模拟试题Ⅱ 参考解答

一、单项选择题

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
D	В	D	A	В	A	В	С	A	В	В	A	С	В	D

二、多项选择题

1	2	3	4	5
ABD	BD	AB	BCD	CD

三、填空题

- 1. $(1) \in$, $(2) \subseteq$.
- 2. 双射 , 满射。

$$\sum \deg(v_i) = 2\big|E\big|$$

- $\sum_{v_i \in V} \deg(v_i) = 2 \big| E \big|$ 3. 14 ,握手定理: 。
- 4. 重言式 , 矛盾式 。
- 5. $\forall x \exists y (y > x)$,

四、演算题

1、解:

$$R_1 \cap R_2 = \{ < a, a>, < a, b>, < b, b>, < c, c> \}$$

$$R_1 \circ R_2 = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle b, b \rangle, \langle c, c \rangle \}$$

$$R_1^{-1} = \{ < a, a>, < b, a>, < b, b>, < c, a>, < c, b>, < c, c> \}$$

$$r(R_1) = R_1 \qquad t(R_1) = R_1$$

$$s(R_1) = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, b \rangle, \langle c, c \rangle \}$$

2、解 (1)求 G 的邻接矩阵为:

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

所以 $\{v_1\}$, $\{v_2, v_3, v_4\}$ 构成G的强分图。

3、解:此问题的最优设计方案即要求该图的最小生成树,由破圈法或避圈法得最小生成树为: 其权数为1+1+3+4=9。

4、解: 极大元: e

极小元: b, d

最大元: e

最小元: 无

最小上界: e

最大下界: a

- 5、解:由题意: $G=\{1, 2, 3, 4, 5, 6\}$,运算为: $a \times_7 b = a \times b \mod 7$ 。
 - 1) $\forall a, b \in G, a \times_7 b = a \times b \mod 7, \ 1 \le (a \times_7 b) \le 6$,运算在 G 上封闭;
 - 2) $\forall a, b, c \in G$, 有 $(a \times_7 b) \times_7 c = a \times_7 (b \times_7 c)$, 满足结合性。
 - 3) 令 e=1,则有 \forall a \in G,a \times_7 1 = $a \times 1 \mod 7$ = a,1 \times_7 $a = 1 \times a \mod 7$ = a,幺元为 1;
 - 4) 元素 1,6 逆元为自身,元素 2,4 互逆,元素 3,5 互逆,G 中每个元素都有逆元; 综上 1),2),3),4),(*G*,×₇)构成群。

再计算元素的周期:

|1|=1, |2|=3, |3|=6, |4|=3, |5|=6, |6|=1, 周期为 6 的元素为生成元。 $\langle G, \times_7 \rangle$ 是循环群,生成元为 3,5。

五、证明题

1. $\forall x (P(x) \lor Q(x))$, $\forall x \neg P(x) \Rightarrow \exists x Q(x)$

证明: (1)∀x¬P(x)

Р

(2) $\neg P(c)$ T(1), US (3) $\forall x (P(x) \lor Q(x))$ P (4) $P(c) \lor Q(c)$ T(3), US (5) Q(c) T(2) (4), I (6) $\exists x \ Q(x)$ T(5), EG

2、(同定理 5.2)

3、设<R,*>是一个代数系统,*是 R 上二元运算, $\forall a,b \in R$ $a*b=a+b+a\cdot b$,则 0 是幺元且<R,*>是含幺半群。

证明: [幺]
$$\forall a \in R$$
 , $0*a = 0+a+0 \cdot a = a$, $a*0 = a+0+a \cdot 0$ 即 $0*a = a*0 = a$. 0 为幺元 [闭] $\forall a,b \in R$, 由于+, • 在 R 封闭。所以 $a*b = a+b+a \cdot b \in R$ 即*在 R 上封闭。 [结] $\forall a,b,c \in R$ ($a*b$)* $c=(a+b+a \cdot b)*c=a+b+a \cdot b+c+(a+b+a \cdot b) \cdot c$ = $a+b+c+a \cdot b+a \cdot c+b \cdot c+a \cdot b \cdot c$ $a*(b*c) = a+b+c+a \cdot b+a \cdot c+b \cdot c+a \cdot b \cdot c$ 所以 $(a*b)*c=a*(b*c)$ 因此 , $\langle R, * \rangle$ 是含幺半群。