Seri bahan kuliah Algeo #25

Perkalian Geometri (Bagian 3)

Bahan kuliah IF2123 Aljabar Linier dan Geometri

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

Sumber:

John Vince, Geometric Algebra for Computer Graphics. Springer. 2007

Perkalian vektor dan bivector di R³

- Diberikan vektor di R³: $a = a_1e_1 + a_2e_2 + a_3e_3$ dan bivector: $B = b \wedge c$
- Perkalian geometri a dan B adalah (pembuktiannya tidak ditunjukkan di sini):

$$aB = a \cdot B + a \wedge B$$

• Perkalian geometri *B* dan *a* adalah (pembuktiannya tidak ditunjukkan di sini):

$$Ba = B \cdot a + B \wedge a$$

Hubungan keduanya adalah:

$$a \cdot B = \frac{1}{2}(aB - Ba)$$

$$a \wedge B = \frac{1}{2}(aB + Ba)$$

Contoh 1: Diberikan tiga buah vektor di R³ sebagai berikut

$$a = 2e_1 + e_2 - e_3$$

 $b = e_1 - e_2 + e_3$
 $c = 2e_1 + 2e_2 + e_3$

Hitunglah (i) $B = b \wedge c$ (ii) aB (iii) Ba (iv) $a \cdot B$ (v) $a \wedge B$ Jawaban:

(i)
$$B = b \wedge c = (e_1 - e_2 + e_3) \wedge (2e_1 + 2e_2 + e_3)$$

 $= 2e_{12} - e_{31} + 2e_{12} - e_{23} + 2e_{31} - 2e_{23}$
 $B = 4e_{12} - 3e_{23} + e_{31}$.

(ii)
$$aB = (2e_1 + e_2 - 2e_3)(4e_{12} - 3e_{23} + e_{31})$$

 $= 8e_2 - 6e_{123} - 2e_3 - 4e_1 - 3e_3 + e_{123} - 8e_{123} - 6e_2 - 2e_1$
 $aB = -6e_1 + 2e_2 - 5e_3 - 13e_{123}. \rightarrow \text{vektor} + \text{trivector}$

(iii)
$$Ba = (4e_{12} - 3e_{23} + e_{31})(2e_1 + e_2 - 2e_3)$$

 $= -8e_2 + 4e_1 - 8e_{123} - 6e_{123} + 3e_3 + 6e_2 + 2e_3 + e_{123} + 2e_1$
 $Ba = 6e_1 - 2e_2 + 5e_3 - 13e_{123}. \rightarrow \text{vektor} + \text{trivector}$

(iv)
$$a \cdot B = \frac{1}{2}(aB - Ba)$$

$$= \frac{1}{2}(-6e_1 + 2e_2 - 5e_3 - 13e_{123} - 6e_1 + 2e_2 - 5e_3 + 13e_{123})$$

$$= \frac{1}{2}(-12e_1 + 4e_2 - 10e_3)$$

$$a \cdot B = -6e_1 + 2e_2 - 5e_3. \rightarrow \text{vektor}$$

(v)
$$a \wedge B = \frac{1}{2}(aB + Ba)$$

$$= \frac{1}{2}(-6e_1 + 2e_2 - 5e_3 - 13e_{123} + 6e_1 - 2e_2 + 5e_3 - 13e_{123})$$
 $a \wedge B = -13e_{123}$. \rightarrow trivector

Dari (iv) dan (v) terlihat bahwa:

$$aB = a \cdot B + a \wedge B$$

 $aB = -6e_1 + 2e_2 - 5e_3 - 13e_{123}.$

yng berarti bahwa aB diidentifikasi oleh inner product $(a \cdot B)$ dan outer product $(a \wedge B)$

Perkalian bivector-bivector satuan di R³

$$e_{12}^2 = e_{23}^2 = e_{31}^2 = -1$$
 $e_{12}e_{23} = e_{13} = -e_{31}$
 $e_{23}e_{31} = e_{21} = -e_{12}$
 $e_{31}e_{12} = e_{32} = -e_{23}$
 $e_{12}e_{31} = e_{23}$

TABLE	8.4		
GP	e ₁₂	e ₂₃	e ₃₁
e ₁₂	-1	-e ₃₁	e ₂₃
e_{23}	e_{31}	-1	$-e_{12}$
e_{31}	$-e_{23}$	e_{12}	-1

