Deep Neural Network Quantization via Layer-Wise Optimization using Limited Training Data

Shangyu Chen, Wenya Wang, Sinno Jialin Pan

School of Computer Science and Engineering NTU

Outline

Background & Motivation

Layer-Wise Quantization

Experiments

Deep Neural Network Quantization in Edge Devices

Figure 1: Smartphones

Figure 2: Cameras

- ► More and more deep learning applications are deployed in edge devices: cellphone, surveillance camera, etc.
- lt is impossible to perform inference without optimization:
 - * Compress the model: Convert float numbers into limited integers.
 - * Accelerate computation: float-float multiplication to float-integer multiplication.

Limitation of Current Quantization

Most existing methods rely access to full training data and labels:

- ▶ Data privacy in commercial models with high confidential requirement.
- ► Impossible to store all data in edge devices for on-device quantization.
- Accuracy is preserved (especially for non training-based quantization).

Highlight

- ► Layer-wise/Limited Training Data Deep Neural Network Quantization (L-DNQ).
- ► For each layer, parameters are quantized while the layer output is similar to that of the original full-precision parameters.
- ► Layer-wise quantization is formulated as a discrete quadratic optimization problem, with efficient solution.

Outline

Background & Motivation

Layer-Wise Quantization

Experiments

Workflow of Cascade L-DNQ

- Θ: Quantized weight
- $ightharpoonup \hat{Y}$: Quantized output
- Cascade Quantization

Objective:

$$\min_{\hat{\mathbf{\Theta}}_{[l,...,L]}} ||f(\hat{\mathbf{Y}}^{l-1}; \hat{\mathbf{\Theta}}_{[l,...,L]}) - f(\mathbf{Y}^{l-1}; \bar{\mathbf{\Theta}}_{[l,...,L]})||_F^2, \tag{1}$$

s.t.
$$\hat{m{\Theta}}_{[l,...,L]} \in m{\Omega}_{[l,...,L]}.$$

Relaxation of Quantization

Directly solving the above problem is difficult as the inputs to quantized network $(\hat{\mathbf{Y}}^{l-1})$ and the reference network (\mathbf{Y}^{l-1}) are different:

$$\begin{aligned} &||f(\hat{\mathbf{Y}}^{l-1}; \hat{\boldsymbol{\Theta}}_{[l,\dots,L]}) - f(\mathbf{Y}^{l-1}; \bar{\boldsymbol{\Theta}}_{[l,\dots,L]})||_{F}^{2} \\ &\leq \underbrace{||f(\hat{\mathbf{Y}}^{l-1}; \hat{\boldsymbol{\Theta}}_{[l,\dots,L]}) - f(\hat{\mathbf{Y}}^{l-1}; \bar{\boldsymbol{\Theta}}_{[l,\dots,L]})||_{F}^{2}}_{\text{Quantization}} \\ &+ \underbrace{||f(\hat{\mathbf{Y}}^{l-1}; \bar{\boldsymbol{\Theta}}_{[l,\dots,L]}^{new}) - f(\mathbf{Y}^{l-1}; \bar{\boldsymbol{\Theta}}_{[l,\dots,L]})||_{F}^{2}}_{\text{Weights Update}}, \end{aligned} \tag{2}$$

► Final quantization error is bounded by quantization error between an updated weights and approximation error after the weights are updated.

Layer-Wise Quantization

Minimize the discrepancy of layer output before and after quantization:

$$E^{l} = E(\hat{\mathbf{Z}}^{l}) = \frac{1}{n} \left\| \hat{\mathbf{Z}}^{l} - \mathbf{Z}_{*}^{l} \right\|_{F}^{2}, \tag{3}$$

- ▶ Cascade input: $\hat{\mathbf{Y}}^{l-1}$, quantized weight: $\hat{\mathbf{\Theta}}_l$, updated weights: $\bar{\mathbf{\Theta}}_l^{new}$.
- ▶ After quantized output: $\hat{\mathbf{Z}}^l = \hat{\mathbf{\Theta}}_l^{\top} \hat{\mathbf{Y}}^{l-1}$.
- ▶ Before quantization output: $\mathbf{Z}_*^l = (\bar{\mathbf{\Theta}}_l^{new})^{\top}\hat{\mathbf{Y}}^{l-1}$.

