

APPLICATION: Remote Control/Optical Switch/Optoisolator/ Chopper/Pattern Recognition

INFRARED EMITTING DIODES (GaAs)

(Ta=25°C)

INFRAKED EMITTING DIC	JULJ	DES (GGAS)								=25°C)
Type No.	A	Absolute maximum Ratings					VF		$\lambda p \Delta \theta$	
	lr(mA)	V _R (V)	P(mW)	Topr.(°C)	(mW/sr) Typ.	Ir(mA)	(V) Max.	IF(mA)	(nm) Typ.	(deg.) Typ.
EL-SKL 0.5 0.5 0.13 2.2 - 0.1 0.13 2.2 - 0.1 0.13 2.2 - 0.1 Clear Glass Clear Glass	100	5	100	-40∼+100	1.5	50	1.5	50	940	±18
EL-SKLT	100	5	100	-40 ~ +100	0.7	50	1.5	50	940	±12
5.4±0.3 16.0±1 10±0.8 43.9±0.2 0 ⊕Anode 1Max 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60	4	80	−20~+70	3.5	40	1.5	40	940	±17
EL-1CL3 2.0Max 20 = 0.2 13.5 : 1 2.0Max 20	60	4	80	−20~+70	1.8	40	1.5	40	940	± 53
EL-1CL3H 2 0Max 2.0 - 0.2 13.9 1 2 0 Anode 2 0 Cathode Epoxy Resin	60	4	80	-20~+70	3.0	40	1.5	40	940	±14
EL-1KL3 6.2 ± 0.5	100	5	200	−40~+100	15.0	100	1.7	100	940	±8
EL-1KL5 6.2 = 0.5 14.0 : 1 2 4.5 + 0.2 0.4 0.4	100	5	200	-40~+100	10.0	100	1.7	100	940	±5