Ejercicios Teoría Cuántica de Campos. Capítulo 76

Autor del curso: Javier García

Problemas resueltos por: Roger Balsach

3 de julio de 2022

1. Demostrar la relación $\phi(t, \vec{x}) = e^{itH}\phi(0, \vec{x})e^{-itH}$

Usando la definición 66.2

$$\phi(t, \vec{x}) = \int \frac{1}{\sqrt{2\omega_k}} \left(a(\vec{k})e^{-ikx} + a^{\dagger}(\vec{k})e^{ikx} \right) \frac{\mathrm{d}^3 k}{(2\pi)^3} \tag{1}$$

Y, por lo tanto se sigue que

$$\phi(0, \vec{x}) = \int \frac{1}{\sqrt{2\omega_k}} \left(a(\vec{k})e^{i\vec{k}\vec{x}} + a^{\dagger}(\vec{k})e^{-i\vec{k}\vec{x}} \right) \frac{\mathrm{d}^3 k}{(2\pi)^3} \tag{2}$$

Y haciendo la evolución temporal de éste operador obtenemos

$$e^{itH}\phi(0,\vec{x})e^{-itH} = \int \frac{1}{\sqrt{2\omega_k}} \left(e^{itH}a(\vec{k})e^{-itH}e^{i\vec{k}\vec{x}} + e^{itH}a^{\dagger}(\vec{k})e^{-itH}e^{-i\vec{k}\vec{x}} \right) \frac{\mathrm{d}^3k}{(2\pi)^3}$$
(3)

Por lo que necesitamos calcular la evolución temporal de los operadores a y a^{\dagger} . Usando la definición de Hamiltoniano dado en la fórmula 68.2

$$H = \int \omega_k a^{\dagger}(\vec{k}) a(\vec{k}) \frac{\mathrm{d}^3 k}{(2\pi)^3} \tag{4}$$

Notemos que sumar o restar una constante al anterior Hamiltoniano es irrelevante, pues si consideramos el Hamiltoniano $H + E_0$, entonces, dado un operador \hat{A} arbitrario tenemos

$$e^{it(H+E_0)}\hat{A}e^{-it(H+E_0)} = e^{itH}e^{itE_0}\hat{A}e^{-itH}e^{-itE_0} = e^{itH}\hat{A}e^{-itH}e^{itE_0}e^{-itE_0} = e^{itH}\hat{A}e^{-itH}e^{-itE_0}$$

Por lo tanto tenemos que calcular el operador $e^{itH}a(\vec{k})e^{-itH}$, usando la fórmula 76.1 podemos reescribir este operador cómo

$$e^{itH}a(\vec{k})e^{-itH} = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} C_n, \qquad C_0 = a(\vec{k}), \quad C_n = [H, C_{n-1}]$$
 (5)

Por lo que necesitamos calcular los operadores C_n ;

$$C_0 = a(\vec{k})$$

$$C_{1} = [H, C_{0}] = \left[H, a(\vec{k})\right] = \int \omega_{q} \left[a^{\dagger}(\vec{q})a(\vec{q}), a(\vec{k})\right] \frac{d^{3}q}{(2\pi)^{3}} = \int \omega_{q} \left[a^{\dagger}(\vec{q}), a(\vec{k})\right] a(\vec{q}) \frac{d^{3}q}{(2\pi)^{3}}$$
$$= -\int \omega_{q} (2\pi)^{3} \delta^{(3)}(\vec{k} - \vec{q})a(\vec{q}) \frac{d^{3}q}{(2\pi)^{3}} = -\omega_{k} a(\vec{k})$$

Por lo que vemos que C_1 es proporcional a C_0 , por lo que siguiendo la recursión podemos llegar a la expresión $C_n = (-\omega_k)^n a(\vec{k})$. En efecto, supongamos que dicha fórmula es correcta para n-1, entonces

$$C_n = [H, C_{n-1}] = \left[H, \omega_k^{n-1} a(\vec{k}) \right] = (-\omega_k)^{n-1} \left[H, a(\vec{k}) \right] = (-\omega_k)^n a(\vec{k})$$

