Automated Deduction

Laura Kovács

for(syte) III Informatics

Outline

Equality (Recap)

Term Orderings

Simple Ground Superposition Inference System

Superposition: (right and left)

$$\frac{\textit{I} = \textit{r} \lor \textit{C} \quad \textit{s[I]} = \textit{t} \lor \textit{D}}{\textit{s[r]} = \textit{t} \lor \textit{C} \lor \textit{D}} \text{ (Sup)}, \quad \frac{\textit{I} = \textit{r} \lor \textit{C} \quad \textit{s[I]} \neq \textit{t} \lor \textit{D}}{\textit{s[r]} \neq \textit{t} \lor \textit{C} \lor \textit{D}} \text{ (Sup)},$$

Equality Resolution:

$$\frac{s \neq s \lor C}{C} \text{ (ER)},$$

Simple Ground Superposition Inference System

Superposition: (right and left)

$$\frac{\textit{I} = \textit{r} \lor \textit{C} \quad \textit{s[I]} = \textit{t} \lor \textit{D}}{\textit{s[r]} = \textit{t} \lor \textit{C} \lor \textit{D}} \text{ (Sup)}, \quad \frac{\textit{I} = \textit{r} \lor \textit{C} \quad \textit{s[I]} \neq \textit{t} \lor \textit{D}}{\textit{s[r]} \neq \textit{t} \lor \textit{C} \lor \textit{D}} \text{ (Sup)},$$

Equality Resolution:

$$\frac{\mathbf{s} \neq \mathbf{s} \vee C}{C} \text{ (ER)},$$

Equality Factoring:

$$\frac{s = t \lor s = t' \lor C}{s = t \lor t \neq t' \lor C}$$
(EF),

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause f(a) = a we can derive any clause of the form

$$f^m(a) = f^n(a)$$

where m, n > 0.

Worst of all, the derived clauses can be much larger than the original clause f(a) = a.

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause f(a) = a we can derive any clause of the form

$$f^m(a) = f^n(a)$$

where m, n > 0.

Worst of all, the derived clauses can be much larger than the original clause f(a) = a.

The recipe is to use the previously introduced ingredients:

- 1. Ordering;
- 2. Literal selection:
- 3. Redundancy elimination.

Atom and literal orderings on equalities

Equality atom comparison treats an equality s = t as the multiset $\{s, t\}$.

$$(s' = t') \succ_{lit} (s = t) \text{ if } \dot{s}', t'\dot{s} \succ \dot{s}, t\dot{s}$$

$$\triangleright (s' \neq t') \succ_{\mathit{lit}} (s \neq t) \text{ if } \dot{\{s',t'\}} \succ \dot{\{s,t\}}$$

with \succ_{lit} being an induced ordering on literals.

Ground Superposition Inference System $Sup_{\succ,\sigma}$

Let σ be a well-behaved literal selection function.

Superposition: (right and left)

$$\frac{\underline{l=r} \lor C \quad \underline{s[l]=t} \lor D}{s[r]=t \lor C \lor D} \text{ (Sup)}, \quad \frac{\underline{l=r} \lor C \quad \underline{s[l] \ne t} \lor D}{s[r] \ne t \lor C \lor D} \text{ (Sup)},$$

where (i) $l \succ r$, (ii) $s[l] \succ t$, (iii) l = r is strictly greater than any literal in C, (iv) (only for the superposition-right rule) s[l] = t is greater than or equal to any literal in D.

Equality Resolution:

$$\frac{s \neq s \lor C}{C} \text{ (ER)},$$

Equality Factoring:

$$\frac{s = t \lor s = t' \lor C}{s = t \lor t \neq t' \lor C}$$
 (EF),

where (i) $s \succ t \succ t'$; (ii) s = t is greater than or equal to any literal in C.

