Q1.

Find the powers of the voltage source (V_S) and current source (I_S) by following passive sign convention.

Are they supplying or absorbing power?

You can use a method of your choice for the circuit analysis.

Q2.

Q3.

- a) Solve the circuit above using node analysis. Find node voltages. Also, find i_x and V_x.
- **b)** Solve the circuit above using mesh analysis. Find mesh currents. Also, find i_x and V_x .
- a) Find V_x using superposition.
- b) Find the powers of all sources (including dependent sources). Are they supplying or receiving power?
- c) Assume that 4V voltage source is replaced with 8V voltage source, and 3A current source is replaced with -5A current source. Find $V_{\rm x}$.

Q4.

Find and draw the Thevenin equivalent circuit between the terminals A and B.

Q5. In the circuit below, nodes, mesh currents, and element voltages and currents are labeled. Also $R_1 = R_2 = R_3 = R_4 = 10k\Omega$.

- a) Determine n (number of nodes) and b (number of elements). Write n-1 KCL equations in terms of the element currents. Write b-n+1 KVL equations in terms of the element voltages. Write b element equations in terms of the element currents and voltages. Finally collect all of the equations in a single matrix equation $A \cdot x = b$ where $x = [v_1 \ v_2 \ v_3 \ v_4 \ v_5 \ v_6 \ i_1 \ i_2 \ i_3 \ i_4 \ i_5 \ i_6]^T$. Solve the system using Matlab (or other) and find x.
- b) Using node analysis solve for the node voltages V_A , V_B , and V_C . Using these, find v_5 and i_6 , and compare them with the results you obtained in part "a".
- c) Using mesh analysis solve for the mesh currents i_A , i_B , and i_C . Using these, find v_5 and i_6 , and compare them with the results you obtained in part "a".
- d) Finally find v_3 using superposition and compare with what you found in part "a".
- e) Find the Thevenin and Norton equivalent circuits seen by R_3 . Solve for v_3 again using the Thevenin equivalent circuit seen by R_3 and compare with what you have found in part "d".

Q6. Solve problem 3.49 from Thomas 8th edition.

This OPAMP circuit is specially designed to act like a voltage controlled current source. It generates a current I_L that is independent of the load.

Find I_L in terms of V_{in} and resistor values. Assume ideal and linear OPAMP operation.