5th Meet

□ 오늘 공부할 것은

	01. 분류(Classification)의 개요	181
04	02. 결정 트리	183
분류	결정 트리 모델의 특징	185
ETT.	결정 트리 파라미터	186
-	결정 트리 모델의 시각화	187
	결정 트리 과적합(Overfitting)	198
	결정 트리 실습 - 사용자 행동 인식 데이터 세트	200
	03. 앙상불 학습	210
	앙상블 학습 개요	210
	보팅 유형 - 하드 보팅(Hard Voting)과 소프트 보팅(Soft Voting)	212
	보팅 분류기(Voting Classifier)	213
	04. 랜덤 포레스트	216
	랜덤 포레스트의 개요 및 실습	216
	랜덤 포레스트 하이퍼 파라미터 및 튜닝	218
	GBM의 개요 및 실습	221
	05. GBM(Gradient Boosting Machine)	221
	GBM 하이퍼 파라미터 소개	224
	XGBoost 개요	225

06. XGBoost(eXtra Gradient Boost)	225
XGBoost 설치하기	227
파이썬 래퍼 XGBoost 하이퍼 파라미터	228
파이썬 래퍼 XGBoost 적용 - 위스콘신 유방암 예측	232
사이킷런 래퍼 XGBoost의 개요 및 적용	240

Now, It's your turn P.P.P.

40min ~ 50min

Chapter 04

분류 (Classification)

[04-01] 분류(Classification)의 개요

☐ Supervised Machine Learning

clf = RandomForestClassifier()

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

clf.score(X_test, y_test)

Training Data

Model

Training Labels

Prediction

Evaluation

※ 출처: https://github.com/amueller/odscon-2015

	나이브 베이즈 (Naïve Bayes)	베이즈(Bayes) 통계와 생성 모델 기반
	로지스틱 회귀 (Logistic Regression)	독립변수와 종속변수의 선형 관계성 기반
	결정 트리 (Decision Tree)	데이터 균일도에 따른 규칙 기반
분류 (Classification)	서포트 벡터 머신 (Support Vector Machine)	개별 클래스 간의 최대 분류 마진을 효과적으로 찾기
	최소 근접 알고리즘 (Nearest Neighbor)	근접 거리 기준
	신경망 (Neural Network)	심층 연결 기반
	앙상블 (Ensemble)	서로 다른(또는 같은) 머신러닝 알고리즘을 결합

앙상블 (Ensemble)	배깅 (Bagging)	랜덤 포레스트 (Random Forest)
	부스팅 (Boosting)	그래디언트 부스팅 (Gradient Boosting Machine)
		XGBoost (eXtra Gradient Boosting)
		LightGBM (Light Gradient Boosting Machine)
	스태킹 (Stacking)	

[04-02] 결정 트리 (Decision Tree)


```
[1]: from sklearn.tree import DecisionTreeClassifier
[2]: DecisionTreeClassifier?
     Init signature:
     DecisionTreeClassifier(
         criterion='gini',
         splitter='best',
         max depth=None,
         min samples split=2,
         min samples leaf=1,
         min weight fraction leaf=0.0,
         max features=None,
         random state=None,
         max leaf nodes=None,
         min impurity decrease=0.0,
         class weight=None,
         ccp_alpha=0.0,
         monotonic_cst=None,
```

파라미터 명	설명
max_depth (Default = None) 트리의 최대 깊이	- None : 완벽하게 클래스 결정 값이 될 때까지 깊이를 계속 키우며 분할 - min_samples_split 설정대로 최대 분할하여 과적합 할 수 있음
min_samples_split (Default = 2) Split 최소 샘플 수	- 작게 설정할수록 분할되는 노드가 많아져서 과적합 가능성 증가
min_samples_leaf (Default = 1) leaf의 최소 샘플 수	 - 왼쪽과 오른쪽의 브랜치 노드에서 가져야 할 최소한의 샘플 데이터 수 - 큰 값은 조건 만족 어려워 노드 분할을 상대적으로 덜 수행 함 - 과적합 제어 용도 - 비대칭적 데이터 경우 특정 클래스 데이터가 극도로 작을 수 있으므로 이 경우는 작게 설정 필요
max_features (Default = None) 최대 피처 개수	- None : 데이터 세트의 모든 피처를 사용해 분할 수행 - int형 : 대상 피처의 개수 - float형 : 전체 피처 중 대상 피처의 퍼센트 - auto / sqrt : 전체 피처 중 sqrt(전체 피처 개수)만큼 선정 - log : 전체 피처 중 log2(전체 피처 개수) 선정
max_leaf_nodes (Default = None)	- 말단 노드(leaf)의 최대 개수

