An Atomic-aware Design to Maximize Energy Utilization on NVP-based Self-powered Sensor Systems

Chih-Kai Kang¹, Chun-Han Lin², Pi-Cheng Hsiu¹

¹Research Center for Information Technology Innovation, Academia Sinica ²Dept. of Computer Science and Information Engineering, National Taiwan Normal University

Motivation

- In our increasingly connected world, there will be more devices than humans.
- Energy harvesting is deemed more sensible than battery charging.

Why Atomic Aware?

 Nonvolatile processors enable accumulative execution but not data integrity.

Exemplary Application

Self-powered pattern locking

Emerging HW Solution

- Diverse energy sources from surroundings like solar, thermal, piezo, RF, etc., but all unstable.
- The first nonvolatile processor enables accumulative execution.

Y. Wang, Y. Liu, S. Li, et al. A 3us wake-up time nonvolatile processor based on ferroelectric flip-flops. In Proc. of ESSCIRC ,149-152 , 2012.

Atomic-Aware Design

- HW/SW co-design to maximize energy utilization.
 - HW ensures that the power pulse is sufficient for an atomic task.
 - SW eases programmers to protect atomic sections.

Performance Evaluation

SPSS: Our atomic-aware design.
NOAT: Original NVP-based system.

Program completeness per minute

System	Capacitance			
	450u	300u	150u	
SPSS	29	28	23	
NOAT	27	25	20	

Ratio of data integrity

System	Capacitance			
	450u	300u	150u	
SPSS	100%	100%	100%	
NOAT	58%	33%	15%	