Linear Realisability over nets and second order quantification

Adrien Ragot^{1,2}, Thomas Seiller^{1,3} and Lorenzo Tortora de Falco²

¹Université Sorbonne Paris Nord – UMR 7030 LIPN,
 ²Università Degli Studi Roma tre – Dipartimento di Matematica e Fisica,
 ³CNRS.

13 September 2023 – Palermo, Italy

Communication to the 24th Italian Conference on Theoretical Computer Science.

An Overview of Realisability

An overview of Realisability

INTERACTIVE FRAMEWORK

Types = class of programs with similar behavior.

A map $\llbracket \cdot \rrbracket$: Formulas $\rightarrow \{P \mid P \sim \mathfrak{B}\}$

 $P: \mathbf{Nat} \to \mathbf{Bool}$ iff

for any $n : \mathbf{Nat}, P(n) : \mathbf{Bool}$

Correctness

Process \mathbb{P} : Proofs \rightarrow Programs.

Types in Orthogonality models (1/4)

Realise
$$A = \text{Orthogonal to } \llbracket A \rrbracket^{\perp}$$
 $(\llbracket A \rrbracket = \llbracket A \rrbracket^{\perp \perp})$

$$P \in \llbracket A \rrbracket^{\perp}$$

$$Q$$
Does Q belong to $\llbracket A \rrbracket$?

Types in Orthogonality models (2/4)

Realise
$$A = \text{Orthogonal to } [A]^{\perp}$$

 $([A]] = [A]^{\perp})$

Q fails interaction \Rightarrow Q \notin [A]

Types in Orthogonality models (3/4)

Realise
$$A = \text{Orthogonal to } \llbracket A \rrbracket^{\perp}$$

$$(\llbracket A \rrbracket = \llbracket A \rrbracket^{\perp \perp})$$

$$?$$

$$P \in \llbracket A \rrbracket^{\perp}$$

$$Q$$

Does Q belong to [A]?

Types in Orthogonality models (4/4)

Realise
$$A = \text{Orthogonal to } [A]^{\perp}$$

 $([A]] = [A]^{\perp})$

Adequacy (1/2)

Adequacy (2/2)

Test might not be proofs.

Linear Realisability

Realisability for Linear Logic so far;

- Jean Yves Girard's Geometry of Interaction and Ludics.
- Emmanuelle Beffara's work in process calculi.
- Thomas Seiller Interaction graphs.

No realisability constructions in the standard context of Proof nets yet.

Connections with correctness criterions?

$$S \in \mathbf{A} \Leftrightarrow S \perp \mathbf{A}^{\perp}$$
.

Nets¹: a class of hypergraphs

Multiplicative nets

A (multiplicative) net is an (hyper)—graph constructed from the following links:

Figure: Links defining the class of multiplicative nets.

Nets are hypergraphs (1/6)

Hypergraph = a set of nodes + ... $p_1 \quad p_2 \quad p_3 \quad p_4$ $q_1 \quad q_2$

Nets are hypergraphs (2/6)

Nets are hypergraphs (3/6)

Nets are hypergraphs (4/6)

Nets are hypergraphs (5/6)

Nets are hypergraphs (6/6)

Top–Bottom Presentation (1/2)

Top–Bottom Presentation (2/2)

Hyperedges are labelled (1/4)

Hyperedges are labelled (2/4)

Hyperedges are labelled (3/4)

Hyperedges are labelled (4/4)

Hyperedge Restrictions on Nets (1/2)

Hyperedge Restrictions on Nets (2/2)

Induction for Nets (1/5)

Induction for Nets (2/5)

Induction for Nets (3/5)

Induction for Nets (4/5)

Induction for Nets (5/5)

Proof nets (1/2)

Proofs can be represented by untyped net.

Important information = order of the conclusion.

$$\frac{\vdash \Gamma, A \vdash A^{\perp}, \Delta}{\vdash \Gamma, \Delta} \text{ cut} = \underbrace{\uparrow}_{1} \dots \underbrace{\uparrow}_{n-1} \underbrace{\uparrow}_{n} \underbrace{\uparrow}_{2'} \dots \underbrace{\downarrow}_{k'}$$

Proof net (2/2)

Correct net = proof net = A net that represents a proof

Some nets are not proof nets

Figure: Examples of multiplicative paraproof structures that do not represent any proof in MLL^{4} .

