Pizzaseminar zur Knotentheorie

2. Übungsblatt

Aufgabe 1. Kauffman-Klammer und Jones-Polynom in einem konkreten Beispiel Berechne Kauffman-Klammer und Jones-Polynom des Achterknotens.

Aufgabe 2. Kauffman-Klammer und Jones-Polynom unter Spiegelung Beweise die Identitäten

$$\langle \bar{D} \rangle = \overline{\langle D \rangle}$$
 und $V(\bar{D}) = \overline{V(D)}$.

Hierbei ist D ein Diagramm (eine reguläre Projektion eines Knotens oder einer Verschlingung auf \mathbb{R}^2) und \bar{D} das an einer Achse des \mathbb{R}^2 gespiegelte Diagramm. Außerdem beizeichnet \overline{P} das Laurant-Polynom, das aus $P \in \mathbb{Z}[A, A^{-1}]$ durch Vertauschen von A und A^{-1} entsteht.

Hinweis: Definiere das Polynom $\overline{\langle \cdot \rangle}$ durch Regeln analog zur Kauffman-Klammer.

Aufgabe 3. Reidemeister-Bewegungen

Die Bilder zeigen die Ränder der Seifert-Flächen des Kleeblattknotens. Benutze die Reidemeister-Bewegungen, um zu zeigen, dass es tatsächlich Kleeblattknoten sind.

Aufgabe 4. Seifert-Flächen beliebig hohen Geschlechts

Sei K ein Knoten mit einer Seifert-Fläche des Geschlechts g. Zeige, dass K auch eine Seifert-Fläche des Geschlechts g+1 hat.

Aufgabe 5. Knoten vom Geschlecht Null

Zeige, dass jeder Knoten mit Geschlecht Null (das heißt, dass es eine in \mathbb{R}^3 eingebettete Kreisscheibe gibt, deren Rand der Knoten ist) äquivalent zum Unknoten ist.

Hinweis: Approximiere den Knoten durch Polygonzüge und verändere ihn dann innerhalb der Scheibe.