

Advanced Kernel Methods for Multi-Task Learning

Tesis dirigida por José Dorronsoro y Carlos Alaíz

Carlos Ruiz Pastor

January 10, 2023

Acknowledgements 1

Acknowledgements 2

Outline

0

- ► Introducción Multi-Task Learning Support Vector Machines
- Una Formulación Convexa para Aprendizaje Multitarea Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados Convex Multi-Task Learning with Neural Networks
- ▶ Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- ▶ Summary

Table of Contents

1 Introducción

- ► Introducción Multi-Task Learning Support Vector Machines
- Una Formulación Convexa para Aprendizaje Multitarea Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados Convex Multi-Task Learning with Neural Networks
- Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- Summary

Introducción al Aprendizaje Automático

1 Introducción

- El Aprendizaje Automático intenta automatizar el proceso de aprendizaje
- En el aprendizaje supervisado tenemos:
 - un espacio de entrada \mathcal{X} ,
 - un espacio de salida \mathcal{Y} ,
 - y una distribución P(x, y) (desconocida) sobre $\mathcal{X} \times \mathcal{Y}$
- Dada una función $f:\mathcal{X} \to \mathcal{Y}$, definimos una función de pérdida como

$$\ell: \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$$

 $(y, f(x)) \to \ell(y, f(x)),$

tal que $\ell(y,y)=0$ para todo $y\in\mathcal{Y}$

Loss Functions

1 Introducción

• In classification, with the class labels $y_i \in \{-1, 1\}$, we can use:

$$\ell(\gamma, f(x)) = \left[1 - \gamma f(x)\right]_{+} = \begin{cases} 0, & \gamma f(x) \geq 1, \\ 1 - \gamma f(x), & \gamma f(x) < 1. \end{cases}$$

Expected Risk

1 Introducción

- Given a space of hypothesis $\mathcal{H} = \{h(\cdot, \alpha), \alpha \in A\}$
- Definition: Expected Risk

$$R_{P}(\alpha) = \int_{\mathcal{X} \times \mathcal{Y}} \ell(\mathbf{y}, h(\mathbf{x}, \alpha)) dP(\mathbf{x}, \mathbf{y})$$

Our goal is to find

$$lpha^* = \operatorname*{arg\,min}_{lpha \in A} \left\{ R_P(lpha) = \int_{\mathcal{X} imes \mathcal{Y}} \ell(\mathbf{y}, h\left(\mathbf{x}, lpha)\right) dP(\mathbf{x}, \mathbf{y})
ight\},$$

however the distribution P(x, y) is unknown

Empirical Risk

1 Introducción

• Instead, we have a set of n instances sampled from P(x, y):

$$D_n = \{(x_i, y_i), i = 1, \ldots, n\},\$$

• Definition: Empirical Risk

$$\hat{R}_{D_n}(\alpha) = \frac{1}{n} \sum_{i=1}^n \ell(\gamma_i, h(x_i, \alpha))$$

Instead of the Expected Risk, we minimize this empirical risk:

$$\underset{\alpha \in A}{\operatorname{arg\,min}} \left\{ \hat{R}_{D}(\alpha) = \frac{1}{n} \sum_{i=1}^{n} \ell(\gamma_{i}, h(\mathbf{x}_{i}, \alpha)) \right\}$$

Table of Contents

1 Introducción

► Introducción Multi-Task Learning Support Vector Machine

► Una Formulación Convexa para Aprendizaje Multitarea Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados

► Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo

▶ Summary

Multi-Task Learning

1 Introducción

Table of Contents

1 Introducción

► Introducción Multi-Task Learning Support Vector Machines

▶ Una Formulación Convexa para Aprendizaje Multitarea

Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados Convex Multi-Task Learning with Neural Networks

► Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo

▶ Summary

Table of Contents

2 Una Formulación Convexa para Aprendizaje Multitarea

- ► Introducción Multi-Task Learning Support Vector Machine
- ► Una Formulación Convexa para Aprendizaje Multitarea Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados Convex Multi-Task Learning with Neural Networks
- Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- ▶ Summary

Formulación Aditiva

2 Una Formulación Convexa para Aprendizaje Multitarea

- Una manera de implementar el MTL es combinar una parte común y otras específicas
- La formulación aditiva para el aprendizaje multitarea es

$$h_r(\cdot) = g(\cdot) + g_r(\cdot)$$

donde

- $-g(\cdot)$ es la parte común
- $-g_r(\cdot)$ es la parte específica
- Fue propuesta para SVM lineales con los modelos

$$h_r(\cdot) = \langle w + v_r, \cdot \rangle + b_r$$

Formulación Convexa

2 Una Formulación Convexa para Aprendizaje Multitarea

Proponemos la siguiente formulación convexa para el aprendizaje multitarea:

$$h_r(\cdot) = \lambda_r g(\cdot) + (1 - \lambda_r) g_r(\cdot),$$

con
$$\lambda_r \in [0, 1]$$
.

- Los hiperparámetros λ_r regulan la influencia de cada parte:
 - $-\lambda_1,\ldots,\lambda_T=0$: modelos independientes (ITL)
 - $-\lambda_1,\ldots,\lambda_T=1$: modelo común (CTL)
- La interpretación de los hiperparámetros es más sencilla

Table of Contents

2 Una Formulación Convexa para Aprendizaje Multitarea

► Introducción

Multi-Task Learning Support Vector Machines

- ► Una Formulación Convexa para Aprendizaje Multitarea Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados Convex Multi-Task Learning with Neural Networks
- ► Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- Summary

Formulacion Convexa con Métodos de Kernel

2 Una Formulación Convexa para Aprendizaje Multitarea

• La formulación aditiva con métodos de kernel puede expresarse con los modelos:

$$h_r(\cdot) = \{\langle w, \phi(\cdot) \rangle + b\} + \{\langle v_r, \phi_r(\cdot) \rangle + d_r\}$$

• Con nuestra formulación convexa los modelos son:

$$h_r(\cdot) = \lambda_r \left\{ \langle w, \phi(\cdot) \rangle + b \right\} + (1 - \lambda_r) \left\{ \langle v_r, \phi_r(\cdot) \rangle + d_r \right\}$$

- Desarrollamos tres variantes de SVM:
 - L1-SVM
 - L2-SVM
 - LS-SVM

Formulación Aditiva para MTL L1-SVM

2 Una Formulación Convexa para Aprendizaje Multitarea

Problema Primal - L1-SVM Aditiva

- El parámetro μ (junto con C) regula la influencia de cada parte:
 - $-\mu \to \infty$: modelos independientes (ITL)
 - $C \rightarrow 0, \; \mu \rightarrow 0$: modelo común (CTL)

Formulación Convexa para L1-SVM MT

2 Una Formulación Convexa para Aprendizaje Multitarea

Problema Primal - L1-SVM Convexa

$$\begin{split} \min_{w,v,b,d,\xi} \quad & J(w,v,b,d,\xi) = C \sum_{r=1}^{T} \sum_{i=1}^{m_r} \xi_i^r + \frac{1}{2} \sum_{r=1}^{T} \|v_r\|^2 + \frac{1}{2} \|w\|^2 \\ \text{s.t.} \qquad & y_i^r \left(\lambda_r \left\{ \langle w, \phi(\mathbf{x}_i^r) \rangle + b \right\} + (1 - \lambda_r) \left\{ \langle v_r, \phi_r(\mathbf{x}_i^r) \rangle + d_r \right\} \right) \geq p_i^r - \xi_i^r, \\ & \xi_i^r \geq 0, \ i = 1, \dots, m_r, \ r = 1, \dots, T. \end{split}$$

