MA427 Lecture 8 Convex optimisation: basics

Giacomo Zambelli

4 March, 2019

Convex Optimisation

- ► Today: calculus reminders, convexity, first-order conditions
- Lecture 9: Lagrangian Duality and KKT conditions
- Lecture 10: algorithms for convex optimisation

Optimisation problems

min
$$f_0(x)$$

 $f_i(x) \le 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $i = 1, ..., k$
 $x \in \mathcal{D}$

Where \mathcal{D} is the *domain* of the problem:

$$\mathcal{D} = \left(\bigcap_{i=0}^m \operatorname{dom} f_i\right) \bigcap \left(\bigcap_{i=1}^k \operatorname{dom} h_i\right).$$

Graph of a function

Graph of $f: \mathbb{R}^n \to \mathbb{R}$:

$$\{(x, f(x)) \in \mathbb{R}^{n+1} : x \in \operatorname{dom} f\}$$

Graph of
$$f(x_1, x_2) = x_1^3 + x_2^3$$

Epigraph: points "above" the graph:

$$\{(x,t)\in\mathbb{R}^{n+1}\,:\,x\in\operatorname{dom}f,\,f(x)\leq t\}.$$

Global and Local Optima

 $f: \mathbb{R}^n \to \mathbb{R}, X \subseteq \operatorname{dom} f$. Point $x^* \in X$ is a

- ▶ global minimum for f in X if $f(x) \ge f(x^*)$ for all $x \in X$.
- ▶ local minimum for f in X if there exists $\varepsilon > 0$ such that $f(x) \ge f(x^*)$ for all $x \in X$ such that $||x x^*|| \le \varepsilon$.
- ▶ global maximum for f in X if $f(x) \le f(x^*)$ for all $x \in X$.
- ▶ local maximum for f in X if there exists $\varepsilon > 0$ such that $f(x) \le f(x^*)$ for all $x \in X$ such that $||x x^*|| \le \varepsilon$.

Global and Local Optima

Not all local minima are also global minima.

Gradients

The gradient of $f: \mathbb{R}^n \to \mathbb{R}$ at point $x \in \operatorname{dom} f$ is the vector

$$\nabla f(x) := \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

 $\frac{\partial f(x)}{\partial x_i}$: partial derivative at point x with respect to the variable x_i .

 $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point x in the interior of **dom** f if

$$\lim_{z \in \operatorname{dom} f, \, z \to x} \frac{|f(z) - f(x) - \nabla f(x)^{\top} (z - x)|}{\|z - x\|} = 0.$$

 $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point x in the interior of **dom** f if

$$\lim_{z \in \operatorname{dom} f, \, z \to x} \frac{|f(z) - f(x) - \nabla f(x)^{\top} (z - x)|}{\|z - x\|} = 0.$$

It means that, near x, f is well approximated by the affine function

$$h: z \mapsto f(x) + \nabla f(x)^{\top}(z-x).$$

 $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point x in the interior of **dom** f if

$$\lim_{z \in \operatorname{dom} f, z \to x} \frac{|f(z) - f(x) - \nabla f(x)^{\top} (z - x)|}{\|z - x\|} = 0.$$

It means that, near x, f is well approximated by the affine function

$$h: z \mapsto f(x) + \nabla f(x)^{\top}(z - x).$$

f is differentiable if f is continuous, $\operatorname{dom} f$ is an open set, and f is differentiable at every point $x \in \operatorname{dom} f$.

Example. $f(x_1, x_2) = \log(x_1/x_2)$ (**dom** $f = \{x \in \mathbb{R}^2 : x_1, x_2 > 0\}$) is differentiable:

$$\nabla f(x) := \begin{bmatrix} 1/x_1 \\ -1/x_2 \end{bmatrix} \quad \forall x \in \operatorname{dom} f$$

Example. $f(x_1, x_2) = \log(x_1/x_2)$ (**dom** $f = \{x \in \mathbb{R}^2 : x_1, x_2 > 0\}$) is differentiable:

$$\nabla f(x) := \begin{bmatrix} 1/x_1 \\ -1/x_2 \end{bmatrix} \quad \forall x \in \operatorname{dom} f$$

Example. $f: x \mapsto |x|$ is not differentiable, because its derivative does not exist at x = 0.

