1 SIMO Systems

Remarks

- \bullet In SIMO Systems only <u>coding</u> and <u>diversity</u> <u>gains</u> can be exploited (no multiplexing gains)
- To realize these gains diversity combining has to be performed
- Diversity combining schemes vary in complexity and performance
- There are many diversity combining schemes. Here we consider:
 - Maximal ratio combining (MRC)
 - Equal gain combining (EGC)
 - Selection combining (SC)
- Diversity combining problem

- how to choose combining weights w_n ?
- what performance (e.g. error rate, outage probability) is achieved?
- what diversity and coding/combining gain is achieved?

- G_c : Coding gain
- G_d : Diversity gain

1.1 Preliminaries

Consider an equivalent system:

$$y=hx+n;$$

$$\mathcal{E}\{|x^2|\}=\mathcal{E}_s; \qquad \qquad \mathcal{E}\{|n^2|\}=\sigma_n^2; \qquad \qquad \mathcal{E}\{|h|^2\}=1$$

- Instantaneous SNR: $\gamma_t = \frac{\mathcal{E}_s}{\sigma_n^2} \times |h|^2$
- Average SNR: $\bar{\gamma}_t = \mathcal{E}\{\gamma_t\} = \frac{\mathcal{E}_s}{\sigma_n^2}$

Bit and Symbol Error Rate

• The Bit and Symbol Error Rate of many modulation schemes can be expressed for given γ_t as:

$$P_e(\gamma_t) = aQ\{\sqrt{b\gamma_t}\}$$

where:

- $Q(x) = \frac{1}{\sqrt{2\pi}} \times \int_x^\infty e^{-\frac{t^2}{2}} dt$
- $P_e(\gamma_t)$ may be exact result or approximation
- BPSK: exact with a = 1, b = 2
- M-ary QAM: tight approximation with $a = 4\left(1 \frac{1}{\sqrt{M}}\right), b = \frac{3}{M-1}$

 $\left(Einschub: Gray-Code: BER = \frac{1}{\log_2 M} \times SER\right)$

• Alternative representation of Q - function:

$$Q(x) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} e^{-\frac{x^2}{2\sin^2\theta}} \ d\theta$$

- \rightarrow Integral limits are fixed and do not depend on integration variables!
- Average error probability

$$P_e = \mathcal{E}\left\{P_e(\gamma_t)\right\} = \int_0^\infty aQ\left(\sqrt{bx}\right)p_{\gamma_t}(x) dx$$

- Integral may be difficult to solve analytically
- Integral has infinite support \rightarrow numerical evaluation difficult
- Using alternative representation of Q-function we get:

$$P_{e} = \int_{0}^{\infty} \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} e^{-\frac{bx}{2sin^{2}\theta}} p_{\gamma_{t}}(x) d\theta dx$$

$$= \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} p_{\gamma_{t}}(x) e^{-\frac{b}{2sin^{2}\theta}} dx d\theta \qquad = \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} M_{\gamma_{t}}(\frac{b}{2sin^{2}\theta}) d\theta$$

where:

- $M_{\gamma_t}(s) = \int_0^\infty p_{\gamma_t}(x) e^{-sx} \ dx$ is the Laplace transform of p_{γ_t}
- $-M_{\gamma_t}(-s)$ is the so called Moment Generation Function (MGF) of p_{γ_t}
- Here, we will also refer to $M_{\gamma_t}(s)$ as MGF
- $M_{\gamma_t}(s)$ is sometimes easier to obtain than p_{γ_t}
- The above integral can be easily evaluated numerically because of the finite integral limits

Outage probability

• The outage probability is the probability that the channel cannot support a certain rate, R, i.e. (where γ_T is the threshold SNR):

$$C = \log_2(1 + \gamma_t) < R \quad \leftrightarrow \quad \gamma_t < 2^R - 1 \triangleq \gamma_T$$

Thus, the outage probability is given by:

$$P_{out} = P_0 \gamma_t < \gamma - T = \int_0^{\gamma_T} p_{\gamma_t}(x) \ dx$$

• Using the inverse Laplace Transform

$$p_{\gamma_t}(x) = \frac{1}{2\pi j} \int_{c-j\omega}^{c+j\omega} M_{\gamma_t}(s) e^{sx} dx$$

where c > 0 is a small constant that lies in the region of convergence of the integral, we

- 1.

$$P_{out} = \frac{1}{2\pi j} \int_{c-j\omega}^{c+j\omega} M_{\gamma_t}(s) \int_0^{\gamma_T} e^{sx} dx ds = \frac{1}{2\pi j} \int_{c-j\omega}^{c+j\omega} M_{\gamma_t}(s) e^{\gamma_T s} \frac{ds}{s}$$

(lower integral limit is 0 since $p_{\gamma_t}(0) = 0$)

- and 2.:

$$p_{\gamma_t}(x) = \int_0^x p_{\gamma_t}(t) dt = 0$$
for $x = 0$ note: $p_{\gamma_t}(x) \xleftarrow{Laplace}{transform} \frac{1}{s} M_{\gamma_t}(s)$

General combining scheme

$$y = \left(\sum_{n=1}^{N_R} h_n w_n\right) x + \sum_{n=1}^{N_R} w_n n_n$$
$$\gamma_t = \frac{\epsilon_s \left|\sum_{n=1}^{N_R} h_n w_n\right|^2}{\sigma_n^2 \sum_{N=1}^{N_R} |w_n|^2}$$

where w_n depends on the particular combining scheme.

1.2 MRC (Maximum Ratio Combining)

- what weight w_n maximize γ_t ?
 - Cauchy-Schwarz inequality

$$\left| \sum_{n=1}^{N_R} h_n w_n \right|^2 \le \sum_{n=1}^{N_R} |h_n|^2 \cdot \sum_{n=1}^{N_R} |w_n|^2$$

where equality holds if and only if $w_n = c \cdot h_n^*$ for some non-zero constant c.

