Mathematische Methoder der Physik II Übungsserie 8

Dr. Agnes Sambale agnes.sambale@uni-jena.de

Aufgabe 1 Differentialoperatoren in Kugelkoordinaten

- (a) Ein Vektor \vec{V} habe in kartesischen Koordinaten die Form $\vec{V}=\vec{i}+\vec{j}+\vec{k}$. Geben Sie im kartesischen Punkt (1,2,1) seine Komponenten in Kugelkoordinaten an.
- (b) Es seien U=2yz und $\vec{V}=x\vec{j}-y\vec{k}$ ein skalares bzw. ein Vektorfeld. Berechnen Sie in Kugelkoordinaten
 - (i) U (ii) \vec{V} (iii) $\operatorname{grad} U$ (iv) $\operatorname{rot} \vec{V}$.

Aufgabe 2 Paraboloidkoordinaten

Die Paraboloidkoordinaten hängen $u,\,w$ und ϕ hängen mit den kartesischen Koordinaten gemäß

$$x = uw \cos \phi, \quad y = uw \sin \phi, \quad z = \frac{1}{2}(u^2 - w^2)$$

zusammen.

- (a) Bestimmen Sie die zugehörigen Einheitsvektoren \vec{e}_u , \vec{e}_w und \vec{e}_ϕ , jeweils ausgedrückt durch \vec{i} , \vec{j} und \vec{k} .
- (b) Berechnen Sie das Linienelement $\mathrm{d}s^2$ sowie das Volumenelement $\mathrm{d}V$ für die Paraboloidkoordinaten.
- (c) Prüfen Sie, ob die Einheitsvektoren orthogonal zueinander stehen und das Koordinatensystem rechtshändig ist.

Version: 28. Mai 2018

Sommersemester 2018

Aufgabe 3 Sphärische Trigonometrie

Die Abbildung zeigt zwei verdrehte Systeme von Kugelkoordinaten. Die Drehachse ist die x-Achse, ζ der Drehwinkel. Es entsteht das sphärische Dreieck mit den Eckpunkten P, P' und G.

- (a) Schreiben Sie die Transformationsformeln auf, die die Koordinaten (x,y,z) bei Drehung um den Winkel ζ in die Koordinaten (x',y',z') überführen.
- (b) Führen Sie anstelle der kartesischen Koordinaten (x,y,z) die Kugelkoordinaten (r,ϑ,ϕ) ein (mit r=R; für die gestrichenenen Koordinaten entsprechend).
- (c) Ersetzen Sie die Azimute ϕ und ϕ' durch die Innenwinkel C bzw. A des sphärischen Dreiecks und gewinnen Sie so
 - den sphärischen Sinussatz

$$\sin \vartheta' \sin A = \sin \vartheta \sin C$$
,

• sphärische Kosinus-Formel (manchmal auch Sinus-Kosinus-Satz) genannt

$$\sin \theta' \cos A = -\sin \theta \cos C \cos \zeta + \cos \theta \sin \zeta$$

• den sphärischen Seiten-Kosinussatz

$$\cos \vartheta' = \sin \vartheta \cos C \sin \zeta + \cos \vartheta \cos \zeta.$$

• Astroanwendung