Dialogues Concerning Two New Sciences

Galilei, Galileo 1638

THIRD DAY

CHANGE OF POSITION. [De Motu Locali][190]

This discussion is divided into three parts; the first part deals with motion which is steady or uniform; the second treats of motion as we find it accelerated in nature; the third deals with the so-called violent motions and with projectiles.

UNIFORM MOTION[191]

In dealing with steady or uniform motion, we need a single definition which I give as follows:

Definition

By steady or uniform motion, I mean one in which the distances traversed by the moving particle during any equal intervals of time, are themselves equal.

Caution

We must add to the old definition (which defined steady motion simply as one in which equal distances are traversed in equal times) the word "any," meaning by this, all equal intervals of time; for it may happen that the moving body will traverse equal distances during some equal intervals of time and yet the distances traversed during some small portion of these time-intervals may not be equal, even though the time-intervals be equal.

From the above definition, four axioms follow, namely:

Axiom I

In the case of one and the same uniform motion, the distance traversed during a longer interval of time is greater than the distance traversed during a shorter interval of time.

Axiom II

In the case of one and the same uniform motion, the time required to traverse a greater distance is longer than the time required for a less distance.

Axiom III

In one and the same interval of time, the distance traversed at a greater speed is larger than the distance traversed at a less speed.

Axiom IV[192]

The speed required to traverse a longer distance is greater than that required to traverse a shorter distance during the same time-interval.

Theorem I, Proposition I

If a moving particle, carried uniformly at a constant speed, traverses two distances the time-intervals required are to each other in the ratio of these distances.

Let a particle move uniformly with constant speed through two distances AB, BC, and let the time required to traverse AB be represented by DE; the time required to traverse BC, by EF; then I say that the distance AB is to the distance BC as the time DE is to the time EF.

Fig. 40

Let the distances and times be extended on both sides towards G, H and I, K; let AG be divided into any number whatever of spaces each equal to AB, and in like manner lay off in DI exactly the same number of time-intervals each equal to DE. Again lay off in CH any number whatever of distances each equal to BC; and in FK exactly the same number of time-intervals each equal to EF; then will the distance BG and the time EI be equal and arbitrary multiples of the distance BA and the time ED; and likewise the distance HB and the time KE are equal and arbitrary multiples of the distance CB and the time FE.

And since DE is the time required to traverse AB, the whole time EI will be required for the whole distance BG, and when the motion is uniform there will be in EI as many time-intervals each equal to DE as there are distances in BG each equal to BA; and likewise it follows that KE represents the time required to traverse HB.

Since, however, the motion is uniform, it follows that if the distance GB is equal to the distance BH, then must also the time IE be equal to the time EK; and if GB is greater than BH, then also IE will be greater than EK; and if less, less.* There[193] are then four quantities, the first AB, the second BC, the third DE, and the fourth EF; the time IE and the distance GB are arbitrary multiples of the first and the third, namely of the distance AB and the time DE.

But it has been proved that *both* of these latter quantities are either equal to, greater than, or less than the time EK and the space BH, which are arbitrary multiples of the second and the fourth. Therefore the first is to the second, namely the distance AB is to the distance BC, as the third is to the fourth, namely the time DE is to the time EF.

q. e. d.

Theorem II, Proposition II,

If a moving particle traverses two distances in equal intervals of time, these distances will bear to each other the same ratio as the speeds. And conversely if the distances are as the speeds then the times are equal.

Referring to Fig. 40, let AB and BC represent the two distances traversed in equal time-intervals, the distance AB for instance with the velocity DE, and the distance BC with the velocity EF. Then, I say, the distance AB is to the distance BC as the velocity DE is to the velocity EF. For if equal multiples of both distances and speeds be taken, as above, namely, GB and IE of AB and DE respectively, and in like manner HB and KE of BC and EF, then one may infer, in the same manner as above, that the multiples GB and IE are either less than, equal to, or greater than equal multiples of BH and EK. Hence the theorem is established.

Theorem III, Proposition III

In the case of unequal speeds, the time-intervals required to traverse a given space are to each other inversely as the speeds.

Let the larger of the two unequal speeds be indicated by A; the smaller, by B; and let the motion corresponding to both traverse the given space CD. Then I say the time required to traverse the distance CD at speed A is to the time required to traverse the same distance at speed B, as the speed B is to the speed A. For let CD be to CE as A is to B; then, from the preceding, it follows that the time required to complete the distance CD at speed A is the same as[194] the time necessary to complete CE at speed B; but the time needed to traverse the distance CE at speed B is to the time required to traverse the distance CD at the same speed as CE is to CD; therefore the time in which CD is covered at speed A is to speed A.

q. e. d.

Fig. 41

Theorem IV, Proposition IV

If two particles are carried with uniform motion, but each with a different speed, the distances covered by them during unequal intervals of time bear to each other the compound ratio of the speeds and time intervals.

Let the two particles which are carried with uniform motion be E and F and let the ratio of the speed of the body E be to that of the body F as A is to B; but let the ratio of the time consumed by the motion of E be to the time consumed by the motion of F as C is to D. Then, I say, that the distance covered by E, with speed A in time C, bears to the space traversed by F with speed B in time D a ratio which is the product of the ratio of the speed A to the speed B by the ratio of the time C to the time D. For if G is the distance traversed by E at speed A during the time-interval C, and if G is to I as

the speed A is to the speed B; and if also the time-interval C is to the time-interval D as I is to L, then it follows that I is the distance traversed by F in the same time that G is traversed by E since G is to I in the same ratio as the speed A to the speed B. And since I is to L in the same ratio as the time-intervals C and D, if I is the distance traversed by F during the interval C, then L will be the distance traversed by F during the interval D at the speed B.

Fig. 42

But the ratio of G to L is the product of the ratios G to I and I to L, that is, of the ratios of the speed A to the speed B and of the time-interval C to the time-interval D.

q. e. d.

Theorem V, Proposition V[195]

If two particles are moved at a uniform rate, but with unequal speeds, through unequal distances, then the ratio of the time-intervals occupied will be the product of the ratio of the distances by the inverse ratio of the speeds.

Let the two moving particles be denoted by A and B, and let the speed of A be to the speed of B in the ratio of V to T; in like manner let the distances traversed be in the ratio of S to R; then I say that the ratio of the time-interval during which the motion of A occurs to the time-interval occupied by the motion of B is the product of the ratio of the speed T to the speed V by the ratio of the distance S to the distance R.

