Matrix_Factorization

Mritunjay And Sunil 15/10/2019

Recommended System Techniques on Airbnb (Amsterdam Hotel Recommendation)

1. Alternating Least Squares for Recommendation System

Load all the User build functions

```
# Make recommendations for the target user using User-based CF
getrecommendations_UU <- function(targetuser, users, topN=5, simfun=pearsonsim) {</pre>
 sims = apply(users,1,function(user) simfun(user,targetuser))
 sims = sims[!is.na(sims) & sims >=0]
 wavrats = apply(users[names(sims),is.na(targetuser), drop=FALSE],2,function(rats) weighted.
mean(rats, sims, na.rm=TRUE))
 s = sort(wavrats[!is.na(wavrats)], decreasing = TRUE)
 if (topN == FALSE) s else s[1:min(topN,length(s))] # get topN items
#getrecommendations_UU = cmpfun(getrecommendations_UU)
# get recommedations for the target user using Item-based CF
getrecommendations_II <- function(targetuser, itemsims, topN=5) {</pre>
 targetuser = targetuser[colnames(itemsims)] # ensure the item order is the same as simmatri
 seenitems = !is.na(targetuser)
 unseenitems = is.na(targetuser)
 seenrats = targetuser[seenitems]
 preds = apply(itemsims[unseenitems, seenitems, drop=FALSE], 1, function(simrow) my.weighted.
mean(seenrats, simrow))
 sp = sort(preds[!is.na(preds)] , decreasing = TRUE)
 sp[1:min(topN,length(sp))] # get topN items
#getrecommendations_II = cmpfun(getrecommendations_II)
# compute the item-item similarity matrix (the matrix is symmetric so can compute half & then
# (setting dir=1 generates the user similarity matrix)
getitemsimsmatrix = function(users, simfun=cosinesim, dir=2) {
 rw <<- 1;
 itemsims = apply(users, dir, function(itemA) {
    rw <<- rw + 1 ; cl <<- 1;
    apply(users,dir,function(itemB) {cl<<-cl+1; if (cl<rw) NA else if (cl==rw) NA else simfun
(itemA, itemB)})
 })
 m = forceSymmetric(itemsims,uplo="L") # copy lower half to upper half
 as.matrix(m)
#getitemsimsmatrix = cmpfun(getitemsimsmatrix)
# similarity functions
euclidsim = function(x,y) { z=(y-x)^2; sz=sqrt(sum(z,na.rm=TRUE));
                            if (sz!=0) 1/(1+sz) else if (length(which(!is.na(z)))==0) NA else
1/(1+sz)
euclidsimF= function(x,y) { z=(y-x)^2; sz=sum(z,na.rm=TRUE);
                            if (sz!=0) 1/(1+sz) else if (length(which(!is.na(z)))==0) NA else
1/(1+sz)
cosinesim = function(x,y) { xy = x*y; sum(xy, na.rm=TRUE)/(sqrt(sum(x[!is.na(xy)]^2)*sum(y[!i
s.na(xy)]^2)))}
pearsonsim= function(x,y) { suppressWarnings(cor(unlist(x),unlist(y),use="pairwise.complete.o
bs")) }
mypearsim = function(x,y) { xy = x*y; x=x[!is.na(xy)]; y=y[!is.na(xy)];
                            mx=mean(x); my=mean(y);
```

10/16/2019 Matrix Factorization

```
sum((x-mx)*(y-my))/(sqrt(sum((x-mx)^2)*sum((y-my)^2))))
pearsonRM = function(x,y) { mx=mean(x,na.rm=TRUE);my=mean(y,na.rm=TRUE);
                          xy=x*y;x=x[!is.na(xy)]; y=y[!is.na(xy)]
                          sum((x-mx)*(y-my))/(sqrt(sum((x-mx)^2)*sum((y-my)^2))))
jacardsim = function(x,y) { validx= !is.na(x); validy= !is.na(y);
                          sum(as.integer(validx&validy))/sum(as.integer(validx|validy))}
# For testing, we split the data by user, so test users are not in the trainset
# This is clean but does not test the situation where partial information
# is known about a user (as may be the case in User-based scenario).
# For item-based having partial info will make very little difference (since simmatrix is pre
computed)
# make predicted ratings for a sample of items for each test user
# if trainusers is defined then do User-based CF else do Item-based CF
# Note: if Item-based CF is to be performed them the itemsimilarity matrix (itemsims) must be
predictCF = function(testusers, trainusers=NULL, itemsims=NULL, numtestitems=10, random=FALSE
, simfun=cosinesim) {
 preds = sapply(1:nrow(testusers), function(i) {
   cat(".")
   predictuser(testusers[i,],trainusers=trainusers,itemsims=itemsims,numtestitems=numtestite
ms,random=random,simfun=simfun)})
 colnames(preds) = rownames(testusers)
 preds
}
predictuser <- function(testuser, trainusers=NULL, itemsims=NULL, numtestitems=10, random=FAL
SE, simfun=cosinesim) {
 seenitemnames
               = names(testuser)[!is.na(testuser)]
 if (random) testitemnames = sample(seenitemnames,min(numtestitems,length(seenitemnames))) #
test a random N items
 else testitemnames = seenitemnames[1:min(numtestitems,length(seenitemnames))] # test first
N items
 preds = list()
 for (testitemname in testitemnames) {
   truerating = testuser[testitemname]
   testuser[testitemname] = NA
   if (!is.null(trainusers)) {
     # do user-based CF
     usersims = apply(trainusers,1,function(trainuser) simfun(trainuser,testuser))
     usersims = usersims[!is.na(usersims) & usersims >=0]
     predictedrating = my.weighted.mean(trainusers[names(usersims),testitemname], usersims)
   }
   else {
     # do item-based CF
     predictedrating = my.weighted.mean(testuser[seenitemnames], itemsims[seenitemnames,test
itemname])
   }
   testuser[testitemname] = truerating # restore the actual rating
   preds = c(preds,predictedrating,truerating)
 preds = unname(preds)
 m = as.matrix(preds)
```

