Expressivity of Epistemic Logics |

Yudai Kubono

December 21, 2024

Graduate School of Science and Technology, Shizuoka University

Yudai Kubono 1/13

Issues of Expressivity

- ▶ Expressive power ($\mathcal{L}_1 \leq \mathcal{L}_2$): given two languages, which one is more expressive than the other?
- The ability to distinguish non-identical models $((M,w) \leftrightarrow (M',w') \Rightarrow (M,w) \equiv_{\mathcal{L}} (M',w'))$: does a language have the ability (enough expressive) to distinguish non-identical models?
 - $(M,w) \equiv_{\mathcal{L}} (M',w') \text{ iff, } M,w \vDash \varphi \text{ iff } M',w' \vDash \varphi \text{ for every } \varphi \in \mathcal{L}.$

Yudai Kubono 2/13

Expressive Power

- $ightharpoonup \varphi \equiv \psi$ iff, $M, w \vDash \varphi$ iff $M, w \vDash \psi$ for all models and worlds.
- $ightharpoonup \mathcal{L}_1 \preceq \mathcal{L}_2$ iff for every $\varphi_1 \in \mathcal{L}_1$, there is $\varphi_2 \in \mathcal{L}_2$ s.t. $\varphi_1 \equiv \varphi_2$.

$$\mathcal{L}_1 \prec \mathcal{L}_2$$
 iff $\mathcal{L}_1 \preceq \mathcal{L}_2$ and $\mathcal{L}_2 \not\preceq \mathcal{L}_1$.

$$\mathcal{L}_1 \simeq \mathcal{L}_2$$
 iff $\mathcal{L}_1 \preceq \mathcal{L}_2$ and $\mathcal{L}_2 \preceq \mathcal{L}_1$.

Yudai Kubono 3/13

Expressive Power of Propositional Logics

- ightharpoonup p is an element of a set of atomic propositions.
- $\blacktriangleright \mathcal{L}_{PL} \ni \varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi.$
- $\blacktriangleright \mathcal{L}_{even} \ni \varphi ::= p \mid \varphi \nabla \varphi \mid \varphi \leftrightarrow \varphi.$

φ	ψ	$\varphi \nabla \psi$	$\varphi \leftrightarrow \psi$
1	1	0	1
1	0	1	0
0	1	1	0
0	0	0	1

Yudai Kubono 4/13

Theorem 1

$$\mathcal{L}_{even} \prec \mathcal{L}_{PL}$$

Proof.

 $(\mathcal{L}_{even} \preceq \mathcal{L}_{PL})$ It is sufficient to show $t: \mathcal{L}_{even} \to \mathcal{L}_{PL}$ such that $\varphi \equiv t(\varphi)$ for every $\varphi \in \mathcal{L}_{even}$. This is proven by induction on a formula. The only non-trivial case is ∇ , and the translation for this connective is provided by $t(\varphi \nabla \psi) = \neg((\varphi \wedge \neg \psi) \wedge (\neg \varphi \wedge \psi))$.

 $(\mathcal{L}_{PL} \not\preceq \mathcal{L}_{even})$ It is sufficient to find a formula $\varphi \in \mathcal{L}_{PL}$ such that there is no formula $\psi \in \mathcal{L}_{even}$ such that $\varphi \equiv \psi$. Every formula in \mathcal{L}_{even} shares a property that some formula in \mathcal{L}_{even} does not have. The property is that in the truth table for a formula generated by at least two atomic propositions, there are an even number of truth values in every column. This is proven by induction on a formula.

Yudai Kubono 5/13

Proof(Continued).

We show the case of $\varphi \nabla \psi$ here. Let

- ullet x be the number of rows where φ is true and ψ is true,
- ullet y be the number of rows where arphi is true and ψ is false, and
- ullet z be the number of rows where φ is false and ψ is true.

It follows from the induction hypothesis that x+y and x+z are even, which leads to y+z is also even. Thus, the number of truth values in the column of $\varphi \nabla \psi$ is even. Consider a formula $p \wedge q$. The column in the truth table for this formula has three false values. Thus, there is no formula $\varphi \in \mathcal{L}_{PL}$ such that $p \wedge q \equiv \varphi$ and $\mathcal{L}_{PL} \not\preceq \mathcal{L}_{even}$.

