CS2040S Data Structures and Algorithms

Welcome!

How to Search!

Algorithm Analysis

- Big-O Notation
- Model of computation

Searching

Peak Finding

- 1-dimension
- 2-dimensions

Admin

Tutorial and Recitations

DO NOT make any changes directly on CourseReg.

All changes have to go through Coursemology appeal.

- Last appeal due today, 8pm
- If you change directly, you risk being dropped from the class.
- Please do not e-mail me or the module staff directly if you are unhappy with your slot.

Tutorial and Recitations

Final appeal surveys

Sunday, January 19 2025, 16:27 by Eldric Liew

Previous data updated into CourseReg. Some of you still have clashes and do not have a slot, you know who you are.

For those who failed to secure their slot or want to swap:

- Recitation appeal survey (Final)
- Tutorial appeal survey (Final)

Results will be progressively released throughout the week.

Admin

Tutorial and Recitations

Current assignment available on CourseReg.

- Available tutorials:
 - TODO: Ask Eldric to update
- Available recitations:
 - TODO: Ask Eldric to update

How to Search!

Algorithm Analysis

- Big-O Notation
- Model of computation

Searching

Peak Finding

- 1-dimension
- 2-dimensions

Algorithm Analysis

Warm up: which takes longer?

```
1 void pushAll(int k) {
2   for (int i = 0; i <= 100 * k; i++) {
3     stack.push(i);
4  }
5 }</pre>
```

```
1 void pushAdd(int k) {
2   for (int i = 0; i <= k; i++) {
3     for (int j = 0; j <= k; j++) {
4        stack.push(i + j);
5     }
6   }
7 }</pre>
```

Algorithm Analysis

Warm up: which takes longer?

```
1 void pushAll(int k) {
2   for (int i = 0; i <= 100 * k; i++) {
3      stack.push(i);
4   }
5 }</pre>
100k push operations
```

```
1 void pushAdd(int k) {
2   for (int i = 0; i <= k; i++) {
3     for (int j = 0; j <= k; j++) {
4        stack.push(i + j);
5     }
6   }
7 }</pre>
```

Algorithm Analysis

Warm up: which takes longer?

```
1 void pushAll(int k) {
2   for (int i = 0; i <= 100 * k; i++) {
3     stack.push(i);
4   }
5 }</pre>
100k push operations
```

```
1 void pushAdd(int k) {
2   for (int i = 0; i <= k; i++) {
3     for (int j = 0; j <= k; j++) {
4       stack.push(i + j);
5     }
6   }
7 }
</pre>
```

Which grows faster?

$$T(k) = 100k$$

$$T(k) = k^2$$

$$T\left(0\right) =0$$

$$T(1) = 100$$

$$T(1) = 1$$

T(0)=0

$$T(100) = 10,000$$

$$T(100) = 10,000$$

$$T(1000) = 100,000$$

$$T(1000) = 1,000,000$$

Which grows faster?

Always think of big input

Which grows faster?

How does an algorithm scale?

- For large inputs, what is the running time?
- T(n) = running time on inputs of size n

Definition: T(n) = O(f(n)) if T grows no faster than f

$$T(n) = O(f(n))$$
 if:

- there exists a constant c > 0
- there exists a constant $n_0 > 0$

such that for all $n > n_0$:

$$T(n) \leq c f(n)$$

```
T(n) = O(f(n)) if:

- there exists a constant c > 0

- there exists a constant n_0 > 0

such that for all n > n_0:

T(n) \le c f(n)
```



```
T(n) = O(f(n)) if:
                                    T(n) = O(f(n))
   there exists a constant c > 0
   there exists a constant n_0 > 0
such that for all n > n_0:
T(n) \le c f(n)
                                                                                c f(n)
                                                                              T(n)
```

```
T(n) = O(f(n)) if:
                                   T(n) = O(f(n))
   there exists a constant c > 0
   there exists a constant n_0 > 0
such that for all n > n_0:
T(n) \le c f(n)
                              this is the bounding function
                                                                            c f(n)
                                                                            T(n)
```

c f(n)

```
T(n) = O(f(n)) if:
```

- there exists a constant c > 0
- there exists a constant $n_0 > 0$

such that for all $n > n_0$:

$$T(n) \le c f(n)$$

T(n) = O(f(n))

