

X3-Class HiPerFET™ **Power MOSFET**

IXFA80N25X3

= 250V**80A** $16m\Omega$

N-Channel Enhancement Mode Avalanche Rated

TO-263

G = Gate	D	= Drain
S = Source	Tab	= Drain

Symbol	Test Conditions	Maximum Ratings			
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	250	V		
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	250	V		
V _{GSS}	Continuous	±20	V		
V _{GSM}	Transient	±30	V		
I _{D25}	$T_c = 25^{\circ}C$	80	A		
I _{DM}	$T_{\rm c}$ = 25°C, Pulse Width Limited by $T_{\rm JM}$	220	Α		
I _A	T _c = 25°C	40	Α		
E _{AS}	$T_{c} = 25^{\circ}C$	1.2	J		
dv/dt	$I_{_{\mathrm{S}}} \le I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \le V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \le 150^{\circ}\mathrm{C}$	20	V/ns		
P _D	T _c = 25°C	390	W		
T _J		-55 +150	°C		
$T_{_{ m JM}}$		150	°C		
T _{stg}		-55 +150	°C		
T_L	Maximum Lead Temperature for Soldering	_	°C		
dT/dt	Heating / Cooling rate, 175°C - 210°C	50	°C/min		
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C		
F_c	Mounting Force	1065 / 2.214.6	N/lb		
Weight		2.5	g		

Features

- International Standard Package
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol	Test Conditions	Characteristic Values			S
$(T_{J} = 25^{\circ}C, l)$	Jnless Otherwise Specified)	Min.	Тур.	Max	х
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	250			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1.5 \text{mA}$	2.5		4.5	V
I _{gss}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{c} = 125^{\circ}C$			5 350	μ Α μ Α
	J			000	μ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			16	mΩ

Symbol	Test Conditions		Characteristic Values		
$(T_{J} = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max	
g _{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	38	64	S	
R_{Gi}	Gate Input Resistance		1.6	Ω	
C _{iss}			5430	pF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		890	pF	
C _{rss}			1.6	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		320	pF	
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1410	pF	
t _{d(on)}	Resistive Switching Times		30	ns	
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		17	ns	
t _{d(off)}	$R_{\rm G} = 10V$, $V_{\rm DS} = 0.3 \cdot V_{\rm DSS}$, $I_{\rm D} = 0.3 \cdot I_{\rm D25}$ $R_{\rm G} = 5\Omega$ (External)		65	ns	
t,	n _G = 552 (External)		8	ns	
$Q_{g(on)}$			83	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		27	nC	
\mathbf{Q}_{gd}			24	nC	
R _{thJC}				0.32 °C/W	

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max	
Is	$V_{GS} = 0V$			80	Α
I _{SM}	Repetitive, pulse Width Limited by $T_{_{\rm JM}}$			320	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \ \mathbf{Q}_{RM} & \ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_F = 40A$, -di/dt = 100A/ μ s $V_R = 100V$		120 600 10		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 2. Extended Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 40A$ Value vs.

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 40A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 14. Forward-Bias Safe Operating Area

Fig. 15. Maximum Transient Thermal Impedance