☐ Graph

https://github.com/whatwant-school/python-ml/blob/main/05-week/05-week 02 graph.ipynb

☐ Overfitting

https://github.com/whatwant-school/python-ml/blob/main/05-week/05-week 03_overfit.ipynb

☐ Human Activity Recognition Using Smartphones

https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones

스마트폰을 이용한 사용자 행동 인시

출처: https://sakshamchecker.medium.com/human-activity-recognition-7abaa9a1cf34

☐ Human Activity Recognition Using Smartphones

https://github.com/whatwant-school/python-ml/blob/main/05-week/05-week 04-HAR.ipynb

[04-03] 악상불학(Ensemble Learning)

RandomForest

GBM, XGBoost, LightGBM

☐ Hard Voting vs. Soft Voting

https://github.com/whatwant-school/python-ml/blob/main/05-week/05-week 05-Voting.ipynb

[04-04] 건덤 포레스트 (Random Forest)

RandomForest

GBM, XGBoost, LightGBM

□ Bagging = Bootstrap aggregating


```
[4]: from sklearn.ensemble import RandomForestClassifier
     RandomForestClassifier?
     RandomForestClassifier(
         n estimators=100,
         criterion='gini',
         max depth=None,
         min samples split=2,
         min samples leaf=1,
         min weight fraction leaf=0.0,
         max features='sqrt',
         max leaf nodes=None,
         min impurity decrease=0.0,
         bootstrap=True,
         oob score=False,
         n jobs=None,
         random state=None,
```

verbose=0,

warm_start=False,
class weight=None,

파라미터 명	설명
n_estimators (Default = 10) DecisionTree 개수	- 많이 설정할수록 좋은 성능 → 수행 시간 길어짐 - 높은 수치라고 무조건 성능 향상되지는 않음
max_features (Default = auto/sqrt) 최대 피처 개수	- DecisionTree에서는 default=None → 모든 피처 사용 - RandomForest에서는 default=sqrt → 전체 feature=16 이라면 4개 피처 사용

https://github.com/whatwant-school/python-ml/blob/main/05-week/05-week 06-RandomForest.ipynb

[04-05] 그러디언트 부스팅 (GBM, Gradient Boosting Machine)

RandomForest

GBM, XGBoost, LightGBM

Boosting — AdaBoosting (Adaptive Boosting)

GBM (Gradient Boosting Machine)

☐ AdaBoosting (Adaptive Boosting)

☐ GBM (Gradient Boosting Machine)

from sklearn.ensemble import GradientBoostingClassifier

GradientBoostingClassifier?

Init signature:
GradientBoostingClassifier(

loss

가중지 업데이트 방식 = 경사하다법 (Gradient Descent)

Ini	it signature:
Gra	adientBoostingClassifier(
	*,
	loss='log loss',
	learning rate=0.1,
	n_estimators=100,
	subsample=1.0,
	criterion='friedman mse',
	min_samples_split=2,
	min_samples_leaf=1,
	min weight fraction leaf=0.0,
	max depth=3,
	min_impurity_decrease=0.0,
	init=None,
	random state=None,
	max_features=None,
	verbose=0,
	max leaf nodes=None,