Contoh cara mendapatkan salah satu hasil di samping:

$$e_{23}e_{12} = e_{31}$$
 $e_{31}e_{23} = e_{12}$.

$$e_{31}e_{23} = e_3e_1e_2e_3$$

$$= -e_3e_1e_3e_2$$

$$= e_3e_3e_1e_2$$

$$= e_3^2e_1e_2$$

$$= (1)e_1e_2 = e_1e_2 = e_{12}$$

Perkalian vektor dan *trivector* di R³

Perkalian vektor dengan trivector menghasilkan bivector

$$e_1e_{123} = e_{23}$$
 $e_{123}e_1 = e_{23}$ $e_2e_{123} = e_{31}$ $e_{123}e_2 = e_{31}$ $e_3e_{123} = e_{12}$. $e_{123}e_3 = e_{12}$.

... Perkalian vektor dengan trivector bersifat komutatif

Contoh 2: Diberikan vektor $a = 2e_1 + 3e_2 + 4e_3$ dan trivector $B = 5(e_1 \land e_2 \land e_3) = 5e_{123}$ Hitunglah aB.

Jawaban:

$$aB = (2e_1 + 3e_2 + 4e_3) 5e_{123}$$

$$= 10e_1e_{123} + 15e_2e_{123} + 20e_3e_{123}$$

$$= 10e_1e_1e_2e_3 + 15e_2e_1e_2e_3 + 20e_3e_1e_2e_3$$

$$= 10e_2e_3 - 15e_2e_2e_1e_3 - 20e_3e_1e_3e_2$$

$$= 10e_2e_3 - 15e_1e_3 + 20e_3e_3e_1e_2$$

$$= 10e_2e_3 + 15e_3e_1 + 20e_1e_2$$

$$= 20e_1e_2 + 10e_2e_3 + 15e_3e_1$$

$$= 20e_1e_2 + 10e_2e_3 + 15e_3e_1$$

Perkalian vektor dengan trivector menghasilkan tiga buah bivector.

Perkalian bivector dan trivector di R³

Perkalian bivector dengan trivector menghasilkan vector

$$e_{12}e_{123} = -e_3$$
 $e_{123}e_{12} = -e_3$ $e_{23}e_{123} = -e_1$ $e_{123}e_{23} = -e_1$ $e_{123}e_{31} = -e_2.$ $e_{123}e_{31} = -e_2.$

... Perkalian bivector dengan trivector bersifat komutatif

Contoh 3 : Diberikan *bivector B* = $2e_{12} + 3e_{23} + 4e_{31}$ dan *trivector C* = $5e_{123}$ Hitunglah *BC*.

Jawaban:
$$B5e_{123} = (2e_{12} + 3e_{23} + 4e_{31})5e_{123}$$

= $-15e_1 - 20e_2 - 10e_3$.

Ringkasan perkalian vektor di R³

T_{Δ}	рī	\mathbf{E}	8	5
\mathbf{I}	ъ	ı.L.	Ο,	

Inner product	
Vectors commute Vectors and bivectors anticommute	$a \cdot b = b \cdot a$ $a \cdot B = -B \cdot a$ $a \cdot B = \frac{1}{2}(aB - Ba)$ $a \cdot B = (a \cdot b)c - (a \cdot c)b$ $B \cdot a = \frac{1}{2}(Ba - aB)$
Outer product	$B \cdot a = (a \cdot c)b - (a \cdot b)c$
Vectors and bivectors commute	$a \wedge b = -b \wedge a$ $a \wedge B = B \wedge a$ $a \wedge B = \frac{1}{2}(aB + Ba)$ $a \wedge B = abc$ $B \wedge a = \frac{1}{2}(Ba + aB)$ $B \wedge a = abc$

Geometric product	
Orthogonal vectors anticommute	$e_{12} = -e_{21}$
Orthogonal bivectors anticommute	$e_{12}e_{23} = -e_{23}e_{12}$
Bivectors square to -1	$e_{12}^2 = e_{23}^2 = e_{31}^2 = -1$
Definition	$ab = a \cdot b + a \wedge b$
Vectors and bivectors anticommute	aB = -Ba
	$aB = a \cdot B + a \wedge B$
	$aB = (a \cdot b)c - (a \cdot c)b + abc$
	$Ba = B \cdot a + B \wedge a$
	$Ba = (a \cdot c)b - (a \cdot b)c + abc$
Trivector commutes with all multivectors in the space	aT = Ta $BT = TB$
The pseudoscalar	$e_{123} = I$
Vectors and the pseudoscalar commute	aI = Ia
•	$aI = a \cdot I$
Duality transformation	$e_{23} = Ie_1$
	$e_{31} = Ie_2$

 $e_{12} = Ie_3$ $I^2 = -1$

Where a and b are vectors, B is a bivector, and T is a trivector.