- Los hiperparámetros λ_r regulan la influencia de cada parte:
 - $-\lambda_1,\ldots,\lambda_T=0$: modelos independientes (ITL)
 - $-\lambda_1,\ldots,\lambda_T=1$: modelo común (CTL)
- El hiperparámetro C no interviene en la definición de los modelos

Formulación Convexa para L1-SVM MT

2 Una Formulación Convexa para Aprendizaje Multitarea

Problema Dual - L1-SVM Convexa

$$\begin{aligned} & \min_{\boldsymbol{\alpha}} & \Theta(\boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{\alpha}^{\mathsf{T}} \left(\Lambda Q \Lambda + \left(I_{n} - \Lambda \right) K \left(I_{n} - \Lambda \right) \right) \boldsymbol{\alpha} - \boldsymbol{p} \boldsymbol{\alpha} \\ & \text{s.t.} & 0 \leq \alpha_{i}^{r} \leq \mathcal{C}; \ i = 1, \dots, m_{r}, \ r = 1, \dots, T, \\ & \sum_{i=1}^{m_{r}} \alpha_{i}^{r} \boldsymbol{\gamma}_{i}^{r} = 0; \ r = 1, \dots, T, \end{aligned}$$

- Usamos la matriz $\Lambda = \operatorname{diag}(\overbrace{\lambda_1,\ldots,\lambda_1},\ldots,\overbrace{\lambda_T,\ldots,\lambda_T})$
- La matriz Q es común entre todas las tareas usando el kernel k correspondiente a ϕ
- La matriz K es diagonal por bloques, con los kernel k_r correspondientes a ϕ_r
- La función de kernel es:

$$\widehat{k}(x_i^r, x_j^s) = \lambda_r \lambda_s k(x_i^r, x_j^s) + \delta_{rs}(1 - \lambda_r)(1 - \lambda_s)k_r(x_i^r, x_j^s)$$

Formulación Convexa para L1-SVM MT

2 Una Formulación Convexa para Aprendizaje Multitarea

Problema Dual - L1-SVM Convexa (λ común)

$$egin{aligned} \min_{oldsymbol{lpha}} & \Theta(oldsymbol{lpha}) = rac{1}{2} oldsymbol{lpha}^\intercal \left(\lambda^2 Q + (1-\lambda)^2 \, K
ight) oldsymbol{lpha} - oldsymbol{p} oldsymbol{lpha} \ ext{s.t.} & 0 \leq lpha_i^r \leq \mathcal{C}; \ i = 1, \ldots, m_r, \ r = 1, \ldots, T, \ & \sum_{i=1}^{m_r} lpha_i^r y_i^r = 0; \ r = 1, \ldots, T, \end{aligned}$$

• La función de kernel es:

$$\widehat{k}(x_i^r, x_j^s) = \lambda^2 k(x_i^r, x_j^s) + (1 - \lambda)^2 \delta_{rs} k_r(x_i^r, x_j^s)$$

- El hiperparámetro λ regula la influencia de cada parte:
 - $-\lambda=0$: modelos independientes (ITL)
 - $-\lambda = 1$: modelo común (CTL)

Proposiciones

2 Una Formulación Convexa para Aprendizaje Multitarea

Proposicion (Equivalencia entre formulaciones para L1-SVM)

Para valores $\lambda \in (0,1)$, la formulación aditiva con hiperparámetros C_{add} , μ y la formulación convexa con C_{conv} y un λ común, $\lambda_1,\ldots,\lambda_T=\lambda$, son equivalentes cuando

$$\mathcal{C}_{add} = (1 - \lambda)^2 \mathcal{C}_{conv}, \; \mu = (1 - \lambda)^2 / \lambda^2.$$

- Para $\lambda=0$, la formulación convexa con un λ común es equivalente a modelos independientes (ITL).
- Para $\lambda=1$ la formulación convexa con un λ común es equivalente a un modelo común (CTL).

Formulación Aditiva vs Formulación Convexa

2 Una Formulación Convexa para Aprendizaje Multitarea

Formulación Convexa para L2-SVM MT

2 Una Formulación Convexa para Aprendizaje Multitarea

Problema Primal - MTL L2-SVM Convexa

$$\underset{w,v,b,d,\xi}{\operatorname{arg\,min}} \quad J(w,v,b,d,\xi) = \frac{c}{2} \sum_{r=1}^{T} \sum_{i=1}^{m_r} (\xi_i^r)^2 + \frac{1}{2} \sum_{r=1}^{T} \|v_r\|^2 + \frac{1}{2} \|w\|^2$$
s.t.
$$y_i^r \left(\lambda_r \left\{ \langle w, \phi(x_i^r) \rangle + b \right\} + (1 - \lambda_r) \left\{ \langle v_r, \phi_r(x_i^r) \rangle + d_r \right\} \right) > p_i^r - \xi_i^r,$$

Problema Dual - MTL L2-SVM Convexa

$$\begin{split} \min_{\alpha} & \Theta(\alpha) = \frac{1}{2} \boldsymbol{\alpha}^{\mathsf{T}} \left(\left\{ \Lambda Q \Lambda + \left(I_{n} - \Lambda \right) K \left(I_{n} - \Lambda \right) \right\} + \frac{1}{c} I \right) \boldsymbol{\alpha} - \boldsymbol{p} \boldsymbol{\alpha} \\ \text{s.t.} & 0 \leq \alpha_{i}^{r}, \ i = 1, \ldots, m_{r}, \ r = 1, \ldots, T, \\ & \sum_{i=1}^{m_{r}} \alpha_{i}^{r} \boldsymbol{\gamma}_{i}^{r} = 0, \ r = 1, \ldots, T. \end{split}$$

Formulación Convexa para LS-SVM MT

2 Una Formulación Convexa para Aprendizaje Multitarea

Problema Primal - MTL LS-SVM Convexa

$$\underset{w,v,b,d,\xi}{\operatorname{arg\,min}} \quad J(w,v,b,d,\xi) = \frac{c}{2} \sum_{r=1}^{T} \sum_{i=1}^{m_r} (\xi_i^r)^2 + \frac{1}{2} \sum_{r=1}^{T} \|v_r\|^2 + \frac{1}{2} \|w\|^2$$
s.t.
$$y_i^r \left(\lambda_r \left\{ \langle w, \phi(x_i^r) \rangle + b \right\} + (1 - \lambda_r) \left\{ \langle v_r, \phi_r(x_i^r) \rangle + d_r \right\} \right) = p_i^r - \xi_i^r,$$

Problema Dual - MTL LS-SVM Convexa

$$egin{bmatrix} egin{bmatrix} 0 & oldsymbol{0}_T^\intercal & oldsymbol{\gamma}^\intercal \Lambda \ \hline oldsymbol{0}_T & oldsymbol{0}_{T imes T} & A^\intercal Y (I_n - \Lambda) \ \hline oldsymbol{\gamma} & YA & \widehat{Q} + rac{1}{\widehat{C}} I_n \end{bmatrix} egin{bmatrix} b \ d_1 \ dots \ d_T \ d_T \ \end{pmatrix} = egin{bmatrix} 0 \ oldsymbol{0}_T \ oldsymbol{p} \end{pmatrix},$$

