AULA 7: APRENDIZADO DE MÁQUINAS MODELOS DE CLASSIFICAÇÃO

INTRODUÇÃO A CIÊNCIA DE DADOS NA ENGENHARIA DE PETRÓLEO

Calendário

DATA	ATIVIDADE		
26/08	Introdução		
02/09	Tipos de dados/ Pré-processamento		
09/09	Aula Prática 1		
16/09	Aula Prática 2		
23/09	Aula Prática 3		
30/09	Introdução ML		
07/10	ML Classificação		
14/10	Aula Prática 4		
21/10	ML Regressão/ML Agrupamento		
28/10	Feriado		
04/11	Aula Prática 5		
11/11	Entrega dos Trabalhos		

Tópicos

- Classificação
- □ Classificadores Probabilísticos
 - Classificador Bayesiano
 - Regressão Logística
- Máquinas de Suporte de Vetores (Support Vector Machines SVM)
- Aprendizado baseado em instâncias
 - KNN
- Métricas de Avaliação

Classificação

 Modelo capaz de realizar estimativa do valor da variável de saída discreta a partir das variáveis de entrada.

Classificação

□ Diferentes algoritmos de classificação irão retornar diferentes resultados, de acordo com REPRESENTAÇÃO, FUNÇÃO DE AVALIAÇÃO E OTIMIZAÇÃO.

Conjunto de Treinamento

Como achar o melhor modelo e otimizar seus parâmetros?

Classificação

□ Diferentes algoritmos de classificação irão retornar diferentes resultados, de acordo com REPRESENTAÇÃO, FUNÇÃO DE AVALIAÇÃO E OTIMIZAÇÃO.

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Modelos Supervisionados Classificação

□ Quando existe uma função que separa as classes no domínio das variáveis, o problema é dito SEPEARÁVEL, caso contrário o problema é NÃO SEPARÁVEL.

Classificadores

- □ Classificadores Probabilísticos:
 - Naive Bayes
 - Regressão Logística
- ■Máquinas de Suporte de Vetores (Support Vector Machines SVM)
- Aprendizado baseado em instâncias:
 - KNN

Teorema de Bayes

$$P(C_i/x) = \frac{p(x/C_i) P(C_i)}{p(x)}$$

Teorema de Bayes

$$P(C_i/x) = \frac{p(x/C_i) P(C_i)}{p(x)}$$

Probabilidade a posteriori :

Probabilidade de observar a classe C_i conhecendo os valores de X.

Teorema de Bayes

Distribuição da Probabilidade condicional:

Distribuição de probabilidades das variáveis x quando a classe observada é C_i.

$$P(C_i/x) = \frac{p(x/C_i) P(C_i)}{p(x)}$$

Probabilidade a posteriori :

Probabilidade de observar a classe C_i conhecendo os valores de X.

Distribuição da Probabilidade condicional:

Distribuição de probabilidades das variáveis x quando a classe observada é C_i.

Teorema de Bayes

Probabilidade a posteriori:

Probabilidade de observar a classe C_i conhecendo os valores de X.

Probabilidade a priori:

Probabilidade de ocorrência da classe C_i na ausência de qualquer observação.

Distribuição da Probabilidade condicional:

Distribuição de probabilidades das variáveis x quando a classe observada é C_i.

Teorema de Bayes

Probabilidade a posteriori :

Probabilidade de observar a classe C_i conhecendo os valores de X.

Probabilidade a priori:

Probabilidade de ocorrência da classe C_i na ausência de qualquer observação.

Densidade de Probabilidade:

Probabilidade de observar valores das variáveis x. Funciona como um fator de padronização para que o resultado permaneça no intervalo de [0,1].

$$p(x) = \sum_{i=1}^{m} p(x/C_i) P(C_i)$$

O que queremos?

$$P(C_i/x_1, x_2, ..., x_n)$$
 Probabilidade a posteriori para cada classe i

O que precisamos calcular?

$$P(C_i/x) = \frac{p(x/C_i) P(C_i)}{p(x)} \propto p(x/C_i) P(C_i) = p(C_i, x_1, x_2, ..., x_n) \begin{cases} \text{Probabilidade} \\ \text{conjunta} \end{cases}$$

Como se resolve?

$$p(C_i, x_1, x_2, ..., x_n) = p(x_1/x_2, ..., x_n, C_i) \cdot p(x_2/x_1, ..., x_n, C_i) \cdot p(x_3/x_1, ..., x_n, C_i)...$$
Complexo, requer muitos registros com todas essas diferentes condições!

