PRACTICA 6 LOGICA

Jaime Cabal

Contents

Ejercicio 3: Felapton	2
Ejercicio 1.6	2
Ejercicio 1.8	3
Ejercicio 3 Camestrop:	4
Ejercicio 3 Ferio:	5
Fiercicio 1 9	6

Ejercicio 3: Felapton

$$\exists x Gx, \forall x (Gx \rightarrow \neg Fx), \forall x (Gx \rightarrow Hx) : \exists x (Hx \land \neg Fx)$$

1
$$\exists xGx$$

2 $\forall x(Gx \rightarrow \neg Fx)$
3 $\forall x(Gx \rightarrow Hx)$
4 Ga
5 $Ga \rightarrow Ha$ $\forall E 3$
6 Ha $\rightarrow E 5, 4$
7 $Ga \rightarrow \neg Fa$ $\forall E 2$
8 $\neg Fa$ $\rightarrow E 7, 4$
9 $Ha \land \neg Fa$ $\land I 6, 8$
10 $\exists x(Hx \land \neg Fx)$ $\exists I 9$
11 $\exists x(Hx \land \neg Fx)$ $\exists E 1, 4-10$

© Congratulations! This proof is correct.

Ejercicio 1.6

6.
$$\vdash \forall x R x x \rightarrow \exists x \exists y R x y$$

Construct a proof for the argument: $\forall xRxx \rightarrow \exists x\exists yRxy$

1
$$\forall xRxx$$
2 R aa $\forall E$ 1
3 $\exists y R ay$ $\exists I$ 2
4 $\exists x\exists y R xy$ $\exists I$ 3
5 $\forall x R xx \rightarrow \exists x\exists y R xy$ $\rightarrow I$ 1-4

② Congratulations! This proof is correct.

Ejercicio 1.8

8. $Na \rightarrow \forall x(Mx \leftrightarrow Ma), Ma, \neg Mb \vdash \neg Na$

Construct a proof for the argument: $Na \rightarrow \forall x (Mx \leftrightarrow Ma), Ma, \neg Mb$ $\therefore \neg Na$

1
$$Na \rightarrow \forall x (Mx \leftrightarrow Ma)$$

2 Ma
3 $\neg Mb$
4 Na
5 $\forall x (Mx \leftrightarrow Ma)$ $\rightarrow E 1, 4$
6 $Mb \leftrightarrow Ma$ $\forall E 5$
7 Mb $\leftrightarrow E 6, 2$
8 \bot $\neg E 7, 3$
9 $\neg Na$ $\neg I 4-8$

② Congratulations! This proof is correct.

Ejercicio 3 Camestrop:

Camestrop: $\exists x H x, \forall x (Fx \to Gx), \forall x (Hx \to \neg Gx) : \exists x (Hx \land \neg Fx)$

Construct a proof for the argument: $\exists xHx$, $\forall x(Fx \rightarrow Gx)$, $\forall x(Hx \rightarrow \neg Gx)$: $\exists x(Hx \land \neg Fx)$

1
$$\exists xHx$$

2 $\forall x(Fx \rightarrow Gx)$
3 $\forall x(Hx \rightarrow \neg Gx)$
4 Ha
5 $Ha \rightarrow \neg Ga$ $\forall E 3$
6 $\neg G a$ $\rightarrow E 5, 4$
7 $Fa \rightarrow Ga$ $\forall E 2$
8 $\neg Fa$ $MT 7, 6$
9 $Ha \wedge \neg Fa$ $\wedge I 4, 8$
10 $\exists x(Hx \wedge \neg Fx)$ $\exists I 9$
11 $\exists x(Hx \wedge \neg Fx)$ $\exists E 1, 4-10$

 \odot Congratulations! This proof is correct.

Ejercicio 3 Ferio:

Ferio:
$$\forall x (Gx \rightarrow \neg Fx), \exists x (Hx \land Gx) \vdash \exists x (Hx \land \neg Fx)$$

Construct a proof for the argument: $\forall x(Gx \rightarrow \neg Fx)$, $\exists x(Hx \land Gx) :: \exists x(Hx \land \neg Fx)$

1
$$\forall x(Gx \rightarrow \neg Fx)$$

2 $\exists x(Hx \land Gx)$
3 $Ha \land Ga$
4 Ha $\land E 3$
5 Ga $\land E 3$
6 $Ga \rightarrow \neg Fa$ $\forall E 1$
7 $\neg Fa$ $\rightarrow E 6, 5$
8 $Ha \land \neg Fa$ $\land I 4, 7$
9 $\exists x (Hx \land \neg Fx)$ $\exists I 8$
10 $\exists x (Hx \land \neg Fx)$ $\exists E 2, 3-9$

② Congratulations! This proof is correct.

Ejercicio 1.9

9.
$$\forall x \forall y (Gxy \rightarrow Gyx) \vdash \forall x \forall y (Gxy \leftrightarrow Gyx)$$

Construct a proof for the argument: $\forall x \forall y (Gxy \rightarrow Gyx)$:: $\forall x \forall y (Gxy \leftrightarrow Gyx)$

1
$$\forall x \forall y (Gxy \rightarrow Gyx)$$

2 Gab
3 $\forall y (Gay \rightarrow Gya)$ $\forall E 1$
4 $Gab \rightarrow Gba$ $\forall E 3$
5 Gba $\rightarrow E 4, 2$
6 Gba
7 $\forall y (Gby \rightarrow Gyb)$ $\forall E 1$
8 $Gba \rightarrow Gab$ $\forall E 7$
9 Gab $\rightarrow E 8, 6$
10 $Gab \leftrightarrow Gba$ $\leftrightarrow I 2-5, 6-9$
11 $\forall y (Gay \leftrightarrow Gya)$ $\forall I 10$
12 $\forall x \forall y (Gxy \leftrightarrow Gyx)$ $\forall I 11$

© Congratulations! This proof is correct.