

Fig. 1

Fig. 2(a)
Spec Software

Fig. 2(b)
Spec Software

Refining a Specification

Fig. 3(a)

Example of Using a Colimit to
Combine Refined Specifications

Fig. 3(b)

Example of Using a Colimit to
Combine Refined Specifications
Fig. 4(b)

Refining a Specification
Fig. 4(a)

Example Colimit of Specifications
Fig. 5

Example Colimit of Diagrams of Diagrams

Fig. 6

Example of Taking the Colimit of Hereditary Diagrams Fig. 7

Example user interface showing a hereditary diagram

Fig. 8(a)

Example user interface showing a hereditary diagram (interface for user to indicate "find colimit" operation)

Fig. 8(b)

Example user interface showing a hereditary diagram after the user indicates a "find colimit" operation for the hereditary diagram and the colimit operation is performed

Fig. 8(c)

Hereditary diagram
Fig 9(a)

Heredity diagram, including column
Fig. 9(b)

Bag diagram
(obtained by expanding node
Bag-Diagram
in Hierarchical diagram)
Fig 4(c)

Bag-as-Sequence diagram
(obtained by expanding node
Bag-as-Sequence-diagram
in ~~Hereditary~~ diagram)

Fig 9(d)

**Bag-Seq-over-Linear-Order diagram
(obtained by expanding node
Bag-Seq-over-Linear-Order-diagram
in Heredit- γ diagram)**

Fig 9(e)

Fig 9(f)
Shape of Column

$$F_{14} \cdot g(g)$$

Extended Bag diagram

Fig 9(h)
Extended Bag-as-Sequence diagram

Fig 9(c)

Extended Bag-Seq-over-Linear-Order diagram

Collage of Hereditory diagrams
(final result)

Fig 9(j)

Finding a Colimit of Hereditary Diagrams

Fig. 10

PART I: Extract the shapes and shape functors to yield a diagram of shape categories

Fig. 11

Each arc a_1 and a_2 represents a shape morphism having 1) a shape functor (such as F) and 2) a natural shape transformation (such as $e: d_1 \rightarrow d_2$)

where d_1 and d_2 are diagrams,
 F is a shape functor,
 \Rightarrow is a natural transformation from d_1 to
(d_2 composed with F)
 D_1 and D_2 are shape categories of
diagrams, and $SPEC$ is the category

A Hereditary Diagram: Three Diagrams and Two Arcs.

A Shape Morphism

Fig. 12(a)

Spec
Fig. 12(b)

A More Detailed View of Three
Diagrams and Two Arcs (a
Hereditary Diagram)
Fig. 13

Extract the
Shapes and
Shape Functors
(D_1 is shape of
diagram d_1 , F_1 is
shape functor)
Fig. 14

More Detailed View of Extracting the
Shapes and Shape Functors
(continued on Figs. 15(b)-15(d))
Fig. 15(a)

Arcs: $B \rightarrow b$
 $C \rightarrow c$

Nodes:

i \rightarrow 1
ii \rightarrow 2
iii \rightarrow 3

Mapping for F1
Fig. 15(b)

Arcs: $B \rightarrow A$
 $C \rightarrow B$

Nodes:

i \rightarrow IV
ii \rightarrow V
iii \rightarrow IV

Mapping for F2
Fig. 15(c)

Arc	B	C	a	b	c	d	A	B
Source	i	iii	1	1	3	3	IV	IV
Target	ii	ii	0	2	2	4	V	V

Source (S)
and Target
(T)
Functions
for
Heredity
Diagrams
Fig. 15(d)

PART I: Determine the colimit of the diagram of shape categories.

Fig. 16

More Detailed View of Taking the Colimit
Fig. 17

More Detailed View of Taking the Colimit
(See Figs 18(b)-(f))
Fig. 18(a)

Arc	a	d	b A	c B
Source	1,3 i,iii IV	1,3 i,iii IV	1,3 i,iii IV	1,3 i,iii IV
Target	0 ii V	4 ii V		

Source (S) and
Target (T)
Functions for
Shape Colimit D4
Fig. 18(b)

The Colimit D4 of the
Shape Diagrams
Fig. 18(c)

Arcs: a -> a
d -> d
b -> b, B, A
c -> c, C, B

Arcs: A -> b, B, A
B -> c, C, B

Arcs: B -> b, B, A
C -> c, C, B

Nodes: 0 -> 0
1 -> 1,3, i, iii, IV
2 -> 2, ii, V
3 -> 1,3, i, iii, IV
4 -> 4

Nodes: IV -> 1,3, i, iii, IV
V -> 2, ii, V

Nodes: i -> 1,3, i, iii, IV
ii -> 2, ii, V
iii -> 1,3, i, iii, IV

Mapping for F3
Fig. 18(d)

