σ -конечная мера Лебега. Мера Бореля

Продолжение меры на произвольное множество

Пусть S - полукольцо подмножеств некоторого множества X, причем существует представление:

$$X = \bigcup_{n=1}^{\infty} A'_n, A'_n \in S$$

Например, можно рассмотреть полукольцо всех конечных промежутков на прямой, тогда $X = \mathbb{R}$. Пусть также m это σ -аддитивная мера на S, а ν это продолжение m на кольцо $\mathcal{R}(S)$ (минимальное кольцо, содержащее S). Положим, что:

$$A_1 = A'_1, \quad A_j = A'_j \setminus \bigcup_{i=1}^{j-1} A'_i, \, \forall j > 1$$

получим, что все $A_j \in \mathcal{R}(S)$, поскольку кольцо выдерживает эти операции \Rightarrow по определению $\mathcal{R}(S)$ (см. теорему 2, лекцию 1) будет верно:

$$\forall j, A_j = \bigsqcup_{k=1}^{k_j} L_{j,k}, \forall j, k, L_{j,k} \in S$$

$$X = \bigcup_{n=1}^{\infty} A'_n = \bigsqcup_{j=1}^{\infty} A_j = \bigsqcup_{j=1}^{\infty} \bigsqcup_{k=1}^{k_j} L_{j,k} \equiv \bigsqcup_{r=1}^{\infty} B_r, \, \forall r, \, B_r \in S$$

То есть из факта, что X было каким-то объединением счетных множеств из S вытекает, что оно может быть представлено как счетное объединение уже непересекающихся множеств из S.

Rm: 1. Отметим, что здесь мы не говорим, что $X \subseteq S$, в противном случае всё уже разбиралось в предыдущих лекциях.

Опр: 1. При $r \in \mathbb{N}$ обозначим через \mathcal{M}_r Дебеговскую σ -адгебру подмножеств B_r , полученную при продолжении меры m с полукольца $S \cap B_r$ (где B_r - единица) и μ_r - мера Дебега на \mathcal{M}_r .

Опр: 2. Пусть $A \subseteq X$, тогда скажем, что множество A измеримо: $A \in \mathcal{M} \Leftrightarrow \forall r, A \cap B_r \in \mathcal{M}_r$. При этом, если $A \in \mathcal{M}$, то полагаем:

$$\mu(A) = \sum_{r=1}^{\infty} \mu_r(A \cap B_r)$$

где возможно, что $\mu(A)=\infty$, эта мера называется σ -конечной мерой Лебега.

Теорема 1. \mathcal{M} - это σ -алгебра.

 \square Заметим, что $X \in \mathcal{M}$ поскольку мы имеем дизъюнктное представление из B_r , поэтому $X \cap B_r = B_r$. Пусть $A, C \in \mathcal{M}$, тогда $\forall r, A \cap B_r, C \cap B_r \in \mathcal{M}_r$ по определению, тогда:

$$(A \cap C) \cap B_r = (A \cap B_r) \cap (C \cap B_r) \in \mathcal{M}_r$$

и аналогично:

$$(A\Delta C)\cap B_r = (A\cap B_r)\Delta(C\cap B_r)\in \mathcal{M}_r$$

это верно в силу того, что \mathcal{M}_r это σ -алгебра. Следовательно $A \cap C, A\Delta C \in \mathcal{M} \Rightarrow \mathcal{M}$ - алгебра. Пусть верно следующее:

$$A = \bigcup_{n=1}^{\infty} A_n, \, \forall n, \, A_n \in \mathcal{M} \Rightarrow \forall r, n, \, A_n \cap B_r \in \mathcal{M}_r \Rightarrow$$

$$\Rightarrow \forall r, \left(\bigcup_{n=1}^{\infty} A_n\right) \cap B_r = \bigcup_{n=1}^{\infty} (A_n \cap B_r) \in \mathcal{M}_r \Rightarrow A \in \mathcal{M}$$

Таким образом, требуемое установлено.

Теорема 2. μ - это σ -аддитивная мера на \mathcal{M} (с возможными бесконечными значениями).

