Az Analízis II (F) tantárgy előadásainak tervezett ütemezése

Programtervező informatikus BSc, 2018 C specializáció (szoftverfejlesztő)

1. előadás

Emlékeztető a függvény határértékéről. A derivált motivációi: érintő, pillanatnyi sebesség. A pontbeli derivált fogalma. A folytonosság és a deriválhatóság kapcsolata. Az érintő fogalma, Deriválási szabályok: összeg, szorzat, hányados, kompozíció, inverz, hatványsor összegfüggvénye. A deriváltfüggvény. Néhány speciális függvény deriváltja.

2. előadás

Egyoldali pontbeli deriváltak. Magasabb rendű deriváltak. Lokális szélsőértékek létezésére vonatkozó szükséges és elégséges feltételek. A differenciálszámítás középértéktételei. Monotonitás jellemzése a derivált segítségével.

3. előadás

Konvex és konkáv függvények. A konvexitás és a deriválhatóság kapcsolata. Inflexiós pontok. Aszimptoták értelmezése és meghatározása. A L'Hospital-szabály. Teljes függvényvizsgálat.

4. előadás

Speciális függvények értelmezése és tulajdonságaik felsorolása. Trigonometrikus függvények: sin, cos, tg, ctg, és inverzeik (arkuszfüggvények): arc sin, arc cos, arc tg, arc ctg. Hiperbolikus függvények: sh, ch, th, cth, és inverzeik (areafüggvények): ar sh, ar ch, ar th, ar cth. Az elemi függvények helyettesítési értékeinek a kiszámolása.

5. előadás

Deriválhatóság ekvivalens átfogalmazása: lineáris közelítés. Taylor-polinomok értelmezése. A Taylor-formula a Lagrange-féle maradéktaggal. Taylor-sorok. A sorfejtés problémája. Elégséges feltétel függvények Taylor-sorral történő előállítására. Nevezetes példák és következményei: a Leibniz-sor összegének kiszámítása, a π szám sorral történő előállítása.

6. előadás

A határozott integrál (vagy Riemann-integrál) motivációja, és az értelmezésének Arkhimédész-féle alapötlete. A Riemann-integrál fogalma (intervallum felosztásainak, a Darboux-féle alsó, illetve felső integrálnak az értelmezése). A Riemann-integrál tulajdonságai: folytonos és szakaszonként folytonos függvények integrálhatók. Az összeg, a szorzat, illetve a hányados integrálhatósága. Az intervallum szerinti additivitás. A rendezés és az integrál kapcsolata. A határozott integrál kiszámítása: A Newton–Leibniz-tétel. Példa. A primitív függvény és a határozatlan integrál értelmezése. Néhány példa. Primitív függvények meghatározásának alapvető módszerei: a parciális integrálás, az első helyettesítési szabály.

7. előadás

A második helyettesítési szabály. A $\sqrt{1-x^2}$ $(x\in(-1,1))$ függvény primtív függvényei. Megjegyzések a primitív függvényekről. A határozott integrál néhány alkalmazása. Síkidom területe. Példa: a kör területe. Függvény grafikonjának az ívhossza. Példa: a kör kerülete. Forgástest térfogata. Példa: a gömb térfogata. Forgásfelület felszíne. Példa: a gömb felszíne. Improprius integrálok.

8. előadás

Az \mathbb{R}^n tér topológiai alapfogalmai. Konvergens sorozatok \mathbb{R}^n -ben. A koordináta-sorozatok és a konvergencia kapcsolata. A Cauchy-féle konvergenciakritérium. A Bolzano–Weierstrass-féle kiválasztási tétel. $\mathbb{R}^n \to \mathbb{R}^m$ típusú függvények, speciális esetekben görbék, illetve felületek. Függvények folytonossága és határértéke. átviteli elvek. Weierstrass tétele.

9. előadás

A parciális deriváltak értelmezése, példák. Magasabb rendű parciális deriváltak. Az iránymenti derivált fogalma és kiszámítása. A totális derivált fogalma $\mathbb{R}^n \to \mathbb{R}^m$ típusú függvényekre. A deriváltmátrix (Jacobi-mátrix) előállítása. Érintősík. Deriválási szabályok. Kétszer deriválható függvények. Hesse-mátrix. Young tétele.

10. előadás

Taylor-polinomok. Taylor-formula a Peano-féle maradéktaggal. $\mathbb{R}^n \to \mathbb{R}$ típusú függvények feltétel nélküli lokális szélsőértékei; az elsőrendű szükséges feltétel, másodrendű elégséges feltételek. Abszolút szélsőértékek.

11. előadás

 $\mathbb{R}^n \to \mathbb{R}$ típusú függvények feltételes szélsőértékei. Implicit alakban megadott függvények. Inverz függvények.

12. előadás

Többszörös integrálok értelmezése és tulajdonságainak felsorolása. Kettős integrálok geometriai jelentései (terület, térfogat). Kettős integrálok kiszámítása téglalapon, illetve normáltartományon. Példák.

13. előadás

Kettős integrálok kiszámítása egyéb halmazokon integráltranszformációval. Speciális eset: polárkoordinátás helyettesítés. Példák. Az $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$ egyenlőség igazolása.