Extension to arbitrary (non-equality) literals

- Consider a two-sorted logic in which equality is the only predicate symbol.
- Interpret terms as terms of the first sort and non-equality atoms as terms of the second sort.
- ► Add a constant T of the second sort.
- ▶ Replace non-equality atoms $p(t_1,...,t_n)$ by equalities of the second sort $p(t_1,...,t_n) = \top$.

Extension to arbitrary (non-equality) literals

- Consider a two-sorted logic in which equality is the only predicate symbol.
- ► Interpret terms as terms of the first sort and non-equality atoms as terms of the second sort.
- ► Add a constant T of the second sort.
- ▶ Replace non-equality atoms $p(t_1, ..., t_n)$ by equalities of the second sort $p(t_1, ..., t_n) = \top$.

For example, the clause

$$p(a,b) \vee \neg q(a) \vee a \neq b$$

becomes

$$p(a,b) = \top \vee q(a) \neq \top \vee a \neq b.$$

Binary resolution inferences can be represented by inferences in the superposition system

We ignore selection functions.

$$\frac{A \vee C_1 \quad \neg A \vee C_2}{C_1 \vee C_2} \text{ (BR)}$$

$$\frac{A = \top \vee C_1 \quad A \neq \top \vee C_2}{\top \neq \top \vee C_1 \vee C_2} \text{ (Sup)}$$
$$\frac{C_1 \vee C_2}{C_1 \vee C_2} \text{ (ER)}$$

Exercise

Positive factoring can also be represented by inferences in the superposition system.

Outline

Equality (Recap)

Term Orderings

Simplification Ordering

When we deal with equality, we need to work with term orderings. Consider a strict ordering \succ on signature symbols, such that \succ is well-founded.

The ordering ≻ on terms is called a simplification ordering if

- 1. \succ is well-founded;
- 2. \succ is monotonic: if $l \succ r$, then $s[l] \succ s[r]$;
- 3. \succ is stable under substitutions: if $l \succ r$, then $l\theta \succ r\theta$.

Simplification Ordering

When we deal with equality, we need to work with term orderings. Consider a strict ordering \succ on signature symbols, such that \succ is well-founded.

The ordering ≻ on terms is called a simplification ordering if

- 1. \succ is well-founded;
- 2. \succ is monotonic: if $l \succ r$, then $s[l] \succ s[r]$;
- 3. \succ is stable under substitutions: if $l \succ r$, then $l\theta \succ r\theta$.

One can combine the last two properties into one:

2a. If $l \succ r$, then $s[l\theta] \succ s[r\theta]$.

If \succ is a simplification ordering, then for every term t[s] and its proper subterm s we have $s \not\succ t[s]$. Why?

If \succ is a simplification ordering, then for every term t[s] and its proper subterm s we have $s \not\succ t[s]$. Why?

Consider an example.

$$f(a) = a$$

 $f(f(a)) = a$
 $f(f(f(a))) = a$

Then both f(f(a)) = a and f(f(f(a))) = a are redundant.

If \succ is a simplification ordering, then for every term t[s] and its proper subterm s we have $s \not\succ t[s]$. Why?

Consider an example.

$$f(a) = a$$

 $f(f(a)) = a$
 $f(f(f(a))) = a$

Then both f(f(a)) = a and f(f(f(a))) = a are redundant. The clause f(a) = a is a logical consequence of $\{f(f(a)) = a, f(f(f(a))) = a\}$ but is not redundant.

Exercise: Show that $\{f(a) = a, f(f(f(a))) \neq a\}$ is unsatisfiable, by using superposition with redundancy elimination.

If \succ is a simplification ordering, then for every term t[s] and its proper subterm s we have $s \not\succ t[s]$. Why?

Consider an example.

$$f(a) = a$$

 $f(f(a)) = a$
 $f(f(f(a))) = a$

Then both f(f(a)) = a and f(f(f(a))) = a are redundant. The clause f(a) = a is a logical consequence of $\{f(f(a)) = a, f(f(f(a))) = a\}$ but is not redundant.

