Enhancing Pre-trained ViTs for Downstream Task Adaptation: A Locality-Aware Prompt Learning Method

Paper ID: 2070

Shaokun Wang, Yifan Yu, Yuhang He, Yihong Gong* Xi'an Jiaotong University China

Linear

Motivation & Goal & Solution

1.1 Limitation of pre-trained ViTs

Locality vanishing problem: In downstream tasks, fully supervised pre-trained ViT tends to focus on global information while neglecting local information in critical regions.

1.2 Goal

We aim at improving the limited local information incorporating capacity of pre-trained ViTs, thereby enhancing the adaptation of pre-trained ViTs to downstream tasks.

1.3 Solution

Working logic: Our White Box module compensates for the Black Box module's (i.e., pre-trained ViT) local information incorporating capacity to better adapt to downstream tasks.

Method

2.1 The framework of our LORE

Our LORE consists of a data-driven Black Box module and a knowledge-driven White Box module.

- > The White Box module consists of a Locality Interaction Network (LIN), a Knowledge-Locality Attention (KLA), and a Prompt Generator (PG).
- > LIN enhances information interaction within image local regions.
- > KLA captures critical local regions under the guidance of semantic knowledge.
- > PG generates locality-aware prompts with a K-L prototype-guided constraint.
- > The workflow indicated by the green lines is not necessary for the inference phase.

Locality-aware Frozen parameters **S** Knowledge encoder prototype K-L CLS token Learnable parameters Pre-trained ViT Black Box Module: Pre-trained ViT **Pre-trained ViT Layers** Add&Norm Task head Projector $\cdots \mid F_L$ MatMul Softmax Top-N **Prompt** Negative prompt Scale Generator This is a photo of [cat]. **g** Neighbor Linear Linear KLA LIN Decrease This is a photo of [dog]. similarity similarity Postive prompt **Knowledge-Locality Attention Locality Interaction Network** K-L prototype-guided constraint White Box Module: Locality-Aware Prompt Learning Mechanism

Results

3.1 Classification task

3.2 Other downstream tasks

3.3 Attention map visualization ViT CLIPKLA *LORE* KLA LORE Original В-В В-В

Task	Image Retrieval								Point Correspondences		Video Object Segmentation		
Dataset		ROxf	ord5k	d5k		RParis6k				SPair-71k		Davis	
Metric	CLIP		ViT		CLIP		ViT		CLIP	ViT	CLIP	ViT	
	M	M H		H	M H		M	Н	PCK@0.1		J&F M		
В-В	0.397	0.107	0.302	0.094	0.708	0.482	0.603	0.358	18.25	16.61	54.38	58.12	
LORE	0.418	0.171	0.449	0.172	0.750	0.552	0.720	0.523	20.71	18.07	55.62	59.46	