Naive Bayes (Classificador Bayesiano Simples)

O que o algoritmo Naive Bayes assume?

Assume que todas as variáveis são <u>mutualmente independentes</u>, assim conseguimos reduzir o problema, pois:

$$p(x/C_i) = p(x_1/C_i) \cdot p(x_2/C_i) \cdot p(x_3/C_i) \cdot p(x_n/C_i)$$

Fórmula algoritmo Naive Bayes:

$$P(C_i/x_1, x_2, \dots, x_n) = P(C_i) \cdot P(x_1, x_2, \dots, x_d/c_i) = P(C_i) \cdot \prod_{j=1}^{d} P(x_j/c_i)$$
Produtório

Conjunto de Treinamento

X1	X2	у
-5.9	4.6	0
-5.8	-3.2	1
7.4	6.8	0
-8.0	-0.9	1
-14.7	-3.6	1
-14.3	-6.6	1
-11.3	-3.3	1
-11.3	-1.8	1
• • •	•••	•••

Naive Bayes:

•
$$P(C_0/x_1, x_2) = P(C_0) \cdot P(x_1/c_0) \cdot P(x_2/c_0)$$

•
$$P(C_1/x_1, x_2) = P(C_1) \cdot P(x_1/c_1) \cdot P(x_2/c_1)$$

Cálculo da Probabilidade a Priori C_i:

$$P(C_0) = \frac{500}{1000} = 0,5$$

$$P(C_1) = \frac{500}{1000} = 0,5$$

Conjunto de Treinamento

X1	X2	у
-5.9	4.6	0
-5.8	-3.2	1
7.4	6.8	0
-8.0	-0.9	1
-14.7	-3.6	1
-14.3	-6.6	1
-11.3	-3.3	1
-11.3	-1.8	1
•••	•••	• • •

$$P(C_0)=0,5$$

$$P(C_1) = 0,5$$

$P(x_k/c_0)$

X1	X2	у
-5.9	4.7	0
7.4	6.9	0
1.5	1 <i>.7</i>	0
-3.7	5.5	0
0.1	5.4	0
•••	• • •	•••

$P(x_k/c_1)$

X1	X2	У
-5.8	-3.3	1
-8.0	-1.0	1
-14.7	-3.7	1
-14.3	-6.7	1
-11.3	-3.4	1
• • •	•••	•••

Cálculo da Distribuição da Probabilidade condicional $P(x_k/c_i)$:

•
$$P(C_0/x_1, x_2) = P(C_0) \cdot P(x_1/c_0) \cdot P(x_2/c_0)$$

Qual a distribuição dessas variáveis?

Cálculo da Distribuição da Probabilidade condicional $\mathrm{P}(\mathrm{x}_k/\mathrm{c}_i)$:

Geralmente se considera

 $\mathbf{P}(\mathbf{x}_k/\mathbf{c}_i)$ como uma distribuição Normal (Gaussiana) e se chama de Naive Bayes Gaussiano

Conjunto	Média	SD
Classe 0	-1,5	2,9
Classe 1	-9,9	3,1

Conjunto	Média	SD
Classe 0	4,5	3,0
Classe 1	- 3,9	3,0

Imagine que queremos prever qual classe um novo X

X1	(1 X2 y	
-13	10	Ś

Resposta:

•
$$P(C_0/x_1,x_2) = P(C_0) \cdot P(x_1 = -13/c_0) \cdot P(x_2 = 10/c_0)$$

•
$$P(C_1/x_1, x_2) = P(C_1) \cdot P(x_1 = -13/c_1) \cdot P(x_2 = 10/c_1)$$

$$P(C_0) = 0.5$$
 • $P(x_1 = -13/c_0) = 6 \times 10^{-5}$

$$P(C_1) = 0.5$$
 • $P(x_1 = -13/c_1) = 0.08$

•
$$P(x_2 = 10/c_0) = 0,02$$

•
$$P(x_2 = 10/c_1) = 4 \times 10^{-6}$$

Naive Bayes

Exemplo

o Imagine que queremos prever qual classe um novo X

X1	X2	у
-13	10	ś

$$P(C_0) = 0,5$$

•
$$P(x_1 = -13/c_0) = 6 \times 10^{-5}$$

$$P(C_1) = 0,5$$

•
$$P(x_1 = -13/c_1) = 0,08$$

•
$$P(x_2 = 10/c_0) = 0,02$$

•
$$P(x_2 = 10/c_1) = 4 \times 10^{-6}$$

Resposta:

•
$$P(C_0/x_1,x_2) = P(C_0) \cdot P(x_1 = -13/c_0) \cdot P(x_2 = 10/c_0) = 0, 5 \times 6 \times 10^{-5} \times 0, 02 = 7, 4 \times 10^{-7}$$

•
$$P(C_1/x_1, x_2) = P(C_1) \cdot P(x_1 = -13/c_1) \cdot P(x_2 = 10/c_1) = 0, 5 \times 0, 08 \times 4 \times 10^{-6} = 1, 6 \times 10^{-7}$$

$$P(C_0/x_1 = -13, x_2 = 10) > P(C_1/x_1 = -13, x_2 = 10)$$

Resposta: Y = Classe 0

Regressão Logística

□ Caso especial da regressão linear.

Duas Classes Regressão Linear

$$y = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Função Sigmoide

$$p=\frac{1}{1+e^{-y}}$$

Probabilidade de ocorrência de um evento binário utilizando uma função logit (curva S).

Regressão Logística

Função de Otimização: Método dos Mínimos Quadrados

Função de Otimização: Método da Máxima Verossimilhança

SVM – Máquinas de Vetores de Suporte

- Hiperplano que maximiza a margem
 de separação entre as classes.
- Dados linearmente separáveis:
 - Hiperplano separa perfeitamente duas classes.
 - Margem do hiperplano : soma de sua distância com os pontos de treinamento mais próximos de cada uma das classes, chamados vetores de suporte.

SVM – Máquinas de Vetores de Suporte

- Dados não perfeitamente linearmente separáveis:
 - Maior parte dos dados estão nos lados corretos dos hiperplanos.
 - Suavização da margem: Aceitar violação das restrições de margem com uma certa penalidade.
 - Variável de folga: nível de violação de cada registro.
 - Parâmetro de regularização C: penaliza essas variações
 - Valores pequenos de C: margens relaxadas
 - Valores grandes de C: margens estreitas

SVM – Máquinas de Vetores de Suporte

- Dados não linearmente separáveis:
 - Nenhum hiperplano linear consegue separar as classes.
 - Mapeamento não linear:
 - Transforma dados originais em uma dimensão maior, e então procuram um hiperplano ótimo que melhor separe as classes.
 - Truque de Kernel: Funções de núcleo capazes de aprender os limites de decisão sem realizar explicitamente o mapeamento.
 - Núcleo Linear, Polinomial, Radial

https://www.hackerearth.com/blog/developers/simple-tutorial-svm-parameter-tuning-python-r/

SVM – Máquinas de Vetor Suporte

□ Método não linear que mapeia as variáveis de entrada do problema em um espaço de características de maior dimensão.

KNN (K-vizinhos mais próximos)

- □ No KNN, a classe de um determinado registro é a classe mais frequente naqueles k-vizinhos mais próximos.
- 1. Calcular a distância entre os registos e o novo dado que quer ser classificado.

$$d_{x,y} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 Distância Euclidiana

$$d_{i,n} = \sqrt{(x_{i,1} - x_{n,1})^2 + (x_{i,2} - x_{n,2})^2}$$

KNN (K-vizinhos mais próximos)

- 2. Identificar os K vizinhos mais próximos do novo registro.
- 3. Observação é atribuída ao grupo ao qual a maioria dos K-vizinhos mais próximos estão contidos

Número de Vizinhos	Classificação
3	Classe 2

■ Matriz de Confusão

Previsão

Avaliação dos Classificadores

	Classe 1 - Previsão	Classe 2 - Previsão
Classe 1 - Real	VP	FN
Classe 2 - Real	FP	VN

- <u>Verdadeiros Positivos (VP)</u> Número de registros da classe 1 corretamente classificados como classe 1.
- <u>Verdadeiros Negativos (VN)</u> Número de registros da classe
 2 corretamente classificados como classe
- <u>Falsos Negativos (FN)</u> Número de registros da classe 1
 incorretamente classificados como classe 2.
- <u>Falsos Positivos (FP)</u> Número de registros da classe 2 incorretamente classificados como classe 1.

