Calcul différentiel 2

Table des matières

1.	Calcul différentiel	2
	1.1. Inversion et fonctions implicites · · · · · · · · · · · · · · · · · · ·	2
	1.1.1. Théorèmes d'inversion locale et globale · · · · · · · · · · · · · · · · · · ·	3
	1.1.2. Théorème des fonctions implicites · · · · · · · · · · · · · · · · · · ·	4
	1.2. Sous-variétés de \mathbb{R}^n · · · · · · · · · · · · · · · · · · ·	6
	1.2.1. Sous-variétés · · · · · · · · · · · · · · · · · · ·	6
	1.2.2. Espace tangent à une sous-variété · · · · · · · · · · · · · · · · · ·	7
	1.2.3. Extrema liés · · · · · · · · · · · · · · · · · · ·	8
2.	Équations différentielles	9
	2.1. Équations différentielles du premier ordre · · · · · · · · · · · · · · · · · · ·	9
	2.1.1. Solutions maximales et solutions globales · · · · · · · · · · · · · · · · · · ·	10
	2.1.2. Équations intégrales et cylindre de sécurité · · · · · · · · · · · · · · · · · · ·	10
		11
	2.1.4. Théorème de Cauchy-Lipschitz · · · · · · · · · · · · · · · · · · ·	12
		13
	2.2. Équations différentielles linéaires du premier ordre · · · · · · · · · · · · · · · · · · ·	14
		14
		15
	•	15
		15
		16
		16

1. Calcul différentiel

1.1. Inversion et fonctions implicites

Définition 1.1. Soit $k \in \mathbb{N} \setminus \{0\} \cup \{+\infty\}$, U et V deux ouverts de \mathbb{R}^n , et $f: U \to V$ une application. On dit que f est un C^k -difféomorphisme de U sur V si :

- (1) f est bijective de U sur V,
- (2) f est de classe C^k sur U,
- (3) f^{-1} est de classe C^k sur V.

Remarque 1.2. Soit $f: U \to V$ un C^k -difféomorphisme, $x \in U$ et $y \in V$. Alors

$$f^{-1}(f(x)) = x$$

$$f\big(f^{-1}(y)\big)=y$$

de plus en appliquant le théorème de composition des différentielles

$$\left(\mathrm{d}_{f(x)}f^{-1}\right)\circ\left(\mathrm{d}_{x}f\right)=\mathrm{id}$$

$$\left(d_{f^{-1}(y)}f\right)\circ\left(d_{y}f^{-1}\right)=\mathrm{id}$$

donc $d_x f$ est inversible avec $(d_x f)^{-1} = d_{f(x)} f^{-1}$.

Exemples 1.3.

- 1. On considère $f: \mathbb{R}^n \to \mathbb{R}^n$; $x \mapsto Ax$ où $A \in GL_n(\mathbb{R})$, alors f est C^{∞} comme fonction linéaire et bijective de réciproque $y \mapsto A^{-1}y$. On remarque que f^{-1} est C^{∞} comme fonction linéaire, donc f est un C^{∞} -difféomorphisme.
- 2. On considère $f: U \to V; (x, y) \mapsto (x + y, xy)$ où U et V sont définis par

$$U = \{(x, y) \in \mathbb{R}^2 \mid x > y\}$$
$$V = \{(s, t) \in \mathbb{R}^2 \mid s^2 - 4t > 0\}$$

alors f est un C^{∞} difféomorphisme de U sur V, en effet

a. f est bijective de U sur V, puisque pour $(x, y) \in U$ on a

$$(x+y)^2 - 4xy = x^2 - 2xy + y^2 = (x-y)^2 > 0$$

donc $f(U) \subset V$, réciproquement pour $(s,t) \in V$ on cherche $(x,y) \in U$ tels que

$$\begin{cases} x + y = s \\ xy = t \end{cases}$$

c'est-à-dire x et y sont racines du polynôme $X^2 - sX + t$, comme x > y on a

$$\begin{cases} x = \frac{s + \sqrt{s^2 - 4t}}{2} \\ y = \frac{s - \sqrt{s^2 - 4t}}{2} \end{cases}$$

donc $V \subset f(U)$, f est bijective,

- b. f est de classe C^{∞} sur U car polynômiale,
- c. f^{-1} est de classe C^{∞} sur V car $(s,t) \mapsto s^2 4t$ et $\sqrt{\cdot}$ sont C^{∞} sur V.
- 3. On considère $f: \mathbb{R} \to \mathbb{R}$; $x \mapsto x^3$, alors f est de classe C^{∞} sur \mathbb{R} et bijective. Mais son inverse $f^{-1}: \mathbb{R} \to \mathbb{R}$; $y \mapsto \sqrt[3]{y}$, n'est pas dérivable en 0 donc f n'est pas un C^{∞} -difféomorphisme.

2

1.1.1. Théorèmes d'inversion locale et globale

Théorème 1.4 (Théorème d'inversion locale). Soit U un ouvert de \mathbb{R}^n , $f: U \to \mathbb{R}^n$ une application de classe C^k et a un point de U. Si $d_a f$ est un isomorphisme, alors il existe un voisinage ouvert V de a et un voisinage ouvert A de A est un A

Théorème 1.5 (Théorème d'inversion globale). Soit U un ouvert de \mathbb{R}^n et $f:U\to\mathbb{R}^n$ une application de classe C^k . Si:

- (1) f est injective sur U,
- (2) $\forall x \in U, d_x f$ est un isomorphisme.

Alors f(U) est un ouvert de \mathbb{R}^n et $f:U\to f(U)$ est un C^k -difféomorphisme.

Démonstration. Soit $x \in U$, alors d'après le théorème d'inversion locale il existe un voisinage ouvert V_x de x et un voisinage ouvert $W_{f(x)}$ de f(x) tels que $f: V_x \to W_{f(x)}$ est un C^k -difféomorphisme. En particulier $W_{f(x)} = f(V_x)$, et on en déduit que

$$f(U) = \bigcup_{x \in U} W_{f(x)}$$

est un ouvert de \mathbb{R}^n comme union d'ouverts. De plus puisque f est injective sur U, on en déduit que f est bijective de U sur f(U). Enfin puisque la régularité est une notion locale f et f^{-1} sont respectivement de classe C^k sur U et f(U). Donc $f: U \to f(U)$ est un C^k -difféomorphisme.

Exemples 1.6.

- 1. On considère $f: \mathbb{R}^2 \to \mathbb{R}^2$; $(r, \theta) \mapsto (f_1, f_2) = (r \cos(\theta), r \sin(\theta))$, alors
 - a. f est de classe C^{∞} sur \mathbb{R}^2 puisque cos et sin sont de classe C^{∞} .
 - b. On pose $U :=]0, +\infty[\times] \pi, \pi[$, qui est un ouvert de \mathbb{R}^2 sur lequel f est injective.
 - c. Soit $(r, \theta) \in U$, alors

$$J_f(r,\theta) = \begin{pmatrix} \frac{\partial f_1}{\partial r} & \frac{\partial f_1}{\partial \theta} \\ \frac{\partial f_2}{\partial r} & \frac{\partial f_2}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{pmatrix}$$

et $\det(J_f(r,\theta)) = r\cos^2(\theta) + r\sin^2(\theta) = r > 0$, donc $d_{(r,\theta)}f$ est inversible.

Donc d'après le Théorème d'inversion globale $f: U \to f(U)$ est un C^{∞} -difféomorphisme.

