PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLIS	HED U	INDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification ⁶ : C12N 15/12, C07K 14/47, 16/18, C12N 15/62	A2	(11) International Publication Number: WO 99/03993 (43) International Publication Date: 28 January 1999 (28.01.99)
(21) International Application Number: PCT/US (22) International Filing Date: 17 July 1998 ((30) Priority Data: 60/053,153 18 July 1997 (18.07.97) 60/053,244 18 July 1997 (18.07.97) 60/055,804 15 August 1997 (15.08.97) 60/055,853 15 August 1997 (15.08.97) (71) Applicant: SCHERING CORPORATION [US/US]; 2 loping Hill Road, Kenilworth, NJ 07033 (US). (72) Inventor: JOHNSON, James, A.; 205 Mary Alice E Gatos, CA 95032 (US). (74) Agents: MCLAUGHLIN, Jaye, P. et al.; Scherin Corporation, Patent Dept., K-6-1 1990, 2000 Galle Road, Kenilworth, NJ 07033-0530 (US).	(17.07.9) U U U U C 2000 Ga	CA, CN, CZ, EE, GE, HR, HU, ID, IL, IS, JP, KG, KR KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAP patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR NE, SN, TD, TG). Published Without international search report and to be republished upon receipt of that report.
(54) Title: SUPPRESSORS OF CYTOKINE SIGNALIN (57) Abstract		ATED REAGENTS

Purified genes encoding intracellular regulatory molecules from a human, reagents related thereto including purified proteins, specific antibodies, and nucleic acids encoding these molecules are provided. Methods of using said reagents and diagnostic kits are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT Aust AU Aust AZ Azet BA Bost BB Bart BE Belg BF Burl BG Bulg BJ Beni BR Braz BY Bela CA Cant CF Cent CG Con	stralia erbaijan snia and Herzegovina rbados igium rkina Faso Igaria nin uzil	FI FR GA GB GE GH GN GR HU IE IL	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland	LS LT LU LV MC MD MG MK MK	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania	SI SK SN SZ TD TG TJ TM TR TT UA	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda
AU Aust AZ Azer BA Boss BB Bart BE Belg BF Burl BG Bulg BJ Beni BR Braz BY Bela CA Can: CF Cent CG Con;	stralia erbaijan snia and Herzegovina rbados igium rkina Faso Igaria nin uzil	GA GB GE GH GN GR HU IE IL	Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel	LV MC MD MG MK ML MN	Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania	SN SZ TD TG TJ TM TR TT UA	Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine
AZ Azer BA Boss BB Bart BE Belg BF Burl BG Bulg BJ Beni BR Braz BY Bela CA Can: CF Cent CG Con;	erbaijan snia and Herzegovina rbados Igium rkina Faso Igaria nin uzil	GB GE GH GN GR HU IE IL	United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel	MC MD MG MK ML MN MR	Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania	SZ TD TG TJ TM TR TT UA	Swaziland Chad Togo Tajikistan Turkwenistan Turkey Trinidad and Tobago Ukraine
BA Boss BB Bart BE Belg BF Burl BG Bulg BJ Beni BR Braz BY Bela CA Can: CF Cent CG Con;	snia and Herzegovina rbados gium rkina Faso Igaria nin uzil arus	GE GH GN GR HU IE IL	Georgia Ghana Guinea Grece Hungary Ireland Israel	MC MD MG MK ML MN MR	Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania	TD TG TJ TM TR TT UA	Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine
BB Barb BE Belg BF Burl BG Bulg BJ Beni BR Braz BY Bela CA Can: CF Cent CG Con;	rbados Igium rkina Faso Igaria nin Izil arus	GH GN GR HU IE IL IS	Ghana Guinea Greece Hungary Ireland Israel	MD MG MK ML MN MR	Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania	TG TJ TM TR TT UA	Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine
BE Belg BF Burl BG Bulg BJ Beni BR Braz BY Bela CA Can: CF Cent CG Con;	gium rkina Faso Igaria Inin Izil Iarus	GN GR HU IE IL IS	Guinea Greece Hungary Ireland Israel	MG MK ML MN MR	Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania	TJ TM TR TT UA	Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine
BF Burl BG Bulg BJ Beni BR Braz BY Bela CA Can CF Cent CG Con	rkina Faso Igaria nin uzil arus	GR HU IE IL IS	Greece Hungary Ireland Israel	ML MN MR	The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania	TM TR TT UA	Turkmenistan Turkey Trinidad and Tobago Ukraine
BG Bulg BJ Beni BR Braz BY Bela CA Can: CF Cent CG Con;	lgaria nin ızil arus	HU IE IL IS	Hungary Ireland Israel	ML MN MR	Republic of Macedonia Mali Mongolia Mauritania	TR TT UA	Turkey Trinidad and Tobago Ukraine
BJ Beni BR Braz BY Bela CA Cana CF Cent CG Cong	nin uzil arus	IE IL IS	Ireland Israel	MN MR	Mali Mongolia Mauritania	TT UA	Trinidad and Tobago Ukraine
BR Braz BY Bela CA Can: CF Cent CG Con	azil arus	IL IS	Israel	MR	Mauritania	UA	Ukraine
BY Bela CA Cana CF Cent CG Con	arus	IS			Mauritania		
CA Cana CF Cent CG Con			Iceland	MW			LIVANOS
CF Cent CG Con	anda				Malawi	US	United States of America
CG Con	IAUA	IT	Italy	MX	Mexico	UZ	Uzbekistan
	ntral African Republic	JP	Japan	NE	Niger	VN	Viet Nam
	ngo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH Swit	itzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI Côte	e d'Ivoire	KP	Democratic People's	NZ	New Zealand		Zimouo we
CM Cam	neroon		Republic of Korea	PL	Poland		
CN Chin	ina	KR	Republic of Korea	PT	Portugal		
CU Cuba	ba	KZ	Kazakstan	RO	Romania		
CZ Czec	ch Republic	LC	Saint Lucia	RU	Russian Federation		
DE Gen	many	LI	Liechtenstein	SD	Sudan		
	nmark	LK	Sri Lanka	SE	Sweden		
EE Esto:	onia	LR	Liberia	SG	Singapore		

SUPPRESSORS OF CYTOKINE SIGNALING: RELATED REAGENTS

5

10

40

This filing is a PCT Application claiming priority to provisional U.S. Patent Applications USSN 60/055,804, filed August 15, 1997, and USSN 60/053,153, filed July 18, 1997. Also incorporated by reference are provisional U.S. Patent Applications USSN 60/055,853, filed August 15, 1997, and USSN 60/053,244, filed July 18, 1997.

FIELD OF THE INVENTION

The present invention pertains to compositions

related to proteins which function, e.g., in suppressing intracellular signaling pathways, e.g., cytokine signaling. In particular, it provides purified genes, proteins, antibodies, and related reagents useful, e.g., to regulate growth hormone-like or cytokine-regulated intracellular processes, including transcription or genes in various cell types, including immune cells.

BACKGROUND OF THE INVENTION

Recombinant DNA technology refers generally to the technique of integrating genetic information from a donor 25 source into vectors for subsequent processing, such as through introduction into a host, whereby the transferred genetic information is copied and/or expressed in the new environment. Commonly, the genetic information exists in the form of complementary DNA (cDNA) derived from 30 messenger RNA (mRNA) coding for a desired protein product. The carrier is frequently a plasmid having the capacity to incorporate cDNA for later replication in a host and, in some cases, actually to control expression of the cDNA and thereby direct synthesis of the encoded 35 product in the host.

For some time, it has been known that the mammalian immune response is based on a series of complex cellular interactions, called the "immune network". Recent research has provided new insights into the inner

30

35

workings of this network. While it remains clear that much of the response does, in fact, revolve around the network-like interactions of lymphocytes, macrophages, granulocytes, and other cells, immunologists now generally hold the opinion that soluble proteins, known as lymphokines, cytokines, or monokines, play a critical role in controlling these cellular interactions. there is considerable interest in the isolation. characterization, and mechanisms of action of cell 10 modulatory factors, an understanding of which will lead to significant advancements in the diagnosis and therapy of numerous medical abnormalities, e.g., immune system disorders. Some of these factors are hematopoietic growth factors, e.g., granulocyte colony stimulating factor (G-CSF), and others are regulatory molecules. 15 See, e.g., Thomson (1994; ed.) The Cytokine Handbook (2d ed.) Academic Press, San Diego; Metcalf and Nicola (1995) The Hematopoietic Colony Stimulating Factors Cambridge University Press; and Aggarwal and Gutterman (1991) Human 20 Cytokines Blackwell Pub.

Lymphokines apparently mediate cellular activities in a variety of ways. They have been shown to support the proliferation, growth, and differentiation of, e.g., pluripotential hematopoietic stem cells into vast numbers of progenitors comprising diverse cellular lineages making up a complex immune system. Proper and balanced interactions between cellular components are necessary for a healthy developmental or immune response. The different cellular lineages often respond in a different manner when lymphokines are administered in conjunction with other agents.

In the immune system, many of the effects of known cytokines on gene transcription are known to be mediated by cytokine inducible DNA binding proteins. See, e.g., Paul (ed. 1994) <u>Fundamental Immunology</u>, 3rd ed., Raven Press, New York, NY. The mechanisms of signal transduction have been an area of active recent study, and involve protein phosphorylation and dephosphorylation with, e.g., the Janus kinases (JAKs) and Signal

Transducers and Activators of Transcription (Stats). See, e.g., Ihle (1996) <u>Cell</u> 84:331-334; ;Ivashkiv (1995) Immunity 3:1-4; and Ihle and Kerr (1995) Trends in Genetics 11:69-74.

5

10

25

The lack of knowledge regarding the mechanisms of signaling involved in the regulation of cell cycle or transcriptional elements has hampered the ability of medical science to specifically regulate cell division or cellular responses, including immune responses. present invention provides compositions which will be important in such regulation.

SUMMARY OF THE INVENTION

The present invention is based in part upon the discovery of intracellular regulatory molecules which can 15 block signal transduction, e.g., through growth factoror cytokine-receptor superfamily signaling mechanisms. These proteins exhibit a structural feature designated a SOCS box. See Hilton, et al. (1998) Proc. Nat'l Acad. Sci. USA 95:114-119. Moreover, the SOCS3 protein can 20 block the IL-2 induced signaling via the STAT5, establishing function of the SOCS proteins as suppressors of cytokine signaling.

The invention provides a substantially pure or recombinant SOCS14 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 2 or 6; a natural sequence SOCS14 of SEQ ID NO: 2 or 6; a fusion protein comprising SOCS14 sequence; a substantially pure or recombinant SOCS15 (also designated WDS11) protein or peptide exhibiting identity over a 30 length of at least about 12 amino acids to SEQ ID NO: 4 or 8; a natural sequence SOCS15 (WDS11) of SEQ ID NO: 4 or 8; a fusion protein comprising SOCS15 (WDS11) sequence; a substantially pure or recombinant SOCS17 protein or peptide exhibiting identity over a length of 35 at least about 12 amino acids to SEQ ID NO: 10; a natural sequence SOCS17 of SEQ ID NO: 10; a fusion protein comprising SOCS17 sequence; a substantially pure or recombinant SOCS18 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID 40

NO: 12; a natural sequence SOCS18 of SEQ ID NO: 12; a fusion protein comprising SOCS18 sequence; a substantially pure or recombinant SOCS19 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 14; a natural sequence SOCS19 of SEQ ID NO: 14; a fusion protein comprising SOCS19 sequence; or a substantially pure or recombinant WDS12 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 16; 10 a natural sequence WDS12 of SEQ ID NO: 16; or a fusion protein comprising WDS12 sequence. In preferred embodiments, the portion is at least about 25 amino In other embodiments, the: SOCS14 comprises a mature sequence of SEQ ID NO: 2 or 6; SOCS15 (WDS11) comprises a mature sequence of SEQ ID NO: 4 or 8; SOCS17 15 comprises a mature sequence of SEQ ID NO: 10; SOCS18 comprises a mature sequence of SEQ ID NO: 12; SOCS19 comprises a mature sequence of SEQ ID NO. 14; WDS12 comprises a mature sequence of SEQ ID NO: 16; protein or 20 peptide: is from a warm blooded animal selected from a mammal, including a primate; comprises at least one polypeptide segment of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, or 16; exhibits a plurality of portions exhibiting the identity; is a natural allelic variant of SOCS14, SOCS15 25 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12; has a length at least about 30 amino acids; exhibits at least two nonoverlapping epitopes which are specific for a mammalian SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12; exhibits identity over a length of at least about 20 amino acids to SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, 30 SOCS19, or WDS12; exhibits at least two non-overlapping epitopes which are specific for a SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12; exhibits identity over a length of at least about 25 amino acids to a primate SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12; 35 is glycosylated; is a synthetic polypeptide; is attached to a solid substrate; is conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a

natural sequence. Various preferred embodiments include

PCT/US98/14544 WO 99/03993

a composition comprising: a sterile SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 protein or peptide; the SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 protein or peptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration. The invention further provides a fusion protein, comprising: mature protein comprising sequence of SEQ ID NO: 2, 6, 4, 8, 10, 12, 14 or 16; a detection or purification tag, including a FLAG, His6, or Ig sequence;

10

15

These reagents also make available a kit comprising such a protein or polypeptide, and: a compartment comprising the protein or polypeptide; and/or instructions for use or disposal of reagents in the kit.

or sequence of another SOCS or WDS protein.

Providing an antigen, the invention further provides a binding compound comprising an antigen binding portion from an antibody, which specifically binds to a natural SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 20 protein, wherein: the protein is a primate protein; the binding compound is an Fv, Fab, or Fab2 fragment; the binding compound is conjugated to another chemical moiety; or the antibody: is raised against a peptide sequence of a mature polypeptide comprising sequence of 25 SEQ ID NO: 2, 6, 4, 8, 10, 12, 14 or 16; is raised against a mature SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12; is raised to a purified SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12; is immunoselected; is a polyclonal antibody; binds to a 30 denatured SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12; exhibits a Kd to antigen of at least 30 μM; is attached to a solid substrate, including a bead or plastic membrane; is in a sterile composition; or is detectably labeled, including a radioactive or 35 fluorescent label. Preferred kits include those containing the binding compound, and: a compartment comprising the binding compound; and/or instructions for use or disposal of reagents in the kit. Many of the kits

40

will be used for making a qualitative or quantitative analysis.

Other preferred compositions will be those comprising: a sterile binding compound, or the binding compound and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration.

The present invention further provides an isolated 10 or recombinant nucleic acid encoding a protein or peptide or fusion protein described above, wherein: the SOCS or WDS family protein is from a mammal, including a primate; or the nucleic acid: encodes an antigenic peptide sequence of SEQ ID NO: 2, 6, 4, 8, 10, 12, 14 or 16; 15 encodes a plurality of antigenic peptide sequences of SEO ID NO: 2, 6, 4, 8, 10, 12, 14 or 16; exhibits identity to a natural cDNA encoding the segment; is an expression vector; further comprises an origin of replication; is from a natural source; comprises a detectable label; 20 comprises synthetic nucleotide sequence; is less than 6 kb, preferably less than 3 kb; is from a mammal, including a primate; comprises a natural full length coding sequence; is a hybridization probe for a gene encoding the SOCS or WDS family protein; or is a PCR 25 primer, PCR product, or mutagenesis primer. In certain embodiments, the invention provides a cell or tissue comprising such a recombinant nucleic acid. Preferred cells include: a prokaryotic cell; a eukaryotic cell; a bacterial cell; a yeast cell; an insect cell; a mammalian 30 cell; a mouse cell; a primate cell; or a human cell.

Other kit embodiments include a kit comprising the described nucleic acid, and: a compartment comprising the nucleic acid; a compartment further comprising a SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 protein or polypeptide; and/or instructions for use or disposal of reagents in the kit. In many versions, the kit is capable of making a qualitative or quantitative analysis.

Other nucleic acid embodiments include those which: hybridize under wash conditions of 50° C and less than 500 mM salt to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, or 15;

exhibits identity over a stretch of at least about 30 nucleotides to a SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12. In other embodiments: the wash conditions are at 55° C and/or 300 mM salt; 60° C and/or 150 mM salt; the identity is over a stretch is at least 55 or 75 nucleotides.

In other embodiments, the invention provides a method of modulating physiology or development of a cell or tissue culture cells comprising introducing into such cell an agonist or antagonist of a SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

15 I. General

10

20

25

30

35

40

It is to be understood that this invention is not limited to the particular compositions, methods, and techniques described herein, as such compositions, methods, and techniques may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which is only limited by the appended claims.

As used herein, including the appended claims, singular forms of words such as "a," "an," and "the" include their corresponding plural referents unless the context clearly dictates otherwise. Thus, e.g., reference to "a polynucleotide" includes one or more different polynucleotides, reference to "a composition" includes one or more of such compositions, and reference to "a method" include reference to equivalent steps and methods known to a person of ordinary skill in the art, and so forth.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by a person of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are

25

30

described below. All publications, patent applications, patents, and other references discussed above are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the invention is not entitled to antedate any such disclosure by virtue of its prior invention. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety including all figures, references, and drawings.

10 The proliferation, differentiation, and physiological responses of many cell lineages are regulated by secreted proteins, e.g., cytokines. molecules often exert their biological effects through binding to cell surface receptors that are associated with one or more members of the Janus Kinase (Jak) family of cytoplasmic tyrosine kinases. For example, cytokine induced receptor dimerization leads to the activation of JAKs, rapid tyrosine phosphorylation of cytoplasmic 20 domains, and subsequent recruitment of various signaling proteins to the receptor complex, including members of the STAT family of transcription factors. The JAK and STAT proteins are enzymes which act to transduce a signal from the cell surface to the nucleus, thereby serving as the pathway to signal the cell to respond physiologically to an external signal. These pathways have been shown to involve certain protein phosphorylation or dephosphorylation steps, thereby leading to response or lack of response by the cell. See, e.g., Ihle (1996) Cell 84:331-334; Ivashkiv (1995) Immunity 3:1-4; Ihle, et al. (1995) Ann. Rev. Immunol. 13:369-398; Ihle and Kerr (1995) Trends in Genetics 11:69-74; and Darnell, et al. (1994) Science 264:1415-1421.

A number of novel genes have been identified from 35 mouse or humans which appear to inhibit STAT function. See, e.g., Yoshimura, et al. (1995) EMBO J. 14:2816-2826; Matsumoto, et al. (1997) Blood 89:3148-3154; Starr, et al. (1997) Nature 387:917-921; Endo, et al. (1997) Nature 387:921-924; and Naka, et al. Nature 387:924-929.

10

15

40

9 .

present invention provides additional genes with sequence related to those, designated Suppressors Of Cytokine Signaling or WDS: SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12.

A primate, e.g., human, SOCS14 cDNA fragment and corresponding open reading frame are provided in (SEQ ID NO: 1 and 2). The translation exhibits significant matching and similarity to other identified SOCS family members. internal stop codon indicates some errors in the sequence at or near those positions. Additional refined sequence of primate, e.g., human, SOCS14 is provided in SEQ ID NO: 5 and

A rodent, e.g., mouse, SOCS15 cDNA fragment and corresponding open reading frame are provided in SEQ ID NO: 3 and 4. The translation exhibits significant matching and similarity to other identified SOCS family members. The internal stop codon indicates some errors in the sequence at or near those positions.

A rodent, e.g., murine SOCS17 CDNA and corresponding open reading frame are provided in SEQ ID NO: 9 and 10. 20 Nucleotide may be A, C, T, or G at positions: 1680, 1691, 1696, 1704, 1707, 1728, 1740, 1743, 1746, 1755, 1760, 1770, 1773, 1802, 1816, 1817, 1823, 1826, 1827, 1846, 1851, 1857, 1861, 1880, 1885, 1909, 1917, 1920, 1929, 1946, 1953, 1967, 1968, 1980, 1991, 1995, 2001, 2004, 25 2021, 2033, 2034, 2035, 2036, 2037, 2039, 2040, 2042, 2048, 2051, 2054, 2061, 2075, 2081, 2083, 2084, 2085, 2088, 2105, 2121, 2124, 2132, 2137, 2147, 2149, 2151, 2152, 2160, 2165, 2177, 2179 and 2196; nucleotide may be A or C at position 494; nucleotide may be C or T at 30 positions: 498, 501, 1455, 1524, 1527, 1621, 1829, and 2072; nucleotide may be G or C at positions: 499, 1618, and 1664; nucleotide may be G or T at position 1673; and nucleotide may be A, C, or G at positions: 1819, 1840, and 2089 (see SEQ ID NO: 26). 35

A primate, e.g., human, SOCS18 nucleotide and corresponding amino acid sequence are provided in SEQ ID NO: 11 and 12. Nucleotide may be A or C at positions: 740, 797, 2139, and 2184; nucleotide may be G or T at positions: 761, 1313, 1508, and 2226; nucleotide may be C or T at positions 746, 1460, 1499, 2009, 2010, 2199, and 2225; nucleotide may be A or G at positions 788, 863, 1550, 2178, 2188, 2197, and 2211; nucleotide may be G or C at positions: 1163, and 1544; nucleotide may be A or T at positions 2058, and 2128; and nucleotide may be A, C, T, or G at position 2251 (see SEQ ID NO: 27).

A primate, e.g., human, SOCS19 nucleotide and corresponding amino acid sequence are provided in SEQ ID NO: 13 and 14. Nucleotide may be A, C, T, or G at positions: 2078, and 2116; and nucleotide may be G or C at position 2063 (see SEQ ID NO: 28).

Finally, a primate, e.g., human, WDS12 nucleotide and corresponding amino acid sequence is provided in SEQ ID NO: 15 and 16. Nucleotide may be A, C, T, or G at positions: 108, and 109; nucleotide may be A or G at positions: 236, 238, and 1258; nucleotide may be G or T at position 233; nucleotide may be G or C at position 234; nucleotide may be C or T at position 237; and nucleotide may be A or T at position 239 (see SEQ ID NO: 29).

SOCS proteins are a family of proteins ranging from approximately 30-60 Kd which inhibit JAK kinase activity. The amino portion of SOCS proteins contain an SH2 binding motif and the carboxy portion of the molecule contains a SOCS box motif which may play a role in dimerization of SOCS proteins. The WDS are closely related in sequence.

SOCS3 expression is induced by IL-2 and can be detected by approximately 1 hour after IL-2 activation. Subsequently, SOCS expression is decreased relatively rapidly (e.g., approximately 8 hrs after activation). Western blots show that SOCS3 interacts with IL-2 receptor and JAK1 following IL-2 stimulation.

II. Definitions

10

15

20

25

30

The term "binding composition" refers to molecules that bind with specificity to SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 protein, e.g., in an antibody-antigen interaction. However, other compounds, e.g., binding proteins, may also specifically associate

WO 99/03993 PCT/US98/14544

with SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 proteins in contrast to other molecules. Typically, the association will be in a natural physiologically relevant protein-protein interaction,

either covalent or non-covalent, and may include members of a multiprotein complex, including carrier compounds or dimerization partners. The molecule may be a polymer, or chemical reagent. A functional analog may be a protein with structural modifications, or may be a wholly

unrelated molecule, e.g., which has a molecular shape 10 which interacts with the appropriate protein binding determinants. The proteins may serve as agonists or antagonists of the binding partner, see, e.g., Goodman, et al. (eds.) (1990) Goodman & Gilman's: The

Pharmacological Bases of Therapeutics (8th ed.) Pergamon 15 Press, Tarrytown, N.Y.

The term "binding agent: SOCS or :WDS protein complex", as used herein, refers to a complex of a binding agent and a SOCS14, SOCS15 (WDS11), SOCS17,

SOCS18, SOCS19, or WDS12 protein that is formed by 20 specific binding of the binding agent to the respective SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 protein. Specific binding of the binding agent means that the binding agent has a specific binding site that

25

30

recognizes a site on the SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 protein. For example, antibodies raised to a SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 protein and recognizing an epitope on the SOCS or WDS protein are capable of forming a binding agent: SOCS or :WDS protein complex by specific

binding. Typically, the formation of a binding agent: SOCS or :WDS protein complex allows the measurement of SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 protein in a mixture of other proteins and biologics.

The term "antibody: SOCS or :WDS protein complex" refers 35 to an embodiment in which the binding agent, e.g., is an The antibody may be monoclonal, polyclonal, or antibody. a binding fragment of an antibody, e.g., an Fv, Fab, or F(ab)2 fragment. The antibody will preferably be a polyclonal antibody for cross-reactivity purposes. 40

15

20

25

30

35

40

"Homologous" nucleic acid sequences, when compared, exhibit significant similarity, or identity. The standards for homology in nucleic acids are either measures for homology generally used in the art by sequence comparison and/or phylogenetic relationship, or based upon hybridization conditions. Hybridization conditions are described in greater detail below.

An "isolated" nucleic acid is a nucleic acid, e.g., an RNA, DNA, cDNA, genomic DNA, or a mixed polymer, which is substantially separated from other biologic components which naturally accompany a native sequence, e.g., proteins and flanking genomic sequences from the originating species. The term embraces a nucleic acid sequence which has been removed from its naturally occurring environment, and includes recombinant or cloned DNA isolates and chemically synthesized analogs, or analogs biologically synthesized by heterologous systems. Further, the term includes double-stranded or singlestranded embodiments. Where single-stranded, the nucleic acid may be either the "sense" or the "antisense" strand. A substantially pure molecule includes isolated forms of the molecule. An isolated nucleic acid will usually contain homogeneous nucleic acid molecules, but will, in some embodiments, contain nucleic acids with minor sequence heterogeneity. This heterogeneity is typically found at the polymer ends or portions not critical to a desired biological function or activity.

As used herein, the terms "SOCS" or "WDS" protein shall encompass, when used in a protein context, a protein having amino acid sequences shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, or 16 or a significant fragment of such a protein, preferably a natural embodiment. The term "protein" or "polypeptide" is meant any chain of amino acids, regardless of length or postranslation modification (e.g., glycosylation or phosphorylation). Further, the term encompasses polypeptides which are preor pro-proteins. The invention also embraces a polypeptide which exhibits similar structure to SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 protein, e.g., which interacts with SOCS or WDS protein specific

10

15

20

25

binding components. These binding components, e.g., antibodies, typically bind to a SOCS or WDS protein, respectively, with high affinity, e.g., at least about 100 nM, usually better than about 30 nM, preferably better than about 10 nM, and more preferably at better than about 3 nM.

The term "polypeptide" or "protein" as used herein includes a significant fragment or segment of a SOCS or WDS protein, and encompasses a stretch of amino acid residues of at least about 8 amino acids, generally at least 10 amino acids, more generally at least 12 amino acids, often at least 14 amino acids, more often at least 16 amino acids, typically at least 18 amino acids, more typically at least 20 amino acids, usually at least 22 amino acids, more usually at least 24 amino acids, preferably at least 26 amino acids, more preferably at least 28 amino acids, and, in particularly preferred embodiments, at least about 30 or more amino acids, e.g., 35, 40, 45, 50, 60, 70, 80, etc. The invention encompasses proteins comprising a plurality of distinct, e.g., nonoverlapping, segments of the specified length. Typically, the plurality will be at least two, more usually at least three, and preferably 5, 7, or even more. While the length minima are provided, longer lengths, of various sizes, may be appropriate, e.g., one of length 7, and two of length 12. Features of one of the different genes should not be taken to limit those of another of the genes.

A "recombinant" nucleic acid is defined either by

its method of production or its structure. In reference
to its method of production, e.g., a product made by a
process, the process is use of recombinant nucleic acid
techniques, e.g., involving human intervention in the
nucleotide sequence, typically selection or production.

Alternatively, it can be a nucleic acid made by
generating a sequence comprising fusion of two fragments
which are not naturally contiguous to each other, but is
meant to exclude products of nature, e.g., naturally
occurring mutants. Thus, for example, products made by

transforming cells with any non-naturally occurring

WO 99/03993 PCT/US98/14544

vector is encompassed, as are nucleic acids comprising sequence derived using any synthetic oligonucleotide process. Such is often done to replace a codon with a redundant codon encoding the same or a conservative amino acid, while typically introducing or removing a sequence recognition site. Alternatively, it is performed to join together nucleic acid segments of desired functions to generate a single genetic entity comprising a desired combination of functions not found in the commonly available natural forms. Restriction enzyme recognition sites are often the target of such artificial manipulations, but other site specific targets, e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features may be incorporated by design. A similar concept is intended for a recombinant, e.g., fusion, polypeptide. Specifically included are synthetic nucleic acids which, by genetic code redundancy, encode polypeptides similar to fragments of these antigens, and fusions of sequences from various different species variants.

10

15

20

"Solubility" is reflected by sedimentation measured in Svedberg units, which are a measure of the sedimentation velocity of a molecule under particular conditions. The determination of the sedimentation velocity was classically performed in an analytical 25 ultracentrifuge, but is typically now performed in a standard ultracentrifuge. See, Freifelder (1982) Physical Biochemistry (2d ed.) W.H. Freeman & Co., San Francisco, CA; and Cantor and Schimmel (1980) Biophysical Chemistry parts 1-3, W.H. Freeman & Co., San Francisco, 30 As a crude determination, a sample containing a putatively soluble polypeptide is spun in a standard full sized ultracentrifuge at about 50K rpm for about 10 minutes, and soluble molecules will remain in the supernatant. A soluble particle or polypeptide will 35 typically be less than about 30S, more typically less than about 15S, usually less than about 10S, more usually less than about 6S, and, in particular embodiments, preferably less than about 4S, and more preferably less than about 3S. Solubility of a polypeptide or fragment 40

depends upon the environment and the polypeptide. Many parameters affect polypeptide solubility, including temperature, electrolyte environment, size and molecular characteristics of the polypeptide, and nature of the solvent. Typically, the temperature at which the polypeptide is used ranges from about 4°C to about 65°C. Usually the temperature at use is greater than about 18°C and more usually greater than about 22°C. For diagnostic purposes, the temperature will usually be about room temperature or warmer, but less than the denaturation temperature of components in the assay. For therapeutic purposes, the temperature will usually be body temperature, typically about 37°C for humans, though under certain situations the temperature may be raised or lowered in situ or in vitro.

10

15

20

25

30

35

40

The size and structure of the polypeptide should generally be in a substantially stable state, and usually not in a denatured state. The polypeptide may be associated with other polypeptides in a quaternary structure, e.g., to confer solubility, or associated with lipids or detergents in a manner which approximates natural lipid bilayer interactions.

The solvent will usually be a biologically compatible buffer, of a type used for preservation of biological activities, and will usually approximate a physiological solvent. Usually the solvent will have a neutral pH, typically between about 5 and 10, and preferably about 7.5. On some occasions, a detergent will be added, typically a mild non-denaturing one, e.g., CHS (cholesteryl hemisuccinate) or CHAPS (3-[3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate), or a low enough concentration as to avoid significant disruption of structural or physiological properties of the protein.

"Substantially pure" in a protein context typically means that the protein is isolated from other contaminating proteins, nucleic acids, and other biologicals derived from the original source organism. Purity, or "isolation" may be assayed by standard methods, and will ordinarily be at least about 50% pure,

more ordinarily at least about 60% pure, generally at least about 70% pure, more generally at least about 80% pure, often at least about 85% pure, more often at least about 90% pure, preferably at least about 95% pure, more preferably at least about 98% pure, and in most preferred embodiments, at least 99% pure. Similar concepts apply, e.g., to antibodies or nucleic acids.

"Substantial similarity" in the nucleic acid sequence comparison context means either that the segments, or their complementary strands, when compared, 10 are identical when optimally aligned, with appropriate nucleotide insertions or deletions, in at least about 50% of the nucleotides, generally at least 56%, more generally at least 59%, ordinarily at least 62%, more 15 ordinarily at least 65%, often at least 68%, more often at least 71%, typically at least 74%, more typically at least 77%, usually at least 80%, more usually at least about 85%, preferably at least about 90%, more preferably at least about 95 to 98% or more, and in particular 20 embodiments, as high at about 99% or more of the nucleotides. Alternatively, substantial similarity exists when the segments will hybridize under selective hybridization conditions, to a strand, or its complement, typically using a sequence derived from SEQ ID NO: 1, 3, 25 5, 7, 9, 11, 13, or 15. Typically, selective hybridization will occur when there is at least about 55% similarity over a stretch of at least about 30 nucleotides, preferably at least about 65% over a stretch of at least about 25 nucleotides, more preferably at least about 75%, and most preferably at least about 90% 30 over about 20 nucleotides. See Kanehisa (1984) Nuc. Acids Res. 12:203-213. The length of similarity comparison, as described, may be over longer stretches, and in certain embodiments will be over a stretch of at least about 17 nucleotides, usually at least about 20 35 nucleotides, more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about 40 nucleotides, preferably at least about 50 nucleotides, and more preferably at least about 75 to 100 or more nucleotides, e.g., 150, 200, etc. 40

15

20

25

30

35

40

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequent coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.

PCT/US98/14544

Optical alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needlman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Nat'l Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by visual inspection (see generally Ausubel et al., supra).

One example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments to show relationship and percent sequence identity. It also plots a tree or dendogram showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng and Doolittle (1987) <u>J. Mol. Evol.</u> 35:351-360. method used is similar to the method described by Higgins and Sharp (1989) CABIOS 5:151-153. The program can align up to 300 sequences, each of a maximum length of 5,000 nucleotides or amino acids. The multiple alignment procedure begins with the pairwise alignment of the two most similar sequences, producing a cluster of two aligned sequences. This cluster is then aligned to the next most related sequence or cluster of aligned sequences. Two clusters of sequences are aligned by a simple extension of the pairwise alignment of two individual sequences. The final alignment is achieved by a series of progressive, pairwise alignments. The program is run by designating specific sequences and their amino acid or nucleotide coordinates for regions of sequence comparison and by designating the program parameters. For example, a reference sequence can be compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10), and weighted end gaps.

10 Another example of algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described Altschul, et al. (1990) J. Mol. Biol. 215:403-410. Software for performing BLAST analyses is publicly 15 available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some 20 positive-valued threshold score T when aligned with a word of the same length in a database sequence. referred to as the neighborhood word score threshold (Altschul, et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find 25 longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the 30 quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the 35 sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Nat'l Acad. Sci. USA 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of 40 both strands.

WO 99/03993 19

15

20

25

30

35

40

PCT/US98/14544

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) Proc. Nat'l Acad. Sci.

5 USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

A further indication that two nucleic acid sequences of polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules hybridize to each other under stringent conditions, as described below.

"Stringent conditions", in referring to homology or substantial similarity in the hybridization context, will be stringent combined conditions of salt, temperature, organic solvents, and other parameters, typically those controlled in hybridization reactions. The combination of parameters is more important than the measure of any single parameter. See, e.g., Wetmur and Davidson (1968) J. Mol. Biol. 31:349-370.

A nucleic acid probe which binds to a target nucleic acid under stringent conditions is specific for said target nucleic acid. Hybridization under stringent conditions should give a background of at least 2-fold over background, preferably at least 3-5 or more. Such a probe is typically more than 11 nucleotides in length,

and is sufficiently identical or complementary to a target nucleic acid over the region specified by the sequence of the probe to bind the target under stringent hybridization conditions.

SOCS14, SOCS15 (WDS11), SOCS17, SOCS18, SOCS19, or WDS12 protein from other mammalian species can be cloned and isolated by cross-species hybridization of closely related species. See, e.g., below. Similarity may be relatively low between distantly related species, and thus hybridization of relatively closely related species is advisable. Alternatively, preparation of an antibody preparation which exhibits less species specificity may be useful in expression cloning approaches.

The phrase "specifically binds to an antibody" or 15 "specifically immunoreactive with", when referring to a protein or peptide, refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biological components. Thus, under designated 20 immunoassay conditions, the specified antibodies bind to a particular protein and do not significantly bind other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular 25 protein. For example, antibodies raised to the protein immunogen with the amino acid sequence depicted in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, or 16 can be selected to obtain antibodies specifically immunoreactive with SOCS or WDS proteins and not with other proteins. 30 antibodies recognize proteins highly similar to the homologous SOCS or WDS protein.

III. Nucleic Acids

Primate or rodent SOCS or WDS protein is each

exemplary of a larger class of structurally and
functionally related proteins. These soluble proteins
will serve to transmit signals between different cell
types. The preferred embodiments, as disclosed, will be
useful in standard procedures to isolate genes from
different individuals or other species, e.g., warm

blooded animals, such as birds and mammals. Cross
hybridization will allow isolation of related genes
encoding proteins from individuals, strains, or species.
A number of different approaches are available to
successfully isolate a suitable nucleic acid clone based
upon the information provided herein. Southern blot
hybridization studies can qualitatively determine the
presence of homologous genes in human, monkey, rat,
mouse, dog, cow, and rabbit genomes under specific
hybridization conditions.

Complementary sequences will also be used as probes or primers. Based upon identification of the likely amino terminus, other peptides should be particularly useful, e.g., coupled with anchored vector or poly-A complementary PCR techniques or with complementary DNA of other peptides.

15

20

25

30

40

Techniques for nucleic acid manipulation of genes encoding SOCS or WDS proteins, such as subcloning nucleic acid sequences encoding polypeptides into expression vectors, labeling probes, DNA hybridization, and the like are described generally in Sambrook, et al. (1989)

Molecular Cloning: A Laboratory Manual (2nd ed.) Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor Press, NY, which is incorporated herein by reference.
This manual is hereinafter referred to as "Sambrook, et al."

There are various methods of isolating DNA sequences encoding SOCS or WDS proteins. For example, DNA is isolated from a genomic or cDNA library using labeled oligonucleotide probes having sequences identical or complementary to the sequences disclosed herein. Full-length probes may be used, or oligonucleotide probes may be generated by comparison of the sequences disclosed. Such probes can be used directly in hybridization assays to isolate DNA encoding SOCS or WDS proteins, or probes can be designed for use in amplification techniques such as PCR, for the isolation of DNA encoding SOCS or WDS proteins.

To prepare a cDNA library, mRNA is isolated from cells which expresses a SOCS or WDS protein. cDNA is

WO 99/03993 22

20

25

30

35

40

PCT/US98/14544

prepared from the mRNA and ligated into a recombinant vector. The vector is transfected into a recombinant host for propagation, screening, and cloning. Methods for making and screening cDNA libraries are well known. See Gubler and Hoffman (1983) <u>Gene</u> 25:263-269 and Sambrook, et al.

For a genomic library, the DNA can be extracted from tissue and either mechanically sheared or enzymatically digested to yield fragments of about 12-20 kb. The

10 fragments are then separated by gradient centrifugation and cloned in bacteriophage lambda vectors. These vectors and phage are packaged in vitro, as described in Sambrook, et al. Recombinant phage are analyzed by plaque hybridization as described in Benton and Davis

15 (1977) Science 196:180-182. Colony hybridization is carried out as generally described in e.g., Grunstein, et al. (1975) Proc. Natl. Acad. Sci. USA. 72:3961-3965.

DNA encoding a SOCS14 or SOCS15 protein can be identified in either cDNA or genomic libraries by its ability to hybridize with the nucleic acid probes described herein, e.g., in colony or plaque hybridization assays. The corresponding DNA regions are isolated by standard methods familiar to those of skill in the art. See, e.g., Sambrook, et al.

Various methods of amplifying target sequences, such as the polymerase chain reaction, can also be used to prepare DNA encoding SOCS or WDS proteins. Polymerase chain reaction (PCR) technology is used to amplify such nucleic acid sequences directly from mRNA, from cDNA, and from genomic libraries or cDNA libraries. The isolated sequences encoding SOCS or WDS proteins may also be used as templates for PCR amplification.

Typically, in PCR techniques, oligonucleotide primers complementary to two 5' regions in the DNA region to be amplified are synthesized. The polymerase chain reaction is then carried out using the two primers. See Innis, et al. (eds.) (1990) PCR Protocols: A Guide to Methods and Applications Academic Press, San Diego, CA. Primers can be selected to amplify the entire regions encoding a full-length SOCS or WDS protein or to amplify

40

smaller DNA segments as desired. Once such regions are PCR-amplified, they can be sequenced and oligonucleotide probes can be prepared from sequence obtained using standard techniques. These probes can then be used to isolate DNA's encoding SOCS or WDS proteins.

Oligonucleotides for use as probes are usually chemically synthesized according to the solid phase phosphoramidite triester method first described by Beaucage and Carruthers (1983) <u>Tetrahedron Lett.</u>

22(20):1859-1862, or using an automated synthesizer, as described in Needham-VanDevanter, et al. (1984) <u>Nucleic Acids Res.</u> 12:6159-6168. Purification of oligonucleotides is performed e.g., by native acrylamide gel electrophoresis or by anion-exchange HPLC as described in Pearson and Regnier (1983) <u>J. Chrom.</u>

described in Pearson and Regnier (1983) <u>J. Chrom.</u>
255:137-149. The sequence of the synthetic oligonucleotide can be verified using, e.g., the chemical degradation method of Maxam, A.M. and Gilbert, W. in Grossman, L. and Moldave (eds.) (1980) <u>Methods in</u>

20 Enzymology 65:499-560 Academic Press, New York.

Isolated nucleic acids encoding SOCS or WDS proteins were identified. The nucleotide sequences and corresponding open reading frames are provided in SEQ ID NO: 1 through 16.

These SOCS or WDS proteins exhibit limited similarity to portions other intracellular proteins. In particular, β-sheet and α-helix residues can be determined using, e.g., RASMOL program, see Sayle and Milner-White (1995) TIBS 20:374-376; or Gronenberg, et al. (1991) Protein Engineering 4:263-269; and other structural features are defined in Lodi, et al. (1994) Science 263:1762-1767.

This invention provides isolated DNA or fragments to encode a SOCS or WDS protein. In addition, this invention provides isolated or recombinant DNA which encodes a protein or polypeptide which is capable of hybridizing under appropriate conditions, e.g., high stringency, with the DNA sequences described herein. Said biologically active protein or polypeptide can be an intact protein, or fragment, and have an amino acid

sequence as disclosed in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, or 16, particularly natural embodiments. Preferred embodiments will be full length natural sequences. Further, this invention contemplates the use of isolated or recombinant DNA, or fragments thereof, which encode proteins which are homologous to a SOCS or WDS protein or which were isolated using cDNA encoding a SOCS or WDS protein as a probe. The isolated DNA can have the respective regulatory sequences in the 5' and 3' flanks, e.g., promoters, enhancers, poly-A addition signals, and others. Also embraced are methods for making expression vectors with these sequences, or for making, e.g., expressing and purifying, protein products.

A DNA which codes for a SOCS or WDS protein will be 15 particularly useful to identify genes, mRNA, and cDNA species which code for related or similar proteins, as well as DNAs which code for homologous proteins from different species. There are likely homologs in other species, including primates, rodents, canines, felines, 20 and birds. Various SOCS or WDS proteins should be homologous and are encompassed herein. However, even proteins that have a more distant evolutionary relationship to the antigen can readily be isolated under appropriate conditions using these sequences if they are 25 sufficiently homologous. Primate SOCS or WDS proteins are of particular interest.

Recombinant clones derived from the genomic sequences, e.g., containing introns, will be useful for transgenic studies, including, e.g., transgenic cells and organisms, and for gene therapy. See, e.g., Goodnow (1992) "Transgenic Animals" in Roitt (ed.) Encyclopedia of Immunology, Academic Press, San Diego, pp. 1502-1504; Travis (1992) Science 256:1392-1394; Kuhn, et al. (1991) Science 254:707-710; Capecchi (1989) Science 244:1288; Robertson (1987) (ed.) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, IRL Press, Oxford; and Rosenberg (1992) J. Clinical Oncology 10:180-199.

35

30

10

WO 99/03993 25

IV. Antibodies

10

15

20

25

30

35

40

Antibodies can be raised to various SOCS14 or SOCS15 proteins, including individual, polymorphic, allelic, strain, or species variants, and fragments thereof, both in their naturally occurring (full-length) forms and in their recombinant forms. Additionally, antibodies can be raised to SOCS or WDS proteins in either their active forms or in their inactive forms. Anti-idiotypic antibodies may also be used.

A. Antibody Production

A number of immunogens may be used to produce antibodies specifically reactive with SOCS or WDS proteins. Recombinant protein is the preferred immunogen for the production of monoclonal or polyclonal antibodies. Naturally occurring protein may also be used either in pure or impure form. Synthetic peptides, made using the human SOCS14 or SOCS15 protein sequences described herein, may also used as an immunogen for the production of antibodies to SOCS14 or SOCS15 proteins. Recombinant protein can be expressed in eukaryotic or prokaryotic cells as described herein, and purified as described. Naturally folded or denatured material can be used, as appropriate, for producing antibodies. Either monoclonal or polyclonal antibodies may be generated for subsequent use in immunoassays to measure the protein.

Methods of producing polyclonal antibodies are known to those of skill in the art. Typically, an immunogen, preferably a purified protein, is mixed with an adjuvant and animals are immunized with the mixture. The animal's immune response to the immunogen preparation is monitored by taking test bleeds and determining the titer of reactivity to the SOCS or WDS protein of interest. When appropriately high titers of antibody to the immunogen are obtained, usually after repeated immunizations, blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich for antibodies reactive to the protein can be done if desired. See, e.g., Harlow and Lane; or Coligan.

Monoclonal antibodies may be obtained by various techniques familiar to those skilled in the art.

Typically, spleen cells from an animal immunized with a desired antigen are immortalized, commonly by fusion with a myeloma cell (see, Kohler and Milstein (1976) <u>Eur. J. Immunol.</u> 6:511-519, incorporated herein by reference).

5 Alternative methods of immortalization include transformation with Epstein Barr Virus, oncogenes, or retroviruses, or other methods known in the art.

Colonies arising from single immortalized cells are screened for production of antibodies of the desired specificity and affinity for the antigen, and yield of the monoclonal antibodies produced by such cells may be

specificity and affinity for the antigen, and yield of the monoclonal antibodies produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a vertebrate host.

Alternatively, one may isolate DNA sequences which encode

a monoclonal antibody or a binding fragment thereof by
screening a DNA library from human B cells according,
e.g., to the general protocol outlined by Huse, et al.

(1989) Science 246:1275-1281.

Antibodies, including binding fragments and single 20 chain versions, against predetermined fragments of SOCS or WDS protein can be raised by immunization of animals with conjugates of the fragments with carrier proteins as described above. Monoclonal antibodies are prepared from cells secreting the desired antibody. These antibodies 25 can be screened for binding to normal or defective SOCS or WDS proteins, or screened for agonistic or antagonistic activity, e.g., effect on cell cycle progression or transcription of specific genes. These monoclonal antibodies will usually bind with at least a 30 K_D of about 1 mM, more usually at least about 300 μ M, typically at least about 10 µM, more typically at least about 30 µM, preferably at least about 10 µM, and more preferably at least about 3 μM or better.

In some instances, it is desirable to prepare

35 monoclonal antibodies from various mammalian hosts, such
as mice, rodents, primates, humans, etc. Description of
techniques for preparing such monoclonal antibodies may
be found in, e.g., Stites, et al. (eds.) <u>Basic and</u>
<u>Clinical Immunology</u> (4th ed.) Lange Medical Publications,

40 Los Altos, CA, and references cited therein; Harlow and

WO 99/03993 PCT/US98/14544

Lane (1988) Antibodies: A Laboratory Manual CSH Press; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed.) Academic Press, New York, NY; and particularly in Kohler and Milstein (1975) Nature 256:495-497, which discusses one method of generating 5 monoclonal antibodies. Summarized briefly, this method involves injecting an animal with an immunogen. animal is then sacrificed and cells taken from its spleen, which are then fused with myeloma cells. result is a hybrid cell or "hybridoma" that is capable of 10 reproducing in vitro. The population of hybridomas is then screened to isolate individual clones, each of which secrete a single antibody species to the immunogen. this manner, the individual antibody species obtained are the products of immortalized and cloned single B cells 15 from the immune animal generated in response to a specific site recognized on the immunogenic substance.

Other suitable techniques involve selection of libraries of antibodies in phage or similar vectors. See, e.g., Huse, et al. (1989) "Generation of a Large 20 Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda, " Science 246:1275-1281; and Ward, et al. (1989) Nature 341:544-546. The polypeptides and antibodies of the present invention may be used with or without modification, including chimeric or humanized 25` antibodies. Frequently, the polypeptides and antibodies will be labeled by joining, either covalently or noncovalently, a substance which provides for a detectable signal. A wide variety of labels and conjugation techniques are known and are reported extensively in both 30 the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, magnetic particles, and the like. Patents, teaching the use of such labels include U.S. Patent Nos. 35 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. Also, recombinant immunoglobulins may be produced. See, Cabilly, U.S.

15

20

25

Patent No. 4,816,567; and Queen, et al. (1989) <u>Proc.</u>
<u>Nat'l Acad. Sci. USA</u> 86:10029-10033.

The antibodies of this invention are useful for affinity chromatography in isolating SOCS or WDS protein. Columns can be prepared where the antibodies are linked to a solid support, e.g., particles, such as agarose, SEPHADEX, or the like, where a cell lysate or supernatant may be passed through the column, the column washed, followed by increasing concentrations of a mild denaturant, whereby purified SOCS or WDS protein will be released.

The antibodies may also be used to screen expression libraries for particular expression products. Usually the antibodies used in such a procedure will be labeled with a moiety allowing easy detection of presence of antigen by antibody binding.

Antibodies to SOCS or WDS proteins may be used for the identification of cell populations expressing the proteins. By assaying, e.g., by histology or otherwise, probably a disruptive assay which kills that sample of cells, the expression products of cells expressing SOCS or WDS proteins it is possible to diagnose disease, e.g., cancerous conditions.

Antibodies raised against each SOCS or WDS protein will also be useful to raise anti-idiotypic antibodies. These will be useful in detecting or diagnosing various immunological conditions related to expression of the respective antigens.

30 B. Immunoassays

A particular protein can be measured by a variety of immunoassay methods. For a review of immunological and immunoassay procedures in general, see Stites and Terr (eds.) (1991) <u>Basic and Clinical Immunology</u> (7th ed.).

Moreover, the immunoassays of the present invention can be performed in many configurations, which are reviewed extensively in Maggio (ed.) (1980) Enzyme Immunoassay CRC Press, Boca Raton, Florida; Tijan (1985) "Practice and Theory of Enzyme Immunoassays," Laboratory Techniques in

15

20

25

30

35

29

Biochemistry and Molecular Biology, Elsevier Science Publishers B.V., Amsterdam; and Harlow and Lane Antibodies, A Laboratory Manual, supra, each of which is incorporated herein by reference. See also Chan (ed.) (1987) Immunoassay: A Practical Guide Academic Press, Orlando, FL; Price and Newman (eds.) (1991) Principles and Practice of Immunoassays Stockton Press, NY; and Ngo (ed.) (1988) Non-isotopic Immunoassays Plenum Press, NY.

Immunoassays for measurement of SOCS or WDS proteins can be performed by a variety of methods known to those skilled in the art. In brief, immunoassays to measure the protein can be either competitive or noncompetitive binding assays. In competitive binding assays, the sample to be analyzed competes with a labeled analyte for specific binding sites on a capture agent bound to a solid surface. Preferably the capture agent is an antibody specifically reactive with SOCS or WDS proteins produced as described above. The concentration of labeled analyte bound to the capture agent is inversely proportional to the amount of free analyte present in the sample.

In a competitive binding immunoassay, the SOCS or WDS protein present in the sample competes with labeled protein for binding to a specific binding agent, for example, an antibody specifically reactive with the SOCS or WDS protein. The binding agent may be bound to a solid surface to effect separation of bound labeled protein from the unbound labeled protein. Alternately, the competitive binding assay may be conducted in liquid phase and a variety of techniques known in the art may be used to separate the bound labeled protein from the unbound labeled protein. Following separation, the amount of bound labeled protein is determined. The amount of protein present in the sample is inversely proportional to the amount of labeled protein binding.

Alternatively, a homogeneous immunoassay may be performed in which a separation step is not needed. In these immunoassays, the label on the protein is altered by the binding of the protein to its specific binding

WO 99/03993

10

15

PCT/US98/14544

30

agent. This alteration in the labeled protein results in a decrease or increase in the signal emitted by label, so that measurement of the label at the end of the immunoassay allows for detection or quantitation of the protein.

Qualitative or quantitative analysis of SOCS or WDS proteins may also be determined by a variety of noncompetitive immunoassay methods. For example, a two-site, solid phase sandwich immunoassay may be used. In this type of assay, a binding agent for the protein, for example an antibody, is attached to a solid support. A second protein binding agent, which may also be an antibody, and which binds the protein at a different site, is labeled. After binding at both sites on the protein has occurred, the unbound labeled binding agent is removed and the amount of labeled binding agent bound to the solid phase is measured. The amount of labeled binding agent bound is directly proportional to the amount of protein in the sample.

Western blot analysis can be used to determine the presence of SOCS or WDS proteins in a sample.

Electrophoresis is carried out, for example, on a tissue sample suspected of containing the protein. Following electrophoresis to separate the proteins, and transfer of the proteins to a suitable solid support, e.g., a nitrocellulose filter, the solid support is incubated with an antibody reactive with the protein. This antibody may be labeled, or alternatively may be detected by subsequent incubation with a second labeled antibody that binds the primary antibody.

The immunoassay formats described above employ labeled assay components. The label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art. A wide variety of labels and methods may be used. Traditionally, a radioactive label incorporating ³H, 125_I, 35_S, 14_C, or ³²P was used. Non-radioactive labels include proteins which bind to labeled antibodies, fluorophores, chemiluminescent agents, enzymes, and antibodies which can serve as specific binding pair

WO 99/03993 PCT/US98/14544

members for a labeled protein. The choice of label depends on sensitivity required, ease of conjugation with the compound, stability requirements, and available instrumentation. For a review of various labeling or signal producing systems which may be used, see U.S. Patent No. 4,391,904, which is incorporated herein by reference.

Antibodies reactive with a particular protein can also be measured by a variety of immunoassay methods. For a review of immunological and immunoassay procedures 10 applicable to the measurement of antibodies by immunoassay techniques, see Stites and Terr (eds.) Basic and Clinical Immunology (7th ed.) supra; Maggio (ed.) Enzyme Immunoassay, supra; and Harlow and Lane Antibodies, A Laboratory Manual, supra. 15

20

25

30

35

In brief, immunoassays to measure antisera reactive with SOCS or WDS proteins can be either competitive or noncompetitive binding assays. In competitive binding assays, the sample analyte competes with a labeled analyte for specific binding sites on a capture agent bound to a solid surface. Preferably the capture agent is a purified recombinant SOCS or WDS protein produced as described above. Other sources of these proteins, including isolated or partially purified naturally occurring protein, may also be used. Noncompetitive assays include sandwich assays, in which the sample analyte is bound between two analyte-specific binding reagents. One of the binding agents is used as a capture agent and is bound to a solid surface. The second binding agent is labeled and is used to measure or detect the resultant complex by visual or instrument means. number of combinations of capture agent and labeled binding agent can be used. A variety of different immunoassay formats, separation techniques, and labels can be also be used similar to those described above for the measurement of SOCS or WDS proteins.

Making SOCS or WDS proteins; Mimetics DNAs which encode a SOCS or WDS protein or fragments thereof can be obtained by chemical synthesis, screening 40

35

40

cDNA libraries, or by screening genomic libraries prepared from a wide variety of cell lines or tissue samples. Methods for doing so, or making expression vectors are described herein.

5 These DNAs can be expressed in a wide variety of host cells for the synthesis of a full-length protein or fragments which can in turn, e.g., be used to generate polyclonal or monoclonal antibodies; for binding studies; for construction and expression of modified molecules; 10 and for structure/function studies. Each SOCS or WDS protein or its fragments can be expressed in host cells that are transformed or transfected with appropriate expression vectors. By "transformed" is meant a cell into which (or into an ancestor of which) has been introduced, by means of recombinant techniques, a DNA 15 molecule that encodes a SOCS or WDS polypeptide. Heterologously expressed SOCS or WDS polypeptides can be substantially purified to be free of protein or cellular contaminants, other than those derived from the recombinant host, and therefore are particularly useful 20 in pharmaceutical compositions when combined with a pharmaceutically acceptable carrier and/or diluent. antigen, e.g., SOCS or WDS protein, or portions thereof, may be expressed as fusions with other proteins or 25 possessing an epitope tag.

Expression vectors are typically self-replicating DNA or RNA constructs containing the desired antigen gene or its fragments, usually operably linked to appropriate genetic control elements that are recognized in a suitable host cell. The specific type of control elements necessary to effect expression will depend upon the eventual host cell used. Generally, the genetic control elements can include a prokaryotic promoter system or a eukaryotic promoter expression control system, and typically include a transcriptional promoter, an optional operator to control the onset of transcription, transcription enhancers to elevate the level of mRNA expression, a sequence that encodes a suitable ribosome binding site, and sequences that terminate transcription and translation. All of the

WO 99/03993 PCT/US98/14544 33

10

15

20

25

30

35

40

associated elements both necessary and sufficient for the production of SOCS or WDS polypeptide will be in operable linkage with the nucleic acid encoding a SOCS or WDS polypeptide. Expression vectors also usually contain an origin of replication that allows the vector to replicate independently from the host cell.

The vectors of this invention contain DNAs which encode a SOCS or WDS protein, or a fragment thereof, typically encoding, e.g., a biologically active polypeptide, or protein. The DNA can be under the control of a viral promoter and can encode a selection This invention further contemplates use of such expression vectors which are capable of expressing eukaryotic cDNA coding for a SOCS or WDS protein in a prokaryotic or eukaryotic host, where the vector is compatible with the host and where the eukaryotic cDNA coding for the protein is inserted into the vector such that growth of the host containing the vector expresses the cDNA in question. Usually, expression vectors are designed for stable replication in their host cells or for amplification to greatly increase the total number of copies of the desirable gene per cell. It is not always necessary to require that an expression vector replicate in a host cell, e.g., it is possible to effect transient expression of the protein or its fragments in various hosts using vectors that do not contain a replication origin that is recognized by the host cell. It is also possible to use vectors that cause integration of a SOCS or WDS protein gene or its fragments into the host DNA by recombination, or to integrate a promoter which controls expression of an endogenous gene.

Vectors, as used herein, contemplate plasmids, viruses, bacteriophage, integratable DNA fragments, and other vehicles which enable the integration of DNA fragments into the genome of the host. Expression vectors are specialized vectors which contain genetic control elements that effect expression of operably linked genes. Plasmids are the most commonly used form of vector, but many other forms of vectors which serve an equivalent function are suitable for use herein. See,

15

20

25

30

35

e.g., Pouwels, et al. (1985 and Supplements) Cloning Vectors: A Laboratory Manual Elsevier, N.Y.; and Rodriquez, et al. (eds.) (1988) Vectors: A Survey of Molecular Cloning Vectors and Their Uses Buttersworth, Boston, MA.

Suitable host cells include prokaryotes, lower eukaryotes, and higher eukaryotes. Prokaryotes include both gram negative and gram positive organisms, e.g., E. coli and B. subtilis. Lower eukaryotes include yeasts, e.g., S. cerevisiae and Pichia, and species of the genus Dictyostelium. Higher eukaryotes include established tissue culture cell lines from animal cells, both of non-mammalian origin, e.g., insect cells, and birds, and of mammalian origin, e.g., human, primates, and rodents

of mammalian origin, e.g., human, primates, and rodents. Prokaryotic host-vector systems include a wide variety of vectors for many different species. As used herein, E. coli and its vectors will be used generically to include equivalent vectors used in other prokaryotes. A representative vector for amplifying DNA is pBR322 or its derivatives. Vectors that can be used to express these proteins or protein fragments include, but are not limited to, such vectors as those containing the lac promoter (pUC-series); trp promoter (pBR322-trp); Ipp promoter (the pIN-series); lambda-pP or pR promoters (pOTS); or hybrid promoters such as ptac (pDR540). See Brosius, et al. (1988) "Expression Vectors Employing Lambda-, trp-, lac-, and Ipp-derived Promoters", in Rodriguez and Denhardt (eds.) Vectors: A Survey of Molecular Cloning Vectors and Their Uses 10:205-236 Buttersworth, Boston, MA.

Lower eukaryotes, e.g., yeasts and Dictyostelium, may be transformed with SOCS or WDS protein sequence containing vectors. For purposes of this invention, the most common lower eukaryotic host is the baker's yeast, Saccharomyces cerevisiae. It will be used generically to represent lower eukaryotes although a number of other strains and species are also available. Yeast vectors typically consist of a replication origin (unless of the integrating type), a selection gene, a promoter, DNA

40

PCT/US98/14544 WO 99/03993

encoding the desired protein or its fragments, and sequences for translation termination, polyadenylation, and transcription termination. Suitable expression vectors for yeast include such constitutive promoters as 3-phosphoglycerate kinase and various other glycolytic enzyme gene promoters or such inducible promoters as the alcohol dehydrogenase 2 promoter or metallothionine promoter. Suitable vectors include derivatives of the following types: self-replicating low copy number (such as the YRp-series), self-replicating high copy number (such as the YEp-series); integrating types (such as the YIp-series), or mini-chromosomes (such as the YCpseries).

Higher eukaryotic tissue culture cells are typically the preferred host cells for expression of the 15 functionally active SOCS or WDS protein. In principle, many higher eukaryotic tissue culture cell lines may be used, e.g., insect baculovirus expression systems, whether from an invertebrate or vertebrate source. However, mammalian cells are preferred to achieve proper 20 processing, both cotranslationally and posttranslationally. Transformation or transfection and propagation of such cells is routine. Useful cell lines include HeLa cells, Chinese hamster ovary (CHO) cell lines, baby rat kidney (BRK) cell lines, insect cell 25 lines, bird cell lines, and monkey (COS) cell lines. Expression vectors for such cell lines usually include an origin of replication, a promoter, a translation initiation site, RNA splice sites (e.g., if genomic DNA is used), a polyadenylation site, and a transcription 30 termination site. These vectors also may contain a selection gene or amplification gene. Suitable expression vectors may be plasmids, viruses, or retroviruses carrying promoters derived, e.g., from such sources as from adenovirus, SV40, parvoviruses, vaccinia 35 virus, or cytomegalovirus. Representative examples of suitable expression vectors include pCDNA1; pCD, see Okayama, et al. (1985) Mol. Cell Biol. 5:1136-1142; pMC1neo Poly-A, see Thomas, et al. (1987) Cell 51:503-512; and a baculovirus vector such as pAC 373 or pAC 610. WO 99/03993

10

15

20

25

30

35

40

It is likely that SOCS or WDS proteins need not be glycosylated to elicit biological responses. However, it will occasionally be desirable to express a SOCS or WDS protein polypeptide in a system which provides a specific or defined glycosylation pattern. In this case, the usual pattern will be that provided naturally by the expression system. However, the pattern will be modifiable by exposing the polypeptide, e.g., in unglycosylated form, to appropriate glycosylating proteins introduced into a heterologous expression system. For example, the SOCS or WDS protein gene may be co-transformed with one or more genes encoding mammalian or other glycosylating enzymes. It is further understood that over glycosylation may be detrimental to SOCS or WDS protein biological activity, and that one of skill may perform routine testing to optimize the degree of glycosylation which confers optimal biological activity.

Furthermore, heterologously expressed proteins or polypeptides can also be expressed in plant cells. For plant cells viral expression vectors (e.g., cauliflower mosaic virus and tobacco mosaic virus) and plasmid expression vectors (e.g., T1 plasmid) are suitable. Such cells are available from a wide range of sources (e.g., the American Tissue Type Culture Collection, Rockland, MD; also, see for example, Ausubel, et al. (cur. ed. and Supplements; expression vehicles may be chosen from those provided e.g., in Pouwels, et al. (Cur. ed..) Cloning Vectors, A Laboratory Manual).

A SOCS or WDS protein, or a fragment thereof, may be engineered to be phosphatidyl inositol (PI) linked to a cell membrane, but can be removed from membranes by treatment with a phosphatidyl inositol cleaving enzyme, e.g., phosphatidyl inositol phospholipase-C. This releases the antigen in a biologically active form, and allows purification by standard procedures of protein chemistry. See, e.g., Low (1989) <u>Biochem. Biophys. Acta 988:427-454</u>; Tse, et al. (1985) <u>Science 230:1003-1008</u>; and Brunner, et al. (1991) <u>J. Cell Biol.</u> 114:1275-1283.

Now that SOCS or WDS proteins have been characterized, fragments or derivatives thereof can be

10

15

20

25

30

35

40

prepared by conventional processes for synthesizing These include processes such as are described peptides. in Stewart and Young (1984) Solid Phase Peptide Synthesis Pierce Chemical Co., Rockford, IL; Bodanszky and Bodanszky (1984) The Practice of Peptide Synthesis Springer-Verlag, New York, NY; and Bodanszky (1984) The Principles of Peptide Synthesis Springer-Verlag, New York, NY. For example, an azide process, an acid chloride process, an acid anhydride process, a mixed anhydride process, an active ester process (for example, p-nitrophenyl ester, N-hydroxysuccinimide ester, or cyanomethyl ester), a carbodiimidazole process, an oxidative-reductive process, or a dicyclohexylcarbodiimide (DCCD)/additive process can be used. Solid phase and solution phase syntheses are both applicable to the foregoing processes.

The prepared protein and fragments thereof can be isolated and purified from the reaction mixture by means of peptide separation, for example, by extraction, precipitation, electrophoresis and various forms of chromatography, and the like. The SOCS or WDS proteins of this invention can be obtained in varying degrees of purity depending upon its desired use. Purification can be accomplished by use of known protein purification techniques or by the use of the antibodies or binding partners herein described, e.g., in immunoabsorbant affinity chromatography. This immunoabsorbant affinity chromatography is carried out by first linking the antibodies to a solid support and then contacting the linked antibodies with solubilized lysates of appropriate source cells, lysates of other cells expressing the protein, or lysates or supernatants of cells producing the SOCS or WDS proteins as a result of recombinant DNA techniques, see below.

Multiple cell lines may be screened for one which expresses a SOCS or WDS protein at a high level compared with other cells. Various cell lines, e.g., a mouse thymic stromal cell line TA4, is screened and selected for its favorable handling properties. Natural SOCS or WDS proteins can be isolated from natural sources, or by

expression from a transformed cell using an appropriate expression vector. Purification of the expressed protein is achieved by standard procedures, or may be combined with engineered means for effective purification at high efficiency from cell lysates or supernatants. Epitope or other tags, e.g., FLAG or His6 segments, can be used for such purification features.

VI. Physical Variants

This invention also encompasses proteins or peptides having substantial amino acid sequence similarity with an amino acid sequence of a SOCS or WDS protein. Natural variants include individual, polymorphic, allelic, strain, or species variants.

Amino acid sequence similarity, or sequence identity, is determined by optimizing residue matches, if necessary, by introducing gaps as required. This changes when considering conservative substitutions as matches. Conservative substitutions typically include

- substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.

 Homologous amino acid sequences include natural
- polymorphic, allelic, and interspecies variations in each respective protein sequence. Typical homologous proteins or peptides will have from 50-100% similarity (if gaps can be introduced), to 75-100% similarity (if conservative substitutions are included) over fixed
- stretches of amino acids with the amino acid sequence of the SOCS or WDS protein. Similarity measures will be at least about 50%, generally at least 65%, usually at least 70%, preferably at least 75%, and more preferably at least 90%, and in particularly preferred embodiments, at
- least 96% or more. See also Needleham, et al. (1970) J.

 Mol. Biol. 48:443-453; Sankoff, et al. (1983) Time Warps,

 String Edits, and Macromolecules: The Theory and Practice
 of Sequence Comparison Chapter One, Addison-Wesley,

 Reading, MA; and software packages from IntelliGenetics,
- 40 Mountain View, CA; and the University of Wisconsin

.5

35

Genetics Computer Group, Madison, WI. Stretches of amino acids will be at least about 10 amino acids, usually about 20 amino acids, usually 50 amino acids, preferably 75 amino acids, and in particularly preferred embodiments at least about 100 amino acids. Identity can also be measures over amino acid stretches of about 98, 99, 110, 120, 130, etc.

Nucleic acids encoding mammalian SOCS or WDS proteins will typically hybridize to the nucleic acid sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, or 15 under 10 stringent conditions. For example, nucleic acids encoding human SOCS or WDS proteins will normally hybridize to the nucleic acid of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, or 15 under stringent hybridization conditions. Generally, stringent conditions are selected 15 to be about 10° C lower than the thermal melting point (Tm) for the probe sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence 20 hybridizes to a perfectly matched probe. Typically, stringent conditions will be those in which the salt concentration is about 0.2 molar at pH 7 and the temperature is at least about 50° C. Other factors may significantly affect the stringency of hybridization, including, among others, base composition and size of the 25 complementary strands, the presence of organic solvents such as formamide, and the extent of base mismatching. A preferred embodiment will include nucleic acids which will bind to disclosed sequences in 50% formamide and 200 30 mM NaCl at 42° C.

Hybridizing nucleic acids to SOCS nucleic acid of the invention can be used as a cloning probe, a primer (e.g., a PCR primer), or a diagnostic probe. Hybridizing nucleic acids can be splice variants encoded by one of the SOCS genes described herein. Thus, the hybridizing nucleic acids may encode a polypeptide that is shorter or longer than the various forms of SOCS described herein. Hybridizing nucleic acids may also encode proteins that are related to SOCS (e.g., polypeptides encoded by genes

WO 99/03993 PCT/US98/14544

that include a portion having a relatively high degree of identity to a SOCS gene described herein).

40

An isolated SOCS or WDS protein encoding DNA can be readily modified by nucleotide substitutions, nucleotide deletions, nucleotide insertions, and short inversions of nucleotide stretches. These modifications result in novel DNA sequences which encode SOCS or WDS protein antigens, their derivatives, or proteins having highly similar physiological, immunogenic, or antigenic activity.

10

15

20

25

30

35

40

Modified sequences can be used to produce mutant antigens or to enhance expression. Enhanced expression may involve gene amplification, increased transcription, increased translation, and other mechanisms. Such mutant SOCS or WDS protein derivatives include predetermined or site-specific mutations of the respective protein or its fragments. "Mutant SOCS or WDS protein" encompasses a polypeptide otherwise falling within the homology definition of the human or rodent SOCS or WDS protein as set forth above, but having an amino acid sequence which differs from that of a SOCS or WDS protein as found in nature, whether by way of deletion, substitution, or insertion. In particular, "site specific mutant SOCS or WDS protein" generally includes proteins having significant similarity with a protein having a sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, or 16, e.g., natural embodiments, and as sharing various biological activities, e.g., antigenic or immunogenic, with those sequences, and in preferred embodiments contain most or all of the disclosed sequence. This applies also to polymorphic variants from different individuals. Similar concepts apply to different SOCS or WDS proteins, particularly those found in various warm blooded animals, e.g., mammals and birds. As stated before, it is emphasized that descriptions are generally meant to encompass other SOCS or WDS proteins, not limited to the human embodiments specifically discussed.

The invention encompasses, but is not limited to, SOCS proteins and polypeptides that are functionally related to SOCS encoded by the specific sequence

WO 99/03993 PCT/US98/14544

identifiers of the present application. Functionally related proteins and polypeptides include any protein or polypeptide sharing a functional characteristic with SOCS of the present invention e.g., the ability to interact with Janus family tyrosine kinases or the ability to be induced by IL-2 receptor activation. Such functionally related SOCS polypeptides include, but are not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by the SOCS sequences described herein which result in a silent change, thus producing a functionally equivalent SOCS polypeptide. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphiphatic nature of the residues involved.

10

15

20

25

30

35

40

For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

While random mutations can be made to SOCS nucleic acid (using well known random mutagenesis techniques) and the resulting SOCS polypeptides can be tested for activity, site-directed mutations of SOCS coding sequences can be engineered (using well known site-directed mutagenesis techniques) to generate mutant SOCS with increased function, e.g. greater inhibition of JANUS kinase activity or greater resistance to degradation.

To design functionally related and functionally variant SOCS polypeptides, it is useful to distinguish between conserved and variable amino residues using the homology comparison tables provided herein.

To preserve SOCS function, it is preferable that conserved residues remain unaltered and that the conformational folding of the SOCS functional sites be preserved. Preferably, alteration of non-conserved residues are carried out with conservative alterations

15

20

25

30

35

e.g., a basic amino acid is replaced by a different basic amino acid. To produce altered function variants, it is preferred to make non-conservative changes at variable and or conserved residues. Deletions at conserved and variable residues can also be used to create altered function variants.

Although site specific mutation sites are predetermined, mutants need not be site specific. or WDS protein mutagenesis can be conducted by making amino acid insertions or deletions. Substitutions. deletions, insertions, or any combinations may be generated to arrive at a final construct. Insertions include amino- or carboxyl- terminal fusions, e.g. epitope tags. Random mutagenesis can be conducted at a target codon and the expressed mutants can then be screened for the desired activity. Methods for making substitution mutations at predetermined sites in DNA having a known sequence are well known in the art, e.g., by M13 primer mutagenesis or polymerase chain reaction (PCR) techniques. See also, Sambrook, et al. (1989) and Ausubel, et al. (1987 and Supplements). The mutations in the DNA normally should not place coding sequences out of reading frames and preferably will not create complementary regions that could hybridize to produce secondary mRNA structure such as loops or hairpins.

The present invention also provides recombinant proteins, e.g., heterologous fusion proteins using segments from these proteins. A heterologous fusion protein is a fusion of proteins or segments which are naturally not normally fused in the same manner e.g., a marker polypeptide or fusion partner. For example, the polypeptide can be fused to a hexa-histidine tag to facilitate purification or bacterially expressed protein or a hemaglutinin tag to facilitate purification or protein expressed in eukaryotic cells. Thus, the fusion product of an immunoglobulin with a SOCS or WDS protein polypeptide is a continuous protein molecule having sequences fused in a typical peptide linkage, typically made as a single translation product and exhibiting

properties derived from each source peptide. A similar concept applies to heterologous nucleic acid sequences.

In addition, new constructs may be made from combining similar functional domains from other proteins.

5 For example, protein-binding or other segments may be "swapped" between different new fusion polypeptides or fragments. See, e.g., Cunningham, et al. (1989) Science 243:1330-1336; and O'Dowd, et al. (1988) J. Biol. Chem. 263:15985-15992. Thus, new chimeric polypeptides exhibiting new combinations of specificities will result from the functional linkage of protein-binding specificities and other functional domains.

VII. Functional Variants

40

The blocking of physiological response to SOCS or 15 WDS protein may result from the inhibition of binding of the protein to its binding partner, e.g., through competitive inhibition. Thus, in vitro assays of the present invention will often use isolated protein, membranes from cells expressing a recombinant membrane 20 associated SOCS or WDS protein, soluble fragments comprising binding segments of these proteins, or fragments attached to solid phase substrates. assays will also allow for the diagnostic determination of the effects of either binding segment mutations and 25 modifications, or protein mutations and modifications, e.g., protein analogs. This invention also contemplates the use of competitive drug screening assays, e.g., where neutralizing antibodies to antigen or binding partner fragments compete with a test compound for binding to the 30 In this manner, the antibodies can be used to detect the presence of a polypeptide which shares one or more antigenic binding sites of the protein and can also be used to occupy binding sites on the protein that might otherwise interact with a binding partner. 35

"Derivatives" of SOCS or WDS protein antigens include amino acid sequence mutants, glycosylation variants, and covalent or aggregate conjugates with other chemical moieties. Covalent derivatives can be prepared by linkage of functionalities to groups which are found

10

30

35

40

in SOCS or WDS protein amino acid side chains or at the N- or C- termini, by means which are well known in the art. These derivatives can include, without limitation, aliphatic esters or amides of the carboxyl terminus, or of residues containing carboxyl side chains, O-acyl derivatives of hydroxyl group-containing residues, and N-acyl derivatives of the amino terminal amino acid or amino-group containing residues, e.g., lysine or arginine. Acyl groups are selected from the group of alkyl-moieties including C3 to C18 normal alkyl, thereby forming alkanoyl aroyl species. Covalent attachment to carrier proteins may be important when immunogenic moieties are haptens.

In particular, glycosylation alterations are 15 included, e.g., made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing, or in further processing steps. Particularly preferred means for accomplishing this are by exposing the polypeptide to glycosylating enzymes derived from 20 cells which normally provide such processing, e.g., mammalian glycosylation enzymes. Deglycosylation enzymes are also contemplated. Also embraced are versions of the same primary amino acid sequence which have other minor modifications, including phosphorylated amino acid 25 residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine, or other moieties, including ribosyl groups or cross-linking reagents.

A major group of derivatives are covalent conjugates of the SOCS or WDS protein or fragments thereof with other proteins or polypeptides. These derivatives can be synthesized in recombinant culture such as N- or C-terminal fusions or by the use of agents known in the art for their usefulness in cross-linking proteins through reactive side groups. Preferred protein derivatization sites with cross-linking agents are at free amino groups, carbohydrate moieties, and cysteine residues.

Fusion polypeptides between SOCS or WDS protein and other homologous or heterologous proteins are also provided. Heterologous polypeptides may be fusions between different surface markers, resulting in, e.g., a

hybrid protein exhibiting binding partner specificity. Likewise, heterologous fusions may be constructed which would exhibit a combination of properties or activities of the derivative proteins. Typical examples are fusions of a reporter polypeptide, e.g., luciferase, with a segment or domain of a protein, e.g., a segment involved in binding partner interaction, so that the presence or location of the fused protein may be easily determined. See, e.g., Dull, et al., U.S. Patent No. 4,859,609. Other gene fusion partners include bacterial β galactosidase, trpE, Protein A, ß-lactamase, alpha amylase, alcohol dehydrogenase, and yeast alpha mating factor. See, e.g., Godowski, et al. (1988) Science

241:812-816. The fusion partner can be constructed such that it can be cleaved off such that a protein of 15 substantially natural length is generated.

10

20

25

30

Such polypeptides may also have amino acid residues which have been chemically modified by phosphorylation, sulfonation, biotinylation, or the addition or removal of other moieties, particularly those which have molecular In some embodiments, shapes similar to phosphate groups. the modifications will be useful labeling reagents, or serve as purification targets, e.g., affinity proteins.

This invention also contemplates the use of derivatives of SOCS or WDS protein other than variations in amino acid sequence or glycosylation. derivatives may involve covalent or aggregative association with chemical moieties. These derivatives generally fall into the three classes: (1) salts, (2) side chain and terminal residue covalent modifications, and (3) adsorption complexes, for example with cell membranes. Such covalent or aggregative derivatives are useful as immunogens, as reagents in immunoassays, or in purification methods such as for affinity purification of proteinss or other binding proteins. For example, a SOCS 35 or WDS protein antigen can be immobilized by covalent bonding to a solid support such as cyanogen bromideactivated SEPHAROSE, by methods which are well known in the art, or adsorbed onto polyolefin surfaces, with or without glutaraldehyde cross-linking, for use in the 40

assay or purification of anti-SOCS or anti-WDS protein antibodies or its respective binding partner. The SOCS or WDS protein can also be labeled with a detectable group, e.g., radioiodinated by the chloramine T procedure, covalently bound to rare earth chelates, or conjugated to another fluorescent moiety for use in diagnostic assays. Purification of SOCS or WDS proteins may be effected by immobilized antibodies or binding partner.

10 Isolated SOCS or WDS protein genes will allow transformation of cells lacking expression of corresponding SOCS or WDS protein, e.g., either species types or cells which lack corresponding proteins and exhibit negative background activity. Expression of transformed genes will allow isolation of antigenically pure cell lines, with defined or single specie variants. This approach will allow for more sensitive detection and discrimination of the physiological effects of SOCS or WDS binding proteins. Subcellular fragments, e.g., cytoplasts or membrane fragments, can be isolated and used.

VIII. Binding Agent: SOCS or : WDS Protein Complexes A SOCS or WDS protein that specifically binds to or 25 that is specifically immunoreactive with an antibody generated against a defined immunogen, such as an immunogen consisting of the amino acid sequence of SEO ID NO: 2, 4, 6, 8, 10, 12, 14, or 16 is typically determined in an immunoassay. The immunoassay uses a polyclonal 30 antiserum which was raised to a protein of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, or 16. This antiserum is selected to have low crossreactivity against other intracellular regulatory proteins and any such crossreactivity is removed by immunoabsorbtion prior to use in the 35 immunoassay.

In order to produce antisera for use in an immunoassay, the protein of desired sequence, e.g., SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, and/or 16, is isolated as described herein. For example, recombinant protein may be produced in a mammalian cell line. An inbred strain

PCT/US98/14544

WO 99/03993

5

10

15

20

25

30

35

40

47

of mice such as Balb/c is immunized with the protein of appropriate sequence using a standard adjuvant, such as Freund's adjuvant, and a standard mouse immunization protocol (see Harlow and Lane, supra). Alternatively, a synthetic peptide, preferably near full length, derived from the sequences disclosed herein and conjugated to a carrier protein can be used an immunogen. Polyclonal sera are collected and titered against the immunogen protein in an immunoassay, for example, a solid phase immunoassay with the immunogen immobilized on a solid support. Polyclonal antisera with a titer of 10^4 or greater are selected and tested for their cross reactivity against other intracellular proteins, using a competitive binding immunoassay such as the one described in Harlow and Lane, supra, at pages 570-573. Preferably two intracellular proteins are used in this determination in conjunction with the desired SOCS or WDS protein.

Immunoassays in the competitive binding format can be used for the crossreactivity determinations. For example, a protein of SEQ ID NO: 2 or 4 can be immobilized to a solid support. Proteins added to the assay compete with the binding of the antisera to the immobilized antigen. The ability of the above proteins to compete with the binding of the antisera to the immobilized protein is compared to the protein of SEQ ID NO: 2 or 4. The percent crossreactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% crossreactivity with each of the proteins listed above are selected and pooled. The cross-reacting antibodies are then removed from the pooled antisera by immunoabsorbtion with the above-listed proteins.

The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein to the immunogen protein (e.g., the SOCS14 or SOCS15 protein of SEQ ID NO: 2 and 6, or 4). In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the

15

20

25

30

35

immobilized protein is determined. If the amount of the second protein required is less than twice the amount of the protein, e.g., of SEQ ID NO: 2 that is required, then the second protein is said to specifically bind to an antibody generated to the immunogen.

It is understood that each of SOCS or WDS proteins are members of respective families of homologous proteins that comprise two or more genes. For a particular gene product, such as the human SOCS14 or SOCS15 protein, the term refers not only to the amino acid sequences disclosed herein, but also to other proteins that are polymorphic, allelic, non-allelic, or species variants. It is also understood that the term "SOCS14 or SOCS15 protein" includes nonnatural mutations introduced by deliberate mutation using conventional recombinant technology such as single site mutation, or by excising short sections of DNA encoding SOCS14 or SOCS15 proteins, or by substituting new amino acids, or adding new amino acids. Such minor alterations should substantially maintain the immunoidentity of the original molecule and/or its biological activity. Thus, these alterations include proteins that are specifically immunoreactive with a designated naturally occurring SOCS or WDS protein, for example, the human SOCS14 or SOCS15 protein shown in SEQ ID NO: 2 and 6, or 4 and 8. The biological properties of the altered proteins can be determined by expressing the protein in an appropriate cell line and measuring, e.g., a proliferative effect. Particular protein modifications considered minor would include conservative substitution of amino acids with similar chemical properties, as described above for the SOCS14 or SOCS15 protein as a whole. By aligning a protein optimally with the protein of SEQ ID NO: 2, 4, 6, or 8, and by using the conventional immunoassays described herein to determine immunoidentity, or by using proliferative assays, one can determine the protein compositions of the invention.

WO 99/03993 49

IX. Uses

10

15

20

The present invention provides reagents which will find use in diagnostic applications as described elsewhere herein, e.g., in the general description for developmental abnormalities, or below in the description of kits for diagnosis. Moreover, the SOCS proteins can block signaling via cytokine receptors.

SOCS or WDS nucleotides, e.g., human SOCS14 or SOCS15 DNA or RNA, may be used as a component in a forensic assay. For instance, the nucleotide sequences provided may be labeled using, e.g., ³²P or biotin and used to probe standard restriction fragment polymorphism blots, providing a measurable character to aid in distinguishing between individuals. Such probes may be used in well-known forensic techniques such as genetic fingerprinting. In addition, nucleotide probes made from SOCS or WDS sequences may be used in in situ assays to detect chromosomal abnormalities. For instance, rearrangements in the human chromosome encoding a SOCS14 or SOCS15 gene may be detected via well-known in situ techniques, using SOCS14 or SOCS15 probes in conjunction with other known chromosome markers.

Antibodies and other binding agents directed towards SOCS or WDS proteins or nucleic acids may be used to purify the corresponding SOCS or WDS molecule. As 25 described in the Examples below, antibody purification of SOCS or WDS protein components is both possible and practicable. Antibodies and other binding agents may also be used in a diagnostic fashion to determine whether SOCS or WDS protein components are present in a tissue 30 sample or cell population using well-known techniques described herein. The ability to attach a binding agent to a SOCS or WDS protein provides a means to diagnose disorders associated with SOCS or WDS protein misregulation. Antibodies and other SOCS or WDS protein 35 binding agents may also be useful as histological markers. It is likely that specific SOCS or WDS protein expression is limited to specific tissue types. By directing a probe, such as an antibody or nucleic acid to a SOCS14 or SOCS15 protein it is possible to use the 40

probe to distinguish tissue and cell types in situ or in vitro.

This invention also provides reagents with significant therapeutic value. The SOCS or WDS protein (naturally occurring or recombinant), fragments thereof, and antibodies thereto, along with compounds identified as having binding affinity to a SOCS or WDS protein, are useful in the treatment of conditions associated with abnormal physiology or development, including abnormal 10 proliferation, e.g., cancerous conditions, or degenerative conditions. Abnormal proliferation, regeneration, degeneration, and atrophy may be modulated by appropriate therapeutic treatment using the compositions provided herein. For example, a disease or 15 disorder associated with abnormal expression or abnormal signaling by a SOCS or WDS protein is a target for an agonist or antagonist of the protein. The proteins likely play a role in regulation or development of neuronal or hematopoietic cells, e.g., lymphoid cells, 20 which affect immunological responses.

For example, SOCS or WDS proteins likely play a role in T cell activation deficiencies in which patients develop clinical manifestations of T cell immunodeficiency such as opportunistic infections, 25 recurrent viral or bacterial infections, diarrhea, autoimmune hemolytic anemia, lymphoid hepatitis and dermatitis, and Hodgkin lymphoma, at various stages of childhood. An excess of SOCS proteins might lead to SCID-like (severe combined immunodeficiencies) syndromes 30 while a deficit of SOCS or WDS proteins may lead to malignant growth, for example, adult T cell leukemia/lymphoma is a disease associated with uncontrolled T-cell proliferation and is correlated at the molecular level with the presence of the IL-2 35 receptor (Schechter, G.P.; "Chronic Lymphocytic Leukemia" in Clinical Immunology; Principles and Practice, Rich (ed.) Mosby, St. Louis (Curr. ed.)). A model for adult T cell leukemia suggests that the disease may result from constitutive activation of the IL-2 receptor and its subsequent constitutive signaling cascade. 40

PCT/US98/14544 WO 99/03993

Administration of exogenous SOCS to effected T cells may modulate this disease.

Other abnormal developmental conditions are known in cell types shown to possess SOCS or WDS protein mRNA by northern blot analysis. See Berkow (ed.) The Merck Manual of Diagnosis and Therapy, Merck & Co., Rahway, N.J.; Thorn et al. Harrison's Principles of Internal Medicine, McGraw-Hill, N.Y.; and Rich (ed.) Clinical Immunology: Principles and Practice, Mosby, St. Louis (Curr. ed.). Developmental or functional abnormalities, 10 e.g., of the neuronal or immune system, cause significant medical abnormalities and conditions which may be susceptible to prevention or treatment using compositions provided herein.

Recombinant SOCS or WDS protein or SOCS or WDS 15 antibodies can be purified and then administered to a patient. These reagents can be combined for therapeutic use with additional active or inert ingredients, e.g., in conventional pharmaceutically acceptable carriers or diluents, e.g., immunogenic adjuvants, along with 20 physiologically innocuous stabilizers and excipients. These combinations can be sterile filtered and placed into dosage forms as by lyophilization in dosage vials or storage in stabilized aqueous preparations. This invention also contemplates use of antibodies or binding 25 fragments thereof, including forms which are not complement binding.

Drug screening using antibodies or fragments thereof can identify compounds having binding affinity to SOCS or WDS protein, including isolation of associated components. Subsequent biological assays can then be utilized to determine if the compound has intrinsic stimulating activity and is therefore a blocker or antagonist in that it blocks the activity of the protein. Likewise, a compound having intrinsic stimulating activity can activate the binding partner and is thus an agonist in that it simulates the activity of a SOCS or WDS protein. This invention further contemplates the therapeutic use of antibodies to SOCS or WDS protein as

30

35

antagonists. This approach should be particularly useful with other SOCS or WDS protein species variants.

Another therapeutic approach included within the invention involves direct administration of reagents or 5 compositions by any conventional administration techniques (for example but not restricted to local injection, inhalation, or administered systemically), to the subject with an immune, allergic or trauma disorder. The reagents, formulations or compositions included within the bounds and metes of the invention may 10 also be targeted to specific cells by any of the methods described herein. The actual dosage of reagent, formulation or composition that modulates an immune, disorder depends on many factors, including the size and 15 health of an organism, however one of one of ordinary skill in the art can use the following teachings describing the methods and techniques for determining clinical dosages. Spilker (1984) Guide to Clinical Studies and Developing Protocols, Raven Press Books, 20 Ltd., New York, pp. 7-13, 54-60; Spilker (1991) Guide to Clinical Trials, Raven Press, Ltd., New York, pp. 93-101; Craig and Stitzel (eds. 1986) Modern Pharmacology, 2d ed., Little, Brown and Co., Boston, pp. 127-33; Speight (ed. 1987) Avery's Drug Treatment: Principles and 25 Practice of Clinical Pharmacology and Therapeutics, 3d ed., Williams and Wilkins, Baltimore, pp. 50-56;

Practice of Clinical Pharmacology and Therapeutics, 3d ed., Williams and Wilkins, Baltimore, pp. 50-56; Tallarida, et al. (1988) Principles in General Pharmacology, Springer-Verlag, New York, pp. 18-20) to determine the appropriate dosage to use; but, generally, in the range of about between 0.5 fg/ml and 500 µg/ml inclusive final concentration are administered per day to an adult in any pharmaceutically-acceptable carrier.

The quantities of reagents necessary for effective therapy will depend upon many different factors,

including means of administration, target site, physiological state of the patient, and other medicants administered. Thus, treatment dosages should be titrated to optimize safety and efficacy. Typically, dosages used in vitro may provide useful guidance in the amounts useful for in situ administration of these reagents.

PCT/US98/14544 WO 99/03993

53

Animal testing of effective doses for treatment of particular disorders will provide further predictive indication of human dosage. Various considerations are described, e.g., in Gilman, et al. (eds.) (1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics (8th ed.) Pergamon Press; and (1990) Remington's Pharmaceutical Sciences (17th ed.) Mack Publishing Co., Easton, PA. Methods for administration are discussed therein and below, e.g., for oral, intravenous, intraperitoneal, or intramuscular administration, 10 transdermal diffusion, and others. Pharmaceutically acceptable carriers will include water, saline, buffers, and other compounds described, e.g., in the Merck Index, Merck & Co., Rahway, NJ. Dosage ranges would ordinarily be expected to be in amounts lower than 1 mM 15 concentrations, typically less than about 10 μM concentrations, usually less than about 100 nM, preferably less than about 10 pM (picomolar), and most preferably less than about 1 fM (femtomolar), with an appropriate carrier. Slow release formulations, or a 20 slow release apparatus will often be utilized for continuous administration.

SOCS or WDS protein, fragments thereof, and antibodies to it or its fragments, antagonists, and agonists, may be administered directly to the host to be 25 treated or, depending on the size of the compounds, it may be desirable to conjugate them to carrier proteins such as ovalbumin or serum albumin prior to their administration. Therapeutic formulations may be administered in any conventional dosage formulation. 30 While it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical formulation. Formulations typically comprise at least one active ingredient, as defined above, together with one or more acceptable carriers 35 thereof. Each carrier should be both pharmaceutically and physiologically acceptable in the sense of being compatible with the other ingredients and not injurious to the patient. Formulations include those suitable for oral, rectal, nasal, or parenteral (including 40

20

25

30

35

40

subcutaneous, intramuscular, intravenous and intradermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. See, e.g.,

- Gilman, et al. (eds.) (1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics (8th ed.) Pergamon Press; and (1990) Remington's Pharmaceutical Sciences (17th ed.) Mack Publishing Co., Easton, PA; Avis, et al. (eds.) (1993) Pharmaceutical Dosage Forms: Parenteral
- 10 Medications Dekker, NY; Lieberman, et al. (eds.) (1990)

 Pharmaceutical Dosgae Forms: Tablets Dekker, NY; and
 Lieberman, et al. (eds.) (1990) Pharmaceutical Dosage

 Forms: Disperse Systems Dekker, NY. The therapy of this invention may be combined with or used in association

 15 with other therapeutic agents.

Both the naturally occurring and the recombinant forms of the SOCS or WDS proteins of this invention are particularly useful in kits and assay methods which are capable of screening compounds for binding activity to the proteins. Several methods of automating assays have been developed in recent years so as to permit screening of tens of thousands of compounds in a short period. See, e.g., Fodor, et al. (1991) Science 251:767-773, and other descriptions of chemical diversity libraries, which describe means for testing of binding affinity by a plurality of compounds. The development of suitable assays can be greatly facilitated by the availability of large amounts of purified, soluble SOCS or WDS protein as provided by this invention.

For example, antagonists can normally be found once the protein has been structurally defined. Testing of potential protein analogs is now possible upon the development of highly automated assay methods using a purified binding partner. In particular, new agonists and antagonists will be discovered by using screening techniques described herein. Of particular importance are compounds found to have a combined binding affinity for multiple SOCS or WDS protein binding components, e.g., compounds which can serve as antagonists for species variants of a SOCS or WDS protein.

WO 99/03993 PCT/US98/14544 55

This invention is particularly useful for screening compounds by using recombinant protein in a variety of drug screening techniques. The advantages of using a recombinant protein in screening for specific binding partners include: (a) improved renewable source of the SOCS or WDS protein from a specific source; (b) potentially greater number of binding partners per cell giving better signal to noise ratio in assays; and (c) species variant specificity (theoretically giving greater biological and disease specificity).

10

15

20

25

30

35

40

One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant DNA molecules expressing a SOCS or WDS protein binding counterpart. Cells may be isolated which express a binding counterpart in isolation from any others. Such cells, either in viable or fixed form, can be used for standard protein binding assays. See also, Parce, et al. (1989) Science 246:243-247; and Owicki, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:4007-4011, which describe sensitive methods to detect cellular responses. Competitive assays are particularly useful, where the cells (source of SOCS14 or SOCS15 protein) are contacted and incubated with a labeled binding partner or antibody having known binding affinity to the protein, such as $125_{I-antibody}$, and a test sample whose binding affinity to the binding composition is being measured. The bound and free labeled binding compositions are then separated to assess the degree of protein binding. The amount of test compound bound is inversely proportional to the amount of labeled binding partner binding to the known source. Any one of numerous techniques can be used to separate bound from free protein to assess the degree of protein binding. This separation step could typically involve a procedure such as adhesion to filters followed by washing, adhesion to plastic followed by washing, or centrifugation of the cell membranes. Viable cells could also be used to screen for the effects of drugs on SOCS or WDS protein mediated functions, e.g., second messenger levels, i.e., cell proliferation; inositol phosphate pool changes, transcription using a luciferase-type assay; and

10

15

20

25

30

35

40

others. Some detection methods allow for elimination of a separation step, e.g., a proximity sensitive detection system.

Another method utilizes membranes from transformed eukaryotic or prokaryotic host cells as the source of a SOCS or WDS protein. These cells are stably transformed with DNA vectors directing the expression of a SOCS or WDS protein, e.g., an engineered membrane bound form. Essentially, the membranes would be prepared from the cells and used in a protein binding assay such as the competitive assay set forth above.

Still another approach is to use solubilized, unpurified or solubilized, purified SOCS or WDS protein from transformed eukaryotic or prokaryotic host cells. This allows for a "molecular" binding assay with the advantages of increased specificity, the ability to automate, and high drug test throughput.

Another technique for drug screening involves an approach which provides high throughput screening for compounds having suitable binding affinity to a SOCS or WDS protein antibody and is described in detail in Geysen, European Patent Application 84/03564, published on September 13, 1984. First, large numbers of different small peptide test compounds are synthesized on a solid substrate, e.g., plastic pins or some other appropriate surface, see Fodor, et al., supra. Then all the pins are reacted with solubilized, unpurified or solubilized, purified SOCS or WDS protein antibody, and washed. The next step involves detecting bound SOCS or WDS protein antibody.

Rational drug design may also be based upon structural studies of the molecular shapes of the SOCS or WDS protein and other effectors or analogs. See, e.g., Methods in Enzymology vols 202 and 203. Effectors may be other proteins which mediate other functions in response to protein binding, or other proteins which normally interact with the binding partner. One means for determining which sites interact with specific other proteins is a physical structure determination, e.g., x-ray crystallography or 2 dimensional NMR techniques.

WO 99/03993 57

These will provide guidance as to which amino acid residues form molecular contact regions. For a detailed description of protein structural determination, see,

PCT/US98/14544

e.g., Blundell and Johnson (1976) <u>Protein Crystallography</u>
5 Academic Press, NY.

A purified SOCS or WDS protein can be coated directly onto plates for use in the aforementioned drug screening techniques. However, non-neutralizing antibodies to these proteins can be used as capture antibodies to immobilize the respective protein on the solid phase.

X. Kits

10

This invention also contemplates use of SOCS or WDS

proteins, fragments thereof, peptides, and their fusion
products in a variety of diagnostic kits and methods for
detecting the presence of SOCS or WDS protein or a
binding partner. Typically the kit will have a
compartment containing either a defined SOCS or WDS

protein peptide or gene segment or a reagent which
recognizes one or the other, e.g., binding partner
fragments or antibodies.

A kit for determining the binding affinity of a test compound to a SOCS or WDS protein would typically comprise a test compound; a labeled compound, e.g., a 25 binding agent or antibody having known binding affinity for the SOCS or WDS protein; a source of SOCS or WDS protein (naturally occurring or recombinant); and a means for separating bound from free labeled compound, such as a solid phase for immobilizing the SOCS or WDS protein. 30 Once compounds are screened, those having suitable binding affinity to the SOCS or WDS protein can be evaluated in suitable biological assays, as are well known in the art, to determine whether they act as agonists or antagonists to the binding partner. The 35 availability of recombinant SOCS or WDS protein polypeptides also provide well defined standards for calibrating such assays.

A preferred kit for determining the concentration of, for example, a SOCS or WDS protein in a sample would

40

typically comprise a labeled compound, e.g., binding partner or antibody, having known binding affinity for the SOCS or WDS protein, a source of SOCS or WDS protein (naturally occurring or recombinant), and a means for separating the bound from free labeled compound, for example, a solid phase for immobilizing the SOCS or WDS protein. Compartments containing reagents, and instructions, will normally be provided.

Antibodies, including antigen binding fragments, 10 specific for the SOCS or WDS protein or fragments thereof are useful in diagnostic applications to detect the presence of elevated levels of SOCS or WDS protein and/or its fragments. Such diagnostic assays can employ lysates, live cells, fixed cells, immunofluorescence, cell cultures, body fluids, and further can involve the 15 detection of antigens related to the protein in serum, or the like. Diagnostic assays may be homogeneous (without a separation step between free reagent and antigen-SOCS or -WDS protein complex) or heterogeneous (with a 20 separation step). Various commercial assays exist, such as radioimmunoassay (RIA), enzyme-linked immunosorbentassay (ELISA), enzyme immunoassay (EIA), enzyme-multiplied immunoassay technique (EMIT), substrate-labeled fluorescent immunoassay (SLFIA), and 25 the like. For example, unlabeled antibodies can be employed by using a second antibody which is labeled and which recognizes the antibody to a SOCS or WDS protein or to a particular fragment thereof. Similar assays have also been extensively discussed in the literature. See, 30 e.g., Harlow and Lane (1988) Antibodies: A Laboratory Manual, CSH Press, NY; Chan (ed.) (1987) Immunoassay: A Practical Guide Academic Press, Orlando, FL; Price and Newman (eds.) (1991) Principles and Practice of Immunoassay Stockton Press, NY; and Ngo (ed.) (1988) 35 Nonisotopic Immunoassay Plenum Press, NY.

Anti-idiotypic antibodies may have similar use to diagnose presence of antibodies against a SOCS or WDS protein, as such may be diagnostic of various abnormal states. For example, overproduction of SOCS or WDS protein may result in production of various immunological

WO 99/03993

59

5

10

15

25

40

or other medical reactions which may be diagnostic of abnormal physiological states, e.g., in cell growth, activation, or differentiation.

PCT/US98/14544

Frequently, the reagents for diagnostic assays are supplied in kits, so as to optimize the sensitivity of the assay. For the subject invention, depending upon the nature of the assay, the protocol, and the label, either labeled or unlabeled antibody or binding partner, or labeled SOCS or WDS protein is provided. This is usually in conjunction with other additives, such as buffers, stabilizers, materials necessary for signal production such as substrates for enzymes, and the like. Preferably, the kit will also contain instructions for proper use and disposal of the contents after use. Typically the kit has compartments for each useful reagent. Desirably, the reagents are provided as a dry lyophilized powder, where the reagents may be

reconstituted in an aqueous medium providing appropriate concentrations of reagents for performing the assay.

