



RECEIVED

NOV 05 2002

## SEQUENCE LISTING

TECH CENTER 1600/2900

<110> Daniel H. Cohn  
Muhammad Faiyaz ul Haque  
Lily M. King  
Deborah Krakow

<120> 3-Phosphoadenosine-5-Phosphosulfate  
(PAPS) Synthetase Proteins and Methods for Treating  
Osteoarthritic Disorders

<130> 18810-81552

<140> US 09/898,165  
<141> 2001-07-02

<150> 09/399,212  
<151> 1999-09-17

<160> 33

<170> FastSEQ for Windows Version 4.0

<210> 1  
<211> 2014  
<212> DNA  
<213> Homo sapiens

B4  
<400> 1  
ctgctgccgc cgccgccgcc gcccgtccctg cgtccttcgg tctctgtctcc cgggaccgg 60  
ctccggccca gccagccagc atgtcgggga tcaagaagca aaagacggag aaccagcaga 120  
aatccaccaa tgttagtctat caggccccacc atgtgagcag gaataagaga gggcaagtgg 180  
ttggaaacaag gggtggttgc cgaggatgtt ccgtgtggct aacaggtctc tctgggtctg 240  
aaaaaaacaac gataagttt gcccctggagg agtacattgtt ctcccatgccc atcccttgg 300  
actccctgga tggggacaat gtccgtcatg gccttaacag aaatctcgga ttctctcctg 360  
gggacagaga ggaaaatatac cgccggattt ctgaggtggc taagctgttt gctgtatgtg 420  
gtctggctcg cattaccaggc tttatttctc cattcgcaaa ggatcgtgag aatgcccgc 480  
aaatacatga atcagcaggc ctgcatttctt ttggaaatatt tgttagatgca cctctaaata 540  
tttgtgaag cagagacgtt aaaggccctt ataaaaggcc cagagctggg gagattaaag 600  
gatttacagg tattgattctt gattatgaga aacctgaaac tcctgagcgt gtgcttaaaa 660  
ccaatttgtc cacagtggat gactgtgtcc accaggttgtt ggaacttctg caagagcaga 720  
acattgtacc ctataactata atcaaagata tccacgaact ctttgcggc gaaaacaac 780  
ttgaccacgt ccgagctgag gctgaaacttcc tcccttcattt atcaattact aagctggatc 840  
tccagtgggt ccaggtttt agcgaaggct gggccactcc cctcaaggt ttcatgcggg 900  
agaaggagta cttacaggat atgcactttt acaccctgtt agatgatggc gtgatcaaca 960  
tgagcatccc cattgtactt cccgtctctg cagaggataa gacacggctg gaagggtgca 1020  
gcaagtttgt cctggcacat ggtggacgga ggttagctat cttacgagac gctgaattct 1080  
atgaacacag aaaagaggaa cgctgtttcc gttttgggg gacaacatgt acaaaacacc 1140  
cccatatcaa aatggtgatg gaaagtgggg actggctgtt tggtggagac cttcagggtgc 1200  
tggagaaaaat aagatggat gatgggctgg accaataccg tctgacaccc tggagctca 1260  
aacagaaaatg taaagaaaatg aatgctgttgc cgggtttgc attccagttt cgaatccctg 1320  
tccacaatgg ccatgccctg ttgtatgcagg acacctgcgg caggctccat gagaggggct 1380  
acaaggacccc ggtcctcccta ctacaccctc tggcggtgtt gaccaaggat gacgatgtgc 1440  
ctcttagactg gcggatgaag cagcacgcgg ctgtgctcga ggaaggggtc ctggatccca 1500

