Logistic Regression

What is logistic regression?

Logistic regression is the appropriate regression analysis to conduct when the dependent variable is dichotomous (binary). Like all regression analyses, the logistic regression is a predictive analysis. Logistic regression is used to describe data and to explain the relationship between one dependent binary variable and one or more nominal, ordinal, interval or ratio-level independent variables.

The goal of this tutorial is to solve a simple classification problem using Logistic Regression.

Linear Regression versus Logistic Regression

Linear Regression can be used to predict something like homeprices or weather and in all this examples the prediction value is **continues**. There are other type of problems such as Email spam, election. Inn this case the prediction value is **categorical**, because the answer in Email spam is yes/no or in election the answer is one of the person. Hence, the second type of problems is called classification problem.

Linear Regression

- 1. Home prices
- 2. Weather
- 3. Stock price

Predicted value is continuous

Classification

- 1. Email is spam or not
- 2. Will customer buy life insurance?
- 3. Which party a person is going to vote for?
 - 1. Democratic
 - 2. Republican
 - 3. Independent

Predicted value is categorical

Logistic regression is one of the techniques used for classification.

There are two types of classification problems:

- 1. Binary classification (Yes/No)
- 2. Multiclass Classification (You have more than two categories)

Classification Types

Will customer buy life insurance?

1. Yes

2. No.

Which party a person is going to vote for?

- 1. Democratic
- 2. Republican
- 3. Independent

Binary Classification

Multiclass Classification

Predicting if a person would buy life insurnace based on his age using logistic regression

age	have_insurance
22	0
2 5	0
47	1
52	0
46	1
56	1
5 5	0
60	1
62	1
61	1
18	0
28	0
27	0
29	0
49	1

Above is a binary logistic regression problem as there are only two possible outcomes (i.e. if person buys insurance or he/she doesn't).

Predict with Linear Regression

Predict with Logistic Regression

$$sigmoid(z) = \frac{1}{1 + e^{-z}}$$

e = Euler's number ~ 2.71828

Sigmoid function converts input into range 0 to 1

z = m*x + b

$$y = m * x + b$$

$$y = \frac{1}{1 + e^{-(m*x+b)}}$$

In [1]: import pandas as pd
 from matplotlib import pyplot as plt
 %matplotlib inline

```
In [2]: df = pd.read_csv("D:/Data_Science/My Github/Machine-Learning-with-Python/7. logist
         df.head()
Out[2]:
             age bought_insurance
          0
              22
                               0
          1
              25
                               0
          2
              47
                               1
              52
                               0
                               1
              46
In [3]: plt.scatter(df.age,df.bought_insurance,marker='+',color='red')
Out[3]: <matplotlib.collections.PathCollection at 0x9952e50>
           1.0
           0.8
           0.6
           0.4
           0.2
In [5]: df.shape
Out[5]: (27, 2)
In [6]: from sklearn.model_selection import train_test_split
In [9]: # Use 90% for train_size
         X_train, X_test, y_train, y_test = train_test_split(df[['age']],df.bought_insurance
In [10]: X_test
Out[10]:
              age
           9
               61
          24
               50
```

12

27

```
Out[11]:
               age
                19
           18
           21
                26
            5
                56
            4
                46
           22
                40
           23
                45
           10
                18
                55
           15
            8
                62
            1
                25
           19
                18
           17
                58
            2
                47
           20
                21
           16
                25
            6
                55
           26
                23
                29
           13
            3
                52
           25
                54
           14
                49
            0
                22
           11
                28
            7
                60
In [12]: from sklearn.linear_model import LogisticRegression
          model = LogisticRegression()
In [13]: model.fit(X_train, y_train)
Out[13]: LogisticRegression()
```

In [11]: X_train

```
In [14]: X test
Out[14]:
               age
               61
           24
               50
           12
               27
In [15]: model.predict(X_test)
Out[15]: array([1, 1, 0], dtype=int64)
          [1,1,0] for age [61,50,27] seems true the old people buy the insurance(i.e. 1) & vice versa
In [16]: # measure the accuracy of your model
          model.score(X_test,y_test)
Out[16]: 1.0
          which means our model is perfect and this is because out data size is small (only 27 samples)
In [17]: # Predict a probability
          model.predict_proba(X_test)
Out[17]: array([[0.05938775, 0.94061225],
                  [0.20064434, 0.79935566],
                  [0.81810182, 0.18189818]])
```

It shows the probability of X_test being in one class versus the other. The first class if the customer will not buy the insurance.

Predict the probability of age 16?

```
In [19]: model.predict([[16]])
Out[19]: array([0], dtype=int64)
```

So 16 not buy the insurance

Exercise

Download employee retention dataset from here: https://www.kaggle.com/giripujar/hr-analytics (https://www.kaggle.com/giripujar/hr-analytics).

- 1. Now do some exploratory data analysis to figure out which variables have direct and clear impact on employee retention (i.e. whether they leave the company or continue to work)
- 2. Plot bar charts showing impact of employee salaries on retention
- 3. Plot bar charts showing corelation between department and employee retention
- Now build logistic regression model using variables that were narrowed down in step 1

5. Measure the accuracy of the model

Date Author
2021-09-02 Ehsan Zia