Final Assignment Full marks: 30

There are 15 problems and each weighs 2 marks. Good Luck.

(1) Iven a defimal number (<= 10^9), convert it into a Hexa-Decimal Number.

Sample Input	Sample Output		
4	4		
10	Α		
12	С		
30	1E		
255	FF		

(2) even to sets of integers of distinct integers of length n and m, print their union.

rime complexity of your algorithm must be O((n+m)logn) or better.

Sample Input Sample Output 4 1 2 3 4 5 7 10 11 3 2 1 7 7 1 2 3 4 5 10 11 11

Explanation:

(3) Iven A and B, find A%B without using the modulus operator (%).

Sample Input	Sample Output
10 12	2
100 12	4
1009 12	1
10 5	0

You are given an array of integers of size n. Each element of the array is between 1 to n. You have to sort the array in non-descending order O(n) time complexity.

Sample Input	Sample Output
4	2334
3324	

Note that you can not just use the c++ sort function, as the time complexity for that would be O(nlogn).

(5) You are given a binary string of size N of form: "000......1111". Find the index (0-based) of the first 1 in the string in **O(logN) time complexity**.

It is guaranteed that there is at least one 1 in the string.

Sample Input

Sample Output

000011

4

(6) You'll be given an integer array of size n, for each index you have to answer the product of the whole array except this number. You can't use the division operation.

You need to solve the problem in O(n) time complexity.

Sample Input

Output

4

2 - 3 1 4

-128-24-6

Explanation:

1st number of output is : (-3)*1*4 = -122nd number of output is : 2*1*4 = 83rd number of output is : 2*(-3)*4 = -244th number of output is : 2*(-3)*1 = -6

5

201-29

0 - 36 0 0 0

Given an array $a(a_1a_2....a_n)$ of size n and an integer x, you've to answer how many subarrays have sum equal to x.

 $1 <= n <= 10^6$, $1 <= a_i <= 10^9$, $1 <= x <= 10^9$

Your complexity should be better than or equal to O(nlogn) .

Sample Input

Sample Output

53

4 -2 5 -3 3

3

Explanation: $\{-2,5\}$, $\{-2,5,-3,3\}$, $\{3\}$ are all the subarrays having sum 3.

(8) There is a board of **NxM** size. Each cell of the board is either

(a) 'x': the cell is blocked

(b) 'o': the cell is free

(c) 's': starting cell(d) 'e': exit cell

Starting and ending cells are also considered free.

There is a knight (a chess piece) on the board occupying the start cell. Can you find the minimum number of moves required to reach the exit cell?

Sample Input	Sample Output
4 4	
OXOX	3
sxoe	
00X0	
0000	

Explanation:

The first line contains N, M.

Here N = 4, M = 4

The optimal movements of the knight are shown in the following,

OXOX	ох о х	OXOX	oxox
s xoe \rightarrow	sxoe \rightarrow	sxoe \rightarrow	sxo e
OOXO	OOXO	0 0 X0	ooxo
0000	0000	0000	0000

(9) Given x, find ln(x) upto 5 decimal places. You must not use any builtin functions. Here, ln(x) represents the <u>natural logarithm</u> of x.

Sample Input	Sample Output
1	0.00000
5	1.60944
10	2.30259
100	4.60517

Print allinary strings of length n such that no two adjacent characters are '1'.

Sample Input

Sample Cotout

000
0010
0100

0101

Given an array $a(a_1a_2....a_n)$ of size n and an integer k, generate all the subsequences of the array such that the product of that subsequence is divisible by k.

1<=1.14< 20

No constraints on complexity.

Sample Input	Sample Output
4 6	
9 4 7 10	9,4
	9,10
	9,4,10
	9,4,7
	9,7,10
	9.4.7.10

(12) Given an n*m grid containing integers. Rows are numbered from 1 to n and columns to numbered from 1 to m. Find the path with minimum sum from (1,1) to (n,m). You can little move right or down at each step. 1<= (n,m) <= 1000.

Your complexity should be O(n*m).

Sample Input	Sample Output
4 5	
2 -3 8 8 5	A
7 -2 5 8 3	
2 1 3 0 4	
3 4 2 8 4	+
2 1 3 0 4	+

Explanation: 2 -> -3 -> -2 -> 1 -> 3 -> 0 -> 8 -> 4

(13) Given n coins $c(c_1c_2....c_n)$ and a sum s. Find out the minimum number of coins required to make s and print those coins. You can use each coin multiple times. 1 <= n <= 100, $1 <= s <= 10^6$

You've to solve it in O(n*s).

Sample Input	Sample Output
5 23	3
7 5 4 9 15	5 9 9

Given two integer arrays $a(a_1a_2...a_n)$ and $b(b_1b_2....b_n)$ of size n, find out the longest increasing common subsequence among them.

(Y<=n<=500) and all the array elements are between 1 to n.

Your complexity should be equal or better than O(n3).

Sample Input	Sample Output
5	
23145	
42325	3

Explanation: (2,3,5) is the longest increasing common subsequence among the arrays.

(15) You've n jobs to do, i'th job starts at time s_i, ends at time e_i and it will bring you profit p_i. As you are not good at multitasking, you can do only one task at a time. If you start a job, you can't switch to another task until it ends but once it ends, you can switch to another job instantly. Find out the maximum amount of profit you can make.

$$1 <= n <= 10^5$$
, $1 <= s_i < e_i <= 2*n$, $1 <= p_i <= 10^9$

You've to solve it in O(n).

Sample Input	Sample Output
5	
2 4 7	
388	
122	
575	
9 10 6	20

Explanation: You can do all the jobs except 2nd one and earn 7+2+5+6 = 20.