MA 102 (Mathematics II) Department of Mathematics, IIT Guwahati

Tutorial Sheet No. 2 January 18, 2016

Continuity of functions of several variables

(1) Find the natural domains of the following functions:

(a)
$$f(x,y) := x \ln(y^2 - x)$$
 (b) $f(x,y) := \frac{xy}{x^2 - y^2}$ (c) $f(x,y) := xy \ln(x^2 + y^2)$.

(2) Examine the continuity of
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 at $(0,0)$, where for all $(x,y) \in \mathbb{R}^2$,

(a) $f(x,y) := \begin{cases} xy \cos(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$
(b) $f(x,y) := \begin{cases} 1 & \text{if } x > 0 \& 0 < y < x^2, \\ 0 & \text{otherwise.} \end{cases}$

(c)
$$f(x,y) := \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$
 (d) $f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

$$\begin{aligned} & \text{(c)} \ f(x,y) := \left\{ \begin{array}{l} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right. \\ & \text{(d)} \ f(x,y) := \left\{ \begin{array}{l} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right. \\ & \text{(e)} \ f(x,y) := \left\{ \begin{array}{l} \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right. \\ & \text{(g)} \ f(x,y) := \left\{ \begin{array}{l} \frac{\sin(x+y)}{|x| + |y|} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right. \\ & \text{(h)} \ f(x,y) := \left\{ \begin{array}{l} xy \ln(x^2 + y^2) & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right. \\ & \text{(g)} \ f(x,y) := \left\{ \begin{array}{l} xy \ln(x^2 + y^2) & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right. \end{aligned}$$

(g)
$$f(x,y) := \begin{cases} \frac{\sin(x+y)}{|x|+|y|} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$
 (h) $f(x,y) := \begin{cases} xy \ln(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$

- (3) Suppose that $f: \mathbb{R}^2 \to \mathbb{R}$ is a continuous function at $x_0 \in \mathbb{R}^2$ and that $|f(x_0)| > 2$. Show that there is a $\delta > 0$ such that |f(x)| > 2 whenever $||x - x_0|| < \delta$.
- (4) $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x,y) = 0 if $x \in \mathbb{Q}, y \in \mathbb{Q}$ and f(x,y) = xy otherwise. Find all the points in \mathbb{R}^2 where f is continuous.
- (5) If the functions $f, g: \mathbb{R}^n \to \mathbb{R}$ are continuous then show that the functions $F, G: \mathbb{R}^n \to \mathbb{R}$ given by $H(x) := \max(f(x), g(x))$ and $G(x) := \min(f(x), g(x))$ are continuous.
- (6) Prove or disprove (giving proper justification) the following statements.
 - (a) Let $f:\mathbb{R}^n\to\mathbb{R}$ be continuous. If $(x_k)\subset\mathbb{R}^n$ is a Cauchy sequence then $(f(x_k))\subset\mathbb{R}$ is a Cauchy sequence.
 - (b) Let $f:A\subset\mathbb{R}^2\to\mathbb{R}$ be such that for every Cauchy sequence $((x_n,y_n))\subset\mathbb{R}^2$ the sequence $(f(x_n,y_n))\subset\mathbb{R}$ is also a Cauchy sequence. Then f is continuous on A.
 - (c) If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous and $A \subset \mathbb{R}^2$ is bounded then the image $f(A) \subset \mathbb{R}$ is bounded.