الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات

مارس 2025 - انجاز الأستاذع. قزوري

امتحان بكالوربا التعليم الثانوي - شعبة الرباضيات (المدّة: 240 دقيقة)

الجزء الأول (14 نقطة)

التمرين الأول (4 ن)

ندرس حركة الجملة الممثلة في الشكل - 1، نهمل كتلة البكرة والخيط، ونعتبر قوى الاحتكاك على المستوي المائل قوّة واحدة شدتها ثابتة f. . g=9,8 m/s^2 ، $lpha=12^\circ$ ، $m_2=28$ g هي $m_1=50$,4 g وكتلة الجسم $m_1=50$

1 - تنطلق الجملة من السكون عند اللحظة t=0 حيث يكون الجسم (S_1) في النقطة A . نهمل تأثير الهواء.

الشكل – 1 S_2

الشكل – 2

- 1 1 مثل جميع القوى المؤثّرة على الجسمين، ثمّ تأكَّدْ من جمة الحركة.
- 1 2 بتطبيق القانون الثاني لنيوتن أثبت أن تسارع الجسمين يُكتب بالشكل:
 - . م استنتج طبیعة حرکة الجسمین ، $a=rac{g(m_2-m_1\sin\alpha)-f}{m_1+m_2}$
 - 2 جد العبارة السابقة للتسارع عن طريق تطبيق مبدأ انحفاظ الطاقة.
- au = 0.3s نقوم بواسطة تجهيز مناسب بتسجيل حركة الجسم (S_1)، فنحصل على الشريط المرسوم في الشكل- 2، حيث زمن التسجيل -3
 - D · C · B احسب قيم السرعة في النقط 1 1
 - 3 2 احسب تسارع الجسمين.
 - 5 5 1 احسب شدّة قوة الاحتكاك f على المستوي المائل.
 - . ينقطع الخيط E غندما يصبح الجسم (S_1) في النقطة E عندما عندما عندما الجسم E
 - 4 1 صف حركتي الجسمين بعد ذلك.
 - 4 2 مثّل مخططي التسارع والسرعة للجسم S_1 منذ بدء الحركة إلى أن يتوقّف قبل البكرة.

التمرين الثاني (4 ن)

نحلّ في لتر من الماء المقطّر حجما من غاز كلور الهيدروجين (HCl) قدره $V_g = 480~mL$ مقاسا في شروط حيث الحجم المولمي للغازات . pH=1,7 القيمة $V_M=24~L.~mol^{-1}$. أعطى قياس pH هذا المحلول في الدرجة $V_M=24~L.~mol^{-1}$ (F=20) من المحلول V=100~mL من المحلول S_1 بتخفيف محلول مائي لحمض كلور الهيدروجين V=100~mL من المحلول على حجم . نأخذ من المحلول (S_0) حجم المنطلق في محتلف اللحظات. ونضعه في حوجلة موصولة بتجهيز يمكّننا من قياس الحجم المنطلق في مختلف اللحظات.

 (H_3O^+) نضع في الحوجلة كميّة من الألمنيوم (Al) كتلتها m=2.7~g على شكل قطع صغيرة. يبدأ التفاعل بين الألمنيوم وشوارد الهيدرونيوم عند اللحظة t=0 $V_{H_2}(cm^3)$

يوجد في الشكل التمثيل البياني لحجم غاز الهيدروجين بدلالة الزمن $V_M = 24 L. \, mol^{-1}$ وذلك بعد ارجاعه لشروط حيث الحجم المولى

- 1 اكتب معادلة تفاعل حمض كلور الهيدروجين مع الماء.
 - $2 بيّن أنّ شاردة الكلور <math>(Cl^{-})$ غير فعّالة في الماء.
- من $V_1 = 100 \ mL$ من البروتوكول المتبع للحصول على الحجم $V_1 = 100 \ mL$

 $\overline{t(mn)}$. مع ذكر الزجاجيات المستعملة. (S_0) ، مع ذكر الزجاجيات المستعملة.

- Al^{3+}/Al و Al^{3+}/Al و Al^{3+}/Al و Al^{3+}/Al و Al^{3+}/Al و Al^{3+}/Al و Al^{3+}/Al
 - 5 أنشيئ جدول التقدّم، واحسب التقدّم الأعظمي، ثمّ بيّن أن هذا التفاعل تام.
- 6 ما المقصود بالسرعة الحجمية لاختفاء شوارد الهيدرونيوم في المزيج المتفاعل؟ لماذا تتناقص هذه السرعة بمرور الزمن؟
 - $v_v(H_3O^+) = rac{2}{V_M V_a} rac{d \, V_{H_2}}{dt}$: بيّنْ أنّ السرعة الحجمية لاختفاء شوارد الهيدرونيوم تُكتب بالشكل 7
 - . t=0 عند اللحظة $v_v(H_3O^+)$ عند اللحظة 8
- $m{9}$ فرضا أنّ زمن نصف التفاعل يتأثّر بالعوامل الحركية، انقل بشكل تقريبي البيان السابق، ومثّلُ معه $V_{H_2}(t)$ في حالة استعمال نفس الكمية من الألمنيوم على شكل مسحوق. الكتلة الذرية المولية للألمنيوم M=27~g/mol

التمرين الثالث (6 ن)

