

ALJABAR LINEAR

Pertemuan ke-2 - Operasi, Properti dan Bentuk Spesial Matrix

Oleh:

Annastya Bagas Dewantara, M.T.

(email: annastya.bagas@ui.ac.id)

Fakultas Teknik

Universitas Indonesia

Daftar Paparan

- Matriks dan Operasi Matriks
 - Notasi dan Terminologi
 - Operasi Matriks
 - Matriks Sistem Persamaan Linear
 - Matriks Transpose
- Matriks dan Operasi Matriks
 - Properti penambahan matriks dan perkalian skalar

- Properti dari perkalian matriks
- Properti dari Matriks Zero
- Properti dari Matriks Identitas
- Properti dari Matriks Inverse
- Powers of a Matrix
- Polinomial Matriks
- Matriks Diagonal, Triangular, dan Simetrik
 - Matriks Diagonal

Matriks dan Operasi Matriks

- Matriks dan Operasi Matriks
 - Notasi dan Terminologi
 - Operasi Matriks
 - Matriks Sistem Persamaan Linear
 - Matriks Transpose
- 2 Matriks dan Operasi Matriks
- Matriks Diagonal, Triangular, dan Simetrik

Notasi dan Terminologi - 1

Augmented Metrics → Matriks untuk System of Linear equation

 $\textbf{Matrix} \rightarrow \mathsf{Rectangular} \ \mathsf{array} \ \mathsf{of} \ \mathsf{number}$

 $\textbf{Entris} \rightarrow \mathsf{Nilai} \ \mathsf{pada} \ \mathsf{array} \ \mathsf{matriks}$

 $\mathbf{m} o \mathsf{Baris} \; \mathsf{matriks}$

 $\mathbf{n} \to \mathsf{Kolom}$ matriks

 $\textbf{Size} \rightarrow \textsf{Ukuran dari matrikx} \ (\textit{m} \times \textit{n})$

$$\underbrace{\begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{bmatrix}}_{3 \times 2}, \quad \underbrace{\begin{bmatrix} 2 & 1 & 0 & -3 \end{bmatrix}}_{1 \times 4}, \quad \underbrace{\begin{bmatrix} e & \pi & -\sqrt{2} \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0 \end{bmatrix}}_{3 \times 3}, \quad \underbrace{\begin{bmatrix} 1 \\ 3 \end{bmatrix}}_{2 \times 1}, \quad \underbrace{\begin{bmatrix} 4 \end{bmatrix}}_{1 \times 1}$$

Notasi dan Terminologi - 2

Huruf Kapital \rightarrow Notasi untuk matriks **Huruf Kecil** \rightarrow Notasi untuk numerical quantities (scalar)

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

Nilai entry yang terletak pada baris ke-i dan kolom ke-j, di notasikan sebagai a_{ij} atau juga bisa $(A)_{ij}$:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix}$$

$$(1)$$

Apabila matriks memiliki jumlah kolom dan baris yang sama, maka matriks tersebut adalah square matrix of order-n, dengan garis pada matriks di atas adalah main diagonal.

Svarat **size** dari matriks **A** dan **B** harus sama:

Penambahan

$$(A+B)_{ij}=(A)_{ij}+(B)_{ij}$$

Pengurangan

$$(A-B)_{ij}=(A)_{ij}-(B)_{ij}$$

Perkalian Skalar

$$(A)_{mn} = c(A)_{ij} = ca_{ij}$$

Svarat kolom dari matriks A dan baris dari B harus sama:

Perkalian Matriks

$$A B = AB$$
 $M \times r \times r \times r = M \times r$

Terdapat beberapa cara dalam melakukan matrix product, antara lain:

- 1. Entry by entry
- 2. Row-Column

Partitioned Matrix

- 3. Column by column
- 4. Row by row
- 5. Column row expansion

Partitioned Matrix

Matriks dapat terbagi/partitioned ke dalam matriks yang lebih kecil dengan memasukkan garis horizontal atau vertikal di antara baris atau kolom terpilih.

