5 Finite sample tests of linear hypotheses.

5.1 Linear hypotheses

The t-test is appropriate when the null hypothesis is a real valued restriction. However, more generally there may be multiple restrictions on the coefficient vector $\boldsymbol{\beta}$. Suppose we have p > 1 restrictions, we can express a linear hypothesis about $\boldsymbol{\beta}$ in the form $\boldsymbol{R}_{p \times k} \boldsymbol{\beta}_{k \times 1} = \boldsymbol{q}_{p \times 1}$.

Example (Nerlove's returns to scale). Nerlove studied the regression of the total cost of electricity production on demand (Q_i) and factor prices (capital, labour and fuel):

$$\log TC_i = \beta_1 + \beta_2 \log Q_i + \beta_3 \log p_{C_i} + \beta_4 \log p_{L_i} + \beta_5 \log p_{F_i} + \varepsilon_i$$

Economic theory suggests that $\beta_2 = \frac{1}{r}$ where r is the degree of returns to scale. To test constant returns we can use $H_0: \beta_2 = 1$, which is trivially linear in components of β . Alternatively we can write

$$R\beta = q$$

with R = (0, 1, 0, 0, 0) and q = 1.

Further the total cost must be homogenous of degree 1 with respect to factor prices (doubling cost of all inputs doubles total cost). To test this we can consider $H_0: \beta_3 + \beta_4 + \beta_5 = 1$. If we were to reject this it would suggest model misspecification.

To test these hypotheses simultaneously consider:

$$R\beta = q$$
 with $R = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$ and $q = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

To test H_0 : $R\beta = q$ vs. H_1 : $R\beta \neq q$ we compute the vector $R\hat{\beta} = q$ and reject the null if this vector is "too large" depending on the distribution of $\hat{\beta}$ under H_0 .

Definition 5.1.1: Wald statistic

When restrictions are a linear function of coefficients β , we can write the Wald statistic as

$$W = (R\hat{\beta} - q)'(R\hat{V}_{\hat{\beta}}R')^{-1}(R\hat{\beta} - q)$$

i.e. a weighted Euclidean measure of the length of the vector $R\hat{\beta} - q$.

Note:-

As the Wald statistic is symmetric in the argument $R\hat{\beta} - q$ it treats positive and negative alternatives symmetrically. Thus the inherent alternative is always two-sided.

The Wald statistic is not-invariant to a non-linear transformation/reparametrisation of the hypothesis. For example, asking whether $\beta_1 = 1$ is the same as asking whether $\log \beta_1 = 0$; but the Wald statistic for $\beta_1 = 1$ is not the same as the Wald statistic for $\log \beta_1 = 0$. This is because there is in general no neat relationship between the standard errors of β_1 and $\log \beta_1$, so it needs to be approximated.

Assuming normal regression:

$$\hat{\beta}|X \sim N(\beta, \sigma^2(X'X)^{-1})$$

$$R\hat{\beta}|X \sim N(R\beta, \sigma^2R(X'X)^{-1}R')$$

$$R\hat{\beta} - q|X \sim N(R\beta - q, \sigma^2R(X'X)^{-1}R')$$

$$\stackrel{H_0}{\sim} N(0, \sigma^2R(X'X)^{-1}R')$$

We can thus standardise:

$$(\sigma^{2}R(X'X)^{-1}R')^{-\frac{1}{2}}(R\hat{\beta} - q)|X \stackrel{H_{0}}{\sim} N(0, I_{P})$$

$$(R\hat{\beta} - q)'(\sigma^{2}R(X'X)^{-1}R')^{-1}(R\hat{\beta} - q)|X \stackrel{H_{0}}{\sim} \chi^{2}(p)$$
(5.1)

However, the true variance σ^2 is unknown, we thus replace it with the estimated $\hat{\sigma}^2$ to obtain the Wald statistic:

$$W = (R\hat{\beta} - q)'(\hat{\sigma}^2 R(X'X)^{-1}R')^{-1}(R\hat{\beta} - q)$$
$$= \frac{(R\hat{\beta} - q)'(\sigma^2 R(X'X)^{-1}R')^{-1}(R\hat{\beta} - q)}{\hat{\sigma}^2/\sigma^2}$$

Note that this distribution is not $\chi^2(p)$ since $\hat{\sigma}^2$ is itself a random variable. We must consider the joint distribution of $\hat{\sigma}^2$ and $\hat{\beta}$ to make progress.

