第三章 非线性规划

第四节 无约束优化问题的解法

- ✓ 最速下降法
 - Newton法
 - 拟Newton法
- **共**轭梯度法

四. 共轭梯度法

$$(NP) \min_{X \in R^n} f(X)$$

- 共轭方向及其性质
 - 二次函数共轭梯度法的迭代原理
 - 二次函数共轭梯度法的迭代步骤
 - 一般函数的共轭梯度法
 - PRP算法的迭代步骤
 - 共轭梯度法的注释

定义3-13 设Q是n阶对称正定矩阵,若向量组

$$p^{(1)}, p^{(2)}, \dots, p^{(m)} \in \mathbb{R}^n$$
 满足:

$$p^{(i)^{T}}Qp^{(j)}\begin{cases} = 0 & i \neq j \\ \neq 0 & i = j \end{cases} \quad i, j = 1, 2, \dots, m(m \leq n)(3 - 24)$$

则称该向量组Q共轭(Q正交)。

当 Q = E,(3-24)就是通常的正交条件:

$$p^{(i)T} p^{(j)} \begin{cases} = 0 & i \neq j \\ \neq 0 & i = j \end{cases} \qquad i, j = 1, 2, \dots, m$$

则向量组 $p^{(1)},p^{(2)},\dots,p^{(m)}$ 正交。

定义3-13 设Q是n阶对称正定矩阵,若向量组

$$p^{(1)}, p^{(2)}, \dots, p^{(m)} \in \mathbb{R}^n$$
 满足:

$$p^{(i)^{T}}Qp^{(j)}\begin{cases} = 0 & i \neq j \\ \neq 0 & i = j \end{cases} \quad i, j = 1, 2, \dots, m(m \leq n)(3 - 24)$$

则称该向量组Q共轭(Q正交)。

共轭方向的性质:

定理3-13 设 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 对于对称正定矩阵Q共轭,则 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 线性无关。

定理3-14

 $\lambda_{k} = -\frac{g^{(k)^{T}} p^{(k)}}{p^{(k)^{T}} Q p^{(k)}}$

设 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 对于对称正定矩阵Q共轭,则从任意一点 $X^{(1)}$ 出发,依次以 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 为搜索方向的下述算法:

$$\begin{cases} \min_{\lambda \geq 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_k p^{(k)}) & k = 1 \\ X^{(k+1)} = X^{(k)} + \lambda_k p^{(k)} & k = n \end{cases}$$

经n次一维搜索收敛于 $\min_{X \in \mathbb{R}^n} f(X) = \frac{1}{2} X^T Q X + b^T X + c$ 的最优解 X^* 。

分析:
$$X^{(1)}$$
 $X^{(2)}$ $X^{(3)}$ $X^{(n)}$ $X^{(n+1)} = X^*$ $p^{(1)}$ $p^{(2)}$ $p^{(3)}$ $p^{(n)}$

结论: 共轭方向法具有二次终止性.

定理3-14

 $\lambda_k = -\frac{g^{(k)^T} p^{(k)}}{p^{(k)^T} Q p^{(k)}}$

设 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 对于对称正定矩阵Q共轭,则从任意一点 $X^{(1)}$ 出发,依次以 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 为搜索方向的下述算法:

$$\begin{cases} \min_{\lambda \ge 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_k p^{(k)}) \\ X^{(k+1)} = X^{(k)} + \lambda_k p^{(k)} \end{cases}$$

经n次一维搜索收敛于 $\min_{X \in \mathbb{R}^n} f(X) = \frac{1}{2} X^T Q X + b^T X + c$ 的最优解 X^* 。

推论:
$$X^{(1)}$$
 $X^{(2)}$ $X^{(3)}$ $X^{(k)}$ $X^{(k+1)}$ $p^{(1)}$ $p^{(2)}$ $p^{(3)}$ $p^{(k)}$ $p^{(k+1)}$

则 $g^{(k+1)}$ 与 $p^{(1)}, p^{(2)}, \dots, p^{(k)}$ 的任意线性组合都正交。

$$\mu_1 p^{(1)} + \mu_2 p^{(2)} + \cdots + \mu_k p^{(k)}$$

四. 共轭梯度法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓ 共轭方向及其性质
- 二次函数共轭梯度法的迭代原理
 - 二次函数共轭梯度法的迭代步骤
 - 一般函数的共轭梯度法
 - PRP算法的迭代步骤
 - 共轭梯度法的注释

