwitchingGaussianMarkovChair	
method), 120	invwishart_rand() (in module bayespy.utils.random), 235
initialize_from_random()	is_callable() (in module bayespy.utils.misc), 241
(bayespy.nodes.VaryingGaussianMarkovChain	is_numeric() (in module bayespy.utils.misc), 241
method), 125	is_shape_subset() (in module bayespy.utils.misc), 241
initialize_from_random() (bayespy.nodes.Wishart	is_string() (in module bayespy.utils.misc), 241
method), 62	isinteger() (in module bayespy.utils.misc), 241
initialize_from_value() (bayespy.inference.vmp.nodes.exp	
method), 159	K
initialize_from_value() (bayespy.nodes.Bernoulli	kalman_filter() (in module bayespy.utils.misc), 241
method), 82	- * * * * * * * * * * * * * * * * * * *
initialize_from_value() (bayespy.nodes.Beta method),	L
102	load() (bayespy.inference.VB method), 138
initialize_from_value() (bayespy.nodes.Binomial	load() (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily
method), 86	method), 159
initialize_from_value() (bayespy.nodes.Categorical	load() (bayespy.inference.vmp.nodes.stochastic.Stochastic
method), 90	
initialize_from_value() (bayespy.nodes.CategoricalMarkov	(Chain) (bayespy.nodes.Bernoulli method), 82
method), 110	load() (bayespy.nodes.Beta method), 102
initialize_from_value() (bayespy.nodes.Dirichlet	load() (bayespy.nodes.Binomial method), 86
method), 106 initialize_from_value() (bayespy.nodes.Exponential	load() (bayespy.nodes.Categorical method), 90
initialize_from_value() (bayespy.nodes.Exponential method), 66	load() (bayespy.nodes.CategoricalMarkovChain method),
initialize_from_value() (bayespy.nodes.Gamma method),	111
58	load() (bayespy.nodes.Dirichlet method), 106
initialize_from_value() (bayespy.nodes.Gaussian	load() (bayespy.nodes.Exponential method), 66
method), 49	load() (bayespy.nodes.Gamma method), 58
initialize_from_value() (bayespy.nodes.GaussianARD	load() (bayespy.nodes.Gaussian method), 49
method), 54	load() (bayespy.nodes.GaussianARD method), 54
initialize_from_value() (bayespy.nodes.GaussianGammaA	load() (bayespy.nodes.GaussianGammaARD method), 74
method), 74	load() (bayespy.nodes.GaussianGammaisO method), /0 load() (bayespy.nodes.GaussianMarkovChain method),
initialize_from_value() (bayespy.nodes.GaussianGammaIS	SO 115
method). 70	1 10 4 1 7 70
initialize_from_value() (bayespy.nodes.GaussianMarkovC	hain 10ad() (bayesny nodes Mixture method) 130
method), 115	load() (bayespy.nodes.Multinomial method), 94
$initialize_from_value() \ \ (bayespy.nodes.Gaussian Wishart$	load() (bayespy.nodes.Poisson method), 98
method), 78	load() (bayespy.nodes.SwitchingGaussianMarkovChain
initialize_from_value() (bayespy.nodes.Mixture method),	method), 120
130	load() (bayespy.nodes.VaryingGaussianMarkovChain
initialize_from_value() (bayespy.nodes.Multinomial	method), 125
method), 94	load() (bayespy.nodes.Wishart method), 62
initialize_from_value() (bayespy.nodes.Poisson method), 98	logdet() (bayespy.utils.misc.CholeskyDense method),
	246 Markov Chain
initialize_from_value() (bayespy.nodes.SwitchingGaussian method), 120	2.47
initialize_from_value() (bayespy.nodes.VaryingGaussianM	larkoy(Chain logdet_chol() (in module bayespy.utils.linalg), 231
memod), 123	logdet_chol() (in module bayespy.utils.misc), 242
initialize_from_value() (bayespy.nodes.Wishart method), 62	logdet_cov() (in module bayespy.utils.linalg), 231
inner() (in module bayespy.utils.linalg), 230	logdet_tri() (in module bayespy.utils.linalg), 231
inici() (iii inodule ouyespy.duis.iiiaig), 250	loglikelihood_lowerbound() (bayespy.inference.VB
	method), 138

logpdf() (bayespy.inference.vmp.nodes.expfamily.Exponenmethod), 159	ntladVam_byund_contribution() (bayespy.nodes.Bernoulli method), 82
logpdf() (bayespy.nodes.Bernoulli method), 82 logpdf() (bayespy.nodes.Beta method), 102	lower_bound_contribution() (bayespy.nodes.Beta method), 102
logpdf() (bayespy.nodes.Binomial method), 86	lower_bound_contribution() (bayespy.nodes.Binomial
logpdf() (bayespy.nodes.Categorical method), 90	method), 86
logpdf() (bayespy.nodes.Categorical method), 90	lower_bound_contribution() (bayespy.nodes.Categorical
method), 111	method), 90
logpdf() (bayespy.nodes.Dirichlet method), 106	lower_bound_contribution()
logpdf() (bayespy.nodes.Exponential method), 66	(bayespy.nodes.CategoricalMarkovChain
logpdf() (bayespy.nodes.Exponential method), 58	method), 111
logpdf() (bayespy.nodes.Gaussian method), 49	lower_bound_contribution() (bayespy.nodes.Dirichlet
logpdf() (bayespy.nodes.GaussianARD method), 54	method), 106
logpdf() (bayespy.nodes.GaussianGammaARD method),	lower_bound_contribution() (bayespy.nodes.Exponential
74	method), 66
logpdf() (bayespy.nodes.GaussianGammaISO method),	lower_bound_contribution() (bayespy.nodes.Gamma
71	method), 58
logpdf() (bayespy.nodes.GaussianMarkovChain method),	lower_bound_contribution() (bayespy.nodes.Gate
115	method), 136
logpdf() (bayespy.nodes.GaussianWishart method), 78	lower_bound_contribution() (bayespy.nodes.Gaussian
logpdf() (bayespy.nodes.Mixture method), 130	method), 49
logpdf() (bayespy.nodes.Multinomial method), 94	lower_bound_contribution()
logpdf() (bayespy.nodes.Poisson method), 98	(bayespy.nodes.GaussianARD method),
$logpdf() \ (bayes py. nodes. Switching Gaussian Markov Chain$	54
method), 120	lower_bound_contribution()
logpdf() (bayespy.nodes.VaryingGaussianMarkovChain method), 125	(bayespy.nodes.GaussianGammaARD method), 75
logpdf() (bayespy.nodes.Wishart method), 62	lower_bound_contribution()
logsumexp() (in module bayespy.utils.misc), 242	(bayespy.nodes.GaussianGammaISO method),
longMessage (bayespy.utils.misc.TestCase attribute), 258	71
lower_bound_contribution()	lower_bound_contribution()
(bayespy.inference.vmp.nodes.deterministic.Dete	erministic (bayespy.nodes.GaussianMarkovChain
method), 162	method), 115
lower_bound_contribution()	lower_bound_contribution()
(bayespy.inference.vmp.nodes.expfamily.Exponemethod), 159	entialFamily(bayespy.nodes.GaussianWishart method), 78
lower_bound_contribution()	lower_bound_contribution() (bayespy.nodes.Mixture
(bayespy.inference.vmp.nodes.gaussian.Gaussian	
method), 169	lower_bound_contribution() (bayespy.nodes.Multinomial
