Probabilidade e Estatística

Maria Sílvia

2021/2

Agora vamos analisar os dados de uma amostra para tirar conclusões a respeito de uma população, um grupo mais amplo.

2 / 29

Agora vamos analisar os dados de uma amostra para tirar conclusões a respeito de uma população, um grupo mais amplo.

Para diferenciar vamos deixar a nomenclatura mais precisa.

Agora vamos analisar os dados de uma amostra para tirar conclusões a respeito de uma população, um grupo mais amplo.

Para diferenciar vamos deixar a nomenclatura mais precisa.

Denotamos por \bar{x} e s a média e o desvio-padrão, respectivamente, de uma amostra.

Agora vamos analisar os dados de uma amostra para tirar conclusões a respeito de uma população, um grupo mais amplo.

Para diferenciar vamos deixar a nomenclatura mais precisa.

Denotamos por \bar{x} e s a média e o desvio-padrão, respectivamente, de uma amostra. E μ e σ a média e o desvio-padrão, respectivamente, da população.

2 / 29

Agora vamos analisar os dados de uma amostra para tirar conclusões a respeito de uma população, um grupo mais amplo.

Para diferenciar vamos deixar a nomenclatura mais precisa.

Denotamos por \bar{x} e s a média e o desvio-padrão, respectivamente, de uma amostra. E μ e σ a média e o desvio-padrão, respectivamente, da população.

Outra diferença que temos é sobre parâmetro, que descreve a população e, estatística que é calculado a partir de dados da amostra.

Agora vamos analisar os dados de uma amostra para tirar conclusões a respeito de uma população, um grupo mais amplo.

Para diferenciar vamos deixar a nomenclatura mais precisa.

Denotamos por \bar{x} e s a média e o desvio-padrão, respectivamente, de uma amostra. E μ e σ a média e o desvio-padrão, respectivamente, da população.

Outra diferença que temos é sobre parâmetro, que descreve a população e, estatística que é calculado a partir de dados da amostra.

Parâmetros, como se referem à população, são elementos desconhecidos.

Agora vamos analisar os dados de uma amostra para tirar conclusões a respeito de uma população, um grupo mais amplo.

Para diferenciar vamos deixar a nomenclatura mais precisa.

Denotamos por \bar{x} e s a média e o desvio-padrão, respectivamente, de uma amostra. E μ e σ a média e o desvio-padrão, respectivamente, da população.

Outra diferença que temos é sobre parâmetro, que descreve a população e, estatística que é calculado a partir de dados da amostra.

Parâmetros, como se referem à população, são elementos desconhecidos.

Usamos uma estatística para estimar um parâmetro.

Lei dos Grandes Números

Selecione observações ao acaso de qualquer população com média finita μ . A medida que o número de observações aumenta (o tamanho da amostra cresce), a média amostral \bar{x} se aproxima cada vez mais da média populacional μ .

FIGURA 15.2

A ideia de uma distribuição amostral: extraia várias amostras da mesma população, colecione os x's de todas as amostras, e exiba a distribuição dos x's. O histograma mostra os resultados de 1.000 amostras.

Distribuição Amostral de \bar{x}

Podemos demonstrar, por leis de probabilidade, que a média amostral ou seja, a média de uma amostra de tamanho n, retirada de uma população com média μ e desvio-padrão σ (não preciso conhecer a forma da distribuição), terá distribuição Normal com média μ e desvio-padrão σ/\sqrt{n} .

O limiar de odor de adultos individuais tem distribuição normal com média $\mu=25$ microgramas por litro e desvio-padrão $\sigma=7$ microgramas por litro.

O limiar de odor de adultos individuais tem distribuição normal com média $\mu=25$ microgramas por litro e desvio-padrão $\sigma=7$ microgramas por litro. Ao retirarmos uma amostra de tamanho n=10 e dessa população e calcularmos a média amostral \bar{x} da amostra, e repetir o processo de retirar uma amostra e calcular a média amostral muitas e diversas vezes, encontraremos a distribuição amostral que será Normal, com média $\mu=25$ e desvio padrão

O limiar de odor de adultos individuais tem distribuição normal com média $\mu=25$ microgramas por litro e desvio-padrão $\sigma=7$ microgramas por litro. Ao retirarmos uma amostra de tamanho n=10 e dessa população e calcularmos a média amostral \bar{x} da amostra, e repetir o processo de retirar uma amostra e calcular a média amostral muitas e diversas vezes, encontraremos a distribuição amostral que será Normal, com média $\mu=25$ e desvio padrão

$$\frac{\sigma}{\sqrt{n}} = \frac{7}{\sqrt{10}} = 2,2136.$$

O teorema Limite Central

Extraia uma AAS de tamanho n de qualquer população com média μ e desvio-padrão σ . O teorema limite central diz que, quando n é grande, a distribuição amostral da média amostral \bar{x} é aproximadamente Normal:

O teorema Limite Central

Extraia uma AAS de tamanho n de qualquer população com média μ e desvio-padrão σ . O teorema limite central diz que, quando n é grande, a distribuição amostral da média amostral \bar{x} é aproximadamente Normal:

$$\bar{\mathbf{x}} \text{ \'e aproximadamente} \mathbf{N} \left\{ \mu, \frac{\sigma}{\sqrt{\mathbf{n}}}. \right\}$$

8 / 29

9 / 29

Condições para Inferência sobre a Média

Condições para Inferência sobre a Média

1. Temos uma AAS da população de interesse.

Condições para Inferência sobre a Média

1. Temos uma AAS da população de interesse. A população é grande quando comparada ao tamanho da amostra.

Condições para Inferência sobre a Média

- Temos uma AAS da população de interesse. A população é grande quando comparada ao tamanho da amostra.
- 2. A variável que medimos tem uma distribuição normal $N(\mu, \sigma)$ na população.

Condições para Inferência sobre a Média

- Temos uma AAS da população de interesse. A população é grande quando comparada ao tamanho da amostra.
- 2. A variável que medimos tem uma distribuição normal $N(\mu, \sigma)$ na população.
- 3. Não conhecemos a média da população μ , mas conhecemos o desvio-padrão populacional σ .

A ideia principal é que a distribuição amostral de \bar{x} é normal, com média μ e desvio-padrão σ/\sqrt{n} , SE tivermos uma amostra (AAS) de tamanho n de uma população com média desconhecida μ e devio-padrão conhecido σ .

A ideia principal é que a distribuição amostral de \bar{x} é normal, com média μ e desvio-padrão σ/\sqrt{n} , SE tivermos uma amostra (AAS) de tamanho n de uma população com média desconhecida μ e devio-padrão conhecido σ . A estimação estatística inverte essa informação para dizer quão perto de \bar{x} a média populacional μ provavelmente estatá.

A ideia principal é que a distribuição amostral de \bar{x} é normal, com média μ e desvio-padrão σ/\sqrt{n} , SE tivermos uma amostra (AAS) de tamanho n de uma população com média desconhecida μ e devio-padrão conhecido σ .

A estimação estatística inverte essa informação para dizer quão perto de \bar{x} a média populacional μ provavelmente estatá.

Chamamos o intervalo de números, $\bar{x} \pm d.p.$ de *intervalo de confiança de* $\mathcal{C}\%$ para μ .

Exemplo

Considere uma população de pessoas com idade entre 20 e 29 anos, e estamos interessados em avaliar o IMC-Índice de Massa Corpórea. Sabemos, de estudos passados que o desvio-padrão dessa variável, nessa população é $\sigma=7,5~({\rm kg/m2})$.

Exemplo

Considere uma população de pessoas com idade entre 20 e 29 anos, e estamos interessados em avaliar o IMC-Índice de Massa Corpórea. Sabemos, de estudos passados que o desvio-padrão dessa variável, nessa população é $\sigma=7,5$ (kg/m2). Foi retirada uma amostra de 625 pessoas, e observou-se que média amostra foi $\bar{x}=26,8$.

Assim, podemos fazer...

Seja $ar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

12 / 29

Seja $ar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ ou $ar{X} \sim \mathcal{N}\left(\mu; \frac{7,5}{\sqrt{625}}\right)
ightarrow ar{X} \sim \mathcal{N}\left(\mu; 0, 3\right)$.

Seja $\bar{X}\sim N\left(\mu,\frac{\sigma}{\sqrt{n}}\right)$ ou $\bar{X}\sim N\left(\mu;\frac{7,5}{\sqrt{625}}\right)\to \bar{X}\sim N\left(\mu;0,3\right).$ Sabemos que, para uma distribuição normal padrão, $Z\sim N(0;1)$, temos que P(-1< Z<1)=0,68,

Seja $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ ou $\bar{X} \sim N\left(\mu; \frac{7,5}{\sqrt{625}}\right) \to \bar{X} \sim N\left(\mu; 0,3\right)$. Sabemos que, para uma distribuição normal padrão, $Z \sim N(0;1)$, temos que

$$P(-1 < Z < 1) = 0,68,$$

$$P(-2 < Z < 2) = 0,95$$
,

Seja $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ ou $\bar{X} \sim N\left(\mu; \frac{7.5}{\sqrt{625}}\right) \to \bar{X} \sim N\left(\mu; 0, 3\right)$. Sabemos que, para uma distribuição normal padrão, $Z \sim N(0; 1)$, temos que P(-1 < Z < 1) = 0.68,

