국내 특허·실용신안 상세 인쇄 화면

하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템 및 방법

SYSTEM AND METHOD FOR HYPERGRAPH-BASED MULTI-AGENT BATTLEFIELD SITUATION AWARENESS

·서지정보

IPC	G06N 5/02(2023.01.01) G06N 5/04(2023.01.01) G06N 20/00(2019.01.01)	
CPC	G06N 5/02(2023.01) G06N 5/04(2023.01) G06N 20/00(2021.08)	
출원번호(일자)	1020210117882 (2021.09	.03)
출원인	한국전자통신연구원	
번역문제출일자		
등록번호(일자)	1027100920000 (2024.09	.20)
공개번호(일자)	1020230034751 (2023.03.10) 전문다운	
공고번호(일자)	(2024.09.26)	전문다운
국제출원번호 (일자)		
국제공개번호 (일자)		
우선권정보		
법적상태	등록	
심사진행상태	등록결정(일반)	
심판사항		
구분	국내출원/신규	
원출원번호(일자)		

관련 출원번호	
심사청구여부 (일자)	Y(2022.02.18)
심사청구항수	17

요약

본 발명은 하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템과 방법에 관한 것이다. 본 발명에 따른 전장상황인지 시스템은 각 에이전트가 수집한 데이터를 입력으로 받아 노드, 릴레이션(relation) 및 노드 임베딩 벡터를 포함하는 상기 각 에이전트 별 에이전트 지식그래프를 생성하는 지식그래프 생성부; 상기 각 에이전트 간 유사도 및 상기 데이터의 유사도를 분석하여 상기 복수의 에이전트 지식그래프를 결합하여 전역지식그래프를 생성하는 지식그래프 결합부; 및 전장상황 계층구조와 상기 전역지식그래프를 이용하여 전장상황을 추론하는 전장상황 인지부를 포함한다.

· 인명정보

출원인

번호	이름(번호)	국적	주소
1	한국전자통신연구원 (319980077638)	KR	대전광역시 유성구
	사업자번호 ▼		

발명자

번호	이름(번호)	국적	주소	
1	백재욱		대전광역시 유성구	

대리인

번호	이름(번호)	국적	주소
1	특허법인지명 (920071000215)	대한민국	서울특별시 강남구 남부순환로**** 차우 빌딩*층

최종권리자

번호	이름(번호)	국적	주소
1	한국전자통신연구원	대한민국	대전광역시 유성구

등록 이후 발명자 정보

번호	이름(번호)	주소
1	백재욱 ()	대전광역시 유성구

등록 이후 대리인 정보

번호	이름(번호)	주소
1	특허법인지명 (920071000215)	서울특별시 강남구 남부순 환로**** 차우빌딩*층

·지정국

구분	국가명
데이터가 존재하지 않습니다.	

· 인용/피인용

인용

국가	공보번호	공보일자	발명의 명칭	IPC
대한민국	1021478550000 B 1	2020.08.25	전장상황 다중추론 시스템 및 방법	G06N 5/04
대한민국	1020210045837 A	2021.04.27	지식 그래프를 업데이트하는 시스템 및 방법	G06F 16/36

피인용

출원번호(일자)	출원 연월일	발명의 명칭	IPC
데이터가 존재하지 않습니다.			

·청구항

번호	청구항
1	각 에이전트가 수집한 데이터를 입력으로 받아 노드, 릴레이션(relation) 및 노드 임베딩 벡터를 포함하는 상기 각 에이전트 별 에이전트 지식그래프를 생성하는 지식그래프 생성부;