求 $\min_{X \in \mathbb{R}^n} f(X) = \frac{1}{2} X^T Q X + b^T X + c$ 的最优解 X^* 。 Q

$$X^{(1)} \quad p^{(1)} = -g^{(1)} \qquad X^{(2)} = X^{(1)} + \lambda_1 p^{(1)}$$

$$X^{(2)} \quad p^{(2)} = -g^{(2)} + \beta_1 p^{(1)} \qquad \beta_1 = \frac{g^{(2)^T} Q p^{(1)}}{p^{(1)^T} Q p^{(1)}} \qquad X^{(3)} = X^{(2)} + \lambda_2 p^{(2)}$$

求 $\min_{X \in \mathbb{R}^n} f(X) = \frac{1}{2} X^T Q X + b^T X + c$ 的最优解 X^* 。 Q $\sum_{X \in \mathbb{R}^n} f(X) = \frac{1}{2} (1)$

$$\lambda_{k} = -\frac{g^{(k)^{T}} p^{(k)}}{p^{(k)^{T}} Q p^{(k)}}$$

$$X^{(1)}$$
 $p^{(1)} = -g^{(1)}$

$$X^{(2)} \quad p^{(2)} = -g^{(2)} + \beta_1 p^{(1)} \qquad \beta_1 = \frac{g^{(2)^T} Q p^{(1)}}{p^{(1)^T} Q p^{(1)}} \qquad X^{(3)} = X^{(2)} + \lambda_2 p^{(2)}$$

$$\beta_1 = \frac{g^{(2)^T} Q p^{(1)}}{p^{(1)^T} Q p^{(1)}}$$

$$X^{(2)} = X^{(1)} + \lambda_1 p^{(1)}$$

$$X^{(3)} = X^{(2)} + \lambda_2 p^{(2)}$$

$$X^{(3)}$$
 $p^{(3)} = -g^{(3)} + \beta_2 p^{(2)}$

确定
$$\beta_2$$
: $p^{(3)^T}Qp^{(2)} = -g^{(3)^T}Qp^{(2)} + \beta_2 p^{(2)^T}Qp^{(2)} = 0$

$$\beta_2 = \frac{g^{(3)^T} Q p^{(2)}}{p^{(2)^T} Q p^{(2)}}$$

2. 二次函数共轭梯度法的迭代原理
$$\lambda_{k} = -\frac{g^{(k)^{T}}p^{(k)}}{p^{(k)}}$$
 求 $\min_{X \in \mathbb{R}^{n}} f(X) = \frac{1}{2} X^{T} Q X + b^{T} X + c$ 的最优解 X^{*} 。 $Q : \sum_{X \in \mathbb{R}^{n}} \frac{g^{(k)^{T}} Q p^{(k)}}{p^{(k)}}$ $Y^{(1)} = -g^{(1)}$

$$X^{(1)}$$
 $p^{(1)} = -g^{(1)}$

$$X^{(2)} \quad p^{(2)} = -g^{(2)} + \beta_1 p^{(1)} \qquad \beta_1 = \frac{g^{(2)^T} Q p^{(1)}}{p^{(1)^T} Q p^{(1)}} \qquad X^{(3)} = X^{(2)} + \lambda_2 p^{(2)}$$

$$X^{(2)} = X^{(1)} + \lambda_1 p^{(1)}$$

$$X^{(3)} = X^{(2)} + \lambda_2 p^{(2)}$$

$$X^{(3)}$$
 $p^{(3)} = -g^{(3)} + \beta_2 p^{(2)}$ $\beta_2 = \frac{g^{(3)^T} Q p^{(2)}}{p^{(2)^T} Q p^{(2)}}$ $X^{(4)} = X^{(3)} + \lambda_3 p^{(3)}$

已知 $p^{(3)} = p^{(2)}$, $p^{(2)} = p^{(1)}$ 都Q共轭, $p^{(3)} = p^{(1)}$ 是否Q共轭?

$$p^{(1)} = -g^{(1)}$$

$$p^{(2)} = -g^{(2)} + \beta_1 p^{(1)}$$

$$p^{(1)} = -g^{(1)}$$
 $p^{(2)} = -g^{(2)} + \beta_1 p^{(1)}$ $p^{(3)} = -g^{(3)} + \beta_2 p^{(2)}$