Gradients

The hyperplane tangent to the graph of f in $(\bar{x}, f(\bar{x}))$ is

$$H = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : t = f(\bar{x}) + \nabla f(\bar{x})^\top (x - \bar{x})\}.$$

Gradients

- ▶ Gradient at point \bar{x} is orthogonal to the contour of f at point \bar{x} (i.e. $\{x: f(x) = f(\bar{x})\}$), and pointing in the direction of the steepest ascent.
- ▶ The direction of maximum ascent in H is the direction of the gradient $\nabla f(\bar{x})$, and the slope of H in the direction of $\nabla f(\bar{x})$ is $\|\nabla f(x)\|$.

First-order necessary conditions

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable, and let x^* be a point in $\operatorname{dom} f$. If x^* is a local maximum or a local minimum for f, then $\nabla f(x^*) = 0$.

Conditions are necessary, but not sufficient:

Convex functions

Definition. $f: \mathbb{R}^n \to \mathbb{R}$ is *convex* if **dom** f is convex and, for every $x,y \in \operatorname{dom} f$, and $\lambda \in [0,1]$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the epigraph of f is a convex set.

Affine functions are convex $f(x) = p^{T}x + r$.

Univariate convex functions

Theorem

Let $f : \mathbb{R} \to \mathbb{R}$ be twice differentiable on **dom** f. Then f is convex if and only if $f''(x) \ge 0$ for all $x \in \text{dom } f$.

Examples:

- ▶ $f(x) = -\log x$, where **dom** $f = \{x \in \mathbb{R} : x > 0\}$.
- $ightharpoonup f(x) = e^x$, where **dom** $f = \mathbb{R}$.
- ▶ f(x) = 1/x, where **dom** $f = \{x \in \mathbb{R} : x > 0\}$.
- $f(x) = x \log x, \text{ where } \mathbf{dom} f = \{x \in \mathbb{R} : x > 0\}.$

Operations that preserve convexity

Nonnegative linear combination. If $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ are convex and $\lambda_1, \ldots, \lambda_m \geq 0$, then $f = \lambda_1 f_1 + \cdots + \lambda_m f_m$ is convex,

Operations that preserve convexity

- Nonnegative linear combination. If $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ are convex and $\lambda_1, \ldots, \lambda_m \geq 0$, then $f = \lambda_1 f_1 + \cdots + \lambda_m f_m$ is convex,
- **Point-wise supremum**. If $f_{\alpha}: \mathbb{R}^n \to \mathbb{R}$ ($\alpha \in \mathcal{A}$) is a family of convex functions, then the function f defined by

$$f(x) = \sup_{\alpha \in \mathcal{A}} f_{\alpha}(x)$$

is convex.

Local vs Global minima and convexity

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex, and let $X \subseteq \operatorname{dom} f$ be a convex set. Then every local minimum for f in X is a global minimum for f in X.

First order characterisation of convexity

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Then f is convex if and only if, for all $x, y \in \operatorname{dom} f$,

$$f(x) \ge f(y) + \nabla f(y)^{\top} (x - y).$$

First order characterisation of convexity

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Then f is convex if and only if, for all $x, y \in \operatorname{dom} f$,

$$f(x) \ge f(y) + \nabla f(y)^{\top} (x - y).$$

Recall: the hyperplane tangent to the graph of f at point (y, f(y)) is

$$H = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : t = f(y) + \nabla f(y)^{\top} (x - y)\},\$$

therefore the theorem states that a function is convex if and only if, for every $y \in \operatorname{dom} f$, the graph of f lies above the hyperplane tangent to the graph of f at point (y, f(y)).

First order optimality conditions and convexity

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a <u>differentiable convex</u> function.

Theorem (Unconstrained convex minimisation)

A point $x^* \in \operatorname{dom} f$ is a global minimum of f if and only if $\nabla f(x^*) = 0$.

First order optimality conditions and convexity

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a <u>differentiable convex</u> function.

Theorem (Unconstrained convex minimisation)

A point $x^* \in \operatorname{dom} f$ is a global minimum of f if and only if $\nabla f(x^*) = 0$.

