Aritmetika Modularra

Irakasgaia: Matematika Diskretua Titulazioa: Informatikaren Ingeniaritzako Gradua Informatika fakultatea Donostia

Batuketa eta Biderketa modularrak

Batuketa eta biderketa

 \mathbb{Z}_n multzoan batuketa eta biderketa modularra horrela egiten dira:

$$((a \bmod n) + (b \bmod n)) \bmod n = (a+b) \bmod n$$

$$((a \bmod n) \cdot (b \bmod n)) \bmod n = (a \cdot b) \bmod n$$

Zatiketa

Zatiketa ez dago elementu guztietarako definituta, eta badagoenean alderantzizko modularraz biderkatuz kalkulatu ohi da.

n moduluko kongruentzia

Definizioa (n moduluko kongruentzia)

 $n \in \mathbb{Z}$, n > 1 izanik, $a, b \in \mathbb{Z}$ kongruenteak modulu n dira, $a \equiv b \mod n$, baldin $n \mid a - b$ hau da, $\exists k \in \mathbb{Z} \ / \ a = b + kn$; a - b zenbakia nren multiploa da; a eta b zenbakiek hondar bera uzten dute n zenbakiaz zatitzean.

Teorema (Zatiketa Euklidestarra)

 $a,b\in\mathbb{Z}$ emanik, $b>0,\exists\mid q\in\mathbb{Z}\ \exists\mid r\in\mathbb{Z}$ non a=qb+r den. r hondarra da, $0\leq r< b$ izanik. Hondar posibleak: $0,1,\ldots,b-1$.

$$a \mid \frac{b}{r} \mid \frac{a}{q} \quad a = r + qb, \quad 0 \le r < b.$$

n moduluko kongruentzian, hondar posibleak: $0, 1, \ldots, n-1$.

$$\begin{bmatrix} a & \frac{1}{q} & n \\ r & q \end{bmatrix}$$
 $a = r + qn, \quad 0 \le r < n \quad \rightarrow \quad \boxed{a \equiv r \mod n}$

n moduluko hondarren multzoa: $\mathbb{Z}_n = \{0, 1, ..., n-1\}$

Alderantzizko modularra

- \mathbb{Z} multzoko elementu guztiek ez dute alderantzizkorik, ezta \mathbb{Z}_n multzoko guztiek alderantzizko modularrik ere.
- a elementua alderantzikagarria izateko $a \cdot a^{-1} = 1$ beteko duen a^{-1} existitu behar da multzoan.

Teorema (Alderantzizko modularraren existentzia)

 a^{-1} mod n existitzen da baldin eta soilik baldin zkh(a, n) = 1.

 \mathbb{Z}_n multzoan alderantzikagarri diren elementuen multzoa \mathbb{Z}_n^* da. n moduluko hondarren multzo murriztua:

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n : \mathsf{zkh}(a, n) = 1 \}$$

Alderantzizko modularra existitzen denean, a^{-1} mod n kalkulatzeko Euklidesen algoritmoa erabiliko dugu.

Alderantzizko modularraren kalkulua

Euklidesen algoritmoa erabiliz

Izan bitez $a, n \in \mathbb{Z}$ lehen erlatiboak, $\operatorname{zkh}(a, n) = 1$. Dakigunez, $\exists x, y \in \mathbb{Z}$ non $xa + yn = \operatorname{zkh}(a, n)$. Hortaz.

$$zkh(a, n) = 1 \Leftrightarrow \exists x, y \in \mathbb{Z} \text{ non } ax + ny = 1.$$

a-ren alderantzizko modularra x dela ondoriozta daiteke horrela:

$$ax + ny = 1 \Rightarrow ax = 1 + (-y)n \Rightarrow ax \equiv 1 \mod n$$

 $\Rightarrow \boxed{a^{-1} \equiv x \mod n}.$

Euklidesen algoritmoa erabiliz x kalkulatuko dugu, hau da, a^{-1} .

Euler-Fermat teoremak

n zenbaki lehena izanik $\phi(n)=n-1$ denez, Euler-en teorema honela geratzen da.