Table of Contents

2 Una Formulación Convexa para Aprendizaje Multitarea

► Introducción

Multi-Task Learning
Support Vector Machines

- ► Una Formulación Convexa para Aprendizaje Multitarea Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados Convex Multi-Task Learning with Neural Networks
- ► Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- Summary

Combinación Convexa de modelos Preentrenados

2 Una Formulación Convexa para Aprendizaje Multitarea

- Alternativa a la formulación convexa para aprendizaje MT
- Consideramos la combinación convexa de
 - modelo común $g(\cdot)$ entrenado
 - modelos específicos $g_r(\cdot)$ entrenados
- Minimizamos el riesgo eligiendo los hiperparámetros $\lambda_1, \dots, \lambda_T$ óptimos

$$\hat{R}_D(\lambda_1,\ldots,\lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} \ell(\lambda_r g(\mathbf{x}_i^r) + (1-\lambda_r) g_r(\mathbf{x}_i^r), \mathbf{y}_i^r),$$

Formulación Unificada Clasificación

2 Una Formulación Convexa para Aprendizaje Multitarea

Hinge loss (classification):

$$\hat{R}_D(\lambda_1,\ldots,\lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} \left[1 - y_i^r \left\{\lambda_r g(\mathbf{x}_i^r) + (1-\lambda_r) g_r(\mathbf{x}_i^r)
ight\}
ight]_+.$$

Squared hinge loss (classification):

$$\hat{R}_D(\lambda_1,\ldots,\lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} \left[1 - y_i^r \left\{ \lambda_r g(\mathbf{x}_i^r) + (1-\lambda_r) g_r(\mathbf{x}_i^r) \right\} \right]_+^2.$$

• Ambas se pueden expresar como:

$$\sum_{r=1}^{T} \sum_{i=1}^{m_r} u(\lambda_r c_i^r + d_i^r), \text{ donde } c_i^r = y_i^r (g_r(x_i^r) - g(x_i^r)), \ d_i^r = 1 - y_i^r g_r(x_i^r)$$

Formulación Unificada Regresión

2 Una Formulación Convexa para Aprendizaje Multitarea

Absolute loss (regression):

$$\hat{R}_D(\lambda_1,\ldots,\lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} |\gamma_i^r - \{\lambda_r g(\mathbf{x}_i^r) + (1-\lambda_r) g_r(\mathbf{x}_i^r)\}|.$$

Squared loss (regression):

$$\hat{R}_D(\lambda_1,\ldots,\lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} \left(y_i^r - \{ \lambda_r g(x_i^r) + (1-\lambda_r) g_r(x_i^r) \} \right)^2.$$

• Ambas se pueden expresar como:

$$\sum_{r=1}^T \sum_{i=1}^{m_r} u(\lambda_r c_i^r + d_i^r), ext{ donde } c_i^r = g(x_i^r) - g_r(x_i^r), ext{ } d_i^r = g_r(x_i^r) - \gamma_i^r$$

Formulación Unificada

2 Una Formulación Convexa para Aprendizaje Multitarea

• En todos los casos tenemos que minimizar

$$\hat{R}_D(\lambda_1,\ldots,\lambda_T) = \sum_{r=1}^T \sum_{i=1}^{m_r} u(\lambda_r c_i^r + d_i^r)$$

• Como es separable, tenemos en cada tarea el problema

$$\underset{\lambda_r \in [0,1]}{\operatorname{arg \, min}} \, \mathcal{J}(\lambda_r) = \sum_{i=1}^{m_r} u(\lambda_r c_i^r + d_i^r),$$

Usando el Teorema de Fermat

$$\lambda^* = \mathop{\arg\min}_{0 < \lambda < 1} \mathcal{J}(\lambda) \iff (0 \in \partial \mathcal{J}(\lambda^*) \text{ and } \lambda^* \in (0,1)) \text{ or } \lambda^* = 0 \text{ or } \lambda^* = 1.$$

Combinación Convexa con Error Cuadrático

2 Una Formulación Convexa para Aprendizaje Multitarea

• La función a minimizar es

$$rg \min_{\lambda \in [0,1]} \mathcal{J}(\lambda) = \sum_{i=1}^m \left(\lambda c_i + d_i\right)^2.$$

• La derivada es

$$\mathcal{J}'(\lambda) = \sum_{i=1}^m 2c_i(\lambda c_i + d_i).$$

• Como es derivable, resolviendo $\mathcal{J}'(\lambda) = 0$ obtenemos

$$\lambda' = -rac{\sum_{i=1}^{m} d_i c_i}{\sum_{i=1}^{m} (c_i)^2}.$$

• La solución es entonces $\lambda^* = \max(\min(\lambda', 1), 0)$

Combinación Convexa con Error Absoluto

2 Una Formulación Convexa para Aprendizaje Multitarea

Proposicion (λ^* óptimo para el problema con valor absoluto)

- $\lambda^*=0$ es óptimo si y solo si: $-\sum_{i:\;0>\lambda_{(i)}}\left|c_{(i)}\right|+\sum_{i:\;0<\lambda_{(i)}}\left|c_{(i)}\right|\leq 0$
- $\lambda^* \in (0,1)$ es óptimo si y solo si $0<\lambda^*=\lambda_{(k)}<1$ para algún $k=1,\ldots,m$, y

$$-\sum_{i:\;\lambda_{(k)}>\lambda_{(i)}}\left|c_{(i)}\right|+\sum_{i:\;\lambda_{(k)}<\lambda_{(i)}}\left|c_{(i)}\right|\in\left[-\left|c_{(k)}\right|,\left|c_{(k)}\right|\right]$$

• $\lambda^*=1$ es óptimo en otro caso

Combinación Convexa con Error Hinge

2 Una Formulación Convexa para Aprendizaje Multitarea

Proposicion (λ^* óptimo para el problema con error hinge)

- $\lambda^* = 0$ es óptimo si y solo si: $-\sum_{i:\; 0>\lambda_{(i)}} \max\left(0,c_{(i)}\right) \sum_{0<\lambda_{(i)}} \min\left(0,c_{(i)}\right) \leq 0$
- $\lambda^* \in (0,1)$ es óptimo si y solo si $0 < \lambda^* = \lambda_{(k)} < 1$ para algún $k=1,\ldots,m$, y

$$-\sum_{i:\;\lambda_{(k)}>\lambda_{(i)}}\max\left(0,c_{(i)}\right)-\sum_{i:\;\lambda_{(k)}<\lambda_{(i)}}\min\left(0,c_{(i)}\right)\in\left[\min\left(0,c_{(k)}\right),\max\left(0,c_{(k)}\right)\right]$$

• $\lambda^* = 1$ es óptimo en otro caso

Combinación Convexa con Error Hinge Cuadrático

2 Una Formulación Convexa para Aprendizaje Multitarea

Proposicion (λ^* óptimo para el problema con error hinge cuadrático)