Por lo que podemos reescribir la ecuación (5) como

$$e^{itH}a(\vec{k})e^{-itH} = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} C_n = \sum_{n=0}^{\infty} \frac{(-it\omega_k)^n}{n!} a(\vec{k}) = e^{-i\omega_k t} a(\vec{k})$$
 (6)

Por otra parte, calculando el operador adjunto del anterior obtenemos

$$\left(e^{itH}a(\vec{k})e^{-itH}\right)^{\dagger} = e^{itH}a^{\dagger}(\vec{k})e^{-itH} = \left(e^{-i\omega_k t}a(\vec{k})\right)^{\dagger} = e^{i\omega_k t}a^{\dagger}(\vec{k}) \tag{7}$$

Sustituyendo ambas expresiones en la ecuación (3), nos queda finalmente

$$e^{itH}\phi(0,\vec{x})e^{-itH} = \int \frac{1}{\sqrt{2\omega_k}} \left(a(\vec{k})e^{-i\omega_k t}e^{i\vec{k}\vec{x}} + a^{\dagger}(\vec{k})e^{i\omega_k t}e^{-i\vec{k}\vec{x}} \right) \frac{\mathrm{d}^3 k}{(2\pi)^3}$$
$$\int \frac{1}{\sqrt{2\omega_k}} \left(a(\vec{k})e^{-ikx} + a^{\dagger}(\vec{k})e^{ikx} \right) \frac{\mathrm{d}^3 k}{(2\pi)^3} = \phi(t,\vec{x})$$

Que es precisamente la ecuación que queríamos demostrar, por lo que efectivamente el campo ϕ es un operador en la representación de Heisenberg.

2. Demostrar que $|\psi(t)\rangle_I = e^{itH_{0,S}}e^{-i(t-t')H_S}e^{-it'H_{0,S}}|\psi(t')\rangle_I$

La evolución temporal de los estados en la representación de interacción viene dada por la fórmula 76.4;

$$|\psi(t)\rangle = e^{itH_0}e^{-itH_S}|\psi(0)\rangle \tag{8}$$

Esto lo podemos escribir de forma completamente equivalente como

$$|\psi(0)\rangle = e^{itH_S}e^{-itH_0}|\psi(t)\rangle$$

Ambas expresiones son correctas para cualquier valor de t, pero notemos que el estado $|\psi(0)\rangle$ es independiente de cual sea el valor de t, por lo que podemos encontrar la relación entre $|\psi(t)\rangle$ y $|\psi(t')\rangle$ juntando ambas expresiones:

$$|\psi(t)\rangle = e^{itH_0}e^{-itH_S}|\psi(0)\rangle = e^{itH_0}e^{-itH_S}e^{it'H_S}e^{-it'H_0}|\psi(t')\rangle \tag{9}$$

Usando la fórmula de Baker-Campbell-Hausdorff (57.1), debido a que $[H_S, H_S] = 0$ podemos escribir

$$e^{-itH_S}e^{it'H_S} = e^{-iH_S(t-t')}$$

Por lo que llegamos al resultado final;

$$|\psi(t)\rangle = e^{itH_0}e^{-itH_S}|\psi(0)\rangle = e^{itH_0}e^{-i(t-t')H_S}e^{-it'H_0}|\psi(t')\rangle$$
 (10)