Exercise: Show that $\{f(a) = a, f(f(f(a))) \neq a\}$ is unsatisfiable, by using superposition with redundancy elimination.

How to "come up" with simplification orderings?

Term Algebra

Term algebra $TA(\Sigma)$ of signature Σ :

- **Domain**: the set of all ground terms of Σ .
- ► Interpretation of any function symbol f or constant c is defined as:

$$f_{TA(\Sigma)}(t_1,\ldots,t_n) \stackrel{\text{def}}{\Leftrightarrow} f(t_1,\ldots,t_n);$$
 $c_{TA(\Sigma)} \stackrel{\text{def}}{\Leftrightarrow} c.$

Let us fix

- Signature Σ , it induces the term algebra $TA(\Sigma)$.
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

Let us fix

- Signature Σ , it induces the term algebra $TA(\Sigma)$.
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

Let us fix

- Signature Σ , it induces the term algebra $TA(\Sigma)$.
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

$$g(t_1,\ldots,t_n)\succ_{\mathit{KB}} h(s_1,\ldots,s_m)$$
 if

Let us fix

- Signature Σ, it induces the term algebra TA(Σ).
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

$$g(t_1,\ldots,t_n)\succ_{\mathit{KB}} h(s_1,\ldots,s_m)$$
 if
1. $|g(t_1,\ldots,t_n)|>|h(s_1,\ldots,s_m)|$ (by weight) or

Let us fix

- Signature Σ , it induces the term algebra $TA(\Sigma)$.
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

$$g(t_1,\ldots,t_n)\succ_{\mathit{KB}} h(s_1,\ldots,s_m)$$
 if

- 1. $|g(t_1,...,t_n)| > |h(s_1,...,s_m)|$ (by weight) or
- 2. $|g(t_1, ..., t_n)| = |h(s_1, ..., s_m)|$ and one of the following holds: 2.1 $g \gg h$ (by precedence) or

Let us fix

- Signature Σ , it induces the term algebra $TA(\Sigma)$.
- Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

$$g(t_1, ..., t_n) \succ_{KB} h(s_1, ..., s_m)$$
 if
1. $|g(t_1, ..., t_n)| > |h(s_1, ..., s_m)|$
(by weight) or

(by weight) or
2.
$$|g(t_1, ..., t_n)| = |h(s_1, ..., s_m)|$$
 and one of the following holds:
2.1 $g \gg h$ (by precedence) or
2.2 $g = h$ and for some
 $1 \le i \le n$ we have
 $t_1 = s_1, ..., t_{i-1} = s_{i-1}$ and
 $t_i \succ_{KB} s_i$ (lexicographically).

$$w(a) = 1$$

 $w(b) = 2$
 $w(f) = 3$
 $w(g) = 0$

$$w(a) = 1$$

 $w(b) = 2$
 $w(f) = 3$
 $w(g) = 0$

$$|f(g(a), f(a, b))| = |3(0(1), 3(1, 2))|$$

$$w(a) = 1$$

 $w(b) = 2$
 $w(f) = 3$
 $w(g) = 0$

$$|f(g(a), f(a, b))| = |3(0(1), 3(1, 2))| = 3 + 0 + 1 + 3 + 1 + 2$$

$$w(a) = 1$$

 $w(b) = 2$
 $w(f) = 3$
 $w(g) = 0$

$$|f(g(a), f(a, b))| = |3(0(1), 3(1, 2))| = 3 + 0 + 1 + 3 + 1 + 2 = 10.$$

$$w(a) = 1$$

 $w(b) = 2$
 $w(f) = 3$
 $w(g) = 0$

$$|f(g(a), f(a, b))| = |3(0(1), 3(1, 2))| = 3 + 0 + 1 + 3 + 1 + 2 = 10.$$

The Knuth-Bendix ordering is the main ordering used in Vampire and all other resolution and superposition theorem provers.