10/16/2019 Matrix Factorization

```
if (length(m) < numtestitems*2) for (i in (length(m)+1):(numtestitems*2)) { m = rbind(m,NA</pre>
)}
 return(m)
}
#predictuser= cmpfun(predictuser)
# a weighted mean that handles NA's in both arguments (ratings and similarities)
my.weighted.mean = function(x,y) {
   xy = x*y;
    z = sum(abs(y[!is.na(xy)]))
   if (z == 0) as.numeric(NA) else sum(xy,na.rm=TRUE)/z
#my.weighted.mean = cmpfun(my.weighted.mean)
# computes average, mean absolute error
# each row contains prediction, actual, prediction, actual etc, hence errors are just the dif
f between consecutive cells
avgMAE = function(preds) {
 plist = unlist(preds)
 errors = sapply(1:(length(plist)/2),function(i) abs(plist[i*2-1]-plist[i*2]))
 errors = errors[errors != Inf]
 mean(errors, na.rm=TRUE)
}
showCM = function(preds, like) {
 plist = unlist(preds)
 cnts = sapply(1:(length(plist)/2), function(i) {
   pred = plist[i*2-1] ; actual = plist[i*2]
   if (!is.na(pred) & !is.nan(actual)) {
      if (pred>=like) {if(actual>=like) c(1,0,0,0) else c(0,1,0,0)}
      else if(actual<like) c(0,0,1,0) else c(0,0,0,1)
    } else c(0,0,0,0)
 })
 s = rowSums(cnts) #returns cnts for: TP, FP, TN, FN
 cat(sprintf("TN=%5d FP=%5d\n",s[3],s[2]))
 cat(sprintf("FN=\%5d TP=\%5d (total=\%d)\n",s[4],s[1], sum(s)))
 cat(sprintf("accuracy = \%0.1f%%\n",(s[1]+s[3])*100/sum(s)))
 cat(sprintf("precision = %3.1f%%\n",s[1]*100/(s[1]+s[2])))
 cat(sprintf("recall = %3.1f%%\n",s[1]*100/(s[1]+s[4])))
}
######################
# miscellaneous aids
maketraintest = function(users, numtestusers) {
 testnames = sample(rownames(users), min(numtestusers,nrow(users))) # identify N users rand
omly for testing
 trainnames = setdiff(rownames(users), testnames) # take remaining users for training
 trainusers <<- users[trainnames,]</pre>
 testusers <<- users[testnames,]</pre>
 list(trainusers, testusers)
}
# extract only prediction or only actual ratings from the output of predictCF()
listpreds= function(results) {unlist(results)[c(TRUE,FALSE)]}
listrats = function(results) {unlist(results)[c(FALSE,TRUE)]}
```

10/16/2019 Matrix_Factorization

```
validcnt = function(x) length(which(is.finite(x)))

# How sparse is the data in a data frame? Compute % of non-blank entries
fillrate = function(df) {cat((length(which(!is.na(df)))*100)/(nrow(df)*ncol(df)),"%")}

#fillrate = cmpfun(fillrate)

# same as above but also works on vectors
fillratev = function(df) {t=unlist(df); cat((length(which(!is.na(t)))*100)/length(t),"%")}

#fillratev = cmpfun(fillratev)

# how many values are > 0? Compute % of entries > 0
fillrateG = function(df,thresh) {t=unlist(df); cat((length(which(!is.na(t) & t > thresh))*100
)/length(t),"%")}
fillrateL = function(df,thresh) {t=unlist(df); cat((length(which(!is.na(t) & t < thresh))*100
)/length(t),"%")}
fillrateE = function(df,thresh) {t=unlist(df); cat((length(which(!is.na(t) & t == thresh))*10
0)/length(t),"%")}</pre>
```

Load all the relevant libraries and Get the working directory and Load the Amsterdam Hotel Airbn data set

pacman::p_load(tidyverse, purrr, stringr, data.table, modelr, readxl,caret, corrplot, broom,
ggpubr, tm, proxy, MASS,relaimpo, car,interplot, caTools, mice, gbm, reshape2, compiler, reco
mmenderlab, Matrix, knitr,tidyr, dplyr, animation, wordnet, RColorBrewer, wordcloud, Snowball
C, topicmodels, ggplot2, cluster, fpc, recosystem, dtplyr,softImpute)
getwd()

