第三章 气旋与反气旋

章节概述 本节讲授<mark>涡度方程、位势倾向方程、ω方程</mark>的物理意义及其在分析温带气旋与反气旋发展机制方面的 定性应用;影响我国的温带气旋、反气旋的结构特征与活动规律;用位势涡度守恒原理解释天气系统 在上山、下山时强度的变化;用地转适应的观点解释气旋发展。

3.1 气旋、反气旋的特征和分类

<mark>气旋</mark> 气旋是占有三度空间的,在同一高度上中心气压<mark>低于</mark>四周的流场中的涡旋。涡旋中的空气在<mark>北半球逆</mark>

时针旋转,在南半球顺时针旋转。在北半球具有正的涡度,南半球具有负的涡度。

反气旋 反气旋是占有三度空间的,在同一高度上中心气压<mark>高于</mark>四周的流场中的涡旋。涡旋中的空气在<mark>北半球</mark>

顺时针旋转,在南半球逆时针旋转。在北半球具有负的涡度,南半球具有正的涡度。

3.1.1 气旋和反气旋的水平尺度

尺度定义 气旋、反气旋的水平尺度以最外围的闭合等压线的直径长度来表示,反气旋尺度大于气旋。

气旋尺度 平均而言,气旋: 1000km - 3000km, 东亚气旋比欧洲和北美的水平尺度小

反气旋尺度 大者面积可达亚洲大陆的3/4

3.1.2 气旋和反气旋的强度

强度定义 使用中心气压值表征。气旋中心气压值越低,气旋越强,反气旋中心气压值越高,反气旋越强

气旋可以表述为加强或加深发展(等高面低于周围),但反气旋只能说加强。

强度范围 气旋: 970 - 1010hPa 反气旋: 1020 - 1030hPa

平均而言,温带的气旋和反气旋冬季强于夏季,海上的气旋强于陆上的,陆上的反气旋强于海上的。

3.1.3 气旋和反气旋的分类

气旋 地理区域:热带气旋和温带气旋

热力性质:锋面气旋(有温度对比)和无锋气旋(无温度对比,如台风、热低压)

反气旋 地理区域: **极地、温带和副热带反气旋**(西太平洋副热带高压)

热力性质: 冷性反气旋(西伯利亚冷高压)、暖性反气旋(西太平洋副热带高压)

气旋与反气旋会相互转化。无锋气旋可以转化为锋面气旋(台风北上)、冷高压也可以受热变为热高压

温带气旋 源地:不是均匀分布在温带地区的。

北半球气旋源地的特点:① 1、7 月**北太平洋和北大西洋两个气旋最大频率中心**(阿留申低压、冰岛低压)、② 源地分布基本**与纬圈平行**、③ 巨大山地背风一侧及其以东地区、④ 海湾以及内陆胡泊(非绝热加热影响:冬季温度高)

东亚无论冬夏, 30~35N,45~50N 生成频率最多。 与锋生带有关

3.2 涡度和涡度方程

引入 使用气压的变化率误差较大,但发现大尺度大气运动具有涡旋和准地转平衡的特点,可以用涡度衡量。

3.2.1 涡度

涡度 度量空气块**旋转程度和旋转方向**的物理量 单位: 1/s 量纲: $\zeta \sim V/L$

量级 $\vec{\zeta} \sim 10^{-5}$ 大尺度 $\vec{\zeta} \sim 10^{-4}$ 中尺度 $\vec{\zeta} \sim 10^{-3}$ 小尺度 $f \sim 10^{-4}$ 中高纬度

 $f = 2\Omega \sin \varphi$ 称为地转参数,也称为**地转涡度**,对于大尺度运动,地转涡度要更大。

公式
$$\vec{\zeta} = \nabla \times \vec{V} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix} = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}\right) \vec{i} + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}\right) \vec{j} + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) \vec{k}$$
 大尺度准水平,前两项不考虑