- 2. On considère $f: \mathbb{R}^3 \to \mathbb{R}^3$; $(r, \theta, \varphi) \mapsto (f_1, f_2, f_3) = (r\cos(\theta)\cos(\varphi), r\sin(\theta)\cos(\varphi), r\sin(\varphi))$.
 - a. f est de classe C^{∞} sur \mathbb{R}^3 puisque cos et sin sont de classes C^{∞} .
 - b. On pose $U :=]0, +\infty[\times] \pi, \pi[\times] \frac{\pi}{2}, \frac{\pi}{2}[$, qui est un ouvert de \mathbb{R}^3 sur lequel f est injective.
 - c. Soit $(r, \theta, \varphi) \in U$, alors

$$\mathbf{J}_f(r,\theta,\varphi) = \begin{pmatrix} \cos(\theta)\cos(\varphi) & -r\sin(\theta)\cos(\varphi) & -r\cos(\theta)\sin(\varphi) \\ \sin(\theta)\cos(\varphi) & r\cos(\theta)\cos(\varphi) & -r\sin(\theta)\sin(\varphi) \\ \sin(\varphi) & 0 & r\cos(\varphi) \end{pmatrix}$$

et le déterminant de cette matrice est

$$\det(J_f(r,\theta,\varphi)) = \sin(\varphi) (r^2 \sin^2(\theta) \cos(\varphi) \sin(\varphi) + r^2 \cos^2(\theta) \cos(\varphi) \sin(\varphi))$$
$$+r \cos(\varphi) (r \cos^2(\theta) \cos^2(\varphi) + \sin^2(\theta) \cos^2(\varphi))$$
$$= \sin^2(\varphi) r^2 \cos(\varphi) + \cos^2(\varphi) r^2 \cos(\varphi) = r^2 \cos(\varphi) \neq 0$$

donc $d_{(r,\theta,\varphi)}f$ est inversible.

Donc d'après le Théorème d'inversion globale $f: U \to f(U)$ est un C^{∞} -difféomorphisme.

3. On pose $U := \mathbb{R}^2 \setminus \{(0,0)\}$ et on considère $f: U \to \mathbb{R}^2$; $(x,y) \mapsto (x^2 - y^2, 2xy)$, alors

- a. f est de classe C^{∞} sur U puisque f est polynômiale.
- c. Soit $(x, y) \in U$, alors

$$J_f(x,y) = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$$

et $det(J_f(x, y)) = 4(x^2 + y^2) > 0$ sur U, donc $d_{(x,y)}f$ est inversible.

Donc d'après le Théorème d'inversion locale $f:U\to\mathbb{R}^2$ est un C^∞ -difféomorphisme local en tout point de U. Mais f(-1,-1)=f(1,1), donc $f:U\to\mathbb{R}^2$ n'est pas C^∞ -difféomorphisme global.

b. On pose $U' := \{(x, y) \in U \mid x > 0\}$, qui est un ouvert de \mathbb{R}^2 sur lequel f est injective. En effet si $f(x_1, y_1) = f(x_2, y_2)$, alors on pose

$$\begin{cases} (x_1, y_1) = r_1(\cos(\theta_1), \sin(\theta_1)) \\ (x_2, y_2) = r_2(\cos(\theta_2), \sin(\theta_2)) \end{cases} \quad \text{où } r_1, r_2 > 0 \text{ et } \theta_1, \theta_2 \in] - \frac{\pi}{2}, \frac{\pi}{2}[$$

et on trouve

$$\begin{cases} r_1^2 \cos(2\theta_1) = r_2^2 \cos(2\theta_2) \\ r_1^2 \sin(2\theta_1) = r_2^2 \sin(2\theta_2) \end{cases} \Rightarrow \begin{cases} r_1 = r_2 \\ \theta_1 = \theta_2 \mod 2\pi \end{cases} \Rightarrow \begin{cases} r_1 = r_2 \\ \theta_1 = \theta_2 \end{cases}$$

donc $(x_1, y_1) = (x_2, y_2)$ et f est bien injective.

Donc d'après le Théorème d'inversion globale $f: U' \to f(U')$ est un C^{∞} -difféomorphisme.

1.1.2. Théorème des fonctions implicites

Théorème 1.7 (Théorème des fonctions implicites). Soit U un ouvert de $\mathbb{R}^p \times \mathbb{R}^q$, (a, b) un point de U et $f = (f_1, ..., f_q) : U \to \mathbb{R}^q$ une application de classe C^k . Si :

- (1) f(a,b) = 0
- (2) la jacobienne de f par rapport à la deuxième variable en (a, b) est inversible.

Alors il existe un voisinage ouvert V de a, un voisinage ouvert W de b, avec $V \times W \subset U$, et une application $\varphi: V \to W$ de classe C^{∞} qui vérifie $b = \varphi(a)$, tels que :

$$\begin{cases} (x,y) \in V \times W \\ f(x,y) = 0 \end{cases} \Longleftrightarrow \begin{cases} x \in V \\ y = \varphi(x) \end{cases}.$$

De plus pour tout $x \in V$, $\frac{d\varphi}{dx}(x) = -\left(\frac{df}{dy}(x,\varphi(x))\right)^{-1} \circ \frac{df}{dx}(x,\varphi(x))$.

Démonstration. On considère l'application

$$g: U \to \mathbb{R}^p \times \mathbb{R}^q; (x, y) \mapsto (x, f(x, y)).$$

Alors la matrice jacobienne de g en (a, b) est

$$J_g(a,b) = \begin{pmatrix} I_p & 0_q \\ & \frac{\mathrm{d}f}{\mathrm{d}y}(a,b) \end{pmatrix}$$

et son déterminant $det(J_g(a, b))$ est non nul par hypothèse.

Donc d'après le Théorème d'inversion locale il existe un voisinage ouvert U_1 de (a,b) et un voisinage ouvert U_2 de g(a,b)=(a,f(a,b)) tels que $g:U_1\to U_2$ est un C^k -difféomorphisme.

En particulier il existe $\psi: U_2 \to \mathbb{R}^q$ telle que pour tout $(x, y) \in U_2$ on a $g^{-1}(x, y) = (x, \psi(x, y))$.

On prend $V \times W \subset U_1$ et on pose $\varphi: V \to W; x \mapsto \psi(x,0)$, alors l'équivalence du théorème est bien vérifiée et il suffit de dériver pour obtenir l'égalité.

Exemples 1.8.

1. On considère $f: \mathbb{R}^2 \to \mathbb{R}$; $(x,y) \mapsto x^2 + y^2 - 1$ et $\mathbb{S}^1 := \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0\}$. Les dérivées partielles de f sont

$$\frac{\partial f}{\partial x}(x, y) = 2x \text{ et } \frac{\partial f}{\partial y}(x, y) = 2y.$$

On remarque que pour $(x, y) \in \mathbb{R}^2$ vérifiant

$$\begin{cases} (x,y) \in \mathbb{S}^1 \\ \frac{\partial f}{\partial y}(x,y) \neq 0 \end{cases} \Longleftrightarrow \begin{cases} (x,y) \in \mathbb{S}^1 \\ y \neq 0 \end{cases}$$

on a $(x, y) \in \mathbb{S}^1 \setminus \{(1, 0), (-1, 0)\}$. On peut donc appliquer le Théorème des fonctions implicites, au voisinage V de x, \mathbb{S}^1 est le graphe d'une application $\varphi:V\to\mathbb{R}$. De plus on a

$$\forall x \in V, x^2 + \varphi(x)^2 - 1 = 0$$

en dérivant on trouve

$$\forall x \in V, 2x + 2\varphi(x)\varphi'(x) = 0$$

et donc $\varphi'(x) = -\frac{x}{\varphi(x)}$. 2. On considère $f: \mathbb{R}^3 \to \mathbb{R}; (x,y,z) \mapsto x^2 + y^2 + z^2 - 1, \mathbb{S}^2 \coloneqq \{(x,y,z) \in \mathbb{R}^3 \mid f(x,y,z) = 0\}$. Les dérivées partielles de f sont

$$\forall a \in \{x, y, z\}, \frac{\partial f}{\partial a}(x, y, z) = 2a.$$

On remarque que pour $(x, y, z) \in \mathbb{R}^3$ vérifiant

$$\begin{cases} (x, y, z) \in \mathbb{S}^2 \\ \frac{\partial f}{\partial z}(x, y, z) \neq 0 \end{cases} \iff \begin{cases} (x, y, z) \in \mathbb{S}^2 \\ z \neq 0 \end{cases}$$
$$\iff \begin{cases} (x, y, z) \in \mathbb{S}^2 \\ (x, y, z) \neq (a, b, 0) \text{ où } (a, b) \in \mathbb{S}^1 \end{cases}$$

on a $(x, y, z) \in \mathbb{S}^2 \setminus (\mathbb{S}^1 \times \{0\})$. On peut donc appliquer le Théorème des fonctions implicites, au voisinage V de (x, y), \mathbb{S}^2 est le graphe d'une application $\varphi : V \to \mathbb{R}$. De plus on a

$$\forall (x, y) \in V, x^2 + y^2 + \varphi(x, y)^2 - 1 = 0$$

en dérivant par rapport à x on trouve

$$\forall (x, y) \in V, 2x + 2\frac{\partial f}{\partial x}(x, y)\varphi(x, y) = 0$$

donc $\frac{\partial f}{\partial x}(x,y) = -\frac{x}{\varphi(x,y)}$, et en dérivant par rapport à y on trouve

$$\forall (x,y) \in V, 2y + 2\frac{\partial f}{\partial y}(x,y)\varphi(x,y) = 0$$

donc
$$\frac{\partial f}{\partial y}(x, y) = -\frac{y}{\varphi(x, y)}$$
.