The trivector squares to -1

TABLE 8.6

GP	λ	e_1	e_2	e ₃	e ₁₂	e ₂₃	e ₃₁	e ₁₂₃
λ	λ^2	λe_1	λe_2	λe ₃	λe_{12}	λe_{23}	λe ₃₁	λe ₁₂₃
e_1	λe_1	1	e_{12}	$-e_{31}$	e_2	e_{123}	$-e_3$	e_{23}
e_2	λe_2	$-e_{12}$	1	e_{23}	$-e_1$	e_3	e_{123}	e_{31}
e_3	λe_3	e_{31}	$-e_{23}$	1	e_{123}	$-e_2$	e_1	e_{12}
e_{12}	λe_{12}	$-e_2$	e_1	e_{123}	-1	$-e_{31}$	e_{23}	$-e_3$
e_{23}	λe_{23}	e_{123}	$-e_3$	e_2	e_{31}	-1	$-e_{12}$	$-e_1$
e_{31}	λe_{31}	e_3	e_{123}	$-e_1$	$-e_{23}$	e_{12}	-1	$-e_2$
e_{123}	λe_{123}	e_{23}	e_{31}	e_{12}	$-e_3$	$-e_1$	$-e_2$	-1

Keterangan: GP = Geometry Product

Balikan (inverse) vektor

- Pada aljabar elementer, c = ab (a dan b bilangan riil) maka $a = cb^{-1}$ atau $b^{-1} = \frac{a}{a}$ (syarat $c \neq 0$)
- Pada aljabar geometri, B = ab (a dan b vektor, B multivektor), maka

$$Bb = (ab)b$$
 (kalikan kedua ruas dengan b)
 $= ab^2$
 $a = B\frac{b}{b^2} = B\frac{1}{b} = Bb^{-1}$
 $a = Bb^{-1}$

yang dalam hal ini

$$b^{-1} = \frac{b}{b^2} = \frac{b}{\|b\|^2} \longrightarrow \text{balikan vektor } b$$

Contoh 4: Diberikan vektor a dan b: $a = 3e_1 + 4e_2$ dan $b = e_1 + e_2$ Hitung B = ab dan balikan vektor b.

<u>Jawaban</u>:

(i)
$$B = ab = (3e_1 + 4e_2)(e_1 + e_2) = 3e_1^2 + 3e_1e_2 + 4e_2e_1 + 4e_2^2$$

 $= 3 + 3e_{12} - 4e_{12} + 4 = 7 - e_{12}$
(atau pakai rumus: $ab = a \cdot b + a \wedge b = (3)(1) + (4)(1) + \{(3)(1) - (4)(1)\} e_1 \wedge e_2$
 $= 7 - e_{12}$)

(ii)
$$b^{-1} = \frac{b}{\|b\|^2} = \frac{e_1 + e_2}{(\sqrt{1^2 + 1^2})^2} = \frac{e_1 + e_2}{2} = \frac{1}{2} (e_1 + e_2)$$

Periksa bahwa a dapat diperoleh kembali sebagai berikut:

$$a = Bb^{-1} = \frac{1}{2}(7 - e_{12})(e_1 + e_2) = \frac{1}{2}(7e_1 + 7e_2 - e_{12}e_1 - e_{12}e_2)$$
$$= \frac{1}{2}(7e_1 + 7e_2 + e_2 - e_1) = 3e_1 + 4e_2$$

Operasi *meet*

- Operasi meet bertujuan untuk mencari perpotongan garis, bidang, volume, dll. lain.
- Notasi: A ∨ B
- Operasi *meet* didefinisikan sebagai berikut:

$$A \vee B = A^* \cdot B$$

yang dalam hal ini, A^* = pseudoscalar dari A = IA

Contoh: (i)
$$A = e_3 \rightarrow A^* = IA = e_{123}e_3 = e_{12}$$

(ii)
$$A = 2e_1 + e_3 \rightarrow A^* = IA = e_{123}(2e_1 + e_3) = 2e_{123}e_1 + e_{123}e_3 = 2e_{23} + e_{123}e_3$$

