# Réactions d'oxydo-réduction

### Au programme



#### Savoirs

- Oxydants et réducteurs, réactions d'oxydoréduction, nombre d'oxydation, dismutation et médiamutation.
- ♦ Exemples d'oxydants et de réducteurs minéraux usuels : nom, nature et formule des ions thiosulfate, permanganate, hypochlorite, du peroxyde d'hydrogène.
- ♦ Pile, tension à vide, potentiel d'électrode, formule de NERNST, électrodes de référence.
- ♦ Diagrammes de prédominance ou d'existence.
- ♦ Aspect thermodynamique des réactions d'oxydo-réduction.



#### Savoir-faire

- ♦ Relier la position d'un élément dans le tableau périodique et le caractère oxydant ou réducteur du corps simple correspondant.
- ♦ Prévoir les nombres d'oxydation extrêmes d'un élément à partir de sa position dans le tableau périodique.
- ♦ Identifier l'oxydant et le réducteur d'un couple.
- ♦ Décrire le fonctionnement d'une pile à partir d'une mesure de tension à vide ou à partir des potentiels d'électrode.
- ♦ Utiliser les diagrammes de prédominance ou d'existence pour prévoir les espèces incompatibles ou la nature des espèces majoritaires.
- Prévoir qualitativement ou quantitativement le caractère thermodynamiquement favorisé ou défavorisé d'une réaction d'oxydo-réduction à partir des potentiels standard des couples.



#### Sommaire

| І Оху                     | dants et réducteurs               |
|---------------------------|-----------------------------------|
| I/A                       | Couples oxydo-réducteurs          |
| I/B                       | Nombre d'oxydation                |
| II Dist                   | tribution des espèces d'un couple |
| II/A                      | Potentiel d'un couple             |
| II/B                      | Diagramme de prédominance         |
| III Réa                   | actions entre couples             |
| III/A                     | Réactions d'oxydoréduction        |
| $\mathrm{III/B}$          | Sens de réaction                  |
| $\mathrm{III}/\mathrm{C}$ | Cas particuliers                  |
| III/D                     | Calcul de constantes d'équilibre  |
| IV Pile                   | s électrochimiques                |
| IV/A                      | Présentation                      |
| IV/B                      | Potentiel d'électrode             |
| IV/C                      | Charge totale d'une pile          |

| -             |                                                              |    |
|---------------|--------------------------------------------------------------|----|
|               | Liste des définitions                                        |    |
|               | Définition 6.1 : Oxydant et réducteur                        | 3  |
|               | Définition 6.2 : Nombre d'oxydation                          | 4  |
|               | Définition 6.3 : Force des oxydants et des réducteurs        | 7  |
|               | Définition 6.4 : Réaction d'oxydoréduction                   | 7  |
|               | Définition 6.5 : Dismutation                                 | 9  |
|               | Définition 6.6 : Médiamutation                               | 9  |
|               | Définition 6.7 : Piles électrochimiques                      | 10 |
|               | Définition 6.8 : Force électromotrice                        | 11 |
|               | Définition 6.9 : Électrodes de référence                     | 11 |
| Ω             | Liste des propriétés                                         |    |
| <b>~</b>      | Propriété 6.1 : Nombre d'oxydation                           | 5  |
|               | Propriété 6.2 : Formule de Nernst                            | 5  |
|               | Propriété 6.3 : Potentiel en solution                        | 10 |
|               | Propriété 6.4 : Quantité d'électricité d'une pile            | 11 |
| <b>.</b> .    | Liste des applications                                       |    |
|               | Application 6.1 : Équilibrage d'une équation rédox           | 3  |
| _             | Application 6.2 : Calculs de nombres d'oxydation             | 5  |
|               | Application 6.3 : Calcul de potentiels                       | 6  |
|               | Application 6.4 : Stabilité par dismutation ou médiamutation | 9  |
|               | Application 6.5 : Calcul de constante d'équilibre            | 10 |
|               | Application 6.6 : Calcul de la f.e.m. de la pile Daniell     | 11 |
|               | Application 6.7 : Charge de la pile Daniell                  | 11 |
| •             | Liste des remarques                                          |    |
| 'ን            | Remarque 6.1 : Autour des demi-équations                     | 4  |
|               | Remarque 6.2 : Autour de la formule de NERNST                | 6  |
| _ '           | Liste des exemples                                           |    |
|               | Exemple 6.1 : Couples simples                                | 3  |
| _             | Exemple 6.2 : Couples à connaître                            | 4  |
|               | Exemple 6.3: Illustrations simples du nombre d'oxydation     | 4  |
|               | Exemple 6.4 : Nombre d'oxydation et structure électronique   | 5  |
|               | Exemple 6.5 : Équilibrage d'équations redox                  | 8  |
|               | Exemple 6.6 : Dismutation du fer                             | 9  |
| ı             | Liste des points importants                                  |    |
| $\mathcal{V}$ |                                                              | _  |
| ·/            | Important 6.1 : Règles de calcul nombre d'oxydation          | 5  |
|               | Important 6.2 : Diagramme de prédominance                    | (  |
|               | Important 6.3 : Sens spontané de réaction                    | 8  |
| <b>A</b>      | Liste des erreurs communes                                   |    |
| <b>B</b>      | Attention 6.1 : Utilisation des diagrammes redox             | 7  |
|               | Attention 6.2 : Réactions d'oxydoréduction                   | 8  |
|               | Attention 6.3 : Calcul de constantes                         | 10 |
| '             |                                                              |    |