Contoh 4×4 matriks:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ \hline 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$

Partitioned menjadi empat 2×2 **submatrices**:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

Dimana:

$$A_{11} = \begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 3 & 4 \\ 7 & 8 \end{bmatrix}, \quad A_{21} = \begin{bmatrix} 9 & 10 \\ 13 & 14 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} 11 & 12 \\ 15 & 16 \end{bmatrix}.$$

Multiplikasi Matriks — Entry by entry

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix}.$$

Jika C = AB adalah matriks berukuran 2×2 , maka

$$c_{ij} = \sum_{k=1}^{3} a_{ik} b_{kj}, \qquad i = 1, 2, j = 1, 2.$$

$$C = \begin{bmatrix} 1 \cdot 7 + 2 \cdot 9 + 3 \cdot 11 & 1 \cdot 8 + 2 \cdot 10 + 3 \cdot 12 \\ 4 \cdot 7 + 5 \cdot 9 + 6 \cdot 11 & 4 \cdot 8 + 5 \cdot 10 + 6 \cdot 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix}.$$

Multiplikasi Matriks — Row-Column

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix}.$$

Nilai dari entry c_{ij} diperoleh dari **dot product** antara baris ke-i dari A dan kolom ke-j dari B.

$$C = \begin{bmatrix} (1,2,3) \cdot (7,9,11)^T & (1,2,3) \cdot (8,10,12)^T \\ (4,5,6) \cdot (7,9,11)^T & (4,5,6) \cdot (8,10,12)^T \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix}.$$

Multiplikasi Matriks - Row by Row

$$C = A \begin{bmatrix} b_1 & b_2 \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 \end{bmatrix}.$$

$$b_1 = \begin{bmatrix} 7 \\ 9 \\ 11 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 8 \\ 10 \\ 12 \end{bmatrix}.$$

$$Ab_1 = \begin{bmatrix} 58 \\ 139 \end{bmatrix}, \quad Ab_2 = \begin{bmatrix} 64 \\ 154 \end{bmatrix}.$$

$$C = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix}.$$

Multiplikasi Matriks — Column by Column

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix}.$$

$$a_1 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}.$$

$$C = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} B,$$

$$a_1B = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 \\ 64 \end{bmatrix},$$

$$a_2 = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 139 \\ 154 \end{bmatrix},$$

$$C = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix}.$$

Multiplikasi Matriks – Linear Combinations

Apabila A_1,A_2,\cdots,A_r adalah matriks dengan **size** yang sama, dan c_1,c_2,\cdots,c_r adalah skalar, maka bentuk **Linear Combination** dapat di ekspresikan:

$$c_1A_1+c_2A_2+\cdots+c_rA_r$$

$$A = \begin{bmatrix} -1 & 3+2 \\ 1 & 2-3 \\ 2 & 1-2 \end{bmatrix}, \quad x = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$

$$2\begin{bmatrix} -1\\1\\2\end{bmatrix} - 1\begin{bmatrix} 3\\2\\1\end{bmatrix} + 3\begin{bmatrix} 2\\-3\\-2\end{bmatrix} = \begin{bmatrix} 1\\-9\\-3\end{bmatrix}$$

Multiplikasi Matriks - Column-Row Expansion

 $\stackrel{ extcolor{A}}{=}$ di partitioned ke ukuran (m imes 1) dan di ubah ke column vector c_1, c_2, \cdots, c_r

 $m \times r$ B di partitioned ke ukuran $(1 \times n)$ dan di ubah ke row vector r_1, r_2, \dots, r_r

$$AB = c_1r_1 + c_2r_2 + \cdots + c_rr_r$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

$$A = egin{bmatrix} c_1 & c_2 \end{bmatrix}, \quad c_1 = egin{bmatrix} 1 \ 3 \end{bmatrix}, \ c_2 = egin{bmatrix} 2 \ 4 \end{bmatrix}$$

$$AB = c_1 r_1 + c_2 r_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 5 & 6 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 7 & 8 \end{bmatrix}.$$

$$AB = c_1 r_1 + c_2 r_2 = \begin{bmatrix} 5 & 6 \\ 15 & 18 \end{bmatrix} + \begin{bmatrix} 14 & 16 \\ 28 & 32 \end{bmatrix}.$$

$$AB = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}.$$

$$B = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}, \quad r_1 = \begin{bmatrix} 5 & 6 \end{bmatrix}, r_2 = \begin{bmatrix} 7 & 8 \end{bmatrix}$$

