Name:

Caleb McWhorter — Solutions

MATH 101

Fall 2023

HW 4: Due 09/20

"I'm not afraid of hard work. I just don't like it."

-Bob Belcher, Bob's Burgers

Problem 1. (10pt) Showing all your work, compute the following "without a calculator":

- (a) $\sqrt[4]{256}$
- (b) $\sqrt[3]{-125}$
- (c) $\left(\frac{49}{36}\right)^{-1/2}$
- (d) $\sqrt{\frac{1}{4}}$
- (e) $216^{2/3}$

Solution.

(a) The prime factorization of 256 is $256 = 2^8$. But then...

$$\sqrt[4]{256} = \sqrt[4]{2^8} = (2^8)^{1/4} = 2^2 = 4$$

(b) The prime factorization of $125 = 5^3$. But then...

$$\sqrt[3]{-125} = \sqrt[3]{-5^3} = -5$$

(c) The prime factorizations of 49 and 36 are $49 = 7^2$ and $36 = 2^2 \cdot 3^2$. But then...

$$\left(\frac{49}{36}\right)^{-1/2} = \left(\frac{36}{49}\right)^{1/2} = \frac{36^{1/2}}{49^{1/2}} = \frac{(2^2 \cdot 3^2)^{1/2}}{(7^2)^{1/2}} = \frac{2 \cdot 3}{7} = \frac{6}{7}$$

(d) The prime factorization of 4 is $4 = 2^2$. But then...

$$\sqrt{\frac{1}{4}} = \frac{\sqrt{1}}{\sqrt{4}} = \frac{1}{\sqrt{2^2}} = \frac{1}{2}$$

(e) The prime factorization of 216 is $216 = 2^3 \cdot 3^3$. But then...

$$216^{2/3} = (2^3 \cdot 3^3)^{2/3} = ((2^3 \cdot 3^3)^{1/3})^2 = (2 \cdot 3)^2 = 6^2 = 36$$

Problem 2. (10pt) Showing all your work and completely justifying your reasoning, estimate $\sqrt[4]{101}$ without a calculator.

Solution. If $x = \sqrt[4]{101}$, then $x^4 = 101$. Now observe...

$$1^4 = 1$$
 $2^4 = 16$
 $3^4 = 81$
 $4^4 = 256$

But then $3^4 = 81 < x^4 = 101 < 256 = 4^4$. This shows that 3 < x < 4, i.e. $3 < \sqrt[4]{101} < 4$.

We can further estimate $\sqrt[4]{101}$ by bisecting this interval. We have $3.5 = \frac{35}{10}$, so that $3.5^4 = \frac{35^4}{10^4} = \frac{1500620}{10000} = 150.0625 > 101$. But then we know that $3^4 = 81 < x^4 = 101 < 150.0625 = 3.5^4$, which implies $3 < \sqrt[4]{101} < 3.5$.

Yet again, we can further estimate $\sqrt[4]{101}$ by bisecting this interval. We have $3.25 = \frac{325}{100}$, so that $3.25^4 = \frac{325^4}{100^4} = \frac{11156640625}{100000000} = 111.56640625 > 101$. But then we know that $3^4 = 81 < x^4 = 101 < 111.56640625 = 3.25^4$, which implies $3 < \sqrt[4]{101} < 3.25$.

We can continue this process ad infinitum. However, stopping here, we can estimate $\sqrt[4]{101} \approx \frac{3+3.25}{2} = 3.125$. The true value of $\sqrt[4]{101}$ is ≈ 3.17015388 . But then we have estimated $\sqrt[4]{101}$ with an error of only ≈ 0.0451539 —a percentage error of only $\approx 1.42\%$.

Problem 3. (10pt) Simplify the following:

(a)
$$\sqrt{\frac{(xy^2)^3}{xy^{-8}}}$$

(b)
$$\left(\frac{x^9y^{-1}(xy^5)^2}{x^{-1}y}\right)^{-1/2}$$

(c)
$$\left(\sqrt[3]{\frac{xy(x^{-3}y^5)^{-2}}{x^{-2}y^5}}\right)^{-2}$$

Problem 4. (10pt) Simplify the following:

(a)
$$\frac{10}{\sqrt{72}}$$

- (b) $\sqrt{300}$
- (c) $\sqrt[3]{360}$
- (d) $\sqrt{2^{10} \cdot 3^5 \cdot 5^2 \cdot 11^3}$
- (e) $\sqrt[5]{2^{12} \cdot 3^9 \cdot 5^1 \cdot 7^5}$