- for $w_n = h_n^*$, we obtain

$$\gamma_t = \frac{\epsilon_s}{\sigma_n^2} \cdot \frac{\left(\sum_{n=1}^{N_R} |h_n|^2\right)^2}{\sum_{n=1}^{N_R} |h_n|^2} = \frac{\epsilon_s}{\sigma_n^2} \sum_{n=1}^{N_R} |h_n|^2$$

- $-w_n = h_n^* \forall n$ are the MRC combining weights.
- For performance analysis we assume independent identically distributed (IID) Rayleigh fading

• Error rate

$$\gamma_t = \sum_{n=1}^{N_R} \gamma_n$$

 \rightarrow sum of IID random variables (r.v.s.)

$$M_{\gamma_t}(s) = \left(M_{\gamma}(s)\right)^{N_R} = \frac{1}{(1+s\bar{\gamma})^{N_R}} = \frac{1}{\bar{\gamma}^{N_R}} \cdot \frac{1}{(s+\frac{1}{\bar{s}})^{N_R}}$$

inverse Laplace-transform (from tables)

$$p_{\gamma_t}(x) = \frac{1}{\bar{\gamma}^{N_R}} \cdot \frac{x^{N_R - 1}}{(N_R - 1)!} e^{-\frac{x}{\bar{\gamma}}}; \quad x \ge 0$$

• Direct approach

$$p_e = \int_0^\infty a \cdot Q(\sqrt{ax}) p_{\gamma_t}(x) \ dx = a \left(\frac{1-\mu}{2}\right)^{N_R} \cdot \sum_{n=0}^{N_R-1} \binom{N_R-1+n}{n} \left(\frac{1+\mu}{2}\right)^n$$
 where $\mu = \sqrt{\frac{b\bar{\gamma}}{2+b\bar{\gamma}}}$

• MGF approach

$$p_e = \frac{a}{\pi} \int_0^{\frac{\pi}{2}} M_{\gamma_t} \left(\frac{b}{2 \sin^2 \theta} \right) d\theta$$

$$= \frac{a}{\pi} \int_0^{\frac{\pi}{2}} \frac{1}{\bar{\gamma}^{N_R} \left(\frac{b}{\sin^2 \theta} + \frac{1}{\bar{\gamma}} \right)^{N_R}} d\theta \quad \text{(numerisch berechnen!)}$$

• high SNR: $\bar{\gamma} \to \infty \Longleftrightarrow \frac{1}{\bar{\gamma}} \to 0$

$$p_e = \frac{a}{\pi} \cdot \frac{1}{\bar{\gamma}^{N_R}} \cdot \left(\frac{2}{b}\right)^{N_R} \int_0^{\frac{\pi}{2}} \sin^{2N_R} \theta \ d\theta$$
 (from MGF approach:
$$\int_0^{\frac{\pi}{2}} \sin^{2N_R} \theta \ d\theta = \frac{\pi}{2^{N_R+1}} \cdot \binom{2N_R}{N_R}$$
$$= \frac{a}{2^{N_R+1} \cdot b^{N_R}} \left(2N_R - N_R\right) \frac{1}{\bar{\gamma}^{N_R}} \quad \text{as } \bar{\gamma} \to \infty$$
$$\stackrel{!}{=} \left(\frac{1}{G_c \bar{\gamma}}\right)$$

where: Diversity gain: $G_d = N_R$

Combining/Coding gain:
$$G_c = 2b \left(\frac{a}{2} \binom{2N_R}{N_R}\right)^{-\frac{1}{N_R}}$$

- MRC exploits the maximal possible diversity
- Diversity gain is not affected by correlation as the branches are not fully correlated
- Diversity gain depends on fading distribution

Outage probability

$$P_{out} = \int_0^{\gamma_T} p_{\gamma_t}(x) \ dx = \frac{1}{\bar{\gamma}^{N_R}} \int_0^{\gamma_T} \frac{x^{N_R - 1}}{(N_R - 1)!} e^{-\frac{x}{\bar{\gamma}}} \ dx$$
$$= 1 - e^{-\frac{\gamma_T}{\bar{\gamma}}} \cdot \sum_{n=1}^{N_R} \frac{\left(\frac{\gamma_T}{\bar{\gamma}}\right)^n}{(n-1)!}$$

• Approximation (Taylor series): $\bar{\gamma} \to \infty$: $-e^{-\frac{x}{\bar{\gamma}}} = 1 - \frac{x}{\bar{\gamma}} + O(\frac{1}{\bar{\gamma}})$ where a function f(x) is O(x) if $\lim_{x \to \infty} \frac{f(x)}{x} = 0$.

$$\Rightarrow P_{out} = \frac{1}{\gamma^{N_R}} \int_{0}^{\gamma_T} \frac{x^{N_R - 1}}{(N_R - 1)!} \left(1 - \frac{x}{\bar{\gamma}} + O\left(\frac{1}{\bar{\gamma}}\right) \right)$$

• Diversity and coding gain can also be defined for P_{out}

1.3 EGC (Equal Gain Combining)

Combining Weights

- For MRC, both, the amplitudes and phases of the channel gains $h_n = |h_n|e^{j\varphi_n}$ have to be known (or estimated in practice)
- In EGC it is assumed that only the phases are known and weights $w_n = e^{-j\varphi_n}$ are used.

$$\Rightarrow \gamma_t = \frac{\mathcal{E}_s}{\sigma_n^2} \frac{\left| \sum_{n=1}^{N_R} |h_n| e^{j\varphi_n} e^{-j\varphi_n} \right|^2}{\sum_{n=1}^{N_R} |e^{-j\varphi_n}|^2} = \frac{\mathcal{E}_s}{\sigma_n^2} \frac{1}{N_R} \left(\sum_{n=1}^{N_R} |h_n| \right)^2$$
$$= \frac{1}{N_R} \left(\sum_{n=1}^{N_R} \sqrt{\gamma_n} \right)^2; \text{ with } \gamma_n = \frac{\mathcal{E}_s}{\sigma_n^2} |h_n|^2$$

