

Eötvös Loránd Tudományegyetem Informatikai Kar Numerikus Analízis Tanszék

I. éves Programtervező informatikus

Analízis 1

Kovács Sándor gyakorlata

(Kedd, $10^{15} - 11^{45}$: DT-1.819) (Kedd, $12^{15} - 13^{45}$: DT-1.817)

2022. tavasz

Tudnivalók

I. A félév gyakorlatainak tematikája:

- 1. gyakorlat (2022. 02. 08.): Egyenlőtlenségek: az Euler-sorozat korlátossága és monotonitása; a Bernoulli-egyenlőtlenség; a mértani közép és a számtani közép közötti, ill. a harmonikus és a mértani közép közötti egyenlőtlenség; háromszög-egyenlőtlenségek, alkalmazások.
- 2. gyakorlat (2022. 02. 15.): Számhalmazok korlátossága: számhalmazok minimuma és maximuma; számhalmazok alsó és felső határa; a szuprémum elv; számhalmazok alsó és felső határának meghatározása.
- **3. gyakorlat** (2022. 02. 22.): **Függvények:** halmaz függvény által létesített képe és ősképe; függvény invertálhatóságának fogalma és az inverz függvény meghatározása; függvények kompozíciója.
- **4. gyakorlat** (2022. 03. 01.): **Valós sorozatok 1.:** sorozatok korlátossága és monotonitása, ill. divergenciája és konvergenciája; a határérték kiszámítása a definíció alapján.
- **5. gyakorlat** (2022. 03. 08.): **Valós sorozatok 2.:** sorozatok konvergenciájának igazolása a műveletekre vonatkozó tételek és a nevezetes sorozatok határértékére vonatkozó állítások alapján.
- **6. gyakorlat** (2022. 03. ?.): **Valós sorozatok 3.:** rekurzív sorozatok kvalitatív vizsgálata (konvergencia, monotonitás, határérték).
- **7. gyakorlat** (2022. 03. 22.): **Numerikus sorok 1.:** numerikus sorok összegének kiszámitása (mértani és teleszkopikus sorok); számok p-adikus tört alakja, az Euler-féle szám approximációja.
- **8. gyakorlat** (2022. 03. 22.): **Numerikus sorok 2.:** A végtelen sorokra vonatkozó Cauchy-kritérium. Az öszehasonlító kritériumok (minoráns- és majoránskritérium) alkalmazása. A Cauchy-féle gyök- és a D'Alembert-féle hányadoskritérium; a Leibniz-kritérium. A kondenzációs elv.
- 9. gyakorlat (2022. 04. 05.): Numerikus sorok 3.: hatványsorok konvergenciahalmazának meghatározása; függvények hatványsörbe fojtása/ hatványsírba fejtése (előállítása hatványsor összegeként).
- **10.** gyakorlat (2022. 04. 12.): Valós függvények határértéke és folytonossága 1.: a határérték kiszámítása a definíció alapján, a határértékekre vonatkozó tételek.
- **11. gyakorlat** (2022. 04. 26.): **Valós függvények határértéke és folytonossága 2.:** kritikus határértékek, a folytonosság fogalma, a folytonosságra vonatkozó alapvető tételek.
- **12.** gyakorlat (2022. 05. 03.): Valós függvények határértéke és folytonossága **3.**: A szakadási helyek osztályozása. Intervallumon folytonos függvények tulajdonságai, egyenletesen folytonos függvények.
- **13. gyakorlat** (2022. 05. 10.): **Informatikai alkalmazások** (generátorfüggvények, leképezések fixpontja).
- "14. gyakorlat" Zh-feladataok megoldása

II. A tárgy követelményrendszere:

1. A követelményrendszer az IK-n a tanévkezdéskor hatályban levő oktatási rend alapján került meghatározásra. Ha abban kényszerűségből változás lesz, akkor a követelményrendszer annak megfelelően módosul.

- 2. A tantárgyból gyakorlati jegyet és vizsgajegyet kell szerezni.
- **3.** A gyakorlatokon a részvétel kötelező, legfeljebb 3 alkalommal lehet hiányozni. Aki ennél többször hiányzik, az nem kap gyakorlati jegyet.
- **4.** Az előadásokon a részvétel kötelező, legfeljebb 3 alkalommal lehet hiányozni. Aki ennél többször hiányzik, az nem vizsgázhat.
- 5. A gyakorlati jegy megszerzésének követelményrendszere.
 - (i) A félév folyamán 2 dolgozatot (zh-t) kell megírni, ezeken a részvétel kötelező. Ha valaki bár-melyikről igazolatlanul hiányzik, akkor nem kap gyakorlati jegyet. Méltányolható esetekben a hiányzás kizárólag a tárgy előadójánál igazolható.

A zh-kon feladatmegoldásokat kérünk számon. Az egyes zh-kon elérhető maximális pontszám 50, és a zh akkor **sikeres**, ha legalább 15 pontos. **Z1**, illetve **Z2** jelöli az 1., illetve a 2. zh-n elért összpontszámot, és **Ö=Z1+Z2**. A gyakorlati jegy:

elégtelen (1), ha
$$0 \le \ddot{\mathbf{O}} \le 29$$
, elégséges (2), ha $30 \le \ddot{\mathbf{O}} \le 45$, közepes (3), ha $46 \le \ddot{\mathbf{O}} \le 60$, jó (4), ha $61 \le \ddot{\mathbf{O}} \le 80$, jeles (5), ha $81 \le \ddot{\mathbf{O}} \le 100$.

- (ii) Amennyiben a két zh-dolgozat közül csak az egyik sikeres, akkor a sikertelen zh anyagából javító zh-t lehet írni a félév végén. Ha ez sikeres, akkor a gyakorlati jegy elégséges (2) (kivételes esetben lehet csak annál jobb), különben elégtelen (1). Aki nem írja meg a javító zh-t, annak a gyakorlati jegye szintén elégtelen (1).
- (iii) Ha az első két zh-dolgozat mindegyike sikertelen, akkor a gyakorlati jegy elégtelen (1).
- (iv) Elégtelen (1) gyakorlati jegy esetén egyszeri alkalommal gyakorlati jegy utóvizsgát lehet tenni az elégséges (2) gyakorlati jegyért. A gyakorlati jegy utóvizsga-dolgozat az első zárthelyi és a második zárthelyi témakörét egyaránt tartalmazza. Ennek az értékelése akkor elégséges (2), ha mindkét témakörből külön-külön eléri a 30%-os szintet. Ellenkező esetben a dolgozat és a (végleges) gyakorlati jegy egyaránt elégtelen (1).
- **6.** A vizsgajegy megszerzésének követelményrendszerét később ismertetjük.

III. Ajánlott irodalom:

• Kovács Sándor: Matematikai alapozás

```
(https://numanal.inf.elte.hu/~alex/MatAlapKonyvtar/SzintrehozKS.
pdf), ill. https://numanal.inf.elte.hu/~alex/hu/matalap.html)
```

• Schipp Ferenc: Analízis I. (sorozatok és sorok), egyetemi jegyzet, Janus Pannonius Tudományegyetem, Pécs, 1994.

```
(https://numanal.inf.elte.hu/~schipp/Jegyzetek/Anal_1.pdf)
```

• Schipp Ferenc: Analízis II. (folytonosság, differenciálhatóság), egyetemi jegyzet, Janus Pannonius Tudományegyetem, Pécs, 1996.

```
(https://numanal.inf.elte.hu/~schipp/Jegyzetek/ANAL_2.pdf)
```

- Simon Péter: Bevezetés az analízisbe I., egyetemi jegyzet, ELTE Eötvös Kiadó, 2016. (http://numanal.inf.elte.hu/~simon/cimlapanal1.pdf)
- Simon Péter: Kérdések-válaszok, oktatási segédanyag (tételek, definíciók). (http://numanal.inf.elte.hu/~simon/kerdesek.pdf)
- Szili László: Analízis feladatokban I. (http://numanal.inf.elte.hu/~szili/Okt_anyag/an_fel_I_2008_2016.pdf)
- Simon Péter: Ismerkedés a numerikus analízissel. ELTE TTK Továbbképzési Csoport, Budapest, 1990.

III. Segédanyagok:

- A görög ábécé és a fraktúra
- Valós-valós függvények határértéke
- Hiperbolikus függvények és inverzeik
- MacTutor History of Mathematics archive

1. gyakorlat (2022.02.08.)

Emlékeztető. Legyen $n \in \mathbb{N}$. Ekkor tetszőleges $a, b \in \mathbb{R}$ esetén fennáll az

$$a^{n} - b^{n} = (a - b) \left(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1} \right) = (a - b) \sum_{k=1}^{n} a^{n-k}b^{k-1}$$
 (1)

egyenlőség.

Megjegyzés. Figyeljük meg, hogy az

$$a^{n-1} + a^{n-2}b + ... + ab^{n-2} + b^{n-1}$$

összeg n tagból áll.

Feladat. Mutassuk meg, hogy tetszőleges $a, b \in \mathbb{R}$: a > b > 0, $n \in \mathbb{N}$ esetén fennáll az

$$a^{n} [a - (n+1)(a-b)] < b^{n+1}$$

egyenlőtlenség!

Útm. Mivel 0 < b < a, így a - b > 0, ill. (1) felhasználásával azt kapjuk, hogy

$$a^{n+1} - b^{n+1} = (a-b)(a^n + a^{n-1}b + ... + ab^{n-1} + b^n) <$$
 $(a-b)(a^n + a^{n-1}a + ... + aa^{n-1} + a^n) = (a-b)(n+1)a^n,$

ezért

$$a^{n+1} - a^{n}(n+1)(a-b) < b^{n+1},$$

amiből pedig kiemeléssel a kívánt egyenlőtlenséget kapjuk. ■

Feladat. Igazoljuk, hogy minden $n \in \mathbb{N}$ esetén fennállnak az

1.
$$\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{n+1}\right)^{n+1}$$
 2. $2 \le \left(1+\frac{1}{n}\right)^n < 4$

egyenlőtlenségek!

Útm.

1. Legyen

$$\alpha:=1+\frac{1}{n}, \qquad ill. \qquad b:=1+\frac{1}{n+1}.$$

Ekkor a > b > 0, így az előző feladat alapján

$$\left(1+\frac{1}{n}\right)^{n}\underbrace{\left(1+\frac{1}{n}-(n+1)\left(1+\frac{1}{n}-1-\frac{1}{n+1}\right)\right)}_{=1}<\left(1+\frac{1}{n+1}\right)^{n+1}.$$

A bal oldalon a második tényező 1, így a kívánt egyenlőtlenséget kapjuk.

2. 1. lépés. n = 1 esetén

$$\left(1+\frac{1}{1}\right)^1=2,$$

és az előző egyenlőtlenség alapján minden $2 < n \in \mathbb{N}$ számra

$$2<\left(1+\frac{1}{n}\right)^n.$$

2. lépés. Legyen

$$a := 1 + \frac{1}{2n}$$
 és $b := 1$.

Ekkor a > b > 0, ezért az előző feladat alapján

$$\left(1 + \frac{1}{2n}\right)^{n} \underbrace{\left(1 + \frac{1}{2n} - (n+1)\left(1 + \frac{1}{2n} - 1\right)\right)}_{=\frac{1}{2}} < 1.$$

A bal oldalon a második tényező $\frac{1}{2}$. Kettővel szorozva és négyzetre emelve

$$\left(1+\frac{1}{2n}\right)^{2n}<4$$

adódik. Az első feladat miatt minden $n \in \mathbb{N}$ esetén

$$\left(1+\frac{1}{2n-1}\right)^{2n-1}<\left(1+\frac{1}{2n}\right)^{2n}<4$$

teljesül. Ebből pedig már következik a bizonyítandó egyenlőtlenség. ■

Emlékeztető (binomiális tétel). Legyen $n \in \mathbb{N}_0$. Ekkor bármely $a, b \in \mathbb{R}$ szám esetén

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^{n} = \sum_{k=0}^{n} \binom{n}{k}a^{n-k}b^{k}.$$
 (2)

Megjegyzés. Az is könnyen belátható, hogy

$$\left(1+\frac{1}{n}\right)^n<3\qquad (n\in\mathbb{N}),$$

ui. a binomiális tétel felhasználásával azt kapjuk, hogy

$$\left(1 + \frac{1}{n}\right)^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot \frac{1}{n^{k}} = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^{k}} = \sum_{k=0}^{n} \frac{n(n-1) \cdot \dots \cdot (n-k+1)}{k!n^{k}} =$$

$$= \sum_{k=0}^{n} \frac{1}{k!} \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \le$$

$$\le \sum_{k=0}^{n} \frac{1}{k!} = 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} < 2 + \sum_{k=2}^{n} \frac{1}{k(k-1)} = 2 + \sum_{k=2}^{n} \frac{k - (k-1)}{k(k-1)} =$$

$$= 2 + \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k}\right) =$$

$$= 2 + \left[\left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{2}\right) + \dots + \left(\frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{2}\right)\right] =$$

$$= 2 + 1 - \frac{1}{n} < 3. \blacksquare$$

Feladat. Döntsük el, hogy melyik szám nagyobb!

1.
$$(1,000001)^{1000000}$$
 vagy 2

Útm. Mivel

$$2 \leq \left(1 + \frac{1}{n}\right)^n < 3 \quad (n \in \mathbb{N}) \qquad \text{\'es} \qquad 2 = \left(1 + \frac{1}{n}\right)^n \quad \Longleftrightarrow \quad n = 1,$$

ezért

$$\boxed{(1,000001)^{1000000}} = \left(1 + \frac{1}{10^6}\right)^{10^6} > 2$$

ill.

$$\boxed{1001^{999}} = \frac{1001^{999}}{1000^{1000}} \cdot 1000^{1000} = \left(\frac{1001}{1000}\right)^{1000} \cdot \frac{1000^{1000}}{1001} = \left(1 + \frac{1}{1000}\right)^{1000} \cdot \frac{1000^{1000}}{1001} \le$$

$$\le 3 \cdot \frac{1000^{1000}}{1001} < \boxed{1000^{1000}}. \quad \blacksquare$$

Tétel (Barrow-Bernoulli-egyenlőtlenség). Ha $n \in \mathbb{N}_0$ és $h \in [-2, +\infty)$, akkor

$$(1+h)^n \ge 1+nh$$
,

és egyenlőség pontosan akkor van, ha h = 0 vagy $n \in \{0, 1\}$.

Biz.

0. lépés. Világos, hogy ha n = 0, akkor igaz az egyenlőtlenség: egyenlőség áll fenn, ui.

$$(1+h)^0 = 1 = 1 + 0 \cdot h.$$

A továbbiakban feltehetjük tehát, hogy $1 \le n \in \mathbb{N}_0$, azaz $n \in \mathbb{N}$.

- **1. lépés.** Legyen h=-2. Ekkor a $(-1)^n\geq 1-2n$ egyenlőtlenséget kell bebizonyítanunk. Ez nyilvánvalóan teljesül, ui. n=1 esetén $(-1)^1=1-2\cdot 1$, ill. ha $2\leq n\in \mathbb{N}$, akkor 1-2n<-1, hiszen ez a 2<2n egyenlőtlenséggel egyenértékű.
- **2. lépés.** Legyen $h \in (-2, -1)$. Világos, hogy ha n = 1, akkor teljesül a becslés, sőt egyenlőség van. Ha $2 \le n \in \mathbb{N}$, akkor legyen

$$h := -\epsilon - 1$$
 $(\epsilon \in (0, 1)).$

Így

$$(1+h)^n=(-\varepsilon)^n>-1>1-n-n\varepsilon=1+n(-1-\varepsilon)=1+nh.$$

3. lépés. Legyen $h \in [-1, +\infty)$. Ha x := 1 + h, akkor

$$x^{n} - 1 - n(x - 1) = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1) - n(x - 1) =$$

$$= (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1 - n),$$

ezért, ha

• $h \ge 0$, azaz $x \ge 1$, akkor

$$x - 1 \ge 0$$
 és $x^{n-1} + x^{n-2} + ... + x + 1 \ge n$,

• ha pedig $-1 \le h \le 0$, azaz $0 \le x \le 1$, akkor

$$x - 1 \le 0$$
 és $x^{n-1} + x^{n-2} + ... + x + 1 \le n$.

Ennélfogva

$$x^{n} - 1 - n(x - 1) \ge 0$$
, azaz $(1 + h)^{n} \ge 1 + nh$.

4. lépés. Ha h=0 vagy n=1 esetén nyilván teljesül az egyenlőség. Tegyük fel, hogy alkalmas $2\leq n\in \mathbb{N}$ esetén

$$(1+h)^n = 1 + nh$$
.

Ekkor h = 0, ugyanis az (1) azonosságot felhasználva azt kapjuk, hogy

$$(1+h)^n = 1 + nh \quad \Longleftrightarrow \quad (1+h)^n - 1^n = nh \quad \Longleftrightarrow \quad h \cdot \sum_{k=1}^n (1+h)^{n-k} = h \cdot n$$

miatt sem h > 0 sem pedig h < 0 nem lehetséges, mert különben

$$\sum_{k=1}^{n} (1+h)^{n-k} > n, \qquad \text{ill.} \qquad 0 \le \sum_{k=1}^{n} (1+h)^{n-k} < n$$

teljesülne, ami nyilvánvalóan nem igaz.

Megjegyzések.

1. Világos, hogy h = -3 esetén már nem teljesül az alsó becslés, ui. pl. n = 5 esetén

$$(1-3)^5 = (-2)^5 < -14 = 1 - 3 \cdot 5.$$

2. Alkalmazás: az

$$f(x):=(1+x)^n \qquad (-2\leq x\in\mathbb{R};\ n\in\mathbb{N})$$

függvény grafikonja nem megy a 0-beli érintője alá, ui. az alsó becslés következtében

$$y = f(0) + f'(0)(x - 0) = 1 + n(1 + 0)^{n-1}x = 1 + nx \le (1 + x)^n = f(x).$$

Definíció. Adott $n \in \mathbb{N}$ esetén

1. az $x_1,\dots,x_n\in\mathbb{R}$ számok számtani vagy aritmetikai közepének nevezzük az

$$A_n := A(x_1, \dots, x_n) := \frac{x_1 + \dots + x_n}{n} = \frac{1}{n} \sum_{k=1}^n x_k$$

számot;

2. a $0 \le x_1, \dots, x_n \in \mathbb{R}$ számok **mértani** vagy **geometriai közep**ének nevezzük az

$$G_n := G(x_1, \dots, x_n) := \sqrt[n]{x_1 \cdot \dots \cdot x_n} = \sqrt[n]{\prod_{k=1}^n x_k}$$

számot;

3. a 0 < $x_1, \dots, x_n \in \mathbb{R}$ számok **harmonikus közep**ének nevezzük a

$$H_n := H(x_1, \dots, x_n) := \frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}} = \frac{n}{\sum_{k=1}^n \frac{1}{x_k}}$$

számot.

Megjegyezzük, hogy

- 1. a fenti definícióban a közép elnevezés jogos, hiszen egyszerű becsléssel belátható, hogy ha $n \in \mathbb{N}$ és
 - (a) $x_1, \ldots, x_n \in \mathbb{R}$, akkor

$$\min\{x_1,\ldots,x_n\} \leq A_n \leq \max\{x_1,\ldots,x_n\};$$

(b) $0 \le x_1, \dots, x_n \in \mathbb{R}$, akkor

$$\min\{x_1,\ldots,x_n\} \leq G_n \leq \max\{x_1,\ldots,x_n\};$$

(c) $0 < x_1, \ldots, x_n \in \mathbb{R}$, akkor

$$\min\{x_1,\ldots,x_n\} \leq H_n \leq \max\{x_1,\ldots,x_n\}.$$

2. $0 < x_1, \ldots, x_n \in \mathbb{R}$, akkor igaz a

$$H_n \leq G_n \leq A_n \quad \Leftrightarrow \quad H_n^n \leq G_n^n \leq A_n^n \quad \Leftrightarrow \quad \left(\frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}}\right)^n \leq x_1 \cdot \ldots \cdot x_n \leq \left(\frac{x_1 + \ldots + x_n}{n}\right)^n$$

ekvivalencia-lánc.

Tétel (A mértani közép és a számtani közép közötti egyenlőtlenség.)

Bármely $n \in \mathbb{N}$, ill. $0 \le x_1, \dots, x_n \in \mathbb{R}$ esetén

$$x_1 \cdot \ldots \cdot x_n = \left[\prod_{k=1}^n x_k \le \left(\frac{1}{n} \sum_{k=1}^n x_k \right)^n \right] = \left(\frac{x_1 + \ldots + x_n}{n} \right)^n,$$

és egyenlőség pontosan az $x_1 = \ldots = x_n$ esetben teljesül.

- Biz. Több lépésben bizonyítunk.
- **0. lépés.** Ha n=1, akkor az egyenlőtlenség nyilvánvalóan teljesül, sőt egyenlőség van. Ha pedig n=2, akkor

$$\sqrt{x_1 x_2} \le \frac{x_1 + x_2}{2} \qquad \Longleftrightarrow \qquad 0 \le \left(\frac{x_1 + x_2}{2}\right)^2 - x_1 x_2 = \frac{x_1^2 - 2x_1 x_2 + x_2^2}{4} = \left(\frac{x_1 - x_2}{2}\right)^2,$$

és egyenlőség pontosan az $x_1 = x_2$ esetben áll fenn.

1. lépés. Legyen $2 \le n \in \mathbb{N}$. Ha valamely $k \in \{1, \dots, n\}$ esetén $x_k = 0$, akkor az egyenlőtlenség triviálisan teljesül. Tegyük fel tehát, hogy bármely $k \in \{1, \dots, n\}$ esetén $x_k > 0$. Mivel

$$\frac{A_n}{A_{n-1}} > 0$$
, azaz $\frac{A_n}{A_{n-1}} - 1 > -1$,

ezért alkalmazható a Bernoulli-egyenlőtlenség:

$$\begin{split} \left(\frac{A_n}{A_{n-1}}\right)^n &= \left(1 + \frac{A_n}{A_{n-1}} - 1\right)^n \ge 1 + n\left(\frac{A_n}{A_{n-1}} - 1\right) = \frac{A_{n-1} + nA_n - nA_{n-1}}{A_{n-1}} = \\ &= \frac{nA_n - (n-1)A_{n-1}}{A_{n-1}} = \frac{x_n}{A_{n-1}}, \end{split}$$

azaz

$$A_n^n \ge x_n \cdot A_{n-1}^{n-1}.$$

Így

$$A_n^n \geq x_n \cdot A_{n-1}^{n-1} \geq x_n \cdot x_{n-1} \cdot A_{n-2}^{n-2} \geq \ldots \geq x_n \cdot x_{n-1} \cdot \ldots \cdot x_2 \cdot A_1^1 = x_n \cdot x_{n-1} \cdot \ldots \cdot x_2 \cdot x_1 = G_n^n.$$

2. lépés. Ha $2 \le n \in \mathbb{N}$ és bizonyos $0 \le x_1, \dots, x_n \in \mathbb{R}$ esetén fennáll az $A_n = G_n$ egyenlőség, továbbá az x_1, \dots, x_n számok nem mind egyenlők egymással, azaz van közöttük legalább két különböző:

$$\exists i, j \in \{1, \ldots, n\}: \qquad x_i \neq x_j,$$

akkor az 1. lépésben belátottak alapján

$$\sqrt{x_i x_j} < \frac{x_i + x_j}{2}, \quad \text{azaz} \quad x_i x_j < \left(\frac{x_i + x_j}{2}\right)^2.$$

Ezért

$$G_n \ = \ \sqrt[n]{\prod_{k=1}^n x_k} < \sqrt[n]{\frac{x_i + x_j}{2} \cdot \frac{x_i + x_j}{2} \prod_{\substack{k=1 \\ k \notin \{i,j\}}}^n x_k} \le$$

$$\leq \frac{1}{n}\left(\frac{x_i+x_j}{2}+\frac{x_i+x_j}{2}+\sum_{\substack{k=1\\k\notin\{i,j\}}}^nx_k\right)=\frac{1}{n}\sum_{k=1}^nx_k=A_n,$$

ami ellentmond az $A_n = G_n$ feltételnek.

Tétel (A harmonikus közép és a mértani közép közötti egyenlőtlenség.)

Tetszőleges $n \in \mathbb{N}$, ill. $0 < x_1, \dots, x_n \in \mathbb{R}$ esetén

$$\mathbf{x}_1 \cdot \ldots \cdot \mathbf{x}_n = \left[\prod_{k=1}^n \mathbf{x}_k \ge \left(\frac{n}{\sum_{k=1}^n \frac{1}{\mathbf{x}_k}} \right)^n \right] = \left(\frac{n}{\frac{1}{\mathbf{x}_1} + \ldots + \frac{1}{\mathbf{x}_n}} \right)^n,$$

és egyenlőség pontosan az $x_1 = \ldots = x_n$ esetben van.

Biz. A mértani közép és a számtani közép közötti egyenlőtlenséget felhasználásával azt kapjuk, hogy

$$H_n^n = \left(\frac{n}{\sum_{k=1}^n \frac{1}{x_k}}\right)^n = \left(\frac{1}{\frac{1}{n}\sum_{k=1}^n \frac{1}{x_k}}\right)^n = \frac{1}{\left(\frac{1}{n}\sum_{k=1}^n \frac{1}{x_k}\right)^n} \le \frac{1}{\prod_{k=1}^n \frac{1}{x_k}} = \prod_{k=1}^n x_k = G_n^n,$$

és egyenlőség pontosan akkor van, ha $\frac{1}{x_1}=\ldots=\frac{1}{x_n}$, azaz ha $x_1=\ldots=x_n$ teljesül. \blacksquare

Megjegyzés. A

• mértani és a számtani közép közötti egyenlőtlenséget kifejező állítás tehát a következő: bármely $n \in \mathbb{N}$, ill. $0 \le x_1, \dots, x_n \in \mathbb{R}$ esetén

$$G_n \leq A_n, \qquad \text{azaz} \qquad \sqrt[n]{x_1 \cdot \ldots \cdot x_n} \leq \frac{x_1 + \ldots + x_n}{n},$$

és egyenlőség pontosan az $x_1 = \dots = x_n$ esetben áll fenn. Ha tehát az x_1, \dots, x_n számok nem mind egyenlők egymással, akkor

$$G_n < A_n, \qquad \text{azaz} \qquad \sqrt[n]{x_1 \cdot \ldots \cdot x_n} < \frac{x_1 + \ldots + x_n}{n},$$

• harmonikus és a mértani közép közötti egyenlőtlenséget kifejező állítás tehát a következő: bármely $n \in \mathbb{N}$, ill. $0 < x_1, \dots, x_n \in \mathbb{R}$ esetén

$$H_n \leq G_n, \qquad \text{azaz} \qquad \frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}} \leq \sqrt[n]{x_1 \cdot \ldots \cdot x_n},$$

és egyenlőség pontosan az $x_1 = \dots = x_n$ esetben áll fenn. Ha tehát az x_1, \dots, x_n számok nem mind egyenlők egymással, akkor

$$H_n < G_n,$$
 azaz $\frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}} < \sqrt[n]{x_1 \cdot \ldots \cdot x_n}.$

Feladat. Bizonyítsuk be, hogy minden $-\frac{1}{2} \le a \in \mathbb{R}$ esetén fennáll az

$$(1-\alpha)^5(1+\alpha)(1+2\alpha)^2 \le 1$$

egyenlőtlenség! Mely esetben van itt egyenlőség?

Útm.

1. lépés. Ha $a \ge 1$, akkor

$$(1-\alpha)^5(1+\alpha)(1+2\alpha)^2 \le 0 \le 1.$$

2. lépés. Ha $\alpha \in \left[-\frac{1}{2}, 1\right]$, és $\alpha \neq 0$, akkor

$$1-\alpha$$
, $1+\alpha$, ill. $1+2\alpha$

különböző pozitív számok, ha pedig a=0, akkor egyenlőség áll fenn: $1\leq 1$. Így $0\neq a\in \left[-\frac{1}{2},1\right]$ esetén

$$(1-\alpha)^5(1+\alpha)(1+2\alpha)^2 < \left(\frac{5(1-\alpha)+1+\alpha+2(1+2\alpha)}{8}\right)^8 = \left(\frac{8}{8}\right)^8 = 1. \quad \blacksquare$$

Feladat. Alkalmazzuk a mértani és a számtani közép közötti egyenlőtlenséget az alábbi számokra!

1.
$$x_k := 1 + \frac{1}{n}$$
 $(k \in \{1, ..., n\}),$ $x_{n+1} := 1;$

2.
$$x_k := 1 + \frac{1}{n}$$
 $(k \in \{1, ..., n\}),$ $x_{n+1} := x_{n+2} := \frac{1}{2}.$

Útm. Ha $n \in \mathbb{N}$,

1. akkor

$$\left(1 + \frac{1}{n}\right)^n = \left(1 + \frac{1}{n}\right)^n \cdot 1 < \left(\frac{n \cdot \left(1 + \frac{1}{n}\right) + 1}{n+1}\right)^{n+1} = \left(\frac{n+1+1}{n+1}\right)^{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1}.$$

2. akkor

$$\left(1 + \frac{1}{n}\right)^{n} = 4 \cdot \left(1 + \frac{1}{n}\right)^{n} \cdot \frac{1}{2} \cdot \frac{1}{2} < 4 \cdot \left(\frac{n \cdot \left(1 + \frac{1}{n}\right) + \frac{1}{2} + \frac{1}{2}}{n + 2}\right)^{n+2} =$$

$$= 4 \cdot \left(\frac{n + 1 + 1}{n + 2}\right)^{n+2} = 4.$$

A következő feladatbeli egyenlőtlenségek fontos szerepet játszanak az

$$x_n := \sqrt[n]{\alpha} \quad (n \in \mathbb{N}, \ \alpha \in (0, +\infty)), \qquad \text{ill. az} \qquad x_n := \sqrt[n]{n} \quad (n \in \mathbb{N})$$

sorozat konvergenciájának tárgyalásakor.

Feladat. Mutassuk meg, hogy ha

1. $n \in \mathbb{N}$ és $\alpha \in (1, +\infty)$, akkor

$$\boxed{\frac{\alpha-1}{\alpha n} \leq \sqrt[n]{\alpha} - 1 \leq \frac{\alpha-1}{n}};$$

2. $n \in \mathbb{N}$ és $\alpha \in (0, 1)$, akkor

$$\frac{1-\alpha}{n} \le 1 - \sqrt[n]{\alpha} \le \frac{1-\alpha}{\alpha n};$$

3. $n \in \mathbb{N}$, akkor

$$\boxed{1 \leq \sqrt[n]{n} \leq 1 + 2 \cdot \frac{\sqrt{n} - 1}{n}}.$$

teljesül!

Útm.

 Felhasználva a mértani közép és a számtani közép, ill. a harmonikus közép és a mértani közép közötti egyenlőtlenséget azt kapjuk, hogy

$$\sqrt[n]{\alpha} = \sqrt[n]{1 \cdot \cdot \cdot 1 \cdot \alpha} \le \frac{(n-1) \cdot 1 + \alpha}{n} = 1 + \frac{\alpha - 1}{n}$$

és

$$\sqrt[n]{\alpha} = \sqrt[n]{1 \cdots 1 \cdot \alpha} \ge \frac{n}{(n-1) \cdot \frac{1}{1} + \frac{1}{\alpha}} = \frac{\alpha n}{\alpha n - \alpha + 1} = \frac{\alpha n - \alpha + 1 + \alpha - 1}{\alpha n - \alpha + 1} = \frac{1 + \frac{\alpha - 1}{\alpha n - \alpha + 1}}{1 + \frac{\alpha - 1}{\alpha n - \alpha + 1}} = \frac{1 + \frac{\alpha - 1}{\alpha n - \alpha + 1}}{1 + \frac{\alpha - 1}{\alpha n - \alpha + 1}} = \frac{n}{n - \alpha + 1} = \frac{n}{$$

2. Ha $\alpha \in (0, 1)$, akkor

$$\frac{1}{\alpha} \in (1, +\infty),$$

így az 1. felhasználásával adódik a két becslés.

3. Az első egyenlőtlenség triviális. A második:

$$\sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \cdot \ldots \cdot 1} \leq \frac{2\sqrt{n} + (n-2) \cdot 1}{n} = 1 + 2 \cdot \frac{\sqrt{n} - 1}{n}. \quad \blacksquare$$

Tétel (a teljes indukció elve.) Legyen $m \in \mathbb{Z}$ rögzített egész szám, és tegyük fel, hogy $\mathcal{A}(n)$ az $m \leq n \in \mathbb{Z}$ (m-nél nem kisebb egész) számokra vonatkozó olyan állítás, amelyre:

- (a) A(m) igaz, és
- (b) ha valamely $m \le n \in \mathbb{Z}$ esetén $\mathcal{A}(n)$ igaz, akkor $\mathcal{A}(n+1)$ is igaz.

Ekkor $\mathcal{A}(n)$ igaz minden $m \leq n \in \mathbb{Z}$ számra.

Feladat. Igazoljuk, hogy bármely $n \in \mathbb{N}$ számra fennáll a

$$2\sqrt{n+1}-2 < \sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

egyenlőtlenség!

Útm. Teljes indukcióval igazoljuk a fenti egyenlőtlenséget.

• Ha n = 1, akkor az állítás nyilvánvalóan igaz, ui.

$$\sum_{k=1}^{1} \frac{1}{\sqrt{k}} = 1 > 2\sqrt{1+1} - 2 \qquad \iff \qquad 3 > 2\sqrt{2} \qquad \iff \qquad 9 > 8.$$

• Tegyük fel, hogy valamely $n \in \mathbb{N}$ esetén

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > 2\sqrt{n+1} - 2$$

teljesül (indukciós feltevés). Mivel

$$\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} = \sum_{k=1}^{n} \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{n+1}},$$

ezért ha belátjuk, hogy

$$2\sqrt{n+1}-2+\frac{1}{\sqrt{n+1}}>2\sqrt{n+1+1}-2$$

akkor igazoltuk az állítást. A fenti egyenlőtlenség pontosan akkor teljesül, ha

$$2\sqrt{n+1} + \frac{1}{\sqrt{n+1}} > 2\sqrt{n+2} \qquad \Longleftrightarrow \qquad 2(n+1) + 1 > 2\sqrt{n+2}\sqrt{n+1}.$$

Ez utóbbi pedig nem más, mint

$$2n+3>2\sqrt{n^2+3n+2}\qquad\Longleftrightarrow\qquad 4n^2+12n+9>4n^2+12n+8\qquad\Longleftrightarrow\qquad 9>8,$$

ami igaz.

Emlékeztető. Az $x \in \mathbb{R}$ szám abszolútértékén, ill. előjelén az

$$|x| := \begin{cases} x & (x \ge 0), \\ -x & (x < 0) \end{cases}$$
, ill. a $sgn(x) := \begin{cases} 0 & (x = 0), \\ \frac{x}{|x|} & (x \ne 0) \end{cases}$

valós számot értjük.

Nyilván igaz, hogy

$$sgn(x) = \begin{cases} -1 & (x < 0), \\ 0 & (x = 0), \\ 1 & (x > 0) \end{cases} (x \in \mathbb{R}).$$

Tétel. Bármely $x, y \in \mathbb{R}$ esetén

1.
$$|x| \ge 0$$
 és $|x| = 0$ \iff $x = 0$;

2.
$$|x| = |-x|$$
;

3.
$$|x \cdot y| = |x| \cdot |y|$$
, ill. ha $y \neq 0$, úgy $\left| \frac{1}{y} \right| = \frac{1}{|y|}$;

4. ha $a \ge 0$, akkor

$$|x| \le \alpha \iff -\alpha \le x \le \alpha, \quad \text{ill.} \quad |x| \ge \alpha \iff (x \le -\alpha \text{ vagy } x \ge \alpha);$$

- 5. $|x \pm y| \le |x| + |y|$ (háromszög-egyenlőtlenség);
- 6. $|x \pm y| \ge ||x| |y||$ (háromszög-egyenlőtlenség).

Biz.

1. lépés. Mivel az első négy állítás közvetelenül adódik az abszolút érték definíciójából, ill. a szorzás előjel szabályából, ezért ezek bizonyítását nem részletezzük.

2. lépés. Az |x| értelmezése alapján az x szám |x|-kel vagy -|x|-kel egyenlő. Következésképpen bármely $x, y \in \mathbb{R}$ számpárra

$$-|x| \le x \le |x|$$
, $-|y| \le y \le |y|$.

Innen, összeadva az egyenlőtlenségeket

$$-(|x|+|y|) \le x + y \le |x|+|y|$$

következik, ami az első és a negyedik tulajdonság alapján éppen avval egyenértékű, hogy

$$|x + y| \le |x| + |y|$$
.

A második tulajdonság következménye az

$$|x - y| \le |x| + |y|$$

egyenlőtlenség.

3. lépés. Az ötödik $_+$ egyenlőtlenség alapján $|x| = |(x - y) + y| \le |x - y| + |y|$, azaz

$$|x| - |y| \le |x - y| \tag{1},$$

ill.
$$|y| = |(y - x) + x| \le |y - x| + |x| = |x - y| + |x|$$
, azaz

$$|\mathbf{y}| - |\mathbf{x}| \le |\mathbf{x} - \mathbf{y}|,\tag{2}$$

ahonnan a (2) egyenlőtlenségnek (-1)-gyel való szorzása után a

$$-|x - y| < |x| - |y| < |x - y|$$

adódik. Ez az első és a negyedik tulajdonság alapján a bizonyítandó

$$|x - y| \ge ||x| - |y||$$

egyenlőtlenséggel egyenértékű.

4. lépés. Az ötödik_ egyenlőtlenség alapján

$$|x| = |(x + y) - y| \le |x + y| + |y|,$$
 azaz $|x| - |y| \le |x + y|$ (3),

ill.

$$|y| = |(y + x) - x| \le |y + x| + |x| = |x + y| + |x|,$$
 azaz $|y| - |x| \le |x + y|$ (4),

ahonnan a (4) egyenlőtlenségnek (-1)-gyel való szorzása után a

$$-|x + y| \le |x| - |y| \le |x + y|$$

adódik. Ez az első és a negyedik tulajdonság alapján a bizonyítandó

$$|x + y| > ||x| - |y||$$

egyenlőtlenséggel egyenértékű.

Gyakorló feladat. Igazoljuk, hogy ha $a, b \in [0, +\infty)$: $a \le b$, akkor fennáll a

$$\sqrt{\frac{a}{b+1}} + \sqrt{\frac{b}{a+1}} < \frac{a+b+1}{a+1}$$

egyenlőtlenség!

Útm. A mértani éls a számtani közép közötti egyenlőtlenség következményeként azt kapjuk, hogy bármely $x \in [0, +\infty)$: $x \neq 1$ számra

$$\sqrt{x} = \sqrt{x \cdot 1} < \frac{1}{2}(x+1).$$

Mivel

$$0 \le a \le b$$
 \Longrightarrow $0 \le \frac{a}{b+1} < 1$,

ezért

$$\sqrt{\frac{a}{b+1}} + \sqrt{\frac{b}{a+1}} < \frac{1}{2} \left(1 + \frac{a}{b+1} \right) + \frac{1}{2} \left(1 + \frac{b}{a+1} \right) = 1 + \frac{1}{2} \left(\frac{a}{b+1} + \frac{b}{a+1} \right).$$

Világos, hogy

$$0 \le a \le b$$
 \iff $\frac{a}{b+1} \le \frac{b}{a+1}$,

ennélfogva

$$\sqrt{\frac{a}{b+1}} + \sqrt{\frac{b}{a+1}} < 1 + \frac{1}{2} \left(\frac{a}{b+1} + \frac{b}{a+1} \right) \le 1 + \frac{1}{2} \left(\frac{b}{a+1} + \frac{b}{a+1} \right) = \frac{a+b+1}{a+1}. \quad \blacksquare$$

Tétel. Ha $n \in \mathbb{N}$, $x_1, \ldots, x_n \in [-1, +\infty)$ olyan számok, hogy vagy $x_k \geq 0$ $(k \in \{1, \ldots, n\})$, vagy pedig $x_k \leq 0$ $(k \in \{1, \ldots, n\})$, úgy

$$(1+x_1)\cdot\ldots\cdot(1+x_n) = \left[\prod_{k=1}^n (1+x_k) \ge 1 + \sum_{k=1}^n x_k\right] = 1+x_1+\ldots+x_n.$$

Biz.

1. lépés. Ha n = 1, akkor

$$\prod_{k=1}^{1} (1 + x_k) = 1 + x_1 = 1 + \sum_{k=1}^{1} x_k.$$

2. lépés. Tegyük fel, hogy valamely $n \in \mathbb{N}$ esetén

$$\prod_{k=1}^n (1+x_k) \geq 1 + \sum_{k=1}^n x_k$$

(az

$$x_1, \dots, x_n \in [-1, +\infty):$$
 $x_k \ge 0$ $(k \in \{1, \dots, n\})$ vagy $x_k \le 0$ $(k \in \{1, \dots, n\})''$

feltétel mellett), legyen továbbá $x_{n+1} \in [-1, +\infty)$ olyan, hogy

$$x_{n+1} \geq 0, \quad \text{ha} \quad x_n \geq 0, \qquad \text{ill.} \qquad x_{n+1} \leq 0, \quad \text{ha} \quad x_n \leq 0.$$

Ekkor $1 + x_{n+1} \ge 0$ következtében

$$\begin{split} \prod_{k=1}^{n+1} (1+x_k) &= \prod_{k=1}^{n} (1+x_k)(1+x_{n+1}) \ge \left(1+\sum_{k=1}^{n} x_k\right)(1+x_{n+1}) = \\ &= 1+x_{n+1}+\sum_{k=1}^{n} x_k+x_{n+1}\cdot\sum_{k=1}^{n} x_k = \\ &= 1+\sum_{k=1}^{n+1} x_k+x_{n+1}\cdot\sum_{k=1}^{n} x_k \ge 1+\sum_{k=1}^{n+1} x_k, \end{split}$$

ugyanis

$$x_{n+1}\sum_{k=1}^n x_k \geq 0. \quad \blacksquare$$

20

Gyakorló feladatok.

- 1. Feladatok teljes indukcióra (59-65. old.)
- 2. Bizonyítsuk be, hogy bármely $n \in \mathbb{N}$ esetén fennállnak az alábbi egyenlőtlenségek!

$$\text{(a)} \ \left(1+\frac{3}{n}\right)^n < \left(1+\frac{3}{n+1}\right)^{n+1}; \\ \text{(b)} \ \left(1+\frac{3}{n}\right)^n < 27 \cdot \left(1+\frac{1}{n+3}\right)^{n+3}.$$

3. Igazoljuk, hogy bármely $2 \le n \in \mathbb{N}$ esetén fennáll a

$$2^n > 1 + n\sqrt{2^{n-1}}$$

egyenlőtlenség!

4. Legyen

$$x \in [-1, +\infty),$$
 ill. $r \in \mathbb{Q}$.

Igazoljuk, hogy ha

(a)
$$0 \le r \le 1$$
, úgy

$$(1+x)^{r} \leq 1 + rx;$$

(b)
$$r \ge 1$$
, úgy

$$(1+x)^r \ge 1 + rx.$$

5. Igazoljuk, hogy fennállnak az alábbi egyenlőtlenségek!

(a)
$$\frac{1}{2} \le \left(1 - \frac{1}{2n}\right)^n < \frac{2}{3} \quad (n \in \mathbb{N});$$

(b)
$$n^n > (n+1)^{n-1}$$
 $(2 \le n \in \mathbb{N});$

$$(c) \ \sqrt[n]{(n!)^3} \leq \frac{n(n+1)^2}{4} \quad (n \in \mathbb{N}).$$

6. Lássuk be, hogy bármely $a, b, c \in (0, +\infty)$ fennáll az

$$\left(a + \frac{1}{b}\right)\left(b + \frac{1}{c}\right)\left(c + \frac{1}{a}\right) > 7$$

becslés!

Útm.

1. Vö. 59-65. old.

2. (a) 1. módszer Legyen

$$a := 1 + \frac{3}{n}$$
, ill. $b := 1 + \frac{3}{n+1}$.

Ekkor a > b > 0, így az

$$a^{n} [a - (n+1)(a-b)] < b^{n+1}$$

egyenlőtlenség felhasználásával azt kapjuk, hogy

$$\left(1+\frac{3}{n}\right)^{n}\underbrace{\left(1+\frac{3}{n}-(n+1)\left(1+\frac{3}{n}-1-\frac{3}{n+1}\right)\right)}_{=1}<\left(1+\frac{3}{n+1}\right)^{n+1}.$$

A bal oldalon a második tényező 1, így a kívánt egyenlőtlenséget kapjuk.

2. módszer A mértani és a számtani közép közötti egyenlőtlenséget alkalmazva

$$\left(1 + \frac{3}{n}\right)^{n} = 1 \cdot \left(1 + \frac{3}{n}\right)^{n} < \left(\frac{1 + n\left(1 + \frac{3}{n}\right)}{n+1}\right)^{n+1} = \left(\frac{1 + n + 3}{n+1}\right)^{n+1} = \left(1 + \frac{3}{n+1}\right)^{n+1}.$$

(b) A mértani és a számtani közép közötti egyenlőtlenséget alkalmazva azt kapjuk, hogy

$$\left(1 + \frac{3}{n}\right)^{n} = 27 \cdot \frac{1}{27} \cdot \left(1 + \frac{3}{n}\right)^{n} = 27 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \left(1 + \frac{3}{n}\right) \cdot \dots \cdot \left(1 + \frac{3}{n}\right) <$$

$$< 27 \cdot \left(\frac{\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + n \cdot \left(1 + \frac{3}{n}\right)}{n + 3}\right)^{n+3} = 27 \cdot \left(\frac{1 + n + 3}{n + 3}\right)^{n+3} =$$

$$= 27 \cdot \left(1 + \frac{1}{n + 3}\right)^{n+3}.$$

- 3. Kétféleképpen is belátjuk az egyenlőtlenség fennállását.
 - módszer. A mértani közép és a számtani közép közötti egyenlőtlenséget felhasználva azt kapjuk, hogy

$$\frac{2^{n}-1}{n}=\frac{2^{n-1}+2^{n-2}+\ldots+4+2+1}{n}>\sqrt[n]{2^{n(n-1)/2}}=\sqrt{2^{n-1}},$$

ahonnan átrendezéssel

$$2^n > 1 + n\sqrt{2^{n-1}}$$

adódik.

2. módszer. (Teljes indukcióval.)

• Ha n = 2, akkor

$$2^2 = 4 > 1 + 2\sqrt{2} \qquad \Longleftrightarrow \qquad 3 > 2\sqrt{2} \qquad \Longleftrightarrow \qquad 9 > 8.$$

• Ha valamely $2 \le n \in \mathbb{N}$ esetén

$$2^n > 1 + n\sqrt{2^{n-1}}$$

akkor

$$2^{n+1} = 2 \cdot 2^n > 2(1 + n\sqrt{2^{n-1}}).$$

Ha belátjuk, hogy

$$2(1+n\sqrt{2^{n-1}}) > 1+(n+1)\sqrt{2^n},$$

akkor igazoltuk az állítást. Mivel a

$$2(1+n\sqrt{2^{n-1}})>1+(n+1)\sqrt{2^n}$$

egyenlőtlenség a

$$2 + 2n\sqrt{2^{n-1}} = 2 + \sqrt{2}n\sqrt{2^n} > 1 + (n+1)\sqrt{2^n},$$

azaz a

(*)
$$1 + \sqrt{2n}\sqrt{2^n} > (n+1)\sqrt{2^n}$$

egyenlőtlenséggel egyenértékű, és az iménti egyenlőtlenségben $\sqrt{2^n}$ együtthatóira:

$$\sqrt{2}n > n+1 \qquad \Longleftrightarrow \qquad (\sqrt{2}-1)n > 1,$$

azaz

$$n > \frac{1}{\sqrt{2}-1} = \frac{1}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1} = \sqrt{2}+1,$$

ezért a (*) egyenlőtlenség minden $3 \le n \in \mathbb{N}$ szám esetén fennáll. Ha pedig n=2, akkor

$$1+\sqrt{2}\cdot 2\sqrt{2^2}>3\cdot \sqrt{2^2}\qquad \Longleftrightarrow\qquad 4\cdot \sqrt{2}>5\qquad \Longleftrightarrow\qquad 32>25.$$

4. A $0 \le r \le 1$ eset bizonyítása. Mivel $r \in \mathbb{Q}$, ezért alkalmas $p, q \in \mathbb{N}, p \le q$ esetén $r = \frac{p}{q}$. Tekintsük az

$$\underbrace{1,\ldots,1}_{q-p \text{ darab}},\underbrace{(1+x),\ldots,(1+x)}_{p \text{ darab}}$$

q-darab valós számot. Ezeknek a számoknak a mértani közepe, ill. számtani közepe:

$$(1+x)^{p/q}$$
, ill. $1+\frac{p}{q}x$.

Így tehát

$$(1+x)^{p/q} \le 1 + \frac{p}{q}x,$$
 azaz $(1+x)^r \le 1 + rx.$

Az $r \ge 1$ eset bizonyítása. Mivel $x \in [-1, +\infty)$, ezért a $0 \le r \le 1$ esetben

$$(1+x)^r \le 1+rx \qquad \Longleftrightarrow \qquad 1+x \le \left(1+\frac{p}{q}x\right)^{q/p}.$$

Ha most $y:=\frac{p}{q}x$, akkor $x\geq -1$ következtében $y\geq -\frac{p}{q}\geq -1$. Innen $x=\frac{q}{p}y$, ill.

$$1 + \frac{q}{p}y \le (1+y)^{q/p}$$

következik. Mivel s := $\frac{q}{p} \ge 1$, ezért a fentiek következtében

$$(1+y)^s \ge 1 + sy.$$

- 5. (a) Külön-külön igazoljuk az alsó, ill. a felső becslést.
 - Az alsó becslés a következő módon látható be. Mivel minden $n \in \mathbb{N}$ esetén $-\frac{1}{2n} \ge -2$, ezért Bernoulli-egyenlőtlenségből

$$\left(1 - \frac{1}{2n}\right)^n \ge 1 - \frac{n}{2n} = 1 - \frac{1}{2} = \frac{1}{2}$$

következik.

• A felső becsléshez azt használjuk fel, hogy bármely $n \in \mathbb{N}$ esetén

$$\left(1 - \frac{1}{2n}\right)^n = \left(\frac{2n-1}{2n}\right)^n = \frac{1}{\left(\frac{2n}{2n-1}\right)^n} = \frac{1}{\left(\frac{2n-1+1}{2n-1}\right)^n} = \frac{1}{\left(1 + \frac{1}{2n-1}\right)^n},$$

továbbá $\frac{1}{2n-1} \ge -2$, így a Bernoulli-egyenlőtlenséget felhasználva azt kapjuk, hogy

$$\frac{1}{\left(1+\frac{1}{2n-1}\right)^n} \le \frac{1}{1+\frac{n}{2n-1}} = \frac{2n-1}{3n-1} < \frac{2}{3} \qquad \iff \qquad 6n-3 < 6n-2.$$

(b) Világos, hogy bármely $2 \le n \in \mathbb{N}$ esetén

$$n^n > (n+1)^{n-1} \qquad \Longleftrightarrow \frac{n^n}{(n+1)^n} > \frac{1}{n+1}.$$

Így a nyilvánvaló

$$\frac{n^{n}}{(n+1)^{n}} = \left(\frac{n}{n+1}\right)^{n} = \left(\frac{n+1-1}{n+1}\right)^{n} = \left(1 - \frac{1}{n+1}\right)^{n}$$

állítást és a Bernoulli-egyenlőtlenséget felhasználva azt kapjuk, hogy

$$\left(1-\frac{1}{n+1}\right)^n > 1-\frac{n}{n+1} = \frac{1}{n+1},$$

azaz igaz az állítás.

(c) Az egyenlőtlenség a mértani közép és a számtani közép közötti egyenlőtlenség, ill. a ??/3. gyakorló feladat triviális következménye:

$$\sqrt[n]{(n!)^3} = \sqrt[n]{(1 \cdot \ldots \cdot n)^3} = \sqrt[n]{1^3 \cdot \ldots \cdot n^3} \le \frac{1^2 + \ldots + n^3}{n} = \frac{n^2(n+1)^2}{4n} = \frac{n(n+1)^2}{4}.$$

Jól látható, hogy egyenlőség csak az n = 1 esetben van.

Megjegyzés. Ha

$$a_n:=\frac{n^n(n+1)^{2n}}{4^n(n!)^3}\qquad (n\in\mathbb{N}),$$

akkor az (a_n) sorozatra tetszőleges $n \in \mathbb{N}$ esetén $a_n \ge 1$ teljesül, hiszen $a_1 = 1$, továbbá az

$$\begin{split} \frac{\alpha_{n+1}}{\alpha_n} &= \frac{(n+1)^{n+1}(n+2)^{2n+2}}{4^{n+1}[(n+1)!]^3} \cdot \frac{4^n(n!)^3}{n^n(n+1)^{2n}} = \frac{1}{4} \left(\frac{n+2}{n+1}\right) \left(\frac{n+2}{n}\right)^n \left(\frac{n+2}{n+1}\right)^{n+1} = \\ &= \frac{1}{4} \cdot \left(\frac{n+2}{n+1}\right) \left(1 + \frac{2}{n}\right)^n \left(1 + \frac{1}{n+1}\right)^{n+1} \end{split}$$

egyenlőségből, ill. a Bernoulli-egyenlőtlenség felhasználásából

$$\frac{1}{4} \cdot \left(\frac{n+2}{n+1}\right) \left(1 + \frac{2}{n}\right)^n \left(1 + \frac{1}{n+1}\right)^{n+1} \ge \frac{1}{4} \cdot \left(\frac{n+2}{n+1}\right) (1+2)(1+1) =$$

$$= \frac{6}{4} \cdot \frac{n+2}{n+1} > \frac{6}{4} = \frac{3}{2} > 1$$

következik, ami azt jelenti, hogy az (a_n) sorozat monoton növekedő.

Látható, hogy

$$\alpha_2 = \frac{81}{32} > \left(\frac{3}{2}\right)^2,$$

sőt teljes indukcióval az is megmutatható (Házi feladat.), hogy

$$a_n > \left(\frac{3}{2}\right)^n$$
 $(2 \le n \in \mathbb{N}).$

6. A mértani és a számtani közép közötti egyenlőtlenség következménye, hogy bármely $a,b,c \in (0,+\infty)$ számra

$$\alpha + \frac{1}{b} \geq 2\sqrt{\alpha \cdot \frac{1}{b}}, \qquad b + \frac{1}{c} \geq 2\sqrt{b \cdot \frac{1}{c}}, \qquad c + \frac{1}{a} \geq 2\sqrt{c \cdot \frac{1}{a}}.$$

Így

$$\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)\geq 8\sqrt{a\cdot\frac{1}{b}\cdot b\cdot\frac{1}{c}\cdot c\cdot\frac{1}{a}}=8>7.\quad\blacksquare$$

2. gyakorlat (2022.02.15.)

Emlékeztető. Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$. Azt mondtuk, hogy

- 1. a \mathcal{H} halmaz **alulról korlátos**, ha van olyan $k \in \mathbb{R}$, hogy bármely $x \in \mathcal{H}$ esetén $x \geq k$. Az ilyen k számot a \mathcal{H} halmaz **alsó korlát**jának neveztük.
- 2. a \mathcal{H} halmaz **felülről korlátos**, ha van olyan $K \in \mathbb{R}$, hogy bármely $x \in \mathcal{H}$ esetén $x \leq K$. Az ilyen K számot a \mathcal{H} halmaz **felső korlát**jának neveztük.
- 3. a \mathcal{H} halmaz **korlátos**, ha alulról és felülről is korlátos.

Megjegyzések.

- 1. Egy számhalmazt megadó kifejezésből az esetek többségében nehéz látni a halmaz elemeinek a "viselkedését", ezért a korlátosságának vizsgálata általában nem egyszerű feladat. Ennek megoldásához gyakran használhatjuk a következő ötletet: valamilyen "alkalmas" módon átalakítjuk a szóban forgó kifejezést (ilyen átalakításokra példákat fogunk mutatni). Ezután már számos esetben könnyű lesz kialakítani sejtéseket az alsó, ill. a felső korlátokra vonatkozóan. Ezek bizonyításához (sokszor triviális) egyenlőtlenségek fennállását kell majd belátnunk.
- 2. Sok esetben hasznos lehet halmazok szerkezetének feltárására az alábbi átalakítás ismerete: bármely $(a, b, c, d, x \in \mathbb{R}: c \neq 0, x \neq -d/c)$ esetén

$$\frac{ax+b}{cx+d} = \frac{a}{c} \cdot \frac{x+\frac{b}{a}}{x+\frac{d}{c}} = \frac{a}{c} \cdot \frac{x+\frac{d}{c}+\frac{b}{a}-\frac{d}{c}}{x+\frac{d}{c}} = \frac{a}{c} \cdot \left[1+\frac{\frac{bc-ad}{ac}}{x+\frac{d}{c}}\right] = \frac{a}{c} + \frac{\frac{bc-ad}{c^2}}{x+\frac{d}{c}} = \frac{a}{c} + \frac{\frac{bc-ad}{c^2}}{x+\frac{d}{c}} = \frac{a}{c} + \frac{\frac{bc-ad}{c}}{cx+d} = \frac{a}{c} + \frac{bc-ad}{c} \cdot \frac{1}{cx+d}$$

vagy

$$\frac{ax+b}{cx+d} = \frac{a}{c} \cdot \frac{acx+bc}{acx+ad} = \frac{a}{c} \cdot \frac{acx+ad+bc-ad}{acx+ad} = \frac{a}{c} \cdot \left(1 + \frac{bc-ad}{acx+ad}\right) =$$

$$= \frac{a}{c} + \frac{1}{c} \cdot \frac{bc-ad}{cx+d} = \frac{a}{c} + \frac{bc-ad}{c} \cdot \frac{1}{cx+d}.$$

Példák.

1. A

$$\mathcal{H} := \left\{ \frac{1}{n} \in \mathbb{R} : \ n \in \mathbb{N}
ight\}$$

halmaz alulról is és felülről is korlátos, ui. a 0, ill. az 1 alsó, ill. felső korlátja \mathcal{H} -nak:

$$0<\frac{1}{n}\leq 1 \qquad (n\in \mathbb{N}).$$

2. A

$$\mathcal{H}:=\left\{\left(1+\frac{1}{n}\right)^n\in\mathbb{R}:\;n\in\mathbb{N}\right\}$$

halmaz alulról is és felülről is korlátos, ui. a 2, ill. a 3 alsó, ill. felső korlátja \mathcal{H} -nak:

$$2 \leq \left(1 + \frac{1}{n}\right)^n < 3 \qquad (n \in \mathbb{N}).$$

3. A

$$\mathcal{H}:=\left\{lpha+rac{1}{lpha}\in\mathbb{R}:\ 0$$

halmaz alulról korlátos, ui. 2 alsó korlátja \mathcal{H} -nak:

$$\alpha + \frac{1}{\alpha} = 2 \cdot \frac{\alpha + \frac{1}{\alpha}}{2} \ge 2 \cdot \sqrt{\alpha \cdot \frac{1}{\alpha}} = 2 \qquad (0 < \alpha \in \mathbb{R}).$$

4. A

$$\mathcal{H} := \left\{ \left| \frac{a}{b} + \frac{b}{a} \right| \in \mathbb{R} : a, b \in \mathbb{R} \setminus \{0\} \right\}$$

halmaz alulról korlátos, ui. 2 alsó korlátja \mathcal{H} -nak: ha ab>0, akkor $\frac{a}{b}, \frac{b}{a}>0$, így

$$\frac{a}{b} = \frac{1}{\frac{b}{a}} \qquad \Longrightarrow \qquad \frac{a}{b} + \frac{b}{a} \ge 2;$$

ha pedig ab < 0, akkor $\frac{a}{b}$, $\frac{b}{a} < 0$, így

$$\frac{a}{b} = \frac{1}{\frac{b}{a}} \implies \frac{a}{b} + \frac{b}{a} \le -2.$$

5. A

$$\mathcal{H} := \left\{ \left| \frac{x+1}{x-1} \right| + \left| \frac{x-1}{x+1} \right| \in \mathbb{R} : x \in \mathbb{R} \setminus \{-1, 1\} \right\}$$

halmaz alulról korlátos, ui. 2 alsó korlátja H-nak: az

$$a := |x + 1|$$
, ill. $b := |x - 1|$

helyettesítéssel látható, hogy bármely $x \in \mathbb{R} \setminus \{-1, 1\}$ esetén

$$\left|\frac{x+1}{x-1}\right| + \left|\frac{x-1}{x+1}\right| = \frac{a}{b} + \frac{b}{a} \ge 2,$$

6. A

$$\mathcal{H} := \left\{ \operatorname{tg}(\alpha) + \operatorname{ctg}(\alpha) \in \mathbb{R} : \ \alpha \in \left(0, \frac{\pi}{2}\right) \right\}$$

halmaz alulról korlátos, ui. 2 alsó korlátja \mathcal{H} -nak:

$$tg(\alpha)+ctg(\alpha)=tg(\alpha)+\frac{1}{tg(\alpha)}\geq 2 \qquad \left(\alpha\in\left(0,\frac{\pi}{2}\right)\right).$$

7. A

$$\mathcal{H} := \left\{ \frac{x^2 + 2}{\sqrt{x^2 + 1}} \in \mathbb{R} : x \in \mathbb{R} \right\}$$

halmaz alulról korlátos, ui. a 2 alsó korlátja \mathcal{H} -nak:

1. módszer. tetszőleges $x \in \mathbb{R}$ esetén

$$\frac{x^2+2}{\sqrt{x^2+1}} = \frac{x^2+1+1}{\sqrt{x^2+1}} = \sqrt{x^2+1} + \frac{1}{\sqrt{x^2+1}} \ge 2;$$

2. módszer. bármely $x \in \mathbb{R}$ esetén

$$\frac{x^2+2}{\sqrt{x^2+1}} \ge 2 \qquad \Longleftrightarrow \qquad x^2+1+1 \ge 2\sqrt{x^2+1} \qquad \Longleftrightarrow \qquad \left(\sqrt{x^2+1}-1\right)^2 \ge 0.$$

8. A

$$\mathcal{H}:=\left\{\frac{x^2}{1+x^4}\in\mathbb{R}:\;x\in\mathbb{R}\right\}$$

halmaz felülről korlátos, ui. az $\frac{1}{2}$ felső korlátja \mathcal{H} -nak:

1. módszer. ha x = 0, akkor az egyenlőtlenség triviálisan teljesül, ha pedig pedig $0 \neq x \in \mathbb{R}$, akkor

$$\frac{x^2}{1+x^4} = \frac{1}{\frac{1}{x^2} + x^2} \le \frac{1}{2};$$

2. módszer. minden $x \in \mathbb{R}$ számra

$$\frac{x^2}{1+x^4} \le \frac{1}{2} \qquad \Longleftrightarrow \qquad 2x^2 \le 1+x^4 \qquad \Longleftrightarrow \qquad \left(x^2-1\right)^2 \ge 0.$$

9. A

$$\mathcal{H} := \left\{ 2x^4 - 2x^3 - x^2 + 1 \in \mathbb{R} : \ x \in \mathbb{R} \right\}$$

halmaz alulról korlátos, ui. a 0 alsó korlátja H-nak:

$$2x^4 - 2x^3 - x^2 + 1 \ge 0$$
 \iff $(x^2 - 1)^2 + (x^2 - x)^2 \ge 0$ $(x \in \mathbb{R}).$

10. A

$$\mathcal{H} := \{ a + b - ab \in \mathbb{R} : a, b \in \mathbb{R} \}$$

halmaz alulről is és felülről is korlátos, ui. a 0, ill. az 1 alsó, ill. felső korlátja \mathcal{H} -nak, hiszen hab $\in (0,1)$, akkor 1-b>0, így bármely $\alpha\in (0,1)$ esetén

$$0 < a(1-b) < 1-b$$
 \iff $0 < a+b-ab < 1$.

11. A

$$\mathcal{H}:=\left\{ab-5a^2-3b^2\in\mathbb{R}:\ a,b\in\mathbb{R}\right\}$$

halmaz felülről korlátos, ui. a 0 felső korlátja \mathcal{H} -nak:

$$ab-5a^2-3b^2\leq 0 \qquad \Longleftrightarrow \qquad -ab-4a^2-4b^2-(a-b)^2\leq 0 \qquad (a,b\in\mathbb{R}).$$

12. A

$$\mathcal{H}:=\left\{\alpha^2+b^2-\alpha b-\alpha-b+1\in\mathbb{R}:\ \alpha,b\in\mathbb{R}\right\}$$

halmaz felülről alulról, ui. a 0 alsó korlátja \mathcal{H} -nak:

$$\alpha^2+b^2-\alpha b-\alpha-b+1\geq 0 \qquad \Longleftrightarrow \qquad (\alpha-b)^2+(\alpha-1)^2+(b-1)^2\geq 0 \qquad (\alpha,b\in\mathbb{R}).$$

13. A

$$\mathcal{H} := \left\{ \frac{(a+b)(b+c)(a+c)}{abc} \in \mathbb{R}: \ 0 < a,b,c \in \mathbb{R} \right\}$$

halmaz alulról korlátos, ui. a $\frac{128}{65}$ alsó korlátja \mathcal{H} -nak:

$$\frac{(a+b)(b+c)(a+c)}{abc} = \frac{a+b}{a} \cdot \frac{b+c}{b} \cdot \frac{a+c}{c} = \left(1 + \frac{b}{a}\right) \left(1 + \frac{c}{b}\right) \left(1 + \frac{a}{c}\right) =$$

$$= \left(1 + \frac{b}{a} + \frac{c}{b} + \frac{c}{a}\right) \left(1 + \frac{a}{c}\right) = 1 + \frac{b}{a} + \frac{c}{b} + \frac{c}{a} + \frac{a}{c} + \frac{b}{c} + \frac{a}{b} + 1 =$$

$$= 2 + \underbrace{\frac{a}{b} + \frac{b}{a}}_{\geq 2} + \underbrace{\frac{c}{b} + \frac{c}{b}}_{\geq 2} + \underbrace{\frac{c}{b} + \frac{c}{a}}_{\geq 2} \geq 8.$$

és

$$8 \geq \frac{128}{65} \qquad \Longleftrightarrow \qquad 520 \geq 128.$$

14. A

$$\mathcal{H} := \left\{ \left(1 + \frac{x}{y}\right)^2 + \left(1 + \frac{y}{z}\right)^2 + \left(1 + \frac{z}{x}\right)^2 \in \mathbb{R} : \ 0 < x, y, z \in \mathbb{R} \right\}$$

halmaz alulról korlátos, ui. a 12 alsó korlátja \mathcal{H} -nak: bármely $a, b \in (0, +\infty)$ esetén

$$\frac{1+\frac{a}{b}}{2} \ge \sqrt{\frac{a}{b}},$$

ezért

$$\left(1+\frac{a}{b}\right)^2 \geq 4 \cdot \frac{a}{b}$$
.

A mértani és a számtani közép közötti egyenlőtlnség felhasználásával így azt kapjuk, hogy

$$\left(1+\frac{x}{y}\right)^2+\left(1+\frac{y}{z}\right)^2+\left(1+\frac{z}{x}\right)^2\geq 4\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\geq 4\cdot 3\cdot \sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=12.\quad\blacksquare$$

Feladat. Fogalmazzuk meg pozitív állítás formájában azt, hogy a $\mathcal{H} \subset \mathbb{R}$ halmaz alulról, ill. felülről nem korlátos!

Útm. A definíció szerint valamely $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ halmaz

• alulról nem korlátos, ha

$$\neg \left(\exists \, k \in \mathbb{R} \quad \forall \, x \in \mathcal{H} : \qquad x \geq k \right) \qquad \Longleftrightarrow \qquad \left(\forall \, k \in \mathbb{R} \quad \exists \, x \in \mathcal{H} : \qquad x < k \right);$$

• felülről nem korlátos, ha

$$\neg \left(\exists \, K \in \mathbb{R} \quad \forall \, x \in \mathcal{H} : \qquad x \leq K \right) \qquad \Longleftrightarrow \qquad \left(\forall \, K \in \mathbb{R} \quad \exists \, x \in \mathcal{H} : \qquad x > K \right).$$

Feladat. Igazoljuk, hogy a

$$\mathcal{H} := \left\{ \frac{x^2 + 2x + 3}{x + 1} \in \mathbb{R} : \ 1 \le x \in \mathbb{R} \right\}$$

halmaz felülről nem korlátos!

Útm. Mivel bármely $1 \le x \in \mathbb{R}$ esetén

$$\frac{x^2 + 2x + 3}{x + 1} \ge \frac{x^2}{x + 1} \ge \frac{x^2}{x + x} = \frac{x^2}{2x} = \frac{x}{2},$$

ezért tetszőleges $0 < K \in \mathbb{R}$ esetén igaz az

$$\frac{x}{2} > K$$
 \Longrightarrow $\frac{x^2 + 2x + 3}{x + 1} > K$

implikáció. Következésképpen az

$$x := 2K + 1 \in [1, +\infty)$$

jó választás. ■

Emlékeztető. Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$. Azt mondtuk, hogy a \mathcal{H} halmaznak van

• maximuma, ha

$$\exists \alpha \in \mathcal{H} \ \forall x \in \mathcal{H}: \qquad x \leq \alpha.$$

Ekkor α -t a H halmaz **maximumának** nevezzük és a max(\mathcal{H}) szimbólummal jelöljük.

• minimuma, ha

$$\exists \beta \in \mathcal{H} \ \forall x \in \mathcal{H}: \qquad x \geq \beta.$$

Ekkor β -t a \mathcal{H} halmaz **minimumának** nevezzük és a min(\mathcal{H}) szimbólummal jelöljük.

Megjegyzések.

- 1. Ha a \mathcal{H} halmaznak van maximuma, akkor max (\mathcal{H}) egyben felső korlátja \mathcal{H} -nak.
- 2. Ha a \mathcal{H} halmaznak van minimuma, akkor min (\mathcal{H}) egyben alsó korlátja \mathcal{H} -nak.

3. A \mathcal{H} halmaznak pontosan akkor **nincsen maximuma**, ha bármely \mathcal{H} -beli eleménél van nagyobb \mathcal{H} -beli elem:

$$\forall \alpha \in \mathcal{H} \ \exists x \in \mathcal{H} : x > \alpha.$$

4. A \mathcal{H} halmaznak pontosan akkor **nincsen minimuma**, ha bármely \mathcal{H} -beli eleménél van kisebb \mathcal{H} -beli elem:

$$\forall \beta \in \mathcal{H} \ \exists x \in \mathcal{H} : \qquad x < \beta.$$

Példák.

1. A

$$\mathcal{H} := \left\{ \frac{1}{n} \in \mathbb{R} : \ n \in \mathbb{N}
ight\}$$

halmazn esetén $\max(H)=1,$ ui. $1\in\mathcal{H}$ (n=1) és bármely $n\in\mathbb{N}$ esetén $\frac{1}{n}\leq 1.$ A \mathcal{H} halmaznak nincsen minimuma, hiszen bármely $n\in\mathbb{N}$ esetén (n+1)-re

$$\mathcal{H}\ni \frac{1}{n}>\frac{1}{n+1}\in \mathcal{H} \qquad \text{(ui.}\quad \Longleftrightarrow\quad n+1>n\text{)} \,.$$

2. A

$$\mathcal{H} := \left\{1 - \frac{1}{n} \in \mathbb{R} : n \in \mathbb{N}\right\}$$

halmazn esetén $\min(\mathcal{H})=0$, ui. $0\in\mathcal{H}$ (n=1) és bármely $n\in\mathbb{N}$ esetén $0\leq 1-\frac{1}{n}$. A \mathcal{H} halmaznak nincsen maximuma, hiszen bármely $n\in\mathbb{N}$ esetén (n+1)-re

$$\mathcal{H} \ni 1 - \frac{1}{n+1} > 1 - \frac{1}{n} \in \mathcal{H}$$
 (ui. \iff $n+1 > n$).

A következő, alapvető fontosságú tétel azt mondja ki, hogy minden (nem-üres)

- felülről korlátos halmaz felső korlátai között van legkisebb, azaz a felső korlátok halmazának van minimuma;
- alulról korlátos halmaz alsó korlátai között van legnagyobb, azaz az alsó korlátok halmazának van maximuma.

Tétel. Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$. Ha a \mathcal{H} halmaz

1. felülről korlátos, akkor, akkor felső korlátai között van legkisebb: az

$$\mathcal{F} := \{ K \in \mathbb{R} : K \text{ felső korlátja } \mathcal{H}\text{-nak} \}$$

halmaznak van minimuma.

2. alulról korlátos, akkor, akkor alsó korlátai között van legnagyobb: az

$$\mathcal{A} := \{k \in \mathbb{R} : k \text{ also korlátja } \mathcal{H}\text{-nak}\}$$

halmaznak van maximuma.

Definíció.

- 1. A felülről korlátos $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ számhalmaz legkisebb felső korlátját a számhalmaz **felső** határának, más szóval szuprémumának vagy lényeges felső korlátjának nevezzük és a sup (\mathcal{H}) szimbólummal jelöljük: sup $(\mathcal{H}) := \min(\mathcal{F}) \in \mathbb{R}$.
- 2. Az alulról korlátos $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ számhalmaz legnagyobb alsó korlátját a számhalmaz **alsó határ**ának, más szóval **infimum**ának vagy **lényeges alsó korlát**jának nevezzük és az inf (\mathcal{H}) szimbólummal jelöljük: inf $(\mathcal{H}) := \max(\mathcal{A}) \in \mathbb{R}$.

Példák.

1. A $\mathcal{H} := [-1, 1]$ halmaz esetében

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = -1, \quad \sup(\mathcal{H}) = \max(\mathcal{H}) = 1;$$

2. A H := (-1, 1] halmaz esetében

$$\inf(\mathcal{H}) = -1, \ \not\exists \min(\mathcal{H}), \qquad \sup(\mathcal{H}) = \max(\mathcal{H}) = 1.$$

Megjegyezzük, hogy a $\not\exists \min(\mathcal{H})$ állítás a következőképpen látható be. Ha lenne \mathcal{H} -nak minimuma: $\xi \in \mathcal{H} \in (-1, 1]$, akkor az

$$\eta := \frac{-1+\xi}{2} < \xi$$

számra $\eta \in (-1,1] = \mathcal{H}$ teljesülne, ami nem lehetséges.

Megjegyzések.

- 1. Világos, hogy
 - (a) $\exists \min(\mathcal{H}) \iff \inf(\mathcal{H}) \in \mathcal{H}$. Ebben az esetben $\inf(\mathcal{H}) = \min(\mathcal{H})$.
 - (b) $\exists \max(\mathcal{H}) \iff \sup(\mathcal{H}) \in \mathcal{H}$. Ebben az esetben $\sup(\mathcal{H}) = \max(\mathcal{H})$.
- 2. Az $\inf(\mathcal{H}) = \alpha$ állítás azt jelenti, hogy
 - α a \mathcal{H} halmaz alsó korlátja:

$$\forall x \in \mathcal{H}: x \geq \alpha$$

• bármely α -nál nagyobb szám már nem alsó korlátja \mathcal{H} -nak:

$$(\forall \alpha > \alpha \ \exists x \in \mathcal{H}: \quad x < \alpha) \qquad \Longleftrightarrow \qquad (\forall \epsilon > 0 \ \exists x \in \mathcal{H}: \quad x < \alpha + \epsilon).$$

- 3. A $\sup(\mathcal{H}) = \beta$ állítás azt jelenti, hogy
 - β a \mathcal{H} halmaz ferlső korlátja:

$$\forall x \in \mathcal{H} \qquad x \leq \beta,$$

• bármely β -nál kisebb szám \mathcal{H} -nak már nem felső korlátja:

$$(\forall b < \beta \ \exists x \in \mathcal{H}: \quad x > b) \qquad \Longleftrightarrow \qquad (\forall \varepsilon > 0 \ \exists x \in \mathcal{H}: \quad x > \beta - \varepsilon).$$

4. Célszerű kiterjeszteni az alsó és felső határ fogalmát nem korlátos halmazokra. Ehhez kibővítjük a valós számok halmazát két elemmel, amelyeket plusz, ill. mínusz végtelennek nevezünk és a +∞, −∞ szimbólumokkal jelölünk. Szokás ezeket ideális elemeknek is nevezni, és ugyanúgy, mint a valós számok esetében a + előjelet gyakran elhagyjuk. A valós számok ezekkel bővített halmazára az

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\} := \mathbb{R} \cup \{\infty, -\infty\}$$

jelölést használjuk. Ha valamely halmaz felülről nem korlátos, akkor azt fogjuk mondani, hogy felső határa $+\infty$, ha pedig alulról nem korlátos, akkor definició szerint alsó határa legyen $-\infty$.

5. A < relációt terjesszük ki a valós számok ideális elemekkel bővített $\overline{\mathbb{R}}$ halmazára az alábbiak szerint. Legyen

$$\forall x \in \mathbb{R}: -\infty < x < +\infty.$$

A most bevezetett szóhasználattal élve azt mondhatjuk, hogy egy halmaz pontosan akkor felülről korlátos, ha

$$\sup(H) < +\infty$$
,

és pontosan akkor alulról korlátos, ha

$$\inf(H) > -\infty$$
.

6. A korábbról ismert ún. véges intervallumok mellett használni fogjuk az alábbi ún. végtelen intervallumokat is:

$$(\alpha, +\infty) := \{x \in \mathbb{R} : x > \alpha\}, \quad [\alpha, +\infty) := \{x \in \mathbb{R} : x \ge \alpha\},$$

$$(-\infty, b) := \{x \in \mathbb{R} : x < b\}, \quad (-\infty, b] := \{x \in \mathbb{R} : x \le b\}.$$

Ezekkel összhangban a valós számok és az ideális elemekkel kibővített valós számok halmazát a

$$(-\infty,\infty):=\mathbb{R}, \qquad [-\infty,\infty]:=\overline{\mathbb{R}}$$

végtelen intervallumokkal is jelöljük.

Feladat. Vizsgáljuk az \mathcal{H} halmazt korlátosság szempontjából! Határozzuk meg inf \mathcal{H} -t és sup \mathcal{H} -t! Van-e a \mathcal{H} halmaznak legkisebb, ill. legnagyobb eleme?

1.
$$\mathcal{H} := \left\{ \frac{1}{x} \in \mathbb{R} : x \in (0,1] \right\};$$

$$2. \ \mathcal{H}:=\left\{\frac{5n+3}{8n+1}\in\mathbb{R}:\ n\in\mathbb{N}_0\right\};$$

$$3. \ \mathcal{H}:=\left\{\frac{x+1}{2x+3}\in\mathbb{R}:\ 0\leq x\in\mathbb{R}\right\}; \qquad \qquad 4. \ \mathcal{H}:=\left\{\frac{2x+3}{3x+1}\in\mathbb{R}:\ x\in\mathbb{Z}\right\};$$

4.
$$\mathcal{H}:=\left\{\frac{2x+3}{3x+1}\in\mathbb{R}:\ x\in\mathbb{Z}\right\};$$

5.
$$\mathcal{H}:=\left\{\frac{2|x|+3}{3|x|+1}\in\mathbb{R}:\ -2\leq x\in\mathbb{R}\right\};\qquad 6.\ \mathcal{H}:=\left\{\sqrt{x+1}-\sqrt{x}\in\mathbb{R}:\ 0\leq x\in\mathbb{R}\right\}.$$

6.
$$\mathcal{H} := \left\{ \sqrt{x+1} - \sqrt{x} \in \mathbb{R} : 0 \le x \in \mathbb{R} \right\}$$

Útm.

• Ha x elég közel van 0-hoz, akkor $\frac{1}{x}$ értéke igen nagy. Így sejthető, hogy a \mathcal{H} halmaz felülről nem 1. korlátos. Valóban, tetszőleges $K \ge 1$ számhoz van olyan $h \in \mathcal{H}$, hogy h > K, hiszen $h := \frac{1}{2}$:

$$x \in \left(0, \frac{1}{K}\right)$$
 esetén $h = \frac{1}{x} > \frac{1}{\frac{1}{K}} = K$.

Ezért

$$\sup(\mathcal{H}) = +\infty$$
, ill. $\# \max(\mathcal{H})$.

• A \mathcal{H} halmaz alulról korlátos, ugyanis 0 alsó korlátja, sőt minden $x \in (0, 1]$ esetén

$$\frac{1}{x} \geq \frac{1}{1} = 1,$$

ezért az 1 is alsó korlát.

• $\inf(\mathcal{H}) = 1$, sốt $1 \in \mathcal{H}$, így $\min(\mathcal{H}) = 1$.

Összefoglalva: a ${\cal H}$ halmaz alulról korlátos, felülről nem korlátos,

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = 1, \quad \sup(\mathcal{H}) = +\infty.$$

2. • Világos, hogy bármely $n \in \mathbb{N}_0$ esetén

$$\frac{5n+3}{8n+1} = \frac{5}{8} \cdot \frac{n+\frac{3}{5}}{n+\frac{1}{8}} = \frac{5}{8} \cdot \frac{n+\frac{1}{8}+\frac{3}{5}-\frac{1}{8}}{n+\frac{1}{8}} = \frac{5}{8} + \frac{5}{8} \cdot \frac{19}{40} \cdot \frac{1}{n+\frac{1}{8}} = \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8n+1} > \frac{5}{8}$$

vagy

$$\frac{5n+3}{8n+1} = \frac{5}{8} \cdot \frac{40n+24}{40n+5} = \frac{5}{8} \cdot \frac{40n+5+19}{40n+5} = \frac{5}{8} \cdot \left(1 + \frac{19}{40n+5}\right) =$$
$$= \frac{5}{8} + \frac{5}{8} \cdot \frac{19}{40n+5} = \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8n+1} > \frac{5}{8}.$$

• Mivel nagy n-ekre $\frac{1}{8n+1}$ igen kicsi, ezért sejthető, hogy \mathcal{H} -nak nincsen $\frac{5}{8}$ -nál nagyobb alsó korlátja:

$$\forall\, \epsilon>0 \ \exists\, N\in\mathbb{N}_0: \qquad \mathcal{H}\ni \frac{5}{8}+\frac{19}{8}\cdot\frac{1}{8N+1}<\frac{5}{8}+\epsilon.$$

Ekkor

$$\frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8N+1} < \frac{5}{8} + \epsilon \qquad \Longleftrightarrow \qquad N > \frac{1}{8} \left(\frac{19}{8\epsilon} - 1 \right)$$

és

$$N := \max \left\{ 0, \left[\left(\frac{19}{8\epsilon} - 1 \right) \frac{1}{8} \right] + 1 \right\}$$

pl. ilyen. Tehát $\inf(\mathcal{H}) = \frac{5}{8}$.

- $\nexists \min(\mathcal{H})$, mivel $\forall h \in \mathcal{H}$: $h > \frac{5}{8} = \inf(\mathcal{H})$.
- Mivel bármely $n \in \mathbb{N}_0$ esetén

$$\frac{5n+3}{8n+1} = \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8n+1} \le \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8 \cdot 0 + 1} = 3,$$

ezért

$$3 = \max(\mathcal{H}) = \sup(\mathcal{H}).$$

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \frac{5}{8}, \quad \not\exists \min(\mathcal{H}), \qquad \sup(\mathcal{H}) = \max(\mathcal{H}) = 3.$$

3. • Világos, hogy bármely $0 \le x \in \mathbb{R}$ esetén

$$\frac{x+1}{2x+3} = \frac{1}{2} \cdot \frac{2x+2}{2x+3} = \frac{1}{2} \cdot \frac{2x+3-1}{2x+3} = \frac{1}{2} \cdot \left(1 - \frac{1}{2x+3}\right) = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2x+3}.$$

Mivel

$$\mathcal{H} \ni \frac{x+1}{2x+3} = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2x+3} \ge \frac{1}{2} - \frac{1}{4 \cdot 0 + 6} = \frac{1}{2} - \frac{1}{6} = \frac{1}{3},$$

ezért

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{1}{3}.$$

• Mivel bármely $0 \le x \in \mathbb{R}$ esetén

$$\frac{1}{2x+3}>0,$$

ezért

$$\mathcal{H} \ni \frac{x+1}{2x+3} = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2x+3} < \frac{1}{2},$$

azaz $\frac{1}{2}$ felső korlátja \mathcal{H} -nak.

• Mivel nagy x-ekre $\frac{1}{2x+3}$ igen kicsi, ezért sejthető, hogy \mathcal{H} -nak nincsen $\frac{1}{2}$ -nél kisebb felső korlátja:

$$\forall \, \varepsilon > 0 \, \exists \, x \in [0, +\infty) : \qquad \mathcal{H} \ni \frac{x+1}{2x+3} = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2x+3} > \frac{1}{2} - \varepsilon.$$

Ez azzal egyenértékű, hogy $\frac{1}{4x+6} < \epsilon$, azaz hogy $\frac{1}{\epsilon} - 6 < 4x$. Ilyen $x \geq 0$ nyilván létezik. Következésképpen $\sup(\mathcal{H}) = \frac{1}{2}$.

• $\# \max(\mathcal{H})$, mivel $\frac{1}{2} \notin \mathcal{H}$.

Összefoglalva: a $\mathcal H$ halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{1}{3}, \quad \sup(\mathcal{H}) = \frac{1}{2}, \quad \not\exists \max(\mathcal{H}).$$

4. • Világos, hogy bármely $x \in \mathbb{Z}$ esetén

$$\frac{2x+3}{3x+1} = \frac{2}{3} \cdot \frac{6x+9}{6x+2} = \frac{2}{3} \cdot \frac{6x+2+7}{6x+2} = \frac{2}{3} \cdot \left(1 + \frac{7}{6x+2}\right) = \frac{2}{3} + \frac{2}{3} \cdot \frac{7}{6x+2} = \frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3x+1}.$$

• Ha x < 0, akkor $\frac{7}{3} \cdot \frac{1}{3x+1} < 0$, míg $x \ge 0$ esetén

$$0\leq \frac{7}{3}\cdot \frac{1}{3x+1}\leq \frac{7}{3}.$$

Ezért

$$\frac{2x+3}{3x+1} \le \frac{2}{3} + \frac{7}{3} = 3$$

és x = 0-ra

$$\frac{2 \cdot 0 + 3}{3 \cdot 0 + 1} = 3.$$

Tehát a $\mathcal H$ halmaznak van maximuma és $\max(\mathcal H)=3$, következésképpen $\sup(\mathcal H)=3$.

• Ha x = -1, akkor

$$\frac{2(-1)+3}{3(-1)+1}=-\frac{1}{2}.$$

Lássuk be, hogy

$$\frac{2x+3}{3x+1} \ge -\frac{1}{2} \qquad (x \in \mathbb{Z})$$

teljesül. Ui. ez azzal ekvivalens, hogy

$$\frac{2x+3}{3x+1} + \frac{1}{2} = 7 \cdot \frac{x+1}{3x+1} \ge 0 \quad (x \in \mathbb{Z}),$$

ami igaz. Tehát

$$\min(\mathcal{H}) = \inf(\mathcal{H}) = -1/2$$
.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = -\frac{1}{2}, \quad \sup(\mathcal{H}) = \max(\mathcal{H}) = 3.$$

5. • Világos, hogy bármely $-2 \le x \in \mathbb{R}$ esetén

$$\frac{2|x|+3}{3|x|+1} = \frac{2}{3} \cdot \frac{6|x|+9}{6|x|+2} = \frac{2}{3} \cdot \frac{6|x|+2+7}{6|x|+2} = \frac{2}{3} \left(1 + \frac{7}{6|x|+2}\right) = \frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3|x|+1}.$$

• Mivel tetszőleges $-2 \le x \in \mathbb{R}$ esetén

$$\frac{7}{3}\cdot\frac{1}{3|x|+1}>0,$$

ezért

$$\mathcal{H} \ni \frac{2|x|+3}{3|x|+1} = \frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3|x|+1} > \frac{2}{3},$$

azaz a \mathcal{H} halmaz alulról korlátos, és $\frac{2}{3}$ alsó korlátja \mathcal{H} -nak.

• Látható, hogy az

$$\frac{1}{3|x|+1}$$

tört az x nagy értékeire igen közel van 0-hoz, ezért a \mathcal{H} halmaz elemei nagy x-ekre $\frac{2}{3}$ -hoz közeli értékeket vesznek fel. Sejthető tehát, hogy \mathcal{H} -nak nincsen $\frac{2}{3}$ -nál nagyobb alsó korlátja:

$$\forall \, \epsilon > 0 \, \exists \, x \in [-2, +\infty): \qquad \mathcal{H} \ni \frac{2}{3} + \frac{7}{3} \cdot \frac{7}{3|x|+1} < \frac{2}{3} + \epsilon.$$

Valóban, a tetszőleges $x \in [-2, +\infty)$ esetén fennálló

$$\frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3|x|+1} < \frac{2}{3} + \epsilon \quad \Longleftrightarrow \quad \frac{7}{3} \cdot \frac{1}{3|x|+1} < \epsilon \quad \Longleftrightarrow \quad \frac{7}{\epsilon} < 9|x|+3 \quad \Longleftrightarrow \quad |x| > \frac{7}{9\epsilon} - \frac{1}{3}$$

ekvivalencia-lánc következtében tetszőleges $\varepsilon > 0$ számhoz van olyan $h \in \mathcal{H}$, amelyre

$$h < \frac{2}{3} + \varepsilon$$
.

Így

$$\inf(\mathcal{H}) = \frac{2}{3} \qquad \text{\'es} \qquad \not\exists \min(\mathcal{H}), \quad \text{ui.} \quad \frac{2}{3} \notin \mathcal{H}.$$

• Mivel bármely $x \in [-2, +\infty)$ esetén

$$\mathcal{H} \ni \frac{2|x|+3}{3|x|+1} = \frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3|x|+1} \le \frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3|0|+1} = \frac{2|0|+3}{3|0|+1} = \frac{3}{1}$$

ezért \mathcal{H} -nak van legnagyobb eleme: $\max(\mathcal{H}) = 3$. Következésképpen

$$\sup(\mathcal{H}) = \max(\mathcal{H}) = 3$$
.

Összefoglalva: a $\mathcal H$ halmaz alulról és felülről is korlátos.

$$\inf(\mathcal{H}) = \frac{2}{3}, \quad \not\exists \min(\mathcal{H}), \quad \sup(\mathcal{H}) = \max(\mathcal{H}) = 3.$$

6. • Mivel bármely $0 \le x \in \mathbb{R}$ esetén

$$\sqrt{x+1} - \sqrt{x} = \left(\sqrt{x+1} - \sqrt{x}\right) \cdot 1 = \left(\sqrt{x+1} - \sqrt{x}\right) \cdot \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

és

$$\sqrt{x+1} + \sqrt{x} \ge 1 \qquad (0 \le x \in \mathbb{R}),$$

ezért

$$0 < \sqrt{x+1} - \sqrt{x} = \frac{1}{\sqrt{x+1} + \sqrt{x}} \le 1$$
 $(0 \le x \in \mathbb{R}).$

Ez azt jelenti, hogy a \mathcal{H} halmaz korlátos, továbbá 0, ill. 1 alsó, ill. felső korlátja \mathcal{H} -nak.

- Mivel x=0 esetén $\sqrt{x+1}-\sqrt{x}=1$ ezért $1\in\mathcal{H}$, következésképpen $\max(\mathcal{H})=1$, és így $\sup(\mathcal{H})=1$.
- Látható, hogy ha x elég nagy, akkor

$$\frac{1}{\sqrt{x+1} + \sqrt{x}}$$

igen kicsi. Sejthető tehát, hogy \mathcal{H} -nak nincsen 0-nál nagyobb alsó korlátja:

$$\forall \, \varepsilon > 0 \, \exists \, x \in [0, +\infty) : \qquad \mathcal{H} \ni \sqrt{x+1} - \sqrt{x} < 0 + \varepsilon = \varepsilon.$$

Mivel tetszőleges $0 \le x \in \mathbb{R}$ esetén

$$\frac{1}{\sqrt{x+1}+\sqrt{x}} \leq \frac{1}{\sqrt{x}+\sqrt{x}} = \frac{1}{2\sqrt{x}} < \varepsilon \qquad \iff \qquad x > \frac{1}{4\varepsilon^2},$$

ezért $\inf(\mathcal{H}) = 0$.

• Mivel $0 \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legkisebb eleme.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = 0$$
, $\not\exists \min(\mathcal{H})$, $\sup(\mathcal{H}) = \max(\mathcal{H}) = 1$.

Gyakorló feladat. Vizsgáljuk az \mathcal{H} halmazt korlátosság szempontjából! Határozzuk meg inf \mathcal{H} -t és sup \mathcal{H} -t! Van-e a \mathcal{H} halmaznak legkisebb, ill. legnagyobb eleme?

$$\text{1. } \mathcal{H}:=\left\{\frac{x^2+1}{4x^2+3}\in\mathbb{R}:\;x\in[2,+\infty)\right\}; \qquad \text{2. } \mathcal{H}:=\left\{\frac{5\cdot 5^n+1}{2\cdot 5^n+3}\in\mathbb{R}:\;n\in\mathbb{N}\right\};$$

$$3. \ \mathcal{H}:=\left\{\frac{\sqrt{x}-1}{5\sqrt{x}+2}\in\mathbb{R}: \ x\in[4,+\infty)\right\}; \qquad 4. \ \mathcal{H}:=\left\{\frac{x}{y}\in\mathbb{R}: \ x\in(0,1), y\in(0,x)\right\};$$

5.
$$\mathcal{H} := \left\{ \frac{2 + \sqrt{x}}{3\sqrt{x} + 1} \in \mathbb{R} : x \in [1/9, +\infty) \right\}.$$
 6. $\mathcal{H} := \left\{ \frac{5x - 1}{2x + 3} \in \mathbb{R} : x \in [3, +\infty) \right\}.$

Útm.

1. • Mivel minden $x \in [2, +\infty)$ esetén

$$(*) \quad \frac{x^2+1}{4x^2+3} = \frac{1}{4} \cdot \frac{4x^2+4}{4x^2+3} = \frac{1}{4} \cdot \frac{4x^2+3+1}{4x^2+3} = \frac{1}{4} \cdot \left(1 + \frac{1}{4x^2+3}\right) = \frac{1}{4} + \frac{1}{16x^2+12}$$

és

$$\frac{1}{16x^2 + 12} > 0,$$

ezért

$$\mathcal{H} \ni \frac{x^2 + 1}{4x^2 + 3} > \frac{1}{4},$$

azaz $\frac{1}{4}$ alsó korlátja \mathcal{H} -nak.

• Megmutatjuk, hogy $\frac{1}{4}$ a legnagyobb alsó korlát: $\inf(\mathcal{H}) = \frac{1}{4}$. Valóban, bármely $\epsilon > 0$ szám esetén pontosan akkor van olyan $h \in \mathcal{H}$, hogy $h < \frac{1}{4} + \epsilon$, ha alkalmas $x \in [2, +\infty)$ számra

$$\frac{1}{4}+\epsilon>h:=\frac{1}{4}+\frac{1}{16x^2+12}\quad\Longleftrightarrow\quad \epsilon>\frac{1}{16x^2+12}\quad\Longleftrightarrow\quad x^2>\frac{1}{16\epsilon}-\frac{3}{4}.$$

Világos, hogy pl. az

$$x := \sqrt{\frac{1}{16\varepsilon}} + 2 = \frac{1}{4\sqrt{\varepsilon}} + 2 > 2$$

szám ilyen.

• Mivel $\frac{1}{4} \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legkisebb eleme.

• A (*) felbontásból az is látható, hogy bármely $x \in [2, +\infty)$ esetén

$$\frac{1}{4} + \frac{1}{16x^2 + 12} \le \frac{1}{4} + \frac{1}{16 \cdot 2^2 + 12} = \frac{5}{19} \in \mathcal{H}.$$

Ez azt jelenti, hogy $\sup(\mathcal{H}) = \max(\mathcal{H}) = \frac{5}{19}$.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \frac{1}{4}, \quad \not\exists \min(\mathcal{H}), \qquad \sup(\mathcal{H}) = \max(\mathcal{H}) = \frac{5}{19}.$$

2. Mivel minden $n \in \mathbb{N}$ esetén $\frac{5 \cdot 5^{n} + 1}{2 \cdot 5^{n} + 3} = \frac{5}{2} \cdot \frac{10 \cdot 5^{n} + 2}{10 \cdot 5^{n} + 15} = \frac{5}{2} \cdot \frac{10 \cdot 5^{n} + 15 - 13}{10 \cdot 5^{n} + 15} = \frac{5}{2} \cdot \left(1 - \frac{13}{10 \cdot 5^{n} + 15}\right) = \frac{5}{2} - \frac{13}{4 \cdot 5^{n} + 6}$

és
$$\frac{13}{4\cdot 5^n+6}>0,$$
 ezért
$$\frac{5\cdot 5^n+1}{2\cdot 5^n+3}<\frac{5}{2},$$

azaz $\frac{5}{2}$ felső korlátja \mathcal{H} -nak.

• Megmutatjuk, hogy $\frac{5}{2}$ a legkisebb felső korlát: $\sup(\mathcal{H}) = \frac{5}{2}$. Valóban, bármely $\epsilon > 0$ szám esetén pontosan akkor van olyan $h \in \mathcal{H}$, hogy $h > \frac{5}{2} - \epsilon$, ha alkalmas $n \in \mathbb{N}$ számra

$$\frac{5}{2} - \varepsilon < \alpha := \frac{5}{2} - \frac{13}{4 \cdot 5^n + 6} \quad \Longleftrightarrow \quad \varepsilon > \frac{13}{4 \cdot 5^n + 6} \quad \Longleftrightarrow \quad 5^n > \frac{13}{4\varepsilon} - \frac{6}{4}.$$

Nem nehéz belátni, hogy van ilyen n.

- Mivel $\frac{5}{2} \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legnagyobb eleme.

$$\frac{5}{2} - \frac{13}{4 \cdot 5^{n} + 6} \ge \frac{5}{2} - \frac{13}{4 \cdot 5^{0} + 6} = \frac{6}{5} \in \mathcal{H}.$$

Ez azt jelenti, hogy $\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{6}{5}$.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{6}{5}, \qquad \sup(\mathcal{H}) = \frac{5}{2}, \quad \nexists \max(\mathcal{H}).$$

3. • Mivel minden $x \in [4, +\infty)$ esetén

$$(*) \quad \frac{\sqrt{x}-1}{5\sqrt{x}+2} = \frac{1}{5} \cdot \frac{5\sqrt{x}-5}{5\sqrt{x}+2} = \frac{1}{5} \cdot \frac{5\sqrt{x}+2-7}{5\sqrt{x}+2} = \frac{1}{5} \cdot \left(1 - \frac{7}{5\sqrt{x}+2}\right) = \frac{1}{5} - \frac{7}{25\sqrt{x}+10}$$

és

$$\frac{7}{25\sqrt{x} + 10} > 0,$$

ezért

$$\frac{\sqrt{x}-1}{5\sqrt{x}+2}<\frac{1}{5},$$

azaz $\frac{1}{5}$ felső korlátja \mathcal{H} -nak.

• Megmutatjuk, hogy $\frac{1}{5}$ a legkisebb felső korlát: $\sup(\mathcal{H}) = \frac{1}{5}$. Valóban, bármely $\varepsilon > 0$ szám esetén pontosan akkor van olyan $h \in \mathcal{H}$, hogy $h > \frac{1}{5} - \varepsilon$, ha alkalmas $x \in [4, +\infty)$ számra

$$\frac{1}{5} - \varepsilon < h := \frac{1}{5} - \frac{7}{25\sqrt{x} + 10} \quad \Longleftrightarrow \quad \varepsilon > \frac{7}{25\sqrt{x} + 10} \quad \Longleftrightarrow \quad \sqrt{x} > \frac{7}{25\varepsilon} - \frac{2}{5}.$$

Világos, hogy pl. az

$$x := \left(\frac{7}{25\varepsilon}\right)^2 + 4 = \frac{49}{225\varepsilon^2} + 4 > 4$$

szám ilyen.

- Mivel $\frac{1}{5} \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legnagyobb eleme.
- A (*) felbontásból az is látható, hogy bármely $x \in [4, +\infty)$ esetén

$$\frac{1}{5} - \frac{7}{25\sqrt{x} + 10} \ge \frac{1}{5} - \frac{7}{25\sqrt{4} + 10} = \frac{1}{12} \in \mathcal{H}.$$

Ez azt jelenti, hogy $\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{1}{12}$.

Összefoglalva: a \mathcal{H} halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = \frac{1}{12}, \quad \sup(\mathcal{H}) = \frac{1}{5}, \quad \nexists \max(\mathcal{H}).$$

4. • A \mathcal{H} halmaz felülről nem korlátos, ugyanis tetszőleges $K \geq 1$ számhoz van olyan $h \in \mathcal{H}$, hogy h > K, hiszen $h := \frac{x}{y}$:

$$x:=rac{1}{2},\quad y\in\left(0,rac{1}{2K}
ight) \qquad ext{eset\'en} \qquad h=rac{rac{1}{2}}{y}>rac{rac{1}{2}}{rac{1}{2K}}=K.$$

Ezért

$$\sup(\mathcal{H}) = +\infty$$
, ill. $\nexists \max(\mathcal{H})$.