[1] "C:/Users/Rapsy/Desktop/Recommender_Assignment/MJ/Model Based Recommendation System"

```
airbnb = read.csv("airbnb.csv", header=TRUE, sep=",") # transaction format!
names(airbnb) = c(colnames(airbnb))
head(airbnb,1)
```

```
##
    Hotel Id
                     Host Name User Id User Name
## 1
         2818 Erik And Mary Jo 2914515
##
                                   Hotel_name
## 1 Ouiet Garden View Room & Super Fast WiFi
                                      summary
## 1 Quiet Garden View Room & Super Fast WiFi
##
space
## 1 I'm renting a bedroom (room overlooking the garden) in my apartment in Amsterdam,
oom is located to the east of the city centre in a quiet, typical Amsterdam neighbourhood the
"Indische Buurt". Amsterdam	ilde{A}\200\231s historic centre is less than 15 minutes away by bike o
r tram. The features of the room are: - Twin beds (80 x 200 cm, down quilts and pillows)
pure cotton towels for each guest - reading lamps - bedside table - wardrobe - table with ch
airs - tea and coffee making facilities - mini bar - alarm clock - Hi-Fi system with cd playe
r, connection for mp3 player / phone - map of Amsterdam and public transport - Wi-Fi Internet
connection Extra services: - Bike rental
##
description
## 1 Quiet Garden View Room & Super Fast WiFi I'm renting a bedroom (room overlooking the gar
den) in my apartment in Amsterdam, The room is located to the east of the city centre in a q
uiet, typical Amsterdam neighbourhood the "Indische Buurt". Amsterdamâ\200\231s historic cen
tre is less than 15 minutes away by bike or tram. The features of the room are: - Twin beds
(80 x 200 cm, down quilts and pillows) - 2 pure cotton towels for each guest - reading lamp
s - bedside table - wardrobe - table with chairs - tea and coffee making facilities - mini ba
r - alarm clock - Hi-Fi system with cd player, connection for mp3 player / phone - map of Ams
terdam and public transport - Wi-Fi Internet connection Extra services: - Bike rental Indisc
he Buurt ("Indies Neighborhood") is a neighbourhood in the eastern portion of the city of Ams
terdam, in the Dutch province of Noord-Holland. The name dates from the early 20th century an
d is derived from the fact that the neighbourhood's streets are named after islands a
    host_id host_name property_type
                                        room_type accommodates
## 1 4070804
                Daniel
                           Apartment Private room
                                                     Two Person
               bathrooms
                            bedrooms
                                        beds bed_type
## 1 One attach bathroom One bedroom One bed Real Bed
##
amenities
## 1 {Internet,Wifi, "Paid parking off premises", "Buzzer/wireless intercom", Heating, Washer, "Sm
oke detector", "Carbon monoxide detector", "First aid kit", "Safety card", "Fire extinguisher", Es
sentials, Shampoo, "Lock on bedroom door", "24-hour check-in", Hangers, "Hair dryer", Iron, "Laptop
friendly workspace", "translation missing: en.hosting_amenity_49", "translation missing: en.hos
ting_amenity_50", "Private entrance", "Hot water", "Bed linens", "Extra pillows and blankets", "Si
ngle level home", "Garden or backyard", "No stairs or steps to enter", "Flat path to guest entra
nce", "Well-lit path to entrance", "No stairs or steps to enter", "Accessible-height bed", "No st
airs or steps to enter", "Host greets you", "Handheld shower head", "Paid parking on premises"}
##
             cancellation_policy Ratings
## 1 strict_14_with_grace_period
```

Structure of Datasets

str(airbnb)

```
## 'data.frame':
                  20677 obs. of 20 variables:
                     ## $ Hotel Id
## $ Host_Name
                      : Factor w/ 508 levels "Aafje", "Adriana",..: 136 136 136 136 136
136 136 136 ...
## $ User Id
                     : int 2914515 5711109 2944771 4620679 373226 2200958 1348274 543307
6 2847616 857406 ...
## $ User_Name
                     : Factor w/ 2932 levels "(Email hidden by Airbnb)",..: 1205 1153 287
5 1130 2021 2308 413 2823 569 1964 ...
                      : Factor w/ 507 levels "'Westerpark Sanctuary', Office-Apartmen
## $ Hotel name
t",..: 383 383 383 383 383 383 383 383 383 ...
                      : Factor w/ 382 levels "","'LORE'S PLACE' A lovely, open writers hom
## $ summary
e in the fun 'Indische Buurt' in Amsterdam! We are offering a open pla" __truncated__,..: 24
2 242 242 242 242 242 242 242 242 ...
                       : Factor w/ 504 levels "","- 100 m2 floor space - private garden of
45 m2 - living room with a '30s bar, 55 inch QLED TV and home cinema "| __truncated__,..: 15
8 158 158 158 158 158 158 158 158 158 ...
                     : Factor w/ 506 levels "'LORE'S PLACE' A lovely, open writers home i
## $ description
n the fun 'Indische Buurt' in Amsterdam! We are offering a open pla" | __truncated__,...: 317 3
17 317 317 317 317 317 317 317 ...
## $ host id
                     : int 4070804 4070804 4070804 4070804 4070804 4070804 4070804 40708
04 4070804 4070804 ...
## $ host name
                     : Factor w/ 404 levels "Aafje", "Adriana",..: 81 81 81 81 81 81 81 81
81 81 ...
## $ property_type : Factor w/ 15 levels "Apartment", "Bed and breakfast",..: 1 1 1 1 1
11111...
## $ room type
                     : Factor w/ 3 levels "Entire home/apt",..: 2 2 2 2 2 2 2 2 2 2 ...
                     : Factor w/ 10 levels "Five Person",..: 10 10 10 10 10 10 10 10 10 1
## $ accommodates
0 ...
## $ bathrooms
                 : Factor w/ 11 levels "Four attach bathroom",..: 4 3 3 3 3 3 3 3 3
## $ bedrooms
                     : Factor w/ 7 levels "Five bedroom",..: 3 3 3 3 3 3 3 3 3 ...
                      ## $ beds
## $ bed_type
                     : Factor w/ 4 levels "Couch", "Futon", ...: 4 4 4 4 4 4 4 4 4 ...
                      : Factor w/ 508 levels "{\"Cable TV\",Internet,Wifi,\"Paid parking o
## $ amenities
ff premises\",\"Buzzer/wireless intercom\",Heating,\"Family/kid fri" | __truncated__,..: 16 16
16 16 16 16 16 16 16 ...
## $ cancellation policy: Factor w/ 3 levels "flexible", "moderate",..: 3 3 3 3 3 3 3 3 3 3
## $ Ratings
                     : int 3 2 5 3 3 3 3 3 2 3 ...
```