Mapping for F4
Fig. 18(e)

Mapping for F5
Fig. 18(f)

For each node n in colimit $D4$:

Find nodes s in shape diagram (for example diagram $D1$) that have a path i to the node n . Yields a set of pairs :

$\{ \langle s, i \rangle \mid i \text{ is a path from } F(s) \text{ to node } n \text{ in } D4 \}$

For two pairs in the set (for example: $\langle s_i, i \rangle$ and $\langle s_j, j \rangle$)

By definition, s_i and s_j both connect to the same node in colimit $D4$. Find a path e between s_i and s_j

Once each path $F(e)$ has been found between each pair in the set, make a graph and take the colimit. This colimit is the image of node n in the extended diagram

Each arc in $D4$ is uniquely defined and determined using the universality of the colimits for the nodes in the extended diagram

PART II: Extending one Diagram (repeat to extend each diagram)

Fig. 19

Extension for
Diagram d1:

Extension for
Diagram d2:

Extension for
Diagram d3:

Example of Taking the
Extension of Each Node of the
Hereditary Diagram
Fig 20

More Detailed Example of Taking the Extension of Diagram d_1 to Yield an Extended Diagram

Fig. 21(a)

$$\begin{cases}
 \langle i, a \rangle \mid a: F_5^{(i)} = \begin{pmatrix} 1, 2 \\ \text{II} \end{pmatrix} \xrightarrow{a} 0 \\
 \langle iii, a \rangle \mid a: F_5^{(iii)} = \begin{pmatrix} 1, 3 \\ \text{II} \end{pmatrix} \xrightarrow{a} 0
 \end{cases}$$

$$\begin{cases}
 \langle i, a \rangle \rightarrow 0 \\
 \langle iii, a \rangle \rightarrow 0
 \end{cases}$$

$$\begin{cases}
 \langle i, d \rangle \mid d: F_5^{(i)} = \begin{pmatrix} 1, 3 \\ \text{II} \end{pmatrix} \xrightarrow{d} 4 \\
 \langle iii, d \rangle \mid d: F_5^{(iii)} = \begin{pmatrix} 1, 3 \\ \text{II} \end{pmatrix} \xrightarrow{d} 4
 \end{cases}$$

same
row & pair
coproduct
category
between the
two objects

Node 4

$$\begin{cases}
 \langle i, id \rangle \\
 \langle iii, id \rangle
 \end{cases}$$

Node
12

$$\begin{cases}
 \langle i, id \rangle \\
 \langle iii, id \rangle
 \end{cases}$$

Node
2

$$\begin{cases}
 \langle i, \text{BA} \rangle \\
 \langle iii, \text{CA} \rangle
 \end{cases}$$

Fig 21(b) Example of extension

Node and Extension (i, id)

Fig 21(b)
of column 1

Fig 15

(2)

for
arcs
in D4

$a, B \in C$

(5)