lower_bound_contribution()	method), 94
	n Cowen all Sunt Gants iland Comma ARD ayespy. nodes. Poisson
method), 168	method), 98
lower_bound_contribution()	lower_bound_contribution()
	nToGaussia(Mayespylls@des.SumMultiply method), 134
method), 166	lower_bound_contribution()
lower_bound_contribution()	(bayespy.nodes.SwitchingGaussianMarkovChain
(bayespy.inference.vmp.nodes.gaussian.WrapTo	
method), 173	lower_bound_contribution()
lower_bound_contribution()	(bayespy.nodes.VaryingGaussianMarkovChain
(bayespy.inference.vmp.nodes.gaussian.WrapTo	
method), 171	lower_bound_contribution() (bayespy.nodes.Wishart
lower_bound_contribution()	method), 62
	Glowwidn/Wish(artbayespy.inference.vmp.nodes.expfamily.ExponentialFamily
method), 175	method), 160
111011101111111111111111111111111111111	

owerbound() (bayespy.inference.vmp.nodes.stochastic.Sto	chastic_plates() (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily method), 160
owerbound() (bayespy.nodes.Bernoulli method), 82	move_plates() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaAR
owerbound() (bayespy.nodes.Beta method), 102	method), 169
owerbound() (bayespy.nodes.Binomial method), 86	move_plates() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaISC
owerbound() (bayespy.nodes.Categorical method), 90	method), 168
owerbound() (bayespy.nodes.CategoricalMarkovChain	move_plates() (bayespy.inference.vmp.nodes.gaussian.GaussianToGaussian
method), 111	method), 166
owerbound() (bayespy.nodes.Dirichlet method), 106	move_plates() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGarmethod), 173
owerbound() (bayespy.nodes.Exponential method), 66	<i>''</i>
owerbound() (bayespy.nodes.Gamma method), 58 owerbound() (bayespy.nodes.Gaussian method), 50	move_plates() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGaumethod), 171
owerbound() (bayespy.nodes.GaussianARD method), 54	
owerbound() (bayespy.nodes.GaussianARD method), 34 owerbound() (bayespy.nodes.GaussianGammaARD	move_plates() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWismethod), 175
method), 75	
**	move_plates() (bayespy.inference.vmp.nodes.node.Node method), 154
owerbound() (bayespy.nodes.GaussianGammaISO method), 71	
	move_plates() (bayespy.inference.vmp.nodes.stochastic.Stochastic
owerbound() (bayespy.nodes.GaussianMarkovChain method), 115	method), 156
	move_plates() (bayespy.nodes.Bernoulli method), 83
owerbound() (bayespy.nodes.GaussianWishart method),	move_plates() (bayespy.nodes.Beta method), 102
78	move_plates() (bayespy.nodes.Binomial method), 87
owerbound() (bayespy.nodes.Mixture method), 130	move_plates() (bayespy.nodes.Categorical method), 90
owerbound() (bayespy.nodes.Multinomial method), 94	move_plates() (bayespy.nodes.CategoricalMarkovChain
owerbound() (bayespy.nodes.Poisson method), 98	method), 111
owerbound() (bayespy.nodes.SwitchingGaussianMarkovCl	
method), 120	move_plates() (bayespy.nodes.Exponential method), 66
owerbound() (bayespy.nodes.VaryingGaussianMarkovCha	
method), 125	move_plates() (bayespy.nodes.Gate method), 136
owerbound() (bayespy.nodes.Wishart method), 62	move_plates() (bayespy.nodes.Gaussian method), 50
M	move_plates() (bayespy.nodes.GaussianARD method),
VI	54
m_chol() (in module bayespy.utils.misc), 242	move_plates() (bayespy.nodes.GaussianGammaARD
m_chol_inv() (in module bayespy.utils.misc), 242	method), 75
m_chol_logdet() (in module bayespy.utils.misc), 242	move_plates() (bayespy.nodes.GaussianGammaISO
m_chol_solve() (in module bayespy.utils.misc), 242	method), 71
m_digamma() (in module bayespy.utils.misc), 242	move_plates() (bayespy.nodes.GaussianMarkovChain
m_dot() (in module bayespy.utils.linalg), 231	method), 115
m_dot() (in module bayespy.utils.misc), 242	move_plates() (bayespy.nodes.GaussianWishart method),
m_outer() (in module bayespy.utils.misc), 242	78
m_solve_triangular() (in module bayespy.utils.misc), 242	move_plates() (bayespy.nodes.Mixture method), 130
make_equal_length() (in module bayespy.utils.misc), 243	move_plates() (bayespy.nodes.Multinomial method), 94
make_equal_ndim() (in module bayespy.utils.misc), 243	move_plates() (bayespy.nodes.Poisson method), 98
mask() (in module bayespy.utils.random), 235	move_plates() (bayespy.nodes.SumMultiply method),
maxDiff (bayespy.utils.misc.TestCase attribute), 258	134
mean() (in module bayespy.utils.misc), 243	move_plates() (bayespy.nodes.SwitchingGaussianMarkovChain
minimize() (in module bayespy.utils.optimize), 236	method), 120
Mixture (class in bayespy.nodes), 127	move_plates() (bayespy.nodes.VaryingGaussianMarkovChain
nmdot() (in module bayespy.utils.linalg), 231	method), 126
Moments (class in bayespy.inference.vmp.nodes.node),	move_plates() (bayespy.nodes.Wishart method), 62
176	moveaxis() (in module bayespy.utils.misc), 243
nove_plates() (bayespy.inference.vmp.nodes.constant.Cons	Stant Itinomial (class in bayespy.nodes), 92
method), 164	MultinomialDistribution (class in
move_plates() (bayespy.inference.vmp.nodes.deterministic. method), 162	Deterministrayespy.inference.vmp.nodes.multinomial), 226

MultinomialMoments bayespy.inference.vmp.n 189	(class in odes.multinomial),	outer() (i	module bayespy.utils.random), 235 n module bayespy.utils.linalg), 231		
multiply_shapes() (in module baye mvdot() (in module bayespy.utils.li		P pdf() (bay	vespy.inference.vmp.nodes.expfamily.Expone	entialFamily	
N			method), 160 yespy.nodes.Bernoulli method), 83		
nans() (in module bayespy.utils.misc), 243			pdf() (bayespy.nodes.Beta method), 103		
			yespy.nodes.Binomial method), 87		
			pdf() (bayespy.nodes.Categorical method), 91		
	<u> </u>		yespy.nodes.CategoricalMarkovChain metho	od),	
nodes() (bayespy.inference.vmp.transformations.RotateGaussidf()\((\frac{1}{2}\) Rabyespy.nodes.Dirichlet method), 107					
method), 141		-	yespy.nodes.Exponential method), 67		
nodes() (bayespy.inference.vmp.tra	nnsformations.RotateGau	-	= :		
method), 143		-	yespy.nodes.Gaussian method), 50		
7:	ansformations.RotateMul		yespy.nodes.GaussianARD method), 54		
method), 146			yespy.nodes.GaussianGammaARD method),	75	
	ansformations.RotateSwi		Resp@hoides.GaussianGammaISO method), 7		
