

Traitement et Analyse d'Images

Réseaux de neurones

Contexte

Acquisition / prétraitement

$$x^{(1)} = \left(x_1^{(1)}, \dots, x_n^{(1)}\right)^T$$
$$x^{(2)} = \left(x_1^{(2)}, \dots, x_n^{(2)}\right)^T$$

Extraction de caractéristiques

Classification / Régression

Décision

Apprentissage profond

Contexte

- Base de données d'entrainement
 - Apprendre à reconnaitre des objets, des tendances, des groupes, ...

- Base de données de test
 - Appliquer les modèles appris sur de nouvelles données (en dehors de la base d'entrainement)

└ Contexte

Démarche générale

► Illustration

Reconnaissance de visages parmi un ensemble d'imagettes

Apprentissage automatique et simultané des caractéristiques discriminantes et de la fonction de décision associée

Données d'entrainement

Démarche générale

Espace image initial

Espace de caractéristiques appris avec la fonction de décision associée

MLP: Réseaux de neurones multicouches

Famille de méthodes la plus simple en apprentissage profond

Sorties (espace de caractéristiques + fonction de décision) d'un réseau de neurones

Les réseaux de neurones

Modélisation d'un neurone

Concepts de base

Classification binaire

 n_{x}

$$x = \begin{bmatrix} 133 \\ 212 \\ 189 \\ \vdots \\ 198 \end{bmatrix} \in \mathbb{R}^{[n_X \times 1]}$$

$$\text{avec } n_X = n_x \times n_y \times 3$$

Concepts de base

► Base de données

Base de données composées de m échantillons

 Chaque échantillon (image) est labélisé

$$(x^{(i)}, y^{(i)})$$

$$x^{(i)} \text{ image et } y^{(i)} = \begin{cases} 1 \rightarrow \text{visage} \\ 2 \rightarrow \text{éléphant} \\ 3 \rightarrow \text{croco.} \\ 4 \rightarrow \text{tortue} \end{cases}$$

 Base de données composée de m échantillons

$$\{(x^{(1)}, y^{(1)}), \cdots, (x^{(i)}, y^{(i)}), \cdots, (x^{(m)}, y^{(m)})\}$$

Fonction de décision

Comment définir au niveau d'un neurone une fonction de décision qui permet de classifier les échantillons ?

Fonction de décision

Deux éléments clés

- 1) Projection du vecteur de données x sur un vecteur de paramètres w avec un décalage de b
- 2) Application d'une transformation non-linéaire (fonction d'activation) afin de prendre une décision

Paramétrage d'un neurone

Paramètres intervenant dans le 1^{er} élément

$$w \in \mathbb{R}^{[n_X \times 1]}$$
 et $b \in \mathbb{R}$

► Fonction d'activation intervenant dans le 2ème élément

Fonction sigmoïde

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = \frac{e^{-z}}{1+e^{-z}} = g(z) \cdot (1-g(z))$$

Utilisation d'un neurone

Définition

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \longrightarrow \begin{cases} \hat{y} = g(w^T x + b) \\ \hat{y} = g_{w,b}(x) \end{cases}$$

$$\hat{y} = 0.5 \implies g(w^T x + b) = 0.5$$

$$w^T x + b = 0$$

$$w_1 x_1 + w_2 x_2 + b = 0$$

$$\text{Équation d'une droite}$$

Frontière de décision

Frontière de décision dépendant de w et b

- ➤ A partir d'une base de données, comment apprendre les paramètres d'un neurone ?
 - Les paramètres d'un neurone doivent permettre de reconnaitre la classe y associée à l'échantillon entrant x
 - Approche probabiliste

- Définition d'une fonction de perte à minimiser
 - Lorsque l'on a $\{x, y\}$ en entrée d'un neurone, on souhaite que sa sortie \hat{y} soit la plus proche de y
 - Fonction de perte classiquement utilisée

$$\mathcal{L}(\hat{y},y) = -[y\log(\hat{y}) + (1-y)\log(1-\hat{y})]$$

Entropie croisée

► Fonction de perte à minimiser

$$\mathcal{L}(\hat{y}, y) = -[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})]$$

• Quand y=1 $\mathcal{L}(\hat{y},1) \text{ est minimum lorsque } \hat{y} \to 1$

• Quand y = 0 $\mathcal{L}(\hat{y}, 0)$ est minimum lorsque $\hat{y} \to 0$

- ► Fonction de perte à minimiser
 - Application à l'ensemble de la base de données

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

• La minimisation de J(w,b) a pour but de trouver les paramètres du neurone $\{w,b\}$ qui permettent de reconnaitre pour chaque échantillon $x^{(i)}$ de la base de données la classe $y^{(i)}$ associée

► Fonction de perte à minimiser

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

• Les paramètres optimaux $\{\widetilde{w},\widetilde{b}\}$ peuvent être estimés par une méthode de descente de gradient

