S-813 Series

The S-813 Series is a three-terminal positive voltage regulator made using a CMOS process. The output voltage is fixed internally. The S-813 Series has higher accuracy of output voltage ($\pm 2.4\%$) and needs a smaller input/output voltage difference ($V_{dif} \approx 0.12~V$ when I_{OUT} is 40 mA) than the S-812 Series, so battery-powered portable equipment can have a higher capacity and a longer service life.

Features

- Low current consumption: 16 µA typ.
- Small input/output voltage difference (Ex: S-81350HG: 0.12 V typ. I_{OUT} = 40 mA)
- High accuracy of output voltage: ± 2.4%
- · Wide operating voltage range: 15 V max.
- Wide operating temperature range: -30°C to 80°C
- · TO-92 or SOT-89-3 plastic package

Block Diagram

* Parasitic diode

Figure 1

Applications

 Constant voltage power supply of VTR, camera, OA equipment, cordless phone, and others

■ Selection Guide

Table 1

Output voltage	TO-92	SOT-89-3*
3.0 V ± 2.4%	S-81330HG	S-81330HG-KB-X
3.2 V ± 2.4%	S-81332HG	S-81332HG-KC-X
3.7 V ± 2.4%		S-81337HG-KE-X
4.0 V ± 2.4%		5-81340HG-KJ-X
4.7 V ± 2.4%		S-81347HG-KQ-X
5.0 V ± 2.4%	S-81350HG	S-81350HG-KD-X

The last digit of the model name changes depending upon the packing form when it is an SOT-89-3 package product.

X = S : Stick

X = T1 or T2 : Tape

** Please ask our sales person if you need another output voltage product.

Pin Assignment

Advantages over the S-812 Series

The S-813 Series has the following advantages over conventional voltage regulators such as the S-812 Series.

1. Small input/output voltage difference

Input/output voltage difference against output current is much smaller. For example in the S-81350HG, it is only 0.12 V when output current is 40 mA. In battery-powered equipment, the S-813 Series prolongs the battery service life.

2. Large output current available

Output current is allowed up to 100 mA. In this case, however, be careful with input voltage and power dissipation.

Absolute Maximum Ratings

Table 2 (Unless otherwise specified: $Ta = 25^{\circ}C$)

Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	VIN		18	V
Output voltage	V _{OUT}		$V_{1N} + 0.3$ to $V_{SS} - 0.3$	V
Power dissipation	PD		500	mW
Operating temperature	Topr		-30 to +80	°C
Storage temperature	T _{stg}		-40 to + 125	°C

Caution: Keep static electricity to a minimum.

■ Electrical Characteristics

1. S-81330HG, S-81330HG-KB-X

Table 3

	(Unless otherwise specified: Ta = 25°C)						
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Test cir.
Output voltage	V _{OUT}	V _{IN} = 5 V, I _{OUT} = 30 mA	2.928	3.000	3.072	V	1
Input/output voltage difference	V _{dif}	I _{OUT} = 30 mA	-	0.14	0.28	٧	1
Load regulation	△V _{OUT}	$I_{OUT} = 10 \ \mu A \text{ to } 30 \text{ mA}$ $V_{IN} = 5 \text{ V}$	_	60	150	mV	1
Current consumption	I _{SS}	V _{IN} = 5 V, No loaded	T =	16	30	μA	2
Line regulation	$\frac{\triangle V_{OUT}}{\triangle V_{IN} \cdot V_{OUT}}$	V _{IN} = 4 to 15 V I _{OUT} = 30 mA	T -	0.04	0.2	%/V	. 1
Input voltage	VIN		1 -	_	15	V	_
Temperature characteristic of △V _{OUT}	_∆V _{OUT} ∆Ta	I _{OUT} = 30 mA, V _{IN} = 5 V Ta = -30°C to 80°C] -	± 0.35	-	mV/°C	_
Ripple rejection	[RR]	$f = 100 \text{ Hz}, CL = 100 \mu\text{F}$ $f_{OUT} = 30 \text{ mA}, V_{IN} = 5 \text{ V}$	-	48	_	dB	

^{*} Definition of input/output voltage difference : V_{IN2} - V_{OUT1} = Output voltage when input voltage is 5 V V_{IN2} = Input voltage when 98% of V_{OUT1} is output.

