复分析 H 作业解答

原生生物

*对应教材为史济怀、刘太顺《复变函数》与 Stein《复分析》。

目录

1	第一次作业	2
2	第二次作业	3
3	第三次作业	4
4	第四次作业	5
5	第五次作业	6
6	第六次作业	8
7	第七次作业	10
8	第八次作业	10
9	第九次作业	11
10	第十次作业	13
11	第十一次作业	14
12	第十二次作业	15
13	第十三次作业	16
14	第十四次作业	17
15	第十五次作业	17

1 第一次作业 2

1 第一次作业

- 1. (1.3 节定理、1.3.5)
 - (1) 设 z=x+iy,与 N 点连线为 $(tx,ty,1-t),t\in\mathbb{R}$,与球面交点满足 $t^2x^2+t^2y^2+(1-t)^2=1$,除 t=0 外解为 $t=\frac{2}{z^2+y^2+1}=\frac{2}{|z|^2+1}$,带入得交点为 $(\frac{z+\bar{z}}{|z|^2+1},\frac{z-\bar{z}}{|z|^2+1},\frac{|z|^2-1}{|z|^2+1})$ 。
 - (2) 由 (1) 直接计算验证, $\frac{x_1+\mathrm{i}x_2}{1-x_3} = \frac{z+\bar{z}+z-\bar{z}}{|z|^2+1-(|z|^2-1)} = z$,由此得证。
 - (3) 过 N 点圆对应直线: 过 N 圆周与 N 连直线组成平面,与复平面的交为直线,而 N 与复平面直线确定平面,与球面交为过 N 点圆。

不过 N 点圆对应圆: 由旋转对称,不妨设复平面上圆为 $(x-a)^2+y^2=r^2$,由 (1) 可知对径点 (a-r,0),(a-r,0) 在球面上对应点的中点为

$$\left(\frac{a-r}{1+(a-r)^2} + \frac{a+r}{1+(a+r)^2}, 0, \frac{1}{2} \left(\frac{(a-r)^2-1}{1+(a-r)^2} + \frac{(a+r)^2-1}{1+(a+r)^2}\right)\right)$$

而圆上一点 $(a + r \cos \theta, r \sin \theta)$ 对应点为

$$\left(\frac{2(a+r\cos\theta)}{1+a^2+r^2+2r\cos\theta}, \frac{2r\sin\theta}{1+a^2+r^2+2r\cos\theta}, \frac{-1+a^2+r^2+2r\cos\theta}{1+a^2+r^2+2r\cos\theta}\right)$$

计算知两者距离为 $2r\sqrt{\frac{1}{(1+(a+r)^2)(1+(a-r)^2)}}$,与 θ 无关,因此对应的点为一个球与单位球的交点,即为圆,由此得证。

- 2. (1.2.14)
 - (1) 此时 $\bar{\beta}z + \beta \bar{z} + d = 0$, 设 $\beta = m + ni, z = x + yi$, 可得 2mx + 2ny + d = 0, 从而为直线。
 - $(2) 此时可化为 (az+\beta)(a\bar{z}+\bar{\beta}) = \beta\bar{\beta} ad, 即 |az+\beta| = \sqrt{|\beta|^2 ad}, 圆心为 \frac{\beta}{a}, 半径 \frac{\sqrt{|\beta|^2 ad}}{a},$
- 3.(2.2.2)
 - * 以下设 f = u + iv,且 u_x 代表 $\frac{\partial u}{\partial x}$
 - (1) 由于 u=C, 由 CR 方程知 $v_x=v_y=0$, 从而 v=C', 由此得证。
 - (2) 与 (1) 同理知 $u_x = u_y = 0$, 由此得证。
 - (3) 由题意 $u^2 + v^2 = C$,求偏导得 $\begin{cases} uu_x + vv_x = 0 \\ uu_y + vv_y = 0 \end{cases}$,代入 CR 方程知 $\begin{cases} uv_y vu_y = 0 \\ uu_y + vv_y = 0 \end{cases}$,从而 $(u^2 + v^2)v_y = 0$,分析知 $v_y = 0$,同理 $u_x = u_y = v_x = 0$,由此得证。
 - $(4) \ v = 0 \ \text{时由} \ (2) \ 知结果,否则有 \ u = Cv$,求偏导代入 CR 方程得 $\begin{cases} v_y = -Cu_y \\ u_y = Cv_y \end{cases}$,解得 $u_y = v_y = 0$,同理 $u_x = v_x = 0$,由此得证。
 - (5) 对 $u=v^2$ 求偏导代入 CR 方程得 $\begin{cases} v_y=-2vu_y\\ u_y=2vv_y \end{cases}$,从而 $(4v^2+1)u_y=0$,同理 $u_x=v_x=v_y=0$,由此得证。
- 4. (2.2.3)

设 $f=u+\mathrm{i}v$,则 $u=\sqrt{xy},v=0$, $u_x=\frac{\sqrt{y}}{2\sqrt{x}}$,0 处偏导为从 x 方向趋于 0,由此为 0,同理 $u_y(0)=0$,因此满足 CR 方程。

由于 f 只有 $xy \ge 0$ 时有意义,0 不为定义域内点,因此不实可微,从而不可微。

2 第二次作业 3

5. (2.2.11)

设 f = u + iv,则 $\log |f(z)| = \frac{1}{2} \log(u^2 + v^2)$,对 x 求两次偏导得

$$\frac{(u^2+v^2)(uu_{xx}+vv_{xx})-u^2u_x^2-v^2v_x^2+u^2v_x^2+v^2u_x^2-4uvu_xv_x}{(u_2+v_2)^2}$$

对 y 求两次偏导即为把此式中 x 替换为 y,由 CR 方程, $u_xv_x=-u_yv_y,u_x^2=v_y^2,u_y^2=v_x^2$,对两偏导可消去除第一项外的全部项,再由 u,v 调和消去第一项,可知 $\log|f(z)|$ 调和。

 $\arg f(z)$ 可以为 $\arctan \frac{v}{u}$ (正半轴上为 0)、 $\arctan \frac{v}{u} \pm \pi$ 。由于定义域不包含负半轴,在各交界处连续变化,因此只需要考察 $\arctan \frac{v}{u}$ 是否调和。对 x 求两阶偏导得

$$\frac{u^3v_{xx} - v^3u_{xx} - u^2vu_{xx} + uv^2v_{xx} + (v^2 - u^2)u_xv_x + uv(u_x^2 - v_x^2)}{(u^2 + v^2)^2}$$

仍类似上一种情况求和可消去,由此调和。

对 |f(z)|,记 $g(z) = \log |f(z)|$,则 $|f(z)| = \mathrm{e}^{g(z)}$,因此 $\Delta |f(z)| = \mathrm{e}^g(g_{xx} + g_{yy} + g_x^2 + g_y^2)$,由 g 调和 知其为 $\mathrm{e}^g(g_x^2 + g_y^2)$,由此 |f(z)| 调和只能 g 为常数,即 |f(z)| 为常数,由 2.2.2(3) 知 f 为常数,矛盾。

6. (2.2.15)

令 $u(z) = \ln |z|$,计算知其调和。若存在共轭调和函数 v,由 CR 方程知 $v_y = \frac{x}{x^2 + y^2}, v_x = -\frac{y}{x^2 + y^2}$,积分得 $v = \arctan \frac{y}{x} + C$ 。即 v 在每一点必须为 $Arg z + \{0, \pi\}$ 中元素加上某共同的 C,分析知无论如何选择也不能连续,矛盾。

7.(2.3.3)

若 $f'(1) \neq 0$ 且 $\arg f'(1) \neq 0$,设其为 $r(\cos \theta + i \sin \theta)$,由对称不妨设 $\theta \in (0, \pi]$ 。由导数连续,

$$\forall \varepsilon, \exists \delta, |z| < \delta \Rightarrow \left| \frac{f(z+1) - 1}{z} - r(\cos \theta + i \sin \theta) \right| < \varepsilon$$

由此 $|f(z+1)| > |1 + rz(\cos\theta + i\sin\theta)| - \varepsilon|z|$ 。

当 $\theta \leq \frac{\pi}{2}$ 时,取 $\arg z = \frac{3\pi}{2} - \theta$,否则取 $\arg z = 0$,再令 $\varepsilon < \min(\frac{r}{4}, \frac{r^2}{4})$,即有 |z+1| < 1, |f(z+1)| > 1,矛盾。

8.(2.2.4)

令 $g(z) = \frac{f(z_0 z)}{f(z_0)}$,则其满足 2.2.3 条件,由此 $g'(1) = \frac{z_0 f'(z_0)}{f(z_0)} > 0$,即得证。

2 第二次作业

1.(2.4.6)

* 设主支辐角范围为 $(0,2\pi)$

由于
$$\log z = \log |z| + \mathrm{i} \arg z$$
, $\operatorname{Re} \log z^2 = 2 \log |z|$, $\operatorname{Im} \log z^2 = \arg z^2 = \begin{cases} 2 \arg z & \arg z < \pi \\ 2 \arg z - 2\pi & \arg z \ge \pi \end{cases}$ 。

2. (2.4.23)

记 $\Delta_c \operatorname{Log}\left(\frac{z^2-1}{z}\right)$ 为简单闭曲线 C 绕一圈的变化量,由于 $f(z) = \operatorname{log}\left|\frac{z^2-1}{z}\right| + \operatorname{i}\operatorname{Arg}\left(\frac{z^2-1}{z}\right)$

$$\Delta_c f(z) = i(\Delta_c \operatorname{Arg}(z+1) + \Delta_c \operatorname{Arg}(z-1) - \Delta_c \operatorname{Arg}(z)$$

3 第三次作业 4

由此,f(z) 支点为 -1,0,1,所给域中的简单闭曲线或不包含支点,或包含 0,1 两个支点,第二种情况 $\Delta_c = 0 + 2\pi - 2\pi = 0$,由此可分出单值分支。

3.(2.4.11)

 $\mu = \frac{1}{2}$ 时, $(z^{\mu})^2$ 与 $z^{2\mu}$ 为单值函数, $(z^2)^{\mu}$ 为多值函数,由此与前两者不同。

