ÜB 10 10.3

Freitag, 14. Juli 2023 20

Offizielle Version Viet-Hoang Pham Marius Maier

a) (4 P) Wählen Sie für die nachfolgenden Funktionen jeweils eine der Komplexitätsklassen O(1), $O(\log n)$, O(n), $O(n\log n)$, $O(n^2)$ und $O(n^3)$, die das Wachstum der jeweiligen Funktion am besten charakterisiert. Begründen Sie Ihre Auswahl.

i)
$$f_1(n) = 10n^2 + \log n$$

dominanter Teilterm
 $O(n^2)$

ii)
$$f_2(n) = \frac{\ln^2 \ln n}{\ln \log 3n + 5n}$$

$$\frac{\ln \log \ln n + \ln n}{\log \ln n + \ln n}$$

$$\frac{\ln \log \ln n + \ln n}{\ln n}$$

$$\frac{\ln \log \ln n + \ln n}{\ln n}$$

iii)
$$f_3(n) = (n+x)(n-x)(n+x)$$

$$p \cdot p \cdot p = p^3$$

$$p \cdot p \cdot p = p^3$$

iv)
$$f_4(n) = 12n^2 \frac{(n+x)(n+x)}{(n^2+n)(n^2+2n)}$$

() $\int \frac{x}{(n^2+n)^2}$

() $\int \frac{x}{(n^2+n)^2}$

() $\int \frac{x}{(n^2+n)^2}$

() $\int \frac{x}{(n^2+n)^2}$

b) (6 P) Beweisen oder widerlegen Sie die folgenden Aussagen:

i)
$$2n^2 + 10n + 5 \in O(n^2)$$

egal

dominanter Toil term

deswegen $\in O(n^2)$

$$n^{2} = n \cdot n \times n \quad bzw.$$

$$P(n) \in O(g(n))$$

$$f(n) \leq c \cdot g(n)$$

$$n^{2} \leq c \cdot n \quad \forall$$

iii) Seien $f(n) \in O(g(n))$ und $f'(n) \in O(h(n))$, dann gilt $f(n) + f'(n) \in O(\max(g(n), h(n)))$ All provide Formed: $O(f(n) + g(n)) = O(\max(f(n), g(n)))$ einge subst $O(f(n) + f'(n)) = O(\max(f(n), f'(n)))$ = $O(\max(g(n), h(n)))$ = $O(f(n) + g(n)) = O(\max(f(n), f'(n)))$ = $O(\max(g(n), h(n)))$ = $O(f(n) + g(n)) = O(\max(f(n), f'(n)))$ = $O(\max(g(n), h(n)))$ = $O(f(n) + g(n)) = O(\max(f(n), f'(n)))$ = $O(\max(g(n), h(n)))$ = $O(f(n) + g(n)) = O(\max(f(n), h(n)))$ = $O(\max(g(n), h(n)))$ = $O(f(n) + g(n)) = O(\max(f(n), h(n)))$ = $O(\max(g(n), h(n)))$ = $O(f(n) + g(n)) = O(\max(f(n), h(n)))$ = $O(\max(g(n), h(n)))$ = $O(f(n) + g(n)) = O(\max(f(n), h(n)))$ = $O(\max(g(n), h(n)))$

Notiz: $P(n) \in O(g(n))$ $P'(n) \in O(h(n))$ $P(n) \leq c \cdot g(n)$ $P'(n) \leq c \cdot h(n)$

iv) $\log_2 n \in O(\log_k n)$, mit $k \in \mathbb{N}$ und k > 1(Log k n)

($k \in \mathbb{N}$ $d \cdot h \in \{1, 2, 3, 4\}, \dots, \{c\}$ und $\{c > 1, d \cdot h \in \{2, 3, 4\}, \dots, \{c\}\}$ Log $\{n \in O(\log_k n), \text{ gild}\}$

v) $O(2^{2n}) = O(2^n)$

Mon nimt die 2, 2n mal 2 hier egal

Co also 2° also stimmt

vi) $O(2^n) = O(3^n)$

$$0(n \cdot n) = 0(n \cdot n \cdot h)$$

$$2 = 3 \frac{6}{2}$$

 3^n sleigh immer um n Schneller $2^{n+1} = 3^{n+1}$

$$(n+1)(n+1) = (n+1)(n+1)(n+1)$$

$$(n+1) = (n+1)(n+1)$$

$$(n+1) = (n$$

Tut mir leich folks alles schwer zwerlennen ist, ich hendre das Graflictoboldt erst seit ein paar Tagen