جهاز تحلية مياه البحر بالتقطير الحراري بالغاز الطبيعي

لأول مرة في مصر

بتقنية Combined MEE-ATFD-ZLD

Film Multi Effect Evaporator (MEE) Zero Liquid Derivative (ZLD) Agitated Thin Dryer system (ATFD)

باستخدام الغاز الطبيعي والمصنع من تدوير الكتلة الحيوية

لفصل الملح بالكامل عن المياه و انتاج الملح بشكل تجاري بجانب الماء المقطر

الفئة المستفيدة من المشروع

- ١- عمال وفلاحين
- ۲- مطوریین زراعیین
 - ۳- صنادیق استثمار
 - ٤- اسواق
- ٥- منتفعين بصورة غير مباشرة
- ٦- شركات تحلية ومعالجة المياه

اهداف المشروع

- ١- تحلية مياه البحر والآبار بطريقة صديقة للبيئة وكذلك
 - ٢- معالجة مياه الصرف الصحى والزراعي
 - ٣- توفير مياه صالحة للشرب والزراعة
- ٤- حماية البيئة من عوادم محطات التحلية brine الهادر المالح الضار بالبيئة الناتج عن عملية
 التناضح العكسى Reverse Osmosis لفلاتر التحلية

الميزة التنافسية للمشروع

بالمقارنة بمنظومة التحلية التقلدية بتقنية التناضح العكسى

تتفوق تقنية ZLD ATFD عليها للاسباب الاتية

1- الحفاظ على التربة للمخزون الجوفية و سطح التربة وكذلك السواحل البحرية من ارتفاع الملوحة الشديد للهدر المالح لمحطات التحلية

حيث ان بتقنية ZLD ATFD ينتج الملح بشكل جاف لاستخدامه تجارياً

- ٢- الحفاظ على الاحياء البحرية كشعب المرجانية والاسماك من brine الهادر شديد الملوحة الضار
 بالبيئة
- ٣- استخدام الغاز الطبيعي و الغاز المصنع من الكتلة الحيوية لانتاج الماء الصالح للزراعة والاملاح
 بدلا من استخدام الكهرباء
 - ٤- اقل في تكاليف التاسيس والتشغيل والصيانة وقطع الغيار من المنظومة الحالية
 - ٥- المنظومة تصنع بالكامل محلياً لبساطة مكوناتها

الاثر البيئى

- ١- استصلاح الاراضى الصحراوية
 - ٢- الاكتفاء الذاتي من الاعلاف
 - ٣- زيادة الانتاج الحيواني
- ٤- اعادة تدوير المحلفات العضوية وغير العضوية لتحلية المياه وتوفير الطاقة
 - ٥- الاستفادة من الاملاح المعدينة الناتجة عن عملية التحلية

الاثر الاقتصادي بالمقارنة بمنظومة التحلية التقلدية بتقنية التناضح العكسى

- ١- تصنع في مصر
- ٢- اقل في تكاليف التاسيس والتشغيل والصيانة وقطع الغيار
 - ٣- تعتمد على الغاز الطبيعي والكتلة الحيوية كوقود
 - ٤- تنتج الماء المقطر بنسبة تقل ١٠٠ وحدة بالمليون
 - ٥- القيمة المضافة عن بيع الاملاح المعدنية
- ٦- القيمة المضافة الناتجة عن بيع الاسمدة الناتجة عن معالجة المياه الصرف الصحي والزراعي
 بنفس التقنية
 - ٧- عمر افتراضي اطول

الاثر الاجتماعي

- ١- وفرة المياه الصالحة للزراعة يشجع استصلاح الاراضي الصحراوية
 - ٢- التمكين الاقتصادي للشباب والفلاحين
 - ٣- وفرة الاعلاف والانتاج الحيواني وتحقيق الامن الغذائي
- ٤- الدعم والاستفادة المتبادلة مع المشاريع القومية والرئاسية العملاقة مثل الدلتا الجديدة وتنمية
 سيناء والريف المصرى الجديد

ماتم تنفيذه

- ١- تصميم مصغر لمنظومة التقطير الحراري لتحلية مياه البحر
- ٢- بروتوكل تعاون مع مركز البحوث الزراعية بوزارة الزراعة ومؤسسة الطاقة الحيوية
 للتنمية الريفية المستدامة بوزارة البيئة

الخطة المستقبلية

- 1- دمج المنظومة الجديدة ZLD ATFD مع المنظومة الحالية التناضح العكسي في محطات التحلية مياه البحر
 - ٢- تدشين تدوير المخلفات والكتلة الحيوية واستخدمها كوقود لتحلية مياه البحر
- ٣- تصدير التقنية الى الاشقاء في دول الخليج العربي لانقاذ الاحياء البحرية على
 ساحل البحر الاحمر والخليح العربي

تتعايش القرية مع الطبيعة المحيطة بحيث يتم إستغلال مياه البحر أو مياه الأبار لتربية الأسماك وتغطية الأحواض بالألواح الشمسية لتوليد الكهرباء، وكذلك فإن تغطية المسطحات المائية بالألواح الشمسية يحمى الأسماك من التلوث ومن الطيور الجارحة.

يتم تحلية مياه البحر أو مياه الأبار العذبة بطريقة صديقة للبيئة، وبدون أي عوادم كربونية بإستخدام نظام (ATFD)، وهو نظام للتقطير يقوم بفصل الملح عن الماء تماماً، ويتم إستخدام الملح في الصناعات.

يتم الإستفادة بالمياة المقطرة للإستخدام المنزلي والحيواني وكذلك لملئ الأحواض السمكية ذات المياه العذبة.

يتم تغطية الأحواض السمكية العذبة بجزر زراعية عائمة لزراعة مختلف أنواع المحاصيل.

تتغذي الأسماك على أطراف جذور النباتات وتوفر لها بيئة تبادل منفعي بإستخدام الحرارة الناتجة عن الكتلة الحيوية بالتعاون مع مركز مطوري حلول الطاقة المتجددة ومشروع Wabour Energy.

https://www.facebook.com/HUBRESD

https://facebook.com/WABOUR/

جهاز (ATFD) لتحلية مياه البحر وفصل الأملاح بالكامل والإستفادة من الأملاح بشكل اقتصادي مع الماء المقطر.

الوحدات مصنعة بالكامل في مصر، وتستطيع الوحدة إنتاج ١٠٠ متر مكعب من الماء المقطر يومياً بدرجة ملوحة ٢٠ في المليون، وتعمل الوحدة بالغاز الطبيعي أو بحرارة الكتلة الحيوية.

إنتاج الأملاح اقتصادياً يقلل من تكلفة التشغيل.

Cost Estimate

INR 100 = 1.35 €

S.No	Description	Cost	
		INR Million	Million €
1	Land	15	0.20
2	Civil Structures and Others	50	0.65
3	Boiler	35	0.46
4	Turbine	30	0.39
5	Stripper	18	0.23
6	Multiple Effect Evaporator	72.5	0.94
7	Agitated Thin Film Dryer	26	0.34
8	Cooling Towers	17.5	0.23
9	Biological Treatment Plant	40	0.52
10	RO System	21	0.27
11	Storage Tanks	25	0.33
	Total	350	4.55

	Annual Operating Cost		
1	Boiler	127.96	1.66
2	Stripper, MEE and ATFD	0.38	0.005
3	Biological Treatment Plant and RO Systems	10.91	0.14
	Total	139.24	1.81
	Annual Maintenance Cost	**	
1	Boiler	12.80	0.17
2	Stripper, MEE and ATFD	53.66	0.70
3	Biological Treatment Plant and RO Systems	4.51	0.06
	Total	71	0.92

13

Cost Renefit

INR 100 = 1.35 €

Λ	Cost Delient		
S.No	Description	Cost	
		INR Million	Million €
	Annual Income		
1	Power exported to Grid	218.6	2.84
2	Income from Cluster Units for 1000 KLD wastewater	187.8	2.44
	Total - I	406.4	5.3
	Annual Expenditure		
1	Power Usage	1.11	0.01
2	Operating Cost	139.2	1.81
3	Maintenance Cost	71	0.92
4	Depreciation	4.65	0.06
	Total - II	215.97	2.81
	Gross Profit (Total I - Total II) before Tax	190.44	2.48

Return of Investment

INR 100 = 1.35 €

S.No	Description	Cost per Annum	
		INR Million	Million €
1	1st Year	350	4.55
	Interest on Above	52.5	0.68
	Total - I	402.5	5.23
2	Balance for 2nd Year	212.1	2.76
	Interest on Above	31.8	0.41
	Total - II	243.9	3.17

	N. T.
Cost per Annum	
INR Million	Million €
53.4	0.69
8.0	0.10
61.5	0.80
-129.0	-1.68
-129.0	-1.68
-319.4	-4.15
-509.9	-6.63
	1NR Million 53.4 8.0 61.5 -129.0 -129.0 -319.4

Rate of Interest @ 15%
2nd World Congress and Expo on Recycling, Berlin, Germany

Comparison

* per 1 m³ water evaporated	MEE-ATFD-ZLD	RO Reverse Osmosis
Initial cost*	3500 USD 🔺	700 USD
Breakeven point	4 years	10 years▲
Maintenance cost*	Low	Very High ▲
Operation cost*	Low	Very High ▲
Electricity consumption*	2 Kw	3 Kw 🛕
Steam needed*	25 kg via biomass	Nil
Local manufacture	boiler Yes	No 🛕
Durability-life expectancy	Long	Short ▼
Brine	Nil	Very High 🛕
Carbon foot print	SubZero (green)	Zero 🛕
Salinity	50 ppm	1000 ppm ▲
Waste management	Yes	No ▼
Environment	Friendly	Brine problem▲
		1