1.2. Sous-variétés de \mathbb{R}^n

1.2.1. Sous-variétés

Définition 1.9. Soit X une partie de \mathbb{R}^n . On dit que X est une sous-variété de \mathbb{R}^n de classe C^k et de dimension $d \in \mathbb{N}$ si pour tout $x \in X$, il existe un voisinage ouvert U dans \mathbb{R}^n , un voisinage ouvert V de X et un C^k -difféomorphisme $\varphi: U \to V$ tels que :

$$V \cap X = \varphi(U \cap (\mathbb{R}^d \times \{0\})).$$

On appelle *codimension* de X l'entier n - d.

Remarque 1.10. Une sous-variété de dimension 1 est une *courbe*, une sous-variété de dimension 2 est une *surface*, une sous-variété de dimension n-1 (codimension 1) est une *hypersurface*

Exemples 1.11.

- 1. Une courbe dans \mathbb{R}^2 est difféomorphe à un segment.
- 2. Un ouvert de \mathbb{R}^n est une sous-variété de dimension n.
- 3. On considère le cercle \mathbb{S}^1 , on pose $U' :=]0, +\infty[\times] \pi, \pi[, V = \mathbb{R}^2 \setminus \{] \infty, 0] \times \{0\}\}$, ainsi que $\psi : U' \to V; (r, \theta) \mapsto r(\cos(\theta), \sin(\theta))$ qui est un difféomorphisme de classe C^{∞} . On a

$$V \cap \mathbb{S}^1 = \mathbb{S}^1 \setminus \{(-1,0)\}$$
$$= \psi(\{1\} \times] - \pi, \pi[)$$
$$= \psi(U' \cap (\{1\} \times \mathbb{R}))$$

on prend alors $U:]-\pi,\pi[\times]0,+\infty[$ et $\varphi:U\to V;(\theta,r)\mapsto \psi(r+1,\theta),$ donc \mathbb{S}^1 est bien une sous-variété de \mathbb{R}^2 de classe C^∞ et de dimension 1.

Définition 1.12. Soit U un ouvert de \mathbb{R}^n , $a \in U$ et $f: U \to \mathbb{R}^p$ une application de classe C^k . On dit que f est une *immersion* en a si d_a f est injective.

Définition 1.13. Soit U un ouvert de \mathbb{R}^n , $a \in U$ et $f: U \to \mathbb{R}^p$ une application de classe C^k . On dit que f est une *submersion* en a si $d_a f$ est surjective.

Théorème 1.14. Soit X une partie de \mathbb{R}^n . Alors les conditions suivantes sont équivalentes :

- (1) Redressement: X est une sous-variété de \mathbb{R}^n classe C^k et de dimension $d \in \{0, ..., n\}$.
- (2) *Implicite*: Pour tout $a \in X$, il existe un voisinage ouvert U de a dans \mathbb{R}^n et $f: U \to \mathbb{R}^{n-d}$ une submersion en a de classe C^k tels que $U \cap X = f^{-1}(f(a))$.

Démonstration.

 $(1)\Rightarrow (2)$: Supposons que X est une sous-variété de \mathbb{R}^n de classe C^k et de dimension d. Soit $a\in X$, alors il existe un voisinage ouvert U dans \mathbb{R}^n , un voisinage ouvert V de a et un C^k -difféomorphisme $\varphi:U\to V$ tels que

$$V \cap X = \varphi(U \cap (\mathbb{R}^d \times \{0\})).$$

On écrit $\varphi^{-1} = (g_1, ..., g_d, f_1, ..., f_{n-d})$, alors

$$V \cap X = \{x \in V \mid f_1(x) = \dots = f_{n-d}(x) = 0\}.$$

On pose $f := (f_1, ..., f_{n-d})$, puisque φ est un difféomorphisme on en déduit que $d_a f$ est surjective, donc f est une submersion en a de classe C^k .

 $(2) \Rightarrow (1)$: Supposons que les hypothèses soient vérifiées. Sans perte de généralité, on suppose que f(a) = 0 et que $\det(J_f(a)) \neq 0$. On pose $\psi : V \to \mathbb{R}^n$ définie par

$$\psi(x_1, ..., x_n) = (x_1 - a_1, ..., x_d - a_d, f_1(x_{d+1}), ..., f_{n-d}(x_n))$$

alors $\det(J_{\psi}(a)) = \det(J_{f}(a)) \neq 0$, quitte à restreindre V, ψ est un C^{k} -difféomorphisme de V sur $U := \psi(V)$. En prenant $\varphi := \psi^{-1}$, on a bien

$$V \cap X = \varphi(U \cap (\mathbb{R}^d \times \{0\})).$$

Exemple 1.15. On considère le cercle \mathbb{S}^2 décrit par $f: \mathbb{R}^3 \to \mathbb{R}$; $(x,y,z) \mapsto x^2 + y^2 + z^2$. Alors f est de classe C^k sur \mathbb{R}^3 et $\det(\operatorname{Jac}_f) \neq 0$ sur \mathbb{S}^2 , donc f est une submersion en tout point de \mathbb{S}^2 . On en déduit que \mathbb{S}^2 est une sous-variété de \mathbb{R}^3 de classe C^k et de dimension 3-1=2.

1.2.2. Espace tangent à une sous-variété

Définition 1.16. Soit X une sous-variété de \mathbb{R}^n de classe C^k et de dimension d, $a \in X$ un point et v un vecteur de \mathbb{R}^n . On dit que v est *tangent* à X en a s'il existe $\varepsilon > 0$ et une courbe $\gamma :] - \varepsilon, \varepsilon[\to \mathbb{R}^n$ de classe C^k vérifiant :

- (1) $\gamma(0) = a$,
- (2) $\gamma'(0) = v$,
- (3) $\operatorname{im}(\gamma) \subset X$.

On appelle espace tangent à X en a, noté T_aX , l'ensemble des vecteurs tangents à X en a.

Exemples 1.17. Soit X une sous-variété de \mathbb{R}^n de classe C^k et de dimension d et $a \in X$ un point.

- 1. Le vecteur nul est tangent à X en tout point, avec $\gamma : t \mapsto a$.
- 2. Pour tout vecteur v tangent à X en a, pour tout $\lambda \in \mathbb{R}$, λv est tangent à X en a.
- 3. Si *X* est un ouvert de \mathbb{R}^n , alors pour tout $v \in \mathbb{R}^n$, v est tangent à *X* en a.
- 4. Si X est un point, alors le seul vecteur tangent à X en a est 0.

Théorème 1.18. Soit X une sous-variété de \mathbb{R}^n classe C^k et de dimension d et $a \in X$ un point. Alors l'espace tangent T_aX est un espace vectoriel de dimension d et on a les caractérisations :

- (1) S'il existe un voisinage ouvert U de \mathbb{R}^n , un voisinage ouvert V de a et un C^k -difféomorphisme $\varphi: U \to V$ vérifiant $V \cap X = \varphi(U \cap (\mathbb{R}^d \times \{0\}))$, alors $T_a X = d_{\varphi^{-1}(a)} \varphi(\mathbb{R}^d \times \{0\})$.
- (2) S'il existe un voisinage ouvert V de a et une submersion en $a f : V \to \mathbb{R}^{n-d}$ de classe C^k vérifiant $V \cap X = f^{-1}(f(a))$, alors $T_a X = \ker(d_a f)$.

Démonstration.