Removing all those users corresponding to missing ratings and

Extract only the explicit ratings and visualize the histogram of Ratings

```
airbnbCF = airbnb[,c("Hotel_Id","User_Id", "Ratings")]
sapply(airbnbCF, function(x){sum(is.na(x))})
```

```
## Hotel_Id User_Id Ratings
## 0 0 967
```

```
airbnbCF$Ratings[is.na(airbnbCF$Ratings)] = 0
airbnbCF = airbnbCF[airbnbCF$Ratings > 0,]
sapply(airbnbCF, function(x){sum(is.na(x))})
```

```
## Hotel_Id User_Id Ratings
## 0 0 0
```

```
hist(airbnbCF$Ratings)
```

Histogram of airbnbCF\$Ratings

Eliminate users with too few ratings and Consider Activer users who had rated hotels more than and equal to 10 hotels

```
cnts = aggregate(Hotel_Id ~ User_Id, data = airbnbCF, FUN = length)
colnames(cnts) = c("user","numitems")
activeusers = cnts$user[cnts$numitems >= 10]; length(activeusers)
```

```
## [1] 422
```

```
evCF = airbnbCF[airbnbCF$User_Id %in% activeusers,]
dim(evCF)
```

```
## [1] 4672 3
```

10/16/2019 Matrix_Factorization

Eliminate Hotels with too few ratings and Consider Active Hotels who had been rated more than and equal to 10 users

Remove duplicate records from the datasets

(2) using the softImpute library

\$ Ratings : num 5 2 4 3 3 2 5 2 4 2 ...

reread the data ensuring users and items are read as factors

```
events = ev_Final[,c(2,1,3)]
ctypes = c("factor","factor","numeric")
colnames(events) = c("user","item","rating")
events$user= factor(events$user)
events$item= factor(events$item)
str(events)
```

```
## 'data.frame': 4621 obs. of 3 variables:
## $ user : Factor w/ 422 levels "57920","142145",..: 194 183 177 327 400 316 341 44 372 28
1 ...
## $ item : Factor w/ 508 levels "2818","20168",..: 1 1 1 1 1 1 1 2 2 2 ...
## $ rating: num 5 2 4 3 3 2 5 2 4 2 ...
```

Create a wide format of dataset

```
users = acast(events, user ~ item, value.var = "rating")
#colnames(users) = sort(unique(events$item))
#rownames(users) = sort(unique(events$user))
users[1:10,1:15]
```

```
##
          2818 20168 25428 27886 28871 29051 31080 38266 42970 43109 43980
## 57920
            NA
                  NA
                        NA
                              NA
                                     NΑ
                                           NΑ
                                                 NA
                                                       NΑ
                                                             NΑ
                                                                   NΑ
                                                                          NΑ
## 142145
            NA
                  NA
                                                                          NA
                        NA
                              NA
                                     NA
                                           NA
                                                 NA
                                                       NA
                                                             NA
                                                                   NA
## 186729
            NA
                  NA
                        NA
                              NA
                                     NA
                                           NA
                                                 NA
                                                       NA
                                                             NA
                                                                   NA
                                                                          NA
## 187580
            NA
                  NA
                         2
                              NA
                                    NA
                                           NA
                                                 NA
                                                       NA
                                                             NA
                                                                   NA
                                                                          NA
## 195580
            NA
                  NA
                        NA
                              NA
                                     NA
                                           NA
                                                 NA
                                                       NA
                                                             NA
                                                                   NA
                                                                          NA
## 195859
                  NA
                                     NA
                                                 NA
                                                        4
                                                             NA
            NA
                        NA
                              NA
                                           NA
                                                                   NA
                                                                          NA
## 201541
                                                                          NA
            NA
                  NA
                        NA
                              NA
                                     NA
                                           NA
                                                 NA
                                                       NA
                                                             NA
                                                                   NA
## 216385
            NA
                  NA
                                           NA
                                                 NA
                                                       NA
                                                             NA
                                                                   NA
                                                                          NA
                        NA
                              NA
                                     NA
## 241336
            NA
                  NA
                        NA
                              NA
                                     NA
                                           NA
                                                 NA
                                                       NA
                                                             NA
                                                                   NA
                                                                          NA
## 262799
            NA
                  NA
                        NA
                               NA
                                           NA
                                                 NA
                                                       NA
                                                             NA
                                                                   NA
                                                                          NA
          44129 44391 46386 47061
##
## 57920
             NA
                   NA
                         NA
                               NA
## 142145
             NA
                         NA
                   NA
                               NΑ
## 186729
             NA
                   NA
                         NA
                               NA
## 187580
             1
                                3
## 195580
             NA
                   NA
                         NA
                               NA
## 195859
             NA
                   NA
                         NA
                               NA
## 201541
             NA
                   NA
                         NA
                               NA
## 216385
             NA
                   3
                         NA
                               NA
## 241336
             NA
                   NA
                         NA
                               NA
## 262799
                         NA
                                NA
```

