

P-ţa Victoriei nr. 2 R0 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

FSM (Automate cu Stări finite)

Outline

- definiție FSM
 - Moore
 - Mealy
- ☐ Sinteza circuitelor secventiale
 - Codificarea stărilor
 - Număr minim de tranziții
 - Adiacență pe bază de priorități
 - One hot
- Exemple

Automate cu stări finite

- \square Cvadruplul $\langle S, I, O, f, h \rangle$
 - S mulţimea stărilor
 - I mulţimea intrărilor
 - O mulţimea ieşirilor

 $I = A_1 \times A_2 \times \dots \times A_k,$ $O = Y_1 \times Y_2 \times \dots \times Y_n,$

 $S = Q_1 \times Q_2 \times ... \times Q_m$,

f- funcțiile pt.starea urm.; h – funcțiile pt.ieșire

Circuite secvențiale reprezentare

Circuitele secvenţiale:

- MEALY sunt caracterizate prin faptul că starea următoare şi ieşirea la un moment dat depind de starea prezentă si de intrarea prezentă;
- MOORE sunt caracterizate prin faptul că ieşirea depinde numai de starea circuitului. Starea următoare depinde de intrarea prezentă;
- Modelele matematice ale circuitelor secvenţiale se numesc in teoria comutaţiilor automate finite.

Automate cu stări finite

- \square Cvadruplul $\langle S, I, O, f, h \rangle$ $f: S \times I$
 - S mulţimea stărilor
 - I mulţimea intrărilor
 - O mulţimea ieşirilor
- $f: S \times I \longrightarrow S$ $h: S \times I \longrightarrow O \text{ (Mealy-type)}$ $S \longrightarrow O \text{ (Moore-type)}$

f- funcțiile pt.starea urm.; h – funcțiile pt.ieșire

Circuite secvențiale: diagrame e stare & tabelul tranzițiilor

■ Moore

PRESENT STATE Q1Q0	NEXT S Q ₁ (next)	OUTPUTS Y	
	Cnt=0	Cnt=1	
0.0	0.0	01	0
01	01	10	0 0 0 1
10	10	11	0
11	11	0.0	1

State and output table

Copyright © 2004-2005 by Daniel D. Gajski

Sildes by Philip Pham, University of California, Irvine

Circuite secvențiale: diagrame e stare & tabelul tranzițiilor

■ Mealy

PRESENT STATE	NEXT STATE /OUTPUTS					
Q1Q0	$Q_1(next) Q_0(next)/Y$					
	Cnt=0	Cnt=1				
0 0	00/0	01/0				
01	01/0	10/0				
10	10/0	11/0				
11	11/0	00/1				

Implementare FSM Moore

Implementare FSM Mealy

Etape de sinteză circuit secvențial diagrama de stare Tabel stare următoare/ieșiri Minimizarea stărilor diagramei Codificarea stărilor/intrărilor/ieșirilor Ecuațiile pentru starea următoare/ieșiri Selecția tipului de FF Ecuațiile pt.intrările FF-urilor design & Simulare Verificare funcționalitate & timing

Etape realizare sistem secvential

diagrama completă nu prezintă numărul minim de stări

Minimizarea stărilor

- Minimizarea stărilor își propune reducerea acestora → utilizarea unui număr mai mic de FF-uri
- Se bazează pe conceptul de comportament echivalent; două stări ale unui FSM au comportament echivalent dacă:
 - Au aceași secventă de valori de ieșire pentru aceași secventă de vectori de intrare
- □ două stări s_j și s_k sunt evident echivalente ($s_j \equiv s_k$) dacă și numai dacă:
 - (1) au comportament echivalent: $h(s_j,i) = h(s_k,i)$
 - (2) au aceleași stări următoare pt. toate secvențele de intrare f (s_i,i) = f (s_k,i)

Minimizarea stărilor

- două stări s_j și s_k sunt echivalente ($s_j \equiv s_k$) dacă și numai dacă:
 - (1) au comportament echivalent: $h(s_i,i) = h(s_k,i)$
 - (2) au stări următoare diferite dar acestea sunt echivalente
- □ două automate A1 şi A2 sunt echivalente dacă pentru fiecare stare s_j din A2 există o stare echivalentă s_k în A1 şi invers pentru fiecare stare s_j din A1 există o stare echivalentă s_k în A2
- Echivalenţa stărilor unui automat complet definit împarte mulţimea stărilor acestuia în clase de echivalenţă disjuncte.
- Relaţia de echivalenţă a stărilor automatului complet definit are proprietatea de tranzitivitate: dacă şi atunci.

