Teorema Chinês do Resto e o Teorema de Euler-Fermat

Prof. Dr. Vinícius Wasques

Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro

22 de junho de 2020

Equações módulo n

Trataremos nessa aula equações da seguinte forma:

$$x \equiv b \pmod{n}$$
,

em que b e n são números inteiros dados e x é a variável a ser determinada.

Equações módulo n

Esse problema é simples, uma vez que as soluções são da forma:

$$x = b + kn$$
,

para $k \in \mathbb{Z}$.

Já que

$$x \equiv b \pmod{n} \Leftrightarrow n|x-b \Leftrightarrow x-b=kn \Leftrightarrow x=b+kn$$

para algum $k \in \mathbb{Z}$.

Determine as soluções da equação modular

$$x \equiv 3 \pmod{5}$$
.

Determine as soluções da equação modular

$$x \equiv 3 \pmod{5}$$
.

Como $x \equiv 3 \pmod{5}$, então temos que n|x-3 e consequentemente x = 3 + 5k.

Isso implica que existem infinitas soluções em $\ensuremath{\mathbb{Z}}$ para esse problema.

No entanto, a solução é única módulo 5.

Sistemas de equação módulo n

Sistemas de equações modulares são mais elaborados:

$$\begin{cases} x \equiv b_1 \; (mod \; a_1) \\ x \equiv b_2 \; (mod \; a_2) \\ \vdots \\ x \equiv b_m \; (mod \; a_m) \end{cases}$$

Isto é, uma solução para esse problema consiste em determinar um valor de $x \in \mathbb{Z}$ que satisfaz todas as equações modulares simultaneamente para a_1, \ldots, a_m e b_1, \ldots, b_m dados.

Determine a solução do seguinte sistema modular

$$\begin{cases} x \equiv 1 \pmod{11} \\ x \equiv 2 \pmod{7} \end{cases}$$

Determine a solução do seguinte sistema modular

$$\begin{cases} x \equiv 1 \pmod{11} \\ x \equiv 2 \pmod{7} \end{cases}$$

A primeira equação revela que x = 1 + 11k, para algum $k \in \mathbb{Z}$.

Agora sejam q e r o quociente e o resto da divisão de k por 7, respectivamente.

Assim,
$$k = 7q + r$$
.

Substituindo k em x, obtemos

$$x = 1 + 11(7q + r) = 1 + 77q + 11r$$

Para x satisfazer a segunda congruência, devemos determinar $r \in \{0, 1, \dots, 6\}$ tal que

$$11r+1 \equiv 2 \pmod{7},$$

ou seja, $4r \equiv 1 \pmod{7}$ (verifique esse fato).

Como o inverso de 4 (mod 7) é 2 (verifique esse fato), obtemos

$$r = 2$$
 e portanto $x = 77q + 23$.

Teorema Chinês do Resto

Sejam b_1, b_2, \ldots, b_k números inteiros quaisquer e a_1, a_2, \ldots, a_k primos entre si dois a dois. Assim, o sistema de equações

$$\begin{cases} x \equiv b_1 \; (mod \; a_1) \\ x \equiv b_2 \; (mod \; a_2) \\ \vdots \\ x \equiv b_m \; (mod \; a_m) \end{cases}$$

admite solução, que é única módulo $A = a_1.a_2...a_m$.

Consideremos os números

$$M_i = \frac{A}{ai} = a_1 \dots a_{i-1} \cdot a_{i+1} \dots a_m$$

para todo $i \in \{1, \ldots, m\}$.

Como $mdc(a_i, M_i) = 1$, então pela Proposição vista na última aula existe X_i inteiro tal que

$$M_iX_i \equiv 1 \pmod{a_i}$$
.

Note que se $j \neq i$, então $M_j = a_1 \dots a_{j-1}.a_{j+1}\dots a_m$ é múltiplo de a_i e portanto

$$M_j X_j \equiv 0 \pmod{a_i}$$
.

Assim, temos que

$$x_0 = M_1 X_1 b_1 + M_2 X_2 b_2 + \ldots + M_m X_m b_m$$

é solução do sistema de equações, pois

$$x_0 \equiv M_i X_i b_i \equiv b_i \pmod{a_i}$$
.

para todo i.

Para mostrar que essa solução é única, suponha que exista uma outra solução x_1 .

Assim,

$$x_0 \equiv x_1 \pmod{a_i} \Leftrightarrow a_i | x_0 - x_1.$$

para todo a_i .

Como todos os números ai são dois a dois primos, temos que

$$A|x_0-x_1\Leftrightarrow x_0\equiv x_1 \pmod{A}$$

mostrando a unicidade módulo A.