证明: $p^{(3)} 与 p^{(1)}$ 是否Q 共轭

$$p^{(3)^{T}}Qp^{(1)} = -g^{(3)^{T}}Qp^{(1)} + \beta_{2}p^{(2)^{T}}Qp^{(1)}$$
$$= -g^{(3)^{T}}Qp^{(1)}$$

$$Qp^{(1)} = ?$$

$$f(X) = \frac{1}{2}X^{T}QX + b^{T}X + c \quad g(X) = \nabla f(X) = QX + b$$

$$g^{(k)} = QX^{(k)} + b$$

$$g^{(k+1)} = QX^{(k+1)} + b \quad X^{(k+1)} = X^{(k)} + \lambda_{k} p^{(k)}$$

$$= Q(X^{(k)} + \lambda_{k} p^{(k)}) + b$$

$$= g^{(k)} + \lambda_{k} Q p^{(k)} \longrightarrow Q p^{(k)} = \frac{1}{\lambda_{k}} (g^{(k+1)} - g^{(k)})$$

$$Qp^{(1)} = \frac{1}{\lambda_1}(g^{(2)} - g^{(1)})$$

$$p^{(1)} = -g^{(1)}$$

$$p^{(2)} = -g^{(2)} + \beta_1 p^{(1)}$$

$$p^{(1)} = -g^{(1)}$$
 $p^{(2)} = -g^{(2)} + \beta_1 p^{(1)}$ $p^{(3)} = -g^{(3)} + \beta_2 p^{(2)}$

证明: $p^{(3)} = p^{(1)}$ 是否Q共轭

$$p^{(3)^{T}}Qp^{(1)} = -g^{(3)^{T}}Qp^{(1)} + \beta_{2}p^{(2)^{T}}Qp^{(1)}$$
$$= -g^{(3)^{T}}Qp^{(1)}$$

$$Qp^{(1)} = \frac{1}{\lambda_1}(g^{(2)} - g^{(1)})$$

$$= -\frac{1}{\lambda_1} g^{(3)^T} (g^{(2)} - g^{(1)}) = -\frac{1}{\lambda_1} (g^{(3)^T} g^{(2)} - g^{(3)^T} g^{(1)})$$

因为 $g^{(1)}$ 与 $g^{(2)}$ 都是 $p^{(1)}$, $p^{(2)}$ 的线性组合,由定理3-14推论,

定理3-14

$$\lambda_{k} = -\frac{g^{(k)^{T}}p^{(k)}}{p^{(k)^{T}}Qp^{(k)}}$$

设 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 对于对称正定矩阵Q共轭,则从 任意一点 $X^{(1)}$ 出发, 依次以 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 为搜索方向的 下述算法:

$$\begin{cases} \min_{\lambda \ge 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_k p^{(k)}) \\ X^{(k+1)} = X^{(k)} + \lambda_k p^{(k)} \end{cases}$$

经n次一维搜索收敛于 $\min_{\mathbf{v} \in \mathbf{p}^n} f(\mathbf{X}) = \frac{1}{2} \mathbf{X}^T Q \mathbf{X} + \mathbf{b}^T \mathbf{X} + \mathbf{c}$ 的最优 解 X^* 。

推论:
$$X^{(1)}$$
 $X^{(2)}$ $X^{(3)}$ $X^{(k)}$ $p^{(1)} = -g^{(1)}$
$$p^{(1)} = p^{(1)}$$
 $p^{(2)}$ $p^{(2)}$ $p^{(k)}$ $p^{(2)} = -g^{(2)} + \beta_1 p^{(1)}$
$$g^{(k+1)} = p^{(1)}, p^{(2)}, \dots, p^{(k)}$$
 的任意线性组合都正交。

$$\mu_1 p^{(1)} + \mu_2 p^{(2)} + \dots + \mu_k p^{(k)}$$

$$p^{(1)} = -g^{(1)}$$
 $p^{(2)} = -g^{(2)} + \beta_1 p^{(1)}$

$$p^{(3)} = -g^{(3)} + \beta_2 p^{(2)}$$

证明: $p^{(3)} 与 p^{(1)}$ 是否Q共轭

$$p^{(3)^{T}}Qp^{(1)} = -g^{(3)^{T}}Qp^{(1)} + \beta_{2}p^{(2)^{T}}Qp^{(1)}$$
$$= -g^{(3)^{T}}Qp^{(1)}$$

$$Qp^{(1)} = \frac{1}{\lambda_1}(g^{(2)} - g^{(1)})$$

$$= -\frac{1}{\lambda_1} g^{(3)^T} (g^{(2)} - g^{(1)}) = -\frac{1}{\lambda_1} \underbrace{(g^{(3)^T} g^{(2)} - g^{(3)^T} g^{(1)})}_{0} = 0$$