method), 144			ayespy.nodes.GaussianMarkovChain metho		
nodes() (bayespy.inference.vmp.tra	ansformations.RotateVar	-		<i>,,</i>	
method), 145	•	-	yespy.nodes.GaussianWishart method), 79		
_			yespy.nodes.Mixture method), 130		
0			yespy.nodes.Multinomial method), 95		
observe() (bayespy.inference.vmp.i	nodes.expfamily.Expone				
method), 160		pdf() (bayespy.nodes.SwitchingGaussianMarkovCh	ıain	
observe() (bayespy.inference.vmp.i	nodes.stochastic.Stochas		method), 121		
method), 156	nodes.stoenastie.stoenas	pdf()	(bayespy.nodes.VaryingGaussianMarkovCh	ıain	
observe() (bayespy.nodes.Bernoull	i method), 83	• "	method), 126		
observe() (bayespy.nodes.Beta met		pdf() (bay	yespy.nodes.Wishart method), 62		
observe() (bayespy.nodes.Binomial		-	pdf() (in module bayespy.plot), 146		
observe() (bayespy.nodes.Categorie		-	er (class in bayespy.plot), 148		
	tegoricalMarkovChain		bayespy.inference.vmp.nodes.constant.Cons	tant	
method), 111	acgoricum viarno v cham	•	attribute), 165		
observe() (bayespy.nodes.Dirichlet	method), 106	plates (ba	yespy.inference.vmp.nodes.deterministic.De	terministic	
observe() (bayespy.nodes.Exponen		•	attribute), 163		
observe() (bayespy.nodes.Gamma		plates (ba	yespy.inference.vmp.nodes.expfamily.Expon	entialFamily	
observe() (bayespy.nodes.Gaussian	* *		attribute), 161		
observe() (bayespy.nodes.Gaussian		plates (ba	yespy.inference.vmp.nodes.gaussian.Gaussia	ınGammaARDToGau	
	.GaussianGammaARD		attribute), 170		
method), 75		plates (ba	yespy.inference.vmp.nodes.gaussian.Gaussia	ınGammaISOToGaus	
observe() (bayespy.nodes.Gaussian	nGammaISO method),		attribute), 168		
71	,,	plates (ba	yespy.inference.vmp.nodes.gaussian.Gaussia	ınToGaussianGamma	
observe() (bayespy.nodes.	GaussianMarkovChain		attribute), 166		
method), 116		plates (ba	yespy.inference.vmp.nodes.gaussian.WrapTo	GaussianGammaAR	
observe() (bayespy.nodes.Gaussian	Wishart method), 79		attribute), 173		
observe() (bayespy.nodes.Mixture		plates (ba	yespy.inference.vmp.nodes.gaussian.WrapTo	GaussianGammaISO	
observe() (bayespy.nodes.Multinor	**		attribute), 172		
observe() (bayespy.nodes.Poisson i	* *	plates (ba	yespy.inference.vmp.nodes.gaussian.WrapTo	GaussianWishart	
observe() (bayespy.nodes.Switchin			attribute), 175		
method), 121	-	plates	(bayespy.inference.vmp.nodes.node.Node	at-	
observe() (bayespy.nodes.Varying	GaussianMarkovChain		tribute), 155		
method), 126		plates (ba	yespy.inference.vmp.nodes.stochastic.Stocha	ıstic	
observe() (bayespy.nodes.Wishart i	method), 62		attribute), 157		

plates_to_parent() (bayespy.inference.vmp.nodes.wishart.WishartDistribution

```
plates (bayespy.nodes.Bernoulli attribute), 84
                                                                                   plates_from_parent() (bayespy.inference.vmp.nodes.gaussian_markov_chai
plates (bayespy.nodes.Beta attribute), 104
                                                                                                 method), 205
plates (bayespy.nodes.Binomial attribute), 88
                                                                                   plates_from_parent() (bayespy.inference.vmp.nodes.gaussian_markov_chai
plates (bayespy.nodes.Categorical attribute), 92
                                                                                                 method), 208
             (bayespy.nodes.CategoricalMarkovChain
                                                                                  plates_from_parent() (bayespy.inference.vmp.nodes.gaussian_markov_chai
             tribute), 112
                                                                                                method), 211
plates (bayespy.nodes.Dirichlet attribute), 108
                                                                                   plates from parent() (bayespy.inference.vmp.nodes.multinomial.Multinom
plates (bayespy.nodes.Exponential attribute), 68
                                                                                                 method), 227
plates (bayespy.nodes.Gamma attribute), 60
                                                                                   plates_from_parent() (bayespy.inference.vmp.nodes.poisson.PoissonDistrib
plates (bayespy.nodes.Gate attribute), 136
                                                                                                 method), 229
plates (bayespy.nodes.Gaussian attribute), 51
                                                                                   plates_from_parent() (bayespy.inference.vmp.nodes.stochastic.Distribution
plates (bayespy.nodes.GaussianARD attribute), 56
                                                                                                 method), 192
plates (bayespy.nodes.GaussianGammaARD attribute),
                                                                                  plates_from_parent() (bayespy.inference.vmp.nodes.wishart.WishartDistrib
                                                                                                 method), 214
plates (bayespy.nodes.GaussianGammaISO attribute), 72
                                                                                   plates_to_parent() (bayespy.inference.vmp.nodes.bernoulli.BernoulliDistrib
plates (bayespy.nodes.GaussianMarkovChain attribute),
                                                                                                 method), 220
                                                                                   plates_to_parent() (bayespy.inference.vmp.nodes.beta.BetaDistribution
plates (bayespy.nodes.GaussianWishart attribute), 80
                                                                                                 method), 217
plates (bayespy.nodes.Mixture attribute), 131
                                                                                   plates_to_parent() (bayespy.inference.vmp.nodes.binomial.BinomialDistrib
plates (bayespy.nodes.Multinomial attribute), 96
                                                                                                 method), 222
