CS3873 Assignment Page 1

Assignment 1: Network Overview

1. (2 points) How long does it take a packet of length 2000 bytes to be sent over a link of distance 2500 km, propagation speed 2.5×10^8 m/s, and transmission rate 4 Mbps? More generally, how long does it take a packet of length L to be sent over a link of distance d, propagation speed s, and transmission rate R bps?

(**Note:** Consider the total of the propagation delay d_{prop} and the transmission delay d_{trans}.)

- 2. (2 points) Suppose end system A wants to send a large file to end system B. The path from host A to Host B has three links, of rates R_1 =1 Mbps, R_2 =2 Mbps, and R_3 =2.5 Mbps.
 - a. Assuming no further traffic in the network, what is the throughput for the file transfer?
 - b. Suppose the file is 10 MB. Dividing the file size by the throughput, roughly how long will it take to transfer the file to Host B?
 - c. Repeat (a) and (b), but now with R_1 reduced to 500 kbps.
- 3. (2 points) Equation 1.1 gives a formula for the end-to-end delay of sending **one packet** of length *L* over *N* links of transmission rate *R*. Generalize this formula for sending *P* such packets back-to-back over the *N* links.
- 4. (4 points) This elementary problem begins to explore the propagation delay and transmission delay, two central concepts in data networking. Consider 2 hosts, A and B, connected by a single link of R bps. Suppose that the two hosts are separated by m meters, and suppose the propagation speed along the link is s meters/sec. Host A is to send a packet of size L bits to host B.
 - a. Express the propagation delay, d_{prop} , in terms of m and s.
 - b. Determine the transmission time of the packet, d_{trans} , in terms of L and R.
 - c. Ignoring processing and queuing delays, obtain an expression for the end-to-end delay.
 - d. Suppose host A begins to transmit the packet at time t = 0. At time $t = d_{trans}$, where is the last bit of the packet?
 - e. Suppose that d_{prop} is greater than d_{trans} . At time $t = d_{trans}$, where is first bit of the packet?
 - f. Suppose d_{prop} is less than d_{trans}. At time t = d_{trans}, where is the first bit of the packet?
 - g. Suppose $s = 2.5 \times 10^8$ m/s, L = 1.5 KB and R = 4 Mbps. Find the distance m so that d_{prop} equals d_{trans}.

CS3873 Assignment Page 2

Appendix

Table of Units for Data Size.

Unit	Abbreviation	Value
kilobyte	KB	10 ³ bytes
megabyte	МВ	10 ⁶ bytes
gigabyte	GB	109 bytes
terabyte	ТВ	10 ¹² bytes

Table of Units for Data Rate.

Unit	Abbreviation	Value
kilobits/s	kbps, kbit/s	10 ³ bits/s
megabits/s	Mbps, Mbit/s	10 ⁶ bits/s
gigabits/s	Gbps, Gbit/s	109 bits/s