Perhatikan tiga bilah B₁, B₂, dan B₃ yang dibentuk oleh vektor-vektor satuan

Perpotongan bilah B₁ dan B₂ adalah sumbu $e_2 \rightarrow B_1 \vee B_2 = e_2$

Perpotongan bilah B₂ dan B₃ adalah sumbu e₃ \rightarrow B₂ \vee B₃ = e₃

Perpotongan bilah B₁ dan B₃ adalah sumbu $e_1 \rightarrow B_3 \vee B_1 = e_1$

• Akan ditunjukkan bahwa $B_1 \vee B_2 = e_2$ dengan operasi *meet*:

$$B_1 \vee B_2 = B_1^* \cdot B_2$$

= $(e_{123}e_{12}) \cdot e_{23} = (e_1e_2e_3e_1e_2) \cdot e_{23} = (-e_1^2e_2^2e_3) \cdot e_{23}$
= $-e_3 \cdot e_{23}$

dengan mengingat bahwa $a \cdot B = \frac{1}{2}(aB - Ba)$ maka $-e_3 \cdot e_{23}$ dapat dinyatakan sebagai

$$-e_3 \cdot e_{23} = \frac{1}{2}(-e_{323} + e_{233})$$

sehingga

$$B_1 \lor B_2 = \frac{1}{2}(-e_{323} + e_{233}) = \frac{1}{2}(e_3e_3e_2 + e_2e_3e_3)$$
$$= \frac{1}{2}(e_3^2e_2 + e_2e_3^2) = \frac{1}{2}(e_2 + e_2) = e_2$$

(terbukti)

• Dengan cara yang sama, maka

$$B_2 \lor B_3 = B_2^* \cdot B_3$$
 $B_3 \lor B_1 = B_3^* \cdot B_1$ $= (e_{123}e_{23}) \cdot e_{31}$ $= (e_{123}e_{31}) \cdot e_{12}$ $= -e_1 \cdot e_{31}$ dan $= -e_2 \cdot e_{12}$ $= \frac{1}{2}(-e_{131} + e_{311})$ $= \frac{1}{2}(-e_{212} + e_{122})$ $B_2 \lor B_3 = e_3$ $B_3 \lor B_1 = e_1$.

Contoh 5: Diberikan dua buah vektor a dan b sebagai berikut:

$$a = e_1 - e_3$$

$$b = e_2 - e_3$$

Tentukan perpotongan bidang A dan B, yang dalam hal ini $A = a \wedge b$ dan $B = e_{12}$ Jawaban:

$$A = a \wedge b$$

$$= (e_1 - e_3) \wedge (e_2 - e_3) = e_{12} - e_{13} - e_{32}$$

$$A \vee B = A^* \cdot B$$

$$= e_{123}(e_{12} - e_{13} - e_{32}) \cdot e_{12} = (-e_3 - e_2 - e_1) \cdot e_{12}$$
Gunakan $a \cdot B = \frac{1}{2}(aB - Ba)$ maka
$$A \vee B = \frac{1}{2}((-e_3 - e_2 - e_1)e_{12} - e_{12}(-e_3 - e_2 - e_1))$$

$$= e_1 - e_2 \quad \text{(garis yang berwarna merah)}$$

Latihan (Soal UAS 2019)

Diberikan tiga buah vektor sebagai berikut:

$$a = 2e_1 + e_2 - e_3$$

 $b = e_1 - e_2 - e_3$
 $c = 2e_1 + 2e_2 - e_3$

- a) Jika B adalah multivektor, B = ab, perlihatkan bahwa $a = Bb^{-1}$
- b) Tentukan perpotongan bidang yang dibentuk oleh vektor b dan c dengan bidang ($e_2 \land e_3$)

Jawaban:

(a)
$$B = ab = (2e_1 + e_2 - e_3)(e_1 - e_2 - e_3) = 2 - 3e_{12} - 2e_{23} + e_{31}$$

$$b^{-1} = \frac{b}{\|b\|^2} = \frac{e_1 - e_2 - e_3}{(\sqrt{1^2 + (-1)^2 + (-1)^2})^2} = \frac{e_1 - e_2 - e_3}{3} = \frac{1}{3}(e_1 - e_2 - e_3)$$

sehingga

$$Bb^{-1} = (2 - 3e_{12} - 2e_{23} + e_{31}) \frac{1}{3} (e_1 - e_2 - e_3)$$

$$= \frac{1}{3} ((2e_1 - 2e_2 - 2e_3) + (3e_2 + 3e_1 + 3e_{123}) + (-2e_{123} - 2e_3 + 2e_2) + (e_3 - 2e_{123} + e_1))$$

$$= \frac{1}{3} (6e_1 + 3e_2 - 3e_3) = 2e_1 + e_2 - e_3 = a \quad \text{(terbukti)}$$