2/17/20,01001	
번호	청구항
	상기 각 에이전트 간 유사도 및 상기 데이터의 유사도를 분석하여 상기 각 에이전트 별 에이전트 지식그래프를 결합하여 전역지식그래프를 생성하는 지식그래프 결합부; 및
	전장상황 계층구조와 상기 전역지식그래프를 이용하여 전장상황을 추론하는 전장상황 인지부;
	를 포함하고,
	상기 지식그래프 결합부는,
	상기 에이전트 지식그래프를 기초로, 각 에이전트에 대응되는 하이퍼노드와 각 노드의 인접 에이전트 집합을 나타내는 하이퍼엣지로 구성되는 하이퍼그래프를 생성하고, 상기 하이퍼그래프를 기반으로 에이전트 리스트를 생성하는 하이퍼그래프 기반 랜덤샘플 모듈;
	상기 에이전트 리스트에 컨텍스트 윈도우를 적용하여 (에이전트, 인접한 에이전트) 쌍을 도출하고, 상기 (에이전트, 인접한 에이전트) 쌍으로부터 계산되는 손실함수의 값이 최소화되도록 에이전트 임베딩 벡터를 학습시키는 에이전트 임베딩 학습 모듈; 및
	상기 에이전트 임베딩 벡터를 이용하여 에이전트 간 유사도 분석 및 특정 에이전트의 데이터와 상기 특정 에이전트와 인접한 에이전트가 수집한 데이터 간의 유사도 분석을 통하여 각 에이전트 지식그래프를 결합하여 상기 전역지식그래프를 생성하는 유사도 추론 및 결합 모듈을 포함하는 것인
	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템.
	제1항에 있어서,
	상기 지식그래프 생성부는
2	에이전트가 수집한 데이터에서 인지된 객체를 노드로 정의하여 노드 목록을 생성하고, 상기 노드 목록에 포함된 각 노드의 특징을 속성으로 정의하여 속성 목록을 생성하며, 상기 각 노드 간 소정의 관계를 릴레이션으로 정의하여 릴레이션 목록을 생성하는 것인
	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템.
3	제1항에 있어서,
	상기 지식그래프 생성부는
	노드의 속성과 관련된 임베딩 벡터(vec1), 노드명이 정의된 임베딩 벡터(vec2) 및 노드 간 릴레이션과 관련된임베딩 벡터(vec3)를 결합하여 상기 노드 임베딩 벡터를 생성하고,
	상기 각 노드와 직접적으로 연관된 속성 벡터와 유사해지고, 상기 각 노드와 연관 없는 속성 벡터와 비유사해지도록 상기 임베딩 벡터(vec1)를 학습시키며,
	서로 릴레이션이 있는 노드의 상기 임베딩 벡터(vec3)는 유사해지도록 상기 임베딩 벡터(vec3)를 학습시키는

 번호	청구항
	것인
	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템.
	제1항에 있어서,
	상기 지식그래프 결합부는
4	특정 에이전트 지식그래프의 노드에 인접한 에이전트를 선출하는 방식으로 인시던스 행렬을 구성하고,
	상기 인접한 에이전트는 상기 노드의 노드 임베딩 벡터와 유사한 노드 임베딩 벡터를 가지는 노드를 그 에이전 트 지식그래프의 구성 요소로 포함하는 것을 특징으로 하는,
	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템.
5	삭제
	제1항에 있어서,
6	상기 하이퍼그래프 기반 랜덤샘플 모듈은
	상기 에이전트 지식그래프의 각 노드에 부여된 노드 임베딩 벡터 및 다른 에이전트 지식그래프의 노드 임베딩 벡터의 유사도를 기초로 복수의 에이전트를 포함하는 하이퍼엣지를 생성하고,
	상기 하이퍼엣지 및 상기 하이퍼엣지에 포함되는 에이전트에 대응되는 하이퍼노드를 포함하는 하이퍼그래프를 생성하는 것인
	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템.
	제1항에 있어서,
7	상기 하이퍼그래프 기반 랜덤샘플 모듈은
	상기 하이퍼그래프를 기반으로 임의의 에이전트를 랜덤워크 규칙에 따라 이동시키는 방식으로 상기 에이전트 리스트를 생성하며,
	상기 랜덤워크 규칙은 현재 에이전트에서 다음 에이전트로 이동하는 확률을 정의하며, 상기 현재 에이전트에 인접한 에이전트와 이전에 방문한 에이전트가 공유하는 상기 하이퍼그래프에 포함된 하이퍼엣지의 개수에 따라 상기 이동하는 확률을 정하는 규칙을 포함하는 것을 특징으로 하는,
	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템.
8	제1항에 있어서,
	상기 손실함수는 (에이전트, 인접한 에이전트) 쌍 (i, j)에 관하여 하기 수학식에 따라 정의되는 것을 특징으로 하