Theorem (Constrained convex minimisation)

Let $X \subseteq \operatorname{dom} f$ be a convex set. A point $x^* \in X$ is a global minimum of f over X if and only if

$$\nabla f(x^*)^{\top}(x-x^*) \geq 0$$
 for all $x \in X$.

Example

$$f(x) = \frac{x_1^2}{x_2}$$
, $\operatorname{dom} f = \{x : x_2 > 0\}$, $X = \left\{x : \begin{cases} 1 \le x_1 \le 2 \\ 0 < x_2 \le 1 \end{cases} \right\}$
Show that $x^* = (1,1)^{\top}$ minimizes f in X .

Second order characterisation of convexity

Taylor expansion of univariate functions

Theorem

Assume that $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable on **dom** f. Then for every $x,y \in \operatorname{dom} f$, we can write

$$f(x) = f(y) + f'(y)(x - y) + \frac{1}{2}f''(\bar{x})(x - y)^2$$

for some $\bar{x} \in [x, y]$.

What is the notion of second derivative for multivariate functions?

Hessian

$$\nabla^{2}f(x) := \begin{bmatrix} \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{1}} & \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{2}} & \dots & \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{2}} & \dots & \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{2}} & \dots & \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{n}} \end{bmatrix}$$

- Symmetric: $\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$.
- ► Twice differentiable functions: dom f is an open set and the Hessian of f exists at every point in dom f.

Taylor expansion of multivariate functions

Theorem

Assume that $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable on $\operatorname{dom} f$. Then for every $x,y \in \operatorname{dom} f$, we can write

$$f(x) = f(y) + \nabla f(y)^{T} (x - y) + \frac{1}{2} (x - y)^{T} \nabla^{2} f(\bar{x}) (x - y)$$

for some
$$\bar{x} \in [x, y] = \{\lambda x + (1 - \lambda)y : 0 \le \lambda \le 1\}$$

(Semi)definite matrices

 $A \in \mathbb{R}^{n \times n}$: symmetric matrix: $a_{ij} = a_{ji}$ for every i, j.

- ▶ *A* is *positive definite* if, for all $x \in \mathbb{R}^n \setminus \{0\}$, $x^\top Ax > 0$.
- ▶ A is positive semidefinite if, for all $x \in \mathbb{R}^n$, $x^\top Ax \ge 0$.
- ▶ A is negative definite if, for all $x \in \mathbb{R}^n \setminus \{0\}$, $x^\top Ax < 0$.
- ▶ A is negative semidefinite if, for all $x \in \mathbb{R}^n$, $x^\top Ax \leq 0$.

(Semi)definite matrices

 $A \in \mathbb{R}^{n \times n}$: symmetric matrix: $a_{ij} = a_{ji}$ for every i, j.

- ▶ A is positive definite if, for all $x \in \mathbb{R}^n \setminus \{0\}$, $x^\top Ax > 0$.
- ▶ A is positive semidefinite if, for all $x \in \mathbb{R}^n$, $x^\top Ax \ge 0$.
- ▶ A is negative definite if, for all $x \in \mathbb{R}^n \setminus \{0\}$, $x^\top Ax < 0$.
- ▶ A is negative semidefinite if, for all $x \in \mathbb{R}^n$, $x^\top Ax \leq 0$.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then, A is positive definite if and only if all its eigenvalues are positive. A is positive semidefinite if and only if all its eigenvalues are nonnegative.

Second order characterisation of local extrema

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable on $\operatorname{dom} f$. If $x^* \in \operatorname{dom} f$ is a local minimum, then $\nabla^2 f(x^*)$ is positive semidefinite. If $x^* \in \operatorname{dom} f$ is a local maximum, then $\nabla^2 f(x^*)$ is negative semidefinite.

Second order characterisation of convexity

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice differentiable.

- (i) If $\nabla^2 f(z)$ is positive semidefinite for every $z \in \operatorname{dom} S$, then f is convex.
- (ii) Assume that f is convex, and $\nabla^2 f$ is continuous on $\operatorname{dom} f$. Then, $\nabla^2 f(z)$ is positive semidefinite for every $z \in \operatorname{dom} f$.