设 $\mu = a + bi$ 由于 $z^{\mu} = e^{a \log|z| - b(\arg z + 2k\pi)} e^{i(b \log|z| + a(\arg z + 2k\pi))}$,且 z^2 为单值函数, $(z^{\mu})^2$ 的实部与虚部指数分别对应乘 2,因此即为 $e^{2a \log|z| - 2b(\arg z + 2k\pi)} e^{i(2b \log|z| + 2a(\arg z + 2k\pi))}$,此即 $z^{2\mu}$,因此前两者相等。

4. (2.4.22)

 $f(z) = \frac{1}{z} \left(\frac{z}{1-z}\right)^p$,多值部分为 $\left(\frac{z}{1-z}\right)^p$,但 $\operatorname{Arg} \frac{z}{1-z} = \operatorname{Arg} z - \operatorname{Arg} (1-z)$,在所给域中,任何简单闭曲线或不包含 0,1,或均包含,绕一周后 $\operatorname{Arg} \frac{z}{1-z}$ 不变,由此可分出单值分支。

5. (2.4.26)

由于此函数支点为 $\{-1,1\}$,而挖去线段后域中任何简单闭曲线不可能围绕支点,由此可分出单值分支。

 $f(z) = \log |1-z^2| + \mathrm{i} \operatorname{Arg}(1-z^2)$,考虑 z 沿 |z-1| = 1 的下半圆从 0 连续变化到 2,则 $\operatorname{Arg}(1-z)$ 增大 π , $\operatorname{Arg}(1+z)$ 不变,由此最终结果为 $f(2) = \log 3 + \mathrm{i} \pi$ 。

6. (2.4.27)

由定理 2.4.7 可知其可分出单值分支,由于

$$f(z) = |1 - z|^{3/4} |1 + z|^{1/4} \exp\left(i\left(\frac{3}{4}\operatorname{Arg}(1 - z) + \frac{1}{4}\operatorname{Arg}(1 + z)\right)\right)$$

i 从 [-1,1] 的左侧变化到 -i,Arg(1-z) 增大 $\frac{\pi}{2}$,Arg(1+z) 增大 $\frac{3\pi}{2}$,因此 $f(-i) = \sqrt{2}e^{\frac{5\pi}{8}i}$ 。

3 第三次作业

1. (P73 命题 2.5.7)

构造分式线性变换 $f(z) = (z, z_2, z_3, z_4)$,计算知 $f(z_2) = 1, f(z_3) = 0, f(z_4) = \infty$ 。

当 $\text{Im}(z_1, z_2, z_3, z_4) = 0$ 时,由于分式线性变换不改变交比,而变换后的交比为 $f(z_1)$,因此 $f(z_1)$ 为实数,即变换后成为圆周。由于 L^{-1} 亦为分式线性变换,因此 z_1, z_2, z_3, z_4 共圆。

当 z_1, z_2, z_3, z_4 共圆时,变换后 $L(z_1)$ 与 $0, 1, \infty$ 共圆,必在实轴上,因此 $\mathrm{Im}(z_1, z_2, z_3, z_4) = 0$ 。

2.(2.5.3)

充分: 记 z = x + yi。当 $\text{Im } z \ge 0$ 时, $\text{Im } w(z) = \text{Im } \frac{(ax + b + ayi)(cx + d - cyi)}{(cx + d)^2 + c^2y^2}$,分子虚部即为 $ay(cx + d) - cy(ax + b) = (ad - bc)y \ge 0$,由此得证。

必要:考虑边界可知其必然把实轴映射到实轴,代入 $0,\infty$ 可知 $\frac{a}{c},\frac{b}{d}\in\mathbb{R}\cup\{\infty\}$ 。由于 c,d 不全为 0,不妨设 c=1,此时若 $b,d\notin\mathbb{R}$,代入 1 可推出 ad=bc,矛盾,因此 a,b,c,d 的比例为实数。由于 $\mathrm{Im}\,w(\mathrm{i})>0$,可知 $\mathrm{Im}(a\mathrm{i}+b)(d-c\mathrm{i})=ad-bc>0$,由此得证。

3. (2.5.4)

$$(i) \begin{cases} a+b=\mathrm{i}(c+d) \\ b-a\mathrm{i}=0 \\ b-a=-\mathrm{i}(d-c) \end{cases}, \ 不妨设 \ a=1 \ 可解得 \ w=\frac{z+\mathrm{i}}{-\mathrm{i}z+1} \, .$$

4 第四次作业 5

(ii)
$$\begin{cases} b - a \mathbf{i} = \mathbf{i}(d - c \mathbf{i}) \\ b + a \mathbf{i} = 0 \\ b + a = -\mathbf{i}(d + c) \end{cases}$$
, 不妨设 $a = 1$ 可解得 $w = \frac{z - \mathbf{i}}{(2 - \mathbf{i})z + 2\mathbf{i} - 1}$ 。

4. (2.5.5)

由命题 2.5.7 证明过程可直接写出其为 $(z, x_2, x_1, x_3) = \frac{z - x_1}{z - x_3} \cdot \frac{x_3 - x_2}{x_1 - x_2}$ 。

5. (2.4.15)

设 $\varphi(z_1)=\varphi(z_2)$,化简得 $\frac{z_1-z_2}{z_1z_2}(z_1z_2-1)=0$,若 $z_1\neq z_2$,则只能 $z_1z_2=1$ 。

- (i) 两复数乘积为 1 时辐角关于 x 轴对称,因此上半平面必然为单叶性域。
- (ii) 与 (i) 同理得结论。
- (iii) 两复数模均小于 1, 积的模仍小于 1, 因此无心单位圆盘内部必然为单叶性域。
- (iv) 两复数模均大于 1, 积的模仍大于 1, 因此单位圆盘外部必然为单叶性域。
- 6. (2.4.16)

考虑对每点解方程可知前两问的像为复平面去除 $(-\infty, -1] \cup [+1, \infty)$,后两问的像为复平面去除 [-1, 1]。

7.(2.5.16)

先作变换 $z_1 = e^{iz}$,可变为半圆 $\{z: |z| < 1, \operatorname{Re} z > 0\}$ 。为利用 Rokovsky 函数,作 $z_2 = -iz_1$ 将其旋转至下半平面,再作 $z_3 = \frac{1}{2}(z_2 + \frac{1}{z_2})$ 即可验证成立。复合 z_1, z_2, z_3 后可发现所需变换即为 $\sin z$ 。

8. (2.5.18)

先将月牙域变为角状域,将 -1 移至 0,1 移至 ∞ ,由此构造分式线性变换 $z_1 = \frac{z+1}{z-1}$,像为 $\{z : \arg z \in (-\frac{5\pi}{6}, -\frac{\pi}{2})\}$,再放大、旋转 $z_2 = z_1^3, z_3 = \mathrm{i} z_2$,即得整个上半平面。再做分式线性变换 $z_4 = \frac{z_3 - \mathrm{i}}{-\mathrm{i} z_3 + 1}$ 可得结果。复合后变换为 $\frac{3z^2 + 1}{z^3 + 3z}\mathrm{i}$ 。

9. (2.5.21)

(题目表述有歧义,根据例 6.1.6, ρ 由所给域唯一确定,而不能任意给定)

先求公共对称点。设对直线的对称点为 -x,x,由对圆对称可知 $(a-x)(a+x)=r^2$,从而对称点为 $\pm\sqrt{a^2-r^2}$,从而类似理 2.5.17 可构造 $w(z)=\lambda \frac{z+\sqrt{a^2-r^2}}{z-\sqrt{a^2-r^2}}$,取 z=0 可知 $\lambda=\mathrm{e}^{\mathrm{i}\theta}$,由此得变换。

4 第四次作业

1. (3.1.5)

设 $z = re^{i\theta}$,可得原积分化为

$$ir^{n+k+1} \int_{\theta=0}^{2\pi} e^{i\theta(n-k+1)} d\theta = \begin{cases} 0 & n-k+1 \neq 0 \\ 2\pi i & n-k+1 = 0 \end{cases}$$

2. (3.1.9)

由 Green 公式,

$$\frac{1}{2\mathrm{i}} \int_{\gamma} \bar{z} \mathrm{d}z = \frac{1}{2\mathrm{i}} \int_{\gamma} (x - y\mathrm{i}) \mathrm{d}x + (y + x\mathrm{i}) \mathrm{d}y = \frac{1}{2\mathrm{i}} \int_{\Omega} 2\mathrm{i} \mathrm{d}x \mathrm{d}y = \int_{\Omega} \mathrm{d}x \mathrm{d}y$$

即为面积。

5 第五次作业 6

3. (3.1.11)

 $(i) 由连续, \forall \varepsilon, \exists \delta, \forall |z-z_0| < \delta, |f(z)-f(z_0)| < \varepsilon, \ \, 从而 \; r < \delta \; \text{时} \; |f(z_0+r\mathrm{e}^{\mathrm{i}\theta})-f(z_0)| < \varepsilon, \; \, \text{故}$

$$\left| \frac{1}{2\pi} \int_{\theta=0}^{2\pi} f(z_0 + re^{i\theta}) d\theta - f(z_0) \right| \le \frac{1}{2\pi} \int_{\theta=0}^{2\pi} |f(z_0 + re^{i\theta}) - f(z_0)| d\theta < \varepsilon$$

从而得证。

(ii) 令 $z = z_0 + e^{i\theta}$,左式即化为 (i) 的形式。

4. (3.1.12)

- (i) 在 3.1.11(i) 中,将 θ 积分限换为 θ_0 与 $\theta_0 + \alpha$,过程不变,结论仍然成立,从而换元仍可得到 3.1.11(ii) 中式子。令 g(z) = (z a)f(z),则由极限补充 a 点定义可知 g(z) 可在 D 上连续,利用 3.1.12(ii) 知左侧等于 $i(\theta_0 + \alpha \theta_0)g(a) = i\alpha A$ 。
- (ii) 仍令 g(z) = (z a)f(z), 并换元 $z = a + re^{i\theta}$, 可化为类似 3.1.11(i) 形式, 类似估算得成立。

5. (3.2.1)