Example proof: $T(n) = O(n^2)$

$$T(n) = 4n^2 + 24n + 16$$

Example proof: $T(n) = O(n^2)$

$$T(n) = 4n^2 + 24n + 16$$

 $< 4n^2 + 24n^2 + n^2 \quad \text{(for } n > n_0 = 4\text{)}$

Example proof: $T(n) = O(n^2)$

$$T(n) = 4n^2 + 24n + 16$$

 $< 4n^2 + 24n^2 + n^2 \quad \text{(for } n > n_0 = 4\text{)}$
 $= 29n^2$

Example

T(n)		

$$T(n) = 1000n$$

$$T(n) = O(n)$$

$$T(n) = 1000n$$

$$T(n) = O(n^2)$$

$$T(n) = n^2$$

$$T(n) \neq O(n)$$

$$T(n) = 13n^2 + n$$

$$T(n) = O(n^2)$$

$$T(\mathbf{n}) = 13n^2 + n$$

Example

T(n)

big-O

T(n) = 1000n

T(n) = 1000n

 $T(n) = n^2$

 $T(\mathbf{n}) = 13n^2 + n$

T(n) = O(n)

 $T(n) = \mathcal{O}(n^2)$

 $T(n) \neq O(n)$ Not tight

 $T(n) = \mathcal{O}(n^2)$

Definition: T(n) = O(f(n)) if T grows no faster than f

$$T(n) = O(f(n))$$
 if:

- there exists a constant c > 0
- there exists a constant $n_0 > 0$

such that for all $n > n_0$:

$$T(n) \leq c f(n)$$

Big-O Notation as Upper Bound

How about Lower bound?

How about Lower bound?

Definition: $T(n) = \Omega(f(n))$ if T grows no slower than f

$$T(n) = \Omega(f(n))$$
 if:

- there exists a constant c > 0
- there exists a constant $n_0 > 0$

such that for all $n > n_0$:

$$T(n) \ge c f(n)$$

Example

		Ī
T(n)		

Asymptotic

$$T(n) = 1000n$$

$$T(n) = \Omega(1)$$

$$T(n) = n$$

$$T(n) = \Omega(n)$$

$$T(n) = n^2$$

$$T(n) = \Omega(n)$$

$$T(n) = 13n^2 + n$$

$$T(n) = \Omega(n^2)$$

Exercise:

True or false?

```
"f(n) = O(g(n)) if and only if g(n) = \Omega(f(n))"
```

Prove that your claim is correct using the definitions of O and Ω or by giving an example.

Definition: $T(n) = \Theta(f(n))$ if T grows at the same rate as f

$T(n) = \Theta(f(n))$ if and only if:

- T(n) = O(f(n)) and
- $T(n) = \Omega(f(n))$

Example

T(n)		

$$T(n) = 1000n$$

$$T(n) = n$$

$$T(n) = 13n^2 + n$$

$$T(n) = n^3$$

$$T(\mathbf{n}) = \Theta(n)$$

$$T(n) \neq \Theta(1)$$

$$T(n) = \Theta(n^2)$$

$$T(n) \neq \Theta(n^2)$$

Some simple rules for most cases...