5.2 The joint distribution of $\hat{\sigma}^2$ and $\hat{\beta}$

Recall the definition of the variance estimator:

$$\hat{\sigma}^2 = \frac{\hat{\varepsilon}'\hat{\varepsilon}}{n-k}$$

To express this in terms of the population ε 's examine the following, where we denote the residual maker matrix by $\mathbf{M}_{\mathbf{X}} = \mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$:

$$(n-k)\hat{\sigma}^2 = \hat{\varepsilon}'\hat{\varepsilon}$$

$$= (\mathbf{M_Xy})'\mathbf{M_Xy}$$

$$= (\mathbf{M_X}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}))'\mathbf{M_X}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})$$

$$= \boldsymbol{\varepsilon}'\mathbf{M_X'}\mathbf{M_X}\boldsymbol{\varepsilon} \qquad (\text{since } \mathbf{M_XX} = \mathbf{0})$$

$$= \boldsymbol{\varepsilon}'\mathbf{M_X}\boldsymbol{\varepsilon} \qquad (\text{since } \mathbf{M_X'}\mathbf{M_X} = \mathbf{M_XM_X} = \mathbf{M_X})$$

Since $\mathbf{M}_{\mathbf{X}}$ is symmetric, it is positive definite when all eigenvalues are positive. Since it is also idempotent, $\mathbf{M}_{\mathbf{X}}^2 = \mathbf{M}_{\mathbf{X}}$, all eigenvalues are either zero or one, meaning $\mathbf{M}_{\mathbf{X}}$ is positive semi-definite.¹

Lemma 5.2.1 (Spectral decomposition). For every $n \times n$ real symmetric matrix, the eigenvalues are real and the eigenvectors can be chosen real and orthonormal. Thus a real symmetric matrix **A** can be decomposed as

$$A = Q\Lambda Q'$$

where \mathbf{Q} is an orthogonal matrix whose columns are the real, orthonormal eigenvectors of \mathbf{A} , and $\mathbf{\Lambda}$ is a diagonal matrix whose entries are the eigenvalues of \mathbf{A} .

Alternatively since $\mathbf{M_X^2} = \mathbf{M_X}$ and $\mathbf{M_X}' = \mathbf{M_X}$, note that $\mathbf{v}'\mathbf{M_X}\mathbf{v} = \mathbf{v}'\mathbf{M_X^2}\mathbf{v} = \mathbf{v}'\mathbf{M_X}'\mathbf{M_X}\mathbf{v} = (\mathbf{v}'\mathbf{M_X})'(\mathbf{M_X}\mathbf{v}) = \|\mathbf{M_X}\mathbf{v}\|^2$ for all $\mathbf{v} \in \mathbb{R}^n$.

The spectral decomposition of $\mathbf{M}_{\mathbf{X}}$ is $\mathbf{M}_{\mathbf{X}} = \mathbf{H}\boldsymbol{\Lambda}\mathbf{H}'$ where $\mathbf{H}\mathbf{H}' = \mathbf{I}_{\mathbf{n}}$ and $\boldsymbol{\Lambda}$ is diagonal with the eigenvalues of $\mathbf{M}_{\mathbf{X}}$ along the diagonal. Since $\mathbf{M}_{\mathbf{X}}$ is idempotent with rank n-k, it has n-k eigenvalues equalling 1 and k eigenvalues equalling 0, so:

$$oldsymbol{\Lambda} = egin{bmatrix} \mathbf{I}_{n-k} & \mathbf{0} \ \mathbf{0} & \mathbf{0}_k \end{bmatrix}$$

In the normal regression $\varepsilon \sim N(0, \mathbf{I_n}\sigma^2)$, we want to find the distribution of $\mathbf{H}'\varepsilon$. A linear combination of normals is also normal, meaning $\mathbf{H}'\varepsilon$ is normal with mean $\mathbb{E}[\mathbf{H}'\varepsilon] = \mathbf{H}'\mathbb{E}[\varepsilon] = 0$ and variance $\operatorname{Var}(\mathbf{H}'e) = \mathbf{H}'\mathbf{I_n}\sigma^2\mathbf{H} = \sigma^2\mathbf{H}'\mathbf{H} = \mathbf{I_n}\sigma^2$. Thus $\mathbf{H}'\varepsilon \sim N(0, \mathbf{I_n}\sigma^2)$.

