Last time we left off with an example of orthogonal projections.



Here, we're basically breaking down the vector  $\vec{y}$  into a linear combination of projections and the basis vectors. This is true as long as the basis vectors are orthogonal.

## 1 Orthonormal Set

An orthonormal set is a special case of an orthogonal space. We say  $\{\vec{u_1}, \dots, \vec{u_n}\}$  is an **orthonormal** set if it is an orthogonal set of unit vectors. We can take any orthogonal set and apply the norm to make every vector a unit vector.

If W is the subspace spanned by such a set, then it is called an orthonormal basis.

**Theorem 1** An  $m \times n$  matrix U has orthonormal columns if, and only if,  $U^TU = I$ 

**Theorem 2** Let  $U \in \mathbb{R}^{m \times n}$  with orthonormal columns, and  $\vec{x}$  and  $\vec{y} \in \mathbb{R}^n$ . Then

- (a)  $||U\vec{x}|| = ||\vec{x}||$
- (b)  $(U\vec{x}) \cdot (U\vec{y}) = \vec{x} \cdot \vec{y}$
- (c)  $(U\vec{x}) \cdot (U\vec{y}) = 0$  if, and only if,  $\vec{x} \cdot \vec{y} = 0$
- (a) and (c) state that the linear mapping  $\vec{x} \mapsto U\vec{x}$  preserves both length and direction.

An **orthogonal matrix** is a square invertible matrix U such that  $U^{-1} = U^T$ .



# 2 Orthogonal Projections

In the previous section, we talked about an orthogonal projection

$$\vec{y} = \hat{y} + \vec{z}$$

where  $\hat{y}$  is a scaled basis vector and  $\vec{z}$  is a vector orthogonal to  $\hat{y}$ .

There is a key property: the relationship between  $\vec{y}$  and  $\hat{y}$ . Given  $\vec{y}$  and a subspace  $W \in \mathbb{R}^n$ , there exists  $\hat{y} \in W$  such that

- 1.  $\hat{y}$  is the unique vector in W for which  $\vec{y} \hat{y}$  is orthogonal to W.
- 2.  $\hat{y}$  is the unique vector in W closest to  $\vec{y}$ .



# Example

Let  $\{\vec{u_1}, \dots, \vec{u_n}\}$  be an orthogonal basis for  $\mathbb{R}^5$  and let

$$\vec{y} = c_1 \vec{u_1} + \cdots + c_5 \vec{u_5}$$

Consider  $W = \text{Span}\{\vec{u_1}, \vec{u_2}\}$  and write  $\vec{y}$  as a linear combination of coordinates and basis vectors. Remember that  $\vec{y} \in \mathbb{R}^5$ . We can write out  $\vec{y}$  as a linear combination and take a vector  $\vec{z}$  from it

$$\vec{y} = \underbrace{c_1 \vec{u_1} + c_2 \vec{u_2}}_{\vec{z_1}} + \underbrace{c_3 \vec{u_3} + c_4 \vec{u_4} + c_5 \vec{u_5}}_{\vec{z_2}}$$

$$\vec{z_1} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \qquad \vec{z_2} = \begin{bmatrix} c_3 \\ c_4 \\ c_5 \end{bmatrix}$$

We know right off the bat that  $\vec{z_1}$  is in W. What we need to show is that  $\vec{z_2} \in W^{\perp}$ . We can show this by showing that the two z vectors are orthogonal to each other.

$$\vec{z_2} \cdot \vec{u_1} = (c_3\vec{u_3} + c_4\vec{u_4} + c_5\vec{u_5}) \cdot \vec{u_1}$$

$$= c_3 \vec{u_3} \cdot \vec{u_1} + c_4 \vec{u_4} \cdot \vec{u_1} + c_5 \vec{u_5} \cdot \vec{u_1} = 0$$

Because  $\vec{u_1}$  is orthogonal to  $\vec{u_3}$ ...5, the dot product will be 0. We can do the same for  $\vec{z_2} \cdot \vec{u_2} = 0$ .

What we just did is break up our vector  $\vec{y}$  into two vectors: one in W and one orthogonal to that, in  $W^{\perp}$ .

**Theorem 3** Let W be a subspace of  $\mathbb{R}^n$ . Then each  $\vec{y} \in \mathbb{R}^n$  can be written uniquely as

$$\vec{y} = \hat{y} + \vec{z}$$

where  $\vec{y} \in W$  and  $\vec{z} \in W^{\perp}$ .

If  $\{\vec{u_1}, \dots, \vec{u_n}\}$  is any orthogonal basis of W, then

$$\vec{y} = \frac{\vec{y} \cdot \vec{u_1}}{\vec{u_1} \cdot \vec{u_1}} \vec{u_1} + \dots + \frac{\vec{y} \cdot \vec{u_p}}{\vec{u_p} \cdot \vec{u_p}} \vec{u_p}$$

and  $\vec{z} = \vec{y} - \hat{y}$ .



Here's a visualization of a vector  $\hat{y}$  (the dot below  $\vec{y}$  on the  $x_1$ - $x_2$  plane) as a linear combination of  $\hat{y_1}$  and  $\hat{y_2}$ , which are scaled basis vectors ( $\vec{x_1}$  and  $\vec{x_2}$ ).

$$\hat{y} = \frac{\vec{y} \cdot \vec{u_1}}{\vec{u_1} \cdot \vec{u_1}} \vec{u_1} + \frac{\vec{y} \cdot \vec{u_2}}{\vec{u_2} \cdot \vec{u_2}} \vec{u_2}$$

$$\hat{y} = \hat{y_1} + \hat{y_2}$$

We're taking the vector  $\vec{y}$  and projecting it down onto the plane  $W = \operatorname{Span}\{\vec{x_1}, \vec{x_2}\}$ .

The vector from  $\hat{y}$  to  $\vec{y}$  (directly up, orthogonal to W) is the  $\vec{z}$  vector. It's length is

$$||\vec{z}|| = ||\vec{y} - \hat{y}||$$

#### **Properties of Orthogonal Projections**

If  $\vec{y} \in W = \text{Span}\{\vec{u_1}, \dots, \vec{u_p}\}$ , then  $proj_W \vec{y} = \vec{y}$ . This means that the vector  $\vec{y}$  is already in the subspace W.

**Theorem 4 (Best Approximation Theorem)** Let W be a subspace of  $\mathbb{R}^n$ ,  $\vec{y}$  can be any vector in  $\mathbb{R}^n$ , and let  $\hat{y}$  be the orthogonal projection of  $\vec{y}$  onto W

$$\hat{y} = proj_W \vec{y}$$

Then  $\hat{y}$  is the closest point in W to  $\vec{y}$ , in the sense that

$$||\vec{y} - \hat{y}|| < ||\vec{y} - \vec{v}||$$

for all  $\vec{v} \in W$  distinct from  $\vec{y}$ .

## Example

Given  $W = \operatorname{Span} \{\vec{u}, \dots, \vec{u_p}\}$  and a vector  $\vec{y}$ , find the closest point in W to  $\vec{y}$ . The closest point is the projection of  $\vec{y}$  onto W

$$\hat{y} = proj_W \vec{y}$$

What if we want to find the distance between  $\vec{y}$  and the subspace W?

First we could calculate  $\hat{y}$  like above, then take the norm

$$||\vec{y} - \hat{y}||$$

If S is an orthonormal set,  $proj_S \vec{y}$  becomes simpler.

**Theorem 5** If  $\{\vec{u_1}, \dots, \vec{u_n}\}$  is an orthonormal basis for a subspace  $W \in \mathbb{R}^n$ , then

$$proj_W \vec{y} = (\vec{y} \cdot \vec{u_1})\vec{u_1} + \dots + (\vec{y} \cdot \vec{u_p})\vec{u_p}$$

(Notice where there is a dot product and where there is multiplication)

If 
$$U = \begin{bmatrix} \vec{u_1} & \cdots & \vec{u_p} \end{bmatrix}$$
, then

$$proj_W \vec{y} = UU^T \vec{y}$$
 for all  $\vec{y} \in \mathbb{R}^n$ 

If calculating by hand, it's generally more convenient to use the equation

$$\vec{y} = \sum_{i} \frac{\vec{y} \cdot \vec{u_i}}{\vec{u_i} \cdot \vec{u_i}} \vec{u_i}$$