Artificial Intelligence – Final Exam Outline – Fall 2019

The following topics will be covered on the exam.

The exam will be closed-book and closed-notes.

Introduction

- Definition of AI
- Four approaches to AI
 - o Acting humanly
 - o Thinking humanly
 - Thinking rationally
 - Acting rationally
- Turing test

Intelligent Agents

- Agent, percept, action, rational agent
- PEAS description of task environment
 - o Performance, Environment, Actuators, Sensors
- Task environment properties
 - o Fully vs. partially observable
 - o Deterministic vs. stochastic
 - o Static vs. dynamic
- Types of agents
 - o Reflex, Model-based, Goal-based, Utility-based, Learning
- Wumpus world

Search

- Problem-solving agent
- Five parts of search problem
 - o Initial state, actions, transition model, goal test, path (step) cost
 - o Examples: vacuum world, 8-puzzle, wumpus world
- State space, search tree, search graph, path, frontier
- Uninformed search (know algorithms)
 - o Breadth-first, Depth-first, Iterative deepening
- Informed search (know algorithm)
 - o A*, Hill-climbing
- Heuristic functions
 - Admissible heuristics
 - Designing good heuristics
 - o Heuristics: city-block (Manhattan), straight-line (Euclidean)
- Adversarial search
 - Game tree
 - Minimax (know algorithm)
 - Alpha-beta pruning (know algorithm)
 - o Games: tic-tac-toe, checkers, chess, go, backgammon, poker

Logic

- Knowledge-based agent
- First-order logic
 - Syntax and semantics
 - Properties of quantifiers
 - o Closed-world assumption
 - o Translate word problems to first-order logic
- Inference in first-order logic
 - Unification (know algorithm)
 - Conversion to CNF
 - Resolution proof by refutation (know algorithm)
- Application to Wumpus World

Planning

- Know the components of the PDDL planning language
- Know approaches to planning: forward and backward
- Know domains: Blocks, Cargo, Vacuum

Uncertainty

- Rational agent maximizes expected utility
- Probability
 - o Axioms
 - o Unconditional (prior) or conditional (posterior)
 - o Random variable
 - Distribution
- Probabilistic inference
 - Using full joint probability distribution
 - Normalization
 - o Independence and conditional independence
 - o Bayes' rule
 - Naïve Bayes
- Application to Wumpus World

Probabilistic Reasoning

- Bayesian networks
 - Node, link, conditional probability table
 - Exact inference (execute)

Learning

- Learning agent: performance, critic, feedback, learning element, learning goals, problem generator
- Supervised learning
 - o Terminology: target concept, hypothesis, classification, regression
 - o Error: false positive, false negative

- Underfitting and Overfitting
- o Probabilistic learning
 - Bayes classifier (execute)
 - Naive Bayes classifier (execute)
 - Independence assumption
 - Dealing with zero probabilities
- Neural network
 - Perceptron classification, regression, training (execute)
 - Logistic function
 - Multilayer perceptron topology
 - Deep learning
- Unsupervised learning
 - k-means clustering (execute)
 - Choosing k
- Reinforcement learning
 - State, action, reward, policy
 - Discount factor
 - Utility-based agent
 - Utility
 - Utility estimation given action model (compute)
 - Temporal-difference utility estimation (compute)
 - Passive vs. active learning
 - Exploration function
 - Learning rate function
 - Q-learning agent (execute)
 - Q function
 - Utility based on Q function
 - Update Q values given action model
 - Update Q values using temporal difference
 - o Application to wumpus world

Natural Language

- Language, grammar, syntax, semantics
- N-gram word models
 - How to compute and use models
- Text classification
 - How to classify documents using Bayes' rule
- Natural language for communication
 - o Context-free grammar, augmented grammar, lexicon, parse tree
 - o Parsing: Generate parse tree(s) of sentence given grammar and lexicon
 - Generating semantics using an augmented grammar
- Speech recognition
 - Phonemes
 - Acoustic model
 - Frame features from acoustic signal

- Hidden Markov Model for phoneme recognition
- Calculate probability of HMM given sequence of frame features
- o Language model
 - Hidden Markov Model for word recognition
 - Calculate probability of HMM given sequence of phonemes

Nothing on Vision and Robotics

Philosophical and Ethical Issues

- Weak AI: Definition, arguments for and against
- Strong AI: Definition, arguments for and against
- Ethical issues
 - AI used for illicit ends
 - o AI responsibility
 - o AI ending human race
 - o AI/Robot rights