GOOL: A Generic Object-Oriented Language (Short Paper)

Brooks MacLachlan
Department of Computing and
Software
McMaster University
Hamilton, Ontario, Canada
maclachb@mcmaster.ca

Jacques Carette
Department of Computing and
Software
McMaster University
Hamilton, Ontario, Canada
carette@mcmaster.ca

Spencer Smith
Department of Computing and
Software
McMaster University
Hamilton, Ontario, Canada
smiths@mcmaster.ca

Abstract

We present GOOL, a Generic Object-Oriented Language. It demonstrates that a language, with the right abstractions, can capture the essence of object-oriented programs. We show how GOOL programs can be used to generate human-readable, documented and idiomatic source code in multiple languages. Moreover, in GOOL, it is possible to express common programming idioms and patterns, from simple library-level functions, to simple tasks (command-line arguments, list processing, printing), to more complex patterns, such as methods with a mixture of input, output and in-out parameters, and finally Design Patterns (such as Observer, State and Strategy). GOOL is an embedded DSL in Haskell that can generate code in Python, Java, C#, and C++.

Keywords Code Generation, Domain Specific Language, Haskell, Documentation

1 Introduction

Java or C#? At the language level, this is close to a non-question: the two languages are so similar that only issues external to the programming language itself would be the deciding factor. Unlike say the question "C or Prolog?", which is almost non-sensical, as the kinds of applications where each is well-suited are vastly different. But, given a single paradigm, for example object-oriented (OO), would it be possible to write a unique meta-language that captures the essence of writing OO programs? After all, they generally all contain (mutable) variables, statements, conditionals, loops, methods, classes, objects, and so on.

Of course, OO programs written in different languages appear, at least at the surface, to be quite different. But this is mostly because the syntax of different programming languages is different. Are they quite so different in the utterances that one can say in them? In other words, are OO programs akin to sentences in Romance languages (French, Spanish, Portugese, etc) which, although different at a surface level, are structurally very similar?

This is what we set out to explore. One non-solution is to find an (existing) language and try to automatically translate

it to the others. Of course, this can be made to work — one could engineer a multi-language compiler (such as gcc) to de-compile its Intermediate Representation (IR) into most of its input languages. The end-results would however be wildly unidiomatic; roughly the equivalent of a novice in a new (spoken) language "translating" word-by-word.

What if, instead, there was a single meta-language designed to embody the common semantic concepts of a number of OO languages, encoded so that the necessary information for translation is present? This source language could be agnostic about what eventual target language will be used – and free of the idiosyncratic details of any given language. This would be quite the boon for the translator. In fact, we could go even further, and attempt to teach the translator about idiomatic patterns of each target language.

Trying to capture all the subtleties of each language is hopeless — akin to capturing the rhythm, puns, metaphors, similes, and cultural allusions of a sublime poem in translation. But programming languages are most often used for much more prosaic tasks: writing programs for getting things done. This is closer to translating technical textbooks, making sure that all of the meaningful material is preserved.

Is this feasible? In some sense, this is already old hat: modern compilers have a single IR, used to target multiple processors. Compilers can generate human-readable symbolic assembly code for a large family of CPUs. But this is not the same as generating human-readable, idiomatic high-level code

More precisely, we are interested in capturing the conceptual meaning of OO programs, in such a way as to fully automate the translation from the "conceptual" to human-readable, idiomatic code, in mainstream languages.

At some level, this is not new. Domain-Specific Languages (DSL), are high-level languages with syntax and semantics tailored to a specific domain [17]. A DSL abstracts over the details of "code", providing notation to specify domain-specific knowledge in a natural manner. DSL implementations often work via translation to a GPL for execution. Some generate human-readable code [5, 12, 18, 24].

This is what we do, for the domain of OO programs. We have a set of new requirements:

1. The generated code should be human-readable,

PL'20, January 01–03, 2018, New York, NY, USA

- 2. The generated code should be idiomatic,
- 3. The generated code should be documented,
- 4. The generator expresses common OO patterns.

Here we demonstrate that all of these requirements can be met. GOOL [23] is implemented as a DSL embedded in Haskell that can currently generate code in Python, Java, C#, and C++. Others could be added, with the implementation effort being commensurate to the (semantic) distance to the languages already supported.

