UNIVERSITE BADJI MOKHTAR DEPARTEMENT DE M.I

SEMESTRE 1 - 2020-2021

Rattrapage - ALGEBRE 1

Avril 2021

Durée: 1h

Exercice 1: Soient E = [0, 1], F = [-1, 1], et G = [0, 2] trois intervalles de \mathbb{R} . Considérons l'application f de E dans G définie par :

$$f(x) = 2 - x,$$

et l'application g de F dans G définie par :

$$q(x) = x^2 + 1$$

- 1. Déterminer $f(\{\frac{1}{2}\})$, $f^{-1}(0)$, g([-1,1]), $g^{-1}[0,2]$).
- 2. L'application f est-elle bijective? justifier.
- 3. L'application g est-elle bijective? justifier.

Exercice 2: Soit R, la relation dééfinie sur R par :

$$\forall x, y \in \mathbb{R} : x\mathcal{R}y, x^4 - y^4 = x^2 - y^2$$

- 1. Montrer que R est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de 0, en déduire celle de 1.

Exercice 3: On définit une loi de composition interne ★ sur ℝ par

$$\forall (x, y) \in \mathbb{R}^2, x \star y = xy + (x^2 - 1)(y^2 - 1)$$

- 1. Vérifier que loi * est commutative, non associative et admet un élément neutre.
- 2. Résoudre les équations $x \star x = 1$ et $2 \star y = 5$.

UNIVERSITE BADJI MOKHTAR DEPARTEMENT DE M.I

SEMESTRE 1 - 2020-2021

Corrigé rattrapage - ALGEBRE 1

Février 2021

Durée: 1h

Exercice 1: (5 points)

1.
$$f(\{\frac{1}{2}\}) = \{f(x) \in [0, 2]/x = \frac{1}{2}\}, \underbrace{0, 1}$$

 $f(\{\frac{1}{2}\}) = \frac{3}{2} \in [0, 2], \text{ alors } : f(\{\frac{1}{2}\}) = \{\frac{3}{2}\}, \underbrace{0, 1}$

$$f^{-1}(\{0\}) = \{x \in [-1,1]/f(x) = 0\}.$$
 On a $f(x) = 2 - x = 0 \Longrightarrow x = 2 \notin [-1,1]$, alors : $f^{-1}(\{0\}) = \emptyset$

$$g([-1,1]) = \{g(x) \in [0,2]/x \in [-1,1]\}, on \ a \ x \in [-1,0] \cup]0,1].$$

$$x2 \in [-1,0] \implies -1 \le x \le 0$$

$$\implies 0 \le x^2 \le 1$$

$$\implies 1 \le x^2 + 1 \le 2$$

$$\implies g(x) \in [1,2] \subset [0,2]$$

d'où

$$g([-1,0]) = [1,2]$$

$$x \in]0,1] \implies 0 < x \le 1$$

 $\implies 0 < x^2 \le 1$
 $\implies 1 < x^2 + 1 \le 2$
 $\implies g(x) \in]1,2] \subset [0,2]$

d'où

$$g(]0,1]) =]1,2], g([-1,1]) = [1,2].$$

$$g^{-1}([0,2]) = \{x \in [-1,1]/g(x) \in [0,2]\}, \text{ on a}$$

$$g(x) \in [0,2] \implies 0 \le x^2 + 1 \le 2$$

$$\implies -1 \le x^2 \le 1$$

$$\implies (-1 \le x^2 < 0) \lor (0 \le x^2 \le 1)$$

$$\implies g(x) \in]1,2] \subset [0,2]$$

l'ingalité $(-1 \le x^2 < 0)$ n'a pas de solutions.

$$0 \le x^2 \le 1, 0 \le |x| \le 1, -1 \le x \le 1.$$

Ainsi

$$g^{-1}([0,2]) = \emptyset \cup [-1,1] = [-1,1].$$

- Comme f⁻¹({0}) = ∅ c'est à dire l'élément 0 ∈ [0,2] n'admet pas d'antécédent par f dans [-1,1] donc f n'est pas surjetive et par suite n'est pas bijective.
- On a g(-1) = g(1) or $-1 \neq 1$ donc g n'est pas injective d'où g ne peut être bijective, aussi on remarque que $g([-1,1]) = [1,2] \neq [0,2]$ donc g n'est pas surjecive, alors n'est pas aussi bijective.

