EMAIL SPAM CLASSIFIER PROJECT

Submitted by: MIENGANDHA SINHA

ACKNOWLEDGEMENT

I would like to express my gratitude to the Company to give this project to me. In making of this project I hereby used to take help from the references which is given by the company as sample documentation and details related to project and professionals and SME guided me a lot in the project and the other previous projects helped me and guided me in completion of the project.

INTRODUCTION

Email spam classifier

This project is all about to classify the email whether it is spam or not. So, in the project the SMS collection is a set of SMS tagged messages that have been collected for spam research. It contains messages in English of 5,574 messages, tagged according being ham which means legitimate or spam. The total corpus of 5728 documents. The target feature consists of two classes ham and spam, the column name is spam. The classes are labelled for each document in the dataset and represent our target feature with a binary string-type alphabet of ham and spam and these are further mapped to integer 0(ham) and 1(spam).

1 2	sklearn.preprocessing import LabelEncoder er = LabelEncoder()	
1	df['la	bel'] = encoder.fit_transform(df['label'])
1	df.he	ad()
	label	text
o	0	Go until jurong point, crazy Available only
1	0	Ok lar Joking wif u oni
2	1	Free entry in 2 a wkly comp to win FA Cup fina
3	0	U dun say so early hor U c already then say
4	0	Nah I don't think he goes to usf, he lives aro

Conceptual Background of the Domain Problem

The project aims to classification email into two categories and it is titled by Email Spam classification Is implemented by using some methodology like Data preparation, Modelling and Evaluation steps. It is implemented using Python class object based style. The spam detection is done using machine learning algorithms classifier like Naïve Bayes, ANN(artificial neural networks), and SVM(support vector machines).

Review of Project

A subset of 3,375 SMS randomly chosen ham messages of the NUS SMS Corpus (NSC), which is a dataset of about 10,000 legitimate messages collected for research at the Department of computer science at National University of Singapore. These messages were collected from volunteers who were made aware that their contributions were going to be made publicly available. In order to deal with spam emails, it need to build a robust real-time email spam classifier that can efficiently and correctly flag the incoming mail spam, if it is a spam message or looks like a spam message. The latter will further help to build an Anti-Spam Filter. There is a great scope in building email spam classifiers, as the private companies run their own email servers and them to be more secure because of the confidential data, in such cases email spam classifiers solutions can be provided to such companies.

Motivation for the Problem Undertaken

Here, the datasets have the total of 5169 entries with 2rows, no null values, EDA has to be performed to see whether it gain or loss in the variable and its compare to the price among every aspects, to build machine learning models, to determine the optimal values of Hyper parameters and the selection of the best model, by predicting of the value can help to the clients and for the further change in the market from the new data.

ANALYTICAL PROBLEM FRAMING

- Mathematical/Analytical Modelling of the Problem
 In this project, mathematical/analytical modelling are used. Checking the null values found that having no null values in the datasets, the type of data frame is in pandas, data frame info tells that object(5 variables), by using the data visualization they are:
 - o the data frame shape and its info:

```
df.shape
(5572, 5)
     df.info()
<class 'pandas.core.frame.DataFrame'>
Range Index: 5572 entries, 0 to 5571
Data columns (total 5 columns):
  Column
              Non-Null Count Dtype
           5572 non-null
                           object
            5572 non-null object
2 Unnamed: 2 50 non-null
                              object
3 Unnamed: 3 12 non-null
                              object
4 Unnamed: 4 6 non-null
                             object
dtypes: object (5)
memory usage: 217.8+ KB
```

1. It is about the label of email whether it is spam or non-spam (ham):

The blue bar depicts ham emails which is on the highest point in comparison to the orange bar which depicts spam emails in the dataset.

2. It is about the histogram of text length of words

3. It is about the pie chart of label which is divided into two slices. Both slice represents the count or percentage of ham 87.37 and spam 12.63

4. It is about the terms of characters, words and sentences used in the emails

5. It is about how many number of characters used in emails

6. This is pair plot of data

7. This is showing the algorithm of the variable carrying all the model building classifier accuracy and precision

8. It is about the histogram of distribution of number of words are in emails

9. word cloud for spam emails

10. word cloud for ham emails

Data Sources and their formats

The data sources and their formats are from .csv file.

		=pd.read_csv('C:/Users/user/Downloads/Spam Project/spam.csv',encoding='latin1') sample(5)							
	v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4				
1553	ham	Ok how you dear. Did you call chechi	NaN	NaN	NaN				
5014	ham	I think the other two still need to get cash b	NaN	NaN	NaN				
3813	ham	Can. Dunno wat to get 4 her	NaN	NaN	NaN				
5509	ham	Lol they were mad at first but then they woke	NaN	NaN	NaN				
3625	ham	Yeah right! I'll bring my tape measure fri!	NaN	NaN	NaN				

Data Preprocessing Done

The steps followed for the cleaning of the data is Label Encoder after then importing preprocessing there transform the target columns into features then lastly it has to set for the data frame.

