

Dimensionality Reduction

Shantanu Jain

Dimensionality Reduction

Goal: Map high dimensional data onto lower-dimensional data in a manner that preserves *distances/similarities*

Original Data (4 dims)

Iris Data (red=setosa,green=versicolor,blue=virginica) Sepal.Length Sepal.Width Petal.Length Petal.Width

Projection with PCA (2 dims)

Objective: projection should "preserve" relative distances

Linear Dimensionality Reduction

Idea: Project high-dimensional vector onto a lower dimensional space

$$\mathbf{x} \in \mathbb{R}^{361}$$

$$\begin{vmatrix} \mathbf{z} = \mathbf{U}^{\mathsf{T}} \mathbf{x} \\ \mathbf{z} \in \mathbb{R}^{10} \end{vmatrix}$$

Given n data points in d dimensions: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$

$$\mathbf{X} = \left(egin{array}{cccc} \mathbf{x}_1 & \cdots & \mathbf{x}_n \ & & & \end{array}
ight) \in \mathbb{R}^{d imes n}$$

Given n data points in d dimensions: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$

$$\mathbf{X} = \begin{pmatrix} & & & & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n & \end{pmatrix} \in \mathbb{R}^{d \times n}$$

Want to reduce dimensionality from d to k

Choose k directions $\mathbf{u}_1, \dots, \mathbf{u}_k$

$$\mathbf{z} = \mathbf{U}^{ op} \mathbf{x} \qquad \mathbf{U} = \begin{pmatrix} \begin{vmatrix} & & & | \\ \mathbf{u}_1 & \cdot & \mathbf{u}_k \\ & & \end{vmatrix} \in \mathbb{R}^{d imes k}$$

Given n data points in d dimensions: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \end{vmatrix} \in \mathbb{R}^{d \times n}$$

Want to reduce dimensionality from d to k

Choose k directions $\mathbf{u}_1, \dots, \mathbf{u}_k$

$$\mathbf{z} = \mathbf{U}^{ op} \mathbf{x} \qquad \mathbf{U} = \left(egin{array}{ccc} | & | & | \ \mathbf{u}_1 \cdot \cdot \mathbf{u}_k \ | & | \end{array}
ight) \in \mathbb{R}^{d imes k}$$

For each \mathbf{u}_j , compute "similarity" $z_j = \mathbf{u}_j^{\top} \mathbf{x}$

Given n data points in d dimensions: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$

$$\mathbf{X} = \begin{pmatrix} & & & & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n & \end{pmatrix} \in \mathbb{R}^{d \times n}$$

Want to reduce dimensionality from d to k

Choose k directions $\mathbf{u}_1, \dots, \mathbf{u}_k$

$$\mathbf{U} = \begin{pmatrix} \begin{vmatrix} & & | \\ \mathbf{u}_1 & \cdot & \mathbf{u}_k \\ & & | \end{pmatrix} \in \mathbb{R}^{d imes k}$$

For each \mathbf{u}_j , compute "similarity" $z_j = \mathbf{u}_j^{ op} \mathbf{x}$

Project x down to $\mathbf{z} = (z_1, \dots, z_k)^\top = \mathbf{U}^\top \mathbf{x}$

How to choose **U**?

Background: Changes of Basis

Data

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{pmatrix} \in \mathbb{R}^{d imes n}$$
 $\mathbf{ar{U}} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_d \\ \mathbf{u}_1 & \mathbf{u}_d \end{pmatrix} \in \mathbb{R}^{d imes d}$

 $\bar{z} = \bar{U}^T x$ is a representation of x w.r.t. the basis vectors in $ar{U}$

$$ar{\mathbf{U}} = \left(egin{array}{ccc} dots & dots \ \mathbf{u}_1 & \cdot \cdot \mathbf{u}_{\mathsf{d}} \ dots & dots \end{array}
ight) \in \mathbb{R}^{d imes \mathsf{d}}$$

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \delta_{i,j} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

$$\bar{U}^T \bar{U} = I_{d \times d}$$

Background: Changes of Basis

Data

Orthonormal Basis

$$ar{\mathbf{U}} = \left(egin{array}{ccc} dots & dots \ \mathbf{u}_1 & \mathbf{u}_{\mathsf{d}} \ dots & dots \end{array}
ight) \in \mathbb{R}^{d imes \mathsf{d}}$$