P(-2 < Z < 2) = 0,95,e P(-3 < Z < 3) = 0,997. Seja $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ ou $\bar{X} \sim N\left(\mu; \frac{7,5}{\sqrt{625}}\right) \to \bar{X} \sim N\left(\mu; 0,3\right)$. Sabemos que, para uma distribuição normal padrão, $Z \sim N(0;1)$, temos que

$$P(-1 < Z < 1) = 0,68,$$

$$P(-2 < Z < 2) = 0,95,$$

e
$$P(-3 < Z < 3) = 0,997.$$

Se tivermos uma AAS, de tamanho n de uma distribuição, com desvio-padrão conhecido, σ , pelo teorema limite central, temos que \bar{X} tem distribuição normal $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

Seja $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ ou $\bar{X} \sim N\left(\mu; \frac{7.5}{\sqrt{625}}\right) \to \bar{X} \sim N\left(\mu; 0, 3\right)$.

Sabemos que, para uma distribuição normal padrão, $Z \sim \mathit{N}(0;1)$, temos que

$$P(-1 < Z < 1) = 0,68,$$

$$P(-2 < Z < 2) = 0,95,$$

e
$$P(-3 < Z < 3) = 0,997.$$

Se tivermos uma AAS, de tamanho n de uma distribuição, com desvio-padrão conhecido, σ , pelo teorema limite central, temos que \bar{X} tem distribuição normal $N\left(\mu,\frac{\sigma}{\sqrt{n}}\right)$.

Podemos transformar uma normal qualquer em normal padrão, através da transformação:

Seja $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ ou $\bar{X} \sim N\left(\mu; \frac{7.5}{\sqrt{625}}\right) \to \bar{X} \sim N\left(\mu; 0, 3\right)$.

Sabemos que, para uma distribuição normal padrão, $Z \sim \textit{N}(0;1)$, temos que

$$P(-1 < Z < 1) = 0,68,$$

$$P(-2 < Z < 2) = 0,95,$$

e
$$P(-3 < Z < 3) = 0,997.$$

Se tivermos uma AAS, de tamanho n de uma distribuição, com desvio-padrão conhecido, σ , pelo teorema limite central, temos que \bar{X} tem distribuição normal $N\left(\mu,\frac{\sigma}{\sqrt{n}}\right)$.

Podemos transformar uma normal qualquer em normal padrão, através da transformação: $Z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}$,

Maria Sílvia (UFSCar)

Assim,

$$P(-2 < Z < 2) = P\left(-2 < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < 2\right) = 0,95$$

Assim,

$$P(-2 < Z < 2) = P\left(-2 < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < 2\right) = 0,95$$

$$P\left(-2\frac{\sigma}{\sqrt{n}} < \bar{X} - \mu < 2\frac{\sigma}{\sqrt{n}}\right) = 0,95$$

 \bar{X} é nossa estatística e μ é o parâmetro que não sabemos, mas queremos fazer fazer inferências sobre ele,

Assim,

$$P(-2 < Z < 2) = P\left(-2 < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < 2\right) = 0,95$$
$$P\left(-2\frac{\sigma}{\sqrt{n}} < \bar{X} - \mu < 2\frac{\sigma}{\sqrt{n}}\right) = 0,95$$

 \bar{X} é nossa estatística e μ é o parâmetro que não sabemos, mas queremos fazer fazer inferências sobre ele, então a partir da equação anterior, contruiremos um Intervalo de Confiança para μ , da seguinte maneira.

$$\bar{X} - 2\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 2\frac{\sigma}{\sqrt{n}}$$

$$\bar{X} - 2\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 2\frac{\sigma}{\sqrt{n}}$$

O valor 2 veio da decisão de usar uma probabilidade de 95%, mas poderia ser generalizado para qualquer probabilidade, então genericamente, temos:

$$\bar{X} - 2\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 2\frac{\sigma}{\sqrt{n}}$$

O valor 2 veio da decisão de usar uma probabilidade de 95%, mas poderia ser generalizado para qualquer probabilidade, então genericamente, temos:

$$\bar{X} \pm C \frac{\sigma}{\sqrt{n}}$$

$$\bar{X} - 2\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 2\frac{\sigma}{\sqrt{n}}$$

O valor 2 veio da decisão de usar uma probabilidade de 95%, mas poderia ser generalizado para qualquer probabilidade, então genericamente, temos:

$$\bar{X} \pm C \frac{\sigma}{\sqrt{n}}$$

Hipótese Científica: A expectativa de tempo bom conduz a comportamentos mais generosos??