20 Many of the aforementioned constituents of the drug screening and the diagnostic assays may be used without modification, or may be modified in a variety of ways.

For example, labeling may be achieved by covalently or non-covalently joining a moiety which directly or indirectly provides a detectable signal. In any of these

assays, the protein, test compound, SOCS or WDS protein, or antibodies thereto can be labeled either directly or indirectly. Possibilities for direct labeling include label groups: radiolabels such as ¹²⁵I, enzymes (U.S.

Pat. No. 3,645,090) such as peroxidase and alkaline phosphatase, and fluorescent labels (U.S. Pat. No. 3,940,475) capable of monitoring the change in fluorescence intensity, wavelength shift, or fluorescence polarization. Possibilities for indirect labeling include biotinylation of one constituent followed by

include biotinylation of one constituent followed by binding to avidin coupled to one of the above label groups.

There are also numerous methods of separating the bound from the free protein, or alternatively the bound from the free test compound. The SOCS or WDS protein can

WO 99/03993

20

25

30

35

40

be immobilized on various matrices followed by washing. Suitable matrices include plastic such as an ELISA plate, filters, and beads. Methods of immobilizing the SOCS or WDS protein to a matrix include, without limitation, direct adhesion to plastic, use of a capture antibody, chemical coupling, and biotin-avidin. The last step in this approach involves the precipitation of protein/binding partner or antigen/antibody complex by any of several methods including those utilizing, e.g., 10 an organic solvent such as polyethylene glycol or a salt such as ammonium sulfate. Other suitable separation techniques include, without limitation, the fluorescein antibody magnetizable particle method described in Rattle, et al. (1984) Clin. Chem. 30:1457-1461, and the double antibody magnetic particle separation as described 15 in U.S. Pat. No. 4,659,678.

Methods for linking proteins or their fragments to the various labels have been extensively reported in the literature and do not require detailed discussion here. Many of the techniques involve the use of activated carboxyl groups either through the use of carbodismide or active esters to form peptide bonds, the formation of thioethers by reaction of a mercapto group with an activated halogen such as chloroacetyl, or an activated olefin such as maleimide, for linkage, or the like. Fusion proteins will also find use in these applications.

Another diagnostic aspect of this invention involves use of oligonucleotide or polynucleotide sequences taken from the sequence of a SOCS or WDS protein. These sequences can be used as probes for detecting levels of the SOCS or WDS protein message in samples from natural sources, or patients suspected of having an abnormal condition, e.g., cancer or developmental problem. The preparation of both RNA and DNA nucleotide sequences, the labeling of the sequences, and the preferred size of the sequences has received ample description and discussion in the literature. Normally an oligonucleotide probe should have at least about 14 nucleotides, usually at least about 18 nucleotides, and the polynucleotide probes may be up to several kilobases. Various labels may be

WO 99/03993 PCT/US98/14544 61

employed, most commonly radionuclides, particularly 32p. However, other techniques may also be employed, such as using biotin modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorophores, enzymes, or the like. Alternatively, antibodies may be employed which can recognize specific duplexes, including DNA duplexes, RNA duplexes, DNA-RNA hybrid duplexes, or DNA-protein duplexes. The antibodies in turn may be labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. The use of probes to the novel anti-sense RNA may be carried out using many conventional techniques such as nucleic acid hybridization, plus and minus screening, recombinational probing, hybrid released translation (HRT), and hybrid arrested translation (HART). This also includes amplification techniques such as polymerase chain reaction (PCR).

10

15

20

25

Diagnostic kits which also test for the qualitative or quantitative presence of other markers are also contemplated. Diagnosis or prognosis may depend on the combination of multiple indications used as markers. Thus, kits may test for combinations of markers. See, e.g., Viallet, et al. (1989) Progress in Growth Factor Res. 1:89-97.

The broad scope of this invention is best understood 30 with reference to the following examples, which are not intended to limit the invention to specific embodiments.

EXAMPLES

I. General Methods

- Many of the standard methods below are described or referenced, e.g., in Maniatis, et al. (Cur. ed..)

 Molecular Cloning, A Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor Press, NY; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed.) Vols. 1-3, CSH Press, NY; Ausubel, et al., Biology Greene Publishing Associates, Brooklyn, NY; or Ausubel, et al. (1987 and Supplements) Current Protocols in Molecular Biology Wiley/Greene, NY; Innis, et al. (eds.) (1990) PCR Protocols: A Guide to Methods and Applications
- Academic Press, NY. Methods for protein purification include such methods as ammonium sulfate precipitation, column chromatography, electrophoresis, centrifugation, crystallization, and others. See, e.g., Ausubel, et al. (1987 and periodic supplements); Deutscher (1990) "Guide
- 20 to Protein Purification, "Methods in Enzymology vol. 182, and other volumes in this series; Coligan, et al. (1995 and supplements) Current Protocols in Protein Science
 John Wiley and Sons, New York, NY; P. Matsudaira (ed.) (1993) A Practical Guide to Protein and Peptide
- Purification for Microsequencing, Academic Press, San Diego, CA; and manufacturer's literature on use of protein purification products, e.g., Pharmacia, Piscataway, NJ, or Bio-Rad, Richmond, CA. Combination with recombinant techniques allow fusion to appropriate segments (epitope tags), e.g., to a FLAG segmence or an
 - segments (epitope tags), e.g., to a FLAG sequence or an equivalent which can be fused, e.g., via a protease-removable sequence. See, e.g., Hochuli (1989) Chemische Industrie 12:69-70; Hochuli (1990) "Purification of Recombinant Proteins with Metal Chelate Absorbent" in
- 35 Setlow (ed.) <u>Genetic Engineering</u>, <u>Principle and Methods</u>
 12:87-98, Plenum Press, NY; and Crowe, et al. (1992)

 <u>OIAexpress: The High Level Expression & Protein</u>

 <u>Purification System QUIAGEN</u>, Inc., Chatsworth, CA.

Standard immunological techniques are described, 40 e.g., in Hertzenberg, et al. (eds. 1996) Weir's Hanbook

of Experimental Immunology vols 1-4, Blackwell Science;
Coligan (1991) Current Protocols in Immunology
Wiley/Greene, NY; and Methods in Enzymology volumes. 70,
73, 74, 84, 92, 93, 108, 116, 121, 132, 150, 162, and
5 163. Assays for neural cell biological activities are
described, e.g., in Wouterlood (ed. 1995) Neuroscience
Protocols modules 10, Elsevier; Methods in Neurosciences
Academic Press; and Neuromethods Humana Press, Totowa,
NJ. Methodology of developmental systems is described,
e.g., in Meisami (ed.) Handbook of Human Growth and
Developmental Biology CRC Press; and Chrispeels (ed.)
Molecular Techniques and Approaches in Developmental
Biology Interscience.

FACS analyses are described in Melamed, et al.

(1990) Flow Cytometry and Sorting Wiley-Liss, Inc., New York, NY; Shapiro (1988) Practical Flow Cytometry Liss, New York, NY; and Robinson, et al. (1993) Handbook of Flow Cytometry Methods Wiley-Liss, New York, NY.

- 20 II. Isolation of full length SOCS or WDS clones
 Standard methods are used to isolate full length
 genes. A cDNA library from an appropriate, e.g., human,
 cell, preferably a STAT containing cell type. The
 appropriate sequence is selected, and hybridization at
 25 high stringency conditions is performed to find a full
 length corresponding gene. It is noted that the mouse
 and human protein sequences are virtually identical.
- The full length, or appropriate fragments, of human genes are used to isolate a corresponding monkey or other primate gene. Preferably a full length coding sequence is used for hybridization. Similar source materials as indicated above are used to isolate natural genes, including genetic, polymorphic, allelic, or strain variants. Other species variants are also isolated using similar methods.

20

35

40

- IV. Isolation of an avian SOCS14 or SOCS15 clone
 An appropriate avian source is selected as above.

 Similar methods are utilized to isolate a species
 variant, though the level of similarity will typically be
 lower for avian protein as compared to a human to mouse
 sequence.
- V. Expression; purification; characterization
 Proteins of interest are immunoprecipitated and
 affinity purified as described above, e.g., from a
 natural or recombinant source.

Alternatively, with an appropriate clone from above, the coding sequence is inserted into an appropriate expression vector. This may be in a vector specifically selected for a prokaryote, yeast, insect, or higher vertebrate, e.g., mammalian expression system. Standard methods are applied to produce the gene product, preferably as a soluble secreted molecule, but will, in certain instances, also be made as an intracellular protein. Intracellular proteins typically require cell lysis to recover the protein, and insoluble inclusion bodies are a common starting material for further purificiation.

With a clone encoding a vertebrate SOCS14 or SOCS15

protein, recombinant production means are used, although
natural forms may be purified from appropriate sources.

The protein product is purified by standard methods of
protein purification, in certain cases, e.g., coupled
with immunoaffinity methods. Immunoaffinity methods are

used either as a purification step, as described above,
or as a detection assay to determine the separation
properties of the protein.

Preferably, the protein is secreted into the medium, and the soluble product is purified from the medium in a soluble form. Alternatively, as described above, inclusion bodies from prokaryotic expression systems are a useful source of material. Typically, the insoluble protein is solubilized from the inclusion bodies and refolded using standard methods. Purification methods are developed as described above.

15

25

30

35

The product of the purification method described above is characterized to determine many structural features. Standard physical methods are applied, e.g., amino acid analysis and protein sequencing. resulting protein is subjected to CD spectroscopy and other spectroscopic methods, e.g., NMR, ESR, mass spectroscopy, etc. The product is characterized to determine its molecular form and size, e.g., using gel chromatography and similar techniques. Understanding of the chromatographic properties will lead to more gentle or efficient purification methods.

Prediction of glycosylation sites may be made, e.g., as reported in Hansen, et al. (1995) Biochem. J. 308:801-813. However, as intracellular proteins, they are unlikely to be normally glycosylated.

The purified protein is also be used to identify other binding partners of SOCS or WDS as described, e.g., in Fields and Song (1989) Nature 340:245-246.

Preparation of antibodies against vertebrate SOCS or 20 VI. WDS

With protein produced, as above, animals are immunized to produce antibodies. Polyclonal antiserum is raised using non-purified antigen, though the resulting serum will exhibit higher background levels. Preferably, the antigen is purified using standard protein purification techniques, including, e.g., affinity chromatography using polyclonal serum indicated above. Presence of specific antibodies is detected using defined synthetic peptide fragments.

Polyclonal serum is raised against a purified antigen, purified as indicated above, or using, e.g., a plurality of, synthetic peptides. A series of overlapping synthetic peptides which encompass all of the full length sequence, if presented to an animal, will produce serum recognizing most linear epitopes on the protein. Such an antiserum is used to affinity purify protein, which is, in turn, used to introduce intact full length protein into another animal to produce another 40 antiserum preparation.

15

20

analyzed.

Similar techniques are used to generate induce monoclonal antibodies to either unpurified antigen, or, preferably, purified antigen.

5 VII. Cellular and tissue distribution

Distribution of the protein or gene products are determined, e.g., using immunohistochemistry with an antibody reagent, as produced above, by Western blotting of cell lysates, or by screening for nucleic acids encoding the respective protein. Either hybridization or PCR methods are used to detect DNA, cDNA, or message content. Histochemistry allows determination of the specific cell types within a tissue which express higher or lower levels of message or DNA. Antibody techniques are useful to quantitate protein in a biological sample, including a liquid or tissue sample. Immunoassays are developed to quantitate protein. Also FACS analysis may be used to evaluate expression in a cell population. Appropriate tissue samples or cell types are isolated and prepared for such detection. Commercial tissue blots are available, e.g., from Clontech (Mountain View, CA). Alternatively, cDNA library Southern blots can be

VIII. STAT interference by SOCS or WDS proteins
Standard methods for testing the biological activity
of the SOCS gene products in STAT signaling are
described, e.g., in Starr, et al. (1997) Nature 387:917921; Endo, et al. (1997) Nature 387:921-924; and Naka, et
al. Nature 387:924-929. Alternatively, JAK/STATs are
necessary for signal transduction. This assay is
performed as described, e.g., in Ho, et al. (1995) Mol.
Cell. Biol. 15:5043-5-53, and blockage with these gene
products may be tested.

In particular, the STAT5 dependent signaling in response to IL-2 is inhibited by the SOCS family member SOCS3.

30

IX. Antagonists of SOCS function

The inhibition of SOCS function may be effected by inhibitors of the specific interaction of these gene products and their respective STAT molecules. With the information on the specificity of pairings between these SOCS and respective STAT family members, compound libraries may be screened for blockage of such interactions. Thus, inhibitory action of the SOCS may be blocked with small molecule drug candidates.

10 Methods of using gene therapy are described, e.g., in Goodnow (1992) "Transgenic Animals" in Roitt (ed.)

Encyclopedia of Immunology, Academic Press, San Diego, pp. 1502-1504; Travis (1992) Science 256:1392-1394; Kuhn, et al. (1991) Science 254:707-710; Capecchi (1989)

15 Science 244:1288; Robertson (1987) (ed.) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, IRL Press, Oxford; and Rosenberg (1992) J. Clinical Oncology 10:180-199. Also included is the use of antisense RNA in gene therapy to block expression of the target gene, or proper splicing of gene transcripts.

X. Comparison of various SOCS embodiments

Tables 1 and 2 show comparison of various SOCS or WDS embodiments. Table 1 shows comparisons of the relevant portions of the gene products, particularly in the region of SOCS14 from Met168 to Leu293.

Table 2 shows alignment of the WDS "SOCSBOX protein" with a consensus of the mouse and human SOCS15 (WDS11) protein sequences, which are identical. See GenBank Accession numbers U88325; U88326; U88327; U88328; AB000676; AB000677; AB000710. This is aligned with the new WDS12, SEQ ID NO: 16.

5	ID NO: 15	Comparison of various SOCS family members. mCIS is SEQ 5; hSOCS1 IS SEQ ID NO: 16; mSOCS1 is SEQ ID NO: 17; hSOCS2 D NO: 18; hSOCS3 is SEQ ID NO: 19; mSOCS3 is SEQ ID NO: 20; n SOCS16 is SEQ ID NO: 21.
10	mCIS hSOCS1 mSOCS1 hSOCS2 hSOCS3 mSOCS3 hSOCS14 mSOCS17 hSOCS18	MEVRVKALVHSSS AELGEIRPESAQKKLPLRKA MDKVGKMWNNLKYRCQNLFSHEGGSRNENVEMNPNRCPSVKEKSISLGEA
15	hSOCS19	ERGLETNSCSEEELSSPGRGGGGGGRLLLQ
20	mCIS hSOCS1 mSOCS1 hSOCS2 hSOCS3	ALSPAATLTAWPADSARRGP
25	mSOCS3 hSOCS14 mSOCS17 hSOCS18 hSOCS19	PSPALNGVRKDFHDLQSETTCQEQANSLKSSASHNGDLHLHLDEHVPVVI ENTIFITLEIVKNLFKMAENNSKNVDVRPKTSRSRSAD- APQQESSPLRENVALQLGLSPSKTFSRRNQNCAAEIPQVVEISIEKDSDS PPGPELPPVPFPLQDLVPLGRLSRGEQQQQQQQQPPPPPPPPPPPRPLAG
30	mCIS hSOCS1 mSOCS1 hSOCS2	
35	hSOCS3 mSOCS3 hSOCS14 mSOCS17 hSOCS18 hSOCS19	GLMPQDYIQYTVPLDEGMYPLEGSRSGYVWSGKK-LSWSKKSESCSESEAKKGGYVWSGKK-LSWSKKSESCSESEAKKGGATPGTRLARRDSYSRHAPWGGKKKHSCSTKTQSSLDTEKKFGRTRSGLQPSRKGSFKIRLSRLFRTKSCNGGSGG
40		
	mCIS hSOCS1 mSOCS1	MVLCVQG
· 4 5	hSOCS2 hSOCS3 mSOCS3	GCTASGYPVPAARA-PAAGDQWVTAAARDFVIRPPGSGEKE
50	hSOCS14 mSOCS17 hSOCS18 hSOCS19	YCLDSSSPMEVSAVPPQVGGRAFPEDESQVDQDLVVAPEIFVDQSQLSCSSIELDLDHSCG-HRFLGRSLKQKLQDAVGQCFPIKNCSGR RRERRYGVSSMQDMDSVSS-RAVGSRSLRQRLQDTVGLCFPMRTYSKQGDGTGKRPSGELAAS-AASLTDMGGSAGRELDAGRKPKLTRTQS

Table 1 (continued):

5	mCIS hsoCs1 msoCs1 hsoCs2 hsoCs3 msoCs3	SCPLLAVEQIGRR-PLWAQSLELPGPAMQPLPTGA MVAHNQVAADNAVSTAAEPR MVARNQVAADNAISPAAEPR PHPFSLCHHFGHPAGLVLGFALTSRKDANPSLTPARAAT MVTHSKFPAAGMSRPLDTSL MVTHSKPPAAGMSRPLDTSL
10	hSOCS14 mSOCS17 hSOCS18 hSOCS19	VNGLLIGTTGVMLQSPRAGHDDVPPLSPLLPPMQNNQHSPGLPSKRKIHISELMLDXCXFPPRSDLAFRWHFIKRHTVPMSPNSSKPLFSNKRKIHLSELMLEKCPFPAGSDLAQKWHLIKQHTAPVSPHSTFFAFSPVSFSPLFTGETVSLVDVDISQRGLTSPHPPTP
15	mCIS hSOCS1 mSOCS1 hSOCS2 hSOCS3	
20	mSOCS3 hSOCS14 mSOCS17 hSOCS18 hSOCS19	
25		
30	mCIS hSOCS1 hSOCS2 hSOCS3 mSOCS3	-FPEEVTEETPVQAENE
35	mSOCS17 hSOCS18 hSOCS19	KLGPKLAPGMTEISGDSSAIPQANCDSEEDTTTLCLQSR-RQKQRQISGD PPPPPHAPDAFPRIAPIRAAESLHSQPP
40	mCIS hSOCS1 mSOCS1 hSOCS2 hSOCS3 mSOCS3	EGDLLCIAKTFSYLRESGWYWGSITASEARQHLQ
4 5	mSOCS3 hSOCS14 mSOCS17 hSOCS18 hSOCS19	SEGPMVVTSLTEELKKLAKQGWYWGPITRWEAEGKLA EEEILQLEAPPKFHTQIDYVHCLVPDLLQISNNPCYWGVMDKYAAEALLE SHTHVSRQGAWKVHTQIDYIHCLVPDLLQITGNPCYWGVMDRYEAEALSEQHLQCPLYRPDSSSFAASLRELEKCGWYWGPMNWEDAEMKLK

Table 1	(continu	71.3
TODIC T	(COMETIM	- u,.

5	mCIS hSOCS1 mSOCS1 hSOCS2 hSOCS3	KMPEGTFLVRDST-HPSYLFTLSVKTTRGPTNVRIEYADSSFRLDSNCLS AEPVGTFLVRDSR-QRNCFFALSVKMASGPTSIRVHFQAGRFHLDGS-R- AEPVGTFLVRDSR-QRNCFFALSVKMASGPTSIRVHFQAGRFHLDGS-R- EAPEGTFLIRDSS-HSDYLLTISVKTSAGPTNLRIEYQDGKFRLDSIICV AEPAGTFLIRDSSDQR-HFFALSVKTQSGTKNLRIQCEGGSFSLQSDPRS
10	mSOCS3 hSOCS14 mSOCS17 hSOCS18 hSOCS19	AEPAGTFLIRDSSDQR-HFFTLSVKTQSGTKNLRIQCEGGSFSLQSDPRS NVPDGSFLVRDSS-DDRYLLSLSFRSHGKTLHTRIEHSNGRFSFYEQPD- GKPEGTFLLRDSA-QEDYLFSVSFRRYSRSLHARIEQWNHNFSFDAHDP- GKPEGTFLLRDSA-QEDYLFSVSSAATTGSLHARIEQWNHNFSFDAHDP- GKPDGSFLVRDSS-DPRYILSLSFRSQGITHHTRMEHYRGTFSLWCHPKF * * .* * . * * * * * *
15	mCIS hSOCS1	RP-RILAFPDVVSLVQHYVASCAADTRSDSPDPAPTPALPMSKQDAPSDS
	mSOCS1 hSOCS2 hSOCS3	ETFDCLFELLEHYVAAPRRMLG KS-KLKQFDSVVHLIDYYVQMCKDKRTGPEAPRNG TQ-PVPRFDCVLKLVYHYMPPPGAPSFP-SPPTEPSSEVPEQPSAOPLPG
20	mSOCS3 hSOCS14 mSOCS17 hSOCS18	TQ-PVPRFDCVLKLVHHYMPPPGTPSFS-LPPTEPSSEVPEQPPAQALPGVERTYSIVDLIEHSIQGLENGAFCYSRSRLPGSACVFHSPDITGLLEHYKDPSACMFFEPLLSCVFHSSTVTGLLEHYKDPSS
25	hSOCS19	EDRCQSVVEFIKRAIMHSKNGKFLYFLRSRVPGLP
	mCIS hSOCS1	VLPIPVATAVHLKLVQPFVRRSSARSLQHLCRLVINRLVADVD
30	mSOCS1 hSOCS2 hSOCS3 mSOCS3	APLRQRRVRPLQELCRQRIVAAVG-RENLATVHLYLTKPLYTSAPSLQHLCRLTINKCTGAIW SPPRRAYYIYSGGEKIPLVLSRPLSSNVATLQHLCRKTVNGHLDSYEKVT STPKRAYYIYSGGEKIPLVLSRPLSSNVATLQHLCRKTVNGHLDSYEKVT
35	mSOCS14 mSOCS17 hSOCS18 hSOCS19	TYPVRLTNPVSRFMQVRSLQYLCRFVIRQYTR-IDLIQTPLIRTFPFSLQHICRTVICNCTT-YDGIDISLNRTFPFSLQYICRAVICRCTT-YDGID PTPVQLLYPVSRFSNVKSLQHLCRFRIRQLVR-IDHIP
		** .** .
40	mCIS hSOCS1 mSOCS1	CLPLPRRMADYLRQYPFQL RIPLNPVLRDYLSSFPFQI RIPLNPVLRDYLSSFPFQI
	hSOCS2 hSOCS3	GLPLPTRLKDYLEEYKFQV QLPG-P-IREFLDQYDAPL
4 5	mSOCS3 hSOCS14 mSOCS17	QLPG-P-IREFLDQYDAPL KLPLPNKMKDYLQEKHY ALPIPSPMKLYLKEYHYKSKVRLLRIDVPEQQ
	hSOCS18 hSOCS19	GLPLPSMLQDFLKEYHYKQKVRVRWLEREPVKAK DLPLPKPLISYIRKFYYYDPQEEVYLSLKEAQLISKQKQEVEPST .*

Table 2:	Comparison o	of	the	WDS	family	members;	WDS11	(SOCS15)	and
WDS12.									

5	WDS12- WDS11(socs15)	MLNIILIKFSSFSIRCAILSSVCLNEAITFAFLLQVFLWNMDKYTMIRKL MLCSAAGEKSVFLWSMRSYTLIRKL . *. ******
10	WDS12- WDS11 (socs15)	EGHHHDVVACDFSPDGALLATASYDTRVYIWDPHNGDILMEFGHLFPPPT EGHQSSVVSCDFSPDSALLVTASYDTSVIMWDPYTGERLRSLHHTQLEPT ***. **.***** *** ***** * .** .* .* .* .
15	WDS12- WDS11(socs15)	PIFAGGANDRWVRSVSFSHDGLHVASLADDKMVRFWRIDEDYPVQVAPLS MDDSD-VHMSSLRSVCFSPEGLYLATVADDRLLRIWALELKAPVAFAPMT *** . ** ** . * * * **
72	WDS12- WDS11(socs15)	NGLCCAFSTDGSVLAAGTHDGSVYFWATPRQVPSLQHLCRMSIRRVMPTQ NGLCCTFFPHG-GIATGTRDGHVQFWTAPRVLSSLKHLCRKALRSFLTTY *****
20	WDS12- WDS11(socs15)	EVQELPIPSKLLEFLSYRI 219 QVLALPIPKKMKEFLTYRTF 193

All references cited herein are incorporated herein
by reference to the same extent as if each individual
publication or patent application was specifically and
individually indicated to be incorporated by reference in
its entirety for all purposes.

Many modifications and variations of this invention

can be made without departing from its spirit and scope,
as will be apparent to those skilled in the art. The
specific embodiments described herein are offered by way
of example only, and the invention is to be limited only
by the terms of the appended claims, along with the full
scope of equivalents to which such claims are entitled.

WHAT IS CLAIMED IS:

- 1. An isolated or recombinant polypeptide comprising:
- 5 a) at least 17 contiguous amino acids from the coding portion of SEQ ID NO: 2 or 6;
 - at least 17 contiguous amino acids from the coding portion of SEQ ID NO: 4 or 8;
 - c) at least 17 contiguous amino acids from the coding portion of SEQ ID NO: 10;
 - d) at least 17 contiguous amino acids from the coding portion of SEQ ID NO: 12;
 - e) at least 17 contiguous amino acids from the coding portion of SEQ ID NO: 14; or
- 15 f) at least 17 contiguous amino acids from the coding portion of SEQ ID NO: 16.
- 2. The polypeptide of claim 1, comprising the amino acid sequence of:
 - a) a SOCS14 of SEQ ID NO: 2 or 6;
 - b) a SOCS15 (WDS11) of SEQ ID NO: 4 or 8;
 - c) a SOCS17 of SEQ ID NO: 10;
 - d) a SOCS18 of SEQ ID NO: 12;
- e) a SOCS19 of SEO ID NO: 14; or
 - f) a WDS12 of SEQ ID NO: 16.
- 3. A fusion protein comprising the polypeptide of claim 30 1 or 2.
 - 4. A binding compound which specifically binds to the polypeptide of claim 1 or 2.
- 35 5. The binding compound of claim 4 which is an antibody or antibody fragment.
 - 6. A nucleic acid encoding the polypeptide of claim 1 or 2.
- An expression vector comprising the nucleic acid of claim 6.
- A host cell comprising the vector of claim 7.
- 9. A process for recombinatly producing a polypeptide comprising culturing the host cell of claim 8 under conditions in which the polypeptide is expressed.

PCT/US98/14544

SEQUENCE LISTING

5	SEQ ID NO: 1 is primate SOCS14 nucleic acid sequence. SEQ ID NO: 2 is primate SOCS14 amino acid sequence. SEQ ID NO: 3 is rodent SOCS15 (WDS11) nucleic acid sequence. SEQ ID NO: 4 is rodent SOCS15 (WDS11) amino acid sequence. SEQ ID NO: 5 is primate SOCS14 nucleic acid sequence.
10	SEQ ID NO: 6 is primate SOCS14 nucleic acid sequence. SEQ ID NO: 7 is primate SOCS15 (WDS11) amino acid sequence. SEQ ID NO: 8 is primate SOCS15 (WDS11) nucleic acid sequence. SEQ ID NO: 9 is rodent SOCS17 amino acid sequence. SEQ ID NO: 10 is rodent SOCS17 nucleic acid sequence. SEQ ID NO: 11 is primate SOCS18 amino acid sequence.
15	SEQ ID NO: 12 is primate SOCS18 nucleic acid sequence. SEQ ID NO: 13 is primate SOCS19 nucleic acid sequence. SEQ ID NO: 14 is primate SOCS19 amino acid sequence. SEQ ID NO: 15 is primate WDS12 nucleic acid sequence. SEQ ID NO: 16 is mouse WDS12 amino acid sequence.
20	SEQ ID NO: 17 is mouse CIS amino acid sequence. SEQ ID NO: 18 is primate SOCS1 amino acid sequence. SEQ ID NO: 19 is murine SOCS1 amino acid sequence. SEQ ID NO: 20 is primate SOCS2 amino acid sequence. SEQ ID NO: 21 is primate SOCS3 amino acid sequence.
25	SEQ ID NO: 22 is murine SOCS3 amino acid sequence. SEQ ID NO: 23 is primate SOCS16 amino acid sequence. SEQ ID NO: 24 is primate SOCS14 nucleotide sequence. SEQ ID NO: 25 is primate SOCS15 (WDS11) nucleotide sequence. SEQ ID NO: 26 is rodent SOCS17 nucleotide sequence.
30	SEQ ID NO: 27 is primate SOCS18 nucleotide sequence. SEQ ID NO: 28 is primate SOCS19 nucleotide sequence. SEQ ID NO: 29 is primate WDS12 nucleotide sequence.
35	(1) GENERAL INFORMATION: (i) APPLICANT: (A) NAME: Schering Corporation
40	(B) STREET: 2000 Galloping Hill Road (C) CITY: Kenilworth (D) STATE: New Jersey (E) COUNTRY: USA (F) POSTAL CODE: 07033-0530
45	<pre>(ii) TITLE OF INVENTION: Suppressors of Cytokine Signaling;</pre>
50	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette (B) COMPUTER: Apple Macintosh (C) OPERATING SYSTEM: Macintosh 8.0.1 (D) SOFTWARE: Microsoft Word 6.0
55	(v) CURRENT APPLICATION DATA:(A) APPLICATION NUMBER: US(B) FILING DATE: 17-JUL-1998(C) CLASSIFICATION:

	<pre>(vi) PRIOR APPLICATION DATA:</pre>	
5	(vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/055,853 (B) FILING DATE: 15-AUG-1997	
10	<pre>(vi) PRIOR APPLICATION DATA:</pre>	
15	<pre>(vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/053,244 (B) FILING DATE: 18-JUL-1997</pre>	
20	(2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 930 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: cDNA (ix) FEATURE:	
	(A) NAME/KEY: unsure(B) LOCATION: 824(D) OTHER INFORMATION: /note= "position 824 is ambiguous;	
35	may be A, C, G, or T; all code for proline" (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3929	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
45	AC GAC CTC CAG TCT GAG ACC ACG TGC CAG GAG CAA GCC AAT TCA CTG Asp Leu Gln Ser Glu Thr Thr Cys Gln Glu Gln Ala Asn Ser Leu 1 5 10 15	47
	AAG AGC TCG GCT TCT CAT AAT GGA GAC CTG CAT CTT CAC CTG GAT GAA Lys Ser Ser Ala Ser His Asn Gly Asp Leu His Leu His Leu Asp Glu 20 25 30	95
50	CAT GTG CCT GTC GTT ATT GGA CTT ATG CCT CAG GAC TAC ATT CAG TAT His Val Pro Val Val Ile Gly Leu Met Pro Gln Asp Tyr Ile Gln Tyr 35 40 45	143
55	ACT GTG CCT TTA GAT GAG GGG ATG TAT CCT TTG GAA GGA TCA CGG AGC Thr Val Pro Leu Asp Glu Gly Met Tyr Pro Leu Glu Gly Ser Arg Ser 50 55 60 .	191
60	TAT TGT CTG GAC AGC TCT TCT CCC ATG GAA GTC TCT GCG GTT CCT CCT Tyr Cys Leu Asp Ser Ser Pro Met Glu Val Ser Ala Val Pro Pro 65 70 75	239
	CAA GTG GGA GGG CGC GCT TTC CCC GAG GAT GAG AGT CAG GTA GAC CAG Gln Val Gly Gly Arg Ala Phe Pro Glu Asp Glu Ser Gln Val Asp Gln	287

	80					85					90					95	
5	GAC Asp	CTA Leu	GTT Val	GTC Val	GCC Ala 100	CCA Pro	GAG Glu	ATC Ile	TTC Phe	GTG Val 105	GAT Asp	CAG Gln	TCC Ser	GGT Gly	GAA Glu 110	TGG Trp	335
10	CTT Leu	GTT Val	GAT Asp	TGG Trp 115	CAC His	CAC His	GGG Gly	AGT Ser	CAT His 120	GTT Val	GCA Ala	GAA Glu	CCC Pro	CGG Arg 125	AGA Arg	GCG Ala	383
20	GGT Gly	TCA Ser	CGA Arg 130	TGG Trp	ATG Met	TCC Ser	CTC Leu	CAA Gln 135	TCT Ser	TCA Ser	CCA Pro	TTG Leu	GTT Val 140	ACC Thr	TCC Ser	AAT Asn	431
15	GCA Ala	GGA Gly 145	ATA Ile	ATC Ile	CAA Gln	ATC Ile	CCA Pro 150	AAG Lys	GGG Gly	ACC Thr	TTC Phe	AGT Ser 155	GGA Gly	CTC Leu	ACT Thr	GGG Gly	479
20	ACA Thr 160	GAA Glu	GCC Ala	CAC His	GTG Val	GCT Ala 165	GAA Glu	AGT Ser	ATG Met	CGC Arg	TGT Cys 170	CAT His	TTG Leu	AAT Asn	TTT Phe	GAT Asp 175	527
25	CCG Pro	AAC Asn	TCT Ser	GCT Ala	CCT Pro 180	GGG Gly	GTT Val	GCA Ala	AGA Arg	GTT Val 185	TAT Tyr	GAC Asp	TCA Ser	GTG Val	CAA Gln 190	AGT Ser	575
20	AGT Ser	GGT Gly	CCC Pro	ATG Met 195	GTT Val	GTG Val	ACA Thr	AGC Ser	CTT Leu 200	ACA Thr	GAG Glu	GAG Glu	CTG Leu	AAA Lys 205	AAA Lys	CTT Leu	623
30	GCA Ala	AAG Lys	CAA Gln 210	GGA Gly	TGG Trp	TAC Tyr	TGG Trp	GGA Gly 215	CCA Pro	ATC Ile	ACA Thr	CGT Arg	TGG Trp 220	GAG Glu	GCA Ala	GAA Glu	671
35	GGG Gly	AAG Lys 225	CTA Leu	GCA Ala	AAC Asn	GTG Val	CCA Pro 230	GAT Asp	GGT Gly	TCT Ser	TTT Phe	CTT Leu 235	GTT Val	CGG Arg	GAC Asp	AGT Ser	719
40	TCT Ser 240	GAC Asp	GAC Asp	CGT Arg	TAC Tyr	CTT Leu 245	TTA Leu	AGC Ser	TTG Leu	AGC Ser	TTT Phe 250	CGC Arg	TCC Ser	CAT His	GGT Gly	AAA Lys 255	767
45	ACA Thr	CTT Leu	CAC His	ACT Thr	AGA Arg 260	Ile	GAG Glu	CAC His	TCA Ser	AAT Asn 265	GGT Gly	AGG Arg	TTT Phe	AGC Ser	TTT Phe 270	TAT Tyr	815
E.O.	GAA Glu	CAG Gln	CCC Pro	GAT Asp 275	GTG Val	GAA Glu	GGA Gly	CAT His	ACG Thr 280	TCC Ser	ATA Ile	GTT Val	GAT Asp	CTA Leu 285	Ile	GGA Gly	863
50				Gln	GGA Gly			AAA Lys 295	Trp	GAG Glu	CTT Leu	TTT Phe	GTT Val 300	ATT Ile	CAA Gln	GGT Gly	911
55			Cys		GAA Glu												930

