Napredni algoritmi i strukture podataka

predavanja

2021./2022.

Uravnotežena stabla

(Balanced Trees)

Creative Commons

- dijeliti umnožavati, distribuirati i javnosti priopćavati djelo
- prerađivati djelo

- imenovanje: morate priznati i označiti autorstvo djela na način kako je specificirao autor ili davatelj licence (ali ne način koji bi sugerirao da Vi ili Vaše korištenje njegova djela imate njegovu izravnu podršku).
- nekomercijalno: ovo djelo ne smijete koristiti u komercijalne svrhe.
- dijeli pod istim uvjetima: ako ovo djelo izmijenite, preoblikujete ili stvarate koristeći ga, preradu možete distribuirati samo pod licencom koja je ista ili slična ovoj.

U slučaju daljnjeg korištenja ili distribuiranja morate drugima jasno dati do znanja licencne uvjete ovog djela. Od svakog od gornjih uvjeta moguće je odstupiti, ako dobijete dopuštenje nositelja autorskog prava. Ništa u ovoj licenci ne narušava ili ograničava autorova moralna prava. Tekst licence preuzet je s http://creativecommons.org/

Sadržaj

- Motivacija
- Uravnoteženo stablo
- Savršeno uravnoteženo stablo
- Uravnotežavanje stabla
- DSW algoritam
 - Rotacije
 - Koraci
- AVL stabla
 - Dodavanje
 - Brisanje
- Samopodešavajuća stabla

Motivacija

- Liste linearne, pretraživanje O(n)
- Stabla hijerarhijska rekurzivna struktura
- → stabla prikladne strukture O(log n) pretraživanje
- → stabla neprikladne strukture O(n)

Uravnotežavanje stabla!

Uravnoteženo stablo

- Podstablo: čvor i svi njegovi potomci
- Visina stabla h: Duljina najdužeg puta od korijena do lista

Uravnoteženo stablo

 Uravnoteženo stablo: razlika visina podstabala svakog čvora najviše 1

Savršeno uravnoteženo stablo

Najpoželjnija struktura stabla po pitanju brzine pretraživanja

Definicija: Uravnoteženo stablo kojemu jedino najniža razine

smije biti djelomično popunjena

 Svi su listovi takvog stabla u najviše dvije razine

savršeno uravnoteženo stablo

Sadržaj

- Motivacija
- Uravnoteženo stablo
- Savršeno uravnoteženo stablo
- Uravnotežavanje stabla
- DSW algoritam
 - Rotacije
 - Koraci
- AVL stabla
 - Dodavanje
 - Brisanje
- Samopodešavajuća stabla

- Kako dobiti uravnoteženo stablo?
 - 1) Promišljenim redoslijedom upisa podataka
 - pripremimo podatke prije izgradnje stabla
 - 2) Restrukturiranjem stabla
 - stablo već postoji, pa ga uravnotežavamo različitim postupcima

- Promišljenim redoslijedom upisa podataka:
 - 1. **Prikupiti** sve podatke koji će doći na ulaz, **sortirati** ih u niz
 - 2. Pronaći **središnji element** niza on postaje korijen
 - 3. Središnji elementi lijevog i desnog podniza postaju njegova djeca
 - 4. Rekurzivno ponavljamo korake 2-3 dok u stablo ne smjestimo sve

elemente niza

→ Ovim postupkom uvijek dobijemo savršeno uravnoteženo binarno stablo


```
MakeBalTree (data[], left, right):
    if left <= right:
        middle = (left + right)/2
    insert data[middle] into the tree
    MakeBalTree (data, left, middle-1)
    MakeBalTree (data, middle+1, right)</pre>
```


Nedostaci:

- Nemamo uvijek sve ulazne podatke odjednom obično podaci stalno pristižu, a i iz postojećeg stabla se brišu i mijenjaju.
- Podatke treba sortirati to može biti zahtjevno i memorijski i vremenski.
- Potreba za dodatnom memorijom.

- 2) Restrukturiranjem stabla
 - U praksi se stabla najčešće uravnotežavaju restrukturiranjem
 - Postoje razni postupci naučit ćemo neke od najpoznatijih
 - DSW algoritam
 - AVL stabla
 - RB-stabla
 - B-stabla
 - •

Sadržaj

- Motivacija
- Uravnoteženo stablo
- Savršeno uravnoteženo stablo
- Uravnotežavanje stabla
- DSW algoritam
 - Rotacije
 - Koraci
- AVL stabla
 - Dodavanje
 - Brisanje
- Samopodešavajuća stabla

DSW algoritam - uvod

- DSW algoritam
 - Colin Day ("Balancing a Binary Tree", 1976.), nakon toga Quentin F. Stout i Bette L. Warren, "Tree Rebalancing in Optimal Time and Space", 1986.
- Daje savršeno uravnoteženo stablo.
- Temelji se na rotacijama.
- Rotacija postupak kojim dijete postaje roditelj, a roditelj dijete pritom se moraju poštovati definicijska pravila stabla – ne smije se narušiti logika kojom se stablo gradilo, jer onda bi pretraživanje davalo krive rezultate.

