- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\;$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. В ПДСК задано уравнение плоскости Ax + By + Cz + D = 0. Составьте уравнение плоскости, параллельной данной и находящейся в 2 раза ближе к началу координат.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. Плоскость α перпендикулярна прямой, проходящей через точки A(3,5,1) и B(5,1,3). Составить общее уравнение плоскости α , если расстояние ρ от неё до точки M(1,2,3) равно 5. Система координат декартова прямоугольная.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. В ПДСК задано уравнение плоскости Ax + By + Cz + D = 0. Составьте уравнение плоскости, параллельной данной и находящейся в 2 раза ближе к началу координат.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2}=y-1=\frac{z-5}{4}$ и $\frac{x+5}{2}=\frac{y+8}{3}=4-z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. Плоскость α перпендикулярна прямой, проходящей через точки A(3,5,1) и B(5,1,3). Составить общее уравнение плоскости α , если расстояние ρ от неё до точки M(1,2,3) равно 5. Система координат декартова прямоугольная.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. В ПДСК задано уравнение плоскости Ax + By + Cz + D = 0. Составьте уравнение плоскости, параллельной данной и находящейся в 2 раза ближе к началу координат.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Плоскость α перпендикулярна прямой, проходящей через точки A(3,5,1) и B(5,1,3). Составить общее уравнение плоскости α , если расстояние ρ от неё до точки M(1,2,3) равно 5. Система координат декартова прямоугольная.
- 3. Составить уравнение плоскостей, проходящих через прямую $\frac{x-1}{3} = \frac{y-1}{5} = \frac{z+2}{4}$ и равноудаленных от точек A(1,2,5) и B(3,0,-1)
- 4. В ПДСК задано уравнение плоскости Ax + By + Cz + D = 0. Составьте уравнение плоскости, параллельной данной и находящейся в 2 раза ближе к началу координат.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. Плоскость α перпендикулярна прямой, проходящей через точки A(3,5,1) и B(5,1,3). Составить общее уравнение плоскости α , если расстояние ρ от неё до точки M(1,2,3) равно 5. Система координат декартова прямоугольная.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2}=y-1=\frac{z-5}{4}$ и $\frac{x+5}{2}=\frac{y+8}{3}=4-z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. В ПДСК задано уравнение плоскости Ax + By + Cz + D = 0. Составьте уравнение плоскости, параллельной данной и находящейся в 2 раза ближе к началу координат.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. Плоскость α перпендикулярна прямой, проходящей через точки A(3,5,1) и B(5,1,3). Составить общее уравнение плоскости α , если расстояние ρ от неё до точки M(1,2,3) равно 5. Система координат декартова прямоугольная.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. В ПДСК задано уравнение плоскости Ax + By + Cz + D = 0. Составьте уравнение плоскости, параллельной данной и находящейся в 2 раза ближе к началу координат.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. Плоскость α перпендикулярна прямой, проходящей через точки A(3,5,1) и B(5,1,3). Составить общее уравнение плоскости α , если расстояние ρ от неё до точки M(1,2,3) равно 5. Система координат декартова прямоугольная.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. В ПДСК задано уравнение плоскости Ax + By + Cz + D = 0. Составьте уравнение плоскости, параллельной данной и находящейся в 2 раза ближе к началу координат.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2}=y-1=\frac{z-5}{4}$ и $\frac{x+5}{2}=\frac{y+8}{3}=4-z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Плоскость α перпендикулярна прямой, проходящей через точки A(3,5,1) и B(5,1,3). Составить общее уравнение плоскости α , если расстояние ρ от неё до точки M(1,2,3) равно 5. Система координат декартова прямоугольная.
- 3. Составить уравнение плоскостей, проходящих через прямую $\frac{x-1}{3} = \frac{y-1}{5} = \frac{z+2}{4}$ и равноудаленных от точек A(1,2,5) и B(3,0,-1)
- 4. В ПДСК задано уравнение плоскости Ax + By + Cz + D = 0. Составьте уравнение плоскости, параллельной данной и находящейся в 2 раза ближе к началу координат.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2}=y-1=\frac{z-5}{4}$ и $\frac{x+5}{2}=\frac{y+8}{3}=4-z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. Плоскость α перпендикулярна прямой, проходящей через точки A(3,5,1) и B(5,1,3). Составить общее уравнение плоскости α , если расстояние ρ от неё до точки M(1,2,3) равно 5. Система координат декартова прямоугольная.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через $D({\it высотa}, {\it опущенная}\ {\it us}\ D$ на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. В ПДСК задано уравнение плоскости Ax + By + Cz + D = 0. Составьте уравнение плоскости, параллельной данной и находящейся в 2 раза ближе к началу координат.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2} = y 1 = \frac{z-5}{4}$ и $\frac{x+5}{2} = \frac{y+8}{3} = 4 z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. Плоскость α перпендикулярна прямой, проходящей через точки A(3,5,1) и B(5,1,3). Составить общее уравнение плоскости α , если расстояние ρ от неё до точки M(1,2,3) равно 5. Система координат декартова прямоугольная.