2. S-81332HG, S-81332HG-KC-X

Table 4

(Unless otherwise specified: Ta = 25°C)

(Official Wise specifical)							
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Test cir.
Output voltage	V _{OUT}	$V_{IN} = 5.2 \text{ V}, I_{OUT} = 30 \text{ mA}$	3.123	3.200	3.277	V	1
Input/output voltage difference	V _{dif}	I _{OUT} = 30 mA	-	0.14	0.28	٧	1
Load regulation	△V _{OUT}	$I_{OUT} = 10 \mu\text{A to }30 \text{mA}$ $V_{IN} = 5.2 \text{V}$	-	60	150	mV	1
Current consumption	Iss	V _{IN} = 5.2 V, No loaded		16	30	μA	2
Line regulation	$\frac{\triangle V_{OUT}}{\triangle V_{IN} \cdot V_{OUT}}$	V _{IN} = 4 to 15 V I _{OUT} = 30 mA		0.04	0.2	%/V	1
Input voltage	V _{IN}		_	-	15	V	_
Temperature characteristic of $\triangle V_{OUT}$	∆V _{OUT} △Ta	I _{OUT} = 30 mA, V _{IN} = 5.2 V Ta = -30°C to 80°C	_	± 0.40	_	mV/°C	
Ripple rejection	RR	$f = 100 \text{ Hz}, CL = 100 \mu\text{F}$ $I_{OUT} = 30 \text{ mA}, V_{IN} = 5.2 \text{ V}$	_	48	_	dB	

^{*} Definition of input/output voltage difference: V_{IN2} - V_{OUT1} = Output voltage when input voltage is 5.2 V V_{IN2} = Input voltage when 98% of V_{OUT1} is output.

3. S-81337HG-KE-X

Table 5

			(Unless	otherwis	e speci	fied: Ta	= 25°C)
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Test cir.
Output voltage	V _{OUT}	$V_{IN} = 5.7 \text{ V}, I_{OUT} = 30 \text{ mA}$	3.611	3.700	3.789	V	1
Input/output voltage difference	Vdif	I _{OUT} = 30 mA	_	0.14	0.28	V	1
Load regulation	ΔV _{out}	$I_{OUT} = 10 \mu\text{A} \text{ to } 30 \text{ mA}$ $V_{IN} = 5.7 \text{ V}$	_	60	150	m∨	1
Current consumption	Iss	V _{IN} = 5.7 V, No loaded		16	30	μΑ	2
Line regulation	△V _{OUT} △V _{IN} ·V _{OUT}	$V_{IN} = 4.7 \text{ to } 15 \text{ V}$ $I_{OUT} = 30 \text{ mA}$		0.04	0.2	%/V	1
Input voltage	V _{IN}			_	15	V	
Temperature characteristic of $\triangle V_{OUT}$	△V _{OUT} △Ta	I _{OUT} = 30 mA, V _{IN} = 5.7 V Ta = -30°C to 80°C	_	± 0.43	_	mV/°C	
Ripple rejection	RR	$f = 100 \text{ Hz}$, $CL = 100 \mu\text{F}$ $I_{OUT} = 30 \text{ mA}$, $V_{IN} = 5.7 \text{ V}$	_	48		dB	

^{*} Definition of input/output voltage difference : V_{IN2} - V_{OUT1} = Output voltage when input voltage is 5.7 V V_{IN2} = Input voltage when 98% of V_{OUT1} is output.

4. S-81340HG-KJ-X

Table 6

(Unless otherwise specified: Ta = 25°C)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Test cir.
Output voltage	Vout	$V_{IN} = 6.0 \text{ V}, I_{OUT} = 40 \text{ mA}$	3.904	4.000	4.096	V	1
Input/output voltage difference	V _{dif}	Ι _{ΟUΤ} = 40 mA		0.12	0.24	V	1
Load regulation	ΔV _{OUT}	$I_{OUT} = 50 \mu\text{A} \text{ to } 60 \text{mA}$ $V_{IN} = 6.0 \text{V}$	1	70	110	m∨	1
Current consumption	Iss	V _{IN} = 6.0 V, No loaded		16	30	μΑ	2
Line regulation	$\frac{\triangle V_{OUT}}{\triangle V_{IN} \cdot V_{OUT}}$	V _{IN} = 5 to 15 V I _{OUT} = 40 mA	_	0.04	0.2	%/V	1
Input voltage	VIN		<u> </u>	-	15	_ V	
Temperature characteristic of △V _{OUT}	∆V _{OUT} ∆Ta	$I_{OUT} = 40 \text{ mA}, V_{IN} = 6.0 \text{ V}$ Ta = -30°C to 80°C	_	± 0.46	_	mV/°C	_
Ripple rejection	[RR]	$f = 100 \text{ Hz}$, $CL = 100 \mu\text{F}$ $I_{\text{OUT}} = 40 \text{ mA}$, $V_{\text{IN}} = 6.0 \text{ V}$	_	45	_	d₿	

^{*} Definition of input/output voltage difference : V_{IN2} - V_{OUT1} V_{OUT1} = Output voltage when input voltage is 6.0 V_{IN2} = Input voltage when 98% of V_{OUT1} is output.

