An Empirical Activity Model for WLAN Users

Caleb Phillips¹ and Suresh Singh²

¹Computer Science Department, University of Colorado, Boulder

²Computer Science Department, Portland State University

caleb.phillips@colorado.edu, singh@cs.pdx.edu

Problem

- Develop a simple, measurement-driven, and protocol independent model for WLAN user activity.
- Rigorously validate the effectiveness of this model.
- Such a model would be useful for applications such as power-saving and load-balancing.

Outline

Data

- 5 locations, 131 distinct users:
 - 4 collected at public hotspots around Portland, Oregon [Phillips'07]
 - 1 collected by UW researchers at SigComm'04 [Rodrig'05]
- All traces are available on CRAWDAD.

Data => Activity Traces

- Map 802.11 actions to four discrete states:
 Active, Idle, Sleeping, or Gone.
- Packets are grouped into one second buckets.

Deriving and Using a Model

- Users are categorized as sleepy or sleepless.
- Determine per-category transition probabilities
- Trace Length from Pareto-distributed fit to Dartmouth data.
- Synthetic traces created via Markov simulation

Validation

- Cross validation
- No straw-man...
- Synthetic user traces are compared to test set using a stochastic similarity metric [Nechyba'98]

$$\sigma(\triangle, \bullet) = ?$$

Stochastic Similarity

• EM iteratively maximizes the probability of the ith model (λ_i) given the ith observations (O_i):

$$P(\lambda_i | O_i)$$

• The likelihood of a given observation given some model scaled by the observation length (T_i) : $P_{ij} = P(O_i | \lambda_j)^{1/T_i}$

• Similarity between observations: $\sigma(O_i,O_j) = \sqrt{\frac{P_{ji}P_{ij}}{P_{ii}P_{ji}}}$

Validation Results (a Selection)

Conclusions

- A simple, static, four-state Markov model is sufficient to model user activity at the granularity we have chosen to approach.
- User activity exhibits alternating periods of activity and idle time, often several seconds long.
- Stochastic similarity is a useful tool for model validation.

More Conclusions

- Categorization of users can improve model fidelity.
- Inter-trace similarity comparison shows that seemingly different venues yield similar traces.

Ongoing Work

- Application of the model developed here to dynamic power-saving applications for WLAN devices [appearing at MobileHCI'08]
- In future work, we would like to further investigate the application of similarity classification to a wide variety of measured trace-sets.

Questions?

- Offline questions/comments?
 caleb.phillips@colorado.edu
- Our data is available on CRAWDAD:
 http://crawdad.cs.dartmouth.edu/meta.php?name=pdx/vwave
- Similarity implementation (Matlab) is available for download:

http://www.cs.pdx.edu/~singh/software/similarity-0.1.tar.gz