我们关注的是 $\zeta_z = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$ P坐标系中相对涡度的垂直分量 $\zeta_p = \left(\frac{\partial v}{\partial x}\right)_p - \left(\frac{\partial u}{\partial y}\right)_p$

方向 涡度的方向是指旋转轴的方向,不在气流旋转平面。

物理意义 涡度的物理意义: 简化问题: 设u=0 $\frac{\partial u}{\partial v}=0$ 只考虑 $\frac{\partial v}{\partial x}>0$

由于**风速分布不均匀**,原线段ab变化为a'b',**平移外发生了转动**。

转动角速度有:
$$(v_b - v_a)\delta t = \delta x \delta \theta \Rightarrow \lim_{\delta t \to 0} \frac{\delta \theta}{\delta t} = \frac{v_b - v_a}{\delta x} \Rightarrow \frac{d\theta}{dt} = \frac{\partial v}{\partial x}$$

可得 $\partial v/\partial x$ 表示与x轴平行的气块边界转动角速度,同理 $-\partial u/\partial y$ 表示与y轴平行的气块边界角速度。

如果把气块换为刚体,则 $\frac{\partial u}{\partial x} = -\frac{\partial u}{\partial y}$,于是 $\zeta_z = 2\frac{d\theta}{dt}$,**涡度为刚体旋转角速度的两倍**。

风场在空间分布不均匀,导致质点在流场中发生旋转。

3.2.1.1 绝对涡度与相对涡度

绝对涡度 \vec{V}_a 表示绝对速度, \vec{V} 表示空气相对于地球的相对速度, \vec{V}_a 为牵连速度。

 $\vec{V}_a = \vec{V} + \vec{V}_e \Rightarrow \vec{\zeta}_a = \vec{\zeta} + \vec{\zeta}_e$ 绝对涡度=相对涡度+地转涡度

如果涡度没有矢量符号,则表示垂直分量

自然坐标系的转换

3.2.1.2 曲率涡度与切变涡度

自然坐标 令水平方向全风速为
$$V_h$$
,则有: $\vec{V}_h = V_h \vec{s} \implies \begin{cases} u = V_h \cdot \vec{\iota} = V_h \cos \beta \\ v = V_h \cdot \vec{j} = V_h \sin \beta \end{cases}$

$$\frac{\partial v}{\partial x} = \frac{\partial V_h}{\partial x} \sin \beta + V_h \cos \beta \frac{\partial \beta}{\partial x} \qquad \frac{\partial u}{\partial y} = \frac{\partial V_h}{\partial y} \cos \beta - V_h \sin \beta \frac{\partial \beta}{\partial y}$$

$$\zeta = V \frac{\partial \beta}{\partial s} - \frac{\partial V}{\partial n} = \frac{V}{R_{s \, \text{thank like}}} - \frac{\partial V}{\partial n}$$
切变涡度 $= V K_s - \frac{\partial V}{\partial n}$

曲率涡度 表示由于**流线(或等高线)弯曲造成的涡度**,风速愈大,曲率愈大,涡度就愈大。

气旋性弯曲时, 曲率涡度为正; 反气旋性弯曲时, 曲率涡度为负; 等高线平直, 曲率涡度为零。

切变涡度 速度在法线方向分布不均匀,也就是**等高线沿着法线方向分布不均匀。<mark>急流附近切变涡度较为明显</mark>。**

急流轴的两侧: 北侧具有正的切变涡度 $-\frac{\partial V}{\partial n} > 0$, 南侧具有负的切变涡度 $-\frac{\partial V}{\partial n} < 0$, 导致高空辐散

注意 弯曲流场的涡度可能等于零。 只要流体微团的环流保持不变。

$$\oint_L \vec{V} \cdot d\vec{l} = 0 \qquad \qquad \zeta = \frac{V}{R_s} - \frac{\partial V}{\partial n} = -\frac{a}{R^2} + \frac{a}{R^2} = 0$$