ENCODING NUMBER	s ₀	s_1	s ₂	<i>s</i> ₃
1	00	01	10	11
2	00	01	11	10
3	00	10	01	11
4	00	10	11	01
5	00	11	01	10
6	00	11	10	01
7	01	00	10	11
8	01	00	11	10
9	01	10	00	11
10	01	10	11	00
11	01	11	00	10
12	01	11	10	00
13	10	00	01	11
14	10	00	11	01
15	10	01	00	11
16	10	01	11	00
17	10	11	00	01
18	10	11	01	00
19	11	00	01	10
20	11	00	10	01
21	11	01	00	10
22	11	01	10	00
23	11	10	00	01
24	11	10	01	00

- Costul/întârzierea unei implementări FSM depind de codificarea stărilor;
- ☐ 4! Posibilități de codificare pentru 4 stări.
- ☐ 3 euristici:
 - Număr minim de tranziții
 - Adiacenţă pe bază de priorităţi
 - one-hot

- Număr minim de tranziții (minimum bit change):
 - Stările sunt astfel codificate încât să fie minimizate tranzițiile bițiilor registrului de stare;
 - Fiecărui arc i se alocă un cost egal cu numărul de biți ai registrului de stare care diferă la tranziția dintre stări;
 - Se minimizează suma costurilor la parcurgerea grafului
- Adiacenţă pe bază de priorităţi
- one-hot

Număr minim de tranziții

Straightforward encoding

Minimum-bit-change encoding

- Număr minim de tranziții
- Adiacență pe bază de priorități (Prioritized adjancency strategy):
 - Codificări adiacente pentru stările:
 - destinație comună
 - Sursă comună
 - Ieşire comună
 - Next state va apărea in căsuțe adiacente în K-map;
- one-hot

- Număr minim de tranziții
- Adiacenţă pe bază de priorităţi
- one-hot
 - □ Fiecărei stări i se alocă un bit din registrul de stare → registrul de stare are atâția biți câte stări sunt în diagramă
 - □ Nu se pretează pentru diagrame cu multe stări;
 - La un moment dat un singur bit (cel corespunzător stării este pe 1)

- ☐ Stare initiala care este necesara la reset (ex. 000, sau 111);
- Minimizati numarul de biti ai variabilei de stare care comuta;
- Maximizati grupurile de stari care genereaza tranzitii catre stari din cadrul grupului;
- Nu va limitati la ordinea crescatoare!
- Impartiti starile in asa fel incat sa corespunda la modificari ale unor grupuri de semnale de intrare!
- Adaugati biti suplimentari la reprez. starii ...

Etape de sinteză circuit secvențial diagrama de stare Tabel stare următoare/ieșiri Minimizarea stărilor diagramei Codificarea stărilor/intrărilor/ieșirilor Tabel pentru starea următoare/ieșiri adtualizat Selecția tipului de FF Ecuațiile pt.intrările FF-urilor design & Simulare Verificare funcționalitate & timing

Design-ul FSM-urilor folosind diagrame de stare

- □ Se preteaza pentru FSM-uri de dimensiune mica, respectiv medie;
- Constructiv:
 - Un <u>tabel de stari</u> este o lista exhaustiva de stari urmatoare corespunzatoare unei combinatii: (stare curenta, intrare);
 - O diagrama de stare contine un set de arce etichetate cu conditia aferenta tranzitiei catre starile urmatoare.

