

SICSS Edinburgh

Text Classification

Walid Magdy

Outlines

- Nature of text
 - Zipf's law
- Text Classification
 - Why you might need classification in CSS?
 - Feature Extraction
 - Feature Selection/Synthesis
 - Feature Weighting (e.g. TFIDF)
 - Classification process setup (train and test)
 - Evaluation

Why Text Classification?

- Text → Most of social communication online .. so far
- CSS → Mostly analyse online data on large scale
- Data are not always labelled to be analysed on scale
- Some classifiers are available to use
 - E.g. Sentiment
- Sometimes you need to build specific classifier for a specific task
 - E.g. Stance classifier for Pro-choice vs Pro-life
- Today: How to build a text classifier
 Tomorrow: How to build a general classifier

Words' Nature

- Word → basic unit to represent text
- Certain characteristics are observed for the words we use!
- These characteristics are very consistent, that we can apply laws for them
- These laws apply for:
 - Different languages
 - Different domains of text

You can try with me ...

- Shell commands: cat, sort, uniq, grep
- Python (or alternative)
- Excel (or alternative)
- Download the following:
 - Bible: http://www.gutenberg.org/cache/epub/10/pg10.txt

Frequency of words

- Some words are very frequent e.g. "the", "of", "to"
- Many words are less frequent e.g. "schizophrenia", "bazinga"
- ~50% terms appears once
- Frequency of words has hard exponential decay

Zipf's Law:

 For a given collection of text, ranking unique terms according to their frequency, then:

$$r \times P_r \cong const$$

- r, rank of term according to frequency
- P_r , probability of appearance of term

•
$$P_r \cong \frac{const}{r} \to f(x) \cong \frac{1}{x}$$

Zipf's Law:

Wikipedia abstracts

→ 3.5M En abstracts

$$r \times P_r \cong const \rightarrow$$

 $r \times freq_r \cong const$

Term	Rank	Frequency	r x freq
the	1	5,134,790	5,134,790
of	2	3,102,474	6,204,948
in	3	2,607,875	7,823,625
a	4	2,492,328	9,969,312
is	5	2,181,502	10,907,510
and	6	1,962,326	11,773,956
was	7	1,159,088	8,113,616
to	8	1,088,396	8,707,168
by	9	766,656	6,899,904
an	10	566,970	5,669,700
it	11	557,492	6,132,412
for	13	493,374	5,970,456
as	14	480,277	6,413,862
on	15	471,544	6,723,878
from	16	412,785	7,073,160

Practical

Collection	# words	File size
Bible	824,054	4.24 MB
Wiki abstracts	80,460,749	472 MB

cat bible.txt | tr "A-Z" "a-z" | tr -c "a-z" " " | tr " " "\n" | sort | uniq -c | sort -n -r | perl -p -e "s/^ +//" | tr " " "\t" > zipf.txt

Text Classification

 Text classification is the process of <u>classifying</u> documents into <u>predefined categories</u> based on their content.

- Input: Text (document, article, sentence)
- Task: Classify into predefined one/multiple categories
- Categories:
 - Binary: relevant/irrelevant, spam .. etc.
 - Few: sports/politics/comedy/technology
 - Hierarchical: patents

Classification is and is not

- Classification (a.k.a. "categorization"): a common technology in data science; studied within pattern recognition, statistics, and machine learning.
- Definition:
 the activity of predicting to which among a predefined finite set of groups ("classes", or "categories") a data item belongs to
- Formulated as the task of generating a hypothesis (or "classifier", or "model")

 $h: D \rightarrow C$

where D = $\{x_1, x_2, ...\}$ is a domain of data items and C = $\{c_1, ..., c_n\}$ is a finite set of classes (the classification scheme)

Classification is and is not

- Different from <u>clustering</u>, where the groups ("clusters") and their number are not known in advance
- The membership of a data item into a class <u>must not be</u> determinable with certainty
 - e.g., predicting whether a natural number belongs to *Prime* or *Non-Prime* is not classification
- In text classification, data items are
 - Textual: e.g., news articles, emails, sentences, queries, etc.
 - Partly textual: e.g., Web pages