plates (bayespy.nodes.Poisson attribute), 100
                                                                                   plates_to_parent() (bayespy.inference.vmp.nodes.categorical.CategoricalDis
plates (bayespy.nodes.SumMultiply attribute), 134
                                                                                                 method), 223
plates (bayespy.nodes.SwitchingGaussianMarkovChain
                                                                                  plates_to_parent() (bayespy.inference.vmp.nodes.categorical_markov_chair
              attribute), 122
                                                                                                 method), 225
plates (bayespy.nodes.VaryingGaussianMarkovChain at-
                                                                                  plates_to_parent() (bayespy.inference.vmp.nodes.dirichlet.DirichletDistribu
             tribute), 127
                                                                                                 method), 218
plates (bayespy.nodes.Wishart attribute), 64
                                                                                   plates_to_parent() (bayespy.inference.vmp.nodes.expfamily.ExponentialFar
plates_from_parent() (bayespy.inference.vmp.nodes.bernoulli.BernoulliiDistribution
             method), 220
                                                                                  plates_to_parent() (bayespy.inference.vmp.nodes.gamma.GammaDistribution
plates_from_parent() (bayespy.inference.vmp.nodes.beta.BetaDistributionthod), 213
                                                                                   plates_to_parent() (bayespy.inference.vmp.nodes.gaussian.GaussianARDD
              method), 217
plates_from_parent() (bayespy.inference.vmp.nodes.binomial.Binomiahl@ihtrib)ufi@R
              method), 222
                                                                                  plates_to_parent() (bayespy.inference.vmp.nodes.gaussian.GaussianDistribu
plates_from_parent() (bayespy.inference.vmp.nodes.categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Categorical.Cate
                                                                                  plates_to_parent() (bayespy.inference.vmp.nodes.gaussian.GaussianGamma
              method), 223
plates_from_parent() (bayespy.inference.vmp.nodes.categorical_markovetbloat), @ategoricalMarkovChainDistribution
             method), 225
                                                                                  plates to parent() (bayespy.inference.vmp.nodes.gaussian.GaussianGamma
plates_from_parent() (bayespy.inference.vmp.nodes.dirichlet.DirichlettDethoid) ti2000
                                                                                  plates_to_parent() (bayespy.inference.vmp.nodes.gaussian.GaussianWishart
              method), 218
plates_from_parent() (bayespy.inference.vmp.nodes.expfamily.Exponentall&d)mIlyDistribution
                                                                                  plates to parent() (bayespy.inference.vmp.nodes.gaussian markov chain.C
             method), 194
plates_from_parent() (bayespy.inference.vmp.nodes.gamma.GammaDinstrilbodi)on205
              method), 212
                                                                                  plates_to_parent() (bayespy.inference.vmp.nodes.gaussian_markov_chain.S
plates_from_parent() (bayespy.inference.vmp.nodes.gaussian.Gaussiam4eR101D)ist000ution
              method), 198
                                                                                  plates_to_parent() (bayespy.inference.vmp.nodes.gaussian_markov_chain.V
plates_from_parent() (bayespy.inference.vmp.nodes.gaussian.GaussiamDeistroid) utildrl
              method), 196
                                                                                  plates_to_parent() (bayespy.inference.vmp.nodes.multinomial.Multinomiall
plates_from_parent() (bayespy.inference.vmp.nodes.gaussian.Gaussiam@ahou)aARDDistribution
                                                                                  method), 201
plates_from_parent() (bayespy.inference.vmp.nodes.gaussian.Gaussiam@ahoud).ISOD istribution
              method), 200
                                                                                  plates\_to\_parent() \ (bayespy.inference.vmp.nodes.stochastic.Distribution
```

Index 283

method), 214

plates_from_parent() (bayespy.inference.vmp.nodes.gaussian.Gaussiam\\tibal\tDi\tibal\tDi\tibal\tDi\tibal\tib

method), 203

```
plot() (bayespy.inference.VB method), 138
                                                                                   Plotter (class in bayespy.plot), 147
            (bayespy.inference.vmp.nodes.constant.Constant Poisson (class in bayespy.nodes), 96
plot()
             method), 164
                                                                                   PoissonDistribution
                                                                                                                                                                in
plot() (bayespy.inference.vmp.nodes.deterministic.Deterministic
                                                                                                 bayespy.inference.vmp.nodes.poisson), 227
              method), 163
                                                                                   PoissonMoments
                                                                                                                                  (class
plot() (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily
                                                                                                bayespy.inference.vmp.nodes.poisson), 190
             method), 160
plot() \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gam \ref{Gaussian} ARD To Gaussian Wishart
              method), 170
