Lecture 19

Tuesday, 26 March 2024 3:34 PM

EE114 - Power Engineering 1

Course instructor: Prof. Sandeep Anand

Scribe: Saurabh Singh

* Separately excited DC machine > If Armature > 0/C

Core losses are combined in Rotational loss on medanical

* Lap remoting - a=P; Nane winding - a=2

* DC Motor:

Separately excited DC motor

Shunt DC motor has nearly the same charateenstics. So me will only focus on seperately excited motor

$$V_t - I_a R_q = E_a$$
 $T_{em} = k \phi I_a$
 $E_a = k \phi \omega$

$$\omega = \frac{V_{t}}{k\phi} - \frac{R_{0}}{(k\phi)^{2}} T_{e}$$

Load characteristics of fan, neatur pump $T \propto \omega^2$ Frintian $T \approx const$

V4 is nearly propositional to

At base speed -> Vt -> nominal, \$ -> rated, Rated Load

At start
$$\Rightarrow \phi \Rightarrow \psi rated$$
 $V_t \rightarrow very small$

At base speed $\Rightarrow \phi \Rightarrow \phi rated$
 $V_t \rightarrow V_t rated$

At above base speed $\Rightarrow \phi < \phi rated$
 $V_t \rightarrow V_t rated$.

w2 = power