(1) Supposons sans perte de généralité que $\varphi^{-1}(a) = 0$. Soit $v \in T_aX$, alors il existe $\varepsilon > 0$ et une courbe $\gamma :] - \varepsilon, \varepsilon[\to V \cap X$ de classe C^k vérifiant $\gamma(0) = a$ et $\gamma'(0) = v$. On pose $\delta := \varphi^{-1}(\gamma)$, alors on a im $(\delta) \subset U \cap (\mathbb{R}^d \times \{0\})$, $\delta(0) = 0$ et

$$\delta'(t) = d_{\gamma(t)} \varphi^{-1}(\gamma'(t))$$

d'où $\delta'(0) = d_a \varphi^{-1}(v)$ et $v = d_a \varphi^{-1} \varphi(\delta'(0))$, donc $T_a X \subset d_a \varphi^{-1} \varphi(\mathbb{R}^d \times \{0\})$.

Réciproquement, on montre de la même manière que $d_a \varphi^{-1} \varphi(\mathbb{R}^d \times \{0\}) \subset T_a X$.

Donc $T_a X = d_a \varphi^{-1} \varphi(\mathbb{R}^d \times \{0\})$, on en déduit que $T_a X$ est un espace vectoriel de dimension d.

(2) Soit $v \in T_a X$, alors il existe $\varepsilon > 0$ et une courbe $\gamma :] - \varepsilon, \varepsilon [\to V \cap X$ de classe C^k vérifiant $\gamma(0) = a$ et $\gamma'(0) = v$. Soit $t \in] - \varepsilon, \varepsilon [$, alors

$$\gamma(t) \in V \cap X \Rightarrow (f \circ \gamma)(t) = f(a) \Rightarrow (f \circ \gamma)'(t) = 0$$

or $(f \circ \gamma)(t) = d_{\gamma(t)}f(\gamma'(t))$ et $d_a f(v) = 0$, donc $T_a X \subset \ker(d_a f)$. L'égalité des dimensions entraine l'égalité des espaces.

Remarque 1.19. S'il existe un voisinage ouvert V de a et une submersion en a $f: V \to \mathbb{R}^{n-d}$ de classe C^k vérifiant $V \cap X = f^{-1}(f(a))$, alors $T_a X = \text{Vect}(\nabla_{f_1}(a), ..., \nabla_{f_{n-d}}(a))^{\perp}$.

1.2.3. Extrema liés

Théorème 1.20 (Théorèmes des extrema liés). Soit X une sous-variété de \mathbb{R}^n de classe \mathbb{C}^k et de dimension $d, a \in X$ un point, U un ouvert de \mathbb{R}^n et $f: U \to \mathbb{R}$ une fonction de classe C^k . Si f restreinte à X admet un extremum local en a et s'il existe une submersion $g: U \to \mathbb{R}^{n-d}$ de classe C^k telle que, en notant $g = (g_1, ..., g_{n-d})$, on ait

$$X = \{x \in U \mid g_1(x) = \dots = g_{n-d}(x) = 0\}.$$

Alors il existe des uniques $\lambda_1, ..., \lambda_{n-d} \in \mathbb{R}$ tels que

$$\nabla_f(a) = \lambda_1 \nabla_{g_1}(a) + \dots + \lambda_{n-d} \nabla_{g_{n-d}}(a).$$

Ces réels sont appellés les multiplicateurs de Lagrange.

Exemple 1.21. On cherche les extrema de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$; $(x, y) \mapsto x + y$, que l'on restreint à l'ensemble $M := \{(x, y) \in \mathbb{R}^2 \mid x^4 + y^4 = 1\}.$

On remarque que M est une sous-variété de \mathbb{R}^2 de classe C^{∞} , en effet $f: \mathbb{R}^2 \to \mathbb{R}$; $(x,y) \mapsto x^4 + y^4$ est une submersion en tout point de M. Si $f|_{M}$ admet un extremum local en un point $(a,b) \in M$, alors il existe $\lambda \in \mathbb{R}$ tel que $\nabla(f)(a,b) = \lambda \nabla(g)(a,b)$. On a donc le système suivant

$$\begin{cases} 1 = \lambda 4a^3 \\ 1 = \lambda 4b^3 \end{cases}$$

et on en déduit que $\lambda \neq 0$ et $a^3 = b^3 = \frac{1}{4\lambda}$, d'où a = b. Comme $(a,b) \in M$ on a $a^4 + b^4 = 1$, d'où $2a^4 = 1$, donc $a = b = \pm \frac{1}{\sqrt[4]{2}}$. On a deux extrema possibles

$$m_1 := \left(\frac{1}{\sqrt[4]{2}}, \frac{1}{\sqrt[4]{2}}\right)$$
 et $m_2 := \left(-\frac{1}{\sqrt[4]{2}}, -\frac{1}{\sqrt[4]{2}}\right)$

comme f est continue et M est compact (comme fermé borné de \mathbb{R}^2), f admet au moins un minimum global et un maximum global, elle en a donc exactement deux : m_1 et m_2 .

On a $f(m_1) = -f(m_2) = \frac{2}{\sqrt[4]{2}}$, donc f atteint son minimum en m_2 et son maximum en m_1 .

2. Équations différentielles

2.1. Équations différentielles du premier ordre

Définition 2.1. Soit U un ouvert de $\mathbb{R} \times \mathbb{R}^n$ et $f: U \to \mathbb{R}^n$ une fonction continue. On appelle équation différentielle d'ordre 1 dans \mathbb{R}^n , notée (E), une équation de la forme suivante :

$$y' = f(t, y)$$

on dit que t est la variable de temps et que y est la variable d'état.

Définition 2.2. Soit (E) une équation différentielle d'ordre 1. On appelle *solution* de (E) sur un intervalle I de \mathbb{R} une fonction $y: I \to \mathbb{R}^n$ dérivable vérifiant :

- (1) $\forall t \in I, (t, y(t)) \in U$,
- (2) $\forall t \in I, y'(t) = f(t, y(t)).$

Remarque 2.3. Dans le cas où I n'est pas ouvert, la dérivabilité s'entend comme la dérivabilité à droite ou à gauche (selon l'extrémité).

Exemples 2.4.

- 1. On considère l'équation différentielle d'ordre 1 donnée par y' = y. La fonction $t \mapsto e^t$ est une solution de cette équation sur]1, 2[.
- 2. L'équation donnée par $y' = y^2 + t$ est une équation différentielle d'ordre 1 sur \mathbb{R} .
- 3. L'équation donnée par $y' = \frac{y+1}{t \ln(t)}$ est une équation différentielle d'ordre 1 sur \mathbb{R} . La fonction $t \mapsto -1 + \ln(t)$ est une solution de cette équation sur]0,1[.

Définition 2.5. Soit (E) une équation différentielle d'ordre 1 et $(t_0, y_0) \in \mathbb{R} \times \mathbb{R}^n$. On appelle *problème de Cauchy de condition initiale* $y(t_0) = y_0$ le système composé des équations (E) et $y(t_0) = y_0$.

Exemple 2.6. La fonction $y : \mathbb{R} \to \mathbb{R}$; $t \mapsto 2e^{-t}$ est une solution de l'équation différentielle y' = -y de condition initiale y(0) = 2.

Définition 2.7. Soit (E) une équation différentielle d'ordre 1. Soit M un point de U, on note \mathcal{D}_M la droite passant par M et de coefficient directeur f(M). On appelle *champ des tangentes* l'application $M \mapsto \mathcal{D}_M$ associée à (E). On appelle *courbe intégrale* une courbe \mathcal{C} de $\mathbb{R} \times \mathbb{R}$ qui a pour tangente en chaque point M la droite \mathcal{D}_M du champ des tangentes.

Remarque 2.8. Soit $(x_0, y_0) \in \mathbb{R} \times \mathbb{R}$. Alors $\mathcal{D}_{(x_0, y_0)}$ a pour équation $y - y_0 = f(x_0, y_0)(x - x_0)$.

Exemples 2.9.

