METRO: End-to-End Human Pose and Mesh Reconstruction with Transformers

School of Industrial and Management Engineering, Korea University

Jin Hyeok Park

Contents

- Introduction
- Overview of METRO
- ❖ METRO Architecture
- Experiments & Results
- Conclusion

Introduction

3D Human Pose & Mesh Reconstruction Task

- ❖ VR, 스포츠 동작 분석 등 다양한 Application에 이용 가능해 많은 관심을 받고있는 Task
- ❖ 관절 운동의 복합성과, Occlusion 문제 때문에 Challenging한 Task

<3D Human Pose>

Overview of METRO

METRO

- Microsoft
- ❖ 2021년 11월 28일 기준 37회 인용
- ❖ Transformer를 human pose에 적용한 연구

End-to-End Human Pose and Mesh Reconstruction with Transformers

Kevin Lin Lijuan Wang Zicheng Liu Microsoft

{keli, lijuanw, zliu}@microsoft.com

Overview of METRO

METRO

- ❖ 단일 이미지로부터 3D Human Pose와 Mesh Vertex를 추출하기 위한 방법론
- ❖ Transformer의 Encoder 구조를 활용
- ❖ Transformer 구조를 이용해 간단하지만 효율적인 Global Interaction Modeling을 구현

<METRO Architecture >

- ❖ CNN으로 Input이미지에서 Image Feature를 추출함
- ❖ Template joint와 Vertex를 Concat한 뒤 Positional Encoding을 진행
- ❖ Joint, Vertex Query Set이 주어지면 병렬적으로 3D Coordinate Value를 Regresstion함
 - ➤ ImageNet Classification Pretrain CNN을 사용
 - ▶ 마지막 Hidden Layer로 부터 Feature Vecter(X)를 얻음

- ❖ 각 Token은 Layer를 거치면서 차원축소되며 3D Coord에 도달
- ❖ Encoder는 Progressive Dimensionality Reduction 구조 사용
- ❖ 각 Block은 4개의 Layer와 4개의 Head를 가지고 있음
- ❖ Dimension Reduction을 위해 Ecoder끝에 Embedding을 통해 Linear Projection을 사용
- ❖ 3D Coordinates에서의 Joint, Vertex 좌표가 Oupt으로 나옴

Multi-Layer Transformer Encoder with Progressive Dimensionality Reduction

MLM vs MVM

MLM

- MLM(Masked Language Modeling)을 통해 Bi-Direction을 극대화 하여 언어적 특성을 학습
- ▶ 기존 MLM은 Input Recovering에 초점이 맞춰져 있어 3D Regression Task에 활용하기 어려움

MVM

- ➤ Input Query의 일부를 Masking함
- ➤ Input을 Recovery하는 대신, Query로 Joint와 Vertex를 Regress하도록 학습
- ➤ 결론적으로 Transformer가 가변적으로 필요한 Joint에 Attention 진행

- ❖ L₁ Loss를 사용하여 3D Vertices와 3D Joints 최적화 진행
- ❖ 3D Joints를 mesh vertices 데이터에서 추출하는 방법도 존재하기 때문에 Pre-Defined Regression Matrix를 활용해서 3D Joints를 추론한 값을 L_1 Loss로 최적화
- ❖ Camera Parameter를 이용하여 3D Joints를 2D Joints로 Re-Projection해서 L₁ Loss 사용

$$\mathcal{L}_{V} = \frac{1}{M} \sum_{i=1}^{M} \left| \left| V_{3D} - \bar{V}_{3D} \right| \right|_{1}$$

$$\mathcal{L}_{J}^{reg} = \frac{1}{K} \sum_{i=1}^{K} \left| \left| J_{3D}^{reg} - \bar{J}_{3D} \right| \right|_{1}$$

$$\mathcal{L}_{J} = \frac{1}{K} \sum_{i=1}^{K} \left| \left| J_{3D} - \bar{J}_{3D} \right| \right|_{1}$$

$$\mathcal{L}_{J}^{proj} = rac{1}{K} \sum_{i=1}^{K} \left| \left| J_{2D} - ar{J}_{2D}
ight| \right|_{1}$$

Experiments

$$MPVPE = \frac{1}{N} \sum_{i=1}^{N} || \mathbf{V}_{i} - \mathbf{V}_{i}^{*} ||_{2}$$
$$MPJPE = \frac{1}{I} \sum_{j=1}^{J} || \mathbf{P}_{j} - \mathbf{P}_{j}^{*} ||_{2}$$

- ❖ 3DPW: 아웃도어 이미지(2D, 3D), 22000장의 Train, 35000장의 Test Dataset이 존재
- ❖ UP-3D: 아웃도어 이미지 데이터 셋 7000장, Annotation은 Model Fitting으로 생성
- ❖ H3.6M: 3D Mesh가 존재하지 않아 SMPLify-X로 Pseudo Data를 만들어서 사용
- 평가지표 식에서 P_i 는 j번째 관절에 대한 실제 값, V_i 는 i번째 정점에 대한 실제값

	3DPW			Human3.6M	
Method	MPVE ↓	MPJPE↓	PA-MPJPE↓	MPJPE ↓	PA-MPJPE↓
HMR [22]	_	_	81.3	88.0	56.8
GraphCMR [25]	_	_	70.2	_	50.1
SPIN [24]	116.4	_	59.2	_	41.1
Pose2Mesh [8]	_	89.2	58.9	64.9	47.0
I2LMeshNet [32]	_	93.2	57.7	55.7	41.1
VIBE [23]	99.1	82.0	51.9	65.6	41.4
METRO (Ours)	88.2	77.1	47.9	54.0	36.7

Conclusion

- METRO: End-to-End Human Pose and Mesh Reconstruction with Transformers
 - Non-Local Interaction을 위해 Masked Vertex Modeling을 제안
 - METRO는 Input에 의존적이여서 고정된 Mesh Topology와 관계없이 Non-Local Interaction가능
 - METRO는 다양한 Domain의 Reconstruction으로 확장 될 수 있음

Thank you