Fig. 43

Let C be the time-interval occupied by the motion of A, and let the time-interval C bear to a time-interval E the same ratio as the speed T to the speed V.

And since C is the time-interval during which A, with speed V, traverses the distance S and since T, the speed of B, is to the speed V, as the time-interval C is to the time-interval E, then E will be the time required by the particle B to traverse the distance S. If now we let the time-interval E be to the time-interval G as the distance S is to the distance R, then it follows that G is the time required by B to traverse the space R. Since the ratio of C to G is the product of the ratios C to E and E to G (while also the ratio of C to E is the inverse ratio of the speeds of A and B respectively, i. e., the ratio of T to V); and since the ratio of E to G is the same as that of the distances S and R respectively, the proposition is proved.

Theorem VI, Proposition VI[196]

If two particles are carried at a uniform rate, the ratio of their speeds will be the product of the ratio of the distances traversed by the inverse ratio of the time-intervals occupied.

Let A and B be the two particles which move at a uniform rate; and let the respective distances traversed by them have the ratio of V to T, but let the time-intervals be as S to R. Then I say the speed of A will bear to the speed of B a ratio which is the product of the ratio of the distance V to the distance T and the time-interval R to the time-interval S.

Fig. 44

Let C be the speed at which A traverses the distance V during the time-interval S; and let the speed C bear the same ratio to another speed E as V bears to T; then E will be the speed at which B traverses the distance T during the time-interval S. If now the speed E is to another speed G as the time-interval R is to the time-interval S, then G will be the speed at which the particle B traverses the distance T during the time-interval R. Thus we have the speed C at which the particle A covers the distance V during the time S and also the speed G at which the particle B traverses the distance T during the time R. The ratio of C to G is the product of the ratio C to E and E to G; the ratio of C to E is by definition the same as the ratio of the distance V to distance T; and the ratio of E to G is the same as the ratio of R to S. Hence follows the proposition.

SALV.

The preceding is what our Author has written concerning uniform motion. We pass now to a new and more discriminating consideration of naturally accelerated motion, such as that generally experienced by heavy falling bodies; following is the title and introduction.

NATURALLY ACCELERATED MOTION[197]

The properties belonging to uniform motion have been discussed in the preceding section; but accelerated motion remains to be considered.

And first of all it seems desirable to find and explain a definition best fitting natural phenomena. For anyone may invent an arbitrary type of motion and discuss its properties; thus, for instance, some have imagined helices and conchoids as described by certain motions which are not met with in nature, and have very commendably established the properties which these curves possess in virtue of their definitions; but we have decided to consider the phenomena of bodies falling with an acceleration such as actually occurs in nature and to make this definition of accelerated motion exhibit the essential features of observed accelerated motions. And this, at last, after repeated efforts we trust we have succeeded in doing. In this belief we are confirmed mainly by the consideration that experimental results are seen to agree with and exactly correspond with those properties which have been, one after another, demonstrated by us. Finally, in the investigation of naturally accelerated motion we were led, by hand as it were, in following the habit and custom of nature herself, in all her various other processes, to employ only those means which are most common, simple and easy.

For I think no one believes that swimming or flying can be accomplished in a manner simpler or easier than that instinctively employed by fishes and birds.

When, therefore, I observe a stone initially at rest falling from an elevated position and continually acquiring new increments of speed, why should I not believe that such increases take place in a manner which is exceedingly simple and rather obvious to everybody? If now we examine the matter carefully we find no addition or increment more simple than that which repeats itself always in the same manner. This we readily understand when we consider the intimate relationship between time and motion; for just as uniformity of motion is defined by and conceived through equal times and equal spaces (thus we call a motion uniform when equal distances are traversed during equal time-intervals), so also we may, in a similar manner, through equal timeintervals, conceive additions of speed as taking place without complication; thus we may picture to our [198] mind a motion as uniformly and continuously accelerated when, during any equal intervals of time whatever, equal increments of speed are given to it. Thus if any equal intervals of time whatever have elapsed, counting from the time at which the moving body left its position of rest and began to descend, the amount of speed acquired during the first two time-intervals will be double that acquired during the first time-interval alone; so the amount added during three of these time-intervals will be treble; and that in four, quadruple that of the first timeinterval. To put the matter more clearly, if a body were to continue its motion with the same speed which it had acquired during the first time-interval and were to retain this same uniform speed, then its motion would be twice as slow as that which it would have if its velocity had been acquired during two time-intervals.

And thus, it seems, we shall not be far wrong if we put the increment of speed as proportional to the increment of time; hence the definition of motion which we are about to discuss may be stated as follows: A motion is said to be uniformly accelerated, when starting from rest, it acquires, during equal time-intervals, equal increments of speed.

SAGR.

Although I can offer no rational objection to this or indeed to any other definition, devised by any author whomsoever, since all definitions are arbitrary, I may nevertheless without offense be allowed to doubt whether such a definition as the above, established in an abstract manner, corresponds to and describes that kind of accelerated motion which we meet in nature in the case of freely falling bodies. And since the Author apparently maintains that the motion described in his definition is that of freely falling bodies, I would like to clear my mind of certain difficulties in order that I may later apply myself more earnestly to the propositions and their demonstrations.

SALV.

It is well that you and Simplicio raise these difficulties. They are, I imagine, the same which occurred to me when I first saw this treatise, and which were removed either by discussion with the Author himself, or by turning the matter over in my own mind.

SAGR.

When I think of a heavy body falling from rest, that is, starting with zero speed and gaining speed in proportion to the [199] time from the beginning of the motion; such a motion as would, for instance, in eight beats of the pulse acquire eight degrees of speed; having at the end of the fourth beat acquired four degrees; at the end of the second, two; at the end of the first, one: and since time is divisible without limit, it follows from all these considerations that if the earlier speed of a body is less than its present speed in a constant ratio, then there is no degree of speed however small (or, one may say, no degree of slowness however great) with which we may not find this body travelling after starting from infinite slowness, i. e., from rest. So that if that speed which it had at the end of the fourth beat was such that, if kept uniform, the body would traverse two miles in an hour, and if keeping the speed which it had at the end of the second beat, it would traverse one mile an hour, we must infer that, as the instant of starting is more and more nearly approached, the body moves so slowly that, if it kept on moving at this rate, it would not traverse a mile in an hour, or in a day, or in a year or in a thousand years; indeed, it would not traverse a span in an even greater time; a phenomenon which baffles the imagination, while our senses show us that a heavy falling body suddenly acquires great speed.