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \delta_{i,j}$$

Background: Changes of Basis

Data

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{pmatrix} \in \mathbb{R}^{d imes n}$$
 $\mathbf{ar{U}} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_d \\ \mathbf{u}_1 & \mathbf{u}_d \end{pmatrix} \in \mathbb{R}^{d imes d}$

Change of basis

$$egin{aligned} \overline{\mathbf{z}} &= (z_1, \dots, z_{\mathsf{d}})^{ op} \ z_j &= \mathbf{u}_j^{ op} \mathbf{x} \ \overline{\mathbf{z}} &= \overline{\mathbf{U}}^{ op} \mathbf{x} \end{aligned}$$

Orthonormal Basis

$$ar{\mathbf{U}} = \left(egin{array}{ccc} dots & dots \ \mathbf{u}_1 & \cdot \mathbf{u}_{\mathsf{d}} \ dots & dots \end{array}
ight) \in \mathbb{R}^{d imes \mathsf{d}}$$

Inverse Change of basis

$$\mathbf{x} = \mathbf{ar{U}}\mathbf{ar{z}} = \sum_{j=1}^{\mathsf{d}} z_j \mathbf{u}_j$$

Properties of orthonormal matrices

For an orthonormal matrix $\bar{U} \in \mathbb{R}^{d \times d}$

$$\bar{U}^T \bar{U} = \bar{U} \bar{U}^T = I_{d \times d}$$

An orthonormal matrix has dorthogonal vectors of dimension d and unit length

For a semi-orthonormal matrix $U \in \mathbb{R}^{d \times k}$, where k < d

$$U^T U = I_{k \times k}$$
$$U U^T \neq I_{d \times d}$$

$$UU^T \neq I_{d \times d}$$

An semi-orthonormal matrix has k orthogonal vectors of dimension d and unit length

$$\mathbf{x} \in \mathbb{R}^{361}$$

$$\mathbf{z} = \mathbf{U}^{\mathsf{T}} \mathbf{x} \qquad U \text{ is } d \times k$$

$$\mathbf{z} \in \mathbb{R}^{10}$$

We are back to the PCA setting with U containing fewer than d columns

Optimize two equivalent objectives

- 1. Minimize the reconstruction error
- 2. Maximizes the projected variance

U serves two functions:

$$ullet$$
 Encode: $\mathbf{z} = \mathbf{U}^{ op} \mathbf{x}$, $z_j = \mathbf{u}_j^{ op} \mathbf{x}$

U serves two functions:

- ullet Encode: $\mathbf{z} = \mathbf{U}^{ op} \mathbf{x}$, $z_j = \mathbf{u}_j^{ op} \mathbf{x}$
- ullet Decode: $\tilde{\mathbf{x}} = \mathbf{U}\mathbf{z} = \sum_{j=1}^k z_j \mathbf{u}_j$

U serves two functions:

$$ullet$$
 Encode: $\mathbf{z} = \mathbf{U}^{ op} \mathbf{x}$, $z_j = \mathbf{u}_j^{ op} \mathbf{x}$

$$ullet$$
 Decode: $\tilde{\mathbf{x}} = \mathbf{U}\mathbf{z} = \sum_{j=1}^k z_j \mathbf{u}_j$

Want reconstruction error $\|\mathbf{x} - \tilde{\mathbf{x}}\|$ to be small

U serves two functions:

- ullet Encode: $\mathbf{z} = \mathbf{U}^{ op} \mathbf{x}$, $z_j = \mathbf{u}_j^{ op} \mathbf{x}$
- Decode: $\tilde{\mathbf{x}} = \mathbf{U}\mathbf{z} = \sum_{j=1}^k z_j \mathbf{u}_j$

Want reconstruction error $\|\mathbf{x} - \tilde{\mathbf{x}}\|$ to be small

Objective: minimize total squared reconstruction error

Mathematically, the expectation is w.r.t the empirical distribution of the data that gives an equal probability of 1/n to each point.

