

Probabilistic Network Library for MATLAB

User Guide and Reference Manual

Copyright ©2002-2004 Intel Corporation All Rights Reserved Issued in U.S.A.

Version	Version History	Date
-001	Original Issue	June, 2004

This manual as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL $^{(8)}$ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS. INTEL MAY MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME, WITHOUT NOTICE.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium III Xeon, Pentium III Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2002-2004 Intel Corporation.

Contents

Chapter	Contents	
Chapter 1		
Overview		
	About This Library	. 2-1
	About This Software	. 2-1
	About This Manual	. 2-2
	Notational Conventions	. 2-2
	Font Conventions	. 2-2
	Naming Conventions	. 2-2
Chapter 2		
User Guide		
	Graphical Models	. 3-1
	Dynamic Graphical Models	. 3-5
	Inference Algorithms for Bayesian and Markov Networks	. 3-8
	Inference Algorithms for DBNs	3-11
	Learning for Bayesian and Markov Networks	3-14
	Type 1	3-16
	Type 2	3-20
	Type 3	3-22
	Learning for DBNs	3-24
Chapter 3		

Reference Manual

Graph	11
•	
Class CGraph	
CGraphCreate	
CGraphCreateFromAdjMat	
CGraphCopy	
CGraphMoralizeGraph	4-3
GetTopologicalOrder	4-3
AddEdge	4-4
ChangeEdgeDirection	4-4
GetNeighbors	4-5
GetNumberOfNeighbors	4-5
GetNumberOfNodes	4-6
GetNumberOfEdges	4-6
IsCompleteSubgraph	4-6
IsChangeAllowed	4-7
IsExistingEdge	4-7
RemoveEdge	4-8
SetNeighbors	4-8
ProhibitChange	4-9
FormCliqueFromSubgraph	4-9
GetNumberOfParents	
GetNumberOfChildren	4-10
IsDirected	4-10
IsUndirected	4-11
GetAdjacencyMatrix	
ClearGraph	
Isldentical	
IsNotIdentical	
GetParents	
	4-14

	IsDAG	4-14
	IsTopologicallySorted	
	NumberOfConnectivityComponents	
	GetConnectivityComponents	
	SetTo	
	GetAncestry	
	GetAncestralClosure	
	GetAncestralClosureMask	
	GetSubgrConnectComponents	
	GetDConnectionList	
	GetDConnectionTable	
	GetReachableSubgraph	
	GetReachableSubgraphByNode	
No	de Types	
	Class CNodeType	
	CNodeType	
	IsDiscrete	
	GetNodeSize	
	SetType	
	IsIdentical	4-25
	IsNotIdentical	4-25
Mc	odel Domain	4-26
	Class CModelDomain	4-26
	CModelDomainCreate	4-27
	CModelDomainCreateIfAllTheSame	4-27
	AttachFactor	4-28
	ReleaseFactor	4-28
	IsAFactorOwner	4-29
	GetVariableType	4-29
	GetVariabeTypes	4-29
	GetObsGauVarType	4-30
	GetObsTabVarType	4-30

	GetNumberOfVariableTypes	4-31
	GetVariableTypes	4-31
	GetNumberVariables	4-32
	GetVariableAssociations	4-32
	GetVariableAssociation	4-33
Εv	idences	4-33
	Class CNodeValues	4-33
	CNodeValuesCreate	4-34
	GetValueBySerialNumber	4-34
	GetNumberObsNodes	4-35
	GetObsNodesFlags	4-35
	GetRawData	4-36
	SetData	4-36
	MakeNodeHiddenBySerialNum	4-36
	MakeNodeObservedBySerialNum	4-37
	ToggleNodeStateBySerialNumber	4-37
	IsObserved	4-38
	Class CEvidence	4-39
	CEvidenceCreate	4-40
	CEvidenceCreateByModelDomain	4-40
	CEvidenceCreateByNodeValues	4-40
	ToggleNodeState	4-41
	GetValues	4-41
	GetAllObsNodes	4-42
	IsNodeObserved	4-42
	MakeNodeObserved	4-43
	MakeNodeHidden	4-43
	GetObsNodesWithValues	4-44
	GetModelDomain	4-44
	CEvidenceSaveForStaticModel	4-45
	CEvidenceSaveForDBN	4-45
	CEvidenceLoadForStaticModel	4-46

	CEvidenceLoadForDBN	4-46
Gr	aphical Models	4-47
	Class CGraphicalModel	4-47
	AllocFactor	4-47
	AllocFactorByDomainNumber	4-48
	AllocFactors	4-48
	AttachFactor	4-49
	AttachFactors	4-49
	GetGraph	4-50
	GetModelType	4-50
	GetNodeType	4-51
	GetNodeTypes	4-51
	GetNumberOfNodes	4-51
	GetNumberOfNodeTypes	4-52
	GetNumberOfFactors	4-52
	GetFactor	4-53
	GetFactorsIntoVector	4-53
	GetModelDomain	4-54
	IsValid	4-54
	Class CStaticGraphicalModel	4-55
	IsValidAsBaseForDynamicModel	4-55
	Class CBNet	4-56
	CBNetCreate	4-57
	CBNetCreateByModelDomain	4-57
	CBNetCreateWithRandomMatrices	4-57
	CBNetCopy	4-58
	ConvertToSparse	4-58
	ConvertToDense	4-59
	CreateTabularCPD	4-59
	FindMixtureNodes	4-60
	GenerateSamples	4-60
	Class CMNet	4-61

CMNetCreate	4-61
CMNetCreateByModelDomain	4-62
CMNetCreateWithRandomMatrices	4-62
GetClique	4-63
CMNetConvertFromBNet	4-63
CMNetConvertFromBNetUsingEv	4-64
CMNetCopy	4-64
CreateTabularPotential	4-65
ComputeLogLik	4-65
GetClqsNumsForNode	4-66
GetNumberOfCliques	4-66
GenerateSamples	4-66
Class CMRF2	4-68
CMRF2Create	4-69
CMRF2CreateByModelDomain	4-69
CMRF2CreateWithRandomMatrices	
Class CFactorGraph	4-71
CFactorGraphCreate	4-71
CFactorGraphCreateByFactors	4-72
CFactorGraphCopy	4-72
Shrink	4-73
GetNumFactorsAllocated	4-73
CFactorGraphConvertFromBNet	4-74
CFactorGraphConvertFromMNet	4-74
IsValid	4-74
GetNbrFactors	4-75
GetNumNbrFactors	4-75
Class CJunctionTree	4-76
CJunctionTreeCreate	4-77
CJunctionTreeCopy	4-77
GetNodePotential	4-77
GetSeparatorPotential	4-78

	InitCharge	4-78
	ClearCharge	4-79
	Class CDynamicGraphicalModel	4-80
	CreatePriorSliceGrModel	4-80
	UnrollDynamicModel	4-81
	GetInterfaceNodes	4-81
	GetStaticModel	4-82
	Class CDBN	4-83
	CDBNCreate	4-83
	GenerateSamples	4-84
Fa	ctors	4-85
	Class CFactor	4-86
	AttachMatrix	4-86
	GetFactorType	4-87
	GetDistributionType	4-87
	GetDomain	4-88
	GetDomainSize	4-88
	GetMatrix	4-89
	IsValid	4-89
	IsFactorsDistribFunEqual	4-90
	TieDistribFun	4-91
	IsDistributionSpecific	4-91
	GenerateSample	4-92
	CFactorCopyWithNewDomain	4-92
	Clone	4-93
	CloneWithSharedMartices	4-93
	CreateAllNecessaryMatrices	4-94
	ChangeOwnerToGraphicalModel	
	IsOwnedByModelDomain	
	GetModelDomain	
	ConvertToSparse	4-95
	ConvertToDense	

IsSparse	4-96
IsDense	4-96
GetObsPositions	4-97
MakeUnitFunction	4-97
ConvertStatisticToPot	4-97
UpdateStatisticsEM	4-98
UpdateStatisticsML	4-98
SetStatistics	4-99
ProcessingStatisticalData	4-99
GetLogLik	4-100
AreThereAnyObsPositions	4-100
Class CCPD	4-101
ConvertToPotential	4-101
ConvertWithEvidenceToPotential	4-102
NormalizeCPD	4-102
Class CTabularCPD	4-103
CTabularCPDCreate	4-103
CTabularCPDCopy	4-104
CreateUnitF	4-104
Class CGaussianCPD	4-105
CGaussianCPDCreate	4-106
CGaussianCPDCreateUnitF	4-106
CGaussianCPDCopy	4-106
AllocDistribution	4-107
SetCoefficient	4-107
GetCoefficient	4-108
Class CMixtureGaussianCPD	4-108
CMixtureGaussianCPDCreate	4-108
CMixtureGaussianCPDCopy	4-109
AllocDistributionVec	
SetCoefficientVec	4-110
GetCoefficientVec	4-110

	GetProbabilities	4-111
	Class CPotential	4-111
	Multiply	4-112
	MultiplyInSelf	4-112
	DivideInSelf	4-113
	GetNormalized	4-113
	Normalize	4-114
	Marginalize	4-114
	ShrinkObservedNodes	4-115
	ExpandObservedNodes	4-115
	Divide	4-116
	MarginalizeInPlace	4-116
	GetMPE	4-117
	Class CTabularPotential	4-117
	CTabularPotentialCreate	4-117
	CTabularPotentialCopy	4-118
	CTabularPotentialCreateUnitF	4-118
	Class CGaussianPotential	4-119
	CGaussianPotentialCreate	4-119
	CGaussianPotentialCopy	
	CGaussianPotentialCreateDeltaF	4-120
	CGaussianPotentialCreateUnitF	
	SetCoefficient	4-121
	GetCoefficient	4-122
	Class CFactors	4-122
	CFactorsCreate	4-122
	GetNumberOfFactors	4-123
	GetFactor	4-123
	AddFactor	4-123
	ShrinkObsNdsForAllFactors	4-124
Inf	erence Engines	4-125
	Class CInfEngine	4-125

pnlDetermineDistributionType	4-126
pnlDetermineDistribTypeByMD	4-126
EnterEvidence	4-127
MarginalNodes	4-128
GetQueryJPD	4-128
GetMPE	4-129
GetModel	4-129
Class CNaiveInfEngine	4-130
CNaiveInfEngineCreate	4-130
Class CPearlInfEngine	4-131
CPearlInfEngineCreate	4-131
CPearlInfEngineIsModelValid	4-132
SetMaxNumberOfIterations	4-132
GetNumberOfProvideIterations	4-133
SetTolerance	4-133
Class CJtreeInfEngine	
CJTreeInfEngineCreate	4-135
CJtreeInfEngineCreateFromJTree	4-136
CJTreeInfEngineCopy	4-136
GetEvidence	4-136
GetJTreeRootNode	4-137
GetClqNumsContainingSubset	4-137
GetNodesConnectedByUser	4-138
SetJTreeRootNode	4-138
GetLogLik	4-139
CollectEvidence	4-139
DistributeEvidence	4-139
ShrinkObserved	4-140
GetQueryMPE	4-140
Class CFGSumMaxInfEngine	4-141
CFGSumMaxInfEngineCreate	4-141
SetMaxNumberOfIterations	4-142

GetNumberOfProvideIterations	4-142
SetTolerance	4-143
Class CSamplingInfEngine	4-143
SetMaxTime	4-144
SetBurnIn	4-144
SetNumStreams	4-145
GetMaxTime	4-145
GetBurnIn	4-146
GetNumStreams	4-146
Continue	4-147
Class CGibbsSamplingInfEngine	4-148
CGibbsSamplingInfEngineCreate	4-148
SetQueries	4-149
UseDSeparation	4-149
Class CGibbsWithAnnealingInfEngine	4-150
CGibbsWithAnnealingInfEngCreate	4-151
SetAnnealingCoefficientC	4-151
SetAnnealingCoefficientS	4-151
GetCurrentTemp	4-152
UseAdaptation	4-152
Class CDynamicInfEngine	4-153
DefineProcedure	4-155
EnterEvidence	4-155
MarginalNodes	4-156
GetQueryJPD	4-156
GetMPE	4-157
Filtering	4-157
Smoothing	4-158
FixLagSmoothing	4-158
FindMPE	4-158
GetDynamicModel	4-159
GetProcedureType	4-159

	Class C2TBNInfEngine	4-160
	ForwardFirst	4-161
	Forward	4-161
	BackwardT	4-161
	Backward	4-162
	BackwardFixLag	4-162
	Class C1_ 5SliceInfEngine	4-163
	Class C1_5SliceJTreeInfEngine	4-164
	C1_5SliceJTreeEngineCreate	4-165
	Class CBKInfEngine	4-166
	CBKInfEngineCreate	4-167
	CBKInfEngineCreate	4-167
	CBKInfEngCheckClusters	4-167
Le	arning Engines	4-169
	Class CLearningEngine	4-169
	Learn	4-170
	GetCriterionValue	4-170
	ClearStatisticData	4-171
	Class CStaticLearningEngine	4-171
	SetData	4-171
	AppendData	4-172
	GetStaticModel	4-172
	Class CEMLearningEngine	4-172
	CEMLeaningEngineCreate	4-173
	SetMaxIterEM	4-173
	SetTerminationToleranceEM	4-174
	Class CBayesLearningEngine	4-174
	CBayesLearningEngineCreate	4-175
	Class CBICLearningEngine	4-175
	CBICLearningEngineCreate	
	GetGraphicalModel	
	GetOrder	

Class CDynamicLearningEngine	4-177
SetData	4-177
GetDynamicModel	4-177
Class CEMLearningEngineDBN	4-178
CEMLearningEngineDBNCreate	4-178
SetTerminationToleranceEM	4-178
SetMaxIterEM	4-179
SetTerminationToleranceEM	4-179
Random Number Generation	4-180
pnlSeed	4-180
pnlRand	4-180
pnlRandNormal	4-181

Chapter Index

Chapter

Bibliography

IPP for Matrix Processing Contents

Overview

This manual describes *Probabilistic Network Library for MATLAB (PNLM)*, the general tool for working with graphical models. The library contains high-performance implementation of algorithms for working with Bayesian networks and Markov networks, such as belief propagation and Junction tree inference, maximum likelihood and expectation maximization. The library is aimed at a wide spectrum of graphical models applications including computer vision, pattern recognition, data mining, and decision theory. The PNLM core engine will be optimized and parallized to give maximum performance on Intel® Architectures.

About This Library

The library can be roughly divided into three parts:

- graphical models that implement graphical models (Bayesian and Markov networks), including dynamic graphical models (Dynamic Bayesian networks). This part includes an implementation of the graph structure along with the factors (tabular and Gaussian so far) to specify the factorized distribution:
- *inference engines* that contain Naive inference, Junction tree inference, and belief propagation;
- *learning engines* that implement maximum likelihood, expectation maximization, and score-based structure learning.

About This Software

The library is open source and free for use on license terms.

The library is available for MATLAB only.

Probabilistic Network Library Overview

About This Manual

The manual consists of two parts: User Guide and Reference Manual. The first part contains the overview of the implemented algorithms together with sample calls of PNLM functions to solve specific tasks. The second part gives a systematic description of the objects and their member functions.

Notational Conventions

In this manual, notational conventions include:

- Fonts used for distinction between the text and the code
- Naming conventions.

Font Conventions

The following font conventions are used:

The following four conventions are used.			
This type style	Newly introduced important notions in User Guide; for example, <i>Markov Random Fields, chain graph</i> .		
This type style	Mixed with the uppercase in class structure names as in CGraph; also used in function names, code examples, public destructor names, and call statements; for example, virtual void CCPD, ~CFactor().		
This type style	Variables and parameter types in arguments discussion; for example, SerialNumber, data, dtTabular.		

Naming Conventions

The PNLM software uses the following naming conventions for different items:

- All class names start with prefix C, for example, CGraphicalModel.
- All global functions start with prefix pnl, for example, pnlDetermineDistributionType.
- Every new part of a function name starts with an uppercase character, without underscore; for example, GetDomainSize.

Probabilistic Network Library Overview

Probabilistic Network Library Overview

Graphical Models

A probabilistic graphical model (PGM) is a factorized joint probability distribution over a set of random variables which are called model domain. A factor is a function defined on a small subset of variables called factor domain. From the probabilistic viewpoint the factorized representation encodes independence relationships, while from the technical viewpoint it relaxes strict memory and computing power requirements for using PGMs, which allows exploitation of models with large domains.

Probabilistic graphical models have three components:

- variables (model domain)
- factorization type (structure)
- factors proper.

Variables of the model can be either discrete vectors, which take a finite number of values, or continuous vectors.

All commonly used factorization types have a corresponding graph representation. Nodes of a graph correspond to random variables. In this documentation we will further identify the notion of a random variable with the notion of a node in a graph. Edges of the graph reflect the factorization of the joint probability distribution.

PNLM implements some important classes of graphical models:

— *Markov Random Fields* (*MRF*s), also called *Markov Networks* (*MNets*), that are characterized by undirected graphs. The domain of each factor is a number of nodes of the graph, which form a clique.

 Bayesian Networks (BNets) are represented by directed acyclic graphs (DAG), where each factor is associated with a child node and has the domain consisting of all parent nodes and the child node.

A factor in a Bayesian Network has the form of *conditional probability distribution* (*CPD*) for a child node, with its parent nodes provided. In this context a directed edge from node A to node B may be interpreted as a causal relationship, though the absence of the edge does not mean that nodes are statistically independent.

The third constituent of a graphical model is a factor. It may have different forms and functionality depending on the type of the model. MRF factors are arbitrary positive functions called *potentials*. BNet factors are CPDs – positive functions that sum to 1 over the child node regardless of parent node values.

A graphical model is created in PNLM by the routine shown in Example 2-1. The routine applies to Bayesian networks and with some changes - to Markov Networks. The model of the example is called "water-sprinkler". The graph structure of the model and its parameters (CPDs) are all shown in <u>Figure 2-1</u>:

Figure 2-1 Water-sprinkler model

The nodes are numbered as follows:

```
Cloudy (C) = 0;
Sprinkler (S) = 1;
Rain (R) = 2;
Wet Grass (W) = 3
```

PNLM has special containers for storing scalar and vector data. A cvalue object is created to store inhomogeneous scalar data used as evidence. pnlvector is a template that stores vector data. For the sake of brevity PNL defines several synonyms to specializations of pnlvector. For more details see Reference Manual.

Example 2-1 Creation of water sprinkler Bayesian network

```
function bnet = WaterSprinklerBNetCreation()
numOfNds = 4;
%create NodeType objects and specify node types for
%all nodes of the model;
nodeTypes{1} = CNodeType(1, 2);% node type - discrete and binary
nodeAssociation(1:numOfNds) = 0;
%means that all nodes are of the same node type,
%which is 0th one in the array of node types for the model
%tables of probability distribution matrix1 = [ 0.5, 0.5 ];
matrix2 = [ 0.5, 0.5; 0.9, 0.1 ];
matrix3 = [ 0.8, 0.2; 0.2, 0.8 ];
matrix4(:,:,1) = [ 1.0, 0.1; 0.1, 0.01 ];

matrix4(:,:,2) = [ 0.0, 0.9; 0.9, 0.99 ];
matrices = {matrix1, matrix2, matrix3, matrix4};
%there are several ways to create bayesian network
if 1
   % neighbors can be of either one of three following types:
   % a parent, a child or just a neighbor - for undirected graphs.
   % if a neighbor of a node is it's parent, then neighbor type is ntParent
   % if it's a child, then ntChild and if it's a neighbor, then ntNeighbor
   nbrs = {
        [ 1, 2 ],
[ 0, 3 ],
        [ 0, 3 ],
          1, 2]
   } :
   nbrsTypes = {
        { 'ntChild',
                       'ntChild'
```

Example 2-1 Creation of water sprinkler Bayesian network

```
'ntParent', 'ntChild' },
'ntParent', 'ntChild' },
'ntParent', 'ntParent' }
   };
   %this is a creation of directed graph for the BNet model
   graph = CGraph( nbrs, nbrsTypes );
   %creation BNet
   bnet = CBNet( numOfNds, nodeTypes, nodeAssociation, graph );
   for i=1:numOfNds
       AllocFactorByDomainNumber(bnet, i-1);
       factor = GetFactor(bnet, i-1);
       AttachMatrix(factor, matrices{i}, 'matTable');
   end
else
   %create model domain
   MD = CModelDomainCreate( nodeTypes, nodeAssociation );
   %create adjacency matrix
   A = zeros(numOfNds, numOfNds);
   A(1,2) = 1;
   A(1,3) = 1;
   A(2,4) = 1;
   A(3,4) = 1;
   \c\ccreate graph by adjacency matrix
   graph = CGraphCreateFromAdjMat(A);
   %create BNet by cgraph and model domain
   bnet = CBNetCreateByModelDomain( graph, MD );
   for i=1:numOfNds
       domain = [GetParents(graph, i-1); i-1];
       cpd = CTabularCPDCreate(MD, domain, matrices{i});
       AttachFactor(bnet, cpd);
   end
end
```

Dynamic Graphical Models

Dynamic Bayesian Network (DBN) represents a directed graphical model of stochastic processes that generalize Hidden Markov models (HMMs) and Kalman Filter models (KFMs) by representing the hidden and the observed state in terms of state variables, which can have complex interdependencies. DBN is defined by the following characteristics:

- prior, or initial, network
- transition network frequently named *two-slice temporal Bayesian Network* (2TBN).