DSW algoritam – pojašnjenje rotacija

 Rotacija čvora C oko čvora B = desna rotacija

```
RightRotation (A, B, C):

if B is not root: // i.e., A not NULL

redirect pointer in A to C;

redirect left pointer of B to right subtree of C;

redirect right pointer of C to B;
```

Napomena: za provjeru ispravnosti – nakon svake rotacije provjerite je li *inorder* ispis stabla ostao isti. Ako nije, rotacija je pogrešno provedena!

Vizualizacija rotacije – desna rotacija – C oko B

Vizualizacija rotacije – desna rotacija – C oko B

- DSW algoritam ima dvije faze:
 - Pretvaranje binarnog stabla u koso stablo naziva se kralježnica (backbone, vine)
 - radimo rotacije u jednu stranu dok ne dobijemo koso stablo
 - složenost O(n)
 - 2) Pretvaranje *kralježnice* u savršeno uravnoteženo stablo
 - radimo rotacije u suprotnu stranu dok ne dobijemo savršeno uravnoteženo stablo
 - složenost O(n)
 - → ukupna složenost: O(n)

1) Pretvaranje binarnog stabla u *kralježnicu* – rotacije npr. udesno

1) Pretvaranje binarnog stabla u *kralježnicu* – rotacije npr. udesno

```
CreateBackbone (root):
    tmp = root
    while (tmp != NULL):
        if tmp has left child ch:
            right rotate ch about tmp
            redirect tmp to the ch
        else:
            redirect tmp to its right child;
```

- Najgori slučaj: lijevo koso stablo
 - najviše (n-1) rotacija složenosti O(1)
 - while uvjet se ispita 2(n-1)+1
 - Ukupno: O(n)

2) Pretvaranje *kralježnice* u savršeno uravnoteženo stablo

2) Pretvaranje *kralježnice* u uravnoteženo stablo – rotacije npr. ulijevo

```
CreatePerfectTree (n): h = \lfloor \log_2(n+1) \rfloor k = 2^h - 1 \text{ //broj čvorova u punim razinama} n-k \text{ left rotations of every second node from the top while } (k > 1): k = k/2 k \text{ left rotations of every second node from the top;}
```

- n-k je broj elemenata u zadnjoj, nepopunjenoj razini
 - prvih n-k rotacija se pobrine za njih
- rotacije u while petlji se brinu za popunjene razine

Složenost faze: **O(n)** [Drozdek] Ukupna složenost DSW-a: **O(n)**

Problem s DSW

- Ravnoteža stabla obično je narušena samo lokalno
- DSW radi globalno uravnotežavanje cijelog stabla, iako je to nekad možda nepotrebno
 - Složenost O(n)
 - Možemo li bolje? DA
 - Lokalno uravnotežavanje
 - Cijena: uravnotežavanje ne mora biti savršeno

Sadržaj

- Motivacija
- Uravnoteženo stablo
- Savršeno uravnoteženo stablo
- Uravnotežavanje stabla
- DSW algoritam
 - Rotacije
 - Koraci
- AVL stabla
 - Dodavanje
 - Brisanje
- Samopodešavajuća stabla

AVL stabla

- AVL stabla (izvorni naziv admissible tree)
 - Georgii Maksimovič Adelson Velskii, Yevgenii Mikhailovič Landis, "An algorithm for the organization of information,", 1962.
- AVL algoritam uravnotežuje stablo samo lokalno, no ne jamči savršenu uravnoteženost cijelog stabla
- Definicija: AVL stablo je stablo koje zadovoljava AVL definicijsko pravilo (opisano niže)

engl. balance factor

- Faktor ravnoteže FR = (h desnog podstabla) (h lijevog podstabla)
- AVL definicijsko pravilo: FR svakog čvora mora biti -1, 0 ili 1
- Interpretacija: Visine podstabala nekog čvora smiju se razlikovati samo za 1 ⇔ definicija uravnoteženog stabla!

AVL stabla

 Broj čvorova u h razina ne može biti manji od nekog minimuma, a iz definicijskog pravila slijedi rekurzivna relacija za minimum:

$$AVL_{h} = AVL_{h-1} + AVL_{h-2} + 1,$$

gdje su $AVL_0 = 0$, $AVL_1 = 1$ polazne vrijednosti

- Teorijske granice visine AVL stabla [Drozdek: Appendix A.5]
 log2(n+1) ≤ h ≤ 1,44· log 2 (n+2) 0,328
- Pretraživanje AVL stabla: O(log₂n)
 - u najgorem slučaju 44% sporije od pretraživanja savršenog stabla

Koraci za dodavanje čvora D u AVL stablo:

- 1. Pronaći mjesto gdje treba ići; dodati ga u stablo
- Uravnotežiti stablo
 - Ažurirati faktor ravnoteže (FR) svih čvorova A uspinjući se od dodanog čvora D do korijena
 - Ako ažurirani FR(A)=0, gotovo uravnotežavanje
 - Ako ažurirani FR(A)=±1, nastavi s ažuriranjem
 - Jedini koji zahtijeva intervenciju je prvi za kojeg je ažurirani FR(A)=±2