- 1. On considère l'équation différentielle y'=0, ici $f\equiv 0$. Soit $M:=(x_0,y_0)\in \mathbb{R}\times \mathbb{R}$. Alors \mathcal{D}_M est la droite d'équation $y=y_0$ et les courbes intégrales sont les droites \mathcal{D}_M .
- 2. On considère l'équation différentielle y'=y, ici f(x,y)=y. Soit $M:=(x_0,y_0)\in\mathbb{R}\times\mathbb{R}$. Alors \mathcal{D}_M est la droite d'équation $y=y_0+y_0(x-x_0)$.

Proposition 2.10. Soit (E) une équation différentielle d'ordre 1 et $y: I \to \mathbb{R}^n$ une solution de (E). Alors le graphe de y est une courbe intégrale.

Démonstration. Soit $M=(x_0,y_0)$ un point du graphe de y. L'équation de la tangente au graphe en M est donnée par :

$$y - y_0 = y'(x_0)(x - x_0) = f(x_0, y_0)(x - x_0)$$

on reconnait l'équation de \mathcal{D}_M .

Définition 2.11. Soit (E) une équation différentielle d'ordre 1 et $m \in \mathbb{R}$. On appelle *isocline de pente m associée* à (E), l'ensemble :

$$\Gamma_m := \{(x, y) \in U \mid f(x, y) = m\}.$$

2.1.1. Solutions maximales et solutions globales

Définition 2.12. Soit (E) une équation différentielle d'ordre 1, et $y_1: I_1 \to \mathbb{R}^n$ et $y_2: I_2 \to \mathbb{R}^n$ deux solutions de (E). On dit que y_2 est un *prolongement de* y_1 si $I_1 \subset I_2$ et $y_2|_{I_1} = y_1$.

Définition 2.13. Soit (E) une équation différentielle d'ordre 1 et $y: I \to \mathbb{R}^n$ une solution de (E). On dit que y est *maximale* si elle n'admet pas de prolongement.

Exemple 2.14. On considère l'équation différentielle d'ordre 1 donnée par $y' = y^2$. Alors une solution maximale est $t \mapsto \frac{1}{1-t} \text{ sur }]-\infty, 1[$.

Théorème 2.15. Soit (E) une équation différentielle d'ordre 1 et $y: I \to \mathbb{R}^n$ une solution de (E). Alors y admet un prolongement maximal.

Démonstration. On prolonge successivement y à gauche et à droite en créant par récurrence des prolongements successifs et en passant à la limite.

Définition 2.16. Soit (E) une équation différentielle d'ordre 1 et $y: I \to \mathbb{R}^n$ une solution de (E). On suppose que U s'écrit $U = J \times K$ où J est un ouvert de \mathbb{R} et K un ouvert de \mathbb{R}^n . Alors on dit que y est globale si I = J.

Proposition 2.17. Soit (E) une équation différentielle d'ordre 1 et $y: I \to \mathbb{R}^n$ une solution de (E). Si y est une solution globale, alors y est une solution maximale.

Proposition 2.18. Soit (E) une équation différentielle d'ordre 1 et $y: I \to \mathbb{R}^n$ une solution de (E). Si f est de classe C^k , alors y est de classe C^{k+1} .

Démonstration. Soit $n \in \{0, ..., k-1\}$. On pose P(n): y est de classe C^n .

Pour n = 0, par définition y est dérivable, donc y est continue.

Pour $n \in \{0, ..., k\}$, on suppose que P(n) est vérifiée, y est de classe C^n , alors y' = f(x, y) est de classe C^n par composition de fonctions de classe C^n , donc y est de classe C^{n+1} .

D'après P(k+1), y est de classe C^{k+1} .

2.1.2. Équations intégrales et cylindre de sécurité

Lemme 2.19. Soit (E) une équation différentielle d'ordre 1 et $y: I \to \mathbb{R}^n$ une fonction. Alors y est une solution du problème de Cauchy de condition initiale $y(t_0) = y_0$ si et seulement si :

- (1) y est continue et $\forall t \in I, (t, y(t)) \in U$,
- (2) $\forall t \in I, y(t) = y_0 + \int_{t_0}^t f(x, y(x)) dx.$

Démonstration.

 \Rightarrow : Supposons que y est solution du problème de Cauchy de condition initiale $y(t_0)=y_0$. Alors y est dérivable donc continue et $\forall t \in I, (t,y(t)) \in U$. Soit $t \in I$, d'après le théorème fondamental de l'analyse en intégrant l'égalité y'=f(t,y) on obtient :

$$y(t) - y(t_0) = \int_{t_0}^{t} f(x, y(x)) dx$$

puisque y est solution du problème de Cauchy de condition initiale $y(t_0) = y_0$, on a :

$$y(t) = y_0 + \int_{t_0}^t f(x, y(x)) dx.$$

⇐ : Supposons les hypothèses de l'énoncé vérifiées.

Puisque y et f sont continues, d'après le théorème fondamental de l'analyse $t \mapsto \int_{t_0}^t f(x, y(x)) dx$ est dérivable, donc y est dérivable et $\forall t \in I, (t, y(t)) \in U$. Soit $t \in I$, en dérivant on obtient :

$$y'(t) = f(t, y(t))$$

et $y(t_0) = y_0 + \int_{t_0}^{t_0} f(x, y(x)) dx = y_0$. Donc y est solution du problème de Cauchy de condition initiale $y(t_0) = y_0$

Définition 2.20. Soit (E) une équation différentielle d'ordre 1, (t_0, y_0) un point de U et $C = [t_0 - T, t_0 + T] \times B(y_0, r)$ un cylindre dans U. On dit que C est un *cylindre de sécurité* si toute solution $y: I \to \mathbb{R}^n$ du problème de Cauchy de condition initiale $y(t_0) = y_0$ avec $I \subset [t_0 - T, t_0 + T]$ reste contenue dans $\overline{B}(y_0, r)$.

Proposition 2.21. Soit (*E*) une équation différentielle d'ordre 1 et (t_0, y_0) un point de *U*. Alors il existe T > 0 tel que $C = [t_0 - T, t_0 + T] \times B(y_0, r)$ soit un cylindre de sécurité.

Démonstration. Considérons un cylindre $C_0 := [t_0 - T_0, t_0 + T_0] \times B(y_0, r_0)$ dans U. Alors C_0 est fermé et borné, donc C_0 est compact. Puisque f est C^0 sur C_0 , on obtient que f est bornée sur C_0 , on note $M := \max_{(t,y) \in C_0} \|f(t,y)\| \in \mathbb{R}$.

On suppose que f n'est pas identiquement nulle sur C_0 , donc M > 0. Et on pose $T := \min(T_0, \frac{r_0}{M})$, $r := r_0$ et $C := [t_0 - T, t_0 + T] \times \overline{B}(y_0, r)$.

Soit $y: I \to \overline{B}(y_0, r)$ une solution du problème de Cauchy de condition initiale $y(t_0) = y_0$ avec $I \subset [t_0 - T, t_0 + T]$. Alors pour tout $t \in I$, on a :

$$\|y(t) - y_0\| = \left\| \int_{t_0}^t f(x, y(x)) \, \mathrm{d}x \right\| \le \int_{t_0}^t \|f(x, y(x))\| \, \mathrm{d}x \le M|t - t_0| \le r$$

Donc *C* est un cylindre de sécurité pour (*E*).

2.1.3. Théorème de Cauchy-Péano-Arzéla

Théorème 2.22 (Théorème de Cauchy-Péano-Arzéla). Soit (E) une équation différentielle d'ordre $1, (t_0, y_0)$ un point de U et $C = [t_0 - T, t_0 + T] \times B(y_0, r)$ un cylindre de sécurité. Alors il existe une solution $y : [t_0 - T, t_0 + T] \to \overline{B}(y_0, r)$ du problème de Cauchy de condition initiale $y(t_0) = y_0$.

Corollaire 2.23. Soit (E) une équation différentielle d'ordre 1 et (t_0, y_0) un point de U. Alors il existe une solution maximale $y: I \to \mathbb{R}^n$ du problème de Cauchy de condition initiale $y(t_0) = y_0$, de plus I est ouvert.

Démonstration. D'après la Proposition 2.21 il existe un cylindre de sécurité $C := [t_0 - T, t_0 + T] \times \overline{B}(y_0, r)$, d'après le Théorème de Cauchy-Péano-Arzéla il existe une solution $z : [t_0 - T, t_0 + T] \to \overline{B}(y_0, r)$ du problème de Cauchy de condition initiale $y(t_0) = y_0$, enfin d'après le Théorème 2.15 la solution z se prolonge en une solution maximale $y : I \to \mathbb{R}^n$.