## Oxydants et réducteurs

# I/A Couples oxydo-réducteurs

| _ |   |   |
|---|---|---|
|   |   |   |
|   |   | - |
|   |   |   |
|   |   |   |
|   | _ | _ |

#### Définition 6.1 : Oxydant et réducteur

- $\diamond$  **Un oxydant** est une espèce chimique capable de \_\_\_\_ un ou plusieurs électrons;
- ♦ Un réducteur est une espèce chimique capable de \_\_\_\_ un ou plusieurs électrons ;
- ♦ Un couple oxydant-réducteur, noté Ox/Red¹, est associé via la demi-équation électronique :



#### Exemple 6.1: Couples simples

| $\Diamond$ | Le | cuivre | : |
|------------|----|--------|---|
|            |    |        |   |

$$\diamond$$
 Le zinc :

De même

$$\text{Cl}_2$$
 \_\_\_\_\_,  $\text{Cl}^-$  \_\_\_\_\_



#### Outils 6.1 : Équilibrer une demi-réaction

Pour équilibrer une demi-équation en milieu acide :

- 1 Équilibrer les éléments autres que O ou H;
- 2 Équilibrer l'oxygène avec  $H_2O_{(1)}$ ;
- $\boxed{3}$  Équilibrer les hydrogènes avec  $H_{(aq)}^{+}$ ;
- $\boxed{4}$  Équilibrer les charges avec  $e^-$

Si le **milieu est basique**, écrire une équation avec des  $H_{(aq)}^+$  n'est pas représentatif de la réalité :

 $\boxed{5}$  On **remplace**  $\mathbf{H}^+$  **par**  $\mathbf{HO}^-$  grâce à l'autoprotolyse de l'eau :

$$H_2O_{(s)} = H_{(aq)}^+ + HO_{(aq)}^-$$



### Application 6.1 : Équilibrage d'une équation rédox

- 1) Équilibrer la demi-équation du couple  $\mathrm{MnO_{4(aq)}^{-}/MnO_{2(s)}}$  en milieu basique.
- 2) Équilibrer la demi-équation du couple  $\mathrm{Cr_2O_{7(aq)}^{2-}/Cr_{(aq)}^{3+}}$

| 1) | 1 |
|----|---|
|    |   |

=

2

=

3

=

4

= milieu acide

5

milieu basique

<sup>1.</sup> On fera donc particulièrement au sens qui n'est pas « redox »!

