UVOD V GEOMETRIJSKO TOPOLOGIJO, 1. TEST 1.4.2011

TEORETIČNA NALOGA

Pravilne so 1., 2., 6., 7., in 10. trditev.

1. PROBLEMSKA NALOGA

a. (4 točke) Kvocientni prostor X/A je homeomorfen odprtemu disku $Y = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$. Definirajmo preslikavo $f \colon X \to Y$ s predpisom

$$f(x,y) = \begin{cases} (0,0), & \|(x,y)\| \ge 2, \\ \frac{2-\|(x,y)\|}{\|(x,y)\|}(x,y), & \|(x,y)\| \le 2. \end{cases}$$

Preslikava f je podana z dvema zveznima predpisoma na zaprtih množicah, ki se na preseku ujemata, zato je f zvezna. Ker je $f^{-1}(0,0)=A$ in $f^{-1}(u,v)=\{\frac{2-\|(u,v)\|}{\|(u,v)\|}(u,v)\}$ za $(u,y)\neq(0,0)$, preslikava f naredi enake identifikacije kot kvocientna preslikava $q\colon X\to X/A$. Torej obstaja zvezna bijekcija $\bar f\colon X/A\to Y$. Pokažimo še, da je f zaprta. (Preslikava f nikakor ne slika iz kompaktnega prostora.) Naj bo $X_1=\{(x,y)\in X\mid \|(x,y)\|\geq \frac{5}{2}\},\ X_2=\{(x,y)\in X\mid \frac{3}{2}\leq \|(x,y)\|\leq \frac{5}{2}\}$ in $X_3=\{(x,y)\in X\mid \|(x,y)\|\leq \frac{3}{2}\}$. Tedaj je $f_1=f|_{X_1}\colon X_1\to\{(0,0)\}$ zaprta, $f_2=f|_{X_2}\colon X_2\to Y$ je zaprta (saj slika iz kompaktnega v Hausdorffov prostor) in $f_3=f|_{X_3}\colon X_3\to\{(x,y)\mid \|(x,y)\|\geq \frac{1}{2}\}$ je tudi zaprta (saj je homeomorfizem). Ker preslikavi f_1 in f_3 slikata v zaprt podprostor prostora Y, sta zaprti tudi kot preslikavi v Y. Naj bo $A\subset X$ zaprta in naj bo $A_i=A\cap X_i$. Tedaj je $f(A)=f_1(A_1)\cup f_2(A_2)\cup f_3(A_3)$ zaprta v Y.

b. (1 točka) Če bi lahko kvocient X/B vložili v evklidski prostor, bi podedoval separacijsko lastnost T_1 . Za točko $q(b) \in X/B$, kjer je $b \in B$, pa množica $q^{-1}(q(b)) = B$ ni zaprta. Torej po definiciji kvocientne topologije, množica $\{q(b)\}$ ni zaprta v X/B. Se pravi, da X/B ne zadošča aksiomu T_1 .

2. PROBLEMSKA NALOGA

a. Pokažimo, da je X podalgebra v $C([0,1],\mathbb{R})$, ki vsebuje konstante in loči točke. Potem je po Stone-Weierstrassovem izreku, X gosta v $C([0,1],\mathbb{R})$. Naj bodo $f,g\in X$ in $\lambda\in\mathbb{R}$. Tedaj so tudi f+g, $f\cdot g$ in λf odvedljive na (0,1) in velja $\lim_{x\downarrow 0}(f+g)'(x)=\lim_{x\downarrow 0}f'(x)+\lim_{x\downarrow 0}f'(x)=0$, $\lim_{x\downarrow 0}(f\cdot g)'(x)=(\lim_{x\downarrow 0}f'(x))g(0)+f(0)(\lim_{x\downarrow 0}f'(x))=0$ in $\lim_{x\downarrow 0}(\lambda f)'(x)=\lambda\lim_{x\downarrow 0}f'(x)=0$. Enak izračun pri x=1 pokaže, da so f+g, $f\cdot g$ in λf v X. Torej je X podalgebra. Odvodi konstant so povsod nič, zato X vsebuje vse konstante. Ker je $x\mapsto \sin\frac{\pi x}{2}$ v X in je injektivna, X loči točke.

b. Naj bo f(x) = 1 - 2x, $K = \{0, 1\}$ in $\varepsilon = 1$. Za $g \in \langle f, K, \varepsilon \rangle$ je g(0) > 0 in g(1) < 0. Če je g odvedljiva na (0, 1), po Lagrangeovem izreku obstaja $\xi \in (0, 1)$, da je $g(1) - g(0) = g'(\xi)(1 - 0)$. Torej $g'(\xi) < 0$, zato je $\langle f, K, \varepsilon \rangle \cap Y = \emptyset$. Se pravi, da Y ni gosta v $C([0, 1], \mathbb{R})$.