Prior network determines distribution of probabilities for all variables at the initial moment of time. 2TBN represents a two-slice Bayesian network whose first layer nodes have no parameters associated with them and determine the system at the previous moment of time while each second layer node has conditional probabilities (Figure 2-2).

Nodes of the second slice can have parents both in that very same layer (corresponding to time *t*), and in the layer that represents the previous moment. Note, that the word "dynamic" does not mean that the network changes over time. It only means that a dynamic process is modelled.

Figure 2-2 Dynamic Bayesian Networks

The semantics of the DBN can be defined by unrolling the 2TBN for *T* time slices. The resulting joint probability distribution is defined by the formula:

$$P(x_{0:T-1}) = \prod_{t=0}^{T-1} \prod_{i=0}^{n-1} P(x_t^i | \pi(x_t^i)), \text{ where } \pi(x_t^i) \text{ means parents of } x_t^i, \text{ that is, } i^{th}$$

node in t^{th} time-slice, n is the number of nodes.

The Dynamic Bayesian network is stored in terms of PNLM in a similar way as the Bayesian network. Suppose, the prior network consists of n nodes. Then the network stored internally to represent the Dynamic Bayesian network will consist of 2n nodes. First n nodes are joined in one graph to represent the topology of the prior network. Nodes with numbers starting with n to 2n-1 are joined in a graph that represents the ith slice, where i > 0. The joint graph is formed by the combination of the two layers (prior

and the i^{th} layers). Figure 2-3 shows a Bayesian network constructed by unrolling in two time-slices of a dynamic Bayesian network. Note, that it is always possible to restore the prior and the transition networks.

Figure 2-3 Unrolled Bayesian Networks

A DBN is created in terms of PNL by the following routine:

Example 2-2 Creation of DBN

Example 2-2 Creation of DBN

```
%create graph using adjacency matrix
graph = CGraphCreateFromAdjMat(dag);

%define types of nodes
nodeTypes = cell(1, 2);
nodeTypes{1} = CNodeType(1, 2);
nodeTypes{2} = CNodeType(0, 1);

nodeAss = [0 1 0 1];
MD = CModelDomainCreate(nodeTypes, nodeAss);
%create bnet corresponding to first two slices of dbn
bnet = CBNetCreateWithRandomMatrices(graph, MD);
%create dbn
dbn = CDBNCreate(bnet);
```

Inference Algorithms for Bayesian and Markov Networks

The inference problem in the context of a graphical model is equivalent to the estimation of *joint probability distribution*, also called *marginal distribution* or simply *marginal*, of one or several nodes without evidence or with a limited number of observed nodes:

$$P(x_{q1}, x_{q2}, ... x_{qk} | x_{e1}, x_{e2}, ... x_{es}) = P(X_q | X_e),$$

where e denotes the evidences or observed nodes, and q denotes the query nodes whose distribution is to be calculated.

This problem has several solutions. The most evident of them is the direct computation of joint probability distribution for all nodes of the graphical model followed by calculation of probability distribution for the query nodes using Bayes equation:

$$P(X_q \big| X_e) \, = \, \frac{P(X_q, \, X_e)}{P(X_e)} \, = \, \frac{\displaystyle \sum \, (P(x_1, \, x_2, \, \, \ldots \, , \, x_N), \, \, i \not \in \, \, q \cup \, e)}{\displaystyle \sum \, P(x_1, \, x_2, \, \, \ldots \, , \, x_N), \, \, i \not \in \, \, e} \, .$$

This joint probability distribution can be found through multiplication of all conditional probability distributions of a Bayesian network or of all joint probability distributions at the cliques of the Markov network. Before multiplication these conditional and unconditional distributions should be adjusted to the values of observed nodes of the network. The final step is to sum up the resulting values.

This description fully applies to the CNaiveInfEngine.

See Example 2-3 of call of such inference engine for the "water-sprinkler" model (Figure 2-1).

Example 2-3 Creation of inference engine for water srinkler BNet

```
pBNet = WaterSprinklerBNetCreation;
% create junction tree inference engine
jtree = CJtreeInfEngineCreate(pBNet);
%create evidence
%let node 1 took on value 0 and node 2 took on value 1
obsNds = [1, 3];
obsNdsVls = [1, 1];
e = CEvidenceCreate( pBNet, obsNds, obsNdsVls );
% add evidence to engine
EnterEvidence( jtree, e );
%Finally, we can compute p=P(node_2 \mid node_1 = 0, node_3 = 1) as follows.
query = [ 2 ];
MarginalNodes( jtree, query );
margPot = GetQueryJPD( jtree );
matrix = GetMatrix( margPot, 'matTable' );
barh (matrix);
disp('example of inference on Water Sprinkler BNet is completed');
```

However, the direct computation is too laborious, as the complexity of computations grows exponentially with the number of nodes in a network. This type of computation appears to be ineffective even for small models and is seldom used in practice.

To reduce the complexity of computations, you may use the distribution law. Since in certain areas of the network local distributions are independent of variables, you can apply the distribution law to calculate distributions for query nodes. So, for example, the probability distribution for the "water-sprinkler" problem at node 3, which has no observed variables, is expanded as follows:

$$P(x_3) = \sum_{x_0, x_1, x_2} P(x_0, x_1, x_2, x_3) = \sum_{x_0, x_1, x_2} P(x_0, x_1) P(x_0, x_2) P(x_1, x_2, x_3)$$

$$\sum_{x_1, x_2} P(x_0, x_1, x_2) P(x_1, x_2, x_3) = \sum_{x_0, x_1, x_2} P(x_0, x_1, x_2) \sum_{x_1, x_2} P(x_1, x_2, x_3)$$

User Guide 2

A number of exact and approximate inference engines are based on the use of the distribution law.

Initially each component of the network, be it a single node or a group of nodes, is assigned a certain distribution function, which represents assumed node values of the network. In the course of iterative message passing between neighboring components of the network the distribution function is modified. So, two components can be neighbors in terms of one inference engine and non-neighbors in terms of another. The sequence of message passing, often called a protocol, can also be different: from one component to all the others and back (tree protocol, or serial protocol) or all-to-all simultaneous message passing (parallel protocol).

If a graph of a Bayesian or a Markov network is a tree, most obvious network components are nodes. Neighboring nodes in the graph are also neighbors in the network. In this case you use the exact *Pearl Inference* or *Belief Propagation*. If the graph contains undirected cycles, you can assume nodes as network components and get an approximate result. To get a more accurate result, you should increase the number of iterations and use, for example, the algorithm of Loopy Belief Propagation. In certain cases it does not converges or converges to a local minimum [MWJ], [H], yet it has proven to be exact on acyclic networks [P1]. A lot of research is being carried out at present on the adaptability of Belief Propagation to networks of various types ([WF2000], [WF2001]).

Inference engines of different types are created in the same manner:

```
InfEngine = CPearlInfEngineCreate( grm );
```

As the sample model contains an undirected cycle (through nodes 0, 1, 2, and 3) any inferred result is approximate.

To infer the exact result on an arbitrary network, nodes of the network are grouped into subsets, or clusters, which are set in accordance with the nodes of an auxiliary junction tree structure. Message passing in this case takes place between the nodes of this junction tree. This procedure is called *Junction Tree Inference*, which is exact [LS], [CDLS].

Particle-based Inference

Besides exact inference engines, for example, the Junction Tree Inference, there is an important class of *particle-based inference* methods. To approximate the joint distribution either of all or of a number of the network variables, the method generates

a set of approximations, called *particles*, that represent a part of the probability mass. Particle-based approximate inference engine can calculate query potentials and estimate real states of query nodes. Commonly used particle-based method is GibbsSampling.

Inference Algorithms for DBNs

The inference problem in the context of a dynamic graphical model is equivalent to the marginal estimation of one or several nodes from a number of slices irrespective of whether the nodes are observed or hidden. It is implemented through the following computation $P(x(i, t)|y(:, t_1:t_2))$, where x(i, t) represents the i^{th} hidden variable at time moment t, and t and $y(:, t_1:t_2)$ represent all the evidence between times t_1 and t_2 . The algorithm often performs computation of joint probability distributions of variables over one or more time slices.

There are several types of inference problems for dynamic graphical models:

- filtering (on-line procedure)
- smoothing
- fixed-lag smoothing (on-line procedure)
- Viterbi decoding
- prediction.

Table 2-1 Types of Inference Problems for DBNs

Procedure	Goal
Filtering	P(x(t) y(1:t))
	On-line procedure to estimate current model state.
Smoothing	P(x(1:t) y(1:t))
	Off-line procedure to estimate the states of the past, given all evidence up to the current time <i>t</i> .
Fixed-Lag Smoothing	P(x(t-dt) y(1:t))
	On-line procedure to estimate the state of some past moment (<i>t-dt</i>), given all evidence up to the current time <i>t</i> .

Table 2-1 Types of Inference Problems for DBNs (continued)

Procedure	Goal
Viterbi	$\max_{x(1:t)} P(x(1:t) y(1:t))$
	Off-line procedure to compute the most likely sequence of hidden states, given the data.
Prediction	P(x(t+dt) y(1:t))
	On-line procedure that extrapolates probability distribution for future time slices.

Note that filtering is equivalent to fixed-lag smoothing with zero lag.

Inference procedure can be implemented through various approaches, some of which are naïve as those that follow:

- combine all the latent nodes from a single layer into a single meganode and apply the forward-backward algorithm for HMM, if the nodes are discrete.
- unroll DBN and do inference, for example Junction Tree or Pearl Inference, for the BNet obtained as a result of unroll operation.

To compute statistics which are used to learn parameter values, you call inference (smoothing) for a BNet which is as long as the sequence of evidence. If sequences of evidences are of variable lengths, junction trees (for the Junction Tree Inference) should be constructed many times, which considearbly slows down the process, or precomputed and stored for all possible unrolled DBN, which requires a lot of memory. Hence, it is necessary to use a DBN with repeating structure. One of the algorithms that uses repeating structures of DBNs is Zweig's inference algorithm. The algorithm unrolls a DBN once to some $T_{\rm max}$ slices, creates a junction tree and splices out extra cliques from it, when $t < T_{\rm max}$. But $T_{\rm max}$ should be preliminarily specified for the inference, and online inference can be performed for this maximum number of slices. PNL implements 1.5-slice Junction tree inference algorithm [Murphy02]. This approach involves the following steps:

- 1. Create a 1.5-slice DBN one time slice of DBN plus interface nodes from the previous slice. Interface nodes are the nodes connected with the nodes from the next slice and they are always the same for all time slices.
- 2. Create a junction tree for the obtained network.

3. Link up all the junction trees via interfaces.

This algorithm can perform on-line inference with no preliminarily specified $T_{\rm max}$. Inference procedure consists of two steps, which are the forward and the backward operation. They are the same as the steps in the classical inference algorithm for HMM. See Example 2-4.

Besides exact inferences described above there are different variants of approximate inferences. One of them is the Boyen-Koller inference (BK). BK inference is the approximate inference in which the belief state of the interface clique (clique consists of interface nodes and is used for message passing between slices in 1.5 Slice Junction tree inference) is represented as a product of marginals, even though the factors may be dependent. For details, see [BKUAI98] and [BKNIPS98], which discuss filtering and smoothing respectively. Note that the exact 1.5 Slice Junction tree inference is the special case of BK inference.

Example 2-4 Creation of inference engine for DBN

```
dbn = ArHMMCreation;
%define number of slices
nSlices = 4;
evidences = cell(1, nSlices);
%let node 1 is observed on the every slice
sliceObsNodes = [1];
MD = GetModelDomain(dbn);
%create random evidences
for i = 1: nSlices
  val = pnlRand(0,1);
  evidences{i} = CEvidenceCreateByModelDomain(MD, sliceObsNodes,val);
%create 1.5 Slice Juncton tree inference
infEng = C1 5SliceJTreeInfEngine(dbn);
%defince procedure type (smoothing)
DefineProcedure(infEng,'ptSmoothing', nSlices);
%enter evidences into engine
EnterEvidence(infEng, evidences);
%start smoothing procedure
Smoothing (infEng);
```

Example 2-4 Creation of inference engine for DBN

```
%define query slice and query nodes
querySlice = floor(rand*nSlices);
if querySlice == 0
    query = [0];
else
    query = [0 2];
end

%JPD on query nodes
MarginalNodes(infEng, query, querySlice);
resPot = GetQueryJPD(infEng);

disp(GetDistributionType(resPot));
mat = GetMatrix(resPot, 'matTable');
disp(mat);
```

The dynamic bayesian network is created by a BNet with 2n nodes, that is a DBN, unrolled in two slices. Nodes with numbers from 0 to n-1 form a connected graph corresponding to the prior slice. The topology of the prior slice may differ from the topology of other slices with node numbers from n to 2n-1.

Evidence of every slice with n nodes is formed from nodes with numbers from θ to n-1.

To get inference results, the query for the prior slice (slice = θ) should contain nodes with numbers from θ to n-1. Probability distribution for other slices is acquired from the current i-th slice and the preceding slice i-1. In this query node numbers n...2n-1 correspond to the nodes of the current slice, while node numbers θ ...n-1 correspond to the nodes of the preceding slice.

Learning for Bayesian and Markov Networks

A graphical model can be defined by its structure and its set of parameters, which are *conditional probability distributions* for dynamic and static Bayesian networks and *potentials* for Markov network. Learning of a graphical model consists in the estimation of model factors so as to ensure the best explanation of information for the model.

Usually input data for learning is presented in a table, where columns correspond to variables of the model and each row represents a learning sample or observation. So, for example, <u>Table 2-2</u> presents the input data for the sprinkler model (see <u>Figure 2-1</u>).

Table 2-2 Learning Data for Sprinkler Model

Node 1	Node 2	Node 3	Node 4
0	1	0	1
1	0	1	1
0	0	0	0
0	0	0	0
1	0	1	1
0	1	0	1

If a variable is hidden, its value will be missing from the data for learning. Samples in the table are assumed to be independent. The following four types of learning tasks are distinguished to correspond to different a priori information [Introd]:

Table 2-3 Types of Learning Tasks

Type of Task	Graphical Model Structure	Observability of Variables
Type 1	known	All variables are observed
Type 2	known	Some variables are not observed
Type 3	unknown	All variables are observed
Type 4	unknown	Some variables are not observed

NOTE. Only the first three types of learning tasks are considered below. Type four is not supported by the current version of PNLM.

Type 1

This type of learning uses the ML algorithm which is based on *Maximum Likelihood* Estimation [JorBish]. The algorithm estimates parameters of the graphical model maximizing the value of the likelihood function $p(D|\theta)$, that is, the probability of observability of learning data D for given parameters θ .

Maximum Likelihood Estimation for Bayesian Network

Discrete Case. Consider the case when all variables of the network are discrete [JorBish]. For a given Bayesian network denote the total number of its nodes by U. For a certain node ν the set of all its parents may be denoted by π_{ν} and $\phi_{\nu} = \{\nu\} \cup \pi_{\nu}$. Let A be an arbitrary subset of nodes $A \subseteq U$. Then x_A stands for a tuple of values for the nodes from A. The count of observations, in which the nodes from the set A assume values specified by x_A tuple, may be denoted by $m(x_A)$. The logarithm of the previously described likelihood function is more convenient than the function itself. The logarithm may be found according to the formula:

$$l(\theta, D) = \log p(D|\theta) = \log \left(\prod_{n} p(x_{U, n}|\theta) \right) =$$

$$= \sum_{x_{U}} m(x_{U}) \log p(x_{U}|\theta) = \sum_{\mathbf{v}} \sum_{x_{\phi_{\mathbf{v}}}} m(x_{\phi_{\mathbf{v}}}) \log \theta_{\mathbf{v}}(x_{\phi_{\mathbf{v}}})$$

The values maximizing this function are:

$$\hat{p}(x_{\rm v}\big|x_{\pi_{\rm v}}) = \hat{\theta}_{\rm v}(x_{\phi_{\rm v}}) = \frac{m(x_{\phi_{\rm v}})}{m(x_{\pi_{\rm v}})} \ .$$
 These estimates are formed independently for each node in the graph.

Multivariate Gaussian Case. In PNLM the Multivariate Gaussian case is implemented only for Bayesian networks.

The vector \vec{x}^k may be formed as follows: $\vec{x}^k = \langle \vec{y}_0^k, \vec{y}_1^k, ..., \vec{x}^k, \text{ where } \vec{y}_i^k \text{ and } \vec{x} \text{ are } \vec{y}_i^k = \langle \vec{y}_0^k, \vec{y}_1^k, ..., \vec{y}_i^k, \vec{y}_i^k \rangle$ the vectors of values of the i^{th} parent and its child in the k^{th} example of the table.

The current approach models the joint distribution over a node and its parents as the multivariate Gaussian distribution and finds its MI estimation. The sufficient statistics after N examples are [Murphy98], [Jordan]:

$$\hat{\vec{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \vec{x}_{i}, \quad \hat{\sum} = \frac{1}{N} \sum_{i=1}^{N} \vec{x}_{i}^{T} - \hat{\vec{\mu}}\hat{\vec{\mu}}^{T}$$

 \sum and $\hat{\mu}$ can be broken up into blocks corresponding to parent nodes and the child:

$$\hat{\sum} = \begin{bmatrix} \sum_{yy} & \sum_{yx} \\ \hat{\sum}_{xy} & \hat{\sum}_{xx} \end{bmatrix}, \hat{\mu} = \begin{bmatrix} \hat{\varphi} \\ \hat{\mu}_y \\ \hat{\bar{\mu}}_x \end{bmatrix}.$$

The result is the Gaussian distribution at the child node in a moment notation:

$$B = \sum_{xy} \hat{\sum}_{yy}^{-1}, \dot{\mu} = \hat{\mu}_x - B\hat{\mu}, \quad \sum = \hat{\sum}_{xx} - B\hat{\sum}_{yx},$$

where matrix B is broken into individual blocks, one for each parent.

Maximum Likelihood Estimation for Markov Network

Undirected models are more flexible than their directed counterparts. Assume that all network variables are discrete. In this case, the log likelihood is found as follows:

$$l(\theta, D) = \log p(D|\theta) = \sum_{Cx_C} m(x_C) \log \psi_C(x_C) - N \log Z,$$

where $\psi_C(x_C)$ is the clique potential, N is the number of evidences, and Z is the normalization factor [JorBish], [Jirousek].

$$Z = \sum_{x_v} \psi_C(x_C)$$

User Guide 2

If potentials are defined on maximal cliques of the graph, the maximum likelihood estimates for decomposable graphs can be found through inspection:

for every clique

 set the clique potential to the empirical marginal for that clique;

for every non-empty intersection between cliques associate an empirical marginal with the intersection, and divide that empirical marginal by the potential of one of the two cliques that form the intersection.

If the graph is arbitrary, the *Iterative Proportional Fitting* (IPF) can be used [<u>JorBish</u>], [<u>Jirousek</u>]. If the graph is decomposable, this algorithm converges in a finite number of iterations, updating each potential once.

