

(19) BUNDESREPUBLIK **DEUTSCHLAND**

[®] Offenl gungsschrift _® DE 43 16 622 A 1

DEUTSCHES PATENTAMT

Aktenzeichen: P 43 16 622.9 Anmeldetag: 18. 5.93

Offenlegungstag: 25.11.93 (51) Int. Cl.5:

C 07 D 307/85

C 07 B 63/04

C 07 F 9/40 C 07 F 9/48 C 07 F 9/30 C 08 K 5/15 C 09 K 15/06 // (C08K 5/15,5:524 5:5393)

(3) Unionspriorität: (3) (3) (3) 22.05.92 CH 1653/92

(71) Anmelder: Ciba-Geigy AG, Basel, CH

(4) Vertreter: Zumstein, F., Dipl.-Chem. Dr.rer.nat.; Klingseisen, F., Dipl.-Ing., Pat.-Anwälte, 80331 München

(72) Erfinder:

Nesvadba, Peter, Dr., Marly, CH

(54) 3-(Carboxymethoxyphenyl)benzofuran-2-one als Stabilisatoren

Verbindungen der Formel (I),

worin R₂, R₃, R₄ und R₅ unabhängig voneinander Wasserstoff, C₁-C₂₅-Alkyl, C₇-C₉-Phenylalkyl, unsubstituiertes oder durch C₁-C₄-Alkyl substituiertes Phenyl, unsubstituiertes oder durch C_1 - C_4 -Alkyl substituiertes C_5 - C_8 -Cycloalkyl; C_1 - C_{18} -Alkoxy, Hydroxy, C_1 - C_{25} -Alkanoyloxy, C_3 - C_2 -Alkenoyloxy, durch Sauerstoff, Schwefel oder

unterbrochenes C_3 - C_{25} -Alkanoyloxy: C_6 - C_9 -Cycloalkylcarbonyloxy, Benzoyloxy oder durch C_1 - C_{12} -Alkyl substituiertes Benzoyloxy darstellen, worin R_{13} Wasserstoff oder C_1 - C_8 -Alkyl bedeutet, oder ferner die Reste R, und R, oder die Reste R₄ und R₅ zusammen mit den Kohlenstoffatomen, an das sie gebunden sind, einen Phenylring bilden, R_a zusätzlich $-(CH_2)_n$ -COR₁₄ darstellt, worin n 0, 1 oder 2 ist, R_{14} Hydroxy,

$$\left[-0^{\circ} \frac{1}{r} M^{r+}\right]$$
, C_1 - C_{18} -Alkoxy oder $-N_{R_{16}}$

bedeutet, R_{15} und R_{16} unabhängig voneinander Wasserstoff oder C_1 - C_{18} -Alkyl darstellen, M ein r-wertiges Metallkation ist und r 1, 2 oder 3 bedeutet, R_7 , R_8 , R_9 und R_{10} unabhängig voneinander Wasserstoff, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy bedeuten, mit der Bedingung, daß mindestens einer der Beste R_1 - R_2 - R_3 - R_4 - $R_$ Reste R₁, R₈, R₉ und R₁₀ Wasserstoff ist, R₁₁ und R₁₂ unabhängig voneinander Wasserstoff, C_1 - C_4 -Alkyl oder Phenyl darstellen, und wenn R_3 , R_5 , R_6 , R_7 und R_{10} Wasserstoff sind, R_4 zusätzlich einen Rest der Formel (2)

bedeutet, worin R_2 , R_8 , R_9 , R_{11} und R_{12} die obige Bedeutung haben und R, ...

Beschreibung

Die vorliegende Erfindung betrifft Zusammensetzungen, enthaltend ein organisches Material, bevorzugt ein Polymer, und 3-(Carboxymethoxyphenyl)benzofuran-2-one als Stabilisatoren, die Verwendung derselben zum Stabilisieren von organischen Materialien gegen oxidativen, thermischen oder lichtinduzierten Abbau sowie neue 3-(Carboxymethoxyphenyl)benzofuran-2-one.

Einzelne 3-(Carboxymethoxyphenyl)benzofuran-2-one wurden beispielsweise in GB-A-2 205 324 und EP-A-294 029 beschrieben.

Die Verwendung von einigen Benzofuran-2-onen als Stabilisatoren für organische Polymere ist beispielsweise aus US-A-4 325 863; US-A-4 338 244 und EP-A-415 887 bekannt.

Es wurde nun gefunden, daß eine ausgewählte Gruppe solcher Benzofuran-2-one sich besonders gut als Stabilisatoren für organische Materialien, die gegen oxidativen, thermischen oder lichtinduzierten Abbau empfindlich sind, eignen.

Die vorliegende Erfindung betrifft daher Zusammensetzungen enthaltend

a) ein dem oxidativen, thermischen oder lichtinduzierten Abbau unterworfenes organisches Material und b) mindestens eine Verbindung der Formel (1).

worin R₂, R₃, R₄ und R₅ unabhängig voneinander Wasserstoff, C₁-C₂₅-Alkyl, C₇-C₉-Phenylalkyl, unsubstituiertes oder durch C₁-C₄-Alkyl substituiertes Phenyl, unsubstituiertes oder durch C₁-C₄-Alkyl substituiertes C₅-C₈-Cycloalkyl; C₁-C₁₈-Alkoxy, Hydroxy, C₁-C₂₅-Alkanoyloxy, C₃-C₂₅-Alkenoyloxy, durch Sauerstoff, Schwefel oder

55

unterbrochenes C_3-C_{25} -Alkanoyloxy; C_6-C_9 -Cycloalkylcarbonyloxy, Benzoyloxy oder durch C_1-C_{12} -Alkyl substituiertes Benzoyloxy darstellen, worin R_{13} Wasserstoff oder C_1-C_8 -Alkyl bedeutet, oder ferner die Reste R_2 und R_3 oder die Reste R_4 und R_5 zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Phenylring bilden, R_4 zusätzlich $-(CH_2)_n-COR_{14}$ darstellt, worin n 0, 1 oder 2 ist, R_{14} Hydroxy,

$$\left[-0^{\circ} \frac{1}{r} M^{r+}\right], C_1-C_{18}-Alkoxy oder -N R_{16}$$

bedeutet, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff oder C₁—C₁₈-Alkyl darstellen, M ein r-wertiges Metallkation ist und r 1, 2 oder 3 bedeutet, R₇, R₈, R₉ und R₁₀ unabhängig voneinander Wasserstoff, C₁—C₄-Alkyl oder C₁—C₄-Alkoxy bedeuten, mit der Bedingung, daß mindestens einer der Reste R₇, R₈, R₉ und R₁₀ Wasserstoff ist, R₁₁ und R₁₂ unabhängig voneinander Wasserstoff, C₁—C₄-Alkyl oder Phenyl darstellen, und wenn R₃, R₅, R₆, R₇ und R₁₀ Wasserstoff sind, R₄ zusätzlich einen Rest der Formel (2)

bedeutet, worin R2, R8, R9, R11 und R12 die obige Bedeutung haben und R1 wie unten für m = 1 angegeben

definiert ist und R_{17} und R_{18} unabhängig voneinander Wasserstoff, C_1-C_{12} -Alkyl oder Phenyl darstellen, oder R_{17} und R_{18} zusammen mit dem C-Atom, an das sie gebunden sind, einen unsubstituierten oder durch 1 bis 3 C_1-C_4 -Alkyl substituierten C_5-C_7 -Cycloalkylidenring bilden, m eine ganze Zahl aus dem Bereich von 1 bis 6 bedeutet, und wenn m 1 ist, R_1 Hydroxy, C_1-C_{30} -Alkoxy, durch Sauerstoff, Schwefel oder