Representasi Matriks Sistem Persamaan Linear

$$2x_1 + 3x_2 - x_3 = 5$$
$$4x_1 + x_2 + 2x_3 = 6$$
$$-2x_1 + 5x_2 + 3x_3 = -4$$

Coefficient Matrix

$$\underbrace{A}_{\substack{\text{coefficient variable}\\ matrix}}\underbrace{\mathbf{x}}_{\substack{\text{constant}\\ vector}}=\underbrace{\mathbf{b}}_{\substack{\text{constant}\\ vector}}$$

$$A = \begin{bmatrix} 2 & 3 & -1 \\ 4 & 1 & 2 \\ -2 & 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ -4 \end{bmatrix}$$

Augmented Matrix

$$\left[\begin{array}{ccc|c}
2 & 3 & -1 & 5 \\
4 & 1 & 2 & 6 \\
-2 & 5 & 3 & -4
\end{array}\right]$$

Matriks Transpose

Jika $A = [a_{ij}]$ adalah matriks berukuran $m \times n$, maka **transpose** dari A, ditulis A^T , adalah matriks berukuran $n \times m$ dengan elemen

$$(A^T)_{ij}=a_{ji}.$$

Contoh-1
 Contoh-2
 Contoh-3
 Contoh-4

$$A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 & 5 & 7 \\ -1 & 2 & 3 \end{bmatrix}$
 $C = \begin{bmatrix} 4 \\ -6 \\ 8 \end{bmatrix}$
 $D = \begin{bmatrix} 9 & 0 & -2 & 5 \end{bmatrix}$
 $A^T = \begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix}$
 $B^T = \begin{bmatrix} 0 & -1 \\ 5 & 2 \\ 7 & 3 \end{bmatrix}$
 $C^T = \begin{bmatrix} 4 & -6 & 8 \end{bmatrix}$
 $D^T = \begin{bmatrix} 9 \\ 0 \\ -2 \\ 5 \end{bmatrix}$

Trace Matriks

Jika $A = [a_{ij}]$ adalah **square matric** berukuran $n \times n$, maka **trace** dari A (tr(A)), adalah jumlah dari semua elemen diagonal utama:

$$\operatorname{tr}(A) = \sum_{i=1}^n a_{ii}.$$

Contoh-1

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$tr(A) = 1 + 4 = 5$$

Contoh-2

$$B = \begin{bmatrix} 2 & -1 & 0 \\ 4 & 3 & 5 \\ 7 & 6 & -2 \end{bmatrix}$$

$$tr(B) = 2 + 3 + (-2) = 3$$

Contoh-3

$$C = \begin{bmatrix} 10 & 0 & 2 & 1 \\ -3 & 5 & 6 & 7 \\ 8 & 9 & -4 & 2 \\ 0 & 1 & 3 & 2 \end{bmatrix}$$

$$\operatorname{tr}(C) = 10+5+(-4)+2 = 13$$

Matriks dan Operasi Matriks

- Matriks dan Operasi Matriks
- 2 Matriks dan Operasi Matriks
 - Properti penambahan matriks dan perkalian skalar
 - Properti dari perkalian matriks
 - Properti dari Matriks Zero
 - Properti dari Matriks Identitas
 - Properti dari Matriks Inverse
 - Powers of a Matrix
 - Polinomial Matriks

Properti penambahan matriks dan perkalian skalar

Properti penambahan matriks dan perkalian skalar

Theorem 1.4.1

Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be performed, the following rules of matrix arithmetic are valid.