5. S-81347HG-KQ-X

Parameter Output voltage Input/output voltage difference Load regulation Current consumption Line regulation Input voltage Temperature charac-

Table 7

	rable /					
		(Unless	otherwis	e speci	fied: Ta	⇒ 25°C)
Symbol	Conditions	Min.	Тур.	Max.	Unit	Test cir.
V _{OUT}	$V_{IN} = 6.7 \text{ V}, I_{OUT} = 40 \text{ mA}$	4.587	4.700	4.813	V	1
V_{dif}	I _{OUT} = 40 mA	-	0.12	0.24	V	1
△V _{OUT}	$I_{OUT} = 50 \mu\text{A to }60 \text{mA}$ $V_{IN} = 6.7 \text{V}$		70	110	m∨	1
Iss	V _{IN} = 6.7 V, No loaded		16	30	μΑ	2
ΔV_{OUT} $\Delta V_{IN} \cdot V_{OUT}$	V _{IN} = 5.7 to 15 V I _{OUT} = 40 mA	-	0.04	0.2	%/V	1
VIN				15	v	_
∆V _{OUT} ∆Ta	I _{OUT} = 40 mA, V _{IN} = 6.7 V Ta = -30°C to 80°C	~	± 0.53	-	mV/°C	_

* Definition of input/output voltage difference : V_{IN2} - V_{OUT1} V_{OUT1} = Output voltage when input voltage is 6.7 V V_{1N2} = Input voltage when 98% of V_{OUT1} is output.

45

dΒ

6. S-81350HG, S-81350HG-KD-X

teristic of $\triangle V_{OUT}$

Ripple rejection

Table 8

 $Ta = -30^{\circ}C$ to $80^{\circ}C$ $f = 100 \text{ Hz}, CL = 100 \mu\text{F}$

 $I_{OUT} = 40 \text{ mA}, \ V_{1N} = 6.7 \text{ V}$

RR

(Unless otherwise specified: Ta = 25°C)

Parameter	Symbol	nbol Conditions		Тур.	Max.	Unit	Test cir.
Output voltage	V _{OUT}	V _{IN} = 7 V, I _{OUT} = 40 mA	4.88	5.00	5.12	V	1
Input/output voltage difference	V _{dif}	I _{OUT} = 40 mA	*****	0.12	0.24	V	1
Load regulation	△V _{OUT}	$\triangle V_{OUT}$ $V_{OUT} = 50 \mu A \text{ to } 60 \text{ mA}$ $V_{IN} = 7 \text{ V}$		70	110	mV	1
Current consumption	Iss	V _{IN} = 7 V, No loaded		16	30	μΑ	2
Line regulation	△V _{OUT} △V _{IN} ·V _{OUT}	V _{IN} = 6 to 15 V I _{OUT} = 40 mA	-	0.04	0.2	%/V	1
Input voltage	VIN		—		15	V	
Temperature characteristic of $\triangle V_{OUT}$	∆V _{OUT} _ _∆Ta	I _{OUT} = 40 mA, V _{IN} = 7 V Ta = -30°C to 80°C	_	± 0.53	_	mV/°C	_
Ripple rejection	[RR]	$f = 100 \text{ Hz}$, $CL = 100 \mu\text{F}$ $I_{OUT} = 40 \text{ mA}$, $V_{IN} = 7 \text{ V}$	_	45	-	dB	_

* Definition of input/output voltage difference : V_{IN2} - V_{OUT1} $V_{OUT1} = Output \ voltage \ when input \ voltage \ is 7 \ V$ V_{IN2} = Input voltage when 98% of V_{OUT1} is output.

Test Circuits

Figure 4

Technical Terms

1. Output voltage (VOUT)

Output voltage V_{OUT} is that voltage guaranteed by the voltage regulator (accuracy $\pm 2.4\%$) under given input voltage, output current, and temperature conditions. Changes in these conditions will result in an output voltage that may exceed specification limits. For details, please refer to electrical characteristics and characteristics data.