■ Matriz de Confusão - Exemplo

CONJUNTO DE TESTE

REGISTROS	1	2	3	4	5	6	7
Real	0	0	1	1	1	0	1
Previsto	0	1	1	1	1	1	0

Classe 1: Não Falha

Classe 0 : Falha

	Classe 0 - Previsão	Classe 1 - Previsão
Classe 0 - Real		
Classe 1 - Real		

■ Matriz de Confusão - Exemplo

REGISTROS	1	2	3	4	5	6	7
Real	0	0	1	1	1	0	1
Previsto	0	1	1	1	1	1	0

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real			
Classe 1 - Real			
Total			

■ Matriz de Confusão - Exemplo

REGISTROS	1	2	3	4	5	6	7
Real	0	0	1	1	1	0	1
Previsto	0	1	1	1	1	1	0

	Classe 1 - Previsão	Total
Classe 0 - Real		3
Classe 1 - Real		
Total		

■ Matriz de Confusão - Exemplo

REGISTROS	1	2	3	4	5	6	7
Real	0	0	1	1	1	0	1
Previsto	0	1	1	1	1	1	0

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1		3
Classe 1 - Real			
Total			

■ Matriz de Confusão - Exemplo

REGISTROS	1	2	3	4	5	6	7
Real	0	0	1	1	1	0	1
Previsto	0	1	1	1	1	1	0

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real			
Total			

■ Matriz de Confusão - Exemplo

REGISTROS	1	2	3	4	5	6	7
Real	0	0	1	1	1	0	1
Previsto	0	1	1	1	1	1	0

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real			
Total			

■ Matriz de Confusão - Exemplo

REGISTROS	1	2	3	4	5	6	7
Real	0	0	1	1	1	0	1
Previsto	0	1	1	1	1	1	0

		Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real			4
Total			

■ Matriz de Confusão - Exemplo

REGISTROS	1	2	3	4	5	6	7
Real	0	0	1	1	1	0	1
Previsto	0	1	1	1	1	1	0

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real			4
Total			7

■ Matriz de Confusão - Exemplo

REGISTROS	1	2	3	4	5	6	7
Real	0	0	1	1	1	0	1
Previsto	0	1	1	1	1	1	0

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1		4
Total			7

■ Matriz de Confusão - Exemplo

REGISTROS	1	2	3	4	5	6	7
Real	0	0	1	1	1	0	1
Previsto	0	1	1	1	1	1	0

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1	3	4
Total			7

■ Matriz de Confusão - Exemplo

REGISTROS	1	2	3	4	5	6	7
Real	0	0	1	1	1	0	1
Previsto	0	1	1	1	1	1	0

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1	3	4
Total	2	5	7

■ Matriz de Confusão - Exemplo

	Classe 1 - Previsão	Classe 2 - Previsão
Classe 1 - Real	VP	FN
Classe 2 - Real	FP	VN

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1	3	4
Total	2	5	7

■ Matriz de Confusão - Exemplo

	Classe 1 - Previsão	Classe 2 - Previsão
Classe 1 - Real	VP	FN
Classe 2 - Real	FP	٧N

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1	3	4
Total	2	5	7

□ Acurácia

Acurácia (ACC) – Taxa de Classificação correta

$$ACC = \frac{VP + VN}{VP + FP + FN + VN}$$

	Classe 1 - Previsão	Classe 2 - Previsão
Classe 1 - Real	VP	FN
Classe 2 - Real	FP	VN

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1	3	4
Total	2	5	7

$$ACC = \frac{1+3}{1+1+2+3} = \frac{4}{7}$$

$$ACC = 57\%$$

□ Precisão (Sensitividade)