                                                                                   random() (bayespy.inference.vmp.nodes.bernoulli.BernoulliDistribution
plot() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaISOToGaussianGammaARD
              method), 168
                                                                                   random() (bayespy.inference.vmp.nodes.beta.BetaDistribution
plot() (bayespy.inference.vmp.nodes.gaussian.GaussianToGaussianGamenLSQ 217
             method), 166
                                                                                   random() (bayespy.inference.vmp.nodes.binomial.BinomialDistribution
plot() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammareRod), 222
              method), 173
                                                                                   random() (bayespy.inference.vmp.nodes.categorical.CategoricalDistribution
plot() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianGammalSQod), 224
             method), 171
                                                                                   random() (bayespy.inference.vmp.nodes.categorical_markov_chain.Categor
plot() (bayespy.inference.vmp.nodes.gaussian.WrapToGaussianWisharthethod), 225
             method), 175
                                                                                   random() (bayespy.inference.vmp.nodes.dirichlet.DirichletDistribution
plot() (bayespy.inference.vmp.nodes.node.Node method),
                                                                                                 method), 218
                                                                                   random() (bayespy.inference.vmp.nodes.expfamily.ExponentialFamily
plot() (bayespy.inference.vmp.nodes.stochastic.Stochastic
                                                                                                 method), 160
              method), 157
                                                                                   random() (bayespy.inference.vmp.nodes.expfamily.ExponentialFamilyDistr
plot() (bayespy.nodes.Bernoulli method), 83
                                                                                                 method), 194
plot() (bayespy.nodes.Beta method), 103
                                                                                   random() (bayespy.inference.vmp.nodes.gamma.GammaDistribution
plot() (bayespy.nodes.Binomial method), 87
                                                                                                 method), 213
plot() (bayespy.nodes.Categorical method), 91
                                                                                   random() (bayespy.inference.vmp.nodes.gaussian.GaussianARDDistribution
plot() (bayespy.nodes.CategoricalMarkovChain method),
                                                                                                 method), 198
              111
                                                                                   random() (bayespy.inference.vmp.nodes.gaussian.GaussianDistribution
plot() (bayespy.nodes.Dirichlet method), 107
                                                                                                 method), 196
plot() (bayespy.nodes.Exponential method), 67
                                                                                   random() (bayespy.inference.vmp.nodes.gaussian.GaussianGammaARDDis
plot() (bayespy.nodes.Gamma method), 59
                                                                                                 method), 201
plot() (bayespy.nodes.Gate method), 136
                                                                                   random () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gamma ISO Distriction () \ (bayes py. inference. vmp. nodes. gaussian. Gaussian Gaussian () \ (bayes py. inference. vmp. nodes. gaussian Gaussian () \ (bayes py. inference. vmp. nodes. gaussian () \ (bay
plot() (bayespy.nodes.Gaussian method), 50
                                                                                                 method), 200
plot() (bayespy.nodes.GaussianARD method), 55
                                                                                   random() (bayespy.inference.vmp.nodes.gaussian.GaussianWishartDistribut
plot() (bayespy.nodes.GaussianGammaARD method), 75
                                                                                                 method), 203
plot() (bayespy.nodes.GaussianGammaISO method), 71
                                                                                   random() (bayespy.inference.vmp.nodes.gaussian_markov_chain.Gaussian1
plot() (bayespy.nodes.GaussianMarkovChain method),
                                                                                                 method), 205
              116
                                                                                   random() (bayespy.inference.vmp.nodes.gaussian markov chain.Switching
plot() (bayespy.nodes.GaussianWishart method), 79
                                                                                                 method), 209
plot() (bayespy.nodes.Mixture method), 131
                                                                                   random() (bayespy.inference.vmp.nodes.gaussian markov chain.VaryingGa
plot() (bayespy.nodes.Multinomial method), 95
                                                                                                 method), 211
plot() (bayespy.nodes.Poisson method), 99
                                                                                   random() (bayespy.inference.vmp.nodes.multinomial.MultinomialDistributi
plot() (bayespy.nodes.SumMultiply method), 134
                                                                                                 method), 227
           (bayespy.nodes.SwitchingGaussianMarkovChain
plot()
                                                                                   random() (bayespy.inference.vmp.nodes.poisson.PoissonDistribution
