

# Phrase Table Smoothing with Word Classes

#### Yunsu Kim

kimyunsu@i6.informatik.rwth-aachen.de

Master Thesis Final Talk - August 10, 2015

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany



### **Outline**

- 1. Introduction
- 2. Word Class Models
  - Refinements with the Class Membership Probability
  - ▶ Optimizing Word Classes for Word Class Models
- 3. Translation using Word Classes
- 4. Translation Examples
- 5. Conclusion





## **Motivation: Smoothing with Word Classes**

### Word class: group of words with similar syntactic/semantic roles

- Automatically learned from training data (w/o linguistic knowledge)
- Examples of words in the same class [Brown & deSouza+ 92]
  - **Class 1:** had hadn't hath would've could've should've must've might've
  - **▶ Class 2:** head body hands eyes voice arm seat eye hair mouth

### Phrase consisting of word classes

Simple word-level generalization

word → word class

- Local context preserved
- More robust counts





### State of the Art

#### 1. Word class models

[Wuebker & Peitz<sup>+</sup> 13] Improving Statistical Machine Translation with Word Class Models, *EMNLP 2013*.

► Train existing translation/reordering models with word classes

### 2. Translation using word-level labels

[Yang & Kirchhoff 06] Phrase-based Backoff Models for Machine Translation of Highly Inflected Languages, *EACL 2006*.

► Extract hierarchical paraphrases using a morphological analysis

[Koehn & Hoang 07] Factored Translation Models, *EMNLP 2007*.

- ► Integrate word-level labels as factors in the translation
- ► Word-to-label mapping ⇒ Label-to-label translation ⇒ Label-to-word generation



### Goals

- 1. Word clustering 🗸
  - ▶ Implement bilingual clustering [Och 99] ✔
  - ▶ Compare between monolingual/bilingual approach in SMT
  - ⇒ No difference in the performance of the word class models
- 2. Train word alignments from word classes 🗸
  - ▶ Merge with the original word alignment
  - ► Extract phrase pairs and train word class models <
  - ⇒ Degradation of the translation quality





### Goals

#### 3. Word class models

- ▶ Implement the state-of-the-art [Wuebker & Peitz<sup>+</sup> 13] in Jane ✔
- ▶ Develop a novel smoothing formulation of the phrase translation model
- ► Refine word class models with class membership probability <
- ▶ Optimize word classes for word class models in SMT

### 4. Translation using word classes

- ► Paraphrase the extracted phrase pairs using word classes
- ► Modify the standard phrase-based decoder to use the paraphrases





### **Phrase-based System: Notations**

Phrase segmentation of sentence pair  $(f_1^J,e_1^I)=( ilde{f}_1^K, ilde{e}_1^K)$ 

$$k 
ightarrow s_k := (i_k; b_k, j_k)$$
 for  $k = 1, ..., K$ 

- $ightharpoonup i_k = ext{end position of } k ext{-th target phrase}$
- $ightharpoonup b_k =$ begin position of k-th source phrase
- $ightharpoonup j_k = ext{end position of } k ext{-th source phrase}$

Phrase pairs  $( ilde{f}_k, ilde{e}_k)$ 

$$egin{aligned} ilde{f}_k &:= f_{b_k}, \ ..., \ f_{j_k} \ ilde{e}_k &:= e_{i_{k-1}+1}, \ ..., \ e_{i_k} \end{aligned}$$

Decision rule of log-linear modeling

$$egin{aligned} f_1^J &\longmapsto \hat{e}_1^{\hat{I}}(f_1^J) = rgmax & \max \ I,e_1^I & K,s_1^K \ iggl\{ \sum_{m=1}^M oldsymbol{\lambda}_m h_m(e_1^I,s_1^K;f_1^J) iggr\} \end{aligned}$$



