

Can we trust commercial landings data to identify essential habitats of harvested fish?

Application to several species in the Bay of Biscay

¹EMH, Ifremer Nantes

²IRMAR, Université de Rennes ³STH, Ifremer Brest ⁴UMR ESE, INRAE, Rennes Context Model Case studies Model Analysis Discussion

Ecological context

Marine spatial planning

- ⇒ finding a balance between :
- human activities
- preserving ecosystems and habitat functions

Preserving essential habitats of harvested species

- → Fishery sustainability
- → Ecosystem functions

Identify and characterise these areas?

Conceptual diagram of common life-history stages of fish in coastal habitats

S = mature adults during spawning, J = immature juveniles, and F = feeding adults not in spawning. Arrows represent migrations (M)

Available data

- Standardised sampling plan

- Expensive
- Sparse and limited spatio-temporal coverage

Scientific data

Common sole - ORHAGO survey. Unit : kg. Year: 2018.

Available data

Landings data (logbooks x VMS)

- Available data on the full year and dense coverage of the study area
- Costless (for scientists)
- Preferential sampling towards higher abundance area
- Non-homogeneous fleets (varying catchability and targeting behavior)

Common sole - Otter trawls targeting demersal species. Unit: kg. Year: 2018.

Scientific question

Development of a **spatio-temporal modelling framework** fitting to both scientific data and commercial data

Predict fish spatial distribution at a fine spatio-temporal scale

Identification of Essential Fish Habitats

(with a focus on spawning grounds)

Latent field

Observations

Species of interest

Species of interest

Filtering commercial data

- Métier/fleet: Otter trawls targeting demersal species in the Bay of Biscay (OTB_DEF)
- Spawning fraction of catches (when biological data are available)

Species of interest

Filtering commercial data

- Métier/fleet: Otter trawls targeting demersal species in the Bay of Biscay (OTB_DEF)
- Spawning fraction of catches (when biological data are available)

Model predictions for the year 2018

(relative distribution)

Model fitting on the period 2008 - 2018

Monthly time step = 132 maps

EOF

Captures principal spatial patterns

1 map + 1 time series

ROCHELLE FEVRIER . 0.01_5 5,1 _ 20 20,1 _50

Fig. 2b

en février (fig. 2b), la ponte s'est intensifiée. La zone de reproduction se situe au large de La Rochelle et des Sables d'Olonne (13 à 29 œufs/m²) sur des fonds de 30 à 50 mètres. A cette époque, les œufs sont répartis sur de nombreuses stations: on observe d'autres secteurs de concentration d'œufs entre Arcachon et la Gironde ainsi qu'au large de la Loire.

What about other species?

Blue line: february

What about other species?

2008

2018

Blue line: february

- Main conclusion
 - commercial data allow to identify main spatial patterns
 - ⇔ reproduction ecology of species ?
- Add other fleets in the model fitting
- Application to pelagic species?
- Application to management (Marine Spatial Planning)
 - Which are the critical areas for populations renewal? For fishers' income? Based on these results, how to define fishery conservation areas?

