6.6 习题

2024年7月28日

6.6.1

(1) 自反性

定义 f(n) = n 的函数 $f: \mathbb{N} \to \mathbb{N}$ 是从 \mathbb{N} 到 \mathbb{N} 的严格递增函数, 使得

$$a_n = a_{f(n)} = a_n$$
对所有的 $n \in \mathbb{N}$ 均成立

由定义 6.6.1 可知, 此时 $(a_n)_{n=0}^{\infty}$ 是 $(a_n)_{n=0}^{\infty}$ 的一个子序列。

(2) 传递性

因为 $(b_n)_{n=0}^{\infty}$ 是 $(a_n)_{n=0}^{\infty}$ 的子序列,那么存在一个函数 $f: \mathbb{N} \to \mathbb{N}$ 是从 \mathbb{N} 到 \mathbb{N} 的严格递增函数,使得

$$b_n = a_{f(n)}$$
对所有的 $n \in \mathbb{N}$ 均成立

因为 $(c_n)_{n=0}^\infty$ 是 $(b_n)_{n=0}^\infty$ 的子序列,那么存在一个函数 $g:\mathbb{N}\to\mathbb{N}$ 是从 \mathbb{N} 到 \mathbb{N} 的严格递增函数,使得

$$c_n = b_{q(n)}$$
对所有的 $n \in \mathbb{N}$ 均成立

因为 f 的值域与 g 的定义域是同一个集合,我们可以把 g,f 复合,得到函数 $g\circ f:\mathbb{N}\to\mathbb{N}$,该函数是从 \mathbb{N} 到 \mathbb{N} 的严格递增函数,使得

$$c_n = a_{(q \circ f)(n)}$$
对所有的 $n \in \mathbb{N}$ 均成立

由定义 6.6.1 可知, 此时 $(c_n)_{n=0}^{\infty}$ 是 $(a_n)_{n=0}^{\infty}$ 的子序列