Performance Analysis

- IID case $\Rightarrow \sqrt{\gamma_n}$ is Rayleigh distributed
 - \Rightarrow Exact analysis is much more difficult than for MRC \Rightarrow see book by Simon & Alouini p.341
- Approximate result

$$P_{e} = \frac{a}{2} \left[1 - \sqrt{\frac{2b\bar{\gamma}}{5 + 2b\bar{\gamma}}} \sum_{n=0}^{N_{R}-1} \frac{\binom{2n}{n}}{4^{n} (1 + \frac{2}{5}b\bar{\gamma})^{n}} \right]$$

- high SNR
 - ⇒ use high SNR analysis of Wang & Giannakis, 2003
 - \Rightarrow at high SNR, only pdf of γ_n around 0 is relevant for performance

$$\Rightarrow \begin{array}{l} \text{Rayleigh} \\ p_{\gamma}(x) \\ = \\ \frac{1}{\bar{\gamma}} e^{-\frac{x}{\bar{\gamma}}} \end{array} \overset{\text{Taylor Serie}}{=} \frac{1}{\bar{\gamma}} + O\left(\frac{1}{\bar{\gamma}}\right) \text{ as } x \to 0$$

• need pdf γ_t : (γ_n bekannt, \rightarrow ges.: Wurzel, etc.) (cumulative distribution function of $\sqrt{\gamma} \stackrel{\text{i.i.d}}{=} \sqrt{\gamma_n}$) (cdf))

$$\begin{split} &P_{\sqrt{\gamma}}(x) = \Pr \big\{ \sqrt{\gamma} \leq x \big\} = \Pr \big\{ \gamma \leq x^2 \big\} = P_{\gamma}(x^2) = \text{cdf of } \gamma \\ &\to p_{\sqrt{\gamma}}(x) = \frac{d}{dx} P_{\sqrt{\gamma}}(x) = 2x \cdot p_{\gamma}(x^2) = \frac{2x}{\bar{\gamma}} + O \Big(\frac{1}{\bar{\gamma}} \Big) \end{split}$$

• Laplace Transformation to MGF

$$\begin{split} & \to M_{\sqrt{\gamma}}(s) = \mathcal{L}\big\{p_{\sqrt{\gamma}}(x)\big\} = \frac{2}{\bar{\gamma}} \cdot \frac{1}{s^2} + O\big(\frac{1}{\bar{\gamma}}\big) \\ & \sqrt{\gamma_t} = \sum_{n=1}^{N_R} \frac{\sqrt{\gamma_n}}{N_R} \\ & M_{\sqrt{\gamma_t}}(s) = \mathcal{E}\Big\{\exp(-s\sqrt{\gamma_t})\Big\} = \mathcal{E}\Big\{\exp(-\frac{s}{\sqrt{N_R}} \cdot \sum_{n=1}^{N_R} \sqrt{\gamma_n})\Big\} = \Big(\mathcal{E}\Big\{\exp(-\frac{s}{\sqrt{N_R}} \cdot \sqrt{\gamma_n}\Big\}\Big)^{N_R} \\ & = \Big(M_{\sqrt{\gamma}}\big(\frac{s}{\sqrt{N_R}}\big)\Big)^{N_R} = \Big(\frac{2}{\bar{\gamma}} \cdot \frac{N_R}{s^2}\Big)^{N_R} + O\Big(\frac{1}{\bar{\gamma}^{N_R}}\Big) \end{split}$$

• inverse Laplace Transform

$$p_{\sqrt{\gamma_{t}}}(x) = \mathcal{L}^{-1} \Big\{ M_{\sqrt{\gamma_{t}}}(s) \Big\} = \left(\frac{2N_{R}}{\bar{\gamma}} \right)^{N_{R}} \cdot \frac{x^{2N_{R}-1}}{(2N_{R}-1)!} + O\left(\frac{1}{\bar{\gamma}^{N_{R}}} \right)$$

$$P_{\gamma_{t}}(x) = \Pr \Big\{ \gamma_{t} \leq x \Big\} = \Pr \Big\{ \sqrt{\gamma_{t}} \leq \sqrt{x} \Big\} = P_{\sqrt{\gamma_{t}}}(\sqrt{x}) \to \text{cdf of } \sqrt{\gamma_{t}}$$

$$p_{\gamma_{t}}(x) = \frac{d}{dx} P_{\gamma_{t}}(x) = \frac{1}{2\sqrt{x}} \cdot p_{\gamma_{t}}(\sqrt{x}) = \frac{1}{2} \left(\frac{2N_{R}}{\bar{\gamma}} \right)^{N_{R}} \cdot \frac{x^{N_{R}-1}}{(2N_{R}-1)!} + O\left(\bar{\gamma}^{-N_{R}}\right)$$

$$\to M_{\gamma_{t}}(s) = \mathcal{L} \Big\{ p_{\gamma_{t}}(x) \Big\} = \frac{1}{2} \left(\frac{2N_{R}}{\bar{\gamma}} \right)^{N_{R}} \cdot \frac{(N_{R}-1)!}{(2N_{R}-1)!} + O\left(\bar{\gamma}^{-N_{R}}\right)$$

• Error Probability:

$$P_{e} = \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} M_{\gamma_{t}} \left(\frac{b}{2 \sin^{2}(\theta)}\right) d\theta$$

$$= \frac{a}{\pi} \frac{1}{2} \left(\frac{2N_{R}}{\bar{\gamma}}\right)^{N_{R}} \frac{(N_{R} - 1)!}{(2N_{R} - 1)!} \frac{2^{N_{R}}}{b^{N_{R}}} \int_{0}^{\frac{\pi}{2}} \sin^{2N_{R}}(\theta) d\theta + O\left(\frac{1}{\bar{\gamma}^{N_{R}}}\right)$$

$$= \frac{aN_{R}^{N_{R}}}{2b^{N_{R}}N_{R}!} \frac{1}{\bar{\gamma}^{N_{R}}} + O\left(\frac{1}{\bar{\gamma}^{N_{R}}}\right) \stackrel{!}{=} \left(\frac{1}{G_{c}}\right)^{G_{d}}$$

$$\implies \text{Diversity gain: } G_{d} = N_{R}$$

$$\implies \text{Combining gain: } G_{c} = \frac{b}{N_{R}} \left(\frac{2N_{R}!}{a}\right)^{\frac{1}{N_{R}}}$$

vergleiche auch Blatt mit Kurven $\overline{\mathrm{III}}$ und $\overline{\mathrm{IV}}$

A similar asymptotic analysis can be conducted for the outage probability.

