

### Special Topic 1: Understanding NP-hard problem

Jonathan Irvin Gunawan National University of Singapore



#### Chapter 34

#### prerequisite

#### tau graph

#### bisa DP

#### motivation problem

#### 101 2014 Friend

## dikasih graph, tiap node punya weight

lu mo ambil beberapa node tapi gak boleh ada dua node yang lu ambil yang adjacent

# lu mau total semua weight dari node2 yang lu pilih maksimum

#### definisi2

P = bisa disolve in polynomial time

# NP = bisa dicek in polynomial time

#### NP-hard = kalo lu bisa solve ini, lu bisa solve semua problem di NP

# NP-complete = NP hard dan NP

definisi gak resminya, biar gampang

#### NP-hard = belum ditemuin solusi polinomialnya

#### research since 1971, unlikely buat lu bisa nemuin cuma dalam 5 lam

#### optimisation vs decision problem

#### decision problem

dikasih graph N vertex. **bisa ga** lu pilih at most K vertex sedemikian sehingga tiap edge (a,b), at least satu vertex lu pilih

#### optimisation problem

dikasih graph N vertex. **tentuin minimal vertex yang harus** lu pilih sedemikian
sehingga tiap edge (a,b), at least satu
vertex lu pilih

#### decision <=> optimisation

coba proof:)

# cara buat tau sebuah problem itu NP-hard

#### reduction

#### notasi + definisi 1 :

Y polynomial-time reduce ke X (ditulis Y ≤p X) jika lu bisa solve X in polynomial time, maka lu bisa solve Y in polynomial time

#### suppose lu mau tau problem X itu NP-hard ato kagak

#### kalo lu bisa cari sebuah problem Y yang NP-hard, dan Y ≤p X maka X itu NP-hard

prove by contradiction

#### mari kita mulai problem pertama

### 3-5/4

#### lu dikasih POS, tiap suku terdiri dari 3 variabel di OR semua sukunya di AND

### tentuin ada solusi yang bikin TRUE ato kagak

#### contoh

(a OR -a OR -b) AND (c OR b OR d) AND (-a OR -c OR -d)

#### contoh

```
(a OR b OR c) AND
(a OR b OR -c) AND
(a OR -b OR c) AND
(a OR -b OR -c) AND
(-a OR b OR c) AND
(-a OR b OR -c) AND
(-a OR -b OR c) AND
  (-a OR -b OR -c)
```

#### untuk sementara, marilah terima tanpa bukti bahwa,

#### 3-SAT e NP-hard

I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.

nah, soal

#### MAX-CLIQUE

# dikasih graph N vertex, lu mo pilih beberapa vertex (maksimal)

sedemikian sehingga untuk tiap pair vertex (u,v), ada edge (u,v)

# kita prove MAX-CLIQUE itu NP-hard

# 3-SAT ≤p MAX-CLIQUE

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

untuk tiap literal kita bikin nodenya

















(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

untuk tiap literal (x,y) kita kasih edge jika

(1) beda clause, dan

(2) x bukan negasi dari y



(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

MAX-CLIQUE ≥ banyaknya clause <=> 3-SAT nya satisfiable



(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

node yang dipilih CLIQUE <=> literal yang valuenya true



(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

CLIQUE pasti pilih vertex dari clause yang berbeda proof : karena dua vertex dari clause yang sama ga ada edge



(a v -b v -c) ^ (-a v b v c) ^ (a v b v c)

node yang dipilih ga bakal kontradiktif x dan -x ga ada edge



#### proven:

kalo kita bisa solve MAX-CLIQUE in polynomial time, kita bisa solve 3-SAT in polynomial time

## karena 3-SAT NP-hard, MAX-CLIQUE juga NP-hard

# terus gimana dong kalo ketemu soal NP-hard?

#### tips 1 : cek constraint

kalo N ≤ 16, yaudah hajar solusi eksponensial, otherwise, cari konstrain2 lain selain N yang mungkin bisa membantu

#### SUBSET SUM

dikasih array A, tentuin apakah lu bisa ambil subset dari A yang jumlahnya K

 $1 \le |A|, K \le 1000$ 

#### SUBSET SUM itu NP-hard

3-SAT ≤p NP-hard

Construction. Given 3-SAT instance  $\Phi$  with n variables and k clauses, form 2n + 2k decimal integers, each of n+k digits, as illustrated below.

Claim.  $\Phi$  is satisfiable iff there exists a subset that sums to W.