First we expand on the high-level requirements for such an endeavour, in Section 2. To be able to give concrete examples, we show the syntax of GOOL in Section 3. The details of the implementations, namely the internal representation and the family of pretty-printers, is in Section 4. Common patterns are illustrated in Section 5. We close with a discussion of related work in Section 6, plans for future improvements in Section 7, and conclusions in Section 8.

2 Requirements

While we outlined some of our requirements above, here we give a complete list, as well as some reasoning behind each.

mainstream Generate code in mainstream object-oriented languages.

readable The generated code should be human-readable, **idiomatic** The generated code should be idiomatic,

documented The generated code should be documented, **patterns** The generator should allow one to express common OO patterns.

expressivity The language should be rich enough to express a set of existing OO programs, which act as test cases for the language.

common Language commonalities should be abstracted.

Targetting OO languages (**mainstream**) is primarily because of their popularity, which implies the most potential users — in much the same way that the makers of Scala and Kotlin chose to target the JVM to leverage the Java ecosystem, and Typescript for Javascript.

The **readable** requirement is not as obvious. GOOL's aim is to allow writing high-level OO code once, but have it be available in many GPLs. One use case would be to generate libraries of utilities for a narrow domain. As needs evolve and language popularity changes, it is useful to have it immediately available in a number of languages. Another use, which is core to our own motivation, is to have *extremely well documented* code that would be unrealistic to do by hand. Our motivation for developing GOOL is to use it as the target language for code generation in the *Drasil* framework [22, 23], where *Drasil* aims to generate high-quality, fully documented scientific software. In the domain of scientific software, *certification* is often required, and extensive documentation is crucial for that process. **readable** is also a proxy for *understandable*, which is helpful for debugging.

The same underlying reasons for **readable** also drive **idiomatic** and **documented**, as they contribute to the human-understandability of the generated code. Readability (and thus understandability) are improved when code is pretty-printed [7]. Thus taking care of layout, redundant parentheses, well-chosen variable names, using a common style with lines that are not too long, are just as valid for generated code as for human-written code. GOOL does not prevent users from writing undocumented or complex code, if they choose to do so. It just makes it easy to have **readable**, **idiomatic** and **documented** code in multiple languages.

The **patterns** requirement is typical of DSLs: common programming idioms can be reified into a proper linguistic form instead of being merely informal. Even some of the *design patterns* of [10] can become part of the language itself. While this does make writing some OO code even easier in GOOL than in GPLs, it also helps keep GOOL language-agnostic and facilitates generating idiomatic code.

expressivity captures the idea that GOOL is supposed to express (the ideas contained in) OO programs. To evaluate this requirement, we test GOOL against real-world examples from the *Drasil* project, such as software for determining whether glass withstands a nearby explosion and software for simulating projectile motion.

The last requirement (**common**) that language commonalities be abstracted, is internal: we noticed a lot of repeated code in our initial backends, something that ought to be distasteful to most programmers. For example, writing a generator for both Java and C# makes it incredibly clear how similar the two languages are.

3 Creating GOOL

How do we go about creating a "generic" object-oriented language? We chose an incremental abstraction approach: start from OO programs written in two different languages, and unify them *conceptually*.

We abstract from concrete OO programs, not just to meet our expressivity requirement, but also because that is our "domain". Although what can be said in any given OO language is quite broad, what we actually want to say is often much more restricted. And what we need to say is often even more concise. For example, Java offers introspection features, but C++doesn't, so abstracting from portable OO will not feature introspection (although it may be the case that generating idiomatic Java may later use it); thus GOOL as a language does not encode introspection. C++templates are different: while other languages do not necessarily have comparable meta-programming features, as GOOL is a code generator, it is not only feasible but in fact easy to provide template-like features, and even aspects of partial evaluation directly. Thus we do not need to generate templates. In other words, we are trying to abstract over the fundamental ideas expressed via OO programs, rather than abstracting over the

Table 1. Basic GOOL Syntax - functions enclosed in brackets are shortcuts for common cases