Hipótese Científica: A expectativa de tempo bom conduz a comportamentos mais generosos??

Psicólogos estudaram o tamanho de gorjetas em um restaurante quando uma mensagem, indicando que o tempo no dia seguinte seria bom, vinha escrita na conta.

Hipótese Científica: A expectativa de tempo bom conduz a comportamentos mais generosos??

Psicólogos estudaram o tamanho de gorjetas em um restaurante quando uma mensagem, indicando que o tempo no dia seguinte seria bom, vinha escrita na conta.

Hipótese Estatística: Valor (relativo) da gorjeta é maior se há previsão de tempo bom na conta.

Hipótese Científica: A expectativa de tempo bom conduz a comportamentos mais generosos??

Psicólogos estudaram o tamanho de gorjetas em um restaurante quando uma mensagem, indicando que o tempo no dia seguinte seria bom, vinha escrita na conta.

Hipótese Estatística: Valor (relativo) da gorjeta é maior se há previsão de tempo bom na conta.

Vamos colher uma amostra de gorjetas dadas por 20 clientes, cujas contas não tem a indicação de previsão do tempo, os valores foram:

Hipótese Científica: A expectativa de tempo bom conduz a comportamentos mais generosos??

Psicólogos estudaram o tamanho de gorjetas em um restaurante quando uma mensagem, indicando que o tempo no dia seguinte seria bom, vinha escrita na conta.

Hipótese Estatística: Valor (relativo) da gorjeta é maior se há previsão de tempo bom na conta.

Vamos colher uma amostra de gorjetas dadas por 20 clientes, cujas contas não tem a indicação de previsão do tempo, os valores foram:

20,8 18,7 19,9 20,6 21,9 23,4 22,8 24,9 22,2 20,3 24,9 22,3 27,0 20,4 22,2 24,0 21,1 22,1 22,0 22,7

20,8 18,7 19,9 20,6 21,9 23,4 22,8 24,9 22,2 20,3 24,9 22,3 27,0 20,4 22,2 24,0 21,1 22,1 22,0 22,7

Que resulta em:

Que resulta em: n = 20,

Que resulta em: n = 20, $\bar{x} = 22, 21$,

Que resulta em: n=20, $\bar{x}=22,21$, e, sabemos de esperiência passada que $\sigma=2$.

Então, calculamos o intervalo de confiança, à 95% de confiança da seguinte maneira:

$$\bar{x} \pm z^* \frac{\sigma}{\sqrt{n}} = 22,21 \pm 1,960 \frac{2}{\sqrt{20}}$$

= 22,21 ± 0,88
= 21,33 a 23,09

Se conhecemos o valor do desvio-padrão da população, σ , usamos o teorema limite central diretamente, porém há casos em que não temos nenhuma referência sobre o desvio-padrão, então, nesses casos precisamos estimar σ através do cálculo de s,

Se conhecemos o valor do desvio-padrão da população, σ , usamos o teorema limite central diretamente, porém há casos em que não temos nenhuma referência sobre o desvio-padrão, então, nesses casos precisamos estimar σ através do cálculo de s, lembramos que $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$.

Se conhecemos o valor do desvio-padrão da população, σ , usamos o teorema limite central diretamente, porém há casos em que não temos nenhuma referência sobre o desvio-padrão, então, nesses casos precisamos estimar σ através do cálculo de s, lembramos que $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$. Mas, agora, a distribuição normal só é válida se no valor de n for grande, em outras situações devemos usar uma distribuição chamada de t-Student, ou seja, em vez de usarmos z^* , usaremos t_{n-1}

