Ch2 앙상블 기법에 대해 알아보기

대표적인 알고리즘 RandomForest

학습 내용

- 앙상블이 무엇인지 알아본다.
- 랜덤 포레스트 알고리즘을 이용해 본다.
- Tips 데이터 셋의 라벨 인코딩을 수행해 본다.
- Tip을 예측하는 모델 만들어보기(회귀)

목차

01 tip 예측 모델 만들기02 데이터 전처리03 머신러닝 과제04 우리가 만든 모델 평가05 다른 모델의 정확도는 어떨까? 확인해 보자.

01 tip 예측 모델 만들기

목차로 이동하기

In [1]:

```
import seaborn as sns
```

In [2]:

```
tips = sns.load_dataset("tips")
tips.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	total_bill	244 non-null	float64
1	tip	244 non-null	float64
2	sex	244 non-null	category
3	smoker	244 non-null	category
4	day	244 non-null	category
5	time	244 non-null	category
6	size	244 non-null	int64
		(4) (1 .04/0)	

dtypes: category(4), float64(2), int64(1)

memory usage: 7.4 KB

In [3]:

tips.head()

Out[3]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

• 데이터 셋 내용

■ total_bill : 총 지불 비용

■ tip : 팁 ■ sex : 성별

■ smoker : 담배를 피는 안피는지

■ day : 이용한 요일

■ time : 점심인지 저녁인지 ■ size : 식당 이용 인원

02 데이터 전처리

<u>목차로 이동하기</u>

In [4]:

```
sex_dict = { 'Female':0, "Male":1 }
tips['sex'] = tips['sex'].map(sex_dict).astype('int')
# dav 라벨 인코딩
print( tips['day'].unique() )
day_dict = {"Thur":0, "Fri":1, "Sat":2, "Sun":3 }
tips['day'] = tips['day'].map(day_dict).astype('int')
# time 라벨 인코딩
print( tips['time'].unique() )
time_dict = {"Lunch":0, "Dinner":1 }
tips['time'] = tips['time'].map(time_dict).astype('int')
# smoker 라벨 인코딩
print( tips['smoker'].unique() )
smoker\_dict = {"No":0, "Yes":1}
tips['smoker'] = tips['smoker'].map(smoker_dict).astype('int')
['Sun', 'Sat', 'Thur', 'Fri']
Categories (4, object): ['Thur', 'Fri', 'Sat', 'Sun']
['Dinner', 'Lunch']
Categories (2, object): ['Lunch', 'Dinner']
['No', 'Yes']
Categories (2, object): ['Yes', 'No']
```

03 머신러닝 과제

목차로 이동하기

In [5]:

```
tips.shape
```

Out [5]:

(244, 7)

- 조건 1. 우리에게는 지금까지 이용한 고객의 220개의 데이터가 있다.
- 조건 2. 이후에 몇명이 이용할지 모른다.
- 조건 3. 우리는 tip을 예측하는 머신러닝 시스템을 만들어, 이를 토대로 앞으로의 고객 서비스에 반영해보자.

주어진 데이터를 토대로 이용 고객을 예측해 보자.

우선 데이터 만들어보기

In [6]:

```
tips_have = tips.iloc[0:220, :] # 현재 가진 고객 데이터
tips_new = tips.iloc [220: , :] # 미래의 고객 데이터
tips_new = tips_new.drop(["tip"], axis=1)
tips_have.shape, tips_new.shape
```

Out[6]:

```
((220, 7), (24, 6))
```

In [7]:

```
tips_have.columns, tips_new.columns
```

Out [7]:

```
(Index(['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size'], dtype='objec
t'),
Index(['total_bill', 'sex', 'smoker', 'day', 'time', 'size'], dtype='object'))
```

03 머신러닝 과제 수행

목차로 이동하기

In [8]:

```
tips_have.head()
```

Out[8]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	0	0	3	1	2
1	10.34	1.66	1	0	3	1	3
2	21.01	3.50	1	0	3	1	3
3	23.68	3.31	1	0	3	1	2
4	24.59	3.61	0	0	3	1	4

- 머신러닝은 숫자 데이터를 좋아하고 이해할 수 있다.
 - 그러면 total bill, size의 컬럼(변수)를 사용해서 'tip'을 예측하는 과제를 수행한다.

In [9]:

```
sel = ['total_bill', 'sex', 'smoker', 'day', 'time', 'size']
```

• 01 머신러닝에서 모델 만들고 예측해보기

머신러닝은 다음과 같은 과정을 거친다.

- 모델 만들고
- 선택된 모델을 준비된 데이터(입력, 출력)로 학습을 시키고
- 마지막으로 학습된 모델로 새로운 데이터를 예측을 수행한다.

우리의 과제

- 모델에 사용할 데이터를 준비한다.
 - 학습-입력(X train), 학습-출력(y train)
 - 예측에 사용할 새로운 데이터(X_test), y_test(는 예측되므로 없음)

In [11]:

```
# sel = ['total_bill', 'tip']

X = tips_have[sel]
y = tips_have['tip'] # 우리가 예측할 컬럼(변수)

test_X = tips_new[sel] # 예측할 친구는 다른 데이터 셋
```

랜덤 포레스트 이용

- 예측하려는 타깃(레이블)이 수치형일때는 RandomForestRegressor를 활용
- 예측하려는 타깃(레이블)이 범주형일때는 RandomForestClassifier를 활용

In [12]:

```
from sklearn.ensemble import RandomForestRegressor
```

In [13]:

```
model = RandomForestRegressor() # 모델 만들기
model.fit(X, y) # 모델 훈련시키기 model.fit(입력, 출력)
pred = model.predict(test_X) # 학습된 모델로 예측하기
pred
```

Out[13]:

```
array([1.7753, 2.104, 1.5641, 2.2022, 2.0179, 3.439, 1.8931, 3.2047, 2.1622, 3.7503, 4.1024, 2.3066, 1.8401, 1.6089, 2.0958, 1.6091, 2.0438, 3.2046, 4.661, 3.2753, 3.7255, 3.506, 3.1525, 2.433])
```

04 우리가 만든 모델 평가

목차로 이동하기

- 내가 만든 모델이 어느정도 좋은 성능을 가지는지 현재로서는 알기가 어렵다.
 - 해결 방안 1. tips_have에는 출력 tip이 있다. tips_new는 없다. 그러면 우선 tips_have을 잘 데이터로 나누어 학습과 예측을 하여, 가진 답으로 맞추어보고 검증을 해보자.
- train test split 함수를 이용하여 학습용, 테스트용으로 나눌 수 있다.

In [14]:

```
from sklearn.model_selection import train_test_split
```

In [15]:

```
# random_state는 난수 발생기의 패턴을 고정시키기 위해 사용한다.
# 이를 통해 우리는 X(입력), y(출력)이 각각 학습용, 테스트용으로 나누어진다.
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
```

In [16]:

```
model = RandomForestRegressor() # 모델 만들기
model.fit(X_train, y_train) # 모델 훈련시키기 model.fit(입력, 출력)
pred = model.predict(X_test) # 학습된 모델로 예측하기
pred
```

Out[16]:

```
array([2.803 , 2.8472, 2.1464, 2.2139, 3.1024, 3.8019, 2.9998, 3.5765, 3.5871, 1.5325, 1.4874, 4.3599, 3.0382, 1.9417, 1.9197, 3.0517, 1.9484, 3.4526, 3.2648, 1.7675, 2.693 , 2.3385, 4.1946, 2.9458, 2.1834, 3.0368, 2.4177, 2.4179, 2.7284, 2.0693, 3.2563, 3.9861, 1.9542, 3.901 , 1.7927, 3.1169, 1.6914, 2.804 , 1.9663, 4.2911, 3.0235, 3.2696, 3.3403, 2.2963, 1.8286, 3.2605, 2.9282, 3.7451, 2.2386, 1.5275, 2.9601, 2.9664, 2.7267, 4.0704, 3.1787])
```

여기서 예측한 pred와 y_test는 비교하여 얼마나 오차가 있는지 확인 가능하다.

In [17]:

pred - y_test

Out[17]:

Outl	17].			
150	0 0600			
152	0.0630			
74	0.6472			
71	-0.8536			
161	-0.2861			
162	1.1024			
143	-1.1981			
63	-0.7602			
153	1.5765			
219	0.4971			
135	0.2825			
149	-0.5126			
5	-0.3501			
90	0.0382			
168	0.3317			
202	-0.0803			
191	-1.1383			
201	-0.0616			
96	-0.5474			
106	-0.7952			
75	0.5175			
55	-0.8170			
12	0.7685			
157	0.4446			
64	0.3058			
37	-0.8866			
130	1.5368			
101	-0.5823			
61	0.4179			
8	0.7684			
18	-1.4307			
179	-0.2937			
15	0.0661			
139	-0.7958			
7	0.7810			
124	-0.7273			
159	1.1169			
136	-0.3086			
144	0.5040			
199	-0.0337			
155	-0.8489			
66	0.5535			
33	0.8196			
89	0.3403			
158	-0.3137			
196	-0.1714			
173	0.0805			
185	-2.0718			
207	0.7451			
16	0.5686			
145	0.0275			
200	-1.0399			
146	1.6064			
22	0.4967			
183	-2.4296			
100	4.4430			

45 0.1787

In [18]:

```
from sklearn.metrics import mean_absolute_error mean_absolute_error(y_test, pred)
```

Out[18]:

0.6639545454545457

In [19]:

```
### model.score()를 이용해서 구하기 - 결정계수
print( model.score(X_train, y_train) )
print( model.score(X_test, y_test) )
```

0.9205093342341426

0.42502604302344027

05 다른 모델의 정확도는 어떨까? 확인해 보자.

목차로 이동하기

In [21]:

```
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
```

In [22]:

```
model = KNeighborsRegressor() # 모델 만들기
model.fit(X_train, y_train) # 모델 훈련시키기 model.fit(입력, 출력)
pred = model.predict(X_test) # 학습된 모델로 예측하기
pred
```

Out[22]:

```
array([2.95 , 3.25 , 2.404, 2.094, 2.492, 3.856, 2.73 , 3.806, 3.934, 1.596, 1.418, 4.118, 3.25 , 2.448, 1.896, 3.216, 1.822, 3.422, 2.95 , 1.692, 2.686, 2.792, 4.118, 3.152, 2.492, 3.158, 3.006, 2.718, 2.762, 2.752, 4.598, 3.824, 1.896, 3.792, 1.822, 2.658, 1.712, 2.686, 2.036, 4.034, 2.762, 3.1 , 2.902, 2.412, 1.774, 4.122, 3.1 , 4.462, 1.77 , 1.596, 3.392, 3.316, 2.612, 3.638, 3.076])
```

In [24]:

```
print("mse 값 : ", mean_absolute_error(y_test, pred) )
print("학습 결정계수 : ", model.score(X_train, y_train) )
print("테스트 결정계수 : ", model.score(X_test, y_test) )
```

mse 값: 0.7037818181818182

학습 결정계수 : 0.5826625545543387 테스트 결정계수 : 0.33748841292974685

In [25]:

```
model = DecisionTreeRegressor() # 모델 만들기
model.fit(X_train, y_train) # 모델 훈련시키기 model.fit(입력, 출력)
pred = model.predict(X_test) # 학습된 모델로 예측하기
pred
```

Out [25]:

```
array([3.5 , 3. , 2. , 2.5 , 3.71, 4.2 , 2.5 , 3.61, 5.16, 1.48, 1.44, 4.34, 2.56, 2. , 2. , 3. , 2.23, 3.14, 3.21, 2. , 3. , 1.64, 3.61, 3. , 2. , 2.83, 2.02, 1.68, 3.23, 1.01, 3.11, 3.5 , 2. , 5.07, 1.5 , 3. , 1.83, 2.5 , 1.68, 2. , 2. , 2. , 3. , 2. , 1.73, 5. , 2. , 3. , 1.66, 1.48, 4. , 4. , 3.16, 3.61, 3. ])
```

In [26]:

```
print("mse 값 : ", mean_absolute_error(y_test, pred) )
print("학습 결정계수 : ", model.score(X_train, y_train) )
print("테스트 결정계수 : ", model.score(X_test, y_test) )
```

mse 값: 0.85327272727273

학습 결정계수 : 1.0

테스트 결정계수 : -0.14791046025190835

결과 확인

- 일반적인 모델 사용 결과 knn이 의사결정트리보다 오차가 좋고
- 랜덤 포레스트 모델이 가장 오차가 적다.

교육용으로 작성된 것으로 배포 및 복제시에 사전 허가가 필요합니다.

Copyright 2022 LIM Co. all rights reserved.