因为 $g^{(1)}$ 与 $g^{(2)}$ 都是 $p^{(1)}$, $p^{(2)}$ 的线性组合,由定理**3-14**推论,所以 $p^{(3)}$ 与 $p^{(1)}$ Q共轭。

求 $\min_{X \in \mathbb{R}^n} f(X) = \frac{1}{2} X^T Q X + b^T X + c$ 的最优解 X^* 。 Q

$$X^{(1)}$$
 $p^{(1)} = -g^{(1)}$ $X^{(2)} = X^{(1)} + \lambda_1 p^{(1)}$

$$X^{(2)} \quad p^{(2)} = -g^{(2)} + \beta_1 p^{(1)} \qquad \beta_1 = \frac{g^{(2)^T} Q p^{(1)}}{p^{(1)^T} Q p^{(1)}} \qquad X^{(3)} = X^{(2)} + \lambda_2 p^{(2)}$$

$$X^{(3)}$$
 $p^{(3)} = -g^{(3)} + \beta_2 p^{(2)}$ $\beta_2 = \frac{g^{(3)^T} Q p^{(2)}}{p^{(2)^T} Q p^{(2)}}$ $X^{(4)} = X^{(3)} + \lambda_3 p^{(3)}$

$$X^{(k)} \quad p^{(k)} = -g^{(k)} + \beta_{k-1} p^{(k-1)} \quad \beta_{k-1} = \frac{g^{(k)^T} Q p^{(k-1)}}{p^{(k-1)^T} Q p^{(k-1)}} X^{(k+1)} = X^{(k)} + \lambda_k p^{(k)}$$

$$X^{(n)} \quad p^{(n)} = -g^{(n)} + \beta_{k-1} p^{(n-1)} \quad \beta_{n-1} = \frac{g^{(n)^T} Q p^{(n-1)}}{(n-1)^T Q^{(n-1)}} \quad X^{(n+1)} = X^{(n)} + \lambda p^{(n)}$$

共轭梯度法是共轭方向法,具有二次终止性。

四. 共轭梯度法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓ 共轭方向及其性质
- ✓ 二次函数共轭梯度法的迭代原理
- 二次函数共轭梯度法的迭代步骤
 - 一般函数的共轭梯度法
 - PRP算法的迭代步骤
 - 共轭梯度法的注释

3. 二次函数共轭梯度法的迭代步骤

 1^{0} 给定初始点 $X^{(1)}$,容许误差 $\varepsilon > 0$, 计算 $p^{(1)} = -g^{(1)}$, k := 1

$$2^{0}$$
一维搜索: $\min_{\lambda \geq 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_k p^{(k)})$

或
$$\lambda_k = \frac{g^{(k)^T}g^{(k)}}{p^{(k)^T}Qp^{(k)}}$$
(二次函数) $X^{(k+1)} = X^{(k)} + \lambda_k p^{(k)}$

 3^{0} 检验 $\|g^{(k+1)}\| < \varepsilon$? 若满足,迭代终止,取 $X^* = X^{(k+1)}$ 否则,转 4^{0}

4⁰ 计算:
$$\beta_k = \frac{g^{(k+1)^T}Qp^{(k)}}{p^{(k)^T}Qp^{(k)}}$$
 $p^{(k+1)} = -g^{(k+1)} + \beta_k p^{(k)}$

$$5^{\circ} \diamondsuit k := k + 1, 5 \times 2^{\circ}$$

$$\lambda_{k} = -\frac{g^{(k)^{T}}p^{(k)}}{p^{(k)^{T}}Qp^{(k)}}$$

3. 二次函数共轭梯度法的迭代步骤

$$\lambda_{k} = -\frac{g^{(k)^{T}} p^{(k)}}{p^{(k)^{T}} Q p^{(k)}}$$

证明:
$$\lambda_k = \frac{g^{(k)T}g^{(k)}}{p^{(k)T}Qp^{(k)}}$$

$$p^{(k)} = -g^{(k)} + \beta_{k-1}p^{(k-1)}$$

$$\lambda_{k} = \frac{-g^{(k)^{T}}p^{(k)}}{p^{(k)^{T}}Qp^{(k)}} = \frac{-g^{(k)^{T}}(-g^{(k)} + \beta_{k-1}p^{(k-1)})}{p^{(k)^{T}}Qp^{(k)}}$$
$$= \frac{g^{(k)^{T}}g^{(k)} - \beta_{k-1}g^{(k)^{T}}p^{(k-1)}}{p^{(k)^{T}}Qp^{(k)}(3-11)}$$