222		
223	Types	bool, int, float, char, string, infile (read mode), outfile (write mode), listType, obj
224	Variables	var, extVar, classVar, objVar, \$-> (infix operator for objVar), self, [listVar]
225	Values	valueOf (value from variable), litTrue, litFalse, litInt, litFloat, litChar, litString, ?!, ?&&,
226		?<, ?<=, ?>, ?>=, ?==, ?!=, #~, #/^, # , #+, #-, #*, #/, #^, inlineIf, funcApp, extFuncApp, newObj,
227		objMethodCall,[selfFuncApp,objMethodCallNoParams]
228	Statements	varDec, varDecDef, assign, &=, &+=, &-=, &++, &~-, break, continue, returnState, throw, free, comment,
229		ifCond, ifNoElse, switch, for, forRange, forEach, while, tryCatch, block, body [bodyStatements
230		(single-block body), oneLiner (single-statement body)]
231	Scope	public, private
232	Binding	static_, dynamic_
233	Functions	function, method, param, pointerParam, mainFunction, docFunc, [pubMethod, privMethod]
234	State Variables	stateVar, constVar, [privMVar, pubMVar (dynamic), pubGVar (static)]
235	Classes	buildClass, docClass, [pubClass, privClass]
236	Packages	buildModule, fileDoc, docMod, prog, package, doxConfig, makefile

languages — and we believe the end result better captures the essence of OO programs. Of course, some features, such as types, which don't exist per se in Python but are required in Java, C#and C++, will be present as doing full type inference is unrealistic.

Some features of OO programs are not operational: comments and formatting decisions amongst them. To us, programs are a bidirectional means of communication; they must be valid, executable programs by computers, but also need to be readable and understandable by humans. Generating code for consumption by machines is well understood and performed by most DSLs, but generating code for human consumption has been given less attention. We tried to pay close attention to program features — such as the habits of programmers to write longer methods as blocks separated by (at least) blank lines, often with comments which make programs more accessible to human readers, and the resulting syntax contributes to the novelty of GOOL. In GOOL, bodies are not just a sequence of statements (as would be natural if all we cared about was feeding a compiler), but instead a list of blocks. This additional level of organization of statements is operationally meaningless, but represents the actual structure of OO programs as written by humans. This is because programmers (hopefully!) write code to be read by other programmers, and blocks increase human-readability.

Basic GOOL syntax is shown in Table 1. Note that GOOL distinguishes a variable from its value¹. This distinction is motivated by semantic considerations; it is beneficial for stricter typing and enables convenient syntax for **patterns** that translate to more idiomatic code.

GOOL is an Embedded Domain Specific Language (EDSL) inside Haskell. Haskell is very well-suited for this, offering a variety of features (Generalized Algebraic Data Types

(GADTs), type classes, parametric polymorphism, kind polymorphism, etc.) that are quite useful for building languages. Its syntax is also fairly liberal, so that with *smart constructors*, one can somewhat mimic the usual syntax of OO languages. Unfortunately, the embedded nature of GOOL means its syntax is constrained by Haskell's, so a programmer familiar with OO languages may find it difficult to write in GOOL. However, in our anticipated use cases, where the program may have to be written in multiple different languages, it is easier to write it once in GOOL. Also, if GOOL is used as the target language for other DSLs, the ease of writing GOOL programs matters less, since the programs will be written by a computer rather than a human.

4 GOOL Implementation

There are two "obvious" means of dealing with large embedded DSLs in Haskell: either as a set of GADTs, or using a set of classes, in the "finally tagless" style [8] (we will refer to it as simply *tagless* from now on). GOOL uses a "sophisticated" version of tagless involving *type families*, which allows for generic routines to be implemented and *patterns* easily encoded.

In tagless the means of encoding a language, through methods from a set of classes, really encodes a generalized fold over any representation of the language. Thus what look like GOOL "keywords" are really class methods which we typically instantiate to language renderers, though we're also free to do various static analysis passes. By using type families, each instance of the classes can choose different underlying data structures for GOOL's types, for when a language needs to store more or less information than others. For example the C++ instance stores destructor statements with state variables, but destructors are not needed for the other languages. Our language is defined by 328 methods across a hierarchy of 43 classes, grouped by functionality — GOOL is not a small language!