### **Word Classes: Notations**

Word vocabulary  $\mathbb{W}_e$ 

Class labels C

Word-class mapping C

$$egin{aligned} \mathcal{C} : \mathbb{W}_e &
ightarrow \mathbb{C} \ e &\longmapsto \mathcal{C}(e) \ e_1^I &\longmapsto \mathcal{C}(e_1^I) = \mathcal{C}(e_1), \; ..., \; \mathcal{C}(e_I) \end{aligned}$$

Assumption: each word belongs to one class (word classes = partitions of words)

Bilingual word-class mapping  $(\mathcal{C}_f,\mathcal{C}_e)$ 

$$egin{aligned} f &\longmapsto \mathcal{C}_f(f) \ ilde{f}_k &\longmapsto \mathcal{C}_f( ilde{f}_k) = \mathcal{C}_f(f_{b_k}), \; ..., \; \mathcal{C}_f(f_{j_k}) \ e &\longmapsto \mathcal{C}_e(e) \ ilde{e}_k &\longmapsto \mathcal{C}_e( ilde{e}_k) = \mathcal{C}_e(e_{i_{k-1}+1}), \; ..., \; \mathcal{C}_e(e_{i_k}) \end{aligned}$$



### Word Class Translation Models (wcTM)

### [Wuebker & Peitz<sup>+</sup> 13]

Word class phrase translation model

$$p( ilde{f_k}| ilde{e}_k) = p(\mathcal{C}_f( ilde{f_k})|\mathcal{C}_e( ilde{e}_k))$$

#### Word class IBM1 lexicon model

$$h_{Lex}(e_1^I, s_1^K; f_1^J) = \sum_{k=1}^K \log \prod_{j=b_k}^{j_k} rac{1}{| ilde{e}_k|} \sum_{i=i_{k-1}+1}^{i_k} p(\mathcal{C}_f(f_j)|\mathcal{C}_e(e_i))$$

- Train existing models with word class corpus
- **▶** Similarly applied to:
  - ▶ Hierarchical reordering models (HRM) ⇒ wcHRM
  - ▶ Language model ⇒ wcLM
- Generalize every word of the phrase without distinction





### **Class Smoothing Models (CSM)**

### Notation: selective class mapping

$$\mathcal{C}^{(\{i\})}(e_1^I) := e_1, \; ..., \; \mathcal{C}(e_i), \; ..., \; e_I$$

#### Model CSM<sub>src</sub>

$$p( ilde{f}_k| ilde{e}_k) = \sum_{j=b_k}^{j_k} rac{w_j}{\sum_{j'} w_{j'}} \cdot p(\mathcal{C}_f^{(\{j\})}( ilde{f}_k)| ilde{e}_k)$$

 $ightharpoonup w_j$  = averaging weight (e.g. equal weight:  $w_j=1$ )

#### **Example:**

$$egin{aligned} p(f_1 \; f_2 \; f_3 | e_1 \; e_2 \; e_3) &= rac{1}{3} \cdot \left[ \; p(\mathcal{C}_f(f_1) \; f_2 \; f_3 \; | \; e_1 \; e_2 \; e_3) 
ight. \ &+ \; p(f_1 \; \mathcal{C}_f(f_2) \; f_3 \; | \; e_1 \; e_2 \; e_3) 
ight. \ &+ \; p(f_1 \; f_2 \; \mathcal{C}_f(f_3) \; | \; e_1 \; e_2 \; e_3) \; 
ight] \end{aligned}$$

More fine-grained generalization than wcTM





### **Class Smoothing Models (CSM)**

### Model CSM<sub>src+tgt</sub>

### **Example:**

$$egin{aligned} p(f_1 \; f_2 \; f_3 \; | \; e_1 \; e_2 \; e_3) &= rac{1}{3} \cdot \left[ \; p(\mathcal{C}_f(f_1) \; f_2 \; f_3 \; | \; \mathcal{C}_e(e_1) \; e_2 \; e_3) 
ight. \ &+ \; p(f_1 \; \mathcal{C}_f(f_2) \; f_3 \; | \; e_1 \; e_2 \; e_3) 
ight. \ &+ \; p(f_1 \; f_2 \; \mathcal{C}_f(f_3) \; | \; e_1 \; \mathcal{C}_e(e_2) \; \mathcal{C}_e(e_3)) 
ight] \end{aligned}$$

