Lista de Exercícios

Cálculo I

Seçã 6.1: Área entre curvas

Os exercícios dessa lista são referentes ao livro James Stewart, Cálculo - Vol 1, 6^a ed.

Enunciado para as questões 1-4: Encontre as áreas da região sombreada.

١.

2.

3.

4.

Enunciado para as questões 5-8: Esboce a região delimitada pelas curvas dadas. Decida quando integrar em relação a x ou a y. Desenhe um retângulo aproximante típico e coloque sua altura e largura. Então, calcule a área da região.

5.
$$y = x + 1$$
, $y = 9 - x^2$, $x = -1$, $x = 2$.

6.
$$y = \operatorname{sen} x$$
, $y = e^x$, $x = 0$, $x = \pi/2$.

7.
$$y = x$$
, $y = x^2$.

8.
$$y = x^2$$
, $y = x^4$.

Enunciado para as questões 31 e 32: Calcule a integral e interprete-a como a área de uma região. Esboce a região.

31.
$$\int_0^{\pi/2} |\sin x - \cos 2x| \ dx$$

32.
$$\int_0^4 |\sqrt{x+2} - x| \ dx$$

40. Faça um esboço da região no plano xy definida pelas inequações

$$x - 2y^2 \ge 0, \ 1 - x - |y| \ge 0$$

e encontre sua área.

Gabarito

- 1. $\frac{32}{3}$ 2. $\frac{2}{3}(8 2\sqrt{2}) \ln 3$
- 3. $e \frac{1}{e} + \frac{10}{3}$
- 4. 9
- 5. 19, 5
- 6. $e^{\pi/2} 2$
- 7. $\frac{1}{6}$ 8. $\frac{4}{15}$

31.
$$\frac{3\sqrt{3}}{2} - 1$$

$$32. \ \frac{44}{3} - \frac{4\sqrt{2}}{3} - \frac{12\sqrt{6}}{3}$$

40. $\frac{7}{12}$