1.4 SC (Selection Combining)

Combining weights

- only the strongest branch is chosen
- strongest branch: $\hat{n} = \underset{n}{\operatorname{argmax}} \gamma_n \longrightarrow \gamma_t = \gamma_{\hat{n}}$
- ullet only on RF receiver chain required o saves hardware complexity

Performance analysis

• cdf of: γ_t

$$P_{\gamma_t}(x) = \Pr\{\gamma_{\hat{n}} \le x\} = \Pr\{\gamma_1 \le x \cap \gamma_2 \le x \cap \dots \gamma_{N_R} \le x\}$$

$$\stackrel{(IID)}{=} \left(\Pr\{\gamma_n \le x\}\right)^{N_R} = \left(P_{\gamma}(x)\right)^{N_R}$$

• pdf:

$$\begin{split} p_{\gamma_t}(x) &= \frac{d}{dx} P_{\gamma_t}(x) = N_R \big(P_{\gamma}(x) \big)^{N_R - 1} \cdot p_{\gamma}(x) \\ \text{where:} \qquad p_{\gamma_t}(x) &= \frac{1}{\bar{\gamma}} e^{-\frac{x}{\bar{\gamma}}}; \quad x \geq 0 \\ P_{\gamma}(x) &= \int_0^x p_{\gamma}(x) \; dx = 1 - e^{-\frac{x}{\bar{\gamma}}}; \quad x \geq 0 \\ &\to p_{\gamma_t}(x) = \frac{N_R}{\bar{\gamma}} \big(1 - e^{-\frac{x}{\bar{\gamma}}} \big)^{N_R - 1} e^{-\frac{x}{\bar{\gamma}}}; \quad x \geq 0 \end{split}$$

Error probability

- ullet direct approach o closed-form solution possible
- MGF approach
 - Binomial expansion

$$p_{\gamma_t}(x) = \frac{N_R}{\bar{\gamma}} e^{-\frac{x}{\bar{\gamma}}} \sum_{n=0}^{N_R - 1} \binom{N_R - 1}{n} 1^{N_R - 1 - n} \left(-e^{-\frac{x}{\bar{\gamma}}} \right)^n$$
$$= \frac{N_R}{\bar{\gamma}} \sum_{n=0}^{N_R - 1} \binom{N_R - 1}{n} \cdot (-1)^n e^{-\frac{x(n+1)}{\bar{\gamma}}}; \quad x \ge 0$$

- MGF

$$M_{\gamma_t}(s) = \frac{N_R}{\bar{\gamma}} \sum_{n=0}^{N_R-1} \binom{N_R-1}{n} (-1)^n \frac{1}{s + \frac{n+1}{\bar{\gamma}}}$$

_

$$P_{e} = \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} M_{\gamma_{t}} \left(\frac{b}{2 \sin^{2} \theta} \right) d\theta = \frac{a N_{R}}{\pi \bar{\gamma}} \sum_{n=0}^{N_{R}-1} \binom{N_{R}-1}{n} (-1)^{n} \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\frac{b}{2 \sin^{2} \theta} + \frac{n+1}{\bar{\gamma}}}$$

 \rightarrow can be evaluated numerically

– high SNR approach $\Rightarrow \bar{\gamma} \to \infty$

$$p_{\gamma_t} = \frac{N_R}{\bar{\gamma}} \left[1 - \exp\left(-\frac{x}{\bar{\gamma}}\right) \right]^{N_R - 1} \exp\left(-\frac{x}{\bar{\gamma}}\right)$$

$$\stackrel{\bar{\gamma} \to \infty}{=} \frac{N_R}{\bar{\gamma}} \left[1 - \left(1 - \frac{x}{\bar{\gamma}} + O\left(\bar{\gamma}^{-1}\right)\right) \right]^{N_R - 1} \left(1 - \frac{x}{\bar{\gamma}} + O\left(\bar{\gamma}^{-1}\right)\right) i$$

$$= \frac{N_R}{\bar{\gamma}^{N_R}} x^{N_R - 1} + o\left(\bar{\gamma}^{-N_R}\right)$$

- MGF:

$$\begin{split} M_{\gamma_t}(s) &= \frac{N_R}{\bar{\gamma}^{N_R}} \frac{(N_R - 1)!}{s^{N_R}} + O\left(\bar{\gamma}^{-N_R}\right) \\ \left[\to P_e &= \frac{a}{\pi} \int\limits_0^{\frac{\pi}{2}} M_{\gamma_t} \left(\frac{b}{2\sin^2(\theta)}\right) \mathrm{d}\theta \right] \\ &= \frac{a(2N_R)!}{b^{N_R} 2^{N_R + 1} N_R!} \frac{1}{\bar{\gamma}^{N_R}} + O(\bar{\gamma}^{-N_R}) \end{split}$$

 \Longrightarrow Diversity gain: $G_d = N_R$

$$\implies$$
 Combining gain: $G_c = 2b \left(\frac{2N_R!}{a(2N_R)!} \right)^{\frac{1}{N_R}}$

- Outage Probability

$$P_{out} = \Pr\{\gamma_{\hat{n}} \leq \gamma_T\} = P_{\gamma_{\hat{n}}}(\gamma_T) = \left[1 - \exp\left(-\frac{\gamma_T}{\bar{\gamma}}\right)\right]^{N_R}$$
high SNR:
$$P_{out} = \left(\frac{\gamma_T}{\bar{\gamma}}\right)^{N_R} + O\left(\bar{\gamma}^{-N_R}\right)$$

