FIELD WORK ON BUMBLEBEES

A synthetic review on useful methods

Gaia Di Francescantonio (627431)

a. a. 2021/2022

Corso di Apidologia integrata all'ambiente e al sociale LM Conservazione ed evoluzione Università di Pisa

INTRODUZIONE

VALORE INTRINSECO

SERVIZIO DI IMPOLLINAZIONE

VALORE INTRINSECO

SERVIZIO DI IMPOLLINAZIONE

WORK RATE

VALORE INTRINSECO

SERVIZIO DI IMPOLLINAZIONE

WORK RATE

BUZZ POLLINATION

IUCN's RED LIST OF THREATENED SPECIES

LISTA ROSSA DELLE API ITALIANE MINACCIATE

IUCN's RED LIST OF THREATENED SPECIES

91 specie

5 CR 8 EN 9 VU 22 DD LISTA ROSSA DELLE API ITALIANE MINACCIATE

LISTA ROSSA DELLE API ITALIANE MINACCIATE

Specie	Endemica	Categoria italiana	Categoria europea
Bombus confusus	no	CR (PE)	VU
Bombus alpinus	no	EN	VU
Bombus brodmannicus	no	EN	EN
Bombus konradini	Sì	EN	NE
Bombus muscorum	no	VU	VU

Adattata da Quaranta et al., 2018.

Tassonomia e distribuzione

Tassonomia e distribuzione

ORDINE	Hymenoptera	
SOTTORDINE	Apocrita	
SEZIONE	Aculeata	
SUPERFAMIGLIA	Apoidea	
FAMIGLIA	Apidae	
GENERE	Bombus	

Tassonomia e distribuzione

ORDINE	Hymenoptera
SOTTORDINE	Apocrita
SEZIONE	Aculeata
SUPERFAMIGLIA	Apoidea
FAMIGLIA	Apidae
GENERE	Bombus

SOLITARIE

SUBSOCIALI

GREGARIE

QUASISOCIALI

PRIMITIVAMENTE EUSOCIALI

EUSOCIAL

SOLITARIE

SUBSOCIALI

GREGARIE

QUASISOCIALI

PRIMITIVAMENTE EUSOCIALI

EUSOCIAL

SOLITARIE

SUBSOCIALI

GREGARIE

QUASISOCIALI

PRIMITIVAMENTE EUSOCIALI

EUSOCIALI

Lhomme & Hines, 2019.

SOLITARIE

SUBSOCIALI

GREGARIE

QUASISOCIALI

PRIMITIVAMENTE EUSOCIALI

EUSOCIALI

Lhomme & Hines, 2019.

HABITAT

HABITAT

NATURALE (prati, limiti di sentieri, argini di corsi d'acqua)
AGRICOLO (siepi, limiti campo-bosco)
URBANO (giardini, parchi cittadini)

HABITAT

NATURALE (prati, limiti di sentieri, argini di corsi d'acqua)
AGRICOLO (siepi, limiti campo-bosco)
URBANO (giardini, parchi cittadini)

SITO

HABITAT

NATURALE (prati, limiti di sentieri, argini di corsi d'acqua)

AGRICOLO (siepi, limiti campo-bosco)

URBANO (giardini, parchi cittadini)

SITO

AL SUOLO (superficiale o in cavità), in tane di piccoli mammiferi IN CAVITÀ negli alberi, in nidi di uccelli

HABITAT

NATURALE (prati, limiti di sentieri, argini di corsi d'acqua)

AGRICOLO (siepi, limiti campo-bosco)

URBANO (giardini, parchi cittadini)

SITO

AL SUOLO (superficiale o in cavità), in tane di piccoli mammiferi IN CAVITÀ negli alberi, in nidi di uccelli

MATERIALE

HABITAT

NATURALE (prati, limiti di sentieri, argini di corsi d'acqua)

AGRICOLO (siepi, limiti campo-bosco)

URBANO (giardini, parchi cittadini)

SITO

AL SUOLO (superficiale o in cavità), in tane di piccoli mammiferi IN CAVITÀ negli alberi, in nidi di uccelli

MATERIALE

peli, muschio, erba e foglie secche

NIDI

NIDI

SINGOLI INDIVIDUI

NIDI

SINGOLI INDIVIDUI

Tasso (Meles meles)

NIDI

SINGOLI INDIVIDUI

Tasso (Meles meles)

Cinciallegra (Parus major)

NIDI

SINGOLI INDIVIDUI

Tasso

(Meles meles)

Cinciallegra (Parus major)

Riccio

(Erinaceus europaeus)

NIDI

SINGOLI INDIVIDUI

Tasso

(Meles meles)

Cinciallegra

(Parus major)

Riccio

(Erinaceus europaeus)