SALV.

This is one of the difficulties which I also at the beginning, experienced, but which I shortly afterwards removed; and the removal was effected by the very experiment

which creates the difficulty for you. You say the experiment appears to show that immediately after a heavy body starts from rest it acquires a very considerable speed: and I say that the same experiment makes clear the fact that the initial motions of a falling body, no matter how heavy, are very slow and gentle. Place a heavy body upon a yielding material, and leave it there without any pressure except that owing to its own weight; it is clear that if one lifts this body a cubit or two and allows it to fall upon the same material, it will, with this impulse, exert a new and greater pressure than that caused by its mere weight; and this effect is brought about by the [weight of the] falling body together with the velocity acquired during the fall, an effect which will be greater and greater according to the height of the fall, that is according as the velocity of the falling body becomes greater. From the quality and intensity of the blow we are thus enabled to accurately estimate the speed of a falling body. But tell me, gentlemen, is it not true that if a block be allowed to fall upon a stake from a height of four cubits and drives it into the earth, [200] say, four finger-breadths, that coming from a height of two cubits it will drive the stake a much less distance, and from the height of one cubit a still less distance; and finally if the block be lifted only one finger-breadth how much more will it accomplish than if merely laid on top of the stake without percussion? Certainly very little. If it be lifted only the thickness of a leaf, the effect will be altogether imperceptible. And since the effect of the blow depends upon the velocity of this striking body, can any one doubt the motion is very slow and the speed more than small whenever the effect [of the blow] is imperceptible? See now the power of truth; the same experiment which at first glance seemed to show one thing, when more carefully examined, assures us of the contrary.

But without depending upon the above experiment, which is doubtless very conclusive, it seems to me that it ought not to be difficult to establish such a fact by reasoning alone. Imagine a heavy stone held in the air at rest; the support is removed and the stone set free; then since it is heavier than the air it begins to fall, and not with uniform motion but slowly at the beginning and with a continuously accelerated motion. Now since velocity can be increased and diminished without limit, what reason is there to believe that such a moving body starting with infinite slowness, that is, from rest, immediately acquires a speed of ten degrees rather than one of four, or of two, or of one, or of a half, or of a hundredth; or, indeed, of any of the infinite number of small values [of speed]? Pray listen. I hardly think you will refuse to grant that the gain of speed of the stone falling from rest follows the same sequence as the diminution and loss of this same speed when, by some impelling force, the stone is thrown to its former elevation: but even if you do not grant this, I do not see how you can doubt that the ascending stone, diminishing in speed, must before coming to rest pass through every possible degree of slowness.

SIMP.

But if the number of degrees of greater and greater slowness is limitless, they will never be all exhausted, therefore such an ascending heavy body will never reach rest, but will continue to move without limit always at a slower rate; but this is not the observed fact.

This would happen, Simplicio, if the moving body were to maintain its speed for any length of time at each degree of velocity; but it merely passes each point without delaying more than an instant: and since each time-interval however[201] small may be divided into an infinite number of instants, these will always be sufficient [in number] to correspond to the infinite degrees of diminished velocity.

That such a heavy rising body does not remain for any length of time at any given degree of velocity is evident from the following: because if, some time-interval having been assigned, the body moves with the same speed in the last as in the first instant of that time-interval, it could from this second degree of elevation be in like manner raised through an equal height, just as it was transferred from the first elevation to the second, and by the same reasoning would pass from the second to the third and would finally continue in uniform motion forever.

SAGR.

From these considerations it appears to me that we may obtain a proper solution of the problem discussed by philosophers, namely, what causes the acceleration in the natural motion of heavy bodies? Since, as it seems to me, the force [virtù] impressed by the agent projecting the body upwards diminishes continuously, this force, so long as it was greater than the contrary force of gravitation, impelled the body upwards; when the two are in equilibrium the body ceases to rise and passes through the state of rest in which the impressed impetus [impeto] is not destroyed, but only its excess over the weight of the body has been consumed—the excess which caused the body to rise. Then as the diminution of the outside impetus [impeto] continues, and gravitation gains the upper hand, the fall begins, but slowly at first on account of the opposing impetus [virtù impressa], a large portion of which still remains in the body; but as this continues to diminish it also continues to be more and more overcome by gravity, hence the continuous acceleration of motion.

SIMP.

The idea is clever, yet more subtle than sound; for even if the argument were conclusive, it would explain only the case in which a natural motion is preceded by a violent motion, in which there still remains active a portion of the external force [virtù esterna]; but where there is no such remaining portion and the body starts from an antecedent state of rest, the cogency of the whole argument fails.

SAGR.

I believe that you are mistaken and that this distinction between cases which you make is superfluous or rather nonexistent. But, tell me, cannot a projectile receive from the projector either a large or a small force [virtù] such as will throw it to a height of a hundred cubits, and even twenty or four or one?

Undoubtedly, yes.

So therefore this impressed force [virtù impressa] may exceed the resistance of gravity so slightly as to raise it only a finger-breadth; and finally the force [virtù] of the projector may be just large enough to exactly balance the resistance of gravity so that the body is not lifted at all but merely sustained. When one holds a stone in his hand does he do anything but give it a force impelling [virtù impellente] it upwards equal to the power [facoltà] of gravity drawing it downwards? And do you not continuously impress this force [virtù] upon the stone as long as you hold it in the hand? Does it perhaps diminish with the time during which one holds the stone?

And what does it matter whether this support which prevents the stone from falling is furnished by one's hand or by a table or by a rope from which it hangs? Certainly nothing at all. You must conclude, therefore, Simplicio, that it makes no difference whatever whether the fall of the stone is preceded by a period of rest which is long, short, or instantaneous provided only the fall does not take place so long as the stone is acted upon by a force [virtù] opposed to its weight and sufficient to hold it at rest.

SALV.