split the events using the same split (train_ind & test_ind) as used earlier

```
set.seed(123)
smp_size <- floor(0.8 * nrow(events))
train_indexes <- sample(1: nrow(events), size = smp_size)
trainevents <- events[train_indexes, ]; dim(trainevents)</pre>
```

```
## [1] 3696 3
```

```
testevents <- events[-train_indexes, ]; dim(testevents)</pre>
```

```
## [1] 925 3
```

```
write.csv(trainevents, "trainevents.csv")
write.csv(testevents, "testevents.csv")
```

make a copy and then blank out the test events (ie set test ratings for the test (user,item) pairs to NA)

```
trainusers = users
cat("Fill rate whole wide matrix : ");

## Fill rate whole wide matrix :

fillrate(trainusers)

## 2.155558 %

cat("\n")

cat("Fill rate Testset matrix : ");

## Fill rate Testset matrix :

x = apply(testevents,1,function(row) trainusers[row[1],row[2]] <<- NA) # row[1] ~ user, row
[2] ~ item
fillrate(trainusers)

## 1.724074 %</pre>
```

factorize into U * D * V using 30 latent features

trainusers=as(trainusers, "Incomplete") # coerce into correct matrix format with missing entri es

do one of the below

[1] 422 30

```
fit1=softImpute(trainusers, rank.max=30, type="als") # als is the default
fit2=softImpute(trainusers, rank.max=30, type="svd") # for comparison
```

take a look at the factorised matrixes

```
dim(fit1$u) ; fit1$u[1:10,1:5] # the user Latent features
```

```
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.0102665120 -0.039022002 -0.039916900 0.017307879 -0.05132815
## [2,] -0.0485639745 -0.014048117 0.091880517 -0.003925695 0.03365736
## [3,] -0.0435257243 0.008191458 -0.046380231 0.030249175 -0.03265346
## [4,] -0.0441161024 0.046941331 -0.044996848 -0.054321034 0.07684595
## [5,] 0.0004133337 0.002748377 0.009720409 -0.039670830 -0.09524968
## [6,] 0.0269234434 -0.039275965 0.011325124 -0.071261375 0.09622555
## [7,] -0.0547167417 -0.003534646 0.113800828 0.055150135 0.02090859
## [8,] -0.0324761649 -0.018744270 -0.022901537 0.038781958 -0.07593921
## [9,] -0.0382489783 -0.012074396 -0.042280848 0.036422480 0.06002570
## [10,] -0.0881630665 -0.084178802 -0.046947466 0.002412226 -0.02267661
```

```
dim(fit1$v) ; fit1$v[1:10,1:5] # the item Latent features
```

```
## [1] 508 30
```

```
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.064264593 -0.08652862 -0.029733556 -0.018568499 -0.04809533
## [2,] -0.006459371  0.02884584  0.007924384  0.001926542 -0.06942288
## [3,] -0.051640991 -0.01899587 -0.027683398 -0.018424423  0.01479871
## [4,] -0.059439289 -0.04315917 -0.002858857  0.044273551 -0.04693955
## [5,] -0.051473735  0.06148844 -0.037114580 -0.023259303  0.04861710
## [6,] -0.015081718  0.01600833  0.022450516  0.006833347  0.03346169
## [7,] -0.060154176 -0.05729578  0.054448279 -0.006753314  0.01315366
## [8,] -0.004018383  0.02697307  0.105513347  0.022276481  0.02623606
## [9,] -0.037741161 -0.04860415 -0.058899188  0.022065958 -0.04939723
## [10,] -0.033744133  0.01806630  0.018701708 -0.019520701  0.05652530
```

```
length(fit1$d); head(fit1$d) # the singular values
```

```
## [1] 30
```

```
## [1] 136.5130 107.4458 104.6133 102.5861 101.7587 101.2385
```

make predictions for all of the empty (user, item) pairs (the test pairs + those missing in orginal dataset)

```
trainuserscompleted1 = complete(trainusers, fit1)
trainuserscompleted2 = complete(trainusers, fit2)
```

