Time Series Analysis

AST5003F, 2020 Lecture #2

this lecture

- Recap of stats
- Moving statistics using pandas
- Smoothing data
- Resampling data
- Trends
 - Using filters, using polynomials
 - Seasonality (if a known cycle, i.e. annual, or if orbital period)

Recap of some stats

 From the baseline assessment, we will recap some introductory statistics.

Populations & samples

Statistics to describe a population of M members

Measures of the central value:

Mean
$$\mu = \frac{1}{M} \sum_{i=1}^{M} x_i$$

Median
$$n(x_i \le \mu_{1/2}) = n(x_i \ge \mu_{1/2}) \sim \frac{M}{2}$$

Mode
$$n(x_i = \mu_{\text{max}}) > n(x_i = y, y \neq \mu_{\text{max}})$$

Populations & samples

Statistics to describe a population of M members

Table 2.3. Employee salaries at astroploitcom

Job title (number of employees)	Salary in thousands of dollars
President (1)	2000
Vice president (1)	500
Programmer (3)	30
Astronomer (4)	15

Mean	Median	Mode
300	30	15

Populations & samples

Statistics to describe a population of M members

Measures of dispersion:

Variance:

$$\sigma^2 = \frac{1}{M} \sum_{i=1}^{M} (x_i - \mu)^2$$

Standard deviation:

$$\sigma = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (x_i - \mu)^2}$$

Poisson distribution

$$P_p(x,\mu) = \frac{\mu^x}{x!}e^{-\mu}$$

- Discrete distribution
- Good for counting experiments
- Probability of getting x events in some given time interval

Poisson distribution

As μ increases, so does the variance of the distribution.

$$\sigma^2 = \mu$$

Fractional uncertainty in counting N events:

$$\frac{\sigma}{\mu} = \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$$

Gaussian (normal) distribution

$$P_G(x, \mu, \sigma)dx = \frac{dx}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

- Bell curve
- μ and σ independent of each other

Gaussian distribution & confidence intervals

- Approx 2/3 of the time a measurement will fall within 1σ of the mean
- 95% of the time, a measurement will fall within 2σ of the mean
- Only 3 in 1000 measurements (99.7%) will fall outside of 3σ of the mean

Estimating uncertainty

How do you estimate the uncertainty of a particular quantitative measurement?

Central Limit theorem:

If $\{x_1, x_2, ..., x_n\}$ is a sequence of n independent variables drawn from $P(\mu, \sigma)$, then as n becomes large, the distribution of the variables

$$\bar{x_n} = \frac{1}{n} \sum_{i=1}^n x_i$$

will approach a Gaussian with mean μ and variance σ^2/n .

$$\sigma_{\mu}(n) = \frac{s}{\sqrt{n}}$$

Standard deviation of the mean

