

STEPS

- 1. Determine the Concrete Cover of Wall Footing (CC_{WF})
 - Case 1: Footing Type: Wall Footing (Trapezoidal)

$$CC_{WF} = \begin{vmatrix} \text{SLAB ON GRADE} \end{vmatrix}$$
 40

Case 2: Footing Type: Wall Footing (Rectangular)

$$CC_{WF} = \begin{vmatrix} BEAMS & EXPOSED & ON & EARTH \end{vmatrix}$$
 40

Example

$$CC_{WF} = 40$$

75

2. Determine the quantity of bars of the footing.

LEGEND:

 $Qty_F = Quantity \ of \ footing$ $F_{B_T} = Footing \ Top \ Base \ (Trapezoidal)$

COLUMNS EXPOSED ON EARTH

COLUMNS EXPOSED ON WEATHER

 $Qty_L = Quantity \ of \ Longitudinal \ Reinforcement$ $F_L = Footing \ Length$

 $Qty_T = Quantity \ of \ Transverse \ Reinforcement$ $F_B = Footing \ Base \ (Regular)$

 $S_T = Spacing \ of \ Transverse \ Rebar$ $S_L = Spacing \ of \ Longitudinal \ Rebar$

If there is no input on the quantity box, but only on the spacing.

$$Qty_L = Qty_F \left[Round\ up\ to\ whole\ number \left(rac{\left(F_B\ or\ F_{B_T}
ight) - 2CC_F}{S_L} + 1
ight)
ight]$$

$$Qty_T = Qty_F \left[Round\ up\ to\ whole\ number \left(rac{F_L - 2CC_F}{S_T} + 1
ight)
ight]$$

If there is an input on the quantity box.

$$Qty_L = Qty_F \cdot Qty_{L(input)}$$
$$Qty_T = Qty_F \cdot Qty_{T(input)}$$

Example:

Since there is an input on the quantity box on the longitudinal reinforcement. Thus,

$$Qty_L = Qty_F \cdot Qty_{L(input)} = 1 \cdot 5 = 10 \ pcs$$

Since there is no input on the quantity box on the transverse reinforcement. Thus,

$$Qty_T = Qty_F \left(\frac{F_L - 2CC_{WF}}{S_T} + 1 \right) = 1 \left(\frac{30440 - 2(40)}{300} + 1 \right) = 1(102.2) = 1(103) = 103 \ pcs$$

3. The program will compute the required length of each quantity. (The answer must be converted to meters)

LEGEND:

 L_B of $Qty_L = Bar$ length of longitudinal reinforcement

 L_B of $Qty_U = Bar\ length\ of\ upper\ reinforcement$

 L_B of $Qty_T = Bar$ length of transverse reinforcement

 $H_L = Hook \ length \ (Use \ the \ what \ type \ of \ bar \ hook \ on \ the \ main \ bars)$

 $F_{B_B} = Footing Bottom Base (Trapezoidal)$

Note:

If the hook type is 0 then, $H_L = 0$

For Longitudinal Reinforcement

$$L_B$$
 of $Qty_L = F_L - 2CC_F + 2H_L$

For Transverse Reinforcement

If the Wall Footing is Regular

$$L_B ext{ of } Qty_T = F_W - 2CC_F + 2H_L$$

If the Wall Footing is Trapezoidal

$$L_B \text{ of } Qty_T = \left[F_{B_B} - 2CC_F \tan(22.5) \right] + 600 + \frac{F_{B_T} - F_{B_B}}{\cos(45)} + 2H_L$$

Example:

$$L_B ext{ of } Qty_L = F_L - 2CC_F + 2H_L$$

= $30440 - 2(40) + 2(0)$
 $L_B ext{ of } Qty_L = 30360 ext{ } mm = 30.36 ext{ } m$

$$L_B \text{ of } Qty_T = F_{B_B} + 2CC_F[\cos(45) - \tan(22.5)] + \frac{F_{B_T} - F_{B_B}}{\cos(45)} + 2H_L$$

$$= [300 - 2(40)\tan(22.5)] + 600 + \frac{500 - 300}{\cos(45)} + 2(0)$$

$$L_B \text{ of } Qty_T = 1149.71 \text{ } mm = 1.14971 \text{ } m$$

4. The program will check the available manufactured bar lengths. And will compute the following equations to determine the manufactured bar length and its corresponding manufactured quantity.