- (a) A+B=B+A
- A + (B + C) = (A + B) + C [Associative law for matrix addition]
- A(BC) = (AB)C
- [Commutative law for matrix addition] [Associative law for matrix multiplication] [Left distributive law]
- A(B+C) = AB + AC
- (e) (B + C)A = BA + CA[Right distributive law]
- (f) A(B-C) = AB AC
- (g) (B-C)A = BA CA
- (h) a(B+C) = aB + aC
- a(B-C) = aB aC
- (i) (a+b)C = aC + bC
- (k) (a-b)C = aC bC
- a(bC) = (ab)C
- (m) a(BC) = (aB)C = B(aC)

Contoh properti (I)

$$C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad a = 2, \ b = 3.$$

$$bA = 3A = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}$$

$$a(bA) = 2 \cdot \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 18 & 24 \end{bmatrix}.$$

$$(ab)A = (2 \cdot 3)A = 6A = \begin{bmatrix} 6 & 12 \\ 18 & 24 \end{bmatrix}.$$

Properti dari perkalian matriks

Tidak semua aritmetika matriks pada aturan sebelumnya berlaku sama untuk matriks multiplikasi, contohnya pada **commutative law**, yang mana *AB* dan *BA* dapat bernilai berbeda, karena:

- 1. AB mungkin memenuhi syarat perkalian matriks, namun BA tidak
- 2. AB dan BA terdefinisi keduanya, namun dapat memiliki size yang berbeda di akhir
- 3. AB dan BA terdefinisi keduanya dan memiliki **size** yang sama, namun hasilnya dapat berbeda.

Contoh:

$$A = \begin{bmatrix} -1 & 0 \\ 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} -1 & -2 \\ 11 & 4 \end{bmatrix}, \quad BA = \begin{bmatrix} 3 & 6 \\ -3 & 0 \end{bmatrix}.$$

Properti dari Matriks Zero

Theorem 1.4.2

Properties of Zero Matrices

If *c* is a scalar, and if the sizes of the matrices are such that the operations can be perfored, then:

- (a) A + 0 = 0 + A = A
- (b) A 0 = A
- (c) A A = A + (-A) = 0
- (*d*) 0A = 0
- (e) If cA = 0, then c = 0 or A = 0.

Properti dari Matriks Identitas

Square matrix dengan 1 pada diagonal utama dan 0 di tempat lain disebut identity matrix, dilambangkan I atau I_n untuk ukuran $n \times n$.

Contoh:

$$I_1 = [1], \quad I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Untuk setiap matriks A berukuran $m \times n$ berlaku:

$$AI_n = A, \qquad I_m A = A$$

Jika R adalah **reduced row echelon form** dari matriks A berukuran $n \times n$, maka R memiliki setidaknya satu row zero **atau** $R = I_n$.

Properti dari Matriks Inverse

Dalam aritmatika bilangan real, setiap $a \neq 0$ memiliki invers a^{-1} sehingga $aa^{-1} = a^{-1}a = 1$. Analognya pada matriks:

Definisi: Matriks bujur sangkar (square matrix) A disebut invertible jika terdapat matriks B dengan ukuran sama sehingga

$$AB = BA = I$$

Maka $B = A^{-1}$, dan A disebut nonsingular. Jika tidak ada B, maka A singular.

Contoh:

$$A = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} \quad \Rightarrow \quad AB = BA = I$$

Jadi A dan B adalah invers satu sama lain.

Sifat-sifat:

Invers matriks unik. Jika B dan C invers dari A, maka B=C.

Untuk 2 \times 2 matriks $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, A invertible $\iff ad - bc \neq 0$, dengan:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Jika A, B invertible, maka $(AB)^{-1} = B^{-1}A^{-1}$.

Powers of a Matrix

Untuk matriks persegi A:

$$A^0 = I$$
, $A^n = A \cdot A \cdot ... \cdot A$ (*n* factors)

Jika A invertible:

$$A^{-n}=(A^{-1})^n$$

Laws of exponents:

$$A^rA^s=A^{r+s}, \quad (A^r)^s=A^{rs}$$

Properties (Theorem 1.4.7):

1.
$$(A^{-1})^{-1} = A$$

2.
$$(A^n)^{-1} = A^{-n} = (A^{-1})^n$$

3.
$$(kA)^{-1} = k^{-1}A^{-1}, \quad k \neq 0$$

Catatan:

1.
$$(A + B)^2 = A^2 + AB + BA + B^2$$

2. Jika AB = BA, maka:

$$(A+B)^2 = A^2 + 2AB + B^2.$$

Polinomial Matriks

Jika A adalah matriks persegi $n \times n$ dan

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m,$$

maka didefinisikan:

$$p(A) = a_0I + a_1A + a_2A^2 + \cdots + a_mA^m$$

dengan I matriks identitas.