| 2) 1                                                                    | = |                                               |
|-------------------------------------------------------------------------|---|-----------------------------------------------|
| 2                                                                       | = |                                               |
| 3                                                                       | = |                                               |
| 4                                                                       | = | milieu acide                                  |
| 5                                                                       | = | milieu basique                                |
| Exemple 6.2 : Couples à connaître    Ions tétrathionate/ion thiosulfate |   | $\diamond$ Peroxyde d'hydrogène $^2/{ m eau}$ |
| ♦ Ion permanganate/ion manganèse II                                     |   | dioxygène/eau                                 |
| ♦ Ion hypochlorite/ion chlorure                                         |   | dioxygène/peroxyde d'hydrogène                |



#### Remarque 6.1 : Autour des demi-équations

 $\diamond$  Ion dichromate/ion chrome III

♦ Ces demi-équation ne représentent pas de réelles transformations chimiques, on ne peut faire intervenir explicitement des électrons libres : ce sont des outils.

♦ Eau/dihydrogène

♦ Comme pour les réactions acide-base, certaines espèces sont à la fois oxydante et réductrice.

# I/B Nombre d'oxydation



#### Définition 6.2: Nombre d'oxydation

Le nombre d'oxydation d'un atome dans une molécule est le nombre de charges élémentaires e qu'il porterait si on venait à répartir les électrons des liaisons aux plus électronégatifs. Il s'écrit en <u>chiffres romains</u>.



#### Exemple 6.3: Illustrations simples du nombre d'oxydation

♦ Oxygène dans dioxygène : ♦ Oxygène et hydrogène dans l'eau :

- 2. Aussi appelée « eau oxygénée »
- 3. Aussi degré d'oxydation



#### Propriété 6.1 : Nombre d'oxydation

- ♦ Le nombre d'oxydation d'un élément est lié à sa structure électronique : dans un édifice chaque élément cherche à se rapprocher de la structure des gaz nobles en remplissant ou vidant sa couche de valence, et son nombre d'oxydation est donc borné.
- $\diamond$  Lors d'une **oxydation**, **n.o.**  $\nearrow$ ; lors d'une <u>réduction</u>, n.o.  $\searrow$ .



#### Exemple 6.4 : Nombre d'oxydation et structure électronique

- ♦ Oxygène :
- ♦ Alcalins :
- ♦ Alcalinos-terreux :
- ♦ Halogènes :
- ♦ Gaz nobles :





#### Important 6.1 : Règles de calcul nombre d'oxydation

- 1) Le n.o. d'un élément seul est égal à sa charge;
- 2) La somme des n.o. des élements d'une molécule est égale à la charge de la molécule;
- 3) En général, dans les molécules et ions complexes, n.o.(H) = +I;
- 4) En général, dans les molécules et ions complexes, n.o.(O) = -II (sauf si cela met en défaut les règles précédentes).



#### Application 6.2: Calculs de nombres d'oxydation



 $\diamond$  H<sub>2</sub>O<sub>2</sub>:

 $\diamond$   $Cu^{2+}$ :  $\diamond$   $Fe^{3+}$ :

♦ IO<sub>3</sub><sup>-</sup> :

♦ S<sub>2</sub>O<sub>3</sub><sup>2-</sup> :



#### Transition

Ainsi, l'équilibre entre les espèces d'un couple repose sur la capacité du milieu à recevoir ou perdre des électrons : les couples oxydant-réducteur ont donc des caractéristiques électriques.