N-R₁₃

unterbrochenes $C_3 - C_{30}$ -Alkoxy; $C_7 - C_9$ -Phenylalkoxy, $C_5 - C_{12}$ -Cycloalkoxy, $C_2 - C_{18}$ -Alkenyloxy, unsubstituiertes oder durch $C_1 - C_{12}$ -Alkyl substituiertes Phenoxy,

$$[-0^{\circ} \frac{1}{1} M^{r+}]$$
, $-N_{R_{16}}^{R_{15}}$, $-O-(CH_2)_p-P$ $O-R_{19}$ $O-R_{19}$ $O-R_{20}$ $O-R_{20}$

R₁₃, R₁₅, R₁₆, r und M die obige Bedeutung haben, R₁₉ und R₂₀ unabhängig voneinander C₁ – C₄-Alkyl bedeuten, p 1 oder 2 ist, und R₆ Wasserstoff oder einen Rest der Formel (3)

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{8}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

bedeutet, worin R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} , R_{11} und R_{12} die obige Bedeutung haben; oder wenn m 2 ist, R_1 C_2-C_{12} -Alkandioxy, durch Sauerstoff, Schwefel oder

-OCH₂-CH=CH-CH₂O- oder -OCH₂-C≡C-CH₂O- darstellt, wobei R₁₃ die obige

60

55

5

15

35

45

bedeutet; oder wenn m 5 ist, R₁ C₅-C₁₀-Alkanpentaoxy ist; oder wenn m 6 ist, R₁

Alkyl mit bis zu 25 Kohlenstoffatomen bedeutet einen verzweigten oder unverzweigten Rest wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, sec-Butyl, Isobutyl, tert-Butyl, 2-Ethylbutyl, n-Pentyl, Isopentyl, 1-Methylpentyl, 1,3-Dimethylbutyl, n-Hexyl, 1-Methylhexyl, n-Heptyl, Isoheptyl, 1,1,3,3-Tetramethylbutyl, 1-Methylheptyl, 3-Methylheptyl, n-Octyl, 2-Ethylhexyl, 1,1,3-Trimethylhexyl, 1,1,3,3-Tetramethylpentyl, Nonyl, Decyl, Undecyl, 1-Methylundecyl, Dodecyl, 1,1,3,3,5,5-Hexamethylhexyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl, Eicosyl oder Docosyl. Eine der bevorzugten Bedeutungen von R2 und R4 ist beispielweise C1-C18-Alkyl. Eine besonders bevorzugte Bedeutung von R4 ist C1-C4-Alkyl.

 C_7 — C_9 -Phenylalkyl bedeutet beispielsweise Benzyl, α -Methylbenzyl, α , α -Dimethylbenzyl oder 2-Phenylethyl. Benzyl ist bevorzugt.

Durch C₁—C₄-Alkyl substituiertes Phenyl, das vorzugsweise 1 bis 3, insbesondere 1 oder 2 Alkylgruppen enthält, bedeutet beispielsweise o-, m- oder p-Methylphenyl, 2,3-Dimethylphenyl, 2,4-Dimethylphenyl, 2,5-Dimethylphenyl, 2,6-Dimethylphenyl, 3,4-Dimethylphenyl, 3,5-Dimethylphenyl, 2-Methyl-6-ethylphenyl, 4-tert-butylphenyl, 2-Ethylphenyl oder 2,6-Diethylphenyl.

Unsubstituiertes oder durch C₁—C₄-Alkyl substituiertes C₅—C₈-Cycloalkyl bedeutet beispielsweise Cyclopentyl, Methylcyclopentyl, Dimethylcyclopentyl, Cyclohexyl, Methylcyclohexyl, Dimethylcyclohexyl, Trimethylcyclohexyl, tert-Butylcyclohexyl, Cycloheptyl oder Cyclooctyl. Bevorzugt ist Cyclohexyl und tert-Butylcyclohexyl.

Alkoxy mit bis zu 30 Kohlenstoffatomen bedeutet einen verzweigten oder unverzweigten Rest wie beispielsweise Methoxy, Ethoxy, Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, Pentoxy, Isopentoxy, Hexoxy, Heptoxy, Octoxy, Decyloxy, Tetradecyloxy, Hexadecyloxy oder Octadecyloxy.

Alkanoyloxy mit bis zu 25 Kohlenstoffatomen bedeutet einen verzweigten oder unverzweigten Rest wie beispielsweise Formyloxy, Acetyloxy, Propionyloxy, Butanoyloxy, Pentanoyloxy, Hexanoyloxy, Heptanoyloxy, Octanoyloxy, Nonanoyloxy, Decanoyloxy, Undecanoyloxy, Dodecanoyloxy, Tridecanoyloxy, Tetradecanoyloxy, Pentadecanoyloxy, Hexadecanoyloxy, Heptanoyloxy, Octadecanoyloxy, Eicosanoyloxy oder Docosanoyloxy.

Alkenoyloxy mit 3 bis 25 Kohlenstoffatomen bedeutet einen verzweigten oder unverzweigten Rest wie beispielsweise Propenoyloxy, 2-Butenoyloxy, 3-Butenoyloxy, Isobutenoyloxy, n-2,4-Pentadienoyloxy, 3-Methyl2-butenoyloxy, n-2-Octanoyloxy, n-2-Dodecenoyloxy, iso-Dodecenoyloxy, Oleoyloxy, n-2-Octadecenoyloxy oder n-4-Octadecenoyloxy.

Durch Sauerstoff, Schwefel oder

10

15

20

unterbrochenes C_3-C_{25} -Alkanoyloxy bedeutet beispielsweise CH_3-O-CH_2COO- , CH_3-S-CH_2COO- , $CH_3-NH-CH_2COO-$, $CH_3-N(CH_3)-CH_2COO-$, $CH_3-O-CH_2CH_2-O-CH_2COO-$, $CH_3-(O-CH_2CH_2-)_2O-CH_2COO-$, $CH_3-(O-CH_2CH_2-)_3O-CH_2COO-$ oder $CH_3-(O-CH_2CH_2-)_4O-CH_2COO-$.

C6—C9-Cycloalkylcarbonyloxy bedeutet beispielsweise Cyclopentylcarbonyloxy, Cyclohexylcarbonyloxy, Cycloheptylcarbonyloxy oder Cyclooctylcarbonyloxy, Cyclohexylcarbonyloxy ist bevorzugt.

Durch C₁—C₁₂-Alkyl substituiertes Benzoyloxy bedeutet beispielsweise o-, m- oder p-Methylbenzoyloxy, 2,3-Dimethylbenzoyloxy, 2,6-Dimethylbenzoyloxy, 3,5-Dimethylbenzoyloxy, 3,5-Dimethylbenzoyloxy, 3,5-Dimethylbenzoyloxy, 3,5-Dimethylbenzoyloxy, 2-Methyl-6-ethylbenzoyloxy, 4-tert-Butylbenzoyloxy, 2-Ethylbenzoyloxy, 2,4,6-Trimethylbenzoyloxy, 2,6-Dimethyl-4-tert-butylbenzoyloxy oder 3,5-Di-tert-butylbenzoyloxy.