The IPF process runs as follows. Denote the potential of a clique C at i^{th} iteration by $\psi_C^i(x_C)$ and the joint probability distribution based on these parameter estimates by $p^i(x)$. In this notation the IPF can be written as follows:

$$\psi_C^{i+1}(x_C) = \psi_C^i(x_C) \frac{\tilde{m}(x_C)}{p^i(x_C)}, \text{ where } \tilde{m}(x_C) = \frac{m(x_C)}{N}.$$

The normalization factor Z remains constant through all iteration process, so IPF may be presented in terms of joint probabilities:

$$p^{i+1}(x_U) = p^i(x_U) \frac{\tilde{m}(x_C)}{p^i(x_C)}$$
.

In PNLM the estimation of Markov network parameters is based on IPF.

Bayesian Update

Besides factor parameters with exact values (such as, mean and variance in Gaussian distribution), there are parameters in the form of unknown variables which have their own probability distributions with other parameters, termed *superparameters*.

Superparameters are variables too, thus finally there appears to be an infinite hierarchy of parameters. The current version of PNLM supports only a two-level hierarchy in discrete tabular distributions.

Let θ be a parameter of a probability distribution corresponding to some variable.

 $P\langle \theta \rangle$ is a prior distribution of the parameter θ . The task of Bayesian parameter learning is to update the given data D, that is to find the conditional distribution $P\langle \theta | D \rangle$.

According to the Bayes formula

$$\theta \mid D \rangle = \frac{P \langle D \mid \theta \rangle^* P \langle \cdot \cdot \cdot \rangle}{P \langle \cdot \cdot D \rangle},$$
where $\langle D \rangle = \int P \langle \cdot \theta \rangle P \langle \cdot D \mid \theta \rangle.$

Based on the given parameter distribution function, the distribution function for the unknown variable x is $\langle x \rangle = \int P \langle \theta \rangle P \langle x | D \rangle a$

The Dirichlet distribution with parameters a_1 , ..., a_n is a suitable prior distribution for a discrete multinomial distribution (where a variable can give n outcomes) with parameters $\theta_1, ..., \theta_n$. Dirichlet parameters are interpreted in terms of pseudo counts, where a_i stands for an imaginary observed number of cases when the discrete variable has taken the i-th value. When training data contains a small number of cases, positive pseudo counts allow to assign to its unobserved values a non-zero probability.

Let training data contain $N_1 + ... + N_n$ cases, and N_i be a number of cases when the *i*-th value is observed.

On learning these cases, a posterior distribution of θ becomes a Dirichlet distribution with parameters $a_1 + N_1, ..., a_n + N_n$. The target distribution of x after integration through

parameters is
$$P(x = i) = \frac{a_i + N_i}{n}$$

 $\sum \langle a_k + N_k \rangle$

This discussion applies to the case of an unconditional distribution where the considered node of the BNet does not have parents. However, you may easily extend it to cases when the node has parents. As there are counts N_{ij} and pseudo counts a_{ij} , that correspond to the case when x = j, and parents of x are in configuration i, the target

distribution of x becomes
$$P(x = i)| parents \langle x \rangle = i \rangle = \frac{a_{ij} + N_{ij}}{n}$$
.
$$\sum \langle a_{ik} + N_{ik} \rangle$$

Type 2

This type of inference uses the *Expectation Maximization* (EM) algorithm [Dempster], [Jordan]. The algorithm first assumes the initial state of parameters θ^0 and then starts the iterative process alternately repeating two steps: E-step and M-step.

Consider the process at the *i*th iteration:

E-step For each example of the table the probability distribution of the

unobserved variable is found from the values of observed variables and the current values of model parameters θ^{i-1} . The expectations of unobserved variables are calculated for each example in the table.

M-step To maximize the value of the likelihood function, a new value of θ^i

is found.

E-step is repeated with the new parameter values.

This process converges to a local maximum.

In PNLM the EM learning engine is implemented for:

- Bayesian networks with discrete or multivariate Gaussian distribution
- Markov networks with discrete distribution.

The following example considers learning of parameters for the water-sprinkler Bayesian network (see Figure 2-1). If all the nodes are observed, learning Type 1 is used. In this case the E-step, which creates an inference engine and performs the inference procedure, does not take place. If some nodes are hidden, learning Type 2 is used. In this case the E-step takes place, creating an instance of inference engine, which is a junction tree engine by default.

Example 2-5 Creation of learning engine for water-sprinkler BNet

```
bnet = WaterSprinklerBNetCreation
nnodes = GetNumberOfNodes(pBNet);

%generate random samles
nSamples = 100;
samples = GenerateSamples(bnet, nSamples);
for i = 1:nSamples
    evidence = samples{i};
```

Example 2-5 Creation of learning engine for water-sprinkler BNet

```
%make arbitrary node unobserved
node = round(rand*(nnodes-1));
MakeNodeHidden(evidence, node);
end

%create learning engine
eng = CEMLearningEngineCreate(bnet);

%set observations
SetData(eng, samples);

%start learning procedure
Learn(eng);
disp('example of learning is completed');
```

After learning parameters of the Bayesian network assume new values which maximize the likelihood function. The new values correspond to the array of learning data. The table with updated data may be used in further training in the following two ways:

Option 1. Ignore the data of the previous learning. Use the SetData function to implement the variant.

Example 2-6 Entering New Data

```
% entering new data and clear accumulated information.
% here evNew is the newly created array of evidences
SetData( eng, evNew )
%call learning
Learn(eng);
```

The parameters of the Bayesian network assume new values that correspond to the learning data.

Option 2. Use data from the previous learning. Use the ApprendData function to implement the variant.

Example 2-7 Using data from previous learning

```
AppendData( eng, evNew )
Learn( eng );
```


Type 3

The current version of PNLM carries out structure learning for static BNets and does not support other models. The learning engine calls Maximal Likelihood parameter learning. In this version of PNLM learning is carried out under the condition that the input data is complete, that is, when all nodes of training cases are observed. The algorithm supports graphical models with tabular distributions.

Structure Comparison Metric

One of the solutions to the learning task in this case is the computation of joint probability $p(D, S^h)$ for the learning data D and the model structure S^h :

$$\log p(D, S^h) = \log p(D|S^h) + \log p(S^h).$$

In the case of a Bayesian network with discrete variables, the first item in the above formula is found by applying *Bayesian Information Criterion* (BIC) [Jordan]:

$$\log p(D|S^h) \approx \log p(D|\theta^*, S^h) - \frac{d}{2}\log \lambda,$$

where θ stands for the network parameters, N is the number of observations, and d is the number of network parameters. This criterion is a good approximation of the ML criterion discussed above. In BIC the first item shows the degree of consistency of the network parameters with the modelled data, and the addend reflects the descriptive complexity of the network. Vector θ^* can be found by the formula:

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \log (p(D|\theta, S^h)p(\theta|S^h)).$$

The problem of selecting the most suitable Bayesian network from all network configurations is NP hard. The algorithm implemented in PNLM iterates through all graph topologies that contain no directed N(N-1)

graph topologies that contain no directed $\frac{N(N-1)}{2}$ cycles. The total number of such topologies is $2^{\frac{N(N-1)}{2}}$, where N is the number of nodes, and N! is the number of node permutations. The total number of Bayesian

networks with the topology is
$$N! \cdot 2^{\frac{N(N-1)}{2}}$$

The following example considers structure learning for a Bayesian network using CBICLearningEngine. This class is used for learning networks with discrete parents only.

Example 2-8 Structure learning for Bayesian network using PNLM

```
%generate samples from Water Sprinkler network
testBNet = WaterSprinklerBNetCreation;
nsamples = 200;
evidences = GenerateSamples(testBNet, nsamples);
%bayesian network reconstruction
%create an empty graph with the same number of nodes
nnodes = GetNumberOfNodes(testBNet);
mat = zeros(nnodes);
graph = CGraphCreateFromAdjMat(mat);
% create BNet with the same model domain
MD = GetModelDomain(testBNet);
bnet = CBNetCreateWithRandomMatrices(graph, MD);
%create learning engine
eng = CBicLearningEngineCreate(bnet);
%set input data
SetData(eng, evidences);
%startlearning
Learn (eng);
%get result of learning
resBNet = GetGraphicalModel(eng);
resGraph = GetGraph(resBNet);
resAdjMat = CreateAdjacencyMatrix(resGraph);
testGraph = GetGraph(testBNet);
testAdjMat = CreateAdjacencyMatrix(testGraph);
disp('make a comparison')
disp('Adjacency matrix of the test bnet');
disp(testAdjMat);
disp('Adjacency matrix of the result bnet');
disp(resAdjMat);
```

Learning for DBNs

Parameter estimation algorithms for DBNs correspond to the *Expectation Maximization* (EM) algorithms used for learning BNets. Note that the parameters of a model must be tied across time-slices. Thus, sequences of unbounded length may be modelled and the initial state of the dynamic system may be learned independently of the transition matrix. The expected sufficient statistics should be pooled for all the nodes that share the same parameters.

Example 2-9 Learning for DBN

```
%get dynamic model
dbn = ArHMMCreation;
%generate evidences
nSeries = 30;
maxnumSlices = 10;
nts = floor(rand(1, nSeries) *maxnumSlices) +1;
samples = GenerateSamples(dbn, nts);
%create learning procedure
learnEng = CEmLearningEngineDBNCreate(dbn);
%enter evidences
SetData(learnEng, samples);
%start learning procedure
Learn(learnEng);
%results of learning
cpd=GetFactor(dbn, 1);
matMean0 = GetMatrix(cpd, 'matMean', -1, [0]);
matCov0 = GetMatrix(cpd, 'matCovariance', -1, [0]);
matMean1 = GetMatrix(cpd, 'matMean', -1, [1]);
matCov1 = GetMatrix(cpd, 'matCovariance', -1, [1]);
cpd=GetFactor(dbn, 3);
matMean0 = GetMatrix(cpd, 'matMean', -1, [0]);
matCov0 = GetMatrix(cpd, 'matCovariance', -1, [0]);
matWeights0 = GetMatrix(cpd, 'matWeights', 0, [0]);
matMean1 = GetMatrix(cpd, 'matMean', -1, [1])
matCov1 = GetMatrix(cpd, 'matCovaribvance', -1, [1]);
matWeights1 = GetMatrix(cpd, 'matWeights', 0, [1]);
```

Reference Manual

Graph

Class CGraph

Class \mathtt{CGraph} represents the graph structure of a model and performs basic graph algorithms.

CGraphCreate

Creates class object.

graph = CGraphCreate(nbrsList, nbrsTypesList);

Arguments

graph Class object.

nbrsList Cell array of vectors with numbers of node neighbors.

nbrsTypesList Cell array of cell arrays of neighbor types.

Discussion

This function creates a CGraph object using a list of node neighbors.

CGraphCreateFromAdjMat

Creates class object.

```
graph = CGraphCreateFromAdjMat( adjMat );
```

Arguments

graph Class object.

adjMat Adjacency matrix.

Discussion

This function creates a CGraph object using an adjacency matrix.

CGraphCopy

Creates replica of class object.

```
newGraph = CGraphCopy( graph );
```

Arguments

graph Class object to be copied.

newGraph

New class object.

Discussion

This function creates a replica of a CGraph object.

CGraphMoralizeGraph

Creates class object by moralizing.

```
newGraph = CGraphMoralizeGraph( graph );
```

Arguments

graph Class object to be moralized.

newGraph New class object.

Discussion

This function creates a new CGraph object by moralizing the source graph.

GetTopologicalOrder

Returns numbers of nodes according to their topological order.

```
order = GetTopologicalOrder( graph );
```

Arguments

graph Class object.

order Numbers of nodes.

This function returns numbers of nodes according to the order of their topological sorting.

AddEdge

Adds edge to existing graph.

AddEdge (startNode, endNode, directed);

Arguments

startNode Starting node of the edge.
endNode Ending node of the edge.

directed Edge orientation. The argument shows if the edge is

directed. Equals to 1 if the edge is directed, equals to 0

otherwise.

ChangeEdgeDirection

Changes direction of graph.

ChangeEdgeDirection(startNode, endNode);

Arguments

startNode Starting node of the edge.
endNode Ending node of the edge.

Discussion

This function changes the direction of a graph by changing the direction of its edge nodes.

GetNeighbors

Gets all neighbors of given node with orientation vector.

```
[nbrsOut, nbrsTypesOut] = GetNeighbors( nodeNum );
```

Arguments

graph Class object.

nodeNum Number of the node whose neighbors are to be found.

nbrsOut Vector of node neighbors.

nbrsTypesOut Cell array of vectors with types of node neighbors from nbrsOut.

GetNumberOfNeighbors

Returns number of neighbors of given node.

```
n = GetNumberOfNeighbors( graph, nodeNum );
```

Arguments

graph Class object.

Number of the node for which the number of neighbors is to be

found.

n Number of neighbours.

GetNumberOfNodes

Returns number of all nodes in graph.

```
n = GetNumberOfNodes( graph );
```

Arguments

graph Class object.

n Total number of nodes.

GetNumberOfEdges

Returns number of edges in graph.

```
n = GetNumberOfEdges( graph );
```

Arguments

graph Class object.

n Number of edges in the graph.

Discussion

This function returns the number of edges in a graph.

IsCompleteSubgraph

Checks subset of given nodes for completeness.

```
x = IsCompleteSubgraph( graph, subGraph );
```

Arguments

graph	Class object.
subGraph	Subset of nodes.
X	Flag of completeness

Discussion

This function checks whether a subset of nodes is complete. The function returns 1 if the subset is complete, returns 0 otherwise.

IsChangeAllowed

Returns status flag for graph.

```
x = IsChangeAllowed(graph);
```

Arguments

graph Class object.
x Flag of status.

Discussion

This function returns checks if a graph may be changes. The function returns 1 if the change is allowed, returns 0 otherwise.

IsExistingEdge

Returns information on edge existence.

```
x = IsExistingEdge( graph, startNode, endNode );
```

Arguments

graph Class object.

startNodeStarting node of the edge.endNodeEnding node of the edge.xFlag of egde presence.

Discussion

This function checks if the graph has an edge. The function returns 1 if the edge exists in the graph, returns 0 otherwise.

RemoveEdge

Removes edge from graph.

RemoveEdge(graph, startNode, endNode);

Arguments

graph Class object.

startNode Starting node of the edge.
endNode Ending node of the edge.

SetNeighbors

Sets neighbors for given node.

SetNeighbors(graph, nodeNum, nbrs, nbrsTypes);

Arguments

graph Class object.

Number of the node whose neighbors should be set.

nbrs Vector of node neighbors.

nbrsTypes Cell array of node neighbor types.

ProhibitChange

Prohibits any change of CGraph object.

```
ProhibitChange( graph );
```

Arguments

graph Class object.

FormCliqueFromSubgraph

Forms clique by connecting all nodes of subgraph.

FormCliqueFromSubgraph(graph, subGraph);

Arguments

graph Class object.

subGraph Vector of nodes to form a clique.

Discussion

This function connects all nodes of a subgraph with each other so that they form a clique.

GetNumberOfParents

Returns number of parents of node.

```
n = GetNumberOfParents( graph, nodeNum );
```

Arguments

graph Class object.
nodeNum Node number.

n Number of parents.

GetNumberOfChildren

Returns number of children of node.

```
GetNumberOfChildren( nodeNum );
```

Arguments

graph Class object.

nodeNum Node number.

IsDirected

Checks if graph is directed.

```
x = IsDirected(graph);
```

Arguments

graph Class object.

X

Flag of the graph type.

Discussion

This function returns 1, if the graph is directed; returns 0, if the graph has at least one undirected edge.

IsUndirected

Checks if graph is undirected.

```
x = IsUndirected(graph);
```

Arguments

graph Class object.

Flag of the graph type.

Discussion

This function returns 1, if the graph is undirected; returns 0, if the graph has at least one directed edge.

GetAdjacencyMatrix

Returns adjacency matrix.

```
adjMat = GetAdjacencyMatrix( graph );
```

Arguments

```
graph Class object.

adjMat Adjacency matrix.
```

This function returns the adjacency matrix, which corresponds to the graph described by the related CGraph object. The adjacency matrix is not stored in the graph. It is formed only when you call the function.

ClearGraph

Clears graph.

```
ClearGraph( graph);
```

Arguments

graph Class object.

Discussion

This function clears a graph by deleting lists of its node neighbors and sets the number of nodes to zero.

IsIdentical

Checks if two graphs are identical.

```
x = IsIdentical(graph, graphComp);
```

Arguments

```
graph Source class object.
graphComp Graph for comparison.
x Flag.
```

This function checks if two graphs are identical. Returns 1 if they are identical, returns 0 otherwise.

IsNotIdentical

Checks if two graphs are not identical.

```
x = IsNotIdentical(graph, graphComp);
```

Arguments

graph Source class object.
graphComp Graph for comparison.

Flag.

Discussion

This function checks if two graphs are not identical. Returns 1 the graphs are not identical, returns 0 otherwise.

GetParents

Returns vector of parents.

```
parents = GetParents( graph, nodeNum );
```

Arguments

graph Class object.

nodeNum Number of the node whose parents are to be found.

parents Vector of numbers of parent nodes.

This function returns parents of a node.

GetChildren

Returns vector of children.

```
children = GetChildren( graph, nodeNum );
```

Arguments

graph Class object.

nodeNum Number of the node whose children numbers are to be found.

children Vector of numbers of children nodes.

Discussion

This function returns children of a node.

IsDAG

Checks if graph is DAG

```
x = IsDAG(graph);
```

Arguments

graph Class object.

Flag of object type.

Discussion

This function checks if a graph is a directed acyclic object. The function returns 1, if the graph is a DAG, returns 0 otherwise.

IsTopologicallySorted

Checks if graph is topologically sorted.

```
x = IsTopologicallySorted(graph);
```

Arguments

graph Class object.

x Flag of topological sorting.

Discussion

This function returns 1 if the graph is topologically sorted, returns 0 otherwise.

NumberOfConnectivityComponents

Returns number of graph connectivity components.

```
x = NumberOfConnectivityComponents( graph );
```

Arguments

graph Class object.

Discussion

This function returns the number of connectivity components of the graph. If the graph has more than one connectivity component, the inference engine throws an exception. In case of several connectivity components each of them should be treated as a separate graphical model.

GetConnectivityComponents

Returns connectivity components.

decomposition = GetConnectivityComponents(graph);

Arguments

graph Class object.

decomposition Cell array of connectivity components, represented as

vectors.

SetTo

Assigns new value to CGraph object.

```
rGraph = SetTo( graph );
```

Arguments

graph Class object.

rGraph Graph to become identical to the source graph.

Discussion

This function creates a replica of the source graph by assigning to it a new value.

GetAncestry

Finds nodes that lie outside given subgraph but have ancestors inside.

```
closure = GetAncestry( graph, subGraph );
```

Arguments

graph Class object.

subGraph Vector of indices of the input subgraph.

closure Vector of nodes.

Discussion

This function returns indices of nodes that do not lie but have ancestors in the given subgraph.

GetAncestralClosure

Finds nodes that either lie inside or have ancestors in given subgraph.

```
closure = GetAncestralClosure(graph, subGraph);
```

Arguments

graph Class object.

subGraph Vector of indices of the input subgraph.

closure Vector of nodes.

This function returns indices of nodes that either lie or have ancestors in the given subgraph.

GetAncestralClosureMask

Finds nodes that either lie inside or have ancestors in given subgraph.

closureMask = GetAncestralClosure(graph, subGraph);

Arguments

graph Class object.

subGraph Vector of indices of the input subgraph.

closureMask Vector-mask.

Discussion

This function finds nodes that either lie inside or have ancestors in the given subgraph and fills the boolean mask accordingly. The *i*-th element of the *closureMask* is set to true only if the *i*-th node belongs to the ancestral closure.

GetSubgrConnectComponents

Finds plain connectivity components of induced subgraph.

```
decomp = GetSubgrConnectComponents( graph, subGraph );
```

Arguments

graph Class object.

subGraph Vector of indices of the input subgraph.

decomp Cell of vectors with indices of decomposition nodes.

Discussion

This function finds plain connectivity components of the induced subgraph and fills in the decomposition output argument accordingly.

GetDConnectionList

Finds nodes d-connected to given node.

dseparationList = GetDConnectionList(graph, node, separator);

Arguments

graph Class object.
node Given node.

separator Vector of nodes that constitute the separator.

dseparationList Vector of node indices.