2. Line regulation (\(\Delta V_{OUT} / \Delta V_{IN} \times V_{OUT} \)

This value represents the degree of dependence of the output voltage on the input voltage. It shows the change in output voltage for a given change in input voltage, with output current fixed.

3. Load regulation (\(\Delta \V_{OUT} \))

This value represents the degree of dependence of the output voltage on the output current. It quantifies the change in output voltage for a given change in output current, with input voltage fixed.

4. Input/output voltage difference (Vdif)

Inputting a product's output voltage (V_{OUT}) + input/output voltage difference (V_{dif}) to V_{IN} causes output of $V_{OUT} \times 98\%$. A low V_{dif} value suggests that a regulator is (1) capable of delivering constant output voltages even with marginal (low) input voltages, and (2) capable of outputting substantial current. For these reasons, a low V_{dif} value is desirable.

Note: Vdif is highly dependent on IOUT.

Operation

1 Basic operation

Figure 5 shows the block diagram of the S-813 Series. The error amplifier compares a reference voltage V_{REF} with a part of the output voltage fed back by the feedback resistor R_A and R_B . It supplies the control transistor with the base current, necessary to keep a stable output voltage range not influenced by input voltage or temperature fluctuation.

* Parasitic diode

Figure 5 Reference block diagram

2 Internal Circuit

2.1 Reference voltage circuit

In a voltage regulator, the reference voltage circuit plays a very important role because any abnormality will show up directly at an output. The S-813 Series uses a 0.7-V typical reference voltage circuit as a high-stable reference voltage source.

It features:

- · Low power consumption
- · Good temperature characteristic

2.2 Error amplifier

The error amplifier consumes 0.5 μ A of current because it is a differential amplifier in a stable current circuit.

It features:

- · Good relation characteristics
- · Wide operating voltage range
- · Low offset voltage

2.3 Control transistor

The S-813 Series has a Pch MOS transistor as a current control transistor shown in Figure 7. Therefore an output current l_{OUT} is expressed by the following formula where an input/output voltages difference is small.

$$I_{OUT} = KP\{2(V_{GS} - V_{TP}) (V_{IN} - V_{OUT}) - (V_{IN} - V_{OUT})^2 \}$$

* KP : Conductive coefficiency V_{TP}: Threshold voltage of a control transistor

Setting KP to the large value results in a voltage regulator with 120 mV typical (in case of the S-81350HG) of input/output voltage difference.

Note

For an application with a current consumption of less than 10 μ A (S-81330HG, S-81332HG, S-81337HG) or 50 μ A (S-81340HG, S-81347HG, S-81350HG), the leakage current of the control transistor increases with the output voltage.

Figure 12 Error amplifier

* Parasitic diode

Figure 7 Control transistor

Transient Response

If input voltage or load current of S-813 Series fluctuates transiently, large overshoot or undershoot is caused in the output voltage. If an undershoot is very large in case a voltage detector is used in the load circuit, the voltage detector may detect a mistaken value. If an overshoot is very large, the load circuit is bad-influenced. Therefore, it is important to determine the capacitor value so that both undershoot and overshoot are reduced as much as possible.

1. Line transient response due to input voltage fluctuation

Line transient response of output voltage differs with the types of input voltage fluctuation: type $\rm\,I\,$ (square wave between 4 V and 8 V for S-81330HG, and between 6V to 10V for S-81350HG) and type $\rm\,I\,$ (square wave from 0 V to 10 V) (see Figure 8). This section describes the ringing waveforms and parameter dependency of each type. For reference, Figure 9 describes the measurement circuit.

Type I : Square wave between 4V and 8V, or 6V to 10V

Type II: Square wave from 0V to 10V

Figure 8

Figure 9 Measuring circuit

Type I

Parameter dependency when V_{IN} is between 4V and 8V.