Ein unsubstituierter oder durch 1 bis 3 C₁-C₄-Alkyl substituierter C₅-C₇-Cycloalkylidenring bedeutet beispielsweise Cyclopentyliden, Methylcyclopentyliden, Dimethylcyclopentyliden, Cyclohexyliden, Methylcy-

clohexyliden, Dimethylcyclohexyliden, Trimethylcyclohexyliden, tert-Butylcyclohexyliden oder Cycloheptyliden. Bevorzugt ist Cyclohexyliden und tert-Butylcyclohexyliden.

Durch Sauerstoff, Schwefel oder

 $CH_3-(O-CH_2CH_2-)_2O-CH_2CH_2O-$

CH₃-NH-CH₂CH₂O-,

 $CH_3-O-CH_2CH_2-O-CH_2CH_2O-$

 $CH_3-(O-CH_2CH_2-)_3O-CH_2CH_2O-$

10

CH₃-(O-CH₂CH₂-)_aO-CH₂CH₂O-. C₇-C₉-Phenylalkoxy bedeutet beispielsweise Benzyloxy, α-Methylbenzyloxy, α,α-Dimethylbenzyloxy oder 2-Phenylethyloxy. Benzyloxy ist bevorzugt.

 $CH_3 - N(CH_3) - CH_2CH_2O -$

Cycloalkoxy mit 5 bis 12 C-Atomen bedeutet beispielsweise Cyclopentoxy, Cyclohexoxy, Cyclohexoxy

Alkenyloxy mit 2 bis 18 Kohlenstoffatomen bedeutet einen verzweigten oder unverzweigten Rest wie beispielsweise Vinyloxy, Propenyloxy, 2-Butenyloxy, 3-Butenyloxy, Isobutenyloxy, n-2,4-Pentadienyloxy, 3-Methyl-2-butenyloxy, n-2-Octenyloxy, n-2-Dodecenyloxy, iso-Dodecenyloxy, Oleyloxy, n-2-Octadecenyloxy oder n-4-Octadecenyloxy.

Durch C_1 — C_{12} -Alkyl substituiertes Phenoxy, das vorzugsweise 1 bis 3, insbesondere 1 oder 2 Alkylgruppen enthält, bedeutet beispielsweise o-, m- oder p-Methylphenoxy, 2,3-Dimethylphenoxy, 2,4-Dimethylphenoxy, 2,5-Dimethylphenoxy, 2,6-Dimethylphenoxy, 3,4-Dimethylphenoxy, 3,5-Dimethylphenoxy, 2-Methyl-6-ethylphenoxy, 4-tert-butylphenoxy, 2-Ethylphenoxy oder 2,6-Diethylphenoxy.

Alkandioxy mit 2 bis 12 C-Atomen bedeutet einen verzweigten oder unverzweigten Rest wie beispielsweise -OCH₂CH₂O-, -OCH₂CH₂CH₂O-, -OCH₂CH₂CH₂O-, -OCH₂CH₂CH₂CH₂O- oder -OCH(CH₃)CH₂CH(CH₃)O-.

Durch Sauerstoff, Schwefel oder

unterbrochenes
$$C_3-C_{25}$$
-Alkandioxy bedeutet beispielsweise $-OCH_2CH_2-S-CH_2CH_2O-$, $-OCH_2CH_2-NH-CH_2CH_2O-$, $-OCH_2CH_2-N(CH_3)-CH_2CH_2O-$, $-OCH_2CH_2O-$, $-OCH_2CH_2O-$, $-OCH_2CH_2O-$, $-OCH_2CH_2O-$, $-OCH_2CH_2O-$, oder $-(O-CH_2CH_2-)_4O-CH_2CH_2O-$.

Alkanpentaoxy mit 5 bis 10 C-Atomen bedeutet beispielsweise

Alkanhexaoxy mit 6 bis 10 C-Atomen bedeutet beispielsweise

Ein ein-, zwei- oder drei-wertiges Metallkation ist vorzugsweise ein Alkalimetall-, Erdalkalimetall- oder Aluminium-Kation, beispielsweise Na⁺, K⁺, Mg⁺⁺, Ca⁺⁺ oder Al⁺⁺⁺.

Von Interesse sind Zusammensetzungen enthaltend Verbindungen der Formel (1), worin R_2 , R_3 , R_4 und R_5 unabhängig voneinander Wasserstoff, $C_1 - C_{18}$ -Alkyl, Benzyl, Phenyl, $C_5 - C_8$ -Cycloalkyl, $C_1 - C_8$ -Alkoxy, Hydroxy, $C_1 - C_{18}$ -Alkanoyloxy, $C_3 - C_{18}$ -Alkenoyloxy oder Benzoyloxy darstellen, R_4 zusätzlich $-(CH_2)_nCOR_{14}$ bedeutet, m 1 bis 4 ist, und wenn m 1 ist, R_1 Hydroxy, $C_1 - C_{18}$ -Alkoxy, durch Sauerstoff, Schwefel oder

10

15

20

35

40

45

unterbrochenes C_3-C_{18} -Alkoxy; Benzyloxy, C_5-C_8 -Cycloalkoxy, unsubstituiertes oder durch C_1-C_8 -Alkyl substituiertes Phenoxy,

darstellt, wobei R_{13} , R_{15} , R_{16} , p, R_{19} und R_{20} die obige Bedeutung haben; oder wenn m 2 ist, R_1 C_2 — C_{12} -Alkandioxy oder durch Sauerstoff unterbrochenes C_3 — C_{25} -Alkandioxy darstellt; oder wenn m 3 ist, R_1 C_3 — C_{10} -Alkantrioxy bedeutet; oder wenn m 4 ist, R_1

darstellt

Bevorzugt sind Zusammensetzungen, worin in Formel (1) mindestens zwei der Reste R2, R3, R4 und R5 für Wasserstoff stehen.

Bevorzugt sind auch Zusammensetzungen, worin in Formel (1) R3 und R5 Wasserstoff sind.

Bevorzugt sind ebenfalls Zusammensetzungen, worin in Formel (1) m 1 ist.

Bevorzugt sind auch Zusammensetzungen, worin in Formel (1) R_3 , R_5 , R_7 und R_{10} unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl sind, R_2 Wasserstoff oder C_1-C_{18} -Alkyl bedeutet, R_4 Wasserstoff, C_1-C_{12} -Alkyl, C_1-C_8 -Alkoxy oder ($C_1-C_1-C_1$ -Alkoxy bedeutet, R_1 und R_1 2 unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl sind, R_1 3 unabhängig voneinander Wasserstoff oder R_1-C_4 -Alkyl sind, R_1 4 Hydroxy, R_1-C_1 -Alkoxy, durch Sauerstoff unterbrochenes R_1-C_1 -Alkoxy, unsubstituiertes oder durch R_1-C_1 -Alkyl substituiertes Phenoxy,

darstellt, wobei R₁₅ und R₁₆ unabhängig voneinander Wasserstoff oder C₁ - C₁₂-Alkyl sind.