LEGEND:

 $Qty_P = Produced\ Quantity$

 $L_M = Available Manufactured Bar Length$

 $Qty_{M} = Manufactured Quantity$

 $L_W = Wastage\ Length$

 $Qty_M = Extra\ Quantity$

 $L_E = Excess Length$

 $S_L = Splice \ Length \ (Tension \ Table \ in \ the \ Parameters)$

For Longitudinal Reinforcement

• If L_B of $Qty_L < Largest L_M$

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_L}$$

If $Qty_P < 1$

$$L_W = 0$$

Else

 $L_W = L_M - (L_B \text{ of } Qty_L) \cdot Qty_P(round \text{ down into whole number})$

$$Qty_{M} = \frac{Qty_{L}}{Qty_{P}(round\ down\ to\ whole\ number)}$$

 $L_E = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \cdot L_M$

And

 $Total\ Wastage = L_E + L_W[Qty_M(round\ down\ to\ whole\ number)]$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

• If L_B of $Qty_L > Largest L_M$

$$Qty_M = \frac{L_B \ of \ \ Qty_L}{L_M - S_L}$$

 $L_X = [Qty_M - Qty_M(round\ down\ into\ whole\ number)](L_M - S_L)$

Note: Splice Length (S_L)

 $S_L = based on the table inside the parameters (Tension)$

If there is no Splice Length in the table. Thus,

$$S_L = 0 m$$

$$L_E = L_M - L_X$$

And

$$Total\ Wastage = L_E \cdot Qty_L$$

The manufactured bar length that has the smallest total waste will be the chosen manufactured bar length and its corresponding manufactured quantity

$$Qty_{CM} = Qty_L \cdot Qty_M(round\ up\ into\ whole\ number)$$

For Transverse Reinforcement

$$Qty_P = \frac{L_M}{L_B \ of \ Qty_T}$$

If $Qty_P < 1$

$$L_W = 0$$

Else

 $L_W = L_M - (L_B \text{ of } Qty_T) \cdot Qty_P(round \text{ down into whole number})$

$$Qty_{M} = \frac{Qty_{T}}{Qty_{P}(round\ down\ to\ whole\ number)}$$

$$L_E = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \cdot L_M$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

Example:

Based on the reference the available manufactured lengths are 6, 7.5, 9, 10.5, and 12 meters.

LONGITUDINAL REINFORCEMENT	TRANSVERSE REINFORCEMENT			
DIAMETER 10	DIAMETER 10			
QUANTITY 5	QUANTITY			
SPACING	SPACING 300			
HOOK TYPE 0 ▼	HOOK TYPE 0 ▼			

· For Longitudinal Reinforcement

Since $(L_B \text{ of } Qty_L = 30.29) > (Largest L_M = 15)$. Thus,

TENSION BA	ARS	COMPRESSIO	N BARS	6		
-				•	+	
BAR SIZES	f'c	20.7	f'c	27.6	•	
(DEFORMED MM)		Lapped Splice				
10	300		$\overline{}$	300		
12	300			300		
16	400			400		
20	550			500		
25		800		750		
28		1000		850		
32		1300		1100		

$$f'c = 4000 psi \rightarrow 27.6$$
$$S_L = 300 mm \rightarrow 0.3 m$$

 $@ L_M = 6 m$

$$Qty_M = \frac{L_B \ of \ Qty_L}{L_M - S_L} = \frac{30.36}{6 - 0.3} = 5.326$$

 $L_X = [Qty_M - Qty_M(round\ down\ into\ whole\ number)](L_M - S_L) = (5.326 - 5)(6 - 0.3) = 1.86\ m$

$$L_E = L_M - L_X = 6 - 1.86 = 4.14 m$$

$$Total\ Wastage = L_E \cdot Qty_L = 4.14 \cdot 5 = 20.7$$

$$Qty_{CM} = Qty_L \cdot Qty_M(round\ up\ into\ whole\ number) = 5 \cdot 6 = 30$$

The results of the computations of other L_M

L [M]	Qty [T]	L [B] of Qty [T]	Splice Length	Qty [M]		L [x]	L [E]	Qty [CM]	Total Waste
6				5.33	6	1.860	4.140	30	20.700
7.5				4.22	5	1.560	5.940	25	29.700
9	5	30.36	0.30	3.49	4	4.260	4.740	20	23.700
10.5				2.98	3	9.960	0.540	15	2.700
12				2.59	3	6.960	5.040	15	25.200

• For Transverse Reinforcement

@
$$L_M = 6 m$$

$$Qty_P = \frac{L_M}{L_R \ of \ Qty_T} = \frac{6}{1.14971} = 5.219$$

Since $Qty_P > 1$. Thus,

 $L_W = L_M - (L_B \ of \ Qty_T) \cdot Qty_P(round \ down \ into \ whole \ number) = 6 - 1.14971(5) = 0.251 \ m$

$$Qty_{M} = \frac{Qty_{T}}{Qty_{P}(round\ down\ to\ whole\ number)} = \frac{103}{5} = 20.6$$

 $L_E = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \cdot L_M = [21 - 20.6] \cdot 6 = 2.4\ m$

 $Total\ Wastage = L_E + L_W[Qty_M(round\ down\ to\ whole\ number)] = 2.4 + 0.251(20) = 7.42$