¹as befits the use-mention distinction from analytic philosophy

332

333

334

335

336

337

338

339

340

341

342

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

We have also defined 300 functions that abstract over commonalities between target languages. This makes writing new renderers for new languages fairly straightforward. GOOL's Java and C# renderers demonstrate this well. Out of the 328 total methods, the instances of 229 are shared between the Java and C# renderers, in that they are just calls to the same common function. That is 40% more common instances compared to between Python and Java, for example.

Encoding Patterns

There are various levels of "patterns" to encode. The previous section documented how to encode the programming language aspects. Now we move on to other patterns, from simple library-level functions, to simple tasks (command-line arguments, list processing, printing), on to more complex patterns such as methods with a mixture of input, output and in-out parameters, and finally on to design patterns.

5.1 Internalizing library functions

Consider the simple trigonometric sine function, called sin in GOOL. It is common enough to warrant its own name, even though in most languages it is part of a library. A GOOL expression sin foo can then be seamlessly translated to yield math.sin(foo) in Python, Math.sin(foo) in Java, Math.Sin(foo) in C#, and sin(foo) in C++. Other functions are handled similarly. This part is easily extensible, but does require adding to GOOL classes.

5.2 Command line arguments

A slightly more complex task is accessing arguments passed on the command line. This tends to differ more significantly accross languages. GOOL offers an abstraction of these mechanisms, through an argsList function that represents the list of arguments, as well as convenience functions for common tasks such as indexing into argsList and checking if an argument at a particular position exists. For example, these functions allow easy generation of code like sys.argv[1] in Python.

5.3 Lists

Variations on lists are frequently used in OO code, but the actual API in each language tends to vary considerably; we need to provide a single abstraction that provides sufficient functionality to do useful list computations. Rather than abstracting from the functionality provided in the libraries of each language to find some common ground, we instead reverse engineer the "useful" API from actual use cases.

One thing we immediately notice from such an exercise is that lists in OO languages are rarely linked lists (unlike in Haskell, our host language), but rather more like a dynamically sized vector. In particular, indexing a list by position, which is a horrifying idea for linked lists, is extremely common.

386

387

388

389

391

392

393

395

397

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

This narrows things down to a small set of functions and statements, shown in Table 2. For example, listAccess

Table 2. List functions

GOOL Syntax	Semantics
listAccess	access a list element at a given index
listSet	set a list element at a given index to a
	given value
at	same as listAccess
listSize	get the size of a list
listAppend	append a value to the end of a list
listIndexExists	check whether the list has a value at
	a given index
indexOf	get the index of a given value in a list

(valueOf ages) (litInt 1) will generate ages[1] in Python and C#, ages.get(1) in Java, and ages.at(1) in C++. List slicing is a very convenient higher-level primitive. The listSlice *statement* gets a variable to assign to, a list to slice, and three values representing the starting and ending indices for the slice and the step size. These last three values are all optional (we use Haskell's Maybe for this) and default to the start of the list, end of the list and 1 respectively. To take elements from index 1 to 2 of ages and assign the result to someAges, we can use

```
listSlice someAges (valueOf ages) (Just $ litInt 1)
 (Just $ litInt 3) Nothing
```

List slicing is of particular note because the generated Python is particularly simple, unlike in other languages; the Python:

```
someAges = ages [1:3:]
while in Java it is
ArrayList<Double> temp = new ArrayList<Double>(0);
for (int i_temp = 1; i_temp < 3; i_temp++) {
    temp.add(ages.get(i_temp));
}
someAges = temp;
```

This demonstrates GOOL's idiomatic code generation, enabled by having the appropriate high-level information to drive the generation process.

5.4 Printing

Printing is another feature that generates quite different code depending on the target language. Here again Python is more "expressive" so that printing a list (via printLn ages) generates print(ages), but in other languages we must generate a loop; for example, in C++:

```
441
       std :: cout << "[";
442
       for (int list i1 = 0; list i1 < \setminus
443
         (int)(myName.size()) - 1; list_i1 ++) {
444
         std :: cout << myName.at(list i1 );</pre>
445
         std :: cout << ", ";
446
447
       if ((int)(myName.size()) > 0) {
448
         std :: cout << \
449
           myName.at((int)(myName.size()) - 1);
450
451
       std :: cout << "]" << std :: endl;
452
```

In addition to printing, there is also functionality for reading input.