Besonders bevorzugt sind Zusammensetzungen, worin in Formel (I) m 1 ist, R_1 Hydroxy, $C_1 - C_{18}$ -Alkoxy, durch Sauerstoff unterbrochenes $C_3 - C_{18}$ -Alkoxy, unsubstituiertes oder durch $C_1 - C_8$ -Alkyl substituiertes Phenoxy,

5

10

20

40

65

darstellt, wobei R_{15} und R_{16} unabhängig voneinander Wasserstoff oder C_1-C_{12} -Alkyl sind, R_2 Wasserstoff, C_1-C_{18} -Alkyl oder Cyclohexyl bedeutet, R_3 , R_5 , R_7 und R_{10} Wasserstoff sind, oder die Reste R_2 und R_3 zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Phenylring bilden, R_4 Wasserstoff, C_1-C_6 -Alkyl, Cyclohexyl, C_1-C_4 -Alkoxy oder $-(CH_2)_2-COR_{14}$ darstellt, worin R_{14} C_1-C_4 -Alkyl bedeutet, R_8 , R_9 , R_{11} und R_{12} unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl bedeuten, und wenn R_6 Wasserstoff ist, R_4 zusätzlich einen Rest der Formel (2)

bedeutet, worin R_1 , R_2 , R_8 , R_9 , R_{11} und R_{12} die obige Bedeutung haben, R_{17} und R_{18} unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl darstellen, oder R_{17} und R_{18} zusammen mit dem C-Atom, an das sie gebunden sind, einen C_5-C_7 -Cycloalkylidenring bilden, R_6 Wasserstoff oder einen Rest der Formel (3)

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{8}
 R_{9}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

bedeutet, worin R₁, R₂, R₃, R₄, R₅, R₇, R₈, R₉, R₁₀, R₁₁ und R₁₂ die obige Bedeutung haben.

Speziell bevorzugt sind Zusammensetzungen, worin in Formel (1) m 1 ist, R_1 Hydroxy, C_1-C_{18} -Alkoxy, unsubstituiertes oder durch C_1-C_4 -Alkyl substituiertes Phenoxy;

darstellt, wobei R_{15} und R_{16} unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl sind, p 1 oder 2 ist und R_{19} und R_{20} C_1-C_4 -Alkyl darstellen, R_2 Wasserstoff oder C_1-C_{18} -Alkyl bedeutet, R_3 , R_5 , R_7 , R_{10} , R_{11} und R_{12} Wasserstoff sind, R_4 Wasserstoff oder C_1-C_4 -Alkyl bedeutet, und wenn R_6 Wasserstoff ist, R_4 zusätzlich einen Rest der Formel (2)

bedeutet, R₁₇ und R₁₈ zusammen mit dem C-Atom, an das sie gebunden sind, einen Cyclohexylidenring bilden, R₈ und R₉ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten, R₆ Wasserstoff oder einen Rest der Formel (3)

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{8}
 R_{10}
 R_{9}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

bedeutet, worin R₁, R₂, R₃, R₄, R₅, R₇, R₈, R₉, R₁₀ R₁₁ und R₁₂ die obige Bedeutung haben.

Die erfindungsgemäßen Verbindungen der Formel (1) eignen sich zum Stabilisieren von organischen Materialien gegen thermischen, oxidativen oder lichtinduzierten Abbau.

Beispiele für derartige Materialien sind:

15

25

35

40

45

50

55

60

65

1. Polymere von Mono- und Diolefinen, beispielsweise Polypropylen, Polyisobutylen, Polybuten-1, Poly-4-methylpenten-1, Polyisopren oder Polybutadien sowie Polymerisate von Cycloolefinen wie z. B. von Cyclopenten oder Norbornen; ferner Polyethylen (das gegebenenfalls vernetzt sein kann), z. B. Polyethylen hoher Dichte (HDPE), Polyethylen niederer Dichte (LDPE), lineares Polyethylen niederer Dichte (LLDPE), verzweigtes Polyethylen niederer Dichte (VLDPE).

Polyolefine, d. h. Polymere von Monoolefinen, wie sie beispielhaft im vorstehenden Absatz erwähnt sind, insbesondere Polyethylen und Polypropylen, können nach verschiedenen Verfahren hergestellt werden, insbesondere nach den folgenden Methoden:

a) radikalisch (gewöhnlich bei hohem Druck und hoher Temperatur).

b) mittels Katalysator, wobei der Katalysator gewöhnlich ein oder mehrere Metalle der Gruppe IVb, Vb, Vlb oder VIII enthält. Diese Metalle besitzen gewöhnlich einen oder mehrere Liganden wie Oxide, Halogenide, Alkoholate, Ester, Ether, Amine, Alkyle, Alkenyle und/oder Aryle, die entweder π- oder σ-koordiniert sein können. Diese Metallkomplexe können frei oder auf Träger fixiert sein, wie beispielsweise auf aktiviertem Magnesiumchlorid, Titan(III)chlorid, Aluminiumoxid oder Siliziumoxid. Diese Katalysatoren können im Polymerisationsmedium löslich oder unlöslich sein. Die Katalysatoren können als solche in der Polymerisation aktiv sein, oder es können weitere Aktivatoren verwendet werden, wie beispielsweise Metallalkyle, Metallhydride, Metallalkylhalogenide, Metallalkyloxide oder Metallalkyloxane, wobei die Metalle Elemente der Gruppen Ia, IIa und/oder IIIa sind. Die Aktivatoren können beispielsweise mit weiteren Ester-, Ether-, Amin- oder Silylether-Gruppen modifiziert sein. Diese Katalysatorsysteme werden gewöhnlich als Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), Metallocen oder Single Site Katalysatoren (SSC) bezeichnet.

2. Mischungen der unter 1) genannten Polymeren, z. B. Mischungen von Polypropylen mit Polyisobutylen, Polypropylen mit Polyethylen (z. B. PP/HDPE, PP/LDPE) und Mischungen verschiedener Polyethylentypen (z. B. LDPE/HDPE).

3. Copolymere von Mono- und Diolefinen untereinander oder mit anderen Vinylmonomeren, wie z. B. Ethylen-Propylen-Copolymere, lineares Polyethylen niederer Dichte (LLDPE) und Mischungen desselben mit Polyethylen niederer Dichte (LDPE), Propylen-Buten- 1-Copolymere, Propylen-Isobutylen-Copolymere, Ethylen-Buten- 1-Copolymere, Ethylen-Hexen-Copolymere, Ethylen-Methylpenten-Copolymere, Ethylen-Copolymere, Ethylen-Octen-Copolymere, Propylen-Butadien-Copolymere, Isobutylen-Isopren-Copolymere, Ethylen-Alkylacrylat-Copolymere, Ethylen-Alkylmethacrylat-Copolymere, Ethylen-Vinylacetat-Copolymere und deren Copolymere mit Kohlenstoffmonoxid, oder Ethylen-Acrylsäure-Copolymere und deren Salze (Ionomere), sowie Terpolymere von Ethylen mit Propylen und einem Dien, wie Hexadien, Dicyclopentadien oder Ethylidennorbornen; ferner Mischungen solcher Copolymere untereinander und mit unter 1) genannten Polymeren, z. B. Polypropylen/Ethylen-Propylen-Copolymere, LDPE/Ethylen-Vinylacetat-Copolymere, LDPE/Ethylen-Acrylsäure-Copolymere, LLDPE/Ethylen-Vinylacetat-

Copolymere, LLDPE/Ethylen-Acrylsäure-Copolymere und alternierend oder statistisch aufgebaute Polyalkylen/Kohlenstoffmonoxid-Copolymere und deren Mischungen mit anderen Polymeren wie z. B. Polyamiden

