Computer Networks

Lecture on

Routing

Plan of This Lecture

- Terminology
- Mechanisms
- Protocols

What is Routing?

Process of selecting an optimal data path through a network,

from sender to recipient

Metrics in routing

- Hop count
- Bandwidth
- Delay
- Load
- Reliability
- Cost
- ...

Different protocols use different metrics

Routing Taxonomies

static vs. dynamic

interior vs. exterior

distance-vector vs. link-state

classfull vs. classless

reactive vs. proactive

single-path vs. multipath

flat vs. hierarchic

Routing protocols route routed protocols

routed (routable) protocols – forward data

routing protocols – maintain routing tables

Static vs. Dynamic Routing

- Static
 - More predictable
 - Less load to the network
 - o Can be used in a small network
 - highly secure network
 - to minimize energy consumption

e.g. a military one

e.g. in fixed sensor network

- Dynamic
 - o Automatically adjust to changes in topology and load
 - o Commonly used

IGP vs. EGP Routing

AS Autonomous system – administrative domain

- IGP Interior Gateway Protocols (Intradomain)
 - o inside the AS
 - o aim efficient updating of routing tables
- EGP Exterior Gateway Protocols (Interdomain)
 - o between AS's

6

Distance-Vector vs. Link-State Protocols

Distance-Vector

- about the neighbours
- to neighbours
- only distance
- ~ periodically
- simple
- slow-converging

Link-State

- about whole topology
- to all routers
- link state
- ~ after changes
- complex
- fast-converging

Reactive vs. Proactive

- Reactive routers discover a path when it is needed
 - mobile ad hoc radio networks (MANETs) aka. wireless ad hoc networks (WANETs)
 e.g. Ad Hoc On-Demand Distance Vector (AODV)

 RFC 3561
- Proactive routers discover all paths in advance
 - fixed cable and radio networks
- Hybrid both proactive and reactive
 e.g. Hybrid Wireless Mesh Protocol

IEEE 802.11s

Other Routing Types

Classfull vs. Classless

- Classfull routers recognize subnet addresses by IPv4 address prefix
 - o no more in use
- Classless routers recognize subnet addresses by subnet mask value

Single-path vs. Multipath

- Multipath routers discover two or more paths for each pair of end-points
 - o for fast rerouting in case of failure
 - o for higher transmission efficiency

Flat vs. Hierarchic

Hierarchic routing is a must for big networks – provides scalability

Router Internals

Routers tasks

- Forwarding packets to the recipient
- Maintaining routing tables
- Informing other routers about changes in:
 - o network topology
 - o link states

Routing table content

- Source (routing protocol)
- Prefix (destination network, network mask)
- Outgoing interface / next hop
- Administrative distance
- Metrics

netstat -nr -f inet route get HOSTNAME_OR_IP

Routing table on PCs

netstat -r (Unix, MS Windows)

route print (MS Windows)

nslookup

nettop -r

- shows the existing routing table (IPv4 only)
- shows how a specific host will get routed

Desirable Features of Routing Protocols

- Quality of route optimization
- Simplicity
- Little overhead
- Robustness and stability, e.g.
 - Support for multipath routing
 - Support for different forward and backward paths
- Flexibility
- Fast convergence

Distance-Vector Slow-Convergence Problem

How a loop can arise:

Hold down – the simplest solution

- Do not use & advertise new alternative routes for two router-update cycles
- Widely adopted for small networks (RIP)
- Legitimate new routes are also delayed disadvantage

Originator sequence number

Vector contains a sequence number issued by the router directly connected to the subnet

Equal-Cost MultiPath Routing

Two or more routes of the same cost can be calculated and used by each router i.e. more than 1 output interface is used to reach a given destination

- Most routing protocols support ECMP
 - o administrator can enable and configure it
- Equal-cost ≠ equal-propagation-delay
- Round-robin
 - o per-packet
 - better load-balancing between the paths
 - o per-flow
 - TCP friendly
- Variants for radio networks
 - o link-disjoint paths
 - o node-disjoint paths

Most Popular Routing Protocols

- RIP Routing Information Protocol
- EIGRP Enhanced Interior Gateway Routing Protocol
- OSPF Open Shortest Path First
- IS-IS Intermediate System-to- Intermediate System
- BGP Border Gateway Protocol

There are numerous routing protocols for radio networks

	IGP	EGP
Distance-Vector	RIP	BGP
Hybrid	EIGRP	
Link-State	OSPF IS-IS	

All of them evolve

RIP

Main features

- Interior gateway protocol
- Open standard from IETF
- Distance-Vector
- Simple
- Metrics: hop count
- Broadcasts every \sim 30 s content of the routing table
 - Random delay eliminates risk of message synchronization
 i.e. all routers exchange tables at the same time
- Little max. hop count (15)
- One RIP message can carry up to 20 route entries for IPv4 or IPv6 subnets
- Slow convergence (minutes)
- For little networks

EIGRP - Enhanced Interior Gateway Protocol

- Interior gateway protocol
- Once-proprietary Cisco protocol RFC 7868 in 2016
- Hybrid (distance-vector and link-state features)
- Max hop count: 224
- No risk of routing loops
- Flexible but complex 32-bit metrics
- Fast (because of backup routes)
- Mainly used in enterprise networks
- Metrics