$$E^{l} = E(\hat{\mathbf{Z}}^{l}) - E(\mathbf{Z}_{*}^{l})$$

$$= \underbrace{\left(\frac{\partial E^{l}}{\partial \mathbf{\Theta}_{l}}\right)^{\top} \delta \mathbf{\Theta}_{l}}_{\frac{\partial E^{l}}{\partial \mathbf{\Theta}_{l} \Theta_{l}} = \mathbf{\Theta}_{l}}^{\mathbf{\Phi}_{l}} + \underbrace{\frac{1}{2} \delta \mathbf{\Theta}_{l}^{\top} \mathbf{H}_{l} \delta \mathbf{\Theta}_{l}}_{\mathbf{Vanish}} + \underbrace{O(\|\delta \mathbf{\Theta}_{l}\|_{2}^{3})}_{\mathbf{Vanish}},$$

$$\mathbf{G} \qquad \underbrace{\frac{\partial E^{l}}{\partial \mathbf{\Theta}_{l} \Theta_{l}}}_{\frac{\partial \mathbf{\Theta}_{l}}{\partial \mathbf{\Theta}_{l}} = \mathbf{\Theta}_{l}^{new} = \mathbf{0}}$$

$$(4)$$

Layer-Wise Quantization (Cont.)

By replacing $\delta \mathbf{\Theta}_l$ with $\hat{\mathbf{\Theta}}_l - \bar{\mathbf{\Theta}}_l^{new}$, the final objective becomes:

$$\min_{\hat{\mathbf{\Theta}}_{l}} f(\hat{\mathbf{\Theta}}_{l}) = \frac{1}{2} (\hat{\mathbf{\Theta}}_{l} - \bar{\mathbf{\Theta}}_{l}^{new})^{\top} \mathbf{H}_{l} (\hat{\mathbf{\Theta}}_{l} - \bar{\mathbf{\Theta}}_{l}^{new}),$$
s.t. $\hat{\mathbf{\Theta}}_{l} \in \mathbf{\Omega}_{l}$. (5)

- $oldsymbol{\Omega}_l$ is a discrete set of all possible values of the quantized weights in layer l.
- ➤ To solve (5), which is a discrete optimization problem, we develop a ADMM-based algorithm:

$$\min_{\hat{\mathbf{\Theta}}} f(\hat{\mathbf{\Theta}}) + I_{\mathbf{\Omega}}(\mathbf{G}), \text{ s.t. } \hat{\mathbf{\Theta}} = \mathbf{G}, \tag{6}$$

By incorporating **G** and introduce λ , ρ :

$$L_{\rho}(\hat{\mathbf{\Theta}}, \mathbf{G}, \boldsymbol{\lambda})$$

$$= f(\hat{\mathbf{\Theta}}) + I_{\mathbf{\Omega}}(\mathbf{G}) + \frac{\rho}{2} \|\hat{\mathbf{\Theta}} - \mathbf{G} + \boldsymbol{\lambda}\|_{2}^{2} - \frac{\rho}{2} \|\boldsymbol{\lambda}\|_{2}^{2}.$$
 (7)

Quantization via ADMM - Proximal

At iteration k+1, the proximal step involves the update on $\hat{\mathbf{\Theta}}$ via

$$\hat{\boldsymbol{\Theta}}^{k+1} = \arg\min_{\hat{\boldsymbol{\Theta}}} L_{\rho}(\hat{\boldsymbol{\Theta}}, \mathbf{G}^k, \boldsymbol{\lambda}^k), \tag{8}$$

where

$$L_{\rho}(\hat{\mathbf{\Theta}}, \mathbf{G}^k, \boldsymbol{\lambda}^k) = f(\hat{\mathbf{\Theta}}) + \frac{\rho}{2} ||\hat{\mathbf{\Theta}} - \mathbf{G}^k + \boldsymbol{\lambda}^k||_2^2.$$
 (9)

Since $f(\hat{\Theta})$ is a quadric function with continuous variable, setting the gradient to $\mathbf{0}$ leads to the optimal solution by solving the following linear equation:

$$(\mathbf{H} + \mathsf{diag}(\rho))\hat{\mathbf{\Theta}}^{k+1} = \mathbf{H}\bar{\mathbf{\Theta}}^{new} + \mathsf{diag}(\rho)(\mathbf{G}^k - \boldsymbol{\lambda}^k). \tag{10}$$

Quantization via ADMM - Projection

In projection step, we optimize ${\bf G}$ by solving the following optimization problem:

$$\min_{\mathbf{G}} \|\hat{\mathbf{\Theta}}^{k+1} - \mathbf{G} + \boldsymbol{\lambda}^k\|_2^2, \text{ s.t. } \mathbf{G} \in \Omega.$$
 (11)

$$\mathbf{V}^{k} = \hat{\mathbf{\Theta}}^{k+1} + \boldsymbol{\lambda}^{k}, \ \mathbf{G} = g(\alpha, \mathbf{Q}) = \alpha \cdot \mathbf{Q}:$$

$$\min_{\mathbf{G}, \alpha} \|\mathbf{V}^{k} - \alpha \cdot \mathbf{Q}\|_{2}^{2}, \ \text{s.t. } \mathbf{Q} \in \{-1, 0, 1\},$$
(12)