(2) INFORMATION FOR SEQ ID NO:2: 60

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 309 amino acids

 (B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

		(:	11) 1	MOTE	COPE	TIP	E: p.	roce.	LII							
5		(:	xi) :	SEQUI	ENCE	DESC	CRIP!	rion	: SE(Q ID	NO:	2:				
	Asp 1	Leu	Gln	Ser	Glu 5	Thr	Thr	Cys	Gln	Glu 10	Gln	Ala	Asn	Ser	Leu 15	Lys
10	Ser	Ser	Ala	Ser 20	His	Asn	Gly	Asp	Leu 25	His	Leu	His	Leu	Asp 30	Glu	His
15	Val	Pro	Val 35	Val	Ile	Gly	Leu	Met 40	Pro	Gln	Asp	Tyr	Ile 45	Gln	Tyr	Thr
	Val	Pro 50	Leu	Asp	Glu	Gly	Met 55	Tyr	Pro	Leu	Glu	Gly 60	Ser	Arg	Ser	Tyr
20	65				Ser	70					75					80
					Ala 85					90					95	
25				100	Pro				105					110	_	
30	Val	Asp	Trp 115	His	His	Gly	Ser	His 120	Val	Ala	Glu	Pro	Arg 125	Arg	Ala	Gly
		130			Ser		135					140				
35	145				Ile	150					155					160
4.0					Ala 165					170					175	
40				180	Gly				185					190		
45			195		Val			200					205	-		
		210			Tyr		215					220				
50	225				Val	230					235					240
	-		_		Leu 245					250				_	255	
55				260	Ile				265	_				270	-	
60			275		Glu	GIÀ		280					285		-	
		Asn 290		_		*	Lys 295	Trp	GIu	Leu	Pne	Val 300	Ile	GIn	GIA	Leu
	Gly	Cys	Leu	Glu	ser											

	(2) INFORMATION FOR SEQ ID NO:3:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 476 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA	
15	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3476	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
20	CA GCT TCG TAT GAC ACC AGT GTG ATT ATG TGG GAC CCC TAC ACC GGC Ala Ser Tyr Asp Thr Ser Val Ile Met Trp Asp Pro Tyr Thr Gly 1 5 10 15	47
25	GAG AGG CTG AGG TCA CTT CAT CAC ACA CAG CTT GAA CCC ACC ATG GAT Glu Arg Leu Arg Ser Leu His His Thr Gln Leu Glu Pro Thr Met Asp 20 25 30	95
30	GAC AGT GAC GTC CAC ATG AGC TCC CTG AGG TCC GTG TGC TTC TCA CCT Asp Ser Asp Val His Met Ser Ser Leu Arg Ser Val Cys Phe Ser Pro 35 40 45	143
35	GAA GGC TTG TAT CTC GCT ACG GTG GCA GAT GAC AGG CTG CTC AGG ATC Glu Gly Leu Tyr Leu Ala Thr Val Ala Asp Asp Arg Leu Leu Arg Ile 50 55 60	191
40	TGG GCT CTG GAA CTG AAG GCT CCG GTT GCC TTT GCT CCG ATG ACC AAT Trp Ala Leu Glu Leu Lys Ala Pro Val Ala Phe Ala Pro Met Thr Asn 65 70 75	239
40	GGT CTT TGC TGC ACG TTC TTC CCA CAC GGT GGA ATT ATT GCC ACA GGG Gly Leu Cys Cys Thr Phe Phe Pro His Gly Gly Ile Ile Ala Thr Gly 80 85 90 95	287
45	ACG AGA GAT GGC CAT GTC CAG TTC TGG ACA GCT CCC CGG GTC CTG TCC Thr Arg Asp Gly His Val Gln Phe Trp Thr Ala Pro Arg Val Leu Ser 100 105 110	335
50	TCA CTG AAG CAC TTA TGC AGG AAA GCC CTC CGA AGT TTC CTG ACA ACG Ser Leu Lys His Leu Cys Arg Lys Ala Leu Arg Ser Phe Leu Thr Thr 115 120 125	383
55	TAT CAA GTC CTA GCA CTG CCA ATC CCC AAG AAG ATG AAA GAG TTC CTC Tyr Gln Val Leu Ala Leu Pro Ile Pro Lys Lys Met Lys Glu Phe Leu 130 135 140	431
60	ACA TAC AGG ACT TTC TAG CAG TGC CGG CTC CCC CAC CTC CTG CAG Thr Tyr Arg Thr Phe * Gln Cys Arg Leu Pro His Leu Leu Gln 145 150 155	476

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

				(B) LEI) TY!) TO!	PE: a	amin	o ac	id	acid	s						
5		(:	ii) 1	MOLE	CULE	TYP	E: p	rote	in								
		(:	xi)	SEQUI	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	4:					
10	Ala 1	Ser	Tyr	Asp	Thr 5	Ser	Val	Ile	Met	Trp 10	Asp	Pro	Tyr	Thr	Gly 15	Glu	
	Arg	Leu	Arg	Ser 20	Leu	His	His	Thr	Gln 25	Leu	Glu	Pro	Thr	Met 30	Asp	Asp	
15	Ser	Asp	Val 35	His	Met	Ser	Ser	Leu 40		Ser	Val	Cys ·	Phe 45	Ser	Pro	Glu	
20	Gly	Leu 50	Tyr	Leu	Ala	Thr	Val 55	Ala	Asp	Asp	Arg	Leu 60	Leu	Arg	Ile	Trp	
	Ala 65	Leu	Glu	Leu	Lys	Ala 70	Pro	Val	Ala	Phe	Ala 75	Pro	Met	Thr	Asn	Gly 80	
25	Leu	Cys	Cys	Thr	Phe 85	Phe	Pro	His	Gly	Gly 90	Ile	Ile	Ala	Thr	Gly 95	Thr	
	Arg	Asp	Gly	His 100	Val	Gln	Phe	Trp	Thr 105	Ala	Pro	Arg	Val	Leu 110	Ser	Ser	
30	Leu	Lys	His 115	Leu	Cys	Arg	Lys	Ala 120	Leu	Arg	Ser	Phe	Leu 125	Thr	Thr	Tyr	
35	Gln	Val 130	Leu	Ala	Leu	Pro	Ile 135	Pro	Lys	Lys	Met	Lys 140	Glu	Phe	Leu	Thr	
33	Туг 145	Arg	Thr	Phe	*	Gln 150	Cys	Arg	Leu	Pro	His 155	Leu	Leu	Gln			
4 0	(2)	INFO		TION QUENC													
		, ,	(1	A) LE 3) TY C) SY	PE:	nucl	leic	acio	3 E	cs							
45		,	(1	O) TO	POLO	GY:	line	ear	jie								
		(11)	MOI	LECUI	Æ TY	PE:	CDN	4									
50		(ix)	(2	ATURI A) NA B) LO	ME/I			.1241	L								
55		(ix)	(2 (1	ATURI A) NA B) LO	ME/F	ON:	20				"nuc	:leot	ide	mav	be A	A or	C at
			ions	: 20, 3, 17	. 36,	158	33, :	1675	, 168	39, 1							Cat
60	*) FE	ATURI A) N	E: AME/I	KEY:	misc										
				B) L(D) O:				rion	: /n	ote=	"nuc	cleot	ide	may	be (3 or	T at

WO 99/03993 PCT/US98/14544

postions: 35, 1541, 1594, 1689, 1778, 1779, 1825, 1844, 1845, 1853, 1854, 1865, 1884, and 1893.*

(ix) FEATURE:

(A) NAME/KEY: misc_feature

(B) LOCATION: 70

(D) OTHER INFORMATION: /note= "Nucleotide may be A or G at positions: 70, 1461, 1630, 1677, 1713, 1725, 1734, 1735, 1757, 1805, 1810, and 1863."

10

5

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 64
- (D) OTHER INFORMATION: /note= "Nucleotide may be A or T at positions: 64, 1692, 1715, 1718, 1721, 1722, 1799, 1837, 1841, 1876, and 1894."

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- 20 (B) LOCATION: 1661
 - (D) OTHER INFORMATION: /note= "Nucleotide may be C or T at positions: 1661, 1729, 1749, 1750, 1754, 1776, 1802, 1826, 1847, 1859, 1860, 1904, 1907, and 1911."
- 25 (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1731
- (D) OTHER INFORMATION: /note= "Nucleotide may be G or C at positions: 1731, 1817, 1887, and 1908."
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1869
- (D) OTHER INFORMATION: /note= "Nucleotide may be C, G, or T at positions: 1869, 1883, 1885, 1886, and 1895."
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1888
- 40 (D) OTHER INFORMATION: /note= "Nucleotide may be A, C, or G at positions: 1888, and 1896."
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
- 45 (B) LOCATION: 1877
 - (D) OTHER INFORMATION: /note= "Nucleotide may be A, C, or T at positions: 1877, and 1898."
 - (ix) FEATURE:
- 50 (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1855
 - (D) OTHER INFORMATION: /note= "Nucleotide may be A, G, or T at position 1855."
- 55 (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1935
 - (D) OTHER INFORMATION: /note= "Nucleotide may be A, C, G, or T at positions: 1935, and 2034."
- 60
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

E	CAA!	rctco	CGA (GAG!	ACCT	GC A	rcaa(Met		_			G GTT u Val	113
5		TCT Ser												161
10		GAC Asp												209
15		AGC Ser												257
20		GTG Val												305
25		GTG Val 75												353
		TGT Cys												401
30		GTG Val												449
35		CTA Leu												497
40		TTG Leu												545
45		GAT Asp 155												593
		CAA Gln												641
50		GCT Ala												689
55		GGG Gly												737
60		GTG Val												785
		TAC Tyr 235												833

5	AAC Asn 250	GTG Val	CCA Pro	GAT Asp	GGT Gly	TCT Ser 255	TTT Phe	CTT Leu	GTT Val	CGG Arg	GAC Asp 260	AGT Ser	TCT Ser	GAC Asp	GAC Asp	CGT Arg 265		881
3	TAC Tyr	CTT Leu	TTA Leu	AGC Ser	TTG Leu 270	AGC Ser	TTT Phe	CGC Arg	TCC Ser	CAT His 275	GGT Gly	AAA Lys	ACA Thr	CTT Leu	CAC His 280	ACT Thr		929
10	AGA Arg	ATT Ile	GAG Glu	CAC His 285	TCA Ser	AAT Asn	GGT Gly	AGG Arg	TTT Phe 290	AGC Ser	TTT Phe	TAT Tyr	GAA Glu	CAG Gln 295	CCA Pro	GAT Asp		977
15	GTG Val	GAA Glu	AGG Arg 300	ACA Thr	TAC Tyr	TCC Ser	ATA Ile	GTT Val 305	GAT Asp	CTA Leu	ATT Ile	GAG Glu	CAT His 310	TCC Ser	ATC Ile	CAG Gln		1025
20											AGG Arg							1073
25	TCT Ser 330	GCA Ala	ACT Thr	TAC Tyr	CCC Pro	GTC Val 335	AGA Arg	CTG Leu	ACC Thr	AAC Asn	CCA Pro 340	GTG Val	TCC Ser	CGG Arg	TTC Phe	ATG Met 345		1121
25	CAG Gln	GTG Val	CGC Arg	TCG Ser	TTG Leu 350	CAG Gln	TAC Tyr	CTG Leu	TGT Cys	CGT Arg 355	TTT Phe	GTT Val	ATA Ile	CGT Arg	CAG Gln 360	TAT Tyr		1169
30	ACC Thr	AGA Arg	ATA Ile	GAC Asp 365	TTA Leu	ATT Ile	CAG Gln	AAA Lys	CTG Leu 370	CCT Pro	TTG Leu	CCA Pro	AAC Asn	AAA Lys 375	ATG Met	AAG Lys		1217
35				Gln	GAG Glu				TGA	AAGA'	TTG 1	AGAA(CCT	GC A	TCTT	GCACT		1271
	TTG	GGAA'	TAA	GAAC.	AAGA	GA T	TGAA.	ATAC.	A GT	TTAC	AAAC	TTT	CATT	GCC .	ATCA	AAATCI		1331
40	TTT	GCTG	CCA	TAAC	TATT	TC A	GTTT	TATG	T GT	AAAA	GAGT	CAT	CAGT'	TTG	ATTT	GGGGTG	}	1391
	GGG	AAGT	GTC	AGCA	AGGT	GT C	TTGG	GTTT.	а тт	TTGG	TTCT	TTA	AAAA	AGG	GAAG	TCTTG	4	1451
4-	AGT	TTTA	GAA	GTGT	TGAA	A TT	TGTT	TCAT	C AA	TGTG	CAGA	ATA	ATCA	CAA	TGTG	AATTA1	יי	1511
45	CAA	АТТС	TCC	TCAA	TGCC	cc c	CCCG	CCCA	т тс	CTTT	GCTG	CTA	TCCA	CTG	TGAT	TTTTAT	ר	1571
	GCA	ттаа	AAG	CCCA	TTTC	AT G	TTTT	TTCA	A CC	СТАА	GTAA	AGT	TGAA	TGA	AACT	TAACAC	3	1631
50	AAT	GGAA	ATT	GCTA	TTTC	тт т	TTAA	ATGG	c cc	ATTT	TCCA	AAA	CAAG	TGT	TGAA	TAACC	A	1691
	ACC	CTGT	TTG	ATAA	AAAC	CC G	AAAT	TACC	A AT	AACA	.CCGG	AGG	TGAG	TTT	AATT	TCTCC	r	1751
	ACC	TTGA	AAA	GATT	TATT	TA G	AATC	GGGA	А ТТ	GACC	TAAT	ATT	GGGT	AAT	TGGA	CCGGA	3	1811
55	ATC	TGCA	ACA	TATT	CTTT	AA C	AACA	ATTI	'A TT	GGCC	AATT!	ттт	GTTT	CCA	AAGG	TGGCC	r	1871
	TAT	TTCT	TTG	GGGG	GGGA	AA G	GAGG	LTAA	'C TC	CGTC	cccc	TCG	TTTT	CAT	CTTC	TAGTT	r	1931
60	GTG	CTAT	TTT	AATA	DTAA	GC C	TTAC	ATTA:	A AA	TTAA.	GTAA	AGA	AATG	TAT	ACCA	CCAAT	r	1991
	TAG	PAAA	TGT	TGCC	TTTT	CT G	PAAT	AAAT "	C TC	GGGT	ACAA	ATC	GGCA	TAA	CATG	AAAAC	С	2051
	PAT	'GGAA	CTA	GAAT	PTATT	T TA	DAAA	raaa:	ניד אי	AGAT	GATC	AT						2093

(2)	INFORMATION	FOR	SEQ	ID	NO:6:
-----	-------------	-----	-----	----	-------

5	(A) LENGTH: 385 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear															
10		(:	ii) 1	MOLE	CULE	TYPI	E: p	rote:	in							
		(;	ki) :	SEQUI	ENCE	DES	CRIP	rion	: SE	Q ID	NO:	5:				
15	Met 1	Glu	Val	Arg	Val 5	Lys	Ala	Leu	Val	His 10	Ser	Ser	Ser	Pro	Ser 15	Pro
	Ala	Leu	Asn	Gly 20	Val	Arg	Lys	Asp	Phe 25	His	Asp	Leu	Gln	Ser 30	Glu	Thr
20	Thr	Cys	Gln 35	Glu	Gln	Ala	Asn	Ser 40	Leu	Lys	Ser	Ser	Ala 45	Ser	His	Asn
25	Gly	Asp 50	Leu	His	Leu	His	Leu 55	Asp	Glu	His	Val	Pro 60	Val	Val	Ile	Gly
23	Leu 65	Met	Pro	Gln	Asp	Туr 70	Ile	Gln	Tyr	Thr	Val 75	Pro	Leu	Asp	Glu	Gly 80
30	Met	Tyr	Pro	Leu	Glu 85	Gly	Ser	Arg	Ser	Туг 90	Cys	Leu	Asp	Ser	Ser 95	Ser
	Pro	Met	Glu	Val 100	Ser	Ala	Val	Pro	Pro 105	Gln	Val	Gly	Gly	Arg 110	Ala	Phe
35	Pro	Glu	Asp 115	Glu	Ser	Gln	Val	Asp 120	Gln	Asp	Leu	Val	Val 125	Ala	Pro	Glu
40	Ile	Phe 130	Val	Asp	Gln	Ser	Val 135	Asn	Gly	Leu	Leu	Ile 140	Gly	Thr	Thr	Gly
40	Val 145	Met	Leu	Gln	Ser	Pro 150	Arg	Ala	Gly	His	Asp 155	Asp	Val	Pro	Pro	Leu 160
4 5	Ser	Pro	Leu	Leu	Pro 165	Pro	Met	Gln	Asn	Asn 170	Gln	Ile	Gln	Arg	Asn 175	Phe
	Ser	Gly	Leu	Thr 180	Gly	Thr	Glu	Ala	His 185	Val	Ala	Glu	Ser	Met 190	Arg	Cys
50	His	Leu	Asn 195	Phe	Asp	Pro	Asn	Ser 200	Ala	Pro	Gly	Val	Ala 205	Arg	Val	Tyr
55	Asp	Ser 210	Val	Gln	Ser	Ser	Gly 215	Pro	Met	Val	Val	Thr 220	Ser	Leu	Thr	Glu
33	Glu 225	Leu	Lys	Lys	Leu	Ala 230	Lys	Gln	Gly	Trp	Туr 235	Trp	Gly	Pro	Ile	Thr 240
60	Arg	Trp	Glu	Ala	Glu 245	Gly	Lys	Leu	Ala	Asn 250	Val	Pro	Asp	Gly	Ser 255	Phe
	Leu	Val	Arg	Asp 260	Ser	Ser	Asp	Asp	Arg 265	Tyr	Leu	Leu	Ser	Leu 270	Ser	Phe

	Arg	Ser	His 275	Gly	Lys	Thr	Leu	His 280	Thr	Arg	Ile	Glu	His 285	Ser	Asn	Gly		
5	Arg	Phe 290	Ser	Phe	Tyr	Glu	Gln 295	Pro	Asp	Val	Glu	Arg 300	Thr	Tyr	Ser	Ile		
	Val 305	Asp	Leu	Ile	Glu	His 310	Ser	Ile	Gln	Gly	Leu 315	Glu	Asn	Gly	Ala	Phe 320		
10	Cys	Tyr	Ser	Arg	Ser 325	Arg	Leu	Pro	Gly	Ser 330	Ala	Thr	Tyr	Pro	Val 335	Arg		
15	Leu	Thr	Asn	Pro 340	Val	Ser	Arg	Phe	Met 345	Gln	Val	Arg	Ser	Leu 350	Gln	Tyr		
	Leu	Cys	Arg 355	Phe	Val	Ile	Arg	Gln 360	Tyr	Thr	Arg	Ile	Asp 365	Leu	Ile	Gln		
20	Lys	Leu 370	Pro	Leu	Pro	Asn	Lys 375	Met	Lys	Asp	Tyr	Leu 380	Gln	Glu	Lys	His		
	Tyr 385																	
25	(2)	INFO	ORMAT	MOIT	FOR	SEQ	ID N	NO:7	:									
30		(i)	(<i>I</i> (I	A) LI 3) TY C) ST	CE CHENGTH PE: TRANI POLO	H: 17 nucl	748 l Leic ESS:	ació sing	pair 1	cs								
		(ii)	MOI	LECUI	LE TY	PE:	cDNA	A										
35		(ix)	•	A) NA	E: AME/F OCATI			1335										
40		(ix)	(1	A) NA B) LO	E: AME/F DCATI THER	ON:	1026	5			"Nuc	cleot	cide	may	be (c or	т	at
4 5	pq	siti	ions	: 102	26, 1	1032,	104	11, 1	1452,	151	10, a	and 1	L567.	. "				
		(ix)	(1	A) N2 B) L(E: AME/F OCATI THER	ON:	945				"Nuc	cleot	ide	may	be A	A or	G	at
50	pq	siti																
55	po	(ix)	(1	A) N2 B) L(D) O'	AME/I CATI THER	ON:	1435 DRMA	FION:	: /no	ote=		cleot	ide	may	be (G or	Т	at
60	pq	(ix)	(1	A) N2 B) L(D) O'	AME/I CATI THER	ON:	1500 CRMA	O PION			"Nuc	cleot	cide	may	be 1	A or	С	at

(ix) FEATURE:

_	posi	(B) L D) O		ION: INF	152 ORMA	1 TION			"Nu	cleo	tide	may	be	A or S	r at	
5 10	·	(A) N B) L D) O	AME/: OCAT: THER	ION:	165	1			"Nu	cleo	tide	may	be	A, C,	or	
15	(i:	x) FE (, (ATUR A) N B) L D) O	E: AME/I OCAT: THER	KEY: ION: INFO	165	4			"Nu	cleo	tide	may	be ·	G, Т,	or	
20	(i:	(ATUR A) N. B) L(E: AME/I OCAT: THER	KEY: ION: INFO	165	6			"Nu	cleo	tide	may	be (G, C,	or	
25	·	()	A) N B) L D) O	AME/I OCAT: THER	ION:	1589 CRMA	910 FION	649 :/no	ote=						A, C,		
30	and :	1672-	1748	. "							165	7-16	61, :	1664	-1667,		
	(x:	i) SE	QUEN	CE DI	ESCR:	IPTI(ON: S	SEQ :	ID NO	0:7:							
35	ATG GAG Met Glu																48
40	CGC CCC																96
45	GCC TTC Ala Phe																144
#J	GTG GTG Val Val 50	l Lys															192
50	GGA TTO Gly Pho 65																240
55	GGC AG			_		_				_	_	_					288
60	CTG GCC																336
	CGT CAG																384

5	GGT Gly	CTC Leu 130	AAC Asn	GAT Asp	GGG Gly	CAG Gln	ATC Ile 135	AAG Lys	ATT Ile	TGG Trp	GAG Glu	GTA Val 140	CAG Gln	ACA Thr	GGC Gly	CTC Leu	432
5	CTG Leu 145	CTT Leu	CTG Leu	AAT Asn	CTT Leu	TCT Ser 150	GGC Gly	CAC His	CAA Gln	GAC Asp	GTC Val 155	GTG Val	AGA Arg	GAT Asp	CTG Leu	AGC Ser 160	480
10	TTC Phe	ACG Thr	CCC Pro	AGC Ser	GGC Gly 165	AGT Ser	TTG Leu	ATT Ile	TTG Leu	GTC Val 170	TCT Ser	GCA Ala	TCC Ser	CGG Arg	GAT Asp 175	AAG Lys	528
15	Thr	Leu	CGA Arg	Ile 180	Trp	Asp	Leu	Asn	Lys 185	His	Gly	Lys	Gln	11e 190	Gln	Val	576
20	Leu	Ser	GGC Gly 195	His	Leu	Gln	Trp	Val 200	Tyr	Cys	Cys	Ser	11e 205	Ser	Pro	Asp	624
25	Cys	Ser 210	ATG Met	Leu	Суѕ	Ser	Ala 215	Ala	Gly	Glu	Lys	Ser 220	Val	Phe	Leu	Trp	672
	Ser 225	Met	CGG Arg	Ser	Tyr	Thr 230	Leu	Ile	Arg	Lys	Leu 235	Glu	Gly	His	Gln	Ser 240	720
30	Ser	Val	GTC Val	Ser	Cys 245	Asp	Phe	Ser	Pro	Asp 250	Ser	Ala	Leu	Leu	Val 255	Thr	768
35	Ala	Ser	TAT Tyr	Asp 260	Thr	Ser	Val	Ile	Met 265	Trp	Asp	Pro	Tyr	Thr 270	Gly	Glu	816
40	Arg	Leu	AGG Arg 275	Ser	Leu	His	His	Thr 280	Gln	Leu	Glu	Pro	Thr 285	Met	Asp	Asp	864
45	AGT Ser	GAC Asp 290	GTC Val	CAC His	ATG Met	AGC Ser	TCC Ser 295	CTG Leu	AGG Arg	TCC Ser	GTG Val	TGC Cys 300	TTC Phe	TCA Ser	CCT Pro	GAA Glu	912
15	GGC Gly 305	TTG Leu	ТАТ Туг	CTC Leu	GCT Ala	ACG Thr 310	GTG Val	GCA Ala	GAT Asp	GAC Asp	AGA Arg 315	CTG Leu	CTC Leu	AGG Arg	ATC Ile	TGG Trp 320	960
50	Ala	Leu		Leu	Lys 325	Ala	Pro	Val	Ala	Phe 330	Ala	Pro	Met	Thr	Asn 335	Gly	1008
55	CTT Leu	TGC Cys	TGC Cys	ACA Thr 340	Phe	TTC Phe	CCA Pro	CAC His	GGT Gly 345	GGA Gly	ATC	ATT Ile	GCC Ala	ACA Thr 350	GGG	ACA Thr	1056
60	AGA Arg	GAT Asp	GGC Gly 355	His	GTC Val	CAG Gln	TTC Phe	TGG Trp 360	Thr	GCT Ala	Pro	AGG Arg	GTC Val 365	Leu	TCC Ser	TCA Ser	1104
	CTG Leu	AAG Lys 370	His	TTA Leu	TGC Cys	CGG Arg	AAA Lys 375	Ala	CTT Leu	CGA Arg	AGT Ser	TTC Phe 380	Leu	ACA Thr	ACT	TAC Tyr	1152

5	CAA GTC CTA GCA CTG CCA ATC CCC AAG AAA ATG AAA GAG TTC CTC ACA Gln Val Leu Ala Leu Pro Ile Pro Lys Lys Met Lys Glu Phe Leu Thr 385 390 395 400	1200
	TAC AGG ACT TTT TAA GCA ACA CCA CAT CTT GTG CTT CTT TGT AGC AGG Tyr Arg Thr Phe * Ala Thr Pro His Leu Val Leu Leu Cys Ser Arg 405 410 415	1248
10	GTA AAT CGT CCT GTC AAA GGG AGT TGC TGG AAT AAT GGG CCA AAC ATC Val Asn Arg Pro Val Lys Gly Ser Cys Trp Asn Asn Gly Pro Asn Ile 420 430	1296
15	TGG TCT TGC ATT GAA ATA GCA TTT CTT TGG GAT TGT GAA TAGAATGTAG Trp Ser Cys Ile Glu Ile Ala Phe Leu Trp Asp Cys Glu 435 440 445	1345
	CAAAACCAGA TTCCAGTGTA CTAGTCATGG GTCTTTCTCT CCCTGGGCAT GTGGAAAGTC	1405
20	AGTCTTAGGA GGGAAGGAGA TTCCACTTGG CACGGGCAAC AGAGCCCTTA CGTTTAAATT	1465
	TTTCAGTCCA GTTATTGAAC AGCAAGTGTT TGAAATCTTT CTGGCTTGTT TTGGATTTCA	1525
25	AAGTGGCAGT TACTGGTGGT TGTTTTTGGA TTTATGGCAA CCAAGTTAGG GCCTCCAGCG	1585
	GTTCCCCCC CCCCCCCCC CCCCCCCCC CCCCCCCCC CCCC	1645
	CCCCTCCACC CCGCCCATCC CCACATCCCC CCCCCCCCC CCCCCCCCC	1705
30	cccccccc cccccccc ccccccccc ccccccccc ccc	1748
	(2) INFORMATION FOR SEQ ID NO:8:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 445 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 	
40	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
45	Met Glu Ala Gly Glu Glu Pro Leu Leu Leu Ala Glu Leu Lys Pro Gly 1 5 10 15	
	Arg Pro His Gln Phe Asp Trp Lys Ser Ser Cys Glu Thr Trp Ser Val 20 25 30	
50	Ala Phe Ser Pro Asp Gly Ser Trp Phe Ala Trp Ser Gln Gly His Cys 35 40 45	
55	Val Val Lys Leu Val Pro Trp Pro Leu Glu Glu Gln Phe Ile Pro Lys 50 55 60	
	Gly Phe Glu Ala Lys Ser Arg Ser Ser Lys Asn Asp Pro Lys Gly Arg 65 70 75 80	
60	Gly Ser Leu Lys Glu Lys Thr Leu Asp Cys Gly Gln Ile Val Trp Gly 85 90 95	
	Leu Ala Phe Ser Pro Trp Pro Ser Pro Pro Ser Arg Lys Leu Trp Ala 100 105 110	

	Arg	His	His 115	Pro	Gln	Ala	Pro	Asp 120	Val	Ser	Cys	Leu	Ile 125	Leu	Ala	Thr
5	Gly	Leu 130	Asn	Asp	Gly	Gln	Ile 135	Lys	Ile	Trp	Glu	Val 140	Gln	Thr	Gly	Leu
	Leu 145	Leu	Leu	Asn	Leu	Ser 150	Gly	His	Gln	Asp	Val 155	Val	Arg	Asp	Leu	Ser 160
10	Phe	Thr	Pro	Ser	Gly 165	Ser	Leu	Ile	Leu	Val 170	Ser	Ala	Ser	Arg	Asp 175	Lys
15	Thr	Leu	Arg	Ile 180	Trp	Asp	Leu	Asn	Lys 185	His	Gly	Lys	Gln	Ile 190	Gln	Val
13	Leu	Ser	Gly 195	His	Leu	Gln	Trp	Val 200	Tyr	Cys	Cys	Ser	Ile 205	Ser	Pro	Asp
20	Cys	Ser 210	Met	Leu	Сув	Ser	Ala 215	Ala	Gly	Glu	Lys	Ser 220	Val	Phe	Leu	Trp
	Ser 225	Met	Arg	Ser	Tyr	Thr 230	Leu	Ile	Arg	Lys	Leu 235	Glu	Gly	His	Gln	Ser 240
25	Ser	Val	Val	Ser	Cys 245	Asp	Phe	Ser	Pro	Asp 250	Ser	Ala	Leu	Leu	Val 255	Thr
30	Ala	Ser	Tyr	Asp 260	Thr	Ser	Val	Ile	Met 265	Trp	Asp	Pro	Tyr	Thr 270	Gly	Glu
30	Arg	Leu	Arg 275	Ser	Leu	His	His	Thr 280	Gln	Leu	Glu	Pro	Thr 285	Met	Asp	Asp
35	Ser	Asp 290	Val	His	Met	Ser	Ser 295	Leu	Arg	Ser	Val	Cys 300	Phe	Ser	Pro	Glu
	Gly 305	Leu	Tyr	Leu	Ala	Thr 310	Val	Ala	Asp	Asp	Arg 315	Leu	Leu	Arg	Ile	Trp 320
40	Ala	Leu	Glu	Leu	Lys 325	Ala	Pro	Val	Ala	Phe 330	Ala	Pro	Met	Thr	Asn 335	Gly
45	Leu	Cys	Суз	Thr 340	Phe	Phe	Pro	His	Gly 345	Gly	Ile	Ile	Ala	Thr 350	Gly	Thr
43	Arg	Asp	Gly 355	His	Val	Gln	Phe	Trp 360	Thr	Ala	Pro	Arg	Val 365	Leu	Ser	Ser
50	Leu	Lys 370	His	Leu	Cys	Arg	Lys 375	Ala	Leu	Arg	Ser	Phe 380	Leu	Thr	Thr	Tyr
	Gln 385		Leu	Ala	Leu	Pro 390	Ile	Pro	Lys	Lys	Met 395	Lys	Glu	Phe	Leu	Thr 400
55	Tyr	Arg	Thr	Phe	* 405	Ala	Thr	Pro	His	Leu 41 0		Leu	Leu	Cys	Ser 415	Arg
60	Val	Asn	Arg	Pro 420		Lys	Gly	Ser	Cys 425		Asn	Asn	Gly	Pro 430	Asn	Ile
00	Trp	Ser	Cys 435		Glu	Ile	Ala	Phe 440		Trp	Asp	Cys	Glu 445			
	121	TNE	MQO:	ጥፐርእነ	#OP	SEO	TD	NO: 9	•							

(2) INFORMATION FOR SEQ ID NO:9:

```
(i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 2198 base pairs
                   (B) TYPE: nucleic acid
 5
                   (C) STRANDEDNESS: single
                   (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: cDNA
10
            (ix) FEATURE:
                   (A) NAME/KEY: CDS
                   (B) LOCATION: 1..1419
15
            (ix) FEATURE:
                   (A) NAME/KEY: misc_feature
                   (B) LOCATION: 1680
                   (D) OTHER INFORMATION: /note= "Nucleotide may be A, C, T,
         or G at positions: 1680, 1691, 1696, 1704, 1707, 1728, 1740,
         1743, 1746, 1755, 1760, 1770, 1773, 1802, 1816, 1817, 1823, 1826, 1827, 1846, 1851, 1857, 1861, 1880, and 1885."
20
            (ix) FEATURE:
                   (A) NAME/KEY: misc_feature
25
                   (B) LOCATION: 1909
                   (D) OTHER INFORMATION: /note= "Nucleotide may be A, C, T,
         or G at positions: 1909, 1917, 1920, 1929, 1946, 1953, 1967-8,
         1980, 1991, 1995, 2001, 2004, 2021, 2033-37, 2039-40, 2042, 2048, 2051, 2054, 2061, 2075, 2081, and 2083-85.
30
            (ix) FEATURE:
                   (A) NAME/KEY: misc_feature
                   (B) LOCATION: 2088
         (D) OTHER INFORMATION: /note= "Nucleotide may be A, C, T, or G at positions: 2088, 2105, 2121, 2124, 2132, 2137, 2147, 2149, 2151-52, 2160, 2165, 2177, 2179 and 2196."
35
            (ix) FEATURE:
                   (A) NAME/KEY: misc_feature
40
                   (B) LOCATION: 494
                   (D) OTHER INFORMATION: /note= "Nucleotide may be A or C at
         position 494.*
           (ix) FEATURE:
45
                   (A) NAME/KEY: misc_feature
                   (B) LOCATION: 498
         (D) OTHER INFORMATION: /note= "Nucleotide may be C or T at positions: 498, 501, 1455, 1524, 1527, 1621, 1829, and 2072."
50
           (ix) FEATURE:
                   (A) NAME/KEY: misc_feature
                   (B) LOCATION: 499
                   (D) OTHER INFORMATION: /note= "Nucleotide may be G or C at
         positions: 499, 1618, and 1664."
55
           (ix) FEATURE:
                   (A) NAME/KEY: misc_feature
                   (B) LOCATION: 1673
                   (D) OTHER INFORMATION: /note= "Nucleotide may be G or T at
60
         position 1673."
           (ix) FEATURE:
                   (A) NAME/KEY: misc_feature
                   (B) LOCATION: 1819
```

(D) OTHER INFORMATION: /note= "Nucleotide may be A, C, or G at positions: 1819, 1840, and 2089."

