International Rectifier

IRLML2502

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- N-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching

Description

These N-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3™, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	20	V
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 4.5V	4.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	3.4	Α
I _{DM}	Pulsed Drain Current ①	33	
P _D @T _A = 25°C	Power Dissipation	1.25	W
$P_D @ T_A = 70 ° C$	Power Dissipation	0.8	VV
	Linear Derating Factor	0.01	W/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	75	100	°C/W

Electrical Characteristics @ T₁ = 25°C (unless otherwise specified)

Licetifica	Licetrical Grandeterratios @ 1j = 25 0 (unicas otherwise specifica)						
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.01		V/°C	Reference to 25°C, I _D = 1mA	
D	Static Drain-to-Source On-Resistance		0.035	0.045		V _{GS} = 4.5V, I _D = 4.2A ②	
R _{DS(on)}	Static Drain-to-Source Off-resistance		0.050	0.080	Ω	V _{GS} = 2.5V, I _D = 3.6A ②	
V _{GS(th)}	Gate Threshold Voltage	0.60		1.2	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$	
g _{fs}	Forward Transconductance	5.8			S	$V_{DS} = 10V, I_D = 4.0A$	
1	Drain-to-Source Leakage Current			1.0		V _{DS} = 16V, V _{GS} = 0V	
I _{DSS}	Diali-to-Source Leakage Current		25 μ ^μ	μA	V _{DS} = 16V, V _{GS} = 0V, T _J = 70°C		
Lana	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V	
I _{GSS}	Gate-to-Source Reverse Leakage			100	IIA	V _{GS} = 12V	
Qg	Total Gate Charge		8.0	12		$I_D = 4.0A$	
Q _{gs}	Gate-to-Source Charge		1.8	2.7	nC	$V_{DS} = 10V$	
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.7	2.6		V _{GS} = 5.0V ②	
t _{d(on)}	Turn-On Delay Time		7.5			$V_{DD} = 10V$	
t _r	Rise Time		10		ns	$I_{D} = 1.0A$	
t _{d(off)}	Turn-Off Delay Time		54		115	$R_G = 6\Omega$	
t _f	Fall Time		26			$R_D = 10\Omega$ ②	
C _{iss}	Input Capacitance		740			$V_{GS} = 0V$	
Coss	Output Capacitance		90		pF	V _{DS} = 15V	
C _{rss}	Reverse Transfer Capacitance		66			f = 1.0MHz	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current					MOSFET symbol
	(Body Diode)			1.3	A	showing the
I _{SM}	Pulsed Source Current			20	1 ^	integral reverse
	(Body Diode) ①	Diode) ① 33	33	p-n junction diode.		
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 1.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		16	24	ns	$T_J = 25^{\circ}C, I_F = 1.3A$
Q _{rr}	Reverse Recovery Charge		8.6	13	nC	di/dt = 100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Pulse width $\leq 300\mu$ s; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 11. On-Resistance Vs. Gate Voltage

Fig 12. On-Resistance Vs. Drain Current

International

TOR Rectifier

IRLML2502

Micro3™ Package Outline

Dimensions are shown in millimeters (inches)

DIM	INC	HES	MILLIMETERS			
	MIN	MAX	MIN	MAX		
Α	.032	.044	0.82	1.11		
A1	.001	.004	0.02	0.10		
В	.015	.021	0.38	0.54		
С	.004	.006	0.10	0.15		
D	.105	.120	2.67	3.05		
е	.0750	BASIC	1.90 BA	1.90 BASIC		
e1	.0375	BASIC	0.95 BASIC			
Е	.047	.055	1.20	1.40		
Н	.083	.098	2.10	2.50		
L	.005	.010	0.13	0.25		
θ	0°	8°	0°	8°		

- NOTES:
 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
 2. CONTROLLING DIMENSION: INCH.
 3 DIMENSIONS DO NOT INCLUDE MOLD FLASH.

Part Marking Information

International

TOR Rectifier

Micro3™

Notes: This part marking information applies to devices produced before 02/26/2001

EXAMPLE: THIS IS AN IRLML6302

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YEAR	Υ	WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
1994	4	04	D
1995	5		
1996	6		
1997	7		
1998	8	1	
1999	9	1	7
2000	0	24	X
		25	Υ
		26	7

PART NUMBER CODE REFERENCE:

1A = IRLML2402 1B = IRLML2803 1C = IRLML6302 1D = IRLML5103 1E = IRLML6402 1F = IRLML6401 1G = IRLML2502 1H = IRLML5202

WW = (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
1994	D	30	D
1995	E		
1996	F		
1997	G		
1998	Н	1	1
1999	J		7
2000	K	50	X
		51	Υ
		52	Z

DATE CODE EXAMPLES:

YWW = 9503 = 5C YWW = 9532 = EF

Notes: This part marking information applies to devices produced after 02/26/2001

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

PART NUMBER CODE REFERENCE:

A= IRLML2402 B= IRLML2803 C= IRLML6302 D= IRLML5103 E= IRLML6402 F= IRLML6401 G= IRLML2502 H= IRLML5203

W= (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
1994	D	30	D
1995	Е		
1996	F		
1997	G		
1998	Н	1	1
1999	J	7	7
2000	K	50	Χ
		51	Υ
		52	Z

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 04/03