Types of Classification

Binary:

item to be classified into one of two classes

$$h: D \to C, C = \{c_1, c_2\}$$

- e.g., Spam/not spam, offensive/not offensive, rel/irrel
- Single-Label Multi-Class (SLMC)

item to be classified into only one of *n* possible classes.

$$h: D \rightarrow C$$
, $C = \{c_1 \dots c_n\}$, where n>2

- e.g., Sports/politics/entertainment, positive/negative/neutral
- Multi-Label Multi-Class (MLMC)

item to be classified into none, one, two, or more classes

$$h: D \to 2^{C}, C = \{c_{1} \dots c_{n}\}, \text{ where n>1}$$

- e.g., Assigning CS articles to classes in the ACM Classification System
- Usually be solved as n independent binary classification problems

Dimension of Classification

- Text classification may be performed according to several dimensions ("axes") orthogonal to each other
- by topic; by far the most frequent case, its applications are global
- by sentiment; useful in market research, online reputation management, social science and political science
- by language (a.k.a. "language identification"); useful, e.g., in query processing within search engines
- by genre; e.g., AutomotiveNews vs. AutomotiveBlogs, useful in website classification and others;
- by author (a.k.a. "authorship attribution"), by native language ("native language identification"), or by gender; useful in forensics and cybersecurity
- by usefulness; e.g., product reviews

•

Rule-based classification

- An old-fashioned way to build text classifiers was via knowledge engineering, i.e., manually building classification rules
 - E.g., (Viagra or Sildenafil or Cialis) → Spam
 - E.g. (#MAGA or America great again) → support Trump
- Common type: dictionary-based classification
- Disadvantages:
 - Expensive to setup and to maintain
 - Depends on few keywords → bad coverage (recall)

Supervised-learning classification

- A generic (task-independent) learning algorithm is used to train a classifier from a set of manually classified examples
- The classifier learns, from these training examples, the characteristics a new text should have in order to be assigned to class c
- Advantages:
 - Generating training examples cheaper than writing classification rules
 - Easy update to changing conditions (e.g., addition of new classes, deletion of existing classes, shifted meaning of existing classes, etc.)

Supervised-learning classification

Extract Features

- In order to be input to a learning algorithm (or a classifier), all training (or unlabeled) documents are converted into vectors in a common vector space
- The dimensions of the vector space are called features
- In order to generate a vector-based representation for a set of documents D, the following steps need to be taken
 - 1. Feature Extraction
 - 2. Feature Selection or Feature Synthesis (optional)
 - 3. Feature Weighting

Step 1: Feature Extraction

- What are the features that should be different from one class to another?
- Simplest form: BOW
 - Each term in a document is a feature
 - Feature space size = vocabulary in all docs
 - Standard IR preprocessing steps are usually applied
 - Tokenisation, stopping, stemming
- Other simple features forms:
 - Word n-grams (bigrams, trigrams,)
 - Much larger + more sparse
 - Sometimes char n-grams are used
 - Especially for degraded text (OCR or ASR outputs)

Step 1: Feature Extraction

- What other text features could be used?
- Sentence structure (NLP):
 - POS (part-of-speech tags)
 - Syntactic tree structure
- Topic-based features (NLP):
 - LDA topics
 - NEs (named entities) in text
 - Links / Linked terms
- Non-textual features:
 - Average doc\sentence\word length
 - % of words start with upper-case letter
 - % of links/hashtags/emojis in text

Step 1: Feature Extraction

- What preprocessing to apply?
 - Case-folding? really vs Really vs REALLY
 - Punctuation? "?", "!", "@", "#"
 - Stopping? "he", "she", "what", "but"
 - Stemming? "replaced" vs "replacement"
- Other Features:
 - Start with Cap, All Cap
 - Repeated characters "congraaaaaats" "help!!!!!!!"
 - LIWC: Linguistic Inquiry and Word Count
- Which to choose?
 - Classification task/application

Step 2: Feature Selection

- Number of distinctive features = feature space = length of feature vector.
- Vector can be of length $O(10^6)$, and might be sparse
 - → High computational cost
 - → Overfitting
- What are the most important features among those?
 - e.g. Reduce $O(10^6)$ to $O(10^4)$
- For each class, find the top representative k features for it → get the Union over all classes → reduced feature space