Pf. No carries possible.

| $C_1 = \bar{x} \vee y$       | <b>V</b> | z              |
|------------------------------|----------|----------------|
| $C_2 = x \vee y$             | <b>V</b> | z              |
| $C_3 = \bar{x} \vee \bar{y}$ | <b>∨</b> | $\overline{z}$ |

dummies to get clause columns to sum to 4

|          | × | у | z | <i>C</i> <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> |         |
|----------|---|---|---|-----------------------|----------------|----------------|---------|
| ×        | 1 | 0 | 0 | 0                     | 1              | 0              | 100,110 |
| $\neg x$ | 1 | 0 | 0 | 1                     | 0              | 1              | 100,001 |
| у        | 0 | 1 | 0 | 1                     | 0              | 0              | 10,000  |
| $\neg y$ | 0 | 1 | 0 | 0                     | 1              | 1              | 10,111  |
| z        | 0 | 0 | 1 | 1                     | 1              | 0              | 1,010   |
| $\neg$ z | 0 | 0 | 1 | 0                     | 0              | 1              | 1,101   |
| (        | 0 | 0 | 0 | 1                     | 0              | 0              | 100     |
|          | 0 | 0 | 0 | 2                     | 0              | 0              | 200     |
| <b>t</b> | 0 | 0 | 0 | 0                     | 1              | 0              | 10      |
| ;        | 0 | 0 | 0 | 0                     | 2              | 0              | 20      |
|          | 0 | 0 | 0 | 0                     | 0              | 1              | 1       |
|          | 0 | 0 | 0 | 0                     | 0              | 2              | 2       |
| W        | 1 | 1 | 1 | 4                     | 4              | 4              | 111,444 |

#### SUBSET SUM

dikasih array A, tentuin apakah lu bisa ambil subset dari A yang jumlahnya K

udah tau lah ya solusinya apa

tips 2: cek special case soalnya

```
given S = first N fibonaci number
{1,1,2,3,...}
determine whether lu bisa bagi set S
sedemikian sehingga jumlahnya
sama
```

#### PARTITION-SUM itu NP-hard

SUBSET-SUM ≤p PARTITION-SUM

## SUBSET-SUM dikasih array A dan cari subset yang totalnya K

<=>

PARTITION-SUM bikin array A + (K - (sum of all elements in A - K))

#### SUBSET-SUM

dikasih array A dan cari subset yang totalnya K PARTITION-SUM

bikin array A + (K - (sum of all elements in A - K))

SUBSET-SUM

A:  $\{1,2,3,4,5\}$  K = 8

$$K - (1 + 2 + 3 + 4 + 5 - K) = 8 - (15 - 8) = 1$$

PARTIITION-SUM

A: {1,2,3,4,5,1}

#### PARTITION-SUM itu NP-hard

so?

fibonaci number kalo N itu partitionable, maka N + 3 juga partitionable

$$A' = A + (f(N+1) + f(N+2))$$
  
 $B' = B + f(N+3)$ 

$$A = B$$
  
 $f(N+1) + f(N+2) = f(N+3)$   
 $A' = B'$ 

$$N = 2$$
 partitionable  
  $A = \{1\}, B = \{1\}$ 

$$N = 3$$
 partitionable  $A = \{1,1\}, B = \{2\}$ 

N % 3 ==  $2 \parallel N$  % 3 == 0 partitionable for all N

```
N % 3 == 1
totalnya pasti ganjil
fibo = \{1,1,2,3,5,8,...\}
prefix_sum_fibo = \{1,2,4,7,12,20,33\}
```

```
int main()
{
  int n;
  cin >> n;
  puts(n % 3 == 1 ? "no" : "yes");
}
```

# YEAN

# 101 2014 - Friend

# dikasih graph, tiap node punya weight

lu mo ambil beberapa node tapi gak boleh ada dua node yang lu ambil yang adjacent

# lu mau total semua weight dari node2 yang lu pilih maksimum

#### MAX INDEPENDENT SET

3-SAT <p MAX INDEPENDENT SET

#### 3 Satisfiability Reduces to Independent Set

Claim.  $3-SAT \leq_P INDEPENDENT-SET$ .

Pf. Given an instance  $\Phi$  of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff  $\Phi$  is satisfiable.

