Sign Learning Kink based (SiLK) Quantum Monte Carlo Applied to H_2O , N_2 , F_2 Systems

March 8, 2020

Outline |

- Introduction
 - Goal
 - Correlation energy
 - Quantum Monte Carlo (QMC)
 - Minus Sign Problem
- Formalism
 - Transforming the Expression of the Partition Function
 - Overcoming the Sign Problem
- Results
 - H₂O
 - N₂
 - F₂
- Conclusion

Goal

Correlated electronic systems (the Coulomb interaction energy of electrons is not weak!)

- Magnetic systems: Coulomb interaction between electrons leads a variety of spin ordering patterns(ferromagnetism, antiferromagnetism)
- Catalytic properties of transition metal oxides (industrially important!)
- Energy materials

$$\begin{split} \hat{H}_{all} &= -\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2} - \sum_{I=1}^{N_{nuclei}} \frac{1}{2M_{I}} \nabla_{I}^{2} - \sum_{i=1}^{N} \sum_{I=1}^{N_{nuclei}} Q_{I} / r_{iI} \\ &+ \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{1}{r_{ij}} + \sum_{I=1}^{N_{nuclei}} \sum_{J=1}^{N_{nuclei}} \frac{Q_{I} Q_{J}}{R_{IJ}} \end{split}$$

The mass of nucleus is much heavier than the mass of electron Born Oppenheimer Approximation

$$\hat{H} = -\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2} - \sum_{i=1}^{N} \sum_{I=1}^{N_{nuclei}} Q_{I} / r_{iI} + \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{1}{r_{ij}}$$

We combine the one-electron term (including its kinetic energy and interaction to the nuclei) into a single operator $\hat{h}(i)$ for the *i*th electron

$$\hat{h}(i) = -\frac{1}{2}\nabla_i^2 - \sum_{I=1}^{N_{nuclei}} Q_I/r_{iI}$$

Then Hamiltonian operator can be written as

$$\hat{H} = \sum_{i=1}^{N} \hat{h}(i) + \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{1}{r_{ij}}$$

Hartree Fock Approximation

HF equation:

$$\hat{f}(i)\chi(x_i) = \epsilon \chi(x_i)$$
$$\hat{f}(i) = \hat{h}(i) + v^{HF}(i)$$

Hartree Fock potential $v^{HF}(i)$ is the average potential experienced by ith electron due to the presence of the other electrons.

Procedure: Initial guess of spin orbitals, calculate HF potential v^{HF} , solving HF equation for a new set of spin orbitals, calculate v^{HF} ...until self consistency is reached.

$$E_{corr} = E_{exact} - E_{HF}$$

- Ecorr is the correlation energy
- E_{exact} is the exact energy
- E_{HF} is the Hartree Fock energy

Different post-HF methods can catch different amount of E_{corr}

- Full Configuration Interaction (FCI): all excitations from Hartree Fock (HF) state
- Singles and Doubles (SD): single and double excitations from HF
- Singles, Double, and Triples (SDT): single, double and triple excitations from HF

- FCI
- Coupled Cluster Singles Doubles (CCSD)
- Coupled Cluster Singles, Doubles and Triples (CCSDT)
- Coupled Cluster Singles, Doubles plus perturbative Triples (CCSD(T))

$$\begin{split} |\psi_{\textit{ccsd}}\rangle &= e^{\hat{T}_1 + \hat{T}_2} |\psi_{\textit{HF}}\rangle \\ |\psi_{\textit{ccsdt}}\rangle &= e^{\hat{T}_1 + \hat{T}_2 + \hat{T}_3} |\psi_{\textit{HF}}\rangle \end{split}$$

Scaling

Methods	Scaling	Accuracy (Hartree)	
HF	$\mathscr{O}\left[N^3\right]$	10^{-1}	
MBPT(2)	$\mathscr{O}\left[N^4\right]$	10^{-2}	
CCSD	$\mathscr{O}\left[N^6\right]$	10^{-3}	
CCSD(T)	$\mathscr{O}\left[N^7\right]$	10^{-4}	
CCSDT	$\mathscr{O}\left[N^8\right]$	10^{-4}	
FCI	$\mathscr{O}\left[e^{N}\right]$	0	

Table: Assuming (N=M), M: number of spacial orbitals, N: number of electrons.