Discussion

This function finds nodes α -connected to the given node by the given separator. The definition of the α -connection runs as in [CDLS]:

node A is a-connected to node B if there is a non-blocked trail between them. A trail is blocked if it contains either a node from the separator with the trail edges meeting not head-to-head, or a node that has descendants in the separator with the trail edges meeting head-to-head.

GetDConnectionTable

Finds d-connection lists for all nodes of graph.

dseparationTable = GetDConnectionTable(graph, separator);

Arguments

graph Class object.

separator Separator for d-separation.

dseparationTable Cell array of vectors of node indices.

Discussion

Finds *d*-connection lists for all nodes of the graph. The definition for the *d*-connection runs as in [CDLS].

NOTE. Using GetDConnectionTable rather than GetDConnectionList for finding multiple d-separation lists ensures a much faster result.

GetReachableSubgraph

Finds nodes reachable from given subgraph if certain pairs of edges are banned.

closure = GetReachableSubgraph(graph, subGraph, ban);

Arguments

graph Class object.

int_{el®}

subGraph Given subgraph.

ban Three-dimensional boolean mask.

closure Vector of node indices.

Discussion

For every node *i ban[i]* should be a conventional two-dimesional boolean array.

The entry ban[I][J][K] is true if and only if the pair of edges < j, i>, < i, k> is banned for acceptable trails.

Function fills in the output vector closure with indices of nodes accessible from the subgraph with an acceptable trail.

GetReachableSubgraphByNode

Finds nodes reachable from given subgraph if certain pairs of edges are banned.

```
closure = GetReachableSubgraphByNode( graph, node, ban );
```

Arguments

graph Class object.
node Given node.

ban Three-dimensional boolean mask.

closure Vector of node indices.

Discussion

For every node *i* ban[*i*] should be a conventional two-dimesional boolean array.

The entry ban[I][J][K] is true if and only if the pair of edges $\langle j, i \rangle$, $\langle i, k \rangle$ is banned for acceptable trails.

Function fills in the output vector closure with indices of nodes accessible from the subgraph with an acceptable trail.

NOTE. Using this method is not recommended. This method was designed for internal use only in older versions of the a-connection related methods.

Node Types

Class CNodeType

Class ${\tt CNodeType}$ provides node types for the model. By default model nodes are binary and discrete.

CNodeType

Creates class object.

```
nt = CNodeType( type, size );
```

Arguments

type Type of variable. For a discrete variable equals to 1, for continuous

variables equals to 1.

For a discrete variable - number of possible values.

For a continuous variable - dimentionality.

nt Class object.

IsDiscrete

Returns information on node discreteness.

```
x = IsDiscrete(nt);
```

Arguments

nt Class object.

x Flag of discreteness.

Discussion

This function returns 1 if the node is discrete, returns 0 otherwise.

GetNodeSize

Returns node size.

```
x = GetNodeSize(nt);
```

Arguments

nt Class object.
x Node size.

Discussion

This function returns the number of possible values if the node is discrete. If the node is continuous, the function returns its dimentionality.

SetType

Sets node type.

```
SetType( nt, isDiscrete, ndSize, );
```

Arguments

nt Class object.

isDiscrete Type of node value. Equals to 1 if the node is discrete, equals to 0 if

the node is continuous.

ndSize Size of the new node.

Discussion

This function determines the type of a given node.

IsIdentical

Compares operands.

```
IsIdentical( nt, ntIn );
```

Arguments

nt Source class object.

ntIn Class object for comparison.

Discussion

This function compares two operands. Returns 1 if the operands are equal, returns 0 otherwise.

IsNotIdentical

Compares two operands.

```
IsNotIdentical( nt, ntIn );
```

Arguments

nt Source class object.

ntIn Class object for comparison.

Discussion

This function compares two operands. The function returns 1 if the operands are not equal, returns 0 otherwise.

Model Domain

Model domain is a set of nodes that define a graphical model. A number of graphical models can have one model domain. This object stores information on the types of variables or nodes. For example, you can create a new graphical model using the description of model variables from the model domain.

Class CModelDomain

This class stores information on the types of variables that are used to create a graphical model and on the types of nodes that become observed during inference after evidence is entered. This class also stores temporary <code>CFactor</code> objects that are not attached to graphical models.

CModelDomainCreate

Creates class object.

```
md = CModelDomainCreate( variableTypes, variableAssociation );
md = CModelDomainCreate( variableTypes, variableAssociation, creatorOfMD );
```

Arguments

md Model domain.

variable Types Cell array of node types.

variable Association Vector of association of a variable with its type.

creator OfMD Graphical model that creates a model domain.

Discussion

This function creates a model domain with different variable types, where the association vector of every variable points at the variable type.

CModelDomainCreatelfAllTheSame

Creates class object.

Arguments

md Model domain.

creatorOfMD Graphical model that creates a model domain.

numVariables Number of variables in the model domain.

CommonVariableType Variable type.

Discussion

Three function versions are available. The first version creates a model domain using binary and discrete variables. The second version creates a model domain using any variables of the same type. The third version reates a model domain using a graphical model.

AttachFactor

Attaches factor to model domain.

```
n = AttachFactor(md, factor);
```

Arguments

md Model domain.

factor Factor to be attached.

Discussion

This function returns the number that a factor has in the model domain.

ReleaseFactor

Releases factor from model domain.

ReleaseFactor(md, factor);

Arguments

md Model domain.

factor Factor to be released.

IsAFactorOwner

Checks if model domain keeps query factor.

```
isOwner = IsAFactorOwner(md, factor);
```

Argument

md Model domain.

factor Factor for checking.

Discussion

The function returns 1 if the model domain is the owner of the query factor, returns 0 otherwise.

GetVariableType

Returns variable type to query variable.

```
vt = GetVariableType( md, varNumber );
```

Arguments

md Model domain.

varNumber Number of a variable.

GetVariabeTypes

Returns variable types for query variables.

```
varTypes = GetVariableTypes( md, vars );
```

md Model domain.

varsVector of variable numbers.varTypesCell array of variable types.

Discussion

This function returns a cell array of variable types.

GetObsGauVarType

Returns variable types for observed Gaussian variables.

```
vt = GetObsGauVarType( md );
```

Arguments

md Model domain.

GetObsTabVarType

Returns variable types for observed Tabular variables.

```
vt = GetObsTabVarType( md );
```

Arguments

md Model domain.

Discussion

This function returns variable types for observed Tabular variables.

GetNumberOfVariableTypes

Returns number of variable types.

```
nvt = GetNumberOfVariableTypes( md );
```

Arguments

md Model domain.

nvt Number of variable types.

Discussion

This function returns the number of variable types.

GetVariableTypes

Returns all variable types.

```
varTypes = void CModelDomain::GetVariableTypes( md );
```

Arguments

md Model domain.

varTypes Vector of variable types.

Discussion

This function returns the cell array of variable types.

GetNumberVariables

Returns number of variables of model domain.

```
nv = GetNumberVariables( md );
```

Agruments

md

Model domain.

Discussion

This function returns the number of variables that belong to the model domain.

GetVariableAssociations

Returns association to variable types.

```
varAs = GetVariableAssociations( md );
```

Arguments

md Model domain.

varAs Vector of associations of variables with their variable types.

Discussion

The function returns to variables their variable types.

GetVariableAssociation

Returns variable association.

varAs = GetVariableAssociation(md, variable);

Arguments

md Model domain.

variable Number of a variable in the model domain.

Evidences

Class CNodeValues

Class CNodeValues is intended for storing values of variables. Values of discrete nodes are represented by integers. Values of continuous nodes are represented by n floats, where n is NodeSize of a corresponding node type.

A node can be observed either *potentially* or *actually*. When a node is observed *potentially*, its value is stored at a CNodeValues object and it can be made observed *actually*. To make a node *actually* observed, change its observability flag to *true*.

To facilitate the inference proceudre, you can create evidence for all nodes in advance and set observability flags of some nodes to false. If you need new observed nodes, toggle observability states of hidden nodes, make them observed, and perform inference with them.

Class CNodeValues is a superclass for <u>Model Domain</u>. It stores information on observed values of certain variables with no indication of variable numbers in the graphical model. <u>Model Domain</u> stores information on the assosiation of variables with the graphical model nodes.

CNodeValuesCreate

Creates class object.

nv = CNodeValuesCreate(obsNdsTypes, obsValues);

Arguments

nv Class object.

obsNdsTypes Node types of observed nodes.

obsValues Values of observed nodes.

GetValueBySerialNumber

Returns values of nodes.

value = GetValueBySerialNumber(nv, SerialNumber);

Arguments

nv Class object.

Serial number of an observed variable.

This function returns the vector of observed node values.

GetNumberObsNodes

Returns number of observed nodes.

```
nNodes = GetNumberObsNodes(nv);
```

Arguments

nv Class object.

nNodes Number of nodes.

Discussion

This function returns the number of both potentially and actually observed nodes.

GetObsNodesFlags

Returns observability flags.

```
flags = GetObsNodesFlags( nv );
```

Arguments

nv Class object.

flags Flags that show if a variable is observed.

Discussion

This function returns the vector of flags that show if a variable is observed. The function returns 1 if a variable is observed, returns 0 otherwize.

GetRawData

Returns vector of values.

```
values = GetRawData( nv );
```

Arguments

nv Class object.

values Vector of values.

Discussion

This function returns the vector of variable values.

SetData

Replaces old values with new values.

```
SetData( nv, data );
```

Arguments

nv Class object.

data Vector of new values.

MakeNodeHiddenBySerialNum

Changes state of observability flag.

MakeNodeHiddenBySerialNum(nv, serialNum);

nv Class object.

serialNum Number of the node, whose state is to be changed.

Discussion

This function changes the state of an observability flag from observed to hidden.

MakeNodeObservedBySerialNum

Changes observability flag from hidden to observed.

MakeNodeObservednBySerialNum(nv, serialNum);

Arguments

nv Class object.

SerialNum Number of the hidden node, whose state is to be changed.

ToggleNodeStateBySerialNumber

Toggles observability type.

ToggleNodeStateBySerialNumber(nv, nodeNums);

Arguments

nv Class object.

nodeNums Serial numbers of the observed variables whose states are to be

changed.

This function changes the state of variables from potentially observed to actually observed and vice versa.

IsObserved

Checks if variable is observed.

```
flag = IsObserved( nv, nodeNum );
```

Arguments

nv Class object.

nodeNum Serial number of the variable to be checked.

flag Observability flag.

Discussion

This function checks the state of a variable. The function returns 1 is the variable is observed, returns 0 otherwise.

Class CEvidence

Class CEvidence stores information on observed variables of a graphical model. It is a subclass of Class CNodeValues, which stores information on types and actual values of variables. Class CEvidence stores the array of numbers of observed variables that lie in the graphical model and the functions that are used to retrieve information on observed nodes of the model. These functions establish correspondence between numbers of the model nodes and their serial numbers in a CNodeValues object and call functions of a corresponding class.

CEvidenceCreate

Creates class object.

CNodeValuesCreate(grModel, obsNodes, obsValues);

Arguments

grModel Graphical model.

obsNodes Vector of observed nodes in the graphical model or of observed

variables it the model domain.

obsValues Cell array of observed values listed as in obsNodes.

CEvidenceCreateByModelDomain

Creates class object using model domain.

ev = CEvidenceCreateByModelDomain(md, obsNodes, obsValues);

Arguments

md Model domain.

obsNodes Vector of observed nodes in the graphical model or of observed

variables it the model domain.

obsValues Array of observed values listed as in obsNodes.

CEvidenceCreateByNodeValues

Creates class object using node values.

CEvidenceCreateByNodeValues(md, obsNodes, obsValues);

md Model domain.

nobsNds Number of observed nodes or variables.

obsValues Array of observed values listed as in obsNodes.

ToggleNodeState

Toggles node state.

ToggleNodeState(ev, nodeNums);

Arguments

ev Class object.

nodeNums Numbers of the observed nodes whose states are to be changed.

Discussion

This function makes potentially observed nodes actually observed and vice versa.

GetValues

Returns values of nodes.

```
GetValues( nv, nodeNums );
```

Arguments

nv Class object.

nodeNums Serial numbers of observed nodes.

The function returns values of observed nodes of the model.

GetAllObsNodes

Returns vector of numbers of observed nodes.

```
obsNodes = GetAllObsNodes(ev);
```

Arguments

ev

Class object.

Discussion

This function returns the vector of numbers of observed nodes.

IsNodeObserved

Checks status of node.

```
flag = IsNodeObserved( ev, nodeNum );
```

Arguments

ev Class object.

nodeNum Number of the node for checking.

Discussion

This function returns 1, if the node is observed, retrurns 0 otherwise.

MakeNodeObserved

Changes stete of observation flag.

MakeNodeObserved(ev, nodeNum);

Arguments

ev Class object.

nodeNum Number of the node whose state is to be changed.

Discussion

This function makes a hidden node observed, and throws an exception, if the source node is already observed.

MakeNodeHidden

Changes state of observation flag.

```
flag = MakeNodeHidden( ev, nodeNum );
```

Arguments

ev Class object.

nodeNum Number of the node whose state is to be changed.

Discussion

This function makes the observed node hidden and throws an exception, if it is already hidden.

GetObsNodesWithValues

Returns vectors of actually observed nodes and of their values.

[pObsNds, ObsValues, nodeTypes] = GetObsNodesWithValues(ev);

Arguments

ev Class object.

ObsNds Vector of numbers of observed nodes.

ObsValues Cell array of vectors with raw data of actually observed values. The

values are listed as in ObsNds.

nodeTypes Vector with node types for observed nodes. The values are listed as

in ObsNds.

Discussion

The function returns two vectors: the vector of observed nodes and the vector of their values.

GetModelDomain

Returns model domain.

```
md = GetModelDomain( ev );
```

Arguments

ev Class object.

md Model domain.

CEvidenceSaveForStaticModel

Saves evidences to file for statical model.

```
flag = CEvidenceSaveForStaticModel( fName, evVec);
```

Arguments

fName File name.

evVec Cell array of evidences.

Discussion

This function saves into a file evidence for a static graphical model. The function returns 1 if the evidence is saved, returns 0 otherwise.

CEvidenceSaveForDBN

Saves evidences to file for DBN.

```
flag = CEvidenceSaveForDBN( fName, evVec );
```

Arguments

fName File name.

evVec Cell array of cell arrays of evidences.

Discussion

This function saves into a file evidence for a dynamic graphical model. The function returns 1 if the evidence is saved, returns 0 otherwise.

CEvidenceLoadForStaticModel

Loads evidence from file.

```
evVec = CEvidenceLoadForStaticModel( fName, md );
```

Arguments

fName File name.

evVec Cell array of loaded evidences.

md Model domain.

Discussion

This function retrieves data from the file and creates evidences for a static graphical model.

CEvidenceLoadForDBN

Loads evidence to file.

```
evVec = CEvidenceLoadForDBN( fname, md);
```

Arguments

fname File name.

evVec Cell array of cell arrays of evidences.

md Model domain.

Discussion

This function retrieves data from the file and creates evidences for a DBN.

Graphical Models

Class CGraphicalModel

Class CGraphicalModel represents a graphical model, which consists of a graph and a number of factors assigned to the graph nodes. Class CGraphicalModel is a superclass for Class CStaticGraphicalModel and Class CDynamicGraphicalModel.

NOTE. No instances of this class can be created, as the class is abstract.

AllocFactor

Allocates factor to domain.

AllocFactor(grm, number);

grm Class object.

number Vecor of nodes that form the domain.

Discussion

This function allocates a factor to a domain.

AllocFactorByDomainNumber

Allocates factor for domain by domain number.

AllocFactorByDomainNumber(grm, domain);

Arguments

grm Class object.

domain Number of the domain.

Discussion

This function allocates a factor on the domain nodes.

AllocFactors

Allocates space to all factors of model.

AllocFactors(grm);

Arguments

grm Class object.

This function allocates space to all the factors of the model.

AttachFactor

Attaches factor to model.

AttachFactor (grm, pFactor);

Arguments

grm Class object.

factor Factor to be attached to the model.

Discussion

This function attaches a factor to the model if the factor has an existing domain in terms of the graphical model.

AttachFactors

Attaches new factors and returns old factors.

factorsOld = AttachFactors(grm, factors);

Arguments

grm Class object.

factors01d Factors to be substituted for by new factors.

This function attaches a set of factors stored in a CFactors object and returns the set of old factors for destruction.

GetGraph

Returns class object.

```
graph = GetGraph( grm );
```

Arguments

grm Source class object.

graph Class object attached to the model.

Discussion

This function returns a class object attached to the model.

GetModelType

Returns type of model.

```
mt = GetModelType(grm);
```

Arguments

grm Class object.

mt Model type.

GetNodeType

Returns node type.

```
nt = GetNodeType( grm, nodeNum);
```

Arguments

grm Class object.

nodeNum Number of the node whose node type is to be returned.

nt Node type.

Discussion

This function returns a CNodeType object for the specified node number.

GetNodeTypes

Provides access to all node types of model.

```
GetNodeTypes( grm, nodeTypes );
```

Arguments

grm Class object.

nodeTypes Cell array of all CNodeType objects attached to the model.

GetNumberOfNodes

Returns number of nodes of model.

```
{\tt GetNumberOfNodes(\ \it grm\ );}
```

grm Class object.

Discussion

This function returns the number of nodes per slice for both static and dynamic graphical models.

GetNumberOfNodeTypes

Returns number of node types of model.

```
nNodeTypes = GetNumberOfNodeTypes( grm );
```

Arguments

grm Class object.

nNodeTypes Number of node types.

GetNumberOfFactors

Returns number of factors attached to model.

```
nFactors = GetNumberOfFactors( grm );
```

Arguments

grm Class object.

nFactors Number of factors attached.

GetFactor

Returns class object by domain number.

```
factor = GetFactor( grm, domainNumber );
```

Arguments

grm Class object.

domainNumber Number of domain for which a factor is to be found.

Discussion

This function returns a class object using a specified domain number.

GetFactorsIntoVector

Returns all factors attached to subset of nodes.

```
factors = GetFactorsIntoVector( grm, nodes );
```

Arguments

grm Graphical model.

nodes Vector of nodes for which attached factors are to be found.

factors Cell array of factors.

Discussion

This function returns all factors attached to nodes. Several factors may be attached to one subset of nodes if the latter is common for a number of domains.

GetModelDomain

Returns model domain.

```
md = GetModelDomain( grm );
```

Arguments

grm Class object.

md Model domain.

IsValid

Checks validity of graphical model.

```
[flag, descr]=IsValid( grm );
```

Arguments

grm Class object.

flag Flag of validity.

descr Error message.

Discussion

This function checks the validity of a graphical model. Returns 1 if the model is valid, returns 0 otherwise.

Class CStaticGraphicalModel

 ${\tt CStaticGraphicalModel} \ is \ a \ superclass \ for \ two \ classes: \ \ \underline{\tt Class} \ \ \underline{\tt CBNet} \ and \ \ \underline{\tt Class} \ \ \underline{\tt CMNet}.$

NOTE. No instances of this class can be created, as the class is abstract.

IsValidAsBaseForDynamicModel

Checks validity of model for creation of dynamic model.

[flag, descr] = IsValidAsBaseForDynamicModel(grm);

grm Class object.

descr Error message.

flag Flag of validity.

Discussion

This function checks if the model is valid for the creation of a dynamic graphical model.

Class CBNet

CBNetCreate

Creates class object.

BNet = CBNetCreate(numberOfNodes, nodeTypes, nodesAssociation, graph);

Arguments

numberOfNodes Number of nodes.

nodeTypes Cell array of node types.

nodesAssociation Vector for nodes association with node types.

graph Graph structure of the model.

CBNetCreateByModelDomain

Creates class object.

CBNetCreateByModelDomain(graph, md);

Arguments

graph Graph structure of the model.

md Model domain.

CBNetCreateWithRandomMatrices

Creates CBNet object with random matrices.

CBNetCreateWithRandomMatrices(graph, md);

graph Graph structure.

md Model domain.

Discussion

This function creates a BNet object with dense random matrices.

CBNetCopy

Creates new object by copying.

CBNetCopy(BNet);

Arguments

BNet Class object to be copied.

Discussion

This function creates a new CBNet object by copying the source object.

ConvertToSparse

Converts object with dense matrices into object with sparse matrices.

```
BNetSparce = ConvertToSparse( BNet );
```

Arguments

BNet Class object.

