Science des données I : module 8

Test d'hypothèse du Chi²

Philippe Grosjean & Guyliann Engels

Université de Mons, Belgique Laboratoire d'Écologie numérique

https://wp.sciviews.org sdd@sciviews.org

L'inférence

Le test d'hypothèse

Le test d'hypothèse est l'outil le plus simple pour répondre à une question via l'inférence.

Il faut déterminer :

- \blacksquare H_0 , l'hypothèse nulle => l'affirmation à rejeter
- lacksquare H_1 , l'hypothèse alternative

Distribution du Chi²

La distribution du Chi^2 admet un paramètre : les degrés de liberté

Zone de rejet

Cette zone de rejet est déterminée par une probabilité nommé le seuil α fixée avant de réaliser le test d'hypothèse. Nous fixons ici α à 5%.

qchisq(0.05, 3, lower.tail = FALSE)

[1] 7.814728

Situation fictive

```
Notre hypothèse de départ est :
```

 ${\cal H}_0$: il est équiprobable d'être du groupe A, B, C ou D

Nos observation:

```
(tab \leftarrow as.table(c(A = 5, B = 10, C = 20, D = 10)))
```

```
## A B C D ## 5 10 20 10
```

```
chisq.test(tab, p = c(A = 1/4, B = 1/4, C = 1/4, D = 1/4))
```

```
##
## Chi-squared test for given probabilities
##
## data: tab
## X-squared = 10.556, df = 3, p-value = 0.01439
```

La valeur p correspond à l'aire (à droite ici) plus extrême que la valeur du $\mathrm{Chi^2}_{\mathrm{obs}}$.

Les conditions d'application

Assurez vous que les conditions d'application soient respectées!

- échantillonnage aléatoire et observations indépendantes,
- \blacksquare aucun effectif théorique (ou probabilité) sous H_0 nul,
- aucun effectif observé, si possible, inférieur à 5 (ceci n'est **pas** une condition stricte ; le test sera "approximativement" bon dans le cas contraire).