De plus I est ouvert, sinon on pourrait prolonger y en l'une de ses extrémités en y appliquant de nouveau la Proposition 2.21 et le Théorème de Cauchy-Péano-Arzéla.

Exemple 2.24. On considère l'équation différentielle d'ordre $1 \ y' = 3|y|^{\frac{2}{3}}$, alors le problème de Cauchy de condition initiale y(0) = 0 admet au moins deux solutions maximales $t \mapsto 0$ et $t \mapsto t^3$, en particulier ces solutions sont globales.

2.1.4. Théorème de Cauchy-Lipschitz

Définition 2.25. Soit (E) une équation différentielle d'ordre 1. On dit que f est *localement lipschitzienne* par rapport à la deuxième variable si pour tout point $y(t_0) = y_0$ dans U, il existe un cylindre $C = [t_0 - T, t_0 + T] \times B(y_0, r)$ dans U et une constante $k \ge 0$ tels que f soit k-lipschitzienne par rapport à la deuxième variable sur C:

$$\forall (t, y_1), (t, y_2) \in C, ||f(t, y_1) - f(t, y_2)|| \le k|y_1 - y_2|.$$

Remarque 2.26. On considère $f = (f_1, ..., f_n)$. Si f admet des dérivées partielles par rapport à la deuxième variable continues sur U. Alors en appliquant le théorème des accroissements finis on obtient que f est localement lipschitzienne par rapport à la deuxième variable. Cela est vrai en particulier si f est C^1 .

Lemme 2.27. Soit (E) une équation différentielle d'ordre 1, (t_0, y_0) un point de U et $C_0 = [t_0 - T, t_0 + T] \times B(y_0, r)$ un cylindre de sécurité sur lequel f est k-lipschitzienne par rapport à la deuxième variable. Alors pour tout couple $y_1 : I_1 \to \mathbb{R}^n, y_2 : I_2 \to \mathbb{R}^n$ de solutions du problème de Cauchy de condition initiale $y(t_0) = y_0$, on a

$$\forall t \in [t_0 - T, t_0 + T], y_1(t) = y_2(t).$$

Démonstration. On suppose que $t_0 = 0$ et on se restreint à [0, T]. Pour tout $t \in [0, T]$, on pose :

$$v(t) := \int_0^t \|y_1(x) - y_2(x)\| \, \mathrm{d}x$$

puisque f est k-lipschitzienne par rapport à la deuxième variable, on a :

$$||y_1'(t) - y_2'(t)|| = ||f(t, y_1(t)) - f(t, y_2(t))|| \le k||y_1(t) - y_2(t)||$$

puisque $y_1(0) = y_2(0) = y_0$, on a :

$$y_1(t) - y_2(t) = \int_0^t y_1'(x) - y_2'(x) dx$$

on en déduit $v'(t) \le kv(t)$, en particulier :

$$(v'(t) - kv(t))e^{-kt} \le 0$$

en intégrant cette inégalité entre 0 et t, on obtient :

$$v(t)e^{-kt} \leq 0$$

donc
$$v(t) \le 0$$
 et $v(t) = 0$, d'où $y_1(t) = y_2(t)$.

Théorème 2.28 (Théorème de Cauchy-Lipschitz). Soit (E) une équation différentielle d'ordre 1 et (t_0, y_0) un point de U. Si f est localement lipschitzienne par rapport à la deuxième variable, alors pour tout cylindre de sécurité $C = [t_0 - T, t_0 + T] \times B(y_0, r)$, le problème de Cauchy de condition initiale $y(t_0) = y_0$ admet une unique solution sur $[t_0 - T, t_0 + T]$.

Démonstration. Soit $y_1, y_2 : [t_0 - T, t_0 + T] \to \overline{B}(y_0, r)$ deux solutions du problème de Cauchy de condition initiale $y(t_0) = y_0$. Alors d'après le Lemme 2.27, on a $y_1 = y_2$.

Théorème 2.29. Soit (*E*) une équation différentielle d'ordre 1, $y_1: I \to \mathbb{R}^n$ et $y_2: I \to \mathbb{R}^n$ deux solutions de (*E*). Si *f* est localement lipschitzienne par rapport à la deuxième variable et s'il existe $t_0 \in I$ tel que $y_1(t_0) = y_2(t_0)$, alors $y_1 = y_2$.

Démonstration. On pose $J := (y_1 - y_2)^{-1}(0)$. Puisque y_1 et y_2 sont continues, J est un fermé de I. Soit $s_0 \in J$, alors d'après le Théorème de Cauchy-Lipschitz, il existe S tel que y_1 et y_2 coïncident sur l'intervalle $[s_0 - S, s_0 + S]$, donc J est un ouvert de I.

Puisque $t_0 \in J, J$ est non-vide, de plus I est connexe. Donc puisque J est ouvert et fermé, J = I. \square

Corollaire 2.30. Soit (E) une équation différentielle d'ordre 1 et (t_0, y_0) un point de U. Si f est localement lipschitzienne par rapport à la deuxième variable, alors il existe une unique solution maximale du problème de Cauchy de condition initiale $y(t_0) = y_0$.

Démonstration. Le Corollaire 2.23 donne l'existence d'une solution maximale du problème de Cauchy de condition initiale $y(t_0) = y_0$ et le Théorème 2.29 donne l'unicité de cette solution.

2.1.5. Théorème des bouts

Théorème 2.31. Soit (E) une équation différentielle d'ordre 1 et $y:]c, d[\to \mathbb{R}^n$ une solution maximale de (E). Si f est localement lipschitzienne par rapport à la deuxième variable, alors pour tout compact $K \subset U$, il existe un voisinage $V \subset]c, d[$ de c tel que :

$$\forall t \in V, (t, y(t)) \notin K$$

et un voisinage $W \subset]c, d[$ de d tel que :

$$\forall t \in W, (t, y(t)) \notin K.$$

Corollaire 2.32 (Théorème des bouts). Soit (E) une équation différentielle d'ordre 1 sur $U :=]a, b[\times \mathbb{R}^n$ et $y :]c, d[\to \mathbb{R}^n$ une solution maximale de (E). Si c > a, alors on a :

$$\lim_{t \to c^+} \|y(t)\| = +\infty$$

et si d < b, alors on a :

$$\lim_{t \to d^{-}} \|y(t)\| = +\infty.$$

En particulier si y est bornée, alors a = c et d = b.

Démonstration. Supposons sans perte de généralité que c > a. Pour tout r > 0, la boule fermée $\overline{B}(0,r)$ est compacte, donc d'après le Théorème 2.31, il existe un voisinage $V \subset]c,d[$ de c tel que :

$$\forall t \in V, (t, y(t)) \notin \overline{B}(0, r)$$

Donc $\lim_{t\to c^+} ||y(t)|| = +\infty$.

Corollaire 2.33. Soit (E) une équation différentielle d'ordre 1 sur $U :=]a, b[\times \mathbb{R}^n$ et $y :]c, d[\to \mathbb{R}^n$ une solution maximale de (E). Si f est bornée, alors y est une solution globale.

Démonstration. On pose $M := \sup_{(t,y) \in U} \|f(t,y)\|$. Supposons par l'absurde que c > a, donc $c > +\infty$. Soit $t_0 \in]c, d[$. Pour tout $t \in]c, t_0[$, on a :

$$\begin{aligned} \|y(t)\| &= \left\| y(t_0) + \int_{t_0}^t f(x, y(x)) \, \mathrm{d}x \right\| \\ &\leq \|y(t_0)\| + \int_{t_0}^t \|f(x, y(x))\| \, \mathrm{d}x \\ &\leq \|y(t_0)\| + M\|t - t_0\| \leq \|y(t_0)\| + M\|c - t_0\| \in \mathbb{R} \end{aligned}$$

Or d'après le Théorème des bouts, on a $\lim_{t\to c^+} \|y(t)\| = +\infty$, d'où une contradiction, donc c=a. De la même manière on a d=b. Donc y est une solution globale.