This function converts a CBNet object with dense matrices into a CBNet object with sparse matrices.

ConvertToDense

Converts object with sparse matrices into object with dense matrices.

```
BNetDense = ConvertToDense( BNet );
```

Arguments

BNet Class object.

Discussion

This function converts a BNet object with sparse matrices into a BNet object with dense matrices.

CreateTabularCPD

Creates tabular CPD.

CreateTabularCPD(BNet, childNodeNumber, matrixData);

Arguments

BNet Class object.

childNodeNumber Factor number.

matrixData Matrix with data.

This function creates a tabular CPD using given data.

FindMixtureNodes

Finds numbers of mixture nodes.

```
mixNds = FindMixtureNodes( BNet );
```

Arguments

BNet Class object.

mixNds Vector of mixture nodes.

Discussion

This function finds numbers of mixture nodes of a mixture Gaussian distribution.

GenerateSamples

Generates random evidences for BNet given evidence.

```
evidences = GenerateSamples( BNet, nSamples, );
evidences = GenerateSamples( BNet, nSamples, ev );
```

Arguments

BNet Class object.

evidences Cell array of evidences to be created.

nSamples Number of samples.
ev Given evidence.

This function generates samples from a static graphical model.

Class CMNet

CMNetCreate

Creates class object.

MNet = CMNetCreate(numberOfNodes, nodeTypes, nodesAssociation, cliques);

MNet Class object.

numberOfNodes Number of nodes in the model.

nodeTypes Vector of node types.

nodesAssociation Vector of assosiation of nodes with their types.

cliques Cliques.

CMNetCreateByModelDomain

Creates class object by model domain.

MNet = CMNetCreateByModelDomain(cliques, MD);

Arguments

MNet Class object.
cliques Cliques.

MD Model domain.

CMNetCreateWithRandomMatrices

Creates object with random matrices.

MNet = CMNetCreateWithRandomMatrices(cliques, MD);

Arguments

MNet Class object.
cliques Cliques.

MD Model domain.

Discussion

This function creates a class object with dense random matrices. Covariance matrices of the Gaussian distribution are matrix units.

GetClique

Returns clique nodes.

```
clq = GetClique( MNet, clqNum );
```

Arguments

MNet Markov network.

clqNum Number of a clique.

clq Vector of clique nodes.

CMNetConvertFromBNet

Creates class object by converting input BNet.

```
MNet = CMNetConvertFromBNet( BNet );
```

Arguments

MNet Class object.

BNet Bayesian network.

Discussion

This function converts the input BNet object into a MNet object.

CMNetConvertFromBNetUsingEv

Creates object by converting input BNet using given evidence.

```
MNet = CMNetConvertFromBNetUsingEv( BNet, ev );
```

Arguments

MNet Class object.

BNet Bayesian network.

ev Evidence.

Discussion

This function converts the input BNet object into a MNet object using evidence.

CMNetCopy

Creates object by copying input MNet.

```
MNetNew = CMNetCopy( MNet );
```

Arguments

MNet Markov network to be copied.

MNetNew New object of the class.

Discussion

This function creates a new object of the class by copying the input MNet.

CreateTabularPotential

Allocates factor and creates matrix.

CreateTabularPotential(MNet, domain, data);

Arguments

MNet Class object.

domain Array of nodes.

data Matrix with data.

Discussion

This function allocates a factor and creates a new matrix with the given data.

ComputeLogLik

Computes logarithm of likelihood.

```
LogLik = ComputeLogLik( MNet, ev );
```

Arguments

MNet Class object.
ev Evidence.

LogLik Logarithm of likelihood.

Discussion

This function computes the logarithm of likelihood.

GetClqsNumsForNode

Specifies numbers of cliques with node.

```
clqs = GetClqsNumsForNode( MNet, node );
```

Arguments

MNet Class object.

node Node number.

clqs Vector of cliques that contain node.

Discussion

This function specifies numbers of cliques that contain a given node.

GetNumberOfCliques

Returns number of cliques of model.

```
nClq = GetNumberOfCliques(MNet);
```

Arguments

nClq Number of cliques.

MNet Class object.

GenerateSamples

Generates random evidence from MNet.

```
evidences = GenerateSamples( MNet, nSamples );
```

evidences = GenerateSamples(MNet, nSamples, ev);

Arguments

MNet Class object.

evidences Cell array of evidences to be created.

nSamples Number of samples.

ev Given evidence.

Class CMRF2

<u>Class CMNet</u> is a superclass for class CMRF2, which represents a pairwise Markov network. Class CMRF2 implements CMNet virtual functions, with objects whose cliques contain two nodes.

CMRF2Create

Creates class object.

MRF2 = CMRF2Create(numberOfNodes, nodeTypes, nodeAssociation, cliques);

Arguments

MRF2 Class object.

cliques Cell array of vectors with clique nodes.

numberOfNodes Number of nodes.

nodeTypes Cell array of node types.

nodeAssociation Vector of node association.

CMRF2CreateByModelDomain

Creates class object using model domain.

MRF2 = CMRF2CreateByModelDoamin(cliques, MD);

Arguments

MRF2 Class object.
cliques Cliques.

MD Model domain.

CMRF2CreateWithRandomMatrices

Creates class object using random matrices.

```
MRF2 = CMRF2CreateWithRandomMatrices( cliques, MD );
```

Arguments

cliques

Class object. MRF2Cliques.

Model domain. MD

Class CFactorGraph

A factor graph is the graphical representation of a factorized distribution. All factors of the distribution are represented by factor-nodes, which are connected to variable-nodes of the factor domain. A factor graph is the resulting graph of the distribution.

Class CFactorGraph is a graphical model that consists of a set of factors. The set of factors has its probability distribution. All the factors are potentials.

CFactorGraphCreate

Creates class object.

fGraph = CFactorGraphCreate(MD, numFactors);

MD Model domain.

numFactors Number of factors in the factor graph.

Discussion

This function creates a factor graph with several allocated factors.

CFactorGraphCreateByFactors

Creates class object.

```
fGraph = CFactorGraphCreateByFactors( MD, factors );
```

Arguments

MD Model domain.

factors Object whose factors describe a factor graph

object.

Discussion

This function creates a factor graph from all factors of the model domain.

CFactorGraphCopy

Creates replica of input object.

```
fGraph = CFactorGraphCopy( FG );
```

Arguments

FG Input class object.

FGraph New class object.

Discussion

This function creates a new CFactorGraph object by copying the input object.

Shrink

Creates factor graph by shrinking all potentials of given factor.

```
fGraphNew = Shrink( fGraph, evidence );
```

Arguments

fGraph Class object.
evidence Given evidence.

fGraphNew New object of the class.

Discussion

This function creates a factor graph with given evidence by shrinking all the potentials of the given factor.

GetNumFactorsAllocated

Returns numbers of allocated factors.

```
nbrsFactors = GetNumFactorsAllocated();
```

Arguments

nbrsFactors Vector of numbers of allocated factors.

CFactorGraphConvertFromBNet

Creates class object by converting BNet object.

```
fGraph = CFactorGraphConvertFromBNet( BNet );
```

Arguments

BNet

Object to be converted.

Discussion

This function creates a CFactorGraph object by converting the given BNet object.

CFactorGraphConvertFromMNet

Creates class object by converting MNet object.

```
fGraph = CFactorGraphConvertFromMNet( MNet );
```

Arguments

MNet

Object to be copied.

Discussion

This function creates a CFactorGraph object by converting a MNet object.

IsValid

Checks validity of function.

```
[flag, description ] = IsValid( MNet);
```

description Error message.

Discussion

This function checks if the object is valid.

GetNbrFactors

Returns factors neighboring to given node.

```
nbrsFactors = GetNbrFactors( fGgaph, node );
```

Arguments

fGgaph Factor graph.

node Node.

nbrsFactors Vector of numbers of the factors that neighbor with the node factors.

Discussion

This function returns factors neighboring to the given node. A factor is called neighboring to the node if the latter lies in the factor domain.

GetNumNbrFactors

Returns number of factors neighboring with given node.

```
nf = GetNumNbrFactors( fGraph, node );
```

Arguments

fGraph Factor graph.

node Number of the node.

nf Number of neighboring factors.

Discussion

This function returns the number of factors neighboring with a given node.

Class CJunctionTree

This class represents the structure of a Junction tree. It is used in the Junction Tree Inference Engine for internal local computations. A class object is created on the creation of <code>JTreeInfEngine</code>.

CJunctionTreeCreate

Creates Junction tree.

```
JTree = CJunctionTreeCreate( grModel );

JTree = CJunctionTreeCreate( grModel, subGrToConnect );
```

Arguments

grModel Graphical model from which the tree is to be constructed.

subGrToConnect Subgraphs you want to appear in the tree.

JTree Class object.

CJunctionTreeCopy

Creates replica of input Junction tree.

```
JTreeNew = CJunctionTreeCopy( JTree );
```

Arguments

JTree Class object to be copied.

Discussion

This function creates a class object through copying the input Junction tree.

GetNodePotential

Returns potential defined of Junction tree clique.

```
pot = GetNodePotential( JTree, nodeNum );
```

JTree Class object.

nodeNum Number of the clique in the Junction tree.

Discussion

This function returns the potential of a junction tree clique.

GetSeparatorPotential

Returns potential defined for separator between two cliques.

```
pot = GetSeparatorPotential( JTree, firstClqNum, secondClqNum );
```

Arguments

JTree Class object.

firstClqNum Number of the first clique.

secondClqNum Number of the second clique.

Discussion

This function returns the potential of the separator between two cliques.

InitCharge

Initializes charge for Junction tree.

```
InitCharge(JTree, grModel, evidence);
InitCharge(JTree, grModel, evidence, sumOnMixtureNode);
```

JTree Class object.

grModel Graphical model.

evidence Evidence.

sumOnMixtureNode Flag showing if the distribution for the mixture node is to be

computed during inference.

Discussion

This function initializes charge for a Junction tree. The Junction tree charge comprises both potentials for cliques and potentials for separators.

ClearCharge

Clears charge.

ClearCharge(JTree);

Arguments:

JTree Class object.

Class CDynamicGraphicalModel

CDynamicGraphicalModel is a superclass for all classes that work with dynamic graphical models.

CreatePriorSliceGrModel

Creates static graphical model.

```
grModel = CreatePriorSliceGrModel( dModel );
```

Arguments

dModel Class object.

grModel Static graphical model.

Discussion

This function creates a static graphical model corresponding to the prior slice of the dynamic graphical model.

UnrollDynamicModel

Creates static graphical model by unrolling dynamic graphical model.

```
grModel = UnrollDynamicModel( dModel, numOfSlices );
```

Arguments

dModel Class object.
numOfSlices Number of slices.

grModel Static graphical model.

Discussion

This function unrolls a dynamic graphical model as a number of slices and thus constructs a static graphical model.

GetInterfaceNodes

Returns numbers of interface nodes.

```
interfaceNds = GetInterfaceNodes( dModel );
```

Arguments

dModel Class object.

interfaceNds Array of interface nodes.

Discussion

This function returns numbers of interface nodes.

GetStaticModel

Returns static graphical model.

```
grModel = GetStaticModel(dModel);
```

Arguments

dModel Class object.

grModel Static graphical model.

Discussion

This member function returns the static graphical model which was used for the creation of a dynamic graphical model.

Class CDBN

Class CDBN is a subclass of Class CDynamicGraphicalModel. It is intended for the implementation of virtual functions of the parent class.

CDBNCreate

Creates class object.

DBN = CDBNCreate(grModel);

Arguments

grModel

BNet that represents a DBN unrolled for first two time-slices.

GenerateSamples

Generates samples from DBN.

```
evidences = GenerateSamples( DBN, nSlices );
```

Arguments

DBN Class object.

nSlices Vector of the number of slices for which evidence is generated.

evidences Cell array of cell arrays of generated evidence.

Discussion

This function generates samples from a dynamic graphical model.

Factors

Class CFactors and its subclasses CPotential, CCPD, CTabularPotential, CGaussianPotencial, CTabularCPD and CGaussianCPD store the factor domain - factors of a grapical model related to one or a number of nodes. CPotential, CCPD, and CTabularFactor subclasses are abstract. For the hierarchy of the classes see Figure 3-1.

Figure 3-1 Class CFactors and its subclasses

This class stores joint probability distribution for a CFactor object, and conditional distribution for a CCPD object. Both types of distribution are implemented with Class CMultiDMatrix objects. The number of objects for discrete and continuous distributions may be different. Functions, specific of a distribution type, are stored in the internal class CData.

Class CFactor

AttachMatrix

Attaches matrix to factor.

```
AttachMatrix( factor, matrix, mType);
AttachMatrix( factor, matrix, mType, matrixNum);
AttachMatrix( factor, matrix, mType, matrixNum, discrParentValuesIndices);
```


matrix CMultiDMatrix object.

mType Matrix type.

MatrixNum Number of the matrix, if several matrices of a

given type are associated with the factor. The argument is omitted, if only one matrix is

involved.

discrParentValuesIndices Vector of values of discrete parents.

Discussion

This function enters data into a matrix and associates the matrix with the factor.

GetFactorType

Returns factor type.

factorType = GetFactorType(factor);

Arguments

factor Class object.
factorType Type of factor.

Discussion

This function returns the type of an input factor. It may be either ptFactor or ptCPD.

GetDistributionType

Returns distribution type.

distrType = GetDistributionType(factor);

factor Class object.

distrType Type of distribution.

Discussion

This function returns the type of distribution. It may be dtTabular, dtGaussian or dtCondGaussian.

GetDomain

Returns factor domain.

```
domain = GetDomain( factor, domainSize, domain );
```

Arguments

factor Class object.

domainSize Vector of the domain size.

domain Vector of numbers that specify serial numbers of the

graphical model nodes associated with the factor domain.

GetDomainSize

Returns size of factor domain.

```
domainSize = GetDomainSize(factor);
```

Arguments

factor Class object.

domainSize Vector of the domain size.

Discussion

This function returns the number of nodes associated with the factor.

GetMatrix

Returns matrix attached to factor.

```
matrix = GetMatrix( factor, mType );
matrix = GetMatrix( factor, mType, matrixNum );
matrix = GetMatrix( factor, mType, matrixNum, iscrParentValuesIndices );
```

Arguments

factor Class object.

mType Type of matrix.

matrixNum Number of matrix. The agrument is used when

there are several matrices of a given type. If there is only one matrix of a given type, the argument is

omitted.

discrParentValuesIndices Vector of values of discrete parents.

Discussion

This function returns the matrix by matrix type if the matrix of this type has been attached to the factor. Matrix may be of the following types: matTable, matMean, matCov, matWeights, math, and matK.

IsValid

Checks factor validity.

```
[ flag, discription ] =IsValid( factor );
```


factor Class object.
discription Error message.

Discussion

This function checks martix validity. The function returns 1 if the matrices are allocated, returns 0 otherwise.

IsFactorsDistribFunEqual

Compares distributions.

```
flag = IsFactorsDistribFunEqual( factor, factorToComp, eps ) const;
flag = IsFactorsDistribFunEqual( factor, factorToComp, eps, withCoeff );
```

Arguments

factor Class object.

Factor for comparison.

eps Accuracy of comparison.

withCoeff Flag of the comparison type. To compare normalizing

constants for Gaussian and Conditional Gaussian

distribution, set the flag to 0.

Discussion

This function compares distributions. The function returns 1, if the factor distributions are of the same size, type and have the same floating point matrices to represent them.

TieDistribFun

Assignes input factor distribution to object.

TieDistribFun(factor, factorToTie);

Arguments

factor Class object.

factorToTie Factor distribution to be assigned.

Discussion

This function assignes a distribution to an object only if both factors are of the same type. If the factors are of different types, the function throws an exception.

IsDistributionSpecific

Checks whether distribution is specific.

```
flag = IsDistributionSpecific( factor );
```

Arguments

factor Class object.

Discussion

This function checks whether a distribution is specific or not and returns:

- 0 the distribution is full (Tabular, Gaussian or Conditional Gaussian, non-delta, non-uniform, non-mixed, invalid. If the distribution is invalid, call Isvalid function to check the status).
- 1 the distribution is uniform (has no attached matrices). A special flag shows that the distribution is uniform.

- 2 the distribution is a delta function (has only a mean matrix) To check if the distribution is valid, call IsValid function.
- 3 the distribution is mixed (product of the multiplication of a distribution by a delta function in some dimensions).

GenerateSample

Generates sample from factor.

```
evidence = GenerateSample( factor, maximize );
```

Arguments

factor Class object.

evidences Generated evidence.

maximize Flag of maximization.

Discussion

This function generates a sample from the factor using the current evidence data.

CFactorCopyWithNewDomain

Creates class object.

```
factorNew = CFactorCopyWithNewDomain( factor, domain, modelDomain);
factorNew = CFactorCopyWithNewDomain( factor, domain, modelDomain, obsIndices);
```

Arguments

factor Class object.

domain Node numbers in the domain.

modelDomain New model domain.

obsIndices Vector of indices of the observed nodes.

Discussion

This function creates a class object through copying the source class object and changing its domain.

Clone

Creates replica of object.

```
factorNew = Clone( factor );
```

Arguments

factor Source class object.

factorNew New class object.

CloneWithSharedMartices

Creates replica of factor.

```
factorNew = CloneWithSharedMatrices( factor );
```

Arguments

factor Source class object.

factorNew New class object.

Discussion

This function creates a class object so that the new factor shares its matrices with the source factor.

CreateAllNecessaryMatrices

Creates matrices necessary to make factor valid.

CreateAllNecessaryMatrices(factor, typeOfMatrices);

Arguments

factor Class object.

typeOfMatrices Flag of the generation type. For random matrices the flag

equals to 1.

Discussion

This function creates matrices that are needed to make a factor valid. Covariance matrix for the Gaussian distribution is unitary.

ChangeOwnerToGraphicalModel

Releases model domain from factor.

ChangeOwnerToGraphicalModel();

IsOwnedByModelDomain

Checks if factor is owner of model domain.

flag = IsOwnedByModelDomain();

GetModelDomain

Returns model domain.

```
md = GetModelDomain( factor);
```

Arguments

factor Class object.

md Model domain.

ConvertToSparse

Converts factor distribution with dense matrices into distribution function with sparce matrices.

```
ConvertToSparse( factor );
```

Arguments

factor Class object.

Discussion

This function converts a factor distribution function with dense matrices into a factor distribution function with sparse matrices.

ConvertToDense

Converts factor distribution with sparce matrices into distribution with dense matrices.

ConvertToDense(factor);

factor Class object.

Discussion

This function converts a factor distribution function with sparse matrices into a factor distribution function with dense matrices.

IsSparse

Checks if distribution matrices are sparse.

```
flag = IsSparse( factor );
```

Arguments

factor Class object.
flag Flag of status.

IsDense

Checks if distribution matrices are dense.

```
flag = IsDense(factor);
```

Arguments

factor Class object.
flag Flag of status.

GetObsPositions

Returns observed positions of domain.

```
obsPos = GetObsPositions( factor );
```

Arguments

factor Class object.

obsPos Vector of observed positions in the domain.

MakeUnitFunction

Transforms distribution function into unit function distribution.

```
MakeUnitFunction( factor );
```

Arguments

factor Class object.

ConvertStatisticToPot

Creates potential using statistical data of distribution function.

```
potential = ConvertStatisticToPot( factor, numOfSamples );
```

Arguments

factor Class object.

numOfSamples Number of samples.

potential Potential.

UpdateStatisticsEM

Collects statistical data.

```
UpdateStatisticsEM( factor, infData );
UpdateStatisticsEM( factor, infData, evidence );
```

Arguments

factor Class object.

infData Inference result.

evidence CEvidence object.

Discussion

This function updates statistical data.

UpdateStatisticsML

Collects statistical data.

```
StatisticalDataML( factor, evidences );
```

Arguments

factor Class object.

evidences Cell array of evidences.

SetStatistics

Sets statistical data.

```
SetStatistics( factor, mat, matrixType );
SetStatistics( factor, mat, matrixType, parentsComb );
```

Arguments

factor Class object.

mat Matrix with statistical data.

matrixType Type of matrix.

parentsComb Combination of discrete parents.

Discussion

This function sets statistical data for learning procedures.