- (ii) 原式 = $\int_{|z|=2} \frac{1}{z} dz + \int_{|z|=2} \frac{1}{z-1} dz = 4\pi i$
- (iv) 原式 = $\int_{|z-ai|=\varepsilon} \frac{\mathrm{e}^z}{(z-ai)(z+ai)} \mathrm{d}z + \int_{|z+ai|=\varepsilon} \frac{\mathrm{e}^z}{(z-ai)(z+ai)} \mathrm{d}z$ 令 ε 足够小并趋于 0,左侧为 $\frac{\mathrm{e}^{ai}}{ai+ai} \int_{|z-ai|=\varepsilon} \frac{1}{z-ai} \mathrm{d}z = \frac{\pi \mathrm{e}^{ai}}{a}$,同理右侧为 $\frac{\pi \mathrm{e}^{-ai}}{-a}$,从而和为 $\frac{2\pi \mathrm{i}}{a} \sin a$ 。

6. (3.2.2)

由全纯可知对任何 R 积分结果不变,再由习题 3.1.12(ii) 知结论。

7. (3.2.4)

- (i) 由全纯可知对任何 r 积分结果不变,再由习题 3.1.11(i) 知结论。
- (ii) 由 (i),

$$\frac{1}{\pi r^2} \int_{|z| \le r} f(z) \mathrm{d}x \mathrm{d}y = \frac{1}{\pi r^2} \int_{|z| \le r} Rf(Re^{\mathrm{i}\theta}) \mathrm{d}R \mathrm{d}\theta = \frac{1}{\pi r^2} \int_0^r Rf(0) \mathrm{d}R = f(0)$$

8. (3.3.4)

从 1 到 0 的线段上原积分的结果为 $\arctan x\Big|_1^0 = -\frac{\pi}{4}$,将 γ 添上此线段成为闭曲线。 由原式 $=\frac{1}{2\mathrm{i}}\Big(\int_{\gamma}\frac{1}{z-\mathrm{i}}\mathrm{d}z + \int_{\gamma}\frac{1}{z+\mathrm{i}}\mathrm{d}z\Big)$,任何闭曲线上的积分结果根据绕转不同只能为 $\frac{k\cdot 2\pi\mathrm{i}}{2\mathrm{i}} = k\pi, k\in\mathbb{Z}$ 。 由此,题中积分加上 $-\frac{\pi}{4}$ 后为 $k\pi$,故为 $\frac{\pi}{4}+k\pi, k\in\mathbb{Z}$ 。

9. (3.3.5)

对不同的两点 z_1, z_2 , $f(z_2) - f(z_1) = \int_{z_1}^{z_2} f'(z) dz$ 。由于 z 为凸域,可考虑直接连接两点的线段上的积分,即 $\int_0^1 f'(z_1 + t(z_2 - z_1))(z_2 - z_1) dt$ 。由于 f'(z) 实部大于 0, $\frac{f(z_2) - f(z_1)}{z_2 - z_1}$ 的实部亦大于 0,故两者不等,原命题得证。

5 第五次作业

1. (3.4.5)

(i)

$$\frac{1}{2\pi i} \int_{|\zeta|=1} \left(2 + \zeta + \frac{1}{\zeta} \right) f(\zeta) \frac{d\zeta}{\zeta} = \frac{1}{2\pi i} \int_{|\zeta|=1} \frac{f(\zeta)(\zeta+1)^2 d\zeta}{\zeta^2} = (f(\zeta)(\zeta+1)^2)'|_{\zeta=0} = f(0) + 2f'(0)$$

5 第五次作业 7

代换 $\zeta = e^{i\theta}$ 即可得原式。

(ii) 类似 (i),考虑
$$\frac{1}{2\pi i} \int_{|\zeta|=1} \left(2-\zeta-\frac{1}{\zeta}\right) f(\zeta) \frac{\mathrm{d}\zeta}{\zeta}$$
 知结论。

2. (3.4.6)

由 (i) 左右相等, 其实部相等, 而左侧积分内实部 ≥ 0 , 从而 $\operatorname{Re}(2f(0)+f'(0))\geq 0$, 同理 $\operatorname{Re}(2f(0)-f'(0))\geq 0$, 由此得结论。

3. (3.4.7)

令 $D = \{z : \text{Re } z \in [a, b]\}$, $f|_{D \cap G}$ 由对称原理可全纯开拓到 $\{z : \arg z \in (-\frac{\pi}{4}, \frac{\pi}{4}), \text{Re } z \in [a, b]\}$,再由唯一性定理可推出 $f|_{D \cap G} = 0$,再次利用得 f(z) = 0。

4. (3.4.9)

记 $z = re^{i\theta}$,则右侧积分为

$$\frac{1}{2\pi i} \int_{|z|=r} \frac{2u(z)}{z^2} dz = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z^2} dz + \frac{1}{2\pi i} \int_{|z|=r} \frac{\overline{f(z)}}{z^2} dz = f'(0) + \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{\overline{z}^2} dz$$

而 $\int_{|z|=r} rac{f(z)}{\overline{z}^2} \mathrm{d}z = \int_{|z|=r} rac{z^2 f(z)}{r^4} \mathrm{d}z$,由 $z^2 f(z)$ 全纯知为 0,从而得证。

5. (3.5.2)

由条件知 $\forall a, \exists C, \forall z \in B(a, R), |f(z)| \leq CR^{\alpha}$,取 n = [a] + 1 可知 $|f^{(n)}(a)| \leq n!R^{\alpha - n}$,令 $R \to \infty$ 知 $|f^{(n)}(a)| = 0$,从而 f 是不超过 $[\alpha]$ 次的多项式。

6. (3.5.4)

令 $g(z) = \frac{f(z) - \mathrm{i}}{f(z) + \mathrm{i}}$,将 f(z) 值域变换到 B(0,1),且不改变紧性,由有界知为常值,故 f 为常值。

7. (3.5.6)

由导数定义可知连续,而由 Cauchy 积分公式知对任何不通过 z_0 的闭曲线 γ 有 $\int_{\gamma} \frac{f(z)-f(z_0)}{z-z_0} \mathrm{d}z = (f(z)-f(z_0))|_{z=z_0}=0$,通过 z_0 时利用极限逼近可知为 0,由此得证。

8. (4.1.12)

引理: 对区域 D 内的任何有界闭集 U,存在 r 使得以 $\forall x \in U, B(x,r) \subset D$ 。若否,存在一列点 $x_n \in D$ 使得 $B(x_n, \frac{1}{n}) \nsubseteq D$,由紧性知 x_n 有聚点 x,设 $B(x, \varepsilon) \subset D$,考虑充分大的 N 使得 n > N 时 $x_n \in B(x, \frac{\varepsilon}{2}) \subset D$ 。再使 $n > \frac{\varepsilon}{2}$ 即知矛盾。

记 $f_n = u_n + \mathrm{i} v_n$,若 v_n 处处发散已得证,否则不妨设 $\sum_{n=1}^{\infty} v_n(z_0)$ 收敛,则 $\sum_{n=1}^{\infty} f_n(z_0)$ 收敛。由 3.4.9,对其中有界闭集 U, $\forall z \in U$,取对应的 B(z,r),并取 r 更小使所有 B(z,r) 并的闭包在 D中,记为 $\overline{U_r}$,则有 $f_n'(z) = \frac{1}{\pi r} \int_0^{2\pi} u_n(z + r\mathrm{e}^{\mathrm{i}\theta}) \mathrm{e}^{-\mathrm{i}\theta} \mathrm{d}\theta$ 。由柯西判别准则知 $\forall \varepsilon, \exists N, \forall n, m > N, \forall z \in \overline{U_r}, |\sum_{k=n}^m u_k(z)| < \varepsilon$,从而 $|\sum_{k=n}^m f_k'(z)| \leq \frac{1}{\pi r} \int_0^{2\pi} |\sum_{k=n}^m u_m(z + r\mathrm{e}^{\mathrm{i}\theta}) \mathrm{e}^{\mathrm{i}\theta} | \mathrm{d}\theta < \frac{2\varepsilon}{r}$,由柯西判别准则即知 $\sum_{n=1}^{\infty} f_n'(z)$ 在 D 中内闭一致收敛。

利用定理 4.1.5,由于 $f_n(z)$ 为 $f'_n(z)$ 从 z_0 到 z 道路上的积分,由一点收敛可知逐点收敛。在任意连通紧集 $U \subset D$ 中,以每点为半径作闭包包含于 D 的开圆,再利用有限覆盖取出有限个,并取这有限个开圆并的闭包,所得集合包含 U,且任何两点间存在不超过这些开圆直径之和 (记为 L) 的道路,再由长大不等式即知 $|\sum_{k=n}^m f_k(z)| \leq |\sum_{k=n}^m f_k(z')| + L \sup_{z \in U} |\sum_{k=n}^m f'_k(z)|, z'$ 为 U 中任意一点,从而由柯西判别准则知一致收敛。对不连通的紧集,先类似上方取有限开覆盖闭包成为有限个不连通紧集,再在每个连通分支间添加道路即成为连通紧集,由此知 $\sum_{n=1}^\infty f(z)$ 内闭一致收敛。

9. (4.1.13)

记 $d_n(z) = f_n(z) - f_{n-1}(z), f_0(z) = 0$, 由定理 4.1.9 知结论。

6 第六次作业 8

10. (4.1.14)

(i) 考虑 $D = \{z : \text{Re } z \geq x_0 + \varepsilon\}, \varepsilon > 0$,由于 $\sum_{n=1}^{\infty} a_n \mathrm{e}^{-\lambda_n z_0}$ 收敛,可知 $|a_n \mathrm{e}^{-\lambda_n z_0}|$ 趋于 0,从而有界, $\forall z \in D, \forall n, |a_n \mathrm{e}^{\lambda_n (z_0 - z_n)}| \leq |a_n \mathrm{e}^{-\lambda_n \varepsilon}| = |a_n \mathrm{e}^{-\lambda_n z_0}| |\mathrm{e}^{\lambda_n (z_0 - \varepsilon)}| \leq |a_n \mathrm{e}^{-\lambda_n z_0}| |\mathrm{e}^{\lambda_1 (z_0 - \varepsilon)}|$ 有界,由Abel 判别法可知 $\sum_{n=1}^{\infty} a_n \mathrm{e}^{-\lambda_n z}$ 在 D 内一致收敛。利用 4.1.12 中证明的引理,半平面里任何紧集必然包含在某个 D 中,从而得证。

(ii) 半平面里 $|a_n e^{-\lambda_n z}| \leq |a_n e^{-\lambda_n z_0}|$, 由 Weierstrass 判别法可知绝对一致收敛。