1.5 Comparison

- Diversity Gain: MRC, EGC and SC all achieve the maximum possible diversity gain of $G_d=N_R$
- Combining Gain: The combining gains of MRC, EGC and SC are different
 - MRC/EGC:

$$\frac{G_C^{EGC}}{G_C^{MRC}} = \frac{\frac{1}{2b} \left(\frac{a}{2} {2N_R \choose N_R}\right)^{\frac{1}{N_R}}}{\frac{N_R}{b} \left(\frac{a}{2} \frac{1}{N_R!}\right)^{\frac{1}{N_R}}} = \frac{\left[(2N_R)!\right]^{\frac{1}{N_R}}}{2N_R (N_R)^{\frac{1}{N_R}}} \le 1$$

(independent of a or b which are modulation parameters, only depends on number of antennas)

$$N_R \gg 1$$
: $N_R! \approx \sqrt{2\pi}e^{-N_R}N_R^{N_R+\frac{1}{2}}$ (Stirling)

$$\frac{G_C^{EGC}}{G_C^{MRC}}\Big|_{N_R \gg 1} = \frac{\left(\sqrt{2\pi}e^{-2N_R}(2N_R)^{2N_R + \frac{1}{2}}\right)^{\frac{1}{N_R}}}{2N_R\left(\sqrt{2\pi}e^{-N_R}N_R^{N_R + \frac{1}{2}}\right)^{\frac{1}{N_R}}} = \frac{2 \cdot 2^{\frac{1}{2N_R}}}{2} \xrightarrow{N_R \to \infty} \frac{2}{e} \equiv -1.3\text{dB}$$

- MRC/SC:

$$\begin{split} \frac{G_C^{SC}}{G_C^{MRC}} &= \frac{2b \left(\frac{a}{2} \binom{2N_R}{N_R}\right)^{\frac{1}{N_R}}}{2b \left(\frac{a}{2} \frac{(2N_R)!}{N_R!}\right)^{\frac{1}{N_R}}} = \frac{1}{\left(N_R!\right)^{\frac{1}{N_R}}} \leq 1 \\ \frac{G_C^{SC}}{G_C^{MRC}} \bigg|_{N_R \gg 1} &= \frac{1}{\sqrt{2\pi^{\frac{1}{N_R}}}e^{-1}N_R^{1+\frac{1}{2N_R}}} N_R \xrightarrow{\rightarrow} \infty \frac{e}{N_R} \end{split}$$

 \rightarrow loss increases with N_R

2 MISO Systems

Remarks

- Similar to SIMO systems, in MISO systems only coding and diversity gains can be obtained.
- To realize these gains, a careful transmitter design is necessary
- System design depends on whether or not channel state information (CSI) is available at transmitter

2.1 Naive Approach

 \bullet Assume we simply send the same signal over all N_T transmit antennas

- Transmit power: $\mathcal{E}\left\{\left|\frac{1}{\sqrt{N_T}}x\right|^2+,\ldots,\left|\frac{1}{\sqrt{N_T}}x\right|^2\right\}=\mathcal{E}\left\{N_T\frac{1}{N_T}|x|^2\right\}=\mathcal{E}_s$
- Received signal: $y = \frac{1}{\sqrt{N_T}} \sum_{n=1}^{N_T} h_n \cdot x + n$
- Rayleigh fading: h_n are zero mean complex gaussian random variables $\rightarrow h$ is also zero mean complex gaussian
- i.i.d.:

$$- \mathcal{E}\{|h_n|^2\} = 1 \ \forall n$$

$$-\mathcal{E}\{|h|^2\} = \frac{1}{N_T}\mathcal{E}\left\{\left|\sum_{n=1}^{N_T} h_n\right|^2\right\} = \frac{1}{N_T}\mathcal{E}\left\{\sum_{n=1}^{N_T} |h_n|^2\right\} = 1$$

- $-\,$ statistical properties of h are independent of N_T
- the multiple transmit antennas have no benefit at all
- more sophisticated transmitter designs necessary

2.2 Full CSI Available at the Transmitter

- $h_n, n \in \{1, \dots, N_T\}$ is known at the transmitter
- Perform "precoding" (beamforming) with coefficients w_n

- Transmit Power: Two constraints maybe considered
 - Average transmit power constraint

$$P_{av} = \mathcal{E}\left\{\sum_{n=1}^{N_T} |w_n^* x|^2\right\} = \sum_{n=1}^{N_T} |w_n|^2 \underbrace{\mathcal{E}\{|x|^2\}}_{\mathcal{E}_s} = \mathcal{E}_s \Rightarrow \sum_{n=1}^{N_T} |w_n|^2 = 1$$

- Power constraint for each transmit antenna

$$\rightarrow |w_n| = \frac{1}{\sqrt{N_T}} \longrightarrow P_{av} = \mathcal{E}_s$$

• Received signal: $y = \sum_{n=1}^{N_T} w_n^* h_n x + n$ (equivalent SISO channel)

Maximum Ratio Transmission (MRT)

- \bullet we have only the average power constraint: $\sum\limits_{n=1}^{N_T}|w_n|^2=1$
- SNR: $\gamma_t = \frac{\mathcal{E}_s |h|^2}{\sigma_n^2} = \frac{\mathcal{E}_s \left| \sum\limits_{n=1}^{N_T} w_n^* \cdot h_n \right|^2}{\sigma_n^2}$
- Maximize SNR under constraint $\sum_{n=1}^{N_T} |w_n|^2 = 1$

ullet constraint optimization problem o Lagrange method

$$L = \frac{\mathcal{E}_s}{\sigma_n^2} \left| \sum_{n=1}^{N_T} w_n^* \cdot h_n \right|^2 + \lambda \left(\sum_{n=1}^{N_T} |w_n|^2 - 1 \right); \quad \text{where: } \lambda = \text{Lagrange Multiplier}$$