ProcessingStatisticalData

Updates factor distribution function after collecting statistical data.

```
ProcessingStatisticalData( factor, numEvidences );
```

Arguments

factor Class object.

numEvidences Number of evidences.

Discussion

This function performs factor estimation and updates a factor distribution function with newly acquired statistical data.

GetLogLik

Calculates likelihood of input evidence.

```
logLik = GetLogLik( factor, ev );
```

Arguments

factor Class object. ev Evidence.

logLik Logarithm of likelihood.

Discussion

This function returns the logarithm of likelihood of the input data.

AreThereAnyObsPositions

Checks if factor has observed nodes.

```
flag = AreThereAnyObsPositions( factor );
```

Arguments

factor Class object.

flag Flag of observed positions.

Class CCPD

ConvertToPotential

Creates CPotential object by converting class object.

```
potential = ConvertToPotential( CPD );
```

Arguments

CPD Class object.
potential Potential.

Discussion

This function converts a CCPD object into a CPotential object and returns CPotential object.

ConvertWithEvidenceToPotential

Converts CPD to CPotential using evidence.

```
pot = ConvertWithEvidenceToPotential( CPD, ev );
pot = ConvertWithEvidenceToPotential( CPD, ev, flagSumOnMixtureNode );
```

Arguments

CPD Class object.ev Given evidence.

flagSumOnMixtureNode Flag of mixture node addition.

Discussion

This function converts a CCPD object to a CPotential object using evidence. This function can change the distribution type of a CPD, unlike the combination of ConvertToPotential and ShrinkObserved.

NormalizeCPD

Normalizes CPD.

NormalizeCPD(CPD);

Class CTabularCPD

CTabularCPDCreate

Returns class object.

```
tCPD = CTabularCPDCreate( MD, domain );
tCPD = CTabularCPDCreate( MD, domain, matrix );
```


domain Array of numbers of domain nodes.

matrix Matrix with data.

MD Model domain.

CTabularCPDCopy

Creates a replica of input object.

```
tCPDNew = CTabularCPDCopy(tCPD);
```

Arguments

tCPD Source class object.
tCPDNew New class object.

CreateUnitF

Creates CPD as unit function.

```
tCPD = CTabularCPDCreateUnitF( domain, MD );
```

Arguments

domain Vector of numbers of domain nodes.

MD Model domain.
tcpd Tabular cpd.

Discussion

This function creates a CPD that becomes a unit potential when converted to a CPotential object.

Class CGaussianCPD

CGaussianCPDCreate

Creates class object.

```
gCPD = CGaussianCPDCreate( domain, MD );
```

Arguments

domain Vector of numbers of domain nodes.

MD Model domain.

CGaussianCPDCreateUnitF

Creates CPD as unit function.

```
gCPD = CGaussianCPDCreateUnitF( domain, MD );
```

Arguments

domain Vector of domain nodes.

MD Model domain.

Discussion

This function creates a CPD that becomes a unit potential when converted to a CPotential object.

CGaussianCPDCopy

Creates replica of input object.

```
gCPDNew = CGaussianCPDCopy( gCPD );
```

gCPD Source class object.

gCPDNew New class object.

AllocDistribution

Allocates Gaussian distribution on Gaussian child node.

AllocDistribution(gCPD, mean, cov, normCoeff, weights, parentCombination);

Arguments

gCPD Class object.

mean Mean matrix.

cov Covariance matrix. This argument is entered rowwise.

normCoeff Value of normalization constant.

weights Cell array of weight matrices.

parentCombination Vector of values of discrete parents.

Discussion

This function allocates a Gaussian distribution to a class object for a given combination of discrete parents.

SetCoefficient

Sets normalization constant to Gaussian CPD object.

SetCoefficient(gCPD, coeff);

```
SetCoefficient( gCPD, coeff, parentCombination );
```

gCPD Class object.

coeff Float value of normalization constant.

parentCombination Vector of values of discrete parents.

GetCoefficient

Obtains value of normalization constant.

```
coeff = GetCoefficient( gCPD );
coeff = GetCoefficient( gCPD, parentCombination );
```

Arguments

gCPD Class object.

coeff Float value of normalization constant.

parentCombination Vector of values of discrete parents.

Class CMixtureGaussianCPD

CMixtureGaussianCPDCreate

Returns class object.

```
mgCPD = CMixtureGaussianCPDCreate( domain, MD, sumCoeff );
```

Arguments

domain Vector of numbers of domain nodes.

MD Model domain.

sumCoeff Mixture coefficient.

CMixtureGaussianCPDCopy

Creates replica of class object.

mgCPDNew = CMixtureGaussianCPDCopy(mgCPD);

Arguments

mgCPD Source class object.
mgCPDNew New class object.

AllocDistributionVec

Allocates mixture Gaussian distribution.

AllocDistributionVec(mgCPD, mean, cov, normCoeff, weights, parentCombination);

Arguments

mgCPD Class object.
mean Mean matrix.

cov Covariance matrix. The argument is entered rowwise.

normCoeff Value of normalization constant.

weights Cell array of weight matrices.

parentCombination Vector of values of discrete parents.

Discussion

This function allocates a mixture Gaussian distribution to the given discrete parent combination.

SetCoefficientVec

Sets normalization constant to mixture Gaussian CPD.

SetCoefficientVec(mgCPD, coeff, parentCombination);

Arguments

mgCPD Class object.

value of the normalization constant.

parentCombination Vector of values of discrete parents.

GetCoefficientVec

Obtains value of normalization constant.

```
coeff = GetCoefficientVec( mgCPD, parentCombination );
```

Arguments

mgCPD Class object.

parentCombination Vector of values of discrete parents.

coeff Value of the normalization constant.

GetProbabilities

Returns vector of probabilities of mixture node.

```
probabilities = GetProbabilities( mgCPD );
```

Arguments

mgCPD Class object.

probabilities Vector of probabilities.

Discussion

This function returns the vector of probabilities of a mixture node.

Class CPotential

Class CPotential implements basic operations with factors. To perform an operation with a <u>Class CCPD</u> object, first use <u>ConvertToPotential</u> function to generate a potential and then call the functions you need.

You can perform the following operations with a CPotential object:

- multiplication;
- division;
- normalization;
- marginalization;
- shrinking if factor nodes are observed;
- expansion to the initial size.

Multiply

Multiplies two potentials and returns resulting potential.

```
resPot = Multiply( pot, pot1 );
```

Arguments

pot Multiplied class object.

pot1 Multiplier.

resPot Resulting potential.

MultiplyInSelf

Multiplies two potentials and saves the result in source object.

```
MultiplyInSelf( pot, smallPotential );
```

Arguments

pot Muliplied class object.

pot1 Multiplier.

smallPotential Right-side multiplier.

Discussion

This function multiplies the source potential by a multiplier and saves the resulting potential in the source object.

DivideInSelf

Divides class object and saves result in it.

```
resPot = DivideInSelf( pot, smallPotential );
```

Arguments

pot Class object.
smallPotential Divisor.

resPot Resulting potential.

Discussion

This function performs division of the input object by another object of the class and saves the result in the input object without creating a new class object.

GetNormalized

Creates new normalized potential.

```
resPot = GetNormalized( pot );
```

Arguments

pot Class object.

resPot Resulting potential.

Discussion

This function creates a normalized class object with the domain of the source object.

Normalize

Normalizes class object.

Normalize(pot);

Arguments

pot

Class object.

Marginalize

Marginalizes object.

```
resPot = Marginalize( pot, smallDom );
resPot = Marginalize( pot, smallDom, maximize );
```

Arguments

pot

Class object.

smallDom

Vector of numbers of nodes that form the domain of the

marginalized object.

maximize

Flag of the marginalization type.

For discrete variables:

- 0 stands for simple addition (default);
- 1 stands for finding maximum value.

For continuous variables:

• both are integration operations.

Discussion

This function creates a new object either through addition or through integration of the source object with nodes that do not belong to the domain of the new object. The domain of the new object should be a subset of the source object domain.

ShrinkObservedNodes

Creates class object with different observed nodes.

```
resPot = ShrinkObservedNodes( pot, Ev );
```

Arguments

pot Class object.

Ev Given evidence.

Discussion

This function creates a new class object whose domain is a replica of the source object domain while the observed node values are different from their counterparts in the source object. The joint probability distribution of the new factor changes in accordance with the values of its observed nodes.

ExpandObservedNodes

Expands dimensions corresponding to observed nodes.

```
resPot = ExpandObservedNodes( pot, ev, updateInCanonical ) ;
```


pot Class object.
ev Given evidence.

updateInCanonical Flag of distribution, set to 1 by default.

Discussion

This function returns delta functions that served as multipliers for the input Gaussian distribution.

Divide

Divides factor.

```
resPot = Divide( pot, otherPot );
```

Arguments

pot Class object.

otherPot Divisor potential.

Discussion

This function creates a new object by division of the input factor.

MarginalizeInPlace

Marginalizes input object.

```
resPot = MarginalizeInPlace( pot, oldPot );
resPot = MarginalizeInPlace( pot, oldPot, corrPositions, maximize );
```

pot Class object.
oldPot Initial potential.

corrPositions Vector of positions for marginalisation.

maximize Flag of marginalisation with maximization.

Discussion

This function marginalizes the input object and stores the result in it.

GetMPE

Returns maximum probability explanation.

```
ev = GetMPE(pot);
```

Arguments

pot Class object. ev Evidence.

Class CTabularPotential

CTabularPotentialCreate

Returns class object.

```
pot = CTabularPotentialCreate( MD, domain, data, obsIndices );
```

Arguments

pot Class object.

domain Array of numbers of domain nodes.

data Matrix with data.

MD Model domain.

obsIndices Vector of ndices of observed nodes of the domain.

CTabularPotentialCopy

Creates new tabular potential as copy of input object.

```
tPotNew = CTabularPotentialCopy( tPot );
```

Arguments

tPot Class object.

CTabularPotentialCreateUnitF

Creates potential in form of unit function.

```
tPot = CTabularPotentialCreateUnitF( domain, MD);
tPot = CTabularPotentialCreateUnitF( domain, MD, asDense);
tPot = CTabularPotentialCreateUnitF( domain, MD, asDense, obsIndices);
```

sArguments

domain Array of numbers of domain nodes.

MD Model domain.

asDense Flag of matrix type.

obsIndices Numbers of observed positions.

nNodes Number of nodes in the domain.

Class CGaussianPotential

CGaussianPotentialCreate

Creates class object.

Arguments

domain Numbers of domain nodes.

inMoment Flag of the desired form of a Gaussian potential:

1 - moment form;0 - canonical form.

This flag defines the interpretation of the next three

arguments.

if inMoment = 1,

matMean Matrix mean .

matCov Matrix covariance.

normCoeff Value of the normalization constant in the moment form.

if inMoment = 0,

matMean Matrix H. matCov Matrix K.

normCoeff Value of the normalization constant in the canonical form.

obsIndices Vector of indices of observed nodes of the domain.

MD Model domain.

CGaussianPotentialCopy

Creates replica of input object.

```
gPotNew = CGaussianPotentialCopy( gPot );
```

Arguments

gPot

Class object.

CGaussianPotentialCreateDeltaF

Creates Delta function as CGaussianPotential.

```
gPot = CGaussianPotentialCreateDeltaF(domain, MD, matMean);
gPot = CGaussianPotentialCreateDeltaF(domain, MD, matMean, isInMoment);
gPot = CGaussianPotentialCreateDeltaF(domain, MD, matMean, isInMoment, obsIndices);
```

Arguments

domain Numbers of domain nodes.

matMean Float values of the mean matrix.

isInMoment Flag of the form of the resulting potential:

1 - moment form (mean, covariance matrices, normalization

constant)

0 - canonical form (canonical matrices g, H, K).

MD Model domain.

obsIndices Vector of indices of observed nodes in the domain.

CGaussianPotentialCreateUnitF

Creates class object in form of unit function distribution.

```
gPot = CGaussianPotentialCreateUnitF(domain, MD);
gPot = CGaussianPotentialCreateUnitF(domain, MD, isInCanonical);
gPot = CGaussianPotentialCreateUnitF(domain, MD, isInCanonical, obsIndices);
```

Arguments

domain Numbers of domain nodes.

isInCanonical Flag of the form of the unit function:

1 - canonical form;0 - moment form.

obsIndices Indices of observed domain nodes.

MD Model domain.

Discussion

This function creates a class object in the form of a unit function distribution.

SetCoefficient

Sets normalization constant to class object.

```
SetCoefficient( gPot, coeff, isForCanonical );
```

Arguments

coeff Float value of the normalization constant.

isForCanonical Flag of the distribution type to set the coefficient:

1 - canonical form

0 - moment form.

GetCoefficient

Gets value of normalization constant.

```
coeff = GetCoefficient( gpot, isforCanonical );
```

Arguments

isforCanonical Flag of distribution type to get the coefficient:

1 - canonical form;0 - moment form.

Class CFactors

Class CFactors stores <u>Inference Engines</u> objects and provides them for a graphical model. It allows to create class objects independently of the model and easily attach them to the model when needed.

CFactorsCreate

Creates CFactors class object.

```
factors = CFactorsCreate( NumOfFactors );
```

Arguments

numOfFactors

Maximal number of factors in the factor array. The argument equals to the total number of nodes and cliques for BNet and for MNet objects respectivelly.

int_{el®}

GetNumberOfFactors

Returns current number of factors in factor array.

```
nf = GetNumberOfFactors( factors );
```

Arguments

factors Class object.

nf Number of factors.

GetFactor

Returns factor.

```
factor = GetFactor( factors, factorNum );
```

Arguments

factors Class object.

factorNum Factor index in the array of factors.

Discussion

This function returns a factor with the index equal to factorNum.

AddFactor

Adds new factor to graphical model.

```
num = AddFactor( factors, factor);
```

factors Class object.

factor Factor to be set in the factor array.

Discussion

This function adds a factor to the graphical model and returns the index of the factor in the factors array.

ShrinkObsNdsForAllFactors

Shrinks all factors stored in CFactors class using input evidence.

ShrinkObsNdsForAllFactors(factors, evidence);

Arguments

factors Class object.
evidence Evidence.

Discussion

This function shrinks all the factors stored in CFactors class using the input evidence.

Inference Engines

Class CInfEngine

CInfEngine is the superclass of other classes that implement inference in graphical models. The class stores all functions of its subclasses.

pnlDetermineDistributionType

Returns type of distribution.

Arguments

numOfAllNdsTotal number of nodes.numOfObsNdsNumber of observed nodes.

obsNdsIndices Vector of indices of observed nodes.

allNdsTypes Cell array of node types.

Discussion

This function can return the following types of distribution:

- dtTabular, if all hidden nodes are discrete;
- dtGaussian, if all hidden nodes are continuous;
- dtCondGaussian, if some of the nodes are discrete and some are continuous.
- dtScalar, if all nodes are observed.

pnlDetermineDistribTypeByMD

Returns type of distribution.

distrtype = pnlDetermineDistribTypeByMD(MD, nQueryNodes, query, ev);

Arguments

MD Model domain.

nQueryNodes Number of query nodes.

query Query nodes. ev Evidence.

Discussion

This function can return the following types of distribution:

- dtTabular, if all hidden, nodes are discrete;
- dtGaussian, if all hidden nodes are continuous;
- dtCondGaussian, if some of the nodes are discrete and some are continuous.
- dtScalar, if all nodes are observed.

EnterEvidence

Starts inference in graphical model.

```
EnterEvidence( infEng, evidence );
EnterEvidence( infEng, evidence, maximize );
EnterEvidence( infEng, evidence, maximize, sumOnMixtureNode );
```

Arguments

infEng Class object.

evidence object with observed nodes and their values.

maximize Flag of inference with MPE.

sumOnMixtureNode Flag of addition on a mixture node.

Discussion

This function starts inference in a graphical model. The inference procedure may start either with this function or with the function MarginalNodes, depending on the type of inference.

MarginalNodes

Calculates joint probability distribution for given nodes.

```
MarginalNodes( infEng, query);
MarginalNodes( infEng, query, nodeExpandJPD );
```

Arguments

infEng Class object.

query Vector of nodes whose joint probability distribution is to be

calculated.

nodeExpandJPD Flag of JPD expansion.

Discussion

This function calculates joint probability distribution for a number of given nodes. The function creates Maximum Probability Explanation (MPE) for the distribution as a Model Domain object. You may obtain the MPE and the factor using coordinate functions.

GetQueryJPD

 $\it Returns$ CPotential $\it object.$

```
pot = GetQueryJPD( infEng );
```

Arguments

infEng Class object.

Discussion

This function returns the joint probability distribution which is calculated by the function MarginalNodes.

GetMPE

Returns MPE.

```
evidence = GetMPE( infEng );
```

Arguments

infEng

Class object.

Discussion

This function returns the Maximum Probability Explanation which is calculated by the function MarginalNodes.

GetModel

Returns graphical model processed by inference engine.

```
grModel = GetModel( infEng );
```

Arguments

infEngClass object.grModelGraphical model.

Discussion

This function returns the graphical model which is processed by the infrence engine. The function is used in learning algorithms.

Class CNaiveInfEngine

CNaiveInfEngineCreate

Creates class object.

infEng = CNaiveInfEngineCreate(grModel);

grModel

Static graphical model. It can either be an MRF (MRF2) or a BNet object.

Class CPearlInfEngine

CPearlInfEngineCreate

Creates class object.

infEng = CPearlInfEngineCreate(grModel);

grModel Static graphical model. It can be either an MRF2 or a BNet

oblect. BNet cannot have directed cycles.

Discussion

This function creates a class object from the input graphical model. If the graph of the input model (<u>Class CBNet</u> or <u>Class CMRF2</u>) has undirected loops, the inference result is approximate. If all nodes of the graph are undirected, the inference result is exact.

CPearlInfEngineIsModelValid

Checks if model is valid for Pearl inference.

```
flag = CPearlInfEngineIsModelValid( grModel );
```

Arguments

grModel Graphical model.

SetMaxNumberOfIterations

Sets maximum number of iterations for parallel protocol.

SetMaxNumberOfIterations(infEng, maxNumOfIters);

Arguments

infEng Class object.

maxNumOfIters Maximum number of iterations.

Discussion

This function sets the maximum number of iterations for the parallel protocol.

GetNumberOfProvideIterations

Returns number of inference iterations.

```
nIter = GetNumberOfProvideIterations( infEng );
```

Arguments

infEng Class object.

nIter Number of iterations.

Discussion

This function returns the number of iterations that were performed during inference.

SetTolerance

Sets tolerance for convergency check.

```
SetTolerance( infEng, tolerance );
```

Arguments

infEng Class object.tolerance Precision value.

Class CJtreeInfEngine

CJTreeInfEngineCreate

Creates class object.

```
infEng = CJtreeInfEngineCreate( grModel );
infEng = CJtreeInfEngineCreate( grModel, SubGrToConnect );
```

Arguments

infEng Class object.

grModel Static graphical model. It can be either an MRF2 or a BNet

object. A BNet object cannot have directed cycles.

SubGrToConnect Cell array of cell arrays of nodes to be connected.

CJtreeInfEngineCreateFromJTree

Creates class object.

```
infEng = CJtreeInfEngineCreateFromJTree( grModel, jTree );
```

Arguments

grModel Static graphical model. It can be either an MRF2 or a BNet

object. A BNet object cannot have directed cycles.

jTree Junction tree.

CJTreeInfEngineCopy

Creates replica of CJTreeInfEngine object.

```
infEngNew = CJtreeInfEngineCopy( infEng );
```

Arguments

infEnginfEngNewNew class object.

GetEvidence

Returns given evidence.

```
ev = GetEvidence( infEng );
```

GetJTreeRootNode

Returns number of root node.

```
nodeNum = GetJTreeRootNode( infEng );
```

Arguments

infEng Class object.

nodeNum Number of the root node.

Discussion

This function returns the number of the root node of the Junctin tree.

GetClqNumsContainingSubset

Returns numbers of Junction tree cliques with common subset of nodes.

```
clqsContSubset = GetClqNumsContainingSubset( infEng, subset );
```

Arguments

infEngClass object.subsetSubset of nodes.

clqsContSubset Vector of numbers of cliques with a common subset.

Discussion

This function returns numbers of the Junction tree cliques that have a common subset of nodes.