5	(xi) SE	QUEN	CE D	ESCR:	IPTI	ON:	SEQ :	ID N	0:9:				
10	GGT Gly											 	GAG Glu	48
10	GGA Gly													96
15	GCT Ala													144
20	AAA Lys 50													192
25	AGT Ser													240
30	AAG Lys													288
30	GCC Ala											 		336
35	CAT His													384
40	CAA Gln 130													432
45	CAC His													480
50	ATG Met						_							528
30	TGG Trp													576
55	GAA Glu													624
60	CTG Leu 210													672
	AAT Asn													720

	225					230					235					240		
5	GGT G																	768
10	ATA G																	816
10	ACA A	er																864
15	ATC C Ile L 2																	912
20	GTC C Val H 305																	960
25	TAC T	'rp 'GG	GGT Gly	GTC Val	ATG Met 325	GAC Asp	AAA Lys	TAT Tyr	GCA Ala	GCC Ala 330	GAA Glu	GCT Ala	CTG Leu	CTG Leu	GAA Glu 335	GGA Gly		1008
30	AAG C Lys P																	1056
30	TTA T Leu P	he																1104
35	ATT G	SAG Slu 870	CAG Gln	TGG Trp	AAT Asn	CAT His	AAC Asn 375	TTT Phe	AGC Ser	TTT Phe	GAT Asp	GCC Ala 380	CAT His	GAT Asp	CCT Pro	TGT Cys		1152
40	GTC T Val F 385																	1200
45	CCC A																	1248
50	CGG A	ACG Fhr	TTC Phe	CCC Pro 420	TTT Phe	TCC Ser	TTG Leu	CAG Gln	CAT His 425	ATT Ile	TGC Cys	AGA Arg	ACG Thr	GTT Val 430	ATT Ile	TGT Cys		1296
30	AAT 1 Asn (TGT Cys	ACG Thr 435	ACT Thr	TAC Tyr	GAT Asp	GGC Gly	ATC Ile 440	GAT Asp	GCC Ala	CTT Leu	CCC Pro	ATT Ile 445	CCT Pro	TCG Ser	CCT Pro		1344
55	ATG A	AAA Lys 450	TTG Leu	TAT Tyr	CTG Leu	AAG Lys	GAA Glu 455	TAC Tyr	CAT His	TAT Tyr	AAA Lys	TCA Ser 460	Lys	GTT Val	AGG Arg	TTA Leu		1392
60	CTC I Leu I 465										TGCG	GAG	AGGT	TAGA	AT			1439
	GTCC	ACC	GA ·	GCTT	TTGT	TC C	CTTT	AGTG	A GG	GTTA	ATTT	CGA	GCTT	GGC	GTAA	TCATO	€G	1499

	TCAT	ragei	GT 1	TCC	rgtgi	rg A	YTTA	STTAT	r ccc	GCTC!	ACAA	TTC	CACA	CAA (CATA	CGAGCC	2	1559
	GGAZ	AGCAT	AA A	AGTGT)AAA1	C C	reeco	STGC	TAI	ATGAC	STGA	GCT	AACT	CAC A	ATTA	ATTGGG	3	1619
5	TCGC	CGCTC	CAC 1	rgcco	CGCTT	T C	CAGTO	CGGG	AA A	CTG	rcgt	GCC	AGCT	GCA '	rtac'	IGAAT C	2	1679
	CGCC	CAACI	rcg (CCGG	GACAC	GC GC	STTAC	GCT?	A TTC	GGC	CTC	TTC	ACTT	CCT (CGCT	CACTGA	4	1739
10	CTCC	CTCC	CT C	CGGTC	CTTC	CG CT	GCT	CTAC	C CG	rctco	ccc	ATC	CAAG	CGT :	ATAT	CGCTAT		1799
	cccc	CAGA	CT C	GGA	ACCO	CC GA	ACAC	CCTC	ACA	AAAGO	CTCA	CTG	CTAC	CGT A	ACAC	SCCCTG	} :	1859
	CCGC	CTTI	TC C	TCGT	rccc	C C	ACACO	CTA	A ACA	AGCCC	CTCG	AGTO	CAA	ccc (CGAT	ATACAT	. :	1919
15	CTCT	TCCC	CTC A	ACCC	CTGC	C TO	CTGTC	cccc	CC	rccgi	ACTT	CGCT	rtcc	CCG (TTAE	GCTTTC		1979
	cccc	CCGTA	GT C	CGTC	CTAC	T GO	CGCCC	CGCC	TTC	CCACC	CCTT	CCAC	ccc	rac (STAC	CCCAC		2039
20	cccc	CAAA	CC C	cccc	cccc	T C	CGATA	LAAA	A GTO	CAGCO	SCCT	TCAC	ccc	cc c	GATA	DTAAA!	3	2099
	GTCC	CCTA	CT 1	TCC	ATGT	C TO	cccc	CCGC	G CTC	CTTCT	rcgc	CACC	CAA	CTC A	ACCT	TTCCGG	3 :	2159
	CACI	GCAT	CC G	GTGC	TACC	C TO	CTGI	TTCI	r cci	rccc	CCC						:	2198
25	(2)	INFO	RMAT	NOI	FOR	SEQ	ID 1	NO:10):									
30				(A) (B) (D)	ENCE LEN TYI	GTH: PE: & POLOG	: 473 amino GY:]	ami aci linea	ino a id ar		5							
2 5			·		CULE		_			. TD	NO - 1	١٥.						
35	C1	•		-	Gly		•		-				פוג	*	Ala	Clu		
	1	GIY	GIY	Asp	5	GIY	Arg	Arg	Ser	10	Ser	Ser	ΛIα		15	GIU		
40	Leu	Gly	Glu	Ile 20	Arg	Pro	Glu	Ser	Ala 25	Gln	Lys	Lys	Leu	Pro 30	Leu	Arg		
45	Lys	Ala	Glu 35	Asn	Thr	Ile	Phe	Ile 40	Thr	Leu	Glu	Ile	Val 45	Lys	Asn	Leu		
43	Phe	Lys 50	Met	Ala	Glu	Asn	Asn 55	Ser	Lys	Asn	Val	Asp 60	Val	Arg	Pro	Lys		
50	Thr 65	Ser	Arg	Ser	Arg	Ser 70	Ala	Asp	Arg	Lys	Asp 75	Gly	Tyr	Val	Trp	Ser 80		
	Gly	Lys	Lys	Leu	Ser 85	Trp	Ser	Lys	Lys	Ser 90	Glu	Ser	Суз	Ser	Glu 95	Ser		
55	Glu	Ala	Lys	Lys 100	Gly	Gln	Leu	Ser	Cys 105	Ser	Ser	Ile	Glu	Leu 110	Asp	Leu		
60	Asp	His	Ser 115	Cys	Gly	His	Arg	Phe 120	Leu	Gly	Arg	Ser	Leu 125	Lys	Gln	Lys		
60	Leu	Gln 130	Asp	Ala	Val	Gly	Gln 135	Суѕ	Phe	Pro	Ile	Lys 140	Asn	Cys	Ser	Gly		
	Arg	His	Ser	Pro	Gly	Leu	Pro	Ser	Lys	Arg	Lys	Ile	His	Ile	Ser	Glu		

	145					150					155					160
5	Leu	Met	Leu	Asp	Thr 165	Cys	Pro	Phe	Pro	Pro 170	Arg	Ser	Asp	Leu	Ala 175	Phe
5	Arg	Trp	His	Phe 180	Ile	Lys	Arg	His	Thr 185	Val	Pro	Met	Ser	Pro 190	Asn	Ser
10	Asp	Glu	Trp 195	Val	Ser	Ala	Asp	Leu 200	Ser	Glu	Arg	Lys	Leu 205	Arg	Asp	Ala
	Gln	Leu 210	Lys	Arg	Arg	Asn	Thr 215	Glu	Asp	Asp	Ile	Pro 220	Cys	Phe	Ser	His
15	Thr 225	Asn	Gly	Gln	Pro	Cys 230	Val	Ile	Thr	Ala	Asn 235	Ser	Ala	Ser	Cys	Thr 240
20	Gly	Gly	His	Ile	Thr 245	Gly	Ser	Met	Met	Asn 250	Leu	Val	Thr	Asn	Asn 255	Ser
20	Ile	Glu	Asp	Ser 260	Asp	Met	Asp	Ser	Glu 265	Asp	Glu	Ile	Ile	Thr 270	Leu	Cys
25	Thr	Ser	Ser 275	Arg	Lys	Arg	Asn	Lys 280	Pro	Arg	Trp	Glu	Met 285	Glu	Glu	Glu
	Ile	Leu 290	Gln	Leu	Glu	Ala	Pro 295	Pro	Lys	Phe	His	Thr 300	Gln	Ile	Asp	Tyr
30	Val 305	His	Cys	Leu	Val	Pro 310	Asp	Leu	Leu	Gln	Ile 315	Ser	Asn	Asn	Pro	Cys 320
35	Tyr	Trp	Gly	Val	Met 325	Asp	Lys	Tyr	Ala	Ala 330	Glu	Ala	Leu	Leu	Glu 335	Gly
33	Lys	Pro	Glu	Gly 340	Thr	Phe	Leu	Leu	Arg 345	Asp	Ser	Ala	Gln	Glu 350	Asp	Tyr
40	Leu	Phe	Ser 355	Val	Ser	Phe	Arg	Arg 360	Tyr	Ser	Arg	Ser	Leu 365	His	Ala	Arg
	Ile	Glu 370	Gln	Trp	Asn	His	Asn 375	Phe	Ser	Phe	Asp	Ala 380	His	Asp	Pro	Cys
4 5	Val 385	Phe	His	Ser	Pro	Asp 390	Ile	Thr	Gly	Leu	Leu 395	Glu	His	Tyr	Lys	Asp 400
50	Pro	Ser	Ala	Суѕ	Met 405	Phe	Phe	Glu	Pro	Leu 410	Leu	Ser	Thr	Pro	Leu 415	Ile
30	Arg	Thr	Phe	Pro 420	Phe	Ser	Leu	Gln	His 425	Ile	Cys	Arg	Thr	Val 430	Ile	Cys
55	Asn	Cys	Thr 435	Thr	Tyr	Asp	Gly	Ile 440	Asp	Ala	Leu	Pro	Ile 445	Pro	Ser	Pro
	Met	Lys 450	Leu	Tyr	Leu	Lys	Glu 455	Tyr	His	Tyr	Lys	Ser 460	Lys	Val	Arg	Leu
60	Leu 4 65	Arg	Ile	Asp	Val	Pro 470	Glu	Gln	Gln							
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO:1	1:							

5	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2254 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
10	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1171724	
15	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 740 (D) OTHER INFORMATION: /note= "Nucleotide may be A or C at positions: 740, 797, 2139, and 2184."</pre>	
20	(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 761	
25	(D) OTHER INFORMATION: /note= "Nucleotide may be G or T at positions: 761, 1313, 1508, and 2226."	
30	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 746 (D) OTHER INFORMATION: /note= "Nucleotide may be C or T at positions 746, 1460, 1499, 2009, 2010, 2199, and 2225. "</pre>	
35	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 788 (D) OTHER INFORMATION: /note= "Nucleotide may be A or G at positions 788, 863, 1550, 2178, 2188, 2197, and 2211."</pre>	
40	<pre>(ix) FEATURE:</pre>	
45	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 2058 (D) OTHER INFORMATION: /note= "Nucleotide may be A or T at</pre>	
50	positions 2058, and 2128." (ix) FEATURE: (A) NAME/KEY: misc_feature	
55	<pre>(B) LOCATION: 2251 (D) OTHER INFORMATION: /note= "Nucleotide may be A, C, T, or G at position 2251."</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
60	CTCGGGCCGG GATGGATCCG CCGGGAAGAG GAAGACAAGC GGAGCGTTGA GCCCCTGCGC	60
OU.	ACGGTGCCCC GCGCGTAGTG GGAGCTTACT CGCAGTAGCT CTCGCTCTTC TAATCA	.116
	ATG GAT AAA GTG GGG AAA ATG TGG AAC AAC TTA AAA TAC AGA TGC CAG Met Asp Lys Val Gly Lys Met Trp Asn Asn Leu Lys Tyr Arg Cys Gln	164

	1				5					10					15		
5	AAT Asn	CTC Leu	TTC Phe	AGC Ser 20	CAC His	GAG Glu	GGA Gly	GGA Gly	AGC Ser 25	CGT Arg	AAT Asn	GAG Glu	AAC Asn	GTG Val 30	GAG Glu	ATG Met	212
10						CCG Pro											260
10	GAG Glu	GCA Ala 50	GCT Ala	CCC Pro	CAG Gln	CAA Gln	GAG Glu 55	AGC Ser	AGT Ser	CCC Pro	TTA Leu	AGA Arg 60	GAA Glu	AAT Asn	GTT Val	GCC Ala	308
15	TTA Leu 65	CAG Gln	CTG Leu	GGA Gly	CTG Leu	AGC Ser 70	CCT Pro	TCC Ser	AAG Lys	ACC Thr	TTT Phe 75	TCC Ser	AGG Arg	CGG Arg	AAC Asn	CAA Gln 80	356
20	AAC Asn	TGT Cys	GCC Ala	GCA Ala	GAG Glu 85	ATC Ile	CCT Pro	CAA Gln	GTG Val	GTT Val 90	GAA Glu	ATC Ile	AGC Ser	ATC Ile	GAG Glu 95	AAA Lys	404
25						GCC Ala											452
30	TCC Ser	TAC Tyr	TCG Ser 115	CGG Arg	CAC His	GCC Ala	CCG Pro	TGG Trp 120	GGA Gly	GGA Gly	AAG Lys	AAG Lys	AAA Lys 125	CAT His	TCC Ser	TGT Cys	500
30						AGT Ser											548
35						CAG Gln 150											596
40						AGC Ser											644
4 5						CAG Gln											692
50						TCA Ser											740
						ATG Met											788
55						TGG Trp 230											836
60						TTT Phe											884
						GAT Asp											932

				260					265					270			
5						CCC Pro											980
10						AAT Asn											1028
10	CCT Pro 305	GGA Gly	ATG Met	ACT Thr	GAA Glu	ATA Ile 310	AGT Ser	GGG Gly	GAC Asp	AGT Ser	TCT Ser 315	GCA Ala	ATT Ile	CCA Pro	CAA Gln	GCT Ala 320	1076
15						GAG Glu											1124
20						CAG Gln											1172
25	AGA Arg	CAG Gln	GGA Gly 355	GCT Ala	TGG Trp	AAA Lys	GTC Val	CAC His 360	ACA Thr	CAG Gln	ATT Ile	GAT Asp	TAC Tyr 365	ATA Ile	CAC His	TGC Cys	1220
30						CTT Leu											1268
30						GAA Glu 390											1316
35						AGG Arg											1364
40						ACA Thr											1412
45						AGC Ser											1460
50						GGG Gly											1508
30						CCG Pro 470											1556
55						тат Тут											1604
60				_	_	GAC Asp											1652
						CAT His											1700

	515	520	525	
5	GAA CGA GAA CCA GTC AA Glu Arg Glu Pro Val Ly 530		CC GGTCCCCAAA GGGTGTTAAC	1754
	TAGGTCCGCT TTCATGTGCA	TCAGACAGTA CACCTATA	AGC AAGCACACGT AGCAGTGTTA	1814
10	GGCTTTTTCA TACAGTATGT	AAGCTTAGTG TTAGTATO	CTG TCAGATGCTA CCTGCTGTTA	1874
10	CTTATTCAGA TAAACATGGT	GCCTATTGGA ACAATAGG	CGG ATAGAGCTAC AGGTGTTCAG	1934
	TAAGACTACA AAAACATTTT	GCCTATTTCG CTAACAG	TTT GGTTTTTAAT GGCTGTGGTA	1994
15	TTTGAGTGAG GCAACCCTGG	GGCATTTGTT ATGAAGA	ATT CTATTTCTTA CTGAAGAACA	2054
	AATAATTAAT ATTGGATGAG	TATTTCAACA GTGTGAC	PAA TGTTTGAAAT TATTTTTCC	2114
20	TAAGAGTTTT TCCTATAACC	TTCCAAAAGT CGTGATG	TTT GTAGTTACCA TAATCCAGCT	2174
20	TTGAAGTCCA AAAGGATTAA	AGGCCGCCTC CCTTTGAZ	AAA ATGCCATTTC CGGCCCCAAG	2234
	GCCTAGTGCC GTCCCTCCGG			2254
25	(2) INFORMATION FOR SE	EO ID NO:12:		
30	(B) TYPE:	TH: 536 amino acids : amino acid LOGY: linear		
35		ESCRIPTION: SEQ ID	νο·12·	
33			Leu Lys Tyr Arg Cys Gln	
	1 5	10	15	
40	Asn Leu Phe Ser His G	lu Gly Gly Ser Arg . 25	Asn Glu Asn Val Glu Met 30	
	Asn Pro Asn Arg Cys Pro 35	ro Ser Val Lys Glu 40	Lys Ser Ile Ser Leu Gly 45	
45	Glu Ala Ala Pro Gln G 50	ln Glu Ser Ser Pro 55	Leu Arg Glu Asn Val Ala 60	
50		er Pro Ser Lys Thr 70	Phe Ser Arg Arg Asn Gln 75 80	
	Asn Cys Ala Ala Glu I 85	le Pro Gln Val Val 90	Glu Ile Ser Ile Glu Lys 95	
55	Asp Ser Asp Ser Gly A 100	la Thr Pro Gly Thr 105	Arg Leu Ala Arg Arg Asp 110	
60	Ser Tyr Ser Arg His A 115	la Pro Trp Gly Gly 120	Lys Lys His Ser Cys 125	
30	Ser Thr Lys Thr Gln S 130	er Ser Leu Asp Thr 135	Glu Lys Lys Phe Gly Arg 140	
	Thr Arg Ser Gly Leu G	In Arg Arg Glu Arg	Arg Tyr Gly Val Ser Ser	

	145					150					155					160
_	Met	Gln	Asp	Met	Asp 165	Ser	Val	Ser	Ser	Arg 170	Ala	Val	Gly	Ser	Arg 175	Ser
5	Leu	Arg	Gln	Arg 180	Leu	Gln	Asp	Thr	Val 185	Gly	Leu	Cys	Phe	Pro 190	Met	Arg
10	Thr	Tyr	Ser 195	Lys	Gln	Ser	Lys	Pro 200	Leu	Phe	Ser	Asn	Lys 205	Arg	Lys	Ile
	His	Leu 210	Ser	Glu	Leu	Met	Leu 215	Glu	Lys	Суѕ	Pro	Phe 220	Pro	Ala	Gly	Ser
15	Asp 225	Leu	Ala	Gln	Lys	Trp 230	His	Leu	Ile	Lys	Gln 235	His	Thr	Ala	Pro	Val 240
20	Ser	Pro	His	Ser	Thr 245	Phe	Phe	Asp	Thr	Phe 250	Asp	Pro	Ser	Leu	Val 255	Ser
20	Thr	Glu	Asp	Glu 260	Glu	Asp	Arg	Leu	Arg 265	Glu	Arg	Arg	Arg	Leu 270	Ser	Ile
25	Glu	Glu	Gly 275	Val	Asp	Pro	Pro	Pro 280	Asn	Ala	Gln	Ile	His 285	Thr	Phe	Glu
	Ala	Thr 290	Ala	Gln	Val	Asn	Pro 295	Leu	Phe	Lys	Leu	Gly 300	Pro	Lys	Leu	Ala
30	Pro 305	Gly	Met	Thr	Glu	Ile 310	Ser	Gly	Asp	Ser	Ser 315	Ala	Ile	Pro	Gln	Ala 320
35	Asn	Cys	Asp	Ser	Glu 325	Glu	Asp	Thr	Thr	Thr 330	Leu	Cys	Leu	Gln	Ser 335	Arg
33	Arg	Gln	Lys	Gln 340	Arg	Gln	Ile	Ser	Gly 345	Asp	Ser	His	Thr	His 350	Val	Ser
40	Arg	Gln	Gly 355	Ala	Trp	Lys	Val	His 360	Thr	Gln	Ile	Asp	Tyr 365	Ile	His	Cys
	Leu	Val 370	Pro	Asp	Leu	Leu	Gln 375	Ile	Thr	Gly	Asn	Pro 380	Cys	Tyr	Trp	Gly
45	Val 385	Met	Asp	Arg	Tyr	Glu 390	Ala	Glu	Ala	Leu	Ser 395	Glu	Gly	Lys	Pro	Glu 400
50	Gly	Thr	Phe	Leu	Leu 405	Arg	Asp	Ser	Ala	Gln 410	Glu	Asp	Tyr	Leu	Phe 415	Ser
30	Val	Ser	Ser	Ala 420	Ala	Thr	Thr	Gly	Ser 425	Leu	His	Ala	Arg	Ile 430	Glu	Gln
55	Trp	Asn	His 435	Asn	Phe	Ser	Phe	Asp 440	Ala	His	Asp	Pro	Cys 445	Val	Phe	His
	Ser	Ser 450	Thr	Val	Thr	Gly	Leu 455	Leu	Glu	His	Туг	Lys 460	Asp	Pro	Ser	Ser
60	Cys 465	Met	Phe	Phe	Glu	Pro 470	Leu	Leu	Thr	Ile	Ser 475	Leu	Asn	Arg	Thr	Phe 480
	Pro	Phe	Ser	Leu	Gln 485	Tyr	Ile	Cys	Arg	Ala 490	Val	Ile	Cys	Arg	Cys 495	Thr

	Thr Tyr Asp Gly Ile Asp Gly Leu Pro Leu Pro Ser Met Leu Gln Asp 500 505 510	
5	Phe Leu Lys Glu Tyr His Tyr Lys Gln Lys Val Arg Val Arg Trp Leu 515 520 525	
10	Glu Arg Glu Pro Val Lys Ala Lys 530 535	
10	(2) INFORMATION FOR SEQ ID NO:13:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2206 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(ii) MOLECULE TYPE: cDNA	
25	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 21375	
23	(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 2078	
30	(D) OTHER INFORMATION: /note= "Nucleotide may be A, C, T, or G at positions: 2078, and 2116."	
35	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 2063 (D) OTHER INFORMATION: /note= "Nucleotide may be G or C at position 2063."</pre>	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: G GAG CGC GGC CTG GAG ACT AAC AGC TGC TCG GAA GAG GAG CTC AGC	46
	Glu Arg Gly Leu Glu Thr Asn Ser Cys Ser Glu Glu Glu Leu Ser 1 5 10 15	
45	AGC CCG GGT CGC GGA GGA GGA GGG GGC GGC CGG CTT CTG CTG CAG CCC Ser Pro Gly Arg Gly Gly Gly Gly Gly Arg Leu Leu Gln Pro 20 25 30	94
50	CCA GGC CCT GAA TTA CCT CCG GTG CCC TTC CCG CTG CAG GAC TTG GTC Pro Gly Pro Glu Leu Pro Pro Val Pro Phe Pro Leu Gln Asp Leu Val 35 40 45	142
55	CCT CTG GGG CGC CTG AGT AGA GGG GAG CAG CAG CAG CAG CAG CAG CAG	190
60	CAA CCT CCC CCG CCC CCG CCT CCT CCC GGG CCC CTC CGG CCA CTC GCG Gln Pro Pro Pro Pro Pro Pro Pro Gly Pro Leu Arg Pro Leu Ala 65 70 75	238
60	GGT CCT TCT CGG AAG GGC TCC TTC AAA ATC CGC CTC AGT CGC CTC TTT Gly Pro Ser Arg Lys Gly Ser Phe Lys Ile Arg Leu Ser Arg Leu Phe	286

WO 99/03993 PCT/US98/14544

			TGC Cys 100							334
5			GGA Gly							382
10			GCG Ala							430
15		_	CAA Gln							478
20			ACT Thr							526
			CCA Pro 180							574
25			CTA Leu							622
30			ATG Met							670
35			CAT His							718
40			TCC Ser							766
			CCT Pro 260							814
45			GGT Gly							862
50			AAA Lys							910
55			CGT Arg							958
60			ACT Thr						1	006
			AAG Lys 340						1	054

	ATT AAG AGA GCC ATT ATG CAC TCC AAG AAT GGA AAG TTT CTC TAT TTC Ile Lys Arg Ala Ile Met His Ser Lys Asn Gly Lys Phe Leu Tyr Phe 355 360 365	1102
5	TTA AGA TCC AGG GTT CCA GGA CTG CCA CCA ACT CCT GTC CAG CTG CTC Leu Arg Ser Arg Val Pro Gly Leu Pro Pro Thr Pro Val Gln Leu Leu 370 375 380	1150
10	TAT CCA GTG TCC CGA TTC AGC AAT GTC AAA TCC CTC CAG CAC CTT TGC Tyr Pro Val Ser Arg Phe Ser Asn Val Lys Ser Leu Gln His Leu Cys 385 390 395	1198
15	AGA TTC CGG ATA CGA CAG CTC GTC AGG ATA GAT CAC ATC CCA GAT CTC Arg Phe Arg Ile Arg Gln Leu Val Arg Ile Asp His Ile Pro Asp Leu 400 415	1246
20	CCA CTG CCT AAA CCT CTG ATC TCT TAT ATC CGA AAG TTC TAC TAC TAT Pro Leu Pro Lys Pro Leu Ile Ser Tyr Ile Arg Lys Phe Tyr Tyr 420 425 430	1294
2,0	GAT CCT CAG GAA GAG GTA TAC CTG TCT CTA AAG GAA GCG CAG CTC ATT Asp Pro Gln Glu Val Tyr Leu Ser Leu Lys Glu Ala Gln Leu Ile 435 440 445	1342
25	TCC AAA CAG AAG CAA GAG GTG GAA CCC TCC ACG TAGCGAGGGG CTCCCTGCTG Ser Lys Gln Lys Gln Glu Val Glu Pro Ser Thr 450 455	1395
30	GTCACCACCA AGGGCATTTG GTTGCCAAGC TCCAGCTTTG AAGAACCAAA TTAAGCTACC	1455
	ATGAAAAGAA GAGGAAAAGT GAGGGAACAG GAAGGTTGGG ATTCTCTGTG CAGAGACTTT GGTTCCCCAC GCAGCCCTGG GGCTTGGAAG AAGCACATGA CCGTACTCTG CGTGGGGCTC	1515 1575
35	CACCTCACAC CCACCCCTGG GCATCTTAGG ACTGGAGGGG CTCCTTGGAA AACTGGAAGA	1635
	AGTCTCAACA CTGTTTCTTT TTCAAAAAAA AAAAAAAAA AGATGCGGCC GCAAGCTTAT TCCCTTTAGT GAGGGTTAAT TTTAGCTTGG CACTGGCCGT CGTTTTACAA CGTCGTGACT	1695 1755
40	GGGAAAACCC TGGCGTTACC CAACTTAATC GCCTTGCAGC ACATCCCCCT TTCGCCAGCT	1815
	GGCGTAATAG CGAAGAGGCC CGCACCGATC GCCCTTCCCA ACAGTTGCGC AGCCTGAATG	1875
4 5	GCGAATGGGA CGCGCCCTGT AGCGGCGCAT TAACGCGCGG CGGGTGTGGT GGTTACGCGC	1935
	AGCGTGACCG CTACACTTGC CAGCGCCCTA CGCCCGCTCC TTTCGCTTTC TTCCCTTCCT	1995
50	TTCTCGCCAC GTTCGCCGGC TTTCCCCGTC AACTCTAAAT CGGGGGCTCC CTTTAGGTTC	2055
	CGATTTACTG CTTTACGCAC TCCACCCCAA AACTTGATTA GGTGATGTCA CTTATGGCAC	2115
	CCCTGATAAC GTTTCCCCTT ACTTTGATCA CTTCTTTATA TGATCTTTCC AATGAAACAT	2175
55	CACCTACTCG TCATCTTTAT TTAAAGATTT G	2206

(2) INFORMATION FOR SEQ ID NO:14:

60

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 458 amino acids
(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

5	Glu 1	Arg	Gly	Leu	Glu 5	Thr	Asn	Ser	Cys	Ser 10	Glu	Glu	Glu	Leu	Ser 15	Ser
10	Pro	Gly	Arg	Gly 20	Gly	Gly	Gly	Gly	Gly 25	Arg	Leu	Leu	Leu	Gln 30	Pro	Pro
10	Gly	Pro	Glu 35	Leu	Pro	Pro	Val	Pro 40	Phe	Pro	Leu	Gln	Asp 45	Leu	Val	Pro
15	Leu	Gly 50	Arg	Leu	Ser	Arg	Gly 55	Glu	Gln	Gln	Gln	Gln 60	Gln	Gln	Gln	Gln
	Pro 65	Pro	Pro	Pro	Pro	Pro 70	Pro	Pro	Gly	Pro	Leu 75	Arg	Pro	Leu	Ala	Gly 80
20	Pro	Ser	Arg	Lys	Gly 85	Ser	Phe	Lys	Ile	Arg 90	Leu	Ser	Arg	Leu	Phe 95	Arg
25	Thr	Lys	Ser	Cys 100	Asn	Gly	Gly	Ser	Gly 105	Gly	Gly	Asp	Gly	Thr 110	Gly	Lys
	Arg	Pro	Ser 115	Gly	Glu	Leu	Ala	Ala 120	Ser	Ala	Ala	Ser	Leu 125	Thr	Asp	Met
30	Gly	Gly 130	Ser	Ala	Gly	Arg	Glu 135	Leu	Asp	Ala	Gly	Arg 140	Lys	Pro	Lys	Leu
	Thr 145	Arg	Thr	Gln	Ser	Ala 150	Phe	Ser	Pro	Val	Ser 155	Phe	Ser	Pro	Leu	Phe 160
35	Thr	Gly	Glu	Thr	Val 165	Ser	Leu	Val	qaA	Val 170	Asp	Ile	Ser	Gln	Arg 17 5	Gly
40	Leu	Thr	Ser	Pro 180	His	Pro	Pro	Thr	Pro 185	Pro	Pro	Pro	Pro	Arg 190	Arg	Ser
	Leu	Ser	Leu 195	Leu	Asp	Ąsp	Ile	Ser 200	Gly	Thr	Leu	Pro	Thr 205	Ser	Val	Leu
45	Val	Ala 210	Pro	Met	Gly	Ser	Ser 215	Leu	Gln	Ser	Phe	Pro 220	Leu	Pro	Pro	Pro
	Pro 225	Pro	Pro	His	Ala	Pro 230	qaA	Ala	Phe	Pro	Arg 235	Ile	Ala	Pro	Ile	Arg 240
50	Ala	Ala	Glu	Ser	Leu 245	His	Ser	Gln	Pro	Pro 250	Gln	His	Leu	Gln	Cys 255	Pro
55	Leu	Tyr	Arg	Pro 260	Asp	Ser	Ser	Ser	Phe 265	Ala	Ala	Ser	Leu	Arg 270	Glu	Leu
	Glu	Lys	Cys 275	Gly	Trp	Tyr	Trp	Gly 280	Pro	Met	Asn	Trp	Glu 285	Asp	Ala	Glu
60	Met	Lys 290	Leu	Lys	Gly	Lys	Pro 295	Asp	Gly	Ser	Phe	Leu 300	Val	Arg	Asp	Ser
	Ser 305	Asp	Pro	Arg	Tyr	Ile 310	Leu	Ser	Leu	Ser	Phe 315	Arg	Ser	Gln	Gly	11e 320

WO 99/03993 PCT/US98/14544

Thr His His Thr Arg Met Glu His Tyr Arg Gly Thr Phe Ser Leu Trp

30

Cys His Pro Lys Phe Glu Asp Arg Cys Gln Ser Val Val Glu Phe Ile 5

Lys Arg Ala Ile Met His Ser Lys Asn Gly Lys Phe Leu Tyr Phe Leu 360

Arg Ser Arg Val Pro Gly Leu Pro Pro Thr Pro Val Gln Leu Leu Tyr 10

Pro Val Ser Arg Phe Ser Asn Val Lys Ser Leu Gln His Leu Cys Arg

15

Phe Arg Ile Arg Gln Leu Val Arg Ile Asp His Ile Pro Asp Leu Pro

Leu Pro Lys Pro Leu Ile Ser Tyr Ile Arg Lys Phe Tyr Tyr Asp 20

Pro Gln Glu Glu Val Tyr Leu Ser Leu Lys Glu Ala Gln Leu Ile Ser 440

- Lys Gln Lys Gln Glu Val Glu Pro Ser Thr 25 455
 - (2) INFORMATION FOR SEQ ID NO:15:
- (i) SEQUENCE CHARACTERISTICS: 30
 - (A) LENGTH: 1390 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

35

40

- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 453..1388

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
- 45 (B) LOCATION: 108
 - (D) OTHER INFORMATION: /note= "Nucleotide may be A, C, T, or G at positions: 108, and 109."
 - (ix) FEATURE:
- 50 (A) NAME/KEY: misc_feature
 - (B) LOCATION: 236
 - (D) OTHER INFORMATION: /note= "Nucleotide may be A or G at positions: 236, 238, and 1258."
- 55 (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 233
 - (D) OTHER INFORMATION: /note= "Nucleotide may be G or T at position 233."
- 60 (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 234
 - (D) OTHER INFORMATION: /note= "Nucleotide may be G or C at

nos	. i .	+ ÷	on	234.	
DOS	51	ᄗ	on	234.	

