Answer the following as indicated and in the given order. SHOW YOUR SOLUTIONS.

1. Consider the Cayley table below for a group (G, *).

(5 Points each)

*	e	r	s	x	y	z
e	e	r	s	\boldsymbol{x}	y	z
r	r	s	e	y	z	\boldsymbol{x}
s	s	e	r	z	\boldsymbol{x}	y
x	\boldsymbol{x}	z	y	e	s	r
y	y	\boldsymbol{x}	z	r	e	s
z	z	y	\boldsymbol{x}	s	r	e

- a. Find the centralizers of each element.
- b. Find all the subgroups generated by each element.
- c. Determine if $\langle r \rangle$ is a normal subgroup by finding its distinct left and right cosets.
- d. Find all the conjugacy classes of G.
- e. Construct the Cayley table for the distinct right cosets of $H = \langle s \rangle$ in G.
- 2. Let $G = (\mathbb{Z}_{20}, +), G' = (\mathbb{Z}_4, +)$ and define the homomorphism $\phi : G \to G'$ by

$$\phi(g) = \begin{cases} 0 & \text{if } 4 \text{ divides } g \\ 1 & \text{if } 4 \text{ divides } g+1 \\ 2 & \text{if } 4 \text{ divides } g+2 \\ 3 & \text{if } 4 \text{ divides } g+3 \end{cases}$$

a. Find $K = Ker \ \phi$. (4 Points) b. Show that $K \lhd G$.

c. Find $\phi(G)$. (4 Points)

d. Construct the group table for G/K. (6 Points)

e. Construct the group table for $\phi(G)$. (4 Points)

f. If $\mu: G/K \to \phi(G)$ is given by $\mu(Kg) = \phi(g)$, find the image of each element of G/K under μ . (4 Points)