              method), 121
                                                                                                 method), 229
              (bayespy.nodes.VaryingGaussianMarkovChain
plot()
                                                                                   random() (bayespy.inference.vmp.nodes.stochastic.Distribution
              method), 126
                                                                                                 method), 192
plot() (bayespy.nodes.Wishart method), 63
                                                                                   random() (bayespy.inference.vmp.nodes.stochastic.Stochastic
plot() (in module bayespy.plot), 147
                                                                                                 method), 157
plot_iteration_by_nodes()
                                                (bayespy.inference.VB
                                                                                   random() (bayespy.inference.vmp.nodes.wishart.WishartDistribution
             method), 138
                                                                                                 method), 214
plotmatrix()
                            (bayespy.nodes.GaussianGammaISO
                                                                                   random() (bayespy.nodes.Bernoulli method), 83
              method), 71
                                                                                   random() (bayespy.nodes.Beta method), 103
```

random() (bayespy.nodes.Binomial method), 87	140			
random() (bayespy.nodes.Categorical method), 91	RotateGaussianARD (class in			
random() (bayespy.nodes.CategoricalMarkovChain	bayespy.inference.vmp.transformations),			
method), 111	141			
random() (bayespy.nodes.Dirichlet method), 107	RotateGaussianMarkovChain (class in			
random() (bayespy.nodes.Exponential method), 67	bayespy.inference.vmp.transformations),			
random() (bayespy.nodes.Gamma method), 59	142			
random() (bayespy.nodes.Gaussian method), 50	RotateMultiple (class in			
random() (bayespy.nodes.GaussianARD method), 55	bayespy.inference.vmp.transformations),			
random() (bayespy.nodes.GaussianGammaARD	145			
method), 75	RotateSwitchingMarkovChain (class in			
random() (bayespy.nodes.GaussianGammaISO method),	bayespy.inference.vmp.transformations),			
71	143			
random() (bayespy.nodes.GaussianMarkovChain	RotateVaryingMarkovChain (class in			
method), 116	bayespy.inference.vmp.transformations),			
random() (bayespy.nodes.GaussianWishart method), 79	144			
random() (bayespy.nodes.Mixture method), 131	RotationOptimizer (class in			
random() (bayespy.nodes.Multinomial method), 95	bayespy.inference.vmp.transformations),			
random() (bayespy.nodes.Poisson method), 99	139			
random()(bayespy.nodes. Switching Gaussian Markov Chain	rts_smoother() (in module bayespy.utils.misc), 244			
method), 121	run() (bayespy.utils.misc.TestCase method), 257			
random() (bayespy.nodes.VaryingGaussianMarkovChain				
method), 126	S			
random() (bayespy.nodes.Wishart method), 63	save() (bayespy.inference.VB method), 138			
remove_whitespace() (in module bayespy.utils.misc), 243	save() (bayespy.inference.vmp.nodes.expfamily.Exponential	Family		
repeat_to_shape() (in module bayespy.utils.misc), 243	method), 160			
rmse() (in module bayespy.utils.misc), 243	save() (bayespy.inference.vmp.nodes.stochastic.Stochastic			
rotate () (bayes py. inference. vmp. transformations. Rotate Gaussian experiments and the properties of the contraction of the properties of the propert	ssian method), 157			
method), 140	save() (bayespy,nodes,Bernoulli method), 83			
$rotate () \ (bayes py. inference. vmp. transformations. Rotate Gaussian expression for the contraction of $	ssive (Progressor, nodes. Beta method), 103			
method), 142	save() (bayespy.nodes.Binomial method), 87			
rotate () (bayes py. inference. vmp. transformations. Rotate Gaussian and the context of the	ssive (Markey Shainodes. Categorical method), 91			
method), 143 save() (bayespy.nodes.CategoricalMarkovChain method),				
rotate() (bayes py. inference. vmp. transformations. Rotate Multiplication of the context of	tiple 112			
method), 146	save() (bayespy.nodes.Dirichlet method), 107			
rotate () (bayes py. inference. vmp. transformations. Rotate Swing transformations) and the property of	tshing Markey Sylabdes. Exponential method), 67			
method), 144	save() (bayespy.nodes.Gamma method), 59			
$rotate () \ (bayes py. inference. vmp. transformations. Rotate Vary transformations) \ (bayes py. inference. vmp. transformations) \ (bayes py. inference. vmp$	vias (artsay espainodes. Gaussian method), 51			
method), 145	save() (bayesny nodes Gaussian ARD method) 55			
rotate() (bayespy.inference.vmp.transformations.RotationO	psinice(bayespy.nodes.GaussianGammaARD method), 75			
method), 139	save() (bayespy.nodes.GaussianGammaISO method), 72			
rotate() (bayespy.nodes.Gaussian method), 50	save() (bayespy.nodes.GaussianMarkovChain method),			
rotate() (bayespy.nodes.GaussianARD method), 55	116			
rotate() (bayespy.nodes.GaussianMarkovChain method),	save() (bayespy.nodes.GaussianWishart method), 79			
116	save() (bayespy.nodes.Mixture method), 131			
rotate() (bayespy.nodes.SwitchingGaussianMarkovChain	save() (bayespy.nodes.Multinomial method), 95			
method), 121	save() (bayespy.nodes.Poisson method), 99			
rotate() (bayespy.nodes.VaryingGaussianMarkovChain	save() (bayespy.nodes.SwitchingGaussianMarkovChain			
method), 126	method), 121			
rotate_matrix() (bayespy.nodes.Gaussian method), 50	save() (bayespy.nodes.VaryingGaussianMarkovChain			
rotate_plates() (bayespy.nodes.GaussianARD method),	method), 126			
55	save() (bayespy.nodes.Wishart method), 63			
RotateGaussian (class in	set_autosave() (bayespy.inference.VB method), 138			
bayespy.inference.vmp.transformations),				

```
set\_plotter() \ (bayespy.inference.vmp.nodes.constant.Constansetup() \ (bayespy.inference.vmp.transformations.RotateGaussianARD) \ (bayespy.inference.vmp.transformation.RotateGaussianARD) \ (bayespy.