Teorema (Fermat-en teorema txikia) Izan bedi $n \in \mathbb{Z}^+$ lehena. $a \in \mathbb{Z}^+$ izanik, $a^{n-1} \equiv 1 \mod n$ Oharrak:

- 1. Euler-Fermat teoremak erabiliz, berreketa modularra kalkulatzea posible bada ere, gehienetan ez da praktikoa.
 - $\phi(n)$ kalkulatzea ez da beti erraza gertatzen, n oso handia denean zenbaki lehenetan faktorizatzea ez da erraza...
 - Teoremei esker zenbait kasutan berreketa modularraren kalkulua asko laburtzea lortzen da, baina ez beti...
- 2. Kriptografian, gako publikoko zifratze-algoritmoetan, oso garrantzitsuak gertatzen dira Euler-Fermat teoremak

Euler-Fermat teoremak

Definizioa (Euler-en funtzioa, $\phi(n)$)

Eulerren funtzioa, $\phi(n)$, n moduluko hondarren multzo murriztuak duen elementu kopurua da, hau da, \mathbb{Z}_n^* multzoaren kardinala.

Teorema $(\phi(\mathbf{n})ren \ kalkulurako)$

Izan bitez $p, q, n \in \mathbb{Z}$.

- n zenbakia lehena bada, orduan $\phi(n) = n 1$.
- n = pq bada, p eta q bi zenbaki lehen desberdinak izanik, orduan $\phi(n) = (p-1)(q-1)$.
- $n = p_1^{e_1} \cdots p_r^{e_r}$ moduan idatz daiteke, p_1, \dots, p_r lehen desberdinak izanik. $\phi(n) = \frac{n}{p_1 \dots p_r} (p_1 1) \dots (p_r 1)$.

Teorema (Euler-en teorema)

Izan bitez $a,n\in\mathbb{Z}^+$ zenbaki lehen erlatiboak, zkh(a,n)=1. Zera betetzen da: $a^{\phi(n)}\equiv 1 \mod n$

Berreketa modularra

 $a, x \in \mathbb{Z}$, $x \ge 0$ izanik, a^x berreketa biderketen bidez kalkulatzean, x berretzailea handia denean bi arazo mota sortzen dira:

- a^x handiegia da. Kalkulatu nahi izateak arazoak sor ditzake!
- a zenbakia bere buruarekin x-1 aldiz biderkatu behar da. Biderketa kopuru handia!

Aritmetika modularrean, a^{\times} mod n kalkulatzean:

• Zenbaki handiegien arazoa ekiditen da, ez dago a^x kalkulatu beharrik, horrela eragiten delako.

$$((a \bmod n) \cdot (b \bmod n)) \bmod n = (a \cdot b) \bmod n$$

 Berreketa bitarraren metodoa. x berretzailearen adierazpen bitarra erabiliz biderketa kopuru minimoa kalkulatuko da.

8

Berreketa modularra

Berreketa bitarraren metodoa

- Berreketa handiak modu eraginkorrean kalkulatzeko metodoa.
- xren adierazpen bitarra erabiltzen da.
- a^x berreketa kalkulatzeko algoritmo errekurtsiboa:

$$\mathbf{a}^{\mathsf{x}} = \left\{ egin{array}{ll} \mathbf{a} & x = 1 \text{ bada} \\ (\mathbf{a}^{\frac{\mathsf{x}}{2}})^2 & x \text{ bikoitia bada} \\ \mathbf{a}\mathbf{a}^{\mathsf{x}-1} & x \text{ bakoitia bada} \end{array} \right.$$

Berreketaren honako hiru propietateetan oinarritzen da:

$$a^{1} = a,$$
 $a^{x+y} = a^{x}a^{y},$ $a^{xy} = (a^{x})^{y}$

Bibliografia

- Aritmética modular http://es.wikipedia.org/wiki/Aritmética_modular
- Modular Multiplicative Inverse edo alderantzizko modularra http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
- Teorema de Euler, Pequeño teorema de Fermat http://es.wikipedia.org/wiki/Teorema_de_Euler http://es.wikipedia.org/wiki/Pequeño_teorema_de_Fermat RSA algorithm. Proofs of correctness http://en.wikipedia.org/wiki/RSA_(algorithm)
- Anexo: Números primos
 10000 baino txikiagoak diren zenbaki lehenak.
 http://es.wikipedia.org/wiki/Anexo:Números_primos
- Exponenciación binaria http://es.wikipedia.org/wiki/Exponenciación_binaria

0