- $\lambda^*=0$ es óptimo si y solo si: $-\sum_{i:\;0>c_{(i)},0<\lambda_{(i)}}2c_id_i-\sum_{i:\;0< c_{(i)},0>\lambda_{(i)}}2c_id_i\leq 0$
- $\lambda^* \in (0,1)$ es óptimo si y solo si $0<\lambda^*=\widehat{\lambda}_{(k)}<1$ para algún $k=1,\ldots,m$, donde

$$\widehat{\lambda}_{(k)} = -\frac{\sum_{i:\; \lambda_{(k+1)} \geq \lambda_{(i)}} \max\left(0, c_{(i)}\right) d_{(i)} + \sum_{i:\; \lambda_{(k)} \leq \lambda_{(i)}} \min\left(0, c_{(i)}\right) d_{(i)}}{\sum_{i:\; \lambda_{(k+1)} \geq \lambda_{(i)}} \max\left(0, c_{(i)}\right)^2 + \sum_{i:\; \lambda_{(k)} \leq \lambda_{(i)}} \min\left(0, c_{(i)}\right)^2},$$

y además
$$\lambda_{(k)} \leq \widehat{\lambda}_k \leq \lambda_{(k+1)}$$

• $\lambda^* = 1$ es óptimo en otro caso

Experimentos: Modelos

- Common Task Learning LX-SVM (CTL-LX): Un único modelo LX-SVM que es común para todas las tareas
- Independent Task Learning LX-SVM (ITL-LX): Un modelo LX-SVM independiente para cada tarea.
- Direct Convex Combination of LX-SVMs (CMB-LX): Una combinación convexa de los mejores CTL-LX y ITL-LX.
- Convex Multi-Task Learning LX-SVM (MTL-LX): Un modelo multitarea con la formulación convexa basado en la LX-SVM

Experimentos: Problemas

Dataset	Size	No. feat.	No. tasks	Avg. task size	Min. t. s.	Max. t. s.
majorca	15 330	765	14	1095	1095	1095
tenerife	15 330	765	14	1095	1095	1095
california	19 269	9	5	3853	5	8468
boston	506	12	2	253	35	471
abalone	4177	8	3	1392	1307	1527
crime	1195	127	9	132	60	278
binding	32 302	184	47	687	59	3089
landmine	14820	10	28	511	445	690
adult_(G)	48 842	106	2	24421	16 192	32650
adult_(R)	48 842	103	5	9768	406	41762
adult_(G, R)	48 842	101	10	4884	155	28 735
compas_(G)	3987	11	2	1993	840	3147
compas_(R)	3987	9	4	997	255	1918
compas_(G, R)	3987	7	8	498	50	1525

Experimentos: Procedimiento

- Para majorca u tenerife, usamos los datos de 2013, 2014 and 2015 como conjuntos de entrenamiento, validación y test, respectivamente
- Para el resto, usamos una CV con 3 particiones externas e internas estratificadas por tareas
- Los hiperparámetros se eligen con una búsqueda en rejilla con las particiones de entrenamiento y validación
- Obtenemos 3 scores de test para cada modelo en cada problema

Experimentos: Hiperparámetros

- Due to computational limitations a maximum of three hyperparameters are included in the CV process.
- The kernel widths for the MTL models are selected from the CTL and ITL models.

	Grid	CTL-L1,2	ITL-L1,2	MTL-L1,2	CTL-LS	ITL-LS	MTL-LS
С	$\left\{4^k:-2\leq k\leq 6\right\}$	CV	CV	CV	CV	CV	CV
ϵ	$\left\{ \frac{\sigma}{4^k} : 1 \le k \le 6 \right\}$	CV	CV	CV	-	-	-
γ_c	$\left\{ rac{4^{k}}{d}:-2\leq k\leq 3 ight\}$	CV	-	CTL-L1,2	CV	-	CTL-LS
γ_s^r	$\left\{ egin{array}{l} rac{4^k}{d}:-2\leq k\leq 3 \ rac{4^k}{d}:-2\leq k\leq 3 \ ight\} \end{array} ight.$	-	CV	ITL-L1,2	-	CV	ITL-LS
λ	$\{0.1k: 0 \le k \le 10\}$	-	-	CV	-	-	CV

Experimentos: Resultados de Regresión (MAE)

	maj.	ten.	boston	california	abalone	crime
ITL-L1	5.087 (6)	5.743 (3)	2.341±0.229 (1)	36883.582±418.435 (2)	1.481±0.051 (3)	0.078±0.001 (2)
CTL-L1	5.175 (7)	5.891 (5)	2.192 \pm 0.244 (1)	41754.337 \pm 270.908 (6)	1.482±0.050 (3)	0.078±0.001 (2)
CMB-L1	5.047 (5)	5.340 (1)	2.239 \pm 0.255 (1)	36880.238 \pm 420.417 (1)	1.470 \pm 0.052 (2)	0.077 ±0.002 (2)
MTL-L1	5.050 (5)	5.535 (2)	2.206 \pm 0.292 (1)	36711.383 \pm 343.333 (1)	1.454±0.048 (1)	0.074 \pm 0.002 (1)
ITL-L2	4.952 (3)	5.629 (3)	2.356±0.300 (1)	37374.618 ± 433.511 (5)	1.498±0.054 (4)	0.079±0.002 (2)
CTL-L2	5.193 (7)	6.107 (8)	2.083± 0.136 (1)	42335.612 ± 163.773 (8)	1.503±0.047 (5)	0.080±0.002 (2)
CMB-L2	4.869 (3)	5.963 (6)	2.089 \pm 0.128 (1)	37374.618 ± 433.511 (4)	1.494±0.050 (4)	0.077 ±0.003 (2)
MTL-L2	4.854 (2)	5.784 (4)	2.089 ± 0.134 (1)	37202.603 ± 419.166 (3)	1.482 ± 0.049 (3)	0.077±0.002 (2)
ITL-LS	4.937 (3)	5.649 (3)	2.204± 0.116 (1)	37348.347±441.240 (4)	1.496±0.051 (4)	0.079±0.002 (2)
CTL-LS	5.193 (7)	6.005 (7)	2.072±0.143 (1)	42259.492±146.825 (7)	1.502±0.052 (5)	0.079 ±0.002 (2)
CMB-LS	4.977 (4)	5.593 (3)	2.081±0.146 (1)	37339.179 ±430.288 (4)	1.486±0.049 (4)	0.079±0.002 (2)
MTL-LS	4.824 (1)	5.754 (4)	2.077 \pm 0.152 (1)	37231.043 ±420.992 (4)	1.478 ± 0.050 (3)	0.076±0.002 (2)

Experimentos: Resultados de Regresión (MSE)

	maj.	ten.	boston	california	abalone	crime
ITL-L1	0.845 (6)	0.901 (7)	0.821±0.041 (2)	0.699±0.009 (7)	0.543±0.022 (8)	0.732±0.021 (3)
CTL-L1	0.837 (9)	0.901 (6)	0.854 \pm 0.036 (1)	0.639±0.006 (10)	0.559 \pm 0.014 (6)	0.740±0.027 (3)
CMB-L1	0.844 (6)	0.905 (4)	0.845±0.053 (1)	0.699±0.009 (6)	0.555 \pm 0.018 (7)	0.741 \pm 0.029 (3)
MTL-L1	0.846 (4)	0.908 (2)	0.858 \pm 0.057 (1)	0.703 ± 0.007 (6)	0.568 ± 0.012 (5)	0.760±0.024 (2)
ITL-L2	0.846 (5)	0.906 (3)	o.836±0.045 (2)	0.707 ±0.009 (5)	0.565±0.025 (6)	0.743±0.017 (3)
CTL-L2	0.840 (8)	0.901 (8)	0.889 \pm 0.017 (1)	0.645±0.005 (9)	0.574 \pm 0.013 (4)	0.744±0.028 (3)
CMB-L2	0.850 (3)	0.900 (9)	0.885 \pm 0.013 (1)	0.707 ± 0.009 (4)	0.571 \pm 0.018 (4)	0.755 ±0.024 (3)
MTL-L2	0.863 (2)	0.908 (1)	0.888 \pm 0.015 (1)	o.709±o.008 (1)	0.580 ± 0.014 (3)	0.762±0.028 (1)
ITL-LS	0.849 (3)	0.907 (3)	0.856±0.008 (1)	0.707 ±0.009 (3)	0.573±0.015 (4)	0.743±0.022 (3)
CTL-LS	0.838 (9)	0.904 (5)	0.894±0.015 (1)	0.646±0.005 (8)	0.576±0.016 (4)	0.746±0.032 (3)
CMB-LS	0.843 (7)	0.907 (2)	0.886±0.024 (1)	0.707 ±0.009 (2)	0.581 \pm 0.012 (2)	0.746±0.021 (3)
MTL-LS	0.863 (1)	0.910 (1)	0.890±0.016 (1)	0.709 ± 0.008 (2)	o.581±o.o15 (1)	0.763±0.028 (1)

