Problem 3: Write a Java function *public static double area(double[][] vertex*) that takes as its argument a 2-by-n array of a convex polygon's vertex coordinates *double[][] vertex* – the x coordinates in the first row and y coordinates in the second row. It returns polygon's area as follows:

- 1. Divides the polygon into triangles by connecting the *first* vertex with the n^{th} and $(n+1)^{st}$ vertices;
- 2. Adds the areas of the constructed triangles using the formula $area = \sqrt{p(p-a)(p-b)(p-c)}$, where

a, b and c are the sides and p = (a + b + c)/2.

You may assume and use a method double dist(double x1, double y1, double x2, double y2) that takes as its arguments coordinates of two points and returns the distance between them.

void space (int length) 9 Por (; kength = 0 ; 1 --) { couf ec " " will symbol (char string leagh) & Rox (; heyt = 0,1: --) 4 cout ec st; void pattern (int size) { Por (int in : size; ; ++) {

space (size-1) For (ind i = size; i > 0) i --) Spare (5.7e -:) symbol (x:i) ? symbol (x:1-i) ? coal oul;

Use the backside, if needed

int awin () 4
refferir ("orten 5," Ee") |

Problem 3 of 4

DOP.MT. (70317.L048

Problem 4: Write a Java method public static void magic 4N(int[][] square) that creates a magic square of a 4N-by-4N size using the following algorithm:

- 1. Creates an array of the same size as int[][] square and fills it forward with successive integers assigning I to the top-left element;
- 2. Creates anther array of the same size as int[][] square and fills it backward with successive integers assigning I to the bottom-right element;
- 3. Divides the original int[][] square into 16 blocks of the same size 4 blocks per row and column. In the on-diagonal (shaded) blocks copies the elements from the first array, and in the off-diagonal blocks copies the elements from second array.

1	2					7	8
9	10					15	16
		19	20	21	22		
		27	28	29	30		
		35	36	37	38		
		43	44	45	46		
49	50					55	56
57	58					63	64

		62	61	60	59		100
	100	54	53	52	51		
48	47					42	41
40	39	CONTROL		0.05		34	33
32	31					26	25
24	23		1000			18	17
12285-7		14	13	12	11		
		6	5	4	3		

cisstrena> SOMIN int meain () 4 list a199]. RON (int id 1 > (size of (a) / size of (a[o]))" i++)4 atil = rand()%10100+1; Il rowhdon mucher generation Rager 100 For but temp t ind b = sizeof(a)/sizeof(a[o])) = for (int g = 0; q (5; reof(a) / size of(a(o))), q =) 4 for () (5)200 (a) / size of (a[o]) 9 = 0,9-19 Por(ing= b; 9>0; 9--) } Por (int == 0; 2= 6; 2++) 5 if (a[2] >dee1]) 4 Use the backside, if needed temp = a [2+1]; o [2+7] = a [+); y a [2] = + cmp; Problem 4 of 4

(90P.M. (JO31] LOYS