11. (定理 4.2.9)

改变 a_0 的值可不妨设 S=0。记 $S_n=\sum_{k=0}^n a_n$,则 $\lim_{n\to\infty} S_n=0$,于是

$$\sum_{n=0}^{\infty} a_n z^n = \lim_{N \to \infty} \sum_{n=0}^{N-1} S_n (z^n - z^{n+1}) + S_N t^N = (1-z) \sum_{n=0}^{\infty} S_n z^n$$

 $\forall \varepsilon$,分段估计知 $\exists N, \forall n > N, p, |\sum_{k=n}^{n+p} a_k z^k| < \varepsilon (1 + \frac{|1-z|}{1-|z|})$ 。当 $z \in S_{\alpha}(1)$,估算可知 $\frac{|1-z|}{1-|z|}$ 在 B(1,t) 内可确定上界,从而可知极限存在为 0。

12. (例 4.2.10)

由例 4.2.7 收敛半径为 1,求导后和为 $\frac{1}{1-z}$,其原函数为 $-\log(1-z)+z_0$,考虑 0 点值知结果为 $-\log(1-z)$ 。

6 第六次作业

1. (4.2.2)

(ii)
$$\sqrt[n]{\frac{1}{2^{n^2}}} = \frac{1}{2^n}$$
, $n \to \infty$ 时为 0 , 由此收敛半径为无穷,

(iv)
$$\lim_{n\to\infty} \sqrt[n]{\frac{n^n}{n!}} = e$$
,由此收敛半径为 $\frac{1}{e}$ 。

2.(4.2.4)

(i) |z|<1 时 $\sum_{n=0}^{\infty}|a_nz^n|<\sum_{n=0}^{\infty}a_0|z^n|=\frac{a_0}{1-|z|}$,由此绝对收敛,故收敛,从而 $R\geq 1$ 。

(ii) *
$$R>1$$
 时有反例。如令 $a_n=\begin{cases} \frac{1}{(k+1)4^n} & n=4k\\ \frac{1}{(k+1)4^{n+1}} & n=4k+1, 4k+2, 4k+3 \end{cases}$,可发现收敛半径为 4,但在 $z=4$ i 不收敛。

当 $R=1,z\neq 1$ 时,由于 $|\sum_{n=0}^A z^n|=\left|\frac{1-z^{n+1}}{1-z}\right|\leq \frac{2}{|1-z|}$ 对 A 有界, a_n 单调趋于 0,由 Dirichlet 判别法知收敛。

3. (4.2.7)

由一致收敛, $\forall 0 < r < 1, \int_{|z|=r} f(z) \overline{f(z)} \mathrm{d}z = 2\pi \sum_{n=0}^{\infty} a_n r^n \cdot \overline{a_n} r^n = 2\pi \sum_{n=0}^{\infty} |a_n|^2 r^{2n}$ 。由 f 有界 M,此式对 0 < r < 1 有上界 $2\pi M^2$ 。由此, $\sum_{n=0}^{\infty} |a_n|^2$ 的任意部分和由极限可知不超过 M^2 ,从而根据单调有界知收敛,即得证。

4. (4.2.8)

- (i) 由定义 $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} < \infty$,而 $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n!}} = 0$,由此知收敛半径为无穷,即为整函数。
- (ii) * 区域应为 $|z| \le r < R$,且将不等式中 R 换为 r。

由
$$\sum_{n=0}^{\infty} a_n r^n$$
 收敛, 可知 $|a_n r^n|$ 有上界 M .

6 第六次作业

$$|\varphi^{(k)}(z)| = \left| \sum_{n=0}^{\infty} \frac{a_{n+k}}{n!} z^n \right| \le \sum_{n=0}^{\infty} \left| \frac{a_{n+k}}{n!} \right| |z|^n \le \sum_{n=0}^{\infty} \frac{M}{r^k} \frac{|z|^n}{r^n n!} = \frac{M}{r^k} e^{\frac{|z|}{r}}$$

5. (4.3.1) 令 g(z) = (z-a)f(z),定义 g(a) = 0。由 f 全纯可知 g 在 $B \setminus \{a\}$ 全纯,又利用连续由 Cauchy 积分定理可知在 B 上全纯,因此 a 至少为 1 阶零点,从而由命题 4.3.4 知 f 在 a 点全纯。

6. (4.3.4)

(i)

$$\frac{1}{2\pi i} \int_{|\zeta|=R} f(\zeta) \frac{\zeta^{n+1} - z^{n+1}}{(\zeta - z)\zeta^{n+1}} d\zeta = \sum_{k=0}^{n} \frac{1}{2\pi i} \int_{|\zeta|=R} f(\zeta) \frac{z^{k}}{\zeta^{z+1}} d\zeta = \sum_{k=0}^{n} \frac{z^{k}}{k!} \cdot \frac{k!}{2\pi i} \int_{|\zeta|=R} \frac{f(\zeta)}{\zeta^{z+1}} d\zeta$$

由 Cauchy 积分公式知即为左式。

(ii) 由 $f(z) = \frac{1}{2\pi i} \int_{|\zeta|=R} \frac{f(\zeta)}{\zeta-z} d\zeta$ 减去第一问即得结果。

7.(4.3.6)

(i) 由定义 $a_n = \frac{f^{(n)}(0)}{n!}$,记 Re f(z) = u(z),与习题 3.4.9 类似得结果。

(ii)
$$\frac{1}{\pi} \int_0^{2\pi} u(re^{i\theta}) e^{-in\theta} d\theta = \frac{1}{\pi} \int_0^{2\pi} \left(u(re^{i\theta}) - A(r) \right) e^{-in\theta} d\theta$$
$$\leq \frac{1}{\pi} \int_0^{2\pi} \left| u(re^{i\theta}) - A(r) \right| d\theta = \frac{1}{\pi} \int_0^{2\pi} \left(A(r) - u(re^{i\theta}) \right) d\theta = 2A(r) - 2u(0)$$

最后一步利用 Cauchy 积分公式取实部。

8. (4.3.7)

(i)
$$\mbox{id } {\rm Re}\, f(z) = u(z), \ \mbox{id } \mbox{id } \mbox{3.6(i), } \ |a_n| \leq \frac{1}{\pi} \int_0^{2\pi} |u({\rm e}^{{\rm i}\theta})| {\rm d}\theta = \frac{1}{\pi} \int_0^{2\pi} u({\rm e}^{{\rm i}\theta}) {\rm d}\theta = 2u(0) = 2.$$

(ii) 第一个不等号: 取 |z| < r < 1, 由习题 3.4.8 知

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} u \left(\frac{re^{i\theta} + z}{re^{i\theta} - z} \right) u(re^{i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} \frac{r^2 - |z|^2}{|re^{i\theta} - z|^2} u(re^{i\theta}) d\theta$$
$$\geq \frac{r - |z|}{r + |z|} \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta = \frac{r - |z|}{r + |z|}$$

令 $r \to 1^-$ 可知成立。

第二个不等号: 由模定义可知结果。

第三个不等号:
$$|f(z)| \le 1 + \sum_{n=1}^{\infty} |a_n z^n| \le 1 + \sum_{n=1}^{\infty} 2|z|^n = \frac{1+|z|}{1-|z|}$$

(iii) 由 (ii) 知 $g(z) = \frac{1}{f(z)}$ 也满足题设条件,考虑其二次、三次项利用 (i) 得结果。

9. (4.3.14)

- (i) $\sum_{n=0}^{\infty} f^{(n)}(a) z^n$ 收敛半径至少为 1, 由习题 4.2.8(i) 知结论。
- (ii) ℂ 上的紧集不妨设包含在 B(a,R) 中。则

$$\left| \sum_{k=n+1}^{n+p} f^{(k)}(a) \right| = \left| \sum_{k=n+1}^{n+p} \sum_{m=0}^{\infty} \frac{(z-a)^m}{m!} f^{(k+m)}(a) \right|$$

$$= \left| \sum_{m=0}^{\infty} \frac{(z-a)^m}{m!} \sum_{k=0}^{p-1} f^{(k+m)}(a) \right| \le \sum_{m=0}^{\infty} \left| \frac{(z-a)^m}{m!} \right| \left| \sum_{k=m}^{m+p-1} f^{(k)}(a) \right|$$

7 第七次作业 10

由于收敛,可取 n 足够大使 $\left|\sum_{k=m}^{m+p-1} f^{(k)}(a)\right| < \varepsilon$,此时原式不超过

$$\sum_{m=0}^{\infty} \left| \frac{(z-a)^m}{m!} \right| \varepsilon = \sum_{m=0}^{\infty} \frac{|z-a|^m}{m!} \varepsilon = \mathrm{e}^{|z-a|} \varepsilon \le \mathrm{e}^R \varepsilon$$

由此即有内闭一致收敛。

7 第七次作业

- 1. (5.1.2)
 - (i) $-\sum_{n=-1}^{\infty} (n+2)(1-z)^n$
 - (iii) 原式为 $Log(1-\frac{1}{z}) Log(1-\frac{2}{z})$, 即 $\sum_{n=0}^{\infty} \frac{2^n-1}{n} z^{-n}$.
 - (iv) 分别展开后相乘可知结果为 $\pm \sum_{n=0}^{\infty} \sum_{k=0}^{n} (-1)^n 2^k \binom{\frac{1}{2}}{n-k} \binom{\frac{1}{2}}{k} z^{-n+1}$
- 2. (5.2.6)

由有一列零点逼近 z_0 可知 z_0 不为极点,若其为可去奇点,由唯一性定理知 f 恒为 0,矛盾,从而得证。

3. (5.2.7)

 $A = \infty$ 直接取极点逼近即可。假设对所有有限的 A,都有收敛于 z_0 的点列 z_n 满足 $f(z_n) = A$,结论成立,否则设某 A 不满足此条件,即存在 r 使得 $f(z) \neq A$, $\forall z \in B(z_0, r) \setminus z_0$,考虑 $B(z_0, r) \setminus z_0$ 中的 $\frac{1}{f(z) - A}$,由习题 5.2.6 可知 z_0 为 $\frac{1}{f(z) - A}$ 的本性奇点,计算知 $\frac{1}{f(z) - A}$ 收敛到 \mathbb{C}_{∞} 中任何数可得 f 亦有此性质,从而得证。