|             |             |              |             |            |            |      |
|-------------|-------------|--------------|-------------|------------|------------|------|
| agtcaaccat  | tgttgcacatc | tttccgtctc   | ccatgttata  | tgctggcccc | acagagggcc | 1560 |
| agtggcactg  | caggtcccgg  | atgattgcgg   | gtgccaattt  | ctacattgtg | gggagggacc | 1620 |
| ctgcaggaaat | gccccatcct  | gaaaccaaga   | aggatctgtt  | tgaacccact | catggggca  | 1680 |
| aggtcttgag  | catggcccct  | ggcctcacct   | ctgtggaaat  | cattccattc | cgagtggtcg | 1740 |
| cctacaacaa  | agccaaaaaa  | gcccattggact | tctatgatcc  | agcaaggcac | aatgagttt  | 1800 |
| acttcatctc  | agaactcga   | atgaggaagc   | tccggccggga | aggagagaat | cccccagatg | 1860 |
| gcttcatggc  | ccccaaagca  | tggaaaggccc  | tgacagattt  | ttacaggc   | ctggagaaga | 1920 |
| actaaggcctt | tgggtccaga  | gtttcttct    | gaagtgtctt  | ttgattacct | tttctatttt | 1980 |
| tatgattaga  | tgtttgttat  | taaaatgttt   | ctca        |            |            | 2014 |

<210> 2

<211> 2000

<212> DNA

<213> Mus musculus

<400> 2

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| gtattctcaa  | catcagatata | catgtcttgg  | aggaagttac  | ctaaactctg  | aagaattatc  | 60   |
| atgtctgca   | atttcaaaaat | gaaccataaa  | agagaccagc  | aaaaatccac  | caatgtggc   | 120  |
| taccaggccc  | atcatgttag  | caggaacaag  | agaggacaag  | tgggtggAAC  | caggggagga  | 180  |
| ttccgaggat  | gtaccgtgt   | gctaacaggt  | ctctctgggt  | ctggaaaaac  | aaccataa    | 240  |
| tttgcttgg   | aagagtacct  | tgtatctcac  | gccatcccat  | gttactccct  | ggatggggac  | 300  |
| aatgtccgtc  | atggccttaa  | taagaacctg  | ggattctctg  | ccggggaccg  | agaagagaat  | 360  |
| atccgcgg    | tcgcggaggt  | ggccaagctc  | tttgcgcacg  | ccggcctgg   | ttgcatcacc  | 420  |
| agctttatct  | ctccctttgc  | aaaggatcgt  | gagaatgc    | aaaaatcca   | cgaatcagca  | 480  |
| ggactcccgt  | tcttgagat   | ctttgttagat | gcgcctttaa  | atatctgtga  | aagccgagac  | 540  |
| gtaaaaggac  | tctacaaaacg | agcccggagca | ggagagatta  | aagggttac   | aggcatcgat  | 600  |
| tctgactatg  | agaaaacctga | aactccagag  | tgtgtgctga  | agaccaactt  | gtcttcagta  | 660  |
| agcgaactgtg | tgcaacaggt  | ggtggaaactt | ttgcaggagc  | agaacattgt  | accccacacc  | 720  |
| accatcaaag  | gcatccacga  | actcttgt    | ccagaaaaaca | aagtgcata   | aatccgagct  | 780  |
| gaggcagaga  | ctctcccatc  | actaccaatt  | accaagctgg  | atctgcagtg  | ggtgcagatt  | 840  |
| ctgagtgaag  | gctggggccac | tccccctcaaa | ggcttatgc   | gggagaagga  | atacttgcaa  | 900  |
| actctacact  | tcgacactct  | actggacgat  | ggagtcatca  | acatgagtt   | tcccattgt   | 960  |
| ttgcccgtt   | ctgcccgtat  | caaggcacgg  | ctcgaagggtt | gcagcaaatt  | tgccttgc    | 1020 |
| tacgaaggtc  | ggagggtcgc  | tctattacag  | gaccctgtat  | tctatgagca  | taggaaagag  | 1080 |
| gagcgttgtt  | ctcggtgt    | gggaacagcc  | actgcaaa    | accccccata  | caaaaatgtgt | 1140 |
| atggaaagtg  | ggactggct   | ttgttgttgg  | gacctacagg  | tgctagagag  | aataagggtgg | 1200 |
| gacgatgggc  | tgaccaata   | ccgccttacg  | cctctggac   | tcaaaagagaa | gtgtaaagac  | 1260 |
| atgaatgctg  | atgcgtgtt   | tgcatccag   | ttgcgcata   | ctgtccacaa  | tgttcatgcc  | 1320 |
| ctcctgatgc  | aggacaccccg | ccgcaggctc  | ctggagagg   | gttacaagca  | cccagtcc    | 1380 |
| ctgctccacc  | ctcttgggg   | ctggaccaag  | gacgatgacg  | tacctctgg   | atggaggatg  | 1440 |
| aaacagcatg  | cagctgtact  | ggagggaaagg | gtcctggatc  | ccaagtcaac  | tattgttgc   | 1500 |
| atcttccat   | ctcctatgtt  | atacgctgt   | cccacagagg  | tccagtggca  | ttgcagatgc  | 1560 |
| cgatgattg   | caggagccaa  | tttctacatt  | gtgggttaggg | atcccgccagg | aatgccccat  | 1620 |
| cctgagacaa  | agaaaagacct | atatgaaccc  | acccacgggg  | gcaaggctt   | gagtatggcc  | 1680 |
| cctggccta   | cctctgtgg   | aataattccg  | ttccgagttt  | ctgcctacaa  | taaaattaaa  | 1740 |
| aaggccatgg  | actttatga   | tccagcaagg  | cacgaggagt  | ttgacttcat  | ctcaggaact  | 1800 |
| cgcattgat   | agctcgcccc  | ggaaggagaa  | gatccccca   | atggcttcat  | ggccccgaaa  | 1860 |
| gcgtggaaag  | tgttgcacaga | ttactacagg  | tctctggaga  | agaccaacta  | ggtgctcctg  | 1920 |
| gctctggctt  | cttcctcaag  | tgctctctga  | cgatTTTTT   | tttctatTTT  | tgtgatttag  | 1980 |
| ctgctctgt   | tccaattgc   |             |             |             |             | 2000 |

