Lecture23

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Homework#18 (1)

- Due: AM08:00, November 30 (Next Monday)
- Problem#1
 - You have two files.
 - The first file is HW18.vertex.
 - The other one is HW18.element.
 - Solve the Laplace equation with the following boundary condition.
 - For a certain node, whose index is specified by the user input, the solution is 1.
 - For a certain node, whose index is again specified by the user input, the solution is 0.

Homework#18 (2)

HW18.vertex (It was uploaded.)

(Continued)

Each line has x, y, and z coordinates. (Neglect the z coordinate.)

```
-1.199999999999998e-09 5.781250000000001e-09 0
-1.1886718749999991e-09 5.7812500000000001e-09 0
-1.1886718749999991e-09 1.15625e-08 0
-1.1999999999999998e-09 1.15625e-08 0
-9.19824218749999e-10.5.7812500000000001e-09.0
-9.19824218749999e-10.0
-9.19824218749999e-10 1.15625e-08 0
-6.5097656249999907e-10 5.781250000000001e-09 0
-6.5097656249999907e-10 -0 0
```

Homework#18 (3)

- HW18.element (It was uploaded.)
 - Each line has three vertex indices. (1-based)

```
2 3 7
1 2 3
3 19 21
1 3 4
5 7 10
2 5 6
6 194 196
6 9 196
2 5 7
(Continued)
```

Homework#18 (4)

- When you correctly draw it,
 - You must have...

GIST Lecture on November 23, 2020

Calculation of current

- Consider a simple problem.
 - What is the current?

- Of course, you can easily answer that $I = \frac{V_A}{R_1}$.
- But, how can we teach our computer to solve this problem?

Elements

- Resistors, capacitors, etc
 - A circuit is made by connecting the elements.
 - They can have multiple terminals.
 - A resistor has two terminals.
 - A diode has two terminals.

A MOSFET has three (or four) terminals.

Convention for current

- Terminal current
 - Conventionally, an in-coming current is regarded as a positive one.

Nodes

- A point to which multiple terminals are tied.
 - Usually, a dot is used to represent a node.
 - There is a special node, GND.

How to describe a circuit

- Of course, we can draw a circuit schematic. What else?
- A netlist for this circuit looks like:

Format for two-terminal devices

elementlabel node1 node2 value

RC filter

A netlist for this circuit looks like:

c1 in out 5e-12 r1 out 0 2e6 vin in 0 1.5

Circuit analysis (1)

- Kirchhoff's current law (KCL)!
 - At any node in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node.

Circuit analysis (2)

- Our simple problem
 - Three equations:

Voltage source

$$V(out) - 0.0 = 1.0$$

$$V_{r1} = \frac{V(out)}{1000}$$
 Resistor

$$I_{va} + I_{r1} = 0$$
 KCL

Implementation?

- Solution vector, $[I_{va} \quad I_{r1} \quad V(out)]^T$
 - Then, the system is written as

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -0.001 \\ 1 & 1 & 0 \end{bmatrix} \begin{vmatrix} I_{va} \\ I_{r1} \\ V(out) \end{vmatrix} = \begin{bmatrix} 1.0 \\ 0 \\ 0 \end{bmatrix}$$

The solution is

$$\begin{bmatrix} I_{va} \\ I_{r1} \\ V(out) \end{bmatrix} = \begin{bmatrix} -0.001 \\ +0.001 \\ 1.0 \end{bmatrix}$$

RC circuit

Solve a simple transient problem by a numerical means.

Frequency domain

• At a frequency, f, the impedance of the RC part is $Z(\omega) = R + \frac{1}{i\omega C}$ ($\omega = 2\pi f$)

- Therefore,

$$I(\omega) = \frac{V(\omega)}{Z(\omega)} = \frac{V(\omega)}{R + \frac{1}{i\omega C}} = \frac{j\omega C + \omega^2 R C^2}{1 + (\omega R C)^2} V(\omega)$$

- For example, when $V(t) = V_0 \cos \omega t$,

$$I(t) = \frac{\omega^2 R C^2}{1 + (\omega R C)^2} V_0 \cos \omega t - \frac{\omega C}{1 + (\omega R C)^2} V_0 \sin \omega t$$

Circuit analysis

Five equations

- Two KCL's
$$I_{vin} + I_{c1} = 0$$
 $-I_{c1} + I_{r1} = 0$

Three equations

$$V(in) - 0.0 = \cos \omega t$$

$$I_{r1} = \frac{V(out) - 0.0}{2 \times 10^6}$$

Implementation?

- Solution vector, $[I_{vin} \ I_{c1} \ I_{r1} \ V(in) \ V(out)]^T$
 - Then, the system is written as

$$= \begin{bmatrix} \cos \omega t \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Backward Euler

- An implicit method
 - Uniform time discretization, $t_i = i\Delta t$
 - The time derivative at t_i is assumed to be

$$\frac{d}{dt} \begin{bmatrix} I_{vin} \\ I_{c1} \\ I_{r1} \\ V(in) \\ V(out) \end{bmatrix}_{t=t_i} = \frac{1}{\Delta t} \begin{bmatrix} I_{vin} \\ I_{c1} \\ I_{r1} \\ V(in) \\ V(out) \end{bmatrix}_{t=t_i} - \frac{1}{\Delta t} \begin{bmatrix} I_{vin} \\ I_{c1} \\ I_{r1} \\ V(in) \\ V(out) \end{bmatrix}_{t=t_i}$$

Discretized form

- By using the backward Euler method,
 - Then, the system is written as

MATLAB (1)

RC filter

First, define some constants.

```
R = 2e6; % Ohm
C = 5e-12; % F
freq = 1e0; % Hz
deltat = 1/\text{freg}/100; % 0.01 of a period

    The system matrix

A = zeros(5,5);
A(1,:) = [0 \ 0 \ 0 \ 1 \ 0];
A(2,:) = [0 \ 1 \ 0 \ -C/deltat \ C/deltat];
A(3,:) = [0 \ 0 \ 1 \ 0 \ -1/R];
A(4,:) = [1 1 0 0 0];
A(5,:) = [0 -1 1 0 0];
```

MATLAB (2)

RC filter (Continued)

```
b = zeros(5,1);
solution = [0 0 0 1 0]';
N = 1000;
for ii=1:N
    t = ii*deltat;
    solution old = solution;
    b(1,1) = cos(2*pi*freq*t);
    b(2,1) = -C/deltat*(solution old(4,1)-solution old(5,1));
    solution = A \setminus b;
end
```