번호	청구항
	는,
	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템.
	[수학식]
	이미지존재
	(단, 상기 수학식에서 i, j, v는 에이전트,
	k, l, m은 에이전트 지식그래프를 구성하는 노드,
	e _i , e _j , e _v 는 에이전트 임베딩 벡터,
	u _k , u _l , u _m 은 상기 노드에 할당된 고정된 벡터(Relation Aware 벡터),
	c는 첨자로 기재된 각 노드의 Relation Aware 벡터의 내적,
	Ψ_a 는 에이전트의 집합, Ψ_f 는 에이전트 지식그래프를 구성하는 노드의 집합,
	σ는 시그모이드 함수,
	f는 그 첨자로 기재된 노드의 Relation Aware 벡터와 인수인 에이전트 임베딩 벡터의 합을 반환하는 벡터함수임.)
	제8항에 있어서,
	임의의 지식그래프 노드 k에 대한 상기 Relation Aware 벡터는
	이미지존재
	이며,
9	상기 u _k 의 임의의 인자는
	이미지존재
	으로 정하여 지는 것을 특징으로 하는,
	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템.
	(단, 상기 수학식에서 d _{vec} 은 u _k 의 차원임.)

번호	청구항
	제8항에 있어서,
	임의의 지식그래프 노드 k에 대한 상기 Relation Aware 벡터는
10	이미지존재
	인 것을 특징으로 하는,
	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템.
	제1항에 있어서,
	상기 전장상황 인지부는
	전장상황을 상위개념과 하위개념으로 구성된 계층 구조로 정의하고,
11	상기 에이전트가 보유하고 있는 지식그래프를 입력 값으로, 전장상황의 하위개념을 레이블로 활용하여 분류 네 트워크를 학습시키며,
	상기 분류 네트워크를 통하여 상기 전역지식그래프를 전장상황 하위개념으로 매핑하고,
	상기 전장상황 계층구조에서 하위개념으로부터 상위개념을 추론하여 전장상황을 인지하는 것인
	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템.
12	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템이 에이전트를 통해 데이터를 수집하는 단계;
	상기 시스템이, 상기 데이터에서 인지된 객체를 노드로 정의하고, 상기 노드의 특징을 속성으로 정의하며, 상기 노드 간의 소정의 관계를 릴레이션으로 정의하는 단계;
	상기 시스템이, 상기 노드의 속성과 관련된 임베딩 벡터(vec1)를 학습시키고, 노드 간 릴레이션과 관련된 임베딩 벡터(vec3)를 학습시킨 후, 노드명이 정의된 임베딩 벡터(vec2)를 상기 vec1 및 vec3와 결합하여 노드 임베딩 벡터를 생성하는 단계; 및
	상기 시스템이, 상기 노드, 상기 릴레이션 및 상기 노드 임베딩 벡터를 포함한 에이전트 지식그래프를 생성하는 단계;
	를 포함하고,
	상기 노드 임베딩 벡터를 생성하는 단계는,
	상기 시스템이, 상기 노드의 속성과 관련된 임베딩 벡터(vec1)를, 상기 노드와 직접적으로 연관된 속성 벡터와 유사해지고, 상기 노드와 연관 없는 속성 벡터와 비유사해지도록 학습시키는 동작을 포함하는 것인

