WikipediA

Generalized gamma distribution

The **generalized gamma distribution** is a <u>continuous</u> probability distribution with three parameters. It is a generalization of the two-parameter <u>gamma distribution</u>. Since many distributions commonly used for parametric models in <u>survival analysis</u> (such as the <u>Exponential distribution</u>, the <u>Weibull distribution</u> and the <u>Gamma distribution</u>) are special cases of the generalized gamma, it is sometimes used to determine which parametric model is appropriate for a given set of data.^[1] Another example is the <u>half</u>-normal distribution.

Contents

Characteristics

Moments

Kullback-Leibler divergence

Software implementation

See also

References

Characteristics

The generalized gamma has three parameters: a > 0, d > 0, and p > 0. For non-negative x, the <u>probability density function</u> of the generalized gamma is^[2]

$$f(x;a,d,p)=rac{(p/a^d)x^{d-1}e^{-(x/a)^p}}{\Gamma(d/p)},$$

where $\Gamma(\cdot)$ denotes the gamma function.

The cumulative distribution function is

$$F(x;a,d,p) = rac{\gamma(d/p,(x/a)^p)}{\Gamma(d/p)},$$

where $\gamma(\cdot)$ denotes the lower incomplete gamma function.

If d = p then the generalized gamma distribution becomes the <u>Weibull distribution</u>. Alternatively, if p = 1 the generalised gamma becomes the gamma distribution.

Variance

Entropy

Alternative parameterisations of this distribution are sometimes used; for example with the substitution $\alpha = d/p$.^[3] In addition, a shift parameter can be added, so the domain of x starts at some value other than zero.^[3] If the restrictions on the signs of a, d and p are also lifted (but $\alpha = d/p$ remains positive), this gives a distribution called the **Amoroso distribution**, after the Italian mathematician and economist <u>Luigi Amoroso</u> who described it in 1925.^[4]

Generalized gamma

 $a^2\left(rac{\Gamma((d+2)/p)}{\Gamma(d/p)}-\left(rac{\Gamma((d+1)/p)}{\Gamma(d/p)}
ight)^2
ight)$

 $\ln \frac{a\Gamma(d/p)}{p} + \frac{d}{p} + \left(\frac{1}{p} - \frac{d}{p}\right)\psi\left(\frac{d}{p}\right)$

where $\gamma(\cdot)$ denotes the <u>sower meomplete gamma function</u>

Moments

If X has a generalized gamma distribution as above, then [3]

$$\mathrm{E}(X^r) = a^r rac{\Gamma(rac{d+r}{p})}{\Gamma(rac{d}{p})}.$$

Kullback-Leibler divergence

If f_1 and f_2 are the probability density functions of two generalized gamma distributions, then their <u>Kullback-Leibler divergence</u> is given by

$$egin{aligned} D_{KL}(f_1 \parallel f_2) &= \int_0^\infty f_1(x; a_1, d_1, p_1) \, \ln rac{f_1(x; a_1, d_1, p_1)}{f_2(x; a_2, d_2, p_2)} \, dx \ &= \ln rac{p_1 \, a_2^{d_2} \, \Gamma \left(d_2/p_2
ight)}{p_2 \, a_1^{d_1} \, \Gamma \left(d_1/p_1
ight)} + \left[rac{\psi \left(d_1/p_1
ight)}{p_1} + \ln a_1
ight] \left(d_1 - d_2
ight) + rac{\Gamma \left((d_1 + p_2)/p_1
ight)}{\Gamma \left(d_1/p_1
ight)} \left(rac{a_1}{a_2}
ight)^{p_2} - rac{d_1}{p_1} \end{aligned}$$

where $\psi(\cdot)$ is the digamma function.^[5]

Software implementation

In $\underline{\underline{R}}$ implemented in the package flexsurv, function dgengamma, with different parametrisation: $\mu = \ln a + \frac{\ln d - \ln p}{p}$, $\sigma = \frac{1}{\sqrt{pd}}$, $Q = \sqrt{\frac{p}{d}}$.

See also

Generalized integer gamma distribution

References

- 1. Box-Steffensmeier, Janet M.; Jones, Bradford S. (2004) *Event History Modeling: A Guide for Social Scientists*. Cambridge University Press. ISBN 0-521-54673-7 (pp. 41-43)
- Stacy, E.W. (1962). "A Generalization of the Gamma Distribution." Annals of Mathematical Statistics 33(3): 1187-1192.
 JSTOR 2237889 (https://www.jstor.org/stable/2237889)
- 3. Johnson, N.L.; Kotz, S; Balakrishnan, N. (1994) *Continuous Univariate Distributions, Volume 1*, 2nd Edition. Wiley. ISBN 0-471-58495-9 (Section 17.8.7)
- Gavin E. Crooks (2010), <u>The Amoroso Distribution (http://threeplusone.com/Crooks-Amoroso.pdf)</u>, Technical Note, Lawrence Berkeley National Laboratory.
- 5. C. Bauckhage (2014), Computing the Kullback-Leibler Divergence between two Generalized Gamma Distributions (https://arxiv.org/pd f/1401.6853.pdf), arXiv:1401.6853 (https://arxiv.org/abs/1401.6853).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Generalized_gamma_distribution&oldid=835732550"

This page was last edited on 10 April 2018, at 12:58.

Text is available under the <u>Creative Commons Attribution-ShareAlike License</u>; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.