- Generalize also on the target side
- ► Alignment information is encapsulated



## **Class Smoothing Models (CSM)**

### Weighting over source positions

► (inverse) unigram of the replaced word

$$rac{1}{w_j} = rac{N(f_j)}{\sum_{f'} N(f')}$$

► (inverse) source phrase replacement probability

$$rac{1}{w_j} = rac{N(f_{b_k} \ ... \ f_j \ ... \ f_{j_k})}{\sum_{f'} N(f_{b_k} \ ... \ f' \ ... \ f_{j_k})}$$

▶ factorizing likelihood

$$w_j = N(\mathcal{C}_f^{(\{j\})}( ilde{f}_k))$$



### Refinements with the Class Membership Probability

#### Class membership probability

$$p(e|\mathcal{C}(e)) = rac{N(e)}{\sum_{e':\mathcal{C}(e')=\mathcal{C}(e)} N(e')}$$

▶ in wcTM

$$p( ilde{f_k}| ilde{e}_k) = \left[\prod_{j=b_k}^{j_k} p(f_j|\mathcal{C}_f(f_j))
ight] \cdot p(\mathcal{C}_f( ilde{f_k})|\mathcal{C}_e( ilde{e}_k))$$

► CSM

$$p( ilde{f}_k| ilde{e}_k) = \sum_{j=b_k}^{j_k} rac{w_j}{\sum_j w_j} \cdot p(f_j|\mathcal{C}_f(f_j)) \cdot p(\mathcal{C}_f^{(\{j\})}( ilde{f}_k)| ilde{e}_k)$$

▶ wcLM

$$p(e_i|e_1^{i-1};\mathcal{C}_e) = p(e_i|\mathcal{C}_e(e_i)) \cdot p(\mathcal{C}_e(e_i)|\mathcal{C}_e(e_{i-n+1}))$$



# **CSM: Model Comparison**

| IWSLT 2012 De→En            |             | de          | v    | test        |            |
|-----------------------------|-------------|-------------|------|-------------|------------|
|                             |             | <b>BLEU</b> | TER  | <b>BLEU</b> | <b>TER</b> |
|                             | Integration | [%]         | [%]  | [%]         | [%]        |
| PBT + wcLM                  |             | 30.3        | 50.0 | 28.3        | 52.2       |
| + CSM <sub>src</sub> linear |             | 30.4        | 49.5 | 28.8        | 51.5       |
|                             | log-linear  | 30.5        | 49.7 | 29.0        | 51.6       |
| + CSM <sub>src+tgt</sub>    | linear      | 30.9        | 48.8 | 29.1        | 50.9       |
| _                           | log-linear  | 30.8        | 48.6 | 28.9        | 50.6       |
| + CSM <sub>tgt</sub>        | linear      | 30.3        | 49.6 | 28.7        | 51.8       |
| •                           | log-linear  | 30.4        | 49.4 | 29.0        | 51.4       |
| + CSM <sub>tgt+src</sub>    | linear      | 29.9        | 50.1 | 28.2        | 52.1       |
|                             | log-linear  | 30.7        | 48.9 | 29.1        | 50.9       |