Rm: 2. Далее считаем, что $\forall c \in [0, \infty), c + \infty = \infty$, то есть правило действия сигма-аддитивности понимается в таком смысле.

$$\square$$
 Пусть $A_1, \ldots, A_n, \ldots \in \mathcal{M}$ и $A = \bigsqcup_{n=1}^{\infty} A_n$. Тогда:

$$\forall r, \, \mu_r(A \cap B_r) = \mu_r\left(\left(\bigsqcup_{n=1}^{\infty} A_n\right) \cap B_r\right) = \sum_{n=1}^{\infty} \mu_r(A_n \cap B_r) \Rightarrow$$

$$\Rightarrow \mu(A) = \sum_{r=1}^{\infty} \mu_r(A \cap B_r) = \sum_{r=1}^{\infty} \sum_{n=1}^{\infty} \mu_r(A_n \cap B_r) = \sum_{n=1}^{\infty} \sum_{r=1}^{\infty} \mu_r(A_n \cap B_r) = \sum_{n=1}^{\infty} \mu(A_n)$$

где перестановка двойных рядов возможна из-за неотрицательности слагаемых.

Rm: 3. Пусть S - полукольцо с единицей E, $A \in S$, а соответственно $S' = S \cap A = \{B \cap A : B \in S\}$. Тогда S' это тоже полукольцо, но с единицей A. Пусть также, m это σ -аддитивная мера на S, тогда из процесса построения меры Лебега видно, что если \mathcal{M}_{μ} это σ -алгебра подмножеств E измеримых по Лебегу и μ - соответствующая мера Лебега на \mathcal{M}_{μ} , а \mathcal{N} это σ -алгебра подмножеств A измеримых по Лебегу, полученная с помощью продолжения меры m с S' и ν - соответствующая мера Лебега на \mathcal{N} , то:

$$\mathcal{N} = \mathcal{M}_{\mu} \cap A \wedge \forall B \in \mathcal{N}, \ \nu(B) = \mu(B)$$

Это видно, если отслеживать доказательства связанные с построением меры Лебега.

<u>Обозначение</u>: Построенная мера называется σ -конечной мерой Лебега (σ -конечная, потому что она может принимать бесконечные значения, но каждое измеримое множество представляется в виде не более, чем счетного объединения множеств конечной меры).

<u>Обозначение</u>: Если изначально m - это мера на промежутках в \mathbb{R}^n равная их n-мерному объему, то меру μ будем называть классической σ -конечной мерой Лебега.

Теорема 3. Пусть \exists два представления (по сути единицы) X:

$$\bigsqcup_{i=1}^{\infty} B_i = X = \bigsqcup_{j=1}^{\infty} B'_j, \, \forall i, j, \, B_i, B'_j \in S$$

Пусть $\mathcal M$ и $\mathcal M'$ - это σ -алгебры для соответствующих μ и μ' - σ -конечных мер. Тогда $\mathcal M=\mathcal M'$ и верно:

$$\forall A \in \mathcal{M}, \, \mu(A) = \mu'(A)$$

□ Пусть верно:

$$\forall i, j, C_{i,j} = B_i \cap B'_j \in S$$

Очевидно, что:

$$\forall i, B_i = \bigsqcup_{j=1}^{\infty} (B_i \cap B'_j) = \bigsqcup_{j=1}^{\infty} C_{i,j}, \ \forall j, B'_j = \bigsqcup_{i=1}^{\infty} (B_i \cap B'_j) = \bigsqcup_{i=1}^{\infty} C_{i,j}$$

Пусть $A \in \mathcal{M}$, тогда $\forall i, A \cap B_i \in \mathcal{M}_i$, а поскольку $C_{i,j} \subseteq B_i$, то:

$$\forall i, j, A \cap C_{i,j} \in \mathcal{M}_i$$

Но мера Лебега $\mu_{i,j}$ на подмножествах $C_{i,j}$ может быть получена (см. замечание 3) с помощью Лебеговского продолжения меры m с полукольца $S \cap C_{i,j}$, и таким образом:

$$\forall i, j, \mathcal{N}_{i,j} = \mathcal{M}_i \cap C_{i,j} = C_{i,j}, \forall D \in \mathcal{N}_{i,j}, \, \mu_{i,j}(D) = \mu_i(D)$$

