§ 3 牛顿插值 /* Newton's Interpolation */

Lagrange 插值虽然易算,但若要增加一个节点时, 全部基函数 $l_i(x)$ 都需重新算过。

将 $L_n(x)$ 改写成 $c_0^2 + c_1^2(x-x_0) + c_2^2(x-x_0)(x-x_1) + \cdots$ $+c_n^{?}(x-x_0)...(x-x_{n-1})$ 的形式,希望每加一个节点时, 只附加一项上去即可。

▶ 差商(亦称均差) /* divided difference */

$$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j} \quad (i \neq j, x_i \neq x_j)$$

$$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j} \quad (i \neq j, x_i \neq x_j)$$
divided difference of f w.r.t. x_i and x_i */

1阶差商 /* the 1st w.r.t. x_i and x_i */

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k} \quad (i \neq k)$$
 2阶差商

(k+1)阶差商:

$$f[x_0, ..., x_{k+1}] = \frac{f[x_0, x_1, ..., x_k] - f[x_1, ..., x_k, x_{k+1}]}{x_0 - x_{k+1}}$$

$$= \frac{f[x_0, ..., x_{k-1}, x_k] - f[x_0, ..., x_{k-1}, x_{k+1}]}{x_k - x_{k+1}}$$

注: ☞ 人阶差商必须由 k+1个节点构成, 人个节点是构造 不出人阶差商的。

少为统一起见,补充定义函数ƒ(x₀)为零阶差商。

差商的值与 x_i 的顺序无关!

□差商性质:

1). k 阶差商可表为函数值 $f(x_0), f(x_1), \dots, f(x_k)$ 的线性组合,即

$$f[x_0, \dots, x_k] = \sum_{j=0}^k \frac{f(x_j)}{(x_j - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_k)} = \sum_{j=0}^k \frac{f(x_j)}{\omega'_{k+1}(x_j)}$$

2).差商具有对称性,即

$$f[x_0, x_1, \dots, x_k] = f[x_1, x_0, x_2, \dots, x_k] = \dots = f[x_1, \dots, x_k, x_0]$$

3).若f(x)在[a,b]上有n阶导数,且节点 $x_i \in [a,b](i=0,1,\cdots n)$,则 n 阶差商与n阶导数有如下关系式:

$$f[x_0, x_1 \dots, x_n] = \frac{f^{(n)}(\xi)}{n!} \quad \xi \in [a, b]$$

4).若f(x是 //次多项式,则其 χ 阶差商 $f[x_0, x_1 \cdots, x_{k-1}, x]$

当 $k \le n$ 时是一个n-k 次多项式,而当k > n 时恒为零.

差商计算可列差商表如下

\mathcal{X}_{i}	$f(x_i)$ 一阶差商 $f(x_1) - f(x_0)$	
\mathcal{X}	$f(x_3) - f(x_2)$ $f(x_2) - f(x_1)$ $f(x_1, x_1) = f(x_2)$	$[\mathfrak{r}_1]$
x_1	$x_3 - x_2$ $x_2 - x_1$ $f[x_2, x_3] - f[x_1]$,x,]
x_2	$f(x_2)$ $f[x_1, x_2]$ $f[x_0, x_1, x_2]$	
X_3	$f(x_3)$ $f[x_2, x_3]$ $f[x_1, x_2, x_3]$ $f[x_0, x_1, x_2]$	$[x_2, x_3]$
• • •	•••	

 $\frac{f(x_1, x_2, x_3) - f(x_0, x_1, x_2)}{x_3 - x_0}$

➤ 牛顿插值 /* Newton's Interpolation */

Newton插值是通过选取特殊的并不能力量现的,这时,

其中 c_0, c_1, E , 是 , 是 , 是 , 由 插 值 条 件 决定 (2.1)

通过插值条件运用数学归纳法可以求得

$$c_k = f[x_0, x_1, \cdots, x_k]$$

因此就得到下列的满足插值条件(2.1)的心次插值多项式

$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) +$$

$$f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots +$$

$$f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$N_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0) + \dots + c_{n-1}(x - x_{n-1})$$

$$\begin{cases}
f(x) = f(x_0) + (x - x_0)f[x, x_0] & \dots \\
f[x, x_0] = f[x_0, x_1] + (x - x_1)f[x, x_0, x_1] & \dots \\
\dots \dots \dots
\end{cases}$$

$$f[x, x_0, ..., x_{n-1}] = f[x_0, ..., x_n] + (x - x_n) f[x, x_0, ..., x_n] \cdots$$

$$1 + (x - x_0) \times 2 + \dots + (x - x_0) \dots (x - x_{n-1}) \times (n-1)$$

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + ...$$

$$+ f[x_0, ..., x_n](x - x_0)...(x - x_{n-1})$$

$$|+f[x,x_0,...,x_n](x-x_0)...(x-x_{n-1})(x-x_n)|$$

$$N_n(x)$$

$$c_i = f[x_0, ..., x_i]$$

 $R_n(x)$

$$f[x,x_0,...,x_n]\omega_{n+1}(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}\omega_{n+1}(x)$$

$$f[x_0, ..., x_k] = \frac{f^{(k)}(\xi)}{k!}, \quad \xi \in (x_{\min}, x_{\max})$$