ordus de liberdode	Tabela V — Distribuição t de Student Corpo da tabela dá as valores t tais que $P(-t, < t < t_i) = 1 - p$. Para $v > 120$, usar a aproximação normal.															Graus de liberdade v
3	p = 90%	80%	70%	60%	50%	40%	30%	20%	10%	5%	4%	2%	1%	0,2%	0,1%	13
1	0,158	0,325	0,510	0,727	1,000	1,376	1,963	3,078	6,314	12,706	15,894	31,821	63,657	318,309	636,619	1
2	0,142	0,289	0,445	0,617	0,816	1,061	1,386	1,886	2,920	4,303	4,849	6,965	9,925	22,327	31,598	2
3	0,137	0,277	0,424	0,584	0,765	0,978	1,250	1,638	2,353	3,182	3,482	4,541	5,841	10,214	12,924	3
4	0,134	0,271	0,414	0,569	0,741	0,941	1,190	1,533	2,132	2,776	2,998	3,747	4,604	7,173	8,610	4
5	0,132	0,267	0,408	0,559	0,727	0,920	1,156	1,476	2,015	2,571	2,756	3,365	4,032	5,893	6,869	1 5
6	0,131	0,265	0,404	0,553	0,718	0,906	1,134	1,440	1,943	2,447	2,612	3,143	3,707	5,208	5,959	6
7	0,130	0,263	0,402	0,549	0,711	0,896	1,119	1,415	1,895	2,365	2,517	2,998	3,499	4,785	5,408	7
8	0,130	0,262	0,399	0,546	0,706	0,889	1,108	1,397	1,860	2,306	2,449	2,896	3,355	4,501	5,041	8
9	0,129	0,261	0,398	0,543	0,703	0,883	1,100	1,383	1,833	2,262	2,398	2,821	3,250	4,297	4,781	5
10	0.129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	2,228	2,359	2,764	3,169	4,144	4,587	10
11	0.129	0.260	0,396	0,540	0,697	0,876	1,088	1,363	1,796	2,201	2,328	2,718	3,106	3,025	4,437	1.1
12	0.128	0.259	0.395	0,539	0.695	0,873	1,083	1,356	1,782	2,179	2,303	2,681	3,055	3,930	4,318	12
13	0.128	0.259	0.394	0.538	0.694	0.870	1,079	1,350	1,771	2,160	2,282	2,650	3,012	3,852	4,221	13
14	0.128	0.258	0.393	0.537	0.692	0.868	1.076	1,345	1,761	2,145	2,264	2,624	2,977	3,787	4,140	14
15	0.128	0.258	0.393	0.536	0.691	0.866	1.074	1.341	1.753	2,131	2.248	2,602	2,947	3,733	4,073	1.5
16	0,128	0.258	0,392	0,535	0.690	0,865	1.071	1,337	1,746	2,120	2.235	2,583	2,921	3,686	4,015	16
7	0.128	0.257	0.392	0,534	0,689	0,863	1,069	1,333	1,740	2,110	2.224	2.567	2,898	3,646	3,965	17
18	0.127	0.257	0.392	0.534	0.688	0.862	1,067	1,330	1,734	2,101	2,214	2.552	2,878	3,610	3.922	1.8
19	0,127	0,257	0,391	0,533	0.688	0.861	1,066	1,328	1,729	2,093	2,205	2,539	2.861	3,579	3.883	19
20	0,127	0,257	0.391	0.533	0.687	0.860	1.064	1,325	1,725	2.086	2,197	2.528	2.845	3,552	3.850	20
21	0,127	0.257	0.391	0,532	0.686	0.859	1.063	1.323	1,721	2.080	2,189	2,518	2,831	3,527	3,819	21
22	0.127	0.256	0.390	0.532	0.686	0.858	1.061	1.321	1,717	2.074	2,183	2.508	2,819	3,505	3,792	22
23	0.127	0.256	0.390	0.532	0.685	0.858	1.060	1,319	1,714	2.069	2.177	2.500	2,807	3,485	3,768	23
24	0.127	0.256	0.390	0,531	0.685	0.857	1,059	1,318	1,711	2,064	2,172	2.492	2.797	3.467	3.745	24
25	0.127	0.256	0.390	0.531	0.684	0.856	1,058	1,316	1,708	2,060	2,166-	2,485	2,787	3,450	3,725	25
26	0.127	0.256	0,390	0,531	0.684	0.856	1,058	1,315	1,706	2,056	2,162	2,479	2,779	3,435	3,707	26
77	0.127	0.256	0.389	0.531	0.684	0.855	1,057	1.314	1,703	2.052	2,158	2,473	2,771	3,421	3,690	27
28	0.127	0.256	0.389	0.530	0,684	0.855	1,056	1,313	1.701	2.048	2.154	2.467	2,763	3,408	3.674	28
29	0.127	0.256	0.389	0.530	0.683	0.854	1,055	1,311	1,699	2,045	2,150	2.462	2.756	3,396	3.659	25
10	0.127	0.256	0.389	0.530	0.683	0.854	1.055	1,310	1,697	2.042	2,147	2,457	2,750	3,385	3,646	30
3.5	0,126	0,255	0,388	0,529	0.682	0.852	1.052	1,306	1.690	2.030	2,133	2,438	2,724	3,340	3,591	35
40	0.126	0,255	0,388	0,529	0,681	0.851	1,050	1,303	1.684	2.021	2,123	2,423	2,704	3,307	3,551	40
50	0.126	0.254	0,387	0.528	0,679	0.849	1,047	1,299	1,676	2.009	2.109	2.403	2,678	3.261	3,496	50
60	0.126	0.254	0,387	0,527	0,679	0.848	1.045	1,296	1,671	2.000	2.099	2,390	2,660	3.232	3,460	60
20	0,126	0,254	0.386	0,526	0.677	0.845	1.041	1.289	1,658	1,980	2,076	2,358	2,617	3.160	3,373	120
20	0,126	0,253	0,385	0,524	0,674	0,842	1,036	1,282	1,645	1,960	2,054	2,326	2,576	3,090	3,291	00
	p = 90%	80%	70%	60%	50%	40%	30%	20%	10%	5%	4%	2%	1%	0.2%	0.1%	-