 \Rightarrow Wirtinger Kalkül: treat z and z^* as independent variables for differentiation:

$$\frac{\partial z^*}{\partial z} = 0; \quad \frac{\partial |z|^2}{\partial z} = \frac{\partial z \cdot z^*}{\partial z} = z^*$$

$$\frac{\partial x^2}{\partial x} = 2x; \quad \frac{\partial (z^*)^2}{\partial z^*} = 2 \cdot z^*; \frac{\partial |z|^2}{\partial z} = z^*$$

$$\frac{\partial L}{\partial w_m^*} = \frac{\epsilon_s}{\sigma_n^2} \left(\sum_{n=1}^{N_T} w_n^* \cdot h_n \right)^* h_m + \lambda w_m$$

$$\rightarrow w_m = \frac{\epsilon_s}{\sigma_n^2 \cdot \lambda} \left(\sum_{n=1}^{N_T} w_n^* h_n \right)^* \quad h_m$$

const., independent of m := c

$$\rightarrow w_m = c \cdot h_m$$

$$\to \sum_{n=1}^{N_T} |w_n|^2 = 1 \to c^2 = \frac{1}{\sum_{n=1}^{N_T} |h_n|^2}$$

$$\rightarrow w_n = \frac{h_n}{\sqrt{\sum\limits_{n=1}^{N_T} |h_n|^2}} \equiv \text{MRT gains}$$

$$\to \text{SNR} = \frac{\mathcal{E}_s}{\sigma_n^2} \Big| \sum_{n=1}^{N_T} \frac{|h_n|^2}{\sqrt{\sum_{n=1}^{N_T} |h_m|^2}} \Big|^2 = \frac{\epsilon_s}{\sigma_n^2} \sum_{n=1}^{N_T} |h_n|^2$$

- ⇒ same SNR as for maximum ration combining (MRC)
- \Rightarrow MRT with N_T transmit antennas achieves the same performance as MRC with N_T receive antennas
- \Rightarrow MRT/MRC can be extended to $N_T \times N_R$ MIMO systems
 - \rightarrow has the same performance as MRC with $N_T \cdot N_R$ receive antennas and one transmit antenna

Equal Gain Transmission (EGT)

• we employ gains: $w_n = \frac{1}{\sqrt{N_T}} \cdot \frac{h_n}{|h_m|} \to |w_n| = \frac{1}{\sqrt{N_T}}$

• SNR:

$$\begin{split} \gamma_t &= \frac{\mathcal{E}_s}{\sigma_n^2} \left| \sum_{n=1}^{N_T} w_n^* h_n \right|^2 \\ &= \frac{\mathcal{E}_s}{\sigma_n^2} \left| \sum_{n=1}^{N_T} \frac{1}{\sqrt{N_T} \cdot \frac{|h_n|^2}{|h_n|}} \right|^2 = \frac{1}{N_T} \cdot \frac{\mathcal{E}_s}{\sigma_n^2} \left| \sum_{n=1}^{N_T} |h_n| \right|^2 \\ \gamma_n &= \frac{\mathcal{E}_s}{\sigma_n^2} |h_n|^2 \\ \text{same SNR as for EGC} &\to \gamma_t = \frac{1}{N_T} \left| \sum_{n=1}^{N_T} N_T \sqrt{\gamma_n} \right|^2 \end{split}$$

 \rightarrow EGC with N_T transmit antennas achieves the same performance as EGC with N_T receive antennas

Transmit Antennas Selection

• select antenna with maximum channel gain for transmission:

$$w_n = \begin{cases} \frac{h_n}{|h_n|}, & \text{if } n = \hat{n} \\ 0, & \text{otherwise} \end{cases} \text{ where } \hat{n} = \underset{n}{\operatorname{argmax}} |h_n|$$

• antenna selection with N_T transmit antennas achieves the same performance as Selection Combining with N_T receive antennas

2.3 No CSI at Transmitter - Space-Time-Coding

- $h_n, n \in \{1, \ldots, N_T\}$, is only known at the receiver
- "Space-time-coding" has to be employed to realize diversity gain
- $T \times N_T$ matrics **X** are transmitted in T symbol intervals over N_T antennas
- $\bullet~\mathbf{X}$ is drawn from a matrix alphabet \mathcal{X}
- Example:

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,N_T} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,N_T} \\ \vdots & \vdots & \ddots & \vdots \\ x_{T,1} & x_{T,2} & \cdots & x_{T,N_T} \end{pmatrix}$$

- We distinguish:
 - Space-time-block-codes (STBCs)
 - $\to \mathbf{X}$ is obtained by mapping K scalar symbols $s_k, \ k=1,\ldots,K$ from a scalar alphabet \mathcal{A} to matrix \mathbf{X}

- Space-time-trellis-codes (STTCs) $\rightarrow \mathbf{X}$ is obtained from scalar symbols s_k through a trellis encoding process. [see: Tarokh, Seshadri, Calderbank: Space-time-codes for high datarate wireless commu-

[see: Tarokh, Seshadri, Calderbank: Space-time-codes for high datarate wireless communication: Performance criterions and coder construction; IEEE Trans. Inf. Theory 1998]

- here: We concentrate on space-time-block-codes (STBCs), but many results can be easily extended to space-time-trellis-codes
- STBCs:
 - K M-ary scalar symbols (e.g. M-PSK symbols) are mapped to STBC matrices \mathbf{X} $\mathbf{S} = [s_1, \dots, s_K] \to \mathbf{X}$ $s_k \in \mathcal{A} \to x \in \mathcal{X}$ with $|\mathcal{X}| = M^K$
 - Example: "Alamouti"-Code

$$\mathbf{X} = \frac{1}{\sqrt{2}} \begin{pmatrix} s_1 & s_2 \\ -s_2^* & s_1^* \end{pmatrix}$$

[Alamouti: A simple transmit diversity technique for wireless communication, IEEE JSAC 1998]

Optimal Detection

• Signal model:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_T \end{pmatrix} = \mathbf{X} \begin{pmatrix} h_1 \\ \vdots \\ h_{N_T} \end{pmatrix} + \begin{pmatrix} n_1 \\ \vdots \\ n_T \end{pmatrix}$$
$$\mathbf{y} = \mathbf{X} \cdot \mathbf{h} + \mathbf{n}$$