                  method), 165
                                                                                                                               method), 142
set plotter() (bayespy, inference, vmp. nodes, deterministic, Desetupi(i) (bixvespy, inference, vmp, transformations, RotateGaussian Markov Cha
                  method), 163
                                                                                                                               method), 143
set_plotter() (bayespy.inference.vmp.nodes.expfamily.ExponsentialFebraily.spy.inference.vmp.transformations.RotateMultiple
                  method), 160
                                                                                                                               method), 146
set plotter() (bayespy, inference.vmp.nodes.gaussian.Gaussian.Gaussian.Wishtentnsformations.RotateSwitchingMarkovCh
                  method), 170
                                                                                                                               method), 144
set_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gaussian.Gauss
                                                                                                                               method), 145
                  method), 168
set_plotter() (bayespy.inference.vmp.nodes.gaussian.Gaussianellof@usxiynsfpynutils1860sc.TestCase method), 257
                  method), 166
                                                                                                            setUpClass() (bayespy.utils.misc.TestCase method), 257
set_plotter() (bayespy.inference.vmp.nodes.gaussian.WrapTohixutDeantiputioum@ABDespy.utils.misc.TestCase method),
                  method), 173
                                                                                                                               257
set_plotter() (bayespy.inference.vmp.nodes.gaussian.WrapTollow(sichnGaspynalSiOs.Bernoulli method), 83
                  method), 171
                                                                                                             show() (bayespy.nodes.Beta method), 103
set_plotter() (bayespy.inference.vmp.nodes.gaussian.WrapTofamu() idm\\daggerian.wspy.inference.vmp.nodes.Binomial method), 87
                  method), 175
                                                                                                            show() (bayespy.nodes.Categorical method), 91
                                                                                                                                          (bayespy.nodes.CategoricalMarkovChain
set plotter()
                            (bayespy.inference.vmp.nodes.node.Node
                                                                                                            show()
                  method), 155
                                                                                                                               method), 112
set_plotter() (bayespy.inference.vmp.nodes.stochastic.Stochasticw() (bayespy.nodes.Dirichlet method), 107
                  method), 157
                                                                                                             show() (bayespy.nodes.Exponential method), 67
set_plotter() (bayespy.nodes.Bernoulli method), 83
                                                                                                            show() (bayespy.nodes.Gamma method), 59
set plotter() (bayespy.nodes.Beta method), 103
                                                                                                            show() (bayespy.nodes.Gaussian method), 51
set_plotter() (bayespy.nodes.Binomial method), 87
                                                                                                            show() (bayespy.nodes.GaussianARD method), 55
set plotter() (bayespy.nodes.Categorical method), 91
                                                                                                            show() (bayespy.nodes.GaussianGammaISO method), 72
set_plotter()
                            (bayespy.nodes.CategoricalMarkovChain
                                                                                                            show() (bayespy.nodes.GaussianMarkovChain method),
                  method), 112
set_plotter() (bayespy.nodes.Dirichlet method), 107
                                                                                                            show() (bayespy.nodes.GaussianWishart method), 79
set_plotter() (bayespy.nodes.Exponential method), 67
                                                                                                            show() (bayespy.nodes.Multinomial method), 95
set_plotter() (bayespy.nodes.Gamma method), 59
                                                                                                            show() (bayespy.nodes.Poisson method), 99
set_plotter() (bayespy.nodes.Gate method), 136
                                                                                                            show() (bayespy.nodes.SwitchingGaussianMarkovChain
set_plotter() (bayespy.nodes.Gaussian method), 51
                                                                                                                               method), 121
set_plotter() (bayespy.nodes.GaussianARD method), 55
                                                                                                            show()
                                                                                                                                (bayespy.nodes.VaryingGaussianMarkovChain
                                  (bayespy.nodes.GaussianGammaARD
                                                                                                                               method), 126
set_plotter()
                  method), 75
                                                                                                            show() (bayespy.nodes.Wishart method), 63
set_plotter()
                                     (bayespy.nodes.GaussianGammaISO
                                                                                                            skipTest() (bayespy.utils.misc.TestCase method), 257
                  method), 72
                                                                                                             solve() (bayespy.utils.misc.CholeskyDense method), 246
                                                                                                            solve() (bayespy.utils.misc.CholeskySparse method), 247