Order or size:

Function	Name
5	Constant
loglog(n)	double log
log(n)	logarithmic
$log^2(n)$	Polylogarithmic
n	linear
nlog(n)	log-linear
n^3	polynomial
n³log(n)	
n ⁴	polynomial
2 ⁿ	exponential
2 ²ⁿ	
n!	factorial

Big-O Notation

Rules:

If T(n) is a polynomial of degree k then:

$$T(n) = O(n^k)$$

$$10n^5 + 50n^3 + 10n + 17 = O(n^5)$$

Big-O Notation

Rules:

If
$$T(n) = O(f(n))$$
 and $S(n) = O(g(n))$ then
$$T(n) + S(n) = O(f(n) + g(n))$$

$$10n^{2} = O(n^{2})$$

$$5nlog(n) = O(nlog(n))$$

$$10n^{2} + 5nlog(n) = O(n^{2} + nlog(n)) = O(n^{2})$$

Big-O Notation

Rules:

If
$$T(n) = O(f(n))$$
 and $S(n) = O(g(n))$ then:

$$T(n)*S(n) = O(f(n)*g(n))$$

$$10n^{2} = O(n^{2})$$

$$5n = O(n)$$

$$(10n^{2})(5n) = 50n^{3} = O(n*n^{2}) = O(n^{3})$$

Why don't you try a few?

$$4n^2\log(n) + 8n + 16 = ?$$

- 1. $O(\log n)$
- O(n)
- 3. O(nlog n)
- 4. $O(n^2)$
- 5. $O(n^2 \log n)$
- 6. $O(n^3)$
- 7. $O(2^n)$

$$4n^2\log(n) + 8n + 16 = ?$$

- 1. $O(\log n)$
- 2. O(n)
- 3. O(nlog n)
- 4. $O(n^2)$
- 5. $O(n^2 \log n)$
- 6. $O(n^3)$
- 7. $O(2^n)$

$$2^{2n} + 2^n + 2 =$$

- 1. O(n)
- 2. $O(n^6)$
- 3. $O(2^n)$
- 4. $O(2^{2n})$
- 5. $O(n^n)$

$$2^{2n} + 2^n + 2 =$$

- 1. O(n)
- 2. $O(n^6)$
- 3. $O(2^n)$
- 4. $O(2^{2n})$
- 5. $O(n^n)$

log(n!) =

- 1. $O(\log n)$
- 2. O(n)
- 3. $O(n \log n)$
- 4. $O(n^2)$
- 5. $O(2^n)$

log(n!) =

- 1. $O(\log n)$
- O(n)
- 3. $O(n \log n)$
- 4. $O(n^2)$
- 5. $O(2^n)$

Hint: Sterling's Approximation

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

log(n!) =

- 1. $O(\log n)$
- O(n)
- 3. $O(n \log n)$
- 4. $O(n^2)$
- 5. $O(2^n)$

Hint: Sterling's Approximation

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

In General

Model of Computation?

Different ways to "compute":

- Sequential (RAM) model of computation
- Parallel (PRAM, BSP, Map-Reduce)
- Circuits
- Turing Machine
- Counter machine
- Word RAM model
- Quantum computation
- Etc.

Model of Computation

Sequential Computer

One thing at a time

All operations take constant time
 Addition, subtraction, multiplication, comparison

Algorithm Analysis

```
1 assignment
1 void sum(int k, int[] intArray) {
                                                     1 assignment
     int total=0;
                                                     k+1 comparisons
3
     for (int i=0; i<= k; i++){
                                                    k increments
      total = total + intArray[i];
5
                                                         k array access
     return total;
                                                         k addition
                                                         k assignment
7 }
8
                                                      1 return
```

Total:
$$1 + 1 + (k+1) + 3k + 1 = 4k+4 = O(k)$$

Algorithm Analysis

```
1 void sum(int k, int[] intArray) {
     int total=0;
      String name="Stephanie";
      for (int i=0; i<= k; i++){
4
      total = total + intArray[i];
       name = name + "?"
     return total;
9 }
```

What is the cost of this operation?

Moral: all costs are not 1.

Algorithm Analysis

```
1 void sum(int k, int[] intArray) {
     int total=0;
      String name="Stephanie";
     for (int i=0; i<= k; i++){
      total = total + intArray[i];
       name = name + "?"
      return total;
9 }
```

What is the cost of this operation?

Not 1! Not constant! Not k!