Interpretação de um intervalo de confiança

O nível de confiança é a taxa de sucesso do método que produz o intervalo. Não sabemos se o intervalo de confiança de 95% obtido a partir de uma amostra particular é um dos 95% que contém μ , ou se é um dos 5% que não contém.

Interpretação de um intervalo de confiança

O nível de confiança é a taxa de sucesso do método que produz o intervalo. Não sabemos se o intervalo de confiança de 95% obtido a partir de uma amostra particular é um dos 95% que contém μ , ou se é um dos 5% que não contém.

Dizer que temos 95% de confiança em que o parâmetro desconhecido μ caia entre c_1 e c_2 é uma maneira abreviada de dizer que obtivemos esses números por um método que fornece resultados corretos em 95% das vezes.

Teste de Significância

O objetivo de um teste de Significância é avaliar a evidência fornecida pelos dados sobre alguma afirmativa relativa a um parâmetro populacional.

Teste de Significância

O objetivo de um teste de Significância é avaliar a evidência fornecida pelos dados sobre alguma afirmativa relativa a um parâmetro populacional.

Um jogador de basquete afirma que acerta 75% de seus lances livres no jogo. Para testar essa afirmativa, pedimos para ele tentar 20 lances livres. Ele acerta 8 dos 20

Teste de Significância

O objetivo de um teste de Significância é avaliar a evidência fornecida pelos dados sobre alguma afirmativa relativa a um parâmetro populacional.

Um jogador de basquete afirma que acerta 75% de seus lances livres no jogo. Para testar essa afirmativa, pedimos para ele tentar 20 lances livres. Ele acerta 8 dos $20 \, \frac{0.40}{0.40}$.

Logo, não acreditamos na sua afirmativa".

Logo, não acreditamos na sua afirmativa".

Podemos dizer quão forte é a evidência contra a afirmativa, fornecendo a probabilidade dele acertar 8 entre 20 lances livres, se realmente acertasse 75% a longo prazo.

Logo, não acreditamos na sua afirmativa".

Podemos dizer quão forte é a evidência contra a afirmativa, fornecendo a probabilidade dele acertar 8 entre 20 lances livres, se realmente acertasse 75% a longo prazo.

Essa probabilidade é 0,0009.

Logo, não acreditamos na sua afirmativa".

Podemos dizer quão forte é a evidência contra a afirmativa, fornecendo a probabilidade dele acertar 8 entre 20 lances livres, se realmente acertasse 75% a longo prazo.

Essa probabilidade é 0,0009.

Ele acertar 8 em 20 lances em apenas 9 vezes em 10mil tentativas.

Logo, não acreditamos na sua afirmativa".

Podemos dizer quão forte é a evidência contra a afirmativa, fornecendo a probabilidade dele acertar 8 entre 20 lances livres, se realmente acertasse 75% a longo prazo.

Essa probabilidade é 0,0009.

Ele acertar 8 em 20 lances em apenas 9 vezes em 10mil tentativas.

O pequeno valor da probabilidade convence que a afirmativa é falsa.

Estabelecendo Hipóteses

Em um teste estatístico, a afirmação a ser testada é chamada de hipótese nula.

Estabelecendo Hipóteses

Em um teste estatístico, a afirmação a ser testada é chamada de hipótese nula. O teste é planejado para avaliar a força da evidência *contra* a hipótese nula.

Estabelecendo Hipóteses

Em um teste estatístico, a afirmação a ser testada é chamada de hipótese nula. O teste é planejado para avaliar a força da evidência *contra* a hipótese nula.

Em geral, a hipótese nula é uma afirmativa de "nenhum efeito" ou "nenhuma diferença".

Estabelecendo Hipóteses

Em um teste estatístico, a afirmação a ser testada é chamada de hipótese nula. O teste é planejado para avaliar a força da evidência *contra* a hipótese nula.

Em geral, a hipótese nula é uma afirmativa de "nenhum efeito" ou "nenhuma diferença".