(b) Bidang yang dibentuk oleh b dan c misalkan adalah A

$$A = b \wedge c = (e_1 - e_2 - e_3) \wedge (2e_1 + 2e_2 - e_3)$$

= $4e_{12} + 3e_{23} - e_{31}$

Maka, perpotongan A dengan $e_2 \wedge e_3$ dihitung dengan operasi meet:

$$A \lor (e_{2} \land e_{3}) = A^{*} \cdot (e_{2} \land e_{3})$$

$$= e_{123}(4e_{12} + 3e_{23} - e_{31}) \cdot e_{23} \qquad (Ket: A^{*} = IA = e_{123}A)$$

$$= 4e_{12312} + 3e_{12323} - e_{12331}) \cdot e_{23}$$

$$= (-4e_{3} - 3e_{1} + e_{2}) \cdot e_{23} \qquad Gunakan \quad a \cdot B = \frac{1}{2}(aB - Ba)$$

$$= \frac{1}{2}((-4e_{3} - 3e_{1} + e_{2})e_{23} - e_{23}(-4e_{3} - 3e_{1} + e_{2}))$$

$$= \frac{1}{2}(-4e_{323} - 3e_{123} + e_{223} + 4e_{233} + 3e_{231} - e_{232})$$

$$= \frac{1}{2}(8e_{2} + 2e_{3})$$

$$= 4e_{2} + e_{3}$$

Multivector di R³

- Multivector di R³ mengandung skalar, vektor, bivector, dan trivector.
- *Multivector* di R³ merupakan kombinasi linier dari skalar, vektor, *bivector*, dan trivector. Elemen-elemen di dalam *multivector* diresumekan pada tabel berikut:

Table 8.7

Element	Symbol	Grade
1 scalar	λ	0
3 vectors	$\{e_1, e_2, e_3\}$	1
3 bivectors	$e_1 \wedge e_2 = e_{12}$	2
	$e_2 \wedge e_3 = e_{23}$	
	$e_3 \wedge e_1 = e_{31}$	
1 trivector	e_{123}	3

• Diberikan dua buah multivector di R³ sebagai berikut:

$$A = \lambda_0 + \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_{12} + \lambda_4 e_{23} + \lambda_5 e_{31} + \lambda_6 e_{123} \quad [\lambda_i \in \mathbb{R}]$$

$$B = \beta_0 + \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_{12} + \beta_4 e_{23} + \beta_5 e_{31} + \beta_6 e_{123} \quad [\beta_i \in \mathbb{R}]$$

Perkalian geometri A dan B adalah sebagai berikut:

$$AB = \lambda_0(\beta_0 + \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_{12} + \beta_4 e_{23} + \beta_5 e_{31} + \beta_6 e_{123})$$

$$+ \lambda_1 e_1(\beta_0 + \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_{12} + \beta_4 e_{23} + \beta_5 e_{31} + \beta_6 e_{123})$$

$$+ \lambda_2 e_2(\beta_0 + \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_{12} + \beta_4 e_{23} + \beta_5 e_{31} + \beta_6 e_{123})$$

$$+ \lambda_3 e_{12}(\beta_0 + \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_{12} + \beta_4 e_{23} + \beta_5 e_{31} + \beta_6 e_{123})$$

$$+ \lambda_4 e_{23}(\beta_0 + \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_{12} + \beta_4 e_{23} + \beta_5 e_{31} + \beta_6 e_{123})$$

$$+ \lambda_5 e_{31}(\beta_0 + \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_{12} + \beta_4 e_{23} + \beta_5 e_{31} + \beta_6 e_{123})$$

$$+ \lambda_6 e_{123}(\beta_0 + \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_{12} + \beta_4 e_{23} + \beta_5 e_{31} + \beta_6 e_{123})$$

$$+ \lambda_6 e_{123}(\beta_0 + \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_{12} + \beta_4 e_{23} + \beta_5 e_{31} + \beta_6 e_{123})$$