Interaction of nets (1/2)

The interaction of two nets

Interaction of nets (2/2)

The interaction of two nets

Computation – Homogeneous cut elimination

Computation – Non homogeneous cut–elimination

$$\{q_1,\ldots,q_n\}=\{q_1^1,\ldots,q_{n_1}^1\}\uplus\{q_1^2,\ldots,q_{n_2}^2\}$$

Non homogeneous cut—elimination is not confluent (1/2)

Non homogeneous cut—elimination is not confluent (2/2)

Orthogonality for nets

$$S \perp T \Leftrightarrow S :: T \rightarrow^* \mathbf{X}$$
.

For a set *A* of nets, $A^{\perp} = \{P \mid \forall a \in A, P \perp a\}.$

Type = Set closed under bi–orthogonality – $\mathbf{A} = \mathbf{A}^{\perp \perp}$. Equivalently $\mathbf{A} = \mathbf{B}^{\perp}$.

Realisability Constructions (1/2)

Given A and B two types.

$$\mathbf{A} \circ \mathbf{B} = \{ S \mid \forall \overline{a} \in \mathbf{A}^{\perp}, S :: \overline{a} \in \mathbf{B} \}^{\perp \perp}.$$

A
$$||$$
 B = { $a || b | a \in A, b \in B$ } ^{$\perp \perp$} .

Properties;

- ▶ Duality. $(\mathbf{A} \circ \mathbf{B})^{\perp} = \mathbf{A}^{\perp} \parallel \mathbf{B}^{\perp}$ and $(\mathbf{A} \parallel \mathbf{B})^{\perp} = \mathbf{A}^{\perp} \circ \mathbf{B}^{\perp}$
- ► Associativity. Both ∘ and || are associative.

$$(\mathbf{A} \circ \mathbf{B}) \circ \mathbf{C} = \mathbf{A} \circ (\mathbf{B} \circ \mathbf{C})$$

$$(A \parallel B) \parallel C = A \parallel (B \parallel C)$$

Functional Composition (1/8)

Functional Composition (2/8)

Functional Composition (3/8)

Functional Composition (4/8)

Functional Composition (5/8)

Functional Composition (6/8)

Functional Composition (7/8)

Functional Composition (8/8)

Realisability Constructions (2/2)

Given **A** and **B** two types with one conclusion.

$$\mathbf{A} \otimes \mathbf{B} = \{S + \langle S(1), S(2) \rhd_{\otimes} p \rangle \mid S \in \mathbf{A} \parallel \mathbf{B} \}^{\perp \perp}.$$

$$\mathbf{A} \stackrel{\gamma}{\gamma} \mathbf{B} = \left\{ S + \langle S(1), S(2) \rhd_{\gamma} p \rangle \mid S \in \mathbf{A} \circ \mathbf{B} \right\}^{\perp \perp}.$$

Properties;

▶ Duality.
$$(\mathbf{A} \otimes \mathbf{B})^{\perp} = \mathbf{A}^{\perp} \ \ \Im \ \mathbf{B}^{\perp}$$
 and $(\mathbf{A} \ \ \Im \ \mathbf{B})^{\perp} = \mathbf{A}^{\perp} \otimes \mathbf{B}^{\perp}$

Interpretation Basis

A map $\mathcal{B}: X \mapsto [\![X]\!]$ such that $[\![X]\!]$ is a type with one conclusion and;

$$[\![X^\perp]\!]_{\mathcal{B}} = [\![X]\!]_{\mathcal{B}}^\perp.$$

Lifted to formula's;

$$[\![A\otimes B]\!]_{\mathcal{B}}=[\![A]\!]_{\mathcal{B}}\otimes[\![B]\!]_{\mathcal{B}}.$$

$$\llbracket A \stackrel{\mathcal{D}}{\mathcal{D}} B \rrbracket_{\mathcal{B}} = \llbracket A \rrbracket_{\mathcal{B}} \stackrel{\mathcal{D}}{\mathcal{D}} \llbracket B \rrbracket_{\mathcal{B}}.$$

Lifted to sequents;

$$\llbracket A_1,\ldots,A_n \rrbracket_{\mathcal{B}} = \llbracket A_1 \rrbracket_{\mathcal{B}} \circ \ldots \circ \llbracket A_n \rrbracket_{\mathcal{B}}.$$

Adequacy for MLL and MLL*

Adequacy (1/2)

