Topološke lastnosti grup Seminar

Gašper Rotar Fakulteta za matematiko in fiziko

6. april 2020

1 Uvod

V tej seminarski bomo obravnavali uporabe topoloških pristopov za študij lastnosti grup.

2 Dva preprosta izreka

Definicija 1 Naj bo N podgrupa grupe G. N je podgrupa edinka grupe G, označimo $N \triangleleft G$, če za vse $a \in G$ in $n \in N$ velja ana⁻¹ $\in N$.

Trditev 1 Za podgrupo N grupe G so naslednji pogoji ekvivalenti:

- (i) N je ednika.
- (ii) $aN \subseteq Na \ za \ vsak \ a \in G$.
- (iii) $aN = Na \ za \ vsak \ a \in G$.
- (iv) $aNa^{-1} = N \ za \ vsak \ a \in G$.

Trditev 2 Naj bo G grupa in $\Delta(G) = \{(g,g) \mid g \in G\} \subseteq G \times G$. Grupa G je komutativna natanko takrat, ko je $\Delta(G)$ podgrupa edinka grupe G, $\Delta(G) \triangleleft G$.

Dokaz:

(⇒) Ker je G komutativna je seveda tudi $G \times G$ komutativna. Torej je vsaka njena podgrupa edinka. Zdaj je trebna le še pokazati, da je $\Delta(G) \le$

 $G\times G,$ kar je enostavno. Naj bosta $a=(\alpha,\alpha),b=(\beta,\beta)\in\Delta(G),$ potem:

$$a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G),$$

$$(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1).$$

Vidimo, da je $\Delta(G)$ zaprta za opreacijo, inverz (α, α) pa je $(\alpha^{-1}, \alpha^{-1}) \in \Delta(G)$, torej zaprta tudi za invertiranje.

(\Leftarrow) Naj bosta α, β elementa grupe G z enoto 1. Potem so $(\alpha, 1), (\alpha^{-1}, 1), (\beta, \beta) \in G \times G$ in $(\alpha, 1)^{-1} = (\alpha^{-1}, 1)$ ter $(\beta, \beta) \in \Delta(G)$. Potem lahko izračunamo:

$$(\alpha, 1) \cdot (\beta, \beta) \cdot (\alpha^{-1}, 1) = (\alpha \beta \alpha^{-1}, \beta).$$

Ker je $\Delta(G)$ ednika je zaprta za konjugiranje, torej je $\alpha\beta\alpha^{-1}=\beta\Rightarrow\alpha\beta=\beta\alpha$

Definicija 2 Topološki prostor X je Hausdorffov, če za vsaki različni točki $x_1, x_2 \in X$ obstajata odprti okoloici U_1 in U_2 za točki x_1 in x_2 , da $U_1 \cap U_2 = \emptyset$.

Trditev 3 Naslednje izjave so ekvivalentne:

- (i) Prostor X je Hausdorffov.
- (ii) Za poljuben $x \in X$ je $\cap_{U \in \mathcal{U}} \overline{U}$, kjer je \mathcal{U} družina vseh okolic x.
- (iii) Diagonala $\Delta(X) = \{(x,x) \mid x \in X\}$ je zaprt podprostor produkta $X \times X$

3 Konjugiranostna topologija

3.1 Konjugiranostni razerdi

Definicija 3 Element y grupe G je konjugiran elementu x iz G, če obstaja $tak g \in G$, da je $y = gxg^{-1}$.

Trditev 4 Konjugiranost je ekvivalenčna relacija.

Pripomba 1 Ekvivalenčnim razredom za konjugiranost pravimo konjugiranostni razredi.

Dokaz: Relacija je ekvivalenčna, če je refleksivna, simetrična in tranzitivna. Naj bo e enota grupe G in x poljuben element G, potem $x=exe^{-1}$. To pomeni, da je poljuben element G konjugiran samemu sebi, relacija je refleksivna. Naj bo y konjugiran x, torej obstaja $g \in G$, da $y=gxg^{-1}$. Z enostavnim preoblikovanjem enačbe dobimo $x=g^{-1}yg$. Torej je tudi x konjugiran y, relacija je simetrična.

Zgled 1 • *d8*

- kvaternioni
- podobne matrike

Definicija 4 Naj bo G grup in označimo $U_h = \{ghg^{-1} \mid g \in G\}$

3.2 Uporaba

Izrek 1 G je Abelova natanko takrat, ko je $\mathcal{T}(G)$ Hausdorffova.

Dokaz:

- (⇒) G je Abelova natanko takrat, ko gh = hg, ekvivalentno $ghg^{-1} = h$, za vse $g, h \in G$, kar pa ravno pomeni $U_h = \{h\}$ za vsak $h \in G$. To pomeni, da so v $\mathcal{T}(G)$ enojci odprti, torej je to diskretna topologija. Diskretna topologija je seveda Hausdorffova.
- (\Leftarrow) Privzemimo sedaj, da je $\mathcal{T}(G)$ Hausdorffov. Imejmo poljuben $x \in G$ in recimo, da obstaja $y \in U_x$ različen od x. Ker je G Hausdorffova obstajata odprti okoloici U_h in U_k , da $x \in U_h, y \in U_k$ in $U_h \cap U_k = \emptyset$. Toda to pomeni, da $x \in U_x \cap U_h$ in $y \in U_x \cap U_k$ torej $U_h = U_x = U_h$, kar pa je v protislovju z $U_h \cap U_k = \emptyset$. To pomeni, da $U_x = \{x\}$, kar pa je ravno ekvivalentno komutativnosti G.

Izrek 2 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz:

- (\Rightarrow) G je
- (⇐) Priv

Izrek 3 Če je $\phi: G \to \Gamma$ homomorfizem grup, potem je praslika $\phi^{-1}(U_{\gamma})$ odprta v $\mathcal{T}(G)$ za vsak $\gamma \in \Gamma$.