Determine a solução do seguinte sistema modular

$$\begin{cases} x \equiv 1 \pmod{11} \\ x \equiv 2 \pmod{7} \end{cases}$$

Determine a solução do seguinte sistema modular

$$\begin{cases} x \equiv 1 \pmod{11} \\ x \equiv 2 \pmod{7} \end{cases}$$

Pelo Teorema Chinês do resto, temos que: A=11.7=77, $M_1=7$ e $M_2=11$.

Logo, existem X_1 e X_2 tais que

$$7X_1 \equiv 1 \pmod{11}$$
 e $11X_2 \equiv 1 \pmod{7}$

Note que $X_1 = 8$ e $X_2 = 2$ são soluções (verifique esse fato)

Assim,

$$x_0 = M_1 X_1 b_1 + M_2 X_2 b_2 = 100$$

Portanto, as soluções do sistema linear são dadas por 100 módulo A=77. Isto é, a solução do sistema linear é dada por

$$\overline{23} \in \mathbb{Z}_{77}$$

conforme havíamos constatado anteriormente (x = 77q + 23).

Para resolver os sistema, precisamos determinar os valores de X_i tais que

$$M_iX_i \equiv 1 \pmod{a_i}$$

A fim de estudar esse problema, precisamos do conceito de função de Euler.

Função de Euler

Seja n um número inteiro positivo, a função de Euler, denotada por $\varphi(n)$, é definida como sendo o número de inteiros positivos menores ou iguais a n e que são relativamente primos com n.

Para essa função, temos que: (verifique os fatos abaixo)

- $\varphi(1) = \varphi(2) = 1$;
- $1 < \varphi(n) < n$ para qualquer n > 2;
- Se p é primo, então $\varphi(p) = p 1$;
- Se p é primo, então $\varphi(p) = p 1$;

Teorema de Euler-Fermat

Sejam a e m dois inteiros com
$$m>0$$
 e $mdc(a,m)=1$. Assim $a^{arphi(m)}\equiv\ 1\ (mod\ m).$

Observe que se $r_1, r_2, \ldots, r_{\varphi}(m)$ é um sistema completo de invertíveis módulo m e a é um número natural tal que mdc(a, m) = 1, então

$$ar_1, ar_2, \ldots, ar_{\varphi}(m)$$

também é um sistema completo de invertíveis módulo m.

De fato, temos que $mdc(ar_i, m) = 1$ para todo i e se $ar_i \equiv ar_j \pmod{m}$, então $r_i \equiv r_j \pmod{m}$ pois a é invertível módulo m.

Logo, $r_i = r_j$ e portanto i = j. Consequentemente cada ar_i deve ser congruente com algum r_i .

Assim,

$$\prod_{1 \leq i \leq \varphi(m)} \mathsf{ar}_i \equiv \prod_{1 \leq i \leq \varphi(m)} r_i \; (\textit{mod } m)$$

se, e somente se

$$a^{\varphi(m)}\prod_{1\leq i\leq \varphi(m)}r_i\equiv\prod_{1\leq i\leq \varphi(m)}r_i\ (mod\ m.)$$

Como cada r_i é invertível módulo m, simplificando o fator

$$\prod_{1\leq i\leq \varphi(m)}r_i$$

obtemos o resultado desejado

Pequeno Teorema de Fermat

Como corolário do Teorema de Euler-Fermat, temos:

$$a^{p-1} \equiv 1 \pmod{p},$$

para p primo tal que p não divide a.

Exercícios

- a) Demonstre o Pequeno Teorema de Fermat e conclua que $a^p \equiv a \pmod{p}$
- b) Utilize o Teorema de Euler-Fermat para mostrar a seguinte consequência

Se mdc(a, m) = 1, então a equação $ax \equiv b \pmod{m}$, tem solução única módulo m, dada por

$$x \equiv a^{\varphi(m)-1}b \pmod{m}$$

Como consequência temos que todas as soluções da equação $ax \equiv b \pmod{m}$ são da forma

$$x = a^{\varphi(m)-1}b + km$$

onde $k \in \mathbb{Z}$.

Referências

MARTINEZ, F.E.B; MOREIRA, C.G.T; SALDANHA, N.,T.; TENGAN, E. Teoria dos Números. Um passeio com Primos e outros Números Familiares pelo Mundo Inteiro. IMPA, 2013.

GRAHAM, R. L., KNUTH, D. E., PATASHNIK, O Matemática Concreta. LTC, São Paulo, 1995

NIVEN, I. E.; ZUCKERMAN, N.S. An Introduction to the Theory of Numbers, NY, John Wiley & Sons, 1991.

Contato

Prof. Dr. Vinícius Wasques

email: viniciuswasques@gmail.com

Departamento de Matemática

site: https://viniciuswasques.github.io/home/