Example:
$$f(x) = \frac{x_1^2}{x_2}$$
, dom $f = \{x : x_2 > 0\}$.

Quadratic functions

- ▶ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$: degree two polynomial function. E.g. $f(x_1, x_2) = -x_1^2 + 3x_1x_2 + 2x_2^2 5x_1 + 6x_2 + 3$.
- Standard form:

$$f(x) = x^{\top} Q x + p^{\top} x + r,$$

Example:
$$Q = \begin{pmatrix} -1 & 1.5 \\ 1.5 & 3 \end{pmatrix}$$
, $p = (-5,6)$, $r = 3$.

Quadratic functions

- ▶ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$: degree two polynomial function. E.g. $f(x_1, x_2) = -x_1^2 + 3x_1x_2 + 2x_2^2 5x_1 + 6x_2 + 3$.
- Standard form:

$$f(x) = x^{\top} Q x + p^{\top} x + r,$$

Example:
$$Q = \begin{pmatrix} -1 & 1.5 \\ 1.5 & 3 \end{pmatrix}$$
, $p = (-5,6)$, $r = 3$.

Theorem

Let $Q \in \mathbb{R}^{n \times n}$ be a symmetric matrix, $p \in \mathbb{R}^n$, and $r \in \mathbb{R}$. The quadratic function $f(x) = x^\top Qx + p^\top x + r$ is convex if and only if Q is positive semidefinite.

Concave functions

- \blacktriangleright A function f is concave if -f is convex.
- ➤ The previous theorems concerning minima of convex functions are true if we replace "convex" with "concave" and "minimum" with "maximum".
 - Local maximum = Global Maximum.
 - Local maximum iff gradient is zero.

Convex Optimisation Problems

min
$$f_0(x)$$

 $f_i(x) \le 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $i = 1, ..., k$

- ▶ Domain of problem: $\mathcal{D} = \left(\bigcap_{i=0}^{m} \operatorname{dom} f_{i}\right) \bigcap \left(\bigcap_{i=1}^{k} \operatorname{dom} h_{i}\right)$.
- ▶ Feasible region: set X of all points in \mathcal{D} satisfying the constraints.

Convex Optimisation Problems

min
$$f_0(x)$$

 $f_i(x) \le 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $i = 1, ..., k$

- ▶ Domain of problem: $\mathcal{D} = \left(\bigcap_{i=0}^{m} \operatorname{dom} f_{i}\right) \bigcap \left(\bigcap_{i=1}^{k} \operatorname{dom} h_{i}\right)$.
- ▶ Feasible region: set X of all points in \mathcal{D} satisfying the constraints.

Convex problem if:

- $ightharpoonup f_0, \ldots, f_m$ are convex,
- ▶ $h_1, ..., h_k$ are affine (i.e. there exist $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$ such that $h_i(x) = a_i^\top x b_i$)

Important facts

- 1. If f_i convex, then $\{x \in \mathbb{R}^n : f_i(x) \leq 0\}$ is a convex set.
- 2. The feasible region X is convex, because it is the intersection of convex sets.
- 3. Every local optimum for f_0 in X is also a global optimum.

Example: Portfolio optimisation

The Markowitz portfolio optimisation problem is convex

$$\min_{\substack{s.t.\\ \bar{p}^{\top}x \geq r_{\min}\\ \sum_{i=1}^{n} x_i = B\\ x \geq 0}} x_i^{\top} = x_i^$$

The objective function $x^{\top}\Sigma x$ is a quadratic convex function (because Σ is positive semidefinite). Indeed $x^{\top}\Sigma x = \operatorname{Var}(p) = \mathbb{E}[(p^{\top}x - \bar{p}^{\top}x)^2]$.

Concave maximisation

► A maximisation problem of the form

$$\max f_0(x)$$

$$f_i(x) \le 0 \quad i = 1, \dots, m$$

$$h_i(x) = 0 \quad i = 1, \dots, k$$

is a convex optimisation problem if f_0 is concave, while f_1, \ldots, f_m are convex and h_1, \ldots, h_k affine,

▶ Indeed, the equivalent problem obtained replacing " $\max f_0(x)$ " with " $\min -f_0(x)$ " is a convex optimisation problem.