- 4. Kohlenwasserstoffharze (z. B. C_5-C_9) inklusive hydrierte Modifikationen davon (z. B. Klebrigmacherharze) und Mischungen von Polyalkylenen und Stärke.
- 5. Polystyrol, Poly-(p-methylstyrol), Poly-(\alpha-methylstyrol).
- 6. Copolymere von Styrol oder α-Methylstyrol mit Dienen oder Acrylderivaten, wie z. B. Styrol-Butadien, Styrol-Acrylnitril, Styrol-Alkylmethacrylat, Styrol-Butadien-Alkylacrylat und -methacrylat, Styrol-Maleinsäureanhydrid, Styrol-Acrylnitril-Methylacrylat; Mischungen von hoher Schlagzähigkeit aus Styrol-Copolymeren und einem anderen Polymer, wie z. B. einem Polyacrylat, einem Dien-Polymeren oder einem Ethylen-Propylen-Dien-Terpolymeren; sowie Block-Copolymere des Styrols, wie z. B. Styrol-Butadien-Styrol, Styrol-Isopren-Styrol, Styrol-Ethylen/Butylen-Styrol oder Styrol-Ethylen/Propylen-Styrol.
- 7. Pfropfcopolymere von Styrol oder α-Methylstyrol, wie z. B. Styrol auf Polybutadien, Styrol auf Polybutadien-Styrol- oder Polybutadien-Acrylnitril-Copolymere, Styrol und Acrylnitril (bzw. Methaciylnitril) auf Polybutadien; Styrol, Acrylnitril und Methylmethacrylat auf Polybutadien; Styrol und Maleinsäureanhydrid auf Polybutadien; Styrol, Acrylnitril und Maleinsäureanhydrid oder Maleinsäureimid auf Polybutadien, Styrol und Maleinsäureimid auf Polybutadien, Styrol und Alkylacrylate bzw. Alkylmethacrylate auf Polybutadien, Styrol und Acrylnitril auf Ethylen Propylen Dien Terpolymeren, Styrol und Acrylnitril auf Polyalkylacrylaten oder Polyalkylmethacrylaten, Styrol und Acrylnitril auf Acrylat-Butadien-Copolymeren, sowie deren Mischungen mit den unter 6) genannten Copolymeren, wie sie z. B. als sogenannte ABS-, MBS-, ASA-oder AES-Polymere bekannt sind.
- 8. Halogenhaltige Polymere, wie z. B. Polychloropren, Chlorkautschuk, chloriertes oder chlorsulfoniertes Polyethylen, Copolymere von Ethylen und chloriertem Ethylen, Epichlorhydrinhomo- und -copolymere, insbesondere Polymere aus halogenhaltigen Vinylverbindungen, wie z. B. Polyvinylchlorid, Polyvinylidenchlorid, Polyvinylidenfluorid; sowie deren Copolymere, wie Vinylchlorid-Vinylidenchlorid, Vinylchlorid-Vinylacetat oder Vinylidenchlorid-Vinylacetat.
- 9. Polymere, die sich von α,β -ungesättigten Säuren und deren Derivaten ableiten, wie Polyacrylate und Polymethacrylate, mit Butylacrylat schlagzäh modifizierte Polymethylmethacrylate, Polyacrylamide und Polyacrylnitrile.
- 10. Copolymere der unter 9) genannten Monomeren untereinander oder mit anderen ungesättigten Monomeren, wie z. B. Acrylnitril-Butadien-Copolymere, Acrylnitril-Alkylacrylat-Copolymere, Acrylnitril-Vinylhalogenid-Copolymere oder Acrylnitril-Alkylmethacrylat-Butadien-Terpolymere.
- 11. Polymere, die sich von ungesättigten Alkoholen und Aminen bzw. deren Acylderivaten oder Acetalen ableiten, wie Polyvinylalkohol, Polyvinylacetat, -stearat, -benzoat, -maleat, Polyvinylbutyral, Polyallylphthalat, Polyallylmelamin; sowie deren Copolymere mit in Punkt 1 genannten Olefinen.
- 12. Homo- und Copolymere von cyclischen Ethern, wie Polyalkylenglykole, Polyethylenoxyd, Polypropylenoxyd oder deren Copolymere mit Bisglycidylethern.
- 13. Polyacetate, wie Polyoxymethylen, sowie solche Polyoxymethylene, die Comonomere, wie z. B. Ethylenoxid, enthalten; Polyacetate, die mit thermoplastischen Polyurethanen, Acrylaten oder MBS modifiziert sind.
- 14. Polyphenylenoxide und -sulfide und deren Mischungen mit Styrolpolymeren oder Polyamiden.
- 15. Polyurethane, die sich von Polyethern, Polyestern und Polybutadienen mit endständigen Hydroxylgruppen einerseits und aliphatischen oder aromatischen Polyisocyanaten andererseits ableiten, sowie deren Vorprodukte.

45

55

- 16. Polyamide und Copolyamide, die sich von Diaminen und Dicarbonsäuren und/oder von Aminocarbonsäuren oder den entsprechenden Lactamen ableiten, wie Polyamid 4, Polyamid 6, Polyamid 6/6, 6/10, 6/9, 6/12, 4/6, 12/12, Polyamid 11, Polyamid 12, aromatische Polyamide ausgehend von m-Xylol, Diamin und Adipinsäure; Polyamide, hergestellt aus Hexamethylendiamin und Iso- und/oder Terephthalsäure und gegebenenfalls einem Elastomer als Modifikator, z. B. Poly-2,4,4-trimethylhexamethylenterephthalamid oder Poly-m-phenylen-isophthalamid. Block-Copolymere der vorstehend genannten Polyamide mit Polyolefinen, Olefin-Copolymeren, Ionomeren oder chemisch gebundenen oder gepfropften Elastomeren; oder mit Polyethern, wie z. B. mit Polyethylenglykol, Polypropylenglykol oder Polytetramethylenglykol. Ferner mit EPDM oder ABS modifizierte Polyamide oder Copolyamide; sowie während der Verarbeitung kondensierte Polyamide ("RIM-Polyamidsysteme").
- 17. Polyharnstoffe, Polyimide, Polyamid-imide und Polybenzimidazole.
- 18. Polyester, die sich von Dicarbonsäuren und Dialkoholen und/oder von Hydroxycarbonsäuren oder den entsprechenden Lactonen ableiten, wie Polyethylenterephthalat, Polybutylenterephthalat, Poly-1,4-dimethylolcyclohexanterephthalat, Polyhydroxybenzoate, sowie Block-Polyether-ester, die sich von Polyethern mit Hydroxylendgruppen ableiten; ferner mit Polycarbonaten oder MBS modifizierte Polyester.
- 19. Polycarbonate und Polyestercarbonate.
- 20. Polysulfone, Polyethersulfone und Polyetherketone.
- 21. Vernetzte Polymere, die sich von Aldehyden einerseits und Phenolen, Harnstoff oder Melamin andererseits ableiten, wie Phenol-Formaldehyd-, Harnstoff-Formaldehyd- und Melamin-Formaldehydharze.
- 22. Trocknende und nicht-trocknende Alkydharze.
- 23. Ungesättigte Polyesterharze, die sich von Copolyestern gesättigter und ungesättigter Dicarbonsäuren mit mehrwertigen Alkoholen, sowie Vinylverbindungen als Vernetzungsmittel ableiten, wie auch deren halogenhaltige, schwerbrennbare Modifikationen.

24. Vernetzbare Acrylharze, die sich von substituierten Acrylsäureestern ableiten, wie z. B. von Epoxyacrylaten. Urethan-acrylaten oder Polyester-acrylaten.

25. Alkydharze, Polyesterharze und Acrylatharze, die mit Melaminharzen, Harnstoffharzen, Polyisocyanaten oder Epoxidharzen vernetzt sind.