- A \mathcal{H} halmaz alulról korlátos, ugyanis 0 alsó korlátja, sőt minden $x \in (0,1)$ esetén $\frac{x}{y} > \frac{x}{x} = 1$, ezért az 1 is alsó korlát.
- $\bullet \ \ \inf(\mathcal{H}) = 1, ugyanis \ minden \ \epsilon > 0 hoz \ van \ olyan \ x \in (0,1), y \in (0,x), hogy \ \frac{x}{y} < 1 + \epsilon, hiszen$

$$\frac{x}{y} < 1 + \varepsilon \iff y > \frac{x}{1 + \varepsilon}$$

és $\frac{x}{1+\epsilon} < x$, ezért tetszőleges $x \in (0,1)$ esetén y legyen olyan, hogy $\frac{x}{1+\epsilon} < y < x$.

• $\nexists \min(\mathcal{H})$, mivel $\inf(\mathcal{H}) = 1 \notin \mathcal{H}$.

Összefoglalva: a \mathcal{H} halmaz alulról korlátos, felülről nem korlátos,

$$\inf(\mathcal{H}) = 1, \quad \nexists \min(\mathcal{H}), \qquad \sup(\mathcal{H}) = +\infty.$$

5. • Mivel minden $x \in [1/9, +\infty)$ esetén

$$(*) \quad \frac{2+\sqrt{x}}{3\sqrt{x}+1} = \frac{1}{3} \cdot \frac{3\sqrt{x}+6}{3\sqrt{x}+1} = \frac{1}{3} \cdot \frac{3\sqrt{x}+1+5}{3\sqrt{x}+1} = \frac{1}{3} \cdot \left(1+\frac{5}{3\sqrt{x}+1}\right) = \frac{1}{3} + \frac{5}{9\sqrt{x}+3}$$

és

$$\frac{5}{9\sqrt{x}+3}>0,$$

ezért

$$\frac{2+\sqrt{x}}{3\sqrt{x}+1} > \frac{1}{3},$$

azaz $\frac{1}{3}$ alsó korlátja \mathcal{H} -nak.

• Megmutatjuk, hogy $\frac{1}{3}$ a legnagyobb alsó korlát: $\inf(\mathcal{H}) = \frac{1}{3}$. Valóban, bármely $\epsilon > 0$ szám

esetén pontosan akkor van olyan $h\in\mathcal{H},$ hogy $\alpha<\frac{1}{3}+\epsilon,$ ha alkalmas $x\in[1/9,+\infty)$ számra

$$\frac{1}{3}+\epsilon>h:=\frac{1}{3}+\frac{5}{9\sqrt{x}+3}\quad\Longleftrightarrow\quad \epsilon>\frac{5}{9\sqrt{x}+3}\quad\Longleftrightarrow\quad \sqrt{x}>\frac{1}{9}\left(\frac{5}{\epsilon}-3\right)=\frac{5}{9\epsilon}-\frac{1}{3}.$$

Világos, hogy pl. az

$$x:=\frac{25}{81\epsilon^2}+\frac{1}{9}$$

szám ilyen.

- Mivel $\frac{1}{3} \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legkisebb eleme.
- A (*) felbontásból az is látható, hogy bármely $x \in [1/9, +\infty)$ esetén

$$\frac{1}{3} + \frac{5}{9\sqrt{x} + 3} \le \frac{1}{3} + \frac{5}{9\sqrt{1/9} + 3} = \frac{1}{3} + \frac{5}{6} = \frac{7}{6} \in A.$$

Ez azt jelenti, hogy

$$\sup(\mathcal{H}) = \max(\mathcal{H}) = \frac{7}{6}.$$

Összefoglalva: a ${\cal H}$ halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \frac{1}{3}, \quad \nexists \min(\mathcal{H}), \qquad \sup(\mathcal{H}) = \max(\mathcal{H}) = \frac{7}{6}.$$

6. • Világos, hogy bármely $3 \le x \in \mathbb{R}$ esetén

$$\frac{5x-1}{2x+3} = \frac{5}{2} \cdot \frac{10x-2}{10x+15} = \frac{5}{2} \cdot \frac{10x+15-17}{10x+15} = \frac{5}{2} \cdot \left(1 - \frac{17}{10x+15}\right) = \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2x+3}.$$

• Mivel tetszőleges $3 \le x \in \mathbb{R}$ esetén

$$\frac{14}{9} = \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2 \cdot 3 + 3} \le \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2x + 3},$$

ezért

$$\inf(A) = \min(A) = \frac{14}{9}.$$

• Látható, hogy $\frac{5}{2}$ felső korlát. Belátjuk, hogy sup $(A) = \frac{5}{2}$. Ehhez azt kell megmutatni, hogy

$$\forall \, \varepsilon > 0 \, \exists \, x \in [3, +\infty) : \quad \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2x+3} > \frac{5}{2} - \varepsilon.$$

Ez azzal egyenértékű, hogy

$$\frac{17}{2} \cdot \frac{1}{2x+3} < \varepsilon$$
, azaz hogy $\frac{17}{2\varepsilon} - 3 < 2x$.

Ilyen $x \in \mathcal{H} := [3, +\infty)$ nyilván létezik, hiszen \mathcal{H} felülrőlnem korlátos.

• $\exists \max(A), \text{ mivel } \frac{5}{2} \notin A.$

Összefoglalva: a ${\mathcal H}$ halmaz alulról és felülről is korlátos,

$$\inf(\mathcal{H}) = \inf(\mathcal{H}) = \frac{14}{9}, \qquad \sup(\mathcal{H}) = \frac{5}{2}, \quad \nexists \max(\mathcal{H}) = . \quad \blacksquare$$

3. gyakorlat (2022.02.22.)

Emlékeztető. Valamely $f \in A \rightarrow B$ függvény

ullet és $\mathcal{H}\subset\mathcal{D}_f$ halmaz esetén a \mathcal{H} halmaz f által létesített **kép**én az

$$f[\mathcal{H}] := \{f(x) \in B : x \in \mathcal{H}\} = \{y \in B \mid \exists x \in \mathcal{H} : y = f(x)\}\$$

halmazt értettük (speciálisan $f[\emptyset] := \emptyset$).

ullet és ${\cal H}\subset {\sf B}$ halmaz esetén a ${\cal H}$ halmaz f által létesített ősképén az

$$f^{-1}[\mathcal{H}] := \{ x \in \mathcal{D}_f : \ f(x) \in \mathcal{H} \}$$

halmazt értettük (speciálisan $f^{-1}[\emptyset] := \emptyset$).

Megjegyezzük, hogy

$$f[\mathcal{D}_f] = \mathcal{R}_f \qquad \text{\'es} \qquad f^{-1}[\mathcal{R}_f] = \mathcal{D}_f.$$

Példa.

$$abs[(2,4)] = (2,4) \quad \text{\'es} \quad abs^{-1}[(2,4)] = \{x \in \mathbb{R}: \ |x| \in (2,4)\} = (-4,-2) \cup (2,4).$$

1. ábra. Az abs[(2,4)] = (2,4) és az abs $^{-1}[(2,4)]$ halmazok.

Feladat. Az

$$f(x) := 3 + 2x - x^2 \qquad (x \in \mathbb{R})$$

függvény és a $\mathcal{H} := \{0\}$ halmaz esetében határozzuk meg az $f[\mathcal{H}]$ és az $f^{-1}[\mathcal{H}]$ halmazt!

Útm. Mivel $0 \in \mathcal{D}_f = \mathbb{R}$, ezért

$$f[\{0\}] = \left\{3 + 2x - x^2 \in \mathbb{R}: \ x \in \{0\}\right\} = \left\{3 + 2x - x^2 \in \mathbb{R}: \ x = 0\right\} = \{3\},$$

továbbá

$$f^{-1}[\{0\}] = \left\{x \in \mathbb{R}: \ 3 + 2x - x^2 \in \{0\}\right\} = \left\{x \in \mathbb{R}: \ 3 + 2x - x^2 = 0\right\} = \{-1; 3\},$$

hiszen

$$3 + 2x - x^2 = 0$$
 \iff $x = 1 \pm \sqrt{1+3}$.

2. ábra. Az $\mathbb{R} \ni x \mapsto 3 + 2x - x^2$ függvény grafikonja.

Feladat. Határozzuk meg a $\mathcal{H} := [-2, 2]$ halmaz

$$f(x) := 3 + 2x - x^2 \qquad (x \in \mathbb{R})$$

függvény által létesített képét!

Útm. A deffiníció alapján világos, hogy

$$f[\mathcal{H}] = \left\{3 + 2x - x^2 \in \mathbb{R}: \; x \in [-2,2]\right\} = \left\{y \in \mathbb{R} \,|\, \exists x \in [-2,2]: \; y = 3 + 2x - x^2\right\}.$$

Mivel

$$f(x) = 3 + 2x - x^2 = -(x - 1)^2 + 4$$
 $(x \in \mathbb{R})$

és

$$x \in [-2, 2] \iff -2 \le x \le 2 \implies -3 \le x - 1 \le 1 \implies 0 \le (x - 1)^2 \le 9 \implies$$

$$\implies -9 \le -(x - 1)^2 \le 0 \implies -5 \le -(x - 1)^2 + 4 \le 4,$$

ezért

$$x \in [-2, 2] \implies f(x) = -(x - 1)^2 + 4 \in [-5, 4], \quad \text{azaz} \quad f[[-2, 2]] \subset [-5, 4].$$

Az f grafikonjának ismeretében (vö. 3. ábra) sejthető, hogy a fordított irányú

$$f[[-2,2]] \supset [-5,4]$$
 (3)

3. ábra. Az $\mathbb{R} \ni x \mapsto 3 + 2x - x^2$ függvény grafikonja.

tartalmazás is igaz, azaz igaz az

$$y \in [-5, 4] \implies \exists x \in [-2, 2] : y = -(x - 1)^2 + 4$$
 (4)

implikáció. Az

$$y = -(x-1)^2 + 4$$
 \iff $(x-1)^2 = 4 - y$

egyenlet megoldása:

$$x_{\pm} = 1 \pm \sqrt{4 - y}.$$

Mivel

$$y \in [-5,4] \quad \Rightarrow \quad -5 \le y \le 4 \quad \Rightarrow \quad -4 \le -y \le 5 \quad \Rightarrow \quad 0 \le 4 - y \le 9 \quad \Rightarrow \quad 0 \le \sqrt{4 - y} \le 3$$

ezért

$$-2 = 1 - 3 \le x_{-} = 1 - \sqrt{4 - y} \le 1 + 0 = 1$$
 \Longrightarrow $x_{-} \in [-2, 1] \subset [-2, 2].$

Ezzel beláttuk az (4), azaz a (3) állítást, amelynek következményeként azt kapjuk, hogy

$$f[[-2,2]] = [-5,4].$$

Feladat. Határozzuk meg a $\mathcal{H} := [1, 2]$ halmaz

$$f(x) := |x - 1| - 1$$
 $(x \in \mathbb{R})$

függvény által létesített ősképét!

Útm. Mivel

$$f^{-1}[[1,2]] = \{x \in \mathbb{R} : |x-1|-1 \in [1,2]\} = \{x \in \mathbb{R} : 1 \le |x-1|-1 \le 2\} =$$
$$= \{x \in \mathbb{R} : 2 < |x-1| < 3\},$$

ezért a

$$2 \le |x - 1| \le 3 \tag{5}$$

egyenlőtlenség-rendszer megoldáshalmazának meghatározása a feladat.

• A ≤ megoldása. Mivel

$$2 \le |x-1| \quad \Longleftrightarrow \quad (x-1 \ge 2 \text{ vagy } x-1 \le -2) \quad \Longleftrightarrow \quad \quad (x \ge 3 \quad \text{vagy} \quad x \le -1) \,,$$

ezért

$$2 \le |x-1| \iff x \in (-\infty, -1] \cup [3, +\infty) =: \mathcal{B}$$

A ≤ megoldása. Mivel

$$|x-1| \leq 3 \quad \Longleftrightarrow \quad -3 \leq x-1 \leq 3 \quad \Longleftrightarrow \quad -2 \leq x \leq 4 \quad \Longleftrightarrow \quad x \in [-2,4] =: \mathcal{J}.$$

Az (5) egyenlőtlenség megoldáshalmaza és egyben a keresett őskép:

$$f^{-1}[[1,2]] = \mathcal{B} \cap \mathcal{J} = \{(-\infty,-1] \cup [3,+\infty)\} \cap [-2,4] =$$

$$= \{(-\infty,-1] \cap [-2,4]\} \cup \{[3,+\infty) \cap [-2,4]\} = [-2,-1] \cup [3,4]. \quad \blacksquare$$

$$-2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

A megoldást szemlélteti a 4. ábra.

4. ábra. Az $f^{-1}[[1,2]] = [-2,-1] \cup [3,4]$ halmaz.

Megjegyzés. Adott $f \in A \rightarrow B$ függvény és $b \in B$ esetén az

$$f(x) = b \quad (x \in A) \tag{6}$$

egyenlet megoldásainak nevezzük az f⁻¹ [{b}] halmaz elemeit. Azt mondjuk továbbá, hogy

- az (6) egyenletnek nincsen megoldása ((6) nem oldható meg), ha $f^{-1}[\{b\}] = \emptyset$;
- (6) megoldása egyértelmű, ha f⁻¹ [{b}] egyelemű halmaz.

Emlékeztető. Azt mondtuk, hgy az $f \in A \rightarrow B$ függvény **invertálható** vagy **injektív**, ha

$$\forall \, \mathfrak{u}, \mathfrak{v} \in \mathcal{D}_{\mathsf{f}}: \qquad (\mathfrak{u} \neq \mathfrak{v} \quad \Longrightarrow \quad \mathsf{f}(\mathfrak{u}) \neq \mathsf{f}(\mathfrak{v})) \,. \tag{7}$$

Megjegyezzük, hogy

- 1. az alábbi állítások bármelyike egyenértékű (7)-tel:
 - $\forall u, v \in \mathcal{D}_f$: $(f(u) = f(v) \implies u = v);$
 - $\bullet \ \forall y \in \mathcal{R}_f \ \exists | \ x \in \mathcal{D}_f : \quad f(x) = y.$
- 2. ha alkamas $u, v \in \mathcal{D}_f$, $u \neq v$ esetén f(u) = f(v), akkor f nem invertálható (nem injektív).
- 3. ha I $\subset \mathbb{R}$ intervallum, f : I $\to \mathbb{R}$ szigorúan monoton (növekvő/csökkenő), akkor f invertálható. Mindez fordítva nem igaz, ui. pl. az

$$f:[0,1] \to \mathbb{R}, \qquad f(x) := \left\{ \begin{array}{ll} x & \left(x \in \left[0,\frac{1}{2}\right)\right), \\ \frac{3}{2} - x & \left(x \in \left[\frac{1}{2},1\right)\right) \end{array} \right.$$

függvény ugyan injektív, de nem szigorúan monoton.

Az alábbi ábra bal oldala példa injektív függvényre, a jobb oldalán lévő f pedig nem injektív.

Feladat. Döntsük el, hogy az alábbi függvények közül melyek invertálhatók!

1.
$$f(x) := 3x + 2 (x \in \mathbb{R});$$

2.
$$f(x) := x^2 (x \in \mathbb{R});$$

3.
$$f(x) := \sqrt{9 - x^2}$$
 $(x \in [-3, 3]);$

4.
$$f(x) := \left(\frac{x-1}{1+x}\right)^2 - 1 \ (x \in (-1,1)).$$

Útm.

1. f invertálható, hiszen szigorúan monoton (növekedő):

$$\forall u, v \in \mathbb{R}, u < v : 3u < 3v \iff 3u + 2 < 3u + 2 \iff f(u) < f(v).$$

- 2. f nem invertálható, hiszen $f(-1) = (-1)^2 = 1^2 = f(1)$.
- 3. f nem invertálható, hiszen $f(-3) = \sqrt{9 (-3)^2} = \sqrt{9 3^2} = f(3)$. **Megjegyzés.** Ha f (nemtrivi) páros függvény, akkor f nyilvánvalóan nem invertálható.
- 4. f invertálható, hiszen tetszőleges $x, y \in (-1, 1)$ esetén

$$f(x) = f(y) \iff \left(\frac{x-1}{1+x}\right)^2 - 1 = \left(\frac{y-1}{1+y}\right)^2 - 1 \iff \underbrace{\left(\frac{x-1}{1+x}\right)^2 - \left(\frac{y-1}{1+y}\right)^2 = 0}$$

$$\underbrace{\left[\frac{x-1}{1+x} - \frac{y-1}{1+y}\right] \cdot \left[\frac{x-1}{1+x} + \frac{y-1}{1+y}\right]}_{=0}$$

és
$$\frac{x-1}{1+x} - \frac{y-1}{1+y} = \frac{(x-1)(1+y) - (y-1)(1+x)}{(1+x)(1+y)} = \frac{2(x-y)}{(1+x)(1+y)}$$

ill.
$$\frac{x-1}{1+x} + \frac{y-1}{1+y} = \frac{(x-1)(1+y) + (y-1)(1+x)}{(1+x)(1+y)} = \frac{2(xy-1)}{(1+x)(1+y)} \neq 0,$$

így
$$f(x) = f(y) \qquad \Longleftrightarrow \qquad x = y. \quad \blacksquare$$

Emlékeztető. Adott $f: A \rightarrow B$ invertálható függvény esetén az

$$f^{-1}: \mathcal{R}_f \to \mathcal{D}_f, \quad f^{-1}(y) = x: \quad f(x) = y$$

függvényt az f inverzének nevezzük.

Megjegyzések.

1. A definícióból látható, hogy

$$\mathcal{D}_{f^{-1}} = \mathcal{R}_f \qquad \text{\'es} \qquad \mathcal{R}_{f^{-1}} = \mathcal{D}_f.$$

- 2. Ha I $\subset \mathbb{R}$ intervallum, f : I $\to \mathbb{R}$ szigorúan monoton (növekvő/csökkenő), akkor f⁻¹ is az.
- 3. Felhívjuk a figyelmet egy, a jelölésekkel kapcsolatos látszólagos következetlenségre. Az $f^{-1}[\mathcal{H}]$ szimbólum tetszőleges f függvény esetén a \mathcal{H} halmaz f által létesített ősképét jelölte. Azonban, ha f invertálható függvény, akkor ugyanezzel jelöltük a fogalmilag igencsak különböző dolgot, nevezetesen a \mathcal{H} halmaz f^{-1} inverz függvény által létesített képét. Ez azért nem vezet félreértéshez sőt némiképp egyszerűsíti a bevezetett jelelöléseket –, mert minden invertálható f függvény és minden $\mathcal{H} \subset \mathcal{R}_f$ esetén a \mathcal{H} halmaz f által létesített ősképe azaz az $\{x \in \mathcal{D}_f : f(x) \in \mathcal{H}\}$ halmaz megegyezik a \mathcal{H} halmaz f inverz függvény által létesített képével azaz az $\{f^{-1}(y) \in \mathcal{R}_{f^{-1}} : y \in \mathcal{H}\}$ halmazzal.
- 4. Ha $f \in \mathbb{R} \to \mathbb{R}$ invertálható függvény, akkor f és az f^{-1} grafikonjai egymásnak az y = x egyenletű egyenesre való tükörképei (vö. (5). ábra), hiszen ha valamely $(x, y) \in \mathbb{R}$ pont rajta van f grafikonján:

$$(x,y)\in \text{graph}\left\{(u,\nu)\in\mathbb{R}^2:\;u\in\mathcal{D}_f,\,\nu=f(u)\right\},$$

akkor az (y,x) pont rajta van az f^{-1} inverz grafikonján, és ha egy \mathbb{R}^2 -beli pont két koordinátáját felcseréljük, akkor a pontot az y=x egyenesre tükrözzük.

5. ábra. Az $x \mapsto \sqrt{x}$, x, $\frac{x^2}{x}$ függvények grafikonjai.

Feladat. Invertálhatóak-e az alábbi fügvények? Ha igen, akkor számítsuk ki f^{-1} -et!

1.
$$f(x) := \frac{1}{1 + |x - 1|}$$
 $(x \in \mathbb{R});$

2.
$$a, b \in \mathbb{R}$$
, $f(x) := ax + b \quad (x \in \mathbb{R})$;

3.
$$f(x) := \frac{x+1}{x-2}$$
 $(2 \neq x \in \mathbb{R});$

4.
$$f(x) := \left(\frac{x-1}{x+1}\right)^2 - 1 \quad (x \in (-1,1)).$$

Útm.

1. Az f függvény nem injektív, ui.

$$0 \neq 2$$
 és $f(0) = \frac{1}{1 + |0 - 1|} = \frac{1}{2} = \frac{1}{1 + |2 - 1|} = f(2)$.

2. Ha

• $\alpha=0$, akkor $\mathcal{R}_f=\{b\}$, de $\mathcal{D}_f=\mathbb{R}$, így f nem invertálható.

• $\alpha \neq 0$, akkor nyilván $\mathcal{R}_f = \mathbb{R}$ és

$$f(x) = f(y)$$
 \iff $ax + b = ay + b$ \iff $x = y$

azaz f invertálható és

$$f^{-1}:\mathbb{R}\to\mathbb{R}, \qquad f^{-1}(x)=\frac{x-b}{\alpha},$$

hiszen

$$ax + b = y$$
 \iff $x = \frac{y - b}{a}$.

3. Mivel minden $2 \neq x \in \mathbb{R}$ esetén

(*)
$$f(x) = \frac{x-2+3}{x-2} = 1 + \frac{3}{x-2},$$

ezért

$$f(x) = f(y)$$
 \iff $1 + \frac{3}{x-2} = 1 + \frac{3}{y-2}$ \iff $x = y$,

azaz f invertálható. Az inverz függvény meghatározásához f értékkészletét kell megállapítani. (*) alapján sejthető, hogy

$$\mathcal{R}_f = \mathbb{R} \setminus \{1\}.$$

Biz.:

• Világos, hogy $1 \notin \mathcal{R}_f$, hiszen bármely $2 \neq x \in \mathbb{R}$ esetén $\frac{3}{x-2} \neq 0$, így (*) alapján

$$\mathcal{R}_f \subset \mathbb{R} \backslash \{1\}$$
.

• Most megmutatjuk, hogy $\mathcal{R}_f \supset \mathbb{R}\setminus\{1\}$, azaz bármely $y \in \mathbb{R}\setminus\{1\}$ esetén van olyan $x \in \mathcal{D}_f = \mathbb{R}\setminus\{2\}$, hogy f(x) = y. Valóban, ha $y \in \mathbb{R}\setminus\{1\}$, akkor

$$f(x) = y$$
 \iff $1 + \frac{3}{x-2} = y$ \iff $x = 2 + \frac{3}{y-1} = \frac{2y+1}{y-1}$

és $x \neq 2$ miatt $x \in \mathcal{D}_f$.

Tehát

$$f^{-1}:\mathbb{R}\backslash\{1\}\to\mathbb{R}\backslash\{2\}, \qquad f^{-1}(y):=\frac{2y+1}{y-1}.$$

4. Korábbról tudjuk, hogy f invertálható. Világos, hogy bármely $x \in (-1, 1)$ estén f(x) > -1, azaz

$$\mathcal{R}_{f} \subset (-1, +\infty). \tag{8}$$

Mivel f(x) a (-1)-hez közeli x pontokban tetszőlegesen nagy értéket felvesz, ezért sejthető, hogy a

fordított irányú

$$\mathcal{R}_{f}\supset (-1,+\infty). \tag{9}$$

tartalmazás is igaz, azaz

$$\forall y \in (-1, +\infty) \ \exists x \in (-1, 1): \ f(x) = \left(\frac{x-1}{x+1}\right)^2 - 1 = y.$$

Ha tehát $y \in (-1, +\infty)$, akkor

$$f(x) = y \iff \left(\frac{x-1}{x+1}\right)^2 - 1 = y \iff \left|\frac{x-1}{x+1}\right| = \sqrt{y+1} \iff \left|\frac{x-1}{x+1}\right| = \sqrt{y+1} \iff x = \frac{1-\sqrt{y+1}}{1+\sqrt{y+1}}.$$

Mivel $y \in (-1, +\infty)$, ezért

$$-1 < x = \frac{1 - \sqrt{y + 1}}{1 + \sqrt{y + 1}} < 1 \qquad \Longleftrightarrow \qquad -1 - \sqrt{y + 1} < 1 - \sqrt{y + 1} < 1 + \sqrt{y + 1},$$

ez utóbbi egyenlőtlenség-rendszer pedig nyilvánvaló. Így (8), ill. (9) alapján $\mathcal{R}_f=(-1,+\infty)$. Így $x=f^{-1}(y)$ következtében az inverz függvény:

$$f^{-1}(y) = \frac{1 - \sqrt{y+1}}{1 + \sqrt{y+1}}$$
 $(y \in (-1, +\infty))$.

Emlékeztető. Legyen $f \in A \rightarrow B$, $g \in C \rightarrow D$, ill.

$$\mathcal{H} := \{ x \in \mathcal{D}_g : g(x) \in \mathcal{D}_f \} \neq \emptyset.$$

Ekkor az f (külső) és a q (belső) függvény összetett függvényét (kompozícióját) az

$$f \circ g : \mathcal{H} \to \mathbb{R}$$
, $(f \circ g)(x) := f(g(x))$

módon értelmezzük.

Megjegyzések.

1. A definícióból nyilvánvaló, hogy

$$\mathcal{D}_{f \circ g} = g^{-1} \left[\mathcal{R}_g \cap \mathcal{D}_f \right],$$

illetve $\mathcal{R}_g \subset \mathcal{D}_f$ esetén $\mathcal{D}_{f \circ g} = \mathcal{D}_g$.

2. Ha $f \in \mathbb{R} \to \mathbb{R}$ invertálható függvény, akkor

$$\left(f^{-1}\circ f\right)(x)=x \qquad (x\in \mathcal{D}_f), \qquad \qquad \left(f\circ f^{-1}\right)(y)=y \qquad (y\in \mathcal{R}_f).$$

3. Ha f, $g \in \mathbb{R} \to \mathbb{R}$ olyan invertálható függvények, amelyekre $\mathcal{R}_g = \mathcal{D}_f$ és $\mathcal{R}_f = \mathcal{D}_g$ teljesül, akkor $f \circ g$ is invertálható és

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$
.

4. A kompozíció-képzés nem kommutatív, hiszen pl. az

$$f(x) := \sqrt{1-x}$$
 $(x \in (-\infty, 1])$ és a $g(x) := x^2$ $(x \in \mathbb{R})$

függvények esetében f \circ g \neq g \circ f. Valóban,

a

$$\mathcal{D}_{f \circ g} = \left\{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\right\} = \left\{x \in \mathbb{R}: \ x^2 \in (-\infty, 1]\right\} = [-1, 1] \neq \emptyset$$

halmazzal, ha $x \in \mathcal{D}_{f \circ g}$, akkor

$$(f \circ g)(x) = (f(g(x)) = \sqrt{1 - g(x)} = \sqrt{1 - x^2},$$

azaz az f és a g kompizíciója az

$$f \circ g : [-1, 1] \to \mathbb{R}, \qquad (f \circ g)(x) = \sqrt{1 - x^2}$$

függvény;

• a

$$\mathcal{D}_{g \circ f} = \{x \in \mathcal{D}_f: \ f(x) \in \mathcal{D}_g\} = \left\{x \in (-\infty, 1]: \ \sqrt{1-x} \in \mathbb{R}\right\} = (-\infty, 1] \neq \emptyset$$

halmazzal, ha $x \in \mathcal{D}_{g \circ f}$, akkor

$$(g \circ f)(x) = (g(f(x)) = g(\sqrt{1-x}) = (\sqrt{1-x})^2 = 1-x,$$

azaz a q és az f függvény kompozícióka a

$$g \circ f : (-\infty, 1] \to \mathbb{R}, \qquad (g \circ f)(x) = 1 - x$$

függvény.

A $q \in A \to B$ és az $f \in B \to C$ függvények $f \circ q$ kompozícióját szemlélteti az alábbi ábra.

Feladat. Írjuk fel az f ∘ g kompozíciót a következő függvények esetében, amennyiben az képezhető!

1.
$$f(x) := \sqrt{x+1} \ (-1 \le x \in \mathbb{R}), \ g(x) := x^2 - 3x + 1 \ (x \in \mathbb{R});$$

2.
$$f(x) := \frac{1}{2x+1} \left(-\frac{1}{2} \neq x \in \mathbb{R} \right), \quad g(x) := x^2 + 3x + \frac{3}{2} (x \in \mathbb{R}).$$

Útm.

1. Világos, hogy

$$\begin{split} \mathcal{D}_{f \circ g} &= \{ x \in \mathcal{D}_g : \ g(x) \in \mathcal{D}_f \} = \left\{ x \in \mathbb{R} : \ x^2 - 3x + 1 \in [-1, +\infty) \right\} = \\ &= \left\{ x \in \mathbb{R} : \ x^2 - 3x + 1 \geq -1 \right\} = \left\{ x \in \mathbb{R} : \ x^2 - 3x + 2 \geq 0 \right\}. \end{split}$$

Mivel

$$x^2 - 3x + 2 \qquad \Longrightarrow \qquad x_{\pm} = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2}}{2} = \frac{3 \pm 1}{2} \in \{1; 2\}\,,$$

ezért

$$x^2-3x+2\geq 0 \qquad \Longleftrightarrow \qquad (x-1)(x-2)\geq 0 \qquad \Longleftrightarrow \qquad x\in (-\infty,1]\cup [2,+\infty).$$

Tehát

$$\mathcal{D}_{\mathsf{fog}} = (-\infty, 1] \cup [2, +\infty),$$

és bármely $x \in \mathcal{D}_{f \circ g}$ esetén

$$(f \circ g)(x) = f(g(x)) = \sqrt{g(x) + 1} = \sqrt{(x^2 - 3x + 1) + 1} = \sqrt{x^2 - 3x + 2}.$$

Az f és a q függvény kompozíciója így az

$$(f \circ g)(x) := \sqrt{x^2 - 3x + 2}$$
 $(x \in (-\infty, 1] \cup [2, +\infty))$

függvény.

2. Látható, hogy

$$\begin{split} \mathcal{D}_{f \circ g} &= \{ x \in \mathcal{D}_g : \ g(x) \in \mathcal{D}_f \} = \left\{ x \in \mathbb{R} : \ x^2 + 3x + \frac{3}{2} \in \mathbb{R} \setminus \{-1/2\} \right\} = \\ &= \left\{ x \in \mathbb{R} : \ x^2 + 3x + \frac{3}{2} \neq \frac{1}{2} \right\} = \left\{ x \in \mathbb{R} : \ x^2 + 3x + +2 \neq 0 \right\} = \\ &= \{ x \in \mathbb{R} : \ (x+1)(x+2) \neq 0 \} = \mathbb{R} \setminus \{-; -2\}. \end{split}$$

Ígí tetszőleges $x \in \mathcal{D}_{\mathsf{fog}}$ esetén

$$(f \circ g)(x) = f(g(x)) = \frac{1}{2g(x) + 1} = \frac{1}{2(x^2 + 3x + \frac{3}{2}) + 1} = \frac{1}{2} \cdot \frac{1}{x^2 + 3x + 2}.$$

Mindez azt jelenti, hogy az f és a g függvény kompozíciója így az

$$(f \circ g)(x) := \frac{1}{2} \cdot \frac{1}{x^2 + 3x + 2} \qquad (x \in \mathbb{R} \setminus \{-; -2\})$$

függvény. ■

Feladat. Írjuk fel az $f \circ g$ és a $g \circ f$ kompozíciót a következő függvények esetében, amennyiben az képezhető!

1.
$$f(x) := \sqrt{2x+1} \left(\frac{1}{2} \le x \in \mathbb{R}\right), g(x) := \frac{1}{x^2-2} (2 < x \in \mathbb{R});$$

2.
$$f(x) := 1 - x^2 \ (x \in \mathbb{R}), \ g(x) := \sqrt{x} \ (0 \le x \in \mathbb{R});$$

3.
$$f(x) := x^2 (x \in \mathbb{R}), g(x) := 2^x (x \in \mathbb{R});$$

4.
$$f(x) := -x^2 \ (0 < x \in \mathbb{R}), \ g(x) := \frac{1}{x^2} \ (0 < x \in \mathbb{R}).$$

Útm.

1. Mivel

$$\left\{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\right\} = \left\{x \in (2, +\infty): \ \frac{1}{x^2 - 2} \ge \frac{1}{2}\right\} = \emptyset,$$

ui. $x \in (2, +\infty)$ következtében $x^2 - 2 > 0$, így

$$\frac{1}{x^2-2} \geq \frac{1}{2} \qquad \Longrightarrow \qquad 2 \geq x^2-2 \qquad \Longrightarrow \qquad 4 \geq x^2 \qquad \Longrightarrow \qquad |x| < 2.$$

Ez azt jelenti, hogy

f ∘ g nem képezhető.

Mivel

$$\begin{split} \mathcal{D}_{g\circ f} &= \{x \in \mathcal{D}_f \colon \, f(x) \in \mathcal{D}_g\} = \left\{x \in \left[\frac{1}{2}, +\infty\right) \colon \, \sqrt{2x+1} \in (2, +\infty)\right\} = \\ &= \left\{x \in \left[\frac{1}{2}, +\infty\right) \colon \, 2x+1 \in (4, +\infty)\right\} = \left\{x \in \left[\frac{1}{2}, +\infty\right) \colon \, x \in \left(\frac{3}{2}, +\infty\right)\right\} = \\ &= \left(\frac{3}{2}, +\infty\right) \neq \emptyset, \end{split}$$

ezért tetszőleges $x \in \mathcal{D}_{q \circ f}$ esetén

$$(g \circ f)(x) = g(f(x)) = \frac{1}{f^2(x) - 2} = \frac{1}{(\sqrt{2x + 1})^2 - 2} = \frac{1}{2x - 1}.$$

Mindez azt jelenti, hogy a g és az f függvény kompozíciója így a

$$(g \circ f)(x) := \frac{1}{2x - 1}$$
 $\left(x \in \left(\frac{3}{2}, +\infty\right)\right)$

függvény.

2. Mivel

$$\mathcal{D}_{f \circ g} = \left\{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\right\} = \left\{x \in [0, +\infty): \ \sqrt{x} \in \mathbb{R}\right\} = [0, +\infty),$$

ill.

$$\mathcal{D}_{g \circ f} = \left\{x \in \mathcal{D}_f: \ f(x) \in \mathcal{D}_g\right\} = \left\{x \in \mathbb{R}: \ 1 - x^2 \in [0, +\infty)\right\} = [-1, 1],$$

ezért

$$f \circ g : [0, +\infty) \to \mathbb{R}, \qquad (f \circ g)(x) = f(g(x)) = 1 - (g(x))^2 = 1 - (\sqrt{x})^2 = 1 - x,$$

ill.

$$g \circ f : [-1, 1] \to \mathbb{R}, \qquad (g \circ f)(x) = g(f(x)) = \sqrt{f(x)} = \sqrt{1 - x^2}.$$

3. Mivel

$$\mathcal{D}_{f \circ g} = \{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\} = \{x \in \mathbb{R}: \ 2^x \in \mathbb{R}\} = \mathbb{R},$$

ill.

$$\{x\in\mathcal{D}_f:\;f(x)\in\mathcal{D}_g\}=\left\{x\in\mathbb{R}:\;x^2\in\mathbb{R}\right\}=\mathbb{R},$$

ezért

$$f \circ g : \mathbb{R} \to \mathbb{R}, \qquad (f \circ g)(x) = f(g(x)) = (g(x)))^2 = (2^x)^2 = 2^{2x};$$

ill.

$$g \circ f : \mathbb{R} \to \mathbb{R}$$
, $(g \circ f)(x) = g(f(x)) = 2^{f(x)} = 2^{x^2}$.

4. Mivel

$$\mathcal{D}_{f\circ g}=\left\{x\in\mathcal{D}_g:\ g(x)\in\mathcal{D}_f\right\}=\left\{x\in(0,+\infty):\ \frac{1}{\varkappa^2}\in(0,+\infty)\right\}=(0,+\infty),$$

ill.

$$\mathcal{D}_{g\circ f} = \{x \in \mathcal{D}_f: \ f(x) \in \mathcal{D}_g\} = \left\{x \in (0,+\infty): \ -x^2 \in (0,+\infty)\right\} = \emptyset,$$

ezért

$$f \circ g : (0, +\infty) \to \mathbb{R}, \qquad (f \circ g)(x) = f(g(x)) = -\frac{1}{(f(x))^2} = -\frac{1}{x^4},$$

ill.

g ∘ f nem képezhető. ■

Gyakorló feladat. Az

$$f(x) := 3x^2 - 2 \qquad (x \in \mathbb{R})$$

függvény és a $\mathcal{H} := [0, 1]$ halmaz esetén határozzuk meg az $f[\mathcal{H}]$ és az $f^{-1}[\mathcal{H}]$ halmazokat! Milyen A halmaz esetén áll fenn az $f[A] = \emptyset$ vagy az $f^{-1}[A] = \emptyset$ egyenlőség?

Útm.

• Világos, hogy

$$f[\mathcal{H}] = \left\{ 3x^2 - 2 \in \mathbb{R} \middle| x \in [0, 1] \right\}.$$

Mivel minden $x \in [0, 1]$ számra

$$3 \cdot 0^2 - 2 = -2 < 3x^2 - 2 < 3 \cdot 1^2 - 2 = 1$$

ezért

$$\{3x^2 - 2 \in \mathbb{R} | x \in [0,1]\} \subset [-2,1],$$

azaz

$$f[\mathcal{H}] \subset [-2,1]$$
.

Tegyük fel, hogy $y \in [-2, 1]$. Ekkor $3x^2 - 2 = y$, ha $x = \pm \sqrt{\frac{y+2}{3}}$. Mivel

$$\sqrt{\frac{y+2}{3}} \in [0,1]$$
 és $f\left(\sqrt{\frac{y+2}{3}}\right) = y$,

ezért $y \in f[\mathcal{H}]$, azaz

$$[-2,1] \subset f[\mathcal{H}].$$

Megjegyzés. Mivel

$$f[\mathcal{H}] = \left\{ 3x^2 - 2 \in \mathbb{R} \middle| x \in [0, 1] \right\} = 3 \cdot \left\{ x^2 \in \mathbb{R} \middle| x \in [0, 1] \right\} - 2,$$

és nem nehéz megmutatni, hogy

$$\{x^2 \in \mathbb{R} | x \in [0,1]\} = [0,1],$$

ezért

$$f[\mathcal{H}] = [-2, 1].$$

Világos, hogy

$$f^{-1}[\mathcal{H}] = \{ x \in \mathbb{R} | 3x^2 - 2 \in [0, 1] \}.$$

Az $f^{-1}[\mathcal{H}]$ halmaz tehát a

$$0 \le 3x^2 - 2 \le 1 \quad \Longleftrightarrow \quad \frac{2}{3} \le x^2 \le 1 \qquad (x \in \mathbb{R})$$

egyenlőtlenség-rendszer megoldáshalmaza, ezért

$$f^{-1}[\mathcal{H}] = \left(\left(-\infty, -\sqrt{\frac{2}{3}} \right] \cup \left[\sqrt{\frac{2}{3}}, +\infty \right) \right) \cap [-1, 1] =$$

$$= \left(\left(-\infty, -\sqrt{\frac{2}{3}} \right] \cap [-1, 1] \right) \cup \left(\left[\sqrt{\frac{2}{3}}, +\infty \right) \cap [-1, 1] \right) =$$

$$= \left[-1, -\sqrt{\frac{2}{3}} \right] \cup \left[\sqrt{\frac{2}{3}}, 1 \right].$$

• A definíció alapján világos, hogy

$$f[A] = \emptyset \iff A \cap \mathbb{R} = \emptyset$$
 és $f^{-1}[A] = \emptyset \iff A \cap [-2, +\infty) = \emptyset$.

Gyakorló feladat. Invertálhatóak-e az alábbi függvények?

1.
$$f(x) := |x - 1| + |x + 2| \quad (x \in \mathbb{R});$$

2.
$$f(x) := x^3 + 6x^2 + 12x$$
 $(x \in \mathbb{R});$

3.
$$f(x) := x^3 - 3x^2 + 3x + 4$$
 $(x \in \mathbb{R})$.

Útm.

1. Mivel

$$f(x) = \begin{cases} 1 - x - x - 2 = -1 - 2x & (x \in (-\infty, -2)), \\ 1 - x + x + 2 = 3 & (x \in [-2, 1)), \\ x - 1 + x + 2 = 2x + 1 & (x \in [1, +\infty)), \end{cases}$$

ezért f nem invertálható.

2. Mivel bármely $x \in \mathbb{R}$ esetén

$$f(x) = x^3 + 6x^2 + 12x + 2^3 - 6 = (x+2)^3 - 8$$

ezért f szigorúan monoton növekedő, következésképpen invertálható. Sőt, az is könnyen megmutatható, hogy $\mathcal{R}_f = \mathbb{R}$, hiszen bármely $y \in \mathbb{R}$ esetén van olyan $x \in \mathcal{D}_f = \mathbb{R}$, hogy

$$f(x)=y \qquad \Longleftrightarrow \qquad (x+2)^3-8=y \qquad \Longleftrightarrow \qquad x=\sqrt[3]{y+8}-2.$$
 e:
$$f^{-1}:\mathbb{R}\to\mathbb{R}, \qquad f^{-1}(y):=\sqrt[3]{y+8}-2$$

Az f inverze:

$$f^{-1}: \mathbb{R} \to \mathbb{R}, \qquad f^{-1}(y) := \sqrt[3]{y+8} - 2$$

3. Mivel bármely $x \in \mathbb{R}$ esetén

$$f(x) = x^3 - 3x^2 + 3x - 1 + 5 = (x - 1)^3 + 5,$$

ezért f szigorúan monoton növekedő, következésképpen invertálható. Sőt, az is könnyen megmutatható, hogy $\mathcal{R}_f = \mathbb{R}$, hiszen bármely $y \in \mathbb{R}$ esetén van olyan $x \in \mathcal{D}_f = \mathbb{R}$, hogy

$$f(x) = y$$
 \iff $(x-1)^3 + 5 = y$ \iff $x = \sqrt[3]{y-5} + 1.$

Az f inverze:

$$f^{-1}: \mathbb{R} \to \mathbb{R}, \qquad f^{-1}(y) := \sqrt[3]{y-5} + 1.$$

Gyakorló feladat. Invertálható-e az

$$f(x) := \frac{3x+2}{x-1} \qquad (1 \neq x \in \mathbb{R})$$

függvény? Ha igen, akkor számítsuk ki f⁻¹-et!

Útm. Mivel minden $1 \neq x \in \mathbb{R}$ esetén

(*)
$$f(x) = 3 \cdot \frac{3x+2}{3x-3} = 3 \cdot \frac{3x-3+5}{3x-3} = 3 \cdot \left(1 + \frac{5}{3x-3}\right) = 3 + \frac{5}{x-1},$$

ezért

$$f(x) = f(y)$$
 \iff $3 + \frac{5}{x-1} = 3 + \frac{5}{y-1}$ \iff $x = y$,

azaz f invertálható. Az inverz függvény meghatározásához f értékkészletét kell megállapítani. (*) alapján sejthető, hogy

$$\mathcal{R}_f = \mathbb{R} \setminus \{3\}.$$

Biz.:

• Világos, hogy $3 \notin \mathcal{R}_f$, hiszen bármely $1 \neq x \in \mathbb{R}$ esetén $\frac{5}{x-1} \neq 0$, így (*) alapján

$$\mathcal{R}_f \subset \mathbb{R} \backslash \{3\}$$
.

• Most megmutatjuk, hogy $\mathcal{R}_f \supset \mathbb{R}\setminus\{3\}$, azaz bármely $y \in \mathbb{R}\setminus\{3\}$ esetén van olyan $x \in \mathcal{D}_f = \mathbb{R}\setminus\{1\}$, hogy f(x) = y. Valóban, ha $y \in \mathbb{R}\setminus\{3\}$, akkor

$$f(x) = y$$
 \iff $3 + \frac{5}{x - 1} = y$ \iff $x = 1 + \frac{5}{y - 3} = \frac{y + 2}{y - 3}$

és $x \neq 1$ miatt $x \in \mathcal{D}_f$.

Tehát

$$f^{-1}: \mathbb{R}\backslash \{3\} \to \mathbb{R}\backslash \{1\}, \qquad f^{-1}(y):=\frac{y+2}{y-3}. \quad \blacksquare$$

Gyakorló feladatok.

1. Írjuk fel az $f \circ g$ és a $g \circ f$ kompozíciót az

$$f(x) := \sqrt{1-x}$$
 $(c \in (-\infty, 1]),$ $g(x) := x^2$ $(x \in \mathbb{R})$

függvények esetében!

2. Írjuk fel az f o g kompozíciót a következő függvények esetében!

(a)
$$f(x) := 2x + 1 \ (x \in \mathbb{R}), \ g(x) := x^2 - 3x + 2 \ (x \in \mathbb{R});$$

$$\text{(b)} \ \ f(x) := \left\{ \begin{array}{ll} 0 & (-\infty < x \leq 0) \\ x & (0 < x < +\infty), \end{array} \right. \ g(x) := \left\{ \begin{array}{ll} 0 & (-\infty < x \leq 0) \\ -x^2 & (0 < x < +\infty); \end{array} \right.$$

(c)
$$f(x) := \frac{1}{2x+1} (-1/2 \neq x \in \mathbb{R}), g(x) := x^2 + 3x - 10 (x \in \mathbb{R}).$$

3. Tekintsük az alábbi függvényeket!

$$f(x) := \sqrt{\frac{1-x}{x+2}} \quad (x \in [0,1]), \qquad g(x) := -x^2 - 4x - 3 \quad (x \in \mathbb{R}).$$

- (a) Határozzuk meg az f ∘ q függvény!
- (b) Invertálható-e az f függvény? Ha igen, akkor határozzuk meg az f⁻¹ inverzet!

Útm.

1. Mivel

$$\{x\in\mathcal{D}_g:\ g(x)\in\mathcal{D}_f\}=\left\{x\in\mathbb{R}:\ x^2\in(-\infty,1]\right\}=[-1,1]$$

ill.

$$\{x\in\mathcal{D}_f:\ f(x)\in\mathcal{D}_g\}=\left\{x\in(-\infty,1]:\ \sqrt{1-x}\in\mathbb{R}\right\}=(-\infty,1],$$

ezért

$$f\circ g:[-1,1]\to\mathbb{R},\qquad (f\circ g)(x)=f(g(x))=\sqrt{1-x^2};$$

ill.

$$g\circ f:(-\infty,1]\to\mathbb{R}, \qquad (g\circ f)(x)=g(f(x))=(\sqrt{1-x})^2=1-x.$$

2. (a) Világos, hogy

$$\mathcal{D}_{f \circ g} = \left\{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\right\} = \left\{x \in \mathbb{R}: \ x^2 - 3x + 2 \in \mathbb{R}\right\} = \mathbb{R},$$

továbbá

$$(f \circ g)(x) = f(g(x)) = 2(x^2 - 3x + 2) + 1 = 2x^2 - 6x + 5$$
 $(x \in \mathbb{R}).$

(b) Világos, hogy

$$\mathcal{D}_{f \circ g} = \{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\} = \{x \in \mathbb{R}: \ g(x) \in \mathbb{R}\} = \mathbb{R},$$

továbbá

$$(f \circ g)(x) = f(g(x)) = \begin{cases} 0 & (-\infty < g(x) \le 0), \\ g(x) & (0 < g(x) < +\infty). \end{cases}$$

Mivel bármely $x \in \mathcal{D}_g$ esetén $-\infty < g(x) \le 0$, ezért

$$(f \circ g)(x) = 0$$
 $(x \in \mathbb{R}).$

(c) Világos, hogy

$$\begin{split} \mathcal{D}_{f \circ g} = & \{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\} = \left\{x \in \mathbb{R}: \ x^2 + 3x - 10 \in \mathbb{R} \backslash \{-1/2\}\right\} = \\ \mathbb{R} \backslash \left\{\frac{-3 - \sqrt{47}}{2}, \frac{-3 + \sqrt{47}}{2}\right\}, \end{split}$$

továbbá

$$(f \circ g)(x) = \frac{1}{2(x^2 + 3x - 10) + 1} = \frac{1}{2x^2 + 6x - 19}$$
 $(x \in \mathcal{D}_{f \circ g}).$

3. (a) Mivel tetszőleges $x \in \mathbb{R}$ esetén

$$g(x) = 0$$
 \iff $x = -2 \pm \sqrt{(-2)^2 - 3} \in \{-1; -3\},$

ezért

$$g(x) = -(x+1)(x+3) \qquad (x \in \mathbb{R})$$

(vö. 6. ábra). Így

$$\{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\} = \{x \in \mathbb{R}: \ -(x+1)(x+3) \in [0,1]\} = [-3,-1] \neq \emptyset$$

következtében

$$f \circ g : [-3, -1] \rightarrow \mathbb{R},$$

6. ábra. A g függvény grafikonja.

$$(f \circ g)(x) = f(g(x)) = \sqrt{\frac{1+x^2+4x+3}{-x^2-4x-3+2}} = \sqrt{\frac{x^2+4x+4}{-x^2-4x-1}} = \sqrt{\frac{(x+2)^2}{3-(x^2+4x+4)}} = \frac{|x+2|}{\sqrt{3-(x+2)^2}}.$$

(b) Mivel

(*)
$$\frac{1-x}{x+2} = -\frac{x-1}{x+2} = -\frac{x+2-3}{x+2} = -1 + \frac{3}{x+2} \qquad (x \in [0,1]),$$

ezért bármely $x, y \in [0, 1]$ esetén

$$f(x) = f(y) \implies \sqrt{-1 + \frac{3}{x+2}} = \sqrt{-1 + \frac{3}{y+2}} \implies \dots \implies x = y.$$

Mindez azt jelenti, hogy f invertálható. Az inverz függvény meghatározásához f értékkészletét kell megállapítani. (*) alapján sejthető, hogy

$$\mathcal{R}_f = [f(1), f(0)] = \left[0, \frac{1}{\sqrt{2}}\right].$$

Biz.:

• $\mathcal{R}_f \subset [f(1), f(0)]$, ui. bármely $x \in [0, 1]$ esetén

$$x + 2 \in [2, 3] \implies \frac{1}{x + 2} \in \left[\frac{1}{3}, \frac{1}{2}\right] \implies \frac{3}{x + 2} \in \left[1, \frac{3}{2}\right] \implies -1 + \frac{3}{x + 2} \in \left[0, \frac{1}{2}\right]$$
$$\implies f(x) = \sqrt{-1 + \frac{3}{x + 2}} \in \left[0, \frac{1}{\sqrt{2}}\right].$$

• $[f(1), f(0)] \subset \mathcal{R}_f$, hiszen bármely $y \in [f(1), f(0)]$ van olyan $x \in \mathcal{D}_f = [0, 1]$, hogy f(x) = y, ui.

$$f(x) = y \iff \sqrt{-1 + \frac{3}{x+2}} = y \iff x+2 = \frac{3}{y^2+1} \iff x = \frac{3}{y^2+1} - 2 = \frac{1-2y^2}{y^2+1}$$

és

$$0 \le \frac{1 - 2y^2}{y^2 + 1} = -\frac{2y^2 - 1}{y^2 + 1} = -2 \cdot \frac{2y^2 - 1}{2y^2 + 2} = -2 \cdot \frac{2y^2 + 2 - 3}{2y^2 + 2} = -2 + \frac{3}{y^2 + 1} \le 1$$

 $\text{miatt } x \in [0,1] = \mathcal{D}_f.$

Tehát f invertálható és inverzére

$$f^{-1}: \left[0, \frac{1}{\sqrt{2}}\right] \to \mathbb{R}, \qquad f^{-1}(y) := \frac{1 - 2y^2}{y^2 + 1}.$$

4. gyakorlat (2022.03.01.)

Az alábbiakban a természetes számok halmazán értelmezett függvényekkel: sorozatokkal foglalkozunk.

Definíció. Legyen $\mathcal{H} \neq \emptyset$. Ekkor az

$$x: \mathbb{N}_0 \to \mathcal{H}$$

függvényt \mathcal{H} -beli sorozatnak nevezzük. Ha

$$\mathcal{H} = \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\},$$

akkor valós vagy komplex számsorozatról beszélünk.

Megjegyzések.

- 1. Az $x(n) \in \mathcal{H}$ helyettesítési értéket az x sorozat n-edik tagjának¹ nevezzük; az x_n tag sorszámát jelző n szám a tag indexe.²
- 2. Az

$$x(n) =: x_n \qquad (n \in \mathbb{N}_0)$$

indexes jelölés bevezetésével az x sorozatra az alábbi jelölések használatosak:

$$x =: (x_n, n \in \mathbb{N}_0), \qquad x_n (n \in \mathbb{N}_0), \qquad x =: (x_n)_{n \in \mathbb{N}_0}, \qquad (x_n),$$

ill.

$$x =: (x_0, x_1, x_2, ...)$$
.

3. Sok esetben

$$\mathcal{D}_{x} = \mathbb{N}_{k} := \{n \in \mathbb{N}_{0}: n \geq k\}$$
 $/\mathbb{N}_{1} = \mathbb{N}/.$

4. A függvények közötti összeadás, ill. a függvények számmal való szorzására a sorozatok vektorteret (lineáris teret) alkotnak, melynek nulleleme a

$$(0,0,0,\ldots)$$

sorozat. A számsorozatok lineáris terét az S szimbólummal fogjuk jelölni.

 $^{^{1}}$ Megjegyezzük, hogy az x sorozat – mint speciális függvény, illetve reláció – n-edik elemének, azaz az (n, x_n) rendezett párnak a második komponensét nem szerencsés "elemnek" nevezni.

²A természetes számokat szokás **index**eknek is nevezni.

- 5. Sorozatokat többféle módon lehet megadni:
 - (a) Explicit módon. Például:

$$\bullet \ x_n := \sqrt{n^2 - 6} \quad (3 \le n \in \mathbb{N});$$

$$\bullet \ x_n := \left\{ \begin{array}{ll} n & (n \ p \'{a} ros), \\ -n & (n \ p \'{a} ratlan) \end{array} \right. \quad (n \in \mathbb{N}_0).$$

- (b) Rekurzív módon, leggyakrabban
 - egylépéses rekurzióval, pl.

$$x_0 := 1,$$
 $x_{n+1} := x_n + 2 \quad (n \in \mathbb{N}_0);$

• kétlépéses rekurzióval, pl.

$$x_0 := 1,$$
 $x_1 := 1,$ $x_{n+2} := 2x_n + 3x_{n+1}$ $(n \in \mathbb{N}).$

Példák.

1. Legyen $c \in \mathbb{R}$, $x_n := c \ (n \in \mathbb{N}_0)$,

$$x_0 = c$$
, $x_1 = c$, $x_2 = c$, $x_3 = c$, $x_4 = c$, ...

 $2. \ x_n := n \ (n \in \mathbb{N}_0),$

$$x_0 = 0$$
, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, ...

 $3. \ x_n := \frac{1}{n} \ (n \in \mathbb{N}),$

$$x_1 = \frac{1}{1} = 1$$
, $x_2 = \frac{1}{2}$, $x_3 = \frac{1}{3}$, $x_4 = \frac{1}{4}$, $x_5 = \frac{1}{5}$, ...

(harmonikus sorozat). A név eredete:

$$x_n = \frac{2}{\frac{1}{x_{n-1}} + \frac{1}{x_{n+1}}}$$
 $(2 \le n \in \mathbb{N}),$

ui. tetszőleges $2 \le n \in \mathbb{N}$ esetén

$$\frac{2}{\frac{1}{x_{n-1}} + \frac{1}{x_{n+1}}} = \frac{2}{n-1+n+1} = \frac{2}{2n} = \frac{1}{n} = x_n.$$

4. $x_n := \alpha + nd \ (n \in \mathbb{N}_0)$, ahol $\alpha, d \in \mathbb{R}$,

$$x_0 = \alpha$$
, $x_1 = \alpha + d$, $x_2 = \alpha + 2d$, $x_3 = \alpha + 3d$, $x_4 = \alpha + 4d$, ...

(számtani sorozat). A név eredete:

$$x_n = \frac{x_{n-1} + x_{n+1}}{2} \quad (n \in \mathbb{N}),$$

ui. tetszőleges $n \in \mathbb{N}$ esetén

$$\frac{x_{n-1} + x_{n+1}}{2} = \frac{\alpha + (n-1)d + \alpha + (n+1)d}{2} = \frac{2\alpha + 2nd}{2} = \alpha + nd = x_n.$$

5. $x_n := \beta q^n \ (n \in \mathbb{N}_0)$, ahol $\beta, q \in \mathbb{R}$,

$$x_0 = \beta$$
, $x_1 = \beta q$, $x_2 = \beta q^2$, $x_3 = \beta q^3$, $x_4 = \beta q^4$, ...

(**mértani sorozat**). A név eredete: ha β , q > 0, akkor

$$x_n = \sqrt{x_{n-1} \cdot x_{n+1}} \quad (n \in \mathbb{N}),$$

ui. tetszőleges $2 \leq n \in \mathbb{N}$ esetén

$$\sqrt{x_{n-1}\cdot x_{n+1}} = \sqrt{\beta\cdot q^{n-1}\cdot \beta\cdot q^{n+1}} = \sqrt{\beta^2\cdot q^{2n}} = \beta\cdot q^n = x_n.$$

6.
$$x_n := (-1)^n \frac{4n^2 + 2n + 1}{3n^3 + 6} \ (n \in \mathbb{N}_0),$$

$$x_0 = \frac{1}{6}$$
, $x_1 = -\frac{7}{9}$, $x_2 = \frac{21}{30}$, $x_3 = -\frac{43}{87}$, $x_4 = \frac{73}{198}$, $x_5 = -\frac{211}{381}$, ...

7.
$$x_n := \left(1 + \frac{1}{n}\right)^n (n \in \mathbb{N}),$$

$$x_1 = \left(1 + \frac{1}{1}\right)^1 = 2, \quad x_2 = \left(1 + \frac{1}{2}\right)^2, \quad x_3 = \left(1 + \frac{1}{3}\right)^3, \quad x_4 = \left(1 + \frac{1}{4}\right)^4, \quad \dots$$

8.
$$x_n := \sum_{k=1}^n \frac{1}{k} \ (n \in \mathbb{N}),$$

$$x_1 = 1$$
, $x_2 = 1 + \frac{1}{2}$, $x_3 = 1 + \frac{1}{2} + \frac{1}{3}$, $x_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$, ...

(harmonikus sor);

9.
$$x_n := \sum_{k=1}^n (-1)^k \frac{1}{k} \ (n \in \mathbb{N}),$$

$$x_1 = -1, \quad x_2 = -1 + \frac{1}{2}, \quad x_3 = -1 + \frac{1}{2} - \frac{1}{3}, \quad x_4 = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4}, \quad \dots$$

(alternáló harmonikus sor);

10.
$$x_n := \sum_{k=0}^n q^k \ (n \in \mathbb{N}_0),$$

$$x_0 = 1$$
, $x_1 = 1 + q$, $x_2 = 1 + q + q^2$, $x_4 = 1 + q + q^2 + q^3$, ...

(mértani sor);

11.
$$x_n:=\sum_{k=1}^n\frac{1}{k^2}\ (n\in\mathbb{N})$$

$$x_1 = 1$$
, $x_2 = 1 + \frac{1}{4}$, $x_3 = 1 + \frac{1}{4} + \frac{1}{9}$, $x_4 = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16}$, ...

12.
$$x_n := \sum_{k=0}^n \frac{1}{k!} (n \in \mathbb{N}_0)$$

$$x_0 = 1$$
, $x_1 = 1 + 1$, $x_2 = 1 + 1 + \frac{1}{2}$, $x_3 = 1 + 1 + \frac{1}{2} + \frac{1}{6}$, $x_4 = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24}$, ...

13.
$$x_0 := c$$
,

$$x_{n+1} := \frac{1}{2} \left(x_n + \frac{2}{x_n} \right) \qquad (n \in \mathbb{N}_0),$$

ahol $0 < c \in \mathbb{R}$. Ha c = 2, akkor

$$x_1 = 1.5,$$
 $x_2 \approx 1.416$ és $(x_2)^2 \approx 2.$

A valós számsorozatok halmazának egy igen fontos részét alkotják a korlátos sorozatok.

2022.05.14.

Definíció. Azt mondtuk, hogy az $(x_n): \mathbb{N}_0 \to \mathbb{R}$ sorozat

1. **korlátos**, ha (x_n) értékkészlete, pontosabban a

$$\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}$$

halmaz korlátos, azaz alkalmas $M \in \mathbb{R}$ esetén

$$|x_n| \leq M$$
 $(n \in \mathbb{N}_0)$

teljesül. A korlátos sorozatok halmazát az l_{∞} szimbólummal jelöljük.

2. **alulról korlátos**, ha (x_n) értékkészlete alulról korlátos, azaz alkalmas $k \in \mathbb{R}$ esetén

$$x_n \ge k$$
 $(n \in \mathbb{N}_0);$

3. **felülről korlátos**, ha (x_n) értékkészlete felülről korlátos, azaz alkalmas $K \in \mathbb{R}$ esetén

$$x_n \leq K$$
 $(n \in \mathbb{N}_0)$.

Nyilvánvaló, hogy az (x_n) sorozat pontosan akkor korlátos, ha **felülről** is és **alulról** is **korlátos**, azaz alkalmas $k, K \in \mathbb{R}$ esetén

$$k \le x_n \le K$$
 $(n \in \mathbb{N}_0),$

ui. ekkor az $M := \max\{-k, K\}$ számmal

$$|x_n| < M$$
 $(n \in \mathbb{N}_0)$.

Ha tetszőleges $\alpha \in \mathbb{R}$ szám, ill. $\varepsilon > 0$ pozitív szám esetén

$$K_{\varepsilon}(\alpha) := (\alpha - \varepsilon, \alpha + \varepsilon) = \{x \in \mathbb{R} : \alpha - \varepsilon < x < \alpha + \varepsilon\}$$

jelöli az α szám ε sugarú környezetét, akkor elmondható, hogy az (x_n) sorozat pontosan akkor korlátos, ha minden tagja benne van a 0 valamely környezetében.

Definíció. Az $x := (x_n) : \mathbb{N} \to \mathbb{R}$ sorozat értékkészletének

1. felső határát a **sorozat felső határá**nak vagy **szuprémumá**nak nevevezzük:

$$\sup(\mathbf{x}) := \sup\{\mathbf{x}_{\mathbf{n}} \in \mathbb{R} : \mathbf{n} \in \mathbb{N}_{\mathbf{0}}\};$$

2. alsó határát a sorozat alsó határának vagy infimumának nevevezzük:

$$\inf(x) := \inf\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}.$$

Ha tehát az x sorozat

- felülről nem korlátos, akkor $\sup(x) = +\infty$;
- alulról nem korlátos, akkor $\inf(x) = -\infty$.

Példák.

1. Az

$$x_n := \frac{1}{n}$$
 $(n \in \mathbb{N})$

harmonikus sorozat korlátos, hiszen

$$0<\frac{1}{n}\leq 1$$
 $(n\in\mathbb{N}).$

2. Adott α , $d \in \mathbb{R}$ esetén az

$$x_n := \alpha + nd$$
 $(n \in \mathbb{N}_0)$

számtani sorozat pontosan akkor korlátos, ha d = 0, ui.

- d = 0 esetén tetszőleges $n \in \mathbb{N}_0$ indexre $x_n = \alpha$, következésképpen az $M := |\alpha|$ számmal teljesül a korlátosság feltétele;
- d>0 esetén **Archimédesz tétele**³ alapján minden $K\in\mathbb{R}$ esetén van olyan $n\in\mathbb{N}_0$, hogy

$$nd > K - \alpha$$
, $azaz$ $a + nd > K$

• d < 0 esetén hasonló mondható el.

 $^{^3}$ Tetszőleges $a,b\in\mathbb{R},\,a>0$ valós számokhoz van olyan $n\in\mathbb{N}_0$ természetes szám, hogy na>b.

2022.05.14.

3. Az

$$x_n := q^n \qquad (n \in \mathbb{N}_0)$$

mértani sorozat $|q| \le 1$ esetén korlátos, |q| > 1 esetén pedig nem korlátos, hiszen

• $a |q| \le 1$ esember

$$|q^n|=|q|^n\leq 1 \qquad (n\in \mathbb{N}_0);$$

• a |q| > 1 esetben pedig a binomiális tétel vagy a Bernoulli-egyenlőtlenség felhasználásával azt kapjuk, hogy a h := |q| - 1 > 0 számmal

$$|q^n| = |q|^n = (1+h)^n > 1+nh.$$

4. Az

$$x_n := \sum_{k=0}^n \frac{1}{k!} \qquad (n \in \mathbb{N}_0)$$

sorozat korlátos, ui. $x_0 = 1$, $x_1 = 2$, és bármely $2 < n \in \mathbb{N}_0$ indexre

$$0 < x_n = 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \le 2 + \sum_{k=2}^{n} \frac{1}{k(k-1)} < 2 + 1 = 3,$$

ui.

$$\sum_{k=2}^{n} \frac{1}{k(k-1)} = \sum_{k=2}^{n} \frac{k - (k-1)}{k(k-1)} = \sum_{k=2}^{n} \left\{ \frac{1}{k-1} - \frac{1}{k} \right\} =$$

$$= \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) =$$

$$= 1 - \frac{1}{n} < 1.$$

Mivel korlátos sorozatok összege és számszorosa is korlátos, ezért l_{∞} a sorozatok $\mathcal S$ terének lineáris altere. Célszerű ebben a vektortérben az $\mathbb R^d$ -beli vektorok abszolút értékéhez hasonló fogalmat, a normát bevezetni.

2022.05.14.

Definíció. Tetszőleges $x=(x_n)\in l_\infty$ sorozat esetén az

$$||x|| := \sup\{|x_n| \in \mathbb{R}: n \in \mathbb{N}_0\}$$

valós számot az $x = (x_n) \in l_{\infty}$ sorozat **normá**jának nevezzük.

Megjegyzés. Viszonylag egyszerűen igazolhatók a norma alábbi tulajdonságai. Tetszőleges $x, y \in l_{\infty}$, ill. $\alpha \in \mathbb{R}$ esetén

(N1)
$$||x|| \ge 0$$
 és $||x|| = 0$ \iff $x = (0, 0, 0, ...);$

- **(N2)** $\|\alpha x\| = |\alpha| \cdot \|x\|$;
- (N3) $||x + y|| \le ||x|| + ||y||$ és $||x y|| \ge |||x|| ||y|||$.

Definíció. Azt mondjuk, hogy az $(x_n) : \mathbb{N} \to \mathbb{R}$ sorozat

- 1. **monoton növő** (jelben (x_n) \nearrow), ha bármely $n \in \mathbb{N}$ index $x_n \leq x_{n+1}$;
- 2. szigorúan monoton növő (jelben $(x_n) \uparrow$), ha bármely $n \in \mathbb{N}$ indexre $x_n < x_{n+1}$;
- 3. **monoton fogyó** (jelben $(x_n) \setminus$), ha bármely $n \in \mathbb{N}$ index $x_n \geq x_{n+1}$;
- 4. szigorúan monoton fogyó (jelben $(x_n) \downarrow$), ha bármely $n \in \mathbb{N}$ index $x_n > x_{n+1}$.

Megjegyzés. Gyakran hasznos lehet, ha a monotonitás definíciójában szereplő egyenlőtlenség helyett egy vele egyenértékű egyenlőtlenséget igazolunk. Például:

$$\mathbf{x}_{n} \leq \mathbf{x}_{n+1} \quad (n \in \mathbb{N}) \qquad \Longleftrightarrow \qquad \mathbf{x}_{n} - \mathbf{x}_{n+1} \leq \mathbf{0} \quad (n \in \mathbb{N});$$

ha bármely $n \in \mathbb{N}$ indexre $x_n > 0$, akkor

$$x_n \le x_{n+1} \quad (n \in \mathbb{N}) \qquad \Longleftrightarrow \qquad \frac{x_n}{x_{n+1}} \le 1 \quad (n \in \mathbb{N}).$$

Példák.

1. Tetszőleges $c \in \mathbb{R}$ esetén az

$$x_n := c \quad (n \in \mathbb{N})$$

sorozat monoton növekedő, ill. csökkenő, hiszen

$$x_{n+1} = c = x_n$$
 $(n \in \mathbb{N}).$

2. Az

$$x_n := \frac{1}{n}$$
 $(n \in \mathbb{N})$

harmonikus sorozat szigorúan monoton csökkenő ui. $\forall\,n\in\mathbb{N}$:

$$x_{n+1} = \frac{1}{n+1} < \frac{1}{n} = x_n.$$

3. Az

$$x_n := n \quad (n \in \mathbb{N})$$

sorozat szigorúan monoton növekedő: $\forall\,n\in\mathbb{N}: x_n=n< n+1=x_{n+1}.$

4. Az

$$x_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{(n-1)!} + \frac{1}{n!}$$
 $(n \in \mathbb{N}_0)$

sorozat szigorúan monoton növekedő, ui. minden $n \in \mathbb{N}_0$ indexre

$$x_{n+1} - x_n = \sum_{k=0}^{n+1} \frac{1}{k!} - \sum_{k=0}^{n} \frac{1}{k!} = \frac{1}{(n+1)!} > 0.$$

Definíció. Ha valamely $\nu: \mathbb{N}_0 \to \mathbb{N}_0$ sorozat szigorúan monoton növekedő, akkor ν -t **indexsorozat**nak nevezzük. Az indexsorozatok összességét az \mathcal{I} szimbólummal jelöljük.

Példa. Az alábbi sorozatok mind indexsorozatok.

- 1. $\nu_n:=2n\ (n\in\mathbb{N}_0),$ ui, bármely $n\in\mathbb{N}_0$ indexre $\nu_n=2n<2n+2=2(n+1)=\nu_{n+1};$
- 2. $\nu_n:=n^2\ (n\in\mathbb{N}_0),$ ui, bármely $n\in\mathbb{N}_0$ indexre $\nu_n=n^2<(n+1)^2=\nu_{n+1};$
- $3. \ \nu_n:=2^n \ (n\in\mathbb{N}_0), \text{ui, bármely } n\in\mathbb{N}_0 \text{ indexre } \nu_n=2^n<2\cdot 2^n=2^{n+1}=\nu_{n+1}.$

Definíció. Az $x : \mathbb{N}_0 \to \mathbb{R}$ sorozat **részsorozat**ának nevezzük az $y : \mathbb{N}_0 \to \mathbb{R}$ sorozatot, ha van olyan $v \in \mathcal{I}$, hogy $y = x \circ v$.

Példák.

1. Ha

$$x_n := (-1)^n \quad (n \in \mathbb{N}_0) \quad \text{és} \quad \mu_n := 2n, \quad \text{ill.} \quad v_n := 2n + 1 \quad (n \in \mathbb{N}_0),$$

akkor

$$(x \circ \mu)_n = x_{\mu_n} = x_{2n} = 1 \quad (n \in \mathbb{N}_0), \qquad \text{ill.} \qquad (x \circ \nu)_n = x_{\nu_n} = x_{2n+1} = -1 \quad (n \in \mathbb{N}_0).$$

2. Ha

$$x_n := \frac{1}{n} \quad (n \in \mathbb{N}) \qquad \text{\'es valamely } k \in \mathbb{N} \text{ eset\'en} \qquad \nu_n := n^k \quad (n \in \mathbb{N}),$$

akkor

$$(x \circ v)_n = x_{v_n} = x_{n^k} = \frac{1}{n^k}$$
 $(n \in \mathbb{N}).$

Megjegyzés. Világos, hogy ha egy sorozat korlátos, akkor annak minden részsorozata is korlátos, hiszen minden $v \in \mathcal{I}$ esetén

$$\{(x\circ\nu)_n\in\mathbb{R}:\;n\in\mathbb{N}_0\}\subset\{x_n\in\mathbb{R}:\;n\in\mathbb{N}_0\}\text{.}$$

Ezért, ha egy sorozatnak valamely részsorozata nem korlátos, akkor maga a sorozat sem lehet korlátos. Így van ez pl. az

$$x_n := \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \ldots + \frac{1}{n-1} + \frac{1}{n}$$
 $(n \in \mathbb{N})$

sorozat (harmonikus sor) esetében is, ui. ha

$$v_n := 2^n \qquad (n \in \mathbb{N}),$$

akkor bármely $n \in \mathbb{N}$ indexre

$$\begin{split} (x \circ \nu)_n &= x_{2^n} = \\ &= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^n}\right) \geq \\ &\geq 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \dots + 2^{n-1} \cdot \frac{1}{2^n} = 1 + n \cdot \frac{1}{2} = \frac{2 + n}{2}. \end{split}$$

Definíció. Legyen $x = (x_n) : \mathbb{N} \to \mathbb{R}$. Ekkor

• az (x_n) sorozat **konvergens** (jelben $(x_n) \in \mathcal{C}$), ha

$$\exists\, A\in\mathbb{R}\ \forall \epsilon>0\ \exists\, N\in\mathbb{N}\ \forall\, n\in\mathbb{N}:\qquad (n\geq N\quad\Longrightarrow\quad |x_n-A|<\epsilon)\,;$$

Ekkor az A számot az (x_n) sorozat határértékének vagy limeszének nevezzük és az

$$A =: lim(x) =: lim(x_n) := \lim_{n \to \infty} (x_n) \qquad \text{vagy az} \qquad x_n \longrightarrow A \quad (n \to \infty)$$

jelölést használjuk.

• az (x_n) sorozat **divergens**, ha nem konvergens, azaz

$$\forall A \in \mathbb{R} \ \exists \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n \in \mathbb{N} : \qquad (n \ge N \quad \land \quad |x_n - A| \ge \epsilon);$$

• az (x_n) sorozat határértéke $+\infty$ $(\lim(x_n) = +\infty)$, ha

$$\forall \omega \in \mathbb{R} \exists N \in \mathbb{N} \forall n \in \mathbb{N} : (n \ge N \implies x_n > \omega);$$

• az (x_n) sorozat **határértéke** $-\infty$ $(\lim(x_n) = -\infty)$, ha

$$\forall \alpha \in \mathbb{R} \exists N \in \mathbb{N} \forall n \in \mathbb{N}: (n \geq N \implies x_n < \alpha);$$

• az (x_n) sorozatnak **van határértéke** $(\lim(x_n) \in \overline{\mathbb{R}})$, ha

$$(x_n)$$
 konvergens VAGY $\lim(x_n) \in \{-\infty, +\infty\}$.

Példák.

1. Legyen $c \in \mathbb{R}$. Az

$$x_n := c \qquad (n \in \mathbb{N}_0)$$

sorozat konvergens és $\lim(x_n) = c$, hiszen ha $\varepsilon > 0$, akkor

$$|x_n - c| = |c - c| = 0 < \varepsilon \quad (n \in \mathbb{N}_0)$$

következtében minden $N \in \mathbb{N}_0$ esetén

$$|x_n-c|<\epsilon \qquad (N\leq n\in \mathbb{N}_0).$$

2. Tetszőleges $k \in \mathbb{N}$ esetén az

$$x_n := \frac{1}{n^k}$$
 $(n \in \mathbb{N})$

sorozat konvergens és $\lim(x_n) = 0$, hiszen ha $\varepsilon > 0$, akkor

$$|x_n - 0| = |x_n| = \frac{1}{n^k} < \varepsilon \qquad \iff \qquad \frac{1}{\sqrt[k]{\varepsilon}} < n$$

következtében az

$$N := \left\lceil \frac{1}{\sqrt[k]{\epsilon}} \right\rceil + 1$$

választás⁴ megfelelő: bármely $N \leq n \in \mathbb{N}$ esetén $|x_n - 0| < \epsilon$.

3. Ha ha $q \in (-1, 1]$, akkor az

$$x_n := q^n \qquad (n \in \mathbb{N})$$

sorozat konvergens, és fennáll a

$$lim(x_n) = \left\{ \begin{array}{ll} 0 & \quad (q \in (-1,1) & \iff \quad |q| < 1), \\ \\ 1 & \quad (q = 1) \end{array} \right.$$

határérték-reláció, hiszen

- ha q = 1, akkor $x_n = 1$ $(n \in \mathbb{N})$;
- ha q = 0, akkor $x_n = 0 \ (n \in \mathbb{N})$;
- ha q \neq 0, |q| < 1, akkor $\frac{1}{|q|}$ > 1, következésképpen alkalmas van olyan 0 \in \mathbb{R} számmal

$$\frac{1}{|q|}=1+p,$$

ahonnan a Bernoulli-egyenlőtlenség felhasználásával tetszőleges $n \in \mathbb{N}$ esetén

$$\frac{1}{|q|^n} = (1+p)^n \ge 1 + np > np,$$
 azaz $|q|^n < \frac{1}{np}$

adódik. Így, ha $\varepsilon > 0$, akkor

$$N := \left[\frac{1}{\epsilon p}\right] + 1 > \frac{1}{\epsilon p}$$

⁴Valamely $x \in \mathbb{R}$ szám **egészrész**ének nevezzük az $[x] := \max\{m \in \mathbb{Z} : m \le x\}$ számot.

mellett az $n \in \mathbb{N}_0$, $n \ge N$ egyenlőtlenségből

$$|x_n - 0| = |q^n - 0| = |q|^n < \frac{1}{np} < \varepsilon$$

következik.

Megjegyzések.

1. Mivel

$$|x_n - A| < \epsilon \quad \Longleftrightarrow \quad -\epsilon < x_n - A < \epsilon \quad \Longleftrightarrow \quad A - \epsilon < x_n < A + \epsilon,$$

ezért a konvergencia fogalma pl. az alábiakkal egyenértékű:

• $\exists A \in \mathbb{R} \ \forall \, \epsilon > 0 \ \exists \, N \in \mathbb{N}_0$:

$$N=max\{n\in\mathbb{N}_0:\ x_n\notin K_\epsilon(A)\}.$$

- $\exists \ A \in \mathbb{R} \ \forall \epsilon > 0 : \ \{n \in \mathbb{N}_0 : \ x_n \notin K_\epsilon(A)\}$ (legfeljebb) véges halmaz (minden $\epsilon > 0$ esetén a sorozatnak csak véges sok tagja esik a $K_\epsilon(A)$ környezeten kívülre).
- $\exists A \in \mathbb{R} \ \forall \epsilon > 0 \ \exists N \in \mathbb{N}_0 \ \forall n \in \mathbb{N}_0$:

$$(n > N \implies x_n \in K_{\varepsilon}(A))$$
.

A N indexet szokás küszöbindexnek is nevezni.

2. Ha az (x_n) sorozat konvergens, akkor nyilván tetszőleges $k \in \mathbb{Z}$ esetén az

$$y_n := x_{n+k} \quad (n \in \mathbb{N}_0)$$

ún. **elcsúsztatott sorozat** is konvergens, és $\lim(y_n) = \lim(x_n)$.

- 3. Mit jelent az, hogy (x_n) divergens? Pl.:
 - $\forall A \in \mathbb{R} \ \exists \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n \in \mathbb{N}$:

$$(n > N \land x_n \notin K_{\varepsilon}(A)),$$

azaz minden $A \in \mathbb{R}$ számnak van olyan $K_{\epsilon}(A)$ környezete, hogy a sorozat tetszőlegesen nagy N indexű tagjánál van olyan nagyobb n indexű tag, amelyik nincsen benne a $K_{\epsilon}(A)$ környezetben.

 $\bullet \ \, \forall \, A \in \mathbb{R} \ \, \exists \, \epsilon > 0 \, ; \quad \{ n \in \mathbb{N} : \, \, x_n \notin K_\epsilon(A) \} \quad \text{v\'egtelen halmaz}.$

Példa. Az

$$x_n := (-1)^n \qquad (n \in \mathbb{N}_0)$$

sorozat divergens, hiszen, ha $A \in \mathbb{R}$, akkor az

$$\varepsilon := \max\{|A + 1|, |A - 1|\}$$

pozitív valós számmal $K_\epsilon(A)$ -n kívülre végtelen sok tagja esik a sorozatnak, ui. tetszőleges $N\in\mathbb{N}_0$ esetén

- $\varepsilon = |A 1|, n := 2N > N \implies |(-1)^n A| = |1 A| = |A 1| \ge \varepsilon;$
- $\varepsilon = |A + 1|, n := 2N + 1 > N \implies |(-1)^n A| = |-1 A| = |A + 1| \ge \varepsilon$.
- 4. A fentiek következtében elmondható, hogy ha egy sorozat véges sok tagját megváltoztatjuk, akkor a konvergencia minősége nem változik: a konvergens sorozat konvergens, a divergens sorozat pedig divergens marad.

Feladat. Sejtsük meg az alábbi sorozatok határértékét, majd a definíció alapján igazoljuk sejtésünket!

- 1. $x_n := \frac{3n+4}{2n-1}$ $(n \in \mathbb{N});$
- 2. $x_n := \frac{n}{2n-3}$ $(n \in \mathbb{N});$
- 3. $x_n := \frac{1}{n^2 3}$ $(n \in \mathbb{N});$
- 4. $x_n := \sqrt{n^2 + 1} n \quad (n \in \mathbb{N}_0);$
- 5. $x_n := \frac{1 + n^2}{2 + n + 2n^2}$ $(n \in \mathbb{N});$
- 6. $x_n := \sqrt{n+3} \sqrt{n+1}$ $(n \in \mathbb{N}_0);$
- 7. $x_n := \frac{3n^2 1}{2n^2 + n + 3}$ $(n \in \mathbb{N}_0)$.

Útm.

1. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{3n+4}{2n-1} = \frac{3+\frac{4}{n}}{2-\frac{1}{n}}$$

és "igen nagy n esetén $\frac{1}{n}$ igen kicsi", ezért azt sejtjük, hogy

$$\lim(x_n) = \frac{3-0}{2-0} = \frac{3}{2}.$$

Valóban, ha $1 \leq n \in \mathbb{N}_0$, azaz $n \in \mathbb{N}$, akkor

$$\left|\frac{3n+4}{2n-1} - \frac{3}{2}\right| = \frac{11}{4n-2} < \frac{11}{n} < \varepsilon \qquad \iff \qquad \frac{11}{\varepsilon} < n,$$

ezért tetszőleges $\varepsilon > 0$ esetén a

$$N := \left\lceil \frac{11}{\epsilon} \right\rceil + 1$$

választás megfelelő.

2. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{n}{2n-3} = \frac{1}{2-\frac{3}{n}}$$

és "igen nagy n esetén $\frac{1}{n}$ igen kicsi", ezért azt sejtjük, hogy

$$\lim(x_n) = \frac{1}{2-0} = \frac{1}{2}.$$

Valóban, ha $6 < n \in \mathbb{N}_0$, akkor

$$\left|\frac{n}{2n-3} - \frac{1}{2}\right| = \frac{3}{4n-6} < \frac{3}{3n} = \frac{1}{n} < \varepsilon \qquad \iff \qquad n > \frac{1}{\varepsilon},$$

hiszen

$$4n-6>3n \iff n>6.$$

Ezért tetszőleges $\varepsilon > 0$ esetén az

$$N := \max\left\{7, \left[\frac{1}{\varepsilon}\right] + 1\right\}$$

választás megfelelő.

3. Mivel bármely $n \in \mathbb{N}$ esetén x_n "igen nagy n esetén igen kicsi", ezért azt sejtjük, hogy

$$\lim(x_n)=0$$
.

Valóban, ha $3 \le n \in \mathbb{N}$, akkor

$$\left|\frac{1}{n^2-3}-0\right|=\frac{1}{n^2-3}<\frac{1}{n}\epsilon\qquad\iff\qquad n>\frac{1}{\epsilon},,$$

hiszen ekkor

$$\frac{1}{n^2 - 3} < \frac{1}{n} \qquad \iff \qquad n < n^2 - 3$$

és

$$n^2 - 3 - n = n^2 - n - 3 = n(n-1) - 3 > 0$$
 \iff $n \ge 3$.

Ezért tetszőleges $\varepsilon > 0$ esetén az

$$N := \max\left\{3, \left[\frac{1}{\varepsilon}\right] + 1\right\}$$

választás megfelelő.

4. Mivel bármely $n \in \mathbb{N}_0$ esetén

$$\sqrt{n^2+1}-n = \left(\sqrt{n^2+1}-n\right) \cdot \frac{\sqrt{n^2+1}+n}{\sqrt{n^2+1}+n} = \frac{1}{\sqrt{n^2+1}+n}$$

és az utóbbi tört számlálója korlátos, nevezője edig nem, ezért azt sejtjük, hogy $\lim(x_n)=0$. Valóban, ha $n\in\mathbb{N}$, akkor

$$\left|\sqrt{n^2+1}-n-0\right| = \frac{1}{\sqrt{n^2+1}+n} < \frac{1}{n} < \varepsilon \qquad \iff \qquad n > \frac{1}{\varepsilon},$$

ezért tetszőleges $\varepsilon > 0$ esetén

$$\mathsf{N} := \left[\frac{1}{\varepsilon}\right] + 1. \quad \blacksquare$$

5. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{1+n^2}{2+n+2n^2} = \frac{\frac{1+n^2}{n^2}}{\frac{2+n+2n^2}{n^2}} = \frac{\frac{1}{n}+1}{\frac{2}{n^2}+\frac{1}{n}+2},$$

és "igen nagy n esetén $\frac{1}{n^k}$ igen kicsi, ahol $k \in \{1;2\}$ ", ezért azt sejtjük, hogy

$$\lim(x_n) = \frac{1+0}{0+0+2} = \frac{1}{2}.$$

Valóban,

$$\left|\frac{1+n^2}{2+n+2n^2} - \frac{1}{2}\right| = \frac{|-n|}{2(2n^2+n+2)} < \frac{n}{4n^2} = \frac{1}{4n} < \epsilon \quad \Longleftrightarrow \quad \frac{1}{4\epsilon} < n,$$

ezért tetszőleges $\varepsilon > 0$ esetén

$$N := \left\lceil \frac{1}{4\varepsilon} \right\rceil + 1.$$

6. Mivel bármely $n \in \mathbb{N}_0$ esetén

$$\sqrt{n+3} - \sqrt{n+1} = \left(\sqrt{n+3} - \sqrt{n+1}\right) \cdot \frac{\sqrt{n+3} + \sqrt{n+1}}{\sqrt{n+3} + \sqrt{n+1}} = \frac{2}{\sqrt{n+3} + \sqrt{n+1}}$$

és az utóbbi tört számlálója korlátos, nevezője edig nem, ezért azt sejtjük, hogy $\lim(x_n)=0$. Valóban, ha $n\in\mathbb{N}$, akkor

$$\left|\sqrt{n+3}-\sqrt{n+1}-0\right| = \frac{2}{\sqrt{n+3}+\sqrt{n+1}} < \frac{2}{\sqrt{n}+\sqrt{n}} = \frac{1}{\sqrt{n}} < \epsilon \qquad \iff \qquad n > \frac{1}{\sqrt{\epsilon}},$$

ezért tetszőleges $\varepsilon > 0$ esetén az

$$N := \left[\frac{1}{\sqrt{\epsilon}}\right] + 1$$

választás megfelelő.

7. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{3n^2 - 1}{2n^2 + n + 3} = \frac{\frac{3n^2 - 1}{n^2}}{\frac{2n^2 + n + 3}{n^2}} = \frac{3 - \frac{1}{n^2}}{2 + \frac{1}{n} + \frac{3}{n^2}},$$

és "igen nagy n esetén $\frac{1}{n^k}$ igen kicsi, ahol k \in {1;2}", ezért azt sejtjük, hogy

$$\lim(x_n) = \frac{3-0}{2+0+0} = \frac{3}{2}.$$

Valóban,

$$\left|\frac{3n^2-1}{2n^2+n+3}-\frac{3}{2}\right| = \frac{|-3n-11|}{4n^2+2n+6} < \frac{3n+11}{4n^2} < \frac{14n}{4n^2} = \frac{7}{2n} < \epsilon \quad \Longleftrightarrow \quad \frac{7}{2\epsilon} < n,$$

ezért tetszőleges $\varepsilon > 0$ esetén az

$$N := \left\lceil \frac{7}{2\varepsilon} \right\rceil + 1$$

választás megfelelő.

Feladat. A határérték definíciója alapján lássuk be, hogy igaz a

$$\lim_{n \to \infty} \left(\frac{2n^2 + 14n + 19}{1 + (n+3)^2} \right) = 2$$

állítás!

Útm. Ha $n \in \mathbb{N}$, akkor

$$\left|\frac{2n^2+14n+19}{1+(n+3)^2}-2\right| = \left|\frac{2n^2+14n+19}{n^2+6n+10} - \frac{2(n^2+6n+10)}{n^2+6n+10}\right| = \frac{2n-1}{1+(n+3)^2} \le \frac{2n}{n^2} = \frac{2}{n},$$

és

$$\frac{2}{n} < \varepsilon \qquad \iff \qquad \frac{2}{\varepsilon} < n,$$

ezért tetszőleges $\varepsilon > 0$ esetén, ha

$$N := \left\lceil \frac{2}{\varepsilon} \right\rceil + 1,$$

akkor elmondható, hogy bármely $N \leq n \in \mathbb{N}$ indexre

$$\left| \frac{2n^2 + 14n + 19}{1 + (n+3)^2} - 2 \right| < \varepsilon, \quad \text{azaz} \quad \lim \left(\frac{2n^2 + 14n + 19}{1 + (n+3)^2} \right) = 2. \quad \blacksquare$$

Feladat. Konvergens-e az $(x_n) : \mathbb{N} \to \mathbb{R}$ sorozat, ha

- 1. $\exists A \in \mathbb{R} \ \exists \epsilon > 0 \ \forall n \in \mathbb{N} : \ |x_n A| < \epsilon;$
- 2. $\exists A \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ |x_N A| < \varepsilon$;
- $3. \ \exists \, A \in \mathbb{R} \ \exists \, N \in \mathbb{N} \ \forall \, N \leq n \in \mathbb{N} \ \forall \epsilon > 0: \quad |x_n A| < \epsilon.$

Útm.

1. Nem, ui. az

$$x_n := (-1)^n \quad (n \in \mathbb{N}), \qquad A := 0, \qquad \varepsilon := 2$$

választással tetszőleges $n \in \mathbb{N}$ esetén $|x_n - A| < \epsilon$, de (x_n) divergens. Az állításból csak annyi következik, hogy (x_n) korlátos, ui. a feltétel szerint

$$\exists A \in \mathbb{R} \ \exists \varepsilon > 0: \qquad A - \varepsilon < \chi_n < A + \varepsilon \quad (n \in \mathbb{N}).$$

2. Nem, hiszen a megadott feltételeknek minden sorozat eleget tesz, ui. válaszzuk meg az A valós számot

úgy, hogy

$$A \in \{x_n \in \mathbb{N} : n \in \mathbb{N}\}$$

teljesüljön. Ekkor ui. alkalmas $N \in \mathbb{N}$ insdexre $x_N - A = 0$.

3. Igen, ui. ez a felétel azt jelenti, hogy az (x_n) sorozat **kvázikonstans**: egy bizonyos indextől kezdve tagjai egyenlők. \blacksquare .

Feladat. Mutassuk meg, hogy ha az (x_n) sorozat konvergens és $A := \lim (x_n) \in \mathbb{R}$, akkor $(|x_n|)$ is konvergens és fennáll a

$$\lim (|x_n|) = |A|$$

határérték-reláció!

Útm. Mivel

$$\lim (x_n) = A$$
,

ezért tetszőleges $\epsilon>0$ számhoz van olyan $N\in\mathbb{N}$ index, hogy minden $N\leq n\in\mathbb{N}_0$ indexre $|x_n-A|<\epsilon$, ahonnan

$$0 \le ||x_n| - |A|| \le |x_n - A| < \varepsilon,$$

következik. Mindez azt jelenti, hogy

$$\lim (|x_n| - |A|) = 0$$
, azaz $\lim (|x_n|) = |A|$.

Megjegyezzük, hogy

1. a fenti feladatbeli állítás megfordítása nem igaz:

$$(1) \in \mathcal{C}$$
, de $((-1)^n) \notin \mathcal{C}$.

2. ha $\mathcal N$ jelöli a nullsorozatok halmazát, akkor igaz az

$$(x_n) \in \mathcal{N} \qquad \Longleftrightarrow \qquad (|x_n|) \in \mathcal{N}$$

ekvivalelcia, hiszen

$$||x_n| - 0| = |x_n - 0|$$
 $(n \in \mathbb{N}_0).$

Feladat. Legyen

$$x_n \in [0, +\infty)$$
 $(n \in \mathbb{N}_0)$

konvergens sorozat. Mutassuk meg, hogy ekkor igazak az alábbi állítások.

- 1. $\lim(x_n) =: A \in [0, +\infty);$
- 2. $(\sqrt{x_n})$ konvergens és $\lim(\sqrt{x_n}) = \sqrt{A}$.

Útm.

1. A határérték és a rendezés kapcsolatáról szóló tétel (vö. EA) következtében

$$\lim(x_n) =: A \in [0, +\infty).$$

- 2. Ha
 - A=0, akkor tetszőleges $\epsilon>0$ számhoz van olyan $N\in\mathbb{N}$ index, hogy minden $N\leq n\in\mathbb{N}_0$ indexre

$$|x_n - 0| < \varepsilon^2$$

azaz a sorozat nemnegativitása következtében

$$x_n < \varepsilon^2$$
, ill. $\sqrt{x_n} < \varepsilon$,

ahonnan

$$|\sqrt{x_n} - 0| = \sqrt{x_n} < \epsilon$$

következik. Mindez azt jelenti, hogy $\lim(\sqrt{x_n}) = 0$.

• A>0, akkor tetszőleges $\epsilon>0$ számhoz van olyan $N\in\mathbb{N}$ index, hogy minden $N\leq n\in\mathbb{N}_0$ indexre

$$|x_n - A| < \varepsilon \sqrt{A},$$

ahonnan

$$\left| \sqrt{x_n} - \sqrt{A} \right| = \left| \sqrt{x_n} - \sqrt{A} \right| \cdot \frac{\sqrt{x_n} + \sqrt{A}}{\sqrt{x_n} + \sqrt{A}} = \frac{|x_n - A|}{\sqrt{x_n} + \sqrt{A}} \le \frac{|x_n - A|}{\sqrt{A}} < \frac{\varepsilon\sqrt{A}}{\sqrt{A}} = \varepsilon$$

következik, ami azt jelenti, hogy

$$\lim(\sqrt{x_n}) = \sqrt{A}. \quad \blacksquare$$

Megjegyezzük, hogy ha $2 \le k \in \mathbb{N}$, akkor hasonló mondható el a $(\sqrt[k]{x_n})$ sorozat határértékéről; a bizonyítás második fele egy kicsit összetettebb számolás:

$$\left| \sqrt[k]{x_n} - \sqrt[k]{A} \right| = \left| \sqrt[k]{x_n} - \sqrt[k]{A} \right| \cdot \frac{\sum\limits_{i=1}^k \sqrt[k]{x_n^{k-i} \cdot A^{i-1}}}{\sum\limits_{i=1}^k \sqrt[k]{x_n^{k-i} \cdot A^{i-1}}} = \frac{|x_n - A|}{\sum\limits_{i=1}^k \sqrt[k]{x_n^{k-i} \cdot A^{i-1}}} \leq \frac{|x_n - A|}{\sqrt[k]{A^{k-1}}}.$$

Feladat. A definíció a alapján lássa be, hogy igazak az alábbi határéreték-relációk!

2.
$$\lim_{n \to \infty} (n^2 + 3) = +\infty$$

$$2. \lim_{n \to \infty} (n^2 + 3) = +\infty \qquad \qquad 2. \lim_{n \to \infty} \frac{n^2 + 3n + 1}{n + 3} = +\infty \qquad \qquad 3. \lim_{n \to \infty} \frac{2 - 3n^2}{n + 1} = -\infty.$$

3.
$$\lim_{n \to \infty} \frac{2 - 3n^2}{n + 1} = -\infty$$

1. Azt kell megmutatni, hogy az

$$x_n := n^2 + 3 \qquad (n \in \mathbb{N}_0)$$

sorozatra

$$\forall \omega \in \mathbb{R} \; \exists N \in \mathbb{N}_0 \; \forall n \in \mathbb{N}_0 : \qquad (n \geq N \quad \Longrightarrow \quad x_n > \omega)$$

teljesül. Valóban, ha $3 \le \omega \in \mathbb{R}$, akkor

$$n^2 + 3 = x_n > \omega$$
 \iff $n^2 > \omega - 3$.

Így az

$$N := [\omega - 3] + 1$$

választás megfelelő.

2. Azt kell megmutatni, hogy az

$$x_n := \frac{n^2 + 3n + 1}{n + 3}$$
 $(n \in \mathbb{N}_0)$

sorozatra

$$\forall \omega \in \mathbb{R} \; \exists N \in \mathbb{N}_0 \; \forall n \in \mathbb{N}_0 : \qquad (n \geq N \quad \Longrightarrow \quad x_n > \omega)$$

teljesül. Valóban, ha $0 < \omega \in \mathbb{R}$, akkor bármely $n \in \mathbb{N}$ esetén

$$\frac{n^2+3n+1}{n+3}>\frac{n^2}{n+3}\geq \frac{n^2}{n+3n}=\frac{n}{4}>\omega\qquad\iff\qquad n>4\omega,$$

így

$$N := \max\{1, [4\omega] + 1\} = 4[\omega] + 1.$$

3. Azt kell megmutatni, hogy az

$$x_n:=\frac{2-3n^2}{n+1} \qquad (n\in \mathbb{N}_0)$$

sorozatra

$$\forall \alpha \in \mathbb{R} \ \exists N \in \mathbb{N}_0 \ \forall n \in \mathbb{N}_0 : \qquad (n \ge N \implies x_n < \alpha)$$

teljesül. Valóban, ha $0>\alpha\in\mathbb{R}$, akkor bármely $\mathfrak{n}\in\mathbb{N}_0$ esetén

$$\frac{2-3n^2}{n+1}<\alpha\qquad\Longleftrightarrow\qquad \frac{3n^2-2}{n+1}>-\alpha,$$

így tetszőleges $2 \le n \in \mathbb{N}$ indexre

$$\frac{3n^2-2}{n+1} = \frac{2n^2+(n^2-2)}{n+1} \geq \frac{2n^2}{n+n} = \frac{2n^2}{2n} = n$$

következtében

$$N := \max\{2, [-\alpha] + 1\}.$$

Feladat. Lássuk be, hogy ha bármely $n \in \mathbb{N}$ esetén $x_n \in (0, +\infty)$, akkor igaz a

$$\lim(x_n) = 0$$
 \Longrightarrow $\lim\left(\frac{1}{x_n}\right) = +\infty$

implikáció!

Útm. Mivel

$$lim(x_n) = 0 \qquad \Longrightarrow \qquad \forall \epsilon > 0 \; \exists N \in \mathbb{N}_0 \; \forall N \leq n \in \mathbb{N}_0 : \quad x_n = |x_n| = |x_n - 0| < \epsilon$$

és

$$x_n < \varepsilon \implies \frac{1}{x_n} > \frac{1}{\varepsilon} =: \omega,$$

ezért elmondható, hogy tetszőleges $0<\omega\in\mathbb{R}$ számhoz van olyan $N\in\mathbb{N}_0$ (küszöb)index, hogy bármely $N\leq n\in\mathbb{N}_0$ indxre

$$\frac{1}{x_n} > \omega,$$
 azaz $\lim \left(\frac{1}{x_n}\right) = +\infty.$

2022.05.14.

Feladat. Igaz-e, hogy az $(x_n): \mathbb{N} \to \mathbb{R}$ sorozatra $\lim(x_n) = +\infty$, ha

$$\exists \, \omega \in \mathbb{R} \, \exists \, N \in \mathbb{N} \, \forall \, n \in \mathbb{N} : \quad (n \ge N \quad \Longrightarrow \quad x_n > \omega) \tag{10}$$

teljesül?

Útm. Nem, ui. pl. az

$$x_n := 1$$
 $(n \in \mathbb{N})$

sorozat teljesíti az (10) feltételt, de határértéke nem $+\infty$.

Feladat. Igazoljuk hogy ha $d \in \mathbb{N}, a_1, \ldots, a_d \in \mathbb{R}$, továbbá

$$p(x) := a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_d x^d = \sum_{k=0}^d a_k x^k \qquad (x \in \mathbb{R}),$$

akkor igaz az alábbi állítás!

$$lim(p(n)) = \left\{ \begin{array}{ll} +\infty & (\alpha_d > 0), \\ -\infty & (\alpha_d < 0). \end{array} \right.$$

Útm. Világos, hogy bármely $n \in \mathbb{N}$ esetén

$$\begin{array}{ll} p(n) & = & a_0 + a_1 n + \ldots + a_{d-1} n^{d-1} + a_d n^d = n^d \cdot \left(\frac{a_0}{n^d} + \frac{a_1}{n^{d-1}} + \ldots + \frac{a_{d-1}}{n} + a_d\right) \longrightarrow \\ & \stackrel{(n \to \infty)}{\longrightarrow} & (+\infty)^d \cdot (0 + 0 + \ldots + 0 + a_d) = \\ & = & (+\infty) \cdot sgn(a_d) = \left\{ \begin{array}{ll} +\infty & (a_d > 0), \\ -\infty & (a_d < 0). \end{array} \right. \end{array}$$

Házi feladatok.