[K1*bandwidth + (K2*bandwidth)/(256-load) + K3*delay] * [K5/reliability + K4]

- Weighting constants K1-K5 (for tuning)
- Default: K1=1, K2=0, K3=1, K4=0, K5=0 thus: [Bandwidth, +Delay]

OSPF – Open Shortest Path First

Main features

- Interior gateway protocol from IETF
- Open standard
- Link-state
- Hierarchical architecture areas
- Scalable
- Designated Routers on multi-access segments
 - o minimize the number of routing messages
 - o failure of the bus is processed correctly
- Areas allow for
 - o summarization
 - o containment of changes propagation
 - $\circ \Rightarrow$ scalability
- Frequently used in enterprise networks and in many ISP networks

– DR represents its segment

OSPF – Basic Concepts

- Area
 - o set of routers sharing the same knowledge
 - backbone area (#0)
 - o non-backbone areas (#!0)
 - o path between 2 non-backbone areas must pass by the backbone area
- Cost
- o feature of a link
- Adjacency database
 - o contains information about all directly connected neighbours
- Topological database
 - o detailed info about all routers and links in the area
 - summarized info about other areas and external networks by distance vectors

OSPF – Operation

- ↓ Hello packets
 - Adjacency database
 - ↓ Initial Database Exchange
- ↓ Link state updates by flooding
 - Topology database
- ↓ Dijkstra algorithm
 - Shortest path first tree
- **↓** Best path selection
 - Routing table

IS-IS Intermediate System-to-Intermediate System

Open standard from ISO

IS-IS & OSPF do the same

- Both establish a two level hierarchy among the areas
- Both have similar stability and convergence properties.
- Differ in many aspects, e.g.: tuning parameters, timeouts, data structure size & granularity
- Main differences:

IS-IS	OSPF
Designed for any kind of networks • uses Type-Length-Value encoding	for IPv4 later IPv6
Works over data-link layer e.g. Ethernetuses short messagesresistant against IP level attacks	over IPcan profit from IP fragmentationcan use virtual links
Area boundaries intersect on links	on routers

Large ISPs prefer IS-IS than OSPF

Autonomous Systems

- Set of networks with a common administrative policy
- Seen from outside as a "black box"
- AS numbers are assigned by IANA & next by RIRs

Total number of active AS domains 63 520 source: http://www.potaroo.net/tools/asn32/

April 2019

Domain Interconnections

• Private link

• Internet eXchange Point

Datacentre hosting routers belonging to many domains

- tens, hundreds

Border Gateway Protocol

- The sole Exterior Gateway Protocol used in the today's Internet
- Path-Vector
 - o BGP path: a sequence of autonomous system numbers
 - o Path attributes decide on route selection order
 - Attributes can be manipulated (policy-based routing)

Reduces transit traffic – according to defined policies

Databases

FIB – Forwarding Information Base
Scalable

Incremental updates – it only announces the routes that have changed to its neighbours

- Update message
 - o list of IP prefixes that are withdrawn
 - o list of IP prefixes that are (re-)advertised
 - o set of attributes (e.g. AS-Path) associated to the advertised prefixes

Keep-alive message every 30 s

- Internal BGP carries
 - o AS-paths and their attributes
 - o only those allowed for transit

- Route aggregation (summarization)
 - With aggregation:
 - Neighbouring networks described with a single entry
 - Router knows details about it's directly connected networks the other routers – don't
 - Without aggregation:
 - Every network / subnetwork described with separate entries
- Route selection complicated!
 - o no metrics as in IGP
- Administration complicated!
 - Route Policy Specification Language
 Several tools help to easily convert a RPSL policy into router commands
 - o Inattentive configuration can lead to oscillation of routes

Summary

- What is Routing?
- Routing taxonomies
 - Static vs. dynamic routing
 - o IGP vs. EGP routing
 - Distance-Vector vs. Link-State Protocols
 - o Reactive vs. Proactive
 - Other routing types
- Router internals
 - Desirable features of routing protocols
 - Distance-Vector slow-convergence problem
 - $\circ \ \ Equal\text{-}cost\ multipath\ routing$
 - Most popular routing protocols

- RIP
- EIGRP
- OSPF
 - o OSPF basic concepts
 - o OSPF operation
- IS-IS
- Autonomous Systems
 - Domain interconnections
- Border Gateway Protocol

Questions

- 1. What are the functionalities of routing protocols?
- 2. Give a short classification of routing protocols.
- 3. What metrics can be used by a routing protocol?
- 4. Characterize Distance-Vector and Link-State routing.
- 5. What kind of networks uses reactive routing protocols?
- 6. What metrics are possible in configuration of EIGRP?
- 7. What are the important features of the OSPF protocol?
- 8. How scalability is achieved by OSPF?
- 9. Why convergence of OSPF is much faster than convergence of RIP?
- 10. Why fast failover is possible in an OSPF cloud?
- 11. What are the main differences
- 12. Why RIP, OSPF and EIGRP are not suitable for radio ad hoc networks?
- 13. In which kind of networks are RIP, EIGRP, OSPF and IS-IS mainly used?
- 14. What is Internet eXchange Point?
- 15. What does it mean that BGP is a path-vector protocol?
- 16. What is the difference between EBGP and IBGP routers?
- 17. What databases does BGP router contain?