#### Who Am I?



#### Bob Fitak, PhD

Genomics and Bioinformatics Cluster
Department of Biology
University of Central Florida













# **BLAST**

Basic Local Alignment Search Tool

So useful – it is now a verb in the literature

#### Goals

What is BLAST and why is it important?

Principles of the algorithm

Online Examples

Command Line Implementation



# A Lot of BLASTing

- Where is BLAST on this list?
  - Altschul et al. 1990
    - ○#12 38,380 citations
      - 69,412 (Web of Science 6/4/2023) #10
  - Altschul et al. 1997
    - #14 36,410 citations
      - 57,026 (Web of Science 6/4/2023) #14
  - Combined: 4th!

Van Noorden et al. 2014, Nature





#### **BLAST**





#### **BLAST**

- Sequence searching algorithm
- Finds the best local alignments
- Calculates statistical significance
- Similarity suggests homology
- Less sensitive than Smith-Waterman, but FASTER!

# Global vs Local Alignment

Global alignment: entire sequences



Local alignment: segments of sequences



- Local alignment often the most relevant
  - Depends on biological assumptions



### **BLAST Flavors**

| Name      | Query      | Database   |  |  |  |  |
|-----------|------------|------------|--|--|--|--|
| blastn    | nucleotide | nucleotide |  |  |  |  |
| blastp    | protein    | protein    |  |  |  |  |
| blastx    | nucleotide | protein    |  |  |  |  |
| tblastx   | nucleotide | nucleotide |  |  |  |  |
| tblastn   | protein    | nucleotide |  |  |  |  |
| PSI-blast | protein    | protein    |  |  |  |  |

#### **BLAST Flavors**

| Program | Query Type            | Subject Type     | Computation |
|---------|-----------------------|------------------|-------------|
| blastn  | N —                   | — N              | ~ 1X        |
| blastp  | P —                   | — P              | ~ 1X        |
| blastx  | N <b>=</b>            |                  | ~ 6X        |
| tblastn | P — =                 | $\blacksquare$ N | ~ 6X        |
| tblastx | $N \equiv \mathbb{R}$ | N                | ~36X        |

(other BLAST types not listed: psiblast, deltablast, rpsblast)



#### **BLAST Databases: Protein**

| Name           | Host              | Description                                         |
|----------------|-------------------|-----------------------------------------------------|
| nr             | NCBI              | Non-redundant, general                              |
| Refseq_protein | NCBI              | Annotated and curated protein collection            |
| SwissProt      | SIB               | Manually curated and reviewed proteins form UniProt |
| Trembl         | EBI               | Automatically annotated, non-reviewed proteins      |
| PDB            | Rutgers/UCSD/UCSC | Proteins with 3D structural information             |

#### **BLAST Databases: Nucleotide**

| Name            | Host | Description                                     |
|-----------------|------|-------------------------------------------------|
| nt              | NCBI | Non-redundant, general                          |
| Refseq_RNA      | NCBI | Annotated and curated RNA sequence collection   |
| Refseq_Genomics | NCBI | Sequenced and curated genomes                   |
| EST             | NCBI | Expressed sequence tags                         |
| UNIVEC          | NCBI | Vector contaminant database                     |
| WGS             | NCBI | Draft, whole genome shotgun sequence assemblies |
| SRA             | NCBI | Raw NGS datasets                                |
|                 |      |                                                 |

Many more databases, e.g. barcoding, viral, tRNA, etc, custom-built databases

# **How it Works: Making Words**

# **Nucleotide**

11-letter words (seeds)

ACTACGTGCTATGC
ACTACGTGCTAT
CTACGTGCTAT
TACGTGCTATG
ACGTGCTATGC

## **Protein**

3-letter words (seeds)

**PQGDEF** 

**PQG** 

QGD

GDE

DEF



#### **How it Works**

## **Nucleotide**

#### CATGCTTCGCGGGATGCCA 11-mer word size



**CTTCGCGGGAT CTTGCTTCGCGGGAT**GGTA



#### **Protein**







## **BLAST Scoring and E-values**

#### Nucleotide sequences search for 11-letter matches

- $4^11 = 4,194,304$  combinations
- Match = +5, mismatch = -4
- Only scores above a threshold (T) are kept

ACTACGTGCTA ACTACGTGCTA 5+5+5+5+5+5+5+5+5 = 55

ACTACGTGCTA ACAAGATGGTA 5+5-4+5-4-4+5+5-4+5+5 = 19



# **BLAST Scoring and E-values**

- Proteins use a BLOSUM62 scoring matrix
  - $20 \times 20 \times 20 = 8,000$  possible 3-letter words
  - All possible amino acid pairs are given a score
  - All combinations above a threshold (T) are kept
    - Minimizes search space

