Fouille de graphes

Quentin Fournier <quentin.fournier@polymtl.ca>

Les diapositives ont été créées par Daniel Aloise <daniel.aloise@polymtl.ca>

Graphes

 De nombreux jeux de données ont des interprétations graphiques naturelles :

Données	Sommets	Arêtes
Réseaux sociaux	personnes	amitiés
Internet	pages	liens/références
Commerces	produits/clients	ventes
Réseaux génétiques	gènes	interactions

Transformation de données e

 Un ensemble de données multidimensionnelles définit des graphes : ajoute une arête (X_i, X_j) si X_i et X_j sont proches.

Skienna, 2017

 Les graphes définissent aussi des données multidimensionnelles : transformation spectrale.

Taxonomie des graphes EXAMEN: savoir les graphes et leurs fonctions!

Le prof l'a expliqué en classe mais pas eu le temps de le noter Demander qui fait quoi sur Slack

sommets

Twitter: réseau dirigé: car une personne ne nous follow pas en fetour 17 Fb: qq1 qu'on follow va nous follow aussi

Applications

- Il y a deux types principaux d'applications pour lesquelles la fouille de graphes est naturelle :
 - ① Dans des applications telles que les données chimiques et biologiques, une base de données de nombreux petits graphes est disponible
 - 2 Dans les applications telles que le Web et les réseaux sociaux, un seul grand graphe est disponible.
- Dans cette séance, nous nous intéresserons au premier type d'application.

Exemples d'applications

DATABASE OF PHENOLIC ACIDS

FREQUENT SUBSTRUCTURES OF PHENOLIC ACIDS

Aggarwal, 2015

Fouille de graphes

 Comment-on mesure la distance ou la similarité entre deux graphes?

Graphes équivalents

Exemple

Ces deux graphes sont en réalité isomorphes.

Isomorphisme de graphes

- Le problème de savoir si deux graphes sont isomorphes est NP-complet.
- Le problème devient encore plus difficile lorsque les étiquettes de sommets se répètent.

Aggarwal, 2015

Isomorphisme de sous-graphe

NOTION TRÈS IMPORTANTE

Aggarwal, 2015

Le problème de savoir si un graphe est sous-graphe isomorphe à un autre est aussi NP-complet.

Maximum commun sous-graphe

Enregist Minute 40

(MCS)

Le nb de sommets du plus grande nb de graphes à G1 et G2

• Le MCS entre une paire de graphes $G_1 = (N_1, E_1)$ et $G_2 = (N_2, E_2)$ est un graphe $G_0 = (N_0, E_0)$ qui est sous-graphe isomorphe à G_1 et G_2 , et pour lequel la taille de l'ensemble de noeuds N_0 est aussi grande que possible.

Un sous-graphe isomorphe d'un graphe est un sous-graphe qui a la même structure de données que le graphe original. Cela signifie que le sous-graphe a les mêmes sommets et les mêmes arêtes que le graphe original, mais peut être disposé de manière différente.

Mesures de similarité

En utilisant la MCS :

taille 1er graphe
$$d(G_1,G_2) = |G_1| + |G_2| - 2|MCS(G_1,G_2)|$$

ceci est égal au nombre de nœuds non-correspondants entre les deux graphes

- * abus de notation : |G| égal à |N|
- Pas idéal! Normalisation requise :

$$d_{norm}(G_1, G_2) = 1 - \frac{|MCS(G_1, G_2)|}{|G_1| + |G_2| - |MCS(G_1, G_2)|}$$

$$d_{norm} \in [0, 1]$$

Mesures de similarité

• La distance d'édition $Edit(G_1, G_2)$ est égal au coût minimum des opérations d'édition à appliquer au graphe G_1 pour le transformer en G_2 .

Aggarwal, 2015

Mesures de similarité

- Les mesures de distances présentées ne peuvent être utilisées que pour des petits graphes parce que :
 - MCS est NP-difficile
 - Le calcul de $Edit(G_1, G_2)$ est aussi NP-difficile
 - Il nous faut d'autres options plus performantes

Transformations basées sur un noyau

- Les méthodes basées sur des noyaux peuvent être utilisées pour un calcul de similarité plus rapide.
- De plus, ces méthodes de calcul de similarité peuvent être utilisées directement avec les SVMs.
- La similarité de noyau $\mathcal{K}(G_i,G_j)$ entre une paire de graphes G_i et G_j est le produit scalaire des deux graphes après leurs transformations hypothétiques dans un nouvel espace défini par la fonction $\phi(\cdot)$:

$$\mathcal{K}(G_i, G_j) = \phi(G_i) \cdot \phi(G_j)$$

- En pratique, la fonction $\phi(\cdot)$ n'est pas définie directement.
- Il y a plusieurs façons de définir une similarité de noyau pour les graphes.