1. A határérték definíciója alapján mutassuk meg, hogy fennáll a

$$\lim (2 - n^3) = -\infty$$

határérték-reláció!

2. Sejtsük meg az

$$x_n := \frac{n^4 + 2n^2 + 1}{n^2 + 1}$$
 $(n \in \mathbb{N}_0)$

sorozat határértékét, majd a definíció alapján bizonyítsa be sejtését!

3. Lássuk be, hogy ha bármely $n\in\mathbb{N}$ esetén $x_n\in(-\infty,0),$ akkor igaz a

$$\lim(x_n) = 0$$
 \Longrightarrow $\lim\left(\frac{1}{x_n}\right) = -\infty$

implikáció!

Útm.

1. Azt kell megmutatni, hogy az

$$x_n := 2 - n^3 \qquad (n \in \mathbb{N}_0)$$

sorozatra

$$\forall \alpha \in \mathbb{R} \; \exists N \in \mathbb{N}_0 \; \forall n \in \mathbb{N}_0 : \qquad (n \geq N \quad \Longrightarrow \quad x_n < \alpha)$$

teljesül. Valóban, ha $3 \leq \alpha \in \mathbb{R}$, akkor

$$2-n^3 < \alpha \iff 2-\alpha < n^3$$
.

Így az

$$N := \max\left\{0, [\sqrt[3]{2 - \alpha}] + 1\right\}$$

választás megfelelő.

2. Az órán megmutattuk, hogy $\lim(x_n)=+\infty$. Valóban, ha $0<\omega\in\mathbb{R}$, akkor bármely $n\in\mathbb{N}$ esetén

$$\frac{n^4 + 2n^2 + 1}{n^2 + 1} > \frac{n^4}{n^2 + 1} \geq \frac{n^4}{n^2 + n^2} = \frac{n^4}{2n^2} = \frac{n^2}{2} > \omega \qquad \iff \qquad n > \sqrt{2\omega},$$

így

$$N := \max\left\{1, \left[\sqrt{2\omega}\right] + 1\right\} = \left[\sqrt{2\omega}\right] + 1.$$

Megjegyezzük, hogy bármely $n \in \mathbb{N}_0$ indexre

$$\frac{n^4 + 2n^2 + 1}{n^2 + 1} = \frac{(n^2 + 1)^2}{n^2 + 1} = n^2 + 1 > n^2 > \omega \qquad \iff \qquad n > \sqrt{\omega}.$$

3. Mivel

$$lim(x_n) = 0 \qquad \Longrightarrow \qquad \forall \epsilon > 0 \; \exists N \in \mathbb{N}_0 \; \forall N \leq n \in \mathbb{N}_0 : \quad -x_n = |x_n| = |x_n - 0| < \epsilon$$

és

$$-x_n < \varepsilon \implies \frac{1}{x_n} < -\frac{1}{\varepsilon} =: \alpha,$$

ezért elmondható, hogy tetszőleges $0>\alpha\in\mathbb{R}$ számhoz van olyan $N\in\mathbb{N}_0$ (küszöb)index, hogy bármely $N\leq n\in\mathbb{N}_0$ indxre

$$\frac{1}{x_n} < \alpha,$$
 azaz $\lim \left(\frac{1}{x_n}\right) = -\infty.$

5. gyakorlat (2022.03.08.)

Emlékeztető. Az alábbi nevezetes határéertékeket ismertnek tételezzük fel.

1. Ha $k \in \mathbb{N}$ tetszőlegesen rögzített, akkor

(b)
$$\lim (n^k) = +\infty$$
,

(c)
$$\lim \left(\sqrt[k]{n} \right) = +\infty$$

2. Ha $m\in\mathbb{N}$ és az $x_n\in[0,+\infty)$ $(n\in\mathbb{N})$ sorozat konvergens, továbbá $\lim(x_n)=:A,$ akkor

$$\lim \left(\sqrt[m]{x_n} \right) = \sqrt[m]{A}.$$

3. Ha $q \in \mathbb{R}$, akkor

$$\lim_{q \to \infty} \begin{cases} = 0 & (|q| < 1), \\ = 1 & (q = 1), \\ = +\infty & (q > 1), \end{cases}$$

$$\neq (q \le -1).$$

 $\text{4. Ha } 0<\alpha\in\mathbb{R} \text{, illetve } x_n\in[0,+\infty) \text{ } (n\in\mathbb{N}) \text{ olyan sorozat, amelyre } \lim(x_n)\in(0,+\infty),$ akkor

(a)
$$\lim \left(\sqrt[n]{\alpha}\right) = 1$$
, (b) $\lim \left(\sqrt[n]{n}\right) = 1$, (c) $\lim \left(\sqrt[n]{x_n}\right) = 1$.

(b)
$$\lim \left(\sqrt[n]{n} \right) = 1$$
,

(c)
$$\lim_{n \to \infty} (\sqrt[n]{x_n}) = 1$$
.

5. Ha $x \in \mathbb{Q}$, akkor

$$\lim \left(\left(1 + \frac{x}{n} \right)^n \right) = e^x.$$

6. További nevezetes nullsorozatok:

$$\begin{array}{ll} \text{(a)} \ \ x_n := \frac{n^k}{a^n} & \text{($n \in \mathbb{N}, \ a \in (1, +\infty)$);} \\ \text{(b)} \ \ x_n := \frac{a^n}{n!} & \text{($n \in \mathbb{N}, \ a \in \mathbb{R}$);} \end{array}$$

(b)
$$x_n := \frac{a^n}{n!}$$
 $(n \in \mathbb{N}, a \in \mathbb{R})$

(c)
$$x_n := \frac{n!}{n^n}$$
 $(n \in \mathbb{N}, a \in (1, +\infty)).$

2022.05.14.

Emlékeztető. A határértékszámítás során felhasználható eredmények.

1. A műveletek és a határéerték kapcsolata. Tegyük fel, hogy az

$$\mathbf{x} := (\mathbf{x}_n), \mathbf{y} := (\mathbf{y}_n) : \mathbb{N} \to \mathbb{R}$$

sorozatoknak van határértéke. Ha

$$* \in \{+, -, \cdot, /\}$$
 és $\lim(x_n) * \lim(y_n) \in \overline{\mathbb{R}},$

akkor az x * y sorozatnak is van határértéke és

$$\lim(x*y) = \lim(x_n) * \lim(y_n).$$

- 2. **Sandwich-tétel.** Tegyük fel, hogy az $u, v, w : \mathbb{N} \to \mathbb{R}$ sorozatokra teljesülnek a következők:
 - (i) van olyan $N \in \mathbb{N}$, hogy bármely $N \le n \in \mathbb{N}$ index $u_n \le v_n \le w_n$;
 - (ii) $\exists \lim(\mathfrak{u}_n) = \lim(\mathfrak{w}_n) =: A \in \overline{\mathbb{R}}.$

Ekkor a közrefogott (ν_n) sorozatnak is van határértéke: $\lim(\nu_n)=A.$

3. A határéreték és a rendezés közötti kapcsolat. Tegyük fel, hogy az (u_n) , (v_n) sorozatoknak van határértékük és

$$\lim(u_n) =: A \in \overline{\mathbb{R}}, \qquad \lim(v_n) =: B \in \overline{\mathbb{R}}.$$

- $(1) \ \ \text{Ha} \ A>B \text{, akkor} \ \exists \ N\in\mathbb{N}: \ \ \forall \ N\leq n\in\mathbb{N}\text{-re} \ \ u_n>\nu_n.$
- $(2) \ \ \text{Ha} \ \exists \ N \in \mathbb{N}: \ \ \forall \ N \leq n \in \mathbb{N} \text{-re} \ \ u_n \geq \nu_n, \text{akkor} \ A \geq B.$
- 4. **Monoton sorozatok határértéke (mozgólépcső-elv).** Minden monoton sorozatnak van határértéke. Ha
 - $(x_n) \nearrow$, akkor $\lim(x_n) = \sup(x_n)$;
 - $(x_n) \setminus$, akkor $\lim(x_n) = \inf(x_n)$.

Megjegyezzük, hogy a határértékekre vonatkozó tételek és műveleti szabályok nagy része a tágabb értelemben vett határértékekre is érvényes. Ezek egyszerű megfogalmazásához kiterjesztjük az algebrai műveleteket az $\overline{\mathbb{R}}$ számhalmazra az alábbiak szerint:

$$a + (-\infty) := (-\infty) + a := -\infty \quad (a \in [-\infty, +\infty)),$$

$$a + (+\infty) := (+\infty) + a := +\infty \quad (a \in (-\infty, +\infty]),$$

$$a \cdot (+\infty) := (+\infty) \cdot a := +\infty \qquad (a \in (0, +\infty]),$$

$$a \cdot (+\infty) := (+\infty) \cdot a := -\infty \quad (a \in [-\infty, 0)),$$

$$a \cdot (-\infty) := (-\infty) \cdot a := -\infty \qquad (a \in (0, +\infty]),$$

$$a \cdot (-\infty) := (-\infty) \cdot a := +\infty \qquad (a \in [-\infty, 0)),$$

$$\frac{\alpha}{+\infty} := \frac{\alpha}{-\infty} := 0 \qquad (\alpha \in (-\infty, +\infty)),$$

$$\frac{a}{b} := a \cdot \frac{1}{b} \qquad \qquad ((a,b) \in (-\infty,+\infty) \times \{-\infty,+\infty\} \cup [-\infty,+\infty] \times (\mathbb{R} \setminus \{0\})).$$

Nem értelmezzük

- $a + \infty$ és $a \infty$, ill. $a \infty$ és $a + \infty$ elemek összegét,
- a 0-nak a $+\infty$ -nel és a $-\infty$ -nel való szorzatát,
- az a/b hányadost, ha b = 0, vagy, ha $a, b \in \{-\infty, +\infty\}$.

összeg	a > 0	a = 0	a < 0	$a = +\infty$	$a = -\infty$
b > 0				$+\infty$	$-\infty$
b = 0	a + b			$+\infty$	$-\infty$
b < 0				$+\infty$	$-\infty$
$b = +\infty$	+∞	$+\infty$	$+\infty$	$+\infty$	
$b = -\infty$	$-\infty$	$-\infty$	$-\infty$		$-\infty$

szorzat	a > 0	a = 0	a < 0	$a = +\infty$	$a = -\infty$
b > 0				$+\infty$	$-\infty$
b = 0	$a \cdot b$				
b < 0				$-\infty$	+∞
$b = +\infty$	$+\infty$		$-\infty$	$+\infty$	$-\infty$
$b = -\infty$	$-\infty$		+∞	$-\infty$	+∞

hányados	a > 0	a = 0	a < 0	$a = +\infty$	$a = -\infty$
b > 0		a/b		$+\infty$	$-\infty$
b = 0					
b < 0		a/b		$-\infty$	$+\infty$
$b = +\infty$		0			
$b = -\infty$		0			

Számítsuk ki az (x_n) sorozat határértékét!

$$1. \ x_n := \frac{n^3 - 3n^2 + n - 1}{1 - 2n^3 + n} \quad (n \in \mathbb{N}) \ ; \qquad \quad 2. \ x_n := \frac{(2 - n)^7 + (2 + n)^7}{(n^2 + n + 1)(2n + 1)^5} \quad (n \in \mathbb{N}).$$

Útm.

1. Világos, hogy tetszőleges $n \in \mathbb{N}$ esetén

$$x_n = \frac{n^3 \cdot \left(1 - \frac{3}{n} + \frac{1}{n^2} - \frac{1}{n^3}\right)}{n^3 \cdot \left(\frac{1}{n^3} - 2 + \frac{1}{n^2}\right)} = \frac{1 - \frac{3}{n} + \frac{1}{n^2} - \frac{1}{n^3}}{\frac{1}{n^3} - 2 + \frac{1}{n^2}} \longrightarrow \frac{1 - 0 + 0 - 0}{0 - 2 + 0} = -\frac{1}{2} \qquad (n \to \infty).$$

2. Bármely $n \in \mathbb{N}$ indexre az $n \to \infty$ határátmenetben

$$x_n = \frac{n^7 \cdot \left(\frac{(2-n)^7 + (2+n)^7}{n^7}\right)}{n^7 \cdot \left(\frac{(n^2 + n + 1)(2n + 1)^5}{n^7}\right)} = \frac{\left(\frac{2}{n} - 1\right)^7 + \left(\frac{2}{n} + 1\right)^7}{\left(1 + \frac{1}{n} + \frac{1}{n^2}\right) \cdot \left(2 + \frac{1}{n}\right)^5} \longrightarrow \frac{(0-1)^7 + (0+1)^7}{(1+0+0) \cdot (2+0)^5} = 0. \quad \blacksquare$$

Feladat. Számítsuk ki a következő határértékeket!

1.
$$\lim \left(\frac{1}{n^2} \cdot \sum_{k=1}^n k\right)$$
; 2. $\lim \left(\frac{P(n)}{Q(n)}\right)$, ahol P, Q polinom.

Útm.

$$1. \ \frac{1}{n^2} \cdot \sum_{k=1}^n k = \frac{1}{n^2} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2n} = \frac{1+1/n}{2} \longrightarrow \frac{1}{2} \quad (n \to \infty).$$

2. Legyen

$$P(x):=\sum_{i=0}^k\alpha_ix^i,\quad Q(x):=\sum_{j=0}^l\beta_jx^j\qquad (x\in\mathbb{R}),$$

ahol

$$\alpha_i, \beta_j \in \mathbb{R} \quad (i \in \{0, 1, \dots, k\}; \ j \in \{0, 1, \dots, l\}): \qquad \alpha_k \cdot \beta_l \neq 0.$$

Legyen

$$\begin{split} x_n := \frac{P(n)}{Q(n)} &= \frac{\alpha_k n^k + \alpha_{k-1} n^{k-1} + \ldots + \alpha_1 n + \alpha_0}{\beta_l n^l + \beta_{l-1} n^{l-1} + \ldots + \beta_1 n + \beta_0} = \frac{n^k}{n^l} \cdot \frac{\alpha_k + \frac{\alpha_{k-1}}{n} + \ldots + \frac{\alpha_0}{n^k}}{\beta_l + \frac{\beta_{l-1}}{n} + \ldots + \frac{\beta_0}{n^l}} & \quad (n \in \mathbb{N}), \\ y_n := n^{k-l} \quad \text{\'es} \quad z_n := \frac{\alpha_k + \frac{\alpha_{k-1}}{n} + \ldots + \frac{\alpha_0}{n^k}}{\beta_l + \frac{\beta_{l-1}}{n} + \ldots + \frac{\beta_0}{n^l}} & \quad (n \in \mathbb{N}). \end{split}$$

Ekkor

$$\lim \left(z_n\right) = \frac{\alpha_k}{\beta_l} \qquad \text{\'es} \qquad \lim \left(y_n\right) = \left\{ \begin{array}{ll} 1 & (k=l) \\ +\infty & (k>l) \\ \\ 0 & (k$$

Így

100 2022.05.14.

$$\label{eq:lim_alpha_k} \lim \left(x_n \right) = \left\{ \begin{array}{cc} \frac{\alpha_k}{\beta_1} & (k=l), \\ \\ 0 & (k < l), \\ \\ sgn \left(\frac{\alpha_k}{\beta_1} \right) \infty & (k > l). \end{array} \right.$$

Számítsuk ki az (x_n) sorozat határértékét!

1.
$$x_n := \frac{n^4 + n^2 + n + 1}{2n^5 + n - 4}$$
 $(n \in \mathbb{N});$

$$1. \ x_n:=\frac{n^4+n^2+n+1}{2n^5+n-4} \quad (n\in \mathbb{N});$$

$$2. \ x_n:=\frac{n^4-2n^3+n+1}{n^3-4n+3} \quad (n\in \mathbb{N});$$

3.
$$x_n := \frac{n^7 + n - 12}{1 - n^2 + 3n}$$
 $(n \in \mathbb{N}).$

Útm. A fentiek következtében

1. $\lim(x_n) = 0;$ 2. $\lim(x_n) = +\infty;$ 3. $\lim(x_n) = -\infty.$

Feladat. Számítsuk ki az lábbi sorozatok határértékét!

1.
$$x_n := n^2 \cdot \left(n - \sqrt{n^2 + 1}\right)$$
 $(n \in \mathbb{N}_0);$

$$2. \ x_n := \sqrt{n^2 + 2n + 3} - \sqrt{n^2 - n + 1} \qquad (n \in \mathbb{N}_0);$$

$$3. \ x_n:=\sqrt{\alpha\cdot n^2+2n+1}-2n \qquad (n\in\mathbb{N}_0,\,\alpha\in[0,+\infty));$$

4.
$$x_n := \sqrt{n^2 + n + 1} - \alpha n$$
 $(n \in \mathbb{N}_0, \alpha \in \mathbb{R});$

5.
$$x_n := \sqrt[3]{n+2} - \sqrt[3]{n}$$
 $(n \in \mathbb{N}_0)$.

Útm.

1. Ha $n \in \mathbb{N}$, akkor

$$\begin{split} x_n &= n^2 \cdot \left(n - \sqrt{n^2 + 1}\right) \cdot \frac{n + \sqrt{n^2 + 1}}{n + \sqrt{n^2 + 1}} = n^2 \cdot \frac{n^2 - (n^2 + 1)}{n + \sqrt{n^2 + 1}} = \\ &= \frac{-n^2}{n + \sqrt{n^2 + 1}} = \frac{-n}{0 + \sqrt{0 + \frac{1}{n^2}}} \longrightarrow \frac{-\infty}{1 + \sqrt{1 + 0}} = \frac{-\infty}{2} = -\infty \quad (n \to \infty). \end{split}$$

2. Ha $n \in \mathbb{N}$, akkor

$$\begin{array}{ll} x_n & = & \left(\sqrt{n^2+2n+3}-\sqrt{n^2-n+1}\right) \cdot \frac{\sqrt{n^2+2n+3}+\sqrt{n^2-n+1}}{\sqrt{n^2+2n+3}+\sqrt{n^2-n+1}} = \\ \\ & = & \frac{(n^2+2n+3)-(n^2-n+1)}{\sqrt{n^2+2n+3}+\sqrt{n^2-n+1}} = \frac{3n+2}{\sqrt{n^2+2n+3}+\sqrt{n^2-n+1}} = \\ \\ & = & \frac{\frac{3n+2}{n}}{\frac{\sqrt{n^2+2n+3}+\sqrt{n^2-n+1}}{n}} = \frac{3+\frac{2}{n}}{\sqrt{1+\frac{2}{n}+\frac{3}{n^2}}+\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}} \longrightarrow \end{array}$$

$$\longrightarrow \frac{3+0}{\sqrt{1+0+0}+\sqrt{1-0+0}} = \frac{3}{2} \quad (n \to \infty). \quad \blacksquare$$

3. Látható, hogy bármely $n \in \mathbb{N}$ indexre

$$x_n \ = \ \left(\sqrt{\alpha \cdot n^2 + 2n + 1} - 2n \right) \cdot \frac{\sqrt{\alpha \cdot n^2 + 2n + 1} + 2n}{\sqrt{\alpha \cdot n^2 + 2n + 1} + 2n} =$$

$$= \frac{(\alpha-4)n^2+2n+1}{\sqrt{\alpha\cdot n^2+2n+1}+2n} = \frac{\frac{(\alpha-4)n^2+2n+1}{n}}{\frac{\sqrt{\alpha\cdot n^2+2n+1}+2n}{n}} = \frac{(\alpha-4)n+2+\frac{1}{n}}{\sqrt{\alpha+\frac{2}{n}+\frac{1}{n^2}+2}}.$$

Világos, hogy

$$\alpha - 4 = 0$$
 \iff $\alpha = 4$.

Következésképpen

2022.05.14.

• $0 \le \alpha < 4$ esetén

$$\lim \left(\sqrt{\alpha \cdot n^2 + 2n + 1} - 2n \right) = \frac{(-\infty) + 2 + 0}{\sqrt{\alpha + 0 + 0} + 2} = -\infty;$$

• $\alpha = 4$ esetén

$$\lim \left(\sqrt{\alpha \cdot n^2 + 2n + 1} - 2n\right) = \frac{2+0}{\sqrt{4+0+0}+2} = \frac{1}{2};$$

• $\alpha > 4$ esetén

$$\lim \left(\sqrt{\alpha \cdot n^2 + 2n + 1} - 2n \right) = \frac{(+\infty) + 2 + 0}{\sqrt{\alpha + 0 + 0} + 2} = +\infty.$$

- 4. Világos, hogy
 - α < 0 esetén

$$\lim(\mathbf{x}_n) = (+\infty) - \alpha \cdot (+\infty) = (+\infty) - (-\infty) = +\infty.$$

• $\alpha = 0$ esetén

$$\lim(x_n) = \lim(\sqrt{n^2 + n + 1}) = +\infty.$$

Ha viszont $\alpha > 0$, akkor

$$x_n \ = \ \left(\sqrt{n^2 + n + 1} - \alpha n \right) \cdot \frac{\sqrt{n^2 + n + 1} + \alpha n}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} =$$

$$= \frac{(1-\alpha^2)n^2+n+1}{\sqrt{n^2+n+1}+\alpha n} = \frac{\frac{(1-\alpha^2)n^2+n+1}{n}}{\frac{\sqrt{n^2+n+1}+\alpha n}{n}} = \frac{(1-\alpha^2)n+1+\frac{1}{n}}{\sqrt{1+\frac{1}{n}+\frac{1}{n^2}+\alpha}}.$$

Világos, hogy ekkor

$$1-\alpha^2=0$$
 \iff $\alpha=1.$

Következésképpen

• $0 < \alpha < 1$ esetén

$$\lim(x_n) = \frac{(+\infty) + 1 + 0}{\sqrt{1 + 0 + 0} + \alpha} = +\infty;$$

• $\alpha = 1$ esetén bármely $n \in \mathbb{N}$ indexre

$$\lim(x_n) = \frac{1 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2} + 1}} = \frac{1 + 0}{\sqrt{1 + 0 + 0} + 1} = \frac{1}{2}.$$

• $\alpha > 1$ esetén

$$\lim(x_n) = \frac{(-\infty) + 1 + 0}{\sqrt{1 + 0 + 0} + \alpha} = -\infty.$$

5. Ha $n \in \mathbb{N}$, akkor

$$0 \ < \ x_n = \left(\sqrt[3]{n+2} - \sqrt[3]{n}\right) \cdot \frac{\sqrt[3]{(n+2)^2} + \sqrt[3]{(n+2)n} + \sqrt[3]{n^2}}{\sqrt[3]{(n+2)^2} + \sqrt[3]{(n+2)n} + \sqrt[3]{n^2}} =$$

$$= \ \frac{2}{\sqrt[3]{(n+2)^2} + \sqrt[3]{(n+2)n} + \sqrt[3]{n^2}} < \frac{2}{\sqrt[3]{n^2}} < \frac{2}{3\sqrt{n}}.$$

Így a Sandwich-tétel értelmében $\lim(x_n) = 0$.

Feladat. Igazoljuk, hogy fennáll a

$$\left(1-\frac{1}{n^2}\right)^n\longrightarrow 1 \quad (n\to\infty).$$

hatrérték-reláció!

Útm. A Bernoulli-egyenlőtlenség felhasználásával

$$1 - \frac{1}{n} = 1 - n \cdot \frac{1}{n^2} \le \left(1 - \frac{1}{n^2}\right)^n \le 1$$
 $(n \in \mathbb{N})$

adódik, így a Sandwich-tétel következtében az igazolandó állítást kapjuk.

Feladat. Legyen $(x_n): \mathbb{N} \to [0, +\infty)$ olyan sorozat, amelyre $\lim(x_n) \in (0, +\infty)$. Mutassuk meg, hogy ekkor fennáll a

$$\lim \left(\sqrt[n]{x_n}\right) = 1$$

határérték-reláció!

Útm. Legyen

$$\lim(x_n) =: \alpha \in (0, +\infty).$$

Ekkor

$$\exists N \in \mathbb{N} \ \forall N \leq n \in \mathbb{N}: \quad |x_n - \alpha| < \frac{\alpha}{2}.$$

Így

$$|x_n - \alpha| < \frac{\alpha}{2} \qquad \Longleftrightarrow \qquad -\frac{\alpha}{2} < x_n - \alpha < \frac{\alpha}{2} \qquad \Longleftrightarrow \qquad \frac{\alpha}{2} < x_n < \frac{3\alpha}{2}$$

következtében, ha $n \in \mathbb{N}$, $n \ge N$, akkor

$$\sqrt[n]{\frac{\alpha}{2}} < \sqrt[n]{x_n} < \sqrt[n]{\frac{3\alpha}{2}},$$

tehát a Sandwich-tétel értelmében

$$\lim \left(\sqrt[n]{x_n}\right) = 1. \quad \blacksquare$$

Feladat. Legyen $0 < a, b \in \mathbb{R}$. Számítsuk ki az alábbi sorozatok határértékét!

1.
$$x_n := \sqrt[n]{3n^5 + 2n + 1}$$
 $(n \in \mathbb{N});$

1.
$$x_n := \sqrt[n]{3n^5 + 2n + 1} \quad (n \in \mathbb{N});$$
 2. $x_n := \sqrt[n]{\frac{n+1}{2n+3}} \quad (n \in \mathbb{N});$

3.
$$x_n := \sqrt[n]{\frac{3^n}{n!} + 2^n} \quad (n \in \mathbb{N});$$
 4. $x_n := \sqrt[n]{a^n + b^n} \quad (n \in \mathbb{N});$

4.
$$x_n := \sqrt[n]{a^n + b^n} \quad (n \in \mathbb{N});$$

5.
$$x_n := \sqrt[n]{1 + 3^{2n}} \quad (n \in \mathbb{N}).$$

Útm.

1. Mivel

$$\sqrt[n]{3n^5} \leq \sqrt[n]{3n^5 + 2n + 1} \leq \sqrt[n]{3n^5 + 2n^5 + n^5} = \sqrt[n]{6n^5} \qquad (n \in \mathbb{N})$$

és

$$\sqrt[n]{3n^5} = \sqrt[n]{3} \cdot (\sqrt[n]{n})^5 \stackrel{(n \to \infty)}{\longrightarrow} 1 \cdot 1^5 = 1 = 1 \cdot 1^5 \stackrel{(n \to \infty)}{\longleftarrow} \sqrt[n]{6} \cdot (\sqrt[n]{n})^5,$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim(x_n) = 1$$
.

Megjegyzés. Tetszőleges $n \in \mathbb{N}$ indexre

$$x_n = \sqrt[n]{3n^5 + 2n + 1} = \sqrt[n]{n^5 \left(3 + \frac{2}{n^4} + \frac{1}{n^5}\right)} =$$

$$= \left(\sqrt[n]{n}\right)^5 \cdot \sqrt[n]{3 + \frac{2}{n^4} + \frac{1}{n^5}} \stackrel{(n \to \infty)}{\longrightarrow} 1^5 \cdot 1 = 1,$$

hiszen

$$\lim \left(3 + \frac{2}{n^4} + \frac{1}{n^5}\right) = 3 + 0 + 0 = 3 \in (0, +\infty).$$

2. Világos, hogy

$$\sqrt[n]{\frac{1}{5}} = \sqrt[n]{\frac{n}{5n}} = \sqrt[n]{\frac{n}{2n+3n}} \le \sqrt[n]{\frac{n+1}{2n+3}} \le \sqrt[n]{\frac{n+n}{2n}} = \sqrt[n]{1},$$

így

$$\lim \left(\sqrt[n]{\frac{1}{5}}\right) = 1 = \lim \left(\sqrt[n]{1}\right)$$

következtében

$$\lim (x_n) = 1.$$

Megjegyzés. Tetszőleges $n \in \mathbb{N}$ indexre

$$\lim \left(\frac{n+1}{2n+3}\right) = \frac{1}{2},$$

így (vö. fenti feladat)

$$\lim (x_n) = 1.$$

3. Mivel lim $\left(\frac{3^n}{n!}\right)=0$, ezért van olyan $N\in\mathbb{N}$, hogy bármely $N\leq n\in\mathbb{N}$ indexre $\frac{3^n}{n!}<1$, így az ilyen n-ekre

$$2 = \sqrt[n]{2^n} \le \sqrt[n]{\frac{3^n}{n!} + 2^n} \le \sqrt[n]{1 + 2^n} \le \sqrt[n]{2^n + 2^n} = \sqrt[n]{2} \cdot \sqrt[n]{2^n} = 2 \cdot \sqrt[n]{2}.$$

Ennélfogva

$$\lim\left(\sqrt[n]{2}\right) = 1$$

következtében

$$\lim (x_n) = 2$$
.

Megjegyzés. Mivel tetszőleges $n \in \mathbb{N}$ indexre

$$x_n = 2 \cdot \sqrt[n]{\frac{(3/2)^n}{n!} + 1}$$

és

$$\lim \left(\frac{(3/2)^n}{n!} + 1\right) = 0 + 1 = 1 > 0,$$

ezért (vö. korábbi feladat)

$$\lim(x_n) = 2 \cdot 1 = 2$$
.

4. Mivel bármely $n \in \mathbb{N}$ esetén

$$\max\{\alpha,b\} = \sqrt[n]{\max\{\alpha,b\}^n} \leq \sqrt[n]{\alpha^n + b^n} \leq \sqrt[n]{2 \cdot \max\{\alpha,b\}^n} = \sqrt[n]{2} \cdot \max\{\alpha,b\}$$

és

$$\sqrt[n]{2} \longrightarrow 1 \qquad (n \to \infty),$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim (x_n) = \max\{a, b\}.$$

5. Mivel

$$9 = \sqrt[n]{3^{2n}} < \sqrt[n]{1 + 3^{2n}} < \sqrt[n]{3^{2n} + 3^{2n}} = \sqrt[n]{2} \cdot 9$$

és

$$\lim \left(\sqrt[n]{2}\right) = 1,$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim \left(\sqrt[n]{1+3^{2n}}\right) = 9. \quad \blacksquare$$

A a későbbiek szempontjából is nagyon fontos az alábbi

Tétel. Tegyük fel, hogy az

$$x_n \in (0, +\infty)$$
 $(n \in \mathbb{N}_0)$

sorozat esetében

$$0 \leq \lim \left(\frac{x_{n+1}}{x_n}\right) < 1 \qquad \text{vagy} \qquad 0 \leq \lim \left(\sqrt[n]{x_n}\right) < 1$$

teljesül. Ekkor fennál a

$$\lim (x_n) = 0$$

határérték-reláció.

Biz.

1. lépés. Legyen

$$\alpha := lim\left(\frac{\chi_{n+1}}{\chi_n}\right)$$
.

Ekkor $0 \le \alpha < 1$. Legyen

$$q \in (\alpha, 1)$$
 és $\epsilon := q - \alpha$.

Ekkor $\epsilon>0$, így a konvergencia következtében van olyan $N\in\mathbb{N}$, hogy minden $N\leq n\in\mathbb{N}_0$ esetén

$$\left|\frac{x_{n+1}}{x_n}-\alpha\right|<\epsilon\qquad\Longrightarrow\qquad -\epsilon<\frac{x_{n+1}}{x_n}-\alpha<\epsilon\qquad\Longrightarrow\qquad 0<\frac{x_{n+1}}{x_n}<\epsilon+\alpha=q.$$

Ezért

$$0 < \frac{x_{n+1}}{x_N} = \prod_{k=N}^n \frac{x_{k+1}}{x_k} = \frac{x_{N+1}}{x_N} \cdot \frac{x_{N+2}}{x_{N+1}} \cdot \ldots \cdot \frac{x_n}{x_{n-1}} \cdot \frac{x_{n+1}}{x_n} < q^{n-N+1} \qquad (N \le n \in \mathbb{N}),$$

azaz

$$0 < x_{n+1} < x_N \cdot q^{n-N+1}$$
 .

Mivel

$$lim\left(x_{N}\cdot q^{n-N+1}\right)=x_{N}\cdot lim\left(q^{n-N+1}\right)=0,$$

ezért a Sandwich-tétel következtében $\lim (x_n) = 0$.

2. lépés. Legyen

$$\beta := \lim \left(\sqrt[n]{\chi_n} \right)$$
.

Ekkor $0 \le \beta < 1$. Legyen

$$q \in (\beta, 1)$$
 és $\epsilon := q - \beta$.

Ekkor $\epsilon>0$, így a konvergencia következtében van olyan $N\in\mathbb{N}$, hogy minden $N\leq n\in\mathbb{N}_0$ esetén

$$|\sqrt[n]{x_n} - \beta| < \epsilon \qquad \Longrightarrow \qquad -\epsilon < \sqrt[n]{x_n} - \beta < \epsilon \qquad \Longrightarrow \qquad 0 < \sqrt[n]{x_n} < \beta + \epsilon = \mathfrak{q}.$$

Ezért

$$0 < x_n < q^n$$
 $(N \le n \in \mathbb{N}_0),$

ahonnan a Sandwich-tétel felhasználásával $\lim (x_n) = 0$ adódik.

Példák.

1. Ha $k \in \mathbb{N}$, $q \in (-1, 1)$, azaz |q| < 1 és

$$x_n := n^k \cdot q^n \qquad (n \in \mathbb{N}_0),$$

akkor az

$$(y_n) := (|x_n|)$$

sorozatra

$$0 < \sqrt[n]{y_n} = (\sqrt[n]{n})^k \cdot |q| \longrightarrow 1^k \cdot |q| = |q| < 1 \qquad (n \to \infty).$$

Kövezkezésképpen

$$\lim(y_n) = 0$$
, igy $\lim(n^k \cdot q^n) = \lim(x_n) = 0$.

2. Ha $a \in \mathbb{R}$ és

$$x_n:=\frac{a^n}{n!}\qquad (n\in\mathbb{N}_0),$$

akkor az

$$(y_n) := (|x_n|)$$

sorozatra $a \neq 0$ esetén

$$\frac{y_{n+1}}{y_n} = \frac{|a|^{n+1}}{(n+1)!} : \frac{|a|^n}{n!} = \frac{|a|^{n+1}}{(n+1)!} \cdot \frac{n!}{|a|^n} = \frac{|a|}{n+1} \longrightarrow 0 < 1 \qquad (n \to \infty).$$

Kövezkezésképpen (a = 0 esetén meg különösképp)

$$\lim(y_n) = 0,$$
 fgy $\lim\left(\frac{a^n}{n!}\right) = \lim(x_n) = 0.$

Feladat. Számítsuk ki az alábbi sorozatok határértékét!

1.
$$x_n := \frac{5^{n+1} + 2^n}{3 \cdot 5^n - 5^{-n}} \quad (n \in \mathbb{N});$$
 2. $x_n := \frac{n^2 \cdot 3^n + 2^{2n}}{4^{n+1} + 2^n} \quad (n \in \mathbb{N});$

$$\text{3. } x_n := \sqrt{\frac{(-5)^n + 7^n}{7^{n+1} + n^7}} \quad (n \in \mathbb{N}); \qquad \text{4. } x_n := \frac{(-2)^n + n}{n! + 3^n} \quad (n \in \mathbb{N}).$$

Útm.

1. Az 5ⁿ számmal egyszerűsítve azt kapjuk, hogy

$$x_{n} = \frac{5^{n+1} + 2^{n}}{3 \cdot 5^{n} - 5^{-n}} = \frac{5 + (2/5)^{n}}{3 - (25)^{-n}} \longrightarrow \frac{5 + 0}{3 - 0} = \frac{5}{3} \qquad (n \to \infty).$$

2. A 4ⁿ számmal egyszerűsítve azt kapjuk, hogy

$$x_n = \frac{n^2 \cdot 3^n + 2^{2n}}{4^{n+1} + 2^n} = \frac{n^2 \cdot (3/4)^n + 1}{4 + (1/2)^n} \longrightarrow \frac{0+1}{4+0} = \frac{1}{4} \qquad (n \to \infty).$$

3. A 7ⁿ számmal egyszerűsítve azt kapjuk, hogy

$$x_n = \sqrt{\frac{(-5)^n + 7^n}{7^{n+1} + n^7}} = \sqrt{\frac{(-5/7)^n + 1}{7 + n^7 (1/7)^n}} \longrightarrow \sqrt{\frac{0+1}{7+0}} = \frac{1}{\sqrt{7}} \qquad (n \to \infty).$$

4. Az n! számmal egyszerűsítve azt kapjuk, hogy

$$x_n = \frac{(-2)^n + n}{n! + 3^n} = \frac{\frac{(-2)^n}{n!} + \frac{1}{(n-1)!}}{1 + \frac{3^n}{n!}} \longrightarrow \frac{0+0}{1+0} = 0 \qquad (n \to \infty). \quad \blacksquare$$

Házi feladat. Legyen $n \in \mathbb{N}$. Számítsuk ki $\lim(x_n)$ -et az alábbi esetekben!

1.
$$x_n := \frac{\sqrt{n^2 + 1} + \sqrt{n}}{\sqrt[4]{n^3 + n} - n};$$

2.
$$x_n := \sqrt{n^3 + 1} - n;$$

3.
$$x_n := \sqrt[3]{(n+1)^2} - \sqrt[3]{(n-1)^2}$$
;

4.
$$x_n := \frac{\sqrt{n^2 + 1} - \sqrt[3]{n^2 + 1}}{\sqrt[4]{n^4 + 1} - \sqrt[5]{n^4 + 1}};$$

5.
$$x_n := \frac{\sqrt[5]{n^7 + 3} + \sqrt[4]{2n^3 - 1}}{\sqrt[6]{n^8 + n^7 + 1} - n};$$

6.
$$x_n := \frac{\sqrt[3]{n^4 + 3} - \sqrt[5]{n^3 + 4}}{\sqrt[3]{n^7 + 1}};$$

7.
$$x_n := \frac{\sqrt{n^2 + 1} - \sqrt[3]{n^2 + 1}}{\sqrt[4]{n^4 + 1} - \sqrt[5]{n^4 + 1}};$$

8.
$$x_n := \frac{(n+1)^{10} + (n+2)^{10} + \ldots + (n+100)^{10}}{n^{10} + 10^{10}};$$

9.
$$x_n := \sqrt{n^2 - 2n - 1} - \sqrt{n^2 - 7n + 3}$$

$$\textbf{9.} \ \, x_n := \sqrt{n^2 - 2n - 1} - \sqrt{n^2 - 7n + 3}; \quad \, \textbf{10.} \ \, x_n := \varphi(n) \cdot \left(\sqrt{n + 1} + \sqrt{n - 1} - 2\sqrt{n}\right), \\ \varphi(n) \in \left\{\sqrt[3]{n^2}, \sqrt{n^3}\right\};$$

11.
$$x_n := n^3 \cdot \left(\sqrt{n^2 + \sqrt{n^4 + 1}} - n\sqrt{2} \right);$$
 12. $x_n := \sqrt{n + \sqrt{n}} - \sqrt{n - \sqrt{n}};$

12.
$$x_n := \sqrt{n + \sqrt{n}} - \sqrt{n - \sqrt{n}};$$

13.
$$x_n := \sqrt[3]{x^2} \cdot \left(\sqrt{n^3 + 1} - \sqrt{n^3 - 1}\right);$$
 14. $x_n := \frac{\sqrt[3]{n + 1} - 1}{n}.$

14.
$$x_n := \frac{\sqrt[3]{n+1}-1}{n}$$
.

Útm.

$$x_n = \frac{\sqrt{1 + \frac{1}{n^2}} + \sqrt{\frac{1}{n}}}{\sqrt[4]{\frac{1}{n} + \frac{1}{n^3}} - 1} \longrightarrow \frac{\sqrt{1 + 0} + 0}{\sqrt[4]{0 + 0} - 1} = -1 \qquad (n \to \infty).$$

2. Tetszőleges $n \in \mathbb{N}$ esetén

$$x_n \ = \ \left(\sqrt{n^3+1}-n\right) \cdot \frac{\sqrt{n^3+1}+n}{\sqrt{n^3+1}+n} = \frac{n^3+1-n}{\sqrt{n^3+1}+n} = \frac{n^3\left(1+\frac{1}{n^3}-\frac{1}{n}\right)}{n^{3/2} \cdot \left(\sqrt{1+\frac{1}{n^3}}+\sqrt{\frac{1}{n}}\right)} = \frac{n^3\left(1+\frac{1}{n^3}-\frac{1}{n}\right)}{n^3} = \frac{n^3\left(1+\frac{1}{n^3}-\frac{1}{n^3}\right)}{n^3} = \frac{n^3\left(1+\frac{1}{n^3}-\frac{1}{n^$$

$$= n^{3/2} \cdot \frac{1 + \frac{1}{n^3} - \frac{1}{n}}{\sqrt{1 + \frac{1}{n^3}} + \sqrt{\frac{1}{n}}} \longrightarrow +\infty \cdot 1 = +\infty \quad (n \to \infty).$$

3. Tetszőleges $n \in \mathbb{N}$ esetén

$$\begin{split} x_n &= \left(\sqrt[3]{(n+1)^2} - \sqrt[3]{(n-1)^2}\right) \cdot \frac{\sqrt[3]{(n+1)^4} + \sqrt[3]{(n+1)^2(n-1)^2} + \sqrt[3]{(n-1)^4}}{\sqrt[3]{(n+1)^4} + \sqrt[3]{(n+1)^2(n-1)^2} + \sqrt[3]{(n-1)^4}} = \\ &= \frac{(n+1)^2 - (n-1)^2}{\sqrt[3]{(n+1)^4} + \sqrt[3]{(n+1)^2(n-1)^2} + \sqrt[3]{(n-1)^4}} = \\ &= \frac{4n}{\sqrt[3]{(n+1)^4} + \sqrt[3]{(n+1)^2(n-1)^2} + \sqrt[3]{(n-1)^4}} = \\ &= \frac{4n}{n^{4/3} \cdot \left\{\sqrt[3]{\left(1 + \frac{1}{n}\right)^4} + \sqrt[3]{\left(1 - \frac{1}{n^2}\right)^2} + \sqrt[3]{\left(1 - \frac{1}{n}\right)^4}\right\}} = \\ &= \frac{1}{\sqrt[3]{n}} \cdot \frac{4}{\sqrt[3]{\left(1 + \frac{1}{n}\right)^4} + \sqrt[3]{\left(1 - \frac{1}{n^2}\right)^2} + \sqrt[3]{\left(1 - \frac{1}{n}\right)^4}} \longrightarrow 0 \cdot \frac{4}{3} = 0 \quad (n \to \infty). \end{split}$$

$$x_n = \frac{n \cdot \left(\sqrt{1 + \frac{1}{n^2}} - \sqrt[3]{\frac{1}{n} + \frac{1}{n^3}}\right)}{n \cdot \left(\sqrt[4]{1 + \frac{1}{n^4}} - \sqrt[5]{\frac{1}{n} + \frac{1}{n^5}}\right)} = = \frac{\sqrt{1 + \frac{1}{n^2}} - \sqrt[3]{\frac{1}{n} + \frac{1}{n^3}}}{\sqrt[4]{1 + \frac{1}{n^4}} - \sqrt[5]{\frac{1}{n} + \frac{1}{n^5}}} \longrightarrow \frac{1 - 0}{1 - 0} = 1 \quad (n \to \infty).$$

5. Tetszőleges $n \in \mathbb{N}$ esetén az $n \to \infty$ határátmenetben

$$x_n = \frac{n^{7/5} \cdot \left(\sqrt[5]{1 + \frac{3}{n^7}} + \sqrt[4]{\frac{2}{n^{13/5}} - \frac{1}{n^{21/5}}}\right)}{n^{4/3} \cdot \left(\sqrt[6]{1 + \frac{1}{n} + \frac{1}{n^8}} - \frac{1}{n^{1/3}}\right)} = \frac{\sqrt[5]{1 + \frac{3}{n^7}} + \sqrt[4]{\frac{2}{n^{13/5}} - \frac{1}{n^{21/5}}}}{\sqrt[6]{1 + \frac{1}{n} + \frac{1}{n^8}} - \frac{1}{n^{1/3}}} \longrightarrow (+\infty) \cdot \frac{1 + 0}{1 - 0} = +\infty.$$

6. Tetszőleges $n \in \mathbb{N}$ esetén az $n \to \infty$ határátmenetben

$$x_n = \frac{n^{4/3} \cdot \left(\sqrt[3]{1 + \frac{3}{n^4}} - \sqrt[5]{\frac{1}{n^{11/3}} + \frac{4}{n^{20/3}}}\right)}{n^{7/3} \cdot \left(\sqrt[3]{1 + \frac{1}{n^7}}\right)} = \frac{\sqrt[3]{1 + \frac{3}{n^4}} - \sqrt[5]{\frac{1}{n^{11/3}} + \frac{4}{n^{20/3}}}}{\sqrt[3]{1 + \frac{1}{n^7}}} \longrightarrow 0 \cdot \frac{1 - 0}{1} = 0.$$

7. Tetszőleges $n \in \mathbb{N}$ esetén

$$x_n = \frac{n \cdot \left(\sqrt{1 + \frac{1}{n^2}} - \sqrt[3]{\frac{1}{n} + \frac{1}{n^3}}\right)}{n \cdot \left(\sqrt[4]{1 + \frac{1}{n^4}} - \sqrt[5]{\frac{1}{n} + \frac{1}{n^5}}\right)} = \frac{\sqrt{1 + \frac{1}{n^2}} - \sqrt[3]{\frac{1}{n} + \frac{1}{n^3}}}{\sqrt[4]{1 + \frac{1}{n^4}} - \sqrt[5]{\frac{1}{n} + \frac{1}{n^5}}} \longrightarrow \frac{1 - 0}{1 - 0} = 1 \quad (n \to \infty).$$

8. Tetszőleges $n \in \mathbb{N}$ esetén

$$x_n = \frac{\left(1 + \frac{1}{n}\right)^{10} + \left(1 + \frac{2}{n}\right)^{10} + \ldots + \left(1 + \frac{100}{n}\right)^{10}}{1 + \left(\frac{10}{n}\right)^{10}} \longrightarrow \frac{100 \cdot 1}{1 + 0} = 100 \quad (n \to \infty).$$

$$\begin{split} x_n &= \left(\sqrt{n^2 - 2n - 1} - \sqrt{n^2 - 7n + 3}\right) \cdot \frac{\sqrt{n^2 - 2n - 1} + \sqrt{n^2 - 7n + 3}}{\sqrt{n^2 - 2n - 1} + \sqrt{n^2 - 7n + 3}} = \\ &= \frac{n^2 - 2n - 1 - n^2 + 7n - 3}{\sqrt{n^2 - 2n - 1} + \sqrt{n^2 - 7n + 3}} = \frac{5n - 4}{\sqrt{n^2 - 2n - 1} + \sqrt{n^2 - 7n + 3}} = \\ &= \frac{5 - \frac{4}{n}}{\sqrt{1 - \frac{2}{n} - \frac{1}{n^2}} + \sqrt{1 - \frac{7}{n} + \frac{3}{n^2}}} \longrightarrow \frac{5 - 0}{1 + 1} = \frac{5}{2} \quad (n \to \infty). \end{split}$$

10. Tetszőleges $n \in \mathbb{N}$ esetén

$$\begin{split} x_n &= & \varphi(n) \cdot \left(\sqrt{n+1} - \sqrt{n} + \sqrt{n-1} - \sqrt{n} \right) = \\ &= & \varphi(n) \cdot \left(\frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} + \frac{n-1-n}{\sqrt{n-1} + \sqrt{n}} \right) = \\ &= & \varphi(n) \cdot \frac{\sqrt{n-1} + \sqrt{n} - \sqrt{n+1} - \sqrt{n}}{(\sqrt{n+1} + \sqrt{n}) \cdot (\sqrt{n-1} + \sqrt{n})} = \\ &= & \varphi(n) \cdot \frac{\sqrt{n-1} - \sqrt{n+1}}{(\sqrt{n+1} + \sqrt{n}) \cdot (\sqrt{n-1} + \sqrt{n})} \cdot \frac{\sqrt{n-1} + \sqrt{n+1}}{\sqrt{n-1} + \sqrt{n+1}} = \\ &= & \varphi(n) \cdot \frac{n-1-n-1}{(\sqrt{n+1} + \sqrt{n}) \cdot (\sqrt{n-1} + \sqrt{n}) \cdot (\sqrt{n-1} + \sqrt{n+1})}. \end{split}$$

Ha

• $\phi(n) = \sqrt[3]{n^2}$, akkor az $n \to \infty$ határátmenetben

$$\begin{array}{lll} x_n & = & \frac{-2n^{2/3}}{n^{3/2} \cdot \left(\sqrt{1 + \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + \sqrt{1 + \frac{1}{n}}\right)} = \\ \\ & = & n^{-5/6} \cdot \frac{-2}{\left(\sqrt{1 + \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + \sqrt{1 + \frac{1}{n}}\right)} \longrightarrow \\ \\ & \longrightarrow & 0 \cdot \frac{-2}{8} = 0; \end{array}$$

• $\phi(n) = \sqrt{n^3}$, akkor az $n \to \infty$ határátmenetben

$$\begin{array}{lll} x_n & = & \frac{-2n^{3/2}}{n^{3/2} \cdot \left(\sqrt{1 + \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + \sqrt{1 + \frac{1}{n}}\right)} = \\ & = & \frac{-2}{\left(\sqrt{1 + \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{n}} + \sqrt{1 + \frac{1}{n}}\right)} \longrightarrow \\ & \longrightarrow & \frac{-2}{(1 + 1)(1 + 1)(1 + 1)} = -\frac{1}{4}. \end{array}$$

11. Tetszőleges $n \in \mathbb{N}$ esetén az $n \to \infty$ határátmenetben

$$\begin{split} x_n &= n^3 \cdot \left(\sqrt{n^2 + \sqrt{n^4 + 1}} - n\sqrt{2} \right) \cdot \frac{\sqrt{n^2 + \sqrt{n^4 + 1}} + n\sqrt{2}}{\sqrt{n^2 + \sqrt{n^4 + 1}} + n\sqrt{2}} = \\ &= n^3 \cdot \frac{n^2 + \sqrt{n^4 + 1} - 2n^2}{\sqrt{n^2 + \sqrt{n^4 + 1}} + n\sqrt{2}} = n^3 \cdot \frac{\sqrt{n^4 + 1} - n^2}{\sqrt{n^2 + \sqrt{n^4 + 1}} + n\sqrt{2}} \cdot \frac{\sqrt{n^4 + 1} + n^2}{\sqrt{n^4 + 1} + n^2} = \\ &= n^3 \cdot \frac{n^4 + 1 - n^4}{\left(\sqrt{n^2 + \sqrt{n^4 + 1}} + n\sqrt{2} \right) \left(\sqrt{n^4 + 1} + n^2 \right)} = \\ &= \frac{n^3}{n^3 \cdot \left(\sqrt{1 + \sqrt{1 + \frac{1}{n^4}}} + \sqrt{2} \right) \left(\sqrt{1 + \frac{1}{n^4}} + 1 \right)} \longrightarrow \frac{1}{\left(\sqrt{2} + \sqrt{2} \right) (1 + 1)} = \frac{1}{4\sqrt{2}}. \end{split}$$

12. Tetszőleges $n \in \mathbb{N}$ esetén

$$= \frac{2}{\sqrt{1+\frac{1}{\sqrt{n}}}+\sqrt{1-\frac{1}{\sqrt{n}}}} \longrightarrow \frac{2}{1+1} = 1 \qquad (n \to \infty).$$

13. Tetszőleges $n \in \mathbb{N}$ esetén

$$\begin{array}{lll} x_n & = & \sqrt[3]{n^2} \cdot \left(\sqrt{n^3+1} - \sqrt{n^3-1}\right) \cdot \frac{\sqrt{n^3+1} + \sqrt{n^3-1}}{\sqrt{n^3+1} + \sqrt{n^3-1}} = \sqrt[3]{n^2} \cdot \frac{n^3+1-n^3+1}{\sqrt{n^3+1} + \sqrt{n^3-1}} = \\ & = & \sqrt[3]{n^2} \cdot \frac{2}{n^{3/2} \cdot \left(\sqrt{1+\frac{1}{n^3}} + \sqrt{1-\frac{1}{n^3}}\right)} = \frac{2}{n^{5/6} \cdot \left(\sqrt{1+\frac{1}{n^3}} + \sqrt{1-\frac{1}{n^3}}\right)} \longrightarrow \\ & \longrightarrow & \frac{2}{(+\infty) \cdot (1+1)} = 0 \quad (n \to \infty). \end{array}$$

$$x_n = \sqrt[3]{\frac{1}{n^3} + \frac{1}{n^2} - \frac{1}{n}} \longrightarrow 0 - 0 = 0 \quad (n \to \infty).$$

Házi feladatok.

1. Számítsuk ki az alábbi sorozatok határértékét!

$$\text{(a)} \ \ x_n := \frac{n^3 - 2n - 1}{-3n^3 + n + 3} \quad (n \in \mathbb{N}_0); \qquad \quad \text{(b)} \ \ x_n := \frac{(n+1)^3 + (n-1)^3}{n^3 + 1} \quad (n \in \mathbb{N}_0).$$

2. Konvergensek-e a következő sorozatok? Ha igen, akkor mi a határértékük?

$$\text{(a)} \ \ x_n:=\sqrt{n^2+3n+1}-2n \quad (n\in\mathbb{N}_0); \qquad \text{(b)} \ \ x_n:=n\cdot\left(n-\sqrt{n^2+1}\right) \quad (n\in\mathbb{N}_0).$$

3. Számítsuk ki az alábbi sorozatok határértékét!

(a)
$$x_n := \sqrt[n]{n^2 + 100}$$
 $(n \in \mathbb{N});$ (b) $x_n := \sqrt[n]{2 \cdot 5^n + 7^n}$ $(n \in \mathbb{N}).$

4. Számítsuk ki az

$$x_n := \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \frac{n}{n^2 + 3} + \ldots + \frac{n}{n^2 + n}$$
 $(n \in \mathbb{N})$

sorozat határértékét!

5. Számítsuk ki az alábbi sorozatok határértékét!

(a)
$$x_n := \sqrt{\frac{n^2 + n + 1}{n^2 + 2}}$$
 $(n \in \mathbb{N}_0);$ (b) $x_n := \frac{n - \sqrt{n} - 1}{n + \sqrt{n} + 1}$ $(n \in \mathbb{N}_0)$

$$\text{(c)} \ \ x_n := \frac{2^n + 2^{-n}}{2^{-n} + 3^n} \quad (n \in \mathbb{N}_0); \qquad \qquad \text{(d)} \ \ x_n := \frac{n \cdot 2^{n+1} + 3^{2n}}{9^{n-1} + 3^n} \quad (n \in \mathbb{N}_0)$$

$$\text{(e)} \ \ x_n := \sqrt{\frac{(-2)^n + 5^n}{5^{n+1} + n^5}} \quad (n \in \mathbb{N}_0); \qquad \quad \text{(f)} \ \ x_n := \frac{(-3)^n + n^3}{n! + 5^n} \quad (n \in \mathbb{N}_0).$$

Útm.

1. (a) Világos, hogy tetszőlegs $n \in \mathbb{N}$ esetén

$$x_n = \frac{n^3 - 2n - 1}{-3n^3 + n + 3} = \frac{\frac{n^3 - 2n - 1}{n^3}}{\frac{-3n^3 + n + 3}{n^3}} = \frac{1 - \frac{2}{n^2} - \frac{1}{n^3}}{-3 + \frac{1}{n^2} + \frac{3}{n^3}} \longrightarrow \frac{1 - 0 - 0}{-3 + 0 + 0} = -\frac{1}{3} \quad (n \to \infty).$$

(b) Bármely $n \in \mathbb{N}$ indexre

$$x_n \ = \ \frac{(n+1)^3 + (n-1)^3}{n^3 + 1} = \frac{\frac{(n+1)^3 + (n-1)^3}{n^3}}{\frac{n^3 + 1}{n^3}} = \frac{\left(1 + \frac{1}{n}\right)^3 + \left(1 - \frac{1}{n}\right)^3}{1 + \frac{1}{n^3}} \longrightarrow$$

$$\longrightarrow \frac{(1+0)^3+(1-0)^3}{1+0}=\frac{2}{1}=2 \quad (n\to\infty).$$

2. (a) Ha $n \in \mathbb{N}$, akkor

$$x_n \ = \ (\sqrt{n^2 + 3n + 1} - 2n) \cdot \frac{\sqrt{n^2 + 3n + 1} + 2n}{\sqrt{n^2 + 3n + 1} + 2n} = \frac{-3n^2 + 3n + 1}{\sqrt{n^2 + 3n + 1} + 2n} =$$

$$= \frac{\frac{-3n^2+3n+1}{n}}{\frac{\sqrt{n^2+3n+1}+2n}{n}} = \frac{-3n+3+\frac{1}{n}}{\sqrt{1+\frac{3}{n}+\frac{1}{n^2}}+2} \longrightarrow \frac{(-\infty)+3+0}{\sqrt{1+0+0}+2} = -\infty \qquad (n\to\infty).$$

(b) Ha $n \in \mathbb{N}$, akkor

$$x_n = n \cdot \left(n - \sqrt{n^2 + 1}\right) \cdot \frac{n + \sqrt{n^2 + 1}}{n + \sqrt{n^2 + 1}} = n \cdot \frac{-1}{n + \sqrt{n^2 + 1}} =$$

$$= \frac{-1}{1 + \sqrt{1 + \frac{1}{n^2}}} \longrightarrow \frac{-1}{1 + \sqrt{1 + 0}} = -\frac{1}{2} \qquad (n \to \infty).$$

3. (a) Mivel

$$(\sqrt[n]{n})^2 = \sqrt[n]{n^2} \leq \sqrt[n]{n^2 + 100} \leq \sqrt[n]{n^2 + 100n^2} = \sqrt[n]{101n^2} = \sqrt[n]{101} \cdot (\sqrt[n]{n})^2 \quad (n \in \mathbb{N})$$

és

$$\sqrt[n]{n} \stackrel{(n\to\infty)}{\longrightarrow} 1 = 1 \stackrel{(n\to\infty)}{\longleftarrow} \sqrt[n]{101}$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim(x_n)=1$$
.

(b) Mivel

$$7 = \sqrt[n]{7^n} \le \sqrt[n]{2 \cdot 5^n + 7^n} \le \sqrt[n]{2 \cdot 7^n + 7^n} = \sqrt[n]{3 \cdot 7^n} = \sqrt[n]{3} \cdot 7 \quad (n \in \mathbb{N})$$

és

$$\sqrt[n]{3} \longrightarrow 1 \qquad (n \to \infty),$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim(x_n) = 7$$
.

4. Az x_n -beli összeg minden tagját alulról, ill. felülről becsülhetjük az összeg legkisebb, ill. legnagyobb tagjával, azaz tetszőleges n indexre

$$\frac{n}{n^2+n} + \frac{n}{n^2+n} + \frac{n}{n^2+n} + \ldots + \frac{n}{n^2+n} \leq x_n \leq \frac{n}{n^2+1} + \frac{n}{n^2+1} + \frac{n}{n^2+1} + \ldots + \frac{n}{n^2+1}.$$

Mivel

$$\frac{n}{n^2+n}+\frac{n}{n^2+n}+\frac{n}{n^2+n}+\ldots+\frac{n}{n^2+n}=n\cdot\frac{n}{n^2+n}=\frac{n^2}{n^2+n}\longrightarrow 1 \quad (n\to\infty)$$

és

$$\frac{n}{n^2+1} + \frac{n}{n^2+1} + \frac{n}{n^2+1} + \ldots + \frac{n}{n^2+1} = n \cdot \frac{n}{n^2+1} = \frac{n^2}{n^2+1} \longrightarrow 1 \quad (n \to \infty),$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy $\lim(x_n) = 1$.

$$x_n = \sqrt{\frac{n^2 + n + 1}{n^2 + 2}} = \sqrt{\frac{\frac{n^2 + n + 1}{n^2}}{\frac{n^2 + 2}{n^2}}} = \sqrt{\frac{\frac{n^2 + n + 1}{n^2}}{\frac{n^2 + 2}{n^2}}} =$$

$$= \sqrt{\frac{1 + \frac{1}{n} + \frac{2}{n^2}}{1 + \frac{2}{n^2}}} \longrightarrow \sqrt{\frac{1 + 0 + 0}{1 + 0}} = \sqrt{1} = 1 \qquad (n \to \infty).$$

(b) Bármely $n \in \mathbb{N}$ indexre

$$x_n = \frac{n - \sqrt{n} - 1}{n + \sqrt{n} + 1} = \frac{\frac{n - \sqrt{n} - 1}{n}}{\frac{n + \sqrt{n} + 1}{n}} = \frac{1 - \frac{1}{\sqrt{n}} - \frac{1}{n}}{1 + \frac{1}{\sqrt{n}} + \frac{1}{n}} \longrightarrow \frac{1 - 0 - 0}{1 + 0 + 0} = 1 \qquad (n \to \infty).$$

(c) A 3ⁿ számmal egyszeűsítve

$$x_n = \frac{\left(\frac{2}{3}\right)^n + \left(\frac{1}{6}\right)^n}{\left(\frac{1}{6}\right)^n + 1} \longrightarrow \frac{0+0}{0+1} = 0 \qquad (n \to \infty).$$

(d) A 9ⁿ számmal egyszeűsítve

$$x_n = \frac{n \cdot 2^{n+1} + 3^{2n}}{9^{n-1} + 3^n} = \frac{2n \cdot 2^n + 9^n}{\frac{9^n}{9} + 3^n} = \frac{2n \cdot \left(\frac{2}{9}\right)^n + 1}{\frac{1}{9} + \left(\frac{1}{3}\right)^n} \longrightarrow \frac{0+1}{\frac{1}{9} + 0} = 9 \qquad (n \to \infty).$$

(e) Az 5ⁿ számmal egyszeűsítve

$$x_n = \sqrt{\frac{(-2)^n + 5^n}{5^{n+1} + n^5}} = \sqrt{\frac{\left(\frac{-2}{5}\right)^n + 1}{5 + \frac{n^5}{5n}}} \longrightarrow \sqrt{\frac{0+1}{5+0}} = \sqrt{\frac{1}{5}} \qquad (n \to \infty).$$

(f) Az n! számmal egyszeűsítve

$$x_n = \frac{(-3)^n + n^3}{n! + 5^n} = \frac{\frac{(-3)^n}{n!} + \frac{n^3}{n!}}{1 + \frac{5^n}{n!}} = \frac{\frac{(-3)^n}{n!} + \frac{n^2}{(n-1)\cdot(n-2)\cdot...\cdot2\cdot1}}{1 + \frac{5^n}{n!}} \longrightarrow \frac{0+0}{1+0} = 0 \qquad (n \to \infty). \quad \blacksquare$$

6. gyakorlat (2022.03.?.)

Az analízisben alapvető jelentőségű az az állítás, miszerint "egymásba skatulyázott kompakt intervallumok⁵ közös része nem üres." Ezt pontosítja a következő tételben megfogalmazott állítás.

Emlékeztető (Cantor-tétel). Minden $n \in \mathbb{N}$ szám esetén legyenek adottak az $[a_n, b_n] \subset \mathbb{R}$ (kompakt) intervallumok, és tegyük fel, hogy

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$$
 $(n \in \mathbb{N}).$

Ekkor

$$\bigcap_{n=1}^{\infty}[a_n,b_n]:=\bigcap_{n\in\mathbb{N}}[a_n,b_n]\neq\emptyset,$$

sőt az is igaz, hogy

$$\exists ! c \in [a_n, b_n]$$
 $(n \in \mathbb{N}).$

Példa. Tetszőleges $n \in \mathbb{N}$ esetén legyen

$$\alpha_n := \left(1 + \frac{1}{n}\right)^n, \qquad \text{ill.} \qquad b_n := \left(1 + \frac{1}{n}\right)^{n+1} = \left(\frac{n+1}{n}\right)^{n+1}.$$

Ekkor az (a_n) és a (b_n) sorozat teljesíti teljesítik a Cantor-féle közöspont-tétel feltételeit, hiszen

bármely n ∈ N indxre a_{n+1} − a_n > 0, b_{n+1} − b_n < 0, ui. egyrészt (a_n) monoton növekedő (vö. 1.
 GY), másrészt pedig minden n ∈ N indexre a mértani és a számtani közép közötti egyenlőtlenség következtében

$$\frac{1}{b_n} = 1 \cdot \left(\frac{n}{n+1}\right)^{n+1} < \left(\frac{1 + (n+1) \cdot \frac{n}{n+1}}{n+2}\right)^{n+2} = \left(\frac{1+n}{n+2}\right)^{n+2} = \left(\frac{n+1}{n+2}\right)^{n+2} = \frac{1}{b_{n+1}}.$$

$$\underline{a_n} = \left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n}\right)^n \cdot \left(1 + \frac{1}{n}\right) = \left(1 + \frac{1}{n}\right)^{n+1} = \underline{b_n};$$

 $^{{}^5}$ Ha valamely $\alpha, b \in \mathbb{R}$ esetén $\alpha \le b$, akkor az $[\alpha, b] := \{x \in \mathbb{R} : \alpha \le x \le b\}$ számhalmazt szokás **kompakt intervallum**nak vagy **korlátos és zárt intervallum**nak nevezni.

• ha $\epsilon \in \mathbb{R}$ tetszőleges és $n \in \mathbb{N}$ olyan, hogy $n > \frac{3}{\epsilon}$, akkor

$$b_n-\alpha_n=\left(1+\frac{1}{n}\right)^{n+1}-\left(1+\frac{1}{n}\right)^n=\left(1+\frac{1}{n}\right)^n\left(1+\frac{1}{n}-1\right)=\left(1+\frac{1}{n}\right)^n\frac{1}{n}<\frac{3}{n}<\epsilon.$$

Így

$$\exists ! \ e \in \mathbb{R}: \qquad \left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1} \quad (n \in \mathbb{N}).$$

Megjegyezzük, hogy

1. mivel bármely $n \in \mathbb{N}$ indexre $\alpha_n < e < b_n$, azaz tetszőleges $n \in \mathbb{N}$ index esetén

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1},$$

ezért

$$2 \le \left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{6}\right)^7 = \frac{823543}{279936} < 3;$$

2. az e szám⁶ bevezetése nem így szokásos, hanem a mozgólépcső-elv felasználásával:

$$\left(1+\frac{1}{n}\right)^n \nearrow e \qquad (n\to\infty).$$

3. az

$$e_n := \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N})$$

sorozat első néhány tagja:

$$e_1 = 2;$$
 $e_2 = \frac{9}{4} = 2,25;$ $e_3 = \frac{64}{27} = 2,\dot{3}7\dot{0};$ $e_4 = \frac{625}{256} = 2,44140625.$

Később látni fogjuk, hogy

⁶A e-t Leonhard Euler (1707-1783) tiszteletére Euler-számnak is nevezik.

Feladat. Számítsuk ki az alábbi sorozatok határértékét!

$$1. \ \, x_n := \left(1 + \frac{1}{n}\right)^{n+1} \ \, (n \in \mathbb{N}); \quad 2. \ \, x_n := \left(1 - \frac{1}{n}\right)^n \ \, (n \in \mathbb{N}); \qquad 3. \ \, x_n := \left(1 + \frac{1}{n^2}\right)^n \ \, (n \in \mathbb{N});$$

$$4. \ x_n:=\left(1+\frac{1}{\sqrt{n}}\right)^n \ (n\in\mathbb{N}); \ 5. \ x_n:=\left(1-\frac{1}{\sqrt{n}}\right)^n \ (n\in\mathbb{N}).$$

Útm.

$$1. \ x_n = \left(1 + \frac{1}{n}\right)^n \cdot \left(1 + \frac{1}{n}\right) \longrightarrow e \cdot 1 = e \ (n \to \infty).$$

2. Világos, hogy

$$x_n \ = \ \left(\frac{n-1}{n}\right)^n = \frac{1}{\left(\frac{n}{n-1}\right)^n} = \frac{1}{\left(\frac{n-1+1}{n-1}\right)^n} = \frac{1}{\left(1+\frac{1}{n-1}\right)^n} =$$

$$= \frac{1}{\left(1+\frac{1}{n-1}\right)^{n-1}\cdot\left(1+\frac{1}{n-1}\right)} \longrightarrow \frac{1}{e\cdot 1} = \frac{1}{e} \quad (n\to\infty).$$

3. Mivel

$$\left(1+\frac{1}{n^2}\right)^{n^2}\longrightarrow e>0 \qquad (n\to\infty),$$

ezért

$$\left(1+\frac{1}{n^2}\right)^n=\sqrt[n]{\left(1+\frac{1}{n^2}\right)^{n^2}}\longrightarrow 1 \qquad (n\to\infty).$$

4. A Bernoulli-egyenlőtlenséget alkalmazva azt kapjuk, hogy

$$\left(1+\frac{1}{\sqrt{n}}\right)^n \geq 1+\frac{n}{\sqrt{n}} = 1+\sqrt{n} \longrightarrow +\infty \quad (n\to\infty).$$

Innen a Sandwich-tétel felhasználásával $\lim(x_n) = +\infty$ következik.

5. Tetszőleges $2 \le n \in \mathbb{N}$ indexre

$$\begin{array}{ll} \textbf{0} & \leq & \textbf{x}_n = \left(\frac{\sqrt{n}-1}{\sqrt{n}}\right)^n = \frac{1}{\left(\frac{\sqrt{n}}{\sqrt{n}-1}\right)^n} = \frac{1}{\left(\frac{\sqrt{n}-1+1}{\sqrt{n}-1}\right)^n} = \frac{1}{\left(1+\frac{1}{\sqrt{n}-1}\right)^n} \overset{\text{Bernoulli}}{\leq} \\ & \leq & \frac{1}{1+\frac{n}{\sqrt{n}-1}} = \frac{1}{1+\frac{\sqrt{n}}{1-\frac{1}{\sqrt{n}}}} \longrightarrow \textbf{0} \quad (n\to\infty). \end{array}$$

Így a Sandwich-tétel következtében azt kapjuk, hogy $\lim(x_n) = 0$.

Tétel. Legyen (x_n) olyan sorozat, amelyre $\lim(x_n) \in \{-\infty, +\infty\}$. Ekkor fennáll a

$$\left(1+\frac{1}{x_n}\right)^{x_n}\longrightarrow e \qquad (n\to\infty).$$

határérték-reláció.

Biz.

1. lépés. Ha $x_n > 0 \quad (n \in \mathbb{N})$, akkor legyen

$$\mathcal{N} := \{n \in \mathbb{N}: \; x_n \geq 1\} \qquad \text{\'es} \qquad y_n := [x_n] \quad (n \in \mathcal{N}).$$

Ekkor $\lim(y_n) = +\infty$ és

$$y_n \le x_n \le y_n + 1$$
, ill. $\frac{1}{y_n} \ge \frac{1}{x_n} \ge \frac{1}{y_n + 1}$,

azaz

$$e \longleftarrow \left(1 + \frac{1}{y_n}\right)^{y_n} \cdot \left(1 + \frac{1}{y_n}\right) = \left(1 + \frac{1}{y_n}\right)^{y_n + 1} \ge \left(1 + \frac{1}{x_n}\right)^{x_n} \ge \left(1 + \frac{1}{y_n + 1}\right)^{y_n} = \left(1 + \frac{1}{y_n}\right)^{y_n} = \left(1 + \frac{1}$$

$$= \left(1 + \frac{1}{y_n + 1}\right)^{y_n + 1} \cdot \left(1 + \frac{1}{y_n + 1}\right)^{-1} \longrightarrow e$$

2. lépés. Ha $x_n < 0 \quad (n \in \mathbb{N})$, akkor legyen

$$y_n := -x_n - 1$$
 $(n \in \mathbb{N}).$

Ekkor az $n \to \infty$ határátmenetben

$$\left(1+\frac{1}{x_n}\right)^{x_n}=\left(1-\frac{1}{y_n+1}\right)^{-y_n-1}=\left(\frac{y_n+1}{y_n}\right)^{y_n+1}=\left(1+\frac{1}{y_n}\right)^{y_n}\cdot\left(1+\frac{1}{y_n}\right)\longrightarrow e.\quad\blacksquare$$

Tétel. Legyen $A \in \mathbb{R}$, (x_n) olyan sorozat, amelyre $\lim(x_n) = +\infty$. Ekkor fennáll a

$$\left(1+\frac{A}{x_n}\right)^{x_n}\longrightarrow e^A \qquad (n\to\infty).$$

határérték-reláció.

Biz. Ha

- A = 0, akkor a tétel nyilvánvalóan igaz.
- Ha $A \neq 0$, akkor minden olyan $n \in \mathbb{N}$ esetén, amelyre $x_n > |A|$, fennáll az $1 + \frac{A}{x_n} > 0$ becslés, és így

$$\left(1+\frac{A}{x_n}\right)^{x_n}=\left[\left(1+\frac{1}{\frac{x_n}{A}}\right)^{\frac{x_n}{A}}\right]^A\longrightarrow e^A\quad (n\to\infty).\quad\blacksquare$$

Feladat. Számítsuk ki az alábbi sorozatok határértékét!

$$\text{1. } x_n := \left(\frac{6n-7}{6n+4}\right)^{3n+2} \quad (n \in \mathbb{N}_0); \qquad \quad \text{2. } x_n := \left(\frac{4n+3}{5n}\right)^{5n} \quad (n \in \mathbb{N});$$

$$3. \ \, x_n := \left(\frac{3n+1}{n+2}\right)^{2n+3} \quad (n \in \mathbb{N}_0). \qquad \quad 4. \ \, x_n := \left(\frac{2n^2+3}{2n^2-2}\right)^{n^2-1} \quad (n \in \mathbb{N}).$$

Útm.

Világos, hogy

$$x_n = \left(\frac{6n+4-11}{6n+4}\right)^{3n+2} = \left(1-\frac{11}{6n+4}\right)^{3n+2} = \sqrt{\left(1+\frac{-11}{6n+4}\right)^{6n+4}} \longrightarrow \sqrt{\frac{1}{e^{11}}} \quad (n\to\infty).$$

2. Mivel bármely $n \in \mathbb{N}$ esetén

$$\left(\frac{4n+3}{5n}\right)^n = \left(\frac{4}{5}\right)^n \cdot \left(\frac{n+3/4}{n}\right)^n,$$

ezért

$$x_n \longrightarrow 0 \cdot e^{3/4} = 0$$
 $(n \to \infty)$.

3. Mivel

$$\frac{3n+1}{n+2} \longrightarrow 3$$
 $(n \to \infty),$

ezért az $\varepsilon := 1$ számhoz van olyan $N \in \mathbb{N}$ (küszöb)index, hogy bármely $N \leq n \in \mathbb{N}$ indexre

$$\frac{3n+1}{n+2} > 2.$$

Következésképpen az ilyen n-ekre

$$x_n = \left(\frac{3n+1}{n+2}\right)^{2n+3} > 2^{2n+3} \longrightarrow +\infty \qquad (n \to \infty),$$

$$\lim(x_n) = +\infty$$

következik.

4. Világos, hogy az $n \to \infty$ határátmenetben

$$x_n = \left(\frac{2n^2 - 2 + 5}{2n^2 - 2}\right)^{n^2 - 1} = \left(1 + \frac{5}{2n^2 - 2}\right)^{n^2 - 1} = \sqrt{\left(1 + \frac{5}{2n^2 - 2}\right)^{2n^2 - 2}} \longrightarrow \sqrt{e^5}. \quad \blacksquare$$

A matematika egyes ágaiban (diszkrét matematika, differenciaegyenletek), de az informatikában is nagy jelentőséggel bírnak az olyan sorozatok, amelyek tagjait az "előttük lévő" tag(ok) ismeretében értelmezzük. Az ilyen sorozatokat szokás **rekurzív megadású sorozat**oknak nevezni.

Példák.

1. A legenda szerint Hanoiban egy kolostorban a lámák egy falapból felfelé kiálló három rudacska egyikére fűzve n = 64 darab különböző méretű, közepén lyukas korongot kaptak Buddhától. Legalul volt a legnagyobb, felette a többi, egyre kisebb és kisebb (vö. 7. ábra).

Azt a feladatot adta nekik, hogy juttassák a korngokat valamelyik másik rudacskára úgy, hogy közben csak egyet tehetnek át és semelyiket sem szabad nála kisebbre helyezni. Mire befejezik eljön a világ vége.

2022.05.14.

7. ábra. Buddha korongjai.

Feladat. Határozzuk meg azoknak a lépéseknek a minimális l_n számát, amelyek n korong $(n \in \mathbb{N})$ átrakásához szükségesek!

Útm. n=1 esetén nyilván $l_1=1$. Ha n=2, akkor ahhoz, hogy az első korongot átrakhassuk az első rudacskáról a másikra, előbb a felső korongot át kell tenni egy harmadikra. Ezután átrakhatjuk az első korongot a második rúdra és a tetejére a másik korongot. Eszerint tehát $l_2=3$. Hasonló módon három korong közül a legalsó átrakásához előbb a két felsőt kell áttenni a harmadik rúdra, amihez az előbbi gondolatmenet alapján $l_2=3$ áthelyezést kell végrehajtanunk. Ezután átrakhatjuk a legalsó korongot a második rúdra, majd ismét két korongot kell áthoznunk a harmadik rúdról a másodikra, újabb $l_2=3$ lépésben. Látható tehát, hogy

$$l_3 = 2 \cdot l_2 + 1 = 7$$
.

Ugyanilyen módon látható be, hogy

$$l_4 = 2 \cdot l_3 + 1 = 15,$$
 $l_5 = 2 \cdot l_4 + 1 = 31,$

és általában

$$l_n = 2 \cdot l_{n-1} + 1 \qquad (n \in \mathbb{N}). \tag{11}$$

Az (l_n) sorozat első néhány tagjának felírásával nem nehéz megsejteni, majd teljes indukcióval igazolni, hogy

$$l_n = 2^n - 1$$
 $(n \in \mathbb{N}).$

2022.05.14.

Így tehát

$$l_{64} = 2^{64} - 1 = 18446744073709551615 > 1,8 \cdot 10^{19}$$

lépés szükséges s korongoknak a fenti feltételek mellett az egyik rúdról a másikra való átpakolásához. Ha meggondoljuk, hogy l₆₄ másodperc 585 milliárd év körül van, és a Naprendszer kb. 4,6 milliárd éves, akkor a világvégével kapcsolatos jóslat nem is annyira elképzelhetetlen.

Játék: Hanoi tornyai

2. Leonardo Pisano – ismert nevén Fibonacci – olasz matematikusnak 1202-ben megjelent **Liber Abaci** című könyvében szerepel a következő

Feladat. Egy ivarérett nyúlpár minden hónapban egy új nyúlpárnak ad életet: egy hímnek és egy nősténynek. A nyulak két hónapos korukra válnak ivaréretté. Egy ivarérett nyúlpártól származó nemzetségnek mekkora lesz a létszáma egy év múlva?

8. ábra. Fibonacci nyulai.

Útm. Kezdjük az összeszámlálást egy újszülött nyúlpárból kiindulva és tételezzük fel, hogy közben egyetlen nyúl sem pusztul el. Az első hónapban egyetlen pár nyulunk van, a másodikban szintén. A harmadik hónapban már nyilván két pár nyulunk lesz: az eredeti pár és ezeknek két hónapos korukban született újszülött párja. A negyedik hónapban az eredeti nyúlpár újabb nyúlpárnak ad életet, az elsőszülött ivadékaik még nem szülnek, így három nyúlpárunk lesz összesen. Az ötödik hónapban meglesz a negyedik hónap három nyúlpárja valamint az újszülöttek, és ezek pontosan annyian lesznek, ahány nyúlpár a harmadik hónapban volt, hiszen a negyedik hónap újszülöttei még nem szülnek, de a harmadik hónap újszülöttei (az öregekkel együtt) már igen. E gondolatsort folytatva az n -edik hónapban lévő nyúlpárok F_n száma adódik egyrészt az (n-1)-edik hónapban meglévő nyúlpárok

 F_{n-1} számából, másrészt az újszülöttekből. Az újszülöttek száma viszont megegyezik az (n-2)-dik hónapban levő nyúlpárok számával, ugyanis pontosan azok fognak az n-edik hónapban szülni, amelyek (akár öreg, akár újszülött nyulak) az (n-2)-dik hónapban megvoltak.

A létszám alakulását a következő áblázat mutatja:

hónap	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
megszületett párok:	0	1	1	2	3	5	8	13	21	34	55	89	144

Megjegyzések.

(a) Az F_n számokat **Fibonacci-számok**nak, az

$$F_0 := 0, \quad F_1 := 1, \quad F_n := F_{n-1} + F_{n-2} \qquad (2 \le n \in \mathbb{N}_0)$$
 (12)

rekurzív sorozatot **Fibonacci-sorozat**nak nevezzük. Az (F_n) sorozat tagjainak explicit alakja:

$$\boxed{F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)} \quad (n \in \mathbb{N}_0).$$

(b) **Aranymetszés**nek nevezzük egy szakasz olyan kettéosztását, ahol a nagyobbik rész hossza úgy aránylik a kisebbik rész hosszához, mint a szakasz hossza a nagyobbik rész hosszához. Könnyen megmutatható, hogy egységnyi hosszú szakasz esetében ez az arány nem más, mint a

$$\lim \left(\frac{F_{n+1}}{F_n}\right)$$

határérték. Ha ui. ha a nagyobbik rész x, akkor egységnyi hosszú szakaszra:

$$\frac{1}{x} = \frac{x}{1-x}, \quad \text{amib\'ol} \quad x^2 + x - 1 = 0,$$

és ennek az egyenletnek egyetlen pozitív gyöke van:

$$x=\frac{-1+\sqrt{5}}{2},$$

amire

$$\frac{1}{x} = \frac{2}{\sqrt{5} - 1} = \frac{2}{\sqrt{5} - 1} \cdot \frac{\sqrt{5} + 1}{\sqrt{5} + 1} = \frac{2(\sqrt{5} + 1)}{4} = \frac{\sqrt{5} + 1}{2}.$$

Αz

$$u := \frac{1+\sqrt{5}}{2}, \quad \text{ill.} \quad v := \frac{1-\sqrt{5}}{2}$$

számokkal

$$\frac{F_{n+1}}{F_n} = \frac{u^{n+1} - v^{n+1}}{u^n - v^n} = \frac{u - v \cdot \left(\frac{v}{u}\right)^n}{1 - \left(\frac{v}{u}\right)^n} \longrightarrow \frac{u - 0}{1 - 0} = u \qquad (n \to \infty).$$

3. Ha $\alpha, \alpha, \beta \in \mathbb{R}$, akkor az

$$x_1 := \alpha, \quad x_{n+1} := \alpha x_n + \beta \qquad (n \in \mathbb{N})$$
 (13)

sorozat $\alpha = 1$ esetén számtani sorozat:

$$x_1 := \alpha, \quad x_{n+1} := x_n + \beta \qquad (n \in \mathbb{N})$$

 $\beta = 0$ esetén pedig **mértani sorozat**:

$$x_1 := \alpha, \quad x_{n+1} := \alpha x_n \quad (n \in \mathbb{N}).$$

4. A Mézga-család a bankban az n = 0 időpontban K összegű kölcsönt vesz fel, amit időszakosan (havi vagy negyedéves vagy éppen éves időszakonként) törleszt. A törlesztés egy része a kamat, másik része a K tőkét csökkenti. Jelölje t_n az n-edik fizetés utáni tőketartozás nagyságát, az n-edik alkalommal befizetett összeget pedig jelölje b_n . Tegyük fel, hogy az egy periódusra eső p% kamatláb rögzített. Ekkor az (n+1)-edik periódus elteltével, azaz az (n+1)-edik fizetés megtörténte után a fennmaradó t_{n+1} tőketartozás összetevődik az n-edik periódus utáni t_n tőketartozásból, annak $t_n p/100$ egységkamatából, csökkentve ezek összegét a befizetett b_n összeggel:

$$t_{n+1} = t_n + t_n \cdot \frac{p}{100} - b_n,$$
 vagyis $t_{n+1} = \left(1 + \frac{p}{100}\right) \cdot t_n - b_n,$ $t_0 = K.$

Adott $k \in \mathbb{N}$ esetén k-lépéses rekurzióról beszélünk, ha a sorozat tagjait az előtte lévő k tag függvényében adjuk meg. Egylépéses rekurzó pl. a (11)-beli és a (13)-beli sorozat, kétlépéses rekurzió pl. a (12)-beli Fibonacci-sorozat. Az egylépéses rekurzió esetében a fentiket pontosítja a következő

Definíció. Legyen valamely $H \neq \emptyset$ halmaz esetén adott az $f: H \to H$ függvény, és legyen adott $a \in H$. Ekkor az

$$x_0 := a,$$
 $x_{n+1} := f(x_n)$ $(n \in \mathbb{N}_0)$

rekurzív összefüggésnek eleget tévő $(x_n): \mathbb{N}_0 \to H$ sorozatot a **kezdőtagú rekurzív megadású sorozat**nak nevezzük.

⁷**HF**. Mutassuk meg, hogy fennáll a |v/u| < 1 egyenlőtlenség!

Felmerül a kérdés, hogy adott $a \in H$ pont, ill. $f : H \to H$ függvény esetén van-e ilyen sorozat. Teljes indukcióval belátható, hogy a válasz: igen, sőt pontosan egy ilyen sorozat van. Erre vonatkozik a következő

Tétel (Rekurziótétel: Dedekind (1888)). Legyen H tetszőleges (nem-üres) halmaz, $h \in H$, $f: H \to H$. Ekkor pontosan egy olyan $\phi: \mathbb{N}_0 \to H$ függvény (**sorozat**) van, amelyre

- (i) $\varphi(0) = h$;
- (ii) bármely $n \in \mathbb{N}_0$ esetén $\varphi(n+1) = f(\varphi(n))$.

Biz.

- **1. lépés.** Tegyük fel, hogy $\phi, \psi : \mathbb{N}_0 \to H$ rendelkezik a fenti tulajdonsággal. Ekkor $\phi = \psi$, ui.
 - n = 0 esetén

$$\varphi(0) = h = \psi(0);$$

• ha valamely $n \in \mathbb{N}_0$ esetén $\varphi(n) = \psi(n)$, akkor

$$\varphi(n+1) = f(\varphi(n)) = f(\psi(n)) = \psi(n+1).$$

2. lépés. Legyen

$$\mathcal{H} := \{ A \subset \mathbb{N}_0 \times H : \mathbf{i} \} (0, h) \in A, \mathbf{ii} \} \forall n \in \mathbb{N}_0 \forall k \in H : (n, k) \in A \Rightarrow (n + 1, f(k)) \in A \}.$$

Ekkor nyilvánvalóan $\mathbb{N}_0 \times H \in \mathcal{H}$ és bármely $B \in \mathcal{H}$ esetén $(0, h) \in B$, ezért

$$\mathsf{D} := \bigcap_{\mathsf{A} \in \mathcal{H}} \mathsf{A}$$

a legszűkebb $\mathbb{N}_0 \times H$ -beli halmaz, amelyre **i**) és **ii**) teljesül. Ekkor

- 1. bármely $n \in \mathbb{N}_0$ indexhez pontosan egy olyan $b \in H$ van, hogy $(n, b) \in D$ teljesül, ui.
 - n = 0 esetén $(0, h) \in D$, továbbá ha valamely $h \neq c \in H$ esetén $(0, c) \in D$, akkor $D \setminus \{(0, c)\}$ még mindig rendelkezik az **i**) és **ii**) tulajdonsággal, ami ellentmond annak, hogy D a legszűkebb ilyen halmaz.
 - ha valamely $n \in \mathbb{N}_0$ esetén pontosan egy olyan $b \in H$ van, amelyre $(n,b) \in D$, akkor az ii) tulajdonság következtében $(n+1,f(b)) \in D$. Ha valamely $d \neq f(b) \in H$ esetén $(n+1,d) \in D$ volna, akkor $D \setminus \{(n+1,d)\}$ rendelkezne az ii) tulajdonsággal, ami ellentmondana annak, hogy D a legszűkebb ilyen.

2. a fentiek következtében pontosan egy olyan $\phi: \mathbb{N}_0 \to H$ függvény van, hogy

$$graph(\phi) = \{(n, m) \in \mathbb{N}_0 \times H : m = \phi(n)\} = D.$$

Ekkor

- az i) azt jelenti, hogy $\varphi(0) = h$;
- a ii) tulajdonság pedig azt, hogy $(n+1,f(\phi(n))\in D,$ azaz

$$\varphi(n+1) = f(\varphi(n))$$
 $(n \in \mathbb{N}_0)$.

Megjegyzés. Általánosítás. Legyen H halmaz, $h \in H$, $k \in \mathbb{N}$, $f : H^k \to H$. Ekkor pontosan egy olyan $\phi : \mathbb{N}_0 \to H$ függvény (**sorozat**) van, amelyre

- (i) $\varphi(0) = h$;
- (ii) bármely $n \in \mathbb{N}_0$ esetén $\varphi(n+k) = f(\varphi(1), \dots, \varphi(n))$.

Példa. Legyen $2 \le m \in \mathbb{N}$, $0 < A \in \mathbb{R}$, továbbá

$$H := (0, +\infty), \qquad f(t) := \frac{1}{m} \left((m-1)t + \frac{A}{t^{m-1}} \right) \quad (t \in H).$$

Ekkor egyszerűen adódik, hogy $f: H \to H$, ui. a mértani és a számtani közép közötti egyenlőtlanség következtében bármely $t \in H$ esetén

$$f(t) = \frac{\underbrace{\overset{1}{t} + \ldots + \overset{m-1}{t}} + \overset{A}{t}}{m} \ge \sqrt[m]{\overset{1}{t} \cdot \ldots \cdot \overset{m-1}{t}} \cdot \frac{A}{t^{m-1}} = \sqrt[m]{t^{m-1} \cdot \overset{A}{t}} = \sqrt[m]{A} > 0,$$

azaz f(t) > 0. Ezért a rekurzió-tétel következtében tetszőleges $\alpha, A \in (0, +\infty)$ esetén pontosan egy olyan $(x_n) : \mathbb{N}_0 \to (0, +\infty)$ sorozat van, amelyre

$$x_0 = \alpha,$$
 $x_{n+1} = f(x_n) = \frac{1}{m} \left((m-1)x_n + \frac{A}{x_n^{m-1}} \right)$ $(n \in \mathbb{N}_0).$ (14)

Az alábbi feladatban megmutatjuk, hogy a (14) sorozat konvergens.

Feladat. Igazoljuk, hogy a (14)-beli sorozat konvergens, majd számítsuk ki határértékét!

Útm.

- **1. lépés.** A sorozat értelmezéséből teljes indukcióval következik (**HF**), hogy bármely $n \in \mathbb{N}_0$ indexre $x_n > 0$.
- **2. lépés.** Megmutatjuk, hogy a sorozat kvázi-monoton fogyó. Valóban, bármely $n \in \mathbb{N}_0$ indexre

$$\frac{x_{n+1}}{x_n} = \frac{1}{m} \cdot \left(m-1+\frac{A}{x_n^m}\right) = 1-\frac{1}{m} + \frac{1}{m} \cdot \frac{A}{x_n^m} = 1-\cdot\frac{1}{m}\left(1-\frac{A}{x_n^m}\right),$$

így az

$$\frac{x_{n+1}}{x_n} \le 1 \quad \Longleftrightarrow \quad A \le x_n^m \qquad (n \in \mathbb{N})$$

ekvivalencia igaz voltát, illetve a mértani és a számtani közép közötti különbséget kihasználva azt kapjuk, hogy

$$\mathbf{x}_{n+1}^{m} = \left(\frac{\overset{1}{\overset{}{\overset{}{x}_{n}}} + \ldots + \overset{\overset{m-1}{\overset{}{\overset{}{x}_{n}}} + \frac{A}{\overset{n}{\overset{}{x}_{n}^{m-1}}}}}{m}\right)^{m} \geq \overset{1}{\overset{1}{\overset{}{x}_{n}}} \cdot \ldots \cdot \overset{\overset{m-1}{\overset{}{x}_{n}^{m-1}}}{\overset{1}{\overset{}{x}_{n}^{m-1}}} = \mathbf{A} \qquad (n \in \mathbb{N}_{0}).$$

3. lépés. A fentiek azt jelentik, hogy (x_n) konvergens. Legyen $\beta := \lim(x_n)$. Ekkor a fentiek következtében $0 < A \le \beta^m$, és így $\beta > 0$. Az is igaz továbbá, hogy

$$\beta = \lim_{n \to \infty} (x_n) = \lim_{n \to \infty} (x_{n+1}) = \lim_{n \to \infty} \left(\frac{1}{m} \left((m-1)x_n + \frac{A}{x_n^{m-1}} \right) \right) = \frac{1}{m} \left((m-1)\beta + \frac{A}{\beta^{m-1}} \right),$$

azaz

$$m\beta = m\beta - \beta + \frac{A}{\beta^{m-1}}.$$

Innen áterendezéssel azt kapjuk, hogy

$$\beta^{\mathfrak{m}} = A$$
, azaz $\beta = \sqrt[m]{A}$.

Feladat. Vizsgáljuk meg a következő sorozatokat konvergencia szempontjából!

1.
$$a \in \mathbb{R}, x_0 := a, x_{n+1} := \frac{2x_n}{n+1} (n \in \mathbb{N}_0);$$

2.
$$x_0 := 2$$
, $x_{n+1} := \frac{2x_n}{x_n + 1}$ $(n \in \mathbb{N}_0)$;

3.
$$x_0 := 6$$
, $x_{n+1} := 5 - \frac{6}{x_n}$ $(n \in \mathbb{N}_0)$;

4.
$$x_0 := 0$$
, $x_{n+1} := \frac{1 + x_n^2}{2}$ $(n \in \mathbb{N}_0)$;

5.
$$x_n := \sqrt{2\sqrt{2\sqrt{2\dots}}}$$
 $(n \in \mathbb{N})$ és itt n darab gyökvonás szerepel;

6.
$$x_n := \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} \ (n \in \mathbb{N})$$
 és itt n darab gyökvonás szerepel;

7.
$$\alpha \in [0, +\infty), x_1 := 0, \quad x_{n+1} := \sqrt{\alpha + x_n} \ (n \in \mathbb{N});$$

8.
$$x_0 := 0$$
, $x_{n+1} := \alpha + x_n^2$ $(n \in \mathbb{N}_0; 0 \le \alpha \in \mathbb{R})$;

9.
$$x_0 := 3$$
, $x_{n+1} := 3 - \frac{2}{x_n}$ $(n \in \mathbb{N}_0)$;

10.
$$x_0 := 0$$
, $x_{n+1} := \frac{2}{1 + x_n}$ $(n \in \mathbb{N}_0)$.

Útm.

1. A rekurziót "kibontva" könnyen **megsejthető**, hogy

$$x_n = \frac{2^n}{n!} \cdot \alpha$$
 $(n \in \mathbb{N}_0),$

hiszen

$$x_1 = \frac{2a}{1}, \quad x_2 = \frac{4a}{1 \cdot 2}, \quad x_3 = \frac{8a}{1 \cdot 2 \cdot 3}, \quad x_4 = \frac{16a}{1 \cdot 2 \cdot 3 \cdot 4}, \quad x_5 = \frac{32a}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}.$$

Ezután ezt az összefüggést a következőképpen igazoljuk. Ha

- (a) $\alpha=0$, akkor tetszőleges $n\in\mathbb{N}_0$ esetén $x_n=0$, hiszen
 - n = 0 esetén $x_0 = 0$, továbbá
 - ullet ha valamely $\mathfrak{n}\in\mathbb{N}_0$ esetén $x_\mathfrak{n}=0$, akkor

$$x_{n+1} = \frac{2x_n}{n+1} = \frac{2 \cdot 0}{n+1} = 0.$$

(b) $a \neq 0$, akkor persze bármely $n \in \mathbb{N}_0$ esetén $x_n \neq 0$ (**HF.** teljes indukcióval igazolni!), és így

$$\frac{x_{n+1}}{x_n}=\frac{\frac{2^{n+1}}{(n+1)!}\cdot \alpha}{\frac{2^n}{n!}\cdot \alpha}=\frac{2}{n+1}, \qquad \text{azaz} \qquad x_{n+1}=\frac{2x_n}{n+1} \qquad (n\in\mathbb{N}_0).$$

Tudjuk, hogy $0 \neq \alpha \in \mathbb{R}$ esetén

$$\lim \left(\frac{|x_{n+1}|}{|x_n|}\right) = \lim \left(\frac{2}{n+1}\right) = 0 < 1,$$

következésképpen (vö. 5. GY)

$$\lim (x_n) = \lim (|x_n|) = 0.$$

2. Világos (HF. teljes indukcióval igazolni!), hogy

$$x_n > 0$$
 $(n \in \mathbb{N}_0)$.

A sorozat első néhány tagja:

$$x_0 = 2$$
, $x_1 = \frac{4}{3} = 1.3$, $x_2 = \frac{8}{7} = 1.142857$.

 $Az(x_n)$ sorozat pontosan akkor monoton csökkenő, ha

$$x_n - x_{n+1} = x_n - \frac{2x_n}{x_n + 1} = x_n \cdot \frac{x_n - 1}{x_n + 1} \ge 0$$
 $(n \in \mathbb{N}_0),$

azaz, ha fennáll az

$$x_n \ge 1$$
 $(n \in \mathbb{N}_0)$

egyenlőtlenség. Ez viszont igaz, ui.

- $x_0 = 2 \ge 1$;
- ha valamely $n \in \mathbb{N}_0$ esetén $x_n \ge 1$, akkor

$$x_{n+1} = \frac{2x_n}{x_n+1} = \frac{2}{1+\frac{1}{x_n}} \ge \frac{2}{1+\frac{1}{1}} = 1 \qquad (n \in \mathbb{N}_0).$$

Az (x_n) sorozat tehát monoton csökkenő, alulról korlátos, így konvergens is. Legyen $A := \lim(x_n)$. Az

$$x_{n+1} := \frac{2x_n}{x_n + 1} \qquad (n \in \mathbb{N}_0)$$

rekurzív összefüggésben az $n \to \infty$ határátmenet elvégzése után azt kapjuk, hogy

$$A = \frac{2A}{A+1}$$
, azaz $A(A-1) = 0$.

Világos, hogy A = 0 nem lehet a sorozat határértéke, ezért A = 1.

3. **1. lépés.** Ha az (x_n) sorozat konvergens, és $A := \lim(x_n)$, akkor $\lim(x_{n+1}) = A$, és így

$$A = 5 - \frac{6}{A}$$
 \implies $A^2 - 5A + 6 = 0$ \implies $A = \frac{5 \pm \sqrt{25 - 24}}{2} \in \{2, 3\}.$

2. lépés. Mivel a kezdőtag: $x_0 = 6$, kézenfekvőnek tűnik belátni azt, hogy

$$x_n > 3$$
 $(n \in \mathbb{N}_0)$.

Valóban,

- n = 0 esetén $x_0 = 6 > 3$;
- ha valamely $n \in \mathbb{N}_0$ esetén $x_n > 3$, akkor

$$x_{n+1} = 5 - \frac{6}{x_n} > 5 - \frac{6}{3} = 5 - 2 = 3.$$

- 3. lépés. Megmutatjuk, hogy az (xn) sorozat szigorúan monoton csökkenő. Ezt teljes is indukcióval igazoljuk. Világos, hogy
 - n = 0 esetén

$$x_0 = 6 > 4 = x_1$$
;

• ha valamely $n \in \mathbb{N}_0$ esetén $3 < x_{n+1} < x_n$, akkor

$$x_{n+2} = 5 - \frac{6}{x_{n+1}} > 5 - \frac{6}{x_n} = x_{n+1}.$$

4. lépés. Mivel a sorozat (szigorúan) monoton csökkenő és alulról korlátos, ezért konvergens. A fentiek következtáben tehát (x_n) konvergens és

$$\lim(x_n) = 3$$
.

4. A sorozat első néhány tagját meghatározva –

$$x_0 = 0,$$
 $x_1 = \frac{1}{2},$ $x_2 = \frac{5}{8}$

– az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes indukcióval

igazoljuk. Mivel

$$x_0 = 0 < \frac{1}{2} = x_1,$$

ezért csak azt kell megmutatnunk, hogy ha valamilyen $n \in \mathbb{N}_0$ mellett

$$0 \leq x_n < x_{n+1}$$

akkor 0 $\leq x_{n+1} < x_{n+2}$ is igaz. Valóban, 0 $\leq x_n < x_{n+1}$ -ből $x_n^2 < x_{n+1}^2$, és így

$$1 + x_n^2 < 1 + x_{n+1}^2$$
, azaz $x_{n+1} = \frac{1 + x_n^2}{2} < \frac{1 + x_{n+1}^2}{2} = x_{n+2}$

következik. Tudjuk, hogy ha egy monoton növekedő sorozat felülről korlátos, akkor konvergens és

$$\lim(x_n) = \sup\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}.$$

Azt kellene tehát belátni, hogy egy alkalmas $A \in \mathbb{R}$ számmal $x_n \leq A$ ($n \in \mathbb{N}_0$). Egy ilyen A "megsejtésére" a következő gondolatmenetet alkalmazhatjuk: ha $x_n \leq A$ ($n \in \mathbb{N}_0$) valamilyen A-ra fenáll, akkor A helyébe $\lim(x_n)$ is írható. Tegyük fel tehát, hogy (x_n) konvergens és legyen $A := \lim(x_n)$; ekkor $\lim(x_{n+1}) = A$, így

$$\lim\left(\frac{1+\chi_n^2}{2}\right) = \frac{1+A^2}{2}.$$

Következésképpen az (x_n) -et meghatározó rekurzív összefüggés miatt

$$A = \frac{1+A^2}{2}$$
 \iff $A^2 - 2A + 1 = 0$ \iff $(A-1)^2 = 0$,

amiből A=1 adódik. Lássuk be tehát, hogy fennáll az $x_n \leq 1$ $(n \in \mathbb{N}_0)$ becslés. Ezt újból teljes indukcióval bizonyítjuk: $x_0=0 \leq 1$ triviálisan igaz; ha pedig $x_n \leq 1$ fennáll valamilyen $\mathbb{N}_0 \ni n$ -re, akkor

$$x_{n+1} = \frac{1 + x_n^2}{2} \le 1.$$

Összefoglalva tehát, az (x_n) sorozat konvergens és $\lim(x_n) = 1$.