### Refinements with the Class Membership Probability

|                          |             | IWSLT<br>De- |      | WMT<br>En- |             | WMT<br>En- |       |
|--------------------------|-------------|--------------|------|------------|-------------|------------|-------|
|                          |             | te           | st   | newst      | est13       | newst      | est14 |
|                          |             | BLEU         | TER  | BLEU       | TER         | BLEU       | TER   |
|                          | Refinements | [%]          | [%]  | [%]        | [%]         | [%]        | [%]   |
| PBT                      |             | 28.1         | 51.4 | 14.3       | 70.2        | 20.0       | 65.3  |
| + wcLM                   | none        | 28.3         | 52.2 | 14.6       | 69.8        | 20.0       | 65.5  |
|                          | membership  | 28.5         | 51.5 | 14.6       | <b>69.7</b> | 20.4       | 64.4  |
| + wcTM                   | none        | 29.2         | 51.2 | 14.8       | 69.4        | 20.4       | 64.9  |
|                          | membership  | 29.2         | 51.2 | 15.2       | <b>67.8</b> | 20.7       | 64.2  |
| + CSM <sub>src+tgt</sub> | none        | 29.1         | 50.9 | 15.2       | 68.5        | 20.4       | 65.1  |
|                          | membership  | 29.2         | 50.8 | 15.2       | 68.4        | 20.5       | 64.9  |

► Class membership probability enhances the word class models



### Optimizing Word Classes for wcTM/CSM

► Clustering iterations do not affect the translation quality significantly



- **▶** Similar results for varying:
  - ▶ Initial clustering
  - > The number of classes
  - ▶ Clustering algorithm (monolingual/bilingual)





### **Optimizing Word Classes for wcLM**

| IWSLT 20 | 12 De→En | de          | v <sup>†</sup> | tes         | st          |                   |
|----------|----------|-------------|----------------|-------------|-------------|-------------------|
|          |          | <b>BLEU</b> | <b>TER</b>     | <b>BLEU</b> | <b>TER</b>  |                   |
|          | #classes | [%]         | [%]            | [%]         | [%]         | <b>Perplexity</b> |
| PBT      |          | 29.8        | 49.2           | 28.1        | 51.4        |                   |
| + wcLM   | 100      | 30.2        | 49.2           | 28.5        | 51.5        | 263.3             |
|          | 200      | 30.4        | 49.6           | 28.4        | 51.8        | 231.7             |
|          | 500      | 31.5        | 48.1           | <b>29.4</b> | <b>50.6</b> | 193.6             |
|          | 1000     | 31.5        | 48.1           | 29.2        | 50.4        | 178.5             |
|          | 2000     | 31.3        | 48.8           | 29.1        | 51.3        | 166.6             |
|          | 5000     | 31.0        | 49.4           | 29.1        | 51.3        | 156.3             |

► The number of classes must be tuned for the optimal performance of wcLM



## **Motivation: Translation using Word Classes**

### Phrase pairs are extracted from a limited amount of bilingual data

- ► Might not have all necessary phrases to correctly translate a given test set
- ► Use more bilingual data: not feasible for low-resource language pairs

#### Manipulate the extracted phrases with word classes

- 1. Replace a word in a phrase with the corresponding word class
- 2. Replace the class with other member words within the same class
- 3. Create new phrase pairs which could not be extracted from the training corpus
- ▶ No need for additional bilingual data
- ▶ We can reuse CSM phrase pairs





### **Translation using Word Classes: Source Side**





## **Translation using Word Classes: Target Side**

gewechselt werden → be **shifted**be **\$C771** ----- be altered

----- be changed

:



### **Translation using Word Classes: Details**

#### Parameter $\tau_u$ : determine the candidate words for the back-off

- ▶ Back-off only if  $N(f_j) \le au_u$  (or  $N(e_i) \le au_u$ )
- Rare words are backed off first

### OOV translation ( $N(f_j) = 0$ )

- ► OOV words of the bilingual training data have no translation options
- ► Even if bilingual data is scarce, monolingual data is easier to obtain

### Estimate word classes from a large monolingual data

▶ Might have a class mapping of the OOV words

```
versprechendes --→ $C626
```

► An OOV word can be replaced with other words in the same class

```
versprechendes --→ $C626 --→ versprechende
```