Moral: all costs are not 1.

Loops

cost = (# iterations)x(max cost of one iteration)

```
1 int sum(int k, int[] intArray) {
     int total=0;
     for (int i=0; i<= k; i++){
      total = total + intArray[i];
    return total;
7 }
```

Nested Loops

cost = (# iterations)(max cost of one iteration)

```
1 int sum(int k, int[] intArray) {
   int total = 0;
3 for (int i = 0; i <= k; i++) {</pre>
     for (int j = 0; j <= k; j++) {
       total = total + intArray[i];
8 return total;
9 }
```

Sequential statements

```
cost = (cost of first) + (cost of second)
```

```
1 int sum(int k, int[] intArray) {
  for (int i = 0; i <= k; i++)
  intArray[i] = k;
 for (int j = 0; j <= k; j++)
     total = total + intArray[i];
6 return total;
7 }
```

Sequential statements

```
cost = (cost of first) + (cost of second)
```

```
1 int sum(int k, int[] intArray) {
   for (int i = 0; i <= k; i++)
                                            cost of first
     intArray[i] = k;
  for (int j = 0; j <= k; j++)
                                            cost of second
     total = total + intArray[i];
6 return total;
7 }
```

```
if / else statements
cost = max(cost of first, cost of second)
    <= (cost of first) + (cost of second)
     1 void sum(int k, int[] intArray) {
     2 	 if (k > 100)
          doExpensiveOperation();
     4 else
          doCheapOperation();
       return;
     7 }
```

```
if / else statements
cost = max(cost of first, cost of second)
    <= (cost of first) + (cost of second)
     1 void sum(int k, int[] intArray) {
     2 	 if (k > 100)
           doExpensiveOperation();
                                              max of these two
     4 else
           doCheapOperation();
       return;
     7 }
```

For recursive function calls.....

How about fibonacci?

```
1 int fib(int n) {
2 if (n <= 1)
     return n;
4 else
5 return fib(n - 1) + fib(n - 2);
6 }
```

Let T(n) be our running time.

```
1 int fib(int n) {
2 if (n <= 1)
     return n;
4 else
5 return fib(n - 1) + fib(n - 2);
6 }
```

Let T(n) be our running time.

We can express T(n) in terms of T(n-1) and T(n-2)

```
1 int fib(int n) {
2 if (n <= 1)
     return n;
4 else
5 return fib(n - 1) + fib(n - 2);
6 }
```

$$T(n) = ???$$

```
T(n-1)
                                   T(n-2)
1 int fib(int n) {
2 if (n <= 1)
     return n;
4 else
5 return fib(n - 1) + fib(n - 2);
6 }
```

```
T(n) = 1 + T(n-1) + T(n-2)
     = O(2^n)
                              T(n-1)
                                         T(n-2)
      1 int fib(int n) {
      2 if (n <= 1)
            return n;
       4 else
       5 return fib(n - 1) + fib(n - 2);
       6 }
```

What is the running time?

```
1 for (int i = 0; i < n; i++)
               for (int j = 0; j < i; j++)
1. O(1)
                  store[i] = i + j;
O(n)
3. O(n \log n)
4. O(n^2)
5. O(n^2 \log n)
6. O(2^n)
```

Today: Divide and Conquer!

Algorithm Analysis

- Big-O Notation
- Model of computation

Searching

Peak Finding

- 1-dimension
- 2-dimensions

Puzzle of the Week: Bubbly

(Courtesy: MIT Puzzle Hunt, 2019)

- Two player game
- Players alternate popping bobbles
- The last player to pop a bubble wins.

Find the best first move.

Today: Divide and Conquer!

Algorithm Analysis

- Big-O Notation
- Model of computation

Searching

Peak Finding

- 1-dimension
- 2-dimensions

Binary Search

Sorted array: A [0 . . n-1]

Search for *k* in array A.

Binary Search

Sorted array: A [0..n-1]

Search for 17 in array A.

Binary Search

Sorted array: A [0..n-1]

Search for 17 in array A.

- Find middle element: 7

Sorted array: A [0..n-1]

- Find middle element: 7
- Compare 17 to middle element: 17 > 7

Sorted array: A [0..n-1]

- Find middle element: 7
- Compare 17 to middle element: 17 > 7

Sorted array: A [0..n-1]

- Find middle element: 7
- Compare 17 to middle element: 17 > 7
- Recurse on right half

Sorted array: A [0..n-1]

- Find middle element
- Compare 17 to middle element
- Recurse

Sorted array: A [0..n-1]

- Find middle element
- Compare 17 to middle element
- Recurse

Sorted array: A [0..n-1]

- Find middle element
- Compare 17 to middle element
- Recurse

Sorted array: A [0..n-1]

- Find middle element
- Compare 17 to middle element
- Recurse

Sorted array: A [0..n-1]

- Find middle element
- Compare 17 to middle element
- Recurse

Problem Solving: Reduce the Problem

Sorted array: A [0..n-1]

Reduce-and-Conquer:

- Start with *n* elements to search.
- Eliminate half of them.
- End with n/2 elements to search.
- Repeat.

How hard is binary search?

How many of you think you could write a correct implementation of binary search, right now?

programming pearls

By Jon Bentley

WRITING CORRECT PROGRAMS

The Challenge of Binary Search

Even with the best of designs, every now and then a programmer has to write subtle code. This column is about one problem that requires particularly careful code: binary search. After defining the problem and sketching an algorithm to solve it, we'll use principles of program verification in several stages as we develop the program.

Jon Bentley

Most programmers think that with the above description in hand, writing the code is easy; they're wrong. The only way you'll believe this is by putting down this column right now, and writing the code yourself. Try it.

programming pearls

By Jon Bentley

I've given this problem as an in-class assignment in courses at Bell Labs and IBM. The professional programmers had one hour (sometimes more) to convert the above description into a program in the language of their choice; a high-level pseudocode was fine. At the end of the specified time, almost all the programmers reported that they had correct code for the task. We would then take 30 minutes to examine their code, which the programmers did with test cases. In many different classes and with over a hundred programmers, the results varied little: 90 percent of the programmers found bugs in their code (and I wasn't always convinced of the correctness of the code in which no bugs were found).

I found this amazing: only about 10 percent of professional programmers were able to get this small program right. But they aren't the only ones to find this task difficult. In the history in Section 6.2.1 of his Sorting and Searching, Knuth points out that while the first binary search was published in 1946, the first published binary search without bugs did not appear until 1962.

Jon Bentley

How hard is binary search?

How many of you think you could write a correct implementation of binary search, right now?

Try it yourself!

Assignments					
Problem Sets Lecture Review Optional Practice					
Title		EXP Needed for	Starts at	Ends at	Actions
Guess the Number (Binary Search)	⊘ ≡	200	21 Jan 21:15	1 May 03:14	Attempt
WiFi (Binary Search)	⊘	200	24 Jan 19:15	1 May 03:14	Attempt

Binary Search (buggy)

Sorted array: A [0..n-1]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search (A, key, n)
    begin = 0
    end = n
    while begin != end do:
         if key < A[(begin+end)/2] then</pre>
                end = (begin+end)/2 - 1
         else begin = (begin+end)/2
    return A[begin]
```

Sorted array: A [0..n-1]

```
6
                           8
                                              28
                               9
               5
                                          23
                                  11
                                      17
Search (A, key, n)
    begin = 0
                              array out of bounds!
    end = n <
    while begin != end dø:
          if key < A[(begin+end)/2] then</pre>
                end = (begin+end)/2 - 1
          else begin = (begin+end)/2
    return A[end]
```

Sorted array: A [0 . . n-1]