파라미터 명	설명
loss (Default = deviance) 비용 함수	- 보통 기본값 그대로 사용
learning_rate (Default = 0.1) 학습률	- 일반적으로 작은 값이 성능이 좋아지지만, 수행 시간이 오래 걸림
n_estimators (Default = 100) weak learner 개수	- 개수가 많을 수록 성능은 좋아지지만, 수행 시간이 오래 걸림
subsample (Default = 1) 데이터 샘플링 비율	- 0.5 = 50% - 과적합 우려가 있기 때문에 보통 1보다 작은 값 설정

https://github.com/whatwant-school/python-ml/blob/main/05-week/05-week 07-GBM.ipynb

```
[5]: from sklearn.metrics import accuracy_score import time

start_time = time.time()

gb_clf = GradientBoostingClassifier(random_state=42)
gb_clf.fit(train_X, train_y)

predict = gb_clf.predict(test_X)
accuracy = accuracy_score(test_y, predict)

print('GBM 정확도: {0:.4f}'.format(accuracy))
print("GBM 수행 시간: {0:.1f} 초 ".format(time.time() - start_time))

GBM 정확도: 0.9389
GBM 수행 시간: 764.3 초
```

[04-06] XGBoost (eXtra Gradient Boost)

항목	설명
뛰어난 예측 성능	일반적으로 분류와 회귀 영역에서 뛰어난 예측 성능을 발휘합니다.
GBM 대비 빠른 수행 시간	일반적인 GBM은 순차적으로 Weak learner가 가중치를 증감하는 방법으로 학습하기 때문에 전반적으로 속도가 느립니다. 하지만 XGBoosl는 병렬 수행 및 다양한 기능으로 GBM에 비해 빠른 수형성능을 보장합니다. 아쉽게도 XGBoosl가 일반적인 GBM에 비해 수행 시간이 빠르다는 것이지, 다른 머신러닝 일고리즘(예를 들어 랜덤 포레스트)에 비해서 빠르다는 의미는 아닙니다.
과적합 규제 (Regularization)	표준 GBM의 경우 과적합 규제 기능이 없으나 XGBoost는 자체에 과적합 규제 기능으로 과적합에 좀 더 강한 내구성을 가질 수 있습니다.
Tree pruning (나무 가지치기)	일반적으로 GBM은 분할 시 부정 손실이 발생하면 분할을 더 이상 수행하지 않지만, 이러한 방식도 자칫 지나치게 많은 분할을 발생할 수 있습니다. 다른 GBM과 마찬가지로 XGBoosi도 max_depth 파라미터로 분할 깊이를 조정하기도 하지만, tree pruning으로 더 이상 긍정 이득이 없는 분할을 가지치기 해서 분할 수를 더 줄이는 추가적인 장점을 가지고 있습니다.
자체 내장된 교차 검증	XGBoos는 반복 수행 시마다 내부적으로 학습 데이터 세트와 평가 데이터 세트에 대한 교차 검증을 수행해 최적화된 반복 수행 횟수를 가질 수 있습니다. 지정된 반복 횟수가 아니라 교차 검증을 통해 평가 데이터 세트의 평가 값이 최적화 되면 반복을 중간에 멈출 수 있는 조기 중단 기능이 있습니다.
결손값 자체 처리	XGBoosl는 결손값을 자체 처리할 수 있는 기능을 가지고 있습니다.

구분	파라미터 명	Default	설명
	booster	gbtree	- gbtree (tree model) / gblinear (linear model)
일반	silent	0	- 출력 메시지를 나타내고 싶지 않을 경우 0 설정
	nthread	전체	- 전체 CPU를 사용하지 않고 일부만 사용하고 싶을 경우 변경
	eta [alias: learning_rate]	0.3	- 보통은 0.01 ~ 0.2 사이의 값을 선호
	num_boost_rounds		- GBM의 n_estimators
	min_child_weight	1	- 브랜칭 결정을 위한 데이터들의 weight 총합. 클수록 분할 자제.
	gamma [alias: min_split_loss]	0	- leaf node를 추가로 나눌지를 결정할 최소 손실 감소 값
부스터	max_depth	6	- 0을 지정하면 depth 제한 없음. 보통 3~10 사이의 값 선호
구끄덕	sub_sample	1	- 데이터를 샘플링하는 비율을 지정. 보통 0.5~1 사이의 값 선호
	colsample_bytree	1	- GBM의 max_features와 유사
	lambda [alias: reg_lambda]	1	- L2 Regularization 적용 값. 클수록 과적합 감소 효과
	alpha [alias: reg_alpha]	0	- L1 Regularization 적용 값. 클수록 과적합 감소 효과
	scale_pos_weight	1	- 비대칭 클래스로 구성된 데이터셋의 균형을 유지하기 위한 파라미터