Obtain phrase pairs including OOV words

versprechendes  $ext{---}$  versprechende  $ext{---}$  promising





### **Translation using Word Classes: Results**

| IWSLT 2012 De→En    |          | dev  |      | test |      |             |      |
|---------------------|----------|------|------|------|------|-------------|------|
|                     |          | BLEU | TER  | #OOV | BLEU | TER         | #OOV |
|                     | $	au_u$  | [%]  | [%]  |      | [%]  | [%]         |      |
| PBT + wcLM          |          | 30.3 | 50.0 | 398  | 28.3 | 52.2        | 484  |
| + wcTrans           | 0        | 29.8 | 51.2 | 117  | 28.6 | 52.6        | 89   |
|                     | 100      | 30.1 | 50.0 | 117  | 28.4 | 51.8        | 89   |
|                     | 1000     | 30.1 | 49.6 | 117  | 28.3 | 51.3        | 89   |
|                     | $\infty$ | 29.2 | 50.5 | 117  | 27.9 | <b>52.1</b> | 89   |
| + wcTrans (w/o OOV) | 100      | 30.1 | 50.0 | 398  | 28.4 | 51.8        | 484  |
|                     | 1000     | 30.4 | 49.4 | 398  | 28.7 | 51.7        | 484  |
|                     | $\infty$ | 30.6 | 49.2 | 398  | 29.2 | <b>51.0</b> | 484  |

wcTrans: including OOV translation

ightharpoonup 2000 classes from a large monolingual corpus ( $\sim$ 0.7B words)

wcTrans (w/o OOV): excluding OOV translation

▶ 100 classes from the bilingual training data ( $\sim$ 2.5M words)



# **CSM:** Translation Examples

| Source                                              | unsere Zeit Schriften werden von Millionen gelesen .                                                                |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Reference<br>PBT + wcLM<br>+ CSM <sub>src+tgt</sub> | our magazines are read by millions . our magazines are killed by millions . our magazines will read from millions . |
| Source                                              | viele von ihnen sind von Gesichtern verdeckt usw.                                                                   |
| Reference                                           | so many of them are occluded by faces , and so on .                                                                 |
| DRT . wel M                                         | many of them are of faces , and so on .                                                                             |



## **Translation using Word Classes: Examples**

| Source                       | ein neues und viel versprechendes Erlebnis                                                        |
|------------------------------|---------------------------------------------------------------------------------------------------|
| Reference PBT + wcLM wcTrans | a new and promising experience a new and much UNKNOWN experience                                  |
| WCITAIIS                     | a new and promising experience viel $\$C626 \rightarrow promising$                                |
| Source                       | mit der wir diese kleinen Stücke<br>zusammensetzen und <u>die Fehler</u> korrigieren<br>konnten . |
| Reference                    | for putting these little pieces together and correct all the errors .                             |
| PBT + wcLM                   | with which we have these little pieces , and the correct mistakes .                               |
| wcTrans                      | with which we have these little pieces together and to correct the mistakes .                     |

C74 Fehler  $\rightarrow$  the mistakes





### Conclusion

- 1. CSM has a competitive performance to wcTM with a smaller number of models
  - ▶ improves PBT systems by up to +0.9 BLEU and -1.4 TER
- 2. Performance of word class models are enhanced by integrating the class membership probability
  - ▶ up to +0.4 BLEU and -1.6 TER
- 3. Performance of wcTM and CSM is not significantly affected by:
  - clustering iterations
  - initial clustering
  - ▶ the number of classes
  - clustering algorithm





### Conclusion

- 4. Performance of wcLM is considerably affected by increasing the number of classes
  - ▶ up to +0.9 BLEU and -0.9 TER
- 5. Using word classes, we can paraphrase the extracted phrase pairs to enlarge the search space
  - enables OOV translation
  - ▶ improves the PBT systems by up to +0.9 BLEU and -1.2 TER



### **Future Work**

- 1. Word class models beyond the phrase context
  - ► Train joint translation and reordering models (JTR) with word classes
- 2. More variants of wcLM
  - ► LM with other word-level labels (e.g. morphological stems, part-of-speech tags)
  - Word classes as inputs to neural language models
  - Combination of various wcLMs
- 3. More study on translation using word classes
  - Find the optimal usage of OOV translation
  - ▶ Test on large-scale SMT tasks





# Thank you for your attention

### Yunsu Kim

kimyunsu@i6.informatik.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/



### References

- [Brown & deSouza<sup>+</sup> 92] P.F. Brown, P.V. deSouza, R.L. Mercer, V.J.D. Pietra, J.C. Lai: Class-based n-gram Models of Natural Language. *Computational Linguistics*, Vol. 18, No. 4, pp. 467–479, December 1992.
- [Koehn & Hoang 07] P. Koehn, H. Hoang: Factored Translation Models. In 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007), pp. 868–876, Prague, Czech Republic, June 2007.
- [Och 99] F.J. Och: An Efficient Method for Determining Bilingual Word Classes. In 9th Conference on European Chapter of the Association for Computational Linguistics (EACL 1999), pp. 71–76, Bergen, Norway, June 1999.
- [Wuebker & Peitz<sup>+</sup> 13] J. Wuebker, S. Peitz, F. Rietig, H. Ney: Improving Statistical Machine Translation with Word Class Models. In *2013 Conference on Empirical Methods in Natural Language Processing (EMNLP 2013)*, pp. 1377–1381, Seattle, USA, October 2013.
- [Yang & Kirchhoff 06] M. Yang, K. Kirchhoff: Phrase-based Backoff Models for Machine Translation of Highly Inflected Languages. In 11th Conference on



European Chapter of Association for Computational Linguistics (EACL 2006), pp. 3–7, Trento, Italy, April 2006.



## **Appendix: Corpus Statistics (IWSLT 2012 De→En)**

|               |                      | German     | English  |
|---------------|----------------------|------------|----------|
| train*        | Sentences            | 130        | OK       |
| Running Words |                      | 2.5M       | 2.5M     |
| Vocabulary    |                      | 71K        | 49K      |
| dev           | Sentences            | 88         | 3        |
| Running Words |                      | <b>20K</b> | 21K      |
|               | Vocabulary           | 4K         | 3K       |
|               | OOVs (Rate)          | 776 (4%)   | 639 (3%) |
| test          | Sentences            | s 1565     |          |
|               | <b>Running Words</b> | 32K        | 27K      |
|               | Vocabulary           | 5K         | 5K       |
|               | OOVs (Rate)          | 1068 (3%)  | 753 (2%) |

<sup>\*</sup> Web Inventory of Transcribed and Translation Talks (WIT3) 2012-03





# **Appendix: Corpus Statistics (WMT 2014 En**→**De)**

|            |                      | English   | German    |
|------------|----------------------|-----------|-----------|
| train*     | Sentences            | 4         | M         |
|            | <b>Running Words</b> | 104M      | 105M      |
|            | Vocabulary           | 648K      | 659K      |
| newstest11 | Sentences            | 30        | 03        |
|            | <b>Running Words</b> | 66K       | 81K       |
|            | Vocabulary           | 14K       | 13K       |
|            | OOVs (Rate)          | 2128 (3%) | 1736 (2%) |
| newstest12 | Sentences            | 30        | 03        |
|            | <b>Running Words</b> | 73K       | 81K       |
|            | Vocabulary           | 10K       | 13K       |
|            | OOVs (Rate)          | 1827 (2%) | 1688 (2%) |
| newstest13 | Sentences            | 3000      |           |
|            | <b>Running Words</b> | 56K       | 70K       |
|            | Vocabulary           | 13K       | 12K       |
|            | OOVs (Rate)          | 1426 (2%) | 1310 (2%) |