Step 2: Feature Selection Functions

- Document frequency
 - % of docs in class c_i that contain the term t_k
 - Very basic measure. Will select stop words as features

$$\#(t_k, c_i) = P(t_k | c_i)$$

- Mutual Information
 - How term t_k appear in class c_i compared to other classes
 - Highly used in feature selection in text classification

$$MI(t_k, c_i) = \sum_{c \in \{c_i, \bar{c}_i\}} \sum_{t \in \{t_k, \bar{t}_k\}} P(t, c) \cdot \log_2 \frac{P(t, c)}{P(t) \cdot P(c)}$$

- Pearson's Chi-squared (x^2)
 - used more in comparisons between classes

Step 2: Feature Selection Functions

Function	Denoted by	Mathematical form	
Document frequency	$\#(t_k,c_i)$	$P(t_k c_i)$	
DIA association factor	$z(t_k,c_i)$	$P(c_i t_k)$	
Information gain	$IG(t_k, c_i)$	$\sum_{c \in \{c_i, \overline{c}_i\}} \sum_{t \in \{t_k, \overline{t}_k\}} P(t, c) \cdot \log \frac{P(t, c)}{P(t) \cdot P(c)}$	
$Mutual\ information$	$MI(t_k, c_i)$	$\log \frac{P(t_k, c_i)}{P(t_k) \cdot P(c_i)}$	
Chi-square	$\chi^2(t_k,c_i)$	$\frac{ Tr \cdot [P(t_k, c_i) \cdot P(\overline{t}_k, \overline{c}_i) - P(t_k, \overline{c}_i) \cdot P(\overline{t}_k, c_i)]^2}{P(t_k) \cdot P(\overline{t}_k) \cdot P(c_i) \cdot P(\overline{c}_i)}$	
NGL coefficient	$NGL(t_k, c_i)$	$\frac{\sqrt{ Tr } \cdot [P(t_k, c_i) \cdot P(\overline{t}_k, \overline{c}_i) - P(t_k, \overline{c}_i) \cdot P(\overline{t}_k, c_i)]}{\sqrt{P(t_k) \cdot P(\overline{t}_k) \cdot P(c_i) \cdot P(\overline{c}_i)}}$	
Relevancy score	$RS(t_k, c_i)$	$\log \frac{P(t_k c_i) + d}{P(\overline{t}_k \overline{c}_i) + d}$	
Odds Ratio	$OR(t_k, c_i)$	$\frac{P(t_k c_i) \cdot (1 - P(t_k \overline{c}_i))}{(1 - P(t_k c_i)) \cdot P(t_k \overline{c}_i)}$	
$GSS\ coefficient$	$GSS(t_k, c_i)$	$P(t_k, c_i) \cdot P(\overline{t}_k, \overline{c}_i) - P(t_k, \overline{c}_i) \cdot P(\overline{t}_k, c_i)$	

Step 2: Feature Synthesis

- Matrix decomposition techniques (e.g., PCA, SVD, LSA) can be used to synthesize new features that replace the features discussed above
- These techniques are based on the principles of distributional semantics, which states that the semantics of a word "is" the words it co-occurs with in corpora of language use
 - Pros: the synthetic features in the new vector representation do not suffer from problems such as polysemy and synonymy
 - Cons: computationally expensive
- Word embeddings: the new wave of distributional semantics, modern approaches are based on neural networks
- PCA: Principle component analysis
- SVD: Singular value decomposition
- LSA: latent semantic analysis

Step 2: Feature Synthesis

- Deep learning?
- Language modelling "features"
 - Tokenize text and pass to neural network layer
 - E.g., recurrent layer, convolutional layer, self-attention layer
 - Stack on 3+ more layers
 - Train a model to predict the next word (or a missing word) given previous words
 - Penultimate layer of network can be used to generate features for other language-based tasks
 - Basis for many state-of-the-art text classifiers
 - BERT, GPT, Electra, XLNet, etc.