Falena della cera (Aphomia sociella)

NIDI

Tasso

(Meles meles)

Cinciallegra

(Parus major)

Riccio

(Erinaceus europaeus)

Falena della cera

(Aphomia sociella)

SINGOLI INDIVIDUI

Cinciallegra

(Parus major)

NIDI

Tasso

(Meles meles)

Cinciallegra

(Parus major)

Riccio

(Erinaceus europaeus)

Falena della cera

(Aphomia sociella)

SINGOLI INDIVIDUI

Cinciallegra

(Parus major)

Gruccione

(Merops apiaster)

NIDI

Tasso

(Meles meles)

Cinciallegra

(Parus major)

Riccio

(Erinaceus europaeus)

Falena della cera

(Aphomia sociella)

SINGOLI INDIVIDUI

Cinciallegra

(Parus major)

Gruccione

(Merops apiaster)

Ragni

NIDI

Tasso

(Meles meles)

Cinciallegra

(Parus major)

Riccio

(Erinaceus europaeus)

Falena della cera

(Aphomia sociella)

SINGOLI INDIVIDUI

Cinciallegra

(Parus major)

Gruccione

(Merops apiaster)

Ragni

attraverso ragnatele (es. *Argiope aurantia*)

Predazione

NIDI

Tasso

(Meles meles)

Cinciallegra

(Parus major)

Riccio

(Erinaceus europaeus)

Falena della cera

(Aphomia sociella)

SINGOLI INDIVIDUI

Cinciallegra

(Parus major)

Gruccione

(Merops apiaster)

Ragni

attraverso ragnatele (es. *Argiope aurantia*) per agguato (ragni-granchio, famiglia Thomisidae)

FORAGGIAMENTO

FORAGGIAMENTO

INTERAZIONI TRA INDIVIDUI GESTITI E NON

FORAGGIAMENTO

INTERAZIONI TRA INDIVIDUI GESTITI E NON

PARASSITI E PREDATORI

FORAGGIAMENTO

INTERAZIONI TRA INDIVIDUI GESTITI E NON

PARASSITI E PREDATORI

FORAGGIAMENTO

Preferenze
Interazioni pianta-impollinatore
Capacità cognitive
Capacità di spostamento
Impatto delle attività umane

PARASSITI E PREDATORI INTERAZIONI TRA
INDIVIDUI GESTITI E NON

FORAGGIAMENTO

Preferenze
Interazioni pianta-impollinatore
Capacità cognitive
Capacità di spostamento
Impatto delle attività umane

PARASSITI E PREDATORI

INTERAZIONI TRA INDIVIDUI GESTITI E NON

Competizione trofica Spillover di parassiti e patogeni

FORAGGIAMENTO

Preferenze
Interazioni pianta-impollinatore
Capacità cognitive
Capacità di spostamento
Impatto delle attività umane