compute the MAE for the predictions made for the test events fir model 1 - fit1 (Using ALS)

```
rownames(trainuserscompleted1) = rownames(users) # copy across the user names
colnames(trainuserscompleted1) = colnames(users) # copy across the item names
# Output recommendation using ALS.
trainuserscompleted1[1:10,1:10]
```

```
##
            2818
                    20168
                            25428
                                     27886
                                             28871
## 57920
       1.49656560 -0.1432019 -0.24430582 1.0739055 -0.5314558
## 142145 -0.44328097 -0.7048120 1.06300311 1.5819880 0.3333384
## 186729 0.09959493 -0.1377113 0.89264230 1.4541477 1.7345458
## 187580 -0.04135468 -0.4857795 2.00000000 -3.1014433 0.4174980
## 195580 0.48677202 0.4724423 1.22155216 -1.0072422 -2.2254499
## 201541 0.52344801 -0.9103698 0.06991817 0.7483926 1.0288884
## 241336 -0.97940174 -0.6633407 0.04455350 -0.3976856 1.7096291
## 262799 0.02042747 -0.4486453 2.25595400 1.1410179 -0.5987040
           29051
##
                    31080
                            38266
                                     42970
                                              43109
## 57920 -0.24856111 -0.35155931 -1.1371221 0.96959425 0.3705530
## 186729 0.29045616 1.04272823 1.0054205 0.30050192 0.7711399
## 187580 -0.61475475 -0.43023071 -0.0946785 -1.84449828 -0.3311865
## 195580 -0.68246239 -1.14384327 -1.1408844 -1.62165847 -1.6309054
## 201541 1.89601894 1.48553943 2.1973977 -0.06174800 1.9030811
## 241336 -0.36994894 0.46422255 -0.7485257 1.20720836 1.2185064
## 262799 -0.06865498 0.55479734 -0.5918073 -0.61246149 -0.1697243
```

```
dim(trainuserscompleted1) # 422 508
```

```
## [1] 422 508
```

```
outcome = as.data.frame(trainuserscompleted1)
#outcome = outcome[,-1]
Top1_Hotel = integer(nrow(outcome))
Top2_Hotel = integer(nrow(outcome))
Top3_Hotel = integer(nrow(outcome))
Top4_Hotel = integer(nrow(outcome))
Top5 Hotel = integer(nrow(outcome))
for (i in 1:nrow(outcome)) {
 a = as.matrix(outcome[i,])[1,]
 Top1 Hotel[i] = names(a[order(a,decreasing=TRUE)[1]])
 Top2 Hotel[i] = names(a[order(a,decreasing=TRUE)[2]])
 Top3_Hotel[i] = names(a[order(a,decreasing=TRUE)[3]])
 Top4_Hotel[i] = names(a[order(a,decreasing=TRUE)[4]])
 Top5 Hotel[i] = names(a[order(a,decreasing=TRUE)[5]])
}
df1 <- data.frame(Top1_Hotel, Top2_Hotel, Top3_Hotel, Top4_Hotel, Top5_Hotel, stringsAsFactor
s = TRUE
rownames(df1) = rownames(users)
write.csv(df1, file = "Recommended Hotel For each user using ALS.csv")
abserrs = apply(testevents, 1, function(row) abs(trainuserscompleted1[row[1],row[2]] - users
[row[1],row[2]])) # row[1] ~ user, row[2] ~ item
mean(t(abserrs), na.rm=TRUE) # show the MAE
```

```
## [1] 2.662412
```

10/16/2019 Matrix_Factorization

compute the MAE for the predictions made for the test events fir model 2 - fit2 (Using SVD)

```
rownames(trainuserscompleted2) = rownames(users) # copy across the user names
colnames(trainuserscompleted2) = colnames(users) # copy across the item names
# Output recommendation using ALS.
trainuserscompleted2[1:10,1:10]
```

```
##
         2818
                20168
                       25428
                               27886
                                     28871
## 57920
      1.6229976 -0.73719264 -0.66822467 -0.09787137 0.7993859
## 195580 -0.3508718 -0.05309896 0.07706351 0.23999472 -0.6767932
## 195859 -0.3379241 -0.16059954 -0.06382876 -1.22144524 -0.4601641
## 201541 2.1777938 0.04281306 0.69269621 -0.97911890 0.8348631
## 241336 -1.7513406 -0.82290619 -0.72880671 -0.02108603 1.6754001
29051
##
                31080
                        38266
                                42970
                                      43109
## 57920
      1.1800501 0.17313151 0.0007116486 1.24990267 -0.2466749
## 187580 0.2514803 -0.26988401 0.2947752897 1.05435622
                                   0.8702850
## 195580 0.7191313 -0.30691169 -0.0669920311 -0.70409017 0.6630953
## 195859 0.9759271 -0.07602706 -0.2401142291 -0.86556146 -0.5946764
## 201541 -0.7614856 1.28705867 0.0515483596 1.17352870 -0.9709091
## 241336 -0.5135105 0.59255318 -0.6502973895 -0.62030195
                                    0.6515390
## 262799 0.8335425 0.34661632 -0.0171279312 1.32068453 0.1541693
```

```
dim(trainuserscompleted2) # 422 508
```

```
## [1] 422 508
```

```
outcome = as.data.frame(trainuserscompleted2)
#outcome = outcome[,-1]
Top1 Hotel = integer(nrow(outcome))
Top2_Hotel = integer(nrow(outcome))
Top3_Hotel = integer(nrow(outcome))
Top4_Hotel = integer(nrow(outcome))
Top5_Hotel = integer(nrow(outcome))
for (i in 1:nrow(outcome)) {
 a = as.matrix(outcome[i,])[1,]
 Top1_Hotel[i] = names(a[order(a,decreasing=TRUE)[1]])
 Top2_Hotel[i] = names(a[order(a,decreasing=TRUE)[2]])
 Top3_Hotel[i] = names(a[order(a,decreasing=TRUE)[3]])
 Top4_Hotel[i] = names(a[order(a,decreasing=TRUE)[4]])
 Top5_Hotel[i] = names(a[order(a,decreasing=TRUE)[5]])
}
df2 <- data.frame(Top1_Hotel, Top2_Hotel, Top3_Hotel, Top4_Hotel, Top5_Hotel, stringsAsFactor
s = TRUE
rownames(df2) = rownames(users)
write.csv(df2, file = "Recommended Hotel For each user using SVD.csv")
abserrs = apply(testevents, 1, function(row) abs(trainuserscompleted2[row[1],row[2]] - users
[row[1],row[2]])) # row[1] ~ user, row[2] ~ item
mean(t(abserrs), na.rm=TRUE) # show the MAE
```

```
## [1] 2.57295
```