Yudai Kubono 6/13

Epistemic Logics

- $\blacktriangleright \mathcal{L}_K \ni \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid K_i \varphi$
 - $ightharpoonup M, w \vDash K_i \varphi$ iff for all v s.t. $(w, v) \in \sim_i$, $M, v \vDash \varphi$.
- $\blacktriangleright \mathcal{L}_{K+C} \ni \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid K_i \varphi \mid C_{\mathcal{G}} \varphi$
 - $ightharpoonup M, w \vDash C_{\mathcal{G}}\varphi$ iff for all v s.t. $(w,v) \in (\bigcup_{i \in \mathcal{G}} \sim_i)^*$, $M,v \vDash \varphi$.
- - ▶ $M, w \models [\varphi]\psi$ iff $M, w \models \varphi$ implies $M|\varphi, w \models \psi$, where $M|\varphi = \langle W', \sim', V' \rangle$ is defined as follows:

 - $ightharpoonup \sim' = \sim \cap (W' \times W'),$
 - $V'(\psi) = V(\psi) \cap W'.$

Yudai Kubono 7/13

Expressive Power of Epistemic Logics

$$ightharpoonup$$
 \odot $\mathcal{L}_K \prec \mathcal{L}_{K+C}$

$$ightharpoonup \mathcal{L}_K \simeq \mathcal{L}_{K+PA}$$

$$\blacktriangleright \ \mathcal{L}_{K+C} \prec \mathcal{L}_{K+C+PA}$$

Yudai Kubono 8/13

Theorem 2

$$\mathcal{L}_K \prec \mathcal{L}_{K+C}$$

▶ We have to show that $\mathcal{L}_K \leq \mathcal{L}_{K+C}$ and $\mathcal{L}_{K+C} \not\preceq \mathcal{L}_K$. The former is clear since \mathcal{L}_K is a sublanguage of \mathcal{L}_{K+C} .

Yudai Kubono 9/13

Spine Models

ightharpoonup Let n, m, k be natural numbers.

Definition 1

Spine(n) is a tuple $\langle W, \sim_a, \sim_b, V \rangle$, where

- ▶ $W = \{m \mid m \le (n+1)\},$
- $ightharpoonup \sim_a = \{(w,w) \mid w \in W\} \cup \{(m,k) \mid min(m,k) \bmod 2 = 0 \text{ and } |m-k| = 1\},$
- $ightharpoonup \sim_b = \{(w, w) \mid w \in W\} \cup \{(m, k) \mid min(m, k) \bmod 2 = 1 \text{ and } |m k| = 1\},$
- $ightharpoonup V(p) = \{n+1\}$ for every p.

 $0 \stackrel{a}{----} 1 \stackrel{b}{----} 2 \stackrel{a}{----} 3 \stackrel{b}{----} 4 \stackrel{a}{-----} 5$

Yudai Kubono p 10/13

Definition 2

 $Spine(\omega)$ is a tuple $\langle W, \sim_a, \sim_b, V \rangle$, where

- $ightharpoonup W = \mathbb{N}$,
- $ightharpoonup \sim_a = \{(w, w) \mid w \in W\} \cup \{(m, k) \mid min(m, k) \bmod 2 = 0 \text{ and } |m k| = 1\},$
- $ightharpoonup \sim_b = \{(w, w) \mid w \in W\} \cup \{(m, k) \mid min(m, k) \bmod 2 = 1 \text{ and } |m k| = 1\},$
- $ightharpoonup V(p) = \emptyset$ for every p.

$$0 \stackrel{a}{-} 1 \stackrel{b}{-} 2 \stackrel{a}{-} 3 \stackrel{b}{-} 4 \stackrel{a}{-} 5 \cdots$$

Yudai Kubono 11/13

Theorem 2

$$\mathcal{L}_K \prec \mathcal{L}_{K+C}$$

- ▶ $(\mathcal{L}_K \leq \mathcal{L}_{K+C})$ Since \mathcal{L}_K is a sublanguage of \mathcal{L}_{K+C} , it is clear that $\mathcal{L}_K \leq \mathcal{L}_{K+C}$.
- ▶ $(\mathcal{L}_{K+C} \not\preceq \mathcal{L}_K)$ It is sufficient to find a formula $\varphi \in \mathcal{L}_{K+C}$ such that there is no formula $\psi \in \mathcal{L}_K$ such that $\varphi \equiv \psi$. Consider a formula $C_{\{a,b\}} \neg p$. This formula distinguishes two spine models (spine(n), 0) and $(spine(\omega), 0)$ for every n: $(spine(n), 0) \not\equiv_{\{C_{\{a,b\}} \neg p\}} (spine(\omega), 0)$. However, there is no formula in \mathcal{L}_K that is false in (spine(n), 0) but true in $(spine(\omega), 0)$: $(spine(n), 0) \equiv_{\mathcal{L}_K} (spine(\omega), 0)$. Thus, we cannot provide a translation to fulfill the condition $C_{\{a,b\}} \neg p \equiv t(C_{\{a,b\}} \neg p)$.

Yudai Kubono 12/13

REFERENCES

• H. van Ditmarsch, W. van Der Hoek, and B. Kooi. (2007). *Dynamic Epistemic Logic*. Springer Science & Business Media.

Yudai Kubono 13/13