Поскольку:

$$\forall i, j, A \cap C_{i,j} \in \mathcal{M}'_i$$

то, точно также обстоит дело с мерой μ'_i на подмножествах $C_{i,j}$:

$$\forall i, j, \mathcal{N}'_{i,j} = \mathcal{M}'_j \cap C_{i,j} = C_{i,j}, \forall D \in \mathcal{N}'_{i,j}, \mu_{i,j}(D) = \mu'_j(D)$$

Следовательно:

$$\forall i, j, \forall D \in C_{i,j}, \ \mu_i(D) = \mu_{i,j}(D) = \mu'_j(D), \quad \mathcal{N}_{i,j} = C_{i,j} = \mathcal{N}'_{i,j}$$

Кроме того, будет следовать, что $A \in \mathcal{M}'$ (\mathcal{M}' - σ -алгебра), поскольку:

$$A \in \mathcal{M} \Rightarrow \forall i, j, A \cap C_{i,j} \in \mathcal{M}_i \Rightarrow A \cap C_{i,j} \in \mathcal{M}'_i \Rightarrow$$

$$\Rightarrow \forall j, \bigsqcup_{i=1}^{\infty} (A \cap C_{i,j}) = A \cap \left(\bigsqcup_{i=1}^{\infty} C_{i,j}\right) = A \cap B'_{j} \in \mathcal{M}'_{j}$$

В силу произвольности обозначения мер, это будет верно и в обратную сторону. Если рассматриваем $\mu(A)$, то по определению и в силу неотрицательности мер:

$$\mu(A) = \sum_{i=1}^{\infty} \mu_i(A \cap B_i) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu_i(A \cap C_{i,j}) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu'_j(A \cap C_{i,j}) =$$

$$= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \mu'_j(A \cap C_{i,j}) = \sum_{j=1}^{\infty} \mu'_j(A \cap B'_j) = \mu'(A)$$

Мера Бореля

Опр: 3. Борелевской σ -алгеброй \mathcal{B}_n будем называть минимальную σ -алгебру, содержащую все открытые подмножества \mathbb{R}^n . Для n=1 обозначим $\mathcal{B}=\mathcal{B}_1$.

Утв. 1. Пусть \mathcal{M} - Лебеговская σ -алгебра, соответствующая классической σ -конечной мере Лебега на подмножествах \mathbb{R}^n , а открытое $G \subseteq \mathbb{R}^n$. Тогда $G \in \mathcal{M}$.

 \square Для $x \in G$ обозначим через d_x соответствующее расстояние от x до дополнения к множеству G:

$$d_x = \inf_{y \in \mathbb{R}^n \setminus G} |x - y|$$

где |x| - Евклидова метрика. Если P - совокупность всевозможных векторов:

$$P = {\overline{p} = (p_1, \dots, p_n) \in G : \forall i, p_i \in \mathbb{Q}}$$

то множество P - счетное. Легко заметить, что всё G представимо в объединении n-мерных кубиков:

$$G = \bigcup_{\overline{p} \in P} \prod_{j=1}^{n} \left(p_j - \frac{d_{\overline{p}}}{n}, p_j + \frac{d_{\overline{p}}}{n} \right)$$

Поскольку точки P всюду плотны, то можно всегда для любой точки указать близкую точку из P, поскольку расстояние будет фиксированным, то наша точка войдет в этот кубик. Заметим, что:

$$\forall \overline{p} \in P, \prod_{j=1}^{n} \left(p_j - \frac{d_{\overline{p}}}{n}, p_j + \frac{d_{\overline{p}}}{n} \right) \in \mathcal{M} \Rightarrow G \in \mathcal{M}$$

где последнее верно, поскольку \mathcal{M} - σ -алгебра и P - счетно.

Следствие 1. Борелевская σ -алгебра \subseteq Лебеговская σ -алгебра:

$$\mathcal{B}_n \subseteq \mathcal{M}$$

Rm: 4. Разбор этого следствия должен быть на семинарах.

Опр: 4. Мерой Бореля называется соответствующая (размерности) классическая σ -конечная мера Лебега, суженная на \mathcal{B}_n .

 \mathbf{Rm} : 5. Отсюда очевидно, что мера Бореля будет σ -аддитивной.