一. 最速下降法 3. 迭代步骤

 $\mathbf{1}^{0}$ 取初始点 $X^{(0)}$,容许误差 (精度) $\varepsilon > 0$,令

$$2^0$$
计算 $p^{(k)} = -\nabla f(X^{(k)})$

 3^{0} 检验 $\|p^{(k)}\| \le \varepsilon$?若是迭代终止,取 $X^* = X X^{(k)}$

$$4^{0}$$
求最优步长 λ_{k} , $\min_{\lambda>0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_{k} p^{(k)})$ (一维搜索)

$$5^{0}$$
 令 $X^{(k+1)} = X^{(k)} + \lambda_{k} p^{(k)}$,令 $k := k+1$,转 2^{0}

注释:

 2^0 结论: 一维搜索最优解的梯度 $\nabla f(X^{(k+1)})$ 与搜索方向 $p^{(k)}$ 正交

$$:: \min_{\lambda \geq 0} \underbrace{f(X^{(k)} + \lambda p^{(k)})}_{\varphi(\lambda)} = \underbrace{f(X^{(k)} + \lambda_k p^{(k)})}_{\varphi(\lambda_k)} \underbrace{\mathbb{E}\varphi'(\lambda)}_{\varphi(\lambda)} = \nabla f(X^{(k)} + \lambda p^{(k)})^T p^{(k)}$$

$$\therefore 0 = \varphi'(\lambda_k) = \nabla f(X^{(k+1)})^T p^{(k)} (3-11) \qquad g^{(k+1)^T} p^{(k)} = 0$$

线性规划3-4

3. 二次函数共轭梯度法的迭代步骤

$$\lambda_{k} = -\frac{g^{(k)^{T}}p^{(k)}}{p^{(k)^{T}}Qp^{(k)}}$$

证明:
$$\lambda_k = \frac{g^{(k)T}g^{(k)}}{p^{(k)T}Qp^{(k)}}$$

$$p^{(k)} = -g^{(k)} + \beta_{k-1}p^{(k-1)}$$

$$\lambda_{k} = \frac{-g^{(k)^{T}}p^{(k)}}{p^{(k)^{T}}Qp^{(k)}} = \frac{-g^{(k)^{T}}(-g^{(k)} + \beta_{k-1}p^{(k)^{T}}p^{(k)} = 0)}{p^{(k)^{T}}Qp^{(k)}}$$

$$= \frac{g^{(k)^{T}}g^{(k)} - \beta_{k-1}g^{(k)^{T}}p^{(k-1)} = 0}{p^{(k)^{T}}Qp^{(k)}(3-11)}$$

$$=\frac{\boldsymbol{g}^{(k)^T}\boldsymbol{g}^{(k)}}{\boldsymbol{p}^{(k)^T}\boldsymbol{Q}\boldsymbol{p}^{(k)}}$$

 1^0 给定初始点 $X^{(1)}$,容许误差 $\varepsilon > 0$,计算 $p^{(1)} = p^{(k)T} Q p^{(k)}$

$$\lambda_{k} = -\frac{g^{(k)^{T}}p^{(k)}}{p^{(k)^{T}}Qp^{(k)}}$$

$$2^{0}$$
一维搜索: $\min_{\lambda \geq 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_k p^{(k)})$

或
$$\lambda_k = \frac{g^{(k)^T}g^{(k)}}{p^{(k)^T}Qp^{(k)}}$$
(二次函数) $X^{(k+1)} = X^{(k)} + \lambda_k p^{(k)}$

$$3^{0}$$
检验 $\|g^{(k+1)}\| < \varepsilon$? 若满足,迭代终止,取 $X^* = X^{(k+1)}$ 否则,转 4^{0}

4⁰ 计算:
$$\beta_k = \frac{g^{(k+1)^T}Qp^{(k)}}{p^{(k)^T}Qp^{(k)}}$$
 $p^{(k+1)} = -g^{(k+1)} + \beta_k p^{(k)}$

$$5^{\circ} \diamondsuit k := k + 1, 5 \times 2^{\circ}$$

例3-12 求解min
$$f(X) = x_1^2 + 4x_2^2$$
 取 $X^{(1)} = (1,1)^T$, $\varepsilon = 0.01$

