Name:	//TITE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
MATH 101	"Windows are the eyes to the house."	
Spring 2022	–Andy Dwyer, Parks & Recreation	
HW 1: Due 02/08		

Problem 1. (10pt) Give the definition of a real number. Also, give at least five original examples of a real number.

Problem 2. (10pt) Give the definition of a rational number. Also, give at least five original examples of a rational number.

Problem 3. (10pt) Find the prime factorizations of the following integers:

- (a) 54
- (b) 97
- (c) 168
- (d) 184

Problem 4. (10pt) Without using a calculator, answer the following:

- (a) Does 2 divide 2346? Explain.
- (b) Does 3 divide 596012? Explain.
- (c) Does 4 divide 990140? Explain.
- (d) Does 5 divide 1431? Explain.
- (e) Does 9 divide 70155? Explain.

Problem 5. (10pt) Using the 'square root method,' show that 157 is prime.

Problem 6. (10pt) By listing out all the divisors of the given numbers, compute the following:

- (a) gcd(12, 15)
- (b) gcd(20, 22)
- (c) gcd(36, 60)
- (d) gcd(20, 100)

Problem 7. (10pt) By listing out sufficiently many multiples of the given integers, compute the following:

- (a) lcm(24, 36)
- (b) lcm(12, 15)
- (c) lcm(12, 18)
- (d) lcm(36, 48)

Problem 8. (10pt) By finding prime factorizations, compute the following:

- (a) gcd(12, 15)
- **(b)** gcd(20, 22)
- (c) gcd(36,60)
- (d) gcd(20, 100)

Problem 9. (10pt) By finding prime factorizations, compute the following:

- (a) lcm(24, 36)
- (b) lcm(12, 15)
- (c) lcm(12, 18)
- (d) lcm(36, 48)

Problem 10. (10pt) Compute the following:

(a)
$$gcd(2^3 \cdot 3^1 \cdot 5^3 \cdot 11^5, 2^2 \cdot 3^3 \cdot 5 \cdot 7)$$

(b)
$$lcm(2^3 \cdot 3^1 \cdot 5^3 \cdot 11^5, 2^2 \cdot 3^3 \cdot 5 \cdot 7)$$

(c)
$$gcd(2^{10} \cdot 5^5 \cdot 13, 3^5 \cdot 5^1 \cdot 11^2)$$

(d)
$$lcm(2^{10} \cdot 5^5 \cdot 13, 3^5 \cdot 5^1 \cdot 11^2)$$