L'OPTIMISATION

UNE REVUE

Edward Laurence & Guillaume St-Onge

11 avril 2016

Département de physique, de génie physique, et d'optique Université Laval, Québec, Canada

Optimisation

Type d'algorithmes

Heuristique

Spécialisé à un problème et ne garantit pas la solution obtenue.

Métaheuristique

Algorithme général qu'on doit adapter au problème considéré.

RECHERCHE TABOU

Recherche tabou

Recherche Tabou

Type: Métaheuristique

Stochastique: Non

Caractéristique : Recherche local

Principes

- 1. On recherche le mouvement qui minimise notre fonction.
- 2. On ne revient pas sur nos pas (d'où tabou).

ALGORITHME DES LUCIOLES

Algorithme des lucioles

Recherche par lucioles

Type : Métaheuristique

Stochastique: Oui

Caractéristique: Recherche globale

Principes

- 1. Chaque luciole a une luminosité ${\it I}$ et une position.
- 2. Les lucioles sont attirées par les lucioles plus lumineuses.
- 3. L'attirance décroît lorsque la distance augmente.

Algorithme des lucioles

N lucioles à des positions x_i On optimise la fonction f(x) $I_i \propto f(x_i)$

Si
$$I_j > I_i$$

$$x_i \to x_i + \beta_0 e^{-\gamma r_{ij}^2} (x_j - x_i) + \alpha \epsilon_i$$

 $\beta_0 = o$: Marche aléatoire ($\gamma = o$: Optimisation par essaims particulaires)

Trouver un minimum en 2D

Vidéo

Résumé des algorithmes

Tabou	Lucioles	Évolutif
Local	Global	Global
Déterministe -	Stochastique β_0, γ, α	Stochastique

Problème du vendeur

Travelling salesman problem

Un vendeur veut visiter N habitations et marcher le moins possible.

Dans quel ordre doit-il visiter les N maisons?

Meilleurs parcours pour N = 20.

Comparaison des trois algorithmes

Distribution de la qualité des solutions

Comparaison des trois algorithmes

Évaluation sommaire des méthodes

	Tabou	Lucioles	Évolutif
Qualité	9/10	(7/10)	
Vitesse de convergence	10/10	(8/10)	
Implémentation	10/10	6/10	