There are some methods while doing data preprocessing:

- 1 from ultk.corpus import stopwords
 2 import string
 3 from ultk.stem.porter import PorterStemmer
 4 ps=PorterStemmer()
- · lower case
- tokenization
- · removing special characters
- · removing stopwords and punctuation
- stemming

```
def transform_text(text);
       text = text, lower()
       text = nltk.word_tokenize(text)
  5
       4 = []
       for i in text:
          if i.isalnum():
 8
             y.append(i)
 9
10
       text = y[:]
11
       y.clear()
12
13
       for i in text:
          if i not in stopwords. words ('english') and i not in string. punctuation:
14
15
             y.append(i)
16
17
       text = y[:]
18
       y.clear()
19
20
       for i in text:
          y,append(ps.stem(i))
23
24
       return " ",join(y)
25
```

gon	na home soon want talk stuff anymor tonight k cri enough today'
1	df('text')[10]
I'n	n gonna be home soon and i don't want to talk about this stuff anymore tonight, k? I've cried enough today."
'I''n 1	ps.stem('loving')
'I'W 1 love	ps.stem('loving')

1	1 df.head()						
	label	text	text_len_by_words	num_characters	num_words	num_sentences	transformed_tex
0	0	Go until jurong point, crazy Available only	20	111	24	2	go jurong point crazi avail bug n great world
1	0	Ok lar Joking wif u oni	6	29	8	2	ok lar joke wif u on
2	1	Free entry in 2 a wkly comp to win FA Cup fina	28	155	37	2	free entri 2 wkli comp win fa cup final tkt 21
3	0	U dun say so early hor U c already then say	11	49	13	1	u dun say earli hor u c alreadi say
4	0	Nah I don't think he goes to usf, he lives aro	13	61	15	1	nah think goe usf live around though

Data Inputs- Logic- Output Relationships

The relationships between inputs and outputs can be studied extracting weights of the trained model. Regression is that relationships between them can be blocky or highly structured based on the training data. It requires the data scientist to train the algorithm with both labeled inputs and desired outputs.

• State the set of assumptions (if any) related to the problem under consideration

Presumptions are by using regression label encoding, classifier, selection of the best models, confusion matrix that it means the relationship between the dependent and independent variables look fairly linear. Thus, our linearity assumption is satisfied.

Hardware and Software Requirements and Tools Used

By importing many libraries are

1.IMPORT LIBRARIES

```
import pandas as pd
    import numpy as np
    import matplotlib. pyplot as plt
    import seaborn as sus
    from sklearn, feature_extraction, text import CountVectorizer
    from sklearn.naive_bayes import MultinomialNB
    from sklearn. preprocessing import Label Encoder
    from sklearn, model_selection import train_test_split
 8
    from sklearn.metrics import accuracy_score, plot_confusion_matrix
    from sklearn.linear_model import Logistic Regression
10
11
    from sklearn, sym import SVC
    from sklearn, naive bayes import MultinomialNB
12
    from sklearn, tree import Decision Tree Classifier
13
    from sklearn.neighbors import Kneighbors Classifier
14
    from sklearn, ensemble import Random Forest Classifier
15
    from sklearn. ensemble import AdaBoost Classifier
16
    from sklearn, ensemble import Bagging Classifier
17
     from sklearn, ensemble import ExtraTrees Classifier
18
19
     from sklearn. ensemble import Gradient Boosting Classifier
     from xaboost import XGB Classifier
20
21
22
    import warnings
     warnings, filterwarnings ('ignore')
23
```

MODEL/s DEVELOPMENT AND EVALUATION

Identification of possible problem-solving approaches(methods)

The collection and interpretation of data in order to uncover patterns—and trends. It is a component of data analytics. Statistical analysis can be used in situations like gathering research interpretations, statistical modelling or designing surveys and studies. The approaches/methods of identification are descriptive and inferential statistics which are describes as the properties of sample and population data, and inferential statistics which uses those properties to test hypotheses and draw efficient conclusions in terms of outputs.

Testing of Identified Approaches(Algorithms)

There is no outliers.

Run and Evaluate selected models

Algorithm

```
sus.catplot(x='Algorithm', y='value', hue='variable', data=performance_data1,kind='bar',height=5)
  plt.ylim(0.5,1.0)
3 plt.xticks(rotation='vertical')
  plt.show()
 1.0
 0.9
 0.8
 0.7
 0.6
```

- 1 temp_df = pd.DataFrame({'Algorithm':clfs.keys(),'Accuracy_max_ft_3000' :accuracy_scores,'Precision_max_ft_3000' : precision_scores}).sort_values(
- 1 temp_df = pd.DataFrame({Algorithm': clfs.keys(), 'Accuracy_scaling': accuracy_scores, 'Precision_scaling': precision_scores}).sort_values('Precision_scaling')
- 1 new_df=performance_data.merge(temp_df,on='Algorithm')
- 1 new_df_scaled=new_df.merge(temp_df,on='Algorithm')
- 1 temp_df=pd.DataFrame({'Algorithm':clfs.keys(),'Accuracy_num_chars': accuracy_scores,'Precision_num_chars': precision_scores}).sort_values('Precision_scores'
- 1 new_df_scaled.merge(temp_df,on='Algorithm')

	Algorithm	Accuracy	Precision	Accuracy_scaling_x	Precision_scaling_x	Accuracy_scaling_y	Precision_scaling_y	Accuracy_
0	KNN	0.905222	1.000000	0.905222	1.000000	0.905222	1.000000	
1	MNB	0.970986	1.000000	0.970986	1.000000	0.970986	1.000000	
2	BNB	0.983559	0.991870	0.983559	0.991870	0.983559	0.991870	
3	RF	0.974855	0.982759	0.974855	0.982759	0.974855	0.982759	
4	SVC	0.975822	0.974790	0.975822	0.974790	0.975822	0.974790	
5	ETC	0.974855	0.974576	0.974855	0.974576	0.974855	0.974576	
6	LR	0.958414	0.970297	0.958414	0.970297	0.958414	0.970297	
7	xgb	0.971954	0.943089	0.971954	0.943089	0.971954	0.943089	
8	ABC	0.960348	0.929204	0.960348	0.929204	0.960348	0.929204	
9	GBDT	0.947776	0.920000	0.947776	0.920000	0.947776	0.920000	
10	BgC	0.957447	0.867188	0.957447	0.867188	0.957447	0.867188	
11	DT	0.929400	0.828283	0.929400	0.828283	0.929400	0.828283	

MODEL BUILDING

Modelling:

Using word embedding technique CountVectorizer.