Let $\mathbf{u} = \mathbf{H}' \boldsymbol{\varepsilon}$, and partition $\mathbf{u}_{n \times 1} = \begin{bmatrix} \mathbf{u_1} \\ (n-k) \times 1 \\ \mathbf{u_2} \\ k \times 1 \end{bmatrix}$ where $\mathbf{u_1} \sim N(0, \mathbf{I_n} \sigma^2)$, then we have

$$\begin{split} (n-k)\hat{\sigma}^2 &= \varepsilon' \mathbf{M_X} \varepsilon \\ &= \varepsilon' \mathbf{H} \Lambda \mathbf{H}' \varepsilon \\ &= \mathbf{u}' \begin{bmatrix} \mathbf{I}_{n-k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_k \end{bmatrix} \mathbf{u} \\ &= [\mathbf{u_1'} \ \mathbf{u_2'}] \begin{bmatrix} \mathbf{I}_{n-k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_k \end{bmatrix} \begin{bmatrix} \mathbf{u_1} \\ \mathbf{u_2} \end{bmatrix} \\ &= \mathbf{u_1'} \mathbf{u_1} \end{split}$$

where $\mathbf{u}_1'\mathbf{u}_1$ is the sum of n-k squared normals with mean 0 and variance σ^2 . We can transform each normal into a standard normal with division by σ ; since each normal is squared we divide by σ^2 . A sum of j squared standard normals is distributed χ_j^2 , thus $\frac{(n-k)\hat{\sigma}^2}{\sigma^2}$ is distributed χ_{n-k}^2 . Since ε is independent of $\hat{\boldsymbol{\beta}}$ it follows that $\hat{\sigma}^2$ is independent of $\hat{\boldsymbol{\beta}}$ as well.

Theorem 5.2.1. In normal regression,

$$\frac{(n-k)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-k}^2$$

and is independent of $\hat{\beta}$.

Corollary 5.2.1. In normal regression satisfying GM1-3, the normalised Wald statistic $\frac{W}{p}$, is distributed as F(p, n-k) under the null.

Proof

$$\frac{W}{p} = \frac{(R\hat{\beta} - q)'(\sigma^2 R(X'X)^{-1}R')^{-1}(R\hat{\beta} - q)/p}{\hat{\sigma}^2/\sigma^2} \sim \frac{\chi^2(p)/p}{\chi^2(n-k)/(n-k)} \sim F(p, n-k).$$

Where we have used 5.1 in the numerator, and Theorem 5.2.1 in the denominator. \Box

Consider a special case of testing a single restriction, that the j-th coefficient is zero. Then $R\hat{\beta}_i - q = \beta_i$:

$$\begin{split} \hat{\beta}_j | X \overset{H_0}{\sim} N(0, \sigma^2(X'X)_{ij}^{-1}) \\ \frac{\hat{\beta}_j}{\sqrt{\sigma^2(X'X)_{jj}^{-1}}} | X \overset{H_0}{\sim} N(0, 1) \end{split}$$

As before σ^2 is unknown, we can substitute in $\hat{\sigma}^2$, but the distribution will change:

$$t = \frac{\hat{\beta}_{j}}{\sqrt{\hat{\sigma}^{2}(X'X)_{jj}^{-1}}}$$

$$= \frac{\hat{\beta}_{j}/\sqrt{\sigma^{2}(X'X)_{jj}^{-1}}}{\sqrt{\frac{(n-k)\hat{\sigma}^{2}}{\sigma^{2}}/(n-k)}}$$

$$t|X \stackrel{H_{0}}{\sim} \frac{N(0,1)}{\sqrt{\chi^{2}(n-k)/(n-k)}}$$

$$\stackrel{H_{0}}{\sim} t(n-k)$$

Where we are using the fact that the numerator and denominator are independent conditional on X. Note that the square of the t-statistic equals the F-statistic for testing the single restriction.

$$t^{2}(n-k) = \left(\frac{N(0,1)}{\sqrt{\chi^{2}(n-k)/(n-k)}}\right)^{2}$$
$$= \frac{\chi^{2}(1)/1}{\chi^{2}(n-k)/(n-k)}$$
$$= F(1, n-k)$$

It is preferable to use the t-statistic since we can test one-sided alternatives, by squaring it we kill the sign of $\hat{\beta}_i$, making it impossible to differentiate between left and right sided alternatives.