Experimentos: Resultados de Clasificación (Score F1)

	comp_(G)	comp_(R)	comp_(G,R)	ad₋(G)	ad_(R)	ad_(G,R)	landmine	binding	mean	rank	Wil.
ITL-L1	0.625	0.639	0.630	0.659	0.653	0.657	0.231	0.867	0.620	10	2
CTL-L1	0.623	0.638	0.638	0.657	0.650	0.653	0.255	0.901	0.627	7	2
CMB-L1	0.616	0.638	0.638	0.658	0.650	0.653	0.270	0.901	0.628	6	2
MTL-L1	0.627	0.636	0.640	0.659	0.655	0.659	0.242	0.907	0.628	5	2
ITL-L2	0.636	0.623	0.607	0.668	0.666	0.668	0.256	0.867	0.624	8	2
CTL-L2	0.640	0.647	0.651	0.665	0.661	0.659	0.270	0.903	0.637	2	2
CMB-L2	0.629	0.640	0.645	0.666	0.662	0.661	0.270	0.903	0.634	3	2
MTL-L2	0.634	0.651	0.650	0.668	0.666	0.668	0.263	0.909	0.639	1	1
ITL-LS	0.631	0.622	0.608	0.659	0.659	0.660	0.243	0.867	0.619	12	2
CTL-LS	0.628	0.644	0.649	0.650	0.653	0.647	0.230	0.853	0.619	11	2
CMB-LS	0.630	0.635	0.642	0.657	0.658	0.654	0.238	0.873	0.623	9	2
MTL-LS	0.630	0.641	0.648	0.659	0.659	0.659	0.257	0.906	0.632	4	2

Experimentos: Resultados de Clasificación (Accuracy)

	comp_(G)	comp_(R)	comp_(G,R)	ad_(G)	ad_(R)	ad_(G,R)	landmine	binding	mean	rank	Wil.
ITL-L1	0.750	0.749	0.746	0.852	0.851	0.853	0.941	0.790	0.817	11	3
CTL-L1	0.757	0.759	0.763	0.852	0.847	0.849	0.938	0.850	0.827	6	1
CMB-L1	0.754	0.759	0.763	0.852	0.847	0.849	0.935	0.850	0.826	7	2
MTL-L1	0.753	0.760	0.763	0.853	0.852	0.853	0.933	0.861	0.829	5	1
ITL-L2	0.754	0.762	0.751	0.856	0.855	0.856	0.942	0.791	0.821	8	2
CTL-L2	0.762	0.765	0.767	0.854	0.853	0.851	0.933	0.853	0.830	3	1
CMB-L2	0.757	0.764	0.766	0.854	0.853	0.853	0.934	0.853	0.829	4	1
MTL-L2	0.753	0.766	0.766	0.856	0.855	0.856	0.933	0.864	0.831	1	1
ITL-LS	0.754	0.761	0.750	0.851	0.850	0.851	0.943	0.791	0.819	9	3
CTL-LS	0.757	0.764	0.766	0.845	0.847	0.842	0.914	0.750	0.811	12	3
CMB-LS	0.754	0.764	0.765	0.849	0.850	0.848	0.925	0.793	0.818	10	3
MTL-LS	0.757	0.764	0.767	0.851	0.850	0.851	0.944	0.858	0.830	2	1

Table of Contents

2 Una Formulación Convexa para Aprendizaje Multitarea

► Introducción

Multi-Task Learning
Support Vector Machines

► Una Formulación Convexa para Aprendizaje Multitarea Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados Convex Multi-Task Learning with Neural Networks

► Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo

▶ Summary

Redes Neuronales MT

- La manera más común de adaptar las redes neuronales es el hard sharing
 - Capas ocultas compartidas por todas las tareas
 - Capas de salida específicas para cada tarea
- El modelo se puede expresar como:

$$h_r(\cdot) = g_r(\cdot; w_r, \Theta) = \{\langle w_r, f(\cdot; \Theta) \rangle\} + d_r$$

- $-w_r, d_r$ son los parámetros de las capas de salida específicas
- $-\Theta$ son los parámetros de las capas ocultas compartidas

Figure: Ejemplo de *Hard Sharing* para dos tareas .

Formulación Convexa para Redes Neuronales MT

- Proponemos la formulación convexa para redes neuronales MT, combinando:
 - Una parte común $g(\cdot; w, \Theta)$
 - Una parte específica $g_r(\cdot; w_r, \Theta_r)$
- Los modelos son:

$$egin{aligned} h_r(\cdot) &= \lambda_r g(\cdot; w, \Theta) + (1 - \lambda_r) g_r(\cdot; w_r, \Theta_r) \ &= \lambda_r \{ \langle w, f(\cdot; \Theta)
angle + b \} + (1 - \lambda_r) \{ \langle w_r, f_r(\cdot; \Theta_r)
angle + d_r \}. \end{aligned}$$

- -w, Θ son los parámetros de la red común (capa de salida y ocultas)
- $-w_r,\Theta_r$ son los parámetros de las redes específicas (capa de salida y ocultas)

Figure: Ejemplo de formulación convexa con redes neuronales para dos tareas.

Formulación Convexa para Redes Neuronales MT

2 Una Formulación Convexa para Aprendizaje Multitarea

• El riesgo a minimizar en este caso es

$$\hat{R}_D = \sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(h_r(x_i^r), y_i^r) + \frac{\mu}{2} \left(\|w\|^2 + \sum_{r=1}^{T} \|w_r\|^2 + \Omega(\Theta) + \Omega(\Theta_r) \right).$$

Se puede aplicar el descenso por gradiente con

$$\begin{split} &\nabla_{w}h_{t}(x_{i}^{t}) = \lambda_{t}f(x_{i}^{t},\Theta), & \nabla_{\Theta}h_{t}(x_{i}^{t}) = \lambda_{t}\left\langle w, \nabla_{\Theta}f(x_{i}^{t},\Theta)\right\rangle; \\ &\nabla_{w_{t}}h_{t}(x_{i}^{t}) = (1-\lambda_{t})f_{t}(x_{i}^{t},\Theta), & \nabla_{\Theta_{t}}h_{t}(x_{i}^{t}) = (1-\lambda_{t})\left\langle w, \nabla_{\Theta_{t}}f_{t}(x_{i}^{t},\Theta_{t})\right\rangle; \\ &\nabla_{w_{r}}h_{t}(x_{i}^{t}) = 0, & \nabla_{\Theta_{r}}h_{t}(x_{i}^{t}) = 0, \text{ for } r \neq t. \end{split}$$

