Алгоритмы анализа графов, домашнее задание 6 (max flows / min cost flows); Санкт-Петербургский Государственный Университет, 29.04.20

Содержание

Обязателы	ные задачи	2
Задача А.	Просто поток [2 sec, 256 mb]	2
Задача В.	Максимальный поток минимальной стоимости [2 sec, 256 mb]	3
Задача С.	Разрез [2 sec, 256 mb]	4
Обычные з	вадачи	5
Задача D.	Улиточки [2 sec, 256 mb]	5
Задача Е.	Максимальный поток [4 sec, 256 mb]	6
Задача F.	В поисках невест [2 sec, 256 mb]	7
Дополните	ельные задачи	8
Задача G .	Molecule. Химия!!! [2 sec, 256 mb]	8
Задача Н.	Автоматное программирование [2 sec, 256 mb]	9
Задача І.	Живопись [2 sec, 256 mb]	10

Вы не умеете читать/выводить данные, открывать файлы? Воспользуйтесь примерами.

В некоторых задачах большой ввод и вывод. Пользуйтесь быстрым вводом-выводом.

Обратите внимание, что ввод-вывод во всех задачах стандартный.

Задачи расположены в произвольном порядке!

Обязательные задачи

Задача А. Просто поток [2 sec, 256 mb]

Дана система из узлов и труб, по которым может течь вода. Для каждой трубы известна наибольшая скорость, с которой вода может протекать через нее. Известно, что вода течет по трубам таким образом, что за единицу времени в каждый узел (за исключением двух — источника и стока) втекает ровно столько воды, сколько из него вытекает.

Ваша задача — найти наибольшее количество воды, которое за единицу времени может протекать между источником и стоком, а также скорость течения воды по каждой из труб.

Трубы являются двусторонними, то есть вода в них может течь в любом направлении. Между любой парой узлов может быть более одной трубы.

Формат входных данных

В первой строке записано натуральное число N — количество узлов в системе $(2 \le N \le 100)$. Известно, что источник имеет номер 1, а сток номер N. Во второй строке записано натуральное M $(1 \le M \le 5000)$ — количество труб в системе. Далее в M строках идет описание труб. Каждая труба задается тройкой целых чисел A_i , B_i , C_i , где A_i , B_i — номера узлов, которые соединяет данная труба $(A_i \ne B_i)$, а C_i $(0 \le C_i \le 10^4)$ — наибольшая допустимая скорость течения воды через данную трубу.

Формат выходных данных

В первой строке выведите наибольшее количество воды, которое протекает между источником и стоком за единицу времени. Далее выведите M строк, в каждой из которых выведите скорость течения воды по соответствующей трубе. Если направление не совпадает с порядком узлов, заданным во входных данных, то выводите скорость со знаком минус. Числа выводите с точностью 10^{-3} .

stdin	stdout
2	4.0000000
2	1.0000000
1 2 1	-3.0000000
2 1 3	

Задача В. Максимальный поток минимальной стоимости [2 sec, 256 mb]

Задан ориентированный граф, каждое ребро которого обладает пропускной способностью и стоимостью. Найдите максимальный поток минимальной стоимости из вершины с номером 1 в вершину с номером n.

Формат входных данных

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100$, $0 \le m \le 1000$). Следующие m строк содержат по четыре целых числа числа: номера вершин, которые соединяет соответствующее ребро графа, его пропускную способность и его стоимость. Пропускные способности и стоимости не превосходят 10^5 .

Формат выходных данных

В выходной файл выведите одно число — цену максимального потока минимальной стоимости из вершины с номером 1 в вершину с номером n. Ответ не превышает $2^{63}-1$. Гарантируется, что в графе нет циклов отрицательной стоимости.

Примеры

stdin	stdout
4 5	12
1 2 1 2	
1 3 2 2	
3 2 1 1	
2 4 2 1	
3 4 2 3	

Подсказка по решению

В этой задаче достаточно несколько раз пустить Форд-Беллмана...

Задача С. Разрез [2 sec, 256 mb]

Дан неориентированный граф. Найдите минимальный разрез между вершинами 1 и п.

Формат входных данных

На первой строке входного файла содержится n ($1 \le n \le 100$) — число вершин в графе и m ($0 \le m \le 400$) — количество ребер. На следующих m строках входного файла содержится описание ребер. Ребро описывается номерами вершин, которые оно соединяет, и его пропускной способностью (положительное целое число, не превосходящее $10\,000\,000$), при этом никакие две вершины не соединяются более чем одним ребром.