3.2.1.3 地转风涡度、热成风涡度与行星涡度

地转风涡度 以地转风代替实际风, 得地转风涡度:

$$\boldsymbol{\zeta}_g = \frac{\partial v_g}{\partial x} - \frac{\partial u_g}{\partial y} = \frac{g}{f} \left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} \right)_{\frac{1}{10} \stackrel{\text{def}}{=} \frac{1}{10} \frac{1}{10} \frac{1}{10}} = \frac{9.8}{f} \left(\frac{\partial^2 H}{\partial x^2} + \frac{\partial^2 H}{\partial y^2} \right)$$

说明等高线的不同弯曲状态,决定了地转风涡度的正负和大小

二阶导数反应**等高线曲率**,如右图 $\zeta_g \approx \frac{v_d - v_b}{\Delta x}$

地牧风内及的口异槽线上曲率涡度最大

热成风涡度 以热成风: $u_T = -\frac{g}{f} \frac{\partial (z_2 - z_1)}{\partial y} = -\frac{g}{f} \frac{\partial h}{\partial y}$ $v_T = \frac{g}{f} \frac{\partial (z_2 - z_1)}{\partial x} = \frac{g}{f} \frac{\partial h}{\partial x}$ 代入

得到: $\zeta_T = \frac{\partial v_T}{\partial r} - \frac{\partial u_T}{\partial v} = \frac{g}{f} \left(\frac{\partial^2 h}{\partial v^2} + \frac{\partial^2 h}{\partial v^2} \right) = \frac{g}{f} \nabla^2 h$ 冷舌中有正的热成风涡度,暖舌中有负的热成风涡度

地转涡度 $\vec{V}_e = \vec{\Omega} \times \vec{R}$ 取自然坐标有 $\vec{\zeta}_e = \frac{V_e}{R} + \frac{\partial V_e}{\partial R} = 2\Omega$ 向量形式为 $\vec{\zeta}_e = 2\Omega$ 行星涡度

可见行星涡度的方向与地球自转方向一致,大小是自转角速度的两倍。

绝对涡度垂直分量: $(\vec{\zeta}_a)_z = (\vec{\zeta})_z + 2\Omega\sin\phi$ $(\vec{\zeta}_a)_p = (\vec{\zeta})_p + 2\Omega\sin\phi$

其中 $f = 2\Omega \sin \varphi$ 为行星涡度的垂直分量,又称**地转参数**。 北半球f > 0,南半球f < 0

3.2.2 涡度方程 (p坐标)

3.2.2.1 涡度方程的推导与公式

引入 我们想通过旋转程度来分析气旋或反气旋的增强情况,需要推导涡度与时间的关系。

对运动方程 $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial v} + \omega \frac{\partial u}{\partial v} = -g \frac{\partial z}{\partial x} + fv$ ① $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \omega \frac{\partial v}{\partial p} = -g \frac{\partial z}{\partial y} - fu$ ② 推导

对②求x偏导数,对①求y偏导数,并利用 $\zeta_p = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$

2:
$$\frac{\partial}{\partial t} \left(\frac{\partial v}{\partial x} \right) + u \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} \right) + \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial v}{\partial x} + v \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} \right) + \frac{\partial \omega}{\partial x} \frac{\partial v}{\partial p} + \omega \frac{\partial}{\partial p} \left(\frac{\partial v}{\partial x} \right) = -g \frac{\partial^2 z}{\partial x \partial y} - u \frac{\partial f}{\partial x} - f \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x} \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial y} \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial y} \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial y} \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \frac{\partial v}{\partial y} + v \frac{\partial$$

$$\left[\frac{\frac{\partial \zeta}{\partial t} + u \frac{\partial \zeta}{\partial x} + v \frac{\partial \zeta}{\partial y} + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + \omega \frac{\partial \zeta}{\partial p}\right] = \frac{\partial \omega}{\partial y} \frac{\partial u}{\partial p} - \frac{\partial \omega}{\partial x} \frac{\partial v}{\partial p} - (f + \xi) \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$$