PARASSITI E PREDATORI

Interazioni generali Impatto delle attività umane

INTERAZIONI TRA INDIVIDUI GESTITI E NON

Competizione trofica Spillover di parassiti e patogeni

LAVORO SUL CAMPO

AREA DI STUDIO

AREA DI STUDIO

PRESENZA

AREA DI STUDIO

PRESENZA

NECESSITÀ LOGISTICHE

AREA DI STUDIO

PRESENZA

NECESSITÀ LOGISTICHE **PERIODO**

AREA DI STUDIO

PRESENZA

NECESSITÀ LOGISTICHE PERIODO

PRIMAVERA – ESTATE

AREA DI STUDIO

PRESENZA

NECESSITÀ LOGISTICHE **PERIODO**

PRIMAVERA – ESTATE

CONDIZIONI METEO FAVOREVOLI

TROVARE NIDI

TROVARE NIDI

TROVARE SINGOLI INDIVIDUI

TROVARE NIDI

TROVARE SINGOLI INDIVIDUI

CANI ADDESTRATI

TROVARE NIDI

TROVARE SINGOLI INDIVIDUI

CANI ADDESTRATI OPERATORI UMANI

CANI OPERATORI UMANI RICERCA LIBERA Maggior numero di nidi

TROVARE SINGOLI INDIVIDUI

TROVARE SINGOLI INDIVIDUI

TROVARE SINGOLI INDIVIDUI

FORAGGIATRICI EMERSE O PARASSITI SOCIALI
Suolo

STUDI OSSERVAZIONALI

STUDI OSSERVAZIONALI

COMPORTAMENTALI

STUDI OSSERVAZIONALI

COMPORTAMENTALI

FOCAL-ANIMAL SAMPLING

STUDI OSSERVAZIONALI

COMPORTAMENTALI

FOCAL-ANIMAL SAMPLING

POINT SAMPLING

STUDI OSSERVAZIONALI

COMPORTAMENTALI

FOCAL-ANIMAL SAMPLING

POINT SAMPLING

SCAN SAMPLING

CATTURA

CATTURA

TRAPPOLE

CATTURA

TRAPPOLE

CATTURE DIRETTE

TRAPPOLE

CATTURE DIRETTE

PAN (BOWL) TRAPS

TRAPPOLE

CATTURE DIRETTE

PAN (BOWL) TRAPS

> MALAISE TRAPS

TRAPPOLE

CATTURE DIRETTE

PAN (BOWL) TRAPS

> MALAISE TRAPS

TRAPPOLE

CATTURE DIRETTE

PAN (BOWL) TRAPS

PAN (BOWL) AL SUOLO o RIALZATE

MALAISE TRAPS

TRAPPOLE

CATTURE DIRETTE

PAN (BOWL) TRAPS

> MALAISE TRAPS

CATTURE DIRETTE

PAN (BOWL) TRAPS

> MALAISE TRAPS

> > VANE TRAPS

AL SUOLO o RIALZATE

Rialzate, gialle, in metallo, con esca (es. anetolo+eugenolo)

CATTURE DIRETTE

PAN (BOWL) TRAPS

AL SUOLO o RIALZATE

Rialzate, gialle, in metallo, con esca (es. anetolo+eugenolo)

MALAISE TRAPS

CATTURE DIRETTE

PAN (BOWL) TRAPS

AL SUOLO o RIALZATE

Rialzate, gialle, in metallo, con esca (es. anetolo+eugenolo)

MALAISE TRAPS

> VANE TRAPS

Spesso inefficaci per i bombi

CATTURE DIRETTE

PAN (BOWL) TRAPS

AL SUOLO o RIALZATE

Rialzate, gialle, in metallo, con esca (es. anetolo+eugenolo)

MALAISE TRAPS

Spesso inefficaci per i bombi

CATTURE DIRETTE

PAN (BOWL) TRAPS

AL SUOLO o RIALZATE

Rialzate, gialle, in metallo, con esca (es. anetolo+eugenolo)

MALAISE TRAPS

Spesso inefficaci per i bombi

VANE TRAPS

Blu

TRAPPOLE

PAN (BOWL) TRAPS

> MALAISE TRAPS

> > VANE TRAPS

CATTURE DIRETTE

TRANSETTI (100-200 m x 1-2.5 m)
O PLOTS

TRAPPOLE

PAN (BOWL) TRAPS

> MALAISE TRAPS

> > VANE TRAPS

CATTURE DIRETTE

TRANSETTI (100-200 m x 1-2.5 m)
o PLOTS

5-30 minuti

PAN (BOWL) TRAPS

> MALAISE TRAPS

> > VANE TRAPS

CATTURE DIRETTE

TRANSETTI (100-200 m x 1-2.5 m)
O PLOTS

5-30 minuti

Retino entomologico (aereo/da sfalcio)

TRAPPOLE

PAN (BOWL) TRAPS

> MALAISE TRAPS

> > VANE TRAPS

CATTURE DIRETTE

TRANSETTI (100-200 m x 1-2.5 m)
O PLOTS

5-30 minuti

Retino entomologico (aereo/da sfalcio)

Plunger cage

TRAPPOLE

PAN (BOWL) TRAPS

> MALAISE TRAPS

> > VANE TRAPS

CATTURE DIRETTE

TRANSETTI (100-200 m x 1-2.5 m)
O PLOTS

5-30 minuti

Retino entomologico (aereo/da sfalcio)

Plunger cage

o direttamente in provetta

MANIPOLAZIONE

ANIDRIDE CARBONICA

ANIDRIDE CARBONICA

FREDDO

ANIDRIDE CARBONICA FREDDO

PRASSI

ANIDRIDE CARBONICA FREDDO Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI		

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI	Espulsione di larve in salute dal nido Impatto su memoria a breve e lungo termine (ape da miele)	

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI	Espulsione di larve in salute dal nido Impatto su memoria a breve e lungo termine (ape da miele)	Diminuzione del comportamento di reclutamento

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI	Espulsione di larve in salute dal nido Impatto su memoria a breve e lungo termine (ape da miele)	Diminuzione del comportamento di reclutamento
Attività		

Foraggiamento

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI	Espulsione di larve in salute dal nido Impatto su memoria a breve e lungo termine (ape da miele)	Diminuzione del comportamento di reclutamento
Attività		

99

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI	Espulsione di larve in salute dal nido Impatto su memoria a breve e lungo termine (ape da miele)	Diminuzione del comportamento di reclutamento
Attività		
Foraggiamento		
Cura della prole e produttività		