26. Vernetzte Epoxidharze, die sich von Polyepoxiden ableiten, z.B. von Bis-glycidylethern oder von cycloaliphatischen Diepoxiden.

27. Natürliche Polymere, wie Cellulose, Naturkautschuk, Gelatine, sowie deren polymerhomolog chemisch abgewandelte Derivate, wie Celluloseacetate, -propionate und -butyrate, bzw. die Celluloseether, wie Methylcellulose; sowie Kolophoniumharze und Derivate.

28. Mischungen (Polyblends) der vorgenannten Polymeren, wie z. B. PP/EPDM, Polyamid/EPDM oder ABS, PVC/EVA, PVC/ABS, PVC/MBS, PC/ABS, PBTP/ABS, PC/ASA, PC/PBT, PVC/CPE, PVC/Acrylate, POM/thermoplastisches PUR, PC/thermoplastisches PUR, POM/Acrylat, POM/MBS, PPO/HIPS, PPO/PA 6.6 und Copolymere PA/HDPE, PA/PP, PA/PPO.

29. Natürliche und synthetische organische Stoffe, die reine monomere Verbindungen oder Mischungen von solchen darstellen, beispielsweise Mineralöle, tierische oder pflanzliche Fette, Öle und Wachse, oder Öle, Wachse und Fette auf Basis synthetischer Ester (z. B. Phthalate, Adipate, Phosphate oder Trimellitate), sowie Abmischungen synthetischer Ester mit Mineralölen in beliebigen Gewichtsverhältnissen, wie sie z,B. als Spinnpräparationen Anwendung finden, sowie deren wäßrige Emulsionen.

30. Wäßrige Emulsionen natürlicher oder synthetischer Kautschuke, wie z. B. Naturkautschuk-Latex oder

20 Latices von carboxylierten Styrol-Butadien-Copolymeren.

5

10

15

Bevorzugte organische Materialien sind Polymere, z. B. synthetische Polymere, insbesondere thermoplastische Polymere. Besonders bevorzugt sind Polyolefine, z. B. Polypropylen oder Polyethylen.

Besonders hervorzuheben ist die Wirkung der erfindungsgemäßen Verbindungen gegen thermischen und oxidativen Abbau, vor allem bei thermischer Belastung, wie sie bei der Verarbeitung von Thermoplasten auftritt. Die erfindungsgemäßen Verbindungen sind daher hervorragend als Verarbeitungsstabilisatoren einzusetzen.

Vorzugsweise werden die Verbindungen der Formel (1) dem zu stabilisierenden Material in Mengen von 0,0005 bis 5 %, insbesondere 0,001 bis 2 %, beispielsweise 0,01 bis 2 %, zugesetzt, bezogen auf das Gewicht des zu stabilisierenden organischen Materials.

Zusätzlich zu den Verbindungen der Formel (1) können die erfindungsgemäßen Zusammensetzungen weitere Costabilisatoren enthalten, wie beispielsweise die folgenden:

1. Antioxidantien

1.1. Alkylierte Monophenole, z. B. 2,6-Di-tert-butyl-4-methylphenol, 2-butyl-4,6-dimethylphenol, 2,6-Di-tert-butyl-4-thylphenol, 2,6-Di-tert-butyl-4-n-butylphenol, 2,6-Di-tert-butyl-4-iso-butylphenol, 2,6-Di-cyclopentyl-4-methylphenol, 2-(α-Methylcyclohexyl)-4,6-dimethylphenol, 2,6-Di-octadecyl-4-methylphenol, 2,4-Tri-cyclohexylphenol, 2,6-Di-tert-butyl-4-methoxymethylphenol, 2,6-Di-nonyl-4-methylphenol, 2,4-Dimethyl-6-(1'-methyl-undec-1'-yl)-phenol, 2,4-Dimethyl-6-(1'-methyl-tridec-1'-yl)-phenol und Mischungen davon.

1.2. Alkylthiomethylphenole, z. B. 2,4-Di-octylthiomethyl-6-tert-butylphenol, 2,4-Dioctylthiomethyl-6-me-

thylphenol, 2,4-Di-octylthiomethyl-6-ethylphenol, 2,6-Di-dodecylthiomethyl-4-nonylphenol.

1.3. Hydrochinone und alkylierte Hydrochinone, z. B. 2,6-Di-tert-butyl-4-methoxyphenol, 2,5-Di-tert-butyl-hydrochinon, 2,5-Di-tert-amyl-hydrochinon, 2,6-Diphenyl-4-octadecyloxyphenol, 2,6-Di-tert-butyl-hydrochinon, 2,5-Di-tert-butyl-4-hydroxyanisol, 3,5-Di-tert-butyl-4-hydroxyphenyl-stearat, Bis-(3,5-di-tert-butyl-4-hydroxyphenyl)adipat.

1.4. Hydroxylierte Thiodiphenylether, z. B. 2,2'-Thio-bis-(6-tert-butyl-4-methylphenol), 2,2'-Thio-bis-(4-octylphenol), 4,4'-Thio-bis-(6-tert-butyl-2-methylphenol), 4,4'-Thio-bis-(6-tert-butyl-2-methylphenol), 4,4'-Thio-bis-

(3,6-di-sec.-amylphenol), 4,4'-Bis-(2,6 dimethyl-4-hydroxyphenyl)-disulfid.

1.5. Alkyliden-Bisphenole, z. B. 2,2'-Methylen-bis-(6-tert-butyl-4-methylphenol), 2,2'-Methylen-bis-(6-tert-butyl-4-ethylphenol), 2,2'-Methylen-bis-(4-methyl-6-(α-methylcyclohexyl)-phenol), 2,2'-Methylen-bis-(4-methyl-6-cyclohexylphenol), 2,2'-Methylen-bis-(6-nonyl-4-methylphenol), 2,2'-Methylen-bis-(4,6-di-tert-butylphenol), 2,2'-Ethyliden-bis-(6-tert-butyl-4-isobutylphenol), 2,2'-Methylen-bis-(6-(α-methylbenzyl)-4-nonylphenol), 2,2'-Methylen-bis-(6-(α-methylbenzyl)-4-nonylphenol), 4,4'-Methylen-bis-(6-di-tert-butylphenol), 4,4'-Methylen-bis-(6-tert-butyl-2-methylphenol), 1,1 -Bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-butan, 2,6-Bis-(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1 ,3-Tris-(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-n-dodecylmercaptobutan, Ethylenglycol-bis-[3,3-bis-(3' -tert-butyl-4-hydroxy-5'-methyl-benzyl)-6-tert-butyl-4-hydroxy-5-methylphenyl)-dicyclopentadien, Bis-[2-(3'-tert-butyl-2'-hydroxy-5'-methyl-benzyl)-6-tert-butyl-4-methyl-phenyl]-terphthalat, 1,1-Bis-(3,5-dimethyl-2-hydroxyphenyl)-butan, 2,2-Bis-(3,5-di-tert-butyl-4-hydroxyphenyl)-propan, 2,2-Bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-pentan.

1.6. O-, N- und S-Benzylverbindungen, z. B. 3,5,3',5'-Tetra-tert-butyl-4,4'-dihydroxydibenzylether, Octadecyl-4-hydroxy-3,5-dimethylbenzyl-mercaptoacetat, Tris-(3,5-ditert-butyl-4-hydroxybenzyl)-amin, Bis-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-dithioterephthalat, Bis-(3,5-di-tert-butyl-4-hydroxybenzyl)-sulfid, Isooctyl-3,5-di-

tertbutyl-4-hydroxybenzyl-mercaptoacetat.