5.5 Procedures with input, output and input-output parameters

Moving to larger-scale patterns, we noticed that our codes had methods that used their parameters differently: some were used as inputs, some as outputs and some for both purposes. This was a *semantic* pattern that was not necessarily obvious in any of the implementations. However, once we noticed it, we could use that information to generate better, more idiomatic code in each language, while still capturing the higher-level semantics of the functionality we were trying to implement. More concretely, consider a function applyDiscount that takes a price and a discount, subtracts the discount from the price, and returns both the new price and a Boolean for whether the price is below 20. In GOOL, using inOutFunc, assuming all variables mentioned have been defined:

```
inOutFunc "applyDiscount" public static_
  [discount] [ isAffordable ] [ price ]
  (bodyStatements [
    price &== valueOf discount,
    isAffordable &= valueOf price ?< litFloat 20.0])</pre>
```

inOutFunc takes three lists of parameters, the input, output and input-output, respectively. This function has two outputs —price and isAffordable— and multiple outputs are not directly supported in all target languages. Thus we need to use different features to represent these. For example, in Python, return statement with multiple values is used:

```
def applyDiscount(price , discount ):
    price = price - discount
    isAffordable = price < 20

    return price , isAffordable

In Java, the outputs are returned in an array of Objects:
public static Object[] applyDiscount( \
    int price , int discount) throws Exception {
        Boolean isAffordable ;
    }
}</pre>
```

```
price = price - discount;
isAffordable = price < 20;

Object[] outputs = new Object[2];
outputs[0] = price;
outputs[1] = isAffordable;
return outputs;
}</pre>
```

In C#, the outputs are passed as parameters, using the out keyword, if it is only an output, or the ref keyword, if it is both an input and an output:

```
public static void applyDiscount(ref int price, \
   int discount, out Boolean isAffordable) {
    price = price - discount;
   isAffordable = price < 20;
}
And in C++, the outputs are passed as pointer parameters:
void applyDiscount(int &price, \
   int discount, bool &isAffordable) {
    price = price - discount;
   isAffordable = price < 20;
}</pre>
```

Here again we see how a natural task-level "feature", namely the desire to have different kinds of parameters, end up being rendered differently, but hopefully idiomatically, in each target language. GOOL manages the tedious aspects of generating any needed variable declarations and return statements. To call an inOutFunc function, one must use inOutCall so that GOOL can "line up" all the pieces properly.

5.6 Getters and setters

Getters and setters are a mainstay of OO programming. Whether these achieve encapsulation or not, it is certainly the case that saying to an OO programmer "variable foo from class FooClass should have getters and setters" is enough information for them to write the code. And so it is in GOOL as well. Saying getMethod "FooClass" foo and setMethod "FooClass" foo. The generated set methods in Python, Java, C# and C++ are:

```
def setFoo( self , foo ):
    self .foo = foo

public void setFoo(int foo) throws Exception {
    this .foo = foo;
    }
}
```

```
public void setFoo(int foo) {
    this .foo = foo;
}

void FooClass::setFoo(int foo) {
    this ->foo = foo;
}
```

The point is that the conceptually simple "set method" contains a number of idiosyncracies in each target language. These details are irrelevant for the task at hand, and this tedium can be automated. As before, there are specific means of calling these functions, get and set.

5.7 Design Patterns

Finally we get to the design patterns of [10]. GOOL currently handles three design patterns: Observer, State, and Strategy.

For Strategy, we draw from partial evaluation, and ensure that the set of strategies that will effectively be used are statically known at generation time. This way we can ensure to only generate code for those that will actually be used. runStrategy is the user-facing function; it needs the name of the strategy to use, a list of pairs of strategy names and bodies, and an optional variable and value to assign to upon termination of the strategy.