5. A sorozat első néhány tagját meghatározva:

$$x_1 = \sqrt{2},$$
 $x_2 = \sqrt{2\sqrt{2}} = \sqrt[4]{2}\sqrt{2},$ $x_3 = \sqrt{2\sqrt{2\sqrt{2}}}$

látható, hogy

$$x_n = \sqrt{\ldots \sqrt{2\sqrt{2\sqrt{2}}}}$$
 $(n \in \mathbb{N}),$

azaz

$$x_1 := \sqrt{2}, \qquad x_{n+1} := \sqrt{2x_n} \quad (n \in \mathbb{N}).$$

Az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes indukcióval igazoljuk. Mivel

$$x_1 = \sqrt{2} < \sqrt[4]{2}\sqrt{2} = x_2$$

ezért csak azt kell megmutatnunk, hogy ha valamilyen $n \in \mathbb{N}$ mellett

$$0 < x_n < x_{n+1}$$
, akkor $0 < x_{n+1} < x_{n+2}$

is igaz. Valóban, a $0 < x_n < x_{n+1}$ egyenlőtlenségpárból $2x_n < 2x_{n+1}$ és így

$$\sqrt{2x_n} < \sqrt{2x_{n+1}},$$
 azaz $x_{n+1} = \sqrt{2x_n} < \sqrt{2x_{n+1}} = x_{n+2}$

következik. Tudjuk, hogy ha egy monoton növekedő sorozat felülről korlátos, akkor konvergens és

$$\lim(x_n) = \sup\{x_n \in \mathbb{R} : n \in \mathbb{N}\}.$$

Azt kellene tehát belátni, hogy egy alkalmas $A \in \mathbb{R}$ számmal $x_n \leq A$ ($n \in \mathbb{N}$). Egy ilyen A "megsejtésére" a következő gondolatmenetet alkalmazhatjuk: ha $x_n \leq A$ valamilyen A-ra fenáll, akkor A helyébe $\lim(x_n)$ is írható. Tegyük fel tehát, hogy (x_n) konvergens és legyen $A := \lim(x_n)$; ekkor

$$lim(x_{n+1}) = A, \qquad lim(\sqrt{2x_n}) = \sqrt{2A}.$$

Következésképpen az (x_n) -et meghatározó rekurzív összefüggés miatt $A=\sqrt{2A}$, amiből $A\in\{0;2\}$ adódik. Mivel $0< x_n\ (n\in\mathbb{N})$ és (x_n) szigorúan monoton növekedő, ezért az A=0 eset nem lehetséges, legfeljebb csak A=2. Lássuk be tehát, hogy ezzel az A-val teljesül az

$$x_n \le A$$
 $(n \in \mathbb{N})$

becslés. Ezt újból teljes indukcióval bizonyítjuk: $x_1 = \sqrt{2} \le 2 = A$ triviálisan igaz; ha pedig $x_n \le A$ fennáll valamilyen $\mathbb{N} \ni n$ -re, akkor

$$x_{n+1} = \sqrt{2x_n} \le \sqrt{2A} = A.$$

Összefoglalva tehát, az (x_n) sorozat konvergens és $\lim(x_n)=2$.

Megjegyzések.

(a) A sorozat első néhány

$$x_1 = \sqrt{2} = 2^{\frac{1}{2}} = 2^{1 - \frac{1}{2}}, \qquad x_2 = \sqrt{2\sqrt{2}} = \sqrt{\sqrt{8}} = \sqrt[4]{8} = 2^{\frac{3}{4}} = 2^{1 - \frac{1}{4}},$$

$$x_3 = \sqrt{2\sqrt{2\sqrt{2}}} = \sqrt{2\sqrt[4]{8}} = \sqrt[8]{128} = 2^{\frac{7}{8}} = 2^{1 - \frac{1}{8}}$$

tagjának meghatározásával sejthető, hogy

$$x_n = 2^{1 - \frac{1}{2^n}} \qquad (n \in \mathbb{N}),$$

a mi teljes inducióval könnyen igazolható. Valóban,

• n = 1 esetén

$$x_1 = \sqrt{2} = 2^{\frac{1}{2}} = 2^{1 - \frac{1}{2^1}}$$
:

• ha pedig valamely $n \in \mathbb{N}$ esetén

$$x_n = 2^{1 - \frac{1}{2^n}},$$

akkor

$$x_{n+1} = \sqrt{2x_n} = \sqrt{2 \cdot 2^{1 - \frac{1}{2^n}}} = 2^{\frac{2 - \frac{1}{2^n}}{2}} = 2^{1 - \frac{1}{2^{n+1}}}.$$

(b) Mivel

$$\lim\left(\sqrt[2^n]{\frac{1}{2}}\right)=\lim\left(\sqrt[n]{\frac{1}{2}}\right)=1,$$

ezért

$$x_n = 2^{1-\frac{1}{2^n}} = 2 \cdot \sqrt[2^n]{\frac{1}{2}} \longrightarrow 2 \cdot 1 = 2 \qquad (n \to \infty)$$

6. A sorozat első néhány tagját meghatározva:

$$x_1 = \sqrt{2}, \qquad x_2 = \sqrt{2 + \sqrt{2}}, \qquad x_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}}$$

látható, hogy

$$x_n = \sqrt{\ldots \sqrt{2 + \sqrt{2 + \sqrt{2}}}} \qquad (n \in \mathbb{N}),$$

azaz

$$x_1 := \sqrt{2}, \quad x_{n+1} := \sqrt{2 + x_n} \quad (n \in \mathbb{N}).$$

Az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes indukcióval

igazoljuk. Mivel

$$\sqrt{2} < \sqrt{2 + \sqrt{2}} \qquad \Longleftrightarrow \qquad 2 < 2 + \sqrt{2},$$

így

$$x_1=\sqrt{2}<\sqrt{2+\sqrt{2}}=x_2,$$

ezért csak azt kell megmutatnunk, hogy ha valamilyen $n \in \mathbb{N}$ mellett

$$0 < x_n < x_{n+1}$$
, akkor $0 < x_{n+1} < x_{n+2}$

is igaz. Valóban, az $0 < x_n < x_{n+1}$ egyenlőtlenségpárból $2 + x_n < 2 + x_{n+1}$ és így

$$\sqrt{2+x_n} < \sqrt{2+x_{n+1}},$$
 azaz $x_{n+1} = \sqrt{2+x_n} < \sqrt{2+x_{n+1}} = x_{n+2}$

következik. Tudjuk, hogy ha egy monoton növekedő sorozat felülről korlátos, akkor konvergens és

$$\lim(x_n)=\sup\{x_n\in\mathbb{R}:\ n\in\mathbb{N}\}.$$

Azt kellene tehát belátni, hogy egy alkalmas $A \in \mathbb{R}$ számmal $x_n \leq A$ ($n \in \mathbb{N}$). Egy ilyen A "megsejtésére" a következő gondolatmenetet alkalmazhatjuk: ha $x_n \leq A$ valamilyen A-ra fenáll, akkor A helyébe $\lim(x_n)$ is írható. Tegyük fel tehát, hogy (x_n) konvergens és legyen $A := \lim(x_n)$; ekkor

$$\lim(x_{n+1}) = A, \qquad \lim(\sqrt{2 + x_n}) = \sqrt{2 + A}.$$

Következésképpen az (x_n) -et meghatározó rekurzív összefüggés miatt $A = \sqrt{2+A}$, amiből $A \in \{-1;2\}$ adódik. Mivel $0 < x_n \ (n \in \mathbb{N})$ és (x_n) szigorúan monoton növekedő, ezért az A = -1 eset nem lehetséges, legfeljebb csak A = 2. Lássuk be tehát, hogy ezzel az A-val teljesül az

$$x_n \le A$$
 $(n \in \mathbb{N})$

becslés. Ezt újból teljes indukcióval bizonyítjuk: $x_1 = \sqrt{2} \le 2 = A$ triviálisan igaz; ha pedig $x_n \le A$ fennáll valamilyen $\mathbb{N} \ni n$ -re, akkor

$$x_{n+1} = \sqrt{2 + x_n} \le \sqrt{2 + A} = A.$$

Összefoglalva tehát, az (x_n) sorozat konvergens és $\lim(x_n) = 2$.

Megjegyzések.

(a) Ha tudnánk, mi a cos, ill. a π jelentése, akkor elmondhatnánk, hogy

$$x_1 = \sqrt{2} \qquad \qquad = 2\cos\left(\frac{\pi}{4}\right),$$

$$x_2 = \sqrt{2 + x_1} = \sqrt{2 + 2\cos\left(\frac{\pi}{4}\right)} = \sqrt{2\left[1 + \cos\left(\frac{\pi}{4}\right)\right]} = 2\cos\left(\frac{\pi}{8}\right),$$

$$x_3 \ = \ \sqrt{2+x_1} = \sqrt{2+2\cos\left(\frac{\pi}{8}\right)} = \sqrt{2\left[1+\cos\left(\frac{\pi}{8}\right)\right]} \ = \ 2\cos\left(\frac{\pi}{16}\right),$$

hiszen

$$\forall \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] : \qquad \boxed{1 + \cos(\alpha)} = 1 + \cos\left(2 \cdot \frac{\alpha}{2}\right) = \boxed{2\cos^2\left(\frac{\alpha}{2}\right)}.$$

Így, ha valamely $2 \le n \in \mathbb{N}$ esetén

$$x_{n-1}=2\cos\left(\frac{\pi}{2^n}\right),\,$$

akkor

$$\boxed{\mathbf{x}_{\mathbf{n}}} = \sqrt{2 + \mathbf{x}_{\mathbf{n}-1}} = \sqrt{2 + 2\cos\left(\frac{\pi}{2^{\mathbf{n}}}\right)} = \boxed{2\cos\left(\frac{\pi}{2^{\mathbf{n}+1}}\right)} \qquad (\mathbf{n} \in \mathbb{N}).$$

(b) Ha tudnánk, hogy a cos függvény folytonos, és ismernénk az átviteli elvet, akkor a következő kijelentést tehetnénk:

$$\lim_{n\to\infty} (x_n) = 2\cos\left(\lim_{n\to\infty} \frac{\pi}{2^{n+1}}\right) = 2\cos(0) = 2\cdot 1 = 2.$$

7. Világos (**HF.** teljes indukcióval igazolni!), hogy $\alpha=0$ esetén $x_n=0$ ($n\in\mathbb{N}$), így lim $(x_n)=0$. Tegyük fel most, hogy $\alpha>0$ és határozzuk meg a sorozat első néhány tagját! Mivel

$$0<\sqrt{\alpha}<\sqrt{\alpha+\sqrt{\alpha}}, \qquad \text{azaz} \qquad x_1< x_2< x_3,$$

így az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton nővekedő. Ezt teljes indukcióval igazoljuk. Lévén, hogy $x_1=0<\sqrt{\alpha}=x_2$, ezért csak azt kell megmutatnunk, hogy ha valamilyen $n\in\mathbb{N}$ mellett $x_n< x_{n+1}$, akkor $x_{n+1}< x_{n+2}$ is igaz. Valóban, $x_n< x_{n+1}$ -ből $\alpha+x_n<\alpha+x_{n+1}$ és

így

$$x_{n+1} = \sqrt{\alpha + x_n} < \sqrt{\alpha + x_{n+1}} = x_{n+2}$$

következik. Tudjuk, hogy ha egy monoton növekedő sorozat felülről korlátos, akkor konvergens. Teljes indukcióval igazoljuk, hogy (x_n) felülről korlátos. Olyan $K \in \mathbb{R}$ számot kellene keresni, amelyre $x_1 < K$ és

$$x_n < K \implies x_{n+1} < K \qquad (n \in \mathbb{N})$$

teljesül. Ehhez az

$$x_{n+1} = \sqrt{\alpha + x_n} < \sqrt{\alpha + K}$$

egyenlőtlenség alapján – elég, ha

$$\sqrt{\alpha + K} < K$$

fennáll. Ez a feltétel az

$$\alpha + K < K^2, \qquad \text{azaz az} \qquad \alpha < K^2 - K$$

alakba írható, így a

$$K := 1 + \sqrt{\alpha}$$

választás megfelelő. A sorozat tehát konvergens. Legyen $A := \lim(x_n)$, ekkor

$$\alpha = \lim(x_{n+1}) = \sqrt{\alpha + A}$$
,

ahonnan $\alpha > 0$ miatt

$$A=\frac{1+\sqrt{1+4\alpha}}{2}$$

következik.

Megjegyzés. A sorozat n-edik tagjának és határértékének eltérésére a következő, ún. hibabecslést

kapjuk:

$$\begin{aligned} \left| x_{n} - A \right| &= \left| \sqrt{\alpha + x_{n-1}} - \sqrt{\alpha + A} \right| = \\ &= \left| \sqrt{\alpha + x_{n-1}} - \sqrt{\alpha + A} \right| \cdot \frac{\sqrt{\alpha + x_{n-1}} + \sqrt{\alpha + A}}{\sqrt{\alpha + x_{n-1}} + \sqrt{\alpha + A}} = \\ &= \frac{\left| x_{n-1} - A \right|}{\sqrt{\alpha + x_{n-1}} + \sqrt{\alpha + A}} < \frac{\left| x_{n-1} - A \right|}{\sqrt{\alpha + A}} = \frac{\left| x_{n-1} - A \right|}{A} < \\ &< \frac{\left| x_{n-2} - A \right|}{A^{2}} < \dots < \frac{\left| x_{1} - A \right|}{A^{n}} = \frac{1}{A^{n-1}}. \end{aligned}$$

8. Világos (**HF.** teljes indukcióval igazolni!), hogy ha $\alpha = 0$, akkor bármel $n \in \mathbb{N}_0$ indexre $x_n = 0$, így $\lim (x_n) = 0$. Tegyük fel, hogy $\alpha > 0$. A sorozat első néhány tagját meghatározva:

$$x_1 = \alpha < \alpha + \alpha^2 = x_2$$

az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes indukcióval igazoljuk. Mivel $x_0=0<\alpha=x_1$, ezért csak azt kell megmutatnunk, hogy ha valamilyen $n\in\mathbb{N}_0$ mellett $0< x_n < x_{n+1}$, akkor $x_{n+1} < x_{n+2}$ is igaz. Valóban, $x_n < x_{n+1}$ -ből

$$0 < x_n^2 < x_{n+1}^2$$
 és így $x_{n+1} = \alpha + x_n^2 < \alpha + x_{n+1}^2 = x_{n+2}$

következik. Tudjuk, hogy ha egy monoton növekedő sorozat felülről korlátos, akkor konvergens és

$$\lim(x_n) = \sup\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}.$$

Azt kellene tehát belátni, hogy egy alkalmas $A \in \mathbb{R}$ számmal $x_n < A$ ($n \in \mathbb{N}_0$). Egy ilyen A "megsejtésére" a következő gondolatmenetet alkalmazhatjuk: ha $x_n < A$ ($n \in \mathbb{N}_0$) valamilyen A-ra fenáll, akkor A helyébe $\lim(x_n)$ is írható. Tegyük fel tehát, hogy (x_n) konvergens és legyen $A := \lim(x_n)$; ekkor

$$\lim(x_{n+1}) = A$$
, $\lim(\alpha + x_n^2) = \alpha + A^2$.

Következésképpen az (x_n) -et meghatározó rekurzív összefüggés miatt

$$A=\alpha+A^2,$$

amiből A-ra

$$A=\frac{1\pm\sqrt{1-4\alpha}}{2}$$

adódik. Nyilvánvaló, hogy

$$A \in \mathbb{R} \qquad \Longleftrightarrow \qquad \alpha \leq \frac{1}{4}.$$

Mivel (x_n) szigorúan monoton növekedő és $\lim(x_n)$ az

$$\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}$$

halmaz legkisebb felső korlátja, ezért a fenti A-k esetén csak az

$$A = \frac{1 - \sqrt{1 - 4\alpha}}{2}$$

érték jön szóba. Lássuk be tehát, hogy ezzel az A-val teljesül az $x_n \le A \ (n \in \mathbb{N}_0)$ becslés. Ezt újból teljes indukcióval bizonyítjuk:

$$x_0 = 0 < \frac{1 - \sqrt{1 - 4\alpha}}{2} = A$$

triviálisan igaz. Ha pedig $x_n \leq A$ fennáll valamilyen $\mathbb{N}_0 \ni n$ -re, akkor

$$x_{n+1} = \alpha + x_n^2 \le \alpha + A^2 = A.$$

Összefoglalva tehát, $\alpha \leq \frac{1}{4}$ esetén az (x_n) sorozat konvergens és

$$lim(x_n) = \frac{1 - \sqrt{1 - 4\alpha}}{2}.$$

Megjegyezzük, hogy az $\alpha \in \left(\frac{1}{4}, +\infty\right)$ esetben (x_n) nem kornvergens, így (szigorú) monotonitása miatt nem is korlátos, következésképen $\lim(x_n) = +\infty$.

9. **1. lépés.** Ha az (x_n) sorozat konvergens, és $\alpha := \lim(x_n)$, akkor $\lim(x_{n+1}) = \alpha$, és így

$$\alpha = 3 - \frac{2}{\alpha}$$
 \Longrightarrow $\alpha^2 - 3\alpha + 2 = 0$ \Longrightarrow $\alpha = \frac{3 \pm \sqrt{9 - 8}}{2} \in \{2, 1\}.$

2. lépés. Mivel a kezdőtag: $x_0 = 3$, kézenfekvőnek tűnik belátni azt, hogy

$$x_n > 2$$
 $(n \in \mathbb{N}_0)$.

Valóban,

• n = 0 esetén $x_0 = 3 > 2$;

• ha valamely $n \in \mathbb{N}_0$ esetén $x_n > 2$, akkor

$$x_{n+1} = 3 - \frac{2}{x_n} > 3 - \frac{2}{2} = 3 - 1 = 2.$$

- **3. lépés.** Megmutatjuk, hogy az (x_n) sorozat szigorúan monoton csökkenő. Ezt teljes is indukcióval igazoljuk. Világos, hogy
 - n = 0 esetén

$$x_0 = 3 > \frac{7}{3} = x_1;$$

• ha valamely $n \in \mathbb{N}_0$ esetén $2 < x_{n+1} < x_n$, akkor

$$x_{n+2} = 3 - \frac{2}{x_{n+1}} > 3 - \frac{2}{x_n} = x_{n+1}.$$

4. lépés. Mivel a sorozat (szigorúan) monoton csökkenő és alulról korlátos, ezért konvergens. A fentiek következtáben tehát (a_n) konvergens és

$$\lim(x_n)=2$$
.

Megjegyzés. A sorozat első néhány

$$x_1 = 3 - \frac{2}{3} = \frac{7}{3}, \quad x_2 = 3 - \frac{2}{\frac{7}{3}} = \frac{15}{7}, \quad x_3 = 3 - \frac{2}{\frac{15}{7}} = \frac{31}{15}, \quad x_4 = 3 - \frac{2}{\frac{31}{15}} = \frac{63}{31}, \quad x_5 = 3 - \frac{2}{\frac{63}{31}} = \frac{127}{63}.$$

tagjának meghatározásával sejthető, hogy

$$x_n = \frac{2^{n+2}-1}{2^{n+1}-1}$$
 $(n \in \mathbb{N}_0),$

ami teljes indukcióval könnyen igazolható. Valóban,

• n = 0 esetén

$$x_0 = 3 = \frac{4-1}{2-1} = \frac{2^{0+2}-1}{2^{0+1}-1};$$

• ha pedig valamely $n \in \mathbb{N}_0$ esetén

$$x_n = \frac{2^{n+2}-1}{2^{n+1}-1},$$

akkor

$$x_{n+1} = 3 - \frac{2}{x_n} = 3 - 2 \cdot \frac{2^{n+1} - 1}{2^{n+2} - 1} = \frac{3 \cdot 2^{n+2} - 3 - 2^{n+2} + 2}{2^{n+2} - 1} = \frac{2 \cdot 2^{n+2} - 1}{2^{n+2} - 1} = \frac{2^{n+3} - 1}{2^{n+2} - 1}.$$

10. A sorozat első néhány tagját meghatározva –

$$x_0 = 0,$$
 $x_1 = 2,$ $x_2 = \frac{2}{1+2} = \frac{2}{3} = 0, \dot{6},$ $x_3 = \frac{2}{1+\frac{2}{3}} = \frac{6}{5} = 1, 2.$

–látható, hogy (x_n) nem monoton. További tagokat kiszámítva –

$$x_4 = \frac{2}{1+\frac{6}{5}} = \frac{10}{11} = 0, \dot{9}\dot{0},$$

$$x_5 = \frac{2}{1+\frac{10}{11}} = \frac{22}{21} \approx 1,0476,$$

$$x_6 = \frac{2}{1+\frac{22}{21}} = \frac{42}{43} \approx 0,9767,$$

$$x_7 = \frac{2}{1+\frac{42}{43}} = \frac{86}{85} \approx 1,0118,$$

$$x_8 = \frac{2}{1+\frac{86}{85}} = \frac{170}{171} \approx 0,9942,$$

$$x_9 = \frac{2}{1+\frac{170}{171}} = \frac{342}{341} \approx 1,0029$$

- sejthető, hogy

1° a páros indexű tagok 1-nél kisebbek, a páratlan indexűek pedig 1-nél nagyobbak:

$$x_n = x_{2k} < 1$$
 és $x_n = x_{2k+1} > 1$ $(k \in \mathbb{N});$

 2° a páros indexű (x_{2k}) részsorozata szigorúan monoton növekedő, a páratlan indexű (x_{2k+1}) részsorozat pedig szigorúan monoton csökkenő:

$$(x_{2k}) \uparrow$$
 és $(x_{2k+1}) \downarrow$.

Biz. Mivel bármely $n \in \mathbb{N}$ indexre

$$x_{n+2} = \frac{2}{1 + x_{n+1}} = \frac{2}{1 + \frac{2}{1 + x_n}} = 2 \cdot \frac{x_n + 1}{x_n + 3},\tag{15}$$

ezért

$$x_{n+2} - x_n = 2 \cdot \frac{x_n + 1}{x_n + 3} - x_n = \frac{(x_n + 2)(1 - x_n)}{x_n + 3}.$$

Ha tehát

• n páros: n = 2k, akkor (15) következtében $1 - x_{2k} > 0$, tehát

 (x_{2k}) \uparrow és felülről korlátos \Longrightarrow konvergens; $A := \lim(x_{2k})$;

• n páratlan: n = 2k + 1, akkor (15) következtében $1 - x_{2k+1} < 0$, tehát

 $(x_{2k+1}) \downarrow$ és alulról korlátos \Longrightarrow konvergens; $B := \lim(x_{2k+1})$.

Mindez azt jelenti (vö. (15)), hogy

$$A = 2 \cdot \frac{A+1}{A+3}$$
 és $B = 2 \cdot \frac{B+1}{B+3}$.

Mivel valamely $\xi \in \mathbb{R}$ számra

$$\xi=2\cdot\frac{\xi+1}{\xi+3}\quad\Longleftrightarrow\quad \xi^2+3\xi=2\xi+2\quad\Longleftrightarrow\quad \xi^2+\xi-2=0\quad\Longleftrightarrow\quad \xi_\pm=\frac{-1\pm\sqrt{1+8}}{2}\in\{-2;1\}$$

és (x_n) nemnegatív tagú sorozat (**HF**. bizonyítani teljes indukcióval), ezért A = B = 1, azaz (x_n) konvergens és $\lim(x_n) = 1$.

Feladat. Legyen $\alpha, \alpha \in \mathbb{R}$ és

$$x_0 := a, \qquad x_{n+1} := \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right) \quad (n \in \mathbb{N}_0).$$

Konvergens-e az (x_n) sorozat? Ha igen, akkor mi a határértéke?

Útm. Tegyük fel, hogy (x_n) konvergens és $A := \lim (x_n)$. Ekkor $A = \lim (x_{n+1})$, azaz

$$A = \frac{1}{2} \left(A + \frac{\alpha}{A} \right),$$

így $A^2=\alpha$. Tehát $\alpha<0$ esetén (x_n) divergens. Legyen $\alpha\geq0$. $\alpha=0$ esetén (x_n) nem más, mint egy $\frac{1}{2}$ kvóciensű mértani sorozat, így konvergens és határértéke $0=\alpha$. Legyen most $\alpha>0$. Ekkor a mértani és a számtani közép közötti összefügést felhasználva megmutatjuk, hogy minden $n\in\mathbb{N}_0$ esetén $x_{n+1}\geq\sqrt{\alpha}$, azaz a sorozat alulról korlátos. Valóban, ha $n\in\mathbb{N}$, akkor

$$x_n = \frac{x_{n-1} + \frac{\alpha}{x_{n-1}}}{2} \ge \sqrt{x_{n-1} \cdot \frac{\alpha}{x_{n-1}}} = \sqrt{\alpha}.$$

A sorozat az 1-indexű tagjától kezdve monoton csökkenő, ugyanis

$$x_{n+1} = \frac{1}{2} \cdot \frac{x_n^2 + \alpha}{x_n} \le \frac{1}{2} \cdot \frac{x_n^2 + x_n^2}{x_n} = x_n \quad (n \in \mathbb{N}).$$

147

A sorozat tehát konvergens és határértéke $\sqrt{\alpha}$.

Házi feladatok.

1. Számítsuk ki az alábbi sorozatok határértékét!

$$\text{(a)} \ \ x_n := \left(\frac{3n+1}{3n+2}\right)^{6n+5} \quad \ (n \in \mathbb{N}); \\ \text{(b)} \ \ x_n := \left(\frac{2n+3}{3n+1}\right)^{n-5} \quad \ (n \in \mathbb{N}_0);$$

$$\text{(c)} \ \ x_n:=\left(\frac{3n+3}{2n+4}\right)^n \quad (n\in\mathbb{N}); \qquad \qquad \text{(d)} \ \ x_n:=\left(\frac{2n+3}{3n+4}\right)^n \quad (n\in\mathbb{N}_0);$$

$$\text{(e)} \ \ x_n := \left(\frac{n+1}{\sqrt{n^2+2n}}\right)^{2n^2+4n} \quad \ (n \in \mathbb{N}); \qquad \ \ (f) \ \ x_n := \left(1+\frac{1}{2^n-1}\right)^{2^{n+2}+3} \quad \ (n \in \mathbb{N}_0).$$

2. Számítsuk ki az alábbi sorozatok határértékét!

(a)
$$x_0 := \sqrt{3}$$
, $x_{n+1} := \sqrt{3 + 2x_n}$ $(n \in \mathbb{N}_0)$;

(b)
$$x_0 := 0$$
, $x_{n+1} := \frac{x_n^3 + 1}{2}$ $(n \in \mathbb{N}_0)$.

3. Igazoljuk, hogy bármely $\alpha \in [0, 1]$ esetén az

$$x_0 := \frac{\alpha}{2}, \qquad x_{n+1} := \frac{x_n^2 + \alpha}{2} \quad (n \in \mathbb{N}_0)$$

sorozat konvergens, majd számítsuk ki a határértékét!

Útm.

(a) Ha $n \in \mathbb{N}$, akkor az $n \to \infty$ határátmenetben

$$\begin{split} x_n &= \left(\frac{3n+1}{3n+2}\right)^{6n+5} = \left(\frac{3n+1}{3n+2}\right)^{6n+4+1} = \\ &= \left(\frac{3n+1}{3n+2}\right)^{6n+4} \cdot \left(\frac{3n+1}{3n+2}\right) = \left(\left(\frac{3n+1}{3n+2}\right)^{3n+2}\right)^2 \cdot \left(\frac{3n+1}{3n+2}\right) = \\ &= \left(\left(\frac{3n+2-1}{3n+2}\right)^{3n+2}\right)^2 \cdot \left(\frac{3n+1}{3n+2}\right) = \left(\left(1+\frac{-1}{3n+2}\right)^{3n+2}\right)^2 \cdot \left(\frac{3n+1}{3n+2}\right) \longrightarrow \\ &\longrightarrow \frac{1}{e^2} \cdot 1 = \frac{1}{e^2}. \end{split}$$

(b) Mivel az $n \to \infty$ határátmenetben

$$\begin{split} \left(\frac{2n+3}{3n+1}\right)^n &= \left(\frac{2}{3}\right)^n \cdot \left(\frac{n+\frac{3}{2}}{n+\frac{1}{3}}\right)^n = \left(\frac{2}{3}\right)^n \cdot \left(\frac{n+\frac{1}{3}+\frac{3}{2}-\frac{1}{3}}{n+\frac{1}{3}}\right)^n = \\ &= \left(\frac{2}{3}\right)^n \cdot \left(\frac{n+\frac{1}{3}+\frac{7}{6}}{n+\frac{1}{3}}\right)^n = \left(\frac{2}{3}\right)^n \cdot \left(1+\frac{7}{6n+2}\right)^n = \\ &= \left(\frac{2}{3}\right)^n \cdot \sqrt[6]{\left(1+\frac{7}{6n+2}\right)^{6n+2} \cdot \left(1+\frac{7}{6n+2}\right)^{-2}} \longrightarrow 0 \cdot \sqrt[6]{e^{7} \cdot 1^{-2}} = 0 \end{split}$$
 és
$$\left(\frac{2n+3}{3n+1}\right)^{-5} \longrightarrow \left(\frac{2}{3}\right)^{-5} \qquad (n \to \infty),$$
 ezért
$$\lim(x_n) = 0 \cdot \left(\frac{2}{3}\right)^{-5} = 0.$$

$$\lim(x_n) = 0 \cdot \left(\frac{2}{3}\right)^{-5} = 0.$$

(c) Tetszőleges $n \in \mathbb{N}$ indexre

$$x_n = \left(\frac{3n+3}{2n+4}\right)^n = \left(\frac{3}{2}\right)^n \left(\frac{n+1}{n+2}\right)^n =$$

$$= \left(\frac{3}{2}\right)^n \left(1 - \frac{1}{n+2}\right)^{n+2} \left(1 - \frac{1}{n+2}\right)^{-2} \longrightarrow +\infty \qquad (n \to \infty).$$

(d) Minden n indexre

$$x_{n} = \left(\frac{2n+3}{3n+4}\right)^{n} = \left(\frac{2}{3}\right)^{n} \left(\frac{n+3/2}{n+4/3}\right)^{n} =$$

$$= \left(\frac{2}{3}\right)^{n} \left(1 + \frac{1/6}{n+4/3}\right)^{n+4/3} \left(1 + \frac{1/6}{n+4/3}\right)^{-4/3} \longrightarrow 0 \qquad (n \to \infty).$$

(e) Bármely $n \in \mathbb{N}$ esetén

$$x_{n} = \left(\frac{n+1}{\sqrt{n^{2}+2n}}\right)^{2n^{2}+4n} = \left(\frac{(n+1)^{2}}{n^{2}+2n}\right)^{n^{2}+2n} =$$

$$= \left(\frac{n^{2}+2n+1}{n^{2}+2n}\right)^{n^{2}+2n} = \left(1+\frac{1}{n^{2}+2n}\right)^{n^{2}+2n} \longrightarrow e \qquad (n \to \infty)$$

(f) Mivel tetszőleges $n \in \mathbb{N}$ indexre

$$2^{n+2} + 3 = 2^2 \cdot 2^n + 3 = 4 \cdot 2^n - 4 + 7 = 4 \cdot (2^n - 1) + 7$$

ezért

$$x_n = \left(1 + \frac{1}{2^n - 1}\right)^{2^{n+2} + 3} = \left(\left(1 + \frac{1}{2^n - 1}\right)^{2^n - 1}\right)^4 \cdot \left(1 + \frac{1}{2^n - 1}\right)^7 \longrightarrow e^4 \cdot 1^7 \quad (n \to \infty).$$

2. (a) **1. lépés.** A sorozat első két tagját meghatározva:

$$x_0 = \sqrt{3} < \sqrt{3 + 2\sqrt{3}} = x_1,$$

az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes

indukcióval igazoljuk. Az iméntiek miatt elég azt igazolnunk, hogy ha valamilyen $n \in \mathbb{N}_0$ mellett $x_n < x_{n+1}$, akkor $x_{n+1} < x_{n+2}$ is teljesül. Valóban $x_n < x_{n+1}$ -ből

$$3 + 2x_n < 3 + 2x_{n+1}$$
, azaz $x_{n+1} = \sqrt{3 + 2x_n} < \sqrt{3 + 2x_{n+1}} = x_{n+2}$

következik.

2. lépés. Ha az (x_n) sorozat konvergens, akkor $A := \lim(x_n)$ határértékére $\lim(x_{n+1}) = A$, és így

$$A = \sqrt{3+2A}$$
 \Longrightarrow $A^2 - 2A - 3 = 0$ \Longrightarrow $A = 1 + \sqrt{1+3} = 3$.

- 3. lépés. Mivel (xn) szigorúan monoton növekedő, ezért ha felülről korlátos, akkor a 3 egy felső korlátja is. Világos, hogy
 - n = 0 esetén $x_0 = \sqrt{3} < 3$;
 - ha valamely $n \in \mathbb{N}_0$ esetén $x_n < 3$, akkor

$$x_{n+1} = \sqrt{3 + 2x_n} < \sqrt{3 + 2 \cdot 3} = \sqrt{9} = 3.$$

- **4. lépés.** Midez azt jelenti, hogy az (x_n) sorozat konvergens és $\lim(x_n) = 3$.
- (b) 1. lépés. A sorozat első néhány tagját meghatározva:

$$x_0 = 0,$$
 $x_1 = \frac{1}{2},$ $x_2 = \frac{9}{16}$

az a "gyanúnk" támad, hogy az (x_n) sorozat szigorúan monoton növekedő. Ezt teljes indukcióval igazoljuk. Mivel

$$x_0 < \frac{1}{2} = x_1,$$

ezért elég azt igazolnunk, hogy ha valamilyen $n \in \mathbb{N}_0$ mellett $x_n < x_{n+1}$, akkor $x_{n+1} < x_{n+2}$ is teljesül. Valóban $x_n < x_{n+1}$ -ből

$$x_{n+1} = \frac{x_n^3 + 1}{2} < \frac{x_{n+1}^3 + 1}{2} = x_{n+2}$$

következik.

2. lépés. Ha az (x_n) sorozat konvergens, akkor $A := \lim(x_n)$ határértékére $\lim(x_{n+1}) = A$, és így

$$A = \frac{A^3 + 1}{2} \qquad \Longleftrightarrow \qquad A^3 - 2A + 1 = 0.$$

Felhazsnálva az 1. gyakorlaton tetszőleges $a, b \in \mathbb{R}$, ill. $n \in \mathbb{N}$ számokra bizonyított (1)

azonosság

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

speciális esetét, azt kapjuk, hogy

$$A^3 - 2A + 1 = A^3 - 1 - 2A + 2 = A^3 - 1^3 - 2(A - 1) =$$

$$= (A-1)(A^2+A+1)-2(A-1)=(A-1)(A^2+A-1),$$

következésképpen

$$A = \frac{A^3 + 1}{2} \qquad \Longleftrightarrow \qquad A^3 - 2A + 1 = 0 \qquad \Longleftrightarrow \qquad A \in \left\{1, \frac{-1 \pm \sqrt{5}}{2}\right\}.$$

Mivel $x_0 = 0$ és (x_n) szigorúan monoton növekedő, ezért a $\frac{-1-\sqrt{5}}{2}$ szám nem lehet (x_n) határértéke.

3. lépés. Mivel (x_n) szigorúan monoton növekedő és $\lim(x_n)$ az

$$\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}$$

halmaz legkisebb felső korlátja, ezért az

$$A = 1$$
 és $A = \frac{-1 + \sqrt{5}}{2}$

értékek közül

$$\frac{-1+\sqrt{5}}{2}<1$$

miatt csak az

$$A = \frac{-1 + \sqrt{5}}{2}$$

érték jöhet szóba. Lássuk be tehát, hogy ezzel az A-val teljesül az $x_n \leq A$ $(n \in \mathbb{N}_0)$ becslés. Ezt újból teljes indukcióval bizonyítjuk:

$$x_0 = 0 < \frac{-1 + \sqrt{5}}{2} = A$$

triviálisan igaz. Ha pedig $x_n \leq A$ fennáll valamilyen $\mathbb{N}_0 \ni n$ -re, akkor

$$x_{n+1} = \frac{x_n^3 + 1}{2} \le \frac{A^3 + 1}{2} = A.$$

4. lépés. Összefoglalva tehát, az (x_n) sorozat konvergens és

$$lim(x_n) = \frac{-1 + \sqrt{5}}{2}.$$

3. 1. lépés. Mivel

$$x_1 = \frac{1}{2}\left(\frac{\alpha^2}{4} + \alpha\right) = \frac{\alpha^2 + 4\alpha}{8} > \frac{4\alpha}{8} = \frac{\alpha}{2} = x_0,$$

ezért sejthető, hogy (x_n) szigorúan monoton növekedő. Az iméntiek miatt elég belátni, hogy ha valamely $n \in \mathbb{N}_0$ esetén $0 < x_n < x_{n+1}$, akkor $0 < x_{n+1} < x_{n+2}$. Valóban, ha valamely $n \in \mathbb{N}_0$ esetén $0 < x_n < x_{n+1}$, akkor

$$0 < x_{n+1} = \frac{x_n^2 + \alpha}{2} < \frac{x_{n+1}^2 + \alpha}{2} = x_{n+2}.$$

2. lépés. Ha az (x_n) sorozat konvergens, akkor $A := \lim(x_n)$ határértékére $\lim(x_{n+1}) = A$, és így

$$A = \frac{A^2 + \alpha}{2}$$
 \iff $A^2 - 2A + \alpha = 0$ \iff $A = A_{\pm} := 1 \pm \sqrt{1 - \alpha}$.

3. lépés. Mivel (x_n) szigorúan monoton növekedő és $\lim(x_n)$ az

$$\{x_n \in \mathbb{R}: n \in \mathbb{N}_0\}$$

halmaz legkisebb felső korlátja, ezért az A_+ és A_- értékek közül $0 \le A_- \le A_+$ miatt miatt csak az

$$A_-=1-\sqrt{1-\alpha}$$

érték jöhet szóba ($\alpha = 1$ esetén persze $A_- = A_+$). Világos, hogy

• n = 0 esetén

$$x_0 = \frac{\alpha}{2} \le \frac{\alpha + A_-^2}{2} = A_-;$$

• ha valamely $n \in \mathbb{N}_0$ esetén $x_n \leq A_-$, akkor

$$x_{n+1} = \frac{x_n^2 + \alpha}{2} \le \frac{(A_-)^2 + \alpha}{2} = A_-.$$

Következésképpen (x_n) felülről korlátos.

4. lépés. Összefoglalva tehát, az (x_n) sorozat konvergens és

$$lim(x_n) = 1 - \sqrt{1 - \alpha}. \quad \blacksquare$$

7. gyakorlat (2022.03.22.)

Emlékeztető.

 1° Adott $(x_n): \mathbb{N}_0 \to \mathbb{R}$ sorozat esetén az

$$s_n := \sum_{k=0}^n x_k \qquad (n \in \mathbb{N}_0),$$

azaz az

$$s_0 := x_0,$$
 $s_1 := x_0 + x_1,$
 $s_2 := x_0 + x_1 + x_2,$
 \vdots
 $s_n := x_0 + x_1 + x_2 + \ldots + x_{n-2} + x_{n-1} + x_n \quad (n \in \mathbb{N}_0)$

sorozatot **végtelen numerikus sor**nak vagy végtelen számsornak (röviden: **végtelen sor**nak vagy egyszerűen csak **sor**nak) neveztük, és a $\sum_{n=0} (x_n) := \sum_{n=0} (x_n) := (s_n)$ szimbólummal jelöltük. Az s_n a $\sum_{n=0} (x_n)$ végtelen sor n**-edik részletösszeg**e, x_n pedig a $\sum_{n=0} (x_n)$ végtelen sor n**-edik tag**ja.

 2° Azt mondtuk, hogy a $\sum (x_n)$ konvergens, ha részletösszegeinek a sorozata konvergens, azaz

$$\sum_{n=0}^{\infty} x_n := \lim(s_n) = A \in \mathbb{R}.$$

Az A számot a $\sum (x_n)$ végtelen sor összegének neveztük.

3° Ha $\sum (x_n)$ divergens, azaz (s_n) divergens, akkor $\lim (s_n) \in \{-\infty, +\infty\}$ esetén azt mondtuk, hogy a $\sum (x_n)$ végtelen sor összege $+\infty$, ill. $-\infty$, és erre a

$$\sum_{n=0}^{\infty} x_n := +\infty,$$
 ill. a $\sum_{n=0}^{\infty} x_n := -\infty$

jelölést használtuk.

Feladat. Számítsuk ki az alábbi sorösszegeket, amennyiben azok léteznek!

1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
; 2. $\sum_{n=1}^{\infty} \frac{1}{4n^2-1}$;

2.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2-1}$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{9n^2 - 3n - 2};$$

4.
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$
; 5. $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$;

5.
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$$
;

6.
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n^2 + 2n};$$

7.
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n});$$

7.
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n});$$
 8. $\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n});$ 9. $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n(n+1)}};$

9.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n(n+1)}};$$

10.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)};$$

10.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)};$$
 11.
$$\sum_{n=1}^{\infty} \frac{1}{(\sqrt{n+1}+\sqrt{n})\sqrt{n(n+1)}}.$$
 12.
$$\sum_{n=5}^{\infty} \frac{3}{4-5n+n^2};$$

12.
$$\sum_{n=5}^{\infty} \frac{3}{4 - 5n + n^2};$$

13.
$$\sum_{n=0}^{\infty} \frac{2^n}{(2^n+1)(2^{n+1}+1)}; \quad 14. \quad \sum_{n=1}^{\infty} \frac{2n-2}{n(n+1)(n+2)};$$

14.
$$\sum_{n=1}^{\infty} \frac{2n-2}{n(n+1)(n+2)};$$

15.
$$\sum_{n=2}^{\infty} \frac{n^2 - n - 1}{n!}$$
.

Útm.

1. Mivel

$$\frac{1}{k(k+1)} = \frac{k+1-k}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1},$$

ezért

$$s_n \ = \ \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) =$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \ldots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) =$$

$$= 1 - \frac{1}{n+1} \longrightarrow 1 \quad (n \to \infty).$$

Így

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

2. Mivel

$$\begin{split} \frac{1}{4k^2-1} &= \frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \cdot \frac{2}{(2k-1)(2k+1)} = \frac{1}{2} \cdot \frac{(2k+1)-(2k-1)}{(2k-1)(2k+1)} = \\ &= \frac{1}{2} \cdot \left(\frac{1}{2k-1} - \frac{1}{2k+1}\right), \end{split}$$

ezért

$$\begin{split} s_n &= \sum_{k=1}^n \frac{1}{4k^2 - 1} = \frac{1}{2} \sum_{k=1}^n \left(\frac{1}{2k - 1} - \frac{1}{2k + 1} \right) = \\ &= \frac{1}{2} \left\{ \left(1 - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \dots + \left(\frac{1}{2n - 3} - \frac{1}{2n - 1} \right) + \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right) \right\} = \\ &= \frac{1}{2} \left\{ 1 - \frac{1}{2n + 1} \right\} \longrightarrow \frac{1}{2} \cdot 1 = \frac{1}{2} \quad (n \to \infty). \end{split}$$

Így

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}.$$

3. Mivel

$$\frac{1}{9k^2-3k-2} = \frac{1}{(3k-2)(3k+1)} = \frac{1}{3} \cdot \frac{(3k+1)-(3k-2)}{(3k-2)(3k+1)} = \frac{1}{3} \cdot \left(\frac{1}{3k-2} - \frac{1}{3k+1}\right),$$

ezért

$$s_n = \sum_{k=1}^n \frac{1}{9k^2 - 3k - 2} = \frac{1}{3} \sum_{k=1}^n \left(\frac{1}{3k - 2} - \frac{1}{3k + 1} \right) =$$

$$= \frac{1}{3} \left\{ \left(1 - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{7} \right) + \ldots + \left(\frac{1}{3n - 5} - \frac{1}{3n - 2} \right) + \ldots + \left(\frac{1}{3n - 2} - \frac{1}{3n - 2} \right) + \ldots + \left(\frac{1}{3n - 2} - \frac{1}{3n - 2} \right) + \ldots + \left(\frac{1}{3n - 2} - \frac{1}{3n - 2} - \frac{1}{3n - 2} \right) + \ldots + \left(\frac{1}{3n - 2} - \frac{1}{3n - 2} - \frac{1}{3n - 2} - \frac{1}{3n - 2} \right) + \ldots + \left(\frac{1}{3n - 2} - \frac{1}{3n$$

$$+\left(\frac{1}{3n-2}-\frac{1}{3n+1}\right)$$
 = $\frac{1}{3}\left\{1-\frac{1}{3n+1}\right\}\longrightarrow \frac{1}{3} \quad (n\to\infty).$

Így

$$\sum_{n=1}^{\infty} \frac{1}{9n^2 - 3n - 2} = \frac{1}{3}.$$

4. Mivel

$$\frac{2k+1}{k^2(k+1)^2} = \frac{(k+1)^2 - k^2}{k^2(k+1)^2} = \frac{1}{k^2} - \frac{1}{(k+1)^2},$$

ezért

$$s_n = \sum_{k=1}^n \frac{2k+1}{k^2(k+1)^2} = \sum_{k=1}^n \left(\frac{1}{k^2} - \frac{1}{(k+1)^2} \right) =$$

$$= \left(1 - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{9}\right) + \ldots + \left(\frac{1}{(n-1)^2} - \frac{1}{n^2}\right) + \left(\frac{1}{n^2} - \frac{1}{(n+1)^2}\right) =$$

$$= 1 - \frac{1}{(n+1)^2} \longrightarrow 1 \quad (n \to \infty).$$

Így

$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} = 1.$$

5. Mivel

$$\frac{k}{(k+1)!} = \frac{k+1-1}{(k+1)!} = \frac{1}{k!} - \frac{1}{(k+1)!},$$

ezért

$$\begin{split} s_n &= \sum_{k=1}^n \frac{k}{(k+1)!} = \sum_{k=1}^n \left(\frac{1}{k!} - \frac{1}{(k+1)!} \right) = \\ &= \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{6} \right) + \dots + \left(\frac{1}{(n-1)!} - \frac{1}{n!} \right) + \left(\frac{1}{n!} - \frac{1}{(n+1)!} \right) = \\ &= 1 - \frac{1}{(n+1)!} \longrightarrow 1 \quad (n \to \infty). \end{split}$$

Így

$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!} = 1.$$

6. Mivel

$$\frac{1}{k^3+3k^2+2k} \ = \ \frac{1}{k(k^2+3k+2)} = \frac{1}{k(k+1)(k+2)} = \frac{1}{2} \cdot \frac{k+2-k}{k(k+1)(k+2)} =$$

$$=\ \frac{1}{2}\cdot \left(\frac{1}{k(k+1)}-\frac{1}{(k+1)(k+2)}\right),$$

ezért

$$\begin{split} s_n &= \sum_{k=1}^n \frac{1}{k^3 + 3k^2 + 2k} = \frac{1}{2} \cdot \sum_{k=1}^n \left(\frac{1}{k(k+1)} - \frac{1}{(k+1)(k+2)} \right) = \\ &= \frac{1}{2} \cdot \left\{ \left(\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} \right) + \left(\frac{1}{2 \cdot 3} - \frac{1}{3 \cdot 4} \right) + \dots + \right. \\ &+ \left(\frac{1}{(n-1)n} - \frac{1}{n(n+1)} \right) + \left(\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \right) \right\} = \\ &= \frac{1}{2} \cdot \left\{ \frac{1}{1 \cdot 2} - \frac{1}{(n+1)(n+2)} \right\} \longrightarrow \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \quad (n \to \infty). \end{split}$$

Így

$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n^2 + 2n} = \frac{1}{4}.$$

7. Világos, hogy

$$s_n = \sum_{k=1}^n \left(\sqrt{k+1} - \sqrt{k}\right) = (\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + (\sqrt{4} - \sqrt{3}) + \dots + \sqrt{4}$$

$$+(\sqrt{n-1}-\sqrt{n-2})+(\sqrt{n}-\sqrt{n-1})+(\sqrt{n+1}-\sqrt{n}) =$$

$$\stackrel{\text{HF}}{=} \sqrt{n+1} - 1 \longrightarrow +\infty \quad (n \to \infty),$$

így a sor divergens, pontosabban

$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n}) = \lim(s_n) = +\infty.$$

8. Nem nehéz belátni, hogy

$$s_n = \sum_{k=1}^n \left(\sqrt{k+2} - 2\sqrt{k+1} + \sqrt{k} \right) =$$

$$= (\sqrt{3} - 2\sqrt{2} + \sqrt{1}) + (\sqrt{4} - 2\sqrt{3} + \sqrt{2}) + (\sqrt{5} - 2\sqrt{4} + \sqrt{3}) + \dots +$$

$$+(\sqrt{n}-2\sqrt{n-1}+\sqrt{n-2})+(\sqrt{n+1}-2\sqrt{n}+\sqrt{n-1})+(\sqrt{n+2}-2\sqrt{n+1}+\sqrt{n})=$$

$$\stackrel{\textbf{HF}}{=} 1 - \sqrt{2} + \sqrt{n+2} - \sqrt{n+1} \quad (n \in \mathbb{N})$$

és tetszőleges $\mathfrak{n} \in \mathbb{N}$ esetén

$$\sqrt{n+2} - \sqrt{n+1} = (\sqrt{n+2} - \sqrt{n+1}) \cdot \frac{\sqrt{n+2} + \sqrt{n+1}}{\sqrt{n+2} + \sqrt{n+1}} = \frac{1}{\sqrt{n+2} + \sqrt{n+1}},$$

így a sor konvergens:

$$\sum_{n=1}^{\infty} \left(\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n} \right) = \lim(s_n) = 1 - \sqrt{2} + 0 = 1 - \sqrt{2}.$$

9. Mivel

$$\frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}} = \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k(k+1)}} = \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}},$$

ezért

$$s_n \ = \ \sum_{k=1}^n \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}} = \sum_{k=1}^n \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) =$$

$$= \left(1 - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \ldots + \left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}}\right) + \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right) =$$

$$\stackrel{\mathbf{HF}}{=} 1 - \frac{1}{\sqrt{n+1}} \longrightarrow 1 \quad (n \to \infty).$$

Így

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^2+n}} = 1.$$

10. Mivel

$$(-1)^k \frac{2k+1}{k(k+1)} = (-1)^k \frac{k+(k+1)}{k(k+1)} = (-1)^k \left(\frac{1}{k+1} + \frac{1}{k}\right),$$

ezért

$$\begin{split} s_n &= \sum_{k=1}^n (-1)^k \frac{2k+1}{k(k+1)} = \sum_{k=1}^n (-1)^k \left(\frac{1}{k+1} + \frac{1}{k} \right) = \\ &= -\left(\frac{1}{2} + 1 \right) + \left(\frac{1}{3} + \frac{1}{2} \right) + \dots + (-1)^{n-1} \left(\frac{1}{n} + \frac{1}{n-1} \right) + (-1)^n \left(\frac{1}{n+1} + \frac{1}{n} \right) = \end{split}$$

$$\stackrel{\mathbf{HF}}{=} -1 + \frac{(-1)^n}{n+1} \longrightarrow -1 \quad (n \to \infty).$$

Így

$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)} = -1.$$

11. Mivel

$$\begin{split} \frac{1}{(\sqrt{k+1} + \sqrt{k})\sqrt{k(k+1)}} &= \frac{1}{(\sqrt{k+1} + \sqrt{k})\sqrt{k(k+1)}} \cdot \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}} = \\ &= \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k(k+1)}} = \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}, \end{split}$$

ezért

$$\begin{split} s_n &= \sum_{k=1}^n \frac{1}{(\sqrt{k+1} + \sqrt{k})\sqrt{k(k+1)}} = \sum_{k=1}^n \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}\right) = \\ &= \left(1 - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \ldots + \left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}}\right) + \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right) = \\ &\stackrel{\text{HF}}{=} 1 - \frac{1}{\sqrt{n+1}} \longrightarrow 1 \qquad (n \to \infty). \end{split}$$

Így

$$\sum_{n=1}^{\infty}\frac{1}{(\sqrt{n+1}+\sqrt{n})\sqrt{n(n+1)}}=1.$$

12. Mivel

$$\frac{3}{4-5k+k^2} = \frac{3}{(k-1)(k-4)} = \frac{(k-1)-(k-4)}{(k-1)(k-4)} = \frac{1}{k-4} - \frac{1}{k-1},$$

ezért

$$\begin{split} s_n &= = \sum_{k=5}^n \frac{3}{4 - 5k + k^2} = \sum_{k=5}^n \left(\frac{1}{k - 4} - \frac{1}{k - 1} \right) = \\ &= \left(\frac{1}{1} - \frac{1}{4} \right) + \left(\frac{1}{2} - \frac{1}{5} \right) + \left(\frac{1}{3} - \frac{1}{6} \right) + \left(\frac{1}{4} - \frac{1}{7} \right) + \dots + \\ &= \left(\frac{1}{n - 6} - \frac{1}{n - 3} \right) + \left(\frac{1}{n - 5} - \frac{1}{n - 2} \right) + \left(\frac{1}{n - 4} - \frac{1}{n - 1} \right) = \\ &= 1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{n - 3} - \frac{1}{n - 2} - \frac{1}{n - 1} \longrightarrow 1 + \frac{1}{2} + \frac{1}{3} \quad (n \to \infty). \end{split}$$

Így

$$\sum_{n=5}^{\infty} \frac{3}{4 - 5n + n^2} = 1 + \frac{1}{2} + \frac{1}{3}.$$

13. Ha $2^k =: x$, akkor

$$\frac{2^k}{(2^k+1)(2^{k+1}+1)} = \frac{x}{(x+1)(2x+1)} = \frac{(2x+1)-(x+1)}{(x+1)(2x+1)} = \frac{1}{x+1} - \frac{1}{2x+1},$$

ezért

$$\frac{2^k}{(2^k+1)(2^{k+1}+1)} = \frac{1}{2^k+1} - \frac{1}{2^{k+1}+1}.$$

Így

$$\begin{split} s_n &= \sum_{k=0}^n \frac{2^k}{(2^k+1)(2^{k+1}+1)} = \sum_{k=0}^n \left(\frac{1}{2^k+1} - \frac{1}{2^{k+1}+1}\right) = \\ &= \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{9}\right) + \dots + \\ &+ \left(\frac{1}{2^{n-2}+1} - \frac{1}{2^{n-1}+1}\right) + \left(\frac{1}{2^{n-1}+1} - \frac{1}{2^n+1}\right) + \left(\frac{1}{2^n+1} - \frac{1}{2^{n+1}+1}\right) = \\ &= \frac{1}{2} - \frac{1}{2^{n+1}+1} \longrightarrow \frac{1}{2} \quad (n \to \infty), \end{split}$$

ahonnan

$$\sum_{n=0}^{\infty} \frac{2^n}{(2^n+1)(2^{n+1}+1)} = \frac{1}{2}$$

következik.

14. Mivel

$$\frac{2k-2}{k(k+1)(k+2)} = \frac{2 \cdot \{(k+1) - (k+2) + k\}}{k(k+1)(k+2)} = \frac{2}{k(k+2)} - \frac{2}{k(k+1)} + \frac{2}{(k+1)(k+2)} =$$

$$= \frac{1}{k} - \frac{1}{k+2} - \frac{2}{k} + \frac{2}{k+1} + \frac{2}{k+1} - \frac{2}{k+2} = -\frac{1}{k} + \frac{4}{k+1} - \frac{3}{k+2},$$

ezért

$$s_n = \sum_{k=1}^n \frac{2k-2}{k(k+1)(k+2)} = \sum_{k=1}^n \left(-\frac{1}{k} + \frac{4}{k+1} - \frac{3}{k+2}\right) \stackrel{\text{HF}}{=} \frac{n^2-n}{2(n+1)(n+2)} \longrightarrow \frac{1}{2} \quad (n\to\infty),$$

ahonnan

$$\sum_{n=1}^{\infty} \frac{2n-2}{n(n+1)(n+2)} = \frac{1}{2}$$

következik.

15. Mivel

$$\frac{k^2 - k - 1}{k!} = \frac{k(k - 1) - 1}{k!} = \frac{1}{(k - 2)!} - \frac{1}{k!},$$

ezért

$$\begin{split} s_n &= \sum_{k=2}^n \frac{k^2 - k - 1}{k!} = \sum_{k=2}^n \left(\frac{1}{(k-2)!} - \frac{1}{k!} \right) = \\ &= \left(\frac{1}{0!} - \frac{1}{2!} \right) + \left(\frac{1}{1!} - \frac{1}{3!} \right) + \left(\frac{1}{2!} - \frac{1}{4!} \right) + \left(\frac{1}{3!} - \frac{1}{5!} \right) + \dots + \\ &= \left(\frac{1}{(k-4)!} - \frac{1}{(k-2)!} \right) + \left(\frac{1}{(k-3)!} - \frac{1}{(k-1)!} \right) + \left(\frac{1}{(k-2)!} - \frac{1}{k!} \right) = \\ &= \frac{1}{0!} + \frac{1}{1!} - \frac{1}{(k-1)!} - \frac{1}{k!} \longrightarrow 1 + 1 \quad (n \to \infty), \end{split}$$

ahonnan

$$\sum_{n=2}^{\infty} \frac{n^2 - n - 1}{n!} = 2$$

következik.

Megjegyezzük, hogy a fenti feladatok megoldása során többször alkalmaztuk a parciális törtekre való bontás módszerének alábbi speciális esetét: adott A, a, $b \in \mathbb{R}$, $a \neq b$ számokhoz meghatároztunk olyan p, $q \in \mathbb{R}$ számokhoz, hogy bármely $x \in \mathbb{R} \setminus \{a, b\}$ estén

$$\frac{A}{(x-a)(x-b)} = \frac{p}{x-a} + \frac{q}{x-b}$$

teljesül. Ez többféleképpen is megtehető:

1. módszer. Mivel

$$(x-a)-(x-b)=b-a,$$

ezért bármely $x \in \mathbb{R} \setminus \{a, b\}$ estén

$$\frac{A}{(x-a)(x-b)} = \frac{A}{b-a} \cdot \frac{b-a}{(x-a)(x-b)} = \frac{A}{b-a} \cdot \frac{(x-a)-(x-b)}{(x-a)(x-b)} = \frac{A}{b-a} \cdot \left\{ \frac{1}{x-b} - \frac{1}{x-a} \right\},$$

tehát

$$p := -\frac{A}{b-a} = \frac{A}{a-b}$$
, ill. $q := \frac{A}{b-a}$

jó választás. Ez a módszernek előnyei közé sorolható az, hogy lényegesen kevesebb számolással jár, kisebb az esélye a számolási hibának, továbbá néhány példa megoldása után igen könnyű arra rájönni, hogy a felbontást hogyan lehet akár számolás nélkül "ránézésre" elvégezni.

2. módszer. Bármely $x \in \mathbb{R} \setminus \{a, b\}$ estén

$$\frac{A}{(x-a)(x-b)} =: \frac{p}{x-a} + \frac{q}{x-b} = \frac{p(x-b) + q(x-a)}{(x-a)(x-b)} = \frac{(p+q)x - pb - qa}{(x-a)(x-b)},$$

így

$$0 = p + q$$
 és $A = -pb - qa$, azaz $p = \frac{A}{a - b}$, $q = \frac{A}{b - a}$.

Emlékeztető. Ha $a, q \in \mathbb{R}$, úgy

• a

$$\sum_{n=0} (\alpha \cdot q^n)$$

sor pontosan akkor konvergens, ha |q| < 1 vagy $\alpha = 0$:

$$\sum_{n=0}^{\infty}\alpha\cdot q^n\in\mathbb{R}\qquad\Longleftrightarrow\qquad (q\in(-1,1)\quad \text{vagy}\quad \alpha=0)\,,$$

• |q| < 1 vagy a = 0 esetén

$$\sum_{n=0}^{\infty} a \cdot q^n = a \cdot \sum_{n=0}^{\infty} q^n = a \cdot \frac{1}{1-q},$$

hiszen az

$$s_n := \sum_{k=0}^n \alpha \cdot q^k = \alpha + \alpha q + \alpha q^2 + \ldots + \alpha q^{n-1} + \alpha q^n = \alpha \left(1 + q + q^2 + \ldots + q^{n-1} + q^n\right) \qquad (n \in \mathbb{N}_0)$$

sorozatra

$$s_n = a \cdot \frac{1 - q^{n+1}}{1 - q} \longrightarrow \frac{a}{1 - q} \qquad (n \to \infty).$$

2022.05.14.

166

Megjegyzés. Ha $q \in (-1, 1)$, akkor bármely $m \in \mathbb{N}_0$ esetén

$$\sum_{n=m}^{\infty} q^n = q^m + q^{m+1} + q^{m+2} + \ldots = q^m (1 + q + q^2 + \ldots) = q^m \cdot \sum_{n=0}^{\infty} q^n = q^m \cdot \frac{1}{1-q} = \boxed{\frac{q^m}{1-q}}.$$

Emlékeztető. Tegyük fel, hogy

$$\sum_{n=0}^{\infty} x_n =: A \in \overline{\mathbb{R}} \qquad \text{és} \qquad \sum_{n=0}^{\infty} y_n =: B \in \overline{\mathbb{R}}.$$

Ha az α , $\beta \in \mathbb{R}$ számokra $\alpha A + \beta B \in \overline{\mathbb{R}}$, akkor

$$\sum_{n=0}^{\infty} (\alpha x_n + \beta y_n) = \alpha A + \beta B.$$

Feladat. Igazoljuk, hogy a következő sorok konvergensek és határozzuk meg az összegüket!

1.
$$\sum_{n=0}^{\infty} \left(\frac{(-3)^{n+2}}{2^{3n-1}} \right)$$
;

2.
$$\sum_{n=1}^{\infty} \left(\frac{(-3)^n + 4}{5^n} \right)$$

1.
$$\sum_{n=0}^{\infty} \left(\frac{(-3)^{n+2}}{2^{3n-1}} \right);$$
 2. $\sum_{n=1}^{\infty} \left(\frac{(-3)^n + 4}{5^n} \right);$ 3. $\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{1}{3^n} \right);$

4.
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{2^n} \right)$$

4.
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{2^n} \right);$$
 5. $\sum_{n=10}^{\infty} \left(\frac{((-1)^n + 2^n)^2}{5^{n+2}} \right);$ 6. $\sum_{n=2}^{\infty} \left(\frac{(-5)^n}{3^{2n}} \right).$

6.
$$\sum_{n=2}^{\infty} \left(\frac{(-5)^n}{3^{2n}} \right)$$
.

Útm.

1. Mivel

$$\sum_{n=0} \left(\frac{(-3)^{n+2}}{2^{3n-1}} \right) = 18 \cdot \sum_{n=0} \left(\left(\frac{-3}{8} \right)^n \right),$$

ezért konvergens geometriai sorról van szó:

$$\sum_{n=0}^{\infty} \frac{(-3)^{n+2}}{2^{3n-1}} = \frac{18}{1+\frac{3}{8}} = \frac{8 \cdot 18}{11}.$$

2. Mivel

$$\sum_{n=1} \left(\frac{(-3)^n+4}{5^n} \right) = \sum_{n=1} \left(\left(\frac{-3}{5} \right)^n \right) + 4 \cdot \sum_{n=1} \left(\left(\frac{1}{5} \right)^n \right),$$

ezért a sor konvergens:

$$\sum_{n=1}^{\infty} \frac{(-3)^n + 4}{5^n} = \frac{\frac{-3}{5}}{1 + \frac{3}{5}} + 4 \cdot \frac{\frac{1}{5}}{1 - \frac{1}{5}} = -\frac{3}{8} + 1 = \frac{5}{8}.$$

3. Világos, hogy

$$\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{1}{3^n} \right) = \sum_{n=1}^{\infty} \frac{1}{2^n} + \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1/2}{1 - 1/2} + \frac{1/3}{1 - 1/3} = \frac{1}{2 - 1} + \frac{1}{3 - 1} = \frac{3}{2}.$$

4. Látható, hogy

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n} = \sum_{n=1}^{\infty} \left(-\frac{1}{2} \right)^n = \frac{-1/2}{1+1/2} = -\frac{1}{3}.$$

5. Világos, hogy

$$\sum_{n=10}^{\infty} \frac{((-1)^n + 2^n)^2}{5^{n+2}} \ = \ \sum_{n=10}^{\infty} \frac{1 + 2 \cdot (-2)^n + 4^n}{5^{n+2}} =$$

$$= \sum_{n=10}^{\infty} \left\{ \frac{1}{25} \cdot \left(\frac{1}{5} \right)^n + \frac{2}{25} \cdot \left(-\frac{2}{5} \right)^n + \frac{1}{25} \cdot \left(\frac{4}{5} \right)^n \right\} =$$

$$= \frac{1}{25} \cdot \sum_{n=10}^{\infty} \left(\frac{1}{5}\right)^n + \frac{2}{25} \cdot \sum_{n=10}^{\infty} \left(-\frac{2}{5}\right)^n + \frac{1}{25} \cdot \sum_{n=10}^{\infty} \left(\frac{4}{5}\right)^n =$$

$$= \frac{1}{25} \cdot \frac{(1/5)^{10}}{1 - 1/5} + \frac{2}{25} \cdot \frac{(-2/5)^{10}}{1 + 2/5} + \frac{1}{25} \cdot \frac{(4/5)^{10}}{1 - 4/5} =$$

$$= \left(\frac{1}{5}\right)^{12} \cdot \left\{\frac{5}{4} + 2048 \cdot \frac{5}{7} + 4^{10} \cdot 5\right\} = \left(\frac{1}{5}\right)^{11} \cdot \frac{7 + 2^{13} + 4^{11} \cdot 7}{28}.$$

6. Mivel

$$\sum_{n=2} \left(\frac{(-5)^n}{3^{2n}} \right) = \sum_{n=2} \left(\left(-\frac{5}{9} \right)^n \right),$$

ezért konvergens geometriai sorról van szó:

$$\sum_{n=2}^{\infty} \frac{(-5)^n}{3^{2n}} = \frac{\left(-\frac{5}{9}\right)^2}{1 + \frac{5}{9}} = \frac{5^2}{9^2} \cdot \frac{9}{14} = \frac{25}{126}. \quad \blacksquare$$

Feladat. Mely $x \in \mathbb{R}$ esetén konvergens a $\sum (x_n)$ sor?

$$1. \ x_n:=\left(\frac{\sqrt{x}}{2}-1\right)^n \quad (n\in\mathbb{N}_0;\ 0\leq x\in\mathbb{R});$$

2.
$$x_n := (\ln(x))^n \quad (n \in \mathbb{N}; \ 0 < x \in \mathbb{R});$$

3.
$$x_n := \left(\frac{x^2+1}{3}\right)^n \quad (n \in \mathbb{N}_0; \ x \in \mathbb{R});$$

4.
$$x_n := \frac{x}{(1+x)^n}$$
 $(n \in \mathbb{N}_0; -1 \neq x \in \mathbb{R});$

5.
$$x_n := (x^n - x^{n-1})(x^n + x^{n-1}) \quad (n \in \mathbb{N}; \ x \in \mathbb{R});$$

6.
$$x_n := \frac{(x+1)^{n+1}}{(x-1)^n}$$
 $(n \in \mathbb{N}_0; 1 \neq x \in \mathbb{R});$

7.
$$x_n := \frac{x^{2n}}{(1+x^2)^{n-1}}$$
 $(n \in \mathbb{N}; x \in \mathbb{R}).$

Útm.

1. A $\sum_{n=0}^{\infty} (x_n)$ sor pontosan akkor konvergens, ha

$$\left|\frac{\sqrt{x}}{2}-1\right|<1\qquad\Longleftrightarrow\qquad x\in(0,16),$$

és minden $x \in (0, 16)$ esetén

$$\sum_{n=0}^{\infty} x_n = \frac{1}{1 - \left(\frac{\sqrt{x}}{2} - 1\right)} = \frac{1}{2 - \frac{\sqrt{x}}{2}} = \frac{2}{4 - \sqrt{x}}.$$

2. A $\sum_{n=1}^{\infty} (x_n)$ sor pontosan akkor konvergens, ha

$$|\ln(x)| < 1 \qquad \Longleftrightarrow \qquad x \in \left(\frac{1}{e}, e\right),$$

és minden $x \in \left(\frac{1}{e}, e\right)$ esetén

$$\sum_{n=1}^{\infty} x_n = \frac{\ln(x)}{1 - \ln(x)}.$$

3. A $\sum_{n=0}^{\infty} (x_n)$ sor pontosan akkor konvergens, ha

$$\left|\frac{x^2+1}{3}\right| < 1 \qquad \Longleftrightarrow \qquad x \in (-\sqrt{2}, \sqrt{2})$$

és minden $x \in (-\sqrt{2}, \sqrt{2})$ esetén

$$\sum_{n=0}^{\infty} x_n = \frac{1}{1 - \frac{x^2 + 1}{3}} = \frac{3}{2 - x^2}.$$

4. A $\sum (x_n)$ sor pontosan akkor konvergens, ha x=0 vagy

$$\frac{1}{|1+x|} < 1 \qquad \Longleftrightarrow \qquad x \in (-\infty, -2) \cup (0, +\infty).$$

A sor összege pedig:

$$\sum_{n=0}^{\infty} \frac{x}{(1+x)^n} = \begin{cases} 0 & (x=0), \\ \\ x \cdot \frac{1}{1-\frac{1}{1+x}} = x+1 & (x \in (-\infty, -2) \cup (0, +\infty)). \end{cases}$$

5. Világos, hogy x=0 esetén a sor konvergens. Legyen most $x\neq 0$, így

$$(x^{n} - x^{n-1})(x^{n} + x^{n-1}) = x^{n} \left(1 - \frac{1}{x}\right) \left(1 + \frac{1}{x}\right),$$

tehát a sor pontosan akkor konvergens, ha |x| < 1 és ekkor

$$\sum_{n=1}^{\infty} x_n = \begin{cases} \frac{x}{1-x} \left(1 - \frac{1}{x}\right) \left(1 + \frac{1}{x}\right) = -\left(1 + \frac{1}{x}\right) & (x \neq 0), \\ -1 & (x = 0). \end{cases}$$

6. Mivel bármely $1 \neq x \in \mathbb{R}$, ill. $n \in \mathbb{N}_0$ esetén

$$\frac{(x+1)^{n+1}}{(x-1)^n} = (x+1) \cdot \left(\frac{x+1}{x-1}\right)^n,$$

ezért a $\sum (x_n)$ sor pontosan akkor konvergens, ha x = -1 vagy

$$\left|\frac{x+1}{x-1}\right| < 1 \qquad \iff \qquad x \in (-\infty,0).$$

Tetszőleges $x \in (-\infty, 0)$ esetén a sor összege:

$$\sum_{n=1}^{\infty} \frac{(x+1)^{n+1}}{(x-1)^n} = (x+1) \cdot \sum_{n=1}^{\infty} \left(\frac{x+1}{x-1}\right)^n = (x+1) \cdot \frac{1}{1 - \frac{x+1}{x-1}} = \frac{1-x^2}{2}.$$

7. Minden $x \in \mathbb{R}$ esetén

$$\sum_{n=1}^{\infty} \left(\frac{x^{2n}}{(1+x^2)^{n-1}} \right) = (1+x^2) \cdot \sum_{n=1}^{\infty} \left(\left(\frac{x^2}{1+x^2} \right)^n \right)$$

konvergens mértani sor, továbbá

$$\sum_{n=1}^{\infty} \frac{x^{2n}}{(1+x^2)^{n-1}} = (1+x^2) \cdot \frac{\frac{x^2}{1+x^2}}{1-\frac{x^2}{1+x^2}} = x^2 \cdot (1+x^2) \qquad (x \in \mathbb{R}). \quad \blacksquare$$

Feladat. Tetszőleges $q \in (-1, 1)$ esetén határozzuk meg a $\sum_{n=1}^{\infty} n \cdot q^n$ sorösszeget!

Útm. Legyen $q \in (-1, 1)$ és

$$s_n := \sum_{k=1}^n k \cdot q^k = q + 2 \cdot q^2 + 3 \cdot q^3 + \ldots + n \cdot q^n \qquad (n \in \mathbb{N}).$$

Ekkor

$$\underline{s_n - q \cdot s_n} = \sum_{k=1}^n k \cdot q^k - \sum_{k=1}^n k \cdot q^{k+1} =$$

$$= (q + 2 \cdot q^2 + 3 \cdot q^3 + \ldots + n \cdot q^n) - (q^2 + 2 \cdot q^3 + \ldots + (n-1) \cdot q^n - n \cdot q^{n+1}) =$$

$$= q + q^{2} + q^{3} + \ldots + q^{n} - n \cdot q^{n+1} = \sum_{k=1}^{n} q^{k} - n \cdot q^{n+1} = q \cdot \frac{1 - q^{n}}{1 - q} - n \cdot q^{n+1},$$

ahonnan

$$s_n = q \cdot \frac{1 - q^n}{(1 - q)^2} - \frac{n}{1 - q} \cdot q^{n+1} \longrightarrow \frac{q}{(1 - q)^2} \qquad (n \to \infty),$$

$$\lim(q^n)=0=\lim(n\cdot q^n).$$

Igaz tehát a

$$q \in (-1,1)$$
 \Longrightarrow $\left| \sum_{n=1}^{\infty} n \cdot q^n = \frac{q}{(1-q)^2} \right|$

implikáció. ■

Például.

1.
$$\sum_{n=1}^{\infty} \frac{n}{3^n} = \sum_{n=1}^{\infty} n \cdot \left(\frac{1}{3}\right)^n = \frac{\frac{1}{3}}{\left(1 - \frac{1}{3}\right)^2} = \frac{\frac{1}{3}}{\frac{4}{9}} = \frac{1}{3} \cdot \frac{4}{9} = \frac{3}{4}.$$

$$2. \sum_{n=1}^{\infty} \frac{2n+1}{(-3)^n} = 2 \cdot \sum_{n=1}^{\infty} n \left(-\frac{1}{3}\right)^n + \sum_{n=1}^{\infty} \left(-\frac{1}{3}\right)^n = 2 \cdot \frac{-\frac{1}{3}}{\left(1+\frac{1}{3}\right)^2} + \frac{\frac{1}{3}}{1+\frac{1}{3}} = -\frac{3}{8} + \frac{1}{4} = -\frac{1}{8}.$$

2022.05.14.

Feladat. Igazoljuk, hogy ha $2 \le p \in \mathbb{N}$ és $\alpha \in [0, 1]$, akkor van olyan

$$x_n \in \{0, 1, \dots, p-1\}$$
 $(n \in \mathbb{N})$

(együttható)sorozat, hogy

$$\alpha = \sum_{n=1}^{\infty} \frac{x_n}{p^n} =: (0, x_1 x_2 \dots)_p,$$
 (16)

teljesül!

Útm. Ha

• $\alpha = 1$, akkor az $x_n := p - 1$ $(n \in \mathbb{N}_0)$ választás megfelelő:

$$\sum_{n=1}^{\infty} \frac{p-1}{p^n} = (p-1) \cdot \sum_{n=1}^{\infty} \frac{1}{p^n} = (p-1) \cdot \frac{\frac{1}{p}}{1-\frac{1}{p}} = \frac{p-1}{p} \cdot \frac{p}{p-1} = 1.$$

• $\alpha \in [0, 1)$, akkor pl. az

$$x_1 := [p\alpha], \ldots, x_{n+1} := [p^{n+1}\alpha - (p^nx_1 + \ldots + px_n)] \qquad (n \in \mathbb{N})$$

rekurzív megadású sorozatra:

$$\sum_{n=1}^{\infty} \frac{x_n}{p^n} = \alpha.$$

Biz. Ha $x_1:=[p\alpha]$, akkor $x_1\in\{0,\ldots,p-1\}$ és a $x_1\leq p\alpha < x_1+1$ egyenlőtlenségrendszerből

$$\frac{x_1}{p} \leq \alpha < \frac{x_1+1}{p};$$

ha pedig $x_2:=[p^2\alpha-px_1]$, akkor $x_2\in\{0,\dots,p-1\}$ és a $x_2\leq p^2\alpha-px_1< x_2+1$ egyenlőtlenségrendszerből

$$\frac{x_1}{p} + \frac{x_2}{p^2} \le \alpha < \frac{x_1}{p} + \frac{x_2 + 1}{p^2};$$

így az eljárást folytatva, ha az $x_n \in \{0, \dots, p-1\}$ számot meghatároztuk, úgy legyen

$$x_{n+1} := \left[p^{n+1}\alpha - p^nx_1 - \ldots - px_n\right].$$

Ekkor $x_{n+1} \in \{0, ..., p-1\}$ és

$$s_n := \frac{x_1}{p} + \frac{x_2}{p^2} + \ldots + \frac{x_n}{p^n} \le \alpha < \frac{x_1}{p} + \ldots + \frac{x_{n-1}}{p^{n-1}} + \frac{x_n+1}{p^n},$$

2022.05.14.

azaz

$$0 \le \alpha - s_n \le \frac{1}{p^n}$$
 $(n \in \mathbb{N}),$

ahonnan

$$\lim(s_n) = \alpha,$$
 ill. $\sum_{n=1}^{\infty} \frac{x_n}{p^n} = \alpha$

következik.

Példa. A $(0, 1\dot{2}\dot{4})_{10}$ sor reprezentálta szám tehát nem más, mint

$$(0, 1\dot{2}\dot{4})_{10} = 0, 1 + 0,024 + 0,00024 + 0,0000024 + \dots =$$

$$= 0, 1 + 0,024 \cdot \left(1 + \frac{1}{100} + \frac{1}{(100)^2} + \dots\right) = \frac{1}{10} + \frac{24}{1000} \cdot \frac{1}{1 - \frac{1}{100}} = \frac{123}{990}.$$

Definíció. A p := 2, a p := 3, ill. a p := 10 esetben a (16) előállítást az x szám **diadikus tört**, **triadikus tört**, ill. **tizedes tört** alakjának nevezzük.

Megjegyezzük, hogy

- 1. a padikus törteket a következőképpen szokás osztályozni: az $(0, x_1x_2...)_p$
 - véges p-adikus tört, ha alkalmas $M \in \mathbb{N}$ esetén minden $M \leq n \in \mathbb{N}$ inxere $x_n = 0$;
 - szakaszos végtelen p-adikus tört, ha alkalmas M, k ∈ N esetén minden M ≤ n ∈ N inxere x_{n+k} = x_n:

$$(0, a_1 a_2 \dots a_M b_1 b_2 \dots b_k b_1 b_2 \dots b_k b_1 b_2 \dots b_k \dots)_p =: (0, a_1 a_2 \dots a_M \dot{b}_1 b_2 \dots \dot{b}_k)_p.$$

$$Pl. \ 1/3 = (0, \dot{3})_{10}$$

- nemszakaszos végtelen p-adikus tört, ha végtelen, de nem szakaszos p-adikus tört.
- 2. Az $\alpha \in (0, 1)$ szám pontosan akkor racionális, ha p-adikus tör alakja (véges vagy) végtelen szakaszos.
- 3. A diadikus törtek fontos szerepet játszanak az informatikában, például a **lebegőpontos számábrázo- lás**nál. Ennek lényege, hogy a számot egyértelműen felírjuk

$$e \cdot M \cdot 2^k$$

alakban, ahol e a szám előjele, $1/2 \le M < 1$ és $k \in \mathbb{Z}$. Az M számot (**mantisszá**t) úgy tároljuk, hogy a diadikus tört alakjából vesszük az első néhány bitet a legmagasabb helyérték kivételével, mert az

úgyis 1. A tárolt bitek száma függ az alkalmazott pontosságtól. Ezzel általában csak egy M-hez közeli diadikus racionális számot tudunk tárolni. Például az 1/10 számot nem tudjuk pontosan tárolni.

4. ha $\alpha \in \mathbb{N}_0$, $b \in \mathbb{N}$ olyan számok, amelyre $\alpha < b$, akkor az

$$\frac{a}{b} = \sum_{n=1}^{\infty} \frac{x_n}{p^n} \tag{17}$$

előállítás a következő algoritmus alkalmazásával könnyen megkapható:

1. lépés. Legyen $x_1 := \left[p \cdot \frac{a}{b}\right]$. Ekkor

$$p \cdot \frac{a}{b} = x_1 + \frac{m_1}{b}$$

(pa-ban a b megvan x_1 -szer és marad m_1).

2. lépés. Legyen $x_2 := \left[p \cdot \frac{m_1}{b}\right]$. Ekkor

$$p \cdot \frac{m_1}{b} = x_2 + \frac{m_2}{b}$$

 $(pm_1$ -ben a b megvan x_2 -ször és marad m_2).

3. lépés. Legyen $x_3 := \left[p \cdot \frac{m_2}{b}\right]$. Ekkor

$$p \cdot \frac{m_2}{b} = x_3 + \frac{m_3}{b}$$

 $(pm_2$ -ben a b megvan x_3 -szor és marad m_3).

:

n. lépés. Legyen $x_n := \left[p \cdot \frac{m_{n-1}}{b}\right]$. Ekkor

$$p \cdot \frac{m_{n-1}}{h} = x_n + \frac{m_n}{h}$$

 $(pm_{n-1}$ -ben a b megvan x_n -szer és marad m_n).

Ha mind az n egyenlőséget rendre az

$$\frac{1}{p}, \frac{1}{p^2}, \dots \frac{1}{p^n}$$

számokkal szorozzuk, majd az elsőhöz adjuk, akkor azt kapjuk, hogy

$$\frac{a}{b} = \frac{x_1}{p} + \frac{x_2}{p^2} + \frac{x_3}{p^3} + \dots + \frac{x_n}{p^n} + \frac{m_n}{p^n b}$$

Mivel minden $\mathfrak{n} \in \mathbb{N}$ indexre $1 \leq m_\mathfrak{n} \leq \mathfrak{b},$ ezért

$$\lim_{n\to\infty}\left(\frac{m_n}{p^nb}\right)=0, \qquad \text{azaz} \qquad \frac{\alpha}{b}=\sum_{n=1}^\infty\frac{x_n}{p^n}.$$

Példák.

1.
$$\frac{1}{7} = (0, 001)_2$$
, ui.

$$\frac{1}{7} \xrightarrow{\times 2} \frac{2}{7} < 1 \ (\mathbf{x_1} := \mathbf{0}) \xrightarrow{\times 2} \frac{4}{7} < 1 \ (\mathbf{x_2} := \mathbf{0}) \xrightarrow{\times 2} \frac{8}{7} = 1 + \frac{1}{7} \ (\mathbf{x_3} := \mathbf{1}) \xrightarrow{} \frac{1}{7} \ (\text{ism\'etl\'es}).$$

Megjegyezzük, hogy

$$(0,001)_2 = \left(\frac{0}{2} + \frac{0}{2^2} + \frac{1}{2^3}\right) + \left(\frac{0}{2^4} + \frac{0}{2^5} + \frac{1}{2^6}\right) + \left(\frac{0}{2^7} + \frac{0}{2^8} + \frac{1}{2^9}\right) + \dots =$$

$$= \frac{1}{2^3} + \frac{1}{2^6} + \frac{1}{2^9} + \dots = \sum_{n=1}^{\infty} \left(\frac{1}{2^3}\right)^n = \frac{\frac{1}{8}}{1 - \frac{1}{8}} = \frac{1}{8} \cdot \frac{8}{7} = \frac{1}{7}.$$

2.
$$\frac{2}{3} = (0, 20)_3$$
, ui.

$$\frac{2}{3} \xrightarrow{\times 3} \frac{6}{3} = 2 + 0 \ (\mathbf{x_1} := \mathbf{2}) \xrightarrow{\times 3} 0 \ (\mathbf{x_2} := \mathbf{0}) \xrightarrow{\times 3} 0 \ (\text{ism\'etl\'es}).$$

Megjegyezzük, hogy

$$(0,2\dot{0})_3 = \frac{2}{3} + \frac{0}{3^2} + \frac{0}{2^4} + \frac{0}{2^5} + \ldots = \frac{2}{3}.$$

3.
$$\frac{2}{11} = (0, \dot{1}\dot{8})_{10}$$
, ui.

$$\frac{2}{11} \xrightarrow{\times 10} \frac{20}{11} = 1 + \frac{9}{11} \ (\mathbf{x_1} := \mathbf{1}) \ \xrightarrow{\times 10} \ \frac{90}{11} = 8 + \frac{2}{11} \ (\mathbf{x_2} := \mathbf{8}) \ \longrightarrow \ \frac{2}{11} \ (\text{ism\'etl\'es}).$$

Megjegyezzük, hogy

$$(0, \dot{1}\dot{8})_{10} = \left(\frac{1}{10} + \frac{8}{10^2}\right) + \left(\frac{1}{10^3} + \frac{8}{10^4}\right) + \left(\frac{1}{10^5} + \frac{8}{10^6}\right) + \dots =$$

$$= \frac{18}{10^2} + \frac{18}{10^4} + \frac{18}{10^6} + \dots = 18 \cdot \sum_{n=1}^{\infty} \left(\frac{1}{10^2}\right)^n = 18 \cdot \frac{\frac{1}{10^2}}{1 - \frac{1}{10^2}} =$$

$$= 18 \cdot \frac{1}{10^2} \cdot \frac{10^2}{99} = \frac{18}{99} = \frac{2}{11}.$$

Feladat. Adjuk meg a $(0, 14)_6$ szám diadikus tört alakját!

Útm. Mivel

$$(0,14)_6 = \frac{1}{6} + \frac{4}{6^2} + \frac{4}{6^3} + \frac{4}{6^4} + \dots = \frac{1}{6} + \frac{4}{6^2} \cdot \left(1 + \frac{1}{6} + \frac{1}{6^2} + \frac{1}{6^3} + \dots\right) =$$

$$= \frac{1}{6} + \frac{4}{6^2} \cdot \frac{1}{1 - \frac{1}{6}} = \frac{1}{6} + \frac{4}{6^2} \cdot \frac{6}{5} = \frac{1}{6} + \frac{4}{30} = \frac{90}{30} = \frac{3}{10},$$

és

$$\frac{3}{10} \ \stackrel{\times 2}{\longrightarrow} \ \frac{6}{10} = \frac{3}{5} < 1 \ (\textbf{x}_1 := \textbf{0}) \ \stackrel{\times 2}{\longrightarrow} \ \frac{6}{5} = 1 + \frac{1}{5} \ (\textbf{x}_2 := \textbf{1}) \ \stackrel{\times 2}{\longrightarrow} \ \frac{2}{5} < 1 \ (\textbf{x}_3 := \textbf{0}) \ \stackrel{\times 2}{\longrightarrow}$$

$$\stackrel{\times 2}{\longrightarrow} \quad \frac{4}{5} < 1 \ (\mathbf{x_4} := \mathbf{0}) \quad \stackrel{\times 2}{\longrightarrow} \quad \frac{8}{5} = 1 + \frac{3}{5} \ (\mathbf{x_5} := \mathbf{1}) \ (\text{ism\'etl\'es}),$$

ezért

$$(0, 1\dot{4})_6 = (0, 0\dot{1}00\dot{1})_2$$
.

Emlékeztető. Tegyük fel, hogy bármely $n \in \mathbb{N}$ esetén $x_n \in (0, +\infty)$. Ekkor igaz az

$$\sum (x_n)$$
 konvergens \iff (s_n) korlátos

ekvivalencia, hiszen ebben az esetben (s_n) szigorúan monoton növekedő:

$$s_{n+1}-s_n=\sum_{k=1}^{n+1}x_k-\sum_{k=1}^nx_k=x_{n+1}>0$$
 $(n\in\mathbb{N}).$

Következésképpen

• a

$$\sum_{n=1} \left(\frac{1}{n} \right)$$

harmonikus sor divergens, hiszen, ha $\nu_n := 2^n \ (n \in \mathbb{N})$, akkor

$$s_{\nu_n} = s_{2^n} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \ldots + \frac{1}{8}\right) + \ldots + \left(\frac{1}{2^{n-1}+1} + \ldots + \frac{1}{2^n}\right) \geq$$

$$\geq 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \ldots + 2^{n-1} \cdot \frac{1}{2^n} = 1 + n \cdot \frac{1}{2} = \frac{2+n}{2},$$

azaz a részletösszegek

$$s_n = \sum_{k=1}^n \frac{1}{k}$$
 $(n \in \mathbb{N})$

sorozata nem korlátos.

a

$$\sum_{n=0} \left(\frac{1}{n!} \right)$$

sor konvergens, hiszen a részletösszegek

$$s_n := \sum_{k=0}^n \frac{1}{k!} \qquad (n \in \mathbb{N})$$

sorozata (vö. 4. **GY**) korlátos:

$$2 \leq s_n < 3 \qquad (n \in \mathbb{N}_0).$$

Feladat. Legyen $\alpha \in \mathbb{R}$. Igazoljuk, hogy ha

1. $\alpha > 1$, akkor bármely $n \in \mathbb{N}$ esetén

$$\boxed{\sum_{k=1}^{n} \frac{1}{n^{\alpha}}} = 1 + \frac{1}{2^{\alpha}} + \ldots + \frac{1}{(n-1)^{\alpha}} + \frac{1}{n^{\alpha}} \boxed{2^{\alpha-1}} = \boxed{\frac{2^{\alpha}}{2^{\alpha}-2}};$$

2. $\alpha \leq 1$, akkor bármely $c \in \mathbb{R}$ számhoz van olyan $n \in \mathbb{N}$, hogy igaz a

$$\sum_{k=1}^{n} \frac{1}{n^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \ldots + \frac{1}{(n-1)^{\alpha}} + \frac{1}{n^{\alpha}} > c$$

becslés!

Útm.

1. Legyen $m \in \mathbb{N}$. Ha $n \in \mathbb{N}$: $n < 2^{m+1}$, akkor

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \leq 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}}\right) + \dots +$$

$$+ \left(\frac{1}{(2^{m})^{\alpha}} + \frac{1}{(2^{m} + 1)^{\alpha}} + \dots + \frac{1}{(2^{m+1} - 1)^{\alpha}}\right) <$$

$$< 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{2^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \dots +$$

$$+ \left(\frac{1}{(2^{m})^{\alpha}} + \frac{1}{(2^{m})^{\alpha}} + \dots + \frac{1}{(2^{m})^{\alpha}}\right) =$$

$$= 1 + \frac{1}{2^{\alpha-1}} + \frac{1}{4^{\alpha-1}} + \ldots + \frac{1}{(2^m)^{\alpha-1}} =$$

$$= 1 + \frac{1}{2^{\alpha - 1}} + \left(\frac{1}{2^{\alpha - 1}}\right)^2 + \ldots + \left(\frac{1}{2^{\alpha - 1}}\right)^m = \frac{1 - \left(\frac{1}{2^{\alpha - 1}}\right)^{m+1}}{1 - \frac{1}{2^{\alpha - 1}}} =$$

$$= \frac{2^{\alpha-1}}{2^{\alpha-1}-1}\left\{1-\left(\frac{1}{2^{\alpha-1}}\right)^{m+1}\right\} < \frac{2^{\alpha-1}}{2^{\alpha-1}-1}.$$

Mivel bármely $n \in \mathbb{N}$ esetén van olyan $m \in \mathbb{N}$, hogy $n < 2^{m+1}$, ezért

$$\sum_{k=1}^n \frac{1}{n^\alpha} = 1 + \frac{1}{2^\alpha} + \ldots + \frac{1}{(n-1)^\alpha} + \frac{1}{n^\alpha} < \frac{2^{\alpha-1}}{2^{\alpha-1}-1}.$$

2. Ha $N \in \mathbb{N}$ és $n := 2^{2N+1}$, akkor

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \left(\frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \left(\frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}} + \frac{1}{8^{\alpha}}\right) + \dots + \left(\frac{1}{(2^{N} + 1)^{\alpha}} + \frac{1}{(2^{N} + 1)^{\alpha}} + \dots + \frac{1}{(2^{N+1})^{\alpha}}\right) \ge$$

$$\geq 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots +$$

$$+ \left(\frac{1}{2^N+1} + \frac{1}{2^N+1} + \ldots + \frac{1}{2^{N+1}} \right) \geq$$

$$\geq \ 1 + \frac{1}{2} + \left\{ 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \ldots + 2^N \cdot \frac{1}{2^{N+1}} \right\} = \frac{3}{2} + \frac{N}{2} = \frac{3+N}{2}.$$

Ez azt jelenti, hogy ha $c \in \mathbb{R}$ tetszőleges, akkor van olyan N, ill. $\mathfrak{n} := 2^{2N+1}$, hogy

$$\sum_{k=1}^{n} \frac{1}{n^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \ldots + \frac{1}{(n-1)^{\alpha}} + \frac{1}{n^{\alpha}} > \frac{3+N}{2} > c. \quad \blacksquare$$

Mivel $\frac{1}{n^{\alpha}} > 0$, ezért igaz az

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \in \mathbb{R} \qquad \Longleftrightarrow \qquad \alpha > 1.$$

ekvivalencia (pozitív tagú sorozat generálta sor pontosan akkor konvergens, ha a részletösszegek sorozata korlátos).

Feladat. Bizonyítsuk be, hogy a $\sum_{k=0}^{\infty} \left(\frac{1}{k!}\right)$ konvergens sor összegére

$$\sum_{k=0}^{\infty} \frac{1}{k!} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} = \sup \left\{ \sum_{k=0}^{n} \frac{1}{k!} \in \mathbb{R} : n \in \mathbb{N} \right\} = e$$

teljesül!

Útm.

1. lépés. Tudjuk, hogy a

$$s_n:=\sum_{k=0}^n\frac{1}{k!}\quad (n\in\mathbb{N}_0)\qquad \text{\'es}\qquad e_n:=\left(1+\frac{1}{n}\right)^n\quad (n\in\mathbb{N}).$$

sorozatok konvergensek és $\lim(e_n) = e$.

2. lépés. Világos, hogy

$$\mathbf{e_1} = \left(1 + \frac{1}{1}\right)^1 = 2 = 1 + 1 = \mathbf{s_1}, \qquad \mathbf{e_2} = \left(1 + \frac{1}{2}\right)^2 = \frac{9}{4} < \frac{10}{4} = \frac{5}{2} = 1 + 1 + \frac{1}{2} = \mathbf{s_2},$$

továbbá tetszőleges $3 \leq n \in \mathbb{N}$ esetén és a binomiális tétel felhasználásával azt kapjuk, hogy

$$\mathbf{e_n} = \sum_{k=0}^{n} \binom{n}{k} \cdot 1^{n-k} \cdot \frac{1}{n^k} = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} = 1 + 1 + \sum_{k=2}^{n} \binom{n}{k} \cdot \frac{1}{n^k} = 1 + 1 + \sum_{k=0}^{n} \binom{n}{k}$$

$$= 2 + \sum_{k=2}^{n} \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{k!} \cdot \frac{1}{n^k} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n(n-1) \cdot \ldots \cdot (n-(k-1))}{n \cdot n \cdot \ldots \cdot n} = 2 + \sum_{k=2}^{n} \frac{1}{k$$

$$= 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{ 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \ldots \cdot \left(1 - \frac{k-1}{n}\right) \right\} < 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot \ldots \cdot 1\right\} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left\{1 \cdot 1 \cdot$$

$$= 2 + \sum_{k=2}^{n} \frac{1}{k!} = \sum_{k=0}^{n} \frac{1}{k!} = \mathbf{s_n},$$

ezért

$$e_n \leq s_n$$
 $(n \in \mathbb{N}),$

ahonnan

$$e = \lim (e_n) \le \lim (s_n)$$

következik.

3. lépés. Ha $m, n \in \mathbb{N}$: $2 \le m < n$, akkor

$$e_n = 2 + \sum_{k=2}^n \frac{1}{k!} \cdot \prod_{i=1}^{k-1} \left(1 - \frac{j}{n}\right) > 2 + \sum_{k=2}^m \frac{1}{k!} \cdot \prod_{j=1}^{k-1} \left(1 - \frac{j}{n}\right) \stackrel{n \to \infty}{\longrightarrow}$$

$$\xrightarrow{n\to\infty} 2 + \sum_{k=2}^{m} \frac{1}{k!} \cdot \prod_{j=1}^{k-1} \lim_{n\to\infty} \left(1 - \frac{j}{n}\right) = 2 + \sum_{k=2}^{m} \frac{1}{k!} \cdot \prod_{j=1}^{k-1} 1 = \sum_{k=0}^{m} \frac{1}{k!} = s_m,$$

így a fentiek figyelembevételével azt kapjuk, hogy tetszőleges $\mathfrak{m} \in \mathbb{N}$ esetén $e > e_\mathfrak{n} \ge s_\mathfrak{m}$, ahonnan

$$e \ge \lim_{m \to \infty} (s_m)$$

következik. Ez pedig a korábbiak fényében azt jelenti, hogy

$$\sum_{k=0}^{\infty} \frac{1}{k!} = \lim(s_n) = e. \quad \blacksquare$$

Feladat. Igazoljuk, hogy $e \notin \mathbb{Q}$, továbbá fennáll a

becslés!

Útm.

1. lépés. Világos, hogy ha

$$s_n := \sum_{k=0}^n \frac{1}{k!} \qquad (n \in \mathbb{N}_0),$$

akkor bármely $n \in \mathbb{N}_0$ esetén

$$\begin{split} e - s_n &= e - \sum_{k=0}^n \frac{1}{k!} = \sum_{k=0}^\infty \frac{1}{k!} - \sum_{k=0}^n \frac{1}{k!} = \sum_{k=n+1}^\infty \frac{1}{k!} = \frac{1}{(n+1)!} \cdot \sum_{k=n+1}^\infty \frac{(n+1)!}{k!} = \\ &= \frac{1}{(n+1)!} \cdot \left(1 + \sum_{k=n+2}^\infty \frac{(n+1)!}{k!} \right) = \frac{1}{(n+1)!} \cdot \left(1 + \sum_{k=n+2}^\infty \prod_{j=n+2}^k \frac{1}{j} \right) \le \\ &\le \frac{1}{(n+1)!} \cdot \left(1 + \sum_{k=n+2}^\infty \prod_{j=n+2}^k \frac{1}{n+2} \right) = \frac{1}{(n+1)!} \cdot \left\{ 1 + \sum_{k=n+2}^\infty \left(\frac{1}{n+2} \right)^{k-n-1} \right\} = \\ &= \frac{1}{(n+1)!} \cdot \sum_{k=n+1}^\infty \left(\frac{1}{n+2} \right)^{k-(n+1)} = \frac{1}{(n+1)!} \cdot \sum_{k=0}^\infty \left(\frac{1}{n+2} \right)^k = \frac{1}{(n+1)!} \cdot \frac{1}{1 - \frac{1}{n+2}} = \end{split}$$

$$= \frac{n+2}{(n+1)\cdot(n+1)!}.$$

Így

$$0<\theta_n:=n\cdot n!\cdot \left(e-\sum_{k=0}^n\frac{1}{k!}\right)\leq \frac{(n+2)\cdot n\cdot n!}{(n+1)\cdot (n+1)!}=\frac{(n+2)\cdot n}{(n+1)^2}=\frac{n^2+2n}{n^2+2n+1}<1\quad (n\in\mathbb{N}),$$

ahonnan

$$e - \sum_{k=0}^{n} \frac{1}{k!} < \frac{1}{n \cdot n!} \qquad (n \in \mathbb{N})$$

következik.

2. lépés. Ha $e\in\mathbb{Q}$, akkor alkalmas $m,n\in\mathbb{N}$ számokkal $e=\frac{m}{n}$. Így a fentiek alapján van olyan

$$0 < \theta_n < 1$$
,

hogy

$$\frac{m}{n} - \sum_{k=0}^{n} \frac{1}{k!} = \frac{\theta_n}{n \cdot n!}.$$

Innen

$$\theta_{n} = \frac{m \cdot n \cdot n!}{n} - \sum_{k=0}^{n} \frac{n \cdot n!}{k!} = m \cdot n! - n \cdot \sum_{k=0}^{n} \prod_{j=k+1}^{n} j \in \mathbb{Z}$$

ami nem lehetséges. Következésképpen $e \notin \mathbb{Q}$.

3. lépés. Az n = 7 esetben

$$0 < e - s_7 < \frac{1}{7 \cdot 7!} = \frac{1}{7 \cdot 5040} < 0.00003,$$

azaz

$$s_7 < e < s_7 + 0,00003.$$

Mivel

$$s_7 = \sum_{k=0}^{7} \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \frac{1}{5040} =$$

$$= \frac{5040 + 5040 + 2520 + 840 + 210 + 42 + 7 + 1}{5040} = \frac{13700}{5040} = \frac{685}{252} = 2.71825...$$

így

$$2.71825 < s_7 < e < s_7 + 0.00003 < 2.71826 + 0.00003 = 2.71829$$
. ■

Feladat. Igazoljuk, hogy a

$$\sum_{n=0} \left(\frac{n^2 + 3n}{(n+2)!} \right)$$

sor konvergens, majd számítsuk ki összegét!