Contoh: Untuk
$$p(x) = x^2 - 2x - 5 \text{ dan } A = \begin{bmatrix} -1 & 2 \\ 1 & 3 \end{bmatrix}$$
:

$$p(A) = A^2 - 2A - 5I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Properties: Karena $A^rA^s = A^{r+s} = A^sA^r$, maka **powers** dari A komutatif. Akibatnya, setiap dua matrix polynomials $p_1(A)$ dan $p_2(A)$ juga komutatif:

$$p_1(A)p_2(A) = p_2(A)p_1(A)$$

Matriks Diagonal, Triangular, dan Simetrik

- Matriks dan Operasi Matriks
- 2 Matriks dan Operasi Matriks
- Matriks Diagonal, Triangular, dan Simetrik
 - Matriks Diagonal

Matriks Diagonal

Definisi: Matriks persegi dengan semua elemen di luar main diagonal bernilai nol. Contoh:

$$\begin{bmatrix} 2 & 0 \\ 0 & -5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Bentuk Umum: $D = diag(d_1, d_2, \dots, d_n)$

Invers: *D* invertible \iff $d_i \neq 0 \ \forall i$.

$$D^{-1} = \operatorname{diag}\left(\frac{1}{d_1}, \frac{1}{d_2}, \dots, \frac{1}{d_n}\right)$$

Pangkat:

$$D^k = \operatorname{diag}(d_1^k, d_2^k, \dots, d_n^k)$$

Perkalian dengan matriks:

DA: setiap row dari A dikalikan oleh elemen diagonal D.

AD: setiap column dari A dikalikan oleh elemen diagonal D.

Matriks dan Operasi Matriks

Triangular Matrices

Definisi:

Lower Triangular: semua elemen di atas main diagonal bernilai 0 ($a_{ii} = 0$ untuk i < j). **Upper Triangular**: semua elemen di bawah *main diagonal* bernilai 0 ($a_{ii} = 0$ untuk i > j). Jika matriks berbentuk salah satunya, disebut Triangular. Catatan: Diagonal Matrix adalah sekaligus Upper dan Lower Triangular.

Sifat-sifat penting:

Transpose dari Lower Triangular adalah Upper Triangular, dan sebaliknya. Hasil perkalian sesama Lower (atau Upper) Triangular tetap Triangular. Matriks A Triangular invertible \iff semua entri diagonal $\neq 0$. Invers dari Lower (atau Upper) Triangular tetap Lower (atau Upper).

Contoh:

$$\begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix} \quad \text{(Upper, invertible)}, \quad \begin{bmatrix} 3 & -2 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{(Upper, non-invertible)}$$

Matriks Diagonal

Matriks Simetrik

Definisi: Matriks A disebut symmetric jika $A = A^T$, atau setara dengan $(A)_{ii} = (A)_{ii}$.

Ciri visual: entri diagonal bebas, sedangkan entri di atas dan bawah main diagonal saling mencerminkan.

Contoh:
$$\begin{bmatrix} 7 & -3 \\ -3 & 5 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 4 & 5 \\ 4 & -3 & 0 \\ 5 & 0 & 7 \end{bmatrix}$

Sifat-sifat:

 A^T symmetric.

 $A\pm B$ symmetric, jika A dan B symmetric.

kA symmetric (untuk skalar k).

AB symmetric $\iff AB = BA$ (commute).

Jika A symmetric dan invertible, maka A^{-1} juga symmetric.

Produk AA^T dan A^TA selalu symmetric (dan invertible jika A invertible).

Matriks Diagonal

Daftar Pustaka I