• Los gradientes se escalan adecuadamente con λ_t y $(1-\lambda_t)$

Formulación Convexa para Redes Neuronales MT

2 Una Formulación Convexa para Aprendizaje Multitarea

• El pase "backward" se hace con la diferenciación automática de PyTorch

Datasets

- Usamos cuatro 28×28 datasets de imágenes en escala de grises:
 - var-MNIST
 - rot-MNIST
 - var-FMNIST
 - rot-FMNIST
- Cada uno con 70k ejemplos y 10 clases
- Los datasets variations tienen 3 tareas: standard, random, images
- Los datasets *rotated* tienen 6 tareas: 0, 15, 30, 45, 60, 75

Datasets

Models

- Comparamos cuatro modelos:
 - ctlNN_conv
 - itlNN_conv
 - cvxmtlNN_conv
 - hsmtlNN_conv
- Todos están basados en una red convolucional de Pytorch con
 - Conv. Layer (10 output channels)
 - Conv. Layer (20 output channels)
 - Dropout (p = 0.5) and Max. Pooling
 - Fully Connected Layer (320 neurons)
 - Fully Connected Layer (50 neurons)
- Todos los modelos se entrenan con el algoritmo AdamW

Resultados

	var-MNIST	rot-MNIST	var-FMNIST	rot-FMNIST						
	accuracy									
ctlNN	0.964	0.973	0.784	0.834						
itlNN	0.968	0.981	0.795	0.873						
hsmtlNN	0.971	0.980	0.770	0.852						
cvxmtlNN	0.974	0.984	0.812	0.880						
CVXIIILIININ	$(\lambda^* = 0.6)$	$(\lambda^*=0.8)$	$(\lambda^*=0.6)$	$(\lambda^* = 0.6)$						
		categorical c	ross-entropy							
ctlNN	1.274 \pm 0.143	1.145 \pm 0.039	2.369 \pm 0.183	1.757 \pm 0.075						
itlNN	1.072 \pm 0.029	$\textbf{0.873} \pm \textbf{0.058}$	2.356 \pm 0.130	1.598 \pm 0.042						
hsmtlNN	1.087 \pm 0.253	$\textbf{0.898} \pm \textbf{0.073}$	$\textbf{3.067} \pm \textbf{0.888}$	1.888 \pm 0.075						
cvxmtlNN	0.924 \pm 0.024	$\textbf{0.831} \pm \textbf{0.029}$	$\textbf{2.147} \pm \textbf{0.090}$	1.482 \pm 0.063						
CVXIIILIIVIN	$(\lambda^* = 0.6)$	$(\lambda^*=0.8)$	$(\lambda^*=0.6)$	$(\lambda^* = 0.6)$						

Table of Contents

- ► Introducción Multi-Task Learning Support Vector Machine
- Una Formulación Convexa para Aprendizaje Multitarea Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados Convex Multi-Task Learning with Neural Networks
- ► Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- Summary

Aprendizaje Multitarea con Regularización Laplaciana

3 Laplaciano Adaptativo para Aprendizaje Multitarea

- Otra manera de acoplar distintas tareas es usar una regularización Laplaciana
- Consideramos un grafo donde
 - Los nodos representan tareas
 - Las aristas y sus pesos representan las relaciones entre las tareas
- La matriz de adyacencia A tiene los pesos de las aristas
- La matriz de grados D es una matriz diagonal donde

$$(D)_{rr} = \sum_{s=1}^{T} (A)_{rs}$$

• La matriz Laplaciana se define como L=D-A

Aprendizaje Multitarea con Regularización Laplaciana

3 Laplaciano Adaptativo para Aprendizaje Multitarea

• Dados los modelos para cada tarea definidos como

$$h_r(\cdot) = \langle w_r, \cdot \rangle + b_r$$

• Definimos la regularización

$$\sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \|w_r - w_s\|^2,$$

• Esta regularización se puede expresar como

$$\sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \|w_r - w_s\|^2 = \sum_{r=1}^{T} \sum_{s=1}^{T} (L)_{rs} \langle w_r, w_s \rangle,$$

Table of Contents

3 Laplaciano Adaptativo para Aprendizaje Multitarea

► Introducción

Multi-Task Learning
Support Vector Machines

- ► Una Formulación Convexa para Aprendizaje Multitarea Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados Convex Multi-Task Learning with Neural Networks
- ► Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- Summary

Laplaciano de Grafo con Métodos de Kernel

3 Laplaciano Adaptativo para Aprendizaje Multitarea

• Consideramos el problema de minimización

$$R(u_1,\ldots,u_T) = \sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(y_i^r, \langle u_r, \phi(x_i^r) \rangle) + \mu \sum_r \sum_s (E)_{rs} \langle u_r, u_s \rangle$$
 (o)

• Si usamos el vector $oldsymbol{u}^\intercal = (u_1^\intercal, \dots, u_T^\intercal)$ lo expresamos como

$$R(\boldsymbol{u}) = \sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(\boldsymbol{y}_i^r, \langle \boldsymbol{u}, \boldsymbol{e}_r \otimes \phi(\boldsymbol{x}_i^r) \rangle) + \mu \left(\boldsymbol{u}^{\mathsf{T}} (E \otimes I) \boldsymbol{u} \right)$$
(1)

donde \otimes indica el producto tensorial y $e_1, \dots e_T$ es la base canónica de \mathbb{R}^T

Laplaciano de Grafo con Métodos de Kernel

3 Laplaciano Adaptativo para Aprendizaje Multitarea

Lemma

Las soluciones u_1^*, \dots, u_T^* de (0), o equivalentemente la solución \mathbf{u}^* de (1), se pueden obtener minimizando

$$S(\mathbf{w}) = \sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(\mathbf{y}_i^r, \langle \mathbf{w}, (B_r \otimes \phi(\mathbf{x}_i^r)) \rangle) + \mu \mathbf{w}^\mathsf{T} \mathbf{w}, \tag{2}$$

donde $\mathbf{w} \in \mathbb{R}^p \otimes \mathcal{H}$ con $p \geq T$ y B_r son las columnas de $B \in \mathbb{R}^{p \times T}$, una matriz de rango máximo tal que $E^{-1} = B^T B$.

El kernel reproductor correspondiente es:

$$\langle B_r \otimes \phi(\mathbf{x}_i^r), B_s \otimes \phi(\mathbf{x}_j^s) \rangle = (E^{-1})_{rs} k(\mathbf{x}_i^r, \mathbf{x}_j^s)$$

Laplaciano de Grafo con Métodos de Kernel y Formulación Convexa

- Propuesta: combinar la formulación convexa con la regularización Laplaciana
- El problema de minimización es

$$\sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(y_i^r, \lambda_r \langle w, \phi(x_i^r) \rangle + (1 - \lambda_r) \langle v_r, \phi(x_i^r) \rangle)$$

$$+ \mu \sum_{r=1}^{T} \sum_{i=1}^{m_r} \ell(y_i^r, \lambda_r \langle w, \phi(x_i^r) \rangle + (1 - \lambda_r) \langle v_r, \phi(x_i^r) \rangle)$$

$$+ \mu \sum_{r} \sum_{s} (L)_{rs} \langle v_r, v_s \rangle + \sum_{r=1}^{T} \langle v_r, v_r \rangle + \langle w, w \rangle$$

