工科数学分析(下)试题 1

- 一、填空题 (第小题 3 分, 总 12 分。将答案填在题中横线上,不填解题过程)
- 1. 过点(-1,-4,3),并垂直于直线 $l:\begin{cases} 2x-4y+z=1\\ x+3y=5 \end{cases}$ 的平面方程为 ______.
- 2. $L 为 x^2 + y^2 = 1$ 的下半圆,则 $\int_{L} (x^2 + y^2 3x) ds =$ _____.
- 3. 设 S 为球面 $x^2 + y^2 + z^2 = 1$,则曲面积分 $\oint_{S} (x^2 + y^2 + z^2 2z) dS$ 的值为____.
- 4. 设数量场 $u = \ln \sqrt{x^2 + y^2 + z^2}$,则其梯度场的散度 div(grad u) =_______.
- 二、选择题(每小题3分,总12分。每小题给出四种选择,有且仅有一个是正确的,将正确的代号填在 横线上)
- 1. 二元函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ 在 (0,0) 处_____.
- (A) 连续,偏导数存在; (B) 不连续,偏导数存在;
- (C) 连续,偏导数不存在; (D) 不连续,偏导数不存在
- 2. 函数 u = xyz 2yz 3 在点 (1,1,1) 沿 $\vec{l} = 2\vec{i} + 2\vec{j} + \vec{k}$ 的方向导数为_____.
- (A) $1/\sqrt{5}$;
- (B) $-1/\sqrt{5}$; (C) 1/3; (D) -1/3
- 3. 若 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 都收敛,则下列选项中正确的是_____.
- (A) $\sum_{n=0}^{\infty} (a_n + b_n)^2$ 收敛; (B) $\sum_{n=0}^{\infty} (a_n^2 + b_n^2)$ 收敛; (C) $\sum_{n=0}^{\infty} (-1)^n (a_n + b_n)$ 收敛; (D) $\sum_{n=0}^{\infty} (a_n + b_n)$ 收敛.
- 4. 设 $f(x) = x^2, 0 \le x < 1$, 而 $s(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x (-\infty < x < \infty)$, 其中 $b_n = 2 \int_0^1 f(x) \sin n\pi x dx$,

 $(n=1,2,\cdots)$, $\bigcup S(-\frac{1}{2}) = \underline{\hspace{1cm}}$.

- (A) $-\frac{1}{2}$; (B) $-\frac{1}{9}$; (C) $\frac{1}{9}$; (D) $\frac{1}{3}$

- 5. 微分方程 $y'' y = e^x + 1$ 的一个特解应有形式(式中 a,b 为常数)______.

- (A) $ae^x + b$ (B) $axe^x + b$ (C) $axe^x + bx$ (D) $ae^x + bx$

三、解答题(本题共 5 小题, 总 30 分)

1.设
$$u = f(r, s, t)$$
 具有连续的偏导数,且 $r = y - z, s = z - x, t = x - y$,求 $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$ 。

2.求曲面
$$z = \frac{x^2}{2} + y^2$$
 平行于平面 $2x + 2y - z = 0$ 的切平面方程。

3.计算
$$\int_0^1 \mathrm{d}y \int_{\sqrt{y}}^1 e^{\frac{y}{x}} \mathrm{d}x$$
。

计算二重积分
$$\iint_D y dx dy$$
 , 其中 D 由直线 $x=-2$, $y=0$, $y=2$ 以及曲线 $x=-\sqrt{2y-y^2}$ 所围成.

- 4.将函数 $\frac{2x+1}{x^2+x-2}$ 展开成 x-2 的幂级数,并指出它的收敛区间(不讨论端点).
- 5. 设[1+f(x)]ydx+f(x)dy=0 是全微分方程,其中 f 具有一阶连续导数,且 f(0)=0. 求 f(x) 的表达式.
- 四、 $(10 \, \text{分})$ 求曲面 $x^2 + y^2 + z^2 = 16$ 与 $x^2 + y^2 + z^2 + 2x + 2y + 2z = 24$ 的交线的最高和最低点的坐标。
- 五、 $(8\, \%)$ 设有质量为M,半径为R 的非均匀球体,在点P(x,y,z) 处的密度与该点到球心的距离成正比,比例系数为常数k>0. 求球体对它的直径的转动惯量I,并将I 用M 与R 表示。
- 六、 $(8\, \odot)$ 计算曲面积分 $I=\iint_{\Sigma}yz^2\mathrm{d}y\mathrm{d}z+x^2z\mathrm{d}z\mathrm{d}x+(x^2+y^2)z\mathrm{d}x\mathrm{d}y$,其中 Σ 为曲面 $z=2-x^2-y^2$, $1\leq z\leq 2$ 的上侧.
- 七、 $(8\,

 ota)$ 计算曲线积分 $I = \oint_C \frac{x dx + y dy}{x^2 + y^2}$,其中 C 为不通过原点的分段光滑平面闭曲线,取正向.
- #. 计算 $\int_L y(1+2x) dx + (x^2+2x+y^2) dy$,其中 L 是 $x^2+y^2=2x$ 按逆时针方向从点 A(2,0) 到点 O(0,0) 的一段弧.

八、
$$(8\,
ota)$$
 求 $\sum_{n=1}^{\infty} \frac{n}{n+1} x^n$ 的收敛域与和函数. #求级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}$ 的收敛域及和函数.

九、下列两题中任意选做一题

- 1. (8分) 设正项数列 $\{a_n\}$ 单调减少,且级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试证明: $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$ 收敛.
- 2. $(8\, \beta)$ 设有方程 $x^n+nx-1=0$,其中 n 为正整数, 证明此方程存在唯一正实根 x_n ,并证明当 $\alpha>1$ 时,级数 $\sum_{n=1}^{\infty}x_n^{\alpha}$ 收敛.

工科数学分析(下)试题 2

				14 44 3 11 1 1 max 1 110 4 5 1	
一、	填空鼩	(每小脚4分,	总 16 分。	将答案填在题中横线上,	小填解题过程)

1. 设曲线 $L: x = t^2 - 1$, y = t + 1, $z = t^3$, 则在曲线 L 上对应于 t = 1 的点处的切线方程为_______.

#1. 设一平面过原点及点(6,-3,2),且与平面4x-y+2z=8垂直,则此平面方程为____.

3. 设曲线 C 为球面 $x^2 + y^2 + z^2 = 1$ 和平面 x + y + z = 0 的交线, 则曲线积分 $\oint_C (x^2 + x - y) ds = _____.$

4. 已知 $u = xy^2 - yz^3$,则 A = grad u =______, div A =______, rot A =______.

二、选择题(每小题 4 分,总 16 分。每小题给出四种选择,有且仅有一个是正确的,将正确的代号填在 括号中)

- 1. 函数 f(x,y) 在点 (x_0,y_0) 处的偏导数 $f_x(x_0,y_0)$, $f_y(x_0,y_0)$ 存在是函数 f 在该点可微的[
 - - 充分而非必要条件; (B)必要而非充分条件;
 - (C) 充分必要条件;
- (D) 既非充分也非必要条件.

2. 曲线 $\frac{x^2}{L^2} + \frac{y^2}{L^2} = 1, z = 0$ 绕 x 轴旋转而成的旋转曲面方程为[

(A)
$$\frac{x^2}{a^2} + \frac{y^2 + z^2}{b^2} = 1$$
; (B) $\frac{x^2 + z^2}{a^2} + \frac{y^2}{b^2} = 1$; (C) $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$; (D) $z = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$.

- 3. 设 α 为常数,级数 $\sum_{n=1}^{\infty} \left\lceil \frac{\sin n\alpha}{n^2} \frac{1}{\sqrt{n}} \right\rceil$,则必有[
 - (A) 绝对收敛; (B)发散; (C)条件收敛; (D)收敛性与的取值有关.

$$b_n = \frac{1}{2} \int_0^4 f(x) \sin \frac{n\pi x}{4} dx (n = 1, 2, \dots), \quad \text{M} S(2) + S(-9)$$
 等于 [

- (A) -1 (B) 1
- (C) 5 (D) 7

5. 正项级数 $\sum_{n=0}^{\infty} a_n$ 收敛,常数 $\lambda \in \left(0, \frac{\pi}{2}\right)$,则级数 $\sum_{n=0}^{\infty} (-1)^n \left(n \tan \frac{\lambda}{n}\right) a_{2n}$ [

- (A) 条件收敛;
- (B) 绝对收敛;
- (C) 发散; (D) 敛散性与 *λ* 有关.

三、解答题(本题共 4 小题, 总 26 分)

1. (6 分)设
$$z = f(x - y, xy)$$
,其中 f 有连续二阶偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

设
$$u = f(x, y, z), \ \varphi(x^2, e^y, z) = 0, \ y = \sin x$$
, 其中 f, φ 都具有一阶连续偏导数且 $\frac{\partial \varphi}{\partial z} \neq 0$, 求 $\frac{\mathrm{d}u}{\mathrm{d}x}$.

2. (6分) 设平面
$$\pi$$
 过原点,且与直线 $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z-1}{1}$ 及直线 $\begin{cases} x=1 \\ y=-1+t$ 都平行,求平面 π 的方程. $z=2+t$

3. (6 分) 求函数
$$f(x,y,z) = x^2 + y^2 + z^2$$
 在点 $M(x_0,y_0,z_0)$ 处沿方向 $\bar{l} = (-1,-1,0)$ 的方向导数 $\frac{\partial f}{\partial \bar{l}}\Big|_{M}$.

4.
$$(8 \, \beta)$$
函数 $f(x,y,z) = x^2 + y^2 + z^2$, $\vec{l} = (-1,-1,0)$,若点 $M(x_0,y_0,z_0)$ 在曲面 $x^2 + y^2 + 2z^2 = 1$ 上,
试确定点 $M(x_0,y_0,z_0)$ 的坐标使 $\frac{\partial f}{\partial \vec{l}}|_{\mathcal{M}}$ 取得最大值.

- 5. 求微分方程 $y'' y = e^x + 1$ 的通解.
- 或: 求满足条件 $\int_0^1 f(tx) dt = nf(x) 1(n > 0, n \neq 1)$ 的连续函数 f(x).
- 四、 $(7\, eta)$ 设立体 Ω 由锥面 $z=\sqrt{x^2+y^2}$ 及半球面 $z=1+\sqrt{1-x^2-y^2}$ 围成。已知 Ω 上任一点(x,y,z) 处的密度与该点到 xoy 平面的距离成正比(比例系数为 K>0),试求立体 Ω 的质量.
- 五、 $(7 \ \beta)$ 计算曲面积分 $I = \iint_{\Sigma} xz dy dz 2\sin x dx dy$,其中 Σ 是旋转抛物面 $z = x^2 + y^2$ $(0 \le z \le 1)$ 的下侧.
- 六、(7 分) 计算曲线积分 $I = \int_{\widehat{ABO}} (x^2 e^x \cos y) dx + (e^x \sin y + 3x) dy$,其中 ABO 是从点 A(0,2) 沿右 半圆周 $x = \sqrt{1 (y 1)^2}$ 经过点 B(1,1) 到点 O(0,0) 的弧段.

七、(7分) 求函数
$$f(x) = \frac{4x+3}{2x^2+3x+1}$$
 的 Maclaurin 展开式,并给出收敛域.

八、
$$(8\, \text{分})$$
 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 2^n}$ 的收敛域及和函数.

九、(6分)下列两题中任意选做一题

1. 设函数 f,g,h在区域 D: $x^2 + y^2 \le 1$ 上有二阶连续偏导数。

(1) 证明积分等式:
$$\iint_D (f_x'g + f_y'h) dxdy = \oint_{\partial D} fgdy - fhdx - \iint_D (fg_x' + fh_y') dxdy$$
, 其中 ∂D 为 D 的正向 边界.

- (2) 若 f 在 D 上满足 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 1$, 试求 $\iint \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) dxdy$.
- 2. 设级数 $\sum_{n=0}^{\infty} |u_n u_{n-1}|$ 收敛,且正项级数 $\sum_{n=0}^{\infty} v_n$ 收敛,证明级数 $\sum_{n=0}^{\infty} u_n v_n^2$ 收敛.

工科数学分析(下)试题3

- 一. 选择题 (每小题 4 分, 共 12 分. 每小题给出四种选择,有且仅有一个是正确的,将你认为正确的代 号填在横线上)
 - (1) 下列常微分方程中哪一个不是全微分方程? ()。

(A)
$$(x^2 - y)dx - xdy = 0$$

(B)
$$(x\cos y + \cos x)y' - y\sin x + \sin y = 0$$

(C)
$$(x^2 + y^2)dx + xydy = 0$$
 (D) $(1 + e^{2y})dx + 2xe^{2y}dy = 0$

(D)
$$(1+e^{2y})dx + 2xe^{2y}dy = 0$$

(2) 下列极限中存在极限的是

(A)
$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{xy}{x^2 + y^2}$$
; (B) $\lim_{\substack{x \to 0 \\ x \to 0}} \frac{x^2 - y^2}{x^2 + y^2}$

(A)
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{xy}{x^2 + y^2}$$
; (B) $\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^2 - y^2}{x^2 + y^2}$; (C) $\lim_{\substack{x \to 0 \ y \to 0}} \frac{x + y}{\sqrt{x^2 + y^2}}$; (D) $\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^3 + y^3}{x^2 + y^2}$.

(3) 设曲线 L 的方程为 x=t , $y=\frac{t^2}{2}$, $z=\frac{t^3}{3}$ ($0 \le t \le 1$),线密度 $\rho = \sqrt{2y}$,则其质量 M 为()。

(A)
$$\int_0^1 t \sqrt{1 + t^2 + t^4} dt$$

(B)
$$\int_0^1 2t^3 \sqrt{1+t^2+t^4} dt$$

(C)
$$\int_{0}^{1} \sqrt{1+t^2+t^4} dt$$

(D)
$$\int_0^1 \sqrt{t} \sqrt{1+t^2+t^4} dt$$

(4) 下列哪一个结论是正确的? ()。

(A) 级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
 绝对收敛 (B) 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$ 收敛

(B) 级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$$
 收敛

(C) 级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 条件收敛

(C) 级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 条件收敛 (D) 级数 $\sum_{n=1}^{\infty} \frac{1-\cos 2x}{n^2}$ 在 $(-\infty, +\infty)$ 上一致收敛

(5) 设 $z = f(x,y) = x^4 + y^4 - x^2 - 2xy - y^2$, 由 $f_x(x,y) = 0$ 和 $f_y(x,y) = 0$ 求得临界点 $M_0(0,0)$,

$$M_1(1,1) \not \ge M_2(-1,-1)$$
 , y _____.

(A) $f(M_0)$ 是极小值;

- (B) $f(M_0)$ 是极大值;
- (C) $f(M_1)$ 与 $f(M_2)$ 都是极小值; (D) $f(M_1)$ 与 $f(M_2)$ 都是极大值.
- 二. 填空题 (每小题 4 分, 共 12 分. 将答案填在题中横线上, 不填解题过程)

(1)
$$\mbox{iff } f(x) = x^2$$
, $(0 \le x < 1)$, $\mbox{iff } S(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x$, $x \in (-\infty, +\infty)$,

(2) 过点(0, 2, 4) 且与两平面x + 2z = 1和y - 3z = 2平行的直线方程是_____。

(3) 己知
$$F(x) = \int_{x^2}^x \frac{\sin(xy)}{y} dy$$
,则 $F'(x) =$ _________。

- (4) 函数 $f(x,y) = xe^y$ 在点 (1,1) 处的梯度为_______,在该点沿方向i j的方向导数为_____.
- (5) 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛于 A ,则级数 $\sum_{n=1}^{\infty} (3u_n 2u_{n+1})$ 收敛于 ______ .
- 三. (7 分) 1.设函数 $z = \sin(xy) + \phi(x, \frac{x}{y})$, 求 $\frac{\partial^2 z}{\partial x \partial y}$, 其中 $\phi(u, v)$ 有二阶偏导数。
- 2. 求微分方程 $xy' + y = xe^x$ 满足 $y|_{x=1} = 1$ 的特解。
- 3. 设 u(x,y) 的全微分 $du = [e^x + f'(x)]ydx + f'(x)dy$, 其中 f(x) 有二阶连续导数, f(0) = 4,

$$f'(0) = 3$$
 并且 $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$, 试求 $f(x)$ 。

四. (7) 证明曲面 $xyz = a^3$ 上任意一点的切平面与三个坐标面所围成的四面体的体积为定值。

#证明曲面 f(x-az,y-bz)=0 上任一点的切平面与直线 $\frac{x}{a}=\frac{y}{b}=\frac{z}{1}$ 平行(其中a,b是不为零的常数).

五. (7分)设x,y,z,t>0,求函数u=x+y+z+t在条件 $xyzt=c^4$ (c为正常数)下的最小值。

六. (7 分) 求三重积分 $\iint_{\Omega} (x^2 + y^2 + z) dx dy dz$,其中 Ω 是由曲线 $\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$ 绕 z 轴旋转一周而成的曲面 与 z = 4 所围成的立体。

七. (8分) 计算曲面积分 $\iint_{\Sigma}z\mathrm{d}S$,其中 Σ 为锥面 $z=\sqrt{x^2+y^2}$ 在柱体 $x^2+y^2\leq 2x$ 内的部分。

八. (8分)设L是从点A(-a,0)经上半椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ($y \ge 0$)到点B(a,0)的弧段,计算曲线积分

$$I = \int_{L} \frac{x - y}{x^2 + y^2} dx + \frac{x + y}{x^2 + y^2} dy .$$

九. (8分) 计算曲面积分 $\iint_{\Sigma} yz dz dx$,其中 Σ 是椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 上半表面 $(z \ge 0)$ 的上侧。

十. $(8\, \mathcal{G})$ 判断级数 $\sum_{n=1}^{\infty} \frac{n!2^n \sin\frac{n\pi}{5}}{n^n}$ 是否收敛。若收敛,判断是条件收敛还是绝对收敛。

十一. (8分) 将函数 $f(x) = \frac{1}{3+x}$ 展开为(x-1)的幂级数,并求其收敛域。

#.将函数 $f(x) = 2 + |x| (-1 \le x \le 1)$ 展开成以 2 为周期的 Fourier 级数,并求级数 $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ 的和。

十二. (8分) 求幂级数 $\sum_{n=1}^{\infty} \frac{2^n x^{n+1}}{n+1} \, \text{te} |x| < \frac{1}{2}$ 内的和函数。

工科数学分析(下)参考答案

试题 1

$$-1. \ \underline{3x-y-10z+29=0} \ ; \ 2. \ \underline{\pi} \ ; \ 3. \ \underline{4\pi} \ ; \ 4. \ \frac{1}{x^2+y^2+z^2} \ .$$

 \subseteq BDDBB

$$\equiv 1. \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0; \qquad 2. 2x + 2y - z - 3 = 0; \qquad 3. \quad I = \frac{1}{2}; \# 4 - \frac{\pi}{2}.$$

4.
$$\frac{2x+1}{x^2+x-2} = \sum_{n=0}^{\infty} (-1)^n (1+\frac{1}{4^{n+1}})(x-2)^n$$
, $1 < x < 3$. 5. $e^x - 1$

四、
$$(0,0,4)$$
 与 $(\frac{8}{3},\frac{8}{3},-\frac{4}{3})$ 五、 $I=\frac{4}{9}k\pi R^6$. $M=k\pi R^4$, $I=\frac{4}{9}MR^2$. 六、 $\frac{2\pi}{3}$;

七、I=0(提示:原点在C外及C内两种情况计算); #. $\frac{\pi}{2}$ (提示:添加直线段 OA 的使之为逆时针方向的封闭曲线C, $\int_{L} dy = \oint_{C} -\int_{\overline{\Omega d}}$,其中 \oint_{C} 用格林公式计算)

八、收敛域为
$$(-1,1)$$
; $S(x) = \begin{cases} \frac{1}{1-x} + \frac{1}{x} \ln(1-x), & x \neq 0$ 且 $|x| < 1, \\ 0, & x = 0. \end{cases}$

#.收敛域为
$$(-\sqrt{2}, \sqrt{2})$$
; $S(x) = \left(\frac{x}{2-x^2}\right)' = \frac{2+x^2}{(2-x^2)^2}$, $-\sqrt{2} < x < \sqrt{2}$.

九、1. 提示: 由数列 $\{a_n\}$ 单调减少且 $a_n \ge 0$,得 $\lim_{n \to \infty} a_n$ 存在. 记 $a = \lim_{n \to \infty} a_n$,则 $a_n \ge a \ge 0$,

又已知
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 发散,知 $a > 0$.因此 $\frac{1}{a+1} < 1$,再由根值判别法知 $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1} \right)^n$ 收敛.

2. 提示: 利用介值定理证明存在性,利用单调性证明惟一性。而正项级数的敛散性可用比较法判定。

试题 2

4.
$$\{y^2, 2xy - z^3, -3yz^2\}$$
, $2x - 6yz$, $\{0, 0, 0\}$ \equiv BABAB

$$\# \frac{du}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cos x - \frac{\partial f}{\partial z} \frac{1}{\varphi_3'} (2x\varphi_1' + e^{\sin x} \cos x \cdot \varphi_2')$$

2.
$$x - y + z = 0$$
; 3. $\frac{\partial f}{\partial \vec{l}}\Big|_{M} = -\sqrt{2}(x_0 + y_0)$; 4. $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0\right)$; 5 $c_1 e^x + c_2 e^{-x} + \frac{1}{2}xe^x - 1$,

$$\# cx^{\frac{1-n}{n}} + \frac{1}{n-1}$$

四、
$$m=K\iiint_{\Omega}z\mathrm{d}V=\frac{7}{6}K\pi$$
 ; 五、提示: 加 $\sum_{1}:z=1$ 取上侧 $I=\bigoplus_{\Sigma+\Sigma}-\iint_{\Sigma}=\frac{\pi}{3}$

六、加线段
$$\overline{OA}$$
: $x = 0 (0 \le y \le 2)$, $I = \oint_{\widehat{ABO} + \overline{OA}} - \int_{\overline{OA}} = -\frac{3}{2}\pi + \cos 2 - 1$

七、
$$f(x) = \sum_{n=0}^{\infty} (-1)^n (1+2^{n+1}) x^n$$
, $-\frac{1}{2} < x < \frac{1}{2}$. 八、收敛域为[-2,2); $S(x) = \ln \frac{2}{2-x}$, $x \in [-2,2)$

九、1. 提示: (1) 用格林公式; (2) 用(1) 的结果

2. 提示: 由 $\sum_{n=2}^{\infty} \left| u_n - u_{n-1} \right|$ 收敛推出 $\lim_{n \to \infty} u_n$ 存在,从而 $\left| u_n \right| \le M$; 又因正项级数

$$\sum v_n$$
收敛 $\Rightarrow 0 \le v_n^2 \le v_n$, 从而级数 $\sum v_n^2$ 收敛 , 故 $\left|u_n v_n^2\right| \le M v_n^2$, 所以 $\sum u_n v_n^2$ 收敛.

试卷 3

-. CDADC
$$= \frac{1}{4}$$
: (2) $\frac{x}{-2} = \frac{y-2}{3} = \frac{z-4}{1}$; (3) $F'(x) = \frac{2}{x}\sin x^2 - \frac{3}{x}\sin x^3$;

(4)
$$\underline{ei + ej}$$
, $\underline{0}$; (5) $\underline{A + 2u_1}$.

$$\equiv . \ 1. \ \frac{\partial z}{\partial x} = y \cos(xy) + \phi_1' + \phi_2' \frac{1}{v} , \ \frac{\partial^2 z}{\partial x \partial y} = \cos(xy) - xy \sin(xy) - \frac{1}{v^2} \phi_2' - \frac{x}{v^2} \phi_{12}'' - \frac{x}{v^3} \phi_{22}'' ;$$

2.
$$y = e^x - \frac{e^x}{x} + \frac{1}{x}$$
; 3. $f(x) = 2(1 + e^x) + xe^x$

四. 提示: 记
$$F(x,y,z) = xyz - a^3 = 0$$
,法向量 $\vec{n} = \{F_x,F_y,F_z\}_{p_0} = \{y_0z_0,x_0z_0,x_0y_0\}$
过点 p_0 的切平面方程为 $\frac{x}{x_0} + \frac{y}{y_0} + \frac{z}{z_0} = 3$,从而四面体的体积 $V = \frac{1}{6} \left| 27x_0y_0z \right|_0 = \frac{9}{2} \left| a \right|^3$.

- #提示: 求出曲面上任意一点处的法向量为 $\vec{n} = \{f_1', f_2', -af_1' bf_2'\}$, 直线的方向向量 $\vec{l} = \{a, b, l\}$, 则 $\vec{n} \cdot \vec{l} = 0$, 所以切平面与直线平行.
- 五. $u_{\min}=4c$ (提示:利用拉格朗日乘数法,构造 $L=x+y+z+t+\lambda(xyzt-c^4)$, x,y,z,t>0, 令 $L_x=L_y=L_z=L_t=0$,解得所求)

六. 原式 =
$$\int_{0}^{4} dz \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2z}} (r^2 + z) r dr = 4\pi \int_{0}^{4} z^2 dz = \frac{256}{3} \pi$$

$$\text{ \pm.} \quad \iint_{\Sigma} z dS = \iint_{D_{xy}} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} r^2 dr = \frac{32}{9} \sqrt{2} \ .$$

其中
$$D_{xy}$$
: $x^2 + y^2 \le 2x$, $dS = \sqrt{1 + z_x^2 + z_y^2} dxdy = \sqrt{2} dxdy$

八. 因为 $\frac{\partial Q}{\partial x} = \frac{y^2 - x^2 - 2xy}{(x^2 + y^2)^2} = \frac{\partial P}{\partial x}, x^2 + y^2 \neq 0$, 故积分与路径无关.取积分路径 C 是从 A 经上半圆

$$x^2 + y^2 = a^2 (y \ge 0)$$
 到 B 的弧段,则曲线 C 的参数方程为
$$\begin{cases} x = a\cos\theta \\ y = a\sin\theta \end{cases}$$
 $0 \le \theta \le 2\pi$

原式

$$= \int_{C} P dx + Q dy = \frac{1}{a^{2}} \int_{C} (x - y) dx + (x + y) dy$$

$$= \frac{1}{a^{2}} \int_{0}^{\pi} a(\cos \theta - \sin \theta)(-a \sin \theta) d\theta + a(\cos \theta + \sin \theta)(a \cos \theta) d\theta$$

$$= -\pi$$

九. 加平面 Σ_1 : z=0的下侧,用高斯公式,

+. 由
$$\left| \frac{n!2^n \sin \frac{n\pi}{5}}{n^n} \right| \le \frac{n!2^n}{n^n} \triangleq u_n$$
, 又 $\frac{u_{n+1}}{u_n} = \frac{2}{\left(1 + \frac{1}{n}\right)^n} \to \frac{2}{e} < 1$, 级数 $\sum_{n=1}^{\infty} u_n$ 收敛,故原级数绝对收敛。

+--.
$$f(x) = \frac{1}{3+x} = \frac{1}{4+(x-1)} = \frac{1}{4} \frac{1}{1+\frac{x-1}{4}} = \frac{1}{4} \sum_{n=0}^{\infty} \left(-\frac{x-1}{4}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (x-1)^n;$$

因为 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{4}$,故收敛半径 R = 4 , 故收敛半径 R = 5 处发散, x = -3 处发散。所以收敛域是: (-3,5) 。

#.
$$f(x) = \frac{5}{2} - \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{\cos(2n+1)\pi x}{(2n+1)^2}, \quad x \in (-\infty, \infty)$$
, $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$.

十二. 记和函数
$$S(x) = \sum_{n=1}^{\infty} \frac{2^n x^{n+1}}{n+1}$$
, $|x| < \frac{1}{2}$ 时, $S'(x) = \sum_{n=1}^{\infty} 2^n x^n = \frac{2x}{1-2x}$, 积分得

$$S(x) = \int_{0}^{x} \frac{2x}{1 - 2x} dx = -x - \frac{1}{2} \ln(1 - 2x)$$