解:
$$Q = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix} \quad g(X) = \begin{pmatrix} 2x_1 \\ 8x_2 \end{pmatrix} \quad p^{(1)} = -g^{(1)} = -\begin{pmatrix} 2 \\ 8 \end{pmatrix}$$

$$k = 1$$
 $\lambda_1 = \frac{g^{(1)^T}g^{(1)}}{p^{(1)^T}Qp^{(1)}} = 0.13$

$$X^{(2)} = X^{(1)} + \lambda_1 p^{(1)} = \begin{pmatrix} 0.73 \\ -0.04 \end{pmatrix} \qquad g^{(2)} = \begin{pmatrix} 1.47 \\ -0.36 \end{pmatrix} \qquad \left\| g^{(2)} \right\| = 1.52 \, \text{χ} + \text{χ}$$

$$\beta_1 = \frac{g^{(2)^T} Q p^{(1)}}{p^{(1)^T} O p^{(1)}} = 0.03 \qquad p^{(2)} = -g^{(2)} + \beta_1 p^{(1)} = \begin{pmatrix} -1.54 \\ 0.09 \end{pmatrix} \qquad k = 2$$

例3-12 求解min
$$f(X) = x_1^2 + 4x_2^2$$
 取 $X^{(1)} = (1,1)^T$, $\varepsilon = 0.01$

解:

$$Q = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix} \quad g(X) = \begin{pmatrix} 2x_1 \\ 8x_2 \end{pmatrix} \quad p^{(1)} = -g^{(1)} = -\begin{pmatrix} 2 \\ 8 \end{pmatrix} \qquad g^{(2)} = \begin{pmatrix} 1.47 \\ -0.36 \end{pmatrix}$$

$$X^{(2)} = X^{(1)} + \lambda_1 p^{(1)} = \begin{pmatrix} 0.73 \\ -0.04 \end{pmatrix} \qquad p^{(2)} = -g^{(2)} + \beta_1 p^{(1)} = \begin{pmatrix} -1.54 \\ 0.09 \end{pmatrix}$$

$$k = 2 \quad \lambda_2 = \frac{g^{(2)^T} g^{(2)}}{p^{(2)^T} Q p^{(2)}} = 0.47 \qquad X^{(3)} = X^{(2)} + \lambda_2 p^{(2)} = \begin{pmatrix} 0.00 \\ 0.00 \end{pmatrix}$$

$$g^{(3)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \|g^{(3)}\| = 0 < \varepsilon \quad \text{ 法代终止,} 取 X^* = X^{(3)}$$

共轭梯度法具有二次终止性...

四、共轭梯度法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓ 共轭方向及其性质
- ✓ 二次函数共轭梯度法的迭代原理
- ✓ 二次函数共轭梯度法的迭代步骤
- 一般函数的共轭梯度法
 - PRP算法的迭代步骤
 - 共轭梯度法的注释

$$Qp^{(k)} = \frac{1}{\lambda_k} (g^{(k+1)} - g^{(k)})$$

求 $\min_{X \in \mathbb{R}^n} f(X)$ $\neq \frac{1}{2} X^T Q X + b^T X + c$ 的最优解 X^* .

$$2^{0}$$
一维搜索: $\min_{\lambda \geq 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_k p^{(k)})$ 一维搜索

或
$$\lambda_k$$
 $\frac{g^{(k)^T}g^{(k)}}{p^{(k)^T}Qp^{(k)}}$ $X^{(k+1)} = X^{(k)} + \lambda_k p^{(k)}$

 3^0 检验 $\|g^{(k+1)}\|$ < ε ? 若满足, 迭代终止, 取 $X^* = X^{(k+1)}$ 否则, 转 4^0

4⁰ 计算:
$$\beta_k \times \frac{g^{(k+1)^T}Qp^{(k)}}{p^{(k)^T}Qp^{(k)}}$$
 $p^{(k+1)} = -g^{(k+1)} + \beta_k p^{(k)}$

$$Qp^{(k)} = \frac{1}{\lambda_k} (g^{(k+1)} - g^{(k)})$$

$$\beta_{k} = \frac{g^{(k+1)^{T}} Q p^{(k)}}{p^{(k)^{T}} Q p^{(k)}}$$

$$= \frac{g^{(k+1)^T}(g^{(k+1)} - g^{(k)})}{p^{(k)^T}(g^{(k+1)} - g^{(k)})} = \frac{g^{(k+1)^T}(g^{(k+1)} - g^{(k)})}{-p^{(k)^T}g^{(k)}} \qquad g^{(k+1)^T}p^{(k)} = 0$$