Marches aléatoires

- Principe:
 - Compter les marches communes dans G_1 et G_2
 - Les marches sont des séquences de sommets avec répétition
- Calcul:
 - Construction du graphe produit de G₁ et G₂

Marches aléatoires

Aggarwal, 2015

Chaque marche dans le graphe produit correspond à une séquence appariée en termes de sommets dans G_1 et G_2 .

Quentin Fournier <quentin.fournier@polymtl.ca> — Fouille de graphes — 17 novembre 2021 17/37

Les sommets du graphe produit de G_1 et G_2 correspondent aux paires de sommets de G_1 et de G_2 qui ont la même étiquette :

$$V_X = \{(v_1, v_2) : v_1 \in G_1 \land v_2 \in G_2 \land \mathsf{label}(v_1) = \mathsf{label}(v_2)\}$$

Graphe produit G_X

essayer tt les paires de sommets qu'on peut matcher ensemble

Les sommets du graphe produit de G_1 et G_2 correspondent aux paires de sommets de G_1 et de G_2 qui ont la même étiquette :

$$V_X = \{(v_1, v_2) : v_1 \in G_1 \land v_2 \in G_2 \land \mathsf{label}(v_1) = \mathsf{label}(v_2)\}$$

Graphe produit G_X

Les sommets du graphe produit de G_1 et G_2 correspondent aux paires de sommets de G_1 et de G_2 qui ont la même étiquette :

$$V_X = \{(v_1, v_2) : v_1 \in G_1 \land v_2 \in G_2 \land \mathsf{label}(v_1) = \mathsf{label}(v_2)\}$$

Les sommets du graphe produit de G_1 et G_2 correspondent aux paires de sommets de G_1 et de G_2 qui ont la même étiquette :

$$V_X = \{(v_1, v_2) : v_1 \in G_1 \land v_2 \in G_2 \land \mathsf{label}(v_1) = \mathsf{label}(v_2)\}$$

Les sommets du graphe produit de G_1 et G_2 correspondent aux paires de sommets de G_1 et de G_2 qui ont la même étiquette :

$$V_X = \{(v_1, v_2) : v_1 \in G_1 \land v_2 \in G_2 \land \mathsf{label}(v_1) = \mathsf{label}(v_2)\}$$

Les arêtes du graphe produit correspondent aux arêtes communes à G_1 et à G_2 : aretes à la fois dans le graphe 1 et dans le graphe 2

$$E_X = \{((u_1, u_2), (v_1, v_2)) : (u_1, v_1) \in G_1 \land (u_2, v_2) \in G_2\}$$

Les arêtes du graphe produit correspondent aux arêtes communes à G_1 et à G_2 :

$$E_X = \{((u_1, u_2), (v_1, v_2)) : (u_1, v_1) \in G_1 \land (u_2, v_2) \in G_2\}$$

Est-ce qu'on peut aller de1 à 2 et de 2' à 1'? Oui, donc faire un trait

(2, 1')(1, 2')

(3, 1')(1, 3')

Graphe produit G_X

Les arêtes du graphe produit correspondent aux arêtes communes à \mathcal{G}_1 et à \mathcal{G}_2 :

$$E_X = \{((u_1, u_2), (v_1, v_2)) : (u_1, v_1) \in G_1 \land (u_2, v_2) \in G_2\}$$

Les arêtes du graphe produit correspondent aux arêtes communes à G_1 et à G_2 :

$$E_X = \{((u_1, u_2), (v_1, v_2)) : (u_1, v_1) \in G_1 \land (u_2, v_2) \in G_2\}$$

Les arêtes du graphe produit correspondent aux arêtes communes à \mathcal{G}_1 et à \mathcal{G}_2 :

$$E_X = \{((u_1, u_2), (v_1, v_2)) : (u_1, v_1) \in G_1 \land (u_2, v_2) \in G_2\}$$

Marches aléatoires

- Calcul :
 - Construction du graphe produit de G_1 et G_2 .
 - Le nombre de marches de longueur k peut être calculé en regardant la k-ième puissance de la matrice d'adjacence A du graphe produit.
 - Ainsi :

$$\mathcal{K}(G_1, G_2) = \sum_{ij} \sum_{k=1}^{\infty} \lambda^k [A^k]_{ij}$$

où $\lambda \in (0,1)$ est choisi de façon à garantir la convergence de la série.