 $\frac{\frac{d(f+\zeta)}{dt} = \left(\frac{\partial \omega}{\partial y}\frac{\partial u}{\partial p} - \frac{\partial \omega}{\partial x}\frac{\partial v}{\partial p}\right) - (f+\xi)\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)}{\mathbf{6}\mathbf{y}}$ **绝对涡度个别变化=涡度倾侧**—绝对涡度水平**散度项** 涡度方程

 $\frac{\partial \zeta}{\partial t} = -\left(u\frac{\partial \zeta}{\partial x} + v\frac{\partial \zeta}{\partial y}\right) - \left(u\frac{\partial f}{\partial x} + v\frac{\partial f}{\partial y}\right) - \omega\frac{\partial \zeta}{\partial y} + \left(\frac{\partial \omega}{\partial y}\frac{\partial u}{\partial y} - \frac{\partial \omega}{\partial x}\frac{\partial v}{\partial y}\right) - \left(f + \xi\right)\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$ 局地变化

涡度局地变化= −相对涡度平流−地转涡度平流−涡度垂直輸送+涡度倾侧项−绝对涡度水平散度项

或记忆为:
$$\frac{\partial \zeta}{\partial t} = -\vec{V} \cdot \nabla \zeta - \omega \frac{\partial \zeta}{\partial p} - \beta v + \left(\frac{\partial \omega}{\partial y} \frac{\partial u}{\partial p} - \frac{\partial \omega}{\partial x} \frac{\partial v}{\partial p}\right) - (f + \xi) \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$$

 $\frac{\partial \zeta}{\partial t} > 0$ 表示气旋性涡度增加,反气旋性涡度减小 $\frac{\partial \zeta}{\partial t} < 0$ 表示反气旋性涡度增加,气旋性涡度减小

3.2.2.2 涡度方程的物理意义

由于垂直速度在水平方向分布不均匀,使涡度水平分量转化为铅直分量 涡度倾侧项

相对涡度与水平散度 $-\xi\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$ $\zeta > 0$ 时(具有气旋性涡度时), 水平辐散使气旋性涡度减小 相对涡度

ζ < 0时(具有反气旋性涡度时),水平辐散使反气旋性涡度减弱 辐散使得旋转系统减弱</p>

地转涡度与水平散度 $-f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial v}\right)$ 辐散使反气旋性涡度增加,气旋性涡度减小;辐合使气旋性涡度 地转涡度

增加, 反气旋性涡度减小 水平辐散时, $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} > 0$ 有 $-f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) < 0$

槽线上相对涡度最大,槽前有正的相对涡度平流,槽后有负的相对涡度平流 槽脊情况

- ① 槽前脊后,沿着气流方向相对涡度减小,**有正涡度平流**,局地涡度增加 $\Delta \zeta > 0$ 附加气旋性环流
- ② 槽后脊前、沿着气流方向相对涡度增加、**有负涡度平流**、局地涡度减小 Δζ < 0 **附加反气旋环流** 附加的环流结合地转偏向力导致辐散(高空槽前有辐散)
- ③ 槽前脊后同时有高空辐散,低层辐合上升,冷却,导致 $-\Delta H$; 槽后脊前同时有高空辐合, $+\Delta H$
- ④ 槽脊线为**涡度平流零线**,正圆形的高低压系统涡度平流为零

短波槽 $(L \leq 3000km)$ 以相对涡度平流为主、长波槽以地转涡度平流为主,稳定西退

$-\left(u\frac{\partial\zeta}{\partial x}+v\frac{\partial\zeta}{\partial y}\right)$ 空气**作水平运动时**产生的涡度局地变化 相对平流

相对涡度分布不均匀和大气水平运动所引起的局地涡度变化

地转平流
$$-\left(u\frac{\partial f}{\partial x}+v\frac{\partial f}{\partial y}\right)=-\beta v_{y_{\hat{D}}\hat{D}}v_{y$$