Step 3: Feature Weighting

- Attributing a value to feature t_k in document d_i This value may be
 - binary (representing presence/absence of t_k in d_i);
 - numeric (representing the importance of t_k for d_i); obtained via feature weighting functions in the following two classes:
 - unsupervised: e.g., tfidf or BM25,
 - supervised: e.g., tf * MI, tf * x²
- The similarity between two vectors may be computed via cosine similarity; if these vectors are prenormalized, this is equivalent to computing the dot product between them

Should terms be weighted the same?

- Collection of 5 documents (balls = terms)
- Query
- Which is the least relevant document?
- Which is the most relevant document?

TFIDF

- TFIDF:
 Term Frequency, Inverse Document Frequency
- tf(t,d):
 number of times term t appeared in document d
 - As $tf(t,d) \uparrow \uparrow \rightarrow \text{importance of } t \text{ in } d \uparrow \uparrow$
 - Document about IR, contains "retrieval" more than others
- df(t):
 number of documents term t appeared in
 - As $df(d) \uparrow \uparrow \rightarrow \text{importance if } t \text{ in a collection } \downarrow \downarrow$
 - "the" appears in many document → not important
 - "FT" is not important word in financial times articles

DF, CF, & IDF

- DF ≠ CF (collection frequency)
 - cf(t) = total number of occurrences of term t in a collection
 - *df(t)* ≤ *N* (*N*: number of documents in a collection)
 - cf(t) can be ≥ N
- DF is more commonly used in IR than CF
 - CF is still used
- *idf(t)*: inverse of *df(t)*
 - As $idf(t) \uparrow \uparrow \rightarrow rare term \rightarrow importance \uparrow \uparrow$
 - $idf(t) \rightarrow$ measure of the informativeness of t

IDF: formula

$$idf(t) = log_{10}(\frac{N}{df(t)})$$

- *idf(t)*: inverse of *df(t)*
 - As $idf(t) \uparrow \uparrow \rightarrow$ rare term \rightarrow importance $\uparrow \uparrow$
 - $idf(t) \rightarrow$ measure of the informativeness of t

• Suppose N = 1 million \rightarrow

term	df(t)	idf(t)	
calpurnia	1	6	
animal	100	4	
sky	1,000	3	
fly	10,000	2	
under	100,000	1	
the	1,000,000	0	

TFIDF term weighting

- One the best known term weights schemes
 - Increases with the number of occurrences within a document
 - Increases with the rarity of the term in the collection
- Combines TF and IDF to find the weight of terms

$$w_{t.d} = \left(1 + \log_{10} t f(t, d)\right) \times \log_{10}\left(\frac{N}{d f(t)}\right)$$

With current ML techniques, new models learn term weight automatically

Should terms be treaded the same?

- Collection of 5 documents (balls = terms)
- Which is the least relevant document?
- Which is the most relevant document?

Supervised-learning classification

Training a Classifier

- For binary classification, essentially any supervised learning algorithm can be used for training a classifier; classical choices include
 - Support vector machines (SVMs)
 - Random forests
 - Naïve Bayesian methods
 - Lazy learning methods (e.g., k-NN)
 - Logistic Regression
 - •
- The "No-free-lunch principle" (Wolpert, 1996) → there is no learning algorithm that can outperform all others in all contexts
- Implementations need to cater for
 - the very high dimensionality
 - the sparse nature of the representations involved

Training a Classifier

- For Multiclass classification, some learning algorithms for binary classification are "SLMC-ready"; e.g.
 - Decision trees
 - Random forests
 - Naive Bayesian methods
 - Lazy learning methods (e.g., k-NN)
 - Neural networks
- For other learners (notably: SVMs) to be used for SLMC classification, combinations / cascades of the binary versions need to be used
 - e.g. multi-class classification SVM
 - Could be directly used for MLMC as well