for comparison we can make the predictions for the test set events manually from the fractorised matrices

add user and item names to U and V so we can index them by user name and item name for ALS

```
rownames(fit1$u) = sort(unique(events$user))
rownames(fit1$v) = sort(unique(events$item))
fit1$u[1:10,1:5]; fit1$v[1:10,1:5]
```

```
[,5]
##
                                              [,4]
               [,1]
                         [,2]
                                    [,3]
## 57920 -0.0102665120 -0.039022002 -0.039916900 0.017307879 -0.05132815
## 142145 -0.0485639745 -0.014048117 0.091880517 -0.003925695 0.03365736
## 195580 0.0004133337 0.002748377 0.009720409 -0.039670830 -0.09524968
## 195859 0.0269234434 -0.039275965 0.011325124 -0.071261375 0.09622555
## 201541 -0.0547167417 -0.003534646 0.113800828 0.055150135 0.02090859
## 216385 -0.0324761649 -0.018744270 -0.022901537 0.038781958 -0.07593921
## 241336 -0.0382489783 -0.012074396 -0.042280848 0.036422480 0.06002570
## 262799 -0.0881630665 -0.084178802 -0.046947466   0.002412226 -0.02267661
```

```
##
                 [,1]
                             [,2]
                                          [,3]
                                                       [,4]
## 2818 -0.064264593 -0.08652862 -0.029733556 -0.018568499 -0.04809533
## 20168 -0.006459371 0.02884584 0.007924384
                                                0.001926542 -0.06942288
## 25428 -0.051640991 -0.01899587 -0.027683398 -0.018424423
                                                             0.01479871
## 27886 -0.059439289 -0.04315917 -0.002858857
                                                0.044273551 -0.04693955
  28871 -0.051473735   0.06148844 -0.037114580 -0.023259303
                                                             0.04861710
## 29051 -0.015081718 0.01600833 0.022450516
                                                0.006833347
                                                             0.03346169
## 31080 -0.060154176 -0.05729578 0.054448279 -0.006753314
                                                             0.01315366
## 38266 -0.004018383 0.02697307
                                   0.105513347
                                                0.022276481
                                                             0.02623606
## 42970 -0.037741161 -0.04860415 -0.058899188
                                                0.022065958 -0.04939723
## 43109 -0.033744133 0.01806630
                                  0.018701708 -0.019520701
                                                             0.05652530
```

add user and item names to U and V so we can index them by user name and item name for SVD

```
rownames(fit2$u) = sort(unique(events$user))
rownames(fit2$v) = sort(unique(events$item))
fit2$u[1:10,1:5]; fit2$v[1:10,1:5]
```

```
##
               [,1]
                           [,2]
                                       [,3]
## 57920 -0.03675581 0.003098126 -0.076972886
                                            0.023992969 -0.01148598
## 142145 -0.04204361 -0.018484234 -0.009909967
                                            0.048101908
                                                        0.02025055
## 186729 -0.03576007 0.049186948
                                0.040928790 0.026538277
## 187580 -0.03201761 -0.005949048 -0.021339361 -0.073479685
                                                        0.01486073
## 195580 -0.04420493 0.040354793
                                0.046911348 -0.021913682 -0.03098403
## 195859 -0.03363530 0.025762329 -0.055905538 -0.018142743
0.02933230
## 216385 -0.04004934 -0.057458236 -0.050776943 -0.002810722
## 241336 -0.05845218 -0.037322022
                                0.112420133 0.039589213
                                                        0.04954880
## 262799 -0.05605130 0.012730095
                                0.007986937 -0.031732097 -0.03745082
```

```
##
                \lceil,1\rceil
                             [,2]
                                          [,3]
                                                        [,4]
        -0.04182050 0.001336952 -0.122066661 -0.022233943 -0.03634110
## 20168 -0.02017147 -0.010469273 -0.009055421 -0.050733396 -0.01787569
## 25428 -0.02302950
                      0.072861976 -0.020961462 -0.046093886
## 27886 -0.04946250 -0.051574066 0.068246680 -0.020391422 -0.06901869
## 28871 -0.05900196 -0.019960125
                                   0.031245502
                                                0.010523218
                                                              0.02967231
## 29051 -0.04260082 0.052894460 -0.048273480 -0.070066585 -0.01390032
## 31080 -0.04303905 -0.029322134 0.016852554 -0.017518054 -0.04281556
## 38266 -0.04623462 -0.039631574 -0.025655100 -0.038893290
## 42970 -0.04574691 0.047919074 -0.055075670 -0.126881787
                                                              0.05180360
## 43109 -0.04651126
                      0.051359106  0.075709091  0.005820344  -0.07483597
```