- Usando esta formulación y el lema anterior proponemos:
 - L1-SVM MT convexa con regularización laplaciana
 - L2-SVM MT convexa con regularización laplaciana
 - LS-SVM MT convexa con regularización laplaciana

Formulación Convexa para L1-SVM MT con Laplaciano

3 Laplaciano Adaptativo para Aprendizaje Multitarea

Problema Primal - L1-SVM Convexa con Laplaciano

$$\min_{\boldsymbol{v}, \boldsymbol{b}, \boldsymbol{\xi}, \boldsymbol{w}} \quad C \sum_{r=1}^{T} \sum_{i=1}^{m_r} \xi_i^r + \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} (L)_{rs} \left\langle v_r, v_s \right\rangle + \frac{1}{2} \sum_{r} \|v_r\|^2 + \frac{1}{2} \|w\|^2$$
s.t.
$$y_i^r (\lambda_r(\langle w, \phi(x_i^r) \rangle) + (1 - \lambda_r)(\langle v_r, \psi(x_i^r) \rangle) + b_r) \ge p_i^r - \xi_i^r,$$

$$\xi_i^r \ge 0, \ i = 1, \dots, m_r, \ r = 1, \dots, T.$$

- Los hiperparámetros λ_r regulan la influencia de cada parte:
 - $-\lambda_1,\ldots,\lambda_T=0$: modelos independientes (ITL)
 - $-\lambda_1,\ldots,\lambda_T=1$: modelo común (CTL)
- La matriz laplaciana L establece relaciones entre las partes específicas v_r

Formulación Convexa para L1-SVM MT con Laplaciano

3 Laplaciano Adaptativo para Aprendizaje Multitarea

Problema Dual - L1-SVM Convexa con Laplaciano

$$\begin{split} \min_{\alpha} & \Theta(\alpha) = \frac{1}{2}\alpha^{t} \left(\Lambda Q \Lambda + \left(I_{n} - \Lambda \right) \widetilde{Q} \left(I_{n} - \Lambda \right) \right) \alpha - \boldsymbol{p} \alpha \\ \text{s.t.} & 0 \leq \alpha_{i}^{r} \leq \mathcal{C}, \ i = 1, \dots, m_{r}, r = 1, \dots, T, \\ & \sum_{i=1}^{n_{r}} \alpha_{i}^{r} \boldsymbol{y}_{i}^{r} = 0, \ r = 1, \dots, T. \end{split}$$

- Usamos la matriz $\Lambda = \operatorname{diag}(\overbrace{\lambda_1,\ldots,\lambda_1}^{M_1},\ldots,\overbrace{\lambda_T,\ldots,\lambda_T}^{M_1})$
- La matriz Q es común entre todas las tareas usando el kernel k_ϕ correspondiente a ϕ
- La matriz $ilde{Q}$ se define usando el kernel: $ilde{k}_{\psi}(x_i^r,x_j^s) = \left((
 u L + I_T)^{-1}\right)_{rr} k_{\psi}(x_i^r,x_j^s)$
- La función de kernel es: $\widehat{k}(x_i^r, x_i^s) = \lambda_r \lambda_s k_\phi(x_i^r, x_i^s) + (1 \lambda_r)(1 \lambda_s) \widetilde{k}_\psi(x_i^r, x_i^s)$

Formulación Convexa para L2-SVM MT con Laplaciano

3 Laplaciano Adaptativo para Aprendizaje Multitarea

Problema Primal - L2-SVM Convexa con Laplaciano

$$\min_{\substack{v_1, \dots, v_T; \\ b_1, \dots, b_T;}} C \sum_{r=1}^T \sum_{i=1}^{m_r} (\xi_i^r)^2 + \frac{\nu}{2} \sum_{r=1}^T \sum_{s=1}^T (A)_{rs} \|v_r - v_s\|^2 + \frac{1}{2} \sum_r \|v_r\|^2 + \frac{1}{2} \|w\|^2$$

s.t.
$$y_i^r(\lambda_r(\langle w, \phi(x_i^r) \rangle) + (1 - \lambda_r)(\langle v_r, \psi(x_i^r \rangle)) + b_r) \ge p_i^r - \xi_i^r;$$

Problema Dual - L2-SVM Convexa con Laplaciano

$$\min_{\alpha} \quad \Theta(\alpha) = \frac{1}{2} \alpha^{t} \left\{ \left(\Lambda Q \Lambda + (I_{n} - \Lambda) \widetilde{Q} (I_{n} - \Lambda) \right) + \frac{1}{C} I_{n} \right\} \alpha - \boldsymbol{p} \alpha$$
s.t. $0 < \alpha_{i}^{r}, i = 1, \dots, m_{r}, r = 1, \dots, T,$

$$\sum_{i=1}^{n_r} lpha_i^r y_i^r = 0, \ r = 1, \dots, T.$$

Formulación Convexa para LS-SVM MT con Laplaciano

3 Laplaciano Adaptativo para Aprendizaje Multitarea

Problema Primal - LS-SVM Convexa con Laplaciano

Problema Primal - LS-SVM Convexa con Laplaciano
$$\min_{\substack{v_1, \dots, v_T; \\ b_1, \dots, b_T; \\ \boldsymbol{\xi}, w;}} C \sum_{r=1}^T \sum_{i=1}^{m_r} (\xi_i^r)^2 + \frac{\nu}{2} \sum_{r=1}^T \sum_{s=1}^T (A)_{rs} \|v_r - v_s\|^2 + \frac{1}{2} \sum_r \|v_r\|^2 + \frac{1}{2} \|w\|^2$$

s.t.
$$y_i^r(\lambda_r(\langle w, \phi(x_i^r) \rangle) + (1 - \lambda_r)(\langle v_r, \psi(x_i^r \rangle)) + b_r) = p_i^r - \xi_i^r;$$

Problema Dual - LS-SVM Convexa con Laplaciano

$$\begin{bmatrix}
\frac{O_{T \times T}}{YA} & A^{\mathsf{T}}Y \\ \left(\Lambda Q \Lambda + (I_n - \Lambda)\widetilde{Q}(I_n - \Lambda)\right) + \frac{1}{C}I_n
\end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_T \\ \alpha \end{bmatrix} = \begin{bmatrix} \mathbf{0}_T \\ \mathbf{p} \end{bmatrix}.$$
(3)

Table of Contents

3 Laplaciano Adaptativo para Aprendizaje Multitarea

► Introducción

Multi-Task Learning
Support Vector Machines

- ► Una Formulación Convexa para Aprendizaje Multitarea Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados Convex Multi-Task Learning with Neural Networks
- ► Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo
- Summary

- La selección de la matriz de adyacencia A (y la respectiva L) determina la relación que se fomenta entre las tareas
- Tiene que tener las siguientes restricciones:
 - A es simétrica
 - $(A)_{rs} \geq 0, r, s = 1, \ldots, T.$
 - $\sum_{s=1} (A)_{rs} = 1$
- La entropía de cada fila es: a^r : $H(a^r) = \sum_{s=1}^T (A)_{rs} \log((A)_{rs})$
- Definimos la entropía de A como: $H(A) = \sum_{r=1}^T H(\boldsymbol{a}^r)$
- Interpretación:
 - -H(A) es máxima si A es constante, $A=\frac{1}{T}\mathbf{1}_{T}\mathbf{1}_{T}^{\mathsf{T}}$,
 - -H(A) es mínima si A es la identidad, $A=I_T$