GetNodesConnectedByUser

Returns set of connected nodes.

nds = GetNodesConnectedByUser(infEng, nodeSetNum);

Arguments

infEng Class object.

nodeSetNum Number of the set of nodes.

Number of the set of nodes.

Vector of connected nodes.

Discussion

This function returns the set of nodes that were connected when the Junction tree was created.

SetJTreeRootNode

Sets root of Junction tree.

SetJTreeRootNode(infEng, nodeNum);

Arguments

infEng Class object.

nodeNum Number of a node to become the root node.

Discussion

This function turns a given node of the Junction tree into its root node.

I

GetLogLik

Returns logarithm of likelihood.

```
logLik = GetLogLik( infEng );
```

Arguments

infEng

Class object.

Discussion

This function divides the potential of a Junction tree node by the distribution function.

CollectEvidence

Collects evidence.

CollectEvidence();

DistributeEvidence

Distributes evidence.

```
DistributeEvidence( infEng );
```

Arguments

infEng

Class object.

ShrinkObserved

Initializes Junction tree using given evidence.

ShrinkObserved(evidence, maximize, sumOnMixtureNode, bRebuildJTreee);

Arguments

evidence Evidence.

maximize Flag of maximization.

sumOnMixtureNode Flag of summation on the mixture node.
bRebuildJTree Flag of the Junction tree rebuilding.

Discussion

This function initializes a Junction tree using given evidence.

GetQueryMPE

Returns most probable distribution.

```
pot = QueryMPE( infEng );
```

Class CFGSumMaxInfEngine

The class implements belief propagation on a factor graph model.

CFGSumMaxInfEngineCreate

Creates object of class.

infEng = CFGSUMMaxInfEngineCreate(grModel);

Arguments

grModel Factor graph.

Discussion

This function creates a class object. Inference is implemented for FactorGraph models only.

SetMaxNumberOfIterations

Sets maximum number of iterations for inference.

SetMaxNumberOfIterations(infEng, number);

Arguments

infEng Class object.

number Maximum number of iterations.

Discussion

This function sets the maximum number of iterations for the inference procedure.

GetNumberOfProvideIterations

Returns number of iterations provided during inference.

```
nIter = GetNumberOfProvideIterations( infEng );
```

SetTolerance

Sets value of tolerance used in convergence check.

SetTolerance(infEng, tolerance);

Arguments

tolerance Tolerance value.

Discussion

This function sets the value of tolerance which to be used in convergence checking.

Class CSamplingInfEngine

Class CSamplingInfEngine is a superclass for classes CGibbsSamplingInfEngine and CGibbsWithAnnealingInfEngine that implement inference in static graphical models using stochastic simulates technique known as Markov chain Monte Carlo. This technique generates samples from the required posterior distribution. Inference constructs Markov chain with stationary distribution P(h/v).

Let $h^{\langle t \rangle}$ be a model state at a certain time t (by the state of a model we mean values of its hidden variables). According to the following formula the changed value of a variable at time t+1 is: $\langle x_k / \{x_i^{\langle t-1 \rangle} = a_i, i \neq k \} = \frac{1}{a} P \langle x_k, \{x_k^{\langle t-1 \rangle} = a_i, i \neq k \}$

SetMaxTime

Sets maximum number of sampling iterations.

SetMaxTime(infEng, time);

Arguments

infEng Class object.

time Maximum number of iterations.

Discussion

This function sets the maximum number of sampling iterations.

SetBurnIn

Sets number of iterations before statistics collection.

SetBurnIn(infEng, time);

Arguments

infEng Class object.

time Number of iterations.

Discussion

This function sets the number of iterations to be performed before the statistical data is collected.

SetNumStreams

Sets number of streams for sampling.

```
SetNumStreams( infEng, nStreams);
```

Arguments

infEng Class object.

nStreams Number of streams.

Discussion

This function sets the number of independent streams for sampling.

GetMaxTime

Returns maximum number of sampling iterations.

```
tMax=GetMaxTime( infEng);
```

Arguments

infEng Class object.

tMax Maximum number of sampling iterations.

Discussion

This function returns the maximum number of sampling iterations.

GetBurnIn

Returns number of iterations before statistics collection.

```
n = GetBurnIn(infEng);
```

Arguments

infEng Class object.

Number of iterations.

Discussion

This function returns the number of iterations before the statistical data is collected.

GetNumStreams

Returns number of sampling streams.

```
n = GetNumStreams( infEng );
```

Arguments

infEng Class object.

n Number of streams.

Continue

Continues sampling and updates statistics.

Continue(infEng, dT);

Arguments

infEng Class object.

dT Number of additional samples.

Discussion

This function continues sampling procedure and the update of statistical data.

Class CGibbsSamplingInfEngine

CGibbsSamplingInfEngineCreate

Creates class object.

infEng = CGibbsSamplingInfEngineCreate(grModel);

Arguments

grModel Graphical model.

Discussion

This function creates either a MRF (MRF2) object or a BNet object.

SetQueries

Sets possible queries.

```
SetQueryes( infEng, queries );
```

Arguments

queries

Cell array of vectors with query nodes.

Discussion

This function sets possible queries. This function is compulsory before calling EnterEvidence.

UseDSeparation

Conditions d-separation use in sampling for BNet.

```
UseDSeparation( infEng, isUsing );
```

Arguments

infEng Class object.

isUsing Flag of d-separation.

Discussion

This function conditions the use of *d*-separatrion in sampling for BNet.

Class CGibbsWithAnnealingInfEngine

CGibbsWithAnnealingInfEngine implements Gibbs Sampler with annealing schedule $T\langle S \rangle$

$$T(S) = \frac{C}{\log \langle 1 + S \rangle} (1),$$

where $T\langle S\rangle$ is the temperature which depends on the sampling iteration and C is a parameter.

This inference obtains maximum probability explanation for nodes.

For more detailed information see [Stuart Geman and Donald Geman. Stochastic Relaxation, Gibbs Distribution, and the Bayesian Restoration of Images].

CGibbsWithAnnealingInfEngCreate

Creates class object.

CGibbsWithAnnealingInfEngCreate(grModel);

Arguments

grModel Graphical model.

SetAnnealingCoefficientC

Changes default coefficient C of annealing schedule.

SetAnnealingCoefficientC(infEng, val);

Arguments

val

Value of the coefficient C.

Discussion

This function sets a new value for the coefficient C of the annealing schedule.

SetAnnealingCoefficientS

Changes default coefficient S of annealing schedule.

SetAnnealingCoefficientS(infEng, val);

Arguments

Value of the coefficient S.

Discussion

This function sets a new value for the coefficient S of the annealing schedule.

GetCurrentTemp

Returns value of current temperature.

```
t = GetCurrentTemp(infEng);
```

Arguments

infEng Class object.

Temperature value.

UseAdaptation

Initiates adaptation during inference.

```
UseAdaptation( infEng, isUsed );
```

Arguments

infEng Class object.

isUsed Flag of adaptation.

Class CDynamicInfEngine

Class CDynamicInfEngine is a superclass for all classes that implement inference in dynamic graphical models. Figure 3-2 shows the hierarchy of CDynamicInfEngine

class.

Figure 3-2 Structure of CDynamicInfEngine Class

DefineProcedure

Defines type of inference procedure.

DefineProcedure(infEng, procedure, lag);

Arguments

infEng Class object.

 $\verb|itFixLagSmoothing| or | \verb|itViterbi|.$

1ag Integer value. Corresponds to the value of lag in the fixed-lag

smoothing inference and to the number of time slices in the

smoothing inference. In the filtering inference the argument equals to

0.

Discussion

This function defines one of the following types of inference procedure: filtering, smoothing, fixed-lag smoothing and Viterby decoding.

EnterEvidence

Enters evidence to engine.

EnterEvidence(infEng, evidences);

Arguments

infEng Class object.

evidences Cell array of evidences.

MarginalNodes

Marginalizes joint probability distribution to query nodes.

```
MarginalNodes( query, timeSlice );
MarginalNodes( query, timeSlice, notExpandJPD );
```

Arguments

query Vector of nodes for the query.

timeSlice Query slice number. Equals to 0 in the filtering and the

fixed-lag smoothing inference procedures because they are

on-line procedures.

notExpandJPD Flag of expansion.

Discussion

This function marginalizes the joint probability distribution to the set of nodes in a slice given as the *query* input argument, at the time *timeSlice*. In the filtering inference the argument *timeSlice* should equal to the current time and in the fixed-lag smoothing it should equal to time-lag.

Let the model have N nodes per slice. Then nodes in the query with numbers from O to N-1 belong to the slice timeSlice-1 and nodes with numbers from N to 2N-1 belong to the slice timeSlice. For prior time-slices, such as, for example, timeSlice=0, nodes in the query have numbers from O to N-1.

GetQueryJPD

Returns joint probability distribution of query nodes.

```
pot = GetQueryJPD( InfEng );
```


Arguments

infEng Class object.

pot Joint probability distribution of query nodes.

GetMPE

Returns maximum probablility explanation of query nodes.

```
ev = GetMPE(infEng);
```

Arguments

infEng Class object.

ev Maximum probability explanation of query nodes.

Filtering

Performs filtering procedure.

```
Filtering( infEng, timeSlice );
```

Arguments

infEng Class object.

timeSlice Number of the current time slice.

Smoothing

Performs smoothing procedure.

```
Smoothing( infEng );
```

Arguments

infEng Class object.

FixLagSmoothing

Performs fixed-lag smoothing procedure.

FixLagSmoothing(infEng, timeSlice);

Arguments

infEng Class object.

timeSlice Number of the current time slice.

Discussion

This function performs fixed-lag smoothing with a lag defined in DefineProcedure.

FindMPE

Finds maximum probability explanation.

```
FindMPE( infEng );
```


Arguments

infEng Class object.

Discussion

This function performs the procedure of Viterbi decoding.

GetDynamicModel

Returns source dynamic model.

```
grModel = GetDynamicModel( infEng );
```

Arguments

infEngClass object.grModelGraphical model.

GetProcedureType

Returns type of inference procedure.

```
prType = GetProcedureType( infEng );
```

Arguments

infEng Class object.

prType Type of inference.

Discussion

This function returns the type of implemented inference: ptFiltering, ptSmoothing, ptFixLagSmoothing, ptViterbi.

Class C2TBNInfEngine

C2TBNInfEngine is a superclass for all dynamic inference engine classes, that use forward-backward operations between slices. With such structure of classes an inference procedure (filtering, smoothing, and the others) can be implemented with the combination of functions ForwardFirst, ForwardT, BackwardT, <a href="Backwar

ForwardFirst

Performs forward operation for prior slice.

```
ForwardFirst( infEng, evidence );
```

Arguments

infEng Class object.

evidence Evidence for the prior slice.

Forward

Performs forward operation.

```
Forward( infEng, evidence );
```

Arguments

infEng Class object.

evidence Evidence for any but the prior slice.

BackwardT

Performs first backward operation after last forward operation.

```
BackwardT( infEng );
```

Arguments

infEng Class object.

Backward

Performs backward operation.

```
Backward( infEng );
```

Arguments

infEng

Class object.

BackwardFixLag

Performs sequence of backward operations.

BackwardFixLag(infEng);

Arguments

infEng

Class object.

Discussion

This function performs a number of backward operations in the fixed-lag smoothing procedure, restoring data for intermediate steps. The number of operations equals to the value of lag.

Class C1_5SliceInfEngine

C1_ 5SliceInfEngine is a superclass for all inference procedures that perform forward-backward operations between 1.5 slices.

Class C1_5SliceJTreeInfEngine

C1_5SliceJTreeEngineCreate

Creates class object.

infEng = C1_5SliceJtreeInfEngineCreate(grModel);

Arguments

grModel

Dynamic graphical model.

Class CBKInfEngine

CBKInfEngineCreate

Creates class object.

```
infEng = CBKInfEngineCreate( grModel, isFF );
```

Arguments

grModel Dynamic graphical mode.

isff Flag of factorization. Equals to 1 for the fully factorized inference

whose every interface node belongs to a separate cluster. Equals to 0 for the exact inference whose interface nodes lie in one clique.

CBKInfEngineCreate

Creates class object.

```
infEng = CBKInfEngineCreate( grModel, clusters );
```

Arguments

grModel Dynamic graphical model.

clusters Cell array of vectors with nodes of a cluster.

CBKInfEngCheckClusters

Checks validity of clusters.

CheckClustersValidity(clusters, interfNds);

Arguments

clusters Cell array of vectors with inference nodes. Each node belongs only

to one cluster.

interfNds Vector of inference nodes.

Discussion

This function checks if a cluster is valid. A vector of the BK inference can be composed of vectors which contain numbers of interface model nodes. If the nodes belong to one class they are sure to lie in one clique of the Junction tree. If the nodes belong to different clusters the inference is fully factorized. If the nodes belong to the same cluster the inference is exact.

Learning Engines

Figure 3-3 Structure of learning engines

Class CLearningEngine

Learn

Performs learning.

Learn(learnEng);

Arguments:

learnEng Class object.

Discussion

This function trains a graphical model using given data. In parameter learning the function upgrades factors using given evidence. In structure learning the function creates a new graphical model.

GetCriterionValue

Returns array of criterion values used in learning.

```
value = GetScore( learnEng );
```

Arguments

learnEng Class object.value Vector of values.

Discussion

This function returns numeric values of the criterion that is to be maximized during model learning.

ClearStatisticData

Clears statistical data.

ClearStatisticData(learnEng);

Arguments

learnEng Class object.

Class CStaticLearningEngine

SetData

Sets statistical data for learning.

SetData(learnEng, evidences);

Arguments

learnEng Class object.

evidences Cell array of CEvidence objects.

Discussion

This function sets statistical data for learning. When you call this function, the prior statistical data is deleted.

AppendData

Acquires evidence information.

AppendData(learnEng, evidences);

Arguments

learnEng Class object.

evidences Cell array of CEvidence objects.

Discussion

This function adds a set of evidences to previously collected data.

GetStaticModel

Returns graphical model.

```
grModel = GetStaticModel( learnEng );
```

Arguments

learnEng Class object.

Class CEMLearningEngine

Class CEMLearningEngine is used in the learning of Bayesian networks with discrete or multivariate Gaussian nodes as well as in the learning of Markov networks with discrete nodes. The learning is based on *Expectation Maximization* (EM) algorithm.

CEMLeaningEngineCreate

Creates class object.

```
learnEng = CEMLearningEngineCreate( grModel );
learnEng = CEMLearningEngineCreate( grModel, infEng );
```

Arguments

grModel Graphical model.

infEng Inference engine used in the lerning procedure. By default

the Junction tree inference engine is used.

SetMaxIterEM

Sets maximum iteration depth for Expectation Maximization.

```
SetMaxIterEM( learnEng, numOfIter );
```

Arguments

learnEng Class object.

numOfIter Maximum iteration depth.

Discussion

This function sets the maximum number of iterations to be performed in the course of learning.

SetTerminationToleranceEM

Sets termination tolerance.

SetTerminationToleranceEM(learnEng, precision);

Arguments

learnEng Class object.

precision Precision.

Discussion

This function sets the termination condition for EM. EM is over, if the difference between the logarithm of likelihood at a current step and at the previous step does not exceed a certain set value.

Class CBayesLearningEngine

Class CBayesLearningEngine is used for training BNet objects, where parameters of a CPD are not fixed and have their own probability distributions (see User Guide). The current version of Matlab PNL supports parameters distributions only for a CTabular CPD. Both prior and posterior parameters distributions of a tabular CPD are Dirichlet. Dirichlet table distribution is stored in Tabular_CPD in the form of a matrix of the same size as CPT. Initial values are specified either by AllocMatrix or by AttachMatrix functions of the corresponding factor. Dirichlet priors have the form of pseudo counts which stand for an imaginary observed number of cases and assume any non-negative values.

In the course of learning parameters are updated. Updated prior parameters may be used as priors in future learning. In the current version of PNL Bayesian parameter learning is supported only if the input data is complete, that is, if all the BNet nodes of training samples are observed.

CBayesLearningEngineCreate

Creates class object.

learnEng = CBayesLearningEngineCreate(grModel);

Arguments

grModel Graphical model.

Discussion

This function creates a class object. It applies only to BNet graphical models only.

Class CBICLearningEngine

Class CBICLearningEngine is used for learning a Bayesian network with discrete nodes when model structure is unknown and all variables are observed. The learning is based on Bayesian Information Criterion (BIC). The result of learning is a new Bayesian network.

CBICLearningEngineCreate

Creates class object.

learnEng = CBICLearningEngineCreate(grModel);

Arguments

grModel

Graphical model.

GetGraphicalModel

Returns created graphical model.

```
grModel = GetGraphicalModel( learnEng );
```

Arguments

learnEng Class object.grModel Graphical model.

Discussion

This function returns a topologically sorted graphical model which was created as a result of structure learning.

GetOrder

Returns array of values corresponding to node numbers.

```
reordering = GetOrder( learnEng );
```

Arguments

learnEng Class object.

reordering Vector of values that correspond to node numbers.

Discussion

This function returns the array of values that correspond to node numbers of the source graphical model.

Class CDynamicLearningEngine

CDynamicLearningEngine is a superclass for all classes that implement learning for dynamic graphical models. The class contains functions that belong to its child classes.

SetData

Sets statistical data for learning.

```
SetData( learnEng, evidences );
```

Arguments

learnEng Class object.

evidences Cell array of cell arrays of evidences.

Discussion

This function sets statistical data for learning. The data has the form of an array where the number of rows equals to the number of series and the number of elements in a row - to the number of time slices for each series.

GetDynamicModel

Returns model of learning engine.

```
grModel = GetDynamicModel( learnEng );
```

Arguments

```
learnEng Class object.grModel Graphical model.
```

Class CEMLearningEngineDBN

Class CEMLearningEngineDBN is used in the learning of Dynamic Bayesian Networks. The learning is based on *Expectation Maximization* (EM) algorithm.

CEMLearningEngineDBNCreate

Creates class object.

```
CEMLearningEngineDBNCreate( DBN );
CEMLearningEngineDBNCreate( DBN, infEng );
```

Arguments

DBN Graphical model to be trained.

infEng Inference engine. By default C1_5SliceJtreeInfEngine is used.

SetTerminationToleranceEM

Sets termination tolerance.

```
SetTerminationToleranceEM( learnEng, precision );
```

Arguments

learnEng Class object.

precision Float value of precision. To determine the breakpoint of the learning

procedure, you compare the value of precision with the difference

between logarithms of likelihoods of two neighboring steps.

Discussion

This function sets the termination condition for EM. EM procedure stops when the difference between the logarithm of likelihood value at a current step and at its prior step does not exceed the value of precision.

SetMaxIterEM

Sets maximum iteration depth for EM.

```
SetMaxIterEM( learnEng, nIter );
```

Arguments

learnEng Class object.

nIter Maximum iteration depth.

Discussion

This function sets the maximal number of iterations to be performed in the learning process.

SetTerminationToleranceEM

Sets termination tolerance.

```
SetTerminationToleranceEM( learnEng, precision );
```

Arguments

learnEng Class object.

precision Precision.

Discussion

This function sets the termination condition for EM. EM stops when the difference between the logarithm of likelihood at a current step and at its preceding step does not exceed the value of precision.

Random Number Generation

pnlSeed

Reinitializes random number generator.

pnlSeed(s);

Arguments

S

Integer that reinitializes the initial random number generator.

Discussion

This function reinitializes the initial random number generator. As RNG is initialised automatically on loading the library, you call this function only if there is some need for it. For example, you may call it to perform non-repeatable experiments in different calls of application.

pnlRand

Generates random numbers uniformly distributed over specified numerical interval.

```
pnlRand(left, right);
```


Arguments

Left boundary of the interval.

right Right boundary of the interval.

Discussion

This function generates random numbers uniformly over a specified numerical interval

pnlRandNormal

Generates normally distributed random numbers.

pnlSeed(mean, cov);

Arguments

mean Mean of the normal distribution.

cov Covariance matrix of the normal distribution.

Discussion

This function generates a vector from a multivariate normal distribution.