compute a predicted rating for each (user,item) in testevents forn ALS

prediction = sum(userfeatures (from u matrix) * singularvalues (d matrix) * itemfeatures (from v matrix))

```
prats1 = apply(testevents,1,function(row) c(sum(fit1$u[row[1],] * fit1$d * fit1$v[row[2],]),
row[3])) # row[1] ~ user, row[2] ~ item
head(t(prats1))
##
                           rating
                           "2"
## 6 "1.03839616364428"
## 8 "-0.111377317000089" "2"
## 16 "0.686165973101163"
## 23 "2.70828463316113"
## 24 "0.584123981844604"
                           "2"
## 28 "0.515211685354921"
length(prats1)
## [1] 1850
df = data.frame(prats1)
dim(df)
## [1]
        2 925
df = t(df)
str(testevents)
## 'data.frame':
                   925 obs. of 3 variables:
## $ user : Factor w/ 422 levels "57920","142145",...: 316 44 327 96 161 177 46 103 225 222
## $ item : Factor w/ 508 levels "2818","20168",..: 1 2 3 4 4 4 4 5 6 6 ...
## $ rating: num 2 2 3 3 2 2 5 3 3 3 ...
testevents$prediction = df[,1]
testevents$MAE = abs(testevents$rating - as.numeric(testevents$prediction))
sum(testevents$MAE)/925
## [1] 2.662412
```

compute a predicted rating for each (user,item) in testevents forn SVD

prediction = sum(userfeatures (from u matrix) * singularvalues (d matrix) * itemfeatures (from v matrix))

```
 prats2 = apply(testevents, 1, \textbf{function}(row) \ c(sum(fit2$u[row[1],] * fit2$d * fit2$v[row[2],]), \\ row[3])) \# row[1] \sim user, row[2] \sim item \\ head(t(prats2))
```

write.csv(testevents, "testevents_ALS.csv")

```
## 6 "1.08407994889929" "2"

## 8 "0.130874412057766" "2"

## 16 "0.346852303155659" "3"

## 23 "-0.915493159623353" "3"

## 24 "0.264919949273675" "2"

## 28 "0.516082881905233" "2"
```

```
length(prats2)
```

```
## [1] 1850
```

```
df = data.frame(prats2)
dim(df)
```

```
## [1] 2 925
```

```
df = t(df)
str(testevents)
```

```
testevents$prediction = df[,1]
testevents$MAE = abs(testevents$rating - as.numeric(testevents$prediction))
sum(testevents$MAE)/925
```

```
## [1] 2.57295
```

```
write.csv(testevents,"testevents_SVD.csv")
```

Average Mean Absolute error for ALS ans SVD along with its confusion Matrix

```
cat("Average Mean Absolute error and Confusion Matrix Using ALS \n\n")
```

```
## Average Mean Absolute error and Confusion Matrix Using ALS
```

```
preds = as.numeric(unlist(prats1))
cat("avg MAE =",avgMAE(preds))
```

10/16/2019

```
## avg MAE = 2.662412
cat("Confusion Matrix with Threshold Like as 3 \n \n")
## Confusion Matrix with Threshold Like as 3
##
showCM(preds, like=3)
## TN= 320 FP=
## FN= 605 TP=
                   0
                     (total=925)
## accuracy = 34.6%
## precision = NaN%
## recall
cat("Confusion Matrix with Threshold Like as 2 \n \n \n")
## Confusion Matrix with Threshold Like as 2
##
##
showCM(preds, like=2)
## TN= 125 FP=
## FN= 769 TP=
                 28
                     (total=925)
## accuracy = 16.5%
## precision = 90.3%
## recall
            = 3.5%
cat("\n \nAverage Mean Absolute error and Confusion Matrix Using SVD \n\n")
##
## Average Mean Absolute error and Confusion Matrix Using SVD
preds = as.numeric(unlist(prats2))
cat("avg MAE =",avgMAE(preds))
## avg MAE = 2.57295
cat("Confusion Matrix with Threshold Like as 3 \n \n")
## Confusion Matrix with Threshold Like as 3
##
showCM(preds, like=3)
```

```
## TN= 320 FP= 0
## FN= 605 TP= 0 (total=925)
## accuracy = 34.6%
## precision = NaN%
## recall = 0.0%
```

```
cat("Confusion Matrix with Threshold Like as 2 \n \n")
```

```
## Confusion Matrix with Threshold Like as 2
##
```

```
showCM(preds, like=2)
```

```
## TN= 126 FP= 2

## FN= 780 TP= 17 (total=925)

## accuracy = 15.5%

## precision = 89.5%

## recall = 2.1%
```