2.2. Équations différentielles linéaires du premier ordre

Définition 2.34. Soit *I* un intervalle de \mathbb{R} , $A:I\to M_n(\mathbb{R})$ et $A:I\to M_n(\mathbb{R})$ deux fonctions continues. On appelle équation différentielle linéaire d'ordre 1, notée (L), une équation différentielle d'ordre 1 de la forme suivante :

$$y' = A(t)y + B(t).$$

Théorème 2.35. Soit (*L*) une équation différentielle linéaire d'ordre 1 et (t_0, y_0) un point de $I \times \mathbb{R}^n$. Alors il existe une unique solution maximale du problème de Cauchy de condition initiale $y(t_0)$ = y_0 , de plus cette solution est globale.

Démonstration. On pose $f: I \times \mathbb{R}^n \to M_n(\mathbb{R}); (t,y) \mapsto A(t)y + B(t)$. Alors la fonction f est linéaire et continue, donc f est lipschitzienne, d'après le Corollaire 2.30 il existe une unique solution maximale $y: J \to \mathbb{R}^n$ du problème de Cauchy de condition initiale $y(t_0) = y_0$.

On peut montrer que y est bornée (Lemme de Grönwall), donc d'après le Théorème des bouts Y est une solution globale.

Définition 2.36. Soit (L) une équation différentielle linéaire d'ordre 1. On dit que (L) est homogène si B = 0.

Proposition 2.37. Soit (*L*) une équation différentielle linéaire d'ordre 1 homogène. Alors l'ensemble des solutions maximales de l'équation est un \mathbb{R} -espace vectoriel de dimension n.

Démonstration. On note $S \subset C^0(I, \mathbb{R}^n)$ l'ensemble des solutions maximales de (L).

- D'après le Théorème de Cauchy-Péano-Arzéla S est non-vide.
- Soit $y_1, y_2 \in S$ et $\lambda_1, \lambda_2 \in \mathbb{R}$, alors $\lambda_1 y_1 + \lambda_2 y_2 \in S$.

Donc S est un \mathbb{R} -espace vectoriel. Soit $t_0 \in I$, on pose $\varphi_{t_0} : S \to \mathbb{R}^n$; $y \mapsto y(t_0)$. L'application φ_{t_0} est linéaire, d'après le Théorème de Cauchy-Péano-Arzéla elle est surjective et d'après le Théorème de Cauchy-Lipschitz elle est injective. Donc φ_{t_0} est un isomorphisme et $\dim(S) = \dim(\mathbb{R}^n) = n$.

Corollaire 2.38. Soit (L) une équation différentielle linéaire d'ordre 1 et $y_0: I \to \mathbb{R}^n$ une solution globale de (L). On note S l'ensemble des solutions maximales de l'équation homogène associée à (L). Alors l'ensemble des solutions de (L) est $y_0 + S$.

Démonstration. Soit $y_1: I \to \mathbb{R}^n$ une solution globale de (L), alors $y_1 - y_0$ est solution de l'équation homogène associée à (L) donc $y_1 - y_0 \in S$, d'où $y_1 \in y_0 + S$.

2.3. Équations différentielles d'ordre supérieur

Définition 2.39. Soit U un ouvert de $\mathbb{R} \times (\mathbb{R}^n)^p$ et $f: U \to \mathbb{R}^n$ une fonction continue. On appelle équation différentielle d'ordre p, notée (E_p) , une équation de la forme suivante :

$$y^{(p)} = f(t, y, y', ..., y^{(p-1)}).$$

Définition 2.40. Soit (E_p) une équation différentielle d'ordre p. On appelle solution de (E_p) sur un intervalle I de \mathbb{R} une fonction $y:I\to\mathbb{R}^n$ p-fois dérivable vérifiant :

- (1) $\forall t \in I, (t, y(t), y'(t), ..., y^{(p-1)}(t)) \in U,$ (2) $\forall t \in I, y^{(p)} = f(t, y(t), y'(t), ..., y^{(p-1)}(t)).$

Proposition 2.41. Soit (E_p) une équation différentielle d'ordre p et $y: I \to \mathbb{R}^n$ une solution de (E_p) . Si f est de classe C^k , alors y est de classe C^{k+p} .

Démonstration. Voir Proposition 2.18.

Proposition 2.42. Soit (E_p) une équation différentielle d'ordre p et $y: I \to \mathbb{R}^n$ une fonction. Posons :

$$Y := \begin{pmatrix} Y_0 \\ Y_1 \\ \dots \\ Y_{p-1} \end{pmatrix} = \begin{pmatrix} y \\ y' \\ \dots \\ y^{(p-1)} \end{pmatrix}$$

Alors y est une solution de (E_p) si et seulement Y est une solution de (E) l'équation différentielle d'ordre 1 donnée par :

$$Y' = \begin{pmatrix} Y_1 \\ \dots \\ Y_{p-1} \\ f(t, Y) \end{pmatrix}$$

Démonstration.

 \Rightarrow : Supposons que y est solution de (E_p) . On a alors:

$$Y' = \begin{pmatrix} y' \\ y'' \\ \dots \\ y^{(p)} \end{pmatrix} = \begin{pmatrix} Y_1 \\ \dots \\ Y_{p-1} \\ f(t, Y) \end{pmatrix}$$

Donc Y est solution de (E).

 \Leftarrow : Supposons que Y est solution de (E). Alors Y est dérivable, donc pour tout $i \in \{0, ..., p-1\}$, la fonction $y^{(i)}$ est dérivable. En particulier la fonction y est p-fois dérivable, avec $y^p = f(t, Y)$. Donc y est solution de (E_p) .

Corollaire 2.43. Soit (E_p) une équation différentielle d'ordre p et $(t_0, y_0, ..., y_{p-1})$ un point de U. Alors il existe une solution maximale $y: I \to \mathbb{R}^n$ du problème de Cauchy de condition initiale $y(t_0) = (y_0, ..., y_{p-1})$ définie sur un ouvert I.

Corollaire 2.44. Soit (E_p) une équation différentielle d'ordre p et $(t_0, y_0, ..., y_{p-1})$ un point de U. Si f est localement lipschitzienne par rapport à la deuxième variable, alors il existe une unique solution maximale $y: I \to \mathbb{R}^n$ du problème de Cauchy de condition initiale $y(t_0) = (y_0, ..., y_{p-1})$ définie sur un ouvert I.

2.4. Solutions d'équations différentielles linéaires à coefficients constants

Définition 2.45. Soit (L) une équation différentielle linéaire d'ordre 1. On dit que (L) est à *coefficients constants* si $A \in M_n(\mathbb{R})$.

2.4.1. Solutions exponentielles d'équations homogènes

Proposition 2.46. Soit (L) une équation différentielle linéaire d'ordre 1 homogène à coefficients constants. Alors la fonction $y: I \to \mathbb{R}^n$; $t \mapsto e^{\lambda t}v$ est solution de (L) si et seulement si λ est une valeur propre de A et v est un vecteur propre de A associé à λ .

Démonstration. Pour tout $t \in I$, on a $y'(t) = \lambda e^{\lambda t}v$, donc y est solution de (L) si et seulement si $\lambda e^{\lambda t}v = Ae^{\lambda t}v$, si et seulement si $\lambda v = Av$, si et seulement si λ est une valeur propre de A et v est un vecteur propre de A associé à λ .

2.4.1.1. Cas diagonalisable

Proposition 2.47. Soit (L) une équation différentielle linéaire d'ordre 1 homogène à coefficients constants. Si A est diagonalisable, il existe une base $(v_1,...,v_n)$ de \mathbb{R}^n de vecteurs propres de A associées aux valeurs propres $(\lambda_1,...,\lambda_n)$ de A. Alors pour tout $i \in \{1,...,n\}$, la fonction $y_i:I \to \mathbb{R}^n; t \mapsto e^{\lambda_i t} v_i$ est une solution de (L), de plus ces solutions sont indépendantes.

