

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

Sec: Sr.IPLCO JEE-ADVANCE
Time: 02:00 PM to 05:00 PM 2014-P2-Model

Date: 02-08-15 Max Marks: 180

PAPER-II KEY & SOLUTIONS

PHYSICS

1	D	2	A	3	В	4	A	5	A	6	A
7	A	8	A	9	A	10	D	11	С	12	В
13	В	14	C	15	С	16	D	17	С	18	A
19	D	20	A								

CHEMISTRY

21	D	22	A	23	D	24	В	25	В	26	С
27	A	28	В	29	В	30	D	31	В	32	С
33	В	34	С	35	С	36	D	37	С	38	В
39	A	40	A						W	JJJ	

MATHS

41	В	42	A	43	В	44	C	45	D	46	C
47	C	48	D	49	D	50	C	51	A	52	В
53	A	54	C	55	В	56	D	57	D	58	A
59	A	60	C	111-							

MATHEMATICS

41. $(2x)^3 + y^3 + (-1)^3 = 3(2x)(y)(-1)$

No. of rt isosceles $\Delta les = 3$

42. Diagonals parallel to A.B.s i.e. $\frac{x+y-2}{\sqrt{2}} = \pm \frac{7x-y+4}{5\sqrt{2}}$

$$\Rightarrow$$
 Slopes are: $\frac{1}{2}$, -2

Let
$$A = (1 - 2k, k)$$

$$\therefore \frac{k-5}{(1-2k)-3} = \frac{1}{2} \text{ (or) } -2 \Rightarrow k = 2, k = -3$$

$$A = (-3, 2)$$
 (or) $(7, -3)$

Min distance from origin to $A = \sqrt{13}$

43. $r = d \Rightarrow a = \frac{2\sqrt{2}a}{\sqrt{4} + K^2} \Rightarrow K^2 + 4 = 8 \Rightarrow K = \pm 2 \Rightarrow K = -2$

$$2x - 2y - 2\sqrt{2}a = 0 2x + 2y - 2\sqrt{2}a = 0 P(\sqrt{2}a, 0)$$

Area =
$$\frac{r.S_{11}^{3/2}}{S_{11} + r^2} = \frac{a.(a^2)^{3/2}}{a^2 + a^2} = \frac{a^2}{2}$$

$$\therefore \frac{\lambda = 1}{K = -2} \Rightarrow 6\lambda + K = 6(1) - 2 = 4$$

44. P = AB + BC + CA

$$= A^1B + BC + CA^{11} \ge A^1A^{11}$$

02-08-15_Sr.IPLCO_Jee-Adv_2014-P2_Key &Sol's

$$\geq \sqrt{(3-1)^2 + (-1-3)^2} = \sqrt{20} = 2\sqrt{5}$$

45.
$$\triangle ABC = \sqrt{8 + 4\sqrt{3}}$$
 and \overline{AC} equation $= (2 + \sqrt{3})x - y - \sqrt{3} = 0$

$$\Rightarrow \frac{1}{2} (4) \frac{\left| \left(2 + \sqrt{3} \right) \mathbf{h} - \mathbf{k} - \sqrt{3} \right|}{\sqrt{8 + 4\sqrt{3}}} = \sqrt{8 + 4\sqrt{3}}$$
$$\Rightarrow \left| \left(2 + \sqrt{3} \mathbf{h} - \mathbf{k} - \sqrt{3} \right) \right| = 4 + 2\sqrt{3}$$
$$\Rightarrow \left| \left(2 + \sqrt{3} \right) \mathbf{h} - \mathbf{k} \right|_{\text{max}} = 4 + 3\sqrt{3}$$

46. R.A =
$$\frac{1}{2} \times 1 \times \frac{1}{2} = \frac{1}{4}$$

47.
$$L.C.C = altitude$$

$$\therefore \frac{1}{h_1} + \frac{1}{h_2} + \frac{1}{h_3} = \frac{a+b+c}{2\Delta} = \frac{s}{\Delta} = \frac{1}{r}$$

$$\Rightarrow r = \frac{1}{3} \left(\frac{3}{\frac{1}{h_1} + \frac{1}{h_2} + \frac{1}{h_3}} \right)$$

$$r = \frac{1}{3}(H.M) \Rightarrow r = \frac{1}{3}(12) \Rightarrow r = 4$$

48.
$$A = \left(-\frac{1}{5}, \frac{2}{5}\right), B = \left(\frac{2}{5}, -\frac{1}{5}\right) \Rightarrow AB = \sqrt{\frac{18}{25}} = \frac{3\sqrt{2}}{5}$$

$$\sin \theta = \frac{\begin{vmatrix} 1 & -2 \\ 2 & -1 \end{vmatrix}}{\sqrt{5}\sqrt{5}} = \frac{3}{5} \Rightarrow R = \frac{a}{2\sin \theta} = \frac{\frac{3}{5}\sqrt{2}}{2 \times \frac{3}{5}} = \frac{1}{\sqrt{2}}$$