- Ako pri ažuriranju faktora ravnoteže čvora A dobijemo FR(A) = +/-2, potrebno je stablo ponovno uravnotežiti
- Uvedimo oznake X∈{desno,lijevo} i njegov komplement ¬X (onaj drugi)
- Moguća su dva opća slučaja:
 - 1) **izravnati**: čvor D dodan je u **X** podstablo **X** djeteta B čvoru A
 - Jednaki predznaci FR(A) i FR(B)
 - FR(A)=2 FR(B)=1 ili FR(A)=-2, FR(B)=-1
 - izlomljeni: čvor D dodan je u ¬X podstablo X djeteta B čvoru A
 - Različiti predznaci FR(A) i FR(B)
 - FR(A)=-2 FR(B)=1 ili FR(A)=2, FR(B)=-1

- 1) **Izravnati**: Čvor D dodan je u **X** podstablo **X** djeteta B čvoru A
 - Rješenje:
 - napravi rotaciju čvora B oko čvora A

- 2) **Izlomljeni**: Čvor D dodan je u ¬X podstablo X djeteta B čvora A
 - Rješenje:
 - napravi rotaciju čvora C oko čvora B (pretvorba u izravnati oblik)
 - 2. napravi rotaciju čvora C oko čvora A

primjer: dodavanje 17 u stablo

Brisanje čvora u AVL stablu

Koraci za brisanje čvora D iz AVL stabla:

- 1. Ukloniti čvor metodom Deletion by Copying
- 2. Uravnotežiti stablo (ne samo do prvog neuravnoteženog)
 - Ažurirati faktor ravnoteže (FR) svih čvorova A od mjesta s kojeg
 je uklonjen zamjenski čvor D' do korijena

 Mogućnosti pri ažuriranju
 - Mogućnosti pri ažuriranju
 - FR(A) postao ±1 → KRAJ
 - brisanje nije promijenilo visinu ovog podstabla
 - FR(A) postao 0 → NASTAVI
 - brisanje je promijenilo visinu ovog podstabla
 - FR(A) postao ±2 →INTERVENCIJA (3 opća slučaja)
 - ako je nakon intervencije FR(A)= ±1; gotovo uravnotežavanje, inače se nastavlja

Brisanje čvora u AVL stablu

Postupak pri intervenciji:

- Roditelj (čvor A) ima FR(A) = ±1, čvor je uklonjen iz "kraćeg" podstabla pa će FR(A) postati ±2, a njegovo dijete B u podstablu koje se nije mijenjalo može imati:
 - 1) FR(B) = -1
 - 2) FR(B) = 0
 - 3) FR(B) = +1
 - → 3 različita opća slučaja
 - 6 specifičnih slučajeva

Brisanje čvora u AVL stablu – stablo odlučivanja

Brisanje čvora u AVL stablu – koraci pri intervenciji

- 1) $FR(A) = +2 i FR(B) = +1 \longrightarrow FR(A) = -2 i FR(B) = -1 \rightarrow identični predznaci$
- Rješenje: rotacija B oko A

Brisanje čvora u AVL stablu – koraci pri intervenciji

- 2) $FR(A) = \pm 2 i FR(B) = 0$
- Rješenje: rotacija B oko A (isto kao u 1. slučaju)

Brisanje čvora u AVL stablu – koraci pri intervenciji

- 3) $FR(A) = +2 i FR(B) = -1 \longrightarrow FR(A) = -2 i FR(B) = +1 \rightarrow suprotni predznaci$
- Rješenje: rotacija C oko B, pa rotacija C oko A

Sadržaj

- Motivacija
- Uravnoteženo stablo
- Savršeno uravnoteženo stablo
- Uravnotežavanje stabla
- DSW algoritam
 - Rotacije
 - Koraci
- AVL stabla
 - Dodavanje
 - Brisanje
- Samopodešavajuća stabla

Samopodešavajuća stabla

- Binarna stabla brz pristup podacima, ali komplicirano održavanje
 dodavanje i brisanje je sporo
- Samopodešavajuća stabla podatke kojima se češće pristupa podići na više razine (prisjetite se samopodešavajućih listi s prethodnog predavanja)
- → Svaki čvor mora "znati" koliko mu se puta pristupilo
- Dvije osnovne strategije:
 - 1) Single rotation čvor kojem se pristupilo rotirati oko roditelja
 - Moving to the Root čvor kojem se pristupilo postaje korijen stabla

Za kraj...

Korisni linkovi:

- Vizualizacija mnogih algoritama koje ćemo učiti na ovom predmetu:
 - https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
 - Primjerice, dodavanje i brisanje za AVL stablo:
 - https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
 - → korisno za vježbanje i provjeru rješenja!
- Online alat za izradu grafova:
 - https://www.draw.io/
 - Intuitivan i jednostavan za korištenje