For Observer, initObserverList generates an observer for a list. More specifically, given a list of (initial values), it generates a declaration of an observer list variable, initially containing the given values. addObserver can be used to add a value to the observer list, and notifyObservers will call a method on each of the observers. Currently, the name of the observer list variable is fixed, so there can only be one observer list in a given scope.

The State pattern is here specialized to implement *Finite State Machines* with fairly general transition functions. Transitions happen on checking, not on changing the state. initState takes a name and a state label and generate a declaration of a variable with the given name and initial state. changeState changes the state of the variable to a new state. checkState is more complex. It takes the name of the state variable, a list of value-body pairs, and a fallback body; and it generates a conditional (usually a switch statement) that checks the state and runs the corresponding body, or the fallback body, if none of the states match.

Of course the design patterns could already have been coded in GOOL, but having these as language features is useful for two reasons: 1) the GOOL-level code is clearer in its intent (and more concise), and 2) the resulting code can be more idiomatic.

Below is a complete example of a GOOL function. The recommended style is to name all strings (to avoid hard-to-debug typos) and variables, then write the code proper.

```
patternTest :: (MethodSym repr) =>
```

```
repr (Method repr)
patternTest = let
 fsmName = "myFSM"
  offState = "Off"
 onState = "On"
 noState = "Neither"
 obsName = "Observer"
 obs1Name = "obs1"
 obs2Name = "obs2"
 printNum = "printNum"
 nName = "n"
 obsType = obj obsName
 n = var n int
 obs1 = var obs1Name obsType
 obs2 = var obs2Name obsType
 newObs = extNewObj obsName
   obsType []
 in mainFunction (body [block [
    varDec n,
    initState fsmName offState,
   changeState fsmName onState,
    checkState fsmName
    [( litString offState,
     oneLiner $ printStrLn offState ),
    ( litString onState,
     oneLiner $ printStrLn onState)]
    (oneLiner $ printStrLn noState )],
   block [
     varDecDef obs1 newObs,
     varDecDef obs2 newObs],
   block [
      initObserverList obsType
        [valueOf obs1],
      addObserver $ valueOf obs2,
      notifyObservers (func printNum
       void []) obsType]])
```

6 Related Work

We divide the Related Work into the following categories

- General-purpose code generation
- Multi-language OO code generation
- Design pattern modeling and code generation

which we present in turn.

6.1 General-purpose code generation

Haxe [3] is a general-purpose multi-paradigm language and cross-platform compiler. It compiles to all of the languages GOOL does, and many others. However, it is designed as a more traditional programming language, and thus does not offer the high-level abstractions that GOOL provides. Furthermore Haxe strips comments and generates source code around a custom framework; the effort of learning this framework and the lack of comments makes the generated code not particularly readable. The internal organization of Haxe does not seem to be well documented.

Protokit [14] is a DSL and code generator for Java and C++, where the generator is designed to produce general-purpose imperative or object-oriented code. The Protokit generator is model-driven and uses a final "output model" from which actual code can be generated. Since the "output model" is quite similar to the generated code, it presented challenges with regards to semantic, conventional, and library-related differences between the target languages [14]. GOOL's finally-tagless approach and syntax for highlevel tasks, on the other hand, help overcome differences between target languages.

ThingML [11] is a DSL for model-driven engineering targeting C, C++, Java, and JavaScript. It is specialized to deal with distributed reactive systems (a nevertheless broad range of application domains). This means that this is not quite a general-purpose DSL, unlike GOOL. ThingML's modelling-related syntax and abstractions stand in contrast to GOOL's object-oriented syntax and abstractions. The generated code lacks some of the pretty-printing provided by GOOL, specifically indentation, which detracts from readability.

6.2 Object-oriented generators

There are a number of code generators with multiple target OO languages, though all are for more restricted domains than GOOL, and thus do not meet all of our requirements.

Google protocol buffers [2] is a DSL for serializing structured data, which can be compiled into Java, Python, Objective C, and C++. Thrift [20] is a Facebook-developed tool for generating code in multiple languages and even multiple paradigms based on language-neutral descriptions of data types and interfaces. Clearwater [21] is an approach for implementing DSLs with multiple target languages for components of distributed systems. The Time Weaver tool [9] uses a multi-language code generator to generate "glue" code for real-time embedded systems. The domain of mobile applications is host to a bevy of DSLs with multiple target languages, of which MobDSL [15] and XIS-Mobile [19] are two examples. Conjure [1] is a DSL for generating APIs. It reads YML descriptions of APIs and can generate code in Java, TypeScript, Python, and Rust.