Parameter Optimisation of Classifier

- Most classifiers has some parameters to be optimized:
 (we will usually refer to the ones we set manually as "hyperparameters" to distinguish from the "learned" parameters/weights of the model)
 - The C parameter in soft-margin SVMs
 - The r, d parameters of non-linear kernels
 - Decision threshold for binary SVM
- Optimising the hyperparameters on test data is cheating!
- Data Split: Usually labelled data would be split into three parts
 - Training: used to train the classifier (typically 80% of the data)
 - Validation: used to optimise hyperparameters. Apply the classifier on this data with different values of the hyperparameters and report the one that achieves the highest results (usually 10% of the data)
 - Test: used to test the performance of the trained classifier with the optimal hyperparameters on these unseen data (usually 10% of the data)

Cross-Validation

- Sometimes the amount of labelled data in hand is limited (e.g. 200 samples). Having evaluation of a set of 20 samples only might be misleading
- Cross-validation is used to train the classifier with all data and test on all data without being cheating
- Idea:
 - Split the labelled data into *n* folds
 - Train classifier on n-1 fold and test on the remaining one
 - Repeat *n* times
- 5-fold cross validation Training Test

 Extreme case: LOOCV LOOCV: leave-one-out cross-validation

1	
2	
3	
4	
5	

Evaluation

- Efficiency / Effectiveness
- Baselines
- Efficiency:
 - Speed in learning
 - SVM with linear kernel is known to be fast
 - DNNs are known to be much slower (specially with large # layers)
 - Speed in classification
 - K-NNs are known to be one of the slowest
 - Speed in feature extraction
 - BOW vs POS vs Link analysis features
- Effectiveness:
 - Global effectiveness measures
 - Per class effectiveness measures

Evaluation: Baselines

- There are standard methods for creating baselines in text classification to compare your classifier with
- Most popular/simplest baselines
 - Random classification
 - Classes are assigned randomly
 - How much better is the classifier doing than random?
 - Majority class baseline
 - Assign all elements to the class that appears the most
 - How much better you are doing than if you always picked the same thing output regardless of input?
 - Simple algorithm, e.g. BOW
 - Usually used when you introduce new interesting features
 - Recently: BERT baseline

Evaluation: Binary Classification

- Accuracy:
 - How many of the samples are classified correctly?
- A = 9/10 = 0.9

Evaluation: Binary Classification

- A = 7/10 = 0.7 System 1
- A = 7/10 = 0.7 System 2
- When classes are highly unbalanced
 - Precision/recall/F1 for the rare class
 - e.g. Spam classification (detection)

Evaluation: Binary Classification

	System 1	System 2
Precision	1/3 = 0.33	0/1 = 0
Recall	1/2 = 0.5	0/2 = 0
F1	0.4	0

Evaluation: Multi-class

- Accuracy = (3+3+1)/10 = 0.7
- Good measure when
 - Classes are nearly balanced
- Preferred:
 - Precision/recall/F1 for each class

Р	0.75	1	0.333
R	0.75	0.75	0.5
F1	0.75	0.86	0.4

$$= (0.75+0.86+0.4)/3$$

= 0.67

Evaluation: Multi-class

- Majority class baseline
- Accuracy = 0.8
- Macro-F1 = 0.296

- Macro-F1:
 - Should be used in binary classification when two classes are important
 - e.g.: males/females
 while distribution is 80/20%

Error Analysis

Confusion Matrix
 How classes get confused?

3	0	1
0	3	1
1	0	1

- Find classes that get confused with others
- Develop better features to solve the problem

Summary

- CSS requires classifying data for in-depth analysis
- Zipf's Law
- Text Classification tasks
- Feature extraction/selection/synthesis/weighting
- Learning algorithms
- Cross-validation
- Baselines
- Evaluation measures
 - Accuracy/precision/recall/Macro-F1

Resources

- Fabrizio Sebastiani
 Machine Learning in Automated Text Categorization
 ACM Computing Surveys, 2002
 Link: https://arxiv.org/pdf/cs/0110053
- Yoav Goldberg
 A Primer on Neural Network Models for Natural Language Processing
 Link: https://arxiv.org/abs/1510.00726

Practice

• Zipf's distribution: https://www.inf.ed.ac.uk/teaching/courses/tts/labs/lab1.html

Text Classification
 <u>https://www.inf.ed.ac.uk/teaching/courses/tts/labs/lab7.html</u>

Note: In-class practice tomorrow with Bjorn