Elément de modélisation

Calculer les dérivées partielles $\frac{\partial J}{\partial h}$ et $\frac{\partial J}{\partial w}$ dans le cas où la fonction de perte est l'entropie croisée

$$x = [x] \xrightarrow{w, b} \widehat{y}$$

$$x = [x] \xrightarrow{w,b} \widehat{y} \qquad J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\widehat{y}^{(i)}, y^{(i)})$$

avec
$$\mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -[y^{(i)}\log(\hat{y}^{(i)}) + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})]$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} \cdot \frac{\partial z^{(i)}}{\partial b} \right)$$

$$\frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} \cdot \frac{\partial z^{(i)}}{\partial w} \right)$$

$$\frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} \cdot \frac{\partial z^{(i)}}{\partial w} \right)$$

► Approche empirique - Descente de gradient

Initialisation de w et bRépéter jusqu'à convergence
{ $calcul\ de\ A = \left[\hat{y}^{(1)}, \dots, \hat{y}^{(m)}\right]$ $calcul\ de\ J(w,b)$ $w \coloneqq w - \alpha \frac{\partial J(w,b)}{\partial w}$ $b \coloneqq b - \alpha \frac{\partial J(w,b)}{\partial b}$ }

L Modélisation d'un neurone

L Modélisation d'un neurone

 χ_2

Caractéristique 2

Caractéristique 1

 $\mathbf{w}^T x + \mathbf{b} = 0$

 x_1

Problématique

Comment faire lorsque les données d'entrée sont trop complexes ?

Espace image initial

Les réseaux de neurones

Modélisation par couches de neurones

Concept de base

Passage d'un neurone à un ensemble de neurones organisés suivant un réseau

Fonctions d'activation

▶ Différentes fonctions d'activation peuvent être utilisées au travers des couches

Sigmoïde

$$g^{[l]}(z) = \frac{1}{1 + e^{-z}}$$

Tangente hyperbolique

$$g^{[l]}(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

Fonctions d'activation

Différentes fonctions d'activation peuvent être utilisées au travers des couches

Rectified Linear Unit (ReLU)

$$g^{[l]}(z) = max(0, z)$$

leaky ReLU

$$g^{[l]}(z) = max(0.01 \cdot z, z)$$

Elément de modélisation

Calculer les dérivées partielles $\frac{\partial J}{\partial b^{[1]}}$, $\frac{\partial J}{\partial b^{[2]}}$ et $\frac{\partial J}{\partial w^{[1]}}$, $\frac{\partial J}{\partial w^{[2]}}$ dans le cas du réseau de neurones à deux couches suivant

$$x = [x] \longrightarrow \bigcap \longrightarrow \widehat{y}$$

$$w^{[1]}, b^{[1]} \qquad w^{[2]}, b^{[2]}$$

$$\text{avec } \mathcal{L}\big(\hat{y}^{(i)}, y^{(i)}\big) = -\big[y^{(i)}\log\big(\hat{y}^{(i)}\big) + \big(1 - y^{(i)}\big)\log\big(1 - \hat{y}^{(i)}\big)\big]$$

$$\frac{\partial J}{\partial b^{[2]}} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial b^{[2]}} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{[2]}^{(i)}} \cdot \frac{\partial z^{[2]}^{(i)}}{\partial b^{[2]}} \right)$$

$$\frac{\partial J}{\partial b^{[1]}} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial b^{[1]}} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{[2]}^{(i)}} \cdot \frac{\partial z^{[2]}^{(i)}}{\partial a^{[1]}^{(i)}} \cdot \frac{\partial a^{[1]}^{(i)}}{\partial z^{[1]}} \cdot \frac{\partial z^{[1]}^{(i)}}{\partial b^{[1]}} \right)$$

Elément de modélisation

Calculer les dérivées partielles $\frac{\partial J}{\partial b^{[1]}}$, $\frac{\partial J}{\partial b^{[2]}}$ et $\frac{\partial J}{\partial w^{[1]}}$, $\frac{\partial J}{\partial w^{[2]}}$ dans le cas du réseau de neurones à deux couches suivant

$$x = [x] \longrightarrow \bigcap \longrightarrow \widehat{y}$$

$$w^{[1]}, b^{[1]} \qquad w^{[2]}, b^{[2]}$$

$$\text{avec } \mathcal{L}\big(\hat{y}^{(i)}, y^{(i)}\big) = -\big[y^{(i)}\log\big(\hat{y}^{(i)}\big) + \big(1 - y^{(i)}\big)\log\big(1 - \hat{y}^{(i)}\big)\big]$$

$$\frac{\partial J}{\partial w^{[2]}} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial w^{[2]}} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{[2]}^{(i)}} \cdot \frac{\partial z^{[2]}^{(i)}}{\partial w} \right)$$

$$\frac{\partial J}{\partial w^{[1]}} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial w^{[1]}} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{[2]}^{(i)}} \cdot \frac{\partial z^{[2]}^{(i)}}{\partial a^{[1]}^{(i)}} \cdot \frac{\partial a^{[1]}^{(i)}}{\partial z^{[1]}} \cdot \frac{\partial z^{[1]}^{(i)}}{\partial w^{[1]}} \right)$$