5.3 The familiar form of the F-statistic

Consider the following test:

$$H_0: R\beta = q \text{ vs. } H_1: R\beta \neq q.$$

Proposition 5.3.1. The normalised Wald statistic is equivalent to the following formula for the F-statistic when testing linear restrictions:

$$F = \frac{W}{p} = \frac{(RSS_r - RSS_u)/p}{RSS_u/(n-k)}$$

Proof. Let us impose the null hypothesis $R\beta = q$ when minimising the sum of squared residuals, denote the solution as the restricted least squares estimator $\tilde{\beta}$:

$$\min_{\beta} (Y - X\beta)'(Y - X\beta) \quad \text{s.t.} \quad R\beta = q$$

$$\mathcal{L}(\beta) = (Y - X\beta)'(Y - X\beta) + \lambda'(R\beta - q)$$

$$\frac{\partial \mathcal{L}}{\partial \beta} = -2X'(Y - X\tilde{\beta}) + R'\lambda = 0$$

$$\Rightarrow X'Y - X'X\tilde{\beta} = R'\left(\frac{\lambda}{2}\right)$$

$$\Rightarrow (X'X)^{-1}X'Y - (X'X)^{-1}X'X\tilde{\beta} = (X'X)^{-1}R'\left(\frac{\lambda}{2}\right)$$

Define the usual (unrestricted) OLS estimate as $\hat{\beta} = \hat{\beta}_{OLS} = (X'X)X'Y$

$$\Rightarrow \hat{\beta} - \tilde{\beta} = (X'X)^{-1}R'\left(\frac{\lambda}{2}\right)$$

$$\Rightarrow \tilde{\beta} = \hat{\beta} - (X'X)^{-1}R'\left(\frac{\lambda}{2}\right)$$

$$\Rightarrow R\tilde{\beta} = R\hat{\beta} - R(X'X)^{-1}R'\left(\frac{\lambda}{2}\right)$$

Since $R\tilde{\beta} = q$:

$$q = R\hat{\beta} - R(X'X)^{-1}R'\left(\frac{\lambda}{2}\right)$$
$$R\hat{\beta} - q = R(X'X)^{-1}R'\left(\frac{\lambda}{2}\right)$$
$$\Rightarrow (R(X'X)^{-1}R')^{-1}(R\hat{\beta} - q) = \frac{\lambda}{2}$$

Thus,

$$\tilde{\beta} = \hat{\beta} - (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - q)$$

Now from the corresponding restricted and unrestricted residuals,

$$\begin{split} \hat{\varepsilon} &= Y - X \hat{\beta} \\ \tilde{\varepsilon} &= Y - X \tilde{\beta} = X \hat{\beta} + \hat{\varepsilon} - X \tilde{\beta} = \hat{\varepsilon} + X (\hat{\beta} - \tilde{\beta}) \end{split}$$

Since $\hat{\varepsilon}'X = 0^{-a}$

$$\tilde{\varepsilon}'\tilde{\varepsilon} = (\hat{\varepsilon} + X(\hat{\beta} - \tilde{\beta}))'(\hat{\varepsilon} + X(\hat{\beta} - \tilde{\beta}))
= \hat{\varepsilon}'\hat{\varepsilon} + \hat{\varepsilon}'X(\hat{\beta} - \tilde{\beta}) + (\hat{\beta} - \tilde{\beta})'X'\hat{\varepsilon} + (\hat{\beta} - \tilde{\beta})'X'X(\hat{\beta} - \tilde{\beta})
= \hat{\varepsilon}'\hat{\varepsilon} + (\hat{\beta} - \tilde{\beta})'X'X(\hat{\beta} - \tilde{\beta})$$

and substituting $\hat{\beta} - \tilde{\beta} = (X'X)^{-1}R'\left(R(X'X)^{-1}R'\right)^{-1}(R\hat{\beta} - q)$,

$$\hat{\varepsilon}'\hat{\varepsilon} - \hat{\varepsilon}'\hat{\varepsilon} = ((X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - q))'X'X(X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - q)$$

$$= (R\hat{\beta} - q)'(R(X'X)^{-1}R')^{-1}R(X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - q)$$

$$= (R\hat{\beta} - q)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - q)$$

Finally,

$$\frac{W}{p} = \frac{(R\hat{\beta} - q)' \left(R(X'X)^{-1}R' \right)^{-1} (R\hat{\beta} - q)/p}{\hat{\sigma}^2} = \frac{(\tilde{\epsilon}'\tilde{\epsilon} - \hat{\epsilon}'\hat{\epsilon})/p}{\frac{\hat{\epsilon}'\hat{\epsilon}}{n - k}} = \frac{(RSS_r - RSS_u)/p}{RSS_u/(n - k)}$$

^aI.e.: Unrestricted OLS residuals uncorrelated with regressors, see lecture 2 for an explanation