번호	청구항
	지식그래프 생성 방법.
13	삭제
14	제12항에 있어서, 상기 노드 임베딩 벡터를 생성하는 단계는, 상기 시스템이, 상기 임베딩 벡터(vec3)를, 서로 릴레이션이 있는 노드의 임베딩 벡터(vec3)가 유사해지는 방식으로 학습시키는 것인 지식그래프 생성 방법.
	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템이, 노드, 릴레이션 및 노드 임베딩 벡터를 포함하는 에이 전트 지식그래프를 기반으로 하여 하이퍼노드(에이전트)와 하이퍼엣지로 구성된 하이퍼그래프를 생성하는 단 계;
	상기 시스템이, 상기 하이퍼그래프 상의 하이퍼노드인 에이전트를 샘플링하여 에이전트 리스트를 생성하는 훈 련 데이터 셋 구축 단계;
	상기 시스템이, 컨텍스트 윈도우를 상기 에이전트 리스트에 적용하여 도출한 (에이전트, 인접한 에이전트) 쌍을 학습용 데이터로 하여 손실함수를 최소화하도록 에이전트 임베딩 벡터를 학습시키는 단계;
15	상기 시스템이, 상기 에이전트 임베딩 벡터를 이용하여 에이전트 간의 유사도를 추론하는 단계;
	상기 시스템이, 상기 에이전트 임베딩 벡터와 상기 에이전트 지식그래프의 노드마다 할당되는 고정된 벡터(Relation Aware 벡터)를 이용하여 에이전트 지식그래프의 노드 간 유사도를 추론하는 데이터 유사도 추론 단계; 및
	상기 시스템이, 상기 에이전트 간의 유사도와 상기 노드 간 유사도(데이터 유사도)를 기초로 지식그래프를 결합 하여 전역지식그래프를 생성하는 지식그래프 결합 단계;
	를 포함하는 지식그래프 결합 방법.
	제15항에 있어서,
	상기 하이퍼노드는 각 에이전트에 대응되고,
16	상기 하이퍼엣지는 각 노드에 인접한 에이전트의 집합으로 구성되며,
	상기 인접한 에이전트는 상기 노드의 노드 임베딩 벡터와 상기 인접한 에이전트의 지식그래프에 포함되는 노드 의 노드 임베딩 벡터 간의 유사도에 따라 판단되는 것을 특징으로 하는,
	지식그래프 결합 방법.

2/17/25, 3:38	PM KIPRIS 지식재산정보 검색서비스
번호	청구항
17	제15항에 있어서, 상기 에이전트 리스트는 상기 하이퍼그래프를 기반으로 임의의 에이전트를 랜덤워크 규칙에 따라 이동시키는 방식으로 생성되며, 상기 랜덤워크 규칙은 현재 에이전트에서 다음 에이전트로 이동하는 확률을 정의하며, 상기 현재 에이전트에 인 접한 에이전트와 이전에 방문한 에이전트가 공유하는 하이퍼엣지의 개수에 따라 상기 이동하는 확률을 정하는 규칙을 포함하는 것을 특징으로 하는, 지식그래프 결합 방법.
	제15항에 있어서,
	상기 손실함수는
	(에이전트, 인접한 에이전트) 쌍 (i, j)에 관하여 하기 수학식에 따라 정의되는 것을 특징으로 하는,
	지식그래프 결합 방법.
	[수학식]
	이미지존재
	(단, 상기 수학식에서 i, j, v는 에이전트,
18	k, l, m은 에이전트 지식그래프를 구성하는 노드,
	e _i , e _j , e _v 는 에이전트 임베딩 벡터,
	u _k , u _l , u _m 은 상기 노드에 할당된 고정된 벡터(Relation Aware 벡터),
	c는 첨자로 기재된 각 노드의 Relation Aware 벡터의 내적,
	Ψ_a 는 에이전트의 집합, Ψ_f 는 에이전트 지식그래프를 구성하는 노드의 집합,
	σ는 시그모이드 함수,
	f는 그 첨자로 기재된 노드의 Relation Aware 벡터와 인수인 에이전트 임베딩 벡터의 합을 반환하는 벡터함수임.)
19	하이퍼그래프 기반 멀티에이전트 전장상황인지 시스템이, 전장상황을 상위개념과 하위개념으로 구성된 계층 구조로 정의하는 단계;
	상기 시스템이, 전장상황에 관한 데이터를 수집하는 에이전트가 보유하고 있는 지식그래프를 입력 값으로, 전장

번호	청구항
	상황의 하위개념을 레이블로 활용하여 분류 네트워크를 학습시키는 단계;
	상기 시스템이, 각 에이전트의 지식그래프가 통합된 전역지식그래프를 상기 분류 네트워크를 통하여 전장상황 하위개념으로 매핑하는 단계; 및
	상기 시스템이, 상기 전장상황을 정의한 계층 구조에서 하위개념으로부터 상위개념을 추론하여 전장상황을 추론(인지)하는 단계;
	를 포함하는 전장상황 추론 방법.