

Cutting Edge Precision without Cutting Nerves

Meet Leila

36 y/o F hx of breast cancer suffering from post surgical pain

Intercostobrachial Nerve (ICBN)

Design Constraints

Contactless Nerve Detection

Real-Time Feedback

Surgical Functionality

Patient Injury

Cost

Integration

NeuroGuard

Detects anatomically-important nerves beyond 1 cm distance during electrocautery

- ✓ Provides real-time feedback
- Integrates with existing tools
- Nerve-specific (based on modeling)

SSEPs

Somatosensory evoked potentials:

 Intraoperative measurement of peripheral nerve activation through stimulation

Head SSEPs setup

The Bi Lab, Brigham and Women's Hospital

Neuroguard Components

- 1. Stimulation during 100ms duty cycle
- 2. Recording response

4. SSEPs \rightarrow real-time feedback

Integration with existing tools

- We envision our device as an add on to electrocautery generator
 - Lower costs, more accessible, small learning curve
 - NeuroGuard probes which are compatible with Bovie and smoke evac systems

Duty cycle modification ideas

Electrocautery concepts

OUTPUT CHARACTERISTICS

Maximum Output for Monopolar and Bipolar Modes

Power readouts agree with actual power into rated load to within 20% or 5 watts, whichever is greater.

Mode	Output Power	Output Frequency	Repetition Rate	Open Circuit Vpeak max	Crest Factor* (Rated Load)
Cut	120 W @ 500 Ω	357 kHz ± 50 kHz	N/A	1250V	2.9 ± 20%
Blend	90 W @ 800 Ω	357 kHz ± 50 kHz	30 kHz ± 5 kHz	1850V	3.3 ± 20%
Coagulation	80 W @ 1000 Ω	475 kHz ± 19 kHz	57 kHz ± 5 kHz	3300V	5.5 ± 20%
Fulguration	40 W @ 1000 Ω	410 kHz ± 50 kHz	25 kHz ± 5 kHz	3900V	7.7 ± 20%
Bipolar	30 W @ 200 Ω	520 kHz (-14 kHz, +29 kHz)	32 kHz ± 5 kHz	1200V	6.9 ± 20%

^{*} an indication of a waveform's ability to coagulate bleeders without a cutting effect

From bovie manual

Design concept #2: external power

the Bovie patent (US 9,326,810 B2)

FIG. 1

FIG. 2

VOLTAGE/CURRENT SOURCE WITH DUTY CYCLE MEASUREMENT

FIG. 6

Goals/constraints

We would like to modulate the duty cycle generated by standard electrocautery units, to incorporate a stimulatory component that is specifically targeted for nerve activation

- Monopolar setup
- 1. Electrocautery duty cycle: 5-50%
- 2. Electrocautery frequency: 500 kHz 3 MHz
- 3. Nerve stimulation frequency: 50 Hz 1 kHz
 - a. Pulse width: 100us 1ms

Design ideas

1. Time division multiplexing

- a. Nerve stimulation voltage delivered during OFF periods of duty cycle
- b. Superimpose the neurostimulator frequency during the OFF phase of the electrocautery duty cycle
- c. External device (Arduino microcontroller) could take in signal from electrocautery and time when nerve stimulation occurs (or have it be pre-programmed based on %)
- d. Measure with oscilloscope

2. Low frequency modulation

- a. I.e. blended current
- b. Modulate electrocautery with nerve stimulation frequency
- c. Noise issues → filtering

3. Harmonic Filtering

a. Separate tip

- Voltage step-down:
- Transformer, DC-DC converter, low-dropout regulator

Design concept #1

Powering nerve stim with ESU

- Rectifier + filter high frequency: AC → DC current
- Voltage step-down: DC-DC converter, low-dropout regulator
- Energy storage → powers OFF periods of duty cycle (supercapacitor)