Index

Numerics	CBKInfEngine, 4-166
2TNB. See two-slice Bayesian temporal network	CBKInfEngCheckClusters, 4-167 CBKInfEngineCreate, 4-167
	CBKInfEngineCreate, 4-167
A	CCPD
AreThereAnyObsPositions, 4-100	CGaussianCPD AllocDistribution, 4-107, 4-111 CGaussianCPDCopy, 4-106
В	CGaussianCPDCreateUnitF, 4-106
Bayesian Information Criterion, 3-22	Copy, 4-106, 4-109, 4-111
Bayesian Networks, 3-2	Create, 4-111 GetCoefficient, 4-108, 4-111
Bayesian networks, 3-14	SetCoefficient, 4-107, 4-111
Belief Propagation See Pearl Inference	CGaussianCPDCreate, 4-106
BIC. See Bayesian Information Criterion	CMixtureGaussianCPD
BNet. See Bayesian Networks	AllocDistributionVec, 4-109
	CMixtureGaussianCPDCopy, 4-109
	CMixtureGaussianCPDCreate, 4-108 GetCoefficientVec, 4-110
C	GetProbabilities, 4-111
C1_5SliceJtreeInfEngine	SetCoefficientVec, 4-110
C1_5SliceJtreeInfEngineCreate, 4-165	CTabularCPD
C1_5SliceJTreeInfEngine Subclass, 4-164	Copy, 4-111
C2TBNInfEngine	CreateUnitF, 4-104
Backward, 4-162	CreateUnitFunctionCPD, 4-106, 4-111
BackwardFixLag, 4-162	CTablubarCPDCreate, 4-103
BackwardT, 4-161	CTabularCPDCopy, 4-104
C1_5SliceInfEngine, 4-163	CTabularCPD Class, 4-103
Forward, 4-161	CTabularPotential
ForwardFirst, 4-161	CTabularPotentialCopy, 4-118
C2TBNInfEngine Class, 4-160	CTabularPotentialCreate, 4-117
CBayesLearningEngine, 4-174	CTabularPotentialCreateUnitF, 4-118
CBayesLearningEngineCreate, 4-175	CDistribFun

ProcessingStatisticalData, 4-99 SetStatistics, 4-98	MakeNodeObserved, 4-43 SaveForStaticModel, 4-45
-	ToggleNodeState, 4-41
CDynamicGraphicalModel CDBN, 4-83	CEvidence Class, 4-39
	,
CDBNCreate, 4-83	CEvidenceCreateByNodeValues, 4-40
GetInterfaceNodes, 4-81	CFactor
GetStaticModel, 4-82	AreThereAnyObsPositions, 4-100
UnrollDynamicModel, 4-81	AttachMatrix, 4-86
CDynamicInfEngine	CCPD
C2TBNInfEngine Class, 4-160	ConvertToFactor, 4-101
C1_5SliceJTreeInfEngine Subclass, 4-164	ConvertToPotential, 4-101
DefineProcedure, 4-155	ConvertWithEvidenceToPotential, 4-102
EnterEvidence, 4-155	CCPD Class, 4-101
Filtering, 4-157	CFactorCopyWithNewDomain, 4-92
FindMPE, 4-158	CFactors
FixLagSmoothing, 4-158	AddFactor, 4-123
GetDynamicModel, 4-159	CFactorsCreate, 4-122
GetMPE, 4-157	GetFactor, 4-123
GetProcedureType, 4-159	GetNumberOfFactors, 4-123
GetQueryJPD, 4-156	ShrinkObsNdsForAllFactors, 4-124
MarginalNodes, 4-156	CFactors Class, 4-122
Smoothing, 4-158	ChangeOwnerToGraphicalModel, 4-94
CDynamicInfEngine Class, 4-153	Clone, 4-93
CDynamicLearningEngine	CloneWithSharedMartices, 4-93
CEMLearningEngineDBN	ConvertStatisticToPot, 4-97
CEMLearningEngineDBNCreate, 4-178	ConvertToDense, 4-95
CEMLearningEngineDBN Class, 4-178	ConvertToSparse, 4-95
CDynamicLearningEngine Class, 4-177	CPotencial
CEMLearningEngine Class, 4-172	MarginalizeInPlace, 4-116
	CPotential
CEMLearningEngineDBN Class, 4-178	Divide, 4-116
CEvidence	DivideInSelf, 4-113
CEvidenceCreate, 4-40	ExpandObservedNodes, 4-115
CEvidenceCreateByModelDomain, 4-40	GetNormalized, 4-113
CEvidenceCreateByNodeValues, 4-40	Marganalize, 4-114
CEvidenceLoadForDBN, 4-46	MarginalizeInPlace, 4-116
CEvidenceLoadForStaticModel, 4-46	Multiply, 4-112
CEvidenceSaveForDBN, 4-45	MultiplyInSelf, 4-112
CModelDomain, 4-44	Normalize, 4-114
GetAllObsNodes, 4-42	ShrinkObservedNodes, 4-115
GetObsNodesWithValues, 4-44	CPotential Class, 4-111
GetValues, 4-41	CreateAllNecessaryMatrices, 4-94
IsNodeObserved, 4-42	GenerateSample, 4-92
MakeNodeHidden, 4-43	

GetDistributionType, 4-87	CGibbsSamplingInEngine, 4-148
GetDomain, 4-88	CGibbsSamplingInfEngine
GetDomainSize, 4-88	CGibbsSamplingInfEngineCreate, 4-148
GetFactorType, 4-87	SetQueries, 4-149
GetLogLik, 4-100	UseDSeparation, 4-149
GetMatrix, 4-89	CGibbsWithAnnealingInfEngine
GetModelDomain, 4-95	GetCurrentTemp, 4-152
GetObsPositions, 4-97	SetAnnealingCoefficientS, 4-151
IsDense, 4-96	UseAdaptation, 4-152
IsDistributionSpecific, 4-91	
IsFactorsDistribFunEqual, 4-90	CGraph
IsOwnedByModelDomain, 4-94	AddEdge, 4-4
IsSparsse, 4-96	CGraph Courts 4.1
IsValid, 4-89	CGraphCreate, 4-1
MakeUnitFunction, 4-97	CGraph Cet Torral a right Order, 4.2
ProcessingStatisticalData, 4-99	CGraph Marshing Craph 4.3
SetStatistics, 4-99	CGraphMoralizeGraph, 4-3
TieDistribFun, 4-91	ChangeEdgeDirection, 4-4
UpdateStatisticsEM, 4-98	ClearGraph, 4-12
UpdateStatisticsML, 4-98	FormCliqueFromSubgraph, 4-9
Cfactor	GetAdjacencyMatrix, 4-11
CCPD	GetAncestralClosureMask, 4-18
NormalizeCPD, 4-102	GetAncestry, 4-17
CFactor Class, 4-86	GetChildren, 4-14
	GetConnectivityComponents, 4-16
CFactorCPotential	GetDConnectionList, 4-19
GetMPE, 4-117	GetDConnectionTable, 4-20
CFactorGraph, 4-71	GetNeighbors, 4-5
CFactorGraphConvertFromBNet, 4-74	GetNumberOfChildren, 4-10
CFactorGraphConvertFromMNet, 4-74	GetNumberOfEdges, 4-6
CFactorGraphCopy, 4-72	GetNumberOfNeighbors, 4-5
CFactorGraphCreateByFactors, 4-72	GetNumberOfNodes, 4-6
Copy, 4-72	GetNumberOfParents, 4-10
GetNbrFactors, 4-75	GetParents, 4-13
GetNumFactorsAllocated, 4-73	GetReachableSubgraphByNode, 4-21
GetNumNbrFactors, 4-75	GetSubgraphConnectivityComponents, 4-18
IsValid, 4-74	IsChangeAllowed, 4-7
Shrink, 4-73	IsCompleteSubgraph, 4-6
CFGSumMaxInfEngine	IsDAG, 4-14
CFGSumMaxInfEngineCreate, 4-141	IsDirected, 4-10
GetNumberOfProvideIterations, 4-142	IsExistingEdge, 4-7
SetMaxNumberOfIterations, 4-142	IsIdentical, 4-12
SetTolerance, 4-143	IsNotIdentical, 4-13
CGaussianCPDCreate, 4-106	IsTopologicallySorted, 4-15

IsUndirected, 4-11	CPearlInfEngineCreate, 4-131
ProhibitChange, 4-9	CPearlInfEngineIsModelValid, 4-132
RemoveEdge, 4-8	GetNumberOfProvideIterations, 4-133
SetNeighbors, 4-8	SetMaxNumberOfIterations, 4-132
SetTo, 4-16	SetTolerance, 4-133
CGraph Class, 4-1	CPearlInfEngine Class, 4-131
CGraphicalModel, 4-47	EnterEvidence, 4-127
AllocFactor, 4-47	GetModel, 4-129
AllocFactorByDomainNumber, 4-48	GetMPE, 4-129
AllocFactors, 4-48	GetQueryJPD, 4-128
AttachFactor, 4-49	MarginalNodes, 4-128
AttachFactors, 4-49	pnlDetermineDistribTypeByMD, 4-126
GetFactor, 4-53	pnlDetermineDistributionType, 4-126
GetFactorsIntoVector, 4-53	CinfEngine
GetGraph, 4-50	CNaiveInfEngine Class, 4-130
GetModelDomain, 4-54	CInfEngine Class, 4-125
GetModelType, 4-50	CJTreeInfEngineCopy, 4-136
GetNodeType, 4-51	CJtreeInfEngineCreateFromJTree, 4-136
GetNodeTypes, 4-51	_
GetNumberOfFactors, 4-52	CJunctionTree
GetNumberOfNodes, 4-51	CJunctionTreeCpoy, 4-77
GetNumberOfNodeTypes, 4-52	Classification A 70
IsValid, 4-54	ClearCharge, 4-79
CInfEngine	GetNodePotential, 4-77
CFGSumMaxInfEngine Class, 4-141	GetSeparatorPotential, 4-78
CJtreeInfEngine	InitCharge, 4-78
CJTreeInfEngineCopy, 4-136	Class CFactorGraph, 4-71
CJtreeInfEngineCreate, 4-135	Class CGraphicalModel, 4-47
CJtreeInfEngineCreateFromJTree, 4-136	CLearningEngine
CollectEvidence, 4-139	CDynamicLearningEngine
DistributeEvidence, 4-139	AppendData, 4-178
GetClqNumsContainingSubset, 4-137	GetDynamicModel, 4-177
GetEvidence, 4-136	SetData, 4-177
GetJTreeRootNode, 4-137	SetMaxIterEM, 4-179
GetLogLik, 4-139	SetTerminationToleranceEM, 4-178, 4-179
GetNodesConnectedByUser, 4-138	ClearStatisticData, 4-171
GetQueryMPE, 4-140	CStaticLearningEngine
SetJTreeRootNode, 4-138	AppendData, 4-172
ShrinkObserved, 4-140	SetData, 4-171
CJtreeInfEngine Class, 4-134	SetMaxIterIPF, 4-172
CNaiveInfEngine	GetCriterionValue, 4-170
CNaiveInfEngineCreate, 4-130	Learn, 4-170
CPearlInfEngine	CLearningEngine Class, 4-169

clique, 3-1	Class CEvidence, 4-26
CMixtureGaussianCPD, 4-108	CNodeValuesCreate, 4-34
CMixtureGaussianCPDCreate, 4-108	GetNumberObsNodes, 4-35
CMNet	GetObsNodesFlags, 4-35
CBNetConvertFromBNetUsingEv, 4-64	GetRawData, 4-36
CBNetCreate, 4-61	GetValueBySerialNumber, 4-34
CBNetCreateByModelDomain, 4-62	IsObserved, 4-38
CMNetCopy, 4-64	MakeNodeHiddenBySerialNum, 4-36
ComputeLogLik, 4-65	MakeNodeObservedBySerialNum, 4-37
ConvertFromBNet, 4-63	SetData, 4-36
Create Tabular Potential, 4-65	ToggleNodeStateBySerialNumber, 4-37
CreateWithRandomMatrices, 4-62	CNodeValues Class, 4-33
GenerateSamples, 4-66	CollectEvidence, 4-139
GetClique, 4-63	conditional probability distribution, 3-2
GetClqsNumsForNode, 4-66	conditional probability distributions, 3-14
GetNumberOfCliques, 4-66	conventions
CModelDomain, 4-26	font, 2-2
AttachFactor, 4-28	naming, 2-2
CModelDomainCreate, 4-27	CPD. See conditional probability distribution
CModelDomainCreateIfAllTheSame, 4-27	* * * * * * * * * * * * * * * * * * * *
GetNumberOfVariableTypes, 4-31	CPearlInfEngineIsModelValid, 4-132
GetNumberVariables, 4-32	CPotential
GetObsGauVarType, 4-30	CGaussianPotential
GetObsTabVarType, 4-30	CGaussianPotentialCopy, 4-120
GetVariableAssociation, 4-33	CGaussianPotentialCreate, 4-119
GetVariableAssociations, 4-32	CGaussianPotentialCreateDeltaF, 4-120
GetVariableType, 4-29	CGaussianPotentialCreateUnitF, 4-121
GetVariableTypes, 4-29, 4-31	GetCoefficient, 4-122
IsAFactorOwner, 4-29	SetCoefficient, 4-121 CGaussianPotential Class, 4-119
Model Domain, 4-26	CTabularPotential
ReleaseFactor, 4-28	Create, 4-119
CMRF2	CTabularPotential Class, 4-117
CMRF2Create, 4-69	
CMRF2CreateByModelDomain, 4-69	CSamplingInfEngine Continue, 4-147
CMRF2CreateWithRandomMatrices, 4-70	GetBurnIn, 4-146
CNodeType, 4-22	GetMaxTime, 4-145
CNodeType, 4-23	GetNumStreams, 4-146
GetNodeSize, 4-24	SetBurnIn, 4-144
IsDiscrete, 4-23	SetMaxTime, 4-144
IsIdentical, 4-25	SetNumStreams, 4-145
IsNotIdentical, 4-25	*
SetType, 4-24	CStaticGraphicalModel, 4-55 CDBN
CNodeValues	CDDN

GenerateSamples, 4-84	GetMatrix, 4-89, 4-90, 4-91
CJunctionTree, 4-76	CPotential
CMNet, 4-61	Marginalize, 4-114
CMNet Subclass	FindMPE, 4-158
CMRF2 Subclass, 4-68	font conventions, 2-2
CStaticLearningEngine CBICLearningEngine, 4-175	
Create, 4-175	G
GetGraphicalModel, 4-176	GetBurnIn, 4-146
GetOrder, 4-176	GetClqNumsContainingSubset, 4-137
CEMLearningEngine, 4-172	GetEvidence, 4-136
CEMLearningEngineCreate, 4-173	Get/TreeRootNode, 4-137
SetMaxIterEM, 4-173 SetTerminationToleranceEM, 4-174	GetLogLik, 4-100, 4-139
CStaticLearningEngine Class, 4-171	GetMaxTime, 4-145
Countered mingerighte Class, 1 171	GetModelDomain, 4-44
D	GetMPE, 4-157
D	GetNodesConnectedByUser, 4-138
DAG. See directed acyclic graph	GetNumberOfProvideIterations, 4-133
DBN. See Dynamic Bayesian network	GetQueryJPD, 4-156
directed acyclic graph, 3-2	•
DistributeEvidence, 4-139	GetQueryMPE, 4-140
Dynamic Bayesian network, 3-5	Graph, 4-1 CGraph Member Functions
Dynamic Graphical Models, 3-5	GetAncestry, 4-17
	GetAncestralClosure, 4-17
E	GetReachableSubgraph, 4-20
	NumberOfConnectivityComponents, 4-15
EM. See Expectation Maximization	Graphical Models, 3-1
eTypes, 4-29	
Evidences, 4-33	н
Example 2-1, 3-2	
Expectation Maximization, 3-20, 4-172, 4-178	Hidden Markov models, 3-5
E-step, 3-20	HMM. See Hidden Markov models
M-step, 3-20	
_	1
F	Inference Algorithms for Bayesian and Markov
factor, 3-1, 3-2	Networks, 3-8
factor domain, 3-1	Inference Algorithms for DBNs, 3-11
Factors	Inference Engines
CFactor	EnterEvidence, 4-127

IPF. See Iterarive Proportional Fitting Iterative Proportional Fitting, 3-18

J

joint probability distribution, 3-1, 3-8 Junction Tree Inference, 3-10, 3-12

K

Kalman Filter models, 3-5 KMF. See Kalman Filter models

L

Learning Algorithms, 3-14 Learning Engines, 4-169 Learning for DBNs, 3-24 Loopy Belief Propagation, 3-10

M

marginal distribution See joint probability distribution marginal See joint probability distribution
Markov networks, 3-14
Markov networks. See also Markov Random Fields, 3-1
Markov Random Fields. See also Markov networks, 3-1
Maximum Likelihood Estimation, 3-16
for Bayesian Network, 3-16
for Markov Network, 3-17
MLE. See Maximum Likelihood Estimation
MIStaticStructLearn, 4-177
MNet. See Markov Networks
model domain, 3-1
MRF. See Markov Random Fields

N

notational conventions, 2-2

P

Pearl Inference, 3-10, 3-12 PGM. See probabilistic graphical model pnlRandNormal, 4-181 potential, 3-2 potentials, 3-14 probabilistic graphical model, 3-1 protocol, 3-10

R

RandomNumberGeneration pnlRand, 4-180 pnlRandNormal, 4-181 pnlSeed, 4-180

S

Sampling Inference Engine
CGibbsSamplingInEngine Class, 4-148
CSamplingInfEngine Class, 4-143
SetBurnIn, 4-144
SetJTreeRootNode, 4-138
SetMaxNumberOfIterations, 4-132
SetNumStreams, 4-145
SetTolerance, 4-133
ShrinkObserved, 4-140
Structure Comparison Metric, 3-22

т

two-slice Bayesian temporal network, 3-5

W

Water-Sprinkler Model, 3-2

Bibliography

[BKUAI98] X. Boyen and D. Koller. *Tractable Inference for Complex*

Stochastic Processes, UAI 98

[BKNIPS98] X. Boyen and D. Koller. *Approximate learning of dynamic*

models, NIPS 98

[CDLS] R.G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J.

Spiegelhalter. Probabilistic Networks and Expert Systems.

Springer-Verlag New York, 1999.

[Dempster] A. Dempster, N. Laird, D. Rubin. *Maximum Likelihood*

From Incomplete Data via the EM Algorithm. Journal of

the Royal Statistical Society, B 39: 1-38, 1977.

[H] G. B. Horn. *Iterative Decoding and Pseudocodewords*.

Ph.D. thesis, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, May

1999.

[Introd] A Brief Introduction to Graphical Models and Bayesian

Networks.

http://www.ai.mit.edu/~murphyk/Bayes/bnintro.html

[Jirousek] R. Jirousek and S. Preucil. On the Effective Implementation

of the Iterative Proportional Fitting Procedure.

Computational Statistics Quarterly, 4: 269-282, 1990.

[JorBish] M. Jordan, C. Bishop. An Introduction to Graphical

Models.

[Jordan]	M.I. Jordan, editor. <i>Learning in Graphical Models</i> . MIT Press, 1999.
[LS]	S. L. Lauritzen and D. J. Spiegelhalter. <i>Local Computations With Probabilities on Graphical Structures and Their Applications to Expert Systems</i> . J. Roy. Stat. Soc. B, 50, 157-224, 1988.
[Murphy98]	K. Murphy. <i>Inference and Learning in Hybrid Bayesian Networks</i> . EECS, University of California, 1998.
[Murphy02]	K. P. Murphy. <i>Dynamic Bayesian Networks: Representation, Inference and Learning</i> , PhD thesis. UC Berkeley, Computer Science Division, July 2002.
[MWJ]	K. P. Murphy, Y. Weiss, and M. I. Jordan. <i>Loopy Belief Propagation for Approximate Inference: An Empirical Study</i> . Uncertainty in Artificial Intelligence, to appear.
[P1]	J. Pearl. <i>Probabilistic Reasoning in Intelligent Systems:</i> Networks of Plausible Inference. Morgan Kaufmann, 1988.
[WF2000]	Y. Weiss, and W. T. Freeman. <i>Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology.</i> In S. Solla, T. K. Lean, and K.R. Muller, editors, <i>Advances in Neural Information Processing Systems</i> , 12, 2000.
[WF2001]	Y. Weiss, and W. T. Freeman. <i>On the Optimality of Solutions of the Max-Product Belief Propagation Algorithm in Arbitrary Graphs</i> . IEEE Transactions on Information Theory, 47:2, 723-735, 2001.