4. (5.2.8)

由于 Re f(z) > 0,不可能存在子列收敛到实部小于 0 的数,从而不为本性奇点。由实部不为 0 可知 $\frac{1}{f}$ 亦在此区域全纯,且计算得其非零处实部大于 0。利用习题 3.2.5 可知 $\frac{1}{f}$ 在零点处实部大于 0,因此不为 0,从而得证。

- 5. (5.3.5)
 - (i) 设 $f(z) = \sum_{n=0}^{\infty} a_n z^n$ 考虑 $g(z) = \frac{f(z) + f(-z)}{2} = \sum_{n=0}^{\infty} a_{2n} z^{2n}$,由于 0 为 \mathbb{R} ,i \mathbb{R} 的交可知 $a_0 = 0$,从而 $h(z) = \frac{g(z)}{z^2}$ 仍为整函数且满足 $h(\mathbb{R}) \subset \mathbb{R}$, $h(i\mathbb{R}) \subset i\mathbb{R}$,由此归纳可知 g = 0,即得证。
 - (ii) 记 $f_0(z) = zf(z)$, 满足上问条件, 因此为奇函数, 从而考虑展开式可知 f(z) 为偶函数。
- 6. (5.3.6)

由定理 5.3.3 知 f 为有理函数。因此其为 $z^2+z+\frac{1}{z-1}+\frac{1}{z-2}+\frac{1}{(z-2)^2}+\frac{5}{4}$ 。

8 第八次作业

1. (补充题)

定义 $F_{\varepsilon}(z)=F(z)\mathrm{e}^{-\varepsilon z^{\alpha}}, 1<\alpha<2$,则其在 S 上全纯, \overline{S} 上连续。当 $\arg z=\pm\frac{\pi}{4}$ 时,考虑辐角可知 $|F_{\varepsilon}(z)|=|f(z)|\mathrm{e}^{-\varepsilon|z|^2\cos\frac{\pi\alpha}{4}}\leq 1$,且类似得 $\lim_{z\to\infty}F_{\varepsilon}(z)=0$,因此将区域分为两部分后由最大模原理知 $|F_{\varepsilon}(z)|\leq 1$,令 $\varepsilon\to 0$ 即得结果。

2. (4.5.4) 若否,不妨设 $M(r_0) > M(r_1), r_0 < r_1$,则 $B(0, r_1)$ 上的最大模不在边界取到,矛盾。

9 第九次作业 11

3. (4.5.5) 若某不为常数的多项式 P(z) 无根,则考虑 $\frac{1}{P(z)}$ 可发现其无穷远处趋于 0,且无零点。但利用习题 4.5.4 可知 M(r) 在 $[0,\infty)$ 上递增,与存在 R 使 |z|>R 时 $\left|\frac{1}{P(z)}\right|<\left|\frac{1}{P(0)}\right|$ 矛盾。

4. (4.5.6) 设 $g(z) = f(\frac{R^2}{z})$,由 $\lim_{z\to\infty} f(z)$ 存在知 0 是 g 的可去奇点,从而可使 $g\in H(B(0,R))\cup C(\overline{B(0,R)})$,利用习题 4.5.4 知 $\max_{z=r} |g(z)|$ 随 r 增加单调增,由非常数可知严格递增,从而 M(r) 严格减。

5. (4.5.9)

当 $M(r_1)=0$ 或 $M(r_2)=0$ 时,类似习题 3.4.7 使用 Schwarz 对称原理可知 f 恒为 0,否则记 $g(z)=M(r_1)^{\frac{\log r_2/z}{\log r_2/r_1}}M(r_2)^{\frac{\log z/r_1}{\log r_2/r_1}}$,有 $|g(z)|=M(r_1)^{\frac{\log r_2/z}{\log r_2/r_1}}M(r_2)^{\frac{\log z/r_1}{\log r_2/r_1}}$,由此知边界上有 $|f(z)|\leq |g(z)|$,对 f 运用最大模原理可知 $\overline{\Omega}$ 中 $|f(z)|\leq |g(z)|$,从而 $M(r)\leq M(r_1)^{\frac{\log r_2/r_1}{\log r_2/r_1}}M(r_2)^{\frac{\log r_2/r_1}{\log r_2/r_1}}$,两边取 \log 即得结论。

6. (4.4.1)

在每个点附近作充分小圆盘,利用 Cauchy 积分定理知只需考虑一个零点处。设某零点 z_0 附近 $f(z)=(z-z_0)^kh(z)$, $h(z_0)\neq 0$,则去掉全纯部分 $\frac{h'(z)}{h(z)}$ 后积分即为 $\frac{1}{2\pi i}\int_{B(z_0,\varepsilon)}\frac{g(z)k}{z-z_0}=kg(z_0)$,因此得证。

7. (4.4.3)

由介值定理可知其有正实根,由于右半平面 $|e^{-z}|<1$,根一定落在 $|z-\lambda|=1$ 内,而记 $g(z)=z-\lambda$,利用 Rouché 定理可知 f(z) 在此内的根个数与 g(z) 相同,即得证。

8. (4.4.4)

先说明 $P(z) = \sum_{k=0}^{n} a_k z^k$ 零点都在 B(0,1) 中。其显然无正实根,而若 z_0 为零点,考虑 $(1-z_0)P(z_0)$ 可知 $a_n z_0^{n+1} = a_0 + \sum_{k=1}^{n} (a_k - a_{k-1}) z_0^k$,若 $|z_0| \ge 1$,利用无正实根可估算得左侧模大于右侧,矛盾。 利用其有 n 个零点,可知 z 绕 |z| = 1 转一圈时 P(z) 转了 n 圈,从而与虚轴有 2n 个交点,即至少有 2n 个不同的 θ 使得 $\operatorname{Re} P(\mathrm{e}^{\mathrm{i}\theta})$ 为 0,即题目中的式子至少有 2n 个不同零点。

另一方面,记 $z=\mathrm{e}^{\mathrm{i}\theta}$,则所求式子乘 z^n 后为 z 的 2n 次多项式,因此至多有 2n 个不同零点,即得证。

9. (4.4.6)

由于此级数在 B(0,1) 收敛于 $\frac{1}{(1-z)^2}$,且幂级数的收敛满足内闭一致收敛,利用 Hurwitz 定理得证。

10. (4.4.7)

由于此级数在复平面上收敛于 e^z,且幂级数的收敛满足内闭一致收敛,利用 Hurwitz 定理得证。

11. (4.4.11)

- (ii) |z| = 1 时 $|2z^5 z^3 + 3z^2 z| \le 2 + 1 + 3 + 1 < 8$,不存在零点。
- (iv) |z| = 1 时 $|e^z + 1| \le |e + 1| < 4$,因此其零点个数与 $-4z^n$ 相同,为 n 个。

9 第九次作业

1. (4.4.12)

由于 |f(z)| < |z| 在边界成立,由 Rouché 定理知 z - f(z) 与 z 在 B(0,1) 内解个数相同,即得证。

2. (4.4.13)

(i) 由习题 1.1.5 知 |z| = 1 时 |f(z)| = 1,从而由 Rouché 定理知 f(z) - b 与 f(z) 在 B(0,1) 内零点个数相同,可验证 f(z) 零点恰为 a_1, \ldots, a_n ,均在 B(0,1) 中,从而得证。

9 第九次作业 12

(ii) 类似 (i) 由 Rouché 定理知 b-f(z) 与 b 在 B(0,1) 内零点个数相同,即 B(0,1) 内无零点,而边界上 |f(z)|=1 因此无零点,从而只需说明 f(z) 有 n 个零点。f(z)-b 的分子为关于 z 的 n 次多项式 $\prod_{k=1}^{n}(a_k-z)-b\prod_{k=1}^{n}(1-\overline{a_k}z)$,当后半部分为 0 时 |z|>1,因此前半部分不为 0,由此此多项式的根不可能使后半部分为 0,也即分母不为 0,因此均为整个分式的根,从而得证。

3. (4.4.14)

利用辐角原理知 $\frac{1}{2\pi i} \int_{|z|=R} \frac{f'(z)}{f(z)} dz = N$,令 $z = Re^{i\theta}$ 可得 $\frac{1}{2\pi} \int_0^{2\pi} z \frac{f'(z)}{f(z)} d\theta = N$,取实部即可知实部最大值 > N。

4. (4.4.17)

由定理 4.4.6 与连续性可知 f(D) = G,于是对任何 $f(z_0), z_0 \in D$,有 $f(z_0) \notin \Gamma$ 。 $f(z) - f(z_0)$ 在 D中根的个数为 (不妨设两曲线定向相同) $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z) - f(z_0)} \mathrm{d}z = \frac{1}{2\pi i} \int_{\Gamma} \frac{w}{w - f(z_0)} \mathrm{d}w$,而后者即为 $z = f(z_0)$ 在 G 中根的个数,因此为 1,从而得证。

5. (4.5.12)

当 f 为常数时,直接估算知成立。

当 f 不为常数且 f(0)=0 时,由习题 4.5.11 知 $|f(Rz)| \leq \frac{2A(R)|z|}{1-|z|}$,再由最大模原理知结论 (由于 Re f(z) 为调和函数,其最大值在边界取到)。

当 $f(0) \neq 0$ 时,令 g(z) = f(z) - f(0),则 $|f(z)| \leq |g(z)| + |f(0)|$,再利用上一种情况可知

$$M(r) \le \frac{2r}{R-r} \max_{|z|=R} g(z) + |f(0)| \le \frac{2r}{R-r} A(R) + \frac{2r}{R-r} |f(0)| + |f(0)|$$

化简得结论。

6. (4.5.13)

(i) 令 $\varphi(z)=\frac{z-1}{z+1}$,其将右半平面映射到 B(0,1),且 1 映射到 0,因此对 $w=\varphi\circ f$ 利用 Schwarz 引理知 $|w(z)|\leq |z|$,此时 $f(z)=\frac{1+w(z)}{1-w(z)}$ 。

第一个不等号: 计算知 $\operatorname{Re} f(z) = \operatorname{Re} \frac{1+w(z)}{1-w(z)} = \frac{1-|w(z)|^2}{|1-w(z)|^2} \geq \frac{1-|w(z)|}{1+|w(z)|} \geq \frac{1-|z|}{1+|z|}$ 。