<210> 3

<211> 20

<212> DNA

<213> Homo sapiens

<400> 3  
 tggaccaagg. atgacgatgt 20  
  
 <210> 4  
 <211> 20  
 <212> DNA  
 <213> Homo sapiens  
  
 <400> 4  
 cggaaagatg gcaacaatgg 20  
  
 <210> 5  
 <211> 20  
 <212> DNA  
 <213> Homo sapiens  
  
 <400> 5  
 ctggtgctgg aaaaacaacg 20  
  
 <210> 6  
 <211> 22  
 <212> DNA  
 <213> Homo sapiens  
  
 <400> 6  
 tgcgaatgga gaaataaagc tg 22  
  
*B6L*  
*out*  
 <210> 7  
 <211> 615  
 <212> PRT  
 <213> Homo sapiens  
  
 <400> 7  
 Met Ser Gly Ile Lys Lys Gln Lys Thr Glu Asn Gln Gln Lys Ser Thr  
 1 5 10 15  
 Asn Val Val Tyr Gln Ala His His Val Ser Arg Asn Lys Arg Gly Gln  
 20 25 30  
 Val Val Gly Thr Arg Gly Gly Phe Arg Gly Cys Thr Val Trp Leu Thr  
 35 40 45  
 Gly Leu Ser Gly Ala Gly Lys Thr Thr Ile Ser Phe Ala Leu Glu Glu  
 50 55 60  
 Tyr Leu Val Ser His Ala Ile Pro Cys Tyr Ser Leu Asp Gly Asp Asn  
 65 70 75 80  
 Val Arg His Gly Leu Asn Arg Asn Leu Gly Phe Ser Pro Gly Asp Arg  
 85 90 95  
 Glu Glu Asn Ile Arg Arg Ile Ala Glu Val Ala Lys Leu Phe Ala Asp  
 100 105 110  
 Ala Gly Leu Val Cys Ile Thr Ser Phe Ile Ser Pro Phe Ala Lys Asp  
 115 120 125  
 Arg Glu Asn Ala Arg Lys Ile His Glu Ser Ala Gly Leu Pro Phe Phe  
 130 135 140  
 Glu Ile Phe Val Asp Ala Pro Leu Asn Ile Cys Glu Ser Arg Asp Val  
 145 150 155 160  
 Lys Gly Leu Tyr Lys Arg Ala Arg Ala Gly Glu Ile Lys Gly Phe Thr

