### Parallel Sudoku Solver

# Liam Gersten (Igersten) and Alexander Wang (aywang) May 5, 2024

| 29 |    | 21 |    | 11 | 21 | 23 | 15  |    | 22 | 8  |    | 8  |    | 28 |    |
|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|
| 18 | 13 | 18 | 15 | 4  |    |    | 16  |    | 4  | 18 |    | 6  |    | 23 |    |
|    |    | '  |    |    |    |    | 110 |    |    | '° |    |    |    | 23 |    |
|    |    |    |    | 13 | 19 | 19 |     | 9  | 30 |    | 14 |    | 20 | 15 |    |
| 7  |    | 20 | 23 | ▮  |    | 12 |     | ╫  | 12 | 14 | 27 |    |    | 13 | 22 |
| 26 |    |    |    | 19 | 15 | 3  | 35  |    | 1  |    | 19 |    |    |    |    |
| 12 |    | 28 |    | 1  |    |    | 18  | 1  | 42 | 30 |    | 16 |    | 8  | 31 |
|    | 28 |    | 13 |    | 14 |    |     | Ī  |    |    | 12 |    | 14 |    |    |
| 16 |    | 9  | 23 | 24 |    | 13 | 31  | 14 |    | 17 | 21 | 5  | 1  | 14 | 16 |
|    | 28 |    |    | 8  |    |    |     | 25 | 13 |    |    |    | 11 |    |    |
| 10 |    | 5  | 34 | 23 | 21 |    |     | 1  |    | 10 | 28 |    | 1  | 21 |    |
|    | 14 |    |    |    |    | 13 |     | 7  | 19 | 1  | 11 | 23 | 30 |    | 10 |
| 26 |    | 18 | 1  | 27 | 10 | 29 | 24  | 1  |    | 10 |    |    | 27 |    |    |
|    | 13 |    | 4  |    |    |    |     | 12 |    |    | 14 | 20 | 23 |    | 12 |
| 27 |    | 24 |    | 6  |    | 14 |     | 17 |    | 26 |    |    |    | 19 |    |
|    | 15 |    | 26 | 25 |    | 15 |     | 31 |    |    | 24 | 18 |    |    | 6  |
|    |    |    | 1  | 25 |    | 1  |     | 1  | 17 |    |    | 30 |    |    |    |

#### 1 A Sat Reduction



Figure 1: Graphical Depiction of Commander Variable Encoding

| c <sub>25</sub>                                           | $\begin{bmatrix} c_{26} \end{bmatrix}$ | C <sub>27</sub>                        |
|-----------------------------------------------------------|----------------------------------------|----------------------------------------|
| c <sub>22</sub>                                           | $\begin{bmatrix} c_{23} \end{bmatrix}$ | C <sub>24</sub>                        |
| c <sub>19</sub>                                           | $\begin{bmatrix} c_{20} \end{bmatrix}$ | $\begin{bmatrix} c_{21} \end{bmatrix}$ |
| c <sub>16</sub>                                           | c <sub>17</sub>                        | c <sub>18</sub>                        |
| c <sub>13</sub>                                           | $\begin{bmatrix} c_{14} \end{bmatrix}$ | c <sub>15</sub>                        |
| $\begin{bmatrix} c_{10} \end{bmatrix}$                    | $\begin{bmatrix} c_{11} \end{bmatrix}$ | $\begin{bmatrix} c_{12} \end{bmatrix}$ |
| C <sub>7</sub>                                            | c <sub>8</sub>                         | C9 C9                                  |
| C <sub>4</sub>                                            | c <sub>5</sub>                         | c <sub>6</sub>                         |
| $\begin{bmatrix} & & & & & & & & & & & & \\ & & & & & & $ | $\begin{bmatrix} c_2 \end{bmatrix}$    | c <sub>3</sub>                         |

$$[digitInCage] \iff \bigwedge_{cell \in cage} [digitInCell]$$
 (1)

$$[validPartition] \iff \bigwedge_{digit \in partition} [digitInCage]$$
 (2)

$$\bigvee_{\text{all partitions with valid sum}} [validPartition] \tag{3}$$

# 2 Recursive Algorithm



## 3 How to Steal Things





### 4 Public Speaking

Branching factor 1 (low contention) (high latency)



Branching factor 2 (okay contention) (okay latency)



Branching factor 3 (high contention) (low latency)



#### Conflict Resolution



#### 6 Performance!



| Puzzle Number | n=1   | n=2  | n=4  | n = 8 | n = 16 |
|---------------|-------|------|------|-------|--------|
| 0             | 29.0  | 89.8 | 16.9 | 1.90  | 1.00   |
| 1             | 12.69 | 7.81 | 1.35 | 1.70  | 0.89   |
| 2             | 23.66 | 14.5 | 6.88 | 3.85  | 2.96   |
| 3             | 4.01  | 2.45 | 1.90 | 2.41  | 0.77   |

#### 7 How Perf-ect?

```
Performance counter stats for 'mpirun -n 1 ./main -f inputs/ktest8.txt -r 1':

139,136,416 cache-misses # 5.321 % of all cache refs
2,614,914,105 cache-references

11.400383799 seconds time elapsed

11.062300000 seconds user
0.050201000 seconds sys
```

Figure 2: Perf stat on n = 1 for cache-references and cache-misses.

```
_int_free
_int_malloc
             libc.so.6
main
             libc.so.6
main
             libc.so.6
                                                                 malloc
main
                                                                 Cnf::propagate_assignment
main
             main
                                                                 Clauses::change_clause_size
Cnf::undo_local_edits
Clauses::drop_clause
cfree@GLIBC_2.2.5
main
             main
main
             main
main
             main
             libc.so.6
```

Figure 3: Perf report on n = 1 for cache-misses

```
Performance counter stats for 'mpirun -n 8 ./main -f inputs/ktest8.txt -r 1':

684,901,460 cache-misses # 50.312 % of all cache refs
1,361,317,023 cache-references

1.840858557 seconds time elapsed

11.396627000 seconds user
0.225572000 seconds sys
```

Figure 4: Perf stat on n = 8 for cache-references and cache-misses.

```
libc.so.6
libc.so.6
                                                          _int_free
_int_malloc
main
main
                                                          _____
Cnf::propagate_assignment
main
            main
main
            libc.so.6
                                                          malloc
main
            main
                                                          Clauses::change_clause_size
                                                          Clauses::drop_clause
Cnf::undo_local_edits
main
            main
            main
main
                                                          Clauses::re add clause
```

Figure 5: Perf report on n = 8 for cache-misses