Tema 06: Paralelismo y perpendicularidad.

- 1. Paralelismo
 - A. Rectas paralelas
 - B. Planos paralelos
 - C. Paralelismo entre rectas y planos
- 2. Perpendicularidad
 - A. Rectas perpendiculares a un plano
 - B. Planos perpendiculares a una recta
 - C. Rectas perpendiculares
 - D. Planos perpendiculares
 - E. Procedimientos en función de la posición de los elementos

1. Paralelismo – A. Rectas paralelas

Dos rectas paralelas cumplen la siguiente condición:

La proyección cilíndrica de dos rectas paralelas sobre un plano da lugar a dos rectas que son también paralelas.

Pero dos proyecciones paralelas no siempre corresponden a dos rectas paralelas.

1. Paralelismo – A. Rectas paralelas

En el sistema diédrico la condición de paralelismo entre rectas establece que:

Las proyecciones de dos rectas paralelas son también paralelas.

Tanto la proyección horizontal como la vertical.

Para hallar una recta paralela a otra por un punto no hay más que trazar sendas paralelas a sus proyecciones horizontal y vertical por el punto.

1. Paralelismo – B. Planos paralelos

De forma similar, dos planos paralelos que intersecan a un tercero dan lugar a dos líneas de intersección (trazas) paralelas.

$$\alpha \mid \mid \beta \rightarrow \alpha_1 \mid \mid \beta_1$$

Pero dos líneas de intersección (trazas) paralelas no corresponden necesariamente a dos planos paralelos.

$$\alpha_1 \mid \mid \beta_1 - X \alpha \mid \mid \beta$$

1. Paralelismo – B. Planos paralelos

En el sistema diédrico la condición de paralelismo entre planos establece que:

Las trazas de dos planos paralelos son también paralelas.

Tanto la traza horizontal como la vertical.

1. Paralelismo – B. Planos paralelos

Dado un plano α hallar un plano β paralelo a α que pase por un punto A ->

se toma cualquier recta r que pertenezca a α y se dibuja su paralela (s) por A. Por las trazas H' y V'' de s se dibujan las trazas β_1 y β_2 paralelas a α_1 y α_2 respectivamente.

- $-r \subset \alpha$ $-s \mid \mid r$; $A \subset s$
- H's: $\beta_1 \mid \mid \ \alpha_1$
- V"s: $\beta_2 \mid \mid \alpha_2$

1. Paralelismo – B. Planos paralelos

Dado un plano α hallar un plano β paralelo a α que pase por un punto A ->

se puede seguir el mismo procedimiento utilizando una recta horizontal.

1. Paralelismo – C. Paralelismo entre rectas y planos

Plano paralelo a una recta:

Un plano es paralelo a una recta si contiene alguna recta paralela a ella.

Recta paralela a un plano:

Una recta es paralela a un plano si está contenida en un plano paralelo al plano dado

En los dos casos el problema tiene infinitas soluciones.

1. Paralelismo – C. Paralelismo entre rectas y planos

Trazar por un punto una recta paralela a un plano (infinitas soluciones)

(Plano paralelo a una recta que pase por un punto: caso similar)

1. Paralelismo – C. Paralelismo entre rectas y planos

Recta paralela a dos planos por un punto

La recta buscada será paralela a la recta de intersección entre los planos

$$r \mid \mid \alpha, \beta \rightarrow r \mid \mid i$$
; $i = \alpha \cap \beta$

1. Paralelismo – C. Paralelismo entre rectas y planos

Plano paralelo a una recta por otra recta dada

Por ejemplo, α II a s por r

Por un **punto cualquiera** de r (A) se traza una **recta** t II a s. Las rectas r y t definen el **plano** α .

1. Paralelismo – Repaso

Rectas paralelas:

Dos rectas son paralelas si sus proyecciones horizontal y vertical son también paralelas.

Planos paralelos:

Dos planos son paralelos si sus trazas horizontal y vertical son también paralelas.

Plano paralelo a recta:

Un plano es paralelo a una recta si contiene alguna recta paralela a ella.

Recta paralela a un plano:

Una recta es paralela a un plano si **está contenida en un plano paralelo** al plano dado.

1. Paralelismo – Repaso

	buscamos		
II	r	α	
s	r' s'	∞ α	
		r⊂α;r∥s	
β	·	$α_1 ext{ II } β_1$ $α_2 ext{ II } β_2$	
	s	r 	

2. Perpendicularidad - Concepto

De un punto A cualquiera es posible trazar una recta perpendicular a un plano e infinitos planos perpendiculares.

De un punto A cualquiera es posible trazar un plano perpendicular a una recta r. Cualquier recta que pertenezca a ese plano y corte a r será también perpendicular a r.

2. Perpendicularidad – A. Rectas perpendiculares a un plano

Si una recta r es perpendicular a un plano α , la proyección de la recta r' sobre un plano (PH) será perpendicular a la recta de intersección entre α y PH (traza α_1) (y lo mismo para el PV).

Una recta perpendicular a un plano tiene sus **proyecciones perpendiculares a las trazas** del plano.

2. Perpendicularidad – A. Rectas perpendiculares a un plano

2. Perpendicularidad – A. Rectas perpendiculares a un plano

Recta perpendicular a un plano por un punto:

Para trazar una recta perpendicular a un plano por un punto basta con trazar desde el punto sendas líneas perpendiculares a las trazas que representan las proyecciones de la recta

2. Perpendicularidad – B. Planos perpendiculares a una recta

Plano perpendicular a una recta por un punto:

El procedimiento es similar. Se debe emplear una recta horizontal o frontal para hallar las trazas del plano.

2. Perpendicularidad – C. Rectas perpendiculares

Rectas perpendiculares:

La proyección de dos rectas perpendiculares no tiene por que resultar en rectas perpendiculares. Sólo si una de ellas es paralela al plano de proyección serán paralelas las proyecciones.

2. Perpendicularidad – C. Rectas perpendiculares

Cualquier recta que pertenezca a una plano α perpendicular a la recta r dada y la corte será perpendicular, aunque sus proyecciones no lo sean.

2. Perpendicularidad – D. Planos perpendiculares

De forma similar, cualquier plano que contenga a una recta perpendicular a otro plano será perpendicular a éste.

Cualquier plano que contenga a r será perpendicular a α aunque sus trazas no lo sean.

2. Perpendicularidad - Repaso

Recta perpendicular a un plano:

Una recta perpendicular a un plano tiene sus proyecciones perpendiculares a las trazas del plano.

Plano perpendicular a una recta:

Un plano perpendicular a una recta tiene sus trazas perpendiculares a las proyecciones de la recta.

Rectas perpendiculares:

Cualquier recta que pertenezca a una plano perpendicular a la recta dada y la corte será perpendicular a ésta (aunque sus proyecciones no lo sean).

Planos perpendiculares:

Cualquier plano que contenga una recta perpendicular a un plano dado será perpendicular a éste (aunque sus trazas no sean perpendiculares)

2. Perpendicularidad – Repaso

		buscamos		
	Т	r	α	
	s	∞ r	$lpha_1 \perp extstyle ext$	
α		r ⊂ α;α⊥s	$lpha_2 \perp$ s"	
-	β	$\mathbf{r}'\perp\beta_1$	$\sim \alpha$	
		$r'' \perp \beta_2$	$\mathbf{s} \subseteq lpha$; $\mathbf{s} \perp eta$	