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI	Espulsione di larve in salute dal nido Impatto su memoria a breve e lungo termine (ape da miele)	Diminuzione del comportamento di reclutamento
Attività	Aumento per qualche ora	
Foraggiamento		
Cura della prole e produttività		

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI	Espulsione di larve in salute dal nido Impatto su memoria a breve e lungo termine (ape da miele)	Diminuzione del comportamento di reclutamento
Attività	Aumento per qualche ora	Nessun effetto
Foraggiamento		
Cura della prole e produttività		

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI	Espulsione di larve in salute dal nido Impatto su memoria a breve e lungo termine (ape da miele)	Diminuzione del comportamento di reclutamento
Attività	Aumento per qualche ora	Nessun effetto
Foraggiamento	Nessun effetto	
Cura della prole e produttività		

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI	Espulsione di larve in salute dal nido Impatto su memoria a breve e lungo termine (ape da miele)	Diminuzione del comportamento di reclutamento
Attività	Aumento per qualche ora	Nessun effetto
Foraggiamento	Nessun effetto	Meno tempo speso foraggiando
Cura della prole e produttività		

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI	Espulsione di larve in salute dal nido Impatto su memoria a breve e lungo termine (ape da miele)	Diminuzione del comportamento di reclutamento
Attività	Aumento per qualche ora	Nessun effetto
Foraggiamento	Nessun effetto	Meno tempo speso foraggiando
Cura della prole e produttività	Meno uova prodotte	

	ANIDRIDE CARBONICA	FREDDO
PRASSI	Getto di 2 s, efficace in 30 s Getto di 30 s Getto di 1 s + ventilazione dopo 5 s	Provette in refrigeratori, durata variabile (5-10 min, 30 min)
EFFETTI	Espulsione di larve in salute dal nido Impatto su memoria a breve e lungo termine (ape da miele)	Diminuzione del comportamento di reclutamento
Attività	Aumento per qualche ora	Nessun effetto
Foraggiamento	Nessun effetto	Meno tempo speso foraggiando
Cura della prole e produttività	Meno uova prodotte	Più tempo speso curando la prole

ALTERNATIVE

ALTERNATIVE

ACETATO DI ETILE

MANIPOLAZIONE: anestesia

ALTERNATIVE

ACETATO DI ETILE

$$H_3C$$
 O CH_3

ISOFLURANO e SEVOFLURANO

$$F_3$$
 F_3 F_3

MANIPOLAZIONE: anestesia

ALTERNATIVE

ACETATO DI ETILE

Testato su crisopidi

Soggetto in provetta con tappo di ovatta imbevuto di gocce di acetato di etile

Nessun effetto su Iongevità e fecondità

ISOFLURANO e SEVOFLURANO

MANIPOLAZIONE: anestesia

ALTERNATIVE

ACETATO DI ETILE

Testato su crisopidi

Soggetto in provetta con tappo di ovatta imbevuto di gocce di acetato di etile

Nessun effetto su longevità e fecondità

ISOFLURANO e SEVOFLURANO

Testati su *Drosophila* spp.

Promettenti ma non adottabili sul campo per via della necessità di cappa aspirante

DATI UTILI

DATI UTILI

DIMENSIONI

DATI UTILI

DIMENSIONI

PESO

DATI UTILI

DIMENSIONI

PESO

USURA DELLE ALI

DATI UTILI

DIMENSIONI

PESO

USURA DELLE ALI

PASCOLO

DATI UTILI

DIMENSIONI

PESO

USURA DELLE ALI

PASCOLO

COMPORTAMENTO

DATI UTILI

DIMENSIONI

PESO

USURA DELLE ALI

PASCOLO

COMPORTAMENTO

CAMPIONI

DATI UTILI

DIMENSIONI

PESO

USURA DELLE ALI

PASCOLO

COMPORTAMENTO

CAMPIONI

POLLINE

DATI UTILI

DIMENSIONI

PESO

USURA DELLE ALI

PASCOLO

COMPORTAMENTO

CAMPIONI

POLLINE

Foraggiamento Interazioni piante-impollinatori

DATI UTILI

DIMENSIONI

PESO

USURA DELLE ALI

PASCOLO

COMPORTAMENTO

CAMPIONI

POLLINE

PARTI DEL CORPO

Foraggiamento Interazioni piante-impollinatori (Frammenti di ali, Segmenti di tarso)

DATI UTILI

DIMENSIONI

PESO

USURA DELLE ALI

PASCOLO

COMPORTAMENTO

CAMPIONI

POLLINE

PARTI DEL CORPO

Foraggiamento Interazioni piante-impollinatori (Frammenti di ali, Segmenti di tarso)