$$AB = \lambda_{0}\beta_{0} + \lambda_{0}\beta_{1}e_{1} + \lambda_{0}\beta_{2}e_{2} + \lambda_{0}\beta_{3}e_{12} + \lambda_{0}\beta_{4}e_{23} + \lambda_{0}\beta_{5}e_{31} + \lambda_{0}\beta_{6}e_{123} + \lambda_{1}\beta_{0}e_{1} + \lambda_{1}\beta_{1} + \lambda_{1}\beta_{2}e_{12} + \lambda_{1}\beta_{3}e_{2} + \lambda_{1}\beta_{4}e_{123} - \lambda_{1}\beta_{5}e_{3} + \lambda_{1}\beta_{6}e_{23} + \lambda_{2}\beta_{0}e_{2} - \lambda_{2}\beta_{1}e_{12} + \lambda_{2}\beta_{2} - \lambda_{2}\beta_{3}e_{1} + \lambda_{2}\beta_{4}e_{3} + \lambda_{2}\beta_{5}e_{123} + \lambda_{2}\beta_{6}e_{31} + \lambda_{3}\beta_{0}e_{12} - \lambda_{3}\beta_{1}e_{2} + \lambda_{3}\beta_{2}e_{1} - \lambda_{3}\beta_{3} - \lambda_{3}\beta_{4}e_{31} + \lambda_{3}\beta_{5}e_{23} - \lambda_{3}\beta_{6}e_{3} + \lambda_{4}\beta_{0}e_{23} + \lambda_{4}\beta_{1}e_{123} - \lambda_{4}\beta_{2}e_{3} + \lambda_{4}\beta_{3}e_{31} - \lambda_{4}\beta_{4} - \lambda_{4}\beta_{5}e_{12} - \lambda_{4}\beta_{6}e_{1} + \lambda_{5}\beta_{0}e_{31} + \lambda_{5}\beta_{1}e_{3} + \lambda_{5}\beta_{2}e_{123} - \lambda_{5}\beta_{3}e_{23} + \lambda_{5}\beta_{4}e_{12} - \lambda_{5}\beta_{5} - \lambda_{5}\beta_{6}e_{2} + \lambda_{6}\beta_{0}e_{123} + \lambda_{6}\beta_{1}e_{23} + \lambda_{6}\beta_{2}e_{31} - \lambda_{6}\beta_{3}e_{3} - \lambda_{6}\beta_{4}e_{1} - \lambda_{6}\beta_{5}e_{2} - \lambda_{6}\beta_{6}$$

$$= \lambda_{0}\beta_{0} + \lambda_{1}\beta_{1} + \lambda_{2}\beta_{2} - \lambda_{3}\beta_{3} - \lambda_{4}\beta_{4} - \lambda_{5}\beta_{5} - \lambda_{6}\beta_{6} + (\lambda_{0}\beta_{1} + \lambda_{1}\beta_{0} - \lambda_{2}\beta_{3} + \lambda_{3}\beta_{2} - \lambda_{4}\beta_{6} - \lambda_{6}\beta_{4})e_{1} + (\lambda_{0}\beta_{2} + \lambda_{1}\beta_{3} + \lambda_{2}\beta_{0} - \lambda_{3}\beta_{1} - \lambda_{5}\beta_{6} - \lambda_{6}\beta_{5})e_{2} + (-\lambda_{1}\beta_{5} + \lambda_{2}\beta_{4} - \lambda_{3}\beta_{6} - \lambda_{4}\beta_{2} + \lambda_{5}\beta_{1} - \lambda_{6}\beta_{3})e_{3} + (\lambda_{0}\beta_{3} + \lambda_{1}\beta_{2} - \lambda_{2}\beta_{1} + \lambda_{3}\beta_{0} - \lambda_{4}\beta_{5} + \lambda_{5}\beta_{4})e_{12} + (\lambda_{0}\beta_{4} + \lambda_{1}\beta_{6} + \lambda_{3}\beta_{5} + \lambda_{4}\beta_{0} - \lambda_{5}\beta_{3} + \lambda_{6}\beta_{1})e_{23} + (\lambda_{0}\beta_{5} + \lambda_{2}\beta_{6} - \lambda_{3}\beta_{4} + \lambda_{4}\beta_{3} + \lambda_{5}\beta_{0} + \lambda_{6}\beta_{2})e_{31} + (\lambda_{0}\beta_{6} + \lambda_{1}\beta_{4} + \lambda_{2}\beta_{5} + \lambda_{4}\beta_{1} + \lambda_{5}\beta_{2} + \lambda_{6}\beta_{0})e_{123}$$