## II | Distribution des espèces d'un couple

#### II/APotentiel d'un couple



#### Propriété 6.2 : Formule de NERNST

Pour une demi-équation d'oxydoréduction

le potentiel électrique d'une solution à l'équilibre est donné par la formule de NERNST :

- $\diamond$  E est le potentiel, et s'exprime en \_\_\_\_;
- $\diamond$   $E^{\circ}$  est le potentiel standard du couple à la température T;
- $\diamond$  n le nombre d'électrons échangés (variation du degré d'oxydation);
- $\diamond R$  la constante des gaz parfaits en \_\_\_\_\_;
- $\diamond T$  la température en \_\_\_\_\_;
- $\diamond$   $\mathcal F$  la constante de Faraday, représentant la charge électrique d'une mole de protons :

D'où la forme commune :



#### Remarque 6.2 : Autour de la formule de NERNST

 $\diamond$  Faites attention au passage du logarithme en base e (ln) au logarithme décimal :

$$\log x = \frac{\ln x}{\ln 10}$$

♦ Le potentiel seul n'a pas de sens de manière absolue : il est défini à une constante près. Il faut donc choisir une référence arbitraire afin de fixer toutes les valeurs. On choisit pour cela le premier couple de l'eau

$$E^{\circ}(\mathrm{H}_{(\mathrm{aq})}^{+}/\mathrm{H}_{2(\mathrm{g})}) = 0\,\mathrm{V}$$



#### Application 6.3 : Calcul de potentiels

Donner les potentiels des couples suivants :

- $\diamond \operatorname{Fe^{2+}_{(aq)}}/\operatorname{Fe_{(s)}}$ :
- $\diamond \operatorname{Fe_{(aq)}^{3+}/Fe_{(aq)}^{2+}}$
- $\diamond \operatorname{MnO_{4(aq)}^{-}}/\operatorname{Mn_{(aq)}^{2+}}$
- $\diamond H_{(s)}^+/H_{2(g)}$

# Diagramme de prédominance



#### Important 6.2 : Diagramme de prédominance

Pour

on a

On utilisera alors une **convention de tracé** donnant la valeur de  $(a_{\text{Ox}}^{\gamma})/(a_{\text{Red}}^{\alpha})$  à la limite pour trouver  $E_{\text{lim}}$ , afin de tracer le diagramme de prédominance :

Figure 6.1 – Diagramme de prédominance générique



#### Attention 6.1: Utilisation des diagrammes redox

Ce raisonnement n'est valable que pour un couple simple, sans autres espèces dans la demi-réaction. À partir du moment où les protons H<sup>+</sup> interviennent, les diagrammes seront à 2 dimensions: ce sont les diagrammes potentiel-pH (cf. chapitre suivant).



#### Définition 6.3 : Force des oxydants et des réducteurs

Comme dans le cas des couples acide-base, on peut parler de la force d'un oxydant ou d'un réducteur selon la valeur du potentiel standard:

> $E^{\circ}$ Oxydant Réducteur Élevé Bas



FIGURE 6.2 -Échelle des  $E^{\circ}$ 



### III Réactions entre couples



### Réactions d'oxydoréduction



#### Définition 6.4 : Réaction d'oxydoréduction

Une réaction d'oxydoréduction est une réaction de **transfert d'électrons** entre deux espèces :

- ♦ L'oxydant un (des) électrons, il subit une \_\_\_\_\_ et son n.o. \_\_\_\_
- ♦ Le réducteur \_\_\_ un (des) électrons, il subit une et son n.o.



#### Attention 6.2: Réactions d'oxydoréduction

- ♦ Il n'y a jamais d'électrons dans la réaction bilan;
- ♦ La somme des n.o. est conservée pendant une réaction redox.



#### Exemple 6.5 : Équilibrage d'équations redox

- 1) Écrire et équilibrer la réaction entre  $Fe_{(aq)}^{2+}$  et  $Cu_{(s)}$ . Les couples mis en jeu sont  $Cu_{(aq)}^{2+}/Cu_{(s)}$  et  $Fe_{(aq)}^{3+}/Fe_{(aq)}^{2+}$ .
- 2) Écrire et équilibrer la réaction entre  $Fe^{2+}_{(aq)}$  et  $MnO_{4(aq)}^{-}$ . Les couples mis en jeu sont  $MnO_{4(aq)}^{-}/Mn^{2+}_{(aq)}$  et  $Fe^{3+}_{(aq)}/Fe^{2+}_{(aq)}$