set_plotter()
                                 (bayespy.nodes.GaussianMarkovChain
                  method), 116
                                                                                                             solve_triangular() (in module bayespy.utils.linalg), 232
set plotter() (bayespy.nodes.GaussianWishart method),
                                                                                                            sphere() (in module bayespy.utils.random), 235
                                                                                                            squeeze() (in module bayespy.utils.misc), 244
set plotter() (bayespy.nodes.Mixture method), 131
                                                                                                            squeeze to dim() (in module bayespy.utils.misc), 244
set_plotter() (bayespy.nodes.Multinomial method), 95
                                                                                                            Stochastic (class in bayespy.inference.vmp.nodes.stochastic),
set_plotter() (bayespy.nodes.Poisson method), 99
set_plotter() (bayespy.nodes.SumMultiply method), 134
                                                                                                             sum_multiply() (in module bayespy.utils.misc), 244
set_plotter() (bayespy.nodes.SwitchingGaussianMarkovChainum_product() (in module bayespy.utils.misc), 244
                  method), 121
                                                                                                            sum_to_dim() (in module bayespy.utils.misc), 245
set_plotter() (bayespy.nodes.VaryingGaussianMarkovChain sum_to_shape() (in module bayespy.utils.misc), 245
                  method), 126
                                                                                                            SumMultiply (class in bayespy.nodes), 132
                                                                                                            svd() (in module bayespy.utils.random), 235
set_plotter() (bayespy.nodes.Wishart method), 63
setup() (bayespy.inference.vmp.transformations.RotateGaussianMarkovChain
                                                                                                                                                                                        (class
                                                                                                                                                                                                                  in
                 method), 140
                                                                                                                               bayespy.nodes), 117
```

bayespy.inference.vmp.nodes.gaussian_markov_o		
symm() (in module bayespy.utils.misc), 245	update() (bayespy.inference.vmp.nodes.stochastic.Stochastic method), 157	
	update() (bayespy.nodes.Bernoulli method), 84	
Т	update() (bayespy.nodes.Beta method), 103	
T() (in module bayespy.utils.misc), 238	update() (bayespy.nodes.Binomial method), 88	
t_logpdf() (in module bayespy.utils.random), 236	update() (bayespy.nodes.Categorical method), 91	
tearDown() (bayespy.utils.misc.TestCase method), 257	update() (bayespy.nodes.CategoricalMarkovChain	
tearDownClass() (bayespy.utils.misc.TestCase method),	method), 112	
258	update() (bayespy.nodes.Dirichlet method), 107	
tempfile() (in module bayespy.utils.misc), 245	update() (bayespy.nodes.Exponential method), 67	
TestCase (class in bayespy.utils.misc), 247	update() (bayespy.nodes.Gamma method), 59	
$trace_solve_gradient() (bayespy.utils.misc.CholeskyDense$	update() (bayespy.nodes.Gaussian method), 51	
method), 246	update() (bayespy.nodes.GaussianARD method), 55	
trace_solve_gradient() (bayespy.utils.misc.CholeskySparse method), 247	update() (bayespy.nodes.GaussianGammaARD method), 76	
tracedot() (in module bayespy.utils.linalg), 232	update() (bayespy.nodes.GaussianGammaISO method),	
trues() (in module bayespy.utils.misc), 245	update() (bayespy.nodes.GaussianMarkovChain method),	
U	117	
	update() (bayespy.nodes.GaussianWishart method), 79	
unique() (in module bayespy.utils.misc), 245 unobserve() (bayespy.inference.vmp.nodes.expfamily.Expo	update() (bayespy.nodes.Mixture method), 131	
mathad) [6])	apaate() (ou)esp /oues.iviaitinoimai memou), /s	
unobserve() (bayespy.inference.vmp.nodes.stochastic.Stoch	appdate() (bayespy.nodes.Poisson method), 99	
method), 157	update() (bayespy.nodes.SwitchingGaussianMarkovChain	
unobserve() (bayespy.nodes.Bernoulli method), 83	method), 122	
unobserve() (bayespy.nodes.Beta method), 103	update() (bayespy.nodes.VaryingGaussianMarkovChain	
unobserve() (bayespy.nodes.Binomial method), 87	method), 127	
unobserve() (bayespy.nodes.Categorical method), 91	update() (bayespy.nodes.Wishart method), 63	
unobserve() (bayespy.nodes.CategoricalMarkovChain	V	
method), 112	V	
unobserve() (bayespy.nodes.Dirichlet method), 107	VaryingGaussianMarkovChain (class in bayespy.nodes),	
unobserve() (bayespy.nodes.Exponential method), 67	122	
unobserve() (bayespy.nodes.Gamma method), 59	VaryingGaussianMarkovChainDistribution (class in	
unobserve() (bayespy.nodes.Gaussian method), 51	bayespy.inference.vmp.nodes.gaussian_markov_chain),	
unobserve() (bayespy.nodes.GaussianARD method), 55	209	
unobserve() (bayespy.nodes.GaussianGammaARD	VB (class in bayespy.inference), 137	
method), 76	vb_optimize() (in module bayespy.utils.misc), 245	
unobserve() (bayespy.nodes.GaussianGammaISO method), 72	vb_optimize_nodes() (in module bayespy.utils.misc), 245	
unobserve() (bayespy.nodes.GaussianMarkovChain	W	
method), 116	Wishart (class in bayespy.nodes), 60	
unobserve() (bayespy.nodes.GaussianWishart method),	wishart_rand() (in module bayespy.utils.random), 236	
79	Wishart Distribution (class in	
unobserve() (bayespy.nodes.Mixture method), 131	bayespy.inference.vmp.nodes.wishart), 213	
unobserve() (bayespy.nodes.Multinomial method), 95	WishartMoments (class in	
unobserve() (bayespy.nodes.Poisson method), 99	bayespy.inference.vmp.nodes.wishart), 183	
unobserve() (bayespy.nodes.SwitchingGaussianMarkovChailWrapToGaussianGammaARD (class in		
method), 121	bayespy.inference.vmp.nodes.gaussian), 172	
unobserve() (bayespy.nodes.VaryingGaussianMarkovChain	•	
method), 127	bayespy.inference.vmp.nodes.gaussian), 170	
unobserve() (bayespy.nodes.Wishart method), 63	WrapToGaussianWishart (class in havespy inference ymp nodes gaussian) 173	
induated (pavespy interence v.B. method) 138	pavespy interence vmp nodes gallssian) 1/5	

write_to_hdf5() (in module bayespy.utils.misc), 245

Z

zipper_merge() (in module bayespy.utils.misc), 246