例 已知函数 f(x) 在各节点处的函数值如下,用Newton插值 法求 f(0.596) 的值.

x_k	0.40	0.55	0.65	0.80
$f(x_k)$	<u>0.41075</u>	0.57815	0.69675	0.88811

解:

x_k	$f(x_k)$	一阶	二阶	三阶
0.40	0.41075			
0.55	0.57815	1.11600		
	0.69675			
0.80	0.88811	1.27573	0.35893	<u>0.19733</u>

$$N_3(x) = 0.41075 + 1.11600(x - 0.4) + 0.28000(x - 0.4)(x - 0.55) + 0.19733(x - 0.4)(x - 0.55)(x - 0.65)$$

 $f(0.596) \approx 0.62836$

§ 4 埃尔米特插值 /* Hermite Interpolation */

不仅要求函数值重合,而且要求若干阶导数也重合。

即: 要求插值函数 $\varphi(x)$ 满足 $\varphi(x_i) = f(x_i), \varphi'(x_i) = f'(x_i),$..., $\varphi^{(m_i)}(x_i) = f^{(m_i)}(x_i).$

注: $^{\circ} N$ 个条件可以确定 N-1 阶多项式。

學要求在1个节点 x_0 处直到 m_0 阶导数都重合的插值多项式即为Taylor多项式

$$\varphi(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(m_0)}(x_0)}{m_0!} (x - x_0)^{m_0}$$

其余项为
$$R(x) = f(x) - \varphi(x) = \frac{f^{(m_0+1)}(\xi)}{(m_0+1)!} (x-x_0)^{(m_0+1)}$$

一般只考虑 f 与f '的值。

🌣 低次埃尔米特插值多项式

> 1.二点三次埃尔米特插值多项式

设给定区间 $[x_0, 两端点处的函数值与导数值如下:$

\mathcal{X}	\mathcal{X}_{0}	\mathcal{X}_1
f(x)	${\mathcal Y}_0$	y_1
f'(x)	m_0	m_1

求插值多项式 H.(使满足

$$\begin{cases} H_3(x_0) = y_0, H_3(x_1) = y_1 \\ H_3'(x_0) = m_0, H_3'(x_1) = m_1 \end{cases}$$

由于给出了四个条件,故可唯一确定出一个三次多项式, 不妨设

$$H_3(x) = \alpha_0(x)y_0 + \alpha_1(x)y_1 + \beta_0(x)m_0 + \beta_1(x)m_1$$

因此问题归结为构造

$$\alpha_0(x) = \beta_0(x), \alpha_1(x) = \beta_1(x)$$

首先, $\alpha_0(x)$ 与 $\beta_0(x)$, α_1 应该为足次式。

再者,由插值条件易知 $\alpha_i(x_i), \beta_i(x_i)$ 应该满足条件

$$\begin{cases} \alpha_{i}(x_{j}) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} & \alpha'_{i}(x_{j}) = \mathbf{0} \quad (i, j = 0, 1) \end{cases}$$

$$\beta_{i}(x_{j}) = \mathbf{0} \quad \beta'_{i}(x_{j}) = \delta_{ij} = \begin{cases} 1 & i = j \\ \mathbf{0} & i \neq j \end{cases}$$

$$\beta_{i}(x_{j}) = 0 \qquad \beta'_{i}(x_{j}) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

取

$$l^{2}_{i}(x) = \left(\frac{x - x_{j}}{x_{i} - x_{j}}\right)^{2}, (i, j = 0, 1; i \neq j)$$

$$\alpha_i(x) = (a_i x + b_i) l_i^2(x)$$

$$\beta_i(x) = c_i (x - x_i) l_i^2(x), i = 0,1;$$

其中 a_i, b_i 为待定系数,由 $\alpha_0(x_0) = 1$ 知 $\alpha_0(x_0) = 0$ a_0, b_0

$$\begin{cases} a_0 x_0 + b_0 = 1 \\ a_0 + 2(a_0 x_0 + b_0) l_0'(x_0) = 0 \end{cases}$$