The results of the computations of other L_M

L [M]	Qty [T]	L [B] of Qty [T]	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6			5.22	5	20.60	21	0.251	2.400	7.429
7.5			6.52	6	17.17	18	0.602	6.250	16.480
9	103	1.1497	7.83	7	14.71	15	0.952	2.571	15.900
10.5			9.13	9	11.44	12	0.153	5.833	7.512
12			10.44	10	10.30	11	0.503	8.400	13.429

The smallest Total Wastage is $L_M=6~m$. Thus, $L_{M(chosen)B}=6~m$ and $Qty_{CM(chosen)B}=21$

5. The program will determine the Price of the Steel Rebar

$$Price_{Total} = \sum_{i} Qty_{CM(chosen)} \frac{Price_{M}}{Qty_{CM(chosen)}}$$

Where:

 $Price_{M} = Price \ of \ the \ steel \ reinforcement \ based \ on \ Pricing$

 $= Sorted\ through\ Reinforcement\ Grade, diameter, and\ Manufactured\ Length$

Case 1: Footing Type: Wall Footing (Trapezoidal)

$$Price_{M} =$$
 Slabs

Case 2: Footing Type: Wall Footing (Rectangular)

Example

TING (WALL) WF-1						
ING TYPE: L FOOTING (Trapezoidal) □ UNIT: mm □ □						
LONGITUDINAL REINFORCEMENT	TRANSVERSE REINFORCEMENT					
DIAMETER 10	DIAMETER 10					
QUANTITY 5	QUANTITY					
SPACING	SPACING 300					
HOOK TYPE 0 ▼	HOOK TYPE 0 ▼					
Slabs	Grade 40 🔻					

• For Longitudinal Reinforcement

$$Qty_{CM(chosen)A} = 15$$

 $L_{M(chosen)} = 10.5 m$
 $d_b = 10 mm$

$$Price_{M(A)} = \mathbb{P} 284.59$$

$$Qty_{CM(chosen)A}Price_{M(A)} = 15 \cdot 284.59 =$$
 \$\frac{1}{2} 4268.85

For Transverse Reinforcement

$$Qty_{CM(chosen)B} = 21$$

$$L_{M(chosen)B} = 6 m$$

$$d_b = 10 mm$$

$$Price_{M(B)} = \mathbb{P} 162.62$$

$$Qty_{CM(chosen)B}Price_{M(B)} = 21 \cdot 162.62 =$$
 3415.02

$$Price_{Total} = \sum_{CM(chosen)} Price_{M} = 4268.85 + 3415.02 =$$
7683.87

6. The program will compute the weight of the chosen manufactured bar length in transverse and longitudinal reinforcement of the footing.

$$Weight = L_{M(chosen)} \cdot Qty_{M(chosen)} \cdot W_D$$

Where:

 $W_D = corresponding \ weight \ of \ the \ reinforcement \ diameter \ (Table \ in \ the \ Parameters)$

Example:

- WEIGHT -	
BAR SIZE (Diameter)	kg/m
6 mm	0.222
8 mm	0.395
10 mm	0.616
12 mm	0.888
16 mm	1.597
20 mm	2.466
25 mm	3.854
28 mm	4.833
32 mm	6.313
36 mm	7.991
40 mm	9.864
44 mm	11.926
50 mm	15.413
56 mm	19.318

WF-1

- @ Longitudinal Reinforcement: $diameter = 10 \ mm$, thus $W_D = 0.616$
- @ Transverse Reinforcement: $diameter = 10 \ mm$, thus $W_D = 0.616$

For WF-1

@ Longitudinal Reinforcement

$$Weight_L = L_{M(chosen)} \cdot Qty_{M(chosen)} \cdot W_D = (10.5) \cdot (15) \cdot (0.616) = 97.02 \; kg$$

@ Transverse Reinforcement

$$Weight_U = L_{M(chosen)} \cdot Qty_{M(chosen)} \cdot W_D = (6) \cdot (21) \cdot (0.616) = 77.616 \ kg$$

7. The program will compute the total weight of reinforcements on each footing.

$$Weight_{TOTAL} = Weight_{L} + Weight_{T}$$

Example:

For WF-1

$$Weight_{TOTAL} = Weight_{L} + Weight_{T} = 97.02 + 77.616 = 174.646 \ kg$$

8. The program will compute the Labor price of reinforcement in the Wall Footing.

$$Price_{Labor} = Weight_{TOTAL} \cdot L_R$$

Where:

 $L_R = Labor Rate in Footing based in the Pricing$

Example:

 $Price_{Labor} = Weight_{TOTAL} \cdot L_{R}$

 $Price_{Labor} = 174.646 \cdot 17$

 $Price_{Labor} = \mathbb{P}$ **2968**. **812**