<sup>\*</sup> Europarl v7 + Common Crawl + News Commentary v9 + newstest08/09/10



# **Appendix: Corpus Statistics (WMT 2015 En→Cs)**

|            |                      | English        | Czech        |
|------------|----------------------|----------------|--------------|
| train*     | Sentences            | 930K           |              |
|            | <b>Running Words</b> | 2.4M           | 2.1 <b>M</b> |
|            | Vocabulary           | 161K           | 345K         |
| newstest12 | Sentences            | 30             | 03           |
|            | <b>Running Words</b> | 73K            | 65K          |
|            | Vocabulary           | 10K            | 17K          |
|            | OOVs (Rate)          | 1336 (2%)      | 2393 (4%)    |
| newstest13 | Sentences 3000       |                | 00           |
|            | <b>Running Words</b> | 65K            | 57K          |
|            | Vocabulary           | 9K             | 15K          |
|            | OOVs (Rate)          | 1170 (2%)      | 2023 (4%)    |
| newstest14 | Sentences            | Sentences 3003 |              |
|            | <b>Running Words</b> | 69K            | 60K          |
|            | Vocabulary           | 9K             | 16K          |
|            | OOVs (Rate)          | 1298 (2%)      | 2190 (4%)    |

<sup>\*</sup> Europarl v7 + Common Crawl + News Commentary v10





## **Appendix: Optimizing Word Classes for wcLM**

wcLM + membership factorizes over words (not word classes)

⇒ possible to compare the perplexity with LM

|                  | Perplexity  |              |              |  |  |
|------------------|-------------|--------------|--------------|--|--|
|                  | wcLM LM + v |              |              |  |  |
| Corpus           | LM          | + membership | + membership |  |  |
| IWSLT 2012 De→En | 105.43      | 263.27       | 104.08       |  |  |
| WMT 2014 En→De   | 636.67      | 1206.71      | 510.83       |  |  |
| WMT 2015 En→Cs   | 624.88      | 1851.37      | 500.72       |  |  |

# **Appendix: Translation using Word Classes: Technical Details (1)**

#### In phrase extraction:

1. Create CSM phrase pairs with its standard model scores

```
2.80336 0.81093 5.02395 4.13453 ... # $C560 werden # be changed # ...
```

2. Append the CSM phrase entries to the original phrase table

#### In phrase matching:

1. For each source phrase, back off each source word  $f_j$  if  $N(f_j) \leq au_u$ 

```
gewechselt werden --→ $C560 werden
```

2. Query the phrase table with the backoff phrase

```
\$C560 werden \rightarrow be changed
```

3. Store the query result in the separate matching list

gewechselt werden ightarrow be changed

# Appendix: Translation using Word Classes: Technical Details (2)

4. For each target phrase, back off each target word  $e_i$  if  $N(e_i) \leq au_u$ 

5. Replace the replaced class with its member words

be \$771 
$$\rightarrow$$
 be altered

6. Store the expanded phrase in the separate matching list

gewechselt werden 
$$ightarrow$$
 be altered

In translation: expand hypotheses with the original phrase matching list and CSM phrase matching list

Same pruning parameters are applied to both lists

# Appendix: Translation using Word Classes: Technical Details (3)

CSM phrase pairs aggregate the counts with respect to the classes

- **▶** Different scale of scores from the original phrase pairs
- Balanced by introducing the membership probabilities of the class replacements

### Additional model for the class membership probabilities

$$egin{aligned} h_{mbs}(e_1^I, s_1^K; f_1^J) &= \sum_{k=1}^K \left[ \sum_{j=b_k}^{j_k} 1_{B_f}(j) \cdot \log p(f_j | \mathcal{C}_f(f_j)) 
ight. \ &+ \sum_{i=i_{k-1}+1}^{i_k} 1_{B_e}(i) \cdot \log p(e_i | \mathcal{C}_e(e_i)) 
ight] \end{aligned}$$

- ightharpoonup B = a set of back-off positions
- ► For non-back-off positions, the score is zero
- ▶ The weight  $\lambda_{csm}$  is automatically tuned with MERT