- ▶ Iterative solution:

Quantization via ADMM - Dual Update

After obtaining $\hat{\Theta}^{k+1}$ and \mathbf{G}^{k+1} , the dual variable λ is updated using the following rule:

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^k + \hat{\boldsymbol{\Theta}}^{k+1} - \mathbf{G}^{k+1}. \tag{13}$$

Cascade Weights Update

- $\qquad \qquad \bullet_{[l...L]} = \| f(\hat{\mathbf{Y}}^{l-1}; \bar{\mathbf{\Theta}}_{[l,...,L]}^{new}) f(\mathbf{Y}^{l-1}; \bar{\mathbf{\Theta}}_{[l,...,L]}) \|_F^2.$
- $~\blacktriangleright~ f(\mathbf{Y}^{l-1}; \bar{\mathbf{\Theta}}_{[l,\ldots,L]})$ as groundtruth.
- ightharpoonup Learn $ar{m{\Theta}}_{[l,...,L]}^{new}.$

Outline

Background & Motivation

Layer-Wise Quantization

Experiments

Experiments

Our method (L-DNQ) compares with the following baselines using CIFAR10 and ImageNet dataset:

- Training based with data:
 - Extremely Low Bit Neural Network (ExNN) [4]
 - Trained Ternary Quantization (TTQ) [7]
 - Incremental Network Quantization (INQ) [6]
 - Loss-Aware weight Ternarized network (LAT) [2]
 - Model compression via distillation and quantization (DistilQuant) [5]
- Direct quantization without data:
 - Compressing Deep Convolutional Networks using Vector Quantization (VQ) [1]
 - Direct Quantization (DQ) [3]

For training-based methods, we reimplemented it using limited training data (1%). For direct quantization, we fine-tune the un-quantized weights using limited training data (1%).

Comparison in CIFAR10

Network	Method	bits	Imp* (%)	FP Acc**	
ResNet20	TTQ	3	-77.25	91.77	
	INQ	15	-48.48	90.02	
	E×NN	3	-11.15	91.5	
	VQ	3	-11.27		
	DQ	3	-19.92		
	L-DNQ	3	-4.30		
CIFARNet	LAT	3	-11.62	89.62	
	VQ	3	-11.83		
	DQ		-21.72	92.27	
	L-DNQ	3	-1.96		
WRN	DistilQuant	3	-6.57	92.25	
	L-DNQ	3	-2.22	91.43	

Table 1: Comparison on CIFAR-10. All methods use 1% (500 images) of training instances. * indicates improvement. ** represents Full Precision (precision model) Accuracy.

Comparison in ImageNet

Notroule	Mathad	h:+a	Ina muo voma am±(0/)	ГР А солисом
Network	Method	bits	Improvement(%)	FP Accuracy
ResNet18	TTQ	3	-69.48/-88.49	69.6/89.2
	INQ	15	-61.27/-64.22	68.27/88.69
	E×NN	3	-43.53/-37.82	
	VQ	3	-35.69/-29.08	
	DQ	3	-61.22/-65.64	
	L-DNQ	3	-16.43/-10.67	69.76/89.02
		8	-56.78/-58.92	09.70/09.02
	DQ	16	-13.81/-8.68	
		32	-2.82/-1.51	
	L-DNQ	9	-2.73/-0.90	
ResNet34	DistilQuant	3	-32.03/24.3	56.55/79.09
	L-DNQ	3 -29.31/18.37		30.33/19.09

Table A: Comparison on ImageNet. All methods use 1% (12,800 images) training instances.

Effect of Number of Training Data

Figure 3: Performance among L-DNQ, ExNN, TTQ, INQ, VQ, DQ using ResNet20 in CIFAR10 with increasing instances. X-axis presents portion of training data used, Y-axis represents performance improvement after quantization (Higher the better).

Layer Output Error V.S. Performance

Figure 4: ImageNet in ResNet18: Performance under different layer output error. X-axis presents final layer output error, Y-axis represents testing error after quantization (the lower the better).

Outline

Background & Motivation

Layer-Wise Quantization

Experiments

- A novel layer-wise quantization framework: it is able to quantize deep models without big performance drop using only limited training data.
- ► Layer-wise quantization is formulated as discrete optimization problem.
- Cascade weights update is utilized to minimize discrepancy.

References I

- [1] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.
- [2] Lu Hou and James T Kwok. Loss-aware weight quantization of deep networks. 2018.
- [3] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only inference. arXiv preprint arXiv:1712.05877, 2017.
- [4] Cong Leng, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely low bit neural network: Squeeze the last bit out with admm. In AAAI, 2017.
- [5] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model National Progression via distillation and quantization. 2018.

References II

- [6] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization: Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.
- [7] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv preprint arXiv:1612.01064, 2016.