Question: Why we care chemical accuracy?

Arrhenius equation

$$aA + bB \rightarrow cC, Rate = -\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \frac{1}{c}\frac{d[C]}{dt}$$

$$Rate = k[A]^{s}[B]^{t}$$

[A] and [B] are the concentrations of the reactants, s and t are the reaction order, k is a rate constant.

$$k_0 = Ae^{-rac{E_a}{RT}}, k = Ae^{-rac{E_a+\Delta}{RT}} = k_0e^{-rac{\Delta}{RT}}$$

T=300K

$$\bullet$$
 $e^{-rac{\Delta}{RT}}$ $=$ 5.14 $imes$ 10 $^{-8}$, Δ $=$ 10 kcal/mol

•
$$e^{-\frac{\Delta}{RT}}$$
 =0.18669 , Δ =1 kcal/mol

•
$$e^{-\frac{\Delta}{RT}}$$
 =0.99895 , Δ = 0.627 cal/mol

T=1K

•
$$e^{-\frac{\Delta}{RT}} = 0$$
, $\Delta = 10$ kcal/mol

•
$$e^{-\frac{\Delta}{RT}}$$
=0, Δ =1 kcal/mol

$$\bullet$$
 $e^{-rac{\Delta}{RT}}$ $=$ 0.72910 , Δ $=$ 0.627 cal/mol

Quantum Monte Carlo

The partition function Q:

$$Q = Tr\left(e^{-\beta H}\right)$$

We discretize the β by P times , $\beta/P=\Delta au$

$$egin{aligned} \exp(-\Delta au H) &pprox 1 - \Delta au H, \quad \Delta au \ll 1 \ e^{-eta H} &= \left(e^{-eta H/P}
ight)^P = \left(e^{-\Delta au H}
ight)^P pprox \left(1 - \Delta au H
ight)^P + O(\Delta au). \ 1 &= \sum_i |lpha_{j_i}
angle \langle lpha_{j_i}|. \end{aligned}$$

$$Q(P) = \sum_{\substack{j_1, j_2, \dots, j_P \\ \langle \alpha_{j_P} | \exp(-\Delta \tau H) | \alpha_{j_1} \rangle} \langle \alpha_{j_2} | \exp(-\Delta \tau H) | \alpha_{j_3} \rangle \cdots$$

Hamiltonian dimension (N)= 10^6 , P= 10^9 , Phase space $N^P=10^{6*10^9}$. Questions: How to perform QMC when not all weights are postive? How do we sample the important states?

The Minus Sign Problem

In Mapping of Quantum to Classical system

$$Q = Tr\left(e^{-\beta H}\right) = \sum_{c} p_{c}$$

$$< A > = \frac{Tr \left[A \exp \left(-\beta H \right) \right]}{Tr \left[\exp \left(-\beta H \right) \right]} = \frac{\sum_{c} A_{c} p_{c}}{\sum_{c} p_{c}}$$

- Sign Problem if $p_c < 0$
 - Can not interpret p_c as probabilities
 - Appears in simulation of fermionic system due to fermion exchange

Sampling Absolute Probability

Strategy: perform simulation using absolute values $(|p_c|)$ and keep track of the sign

$$\langle A \rangle = \frac{\sum_{c} A_{c} p_{c}}{\sum_{c} p_{c}}$$

$$= \frac{\frac{\sum_{c} A_{c} Sign(p_{c})|p_{c}|}{\sum_{c} |p_{c}|}}{\frac{\sum_{c} Sign(p_{c})|p_{c}|}{\sum_{c} |p_{c}|}}$$

$$\langle A \rangle = \frac{\langle A \cdot Sign(p_{c}) \rangle_{|p_{c}|}}{\langle Sign(p_{c}) \rangle_{|p_{c}|}}$$

Kink definition

Figure: Kink definition. We define a matrix element $\left\langle \alpha_{j_1} | \exp(-\frac{\beta}{P}H) | \alpha_{j_2} \right\rangle$ with $\alpha_{j_1} \neq \alpha_{j_2}$ as a kink.