49.
$$ab = 3 \times c \Rightarrow c = \frac{ab}{3}$$

02-08-15_Sr.IPLCO_Jee-Adv_2014-P2_Key &Sol's

Altitude through $c \Rightarrow x = 0$

Altitude through $B \Rightarrow ax - cy = ab$

Solving
$$H = \left(0, -\frac{ab}{c}\right) = \left(0, -3\right)$$

50.
$$(x-3)^2 + (y-3)^2 = 6$$

$$y-3 = m(x-3) + \sqrt{6}\sqrt{1+m^2}$$

(1,1) lies on it

$$\Rightarrow 2m-2=\sqrt{6}\sqrt{1+m^2} \Rightarrow 4m^2+4-8m=6+6m^2$$

$$\Rightarrow 2m^2 + 8m + 2 = 0$$

$$\Rightarrow$$
 m² + 4m + 1 = 0 \Rightarrow p = -2 + $\sqrt{3}$, q = -2 - $\sqrt{3}$

$$pq = 1$$

51&52. Let A=(2,k)

BC slope =
$$\frac{\left(\frac{4}{5}k\right)}{\left(\frac{8k}{5}\right)} = \frac{1}{2}$$

$$\therefore BC \perp AC \Rightarrow \underline{C} = 90^{\circ}$$

$$G = \left(\frac{2+2-k+\frac{10+3k}{5}}{3}, \frac{k+(-k)+\left(-\frac{k}{5}\right)}{3}\right) = \left(\frac{30-2k}{15}, \frac{-k}{15}\right)$$

02-08-15_Sr.IPLCO_Jee-Adv_2014-P2_Key &Sol's

Locus is
$$\frac{15x - 30}{-2} = -15y \Rightarrow x - 2y = 2$$

53 & 54.
$$(2x+3y+8)+\lambda(x-y-1)=0$$

$$A = (-1, -2)$$

$$(3x-2y+12)-\lambda(x+y-1)=0$$

$$B = (-2,3)$$

$$SG = \frac{1}{3}(CS) = \frac{1}{3}(\frac{AB}{2}) = \frac{1}{6}(AB) = \frac{1}{6}\sqrt{26}$$

Locus is circle with centre at $\left(-\frac{3}{2}, \frac{1}{2}\right)$ and radius $\sqrt{\frac{13}{18}}$

$$\left(x + \frac{3}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{13}{18}$$

ABC is rt.isoceles \Rightarrow C = (-4,0) or (1,1)

$$\therefore (OC)_{min} = \sqrt{2}$$

55&56.
$$\cos \theta = \frac{\left(\sqrt{6}/2\right)}{8} \Rightarrow \cos \theta = \frac{\sqrt{6}}{16}$$

$$B = \left(-\sqrt{6}\cos\theta, \sqrt{6}\sin\theta\right)$$

$$BC = \sqrt{x_1^2 + y_1^2 - 8x_1} = \sqrt{6\cos^2\theta + 6\sin^2\theta + 8\sqrt{6}\cos\theta} = \sqrt{6 + 8\sqrt{6} \times \frac{\sqrt{6}}{16}} = \sqrt{9} = 3$$

L.D.C.T =
$$2\sqrt{r_1r_2} = 2\sqrt{4 \times 8} = 8\sqrt{2}$$

- 57. Conceptual
- 58. P) GE = $(x-3)^2 + (y-5)^2$

Distance =
$$\frac{|15(3) + 8(5) - 34|}{17}$$
 = 3

- \therefore Required minimum = 9
- Q) Distance from (0,5) to y + 2 = 0 is 7
- R) $\frac{1+|a|}{a+1} > 0$ and $\frac{a|a|-1}{a+1} > 0$ solving $a \in (1,\infty)$
- S) $(Area)_{max} = 3$ square units
- 59. Conceptual

60. (A) $C_1: x^2 + y^2 - 2a(x+y) + a^2 = 0$

$$C_2: x^2 + y^2 - 2b(x + y) + b^2 = 0$$

$$C_1$$
 and C_2 touch $\Rightarrow \sqrt{2}(b-a) = a+b$

$$\Rightarrow \frac{b}{a} = \left(\sqrt{2} + 1\right)^2 = 3 + 2\sqrt{2} .$$

(B)
$$C_1$$
 and C_2 intersect orthogonally

$$\Rightarrow 2\big(b-a\big)^2 = a^2 + b^2 \Rightarrow \frac{b}{a} = 2 + \sqrt{3} \; .$$

$$2(b-a)(x+y) = b^2 - a^2$$
.

If passes through
$$(a,a) \Rightarrow \frac{b}{a} = 3$$
.

$$\Rightarrow 2a^2 - 4ab + b^2 = 0 \Rightarrow \frac{b}{a} = 2 + \sqrt{2}$$