数理逻辑

第9讲命题演算形式系统-基本定理18-29

授课教师: 蒋琳

e-mail: zoeljiang@hit.edu.cn

哈尔滨工业大学(深圳)计算机科学与技术学院

推理部分

公理集合:

- $(1) \quad A_1: A \to (B \to A)$
- $(2) A_2: (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- (3) $A_3: (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

推理规则或分离规则(Modus Ponens):

若有A和 $A \rightarrow B$ 成立,则必有结论B成立,可形式化表示为:

$$r_{mp}$$
: $\frac{A, A \rightarrow B}{B}$

证明

证明的定义: 称下列公式序列为公式A在PC中的一个证明:

$$A_1$$
, A_2 , ..., A_m (= A)

如果对任意的 $i \in \{1,2,\cdots,m\}$, A_i 或者是PC中的公理,或者是 $A_j(j < i)$,或者 $A_j,A_k(j,k < i)$ 用分离规则导出的。其中 A_m 就是

公式A。

$注释: A_i$ 只能是以下三种中的其一:

- (1) PC中的公理或已知定理;
- (2) 序列 $A_1, A_2, ..., A_{i-1}$ 中的某一个;
- (3) 序列 A_1, A_2, \dots, A_{i-1} 中某两个用分离规则导出的。

定理1: $\vdash_{PC}A \to A$ $(A \to A \not\in PC$ 中的一个定理)√

定理2: 如果 $\vdash_{PC} A \to (B \to C)$, 那么 $\vdash_{PC} B \to (A \to C)$ (前件互换定理) ✓

定理3: $\vdash (A \to (B \to C)) \to (B \to (A \to C))$ 定理(2) 的另一种形式 ✓

定理4: $\vdash (B \to C) \to ((A \to B) \to (A \to C))$ (加前件定理) ✓

定理5: $\vdash (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$ (加后件定理) ✓

定理6: $\vdash \neg A \rightarrow (A \rightarrow B)$ ✓

定理7: $\vdash A \rightarrow (\neg A \rightarrow B)$ ✓

定理8: 如果 \vdash ($A \rightarrow B$), \vdash ($B \rightarrow C$), 那么 \vdash ($A \rightarrow C$) (三段论定理) ✓

定理9. $\vdash (\neg A \rightarrow A) \rightarrow A$ (反证法) \checkmark

定理10. ⊢ ¬¬*A* → *A*√

定理11. \vdash ($A \rightarrow \neg A$) $\rightarrow \neg A$ (反证法) \checkmark

定理12. ⊢ *A* → ¬¬*A*√

定理13: $\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ (公理 A_3 的逆命题) √

定理14: $\vdash (\neg A \rightarrow B) \rightarrow (\neg B \rightarrow A)$ ✓

定理15: \vdash ($A \rightarrow \neg B$) \rightarrow ($B \rightarrow \neg A$) \checkmark

定理16: $\vdash (\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$ (反证法) ✓

定理17: $\vdash (A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$ ✓

定理18: $\vdash \neg A \rightarrow C$, $\vdash B \rightarrow C$ 当且仅当 $\vdash (A \rightarrow B) \rightarrow C$

定理19: $\vdash A \rightarrow A \lor B$, 其中, $A \lor B$ 定义为 $\neg A \rightarrow B$, 也即

 $A \rightarrow A \lor B \Leftrightarrow A \rightarrow (\neg A \rightarrow B)$ (等价于定理7)

定理20: $\vdash A \rightarrow B \lor A$, 其中, $A \lor B$ 定义为 $\neg A \rightarrow B$, 也即

 $A \to B \lor A \Leftrightarrow A \to (\neg B \to A)$ (等价于公理1)

定理21: 如果 $\vdash P \rightarrow Q$, 且 $\vdash R \rightarrow S$, 则 $\vdash (Q \rightarrow R) \rightarrow (P \rightarrow S)$

定理22: $\vdash (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C))$ 也即

 $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((\neg A \rightarrow B) \rightarrow C))$ (二难推理)

定理18: $\vdash \neg A \rightarrow C$, $\vdash B \rightarrow C$ 当且仅当 $\vdash (A \rightarrow B) \rightarrow C$

必要性: 若 $\vdash \neg A \rightarrow C$, $\vdash B \rightarrow C$ 则 $\vdash (A \rightarrow B) \rightarrow C$