1)

2)

## III/B Sens de réaction

Ainsi, comme pour les réactions acide-base, on peut déterminer la stabilité de certains ions en solution, que ce soit par la superposition des diagrammes de prédominance ou par la règle du gamma sur une échelle en  $E^{\circ}$ :



#### Important 6.3 : Sens spontané de réaction

Au cours d'une réaction d'oxydoréduction, l'oxydant le plus fort (de  $E^{\circ}$  le plus élevé) réagit avec le **réducteur le plus fort** (de  $E^{\circ}$  le plus faible). Cette règle schématise avec la **règle du gamma**, voir Figure 6.4.

Cela se détermine aussi avec un diagramme de prédominance. En effet, deux espèces de **domaines disjoints** vont réagir ensemble pour donner les espèces qui peuvent exister ensemble au même potentiel, voir Figure 6.3.



FIGURE 6.3 – Domaines disjoints.



# III/C Cas particuliers



#### Définition 6.5 : Dismutation

Une réaction dans laquelle le **réactif** est à la fois oxydant et **réducteur** est appelée **dismutation**. On la schématise par la règle du gamma ci-contre, et on écrit cette réaction





#### Exemple 6.6: Dismutation du fer

C'est le cas de l'ion  ${\rm Fe^{2+}}$  qui intervient dans les couples  ${\rm Fe^{3+}/Fe^{2+}}$  et  ${\rm Fe^{2+}/Fe}$  : les potentiels standard donnent



#### Définition 6.6: Médiamutation

Une réaction dans laquelle le **produit** est à la fois oxydant et réducteur est appelée médiamutation. On la schématise par la règle du gamma ci-contre, et on écrit cette réaction





#### Application 6.4 : Stabilité par dismutation ou médiamutation

Montrer que l'eau oxygénée  $H_2O_2$  est instable et que l'eau est stable. On donne  $E^{\circ}(H_2O_2/H_2O) = 1,78 \text{ V}, E^{\circ}(O_2/H_2O_2) = 0,68 \text{ V}, E^{\circ}(O_2/H_2O) = 1,23 \text{ V}$  et  $E^{\circ}(H_2O/H_2) = 0,0 \text{ V}$ .

## III/D Calcul de constantes d'équilibre



#### Propriété 6.3 : Potentiel en solution

Il y a unicité du potentiel en solution : en présence de plusieurs couples rédox dans la solution, les potentiels rédox des différents couples sont égaux à l'équilibre. On trouve ainsi la constante d'équilibre d'une réaction :



#### Attention 6.3: Calcul de constantes

Ne vous précipitez pas avec les formules, s'il est demandé de **déterminer** il faut faire le calcul! De même, ne vous trompez pas de sens dans la soustraction : tout dépend du sens de la réaction étudiée.



#### Application 6.5 : Calcul de constante d'équilibre

Calculer la constante de réaction entre l'eau oxygénée et l'ion permanganate.

# IV Piles électrochimiques

Par essence, les réactions d'oxydoréduction sont le siège de l'échange d'électrons : en imposant que le transfert se fasse par un circuit électrique extérieur à la solution, on pourra mettre en évidence et utiliser cette énergie en réalisant une pile.



#### Présentation



#### Définition 6.7: Piles électrochimiques

On appelle



 $\mathrm{Cu}^{2+} + 2 e^{-} \to \mathrm{Cu}$ réduction : cathode

 $\operatorname{Zn} \to \operatorname{Zn}^{2+} + 2e^$ oxydation : anode

## IV/B Potentiel d'électrode



Définition 6.8 : Force électromotrice



Application 6.6: Calcul de la f.e.m. de la pile Daniell



Définition 6.9 : Électrodes de référence

### $\overline{ m IV/C}$

Charge totale d'une pile



Propriété 6.4 : Quantité d'électricité d'une pile

$$Q = n\xi_{\rm eq}\mathcal{F}$$



Application 6.7: Charge de la pile Daniell