5	<pre>(ix) FEATURE:</pre>	
10	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 239 (D) OTHER INFORMATION: /note= "Nucleotide may be A or T at</pre>	
15	position 239."	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	CGGACGCGTG GGTTTGGCTG TGAATATTCT ATTTGCTTGC AGTATCTGTT TCTCTTCCTA	60
20	GGCTCAAGTT GGTGACCCAA GCCTATTGTA AACAAGTGAT TATCTCACCG GGAGATGCCA	120
	ATGGAGTAAC AATTTGTTAA CCTTACGTTT TCTGTCTGTA TATTTTTTTA AAAATCTGGT	180
25	AGTTTCTGGA AAAAAAAGAG AAGGGGGTTT GTAGTACTTA ACCCTATTTA TTGCCACGAG	240
23	TTTTAGTTAA TTAGTTTTTG GAATAAATGG ATTTCAGTAT AGCTTTGTGG TTAAATTGCA	300
	TTGCCTTTAT TTTATGTTTA GGCTTATTTT TAAATTAACA TTTAACAGAA ACATTTGAAA	360
30	TAGAATTTGC ATGTCTGCCT TAATTAACTT AAAGACTGAT TTTAATCTGA CTATGACACT	420
	GAGCATATTC TTTAAATTAC TCATAATTTA TA ATG CTT AAT ATA ATC TTA ATT Met Leu Asn Ile Ile Leu Ile 1 5	473
35	AAA TTT AGC AGT TTT AGT ATA AGA TGT GCC ATT TTG TCC TCT GTA TGT Lys Phe Ser Ser Phe Ser Ile Arg Cys Ala Ile Leu Ser Ser Val Cys 10 15 20	521
40	CTG AAT GAA GCT ATA ACA TTT GCC TTT TTA TTG CAG GTT TTC CTT TGG Leu Asn Glu Ala Ile Thr Phe Ala Phe Leu Leu Gln Val Phe Leu Trp 25 30 35	569
4 5	AAT ATG GAT AAA TAC ACC ATG ATA CGG AAA CTA GAA GGA CAT CAC CAT Asn Met Asp Lys Tyr Thr Met Ile Arg Lys Leu Glu Gly His His 40 50 55	617
50	GAT GTG GTA GCT TGT GAC TTT TCT CCT GAT GGA GCA TTA CTG GCT ACT Asp Val Val Ala Cys Asp Phe Ser Pro Asp Gly Ala Leu Leu Ala Thr 60 65 70	665
55	GCA TCT TAT GAT ACT CGA GTA TAT ATC TGG GAT CCA CAT AAT GGA GAC Ala Ser Tyr Asp Thr Arg Val Tyr Ile Trp Asp Pro His Asn Gly Asp 75 80 85	713
	ATT CTG ATG GAA TTT GGG CAC CTG TTT CCC CCA CCT ACT CCA ATA TTT Ile Leu Met Glu Phe Gly His Leu Phe Pro Pro Pro Thr Pro Ile Phe 90 95 100	761
60	GCT GGA GGA GCA AAT GAC CGG TGG GTA CGA TCT GTA TCT TTT AGC CAT Ala Gly Gly Ala Asn Asp Arg Trp Val Arg Ser Val Ser Phe Ser His 105 110 115	809
	GAT GGA CTG CAT GTT GCA AGC CTT GCT GAT GAT AAA ATG GTG AGG TTC	857

	Asp 120	Gly	Leu	His	Val	Ala 125	Ser	Leu	Ala	Asp	Asp 130	Lys	Met	Val	Arg	Phe 135	
5		AGA Arg															905
10		CTT Leu															953
15		CAT His															1001
13		CTG Leu 185															1049
20		GAA Glu															1097
25		TAT Tyr															1145
30		ATA Ile															1193
25		TTA Leu															1241
35		TTT Phe 265															1289
40		TTT Phe															1337
45		AAC Asn															1385
50	AAT Asn																1390

(2) INFORMATION FOR SEQ ID NO:16:

55 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 312 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- 60 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Leu Asn Ile Ile Leu Ile Lys Phe Ser Ser Phe Ser Ile Arg Cys

	1				5					10					15	
5	Ala	Ile	Leu	Ser 20	Ser	Val	Cys	Leu	Asn 25	Glu	Ala	Ile	Thr	Phe 30	Ala	Phe
J	Leu	Leu	Gln 35	Val	Phe	Leu	Trp	Asn 40	Met	Asp	Lys	Tyr	Thr 45	Met	Ile	Arg
10	Lys	Leu 50	Glu	Gly	His	His	His 55	Asp	Val	Val	Ala	Cys 60	Asp	Phe	Ser	Pro
	Asp 65	Gly	Ala	Leu	Leu	Ala 70	Thr	Ala	Ser	Tyr	Asp 75	Thr	Arg	Val	Tyr	Ile 80
15	Trp	Asp	Pro	His	Asn 85	Gly	Asp	Ile	Leu	Met 90	Glu	Phe	Gly	His	Leu 95	Phe
20	Pro	Pro	Pro	Thr 100	Pro	Ile	Phe	Ala	Gly 105	Gly	Ala	Asn	Asp	Arg 110	Trp	Val
	Arg	Ser	Val 115	Ser	Phe	Ser	His	Asp 120	Gly	Leu	His	Val	Ala 125	Ser	Leu	Ala
25	Asp	Asp 130	Lys	Met	Val	Arg	Phe 135	Trp	Arg	Ile	Asp	Glu 140	Asp	Tyr	Pro	Val
	Gln 145	Val	Ala	Pro	Leu	Ser 150	Asn	Gly	Leu	Cys	Cys 155	Ala	Phe	Ser	Thr	Asp 160
30	Gly	Ser	Val	Leu	Ala 165	Ala	Gly	Thr	His	Asp 170	Gly	Ser	Val	Tyr	Phe 175	Trp
35	Ala	Thr	Pro	Arg 180	Gln	Val	Pro	Ser	Leu 185	Gln	His	Leu	Cys	Arg 190	Met	Ser
	Ile	Arg	Arg 195	Val	Met	Pro	Thr	Gln 200	Glu	Val	Gln	Glu	Leu 205	Pro	Ile	Pro
40	Ser	Lys 210	Leu	Leu	Glu	Phe	Leu 215	Ser	Tyr	Arg	Ile	* 220	Lys	Ile	Leu	Pro
	Ser 225	Leu	Val	Val	Gly	Thr 230	Asp	Arg	Ile	His	Leu 235	Thr	Gln	Thr	Ser	Ser 240
45	Phe	Thr	Asp	Phe	Asn 245	Tyr	Leu	Phe	Leu	Lys 250	Thr	*	Lys	Ile	Туr 255	Leu
50	Ile	*	Туr	Val 260	Leu	Val	Leu	His	Phe 265	Asp	Gln	Leu	Lys	Leu 270	Leu	Lys
	Tyr	Tyr	Leu 275	*	Thr	Ile	Glu	Val 280	Phe	Leu	Asn	Ile	Ser 285	Asn	Ile	Asn
55	Phe	Phe 290	Lys	Asp	Leu	Thr	Val 295	Lys	Asn	Ile	His	Thr 300	Суѕ	Thr	Tyr	Leu
	Asp 305	Ile	Ser	Сув	Tyr	Met 310	Leu	Asn								
60	(2)	INF	ORMA'	TION	FOR	SEO	ID I	10:1	7:							

- - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 257 amino acids
 (B) TYPE: amino acid

10) STRANDEDNESS:	not	relevant
) STRANDEDNESS:	HOL	rerevant

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

5

10	(xi)	SEQ	UENCI	E DES	SCRII	PTIOI	N: S1	EQ II	O NO:	:17:						
10	Met 1	Val	Leu	Cys	Val 5	Gln	Gly	Ser	Cys	Pro 10	Leu	Leu	Ala	Val	Glu 15	Gln
15	Ile	Gly	Arg	Arg 20	Pro	Leu	Trp	Ala	Gln 25	Ser	Leu	Glu	Leu	Pro 30	Gly	Pro
	Ala	Met	Gln 35	Pro	Leu	Pro	Thr	Gly 40	Ala	Phe	Pro	Glu	Glu 45	Val	Thr	Glu
20	Glu	Thr 50	Pro	Val	Gln	Ala	Glu 55	Asn	Glu	Pro	Lys	Val 60	Leu	Asp	Pro	Glu
25	Gly 65	Asp	Leu	Leu	Cys	11e 70	Ala	Lys	Thr	Phe	Ser 75	Tyr	Leu	Arg	Glu	Ser 80
23	Gly	Trp	Tyr	Trp	Gly 85	Ser	Ile	Thr	Ala	Ser 90	Glu	Ala	Arg	Gln	His 95	Leu
30	Gln	Lys	Met	Pro 100	Glu	Gly	Thr	Phe	Leu 105	Val	Arg	Asp	Ser	Thr 110	His	Pro
	Ser	Tyr	Leu 115	Phe	Thr	Leu	Ser	Val 120	Lys	Thr	Thr	Arg	Gly 125	Pro	Thr	Asn
35	Val	Arg 130	Ile	Glu	Tyr	Ala	Asp 135	Ser	Ser	Phe	Arg	Leu 140	Asp	Ser	Asn	Cys
40	Leu 145	Ser	Arg	Pro	Arg	Ile 150	Leu	Ala	Phe	Pro	Asp 155	Val	Val	Ser	Leu	Val 160
	Gln	His	Tyr	Val	Ala 165	Ser	Cys	Ala	Ala	Asp 170	Thr	Arg	Ser	Asp	Ser 175	Pro
45	Asp	Pro	Ala	Pro 180	Thr	Pro	Ala	Leu	Pro 185	Met	Ser	Lys	Gln	Asp 190	Ala	Pro
	Ser	Asp	Ser 195	Val	Leu	Pro	Ile	Pro 200	Val	Ala	Thr	Ala	Val 205	His	Leu	Lys
50	Leu	Val 210	Gln	Pro	Phe	Val	Arg 215	Arg	Ser	Ser	Ala	Arg 220	Ser	Leu	Gln	His
55	Leu 225		Arg	Leu	Val	Ile 230	Asn	Arg	Leu	Val	Ala 235	Asp	Val	Asp	Cys	Leu 240
33	Pro	Leu	Pro	Arg	Arg 245	Met	Ala	Asp	Tyr	Leu 250	Arg	Gln	Tyr	Pro	Phe 255	Gln
60	Leu															

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

5	(ii)	(B) (C) (D)	TYI STI	NGTH: PE: 6 RANDI POLOG	amino EDNES GY:	o aci SS: r linea	id not m									
10	(xi)	SEQU	JENCI	E DES	SCRII	PTIO	N: S1	EQ II	on c	:18:						
1 F	Met 1	Val	Ala	His	Asn 5	Gln	Val	Ala	Ala	Asp 10	Asn	Ala	Val	Ser	Thr 15	Ala
15	Ala	Glu	Pro	Arg 20	Arg	Arg	Pro	Glu	Pro 25	Ser	Ser	Ser	Ser	Ser 30	Ser	Ser
20	Pro	Ala	Ala 35	Pro	Ala	Arg	Pro	Arg 40	Pro	Суз	Pro	Ala	Val 45	Pro	Ala	Pro
	Ala	Pro 50	Gly	Asp	Thr	His	Phe 55	Arg	Thr	Phe	Arg	Ser 60	His	Ala	Asp	Tyr
25	Arg 65	Arg	Ile	Thr	Arg	Ala 70	Ser	Ala	Leu	Leu	Asp 75	Ala	Cys	Gly	Phe	Tyr 80
20	Trp	Gly	Pro	Leu	Ser 85	Val	His	Gly	Ala	His 90	Glu	Arg	Leu	Arg	Ala 95	Glu
30	Pro	Val	Gly	Thr 100	Phe	Leu	Val	Arg	Asp 105	Ser	Arg	Gln	Arg	Asn 110	Cys	Phe
35	Phe	Ala	Leu 115	Ser	Val	Lys	Met	Ala 120	Ser	Gly	Pro	Thr	Ser 125	Ile	Arg	Val
	His	Phe 130	Gln	Ala	Gly	Arg	Phe 135	His	Leu	Asp	Gly	Ser 140	Arg	Glu	Ser	Phe
40	Asp 145	Cys	Leu	Phe	Glu	Leu 150	Leu	Glu	His	Tyr	Val 155	Ala	Ala	Pro	Arg	Arg 160
45	Met	Leu	Gly	Ala	Pro 165	Leu	Arg	Gln	Arg	Arg 170	Val	Arg	Pro	Leu	Gln 175	Glu
45	Leu	Cys	Arg	Gln 180	Arg	Ile	Val	Ala	Thr 185	Val	Gly	Arg	Glu	Asn 190	Leu	Ala
50	Arg	Ile	Pro 195	Leu	Asn	Pro	Val	Leu 200	Arg	Asp	Tyr	Leu	Ser 205	Ser	Phe	Pro
	Phe	Gln 210														
55	(2) INFO			FOR S												

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

5	(xi)	SEQ	UENC	E DES	SCRII	PTIO	1: SI	EQ II	ои с	:19:						
,	Met 1	Val	Ala	Arg	Asn 5	Gln	Val	Ala	Ala	Asp 10	Asn	Ala	Ile	Ser	Pro 15	Ala
10	Ala	Glu	Pro	Arg 20	Arg	Arg	Ser	Glu	Pro 25	Ser	Ser	Ser	Ser	Ser 30	Ser	Ser
	Ser	Pro	Ala 35	Ala	Pro	Val	Arg	Pro 40	Arg	Pro	Cys	Pro	Ala 45	Val	Pro	Ala
15	Pro	Ala 50	Pro	Gly	Asp	Thr	His 55	Phe	Arg	Thr	Phe	Arg 60	Ser	His	Ser	Asp
20	Туг 65	Arg	Arg	Ile	Thr	Arg 70	Thr	Ser	Ala	Leu	Leu 75	Asp	Ala	Cys	Gly	Phe 80
	Tyr	Trp	Gly	Pro	Leu 85	Ser	Val	His	Gly	Ala 90	His	Glu	Arg	Leu	Arg 95	Ala
25	Glu	Pro	Val	Gly 100	Thr	Phe	Leu	Val	Arg 105	Asp	Ser	Arg	Gln	Arg 110	Asn	Cys
	Phe	Phe	Ala 115	Leu	Ser	Val	Lys	Met 120	Ala	Ser	G1y	Pro	Thr 125	Ser	Ile	Arg
30	Val	His 130	Phe	Gln	Ala	Gly	Arg 135	Phe	His	Leu	Asp	Gly 140	Ser	Arg	Glu	Thr
35	Phe 145	Asp	Cys	Leu	Phe	Glu 150	Leu	Leu	Glu	His	Tyr 155	Val	Ala	Ala	Pro	Arg 160
,,	Arg	Met	Leu	Gly	Ala 165	Pro	Leu	Arg	Gln	Arg 170	Arg	Val	Arg	Pro	Leu 175	Gln
40	Glu	Leu	Cys	Arg 180	Gln	Arg	Ile	Val	Ala 185	Ala	Val	Gly	Arg	Glu 190	Asn	Leu
	Ala	Arg	Ile 195	Pro	Leu	Asn	Pro	Val 200	Leu	Arg	Asp	Tyr	Leu 205	Ser	Ser	Phe
4 5	Pro	Phe 210	Gln	Ile												
	(2) INFO	RMAT:	ION I	FOR S	SEQ :	ID N	0:20	:								
50	(i)	(A (B (C) LEI) TY:) ST:	E CHA NGTH PE: 8	: 300 amino EDNE:	6 am: o ac: SS: 1	ino a id not a	acid: rele								
55	(ii)	,		POLO				vant								
60	(xi)	SEQ	UENC:	E DE	SCRI.	PTIO	N: S	EQ I	D NO	:20:						
	Ala 1	Leu	Ser	Pro	Ala 5	Ala	Thr	Leu	Thr	Ala 10	Trp	Pro	Ala	Asp	Ser 15	Ala

PCT/US98/14544

	Arg	Arg	Gly	Pro 20	Gly	Cys	Thr	Ala	Ser 25	Gly	Tyr	Pro	Val	Pro 30	Ala	Ala
5	Arg	Ala	Pro 35	Ala	Ala	Gly	Asp	Gln 40	Trp	Val	Thr	Ala	Ala 45	Ala	Arg	Asp
10	Phe	Val 50	Ile	Arg	Pro	Pro	Gly 55	Ser	Gly	Glu	Lys	Glu 60	Pro	His	Pro	Phe
10	Ser 65	Leu	Cys	His	His	Phe 70	Gly	His	Pro	Ala	Gly 75	Leu	Val	Leu	Gly	Phe 80
15	Ala	Leu	Thr	Ser	Arg 85	Lys	Asp	Ala	Asn	Pro 90	Ser	Leu	Thr	Pro	Ala 95	Arg
	Ala	Ala	Thr	Cys 100	Leu	Cys	Arg	Gly	Asp 105	Pro	Ser	Leu	Met	Thr 110	Leu	Arg
20	Cys	Leu	Glu 115	Pro	Ser	Gly	Asn	Gly 120	Gly	Glu	Gly	Thr	Arg 125	Ser	Gln	Trp
25	Gly	Thr 130	Ala	Gly	Ser	Ala	Glu 135	Glu	Pro	Ser	Pro	Gln 140	Ala	Ala	Arg	Leu
	Ala 145	Lys	Ala	Leu	Arg	Glu 150	Leu	Gly	Gln	Thr	Gly 155	Trp	Tyr	Trp	Gly	Ser 160
30	Met	Thr	Val	Asn	Glu 165	Ala	Lys	Glu	Lys	Leu 170	Lys	Glu	Ala	Pro	Glu 175	Gly
	Thr	Phe	Leu	Ile 180	Arg	Asp	Ser	Ser	His 185	Ser	qzA	Tyr	Leu	Leu 190	Thr	Ile
35	Ser	Val	Lys 195	Thr	Ser	Ala	Gly	Pro 200	Thr	Asn	Leu	Arg	Ile 205	Glu	Tyr	Gln
40	Asp	Gly 210	Lys	Phe	Arg	Leu	Asp 215	Ser	Ile	Ile	Cys	Val 220	Lys	Ser	Lys	Leu
10	Lys 225	Gln	Phe	qaA	Ser	Val 230	Val	His	Leu	Ile	Asp 235	Tyr	Tyr	Val	Gln	Met 240
45	Cys	Lys	Asp	Lys	Arg 245	Thr	Gly	Pro	Glu	Ala 250	Pro	Arg	Asn	Gly	Thr 255	Val
	His	Leu	Tyr	Leu 260	Thr	Lys	Pro	Leu	Туг 265	Thr	Ser	Ala	Pro	Ser 270	Leu	Gln
50	His	Leu	Cys 275	Arg	Leu	Thr	Ile	Asn 280	Lys	Cys	Thr	Gly	Ala 285	Ile	Trp	Gly
55	Leu	Pro 290	Leu	Pro	Thr	Arg	Leu 295	Lys	Asp	Tyr	Leu	Glu 300	Glu	Tyr	Lys	Phe
	Gln 305	Val														

(2) INFORMATION FOR SEQ ID NO:21:

60 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 225 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: not relevant

(D)	TOPOLOGY:	linear
-----	-----------	--------

(ii) MOLECULE TYPE: pepti	(ii)	MOLECULE	TYPE:	peptide
---------------------------	------	----------	-------	---------

(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:21:
------	----------	--------------	-----	----	--------

	(xi)	SEQ	JENCI	E DES	SCRI	OITS	1: SI	EQ II	ON C	:21:						
10	Met 1	Val	Thr	His	Ser 5	Lys	Phe	Pro	Ala	Ala 10	Gly	Met	Ser	Arg	Pro 15	Leu
15	Asp	Thr	Ser	Leu 20	Arg	Leu	Lys	Thr	Phe 25	Ser	Ser	Lys	Ser	Glu 30	Tyr	Gln
	Leu	Val	Val 35	Asn	Ala	Val	Arg	Lys 40	Leu	Gln	Glu	Ser	Gly 45	Phe	Tyr	Trp
20	Ser	Ala 50	Val	Thr	Gly	Gly	Glu 55	Ala	Asn	Leu	Leu	Leu 60	Ser	Ala	Glu	Pro
	Ala 65	Gly	Thr	Phe	Leu	Ile 70	Arg	Asp	Ser	Ser	Asp 75	Gln	Arg	His	Phe	Phe 80
25	Ala	Leu	Ser	Val	Lys 85	Thr	Gln	Ser	Gly	Thr 90	Lys	Asn	Leu	Arg	Ile 95	Gln
30	Cys	Glu	Gly	Gly 100	Ser	Phe	Ser	Leu	Gln 105	Ser	Asp	Pro	Arg	Ser 110	Thr	Gln
	Pro	Val	Pro 115	Arg	Phe	Asp	Cys	Val 120	Leu	Lys	Leu	Val	Туг 125	His	Tyr	Met
35	Pro	Pro 130	Pro	Gly	Ala	Pro	Ser 135	Phe	Pro	Ser	Pro	Pro 140	Thr	Glu	Pro	Ser
	Ser 145	Glu	Val	Pro	Glu	Gln 150	Pro	Ser	Ala	Gln	Pro 155	Leu	Pro	Gly	Ser	Pro 160
40	Pro	Arg	Arg	Ala	Туг 165	Tyr	Ile	Tyr	Ser	Gly 170	Gly	Glu	Lys	Ile	Pro 175	Leu
45	Val	Leu	Ser	Arg 180	Pro	Leu	Ser	Ser	Asn 185	Val	Ala	Thr	Leu	Gln 190	His	Leu
	Cys	Arg	Lys 195	Thr	Val	Asn	Gly	His 200	Leu	Asp	Ser	Tyr	Glu 205	Lys	Val	Thr
50	Gln	Leu	Pro	Gly	Pro		Arg		Phe	Leu		Gln	Tyr	Asp	Ala	Pro

Leu 225

50

60

55 (2) INFORMATION FOR SEQ ID NO:22:

210

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 225 amino acids

 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant

215

220

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:																
J	Met 1	Val	Thr	His	Ser 5	Lys	Phe	Pro	Ala	Ala 10	Gly	Met	Ser	Arg	Pro 15	Leu
10	Asp	Thr	Ser	Leu 20	Arg	Leu	Lys	Thr	Phe 25	Ser	Ser	Lys	Ser	Glu 30	Tyr	Gln
	Leu	Val	Val 35	Asn	Ala	Val	Arg	Lys 40	Leu	Gln	Glu	Ser	Gly 45	Phe	Tyr	Trp
15	Ser	Ala 50	Val	Thr	Gly	Gly	Glu 55	Ala	Asn	Leu	Leu	Leu 60	Ser	Ala	Glu	Pro
20	Ala 65	Gly	Thr	Phe	Leu	Ile 70	Arg	Asp	Ser	Ser	Asp 75	Gln	Arg	His	Phe	Phe 80
20	Thr	Leu	Ser	Val	Lys 85	Thr	Gln	Ser	Gly	Thr 90	Lys	Asn	Leu	Arg	Ile 95	Gln
25	Cys	Glu	Gly	Gly 100	Ser	Phe	Ser	Leu	Gln 105	Ser	Asp	Pro	Arg	Ser 110	Thr	Gln
	Pro	Val	Pro 115	Arg	Phe	Asp	Cys	Val 120	Leu	Lys	Leu	Val	His 125	His	Tyr	Met
30	Pro	Pro 130	Pro	Gly	Thr	Pro	Ser 135	Phe	Ser	Leu	Pro	Pro 140	Thr	Glu	Pro	Ser
35	Ser 145	Glu	Val	Pro	Glu	Gln 150	Pro	Pro	Ala	Gln	Ala 155	Leu	Pro	Gly	Ser	Thr 160
	Pro	Lys	Arg	Ala	Туг 165	Tyr	Ile	Tyr	Ser	Gly 170	Gly	Glu	Lys	Ile	Pro 175	Leu
40	Val	Leu	Ser	Arg 180	Pro	Leu	Ser	Ser	Asn 185	Val	Ala	Thr	Leu	Gln 190	His	Leu
	Cys	Arg	Lys 195	Thr	Val	Asn	Gly	His 200	Leu	Asp	Ser	Tyr	Glu 205	Lys	Val	Thr
45	Gln	Leu 210	Pro	Gly	Pro	Ile	Arg 215	Glu	Phe	Leu	Asp	Gln 220	Tyr	Asp	Ala	Pro
50	Leu 225															
	(2) INFO	RMAT:	ION I	FOR :	SEQ :	ID NO	0:23	•								
55	(i)	(A (B (C) LEI) TY!) ST!	E CHANGTH PE: 6 RANDI POLOG	: 510 amino EDNE:	am: ac: SS: 1	ino a id not :	acid								
60	(ii)	MOL	ECUL	E TY	PE: 1	pept:	ide									

	Leu 1	Tyr	Trp	Ser	Ser 5	Thr	Val	Val	Ala	Ala 10	Ala	Leu	Glu	Xaa	Xaa 15	Xaa
5	Xaa	Xaa	Gly	Cys 20	Xaa	Xaa	Xaa	Glu	Xaa 25	Glu	Gly	Val	Arg	Ser 30	Ser	Pro
10	Val	Val	Ser 35	Leu	Ser	Leu	Pro	Leu 40	Xaa	Arg	Ala	Arg	Met 45	Gly	Arg	Ala
	Glu	Leu 50	Leu	Glu	Gly	Lys	Met 55	Ser	Thr	Gln	Asp	Pro 60	Ser	Asp	Leu	Trp
15	Ser 65	Arg	Ser	Asp	Gly	Glu 70	Ala	Glu	Leu	Leu	Gln 75	Asp	Leu	Gly	Trp	Tyr 80
	His	Gly	Asn	Leu	Thr 85	Arg	His	Ala	Ala	Glu 90	Ala	Leu	Leu	Leu	Ser 95	Asn
20	Gly	Cys	Asp	Gly 100	Ser	Tyr	Leu	Leu	Arg 105	Asp	Ser	Asn	Glu	Thr 110	Thr	Gly
25	Leu	Tyr	Ser 115	Leu	Ser	Val	Arg	Ala 120	Lys	Asp	Ser	Val	Lys 125	His	Phe	His
	Va1	Glu 130	Tyr	Thr	Gly	Tyr	Ser 135	Phe	Lys	Phe	Gly	Phe 140	Asn	Glu	Phe	Ser
30	Ser 145	Leu	Lys	Asp	Phe	Val 150	Lys	His	Phe	Ala	Asn 155	Gln	Pro	Leu	Ile	Gly 160
	Ser	Glu	Thr	Gly	Thr 165	Leu	Met	Val	Leu	Lys 170	His	Pro	Tyr	Pro	Arg 175	Lys
35	Val	Xaa	Glu	Pro 180	Ser	Ile	Tyr	Glu	Ser 185	Val	Arg	Val	His	Thr 190	Ala	Met
40	Gln	Thr	Gly 195	Arg	Thr	Glu	Asp	Asp 200	Leu	Val	Pro	Thr	Ala 205	Pro	Ser	Leu
	Gly	Thr 210	Lys	Glu	Gly	Tyr	Leu 215	Thr	Lys	Gln	Gly	Gly 220	Leu	Val	Lys	Thr
45	Trp 225	Lys	Thr	Arg	Trp	Phe 230	Thr	Leu	His	Arg	Asn 235	Glu	Leu	Lys	Tyr	Phe 240
	Lys	Asp	Gln	Met	Ser 245	Pro	Glu	Pro	Ile	Arg 250	Ile	Leu	Asp	Leu	Thr 255	Glu
50	Cys	Ser	Ala	Val 260	Gln	Phe	Asp	Tyr	Ser 265	Gln	Glu	Arg	Val	Asn 270	Cys	Phe
55	Cys	Leu	Val 275	Phe	Pro	Phe	Arg	Thr 280	Phe	Tyr	Leu	Суз	Ala 285	Lys	Thr	Gly
	Val	Glu 290	Ala	Asp	Glu	Trp	11e 295	Lys	Ile	Leu	Arg	Trp 300	Lys	Leu	Ser	Gln
60	Ile 305	Arg	Lys	Gln	Leu	Asn 310	Gln	Gly	Glu	Ala	Arg 315	Ser	Asp	Leu	Gly	Arg 320
	Ser	Ser	Leu	Asn	Arg 325	Ser	Phe	Leu	Pro	Arg 330	Asn	Ala	Leu	Ala	Gln 335	Glu

	Gln	Val	Glu	Cys 340	Phe	Pro	Xaa	Arg	Cys 345	Asp	Leu	Xaa	Gln	Leu 350	Gln	Met	
5	Lys	Thr	Asp 355	Xaa	Asp	Phe	Leu	Ser 360	Lys	Thr	Asn	Gln	Asn 365	Arg	Суѕ	Xaa	
	Leu	Gly 370	Pro	Ile	Tyr	His	Val 375	Ala	Asp	Ser	Leu	Cys 380	Cys	Pro	Ser	Xaa	
10	Met 385	Leu	Pro	Xaa	Pro	Xaa 390	Glu	His	Xaa	Ser	Asn 395	His	His	Xaa	Asp	Arg 400	
15	Lys	Суз	Leu	Asn	His 405	His	Ser	Xaa	Val	Cys 410	Ser	Leu	Leu	Glu	His 41 5	Thr	
	Met	Glu	Glu	Glu 420	Gly	Phe	Leu	Phe	Ser 425	Leu	Ile	Val	Val	Pro 430	Lys	Pro	
20	Ile	Asp	Thr 435	Ser	Cys	Leu	Glu	Ser 440	His	Суз	Glu	Ser	Trp 445	Ser	Ala	Cys	
	Leu	Thr 450	Xaa	Arg	Leu	Cys	Tyr 455	Xaa	Pro	Arg	Arg	Lys 460	Gln	Ile	Leu	Gly	
25	Gly 4 65	Leu	Asp	Asp	Xaa	Cys 470	Arg	Ile	Tyr	Ile	Gln 4 75	Ile	Glu	Asn	Ile	Lys 480	
30	Tyr	Phe	Gln	Gly	Arg 485	Gly	Phe	Phe	Phe	Xaa 490	Phe	Phe	Pro	Leu	Туr 495	Thr	
	Lys	Lys	Lys	Lys 500	Lys	Lys	Leu	Glu	Gly 505	Gly	Pro	Tyr	Pro	Xaa 510			
35	(2) INFOR																
40	(1)	(A) (B) (C)	LEN TYP STF	NGTH: PE: 1 RANDE	RACT 209 ucle DNES	3 ba ic a S: s	se p cid ingl	airs									
40	(ii)				Y: 1 E: c		ır										
45						•											
	(xi)	SEQU	JENCE	E DES	CRIP	TION	i: SE	Q ID	NO:	24:							
- 0	TAAGGTCCA	C GI	CGCI	CCGM	AGC	CATC	ACT	ACAG	KMCC	GC G	CCGT	GGCC	т ст	GCGG	CCCA		60
50	CAAWCTCCG	R GO	SAGAC	CTGC	ATC	AAGA	TGG	AGGT	GAGA	GT C	AAGG	CCTT	G GT	TCAC	тстт		120
	CCAGCCCGA	G TC	CAGO	сстс	AAT	GGCG	TCC	GGAA	GGAT	тт с	CACG	ACCT	C CA	GTCT	GAGA		180
55	CCACGTGCC	A GO	SAGCA	AGCC	' AAT	TCAC	TGA	AGAG	CTCG	GC T	TCTC	ATAA	T GG	AGAC	CTGC		240
	ATCTTCACC	T GO	ATGA	ACAT	GTG	CCTG	TCG	TTAT	TGGA	ст т	ATGC	CTCA	G GA	CTAC	ATTC		300
60	AGTATACTO	T GC	CTTT	AGAT	GAG	GGGA	TGT	ATCC	TTTG	ga a	GGAT	CACG	G AG	CTAT	TGTC		360
	TGGACAGCI	C TI	CTCC	CATG	GAA	GTC1	CTG	CGGT	TCCT	CC T	CAAG	TGGG	A GG	GCGC	GCTT		420
	TCCCCGAGG	A TO	GAGAG	TCAG	GTA	GACC	AGG	ACCT	AGTT	GT C	GCCC	CAGA	G AT	CTTC	GTGG		480

	ATCAGTCCGT	GAATGGCTTG	TTGATTGGCA	CCACGGGAGT	CATGTTGCAG	AGCCCGAGAG	540
	CGGGTCACGA	TGATGTCCCT	CCACTCTCAC	CATTGCTACC	TCCAATGCAG	AATAATCAAA	600
5	TCCAAAGGAA	CTTCAGTGGA	CTCACTGGCA	CAGAAGCCCA	CGTGGCTGAA	AGTATGCGCT	660
	GTCATTTGAA	TTTTGATCCG	AACTCTGCTC	CTGGGGTTGC	AAGAGTTTAT	GACTCAGTGC	720
	AAAGTAGTGG	TCCCATGGTT	GTGACAAGCC	TTACAGAGGA	GCTGAAAAA	CTTGCAAAGC	780
10	AAGGATGGTA	CTGGGGACCA	ATCACACGTT	GGGAGGCAGA	AGGGAAGCTA	GCAAACGTGC	840
	CAGATGGTTC	TTTTCTTGTT	CGGGACAGTT	CTGACGACCG	TTACCTTTTA	AGCTTGAGCT	900
15	TTCGCTCCCA	TGGTAAAACA	CTTCACACTA	GAATTGAGCA	CTCAAATGGT	AGGTTTAGCT	960
	TTTATGAACA	GCCAGATGTG	GAAAGGACAT	ACTCCATAGT	TGATCTAATT	GAGCATTCCA	1020
	TCCAGGGACT	CGAAAATGGA	GCTTTTTGTT	ATTCAAGGTC	TCGGCTGCCT	GGATCTGCAA	1080
20	CTTACCCCGT	CAGACTGACC	AACCCAGTGT	CCCGGTTCAT	GCAGGTGCGC	TCGTTGCAGT	1140
	ACCTGTGTCG	TTTTGTTATA	CGTCAGTATA	CCAGAATAGA	CTTAATTCAG	AAACTGCCTT	1200
25	TGCCAAACAA	AATGAAGGAT	TATTTACAGG	AGAAGCACTA	CTGAAAGATT	GAGAACCCTG	1260
	CATCTTGCAC	TTTGGGAATA	AGAACAAGAG	ATTGAAATAC	AGTTTACAAA	CTTTCATTGC	1320
20	CATCAAAATC	TTTTGCTGCC	ATAACTATTT	CAGTTTTATG	TGTAAAAGAG	TCATCAGTTT	1380
30	GTTTAGGGGT	GGGGAAGTGT	CAGCAAGGTG	TCTTGGGTTT	ATTTTGGTTC	TTTAAAAAAG	1440
	GGAAGTCTTG	AAGTTTTAGA	RGTGTTGAAT	TATGTTTCAT	CAATGTGCAG	AATAATCACA	1500
35	ATGTGAATTA	TCAAATTCTC	CTCAATGCCC	CCCCCGCCCA	KTCCTTTGCT	GCTATCCACT	1560
	GTGATTTTTA	TGCATTAAAA	GCMCATTTCA	TGTKTTTTCA	ACCCTAAGTA	AAGTTGAATG	1620
40	AAACTTAACR	GAATGGAAAT	TGCTATTTCT	TTTTAAATGG	YCCATTTTCC	AAAAMARGTG	1680
40	TTGAATAAMC	AWMCCTGTKT	GAATAAAACM	MGRAWTTWMM	WWTARCAMYG	BAGRTGRGTT	1740
	ТТТААТСТҮҮ	TAMYTTDAAA	AGATTTATTT	AGAATYGKKA	ATTGACMTAA	TATTGGGTWA	1800
4 5	TBGGRMCGGR	GATCTGSAAC	ATATKYTTTA	ACAACAWTTT	WTTKKCYTTA	ATKKDTTTYY	1860
	AARGKTGGBC	TTATTWHTTT	GGBKBBSVAA	AGKWBVAHTT	CTCYGTYSCC	YTCGTTTTCA	1920
50	TCTTCTAGTI	TGTGNTATTT	TAATAAATGG	CCTTACATTA	. АААААТТСТА	AAGAAATGTA	1980
20	TACCACCAAT	TTAGAAATTG	TTGCCTTTTC	TGTAATTAAA	CTCGGGTACA	AATNGGCATA	2040
	ACATGAAAAC	CTATGGAACT	AGAATTATTA	TTAAAGAAAT	ATTAGATGAI	CAT	2093
	(0) TITTODI	AMTON FOR C	PO TO NO.25	:.			