Design-ul FSM-urilor folosind diagrame de stare

- ☐ Se preteaza pentru FSM-uri de dimensiune mica, respectiv medie;
- Constructiv:
 - Un <u>tabel de stari</u> este o lista exhaustiva de stari urmatoare corespunzatoare unei combinatii: (stare curenta, intrare);

Chiar daca sunt mai multe intrari, numai o singura expresie corespunzatoare tranzitiei este marcata pe arc!

Exemplu

□ Realizați design-ul pentru un automat cu stari cu 2 intrari: X si Y si o iesire Z. Iesirea este 1 daca numarul de valori de intrare 1 pentru X si Y de la reset este multiplu de 4, si 0 in caz contrar *.

Observatii:

- Nu trebuie retinuta secventa de valori de la intrare!
- □ deoarece iesirea indica numarul de valori de intrare egale cu 1, modulo 4, 4 stari sunt suficiente (S0÷ S3).
- □ Pasul 1: Realizarea tabelului starilor si iesirilor

Semnificatie	S	XY				Z
		00	01	10	11	
Got 0 "1" (mod 4)	S0	S0	S1	S1	S2	1
Got 1 "1" (mod 4)	S1					0
Got 2 "1" (mod 4)	S2					0
Got3 "1" (mod 4)	S3					0

Codificarea starilor: Karnaugh order map (00, 01, 11, 10) deoarece in principiu ar trebui sa insemne complexitate mai mica pentru logica de intrare si simplifica transcrierea informatiei in vederea minimizarii.

Codificare	S		,	XY	77	Z
Q1Q0		00	01	11	10	
0 0	S0	S0	S1	S2	S1	1
0 1	S1	S1	S2	S3	S2	0
1 1	S2	S2	S3	S0	S3	0
1 0	S3	S3	S0	S1	S0	0

Codificare S			XY			Z	
Q1Q0		00	01	11	10		
0 0	S0	S0	S1	S2	S1	1	
0 1	S1	S1	S2	S3	S2	0	
1 1	S2	S2	S3	S0	S3	0	
1 0	S3	S3	S0	S1	S0	0	
		Q1(next)Q0(next) sau D1, D0					
				V			
Inlocuirea simbolurilor starilor cu							
			codific	carea afere	enta		
	U						

Codificare	S	XY				Z		
Q1Q0		00	01	11	10			
0 0	S0	00	01	11	01	1		
0 1	S1	01	11	10	11	0		
1 1	S2	11	10	00	10	0		
1 0	S3	10	00	01	00	0		
		Q1(Q1(next)Q0(next) sau d1, d0					

determinarea expresiei aferente logicii de intare (d1 sau d0) prin realizare diagramelor Karnaugh

dı QıQo\XY	00	01	11	10
00	0	0	1	0
01	0	1	(1)	1
11	1	(1)	0	(1)
10	1	0	0	0

Codificare	S	XY				Z
Q1Q0		00	01	11	10	
0 0	S0	<u>0</u> 0	<u>0</u> 1	<u>11</u>	<u>0</u> 1	1
0 1	S1	<u>0</u> 1	<u>1</u> 1	<u>1</u> 0	<u>1</u> 1	0
1 1	S2	<u>1</u> 1	<u>1</u> 0	<u>0</u> 0	<u>1</u> 0	0
1 0	S3	<u>1</u> 0	<u>0</u> 0	<u>0</u> 1	<u>0</u> 0	0
		Q1(

do Q1Q0\XY	00	01	11	10
00	0	1	1	1
01/	1	1	0	1
10	1	0		0
11	0	0	1	0

Codifica	are S	XY				Z		
Q1Q0		00	01	11	10			
0 0	S0	00	<u>0</u> 1	<u>1</u> 0	<u>0</u> 1	1		
0 1	S1	<u>0</u> 1	<u>1</u> 1	<u>1</u> 0	<u>1</u> 1	0		
1 1	S2	<u>1</u> 1	<u>1</u> 0	<u>0</u> 0	<u>1</u> 0	0		
1 0	S3	<u>1</u> 0	<u>0</u> 0	<u>0</u> 1	<u>0</u> 0	0		
		Q1	Q1(next)Q0(next) sau d1, d0					

Next state minimiz.