- Optimal detection ML-detection
 - **h** is known at receiver
 - **n** is AWGN with $\mathcal{E}\{\mathbf{n}\cdot\mathbf{n}^{\mathbf{H}}\}=\sigma_{\mathbf{n}}^2\cdots\mathbf{I}_{T\times T}$
 - $-p(\mathbf{y}|\mathbf{x})$

$$= \frac{1}{\pi^{T} |\sigma_{n}^{2} \mathbf{I}_{T \times T}|} \exp\left(-(\mathbf{y} - \mathbf{x}\mathbf{h})^{H} (\sigma_{n}^{2} \mathbf{I}_{T \times T})^{-1} (\mathbf{y} - \mathbf{x}\mathbf{h})\right)$$

$$= \frac{1}{\pi^{T} \sigma_{n}^{2T}} \exp\left(-\frac{1}{\sigma_{n}^{2}} (\mathbf{y} - \mathbf{x}\mathbf{h})^{H} (\mathbf{y} - \mathbf{x}\mathbf{h})\right) = \frac{1}{\pi^{T} \sigma_{n}^{2T}} \exp\left(||\mathbf{y} - \mathbf{x}\mathbf{h}||^{2}\right)$$

 \to the optimal estimate $\hat{\mathbf{X}}$ or equivalently the optimal estimate $\hat{\mathbf{s}}$ can be obtained as

$$\hat{\mathbf{s}} = \underset{\mathbf{s} \in \mathcal{A}^K}{\operatorname{argmax}} \ p(\mathbf{y}|\mathbf{x}) = \underset{\mathbf{s} \in \mathcal{A}^K}{\operatorname{argmin}} ||\mathbf{y} - \mathbf{h}\mathbf{x}||^2$$

– Disadvantage: In general, metric $||\mathbf{y} - \mathbf{h}\mathbf{x}||^2$ has to be calculated M^K times \to complexity increases exponentially with K

Types of STBCs

- Orthogonal STBCs (OSTBCs)
 - OSTBCs are a special class of STBCs which allow independent detection of each $s_k \to \text{only } K \cdot M$ metrics have to be evaluated
 - Rate STBCs: $R_{STBC} = \frac{K}{T}$
 - Examples:
 - * Alamouti Code $(K=2,T=2) \rightarrow R_{STBC}=1$

$$\mathbf{X} = \frac{1}{\sqrt{2}} \begin{pmatrix} s_1 & s_2 \\ -s_2^* & s_1^* \end{pmatrix} \updownarrow T$$

$$\longleftrightarrow N_T$$

 \rightarrow only "full rate" OSTBC for complex s_k

*
$$N_T = 3, K = 3, T = 4$$

$$\mathbf{X} = \frac{1}{\sqrt{3}} \begin{pmatrix} s_1 & s_2 & s_3 \\ -s_2^* & s_1^* & 0 \\ s_3^* & 0 & -s_3^* \\ 0 & -s_3^* & s_2^* \end{pmatrix} \to R_{STBC} = \frac{K}{T} = \frac{3}{4}$$

- Orthogonality: $\mathbf{X}^H \mathbf{X} = const \cdot \mathbf{I}_{N_T \times N_T}$
- Independent detection of $s_1 \& s_2$ for Alamouti Code

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} s_1 & s_2 \\ -s_2^* & s_1^* \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}$$

$$\rightarrow \underbrace{\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}}_{\tilde{y}} = \frac{1}{\sqrt{2}} \underbrace{\begin{pmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{pmatrix}}_{\tilde{F}} \underbrace{\begin{pmatrix} s_1 \\ s_2 \end{pmatrix}}_{s} + \underbrace{\begin{pmatrix} n_1 \\ n_2^* \end{pmatrix}}_{\tilde{n}}$$

(Anmerkung:
 $\underline{\text{nur}} \ \binom{s_1}{s_2}$ gewünscht, nicht: s_1^*, s_2^*)

$$\mathbf{F}^H \mathbf{F} = \frac{1}{2} \begin{pmatrix} h_1^* & h_2 \\ h_2^* & -h_1 \end{pmatrix} \begin{pmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{pmatrix} = \frac{1}{2} \begin{pmatrix} |h_1|^2 + |h_2|^2 & 0 \\ 0 & |h_1|^2 + |h_2|^2 \end{pmatrix}$$

- $\rightarrow \frac{\sqrt{2}}{\sqrt{|h_1|^2+|h_2|^2}} \cdot \mathbf{F}$ is unitary matrix
- \rightarrow ML decision: $\hat{\mathbf{s}} = \underset{\mathbf{s}}{\operatorname{argmin}} \left| \left| \frac{2}{|h_1|^2 + |h_2|^2} \cdot \mathbf{F}^H \cdot \tilde{\mathbf{y}} \mathbf{s} \right| \right|^2$
- \rightarrow independent ML decoding

$$\hat{s}_1 = \underset{s_1}{\operatorname{argmin}} \left| s_1 - \frac{h_1^* y_1 + h_2 y_2^*}{\frac{1}{\sqrt{2}} (|h_1|^2 + |h_2|^2)} \right|$$

$$\hat{s}_2 = \underset{s_2}{\operatorname{argmin}} \left| s_2 - \frac{h_1^* y_1 - h_2 y_2^*}{\frac{1}{\sqrt{2}} (|h_1|^2 + |h_2|^2)} \right|$$