Útm. Mivel

$$n^2 + 3n = n^2 + 3n + 2 - 2 = (n+1)(n+2) - 2$$
 $(n \in \mathbb{N}_0),$

ezért

$$\frac{n^2+3n}{(n+2)!} = \frac{(n+1)(n+2)-2}{(n+2)!} = \frac{1}{n!} - \frac{2}{(n+2)!} \qquad (n \in \mathbb{N}_0).$$

Következésképpen

$$\sum_{n=0}^{\infty} \frac{n^2 + 3n}{(n+2)!} = \sum_{n=0}^{\infty} \frac{1}{n!} - 2 \cdot \sum_{n=0}^{\infty} \frac{1}{(n+2)!} = e - 2 \cdot \left(\sum_{n=0}^{\infty} \frac{1}{n!} - \frac{1}{0!} - \frac{1}{1!}\right) = e - 2 \cdot (e-2) = 4 - e. \quad \blacksquare$$

Házi feladat. Igazoljuk, hogy az alábbi sorok konvergensek, és határozzuk meg összegüket!

$$1. \ \sum_{n=10} \left(\frac{5}{2^n} + \frac{1}{3^{2n}} \right); \qquad 2. \ \sum_{n=1} \left(\frac{2 \cdot (-1)^n + 2^{n+1}}{3^{2n+1}} \right); \qquad 3. \ \sum_{n=1} \left(\frac{1}{n^2 + 4n + 3} \right).$$

Útm.

1. Mivel

$$\left|\frac{1}{2}\right| < 1$$
 és $\left|\frac{1}{3^2}\right| = \left|\frac{1}{9}\right| < 1$,

ezért konvergens geometriai sorról van szó, melynek összeg:

$$\sum_{n=10}^{\infty} \left(\frac{5}{2^n} + \frac{1}{3^{2n}} \right) \ = \ \sum_{n=10}^{\infty} \frac{5}{2^n} + \sum_{n=10}^{\infty} \frac{1}{3^{2n}} = 5 \cdot \sum_{n=10}^{\infty} \left(\frac{1}{2} \right)^n + \sum_{n=10}^{\infty} \left(\frac{1}{9} \right)^n = 1 \cdot \sum_{n=10}^{\infty} \left($$

$$= 5 \cdot \frac{(1/2)^{10}}{1 - 1/2} + \frac{(1/9)^{10}}{1 - 1/9} = \frac{5}{2^9} + \frac{1}{8 \cdot 9^9}.$$

2. Mivel

$$\sum_{n=1} \left(\frac{2 \cdot (-1)^n + 2^{n+1}}{3^{2n+1}} \right) = \frac{2}{3} \cdot \sum_{n=1} \left(\left(\frac{-1}{9} \right)^n \right) + \frac{2}{3} \cdot \sum_{n=1} \left(\left(\frac{2}{9} \right)^n \right)$$

és

$$\left|-\frac{1}{9}\right| < 1,$$
 ill. $\left|\frac{2}{9}\right| < 1,$

ezért konvergens geometriai sorról van szó, melynek összege:

$$\sum_{n=1}^{\infty} \frac{2 \cdot (-1)^n + 2^{n+1}}{3^{2n+1}} = \frac{2}{3} \cdot \frac{-1/9}{1 + \frac{1}{9}} + \frac{2}{3} \cdot \frac{2/9}{1 - \frac{2}{9}} = -\frac{2}{30} + \frac{4}{21} = \frac{13}{105}.$$

3. Ha

$$s_n = \sum_{k=1}^n \frac{1}{k^2 + 4k + 3} = \sum_{k=1}^n \frac{1}{(k+1)(k+3)} = \frac{1}{2} \cdot \sum_{k=1}^n \frac{(k+3) - (k+1)}{(k+1)(k+3)} = \frac{1}{2} \cdot \sum_{k=1}^n \frac{(k+3) - (k+1)}{(k+3)(k+3)} = \frac{1}{2} \cdot \sum_{k=1}^n \frac{(k+1)}{(k+3)(k+3)} = \frac{1}{2} \cdot \sum_{k=1}^n \frac{(k+1)}{(k+3)$$

$$= \frac{1}{2} \cdot \sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{1}{k+3} \right) =$$

$$= \frac{1}{2} \cdot \left\{ \left(\frac{1}{2} - \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \left(\frac{1}{4} - \frac{1}{6} \right) + \dots + \right.$$

$$+\left(\frac{1}{n-1}-\frac{1}{n+1}\right)+\left(\frac{1}{n}-\frac{1}{n+2}\right)+\left(\frac{1}{n+1}-\frac{1}{n+3}\right)$$

$$= \frac{1}{2} \cdot \left\{ \frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3} \right\} \quad (n \in \mathbb{N}),$$

akkor

$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 4n + 3} \right) = (s_n),$$

így $\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 4n + 3} \right)$ konvergens, továbbá

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 3} = \lim(s_n) = \frac{1}{2} \cdot \left\{ \frac{1}{2} + \frac{1}{3} - 0 - 0 \right\} = \frac{5}{12}. \quad \blacksquare$$

8. gyakorlat (2022.03.29.)

Emlékeztető (végtelen sorokra vonatkozó Cauchy-kritérium. A $\sum (x_n)$ sor pontosan akkor konverens, ha

$$\forall \, \epsilon > 0 \, \exists \, N \in \mathbb{N} \, \forall \, m, n \in \mathbb{N} : \qquad \left(m > n \geq N \quad \Longrightarrow \quad |s_m - s_n| = \left| \sum_{k=n+1}^m x_k \right| < \epsilon \right).$$

Példák.

1. Az

$$s_n := \sum_{k=1}^n \frac{1}{k^2} \qquad (n \in \mathbb{N})$$

sorozat esetében ha $m, n \in \mathbb{N}$: m > n, akkor

$$|\mathbf{s_m} - \mathbf{s_n}| = \left| \sum_{k=1}^m \frac{1}{k^2} - \sum_{k=1}^n \frac{1}{k^2} \right| = \sum_{k=n+1}^m \frac{1}{k^2} < \sum_{k=n+1}^m \frac{1}{k(k-1)} = \sum_{k=n+1}^m \left(\frac{1}{k-1} - \frac{1}{k} \right) = \sum_{$$

$$= \left(\frac{1}{n} - \frac{1}{n+1}\right) + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \ldots + \left(\frac{1}{m-2} - \frac{1}{m-1}\right) + \left(\frac{1}{m-1} - \frac{1}{m}\right) = 0$$

$$= \frac{1}{n} - \frac{1}{m} < \frac{1}{n}.$$

Így tetszőleges $\epsilon>0$ esetén van olyan $N\in\mathbb{N}$ $/N:=\left[\frac{1}{\epsilon}\right]+1$, hogy ha $m,n\in\mathbb{N}$: $m,n\geq N$, akkor $|s_m-s_n|<\epsilon$, azaz (x_n) Cauchy-féle. Következésképpen a

$$\sum_{n=1} \left(\frac{1}{n^2} \right)$$

sor konvergens.

2. Az

$$s_n := \sum_{k=1}^n \frac{1}{k} \qquad (n \in \mathbb{N})$$

sorozat esetében

$$|s_{2n}-s_n|=\left|\sum_{k=1}^{2n}\frac{1}{k}-\sum_{k=1}^{n}\frac{1}{k}\right|=\sum_{k=n+1}^{2n}\frac{1}{k}=\frac{1}{n+1}+\ldots+\frac{1}{2n}\geq n\cdot\frac{1}{2n}=\frac{1}{2},$$

így, ha $\varepsilon := \frac{1}{2}$, akkor minden $N \in \mathbb{N}$ esetén van olyan $m, n \in \mathbb{N}$: $m, n \ge N$, hogy

$$|s_{\mathfrak{m}}-s_{\mathfrak{n}}|\geq \frac{1}{2}.$$

Ez azt jelenti, hogy (s_n) nem Cauchy-féle. Következésképpen az

$$\sum \left(\frac{1}{n}\right)$$

sor divergens.

Feladat. A Cauchy-kritériumban alkalmazásával vizsgáljuk az alábbi sorok konvergenciáját!

1.
$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n!} \right);$$

1.
$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n!} \right);$$
 2.
$$\sum_{n=1}^{\infty} \left(\frac{2n-1}{(2n)!} \right);$$
 3.
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \right).$$

$$3. \sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \right)$$

Útm.

1. Ha $\mathfrak{m}, \mathfrak{n} \in \mathbb{N}, \mathfrak{m} > \mathfrak{n}$, akkor

$$\frac{k-1}{k!} = \frac{1}{(k-1)!} - \frac{1}{k!} \qquad (k \in \mathbb{N})$$

következtében

$$|s_m - s_n| = \left| \sum_{k=n+1}^m \frac{k-1}{k!} \right| = \left| \sum_{k=n+1}^m \left(\frac{1}{(k-1)!} - \frac{1}{k!} \right) \right| = \left| \frac{1}{n!} - \frac{1}{m!} \right| < \frac{1}{n!}.$$

Ezért

$$|s_{\mathfrak{m}} - s_{\mathfrak{n}}| < \varepsilon \qquad \Longleftrightarrow \qquad \mathfrak{n}! > \frac{1}{\varepsilon},$$

tehát (s_n) Cauchy-féle, így a $\sum_{n=1}^{\infty} \left(\frac{n-1}{n!}\right)$ sor konvergens.

2. Ha m, $n \in \mathbb{N}$, m > n, akkor

$$\frac{2k-1}{(2k)!} = \frac{1}{(2k-1)!} - \frac{1}{(2k)!} \qquad (k \in \mathbb{N})$$

következtében

$$|s_m - s_n| = \left| \sum_{k=n+1}^m \frac{2k-1}{(2k)!} \right| = \left| \sum_{k=n+1}^m \left(\frac{1}{(2k-1)!} - \frac{1}{(2k)!} \right) \right| < \frac{1}{(2n+1)!}.$$

Ezért

$$|s_{\mathfrak{m}} - s_{\mathfrak{n}}| < \varepsilon \qquad \Longleftrightarrow \qquad (2n+1)! > \frac{1}{\varepsilon},$$

tehát (s_n) Cauchy-féle, így a $\sum_{n=1}^{\infty} \left(\frac{2n-1}{(2n)!}\right)$ sor konvergens.

3. Mivel bármely $k,n\in\mathbb{N}$ esetén $\sqrt{n+1}< n+k,$ így $\frac{1}{\sqrt{n+1}}>\frac{1}{n+k},$ és ha m:=2n>n, akkor tetszőleges $N\in\mathbb{N},$ illetve $N\leq n\in\mathbb{N}$ esetén

$$|s_{2n}-s_n| = \left|\frac{1}{\sqrt{n+1}+\ldots+\frac{1}{\sqrt{2n}}}\right| > \left|\frac{1}{n+1+\ldots+\frac{1}{2n}}\right| > \frac{1}{2}.$$

Következésképpen (s_n) nem Cauchy-féle, így a $\sum_{n=1}^\infty \left(\frac{1}{\sqrt{n}}\right)$ sor divergens. \blacksquare

Megjegyezzük, hogy ha a Cauchy-kritériumban n := m-1 akkor azt kapjuk, hogy $|s_m - s_n| = |x_m|$. Így a $\sum (x_n)$ sor konvergenciájának szükséges feltételét kapjuk:

$$\sum (x_n)$$
 konvergens \Longrightarrow $\lim (x_n) = 0$

vagy

$$(x_n)$$
 nem nullsorozat $\Longrightarrow \sum (x_n)$ divergens.

Megjegyezzük, hogy ez csak szükséges, de nem ekégséges feltétele a konvergenciának, azaz abból, hogy $\lim (x_n) = 0$ nem következik, hogy $\sum (x_n)$ konvergens:

$$\lim \left(\frac{1}{n}\right) = 0,$$
 de $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty.$

Feladat. Mutassuk meg, hogy az alábbi sorok divergensek!

$$1. \ \sum_{n=1} \left(\frac{n}{3n-1}\right); \qquad 2. \ \sum_{n=1} \left(\sqrt[n]{a}\right) \quad (a \in (0,+\infty)); \qquad 3. \ \sum_{n=1} \left(\frac{4^n n!}{n^n}\right);$$

$$4. \ \ \sum_{n=1}^{\infty} \left(\frac{(-1)^n}{\sqrt[n]{n}} \right); \qquad 5. \ \ \sum_{n=1}^{\infty} \left(\frac{n}{\alpha^n} \right) \quad (0 < |\alpha| \le 1); \qquad 6. \ \ \sum_{n=1}^{\infty} \left(\left(1 - \frac{1}{n} \right)^{n+2} \right).$$

Útm.

- 1. $\lim \left(\frac{n}{3n-1}\right) = \frac{1}{3} \neq 0$, így a kérdéses sor divergens.
- 2. $\lim(\sqrt[n]{\alpha}) = 1 \neq 0$, így a kérdéses sor divergens.
- 3. Mivel

$$\frac{(n+1)^n}{n^n} = \left(1 + \frac{1}{n}\right)^n < 4 \quad (n \in \mathbb{N}) \qquad \Longleftrightarrow \qquad \frac{1}{n^n} < \frac{4^n}{(n+1)^n} \quad (n \in \mathbb{N}),$$

ezért az

$$x_n := \frac{4^n n!}{n^n} \qquad (n \in \mathbb{N})$$

sorozatra tetszőleges $n \in \mathbb{N}$ esetén

$$x_n = 4^n \cdot n! \cdot \frac{1}{n^n} < \frac{4 \cdot 4^n \cdot n!}{(n+1)^n} = \frac{4^{n+1} n! \cdot (n+1)}{(n+1)^n \cdot (n+1)} = \frac{4^{n+1} \cdot (n+1)!}{(n+1)^{n+1}} = x_{n+1},$$

tehát (x_n) pozitív tagú, szigorúan monoton növekedő sorozat, következésképpen nem nullsorozat. Így a kérdéses sor divergens.

4. Az

$$(x_n) := \left(\frac{(-1)^n}{\sqrt[n]{n}}\right)$$

sorozat nem nullasorozat, sőt nem is konvergens, hiszen

• ha n = 2k, akkor

$$x_{2k} = \frac{1}{\sqrt[2k]{2k}} \longrightarrow 1 \qquad (k \to \infty),$$

• ha n = 2k + 1, akkor

$$x_{2k+1} = \frac{-1}{2k+1} \longrightarrow -1 \qquad (k \to \infty).$$

Ez az jelenti, hogy a kérdéses sor divergens.

5. Mivel

$$\frac{n}{|a|^n} \ge 1 \qquad (n \in \mathbb{N}),$$

ezért

$$\left(\frac{n}{|\mathfrak{a}|^{\mathfrak{n}}}\right)$$

nem nullsorozat, tehát a kérdéses sor divergens.

6. Világos, hogy

$$\left(1-\frac{1}{n}\right)^{n+2} = \left(1-\frac{1}{n}\right)^n \cdot \left(1-\frac{1}{n}\right)^2 \longrightarrow \frac{1}{e} \neq 0 \qquad (n \to \infty),$$

tehát a kérdéses sor divergens. ■

Emlékeztető (öszehasonlító kritérium). Legyen $x, y : \mathbb{N}_0 \to \mathbb{R}$.

• Ha majdnem minden $n \in \mathbb{N}_0$ esetén $|x_n| \le y_n$ és a $\sum_{n=0}^\infty (y_n)$ sor konvergens, akkor $\sum_{n=0}^\infty (x_n)$ abszolút konvergens (**majoránskritérium**), továbbá

$$0 \le \sum_{n=0}^{\infty} |x_n| \le \sum_{n=0}^{\infty} y_n.$$

• Ha majdnem minden $n \in \mathbb{N}_0$ esetén $0 \le y_n \le x_n$ és a $\sum (y_n)$ sor divergens, akkor $\sum (x_n)$ is divergens (minoránskritérium).

Példák.

1. Mivel bármely $n \in \mathbb{N}$ esetén

$$2n+1 \le 2n+n = 3n,$$
 azaz $\frac{1}{3n} < \frac{1}{2n+1},$

ezért a $\sum \left(\frac{1}{3n}\right) = \frac{1}{3} \cdot \sum \left(\frac{1}{n}\right)$ sor a $\sum \left(\frac{1}{2n+1}\right)$ sornak divergens minoránsa.

2. Mivel

$$n^2-n+1 \overset{\mathsf{n} \in \mathbb{N}}{\geq} n^2-n \overset{\mathsf{2} \leq \mathsf{n} \in \mathbb{N}}{\geq} \frac{n^2}{2}, \qquad \text{azaz} \qquad \frac{1}{n^2-n+1} < \frac{2}{n^2},$$

ezért a $\sum \left(\frac{2}{n^2}\right) = \text{sor a} \sum \left(\frac{1}{n^2-n+1}\right)$ sornak konvergens majoránsa.

Feladat. Az összehasonlító kritérium segítségével döntsük el, hogy konvergensek-e a következő sorok!

1.
$$\sum_{n=1}^{\infty} \left(\frac{n^2}{n^3 + 1} \right)$$
;

2.
$$\sum_{n=1}^{\infty} \left(\frac{2n^3 - 16}{n^5 + n} \right)$$

2.
$$\sum_{n=1}^{\infty} \left(\frac{2n^3 - 16}{n^5 + n} \right);$$
 3. $\sum_{n=1}^{\infty} \left(\frac{\sqrt{n+1} - \sqrt{n}}{n} \right);$

4.
$$\sum_{n=1}^{\infty} \left(\frac{\sqrt{n+1} + \sqrt{n-1}}{n} \right);$$
 5. $\sum_{n=0}^{\infty} \left(\frac{2^n + 4^n}{3^n + 5^n} \right);$

5.
$$\sum_{n=0}^{\infty} \left(\frac{2^n + 4^n}{3^n + 5^n} \right)$$
;

6.
$$\sum_{n=1} \left(\frac{n+2}{\sqrt{n^4+3n^2+2}} \right);$$

7.
$$\sum_{n=1} \left(\frac{1}{\sqrt{n(n+1)}} \right);$$

8.
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n(n^2+1)}} \right)$$
. 9. $\sum_{n=1}^{\infty} \left(\frac{n+1}{\sqrt{n^3+n+7}} \right)$.

$$9. \sum_{n=1}^{\infty} \left(\frac{n+1}{\sqrt{n^3+n+7}} \right)$$

Útm.

1. Mivel nagy $n \in \mathbb{N}$ indexekre

$$\frac{n^2}{n^3+1} = \frac{1}{n+\frac{1}{n^2}} \approx \frac{1}{n}$$
 és $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ divergens,

ezért a minoránskritériumot kíséreljük meg alkalmazni. Mivel tetszőleges $n \in \mathbb{N}$ indexre

$$\frac{n^2}{n^3+1} \ge \frac{n^2}{n^3+n^3} = \frac{1}{2n}$$

és a

$$\sum_{n=1} \left(\frac{1}{2n} \right) = \frac{1}{2} \cdot \sum_{n=1} \left(\frac{1}{n} \right)$$

sor divergens, ezért a kérdéses sor a minoránskritérium alapján divergens.

2. Mivel nagy $n \in \mathbb{N}$ indexekre

$$\frac{2n^3 - 16}{n^5 + n} = \frac{1 - \frac{16}{n^3}}{n^2 + \frac{1}{n^2}} \approx \frac{1}{n^2} \qquad \text{és} \qquad \sum_{n=1} \left(\frac{1}{n^2}\right) \quad \text{konvergens,}$$

ezért a majoránskritériumot kíséreljük meg alkalmazni. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{2n^3-16}{n^5+n}<\frac{2n^3}{n^5+n}<\frac{2n^3}{n^5}=\frac{2}{n^2}$$

és a

$$\sum_{n=1} \left(\frac{2}{n^2}\right) = 2 \cdot \sum_{n=1} \left(\frac{1}{n^2}\right)$$

sor konvergens, ezért a kérdéses sor a majoránskritérium alapján konvergens.

3. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{\sqrt{n+1} - \sqrt{n}}{n} = \frac{1}{n(\sqrt{n+1} + \sqrt{n})} < \frac{1}{n(\sqrt{n} + \sqrt{n})} = \frac{1}{2n^{3/2}}$$

és a

$$\sum_{n=1} \left(\frac{1}{2n^{3/2}} \right) = \frac{1}{2} \cdot \sum_{n=1} \left(\frac{1}{n^{3/2}} \right)$$

sor konvergens, ezért a kérdéses sor a majoránskritérium alapján konvergens.

4. Mivel nagy $n \in \mathbb{N}$ indexekre

$$\frac{\sqrt{n+1}+\sqrt{n-1}}{n} = \frac{\sqrt{1+\frac{1}{n}}+\sqrt{1-\frac{1}{n}}}{\sqrt{n}} \approx \frac{2}{\sqrt{n}}$$

ezért a minoránskritériumot kíséreljük meg alkalmazni (vö. hiperharmonikus sor konvergenciakérdése). Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{\sqrt{n+1} + \sqrt{n-1}}{n} = \frac{2}{n(\sqrt{n+1} - \sqrt{n-1})} > \frac{1}{n} \iff 2 > \sqrt{n+1} - \sqrt{n-1},$$

és ez utóbbi igaz, hiszen

$$\sqrt{n+1} - \sqrt{n-1} = \frac{2}{\sqrt{n+1} + \sqrt{n-1}} < \frac{2}{1} = 2$$
 $(n \in \mathbb{N}),$

így a kérdéses sor a minoránskritérium alapján divergens.

5. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{2^n + 4^n}{3^n + 5^n} < \frac{4^n + 4^n}{5^n} = 2\left(\frac{4}{5}\right)^n,$$

így a kérdéses sor a majoránskritérium alapján konvergens.

6. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{n+2}{\sqrt{n^4+3n^2+2}} > \frac{n+2}{\sqrt{(n+2)^4}} = \frac{1}{n+2},$$

így a kérdéses sor a minoránskritérium alapján divergens.

7. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{1}{\sqrt{n(n+1)}} > \frac{1}{\sqrt{n(n+n)}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{n},$$

így a kérdéses sor a minoránskritérium alapján divergens.

8. Mivel minden $n \in \mathbb{N}$ esetén

$$\frac{1}{\sqrt{n(n^2+1)}} < \frac{1}{\sqrt{n^3}} = \frac{1}{n^{3/2}},$$

így a kérdéses sor a majoránskritérium alapján konvergens.

9. Tetszőleges $n \in \mathbb{N}$ indexre

$$\frac{n+1}{\sqrt{n^3+n+7}} > \frac{n}{\sqrt{n^3+n+7}} \geq \frac{n}{\sqrt{n^3+n^3+7n^3}} = \frac{n}{\sqrt{9n^3}} = \frac{1}{3\sqrt{n}} \geq \frac{1}{3n},$$

ezért a harmonikus sor a kérdéses sor divergens minoránsa.

Emlékeztető (Leibniz-kritérium). Legyen

$$0 \le x_n \in \mathbb{R} \quad (n \in \mathbb{N}_0), \qquad (x_n) \searrow .$$

Ekkor

1. igaz a

$$\sum_{n=0}^{\infty} (-1)^n x_n \in \mathbb{R} \qquad \Longleftrightarrow \qquad \lim(x_n) = 0$$

ekvivalencia;

2. a $\lim(x_n) = 0$ esetben

$$\sum_{n=0}^{2q-1} (-1)^n x_n \leq \sum_{n=0}^{\infty} (-1)^n x_n \leq \sum_{n=0}^{2p} (-1)^n x_n \qquad (p,q \in \mathbb{N});$$

és fennáll a

$$\left|\sum_{n=m}^{\infty} (-1)^n x_n\right| \leq x_m \qquad (m \in \mathbb{N}_0).$$

hibabecslés.

Feladat. A Leibniz-kritérium segítségével vizsgáljuk az alábbi sorok konvergenciáját!

1.
$$\sum_{n=0} \left((-1)^{n+1} \cdot \frac{n}{n^2+1} \right);$$
 2. $\sum_{n=0} \left((-1)^n \cdot \frac{n}{5n-2} \right).$

Útm.

1. Ha

$$x_n := \frac{n}{n^2 + 1} \qquad (n \in \mathbb{N}_0),$$

akkor (**HF**) bármely $n \in \mathbb{N}$ esetén $0 \le x_{n+1} < x_n$ és nyilván $\lim(x_n) = 0$, így a $\sum(x_n)$ sor konvergens.

2. Ha

$$x_n := \frac{n}{5n-2}$$
 $(n \in \mathbb{N}_0),$

akkor (**HF**) bármely $n \in \mathbb{N}$ esetén $0 \le x_{n+1} < x_n$, de $\lim (x_n) = \frac{1}{5} \ne 0$, így a $\sum (x_n)$ sor divergens.

Emlkékeztető. Tekintsük az $(x_n) : \mathbb{N} \to \mathbb{R}$ sorozatot.

1. Ha valamely $K \in \mathbb{R}$ és $q \in [0, 1)$ esetén majdnem minden $n \in \mathbb{N}$ indexre

$$|x_n| \leq K \cdot q^n$$
,

akkor a $\sum (x_n)$ sor abszolút konvergens, következésképpen konvergens (**Cauchy-féle gyökkri-térium**).

2. Ha majdnem minden $n \in \mathbb{N}$ indexre $x_n \neq 0$ és alkalmas $q \in (0,1)$ esetén majdnem minden $n \in \mathbb{N}$ indexre

$$\left|\frac{x_{n+1}}{x_n}\right| \leq q,$$

akkor a $\sum (x_n)$ sor abszolút konvergens, következésképpen konvergens (**D'Alembert-féle há-nyadoskritérium**).

Megjegyezzük, hogy

1. a gyök-, ill. hánydoskritérium kiegészítéseként elmondható, hogy ha alkalmas K>0, ill. $q\geq 1$ számok, illetve $N\in\mathbb{N}$ index esetén

$$|x_n| \geq Kq^n \quad (N \leq n \in \mathbb{N}) \qquad \text{vagy} \qquad \left|\frac{x_{n+1}}{x_n}\right| \geq 1 \quad (N \leq n \in \mathbb{N}),$$

akkor a $\sum (x_n)$ sor divergens.

2. sok helyütt gyök-, ill. hányadoskritériumon az alábbi erősebb feltételt szokás érteni. Ha

$$A := \lim (\sqrt[n]{|x_n|}) \in \overline{\mathbb{R}}, \quad \text{ill.} \quad A := \lim \left(\left|\frac{x_{n+1}}{x_n}\right|\right) \in \overline{\mathbb{R}},$$

úgy

• A < 1 esetén a $\sum (x_n)$ sor (abszolút) konvergens, következésképpen konvergens;

• A > 1 esetén a $\sum (x_n)$ sor divergens.

Feladat. Vizsgáljuk az alábbi sorok konvergenciáját!

1.
$$\sum_{n=1}^{\infty} \left(\frac{1}{3^n} \left(\frac{n+1}{n} \right)^{2n} \right);$$

2.
$$\sum_{n=1}^{\infty} \left(\frac{n^2}{2^n} \right);$$

3.
$$\sum_{n=1}^{\infty} \left(\left(\frac{1}{2} + \frac{1}{n} \right)^n \right);$$

4.
$$\sum_{n=1}^{\infty} \left(\frac{n^2}{2^n + 3^n} \right)$$
;

5.
$$\sum_{n=1}^{\infty} \left(\left(\frac{n}{n+1} \right)^{n^2+n+1} \right)$$

6.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n!} \left(\frac{n}{e-1} \right)^n \right);$$

7.
$$\sum_{n=1}^{\infty} \left(\frac{n!}{2^n + 1} \right);$$

8.
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n \cdot n!}{3n+2} \right);$$

$$9. \sum_{n=1}^{\infty} \left(\frac{2n+1}{(-3)^n} \right).$$

10.
$$\sum_{n=0}^{\infty} \left(\frac{(2n+1)!}{3^{n^2}} \right);$$

11.
$$\sum_{n=0}^{\infty} \left(\left(\frac{3n+4}{3n+3} \right)^{n^2+1} \right);$$

12.
$$\sum_{n=1}^{\infty} (n! \cdot 2^{1-n});$$

13.
$$\sum_{n=1} \left(\frac{2^{n-1}}{(3n+4) \cdot 5^n} \right);$$

14.
$$\sum_{n=1}^{\infty} \left(\left(\frac{n+1}{3n} \right)^n \right)$$
;

15.
$$\sum_{n=1} \left(\left(\frac{2n+1}{3n+1} \right)^{4n+1} \right)$$
;

16.
$$\sum_{n=1}^{\infty} \left(\frac{(2n)!}{n^n} \right);$$

17.
$$\sum_{n=1}^{\infty} (n^{2022} \cdot 2^{-2n});$$

18.
$$\sum_{n=1}^{\infty} \left(\frac{3^n}{n^n} \right);$$

19.
$$\sum_{n=1} \left(\frac{1}{n \cdot 3^n} \right).$$

Útm.

1. Legyen

$$x_n := \frac{1}{3^n} \left(\frac{n+1}{n} \right)^{2n} \qquad (n \in \mathbb{N}).$$

Ekkor

$$\lim \left(\sqrt[n]{|x_n|}\right) = \frac{1}{3} \cdot \lim \left(\left(\frac{n+1}{n}\right)^2\right) = \frac{1}{3} < 1,$$

így a gyökkritérium szerint a $\sum (x_n)$ sor konvergens.

2. Legyen

$$x_n:=\frac{n^2}{2^n} \qquad (n\in \mathbb{N}).$$

Ekkor

1. módszer a hányadoskritérium következtében a kérdéses sor konvergens, hiszen

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2} = \frac{1}{2} \cdot \left(\frac{n+1}{n}\right)^2 \longrightarrow \frac{1}{2} < 1 \qquad (n \to \infty).$$

2. módszer a gyökkritérium következtében a kérdéses sor konvergens, hiszen

$$\sqrt[n]{|x_n|} = \frac{(\sqrt[n]{n})^2}{2} \longrightarrow \frac{1}{2} < 1 \qquad (n \to \infty).$$

3. Mivel

$$\lim \left(\sqrt[n]{\left| \left(\frac{1}{2} + \frac{1}{n}\right)^n \right|} \right) = \lim \left(\frac{1}{2} + \frac{1}{n}\right) = \frac{1}{2} < 1,$$

ezért a $\sum (x_n)$ sor konvergens.

4. Mivel

$$\lim \left(\sqrt[n]{\frac{n^2}{2^n + 3^n}} \right) = \lim \left(\frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n + 3^n}} \right) = \frac{1^2}{\max\{2, 3\}} = \frac{1}{3} < 1,$$

ezért a $\sum (x_n)$ sor konvergens.

5. Mivel

$$\sqrt[n]{\left|\left(\frac{n}{n+1}\right)^{n^2+n+1}\right|} \ = \ \left(\frac{n}{n+1}\right)^{\frac{n^2+n+1}{n}} = \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^1 \cdot \left(\frac{n}{n+1}\right)^{1/n} = \left(\frac{n}{n+1}\right)^{\frac{n^2+n+1}{n}}$$

$$= \ \frac{1}{\left(\frac{n+1}{n}\right)^n} \cdot \frac{n}{n\left(1+\frac{1}{n}\right)} \cdot \sqrt[n]{\frac{n}{n+1}} \longrightarrow \frac{1}{e} \cdot 1 \cdot 1 = \frac{1}{e} < 1 \quad (n \to \infty),$$

ezért a $\sum (x_n)$ sor (abszolút) konvergens.

6. Ha

$$x_n := \frac{1}{n!} \left(\frac{n}{e-1} \right)^n \qquad (n \in \mathbb{N}),$$

akkor

$$\lim \left(\left| \frac{x_{n+1}}{x_n} \right| \right) = \frac{1}{e-1} \lim \left(\left(\frac{n+1}{n} \right)^n \right) = \frac{e}{e-1} > 1,$$

így a hányadoskritérium szerint a $\sum (x_n)$ sor divergens.

7. Ha

$$x_n := \frac{n!}{2^n + 1} \qquad (n \in \mathbb{N}),$$

akkor

$$\lim \left(\left| \frac{x_{n+1}}{x_n} \right| \right) = \lim \left((n+1) \frac{2^n + 1}{2^{n+1} + 1} \right) = \lim \left((n+1) \frac{1 + \frac{1}{2^n}}{2 + \frac{1}{2^n}} \right) = +\infty,$$

így a hányadoskritérium szerint a $\sum (x_n)$ sor divergens.

8. Legyen

$$x_n := \frac{(-1)^n \cdot n!}{3n+2} \qquad (n \in \mathbb{N}_0).$$

Ekkor

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{(n+1)!}{3(n+1)+2} \cdot \frac{3n+2}{n!} = \frac{(n+1)(3n+2)}{3n+2} = n+1 > 1,$$

így a hányadoskritérium szerint a $\sum (x_n)$ sor divergens.

9. Ha

$$x_n := \frac{2n+1}{(-3)^n} \qquad (n \in \mathbb{N}),$$

akkor

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{2(n+1)+1}{3^{n+1}} \cdot \frac{3^n}{2n+1} = \frac{1}{3} \cdot \frac{2n+3}{2n+1} \longrightarrow \frac{1}{3} \quad (n \to \infty).$$

Így a hányadoskritérium szerint a $\sum (x_n)$ sor (abszolút) konvergens.

10. Az

$$x_n:=\frac{(2n+1)!}{3^{n^2}} \qquad (n\in\mathbb{N}_0)$$

sorozatra

$$\begin{split} \left| \frac{x_{n+1}}{x_n} \right| &= \frac{(2(n+1)+1)!}{3^{(n+1)^2}} \cdot \frac{(2n+1)!}{3^{n^2}} = \frac{(2n+3)!}{(2n+1)!} \cdot \frac{3^{n^2}}{3^{n^2+2n+1}} = \\ &= \frac{(2n+3)(2n+2)}{3^{2n+1}} = \frac{1}{3} \cdot n^2 \cdot \left(\frac{1}{9}\right)^n \cdot \left(2 + \frac{3}{n}\right) \cdot \left(2 + \frac{2}{n}\right) \longrightarrow \\ &\longrightarrow \frac{1}{3} \cdot 0 \cdot (2+0) \cdot (2+0) = 0 \quad (n \to \infty). \end{split}$$

Mindez a hányadoskritérium következtében azt jelenti, hogy a $\sum (x_n)$ sor (abszolút) konvergens.

11. Legyen

$$x_n := \left(\frac{3n+4}{3n+3}\right)^{n^2+1} \qquad (n \in \mathbb{N}).$$

Ekkor

$$\sqrt[n]{|x_n|} = \left(\frac{3n+4}{3n+3}\right)^{n+\frac{1}{n}} = \left(\frac{3n+4}{3n+3}\right)^n \cdot \sqrt[n]{\frac{3n+4}{3n+3}} \longrightarrow \sqrt[3]{e} \cdot 1 = \sqrt[3]{e} > 1 \qquad (n \to \infty),$$

hiszen

• egyrészt az $n \to \infty$ határátmenetben

$$\left(\frac{3n+4}{3n+3}\right)^{n} = \left(\frac{3n+3+1}{3n+3}\right)^{n} = \sqrt[3]{\left(1+\frac{1}{3n+3}\right)^{3n+3} \cdot \left(1+\frac{1}{3n+3}\right)^{-3}} \longrightarrow \sqrt[3]{e \cdot 1}$$

• másrészt pedig

$$\lim\left(\frac{3n+4}{3n+3}\right)=1>0 \qquad \text{igy} \qquad \lim\left(\sqrt[n]{\frac{3n+4}{3n+3}}\right)=1.$$

Ezért a gyökkritérium következtében a $\sum (x_n)$ sor divergens.

Megjegyezzük, hogy bármely $n \in \mathbb{N}$ indexre

$$\frac{3n+4}{3n+3} = \frac{3n+3+1}{3n+3} = 1 + \frac{1}{3n+3} > 1,$$
 így $x_n > 1$,

ezért $(x_n) \notin \mathcal{N}$, következésképpen a $\sum (x_n)$ sor divergens.

12. Ha

$$x_n:=n!\cdot 2^{1-n}=2\cdot \frac{n!}{2^n}\qquad (n\in\mathbb{N}),$$

akkor a sorozatokra vonatkozó hányadoskritérium (vö. 5. GY) következtében

$$\lim \left(\frac{1}{x_n}\right) = 0, \quad \text{igy} \quad \lim (x_n) = +\infty.$$

Mindez azt jelenti, hogy a $\sum (x_n)$ sor divergens.

13. Ha

$$x_n:=\frac{2^{n-1}}{(3n+4)\cdot 5^n}\qquad (n\in\mathbb{N}),$$

akkor

$$\sqrt[n]{|x_n|} = \frac{2}{5 \cdot \sqrt[n]{2}} \cdot \frac{1}{\sqrt[n]{3n+4}} \longrightarrow \frac{2}{5} < 1 \qquad (n \to \infty),$$

hiszen

$$\sqrt[n]{3} \cdot \sqrt[n]{n} \le \sqrt[n]{3n+4} \le \sqrt[n]{3n+4n} = \sqrt[n]{7} \cdot \sqrt[n]{n} \qquad (n \in \mathbb{N})$$

következtében

$$\lim(\sqrt[n]{|x_n|}) = \frac{1}{5} < 1.$$

Ez a gyökkritérium következtében azt jelenti, hogy a $\sum (x_n)$ sor (abszolút) konvergens.

14. Ha

$$x_n := \left(\frac{n+1}{3n}\right)^n \qquad (n \in \mathbb{N}),$$

akkor

$$\sqrt[n]{|x_n|} = \frac{n+1}{3n} \longrightarrow \frac{1}{3} < 1 \qquad (n \to \infty).$$

Következésképpen a $\sum (x_n)$ sor (abszolút) konvergens.

15. Ha

$$x_n := \left(\frac{2n+1}{3n+1}\right)^{4n+1} = \left(\frac{2}{3}\right)^{4n} \cdot \left(\frac{n+1/2}{n+1/3}\right)^{4n} \cdot \left(\frac{2n+1}{3n+1}\right) \qquad (n \in \mathbb{N}),$$

akkor az $n \to \infty$ határátmenetben

$$\sqrt[n]{|x_n|} = \left(\frac{2}{3}\right)^4 \cdot \left(\frac{n+1/3+1/6}{n+1/3}\right)^4 \cdot \sqrt[n]{\frac{2n+1}{3n+1}} \longrightarrow \left(\frac{2}{3}\right)^4 \cdot 1 \cdot 1 = \left(\frac{2}{3}\right)^4 < 1.$$

Ez azt jelenti, hogy a $\sum (x_n)$ sor (abszolút) konvergens.

16. Ha

$$x_n := \frac{(2n)!}{n^n}$$
 $(n \in \mathbb{N}),$

akkor az $n \to \infty$ határátmenetben

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{(2n+2)!}{(n+1)^{n+1}} \cdot \frac{n^n}{(2n)!} = \frac{(2n+1)\cdot(2n+2)}{n+1} \cdot \left(\frac{n}{n+1}\right)^n \longrightarrow (+\infty) \cdot \frac{1}{e} = +\infty > 1.$$

Következésképpen a $\sum (x_n)$ sor divergens.

17. Ha

$$x_n := n^{2022} \cdot 2^{-2n} = n^{2022} \cdot \left(\frac{1}{4}\right)^n \qquad (n \in \mathbb{N}),$$

akkor

$$\sqrt[n]{|x_n|} = \left(\sqrt[n]{n}\right)^{100} \cdot \frac{1}{4} \longrightarrow \frac{1}{4} < 1 \qquad (n \to \infty).$$

A $\sum (x_n)$ sor tehát a gyökkritérium szerint (abszolút) konvergens.

18. Ha

$$x_n := \frac{3^n}{n^n}$$
 $(n \in \mathbb{N}),$

akkor

$$\sqrt[n]{|x_n|} = \frac{3}{n} \longrightarrow 0 < 1 \qquad (n \to \infty).$$

Így a gyökkritérium szerint a $\sum (x_n)$ sor (abszolút) konvergens.

19. Ha

$$x_n := \frac{1}{n \cdot 3^n}$$
 $(n \in \mathbb{N}),$

akkor

$$\sqrt[n]{|x_n|} = \frac{1}{\sqrt[n]{n} \cdot 3} \longrightarrow \frac{1}{3} < 1 \qquad (n \to \infty).$$

Így a gyökkritérium szerint a $\sum (x_n)$ sor (abszolút) konvergens.

Feladat. Mely $\alpha \in \mathbb{R}$ esetén konvergens a $\sum (x_n)$ sor?

$$1. \ x_n := \frac{\alpha^n n!}{n^n} \quad (n \in \mathbb{N}; \ \alpha \in \mathbb{R} \backslash \{-e;e\});$$

2.
$$x_n := \frac{(\alpha - 2)^n}{n + \sqrt{n}}$$
 $(n \in \mathbb{N}; \ \alpha \in \mathbb{R});$

$$3. \ x_n:=\frac{n\cdot 2^n}{n+1}\cdot \frac{1}{(3\alpha^2+8\alpha+6)^n} \quad (n\in\mathbb{N}_0;\ \alpha\in\mathbb{R});$$

4.
$$x_n := \frac{(-1)^n}{2n-1} \left(\frac{2-\alpha}{2+\alpha}\right)^n \quad (n \in \mathbb{N}; \ -2 \neq \alpha \in \mathbb{R});$$

5.
$$x_n := \frac{\alpha^{2n}}{1 + \alpha^{4n}}$$
 $(n \in \mathbb{N}; \alpha \in \mathbb{R}).$

Útm.

1. Legyen

$$x_n := \frac{\alpha^n n!}{n^n}$$
 $(n \in \mathbb{N}).$

Ekkor az α . = 0 esetén a sor nyilván konvergens, sőt összege: 0. Ha $\alpha \neq$ 0, akkor

$$\lim \left(\left| \frac{x_{n+1}}{x_n} \right| \right) = |\alpha| \cdot \lim \left(\left(\frac{n}{n+1} \right)^n \right) = \frac{|\alpha|}{e}.$$

így a hányadoskritérium erősebb változata szerint a $\sum (x_n)$ sor

- $|\alpha| < e$, azaz $\alpha \in (-e, e)$ esetén konvergens,
- $|\alpha| > e$, azaz $\alpha \in (-\infty, -e) \cup (e, +\infty)$ esetén divergens.
- 2. Világos, hogy $\alpha=2$ esetén a sor konvergens és összege 0. Legyen most $2\neq\alpha\in\mathbb{R}$. Ekkor az $n\longrightarrow\infty$ határesetben

$$\left| \frac{(\alpha - 2)^{n+1}}{n+1 + \sqrt{n+1}} \cdot \frac{n + \sqrt{n}}{(\alpha - 2)^n} \right| = |\alpha - 2| \cdot \frac{n + \sqrt{n}}{n+1 + \sqrt{n+1}} =$$

$$= |\alpha - 2| \cdot \frac{1 + \sqrt{\frac{1}{n}}}{1 + \frac{1}{n} + \sqrt{\frac{1}{n} + \frac{1}{n^2}}} \longrightarrow |\alpha - 2|.$$

Mivel

$$|\alpha - 2| < 1$$
 \iff $-1 < \alpha - 2 < 1$ \iff $1 < \alpha < 3$,

ezért $\alpha \in (1,3)$ esetén a sor konvergens és $\alpha \in \mathbb{R} \setminus [1,3]$ esetén pedig divergens. Az $\alpha = 3$ esetén a sor minorálható a

$$\sum_{n=1} \left(\frac{1}{2n} \right)$$

divergens sorral, hiszen

$$\frac{(3-2)^n}{n+\sqrt{n}} = \frac{1}{n+\sqrt{n}} \ge \frac{1}{n+n} = \frac{1}{2n} \qquad (n \in \mathbb{N}),$$

így a sor divergens. Az $\alpha = 1$ esetben pedig a sor a Leibniz-tétel miatt konvergens, hiszen

$$\frac{(1-2)^n}{n+\sqrt{n}} = \frac{(-1)^n}{n+\sqrt{n}} \qquad \text{\'es} \qquad \frac{1}{n+\sqrt{n}} \searrow 0 \quad (n\to\infty).$$

A sor tehát pontosan az $\alpha \in [1,3)$ esetben konvergens.

3. Világos, hogy

$$\sqrt[n]{|x_n|} = \frac{2\sqrt[n]{n}}{\sqrt[n]{n+1}} \cdot \frac{1}{|3\alpha^2 + 8\alpha + 6|} \longrightarrow \frac{2}{|3\alpha^2 + 8\alpha + 6|} \qquad (n \to \infty)$$

és

$$\frac{2}{|3\alpha^2 + 8\alpha + 6|} < 1 \qquad \Longleftrightarrow \qquad \alpha \in (-\infty, -2) \cup (-2/3, +\infty).$$

Ha $\alpha \in \{-2, -2/3\}$, akkor

$$\sum (x_n) = \sum \left(\frac{n2^n}{n+1} \cdot \frac{1}{2^n}\right) = \sum \left(\frac{n}{n+1}\right),$$

ami divergens. Tehát $\sum (x_n)$ pontosan akkor konvergens, ha $\alpha \in (-\infty, -2) \cup (-2/3, +\infty)$.

4. Ha $\alpha = 2$, akkor a sor konvergens. Ha $\alpha \neq 2$, akkor

$$\lim \left(\left| \frac{(-1)^{n+1}}{2n+1} \cdot \left(\frac{2-\alpha}{2+\alpha} \right)^{n+1} \right| \cdot \left| \frac{2n-1}{(-1)^n} \cdot \left(\frac{2+\alpha}{2-\alpha} \right)^n \right| \right) = \left| \frac{2-\alpha}{2+\alpha} \right| \lim \left(\frac{2n-1}{2n+1} \right) = \left| \frac{2-\alpha}{2+\alpha} \right|.$$

Ha

$$\left|\frac{2-\alpha}{2+\alpha}\right|<1\qquad\Longleftrightarrow\qquad -1<\frac{2-\alpha}{2+\alpha}<1\qquad\Longleftrightarrow\qquad 0<\frac{4}{2+\alpha}<2\qquad\Longleftrightarrow\qquad \alpha>0,$$

akkor a sor abszolút konvergens. Ha

$$\left|\frac{2-\alpha}{2+\alpha}\right| > 1,$$
 azaz $\alpha \in (-\infty, -2) \cup (-2, 0),$

akkor a sor divergens. Ha

$$\left|\frac{2-\alpha}{2+\alpha}\right|=1,$$
 azaz $\alpha=0,$

a

$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{2n-1} \right)$$

Leibniz-sort kapjuk, amely konvergens.

5. A konvergencia vizsgálatát a gyökkritérium segítségével végezzük. Mivel bármely $\alpha \in \mathbb{R}$ esetén

$$\sqrt[n]{\left|\frac{\alpha^{2n}}{1+\alpha^{4n}}\right|} = \frac{|\alpha|^2}{\sqrt[n]{|1+\alpha^{4n}|}} \leq \frac{|\alpha|^2}{\sqrt[n]{1}} = |\alpha|^2,$$

így

$$\lim \left(\sqrt[n]{\left| \frac{\alpha^{2n}}{1 + \alpha^{4n}} \right|} \right) \leq |\alpha|^2 < 1,$$

ha $|\alpha| < 1$. Tehát $|\alpha| < 1$ esetén a sor abszolút konvergens. Legyen most $|\alpha| > 1$, és alakítsuk át a törtet a következőképpen:

$$\sqrt[n]{\left|\frac{\alpha^{2n}}{1+\alpha^{4n}}\right|} = \sqrt[n]{\frac{\frac{1}{|\alpha|^{2n}}}{\left|\frac{1}{\alpha^{4n}}+1\right|}} = \frac{\frac{1}{|\alpha|^2}}{\sqrt[n]{\left|\frac{1}{\alpha^{4n}}+1\right|}} < \frac{\frac{1}{|\alpha|^2}}{\sqrt[n]{1}} = \frac{1}{|\alpha|^2} < 1,$$

így $|\alpha| > 1$ esetén is

$$\lim \left(\sqrt[n]{\left| \frac{\alpha^{2n}}{1 + \alpha^{4n}} \right|} \right) < 1,$$

azaz a sor abszolút konvergens. Ha $|\alpha|=1$, akkor $\alpha=1$, ill. $\alpha=-1$. Ebben az esetben a sor nem más mint

 $\sum_{n=1} \left(\frac{1}{2}\right),\,$

ami divergens.

Feladat. Mutassuk meg, hogy ha

$$x_n, y_n \in (0, +\infty)$$
 $(n \in \mathbb{N})$ és $\left(\frac{x_n}{y_n}\right)$ korlátos,

akkor igazak az alábbi implikációk!

1.
$$\sum (y_n)$$
 konvergens $\implies \sum (x_n)$ konvergens;

2.
$$\sum (x_n)$$
 divergens $\implies \sum (y_n)$ divergens.

Útm. Az

$$\left(\frac{x_n}{y_n}\right)$$

sorozat korlátossága azt jelenti, hogy van olyan k>0, hogy minden $n\in\mathbb{N}$ esetén $x_n\le ky_n$, így az összehasonlító-kritérium alapján adódik az állítás.

Megjegyzés. Ez a helyzet, ha

$$\frac{x_{n+1}}{x_n}<\frac{y_{n+1}}{y_n}\qquad (\text{mm. } n\in\mathbb{N}),$$

ugyanis ekkor

$$\frac{x_{n+1}}{y_{n+1}}<\frac{x_n}{y_n}\qquad (\text{mm. } n\in\mathbb{N}),$$

és így

$$\frac{x_n}{y_n} < \frac{x_0}{y_0} \qquad (\text{m.m. } n \in \mathbb{N}),$$

azaz $\left(\frac{x_n}{y_n}\right)$ korlátos. Így pl., ha

• $1 < \alpha \in \mathbb{R}$ és

$$\boxed{\frac{x_{n+1}}{x_n} \leq \left(\frac{n}{n+1}\right)^{\alpha} \quad (mm. \ n \in \mathbb{N})},$$

akkor $\sum (x_n)$ konvergens, míg

• $\alpha \le 1$ és

$$\boxed{\frac{y_{n+1}}{y_n} \ge \left(\frac{n}{n+1}\right)^{\alpha} \pmod{n \in \mathbb{N}}}$$

esetén $\sum (y_n)$ divergens.

Tétel. Ha

$$0 \le x_{n+1} \le x_n \qquad (n \in \mathbb{N}),$$

akkor a

$$\sum_{n=1}^{\infty} (x_n)$$
 és a $\sum_{n=0}^{\infty} (2^n x_{2^n})$

sorok ekvikonvergensek: egyszerre konvergensek, ill. divergensek (Cauchy-féle kondenzációs elv).

Biz. Legyen

$$s_n := \sum_{k=1}^n x_k \qquad (n \in \mathbb{N})$$

és

$$t_n:=\sum_{k=0}^n 2^k x_{2^k} \quad (n\in \mathbb{N}_0), \qquad \text{ill.} \qquad S:=\text{lim}(s_n)=\sum_{n=1}^\infty x_n$$

és

$$T := \lim(t_n) = \sum_{n=0}^{\infty} 2^n x_{2^n},$$

továbbá m, $n \in \mathbb{N}_0$: m > 1. Ha

• $n < 2^m$, akkor

$$s_n \leq x_1 + (x_2 + x_3) + \ldots + (x_{2^m} + x_{2^{m+1}} + \ldots + x_{2^{m+1}-1}) \leq x_1 + 2a_2 + \ldots + 2^m x_{2^m} = t_m,$$

• míg $n \ge 2^m$ esetén

$$s_n \ \geq \ x_1 + x_2 + (x_3 + x_4) + \ldots + (x_{2^{m-1}+1} + x_{2^{m-1}+2} + \cdots + a_{2^m}) \geq$$

$$\geq x_1 + x_2 + 2x_4 + \cdots + 2^{m-1}x_{2^m} = \frac{1}{2}(x_1 + t_m).$$

Ebből következik, hogy (s_n) és (t_n) ekvikorlátos. Mivel mindkét sorozat monoton növekvő, ezért ekvikonvergensek. \blacksquare

Megjegyzések.

1. Konvergencia esetén

$$S \le T \le 2S - x_1$$
 ill. $\frac{1}{2}(T + y_1) \le S \le T$.

2. $\alpha > 0$ esetén a

$$\sum_{n=1} \left(\frac{1}{n^{\alpha}} \right)$$

hiperharmonikus sor konvergenciáját vizsgálhatjuk ezzel a kritériumal, ui.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} < +\infty \quad \Longleftrightarrow \quad \sum_{n=0}^{\infty} \frac{2^{n}}{(2^{n})^{\alpha}} < +\infty \quad \Longleftrightarrow \quad \sum_{n=0}^{\infty} 2^{n(1-\alpha)} < +\infty \quad \Longleftrightarrow \quad \Longrightarrow$$

$$\iff \sum_{n=0}^{\infty} (2^{1-\alpha})^n < +\infty \qquad \iff \qquad 2^{1-\alpha} < 1 \qquad \iff \qquad \alpha > 1.$$

Ez esetben

$$T = \sum_{n=0}^{\infty} (2^{1-\alpha})^n = \frac{1}{1-2^{1-\alpha}} = \frac{1}{1-\frac{1}{2^{\alpha-1}}} = \frac{2^{\alpha}}{2^{\alpha}-2},$$

így

$$\frac{1}{2}(T+1) = \frac{1}{2}(T+1) \cdot \frac{2^{\alpha-1} + 2^{\alpha-1} - 1}{2^{\alpha-1} - 1} = \frac{2^{\alpha} - 1}{2^{\alpha} - 2}.$$

Tehát

$$\boxed{\frac{2^{\alpha}-1}{2^{\alpha}-2}\leq \sum_{n=1}^{\infty}\frac{1}{n^{\alpha}}\leq \frac{2^{\alpha}}{2^{\alpha}-2}} \quad (\alpha>1).$$

Ez $\alpha \to +\infty$ esetén egyre szűkülő intervallumot jelent:

•
$$\alpha = 2$$
 esetén $\frac{3}{2} \le \sum_{n=1}^{\infty} \frac{1}{n^2} \le 2$ (hiba $\le \frac{1}{2}$),

•
$$\alpha = 3$$
 esetén $\frac{7}{6} \le \sum_{n=1}^{\infty} \frac{1}{n^3} \le \frac{4}{3} = \frac{8}{6}$ (hiba $\le \frac{1}{6}$).

A

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
, $\sum_{n=1}^{\infty} \frac{1}{n^4}$, ill. a $\sum_{n=1}^{\infty} \frac{1}{n^6}$

stb. sor összege ismert8, de a

$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

sor összege nem ismeretes. Az 1978-ban Helsinkiben tartott Matematikai Kongresszuson R. Apéry megmutatta, hogy ez az összeg irracionális.

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}, \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}.$$

Megjegyezzük, hogy véges összegeket úgy szorzunk össze, hogy az egyik tényező minden tagját megszorozzuk a másik minden tagjával és a kapott szorzatokat összeadjuk:

$$(x_0 + \ldots + x_n) \cdot (y_0 + \ldots + y_m) = x_0 y_0 + x_0 y_1 + \ldots + x_0 y_m + x_1 y_0 + \ldots + x_n y_m.$$

Emlékeztető.

• (Binomiális tétel.) Legyen $a, b \in \mathbb{R}$. Ekkor minden $n \in \mathbb{N}_0$ esetén

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k},$$

ahol $0^0 := 1$.

A

$$\sum_{n=0} (a_n) \qquad \text{és a} \qquad \sum_{n=0} (b_n)$$

sorok Cauchy-szorzatának vagy diszkrét konvolúciójának nevezzük a

$$\sum_{n=0}(c_n)=:\sum_{n=0}(\alpha_n)\times\sum_{n=0}(b_n)$$

sort, ahol

$$c_n := \sum_{k=0}^n a_k b_{n-k} \qquad (n \in \mathbb{N}_0).$$

Példák.

1. Ha $z \in \mathbb{R}$: |z| < 1, akkor

$$\frac{1}{1-2z+z^2} = \frac{1}{(1-z)^2} = \left(\frac{1}{1-z}\right)^2 = \left(\sum_{n=0}^{\infty} z^n\right)^2 = \sum_{n=0}^{\infty} \sum_{k=0}^{n} z^k z^{n-k} =$$

$$= \sum_{n=0}^{\infty} z^n \sum_{k=0}^{n} 1 = \sum_{n=0}^{\infty} (n+1)z^n.$$

Megjegyezzük, hogy ha $z \in \mathbb{R}$: |z| < 1, akkor

$$\sum_{n=0}^{\infty} nz^{n} = \sum_{n=0}^{\infty} (n+1-1)z^{n} = \sum_{n=0}^{\infty} (n+1)z^{n} - \sum_{n=0}^{\infty} nz^{n} =$$

$$= \left(\sum_{n=0}^{\infty} z^n\right)^2 - \sum_{n=0}^{\infty} z^n = \frac{1}{(1-z)^2} - \frac{1}{1-z} = \frac{z}{(1-z)^2}.$$

2. Világos, hogy

$$e \cdot \frac{1}{e} = \left(\sum_{n=0}^{\infty} \frac{1}{n!}\right) \cdot \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^k}{k!} \cdot \frac{1}{(n-k)!} =$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} = \sum_{n=0}^{\infty} \frac{(-1+1)^n}{n!} = 1.$$

3. Megmutatjuk, hogy

$$\frac{3}{2} \cdot 2 = 3.$$

Valóban

$$\frac{3}{2} \cdot 2 = \left(\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n\right) \cdot \left(\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n\right) = \sum_{n=0}^{\infty} \sum_{k=0}^n \left(\frac{1}{3}\right)^k \left(\frac{1}{2}\right)^{n-k} =$$

$$=\sum_{n=0}^{\infty} \frac{1}{2^n} \sum_{k=0}^{n} \left(\frac{2}{3}\right)^n = \sum_{n=0}^{\infty} \frac{1}{2^n} \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \frac{2}{3}} = \sum_{n=0}^{\infty} \frac{1}{2^n} \left[3 - \frac{2^{n+1}}{3^n}\right] =$$

$$= 3 \cdot \sum_{n=0}^{\infty} \frac{1}{2^n} - 2 \cdot \sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k = 3 \cdot 2 - 2 \cdot \frac{3}{2},$$

következésképpen

$$2 \cdot 2 \cdot \frac{3}{2} = 3 \cdot 2 \qquad \iff \qquad 2 \cdot \frac{3}{2} = 3.$$

Tétel (Mertens). Ha a $\sum (x_n)$, $\sum (y_n)$ konvergens sorok:

$$A:=\sum_{n=0}^\infty x_n, \qquad B:=\sum_{n=0}^\infty y_n,$$

továbbá valamelyikük abszolút konvergens, akkor Cauchy-szorzatuk is konvergens, és

$$\sum_{n=0}^{\infty}\sum_{k=0}^{n}x_{k}y_{n-k}=A\cdot B=\left(\sum_{n=0}^{\infty}x_{n}\right)\cdot\left(\sum_{n=0}^{\infty}y_{n}\right).$$

Biz. Legyen

$$A_n:=\sum_{i=0}^n x_i=\sum_{i=0}^n x_{n-i}\quad \text{\'es}\quad B_n:=\sum_{i=0}^n y_i \qquad (n\in\mathbb{N}_0),$$

továbbá

$$c_{\mathfrak{i}} := \sum_{k=0}^{\mathfrak{i}} x_k y_{\mathfrak{i}-k} \quad (\mathfrak{i} \in \mathbb{N}_0), \qquad \text{ill.} \qquad C_{\mathfrak{n}} := \sum_{\mathfrak{i}=0}^{\mathfrak{n}} c_{\mathfrak{i}} \quad (\mathfrak{n} \in \mathbb{N}_0).$$

Ekkor

$$C_{n} = c_{0} + c_{1} + c_{2} + \dots + c_{n} =$$

$$= (x_{0}y_{0}) + (x_{0}y_{1} + x_{1}y_{0}) + (x_{0}y_{2} + x_{1}y_{1} + x_{2}y_{0}) + \dots + (x_{0}y_{n} + x_{1}y_{n-1} + \dots + x_{n}y_{0}) =$$

$$= x_{0}(y_{0} + y_{1} + y_{2} + \dots + y_{n}) + x_{1}(y_{0} + y_{1} + y_{2} + \dots + y_{n-1}) + \dots + x_{n}y_{0} =$$

$$= x_{0}B_{n} + x_{1}B_{n-1} + \dots + x_{n}B_{0} = \sum_{i=0}^{n} x_{n-i} \cdot B_{i} = \sum_{i=0}^{n} x_{n-i} \cdot (B_{i} - B) + A_{n} \cdot B.$$

Tegyük fel, hogy $\sum (x_n)$ abszolút konvergens: $\sum_{n=0}^{\infty} |x_n| \in \mathbb{R}$. Ekkor

- 1. $\lim(B_n) = B$ következtében
 - a) tetszőleges $\varepsilon > 0$ számhoz van olyan $L \in \mathbb{N}_0$, hogy bármely $L \le n \in \mathbb{N}_0$ esetén

$$|B_n - B| < \frac{\varepsilon/3}{\sum_{p=0}^{\infty} |x_p| + 1};$$
 (18)

b) a (B_n) sorozat korlátos, azaz alkalmas K>0 számra, ill. tetszőleges $n\in\mathbb{N}_0$ indexre

$$B_n, B \in (-K, K); \tag{19}$$

2. a $\sum (x_n)$ sor abszolút konvergenciája folytán alkalmas $M \in \mathbb{N}_0$, ill. tetszőleges $M \leq \mathfrak{p}, \mathfrak{q} \in \mathbb{N}_0$ indexre

$$\sum_{n=p}^{q} |x_l| < \frac{\varepsilon/3}{2K}; \tag{20}$$

3. $lim(A_{\mathfrak{n}})=A$ miatt van olyan $N\in\mathbb{N}_{0},$ hogy bármely $N\leq\mathfrak{n}\in\mathbb{N}$ indexre

$$|A_n - A| < \frac{\varepsilon/3}{|B| + 1}. (21)$$

Így ha $n \in \mathbb{N}_0$ olyan index, amelyre $n \ge \max\{N, L + M\}$, akkor

$$\begin{split} |C_n - AB| &= \left| \sum_{i=0}^n x_{n-i} (B_i - B) + A_n B - AB \right| \leq \\ &\leq \sum_{i=0}^{L-1} |x_{n-i}| \cdot |B_i - B| + \sum_{i=L}^n |x_{n-i}| \cdot |B_i - B| + |A_n - A| \cdot |B| \leq \\ &\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \leq \varepsilon, \end{split}$$

ui.

• a (19), (20), ill.

$$n-i > n - (L-1) > (L+M) - (L-1) > M$$

becslések következtében

$$\sum_{i=0}^{L-1} |x_{n-i}| \cdot |B_i - B| \le 2K \cdot \sum_{i=0}^{L-1} |x_{n-i}| \le 2K \cdot \frac{\varepsilon/3}{2K} = \frac{\varepsilon}{3},$$

• a (18) becslés következtében

$$\sum_{i=L}^n |x_{n-i}| \cdot |B_i - B| \le \sum_{i=L}^n |x_{n-i}| \cdot \frac{\epsilon/3}{\sum\limits_{n=0}^\infty |x_n| + 1} \le \frac{\epsilon}{3},$$

• a (20) becslés következtében

$$|A_n - A| \cdot |B| \le \frac{\varepsilon}{3}$$
.

Megjegyezzük, hogy ha a két sor közül egyik sem abszolút konvergens, akkor a Cauchy-szorzat nem

feltétlenül lesz konvergens. Divergens sorok Cauchy-szorzata is lehet konvergens, mint ahogy azt az alábbi feladat megoldása mutatja.

Feladat. Mutassuk meg, hogy

1. a $\sum_{n=0}^{\infty} \left(\frac{(-1)^n}{\sqrt{n+1}} \right)$ sor konvergens, viszont önmagával vett Cauchy-szorzata divergens;

2. az
$$1 - \sum_{n=1}^{\infty} \left(\left(\frac{3}{2} \right)^n \right)$$
 és az $1 + \sum_{n=1}^{\infty} \left(\left(\frac{3}{2} \right)^{n-1} \left(2^n + \frac{1}{2^{n+1}} \right) \right)$ sorok divergensek, de Cauchyszorzatuk konvergens!

Útm.

1. A
$$\sum_{n=0}^{\infty} \left(\frac{(-1)^n}{\sqrt{n+1}} \right)$$
 sor a Leibniz-kritérium következtében konvergens, továbbá

$$\begin{split} \sum_{n=0} \left(\frac{(-1)^n}{\sqrt{n+1}} \right) \times \sum_{n=0} \left(\frac{(-1)^n}{\sqrt{n+1}} \right) &= \sum_{n=0} \left(\sum_{k=0}^n \frac{(-1)^k}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}} \right) =: \\ &=: \sum_{n=0} \left((-1)^n c_n \right) \end{split}$$

folytán

$$\begin{split} c_n &= \sum_{k=0}^n \frac{1}{\sqrt{k+1}\sqrt{n-k+1}} = \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}} \geq \\ &\geq \sum_{k=0}^n \frac{2}{n+2} = \frac{2(n+1)}{n+2} \longrightarrow 2 \neq 0 \quad (n \to \infty). \end{split}$$

2. Világos, hogy a feladatbeli két sor Cauchy-szorzatára $\sum_{n=1}^{\infty} \left(\left(\frac{3}{2} \right)^{n-1} c_n \right)$, ahol

$$\begin{split} c_n &= \left(2^n + \frac{1}{2^{n+1}}\right) - \left(2^{n-1} + \frac{1}{2^n}\right) - \ldots - \left(2 + \frac{1}{2^2}\right) - \frac{3}{2} = \\ &= 2^n + \frac{1}{2^{n+1}} - \left(1 + 2 + \ldots + 2^{n-1}\right) - \left(\frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^n}\right) = \\ &= 2^n + \frac{1}{2^{n+1}} - (2^n - 1) - \left(1 - \frac{1}{2^n}\right) = \\ &= \frac{1}{2^{n+1}} + \frac{1}{2^n} = \frac{3}{2^{n+1}}, \end{split}$$

azaz

$$\sum_{n=0} \left(\left(\frac{3}{2}\right)^{n-1} c_n \right) = \sum_{n=0} \left(\left(\frac{3}{4}\right)^n \right). \quad \blacksquare$$

Gyakorló (házi) feladat. Vizsgáljuk meg az alábbi sorokat konvergencia szempontjából!

(a)
$$\sum_{n=1}^{\infty} \left(\frac{n^2 - 1}{3n^2 + 1} \right)$$
;

(b)
$$\sum_{n=1}^{\infty} \left(\left(\frac{n+2}{n+1} \right)^{n-1} \right);$$

(b)
$$\sum_{n=1}^{\infty} \left(\left(\frac{n+2}{n+1} \right)^{n-1} \right);$$
 (c) $\sum_{n=1}^{\infty} \left(\frac{n^2+n+1}{\sqrt{n^4+1}+n^5} \right);$

(d)
$$\sum_{n=1} \left(\frac{1}{n^{1+1/n}} \right);$$

(e)
$$\sum_{n} \left(\frac{100^n}{n!}\right)$$
;

(f)
$$\sum_{n=1}^{\infty} \left(\frac{(n!)^2}{2^{n^2}} \right)$$
;

(g)
$$\sum_{n=1} \left(\frac{3^n \cdot (n+2)!}{(n+1)^n} \right);$$
 (h) $\sum_{n=1} \left(\frac{2+(-1)^n}{\sqrt{n}} \right).$

(h)
$$\sum_{n=1} \left(\frac{2 + (-1)^n}{\sqrt{n}} \right).$$

Útm.

1. Mivel

$$\lim\left(\frac{n^2-1}{3n^2+1}\right)=\frac{1}{3}\neq 0,$$

ezért a

$$\sum_{n=1}^{\infty} \left(\frac{n^2 - 1}{3n^2 + 1} \right)$$

sor divergens.

2. Mivel

$$\left(\frac{n+2}{n+1}\right)^{n-1} = \left(\frac{n+1+1}{n+1}\right)^{n-1} = \left(1 + \frac{1}{n+1}\right)^{n+1} \cdot \left(1 + \frac{1}{n+1}\right)^{-2} \longrightarrow$$

$$\longrightarrow e \cdot \frac{1}{(1+0)^2} = e \neq (n \to \infty),$$

ezért a

$$\sum_{n=1} \left(\left(\frac{n+2}{n+1} \right)^{n-1} \right)$$

sor divergens.

3. Mivel nagy $n \in \mathbb{N}$ indexekre

$$\frac{n^2+n+1}{\sqrt{n^4+1}+n^5} = \frac{\frac{n^2+n+1}{n^2}}{\frac{\sqrt{n^4+1}+n^5}{n^2}} = \frac{1+\frac{1}{n}+\frac{1}{n^2}}{\sqrt{1+\frac{1}{n^4}+n^3}} \approx \frac{1}{n^3}$$

és a

$$\sum_{n=1} \left(\frac{1}{n^3} \right)$$

sor konvergens, ezért a majoránskritériumot kíséreljük meg alkalmazni. Mivel tetszőleges $n \in \mathbb{N}$ indexre

$$\frac{n^2 + n + 1}{\sqrt{n^4 + 1} + n^5} \le \frac{3n^2}{n^5} = \frac{3}{n^3}$$

és a

$$\sum_{n=1} \left(\frac{3}{n^3} \right)$$

sor konvergens, ezért a kérdéses sor a majoránskritérium alapján konvergens.

4. Mivel $\lim_{n \to \infty} (\sqrt[n]{n}) = 1$, ezért alkalmas $N \in \mathbb{N}$ indexre

$$\sqrt[n]{n} \le 2$$
 $(N \le n \in \mathbb{N}).$

Következésképpen

$$\frac{1}{n^{1+1/n}} = \frac{1}{n} \cdot \frac{1}{\sqrt[n]{n}} \geq \frac{1}{n} \cdot \frac{1}{2},$$

így a minoránskritérium alkalmazásával látható, hogy a kérdéses sor divergens.

5. Ha

$$x_n := \frac{100^n}{n!} \qquad (n \in \mathbb{N}_0),$$

akkor

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{100^{n+1}}{(n+1)!} \cdot \frac{n!}{100^n} = \frac{100}{n+1} \longrightarrow 0 < 1 \qquad (n \to \infty),$$

így a hányadoskritérium következményeként a kérdéses sor konvergens.

6. Legyen

$$x_n := \frac{(n!)^2}{2^{n^2}} \qquad (n \in \mathbb{N}).$$

Ekkor hányadoskritérium következtében a kérdéses sor konvergens, hiszen az $n \to \infty$ határátmenetben

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{((n+1)!)^2}{2^{(n+1)^2}} \cdot \frac{2^{n^2}}{(n!)^2} = \frac{(n+1)^2}{2^{2n+1}} = \frac{1}{2} \cdot (n^2 + 2n + 1) \cdot \left(\frac{1}{4}\right)^n \longrightarrow 0 + 0 + 0 = 0 < 1.$$

7. Legyen

$$x_n := \frac{3^n \cdot (n+2)!}{(n+1)^n} \qquad (n \in \mathbb{N}).$$

Ekkor hányadoskritérium következtében a kérdéses sor divergens, hiszen

$$\frac{x_{n+1}}{x_n} = \frac{3^{n+1} \cdot (n+3)!}{(n+2)^{n+1}} \cdot \frac{(n+1)^n}{3^n \cdot (n+2)!} = 3 \cdot \frac{n+3}{n+2} \cdot \left(\frac{n+1}{n+2}\right)^n =$$

$$=$$
 $3 \cdot \frac{n+3}{n+2} \cdot \left(\frac{n+2-1}{n+2}\right)^n =$

$$= 3 \cdot \frac{n+3}{n+2} \cdot \left(1 - \frac{1}{n+2}\right)^{n+2} \cdot \left(1 - \frac{1}{n+2}\right)^{-2} \longrightarrow 3 \cdot 1 \cdot e^{-1} \cdot 1^{-2} = \frac{3}{e} > 1.$$

8. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{2+(-1)^n}{\sqrt{n}} \geq \frac{1}{\sqrt{n}},$$

ezért a kérdéses sor a minoránskritérium következtében divergens.

Gyakorló (házi) feladatok.

1. Mely $\alpha \in \mathbb{R}$ esetén konvergens a

$$\sum_{n=1}^{\infty} \left(\frac{(\alpha-2)^n}{n} \right)$$

sor?

2. Igazoljuk, hogy fennáll a

$$\left(\sum_{n=0}^{\infty} \frac{2^n}{n!}\right) \cdot \left(\sum_{n=0}^{\infty} \frac{1}{2^n n!}\right) = \sum_{n=0}^{\infty} \left(\frac{5}{2}\right)^n \cdot \frac{1}{n!}$$

egyenlőség!

3. Számítsuk ki a

$$\sum_{n=0} \frac{2^n}{n!} \times \sum_{n=0} (-1)^n \frac{2^n}{n!}$$

Cauchy-szorzatot, majd annak összegét!

4. Adjunk becslést a

$$\left| \sum_{k=1}^{\infty} x_k - \sum_{k=1}^{n} x_k \right| \qquad (n \in \mathbb{N})$$

maradékra!

1.
$$x_k := \frac{1}{k(k+1)}$$
 $(k \in \mathbb{N});$ 2. $x_k := \frac{1}{k^2}$ $(k \in \mathbb{N}).$

Útm.

1. Ha $\alpha=2$, akkor a sor nyilvánvalóan konvergens, és az összege 0. Legyen $2\neq\alpha\in\mathbb{R}$ és

$$x_n:=\frac{(\alpha-2)^n}{n}\qquad (n\in\mathbb{N}).$$

Ekkor

$$\lim \left(\left| \frac{x_{n+1}}{x_n} \right| \right) = \lim \left(\left| \frac{(\alpha-2)^{n+1}}{n+1} \cdot \frac{n}{(\alpha-2)^n} \right| \right) = |\alpha-2| \cdot \lim \left(\frac{n}{n+1} \right) = |\alpha-2|.$$

Mindez azt jelenti, hogy a sor

$$|\alpha - 2| < 1$$
 \iff $-1 < \alpha - 2 < 1$ \iff $x \in (1,3)$

esetén konvergens,

$$|\alpha-2|>1 \qquad \Longleftrightarrow \qquad \alpha \in (-\infty,1) \cup (3,+\infty)$$

esetén pedig divergens. Ha $|\alpha-2|=1$, azaz $\alpha\in\{1;3\}$, akkor a következőképpen járunk el:

• $\alpha = 1$ esetén a

$$\sum_{n=1} \left(\frac{(\alpha - 2)^n}{n} \right) = \sum_{n=1} \left(\frac{(-1)^n}{n} \right)$$

sor nem más, mint az alternáló harmonikus sor (vö. 4. **GY**), így a Lebniz-kritérium (vö. 10. **GY**) következtében konvergens;

• x = 3 esetén a

$$\sum_{n=1} \left(\frac{(\alpha - 2)^n}{n} \right) = \sum_{n=1} \left(\frac{1}{n} \right)$$

sor nem más, mint a harmonikus sor (vö. 4. | GY), így divergens.

Következésképpen a kérdéses sor pontosan az $\alpha \in [1,3)$ esetben konvergens.

2. Világos, hogy

$$\begin{split} \left(\sum_{n=0}^{\infty} \frac{2^n}{n!}\right) \cdot \left(\sum_{n=0}^{\infty} \frac{1}{2^n n!}\right) &= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{2^k}{k!} \cdot \frac{1}{2^{n-k}(n-k)!} = \sum_{n=0}^{\infty} \frac{1}{2^n} \sum_{k=0}^{n} \frac{2^{2k}}{k!(n-k)!} = \\ &= \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot \frac{1}{n!} \cdot \sum_{k=0}^{n} \frac{n!}{k! \cdot (n-k)!} \cdot 4^k = \\ &= \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot \frac{1}{n!} \cdot \sum_{k=0}^{n} \binom{n}{k} 4^k = \sum_{n=0}^{\infty} \frac{1}{2^n} \cdot \frac{1}{n!} \cdot (1+4)^n = \\ &= \sum_{n=0}^{\infty} \frac{(5/2)^n}{n!} = \sqrt{e^5}. \end{split}$$

3. A Mertens-tétel következtében elmondható, hogy

$$\begin{split} \left(\sum_{n=0}^{\infty} \frac{2^n}{n!}\right) \cdot \left(\sum_{n=0}^{\infty} (-1)^n \frac{2^n}{n!}\right) &= \sum_{n=0}^{\infty} \frac{2^k}{k!} \cdot \sum_{k=0}^n (-1)^{n-k} \frac{2^{n-k}}{(n-k)!} = \\ &= \sum_{n=0}^{\infty} 2^n \sum_{k=0}^n (-1)^{n-k} \frac{1}{k!(n-k)!} = \\ &= \sum_{n=0}^{\infty} \frac{2^n}{n!} \sum_{k=0}^n (-1)^{n-k} \frac{n!}{k!(n-k)!} = \end{split}$$

$$= \sum_{n=0}^{\infty} \frac{2^n}{n!} \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} = \sum_{n=0}^{\infty} \frac{2^n}{n!} (-1+1)^n = 1.$$

$$4. \quad (a) \ \left| \sum_{k=1}^{\infty} x_k - \sum_{k=1}^{n} x_k \right| = \left| \sum_{k=n+1}^{\infty} x_k \right| = \sum_{k=n+1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=n+1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1} \right) = \frac{1}{n+1};$$

$$(b) \ \left| \sum_{k=1}^{\infty} x_k - \sum_{k=1}^{n} x_k \right| = \left| \sum_{k=n+1}^{\infty} x_k \right| = \sum_{k=n+1}^{\infty} \frac{1}{k^2} < \sum_{k=n+1}^{\infty} \frac{1}{k(k+1)} = \frac{1}{n+1}.$$

9. gyakorlat (2022.04.05.)

Emlékeztető. Legyen

$$x, c \in \mathbb{R}$$
 és $a_n \in \mathbb{R}$ $(n \in \mathbb{N}_0)$.

Α

$$\sum_{n=0} (\alpha_n (x-c)^n)$$

sort a_n **együtthatójú**, c **középpontú hatványsor**nak neveztük. A hatványsor **konvergenciahalmaz**ának neveztük a

$$\mathsf{KH}\left(\sum\left(\mathfrak{a}_{\mathfrak{n}}(\mathsf{x}-\mathsf{c})^{\mathfrak{n}}\right)\right) := \left\{\mathsf{x} \in \mathbb{R}: \ \sum_{\mathfrak{n}=\mathsf{0}}^{\infty} \mathfrak{a}_{\mathfrak{n}}(\mathsf{x}-\mathsf{c})^{\mathfrak{n}} \in \mathbb{R}\right\}$$

számhalmazt.

Megjegyzés. Tekintsük a

$$\sum \left(\alpha_n(x-c)^n\right) \qquad (x\in\mathbb{R})$$

hatványsort, és legyen

$$A:=lim(\sqrt[n]{|a_n|})\in\overline{\mathbb{R}},\qquad ill.\qquad A:=lim\left(\left|\frac{a_{n+1}}{a_n}\right|\right)\in\overline{\mathbb{R}}.$$

Ekkor

$$(c-R,c+R) \subset KH\left(\sum (a_n(x-c)^n)\right) \subset [c-R,c+R],$$

ahol

$$R := \begin{cases} \frac{1}{A} & (A \in (0, +\infty)), \\ 0 & (A = +\infty), \\ +\infty & (A = 0). \end{cases}$$

Példák.

1. Tetszőleges $r \in (0, +\infty)$ esetén a

$$\sum_{n=0} \left(\frac{x^n}{r^n} \right) \qquad (x \in \mathbb{R})$$

hatványsor konvergenciasugara r, konvergenciahalmaza a (-r,r) intervallum.

2. Ha

$$a_n := \frac{(-1)^n}{n!} \left(\frac{n}{e}\right)^n \qquad (n \in \mathbb{N}),$$

akkor

$$\lim \left(\left| \frac{a_n}{a_{n+1}} \right| \right) = \lim \left(e \cdot \left(\frac{n}{n+1} \right)^n \right) = 1,$$

így a

$$\sum \left(\frac{(-1)^n}{n!} \left(\frac{n}{e}\right)^n x^n\right) \qquad (x \in \mathbb{R})$$

hatványsor konvergenciasugara 1.

3. A

$$\sum (n^n \cdot x^n) \qquad (x \in \mathbb{R})$$

hatványsor konvergenciahalmaza:

$$KH\left(\sum (n^n \cdot x^n)\right) = \{0\},\$$

hiszen (mint ahogy fentebb is említettük) x=0 esetén a $\sum (n^n \cdot x^n)$ sor konvergens, ha pedig $0 \neq x \in \mathbb{R}$, akkor

$$\sqrt[n]{|n^n \cdot x^n|} = |x| \cdot n \longrightarrow +\infty \qquad (n \to \infty)$$

következztében a $\sum (n^n \cdot x^n)$ sor divergens.

4. A

$$\sum \left(\frac{1}{n^n} \cdot x^n\right) \qquad (x \in \mathbb{R})$$

hatványsor konvergenciahalmaza:

$$\mathsf{KH}\left(\sum\left(\frac{1}{\mathfrak{n}^{\mathfrak{n}}}\cdot \chi^{\mathfrak{n}}\right)\right)=\mathbb{R},$$

ui. bármely $x \in \mathbb{R}$ esetén

$$\sqrt[n]{\left|\frac{x^n}{n^n}\right|} = \frac{|x|}{n} \longrightarrow 0 \qquad (n \to \infty).$$

5. A

$$\sum \left(\frac{(x-2)^n}{n+\sqrt{n}}\right) \qquad (x \in \mathbb{R})$$

hatványsor konvergenciahalmaza az [1, 3) intervallum (vö. 8. **GY**).

6. A

$$\sum \left(\frac{x^n}{n^2}\right) \qquad (x \in \mathbb{R})$$

hatványsor konvergenciahalmaza a [-1,1] intervallum, hiszen bármely $x \in \mathbb{R}$ esetén

$$\sqrt[n]{\left|\frac{x^n}{n^2}\right|} = \frac{|x|}{\sqrt[n]{n^2}} = \frac{|x|}{(\sqrt[n]{n})^2} \longrightarrow |x| \qquad (n \to \infty),$$

és a sor nyilván konvergens az $x \in \{-1, 1\}$ pontokban | **HF**|.

Feladat. Határozzuk meg az alábbi hatványsorok konvergenciasugarát és konvergenciahalmazát!

1.
$$\sum \left(\left(1+\frac{1}{n}\right)^n \cdot x^n\right) \quad (x \in \mathbb{R});$$

2.
$$\sum \left(\frac{(n!)^2}{(2n)!} \cdot (x+2)^n\right) \quad (x \in \mathbb{R});$$

3.
$$\sum \left(\frac{3^n + (-2)^n}{n} \cdot x^n\right) \quad (x \in \mathbb{R});$$

4.
$$\sum \left(\frac{2^n}{n+3} \cdot (x-3)^n\right) \quad (x \in \mathbb{R});$$

5.
$$\sum_{n=0}^{\infty} \left(\frac{n!}{\alpha^{n^2}} \cdot x^n \right) \quad (\alpha \in (1, +\infty), \ x \in \mathbb{R});$$
 6.
$$\sum_{n=1}^{\infty} \left(\frac{2^{n-1}}{2n-1} \cdot (3x-1)^n \right) \quad (x \in \mathbb{R});$$

6.
$$\sum_{n=1}^{\infty} \left(\frac{2^{n-1}}{2n-1} \cdot (3x-1)^n \right) \quad (x \in \mathbb{R})$$

7.
$$\sum_{n=1}^{\infty} \left(\frac{3^{-n}}{\sqrt{n^3 + n + 1}} \cdot (3x + 1)^n \right) \quad (x \in \mathbb{R}).$$

Útm.

1. Legyen

$$a_n := \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N}).$$

Ekkor

$$\sqrt[n]{|a_n|} = 1 + \frac{1}{n} \longrightarrow 1 \quad (n \to \infty),$$

így a hatványsor konvergenciasugara 1: |x| < 1 esetén konvergens, |x| > 1 esetén divergens. Ha |x| = 1, azaz $x = \pm 1$, akkor

$$\pm \left(1 + \frac{1}{n}\right)^n \longrightarrow \pm e \neq 0 \quad (n \to \infty)$$

következtében $\sum (\pm a_n)$ divergens, így a hatványsor konvergenciahalmaza a (-1,1) intervallum.

2. Legyen

$$a_n := \frac{(n!)^2}{(2n)!}$$
 $(n \in \mathbb{N}).$

Ekkor

$$lim\left(\left|\frac{\alpha_n}{\alpha_{n+1}}\right|\right) \ = \ lim\left(\frac{(n!)^2}{(2n)!} \cdot \frac{(2n+2)!}{((n+1)!)^2}\right) = lim\left(\frac{(2n+1)(2n+2)}{(n+1)^2}\right) = lim\left(\frac{(2n+1)(2n+2)!}{(n+1)^2}\right) = lim\left(\frac{(2n+1)(2n+2)!}{(n+1)!}\right) = lim\left(\frac{(2n+1)(2n+2)!}{(2n+2)!}\right) = lim\left(\frac{(2n+1)(2n+2)!}{(2n+2)!}\right) = lim\left(\frac{(2n+1)(2n+2)!}{(2n+2)!}\right) = lim\left(\frac{(2n+2)!}{(2n+2)!}\right) = lim\left(\frac{(2n+2)!}{(2n+2)!$$

$$= \lim \left(\frac{4n^2 + 6n + 2}{n^2 + 2n + 1} \right) = 4,$$

így a hatványsor konvergenciasugara 4. Mivel

$$|x+2| < 4$$
 \iff $-4 < x + 2 < 4$ \iff $-6 < x < 2$,

ezért a hatványsor $x \in (-6,2)$ esetén konvergens, $x \in \mathbb{R} \setminus [-6,2]$ esetén divergens. Ha $x \in \{-6,2\}$, akkor legyen

$$\xi_{n} := \left| \frac{(n!)^{2}}{(2n)!} \cdot (\pm 4)^{n} \right| \qquad (n \in \mathbb{N}).$$

Ekkor

$$\frac{\xi_{n+1}}{\xi_n} = \frac{4n^2 + 6n + 4}{4n^2 + 6n + 2} > 1,$$

így 0 $\leq \xi_n < \xi_{n+1}$, tehát a $(\xi_n) \notin c_0$ /($\xi_n)$ nem nullsorozat/, következésképpen

$$\mathsf{KH}\left(\sum (\mathfrak{a}_{\mathfrak{n}} \mathsf{x}^{\mathfrak{n}})\right) = (-6, 2).$$

3. Legyen

$$a_n := \frac{3^n + (-2)^n}{n} \qquad (n \in \mathbb{N}).$$

Ekkor

$$\lim \left(\left| \frac{a_{n+1}}{a_n} \right| \right) = \lim \left(\left| \frac{3^{n+1} + (-2)^{n+1}}{n+1} \cdot \frac{n}{3^n + (-2)^n} \right| \right) =$$

$$= \lim \left(\left| \frac{n}{n+1} \cdot \frac{3^{n+1} + (-2)^{n+1}}{3^n + (-2)^n} \right| \right) = \lim \left(\left| \frac{n}{n+1} \cdot \frac{3 - 2\left(\frac{-2}{3}\right)^n}{1 + \left(\frac{-2}{3}\right)^n} \right| \right) = 3.$$

Így a hatványsor konvergenciasugara $\frac{1}{3}$: $|x|<\frac{1}{3}$ esetén konvergens, $|x|>\frac{1}{3}$ esetén pedig divergens.

$$|x| = \frac{1}{3}$$
 \iff $x = \pm \frac{1}{3}$.

Világos, hogy $x=\frac{1}{3}$ esetén a sor minorálható a $\sum_{n=1}^{\infty}\left(\frac{1}{3n}\right)$ divergens sorral, így maga is divergens, $x=-\frac{1}{3}$ esetén a sor a

$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{n} \right) \qquad \text{és a} \qquad \sum_{n=1}^{\infty} \left(\frac{1}{n} \left(\frac{2}{3} \right)^n \right)$$

konvergens sorok összege, így maga is konvergens. Tehát

$$\mathsf{KH}\left(\sum\left(\mathfrak{a}_{\mathfrak{n}}x^{\mathfrak{n}}\right)\right)=\left[-\frac{1}{3},\frac{1}{3}\right).$$

4. Legyen

$$a_n := \frac{2^n}{n+3}$$
 $(n \in \mathbb{N}).$

Ekkor

$$\sqrt[n]{|\mathfrak{a}_n|} = \frac{2}{\sqrt[n]{n+3}} \longrightarrow 2 \qquad (n \to \infty),$$

ui. az $n \to \infty$ határesetben

$$1 \longleftarrow \sqrt[n]{n} \le \sqrt[n]{n+3} \le \sqrt[n]{n+3n} = \sqrt[n]{4} \cdot \sqrt[n]{n} \longrightarrow 1 \cdot 1 = 1.$$

Így a hatványsor konvergensiasugara $\frac{1}{2}$.

$$|x-3| < \frac{1}{2}$$
 \iff $-\frac{1}{2} < x - 3 < \frac{1}{2}$ \iff $\frac{5}{2} < x < \frac{7}{2}$.

Ez azt jelenti, hogy a hatványsor $x \in \left(\frac{5}{2}, \frac{7}{2}\right)$ esetén konvergens, $x \in \mathbb{R} \setminus \left[\frac{5}{2}, \frac{7}{2}\right]$ esetén pedig divergens. Ha

•
$$x = \frac{5}{2}$$
, akkor a
$$\sum \left(\frac{(-1)^n}{n+3}\right)$$

sor a Leibniz-kritérium következtében konvergens;

•
$$x = \frac{7}{2}$$
, akkor a

$$\sum \left(\frac{1}{n+3}\right)$$

sor divergens.

Mindez azt jelenti, hogy

$$\mathsf{KH}\left(\sum\left(\mathfrak{a}_{\mathfrak{n}}(\mathsf{x}-3)^{\mathfrak{n}}\right)\right) = \left\lceil\frac{5}{2},\frac{7}{2}\right).$$

5. Legyen

$$a_n := \frac{n!}{\alpha^{n^2}}$$
 $(n \in \mathbb{N}).$

Ekkor

$$\lim \left(\left| \frac{a_n}{a_{n+1}} \right| \right) = \lim \left(\frac{n!}{\alpha^{n^2}} \cdot \frac{\alpha^{(n+1)^2}}{(n+1)!} \right) = \lim \left(\frac{\alpha^{2n+1}}{n+1} \right) = +\infty,$$

így a hatványsor konvergenciasugara $+\infty$, tehát konvergenciahalmaza \mathbb{R} .

Megjegyezzük, hogy ha

$$u_n:=\frac{n+1}{\alpha^{2n+1}}=\frac{1}{\alpha}\cdot n\left(\frac{1}{\alpha^2}\right)^n+\frac{1}{\alpha^{2n+1}} \qquad (n\in\mathbb{N}),$$

akkor lim $(u_n)=0$, ígya tetszőleges $n\in\mathbb{N}$ index esetén fennálló $u_n>0$ reláció következtében

$$lim\left(\frac{\alpha^{2n+1}}{n+1}\right)=lim\left(\frac{1}{u_n}\right)=+\infty.$$

6. Látható, hogy

$$\sum_{n=1} \left(\frac{2^{n-1}}{2n-1} \cdot (3x-1)^n \right) = \sum_{n=1} \left(\frac{2^{n-1} \cdot 3^n}{2n-1} \cdot \left(x - \frac{1}{3} \right)^n \right).$$

Ha

$$\alpha_n := \frac{2^{n-1} \cdot 3^n}{2n-1} \qquad (n \in \mathbb{N}),$$

akkor

$$\sqrt[n]{|\alpha_n|} = \sqrt[n]{\frac{2^n \cdot 3^n}{4n-2}} = \frac{6}{\sqrt[n]{4n-2}} \longrightarrow 6 \qquad (n \to \infty),$$

ui. az $n \to \infty$ határesetben

$$1 \longleftarrow \sqrt[n]{n} \le \sqrt[n]{4n-2} \le \sqrt[n]{10n} = \sqrt[n]{10} \cdot \sqrt[n]{n} \longrightarrow 1.$$

Így a hatványsor konvergenciasugara: $\frac{1}{6}$. Mivel

$$\left| x - \frac{1}{3} \right| < \frac{1}{6} \iff -\frac{1}{6} < x - \frac{1}{3} < \frac{1}{6} \iff \frac{1}{6} < x < \frac{1}{2},$$

ezért a hatványsor $x \in \left(\frac{1}{6}, \frac{1}{2}\right)$ esetén konvergens, $x \in \mathbb{R} \setminus \left[\frac{1}{6}, \frac{1}{2}\right]$ esetén pedig divergens. Ha $x = \frac{1}{6}$, akkor a

$$\sum_{n=1} \left(\frac{(-1)^n}{4n-2} \right)$$

sor a Leibniz-kritérium következtében konvergens. Ha $x = \frac{1}{2}$, akkor a

$$\sum_{n=1}^{\infty} \left(\frac{2^{n-1}}{2n-1} \left(\frac{1}{2} \right)^n \right) = \sum_{n=1}^{\infty} \left(\frac{1}{4n-2} \right)$$

sor divergens, hiszen

$$\frac{1}{4n-2} \ge \frac{1}{4} \cdot \frac{1}{n}.$$

Tehát

$$KH\left(\sum_{n=1}\left(\frac{2^{n-1}}{2n-1}\cdot(3x-1)^n\right)\right) = \left[\frac{1}{6},\frac{1}{2}\right).$$

7. Látható, hogy

$$\sum_{n=1}^{\infty} \left(\frac{3^{-n}}{\sqrt{n^3+n+1}} \cdot (3x+1)^n \right) = \sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n^3+n+1}} \cdot \left(x+\frac{1}{3}\right)^n \right).$$

Ha

$$a_n := \frac{1}{\sqrt{n^3 + n + 1}}$$
 $(n \in \mathbb{N}),$

akkor az $n \to \infty$ határátmenetben

$$\left|\frac{\alpha_n}{\alpha_{n+1}}\right| \ = \ \frac{\sqrt{(n+1)^3+(n+1)+1}}{\sqrt{n^3+n+1}} = \frac{\sqrt{n^3+3n^2+4n+3}}{\sqrt{n^3+n+1}} =$$

$$= \frac{\sqrt{1 + \frac{3}{n} + \frac{4}{n^2} + \frac{3}{n^3}}}{\sqrt{1 + \frac{1}{n^2} + \frac{1}{n^3}}} \longrightarrow \frac{\sqrt{1}}{\sqrt{1}} = 1.$$

Így a hatványsor konvergenciasugara: 1. Mivel

$$\left| x + \frac{1}{3} \right| < 1 \quad \iff \quad -1 < x + \frac{1}{3} < 1 \quad \iff \quad -\frac{4}{3} < x < \frac{2}{3},$$

ezért a hatványsor $x\in\left(-\frac{4}{3},\frac{2}{3}\right)$ esetén konvergens, $x\in\mathbb{R}\setminus\left[-\frac{4}{3},\frac{2}{3}\right]$ esetén pedig divergens. Ha $x=-\frac{4}{3}$, akkor a

$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{\sqrt{n^3 + n + 1}} \right)$$

sor a Leibniz-kritérium következtében konvergens. Ha $x = \frac{2}{3}$, akkor a

$$\sum_{n=1} \left(\frac{1}{\sqrt{n^3 + n + 1}} \right)$$

sor konvergens, ui. a $\sum_{n=1}^{\infty} \left(\frac{1}{n^{3/2}}\right)$ sor konvergens majoránsa:

$$\frac{1}{\sqrt{n^3 + n + 1}} \le \frac{1}{\sqrt{n^3}} = \frac{1}{n^{3/2}} \qquad (n \in \mathbb{N}).$$

Tehát

$$KH\left(\sum_{n=1}^{\infty} \left(\frac{3^{-n}}{\sqrt{n^3+n+1}} \cdot (3x+1)^n\right)\right) = \left[-\frac{4}{3}, \frac{2}{3}\right]. \quad \blacksquare$$

Emlékeztető. A

$$\sum \left(a_n(x-c)^n\right) \qquad (x \in \mathbb{R})$$

hatványsor összegfüggvényének neveztük az

$$f(x) := \sum_{n=0}^{\infty} a_n (x - c)^n \qquad \left(x \in KH \left(\sum \left(a_n (x - c)^n \right) \right) \right)$$

függvényt.

Példa. Ha a

$$\sum_{n=0} (\alpha_n x^n) \qquad (x \in \mathbb{R})$$

hatványsor konvergenciasugara: R, összegfüggvénye f, akkor

$$\frac{f(x)}{1-x} = \sum_{n=0}^{\infty} (a_0 + ... + a_n) x^n \qquad (x \in \mathbb{R} : |x| < \min\{1, R\}).$$

hiszen bármely $x \in \mathbb{R}$: $|x| < \min\{1, R\}$ esetén

$$\frac{f(x)}{1-x} = f(x) \cdot \frac{1}{1-x} = \left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} x^n\right) =$$

$$=\sum_{n=0}^{\infty}\sum_{k=0}^{n}\alpha_k\cdot \chi^k\cdot \chi^{n-k}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\alpha_k\right)\chi^n=\sum_{n=0}^{\infty}\left(\alpha_0+...+\alpha_n\right)\chi^n.$$

2022.05.14.

Tétel. Tegyük fel, hogy a

$$\sum (\alpha_n(t-c)^n) \quad (t \in \mathbb{R}), \qquad \text{ill.} \qquad \sum (b_n(t-c)^n) \quad (t \in \mathbb{R})$$

hatványsorok konvergenciasugara

$$R_a \in (0, +\infty],$$
 ill. $R_b \in (0, +\infty],$

majd legyen

$$R := \min\{R_a, R_b\},$$

továbbá jelölje f, ill. g az összegfüggvényüket:

$$f(x) := \sum_{n=0}^{\infty} \alpha_n (x-c)^n \qquad (x \in (c-R_\alpha, c+R_\alpha)),$$

ill

$$g(x) := \sum_{n=0}^{\infty} b_n (x - c)^n$$
 $(x \in (c - R_b, c + R_b)).$

Ekkor bármely $\lambda \in \mathbb{R}$ esetén a $\lambda \cdot f$, f+g és az $f \cdot g$ függvények felírhatók az alábbi hatványsorok összegeként:

1.
$$(\lambda \cdot f)(x) = \sum_{n=0}^{\infty} (\lambda \cdot a_n)(x-c)^n$$
 $(x \in (c-R,c+R));$

2.
$$(f+g)(x) = \sum_{n=0}^{\infty} (a_n + b_n)(x-c)^n$$
 $(x \in (c-R, c+R));$

3.
$$(f \cdot g)(x) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) (x-c)^n \quad (x \in (c-R, c+R)).$$

Feladat. Állítsuk elő a következő függvényeket vagy egy alkalmas leszűkítésüket 0-középpontú hatványsorok összegfüggvényeként:

1.
$$f(x) := \frac{1+x}{1-x^2} (x \in \mathbb{R} \setminus \{-1,1\});$$

2.
$$f(x) := \frac{1-x}{1-x^2} (x \in \mathbb{R} \setminus \{-1, 1\});$$

3.
$$f(x) := \frac{1}{1+x^2} (x \in \mathbb{R});$$

4.
$$f(x) := \frac{x}{x^2 - 5x + 6} (x \in \mathbb{R} \setminus \{2, 3\}).$$

Útm.