3 Laplaciano Adaptativo para Aprendizaje Multitarea

Problema para Algoritmo Adaptativo

$$\min_{\substack{\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{b}; \\ \boldsymbol{A} \in (\mathbb{R}_{\geq 0})^{T \times T}, \\ \boldsymbol{A} \boldsymbol{1}_{T} = \boldsymbol{1}_{T} } } C \sum_{r=1}^{T} \sum_{i=1}^{m_{r}} \ell(\lambda_{r} \langle \boldsymbol{w}, \phi(\boldsymbol{x}_{i}^{r}) \rangle + (1 - \lambda_{r}) \langle \boldsymbol{v}_{r}, \psi(\boldsymbol{x}_{i}^{r}) \rangle + \boldsymbol{b}_{r}, \boldsymbol{y}_{i}^{r})$$

$$+ \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} (\boldsymbol{A})_{rs} \|\boldsymbol{v}_{r} - \boldsymbol{v}_{s}\|^{2} + \frac{1}{2} \sum_{r=1}^{T} \|\boldsymbol{v}_{r}\|^{2} + \frac{1}{2} \|\boldsymbol{w}\|^{2}$$

$$- \mu \sum_{r=1}^{T} H(\boldsymbol{a}^{r}),$$

3 Laplaciano Adaptativo para Aprendizaje Multitarea

- Para minimizar este problema alternamos los siguientes pasos:
 - Fijamos A y minimizamos en w, v, b: resolvemos el problema dual (y obtenemos α^*) correspondiente a

$$\begin{split} \min_{\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{b}} \quad & C \sum_{r=1}^{T} \sum_{i=1}^{m_{r}} \ell(\lambda_{r} \left\langle \boldsymbol{w}, \phi(\boldsymbol{x}_{i}^{r}) \right\rangle + (1 - \lambda_{r}) \left\langle \boldsymbol{v}_{r}, \psi(\boldsymbol{x}_{i}^{r}) \right\rangle + b_{r}, \boldsymbol{y}_{i}^{r}) \\ & + \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \left\| \boldsymbol{v}_{r} - \boldsymbol{v}_{s} \right\|^{2} + \frac{1}{2} \sum_{r=1}^{T} \left\| \boldsymbol{v}_{r} \right\|^{2} + \frac{1}{2} \left\| \boldsymbol{w} \right\|^{2} \end{split}$$

- Fjamos w, v, b y minimizamos en A:

$$\min_{\substack{A \in (\mathbb{R}_{\geq 0})^{T \times T}, \\ A \mathbf{1}_{r} = \mathbf{1}_{T}}} J(A) = \frac{\nu}{2} \sum_{r=1}^{T} \sum_{s=1}^{T} (A)_{rs} \|v_{r} - v_{s}\|^{2} - \mu \sum_{r=1}^{T} H(\boldsymbol{a}^{r}).$$

3 Laplaciano Adaptativo para Aprendizaje Multitarea

• Si sabemos las distancias $||v_r - v_s||^2$, la solución es

$$(A)_{rs} = \frac{\exp{-\frac{\nu}{\mu} \|v_r - v_s\|^2}}{\sum_t \exp{-\frac{\nu}{\mu} \|v_r - v_t\|^2}}.$$

- ¿Cómo calculamos estas distancias?
 - Con la matriz Q^{rs} correspondiente a la función

$$\widetilde{k^{rs}}(x_i^t, x_j^{ au}) = (I_T + \nu L)_{rt}^{-1} (I_T + \nu L)_{s\tau}^{-1} k_{\psi}(x_i^t, x_j^{ au}).$$

Los productos interiores son

$$\langle v_r, v_s \rangle = \boldsymbol{\alpha}^{\mathsf{T}} \left(I_n - \Lambda \right) \widetilde{Q^{rs}} \left(I_n - \Lambda \right) \boldsymbol{\alpha},$$

Las distancias son entonces

$$\left\| \mathbf{v}_r - \mathbf{v}_s \right\|^2 = \boldsymbol{lpha}^{\mathsf{T}} \left(I_n - \Lambda \right) \left(\widetilde{Q^{rr}} + \widetilde{Q^{ss}} - 2 \widetilde{Q^{rs}} \right) \left(I_n - \Lambda \right) \boldsymbol{lpha}.$$


```
A = A_0
                                                                                                       // Constant matrix
while True do
      L_{\text{inv}} \leftarrow \text{getInvLaplacian}(A)
                                                                                                                      // Step 0
     \alpha_{\mathsf{opt}} \leftarrow \mathsf{solveDualProblem}((X, y), L_{\mathsf{inv}}, \mathsf{params})
                                                                                                                      // Step 1
     o \leftarrow \text{computeObjectiveValue}((X, y), L_{\text{inv}}, \alpha_{\text{opt}})
                                                                                        // Objective function value
     if o^{old} - o < \delta_{tol} then
           break
                                                                                                             Exit condition
     end
     D \leftarrow \text{computeDistances}((X, y), L_{\text{inv}}, \alpha_{\text{opt}})
                                                                                                                      // Step 2
     A \leftarrow \mathsf{updateAdiMatrix}(D, \mathsf{params})
                                                                                                                      // Step 3
end
return \alpha_{opt}, A
```


Experimentos: Problemas Sintéticos

Experimentos Sintéticos: Problemas

Experimentos Sintéticos: Problemas Sintéticos

Experimentos Sintéticos: Resultados

	regClustersO	regClusters1	regClusters2	clasClustersO	clasClusters1	clasClusters2
		MAE			F1	
CTL-L1	0.989	0.512	0.541	0.901	0.912	0.904
ITL-L1	0.221	0.212	0.159	0.922	0.923	0.910
MTL-L1	0.213	0.176	0.135	0.924	0.925	0.914
cvxGLMTL-L1	0.212	0.173	0.138	0.920	0.926	0.912
AdapGLMTL-L1	0.152	0.116	0.107	0.924	0.929	0.916
CTL-L2	0.990	0.642	0.768	0.904	0.912	0.906
ITL-L2	0.213	0.201	0.154	0.928	0.928	0.910
MTL-L2	0.209	0.168	0.131	0.925	0.927	0.913
cvxGLMTL-L2	0.204	0.169	0.131	0.921	0.923	0.915
AdapGLMTL-L2	0.141	0.115	0.103	0.924	0.929	0.915
CTL-LS	0.989	0.642	0.766	0.895	0.908	0.894
ITL-LS	0.212	0.209	0.149	0.914	0.915	0.904
MTL-LS	0.206	0.167	0.131	0.917	0.917	0.905
cvxGLMTL-LS	0.207	0.169	0.132	0.919	0.921	0.897
AdapGLMTL-LS	0.136	0.115	0.106	0.920	0.921	0.901

Experimentos Sintéticos: Resultados

Figure: Prueba

Experimentos Sintéticos: Resultados

Figure: Prueba

Table of Contents

4 Summary

- ► Introducción Multi-Task Learning Support Vector Machine
- Una Formulación Convexa para Aprendizaje Multitarea Convex Multi-Task Learning with Kernel Methods Combinación Convexa de modelos Preentrenados Convex Multi-Task Learning with Neural Networks
- Laplaciano Adaptativo para Aprendizaje Multitarea Laplaciano de Grafo con Métodos de Kernel Algoritmo Adaptativo para Laplaciano de Grafo

Summary

Good Luck!

4 Summary

• Enough for an introduction! You should know enough by now

Advanced Kernel Methods for Multi-Task Learning Thank you for listening!

Any questions?