Lecture Summary: Jan. 23, 2023

• p-value (continued)

For example, consider $H_0: \beta_1 = 3$ vs $H_1: \beta_1 > 3$. The value of the t statistic is

$$t = \frac{\hat{\beta}_1 - \beta_{10}}{\text{s.e.}(\hat{\beta}_1)} = \frac{3.57 - 3}{0.35} = 1.63.$$

Under H_0 , the probability that $t \ge 1.63$ is 0.058. Therefore, the p-value is 0.058. If the alternative is changed to $H_1: \beta_1 \ne 3$, the corresponding p-value is 2 * 0.058 = 0.117 (verify!).

- An alternative way of making a decision: Reject H_0 if the p-value is $\leq \alpha$.
 - Power of the test

It is the probability of rejecting H_0 when the alternative holds at a given value.

Power calculation:

Using Table B.5. Example: If $\beta_{10} = 0$, $\beta_1 = 1$, s.d. $(\hat{\beta}_1) = 0.5$, we have $\delta = 1/0.5 = 2.0$. Let $\alpha = 0.05$. From Table B.5 we find the power is about 0.48.

Derivation (not required for exams): TA will cover in discussion sessions.

• Confidence interval for β_1 :

Assuming normality, a $100(1-\alpha)\%$ confidence interval (c.i.) for β_1 is

$$\hat{\beta}_1 \pm t_{n-2} \left(1 - \frac{\alpha}{2} \right) \text{s.e.}(\hat{\beta}_1),$$

where

s.e.
$$(\hat{\beta}_1) = \sqrt{\frac{\text{MSE}}{\sum_i (x_i - \bar{x})^2}}.$$

Some concepts regarding the c.i.: Consider, for example, a 95% c.i.

1. For a numerical c.i. computed from one set of data, such as the Toluca company data, which results a 95% c.i. for β_1 , (2.85, 4.29), it is wrong to

say the interval has a 95% chance of covering β_1 [because the interval (2.85, 4.29) either covers β_1 , or it does not cover β_1].

2. The 95% confidence level is in the sense that the interval

$$\left[\hat{\beta}_1 - t_{n-2} \left(1 - \frac{\alpha}{2}\right) \text{s.e.}(\hat{\beta}_1), \ \hat{\beta}_1 + t_{n-2} \left(1 - \frac{\alpha}{2}\right) \text{s.e.}(\hat{\beta}_1)\right],$$

with the lower and upper ends considered as random variables depending on the data collection, has 95% chance of covering β_1 .

- 3. A alternative way of understanding: Suppose there are 100 people, each collecting a different set of data and hence producing a different 95% c.i. for β_1 . Out of the 100 c.i.s, approximately 95 will cover β_1 ; however, we do not know which ones cover, and which ones don't.
 - Confidence interval for β_0 :

A $100(1-\alpha)\%$ c.v. for β_0 is

$$\hat{\beta}_0 \pm t_{n-2} \left(1 - \frac{\alpha}{2} \right) \text{s.e.}(\hat{\beta}_0),$$

where

s.e.
$$(\hat{\beta}_0) = \sqrt{\text{MSE}\left\{\frac{1}{n} + \frac{\bar{x}^2}{\sum_i (x_i - \bar{x})^2}\right\}}.$$