Abstract Algebra Assignments © BinaryPhi

Name:		Assignment: Number 1
Score:		Last Edit: May 26, 2022 PDT
Problem 1: Definition	5	
(a) Assuming A and A and set B is de		Product (or) of set
	$A \times B = \{ \underline{\hspace{1cm}}$	}}.
	and C are three non-empty se	ets, the mapping from $A \times B$ to C is
	we have $A = B = C$ (an algebra in	braic operation from A and A to A), A .
(d) Associative Pro	perty denotes to a type of b	pinary operation " \circ " in set A if
		$, \forall a,b,c \in A.$
(e) Commutative P	roperty denotes to a type of	of binary operation " \circ " in set A if
		$_, \forall a,b \in A.$
(f) "o" is left-distribu	tive over "+" if	
		$\forall a,b,c\in A.$
"o" is right-distrib	outive over "+" if	
		$\forall a,b,c\in A.$
"∘" is Distributi	ve over "+" if it is both left-	- and right-distributive.

(g)		s a non-empty set and R is a subset of $A \times A$, $a, b \in A$, if $(a, b) \in R$, we and b have a relation R , denoted by R denotes A .
(h)	An Equivaler	at Relation R from set A satisfies the following, $\forall (a, b, c) \in A$:
	1	Property:
	2	Property:
	3	Property:
(i)		mpty subsets of A , such that every element of A is included in exactly A , is defined as a of set A .
(j)	have the relati	s an equivalent relation in set A , $a \in A$, the set of all elements that on R with a : $\{b \in A \mid bRa\}$, is defined as the oted by). a is called representative of the class.
(k)	of A with resp	s an equivalent relation in set A , then the set of all equivalence classes ect to the relation R : $\{\bar{a} \mid a \in A\}$, is called the d is denoted by
(1)	Assuming R is	s an equivalent relation in set A , then the map
		$\iota: A \to A/R, \ \iota(a) = \bar{a}, \ \forall a \in A,$
	is called the _	from A to A/R .
(m)		nary operation " \circ " is in set A , if an equivalent relation R of A satisfies ary operation:
		to be a Congruence Relation with respect of operation " \circ ". For see class of a , \bar{a} is called the

1) For two $m \times n$ matrix A and B , we have ARB if there exists an invertible $n \times n$ matrix P and an invertible $m \times m$ matrix Q that satisfy $A = PBQ$.
2) For two $m \times n$ matrix A and B , we have ARB if there exists an $n \times n$ matrix P and an $m \times m$ matrix Q that satisfy $A = PBQ$.
3) For two $m \times m$ matrix A and B , we have ARB if there exists an invertible $n \times n$ matrix P that satisfy $A = PBP^{-1}$.

Justify if R of each of the following relation is an equivalence relation:

Problem 2:

Problem 3: Which of the Which of the following has a	e following binary operation " \sim " has commutative property associative property?
$1) \ a \sim b = a - b, \ \forall a, b \in$	$\mathbb{Z};$
$2) \ a \sim b = a^b, \ \forall a, b \in \mathbb{N};$;
2) 1 bla V 1 c	INT
$3) \ a \sim b = a^b b^a, \ \forall a, b \in \mathbb{R}$	14;
$4) \ a \sim b = a^2 b^2, \ \forall a, b \in \mathbb{C}$	$\mathbb{Q};$
, , ,	

Prove that the sufficient prerequisite for " $\bar{a}=\bar{c},\;\bar{b}=\bar{d}\Longrightarrow(\overline{a\circ b})=(\overline{c\circ d})$ " is that a congruence relation in A with respect to operation " \circ ".					
	Prove that the sufficient prerequisite for " $\bar{a} = \bar{c}$, $\bar{b} = \bar{d} \Longrightarrow (\bar{a} \circ \bar{b}) = (\bar{c} \circ \bar{d})$ " is that R is a congruence relation in A with respect to operation " \circ ".				

Assuming R is an equivalence relation in set A and " \circ " is an operation in

Problem 4:

A, the operation " $\bar{\circ}$ " in the quotient set A/R is: