Lecture 8. Heat

Last Time:

 $T: 20 \, {}^{\circ}\text{C} => 40 \, {}^{\circ}\text{C}$

 $F_{\text{from wall}} = ?$

Step 4 • Collect equations and solve for unknowns

A.
$$F = 3.4 \times 10^1 N$$

B.
$$F = 6.5 \times 10^2 N$$

C.
$$F = 8.2 \times 10^3 N$$

D.
$$F = 9.1 \times 10^4 N$$

E. Something else

A.
$$F = 3.4 \times 10^{1} N$$

B.
$$F = 6.5 \times 10^2 N$$

C.
$$F = 8.2 \times 10^3 N$$

D.
$$F = 9.1 \times 10^4 N$$

$$\Delta L_1 + \Delta L_2 = 0 \tag{1}$$

$$\Delta L_1 = \alpha_1 L \Delta T - \frac{F}{A} \frac{L}{Y_1} \qquad (2)$$

$$\Delta L_2 = \alpha_2 L \Delta T - \frac{F}{A} \frac{L}{Y_2} \qquad (3)$$

$$\Delta L_2 = \alpha_2 L \Delta T - \frac{F}{A} \frac{L}{Y_2} \quad (3)$$

Plug (2) and (3) into (1):

$$\alpha_1 L \Delta T + \alpha_2 L \Delta T - \frac{F}{A} \frac{L}{Y_1} - \frac{F}{A} \frac{L}{Y_2} = 0$$

Solve:

• Isolate terms with F:

$$\frac{FL}{A} \left(\frac{1}{Y_1} + \frac{1}{Y_2} \right) = (\alpha_1 + \alpha_2) L \Delta T$$

$$F = \frac{(\alpha_1 + \alpha_2)A\Delta T}{\left(\frac{1}{Y_1} + \frac{1}{Y_2}\right)} = 8.2 \times 10^3 N$$

If this system is heated, what constraints must be satisfied by the four quantities ΔL_1 , ΔL_2 , ΔL_3 , and ΔL_4 ? (all objects are attached to each other and cannot separate)

A.
$$\Delta L_1 + \Delta L_2 + \Delta L_3 + \Delta L_4 = 0$$

B.
$$\Delta L_1 = \Delta L_2 + \Delta L_3 = \Delta L_2 + \Delta L_4$$

C.
$$\Delta L_2 + \Delta L_3 = 0 = \Delta L_2 + \Delta L_4$$

- D. (a) and (b)
- E. (b) and (c)

If this system is heated, what constraints must be satisfied by the four quantities ΔL_1 , ΔL_2 , ΔL_3 , and ΔL_4 ? (all objects are attached to each other and cannot separate)

A.
$$\Delta L_1 + \Delta L_2 + \Delta L_3 + \Delta L_4 = 0$$

B.
$$\Delta L_1 = \Delta L_2 + \Delta L_3 = \Delta L_2 + \Delta L_4$$

C.
$$\Delta L_2 + \Delta L_3 = 0 = \Delta L_2 + \Delta L_4$$

- D. (a) and (b)
- E. (b) and (c)

(C)

If this system is heated, what relations do we have between the compressive forces F_2 , F_3 and F_4 on the green, red, and black objects?

A.
$$F_2 + F_3 + F_4 = 0$$

B.
$$F_2 = F_3 = F_4$$

C.
$$F_2 = F_3 + F_4$$

D.
$$F_3 = F_4$$

E. Help!

If this system is heated, what relations do we have between the compressive forces F_2 , F_3 and F_4 on the green, red, and black objects?

A.
$$F_2 + F_3 + F_4 = 0$$

B.
$$F_2 = F_3 = F_4$$

B.
$$F_2 = F_3 = F_4$$

C. $F_2 = F_3 + F_4$

D.
$$F_3 = F_4$$

Help!

Heat

Q = heat: amount of energy transferred due to temperature differences

- $\triangleright Q$ is energy!!! Measured in Joules (J)
- > T is temperature (NOT energy); measured in degrees Celsius (°C) or kelvin (K)

Two objects with the same mass are put in thermal contact and insulated from their environment. If the initial temperatures are 100 °C and 0 °C, the final equilibrium temperature will be

T=0°C

- 50 °C
- Somewhere between 0 °C and 100 °C, but not necessarily 50 °C B.

T = 100°C

Not necessarily between 0 °C and 100 °C

- Heat flows from the hotter object to the cooler object
- Temperature of the hot object decreases and the cold object increases, until they are the same temperature, somewhere between 0° C and 100° C
- Not necessarily 50° C since some materials require more energy for a given temperature change
- A. 50 °C
- B. Somewhere between 0 °C and 100 °C, but not necessarily 50 °C \checkmark
- C. Not necessarily between 0 °C and 100 °C

Specific heat

Heat required to raise the temperature of a material of mass m
is determined by its specific heat, c:

$$Q = m c \Delta T$$

- Q = heat added
- m = mass
- c = specific heat
- ΔT = change in temperature

- c is a measure of the energy required to heat 1 kg of material by 1 K (material constant!)
- Units of c are $\frac{J}{kg \cdot K}$

- A. Larger
- B. Smaller
- C. The same
- D. Any of the above are possible.

Extra: What is the specific heat of the original liquid?

- A. Larger
- B. Smaller

- C. The same
- D. Any of the above are possible.

$$C = \frac{Q}{m \Delta T}$$

$$e Q, so \qquad \exists kg$$

Smaller ΔT for same Q, so smaller slope (rise/run)

Extra: What is the specific heat of the original liquid?

$$z \approx \frac{3000}{2 \cdot 7} \approx 200 \frac{J}{\text{kg} \cdot \text{K}}$$

Molar heat capacity

• Heat required to raise the temperature of n moles of a substance is determined by its molar heat capacity, C:

- $\succ c$ in $\frac{J}{\text{kg} \cdot \text{K}}$: energy required to heat 1 kg of material by 1 K
- \succ C in $\frac{J}{\text{mol} \cdot K}$: energy required to heat 1 mole of material by 1 K

Specific Heat values

Table 17.3 Approximate Specific Heats and Molar Heat Capacities (Constant Pressure)

Substance	Specific Heat, c $(J/kg \cdot K)$	Molar Mass, M (kg/mol)	Molar Heat Capacity, C (J/mol·K)
Aluminum	910	0.0270	24.6
Beryllium	1970	0.00901	17.7
Copper	390	0.0635	24.8
Ethanol	2428	0.0461	111.9
Ethylene glycol	2386	0.0620	148.0
Ice (near 0°C)	2100	0.0180	37.8
Iron	470	0.0559	26.3
Lead	130	0.207	26.9
Marble (CaCO ₃)	879	0.100	87.9
Mercury	138	0.201	27.7
Salt (NaCl)	879	0.0585	51.4
Silver	234	0.108	25.3
Water (liquid)	4190	0.0180	75.4

Why is heat capacity larger for some materials?

Temperature is proportional to average kinetic energy of molecules

• For more complicated materials, part of energy added goes to rotations/vibrations, etc..., so it takes more Q to increase their kinetic energy (= rise temperature)

Q: Two objects with the same mass are put in thermal contact but insulated from their environment. If the initial temperatures are 100 °C and 0 °C, and the specific heats are $c_1 = 300 \text{ J/kg} \cdot \text{K}$ and $c_2 = 900 \text{ J/kg} \cdot \text{K}$, calculate the final equilibrium temperature.

$$\begin{array}{c} 100\, ^{\circ}\mathrm{C} & 0\, ^{\circ}\mathrm{C} \\ c_1 = 300\, \mathrm{J/kg\cdot K} & c_2 = 900\, \mathrm{J/kg\cdot K} \end{array}$$

Hint: isolate the parts and think of what is happening to each part separately. Draw a picture and label it.

 $Q = m c \Delta T$

Step 1: System

- Visualize what will happen
- Draw a before/after picture
- Gives names to known & unknown quantities & label diagram
- Understand which quantities are changing and which are fixed

• Next: for each part, determine how much heat was added

Step 1: System

- Visualize what will happen
- Draw a before/after picture
- Gives names to known & unknown quantities & label diagram
- Understand which quantities are changing and which are fixed

• Next: for each part, determine how much heat was added

Step 2: Parts of the system

- Isolate the parts of the system
- For each part, draw a before/after picture

Step 2: Parts of the system

- Isolate the parts of the system
- For each part, draw a before/after picture

Before:

$$T_1 = 100 \, ^{\circ}\text{C}$$
 $m = 1 \, \text{kg}$
 $c_1 = 300 \, \text{J/kg·K}$

Before:

$$T_1 = 0$$
 °C $m = 1 \text{ kg}$ $c_2 = 900 \text{ J/kg·K}$

Transferred heat: $Q_1 < 0$

Tranferred heat: Q_2

After:

T

After:

T

• How are
$$Q_1$$
 and Q_2 related?

$$Q_1 + Q_2 = O$$

$$Q = m c \Delta T$$

- Q > 0 if T increases (heat received)
- Q < 0 if T decreases (heat spent)

Step 3: Equations

• For each part, write an equation relating the change in length to the changes in temperature and forces

Step 3:

Equations

• For each part, write an equation relating the change in length to the changes in temperature and forces

Before:

 $T_1 = 100 \, ^{\circ}\text{C}$ $c_1 = 300 \, \text{J/kg} \cdot \text{K}$

Q: For the object initially at 100 °C, transferred heat is:

Transferred heat: Q_1

A.
$$Q_1 = 300 \text{ J/K} \cdot T$$

B. $Q_1 = 300 \text{ J/K} \cdot 100 \text{ °C}$
C. $Q_1 = 300 \text{ J/K} \cdot (T - 100 \text{ °C}) \cdot \text{I}$ kg
D. $Q_1 = 300 \text{ J/K} \cdot (100 \text{ °C} - T)$

$$\Delta T = T_f - T_i$$

$$Q_1 = 300 \text{ J/K} \cdot (100 \text{ °C} - T)$$

E.
$$Q_1 = 300 \text{ J/K} \cdot (T + 100 \text{ °C})$$

$$Q_1 + Q_2 = 0$$

Q: What is
$$Q_2$$
?

$$\Delta T = T_{f,2} - T_{c,2} =$$

Step 3:

Equations

• For each part, write an equation relating the change in length to the changes in temperature and forces

Q: For the object initially at 100° C, transferred heat is:

Before:
$$T_1 = 100 \, ^{\circ}\text{C}$$

$$m = 1 \, \text{kg}$$

$$c_1 = 300 \, \text{J/kg·K}$$

Transferred heat: Q_1

A.
$$Q_1 = 300 \text{ J/K} \cdot T$$

B.
$$Q_1 = 300 \text{ J/K} \cdot 100 \text{ }^{\circ}\text{C}$$

C.
$$Q_1 = 300 \text{ J/K} \cdot (T - 100 \text{ °C})$$

D.
$$Q_1 = 300 \text{ J/K} \cdot (100 \,^{\circ}\text{C} - T)$$

E.
$$Q_1 = 300 \text{ J/K} \cdot (T + 100 \text{ °C})$$

$$\Delta T = T_f - T_i$$

After:

T

Q: What is
$$Q_2$$
?

$$Q_2 = m C_2 (T - 0 \, {}^{\circ}C) > 0$$

$$Q_{\ell} = m \ c \ \Delta T$$
 (NOTE: $\Delta T = T_F - T_I$)
 $m = 1 \ \text{kg}$
 $c_1 = 300 \ \text{J/kg·K}$
 $\Delta T = (T - 100^{\circ} \ \text{C})$
 Q_{ℓ} is negative (hotter object loses heat)

$$Q = m c \Delta T$$

Step 4 • Collect equations and solve for unknowns

Step 4

Collect equations and solve for unknowns

Before:

 0° C 0° C m = 1 kg $c_1 = 300 \text{ J/kg·K}$ $c_2 = 900 \text{ J/kg·K}$

• We have:

$$Q_1 = 300 \, \text{J/K} \cdot (T - 100^{\circ} \, \text{C})$$
 - negative

$$Q_2 = 900 \text{ J/K} \cdot (T - 0^{\circ} \text{ C})$$
 - positive

After:

$$T = ?$$

$$T = ?$$

• How are Q_1 and Q_2 related? Why?

Energy conservation! Heat given off by 1st is equal to heat received by 2nd

$$Q_1 + Q_2 = 0$$

$$1200 \frac{J}{K} \cdot T - 30,000 J = 0 \implies T = 25^{o}C$$

 $Q = m c \Delta T$

Same problem done very quickly

$$m = 1 \text{ kg}$$
 $c_1 = 300 \text{ J/kg·K}$
 0° C
 $m = 1 \text{ kg}$
 $c_2 = 900 \text{ J/kg·K}$

- Intuitively: c_2 is $3 \times c_1$, so same magnitude of heat will cause 1/3 of the temperature change
- > 25° is 1/3 of 75° and these add to 100° C

• General solution for the final temperature:

$$Q = m c \Delta T$$
court *31 ×31

$$T = \left(\frac{m_1 c_1}{m_1 c_1 + m_2 c_2}\right) T_1 + \left(\frac{m_2 c_2}{m_1 c_1 + m_2 c_2}\right) T_2$$

Weighted average of T_1 and T_2