Escrevemos as hipóteses estatísticas da seguinte forma:

Estabelecendo Hipóteses

Em um teste estatístico, a afirmação a ser testada é chamada de hipótese nula. O teste é planejado para avaliar a força da evidência contra a hipótese nula.

Em geral, a hipótese nula é uma afirmativa de "nenhum efeito" ou "nenhuma diferenca".

Escrevemos as hipóteses estatísticas da seguinte forma:

$$H_0$$
 : $\mu = 0$, H_a : $\mu \neq 0$.

$$H_a$$
: $\mu \neq 0$.

O teste de hipótese é a verificação de uma afirmação,

i. Estabeleça a hipótese científica

i. Estabeleça a hipótese científica afirmação que se quer estudar/saber

- i. Estabeleça a hipótese científica afirmação que se quer estudar/saber
- ii. Estabeleça a hipótese estatística

- i. Estabeleça a hipótese científica afirmação que se quer estudar/saber
- ii. Estabeleça a hipótese estatística afirmação sobre um parâmetro de uma distribuição de probabilidade

- i. Estabeleça a hipótese científica afirmação que se quer estudar/saber
- ii. Estabeleça a hipótese estatística afirmação sobre um parâmetro de uma distribuição de probabilidade
- iii. Estabeleça a estatística de teste

- i. Estabeleça a hipótese científica afirmação que se quer estudar/saber
- ii. Estabeleça a hipótese estatística afirmação sobre um parâmetro de uma distribuição de probabilidade
- iii. Estabeleça a estatística de teste
- iv. Obtenha os dados

- i. Estabeleça a hipótese científica afirmação que se quer estudar/saber
- ii. Estabeleça a hipótese estatística afirmação sobre um parâmetro de uma distribuição de probabilidade
- iii. Estabeleça a estatística de teste
- iv. Obtenha os dados
- v. Calcule a estatística de teste para os dados encontrados

- i. Estabeleça a hipótese científica afirmação que se quer estudar/saber
- ii. Estabeleça a hipótese estatística afirmação sobre um parâmetro de uma distribuição de probabilidade
- iii. Estabeleça a estatística de teste
- iv. Obtenha os dados
- v. Calcule a estatística de teste para os dados encontrados
- vi. Encontre o Valor-p

Valor-p e signifância estatística

A probabilidade, calculada supondo-se H_0 verdadeira, de que a estatística de teste assuma um valor tão ou mais extremo do que o valor realmente observado é chamada de valor-p do teste.

Valor-p e signifância estatística

A probabilidade, calculada supondo-se H_0 verdadeira, de que a estatística de teste assuma um valor tão ou mais extremo do que o valor realmente observado é chamada de valor-p do teste.

Quanto menor o valor-p, mais forte é a evidência contra H_0 fornecida pelos dados.

Encontramos que a gorjeta percentual média estava entre 21,33 e 23,09 se a conta NÃO continha informações sobre a previsão do tempo.

Encontramos que a gorjeta percentual média estava entre 21,33 e 23,09 se a conta NÃO continha informações sobre a previsão do tempo. Hipótese Científica: A expectativa de tempo bom conduz a comportamentos mais generosos??

Encontramos que a gorjeta percentual média estava entre 21,33 e 23,09 se a conta NÃO continha informações sobre a previsão do tempo.

Hipótese Científica: A expectativa de tempo bom conduz a comportamentos mais generosos??

Hipótese Estatística: Valor (relativo) da gorjeta é maior se há previsão de tempo bom na conta.

Encontramos que a gorjeta percentual média estava entre 21,33 e 23,09 se a conta NÃO continha informações sobre a previsão do tempo.

Hipótese Científica: A expectativa de tempo bom conduz a comportamentos mais generosos??

Hipótese Estatística: Valor (relativo) da gorjeta é maior se há previsão de tempo bom na conta.

Encontramos que a gorjeta percentual média estava entre 21,33 e 23,09 se a conta NÃO continha informações sobre a previsão do tempo.

Hipótese Científica: A expectativa de tempo bom conduz a comportamentos mais generosos??

Hipótese Estatística: Valor (relativo) da gorjeta é maior se há previsão de tempo bom na conta.

Estabelecendo o Teste de Hipóteses

 ${\it H}_{0}$: valor médio da gorjeta é igual com ou sem previsão de bom tempo na conta

 ${\it H}_{
m 1}$: valor médio da gorjeta é maior para os dias com previsão de bom tempo na conta

Encontramos que a gorjeta percentual média estava entre 21,33 e 23,09 se a conta NÃO continha informações sobre a previsão do tempo.

Hipótese Científica: A expectativa de tempo bom conduz a comportamentos mais generosos??