|   | C  | S  | T   | P   | A  | G  | N  | D  | E  | Q  | H  | R  | K  | M  | 1  | L  | V  | F | Y | W  |   |
|---|----|----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|----|---|
| С | 9  |    |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    | C |
| S | -1 | 4  |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    | S |
| Т | -1 | 1  | 5   |     |    |    |    |    |    |    |    |    |    |    |    |    |    | 7 |   |    | T |
| P | -3 | -1 | E 1 | 7   |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    | P |
| Α | 0  | 1  | 0   | 100 | 4  |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    | A |
| G | -3 | 0  | -2  | -2  | 0  | 6  |    |    |    |    |    |    |    |    |    |    |    |   |   |    | G |
| N | -3 | 1  | 0   | -2  | -2 | v  | 6  |    |    |    |    |    |    |    |    |    |    |   |   | -  | N |
| D | -3 | 0  | -1  | -1  | -2 | -1 | 1  | 6  |    |    |    |    |    |    |    |    |    |   |   |    | C |
| E | -4 | 0  | -1  | -1  | -1 | -2 | 0  | 2  | F  |    |    |    |    |    |    |    |    |   |   |    | E |
| Q | -3 | 0  | -1  | -1  | -1 | -2 | 0  | 0  | 2  | 5  |    |    |    |    |    |    |    |   |   |    | C |
| Н | -3 | -1 | -2  | -2  | -2 | -2 | 1  | E. | U  | 0  | 8  |    |    |    |    |    | ,  |   |   |    | H |
| R | -3 | -1 | -1  | -2  | -1 | -2 | 0  | -2 | 0  | 1  | 0  | 5  |    |    |    |    |    |   |   |    | F |
| K | -3 | 0  | -1  | -1  | -1 | -2 | 0  | -1 | 1  | 1  | -1 | 2  | 5  |    |    |    |    |   |   |    | K |
| M | -1 | -1 | -1  | -2  | -1 | -3 | -2 | -3 | -2 | 0  | -2 | -1 | -1 | 5  |    |    |    |   |   |    | N |
| 1 | -1 | -2 | -1  | -3  | -1 | -4 | -3 | -3 |    | -3 | -3 | -3 | -3 | 1  | 4  |    |    |   |   |    | 1 |
| L | -1 | -2 | -1  | -3  | -1 | -4 | -3 | -4 | -3 | -2 | -3 | -2 | -2 | 2  | 2  | 4  |    |   |   |    | L |
| ٧ | -1 | -2 | 0   | -2  | 0  | -3 | -3 | -3 | -2 | -2 | -3 | -3 | -2 | 1  | 3  | 1  | 4  |   |   |    | V |
| F | -2 | -2 | -2  | -4  | -2 | -3 | -3 | -3 | -3 | -3 |    | -3 | -3 | 0  | 0  | 0  | -1 | 6 |   |    | F |
| Υ | -2 | -2 | -2  | -3  | -2 | -3 | -2 | -3 | -2 | -1 | 2  | -2 | -2 | -1 | -1 | -1 | -1 | 3 | 7 |    | Y |
| W | -2 | -3 | -2  | -4  | -3 | -2 | -4 | -4 | -3 | -2 | -2 | -3 | -3 | -1 | -3 | -2 | -3 | 1 | 2 | 11 | V |

PQG PQG PEG EQR 7+2+6 = 15 -1+5+-2 = 2



# **Extending Matches**

## Match = HSP (High-scoring Sequence Pair)

- Match is found and extended as long as score stays above a threshold value
  - After finished extending, the HSP is kept if above the cutoff score (S)





# **Assembling HSPs**

HSPs, after extension, are assembled into a longer alignment







# Output

#### Max/Total Score

- quality of the alignment
- Higher the score the better the match

#### **Query Coverage**

• what proportion of the query the particular HSP covers

#### E-value

 probability that a match ≥ Max Score occurs by random chance (based on database size)

#### Max Identity

• For that HSP, the % of bases that match

| Accession  | <b>Total Score</b> | Query Coverage | E-value | Max Ident |
|------------|--------------------|----------------|---------|-----------|
| X56286.1   | 579                | 54%            | 7e-162  | 99%       |
| AF091629.1 | 573                | 54%            | 3e-160  | 99%       |
| L48348.1   | 481                | 55%            | 2e-132  | 93%       |



# Interpretation

- The matches you get are only acceptable matches, not necessarily the optimal match
- Your search is only as good as your database
  - If the optimal match is not in the database, you will not find it.
  - If you have sequences not in the database, SUBMIT THEM!









# **Take Away Points**

BLAST is a powerful tool for database searching

Very fast, but at the expense of sensitivity

Flexible (types, database<u>s)</u>

Interpret results carefully

Help make it grow!



5 June 2023 GDW 2023: BLAST 19 UC

# DATABASES

Where are the genomic data?

#### SRA

- Sequence Read Archive
  - https://www.ncbi.nlm.nih.gov/sra/



# So how big is it?

Guesses?



# DNA Sequence Databases (GenBank, SRA, ENA)



https://www.ebi.ac.uk/ena/browser/about/statistics



# SRA Demo...

- 1. <u>BioProject PRJEB14687</u> <u>https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB14687</u>
- 2. Search SRA for "Fitak" https://www.ncbi.nlm.nih.gov/sra



#### How to search all that SRA data?





**BigQuery** 





"Mr. Osborne, may I be excused? My brain is full."

# **Practice Examples**

- Example 1: SRA Blast (<a href="https://www.ncbi.nlm.nih.gov/sra">https://www.ncbi.nlm.nih.gov/sra</a>)
  - Click "SRA-BLAST" link
  - Query: M55627.1
    - Coccidiodes immitis (Valley fever fungus) ssuRNA
  - Project: SRX633288
    - Puma 454 transcriptome reads
- Example 2: Blast an assembly (<a href="https://blast.ncbi.nlm.nih.gov/">https://blast.ncbi.nlm.nih.gov/</a>)
  - Select "Nucleotide BLAST"
  - Query:
    - TruSeq Universal Adapter
    - AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
  - Database: nt
  - Organism: Cyprinus carpio (taxid:7962)