充分性: 若 \vdash $(A \rightarrow B) \rightarrow C$, 则 \vdash $\neg A \rightarrow C$, \vdash $B \rightarrow C$

定理18必要性证明

必要性: 若 $\vdash \neg A \rightarrow C$, $\vdash B \rightarrow C$ 则 $\vdash (A \rightarrow B) \rightarrow C$

证明思路:

定理9.
$$\vdash (\neg A \rightarrow A) \rightarrow A$$

定理14.
$$\vdash (\neg A \rightarrow B) \rightarrow (\neg B \rightarrow A)$$

定理18必要性证明

定理14

定理9

定理18 (必要性): $\mathbf{Z} \vdash \neg A \rightarrow C$, $\vdash B \rightarrow C$ 则 $\vdash (A \rightarrow B) \rightarrow C$

证明(必要性):

- (1) $\neg A \rightarrow C$ 已知定理
- (2) $(\neg A \rightarrow C) \rightarrow (\neg C \rightarrow A)$ 定理14
- (3) $\neg C \rightarrow A$ (2)和(3)用rmp分离规则
- (4) $(\neg C \rightarrow A) \rightarrow ((A \rightarrow B) \rightarrow (\neg C \rightarrow B))$ 加后件定理5
- (5) $(A \rightarrow B) \rightarrow (\neg C \rightarrow B)$ (3)和(4)用rmp分离规则
- (6) $B \rightarrow C$ 已知定理
- (7) $(B \rightarrow C) \rightarrow ((\neg C \rightarrow B) \rightarrow (\neg C \rightarrow C))$ 对(6)用加前件定理4
- (8) $(\neg C \rightarrow B) \rightarrow (\neg C \rightarrow C)$ (1)和(7)用rmp分离规则
- (9) $(A \to B) \to (\neg C \to C)$ (5)和(8)用三段论定理8
- $(10) (\neg C \to C) \to C$ 定理9
- (11) $(A \to B) \to C$ (9)和(10)用三段论定理8

定理18充分性证明

充分性: 若 \vdash $(A \rightarrow B) \rightarrow C$, 则 \vdash $\neg A \rightarrow C$, \vdash $B \rightarrow C$

证明思路:结合已知定理,利用三段论加以证明

证明:

- (1) $(A \rightarrow B) \rightarrow C$ 已知定理
- (2) $\neg A \rightarrow (A \rightarrow B)$ 定理6
- (3) $\neg A \rightarrow C$ (2)和(1)用三段论定理8
- (4) $B \rightarrow (A \rightarrow B)$ 公理1
- (5) $B \rightarrow C$ (4)和(1)用三段论定理8

定理18的应用

定理18 (必要性) 若 $\vdash \neg A \rightarrow C$, $\vdash B \rightarrow C$, 那么 $\vdash (A \rightarrow B) \rightarrow C$

例1.证明 $((A \rightarrow B) \rightarrow A) \rightarrow A$

证明思路:有了定理18的必要性,再证明该命题就简单很多了。

只需要证明 $A \to A$ 和 $\neg(A \to B) \to A$

证明:

- (1) $A \rightarrow A$ 定理1
- $(2) \quad \neg A \to (A \to B) \quad 定理6$
- (3) $(\neg A \rightarrow (A \rightarrow B)) \rightarrow (\neg (A \rightarrow B) \rightarrow A)$ 定理14
- (4) $\neg (A \rightarrow B) \rightarrow A$ (2)和(3)用rmp分离规则
- (5) $((A \to B) \to A) \to A$ (4) 和(1)用定理18

定理19: $\vdash A \rightarrow A \lor B$, 其中 $A \lor B$ 定义为¬ $A \rightarrow B$

 $A \rightarrow A \lor B \Leftrightarrow A \rightarrow (\neg A \rightarrow B)$ (等价于定理7)

定理20: $\vdash A \rightarrow B \lor A$, 其中 $A \lor B$ 定义为¬ $A \rightarrow B$

 $A \rightarrow B \lor A \Leftrightarrow A \rightarrow (\neg B \rightarrow A)$ (等价于公理1)

定理21: 如果 $\vdash P \rightarrow Q$, 且 $\vdash R \rightarrow S$, 则 $\vdash (Q \rightarrow R) \rightarrow (P \rightarrow S)$

证明:

- (1) $P \rightarrow Q$ 已知定理
- (2) $R \rightarrow S$ 已知定理
- $(3) \qquad (P \to Q) \to ((Q \to R) \to (P \to R)) \quad \text{加后件定理5}$
- (4) $(Q \rightarrow R) \rightarrow (P \rightarrow R)$ (1) 和 (3) 用rmp分离规则
- $(5) \qquad (R \to S) \to ((P \to R) \to (P \to S)) \quad \text{加前件定理4}$
- (6) $(P \rightarrow R) \rightarrow (P \rightarrow S)$ (2) 和 (5) 用rmp分离规则
- (7) $(Q \to R) \to (P \to S)$ (4) 和 (6) 使用三段论定理8

定理22:
$$\vdash (A \to C) \to ((B \to C) \to ((A \lor B) \to C))$$
 (二难推理) 也即 $(A \to C) \to ((B \to C) \to ((\neg A \to B) \to C))$

证明思路1:运用定理18,

$$\Leftrightarrow Q = (B \to C) \to ((\neg A \to B) \to C)$$

要证 $(A \rightarrow C) \rightarrow Q$ 成立,根据定理18的必要性,只需证:

$$C \to Q$$
和 $\neg A \to Q$

也即:

$$C \to ((B \to C) \to ((\neg A \to B) \to C))$$
$$\neg A \to ((B \to C) \to ((\neg A \to B) \to C))$$

定理18: $\vdash \neg A \rightarrow C$, $\vdash B \rightarrow C$ 当且仅当 $\vdash (A \rightarrow B) \rightarrow C$

定理22: $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((\neg A \rightarrow B) \rightarrow C))$ (二难推理)

证明(思路1):

- (1) $C \rightarrow ((\neg A \rightarrow B) \rightarrow C)$ 公理1
- $(2) \quad (C \to ((\neg A \to B) \to C)) \to ((B \to C) \to (C \to ((\neg A \to B) \to C)))$ 公理1
- (3) $(B \rightarrow C) \rightarrow (C \rightarrow ((\neg A \rightarrow B) \rightarrow C))$ (1)和(2)用rmp分离规则
- (4) $C \rightarrow ((B \rightarrow C) \rightarrow ((\neg A \rightarrow B) \rightarrow C))$ 对(3)用前件互换定理2
- (5) $(\neg A \rightarrow B) \rightarrow (\neg A \rightarrow B)$ 定理1
- (6) $\neg A \rightarrow ((\neg A \rightarrow B) \rightarrow B)$ 对(5)用前件互换定理2
- (7) $((\neg A \rightarrow B) \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow ((\neg A \rightarrow B) \rightarrow C))$ 加后件定理5
- (8) $\neg A \rightarrow ((B \rightarrow C) \rightarrow ((\neg A \rightarrow B) \rightarrow C))$ (6)和(7)用三段论定理8
- (9) $(A \to C) \to ((B \to C) \to ((\neg A \to B) \to C))$ (4) 和(8)用定理18

定理21: 如果 $\vdash P \rightarrow Q$, 且 $\vdash R \rightarrow S$, 则 $\vdash (Q \rightarrow R) \rightarrow (P \rightarrow S)$

定理22:
$$\vdash (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C))$$

(二难推理)

也即 $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((\neg A \rightarrow B) \rightarrow C))$

证明思路2: 要证 $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((\neg A \rightarrow B) \rightarrow C))$ 成立,只需证:

$$(\neg C \rightarrow \neg A) \rightarrow ((\neg C \rightarrow \neg B) \rightarrow (\neg C \rightarrow \neg (\neg A \rightarrow B)))$$
 (运用定理21)

逆向用公理2,提取相同的前件 $\neg C$,只需证:

$$(\neg C \to \neg A) \to (\neg C \to (\neg B \to \neg (\neg A \to B)))$$

再次逆向用公理2,提取相同的前件 $\neg C$,只需证:

$$\neg C \rightarrow (\neg A \rightarrow (\neg B \rightarrow \neg (\neg A \rightarrow B)))$$

去掉 $\neg C$,只需证:

$$\neg A \rightarrow (\neg B \rightarrow \neg (\neg A \rightarrow B))$$

逆否命题,只需证:

$$\neg A \rightarrow ((\neg A \rightarrow B) \rightarrow B)$$

前件互换定理,只需证:

$$(\neg A \rightarrow B) \rightarrow (\neg A \rightarrow B)$$
 (定理1)