165                    170                    175  
 Gly Ile Asp Ser Asp Tyr Glu Lys Pro Glu Thr Pro Glu Arg Val Leu  
 . 180                    185                    190  
 Lys Thr Asn Leu Ser Thr Val Ser Asp Cys Val His Gln Val Val Glu  
 . 195                    200                    205  
 Leu Leu Gln Glu Gln Asn Ile Val Pro Tyr Thr Ile Ile Lys Asp Ile  
 210                    215                    220  
 His Glu Leu Phe Val Pro Glu Asn Lys Leu Asp His Val Arg Ala Glu  
 225                    230                    235                    240  
 Ala Glu Thr Leu Pro Ser Leu Ser Ile Thr Lys Leu Asp Leu Gln Trp  
 245                    250                    255  
 Val Gln Val Leu Ser Glu Gly Trp Ala Thr Pro Leu Lys Gly Phe Met  
 260                    265                    270  
 Arg Glu Lys Glu Tyr Leu Gln Val Met His Phe Asp Thr Leu Leu Asp  
 275                    280                    285  
 Asp Gly Val Ile Asn Met Ser Ile Pro Ile Val Leu Pro Val Ser Ala  
 290                    295                    300  
 Glu Asp Lys Thr Arg Leu Glu Gly Cys Ser Lys Phe Val Leu Ala His  
 305                    310                    315                    320  
 Gly Gly Arg Arg Val Ala Ile Leu Arg Asp Ala Glu Phe Tyr Glu His  
 325                    330                    335  
 Arg Lys Glu Glu Arg Cys Ser Arg Val Trp Gly Thr Thr Cys Thr Lys  
 340                    345                    350  
 His Pro His Ile Lys Met Val Met Glu Ser Gly Asp Trp Leu Val Gly  
 355                    360                    365  
 Gly Asp Leu Gln Val Leu Glu Lys Ile Arg Trp Asn Asp Gly Leu Asp  
 370                    375                    380  
 Gln Tyr Arg Leu Thr Pro Leu Glu Leu Lys Gln Lys Cys Lys Glu Met  
 385                    390                    395                    400  
 Asn Ala Asp Ala Val Phe Ala Phe Gln Leu Arg Asn Pro Val His Asn  
 405                    410                    415  
 Gly His Ala Leu Leu Met Gln Asp Thr Cys Arg Arg Leu Leu Glu Arg  
 420                    425                    430  
 Gly Tyr Lys His Pro Val Leu Leu His Pro Leu Gly Gly Trp Thr  
 435                    440                    445  
 Lys Asp Asp Asp Val Pro Leu Asp Trp Arg Met Lys Gln His Ala Ala  
 450                    455                    460  
 Val Leu Glu Glu Gly Val Leu Asp Pro Lys Ser Thr Ile Val Ala Ile  
 465                    470                    475                    480  
 Phe Pro Ser Pro Met Leu Tyr Ala Gly Pro Thr Glu Val Gln Trp His  
 485                    490                    495  
 Cys Arg Ser Arg Met Ile Ala Gly Ala Asn Phe Tyr Ile Val Gly Arg  
 500                    505                    510  
 Asp Pro Ala Gly Met Pro His Pro Glu Thr Lys Lys Asp Leu Tyr Glu  
 515                    520                    525  
 Pro Thr His Gly Gly Lys Val Leu Ser Met Ala Pro Gly Leu Thr Ser  
 530                    535                    540  
 Val Glu Ile Ile Pro Phe Arg Val Ala Ala Tyr Asn Lys Ala Lys Lys  
 545                    550                    555                    560  
 Ala Met Asp Phe Tyr Asp Pro Ala Arg His Asn Glu Phe Asp Phe Ile  
 565                    570                    575  
 Ser Gly Thr Arg Met Arg Lys Leu Ala Arg Glu Gly Glu Asn Pro Pro  
 580                    585                    590  
 Asp Gly Phe Met Ala Pro Lys Ala Trp Lys Val Leu Thr Asp Tyr Tyr  
 595                    600                    605