Knuth-Bendix Ordering (KBO), Ground Case: Summary

Let us fix

- Signature Σ, it induces the term algebra TA(Σ).
- Total ordering >> on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

Weight of a ground term t is

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

$$g(t_1,\ldots,t_n) \succ_{\mathit{KB}} h(s_1,\ldots,s_m)$$
 if
1. $|g(t_1,\ldots,t_n)| > |h(s_1,\ldots,s_m)|$ (by weight) or
2. $|g(t_1,\ldots,t_n)| = |h(s_1,\ldots,s_m)|$ and one of the following holds:
2.1 $g \gg h$ (by precedence) or
2.2 $g = h$ and for some
 $1 \leq i \leq n$ we have
 $t_1 = s_1,\ldots,t_{i-1} = s_{i-1}$ and
 $t_i \succ_{\mathit{KB}} s_i$ (lexicographically,

i.e. left-to-right).

Let us fix

- Signature Σ, it induces the term algebra TA(Σ).
- ► Total ordering ≫ on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

Weight of a ground term t is

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

$$g(t_1,\ldots,t_n)\succ_{\mathit{KB}} h(s_1,\ldots,s_m)$$
 if
1. $|g(t_1,\ldots,t_n)|>|h(s_1,\ldots,s_m)|$ (by weight) or
2. $|g(t_1,\ldots,t_n)|=|h(s_1,\ldots,s_m)|$ and one of the following holds:
2.1 $g\gg h$ (by precedence) or
2.2 $g=h$ and for some
 $1\leq i\leq n$ we have
 $t_1=s_1,\ldots,t_{i-1}=s_{i-1}$ and
 $t_i\succ_{\mathit{KB}} s_i$ (lexicographically,

i.e. left-to-right).

Note: Weight functions w are not arbitrary functions

– need to be "compatible" with \gg .

Let us fix

- Signature Σ, it induces the term algebra TA(Σ).
- Total ordering » on Σ, called precedence relation;
- ▶ Weight function $w : \Sigma \to \mathbb{N}$.

Weight of a ground term t is

$$|g(t_1,\ldots,t_n)| = w(g) + \sum_{i=1}^n |t_i|.$$

$$g(t_1,\ldots,t_n) \succ_{\mathit{KB}} h(s_1,\ldots,s_m)$$
 if
1. $|g(t_1,\ldots,t_n)| > |h(s_1,\ldots,s_m)|$ (by weight) or
2. $|g(t_1,\ldots,t_n)| = |h(s_1,\ldots,s_m)|$ and one of the following holds:
2.1 $g \gg h$ (by precedence) or
2.2 $g = h$ and for some
 $1 \leq i \leq n$ we have
 $t_1 = s_1,\ldots,t_{i-1} = s_{i-1}$ and
 $t_i \succ_{\mathit{KB}} s_i$ (lexicographically, i.e. left-to-right).

Note: Weight functions w are not arbitrary functions – need to be "compatible" with \gg .

Why? Compare for example *a* and f(a) with arbitrary \gg and w.

Weight Functions, Ground Case

A weight function $w : \Sigma \to \mathbb{N}$ is any function satisfying:

- ▶ w(a) > 0 for any constant $a \in \Sigma$;
- ▶ if w(f) = 0 for a unary function $f \in \Sigma$, then $f \gg g$ for all functions $g \in \Sigma$ with $f \neq g$.
 - That is, *f* is the greatest element of Σ wrt \gg .

Weight Functions, Ground Case

A weight function $w : \Sigma \to \mathbb{N}$ is any function satisfying:

- ▶ w(a) > 0 for any constant $a \in \Sigma$;
- ▶ if w(f) = 0 for a unary function $f \in \Sigma$, then $f \gg g$ for all functions $g \in \Sigma$ with $f \neq g$.

That is, *f* is the greatest element of Σ wrt \gg .

Weight Functions, Ground Case

A weight function $w : \Sigma \to \mathbb{N}$ is any function satisfying:

- ▶ w(a) > 0 for any constant $a \in \Sigma$;
- ▶ if w(f) = 0 for a unary function f ∈ Σ, then f ≫ g for all functions g ∈ Σ with f ≠ g. That is, f is the greatest element of Σ wrt ≫.