11 DT Accuracy 0.929400 12 KNN Precision 1.000000 13 MNB Precision 1.000000 14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000		Algorithm	variable	value
BNB Accuracy 0.983559 RF Accuracy 0.974855 SVC Accuracy 0.975822 ETC Accuracy 0.974855 LR Accuracy 0.974855 LR Accuracy 0.958414 Xgb Accuracy 0.960348 BBC Accuracy 0.947776 BBC Accuracy 0.957447 THE DT Accuracy 0.929400 KNN Precision 1.000000 KNN Precision 1.000000 MNB Precision 0.991870 RF Precision 0.982759 SVC Precision 0.974576 LR Precision 0.974576 LR Precision 0.970297 Xgb Precision 0.943089 ABC Precision 0.929204 GBDT Precision 0.920000 BBC Precision 0.920000	0	KNN	Accuracy	0.905222
3 RF Accuracy 0.974855 4 SVC Accuracy 0.975822 5 ETC Accuracy 0.974855 6 LR Accuracy 0.958414 7 xgb Accuracy 0.971954 8 ABC Accuracy 0.960348 9 GBDT Accuracy 0.947776 10 BgC Accuracy 0.957447 11 DT Accuracy 0.929400 12 KNN Precision 1.000000 13 MNB Precision 1.000000 14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.929204 20 ABC Precision 0.929204 21 GBDT Precision 0.920000	1	MNB	Accuracy	0.970986
4 SVC Accuracy 0.975822 5 ETC Accuracy 0.974855 6 LR Accuracy 0.958414 7 xgb Accuracy 0.971954 8 ABC Accuracy 0.960348 9 GBDT Accuracy 0.947776 10 BgC Accuracy 0.957447 11 DT Accuracy 0.929400 12 KNN Precision 1.000000 13 MNB Precision 1.000000 14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.929204 20 ABC Precision 0.929204 21 GBDT Precision 0.920000	2	BNB	Accuracy	0.983559
6 LR Accuracy 0.974855 6 LR Accuracy 0.958414 7 xgb Accuracy 0.971954 8 ABC Accuracy 0.960348 9 GBDT Accuracy 0.947776 10 BgC Accuracy 0.957447 11 DT Accuracy 0.929400 12 KNN Precision 1.000000 13 MNB Precision 1.000000 14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.920000	3	RE	Accuracy	0.974855
6 LR Accuracy 0.958414 7 xgb Accuracy 0.971954 8 ABC Accuracy 0.960348 9 GBDT Accuracy 0.947776 10 BgC Accuracy 0.957447 11 DT Accuracy 0.929400 12 KNN Precision 1.000000 13 MNB Precision 1.000000 14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000	4	SVC	Accuracy	0.975822
7	5	ETC	Accuracy	0.974855
B ABC Accuracy 0.960348 9 GBDT Accuracy 0.947776 10 BgC Accuracy 0.957447 11 DT Accuracy 0.929400 12 KNN Precision 1.000000 13 MNB Precision 1.000000 14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.867188	6	LR	Accuracy	0.958414
9 GBDT Accuracy 0.947776 10 BgC Accuracy 0.957447 11 DT Accuracy 0.929400 12 KNN Precision 1.000000 13 MNB Precision 1.000000 14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000	7	xgb	Accuracy	0.971954
10 BgC Accuracy 0.957447 11 DT Accuracy 0.929400 12 KNN Precision 1.000000 13 MNB Precision 1.000000 14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000	8	ABC	Accuracy	0.960348
11 DT Accuracy 0.929400 12 KNN Precision 1.000000 13 MNB Precision 1.000000 14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.867188	9	GBDT	Accuracy	0.947776
12 KNN Precision 1.000000 13 MNB Precision 1.000000 14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.867188	10	BgC	Accuracy	0.957447
13 MNB Precision 1.000000 14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.867188	11	DT	Accuracy	0.929400
14 BNB Precision 0.991870 15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.867188	12	KNN	Precision	1.000000
15 RF Precision 0.982759 16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.867188	13	MNB	Precision	1.000000
16 SVC Precision 0.974790 17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.867188	14	BNB	Precision	0.991870
17 ETC Precision 0.974576 18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.867188	15	RF	Precision	0.982759
18 LR Precision 0.970297 19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.867188	16	SVC	Precision	0.974790
19 xgb Precision 0.943089 20 ABC Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.867188	17	ETC	Precision	0.974576
20 ABC Precision 0.929204 21 GBDT Precision 0.920000 22 BgC Precision 0.867188	18	LR	Precision	0.970297
21 GBDT Precision 0.920000 22 BgC Precision 0.867188	19	xgb	Precision	0.943089
22 BgC Precision 0.867188	20	ABC	Precision	0.929204
	21	GBDT	Precision	0.920000
23 DT Precision 0.828283	22	BgC	Precision	0.867188
	23	DT	Precision	0.828283

 Models used: Email spam classification done using traditional machine learning techniques comprise Naive Bayes and SVM (support vector machines), due to not having sufficient hardware resources, takes less time to train. Also, not opting for neural algorithms due to less data and computing resources.

Accuracy 0.9835589941972921 Precision 1.0

Visualizations

Precision Score: 1.0

```
1 mnb.fit(X_train,y_train)
2 y_pred2 = mnb.predict(X_test)
3 print("Accuracy Score: ",accuracy_score(y_test,y_pred2))
4 print(f"Confusion Matrix: \n {confusion_matrix(y_test,y_pred2)}\n")
5 cm=confusion_matrix(y_test,y_pred2)
6 print("Precision Score: ",precision_score(y_test,y_pred2))

Accuracy Score: 0.9709864603481625

Confusion Matrix:
[[896 0]
[30 108]]
```

```
1 Plt.figure(figsize=(8,5))
2 Plt.title("Confusion Matrix Multinomial Naive Bayes")
3 sns.heatmap(cm,annot=True,fmt='g')
4 Plt.show()
```


Interpretation of the Results

The results were interpreted from the visualizations, preprocessing and modelling:

- 1. Comparing both Naïve Bayes and SVM, I found that Naïve Bayes has 1% improvement over the SVM model when the result compared to test data set.
- 2. Most of the transactions and business is taking through e-mails.
- 3. Nowadays, email becomes a powerful tool for communication as it saves a lot of time and cost. But, due to social networks and advertisers, most of the emails contain unwanted information called spam.
- 4. Even though lot of algorithms has been developed for email spam classification, still none of the algorithms produces 100% accuracy in classifying spam emails.
- 5. In this project spam dataset is analysed using data mining tool to explore the efficient classifier for email spam classification.
- 6. Initially, feature construction and feature selection is done to extract the relevant features.
- 7. Then various classification algorithms are applied over this dataset and cross validation is done for each of these classifiers.
- 8. Finally, best classifiers for email spam is identified based on the error rate, precision and accuracy.

CONCLUSION

We are able to classify the emails as spam or non-spam. With high number of emails lots if people using the system it will be difficult to handle all possible mails as our project deals with only limited amount of corpus.

THANK YOU