Arg Ser Glu Met Asp Lys Asn  
610 615

<210> 8  
<211> 617  
<212> PRT  
<213> Mus musculus

<400> 8  
Met Ser Ala Asn Phe Lys Met Asn His Lys Arg Asp Gln Gln Lys Ser  
1 5 10 15  
Thr Asn Val Val Tyr Gln Ala His His Val Ser Arg Asn Lys Arg Gly  
20 25 30  
Gln Val Val Gly Thr Arg Gly Phe Arg Gly Cys Thr Val Trp Leu  
35 40 45  
Thr Gly Leu Ser Gly Ala Gly Lys Thr Thr Ile Ser Phe Ala Leu Glu  
50 55 60  
Glu Tyr Leu Val Ser His Ala Ile Pro Cys Tyr Ser Leu Asp Gly Asp  
65 70 75 80  
Asn Val Arg His Gly Leu Asn Lys Asn Leu Gly Phe Ser Ala Gly Asp  
85 90 95  
Arg Glu Glu Asn Ile Arg Arg Ile Ala Glu Val Ala Lys Leu Phe Ala  
100 105 110  
Asp Ala Gly Leu Val Cys Ile Thr Ser Phe Ile Ser Pro Phe Ala Lys  
115 120 125  
Asp Arg Glu Asn Ala Arg Lys Ile His Glu Ser Ala Gly Leu Pro Phe  
130 135 140  
Phe Glu Ile Phe Val Asp Ala Pro Leu Asn Ile Cys Glu Ser Arg Asp  
145 150 155 160  
Val Lys Gly Leu Tyr Lys Arg Ala Arg Ala Gly Glu Ile Lys Gly Phe  
165 170 175  
Thr Gly Ile Asp Ser Asp Tyr Glu Lys Pro Glu Thr Pro Glu Cys Val  
180 185 190  
Leu Lys Thr Asn Leu Ser Ser Val Ser Asp Cys Val Gln Gln Val Val  
195 200 205  
Glu Leu Leu Gln Glu Gln Asn Ile Val Pro His Thr Thr Ile Lys Gly  
210 215 220  
Ile His Glu Leu Phe Val Pro Glu Asn Lys Val Asp Gln Ile Arg Ala  
225 230 235 240  
Glu Ala Glu Thr Leu Pro Ser Leu Pro Ile Thr Lys Leu Asp Leu Gln  
245 250 255  
Trp Val Gln Ile Leu Ser Glu Gly Trp Ala Thr Pro Leu Lys Gly Phe  
260 265 270  
Met Arg Glu Lys Glu Tyr Leu Gln Thr Leu His Phe Asp Thr Leu Leu  
275 280 285  
Asp Asp Gly Val Ile Asn Met Ser Ile Pro Ile Val Leu Pro Val Ser  
290 295 300  
Ala Asp Asp Lys Ala Arg Leu Glu Gly Cys Ser Lys Phe Ala Leu Met  
305 310 315 320  
Tyr Glu Gly Arg Arg Val Ala Leu Leu Gln Asp Pro Glu Phe Tyr Glu  
325 330 335  
His Arg Lys Glu Glu Arg Cys Ser Arg Val Trp Gly Thr Ala Thr Ala  
340 345 350  
Lys His Pro His Ile Lys Met Val Met Glu Ser Gly Asp Trp Leu Val

355                    360                    365  
 Gly Gly Asp Leu Gln Val Leu Glu Arg Ile Arg Trp Asp Asp Gly Leu  
 370                    375                    380  
 Asp Gln Tyr Arg Leu Thr Pro Leu Glu Leu Lys Gln Lys Cys Lys Asp  
 385                    390                    395                    400  
 Met Asn Ala Asp Ala Val Phe Ala Phe Gln Leu Arg Asn Pro Val His  
 405                    410                    415  
 Asn Gly His Ala Leu Leu Met Gln Asp Thr Arg Arg Arg Leu Leu Glu  
 420                    425                    430  
 Arg Gly Tyr Lys His Pro Val Leu Leu Leu His Pro Leu Gly Gly Trp  
 435                    440                    445  
 Thr Lys Asp Asp Asp Val Pro Leu Glu Trp Arg Met Lys Gln His Ala  
 450                    455                    460  
 Ala Val Leu Glu Glu Arg Val Leu Asp Pro Lys Ser Thr Ile Val Ala  
 465                    470                    475                    480  
 Ile Phe Pro Ser Pro Met Leu Tyr Ala Gly Pro Thr Glu Val Gln Trp  
 485                    490                    495  
 His Cys Arg Cys Arg Met Ile Ala Gly Ala Asn Phe Tyr Ile Val Gly  
 500                    505                    510  
 Arg Asp Pro Ala Gly Met Pro His Pro Glu Thr Lys Lys Asp Leu Tyr  
 515                    520                    525  
 Glu Pro Thr His Gly Gly Lys Val Leu Ser Met Ala Pro Gly Leu Thr  
 530                    535                    540  
 Ser Val Glu Ile Ile Pro Phe Arg Val Ala Ala Tyr Asn Lys Ile Lys  
 545                    550                    555                    560  
 Lys Ala Met Asp Phe Tyr Asp Pro Ala Arg His Glu Glu Phe Asp Phe  
 565                    570                    575  
 Ile Ser Gly Thr Arg Met Arg Lys Leu Ala Arg Glu Gly Glu Asp Pro  
 580                    585                    590  
 Pro Asp Gly Phe Met Ala Pro Lys Ala Trp Lys Val Leu Thr Asp Tyr  
 595                    600                    605  
 Tyr Arg Ser Glu Met Asp Lys Thr Asn  
 610                    615