Types contain nets with cuts, in fact;

$$S \in \llbracket A_1 \rrbracket_{\mathcal{B}} \circ \ldots \circ \llbracket A_n \rrbracket_{\mathcal{B}} \Leftrightarrow S \perp \llbracket A_1 \rrbracket_{\mathcal{B}}^{\perp} \parallel \cdots \parallel \llbracket A_n \rrbracket_{\mathcal{B}}^{\perp}$$
$$\Leftrightarrow S :: (\overline{a_1} \parallel \cdots \parallel \overline{a_{n-1}}) \perp \llbracket A_n \rrbracket_{\mathcal{B}}^{\perp}.$$
for any $\overline{a_1}, \ldots, \overline{a_{n-1}}$ in $\llbracket A_1 \rrbracket_{\mathcal{B}}^{\perp}, \ldots, \llbracket A_{n-1} \rrbracket_{\mathcal{B}}^{\perp}.$

Induction cases are easy.

$$\frac{S \in \mathbf{A} \circ \mathbf{B}}{S + \langle S(1), S(2) \rhd_{\mathfrak{P}} p \rangle \in \mathbf{A} \ ^{\mathfrak{P}} \mathbf{B}} \qquad \frac{a \in \mathbf{A} \quad b \in \mathbf{B}}{a \parallel b + \langle a(1), b(1) \rhd_{\mathfrak{P}} p \rangle \in \mathbf{A} \otimes \mathbf{B}}$$

Types contain cuts (1/6)

Types contain cuts (2/6)

Types contain cuts (3/6)

Types contain cuts (4/6)

Types contain cuts (5/6)

Types contain cuts (6/6)

Adequacy (2/2)

Definition

 \mathcal{B} is approximable iff for any $X, \maltese_1 \in \llbracket X \rrbracket_{\mathcal{B}}$.

Theorem

For any net S and sequent Γ .

- ▶ For any interpretation basis \mathcal{B} , $S \vdash_{\mathsf{MLL}} \Gamma \Rightarrow S \vdash_{\mathcal{B}} \Gamma$
- ▶ For any approximable interpretation basis \mathcal{B} , $S \vdash_{\mathsf{MLL}^{\maltese}} \Gamma \Rightarrow S \vdash_{\mathcal{B}} \Gamma$

Retrieving proofs: completeness for MLL*

Danos-Regnier correctness criterion (1/2)

Correctness criterion = algorithm that determines if a given net is a proof net. L_1 and L_2 are two links (potentially the same).

Danos-Regnier correctness criterion (2/2)

Switching of a net N = a normal form for the switching reduction.

Theorem (Danos-Regnier, 1989)

A net N is correct if and only if all its switchings are connected and acyclic.

Corollary. The switching rewriting preserves correctness.

Computing a successful switching (1/3)

Computing a successful switching (2/3)

Computing a successful switching (3/3)

The switching passed the test.

Computing a cyclic switching (1/3)

Computing a cyclic switching (2/3)

Computing a cyclic switching (3/3)

 $\mbox{A cycle appeared}.$ The net has a cyclic switching \Rightarrow NOT a proof net.

DR partitions (1/3)

Switching \Rightarrow partition.

Switching = tensor only net.

Position belong to the same class iff they belong to the same component.

The partition is $\{\{p_1, p_2, p_3\}, \{p_4\}\}.$

DR partitions (2/3)

Daimon links \Rightarrow partition

The partition is $\{\{p_1\}, \{p_2\}, \{p_3, p_4\}\}.$

DR partitions (3/3)

Orthogonal partitions \(\Delta\) induced graph is connected+acyclic.

Theorem (Danos-Regnier as partitions)

a net N is correct iff its upper partition is orthogonal to each partition induced by its switching.

Hence the following is a proof net:

Partitions to Daimons (1/7)

Partitions to Daimons (2/7)

Partitions to Daimons (3/7)

Partitions to Daimons (4/7)

Partitions to Daimons (5/7)

Partitions to Daimons (6/7)

Partitions to Daimons (7/7)

Orthogonal partitions \Leftrightarrow Acyclic Connected Graph $\Leftrightarrow S_1 \perp S_2$

Tests are proofs

Theorem. Let A be a formula and $\sigma(A)$ a switching of the syntax tree of A, given P_1, \ldots, P_K are the partitions of the switching $\sigma(A)$;

Completeness MLL[₩]

Notation. For any X, $[\![X]\!]_{\overline{\mathcal{B}}} = [\![X]\!]_{\mathcal{B}}^{\perp}$.

Theorem. For any cut free net *S*.

$$S \in \llbracket \Gamma
rbracket_{\mathcal{B}} \cap \llbracket \Gamma
rbracket_{\overline{\mathcal{B}}} \Rightarrow S \vdash_{\mathsf{MLL}^{\Phi}} \Gamma.$$

Proof sketch.

