Eigen values & eigenrector of a metrix Anxon. AER is said to be an eigenvalue of a metrix Anxin if there exist a non-zero vector X & R" st $Ax = \lambda x$ X(40) is called the eignvector corresponding to the eigenvalue 2 (ER) Now to find & Ax find d, x to such that A x = 1x (> (A-)I) x =0 (3) (A-AI) x= & les a nontriviel solution ((A-)I) is not invertible (or singular). to det (A-AI)=0 solve it to find a polynomial of degree n ind find roots to bind a. WK (A-AI) 2=0 to bind x 40-Eigen space corresponding to an eigenvalue , is Null space of (A-ZI) (y) $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = A$; $\partial_1 = -1$ = 2 distinct eigenvalues eigenvorresponding to eigenvalue $\lambda_1 = -1$ is $\lfloor \frac{1}{2} (1,-1) \rfloor$ = { (2,-2) x ER} eigurecher = (1,-1) = X1 Eigen space corresponding to eigenvalue 2 = 3 L{(1,1)} = { (x, x) | x = R} eigurector = {1,1} = 1/2 XI, X2-L.I. - form a basis of R2. $\begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 6 \\ 0 & 0 & 5 \end{bmatrix} - eigenvalues$ $\begin{bmatrix} A - \lambda I \end{bmatrix} = \begin{bmatrix} 3 - \lambda & -2 & 0 \\ -2 & 3 - \lambda & 0 \end{bmatrix}$

```
(5-7) / (5-2) - 2 ] =0
                                                         ع الم عدد عدد المراد المراد
                                                                         Repeated eigenvalues
             Eigen space corresponding + 1=12=5 is
                                                             (A-5 I) Z=0
                                                                      \begin{pmatrix} -2 & -2 & 0 & | x_1 \\ -2 & -2 & 0 & | x_2 & | = 0 \end{pmatrix}
                                                                       2/3 - free variable
                              sel of this system of eq = { (x_1, -x_1, x_3) |x_i, x_3 \in \mathbb{R}}
                                                                      = \begin{cases} x_1(1,-1,0) + x_2(0,0,1) \} / x_1, x_2 \in R \end{cases}
= L \left\{ (1,-1,0) , (0,0,1) \right\}
                                             V2, V2} - eign vectors 2-2
                                                                                VI, VL, KVI+ BV2, L, BER will
                                                          work as a eigenvector
 Eigen space corresponding to the eigenvalue 23 = 1.
                                                  (A-1, I) 12 (A-I) 220
                                                        \Rightarrow \begin{pmatrix} 2 & -2 & 0 & | x_1 \\ -2 & 2 & 0 & | x_1 & | = 0 \end{pmatrix}
                                                   7 11 = 72, 73 =D
                                                 sol- of this eg is } (21,24,0) /2,6R)
                                                   ign space = 2 { (1,1,0) } = { (21,21,0) } = nens
                                                            V3 - eign vector corresponding to 2=1.
V_{1} = \begin{pmatrix} 1 & -1 & 1 & 0 \end{pmatrix}
V_{2} = \begin{pmatrix} 1 & -1 & 0 & 0 \end{pmatrix}
V_{3} = \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix}
V_{3} = \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix}
V_{4} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}
V_{5} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}
       A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} - eigenvalus
\lambda_1 = \lambda_2 = \lambda_5 = 3
              eigenspace corresponding to \lambda_1 = 3 = \lambda_2 = \lambda_3
                                              (A-2,I)2 =0
```

```
a ni= free variable
                                                                                                      x2=23 = 0
                                                                   sol. of this eq is = \frac{1}{2} (x_{1,0,0}) | x_1 \in \mathbb{R}
= \frac{1}{2} (x_{1,0,0})
                                                                    liger space = L { (1,0,0) }

y

Vi - eignrector
                                               - Repeated eiger

dz = 3
V_1 = (1,0,0)
Values with

ds = 3
V_2 = 3
V_3 = (1,0,0)
Values with

V_4 = (1,0,0)
V_5 = (1,0,0)
V_6 = (1,0,0)
V_7 = (1,0,0)
V
Thm! - hur an upper / lower transular matrix, eign
                                values are the diagonal extrices.
                                                                                     = \prod_{i=1}^{n} (a_{ii} - \lambda) = 0
                                                                              = aic Alsish
                                                            eignvalues are diagonal city.
                                                                                                                    eign space corresponding to di= 0
L{(1-1) = L{v_1}
eign space corresponding to be=3
                                                                                                      =0 = d= 0 L{(1,2)}= L{v2}
                                                              126-AI
                                                                                                                                      d2=3.
                                  A=0 (=) 1A-2, Il=0
                                                                             (A - OII = 0
                                                                         E) 1A1=0
                    if ) = 0 is ( ) A is not invertible.
                  an eigenvalue of A
  Thank A non maline is invertible iff o is not
                                                               an eigenvalue of it.
                     let Aym matrix
```