1. Ha $x \in \mathbb{R}$: |x| < 1, akkor

$$\frac{1+x}{1-x^2} = (1+x) \cdot \frac{1}{1-x^2} = (1+x) \cdot \sum_{n=0}^{\infty} (x^2)^n = \sum_{n=0}^{\infty} x^{2n} + \sum_{n=0}^{\infty} x^{2n+1} = \sum_{n=0}^{\infty} x^n.$$

VAGY:

$$|x| < 1$$
 \Longrightarrow $\frac{1+x}{1-x^2} = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n.$

2. Ha $x \in \mathbb{R}$: |x| < 1, akkor

$$\frac{1-x}{1-x^2} = (1-x) \cdot \frac{1}{1-x^2} = (1-x) \cdot \sum_{n=0}^{\infty} (x^2)^n = \sum_{n=0}^{\infty} x^{2n} - \sum_{n=0}^{\infty} x^{2n+1} = \sum_{n=0}^{\infty} (-1)^n x^n.$$

VAGY:

$$|x| < 1$$
 \Longrightarrow $\frac{1-x}{1-x^2} = \frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n.$

3. Világos, hogy bármely $x \in \mathbb{R}, |x^2| < 1$, azaz $x \in (-1, 1)$ esetén

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n} = \sum_{n=0}^{\infty} a_n (x-0)^n,$$

ahol

$$a_n := \left\{ \begin{array}{ll} (-1)^{n/2} & (n \equiv 0 \ (2)), \\ \\ 0 & (n \equiv 1 \ (2)). \end{array} \right.$$

4. Mivel bármely $x \in \mathbb{R} \setminus \{2, 3\}$ esetén

$$\frac{x}{x^2 - 5x + 6} = \frac{x}{(x - 2)(x - 3)} = \frac{3(x - 2) - 2(x - 3)}{(x - 2)(x - 3)} = \frac{3}{x - 3} - \frac{2}{x - 2} = -\frac{1}{1 - \frac{x}{3}} + \frac{1}{1 - \frac{x}{2}},$$

ezért tetszőleges

$$x \in \mathbb{R}, \quad |x| < \min\{2, 3\} = 2$$

számra

$$\frac{x}{x^2 - 5x + 6} = -\sum_{n=0}^{\infty} \left(\frac{x}{3}\right)^n + \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{2^n} - \frac{1}{3^n}\right) x^n.$$

Megjegyzés. A fenti felbontást természetesen így is csinálhattuk volna:

$$\frac{x}{x^2 - 5x + 6} = \frac{A}{x - 2} + \frac{B}{x - 3} = \frac{A(x - 3) + B(x - 2)}{(x - 2)(x - 3)} = \frac{(A + B)x - 3A - 2B}{x^2 - 5x + 6},$$

ahonnan

$$(A + B = 1, -3A - 2B = 0)$$
 \Longrightarrow $A = -2, B = 3.$

Vegyük észre, hogy sok esetben kevesebb számolással jár (és nehezebb azt eltéveszteni), ha így járunk el: $\alpha, k \in \mathbb{R}, k > 0$:

$$\frac{x}{(x-\alpha)(x-(\alpha+k))} \ = \ \frac{1}{k} \cdot \frac{kx}{(x-\alpha)(x-(\alpha+k))} = \frac{1}{k} \cdot \frac{(\alpha+k)(x-\alpha)-\alpha(x-(\alpha+k))}{(x-\alpha)(x-(\alpha+k))} =$$

$$= \frac{1}{k} \cdot \left\{ \frac{(\alpha+k)}{x - (\alpha+k)} - \frac{\alpha}{x - \alpha} \right\}$$

(fentebb az $\alpha := 2$, ill. k := 1 esettel volt dolgunk).

Feladat. Legyen a

$$\sum_{n=0}^{\infty} (a_n x^n) \qquad (x \in \mathbb{R})$$

hatványsor konvergenciasugara: ρ, összegfüggvénye f. Mutassuk meg, hogy ekkor fennáll a következő egyenlőség!

$$\frac{f(x)}{1-x} = \sum_{n=0}^{\infty} (a_0 + ... + a_n) x^n \qquad (x \in \mathbb{R} : |x| < \min\{1, \rho\}).$$

Útm. Ha $x \in \mathbb{R}$: $|x| < \min\{1, \rho\}$, akkor

$$\frac{f(x)}{1-x} \ = \ f(x) \cdot \frac{1}{1-x} = \left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} x^n\right) =$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k \cdot x^k \cdot x^{n-k} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k \right) x^n = \sum_{n=0}^{\infty} \left(a_0 + ... + a_n \right) x^n. \quad \blacksquare$$

Megjegyzés. Ezek alapján könnyen belátható, hogy ha $x \in \mathbb{R}$: |x| < 1, akkor

$$\frac{\sin(x)}{1-x} = x + x^2 + \frac{5}{6}x^3 + \frac{5}{6}x^4 + \frac{101}{120}x^5 + \dots$$

Feladat. Adjunk meg olyan R > 0 valós számot és (u_n) sorozatot, amelyekkel

$$\frac{2x+4}{(x-3)(3x+1)} = \sum_{n=0}^{\infty} u_n \cdot x^n \qquad (x \in (-R, R))$$

teljesül!

Útm. testzőleges $x \in \mathbb{R} \setminus \{-1/3; 3\}$ esetén

$$\frac{2x+4}{(x-3)(3x+1)} = \frac{(3x+1) - (x-3)}{(x-3)(3x+1)} = \frac{1}{x-3} - \frac{1}{3x+1}$$

és

$$\frac{1}{x-3} = \frac{1}{3\left(1-\frac{x}{3}\right)} = \sum_{n=0}^{\infty} \frac{1}{3} \left(\frac{x}{3}\right)^n = \sum_{n=0}^{\infty} \frac{1}{3^{n+1}} x^n \qquad (x \in (-3,3)),$$

ill.

$$\frac{1}{3x+1} = \frac{1}{1-(-3x)} = \sum_{n=0}^{\infty} (-3x)^n = \sum_{n=0}^{\infty} (-3)^n x^n \qquad \left(|x| < \frac{1}{3}\right).$$

Így bármely

$$x \in (-3,3) \cap \left(-\frac{1}{3}, \frac{1}{3}\right) = \left(-\frac{1}{3}, \frac{1}{3}\right)$$

esetén

$$\frac{2x+4}{(x-3)(3x+1)} = \sum_{n=0}^{\infty} \left(\frac{1}{3^{n+1}} - (-3)^n\right) x^n.$$

Ennélfogva

$$R=\frac{1}{3} \qquad \text{\'es} \qquad u_n=\frac{1}{3^{n+1}}-(-3)^n \quad (n\in\mathbb{N}). \quad \blacksquare$$

Emlékeztető. Tetszőleges $x \in \mathbb{R}$ szám esetén

$$\begin{array}{lll} exp(x) &:=& \displaystyle \sum_{k=0}^{\infty} \frac{x^k}{k!} & (x \in \mathbb{R}), \\ & \sin(x) &:=& \displaystyle \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} & (x \in \mathbb{R}), & \cos(x) &:=& \displaystyle \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} & (x \in \mathbb{R}), \\ & \mathrm{sh}(x) &:=& \displaystyle \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} & (x \in \mathbb{R}), & \mathrm{ch}(x) &:=& \displaystyle \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} & (x \in \mathbb{R}). \end{array}$$

Feladat. Lássuk be, hogy bármely $x, y \in \mathbb{R}$ esetén fennállnak az alábbi egyenlőségek!

1.
$$\exp(x + y) = \exp(x) \exp(y);$$
 2. $\exp(-x) = \frac{1}{\exp(x)};$

$$2. \ \exp(-x) = \frac{1}{\exp(x)};$$

3.
$$\sin(2x) = 2\sin(x)\cos(x)$$
:

3.
$$\sin(2x) = 2\sin(x)\cos(x);$$
 4. $\cos^2(x) = \frac{1 + \cos(2x)}{2};$

5.
$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$
;

6.
$$\cos^2(x) + \sin^2(x) = 1$$
.

7.
$$\cos(2x) = \cos^2(x) - \sin^2(x)$$
.

Útm.

1. Bármely $x, y \in \mathbb{R}$ számra

$$\begin{split} \exp(x) \exp(y) &= \left(\sum_{k=0}^{\infty} \frac{x^k}{k!} \right) \left(\sum_{k=0}^{\infty} \frac{y^k}{k!} \right) = \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{x^l}{l!} \cdot \frac{y^{k-l}}{(k-l)!} = \\ &= \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{l=0}^{k} k! \cdot \frac{x^l}{l!} \cdot \frac{y^{k-l}}{(k-l)!} = \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{l=0}^{k} \binom{k}{l} x^l \cdot y^{k-l} = \\ &= \sum_{l=0}^{\infty} \frac{(x+y)^k}{k!} = \exp(x+y). \end{split}$$

2. Bármely $x \in \mathbb{R}$ számra

$$\exp(x)\exp(-x) = \exp(x + (-x)) = \exp(0) = \sum_{k=0}^{\infty} \frac{0^k}{k!} = 1 + \sum_{k=1}^{\infty} \frac{0^k}{k!} = 1 + 0 = 1.$$

3. Bármely $x \in \mathbb{R}$ számra

$$\begin{split} 2\sin(x)\cos(x) &= 2\left(\sum_{k=0}^{\infty}(-1)^{k}\frac{x^{2k+1}}{(2k+1)!}\right)\left(\sum_{k=0}^{\infty}(-1)^{k}\frac{x^{2k}}{(2k)!}\right) = \\ &= 2\sum_{k=0}^{\infty}\sum_{l=0}^{k}(-1)^{l}\frac{x^{2l+1}}{(2l+1)!}\cdot(-1)^{(k-l)}\frac{x^{2(k-l)}}{(2(k-l))!} = \\ &= 2\sum_{k=0}^{\infty}\frac{1}{(2k+1)!}\sum_{l=0}^{k}(2k+1)!(-1)^{k}\frac{x^{2k+1}}{(2l+1)!\cdot(2k-2l)!} = \\ &= 2\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(2k+1)!}\sum_{l=0}^{k}\binom{2k+1}{2l+1}x^{2k+1} = 2\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(2k+1)!}2^{2k}x^{2k+1} = \\ &= \sum_{k=0}^{\infty}(-1)^{k}\frac{(2x)^{2k+1}}{(2k+1)!} = \sin(2x), \end{split}$$

hiszen

$$\begin{split} \sum_{l=0}^k \binom{2k+1}{2l+1} &= \binom{2k+1}{l} + \sum_{l=1}^{k-1} \left\{ \binom{2k}{2l+1} + \binom{2k}{2l} \right\} + \binom{2k+1}{2k+1} = \\ &= 2k+1 + \sum_{l=2}^{2k-1} \binom{2k}{l} + 1 = \\ &= 2k+2 + \sum_{l=0}^{2k} \binom{2k}{l} - \binom{2k}{2k} - \binom{2k}{1} - \binom{2k}{0} = \\ &= 2k+2 + 2^{2k} - 1 - 2k - 1 = 2^{2k}. \end{split}$$

4. Bármely $x \in \mathbb{R}$ számra

$$\begin{split} \cos^2(x) &= \cos(x)\cos(x) = \left(\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}\right) \left(\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}\right) = \\ &= \sum_{k=0}^{\infty} \sum_{l=0}^{k} (-1)^l \frac{x^{2l}}{(2l)!} (-1)^{k-l} \frac{x^{2(k-l)}}{(2(k-l))!} = \\ &= \sum_{k=0}^{\infty} \frac{1}{(2k)!} \sum_{l=0}^{k} (2k)! (-1)^k \frac{x^{2k}}{(2l)! \cdot (2(k-l))!} = \\ &= \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{k=1}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{k=1}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{k=1}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{k=1}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{k=1}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{k=1}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{k} \binom{2k}{2l} = 1 + \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot \sum_{l=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!$$

$$= \ 1 + \sum_{k=1}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot 2^{2k-1} = 1 + \frac{1}{2} \sum_{k=1}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \cdot 2^{2k} =$$

$$= 1 - \frac{1}{2} + \frac{1}{2} \sum_{k=0}^{\infty} (-1)^k \frac{(2x)^{2k}}{(2k)!} = \frac{1 + \cos(2x)}{2},$$

hiszen

$$\begin{split} \sum_{l=0}^k \binom{2k}{2l} &= \binom{2k}{0} + \sum_{l=1}^{k-1} \binom{2k}{2l} + \binom{2k}{2k} = 1 + \sum_{l=1}^{k-1} \left\{ \binom{2k-1}{2l} + \binom{2k-1}{2l-1} \right\} + 1 = \\ &= 1 + \sum_{l=1}^{2k-2} \binom{2k-1}{l} + 1 = \sum_{l=1}^{2k-1} \binom{2k-1}{l} = 2^{2k-1}. \end{split}$$

5. Bármely $x \in \mathbb{R}$ számra

$$\begin{split} \sin^2(x) &= \sin(x)\sin(x) = \left(\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}\right) \left(\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}\right) = \\ &= \sum_{k=0}^{\infty} \sum_{l=0}^{k} (-1)^l \frac{x^{2l+1}}{(2l+1)!} (-1)^{k-l} \frac{x^{2(k-l)+1}}{(2(k-l)+1)!} = \\ &= \sum_{k=0}^{\infty} \frac{1}{(2k+2)!} \sum_{l=0}^{k} (2k+2)! (-1)^k \frac{x^{2k+2}}{(2l+1)! \cdot (2(k-l)+1)!} = \end{split}$$

$$= \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+2}}{(2k+2)!} \sum_{l=0}^k {2k+2 \choose 2l+1} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+2}}{(2k+2)!} \sum_{l=0}^k {2k+2 \choose 2l+1} =$$

$$= \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+2}}{(2k+2)!} 2^{2k+1} = \frac{1}{2} \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+2}}{(2k+2)!} 2^{2k+2} =$$

$$= \frac{1}{2} \sum_{k=0}^{\infty} (-1)^k \frac{(2x)^{2k+2}}{(2k+2)!} = \frac{1}{2} \sum_{k=1}^{\infty} (-1)^{k-1} \frac{(2x)^{2k}}{(2k)!} = -\frac{1}{2} \sum_{k=1}^{\infty} (-1)^k \frac{(2x)^{2k}}{(2k)!} =$$

$$= -\frac{1}{2} \sum_{k=0}^{\infty} (-1)^k \frac{(2x)^{2k+2}}{(2k)!} + \frac{1}{2} = \frac{1-\cos(2x)}{2},$$

hiszen

$$\begin{split} \sum_{l=0}^k \binom{2k+2}{2l+1} &= \binom{2k+2}{1} + \sum_{l=1}^{k-1} \binom{2k+2}{2l+1} + \binom{2k+2}{2k+1} = \\ &= 2k+2 + \sum_{l=1}^{k-1} \left\{ \binom{2k+1}{2l+1} + \binom{2k+1}{2l} \right\} + 2k+2 = \\ &= 4k+4 + \sum_{l=2}^{2k-1} \binom{2k+1}{l} = 4k+4 + \\ &+ \sum_{l=0}^{2k+1} \binom{2k+1}{l} - \binom{2k+1}{0} - \binom{2k+1}{1} - \binom{2k+1}{2k} - \binom{2k+1}{2k+1} = \\ &= 4k+4+2^{2k+1}-1-(2k+1)-(2k+1)-1 = 2^{2k+1}. \end{split}$$

6. Bármely $x \in \mathbb{R}$ számra

$$\cos^2(x) + \sin^2(x) = \frac{1 + \cos(2x)}{2} + \frac{1 - \cos(2x)}{2} = \frac{2}{2} = 1.$$

7. Bármely $x \in \mathbb{R}$ számra

$$\cos^2(x) - \sin^2(x) = \frac{1 + \cos(2x)}{2} - \frac{1 - \cos(2x)}{2} = \frac{2\cos(2x)}{2} = \cos(2x). \quad \blacksquare$$

Feladat. Írjuk fel az alábbi függvényeket 0 középpontú hatványsor összegeként!

1.
$$f(x) := e^{-x^2/2} \quad (x \in \mathbb{R}).$$

1.
$$f(x) := e^{-x^2/2}$$
 $(x \in \mathbb{R})$, 2. $f(x) := \sin^2(x)$ $(x \in \mathbb{R})$, 3. $f(x) := \cos^2(x)$ $(x \in \mathbb{R})$.

3.
$$f(x) := \cos^2(x) \quad (x \in \mathbb{R}).$$

Útm.

1. Tetszőleges $x \in \mathbb{R}$ esetén

$$f(x) = \sum_{n=0}^{\infty} \frac{\left(-\frac{x^2}{3}\right)^n}{n!} = \sum_{n=0}^{\infty} \frac{1}{(-2)^n n!} \cdot x^{2n}.$$

2. Mivel bármely $x \in \mathbb{R}$ esetén

$$\sin^2(x) = \frac{1 - \cos(2x)}{2},$$

ezért

$$\sin^2(x) = \frac{1}{2} - \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{(2x)^{2n}}{(2n)!} = \frac{1}{2} - \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{4^n x^{2n}}{(2n)!} =$$

$$= \frac{1}{2} + \sum_{n=0}^{\infty} \frac{(-4)^n}{-2} \cdot \frac{x^{2n}}{(2n)!} = \frac{1}{2} + \sum_{n=0}^{\infty} 2 \cdot (-4)^{n-1} \cdot \frac{x^{2n}}{(2n)!} =$$

$$= \frac{1}{2} - \frac{1}{2} + \sum_{n=1}^{\infty} 2 \cdot (-4)^{n-1} \cdot \frac{x^{2n}}{(2n)!} = \sum_{n=1}^{\infty} \frac{2 \cdot (-4)^{n-1}}{(2n)!} \cdot x^{2n}.$$

3. Mivel bármely $x \in \mathbb{R}$ esetén

$$\cos^2(x) = \frac{1 + \cos(2x)}{2},$$

237

ezért

$$\cos^{2}(x) = \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^{n} \frac{(2x)^{2n}}{(2n)!} = \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^{n} \frac{2^{2n} x^{2n}}{(2n)!} =$$

$$= \frac{1}{2} + \sum_{n=0}^{\infty} (-4)^{n} \frac{x^{2n}}{(2n)!} = \frac{1}{2} + \frac{1}{2} + \sum_{n=1}^{\infty} (-4)^{n} \frac{x^{2n}}{(2n)!} =$$

$$= 1 + \sum_{n=1}^{\infty} \frac{(-4)^{n}}{(2n)!} \cdot x^{2n}. \quad \blacksquare$$

Házi feladat. Milyen $x, \alpha_k, \beta_k, \gamma_k \in \mathbb{R}$ esetén igazak az alábbi egyenlőségek?

$$1. \ \frac{1}{2-x} = \sum_{k=0}^{\infty} \alpha_k x^k; \qquad \quad 2. \ \frac{1}{2-x} = \sum_{k=0}^{\infty} \beta_k x^{-k}; \qquad \quad 3. \ \frac{x}{x^2-x-2} = \sum_{k=0}^{\infty} \gamma_k (x-1)^k.$$

Útm.

1. Bármely $x \in \mathbb{K}$: |x| < 2 esetén

$$\frac{1}{2-x} = \frac{1}{2} \cdot \frac{1}{1-\frac{x}{2}} = \frac{1}{2} \cdot \sum_{k=0}^{\infty} \left(\frac{x}{2}\right)^k = \sum_{k=0}^{\infty} \frac{1}{2^{k+1}} x^k.$$

2. Tetszőleges $x \in \mathbb{K}$: |x| > 2 esetén

$$\frac{1}{2-x} = \frac{1}{x} \cdot \frac{-1}{1-\frac{2}{x}} = \frac{-1}{x} \sum_{k=0}^{\infty} \left(\frac{2}{x}\right)^k = \sum_{k=0}^{\infty} -2^k x^{-(k+1)}.$$

3. Ha $x \in \mathbb{K}$: $|x - 1| < \min\{1, 2\} = 1$, akkor

$$\frac{x}{x^2 - x - 2} = \frac{x}{(x+1)(x-2)} = \frac{A}{x-2} + \frac{B}{x+1} =$$

$$= \frac{(A+B)x + A - 2B}{(x+1)(x-2)} = \frac{2}{3} \cdot \frac{1}{x-2} + \frac{1}{3} \cdot \frac{1}{x+1} =$$

$$= \frac{2}{3} \cdot \frac{1}{x-1-1} + \frac{1}{3} \cdot \frac{1}{x-1+2} =$$

$$= \frac{-2}{3} \cdot \frac{1}{1-(x-1)} + \frac{1}{3} \cdot \frac{1}{2-(1-x)} =$$

$$= \frac{-2}{3} \cdot \frac{1}{1-(x-1)} + \frac{1}{6} \cdot \frac{1}{1-\frac{1-x}{2}} =$$

$$= \frac{-2}{3} \cdot \sum_{k=0}^{\infty} (x-1)^k + \frac{1}{6} \sum_{k=0}^{\infty} \left(\frac{1-x}{2}\right)^k =$$

$$= \sum_{k=0}^{\infty} \left(\frac{(-1)^k}{6 \cdot 2^k} - \frac{2}{3}\right) (x-1)^k. \quad \blacksquare$$

10. gyakorlat (2022.04.12.)

Emlékeztető. Legyen $0 < r \in \mathbb{R}$; $\alpha, \omega \in \mathbb{R}$.

1. Az $a \in \mathbb{R}$ pont (r-sugarú) környezetének neveztük a

$$K(\alpha) := K_r(\alpha) := \{x \in \mathbb{R}: \ |x-\alpha| < r\} = (\alpha-r, \alpha+r)$$

intervallumot.

2. A $-\infty$, ill. $+\infty$ környezeteinek neveztük a $(-\infty, \alpha)$, ill. $(\omega, +\infty)$ intervallumokat:

$$\mathsf{K}_\alpha(-\infty) := \mathsf{K}(-\infty) := (-\infty,\alpha), \qquad \text{ill.} \qquad \mathsf{K}_\omega(+\infty) := \mathsf{K}(+\infty) := (\omega,+\infty).$$

Definíció. Legyen $\mathcal{H} \subset \mathbb{R}$. Azt mondjuk, hogy

1. $a \in \mathbb{R}$ a \mathcal{H} halmaz **torlódási pont**ja (jelben: $a \in \mathcal{H}'$), ha minden környezetében van \mathcal{H} -nak a-tól különböző eleme:

$$\forall\, \epsilon>0: \qquad K_\epsilon(\alpha)\backslash\{\alpha\})\cap \mathcal{H}\neq\emptyset.$$

- 2. $a \in \mathcal{H}$ a \mathcal{H} halmaz **izolált pont**ja, ha nem torlódási pontja \mathcal{H} -nak.
- 3. $-\infty$, ill. $+\infty$ a \mathcal{H} halmaz **torlódási pont**ja (jelben: $-\infty \in \mathcal{H}'$, ill. $+\infty \in \mathcal{H}'$), ha bármely $\alpha \in \mathbb{R}$, ill. $\omega \in \mathbb{R}$ esetén

$$\mathcal{H} \cap (-\infty, \alpha) \neq \emptyset$$
, ill. $\mathcal{H} \cap (\omega, +\infty) \neq \emptyset$.

Megjegyzések.

1. Valamely $\mathcal{H} \subset \mathbb{R}$ halmaz, ill. $\mathfrak{a} \in \mathbb{R}$ esetén igaz az

$$a \in \mathcal{H}' \qquad \iff \qquad \forall \, \epsilon > 0 \, \exists \, x \in \mathcal{H} : \quad 0 < |x - a| < \epsilon$$

ekvivalencia.

- 2. Ha $\mathcal{H} \subset \mathbb{R}$, akkor
 - $-\infty$ pontosan abban az esteblen torlódási pontja a \mathcal{H} halmaznak, ha \mathcal{H} alulról nem korlátos:

$$-\infty \in \mathcal{H}' \iff \forall \alpha \in \mathbb{R} \ \exists x \in \mathcal{H} : x < \alpha$$

• $+\infty$ pontosan abban az esteblen torlódási pontja a \mathcal{H} halmaznak, ha \mathcal{H} felülről nem korlátos:

$$+\infty \in \mathcal{H}' \qquad \Longleftrightarrow \qquad \forall \ \omega \in \mathbb{R} \ \exists \ x \in \mathcal{H}: \quad x > \omega.$$

Példák.

1.
$$\left\{\frac{1}{n} \in \mathbb{R}: \ n \in \mathbb{N}\right\}' = \{0\};$$

- 2. (0,1)' = [0,1];
- 3. $\mathcal{H} \subset \mathbb{R}$: \mathcal{H} véges $\Rightarrow \mathcal{H}' = \emptyset$;
- 4. $\mathbb{N}' = \{+\infty\} \text{ és } \mathbb{Z}' = \{-\infty\} \cup \{+\infty\};$
- 5. Ha az $(x_n): \mathbb{N} \to \mathbb{R}$ sorozatra, illetve az $A \in \mathbb{R}$ számra $\lim(x_n) = A$, akkor

$$\{x_n \in \mathbb{R} : n \in \mathbb{N}\}' = \{A\},\$$

ui. minden $\epsilon>0$ számhoz van olyan $N\in\mathbb{N},$ hogy ha $N\leq n\in\mathbb{N},$ akkor

$$|x_n - A| < \varepsilon$$
, azaz $A - \varepsilon < x_n < A + \varepsilon$.

Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $a \in \mathcal{D}'_f$. Azt mondtuk, hogy az f függvénynek az a pontban $A \in \overline{\mathbb{R}}$ a határértéke, jelben:

$$\lim_{\alpha} f = A \qquad \text{vagy} \qquad \lim_{x \to a} f = A \qquad \text{vagy} \qquad f(x) \longrightarrow A \quad (x \to a),$$

ha

$$\forall \, \varepsilon > 0$$
-hoz $\exists \, \delta > 0$, hogy $\forall \, x \in \mathcal{D}_f$ esetén $(x \in \mathsf{K}_\delta(\mathfrak{a}) \setminus \{\mathfrak{a}\} \implies \mathsf{f}(x) \in \mathsf{K}_\varepsilon(\mathsf{A}))$.

Megjegyzések.

- 1. Ez a pontos megfogalmazása annak, hogy "az α -hoz közeli helyeken f(x) az A-hoz van közel".
- 2. Vö. sorozat határértéke: $\mathcal{D}_f = \mathbb{N}, \mathbb{N}' = \{+\infty\}$ és $\lim_{+\infty} f$ ugyanaz, mint a sorozat határértéke.
- Attól függően, hogy α, illetve A valós szám vagy ±∞, ezt a definíciót többféleképpen fogalmazhatjuk meg (vö. A határérték definíciója):

(a) végesben vett véges határérték. Legyen $f \in \mathbb{R} \to \mathbb{R}$, ill. $a \in \mathcal{D}_f' \cap \mathbb{R}$. Ekkor

$$\lim_{\alpha} f = A \in \mathbb{R} \quad :\Longleftrightarrow \quad \forall \, \epsilon > 0 \ \, \exists \, \delta > 0 \quad \forall \, x \in \mathcal{D}_f \colon \ \, (0 < |x - \alpha| < \delta \quad \Rightarrow \quad |f(x) - A| < \epsilon) \, .$$

- (b) végesben vett végtelen határérték:
 - Legyen $f \in \mathbb{R} \to \mathbb{R}$, ill. $a \in \mathcal{D}'_f \cap \mathbb{R}$. Ekkor

$$\lim_{\alpha} f = +\infty \quad :\Longleftrightarrow \quad \forall \, P > 0 \, \, \exists \, \delta > 0 \quad \forall \, \alpha \in \mathcal{D}_f : \quad (0 < |\alpha - \alpha| < \delta \quad \Rightarrow \quad f(\alpha) > P) \, .$$

• Legyen $f \in \mathbb{R} \to \mathbb{R}$, ill. $a \in \mathcal{D}'_f \cap \mathbb{R}$. Ekkor

$$\lim_{\alpha} f = -\infty \quad :\Longleftrightarrow \quad \forall \ N < 0 \ \exists \ \delta > 0 \quad \forall \ x \in \mathcal{D}_f : \quad (0 < |x - \alpha| < \delta \quad \Rightarrow \quad f(x) < N) \ .$$

- (c) végtelenben vett véges határérték.
 - Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $+\infty \in \mathcal{D}_f'$, ill. $A \in \mathbb{R}$. Ekkor

$$\lim_{+\infty} f = A \qquad :\Longleftrightarrow \qquad \forall \, \epsilon > 0 \quad \exists \, \omega > 0 \quad \forall \, x \in \mathcal{D}_f : \quad (x > \omega \quad \Rightarrow \quad |f(x) - A| < \epsilon|) \, .$$

• Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $-\infty \in \mathcal{D}_f'$, ill. $A \in \mathbb{R}$. Ekkor

$$\lim_{n \to \infty} f = A \qquad :\Longleftrightarrow \qquad \forall \, \epsilon > 0 \quad \exists \, \alpha < 0 \quad \forall \, x \in \mathcal{D}_f : \quad (x < \alpha \quad \Rightarrow \quad |f(x) - A| < \epsilon|) \, .$$

- (d) végtelenben vett végtelen határérték.
 - Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $+\infty \in \mathcal{D}'_f$. Ekkor

$$\lim_{+\infty} f = +\infty \qquad :\Longleftrightarrow \qquad \forall \, P > 0 \quad \exists \, \omega > 0 \quad \forall \, x \in \mathcal{D}_f : \quad (x > \omega \quad \Rightarrow \quad f(x) > P) \, .$$

• Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $+\infty \in \mathcal{D}_f'$. Ekkor

$$\lim_{+\infty} f = -\infty \qquad :\Longleftrightarrow \qquad \forall \ N < 0 \quad \exists \ \omega > 0 \quad \forall \ x \in \mathcal{D}_f : \quad (x > \omega \quad \Rightarrow \quad f(x) < N) \ .$$

• Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $-\infty \in \mathcal{D}'_f$. Ekkor

$$\lim_{\longrightarrow} f = +\infty \qquad :\Longleftrightarrow \qquad \forall \, P > 0 \quad \exists \, \alpha < 0 \quad \forall \, x \in \mathcal{D}_f : \quad (x < \alpha \quad \Rightarrow \quad f(x) > P) \, .$$

• Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $-\infty \in \mathcal{D}_f'$. Ekkor

$$\lim_{-\infty} f = -\infty \qquad :\Longleftrightarrow \qquad \forall \ N < 0 \quad \exists \ \alpha < 0 \quad \forall \ x \in \mathcal{D}_f : \quad (x < \alpha \quad \Rightarrow \quad f(x) < N) \ .$$

Feladat. A definíció alapján számítsuk ki a következő határértékeket!

1.
$$\lim_{x \to 0} \frac{1}{1+x}$$

2.
$$\lim_{x \to \pm \infty} \frac{x^2 - 1}{2x^2 + 1}$$

1.
$$\lim_{x \to 0} \frac{1}{1+x}$$
; 2. $\lim_{x \to \pm \infty} \frac{x^2 - 1}{2x^2 + 1}$; 3. $\lim_{x \to 1} \frac{x^4 + 2x^2 - 3}{x^2 - 3x + 2}$; 4. $\lim_{x \to 1} \sqrt{2x + 5}$.

4.
$$\lim_{x \to 1} \sqrt{2x + 5}$$

Útm.

1. Legyen

$$f(x):=\frac{1}{1+x} \qquad (-1\neq x\in \mathbb{R})\,,$$

így 0 $\in \mathcal{D}_{\mathrm{f}}'$. Látható, hogy ha "x közel van 0-hoz, akkor f(x) közel van 1-hez". Így sejthető, hogy

$$\lim_{x \to 0} \frac{1}{1+x} = 1.$$

Bizonyítás. Legyen $\varepsilon > 0$ tetszőleges. Ekkor bármely $x \in \mathcal{D}_f$ számra

$$|f(x) - 1| = \left| \frac{1}{1+x} - 1 \right| = \left| \frac{-x}{1+x} \right| = \frac{1}{|1+x|} \cdot |x - 0|.$$

Ha $|x| < \frac{1}{2}$, akkor $\frac{1}{2} < |1 + x|$, így

$$|f(x)-1|<2|x|<\varepsilon \qquad\Longleftrightarrow \qquad |x-0|<rac{\varepsilon}{2}.$$

Következésképpen a $\delta := \min \left\{ \frac{1}{2}, \frac{\varepsilon}{2} \right\}$ választás megfelelő.

2. Legyen

$$f(x) := \frac{x^2 - 1}{2x^2 + 1}$$
 $(x \in \mathbb{R}),$

így $\pm\infty\in\mathcal{D}_f'$, hiszen \mathcal{D}_f sem alulról, sem pedig felülről nem korlátos. Ha $0\neq x\in\mathbb{R}$, akkor

$$f(x) = \frac{\frac{x^2 - 1}{x^2}}{\frac{2x^2 + 1}{x^2}} = \frac{1 - \frac{1}{x^2}}{2 + \frac{1}{x^2}}, \qquad \text{igy sejthető, hogy} \qquad \lim_{\pm \infty} f = \frac{1}{2}.$$

Bizonyítás. Legyen $\varepsilon>0$ adott. Ekkor tetszőleges $0\neq x\in\mathbb{R}$ számra

$$\left| f(x) - \frac{1}{2} \right| = \left| \frac{x^2 - 1}{2x^2 + 1} - \frac{1}{2} \right| = \frac{|-3|}{4x^2 + 2} = \frac{3}{4x^2 + 2} < \frac{3}{4x^2} < \epsilon \qquad \iff \qquad x^2 > \frac{3}{4\epsilon}.$$

Tehát az

$$\alpha \coloneqq -\sqrt{\frac{3}{4\epsilon}}, \qquad \text{ill.} \qquad \omega \coloneqq \sqrt{\frac{3}{4\epsilon}}$$

választás megfelelő.

3. Legyen

$$f(x) := \frac{x^4 + 2x^2 - 3}{x^2 - 3x + 2} \qquad (x \in \mathbb{R} \setminus \{1; 2\}),$$

így $1 \in \mathcal{D}_{\mathrm{f}}'$. Mivel tetszőleges $x \in \mathcal{D}_{\mathrm{f}}$ számra

$$f(x) = \frac{(x^2 - 1)(x^2 + 3)}{(x - 1)(x - 2)} = \frac{(x - 1)(x + 1)(x^2 + 3)}{(x - 1)(x - 2)} = \frac{(x + 1)(x^2 + 3)}{x - 2} = \frac{x^3 + x^2 + 3x + 3}{x - 2},$$

ezért "ha x közel van 1-hez, akkor f(x) közel van (-8)-hoz". Sejtés: $\lim_{1} f = -8$.

Bizonyítás. Legyen $\epsilon > 0$ adott. Ekkor tetszőleges $x \in \mathcal{D}_f$ esetén

$$|f(x) - (-8)| = \left| \frac{x^3 + x^2 + 3x + 3}{x - 2} + 8 \right| = \left| \frac{x^3 + x^2 + 11x - 13}{x - 2} \right| =$$

$$= \frac{|x^2 + 2x + 13|}{|x - 2|} \cdot |x - 1|.$$

Megjegyzés. A harmadik egyenlőség a Horner-módszer következménye (vö. (vö. Matematikai alapozás, 7-10. oldal)):

Könnyen belátható (**HF**), hogy ha

$$0 < |x - 1| < \frac{1}{2} \quad \Longleftrightarrow \quad -\frac{1}{2} < x - 1 < \frac{1}{2} \quad \Longleftrightarrow \quad \frac{1}{2} < x < \frac{3}{2} \quad \Longleftrightarrow \quad -\frac{3}{2} < x - 2 < -\frac{1}{2},$$

akkor

$$|x-2| = 2-x > \frac{1}{2}$$
 és $|x| < \frac{3}{2}$.

Következésképpen

$$\frac{|x^2+2x+13|}{|x-2|} \leq \frac{|x|^2+2|x|+13}{1/2} < \frac{(3/2)^2+2\cdot(3/2)+13}{\frac{1}{2}} = \frac{47}{2} < 24.$$

Innen már látható, hogy a $\delta := \min\left\{\frac{1}{2}, \frac{\epsilon}{24}\right\}$ választás megfelelő.

4. Legyen

$$f(x) := \sqrt{2x+5} \qquad (-5/2 \le x \in \mathbb{R}),$$

így $2 \in \mathcal{D}_f'$. Látható, hogy "ha x közel van 2-höz, akkor f(x) közel van $\sqrt{9} = 3$ -hoz". Sejtés: $\lim_{1} f = 3$. **Bizonyítás.** Legyen $\varepsilon > 0$ adott. Ekkor tetszőleges $x \in \mathcal{D}_f$ esetén

$$|f(x) - 3| = \left| \sqrt{2x + 5} - 3 \right| \cdot \frac{\sqrt{2x + 5} + 3}{\sqrt{2x + 5} + 3} = \frac{|2x - 4|}{\sqrt{2x + 5} + 3} \le$$

$$\leq \ \frac{2}{3} \cdot |x-2| < \epsilon \quad \Longleftrightarrow \quad |x-2| < \frac{3\epsilon}{2}.$$

Így a $\delta := \frac{3\epsilon}{2}$ választás megfelelő. \blacksquare

Feladat. A definíció alapján lássuk be, hogy

$$\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$$

határérték-reláció!

Útm. Legyen

$$f(x) := \sqrt[n]{x}$$
 $(x \in [0, +\infty))$.

Így $a \in \mathcal{D}_f'$ és két eset van:

• a > 0: legyen $\varepsilon > 0$ adott és $\delta := \min \left\{ a, \varepsilon \sqrt[n]{a^{n-1}} \right\}$. Ekkor minden $0 < |x - a| < \delta$ valós számra

$$\left|f(x)-\sqrt[n]{\alpha}\right|=\left|\sqrt[n]{x}-\sqrt[n]{\alpha}\right|\stackrel{\text{(1)}}{=}\frac{|x-\alpha|}{\sum\limits_{k=1}^{n}\sqrt[n]{x^{n-k}\alpha^{k-1}}}\leq \frac{|x-\alpha|}{\sqrt[n]{a^{n-1}}}<\begin{cases} \left\{\begin{array}{c} \frac{\epsilon\sqrt[n]{\alpha^{n-1}}}{\sqrt[n]{\alpha^{n-1}}}=\epsilon & (\epsilon\sqrt[n]{\alpha^{n-1}}\leq\alpha),\\ \\ \frac{\alpha}{\sqrt[n]{\alpha^{n-1}}}<\epsilon & (\epsilon\sqrt[n]{\alpha^{n-1}}>\alpha), \end{array}\right.$$

tehát $\lim_{\alpha} f = \sqrt[n]{\alpha}$.

• $\alpha = 0$: tegyük fel, hogy $\lim_{\alpha} f \neq \sqrt[n]{\alpha}$. Ekkor van olyan $\epsilon > 0$, hogy minden $\delta > 0$ (így pl. $\delta := \epsilon^n$) esetén $\exists x \in (0, \delta)$: $\sqrt[n]{x} \geq \epsilon$, azaz $\exists x \in (0, \epsilon^n)$: $\sqrt[n]{x} \geq \epsilon$, azaz $x \geq \epsilon^n$, ami nem igaz.

Házi (gyakorló) feladat. A definíció alapján számítsuk ki a következő határértékeket!

1.
$$\lim_{x\to 2} \frac{x^2-5x+6}{x^3-2x^2-x+2}$$
;

2.
$$\lim_{x \to 2} \frac{x^3 + x^2 - 6x}{x^2 - x - 2}$$
;

3.
$$\lim_{x \to -1} \frac{x^3 + 1}{x^2 - 2x - 3}$$
;

4.
$$\lim_{x \to 1} \frac{x^2 + 6x - 7}{x^3 - x^2 + x - 1}$$
;

5.
$$\lim_{x \to +\infty} \frac{x^2 - \sin(x)}{x^2 + \sin(x)};$$

6.
$$\lim_{x \to \pm \infty} \frac{3x^2}{1 + x^2}.$$

1. A nevező gyöktényezős felbontásához a Horner-módszert használva:

	1	-2	-1	2
1	1	-1	-2	0

jól látható, hogy bármely $x \in \mathbb{R}$ esetén

$$x^3 - 2x^2 - x + 2 = (x - 1)(x^2 - x - 2) = (x - 1)(x + 1)(x - 2).$$

Legyen tehát

$$f(x) := \frac{x^2 - 5x + 6}{x^3 - 2x^2 - x + 2} \qquad (x \in \mathbb{R} \setminus \{-1; 1; 2\}),$$

így $2 \in \mathcal{D}_{\mathrm{f}}'$. Mivel bármely $x \in \mathcal{D}_{\mathrm{f}}$ esetén

$$f(x) = \frac{(x-2)(x-3)}{(x-1)(x+1)(x-2)} = \frac{x-3}{(x-1)(x+1)} = \frac{x-3}{x^2-1},$$

ezért látható, hogy ha "x közel van 2-höz, akkor f(x) közel van $\left(-\frac{1}{3}\right)$ -hoz". Így sejthető, hogy

$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^3 - 2x^2 - x + 2} = -\frac{1}{3}.$$

Bizonyítás. Legyen $\epsilon > 0$ tetszőleges. Ekkor bármely $x \in \mathcal{D}_f$ számra

$$\left| f(x) - \left(-\frac{1}{3} \right) \right| = \left| \frac{x-3}{x^2 - 1} + \frac{1}{3} \right| = \left| \frac{x^2 + 3x - 10}{3(x^2 - 1)} \right| = \left| \frac{(x+5)(x-2)}{3(x^2 - 1)} \right| = \frac{|x+5|}{3|x^2 - 1|} \cdot |x-2|.$$

Ha most

$$2 \neq x \in \left(2 - \frac{1}{2}, 2 + \frac{2}{2}\right) = \left(\frac{3}{2}, \frac{5}{2}\right),$$

akkor

$$\frac{13}{2} < |x+5| < \frac{15}{2} \qquad \text{és} \qquad \frac{5}{4} < |x^2 - 1| < \frac{21}{4},$$

így

$$\frac{|x+5|}{3|x^2-1|}\cdot|x-2|<\frac{\frac{15}{2}}{3\cdot\frac{5}{4}}\cdot|x-2|=2\cdot|x-2|<\epsilon\qquad\iff\qquad|x-2|<\frac{\epsilon}{2}.$$

Kővetkezésképpen a $\delta := \min\left\{\frac{1}{2}, \frac{\epsilon}{2}\right\}$ választás megfelelő.

2. Legyen

$$f(x) := \frac{x^3 + x^2 - 6x}{x^2 - x - 2} = \frac{x(x^2 + x - 6)}{x^2 - x - 2} = \frac{x(x - 2)(x + 3)}{(x - 2)(x + 1)} = \frac{x(x + 3)}{x + 1} \qquad (x \in \mathbb{R} \setminus \{-1; 2\}).$$

Látható, hogy ha "x közel van 2-höz, akkor f(x) közel van $\left(\frac{10}{3}\right)$ -hoz". Így sejthető, hogy

$$\lim_{x \to 2} \frac{x^3 + x^2 - 6x}{x^2 - x - 2} = \frac{10}{3}.$$

Bizonyítás. Legyen $\varepsilon > 0$ tetszőleges. Ekkor bármely $x \in \mathcal{D}_f$ számra

$$\left| f(x) - \frac{10}{3} \right| = \left| \frac{x(x+3)}{x+1} - \frac{10}{3} \right| = \left| \frac{3x^2 + 9x - 10x - 10}{3(x+1)} \right| = \left| \frac{3x^2 - x - 10}{3(x+1)} \right| =$$

$$= \left| \frac{(x-2)(3x+5)}{3(x+1)} \right| = \frac{|3x+5|}{3 \cdot |x+1|} \cdot |x-2|.$$

Világos, hogy

$$|x-2| < 1$$
 \iff $-1 < x - 2 < 1$ \iff $1 < x < 3$,

és

•
$$1 < x < 3 \implies 3 < 3x < 9 \implies 8 < 3x + 5 < 14 \implies |3x + 5| < 14$$

•
$$1 < x < 3 \implies 2 < x + 1 < 4 \implies |x + 1| > 2$$
.

Így tetszőleges $x \in \mathcal{D}_f$, |x-2| < 1 esetén

$$\frac{|3x+5|}{3\cdot|x+1|}\cdot|x-2|<\frac{14}{3\cdot2}\cdot|x-2|<\epsilon\quad\iff\quad |x-2|<\frac{6\epsilon}{14},$$

azaz

$$\delta := \min\left\{1, \frac{6\epsilon}{14}\right\}$$

megfelelő választás.

3. Legyen

$$f(x) := \frac{x^3 + 1}{x^2 - 2x - 3} = \frac{(x+1) \cdot (x^2 - x + 1)}{(x+1) \cdot (x-3)} = \frac{x^2 - x + 1}{x - 3} \qquad (x \in \mathbb{R} \setminus \{-1, 3\}).$$

Ekkor $-1 \in \mathcal{D}'_f$, és sejthető, hogy

$$\lim_{x \to -1} \frac{x^3 + 1}{x^2 - 2x - 3} = \frac{3}{-4} =: A.$$

Azt kell tehát megmutatni, hogy

$$\forall\, \epsilon>0 \; \exists\, \delta>0 \; \forall\, x\in \mathcal{D}_f: \quad \left(0<|x+1|<\delta \quad \Longrightarrow \quad \left|\frac{x^2-x+1}{x-3}-A\right|<\epsilon\right).$$

Világos, hogy bármely $x \in \mathbb{R} \setminus \{-1, 3\}$ esetén

$$\left| \frac{x^2 - x + 1}{x - 3} - A \right| = \left| \frac{4x^2 - 4x + 4 + 3x - 9}{4(x - 3)} \right| = \frac{|4x^2 - x - 5|}{4|x - 3|} = \frac{|(x + 1)(4x - 5)|}{4|x - 3|} = \frac{|4x - 5|}{4|x - 3|} \cdot |x + 1|.$$

Ha most $-1 \neq x \in (-1 - 1, -1 + 1) = (-2, 0)$, akkor

$$5 < |4x - 5| < 13$$
, ill. $3 < |x - 3| < 5$.

Ez azt jelenti, hogy bármely $x \in \mathbb{R}$: 0 < |x+1| < 1 esetén

$$\left| \frac{x^2 - x + 1}{x - 3} - A \right| < \frac{13}{4 \cdot 3} \cdot |x + 1|.$$

Ekkor valamely $\varepsilon > 0$ esetén

$$\frac{13}{12} \cdot |x+1| < \varepsilon \qquad \iff \qquad |x+1| < \frac{12\varepsilon}{13}.$$

Így tehát tetszőleges $\epsilon>0$ szám esetén van olyan $\delta:=\min\left\{1,\frac{12\epsilon}{13}\right\}>0$ szám, hogy bármely $x\in\mathbb{R}\setminus\{-1;3\}$ elemre

$$0<|x+1|<\delta \qquad \Longrightarrow \qquad \left|\frac{x^3+1}{x^2-2x-3}-A\right|<\frac{13}{12}\cdot|x+1|<\varepsilon.$$

4. Legyen

$$f(x) := \frac{x^2 + 6x - 7}{x^3 - x^2 + x - 1} = \frac{(x - 1)(x + 7)}{(x - 1)(x^2 + 1)} = \frac{x + 7}{x^2 + 1} \qquad (1 \neq x \in \mathbb{R}).$$

Ekkor $1 \in \mathcal{D}'_f$, és sejthető, hogy

$$\lim_{x \to 1} \frac{x^2 + 6x - 7}{x^3 - x^2 + x - 1} = \frac{8}{2} = 4 =: A.$$

Azt kell tehát megmutatni, hogy

$$\forall\, \epsilon>0 \; \exists\, \delta>0 \; \forall\, x\in \mathcal{D}_f: \quad \left(0<|x-1|<\delta \quad \Longrightarrow \quad \left|\frac{x+7}{x^2+1}-A\right|<\epsilon\right).$$

Világos, hogy bármely $1 \neq x \in \mathbb{R}$ esetén

$$\left| \frac{x+7}{x^2+1} - A \right| = \left| \frac{4x^2 - x - 3}{x^2+1} \right| = \frac{|(x-1)(4x+3)|}{x^2+1} = \frac{|4x+3|}{x^2+1} \cdot |x+1|.$$

Ha most $1 \neq x \in (1 - 1, 1 + 1) = (0, 2)$, akkor

$$\frac{|4x+3|}{x^2+1} = \frac{4x+3}{x^2+1} < \frac{4\cdot 2+3}{1} = 11.$$

Ez azt jelenti, hogy bármely $x \in \mathbb{R}$: 0 < |x - 1| < 1 esetén

$$\left|\frac{x+7}{x^2+1}-A\right|<11\cdot|x-1|.$$

Ekkor valamely $\varepsilon > 0$ esetén

$$|x-1| < \epsilon \qquad \iff \qquad |x-1| < \frac{\epsilon}{11}.$$

Így tehát tetszőleges $\varepsilon>0$ szám esetén van olyan $\delta:=\min\left\{1,\frac{\varepsilon}{11}\right\}>0$ szám, hogy bármely $1\neq x\in\mathbb{R}$ elemre

$$0<|x-1|<\delta\qquad\Longrightarrow\qquad \left|\frac{x^3+1}{x^2-2x-3}-A\right|<11\cdot|x-1|<\varepsilon.$$

5. Legyen

$$f(x) := \frac{x^2 - \sin(x)}{x^2 + \sin(x)} \qquad (1 < x \in \mathbb{R}).$$

Ekkor \mathcal{D}_f felülről nem korlátos, így $+\infty \in \mathcal{D}_f'$. Látható, hogy ha "x elég nagy", akkor $f(x) \approx 1$, innen sejthető, hogy $\lim_{+\infty} f = 1$.

Bizonyítás. Legyen $\varepsilon > 0$. Ekkor bármely $x \in \mathcal{D}_f = (1+, \infty)$ esetén $x^2 + \sin(x) > 0$ és így

$$|f(x) - 1| = \left| \frac{x^2 - \sin(x)}{x^2 + \sin(x)} - 1 \right| = \left| \frac{-2\sin(x)}{x^2 + \sin(x)} \right| = \frac{2 \cdot |\sin(x)|}{x^2 + \sin(x)} \le \frac{2}{x^2 - 1},$$

ill.

$$\frac{2}{x^2-1}<\epsilon\qquad\Longleftrightarrow\qquad x>\sqrt{\frac{2+\epsilon}{\epsilon}}.$$

Így az $\omega := \sqrt{\frac{2+\epsilon}{\epsilon}}$ választás megfelelő.

6. Legyen

$$f(x) := \frac{3x^2}{1+x^2} \qquad (x \in \mathbb{R}),$$

így $\pm\infty\in\mathcal{D}_{\mathsf{f}}'.$ Sejtés: $\lim_{\pm\infty}\mathsf{f}=3.$ Legyen $\epsilon>0$ adott és

$$\alpha := -\sqrt{\frac{3}{\epsilon}}, \qquad ill. \qquad \omega := \sqrt{\frac{3}{\epsilon}}.$$

Ekkor minden $x > \omega$ ill. $x < \alpha$ valós számra

$$|f(x)-3| = \frac{|-3|}{1+x^2} = \frac{3}{1+x^2} < \frac{3}{x^2} < \varepsilon.$$

Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$, ill. tegyük fel, hogy valamely $\alpha \in \mathbb{R}$ esetén $\alpha \in (\mathcal{D}_f \cap (-\infty, \alpha))'$, azaz minden $\delta > 0$ esetén az $(\alpha - \delta, \alpha)$ intervallum végtelen sok pontjában f értelmezve van). Azt mondjuk, hogy az f függvénynek az α pontban van baloldali határértéke, jelben

$$\exists \lim_{\alpha \to 0} f, \qquad \exists \lim_{x \to \alpha = 0} f(x), \qquad \exists f(\alpha = 0)$$

ha a

$$g(x) := f(x)$$
 $(x \in (\alpha - \delta, \alpha))$

függvénynek van α-ban határértéke, azaz

$$\exists \, A \in \overline{\mathbb{R}} \, \forall \, \, \epsilon > 0 \, \, \exists \delta > 0 \, \, \forall \, x \in \mathcal{D}_f \, \colon \qquad (\alpha - \delta < x < \alpha \quad \Longrightarrow \quad f(x) \in K_\epsilon(A)) \, .$$

Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$, ill. tegyük fel, hogy valamely $\alpha \in \mathbb{R}$ esetén $\alpha \in (\mathcal{D}_f \cap (\alpha, +\infty))'$, azaz minden $\delta > 0$ esetén az $(\alpha, \alpha + \delta)$ intervallum végtelen sok pontjában f értelmezve van). Azt mondjuk, hogy az f függvénynek az α pontban van jobboldali határértéke, jelben

$$\exists \lim_{\alpha \to 0} f, \qquad \exists \lim_{x \to \alpha + 0} f(x), \qquad \exists f(\alpha + 0)$$

ha a

$$g(x) := f(x)$$
 $(x \in (\alpha, \alpha + \delta))$

függvénynek van α-ban határértéke, azaz

$$\exists \, A \in \overline{\mathbb{R}} \, \, \forall \, \, \epsilon > 0 \, \, \exists \delta > 0 \, \, \forall \, x \in \mathcal{D}_f \, : \qquad (\alpha < x < \alpha + \delta \quad \Longrightarrow \quad f(x) \in K_\epsilon(A)) \, .$$

Példák.

- 1. $\lim_{0 \pm 0} sgn = \pm 1$.
- 2. Ha

$$f(x) := [x] \qquad (x \in \mathbb{R}),$$

akkor minden $\mathfrak{m} \in \mathbb{Z}$ esetén

$$\lim_{m-0} f = m-1 \qquad \text{és} \qquad \lim_{m+0} f = m.$$

3. Ha

$$f(x) := \{x\} := x - [x] \qquad (x \in \mathbb{R}),$$

akkor minden $\mathfrak{m} \in \mathbb{Z}$ esetén

$$\lim_{m \to 0} f = 1 \qquad \text{\'es} \qquad \lim_{m \to 0} f = 0.$$

4. Ha

$$f(x) := \frac{1}{x} \qquad (0 \neq x \in \mathbb{R}),$$

akkor

$$\lim_{0\to 0} f = -\infty \qquad \text{ és } \qquad \lim_{0\to 0} f = +\infty.$$

Tétel. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}'_f$. Ekkor

$$\exists \lim_{\alpha} f \iff \left(\exists \lim_{\alpha \neq 0} f \text{ és } \lim_{\alpha = 0} f = \lim_{\alpha \neq 0} f \right)$$

Tétel (átviteli elv). Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}'_f$ és $A \in \overline{\mathbb{R}}$. Ekkor igaz a

$$\lim_{\alpha} f = A \qquad \Longleftrightarrow \qquad \forall \, (x_n) : \mathbb{N} \to \mathcal{D}_f \backslash \{\alpha\}, \quad \lim_{n \to \infty} (x_n) = \alpha \qquad \text{eset\'en} \qquad \lim_{n \to \infty} (f(x_n)) = A.$$

ekvivalencia.

Feladat. Mutassuk meg, hogy nem léteznek az $\lim_{t\to\infty} f$ határértékek, ahol $f\in\mathbb{R}\to\mathbb{R}$ nem állandó, periodikus függvény!

Útm. Ha f nem állandó függvény, akkor van olyan $a, b \in \mathcal{D}_f$, hogy $f(a) \neq f(b)$. Ha f még periodikus is, akkor van olyan $p \in (0, +\infty)$, hogy minden $n \in \mathbb{N}$ esetén $a \pm np$, $b \pm np \in \mathcal{D}_f$, továbbá

$$f(a \pm np) = f(a), \quad f(b \pm np) = f(b) \qquad (n \in \mathbb{N}).$$

Legyen

$$x_n := a \pm np$$
, $y_n := b \pm np$ $(n \in \mathbb{N})$.

Ekkor

$$\lim(x_n) = \lim(y_n) = \pm \infty$$
, de $\lim(f(x_n)) = f(a) \neq f(b) = \lim(f(y_n))$.

Házi (gyakorló) feladat. Mutassuk meg, hogy nem léteznek az alábbi határértékek!

(a)
$$\lim_{x\to 0} \operatorname{sgn}(x)$$
;

(b)
$$\lim_{x\to 2} \frac{5}{2-x}$$
;

(b)
$$\lim_{x\to 2} \frac{5}{2-x}$$
; (c) $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$.

Útm.

1. Legyen

$$x_n:=-\frac{1}{n},\quad y_n:=\frac{1}{n}\qquad (n\in\mathbb{N}).$$

Ekkor

$$\lim(x_n) = \lim(y_n) = 0, \qquad \text{de} \qquad \lim(f(x_n)) = -1 \neq 1 = \lim(f(y_n)).$$

2. Legyen

$$x_n:=1+\frac{n}{n+1},\quad y_n:=2+\frac{1}{n}\qquad (n\in\mathbb{N}).$$

Ekkor

$$\lim(x_n) = \lim(y_n) = 2$$
, de $\lim(f(x_n)) = +\infty \neq -\infty = \lim(f(y_n))$.

3. Legyen

$$x_n := \frac{1}{n\pi}, \quad y_n := \frac{1}{2n\pi + \frac{\pi}{2}} \qquad (n \in \mathbb{N}).$$

Ekkor

$$\lim(x_n) = \lim(y_n) = 0,$$
 de $\lim(f(x_n)) = 0 \neq 1 = \lim(f(y_n)).$

Tétel. (Sandwich-tétel). Legyen $f,g,h\in\mathbb{R}\to\mathbb{R},\ \alpha\in(\mathcal{D}_f\cap\mathcal{D}_g\cap\mathcal{D}_h)'$ és tegyük fel, hogy van olyan r>0, hogy

$$f(x) \leq g(x) \leq h(x) \quad \ (x \in K_r(\mathfrak{a}) \cap (\mathcal{D}_f \cap \mathcal{D}_g \cap \mathcal{D}_h)) \ ,$$

továbbá

$$\exists \lim_{\alpha} f \quad \exists \lim_{\alpha} h \qquad \text{\'es} \qquad \lim_{\alpha} f = \lim_{\alpha} h =: A.$$

Ekkor

$$\exists \lim_{\alpha} g$$
 és $\lim_{\alpha} g = A$.

Példa. Megmutatjuk, hogy az

$$[x] := \max \{ m \in \mathbb{Z} : m \le x \}$$
 $(x \in \mathbb{R})$

egészrész-függvényre

$$\lim_{x \to 0} x \left\lceil \frac{1}{x} \right\rceil = 1$$

teljesül. Mivel tetszőleges $x \in \mathbb{R}$ esetén $x - 1 < [x] \le x$, ezért minden $0 \ne x \in \mathbb{R}$ esetén

$$\frac{1}{x} - 1 < \left[\frac{1}{x}\right] \le \frac{1}{x}.$$

Ha

• $x \in (-\infty, 0)$, akkor

$$1-x=x\left(\frac{1}{x}-1\right)>x\cdot\left\lceil\frac{1}{x}\right\rceil\geq x\cdot\frac{1}{x}=1.$$

⁹Pál Jenő megoldása.

A Sandwich-tétel értelmében létezik a bal oldali haártérték, és

$$\lim_{x\to 0-0} x\left[\frac{1}{x}\right] = 1.$$

• $x \in (0, +\infty)$, akkor

$$1-x=x\left(\frac{1}{x}-1\right)< x\cdot \left[\frac{1}{x}\right] \leq x\cdot \frac{1}{x}=1.$$

A Sandwich-tétel értelmében létezik a jobb oldali határérték, és

$$\lim_{x\to 0+0} x \begin{bmatrix} 1\\ \overline{x} \end{bmatrix} = 1. \quad \blacksquare$$

Mindez azt jelenti, hogy létezik 0-ban a határérték, és

$$\lim_{x\to 0} x \left[\frac{1}{x}\right] = 1.$$

Tétel. Legyen $f, g \in \mathbb{R} \to \mathbb{R}$, $a \in (\mathcal{D}_f \cap \mathcal{D}_g)'$ és tegyük fel, hogy

$$\exists \lim_{\alpha} f =: A \in \overline{\mathbb{R}}, \qquad \exists \lim_{\alpha} g =: B \in \overline{\mathbb{R}}.$$

Ekkor

- 1. $\exists \lim_{\alpha} (f+g)$ és $\lim_{\alpha} (f+g) = A+B$, ha A+B értelmezve van;
- 2. $\exists \lim_{g} (fg) \text{ és } \lim_{g} (fg) = AB, \text{ ha } AB \text{ értelmezve van;}$
- 3. $\exists \lim_{a} \left(\frac{f}{g}\right) \text{ és } \lim_{a} \left(\frac{f}{g}\right) = \frac{A}{B}$, ha $\frac{A}{B}$ értelmezve van.

Megjegyzés. Kritikus határertekek vizsgálata. Függvények határértékének a meghatározásánál "szerencsés esetekben" alkalmazhatjuk a határérték és a műveletek kapcsolatára fentebb megfogalmazott állításokat. Ezek az eredmenyek akkor használhatók, ha a tetelben szereplő $\overline{\mathbb{R}}$ -beli

$$A \pm B;$$
 $AB;$ $\frac{A}{B}$

műveletek értelmezve vannak. Ha valamelyik művelet nincs ertelmezve, akkor a megfelelő függvenyek

határértékéről általában semmit sem mondhatunk. Ezeket a kritikus határertekeket röviden a

$$(+/-\infty)+/-(+/-\infty), \qquad 0\cdot (\pm \infty), \qquad \frac{\pm \infty}{\pm \infty}, \qquad \frac{0}{0}, \qquad \frac{1}{0}$$

szimbólumokkal szoktuk jelölni. Ilyen esetekben a sorozatoknál már megismert "módszert" követhetjük: a kritikus határértéket "valamilyen módon" (alkalmas azonosságok felhasználásával) megpróbáljuk nem kritikus határértékre átalakítani.

Feladat. Legyen $n \in \mathbb{N}_0$, $a_0, \ldots, a_n \in \mathbb{R}$: $a_n \neq 0$. Mutassuk meg, hogy a

$$p(x) := a_0 + a_1 x + \ldots + a_n x^n \qquad (x \in \mathbb{R})$$

polinom határértékéről a következők állíthatók!

- 1. bármely $\alpha \in \mathbb{R}$ esetén $\lim_{\alpha} p = p(\alpha)$;
- 2. $\lim_{+\infty} p = sgn(a_n)(+\infty);$
- 3. $\lim_{n \to \infty} p = (-1)^n \operatorname{sgn}(a_n)(+\infty)$.

Útm.

1. Mivel bármely $\alpha \in \mathbb{R}$, ill. $n \in \mathbb{N}_0$ esetén $\lim_{x \to \alpha} x^n = \alpha^n$, ezért a határérték és a műveletek kapcsolatára vonatkozó tétel következményeként

$$\lim_{\alpha} p = \lim_{x \to \alpha} (a_0 + a_1 x + \ldots + a_n x^n) = a_0 + a_1 \alpha + \ldots + a_n \alpha^n = p(\alpha).$$

2. Mivel bármely $0 \neq x \in \mathbb{R}$ esetén

$$p(x) = x^n \left(\frac{\alpha_0}{x^n} + \frac{\alpha_1}{x^{n-1}} + \ldots + \alpha_n \right),$$

továbbá

$$\lim_{x\to +\infty} x^n = +\infty \quad (n\in\mathbb{N}) \qquad \text{\'es} \qquad \lim_{x\to +\infty} \frac{1}{x^k} = 0 \quad (k\in\mathbb{N}),$$

ezért az állítás a határéerték és a műveletek kapcsolatára vonatkozó tétel alapján nyilvánvaló.

3. Az előbbihez hasonlóan igazolható. ■

255 2022.05.14.

Megjegyzések.

1. A fenti feladatban az utolsó két állítás azat jelenti, hogy polinomok "viselkedését" a \pm végtelen környezetében a polinom a_n főegyütthatója és n fokszámának paritása határozza meg, azaz polinom határértéke a \pm végtelenben megegyezik az $a_n x^n$ főtag \pm végtelenben vett határértékével.

2. Világos, hogy

$$\lim_{-\infty} p \ = \ \lim_{x \to +\infty} p(-x) = \lim_{x \to +\infty} \sum_{k=0}^n \alpha_k (-x)^k =$$

$$= \lim_{x \to +\infty} \sum_{k=0}^n (-1)^k \alpha_k x^k = \text{sgn}((-1)^n \alpha_n)(+\infty) = (-1)^n \, \text{sgn}(\alpha_n)(+\infty).$$

Példák.

1.
$$\lim_{x \to +\infty} (-3x^2 + 2x + 7) = -\infty$$

1.
$$\lim_{x \to +\infty} (-3x^2 + 2x + 7) = -\infty$$
 2. $\lim_{x \to -\infty} (x^3 - x + 2) = -\infty$

Feladat. Legyen $m, n \in \mathbb{N}_0, a_0, \ldots, a_m, b_0, \ldots, b_n \in \mathbb{R}$: $a_m b_n \neq 0$ és

$$\mathcal{H} := \{ \xi \in \mathbb{R} : \ b_0 + b_1 \xi + \ldots + b_n \xi^n = 0 \}.$$

Mutassuk meg, hogy az

$$r(x) := \frac{a_0 + a_1 x + \ldots + a_m x^m}{b_0 + b_1 x + \ldots + b_n x^n} \qquad (x \in \mathbb{R} \backslash \mathcal{H})$$

racionális függvény esetében ha $\alpha \in \mathbb{R} \setminus H$, akkor

$$\lim_{\alpha} r = r(\alpha),$$

továbbá

$$\lim_{+\infty} r = \left\{ \begin{array}{ll} 0 & (m < n), \\ \frac{a_m}{b_n} = \frac{a_m}{b_m} & (m = n), \quad \text{\'es} \quad \lim_{-\infty} r = \left\{ \begin{array}{ll} 0 & (m < n) \\ \frac{a_m}{b_n} = \frac{a_m}{b_m} & (m = n), \\ sgn\left(\frac{a_m}{b_n}\right)(+\infty) & (m > n), \end{array} \right. \\ \left. \begin{array}{ll} sgn\left(\frac{a_m}{b_n}\right)(-1)^{m-n}(+\infty) & (m > n). \end{array} \right.$$

Útm. Mivel tetszőleges $0 \neq x \in \mathbb{R} \setminus \mathcal{H}$ esetén

$$r(x)=x^{m-n}\cdot\frac{\frac{a_0}{x^m}+\frac{a_1}{x^{m-1}}+\ldots+a_m}{\frac{b_0}{x^n}+\frac{b_1}{x^{n-1}}+\ldots+b_n},$$

ezért $\alpha \in \mathbb{R} \setminus \mathcal{H}$ esetén a a határérték és a műveletek kapcsolatára vonatkozó tétel alapján

$$\lim_{\alpha} r = \lim_{x \to \alpha} \frac{a_0 + a_1 x + \ldots + a_m x^m}{b_0 + b_1 x + \ldots + b_n x^n} = \frac{a_0 + a_1 \alpha + \ldots + a_m \alpha^m}{b_0 + b_1 \alpha + \ldots + b_n \alpha^n} = r(\alpha).$$

Igaz továbbá, hogy

$$\lim_{x\to\pm\infty}\frac{\frac{a_0}{x^m}+\frac{a_1}{x^{m-1}}+\ldots+a_m}{\frac{b_0}{x^n}+\frac{b_1}{x^{n-1}}+\ldots+b_n}=\frac{a_m}{b_n},$$

ill.

$$\lim_{x \to +\infty} x^{m-n} = \begin{cases} 0 & (m < n), \\ 1 & (m = n), \\ +\infty & (m > n), \end{cases}$$

és

$$\lim_{x\to -\infty} x^{m-n} = \left\{ \begin{array}{ll} 0 & (m< n) \\ \\ 1 & (m=n), \\ \\ (-1)^{m-n}(+\infty) & (m>n), \end{array} \right.$$

ezért az állítás nyilvánvaló. ■

Példák. A fentiek alapján világos, hogy

1)
$$\lim_{x \to +\infty} \frac{x^2 - 3x + 2}{x^2 - 5x + 6} = 1;$$

2)
$$\lim_{x \to +\infty} \frac{x^2 - 3x + 2}{x^3 - 7x^2 + 5x - 1} = 0;$$

3)
$$\lim_{x \to +\infty} \frac{2x^3 + 3x^2 + 23}{-3x^3 - 5x^2 + 31x + 1} = -\frac{2}{3};$$
 4)
$$\lim_{x \to +\infty} \frac{x^3 + 2x^2 + 11x + 2}{x^2 + 3x + 2} = +\infty.$$

4)
$$\lim_{x \to +\infty} \frac{x^3 + 2x^2 + 11x + 2}{x^2 + 3x + 2} = +\infty.$$

Feladat. Számítsuk ki az alábbi határértékeket, ha léteznek!

1.
$$\lim_{x \to 1} \frac{x^3 - x + 1}{x^2 + x - 2}$$

1.
$$\lim_{x \to 1} \frac{x^3 - x + 1}{x^2 + x - 2}$$
; 2. $\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 7x + 10}$; 3. $\lim_{x \to 1} \frac{x^m - 1}{x^n - 1}$.

3.
$$\lim_{x\to 1} \frac{x^m-1}{x^n-1}$$
.

Útm.

1. Legyen

$$f(x) := \frac{x^3 - x + 1}{x^2 + x - 2}$$
 $(x \in \mathbb{R} \setminus \{-2; 1\}).$

Mivel minden $x \in \mathcal{D}_f$ esetén

$$\frac{x^3 - x + 1}{x^2 + x - 2} = \frac{x^3 - x + 1}{(x - 1)(x + 2)},$$

ezért $\lim_{t\to 0} f = \pm \infty$ következtében $\nexists \lim_{t\to 0} f$.

2. Legyen

$$f(x) := \frac{x^2 - 5x + 6}{x^2 - 7x + 10} \qquad (x \in \mathbb{R} \setminus \{2; 5\}).$$

Mivel minden $x \in \mathcal{D}_f$ esetén

$$\frac{x^2 - 5x + 6}{x^2 - 7x + 10} = \frac{(x - 2)(x - 3)}{(x - 2)(x - 5)} = \frac{x - 3}{x - 5},$$

ezért $\lim_{n} f = \frac{1}{3}$.

3. Legyen

$$f(x) := \frac{x^m - 1}{x^n - 1} \qquad (1 \neq x \in \mathbb{R}).$$

Mivel minden $x \in \mathcal{D}_f$ esetén

$$\frac{x^m-1}{x^n-1} = \frac{(x-1)(x^{m-1}+x^{m-2}+\ldots+x+1)}{(x-1)(x^{n-1}+x^{n-2}+\ldots+x+1)} = \frac{x^{m-1}+x^{m-2}+\ldots+x+1}{x^{n-1}+x^{n-2}+\ldots+x+1},$$

ezért $\lim_{1} f = \frac{m}{n}$.

Feladat. Legyen $2 \le n \in \mathbb{N}$. A gyöktelenítés technikájával határozzuk meg az alábbi határértékeket!

1.
$$\lim_{x \to -\infty} \left(\sqrt{x^2 - x + 1} - \sqrt{x^2 - 1} \right);$$
 2. $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x^2}}{\sqrt{1 + x} - 1};$ 3. $\lim_{x \to 0} \frac{\sqrt[n]{1 + x} - 1}{x}.$

2.
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x^2}}{\sqrt{1+x}-1}$$
;

3.
$$\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{x}$$
.

Útm.

1. Legyen

$$f(x) := \sqrt{x^2 - x + 1} - \sqrt{x^2 - 1} \qquad (x \in \mathbb{R}: \ |x| \ge 1).$$

Mivel minden $x \in (-\infty, -1)$ esetén

$$f(x) = \left(\sqrt{x^2 - x + 1} - \sqrt{x^2 - 1}\right) \cdot \frac{\sqrt{x^2 - x + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 - x + 1} + \sqrt{x^2 - 1}} = \frac{2 - x}{\sqrt{x^2 - x +$$

$$= \frac{\frac{\frac{2}{x} - 1}{\frac{\sqrt{x^2 - x + 1}}{x} + \frac{\sqrt{x^2 - 1}}{x}} = \frac{\frac{\frac{2}{x} - 1}{\frac{\sqrt{x^2 - x + 1}}{-\sqrt{x^2}} + \frac{\sqrt{x^2 - 1}}{-\sqrt{x^2}}} = \frac{\frac{\frac{2}{x} - 1}{-\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} - \sqrt{1 - \frac{1}{x^2}}},$$

ezért $\lim_{-\infty} f = 1/2$.

2. Legyen

$$f(x) := \frac{\sqrt{1+x} - \sqrt{1-x^2}}{\sqrt{1+x} - 1} \qquad (0 \neq x \in [-1, 1]).$$

Mivel minden $x \in \mathcal{D}_f$ esetén

$$f(x) \ = \ \frac{\sqrt{1+x}-\sqrt{1-x^2}}{\sqrt{1+x}-1} \cdot \frac{\sqrt{1+x}+\sqrt{1-x^2}}{\sqrt{1+x}+\sqrt{1-x^2}} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} =$$

$$= \frac{(1+x-1+x^2)(\sqrt{1+x}+1)}{(1+x-1)(\sqrt{1+x}+\sqrt{1-x^2})} = \frac{(1+x)(\sqrt{1+x}+1)}{\sqrt{1+x}+\sqrt{1-x^2}},$$

ezért $\lim_{0} f = 1$.

3. Legyen

$$f(x) := \frac{\sqrt[n]{1+x}-1}{x}$$
 $(0 \neq x \in (-1,+\infty)).$

Ekkor (vö. (1)) bármely $x \in \mathcal{D}_f$ esetén

$$\begin{split} f(x) &\stackrel{\text{(1)}}{=} \frac{\sqrt[n]{1+x}-1}{x} \cdot \frac{\sqrt[n]{(1+x)^{n-1}} + \sqrt[n]{(1+x)^{n-2}} + \ldots + 1}{\sqrt[n]{(1+x)^{n-1}} + \sqrt[n]{(1+x)^{n-2}} + \ldots + 1} = \\ &= \frac{1+x-1^n}{x(\sqrt[n]{(1+x)^{n-1}} + \sqrt[n]{(1+x)^{n-2}} + \ldots + 1)} = \frac{1}{\sqrt[n]{(1+x)^{n-1}} + \sqrt[n]{(1+x)^{n-2}} + \ldots + 1}, \end{split}$$

ezért $\lim_{n \to \infty} f = 1/n$.

Tétel. Legyen

$$f,g\in\mathbb{R}\to\mathbb{R},\qquad\alpha\in\mathcal{D}_g',\qquad\mathcal{R}_g\subset\mathcal{D}_f.$$

Ha

$$\lim_{\alpha}g=:b\in\mathcal{D}_f',\qquad g(x)\neq b\quad (\alpha\neq x\in\mathcal{D}_g),\qquad \lim_{b}f=:c\in\mathbb{R},$$

akkor

$$\lim_{g} (f \circ g) = c.$$

A fenti tétel eredményét szokás a

$$\lim_{x \to a} f(g(x)) = \lim_{y \to b} f(y) \qquad (y := g(x) \to b, \quad \text{ha} \quad x \to a)$$

alakban írni, ami úgy tekinthető, mint a $\lim_{x\to a} f(g(x))$ határértékben alkalmazott y=g(x) helyettesítés.

Feladat. Számítsuk ki az alábbi határértékeket, ha léteznek!

1.
$$\lim_{x \to -1} \frac{\sqrt{x+2} - \sqrt[3]{x+2}}{x^2 - 1}$$
;

2.
$$\lim_{x \to -1} \frac{\sqrt[3]{x} + 1}{\sqrt[5]{x} + 1}$$
;

1.
$$\lim_{x \to -1} \frac{\sqrt{x+2} - \sqrt[3]{x+2}}{x^2 - 1}$$
; 2. $\lim_{x \to -1} \frac{\sqrt[3]{x} + 1}{\sqrt[5]{x} + 1}$; 3. $\lim_{x \to 1} \frac{\sqrt[m]{x} - 1}{\sqrt[n]{x} - 1}$ $(m, n \in \mathbb{N})$.

Útm.

1. Az y := $\sqrt[6]{x+2}$ helyettesítést alkalmazva azt kapjuk, hogy bármely $-1 \neq x \in (-2,0)$, azaz $1 \neq y \in (0, \sqrt[6]{2})$ esetén

$$\frac{\sqrt{x+2}-\sqrt[3]{x+2}}{x^2-1} \ = \ \frac{y^3-y^2}{(y^6-2)^2-1} = \frac{y^3-y^2}{y^{12}-4y^6+3} = \frac{y^2(y-1)}{(y^6-1)(y^6-3)} =$$

$$= \frac{y^2(y-1)}{(y-1)(y^5+y^4+y^3+y^2+1)(y^6-3)} =$$

$$= \frac{y^2}{(y^5 + y^4 + y^3 + y^2 + 1)(y^6 - 3)} \longrightarrow \frac{1}{-12} \quad (y \to 1).$$

$$2. \lim_{x \to -1} \frac{\sqrt[3]{x} + 1}{\sqrt[5]{x} + 1} = \lim_{y \to -1} \frac{\sqrt[3]{y^{15}} + 1}{\sqrt[5]{y^{15}} + 1} = \lim_{y \to -1} \frac{y^5 + 1}{y^3 + 1} = \lim_{y \to -1} \frac{(y + 1)(y^4 - y^3 + y^2 - y + 1)}{(y + 1)(y^2 - y + 1)} = \frac{5}{3}.$$

3.
$$\lim_{x \to 1} \frac{\sqrt[m]{x} - 1}{\sqrt[n]{x} - 1} = \lim_{y \to 1} \frac{\sqrt[m]{y^{mn}} - 1}{\sqrt[n]{y^{mn}} - 1} = \lim_{y \to 1} \frac{y^n - 1}{y^m - 1} = \frac{n}{m}. \blacksquare$$

Házi (gyakorló) feladatok.

1. Számítsuk ki a következő határértékeket!

(a)
$$\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{3}{x^3-1} \right)$$

(b)
$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5}$$

(a)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{3}{x^3 - 1} \right)$$
; (b) $\lim_{x \to 5} \frac{\sqrt{x-1} - 2}{x-5}$; (c) $\lim_{x \to +\infty} \left(\frac{x^2 + x}{x-1} - \frac{x^2 - x}{x+1} \right)$.

2. Adott $m, n \in \mathbb{N}$, ill. $0 < a, b \in \mathbb{R}$ esetén számítsuk ki az alábbi határértéket!

$$\text{(a)} \lim_{x \to 1} \left(\frac{\alpha}{x-1} - \frac{b}{x^3-1} \right); \ \ \text{(b)} \lim_{x \to 1} \left(\frac{m}{1-x^m} - \frac{n}{1-x^n} \right); \ \ \text{(c)} \lim_{x \to 1} \left(\frac{\alpha}{1-x^\alpha} - \frac{b}{1-x^b} \right).$$

3. Számítsuk ki a

(a)
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + x - 1} - \sqrt{x^2 - x + 1} \right)$$
; (b) $\lim_{x \to +\infty} \left(\sqrt{9x^2 + 1} - 3x \right)$; (c) $\lim_{x \to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1}$

határértékeket, amennyiben azok léteznek!

4. Számítsuk ki a

(a)
$$\lim_{x\to 0} \frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}$$
; (b) $\lim_{x\to 2} \frac{x^2-4}{\sqrt{x-1}-1}$; (c) $\lim_{x\to 1} \frac{\sqrt{x+3}-2}{1-x^2}$.

(b)
$$\lim_{x\to 2} \frac{x^2-4}{\sqrt{x-1}-1}$$
;

(c)
$$\lim_{x \to 1} \frac{\sqrt{x+3}-2}{1-x^2}$$

határértékeket, amennyiben azok léteznek!

5. Legyen $\alpha \in \mathbb{R}$. Számítsuk ki a

(a)
$$\lim_{x\to 0} \frac{x^2}{\sqrt{1+\alpha x}-x-1}$$
;

(b)
$$\lim_{x \to \alpha} \frac{\sqrt{x} + \sqrt{x - \alpha} - \sqrt{\alpha}}{\sqrt{x^2 - \alpha^2}}$$
.

határértékeket, amennyiben azok léteznek!

6. Milyen $a, b \in \mathbb{R}$ esetén teljesül a

$$\lim_{x \to +\infty} \left(\sqrt{x^2 - x + 1} - (ax + b) \right) = 0$$

határértékreláció?

7. Számítsuk ki az alábbi határértékeket, amennyiben azok léteznek!

(a)
$$\lim_{x \to 0} \frac{x^2}{\sqrt[3]{1 + 5x} - x - 1}$$

(a)
$$\lim_{x\to 0} \frac{x^2}{\sqrt[3]{1+5x}-x-1}$$
 (b) $\lim_{x\to 0} \frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x}$.

8. Számítsuk ki az alábbi határértékeket, amennyiben azok léteznek!

(a)
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1} + \sqrt{x}}{\sqrt[4]{x^3 + x} - x};$$

(b)
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1} - \sqrt[3]{x^2 + 1}}{\sqrt[4]{x^4 + 1} - \sqrt[5]{x^4 + 1}}$$
;

(c)
$$\lim_{x \to +\infty} \frac{\sqrt[5]{x^7 + 3} + \sqrt[4]{2x^3 - 1}}{\sqrt[6]{x^8 + x^7 + 1} - x}$$
;

(d)
$$\lim_{x \to +\infty} \frac{\sqrt[3]{x^4 + 3} - \sqrt[5]{x^3 + 4}}{\sqrt[3]{x^7 + 1}}$$
.

Útm.

1. (a) Legyen

$$f(x) := \frac{1}{x-1} - \frac{3}{x^3-1} \quad (1 \neq x \in \mathbb{R}).$$

Ekkor $1 \in \mathcal{D}_f'$ és minden $1 \neq x \in \mathbb{R}$ esetén

$$\frac{1}{x-1} - \frac{3}{x^3 - 1} = \frac{1}{x-1} - \frac{3}{(x-1)(x^2 + x + 1)} = \frac{x^2 + x - 2}{x^3 - 1} =$$

$$= \frac{(x-1)(x+2)}{(x-1)(x^2+x+1)} = \frac{x+2}{x^2+x+1},$$

ezért

$$\lim_{1} f = \frac{3}{3} = 1.$$

(b) Legyen

$$f(x) := \frac{\sqrt{x-1}-2}{x-5} \qquad (5 \neq x \in (1,+\infty)).$$

Ekkor $5 \in \mathcal{D}_f'$ és minden $5 \neq x \in (1, +\infty)$ esetén

$$\frac{\sqrt{x-1}-2}{x-5} = \frac{\sqrt{x-1}-2}{x-5} \cdot \frac{\sqrt{x-1}+2}{\sqrt{x-1}+2} = \frac{x-5}{(x-5)\sqrt{x-1}+2} = \frac{1}{\sqrt{x-1}+2},$$

ezért

$$\lim_{5} f = \frac{1}{2+2} = \frac{1}{4}.$$

(c) Mivel bármely $x \in \mathbb{R} \setminus \{-1, 1\}$ esetén

$$\frac{x^2+x}{x-1} - \frac{x^2-x}{x+1} = \frac{(x^2+x)(x+1) - (x^2-x)(x-1)}{(x-1)(x+1)} =$$

$$= \frac{x^3 + 2x^2 + x - x^3 + 2x^2 - x}{x^2 - 1} = \frac{4x^2}{x^2 - 1},$$

ezért

$$\lim_{x\to+\infty}\left(\frac{x^2+x}{x-1}-\frac{x^2-x}{x+1}\right)=\lim_{x\to+\infty}\frac{4x^2}{x^2-1}=4.$$

2. (a) Legyen

$$f(x) := \frac{a}{x-1} - \frac{b}{x^3-1}$$
 $(1 \neq x \in \mathbb{R}).$

Ekkor $1 \in \mathcal{D}'_f$ és minden $1 \neq x \in \mathbb{R}$ esetén

$$\frac{a}{x-1} - \frac{b}{x^3 - 1} = \frac{a}{x-1} - \frac{b}{(x-1)(x^2 + x + 1)} = \frac{a(x^2 + x + 1) - b}{x^3 - 1} =$$

$$= \begin{cases} \frac{a(x+2)}{x^2+x+1} & (b=3a), \\ \\ \frac{ax^2+ax+a-b}{x^3-1} & (b \neq 3a), \end{cases}$$

ezért

- b = 3a esetén $\lim_{1} f = a$;
- $b \neq 3a$ esetén $\nexists \lim_{1} f$, ui.

$$\lim_{1\pm 0} f = \operatorname{sgn}(3a - b) \cdot (\pm \infty).$$

(b) Legyen

$$f(x) := \frac{m}{1 - x^m} - \frac{n}{1 - x^n} \qquad (1 \neq x \in \mathbb{R}).$$

• Ha $\mathfrak{m}=\mathfrak{n}=1$, akkor bármely $1\neq x\in\mathbb{R}$ esetén

$$f(x) = 0$$

így

$$\lim_{1} f = 0 = \frac{1-1}{2}.$$

• Ha m = 1, n > 1, akkor bármely $1 \neq x \in \mathbb{R}$ esetén

$$f(x) = \frac{1}{1-x} - \frac{n}{1-x^n} = \frac{1}{1-x} - \frac{n}{(1-x) \cdot \sum_{k=0}^{n-1} x^k} = \frac{\sum_{k=0}^{n-1} x^k - n}{1-x^n} = \frac{1}{1-x^n}$$

$$= \frac{-(1-x)\cdot\sum\limits_{k=0}^{n-2}(n-k-1)x^k}{(1-x)\cdot\sum\limits_{k=0}^{n-1}x^k} = \frac{-\sum\limits_{k=0}^{n-2}(n-k-1)\cdot x^k}{\sum\limits_{k=0}^{n-1}x^k} \longrightarrow$$

$$\longrightarrow -\frac{(n-1)n - \frac{(n-2)(n-1)}{2} - n + 1}{n} = -\frac{2n^2 - 2n - n^2 + 3n - 2 - 2n + 2}{2n} =$$

$$= -\frac{n^2 - n}{2n} = \frac{1 - n}{2} \quad (x \to 1).$$

- Ha m > 2, n = 1, akkor a fentiekhez hasonlóan azt kapjuk, hogy $\lim_{n \to \infty} f = \frac{m-1}{2}$.
- Tegyük fel, hogy 2 ≤ m, n ∈ N. Ekkor az x =: 1 + h helyettesítést alkalmazva bármely
 1 ≠ x ∈ R, azaz 0 ≠ h ∈ R esetén

$$f(x) \ = \ \frac{m}{1-x^m} - \frac{n}{1-x^n} = \frac{m}{1-(1+h)^m} - \frac{n}{1-(1+h)^n} =$$

$$= \frac{m}{1 - \sum_{k=0}^{m} {m \choose k} h^k} - \frac{n}{1 - \sum_{k=0}^{n} {n \choose k} h^k} = \frac{m}{-\sum_{k=1}^{m} {m \choose k} h^k} - \frac{n}{-\sum_{k=1}^{n} {n \choose k} h^k} = \frac{m}{-\sum_{k=1}^{n} {n \choose$$

$$= \frac{-m\sum\limits_{k=1}^{n}\binom{n}{k}h^k + n\sum\limits_{k=1}^{m}\binom{m}{k}h^k}{\left(\sum\limits_{k=1}^{m}\binom{m}{k}h^k\right)\cdot\left(\sum\limits_{k=1}^{n}\binom{n}{k}h^k\right)} = \frac{-mnh - m\sum\limits_{k=2}^{n}\binom{n}{k}h^k + nmh + n\sum\limits_{k=2}^{m}\binom{m}{k}h^k}{\left(\sum\limits_{k=1}^{m}\binom{m}{k}h^k\right)\cdot\left(\sum\limits_{k=1}^{n}\binom{n}{k}h^k\right)} = \frac{-mnh - m\sum\limits_{k=2}^{n}\binom{n}{k}h^k + nmh + n\sum\limits_{k=2}^{m}\binom{m}{k}h^k}{\left(\sum\limits_{k=1}^{m}\binom{m}{k}h^k\right)\cdot\left(\sum\limits_{k=1}^{n}\binom{n}{k}h^k\right)} = \frac{-mnh - m\sum\limits_{k=2}^{n}\binom{n}{k}h^k}{\left(\sum\limits_{k=1}^{m}\binom{m}{k}h^k\right)\cdot\left(\sum\limits_{k=1}^{n}\binom{n}{k}h^k\right)} = \frac{-mnh - m\sum\limits_{k=2}^{n}\binom{n}{k}h^k}{\left(\sum\limits_{k=1}^{m}\binom{m}{k}h^k\right)\cdot\left(\sum\limits_{k=1}^{n}\binom{n}{k}h^k\right)} = \frac{-mnh - m\sum\limits_{k=2}^{n}\binom{n}{k}h^k}{\left(\sum\limits_{k=1}^{n}\binom{n}{k}h^k\right)\cdot\left(\sum\limits_{k=1}^{n}\binom{n}{k}h^k\right)} = \frac{-mnh - m\sum\limits_{k=2}^{n}\binom{n}{k}h^k}{\left(\sum\limits_{k=1}^{n}\binom{n}{k}h^k\right)} = \frac{-mnh - m\sum\limits_{k=2}^{n}\binom{n}{k}h^k}{\left(\sum\limits_{k=1}^{n}\binom{n}{n$$

$$= \frac{n \sum_{k=2}^{m} {m \choose k} h^k - m \sum_{k=2}^{n} {n \choose k} h^k}{\left(\sum_{k=1}^{m} {m \choose k} h^{k-1}\right) \left(\sum_{k=1}^{n} {n \choose k} h^{k-1}\right)} = \frac{h^2 n \sum_{k=2}^{m} {m \choose k} h^{k-2} - h^2 m \sum_{k=2}^{n} {n \choose k} h^{k-2}}{\left(h \sum_{k=1}^{m} {m \choose k} h^{k-1}\right) \left(h \sum_{k=1}^{n} {n \choose k} h^{k-1}\right)} = \frac{h^2 n \sum_{k=2}^{m} {m \choose k} h^{k-2} - h^2 m \sum_{k=2}^{n} {n \choose k} h^{k-2}}{\left(h \sum_{k=1}^{m} {m \choose k} h^{k-1}\right) \left(h \sum_{k=1}^{n} {n \choose k} h^{k-1}\right)} = \frac{h^2 n \sum_{k=2}^{m} {m \choose k} h^{k-2} - h^2 m \sum_{k=2}^{n} {n \choose k} h^{k-2}}{\left(h \sum_{k=1}^{m} {m \choose k} h^{k-1}\right) \left(h \sum_{k=1}^{n} {n \choose k} h^{k-1}\right)} = \frac{h^2 n \sum_{k=2}^{m} {m \choose k} h^{k-2} - h^2 m \sum_{k=2}^{n} {n \choose k} h^{k-2}}{\left(h \sum_{k=1}^{m} {m \choose k} h^{k-2}\right)} = \frac{h^2 n \sum_{k=2}^{m} {m \choose k} h^{k-2}}{\left(h \sum_{k=1}^{m} {n \choose k} h^{k-1}\right) \left(h \sum_{k=1}^{m} {n \choose k} h^{k-1}\right)}$$

$$=\ \frac{n\sum\limits_{k=2}^m\binom{m}{k}h^{k-2}-m\sum\limits_{k=2}^n\binom{n}{k}h^{k-2}}{\left(\sum\limits_{k=1}^m\binom{m}{k}h^{k-1}\right)\left(\sum\limits_{k=1}^n\binom{n}{k}h^{k-1}\right)}\longrightarrow \frac{n\binom{m}{2}-m\binom{n}{2}}{\binom{m}{1}\binom{n}{1}}=\frac{n\frac{m(m-1)}{2}-m\frac{n(n-1)}{2}}{mn}=$$

$$= \frac{m-n}{2} \quad (h \to 0).$$

(c) Felhasználva, hogy bármely $\mu \in \mathbb{R}$, ill. $x \in (0, +\infty)$ esetén

$$x^{\mu} = exp(\mu \cdot ln(x)) = \sum_{n=0}^{\infty} \frac{(\mu \cdot ln(x))^n}{n!}$$

teljesül, a fentiekhez hasonlóan azt kapjuk, hogy tetszőleges $0 < a, b \in \mathbb{R}$ esetén

$$\lim_{x\to 1}\left(\frac{a}{1-x^a}-\frac{b}{1-x^b}\right)=\frac{a-b}{2}.$$

3. (a) Világos, hogy

$$\lim_{x \to +\infty} \left(\sqrt{x^2 + x - 1} - \sqrt{x^2 - x + 1} \right) =$$

$$= \lim_{x \to +\infty} \left(\sqrt{x^2 + x - 1} - \sqrt{x^2 - x + 1} \right) \cdot \frac{\sqrt{x^2 + x - 1} + \sqrt{x^2 - x + 1}}{\sqrt{x^2 + x - 1} + \sqrt{x^2 - x + 1}} =$$

$$= \lim_{x \to +\infty} \frac{2x - 2}{\sqrt{x^2 + x - 1} + \sqrt{x^2 - x + 1}} = \lim_{x \to +\infty} \frac{2 - \frac{2}{x}}{\sqrt{1 + \frac{1}{x} - \frac{1}{x^2}} + \sqrt{1 - \frac{1}{x} + \frac{1}{x^2}}} = 1.$$

(b) A fentiekhez hasonlóan kapjuk, hogy

$$\lim_{x \to +\infty} \left(\sqrt{9x^2 + 1} - 3x \right) = \lim_{x \to +\infty} \left(\sqrt{9x^2 + 1} - 3x \right) \cdot \frac{\sqrt{9x^2 + 1} + 3x}{\sqrt{9x^2 + 1} + 3x} =$$

$$= \lim_{x \to +\infty} \frac{1}{\sqrt{9x^2 + 1} + 3x} = 0.$$

(c) Egyszerű átalakítással azt kapjuk, hogy bármely $1 \neq x \in (0, +\infty)$ számra

$$\frac{x^2 - \sqrt{x}}{\sqrt{x} - 1} \ = \ \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1} \cdot \frac{\sqrt{x} + 1}{\sqrt{x} + 1} \cdot \frac{x^2 + \sqrt{x}}{x^2 + \sqrt{x}} = \frac{(x^4 - x)(\sqrt{x} + 1)}{(x - 1)(x^2 + \sqrt{x})} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x - 1)(x^3 + 1)} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x - 1)(x^3 + 1)} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x - 1)(x^3 + 1)} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x - 1)(x^3 + 1)} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x - 1)(x^3 + 1)} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x - 1)(x^3 + 1)} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x - 1)(x^3 + 1)} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x - 1)(x^3 + 1)} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x - 1)(x^3 + 1)} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x^3 + 1)(x^3 + 1)} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x^3 + 1)(x^3 + 1)} = \frac{x(x^3 - 1)(\sqrt{x} + 1)}{(x^3 + 1)(x^3 +$$

$$= \frac{x(x-1)(x^2+x+1)(\sqrt{x}+1)}{(x-1)(x^2+\sqrt{x})} \longrightarrow \frac{1\cdot (1+1+1)\cdot (1+1)}{1+1} = 3 \quad (x\to 1).$$

4. (a) Mivel bármely $0 \neq x \in \mathbb{R}$ esetén

$$\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4} = \frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4} \cdot \frac{\sqrt{x^2+1}+1}{\sqrt{x^2+1}+1} \cdot \frac{\sqrt{x^2+16}+4}{\sqrt{x^2+16}+4} = \frac{x^2(\sqrt{x^2+16}+4)}{x^2(\sqrt{x^2+1}+1)},$$

ezért

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 16} - 4} = 4.$$

(b) Mivel bármely $2 \neq x \in (1, +\infty)$ esetén

$$\frac{x^2-4}{\sqrt{x-1}-1} = \frac{x^2-4}{\sqrt{x-1}-1} \cdot \frac{\sqrt{x-1}+1}{\sqrt{x-1}+1} = \frac{x^2-4}{x-2}(\sqrt{x-1}+1) =$$

$$= \frac{(x+2)(x-2)}{x-2}(\sqrt{x-1}+1) = (x+2)(\sqrt{x-1}+1),$$

ezért

$$\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{x - 1} - 1} = \lim_{x \to 2} (x + 2)(\sqrt{x - 1} + 1) = 4 \cdot 2 = 8.$$

(c) Világos, hogy

$$\lim_{x \to 1} \frac{\sqrt{x+3}-2}{1-x^2} = \lim_{x \to 1} \frac{x+3-4}{(1-x^2)(\sqrt{x+3}+2)} = \lim_{x \to 1} \frac{x-1}{(1-x)(1+x)(\sqrt{x+3}+2)} = \lim_{x \to 1} \frac{x-1}{(1-x)(1+x)(\sqrt{x+3}+2)} = \lim_{x \to 1} \frac{x-1}{(1-x^2)(\sqrt{x+3}+2)} = \lim_{x \to 1} \frac{x-1}{(1-x^2)(\sqrt{x+$$

$$= \lim_{x \to 1} \frac{-1}{(1+x)(\sqrt{x+3}+2)} = -\frac{1}{8}.$$

5. (a) Mivel bármely $0 \neq x \in \mathbb{R}$ esetén

$$\frac{x^2}{\sqrt{1+\alpha x}-x-1} = \frac{x^2 \cdot (\sqrt{1+\alpha x}+x+1)}{1+\alpha x - (x^2+2x+1)} = \frac{x^2 \cdot (\sqrt{1+\alpha x}+x+1)}{-x^2 + (\alpha-2)x} = \frac{x \cdot (\sqrt{1+\alpha x}+x+1)}{-x+\alpha-2},$$

ezért

$$\lim_{x \to 0} \frac{x^2}{\sqrt{1 + \alpha x} - x - 1} = \begin{cases} \lim_{x \to 0} \left(-(\sqrt{1 + 2x} + x + 1) \right) = -2 & (\alpha = 2), \\ \\ \frac{0}{\alpha - 2} = 0 & (\alpha \neq 2). \end{cases}$$

(b) Világos, hogy

$$\lim_{x \to \alpha} \frac{\sqrt{x} + \sqrt{x - \alpha} - \sqrt{\alpha}}{\sqrt{x^2 - \alpha^2}} = \lim_{x \to \alpha} \frac{1 + \frac{\sqrt{x} - \sqrt{\alpha}}{\sqrt{x - \alpha}}}{\sqrt{x + \alpha}} = \lim_{x \to \alpha} \frac{1}{\sqrt{x + \alpha}} \cdot \lim_{x \to \alpha} \left(1 + \frac{\sqrt{x} - \sqrt{\alpha}}{\sqrt{x - \alpha}} \right) =$$

$$= \frac{1}{\sqrt{2\alpha}} \lim_{x \to \alpha} \left(1 + \frac{\sqrt{x} - \sqrt{\alpha}}{\sqrt{x - \alpha}} \right) =$$

$$= \frac{1}{\sqrt{2\alpha}} \cdot \lim_{x \to \alpha} \left(1 + \frac{x - \alpha}{(\sqrt{x} + \sqrt{\alpha})\sqrt{x - \alpha}} \right) =$$

$$= \frac{1}{\sqrt{2\alpha}} \cdot \lim_{x \to \alpha} \left(1 + \frac{\sqrt{x - \alpha}}{\sqrt{x} + \sqrt{\alpha}} \right) = \frac{1}{\sqrt{2\alpha}}.$$

6. Világos, hogy $\alpha \le 0$ esetén a keresett határérték $+\infty$. Tegyük fel most, hogy $\alpha > 0$. Mivel bármely $x \in \mathbb{R}$ esetén

$$\sqrt{x^2 - x + 1} - (ax + b) = \frac{x^2 - x + 1 - a^2x^2 - 2abx - b^2}{\sqrt{x^2 - x + 1} + ax + b} = \frac{(1 - a^2)x^2 - (2ab + 1)x + 1 - b^2}{\sqrt{x^2 - x + 1} + ax + b},$$

ezért két esetet különböztetünk meg:

1. eset $(a^2 \neq 1)$:

$$\frac{(1-a^2)x^2-(2ab+1)x+1-b^2}{\sqrt{x^2-x+1}+ax+b} = \frac{x}{x} \cdot \frac{(1-a^2)x-(2ab+1)+\frac{1-b^2}{x}}{\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}+a+\frac{b}{x}} =: \frac{g(x)}{h(x)} \qquad (x \neq 0),$$

ahol

$$\lim_{+\infty} g = \begin{cases} +\infty & (\alpha^2 < 1), \\ -\infty & (\alpha^2 > 1) \end{cases} \qquad \lim_{+\infty} h = 1 + \alpha \ (\neq 0).$$

Így

$$\lim_{+\infty}(\sqrt{x^2-x+1}-(ax+b))=\begin{cases} +\infty & (a<1),\\ -\infty & (a>1). \end{cases}$$

2. eset $(a^2 = 1, \mathbf{azaz} \ a = 1)$: $\lim_{+\infty} g = -2b - 1$; $\lim_{+\infty} h = 2$. Így

$$\lim_{+\infty} f = -\frac{1+2b}{2} = 0 \qquad \iff \qquad b = -\frac{1}{2}.$$

Tehát

$$\lim_{+\infty} f = 0 \qquad \iff \qquad \boxed{\alpha = 1, \ b = -\frac{1}{2}}.$$

7. (a) Könnyen belátható, hogy

$$\lim_{x \to 0} \frac{x^2}{\sqrt[3]{1 + 5x} - x - 1} =$$

$$= \lim_{x \to 0} \frac{x^2}{\sqrt[3]{1+5x}-x-1} \cdot \frac{\sqrt[3]{(1+5x)^2} + \sqrt[3]{(1+5x)^2} + \sqrt[3]{(1+5x)(x+1)^3} + (x+1)^2}{\sqrt[3]{(1+5x)^2} + \sqrt[3]{(1+5x)(x+1)^3} + (x+1)^2} =$$

$$= \lim_{x \to 0} \frac{x^2 \left[\sqrt[3]{(1+5x)^2} + \sqrt[3]{(1+5x)(x+1)^3} + (x+1)^2 \right]}{(1+5x) - (x+1)^3} =$$

$$= \lim_{x \to 0} \frac{x^2 \left[\sqrt[3]{(1+5x)^2} + \sqrt[3]{(1+5x)(x+1)^3} + (x+1)^2 \right]}{1+5x-x^3-3x^2-3x-1} =$$

$$= \lim_{x \to 0} \frac{x^2}{x} \cdot \frac{\sqrt[3]{(1+5x)^2} + \sqrt[3]{(1+5x)(x+1)^3} + (x+1)^2}{-x^2 - 3x + 2} = 0 \cdot \frac{3}{2} = 0.$$

(b) Mivel bármely $0 \neq x \in (-1, 1)$ esetén

$$\frac{\sqrt[3]{1+x} - \sqrt[3]{1-x}}{x} = \frac{\sqrt[3]{1+x} - \sqrt[3]{1-x}}{x} \cdot \frac{\sqrt[3]{(1+x)^2} + \sqrt[3]{(1+x)(1-x)} + \sqrt[3]{(1-x)^2}}{\sqrt[3]{(1+x)^2} + \sqrt[3]{(1+x)(1-x)} + \sqrt[3]{(1-x)^2}} =$$

$$= \frac{2x}{x} \cdot \frac{1}{\sqrt[3]{(1+x)^2} + \sqrt[3]{(1+x)(1-x)} + \sqrt[3]{(1-x)^2}},$$

ezért

$$\lim_{x\to 0}\frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x}=\lim_{x\to 0}\frac{2}{\sqrt[3]{(1+x)^2}+\sqrt[3]{(1+x)(1-x)}+\sqrt[3]{(1-x)^2}}=\frac{2}{3}.$$

8. (a)
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1} + \sqrt{x}}{\sqrt[4]{x^3 + x} - x} = \lim_{x \to +\infty} \frac{\sqrt{1 + \frac{1}{x^2}} + \sqrt{\frac{1}{x}}}{\sqrt[4]{\frac{1}{x} + \frac{1}{x^2}} - 1} = \frac{\sqrt{1 + 0} + 0}{\sqrt[4]{0 + 0} - 1} = -1.$$

(b)
$$\lim_{x \to +\infty} \frac{x \left\{ \sqrt{1 + \frac{1}{x^2}} - \sqrt[3]{\frac{1}{x} + \frac{1}{x^3}} \right\}}{x \left\{ \sqrt[4]{1 + \frac{1}{x^4}} - \sqrt[5]{\frac{1}{x} + \frac{1}{x^5}} \right\}} = \frac{1 - 0}{1 - 0} = 1.$$

(c)
$$\lim_{x \to +\infty} \frac{\sqrt[5]{x^7 + 3} + \sqrt[4]{2x^3 - 1}}{\sqrt[6]{x^8 + x^7 + 1} - x} = \lim_{x \to +\infty} \frac{\sqrt[5]{x^7} \left\{ \sqrt[5]{1 + \frac{3}{x^7}} + \sqrt[4]{\frac{2}{\sqrt[5]{13}}} - \frac{1}{\sqrt[5]{x^2}} \right\}}{\sqrt[3]{x^4} \left\{ \sqrt[6]{1 + \frac{1}{x} + \frac{1}{x^8}} - \frac{1}{\sqrt[3]{x}} \right\}} = (+\infty) \cdot \frac{1 + 0}{1 - 0} = +\infty.$$

(d)
$$\lim_{x \to +\infty} \frac{\sqrt[3]{x^4 + 3} - \sqrt[5]{x^3 + 4}}{\sqrt[3]{x^7 + 1}} = \lim_{x \to +\infty} \frac{\sqrt[3]{x^4} \cdot \left\{ \sqrt[3]{1 + \frac{3}{x^4}} - \sqrt[5]{\frac{1}{\sqrt[3]{x^{11}}} + \frac{4}{\sqrt[3]{x^{20}}}} \right\}}{\sqrt[3]{x^7} \cdot \sqrt[3]{1 + \frac{1}{x^7}}} = 0 \cdot \frac{1 - 0}{1} = 0. \blacksquare$$

Házi (gyakorló) feladat. Számítsuk ki az alábbi határértékeket, amennyiben azok léteznek!