The present does not seem to be the proper time to investigate the cause of the acceleration of natural motion concerning which various opinions have been expressed by various philosophers, some explaining it by attraction to the center, others to repulsion between the very small parts of the body, while still others attribute it to a certain stress in the surrounding medium which closes in behind the falling body and drives it from one of its positions to another. Now, all these fantasies, and others too, ought to be examined; but it is not really worth while. At present it is the purpose of our Author merely to investigate and to demonstrate some of the properties of accelerated motion (whatever the cause of this acceleration may be)—meaning thereby a motion, such that the momentum of its velocity [i momenti della sua velocità] goes on increasing after departure from rest, in simple proportionality to the time, which is the same as saying that in equal time-intervals the body receives equal increments of velocity; and if we find the properties [of accelerated motion] which will be demonstrated later are realized in freely falling and accelerated bodies, we may conclude that the assumed definition includes such a motion of falling bodies and that their speed [accelerazione] goes on increasing as the time and the duration of the motion

So far as I see at present, the definition might have been put a little more clearly perhaps without changing the fundamental idea, namely, uniformly accelerated motion is such that its speed increases in proportion to the space traversed; so that, for example, the speed acquired by a body in falling four cubits would be double that acquired in falling two cubits and this latter speed would be double that acquired in the first cubit. Because there is no doubt but that a heavy body falling from the height of six cubits has, and strikes with, a momentum [*impeto*] double that it had at the end of three cubits, triple that which it had at the end of one.

It is very comforting to me to have had such a companion in error; and moreover let me tell you that your proposition seems so highly probable that our Author himself admitted, when I advanced this opinion to him, that he had for some time shared the same fallacy. But what most surprised me was to see two propositions so inherently probable that they commanded the assent of everyone to whom they were presented, proven in a few simple words to be not only false, but impossible.

SIMP.

I am one of those who accept the proposition, and believe that a falling body acquires force [vires] in its descent, its velocity increasing in proportion to the space, and that the momentum [momento] of the falling body is doubled when it falls from a doubled height; these propositions, it appears to me, ought to be conceded without hesitation or controversy.

SALV.

And yet they are as false and impossible as that motion should be completed instantaneously; and here is a very clear demonstration of it. If the velocities are in proportion to the spaces traversed, or to be traversed, then these spaces are traversed in equal intervals of time; if, therefore, the velocity with which the falling body traverses a space of eight feet were double that with which it covered the first four feet (just as the one distance is double the other) then the time-intervals required for these passages would be equal. But for one and the same body to fall eight feet and four feet in the same time is possible only in the case of instantaneous [discontinuous] motion;[204] but observation shows us that the motion of a falling body occupies time, and less of it in covering a distance of four feet than of eight feet; therefore it is not true that its velocity increases in proportion to the space.

The falsity of the other proposition may be shown with equal clearness. For if we consider a single striking body the difference of momentum in its blows can depend only upon difference of velocity; for if the striking body falling from a double height were to deliver a blow of double momentum, it would be necessary for this body to strike with a doubled velocity; but with this doubled speed it would traverse a doubled space in the same time-interval; observation however shows that the time required for fall from the greater height is longer.

SAGR.

You present these recondite matters with too much evidence and ease; this great facility makes them less appreciated than they would be had they been presented in a more abstruse manner. For, in my opinion, people esteem more lightly that knowledge which they acquire with so little labor than that acquired through long and obscure discussion

If those who demonstrate with brevity and clearness the fallacy of many popular beliefs were treated with contempt instead of gratitude the injury would be quite bearable; but on the other hand it is very unpleasant and annoying to see men, who claim to be peers of anyone in a certain field of study, take for granted certain conclusions which later are quickly and easily shown by another to be false. I do not describe such a feeling as one of envy, which usually degenerates into hatred and anger against those who discover such fallacies; I would call it a strong desire to maintain old errors, rather than accept newly discovered truths. This desire at times induces them to unite against these truths, although at heart believing in them, merely for the purpose of lowering the esteem in which certain others are held by the unthinking crowd. Indeed, I have heard from our Academician many such fallacies held as true but easily refutable; some of these I have in mind.

SAGR.

You must not withhold them from us, but, at the proper time, tell us about them even though an extra session be necessary. But now, continuing the thread of our talk, it would[205] seem that up to the present we have established the definition of uniformly accelerated motion which is expressed as follows:

A motion is said to be equally or uniformly accelerated when, starting from rest, its momentum (*celeritatis momenta*) receives equal increments in equal times.

SALV.

This definition established, the Author makes a single assumption, namely,

The speeds acquired by one and the same body moving down planes of different inclinations are equal when the heights of these planes are equal.

By the height of an inclined plane we mean the perpendicular let fall from the upper end of the plane upon the horizontal line drawn through the lower end of the same plane. Thus, to illustrate, let the line AB be horizontal, and let the planes CA and CD be inclined to it; then the Author calls the perpendicular CB the "height" of the planes CA and CD; he supposes that the speeds acquired by one and the same body, descending along the planes CA and CD to the terminal points A and D are equal since the heights of these planes are the same, CB; and also it must be understood that this speed is that which would be acquired by the same body falling from C to B.

SAGR.

Your assumption appears to me so reasonable that it ought to be conceded without question, provided of course there are no chance or outside resistances, and that the planes are hard and smooth, and that the figure of the moving body is perfectly round, so that neither plane nor moving body is rough. All resistance and opposition having been removed, my reason tells me at once that a heavy and perfectly round ball

descending along the lines CA, CD, CB would reach the terminal points A, D, B, with equal momenta [impeti eguali].

Fig. 45

SALV.

Your words are very plausible; but I hope by experiment to increase the probability to an extent which shall be little short of a rigid demonstration.

Fig. 46

This experiment leaves no room for doubt as to the truth of our supposition; for since the two arcs CB and DB are equal and similarly placed, the momentum [momento] acquired by the fall through the arc CB is the same as that gained by fall through the arc DB; but the momentum [momento] acquired at B, owing to fall through CB, is able to lift the same body [mobile] through the arc BD; therefore, the momentum acquired in the fall BD is equal to that which lifts the same body through the same arc from B to D; so, in general, every momentum acquired by fall through an arc is equal to that which can lift the same body through the same arc. But all these momenta [momenti] which cause a rise through the arcs BD, BG, and BI are equal, since they are produced by the same momentum, gained by fall through CB, as experiment shows. Therefore all the momenta gained by fall through the arcs DB, GB, IB are equal.

SAGR.

The argument seems to me so conclusive and the experiment so well adapted to establish the hypothesis that we may, indeed, consider it as demonstrated.

SALV.

