1. (15 points). Recall that on \mathbb{R}^2 , the metrics d_p and d_{∞} are defined as follows:

for all $x = (x_1, x_2) \in \mathbb{R}^2, y = (y_1, y_2) \in \mathbb{R}^2$,

$$d_p(x,y) = \left(|x_1 - y_1|^p + |x_2 - y_2|^p\right)^{\frac{1}{p}} \quad \forall \ p \in [1, \infty),$$

$$d_{\infty}(x,y) = \max\left(|x_1 - y_1|, |x_2 - y_2|\right).$$

Draw the regions of the unit ball $B_1(0)$ in \mathbb{R}^2 under the metric d_1 , d_2 and d_{∞} , respectively. NO justification is needed.

- 2. (10 points). Let (X, d) be a metric space.
- (i) Write down the **negation** of the definition that (X, d) is complete.
- (ii) Provide an example of a metric space that is NOT complete. NO justification is needed.
- 3. (10 points). Let (X,d),(X',d') be two nonempty metric spaces, and $f:X\to X'$ be a continuous function. Let A be a subset of X.
 - (i) Write down the definition of A being compact.
 - (ii) Suppose A is compact. Prove that f(A) is a compact set in X'.
 - 4. (15 points). Let

$$f_n(x) = \sum_{k=1}^n \frac{\cos(kx)}{k^2}.$$

- (i): Prove that for each $x \in \mathbb{R}$, $\lim_{n \to \infty} f_n(x)$ exists. (*Hint: use the fact that* $|\cos y| \le 1$ for all $y \in \mathbb{R}$).
- (ii): We define f as the pointwise limit of f_n , i.e., $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in \mathbb{R}$. Prove that f_n converges uniformly to f on \mathbb{R} .
 - (iii): Is f a continuous function on \mathbb{R} ? Explain your answer.

Note that every metric in this problem is the usual one defined by the absolute value.