Непрерывность мер

Опр: 5. Пусть \mathcal{R} - это кольцо и ν - мера на \mathcal{R} (не обязательно σ -аддитивная), тогда ν называется непрерывной на \mathcal{R} в том и только в том случае, когда:

$$\forall A, A_1, \dots, A_n, \dots \in \mathcal{R} \colon A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots \land A = \bigcap_{n=1}^{\infty} A_n, \ \nu(A) = \lim_{n \to \infty} \nu(A_n)$$

Теорема 4. Пусть $\mathcal R$ - кольцо и ν - конечная мера на $\mathcal R$, тогда ν - непрерывна $\Leftrightarrow \nu$ - σ -аддитивна.

 (\Leftarrow) Пусть множества $A,A_1,\ldots,A_n,\ldots\in\mathcal{R},\,A_1\supseteq A_2\supseteq A_3\supseteq\ldots$ и $A=\bigcap_{n=1}^\infty A_n.$ Тогда, заметим, что:

$$A_{1} = A \sqcup \left(\bigsqcup_{n=1}^{\infty} (A_{n} \setminus A_{n+1}) \right) \Rightarrow \nu(A_{1}) = \nu(A) + \sum_{n=1}^{\infty} \nu(A_{n} \setminus A_{n+1}) = \nu(A) + \sum_{n=1}^{\infty} (\nu(A_{n}) - \nu(A_{n+1}))$$

где последнее верно в силу включения $\forall n, A_n \supseteq A_{n+1}$. Воспользуемся суммой ряда:

$$\nu(A_1) = \nu(A) + \lim_{N \to \infty} \sum_{n=1}^{N-1} (\nu(A_n) - \nu(A_{n+1})) = \nu(A) + \nu(A_1) - \lim_{N \to \infty} \nu(A_N) \Rightarrow \nu(A) = \lim_{N \to \infty} \nu(A_N)$$

 (\Rightarrow) Пусть $A,A_1,\ldots,A_n,\ldots\in\mathcal{R}$ и $A=\bigsqcup_{n=1}^\infty A_n.$ Обозначим $\forall N$ через $B_N=\bigsqcup_{n=N+1}^\infty A_n,$ тогда:

$$\forall, B_N = \bigsqcup_{n=N+1}^{\infty} A_n = A \setminus \bigsqcup_{n=1}^{N+1} A_n \in \mathcal{R}$$

где последнее верно, поскольку \mathcal{R} кольцо и выдерживает операции объединения и разности. При этом, по определению: $B_1 \supseteq B_2 \supseteq \dots$ и кроме того $\bigcap_{N=1}^{\infty} B_N = \emptyset$, тогда воспользуемся непрерывностью ν :

$$\nu(B_N) \xrightarrow[N \to \infty]{} \nu(\varnothing) = 0$$

Но справедливо равенство (в силу того, что ν - мера):

$$\forall N, A = \left(\bigsqcup_{n=1}^{N} A_n\right) \sqcup B_N \Rightarrow \nu(A) = \sum_{n=1}^{N} \nu(A_n) + \nu(B_N) \Rightarrow \nu(A) - \nu(B_N) = \sum_{n=1}^{N} \nu(A_n)$$

Устремляем в последнем равенстве N к бесконечности:

$$\lim_{N \to \infty} (\nu(A) - \nu(B_N)) = \nu(A) \Rightarrow \exists \lim_{N \to \infty} (\nu(A) - \nu(B_N)) \Rightarrow \exists \lim_{N \to \infty} \sum_{n=1}^{N} \nu(A_n) = \sum_{n=1}^{\infty} \nu(A_n) = \nu(A)$$

Rm: 6. Если \mathcal{R} - кольцо, ν - σ -аддитивная конечная мера на \mathcal{R} , множества $A, A_1, A_2, \ldots, A_n, \ldots \in \mathcal{R}$ и верно вложение $A_1 \subseteq A_2 \subseteq \ldots$, при этом $A = \bigcup_{n=1}^{\infty} A_n$, тогда тоже будет верно, что:

$$\nu(A) = \lim_{n \to \infty} \nu(A_n)$$

 \square Для этого достаточно рассмотреть множества $B_n = A \setminus A_n \in \mathcal{R}$ для которых будет верно:

$$B_1 \supseteq B_2 \supseteq \ldots \land \bigcap_{n=1}^{\infty} B_n = \varnothing$$

и применить теорему $4 \Rightarrow$ получим непрерывность.