I do not wish, Sagredo, that we trouble ourselves too much about this matter, since we are going to apply this principle mainly in motions which occur on plane surfaces, and

not upon curved, along which acceleration varies in a manner greatly different from that which we have assumed for planes.

So that, although the above experiment shows us that the descent of the moving body through the arc CB confers upon it momentum [momento] just sufficient to carry it to the same height through any of the arcs BD, BG, BI, we are not able, by similar means, to show that the event would be identical in the case of a perfectly round ball descending along planes whose inclinations are respectively the same as the chords of these arcs. It seems likely, on the other hand, that, since these planes form angles at the point B, they will present an obstacle to the ball which has descended along the chord CB, and starts to rise along the chord BD, BG, BI.

In striking these planes some of its momentum [impeto] will be lost and it will not be able to rise to the height of the line CD; but this obstacle, which interferes with the experiment, once removed, it is clear that the momentum [impeto] (which gains[208] in strength with descent) will be able to carry the body to the same height. Let us then, for the present, take this as a postulate, the absolute truth of which will be established when we find that the inferences from it correspond to and agree perfectly with experiment. The author having assumed this single principle passes next to the propositions which he clearly demonstrates; the first of these is as follows:

Theorem I, Proposition I

The time in which any space is traversed by a body starting from rest and uniformly accelerated is equal to the time in which that same space would be traversed by the same body moving at a uniform speed whose value is the mean of the highest speed and the speed just before acceleration began.

Let us represent by the line AB the time in which the space CD is traversed by a body which starts from rest at C and is uniformly accelerated; let the final and highest value of the speed gained during the interval AB be represented by the line EB drawn at right angles to AB; draw the line AE, then all lines drawn from equidistant points on AB and parallel to BE will represent the increasing values of the speed, beginning with the instant A. Let the point F bisect the line EB; draw FG parallel to BA, and GA parallel to FB, thus forming a parallel-ogram AGFB which will be equal in area to the triangle AEB, since the side GF bisects the side AE at the point I; for if the parallel lines in the triangle AEB are extended to GI, then the sum of all the parallels contained in the quadrilateral is equal to the sum of those contained in the triangle AEB; for those in the triangle IEF are equal to those contained in the triangle GIA, while those included in the trapezium AIFB are common. Since each and every instant of time in the time-interval AB has its corresponding point on the line AB, from which points parallels drawn in and limited by the triangle AEB represent the increasing values of the growing velocity, and since parallels contained within the rectangle represent the values of a speed which is not increasing, but constant, it appears, in like manner, that the momenta [momenta] assumed by the moving body may also be represented, in the case of the accelerated motion, by the increasing parallels of the triangle [209] AEB, and, in the case of the uniform motion, by the parallels of the rectangle GB. For, what the momenta may lack in the first part of the

accelerated motion (the deficiency of the momenta being represented by the parallels of the triangle AGI) is made up by the momenta represented by the parallels of the triangle IEF.

Fig. 47

Hence it is clear that equal spaces will be traversed in equal times by two bodies, one of which, starting from rest, moves with a uniform acceleration, while the momentum of the other, moving with uniform speed, is one-half its maximum momentum under accelerated motion.

q. e. d.

Theorem II, Proposition II

The spaces described by a body falling from rest with a uniformly accelerated motion are to each other as the squares of the time-intervals employed in traversing these distances.

Let the time beginning with any instant A be represented by the straight line AB in which are taken any two time-intervals AD and AE. Let HI represent the distance through which the body, starting from rest at H, falls with uniform acceleration. If HL represents the space traversed during the time-interval AD, and HM that covered during the interval AE, then the space MH stands to the space LH in a ratio which is the square of the ratio of the time AE to the time AD; or we may say simply that the distances HM and HL are related as the squares of AE and AD.

Fig. 48

Draw the line AC making any angle whatever with the line AB; and from the points D and E, draw the parallel lines DO and EP; of these two lines, DO represents the greatest velocity attained during the interval AD, while EP represents the maximum velocity acquired during the interval AE. But it has just been proved that so far as distances traversed are concerned it is precisely the same whether a body falls from rest with a uniform acceleration or whether it falls during an equal time-interval with a constant speed which is one-half the maximum speed attained during the accelerated motion. It follows therefore that the distances HM and HL are the same as would be traversed, during the time-intervals AE and AD, by uniform velocities equal to one-half those represented by DO and EP respectively. If, therefore, one can show that the distances HM and HL are in the same ratio as the squares of the time-intervals AE and AD, our proposition will be proven.

q. e. d.

Evidently then the ratio of the distances is the square of the ratio of the final velocities, that is, of the lines EP and DO, since these are to each other as AE to AD.

COROLLARY I

Hence it is clear that if we take any equal intervals of time whatever, counting from the beginning of the motion, such as AD, DE, EF, FG, in which the spaces HL, LM, MN, NI are traversed, these spaces will bear to one another the same ratio as the series of odd numbers, 1, 3, 5, 7; for this is the ratio of the differences of the squares of the lines [which represent time], differences which exceed one another by equal amounts, this excess being equal to the smallest line [viz. the one representing a single

time-interval]: or we may say [that this is the ratio] of the differences of the squares of the natural numbers beginning with unity.

While, therefore, during equal intervals of time the velocities increase as the natural numbers, the increments in the distances traversed during these equal time-intervals are to one another as the odd numbers beginning with unity.

SAGR.

Please suspend the discussion for a moment since there just occurs to me an idea which I want to illustrate by means of a diagram in order that it may be clearer both to you and to me.

