IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage System for Large Language Model Inference

Weijian Chen, Shuibing He, Haoyang Qu, Ruidong Zhang, Siling Yang, Ping Chen, Yi Zheng \$, Baoxing Huai \$, Gang Chen

USENIX FAST 2025

Large Language Model (LLM) Inference

> LLM has been applied in a range of fields

- > context-rich prefixes + user queries = LLM requests
- ➤ Many requests share identical prefixes

^{*} Image Source: Internet

Prefix KV Storage System

> Shared prefix KVs can be restored and reused

^{*} Assume a three-layer simple LLM

Time-to-First-Token (TTFT) can be reduced.

Prefix KV Storage System

> When shared prefix KVs needs to be stored into SSD

Related Work

➤ Most existing systems store prefix KVs only in GPU and/or CPU memory

PromptCache-MLSys24, RAGCache-arxiv24, ChunkAttention-arxiv24, SGLang-arxiv23

Limited space in GPU and CPU memory quickly becomes exhausted

Pre-loads them into CPU memory based on the scheduler's predictions AttentionStore-ATC24

Limitations exists under high request volumes or in preemptive scheduling

Is it possible to reduce KV data that needs to be loaded?

Opportunity from KV Importance

➤Only preserve important KVs during decoding phase achieves the same level accuracy

H2O-NeurlPS23

InfiniGen-OSDI24

How about only load important KVs during prefill to reduce I/O bottleneck and TTFT?

Challenge 1

➤ A large amount of I/O is introduced to identify important KVs.

Pre-determine important KVs?Accuracy Drop.

- SPI: statically pre-determine importance
- ORI: original dynamically determine importance

Challenge 2

- ➤ The existing prefix KV storage and caching systems are suboptimal considering token's importance.
 - Storage: read amplification (Each chunk contains a mix of important and unimportant KVs.)

(a) The ratio of important KVs within each chunk.

2. Caching: based solely on recency or frequency(ignore the importance of KVs)

(b) Average ratio of important tokens in all chunks for a given chunk access frequency.

Outline

- **→** Background & Motivation
- **→** Observation & Design of IMPRESS
- **Evaluation**
- > Summary & Conclusion

IMPRESS Architecture

Observation

 There is a high similarity in the set of important token indices across different heads within the same layer of an LLM.

Similarity measurement:

ho={0, 2} h1={0, 1}
$$J(h_0,h_1)=rac{|h_0\cap h_1|}{|h_0\cup h_1|}=rac{1}{3}$$

The similarity of important tokens indices exists across different LLM scales and important KV ratios.

1 Similarity-Guided Important Token Identification

Key idea: Use the important token index set from a few selected heads to approximate the important token index sets for the remaining heads

(a) Without our method

(b) With our method

2.1 KV Reordering

- ➤ Target: Reduce read amplification
- ➤ Key idea: reorder and repack important KVs into denser chunks

- Problem: KV reordering may destroy the radix tree structure by altering the token order
 - 1. avoid cross-node reordering
 - 2. Add mapping list to recovery

2.2 Score-Based Cache Management

- ➤ Key idea: Data admission and cache replacement based on scoring.
- > The score = the chunk access frequency * proportion of important KVs.

The higher the score, the higher the priority for admission into the faster medium cache.

score for chunk 1: 1.5 * 50% = 0.75 score for chunk 2: 1 * 100% = 1

Experimental Setup

> System configuration

CPU	2 × AMD EPYC 7763
GPU	1× NVIDIA A100 (80GB)
Memory & SSD	128 GB DRAM, 2TB SSD (5GB/s)

Workloads and datasets

Datasets	PIQA, RTE, COPA, and OpenBookQA Prefix sizes: 55GB, 57GB, 64GB, 65 GB
Models	OPT-6.7B, OPT-13B, OPT-30B

> Compared systems

ReComp	Recomputation without reusing prefix KVs
AS-like	AttentionStore with async KV loading, without scheduler
AS+H2O+LRU	Add H2O on top of AttentionStore with LRU
AS+H2O+LFU	Add H2O on top of AttentionStore with LFU
IMPRESS	Our three optimizations on top of H2O

Default settings.

(1) cache size: 10GB GPU HBM, 32GB CPU DRAM

(2) Chunk size: keys or values of 64 tokens

Model Inference Accuracy

Compared to ReComp, the average inference accuracy drop is less than 0.2%

Time-to-first-token (TTFT)

✓ TTFT

✓ I/O time

✓ Individual technique

IMPRESS outperforms alternatives, with a $1.2 \times 2.8 \times 10^{-2}$ improvement over SOTA solutions, due to a $1.5 \times 2.8 \times 10^{-2}$ reduction in I/O time.

Sensitivity Analysis

Various chunk sizes

Various dataset scales

Results on Llama models

IMPRESS outperforms the leading alternative on various cases.

More evaluations: checkout our paper

Summary & Conclusion

> Problem

• I/O becomes the bottleneck when shared prefix KVs are loaded from SSD for LLM

> Key idea

- Only load important KVs during prefill phase
- ➤ Challenges
 - A large amount of I/O is introduced to identify important KVs
 - Storage and caching systems are suboptimal

> Techniques in iCache

- Similarity-Guided Important Token Identification
- KV Reordering & Score-Based Cache Management

> Results

IMPRESS outperforms the alternatives with the same level of inference accuracy

Thanks & QA

IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage System for Large Language Model Inference

Contact Email: weijianchen@zju.edu.cn

ISCS Lab: https://shuibing9420.github.io