MULTI-CHANNEL SEPARATION OF DYNAMIC SPEECH AND SOUND EVENTS

Takuya Fujimura^{1,2} and Robin Scheibler¹ (1 LINE Corp., 2 Nagoya University)

Separation of Dynamic Sources

Contributions of this Work

- 1. Multi-channel source separation with attention-based tracking
- 2. Investigate MVDR and Independent Vector Analysis (IVA)
- 3. Evaluation for speech and sound event detection

Time-Invariant Multi-channel Separation

We investigate two methods

MVDR

Independent Vector Analysis (IVA) [1]

$$\mathbf{w} = \frac{(\mathbf{\Phi}^N)^{-1}\mathbf{\Phi}^S\mathbf{e}_1}{\mathsf{tr}\left((\mathbf{\Phi}^N)^{-1}\mathbf{\Phi}^S\right)}$$

 $\mathbf{w} = \frac{(\mathbf{\Phi}^N)^{-1}\mathbf{\Phi}^S\mathbf{e}_1}{\operatorname{tr}((\mathbf{\Phi}^N)^{-1}\mathbf{\Phi}^S)} \qquad \mathbf{W}^{(n+1)} \leftarrow \arg\min_{\mathbf{W}} \sum_{k} \mathbf{w}_k^H \mathbf{\Phi}^{(k,n)} \mathbf{w}_k - 2\log$ — 2 log | det W |

where S = signal andN =noise.

where $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_K]^H$ is the separation matrix, and *n* is the iteration.

The matrix Φ^{ν} is the time-invariant spatial covariance matrix,

$$\mathbf{\Phi}^{
u} = rac{1}{T} \sum_t \mathbf{\Psi}^{
u}_t, \qquad ext{with} \qquad \mathbf{\Psi}^{
u}_t = \gamma^{
u}_t \mathbf{x}_t \mathbf{x}_t^H,$$

where γ_t is a time-frequency mask produced by a DNN [2, 3].

From Time-invariant to Moving Sources

1. Use a time-varying spatial covariance matrix

$$oldsymbol{\Phi}_t^
u = rac{1}{T} \sum
olimits_{t'} c^
u_{tt'} oldsymbol{\Psi}_{t'}^
u.$$

2. Use them to compute time-varying beamforming weights.

The weights $c_{tt'}$ map input frames to output beamforming weights.

time-invariant (TIV)

block (BLK)

online (ONL)

In this work, we adopt the DNN-predicted attention-based tracking proposed for single source in [4].

attention-based (ATT) [4]

Experiments

Network

Mask 3-layers convnet + GLU activations (similar to [3]). Attention Mel-spec + spatial features input [5],

 $\mathbf{z}_0 = \mathsf{Mel}(\mathsf{Concat}(|\mathsf{x}|^2, \mathsf{SpaFeat}(\mathsf{x})))$

 $\mathbf{z}_1 = \mathsf{Conv}(10 \log_{10}(\mathbf{z}_0)),$

 $c = \mathsf{SelfAtt}(\mathbf{z}_1).$

Speech Separation

Simulated dataset with 0, 1, or 2 moving sources out of 2. Speech WSJ0+WSJ1 Noise CHiME3 ASR Whisper

Results

Sources	2 static		moving/static		2 moving	
	SDR↑	$WER\!\!\downarrow$	SDR↑	WER↓	SDR↑	WER↓
Target		10.7		10.7		11.0
Mixture	-0.15	72.2	-0.15	72.3	-0.14	74.0
ATT-MVDR	9.61	13.9	6.65	20.8	4.83	34.3
oracle mask*	11.56	11.6	8.80	13.9	7.18	19.5
TIV-IVA	10.65	11.6	4.06	20.8	-0.02	54.9
ONL-IVA	5.14	19.1	1.97	36.1	-0.20	60.1
BLK-IVA	8.84	14.2	4.49	20.5	1.86	44.0
ATT-IVA	13.54	11.3	10.78	13.1	7.65	27.7

Sound Event Detection

Separation network trained on simulated SELD dataset.

SDR (\uparrow) for sound event separation on the synthetic validation set.

Method	Mixture	TIV-IVA	ATT-IVA
SDR ↑	-6.04	-4.13	0.71

Event detection trained on DCASE 2022 SELD dataset [6]. SED networks:

- MIX: mixture only
- TIV: mixture + time-invariant separation
- ATT: mixture + attention-based separation
- TIV+ATT: ensemble of TIV and ATT

Results macro-F1 score on the STARSS22 dataset [6].

MIX	TIV	ATT	TIV+ATT	Classwise*
0.5559	0.5681	0.5706	0.5793	0.6026

Class-wise results

References

[1] Ono, WASPAA, Nov. 2011. [2] Heymann et al., ICASSP, Mar. 2016. [3] Scheibler and Togami., ICASSP, Aug. 2021. [4] Ochiai et al., TASLP, vol. 31, Jan. 2023. [5] Jarett et al., EUSIPCO, Aug. 2010. [6] Politis et al., DCASE Workshop, Nov. 2022.

audio samples