$$a_0 = -2l_0'(x_0) = -2\frac{1}{x_0 - x_1}$$

$$a_0 = -2l_0'(x_0) = -2\frac{1}{x_0 - x_1}$$

$$b_0 = 1 + 2x_0l_0'(x_0) = 1 + 2x_0\frac{1}{x_0 - x_1}$$

故

$$\alpha_0(x) = (1 - 2\frac{x - x_0}{x_0 - x_1})(\frac{x - x_1}{x_0 - x_1})^2$$

类似可以求得

$$\alpha_1(x) = (1 - 2\frac{x - x_1}{x_1 - x_0})(\frac{x - x_0}{x_1 - x_0})^2,$$

$$x - x_1 = (x - x_0)(\frac{x - x_0}{x_1 - x_0})^2$$

$$\beta_0(x) = (x - x_0)(\frac{x - x_1}{x_0 - x_1})^2, \beta_1(x) = (x - x_1)(\frac{x - x_0}{x_1 - x_0})^2$$

于是

$$H_3(x) = y_0 (1 - 2\frac{x - x_0}{x_0 - x_1}) l_0^2(x) + y_1 (1 - 2\frac{x - x_1}{x_1 - x_0}) l_1^2(x)$$

$$+ m_0 (x - x_0) l_0^2(x) + m_1 (x - x_1) l_1^2(x)$$

> 2.三点三次带一个导数值的插值多项式

假设给定的函数表如下:

\mathcal{X}	x_0	x_1	x_2
f(x)	${\cal Y}_0$	y_1	${\mathcal Y}_2$
f'(x)		m_1	

要求三次多项式出版

$$\begin{cases} H_3(x_i) = y_i \\ H'_3(x_1) = m_1 \end{cases} \qquad (i = 0,1,2)$$

利用满足三个条件的Newton插值多项式,我们设

$$H_3(x) = y_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + k(x - x_0)(x - x_1)(x - x_2)$$

其中 为待定系数,显然 H满足前三个插值条件, 利用第四个条件确定常数 🔏 于是

$$H_3'(x_1) = f[x_0, x_1] + f[x_0, x_1, x_2](x_1 - x_0)$$

 $+ k(x_1 - x_0)(x_2 - x_1) = m_1$

$$k = \frac{m_1 - f[x_0, x_1] - f[x_0, x_1, x_2](x_1 - x_0)}{(x_0 - x_1)(x_1 - x_2)}$$

将其代入,即可得到 H_3 的表达式:

$$\begin{split} H_3(x) &= y_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) \\ &+ \frac{m_1 - f[x_0, x_1] - f[x_0, x_1, x_2](x_1 - x_0)}{(x_0 - x_1)(x_1 - x_2)}(x - x_0)(x - x_1)(x - x_2) \end{split}$$

例: 插值条件中有导数值,此时插值余项?

设有函数表
$$\frac{x}{y}$$
 $= \frac{0}{0}$ $= \frac{1}{2}$ $= \frac{2}{14}$,求插值多项式,并写出余项表达式。

解:

设
$$P_3(x) = a + bx + cx^2 + dx^3$$
 则 $P_3'(x) = b + 2cx + 3dx^2$

由插值条件得:
$$\begin{cases} P_3(0) = a = 0 \\ P_3(1) = a + b + c + d \\ P_3'(1) = b + 2c + 3d = 5 \\ P_3(2) = a + 2b + 4c + 8d = 14 \end{cases}$$
 得
$$\begin{cases} a = 0 \\ b = 1 \\ c = -1 \\ d = 2 \end{cases}$$

$$P_3(x) = x - x^2 + 2x^3$$

余项: 类似Lagrange插值余项(只是把导数点也用上)

$$R_3(x) = f(x) - P_3(x)$$

故可设
$$R_3(x) = k(x)x(x-1)^2(x-2)$$

$$\mathbf{i}\mathcal{D}(t) = f(t) - P_3(t) - k(x)t(t-1)^2(t-2) = R_3(t) - k(x)t(t-1)^2(t-2)$$

则当
$$t = 0$$
, 1, 2, x 时 $\varphi(t) = 0$

\/\/

则当
$$t=0$$
, 1, 2, x 时 $\varphi(t)=0$
当 $t=\xi_0$ ξ_1 ξ_2 1 时 $\varphi'(t)=0$

HW: p.50

P
$$\varphi^{(4)}(\xi) = 0$$

得
$$f^{(4)}(\xi) - k(x)4! = 0$$

有
$$k(x) = \frac{f^{(4)}(\xi)}{4!}$$

有
$$k(x) = \frac{f^{(4)}(\xi)}{4!}$$
 代入有: $R_3(x) = \frac{f^{(4)}(\xi)}{4!}x(x-1)^2(x-2)$

Quiz: 给定 $x_i = i + 1$, i = 0, 1, 2, 3, 4, 5. 下面哪个是 $\beta_2(x)$ 的图像?

