Single-cell atlas of ABCA7 loss-of-function reveals impaired neuronal respiration via choline-dependent lipid imbalances

Why should we care about ABCA7?

- Rare ABCA7 LoF variants (MAF < 1%) increase Alzheimer's risk (OR ~2).
- Common ABCA7 variant (MAF *circa* 18%) p.Ala1527Gly raises Alzheimer's risk.
- ABCA7 effluxes phospholipids to maintain lipid balance (via transfer to apolipoproteins and "lipid flipping")

A human brain single-cell atlas of ABCA7 LoF

Transcriptional signatures of ABCA7 LoF in excitatory neurons, the top ABCA7-expressing cell type

p.Ala1527Gly disrupts ABCA7 helical structure and shares transcriptional perturbations with LoF neurons

ABCA7 loss-of-function variants disrupt neuronal lipid metabolism and respiration

Scan QR code to

download the full

paper

Djuna von Maydell¹²†, Shannon Wright¹²†, Julia Maeve Bonner¹², Colin Staab¹², Andrea Spitaleri³, Liwang Liu¹², Ping-Chieh Pao¹², Chung Jong Yu¹², Aine Ni Scannail¹², Mingpei Li¹², Carles A. Boix⁴⁵, Hansruedi Mathys¹²‡, Guillaume Leclerc⁴, Gloria Suella Menchaca¹², Gwyneth Welch¹², Agnese Graziosi¹², Noelle Leary¹², George Samaan¹², Manolis Kellis⁴⁵, and Li-Huei Tsai¹²*

¹ Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA 02139, USA ² Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA ³ Department of Biotechnology and Translational Medicine, University of Milan, Via F.Ili Cervi, 93 - L.I.T.A., 20054 Segrate, MI, Italy ⁴ MIT Computer Science and Artificial Intelligence Laboratory; Cambridge, MA 02139, USA ⁵ Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA * Corresponding author. Email: Ihtsai@mit.edu † These authors contributed equally to this work.

ABCA7 LoF human iPSC neurons accumulate unsaturated triglycerides ...

... have reduced polyunsaturated phosphatidylcholines

... and mitochondrial impairments

CDP-choline supplementation restores lipid balance and mitochondrial functions

Created with BioRender Poster Builder