$$D_{i} = Q_{i} \cdot \overline{X} \cdot \overline{Y} + Q_{0} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{i} \cdot \overline{X} \cdot \overline{Y} + Q_{0} \cdot \overline{X} \cdot \overline{Y}$$

$$= Q_{0} (\overline{X} \cdot \overline{Y} + \overline{X} \cdot \overline{Y})_{+} Q_{i} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{i} \cdot \overline{X} \cdot \overline{Y}$$

$$= Q_{0} \cdot (\overline{X} \cdot \overline{Y} + \overline{X} \cdot \overline{Y})_{+} Q_{i} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{i} \cdot \overline{X} \cdot \overline{Y}$$

$$= Q_{0} \cdot (\overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y}$$

$$= Q_{0} \cdot (\overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y}$$

$$= Q_{0} \cdot (\overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y}$$

$$= Q_{0} \cdot (\overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y}$$

$$= Q_{0} \cdot (\overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y} + \overline{Q}_{0} \cdot \overline{X} \cdot \overline{Y}$$

Expresie logica stare urmatoare

Analog se construieste diagrama Karnaugh pentru D0

Expresie logica iesire

Analog se construieste diagrama Karnaugh pentru Z si se minimizeaza

Homework

- ☐ Realizati scheme logica pentru sistemul secvential.
- □ Desenati diagrama.

Design-ul FSM-urilor folosind diagrame de stare

- ☐ Se preteaza pentru FSM-uri de dimensiune mică, respectiv medie;
- Constructiv:

Probleme care pot aparea:

de

- 1. Diagrama de stare ambigua! Pot aparea situatii in care sa existe perechi (stare, intrari) pentru care sa nu fie specificata starea urmatoare.
- 2. Nu este garantat faptul ca conditiile pentru tranzitie asociate arcelor care pleaca dintr-o stare acopera toate combinatiile de intrare exact o data.

Exemplu: Ford Thunderbird 1965

Ex.: semnalizare Ford Thunderbird 1965

□ Realizati diagrama de stare pentru sistemul de semnalizare a unei masini Ford. RA RB RC

Ex. Preluat din Digital Design Principles and Practices, Cap 7, J.F. Wakerly, 4th Edition

Ex.: semnalizare Ford diagrama Moore

Output Table

State	LC	LB	LA	RA	RB	RC
IDLE	0	0	0	0	0	0
L1	0	0	1	0	0	0
L2	0	1	1	0	0	0
L3	1	1	1	0	0	0
R1	0	0	0	1	0	0
R2	0	0	0	1	1	0
R3	0	0	0	1	1	1
LR3	1	1	1	1	1	1

Ecuatiile iesirilor

LA = L1 + L2 + L3 + LR3

LB = L2 + L3 + LR3

LC = L3 + LR3

RA = R1 + R2 + R3 + LR3

RB = R2 + R3 + LR3

RC = R3 + LR3

Output Table

State	LC	LB	LA	RA	RB	RC
IDLE	0	0	0	0	0	0
L1	0	0	1	0	0	0
L2	0	1	1	0	0	0
L3	1	1	1	0	0	0
R1	0	0	0	1	0	0
R2	0	0	0	1	1	0
R3	0	0	0	1	1	1
LR3	1	1	1	1	1	1

☐ Ce se intampla daca LEFT si HAZ sunt asertuite simultan?

- Solutie: Ii dam la intrarea HAZ prioritate, iar cazul LEFT si RIGHT assertuite simultan il tratam ca si hazard.
- Noua diagrama nu e ambigua: conditiile de pe arce se exclud reciproc si surprind toate combinatiile de intrare!

Diagrama Ne-amigua

- Mutual exclusion: produs logic intre oricare 2 expresiii a tranzitiei pentru oricare 2 arce care pleaca dintr-o stare este 0.
- All inclusion: suma logica a expresiilor tranzitiilor tuturor arcelor care pleaca dintr-o stare este 1.