$$Sp_i = \{ \text{spec } Sp_i \text{ is } \\ \text{sort } S_1 \}$$

op $f_2: S_1 \rightarrow \text{boolean}$

axiom $f_1 \rightarrow f_2$ is

$$f_1(x) \Rightarrow f_2(x)$$

$$Sp_{ii} =$$

$$\{ \text{spec } Sp_{ii} \text{ is } \\ \text{sort } S_2 \}$$

op $g: S_2 \rightarrow \text{boolean}$

$$\{ \text{spec } Sp_{ii} \text{ is } \\ \text{sort } S_2 \}$$

op $g: S_2 \rightarrow \text{boolean}$

$$Sp_{iii} = \{ \text{spec } Sp_{iii} \text{ is } \\ \text{sort } S_1 \}$$

op $f_1: S_1 \rightarrow \text{boolean}$

$$\{ \text{spec } Sp_{iii} \text{ is } \\ \text{sort } S_1 \}$$

$$Sp_i = \{ \text{spec } Sp_i \text{ is } \\ \text{sort } S_1 \}$$

op $f_1: S_1 \rightarrow \text{boolean}$

op $f_2: S_1 \rightarrow \text{boolean}$

Example of diagram

Figure 21(d) diagram

Base diagram

$$Sp_i = \{ \text{spec } Sp_{ii} \text{ is } \\ \text{sort } S_2 \}$$

$$Sp_{ii} = \{ \text{spec } Sp_{ii} \text{ is } \\ \text{sort } S_2 \}$$

$$Sp_{iii} = \{ \text{spec } Sp_{iii} \text{ is } \\ \text{sort } S_1 \}$$

①

Sp_{iii}

$S - B$

Sp_i

C_{ii}

C_{iii}

Sp_{i+ii}

C_{ii}

C_i

$Sp_i \rightarrow Sp_{i+ii+iii}$

$C_i =$

$S_1 \rightarrow S_2$

$f_1 \rightarrow f_2$

$f_2 \rightarrow f$

$C_{ii} =$

id

colim_i

$Sp_{i+ii} =$

Spec Sp_{i+ii} is

cont $\overbrace{Sp_i - S}$

cont Sp_{ii}, S

cont S_2

S_2

$C_{iii} = f - S$

if $f: S_2 \rightarrow \text{bowl}$
axiom $f - f$ is

$f(x) \rightarrow f(x)$

Fig 21(e) Example of Diagram Extension (cont)

$$SP_i + SP_{iii} = \left\{ \begin{array}{l} \text{sort } SP_i, S_1 \\ \text{sort } SP_{iii}, S_1 \\ \text{op } SP_i, f_1: SP_i, S_1 \rightarrow \text{boolean} \\ \text{op } SP_{iii}, f_1: SP_{iii}, S_1 \rightarrow \text{boolean} \\ \text{op } SP_i, f_2: SP_i, S_1 \rightarrow \text{boolean} \end{array} \right.$$

↓
b
A $i+ii+iii$

$$SP_{i+ii+iii} =$$

See $\sim 11)$ ~~11~~

b
A $i+ii+iii =$

$$\left\{ \begin{array}{l} SP_i: S_1 \rightarrow S_2 \\ SP_{ii}: S_1 \rightarrow S_2 \\ SP_i: f_1 \rightarrow f \\ SP_{ii}: f_1 \rightarrow g \\ SP_i: f_2 \rightarrow g \end{array} \right\}$$

Fig 21(F) Example of Diagram Extension (cont)

After finishing the

extension for each diagrams, let us use the following example:

Original diagrams:

Its underlying shape categories, shape functors and the colimit are:

Part III
Fig. 22

Extended diagrams:

The last algorithm step we are missing for constructing the diagram colimits is the diagram morphisms between extended diagrams. For example, the diagram morphism $d14$ and $d134$ (dotted lined arrows in above figure) are the ones needed.

Suppose Ifd14 and Ifd24 are two extensions of $d1$ and $d2$, given the colimit of the shape categories as $D4$. We would have the following picture.

Fig. 23

A morphism between $lfd14$ and $lfd24$ is a natural transformation, which maps each node of $D4$ to an arrow in $SPEC$. We do this by universal construction of witness arrows.

For any node ni in $D4$, we have $F14(ni) = F12 \circ F24(ni)$. Let $Sp1ni$ and $Sp2ni$ two shape categories used for constructing mapping for ni in its extension of $d1$ and $d2$, respectively, then we can have a shape function between $Sp1ni$ and $Sp2ni$ (inclusion, basically). That induces a diagram morphism between the base diagrams for the target of ni in $lfd14$ and $lfd24$, respectively. By imposing that diagram morphism and cocone morphism, we can get an unique arrow between $lfd14(ni)$ and $lfd24(ni)$. Repeating this process, we construct a natural transformation between $lfd14$ and $lfd24$. Similarly, we can do this for any two extended diagrams.

The following flowchart is the algorithm for constructing a diagram morphism between two extended diagrams.

Fig. 24

Assume the colimit shape category is D , let $\text{nodes-in-}D$ be a set of all nodes in D . Let $\text{if-}D$ be a set of pair diagrams in which each is an extended diagram of D . Let $\text{dm-}D$ be an empty-set initially.

The final step is to complete the colimit of the extended diagrams. The colimit is determined by computing the pointwise colimits over corresponding nodes in the extended diagrams. The morphisms are computed uniquely using universality of the pointwise colimits.

Extended diagram of d_1

Extended diagram d_3

Colimit of Diagrams

Taking Pointwise

Colimit of

Extended

Diagrams

(Can be done,
since extended
diagrams are all
the same shape)

Fig. 26

Diagram	Hereditary Diagram	Arc	Shape Morphism Graph
Arc; source and target nodes	Arc; source and target diagrams	Shape functor (F_e)	Diagram Category Pair
...	...	Natural Transformation (F_n)	Arc
Arc; source and target nodes	Arc; source and target diagrams		
Total number of Arcs	Total number of Arcs		

Examples of Data Structures used in the Example Implementation

Fig. 27

Fig. 28

Fig. 29