Total Variance

- Define the **Total Variance** of $x \in \mathbb{R}^d$ as the sum of variances across all dimensions.
- It is estimated from the observed data as the sum of the diagonal elements of the covariance matrix

$$Var_T(x) = tr\left(\frac{1}{n}XX^T\right)$$

It can also be expressed as

$$Var_T(x) = \frac{1}{n} \sum_{i=1}^n ||x_i||^2$$
$$= \hat{\mathbf{E}} [||x||^2]$$

Assuming that the matrix X is centered; $\hat{\mathbf{E}}[x] = \frac{1}{n} \sum_{i=1}^{n} x_i = 0$

$$||x_i||^2 = x_{i1}^2 + x_{i2}^2 + \dots x_{id}^2$$

Variance across dimension j $Var(x_{.j}) = \frac{1}{n} \sum_{i=1}^{n} x_{ij}^{2}$

This is because the mean for each dimension is 0.

Projected Variance

• Let $z = U^T x$ be the projection of x

$$Var_{T}(z) = tr\left(\frac{1}{n}ZZ^{T}\right)$$
$$= tr\left(\frac{1}{n}U^{T}XX^{T}U\right)$$

• It can also be expressed as

$$Var_T(z) = \frac{1}{n} \sum_{i=1}^n || U^T x_i ||^2$$
$$= \hat{\mathbf{E}} [|| U^T x ||^2]$$

$$\max_{U \in \mathbf{R}^{d \times k}, U^T U = I} \text{Var}_T(z; U)$$

 $Z = U^T X$: contains the projections of all points

$$Z = [z_1, z_2, ..., z_n], z_i \in \mathbf{R}^k$$

Note that the variance formulas are true for the Z matrix as well since $\hat{\mathbf{E}}[z] = \hat{\mathbf{E}}[U^T x] = U^T \hat{\mathbf{E}}[x] = 0$

The steps above come from linearity of expectation and because we have assumed that X is centered; i.e., $\hat{\mathbf{E}}[x] = 0$

Projected Variance

Equivalence of two objectives

Key intuition:

Equivalence of two objectives

Key intuition:

Pythagorean decomposition: $\mathbf{x} = \mathbf{U}\mathbf{U}^{\top}\mathbf{x} + (I - \mathbf{U}\mathbf{U}^{\top})\mathbf{x}$

 $= ||U^T x||^2 + ||(I - UU^T)x||^2$

Take expectations;

$$\hat{\mathbb{E}}[\|\mathbf{x}\|^2] = \hat{\mathbb{E}}[\|\mathbf{U}^{\top}\mathbf{x}\|^2] + \hat{\mathbb{E}}[\|\mathbf{x} - \mathbf{U}\mathbf{U}^{\top}\mathbf{x}\|^2]$$

Dimensionality Reduction

Shantanu Jain

$$\mathbf{x} \in \mathbb{R}^{361}$$

$$\begin{vmatrix} \mathbf{z} = \mathbf{U}^{\mathsf{T}} \mathbf{x} \\ \mathbf{z} \in \mathbb{R}^{10} \end{vmatrix}$$

Optimize two equivalent objectives

- 1. Minimize the reconstruction error $\hat{\mathbb{E}}[||\mathbf{x} \mathbf{U}\mathbf{z}||^2] = \hat{\mathbb{E}}[||(I \mathbf{U}\mathbf{U}^\top)\mathbf{x}||^2]$
- 2. Maximizes the projected variance $\hat{\mathbb{E}}[\mathbf{z}^{\mathsf{T}}\mathbf{z}] = \hat{\mathbb{E}}[\mathbf{x}^{\mathsf{T}}\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{x}]$

Total variance unaltered by basis change

$$\bar{z}^t \bar{z} = x^t (\bar{U}\bar{U}^t) x = x^t x$$

$$\bar{U}\bar{U}^T = I_{d\times d}$$

 $\bar{U}^{-1} = \bar{U}^T$ when \bar{U} contains all d orthonormal basis, otherwise the inverse in undefined

$$\hat{\mathbf{E}} \left[\| \bar{z} \|^2 \right] = \hat{\mathbf{E}} \left[\| x \|^2 \right]$$

$$\operatorname{Var}_{T}(x) = \operatorname{Var}_{T}(\bar{z})$$

$$\operatorname{tr} \left(\frac{1}{n} X X^T \right) = \operatorname{tr} \left(\frac{1}{n} \bar{U}^T X X^T \bar{U} \right)$$

Data

$$\mathbf{X} = \begin{pmatrix} & & & | & & & | & & & | & & & & | & & & & | & & & | & & & & | & & & | & & & | & & & | & & & | & & & | & & & | & & & & | & & & | & & & | & & & | & & & | & & & | & & & | & & & | & & & | & & & | & & & | & & & | & & & | & & & | & & | & & & | & & & | & & | & & & | & & | & & & | & & & | & & | & & & | & & | & & & & | & & | & & | & & | & & | & & | & & | & & | & & | & & | & & & | & & & | & & & | & & | & & | & & | & & | & & | & & | & & | & & | & & | & & | & & | & & | & & | & | & & | & & | & | & & | & | & & | & | & & | & | & & | & | & | & | & | & | & | & | & | & | & | & | & | & | & & | &$$

Orthonormal Basis

$$ar{\mathbf{U}} = \left(egin{array}{ccc} dots & dots \ \mathbf{u}_1 & dots \ dots \end{array}
ight) \in \mathbb{R}^{d imes \mathsf{d}}$$

Change of basis

$$\mathbf{z} = \mathbf{\bar{U}}^{\mathsf{T}} \mathbf{x} \qquad \mathbf{x} = \mathbf{\bar{U}} \mathbf{z}$$

$$\mathbf{\bar{U}}^T \mathbf{\bar{U}} = I_{d \times d}$$

Eigenvectors of the Covariance

Data

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{pmatrix} \in \mathbb{R}^{d imes n}$$
 $\mathbf{\bar{U}} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_d \\ \mathbf{u}_1 & \mathbf{u}_d \end{pmatrix} \in \mathbb{R}^{d imes d}$

Eigenvectors of Covariance

$$\mathbf{C} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\top} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$$
$$\mathbf{C} \mathbf{u}_{j} = \lambda_{j} \mathbf{u}_{j}$$

Orthonormal Basis

$$ar{\mathbf{U}} = \left(egin{array}{ccc} dots & dots \ \mathbf{u}_1 & \mathbf{u}_{\mathsf{d}} \ dots & dots \end{array}
ight) \in \mathbb{R}^{d imes \mathsf{d}}$$

$$C\bar{U} = \bar{U}\Lambda$$

$$oldsymbol{\Lambda} = \left(egin{array}{cccc} \lambda_1 & & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & \lambda_d \end{array}
ight)$$

Claim: Eigenvectors of a symmetric matrix are orthogonal

Proof: Eigenvectors are Orthogonal

For any real matrix A and any vectors \mathbf{x} and \mathbf{y} , we have

$$\langle A\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, A^T \mathbf{y} \rangle.$$

Now assume that A is symmetric, and \mathbf{x} and \mathbf{y} are eigenvectors of A corresponding to distinct eigenvalues λ and μ . Then

$$\lambda \langle \mathbf{x}, \mathbf{y} \rangle = \langle \lambda \mathbf{x}, \mathbf{y} \rangle = \langle A \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, A^T \mathbf{y} \rangle = \langle \mathbf{x}, A \mathbf{y} \rangle = \langle \mathbf{x}, \mu \mathbf{y} \rangle = \mu \langle \mathbf{x}, \mathbf{y} \rangle.$$

Therefore, $(\lambda - \mu)\langle \mathbf{x}, \mathbf{y} \rangle = 0$. Since $\lambda - \mu \neq 0$, then $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, i.e., $\mathbf{x} \perp \mathbf{y}$.

Now find an orthonormal basis for each eigenspace; since the eigenspaces are mutually orthogonal, these vectors together give an orthonormal subset of \mathbb{R}^n . Finally, since symmetric matrices are diagonalizable, this set will be a basis (just count dimensions). The result you want now follows.

share cite improve this answer

Eigenvectors of the Covariance

Data

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{pmatrix} \in \mathbb{R}^{d imes n}$$
 $\mathbf{\bar{U}} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_d \\ \mathbf{u}_1 & \mathbf{u}_d \end{pmatrix} \in \mathbb{R}^{d imes d}$

Eigenvectors of Covariance

$$\mathbf{C} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\top} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$$
$$\mathbf{C} \mathbf{u}_{j} = \lambda_{j} \mathbf{u}_{j}$$

Orthonormal Basis

$$ar{\mathbf{U}} = \left(egin{array}{ccc} dots & dots \ \mathbf{u}_1 & \mathbf{u}_{\mathbf{d}} \ dots & dots \end{array}
ight) \in \mathbb{R}^{d imes \mathbf{d}}$$

Eigen-decomposition

Total variance

$$\operatorname{tr}\left(\frac{1}{n}XX^{T}\right) = \operatorname{Var}_{T}(x)$$

$$= \operatorname{Var}_{T}(\bar{z})$$

$$= \operatorname{tr}\left(\frac{1}{n}\bar{U}^{T}XX^{T}\bar{U}\right)$$

$$= \operatorname{tr}\left(\bar{U}^{T}\bar{U}\Lambda\bar{U}^{T}\bar{U}\right)$$

$$= \operatorname{tr}(\Lambda)$$

$$= \sum_{i=1}^{n} \lambda_{i}$$

For $\bar{z} = \bar{U}^T x$, where \bar{U} contains all d eigenvectors of $\frac{1}{n} X X^T$, which are orthonormal by definition.

The total variance can be expressed as sum of the eigenvalues of the covariance matrix.

Idea: Take top-k eigenvectors to maximize variance

1) Sort the eigenvalues in descending order

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$$

- 2) Sort the corresponding eigenvectors accordingly.
- 3) Construct a projection matrix with the top-k eigenvectors

$$\mathbf{U} = \begin{pmatrix} \begin{vmatrix} & & & | \\ \mathbf{u}_1 & \cdot & \mathbf{u}_k \\ & & & | \end{pmatrix} \in \mathbb{R}^{d \times k}$$

Data

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{pmatrix} \in \mathbb{R}^{d \times n} \qquad \mathbf{U} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_k \\ \mathbf{u}_1 & \mathbf{u}_k \end{pmatrix} \in \mathbb{R}^{d \times k}$$

Eigenvectors of Covariance

$$\mathbf{C} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\mathsf{T}} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}$$
$$\mathbf{C} \mathbf{u}_{j} = \lambda_{j} \mathbf{u}_{j}$$

Truncated Basis

$$\mathbf{U} = \left(egin{array}{ccc} dots & dots \ \mathbf{u}_1 & \mathbf{u}_k \ dots & dots \end{array}
ight) \in \mathbb{R}^{d imes k}$$

Truncated decomposition

$$oldsymbol{C}\simeq oldsymbol{U}oldsymbol{\Lambda}^{(k)}oldsymbol{U}^{ op}$$
 $oldsymbol{\lambda}^{(k)}=\left(egin{array}{ccc} \lambda_1 & & & \ & \lambda_2 & & \ & & \ldots & \ & & \lambda_1 \end{array}
ight)$

Top 2 components

Bottom 2 components

Data: three varieties of wheat: Kama, Rosa, Canadian

Attributes: Area, Perimeter, Compactness, Length of Kernel, Width of Kernel, Asymmetry Coefficient, Length of Groove

PCA: Complexity

Data

Truncated Basis

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{pmatrix} \in \mathbb{R}^{d \times n} \quad \mathbf{U} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_k \\ \mathbf{u}_1 & \mathbf{u}_k \end{pmatrix} \in \mathbb{R}^{d \times k}$$

$$\mathbf{X} = \left(\begin{array}{c} \mathbf{x}_1 \cdot \cdots \cdot \mathbf{x}_n \end{array} \right) \in \mathbb{R}^{d \times n}$$

$$\mathbf{C} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\top} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$$

$$\mathbf{U} = \left(egin{array}{ccc} dots & dots \ \mathbf{u}_1 & \mathbf{u}_k \ dots & dots \end{array}
ight) \in \mathbb{R}^{d imes k}$$

$$\mathbf{C}\mathbf{u}_j = \lambda_j \mathbf{u}_j$$

Using eigen-value decomposition

- Computation of covariance C: O(n d²)
- Eigen-value decomposition: $O(d^3)$
- Total complexity: $O(n d^2 + d^3)$

PCA: Complexity

Data

Truncated Basis

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{pmatrix} \in \mathbb{R}^{d \times n} \qquad \mathbf{U} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_k \\ \mathbf{u}_1 & \mathbf{u}_k \end{pmatrix} \in \mathbb{R}^{d \times k}$$

$$\mathbf{U} = \left(egin{array}{ccc} dots & dots \ \mathbf{u}_1 & \cdot \mathbf{u}_k \ dots & dots \end{array}
ight) \in \mathbb{R}^{d imes k}$$

Using singular-value decomposition

- Full decomposition: O(min{nd², n²d})
- Rank-k decomposition: O(k d n log(n)) (with power method)

Singular Value Decomposition

Idea: Decompose the d x n matrix X into

- A n x n basis V (unitary matrix)
- 2. A d x n matrix Σ (diagonal projection)
- 3. A d x d basis *U* (unitary matrix)

$$\mathbf{X} = \mathbf{U}_{d \times d} \Sigma_{d \times n} \mathbf{V}_{n \times n}^{\top}$$

Relationship Between SVD and PCA

The eigen-vectors of $\frac{1}{-}XX^T$ can be obtained as the left singular vectors of X

PCA (all *d* components) SVD (all *d* components)

$$\frac{1}{n}XX^{\top} = U\Lambda U^{\top}$$

$$d\times d \quad d\times d \quad d\times d$$

$$\frac{1}{n}XX^{\top} = \frac{1}{n}U\Sigma V^{\top}V\Sigma^{\top}U^{\top}$$

$$= \frac{1}{n}U\Sigma I\Sigma^{\top}U^{\top}$$

$$= \frac{1}{n}U\Sigma \Sigma^{\top}U^{\top}$$

$$X = U \Sigma V^{\top}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$d \times d \qquad d \times n \qquad n \times n$$

Relationship Λ and Σ

$$\mathbf{\Lambda} = \frac{1}{n} \mathbf{\Sigma} \mathbf{\Sigma}^{\top}$$

Method 1: eigendecomposition

 \mathbf{U} are eigenvectors of covariance matrix $C = \frac{1}{n}\mathbf{X}\mathbf{X}^{\top}$

Method 1: eigendecomposition

 \mathbf{U} are eigenvectors of covariance matrix $C = \frac{1}{n}\mathbf{X}\mathbf{X}^{\top}$

Computing C already takes $O(nd^2)$ time (very expensive)

Method 1: eigendecomposition

U are eigenvectors of covariance matrix $C = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ Computing C already takes $O(nd^2)$ time (very expensive)

Method 2: singular value decomposition (SVD)

Find
$$\mathbf{X} = \mathbf{U}_{d \times d} \Sigma_{d \times n} \mathbf{V}_{n \times n}^{\top}$$

where $\mathbf{U}^{\top} \mathbf{U} = I_{d \times d}$, $\mathbf{V}^{\top} \mathbf{V} = I_{n \times n}$, Σ is diagonal

```
Method 1: eigendecomposition

U are eigenvectors of covariance matrix C = \frac{1}{n}\mathbf{X}\mathbf{X}^{\top}

Computing C already takes O(nd^2) time (very expensive)

Method 2: singular value decomposition (SVD)
```

Find $\mathbf{X} = \mathbf{U}_{d \times d} \Sigma_{d \times n} \mathbf{V}_{n \times n}^{\top}$ where $\mathbf{U}^{\top} \mathbf{U} = I_{d \times d}$, $\mathbf{V}^{\top} \mathbf{V} = I_{n \times n}$, Σ is diagonal Computing top k singular vectors takes only O(ndk)

Method 1: eigendecomposition

U are eigenvectors of covariance matrix $C = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ Computing C already takes $O(nd^2)$ time (very expensive)

Method 2: singular value decomposition (SVD)

Find
$$\mathbf{X} = \mathbf{U}_{d \times d} \Sigma_{d \times n} \mathbf{V}_{n \times n}^{\top}$$

where $\mathbf{U}^{\top} \mathbf{U} = I_{d \times d}$, $\mathbf{V}^{\top} \mathbf{V} = I_{n \times n}$, Σ is diagonal Computing top k singular vectors takes only $O(ndk)$

Relationship between eigendecomposition and SVD:

Left singular vectors are principal components

Probabilistic Interpretation

Generative Model [Tipping and Bishop, 1999]:

```
For each data point i = 1, \ldots, n:
```

Draw the latent vector: $\mathbf{z}_i \sim \mathcal{N}(0, I_{k \times k})$

Create the data point: $\mathbf{x}_i \sim \mathcal{N}(\mathbf{U}\mathbf{z}_i, \sigma^2 I_{d \times d})$

PCA finds the U that maximizes the likelihood of the data

$$\max_{\mathbf{U}} p(\mathbf{X} \mid \mathbf{U})$$