北半球, f > 0, $\beta > 0$ 当吹南风时(v > 0), 气块f增大, 为 保持绝对涡度守恒, 气块ζ必须减小, 使得局地相对涡度减小。

$-\omega \frac{\partial \zeta}{\partial x}$ 涡度垂直输送,取决于相对涡度随高度的变化 垂直输送

 $\frac{\partial \zeta}{\partial n}>0$ 相对涡度随高度减小, $\omega<0$ 上升运动局地涡度增加, $\omega>0$ 下沉运动局地涡度减小

 $\frac{\partial \zeta}{\partial n} < 0$ 相对涡度随高度增加, $\omega < 0$ 局地涡度减小, $\omega > 0$ 局地涡度增加

高空槽前下方有气旋,槽前正涡度平流随高度增强,低层辐合上升加强,触发气旋发展。

3.2.3 涡度方程的简化

$$\frac{\partial \zeta}{\partial t} = -\left(u\frac{\partial \zeta}{\partial x} + v\frac{\partial \zeta}{\partial y}\right) - v\frac{\partial f}{\partial y} - \omega\frac{\partial \zeta}{\partial p} + \left(\frac{\partial \omega}{\partial y}\frac{\partial u}{\partial p} - \frac{\partial \omega}{\partial x}\frac{\partial v}{\partial p}\right) - (f + \zeta)\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right),$$

$$\frac{V^2}{L^2} \qquad V \cdot 10^{-13} \quad \frac{WV}{LH} \qquad \frac{WV}{LH} \qquad f_0 \cdot 10^{-6}$$

$$\mathbf{10^{-10}} \qquad \mathbf{10^{-10}} \qquad \mathbf{10^{-11}} \qquad \mathbf{10^{-11}} \qquad \mathbf{10^{-10}}$$

$$\frac{d(f+\zeta)}{dt} = -(f+\zeta)\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$$

运动方程中速度的时间导数项比气压梯度力小一个数量级;气压局地变化项为小项

物理解释

相对涡度的局地变化主要由涡度的平流变化,空气微团的南北运动以及水平辐合辐散造成。

又因为 $f \gg \zeta$ 有 $\frac{d(f+\zeta)}{dt} = -f\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$ 当大气准水平无辐散时,有 $\frac{d(f+\zeta)}{dt} = 0$

即水平无辐散大气中绝对涡度守恒,由此导致了罗斯贝波的生成。

3.2.4 位涡(位势涡度)及位涡守恒

垂直位涡度 $\frac{f+\zeta}{H}$ 或 $\frac{f+\zeta}{\Delta p}$ 绝对涡度与气柱厚度的比值

称为正压大气的**垂直位涡度**。

空气块受扰动后的路径

罗斯贝波的生成

位涡守恒

$$\frac{d}{dt} \left(\frac{f + \zeta}{H} \right) = \mathbf{0}$$
 位涡是一个常数

位涡是一个综合描述大气运动状态和热力状态的物理量。

位涡守恒定律揭示了大气热力结构对涡度变化的约束效应。

位涡

位涡度方程 由涡度方程、连续方程、热力学能量方程以及状态方程,通过变换,可以得到 Ertel 位涡度方程

$$\frac{d}{dt} \left(\frac{\vec{\zeta}_{a} \cdot \nabla s}{\rho} \right) = \frac{1}{\rho} \nabla s_{\dot{m}} \cdot \nabla \times \vec{F}_{\underline{p}_{\dot{m}}} + \frac{1}{\rho} \vec{\zeta}_{a} \cdot \nabla \left(\frac{Q_{\underline{+}\underline{0}\underline{h},\underline{h},\underline{h}}}{T} \right)$$
 其中 $\frac{\vec{\zeta}_{a} \cdot \nabla s}{\rho}$ 称为位涡度

在<mark>绝热无摩擦</mark>条件下,则位涡度方程变为 $\frac{d}{dt} \left(\frac{\overline{\xi}_{a} \cdot \nabla_{s}}{a} \right) = 0$ 称为**位涡守恒定律。**

