Cauchy-Schwartz Inequality

$$Cov(X,Y) \le \sqrt{Var(X)Var(Y)}$$

Equivalently:
$$Var(X) \ge \frac{[Cov(X,Y)]^2}{Var(Y)}$$

CRLB

Let X_1, \ldots, X_n be a sample with pdf $f(x|\theta)$ and let $W(X) = W(X_1, \ldots, X_n)$ be any unbiased estimator of $\tau(\theta)$ satisfying:

$$\frac{\partial}{\partial \theta} E(W(\boldsymbol{X})) = \int_{\chi} \frac{\partial}{\partial \theta} [W(\boldsymbol{x}) f(\boldsymbol{x}|\theta)] dx$$

and $Var(W(\boldsymbol{X})) < \infty$

Then:
$$Var(W(\boldsymbol{X})) \ge \frac{\{\frac{\partial \tau(\theta)}{\partial \theta}\}^2}{E(U(\theta|\boldsymbol{x}))^2}$$

Where score function $U(\theta|\mathbf{x}) = \frac{\partial}{\partial \theta} \log(f(\mathbf{x}|\theta))$

Thm: If W is the best unbiased estimator (UMVUE) for $\tau(\theta)$ then it is unique

$$Var(W(\boldsymbol{X})) \geq \frac{\{\frac{\mathrm{d}}{\mathrm{d}\theta}E(W(\boldsymbol{X}))\}^2}{E\left[\{\frac{\partial}{\partial\theta}\log(f(\boldsymbol{X}|\theta))\}^2\right]}$$

If X_1, \ldots, X_n are iid with pdf $f(x|\theta)$ then:

$$Var(W(\boldsymbol{X})) \ge \frac{\{\frac{\mathrm{d}}{\mathrm{d}\theta}E(W(\boldsymbol{X}))\}^2}{nE\left[\{-\frac{\partial^2}{\partial\theta^2}\log(f(X_1|\theta))\}\right]}$$

Numerator is 1 if using θ

Numerator is
$$\left(\frac{d\tau(\theta)}{d\theta}\right)^2$$
 if using $\tau(\theta)$

Rao-Blackwell Theorem

Let W be any unbiased estimator of $\tau(\theta)$, and let T be an SS for θ .

Define
$$\phi(T) = E(W|T)$$

Then
$$E(\phi(T)) = \tau(\theta)$$
 and $Var(\phi(T)) \leq Var(W)$ for all θ

Lehmann-Sheffe Theorem

W unbiased estimator of $\tau(\theta)$, T CSS for θ . Then $\phi(T) = E(W|T)$ is the UMVUE for $\tau(\theta)$ and is unique

LRT Statistic:
$$\lambda(x) = \frac{L(\hat{\theta}_0|x)}{L(\hat{\theta}|x)}$$

Rejection Region:
$$R = \{x : \lambda(x) \le c\}$$

Want to find an equivalent region using unrestricted MLE $\hat{\theta}$:

$$R = \{x : \lambda(x) \le c\} \Leftrightarrow R^* = \{x : \hat{\theta} \ge c^* \text{ or } \hat{\theta} \le c^*\}$$

 $\hat{\theta} \geq c^*$ or $\hat{\theta} \leq c^*$ follows direction of H_1