Genomica

DATI UTILI

DIMENSIONI

PESO

USURA DELLE ALI

PASCOLO

COMPORTAMENTO

DATI UTILI

DIMENSIONI

PESO

USURA DELLE ALI

PASCOLO

COMPORTAMENTO

PRELIEVO DEL POLLINE

PRELIEVO DEL POLLINE

RACCOLTA INDIVIDUALE

PRELIEVO DEL POLLINE

RACCOLTA INDIVIDUALE

"corbiculette" prelevate dagli individui con pinzette, spilli, pennellini o cubetti di gelatina alla fucsina

PRELIEVO DEL POLLINE

RACCOLTA INDIVIDUALE

TRAPPOLE PER IL POLLINE

"corbiculette" prelevate dagli individui con pinzette, spilli, pennellini o cubetti di gelatina alla fucsina

PRELIEVO DEL POLLINE

RACCOLTA INDIVIDUALE

TRAPPOLE PER IL POLLINE

"corbiculette" prelevate dagli individui con pinzette, spilli, pennellini o cubetti di gelatina alla fucsina

Martin et al., 2006.

PRELIEVO DEL POLLINE

RACCOLTA INDIVIDUALE

TRAPPOLE PER IL POLLINE

"corbiculette" prelevate dagli individui con pinzette, spilli, pennellini o cubetti di gelatina alla fucsina

Martin et al., 2006.

PRELIEVO DEL POLLINE

RACCOLTA INDIVIDUALE

TRAPPOLE PER IL POLLINE

"corbiculette" prelevate dagli individui con pinzette, spilli, pennellini o cubetti di gelatina alla fucsina

Judd et al., 2020.

TARGETTE NUMERATE E COLORATE

TARGETTE NUMERATE E COLORATE

Incollate con supercolla sul torace

TARGETTE NUMERATE E COLORATE

Incollate con supercolla sul torace

POLVERI COLORATE

TARGETTE NUMERATE E COLORATE

Incollate con supercolla sul torace

POLVERI COLORATE

APPLICAZIONI INDIVIDUALI

Siringhe, vaporizzatori

TARGETTE NUMERATE E COLORATE

Incollate con supercolla sul torace

POLVERI COLORATE

APPLICAZIONI INDIVIDUALI

Siringhe, vaporizzatori

APPLICAZIONI DI MASSA

Dispenser di polvere colorata

TARGETTE NUMERATE E COLORATE

Incollate con supercolla sul torace

POLVERI COLORATE

POLVERI INORGANICHE

(es. ploveri plastiche fluorescenti atossiche)

TARGETTE NUMERATE E COLORATE

Incollate con supercolla sul torace

POLVERI COLORATE

POLVERI INORGANICHE

(es. ploveri plastiche fluorescenti atossiche)

POLVERI PROTEICHE

(es. caseina, albumina)

TARGETTE NUMERATE E COLORATE

Incollate con supercolla sul torace

POLVERI COLORATE

POLVERI INORGANICHE

(es. ploveri plastiche fluorescenti atossiche)

POLVERI PROTEICHE

(es. caseina, albumina)

TRANSPONDERS

Makinson et al., 2019.

TARGETTE NUMERATE E COLORATE

Incollate con supercolla sul torace

POLVERI COLORATE

POLVERI INORGANICHE

(es. ploveri plastiche fluorescenti atossiche)

POLVERI PROTEICHE

(es. caseina, albumina)

TRANSPONDERS

Installati per mezzo di magneti che si attaccano a tags metallici incollati sul torace dei soggetti

Makinson et al., 2019.

NUOVE FRONTIERE NEL MONITORAGGIO

NUOVE FRONTIERE NEL MONITORAGGIO

RADIO TELEMETRIA

RADIO TELEMETRIA RADAR ARMONICO

RADIO TELEMETRIA RADAR ARMONICO RADIO-FREQUENCY IDENTIFICATION (RFID)

RADIO TELEMETRIA RADAR ARMONICO RADIO-FREQUENCY IDENTIFICATION (RFID)

(tag attivo)

Peso considerevole (200-1000 mg)

RADIO TELEMETRIA

RADAR ARMONICO

RADIO-FREQUENCY IDENTIFICATION (RFID)

(tag attivo)

Peso considerevole (200-1000 mg)

(tag passivo)

Solo in assenza di barriere tra tag e radar

Raggio max 1 km

RADIO TELEMETRIA

RADAR ARMONICO

RADIO-FREQUENCY IDENTIFICATION (RFID)

(tag attivo)

Peso considerevole (200-1000 mg)

(tag passivo)

Solo in assenza di barriere tra tag e radar

Raggio max 1 km

Raggio max < 1 cm

RADIO TELEMETRIA RADAR ARMONICO RADIO-FREQUENCY IDENTIFICATION (RFID)

TAG OTTICI

RADIO TELEMETRIA RADAR ARMONICO RADIO-FREQUENCY IDENTIFICATION (RFID)

TAG OTTICI

(es. QR-codes)

Legati all'impiego di strumenti per la registrazione

RADIO TELEMETRIA RADAR ARMONICO RADIO-FREQUENCY IDENTIFICATION (RFID)

TAG OTTICI

MONITORAGGIO AUDIO E VIDEO COMPUTER VISION

MACHINE LEARNING

Bjerge et al., 2021.