第二个不等号:由实部与模定义知结论。

第三个不等号: 计算知 $|f(z)| \leq \frac{1+|w(z)|}{1-|w(z)|} \leq \frac{1+|z|}{1-|z|}$ 。

(ii) 由 z_0 处等号成立可推出 $|w(z_0)| = |z_0|$,从而 $w(z) = e^{i\theta}z$,代入即得证。

7. (4.5.15)

由于 $\overline{B(0,1)}$ 为紧集,若其中有无穷多零点则存在聚点,因此 f 恒为 0,矛盾。由其有有限多零点,类似习题 4.5.17 右侧 gg(z),令 $h(z)=\frac{f(z)}{g(z)}$,其在 |z|=1 时模为 1,且 $h(B(0,1))\subset B(0,1)\setminus\{0\}$,考虑 h 与 $\frac{1}{h}$ 可知 |h(z)|=1,由习题 2.2.2 可知 h(z) 只能为常数,由模为 1 设其为 $\mathrm{e}^{\mathrm{i}\theta}$,则 $f(z)=\mathrm{e}^{\mathrm{i}\theta}g(z)$ 。由 f(z) 为整函数,若有非零根,会导致 g(z) 在某处趋于无穷,矛盾,因此只能 $f(z)=\mathrm{e}^{\mathrm{i}\theta}z^n$ 。

8. (4.5.17)

当 f 零点总重数为 1 时,设 $f(z_1) = 0$,利用定理 4.5.6 直接知结论,利用归纳法,下假设 f 零点总重数为 k-1 时结论成立。

当 f 零点总重数为 k 时,设 $f(z_1)$ 为 k_1 重零点,可设 $f(z) = (z-z_1)^{k_1}g(z)$,g(z) 其他零点与 f(z) 相同,但 z_1 不为零点,考虑 $h(z) = f(z)\frac{1-\overline{z_1}z}{z_1-z} = (z-z_1)^{k_1-1}g(z)(1-\overline{z_1}z)$,由于 $1-\overline{z_1}z$ 在 B(0,1) 中无零点,h(z) 只有 z_1 的零点重数比 f(z) 少一重,从而零点总重数为 k-1。利用归纳假设后两侧同乘 $\left|\frac{z_1-z}{1-\overline{z_1}z}\right|$ 即得证。

10 第十次作业 13

9.(4.5.20)

记 $h(z) = \frac{f(z_1) - f(z)}{1 - f(z_1)f(z)} \frac{1 - \overline{z_1}z}{z_1 - z} \frac{1 - \overline{z_2}z}{z_2 - z}$,由 z_1, z_2 均为 $f(z_1) - f(z)$ 零点可知 $h(z) \in H(B(0,1))$ 。 |z| = 1 时 $|h(z)| = \left|\frac{f(z_1) - f(z)}{1 - f(z_1)f(z)}\right|$,由 $f(B(0,1)) \subset B(0,1)$ 知模不超过 1,从而由最大模原理 $h(B(0,1)) \subset \overline{B(0,1)}$,由此 $|h(0)| \leq 1$,代入得证。

10. (4.5.24)

记 $w(z)=\frac{z-\mathrm{i}}{z+\mathrm{i}}$,其为上半平面到 B(0,1) 的全纯同构,由此构造 $\varphi:\mathrm{Aut}(B(0,1))\to\mathrm{Aut}(\mathbb{C}^+)$, $\varphi(f)=w^{-1}\circ f\circ w$,可知 φ 为群同构,由此可知 $\mathrm{Aut}(\mathbb{C}^+)$ 即为所有 $w^{-1}\circ f\circ w$,其中 $f\in\mathrm{Aut}(B(0,1))$ 。

10 第十次作业

- 1. (4.5.18)
 - * 题目有误, 左侧分母应为 |f(0)| |z|。

左:由 Schwarz-Pick 定理可知 $\left|\frac{f(0)-f(z)}{1-\overline{f(0)}f(z)}\right| \leq |z|$,由习题 1.1.6(iii) 可知 $\frac{|f(0)|-|f(z)|}{1-|f(0)f(z)|} \leq \left|\frac{f(0)-f(z)}{1-\overline{f(0)}f(z)}\right|$,从 而 $\frac{|f(0)|-|f(z)|}{1-|f(0)f(z)|} \leq \left|\frac{f(0)-f(z)}{1-\overline{f(0)}f(z)}\right| \leq |z|$,变形即得证。

右: 由习题 1.1.6(iii) 可知 $\frac{|f(z)|-|f(0)|}{1-|f(0)f(z)|} \le \left|\frac{f(0)-f(z)}{1-\overline{f(0)}f(z)}\right|$,从而 $\frac{|f(z)|-|f(0)|}{1-|f(0)f(z)|} \le |z|$,变形即得证。

2. (4.5.21)

利用 4.5.18, 记 $g(z) = \frac{f(z)}{z}$, 又由 g(0) = f'(0) 可去奇点即得证。

3. (4.5.22)

利用 Schwarz-Pick 定理可知 $\left|\frac{f(0)-f(z)}{1-\overline{f(0)}f(z)}\right| \leq |z|$,记 $g(z)=\frac{f(0)-f(z)}{1-\overline{f(0)}f(z)}$,利用 g(z) 替换 f(z) 知要证的式子可化为 $|f(0)|z|^2-g(z)|\leq |z||1-\overline{f(0)}g(z)|$,同平方后可进一步化为 $(|z|^2-|g(z)|^2)(1-|z|^2|f(0)|^2)\geq 0$,从而成立。

4. (4.5.29)

通过平移可不妨设 $z_0=0$,在闭包在 D 中的某邻域 B(0,r) 展开为 Taylor 级数 $z+\sum_{n=2}^{\infty}a_nz^n$ 。考虑使得 $a_n\neq 0$ 的大于 1 的最小的 n,记其为 m。记 $f_k(z)$ 为 f(z) 迭代 k 次的函数,可发现 $f_k(z)$ 可在邻域中展开为 $z+Na_mz^m+\ldots$ 。由 D 有界可设 $f_k(z)$ 有上界 M,考虑 $\overline{B(0,r)}$ 上的积分可知 $|Na_mr^m|=\left|\frac{1}{2\pi}\int_0^{2\pi}f_N(r\mathrm{e}^{\mathrm{i}\theta})\mathrm{e}^{-\mathrm{i}m\theta}\mathrm{d}\theta\right|$,由长大不等式知 $|Na_mr^m|< M$ 对任何 N 成立,与 $a_m\neq 0$ 矛盾。

5. (4.5.30)

记 $g(z) = \tan \frac{\pi f(z)}{4}$,可发现 $g(z) \in B(0,1)$ 且 g(0) = 0,从而 $|g(z)| \le |z|$ 。 $|\tan w| = \left| \frac{\mathrm{e}^{\mathrm{i}w} - \mathrm{e}^{-\mathrm{i}w}}{\mathrm{e}^{\mathrm{i}w} + \mathrm{e}^{-\mathrm{i}w}} \right| = \left| \frac{\mathrm{e}^{2\mathrm{i}w} - 1}{\mathrm{e}^{2\mathrm{i}w} + 1} \right|$,由于 $\frac{|\mathrm{e}^{2\mathrm{i}w}| - 1}{|\mathrm{e}^{2\mathrm{i}w}| + 1} \le \left| \frac{\mathrm{e}^{2\mathrm{i}w} - 1}{\mathrm{e}^{2\mathrm{i}w} + 1} \right|$,代入 $w = \frac{\pi}{4} f(z)$ 后化简可得第二问的式子。另一方面,利用 $|\tan w| = \left| \frac{\mathrm{e}^{2\mathrm{i}w} - 1}{\mathrm{e}^{2\mathrm{i}w} + 1} \right|$ 可知 $\tan |\operatorname{Re} w| \le |\tan w|$,代入化简可得第一问的式子。

6. (补充题)

记 $f(z) = \frac{\sin z}{z^7 - 1}$,在 $z = e^{\frac{2k\pi i}{7}}$ 时利用命题 5.4.5 知 $\operatorname{Res}(f, z) = 7e^{\frac{12k\pi i}{7}}\sin\left(e^{\frac{2k\pi i}{7}}\right)$,从而所求积分为 $14\pi i \sum_{k=0}^6 e^{\frac{12k\pi i}{7}}\sin\left(e^{\frac{2k\pi i}{7}}\right)$ 。

7. (5.5.1)

(1) $f(z) = \frac{z^2+1}{z^4+1}$ 为偶函数,可直接考虑 $(-\infty,\infty)$ 上积分的值,利用推论 5.5.2 可知其为

$$2\pi i \operatorname{Res}(f, e^{\frac{\pi i}{4}}) + 2\pi i \operatorname{Res}(f, e^{\frac{3\pi i}{4}}) = 2\pi i \left(\frac{1}{2\sqrt{2}i} + \frac{1}{2\sqrt{2}i}\right) = \sqrt{2}\pi$$

11 第十一次作业 14

从而所求积分为其一半,即 $\frac{\sqrt{2}}{2}\pi$ 。

(7) 被积函数为偶函数,因此可考虑实轴上积分。记 $f(z) = \frac{z e^{iaz}}{z^2 + b^2}$,利用正实轴上方充分大半圆围道,其上积分值为 $2\pi i \operatorname{Res}(f,bi) = \pi e^{-ab}$,而由 Jordan 引理可知半圆部分在无穷远处积分趋于 0,从而此即为实轴上积分,由此所求结果为 $\frac{\pi}{2}e^{-ab}$ 。

11 第十一次作业

1. (5.5.1)

*f 表示题目中的被积函数

- (14) 考虑 $\text{Im } z \in (0, 2\pi), |\text{Re } z| < t$ 的矩形区域边界,区域中只有 πi 处不全纯,且 $t \to \infty$ 时左右边界积分趋于 0,而上边界积分为下边界的 $-\mathrm{e}^{2\pi i p}$ 倍,由此设积分结果为 I 可知 $(1-\mathrm{e}^{2\pi i p})I = 2\pi i \operatorname{Res}(f,\pi i)$,因此 $I = \frac{2\pi i}{1-\mathrm{e}^{2\pi i p}}(-\mathrm{e}^{\pi i p}) = \frac{\pi}{\sin p\pi}$ 。
- (15) 可发现 $\mathrm{Res}(f,\mathbf{i}) = \frac{(-\mathbf{i}-1)^p}{2}, \mathrm{Res}(f,-\mathbf{i}) = \frac{(\mathbf{i}-1)^p}{2}$,由定理 5.5.14 取 r=1-p,s=p 可知结论。
- (17) 可发现 $\operatorname{Res}(f,i) = \frac{\sqrt[4]{-4i}}{2i}, \operatorname{Res}(f,-i) = -\frac{\sqrt[4]{4i}}{2i},$ 由定理 5.5.14 取 $r = \frac{3}{4}, s = \frac{1}{4}$ 可知结论。
- (21) 图示曲线上积分为 0,而类似例 5.5.12 可知弧线上取极限积分为 0,从而实轴积分与虚轴积分相等,取实部知所求积分为 Re $\left(\int_0^\infty \frac{\log x + \mathrm{i} \frac{\pi}{2}}{-x^2 1} \mathrm{d}(x \mathrm{i})\right) = \frac{\pi}{2} \int_0^\infty \frac{1}{x^2 + 1} \mathrm{d}x = \frac{\pi^2}{4}$ 。
- (29) 类似例 5.5.12 知 z=1 处先绕开再逼近结果不改变,因此 $\int_{|z|=1}^{\log(z-1)} \mathrm{d}z = \log(z-1)\big|_{z=0} = \pi \mathrm{i}$,令 $z=\mathrm{e}^{\mathrm{i}\theta}$ 后取实部可知 $\int_0^{2\pi} \log|1-\mathrm{e}^{\mathrm{i}\theta}|\mathrm{d}\theta=0$,由对称性可知 $\int_0^{\pi} \log|1-\mathrm{e}^{\mathrm{i}\theta}|\mathrm{d}\theta=0$,而 $|1-\mathrm{e}^{\mathrm{i}\theta}|=2\sin\frac{\theta}{2}$,代入换元即可知结论。

2.(6.1.2)

不妨设 $z_0 \in B(a,r)$,由于亚纯性,可取关于边界对称的域 $D' \subset D$ 使得其在 B(a,r) 内除了 z_0 外不包含其他 f(z) = A 的点或极点。在其中记 $g(z) = \frac{z-w_0}{z-z_0}(f(z)-A)$,可发现 $g(D'\cap \partial B(a,r)) \subset \partial B(0,R)$ 且在其中全纯,从而利用 Schwarz 对称原理可延拓。由去掉极点后连续性可知在域中零点有极限点的亚纯函数亦只能为 0,在 D' 在 B(a,r) 外的部分仍有 $g(z) = \frac{z-w_0}{z-z_0}(f(z)-A)$,由 $g(w_0)$ 与 $g(z_0)$ 关于 $\partial B(0,R)$ 对称可知 $g(w_0)$ 为非零实数,因此只能 w_0 为 f 的一阶极点。由于 $f(z) = A + \frac{z-z_0}{z-w_0}g(z)$,g(z) 在 D' 上全纯,可知 $f'(z_0) = \frac{g(z_0)}{z_0-w_0}$,Res $(f,w_0) = (w_0-z_0)g(w_0)$,又由 $g(z_0)$ 与 $g(w_0)$ 关于 $\partial B(0,R)$ 对称可知结论。

3. (6.1.3)

若 f 不恒为 0,可取关于 $\partial B(0,r)$ 对称的 D 使得 f 在 $D \cap B(0,R) \setminus \overline{B(0,r)}$ 上恒不为 0,由此利用 Schwarz 对称原理可将 f 延拓至 D 上,但此时利用唯一性定理可知 f 恒为 0,矛盾。

4. (6.1.4)

与习题 6.1.3 证明相同。

5. (6.2.3)

不妨设 $z_0 = 1$,否则考虑级数 $\sum_{n=0}^{\infty} a_n \frac{z^n}{z_n^n}$ 即可。

类似定理 6.2.3 证明可将幂级数延拓为 $B(0,\delta),\delta>1$ 上的亚纯函数 f(z),可设其在 1 处的 Laurent 展开为 $\frac{b}{z-1}+\sum_{n=0}^{\infty}b_n(z-1)^n$,记 $g(z)=f(z)-\frac{b}{z-1}$,可发现其在 $B(0,\delta)$ 全纯。而其在 0 处的展开为 $\sum_{n=0}^{\infty}(a_n+b)z^n$,由收敛半径大于 1 考虑 1 处可知 $\lim_{n\to\infty}a_n+b=0$,从而 $\lim_{n\to\infty}a_n=-b$,因此两项之比极限为 1。

12 第十二次作业 15

6. (6.2.9)

类似习题 6.2.3 知存在 b_1, \ldots, b_m 使 $\sum_{n=0}^{\infty} a_n z^n + \sum_{k=1}^m \frac{b_k}{z_k - z}$ 收敛,展开后取 z = 1 可知 $\lim_{n \to \infty} a_n - \sum_{k=1}^m b_k z_k^{-n-1} = 0$,从而 $\lim_{n \to \infty} |a_n| \le \sum_{k=1}^m |b_k|$,由此可知有界。

7. (6.2.10)

此题过于复杂,疑似没有范围内的合理方法。

12 第十二次作业

1. (7.1.3)

由 Montel 定理知 f_n 有内闭一致收敛子列,设其收敛至 f,记 $g_n = f_n - f$,则 $\lim_{n \to \infty} g_n(z_k) = 0$, $\forall k$ 。 在任何紧集 K 上,若 g_n 不一致收敛于 0,由于其仍为正规族,存在一致收敛且收敛结果不为 0 的子列,假设收敛到 h,由 $h(z_k) = 0$, $\forall k$ 即与唯一性定理矛盾,从而得证。

2. (7.1.4)

类似习题 4.1.12,对 D 中任何紧集 K,可扩张至紧集 K' 使得其包含 z_0 且其中任意两点存在长度不超过 M 的道路。取 r 使得 K' 中每点 z 作 $\overline{B(z,r)}$ 取并后仍在 D 中,利用习题 3.4.9 可知 $f'(z) = \frac{1}{\pi r} \int_0^{2\pi} \mathrm{Re}(z + r\mathrm{e}^{\mathrm{i}\theta}) \mathrm{e}^{-\mathrm{i}\theta} \mathrm{d}\theta$,取模可得 $|f'(z)| \leq \frac{2}{r} \mathrm{Re}\,f(z) \leq \frac{2}{r} |f(z)|$ 。从而利用微分方程得 K' 中任何 f(z) 的模不超过 $|f(z_0)|\mathrm{e}^{2M/r}$,因此内闭一致有界,由 Montel 定理知为正规族。

第二条不成立的反例为 $f_n(z) = n$ 。

3. (7.1.6)

由 D 有界可知取 $M_0 = \frac{M+m(D)}{2}$ 即有 $D \perp |f(z)| \leq \frac{|f(z)|^2+1}{2}$ 的积分不超过 M_0 。对 D 中任何紧集 K,类似习题 4.1.12 可取 r 使得 K 中每点 z 作 $\overline{B(z,r)}$ 取并后仍在 D 中,利用平均值原理可知

$$|f(z)| = \frac{1}{\pi r^2} \left| \iint_{B(z,r)} f(w) dx dy \right| \le \frac{1}{\pi r^2} \iint_{B(z,r)} |f(w)| dx dy \le \frac{M_0}{\pi r^2}$$

从而内闭一致有界,由 Montel 定理知为正规族。

4. (7.2.1)

记 φ 将 D 双全纯映射至 B(0,1), 则 $\varphi \circ f$ 为有界整函数,从而为常值,由 φ 为单射知 f 为常值。

5. (7.2.2)

由平移不妨设 a=0, 记题中不等式左右分别为 r,R。

考虑 $\varphi: B(0,1) \to D, \varphi(z) = rz$,可发现 $f \circ \varphi$ 为保持原点的 $B(0,1) \to B(0,1)$ 映射,利用 Schwarz 引理可知 $(f \circ \varphi)'(0) \le 1$,即 $rf'(a) \le 1$,从而不等式左半边得证。

考虑 $\psi: D \to B(0,1), \psi(z) = \frac{z}{R},$ 可发现 $\psi \circ f^{-1}$ 为保持原点的 $B(0,1) \to B(0,1)$ 映射,利用 Schwarz 引理可知 $(\psi \circ f^{-1})'(0) \le 1$,即 $\frac{(f^{-1})'(0)}{R} \le 1$,由 $(f^{-1})'(0) = \frac{1}{f'(0)}$ 可知得不等式右半边。

6. (7.2.3)

记 $\varphi(z) = \frac{z - f(p)}{1 - f(p)z}$,考虑 $\varphi \circ f \circ g^{-1}$,可发现其为 0 映射到 0 的 B(0,1) 自同构,从而其为 $\mathrm{e}^{\mathrm{i}\theta}z$,从而代换 z 为 g(z) 可知 $\varphi(f(z)) = \mathrm{e}^{\mathrm{i}\theta}g(z)$ 。取 z = a 后两边求导得 $f'(a)|f(p)|^2 = \mathrm{e}^{\mathrm{i}\theta}g'(a)$,由 f'(a) > 0 可知 $\mathrm{e}^{\mathrm{i}\theta}$ 与 g'(a) 方向相反,从而 $g(z) = \mathrm{e}^{-\mathrm{i}\theta}\varphi(f(z)) = \frac{g'(a)}{|g'(a)|}\varphi(f(z))$,即为欲证的式子。

13 第十三次作业 16

13 第十三次作业

1. (Stein 习题 4.1)

* 设中度连续条件对应的界为 C, 即 $|f(x)| \leq \frac{C}{1+x^2}$

(a)
$$A(\zeta) - B(\zeta) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \zeta(x-t)} dx = \hat{f}(\zeta) e^{2\pi i \zeta t} = 0$$