Concept de base

➤ Apprentissage simultané d'un espace d'informations discriminantes et d'une fonction de décision associée

Calcul de
$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

► Approche empirique - Descente de gradient

Apprentissage de la fonction de décision

► Approche empirique - Descente de gradient

Apprentissage de la fonction de décision

► Approche empirique - Descente de gradient

Apprentissage de la fonction de décision

► Approche empirique - Descente de gradient

Initialisation des $w^{[l]}$ et $b^{[l]}$ Répéter jusqu'à convergence propagation avant propagation arrière

L Réseaux de neurones

L Réseaux de neurones

L Réseaux de neurones

Evolution de l'espace des caractéristiques de la dernière couche au cours des itérations

Et maintenant jouons!

https://playground.tensorflow.org

That's all folks

$$x = [x] \xrightarrow{w, b} \widehat{y}$$

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

$$= -[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1)]$$

$$\begin{split} & \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) \\ &= - \big[y^{(i)} \log(\hat{y}^{(i)}) \\ &+ \big(1 - y^{(i)} \big) \log \big(1 - \hat{y}^{(i)} \big) \big] \end{split}$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} \cdot \frac{\partial z^{(i)}}{\partial b} \right)$$

$$\mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -[y^{(i)}\log(\hat{y}^{(i)}) + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})]$$

$$\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} = -\frac{y^{(i)}}{\hat{y}^{(i)}} + \frac{1 - y^{(i)}}{1 - \hat{y}^{(i)}}$$

$$\hat{y}^{(i)} = g(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}} \qquad \qquad \frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} = \hat{y}(1 - \hat{y}^{(i)})$$

$$z^{(i)} = wx^{(i)} + b$$

$$\frac{\partial z^{(i)}}{\partial b} = 1$$

$$x = [x] \xrightarrow{w,b} \widehat{y}$$

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

$$= -[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1)]$$

$$\mathcal{L}(\hat{y}^{(i)}, y^{(i)}) \\
= -[y^{(i)} \log(\hat{y}^{(i)}) \\
+ (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})]$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} \cdot \frac{\partial z^{(i)}}{\partial b} \right)$$

$$\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} = -\frac{y^{(i)}}{\hat{y}^{(i)}} + \frac{1 - y^{(i)}}{1 - \hat{y}^{(i)}}$$

$$\frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} = \hat{y} (1 - \hat{y}^{(i)})$$

$$\frac{\partial z^{(i)}}{\partial b} = 1$$

$$\frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} = \hat{y} (1 - \hat{y}^{(i)})$$

$$\frac{\partial z^{(i)}}{\partial b} = 1$$

$$\qquad \qquad \Longrightarrow$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})$$

$$x = [x] \xrightarrow{w, b} \widehat{y}$$

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

$$= -[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1)]$$

$$\mathcal{L}(\hat{y}^{(i)}, y^{(i)}) \\
= -[y^{(i)} \log(\hat{y}^{(i)}) \\
+ (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})]$$

$$\frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} \cdot \frac{\partial z^{(i)}}{\partial w} \right)$$

$$\mathcal{L}\big(\hat{y}^{(i)}, y^{(i)}\big) = -\big[y^{(i)}\log\big(\hat{y}^{(i)}\big) + \big(1-y^{(i)}\big)\log\big(1-\hat{y}^{(i)}\big)\big]$$

$$\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} = -\frac{y^{(i)}}{\hat{y}^{(i)}} + \frac{1 - y^{(i)}}{1 - \hat{y}^{(i)}}$$

$$\hat{y}^{(i)} = g(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}} \qquad \qquad \frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} = \hat{y}(1 - \hat{y}^{(i)})$$

$$z^{(i)} = wx^{(i)} + b \qquad \qquad \frac{\partial z^{(i)}}{\partial w} = x^{(i)}$$

$$x = [x] \xrightarrow{w, b} \widehat{y}$$

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

$$= -[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1)]$$

$$\begin{split} & \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) \\ &= - \big[y^{(i)} \log(\hat{y}^{(i)}) \\ &+ \big(1 - y^{(i)} \big) \log \big(1 - \hat{y}^{(i)} \big) \big] \end{split}$$

$$\frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} \cdot \frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} \cdot \frac{\partial z^{(i)}}{\partial w} \right)$$

$$\frac{\partial \mathcal{L}}{\partial \hat{y}^{(i)}} = -\frac{y^{(i)}}{\hat{y}^{(i)}} + \frac{1 - y^{(i)}}{1 - \hat{y}^{(i)}} \qquad \qquad \frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} = \hat{y} (1 - \hat{y}^{(i)}) \qquad \qquad \frac{\partial z^{(i)}}{\partial w} = x^{(i)}$$

$$\frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}} = \hat{y} (1 - \hat{y}^{(i)})$$

$$\frac{\partial z^{(i)}}{\partial w} = x^{(i)}$$

$$\Rightarrow$$

$$\frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) \cdot x^{(i)}$$