CONCLUSIONE

- 1. Altmann, J. (1984). Observational sampling methods for insect behavioral ecology. Florida Entomologist, 50–56.
- 2. Ayasse, M., & Jarau, S. (2014). Chemical ecology of bumble bees. Annual Review of Entomology, 59, 299–319.
- 3. Barlow, S. E., & O'Neill, M. A. (2020). Technological advances in field studies of pollinator ecology and the future of e-ecology. Current opinion in insect science, 38, 15–25.
- 4. Bjerge, K., Mann, H. M., & Høye, T. T. (2021). Real-time insect tracking and monitoring with computer vision and deep learning. Remote Sensing in Ecology and Conservation.
- 5. Bolotov, I., Kolosova, Y. S., Podbolotskaya, M., Potapov, G., & Grishchenko, I. (2013). Mechanism of density compensation in island bumblebee assemblages (Hymenoptera, Apidae, Bombus) and the notion of reserve compensatory species. Biology Bulletin, 40(3), 318–328.
- 6. Boyle, N. K., Tripodi, A. D., Machtley, S. A., Strange, J. P., Pitts-Singer, T. L., & Hagler, J. R. (2018). A nonlethal method to examine non-apis bees for mark-capture research. Journal of Insect Science, 18(3), 10.
- 7. Brebner, J. S., Makinson, J. C., Bates, O. K., Rossi, N., Lim, K. S., Dubois, T., Gómez-Moracho, T., Lihoreau, M., Chittka, L., & Woodgate, J. L. (2021). Bumble bees strategically use ground level linear features in navigation. Animal Behaviour, 179, 147–160.
- 8. Brian, A. D. (1951). The pollen collected by bumblebees. The Journal of Animal Ecology, 191–194.
- 9. Carvell, C., Westrich, P., Meek, W. R., Pywell, R. F., & Nowakowski, M. (2006). Assessing the value of annual and perennial forage mixtures for bumblebees by direct observation and pollen analysis. Apidologie, 37(3), 326–340.
- 10. Dawoud, B. (2020). Malaise trap.
- 11.De Luca, P. A., & Vallejo-Marín, M. (2013). What's the "buzz" about? The ecology and evolutionary significance of buzz-pollination. Current opinion in plant biology, 16(4), 429–435.
- 12. Dickens, B. L., & Brant, H. L. (2014). Effects of marking methods and fluorescent dusts on aedes aegypti survival. Parasites & Vectors, 7(1), 1–9.
- 13. Dramstad, W. E. (1996). Do bumblebees (hymenoptera: Apidae) really forage close to their nests? Journal of insect behavior, 9(2), 163–182.
- 14. Durrer, S., & Schmid-Hempel, P. (1995). Parasites and the regional distribution of bumblebee species. Ecography, 18(2), 114–122.
- 15. Foster, D. J., & Cartar, R. V. (2011). What causes wing wear in foraging bumblebees? Journal of Experimental Biology, 214(11), 1896–1901.

