

Universidad Técnica Nacional

Sede Central Alajuela - Campus CUNA

PROYECTO FINAL

Electronica II

Ced: 604650904

Integrantes:

Angie Paola Marchena Mondell.

Cálculo de resistencia.

Con 50% - 70% de ciclo de trabajo

Periodo de 2 s tenemos una frecuencia de 0.5 Hz

$$T = 0.693(R_1 + 2R_2)C$$

Sabiendo que el capacitor es de 100uF, y R1 = 10k, despejamos R2

$$R_2 = \frac{1}{2} \left(\frac{T}{0.693C} - R_1 \right)$$

$$R_2 = \frac{1}{2} \left(\frac{2}{0.693(100\mu)} - 10k \right)$$

$$R_2 = 10k\Omega$$

CIRCUITO N.2

Cálculo de resistencia.

Periodo de 5 s tenemos una frecuencia de 0.2 Hz

$$T = 0.693(R_1 + 2R_2)C$$

Sabiendo que el capacitor es de 100uF, y R1 = 10k, despejamos R2

$$R_{2} = \frac{1}{2} \left(\frac{T}{0.693C} - R_{1} \right)$$

$$R_{2} = \frac{1}{2} \left(\frac{5}{0.693(100\mu)} - 10k \right)$$

$$R_{2} = 35k\Omega$$

Ancho de pulso

$$w = 0.693(10k + 72k)47\mu$$
$$w = 2.6$$

Circuito 3: Operacional

Simulación y circuito en protoboard

Circuito 1: Astable.

Circuito 2: Monoestable.

Circuito amplificador.