1.7. Hydroxybenzylierte Malonate, z. B. Dioctadecyl-2,2-bis-(3,5-di-tert-butyl-2-hydroxybenzyl)-malonat, Dioctadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)-malonat, Didodecylmercaptoethyl-2,2-bis-(3,5-di-tert-butyl-4-hydroxy-5-methylbenzyl)-malonat, Didodecylmercaptoethyl-2,2-bis-(3,5-di-tert-butyl-4-hydroxy-5-methylbenzyl-4-hydroxy-5-m

tyl-4-hydroxybenzyl)-malonat, Di-[4-(1,1,3,3-tetramethylbutyl)-phenyl]-2,2-bis-(3,5-di-tert-butyl-4-hydroxybenzyl)-malonat.

1.8. Hydroxybenzyl-Aromaten, z. B. 1,3,5-Tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzol, 1,4-Bis-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzol, 2,4,6-Tris-(3,5-di-tert-butyl-4-hydroxybenzyl)

zvl)-phenol.

1.9. Triazinverbindungen, z. B. 2,4-Bis-octylmercapto-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazin, 2-Octylmercapto-4,6-bis-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazin, 2-Octylmercapto-4,6-bis-(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazin, 1,3,5-Tris-(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazin, 1,3,5-Tris-(3,5-di-tert-butyl-4-hydroxyphenoxy)-isocyanurat, 1,3,5-Tris-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-isocyanurat, 2,4,6-Tris-(3,5-di-tert-butyl-4-hydroxyphenylpho-pionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris-(3,5-dicyclohexyl-4-hydroxyphenyl)-isocyanurat.

1.10. Benzylphosphonate, z. B. Dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonat, Diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-5-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-5-tert-butyl-4-hydroxy-3-methylbenzylphosphonat, Ca-Salz des 3,5-Di-tert-butyl-4-hydroxybenzyl-phosphonsäure-

monoethylesters.

1.11. Acylaminophenole, z. B. 4-Hydroxy-laurinsäureanilid, 4-Hydroxystearinsäureanilid, N-(3,5-di-tert-bu-

tyl-4-hydroxyphenyl)-carbaminsäureoctylester.

1.12. Ester der β-(3,5-Di-tert-butyl-4-hydroxyphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z. B. mit Methanol, Ethanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxyethyl)-isocyanurat, N,N',-Bis-(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylopropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.

1.13. Ester der β-(5-tert-Butyl-4-hydroxy-3-methylphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z. B. mit Methanol, Ethanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxy)ethyl-isocyanurat, N,N'-Bis-(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol,

25

40

45

Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.

1.14. Ester der β(3,5-Dicyclohexyl-4-hydroxyphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z. B. mit Methanol, Ethanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxy)ethyl-isocyanurat, N,N'-Bis-(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-26-trioxabicyclo-[2.2.2]-octan.

1.15. Ester der 3,5-Di-tert-butyl-4-hydroxyphenylessigsäure mit ein- oder mehrwertigen Alkoholen, wie z. B. mit Methanol, Ethanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxy)ethyl-isocyanurat, N,N'-Bis-(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2,2,2]-octan.

1.16. Amide der β-(3,5-Di-tert-butyl-4-hydroxyphenyl)-propionsäure, wie z. B. N,N'-Bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexamethylendiamin, N,N',-Bis-(3,5-ditert-butyl-4-hydroxyphenylpropionyl)-trimethy-

lendiamin, N,N'-Bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hydrazin.

2. UV-Absorber und Lichtschutzmittel

2.1. 2-(2'-Hydroxyphenyl)-benztriazole, wie z. B. 2-(2'-Hydroxy-5'-methylphenyl)-benztriazol, 2-(3',5'-Di-tert-2-(2'-Hydroxy--tert-Butyl-2'-hydroxyphenyl)-benztriazol, butyl-2'-hydroxyphenyl)-benztriazol, 2-(5' 5'-(1,1,3,3-tetramethylbutyl)phenyl)-benztriazol, 2-(3',5,-Di-tert-butyl-2,-hydroxyphenyl)-5-chlor-benztriazol, 2-(3'-tert-Butyl- 2'-hydroxy-5'-methylphenyl)-5-chlor-benztriazol, 2-(3'-sec-Butyl-5'-tert-butyl-2'-hydroxyphenyl)-benztriazol, 2-(2,-Hydroxy-4,-octoxyphenyl)-benztriazol, 2-(3',5'-Di-tert-amyl-2'-hydroxyphenyl)-benztriazol, 2-(3',5'-Bis-(α,α-dimethylbenzyl)-2'-hydroxyphenyl)-benztriazol, Mischung aus 2-(3'-tert-Butyl-2'-hydroxyriazól, 2-(3'-tert-Butyl-5'-[2-(2-ethylhexyloxy)-carbonylet-2-(3'-tert-Butyl-2'-hydroxy-5'-(2-methoxycarbonylethyl)phe-5'-(2-octyloxycarbonylethyl)-phenyl)-5-chlor-benztriazol, hyl]-2'-hydroxyphenyl)-5-chlor-benztriazol, nyl)-5-chlor-benztriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-methoxycarbonylethyl)phenyl)-benztriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)-phenyl)-benztriazol, 2-(3'-tert-Butyl-5'-[2-(2-ethylhexyloxy)car-2-(3'-Dodecyl-2,-hydroxy-5'-methylphenyl)-benztriazol, bonylethyl]-2'-hydroxyphenyl)-benztriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-isooctyloxycarbonylethyl)phenyl-benztriazol, 2,2'-Methylenbis[4-(1,1,3,3 tetramethylbutyl)-6-benztriazol-2-yl-phenol]; Umesterungsprodukt von 2-[3'-tert-Butyl-5'-(2-methoxycarbonylethyll-2'-hydroxy-phenyl]-benztriazol mit Polyethylenglycol 300; [R-CH₂CH₂-COO(CH₂)₃]₂ mit R = 3'-tert-Butyl-4'-hydroxy-5'-2H-benztriazol-2-yl-phenyl.

2.2. 2 Hydroxybenzophenone, wie z. B. das 4-Hydroxy-, 4-Methoxy-, 4-Octoxy-, 4-Decyloxy-, 4-Dodecyloxy, 4-Benzyloxy-, 4.2',4,-Trihydroxy-, 2'-Hydroxy-4,4,dimethoxy-Derivat.

2.3. Ester von gegebenenfalls substituierten Benzoesäuren, wie z. B. 4-tert-Butyl-phenylsalicylat, Phenylsalicylat, Octylphenyl-salicylat, Dibenzoylresorcin, Bis-(4-tert-butylbenzoyl)-resorcin, Benzoylresorcin, 3,5-Di-tert-butyl-4-hydroxybenzoesäure-2,4-di-tertbutylphenylester, 3,5-Di-tert-butyl-4-hydroxybenzoesäure-butyl-4-hydroxybenzoesäure-2-methyl-4,6-di-tert-butyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-methyl-4-hydroxybenzoesäure-2-m

2.4. Acrylate, wie z. B. α -Cyan- β , β -diphenylacrylsäure-ethylester bzw. -isooctylester, α -Carbomethoxy-zimtsäuremethylester, α -Cyano- β -methyl-p-methoxy-zimtsäuremethylester bzw. -butylester, α -Carbomethoxy-p-methoxy-zimtsäure-methylester, N—(β -Carbomethoxy- β -cyanovinyl)-2-methyl-indolin.