- 14. Garratt, M., Potts, S., Banks, G., Hawes, C., Breeze, T., O'Connor, R., & Carvell, C. (2019). Capacity and willingness of farmers and citizen scientists to monitor crop pollinators and pollination services. Global Ecology and Conservation, 20, e00781.
- 15. Goulson, D. (2010). Bumblebees: Behaviour, ecology, and conservation. Oxford University Press on Demand.
- 16. Goulson, D., O'Connor, S., & Park, K. J. (2018). The impacts of predators and parasites on wild bumblebee colonies. Ecological Entomology, 43(2), 168–181.
- 17. Gurten, S. (2021). Combining geometric morphometrics and population genetics to evaluate effects of persistent organic pollutants in alpine bumblebees.
- 18. Hamilton, D., Schwartz, P., Townshend, B., & Jester, C. (1971). Effect of color and design of traps on captures of japanese beetles and bumblebees. Journal of Economic Entomology, 64(2), 430–432.
- 19. Holehouse, K., Hammond, R., & Bourke, A. (2003). Non-lethal sampling of dna from bumblebees for conservation genetics. Insectes Sociaux, 50(3), 277–285.
- 20. Jablonski, P. G., Cho, H. J., Song, S. R., Kang, C. K., & Lee, S.-i. (2013). Warning signals confer advantage to prey in competition with predators: Bumblebees steal nests from insectivorous birds. Behavioral Ecology and Sociobiology, 67(8), 1259–1267.
- 21. Joshi, N., Leslie, T., Rajotte, E., Kammerer, M., Otieno, M., & Biddinger, D. (2015). Comparative trapping efficiency to characterize bee abundance, diversity, and community composition in apple orchards. Ann. Entomol. Soc. Am, 108, 785–799. https://doi.org/10.1093/aesa/sav057
- 22. Judd, H. J., Huntzinger, C., Ramirez, R., & Strange, J. P. (2020). A 3d printed pollen trap for bumblebee (bombus) hive entrances. JoVE (Journal of Visualized Experiments), (161), e61500.
- 23. Karlsson, D., Forshage, M., Holston, K., & Ronquist, F. (2020). The data of the swedish malaise trap project, a countrywide inventory of sweden's insect fauna. Biodiversity Data Journal, 8. https://doi.org/10.3897/BDJ.8.e56286
- 24. Koch, J. (2012). Bumble bees of the western United States. US Department of Agriculture, Forest Service.
- 25. Kriesell, L., Hilpert, A., & Leonhardt, S. D. (2017). Different but the same: Bumblebee species collect pollen of different plant sources but similar amino acid profiles. Apidologie, 48(1), 102–116.
- 26. Lhomme, P., & Hines, H. M. (2019). Ecology and evolution of cuckoo bumble bees. Annals of the Entomological Society of America, 112(3), 122–140.

- 27. Loru, L., Sassu, A., Fois, X., & Pantaleoni, R. A. (2010). Ethyl acetate: A possible alternative for anaesthetizing insects. Annales de la Société entomologique de France, 46(3-4), 422–424.
- 28. MacMillan, H. A., Nørgård, M., MacLean, H. J., Overgaard, J., & Williams, C. J. (2017). A critical test of drosophila anaesthetics: Isoflurane and sevoflurane are benign alternatives to cold and CO2. Journal of insect physiology, 101, 97–106.
- 29. MacPhail, V. J., Richardson, L. L., & Colla, S. R. (2019). Incorporating citizen science, museum specimens, and field work into the assessment of extinction risk of the American Bumble bee (Bombus pensylvanicus De Geer 1773) in Canada. Journal of Insect Conservation, 23(3), 597–611.
- 30. Makinson, J. C., Woodgate, J. L., Reynolds, A., Capaldi, E. A., Perry, C. J., & Chittka, L. (2019). Harmonic radar tracking reveals random dispersal pattern of bumblebee (Bombus terrestris) queens after hibernation. Scientific reports, 9(1), 1–11.
- 31. Martin, A. P., Carreck, N. L., Swain, J. L., Goulson, D., Knight, M. E., Hale, R. J., Sanderson, R. A., & Osborne, J. L. (2006). A modular system for trapping and mass-marking bumblebees: Applications for studying food choice and foraging range. Apidologie, 37(3), 341–350.
- 32. Martnez-Bauer, A. E., Chadwick, F. J., Westmoreland, A. J., & Lander, T. A. (2021). Novel pollen analogue technique shows bumblebees display low floral constancy and prefer sites with high floral diversity. Landscape Ecology, 36(11), 3231–3247.
- 33. Maurer, C., Bosco, L., Klaus, E., Cushman, S. A., Arlettaz, R., & Jacot, A. (2020). Habitat amount mediates the effect of fragmentation on a pollinators reproductive performance, but not on its foraging behaviour. Oecologia, 193(3), 523–534.
- 34. McCravy, K. W., Geroff, R. K., & Gibbs, J. (2019). Bee (Hymenoptera: Apoidea: Anthophila) functional traits in relation to sampling methodology in a restored tallgrass prairie. Florida Entomologist, 102(1), 134–140.
- 35. Michener, C. D. (2007). The bees of the world. Johns Hopkins University Press, Baltimore.
- 36. Mola, J. M. (2019). Bumblebee movement ecology and response to wildfire with an emphasis on genetic mark-recapture techniques (Doctoral dissertation). University of California, Davis.
- 37. Mola, J. M., & Williams, N. M. (2019). A review of methods for the study of bumble bee movement. Apidologie, 50(4), 497–514.
- 38. Nicolas, G., & Sillans, D. (1989). Immediate and latent effects of carbon dioxide on insects. Annual review of entomology, 34(1), 97–116.
- 39. Nisha, R. (2020). The bumblebees and buzz pollination. Trends in Biosciences, 13(9), 525-531.