§ 5 分段低次插值 /* piecewise polynomial approximation */

例: 在[-5,5]上考察 $f(x) = \frac{1}{1+x^2}$ 的 $L_n(x)$ 。 取 $x_i = -5 + \frac{10}{n}i$ (i = 0, ..., n)

ightharpoonup 分段线性插值 /* piecewise linear interpolation */
所谓的分段线性插值就是通过插值点用折线段连接起来 逼近 f (设已知节点 $a < x_0 < x_1$ 上函数值 , f_0, f_1, \cdots, f_n 记

$$h_k = x_{k+1} - x_k, h = \max_k h_k$$

求一折线函数1,(满足

$$(1)I_h(x) \in C[a,b],$$

$$(2)I_h(x_k) = f_k(k = 0,1,\dots,n)$$

 $(3)I_{h}(x)$ 在每个小区间 $[x_{k},x_{k}]$ 都是线性函数。

则称 / 为分段线性插值函数。

$$I_h(x) = \sum_{k=0}^{n-1} f_k l_k(x)$$

由定义可知 / 在每个小区间上可表示为

$$I_{h}(x) = \frac{x - x_{k-1}}{x_{k} - x_{k-1}} f_{k} + \frac{x - x_{k}}{x_{k-1} - x_{k}} f_{k-1}, x \in [x_{k-1}, x_{k}]$$

$$I_{h}(x) = \frac{x - x_{k+1}}{x_{k} - x_{k+1}} f_{k} + \frac{x - x_{k}}{x_{k+1} - x_{k}} f_{k+1}$$

$$\frac{1}{x_{k}(x)} = \begin{cases} \frac{x - x_{k-1}}{x_{k} - x_{k-1}}, & x_{k-1} \le x \le x_{k}(k \ne 0) \\ \frac{x - x_{k-1}}{x_{k} - x_{k+1}}, & x_{k} \le x \le x_{k+1}(k \ne n) \\ 0, & x \in [a,b], \text{ } \exists x \notin [x_{k-1}, x_{k+1}]. \end{cases}$$

注意 表达式
$$I_h(x) = \sum_{k=0}^{n-1} [x_k]$$
 上,[x_k]有_{k+1}] $l_k(x), l_{k+1}(x)$

是非零的,其它基函数均为零。即

$$I_h(x) = f_k l_k(x) + f_{k+1} l_{k+1}(x) \qquad x \in [x_k, x_{k+1}]$$

 $y=I_h(x)$ 的图象实际上是连接点 (x_k,f_k) , k=1,2,...n 的一条折线,也称折线插值,如下图。如果增加节点数量,会改善插值效果,即:

记 $h = \max |x_{k+1} - x_k|$, 易证: 当 $h \to 0$ 时, $I_h(x) \to f(x)$ 0.8

0.6

0.4

0.2

-0.4

-0.6

-0.8

-1

2018/11

-3

➤ 分段三次Hermite插值 /* Hermite piecewise polynomials */

分段线性插值函数 的复数是间断的,若在节点 $x_k(k=0,1)$ 以外记知函数值 外还给出导数值 $f'_k=m_k$ 这样就可以构造一个导数连续的分段插值多项式函数 $I_h(x)$ 它满足

$$(1)I_h \in C^1[a,b],$$

$$(2)I_h(x_k) = f_k, I'_h(x_k) = f'_k (k = 0,1,\dots,n)$$

 $(3)I_{h}(x)$ 在每个小区间 $[x_{k}, 2]$ 是正次多项式

设

$$I_{n}(x) = \sum_{k=0}^{n} [f(x_{k})\alpha_{k}(x) + f'(x_{k})\beta_{k}(x)]$$

根据两点三次插值多项式。可知,在区间 $[x_k, x_k]$ 的 $I_h(x)$ 表达式为

$$\begin{split} I_h(x) &= (\frac{x - x_{k+1}}{x_k - x_{k+1}})^2 (1 + 2\frac{x - x_k}{x_{k+1} - x_k}) f_k \\ &+ (\frac{x - x_k}{x_{k+1} - x_k})^2 (1 + 2\frac{x - x_{k+1}}{x_k - x_{k+1}}) f_{k+1} \\ &+ (\frac{x - x_{k+1}}{x_k - x_{k+1}})^2 (x - x_k) f_k \\ &+ (\frac{x - x_k}{x_{k+1} - x_k})^2 (x - x_{k+1}) f_{k+1} \end{split}$$

导数一般不易得到。

