Answer to CS224n Assignment 3

Pengfei Gao, Fanny Yang, Hao Yin *

Problem 1

- (a) *(TBW)*
 - i J.P. Morgan could either be a PERor a ORG; Stanford can either be a ORG or be a PER.
 - ii Because sometimes we need contexts. For example, if you say George Stanford is a great man. Then Stanford is a PER. If you say Stanford University, then Stanford is a ORG.
 - iii The first letter of that word is capital or not; There is no 'a', 'the' in front of that word
- (b) i $e \in \mathbb{R}^{1 \times (2w+1)D}$, $W \in \mathbb{R}^{(2w+1)D \times H}$, $U \in \mathbb{R}^{H \times C}$.
 - ii For each time step, forming e takes O((2w+1)D), computing h takes O((2w+1)DH), then computing \hat{y} takes O(HC). Therefore, for each time step, the total time for predicting label complexity is O(H((2w+1)D+C)). Now for a sentence of length T, the total time complexity is

$$O(HT((2w+1)D+C)).$$

- (c) Finished! Need to compare with Junzi.
- (d) *(TBW)*

Problem 2

Ask Pengfei.

Problem 3

- (a) i $w_h = 1$, $u_h = 1$, $b_h = 0$.
 - ii $w_z = 1$, $u_z = 0$, $u_h = 1$, and then w_h can be any number.

 $^{*{}Pengfei.Gao, fanfyang, yinh}@stanford.edu.$ Each member contributes equally, and names are put in alphabetic order.

(b) i We show that the parameter values that realizes this behavior do not exist. Suppose $h^{(t-1)} = 0$, then $x^{(t)} = 1$ must lead to $h^{(t)} = 1$ while $x^{(t)} = 0$ must lead to $h^{(t)} = 0$, thus

$$u_h + b_h > 0,$$

$$b_h \le 0,$$

from which we know that $u_h > 0$. Now suppose $h^{(t-1)} = 1$, then $x^{(t)} = 1$ must lead to $h^{(t)} = 0$ while $x^{(t)} = 0$ must lead to $h^{(t)} = 1$, thus

$$u_h + w_h + b_h \leq 0,$$

$$w_h + b_h > 0,$$

from which we know that $u_h < 0$. Therefore, we must have $u_h > 0$ and $u_h < 0$, which is a contradiction.

ii
$$b_r = 1, w_z = 1, u_z = -1, w_h = -1, u_h = 1.$$