1. How many inputs does a decoder have if it has 64 outputs?

<u>Ans</u>

 $n \ input = 2^n \ output$

$$64 \text{ outputs} = 2^6 = 6 \text{ inputs}$$

2. How many control lines does a multiplexer have if it has 32 inputs?

\underline{Ans}

 $Log_232 = 5$ control lines

3. Find the truth table that describes the following circuit:

<u>Ans</u>

y	Z	X	\bar{z}	\overline{x}	xy	$y \oplus \overline{z}$	$\overline{x} + x$	$\overline{xy + (y \oplus \overline{z})}$	$(\overline{x} + x) \overline{(xy + (y \oplus \overline{z}))}$
0	0	0	1	1	0	0	1	1	1
0	0	1	1	0	0	0	1	1	1
0	1	0	0	1	0	1	1	0	0
0	1	1	0	0	0	1	1	0	0
1	0	0	1	1	0	1	1	0	0
1	0	1	1	0	1	1	1	0	0
1	1	0	0	1	0	0	1	1	1
1	1	1	0	0	1	0	1	0	0

4. Complete the truth table for the following sequential circuit:

- 5. 59. A Mux-Not flip-flop (MN flip-flop) behaves as follows: If M=1, the flip-flop complements the current state. If M=0, the next state of the flip-flop is equal to the value of N.
 - 1. a) Derive the characteristic table for the flip-flop.
 - 2. b) ShowhowaJKflip-flopcanbeconvertedtoaMNflip-flopbyaddinggate(s)and inverter(s).