```
6
                             8
                                                   28
                5
                                  9
                                              23
                                      11
                                          17
Search (A, key, n)
                             array out of bounds!
    begin = 0
                             (Can't happen because of other bugs...)
    while begin != end/do:
           if key < A[/(begin+end)/2] then
                  end \neq (begin+end)/2 - 1
```

= (begin+end)/2

return A[end]

Sorted array: A[0..n-1]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search (A, key, n)
    begin = 0
    end = n-1
    while begin != end do:
         if key < A[(begin+end)/2] then</pre>
                end = (begin+end)/2 - 1
         else begin = (begin+end)/2
    return A[end]
```

Sorted arra

2 4

Search (A,

begin = 0

Example: search(7)

- begin = 0, end = 1
- mid = (0+1)/2 = 0
- key >= A[mid] begin = 0

5 10

```
end = n-1
while begin != end do:
```

May not terminate! round down

```
if key < A[(begin+end)/2] then
        end = (begin+end)/2 - 1
    else begin = (begin+end)/2
return A[end]</pre>
```

Sorted arra

2

Search (A,

Example: search(2)

- begin = 0, end = 1
- mid = (0+1)/2 = 0

key < A[mid] = 0 - 1 = -1

subtract?

5 10

```
begin = 0
                       end < begin
end = n-1
```

while begin != end do:

if key < A[(begin+end)/2] then</pre> end = (begin+end)/2 - 1

else begin = (begin+end)/2

return A[end]

Sorted array: A [0..n-1]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search (A, key, n)
    begin = 0
    end = n-1
    while begin != end do:
         if key < A[(begin+end)/2] then</pre>
               end = (begin+end)/2 - 1
         else begin = (begin+end)/2
    return A[end] ← Useful return value?
```

Specification:

- Returns element if it is in the array.
- Returns "null" if it is not in the array.

Alternate Specification:

- Returns index if it is in the array.
- Returns -1 if it is not in the array.

Sorted array: A [0..n-1]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
int search (A, key, n)
    begin = 0
    end = n-1
    while begin < end do:
         if key <= A[(begin+end)/2] then</pre>
                end = (begin+end)/2
         else begin = 1+(begin+end)/2
    return (A[begin] == key) ? begin : -1
```

Sorted array: A[0..n-1]

```
6
                           8
                                              28
               5
                               9
                                           23
                                   11
                                      17
int search (A, key, n)
                                 less-than-or-equal
    begin = 0
    end = n-1
    while begin < end do:
          if key <= A[(begin+end)/2] then</pre>
                 end = (begin+end)/2
          else begin = 1+(begin+end)/2
    return (A[begin] == key) ? begin : -1
```

Sorted array: A [0..n-1]

Sorted array: A[0..n-1]

```
6
                           8
                                              28
                               9
                                           23
               5
                                   11
                                      17
int search (A, key, n)
                                      Array of out
                                        bounds?
    begin = 0
    end = n-1
    while begin < end do:
          if key <= A[(begin+end)/2] then</pre>
                end = (begin+end)
          else begin = 1+(begin+end)/2
    return (A[begin] == key) ? begin : -1
```

Sorted array: A [0..n-1]


```
int search(A, key, n)

begin = 0

end = n-1
```

while begin < end do:</pre>

if key <= A[(begin+end)/2] th
 end = (begin+end)/2
else begin = 1+(begin+end)/2
return (A[begin]==key) ? begin : -1</pre>

Array of out bounds?
No: division

rounds down.

Sorted array: A [0..n-1]

```
6
                           8
                                              28
               5
                               9
                                           23
                                   11
                                      17
int search (A, key, n)
    begin = 0
                           What if begin > MAX INT/2?
    end = n-1
    while begin < end do:
          if key <= A[(begin+end)/2] then</pre>
                 end = (begin+end)/2
          else begin = 1+(begin+end)/2
    return (A[begin] == key) ? begin : -1
```