Ahora debemos comprobar que este operador cumple la ecuación de Schrödinger. Definiendo

$$U(t,t') = e^{itH_{0,S}}e^{-i(t-t')H_S}e^{-it'H_{0,S}}$$
(11)

empecemos haciendo la derivada temporal;

$$\begin{split} \partial_t U(t,t') &= \partial_t \left(e^{itH_0} e^{-i(t-t')H_S} e^{-it'H_0} \right) = \partial_t e^{itH_0} e^{-i(t-t')H_S} e^{-it'H_0} + e^{itH_0} \partial_t e^{-i(t-t')H_S} e^{-it'H_0} \\ &= iH_0 e^{itH_0} e^{-i(t-t')H_S} e^{-it'H_0} - ie^{itH_0} H_S e^{-i(t-t')H_S} e^{-it'H_0} \\ &= iH_0 U(t,t') - ie^{itH_0} H_S e^{-itH_0} U(t,t') \end{split}$$

Pero en el segundo término podemos usar que los operadores en la imagen de interacción y la imagen de Schrödinger se relacionan con

$$H_I = e^{itH_0} H_S e^{-itH_0}$$

Por lo que podemos reescribir la derivada de U como

$$\partial_t U(t,t') = iH_0 U(t,t') - iH_I U(t,t') = -i(H_I - H_0)U(t,t') = -iH'_I U(t,t')$$

Multiplicando todo por i

$$i\partial_t U(t,t') = H_I' U(t,t')$$
(12)

Finalmente, si consideramos los operadores U(t) junto con el producto definido como

$$U(t_2)U(t_1) = U(t_0 + t_1 + t_2, t_0 + t_1)U(t_0 + t_1, t_0)$$
(13)

estos forman un grupo. Para demostrarlo debemos comprobar cuatro propiedades:

- 0) Clausura
- 1) Asociatividad
- 2) Existencia de elemento neutro
- 3) Existencia de elemento inverso

Empecemos con las propiedades triviales; el grupo tiene elemento neutro; es el operador U(0);

$$U(0)U(t) = U(t_0 + t + 0, t_0 + t)U(t_0 + t, t_0) = e^{i(t_0 + t)H_0}e^0e^{-i(t_0 + t)H_0}U(t_0 + t, t_0) = U(t_0 + t,$$

Por otra parte, el operador U(-t) es el operador inverso de U(t);

$$U(-t)U(t) = U(t_0, t_0 + t)U(t_0 + t, t_0) = e^{it_0H_0}e^{itH_S}e^{-i(t_0 + t)H_0}e^{i(t_0 + t)H_0}e^{-itH_S}e^{-it_0H_0}$$

$$= e^{it_0H_0}e^{-it_0H_0} = U(t_0, t_0) = U(0)$$

Comprobemos ahora la propiedad de clausura, que nos dice que el producto de dos operadores $U(t_2)U(t_1)$ corresponde con otro operador U(t);

$$\begin{split} U(t_2)U(t_1) &= U(t_0 + t_1 + t_2, t_0 + t_1)U(t_0 + t_1, t_0) \\ &= e^{i(t_0 + t_1 + t_2)H_{0,S}} e^{-it_2H_S} e^{-i(t_0 + t_1)H_{0,S}} e^{i(t_0 + t_1)H_{0,S}} e^{-it_1H_S} e^{-it_0H_{0,S}} \\ &= e^{i(t_0 + t_1 + t_2)H_{0,S}} e^{-it_2H_S} e^{-it_1H_S} e^{-it_0H_{0,S}} \\ &= e^{i(t_0 + t_1 + t_2)H_{0,S}} e^{-i(t_1 + t_2)H_S} e^{-it_0H_{0,S}} \\ &= U(t_0 + t_1 + t_2, t_0) = U(t_1 + t_2) \end{split}$$

La única propiedad que nos queda es la propiedad asociativa;

$$U(t_3)[U(t_2)U(t_1)] = U(t_3)U(t_1 + t_2) = U(t_1 + t_2 + t_3)$$

$$[U(t_3)U(t_2)]U(t_1) = U(t_2 + t_3)U(t_1) = U(t_1 + t_2 + t_3)$$

Con lo que que da demostrado que efectivamente los operadores U(t) forman un grupo.