GAUSS- HARKOV THEOREH

we have seen that we can derive the estrimate $\hat{\beta}$ both as a maximization of the likelihood under the Gaussian linear model assumption (HL estimate) and as a minimization of the sum of squares (OLS estimate), without the need to specify a dultibusion (and only using conductors on the first two moments).

We consider now the second framework -> remove the distributive assumption.

Assume that ; 1) $Y = X \beta + \varepsilon$ cinearity

- 2) $\mathbb{E}[\mathcal{E}] = 0$ and $\text{vol}(\mathcal{E}) = \sigma^2 \mathbf{I}_n$ (homoscedasticity and incorrelation)
- 3) X non-stochastic with full rank (rank(x)=p)

The DLS estimator is $\hat{\underline{B}} = (X^TX)^{-1} X^T \underline{Y}$ (einear transformation of \underline{Y})

Even without the specification of a distribution for \underline{Y} , we can still device the girpt two moments of $\hat{\underline{B}}$.

We have already computed them: $E[\hat{\beta}] = \beta$, $Vor(\hat{\beta}) = (X^TX)^{-1} 6^2$.

unbiased

CLAUSS- HARKOV TIHL.

Consider the framework defined by assumptions (1)(2)(3).

Then the OLS estimator $\hat{\underline{\beta}}$ is B.L.U.E. (i.e. the Best Linear Unbiased Estimator)

best" = "minimum vouionce"

So the theorem states that, in the class of linear and unbiased estimators of β , has the minimum variance.

(notice however that it doesn't mean that $\hat{\underline{\beta}}$ is "the best estimated overall", it is the best only if we restrict to the class of einear and unbiased).

Assume that $\tilde{\underline{B}}$ is another linear unbiased estimator. (i.e. $\tilde{\underline{B}} = A \cdot \underline{Y}$ and $|\underline{E}[\tilde{\underline{B}}] = \beta$)

The thm states that

 $\operatorname{van}(\frac{\tilde{B}}{\tilde{B}}) \geqslant \operatorname{van}(\frac{\hat{B}}{\tilde{B}})$