Formalism

$$Q(P) = \sum_{j_{1}} \left[\left\langle \alpha_{j_{1}} | e^{-\frac{\beta}{P}H} | \alpha_{j_{1}} \right\rangle \right]^{P} +$$

$$\sum_{j_{1},j_{2}} \sum_{n=0}^{P-2} \left[\left\langle \alpha_{j_{1}} | e^{-\frac{\beta}{P}H} | \alpha_{j_{1}} \right\rangle \right]^{n} \left[\left\langle \alpha_{j_{2}} | e^{-\frac{\beta}{P}H} | \alpha_{j_{2}} \right\rangle \right]^{P-2-n} \times$$

$$\left[\left\langle \alpha_{j_{1}} | e^{-\frac{\beta}{P}H} | \alpha_{j_{2}} \right\rangle \right]^{2} + \cdots .$$

$$x_{j} \approx \left\langle \alpha_{j} | 1 - \Delta \tau H | \alpha_{j} \right\rangle$$

$$x_{j} = 1 - \Delta \tau H_{\alpha_{j},\alpha_{j}}$$

$$t_{ij} = \left\langle \alpha_{i} | e^{-\Delta \tau H} | \alpha_{j} \right\rangle = -\Delta \tau \left\langle \alpha_{i} | H | \alpha_{j} \right\rangle = -\Delta \tau H_{\alpha_{i},\alpha_{j}}$$

 t_{ij} is defined as a kink

Formalism

$$Q = \sum_{j_1} [x_{j_1}]^P + \sum_{j_1, j_2} \sum_{n=0}^{P-2} [x_{j_1}]^n [x_{j_2}]^{P-2-n} [t_{j_1j_2}]^2 + \cdots$$

So we can write Q as summation of terms with zero, two, three ... kinks.

$$Q = Q_0 + Q_2 + Q_3 + \cdots + Q_P$$

$$Q(P) = \sum_{n=1}^{P} \left(\prod_{i=1}^{n} \sum_{j_i} \right) \rho_n(\{\alpha_j\})$$

In this equation, n represents the number of kinks, ρ_n is the weight corresponding to n kinks and compose of a set of states $\{\alpha_j\}$.

Formalism: Improving the basis

- Diagonalize Hamiltonian in those population states
- The new states will be linear combination of the old states

Results: Sign Learning on Water DZ basis frozen core

Water: SiLK VS Coupled Cluster Methods

Dimension vector space used in FCI= 128829

Water: SiLK VS Coupled Cluster Methods

N₂: SD and SDT

Dimension vector space used in SD= 898Dimension vector space used in SDT= 14642

F₂: SD and SDT

Dimension vector space used in SD= 1196Dimension vector space used in SDT= 24980

Conclusion

- SiLK QMC is feasible for both equilibrium geometry and non-equilibrium geometry
- SiLK QMC indeed addresses the minus sign problem by improving the basis
- SiLK QMC is variational
- SiLK QMC can beat approximate single-reference Coupled Cluster methods for extended bond length

Possible project directions

- Develop a massively parallel implementation
- Develop analytical theories to calculate energy using SiLK optimized wavefunctions
- Add the functionality to allow finite temperature calculations

Back up: Energy conversion

Chemical accuracy: 1 kcal/mol=0.0016 Hartree =4.184 KJ/mol SiLK accuracy: 10^{-6} Hartree= 0.6275 cal/mol= 2.6255 J/mol

Scaling in detail

General speaking, n: number of occupied spacial orbitals, N: number of unoccupied spacial orbitals.

- HF $\mathscr{O}\left[(N+n)^3\right]$, 10^{-1} Hartrees
- MBPT(2) $\mathscr{O}\left[n^2N^2\right]$, 10^{-2} Hartrees
- CCSD $\mathcal{O}\left[n^2N^4\right]$, 10^{-3} Hartrees
- ullet CCSD(T) $\mathscr{O}\left[n^2N^4N_{iteration}+n^3N^4
 ight]$, 10^{-4} Hartrees
- CCSDT $\mathscr{O}\left[n^3N^5\right]$, 10^{-4} Hartrees
- FCI $\mathscr{O}\left[e^{N}\right]$

 $N_{iteration}$: number of iterations to reach convergence

Double-Zeta basis

It contains two basis functions for each atomic orbital. In H_2O , n < 3

- Oxygen: $1s, 2s, 2p_0, 2p_{-1}, 2p_{+1}$
- Hydrogen 1:1s
- Hydrogen 2:1s

There are 7 (5+2) orbitals in each basis function. Double-Zeta basis contains 14 orbitals.

