學號: B03902013 系級: 資工四 姓名: 吳克駿

1.(1%) 請說明你實作的 RNN model, 其模型架構、訓練過程和準確率為何?

Collaborators: 助教 code

答:

模型架構:

Layer (type)	Output Shape	Param #
lstm_1 (LSTM)	(None, 64)	82176
activation_1 (Activation)	(None, 64)	0
dense_1 (Dense)	(None, 16)	1040
dropout_1 (Dropout)	(None, 16)	0
activation_2 (Activation)	(None, 16)	0
dense_2 (Dense)	(None, 1)	17
activation_3 (Activation)	(None, 1)	0
Total params: 83,233 Trainable params: 83,233 Non-trainable params: 0		

訓練過程:

先將所有的 training data,包含 label 及 nolabel,將每個詞彙透過 gensim 訓練成 256 維的 word embedding vector

在 preprocess 時設定每一行最多 25 個字,空白補 0,確保每一個句子都是 25*256 維的向量過一層 LSTM,兩層 DNN,使用 binary_crossentropy 計算損失函數,優化器使用 adam 取 190000 個 training data,10000 個 validation data

Epoch=50,batch=128,dropout=0.4,會在中間紀錄 validation 成績最好的 model

準確率:

Training Accuracy	Validation Accuracy	Public Score	Private Score
0.8538	0.8202	0.81860	0.81662

2.(1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何?

Collaborators: Self

答:

模型架構:

ee on your noemene one cours	Spece	op or o compositions	•
Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	512)	1049600
activation_1 (Activation)	(None,	512)	0
dropout_1 (Dropout)	(None,	512)	0
dense_2 (Dense)	(None,	1)	513
activation_2 (Activation)	(None,	1)	0
Total params: 1,050,113 Trainable params: 1,050,113 Non-trainable params: 0			

訓練過程:

由於訓練量極大,且詞彙過多,因此我只選取出現次數最多的 2048 個詞彙做 BOW 的 index,而由 於矩陣並無排列關係,因此沒有選用 CNN,而是直接兩層 DNN,由 2048 維降為 1 維。

使用 binary_crossentropy 計算損失函數,優化器使用 adam

取 190000 個 training data, 10000 個 validation data

Epoch=50,batch=128,dropout=0.4,會在中間紀錄 validation 成績最好的 model

準確率:

Training Accuracy	Validation Accuracy	Public Score	Private Score
0.9709	0.7897	0.77303	0.77303

也因為字詞互相沒有關係,單純是以出現的多寡當作是依據,因此效果並不好

3.(1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

Collaborators: Self

答:

	today is a good	Today is hot
RNN	0.9514	0.8448
BOW	0.3357	0.3357

由於 RNN 所使用的 word embedding vector 有詞語次序的關係,因此比較能正確判斷出語氣,做出來 的結果也顯示,雖然分數不太一致,有可能是因為第一句話一開始就說今天是好天氣,但第二句先 小小抱怨了一下,但 predict 出來仍是正確的。

但在 BOW 裡面,兩句話內用字完全一模一樣,因此兩句話分數完全一致,且 predict 出來的結果並 不正確,推斷的原因是在 training 當中,hot 跟 but 帶給負面的效果太重,因此 model 會往壞的方面 去 predict。

4.(1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響。

答:

Collaborators:B03902101 楊力權

	Training Accuracy	Validation Accuracy	Public Score	Private Score
有標點符號	0.8538	0.8202	0.81860	0.81662
無標點符號	0.8238	0.8207	0.81607	0.81535

無標點符號對於預測的結果稍差了一些,雖差距不大,但應可推斷標點符號對語句的關係及語意仍

有些許的影響。

5.(1%) 請描述在你的 semi-supervised 方法是如何標記 label,並比較有無 semi-surpervised training 對準確率的影響。

Collaborators:B03902093 張庭維

答:

從原有 training data 訓練出一個最好的 model 後,將 no-label 的 data 來 test,但因檔案大小關係只用了其中的十萬個。若做出來的值>0.9,或者是<0.1,代表這句話夠有代表性,因此我將這句話加入 training data 中,之後再重新訓練一次。

結果:

Training Accuracy	Validation Accuracy	Public Score	Private Score
0.8722	0.8197	0.81873	0.81725

由於新加入的 label 都是由原本的 model 所生出的,因此所做出來的 training accuracy 確實變高了,但我選擇的 valid data 是原有已標註好的 label,做出來的結果僅有微幅上升,可能的原因是利用的 no label data 太少,導致還是很像原本做出來的結果。