Exercice 2: (5 points)

- 1. Pour montrer que R est une relation d'équivalence il faut qu'elle soit : réflexive, symétrique et transitive.
 - La réflexivité $x^4 x^4 = x^2 x^2$, ceci veut dire que $\forall x \in \mathbb{R}, x\mathcal{R}x$, donc la relation \mathcal{R} est réflexive
 - La symétrie $\forall x, y \in \mathbb{R}$ et montrons que $x\mathcal{R}y \Longrightarrow y\mathcal{R}x$.

$$x^4 - y^4 = x^2 - y^2$$
) \Longrightarrow $(-1) \times (x^4 - y^4) = (-1) \times (x^2 - y^2)$ \Longrightarrow $y^4 - x^4 = y^2 - x^2$; ce qui implique que $y\mathcal{R}x$. Donc la relation est symétrique.

la transitivité $\forall x, y, z \in \mathbb{R}$ Montrons que si $x\mathcal{R}y$ et $y\mathcal{R}z$ alors $x\mathcal{R}z$. On a $x^4 - y^4 = x^2 - y^2$ et $y^4 - z^4 = y^2 - z^2$. En faisant l'addition on obtient que $x^4 - z^4 = x^2 - z^2$. Ce qui veut dire que $x\mathcal{R}z$. Donc \mathcal{R} est transitive.

Conclusion: R est une relation d'équivalence.

2.
$$cl(0) = \{y \in \mathbb{R}/0\mathcal{R}y\}$$
 Or
$$0\mathcal{R}y \iff 0 - y^4 = 0 - y^2 \iff y^4 - y^2 = y^2(y^2 - 1) = 0 \iff y = 0 \lor y = -1 \lor y = 1$$

Donc on conclut que $cl(0) = \{0, -1, 1\}$ On remarque que $1 \in cl(0)$ donc cl(0) = cl(1).

Exercice. 3:

* est commutative si et seulement si :

$$\forall x, y \in \mathbb{R}/x \star y = y \star x.$$

 $x \star y = xy + (x^2 - 1)(y^2 - 1) = yx + (y^2 - 1)(x^2 - 1) = y \star x$. Car le produit et la somme sont commutatives.

2. * est non associative, on suppose que c'est associative c'est à dire :

$$\forall x, y, z \in \mathbb{R}, (x \star y) \star z = x \star (y \star z)$$

$$(x * y) * z = [xy + (x^2 - 1)(y^2 - 1)] * z$$

$$= (xy + (x^2 - 1)(y^2 - 1))z + (z^2 - 1)([xy + (x^2 - 1)(y^2 - 1)]^2 - 1)$$

$$= xyz + (x^2 - 1)(y^2 - 1)z + (z^2 - 1)x^2y^2 + 2(z^2 - 1)(x^2 - 1)(y^2 - 1)(xy)$$

$$+ (z^2 - 1)(x^2 - 1)^2(y^2 - 1)^2 - (z^2 - 1)...(1)$$

$$x \star (y \star z) = x \star [yz + (y^2 - 1)(z^2 - 1)]$$

$$= x(yz + (y^2 - 1)(z^2 - 1)) + (x^2 - 1)([yz + (y^2 - 1)(z^2 - 1)]^2 - 1)$$

$$= xyz + x(y^2 - 1)(z^2 - 1) + (x^2 - 1)y^2z^2 + 2(x^2 - 1)(y^2 - 1)(z^2 - 1)(yz)$$

$$+ (x^2 - 1)(y^2 - 1)^2(z^2 - 1)^2 - (x^2 - 1)...(2)$$

contradiction (1) ≠ (2) d'où * n'est pas associative

3. * admet un élément neutre si et séulement si

$$\exists e \in \mathbb{R}, \forall x \in \mathbb{R}/x \star e = e \star x = x.$$

$$x \star e = x$$

$$xe + (x^{2} - 1)(e^{2} - 1) = x$$

$$(e - 1)(x + (x^{2} - 1)(e + 1)) = 0$$

$$\begin{cases} e - 1 = 0 \\ \lor \\ x + (e + 1)x^{2} - (e + 1) = 0 \end{cases}$$

Alors on a

On sait qu'un polynôme est nul $\forall x$ si tous ses coefficients sont tous nuls, et comme le coefficient de x est $1 \neq 0$ on déduit que le polynôme ne peut s'annuler, d'où e = 1 est vraie. e = 1 est l'élément neutre.

4.
$$2 * y = 5 \Longrightarrow 2y + 3(y^2 - 1) = 5 \Longrightarrow y = \frac{4}{3} \lor y = -2$$
.

5.
$$x \star x = 1 \implies x^2 + (x^2 - 1)^2 = 0 \implies x = 0, x = \pm 1$$
.