Let the line AI represent the lapse of time measured from the initial instant A; through A draw the straight line AF making any angle whatever; join the terminal points I and F; divide the time AI in half at C; draw CB parallel to IF. Let us consider CB as the maximum value of the velocity which increases from zero at the beginning, in simple proportionality to the intercepts on the triangle ABC of lines drawn parallel to BC; or what is the same thing, let us suppose the velocity to increase in proportion to the time; then I admit without question, in view of the preceding argument, that the space described by a body falling in the aforesaid manner will be equal to the space traversed by the same body during the same length of time travelling with a uniform speed equal to EC, the half of BC. Further let us imagine that the [211] body has fallen with accelerated motion so that, at the instant C, it has the velocity BC. It is clear that if the body continued to descend with the same speed BC, without acceleration, it would in the next time-interval CI traverse double the distance covered during the interval AC, with the uniform speed EC which is half of BC; but since the falling body acquires equal increments of speed during equal increments of time, it follows that the velocity BC, during the next time-interval CI will be increased by an amount represented by the parallels of the triangle BFG which is equal to the triangle ABC. If, then, one adds to the velocity GI half of the velocity FG, the highest speed acquired by the accelerated motion and determined by the parallels of the triangle BFG, he will have the uniform velocity with which the same space would have been described in the time CI; and since this speed IN is three times as great as EC it follows that the space described during the interval CI is three times as great as that described during the interval AC. Let us imagine the motion extended over another equal time-interval IO, and the triangle extended to APO; it is then evident that if the motion continues during the interval IO, at the constant rate IF acquired by acceleration during the time AI, the space traversed during the interval IO will be four times that traversed during the first interval AC, because the speed IF is four times the speed EC. But if we enlarge our triangle so as to include FPQ which is equal to ABC, still assuming the acceleration to be constant, we shall add to the uniform speed an increment RQ, equal to EC; then the value of the equivalent uniform speed during the time-interval IO will be five times that during the first time-interval AC; therefore the space traversed will be quintuple that during the first interval AC. It is thus evident by simple computation that a moving body starting from rest and acquiring velocity at a rate proportional to the time, will, during equal intervals of time, traverse distances which are related to each other as the odd numbers beginning with unity, 1, 3, 5;* or considering the total

space traversed, that covered[212] in double time will be quadruple that covered during unit time; in triple time, the space is nine times as great as in unit time. And in general the spaces traversed are in the duplicate ratio of the times, i. e., in the ratio of the squares of the times.

Fig. 49

SIMP.

In truth, I find more pleasure in this simple and clear argument of Sagredo than in the Author's demonstration which to me appears rather obscure; so that I am convinced that matters are as described, once having accepted the definition of uniformly accelerated motion. But as to whether this acceleration is that which one meets in nature in the case of falling bodies, I am still doubtful; and it seems to me, not only for my own sake but also for all those who think as I do, that this would be the proper moment to introduce one of those experiments—and there are many of them, I understand—which illustrate in several ways the conclusions reached.

SALV.

The request which you, as a man of science, make, is a very reasonable one; for this is the custom—and properly so—in those sciences where mathematical demonstrations are applied to natural phenomena, as is seen in the case of perspective, astronomy, mechanics, music, and others where the principles, once established by well-chosen experiments, become the foundations of the entire superstructure. I hope therefore it will not appear to be a waste of time if we discuss at considerable length this first and most fundamental question upon which hinge numerous consequences of which we have in this book only a small number, placed there by the Author, who has done so much to open a pathway hitherto closed to minds of speculative turn. So far as experiments go they have not been neglected by the Author; and often, in his

company, I have attempted in the following manner to assure myself that the acceleration actually experienced by falling bodies is that above described.

A piece of wooden moulding or scantling, about 12 cubits long, half a cubit wide, and three finger-breadths thick, was taken; on its edge was cut a channel a little more than one finger in breadth; having made this groove very straight, smooth, and polished, and having lined it with parchment, also as smooth and polished as possible, we rolled along it a hard, smooth, and very round bronze ball. Having placed this[213] board in a sloping position, by lifting one end some one or two cubits above the other, we rolled the ball, as I was just saying, along the channel, noting, in a manner presently to be described, the time required to make the descent. We repeated this experiment more than once in order to measure the time with an accuracy such that the deviation between two observations never exceeded one-tenth of a pulse-beat. Having performed this operation and having assured ourselves of its reliability, we now rolled the ball only one-quarter the length of the channel; and having measured the time of its descent, we found it precisely one-half of the former. Next we tried other distances, comparing the time for the whole length with that for the half, or with that for two-thirds, or three-fourths, or indeed for any fraction; in such experiments, repeated a full hundred times, we always found that the spaces traversed were to each other as the squares of the times, and this was true for all inclinations of the plane, i. e., of the channel, along which we rolled the ball. We also observed that the times of descent, for various inclinations of the plane, bore to one another precisely that ratio which, as we shall see later, the Author had predicted and demonstrated for them.

For the measurement of time, we employed a large vessel of water placed in an elevated position; to the bottom of this vessel was soldered a pipe of small diameter giving a thin jet of water, which we collected in a small glass during the time of each descent, whether for the whole length of the channel or for a part of its length; the water thus collected was weighed, after each descent, on a very accurate balance; the differences and ratios of these weights gave us the differences and ratios of the times, and this with such accuracy that although the operation was repeated many, many times, there was no appreciable discrepancy in the results.

SIMP.

I would like to have been present at these experiments; but feeling confidence in the care with which you performed them, and in the fidelity with which you relate them, I am satisfied and accept them as true and valid

SALV.

Then we can proceed without discussion.

Secondly, it follows that, starting from any initial point, if we take any two distances, traversed in any time-intervals whatsoever, these time-intervals bear to one another the same ratio as one of the distances to the mean proportional of the two distances.

For if we take two distances ST and SY measured from the initial point S, the mean proportional of which is SX, the time of fall through ST is to the time of fall through SY as ST is to SX; or one may say the time of fall through SY is to the time of fall through ST as SY is to SX. Now since it has been shown that the spaces traversed are in the same ratio as the squares of the times; and since, moreover, the ratio of the space SY to the space ST is the square of the ratio SY to SX, it follows that the ratio of the times of fall through SY and ST is the ratio of the respective distances SY and SX.

Fig. 50

SCHOLIUM

The above corollary has been proven for the case of vertical fall; but it holds also for planes inclined at any angle; for it is to be assumed that along these planes the velocity increases in the same ratio, that is, in proportion to the time, or, if you prefer, as the series of natural numbers.*

SALV.

Here, Sagredo, I should like, if it be not too tedious to Simplicio, to interrupt for a moment the present discussion in order to make some additions on the basis of what has already been proved and of what mechanical principles we have already learned from our Academician. This addition I make for the better establishment on logical and experimental grounds, of the principle which we have above considered; and what is more important, for the purpose of deriving it geometrically, after first demonstrating a single lemma which is fundamental in the science of motion [impeti].

SAGR.

If the advance which you propose to make is such as will confirm and fully establish these sciences of motion, I will gladly devote to it any length of time. Indeed, I shall not only[215] be glad to have you proceed, but I beg of you at once to satisfy the curiosity which you have awakened in me concerning your proposition; and I think that Simplicio is of the same mind.