下面推导 β_k 的三种形式,它们分别对应三种不同的共轭梯度法。

$$\beta_{k} = \frac{g^{(k+1)^{T}}Qp^{(k)}}{p^{(k)^{T}}Qp^{(k)}} = \frac{g^{(k+1)^{T}}(g^{(k+1)} - g^{(k)})}{-p^{(k)^{T}}g^{(k)}} \qquad \frac{g^{(k+1)^{T}}p^{(k)} = 0}{p^{(k)} = -g^{(k)} + \beta_{k-1}p^{(k-1)}}$$

$$0 = g^{(k+1)^{T}}p^{(k)} = g^{(k+1)^{T}}(-g^{(k)} + \beta_{k-1}p^{(k-1)}) \qquad g^{(k+1)^{T}}p^{(k-1)} = 0$$

$$= -g^{(k+1)^{T}}g^{(k)} + \beta_{k-1}g^{(k+1)^{T}}p^{(k-1)} \qquad \stackrel{\text{if } \mathbb{Z}}{\mathbb{Z}} 3-14 \text{ if } \mathbb{Z}$$

$$\lambda_k = -\frac{g^{(k)^T} p^{(k)}}{p^{(k)^T} Q p^{(k)}}$$

定理3-14 设 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 对于对称正定矩阵Q共轭,

则从任意一点 $X^{(1)}$ 出发, 依次以 $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ 为搜索方

经n次一维搜索收敛于 $\min_{X \in \mathbb{R}^n} f(X) = \frac{1}{2} X^T Q X + b^T X + c$ 的最优 $解X^*$ 。

推论:

则 $g^{(k+1)}$ 与 $p^{(1)}, p^{(2)}, ..., p^{(k)}$ 的任意线性组合都正交。

$$\mu_1 p^{(1)} + \mu_2 p^{(2)} + \cdots + \mu_k p^{(k)}$$

(线性规划3-4)

$$\beta_{k} = \frac{g^{(k+1)^{T}}Qp^{(k)}}{p^{(k)^{T}}Qp^{(k)}} = \frac{g^{(k+1)^{T}}(g^{(k+1)} - g^{(k)})}{-p^{(k)^{T}}g^{(k)}}$$

$$p^{(k)} = -g^{(k)} + \beta_{k-1}p^{(k-1)}$$

$$= -g^{(k+1)^{T}}p^{(k)} = g^{(k+1)^{T}}(-g^{(k)} + \beta_{k-1}p^{(k-1)})$$

$$= -g^{(k+1)^{T}}g^{(k)} + \beta_{k-1}g^{(k+1)^{T}}p^{(k-1)}$$

$$= -g^{(k+1)^{T}}g^{(k)}$$

$$= -g^{(k+1)^{T}}g^{(k)}$$

$$= -g^{(k)^{T}}g^{(k)} + \beta_{k-1}g^{(k-1)}$$

$$= -g^{(k)^{T}}g^{(k)}$$

$$= -g^{(k)^{T}}g^{(k)}$$

$$= -g^{(k)^{T}}g^{(k)}$$

$$= -g^{(k)^{T}}g^{(k)}$$

$$\beta_{k} = \frac{g^{(k+1)^{T}}Qp^{(k)}}{p^{(k)^{T}}Qp^{(k)}} = \frac{g^{(k+1)^{T}}(g^{(k+1)} - g^{(k)})}{-p^{(k)^{T}}g^{(k)}}$$

$$\frac{g^{(k+1)^{T}}g^{(k)} = 0}{g^{(k)^{T}}p^{(k)} = -g^{(k)^{T}}g^{(k)}}$$

$$\boldsymbol{g}^{(k+1)T}\boldsymbol{g}^{(k)} = \boldsymbol{0}$$

$$g^{(k)T}p^{(k)} = -g^{(k)T}g^{(k)}$$

$$\mathbf{1}^{0} \beta_{k} = \frac{g^{(k+1)T} g^{(k+1)}}{g^{(k)T} g^{(k)}} \quad (3-32) \quad 称为FR公式$$

$$2^{0}\beta_{k} = \frac{g^{(k+1)T}g^{(k+1)}}{-p^{(k)T}g^{(k)}}$$
(3-33) 称为DM公式

$$3^{0}\beta_{k} = \frac{g^{(k+1)^{I}}(g^{(k+1)} - g^{(k)})}{g^{(k)^{T}}g^{(k)}}$$
(3-34) 称为PRP公式

这三个公式对应的共轭梯度法分别称为FR, DM 和 PRP算法.