- 40.O'Connor, R. S., Kunin, W. E., Garratt, M. P., Potts, S. G., Roy, H. E., Andrews, C., Jones, C. M., Peyton, J. M., Savage, J., Harvey, M. C., et al. (2019). Monitoring insect pollinators and flower visitation: The effectiveness and feasibility of different survey methods. Methods in Ecology and Evolution, 10(12), 2129–2140.
- 41.O'Connor, S., Park, K. J., & Goulson, D. (2012). Humans versus dogs; a comparison of methods for the detection of bumblebee nests. Journal of Apicultural Research, 51(2), 204–211.
- 42. Osborne, J. L., Martin, A. P., Carreck, N. L., Swain, J. L., Knight, M. E., Goulson, D., Hale, R. J., & Sanderson, R. A. (2008). Bumblebee flight distances in relation to the forage landscape. Journal of animal ecology, 77(2), 406–415.
- 43. Piko, J., Keller, A., Geppert, C., Batáry, P., Tscharntke, T., Westphal, C., & Hass, A. L. (2021). Effects of three flower field types on bumblebees and their pollen diets. Basic and Applied Ecology, 52, 95–108.
- 44. Poissonnier, L.-A., Jackson, A., & Tanner, C. (2015). Cold and co 2 narcosis have long-lasting and dissimilar effects on bombus terrestris. Insectes Sociaux, 62(3), 291–298.
- 45. Pomeroy, N., & Plowright, R. (1979). Larval ejection following narcosis of bumble bees (hymenoptera: Apidae). Journal of the Kansas Entomological Society, 215–217.
- 46. Pugesek, G., Burtt, C. N., & Crone, E. E. (2021). The effects of commercial propagation on bumblebee (bombus impatiens) foraging and worker body size. Apidologie, 52(5), 887–898.
- 47. Quaranta, M., Cornalba, M., Biella, P., Comba, M., Battistoni, A., Rondinini, C., & Teofili, C. (2018). Lista rossa delle api italiane minacciate (Red list of the Italian threatened bees).
- 48. Roberts, B. R., Cox, R., & Osborne, J. L. (2020). Quantifying the relative predation pressure on bumblebee nests by the European badger (Meles meles) using artificial nests. Ecology and evolution, 10(3), 1613–1622.
- 49. Rosenberger, D. W., & Conforti, M. L. (2020). Native and agricultural grassland use by stable and declining bumble bees in Midwestern North America. Insect Conservation and Diversity, 13(6), 585–594.
- 50. Roulston, T. H., Smith, S. A., & Brewster, A. L. (2007). A comparison of pan trap and intensive net sampling techniques for documenting a bee (hymenoptera: Apiformes) fauna. Journal of the Kansas Entomological Society, 80(2), 179–181.
- 51. Scriven, J. J., Woodall, L. C., & Goulson, D. (2013). Nondestructive dna sampling from bumblebee faeces. Molecular ecology resources, 13(2), 225–229.

- 52.Stec, D., & Kuszewska, K. (2020). CO2 narcosis influences the memory of honey bees. Journal of Apicultural Research, 59(4), 663–668.
- 53. Stelzer, R. J., Chittka, L., Carlton, M., & Ings, T. C. (2010). Winter active bumblebees (bombus terrestris) achieve high foraging rates in urban britain. PLoS One, 5(3), e9559.
- 54. Trillo, A., Bartomeus, I., Ortiz-Sánchez, F. J., Belmonte, J., & Vila, M. (2021). No detectable impact of parasite-infected commercial bumblebees on wild bees in areas adjacent to greenhouses despite diet overlap. Agriculture, Ecosystems & Environment, 320, 107604.
- 55. Vallejo-Marín, M. (2021). How and why do bees buzz? Implications for buzz pollination. Journal of Experimental Botany.
- 56. Wang, M.-Y., Ings, T. C., Proulx, M. J., & Chittka, L. (2013). Can bees simultaneously engage in adaptive foraging behaviour and attend to cryptic predators? Animal Behaviour, 86(4),859–866.
- 57. Webb III, M. C. (1961). The biology of the bumblebees of a limited area in eastern nebraska. The University of Nebraska-Lincoln.
- 58. Wenzel, A., Grass, I., Belavadi, V. V., & Tscharntke, T. (2020). How urbanization is driving pollinator diversity and pollination—a systematic review. Biological Conservation, 241, 108321.
- 59. Wignall, V. R., Harry, I. C., Davies, N. L., Kenny, S. D., McMinn, J. K., & Ratnieks, F. L. (2020). Seasonal variation in exploitative competition between honeybees and bumblebees. Oecologia, 192(2), 351–361.
- 60. Wilson, E. E., Holway, D., & Nieh, J. C. (2006). Cold anaesthesia decreases foraging recruitment in the new world bumblebee, bombus occidentalis. Journal of Apicultural Research, 45(4), 169–172.