Sorted array: A [0..n-1]

```
6
                           8
                                              28
               5
                               9
                                          23
                                   11
                                      17
int search (A, key,
                         What if begin > MAX_INT/2?
    begin = 0
                      Overflow error: begin+end > MAX INT
    end = n-1
    while begin < end do:
              key <= A[(begin+end)/2] then
                 end = (begin+end)/2
          else begin = 1+(begin+end)/2
    return (A[begin] == key) ? begin : -1
```

Sorted array: A[0..n-1]

```
6
                          8
                                              28
                              9
              5
                                      17
                                          23
                                  11
int search (A, key, n)
    begin = 0
    end = n-1
    while begin < end do:
         mid = begin + (end-begin)/2;
          if key <= A[mid] then</pre>
                end = mid
          else begin = mid+1
```

return (A[begin] == key) ? begin : -1

Moral of the Story

Easy algorithms are *hard* to write correctly.

Binary search is 9 lines of code.

If you can't write 9 correct lines of code, how do you expect to write thousands of lines of bug-free code??

Precondition and Postcondition

Precondition:

- Fact that is true when the function begins.
- Something important for it to work correctly.

Postcondition:

- Fact that is true when the function ends.
- Something useful to show that the computation was done correctly.

Sorted array: A [0..n-1]

```
6
                           8
                               9
               5
                                       17
                                           23
                                   11
int search (A, key, n)
                                      What are useful
    begin = 0
                                      preconditions and
                                       postconditions?
    end = n-1
    while begin < end do:
          mid = begin + (end-begin)/2;
          if key <= A[mid] then</pre>
                 end = mid
          else begin = mid+1
    return (A[begin] == key) ? begin : -1
```

28

Functionality:

- If element is in the array, return index of element.
- If element is not in array, return -1.

Functionality:

- If element is in the array, return index of element.
- If element is not in array, return -1.

Preconditions:

- Array is of size n
- Array is sorted

Good practice:
Validate pre-conditions
when possible.

Functionality:

- If element is in the array, return index of element.
- If element is not in array, return -1.

Preconditions:

- Array is of size n
- Array is sorted

You can usually check this directly.

Functionality:

- If element is in the array, return index of element.
- If element is not in array, return -1.

Preconditions:

- Array is of size n
- Array is sorted

Should we do input validation to make sure array is sorted??

Functionality:

- If element is in the array, return index of element.
- If element is not in array, return -1.

Preconditions:

- Array is of size n
- Array is sorted

Should we do input validation to make sure array is sorted??

NO! Too slow!

Functionality:

- If element is in the array, return index of element.
- If element is not in array, return -1.

Preconditions:

- Array is of size n
- Array is sorted

Postcondition:

- If element is in the array: A [begin] = key

Invariants

Invariant:

relationship between variables that is always true.

Invariants

Invariant:

relationship between variables that is always true.

Loop Invariant:

 relationship between variables that is true at the beginning (or end) of each iteration of a loop.

Sorted array: A [0..n-1]

```
6
                            8
                                                28
                                9
               5
                                        17
                                            23
                                    11
int search (A, key, n)
                                       What are useful
    begin = 0
                                         invariants?
    end = n-1
    while begin < end do:</pre>
          mid = begin + (end-begin)/2;
          if key <= A[mid] then</pre>
                 end = mid
          else begin = mid+1
    return (A[begin] == key) ? begin : -1
```

Loop invariant:

 $- A[begin] \le key \le A[end]$

Interpretation:

- The key is in the range of the array

Loop invariant:

 $- A[begin] \le key \le A[end]$

Interpretation:

- The key is in the range of the array

```
Validation (in debug mode; disable for production?):
   if ((A[begin] > key) or (A[end] < key))
        System.out.println("error");</pre>
```

Sorted array: A [0..n-1]

```
6
                           8
                                                28
                                9
               5
                                            23
                                    11
                                       17
int search (A, key, n)
                            Is the loop invariant always true?
    begin = 0
    end = n-1
    while begin < end do:
          mid = begin + (end-begin)/2;
          if key <= A[mid] then</pre>
                 end = mid
          else begin = mid+1
    return (A[begin] == key) ? begin : -1
```

Sorted array: A [0..n-1]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
int search(A, key, n)
  begin = 0
  end = n-1
  while begin < end do:</pre>
```

To enforce invariant, we would need an extra step. Or we can refine the invariant.

