CÁC TÍNH CHẤT CỦA THUẬT TOÁN

CÁC TÍNH CHẤT CỦA THUẬT TOÁN (TT)

1 ĐẦU VÀO/ĐẦU RA

3 TÍNH TỔNG QUÁT

PHƯƠNG PHÁP BIỂU DIỄN THUẬT TOÁN

BIỂU DIỄN THUẬT TOÁN - NGÔN NGỮ TỰ NHIÊN

Xét ví dụ: Giải phương trình bậc 1

Nhập: a,b;

Xuất: kết quả nghiệm;

Bắt đầu

Bước 1: Nhập a, b

Bước 2: Nếu a = 0

CYBERLEARN ĐÀO TẠO CHUYÊN GIA LẬP TRÌNH

- 2.1 Nếu b = 0 thì phương trình vô định. Kết thúc thuật toán;
- 2.2 Nếu b#0 thì phương trình vô nghiệm. Kết thúc thuật toán;

Bước 3: Nếu a#0 thì thực hiện phép tính x= -b/a

Bước 4: Xuất kết quả và kết thúc thuật toán

Kết thúc.

BIỂU DIỄN THUẬT TOÁN - LƯU ĐỒ KHỐI

5.2 Lưu đồ khối

Một số qui ước:

Các thao tác nhập/ xuất dữ liệu

Ví dụ: Nhập a, b,...

Các Lựa chọn/ Điều kiện/ So sánh

Ví dụ: So sánh a và b có = 0 Các Thao tác xử lý/ phép toán

Ví dụ: Tính x = -b/a, tăng i lên 1 Các đường đi/ qui trình thực hiện

BIỂU DIỄN THUẬT TOÁN - LƯU ĐỒ KHỐI

Xét ví dụ: Giải phương trình bậc 1

BIỂU DIỄN THUẬT TOÁN - LƯU ĐỒ KHỐI So sánh 2 phương pháp

Nhập: a,b;

Xuất: kết quả nghiệm;

Bắt đầu

Bước 1: Nhập a, b

Bước 2: Nếu a = 0

- 2.1 Nếu b = 0 thì phương trình vô định. Kết thúc thuật toán;

- 2.2 Nếu b#0 thì phương trình vô nghiệm. Kết thúc thuật toán;

Bước 3: Nếu a#0 thì thực hiện phép tính x= - b/a

Bước 4: Xuất kết quả và kết thúc thuật toán **Kết thúc.**

BIỂU DIỄN THUẬT TOÁN MÃ GIẢ (PSEUDO-CODE)

Sử dụng các từ khóa vay mượn các ngôn ngữ lập trình: Như if, else, for, while,...

Input: a,b;

Output: kết quả nghiệm;

Begin

```
read a, b

if a = 0

if b = 0

write "PT vô định"

else

write "PT vô nghiệm"

else

x= -b/a

write x

End
```

ĐỘ PHỰC TẠP THUẬT TOÁN

Algorithm

SỐ PHÉP TOÁN THUẬT TOÁN THỰC THI

```
int[] arr = {1,3, 4, 9, 8};

n = arr.length;

for ( i = 0; i < n; i++ ) {
    System.out.println( arr[i] );
}

Chạy n step
    i < n : 1 phép tính

In arr[i] : 1 phép tính

i++ : 1 phép tính</pre>
```

Mối quan hệ giữa input đầu vào và số lượng phép tính là hàm:

$$T(n) = 3n + 2 => Dộ phức tạp của thuật toán$$

SỐ PHÉP TÍNH THUẬT TOÁN THỰC THI (TT)

```
i = 1;
n = 1000;

While (i < n) {
System.out.println(i);
i *= 2;

Another interval and shuyen GIA LAP TRINH
i *= 2 : 1 phép tính

Chạy n step
i < n : 1 phép tính

3log2(n)
```

$$i *= 2 => 1 -> 2 -> 4 -> 8 ->$$

 $2^t = n => t = log2(n)$

Mối quan hệ giữa input đầu vào và số lượng phép tính là hàm:

$$T(n) = 3log2(n) + 2 => Độ phức tạp của thuật toán$$

SỐ PHÉP TOÁN THUẬT TOÁN TRONG THỰC TẾ

$$T(n) = n^4 + 28*n^3 + 22*n^2 + 50*n + 298*log2(3n) + 12000$$

PHÂN TÍCH ĐỘ PHỰC TẠP

Big O Notation (Kí hiệu O) - hay còn gọi là ký hiệu Landau. Ký hiệu lấy từ tên nhà toán học Landau. Big O nghĩa là tốc độ tăng nhanh của hàm (The Rate of Growth of function)

ĐƠN GIẢN HÓA SỰ PHỨC TẠP

$$T(n) = 2 + 3n$$

$$T(n) = 0(n)$$

$$T(n) = 4n^2 + 2n + 5$$
 $T(n) = O(n^2)$

$$T(n) = 3log2(n) + 2$$
 $T(n) = O(log2(n))$

Big O loại bỏ các biến số đầu vào có ảnh hưởng nhỏ và giữ lại các biến số có ảnh hưởng lớn khi số lượng đầu vào tiến tới vô cùng

QUI TẮC TÌM BIG-O

Quy tắc hằng
$$O(c^* f(n)) = O(f(n))$$

Quy tắc cộng
$$O(f(n) + g(n)) = O(max(f(n), g(n))$$

Quy tắc nhân
$$O(f(n) * g(n)) = O(f(n)) * O(g(n))$$

$$T(n) = 3n + 2 \Rightarrow O(2 + 3n) = O(3n) = O(n)$$

$$T(n) = 4n^2 + 2n + 5 \Rightarrow O(4n^2 + 2n + 5) = O(4n^2) = O(n^2)$$

$$T(n) = 3log2(n) + 2 \Rightarrow O(3log2(n)) = O(log2(n))$$

ĐỘ PHỨC TẠP THUẬT TOÁN

Độ phức tạp	Thuật ngữ/tên phân lớp
O(1)	Độ phức tạp hằng số
O(log ₂ n)	Độ phức tạp logarit
O(n)	Độ phức tạp tuyến tính
O(nlog ₂ n)	Độ phức tạp nlog ₂ n
O(n ^a)	Độ phức tạp đa thức
O(a ⁿ), a > 1	Độ phức tạp hàm mũ
O(n!)	Độ phức tạp giai thừa

ĐỘ PHỨC TẠP THUẬT TOÁN

	logn	n	nlogn	n ²	2 ⁿ	n!
10	3.10 ⁻⁹	10-8	3.10-8	10 ⁻⁷	10-6	3.10 ⁻³
10 ²	7.10 ⁻⁹	10 ⁻⁷	7.10 ⁻⁷	10 ⁻⁵	4.10 ¹³ năm	*
10 ³	1,0.10-8	10-6	1.10 ⁻⁵	10 ⁻³	*	*
104	1,3.10 ⁻⁸	10 ⁻⁵	1.10-4	B 10 ⁻¹		*
10 ⁵	1,7.10-8	10-4	2.10 ⁻³	10 CHUYÊN GIZ	A LẬP TẠÌNH	*
10 ⁶	2.10 ⁻⁸	10-3	2.10 ⁻²	17 phút	*	*

- Lưu ý:
 - Mỗi phép toán giả sử thực hiện trong 10⁻⁹ giây (~ CPU 1GHz).
 - *: thời gian lớn hơn 100¹⁰⁰ năm