Figure 10 Type I ringing waveform

Table 9 Type I parameter dependency

Parameter	Conditions	Method to decrease overshoot	Method to decrease undershoot						
Output current I _{OUT}	5 to 80 mA	Decrease	Decrease						
Load capacitance C _L	1 to 47 μF	Increase	Increase						
Input voltage fluctuation $\triangle V_{IN}^*$	1 to 4 V	Decrease	Decrease						
Temperature Ta	-30°C to +80°C	High temperature	High temperature						

^{*} V_{IN} : High voltage value – low voltage value

Type II

Parameter dependency

Figure 11 Type II ringing waveform

Table 10 Type II parameter dependency

Parameter		Conditions	Method to decrease overshoot	Method to decrease undershoot
Output current	lout	5 to 80 mA	Increase	Decrease
Load capacitance	CL	1 to 47 μF	Increase	Increase
Temperature	Та	-30°C to +80°C	High temperature	High temperature

 $^{^{\}star}~V_{\text{IN}}$: High voltage value – low voltage value

For reference, the following pages describe the results of measuring the ringing amounts at the V_{OUT} pin using the output current (I_{OUT}), output capacitance (C_L), input voltage (V_{IN}), and temperature (T_A) as parameters.

Reference data: Type I

1. I_{OUT} dependency

1.1 Overshoot

1.2 Undershoot

2. C_L dependency

2.1 Overshoot

Typical
Worst

2.2 Undershoot

3. V_{IN} dependency

3.1 Overshoot

* V2 represents the higher value of input voltage fluctuation. The lower value is fixed to 4V for S-81330HG, and to 6V for S-81350HG.

Example: when V2 = 6V in S-81330HG, input voltage fluctuation is between 4V and 6V.

3.2 Undershoot

Typical
Worst

* V2 represents the higher value of input voltage fluctuation. The lower value is fixed to 4V for S-81330HG, and to 6V for S-81350HG.

Example: when V2 = 6V in S-81330HG, input voltage fluctuation is between 4V and 6V.

HIGH-PRECISION VOLTAGE REGULATOR S-813 Series

4. Temperature dependency

4.1 Overshoot

4.2 Undershoot

Reference data: Type II

1. I_{OUT} dependency

1.1 Overshoot

Typical Worst

1.2 Undershoot

2. C_L dependency

2.1 Overshoot

2.2 Undershoot

Typical

3. Temperature dependency

3.1 Overshoot

3.2 Undershoot

-Typical

2. Load transient response due to output current fluctuation

The overshoot and undershoot are caused in the output voltage if the output current fluctuates between 10 μ A and 30 mA for S-81330HG, and between 50 pA and 40 mA for S-81350HG while the input voltage is costant. Figure 12 shows the ringing waveform of output voltage due to output current change. Figure 13 shows the measuring cirucit for reference.

Figure 12 Ringing waveform

Figure 13 Measuring circuit

Parameter dependency due to output current fluctuation

Output voltage of A and B are different because of voltage drop in output control transistor.

Figure 14

Table 11 Parameter dependency due to output current fluctuation

Parameter	Conditions	Method to decrease overshoot	Method to decrease undershoot
\triangle I _{OUT}	Between 50µA and 40 to 70mA	Decrease	Decrease
CL	1 to 47 μF	Increase	Increase
VIN	S-81330HG: 3.4 to 5V S-81350HG: 5.4 to 7V	No change	No change
Та	- 30 to + 80°C	High temperature	High temperature

For reference, the following describes the results of measuring the ringing amounts at the V_{OUT} pin using the output current (I_{OUT}), load capacitance (C_L), input voltage (V_{IN}), and temperature (T_A) as parameters.

Reference data: Output current fluctuation

1. I_{OUT} dependency

1.1 Overshoot

1.2 Undershoot

* 12 represents the higher value of output current fluctuation. The lower value is fixed to 50μ A. Example: when 12 = 50mA, output current fluctuation is between 50μ A and 50mA.

Typical Worst

2. C_L dependency

2.1 Overshoot

2.2 Undershoot

3. V_{IN} dependency

3.1 Overshoot

Typical Worst

3.2 Undershoot

4. Temperature dependency

4.1 Overshoot

4.2 Undershoot

——Typical
....Worst

3. Selecting load capacitance

Results of 1 and 2 demonstrate that undershoot and overshoot appears largest when load capacitance is $4.7 \mu F$ in type I.

	٦	Γable 12		
S-81350HG (worst s	Ta = 25°C			
CL	47µF			
Overshoot	1822mV	1240mV	903mV	572mV
Undershoot	1182mV	843mV	609mV	372mV

Table 12 demonstrates that overshoot and undershoot generated in output voltage depend upon load capacitance. That is, increasing load capacitance results in decrease in overshoot and undershoot. When determining the load capacitance, take care that the ratings of the ICs or capacitors connected to V_{OUT} terminal are not exceeded because of overshoot. In an application with a voltage detector, select the load capacitance where the voltage detector does not output the reset signal becausae of undershoot.