形式推导 因大气的水平运动远大于垂直运动,且物理量的垂直变化远大于水平变化,近似有

$$\frac{\vec{\varsigma}_{\alpha} \cdot \nabla s}{\rho} = \frac{\hat{\beta} \ln \beta + \hat{\beta} + \hat{\beta} + \hat{\beta}}{\rho} \cdot \frac{\partial s}{\rho} = \frac{\hat{\beta} \ln \delta}{\rho} \cdot \frac{\partial s}{\partial z} = \frac{c_p}{\rho} (f + \zeta) \frac{\partial \ln \theta}{\partial z} \quad s = c_p \ln \theta$$

$$\frac{d}{dt} \left[\frac{f + \zeta}{\rho} \frac{\partial \ln \theta}{\partial z} \right] = \frac{1}{\rho} \frac{\partial \ln \theta}{\partial z} - \left(\frac{\partial F_y}{\partial z} - \frac{\partial F_x}{\partial y} \right) + \frac{f + \xi}{\rho c_p} \frac{\partial}{\partial z} \left(\frac{Q}{T} \right) \qquad \frac{d}{dt} \left[(f + \zeta) \frac{\partial \ln \theta}{\partial p} \right] = \frac{\partial \ln \theta}{\partial p} \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) + \frac{f + \xi}{c_p} \frac{\partial}{\partial p} \left(\frac{Q}{T} \right)$$

若绝热无摩擦 $\frac{d}{dt} \left[(f + \zeta) \frac{\partial \ln \theta}{\partial p} \right] = 0$ 进一步的,在干绝热过程中,**空气微团始终在等位温面或等熵**

面上运动,在两个等熵面之间的空气柱尽管在运动过程中有所伸缩,但始终被禁锢在两个等熵面(位温面)间。介于两个等位温面间的气柱,设其气压差为 Δp ,因绝热过程中空气微团的位温保持守恒,则:

$$(f+\zeta)\frac{\partial \ln \theta}{\partial p} = (f+\zeta)\frac{\ln \theta_2 - \ln \theta_1}{\Delta p} = \frac{(f+\zeta)}{\Delta p}\ln \frac{\theta_2}{\theta_1} \quad \Rightarrow \frac{d}{dt}\left(\frac{f+\zeta}{\Delta p}\right) = 0$$

若假定气层厚度为H,且空气不可压,则有 AH = const,A为气柱底面积,H为厚度

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \frac{1}{A} \frac{dA}{dt} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = -\frac{1}{H} \frac{dH}{dt} \qquad \frac{d(f+\xi)}{dt} = -(f+\xi) \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$$

$$\frac{d(f+\zeta)}{dt} = (f+\zeta)\frac{1}{H}\frac{dH}{dt}$$

气柱被禁锢在等位温面之间

$$\frac{d}{dt} \left(\frac{f + \xi}{H} \right) = 0$$
 H增大,为辐合 H减小,为辐散

① 气柱上山,H减小,辐散,f不变,则气旋性涡度减小,反气旋性涡度增大。上山一侧有利于反气旋生成发展,背风坡一侧有利于气旋的生成。

② 正压绝热过程下的位涡守恒: $\frac{d}{dt}\left(\frac{f+\xi}{\Delta p}\right)=0$

应用

- ① 上山前,均匀西风气流,因此相对涡度为0
- ② 上山. 厚度H减小. 因此相对涡度 ζ 减小. f不变; 此时 ζ <
- **0**, 反气旋性涡度, **空气块向南运动**(反气旋运动轨迹), **f减小**
- ③ 越过山顶后,因为 β 效应,即绝对涡度守恒,f减小,则相对涡度增加。同时下山中,H增加,位涡守恒要求相对涡度增加。
- ④ 因此气块运动将按照气旋式环流轨迹,使得**在山后形成第一个槽:背风槽**。此后按照**绝对涡度守恒**,向下游形成一些列的槽。

真实情况下,有地形的摩擦作用、绕流作用。