- Ar fi de dorit pentru utilizator ca semnalul de hazard sa fie prioritar.
- Adica daca esti intr-o secventa de semnalizare la stanga in starea L1 si HAZ este activ sa treci direct in starea de hazard LR3

Codificarea starilor

State	Q2	Q1	QO
IDLE	0	0	0
L1	0	0	1
L2	0	1	1
L3	0	1	0
R1	1	0	1
R2	1.	1	1
R3	1	1	0
LR3	1	0	0

Realizarea unei liste de tranzitii

S	Q2	Q1	Q0	Transition Expression	S*	Q2 *	Q1*	Q0*
IDLE	0	0	0	(LEFT + RIGHT + HAZ)'	IDLE	0	0	0
IDLE	0	0	0	LEFT · HAZ' · RIGHT'	L1	0	0	circuit.
IDLE	0	0	0	HAZ + LEFT · RIGHT	LR3	1	0	0
IDLE	0	0	0	RIGHT · HAZ' · LEFT'	R1	1	0	1
L1	0	0	1	HAZ'	L2	0	1	1
L1	0	0	1	HAZ	LR3	1	0	0
L2	0	1	1	HAZ'	L3	0	1	0
L2	0	1	1	HAZ	LR3	1	0	0
L3	0	1	0	1	IDLE	0	0	0
R1	1	0	1	HAZ'	R2	1	1	1
R1	1	0	1	HAZ	LR3	1	0	0
R2	1	1	1	HAZ'	R3	1	1	0
R2	1	1	1	HAZ	LR3	1	0	0
R3	1	1	0	1	IDLE	0	0	0
LR3	1	0	0	1	IDLE	0	0	0

Sinteza

- Model 2 segment;
- Responsabilitatea design-erului este scrierea unei descrieri de automat de stari neambigua;
- □ Realizata de CAD-uri;
 - Eliminarea tranzitiilor duplicate;

Examplu 2

Realizati un automat cu stari finite sincron care are o intrare pe 1 bit, X, si doua iesiri, RdY, HINT. Valoarea iesirii Rdy este 1, daca si numai daca X = 0, si secventa de valori de intrare pentru X timp de 7 impulsuri de tact succesive a fost "0110111". Iesirea HINT este 1 daca si numai daca intrarea X are o valoare care respecta secventa de mai sus.

Exemplu 2

□ Acest exemplu se preteaza pentru un automat cu stari finite de tip ...?

Exemplu 2

- Acest exemplu se preteaza pentru un automat cu stari finite de tip Mealy.
- □ Valoare iesirii RdY depinde de istoria intrarii X (stare) si de valoarea curenta a lui X;
- Valoarea lui HINT depined de starea curenta si de intrarea X.
- daca HINT este 0, atunci utilizatorul poate folosi info. pentru a schimba X-ul cu valoare corecta pana la proximul pos edge.

Semnificatie	S	X		
		0	1	
Got no valid seq. data	Α	B, 01	A, 00	
Got "0"	В	B, 00	C, 01	
Got "01"	С	B, 00	D, 01	
Got "011"	D	E, 01	A, 00	
Got "0110"	Е	B, 00	F, 01	
Got "01101"	F	B, 00	G, 01	
Got "011011"	G	E, 00	H, 01	
Got "0110111"	Н	B, 11	A, 00	
		S*, RdY HINT		

Codificare	S	X		
		0	1	
000	Α	001, 01	000, 00	
001	В	001, 00	010, 01	
010	С	001, 00	011, 01	
011	D	100, 01	000, 00	
100	Е	001, 00	101, 01	
101	F	001, 00	110, 01	
110	G	100, 00	111, 01	
111	Н	001, 11	000, 00	
		(Q2_nxt, Q1_nxt, Q0_nxt)*, RDY HINT		

Inlocuirea simbolurilor starilor cu codificarea aferenta

Determinarea logicii aferente calculului noilor stari (minimizare si FF-uri de tip D)

Determinarea logicii aferente calculului iesirii (minimizare)

Realizarea schemei

Realizarea diagramei de stare

Homework

- □ De terminat
- Realizati sinteza folosind bistabile de tip J-K
- □ Realizati sinteza folosind FF-urile tip T

Întrebări?

Enough Talking Let's Get To It !!001race Yourselves!!