Hubungan antara aljabar vektor dengan aljabar geometri

TABLE 8.9

Vector Algebra		Geometric Algebra		
vector map complex number rotor	$v = a_1 \mathbf{i} + a_2 \mathbf{j}$ $a = a_1 b = a_2$ $z = a + bi$ $z' = ze^{i\phi}$	vector map multivector rotor	$v = a_1 e_1 + a_2 e_2$ $Z = e_1 v$ $Z = a_1 + a_2 I$ $Z' = Z e^{I\phi}$ $v' = v e^{I\phi}$	
90° rotor	$v' = -a_2 \mathbf{i} + a_1 \mathbf{j}$	90° rotor	v' = vI	

Hubungan antara aljabar geometri dengan aljabar quaternion

Perkalian *i, j,* dan *k* di dalam aljabar quaternion:

	i	j	k
i	- 1	k	<u></u> —ј
j	-k	-1	i
k	j	-i	-1

Pada kedua tabel, hasil perkalian merupakan pencerminan terhadap diagonal utama namun dengan tanda berbeda

Misalkan didefinisikan tiga buah bivector:

$$B_1 = e_2 \wedge e_3$$

$$B_2 = e_3 \wedge e_1$$

$$B_3 = e_1 \wedge e_2$$

 $-B_2$

Perkalian ketiga buah *bivector* hasilnya:

 B_1

28

Hubungan antara outer product dan cross product

• Diberikan dua buah vektor di R³: $a = a_1e_1 + a_2e_2 + a_3e_3$ dan $b = b_1e_1 + b_2e_2 + b_3e_3$

$$a \times b = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$a \times b = (a_2b_3 - a_3b_2)e_1 + (a_3b_1 - a_1b_3)e_2 + (a_1b_2 - a_2b_1)e_3$$

$$a \wedge b = (a_2b_3 - a_3b_2)e_{23} + (a_3b_1 - a_1b_3)e_{31} + (a_1b_2 - a_2b_1)e_{12}.$$

• Kalikan e_{123} dengan $a \wedge b$:

$$e_{123}(a \wedge b) = (a_2b_3 - a_3b_2)e_{123}e_{23} + (a_3b_1 - a_1b_3)e_{123}e_{31} + (a_1b_2 - a_2b_1)e_{123}e_{12}$$

$$e_{123}(a \wedge b) = -(a_2b_3 - a_3b_2)e_1 - (a_3b_1 - a_1b_3)e_2 - (a_1b_2 - a_2b_1)e_3.$$

◆ Kalikan kedua ruas dengan −1:

$$-e_{123}(a \wedge b) = (a_2b_3 - a_3b_2)e_1 + (a_3b_1 - a_1b_3)e_2 + (a_1b_2 - a_2b_1)e_3$$

Maka dapat dinyatakan bahwa:

$$a \times b = -e_{123}(a \wedge b) = -I(a \wedge b)$$

• Dengan mengingat bahwa $a \times b$ menghasilkan vektor v yang ortogonal dengan a dan b, maka

$$v = -IB \qquad (v = a \times b \ dan \ B = a \wedge b)$$

Contoh 6: Diberikan dua buah vektor di R³ sebagai berikut:

$$a = -e_2 + e_3$$

$$b = e_1 - e_2$$
.

Maka perkalian silang a dan b adalah

$$a \times b = c = \begin{vmatrix} e_1 & e_2 & e_3 \\ 0 & -1 & 1 \\ 1 & -1 & 0 \end{vmatrix}$$
$$= e_1 + e_2 + e_3$$

Vektor c dapat dihitung pula sebagai berikut

$$B = a \wedge b$$

$$= (-e_2 + e_3) \wedge (e_1 - e_2)$$

$$= -e_2 \wedge e_1 + e_2 \wedge e_2 + e_3 \wedge e_1 - e_3 \wedge e_2$$

$$B = e_{12} + e_{31} + e_{23}.$$

$$c = -IB$$

 $= -e_{123}(e_{12} + e_{31} + e_{23})$
 $= e_3 + e_2 + e_1$
 $c = e_1 + e_2 + e_3$ (hasilnya sama)

TAMAT