Формат выходных данных

На первой строке выходного файла должны содержаться количество ребер в минимальном разрезе и их суммарная пропускная способность. На следующей строке выведите возрастающую последовательность номеров ребер (ребра нумеруются в том порядке, в каком они были заданы во входном файле).

stdin	stdout
3 3	2 8
1 2 3	1 2
1 3 5	
3 2 7	

Обычные задачи

Задача D. Улиточки [2 sec, 256 mb]

Две улиточки Маша и Петя сейчас находятся в на лужайке с абрикосами и хотят добраться до своего домика. Лужайки пронумерованы числами от 1 до n и соединены дорожками (может быть несколько дорожек соединяющих две лужайки, могут быть дорожки, соединяющие лужайку с собой же). В виду соображений гигиены, если по дорожке проползла улиточка, то вторая по той же дорожке уже ползти не может. Помогите Пете и Маше добраться до домика.

Формат входных данных

В первой строке файла записаны четыре целых числа -n, m, a и h (количество лужаек, количество дорог, номер лужайки с абрикосами и номер домика).

В следующих m строках записаны пары чисел. Пара чисел (x, y) означает, что есть дорожка с лужайки x до лужайки y (из-за особенностей улиток и местности дорожки односторонние).

Ограничения: $2 \le n \le 10^5, 0 \le m \le 10^5, s \ne t$.

Формат выходных данных

Если существует решение, то выведите YES и на двух отдельных строчках сначала путь для Машеньки (т.к. дам нужно пропускать вперед), затем путь для Пети. Если решения не существует, выведите NO. Если решений несколько, выведите любое.

stdin	stdout
3 3 1 3	YES
1 2	1 3
1 3	1 2 3
2 3	

Задача Е. Максимальный поток [4 sec, 256 mb]

Вам задан ориентированный граф G. Каждое ребро имеет некоторую пропускную способность. Найдите максимальный поток между вершинами 1 и n.

Формат входных данных

Первая строка входного файла содержит n и m — число вершин и ребер в графе ($2 \leqslant n \leqslant 500, 1 \leqslant m \leqslant 10\,000$). Последующие строки описывают ребра. Каждое ребро задается тремя числами: начальная вершина ребра, конечная вершина ребра и пропускная способность ребра. Пропускные способности не превосходят 10^9 .

Формат выходных данных

Выведите величину максимального потока между вершинами 1 и n. Далее для каждого ребра выведите величину потока, текущую по этому ребру.

stdin	stdout
4 5	3.0
1 2 1	1.0
1 3 2	2.0
3 2 1	1.0
2 4 2	2.0
3 4 1	1.0

Задача F. В поисках невест [2 sec, 256 mb]

Однажды король Флатландии решил отправить k своих сыновей на поиски невест. Всем известно, что во Флатландии n городов, некоторые из которых соединены дорогами. Король живет в столице, которая имеет номер 1, а город с номером n знаменит своими невестами.

Итак, король повелел, чтобы каждый из его сыновей добрался по дорогам из города 1 в город n. Поскольку, несмотря на обилие невест в городе n, красивых среди них не так много, сыновья опасаются друг друга. Поэтому они хотят добраться до цели таким образом, чтобы никакие два сына не проходили по одной и той же дороге (даже в разное время). Так как король любит своих сыновей, он хочет, чтобы среднее время сына в пути до города назначения было минимально.

Формат входных данных

В первой строке входного файла находятся числа n, m и k — количество городов и дорог во Флатландии и сыновей короля, соответственно ($2 \le n \le 200, 1 \le m \le 2000, 1 \le k \le 100$). Следующие m строк содержат по три целых положительных числа каждая — города, которые соединяет соответствующая дорога и время, которое требуется для ее прохождения (время не превышает 10^6). По дороге можно перемещаться в любом из двух направлений, два города могут быть соединены несколькими дорогами.

Формат выходных данных

Если выполнить повеление короля невозможно, выведите на первой строке число -1. В противном случае выведите на первой строке минимальное возможное среднее время (с точностью 5 знаков после десятичной точки), которое требуется сыновьям, чтобы добраться до города назначения, не менее чем с пятью знаками после десятичной точки. В следующих k строках выведите пути сыновей, сначала число дорог в пути, и затем номера дорог в пути в том порядке, в котором их следует проходить. Дороги нумеруются, начиная с единицы, в том порядке, в котором они заданы во входном файле.

stdin	stdout
5 8 2	3.00000
1 2 1	3 1 5 6
1 3 1	3 2 7 8
1 4 3	
2 5 5	
2 3 1	
3 5 1	
3 4 1	
5 4 1	

Дополнительные задачи

Задача G. Molecule. Химия!!! [2 sec, 256 mb]

Вася и Сережа играют в следующую игру. В некоторых клетках клетчатого листка Сережа рисует один из символов 'H', 'O', 'N' или 'C', после чего Вася должен провести между некоторыми находящимися в соседних клетках символами линии так, чтобы получилось корректное изображение химической молекулы. К сожалению, Сережа любит рисовать много символов, и Вася не может сразу определить, возможно ли вообще нарисовать линии нужным способом. Помогите ему написать программу, которая даст ответ на этот вопрос.