Hipótese Estatística: Valor (relativo) da gorjeta é maior se há previsão de tempo bom na conta.

Estabelecendo o Teste de Hipóteses

 H_0 : valor médio da gorjeta é igual com ou sem previsão de bom tempo na conta

 ${\it H}_1$: valor médio da gorjeta é maior para os dias com previsão de bom tempo na conta

ou seja,

 H_0 : $\mu = 22,21$

 H_1 : $\mu > 22,21$

Encontramos que a gorjeta percentual média estava entre 21,33 e 23,09 se a conta NÃO continha informações sobre a previsão do tempo.

Hipótese Científica: A expectativa de tempo bom conduz a comportamentos mais generosos??

Hipótese Estatística: Valor (relativo) da gorjeta é maior se há previsão de tempo bom na conta.

Estabelecendo o Teste de Hipóteses

 H_0 : valor médio da gorjeta é igual com ou sem previsão de bom tempo na conta

 ${\it H}_1$: valor médio da gorjeta é maior para os dias com previsão de bom tempo na conta

ou seja,

 H_0 : $\mu = 22,21$

 H_1 : $\mu > 22,21$

Sob a suposição de que H_0 é verdadeira, a distribuição de \bar{x} é normal com média 22,21 e desvio-padrão 2,

Sob a suposição de que H_0 é verdadeira, a distribuição de \bar{x} é normal com média 22, 21 e desvio-padrão 2,

e o valor de $\bar{x} =$

Sob a suposição de que H_0 é verdadeira, a distribuição de \bar{x} é normal com média 22,21 e desvio-padrão 2,

e o valor de $\bar{x}=22,32$, qual é a probabilidade de encontrarmos um valor 22,32 ou maior?

Sob a suposição de que H_0 é verdadeira, a distribuição de \bar{x} é normal com média 22, 21 e desvio-padrão 2,

e o valor de $\bar{x}=22,32$, qual é a probabilidade de encontrarmos um valor 22,32 ou maior? Essa probabilidade é o Valor-p.

$$ar{X} \sim N\left(22,21;rac{2}{\sqrt{20}}
ight)$$

$$ar{X} \sim N\left(22,21;rac{2}{\sqrt{20}}
ight)$$

$$P(\bar{X} > 22, 32) =$$

$$ar{X} \sim \mathit{N}\left(22,21; rac{2}{\sqrt{20}}
ight)$$

$$P(\bar{X} > 22, 32) = P\left(\frac{\bar{X} - 22, 21}{\frac{2}{\sqrt{20}}} > \frac{22, 32 - 22, 21}{\frac{2}{\sqrt{20}}}\right)$$

$$ar{X} \sim N\left(22, 21; rac{2}{\sqrt{20}}
ight)$$

$$P(ar{X} > 22, 32) = P\left(rac{ar{X} - 22, 21}{rac{2}{\sqrt{20}}} > rac{22, 32 - 22, 21}{rac{2}{\sqrt{20}}}
ight)$$

$$P(ar{X} > 22, 32) = P(Z > 0, 2236)$$

$$ar{X} \sim N\left(22, 21; rac{2}{\sqrt{20}}
ight)$$

$$P(ar{X} > 22, 32) = P\left(\frac{ar{X} - 22, 21}{\frac{2}{\sqrt{20}}} > \frac{22, 32 - 22, 21}{\frac{2}{\sqrt{20}}}\right)$$

$$P(ar{X} > 22, 32) = P(Z > 0, 2236) = 1 - 0, 5871 =$$

$$ar{X} \sim N\left(22, 21; rac{2}{\sqrt{20}}
ight)$$

$$P(ar{X} > 22, 32) = P\left(rac{ar{X} - 22, 21}{rac{2}{\sqrt{20}}} > rac{22, 32 - 22, 21}{rac{2}{\sqrt{20}}}
ight)$$

$$P(\bar{X} > 22, 32) = P(Z > 0, 2236) = 1 - 0,5871 = 0,4129$$

Os valores de probabilidade que usamos para decidir se aceitamos \mathcal{H}_0 ou não são

Os valores de probabilidade que usamos para decidir se aceitamos H_0 ou não são 0,05 ou seja, 5%, ou 0,01, 1%, e se não temos muita confiança 0,1 10%.

Os valores de probabilidade que usamos para decidir se aceitamos H_0 ou não são 0,05 ou seja, 5%, ou 0,01, 1%, e se não temos muita confiança 0,1 10%.

Esse procedimento para a realização do Teste de Hipótese foi desenvolvido por R.A.Fisher, há também o procedimentos desenvolvido pro K. Pearson.