Probabilidad y Estadística

Respuestas a los ejercicios TP 2

- 1. d. y f.
- 2. (a) 76.82
 - (b) 76.88
 - (c) 0.25
- 3. (a) $\overline{X_n}$. Es insesgado y su error cuadrático medio es σ_0^2/n .
 - (b) $\overline{X_n}$. Es insesgado y su error cuadrático medio es θ/n .
 - (c) $1/\overline{X_n}$.
- 4. (a) El estimador es la cantidad de hogares pobres en la muestra dividido el tamaño de muestra. En este caso, el valor estimado es 16/40.
 - (b) -
- 5. El estimador es $2\overline{X_n}$ y el valor estimado es 96.3.
- 6. El estimador es $\overline{X_n}$ y el valor estimado es 41.15.
- 7. -
- 8. (a) V
 - (b) V (pensando al intervalo de confianza como intervalo aleatorio, si se piensa en el intervalo observado, es F).
 - (c) F
 - (d) V
- 9. [2.201; 2.299]
- 10. [1.05; 2.39]
- 11. [0.19339; 0.2621]
- 12. FALSO
- 13. Cuando tenemos un intervalo de confianza (a,b) con nivel 99% lo que significa es que si podriamos tomar muchisimas muestas y para cada muestra construir el intervalo de confianza, en el 99% de esos intervalos la verdadera media poblacional caeria en el intervalo.
- 14. Si el tamaño de la primera muestra era n, se debería tomar una muestra de 4n.
- 15. El nivel está entre (0.75; y 0.9). No se puede calcular exacto porque la tabla tiene pocos valores.
- 16. F F F F F V
- 17. $S^2 = 3$, nivel del intervalo 0.95, a = 1.42
- 18. (a) n = 97
 - (b) Longitud máxima 0.0995
 - (c) F F F
- 19. (a) El cliente quiere asegurarse de que las semillas que le enviaron realmente pertenecen a la variedad 2 y no a la variedad 1. Con lo cual, la hipótesis alternativa es $\mu = 40$.
 - (b) X_i = rendimiento de la i-ésima parcela. Se asume iid y $X_i \sim \text{Normal}(\mu, 25)$.

Estadístico: $\frac{\overline{X}-37}{5/\sqrt{n}}$, si H_0 es verdadero tiene distribución Normal(0,1).

RR=Región de rechazo= $\{\frac{\overline{X}-37}{5/\sqrt{n}} > 1.65\} = \{\overline{X} > 39.6\}$

Estadístico observado: $z_{\rm obs} = \frac{40.5-37}{5/\sqrt{10}} = 2.21$

El $z_{\rm obs} \in {\rm RR},$ con lo cual hay evidencia para rechazar H_0

Error de tipo II $P(\frac{\overline{X}-37}{5/\sqrt{n}} < 1.65 | \mu = 40) = P(Z < -0.25) = 0.4013$

- (c) El planteo del test ya está hecho con n parcelas, sólo para el estadístico observado usé el n=10.
- (d) Se quiere hallar n tal que $P(\frac{\overline{X}-37}{5/\sqrt{n}} < 1.65 | \mu = 40) < 0.05$ de donde $n \ge 31$
- 20. (a) $X_i = =$ la cantidad de minutos por semana que un alumno de Computación dedica a practicar alguna actividad deportiva durante el verano. Se asume iid y $X_i \sim \text{Normal}(\mu, 144)$. Se quiere saber si durante el receso de verano los estudiantes dedican más tiempo al deporte. Con lo cual las hipótesis $H_0: \mu = 45$ vs $H_1: \mu > 45$ Estadístico: $\frac{\overline{X}-45}{12/\sqrt{n}}$, si H_0 es verdadero tiene distribución Normal(0,1).

RR=Región de rechazo a nivel $0.01 = \{\frac{\overline{X} - 45}{12/\sqrt{n}} > 2.33\} = \{\overline{X} > 47.796\}$ RR=Región de rechazo a nivel $0.05 = \{\frac{\overline{X} - 45}{12/\sqrt{n}} > 1.65\} = \{\overline{X} > 46.968\}$

- (b) $n = 100, \overline{X} \in (46.968; 47.796)$
- (c) Error de tipo II $P(\frac{\overline{X}-45}{12/10} < 1.65 | \mu = 48) = P(Z < -0.85) = 0.1977$
- (d) $n \ge 571$
- 21. (a)
 - (b) $X_i = \text{la i-\'esima tensi\'on medida}$. Se asume iid y $X_i \sim \text{Normal}(\mu, \sigma^2)$.

 $H_0: \mu = 300 \text{ vs } H_1: \mu > 300$

Estadístico: $\frac{\overline{X}-300}{S/\sqrt{n}}$, si H_0 es verdadero tiene distribución T_{n-1} .

RR=Región de rechazo= $\{\frac{\overline{X}-300}{S/\sqrt{n}} > 1.7613\}$

Estadístico observado: $t_{\rm obs} = 1.55$

El $t_{\text{obs}} \notin \text{RR}$, con lo cual NO hay evidencia para rechazar H_0

- (c) p-valor $\in (0.05; 0, 1)$. No se puede calcular exacto porque lo buscamos en la tabla, sin embargo como es mayor al α dado comonivel sirve para concluir que no hay evidencia para rechar H_0 .
- 22. (a) $X_i = \text{el i-\'esima tiempo de activaci\'on}$. Se asume iid y $X_i \sim \text{Normal}(\mu, \sigma^2)$.

 $H_0: \sigma = 6 \text{ vs } H_1: \sigma < 6$

Estadístico: $\frac{(n-1)S^2}{36}$, si H_0 es verdadero tiene distribución χ^2_{n-1} .

RR=Región de rechazo= $\{\frac{(n-1)S^2}{36}<3.9403\}$

Estadístico observado: $w_{\rm obs} = 9.38$

- (b) p-valor $\in (0.1; 0, 9)$. No se puede calcular exacto porque lo buscamos en la tabla, sin embargo como es mayor a 0.1 sirve para concluir que no hay evidencia para rechar H_0 .
- 23. (a) No hay evidencia para recharzar H_0 , es decir, no hay evidencia para suponer que hay un aumento en la preferencia.
 - (b) p-valor=0.2776
 - (c)
 - (d) $n \ge 471$
- 24. F F F V V