Z. JONNY KONG

+1(310) 498-9627 \$\diamondright\text{kong102@purdue.edu} \diamondright\text{www.jonnykong.com}

Researcher and engineer specializing in ML systems, and networked & mobile systems, with expertise in architecting scalable infrastructure for real-time AI applications. Seeking industry roles as a Research Scientist, Research Engineer, or Software Engineer to drive innovation in ML inference and systems optimization.

EDUCATION

Purdue University
Ph.D. in Electrical and Computer Engineering

West Lafayette, IN, U.S. Aug 2020 - Present

University of California, Los Angeles

Los Angeles, CA, U.S. Sep 2018 - June 2020

M.S. in Computer Science

Beijing, China Sep 2014 - June 2018

Beihang University B.E. in Automation

SKILLS

Programming Python, C/C++, Java, Bash, Julia, SQL, Lua

Platforms Linux, CUDA (TensorRT, NSight Systems, NVML), Android, Docker, Cloud Platforms (GCP, AWS)

Frameworks DL (PyTorch, ONNX), LLM (vLLM, DeepSpeed), Mobile DL (TF-Lite, ncnn)

Tools Git, build systems (CMake, Gradle, buck2), gdb, Linux perf, Wireshark, OpenCV, Protobuf, Thrift

RESEARCH AND PROFESSIONAL EXPERIENCE

Purdue University

West Lafayette, IN, U.S. Aug 2020 - Present

Research Assistant

Advisor: Prof. Y. Charlie Hu

1108 2020 1700011

- Developed an energy-efficient LLM inference framework using GPU frequency tuning (DVFS) on top of vLLM, reducing energy consumption by 18% while preserving request throughput, optimizing cloud inference costs
- Designed a machine-learning-as-a-service (MLaaS) framework for GPU clusters using pipelined parallelism, improving serving throughput by up to 52.8% over the industry standard, reducing MLaaS operator's capital expenditure and operating expenses [2]
- Designed an MLaaS framework specifically for serving edge-assisted AR mobile apps, that maximizes the capacities of GPU servers and serves 1.7-6.9x more clients [4]
- Designed an MLaaS framework that optimize the overall accuracy of an AR mobile app that offloads multiple tasks to an edge GPU server, improving the overall accuracy by 7.6%-14.3%, resulting in smoother user experiences [6]
- Conducted measurement studies on latest wireless networks, such as 5G and 802.11ad, in terms of network throughput, handover behaviors, and application performance, revealing their real world performance characteristics [8] [5]

Meta Platforms

Sunnyvale, CA, U.S.

Systems & Infra Software Engineering Intern

May 2024 - Aug 2024

- Contributed to the development of IPNext, Meta's latest-generation control plane framework for ads recommendation ML models, using public tools (e.g. C++, Thrift, folly) and Meta-internal tools (e.g. buck2, Thrift, Sapling, JellyFish)
- Implemented a new configuration format for IPNext to streamline the deployment of ads models, reducing configuration file changes per model from three to two, thereby minimizing misconfiguration risks
- Developed verification and rollback procedures, to ensure model migrations to the new configuration will be done correctly and reliably, using tools such as Configerator, Conveyor, Tupperware, Scuba, Thrift Fiddle

- Conducted the seamless migration of all Meta ads ML models (≈100) across 20 regions and 3-4K instances, ensuring zero downtime or revenue impact, streamlining model deployment workflows and improving deployment efficiency

NOTABLE PUBLICATIONS

- [1] **Z. Jonny Kong***, Omar Basit*, Abhiram Datla, Abhiram Datla, Y. Charlie Hu. *"Fine-Grained Energy Optimization in LLM Inference via GPU Frequency Control"*. In submission. (* co-primary)
- [2] **Z. Jonny Kong***, Qiang Xu*, Y. Charlie Hu. "IPIPE: Efficient Video Analytics Serving on Heterogeneous GPU Clusters via Pool-Based Pipeline Parallelism". In **USENIX ATC 2025**.
- [3] **Z. Jonny Kong**, Nathan Hu, Y. Charlie Hu, Jiayi Meng, Yaron Koral. "High-Fidelity Cellular Network Control-Plane Traffic Generation without Domain Knowledge". In **ACM IMC 2024**.
- [4] **Z. Jonny Kong***, Qiang Xu*, Y. Charlie Hu. "ARISE: An Accuracy-Aware Proactive Framework for Serving Concurrent Edge-Assisted AR Clients". In **ACM MobiSys 2024**. (* co-primary)
- [5] Moinak Ghoshal*, Imran Khan*, **Z. Jonny Kong***, Phuc Dinh, Jiayi Meng, Y. Charlie Hu, Dimitrios Koutsonikolas. "Performance of Cellular Networks on the Wheels". In **ACM IMC 2023**. (* co-primary)
- [6] **Z. Jonny Kong***, Qiang Xu*, Jiayi Meng, Y. Charlie Hu. "AccuMO: Accuracy-Centric Multitask Offloading in Edge-Assisted Mobile Augmented Reality". In **ACM MobiCom 2023**. (*co-primary)
- [7] Moinak Ghoshal*, **Z. Jonny Kong***, Qiang Xu*, Zixiao Lu, Shivang Aggarwal, Imran Khan, Jiayi Meng, Yuanjie Li, Y. Charlie Hu, Dimitrios Koutsonikolas. "Can 5G mmWave Enable Edge-Assisted Real-Time Object Detection for Augmented Reality?". In **IEEE MASCOTS 2023**. (*co-primary)
- [8] Shivang Aggarwal, **Zhaoning Kong**, Moinak Ghoshal, Y. Charlie Hu, Dimitrios Koutsonikolas. "Throughput Prediction on 60 GHz Mobile Devices for High-Bandwidth, Latency-Sensitive Applications". In **PAM 2021 (Best Dataset Award)**.
- [9] Jiayi Meng, **Z. Jonny Kong**, Y. Charlie Hu, Mun Gi Choi, Dhananjay Lal. "Do We Need Sophisticated System Design for Edge-assisted Augmented Reality?". In **ACM EdgeSys 2022 (Best Paper Award)**.

NOTABLE AWARDS

- Best Paper Award, EdgeSys '22
- Best Dataset Award, PAM '21
- National Scholarship of China, 2017 (Top 0.2% nationwide)

PROFESSIONAL SERVICES

Journal Reviewers: IEEE Transactions on Networking, IEEE Transactions on Mobile Computing **Artifact Evaluation Committee (AEC)**: ACM MobiSys 2023, SOSP 2023

TEACHING EXPERIENCE

ECE 26400 Advanced C Programming, Purdue University: TA for Fall '20, Spring '21, Summer '21 CS 151B Computer Systems Architecture, UCLA: TA for Winter '20

CS 217A Internet Architecture and Protocols, UCLA: TA for Fall '19