Ann > 2:-- In -distinct LI. = form a basis of IRT. $A: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ eight $\{x_1 - \lambda_n\}$ $\{x_1 - \lambda_n\}$ $A X_1 = \lambda_1 X_1$ A X2 = 2 = X2 $A \times_n = \lambda_n \times_n$ matrix of A not the basis (ordered) [X1 - 1/2] (AX, AX2 - AX) diagonal matrix with all eigenvalues on the diagonel. Cayley-Hamilton theorem! Ann $|A-AI| = \beta \delta y nomial in A say$ $|A-AI| = \lambda^{m} + a_{m-1}\lambda^{m-1} + \cdots + a_{1}\lambda + c_{1}\delta + c_{2}\delta + c_{2}\delta + c_{3}\delta + c_{4}\delta + c_{5}\delta + c_$ p(A) = An + an + And + -- + a, A + ao I = 0 Cayley-Marrithon Every matrix satisfies its characteristic equation. - this can be used to calculate powers & inverse of a matin $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Rightarrow \beta(3)$ $\beta(A) = 0$ Similarity !diagonel matrix : eigenvalues = diagonel upper subm matrix: A

A

RREF D

doesn't preserve eigenvalues A ____ D Similar matrices !-Let A D B ke 2 nxn matrices.

He say A is similar to B if there is an
invertible matrix Pnxn such that
$P^{-1}AP = B$
Notation: A~B = A is similar to B
Resulting let A & B & 2 strailer metrices or
A is similar to B
- 3 Pat PJAP = B
A = PB p-1
$= (P^{-1})^{-1} B (P^{-1})$
= Q ⁻¹ B Q
B ~ A·
(1) A ~ B ← B ~ A.
((i) P is not a unique motion for a given pair
of similar matrices.
g A = B = I. → I ~ I
ary P (investible)
$P^{-1}\mathcal{I}P = \underline{\mathcal{T}}$
$4 - A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & 6 \\ -2 & -1 \end{bmatrix}$
A ~ B ·
$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \qquad \text{as} P'AP = B$
C' J w A? = PB
Result - AIB, C-nxn matrices
(a) $A \sim A - \text{reflexi} \sim (I^{-1} A I = A)$
(b) A~B → B~A - symmetric
(c) A~B & B~C (A~B = 31st
P'AP=B A ~C - transition B~C > 3 q st
4-' 8a =c
Similarity is an equivalence $g^{-1}(p^{-1}A p)q = q^{-1}Bq$
relation > A~c)
Thin! Let A, B be nxn matrices such that A~B.
than the following holds
(i) det A = det B det (AB) = det A-det B.
${P^{-1}AP} = {BA} \frac{(BA)}{(AA^{-1})} = {2}$
$det B = det (P^{-}AP) = det (APP^{-}) = det A.$
(i) A is invertible iff B is invertible if det A \$\neq 0\$ & det B = det A \$\neq 0\$
" IF WE IT TO D WE IS - WEIT 70

(iii) A & B have some characteristic polynomial Characteristic bygnomial & B is det (B-AI) = det (P-'AP-2I) = det (P-1AP - 2.P-1P) = det (P-'AP - P-'(AI)'P) = det [P-1 (A-ZI)P] = det ([A-2]) PP-1) det (AB) =clet(BA) det(B-JI) = det (A-JI) a same charateristic polynomial (1) They have same same eigen values. (1) Am ~ Bm for m & M. $\beta^m = (p^{-1}AP)^m$ = P-1 Am P m Bm ~ Am.