Beyond mean modelling: multi-parameter GAMs

Matteo Fasiolo

matteo.fasiolo@bristol.ac.uk

Material available at:

 $\verb|https://github.com/mfasiolo/GAM_Workshop_Enbis_EDF_23|$

Recall GAM model structure:

$$y|\mathbf{x} \sim \mathsf{Distr}\{y|\theta_1 = \mu(\mathbf{x}), \theta_2, \dots, \theta_p\},\$$

where

$$g\{\mu(\mathbf{x})\} = \sum_{j=1}^m f_j(\mathbf{x}).$$

Multi-parameter GAM structure:

$$y|\mathbf{x} \sim \mathsf{Distr}\{y|\theta_1 = \mu_1(\mathbf{x}), \theta_2 = \mu_2(\mathbf{x}), \dots, \theta_p = \mu_p(\mathbf{x})\},\$$

where

$$g_1\{\mu_1(\mathbf{x})\} = \sum_{j=1}^m f_j^1(\mathbf{x}),$$

• • •

$$g_p\{\mu_p(\mathbf{x})\} = \sum_{j=1}^m f_j^p(\mathbf{x}).$$

Special case are **Generalized Additive Models for Location Scale and Shape** (GAMLSS) (Rigby and Stasinopoulos, 2005).

See appendix for complete list of distributions in mgcv.

Example: Gaussian location-scale model

Model is

$$y|\mathbf{x} \sim N\{y|\mu(\mathbf{x}), \sigma^2(\mathbf{x})\}$$

where

$$\mu(\mathbf{x}) = \sum_{j=1}^{m} f_j^1(\mathbf{x})$$

$$\log \sigma(\mathbf{x}) = \sum_{i=1}^m f_i^2(\mathbf{x})$$

In mgcv: gam(list(y ~s(x), ~s(x)), family=gaulss).

Example: Sinh-arcsinh (shash) distribution (Jones and Pewsey, 2009)

gam(list(y s(x), s(x), s(x), s(x)), family=shash).

Non-GAMLSS example: multivariate normal GAMs

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_d \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_1(\mathbf{x}) \\ \mu_2(\mathbf{x}) \\ \mu_3(\mathbf{x}) \\ \vdots \\ \mu_d(\mathbf{x}) \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & & \Sigma_{1d} \\ \Sigma_{12} & \Sigma_{22} & \cdots & \cdots & \Sigma_{2d} \\ \Sigma_{13} & \Sigma_{23} & \cdots & \cdots & \Sigma_{3d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Sigma_{1d} & \Sigma_{2d} & \cdots & \cdots & \Sigma_{dd} \end{pmatrix} \right).$$

In mgcv: $gam(list(y^s(x1), s(x3), s(x3)), family = mvn(3))$

With the SCM package we can model Σ as well

$$\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}(\mathbf{x}), \boldsymbol{\Sigma}(\mathbf{x})).$$

 $\Sigma(x)$ must be positive definite so we can **not** write $\Sigma_{jk} = \sum_i f_j(\mathbf{x})$.

One option is the modified Cholesky decomposition (Pourahmadi, 1999)

$$\mathbf{\Sigma}^{-1} = \mathbf{T}^{\mathsf{T}} \mathbf{D}^{-2} \mathbf{T}$$
,

where \mathbf{D}^2 is a diagonal matrix and \mathbf{T} is upper triangular.

Available via the SCM package

https://github.com/VinGioia90/SCM

To install type:

```
library(devtools)
install_github("VinGioia90/SCM")
install_github("mfasiolo/mgcViz") # For visualisation
```

See Gioia et al. (2022) for details.

The UK electricity grid is divided into 14 grid supply groups (GSP).

Gioia et al. (2022) produce joint probabilistic forecasts of net-demand.

Left: 7am 31/12/2018. Right: midnight 20/08/2018.

Non-GAMLSS example: additive stacking or aggregation of experts

We want to predict $y|\mathbf{x}$ and we have models $p_1(y|\mathbf{x}), \dots, p_K(y|\mathbf{x})$.

Build mixture with covariate dependent weights

$$p_{\mathsf{mix}}(y|\mathbf{x}) = \sum_{k=1}^{K} w_k(\mathbf{x}) p_k(y|\mathbf{x});$$

where $0 \le w_k \le 1$ and $\sum_k w_k = 1$.

Capezza et al. (2021) use the multinomial parametrisation

$$w_k = \frac{e^{\eta_k}}{\sum_j e^{\eta_j}},$$

with $\eta_1 = 0$ and $\eta_k = \sum_l f_{lk}(\mathbf{x})$ for $k = 2, \dots, K$.

Available via the gamFactory:

install_github("mfasiolo/gamFactory")

References I

Capezza, C., B. Palumbo, Y. Goude, S. N. Wood, and M. Fasiolo (2021). Additive stacking for disaggregate electricity demand forecasting. The Annals of Applied Statistics 15(2), 727–746.

Gioia, V., M. Fasiolo, J. Browell, and R. Bellio (2022). Additive covariance matrix

- models: modelling regional electricity net-demand in great britain. arXiv preprint arXiv:2211.07451.
- Jones, M. and A. Pewsey (2009). Sinh-arcsinh distributions. *Biometrika 96*(4), 761–780.
- Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. *Biometrika* **86**(3), 677–690.
- Rigby, R. A. and D. M. Stasinopoulos (2005). Generalized additive models for location, scale and shape. *Journal of the Royal Statistical Society: Series C (Applied Statistics)* 54(3), 507–554.
- Wood, S. N., N. Pya, and B. Säfken (2016). Smoothing parameter and model selection for general smooth models. *Journal of the American Statistical Association* 111(516), 1548–1575.
- Youngman, B. D. (2022). evgam: An r package for generalized additive extreme value models. *Journal of Statistical Software 103*(3), 126.

List of distributions in mgcv

Type ?mgvc::family on the R console to see a list of distributions from the exponential family.

Wood et al. (2016) allows Distr \notin exponential family (extended GAMs):

- ullet scat o scaled Student-t;
- ② betar \rightarrow beta for $y \in (0,1)$;
- 3 ziP → zero-inflated Poisson;
- \bullet tw \rightarrow Tweedie;
- ocat → order categorical;
- $oldsymbol{0}$ nb o negative binomial.

Note that these EGAMs have one linear predictor, i.e.

$$y_i | \mathbf{x}_i \sim \mathsf{Distr}\{y_i | \theta_1(\mathbf{x}), \theta_2, \dots, \theta_p\}.$$

hence are not GAMLSSs.

- Available GAMLSS families:
 - $lue{1}$ gammals o 2-par gamma;
 - ② gaulss → 2-par Gaussian;
 - 3 shash \rightarrow 4-par sinh-arsinh;
 - ziplss → 2-par zero-inflated Poisson;
 - **9** gevlss \rightarrow 3-par generalised extreme value distribution (GEV);
 - **1** gumbls \rightarrow 2-par Gumbel (special case of GEV);

For extreme value GAMs, see also the evgam package (Youngman, 2022).

Further models are:

- multinom → multinomial categorical;
- @ cox.ph \to Cox Proportional Hazards model;
 - $oldsymbol{0}$ mvn ightarrow multivariate Gaussian model (fixed covariance).