5 Numerical Integration pt. 1

PVK 2019: MAD

bacdavid@student.ethz.ch

gitlab.ethz.ch/bacdavid

Schedule

- 1. Theory
 - 1. Setup
 - 2. Why numerical integration
 - 3. Numerical Integration
 - 4. Newton Cotes
 - 5. Gauss Quadrature
- 2. Exercises
- 3. Homework

Theory

Setup

- Exact integral value
- Exact subintegral
- Approximate subintegrals I_{Ri} , I_{Ti} , I_{Si}
- Newton cotes weights C_{i}

Why numerical integration?

• Exact Integral:

$$I = \int_{a}^{b} f(x) dx$$

• ...can be solved analytically or not

Used for differential equations:

$$\dot{x} = f(x)$$

Numerical Integration

• Approximate:

$$I = \int_{a}^{b} f(x)dx = \sum_{i=0}^{N-1} I_{i}$$

- Approximate I_i : (table)
 - Rectangular Rule
 - Trapezoidal Rule
 - Simpson's Rule

Approximations for I_i

Rectangular Rule	$I_{Ri} = f(x_{i+1/2}) \cdot \Delta_i$
Trapezoidal Rule	$I_{Ti} = \frac{f(x_i) + f(x_{i+1})}{2} \cdot \Delta_i$
Simpson's Rule	$I_{Si} = \frac{f(x_i) + 4f(x_{i+1/2}) + f(x_{i+1})}{6} \cdot \Delta_i$

Numerical Integration cont.

• Rectangular Rule

Numerical Integration cont.

• Trapezoidal Rule

Numerical Integration cont.

• Simpson's Rule

Numerical Integration cont. Example

• Task:

• Solve the integral

$$\int_{-1}^{1} x^2 dx$$

- 1. Exact
- 2. Rectangle Rule
- 3. Trapezoidal Rule
- 4. Simpson's Rule

Approximations for I_i

Rectangular Rule	$I_{Ri} = f(x_{i+1/2}) \cdot \Delta_i$
Trapezoidal Rule	$I_{Ti} = \frac{f(x_i) + f(x_{i+1})}{2} \cdot \Delta_i$
Simpson's Rule	$I_{Si} = \frac{f(x_i) + 4f(x_{i+1/2}) + f(x_{i+1})}{6} \cdot \Delta_i$

Newton Cotes

• Approximate:

$$I \approx (b-a) \cdot \sum_{k=0}^{n} C_k^n f(x_k)$$
, with $C_k^n = \frac{1}{b-a} \int_a^b l_k^n(x) dx$ "weights"

- Properties of C_k^n :
 - $\sum_{k=0}^{n} C_k^n = 1$
 - $C_k^n = C_{n-k}^n$
- Note: Can be used for entire integral I or for smaller intervals I_i

Newton Cotes cont. Example

- Task:
 - use n=2 and equally spaced x_0 , x_1 , x_2 to approximate I

$$I \approx (b-a) \cdot \sum_{k=0}^{n} C_k^n f(x_k),$$

$$with C_k^n = \frac{1}{b-a} \int_a^b l_k^n(x) dx \quad \text{"weights"}$$

• Tipp: $C_1^2 = \frac{2}{3}$

Gauss Quadrature

What we have:

$$n$$
 weights $(\alpha_i) + n$ abscissas $(x_i) = 2n$ parameters

• What we want: Integrate $P_{2n-1}(x)$ exactly (integral increases order by one):

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{2n-1}(x)dx = \sum_{i=1}^{n} \alpha_{i} \cdot f(x_{i})$$

Gauss Quadrature cont.

• Transform integral to be in the interval [-1, 1] in order to use lookup-tables:

$$z = \frac{2x - (a+b)}{b - a}$$

We then have:

$$\int_{-1}^{1} f(z)dz \approx \sum_{i=1}^{n} \alpha_i \cdot f(z_i)$$

• You can now look up z_i and α_i in tables

Gauss Quadrature cont. Example

- Task:
 - Find by Gauss Quadrature the exact integral value:

$$I = \int_0^2 x^3 dx$$

- Tipps:
 - Exact for order 2n-1

•
$$z = \frac{2x - (a+b)}{b-a}$$

Example	
n=1 x_i	$lpha_i$
1 0	2
n=2 x_i	$lpha_i$
1 $-\sqrt{\frac{1}{3}} \approx -0.57735026919$	1
2 $\sqrt{\frac{1}{3}} pprox 0,57735026919$	1
n=3 x_i	$lpha_i$
1 $-\sqrt{\frac{3}{5}} \approx -0.774596669241$	$rac{5}{9}pprox 0,\!55555555556$
2 0	$\frac{8}{9} pprox 0,88888888889$
3 $\sqrt{\frac{3}{5}} pprox 0,774596669241$	$\frac{5}{9} pprox 0,55555555556$
n=4 x_i	$lpha_i$
$1 -\sqrt{\frac{3}{7} + \frac{2}{7}\sqrt{\frac{6}{5}}} \approx -0,861136311594053$	$rac{18-\sqrt{30}}{36}pprox0,347854845137454$
	$rac{18+\sqrt{30}}{36}pprox0,652145154862546$
$\sqrt{rac{3}{7}-rac{2}{7}\sqrt{rac{6}{5}}}pprox 0,339981043584856$	$rac{18+\sqrt{30}}{36}pprox0,652145154862546$
4 $\sqrt{rac{3}{7}+rac{2}{7}\sqrt{rac{6}{5}}}pprox 0,861136311594053$	$rac{18-\sqrt{30}}{36}pprox0,347854845137454$

Exercises

none

Homework

HW₁

Consider this quadrature rule:

$$\int_{-1}^{1} f(x) dx \approx a \left(f(-1) + f(1) \right) + b \left(f'(-1) - f'(1) \right).$$

If a=1 and b=0 it is a trapezoidal rule and the formula is exact for f(x)=1 and f(x)=x. Find a and b which make the formula exact also for $f(x)=x^2$.

HW₂

• Derive the 2 point Gauss Rule $I = \int_a^b f(x) dx \approx \alpha_1 f(x_1) + \alpha_2 f(x_2)$

• Tip:

- Has to integrate a generic polynomial of degree 4 1 = 3
- Integrate the generic polynomial and compare coefficients
- Solution in the script

HW₃

Lobatto quadrature is similar to Gaussian quadrature with the following differences:

- The integration points include the end points of the integration interval.
- It is accurate for polynomials up to degree 2n-3, where n is the number of points

Let write the rule in the following way:

$$\int_{-1}^{1} f(x) dx \approx a (f(-1) + f(1)) + b (f(-\alpha) + f(\alpha))$$

It uses n=4 points $(-1,\ 1,\ \alpha,\ -\alpha)$ and the formula should be exact for polynomials up to degree 2n-3=5. Find $\alpha,\ a$ and b.