 \mathbf{Rm} : 7. При доказательстве теоремы 4 не использовалась неотрицательность ν .

Следствие 2. Пусть \mathcal{R} - кольцо, μ - σ -конечная и σ -аддитивная мера на \mathcal{R} . Пусть $A, A_1, \ldots, A_n, \ldots \in \mathcal{R}$, имеют место включения: $A_1 \supseteq A_2 \supseteq \ldots$ и верно $A = \bigcap_{n=1}^{\infty} A_n$. Пусть, кроме того, $\mu(A_1) < \infty$, тогда:

$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

 \square Пусть $\mathcal{R}_1 = \mathcal{R} \cap A_1$, тогда сужение μ на \mathcal{R}_1 это будет конечная σ -аддитивная мера (принимающая конечные, неотрицательные значения) и можем применить теорему $4 \Rightarrow$ мера непрерывна.

Rm: 8. Пусть μ - классическая σ -конечная мера Лебега на подмножествах обычной прямой \mathbb{R}^1 , множества: $A_n = [n, \infty), \ n = 1, 2, 3 \dots, \ A = \emptyset$. Тогда очевидно, что $A_1 \supset A_2 \supset \dots$ и $A = \bigcap_{n=1}^{\infty} A_n$, но при этом получается, что $\nu(A) = 0$, а предел $\lim_{n \to \infty} \nu(A_n) = \infty$, поскольку они все имеют бесконечную меру. Таким образом, без ограничений, чтобы мера хоть какого-то A_n была конечной, утверждение не верно.

Утв. 2. Пусть \mathcal{R} - кольцо, μ - σ -конечная σ -аддитивная мера на \mathcal{R} , множества $A, A_1, \ldots, A_n, \ldots \in \mathcal{R}$, причем $A_1 \subseteq A_2 \subseteq \ldots$ и $A = \bigcup_{n=1}^{\infty} A_n$, тогда:

$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

 \square Если $\exists n_0 \colon \mu(A_{n_0}) = \infty \Rightarrow \forall n > n_0, \ \mu(A_n) = \infty$ и разумеется $\mu(A) = A$, то есть теорема выполняется. Пусть $\forall n, \ \mu(A_n) < \infty$, тогда:

$$A = A_1 \sqcup \left(\bigsqcup_{n=2}^{\infty} (A_n \setminus A_{n-1})\right) \Rightarrow \mu(A) = \mu(A_1) + \sum_{n=2}^{\infty} \mu(A_n \setminus A_{n-1})$$

Поскольку меры конечны и $A_{n-1} \subseteq A_n$, то будет верно:

$$\mu(A) = \mu(A_1) + \sum_{n=2}^{\infty} (\mu(A_n) - \mu(A_{n-1})) = \mu(A_1) + \lim_{N \to \infty} \sum_{n=2}^{N} (\mu(A_n) - \mu(A_{n-1}))$$

где последнее верно по определению суммы ряда. Тогда:

$$\mu(A) = \mu(A_1) - \mu(A_1) + \lim_{N \to \infty} \mu(A_N) = \lim_{N \to \infty} \mu(A_N)$$

Полнота мер

Опр: 6. Пусть \mathcal{R} - кольцо и μ - мера на \mathcal{R} , тогда μ называется полной \Leftrightarrow если $A \in \mathcal{R}$, $\mu(A) = 0$ и $B \subseteq A \Rightarrow B \in \mathcal{R}$ и $\mu(B) = 0$.

Rm: 9. То есть, полнота означает, что любое подмножество, множества меры ноль должно быть измеримо и его мера должна равняться нулю.

Rm: 10. Меры Лебега, Жордана, σ -конечная мера Лебега, мера Лебега-Стильтьеса - полны (вытекает сразу из соответствующих рассмотрений). А вот мера Бореля - не полна.

Например, Канторовское множество имеет меру Лебега 0, но оно измеримо по Борелю, потому что оно есть дополнение к некоторому открытому множеству. Мера Бореля это сужение меры Лебега и должна быть тоже 0, но в Канторовском множестве есть подмножества неизмеримые по Борелю, там не выполняется требование $B \in \mathcal{R}$ определения полноты.