В этой задаче проведенные между символами химических элементов линии будем считать корректным изображением молекулы, если они удовлетворяют следующим условиям:

- каждая линия соединяет символы, нарисованные в соседних (по стороне) клетках,
- между каждой парой символов проведено не более одной линии,
- от каждого элемента отходит ровно столько линий, какова валентность этого элемента (1 для H, 2 для O, 3 для N, 4 для C),
- пустые клетки ни с чем не соединены, и
- хотя бы в одной клетке нарисован какой-то символ.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m ($1 \le n, m \le 50$) — размеры листочка, на котором рисует Сережа. Далее следуют n строк по m символов в каждой, задающих конфигурацию химических элементов, которую нарисовал Сережа; пустые клетки задаются символом '.'.

Формат выходных данных

В выходной файл выведите одно слово: 'Valid', если линии провести требуемым образом можно, и 'Invalid', если нельзя.

stdin	stdout
3 4	Valid
нон.	
NCOH	
00	
3 4	Invalid
нон.	
NCOH	
OONH	

Задача Н. Автоматное программирование [2 sec, 256 mb]

В один замечательный день в компанию «X» завезли k автоматов. И не простых автоматов, а автоматов-программистов! Это был последний неудачный шаг перед переходом на андроидов-программистов, но это уже совсем другая история.

В компании сейчас n задач, для каждой из которых известно время начала ее выполнения s_i , длительность ее выполнения t_i и прибыль компании от ее завершения c_i . Любой автомат может выполнять любую задачу, ровно одну в один момент времени. Если автомат начал выполнять задачу, то он занят все моменты времени с s_i по $s_i + t_i - 1$ включительно и не может переключиться на другую задачу.

Вам требуется выбрать набор задач, которые можно выполнить с помощью этих k автоматов и который принесет максимальную суммарную прибыль.

Формат входных данных

В первой строке записаны два целых числа n и k $(1 \le n \le 1000, 1 \le k \le 50)$ — количество задач и количество автоматов, соответственно.

В следующих n строках через пробелы записаны тройки целых чисел s_i, t_i, c_i $(1 \le s_i, t_i \le 10^9, 1 \le c_i \le 10^6), s_i$ — время начала выполнения i-го задания, t_i — длительность i-го задания, а c_i — прибыль от его выполнения.

Формат выходных данных

Выведите n целых чисел x_1, x_2, \ldots, x_n . Число x_i должно быть равно 1, если задачу i следует выполнить, и 0 в противном случае.

Если оптимальных решений несколько, то выведите любое из них.

Примеры

stdin	stdout
3 1	0 1 1
2 7 5	
1 3 3	
4 1 3	
5 2	1 1 0 0 1
1 5 4	
1 4 5	
1 3 2	
4 1 2	
5 6 1	

Замечание

В первом примере задания требуют выполнения в моменты времени 2 ... 8, 1 ... 3 и 4 ... 4, соответственно. Первое задание пересекается со вторым и третьим, поэтому можно выполнять либо его одно (прибыль 5), либо второе и третье (прибыль 6).

Задача І. Живопись [2 sec, 256 mb]

В стране Олимпия очень развита живопись. Картиной считается любой прямоугольник, который состоит из черных и белых единичных квадратов. Художник Олимпус решил радикально улучшить свои картины. Для этого он планирует к белому и черному цветам добавить еще и серый оттенок. По его задумке, граница между каждыми черным и белым квадратом должна содержать серую линию, чтобы образовался эффект плавного перехода.

Однако, перед началом работы, он обнаружил, что серая краска очень дорого стоит. Чтобы сэкономить деньги художник решил оценить, не выгоднее ли сначала перекрасить некоторые белые квадраты в черные, а черные в белые для того, чтобы минимизировать расходы на краску.

Напишите программу, которая по информации о существующей картине определяет минимальную сумму денег, которые понадобятся на ее улучшение.

Формат входных данных

Первая строка входного файла содержит пять натуральных чисел N, M, w, b, g. $1 \le N, M \le 70$ — высота и ширина картины, $1 \le w, b, g \le 1000$ — цена рисования одного белого единичного квадрата, черного единичного квадрата и серой линии единичной длины, соответственно. Далее следует N строк, каждая из которых состоит из M литер. Литера B соответствует черному квадрату, а W — белому.

Формат выходных данных

Единственная строка выходного файла должна содержать одно целое число, которое есть минимальной суммой затрат на улучшение картины.

stdin	stdout
3 2 3 3 2	7
BB	
WW	
WB	