Double-Zeta basis

```
.7 X
                      Basis Set: DZ (Dunning) - Mozilla Firefox
https://bse.pnl.qov/bse/portal/user/anon/panel/Main/template/courier_content/js_peid/
            HANGE,12,2
* DZ (Dunning) EMSL Basis Set Exchange Library 6/20/15 3:44 PM
# T.H. DUNNING, JR., J. CHEM. PHYS. 53, 2823 (1970).
# T.H. DUNNING, JR. AND P.J. HAY, IN METHODS OF ELECTRONIC STRUCTURE THEORY,
* VOL. 2, H.F. SCHAEFER III, ED., PLENUM PRESS (1977).
BASIS "ao basis" PRINT
#BASIS SET: (4s) -> [2s]
     0.1776000
#BASIS SET: (9s,5p) -> [4s,2p]
  7816.5400000
    81.1696000
    27,1836000
     3,4136000
    s
    35.1832000
                           0.0195800
                           0.3947270
     0.7171000
                           0.6273750
END
```

 $H: 2 ; H: 2 ; O: 4+2\times3=10$

Multi-reference CCSD(T)

- MRCCSD(T)_(2,2)
- MRCCSD(T)_(4,4)

```
Model space: (m,n) m: the number of orbitals n: the number of electrons (2,2) has 4 references
```

(4,4) has $36(6\times6)$ references

Single reference CC only has one reference (Hartree Fock State)

HOMO(H): Highest occupied molecular orbital LUMO(L): Lowest unoccupied molecular orbital

(2,2): two orbitals [H,L]

(4,4): four orbitals [H-1,H,L,L+1]

HOMO-LUMO

N₂ dissociation

- Triple bond occupied by three pairs of electrons in equilibrium.
- Dissociation of N₂ is bond breaking process.

Silk VS FCI

- SiLK is feasible for finite temperature calculations.
- SiLK can perform geometry optimization in future.
- SiLK has potential to attack larger systems with high chemical accuracy by overcoming the memory bottleneck.

SiLK VS post HF methods

- Higher accuracy
- Variational
- SiLK can treat electron correlation exactly, includes the effects of temperature
- most post HF methods can not properly describe multi-reference electronic correlation effects (SiLK does not suffer problems from (near) degeneracies)

FCIQMC

Using projector P stochastically on a trial state Ψ_T to project out the ground state

$$\lim_{n \to \infty} P^n |\Psi_T\rangle \propto |\Psi_0\rangle$$
 $P_{ij} = \delta_{ij} - \tau (H_{ij} - E_T \delta_{ij})$
 $\Psi_0 = \sum_i C_i |\Phi_i\rangle$
 $C_i(\infty) \propto \sum_{n=0}^{\infty} w_i(n\tau)$

$$C_i(t + \tau) = \sum_j P_{ij}C_j(t)$$

= $(1 - (H_{ii} - E_T))C_i(t) + \sum_{j \neq i} -\tau H_{ij}C_j(t)$.

Correlation energy

Geometry	$E_{corr}(Hartree)$	
R_e	-0.148028	
$1.5R_e$	-0.210992	
2R _e	-0.310076	

Data from Chem. Phys. Lett. 95, 386 (1983)

- dynamical correlation energy: neglect electrons avoiding each other (inclusion of interaction that normally would not occur)
- nondynamical correlation energy: inadequacy of a single reference in describing a given molecular state (Bond breaking case)

Size consistence and Variational

Methods	Dynamical	Nondynamical	Size consistent	Variational
HF	None	None	Yes	Yes
MBPT2	Fair	None	Yes	No
CISD	Good	Fair	No	Yes
CCSD	Very Good	Fair	Yes	No
CCSD(T)	Excellent	Good	Yes	No
SiLK	Excellent	Excellent	Yes	Yes

Dynamical: Dynamical correlation

Nondynamical: Nondynamical correlation

CISD: Configuration Interaction Singles and Doubles