Démonstration. Pour tout $i \in \{1, ..., n\}$, d'après la Proposition 2.46 la fonction y_i est solution de (L). Soit $\alpha_1, ..., \alpha_n \in \mathbb{R}$ tels que $\alpha_1 y_1 + ... + \alpha_n y_n = 0$. Alors on a :

$$\forall t \in I, \sum_{k=0}^{n} \alpha_k e^{\lambda_k t} v_k = 0$$

puisque $(v_1, ..., v_n)$ est une base de \mathbb{R}^n , on a donc $\alpha_1 = ... = \alpha_n = 0$. Donc les solutions sont indépendantes.

Corollaire 2.48. Soit (L) une équation différentielle linéaire d'ordre 1 homogène à coefficients constants. Si A est diagonalisable, il existe une base $(v_1, ..., v_n)$ de \mathbb{R}^n de vecteurs propres de A associées aux valeurs propres $(\lambda_1, ..., \lambda_n)$ de A. Alors la solution générale de (L) est donnée par :

$$y: I \to \mathbb{R}^n; t \mapsto c_1 e^{\lambda_1 t} v_1 + \dots + c_n e^{\lambda_n t} v_n$$

où $c_1, ..., c_n \in \mathbb{R}$.

2.4.1.2. Cas général

Théorème 2.49. Soit (L) une équation différentielle linéaire d'ordre 1 homogène à coefficients constants. Alors la solution générale de (L) est donnée par :

$$y: I \to \mathbb{R}^n; t \mapsto e^{tA}v$$

où $v \in \mathbb{R}^n$.

Démonstration. Pour tout $t \in I$, on a $y'(t) = Ae^{tA}v = Ay(t)$, donc y est solution de (L). Notons $v_1(t), ..., v_n(t)$ les colonnes de e^{tA} , la fonction associée à chacune de ces colonnes est solution de (L). De plus $\det(e^{tA}) = e^{\operatorname{Tr}(tA)} \neq 0$, donc $(v_1(t), ..., v_n(t))$ forme une base de \mathbb{R}^n , on en déduit que $(v_1, ..., v_n)$ forme une base de l'espace des solutions de (L). □

Corollaire 2.50. Soit (L) une équation différentielle linéaire d'ordre 1 homogène à coefficients constants et (t_0, v_0) un point de U. Alors la solution du problème de Cauchy de condition initiale $y(t_0) = v_0$ est donnée par :

$$y: I \to \mathbb{R}^n; t \mapsto e^{(t-t_0)A}v_0$$

2.4.2. Solutions exponentielles

Théorème 2.51. Soit (L) une équation différentielle linéaire d'ordre 1 à coefficients constants. Alors la solution générale de (L) est donnée par :

$$y: I \to \mathbb{R}^n; t \mapsto e^{tA}v + T(t)$$

où $v \in \mathbb{R}^n$ et $T: I \to \mathbb{R}^n$ est une solution particulière de (L).

Remarque 2.52. Soit (L) une équation différentielle linéaire d'ordre 1 à coefficients constants. Pour trouver une solution particulière, on applique la méthode de *variation de la constante*. Pour tout $t \in I$, on pose :

$$T(t) = e^{tA}v(t)$$

et on dérive pour obtenir :

$$T'(t) = e^{tA}Av(t) + e^{tA}v'(t) = AT(t) + e^{tA}v'(t)$$

on cherche donc $e^{tA}v'(t) = B(t)$, c'est-à-dire $v'(t) = e^{-tA}B(t)$, et on intègre pour trouver :

$$v(t) = \int_{t_0}^{t} e^{-xA} B(x) \, \mathrm{d}x$$

donc:

$$T(t) = e^{tA} \int_{t_0}^t e^{-xA} B(x) dx$$

est une solution particulière de (L), qui vérifie le problème de Cauchy $T(t_0) = 0$.

Exemples 2.53.

1. On considère le système différentiel linéaire à coefficients constants (S) donné par :

$$\begin{cases} x' = x + 2y \\ y' = 2x + y \end{cases}$$

On écrit le système sous la forme Y' = AY, où :

$$Y := \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $A := \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

La matrice A est diagonalisable car symétrique, avec comme polynôme caractéristique :

$$\chi_A = (X+1)(X-3)$$

donc ses valeurs propres sont −1 et 3. Et ses espaces propres sont donnés par :

$$E_{-1} = \operatorname{Vect}\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)$$
 et $E_3 = \operatorname{Vect}\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right)$

Les solutions de (*S*) sont donc de la forme :

$$Y(t) = ae^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + be^{3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

c'est-à-dire:

$$\begin{cases} x = ae^{-t} + be^{3t} \\ y = -ae^{-t} + be^{3t} \end{cases}$$

où $a, b \in \mathbb{R}$.

2. On considère le système différentiel linéaire à coefficients constants (S) donné par :

$$\begin{cases} x' = 2x + y \\ y' = 2y \end{cases}$$

On écrit le système sous la forme Y' = AY, où :

$$Y := \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $A := \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$

La matrice A n'est pas diagonalisable. On écrit $A = 2I_2 + R$, où :

$$R := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

en passant à l'exponentielle on trouve :

$$e^{tA} = e^{2t}e^{tR}$$

mais $R^2 = 0$, d'où $e^{tR} = I_2 + tR$, et on obtient :

$$e^{tA} = \begin{pmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{pmatrix}$$

Les solutions de (S) sont donc de la forme :

$$Y(t) = e^{tA} \binom{a}{b} = \binom{ae^{2t} + bte^{2t}}{be^{2t}}$$

c'est-à-dire:

$$\begin{cases} x = ae^{2t} + bte^{2t} \\ y = be^{2t} \end{cases}$$

où $a, b \in \mathbb{R}$.

3. On considère le système différentiel linéaire à coefficients constants (S) donné par :

$$\begin{cases} x' = 6x + 3y - 3t + 4e^{3t} \\ y' = -4x - y + 4t - 4e^{3t} \end{cases}$$

On écrit le système sous la forme Y' = AY + B(t), où :

$$Y := \begin{pmatrix} x \\ y \end{pmatrix}, A := \begin{pmatrix} 6 & 3 \\ -4 & -1 \end{pmatrix}$$
 et $B(t) = \begin{pmatrix} -3t + 4e^{3t} \\ 4t - 4e^{3t} \end{pmatrix}$

On trouve que les solutions du système homogène associé à (S) sont de la forme :

$$Y(t) = ae^{3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + be^{2t} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

c'est-à-dire:

$$\begin{cases} x = ae^{3t} + 3be^{2t} \\ y = -ae^{3t} - 4be^{2t} \end{cases}$$

où $a, b \in \mathbb{R}$. On cherche une solution particulière de (S) en appliquant la méthode de variation de la constante :

$$\begin{cases} x = \alpha(t)e^{3t} + 3\beta(t)e^{2t} \\ y = -\alpha(t)e^{3t} - 4\beta(t)e^{2t} \end{cases}$$

et on dérive pour obtenir :

$$\begin{cases} x' = 3\alpha(t)e^{3t} + \alpha'(t)e^{3t} + 6\beta(t)e^{2t} + 3\beta'(t)e^{2t} \\ y' = -3\alpha(t)e^{3t} - \alpha'(t)e^{3t} - 8\beta(t)e^{2t} - 4\beta'(t)e^{2t} \end{cases}$$

on cherche donc:

$$\begin{cases} \alpha'(t)e^{3t} + 3\beta'(t)e^{2t} = -3t + 4e^{3t} \\ -\alpha'(t)e^{3t} - 4\beta'(t)e^{2t} = 4t - 4e^{3t} \end{cases}$$

on voit que $\alpha'(t) = 4$ et $\beta'(t) = -te^{-2t}$ conviennent, et on intègre pour obtenir $\alpha(t) = 4t$ et :

$$\beta(t) = \int_{-\frac{1}{2}}^{t} -xe^{-2x} \, \mathrm{d}x = \left[\left(\frac{1}{2}x + \frac{1}{4} \right) e^{-2x} \right]_{-\frac{1}{2}}^{t} = \left(\frac{1}{2}t + \frac{1}{4} \right) e^{-2t}$$

Les solutions de (S) sont donc de la forme :

$$\begin{cases} x = ae^{3t} + 3be^{2t} + 4te^{3t} + \frac{3}{2}t + \frac{3}{4} \\ y = -ae^{3t} - 4be^{2t} - 4te^{3t} - 2t - 1 \end{cases}$$

où $a, b \in \mathbb{R}$.