*B6*  
*cont*  
 <210> 9  
 <211> 1845  
 <212> DNA  
 <213> Homo sapiens

<400> 9  
 atgtcgggga tcaagaagca aaagacggag aaccagcaga aatccaccaa tgtagtctat 60  
 caggccccacc atgtgagcag gaataagaga gggcaagtgg ttggaacaag gggtggttgc 120  
 cgaggatgta ccgtgtggct aacaggtctc tctggtgctg gaaaaacaac gataagttt 180  
 gcccctggagg agtaccttgt ctcccatgcc atcccttgtt actccctgga tggggacaat 240  
 gtccgtcatg gccttaacag aaatctcgga ttctctcctg gggacagaga ggaaaatatac 300  
 cgccggatgt ctgaggtggc taagctgttt gctgatgctg gtctggctg cattaccagc 360  
 tttatttcctc cattcgcaaa ggatcgtgag aatgcccgc aataatcatga atcagcagg 420  
 ctgccattct ttgaaatatt ttagatgca cctctaataa tttgtgaaag cagagacgta 480  
 aaaggccctc ataaaaaggc cagagctggg gagattaag gatttacagg tattgattct 540  
 gattatgaga aacctgaaac tcctgagcgt gtgtttaaaa ccaatttgc cacagtgagt 600  
 gactgtgtcc accaggttagt ggaacttctg caagagcaga acattgtacc ctataactata 660  
 atcaaagata tccacgaact ctttgtgccg gaaaacaac ttgaccacgt ccgagctgag 720  
 gctgaaactc tcccttcatt atcaattact aagctggatc tccagtggtt ccaggtttt 780  
 agcgaaggct gggccactcc cctcaaaggt ttcatgcggg agaaggagta cttacaggtt 840

atgcactttg acaccctgct agatgatggc gtgatcaaca tgagcatccc cattgtactg 900  
 cccgtctcg caggaggataa gacacggctg gaagggtgc gcaagttgt cctggcacat 960  
 ggtggacgga gggtagctat cttacgagac gctaattct atgaacacag aaaagaggaa 1020  
 cgctgttccc gtgttgggg gacaacatgt acaaaccacc cccatatcaa aatggtgatg 1080  
 gaaagtgggg actggctgg tggggagac cttcagggtgc tggagaaaat aagatggat 1140  
 gatgggctgg accaataccg tctgacacct ctggagctca aacagaaatg taaagaaatg 1200  
 aatgctgatg cggttggc attccagggtcg cgaatccctg tccacaatgg ccatgccctg 1260  
 ttgatgcagg acacctgccc caggctctta gagaggggct acaagcaccc ggtcctccta 1320  
 ctacaccctc tggcggtcg gaccaaggat gacatgtgc ctctagactg gcgatgaag 1380  
 cagcacgccc ctgtgtcgaa ggaagggtgc ctgatcccc agtcaaccat tttgcccattc 1440  
 tttccgtctc ccatgttata tgctggcccc acagaggtcc agtggcaactg caggtcccgg 1500  
 atgattgcgg gtgcattttt ctacattgtg gggagggacc ctgcagaat gccccatcc 1560  
 gaaaccaaga aggatctgta tgaacccact catggggca aggtcttgag catggccct 1620  
 ggcctcacct ctgtggaaat cattccattc cgagtggctg cctacaacaa agccaaaaaa 1680  
 gccatggact tctatgatcc agcaaggcac aatgagttt acttcatctc aggaactcga 1740  
 atgaggaagc tcgcccggga aggagagaat ccccaagatg gttcatggc ccccaaagca 1800  
 tggaaagggtcc tgacagatta ttacaggtcc ctggagaaga actaa 1845