- 1. Запишите уравнение прямой $x=1;\ 2y-4=\frac{z-3}{3}\$ в параметрическом виде:
- 2. В ПДСК задано уравнение плоскости x + y z = 1. Запишите:
 - (а) нормальный вектор данной плоскости
 - (b) уравнение плоскости, параллельной данной и проходящей через начало координат
- 3. Запишите уравнение прямой, задающейся в ПДСК пересечением плоскостей x=1 и y=0
- 4. Даны точки A(1,1,1) и B(2,1,0). Запишите уравнение прямой, проходящей через точки A и B:
- 5. Запишите формулу для расчета:
 - (a) угла между двумя плоскостями с нормальными векторами ${\bf n_1}$ и ${\bf n_2}$
 - (b) угла между прямой с направляющим вектором ${\bf a}$ и плоскостью с нормальным вектором ${\bf n}$

- 1. В ПДСК заданы точки A(1,0,0), B(1,1,0), C(1,1,1) и D(-1,0,0), являющиеся вершинами тетраэдра. Найдите:
 - (a) уравнение плоскости, содержащей основание ABC
 - (b) уравнение прямой, перпендикулярной основанию ABC и проходящей через D(высота, опущенная из D на ABC)
 - (c) расстояние между ребрами AB и CD
 - (d) угол между гранями ABC и BCD
- 2. Запишите параметрическое уравнение прямой, проходящей через начало координат и пересекающей прямые x-1=y-1=z и x+1=2y=2z.
- 3. Найдите расстояние между прямыми x+y+z-1=0, x-y+z+1=0 и y=0, x+1=1-z, заданными в ПДСК.
- 4. Докажите, что прямые $\frac{x+1}{-2}=y-1=\frac{z-5}{4}$ и $\frac{x+5}{2}=\frac{y+8}{3}=4-z$ пересекаются и составьте уравнение содержащей их плоскости.
- 5. Составьте уравнение биссекторной плоскости острого двугранного угла между плоскостями x-z-5=0 и 3x+5y+4z=0, заданными в ПДСК.

- 1. Решить систему векторных уравнений в пространстве: $(\mathbf{x}, \mathbf{a}) = p$, $(\mathbf{x}, \mathbf{b}) = q$, $(\mathbf{x}, \mathbf{c}) = s$ (векторы \mathbf{a} , \mathbf{b} и \mathbf{c} некомпланарны)
- 2. Найдите, при каких значениях α прямая $x=\frac{y}{\alpha}=2-z$
 - (a) пересекает плоскость $3\alpha^2x + \alpha y + z 4a = 0$
 - (b) параллельна этой плоскости
 - (с) лежит в этой плоскости
- 3. В ПДСК задано уравнение плоскости Ax + By + Cz + D = 0. Составьте уравнение плоскости, параллельной данной и находящейся в 2 раза ближе к началу координат.