 $\sim 25^{\circ}C$ كل المحاليل مأخوذة في الدرجة

- $HClO + H_2O = H_3O^+ + ClO^-$ مض الهيبوكلوريت ($HClO + H_2O = H_3O^+ + ClO^-$ هو مشاعل مثلنا في الشكل 1 توزيع الصفة للثنائية $HClO/ClO^-$ في محلول مائي لحمض الهيبوكلوريت، حيث حصّلنا على البيانين بتغيير PH المحلول بإضافة محلول لأساس قوى.
 - 1 أرفق كل فرد من الفردين HClO و ClO^- بالبيان الموافق، مع التعليل لجوابك.
 - 2 اعتمادا على البيانين في الشكل 1، تأكَّد من العبارة التي تحتها خط.
 - pH المحلول ، $HClO/ClO^-$ ، ثم عبّر عن pH المحلول بدلالة [- ClO^-] .
 - $HClO/ClO^-$ الخاصة بالثنائية محدد قيمة pK_a الخاصة بالثنائية البيانين حدد المحدد الخاصة بالثنائية
 - 5 جدْ النسبتين [- Clo^-] % و [HClo] % من أجل pH=8 ، ثمّ تأكّد من النتيجة بيانيا.
 - C_0 معايرة pH مترية لمحلول مائي لحمض الهيبوكلوريت تركيزه المولي $V=100\ mL$ نأخذ منه حجما $V=100\ mL$ ونضعه في حوجلة عيارية سعتها $V_0=5\ mL$ يوجد بها قليل من الماء المقطر، ثم نكمل الحجم إلى خط العيار بالماء المقطر.

أخذنا من الحوجلة حجما قدره $V_a = 20~mL$ ، ووضعناه في بيشر تحت سحّاحة مملوءة بمحلول مائي لهيدروكسيد الصوديوم (Na^+, HO^-) وهو محلول مائي لأساس قوى تركيزه المولى $C_b = 0.02~mol/L$.

حصّلنا باستعمال تجهيز المعايرة على قيم pH المزيج من أجل كل إضافة من السحاحة، ومثّلنا pH بدلالة حجم المحلول الأساسي المضاف.

النقطة E على البيان هي نقطة التكافؤ حمض - أساس. (الشكل - 2

- 6 1 ضع السلّم على محور pH ، مع التعليل لجوابك.
- C_a الحسب التركيز المولي C_a لمحلول حمض الهيبوكلوريت الممدد، ثم احسب التركيز المولى C_0 قبل التمديد.
- 6 3 احسب نسبة التقدّم النهائي لتفاعل حمض الهيبوكلوريت مع الماء في البيشر قبل إضافة المحلول الأساسي.
- $\frac{1}{6}$ 4 6 كتب معادلة التفاعل بين حمض الهيبوكلوريت وهيدروكسيد الصوديوم، ثمّ احسب ثابت التوازن (K) لهذا التفاعل. هل نعتبر هذا التفاعل تامّا.
 - من المحلول $V_a=20\ mL$ من المحلول المحمني الممدّد وليس من المحلول الحمضي المركّز. $K_a=10^{-14}$

الجزء الثاني (6 نقط)

التمرين التجريبي (6 ن)

نركب دارة كهربائية ببعض العناصر التالية:

- مولّد للتوتّر نعتبره مثاليا، يمكن تغيير قوته المحركة الكهربائية E

- علبة مقاومات (يمكن اختيار قيمة R

- وشيعة مقاومتها ثابتة وذاتتها قابلة للتغيير بواسطة نواة حديدية

- قاطعة مقاومتها محملة، ومقياسا أمبير وفولط رقميّان.

I - دراسة تطور شدة التيار في الدارة:

. L_1 فتبت مقاومة العلبة على القيمة $R_1=200~\Omega$ ، والقوّة المحركة الكهربائية للمولّد على القيمة $E_1=6~V$ ، وذاتية الوشيعة على

1 - ركّبْ دارة كهربائية تمكّنك من قياس قيمة مقاومة الوشيعة.

t=0 . t=0 عند اللحظة عند اللحظة في الشكل - t، ثمّ نغلق القاطعة عند اللحظة t=0

(1) $a\frac{di}{dt}+i=I$ - بين أنّ المعادلة التفاضلية التي تميّز شدّة التيار تكتب بالشكل: $a\frac{di}{dt}+i=I$ - عيث أكبر شدّة للتيار المار في الدارة.

. i=f(t) يوجد في الشكل - 2 التمثيل البياني لشدّة التيار بدلالة الزمن

2 - 3 - 1 - يمرّ تطبيق التيار في الدارة بنظامين. سمّ هذين النظامين، ثم حدّد

مدّة النظام الأول، واشرح سلوك الوشيعة خلال كل نظام.

(r) - 2 - 3 - 2 - 1 - 2 - 3 - 2

 (L_1) - (L_1) - (L_1) - (L_1) - (L_1)

II - دراسة تأثير مميزات عناصر الدارة على تطوّر شدّة التيار:

ننجز ثلاث تجارب باستعال الدارة السابقة (الشكل - 1)، وفي كل تجربة نغيّر قيمة مقدار عنصر واحد فقط؛ إمّا E أو E أو E . وبواسطة ملقط للتيار وتجهيز E حصّانا على بيان تغيّرات شدة التيار في كل تجربة.

الشكل – 1

i(mA)

1 - في أي موضع من الدارة يجب ربط ملقط التيار؟ بيّن كيفية وصله للدارة.

2 - أرفق كل بيـان بالمقدار الذي تمّ تغيير قيمته مع التعليل.

ته کل من E و R و L المستعملة في التجارب الثلاث. E

4 - عبر عن التوتر (u_b) بين طرفي الوشيعة بدلالة الزمن في التجربة الموافقة للبيان رقم (3) ، ثمّ مثّله بشكل تقريبي بدلالة الزمن.

