I simply copied this table from the textbook. I probably shouldn't have copied down #3 and #4. You should just use $L\{e^{at}\}$ in #2. Then $L\{\sinh at\} = \frac{1}{2}(L\{e^{at}\} - L\{e^{-at}\})$.

Note $\frac{a}{s^2-a^2} = \frac{a}{(s+a)(s-a)} = \frac{-\frac{1}{2}}{s+a} + \frac{\frac{1}{2}}{s-a}$. It's just simpler to ignore #3 and #4.

Always do Partial fraction decomposition first.

Table of Laplace Transforms	
$f(t) = \mathcal{L}^{-1}\{F(s)\}$ 1. 1	$F(s) = \mathcal{L}\{f(t)\}$
1. 1	$F(s) = \mathcal{L}\{f(t)\}\$ $\frac{1}{s}, s > 0$
$2. e^{at}$	$\frac{1}{s-a}$, $s>a$
(3. $\sinh at = \frac{e^{at} - e^{-at}}{2}$	$\frac{a}{s^2 - a^2}$, $s > a $
$\begin{cases} 3. & \sinh at = \frac{e^{at} - e^{-at}}{2} \\ 4. & \cosh at = \frac{e^{at} + e^{-at}}{2} \end{cases}$	
$4. \cosh at = \frac{e^{-\epsilon}}{2}$	$\frac{s}{s^2-a^2}$, $s > a $
5. t^n , $n = positive integer$	$\frac{n!}{s^{n+1}}, \ s > 0$
6. $t^n e^{at}$, $n = positive integer$	$\frac{n!}{(s-a)^{n+1}}, s > a$
7. $\sin bt$	$\frac{b}{s^2+b^2}, s > 0$
8. $\cos bt$	$\frac{s}{s^2+b^2}, s > 0$
9. $e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, s > a$
10. $e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, s > a$
11. $u_c(t)$	$\frac{e^{-cs}}{s}, s > 0$
12. $u_c(t)f(t-c)$	$e^{-cs}F(s)$
13. $e^{ct}f(t)$	F(s-c)
14. $\delta(t-c)$	e^{-cs} when $c \ge 0$; 0 when $c < 0$
$15. f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
$16. (-t)^n f(t)$	$F^{(n)}(s)$
17. $\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)