6.3 Design Patterns

A number of languages for modeling design patterns have been developed. The Design Pattern Modeling Language (DPML) [16] is similar to the Unified Modeling Language (UML) but designed specifically to overcome UML's shortcomings so as to be able to model all design patterns. DPML consists of both specification diagrams and instance diagrams for instantiations of design patterns, but does not attempt to generate actual source code from the models. The Role-Based Metamodeling Language [13] is also based on UML but with changes to allow for better models of design patterns, with specifications for the structure, interactions, and state-based behaviour in patterns. Again, source code generation is not attempted. Another metamodel for design patterns includes generation of Java code [4]. IBM developed a DSL in the form of a visual user interface for generation of OO code based on design patterns [6]. The languages that generate code do so only for design patterns, not for any general-purpose code, as GOOL does.

7 Future Work

Currently GOOL code is typed based on what it represents: variable, value, type, or method, for example. The type system does not go "deeper", so that variables are untyped, and values (such as booleans and strings) are simply "values". This is sufficient to allow us to generate well-formed code, but not to ensure that it is well-typed. We have started to statically type GOOL by making the underlying representations for GOOL's Variables and Values GADTs.

GOOL is currently less-than-precise in the list of generated import statements; we want to improve the code to track dependencies, and only generate imports for the features we actually use. This could be done via weaving some state at generation-time. In general, we can do various kinds of static analyses to enhance the code generation quality.

Another important future feature is to interface with certain external libraries. In particular, we have a need to call external Ordinary Differential Equation (ODE) solvers; we do not want to restrict ourselves to a single function, but have a host of different functions implementing different ODE-solving algorithms available. The structure of code that calls ODE solvers varies considerably, so the addition of generation-time state will help again here.

Some implementation decisions, such as the use of ArrayList to represent lists in Java, are hard-coded. But we could have used Vector instead. We would like such a choice to be user-controlled. Another such decision point is to allow users to choose which specific external library to use.

And, of course, we ought to implement more of the common OO patterns.

8 Conclusion

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

We currently successfully use GOOL to simultaneously generate code in all of our target languages for the glass and projectile programs described in Section 2.

Conceptually, mainstream object-oriented languages are similar enough that it is indeed feasible to create a single "generic" object-oriented language that can be "compiled" to them. Of course, these languages are syntactically quite different in places, and each contains some unique ideas as well. In other words, there exists a "conceptual" object-oriented language that is more than just "pseudocode": it is a full-fledged executable language (through generation) that captures the common essence of mainstream OO languages.

GOOL is an unusual DSL, as its "domain" is actually that of object-oriented languages. Or, to be more precise, of conceptual programs that can be easily written in languages containing a procedural code with an object-oriented layer on top — which is what Java, Python, C++ and C# are.

Since we are capturing *conceptual programs*, we can achieve several things that we believe are *together* new:

- generation of idiomatic code for each target language,
- turning coding patterns into language idioms,
- generation of human-readable, well-documented code.

We must also re-emphasize this last point: that for GOOL, the generated code is meant for human consumption as well as for computer consumption. This is why semantically meaningless concepts such as "blocks" exist: to be able to chunk code into pieces meaningful for the human reader, and provide documentation at that level as well.

References

- [1] [n. d.]. Conjure: a code-generator for multi-language HTTP/JSON clients and servers. https://palantir.github.io/conjure/#/ Accessed 2019-09-16.
- [2] [n. d.]. Google Protocol Buffers. https://developers.google.com/protocol-buffers/ Accessed 2019-09-16.
- [3] [n. d.]. Haxe The cross-platform toolkit. https://haxe.org Accessed 2019-09-13.
- [4] Hervé Albin-Amiot and Yann-Gaël Guéhéneuc. 2001. Meta-modeling design patterns: Application to pattern detection and code synthesis. In Proceedings of ECOOP Workshop on Automating Object-Oriented Software Development Methods.
- [5] Lucas Beyak and Jacques Carette. 2011. SAGA: A DSL for story management. arXiv preprint arXiv:1109.0776 (2011).
- [6] Frank J. Budinsky, Marilyn A. Finnie, John M. Vlissides, and Patsy S. Yu. 1996. Automatic code generation from design patterns. *IBM systems Journal* 35, 2 (1996), 151–171.
- [7] Raymond PL Buse and Westley R Weimer. 2009. Learning a metric for code readability. *IEEE Transactions on Software Engineering* 36, 4 (2009), 546–558.
- [8] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally tagless, partially evaluated: Tagless staged interpreters for simpler typed languages. *Journal of Functional Programming* 19, 5 (2009), 509–543.
- [9] Dionisio de Niz and Raj Rajkumar. 2004. Glue code generation: Closing the loophole in model-based development. In 10th IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS 2004). Workshop on Model-Driven Embedded Systems. Citeseer.

826

827

828

829

831

832

833

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

865

867

869

870

871

872

873

874

875

876

877

878

879

880

- [10] Erich Gamma. 1995. Design patterns: elements of reusable object-oriented software. Pearson Education India.
- [11] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa. 2016. Thingml: a language and code generation framework for heterogeneous targets. In Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems. ACM, 125–135.
- [12] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. 2012. Green-Marl: a DSL for easy and efficient graph analysis. ACM SIGARCH Computer Architecture News 40, 1 (2012), 349–362.
- [13] Dae-Kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee Song. 2003. A uml-based metamodeling language to specify design patterns. In Proceedings of Workshop on Software Model Engineering (WiSME), at UML 2003. Citeseer.
- [14] Gábor Kövesdán and László Lengyel. 2017. Multi-Platform Code Generation Supported by Domain-Specific Modeling. *International Journal of Information Technology and Computer Science* 9, 12 (2017), 11–18.
- [15] Dean Kramer, Tony Clark, and Samia Oussena. 2010. MobDSL: A Domain Specific Language for multiple mobile platform deployment. In 2010 IEEE International Conference on Networked Embedded Systems for Enterprise Applications. IEEE, 1–7.
- [16] David Mapelsden, John Hosking, and John Grundy. 2002. Design pattern modelling and instantiation using DPML. In Proceedings of the Fortieth International Conference on Tools Pacific: Objects for internet, mobile and embedded applications. Australian Computer Society, Inc., 3–11.
- [17] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to develop domain-specific languages. ACM computing surveys (CSUR) 37, 4 (2005), 316–344.
- [18] Arjan J Mooij, Jozef Hooman, and Rob Albers. 2013. Gaining industrial confidence for the introduction of domain-specific languages. In 2013 IEEE 37th Annual Computer Software and Applications Conference Workshops. IEEE, 662–667.
- [19] André Ribeiro and Alberto Rodrigues da Silva. 2014. Xis-mobile: A dsl for mobile applications. In Proceedings of the 29th Annual ACM Symposium on Applied Computing. ACM, 1316–1323.
- [20] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. 2007. Thrift: Scalable cross-language services implementation. Facebook White Paper 5, 8 (2007).
- [21] Galen S Swint, Calton Pu, Gueyoung Jung, Wenchang Yan, Younggyun Koh, Qinyi Wu, Charles Consel, Akhil Sahai, and Koichi Moriyama. 2005. Clearwater: extensible, flexible, modular code generation. In Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering. ACM, 144–153.
- [22] Daniel Szymczak, W. Spencer Smith, and Jacques Carette. 2016. Position Paper: A Knowledge-Based Approach to Scientific Software Development. In Proceedings of SE4Science'16 in conjunction with the International Conference on Software Engineering (ICSE). In conjunction with ICSE 2016, Austin, Texas, United States. 4 pp.
- [23] Drasil Team. 2019. Drasil Software: Generate All The Things (Focusing on Scientific Software). https://github.com/JacquesCarette/Drasil.
- [24] Daniel C Wang, Andrew W Appel, Jeffrey L Korn, and Christopher S Serra. 1997. The Zephyr Abstract Syntax Description Language.. In DSL, Vol. 97. 17–17.