Algorithmen und Datenstrukturen

Kapitel 4: Analyse von Algorithmen - Teil II

Prof. Ingrid Scholl
FH Aachen - FB 5
scholl@fh-aachen.de

20.04.2020

Analyse von Algorithmen - Teil II

- 1. O-Notation
- 1.1 Beispiel Fibonacci-Zahlen
- 1.2 Vergleich Laufzeiten Fibonacci-Zahlen
- 1.3 O-Notation
- 1.4 Grafische Veranschaulichung O-Notation
- 1.5 Rechnen mit der O-Notation
- 1.6 Weitere Wachstumsfunktionen: Omega-/Theta-Notation
- 1.7 Laufzeitenvergleich

Beispiel Fibonacci-Zahlen

Definition (Fibonacci-Zahlen)

Die Fibonacci-Zahlen sind definiert durch die folgenden Regeln:

```
f_0 = 0
f_1 = 1
f_n = f_{n-1} + f_{n-2}
```

Rekursiver Algorithmus:

```
// rekursiver Algorithmus zur
// Berechnung der Fibonacci Zahlen
int fib(int n) // n > 0
   if (n <= 1)
      return n;
   else
      return fib (n-1) + fib (n-2);
```

Fibonacci-Zahlen Laufzeitanalyse Rekursiver Algorithmus

Anzahl rekursiver Aufrufe: $T(n) > 2^{n/2}$

hier: T(n) sei die Laufzeit zur Berechnung der n-ten Fibonacci-Zahl

$$T(n) = T(n-1) + T(n-2)$$

$$> 2 \cdot T(n-2)$$

$$> 2 \cdot 2 \cdot T(n-4)$$

$$\vdots$$

$$> 2 \cdot 2 \cdot \dots \cdot 2 \cdot T(0)$$

$$= 2^{n/2} \cdot T(0)$$

Beweis: Mittels vollständiger Induktion

Fibonacci-Zahlen - Iterativer Algorithmus

```
// iterativer Algorithmus zur
// Berechnung der Fibonacci Zahlen
int fib(int n) // n > 0
   int i:
   int *f = new int[n];
   f[0] = 0;
   if (n > 0) {
   f[1] = 1;
     for (int i=2; i<=n; i++) {</pre>
        f[i] = f[i-1] + f[i-2];
   return f[n];
```

Laufzeitanalyse: T(n) = ?

Vergleich Fibonacci-Algorithmen

Annahme: 1 arithm. Operation = 1ns

n	n+1	2 ^{n/2}	Rekursiv	Iterativ
40	41	1.048.576	1048 μs	41 ns
80	81	1.1×10^{12}	18 min	81 ns
100	101	1.1×10^{15}	13 Tage	101 ns
120	121	1.1×10^{18}	36 Jahre	121 ns
160	161	1.1×10^{24}	3.8 × 10 ⁷ Jahre	161 ns
200	201	1.1×10^{30}	4 × 10 ¹³ Jahre	201 ns

1 Mikrosek. = $1 \mu s = 10^{-6} s$ 1 Nanosek. = $1 ns = 10^{-9} s$

Vergleich Fibonacci-Algorithmen

Annahme: 1 arithm. Operation = 1ns

n	n+1	2 ^{n/2}
40	41	1.048.576
80	81	1.1×10^{12}
100	101	1.1×10^{15}
120	121	1.1×10^{18}
160	161	1.1×10^{24}
200	201	1.1×10^{30}

$$1 \mu s = 10^{-6} s$$

 $1 ns = 10^{-9} s$

Einstufung in Komplexitätsklassen

Beobachtung:

- Rekursiver Alg. Fibonacci-Zahlen: exponentielle Laufzeit
- Iterativer Alg. Fibonacci-Zahlen: lineare Laufzeit
- Einstufung der Algorithmen je nach Aufwand in verschiedene Komplexitätsklassen
- Suche dabei einfachere Vergleichsfunktion (Tilde-Approximation), die als obere Schranke für die Aufwandsfunktion eingesetzt wird.

Obere Schranke

Diese Schranke wird durch die sogenannte O-Notation angegeben.

Ouelle: Introduction to Algorithms [Cor01]

O-Notation

Die O-Notation gibt für g(n) eine obere Schranke mit einer Funktion f(n) und einem konstanten Faktor c an:

q(n) = O(f(n)) genau dann, wenn $g(n) \le c \cdot f(n)$ mit $n \ge n_0$

Beispiel:

$$\overline{\text{Zeige } n^2} + 3n - 3 = O(n^2)$$

- g(n) unser Algorithmus
- f(n) Funktion als obere Schranke

Definition O-Notation

Definition (O-Notation (Order of Magnitude))

Seien f(n) und g(n) zwei Funktionen ganzer positiver Zahlen. g ist von der Ordnung f, falls mit c > 0 und $n_0 \in \mathbb{N}_0$ für alle $n > n_0$ gilt:

$$g(n) \le c \cdot f(n)$$

oder

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}\leq c$$

 O(f(n)) bezeichnet die Menge aller Funktionen g, die von der Ordnung f sind:

$$O(f) = \{g \mid \exists c > 0, \exists n_0 \in \mathbb{N}_0, \forall n > n_0 : g(n) \le c \cdot f(n)\}$$

▶ Man schreibt: g(n) = O(f(n)) g ist von der Größenordnung f oder g wächst nicht wesentlich stärker als f.

Veranschaulichung O-Notation (1)

$$O(f) = \{g \mid \exists c > 0, \exists n_0 \in \mathbb{N}_0, \forall n > n_0 : g(n) \le c \cdot f(n)\}$$

- g(n) = 2n, f(n) = n $g \in O(f)$
- ► c = 3, n_0 beliebig \rightarrow $g(n) = 2n \le 3n = c \cdot f(n)$

Konstante Faktoren werden vernachlässigt!

$$O(f) = \{g \mid \exists c > 0, \exists n_0 \in \mathbb{N}_0, \forall n > n_0 : g(n) \le c \cdot f(n)\}$$

- $prices g(n) = 2n + 30, f(n) = n^2$ → $g \in O(f)$
- $c = 1, n_0 = 7 \rightarrow q(n) \le f(n) \forall n \ge n_0$

Für kleine n kann die Laufzeit von f(n) besser sein!

Bei asymptotischer Betrachtung wächst g(n) langsamer!

Veranschaulichung O-Notation (3)

$$O(f) = \{g \mid \exists c > 0, \exists n_0 \in \mathbb{N}_0, \forall n > n_0 : g(n) \le c \cdot f(n)\}$$

- $g(n) = 3n^2 + 40, f(n) = n^2$ → g ∈ O(f)
- ► c = 4, $n_0 = 7 \rightarrow q(n) \le 4 \cdot f(n)$, $\forall n \ge n_0 = 7$

Rechnen mit der O-Notation

Definiere Addition, Multiplikation, Maximumbildung: Beispiel: (f+g)(n) = f(n) + g(n)

1. Addition:
$$f + g \in O(max\{f, g\}) = \begin{cases} O(g) & \text{falls } f \in O(g) \\ O(f) & \text{falls } g \in O(f) \end{cases}$$

- 2. Multiplikation: $a \in O(f) \land b \in O(g) \Rightarrow a \cdot b \in O(f \cdot g)$
- 3. Falls

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}\leq c$$

existiert, ist $g \in O(f)$. (Umkehrschluß gilt nicht!)

Beispiele: Rechnen mit O-Notation

Example (Addition)

 $T_1(n) \in O(n^2), T_2(n) \in O(n^3), T_3(n) \in O(n^2 \log n)$: dann $T_1(n) + T_2(n) + T_3(n) \in O(n^3)$

Example ($g \in O(f)$ **)**

$$f(n) = n^2$$
, $g(n) = 5n^2 + 100log(n)$ da

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}\leq c=\lim_{n\to\infty}\frac{5n^2+100logn}{n^2}=5$$

folgt $g \in O(n^2)$

Weitere Wachstumsfunktionen

Definition (O-/Omega-/Theta-Notation)

```
Sei f: \mathbb{N} \to \mathbb{R}^+ eine Funktion, dann ist O(f) = \{g: \mathbb{N} \to \mathbb{R}^+ \mid \exists c > 0, \exists n_0 > 0, \forall n \geq n_0 : g(n) \leq c \cdot f(n)\} \Omega(f) = \{g: \mathbb{N} \to \mathbb{R}^+ \mid \exists c > 0, \exists n_0 > 0, \forall n \geq n_0 : c \cdot f(n) \leq g(n)\} \Theta(f) = \{g: \mathbb{N} \to \mathbb{R}^+ \mid \exists c > 0, \exists n_0 > 0, \forall n \geq n_0 : \frac{1}{c} \cdot f(n) \leq g(n) \leq c \cdot f(n)\}
```

Übliche Sprechweise:

- ▶ **O-Notation** $g \in O(f)$: f ist obere Schranke von g, g wächst höchstens so schnell wie f.
- ► **Omega-Notation** $g \in \Omega(f)$: f ist untere Schranke von g. g wächst mindestens so schnell wie f.
- ► Theta-Notation $g \in \Theta(f)$: f ist die Wachstumsrate von g. g wächst wie f.

Wachstum für ausgewählte Komplexitätsklassen

f(n)	n = 2	$\begin{vmatrix} 2^4 = \\ 16 \end{vmatrix}$	2 ⁸ = 256	$2^{10} = 1024$	$\begin{vmatrix} 2^{20} = \\ 1048576 \end{vmatrix}$
ld n	1	4	8	10	20
n	2	16	256	1024	1048576
n·ldn	2	64	2048	10240	20971520
n²	4	256	65636	1048576	$\approx 10^{12}$
n³	8	4096	16777200	≈ 10^9	$\approx 10^{18}$
2 ⁿ	4	65536	≈ 10 ⁷⁷	≈ 10^{308}	$\approx 10^{315653}$

Zeitaufwand für einige Problemgrößen

Wieviele Eingabeelemente können verarbeitet werden, wenn die Zeit durch eine maximale Dauer T begrenzt ist.

Annahme: 1 Schritt = $1 \mu s$

g ist das größte lösbare Problem in der Zeit T.

g	1 Min	1 Std	1 Tag	1 Woche	1 Jahr
	6 × 10 ⁷ 7750 391	3×10^9 6×10^4 1530		6×10^{11} 7.8×10^{5} 8450	
2 ⁿ	25	31	36	39	44

Beobachtung

In 1 Jahr können bei exponentiellem Aufwand nur ca. 44 Eingabedaten verarbeitet werden!

Analyse von Algorithmen - Teil II

- 1. O-Notation
- 1.1 Beispiel Fibonacci-Zahlen
- 1.2 Vergleich Laufzeiten Fibonacci-Zahlen
- 1.3 O-Notation
- 1.4 Grafische Veranschaulichung O-Notation
- 1.5 Rechnen mit der O-Notation
- 1.6 Weitere Wachstumsfunktionen: Omega-/Theta-Notation
- 1.7 Laufzeitenvergleich

Vielen Dank!

www.fh-aachen.de

Prof. Ingrid Scholl
FH Aachen
Fachbereich für Elektrotechnik und Informationstechnik
Graphische Datenverarbeitung und Grundlagen der Informatik
MASKOR Institut
Eupener Straße 70
52066 Aachen
T +49 (0)241 6009-52177
F +49 (0)241 6009-52190
scholl@fh-aachen.de