- independent decoding property can be proved for all OSTBCs
- $-\,$ low complexity is at the expense of a rate-loss compared to other STBCs for $N_T>2$
 - \rightarrow Frequenzhopping
 - \rightarrow keine Kanalinformation aus vorher empfangenen Symbolen möglich \Rightarrow Kanal ändert sich ständig: nur Entscheidung, ob Rauschen oder Signal + Rauschen
- Performance Analysis of Alamouti Code
 - Decision-variables after combining

$$r_1 = \sqrt{2} \frac{h_1^* y_1 + h_2 y_2^*}{|h_1|^2 + |h_2|^2}$$
$$r_2 = \sqrt{2} \frac{h_1^* y_1 - h_2 y_2^*}{|h_1|^2 + |h_2|^2}$$

because of symmetry it suffices to consider r_1

$$\begin{split} r_1 &= \sqrt{2} \frac{h_1^* \left(\frac{1}{\sqrt{2}} s_1 h_1 + \frac{1}{\sqrt{2}} h_2 s_2 + n_1\right) + h_2 \left(-\frac{1}{\sqrt{2}} h_2 s_1^* + \frac{1}{\sqrt{2}} h_1 s_2^* + n_2\right)^*}{|h_1|^2 + |h_2|^2} \\ &= \sqrt{2} \frac{\frac{1}{\sqrt{2}} \left(|h_1|^2 + |h_2|^2\right) s_1 + h_1^* n_1 + h_2 n_2^*}{|h_1|^2 + |h_2|^2} \\ &= 1 \cdot s_1 + n_{eq} \end{split}$$

where

$$n_{eq} = \sqrt{2} \frac{h_1^* n_1 + h_2 n_2^*}{|h_1|^2 + |h_2|^2}$$

$$SNR \to \gamma_t = \frac{\mathcal{E}_s \cdot 1^2}{\sigma_{eq}^2} \quad \text{with} \quad \mathcal{E}\{|s_1|^2\} = \mathcal{E}_s$$

$$\sigma_{eq}^2 = 2 \frac{|h_1|^2 \sigma_n^2 + |h_2|^2 \sigma_{eq}}{(|h_1|^2 + |h_2|^2)^2} = \frac{2\sigma_n^2}{|h_1|^2 + |h_2|^2}$$

$$\rightarrow \gamma_t = \frac{1}{2} \frac{\mathcal{E}_s}{\sigma_n} (|h_1|^2 + |h_2|^2)$$

- $\rightarrow \text{SNR}_{\text{Alamouti}} = \frac{1}{2} \text{SNR}_{\text{MRC}} = \frac{1}{2} \text{SNR}_{\text{MRT}}$
- \rightarrow Alamouti code has diversity gain $G_d=2$
- \rightarrow Transmission with Alamouti STBC requires 3dB higher SNR to achieve same performance as MRT \rightarrow 3dB loss in coding gain G_c
- → Lack of CSI knowledge at transmitter "costs" 3dB in power efficiency
- \rightarrow General:
 - · OSTBCs achieve a diversity gain of $G_d = N_T$ if only one receive antenna is available
 - · if N_R receive antennas are available, MRC can be used at the receiver to yield a diversity gain of $G_d = N_T N_R$
- Other STBCs:

- $-\,$ Quasi orthogonal STBCs
 - * higher rate than OSTBCs
 - * only subset of symbols have to be decoded jointly
 - * Example: $K = N_T = T = 4$

$$\mathbf{X} = \frac{1}{2} \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ -s_2^* & s_1^* & -s_4^* & s_3^* \\ -s_3^* & -s_4^* & s_1^* & s_2^* \\ s_4 & -s_3 & -s_2 & s_1 \end{pmatrix}$$

- * Anmerkung 1: $\mathbf X$ ist ähnlich zu Alamouti Code
- * Anmerkung 2: $\mathbf{X}^H \mathbf{X}$: viele Nicht-diagonal Elemente sind Null; die, die ungleich Null sind, zeigen, welche Symbole gemeinsam entschlüsselt werden müssen
- Golden Code for $N_T=N_R=2$: achieves a rate of $R_{STBC}=2$ and full diversity of $G_d=N_T,N_R=4$
- Differential STBCs: $\mathbf{X}_k = \mathbf{X}_{k-1} \cdot \mathbf{D}_k$. \mathbf{X}_k is transmitted, \mathbf{D}_k is transmitted
- Linear dispersion codes: designed to achieve high mutual information
- noncoherent STBCs (On-Off-Keying)

Space Time Code Design

Given:

- Code $\mathcal{H} = \{\mathbf{X}_1, \dots, \mathbf{X}_{|\mathcal{H}|}\}$
- Channel: IID Rayleigh-fading:
 - $-h_n \sim C\mathcal{N}(0,1); \quad n \in \{1, 2, \dots, N_T\}$
 - AWGN $n \sim C\mathcal{N}(0, \sigma_n^2)$

Problem: How should we design codebook \mathcal{H} ?

- Need to derive error rate for general codebooks $\mathcal{H}!$
 - Codeword error rate

$$P_e = \frac{1}{|\mathcal{H}|} \sum_{i=1}^{|\mathcal{H}|} \Pr\{\mathbf{x}_i \neq \hat{\mathbf{x}}_i\}$$

where $\hat{\mathbf{x}}_i$ is the detected codeword and we assume that all codewords are equally likely

Problem: $\Pr{\mathbf{x}_i \neq \hat{\mathbf{x}}_i}$ is not tractable in general

• Use union bound to upper bound $\Pr\{\mathbf{x}_i \neq \hat{\mathbf{x}}_i\}$ as upper sum over <u>pairwise error probabilities</u>(PEP) $\Pr\{\mathbf{x}_i \to \mathbf{x}_j\}$ where it is assumed that \mathbf{x}_i was transmitted and \mathbf{x}_i and \mathbf{x}_j are the only codewords in the codebook

$$P_e \leq \frac{1}{|\mathcal{H}|} \sum_{i=1}^{|\mathcal{H}|} \sum_{j=1}^{|\mathcal{H}|} \Pr{\{\mathbf{x}_i \to \mathbf{x}_j\} \text{ where } j \neq i}$$

Calculation of PEPs

Recall:
$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} ||\mathbf{y} - \mathbf{x}\mathbf{h}||^2$$

Recall: $\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} ||\mathbf{y} - \mathbf{x}\mathbf{h}||^2$ Now, \mathbf{x}_i and \mathbf{x}_j are the only alternatives and an error is made if $||\mathbf{y} - \mathbf{x}_i\mathbf{h}||^2 > ||\mathbf{y} - \mathbf{x}_j\mathbf{h}||^2$ since \mathbf{x}_i was sent but \mathbf{x}_j was detected