(a)
$$\lim_{x\to 1} \frac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}$$
;

(b)
$$\lim_{x \to +\infty} \sqrt[3]{x^2} \left(\sqrt{x^3 + 1} - \sqrt{x^3 - 1} \right)$$
;

(c)
$$\lim_{x \to +\infty} \sqrt{x + \sqrt{x + \sqrt{x}} - \sqrt{x}}$$
;

(d)
$$\lim_{x \to +\infty} x^3 \cdot \left(\sqrt{x^2 + \sqrt{x^4 + 1}} - x\sqrt{2} \right)$$
;

(e)
$$\lim_{x \to -1} \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{2+x}+x}$$
;

(f)
$$\lim_{x\to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}$$
.

Útm.

1. Mivel tetszőleges $1 \neq x \in \mathbb{R}$ esetén

$$= \frac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1} = \frac{\sqrt[3]{7+x^3}}{x-1} - \frac{\sqrt{3+x^2}}{x-1} =$$

$$= \frac{7 + x^3 - 8}{(x - 1)\left(\sqrt[3]{(7 + x^3)^2} + \sqrt[3]{(7 + x^3) \cdot 8} + \sqrt[3]{64}\right)} - \frac{3 + x^2 - 4}{(x - 1)\left(\sqrt{3 + x^2} + 2\right)} =$$

$$= \frac{(x-1)(x^2+x+1)}{(x-1)(\sqrt[3]{(7+x^3)^2}+\sqrt[3]{(7+x^3)\cdot 8}+\sqrt[3]{64})} - \frac{(x-1)(x+1)}{(x-1)(\sqrt{3+x^2}+2)},$$

ezért

$$\lim_{x \to 1} \frac{\sqrt[3]{7 + x^3} - \sqrt{3 + x^2}}{x - 1} = \frac{1 + 1 + 1}{4 + 4 + 4} - \frac{1 + 1}{2 + 2} = -\frac{1}{4}.$$

2. Világos, hogy bármely $x \in (1, +\infty)$ számra

$$\sqrt[3]{x^2} \left(\sqrt{x^3 + 1} - \sqrt{x^3 - 1} \right) \ = \ \sqrt[3]{x^2} \cdot \frac{x^3 + 1 - (x^3 + 1)}{\sqrt{x^3 + 1} + \sqrt{x^3 - 1}} = \frac{2\sqrt[3]{x^2}}{\sqrt{x^3} \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}} \right)} = \frac{2\sqrt[3]{x^2}}{\sqrt{x^3} \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}} \right)} = \frac{2\sqrt[3]{x^2}}{\sqrt{x^3} \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}} \right)} = \frac{2\sqrt[3]{x^2}}{\sqrt{x^3} \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}} \right)} = \frac{2\sqrt[3]{x^2}}{\sqrt{x^3} \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}} \right)} = \frac{2\sqrt[3]{x^2}}{\sqrt{x^3} \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}} \right)} = \frac{2\sqrt[3]{x^2}}{\sqrt{x^3} \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}} \right)} = \frac{2\sqrt[3]{x^2}}{\sqrt{x^3} \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}} \right)} = \frac{2\sqrt[3]{x^2}}{\sqrt{x^3} \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}} \right)} = \frac{2\sqrt[3]{x^2}}{\sqrt{x^3} \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}} \right)} = \frac{2\sqrt[3]{x^2}}{\sqrt{x^3}} = \frac{2\sqrt[3]{x^3}}{\sqrt{x^3}} = \frac{2\sqrt$$

$$= \frac{2}{\sqrt[6]{x^5} \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}} \right)},$$

így

$$\lim_{x \to +\infty} \sqrt[3]{x^2} \left(\sqrt{x^3 + 1} - \sqrt{x^3 - 1} \right) = \frac{2}{(+\infty)(1+1)} = 0.$$

3. Mivel bármely $x \in (0, +\infty)$ számra

$$\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x} \ = \ \left(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)\cdot\frac{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}} =$$

$$= \frac{x + \sqrt{x + \sqrt{x}} - x}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}} = \frac{\sqrt{1 + \frac{1}{\sqrt{x}}}}{\sqrt{1 + \frac{\sqrt{x + \sqrt{x}}}{x}} + 1} =$$

$$= \frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{x}+\frac{1}{x\sqrt{x}}}}+1},$$

ezért

$$\lim_{x\to +\infty} \sqrt{x+\sqrt{x+x}-\sqrt{x}} = \frac{1}{1+1} = \frac{1}{2}.$$

4. Mivel bármely $x \in (0, +\infty)$ számra

$$x^{3} \left(\sqrt{x^{2} + \sqrt{x^{4} + 1}} - x\sqrt{2} \right) = x^{3} \cdot \left(\sqrt{x^{2} + \sqrt{x^{4} + 1}} - x\sqrt{2} \right) \cdot \frac{\sqrt{x^{2} + \sqrt{x^{4} + 1}} + x\sqrt{2}}{\sqrt{x^{2} + \sqrt{x^{4} + 1}} + x\sqrt{2}} =$$

$$= x^{3} \cdot \frac{x^{2} + \sqrt{x^{4} + 1} - 2x^{2}}{\sqrt{x^{2} + \sqrt{x^{4} + 1}} + x\sqrt{2}} = x^{3} \cdot \frac{\sqrt{x^{4} + 1} - x^{2}}{\sqrt{x^{2} + \sqrt{x^{4} + 1}} + x\sqrt{2}} =$$

$$= x^{3} \cdot \frac{\sqrt{x^{4} + 1} - x^{2}}{\sqrt{x^{2} + \sqrt{x^{4} + 1}} + x\sqrt{2}} \cdot \frac{\sqrt{x^{4} + 1} + x^{2}}{\sqrt{x^{4} + 1} + x^{2}} =$$

$$= x^3 \cdot \frac{x^4 + 1 - x^4}{\left(\sqrt{x^2 + \sqrt{x^4 + 1}}\right) \cdot \left(\sqrt{x^4 + 1} + x^2\right)} =$$

$$= \frac{x^3}{x^3 \cdot \left(\sqrt{1+\sqrt{1+\frac{1}{x^4}}} + \sqrt{2}\right) \cdot \left(\sqrt{1+\frac{1}{x^4}} + 1\right)},$$

ezért

$$\lim_{x \to +\infty} x^3 \left(\sqrt{x^2 + \sqrt{x^4 + 1}} - x\sqrt{2} \right) = \frac{1}{(\sqrt{2} + \sqrt{2}) \cdot (1+1)} = \frac{1}{4\sqrt{2}}.$$

5. Mivel tetszőleges $-1 \neq x \in \mathbb{R}$ esetén

$$\frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{2+x}+x} \ = \ \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{2+x}+x} \cdot \frac{\sqrt[3]{(2+x)^2}-\sqrt[3]{(2+x)^2}-\sqrt[3]{(2+x)x^3}+\sqrt[3]{x^6}}{\sqrt[3]{(2+x)^2}-\sqrt[3]{(1+2x)^2}-\sqrt[3]{1+2x}+1} = \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{2+x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{2+x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{2+x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{2+x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{2+x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{2+x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+1} = \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} = \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} = \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} = \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} = \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} \cdot \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+x} = \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{1+2x}+$$

$$= \frac{(1+2x+1)\left(\sqrt[3]{(2+x)^2} - \sqrt[3]{(2+x)x} + \sqrt[3]{x^2}\right)}{(2+x+x^3)\left(\sqrt[3]{(1+2x)^2} - \sqrt[3]{1+2x} + 1\right)} =$$

$$= \frac{2(x+1)\left(\sqrt[3]{(2+x)^2} - \sqrt[3]{(2+x)x^3} + \sqrt[3]{x^6}\right)}{(x+1)(x^2-x+2)\left(\sqrt[3]{(1+2x)^2} - \sqrt[3]{1+2x} + 1\right)},$$

ezért

$$\lim_{x \to -1} \frac{\sqrt[3]{1+2x}+1}{\sqrt[3]{2+x}+x} = \frac{2 \cdot (1+1+1)}{(1+1+2) \cdot (1+1+1)} = \frac{1}{2}.$$

6. Világos, hogy

$$\lim_{x \to -2} \frac{\sqrt[3]{x - 6} + 2}{x^3 + 8} = \lim_{x \to -2} \frac{\sqrt[3]{x - 6} + 2}{x^3 + 8} = \lim_{x \to -2} \frac{\sqrt[3]{x - 6} + 2}{x^3 + 2^3} =$$

$$= \lim_{x \to -2} \frac{x - 6 + 8}{(x + 2)(x^2 - 2x + 4) \left(\sqrt[3]{(x - 6)^2} - \sqrt[3]{(x - 6) \cdot 8} + \sqrt[3]{64}\right)} =$$

$$= \lim_{x \to -2} \frac{x - 2}{(x + 2)(x^2 - 2x + 4) \left(\sqrt[3]{(x - 6)^2} - \sqrt[3]{(x - 6) \cdot 8} + \sqrt[3]{64}\right)} =$$

$$= \frac{1}{(4 + 4 + 4) \cdot (4 + 4 + 4)} = \frac{1}{144}.$$

Házi (gyakorló) feladat. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f'$ és tegyük fel, hogy $\lim_{a} f =: A \in (0, +\infty)$. Mutassuk meg, hogy ekkor van olyan $\delta > 0$, hogy

$$x \in \mathcal{D}_f \cap (K_\delta(\alpha) \setminus \{\alpha\}) \Longrightarrow f(x) > 0$$

teljesül!

Útm. A határérték definíciója alapján van olyan $\delta > 0$, hogy minden $x \in \mathcal{D}_f \cap (K_\delta(\alpha) \setminus \{\alpha\})$ esetén |f(x) - A| < A. Ez pedig pontosan akkor teljesül, ha

$$-A < f(x) - A < A$$
, azaz $0 < f(x) < 2A$.

Megjegyzés. Az állítás nem fordítható meg, ui. az

$$f(x) := \begin{cases} |x| & (x \neq 0), \\ 1 & (x = 0) \end{cases} \quad (x \in \mathbb{R})$$

függvény csak pozitív értéket vesz fel, de $\lim_{\alpha} f = 0$. Igaz viszont a következő (az átviteli elvvel könnyen bebizonyítható) állítás:

Ha f-nek van a-ban határértéke és

$$f(x) \ge 0$$
 $(\alpha \ne x \in \mathcal{D}_f \cap ((\alpha - \delta, \alpha + \delta))),$

akkor $\lim_{\alpha} f \geq 0$.

Házi feladat. Számítsuk ki a $\lim_{x \to +\infty} f(x)$ határértéket!

1.
$$f(x) := \frac{\sqrt{x^2 + 1} + \sqrt{x}}{\sqrt[4]{x^3 + x} - x};$$

2.
$$f(x) := \sqrt{x^3 + 1} - x$$
;

3.
$$f(x) := \sqrt[3]{(x+1)^2} - \sqrt[3]{(x-1)^2}$$
;

4.
$$f(x) := \frac{\sqrt{x^2 + 1} - \sqrt[3]{x^2 + 1}}{\sqrt[4]{x^4 + 1} - \sqrt[5]{x^4 + 1}};$$

5.
$$f(x) := \frac{\sqrt[5]{x^7 + 3} + \sqrt[4]{2x^3 - 1}}{\sqrt[6]{x^8 + x^7 + 1} - x};$$

6.
$$f(x) := \frac{\sqrt[3]{x^4 + 3} - \sqrt[5]{x^3 + 4}}{\sqrt[3]{x^7 + 1}};$$

7.
$$f(x) := \frac{\sqrt{x^2 + 1} - \sqrt[3]{x^2 + 1}}{\sqrt[4]{x^4 + 1} - \sqrt[5]{x^4 + 1}};$$

8.
$$f(x) := \frac{(x+1)^{10} + (x+2)^{10} + \dots + (x+100)^{10}}{x^{10} + 10^{10}}$$

9.
$$f(x) := \sqrt{x^2 - 2x - 1} - \sqrt{x^2 - 7x + 3}$$

9.
$$f(x) := \sqrt{x^2 - 2x - 1} - \sqrt{x^2 - 7x + 3};$$
 10. $f(x) := \varphi(x) \cdot \left(\sqrt{x + 1} + \sqrt{x - 1} - 2\sqrt{x}\right),$ $\varphi(x) \in \left\{\sqrt[3]{x^2}, \sqrt{x^3}\right\};$

11.
$$f(x) := x^3 \cdot \left(\sqrt{x^2 + \sqrt{x^4 + 1}} - x\sqrt{2}\right);$$
 12. $f(x) := \sqrt{x + \sqrt{x}} - \sqrt{x - \sqrt{x}};$

12.
$$f(x) := \sqrt{x + \sqrt{x}} - \sqrt{x - \sqrt{x}};$$

13.
$$f(x) := \sqrt[3]{x^2} \cdot \left(\sqrt{x^3 + 1} - \sqrt{x^3 - 1}\right);$$
 14. $f(x) := \frac{\sqrt[3]{x + 1} - 1}{x}.$

14.
$$f(x) := \frac{\sqrt[3]{x+1}-1}{x}$$
.

Útm.

$$f(x) = \frac{\sqrt{1 + \frac{1}{x^2}} + \sqrt{\frac{1}{x}}}{\sqrt[4]{\frac{1}{x} + \frac{1}{x^3}} - 1} \longrightarrow \frac{\sqrt{1 + 0} + 0}{\sqrt[4]{0 + 0} - 1} = -1 \qquad (x \to +\infty).$$

2. Tetszőleges $0 < x \in \mathbb{R}$ esetén

$$f(x) = \left(\sqrt{x^3+1}-x\right) \cdot \frac{\sqrt{x^3+1}+x}{\sqrt{x^3+1}+x} = \frac{x^3+1-x}{\sqrt{x^3+1}+x} = \frac{x^3\left(1+\frac{1}{x^3}-\frac{1}{x}\right)}{x^{3/2}\cdot\left(\sqrt{1+\frac{1}{x^3}}+\sqrt{\frac{1}{x}}\right)} =$$

$$= x^{3/2} \cdot \frac{1 + \frac{1}{x^3} - \frac{1}{x}}{\sqrt{1 + \frac{1}{x^3}} + \sqrt{\frac{1}{x}}} \longrightarrow +\infty \cdot 1 = +\infty \quad (x \to +\infty).$$

3. Tetszőleges $0 < x \in \mathbb{R}$ esetén

$$f(x) \ = \ \left(\sqrt[3]{(x+1)^2} - \sqrt[3]{(x-1)^2}\right) \cdot \frac{\sqrt[3]{(x+1)^4} + \sqrt[3]{(x+1)^2(x-1)^2} + \sqrt[3]{(x-1)^4}}{\sqrt[3]{(x+1)^4} + \sqrt[3]{(x+1)^2(x-1)^2} + \sqrt[3]{(x-1)^4}} =$$

$$= \frac{(x+1)^2 - (x-1)^2}{\sqrt[3]{(x+1)^4} + \sqrt[3]{(x+1)^2(x-1)^2} + \sqrt[3]{(x-1)^4}} =$$

$$= \frac{4x}{\sqrt[3]{(x+1)^4} + \sqrt[3]{(x+1)^2(x-1)^2} + \sqrt[3]{(x-1)^4}} =$$

$$= \frac{4x}{x^{4/3} \cdot \left\{ \sqrt[3]{\left(1 + \frac{1}{x}\right)^4} + \sqrt[3]{\left(1 - \frac{1}{x^2}\right)^2} + \sqrt[3]{\left(1 - \frac{1}{x}\right)^4} \right\}} =$$

$$= \frac{1}{\sqrt[3]{x}} \cdot \frac{4}{\sqrt[3]{\left(1 + \frac{1}{x}\right)^4} + \sqrt[3]{\left(1 - \frac{1}{x^2}\right)^2} + \sqrt[3]{\left(1 - \frac{1}{x}\right)^4}} \longrightarrow 0 \cdot \frac{4}{3} = 0 \quad (x \to +\infty).$$

$$f(x) = \frac{x \cdot \left(\sqrt{1 + \frac{1}{x^2}} - \sqrt[3]{\frac{1}{x} + \frac{1}{x^3}}\right)}{x \cdot \left(\sqrt[4]{1 + \frac{1}{x^4}} - \sqrt[5]{\frac{1}{x} + \frac{1}{x^5}}\right)} = \frac{\sqrt{1 + \frac{1}{x^2}} - \sqrt[3]{\frac{1}{x} + \frac{1}{x^3}}}{\sqrt[4]{1 + \frac{1}{x^4}} - \sqrt[5]{\frac{1}{x} + \frac{1}{x^5}}} \longrightarrow \frac{1 - 0}{1 - 0} = 1 \quad (x \to +\infty).$$

5. Tetszőleges $0 < x \in \mathbb{R}$ esetén az $x \to \infty$ határátmenetben

$$f(x) = \frac{x^{7/5} \cdot \left(\sqrt[5]{1 + \frac{3}{x^7}} + \sqrt[4]{\frac{2}{x^{13/5}} - \frac{1}{x^{21/5}}}\right)}{x^{4/3} \cdot \left(\sqrt[6]{1 + \frac{1}{x} + \frac{1}{x^8}} - \frac{1}{x^{1/3}}\right)} = \frac{\sqrt[5]{1 + \frac{3}{x^7}} + \sqrt[4]{\frac{2}{x^{13/5}} - \frac{1}{x^{21/5}}}}{\sqrt[6]{1 + \frac{1}{x} + \frac{1}{x^8}} - \frac{1}{x^{1/3}}} \longrightarrow (+\infty) \cdot \frac{1 + 0}{1 - 0} = +\infty.$$

6. Tetszőleges $0 < x \in \mathbb{R}$ esetén az $x \to \infty$ határátmenetben

$$f(x) = \frac{x^{4/3} \cdot \left(\sqrt[3]{1 + \frac{3}{x^4}} - \sqrt[5]{\frac{1}{x^{11/3}} + \frac{4}{x^{20/3}}}\right)}{x^{7/3} \cdot \left(\sqrt[3]{1 + \frac{1}{x^7}}\right)} = \frac{\sqrt[3]{1 + \frac{3}{x^4}} - \sqrt[5]{\frac{1}{x^{11/3}} + \frac{4}{x^{20/3}}}}{\sqrt[3]{1 + \frac{1}{x^7}}} \longrightarrow 0 \cdot \frac{1 - 0}{1} = 0.$$

7. Tetszőleges $0 < x \in \mathbb{R}$ esetén

$$f(x) = \frac{x \cdot \left(\sqrt{1 + \frac{1}{x^2}} - \sqrt[3]{\frac{1}{x} + \frac{1}{x^3}}\right)}{x \cdot \left(\sqrt[4]{1 + \frac{1}{x^4}} - \sqrt[5]{\frac{1}{x} + \frac{1}{x^5}}\right)} = \frac{\sqrt{1 + \frac{1}{x^2}} - \sqrt[3]{\frac{1}{x} + \frac{1}{x^3}}}{\sqrt[4]{1 + \frac{1}{x^4}} - \sqrt[5]{\frac{1}{x} + \frac{1}{x^5}}} \longrightarrow \frac{1 - 0}{1 - 0} = 1 \quad (x \to +\infty).$$

8. Tetszőleges $0 < x \in \mathbb{R}$ esetén

$$f(x) = \frac{\left(1 + \frac{1}{x}\right)^{10} + \left(1 + \frac{2}{x}\right)^{10} + \ldots + \left(1 + \frac{100}{x}\right)^{10}}{1 + \left(\frac{10}{x}\right)^{10}} \longrightarrow \frac{100 \cdot 1}{1 + 0} = 100 \quad (x \to +\infty).$$

9. Tetszőleges $0 < x \in \mathbb{R}$ esetén

$$f(x) = \left(\sqrt{x^2 - 2x - 1} - \sqrt{x^2 - 7x + 3}\right) \cdot \frac{\sqrt{x^2 - 2x - 1} + \sqrt{x^2 - 7x + 3}}{\sqrt{x^2 - 2x - 1} + \sqrt{x^2 - 7x + 3}} =$$

$$= \frac{x^2 - 2x - 1 - x^2 + 7x - 3}{\sqrt{x^2 - 2x - 1} + \sqrt{x^2 - 7x + 3}} = \frac{5x - 4}{\sqrt{x^2 - 2x - 1} + \sqrt{x^2 - 7x + 3}} =$$

$$= \frac{5 - \frac{4}{x}}{\sqrt{1 - \frac{2}{x} - \frac{1}{x^2}} + \sqrt{1 - \frac{7}{x} + \frac{3}{x^2}}} \longrightarrow \frac{5 - 0}{1 + 1} = \frac{5}{2} \quad (x \to +\infty).$$

$$\begin{split} f(x) &= & \varphi(x) \cdot \left(\frac{\sqrt{x+1} - \sqrt{x} + \sqrt{x-1} - \sqrt{x}}{\sqrt{x+1} + \sqrt{x}} + \frac{x-1-x}{\sqrt{x-1} + \sqrt{x}} \right) = \\ &= & \varphi(x) \cdot \left(\frac{x+1-x}{\sqrt{x+1} + \sqrt{x}} + \frac{x-1-x}{\sqrt{x-1} + \sqrt{x}} \right) = \\ &= & \varphi(x) \cdot \frac{\sqrt{x-1} + \sqrt{x} - \sqrt{x+1} - \sqrt{x}}{(\sqrt{x+1} + \sqrt{x}) \cdot (\sqrt{x-1} + \sqrt{x})} = \\ &= & \varphi(x) \cdot \frac{\sqrt{x-1} - \sqrt{x+1}}{(\sqrt{x+1} + \sqrt{x}) \cdot (\sqrt{x-1} + \sqrt{x})} \cdot \frac{\sqrt{x-1} + \sqrt{x+1}}{\sqrt{x-1} + \sqrt{x+1}} = \\ &= & \varphi(x) \cdot \frac{x-1-x-1}{(\sqrt{x+1} + \sqrt{x}) \cdot (\sqrt{x-1} + \sqrt{x}) \cdot (\sqrt{x-1} + \sqrt{x+1})}. \end{split}$$

Ha

• $\phi(x) = \sqrt[3]{x^2}$, akkor az $x \to +\infty$ határátmenetben

$$f(x) = \frac{-2x^{2/3}}{x^{3/2} \cdot \left(\sqrt{1 + \frac{1}{x}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{x}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{x}} + \sqrt{1 + \frac{1}{x}}\right)} =$$

$$= x^{-5/6} \cdot \frac{-2}{\left(\sqrt{1 + \frac{1}{x}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{x}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{x}} + \sqrt{1 + \frac{1}{x}}\right)} \longrightarrow$$

$$\longrightarrow 0 \cdot \frac{-2}{8} = 0;$$

• $\phi(x) = \sqrt{x^3}$, akkor az $x \to +\infty$ határátmenetben

$$f(x) = \frac{-2x^{3/2}}{x^{3/2} \cdot \left(\sqrt{1 + \frac{1}{x}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{x}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{x}} + \sqrt{1 + \frac{1}{x}}\right)} = \frac{-2}{\left(\sqrt{1 + \frac{1}{x}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{x}} + 1\right) \cdot \left(\sqrt{1 - \frac{1}{x}} + \sqrt{1 + \frac{1}{x}}\right)} \longrightarrow \frac{-2}{(1 + 1)(1 + 1)(1 + 1)} = -\frac{1}{4}.$$

11. Tetszőleges $0 < x \in \mathbb{R}$ esetén az $x \to +\infty$ határátmenetben

$$f(x) = x^{3} \cdot \left(\sqrt{x^{2} + \sqrt{x^{4} + 1}} - x\sqrt{2}\right) \cdot \frac{\sqrt{x^{2} + \sqrt{x^{4} + 1}} + x\sqrt{2}}{\sqrt{x^{2} + \sqrt{x^{4} + 1}} + x\sqrt{2}} =$$

$$= x^{3} \cdot \frac{x^{2} + \sqrt{x^{4} + 1} - 2x^{2}}{\sqrt{x^{2} + \sqrt{x^{4} + 1}} + x\sqrt{2}} = x^{3} \cdot \frac{\sqrt{x^{4} + 1} - x^{2}}{\sqrt{x^{2} + \sqrt{x^{4} + 1}} + x\sqrt{2}} \cdot \frac{\sqrt{x^{4} + 1} + x^{2}}{\sqrt{x^{4} + 1} + x^{2}} =$$

$$= x^{3} \cdot \frac{x^{4} + 1 - x^{4}}{\left(\sqrt{x^{2} + \sqrt{x^{4} + 1}} + x\sqrt{2}\right)\left(\sqrt{x^{4} + 1} + x^{2}\right)} =$$

$$= \frac{x^{3}}{x^{3} \cdot \left(\sqrt{1 + \sqrt{1 + \frac{1}{x^{4}}}} + \sqrt{2}\right)\left(\sqrt{1 + \frac{1}{x^{4}}} + 1\right)} \longrightarrow \frac{1}{\left(\sqrt{2} + \sqrt{2}\right)(1 + 1)} = \frac{1}{4\sqrt{2}}.$$

$$f(x) = \left(\sqrt{x + \sqrt{x}} - \sqrt{x - \sqrt{x}}\right) \cdot \frac{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x - \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}}} = \frac{x + \sqrt{x} - x + \sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x}} = \frac{x + \sqrt{x}}{\sqrt{x + \sqrt{x}}} = \frac{x + \sqrt{$$

$$= \frac{2}{\sqrt{1+\frac{1}{\sqrt{x}}}+\sqrt{1-\frac{1}{\sqrt{x}}}} \longrightarrow \frac{2}{1+1} = 1 \qquad (x \to +\infty).$$

13. Tetszőleges $0 < x \in \mathbb{R}$ esetén

$$f(x) = \sqrt[3]{x^2} \cdot \left(\sqrt{x^3 + 1} - \sqrt{x^3 - 1}\right) \cdot \frac{\sqrt{x^3 + 1} + \sqrt{x^3 - 1}}{\sqrt{x^3 + 1} + \sqrt{x^3 - 1}} = \sqrt[3]{x^2} \cdot \frac{x^3 + 1 - x^3 + 1}{\sqrt{x^3 + 1} + \sqrt{x^3 - 1}} = \sqrt[3]{x^2} \cdot \frac{2}{x^{3/2} \cdot \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}}\right)} = \frac{2}{x^{5/6} \cdot \left(\sqrt{1 + \frac{1}{x^3}} + \sqrt{1 - \frac{1}{x^3}}\right)} \longrightarrow 2$$

$$\longrightarrow \frac{2}{(+\infty)\cdot(1+1)} = 0 \quad (x \to +\infty).$$

14. Tetszőleges $0 < x \in \mathbb{R}$ esetén

$$f(x) = \sqrt[3]{\frac{1}{x^3} + \frac{1}{x^2}} - \frac{1}{x} \longrightarrow 0 - 0 = 0 \quad (x \to +\infty). \quad \blacksquare$$

Definíció. Legyenek f, $g \in \mathbb{R} \to \mathbb{R}$ olyan függvények, amelyekre

$$\mathcal{D}_f \cap \mathcal{D}_g =: \mathcal{D} \neq \emptyset \qquad \text{\'es} \qquad f(x) > 0 \quad (x \in \mathcal{D})$$

teljesül. Ekkor

$$(f^g)(x) := f(x)^{g(x)} := \exp\left(g(x) \cdot \ln(f(x))\right) \qquad (x \in \mathcal{D}).$$

2022.05.14.

Feladat. Számítsuk ki a

$$\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x$$

határértékeket!

Útm. Mivel minden $x \in (0, +\infty)$ esetén $x - 1 < [x] \le x$, ezért

$$\left(1 + \frac{1}{[x]+1}\right)^{[x]} < \left(1 + \frac{1}{x}\right)^x < \left(1 + \frac{1}{[x]}\right)^{[x]+1},$$

így a Sandwich-tétel alapján

$$\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e. \quad \blacksquare$$

11. gyakorlat (2022.04.26.)

Feladat. Igazoljuk, hogy ha $f \in \mathbb{R} \to \mathbb{R}$, $\alpha \in \mathcal{D}_f'$ és $0 \notin \mathcal{R}_f$, ill. $\lim_{\alpha} f = 0$, akkor

$$\lim_{\alpha} \frac{\sin \circ f}{f} = 1$$

teljesül!

Útm. Legyen $\varphi : \mathbb{R} \to \mathbb{R}$ olyan függvény, amelyre

$$\sin(x) = x - \frac{x^3}{6} + x^5 \cdot \varphi(x) \qquad (x \in \mathbb{R}).$$

Ekkor bármely $x \in \mathbb{R}$ számra

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{6} + \sum_{n=2}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{6} + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+5}}{(2n+5)!},$$

így

$$\phi(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+5)!} \qquad (x \in \mathbb{R})$$

és

$$|\varphi(x)| < 1 \quad (|x| < 1),$$

ui. a teljes indukcióval könnyen belátható

$$n!>2^n \qquad (4\leq n\in \mathbb{N}_0)$$

egyenlőtlenség következtében tertszőleges $x \in (-1, 1)$ esetén

$$|\varphi(x)| = \left| \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+5)!} \right| \le \sum_{n=0}^{\infty} \frac{|x|^{2n}}{(2n+5)!} < \sum_{n=0}^{\infty} \frac{1}{(2n+5)!} < \sum_{n=0}^{\infty} \frac{1}{2^{2n+5}} =$$

$$= \frac{1}{32} \cdot \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n = \frac{1}{32} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{32} \cdot \frac{4}{3} = \frac{1}{24} < 1.$$

A fentiek alapján bármely $a \neq x \in \mathcal{D}_f$ esetén

$$\left(\frac{\sin\circ f}{f}\right)(x) = \frac{1}{f(x)}\cdot \left(f(x) - \frac{f^3(x)}{6} + f^5(x)\cdot \phi(f(x))\right).$$

Mivel $\lim f = 0$, ezért az $\varepsilon := 1$ számhoz van olyan $\delta > 0$, hogy bármely $\chi \in (K_{\delta}(\mathfrak{a}) \setminus \{\mathfrak{a}\}) \cap \mathcal{D}_f$ esetén

$$|f(x)| = |f(x) - 0| < 1,$$
 azaz $|\phi(f(x))| < 1.$

Így

$$\lim_{a} \frac{\sin \circ f}{f} = 1 - \frac{(0)^2}{6} + 0 = 1. \quad \blacksquare$$

Emlékeztető. Ha a

$$\sum \left(\alpha_n(x-c)^n\right) \qquad (x\in\mathbb{R})$$

hatványsor konvergenciasugara R és

$$f(x) := \sum_{n=0}^{\infty} a_n (x - c)^n \qquad (x \in K_R(c)),$$

akor bármely $b \in K_R(c)$ esetén

$$\lim_{x\to b} f(x) = f(b) = \sum_{n=0}^{\infty} a_n (b-c)^n.$$

Feladat. Legyen $a, b \in \mathbb{R}$: $b \neq 0$. Számítsuk ki a következő határértékeket, amennyiben azok léteznek!

1.
$$\lim_{x \to 0} \frac{\sin(ax)}{\sin(bx)}$$

2.
$$\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$$

3.
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x}$$
;

1.
$$\lim_{x\to 0} \frac{\sin(\alpha x)}{\sin(bx)}$$
 2. $\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$; 3. $\lim_{x\to 0} \frac{1-\cos(x)}{x}$; 4. $\lim_{x\to 0} \frac{tg(x)-\sin(x)}{x^3}$.

Útm.

1. Világos, hogy

$$\frac{\sin(\alpha x)}{\sin(bx)} = \frac{\frac{\sin(\alpha x)}{\alpha x}}{\frac{\sin(bx)}{bx}} \cdot \frac{\alpha x}{bx} \longrightarrow \frac{1}{1} \cdot \frac{\alpha}{b} \qquad (x \to 0).$$

2. A törtet bővítve azt kapjuk, hogy az $x \to 0$ határátmenetben

$$\frac{1 - \cos(x)}{x^2} = \frac{(1 - \cos(x))(1 + \cos(x))}{x^2(1 + \cos(x))} = \left(\frac{\sin(x)}{x}\right)^2 \cdot \frac{1}{1 + \cos(x)} \longrightarrow 1^2 \cdot \frac{1}{2} = \frac{1}{2}.$$

3. A törtet bővítve azt kapjuk, hogy az $x \to 0$ határátmenetben

$$\frac{1 - \cos(x)}{x} = \frac{(1 - \cos(x))(1 + \cos(x))}{x(1 + \cos(x))} = \frac{\sin^2(x)}{x} \cdot \frac{1}{1 + \cos(x)} =$$

$$= \sin(x) \cdot \frac{\sin(x)}{x} \cdot \frac{1}{1 + \cos(x)} \longrightarrow 0 \cdot 1 \cdot \frac{1}{2} = 0.$$

Megjegyzés. Tetszőleges $x \in \mathbb{R}$ esetén

$$\frac{1-\cos(x)}{x} = \frac{1-\cos(x)}{x^2} \cdot x \longrightarrow \frac{1}{2} \cdot 0 = 0 \qquad (x \to 0).$$

4. Némi átalakítás után azt kapjuk, hogy

$$\lim_{x \to 0} \frac{\operatorname{tg}(x) - \sin(x)}{x^3} = \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \frac{1}{\cos(x)} \cdot \frac{1 - \cos(x)}{x^2} = 1 \cdot \frac{1}{1} \cdot \frac{1}{2} = \frac{1}{2}. \quad \blacksquare$$

A hatványsorokra vonatkozó ismeretek alkalmazásával határozzuk meg a következő határértékeket!

1.
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$$

2.
$$\lim_{x \to +\infty} e^x$$

3.
$$\lim_{x\to-\infty}e^x$$

1.
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$$
; 2. $\lim_{x \to +\infty} e^x$; 3. $\lim_{x \to -\infty} e^x$; 4. $\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin(x)}$.

Útm.

1. Felhasználjuk, hogy

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 $(x \in \mathbb{R}).$

Ekor ui.

$$\lim_{x\to 0}\frac{1-\cos(x)}{x^2} \ = \ \lim_{x\to 0}\frac{1}{x^2}\left(1-\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}\right) = \lim_{x\to 0}\frac{1}{x^2}\sum_{n=1}^{\infty}(-1)^{n+1}\frac{x^{2n}}{(2n)!} =$$

$$= \lim_{x \to 0} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-2}}{(2n)!} = \lim_{x \to 0} \left(\frac{1}{2} + \sum_{n=2}^{\infty} (-1)^{n+1} \frac{x^{2n-2}}{(2n)!} \right) = \frac{1}{2} + 0 = \frac{1}{2}.$$

2. Mivel bármely $0 < x \in \mathbb{R}$ esetén

$$e^{x}=1+x+\sum_{n=2}^{\infty}\frac{x^{n}}{n!}>x,$$

ezért

2022.05.14.

$$\lim_{x\to+\infty}e^x=+\infty.$$

3. Legyen x = -y. Ekkor

$$x \to -\infty$$
 \Longrightarrow $y \to +\infty$

így

$$\lim_{x\to-\infty}e^x=\lim_{y\to+\infty}e^{-y}=\lim_{y\to+\infty}\frac{1}{e^y}=\frac{1}{+\infty}=0.$$

4. Világos, hogy

$$\lim_{x \to 0} \frac{e^{x} - e^{-x} - 2x}{x - \sin(x)} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n}}{n!} - \sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n} - (-1)^{n} x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^{n}}{n!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{x^{n}}{n!} - 2x$$

$$= \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{2x^{2n+1}}{(2n+1)!} - 2x}{x - \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{2x^{2n}}{(2n+1)!} - 2}{1 - \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+1)!}} =$$

$$= \lim_{x \to 0} \frac{\sum_{n=1}^{\infty} \frac{2x^{2n}}{(2n+1)!}}{\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n}}{(2n+1)!}} = \lim_{x \to 0} \frac{2 \cdot \sum_{n=1}^{\infty} \frac{x^{2n-2}}{(2n+1)!}}{\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-2}}{(2n+1)!}} =$$

$$= \lim_{x \to 0} \frac{2 \cdot \left(\frac{1}{3!} + \sum_{n=2}^{\infty} \frac{x^{2n-2}}{(2n+1)!}\right)}{\frac{1}{3!} + \left(\sum_{n=2}^{\infty} (-1)^{n+1} \frac{x^{2n-2}}{(2n+1)!}\right)} = \frac{2\left(\frac{1}{3!} - 0\right)}{\frac{1}{3!} + 0} = 2. \quad \blacksquare$$

Házi (gyakorló) feladat.

1. Számítsuk ki a következő határértékeket!

(a)
$$\lim_{x\to 0} \frac{\operatorname{tg}(ax)}{\operatorname{tg}(bx)}$$
 $(a,b\in\mathbb{R}:\ b\neq 0);$ (b) $\lim_{x\to 0} \frac{\sin(5x)-\sin(3x)}{\sin(x)};$

(b)
$$\lim_{x\to 0} \frac{\sin(5x) - \sin(3x)}{\sin(x)}$$

(c)
$$\lim_{x\to 0} \frac{e^{ax} - e^{bx}}{x}$$
 $(a, b \in \mathbb{R});$ (d) $\lim_{x\to 0} \frac{e^{5x} - e^{2x}}{x\cos(2x) + \sin(3x)}.$

(d)
$$\lim_{x\to 0} \frac{e^{5x} - e^{2x}}{x\cos(2x) + \sin(3x)}$$
.

2. Számítsuk ki az alábbi határértékeket, amennyiben azok léteznek!

(a)
$$\lim_{x\to 0} \frac{1-\cos(x)\cdot\cos(2x)}{1-\cos(x)};$$

(b)
$$\lim_{x\to 0} \frac{\operatorname{tg}(x) - \sin(2x)}{\sin(3x)}.$$

3. Számítsuk ki az alábbi határértékeket, amennyiben azok léteznek!

(a)
$$\lim_{x\to 0} \frac{\sqrt{1+tg(x)}-\sqrt{1+\sin(x)}}{x^3}$$
;

(b)
$$\lim_{x\to 0} \frac{\sqrt{1+\sin^2(x)}-\sqrt{\cos(2x)}}{x^3+x^2}$$
;

(c)
$$\lim_{x\to\pi}\frac{\sqrt{1-tg(x)}-\sqrt{1+tg(x)}}{\sin(2x)};$$

(d)
$$\lim_{x \to \pi} \frac{\sin(\sin(\sin(x)))}{x - \pi}$$
.

4. Számítsuk ki az alábbi határértékeket, amennyiben azok léteznek!

(a)
$$\lim_{x \to 0} \frac{x^2}{\sqrt{1 + x \sin(x)} - \sqrt{\cos(x)}}$$
;

(b)
$$\lim_{x\to 0} \frac{1-\cos^3(x)+\sin^2(2x)}{2x^2-\sin^2(x)}$$
.

5. Számítsuk ki az alábbi határértékeket, amennyiben azok léteznek!

(a)
$$\lim_{x \to \pi/2} \frac{\cos(x) - \sin(x) + 1}{\cos(x) + \sin(x) - 1}$$

(b)
$$\lim_{x\to 0} \frac{\sqrt{e^x - x - 1}}{\cos(x) - e^{-x}};$$

(a)
$$\lim_{x \to \pi/2} \frac{\cos(x) - \sin(x) + 1}{\cos(x) + \sin(x) - 1}$$
; (b) $\lim_{x \to 0} \frac{\sqrt{e^x - x - 1}}{\cos(x) - e^{-x}}$; (c) $\lim_{x \to 0} \frac{\sin^2(x) + \sqrt{\cos(2x)} - 1}{(e^x - 1)^2}$.

6. Számítsuk ki a

(a)
$$\lim_{x\to 0} \frac{e^{-x} - e^{3x}}{x}$$
;

(a)
$$\lim_{x \to 0} \frac{e^{-x} - e^{3x}}{x}$$
; (b) $\lim_{x \to 0} \frac{\cos(\sqrt{x}) - \frac{1}{1 - x}}{x + \sin(2x)}$; (c) $\lim_{x \to +\infty} \frac{x}{e^x - 1}$

(c)
$$\lim_{x \to +\infty} \frac{x}{e^x - 1}$$

határértékeket, amennyiben azok létezik!

Útm.

1. (a) Világos, hogy

$$\lim_{x\to 0} \frac{\operatorname{tg}(ax)}{\operatorname{tg}(bx)} = \lim_{x\to 0} \frac{\sin(ax)}{\sin(bx)} \frac{\cos(bx)}{\cos(ax)} = \frac{a}{b} \cdot \lim_{x\to 0} \frac{\sin(ax)}{ax} \cdot \lim_{x\to 0} \frac{bx}{\sin(bx)} \cdot \lim_{x\to 0} \frac{\cos(bx)}{\cos(ax)} = \frac{a}{b}.$$

- (b) Három módszerrel is kiszámítjuk az adott határértéket.
 - **1. módszer.** Trigonometrikus összefüggéseket alkalmazva (vö. Mat. alapok, 38-39. old.) látható, hogy

$$\lim_{x \to 0} \frac{\sin(5x) - \sin(3x)}{\sin(x)} = \lim_{x \to 0} \frac{2\sin(x)\cos(4x)}{\sin(x)} = 2 \cdot \lim_{x \to 0} \cos(4x) = 2 \cdot 1 = 2.$$

2. módszer. Világos, hogy

$$\lim_{x \to 0} \frac{5 \cdot \frac{\sin(5x)}{5x} - 3 \cdot \frac{\sin(3x)}{3x}}{\frac{\sin(x)}{x}} = \frac{5 - 3}{1} = 2.$$

3. módszer. Fehasználva a sin függvény definícióját látható, hogy

$$\lim_{x\to 0}\frac{\sin(5x)-\sin(3x)}{\sin(x)}=\lim_{x\to 0}\frac{\sum\limits_{n=0}^{\infty}(-1)^n\frac{(5x)^{2n+1}}{(2n+1)!}-\sum\limits_{n=0}^{\infty}(-1)^n\frac{(3x)^{2n+1}}{(2n+1)!}}{\sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}}=$$

$$=\lim_{x\to 0}\frac{\sum\limits_{n=0}^{\infty}(-1)^n\frac{5^{2n+1}\cdot x^{2n}}{(2n+1)!}-\sum\limits_{n=0}^{\infty}(-1)^n\frac{3^{2n+1}\cdot x^{2n}}{(2n+1)!}}{\sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}}=\lim_{x\to 0}\frac{\sum\limits_{n=0}^{\infty}(-1)^n\frac{5^{2n+1}-3^{2n+1}}{(2n+1)!}\cdot x^{2n}}{\sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}}=$$

$$= \lim_{x \to 0} \frac{5 - 3 + \sum_{n=1}^{\infty} (-1)^n \frac{5^{2n+1} - 3^{2n+1}}{(2n+1)!} \cdot x^{2n}}{1 + \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}} = \frac{5 - 3}{1} = 2.$$

(c) Világos, hogy

$$\lim_{x\to 0}\frac{e^{\alpha x}-e^{bx}}{x} = \lim_{x\to 0}\frac{\sum\limits_{n=0}^{\infty}\frac{(\alpha x)^n}{n!}-\sum\limits_{n=0}^{\infty}\frac{(bx)^n}{n}-}{x} = \lim_{x\to 0}\frac{\sum\limits_{n=0}^{\infty}\frac{\alpha^n-b^n}{n!}\cdot x^n}{x} = \lim_{x\to 0}\frac{\sum\limits_{n=1}^{\infty}\frac{\alpha^n-b^n}{n!}\cdot x^n}{x} = \lim_{x\to 0}\frac{\sum\limits_{n=0}^{\infty}\frac{\alpha^n-b^n}{n!}\cdot x^n}{x} = \lim_{x\to 0}\frac{\alpha^n-b^n}{n!}\cdot x^n}{x} = \lim_{x\to 0}\frac{\alpha^n-b^n}{n!}\cdot x^n}{x} = \lim_{x$$

$$= \lim_{x \to 0} \frac{\sum_{n=1}^{\infty} \frac{a^n - b^n}{n!} \cdot x^{n-1}}{1} = \lim_{x \to 0} \left\{ a - b + \sum_{n=2}^{\infty} \frac{a^n - b^n}{n!} \cdot x^{n-1} \right\} = a - b.$$

(d) Mivel

$$\lim_{x \to 0} \frac{e^{5x} - e^{2x}}{x} = 5 - 2 = 3,$$

ezért

$$\lim_{x\to 0} \frac{e^{5x} - e^{2x}}{x\cos(2x) + \sin(3x)} = \lim_{x\to 0} \frac{e^{5x} - e^{2x}}{x} \cdot \lim_{x\to 0} \frac{1}{\cos(2x) + \frac{\sin(3x)}{x}} 3 \cdot \frac{1}{1+3} = \frac{3}{4}.$$

2. (a) Mivel bármely $0 \neq x \in (-\pi, \pi)$ esetén

$$\frac{1 - \cos(x) \cdot \cos(2x)}{1 - \cos(x)} = \frac{1 - \cos(x) + \cos(x) \cdot (1 - \cos(2x))}{1 - \cos(x)} = 1 + \cos(x) \cdot \frac{1 - \cos(2x)}{1 - \cos(x)},$$

ezért

$$\lim_{x \to 0} \frac{1 - \cos(x) \cdot \cos(2x)}{1 - \cos(x)} = 1 + \lim_{x \to 0} \frac{2\sin^2(x)}{2\sin^2(x/2)} = 1 + \lim_{x \to 0} \frac{2\left(\frac{\sin(x)}{x}\right)^2}{2\left(\frac{\sin(x/2)}{x/2}\right)^2} \cdot 4 = 5.$$

(b) Mivel bármely $0 \neq x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ esetén

$$\frac{\operatorname{tg}(x)-\sin(2x)}{\sin(3x)} = \frac{\frac{\sin(x)}{\cos(x)}-\sin(2x)}{\sin(3x)} = \frac{\frac{1}{\cos(x)}\cdot\frac{\sin(x)}{x}\cdot x - \frac{\sin(2x)}{2x}\cdot 2x}{\frac{\sin(3x)}{3x}\cdot 3x} = \frac{\frac{1}{\cos(x)}\cdot\frac{\sin(x)}{x} - \frac{\sin(2x)}{2x}\cdot 2}{\frac{\sin(3x)}{3x}\cdot 3}$$

és

$$\lim_{x\to 0}\cos(x)=1, \qquad \text{ill.} \qquad \lim_{x\to 0}\frac{\sin(\alpha x)}{\alpha x}=1 \quad (0\neq\alpha\in\mathbb{R}),$$

ezért – felhasználva a határérték és a műveletek kapcsolatára vonatkozó tételt –, ezt kapjuk:

$$\lim_{x \to 0} \frac{\operatorname{tg}(x) - \sin(2x)}{\sin(3x)} = \frac{1 - 2}{3} = -\frac{1}{3}.$$

3. (a) Világos, hogy

$$\lim_{x \to 0} \frac{\sqrt{1 + \operatorname{tg}(x)} - \sqrt{1 + \sin(x)}}{x^3} = \lim_{x \to 0} \frac{\sqrt{1 + \operatorname{tg}(x)} - \sqrt{1 + \sin(x)}}{x^3} \cdot \frac{\sqrt{1 + \operatorname{tg}(x)} + \sqrt{1 + \sin(x)}}{\sqrt{1 + \operatorname{tg}(x)} + \sqrt{1 + \sin(x)}} =$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{1 + \operatorname{tg}(x)} + \sqrt{1 + \sin(x)}} \cdot \lim_{x \to 0} \frac{\operatorname{tg}(x) - \sin(x)}{x^3} =$$

$$= \frac{1}{2} \cdot \lim_{x \to 0} \frac{1}{\cos(x)} \cdot \frac{1 - \cos(x)}{x^2} \cdot \frac{\sin(x)}{x} = \frac{1}{2} \cdot 1 \cdot \frac{1}{2} \cdot 1 = \frac{1}{4}.$$

(b) Mivel bármely $0 \neq x \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ esetén

$$\frac{\sqrt{1+\sin^2(x)}-\sqrt{\cos(2x)}}{x^3+x^2} = \frac{\sqrt{1+\sin^2(x)}-\sqrt{\cos(2x)}}{x^2(x+1)} \cdot \frac{\sqrt{1+\sin^2(x)}+\sqrt{\cos(2x)}}{\sqrt{1+\sin^2(x)}+\sqrt{\cos(2x)}} =$$

$$= \frac{1 + \sin^2(x) - \cos(2x)}{(x^3 + x^2) \left(\sqrt{1 + \sin^2(x)} + \sqrt{\cos(2x)}\right)} =$$

$$= \frac{1 + \sin^2(x) - \cos(2x)}{x^2} \cdot \frac{1}{(x+1)\left(\sqrt{1 + \sin^2(x)} + \sqrt{\cos(2x)}\right)} =$$

$$= \ \left\{4\cdot\frac{1-\cos(2x)}{4x^2} + \left(\frac{\sin(x)}{x}\right)^2\right\}\cdot\frac{1}{(x+1)\cdot\left(\sqrt{1+\sin^2(x)}+\sqrt{\cos(2x)}\right)} =$$

$$= \left\{4 \cdot \frac{1 - \cos(2x)}{(2x)^2} + \left(\frac{\sin(x)}{x}\right)^2\right\} \cdot \frac{1}{(x+1)\left(\sqrt{1 + \sin^2(x)} + \sqrt{\cos(2x)}\right)},$$

ezért

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin^2(x)} - \sqrt{\cos(2x)}}{x^3 + x^2} = \left\{ 4 \cdot \frac{1}{2} + 1^2 \right\} \cdot \frac{1}{1 \cdot (1+1)} = \frac{3}{2}.$$

(c) Ha $k \in \mathbb{Z}$ és $k\pi \neq x \in \mathbb{R}$, akkor

$$\frac{\sqrt{1 - tg(x)} - \sqrt{1 + tg(x)}}{\sin(2x)} \ = \ \frac{\sqrt{1 - tg(x)} - \sqrt{1 + tg(x)}}{\sin(2x)} \cdot \frac{\sqrt{1 - tg(x)} + \sqrt{1 + tg(x)}}{\sqrt{1 - tg(x)} + \sqrt{1 + tg(x)}} =$$

$$= \frac{-2\operatorname{tg}(x)}{2\sin(x)\cos(x)\left(\sqrt{1-\operatorname{tg}(x)}+\sqrt{1+\operatorname{tg}(x)}\right)} =$$

$$= \frac{-1}{\cos^2(x)\left(\sqrt{1-tg(x)}+\sqrt{1+tg(x)}\right)},$$

ezért

$$\lim_{x\to\pi}\frac{\sqrt{1-tg(x)}-\sqrt{1+tg(x)}}{\sin(2x)}=\frac{-1}{(-1)^2(1+1)}=-\frac{1}{2}.$$

(d) Az $y := x - \pi$ jelölés bevezetésével a sin függvény páratlan volta és a tetszőleges $\alpha \in \mathbb{R}$ esetén fennálló $\sin(y + \pi) = -y \sin(y)$ egyenlőség következtében azt kapjuk, hogy

$$\lim_{x\to\pi}\frac{\sin(\sin(\sin(x)))}{x-\pi}=\lim_{y\to0}\frac{-\sin(\sin(\sin(y)))}{\sin(\sin(y))}\cdot\frac{\sin(\sin(y))}{\sin(y)}\cdot\frac{\sin(y)}{y}=-1.$$

4. (a) Világos, hogy

$$\lim_{x \to 0} \frac{x^2}{\sqrt{1 + x \sin(x)} - \sqrt{\cos(x)}} = \lim_{x \to 0} \frac{x^2(\sqrt{1 + x \sin(x)} + \sqrt{\cos(x)})}{1 + x \sin(x) - \cos(x)} =$$

$$= \lim_{x \to 0} \frac{x^2 \left(\sqrt{1 + x \sin(x)} + \sqrt{\cos(x)} \right)}{x^2 \cdot \frac{1 - \cos(x)}{x^2} - x^2 \cdot \frac{\sin(x)}{x}} =$$

$$= \lim_{x \to 0} \frac{\sqrt{1 + x \sin(x)} + \sqrt{\cos(x)}}{\frac{1 - \cos(x)}{x^2} + \frac{\sin(x)}{x}} = \frac{1 + 1}{\frac{1}{2} + 1} = \frac{4}{3}.$$

(b) Korábbi eredményeink tükrében

$$\lim_{x \to 0} \frac{1 - \cos^{3}(x) + \sin^{2}(2x)}{2x^{2} - \sin^{2}(x)} = \lim_{x \to 0} \frac{\frac{1 - \cos(x)}{x^{2}} \cdot \left(1 + \cos(x) + \cos^{2}(x)\right) + \left(\frac{\sin(2x)}{2x}\right)^{2} \cdot 4}{2 - \left(\frac{\sin(x)}{x}\right)^{2}} = \frac{\frac{1}{2} \cdot 3 + 1 \cdot 4}{2 - 1} = \frac{11}{2}.$$

5. (a) Elemi átalakítások segítségével azt kapjuk, hogy

$$\lim_{x \to \pi/2} \frac{\cos(x) - \sin(x) + 1}{\cos(x) + \sin(x) - 1} = \lim_{x \to \pi/2} \frac{2\cos^2\left(\frac{x}{2}\right) - 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) - 2\sin^2\left(\frac{x}{2}\right)} =$$

$$= \lim_{x \to \pi/2} \frac{2\cos\left(\frac{x}{2}\right)\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)}{2\sin\left(\frac{x}{2}\right)\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)} =$$

$$= \lim_{x \to \pi/2} \frac{\cos\left(\frac{x}{2}\right)\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)}{\sin\left(\frac{x}{2}\right)} = 1.$$

(b) Mivel bármely $x \in \mathbb{R}$: $\cos(x) - e^{-x} \neq 0$ (pl. $x \neq 0$) esetén

$$\frac{\sqrt{e^x-x-1}}{\cos(x)-e^{-x}} = \frac{\sqrt{\sum\limits_{n=0}^{\infty}\frac{x^n}{n!}-x-1}}{\sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}-\sum\limits_{n=0}^{\infty}\frac{(-x)^n}{n!}} = \frac{\sqrt{\sum\limits_{n=2}^{\infty}\frac{x^n}{n!}}}{\sum\limits_{n=1}^{\infty}(-1)^n\left\{\frac{x^{2n}}{(2n)!}-\frac{x^n}{n!}\right\}} =: \frac{\sqrt{x^2\cdot f(x)}}{x\cdot g(x)},$$

és

$$\frac{\sqrt{x^2 \cdot f(x)}}{x \cdot g(x)} = \frac{|x|}{x} \cdot \frac{\sqrt{f(x)}}{g(x)} = \operatorname{sgn}(x) \cdot \frac{\sqrt{f(x)}}{g(x)},$$

ill.

$$\lim_{x\to 0} \sqrt{f(x)} = \sqrt{f(0)} = \sqrt{\frac{1}{2!}} = \frac{1}{\sqrt{2}} \qquad \text{és} \qquad \lim_{x\to 0} g(x) = g(0) = 1,$$

továbbá

$$\# \lim_{x \to 0} sgn(x)$$
 $/ \lim_{x \to 0 \pm 0} sgn(x) = \pm 1$
,

ezért

$$\nexists \lim_{x\to 0} \frac{\sqrt{e^x - x - 1}}{\cos(x) - e^{-x}}.$$

(c) Mivel bármely $0 \neq x \in \mathbb{R}$ esetén

$$\frac{\sin^{2}(x) + \sqrt{\cos(2x)} - 1}{(e^{x} - 1)^{2}} = \frac{\sin^{2}(x) + \frac{\cos(2x) - 1}{\sqrt{\cos(2x)} + 1}}{\left(\sum_{n=1}^{\infty} \frac{x^{n}}{n!}\right)^{2}} =$$

$$= \frac{x^2 \left(\frac{\sin(x)}{x}\right)^2 - 4x^2 \cdot \frac{1 - \cos(2x)}{(2x)^2} \cdot \frac{1}{\sqrt{\cos(2x)} + 1}}{x^2 \left(\sum_{n=1}^{\infty} \frac{x^{n-1}}{n!}\right)^2},$$

ezért

$$\lim_{x \to 0} \frac{\sin^2(x) + \sqrt{\cos(2x)} - 1}{(e^x - 1)^2} = \lim_{x \to 0} \frac{\left(\frac{\sin(x)}{x}\right)^2 - 4 \cdot \frac{1 - \cos(2x)}{(2x)^2} \cdot \frac{1}{\sqrt{\cos(2x)} + 1}}{\left(1 + \sum_{n=2}^{\infty} \frac{x^{n-1}}{n!}\right)^2} =$$

$$= \frac{1-4\cdot\frac{1}{2}\cdot\frac{1}{2}}{(1+0)^2}=0.$$

6. (a) Mivel bármely $0 \neq x \in \mathbb{R}$ esetén

$$\frac{e^{-x} - e^{3x}}{x} = \frac{1}{x} \cdot \left\{ e^{-x} - e^{3x} \right\} = \frac{1}{x} \cdot \left\{ \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} - \sum_{n=0}^{\infty} \frac{(3x)^n}{n!} \right\} =$$

$$= \frac{1}{x} \cdot \left\{ \sum_{n=1}^{\infty} \frac{(-x)^n}{n!} - \sum_{n=1}^{\infty} \frac{(3x)^n}{n!} \right\} =$$

$$= \sum_{n=1}^{\infty} \frac{(-1)^n x^{n-1}}{n!} - \sum_{n=1}^{\infty} \frac{3^n x^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n!} \cdot \{(-1)^n - 3^n\} =$$

$$= -4 + \sum_{n=2}^{\infty} \frac{x^{n-1}}{n!} \cdot \{(-1)^n - 3^n\},\,$$

ezért

$$\lim_{x \to 0} \frac{e^{-x} - e^{3x}}{x} = -4 + 0 = -4.$$

(b) Jól látható, hogy ha $x \in (0, 1)$, akkor

$$\lim_{x \to 0} \frac{\cos(\sqrt{x}) - \frac{1}{1 - x}}{x + \sin(2x)} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} (-1)^n \frac{(\sqrt{x})^{2n}}{(2n)!} - \sum_{n=0}^{\infty} x^n}{x + \sum_{n=0}^{\infty} (-1)^n \frac{(2x)^{2n+1}}{(2n+1)!}} =$$

$$= \lim_{x \to 0} \frac{\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{(2n)!} - 1 \right) x^n}{3x + \sum_{n=1}^{\infty} (-1)^n \frac{(2x)^{2n+1}}{(2n+1)!}} =$$

$$= \lim_{x \to 0} \frac{-\frac{3}{2} + \sum_{n=2}^{\infty} \left(\frac{(-1)^n}{(2n)!} - 1\right) x^{n-1}}{3 + \sum_{n=1}^{\infty} (-1)^n \frac{(2)^{2n+1} \cdot (x)^{2n}}{(2n+1)!}} = \frac{-\frac{3}{2}}{3} = -\frac{1}{2}.$$

(c) Világos, hogy

$$\lim_{x \to +\infty} \frac{x}{e^x - 1} = \lim_{x \to +\infty} \frac{x}{\sum_{n=0}^{\infty} \frac{x^n}{n!} - 1} = \lim_{x \to +\infty} \frac{x}{\sum_{n=1}^{\infty} \frac{x^n}{n!}} = \lim_{x \to +\infty} \frac{1}{\sum_{n=1}^{\infty} \frac{x^{n-1}}{n!}} = \lim_{x \to +\infty} \frac{1}{1 + \sum_{n=2}^{\infty} \frac{x^{n-1}}{n!}} = \lim_{x \to +\infty} \frac{x^{n-1}}{n!} = \lim_{x \to +\infty} \frac{1}{1 + \sum_{n=2}^{\infty} \frac{x^{n-1}}{n!}} = \lim_{x$$

$$=\frac{1}{1+(+\infty)}=0.$$

Emlékeztető. Azt mondtuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ folytonos az $a \in \mathcal{D}_f$ pontban (jelben $f \in \mathfrak{C}[a]$), ha

$$\forall \, \varepsilon > 0 \quad \exists \, \delta > 0 \quad \forall \, x \in \mathcal{D}_f : \qquad (|x - \alpha| < \delta \implies |f(x) - f(\alpha)| < \varepsilon|).$$

Megjegyezzük, hogy ha f az **állandófüggvény**, akkor $f \in \mathfrak{C}[a]$, ui. tetszőleges $\varepsilon > 0$ számhoz minden $\delta > 0$ jó választás.

Feladat. A definíció alapján mutassuk meg, hogy folytonosak az alábbi függvények!

1.
$$f(x) := |x^2 - 4|$$
 $(x \in [-3, 5]);$ 2. $f(x) := x^2 + 2x - 3$ $(x \in \mathbb{R}).$

Útm.

1. Legyen $a \in [-3, 5], \varepsilon > 0$ adott. Ekkor bármely $x \in [-3, 5]$ esetén (vö. 1. $\boxed{\mathbf{GY}}$)

$$\begin{split} |f(x) - f(\alpha)| &= \left| |x^2 - 4| - |\alpha^2 - 4| \right| \leq \left| (x^2 - 4) - (\alpha^2 - 4) \right| = \left| x^2 - \alpha^2 \right| = |x + \alpha| \cdot |x - \alpha| \leq \\ &\leq \left(|x| + |\alpha| \right) \cdot |x - \alpha| \leq 10 \cdot |x - \alpha| < \epsilon \iff |x - \alpha| < \epsilon/10. \end{split}$$

 $\text{Ha tehát } \delta := \frac{\epsilon}{10}, \text{ akkor bármely } x \in [-3, 5], |x - \alpha| < \delta \text{ esetén } |f(x) - f(\alpha)| < \epsilon.$

2. Legyen $\alpha \in \mathbb{R}$, $\varepsilon > 0$ adott. Minden $x \in \mathbb{R}$ esetén

$$|f(x) - f(\alpha)| = |x^2 + 2x - 3 - (\alpha^2 + 2\alpha - 3)| = |x^2 - \alpha^2 + 2x - 2\alpha| =$$

= $|x + \alpha + 2| \cdot |x - \alpha|$.

Ha $x \in (\alpha - 1, \alpha + 1)$, akkor

$$|x + a + 2| < |x| + |a| + 2 < 2|a| + 3$$

így

$$|f(x) - f(a)| \le (2|a| + 3) \cdot |x - a| < \varepsilon \qquad \iff \qquad |x - a| < \varepsilon/(2|a| + 3).$$

Α

$$\delta := \min\left\{1, \frac{\epsilon}{2|\alpha|+3}\right\}$$

választás tehát megfelelő, azaz tetszőleges $x \in \mathbb{R}, |x - a| < \delta$ esetén $|f(x) - f(a)| < \epsilon$.

Feladat. Legyen $f \in \mathbb{R} \to \mathbb{R}$ folytonos az $\alpha \in \mathcal{D}_f$ pontban és $f(\alpha) > 0$. Mutassuk meg, hogy ekkor az α pontnak van olyan környezete, amelyben f csak pozitív értéket vesz fel!

Útm. Az f függvény a pontbeli folytonossága következtében tetszőleges $\epsilon > 0$ számhoz, így az $\epsilon := f(\alpha)$ -hoz is van olyan $\delta > 0$, hogy bármely $x \in \mathcal{D}_f$, $|x - \alpha| < \delta$ esetén $|f(x) - f(\alpha)| < \epsilon$, azaz

$$|f(x) - f(a)| < f(a)$$
 \iff $-f(a) < f(x) - f(a) < f(a)$ \iff $0 < f(x) < 2f(a)$.

Emlékeztető (folytonosságra vonatkozó átviteli elv). Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f$. Ekkor igaz az

$$f\in \mathfrak{C}[\mathfrak{a}] \qquad \Longleftrightarrow \qquad \forall \, (x_n): \mathbb{N} \to \mathcal{D}_f, \quad \lim_{n\to\infty} (x_n) = \mathfrak{a} \quad \text{eset\'en} \quad \lim_{n\to\infty} (f(x_n)) = f(\mathfrak{a}).$$

ekvivalencia.

Megjegyzés. Az, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvény **nem folytonos** valamely $a \in \mathcal{D}_f$ pontban, azt jelenti, hogy

$$f \notin \mathfrak{C}[a] \iff \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in \mathcal{D}_f : (|x - a| < \delta \land |f(x) - f(a)| > \varepsilon).$$

Sorozatokkal ugyanez megfogalmazva:

$$\exists \, x_n \in \mathcal{D}_f \, (n \in \mathbb{N}) : \, \lim(x_n) = \mathfrak{a} \qquad \text{\'es} \qquad (\not\exists \lim(f(x_n)) \quad \lor \quad \lim(f(x_n)) \neq f(\mathfrak{a})).$$

Példa. Az

$$f(x) := \{x\} := x - [x]$$
 $(x \in \mathbb{R})$

függvény, ill. $a \in \mathbb{Z}$ esetén $f \notin \mathfrak{C}[a]$, ui. ha

$$x_n := a - \frac{1}{n}$$
 $(n \in \mathbb{N}),$

akkor $\lim(x_n) = a$ és

$$\lim(f(x_n)) = \lim\left(\alpha - \frac{1}{n} - \left[\alpha - \frac{1}{n}\right]\right) = \lim\left(\alpha - \frac{1}{n} - (\alpha - 1)\right) = 1 \neq 0 = f(\alpha).$$

Feladat. Folytonos-e az $f \in \mathbb{R} \to \mathbb{R}$ függvény az $\alpha \in \mathcal{D}_f$ pontban, ha

1. $\forall \, \epsilon > 0 \, \exists \delta > 0 \, \exists \, x \in \mathcal{D}_f$:

$$0 < |x - \alpha| < \delta$$
 és $|f(x) - f(\alpha)| < \epsilon$;

2. $\exists \epsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathcal{D}_f$:

$$(|x-\alpha|<\delta) \implies |f(x)-f(\alpha)|<\epsilon);$$

3. $\forall \delta > 0 \ \exists \epsilon > 0 \ \forall x \in \mathcal{D}_f$:

$$(|f(x) - f(a)| < \varepsilon \implies |x - a| < \delta);$$

4. $\forall \delta > 0 \ \exists \epsilon > 0 \ \forall x \in \mathcal{D}_f$:

$$(|x-\alpha|<\delta) \implies |f(x)-f(\alpha)|<\epsilon);$$

5. $\forall \, \epsilon > 0 \, \exists \delta > 0 \, \, \forall \, x \in \mathcal{D}_f$:

$$(|f(x) - f(a)| < \varepsilon \implies |x - a| < \delta);$$

6. $\forall n \in \mathbb{N} \ \exists \delta_n > 0 \ \forall x \in \mathcal{D}_f$:

$$(|x-\alpha|<\delta_n \qquad \Longrightarrow \qquad |f(x)-f(\alpha)|<1/n);$$

7. minden $(x_n): \mathbb{N} \to \mathcal{D}_f$ sorozat esetén az $n \to \infty$ határátmenetben

$$f(x_n) \longrightarrow f(\alpha) \qquad \Longrightarrow \qquad x_n \longrightarrow \alpha.$$

Útm.

1. Nem folytonos. Legyen ui. f a **Dirichlet-függvény**, ¹⁰ azaz

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) := \left\{ egin{array}{ll} 1 & (x \in \mathbb{Q}), \\ 0 & (x
otin \mathbb{Q}). \end{array} \right.$$

¹⁰Peter Gustav Lejeune Dirichlet (1805-1859) német matematikus.

Ekkor teljesülnek a feladat feltételei. Megmutatjuk, hogy f egyetlen $a \in \mathbb{R}$ pontban sem folytnos:

- ha $\alpha \in \mathbb{Q}$ és $\epsilon := 1/2$, akkor tetszőleges $\delta > 0$ számhoz van olyan $x \in \mathbb{R} \setminus \mathbb{Q}$, hogy $|x \alpha| < \delta$. Ekkor $|f(x) f(\alpha)| = 1 > \epsilon$, azaz $f \notin \mathfrak{C}[\alpha]$.
- ha $a \notin \mathbb{Q}$, akkor a fentiekhez hasonlóan igazolható, hogy $f \notin \mathfrak{C}[a]$.
- 2. Nem folytonos. Legyen ui. f a Dirichlet-függvény. Megjegyezzük, hogy a feltételből csak az következik, hogy f lokálisan korlátos, pontosabban korlátos a $\mathcal{D}_f \cap (\alpha \delta, \alpha + \delta)$ halmazon.
- 3. Nem folytonos. Legyen ui. f az előjelfüggvény:

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) := \left\{ egin{array}{ll} -1 & (x < 0), \\ 0 & (x = 0), \\ 1 & (x > 0). \end{array} \right.$$

Megmutatjuk, hogy f az $\alpha := 0$ pontban nem folytonos. Valóban, ha $\epsilon := 1/2$, akkor bármely $\delta > 0$ számhoz van olyan $0 \neq x \in (-\delta, \delta)$, hogy $|f(x) - f(0)| = 1 > \epsilon$.

- 4. Nem folytonos. A feltételből csak az következik, hogy f korlátos.
- 5. Nem folytonos. A feltételnek minden olyan függvény eleget tesz, amelynek értelmezési tartománya korlátos.
- 6. Folytonos, hiszen $\lim_{n\to\infty} (1/n) = 0$.
- 7. Nem folytonos. Legyen például f az előjelfüggvény és $\alpha := 0$.

Emlékeztető (A határérték és a folytonosság kapcsolata). Ha $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f \cap \mathcal{D}_f'$, akkor igaz az

$$f\in \mathfrak{C}[\mathfrak{a}]\qquad \Longleftrightarrow\qquad \lim_{\alpha}f=f(\mathfrak{a})$$

ekvivalencia.

Megjegyezzük, hogy ha $\alpha \in \mathcal{D}_f$, de $\alpha \notin \mathcal{D}_f'$, akkor az α pont a \mathcal{D}_f izolált pontja, így a folytonosság definíciója alapján $f \in \mathfrak{C}[\alpha]$.

¹¹Tetszőleges $I \subset \mathbb{R}$ (valódi) intervallum esetén $I \cap \mathbb{Q} \neq \emptyset$ és $I \cap (\mathbb{R} \backslash \mathbb{Q}) \neq \emptyset$, azaz minden (valódi) intervallumban van racionális és irracionális szám.

Feladat. Jelölje r > 0 egy m > 0 tömegű testnek a Föld középpontjától vett távolságát. A Föld nehézségi, ill. gravitációs erőtere által a testre gyakorlolt erő nagysága:

$$F:(0,+\infty) o \mathbb{R}, \qquad F(r) := \left\{ egin{array}{ll} \displaystyle rac{\gamma m M r}{R^3} & (r < R), \\ \\ \displaystyle rac{\gamma m M}{r^2} & (r \geq R), \end{array}
ight.$$

ahol M a Föld tömege, R a Föld sugara, $\gamma > 0$ pedig a gravitációs állandó. Folytonosan függ-e a gravitációs erő az r távolságtól, azaz folytonos-e fenti függvény?

Útm. Világos, hogy $F|_{(0,R)}$ és $F|_{(R,+\infty)}$ folytonos. Mivel

$$R\in \mathcal{D}_F\cap \mathcal{D}_F' \qquad \text{\'es} \qquad \lim_{r\to R} F(r) = \frac{\gamma mM}{R^2} = F(R),$$

ezért F folytonos. ■

Tételek.

1. Ha f, $g \in \mathfrak{C}[\mathfrak{a}]$ és $\lambda \in \mathbb{R}$, akkor

$$\lambda f \in \mathfrak{C}[\alpha], \qquad f+g \in \mathfrak{C}[\alpha], \qquad f \cdot g \in \mathfrak{C}[\alpha], \qquad \frac{f}{g} \in \mathfrak{C}[\alpha] \ \ (\text{ha} \ g(\alpha) \neq 0).$$

- 2. Ha $g \in \mathfrak{C}[\mathfrak{a}]$ és $f \in \mathfrak{C}[g(\mathfrak{a})]$, akkor $f \circ g \in \mathfrak{C}[\mathfrak{a}]$.
- 3. A hatványfüggvények folytonosak. Következésképpen a polinomok, ill. a racionális függvények is folytonosak.
- 4. Minden hatványsor összefüggvénye folytonos. Következésképpen az exp, a sin, a cos, az sh és a ch függvények folytonosak.
- 5. Legyen $f,g\in\mathbb{R}\to\mathbb{R}$, $\mathcal{R}_g\subset\mathcal{D}_f$, valamint $\alpha\in\mathcal{D}_g'$. Ha $\lim_{x\to\alpha}g(x)=:b\in\overline{\mathbb{R}}$, $b\in\mathcal{D}_f$ és $f\in\mathfrak{C}[b]$, akkor

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(b).$$

Feladat. Mely $\alpha \in \mathbb{R}$ esetén folytonos az $f : \mathbb{R} \to \mathbb{R}$ függvény?

1.
$$f(x) := \begin{cases} \alpha x^2 + 4x - 1 & (x \le 1), \\ 3 - x & (x > 1); \end{cases}$$
 2. $f(x) := \begin{cases} \exp\left(-\left(x + \frac{1}{x}\right)\right) & (x > 0), \\ \alpha - 2x & (x \le 0). \end{cases}$

Útm.

1. Világos (vö. fenti tételek), hogy f folytonos a $(-\infty, 1)$ és az $(1, +\infty)$ intervallumok minden pontjában, azaz az $\mathbb{R}\setminus\{1\}$ halmazon. Mivel

$$\lim_{x \to 1-0} f = \lim_{x \to 1-0} (\alpha x^2 + 4x - 1) = \alpha x^2 + 4 - 1 = \alpha + 3 = f(1)$$

és

$$\lim_{1+0} f = \lim_{x \to 1+0} (3-x) = 3-1 = 2,$$

ezért

$$f\in \mathfrak{C}[1] \qquad \Longleftrightarrow \qquad \alpha+3=2 \qquad \Longleftrightarrow \qquad \alpha=-1.$$

2. A korábbiak fényében látható, hogy f folytonos a $(-\infty, 0)$ és az $(0, +\infty)$ intervallumok minden pontjában, azaz az $\mathbb{R}\setminus\{0\}$ halmazon. Mivel

$$\lim_{0 \to 0} f = \lim_{x \to 0 \to 0} (\alpha - 2x) = \alpha = f(0)$$

és

$$\lim_{0\to 0} f = \lim_{x\to 0+0} \exp\left(-\left(x+\frac{1}{x}\right)\right) = \exp\left(\lim_{x\to 0+0} \left(-\left(x+\frac{1}{x}\right)\right)\right) = \exp(-\infty) = 0,$$

ezért

$$f \in \mathfrak{C}[0] \iff \alpha = 0.$$

Feladat. Mely $\alpha \in \mathbb{R}$ esetén lesz az

$$f(x) := \begin{cases} \frac{1 - x^2}{\sqrt{x} - \sqrt{2 - x}} & (x \in (0, 1)), \\ \\ 3\alpha x^2 + \alpha^2 & (x \in [1, +\infty)) \end{cases}$$

folytonos az a := 1 pontban?

Útm. Mivel

$$= -\lim_{x \to 1-0} \frac{(1+x)(\sqrt{x}+\sqrt{2-x})}{2} = -2$$

és

$$\lim_{1+0} f = \lim_{x \to 1+0} (3\alpha x^2 + \alpha^2) = 3\alpha + \alpha^2 = f(1) ,$$

ezért

$$f \in \mathfrak{C}[1] \qquad \Longleftrightarrow \qquad -2 = 3\alpha + \alpha^2 \qquad \Longleftrightarrow \qquad \alpha \in \{-2; -1\}. \quad \blacksquare$$

Feladat. Mutassuk meg, hogy bármely $0 < c \in \mathbb{R}$, f, $g \in \mathbb{R} \to \mathbb{R}$: f, $g \in \mathfrak{C}$ esetén igazak az alábbi állítások!

$$|f|\in \mathfrak{C}, \qquad f\vee g\in \mathfrak{C}, \qquad f\wedge g\in \mathfrak{C}, \qquad f_c\in \mathfrak{C},$$

ahol

$$f \underset{\bigwedge}{\bigvee} g(x) := \frac{max}{min} \{f(x), g(x)\} \quad (x \in \mathcal{D}_f \cap \mathcal{D}_g) \qquad \text{\'es} \qquad f_c(x) := \begin{cases} -c & (f(x) < -c) \\ f(x) & (|f(x)| \leq c) \end{cases} \quad (x \in \mathcal{D}_f).$$

Útm.

1. lépés.
$$|f| = abs \circ f$$
;

$$\textbf{2. lépés.} \ \ _{min}^{max}\left\{f(x),g(x)\right\} = \frac{f(x)+g(x)\pm|f(x)-g(x)|}{2} \quad \ (x\in\mathcal{D}_f\cap\mathcal{D}_g);$$

3. lépés. Tetszőleges
$$x \in \mathcal{D}_f$$
 esetén $f_c(x) = \min\{c, \max\{f(x), -c\}\}$.

Házi (gyakorló) feladatok.

1. Mutassuk meg, hogy az

$$f(x) := \{x\} := x - [x] \qquad (x \in \mathbb{R})$$

függvény az $\alpha \in \mathbb{R} \setminus \mathbb{Z}$ pontokban folytonos!

2. Igazoljuk, hogy az

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) := \left\{ \begin{array}{ll} (x-1)^2 - 1 & (x \in (-\infty, 1)), \\ -\sqrt{x-1} - 1 & (x \in [1, +\infty)) \end{array} \right.$$

függvény folytonos!

3. Számítsuk ki az alábbi határértékeket!

$$1. \ \lim_{0 \to 0} \ln \ ; \quad 2. \ \lim_{x \to +\infty} \frac{\ln(x)}{x}; \quad 3. \ \lim_{x \to 0 + 0} x \cdot \ln(x); \quad 4. \ \lim_{x \to 0 + 0} x^x; \quad 5. \ \lim_{+\infty} \ln; \quad 6. \ \lim_{x \to 0} \frac{\ln(1 + x)}{x}.$$

4. Mutassuk meg, hogy $\mu \in \mathbb{R}$ esetén fennáll a

$$\lim_{x\to +\infty} \left(1+\frac{\mu}{x}\right)^x = e^{\mu}$$

hatérértékreláció!

5. Döntsük el, hogy van-e az

$$f(x) := x \cdot \sin\left(\frac{1}{x}\right) \qquad (0 \neq x \in \mathbb{R})$$

függvénynek folytonos kiterjesztése, azaz van-e olyan folytonos $\widetilde{f}:\mathbb{R}\to\mathbb{R}$ függgvény, amelyre

$$f(x) = \widetilde{f}(x)$$
 $(0 \neq x \in \mathbb{R})$

teljesül!

6. Legyen $f: \mathbb{R} \to \mathbb{R}$ folytonos függvény, és tegyük fel hogy tetszőleges $0 < a \in \mathbb{R}$ esetén

$$\lim_{n\to\infty}f(na)=0.$$

Igazoljuk, hogy ekkor fennáll a $\lim_{t\to\infty} f = 0$ határérték-reláció!

Útm.

1. Világos, hogy ha $a \in \mathbb{R} \setminus \mathbb{Z}$, akkor

$$a < 1 + [a]$$
 és $[a] < a$.

Következésképpen, ha $\varepsilon > 0$, akkor a

$$\delta := \{\epsilon, \alpha - [\alpha], 1 + [\alpha] - \alpha\}$$

számra $\delta > 0$. Ha pedig $x \in \mathbb{R}$ olyan, hogy $|x - a| < \delta$, akkor

$$x - a < \delta \le 1 + [a] - a$$
 és $a - x < \delta \le a - [a]$,

ahonnan [a] < x < [a] + 1 következik. Ennélfogva [x] = [a], és így

$$|f(x) - f(\alpha)| = |x - [x] - (\alpha - [\alpha])| = |x - \alpha| < \delta \le \varepsilon.$$

2. Nyilvánvaló, hogy ha $1 \neq \alpha \in \mathbb{R}$, akkor $f \in \mathfrak{C}[\alpha]$. Legyen $\epsilon > 0$ és $\delta := \min\{\sqrt{\epsilon}, \epsilon^2\}$. Ha $x \in (-\infty, 1)$ olyan, hogy $|x - 1| < \delta$, akkor

$$|f(x) - f(1)| = (x - 1)^2 < \delta^2 \le (\sqrt{\varepsilon})^2 = \varepsilon.$$

Ha pedig $x \in [1, +\infty)$ olyan, hogy $|x - 1| < \delta$, akkor

$$|f(x)-f(1)|=\sqrt{x-1}<\sqrt{\delta}\leq (\sqrt{\epsilon})^2=\epsilon.$$

3. (a) Világos, hogy

$$\lim_{0+0} \ln = \lim_{x \to 0+0} \ln(x) = \lim_{y \to -\infty} \ln(e^y) = \lim_{y \to -\infty} y = -\infty.$$

(b) Mivel

$$0 \leq \lim_{x \to +\infty} \frac{\ln(x)}{x} = \lim_{y \to +\infty} \frac{y}{e^y} = \lim_{y \to +\infty} \frac{y}{\sum_{n=0}^{\infty} \frac{y^n}{n!}} \leq \lim_{y \to +\infty} \frac{y}{\frac{y^2}{2}} = \lim_{y \to +\infty} \frac{2}{y} = 0,$$

ezértígy a Sandwich-tétel értelmében $\lim_{0 \to 0} \ln = 0$.

$$(c) \lim_{x\to 0+0} x \ln(x) = \lim_{y\to +\infty} \frac{1}{y} \ln\left(\frac{1}{y}\right) = \lim_{y\to +\infty} \frac{1}{y} \left(\ln(1) - \ln(y)\right) = -\lim_{y\to +\infty} \frac{\ln(y)}{y} = 0.$$

(d) Az exp folytonosságát kihasználva látható, hogy

$$\lim_{x \to 0+0} x^{x} = \lim_{x \to 0+0} \exp(x \ln(x)) = \exp\left(\lim_{x \to 0+0} x \ln(x)\right) = \exp(0) = 1.$$

(e) $\lim_{+\infty} \ln = \lim_{x \to +\infty} \ln(x) = \lim_{y \to +\infty} \ln(e^y) = \lim_{y \to +\infty} y = +\infty.$

$$(f) \lim_{x\to 0} \frac{\ln(1+x)}{x} = \lim_{y\to 1} \frac{\ln(y)}{y-1} = \lim_{z\to 0} \frac{\ln(e^z)}{e^z-1} = \lim_{z\to 0} \frac{z}{e^z-1} = \lim_{z\to 0} \frac{z}{\sum_{n=1}^\infty \frac{z^n}{n!}} = \lim_{z\to 0} \frac{1}{1+\sum_{n=2}^\infty \frac{z^{n-1}}{n!}} = 1.$$

4. Ha

$$y := \ln\left(1 + \frac{\mu}{x}\right),\,$$

akkor az $x \to +\infty$ határátmenetben $y \to 0$, így (vö. korábban)

$$\lim_{x\to +\infty} \left(1+\frac{\mu}{x}\right)^x \ = \ \lim_{x\to +\infty} \exp\left(x\ln\left(1+\frac{\mu}{x}\right)\right) = \exp\left(\lim_{x\to +\infty} x\ln\left(1+\frac{\mu}{x}\right)\right) = \exp\left(\lim_{x\to +\infty} x\ln\left(1+\frac{\mu}{x}\right)\right) = \exp\left(\frac{1+\frac{\mu}{x}}{x}\right)$$

$$= \exp\left(\lim_{y\to 0}\frac{\mu y}{e^y-1}\right) = \exp\left(\mu \cdot \lim_{y\to 0}\frac{y}{e^y-1}\right) = \exp(\mu \cdot 1) = e^\mu.$$

5. Mivel a sin korlátos függvény, ezért

$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0,$$

így az

$$\widetilde{f}(x) := \left\{ egin{array}{ll} f(x) & (0
eq x \in \mathbb{R}), \\ 0 & (x = 0) \end{array} \right.$$

függvény megfelelő.

6. Vö. Bessenyei Ádám írása (5. oldal). ■

Házi feladat. Igazoljuk, hogy tetszőleges $0<\alpha\in\mathbb{R}$ esetén van olyan (ε_n) sorozat, hogy $\lim(\varepsilon_n)=0$ és

$$\left(1+\frac{1}{n}\right)^{\alpha}=1+\frac{\alpha}{n}+\frac{\varepsilon_n}{n} \qquad (n\in\mathbb{N}).$$

Útm.

1. lépés. Megmutatjuk, hogy a

$$\delta_n := n\left(\left(1 + \frac{1}{n}\right)^{\alpha} - 1\right) - \alpha \qquad (n \in \mathbb{N})$$

sorozatra $\lim(\delta_n) = 0$. Mivel

$$\lim_{x \to 0} ((1+x)^{\alpha} - 1) = 0$$

(ui. a hatványfüggvény folytonos), ezért

$$\begin{split} \lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} &= \lim_{x \to 0} \alpha \cdot \frac{(1+x)^{\alpha} - 1}{\ln(1+(1+x)^{\alpha} - 1)} \cdot \frac{\ln(1+x)}{x} = \\ &= \alpha \cdot \lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{\ln(1+(1+x)^{\alpha} - 1)} \cdot \lim_{x \to 0} \frac{\ln(1+x)}{x} = \\ &= \alpha \cdot \lim_{y \to 0} \frac{y}{\ln(1+y)} \cdot \lim_{x \to 0} \frac{\ln(1+x)}{x} = \alpha. \end{split}$$

Így a határértékre vonatkozó átvitel miatt $\lim(\delta_n) = 0$.

2. lépés. Mivel

$$lim(\delta_n) = 0 \quad \Leftrightarrow \quad lim\left(n\left(\left(1+\frac{1}{n}\right)^{\alpha}-1\right)-\alpha\right) = 0 \quad \Leftrightarrow \quad lim\left(n\left(\left(1+\frac{1}{n}\right)^{\alpha}-1\right)\right) = \alpha$$

és $\alpha = \lim(\alpha)$, ezért

$$\left(n\left(\left(1+\frac{1}{n}\right)^{\alpha}-1\right)-\alpha\right)$$

nullasorozat, azaz van olyan (ϵ_n) nullasorozat, hogy

$$n \cdot \left(\left(1 + \frac{1}{n}\right)^{\alpha} - 1\right) - \alpha = \epsilon_n \qquad (n \in \mathbb{N}).$$

Így

$$\left(1+\frac{1}{n}\right)^{\alpha}=1+\frac{\alpha}{n}+\frac{\epsilon_n}{n} \qquad (n\in\mathbb{N}).$$

12. gyakorlat (2022.05.03.)

Definíció (szakadási helyek osztályozása). Legyen $f \in \mathbb{R} \to \mathbb{R}$. Azt mondjuk, hogy az $a \in \mathcal{D}_f$ az f függvény **szakadási hely**e, ha $f \notin \mathfrak{C}[a]$. A szakadás

- elsőfajú, ha $\exists f(a \pm 0) \in \mathbb{R}$, speciálisan
 - 1. **megszüntethető szakadás**ról beszélünk, ha $f(\alpha 0) = f(\alpha + 0)$;
 - 2. **ugrás**ról beszélünk, ha $f(\alpha 0) \neq f(\alpha + 0)$. Az $|f(\alpha + 0) f(\alpha 0)|$ számot az f függvény a **pontbeli ugrás**ának nevezzük.
- másodfajú, ha nem elsőfajú.

Feladat. Az $\alpha \in \mathbb{R}$ paramétertől függően határozza meg az

$$f(x) := \begin{cases} \frac{x^2 - 5x + 6}{x^2 - 7x + 10} & (x \in \mathbb{R} \setminus \{2; 5\}), \\ \alpha & (x = 2), \\ 0 & (x = 5). \end{cases}$$

függvény folytonossági, illetve szakadási helyeit, valamint a szakadási helyek típusait!

Útm. Világos, hogy tetszőleges $a \in \mathbb{R} \setminus \{2, 5\}$ esetén $f \in \mathfrak{C}[a]$. Mivel minden $x \in \mathbb{R} \setminus \{2, 5\}$ esetén

$$f(x) = \frac{x^2 - 5x + 6}{x^2 - 7x + 10} = \frac{(x - 2)(x - 3)}{(x - 2)(x - 5)} = \frac{x - 3}{x - 5},$$

ezért $\lim_{2} f = \frac{1}{3}$, tehát

$$f\in \mathfrak{C}[2] \qquad \Longleftrightarrow \qquad \alpha=rac{1}{3},$$

egyébként f-nek 2-ben megszüntethető szakadása van. Mivel

$$\lim_{5 \pm 0} f = \pm \infty,$$

ezért f-nek 5-ben másodfajú szakadása van.

Feladat. Legyen $\alpha, \beta \in \mathbb{R}$. Határozzuk meg az f : $\mathbb{R} \to \mathbb{R}$ függvény folytonossági és szakadási helyeit, valamint azok típusait!

1.
$$f(x) := \begin{cases} \frac{\sin(x)}{x} & (x \neq 0), \\ 0 & (x = 0); \end{cases}$$

2.
$$f(x) := \begin{cases} -1 & (x < 0), \\ 0 & (x = 0), \\ 1 & (x > 0); \end{cases}$$

3.
$$f(x) := \begin{cases} 1 & (x \in \mathbb{Q}), \\ 0 & (x \in (\mathbb{R} \setminus \mathbb{Q}); \end{cases}$$

4.
$$f(x) := \begin{cases} x & (x \in \mathbb{Q}), \\ -x & (x \in (\mathbb{R} \setminus \mathbb{Q}); \end{cases}$$

$$5. \ f(x) := \begin{cases} \frac{1}{q} & \left(x = \frac{p}{q}, \ 0 \neq p \in \mathbb{Z}, \ q \in \mathbb{N} : \\ & (p, q) = 1 \right), \\ 1 & (x = 0), \\ 0 & (x \in (\mathbb{R} \setminus \mathbb{Q})) \end{cases}$$

$$6. \ f(x) := \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 3x + 2} & (x < 1), \\ \sqrt{x + 3} & (1 \le x \le 6), \\ \frac{\sin(2x - 12)}{x - 6} & (x > 6); \end{cases}$$

6.
$$f(x) := \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 3x + 2} & (x < 1), \\ \sqrt{x + 3} & (1 \le x \le 6), \\ \frac{\sin(2x - 12)}{x - 6} & (x > 6); \end{cases}$$

$$\begin{cases}
\frac{1}{1-x} & (x < 1), \\
\frac{\sqrt{x+7}-3}{2-x} & (1 \le x < 2), \\
1 & (x = 2), \\
\frac{\sin(2-x)}{2x-4} & (x > 2);
\end{cases}$$

8.
$$f(x) := \begin{cases} \frac{\sin^2(\alpha x)}{x^2} & (x < 0), \\ \alpha - \beta x^3 & (0 \le x \le 1), \\ \frac{\alpha x + \beta}{x^2 - 1} & (x > 1). \end{cases}$$

Útm.

1. Ha

- $0 \neq \alpha \in \mathbb{R}$, akkor nyilván (vö. korábbi tételek) $f \in \mathfrak{C}[\alpha]$.
- a = 0, akkor f-nek a-ban megszüntethető szakadása van, ui.

$$\lim_{0} f = 1 \neq 0 = f(0)$$

2. Ha

• $0 \neq \alpha \in \mathbb{R}$, akkor nyilván (vö. korábbi tételek) $f \in \mathfrak{C}[\alpha]$, hiszen

$$f(x) = -1$$
 $(x < 0)$ és $f(x) = 1$ $(x > 0)$.

• a = 0, akkor f-nek a-ban ugrása van, hiszen

$$\lim_{0 \to 0} f = -1 \neq 1 = \lim_{0 \to 0} f.$$

- 3. Ha
 - $a \in \mathbb{Q}$, akkor legyen

$$(x_n): \mathbb{N} \to (\alpha, \alpha+1) \cap \mathbb{Q}, \quad \text{ill.} \quad (y_n): \mathbb{N} \to (\alpha, \alpha+1) \cap (\mathbb{R} \setminus \mathbb{Q})$$

olyan sorozat, amelyre $\lim(x_n) = a = \lim(y_n)$. Ekkor

$$\lim((f(x_n)) = 1 \neq 0 = \lim(f(y_n)), \quad \text{azaz} \quad \nexists \lim_{n \to 0} f$$

Hasonlóan látható be, hogy extsuperptilent f., azaz f-nek a-ban másodfajú szakadása van.

• $\alpha \in (\mathbb{R} \setminus \mathbb{Q})$, akkor a fentiekhez hasonlóan igazolható, hogy f-nek α -ban másodfajú szakadása van.

Tehát a Dirichlet-függvény értelmezési tartományának minden pontjában aszakadás másodfajú. **Megjegyezzük**, hogy

$$f(x) = \lim_{n \to \infty} \left(\lim_{m \to \infty} \left(\cos(n!\pi x)^{2m} \right) \right)$$
 $(x \in \mathbb{R}).$

- 4. Ha
 - 0 ≠ α ∈ ℝ, akkor az előző függvény (Dirichlet-függvény) esetében alkalmazott gondolatmenethez hasonlóan igazolható, hogy f-nek α-ban másodfajú szakadása van.

• $\alpha = 0$ és $\varepsilon > 0$, akkor a $\delta := \varepsilon$ számmal tetszőleges $x \in \mathbb{R}$ esetén

$$|x - 0| = |x| < \delta$$
 \Longrightarrow $|f(x) - f(0)| = |x| < \varepsilon$,

azaz f folytonos az a pontban.

- 5. A feladatbeli függvény nem más, mint a **Thomae-függvény**. ¹² Erről a függvényről többek között- a következő tudható:
 - (a) f korlátos, ui. értékkészlete nyilvánvalóan az

$$\left\{\frac{1}{n} \in \mathbb{R} : \ n \in \mathbb{N}\right\} \cup \{0\}$$

halmaz.

(b) f periodikus az 1 periódussal:

$$f(x+n) = f(x)$$
 $(x \in \mathbb{R}, n \in \mathbb{N}),$

ui. ha

• $x \in \mathbb{Q}$, akkor alkalmas $p \in \mathbb{Z}$, $q \in \mathbb{N}$, (p,q) = 1 esetén $x = \frac{p}{q}$. Ekkor

$$x + n = \frac{p}{q} + n = \frac{p + nq}{q}.$$

Ha d|p és d|q, akkor d|(p + nq). Ha pedig d|(p + nq) és d|q, akkor d|((p + nq) - nq), azaz d|p. Következésképpen

$$(p + nq, q) = (p, q) = 1$$
 és $f(x + n) = \frac{1}{q} = f(x)$.

- $x \in (\mathbb{R} \setminus \mathbb{Q})$, akkor $x + n \in (\mathbb{R} \setminus \mathbb{Q})$ és így f(x + n) = f(x) = 0.
- (c) Bármely $\alpha \in \mathbb{R}$ esetén $\lim_{\alpha} f = 0$, ui. a periodicitás következtében feltehető, hogy $\alpha \in [0,1)$. Legyen $\epsilon > 0$ és $n \in \mathbb{N}$ olyan index, amelyre $n > 1/\epsilon$. Ekkor f értelmezése miatt tetszőleges $x \in (\mathbb{R} \setminus \mathbb{Q})$, illetve tetszőleges $x = p/q \in \mathbb{Q}$: (p,q) = 1, q > n esetén |f(x)| < 1/n. Ez azt jelenti, hogy az

$$|f(x) - 0| > \frac{1}{n}$$

¹²Carl Johannes Thomae (1840-1921) német matematikus.

egyenlőtlenség a (-1,1) intervallum pontjai közül kizárólag a

$$0, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \dots, \pm \frac{1}{n}, \pm \frac{2}{n}, \dots, \pm \frac{n-1}{n}$$
 (22)

pontokban teljesül. Legyen ezek közül p_1/q_1 az α -tól különböző, α -hoz legközelebbi tört, ill. $\delta := \left| \frac{p}{q} - \alpha \right|$. Következésképpen az $(\alpha - \delta, \alpha + \delta)$ intervallumban nincsen α -tól különböző, (22) alatti szám, így bármely $x \in \mathbb{R}$ esetén

$$0 < |x - a| < \delta = \left| \frac{p}{q} - a \right| \implies |f(x) - 0| = |f(x)| < \frac{1}{n} < \varepsilon.$$

(d) Bármely $a \in (\mathbb{R} \setminus \mathbb{Q})$ esetén $f \in \mathfrak{C}[a]$, hiszen f(a) = 0, így

$$\lim_{x \to a} f(x) = 0 = f(a).$$

(e) Bármely $a \in \mathbb{Q}$ esetén f-nek a-ban megszüntethető szakadása van, hiszen $f(a) \neq 0$, de

$$\lim_{x\to a} f(x) = 0 \neq f(a).$$

A függvény grafikonját szemlálteti az alábbi ábra a [0, 1] intervallumon.

6. Nyilvánvaló, hogy f folytonos a $(-\infty, 1)$, (1, 6), $(6, +\infty)$ intervallumok mindegyikén (vö. korábbi tételek). Mivel tetszőleges $x \in (-\infty, 1)$ esetén

$$f(x) = \frac{(x-1)(x-3)}{(x-1)(x-2)} = \frac{x-3}{x-2},$$

ezért

• $f \in \mathfrak{C}[1]$, hiszen

$$\lim_{x \to 1-0} f = \lim_{x \to 1-0} \frac{x-3}{x-2} = 3 = f(1) = \lim_{x \to 1+0} \sqrt{x+3} = \lim_{x \to 1+0} f.$$

• $f \notin \mathfrak{C}[6]$, hiszen

$$\lim_{6 \to 0} f = \lim_{x \to 6 \to 0} \sqrt{x+3} = 3 = f(6)$$

és

$$\lim_{6+0} f = \lim_{x \to 6+0} \frac{\sin(2x-12)}{x-6} = 2 \cdot \lim_{x \to 6+0} \frac{\sin(2x-12)}{2x-12} = 2 \cdot \lim_{y \to y+0} \frac{\sin(y)}{y} = 2 \cdot 1 = 2.$$

Ez azt is jelenti, hogy f-nek elsőfajú szakadása van az α := 6 pontban.