- In this intersection S is 'truncated' and is a sub-forest of Γ.
- \triangleright S can then interact with the tests for Γ . Using Test=proof + Adequacy

Proof Sketch(1/5)

Proof Sketch (2/5)

Proof Sketch (3/5)

Proof Sketch (4/5)

Proof Sketch (5/5)

Retrieving proofs: completeness for MLL

Intersection and union type

Let Ω be a set of types and $\mathcal B$ be an interpretation basis.

$$\left[\bigcap_{X \in \Omega} \Gamma \right]_{\mathcal{B}} \triangleq \bigcap_{R \in \Omega} [\Gamma]_{\mathcal{B}\{X \mapsto R\}}$$

$$\left[\bigcup_{X \in \Omega} \Gamma \right]_{\mathcal{B}} \triangleq \left(\bigcup_{R \in \Omega} [\Gamma]_{\mathcal{B}\{X \mapsto R\}} \right)^{\perp \perp}$$

Completeness MLL

A net is proof like whenever its \(\frac{1}{2} - \link \) are restricted to:

For a net S proof like and without cuts.

$$S \in \bigcap_{X \in \mathcal{V}} \llbracket \bigcap_{X \in \Omega} \Gamma \rrbracket_{\mathcal{B}} \Rightarrow S \vdash_{\mathsf{MLL}} \Gamma.$$

N.B.
$$\bigcap_{X \in \mathcal{V}} \llbracket \bigcap_{X \in \Omega} \Gamma \rrbracket_{\mathcal{B}} = \bigcap_{\mathcal{B}: \mathsf{base}} \llbracket \Gamma \rrbracket_{\mathcal{B}}$$

Realisability for MLL₂ and adequacy.

Adequacy for MLL₂

Realisability constructions;

$$\llbracket \forall XA \rrbracket_{\mathcal{B}} = \{ S + \langle S(1) \rhd_{\forall} p \rangle \mid S \in \llbracket \bigcap_{X \in \Omega} A \rrbracket_{\mathcal{B}} \}^{\perp \perp}$$

$$\llbracket \exists XA \rrbracket_{\mathcal{B}} = \{ S + \langle S(1) \rhd_{\exists} p \rangle \mid S \in \llbracket \bigcup_{X \in \Omega} A \rrbracket_{\mathcal{B}} \}^{\perp \perp}$$

Theorem (MLL₂ Soundness)

Let \mathcal{B} be an interpretation basis and S be a multiplicative second order net.

$$S \vdash_{\mathsf{MLL}_2} \Gamma \Rightarrow S \vdash_{\mathscr{B}} \Gamma.$$

Computability of Types

Computability of Types

A computable \Leftrightarrow exists *B* finite set s.t. **A** = B^{\perp} .

The realisability constructions preserve computability;

- \circ , $\bigcap_{X \in \Omega}$, $\bigcup_{X \in \Omega}$ preserve computability. Based on the equality $[\![\bigcap_{X \in \Omega} \Gamma]\!]_{\mathcal{B}} = [\![\bigcap_{X \in \{X, T(\otimes), T({}^{\varnothing})\}} \Gamma]\!]_{\mathcal{B}}$
- || preserve (weak) computability.

These results extend to the sequential constructions \otimes , \Im , \forall , \exists .

Conclusion

Conclusion

We provided:

- An adequate realisability model for MLL₂.
- ► Completeness results for MLL and MLL[‡] based on the 'test–as–proofs' result.
- ► The orthogonality provides information on the computability of the types; all the constructions preserve computability (or its weak form).

Perspective:

- ► A new correctness criterion for MLL₂ nets.
- An extension to MLL₂ of the test—as—proofs result.
- Realisabitity for nets of the MELL fragment.

Thank You for Your Attention!

Daimon against %-free net (1/4)

Daimon against %-free net (2/4)

Daimon against %-free net (3/4)

Daimon against %-free net (4/4)

Eta expansion

Theorem

The Eta-expansion preserves correctness.

Tests are proofs (1/5)

Since \rightarrow_n preserves correctness:

Tests are proofs (2/5)

Since \rightarrow_{\Im} preserves correctness:

Tests are proofs (3/5)

This preserves correctness:

Tests are proofs (4/5)

Reduction preserves correctness, P_1, \ldots, P_K are the partitions of $\sigma(A)$:

Tests are proofs (5/5)

Reduction preserves correctness, P_1, \ldots, P_K are the partitions of $\sigma(A)$:

