SEMAINE DU 02/11 AU 06/11

1 Cours

Applications

Définitions Ensembles d'arrivée et de départ, graphe, image.

Composition Définition, associativité, application identité.

Injectivité Définition. Composition et injectivité.

Surjectivité Définition. Composition et surjectivité.

Bijectivité Définition. Bijection réciproque. Si $f: E \to F$ et $g: F \to G$ sont bijectives, alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. $f: E \to F$ est bijective si et seulement si il existe $g: F \to E$ telle que $g \circ f = \operatorname{Id}_E$ et $f \circ g = \operatorname{Id}_E$ et dans ce cas, $f^{-1} = g$.

Image directe et réciproque Définitions. Image directe et réciproque d'une union, d'une intersection.

Restriction et prolongement Définitions. Bijection induite.

Fonction indicatrice Définition. Fonction indicatrice de l'union, de l'intersection, du complémentaire.

Fonctions d'une variable réelle

Généralités Ensemble de définition. Représentation graphique. Parité, périodicité. Monotonie. Fonctions majorées, minorées, bornées. Minimum et maximum d'une fonction.

Continuité Continuité et opérations (continuité d'une composée). Théorème des valeurs intermédiaires et son corollaire pour les fonctions strictement monotones. Théorème de la bijection.

Dérivabilité Dérivabilité et dérivée d'une composée). Dérivabilité et dérivée d'une bijection réciproque.

2 Méthodes à maîtriser

- Savoir prouver l'injectivité en pratique : «Soit (x, x') tel que f(x) = f(x')» puis montrer que x = x'.
- Savoir prouver la surjectivité en pratique : recherche d'un antécédent (résolution d'une équation).
- Savoir prouver la bijectivité en pratique :
 - Existence et unicité d'une solution de l'équation y = f(x) où y est fixé et x est l'inconnue.
 - Déterminer g telle que $g \circ f = \text{Id}$ et $f \circ g = \text{Id}$.
 - Montrer que f est injective et surjective.
- Automatismes :

$$-y \in f(A) \iff \exists x \in A, \ y = f(x)$$

 $-x \in f^{-1}(B) \iff f(x) \in B$

- Majorer, minorer, borner (majorer en valeur absolue) une fonction.
- Savoir déterminer le minimum ou le maximum éventuel d'une fonction par une étude de cette fonction.
- Justifier le sens de variation, la continuité ou la dérivabilité d'une composée.
- Déterminer le nombre de solutions d'une équation par étude de fonctions.
- Savoir prouver une inégalité par étude de fonction.

Questions de cours

Retour sur le DS n°03

On pose pour $n \in \mathbb{N}^*$,

$$S_n = \sum_{k=0}^{n} (-1)^k \binom{2n}{2k}$$

$$T_n = \sum_{k=0}^{n-1} (-1)^k \binom{2n}{2k+1}$$

Justifier que $S_n + iT_n = (1+i)^{2n}$ et en déduire des expressions de S_n et T_n faisant intervenir les fonctions cos et sin.

Retour sur le DS n°03

Résoudre de deux manières l'équation $(1+iz)^5=(1-iz)^5$ et en déduire les valeurs de tan $\frac{\pi}{5}$ et tan $\frac{2\pi}{5}$. On admettra que la fonction tan est strictement croissante sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$.

Retour sur l'interro
$$\mathbf{n}^{\circ}\mathbf{03}$$

Soit $f: \left\{ egin{array}{ll} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & e^z \end{array} \right.$ Déterminer $f^{-1}(i\mathbb{R})$.

Retour sur le DS n°03

- 1. Déterminer les racines cubiques de $\alpha = \frac{-1+i}{4}$ et calculer leurs puissances quatrièmes.
- 2. Déterminer des complexes λ , μ et β tels que

$$\forall z \in \mathbb{C}, \ z^4 + \lambda z^3 + \mu z^2 - (1 - i)z - \frac{1}{4} = (z + \beta)^4$$