Dimensions

2. SOT-89-3

Figure 15

Markings

1. TO-92

- ① Product No.
- ② Last digit of the year
- 3 Lot No.

- 2. SOT-89-3
- (1) White label

- Product No. (abbreviation)
- ② Lot No.

(2) Blue label

- ① Product No. (abbreviation)
- 2 Lot No.

Figure 16 S-81330HG marking example

■ Taping

1. Tape specifications

T1 and T2 types are available depending upon the direction of ICs on the tape.

(1) White label (without a hole in the center of emboss area)

(2) Blue label (with a hole in the center of emboss area)

Figure 17

2. Reel specifications

1 reel holds 1000 regulators.

Magazine Dimensions

1 stick has 25 regulators.

■ Standard Circuit

Figure 20 Standard circuit

Application Circuits

1. High output current positive voltage regulator

Figure 21 shows a circuit for increasing the output current capacity.

Short-circuit protection of Tr1 is possible by adding the sense resistance R_S and the PNP transistor as shown in Figure 22.

2. Circuits for increasing output voltage

If the output voltage you need cannot be found in our product line-up, the designs in Figures 23 or 24 will increase output voltages easily.

$$V_{OUT} = Vxx(1 + \frac{R_2}{R_1}) + I_{SS} \cdot R_2 \simeq Vxx(1 + \frac{R_2}{R_1})$$

Because of its low current consumption, the S-813 Series can set the resistance values R1 and R2 high to lower the power consumption of whole systems.

Current flows to the Zener diode (Di) through the quiescent current (I_{SS}) of the S-813 Series, and the GND terminal rises for the voltage of Di. When Di cannot drive with a quiescent current, connection of the resistance R increases the current flowing through Di.

Note: Capacitor is connected between V_{OUT} and GND. In applications that need high output voltage, V_{OUT} voltage is higher than GND voltage when the power turns on.

Figure 24

3. Constant current regulator

The S-813 Series can be used as a constant-current regulator within allowable dissipation limits.

$$I_{OUT} = \frac{V_{XX}}{R_A} + I_{SS}$$

Figure 25 Constant current regulator

Notes on Design

- Voltage regulators may oscillate if small or zero capacity is connected to IC input when the impedance of the
 power source is high and a large capacity is connected to IC output.
- In TO-92 products, since there are projections and resin burrs on the roots of lead terminals formed at Tiebar-cut, do not solder on them.
- Because the S-813 Series voltage regulators do not contain short circuit protection circuit, short-circuiting which occurs during mounting or other operations may cause damage to the component.
- Do not apply a ripple voltage of the conditions below to V_{IN} terminal.

Figure 26

 When connecting the voltage regulator output terminal to another power supply, please insert a diode to protect the IC.

Figure 27

■ Characteristics

- 1. Input voltage (V_{IN}) Output voltage (V_{OUT})
 - 1.1 When ambient temperature is fixed
 - (1) S-81330HG

(2) S-81332HG

(3) S-81350HG

- 1.2 When output current is fixed
 - (1) S-81330HG

(2) S-81332HG

(3) S-81350HG

2. Output current (I_{OUT}) - Output voltage (V_{OUT})

2.1 S-81330HG

2.2 S-81332HG

2.3 S-81350HG

 $^{^{\}star}$ In applications whose output current is small, the load stability may be bad at high temperature.

3. Current consumption

3.1 S-81330HG

3.2 S-81332HG

3.3 S-81350HG

4. Output voltage (VOUT) - Temperature (Ta)

4.1 S-81330HG, S-81332HG

4.2 S-81350HG

- 5. Input/output voltage difference (V_{dif}) (See p3-113 for the definition of V_{dif})
 - 5.1 S-81330HG

5.2 S-81332HG

5.3 S-81350HG

Definition of Vinitial

S-81330HG: Output voltage value when

 V_{IN} is 5 V and I_{OUT} is 30 mA

S-81332HG: Output voltage value when

 V_{IN} is 5.2 V and I_{OUT} is 30 mA

S-81350HG: Output voltage value when

VIN is 7 V and IOUT is 40 mA

- 6. Output current (IOUT) Input/output voltage difference (Vdif)
 - 6.1 S-81330HG

6.2 S-81332HG

6.3 S-81350HG

7. Ripple rejection

7.1 S-81330HG

7.2 S-81350HG

■ Measuring Circuits

Figure 28