55 (2) INFORMATION FOR SEQ ID NO:25:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1748 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: 5 ATGGAGGCCG GAGAGGAACC GCTGCTGCTG GCCGAACTCA AGCCCGGGCG CCCCCACCAG 60 TTTGATTGGA AGTCCAGCTG TGAAACCTGG AGCGTGGCCT TCTCGCCAGA CGGTTCCTGG 120 10 TTCGCCTGGT CTCAAGGACA CTGCGTGGTC AAGCTGGTCC CCTGGCCCTT AGAGGAACAG 180 TTCATCCCTA AAGGATTCGA AGCCAAGAGC CGAAGCAGCA AGAATGACCC AAAAGGACGG 240 GGCAGTCTGA AGGAGAAGAC GCTGGACTGT GGCCAGATTG TGTGGGGGGCT GGCCTTCAGC 300 15 CCATGGCCCT CTCCACCCAG CAGGAAACTC TGGGCACGTC ACCATCCCCA GGCGCCTGAT 360 GTTTCTTGCC TGATCCTGGC CACAGGTCTC AACGATGGGC AGATCAAGAT TTGGGAGGTA 420 20 CAGACAGGCC TCCTGCTTCT GAATCTTTCT GGCCACCAAG ACGTCGTGAG AGATCTGAGC 480 TTCACGCCCA GCGGCAGTTT GATTTTGGTC TCTGCATCCC GGGATAAGAC ACTTCGAATT 540 TGGGACCTGA ATAAGCACGG TAAGCAGATC CAGGTGTTAT CCGGCCATCT GCAGTGGGTT 600 25 TACTGCTGCT CCATCTCCC TGACTGTAGC ATGCTGTGCT CTGCAGCTGG GGAGAAGTCG 660 GTCTTTCTGT GGAGCATGCG GTCCTACACA CTAATCCGGA AACTAGAAGG CCACCAAAGC 720 30 AGTGTTGTCT CCTGTGATTT CTCTCCTGAT TCAGCCTTGC TTGTCACAGC TTCGTATGAC 780 ACCAGTGTGA TTATGTGGGA CCCCTACACC GGCGAGAGGC TGAGGTCACT TCATCACACA 840 CAGCTTGAAC CCACCATGGA TGACAGTGAC GTCCACATGA GCTCCCTGAG GTCCGTGTGC 900 35 TTCTCACCTG AAGGCTTGTA TCTCGCTACG GTGGCAGATG ACAGRCTGCT CAGGATCTGG 960 GCTCTGGAAC TGAAAGCTCC GGTTGCCTTT GCTCCGATGA CCAATGGTCT TTGCTGCACA 1020 40 TTTTTYCCAC AYGGTGGAAT YATTGCCACA GGGACAAGAG ATGGCCACGT CCAGTTCTGG 1080 ACAGCTCCTA GGGTCCTGTC CTCACTGAAG CACTTATGCC GGAAAGCCCT TCGAAGTTTC 1140 CTAACAACTT ACCAAGTCCT AGCACTGCCA ATCCCCAAGA AAATGAAAGA GTTCCTCACA 1200 45 TACAGGACTT TTTAAGCAAC ACCACATCTT GTGCTTCTTT GTAGCAGGGT AAATCGTCCT 1260 GTCAAAGGGA GTTGCTGGAA TAATGGGCCA AACATCTGGT CTTGCATTGA AATAGCATTT 1320 50 CTTTGGGATT GTGAATAGAA TGTAGCAAAA CCAGATTCCA GTGTACTAGT CATGGRTCTT 1380 TCTCTCCCTG GGCATGTGGA AAGTCAGTCT TAGGAGGGAA GGAGATTCCA CTTGKCACGG 1440 GCAACAGAGC CYTTACGTTT AAATTTTTCA GTCCAGTTAT KGAACAGCAA GTGTTTGAAM 1500 55 TCTTTCTGGY TTGTTTTKGA WTTCAAAGTG GCAGTTACTG RWKGTTGTTT TTGGATTTAT 1560 1620 60 NNNNNNNN NNNNNNNNN NNNNNNNNN HNABNVNRNN NRTNNNRMA TNNNNNNNN 1680 NUMBER OF THE STATE OF THE STAT 1740 NNNNNNNN 1748

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2198 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: cDNA

15	(xi) SE	EQUENCE DESC	CRIPTION: SI	EQ ID NO:26:	:		
	GGCGGTGGTG	ATGGCGGCAG	GCGCTCGGAC	AGCTCCGCTT	GAGCTGAGCT	CGGAGAGATC	60
20	CGTCCAGAAA	GTGCCCAGAA	GAAACTTCCT	CTTAGAAAAG	CTGAAAACAC	AATATTTATA	120
20	ACACTGGAAA	TTGTAAAGAA	TTTGTTTAAA	ATGGCTGAAA	ACAATAGTAA	AAATGTAGAT	180
	GTACGGCCTA	AAACAAGTCG	GAGTCGAAGT	GCTGACAGGA	AGGATGGTTA	TGTGTGGAGT	240
25	GGAAAGAAGT	TGTCTTGGTC	CAAAAAGAGT	GAGAGTTGTT	CTGAATCTGA	AGCCAAGAAA	300
	GGGCAGCTTA	GCTGTTCGTC	CATTGAGTTG	GACTTAGATC	ATTCCTGTGG	GCATAGATTT	360
30	TTAGGCCGAT	CCCTTAAACA	GAAACTGCAA	GATGCGGTGG	GGCAGTGTTT	TCCAATAAAG	420
30	AATTGTAGTG	GCCGACACTC	TCCAGGGCTT	CCATCTAAAA	GAAAGATTCA	TATCAGTGAA	480
	CTCATGTTAG	ATAMGTGYSC	YTTCCCACCT	CGCTCAGATT	TAGCCTTTAG	GTGGCATTTT	540
35	ATTAAACGAC	ACACTGTTCC	TATGAGTCCC	AACTCAGATG	AATGGGTGAG	TGCAGACCTG	600
	TCTGAGAGGA	AACTGAGAGA	TGCTCAGCTG	AAACGAAGAA	ACACAGAAGA	TGACATACCC	660
40	TGTTTCTCAC	ATACCAATGG	CCAGCCTTGT	GTCATAACTG	CCAACAGTGC	TTCGTGTACA	720
	GGTGGTCACA	TAACTGGTTC	TATGATGAAC	TTGGTCACAA	ACAACAGCAT	AGAAGACAGT	780
	GACATGGATT	CAGAGGATGA	AATTATAACG	CTGTGCACAA	GCTCCAGAAA	AAGGAATAAG	840
4 5	CCCAGGTGGG	AAATGGAAGA	GGAGATCCTG	CAGTTGGAGG	CACCTCCTAA	GTTCCACACC	900
	CAGATCGACT	ACGTCCACTG	CCTTGTTCCA	GACCTCCTTC	AGATCAGTAA	CAATCCGTGC	960
50	TACTGGGGTG	TCATGGACAA	ATATGCAGCC	GAAGCTCTGC	TGGAAGGAAA	GCCAGAGGGC	1020
	ACCTTTTTAC	TTCGAGATTC	AGCGCAGGAA	GATTATTTAT	TCTCTGTTAG	TTTTAGACGC	1080
	TACAGTCGTT	CȚCTTCATGC	TAGAATTGAG	CAGTGGAATC	ATAACTTTAG	CTTTGATGCC	1140
55	CATGATCCTT	GTGTCTTCCA	TTCTCCTGAT	ATTACTGGGC	TCCTGGAACA	CTATAAGGAC	1200
	CCCAGTGCCT	GTATGTTCTT	TGAGCCGCTC	TTGTCCACTC	CCTTAATCCG	GACGTTCCCC	1260
60	TTTTCCTTGC	AGCATATTTG	CAGAACGGTT	ATTTGTAATT	GTACGACTTA	CGATGGCATC	1320
	GATGCCCTTC	CCATTCCTTC	GCCTATGAAA	TTGTATCTGA	AGGAATACCA	ТТАТАААТСА	1380
	AAAGTTAGGT	TACTCAGGAT	TGATGTGCCA	GAGCAGCAGT	GATGCGGAGA	GGTTAGAATG	1440

	TCKACCGGAG CTTTYGTTCC CTTTAGTGAG GGTTAATTTC GAGCTTGGCG TAATCATGGT	1500
	CATAGCTGTT TCCTGTGTGA AATYGTYATC CGCTCACAAT TCCACACAAC ATACGAGCCG	1560
5	GAAGCATAAA GTGTAAAGCC TGGGGTGCCT AATGAGTGAG CTAACTCACA TTAATTGSGT	1620
	YGCGCTCACT GCCCGCTTTC CAGTCGGGAA ACCTGTCGTG CCASCTGCAT TAMTGAATCN	1680
10	GCCAACKCGC NGGGANAGCG GTTNGCNTAT TGGGCGCTCT TCACTTCNTC GCTCACTGAN	1740
	TCNCTNCCTC GGTCNTTCGN TGCTGCTACN GTNTCCCCCA TCCAAGCGTT ATACGCTATC	1800
	CNCAGAACTG GGAAANNCNG AANACNNTNA CAAAGCTCAN TGCTANCGTA NACGCCNTGC	1860
15	NGGCTTTTCC TCGTCCCCCN ACACNCTAAA CAGCCCTCGA GTGCAACCNC GATATANATN	1920
	TCTTCCCTNA ACCCCTGCCT CTGTCNCCGC CTNCGACTTC GCTTCCNNGG ATTGCTTTCN	1980
20	CCCCGTAGTC NGTCNTAGTG NGCNGCGCCT TCCACCCTTC NACCNCTACG TANNNNANN	2040
_ •	CNCCAAANCC NCCNCCCTC NGATAAAAAG TNAGNGCCTT NANNNCCNNG ATAAAAATGG	2100
	TCCCNTACTT TCCAATGTCT NCCNCCCGGC TNTTCTNGCC ACCCAANTNA NNTTTCCGGN	2160
25	ACTGNATCCG GTGCTANCNT CCTGTTTCTC CTCCCNCC	2198
	(2) INFORMATION FOR SEQ ID NO:27:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2254 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
35	(ii) MOLECULE TYPE: cDNA	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
	CTCCCCCCC CATCGATCCC CCCCCAACAC CAACACAACC CCACCCTTCA CCCCCTTCACCC	

	CTCGGGCCGG	GATGGATCCG	CCGGGAAGAG	GAAGACAAGC	GGAGCGTTGA	GCCCCTGCGC	60
45	ACGGTGCCCC	GCGCGTAGTG	GGAGCTTACT	CGCAGTAGCT	CTCGCTCTTC	TAATCAATGG	120
43	ATAAAGTGGG	GAAAATGTGG	AACAACTTAA	AATACAGATG	CCAGAATCTC	TTCAGCCACG	180
	AGGGAGGAAG	CCGTAATGAG	AACGTGGAGA	TGAACCCCAA	CAGATGTCCG	TCTGTCAAAG	240
50	AGAAAAGCAT	CAGTCTGGGA	GAGGCAGCTC	CCCAGCAAGA	GAGCAGTCCC	TTAAGAGAAA	300
	ATGTTGCCTT	ACAGCTGGGA	CTGAGCCCTT	CCAAGACCTT	TTCCAGGCGG	AACCAAAACT	360
55	GTGCCGCAGA	GATCCCTCAA	GTGGTTGAAA	TCAGCATCGA	GAAAGACAGT	GACTCGGGTG	420
J J	CCACCCCAGG	AACGAGGCTT	GCACGGAGAG	ACTCCTACTC	GCGGCACGCC	CCGTGGGGAG	480
	GAAAGAAGAA	ACATTCCTGT	TCCACAAAGA	CCCAGAGTTC	ATTGGATACC	GAGAAAAAGT	540
60	TTGGTAGAAC	TCGAAGCGGC	CTTCAGAGGC	GAGAGCGGCG	CTATGGAGTC	AGCTCCATGC	600
	AGGACATGGA	CAGCGTTTCT	AGCCGCGCGG	TCGGGAGCCG	CTCCCTGAGG	CAGAGGCTCC	660
	AGGACACGGT	GGGTTTGTGT	TTTCCCATGA	GAACTTACAG	CAAGCAGTCA	AAGCCACTCT	720

WO 99/03993 PCT/US98/14544

	TTTCCAATAA	AAGAAAAATM	CATCTYTCTG	AATTAATGCT	KGAGAAATGC	CCTTTTCCTG	780
5	CTGGCTCRGA	TTTAGCMCAA	AAGTGGCATT	TGATTAAACA	GCATACAGCT	CCTGTGAGCC	840
5	CACATTCAAC	ATTTTTTGAT	ACRTTTGATC	CATCTTTGGT	TTCTACAGAA	GATGAAGAAG	900
	ATAGGCTTAG	AGAGAGAAGG	CGGCTTAGTA	TTGAAGAAGG	GGTTGATCCC	CCTCCCAATG	960
10	CACAAATACA	TACATTTGAA	GCTACTGCAC	AGGTTAATCC	ATTATTTAAA	CTGGGACCAA	1020
	AATTAGCTCC	TGGAATGACT	GAAATAAGTG	GGGACAGTTC	TGCAATTCCA	CAAGCTAATT	1080
15	GTGACTCGGA	AGAGGATACA	ACCACCCTGT	GTTTGCAGTC	ACGGAGGCAG	AAGCAGCGTC	1140
	AGATATCTGG	AGACAGCCAT	ACSCATGTTA	GCAGACAGGG	AGCTTGGAAA	GTCCACACAC	1200
	AGATTGATTA	CATACACTGC	CTCGTGCCTG	ATTTGCTTCA	AATTACAGGG	AATCCCTGTT	1260
20	ACTGGGGAGT	GATGGACCGT	TATGAAGCAG	AAGCCCTCTC	CGAAGGGAAA	CCKGAAGGCA	1320
	CGTTCTTGCT	CAGGGACTCT	GCACAGGAGG	ACTACCTCTT	CTCTGTGAGT	TCCGCCGCTA	1380
25	CAACAGGATC	TCTGCACGCC	CGGATCGAGC	AGTGGAACCA	CAACTTCAGC	TTCGATGCCC	1440
	ATGACCCCTG	CGTGTTTCAY	TCCTCCACTG	TCACGGGGCT	TCTCGAACAC	TATAAAGAYC	1500
	CCAGTTCKTG	CATGTTTTTT	GAACCGTTGC	TAACGATATC	ACTSAATAGR	ACTTTCCCTT	1560
30	TCAGCCTGCA	GTATATCTGC	CGCGCAGTGA	TCTGCAGATG	CACTACGTAT	GATGGGATTG	1620
	ACGGGCTCCC	GCTACCGTCG	ATGTTACAGG	ATTTTTTAAA	AGAGTATCAT	ТАТАААСААА	1680
35	AAGTTAGAGT	TCGCTGGTTG	GAACGAGAAC	CAGTCAAGGC	AAAGTAAACT	CTCCGGTCCC	1740
	CAAAGGGTGT	TAACTAGGTC	CGCTTTCATG	TGCATCAGAC	AGTACACCTA	TAGCAAGCAC	1800
	ACGTAGCAGT	GTTAGGCTTT	TTCATACAGT	ATGTAAGCTT	AGTGTTAGTA	TCTGTCAGAT	1860
40	GCTACCTGCT	GTTACTTATT	CAGATAAACA	TGGTGCCTAT	TGGAACAATA	GCGGATAGAG	1920
	CTACAGGTGT	TCAGTAAGAC	TACAAAAACA	TTTTGCCTAT	TTCGCTAACA	GTTTGGTTTT	1980
45	TAATGGCTGT	GGTATTTGAG	TGAGGCAAYY	CTGGGGCATT	TGTTATGAAG	AATTCTATTT	2040
	CTTACTGAAG	AACAAATWAT	TAATATTGGA	TGAGTATTTC	AACAGTGTGA	CTAATGTTTG	2100
	AAATTATTTT	TTCCTAAGAG	TTTTTCCWAT	AACCTTCCMA	AAGTCGTGAT	GTTTGTAGTT	2160
50	ACCATAATCC	AGCTTTGRAG	TCCMAAARGA	TTAAAGRCYG	CCTCCCTTTG	RAAAATGCCA	2220
	TTTCYKGCCC	CAAGGCCTAG	TGCCGTCCCT	NCGG			2254

(2) INFORMATION FOR SEQ ID NO:28:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2206 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

5	GGAGCGCGGC	CTGGAGACTA	ACAGCTGCTC	GGAAGAGGAG	CTCAGCAGCC	CGGGTCGCGG	60
	AGGAGGAGGG	GGCGGCCGGC	TTCTGCTGCA	GCCCCAGGC	CCTGAATTAC	CTCCGGTGCC	120
10	CTTCCCGCTG	CAGGACTTGG	TCCCTCTGGG	GCGCCTGAGT	AGAGGGGAGC	AGCAGCAGCA	180
10	GCAGCAGCAG	CAACCTCCCC	CGCCCCCGCC	TCCTCCCGGG	CCCCTCCGGC	CACTCGCGGG	240
	TCCTTCTCGG	AAGGGCTCCT	TCAAAATCCG	CCTCAGTCGC	CTCTTTCGCA	CCAAGAGCTG	300
15	CAACGGTGGC	TCCGGCGGTG	GGGATGGGAC	CGGCAAGAGG	CCTTCTGGAG	AGCTGGCTGC	360
	TTCAGCTGCG	AGCCTGACAG	ACATGGGAGG	CTCTGCGGGC	CGGGAGCTGG	ACGCGGGGAG	420
20	GAAACCCAAG	TTGACAAGAA	CTCAAAGTGC	CTTTTCTCCG	GTCTCCTTCA	GCCCCTGTT	480
20	CACAGGTGAA	ACTGTGTCGC	TTGTGGATGT	GGACATTTCT	CAGCGGGGCC	TGACCTCTCC	540
	ACACCCTCCA	ACTCCCCCTC	CTCCTCCGAG	AAGAAGCCTC	AGCCTCCTAG	ATGATATCAG	600
25	TGGGACGCTG	CCTACATCTG	TCCTTGTGGC	TCCGATGGGG	TCTTCCTTGC	AGTCTTTCCC	660
	CCTACCTCCG	CCTCCTCCAC	CCCATGCCCC	AGATGCATTT	CCCCGGATTG	CTCCCATCCG	720
30	AGCAGCTGAA	TCCCTGCACA	GCCAACCCCC	ACAGCACCTC	CAGTGTCCCC	TCTACCGGCC	780
30	TGACTCGAGC	AGCTTTGCAG	CCAGCCTTCG	AGAGTTGGAG	AAGTGTGGTT	GGTATTGGGG	840
	GCCAATGAAT	TGGGAAGATG	CAGAGATGAA	GCTGAAAGGG	AAACCAGATG	GTTCTTTCCT	900
35	GGTACGAGAC	AGTTCTGATC	CTCGTTACAT	CCTGAGCCTC	AGTTTCCGAT	CACAGGGTAT	960
	CACCCACCAC	ACTAGAATGG	AGCACTACAG	AGGAACCTTC	AGCCTGTGGT	GTCATCCCAA	1020
40	GTTTGAGGAC	CGCTGTCAAT	CTGTTGTAGA	GTTTATTAAG	AGAGCCATTA	TGCACTCCAA	1080
	GAATGGAAAG	TTTCTCTATT	TCTTAAGATC	CAGGGTTCCA	GGACTGCCAC	CAACTCCTGT	1140
	CCAGCTGCTC	TATCCAGTGT	CCCGATTCAG	CAATGTCAAA	TCCCTCCAGC	ACCTTTGCAG	1200
4 5	ATTCCGGATA	CGACAGCTCG	TCAGGATAGA	TCACATCCCA	GATCTCCCAC	TGCCTAAACC	1260
	TCTGATCTCT	TATATCCGAA	AGTTCTACTA	CTATGATCCT	CAGGAAGAGG	TATACCTGTC	1320
50	TCTAAAGGAA	GCGCAGCTCA	TTTCCAAACA	GAAGCAAGAG	GTGGAACCCT	CCACGTAGCG	1380
	AGGGCTCCC	TGCTGGTCAC	CACCAAGGGC	ATTTGGTTGC	CAAGCTCCAG	CTTTGAAGAA	1440
	CCAAATTAAG	CTACCATGAA	AAGAAGAGGA	AAAGTGAGGG	AACAGGAAGG	TTGGGATTCT	1500
55	CTGTGCAGAG	ACTTTGGTTC	CCCACGCAGC	CCTGGGGCTT	GGAAGAAGCA	CATGACCGTA	1560
	CTCTGCGTGG	GGCTCCACCT	CACACCCACC	CCTGGGCATC	TTAGGACTGG	AGGGGCTCCT	1620
60	TGGAAAACTG	GAAGAAGTCT	CAACACTGTT	TCTTTTTCAA	аааааааа	AAAAAAGATG	1680
	CGGCCGCAAG	CTTATTCCCT	TTAGTGAGGG	TTAATTTTAG	CTTGGCACTG	GCCGTCGTTT	1740
	TACAACGTCG	TGACTGGGAA	AACCCTGGCG	TTACCCAACT	TAATCGCCTT	GCAGCACATC	1800

	CCCCTTTCGC	CAGCTGGCGT	AATAGCGAAG	AGGCCCGCAC	CGATCGCCCT	TCCCAACAGT	1860
	TGCGCAGCCT	GAATGGCGAA	TGGGACGCGC	CCTGTAGCGG	CGCATTAACG	CGCGGCGGGT	1920
5	GTGGTGGTTA	CGCGCAGCGT	GACCGCTACA	CTTGCCAGCG	CCCTACGCCC	GCTCCTTTCG	1980
	CTTTCTTCCC	TTCCTTTCTC	GCCACGTTCG	CCGGCTTTCC	CCGTCAACTC	TAAATCGGGG	2040
10	GCTCCCTTTA	GGTTCCGATT	TANTGCTTTA	CGCACTCNAC	CCCAAAACTT	GATTAGGTGA	2100
10	TGTCACTTAT	GGCACNCCTG	ATAACGTTTC	CCCTTACTTT	GATCACTTCT	TTATATGATC	2160
	TTTCCAATGA	AACATCACCT	ACTCGTCATC	TTTATTTAAA	GATTTG		2206
15	(2) INFORM	ATION FOR SE	EQ ID NO:29:	:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1390 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

25

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

30 CGGACGCGTG GGTTTGGCTG TGAATATTCT ATTTGCTTGC AGTATCTGTT TCTCTTCCTA 60 GGCTCAAGTT GGTGACCCAA GCCTATTGTA AACAAGTGAT TATCTCANNG GGAGATGCCA 120 ATGGAGTAAC AATTTGTTAA CCTTACGTTT TCTGTCTGTA TATTTTTTTA AAAATCTGGT 180 35 AGTTTCTGGA AAAAAAAGAG AAGGGGGTTT GTAGTACTTA ACCCTATTTA TTKSCRYRWG 240 TTTTAGTTAA TTAGTTTTTG GAATAAATGG ATTTCAGTAT AGCTTTGTGG TTAAATTGCA 300 40 TTGCCTTTAT TTTATGTTTA GGCTTATTTT TAAATTAACA TTTAACAGAA ACATTTGAAA 360 TAGAATTTGC ATGTCTGCCT TAATTAACTT AAAGACTGAT TTTAATCTGA CTATGACACT 420 GAGCATATTC TTTAAATTAC TCATAATTTA TAATGCTTAA TATAATCTTA ATTAAATTTA 480 45 GCAGTTTTAG TATAAGATGT GCCATTTTGT CCTCTGTATG TCTGAATGAA GCTATAACAT 540 TTGCCTTTTT ATTGCAGGTT TTCCTTTGGA ATATGGATAA ATACACCATG ATACGGAAAC 600 50 TAGAAGGACA TCACCATGAT GTGGTAGCTT GTGACTTTTC TCCTGATGGA GCATTACTGG 660 CTACTGCATC TTATGATACT CGAGTATATA TCTGGGATCC ACATAATGGA GACATTCTGA 720 TGGAATTTGG GCACCTGTTT CCCCCACCTA CTCCAATATT TGCTGGAGGA GCAAATGACC 780 55 GGTGGGTACG ATCTGTATCT TTTAGCCATG ATGGACTGCA TGTTGCAAGC CTTGCTGATG 840 ATAAAATGGT GAGGTTCTGG AGAATTGATG AGGATTATCC AGTGCAAGTT GCACCTTTGA 900 60 GCAATGGTCT TTGCTGTGCC TTCTCTACTG ATGGCAGTGT TTTAGCTGCT GGGACACATG 960 ACGGAAGTGT GTATTTTTGG GCCACTCCAC GGCAGGTCCC TAGCCTGCAA CATTTATGTC 1020 GCATGTCAAT CCGAAGAGTG ATGCCCACCC AAGAAGTTCA GGAGCTGCCG ATTCCTTCCA 1080

	AGCTTTTGGA	GTTTCTCTCG	TATCGTATTT	AGAAGATTCT	GCCTTCCCTA	GTAGTAGGGA	1140
5	CTGACAGAAT	ACACTTAACA	CAAACCTCAA	GCTTTACTGA	CTTCAATTAT	CTGTTTTTAA	1200
5	AGACGTAGAA	GATTTATTTA	ATTTGATATG	TTCTTGTACT	GCATTTTGAT	CAGTTGARGC	1260
	ТТТТААААТА	TTATTTATAG	ACAATAGAAG	TATTTCTGAA	CATATCAAAT	ATAAATTTTT	1320
10	TTAAAGATCT	AACTGTGAAA	AACATACATA	CCTGTACATA	TTTAGATATA	AGCTGCTATA	1380
	TGTTGAATGG						1390

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(21) International Application Number: PCT/US98/14544 (22) International Filing Date: 17 July 1998 (17.07.98) (23) Priority Data: (30) Priority Data: (60/053,153	IU, ID, IL, IS, IP, KG, KR, D, MG, MK, MN, MX, NO, , SL, TJ, TM, TR, TT, UA,
(72) Inventor: JOHNSON, James, A.; 205 Mary Alice Drive, Los Gatos, CA 95032 (US). (74) Agents: MCLAUGHLIN, Jaye, P. et al.; Schering-Plough Corporation, Patent Dept., K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).	(AM, AZ, BY, KG, KZ, MD, (AT, BE, CH, CY, DE, DK, U, MC, NL, PT, SE), OAPI M, GA, GN, GW, ML, MR, limit for amending the claims of the receipt of amendments.

(57) Abstract

Purified genes encoding intracellular regulatory molecules from a human, reagents related thereto including purified proteins, specific antibodies, and nucleic acids encoding these molecules are provided. Methods of using said reagents and diagnostic kits are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
TA	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	ÜA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2.,	Zillicabwc
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
					o in gapore		
							

Int Intonal Application No PCT/US 98/14544

A CLASS	SEIGATION OF CUR IFOT MATER		
ÎPC 6	SIFICATION OF SUBJECT MATTER C12N15/12 C07K14/47 C07K16	5/18 C12N15/62	
According t	to International Patent Classification (IPC) or to both national class	uification and IPC	
	SEARCHED		
IPC 6	ocumentation searched (classification system followed by classific CO7K C12N		
Documenta	ation searched other than minimum documentation to the extent the	at such documents are included in the fields so	earched
	data base consulted during the international search (name of data	base and, where practical, search terms used	0
	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
Α	R. STARR ET AL: "A family of cytokine-inducible inhibitors o signalling" NATURE., vol. 387, no. 6636, 26 June 199 917-921, XP002085491 LONDON GB cited in the application see the whole document		1-9
А	T.A ENDO ET AL: "A new protein an SH2 domain that inhibits JAK NATURE., vol. 387, no. 6636, 26 June 199 921-924, XP002085492 LONDON GB cited in the application see the whole document	kinases"	1-9
X Furthe	ner documents are listed in the continuation of box C.	X Patent family members are listed in	n annex.
"A" documer conside "E" earlier do filing da "L" documen which is citation "O" documer other m "P" documen later tha	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or neans nt published prior to the international filing date but an the priority date claimed	"T" later document published after the inter or priority date and not in conflict with to cited to understand the principle or the invention "X" document of particular relevance; the clannot be considered novel or cannot involve an inventive step when the document is combined with one or more document is combined with one or more ments, such combined with one or more ments, such combined to the same patent for the same pa	the application but serry underlying the laimed invention be considered to surment is taken alone laimed invention rentive step when the re other such docusts to a person skilled
17	December 1998	Date of mailing of the international sear	ch report
Name and ma	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer LE CORNEC N.D.R.	

In' lational Application No
PUT/US 98/14544

Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Jawgory 1	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	T. NAKA ET AL: "Structure and function of a new STAT-induced STAT inhibitor" NATURE., vol. 387, no. 6636, 26 June 1997, pages 924-929, XP002088455 LONDON GB cited in the application see the whole document	1-9
A	A. YOSHIMURA ET AL: "A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to Tyrosine-phosphorylated interleukin-3 and erythropoietin" EMBO JOURNAL., vol. 14, no. 12, 1995, pages 2816-2826, XP002088456 EYNSHAM, OXFORD GB cited in the application see the whole document	1-9
P,X	WO 98 20023 A (THE WALTER AND ELIZA HALL INSTITUTE OF MEDICAL RESEARCH) 14 May 1998 see the whole document especially see examples 11,17,18 see page 101 - page 102	1-9
P,X	M. MASUHARA ET AL: "Cloning and characterization of novel CIS family genes" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS., vol. 239, October 1997, pages 439-446, XP002088457 ORLANDO, FL US see the whole document	1-9
	D.J. HILTON ET AL: "Twenty proteins containing a C-terminal SOCS box form five structural classes" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol. 95, January 1998, pages 114-119, XP002085497 WASHINGTON US see the whole document	1-9

International application No. PCT/US 98/14544

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reaso	ns:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
see additional sheet	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Please see extra sheet, Subject 1.	
Remark on Protest The additional search fees were accompanied by the applicant's protest accompanied the payment of additional search fees.	st.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: (1-9) all partially

Human SOCS14. Production by genetic engineering. Antibody. Fusion protein.

2. Claims: (1-9) all partially

Murine SOCS15.Production by genetic engineering. Antibody. Fusion protein.

3. Claims: (1-9) all partially

Murine SOCS17. Production by genetic engineering. Antibody. Fusion protein.

4. Claims: (1-9) all partially

Human SOCS18. Production by genetic engineering. Antibody. Fusion protein.

5. Claims: (1-9) all partially

human ${\tt SOCS19}$. Production by genetic engineering. Antibody. Fusion protein.

6. Claims: (1-9) all partially

Murine WDS12. Production by genetic engineering. Antibody. Fusion protein.

information on patent family members

Intrational Application No PCT/US 98/14544

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9820023 A	14-05-1998	AU 4694397 A	29-05-1998
		·	