#### Construction.

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.



k = 3

$$\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$$

G

### so, MAX INDEPENDENT SET is NP-hard

kita harus go back to problem statement dan cari special casenya The people are added to the network in n stages, which are also numbered from 0 to n-1. Person i is added in stage i. In stage 0, person 0 is added as the only person of the network. In each of the next n-1 stages, a person is added to the network by a *host*, who may be any person already in the network. At stage i (0 < i < n), the host for that stage can add the incoming person i into the network by one of the following three protocols:

- IAmYourFriend makes person i a friend of the host only.
- MyFriendsAre YourFriends makes person i a friend of each person, who is a friend of the host at this
  moment. Note that this protocol does not make person i a friend of the host.
- WeAreYourFriends makes person i a friend of the host, and also a friend of each person, who is a
  friend of the host at this moment.

The people are added to the network in n stages, which are also numbered from 0 to n-1. Person i is added in stage i. In stage 0, person 0 is added as the only person of the network. In each of the next n-1 stages, a person is added to the network by a *host*, who may be any person already in the network. At stage i (0 < i < n), the host for that stage can add the incoming person i into the network by one of the following three protocols:

- IAmYourFriend makes person i a friend of the host only.
- MyFriendsAreYourFriends makes person i a friend of each person, who is a friend of the host at this
  moment. Note that this protocol does not make person i a friend of the host.
- WeAreYourFriends makes person i a friend of the host, and also a friend of each person, who is a friend of the host at this moment.

| subtask | % of points | n                      | confidence                  | protocols used                                 |
|---------|-------------|------------------------|-----------------------------|------------------------------------------------|
| 1       | 11          | 2 ≤ <i>n</i> ≤ 10      | 1 ≤ confidence ≤ 1,000,000  | All three protocols                            |
| 2       | 8           | $2 \le n \le 1,000$    | 1 ≤ confidence ≤ 1,000,000  | Only MyFriendsAreYourFriends                   |
| 3       | 8           | $2 \le n \le 1,000$    | 1 ≤ confidence ≤ 1,000,000  | Only WeAreYourFriends                          |
| 4       | 19          | $2 \le n \le 1,000$    | 1 ≤ confidence ≤ 1,000,000  | Only IAmYourFriend                             |
| 5       | 23          | $2 \le n \le 1,000$    | All confidence values are 1 | Both MyFriendsAreYourFriends and IAmYourFriend |
| 6       | 31          | 2 ≤ <i>n</i> ≤ 100,000 | 1≤confidence≤10,000         | All three protocols                            |

### kita coba yang ini dulu

| subtask | % of points | n                      | confidence                  | protocols used                                 |
|---------|-------------|------------------------|-----------------------------|------------------------------------------------|
| 1       | 11          | 2 ≤ <i>n</i> ≤ 10      | 1 ≤ confidence ≤ 1,000,000  | All three protocols                            |
| 2       | 8           | 2 ≤ <i>n</i> ≤ 1,000   | 1 ≤ confidence ≤ 1,000,000  | Only MyFriendsAreYourFriends                   |
| 3       | 8           | $2 \le n \le 1,000$    | 1 ≤ confidence ≤ 1,000,000  | Only WeAreYourFriends                          |
| 4       | 19          | 2 ≤ n ≤ 1.000          | 1≤confidence≤1.000.000      | Only IAmYourFriend                             |
| 5       | 23          | 2 ≤ <i>n</i> ≤ 1,000   | All confidence values are 1 | Both MyFriendsAreYourFriends and IAmYourFriend |
| б       | 31          | 2 ≤ <i>n</i> ≤ 100,000 | 1≤confidence≤10,000         | All three protocols                            |

#### yang keatasnya gampang lah ya

# maximum unweighted independent set on bipartite graph

|A| + |B| - bipartite matching

### solusi penuh

kita process querynya dari belakang

tiap process, kita "hapus" node barunya

#### MyFriendsAreYourFriends(A->B)

solusi yang bisa pake A <=> bisa pake B ambil dua2nya ato tidak sama sekali

$$w(A) = w(A) + w(B)$$

#### WeAreYourFriends(A->B)

cuma bisa ambil A ato B, ga ngefek ke pengambilan node2 lain

$$w(A) = max(w(A), w(B))$$

#### IAmYourFriend(A->B)

ini tricky. assume B diambil. ans += w(B).

however, kalo akhirnya kita ambil A, ada cost buat apus B.

$$w(A) = w(A) - w(B)$$

solusi akhir ans = ans + w(0)

# contoh2 konstrain2 aneh umum yang mengubah segalanya

#### graph:

- 1. satisfies triangle inequality
- 2. planar
- 3. bipartite

Q&A?