Tekintsük az L=0,1halmazt, és rajta a következő, igazságtáblával definiált műveletek:

			x y	xVy	$x \wedge y$	$x \to y$
\boldsymbol{x}	$\neg x$		0.0	0	0	1
0	1	•	0.1	1	0	1
1	0		10	1	0	0
·	'		1 1	1	1	1

A következő azonosságokat bizonyítás nélkül használjuk:

$$x \to y = \neg xVy$$

$$\neg (xVy) = \neg x \land \neg y \qquad \neg (x \land y) = \neg xV \neg y$$

A (3) bal oldala, (4) felhasználásával:

$$(aqlandb \wedge c) \rightarrow d \underset{(\textbf{4a})}{=} (\neg (a \wedge b \wedge c) \, Vd \underset{(\textbf{4b})}{=} (\neg a V \neg b V \neg c) \, Vd$$

A (3) jobb oldala, (4a) ismételt felhasználásával:

$$\begin{split} a \to (b \to (c \to d)) &= \neg a \, V(b \to (c \to d)) \\ &= \neg a \, V(\neg b \, V(c \to d)) \\ &= \neg a \, V(\neg b \, V(\neg c \, Vd)) \end{split}$$