- 7. Nyilvánvaló, hogy f folytonos a $(-\infty, 1)$, (1, 2), $(2, +\infty)$ intervallumok mindegyikén (vö. korábbi tételek). Látható továbbá, hogy
 - f-nek másodfajú szakadása van az α := 1 pontban, hiszen

$$\lim_{1 \to 0} f = \lim_{x \to 1 \to 0} \frac{1}{1 - x} = +\infty.$$

• f-nek elsőfajhú szakadása van az α := 2 pontban, hiszen

$$\lim_{2 \to 0} f = \lim_{x \to 2 \to 0} \frac{\sqrt{x+7} - 3}{2 - x} \cdot \frac{\sqrt{x+7} + 3}{\sqrt{x+7} + 3} = \lim_{x \to 2 \to 0} \frac{x+7-9}{(2-x)(\sqrt{x+7} + 3)} =$$

$$= \lim_{x \to 2-0} \frac{x-2}{(2-x)(\sqrt{x+7}+3)} = \lim_{x \to 2-0} \frac{-1}{\sqrt{x+7}+3} = -\frac{1}{6}$$

és

$$\lim_{2 \to 0} f = \lim_{x \to 2 \to 0} \frac{\sin(2 - x)}{2x - 4} = -\frac{1}{2} \cdot \lim_{x \to 2 \to 0} \frac{\sin(x - 2)}{x - 2} = -\frac{1}{2} \cdot 1 = -\frac{1}{2}.$$

- 8. Látható (vö. korábbi tételek), hogy f folytonos a $(-\infty, 0)$, (0, 1), $(1, +\infty)$ intervallumok mindegyikén. Ha
 - a := 0, akkor

$$\text{(a)} \ \ \alpha = 0 \text{ eset\'en } \lim_{0 \to 0} f = 0 = f(0) = \lim_{0 \to 0} f \text{, azaz } f \in \mathfrak{C}[0].$$

(b) $\alpha \neq 0$ esetén

$$\lim_{0 \to 0} f = \lim_{x \to 0 \to 0} \frac{\sin^2(\alpha x)}{x^2} = \alpha^2 \cdot \lim_{x \to 0 \to 0} \left(\frac{\sin(\alpha x)}{\alpha x}\right)^2 = \alpha^2 \cdot 1 = \alpha^2$$

és

$$\lim_{0+0} f = \lim_{x \to 0+0} (\alpha - \beta x^3) = \alpha.$$

Ez azt jelenti, hogy $f \in \mathfrak{C}[0]$ pontosan akkor teljesül, ha $\beta \in \mathbb{R}$ tetszőleges és $\alpha^2 = \alpha$, azaz $\alpha = 1$.

- (c) $\alpha \in \mathbb{R} \setminus \{0; 1\}$, akkor tetszőleges $\beta \in \mathbb{R}$ esetén f-nek elsőfajú szakadása van az $\alpha := 0$ pontban.
- $\alpha := 1$, akkor

$$\lim_{1-0} f = \lim_{x \to 1-0} (\alpha - \beta x^3) = \alpha - \beta$$

és

$$\lim_{1+0} f = \lim_{x \to 1+0} \frac{\alpha x + \beta}{x^2 - 1} = \lim_{x \to 1+0} \frac{\alpha (x - 1) + \alpha + \beta}{(x - 1)(x + 1)} = \lim_{x \to 1+0} \left(\frac{\alpha}{x + 1} + \frac{\alpha + \beta}{(x - 1)(x + 1)} \right).$$

Így

(a) $\alpha + \beta = 0$ esetén

$$\lim_{1+0} f = \lim_{x \to 1+0} \frac{\alpha}{x+1} = \frac{\alpha}{2}.$$

Tehát $f \in \mathfrak{C}[1]$ pontosan akkor teljesül, ha $\alpha - \beta = \alpha/2$, azaz $\beta = \alpha/2$. Az $\alpha + \beta = 0$ egyenlőság így csak $\alpha\beta = 0$ esetben áll fenn. Ha $\alpha = -\beta \neq 0$, akkor f-nek elsőfajú szakadása van az $\alpha := 1$ pontban.

(b) $\alpha + \beta \neq 0$ esetén

$$\lim_{1+0} f = \lim_{x \to 1+0} \frac{\alpha}{x+1} + \lim_{x \to 1+0} \frac{\alpha+\beta}{(x-1)(x+1)} = \frac{\alpha}{2} + \frac{\alpha+\beta}{2} \cdot (+\infty) = \begin{cases} +\infty & (\alpha+\beta>0), \\ -\infty & (\alpha+\beta<0). \end{cases}$$

Ez azt jelenti, hogy f-nek másodfajú szakadása van az a := 1 pontban. ■

Házi feladat. Legyen $I \subset \mathbb{R}$ intervallum, $f: I \to \mathbb{R}$ és f monoton. Mutassuk meg, hogy f-nek legfeljebb megszámlálható sok szakadása (mégpedig elsőfajú) van! Adjunk példát a megszámlálható sok szakadásra!

Útm. Legyen például f monoton növekvő, $x, y \in I$ és x < y. Mivel

$$f(x + 0) = \inf\{f(t) | t \in (x, \sup(I))\} = \inf\{f(t) | t \in (x, y)\}$$

és

$$f(y - 0) = \sup\{f(t) | t \in (\inf(I), y)\} = \sup\{f(t) | t \in (x, y)\},\$$

ezért $f(x+0) \le f(y-0)$. (Ha f monoton csökkenő, akkor $f(x+0) \ge f(y-0)$.) Jelölje $S \subset I$ az f szakadási helyeinek halmazát, majd tegyük fel, hogy $\alpha \in S \ne \emptyset$. Ekkor $f(\alpha-0) < f(\alpha+0)$. Megmutatjuk, hogy tetszőleges $r \in \mathbb{Q} \cap (f(\alpha-0), f(\alpha+0))$ esetén a

$$g: S \to \mathbb{Q}, \qquad g(a) := r$$

leképezés injektív. Valóban, ha $\alpha, \beta \in S$: $\alpha < \beta$, akkor tetszőleges $x \in (\alpha, \beta)$ esetén

$$g(\alpha) < f(\alpha + 0) \le f(x) \le f(\beta - 0) < g(\beta)$$
.

Így $|S| \le \aleph_0$. **Példa.** $f(x) := [x] \ (x \in \mathbb{R})$. Ekkor $f \notin \mathfrak{C}[\mathfrak{a}] \Leftrightarrow \mathfrak{a} =: \mathfrak{n} \in \mathbb{Z}$ és $\lim_{n \to 0} f = n - 1$ és $\lim_{n \to 0} f = n$.

Házi (gyakorló) feladat. Az $\alpha \in \mathbb{R}$ paramétertől függően határozzuk meg az

$$f(x) := \begin{cases} \frac{x^2 + 2x - 8}{x^2 - x - 2} & (x \in \mathbb{R} \setminus \{-1; 2\}), \\ 0 & (x = -1), \\ \alpha & (x = 2). \end{cases}$$

függvény folytonossági, illetve szakadási helyeit, valamint a szakadási helyek típusait!

Útm.

1. Világos, hogy tetszőleges $a \in \mathbb{R} \setminus \{-1; 2\}$ esetén $f \in \mathfrak{C}[a]$. Mivel minden $x \in \mathbb{R} \setminus \{-1; 2\}$ esetén

$$f(x) = \frac{x^2 + 2x - 8}{x^2 - x - 2} = \frac{(x - 2)(x + 4)}{(x + 1)(x - 2)} = \frac{x + 4}{x + 1},$$

ezért $\lim_{\alpha} f = 2$. Tehát f pontosan akkor folytonos 2-ben, ha $\alpha = 2$. Ha $\alpha \neq 2$, akkor f-nek megszüntethető szakadása van a 2 helyen. Mivel

$$\lim_{-1\pm 0} f = \pm \infty, \qquad \text{ez\'ert} \qquad \text{$\not \exists \lim_{-1} f.}$$

Következésképpen tetszőleges $\alpha \in \mathbb{R}$ esetén f-nek másodfajú szakadása van (-1)-ben.

Házi (gyakorló) feladatok.

1. Határozzuk meg az alábbi függvények szakadási helyeit és azok fajtáját!

(a)
$$f(x) := \begin{cases} \frac{x^2 - \alpha^2}{x+3} & (x < -3), \\ \alpha \sqrt{x+7} & (x \ge -3) \end{cases}$$
 ($\alpha \in \mathbb{R}$);
$$\frac{\sin^2(x-\alpha)}{(x-1)^2} & (x < 1), \\ \beta + \alpha + 2 & (x = 1), \qquad (\alpha \in [0,1], \ \beta \in \mathbb{R}). \\ \frac{\beta^2 x + \beta}{x^2 + 1} & (x > 1) \end{cases}$$

2. Határozzuk meg az alábbi függvények szakadási helyeit és azok fajtáját!

$$\text{(a) } f(x) := \begin{cases} \frac{x^2 - 5x + 6}{x^2 - 7x + 10} & (x \in \mathbb{R} \setminus \{2; 5\}), \\ \alpha(\in \mathbb{R}) & (x \in \{2; 5\}) \end{cases} ; \quad \text{(b) } f(x) := \begin{cases} \frac{\sin(x)}{|x|} & (0 \neq x \in \mathbb{R}), \\ \\ 1 & (x = 0). \end{cases} ;$$

$$(c) \ f(x) := \begin{cases} e^{-1/x} & (0 \neq x \in \mathbb{R}) \\ & ; \end{cases} \qquad (d) \ f(x) := \begin{cases} \frac{x - \alpha}{\sqrt[3]{x} - \alpha} & (x \neq \alpha^3), \\ \\ \alpha \in \mathbb{R} & (x = \alpha^3) \end{cases}$$

Útm.

(a) Világos, hogy

$$f \in \mathfrak{C}(-\infty, -3) \cap \mathfrak{C}(-3, +\infty),$$

sőt

$$\lim_{-3 \to 0} f = \alpha \sqrt{-3 + 7} = 2\alpha.$$

Mivel bármely $x \in (-\infty, -3)$ esetén

$$\frac{x^2 - \alpha^2}{x+3} = \frac{(x-\alpha)(x+\alpha)}{x+3},$$

ezért

$$\lim_{-3-0}f\in\mathbb{R}\qquad\Longleftrightarrow\qquad\alpha\in\{-3,3\}.$$

Látható, hogy $\alpha \in \{-3,3\}$ esetén $\lim_{-3-0} f = -6$. Így

$$f \in \mathfrak{C}[-3] \iff \lim_{-3+0} f = \lim_{-3-0} f = f(-3) \iff 2\alpha = -6 \iff \alpha = -3.$$

Ha $\alpha = 3$, akkor

$$f(-3) = \lim_{-3+0} f = 6 \neq -6 = \lim_{-3-0} f$$

azaz f-nek elsőfajú szakadása van a −3 pontban.

(b) Világos, hogy

$$f \in \mathfrak{C}(-\infty, 1) \cap \mathfrak{C}(1, +\infty),$$

továbbá

$$\lim_{1 \to 0} f = \lim_{x \to 1 \to 0} \frac{\sin^2(x - \alpha)}{(x - 1)^2} = \begin{cases} +\infty & (\alpha \in [0, 1)), \\ \\ \lim_{x \to 1 \to 0} \left(\frac{\sin(x - 1)}{x - 1}\right)^2 = 1 & (\alpha = 1). \end{cases}$$

Tehát $\alpha \in [0, 1)$ esetén f-nek 1-ben másodfajú szakadása van. Ha $\alpha = 1$, akkor

$$\lim_{1+0} f = \lim_{x \to 1+0} \frac{\beta^2 x + \beta}{x^2 + 1} = \frac{\beta^2 + \beta}{2},$$

ill.

$$f(1) = \beta + 3$$

következtében

$$f \in \mathfrak{C}[1] \iff \lim_{1 \to 0} f = \lim_{1 \to 0} f = f(1) \iff 1 = \frac{\beta^2 + \beta}{2} = \beta + 3 \iff \beta = -2.$$

Ha $\alpha = 1 = \beta$, akkor

$$\lim_{1+0} f = \lim_{1-0} f = 1 \neq 4 = f(1),$$

azaz f-nek 1-ben megszüntethető szakadása van. Ha $\alpha=1$ és $\beta\in\mathbb{R}\setminus\{-2,1\},$

$$\lim_{1-0} f = 1 \neq \lim_{1+0} f = \frac{\beta^2 + \beta}{2} \neq 1,$$

így f-nek 1-ben elsőfajú szakadása van.

2. (a) Világos, hogy tetszőleges $a \in \mathbb{R} \setminus \{2, 5\}$ esetén $f \in \mathfrak{C}[a]$. Mivel minden $x \in \mathbb{R} \setminus \{2, 5\}$ esetén

$$f(x) = \frac{(x-2)(x-3)}{(x-2)(x-5)} = \frac{x-3}{x-5},$$

ezért $\lim_2 f = 1/3$. Tehát $f \in \mathfrak{C}[2]$ pontosan akkor teljesül, ha $\alpha = 1/3$, egyébként f-nek 2-ben megszüntethető szakadása van. Mivel $\lim_{5 \pm 0} f = \pm \infty$, ezért tetszőleges $\alpha \in \mathbb{R}$ esetén f-nek 5-ben másodfajú szakadása van.

(b) Világos, hogy tetszőleges $a \in \mathbb{R} \setminus \{0\}$ esetén $f \in \mathfrak{C}[a]$. Mivel

$$f(x) = \frac{\sin(x)}{x}$$
 $(0 < x \in \mathbb{R})$

és

$$f(x) = -\frac{\sin(x)}{x} \qquad (0 > x \in \mathbb{R}),$$

ezért $\lim_{0 \to 0} f = \pm 1$, azaz f-nek 0-ban ugrása van.

- (c) Világos, hogy tetszőleges $\alpha \in \mathbb{R} \setminus \{0\}$ esetén $f \in \mathfrak{C}[\alpha]$. Mivel $\lim_{0 \to 0} f = 1$ és $\lim_{0 \to 0} f = +\infty$, azért f-nek 0-ban másodfajú szakadása van.
- (d) Világos, hogy tetszőleges $\alpha \in \mathbb{R} \setminus \{\alpha^3\}$ esetén $f \in \mathfrak{C}[\alpha]$. Ha $\alpha = \alpha^3$, akkor két esetet különböztetünk meg:

1. eset ($\alpha^3 = \alpha$). Ekkor $\alpha \in \{-1, 0, 1\}$, továbbá

$$\frac{x-\alpha}{\sqrt[3]{x}-\alpha} = \frac{(\sqrt[3]{x})^3 - \alpha^3}{\sqrt[3]{x}-\alpha} = (\sqrt[3]{x})^2 + \sqrt[3]{x\alpha} + \alpha^2 \longrightarrow 3\alpha^2 \begin{cases} = \alpha & (\alpha = 0) \\ \neq \alpha & (\alpha \in \{-1; 1\}) \end{cases} \quad (x \to \alpha^3),$$

azaz $\alpha=0$ esetén $f\in\mathfrak{C},\,\alpha\in\{-1;1\}$ esetén f-nek α -ban megszüntethető szakadása van. $(\alpha^3\neq\alpha)\textbf{:}$

$$\lim_{x\to\alpha^3}(x-\alpha)=\alpha^3-\alpha\neq 0 \qquad \text{és} \qquad \lim_{x\to\alpha^3}(\sqrt[3]{x}-\alpha)=0,$$

így

$$\lim_{x\to\alpha^3}\left|\frac{x-\alpha}{\sqrt[3]{x}-\alpha}\right|=+\infty.$$

Ekkor tehát f-nek α^3 -ben másodfajú szakadása van.

Emlékeztető (Bolzano-Darboux-tétel). Ha $a, b \in \mathbb{R}$, a < b, továbbá az $f : [a, b] \to \mathbb{R}$ függvény folytonos, akkor f **Darboux-tulajdonságú**: minden f(a) és f(b) közötti értéket felvesz, azaz

- f(a) < f(b), akkor bármely $\eta \in (f(a), f(b))$ esetén van olyan $\xi \in (a, b)$, amelyre $f(\xi) = \eta$;
- f(a) > f(b), akkor bármely $\eta \in (f(b), f(a))$ esetén van olyan $\xi \in (a, b)$, amelyre $f(\xi) = \eta$.

Tétel (Bolzano-tétel). Ha $a, b \in \mathbb{R}$, a < b, továbbá az $f : [a, b] \to \mathbb{R}$ függvény folytonos, továbbá $f(a) \cdot f(b) < 0$, akkor f-nek van **zérushely**e, azaz alkalmas $\xi \in (a, b)$ számra $f(\xi) = 0$.

Példa. Megmutatjuk, hogy az

$$ln(x) + 3 = e^x$$

egyenletnek van megoldása a $(0, +\infty)$ intervallumon. Valóban, ha

$$f(x) := \ln(x) + 3 - e^x$$
 $(x \in (0, +\infty)),$

akkor $f \in \mathfrak{C}[1,2]$, továbbá

$$f(1) \cdot f(2) = (\ln(1) + 3 - e) \cdot (\ln(2) + 3 - e^2) < 0,$$

ui.

$$ln(1) + 3 - e = 3 - e > 0$$
 és $ln(2) + 3 - e^2 < ln(e) + 3 - e^2 = 4 - e^2 < e^2 - e^2 = 0$.

Következésképpen van olyan $\xi \in (1, 2)$, amelyre

$$f(\xi) = 0$$
, azaz $ln(\xi) + 3 = e^{\xi}$.

Feladat. Bizonyítsuk be, hogy minden páratlan fokszámú, valós együtthatós polinomnak van legalább egy valós gyöke!

Útm. Legyen

$$p(x) := \sum_{k=0}^{n} \alpha_k x^k \qquad (x \in \mathbb{R})$$

páratlan (n-ed)fokú polinom. Ekkor, mint tudjuk,

$$\lim_{+\infty} p = \begin{cases} +\infty & (\alpha_n > 0), \\ -\infty & (\alpha_n < 0) \end{cases} \quad \text{ és } \quad \lim_{-\infty} p = \begin{cases} -\infty & (\alpha_n > 0), \\ +\infty & (\alpha_n < 0). \end{cases}$$

Így van olyan a < b, hogy

$$\operatorname{sgn}(p(a) \cdot p(b)) = -1$$
.

Mivel p folytonos, ezértvan olyan $\xi \in (a, b)$, hogy $p(\xi) = 0$.

A Bolzano-téel bizonyítása során (vö. 11. $\boxed{\textbf{EA}}$)valójában egy közelítő eljárást alkalmaztunk az f(x) = 0 egyenlet megoldására. Ez az ún. **intervallumfelezési eljárás** (vö. numerikus analízis). Ez a közelítő eljárás (**iterációs módszer**) a következő: legyen az $f: [a,b] \to \mathbb{R}$ folytonos és $f(a) \cdot f(b) < 0$, valamint $x_0 := a$, $x_1 := b$ és

$$x_{n+1} := \frac{x_n + x_{s_n}}{2} \qquad (n \in \mathbb{N}),$$

ahol

$$s_n := \max\{k \in \{0, \dots, n\} \colon \ f(x_n) \cdot f(x_k) \leq 0\}^{13}$$

Ekkor teljes indukcióval

$$|x_{\mathfrak{m}}-x_{\mathfrak{n}}|\leq rac{b-a}{2^{\mathfrak{n}}} \qquad (\mathfrak{n}\leq \mathfrak{m}\in \mathbb{N}),$$

így létezik a

$$\xi := \lim(x_n) \in [a, b].$$

határérték. Az f folytonossága és az átviteli elv miatt $f(\xi) = 0$.

9. ábra. Az f(x) = 0 egyenlet megoldása: ξ .

Feladat. Mutassuk meg, hogy a

$$p(x) := x^3 + x - 1 \qquad (x \in \mathbb{R})$$

polinomnak pontosan egy valós gyöke van, és számítsuk ki ezt a gyököt 10⁻¹ pontossággal!

Útm. Mivel

$$p(0) = -1 < 0,$$
 $p(1) = 1 > 0,$

ezért Bolzano-tétel következtében van olyan $\xi \in (0,1)$, hogy $p(\xi)=0$. Mivel bármely $x,y\in \mathbb{R},\, x< y$ esetén

$$p(x) - p(y) = x^3 + x - 1 - (y^3 + y - 1) = x^3 - y^3 + x - y = (x - y)(x^2 + xy + y^2 + y^2$$

$$= (x-y)\left(\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\right)<0,$$

ezért egyetlen ilyen ξ létezik, melynek közelítése:

n	χ_n	$h_n = \frac{b-a}{2^n}$	$sgn(f(x_n))$
0	0	1	—1
1	1	5 · 10 ⁻¹	1
2	1/2	2.5 · 10 ⁻¹	– 1
3	3/4	1.25 · 10 ⁻¹	1
4	5/8	$0.625 \cdot 10^{-1} < 10^{-1}$	-1
5	11/16		

Így a keresett közelítő érték: $\xi \approx 11/16$.

Feladat. Igazoljuk, hogy az alábbi egyenletek megoldhatók az I intervallumon!

1.
$$cos(x) = x$$
, $I := (0, 1)$;

2.
$$ln(x) = e^{-x}$$
, $I := (1,3)$;

3.
$$e^x = 2 - x$$
, $I := \mathbb{R}$;

4.
$$x^5 - x^2 + 2x + 3 = 0$$
, I := \mathbb{R} ;

5.
$$\frac{1}{x} + \frac{1}{x-2} = e^{x^2}$$
, I := (0,2).

Útm.

1. Ha

$$f(x) := \cos(x) - x$$
 $(x \in \mathbb{R}),$

akkor f folytonos,

$$f(0) = 1 > 0,$$
 $f(1) = \cos(1) - 1 < 0,$

hiszen

$$\cos(1) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} = 1 + \left(-\frac{1}{2!} + \frac{1}{4!} \right) + \left(-\frac{1}{6!} + \frac{1}{8!} \right) + \dots < 1.$$

Ezért alkalmas $\xi \in I := (0, 1)$ esetén $f(\xi) = 0$.

2. Ha

$$f(x) := \ln(x) - e^{-x} \qquad (x \in (0, +\infty)),$$

akkor f folytonos,

$$f(1) = -\frac{1}{e} < 0,$$
 $f(3) = \ln(3) - \frac{1}{e^2} > 0,$

ezért alkalmas $\xi \in I := (1,2)$ esetén $f(\xi) = 0$.

3. Ha

$$f(x) := e^x - 2 + x \qquad (x \in \mathbb{R}),$$

akkor f folytonos,

$$f(1) = e - 2 + 1 > 0,$$
 $f(-1) = \frac{1}{e} - 3 < 0,$

ezért alkalmas $\xi \in I := (-1, 0)$ esetén $f(\xi) = 0$.

4. Ha

$$f(x) := x^5 - x^2 + 2x + 3 \qquad (x \in \mathbb{R}),$$

akkor f folytonos,

$$f(0) = 3 > 0,$$
 $f(-1) = -1 < 0,$

ezért alkalmas $\xi \in I := (-1,0)$ esetén $f(\xi) = 0$.

5. Ha

$$f(x) := \frac{1}{x} + \frac{1}{x-2} - e^{x^2}$$
 $(x \in \mathbb{R} \setminus \{0; 2\}),$

akkor f folytonos. Mivel

$$\lim_{0+0} f = +\infty - \frac{1}{2} - e^0 = +\infty, \qquad \text{és} \qquad \lim_{2-0} f = \frac{1}{2} + (-\infty) - e^4 = -\infty,$$

ezért alkalmas $a \in (0,1)$, illetve $b \in (1,2)$ esetén f(a) > 0, ill. f(b) < 0. Mivel $f \in \mathfrak{C}[a,b]$ és $f(a) \cdot f(b) < 0$, ezért a Bolzano-tétel következtében van olyan

$$\xi \in (\mathfrak{a},\mathfrak{b}) \subset (\mathfrak{0},2) = I,$$

hogy $f(\xi) = 0$:

$$\frac{1}{\xi} + \frac{1}{\xi - 2} - e^{\xi^2} = 0,$$
 azaz $\frac{1}{\xi} + \frac{1}{\xi - 2} = e^{\xi^2}$.

Gyakorló (házi) feladatok. Lássuk be, hogy az

$$f(x) := \frac{1}{x+1} + \frac{1}{x-1} + x^3 + 6x - 1 \qquad (x \in \mathbb{R} \setminus \{-1; 1\})$$

függvénynek van zérushelye!

Útm. Világos, hogy f folytonos, továbbá

$$f(0) = 1 - 1 - 1 = -1 < 0$$
 és $f\left(\frac{1}{2}\right) = \frac{2}{3} - 2 + \frac{1}{8} + 3 - 1 = \frac{2}{3} + \frac{1}{8} > 0.$

Mivel

$$\left[0,\frac{1}{2}\right]\subset\mathbb{R}\backslash\{-1;1\},$$

ezért alkalmas

$$c \in \left(0,\frac{1}{2}\right) \subset \mathcal{D}_f$$

számra f(c) = 0.

Gyakorló (házi) feladatok.

1. Igazoljuk, hogy alkalmas $\alpha \in [0, +\infty)$ esetén fennáll a

$$2\cos(\pi\alpha)\cdot\sqrt{\frac{1}{1+\sqrt{\alpha}}}=e^{\alpha}$$

egyenlőség!

2. Igazoljuk, hogy alkalmas $\alpha \in (0, \pi)$ esetén fenáll a

$$\ln\left(\frac{\alpha^2+1}{\alpha^2+\alpha+1}\right) = \frac{\cos(\alpha)}{1+\sin(\alpha)}$$

egyenlőség!

3. Igazoljuk, hogy alkalmas $\alpha \in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ esetén fenáll az

$$\left(\alpha - \frac{\pi}{6}\right)\cos(\alpha) + x \cdot \operatorname{tg}\left(\frac{3\alpha}{2}\right) = 0$$

egyenlőség!

Útm.

1. Az

$$f(x) := 2\cos(\pi x) \cdot \sqrt{\frac{1}{1 + \sqrt{x}}} - e^x \qquad (x \in [0, +\infty))$$

függvény folytonos, továbbá

$$f(0) = 2\cos(0) \cdot \sqrt{\frac{1}{1+\sqrt{0}}} - e^0 = 1 > 0 \qquad \text{ és } \qquad f(1) = 2\cos(\pi) \cdot \sqrt{\frac{1}{1+\sqrt{1}}} - e^1 = -\frac{2}{\sqrt{2}} - e < 0.$$

2. Az

$$f(x) := \ln\left(\frac{x^2 + 1}{x^2 + x + 1}\right) - \frac{\cos(x)}{1 + \sin(x)} \qquad (x \in [0, \pi])$$

függvény folytonos, továbbá

$$f(0) = \ln(1) - \frac{\cos(0)}{1 + \sin(0)} = -1 < 0$$

és

$$f(\pi) = \ln\left(\frac{\pi^2 + 1}{\pi^2 + \pi + 1}\right) - \frac{\cos(\pi)}{1 + \sin(\pi)} = \ln\left(\frac{\pi^2 + 1}{\pi^2 + \pi + 1}\right) + 1 > 0 \iff e \cdot \pi^2 + e > \pi^2 + \pi + 1,$$

és ez igaz, hiszen

$$e \cdot \pi^2 + e > 2\pi^2 + e = \pi^2 + \pi^2 + e > \pi^2 + \pi + e > \pi^2 + \pi + 1.$$

3. Az

$$f(x) := \left(x - \frac{\pi}{6}\right)\cos(x) + x \cdot tg\left(\frac{3x}{2}\right) \qquad \left(x \in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right)\right)$$

függvény folytonos, továbbá

$$f(0) = -\frac{\pi}{6} < 0 \qquad \text{és} \qquad f\left(\frac{\pi}{6}\right) = \frac{\pi}{6} \operatorname{tg}\left(\frac{\pi}{4}\right) = \frac{\pi}{6} > 0. \quad \blacksquare$$

Gyakorló (házi) feladatok.

1. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $f \in \mathfrak{C}$, \mathcal{D}_f intervallum, $\emptyset \neq A \subset \mathcal{D}_f$ és A véges. Mutassuk meg, hogy van olyan $t \in \mathcal{D}_f$, amellyel fennál az

$$f(t) = \frac{1}{|A|} \cdot \sum_{x \in A} f(x)$$

egyenlőség!

2. Igazoljuk, hogy ha valamely $-\infty < a < b < +\infty$ esetén a

$$\varphi: [a,b] \rightarrow [a,b]$$

függvény folytonos, akkor alkalmas $u \in (a,b)$ esetén $\phi(u) = u$ teljesül (**Brouwer-féle fixponttétel**)!

3. Az f : $\mathbb{R} \to \mathbb{R}$ függvényről azt tudjuk, hogy folytonos és

$$f(x+y) = f(x) \cdot f(y) \qquad (x, y \in \mathbb{R})$$

(Cauchy-féle függvényegyenlet). Mutassuk meg, hogy f vagy azonosan nulla vagy fennáll az $f = \exp_{f(1)}$ egyenlőség!

Útm.

1. Legyen

$$\frac{\mathsf{m}}{\mathsf{M}} := \min_{\mathsf{max}} \{ \mathsf{f}(\mathsf{x}) | \; \mathsf{x} \in \mathsf{A} \}.$$

Ekkor m, $M \in \mathcal{R}_f$ és

$$m \leq \frac{1}{|A|} \cdot \sum_{x \in A} f(x) \leq M$$

(számtani közép). Mivel \mathcal{R}_f intervallum, ezért $f^{-1}[[\mathfrak{m},M]]\subset \mathcal{D}_f$, így a Bolzano-tétel alkalmazásával van olyan $t\in \mathcal{D}_f$, amellyel

$$f(t) = \frac{1}{|A|} \cdot \sum_{x \in A} f(x).$$

2. Világos, hogy a

$$\psi(x) := \phi(x) - x \qquad (x \in [a, b])$$

függvény folytonos, továbbá

$$\psi(a) = \varphi(a) - a \ge 0$$
 és $\psi(b) = \varphi(b) - b \le 0$,

hiszen

$$\varphi(a) \ge a$$
 és $\varphi(b) \le b$.

A

$$\psi(a) = 0$$
, ill. a $\psi(b) = 0$

egyenlőség csak a

$$\varphi(a) = a$$
, ill. a $\varphi(b) = b$

esetben fordul elő. Ez azt jelenti, hogy vagy az

$$u := a$$
, ill. $u := b$

fixpontja φ-nek, vagy

$$\psi(a) > 0$$
, ill. $\psi(b) < 0$.

Így a Bolzano-tétel következtében va olyan $\mathfrak{u} \in (\mathfrak{a},\mathfrak{b})$, amelyre

$$0 = \psi(u) = \varphi(u) - u$$

azaz

$$\varphi(\mathfrak{u}) = \mathfrak{u}$$
.

3. **1. lépés.** Megmutatjuk, hogy, ha van olyan $c \in \mathbb{R}$, hogy f(c) = 0, akkor

$$f(x) = 0 \qquad (x \in \mathbb{R}).$$

Valóban, ha $c \in \mathbb{R}$ olyan, hogy f(c) = 0, akkor

$$f(x) = f(x - c + c) = f(x - c) \cdot f(c) = f(x - c) \cdot 0 = 0$$
 $(x \in \mathbb{R})$

- **2. lépés.** $f(0) \in \{0, 1\}$, ui. $f(0) = f(0 + 0) = f(0) \cdot f(0)$, ezért $f(0) \cdot (f(0) 1) = 0$.
- **3. lépés.** Így tehát, ha f(0) = 1, akkor lévén 1 > 0 azt kapjuk, hogy f(x) > 0 ($x \in \mathbb{R}$). Legyen ebben az esetben $\alpha := f(1) > 0$.
- **4. lépés.** Teljes indukcióval könnyen belátható, hogy tetszőleges $n \in \mathbb{N}$ esetén

$$f(n \cdot x) = (f(x))^n$$
 $(x \in \mathbb{R}).$

Speciálisan x := 1 esetén tetszőleges $n \in \mathbb{N}$ indexre $f(n) = a^n$.

5. lépés. Mivel minden $n \in \mathbb{N}$ esetén

$$0 < \alpha = f(1) = f\left(n \cdot \frac{1}{n}\right) = \left(f\left(\frac{1}{n}\right)\right)^n, \quad \text{ez\'ert} \quad f\left(\frac{1}{n}\right) = \sqrt[n]{\alpha}.$$

6. lépés. Tetszőleges $p, q \in \mathbb{N}$ indexre

$$f\left(\frac{p}{q}\right) \ = \ f\left(p\cdot\frac{1}{q}\right) = \left(f\left(\frac{1}{q}\right)\right)^p = \left(\sqrt[q]{a}\right)^p = \prod_{k=1}^p \sqrt[q]{a} = \prod_{k=1}^p \sqrt[q]{\exp\left(q\cdot\frac{\ln(a)}{q}\right)} = \prod_{k=1}$$

$$=\prod_{k=1}^p\sqrt[q]{\exp\left(\sum_{k=1}^q\frac{ln(\alpha)}{q}\right)}=\prod_{k=1}^p\sqrt[q]{\prod_{k=1}^q\exp\left(\frac{ln(\alpha)}{q}\right)}=\prod_{k=1}^p\exp\left(\frac{ln(\alpha)}{q}\right)=$$

$$= \exp\left(\sum_{k=1}^{p} \frac{\ln(\alpha)}{q}\right) = \exp\left(\frac{p}{q} \ln(\alpha)\right) = \alpha^{p/q} =: \alpha^{r}$$

Megjegyzés. Tetszőleges $\alpha \in (0, +\infty)$, ill. $0 < r \in \mathbb{Q}$ esetén

$$\alpha^0 = \exp(0 \cdot ln(\alpha)) = \exp(0) = 1, \qquad ill. \qquad \alpha^{-r} = \exp(-r \cdot ln(\alpha)) = \frac{1}{exp(r \cdot ln(\alpha))} = \frac{1}{\alpha^r}.$$

7. lépés. Mivel minden $0 < r \in \mathbb{Q}$ esetén

$$1 = f(0) = f(r - r) = f(-r) \cdot f(r),$$
 ezért $f(-r) = \frac{1}{f(r)} = \frac{1}{a^r} = a^{-r}.$

Így beláttuk, hogy bármely $r \in \mathbb{Q}$ számra $f(r) = a^r$.

8. lépés. Mivel f folytonos és minden $x \in \mathbb{R}$ esetén van olyan $r_n \in \mathbb{Q}$ $(n \in \mathbb{N})$, hogy $\lim(r_n) = x$, ezért

$$f(x) = f\lim(r_n)) = \lim(f(r_n)) = \lim(\exp_a(r_n)) = \exp_a(\lim(r_n)) = \exp_a(x) \quad (x \in \mathbb{R}). \quad \blacksquare$$

Emlékeztető (Weiertrsaß-tétel). Ha $f \in \mathfrak{C}[\mathfrak{a}, \mathfrak{b}]$, akkor f-nek van abszolút minimuma és abszolút maximuma, azaz alkalmas $\alpha, \beta \in [\mathfrak{a}, \mathfrak{b}]$ esetén fennáll az

$$f(\alpha) < f(x) < f(\beta)$$
 $(x \in [a, b])$

egyenlőtlenségpár.

Feladat. Tegyük fel, hogy az $f : \mathbb{R} \to \mathbb{R}$ függvény folytonos, továbbá $\lim_{x \to \pm \infty} f = +\infty$. Mutassuk meg, hogy f-nek van abszolút minimuma.

Útm.

1. lépés. Megmutatjuk, hogy f alulról korlátos. A $\lim_{x\to-\infty} f = +\infty$ határérték-reláció következtében a P:=1 választással alkalmas $0>\alpha\in\mathbb{R}$ esetén

$$f(x) > 1$$
 $(\mathbb{R} \ni x < a)$.

 $A\lim_{x\to +\infty}f=+\infty \text{ határérték-reláció következtében az }P:=1 \text{ választással alkalmas }0< b\in \mathbb{R} \text{ esetén}$

$$f(x) > 1 \qquad (b < x \in \mathbb{R}).$$

Mindez azt jelenti, hogy f alulról korlátos az $\mathbb{R}\setminus [a,b]$ halmazon. Vizszont f folytonossága (így $f\in\mathfrak{C}[a,b]$) következtében f (alulról) korlátos az [a,b] intervallumon. Ez azt jelenti, hogy f alulról korlátos.

2. lépés. Legyen

$$m := \inf\{f(x) \in \mathbb{R} : x \in \mathbb{R}\}.$$

2022.05.14.

Ekkor f alulról való korlátossága következtében $m\in\mathbb{R}$. Ha most P:=m+1 akkor alkalmas $0>\xi\in\mathbb{R}$, ill. $0<\eta\in\mathbb{R}$ számokkal

$$f(x) > m+1$$
 $(x \in (-\infty, \xi) \cup (\eta, +\infty)).$

Következésképpen

$$m = \inf\{f(x) \in \mathbb{R} : x \in [\xi, \eta]\}.$$

Mivel $f \in \mathfrak{C}[\xi, \eta]$, hiszen f folytonos, ezért alkalmas $\alpha \in [\xi, \eta]$ esetén $f(\alpha) = m$. Mindez azt jelenti, hogy α az f abszolút minimumhelye, $f(\alpha)$ pedig abszolút minimuma.

Házi feladat. Legyen $a \in \mathbb{R}$, $f : [a, +\infty) \to \mathbb{R}$: $f \in \mathfrak{C}$ és tegyük fel, hogy $\lim_{+\infty} f =: A \in \mathbb{R}$. Mutassuk meg, hogy f korlátos függvény!

Útm. A feltétel szerint az $\varepsilon := 1$ számhoz létezik olyan $\omega \in (0, +\infty)$, hogy minden $x \in (\omega, +\infty)$ esetén |f(x) - A| < 1, azaz

(*)
$$A - 1 < f(x) < A + 1 \quad (x \in (\omega, +\infty))$$
.

Mivel $f \in \mathfrak{C}[\mathfrak{a}, \omega]$, ezért Weierstraß tétele alapján minden $x \in [\mathfrak{a}, \omega]$ esetén van olyan $x_m, x_M \in [\mathfrak{a}, \omega]$, hogy

$$f(x) \ge f(x_m) =: m$$
 és $f(x) \le f(x_M) =: M$,

így

$$m \le f(x) \le M$$
 $(x \in [a, \omega]).$

Ebből és (*)-ból következik, hogy

$$k := \min\{m, A - 1\} < f(x) < \max\{M, A + 1\} =: K \qquad (x \in \mathcal{D}_f = [a, +\infty)).$$

A fentiek alapján $k \le K$ is igaz, ami azt jelenti, hogy f korlátos.

Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$. Azt mondjuk, hogy f **egyenletesen folytono**s valamely $\mathcal{H} \subset \mathcal{D}_f$ halmazon (jelben $f \in \mathfrak{EC}(\mathcal{H})$), ha

$$\forall \, \varepsilon > 0 \,\exists \, \delta > 0 \,\forall \, x, y \in \mathcal{H} : \qquad (|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon) .$$

Megjegyzések.

1. Ha f egyenletesen folytonos, akkor minden $\emptyset \neq \mathcal{H} \subset \mathcal{D}_f$ esetén $f|_H$ is egyenletesen folytonos.

2. Ha \mathcal{D}_f intervallum: $\mathcal{D}_f = A \cup B$, ahol A, B olyan intervallumok, amelyre $A \cap B \neq \emptyset$ és $f|_A$ valamint $f|_{B}$ egyenletesen folytonos, akkor f is egyenletesen folytonos.

3. Ha $f : [a, b] \to \mathbb{R}$ folytonos, akkor f egyenletresen folytonos (**Heine-tétel**).

Feladat. Igaz-e, hogy egyenletesen folytonosak az alábbi függvények?

1.
$$f(x) := x^2 \quad (x \in (0,1));$$

2.
$$f(x) := \sqrt{x} \quad (x \in (0, +\infty));$$

3.
$$f(x) := x\sqrt{x} \quad (x \in (0, +\infty));$$

3.
$$f(x) := x\sqrt{x}$$
 $(x \in (0, +\infty));$ 4. $f(x) := \frac{x+3}{x-1}$ $(1 \neq x \in \mathbb{R}).$

Útm.

- 1. A Heine-tétel miatt a [0, 1] intervallumon egyenletesen folytonos, így még inkább a szűkebb (0, 1) intervallumon.
- 2. A Heine-tétel miatt a [0, 1] intervallumon egyenletesen folytonos, így a (0, 1] intervallumon is. Az $(1, +\infty)$ intervallumon pedig

$$|\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le |x - y|$$

alapján a $\delta := \varepsilon$ választás megfefelő.

3. Nem egyenletesen folytonos, ui. ha $\varepsilon, \delta > 0$ és $y \in (0, +\infty)$: $y > \frac{4\varepsilon^2}{\delta^2}$ valamint $x := y + \frac{\delta}{2}$, akkor $|x-y| = \frac{\delta}{2} < \delta$ és

$$|f(x)-f(y)| = |x\sqrt{x}-y\sqrt{y}| = |x(\sqrt{x}-\sqrt{y})+(x-y)\sqrt{y}| = \left|x\frac{x-y}{\sqrt{x}+\sqrt{y}}+\sqrt{y}(x-y)\right| = \left|x\frac{x-y}{\sqrt{x}+\sqrt{y}}+\sqrt{y}\right| = \left|x\frac{x-y}{\sqrt{x}+\sqrt{y}}+\sqrt{y}\right| = \left|x\frac{x-y}{\sqrt{x}+\sqrt{y}}+\sqrt{y}\right| = \left|x\frac{x-y}{\sqrt{x}+\sqrt{y}}+\sqrt{y}\right| = \left|x\frac{x-y}{\sqrt{x}+\sqrt{y}}+\sqrt{y}\right| = \left|x\frac{x-y}{\sqrt{x}+\sqrt{$$

$$= |x-y|\left|\frac{x}{\sqrt{x}+\sqrt{y}}+\sqrt{y}\right| > \sqrt{y}|x-y| \geq \frac{\delta}{2}\sqrt{y} > \epsilon.$$

4. Ha $1 \neq x \in \mathbb{R}$, akkor $f(x) = 1 + \frac{4}{x-1}$, következésképpen bármely $1 \neq x, y \in \mathbb{R}$ esetén

$$|f(x) - f(y)| = 4 \cdot \left| \frac{1}{x - 1} - \frac{1}{y - 1} \right| = 4 \cdot \frac{|x - y|}{|x - 1| \cdot |y - 1|}.$$

Legyen

$$\delta > 0,$$
 $x := 1 + \frac{3\delta}{2},$ $y := 1 + 2\delta.$

Ekkor

$$|f(x) - f(y)| = 4 \cdot \frac{3\delta}{4\delta^2} = \frac{3}{\delta}.$$

Így, ha $\varepsilon > 0$ és $\delta < \frac{3}{\varepsilon}$, akkor $|x-y| < \delta$, de $f(x) - f(y) > \varepsilon$, következésképpen f nem egyenletesen folytonos.

Házi feladatok.

1. Mely $a, b \in \mathbb{R}$ esetén lesz egyenletesen folytonos az

$$f(x) := \begin{cases} \frac{x^5 - 16x}{x^2 - 4} & (|x| \neq 2) \\ & (x \in [-5, 5]) \end{cases}$$

$$ax + b \qquad (|x| = 2)$$

függvény?

2. Igaz-e, hogy egyenletesen folytonosak az alábbi függvények?

1.
$$f(x) := x \quad (x \in (-\infty, +\infty)); \quad 2. \ f(x) := \frac{1}{x} \quad (x \in (1, 2));$$

3.
$$f(x) := \frac{1}{x}$$
 $(x \in (0,1));$ 4. $f(x) := \sin\left(\frac{\pi}{x}\right)$ $(x \in (0,1)).$

3. Bizonyítsuk be, hogy ha $\alpha \in \mathbb{R}$, $f : [\alpha, +\infty) \to \mathbb{R}$, $f \in \mathfrak{C}$, $\exists \lim_{t \to \infty} f =: A \in \mathbb{R}$, akkor f egyenletesen folytonos!

Útm.

1. Mivel bármely $\pm 2 \neq x \in [-5, 5]$ esetén

$$\frac{x^5 - 16x}{x^2 - 4} = \frac{x(x^4 - 2^4)}{x^2 - 4} = \frac{x \cdot (x^2 - 2^2) \cdot (x^2 + 2^2)}{(x - 2) \cdot (x + 2)} = \frac{x \cdot (x - 2) \cdot (x + 2) \cdot (x^2 + 2^2)}{(x - 2) \cdot (x + 2)} = x \cdot (x^2 + 2^2),$$

ezért $\lim_{\pm 2} f = 16$, így az $\alpha = 8$, ill. b = 0 választással $f \in \mathfrak{C}$, Heine tétele szerint pedig $f \in \mathfrak{EC}$.

2. (a) Egyenletesen folytonos, ui. tetszőleges $\varepsilon > 0$ -hoz van olyan $\delta (:= \varepsilon)$, hogy minden $x, y \in \mathbb{R}$: $|x - y| < \delta$ esetén $|f(x) - f(y)| = |x - y| < \varepsilon$.

- (b) A Heine-tétel miatt az [1,2] intervallumon egyenletesen folytonos, így még inkább a szűkebb (1,2) intervallumon.
- (c) Nem egyenletesen folytonos, ui. lásd jegyzet.
- (d) Nem egyenletesen folytonos, ui.

$$\epsilon:=1, \qquad x:=\frac{1}{n}, \qquad y:=\frac{2}{2n+1} \quad (n\in\mathbb{N}) \qquad \text{\'es} \qquad \frac{1}{n}<\delta$$

esetén

$$|x-y| = \left|\frac{1}{n} - \frac{2}{2n+1}\right| = \frac{1}{n(2n+1)} < \frac{1}{n} < \delta$$

és

$$|f(x) - f(y)| = \left| \sin(n\pi) - \sin\left(\frac{(2n+1)\pi}{2}\right) \right| = 1 \ge \varepsilon.$$

Megjegyezzük, hogy itt az **egyenletes folytonosságra vonatkozó átviteli elv**et használtuk: $f \in \mathfrak{EC}(\mathcal{H})$ pontosan akkor teljesül, ha

$$\forall (x_n), (y_n): \mathbb{N} \to \mathcal{H}: \quad (\lim |x_n - y_n| = 0 \quad \Rightarrow \quad \lim |f(x_n) - (y_n)| = 0).$$

3. A határérték definíciója miatt tetszőleges $\varepsilon > 0$ -hoz van olyan $\omega > \max\{\alpha; 0\}$, hogy minden $x > \omega$ esetén

$$|f(x)-A|<\frac{\varepsilon}{2}.$$

Így minden $x, y \in (\omega, +\infty), |x - y| < 1$ esetén

$$|f(x) - f(y)| \le |f(x) - A| + |A - f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

azaz $f|_{(\omega,+\infty)}$ egyenletesen folytonos. A Heine-tétel miatt f egyenletesen folytonos az $[\alpha,\omega]$ halmazon, így f egyenletesen folytonos.

13. gyakorlat (2022.05.10.)

Tétel (Polinomok azonossági tétele). Adott $n \in \mathbb{N}_0$, ill. $a_0, \ldots, a_n, b_0, \ldots, b_n \in \mathbb{R}$: $a_n b_n \neq 0$ esetén

$$\sum_{k=0}^n \alpha_k x^k = \sum_{k=0}^n b_k x^k \quad (x \in \mathbb{R}) \qquad \Longleftrightarrow \qquad \alpha_k = b_k \quad (0 \le k \le n).$$

Biz.

 $\begin{tabular}{ll} \hline \iff Világos, hogy ha bármely <math>k \in \{0,1\ldots,n\}$ esetén $a_k = b_k$, akkor a

$$p(x) := \sum_{k=0}^n a_k x^k, \quad q(x) := \sum_{k=0}^n b_k x^k \qquad (x \in \mathbb{R})$$

polinomokra p = q.

Ha a fenti polinomokra p = q, azaz bármely $x \in \mathbb{R}$ esetén p(x) = q(x), akkor x = 0-t helyettesítve azt kapjuk, hogy $a_0 = b_0$ és

$$p_1(x) := a_1 + \sum_{k=2}^n a_k x^{k-1} = b_1 + \sum_{k=2}^n b_k x^{k-1} = q_1(x) \qquad (0 \neq x \in \mathbb{R}).$$

Így

$$\alpha_1=\lim_{x\to 0}p_1(x)=\lim_{x\to 0}p_2(x)=b_1$$

és

$$p_2(x) := a_2 + \sum_{k=3}^n a_k x^{k-2} = b_2 + \sum_{k=3}^n b_k x^{k-2} = q_2(x) \qquad (0 \neq x \in \mathbb{R}).$$

Az eljárást folytatva, véges sok lépésben belátható, hogy

$$a_0 = b_0,$$
 $a_1 = b_1,$..., $a_n = b_n.$

Példa. Valamely $\alpha, \beta, \gamma, \delta, u \in \mathbb{R}$ esetén

$$x^4 + 3x^2 + 7x + 2 = \alpha x^4 + (3\beta + u)x^3 + 3x^2 + \gamma x + \delta$$
 $(x \in \mathbb{R})$

pontosan akkor teljesül, ha

$$\alpha = 1$$
, $3\beta + u = 0$, $\gamma = 7$ és $\delta = 2$.

Példa. Az

$$x^3 + \alpha x^2 + bx + c = (x - \alpha)(x - \beta)(x - \gamma) \qquad (x \in \mathbb{R})$$

felbontásból (a jobb oldalon történő beszorzás után)

$$a = -(\alpha + \beta + \gamma),$$
 $b = \alpha\beta + \beta\gamma + \alpha\gamma,$ $c = -\alpha\beta\gamma$

következik.

Feladat. Legyen $f : \mathbb{R} \to \mathbb{R}$ olyan polinom, amelyre

$$f(x) = (1 - 5x + 5x^2)^{2016} \cdot (1 + 7x - 7x^2)^{2017} \qquad (x \in \mathbb{R}).$$

Határozzuk meg f együtthatóinak összegét!

Útm. Mivel

$$2016 \cdot 2 + 2017 \cdot 2 = 4033 \cdot 2 = 8066$$

ezért alkalmas $a_0, a_1, \ldots, a_{8066} \in \mathbb{R}$ esetén

$$f(x) = a_0 + a_1 x + ... + a_{8066} x^{8066}$$
 $(x \in \mathbb{R}).$

Így

$$a_0 + a_1 + \ldots + a_{8066} = f(1) = 1^{2016} \cdot 1^{2017} = 1.$$

Feladat. Legyen $f : \mathbb{R} \to \mathbb{R}$ olyan polinom, amelyre

1.
$$f(x) = (1+x)^{1000} + x(1+x)^{999} + x^2(1+x)^{998} + \ldots + x^{1000}$$
 $(x \in \mathbb{R});$

2.
$$f(x) = (1+x) + 2(1+x)^2 + 3(1+x)^3 + ... + 1000(1+x)^{1000}$$
 $(x \in \mathbb{R})$.

Határozzuk meg az

$$f(x) = \sum_{k=0}^n \alpha_k x^k \qquad (x \in \mathbb{R})$$

felírásban az α₅₀ együtthatót!

Útm.

1. Ha $0 \neq x \in \mathbb{R}$, akkor

$$f(x) = x^{1000} \cdot \left(\frac{1}{x} + 1\right)^{1000} + x^{1000} \cdot \left(\frac{1}{x} + 1\right)^{999} + x^{1000} \cdot \left(\frac{1}{x} + 1\right)^{998} + \dots + x^{1000} =$$

$$= x^{1000} \cdot \left\{ \left(\frac{1 + x}{x}\right)^{1000} + \left(\frac{1 + x}{x}\right)^{999} + \left(\frac{1 + x}{x}\right)^{998} + \dots + 1 \right\} =$$

$$= x^{1000} \cdot \frac{1 - \left(\frac{1 + x}{x}\right)^{1001}}{\frac{1 + x}{x} - 1} = \frac{x^{1001} - (1 + x)^{1001}}{-1} = (1 + x)^{1001} - x^{1001},$$

ha pedig x = 0, akkor

$$f(0) = 1 = (1+0)^{1001} - 0^{1001}$$
.

Így tehát bármely $x \in \mathbb{R}$ esetén

$$f(x) = (1+x)^{1001} - x^{1001} = 1 + 1001x + {1001 \choose 2}x^2 + {1001 \choose 3}x^3 + \dots + 1001x^{1001}.$$

Ennélfogva

$$\alpha_{50} = \binom{1001}{50} = \frac{1001!}{50! \cdot 951!}.$$

2. Mivel tetszőleges $0 \neq x \in \mathbb{R}$ esetén

$$xf(x) = (1+x)f(x) - f(x) = \left[(1+x)^2 + 2(1+x)^3 + 3(1+x)^4 + \dots + 1000(1+x)^{1001} \right] - \left[(1+x) + 2(1+x)^2 + 3(1+x)^3 + \dots + 1000(1+x)^{1000} \right] =$$

$$= 1000(1+x)^{1001} - \left[(1+x) + (1+x)^2 + \dots + (1+x)^{1000} \right] =$$

$$= 1000(1+x)^{1001} - \frac{(1+x)^{1001} - (1+x)}{1+x-1} = 1000(1+x)^{1001} - \frac{(1+x)^{1001} - (1+x)}{x},$$

így

$$f(x) = \frac{1000(1+x)^{1001}}{x} - \frac{(1+x)^{1001} - (1+x)}{x^2} =$$

$$= 1000 \left[1000 + {1001 \choose 2} x + {1001 \choose 3} x^2 + \ldots + 1001 x^{999} + x^{1000} + \right] -$$

$$-\left[\binom{1001}{2}+\binom{1001}{3}x+\binom{1001}{4}x^2+\ldots+1001x^{998}+x^{999}\right].$$

A keresett együttható tehát

$$\alpha_{50} \ = \ 1000 \binom{1001}{51} - \binom{1001}{52} = \frac{1000 \cdot 1001!}{51! \cdot 850!} - \frac{1001!}{52! \cdot 449!} =$$

$$= \frac{1001!}{52! \cdot 950!} [52 \cdot 1000 - 950] = \frac{51050 \cdot 1001!}{52! \cdot 950!}. \quad \blacksquare$$

Tétel (hatványsorokra vonatkozó egyértelműségi tétel). Tegyük fel, hogy

$$c, a_n, b_n \in \mathbb{R}$$
 $(n \in \mathbb{N}_0)$, ill. $0 < r \in \mathbb{R}$,

továbbá

$$\sum_{n=0}^{\infty} a_n (x-c)^n = \sum_{n=0}^{\infty} b_n (x-c)^n \in \mathbb{R} \qquad (x \in \mathbb{R}: \, |x-c| < r).$$

Ekkor bármely $n \in \mathbb{N}_0$ indexre fennáll az $a_n = b_n$ egyenlőség.

Biz.

1. lépés Ha valamely $u_n \in \mathbb{R}$ $(n \in \mathbb{N}_0)$ esetén a

$$\sum_{n=0}^{\infty} u_n (x-c)^n \qquad (x \in \mathbb{R})$$

hatványsor konvergenciasugara r, és $0 < \rho < r$, akkor van olyan $K \in \mathbb{R}$, hogy minden $z \in \mathbb{R}$, $|x - c| \le \rho$ esetén

$$\left|\sum_{n=0}^{\infty}u_n(x-c)^n\right|\leq K,$$

ui. az ilyen x-re

$$\begin{split} \left| \sum_{n=0}^{\infty} u_n (x - c)^n \right| &= \left| \lim \left(\sum_{k=0}^n u_n (x - c)^n \right) \right| = \lim \left(\left| \sum_{k=0}^n u_n (x - c)^n \right| \right) \le \\ &\leq \lim \left(\sum_{k=0}^n |u_n| |x - c|^n \right) = \sum_{n=0}^{\infty} |u_n| |x - c|^n \le K, \end{split}$$

hiszen a Cauchy-Hadamard-tétel szerint a hatványsor itt abszolút konvergens, és ha

$$d_n := \sum_{k=0}^n c_k(x-c)^k \qquad (n \in \mathbb{N}_0),$$

akkor

$$|\operatorname{lim}(d_n)| = \operatorname{lim}(|d_n|), \quad \text{hiszen} \quad ||d_n| - |\operatorname{lim}(d_n)|| \le |d_n - \operatorname{lim}(d_n)|.$$

2. lépés Világos, hogy ha x=c, akkor $a_0=b_0$. Tegyük fel, hogy valamely $k\in\mathbb{N}_0$ esetén beláttuk, hogy

$$a_0 = b_0, \ldots, a_k = b_k.$$

Ekkor tetszőleges $x \in \mathbb{R}$, $|x - c| \le \rho$ esetén

$$\sum_{n=k+1}^{\infty} (a_n - b_n)(x - c)^n = 0.$$

Így ha $x \neq c$, akkor

$$a_{k+1} - b_{k+1} + (x - c) \cdot \sum_{n=k+2}^{\infty} (a_n - b_n)(x - c)^{n-k-2} = 0.$$

Az **1. lépés**ben belátottak alapján tehát van olyan $K \in \mathbb{R}$, hogy

$$\left|\sum_{n=k+2}^{\infty} (a_n - b_n)(x-c)^{n-k-2}\right| \leq K \qquad (0 < |x-c| \leq \rho),$$

azaz tetszőleges $x \in \mathbb{R}, \ 0 < |x - c| \le \rho$ esetén

$$|a_{k+1} - b_{k+1}| < K|x - c|$$
.

Innen pedig $a_{k+1} = b_{k+1}$ következik.

A következő fogalom informatikai tanulmányaink során lépten-nyomon előkerül.

Definíció. Az $\alpha: \mathbb{N}_0 \to \mathbb{R}$ sorozat generátorfüggvényének, illetve exponenciális generátorfüggvényének nevezzük az $f \in \mathbb{R} \to \mathbb{R}$ függvényt, ha van olyan $0 < r \le \rho$, hogy

$$f(x) = \sum_{n=0}^{\infty} a_n \cdot x^n \qquad (|x| < r),$$

illetve

$$f(x) = \sum_{n=0}^{\infty} \alpha_n \cdot \frac{x^n}{n!} \qquad (|x| < r),$$

ahol p a

$$\sum_{n=0} \left(\alpha_n \cdot x^n \right) \quad (x \in \mathbb{R}), \qquad \text{ill. a} \qquad \sum_{n=0} \left(\alpha_n \cdot \frac{x^n}{n!} \right) \quad (x \in \mathbb{R})$$

hatványsor konvergenciasugara.

Példák.

1. Az

$$a_n := n!$$
 $(n \in \mathbb{N}_0)$

sorozatnak nincsen generátorfüggvénye, ui. a

$$\sum_{n=0} (n! \cdot x^n) \quad (x \in \mathbb{R})$$

hatványsor konvergenciahalmaza a {0} egyelemű halmaz.

2. Adott $n \in \mathbb{N}_0$ esetén az

$$f(x) := (1+x)^n \qquad (x \in \mathbb{R})$$

függvény

- generátorfüggvénye a $C_n^0, C_n^1, \ldots, C_n^n, 0, 0, \ldots$ sorozatnak, illetve
- $\bullet\,$ exponenciális generátorfüggvénye a $V_n^0, V_n^1, \dots, V_n^n, 0, 0, \dots$ sorozatnak, ahol

$$C_n^k := \binom{n}{k}, \quad \text{ill.} \quad V_n^k := n \cdot (n-1) \cdot \ldots \cdot (n-k+1),$$

ugyanis a binomiális tétel következtében

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k \qquad (x \in \mathbb{R}).$$

2022.05.14.

Feladat. Igazoljuk, hogy ha $F: \mathbb{N}_0 \to \mathbb{R}$ olyan sorozat, amelyre

$$F_0 = 0,$$
 $F_1 = 1,$ $F_{n+2} = F_{n+1} + F_n$ $(n \in \mathbb{N}_0),$

(Fibonacci-sorozat) akkor fennáll az

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right) \qquad (n \in \mathbb{N}_0)$$

egyenlőség (Moivre-Binet-formula)!

Útm. Teljes indukcióval könnyen igazolható, hogy

$$0 \le F_n \le 2^n \qquad (n \in \mathbb{N}_0),$$

ezért a

$$\sum_{n=0} (F_n \cdot x^n) \qquad (x \in \mathbb{R})$$

hatványsor ρ konvergenciasugarára: $\rho \leq \frac{1}{2}$. Ez azt jelenti, hogy az

$$f(x) := \sum_{n=0}^{\infty} F_n \cdot x^n = \sum_{n=1}^{\infty} F_n \cdot x^n \qquad \left(x \in \mathbb{R} : \, |x| < \frac{1}{2} \right)$$

függvény az (F_n) sorozat generátorfüggvénye. Így tetszőleges $x \in \left(-\frac{1}{2},\frac{1}{2}\right)$ esetén

$$\mathbf{f(x)} = F_0 + F_1 x + \sum_{n=2}^{\infty} F_n x^n = x + \sum_{n=2}^{\infty} \left(F_{n-1} + F_{n-2} \right) x^n = x + x \sum_{n=2}^{\infty} F_{n-1} x^{n-1} + x^2 \sum_{n=2}^{\infty} F_{n-2} x^{n-2} = x^2 + x \sum_{n=2}^{\infty}$$

$$= x + x \sum_{n=1}^{\infty} F_n x^n + x^2 \sum_{n=0}^{\infty} F_n x^n = x + x f(x) + x^2 f(x),$$

ahonnan

$$f(x) = \frac{x}{1 - x - x^2}$$

következik. Mivel a fenti x-ekre

$$\frac{x}{1 - x - x^2} = \frac{x}{\left(1 - \frac{1 + \sqrt{5}}{2}x\right)\left(1 - \frac{1 - \sqrt{5}}{2}x\right)} = \frac{1}{\sqrt{5}} \cdot \frac{1}{1 - \frac{1 + \sqrt{5}}{2} \cdot x} - \frac{1}{\sqrt{5}} \cdot \frac{1}{1 - \frac{1 - \sqrt{5}}{2} \cdot x} = \frac{1}{\sqrt{5}} \cdot \frac{1}{1 - \frac{1 - \sqrt{5}}{2} \cdot x} = \frac{1}{\sqrt{5}} \cdot \frac{1}$$

$$= \frac{1}{\sqrt{5}}\left(\sum_{n=0}^{\infty}\left(\frac{1+\sqrt{5}}{2}\right)^n-\sum_{n=0}^{\infty}\left(\frac{1-\sqrt{5}}{2}\right)^n\right)\chi^n = \sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right)\chi^n,$$

amennyiben

$$x \in \mathbb{R}: |x| < \min \left\{ \frac{\sqrt{5} - 1}{2}, \frac{1}{2} \right\} = \frac{1}{2},$$

ezért az állítás a hatványsorokra vonatkozó egyértelműségi tétel felhasználásával igazoltnak tekinthető. ■

Feladat. Igazoljuk, hogy ha $l : \mathbb{N} \to \mathbb{R}$ olyan sorozat, amelyre

$$l_1 = 1,$$
 $l_{n+1} = 2l_n + 1$ $(n \in \mathbb{N}),$

akkor fennáll az

$$l_n = 2^n - 1$$
 $(n \in \mathbb{N})$

egyenlőség (vö. "Hanoi tornyai"-feladat)!

Útm. Teljes indukcióval könnyen igazolható, hogy

$$0$$

A

$$\sum_{n=0} (|l_n x^n|) \qquad (x \in \mathbb{R})$$

sornak majoránsa a

$$\sum_{n=0} \left(|2^n x^n| \right) \qquad (x \in \mathbb{R})$$

sor, ez pedig tetszőleges $x \in \mathbb{R}$, |x| < 1/2 esetén konvergens, így a

$$\sum_{n=0} \left(l_n x^n \right) \qquad \left(x \in \mathbb{R} : \; |x| < 1/2 \right)$$

sor abszolút konvergens, ahol $l_0 := 0$. Ezért az (l_n) sorozatnak generátorfüggvénye az

$$f(x):=\sum_{n=0}^{\infty}l_nx^n \qquad (|x|<1/2)$$

függvény. Ekkor

$$\begin{array}{ll} \textbf{f}(\textbf{x}) & = & l_1 + \sum_{n=2}^{\infty} l_n x^n = 1 + \sum_{n=2}^{\infty} \left(2 l_{n-1} + 1 \right) x^n = 1 + \sum_{n=2}^{\infty} 2 l_{n-1} x^n + \sum_{n=2}^{\infty} x^n = 1 + \sum_{n=2}^{\infty} \left(2 l_{n-1} + 1 \right) x^n = 1 + \sum_{n=2}^{\infty} 2 l_{n-1} x^n + \sum_{n=2}^{\infty} x^n = 1 + \sum_{n=2}^{\infty} \left(2 l_{n-1} + 1 \right) x^n = 1 + \sum_{n=2}^{\infty} 2 l_{n-1} x^n + \sum_{n=2}^{\infty} x^n = 1 + \sum_{n=2}^{\infty} \left(2 l_{n-1} + 1 \right) x$$

$$= 1 + \sum_{n=1}^{\infty} 2l_n x^{n+1} + \frac{x}{1-x} - 1 = 2x \sum_{n=1}^{\infty} l_n x^n + \frac{x}{1-x} = 2x f(x) + \frac{x}{1-x}.$$

Így egy egyenletet kapunk f(x)-re, amiből

$$f(x) = \frac{x}{(1-x)(1-2x)} = \frac{(1-x)-(1-2x)}{(1-x)(1-2x)} = \frac{1}{1-2x} - \frac{1}{1-x} \qquad (|x| < 1/2).$$

Mivel bármely $x \in \mathbb{R}$, $|x| < \min\{1, 1/2\} = 1/2$ esetén

$$\frac{x}{(1-x)(1-2x)} = \sum_{n=0}^{\infty} (2x)^n - \sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} \{2^n - 1\} x^n,$$

ezért az egyértelműségi tétel következtében

$$l_n = 2^n - 1$$
 $(n \in \mathbb{N})$.

Definíció. Azt mondjuk, hogy a $\mathcal{H} \subset \mathbb{R}$ halmaz

- 1. **zárt**, ha $\mathcal{H} = \emptyset$ vagy $\mathcal{H} \neq \emptyset$ és tetszőleges konvergens $(x_n) : \mathbb{N}_0 \to \mathcal{H}$ sorozatra $\lim (x_n) \in \mathcal{H}$.
- 2. **nyílt**, ha $\mathcal{H}^c := \mathbb{R} \backslash \mathcal{H}$ komplementere zárt.
- 3. **kompakt**, ha bármely $(x_n): \mathbb{N}_0 \to \mathcal{H}$ sorozat esetén van olyan $v \in \mathcal{I}$ indexsorozat, hogy $\lim (x_{v_n}) \in \mathcal{H}$, azaz bármely \mathcal{H} -beli sorozatnak van \mathcal{H} -ban konvergens részsorozata.

Megjegyezzük, hogy bármely $a, b \in \mathbb{R}$: $a \le b$ esetén az [a, b] intervallum zárt halmaz (ez indokolja a "zárt" intervallum elnevezést), ugyanakkor a (0, 1) (nyílt) intervallum nem zárt halmaz. Hasonlóan zárt

maga az \mathbb{R} halmaz vagy pl. bármely $\mathfrak{a} \in \mathbb{R}$ esetén az

$$[a, +\infty)$$
, ill. a $(-\infty, a]$

"félegyenes".

Definíció. Valamely $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ halmaz esetén az $f: \mathcal{H} \to \mathcal{H}$ függvényt **kontrakció**nak nevezzük, ha alkalmas $q \in [0, 1)$ számmal

$$|f(u) - f(v)| \le q \cdot |u - v|$$
 $(u, v \in \mathcal{H}).$

A q szám neve kontrakciós állandó.

Példák.

1. Ha $\mathcal{H} := [1, +\infty)$ és

$$f(t) := \frac{t}{2} + \frac{1}{t} \qquad (t \in \mathcal{H}),$$

akkor f kontrakció, ui.

ullet bármely $t \in \mathcal{H}$ esetén (a mértani és számtani közép közötti egyenlőtlenség következtében)

$$[f(t)]^2 = 4 \cdot \frac{[f(t)]^2}{4} = 4 \cdot \left(\frac{\frac{t}{2} + \frac{1}{t}}{2}\right)^2 \ge 4 \cdot \frac{t}{2} \cdot \frac{1}{t} = \frac{4}{2} = 2 \qquad (1 \le t \in \mathbb{R}),$$

azaz (f(t) > 0 miatt) f(t) $\geq \sqrt{2} > 1$;

• tetszőleges $u, v \in \mathcal{H}$ esetén

$$|f(u) - f(v)| = \left| \frac{u}{2} + \frac{1}{u} - \frac{v}{2} - \frac{1}{v} \right| = |u - v| \cdot \left| \frac{1}{2} - \frac{1}{uv} \right| < \frac{1}{2} \cdot |u - v|,$$

azaz (pl.) q := 1/2 kontrakció állandó.

2. Ha
$$\mathcal{H}:=\left[0,\frac{1}{3}\right]$$
 és

$$f(t):=t^2+\frac{1}{8} \qquad (t\in \mathcal{H}),$$

akkor f kontrakció, ui.

ullet bármely $t\in \mathcal{H}$ esetén

$$0 \le f(t) = t^2 + \frac{1}{8} \le \frac{1}{9} + \frac{1}{8} = \frac{17}{72} < \frac{24}{72} = \frac{1}{3},$$

azaz $f(t) \in \mathcal{H}$;

• bármely $u, v \in \mathcal{H}$ esetén

$$|f(u) - f(v)| = |u^2 - v^2| = |u + v| \cdot |u - v| \le \frac{2}{3} \cdot |u - v|.$$

Kontrakciók fontos szerepet játszanak pl. a közelítő számításokban (ld. **numerikus analízis**). Az alábbi tétel mintegy alapját képezi az említett alkalmazásoknak.

Tétel (fixponttétel). Tegyük fel, hogy $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ zárt halmaz és $f: \mathcal{H} \to \mathcal{H}$ kontrakció a $q \in [0, 1)$ kontrakciós állandóval. Ekkor

- 1. pontosan egy olyan $\alpha \in \mathcal{H}$ szám van, amelyre $f(\alpha) = \alpha$;
- 2. bármely $\mathfrak{u}\in\mathcal{H}$ esetén az

$$x_0 := \mathfrak{u}, \qquad x_{n+1} := f(x_n) \quad (n \in \mathbb{N}_0)$$

rekurzióval definiált (x_n) sorozat konvergens és $\lim(x_n) = \alpha$;

3. az iménti (x_n) sorozatra fennáll az

$$|x_n - \alpha| \le \frac{q^n}{1-q} \cdot |x_1 - x_0| \qquad (n \in \mathbb{N}_0)$$

egyenlőtlenség (hibabecslés).

Biz.

1. lépés A $0^0 := 1$ megállapodással megmutatjuk, hogy fennáll az

$$|x_{n+1} - x_n| \le q^n \cdot |x_1 - x_0| \qquad (n \in \mathbb{N}_0)$$
 (23)

becslés. Valóban,

- az n = 0 esetben az állítás nyilvánvaló.
- ha valamely $n \in \mathbb{N}_0$ esetén fennáll az (23) egyenlőtlenség, akkor

$$|x_{n+2}-x_{n+1}|=|f(x_{n+1})-f(x_n)|\leq q\cdot |x_{n+1}-x_n|\leq q\cdot q^n\cdot |x_1-x_0|=q^{n+1}\cdot |x_1-x_0|.$$

2. lépés Megmutatjuk, hogy az (x_n) sorozat Cauchy-féle. Ha $m, n \in \mathbb{N}_0$ és (pl.) m > n, akkor

$$\begin{split} |\mathbf{x}_m - \mathbf{x}_n| &= |(\mathbf{x}_m - \mathbf{x}_{m-1}) + (\mathbf{x}_{m-1} - \mathbf{x}_{m-2}) + \ldots + (\mathbf{x}_{n+2} - \mathbf{x}_{n+1}) + (\mathbf{x}_{n+1} - \mathbf{x}_n)| \leq \\ &\leq |\mathbf{x}_m - \mathbf{x}_{m-1}| + |\mathbf{x}_{m-1} - \mathbf{x}_{m-2}| + \ldots + |\mathbf{x}_{n+2} - \mathbf{x}_{n+1}| + |\mathbf{x}_{n+1} - \mathbf{x}_n| \leq \\ &\leq q^{m-1} \cdot |\mathbf{x}_1 - \mathbf{x}_0| + q^{m-2} \cdot |\mathbf{x}_1 - \mathbf{x}_0| + \ldots + q^{n+1} \cdot |\mathbf{x}_1 - \mathbf{x}_0| + q^n \cdot |\mathbf{x}_1 - \mathbf{x}_0| = \\ &= (q^{m-1} + q^{m-2} + \ldots + q^{n+1} + q^n) \cdot |\mathbf{x}_1 - \mathbf{x}_0| = \\ &= q^n \cdot (q^{m-n-1} + q^{m-n-2} + \ldots + q + 1) \cdot |\mathbf{x}_1 - \mathbf{x}_0| = \\ &= q^n \cdot \frac{1 - q^{m-n}}{1 - q} \cdot |\mathbf{x}_1 - \mathbf{x}_0| \leq \frac{q^n}{1 - q} \cdot |\mathbf{x}_1 - \mathbf{x}_0|. \end{split}$$

Mivel (q^n) nullsorozat, ezért tetszőleges $\epsilon>0$ számhoz van olyan $N\in\mathbb{N}_0$ index, hogy bármely $N\leq n\in\mathbb{N}_0$ indexre

$$q^n < \frac{(1-q)\varepsilon}{|x_1-x_0|}.$$

Következésképpen bármely $N \leq m, n \in \mathbb{N}_0$ indexre $|x_m - x_n| < \epsilon$, azaz (x_n) Cauchy-féle.

3. lépés A Cauchy-féle konvergenciakritérium következtében az (x_n) sorozat konvergens is. Legyen $\alpha := \lim(x_n)$. Mivel \mathcal{H} zárt halmaz, ezért $\alpha \in \mathcal{H}$. Belátjuk, hogy $f(\alpha) = \alpha$. Valóban,

$$\begin{split} 0 & \leq |f(\alpha) - \alpha| = |(f(\alpha) - f(x_n)) + (f(x_n) - \alpha)| \leq |f(\alpha) - f(x_n)| + |f(x_n) - \alpha| = \\ \\ & = |f(\alpha) - f(x_n)| + |x_{n+1} - \alpha| \leq q \cdot |x_n - \alpha| + |x_{n+1} - \alpha| \longrightarrow 0 \quad (n \to \infty) \end{split}$$

csak úgy teljesülhet, ha $f(\alpha) - \alpha = 0$, azaz $f(\alpha) = \alpha$.

4. lépés Tegyük fel, hogy valamely $\beta \in \mathcal{H}$ számra $f(\beta) = \beta$. Ekkor

$$|\alpha - \beta| = |f(\alpha) - f(\beta)| \le q \cdot |\alpha - \beta| \qquad \Longleftrightarrow \qquad (1 - q) \cdot |\alpha - \beta| \le 0.$$

Mivel $0 \le q < 1$ ezért innen $(0 \le) |\alpha - \beta| \le 0$, azaz $|\alpha - \beta| = 0$ következik. Tehát $\alpha = \beta$.

5. lépés A 2. lépésbeli

$$|x_m - x_n| \le \frac{q^n}{1 - q} \cdot |x_1 - x_0|$$
 $(m, n \in \mathbb{N}_0, m > n)$

becslés, ill a tetszőleges $n \in \mathbb{N}_0$ indexre fennálló

$$\lim_{m\to\infty}(x_m-x_n)=\alpha-x_n,\qquad\Longrightarrow\qquad \lim_{m\to\infty}(|x_m-x_n|)=|\alpha-x_n|$$

határértékreláció figyelembevételével az

$$|x_n - \alpha| \le \frac{q^n}{1 - q} \cdot |x_1 - x_0| \qquad (n \in \mathbb{N}_0)$$

hibabecslés adódik. ■

A fenti tételben szereplő α számot a tételbeli f függvény **fixpontj**ának, magát a tételt **fixponttétel**nek nevezzük. Az α fixpont tehát az

$$f(x) = x$$
 $(x \in \mathcal{H})$

egyenletnek a megoldása. Éppen ezért a fixponttétel a közelítő számítások, módszerek (ld. numerikus analízis) egyik legfontosabb eszköze.

Példa. Egy korábbi példában szereplő

$$f(t) := \frac{t}{2} + \frac{1}{t} \qquad (1 \le t \in \mathbb{R})$$

kontrakció esetében az f(x) = x egyenlet

$$\frac{x}{2} + \frac{1}{x} = x \qquad (1 \le t \in \mathbb{R})$$

alakú. Könnyű ellenőrizni, hogy ennek az egyenletnek egyetlen α gyöke van az $[1, +\infty)$ halmazban, nevezetesen $\alpha = \sqrt{2}$, hiszen bármely $x \in [1, +\infty)$ esetén

$$\frac{x}{2} + \frac{1}{x} = x$$
 \iff $x^2 + 2 = 2x^2$ \iff $2 = x^2$ \iff $x = \sqrt{2}$.

Ha a fixponttételt au $\mathfrak{u}:=2$ "kezdőértékkel" alkalmazzuk, akkor az

$$x_0 := 2,$$
 $x_{n+1} := \frac{x_n}{2} + \frac{1}{x_n} = \frac{1}{2} \cdot \left(x_n + \frac{2}{x_n}\right)$ $(n \in \mathbb{N}_0)$

sorozatot kapjuk (**Heron-féle** vagy **babiloni gyökkeresési algoritmus**). A fixponntétel következtében tehát az (x_n) sorozat konvergens és $\lim(x_n) = \sqrt{2}$, továbbá a q := 1/2 kontrakciós állandóval

$$\left|x_n - \sqrt{2}\right| \leq \frac{(1/2)^n}{1 - 1/2} \cdot |x_0 - x_1| = \frac{|2 - 3/2|}{2^{n-1}} = \frac{1}{2^n} \qquad (n \in \mathbb{N}_0).$$

Így pl.

$$x_0 = 2$$
, $x_1 = \frac{3}{2} = 1.5$, $x_2 = \frac{17}{12} = 1.41\dot{6}$, $x_3 = \frac{577}{408} = 1.41421...$

A zárthelyik feladatainak megoldása

Az 1. zh feladatai

1. Vizsgálja a

$$\mathcal{H} := \left\{ \frac{x^2 + 9}{3x^2 + 9} \in \mathbb{R} : x \in (-\infty, 3) \right\}$$

halmazt korlátosság szempontjából! **Határozza meg** \mathcal{H} infimumát és szuprémumát! Van-e a \mathcal{H} halmaznak legkisebb, ill. legnagyobb eleme?

2. Tekintse az alábbi függvényeket!

$$f(x) := \frac{2}{|x+1|} \quad (-1 \neq x \in \mathbb{R}), \qquad g(x) := x^2 - 2x - 4 \quad (0 \leq x \in \mathbb{R}).$$

- (a) Állapítsa meg, hogy invertálható-e az f függvény!
- (b) Határozza meg az f ∘ g függvényt!
- (c) Számítsa ki a [-4,4] halmaz g által létesített ősképét!
- 3. A határérték definíciója alapján **lássa be**, hogy fennáll a

$$\lim_{n \to +\infty} \left(\frac{3n^3 - n^2 + 3}{2n^2 - n + 1} \right) = +\infty$$

egyenlőség!

4. Számítsa ki az alábbi határértékeket!

(a)
$$\lim_{n \to +\infty} \left(\frac{\sqrt{n^3 + 1} - \sqrt{n^3 - n^2}}{\sqrt{4n + 1}} \right);$$

(b)
$$\lim_{n\to+\infty} \left(\sqrt[n]{5^{n+1}+n^23^n}\right);$$

(c)
$$\lim_{n \to +\infty} \left(\left(\frac{n+5}{2n} \right)^{3n+1} \right)$$
.

5. **Mutassa meg**, hogy az

$$x_0 := 5,$$
 $x_{n+1} := \frac{x_n^2 + 2x_n}{10}$ $(n \in \mathbb{N}_0)$

sorozat konvergens, és számítsa ki a határértékét!

342

Útm.

1. • Világos, hogy minden $x \in (-\infty, 3)$ esetén

$$(*) \quad \frac{x^2+9}{3x^2+9} = \frac{1}{3} \cdot \frac{3x^2+27}{3x^2+9} = \frac{1}{3} \cdot \frac{3x^2+9+18}{3x^2+9} = \frac{1}{3} \cdot \left(1+\frac{6}{x^2+3}\right) = \frac{1}{3} + \frac{2}{x^2+3}.$$

• Mivel bármely $x \in (-\infty, 3)$ esetén

$$\frac{2}{x^2+3}>0,$$

ezért

$$\mathcal{H}\ni\frac{x^2+9}{3x^2+9}>\frac{1}{3},$$

azaz $\frac{1}{3}$ alsó korlátja \mathcal{H} -nak. Látható, hogy a

$$\frac{2}{x^2+3}$$

tört az x^2 nagy értékeire igen közel van 0-hoz, ezért a \mathcal{H} halmaz elemei az ilyen x-ekre $\frac{1}{3}$ -hoz közeli értékeket vesznek fel. Sejthető tehát, hogy \mathcal{H} -nak nincsen $\frac{1}{3}$ -nál nagyobb korlátja:

$$\forall \, \varepsilon > 0 \, \exists \, \mathbf{x} \in (-\infty, 3) : \qquad \mathcal{H} \ni \frac{1}{3} + \frac{2}{\mathbf{x}^2 + 3} < \frac{1}{3} + \varepsilon.$$

Megmutatjuk, hogy $\frac{1}{3}$ a legnagyobb alsó korlát: $\inf(\mathcal{H}) = \frac{1}{3}$. Mivel

$$\frac{1}{3} + \frac{2}{x^2 + 3} < \frac{1}{3} + \varepsilon \qquad \iff \qquad x^2 > \frac{2}{\varepsilon} - 3,$$

ezért van ilyen ilyen $x\in(-\infty,3)$ szám, hiszen ha $x\in\left(-\infty,-\sqrt{\frac{2}{\epsilon}}\right)$, akkor

$$x^2 > \frac{2}{\varepsilon} > \frac{2}{\varepsilon} - 3.$$

Mivel $\frac{1}{3} \notin \mathcal{H}$, ezért \mathcal{H} -nak nincsen legkisebb eleme.

 A (*) felbontásból az is látható, hogy bármely $\mathbf{x} \in (-\infty,3)$ esetén

$$\frac{1}{3} + \frac{2}{x^2 + 3} \le \frac{1}{3} + \frac{2}{0^2 + 3} = 1 \in \mathcal{H}.$$

Ez azt jelenti, hogy $\sup(\mathcal{H}) = \max(\mathcal{H}) = 1$.

- 2. (a) Mivel f(1) = 1 = f(-3), ezért f nem invertálható.
 - (b) Világos, hogy

2022.05.14.

$$\mathcal{D}_{f\circ g} \ = \ \left\{x\in \mathcal{D}_g: \ g(x)\in \mathcal{D}_f\right\} = \left\{x\in [0,+\infty): \ x^2-2x-4\neq -1\right\} =$$

$$= \{x \in [0, +\infty) : x^2 - 2x - 3 \neq 0\}.$$

Mivel

$$x^2 - 2x - 3 = 0$$
 \implies $x_{\pm} = 1 \pm \sqrt{1 + 3} = 1 \pm 2 \in \{-1, 3\},\$

ezért

$$\mathcal{D}_{\text{fog}} = \{x \in [0, +\infty): \ (x+1)(x-3) \neq 0\} = [0, +\infty) \setminus \{3\}.$$

Tehát bármely $3 \neq x \in [0, +\infty)$ esetén

$$(f \circ g)(x) = f(g(x)) = \frac{2}{|x^2 - 2x - 3|}.$$

Az f és a g függvény kompozíciója így az

$$(f \circ g)(x) := \frac{2}{|x^2 - 2x - 3|}$$
 $(3 \neq x \in [0, +\infty))$

függvény.

(c) Világos, hogy

$$g^{-1} [[-4,4]] = \{x \in [0,+\infty) : x^2 - 2x - 4 \in [-4,4]\} =$$

$$= \{x \in [0,+\infty) : -4 \le (x-1)^2 - 5 \le 4\} =$$

$$= \{x \in [0,+\infty) : 1 \le (x-1)^2 \le 3\} = \{x \in [0,+\infty) : 1 \le |x-1| \le 3\} =$$

$$= \{x \in [0,+\infty) : 1 \le x - 1 \le 3\} \cup \{x \in [0,+\infty) : -3 \le x - 1 \le -1\} =$$

$$= [2,4] \cup \{0\}.$$

3. Azt kell megmutatni, hogy az

$$x_n := \frac{3n^3 - n^2 + 3}{2n^2 - n + 1}$$
 $(n \in \mathbb{N}_0)$

sorozatra

$$\forall \omega \in \mathbb{R} \ \exists N \in \mathbb{N}_0 \ \forall n \in \mathbb{N}_0 : \qquad (n \ge N \implies x_n > \omega)$$

teljesül. Valóban, ha $0 < \omega \in \mathbb{R}$, akkor bármely $n \in \mathbb{N}$ esetén

$$\frac{3n^3-n^2+3}{2n^2-n+1} \ > \ \frac{3n^3-n^2}{2n^2+1} = \frac{2n^3+n^3-n^2}{2n^2+1} = \frac{2n^3+n^2(n-1)}{2n^2+1} \geq$$

$$\overset{n\geq 1}{\geq} \quad \frac{2n^3}{2n^2+n^2} = \frac{2n^3}{3n^2} = \frac{2n}{3} > \omega \qquad \iff \qquad n>\frac{3\omega}{2},$$

így

$$N := \max\left\{1, \left[\frac{3\omega}{2}\right] + 1\right\} = \left[\frac{3\omega}{2}\right] + 1.$$

4. (a) Látható, hogy bármely $n \in \mathbb{N}$ indexre

$$\frac{\sqrt{n^3+1}-\sqrt{n^3-n^2}}{\sqrt{4n+1}} \ = \ \left(\frac{\sqrt{n^3+1}-\sqrt{n^3-n^2}}{\sqrt{4n+1}}\right) \cdot \frac{\sqrt{n^3+1}+\sqrt{n^3-n^2}}{\sqrt{n^3+1}+\sqrt{n^3-n^2}} =$$

$$= \frac{n^2 + 1}{\sqrt{4n + 1} \left(\sqrt{n^3 + 1} + \sqrt{n^3 - n^2} \right)} =$$

$$= \frac{1 + \frac{1}{n^2}}{\sqrt{4 + \frac{1}{n}} \left(\sqrt{1 + \frac{1}{n^3}} + \sqrt{1 - \frac{1}{n}}\right)} \longrightarrow \frac{1}{\sqrt{4} \cdot \left(\sqrt{1} + \sqrt{1}\right)} =$$

$$=$$
 $\frac{1}{4}$ $(n \to \infty)$.

(b) Mivel tetszőleges $n \in \mathbb{N}$ indexre

$$\sqrt[n]{5^{n+1}+n^23^n} = 5 \cdot \sqrt[n]{5+n^2\left(\frac{3}{5}\right)^n}$$

és az

$$x_n := 5 + n^2 \left(\frac{3}{5}\right)^n \qquad (n \in \mathbb{N})$$

sorozatra

$$\lim_{n \to \infty} (x_n) = 5 + 0 = 5 > 0,$$

ezért

$$\lim_{n\to\infty} \left(\sqrt[n]{5^{n+1}+n^23^n}\right) = 5 \cdot \lim_{n\to\infty} (\sqrt[n]{x_n}) = 5 \cdot 1 = 5.$$

(c) Az $n \to \infty$ határátmenetben

$$\left(\frac{n+5}{2n}\right)^{3n+1} \ = \ \left(\frac{1}{2}\right)^{3n+1} \cdot \left(\frac{n+5}{n}\right)^{3n+1} =$$

$$= \left(\frac{1}{2}\right)^{3n+1} \cdot \left[\left(1+\frac{5}{n}\right)^n\right]^3 \cdot \left(1+\frac{5}{n}\right) \longrightarrow \frac{1}{2} \cdot 0 \cdot [e^5]^3 \cdot 1 = 0.$$

5. **1. lépés.** Ha az (x_n) sorozat konvergens, és $\alpha := \lim(x_n)$, akkor $\lim(x_{n+1}) = \alpha$, és így

$$\alpha = \frac{\alpha^2 + 2\alpha}{10} \implies \alpha^2 - 8\alpha = 0 \implies \alpha \in \{0, 8\}.$$

2. lépés. Mivel a kezdőtag: $x_0 = 5$, kézenfekvőnek tűnik belátni azt, hogy

$$x_n \in (0,8)$$
 $(n \in \mathbb{N}_0).$

Valóban,

- n = 0 esetén $x_0 = 5 \in (0, 8)$;
- $\bullet \,$ ha valamely $n \in \mathbb{N}_0$ esetén $x_n \in (0,8),$ akkor

$$x_{n+1} = \frac{x_n^2 + 2x_n}{10} \in \left(0, \frac{64 + 16}{10}\right) = (0, 8).$$

3. lépés. Megmutatjuk, hogy az (x_n) sorozat szigorúan monoton csökkenő. Valóban, bármely $n \in \mathbb{N}_0$ esetén

$$x_{n+1} - x_n = \frac{x_n^2 + 2x_n}{10} - x_n = \frac{x_n^2 - 8x_n}{10} = \frac{x_n(x_n - 8)}{10} < 0.$$

4. lépés. Mivel a sorozat (szigorúan) monoton csökkenő és alulról korlátos, ezért konvergens. A fentiek következtáben tehát (x_n) konvergens és

$$\lim(x_n) = 0$$
.

A 2. zh feladatai

1. Konvergens-e a

$$\sum_{n=1} \left(\frac{(-3)^n + (-2)^{2n}}{5^{n+1}} \right)$$

346

végtelen sor? Ha igen, számítsa ki összegét!

2. Döntse el, hogy konvergensek-e az alábbi sorok!

a)
$$\sum_{n=2} \left(\frac{1}{\sqrt[n]{2n^2+1}} \right)$$
, b) $\sum_{n=1} \left(\frac{n^3 \cdot 3^n}{(3n)!} \right)$, c) $\sum_{n=0} \left(\frac{\sqrt{n^4+1}}{n^4+n^2+1} \right)$.

3. Határozza meg a

$$\sum_{n=1} \left(\frac{2^n}{n(4^n - 1)} \cdot (x - 1)^n \right) \qquad (x \in \mathbb{R})$$

hatványsor konvergenciasugarát és konvergenciahalmazát!

4. Számítsa ki az alábbi határértékeket!

a)
$$\lim_{x\to 0}\frac{x\cdot\sin(x)}{1-\sqrt{\cos(2x)}},$$
 b)
$$\lim_{x\to 1}\frac{\sqrt{\alpha x^2-\alpha+1}-1}{x^3-1}\quad (\alpha\in[0,1]).$$

5. Határozza meg az

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) := \begin{cases} \frac{x}{x^2 - x - 6} & (x < -2), \\ \frac{e^{2x} - e^x}{2x} & (-2 \le x < 10), \\ \\ 1 & (x = 0), \\ \\ \frac{\sqrt{x^2 + 1} - 1}{x^2} & (x > 0). \end{cases}$$

függvény folytonossági és szakadási helyeit, valamint a szakadási helyek típusát!

Útm.

1. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{(-3)^n + (-2)^{2n}}{5^{n+1}} = \frac{1}{5} \cdot \left\{ \left(-\frac{3}{5} \right)^n + \left(\frac{4}{5} \right)^n \right\}$$

és

$$\left|-\frac{3}{5}\right| < 1,$$
 ill. $\left|\frac{4}{5}\right| < 1,$

ezért konvergens geometriai sorról van szó, amelynek összege

$$\sum_{n=1}^{\infty} \frac{(-3)^n + (-2)^{2n}}{5^{n+1}} \ = \ \frac{1}{5} \cdot \left\{ \sum_{n=1}^{\infty} \left(-\frac{3}{5} \right)^n + \sum_{n=1}^{\infty} \left(\frac{4}{5} \right)^n \right\} = \frac{1}{5} \cdot \left\{ \frac{-\frac{3}{5}}{1 + \frac{3}{5}} + \frac{\frac{4}{5}}{1 - \frac{4}{5}} \right\} = \frac{1}{5} \cdot \left\{ \frac{1}{5} + \frac{3}{5} + \frac{1}{5} + \frac{4}{5} + \frac{1}{5} + \frac{4}{5} + \frac{4}{5$$

$$= \frac{1}{5} \cdot \left\{ -\frac{3}{8} + 4 \right\} = \frac{29}{40}.$$

2. (a) Mivel

$$\sqrt[n]{2n^2} \le \sqrt[n]{2n^2 + 1} \le \sqrt[n]{2n^2 + n^2} \le \sqrt[n]{3n^2} \qquad (2 \le n \in \mathbb{N})$$

és

$$\sqrt[n]{2n^2} = \sqrt[n]{2} \cdot (\sqrt[n]{n})^2 \stackrel{(n \to \infty)}{\longrightarrow} 1 \cdot 1^2 = 1 = 1 \cdot 1^2 \stackrel{(n \to \infty)}{\longleftarrow} \sqrt[n]{3} \cdot (\sqrt[n]{n})^2 = \sqrt[n]{3n^2},$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt[n]{2n^2 + 1}} \right) = \frac{1}{\lim_{n \to \infty} (\sqrt[n]{2n^2 + 1})} = \frac{1}{1} = 1 \neq 0.$$

Következésképpen a

$$\sum_{n=2} \left(\frac{1}{\sqrt[n]{2n^2 + 1}} \right)$$

sor divergens. **Megjegyezzük**, hogy tetszőleges $2 \le n \in \mathbb{N}$ indexre

$$\frac{1}{\sqrt[n]{2n^2+1}} = \frac{1}{\sqrt[n]{n^2} \cdot \sqrt[n]{2+\frac{1}{n^2}}} \longrightarrow \frac{1}{1 \cdot 1} = 1 \qquad (n \to \infty),$$

hiszen

$$x_n := 2 + \frac{1}{n^2} \longrightarrow 2 > 0 \quad (n \to \infty) \qquad \Longrightarrow \qquad \sqrt[n]{x_n} \longrightarrow 1 \quad (n \to \infty).$$

(b) Ha

$$x_n := \frac{n^3 \cdot 3^n}{(3n)!} \qquad (n \in \mathbb{N}),$$

akkor

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{(n+1)^3 \cdot 3^{n+1}}{(3n+3)!} \cdot \frac{(3n)!}{n^3 \cdot 3^n} = \frac{3(n+1)^3}{n^3(3n+1)(3n+2)(3n+3)} \longrightarrow 0 < 1 \qquad (n \to \infty).$$

Így a hányadoskritérium következtében a

$$\sum_{n=1} \left(\frac{n^3 \cdot 3^n}{(3n)!} \right)$$

sor konvergens.

(c) Mivel nagy $n \in \mathbb{N}$ indexre

$$\frac{\sqrt{n^4+1}}{n^4+n^2+1} = \frac{\sqrt{1+\frac{1}{n^4}}}{n^2+1+\frac{1}{n^2}} \approx \frac{1}{n^2} \qquad \text{és} \qquad \sum_{n=1}^{\infty} \left(\frac{1}{n^2}\right) \quad \text{konvergens,}$$

ezért a majoránskritériumot kíséreljük meg alkalmazni. Mivel

$$\frac{\sqrt{n^4+1}}{n^4+n^2+1} \leq \frac{\sqrt{n^4+3n^4}}{n^4} = \frac{2n^2}{n^4} = \frac{2}{n^2} \qquad (n \in \mathbb{N})$$

és a

$$\sum_{n=1} \left(\frac{2}{n^2}\right) = 2 \cdot \sum_{n=1} \left(\frac{1}{n^2}\right)$$

sor konvergens, ezért a

$$\sum_{n=0} \left(\frac{\sqrt{n^4 + 1}}{n^4 + n^2 + 1} \right)$$

sor a majoránskritérium alapján konvergens.

3. Világos, hogy c := 1 középpontú és

$$\alpha_n := \frac{2^n}{n(4^n-1)} \qquad (n \in \mathbb{N})$$

együtthatójú hatványsorról van szó. Mivel az $n \to \infty$ határesetben

$$\left|\frac{a_n}{a_{n+1}}\right| = \frac{2^n}{n(4^n - 1)} \cdot \frac{(n+1)(4^{n+1} - 1)}{2^{n+1}} = \frac{n+1}{2n} \cdot \frac{4^{n+1} - 1}{4^n - 1} = \frac{n+1}{2n} \cdot \frac{4 - \frac{1}{4^n}}{1 - \frac{1}{4^n}} \longrightarrow \frac{1}{2} \cdot 4 = 2,$$

ezért a hatványsor konvergenciasugara 2. Mivel

$$|x-1| < 2$$
 \iff $-2 < x-1 < 2$ \iff $-1 < x < 3$

ezért a hatványsor $x \in (1,3)$ esetén konvergens, $x \in \mathbb{R} \setminus [-1,3]$ esetén pedig divergens. Ha x=-1, akkor a

$$\sum_{n=1} \left((-1)^n \cdot \frac{4^n}{n(4^n-1)} \right)$$

sor a Lebniz-kritérium következtében konvergens, hiszen

$$\frac{4^n}{n(4^n-1)} = \frac{1}{n} \cdot \frac{1}{1-\frac{1}{4^n}} \searrow 0 \qquad (n \to \infty).$$

Ha x = 3, akkor a

$$\sum_{n=1} \left(\frac{4^n}{n(4^n - 1)} \right)$$

sor divergens, hiszen

$$\frac{4^n}{4^n-1}>1 \qquad (n\in \mathbb{N})$$

következtében

$$\frac{4^n}{n(4^n-1)}>\frac{1}{n}>0 \qquad (n\in\mathbb{N}),$$

és így a

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \right)$$

harmonikus sor divergens minoránsa.

4. (a) Bármely $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ esetén

$$\frac{x \cdot \sin(x)}{1 - \sqrt{\cos(2x)}} \ = \ \frac{x \cdot \sin(x)}{1 - \sqrt{\cos(2x)}} \cdot \frac{1 + \sqrt{\cos(2x)}}{1 + \sqrt{\cos(2x)}} = \frac{x \cdot \sin(x) \cdot \left(1 + \sqrt{\cos(2x)}\right)}{1 - \cos(2x)} = \frac{x \cdot \sin(x) \cdot \left(1 + \sqrt{\cos(2x)}\right)}{1 - \cos(2x)} = \frac{x \cdot \sin(x)}{1 - \cos(x)} = \frac{x \cdot \sin(x)}{1$$

$$= \frac{x \cdot \sin(x) \cdot (1 + \sqrt{\cos(2x)})}{2 \cdot \sin^2(x)} = \frac{1 + \sqrt{\cos(2x)}}{2 \cdot \frac{\sin(x)}{x}} \longrightarrow \frac{1+1}{2 \cdot 1} = 1 \quad (x \to 0).$$

(b) Mivel alkalmas r>0, illetve $1\neq x\in (1-r,1+r)$ esetén

$$\frac{\sqrt{\alpha x^{2} - \alpha + 1} - 1}{x^{3} - 1} = \frac{\sqrt{\alpha x^{2} - \alpha + 1} - 1}{x^{3} - 1} \cdot \frac{\sqrt{\alpha x^{2} - \alpha + 1} + 1}{\sqrt{\alpha x^{2} - \alpha + 1} + 1} =$$

$$= \frac{\alpha \cdot (x^{2} - 1)}{(x^{3} - 1) \cdot (\sqrt{\alpha x^{2} - \alpha + 1} + 1)} =$$

$$= \frac{\alpha \cdot (x - 1) \cdot (x + 1)}{(x - 1) \cdot (x^{2} + x + 1) \cdot (\sqrt{\alpha x^{2} - \alpha + 1} + 1)} =$$

$$= \frac{\alpha \cdot (x + 1)}{(x^{2} + x + 1) \cdot (\sqrt{\alpha x^{2} - \alpha + 1} + 1)},$$

$$= \frac{\alpha \cdot (x + 1)}{(x^{2} + x + 1) \cdot (\sqrt{\alpha x^{2} - \alpha + 1} + 1)},$$

ezért

$$\lim_{x\to 1}\frac{\sqrt{\alpha x^2-\alpha+1}-1}{x^3-1}=\frac{\alpha\cdot 2}{3\cdot \left(\sqrt{1}+1\right)}=\frac{\alpha}{3}.$$

- 5. A folytonosság és a műveletek kapcsolatára vonatkozó tételek alapjány nyilvánvaló, hogy f folytonos a $(-\infty, -2)$, (-2, 0), $(0, +\infty)$ intervallumok mindegyikén. Látható továbbá, hogy
 - f-nek másodfajú szakadása van az a := -2 pontban, hiszen

$$\lim_{-2-0} f = \lim_{x \to 2-0} \frac{x}{(x+2)(x-3)} = \left(\lim_{x \to 2-0} \frac{x}{x-3}\right) \cdot \left(\lim_{x \to 2-0} \frac{1}{x+2}\right) = \frac{2}{5} \cdot (+\infty) = +\infty;$$

• f-nek megszüntethető szakadása van az a := 0 pontban, hiszen (vö. 284., ill. 286. oldal)

$$\lim_{0 \to 0} f = \lim_{x \to 0 \to 0} \frac{e^{2x} - e^x}{2x} = \frac{2 - 1}{2} = \frac{1}{2}$$

$$\lim_{0+0} f = \lim_{x \to 0+0} \frac{\sqrt{x^2+1}-1}{x^2} = \lim_{x \to 0+0} \frac{\sqrt{x^2+1}-1}{x^2} \cdot \frac{\sqrt{x^2+1}+1}{\sqrt{x^2+1}+1} =$$

$$= \lim_{x \to 0+0} \frac{x^2}{x^2 \cdot \left(\sqrt{x^2+1}+1\right)} = \lim_{x \to 0+0} \frac{1}{\sqrt{x^2+1}+1} = \frac{1}{2}.$$

Mindez azt jelenti, hogy

$$\lim_0 f = \frac{1}{2} \in \mathbb{R}, \qquad de \qquad f(0) = 1 \neq \frac{1}{2}.$$