<210> 10  
 <211> 1851  
 <212> DNA  
 <213> Mus musculus

*B1  
cont*  
 <400> 10

atgtctgcaa atttcaaat gaaccataaa agagaccagc aaaaatccac caatgtggtc 60  
 taccaggccc atcatgtgag caggaacaag agaggacaag tgggttggAAC caggggagga 120  
 ttccgaggat gtaccgtgtg gctaacaggt ctctctgggt ctgggaaaac aaccataagc 180  
 tttgtttgg aagagtacct tgtatctac gccatccccat gttactccct ggtatggggac 240  
 atgtcccgta atggccctaa taagaacactg ggattctctg ccggggaccg agaagagaat 300  
 atccgcccga tcgcccggat ggcacagtc tttggcgcacg cccggcttggt ttgcatcacc 360  
 agctttatct ctccttttc aaggatctgt gagaatgccc gaaaaatcca cgaatcagca 420  
 ggactccctgt tctttgagat cttttagat ggcctttaa atatctgtga aagccgagac 480  
 gtaaaaggac tctacaaacg agcccgagca ggagagatta aagggtttac aggcatcgat 540  
 tctgactatg agaaacctga aactcccgag tttgtgtcgaa agaccaactt gtcttcagta 600  
 agcgactgtg tgcaacaggt ggtggaaactt ttgcaggagc ayaacattgt accccacacc 660  
 accatcaaaag gcatccacga actctttgtg ccagaaaaca aagtcgatca aatccgagct 720  
 gaggcagaga ctctcccatc actaccaatt accaagctgg atctgcagtg ggtgcagatt 780  
 ctgagtgaag gctggccac tcccctcaaa ggctttatgc gggagaagga atacttgcaa 840  
 actctacact tcgacactct actggacgat ggagtcatca acatgagttat tccattgtta 900  
 ttgcccgtt ctggggatga caaggcacgg ctcgaagggt gcagcaatt tgccttcatg 960  
 tacgaagggtc ggaggggtc tctattacag gaccctgaat tctatgagca taggaaagag 1020  
 gaggcgttgc ttcgtgtgtg gggAACAGCC actgcaaaagc acccccataat caaaatggtg 1080  
 atggaaagtg gggactggct tttgtgtgg gacctacagg tgcttagagag aataagggtgg 1140  
 gacgatgggc tggaccaata ccgccttacg cctctggaaac tcaaacagaa gtgtaaagac 1200  
 atgaatgctg atgcgtgtt tgcatccag ttgcgcatac ctgtccacaa tggcatgcc 1260  
 ctcctgtatgc aggacaccccg ccgcaggctc ctggagaggg gttacaagca cccagtcctc 1320  
 ctgctccacc ctcttgggg ctggaccaag gacatgacg tacctctggaa atggaggatg 1380  
 aaacagcatg cagctgtact ggaggaaagg gtcctggatc ccaagtcaac tattgttgcc 1440  
 atctttccat ctccatgtt atacgctgtt cccacagagg tccagttggca ttgcagatgc 1500  
 cggatgatgg caggagccaa tttctacatt gtgggttaggg atcccgagg aatgccccat 1560  
 cctgagacaa agaaagaccc atatgaaccc accacgggg gcaaggctt gaggatggcc 1620  
 cctggcccta cctctgtggaa aataattccg ttccggatgg ctgcctacaa taaaattaaa 1680  
 aaggccatgg acttttatgaa tccagcaagg cacgaggat ttgacttcat ctcaggaact 1740  
 cgcacatggagc agctcgcccc ggaaggagaa gatccccat atggcttcat ggccccggaaa 1800  
 cggtggaaag ttttgacaga ttactacagg tctctggaga agaccaacta g 1851