SIMP.

Quite right.

SALV.

Since then I have your permission, let us first of all consider this notable fact, that the momenta or speeds [*i momenti o le velocità*] of one and the same moving body vary with the inclination of the plane.

The speed reaches a maximum along a vertical direction, and for other directions diminishes as the plane diverges from the vertical. Therefore the impetus, ability, energy, [l'impeto, il talento, l'energia] or, one might say, the momentum [il momento] of descent of the moving body is diminished by the plane upon which it is supported and along which it rolls.

For the sake of greater clearness erect the line AB perpendicular to the horizontal AC; next draw AD, AE, AF, etc., at different inclinations to the horizontal. Then I say that all the momentum of the falling body is along the vertical and is a maximum when it falls in that direction; the momentum is less along DA and still less along EA, and even less yet along the more inclined plane FA. Finally on the horizontal plane the momentum vanishes altogether; the body finds itself in a condition of indifference as to motion or rest; has no inherent tendency to move in any direction, and offers no resistance to being set in motion. For just as a heavy body or system of bodies cannot of itself move upwards, or recede from the common center [comun centro] toward which all heavy things tend, so it is impossible for any body of its own accord to assume any motion other than one which carries it nearer to the aforesaid common center. Hence, along the horizontal, by which we understand a surface, every point of which is equidistant from this same common center, the body will have no momentum whatever.

Fig. 51

It is clear that the impelling force [impeto] acting on a body in descent is equal to the resistance or least force [resistenza o forza minima] sufficient to hold it at rest. In order to measure this force and resistance [forza e resistenza] I propose to use the weight of another body. Let us place upon the plane FA a body G connected to the weight H by means of a cord passing over the point F; then the body H will ascend or

descend, along the perpendicular, the same distance which the body G ascends or descends along the inclined plane FA; but this distance will not be equal to the rise or fall of G along the vertical in which direction alone G, as other bodies, exerts its force [resistenza]. This is clear. For if we consider the motion of the body G, from A to F, in the triangle AFC to be made up of a horizontal component AC and a vertical component CF, and remember that this body experiences no resistance to motion along the horizontal (because by such a[217] motion the body neither gains nor loses distance from the common center of heavy things) it follows that resistance is met only in consequence of the body rising through the vertical distance CF. Since then the body G in moving from A to F offers resistance only in so far as it rises through the vertical distance CF, while the other body H must fall vertically through the entire distance FA, and since this ratio is maintained whether the motion be large or small, the two bodies being inextensibly connected, we are able to assert positively that, in case of equilibrium (bodies at rest) the momenta, the velocities, or their tendency to motion [propensioni al moto], i. e., the spaces which would be traversed by them in equal times, must be in the inverse ratio to their weights. This is what has been demonstrated in every case of mechanical motion.* So that, in order to hold the weight G at rest, one must give H a weight smaller in the same ratio as the distance CF is smaller than FA. If we do this, FA:FC=weight G:weight H; then equilibrium will occur, that is, the weights H and G will have the same impelling forces [momenti eguali], and the two bodies will come to rest.

And since we are agreed that the impetus, energy, momentum or tendency to motion of a moving body is as great as the force or least resistance [forza o resistenza minima] sufficient to stop it, and since we have found that the weight H is capable of preventing motion in the weight G, it follows that the less weight H whose entire force [momento totale] is along the perpendicular, FC, will be an exact measure of the component of force [momento parziale] which the larger weight G exerts along the plane FA. But the measure of the total force [total momento] on the body G is its own weight, since to prevent its fall it is only necessary to balance it with an equal weight, provided this second weight be free to move vertically; therefore the component of the force [momento parziale] on G along the inclined plane FA will bear to the maximum and total force on this same body G along the perpendicular FC the same ratio as the weight H to the weight G. This ratio is, by construction, the same which the height, FC, of the inclined plane bears to the length FA. We have here the lemma which I proposed to demonstrate and which, as you will see, has been assumed by our Author in the second part of the sixth proposition of the present treatise.

SAGR.

From what you have shown thus far, it appears to me that one might infer, arguing *ex aequali con la proportione perturbata*, that the tendencies [*momenti*] of one and the same body to move along planes differently inclined, but having the same vertical height, as FA and FI, are to each other inversely as the lengths of the planes.

Perfectly right. This point established, I pass to the demonstration of the following theorem:

If a body falls freely along smooth planes inclined at any angle whatsoever, but of the same height, the speeds with which it reaches the bottom are the same.

First we must recall the fact that on a plane of any inclination whatever a body starting from rest gains speed or momentum [la quantita dell'impeto] in direct proportion to the time, in agreement with the definition of naturally accelerated motion given by the Author. Hence, as he has shown in the preceding proposition, the distances traversed are proportional to the squares of the times and therefore to the squares of the speeds. The speed relations are here the same as in the motion first studied [i. e., vertical motion], since in each case the gain of speed is proportional to the time.

Let AB be an inclined plane whose height above the level BC is AC. As we have seen above the force impelling [l'impeto] a body to fall along the vertical AC is to the force which drives the same body along the inclined plane AB as AB is to AC. On the incline AB, lay off AD a third proportional to AB and AC; then the force producing motion along AC is to that along AB (i. e., along AD) as the length AC is to the length AD. And therefore the body will traverse the space AD, along the incline AB, in the same time which it would occupy in falling the vertical distance AC, (since the forces [momenti] are in the same ratio as these distances); also the speed at C is to the speed at D as the distance AC is to the distance AD. But, according to the definition of accelerated motion, the speed at B is to the speed of the same body at D as the time required to traverse AB is to the time required for AD; and, according to the last corollary of the second proposition, the time of passing through the distance AB bears to the time of passing through AD the same ratio as the distance AC (a mean proportional between AB and AD) to AD. Accordingly the two speeds at B and C each bear to the speed at D the same ratio, namely, that of the distances AC and AD; hence they are equal. This is the theorem which I set out to prove.

Fig. 52

From the above we are better able to demonstrate the following third proposition of the Author in which he employs the following principle, namely, the time required to traverse an inclined plane is to that required to fall through the vertical height of the plane in the same ratio as the length of the plane to its height.

