```
In [ ]: #HEART DISEASE ANALYSIS
```

In [2]: import pandas as pd
 import numpy as np
 import seaborn as sns
 import matplotlib.pyplot as plt

In [3]: file = ("C:/Users/pc/Videos/python/heart.csv")
 data=pd.read_csv(file)

In [5]: data.head()

Out[5]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [6]: data.describe()

Out[6]:

	age	sex	ср	trestbps	chol	fbs	restecg	tha
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.64
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.90
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.00
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.50
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.00
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.00
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.00
4								>

```
In [7]: data.info()
```

```
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
               Non-Null Count Dtype
#
     Column
 0
     age
               303 non-null
                                int64
               303 non-null
 1
     sex
                                int64
 2
     ср
               303 non-null
                                int64
 3
     trestbps
               303 non-null
                                int64
 4
               303 non-null
     chol
                                int64
 5
     fbs
               303 non-null
                                int64
 6
     restecg
               303 non-null
                                int64
 7
     thalach
               303 non-null
                                int64
 8
     exang
               303 non-null
                                int64
 9
     oldpeak
               303 non-null
                                float64
 10
     slope
               303 non-null
                                int64
 11
    ca
               303 non-null
                                int64
               303 non-null
 12
     thal
                                int64
 13
    target
               303 non-null
                                int64
```

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(1), int64(13)

memory usage: 33.2 KB

```
In [8]: data.isnull().sum()
```

```
Out[8]: age
                       0
                       0
         sex
                       0
         ср
         trestbps
                       0
         chol
                       0
         fbs
                       0
         restecg
                       0
         thalach
                       0
         exang
                       0
         oldpeak
                       0
         slope
                       0
                       0
         ca
                       0
         thal
         target
```

dtype: int64

```
In [17]: %matplotlib inline
    sns.countplot(data['sex'])
    plt.title('sex', fontsize = 20)
    plt.show()
```



```
In [20]: print(data['sex'].value_counts())
print()
print(data['sex'].value_counts(normalize=True))

1     207
0     96
Name: sex, dtype: int64

1     0.683168
0     0.316832
Name: sex, dtype: float64
```

```
In [12]: %matplotlib inline
    sns.countplot(data['cp'])
    plt.title('cp', fontsize = 20)
    plt.show()
```



```
In [21]: print(data['cp'].value_counts())
         print()
         print(data['cp'].value_counts(normalize=True))
         0
               143
                87
         2
         1
                50
         3
                23
         Name: cp, dtype: int64
         0
               0.471947
         2
               0.287129
         1
               0.165017
               0.075908
         Name: cp, dtype: float64
```

```
In [14]: %matplotlib inline
    sns.countplot(data['thal'])
    plt.title('thal', fontsize = 20)
    plt.show()
```



```
In [22]: print(data['thal'].value_counts())
         print()
         print(data['thal'].value_counts(normalize=True))
         2
               166
         3
               117
         1
                18
                 2
         Name: thal, dtype: int64
         2
               0.547855
         3
               0.386139
         1
               0.059406
               0.006601
         Name: thal, dtype: float64
```

```
In [15]: %matplotlib inline
    sns.countplot(data['target'])
    plt.title('target', fontsize = 20)
    plt.show()
```



```
In [23]: print(data['target'].value_counts())
print()
print(data['target'].value_counts(normalize=True))

1    165
0    138
Name: target, dtype: int64

1    0.544554
0    0.455446
Name: target, dtype: float64
```

```
In [19]: %matplotlib inline
    sns.countplot(data['slope'])
    plt.title('slope', fontsize = 20)
    plt.show()
```



```
In [24]: print(data['slope'].value_counts())
         print()
         print(data['slope'].value_counts(normalize=True))
         2
               142
         1
               140
                21
         Name: slope, dtype: int64
         2
               0.468647
         1
               0.462046
               0.069307
         Name: slope, dtype: float64
         #BIVARIATE ANALYSIS
 In [ ]:
```

```
In [25]: g = sns.catplot("cp", col="thal", col_wrap=3, data=data,kind="count", height=5, a
plt.show()
```


In [26]: g = sns.catplot("cp", col="target", col_wrap=3, data=data,kind="count", height=5,
plt.show()

In [27]: g = sns.catplot("cp", col="sex", col_wrap=3, data=data,kind="count", height=5, as
plt.show()


```
In [28]: g = sns.catplot("cp", col="slope", col_wrap=3, data=data,kind="count", height=5,
plt.show()
```


In []: #from the graph, we can see that the reaction was much at the middle.

```
In [37]: #CORRELATION

sns.set(style="whitegrid")
ax = sns.lmplot(x="age", y="oldpeak" , data=data)
```


