Explanation of the Slides

The screenshots provided discuss the concept of maximum likelihood estimation (MLE) using Bayes' rule in the context of probabilistic modeling. Slide 1: Application of Bayes' Rule and Maximum Likelihood Estimation (MLE)

1. **Bayes' Rule**: Bayes' rule relates the posterior probability $P(\theta|X)$ to the likelihood $P(X|\theta)$ and the prior $P(\theta)$ as follows:

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

2. **Maximum Likelihood Estimation**: The goal is to find the parameter θ that maximizes the likelihood $P(X|\theta)$:

$$\hat{\theta} = \arg\max_{\theta} P(X|\theta)$$

This is also written as:

$$\hat{\theta} = \arg\max_{\theta} P(\theta|X)$$

3. **Equivalence**: The slide points out that likelihood and the probability density function (pdf) are conceptually the same, with the interpretation of the variables being different: - **Likelihood** $P(X|\theta)$: The probability of the observed data given the parameters. - **Pdf** $P(\theta|X)$: The probability of the parameters given the observed data.

Slide 2: Derivation Using Bayes' Rule

1. **Bayes' Rule Application**: Applying Bayes' rule, we have:

$$\arg\max_{\theta} P(\theta|X) = \arg\max_{\theta} \frac{P(X|\theta)P(\theta)}{P(X)}$$

2. **Simplifying**: - The term P(X) is a normalizing constant that does not depend on θ . Hence, it can be ignored when maximizing with respect to θ :

$$\arg\max_{\theta} P(\theta|X) = \arg\max_{\theta} P(X|\theta)P(\theta)$$

3. **Uninformative Prior**: - If we assume an uninformative prior, meaning we have no prior knowledge favoring any particular value of θ , $P(\theta)$ can be treated as constant. This simplifies the problem to maximizing the likelihood:

$$\arg\max_{\theta} P(\theta|X) = \arg\max_{\theta} P(X|\theta)$$

0.1 Summary

- **MLE**: Maximum Likelihood Estimation aims to find the parameter θ that makes the observed data X most probable. - **Bayes' Rule**: It provides a way to update our beliefs about the parameters given the observed data. - **Simplification**: By ignoring constants that do not depend on θ and assuming an uninformative prior, we can simplify the problem to just maximizing the likelihood $P(X|\theta)$.

0.2 Practical Example

Consider you have a dataset X representing the heights of a group of people. You want to find the parameter θ (e.g., the mean height) that best describes this data. Using MLE, you would:

1. **Define the Likelihood**: Assume the heights are normally distributed with mean μ (parameter θ) and known variance σ^2 . 2. **Compute the Likelihood**: Calculate $P(X|\mu)$ for different values of μ . 3. **Maximize the Likelihood**: Find the value of μ that maximizes $P(X|\mu)$.

This process helps in estimating the parameter that most likely generated the observed data, providing a robust way to make inferences based on empirical evidence.