As a consequence, there is at most one unary function f with w(f) = 0.

Exercise

Consider a KBO ordering \succ such that *inverse* \gg *times* by precedence. Consider the literal:

```
inverse(times(x, y)) = times(inverse(y), inverse(x)).
```

Compare, w.r.t \succ , the left- and right-hand side terms of the equality when:

weight(inverse) = weigth(times) = 1;

▶ weight(inverse) = 0 and weight(times) = 1.

Same Property as for \mathbb{BR}_{σ}

The conclusion is strictly smaller than the rightmost premise:

$$\frac{\underline{l=r} \lor C \quad \underline{s[l]=t} \lor D}{s[r]=t \lor C \lor D} \text{ (Sup)}, \quad \frac{\underline{l=r} \lor C \quad \underline{s[l]\neq t} \lor D}{s[r]\neq t \lor C \lor D} \text{ (Sup)},$$

where (i) $l \succ r$, (ii) $s[l] \succ t$, (iii) l = r is strictly greater than any literal in C, (iv) s[l] = t is greater than or equal to any literal in D.

Consider a superposition with a unit left premise:

$$\frac{\underline{I=r} \quad \underline{s[I]=t \lor D}}{s[r]=t \lor D} \text{ (Sup)},$$

Note that we have

$$I = r, s[r] = t \lor D \models s[I] = t \lor D$$

Consider a superposition with a unit left premise:

$$\frac{\underline{I=r} \quad \underline{s[I]=t \lor D}}{s[r]=t \lor D} \text{ (Sup)},$$

Note that we have

$$I = r, s[r] = t \lor D \models s[I] = t \lor D$$

and we have

$$s[I] = t \lor D \succ s[r] = t \lor D.$$

Consider a superposition with a unit left premise:

$$\frac{\underline{I=r}}{s[r]=t\vee D} \text{ (Sup)},$$

Note that we have

$$I = r, s[r] = t \lor D \models s[I] = t \lor D$$

and we have

$$s[I] = t \lor D \succ s[r] = t \lor D.$$

If we also have $s[I] = t \lor D \succ I = r$, then the second premise is redundant and can be removed.

Consider a superposition with a unit left premise:

$$\frac{\underline{I=r}}{s[r]=t\vee D} \text{ (Sup)},$$

Note that we have

$$I = r, s[r] = t \lor D \models s[I] = t \lor D$$

and we have

$$s[I] = t \lor D \succ s[r] = t \lor D.$$

If we also have $s[I] = t \lor D \succ I = r$, then the second premise is redundant and can be removed.

This rule (superposition plus deletion) is sometimes called demodulation (also rewriting by unit equalities).

Exercise

Consider the KBO ordering > generated by:

- the precedence $f \gg a \gg b \gg c$; and
- the weight function w with w(f) = w(a) = w(b) = w(c) = 1.

Consider the set *S* of ground formulas:

$$a = b \lor a = c$$

 $f(a) \neq f(b)$
 $b = c$

Apply saturation on S using an inference process based on the ground superposition calculus $\sup_{\succ,\sigma}$ (including the inference rules of ground binary resolution with selection).

Show that S is unsatisfiable.

Exercise

and

Consider the KBO ordering > generated by:

- the precedence $f \gg a \gg b \gg c$;
- the weight function w with w(f) = w(a) = w(b) = w(c) = 1.

Consider the set *S* of ground formulas:

$$a = b \lor a = c$$

 $f(a) \neq f(b)$
 $b = c$

Apply saturation on S using an inference process based on the ground superposition calculus $\sup_{\succ,\sigma}$ (including the inference rules of ground binary resolution with selection).

Show that S is unsatisfiable.

Challenge: Show that *S* is unsatisfiable such that during saturation only 4 new clauses are generated.