구분	파라미터 명	Default	설명
	objective		- 손실함수 정의 . binary:logistic : 이진 분류일 때 적용 . multi:softmax : 다중 분류일 때 적용 . multi:softprob : 개별 레이블 클래스의 예측 확률을 반환
학습	eval_metric	회귀: rmse 분류: error	- 검증 함수 정의 . rmse: Root Mean Square Error . mae: Mean Absolute Error . logloss: Negative log-likelihood . error: Binary classification error rate (0.5 threshold) . merror: Multiclass classification error rate . mlogloss: Multiclass logloss . auc: Area under the curve

□ Overfitting

- eta なき 生命しに(0.01~0.1) → num_round/n_estimators なき 気のそのにないに
- max_depth 값을 낮습니다.
- mīn_chīld_weight なる をいしにも
- gamma 값을 높이니다.
- subsample & colsample_bytree 값을 조정하는 것도 도움이 될 수 있습니다.

https://github.com/whatwant-school/python-ml/blob/main/05-week/05-week_08-XGBoost.ipynb

You've really worked hard today

Next Week ~?

	목차 XI
06. XGBoost(eXtra Gradient Boost)	225
XGBoost 설치하기	227
파이썬 래퍼 XGBoost 하이퍼 파라미터	228
파이썬 래퍼 XGBoost 적용 - 위스콘신 유방암 예측	232
사이킷런 래퍼 XGBoost의 개요 및 적용	240
07.LightGBM	244
LightGBM 설치	246
LightGBM 하이퍼 파라미터	247
하이퍼 파라미터 튜닝 방안	248
파이썬 래퍼 LightGBM과 사이킷런 래퍼 XGBoost,	
LightGBM 하이퍼 파라미터 비교	249
LightGBM 적용 - 위스콘신 유방암 예측	250
08. 베이지안 최적화 기반의 HyperOpt를 이용한	
하이퍼 파라미터 튜닝	253
베이지안 최적화 개요	254
HyperOpt 사용하기	256
HyperOpt를 이용한 XGBoost 하이퍼 파라미터 최적화	262
09. 분류 실습 - 캐글 산탄데르 고객 만족 예측	267
데이터 전처리	268
XGBoost 모델 학습과 하이퍼 파라미터 튜닝	271
LightGBM 모델 학습과 하이퍼 파라미터 튜닝	276
10. 분류 실습 - 캐글 신용카드 사기 검출	279
언더 샘플링과 오버 샘플링의 이해	279
데이터 일차 가공 및 모델 학습/예측/평가	281
데이터 분포도 변환 후 모델 학습/예측/평가	285
이상치 데이터 제거 후 모델 학습/예측/평가	288
SMOTE 오버 샘플링 적용 후 모델 학습/예측/평가	292
SMOTE 오버 샘플링 적용 후 모델 학습/예측/평가	292

되자 목자		
	11. 스태킹 앙상불	295
	기본 스테킹 모델	297
	CV 세트 기반의 스태킹	300
	12. 정리	306
	01. 회귀 소개	308
05	02. 단순 선형 회귀를 통한 회귀 이해	310
회귀	03. 비용 최소화하기 - 경사 하강법(Gradient Descent) 소개	312
	04, 사이킷런 LinearRegression을 이용한 보스턴 주택 가격 예측	321
	LinearRegression 텔레스 – Ordinary Least Squares	321
	회귀 평가 지표	322
	LinearRegression을 이용해 보스턴 주택 가격 회귀 구현	324
	05. 다항 회귀와 과(대)적합/과소적합 이해	329
	다항 회귀 이해	329
	다항 회귀를 이용한 과소적합 및 과적합 이해	332
	편형-분산 트레이드오프(Bias-Variance Trade off)	336
	06. 규제 선형 모델 - 릿지, 라쏘, 엘라스틱넷	337
	규제 선형 모델의 개요	337
	릿지 회귀	339
	라쏘 회귀	342
	엘라스틱넷 화귀	345
	선형 회귀 모델을 위한 데이터 변환	347
	07. 로지스틱 회귀	350

Who ~?

Can I share your materials?

See you Next Weekend ~?

See you Next Weekend ~?