定理18: $\vdash \neg A \rightarrow C$, $\vdash B \rightarrow C$ 当且仅当 $\vdash (A \rightarrow B) \rightarrow C$ ✓

定理19: $\vdash A \rightarrow A \lor B$, 其中, $A \lor B$ 定义为 $\neg A \rightarrow B$, 也即

 $A \rightarrow A \lor B \Leftrightarrow A \rightarrow (\neg A \rightarrow B)$ (等价于定理7) \checkmark

定理20: $\vdash A \rightarrow B \lor A$, 其中, $A \lor B$ 定义为 $\neg A \rightarrow B$, 也即

 $A \to B \lor A \Leftrightarrow A \to (\neg B \to A)$ (等价于公理1) \checkmark

定理21: 如果 $\vdash P \to Q$, 且 $\vdash R \to S$, 则 $\vdash (Q \to R) \to (P \to S)$ \checkmark

定理22: $\vdash (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C))$ 也即

 $(A \to C) \to ((B \to C) \to ((\neg A \to B) \to C))$ (二难推理) \checkmark

定理23: $\vdash A \land B \rightarrow C$ 当且仅当 $\vdash A \rightarrow (B \rightarrow C)$

定理24: $\vdash A \land B \rightarrow A$

定理25: $\vdash A \land B \rightarrow B$

定理26: $\vdash A \rightarrow (B \rightarrow (A \land B))$

定理27: $\vdash (A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow B \land C))$

定理28: $\vdash A \lor B \leftrightarrow B \lor A$

定理29: $\vdash A \land B \leftrightarrow B \land A$

定理23: $\vdash A \land B \rightarrow C$ 当且仅当 $\vdash A \rightarrow (B \rightarrow C)$, $A \land B$ 定义为 $\neg (A \rightarrow \neg B)$ 即

定理23: $\vdash \neg (A \rightarrow \neg B) \rightarrow C$ 当且仅当 $\vdash A \rightarrow (B \rightarrow C)$

证明(必要性): $\Xi \vdash \neg (A \rightarrow \neg B) \rightarrow C$,则 $\vdash A \rightarrow (B \rightarrow C)$

(1)
$$\neg (A \rightarrow \neg B) \rightarrow C$$
 已知定理

(2)
$$(\neg(A \rightarrow \neg B) \rightarrow C) \rightarrow (\neg C \rightarrow (A \rightarrow \neg B))$$
 定理14

(3)
$$\neg C \rightarrow (A \rightarrow \neg B)$$
 由 (1) 和 (2) 用分离规则

$$(4)$$
 $A \rightarrow (\neg C \rightarrow \neg B)$ 对 (3) 用前件互换定理2

$$(5) (\neg C \rightarrow \neg B) \rightarrow (B \rightarrow C) 公理3$$

(6)
$$A \to (B \to C)$$
 (4) 和 (5) 用三段论定理8

定理23: $\vdash A \land B \rightarrow C$ 当且仅当 $\vdash A \rightarrow (B \rightarrow C)$, $A \land B$ 定义为 $\neg (A \rightarrow \neg B)$ 即

定理23: $\vdash \neg (A \rightarrow \neg B) \rightarrow C$ 当且仅当 $\vdash A \rightarrow (B \rightarrow C)$

证明(充分性): 若 $\vdash A \rightarrow (B \rightarrow C)$, 则 $\vdash \neg (A \rightarrow \neg B) \rightarrow C$

- (1) $A \rightarrow (B \rightarrow C)$ 已知定理
- (2) $(B \rightarrow C) \rightarrow (\neg C \rightarrow \neg B)$ 定理13
- (3) $A \rightarrow (\neg C \rightarrow \neg B)$ 由 (1) 和 (2) 使用三段论
- (4) $\neg C \rightarrow (A \rightarrow \neg B)$ 对 (3) 用前件互换定理2
- $(5) (\neg C \rightarrow (A \rightarrow \neg B)) \rightarrow (\neg (A \rightarrow \neg B) \rightarrow C)$ $\rightleftharpoons 214$
- (6) $\neg (A \rightarrow \neg B) \rightarrow C$ 由 (4) 和 (5) 用分离规则
- (7) $A \wedge B \rightarrow C$

定理24: $\vdash A \land B \rightarrow A$, $A \land B \Leftrightarrow \neg (A \rightarrow \neg B)$

证明: $A \wedge B \to A \Leftrightarrow \neg (A \to \neg B) \to A \Leftrightarrow \neg A \to (A \to \neg B)$

(取逆否命题) 等价于定理6

定理25: $\vdash A \land B \rightarrow B$

证明: $A \wedge B \rightarrow B \Leftrightarrow \neg (A \rightarrow \neg B) \rightarrow B \Leftrightarrow \neg B \rightarrow (A \rightarrow \neg B)$

(取逆否命题) 等价于公理1

定理26: $\vdash A \rightarrow (B \rightarrow (A \land B))$

证明思路1: 由 $\vdash A \land B \rightarrow A \land B$,使用定理23直接得证

证明思路2:

定理23: $\vdash A \land B \rightarrow C$ 当且仅当 $\vdash A \rightarrow (B \rightarrow C)$

定理27: $\vdash (A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow B \land C))$

证明思路:发现三个蕴含式的前件都是一样的。

证明:

定理26: $\vdash A \rightarrow (B \rightarrow (A \land B))$

- (1) $B \rightarrow (C \rightarrow B \land C)$ 定理26
- $(2) \quad (B \to (C \to (B \land C))) \to$

$$((A \rightarrow B) \rightarrow (A \rightarrow (C \rightarrow (B \land C))))$$
加前件定理2

- (3) $(A \rightarrow B) \rightarrow (A \rightarrow (C \rightarrow (B \land C)))$ (1) 和 (2) 用rmp分离规则
- (5) $(A \to B) \to ((A \to C) \to (A \to (B \land C)))$ (3) 和 (4) 用三段论

$$A_2: (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

定理27另一种证明方法

定理27: $\vdash (A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow B \land C))$

证明:

- (1) $B \rightarrow (C \rightarrow (B \land C))$ 定理26
- $(2) \quad (B \to (C \to (B \land C))) \to (A \to (B \to (C \to (B \land C)))) \quad$ **公理**
- $(4) \quad (B \to (C \to (B \land C))) \to$

$$((A \rightarrow B) \rightarrow (A \rightarrow (C \rightarrow (B \land C))))$$
 (2) 和 (3) 用三段论定理8

- (5) $(A \rightarrow B) \rightarrow (A \rightarrow (C \rightarrow (B \land C)))$ 由 (1) 和 (4) 用分离规则
- (6) $((A \rightarrow (C \rightarrow (B \land C)))) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow (B \land C)))$ 公理2
- $(7) (A \to B) \to ((A \to C) \to (A \to (B \land C)))$ (5) 和 (6) 用三段论定理8

定理28: $\vdash A \lor B \leftrightarrow B \lor A$, 其中 $\vdash P \leftrightarrow Q$ 即 $\vdash P \rightarrow Q$ 且 $\vdash Q \rightarrow P$.

证明: $A \lor B \to B \lor A \Leftrightarrow (\neg A \to B) \to (\neg B \to A)$ 定理14

反向也是同理。

 $B \lor A \to A \lor B \Leftrightarrow (\neg B \to A) \to (\neg A \to B)$ 定理15

定理29: $\vdash A \land B \leftrightarrow B \land A \Leftrightarrow \neg(A \rightarrow \neg B) \rightarrow \neg(B \rightarrow \neg A)$

证明:

(1)
$$(B \rightarrow \neg A) \rightarrow (A \rightarrow \neg B)$$
 定理15

$$(2) ((B \to \neg A) \to (A \to \neg B)) \to$$
$$(\neg (A \to \neg B) \to \neg (B \to \neg A)) 定理13$$

$$(3)$$
 $\neg (A \rightarrow \neg B) \rightarrow \neg (B \rightarrow \neg A)$ (1) 和 (2) 用rmp分离规则

定理23: $\vdash A \land B \rightarrow C$ 当且仅当 $\vdash A \rightarrow (B \rightarrow C)$ √

定理24: $\vdash A \land B \rightarrow A \checkmark$

定理25: $\vdash A \land B \rightarrow B \checkmark$

定理26: $\vdash A \rightarrow (B \rightarrow (A \land B))$ ✓

定理27: $\vdash (A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow B \land C))$ ✓

定理28: $\vdash A \lor B \leftrightarrow B \lor A$ ✓

定理29: $\vdash A \land B \leftrightarrow B \land A$ √