线性规划3-4

四. 共轭梯度法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓ 共轭方向及其性质
- ✓ 二次函数共轭梯度法的迭代原理
- ✓ 二次函数共轭梯度法的迭代步骤
- ✓一般函数的共轭梯度法
- PRP算法的迭代步骤
 - 共轭梯度法的注释

5. PRP算法的迭代步骤

$$3^{0}$$
 $\beta_{k} = \frac{g^{(k+1)^{T}}(g^{(k+1)} - g^{(k)})}{g^{(k)^{T}}g^{(k)}}$ PRP 公式

 1^0 给定初始点 $X^{(1)}$,容许误差 $\varepsilon > v$

$$2^{0} ||g^{(1)}|| < \varepsilon$$
? 若满足,迭代终止,取 $X^* = X^{(1)}$ 否则,转 3^{0}

$$3^{0} \Leftrightarrow p^{(1)} = -g^{(1)}$$
,置 $k := 1$

$$4^{0} \min_{\lambda \geq 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_{k} p^{(k)}) \quad X^{(k+1)} = X^{(k)} + \lambda_{k} p^{(k)}$$

$$||g^{(k+1)}|| < \varepsilon$$
? 若满足,迭代终止,取 $X^* = X^{(k+1)}$ 否则,转 6^0

$$6^{0}$$
 若 $k = n$, 则令 $X^{(1)} := X^{(k+1)}$ 转 3^{0}

若
$$k < n$$
, 计算 $\beta_k = \frac{g^{(k+1)T}(g^{(k+1)} - g^{(k)})}{g^{(k)T}(g^{(k)})}, p^{(k+1)} = -g^{(k+1)} + \beta_k p^{(k)}$

在PRP算法中,每n次迭代中的第一步取负梯度方向为其搜索方向,这种做法简称为"n步重新开始"。这是为了减少舍入误差的影响,加快收敛速度。

四. 共轭梯度法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓ 共轭方向及其性质
- ✓ 二次函数共轭梯度法的迭代原理
- ✓ 二次函数共轭梯度法的迭代步骤
- ✓ 一般函数的共轭梯度法
- ✓ PRP算法的迭代步骤
- 共轭梯度法的注释

6. 共轭梯度法的注释

 $\mathbf{1}^{0}$ $p^{(k)} = -g^{(k)} + \beta_{k-1} p^{(k-1)}$ 是 f(X) 在 $X^{(k)}$ 处的下降方向。证明:

$$g^{(k)T}p^{(k)} = g^{(k)T}(-g^{(k)} + \beta_{k-1}p^{(k-1)}) = -g^{(k)T}g^{(k)} = -\|g^{(k)}\|^2 < 0$$

所以共轭梯度法对一般目标函数是下降算法, 因此共轭梯度法是收敛算法。

结论: 当 $\nabla f(X^{(k)})^T p^{(k)} < 0$ 时, $p^{(k)} \in f(X)$ 在 $X^{(k)}$ 处的下降方向

6. 共轭梯度法的注释

 $p^{(k)} = -g^{(k)} + \beta_{k-1} p^{(k-1)}$ 是 f(X)在 $X^{(k)}$ 处的下降方向。 所以共轭梯度法对一般目标函数是下降算法, 因此共轭梯度法是收敛算法。

2⁰ 在*PRP*算法中,每*n*次迭代中的第一步取负梯度方向为其搜索方向,这种做法简称为"*n*步重新开始"。这是为了减少舍入误差的影响,加快收敛速度。

6. 共轭梯度法的注释

$$g^0 : p^{(k)} = -g^{(k)} + \beta_{k-1}p^{(k-1)} \qquad p^{(k)} = -G(X^{(k)})^{-1}g^{(k)}$$

所以共轭梯度法是最速下降法的一种改进算法。

当 $\beta_{k-1} = 0$ 时,就变为最速下降法。

共轭梯度法优于最速下降法,但是非"n步重新开始"的共轭梯度法也仅仅具有线性收敛速度.对于"n步重新开始"的PRP的算法,可以证明它具<u>有n步二阶收</u>敛速度.

4⁰ 和Newton法相比较,共轭梯度法的另一个优点是: 计算机存储量小,因为它不涉及矩阵,仅仅存放 向量。所以它适于求解较高维的问题。

四. 共轭梯度法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓ 共轭方向及其性质
- ✓ 二次函数共轭梯度法的迭代原理
- ✓ 二次函数共轭梯度法的迭代步骤
- ✓一般函数的共轭梯度法
- ✓ PRP算法的迭代步骤
- ✓ 共轭梯度法的注释

作业: P245 16

作业: P155 16