```
mid = begin + (end-begin)/2;
if key <= A[mid] then
        end = mid
else begin = mid+1
return (A[begin] == key) ? begin : -1</pre>
```

n	2	4	4	5	6	7	8	9	11	17	23	28
n/2	2	4	4	5	6	7	8	9	11	17	23	28
n/4	2	4	4	5	6	7	8	9	11	17	23	28
n/8	2	4	4	5	6	7	8	9	11	17	23	28

Sorted array: A [0..n-1]

Iteration 1: (end - begin) = n

Iteration 2: (end - begin) = n/2

Iteration 3: (end - begin) = n/4

• • •

Another invariant!

Iteration
$$k$$
: (end – begin) $\leq n/2^k$

$$n/2^k = 1 \implies k = \log(n)$$

Key Invariants:

Correctness:

 $- A[begin] \le key \le A[end]$

Performance:

- (end-begin) \leq n/2^k in iteration k.

Sorted array: A[o..n-1]

Not just for searching arrays:

Assume a complicated function:

int complicatedFunction(int s)

Assume the function is always increasing:

complicatedFunction(i) < complicatedFunction(i+1)</pre>

Find the minimum value j such that:

complicatedFunction(j) > 100

Tutorial allocation

Tutorial allocation

T1

T₂

T₃

Tutorials

(in order of tutor preference) T₄

T₅

T6

T₇

T8

Tutorial allocation

Students want certain tutorials.

Tutorial allocation

Students want certain tutorials.

We want each tutorial to have < 18 students...

Tutorial allocation

Students want certain tutorials.

We want each tutorial to have < 18 students...

How many tutorials do we need to run?

Tutorial allocation

Students want certain tutorials.

We want each tutorial to have < 18 students...

How many tutorials do we need to run?

Tutorial allocation

Can we do greedy allocation?

First, fill T1. Then fill T2. Then fill T3.

. .

Stop when all students are allocated

Tutorial allocation

Can we do greedy allocation?

NO

Assume max tutorial size is 1.

Assign student 1 to tutorial 1.

Now we need all 8 tutorials.

Tutorial allocation

Can we do greedy allocation?

NO

Assume max tutorial size is 1.

Assign student 1 to tutorial 1.

Now one student has no feasible allocation!

Tutorial allocation

Assume we can solve allocation problem:

Given a fixed set of tutorials and a fixed set of students, find an allocation where every student has a slot.

Warning:

- may be > 18 students in a slot!
- minimizes max students in a slot.

Tutorial allocation

How to find minimum number of tutorials that we need to open to ensure: no tutorial has more than 18 students.

Tutorial allocation

Observation:

Number of students in BIGGEST tutorial only decreases as number of tutorials increases.

Monotonic function of number of tutorials!

Tutorial allocation

Monotonic function of number of tutorials!

Binary Search

Tutorial allocation

Solution:

Binary Search

Define:

MaxStudents(x) = number of students in most crowded tutorial, if we offer x tutorials.

MaxStudents(x) = number of students in most crowded tutorial, if we offer x tutorials.

```
Search (n)
    begin = 0
    end = n-1
    while begin < end do:
         mid = begin + (end-begin)/2;
         if MaxStudents(mid) <= 18 then</pre>
                end = mid
         else begin = mid+1
```

Sorted array: A[o..n-1]

Not just for searching arrays:

Assume a complicated function:

int complicatedFunction(int s)

Assume the function is always increasing:

complicatedFunction(i) < complicatedFunction(i+1)</pre>

Find the minimum value j such that:

complicatedFunction(j) > 100

Today: How to Search!

Algorithm Analysis

- Big-O Notation
- Model of computation

Searching

Peak Finding

- 1-dimension
- 2-dimensions