Precisão (PRE) – Calculada para cada classe

$$PRE(C_1) = \frac{VP}{VP + FP}$$
; $PRE(C_2) = \frac{VN}{VN + FN}$

	Classe 0 - Previsão	Classe 1 - Previsão
Classe 0 - Real	VP	FN
Classe 1 - Real	FP	٧N

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1	3	4
Total	2	5	7
	•		

$$PRE(C_0) = \frac{1}{1+1} = \frac{1}{2}$$

□ Precisão (Sensitividade)

Precisão (PRE) – Calculada para cada classe

$$PRE(C_1) = \frac{VP}{VP + FP}$$
; $PRE(C_2) = \frac{VN}{VN + FN}$

	Classe 0 - Previsão	Classe 1 - Previsão
Classe 0 - Real	VP	FN
Classe 1 - Real	FP	٧N

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1	3	4
Total	2	5	7

$$PRE(C_1) = \frac{3}{3+2} = \frac{3}{5}$$

□ Precisão (Sensitividade)

Precisão (PRE) – Calculada para cada classe

$$PRE(C_1) = \frac{VP}{VP + FP}$$
; $PRE(C_2) = \frac{VN}{VN + FN}$

	Classe 0 - Previsão	Classe 1 - Previsão
Classe 0 - Real	VP	FN
Classe 1 - Real	FP	٧X

CONJUNTO DE TESTE

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1	3	4
Total	2	5	7

$$PRE(C_0) = 50\%$$
 $PRE(C_1) = 60\%$

Precisão mede a capacidade de predição do modelo!

□ Recuperação / Recall (REC)

Recuperação/Recall (REC) — Calculada para cada classe

$$REC(C_1) = \frac{VP}{VP + FN}$$
; $REC(C_2) = \frac{VN}{VN + FP}$

	Classe 0 - Previsão	Classe 1 - Previsão
Classe 0 - Real	VP	FN
Classe 1 - Real	FP	٧N

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1	3	4
Total	2	5	7

$$REC(C_0) = \frac{1}{1+2} = \frac{1}{3}$$

□ Recuperação/ Recall (REC)

Recuperação/Recall (REC) — Calculada para cada classe

$$REC(C_1) = \frac{VP}{VP + FN}$$
; $REC(C_2) = \frac{VN}{VN + FP}$

	Classe 0 - Previsão	Classe 1 - Previsão
Classe 0 - Real	VP	FN
Classe 1 - Real	FP	٧N

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1	3	4
Total	2	5	7

$$REC(C_1) = \frac{3}{3+1} = \frac{3}{4}$$

□ Recuperação / Recall (REC)

Recuperação/ Recall (REC) — Calculada para cada classe

$$REC(C_1) = \frac{VP}{VP + FN}$$
; $REC(C_2) = \frac{VN}{VN + FP}$

	Classe 0 - Previsão	Classe 1 - Previsão
Classe 0 - Real	VP	FN
Classe 1 - Real	FP	٧N

CONJUNTO DE TESTE

	Classe 0 - Previsão	Classe 1 - Previsão	Total
Classe 0 - Real	1	2	3
Classe 1 - Real	1	3	4
Total	2	5	7

$$REC(C_0) = 33\%$$
 $REC(C_1) = 75\%$

Recuperação é a capacidade de reconhecer os registros da classe correspondente

□ Classes Desbalanceadas:

Característico de Problemas de Doenças:

	Doente - Previsão	Não Doente - Previsão	Total
Doente - Real	0	2	2
Não Doente - Real	0	98	98
Total	0	100	100

$$ACC = \frac{98}{100} = 98\%$$

- PRE(Doente) = 0
- $PRE(N\~ao\ doente) = 0,98$
- $Recal(Doente) = \frac{0}{2} = 0$

•
$$Recal(N\tilde{a}o\ Doente) = \frac{98}{98} = 1$$

Referências Bibliográficas

- □ Evsukoff, A G. INTELIGÊNCIA COMPUTACIONAL Fundamentos e aplicações. 2020.
- □ Grus, J. Data Science from Scratch. First Principles with Python. 2015
- Muller, A and Guido, S. Introduction to Machine Learning with Python. A guide for Data Scientists.
 2016.
- □ VanderPlas, J. **Python Data Science Handbook**. 2016.