In like manner it can be shown that the time required to fall through AC is to the time required for any other incline AE as the length AC is to the length AE; therefore, *ex aequali*, the time of fall along the incline AB is to that along AE as the distance AB is to the distance AE, etc.*

One might by application of this same theorem, as Sagredo will readily see, immediately demonstrate the sixth proposition of the Author; but let us here end this digression which Sagredo has perhaps found rather tedious, though I consider it quite important for the theory of motion.

SAGR.

On the contrary it has given me great satisfaction, and indeed I find it necessary for a complete grasp of this principle.

SALV.

I will now resume the reading of the text.

If one and the same body, starting from rest, falls along an inclined plane and also along a vertical, each having the same height, the times of descent will be to each other as the lengths of the inclined plane and the vertical.

Let AC be the inclined plane and AB the perpendicular, each having the same vertical height above the horizontal, namely, BA; then I say, the time of descent of one and the same body [216] along the plane AC bears a ratio to the time of fall along the perpendicular AB, which is the same as the ratio of the length AC to the length AB. Let DG, EI and LF be any lines parallel to the horizontal CB; then it follows from what has preceded that a body starting from A will acquire the same speed at the point G as at D, since in each case the vertical fall is the same; in like manner the speeds at I and E will be the same; so also those at L and F. And in general the speeds at the two extremities of any parallel drawn from any point on AB to the corresponding point on AC will be equal.

Fig. 53

Thus the two distances AC and AB are traversed at the same speed. But it has already been proved[217] that if two distances are traversed by a body moving with equal speeds, then the ratio of the times of descent will be the ratio of the distances themselves; therefore, the time of descent along AC is to that along AB as the length of the plane AC is to the vertical distance AB.

It seems to me that the above could have been proved clearly and briefly on the basis of a proposition already demonstrated, namely, that the distance traversed in the case of accelerated motion along AC or AB is the same as that covered[219] by a uniform speed whose value is one-half the maximum speed, CB; the two distances AC and AB having been traversed at the same uniform speed it is evident, from Proposition I, that the times of descent will be to each other as the distances.

COROLLARY

Hence we may infer that the times of descent along planes having different inclinations, but the same vertical height stand to one another in the same ratio as the lengths of the planes. For consider any plane AM extending from A to the horizontal CB; then it may be demonstrated in the same manner that the time of descent along AM is to the time along AB as the distance AM is to AB; but since the time along AB is to that along AC as the length AB is to the length AC, it follows, *ex æquali*, that as AM is to AC so is the time along AM to the time along AC.

Theorem IV, Proposition IV

The times of descent along planes of the same length but of different inclinations are to each other in the inverse ratio of the square roots of their heights

From a single point B draw the planes BA and BC, having the same length but different inclinations; let AE and CD be horizontal lines drawn to meet the perpendicular BD; and[220] let BE represent the height of the plane AB, and BD the height of BC; also let BI be a mean proportional to BD and BE; then the ratio of BD to BI is equal to the square root of the ratio of BD to BE. Now, I say, the ratio of the times of descent along BA and BC is the ratio of BD to BI; so that the time of descent along BA is related to the height of the other plane BC, namely BD as the time along BC is related to the height BI. Now it must be proved that the time of descent along BA is to that along BC as the length BD is to the length BI.

Fig. 54

Draw IS parallel to DC; and since it has been shown that the time of fall along BA is to that along the vertical BE as BA is to BE; and also that the time along BE is to that

along BD as BE is to BI; and likewise that the time along BD is to that along BC as BD is to BC, or as BI to BS; it follows, *ex æquali*, that the time along BA is to that along BC as BA to BS, or BC to BS. However, BC is to BS as BD is to BI; hence follows our proposition.

Theorem V, Proposition V

The times of descent along planes of different length, slope and height bear to one another a ratio which is equal to the product of the ratio of the lengths by the square root of the inverse ratio of their heights.

Fig. 55

Theorem VI, Proposition VI

If from the highest or lowest point in a vertical circle there be drawn any inclined planes meeting the circumference the times of descent along these chords are each equal to the other.

By use of the principles of mechanics [*ex mechanicis*] one may obtain the same result, namely, that a falling body will require equal times to traverse the distances CA and DA, indicated in the following figure. Lay off BA equal to DA, and let fall the[222] perpendiculars BE and DF; it follows from the principles of mechanics that the component of the momentum [*momentum ponderis*] acting along the inclined plane ABC is to the total momentum [i. e., the momentum of the body falling freely] as BE is to BA; in like manner the momentum along the plane AD is to its total momentum [i. e., the momentum of the body falling freely] as DF is to DA, or to BA. Therefore the momentum of this same weight along the plane DA is to that along the plane ABC as the length DF is to the length BE; for this reason, this same weight will in equal times according to the second proposition of the first book, traverse spaces along the planes CA and DA which are to each other as the lengths BE and DF. But it can be shown that CA is to DA as BE is to DF. Hence the falling body will traverse the two paths CA and DA in equal times.

Fig. 57

Moreover the fact that CA is to DA as BE is to DF may be demonstrated as follows: Join C and D; through D, draw the line DGL parallel to AF and cutting the line AC in I; through B draw the line BH, also parallel to AF. Then the angle ADI will be equal to the angle DCA, since they subtend equal arcs LA and DA, and since the angle DAC is common, the sides of the triangles, CAD and DAI, about the common angle will be proportional to each other; accordingly as CA is to DA so is DA to IA, that is as BA is to IA, or as HA is to GA, that is as BE is to DF.

e. d.

The same proposition may be more easily demonstrated as follows: On the horizontal line AB draw a circle whose diameter DC is vertical. From the upper end of this diameter draw any inclined plane, DF, extending to meet the circumference; then, I say, a body will occupy the same time in falling along the plane DF as along the diameter DC. For draw FG parallel to AB and perpendicular to DC; join FC; and since the time of fall along DC is to that along DG as the mean proportional[223] between CD and GD is to GD itself; and since also DF is a mean proportional between DC and DG, the angle DFC inscribed in a semicircle being a right-angle, and FG being perpendicular to DC, it follows that the time of fall along DC is to that along DG as the length FD is to GD. But it has already been demonstrated that the time of descent along DF is to that along DG as the length DF is to DG; hence the times of descent along DF and DC each bear to the time of fall along DG the same ratio; consequently they are equal.

In like manner it may be shown that if one draws the chord CE from the lower end of the diameter, also the line EH parallel to the horizon, and joins the points E and D, the time of descent along EC, will be the same as that along the diameter, DC.