*B6  
cont*

<210> 11  
<211> 21  
<212> DNA  
<213> Homo sapiens

<400> 11  
gccagccagc atgtcgaaaa t 21

<210> 12  
<211> 24  
<212> DNA  
<213> Homo sapiens

<400> 12  
acctgaaact cctgagcgta tgct 24

<210> 13  
<211> 21  
<212> DNA  
<213> Homo sapiens

<400> 13  
gatgtgcctc tagactggcg g 21

<210> 14  
<211> 24  
<212> DNA  
<213> Homo sapiens

<400> 14  
gaggcattca gaaagaaaact ctgg 24

<210> 15  
<211> 21  
<212> DNA  
<213> Homo sapiens

<400> 15  
catccgccag tctagaggca c 21

<210> 16  
<211> 21  
<212> DNA  
<213> Homo sapiens

<400> 16  
agggtgtcaga cggtattggc c 21

<210> 17  
<211> 23  
<212> DNA  
<213> Homo sapiens

<400> 17

gtcactcact gtggacaaat tgg 23  
<210> 18  
<211> 21  
<212> DNA  
<213> Homo sapiens

<400> 18  
cacctcagca atccggcgga t 21  
<210> 19  
<211> 20  
<212> DNA  
<213> Mus musculus

<400> 19  
tctggcacaa agagttcgtg 20  
<210> 20  
<211> 22  
<212> DNA  
<213> Mus musculus

<400> 20  
gccagtttgt aaccgagtat tc 22  
<210> 21  
<211> 22  
<212> DNA  
<213> Mus musculus

*B6L*  
*cont*

<400> 21  
gcaattggat acagaggcgc ta 22  
<210> 22  
<211> 22  
<212> DNA  
<213> Mus musculus

<400> 22  
gacaatgtcc gtcatggcct ta 22  
<210> 23  
<211> 21  
<212> DNA  
<213> Mus musculus

<400> 23  
attccccattt tattgcccggt t 21  
<210> 24  
<211> 21  
<212> DNA  
<213> Mus musculus

*B7  
cont*

<400> 24  
aacgggcaat acaatggaa t 21

<210> 25  
<211> 22  
<212> DNA  
<213> Mus musculus

<400> 25  
gataaagctg gtgatgcaaa cc 22

<210> 26  
<211> 20  
<212> DNA  
<213> Mus musculus

<400> 26  
catgggatgg cgtgagatac 20

<210> 27  
<211> 23  
<212> DNA  
<213> Mus musculus

<400> 27  
cataagctt gctttggaag agt 23

<210> 28  
<211> 21  
<212> DNA  
<213> Homo sapiens

<400> 28  
gcatgtccag acagacacca c 21

<210> 29  
<211> 333  
<212> DNA  
<213> Homo sapiens

<220>  
<223> D19Mit13 locus and flanking sequences

<221> misc\_feature  
<222> (1)...(333)  
<223> n = A,T,C or G; at nucleotide positions 23 and 305

<400> 29  
ctgactatga gaaacctgaa acnccagagt gtgtgctgaa gaccaacctg tcttcagtaa 60  
gcgactgtgt gcaacagggtg gtggaaacttt tgcaggagca ggtaggaggg tggttcttgc 120  
cagtgtgtc agtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgcgtgtgca tgtgtgtgtg 180  
catgtgtgtg tgcgtgtgca tgtgtgtgtg ttgaaaagata atctgagttt ctttattccc 240  
tggccaatct cagtaactat tgccaatttc gttccccaca gaacattgtt ccccacacca 300  
ccatnaaagg catccacgaa ctctttgtgc cag 333

<210> 30  
<211> 18  
<212> DNA  
<213> Homo sapiens  
  
<220>  
<223> Nucleotide positions +1414 through +1431 of PAPSS2 coding sequence

<400> 30  
gatcccaagt caaccatt

18

<210> 31  
<211> 6  
<212> PRT  
<213> Homo sapiens

<220>  
<223> Partial PAPSS2 peptide sequence; amino acid residues 472 through 477

<400> 31  
Asp Pro Lys Ser Thr Ile  
1 5

<210> 32  
<211> 18  
<212> DNA  
<213> Homo sapiens

<220>  
<221> mutation  
<222> (0)...(0)  
<223> Nucleotide positions +1414 through +1431 of PAPSS2 coding sequence with mutation c to a at nucleotide position +1424

<400> 32  
gatcccaagt aaaccatt

18

<210> 33  
<211> 3  
<212> PRT  
<213> Homo sapiens

<220>  
<223> Partial truncated PAPSS2 peptide sequence; amino acid residues 472-474 plus stop at position 475

<400> 33  
Asp Pro Lys  
1