Chemins plus courts

- Les marches aléatoires permettent de répéter les sommets des séquences.
- Une marche peut visiter le même cycle de sommets plusieurs fois.
- Le noyau basé sur les marches aléatoires mesure la similarité en termes de marches communes.
- Par conséquent, une petite similarité structurelle peut provoquer une énorme valeur de noyau.
- Solution : noyau basé sur les plus courts chemins.

Chemins plus court

- La fonction k(i₁, j₁, i₂, j₂) est définie par paires de sommets avec i₁, j₁ ∈ G₁ et i₂, j₂ ∈ G₂.
- k(i₁, j₁, i₂, j₂) = 1 si le plus court chemin entre i₁ et j₁ dans
 G₁ est de la même taille que le plus court chemin entre i₂ et j₂ dans
 G₂.
- Ainsi, la fonction noyau est définie comme :

$$\mathcal{K}(G_1, G_2) = \sum_{i_1, j_1, i_2, j_2} k(i_1, j_1, i_2, j_2)$$

Chemins plus court

- La fonction k(i₁, j₁, i₂, j₂) est définie par paires de sommets avec i₁, j₁ ∈ G₁ et i₂, j₂ ∈ G₂.
- k(i₁, j₁, i₂, j₂) = 1 si le plus court chemin entre i₁ et j₁ dans
 G₁ est de la même taille que le plus court chemin entre i₂ et j₂ dans
 G₂.
- Ainsi, la fonction noyau est définie comme :

$$\mathcal{K}(G_1, G_2) = \sum_{i_1, j_1, i_2, j_2} k(i_1, j_1, i_2, j_2)$$

ça coûte quand même cher...

Clustering de graphes

- Partitionne la base de données de n graphes G_1, \ldots, G_n en k clusters.
- out-of-the-box : méthodes basées sur des dissimilarités.

Clustering de graphes

- Une deuxième méthodologie utilisée est celle des méthodes spectrales.
- Les graphes de données G_1, \ldots, G_n sont utilisés pour construire un seul graphe global \overline{G} .
- Chaque graphe G_i correspond à un sommet dans \overline{G} .
- Chaque sommet de G est lié à ces plus proches voisins selon les distances calculées.
- Donc, le problème de regrouper G_1, \ldots, G_n devient le problème de regrouper les sommets d'un seul graphe \overline{G} .
- Possible algorithme: transformation spectrale sur G + k-means.

Classification de graphes

- On suppose qu'un ensemble de n graphes G_1, \ldots, G_n est disponible, mais seul un sous-ensemble de ces graphes est étiqueté (avec des étiquettes $1, \ldots, k$).
- out-of-the-box: KNN, chaque nouveau graphe non-étiqueté prend l'étiquette de la classe majoritaire parmi ses k-plus proches voisins.

Descripteurs topologiques

- Les descripteurs topologiques convertissent les graphes en données multidimensionnelles où chaque attribut mesure une caractéristique structurelle importante.
- Une fois la conversion effectuée, des algorithmes d'exploration de données multidimensionnels peuvent être utilisés sur la représentation transformée.
- L'inconvénient de cette approche est qu'elle implique une perte information.

Descripteurs topologiques

Quelques exemples de descripteurs topologiques sont :

Morgan Index, égal à un vecteur de taille |G| où chaque composante i est égale au nombre de sommets accessibles depuis le sommet i à une distance d'au plus t.

Morgan Index

4	2	5	3	4	2	
1	2	3	4	5	6	

à partir de 1: avec une distance de deux on peut assister au sommet 3 et 4

Descripteurs topologiques

Quelques exemples de descripteurs topologiques sont :

Wiener Index égal à la somme des distances les plus courtes entre toutes les paires de sommets du graphe.

Hosoya index égal au nombre de *matchings* valides dans le graphe.

Aggarwal, 2015