- (b) 由于其在上半、下面平面皆全纯,且交界处连续,由 6.1 节 Painlevé 原理可知其为整函数。而上半平面注意到 e 的指数的实部必定小于 0,因此 $F(z) \leq \int_{-\infty}^{t} |f(x)| \mathrm{d}x \leq C\pi$,类似可知下半平面有界,从而整体有界,由整函数知为常数。由于积分不超过 $\int_{-\infty}^{t} |\mathrm{e}^{-2\pi\mathrm{i}\zeta(x-t)}| \mathrm{d}x$, ζ 从虚轴趋于无穷时为 0,因此其恒为 0。
- (c) 取 $\zeta = 0$ 即可知积分恒为 0,从而其在任何区间积分为 0,由连续性知恒 0。
- 2. (Stein 习题 4.3)

利用书推论 5.5.7,类似例 5.5.8 可知第一个积分结果。在正半轴上第二个积分为 $\frac{1}{2\pi a - 2\pi i x}$,负半轴上为 $\frac{1}{2\pi a + 2\pi i x}$,从而得结论。

3. (Stein 习题 4.6)

由 Stein 习题 4.3 计算结果,利用 Stein 定理 2.4 可得结论。

4. (Stein 习题 4.8)

由 \tilde{f} 只在 [-M,M] 不为 0 知反变换存在,从而 $f(x)=\int_{-M}^{M}\hat{f}(\zeta)\mathrm{e}^{2\pi\mathrm{i}x\zeta}\mathrm{d}\zeta$,由于有限区间积分可与求导交换,

$$a_n = \frac{f^{(n)}(0)}{n!} = \frac{(2\pi i)^n}{n!} \int_{-M}^{M} \hat{f}(\zeta) \zeta^n e^{2\pi i x \zeta} d\zeta \Big|_{x=0} = \frac{(2\pi i)^n}{n!} \int_{-M}^{M} \hat{f}(\zeta) \zeta^n d\zeta$$

对另一边,由条件知 $\lim\sup_{n\to\infty}|a_n|^{1/n}=0$,从而收敛半径为无穷,因此为整函数。由极限定义知充分大的 a_n 满足 $|a_n|\leq \frac{(M+\frac{\epsilon}{2})^n}{n!}$,再对前面的项估算即可取出充分大 A_{ε} 。

5. (Stein 习题 4.10)

先说明在 x 轴上 $\hat{f}(\xi) = O(e^{-a'\xi^2})$ 。由于其为 $\int_{-\infty}^{\infty} f(x)e^{-2\pi i x \xi} dx$,将 x 换元为 x-yi 可得

$$|\hat{f}(\xi)| \le \int_{-\infty}^{\infty} |f(x - y\mathbf{i})| e^{-2\pi y\xi} dx = O(e^{-2\pi y\xi + by^2})$$

令 $y=d\xi$,再取 d 充分小使 $-2\pi d\xi+bd^2<0$,即知存在 a' 使 $\hat{f}(\xi)=O(\mathrm{e}^{-a'\xi^2})$ 。

而 $\hat{f}(\xi+\mathrm{i}\eta)=\int_{-\infty}^{\infty}f(x)\mathrm{e}^{-2\pi\mathrm{i}x\xi}\mathrm{e}^{2\pi x\eta}\mathrm{d}x$,记 $g(x)=f(x)\mathrm{e}^{2\pi x\eta}$,则 $|g(x+\mathrm{i}y)|\leq c\mathrm{e}^{-ax^2+by^2+2\pi x\eta}$,由于 $2\pi x\eta\leq\frac{ax^2}{2}+\frac{2}{a}\pi^2\eta^2$,记 $t=\frac{2}{a}\pi^2, a_0=\frac{a}{2}$ 可知 $|g(x+\mathrm{i}y)|\leq c\mathrm{e}^{t\eta^2}\mathrm{e}^{-a_0x^2+by^2}$,从而 $\frac{\hat{f}(\xi+\mathrm{i}\eta)}{\mathrm{e}^{t\eta^2}}=\frac{\hat{g}(\xi)}{\mathrm{e}^{t\eta^2}}=O(\mathrm{e}^{-a'\xi^2})$,由此即得证。

6. (Stein 习题 4.11)

当 $x^2 \le y^2$ 时, $|z|^2 \le 2c_1y^2$,从而 $|f(z)| = O(e^{2c_1y^2-x^2})$,只需在 $x^2 > y^2$ 时证明可找到后取系数的最大值/最小值即可,利用对称性,只需证明 $\arg z \in [0, \frac{\pi}{4}]$ 时结论成立,记此区域为 D。

利用无界区域的最大模原理,设 g(z) 在 D 上全纯且边界连续, $|g(z)| \leq C_1 \mathrm{e}^{C_2 z^2}$,则边界上 $g(z) \leq M$ 可推出区域中 $g(z) \leq M$ 。若假设区域中 $|g(z)| \leq C_1 \mathrm{e}^{C_2 z^2}$ 且 $|g(x)| \leq C \mathrm{e}^{-Ax^2}$, $|g(x\mathrm{e}^{\mathrm{i}\pi/4})| \leq C \mathrm{e}^{Bx^2}$,x > 0,记 $g_{\delta}(z) = g(z)\mathrm{e}^{(A-\delta+\mathrm{i}(B+\delta))z^2}$,利用无界区域的最大模原理可知 $g_{\delta}(z) \leq C|\mathrm{e}^{(A-\delta+\mathrm{i}(B+\delta))z^2}|$,令 $\delta \to 0$ 可得 $|g(z)| \leq C \mathrm{e}^{-A(x^2-y^2)+2Bxy}$,从而利用 $2Bxy \leq \frac{Ax^2}{2} + \frac{2B^2y^2}{A}$ 类似 Stein 习题 4.10 即得到 |f(z)|的估计。

14 第十四次作业 17

14 第十四次作业

1. (Stein 习题 5.3)

设 $t = \text{Im}(\tau)$, 由提示可知

$$\Theta(z) \le \sum_{|n| < \frac{4|z|}{t}} \exp(-\pi n^2 t + 2\pi n|z|) + \sum_{|n| \ge \frac{4|z|}{t}} \exp(-\pi n^2 \frac{t}{2}) \le \frac{8|z|}{t} \exp(2\pi \frac{4|z|^2}{t}) + M$$

从而其阶不超过2。

- 2. (Stein 习题 5.4)
 - (a) 见提示,考虑 n < c|z| 与 $n \ge c|z|$ 时类似 Stein 习题 5.3 拆分估算即可,再利用 Stein 定理 2.1 由 (b) 中证明不收敛的部分可得阶恰好为 2。
 - (b) 由于 $\arctan x \sim x$, 有

$$\sum \frac{1}{|z_n|^2} = \sum_{n,m=1}^{\infty} \frac{1}{n^2 t^2 + m^2} \ge \sum_{n=1}^{\infty} \int_1^{\infty} \frac{1}{n^2 t^2 + x^2} dx = \sum_{n=1}^{\infty} \frac{1}{nt} \left(\frac{\pi}{2} - \arctan \frac{1}{nt} \right) = \infty$$

从而 $\sum \frac{1}{|z_n|^2}$ 不收敛,而利用 Stein 定理 2.1 可知指数为 $2+\varepsilon,\varepsilon>0$ 时收敛,从而得证。

3. (Stein 习题 5.5)

见提示,对 |t| 求导可知不等式左侧的极值,从而得不等式成立,将积分分为 $|t| \leq (A|z|)^{1/(\alpha-1)}$ 与 $|t| > (A|z|)^{1/(\alpha-1)}$ 两段类似 Stein 习题 5.3 估算即可。另一方面,取 $z = -xi, x \in \mathbb{R}$ 可知阶不低于 $\frac{\alpha}{\alpha-1}$,从而恰好为 $\frac{\alpha}{\alpha-1}$ 。

15 第十五次作业

- 1. (Stein 习题 5.10)
 - (a) $\rho = 1$,零点为 $2k\pi i, k \in \mathbb{Z}$,由 0 为一阶零点可知

$$e^{z} - 1 = ze^{Az+B} \prod_{n=1}^{\infty} \left(1 - \frac{z}{2n\pi i}\right) \left(1 + \frac{z}{2n\pi i}\right) = ze^{Az+B} \prod_{n=1}^{\infty} \left(1 + \frac{z^{2}}{4n^{2}\pi^{2}}\right)$$

考虑 $\frac{\mathrm{e}^z-1}{z}$, 令 $z\to 0$ 可知 B=0, 再由 $\frac{\mathrm{e}^z-1}{\mathrm{e}^{z/2}}$ 为奇函数可知 $A=\frac{1}{2}$, 从而分解为 $z\mathrm{e}^{z/2}\prod_{n=1}^{\infty}(1+\frac{z^2}{4n^2\pi^2})$ 。 (b) $\rho=1$,零点为 $k+\frac{1}{2},k\in\mathbb{Z}$,从而类似上方配对可知

$$\cos \pi z = e^{Az+B} \prod_{n=1}^{\infty} \left(1 - \frac{4z^2}{(2n-1)^2} \right)$$

令 $z\to 0$ 可知 B=0,再由其为偶函数可知 A=0,从而分解为 $\prod_{n=1}^{\infty}(1-\frac{4z^2}{(2n-1)^2})$ 。

2. (Stein 习题 5.11)

若 $f(z) \neq a$,则由 Hadamard 分解定理可知 $f(z) - a = e^{g(z)}$,且 g(z) 为多项式,若其为 0 次,则 f(z) 为常数,符合要求,否则对任何 b, $g(z) = \log(b-a)$ 有解,因此 f(z) = b 有解,矛盾。

3. (Stein 习题 5.12)

由于 $f(z) \neq 0$,由 Hadamard 分解定理可知 $f(z) = \mathrm{e}^{p(z)}$,p 为多项式,若 p(z) 超出一次, $f'(z) = p'(z)\mathrm{e}^{p(z)}$ 必有零点,矛盾,因此只能为至多一次的多项式,从而为 az + b。

15 第十五次作业 18

4. (Stein 习题 5.13)

由于 e^z-z 为一阶整函数,其若有有限多零点,由 Hadamard 分解定理可分解为 $\mathrm{e}^{Az+B}p(z)$,其中 p 为多项式。右侧在除以 e^{Az} 后在无穷远处极限为常数或无穷,而原式不可能满足这点,故矛盾。

5. (Stein 习题 5.14)

若否,其由 Hadamard 分解定理可分解为 $\mathrm{e}^{p(z)}q(z)$,其中 p,q 为多项式,但此式阶与 p 的次数相同,为整数,因此矛盾。