- 2.5. Nickelverbindungen, wie z. B. Nickelkomplexe des 2,2'-Thio-bis-[4-(1,1,3,3-tetramethylbutyl)-phenols], wie der 1:1- oder der 1:2-Komplex, gegebenenfalls mit zusätzlichen Liganden, wie n-Butylamin, Triethanolamin oder N-Cyclohexyl-diethanolamin, Nickeldibutyldithiocarbamat, Nickelsalze von 4-Hydroxy-3,5-di-tert-butyl-benzylphosphonsäure-monoalkylestern, wie vom Methyl- oder Ethylester, Nickelkomplexe von Ketoximen, wie von 2-Hydroxy-4-methyl-phenyl-undecylketoxim, Nickelkomplexe des 1-Phenyl-4-lauroyl-5-hydroxy-pyrazols, gegebenenfalls mit zusätzlichen Liganden.
- 2.6. Sterisch gehinderte Amine, wie z. B. Bis-(2,2,6,6-tetramethyl-piperidyl)-sebacat, Bis-(2,2,6,6-tetramethyl-piperidyl)-succinat, Bis-(1,2,2,6,6-pentamethylpiperidyl)-sebacat, n-Butyl-3,5-di-tert-butyl-4-hydroxybenzyl-malonsäure-bis(1,2,2,6,6-pentamethylpipendyl)-ester, Kondensationsprodukt aus 1-Hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxypiperidin und Bernsteinsäure, Kondensationsprodukt aus N,N',-Bis-(2,2,6,6-Tetramethyl-4-piperidylhexamethylendiamin und 4-tert-Octylamino-2,6-dichlor-1,3,5-s-triazin, Tris-(2,2,6,6 tetramethyl-4-piperidyl) nitrilotriacetat, Tetrakis (2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butantetraoat, 1,1'-(1,2-Ethandiyl)-bis-(3,3,5,5-tetramethyl-piperazinon), 4-Benzoyl-2,2,6,6-tetramethylpiperidin, 4-Stearyloxy-2,2,6,6-tetramethylpipendin, Bis-(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)-malonat, 3-n-Octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dion, Bis-(1-octyloxy-2,2,6,6-tetramethylpipendyl)-sebacat, Bis loxy-2,2,6,6-tetramethylpipendyl) succinat, Kondensationsprodukt aus N,N'-Bis-(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylendiamin und 4-Morpholino-2,6-dichlor-1,3,5-triazin, Kondensationsprodukt aus 2-Chlor-4,6-di-(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazin und 1,2-Bis-(3-aminopropylamino)äthan, Kondensationsprodukt aus 2-Chlor-4,6-di-(4-n-butylamino-1,2,2,6,6-pentamethylpipendyl)-1,3,5-triazin und 1,2-Bis-(3-aminopropylamino) äthan, 8-Acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dion, 3-Dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyirolidin-2,5-dion, 3-Dodecyl-1-(1,2,2,6,6-pentamethyl-4-piperidyl)-pyirolidin-2.5-dion.
- 2.7. Oxalsäurediamide, wie z. B. 4,4'-Di-octyloxy-oxanilid, 2,2'-Di-octyloxy-5,5'-di-tertbutyl-oxanilid, 2,2'-Di-dodecyloxy-5,5,di-tert-butyl-oxanilid, 2-Ethoxy-2'-ethyl-oxanilid, N,N'-Bis-(3-dimethylaminopropyl)-oxalamid, 2-Ethoxy-5-tert-butyl-2'-ethyloxanilid und dessen Gemisch mit 2-Ethoxy-2'-ethyl-5,4'-di-tert-butyl-oxanilid, Gemische von o- und p-Methoxy- sowie von o- und p-Ethoxy-di-substituierten Oxaniliden.
- 2.8. 2-(2-Hydroxyphenyl)-1,3,5-triazin, wie z. B. 2,4,6-Tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-(2,4-Dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6-bis(4-methylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-[2-hydroxy-4-(2-hydroxy-3-butyloxy-propyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-[2-hydroxy-4-(2-hydroxy-3-octyloxy-propyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-[2-hydroxy-4-(2-hydroxy-3-octyloxy-propyloxy-phenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,
- 3. Metalldesaktivatoren, wie z. B. N,N'-Diphenyloxalsäurediamid, N-Salicylal-N'-salicyloylhydrazin, N,N'-Bis-(salicyloyl)-hydrazin, N,N'-Bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hydrazin, 3-Salicyloylamino-1,2,4-triazol, Bis-(benzyliden)-oxalsäuredihydrazid, Oxanilid, Isophthalsäure-dihydrazid, Sebacinsäure-bis-phenylhydrazid,N,N'-Diacetyl-adipinsäure-dihydrazid, N,N'-Bis-salicyloyl-oxalsäure-dihydrazid, N,N'-Bissalicyloyl-thiopropionsäure-dihydrazid.
- 4. Phosphite und Phosphonite, wie z. B. Triphenylphosphit, Diphenylalkylphosphite, Phenyldialkylphosphite, Tris-(nonylphenyl)-phosphit, Trilaurylphosphit, Trioctadecylphosphit, Distearyl-pentaerythritdiphosphit, Tris-(2,4-di-tert-butylphenyl)-phosphit, Diisodecylpentaerythrit-diphosphit, Bis-(2,4-di-tert-butylphenyl)-pentaerythritdiphosphit, Bis-(2,6-di-tert-butyl-6-methylphenyl)-pentaerythritdiphosphit, Bis-(2,4-di-tert-butyl-6-methylphenyl)-pentaerythritdiphosphit, Bis-(2,4-di-tert-butylphenyl)-pentaerythritdiphosphit, Tristearyl-sorbit-triphosphit, Tetrakis-(2,4-ditert-butylphenyl)-4,4'-biphenylen-diphosphornt, 6-lsooctyloxy-2,4,8,10-tetra-tert-butyl-12H-dibenz(d,g)-1,3,2-dioxaphosphocin, 6-Fluor-2,4,8,10-tetra-tert-butyl-12-methyl-dibenz(d,g)-1,3,2-dioxaphosphocin, Bis-(2,4-di-tert-butyl-6-methylphenyl)-methylphosphit, Bis-(2,4-di-tert-butyl-6-methylphenyl)-ethylphosphit.
- 5. Peroxidzerstörende Verbindungen, wie z. B. Ester der β-Thio-dipropionsäure, beispielsweise der Lauryl-, Stearyl-, Myristyl- oder Tridecylester, Mercaptobenzimidazol, das Zinksalz des 2-Mercaptobenzimidazols, Zinkdibutyl-dithiocarbamat, Dioctadecyldisulfid, Pentaerythrit-tetrakis-(β-dodecylmercapto)-propionat.
- 6. Polyamidstabilisatoren, wie z. B. Kupfersalze in Kombination mit Jodiden und/oder Phosphorverbindungen und Salze des zweiwertigen Mangans.
- 7. Basische Co-Stabilisatoren, wie z. B. Melamin, Polyvinylpyrrolidon, Dicyandiamid, Triallylcyanurat, Harnstoff-Derivate, Hydrazin-Derivate, Amine, Polyamide, Polyurethane, Alkali- und Erdalkalisalze höherer Fettsäuren, beispielsweise Ca-Stearat Zn-Stearat, Mg-Behenat, Mg-Stearat, Na-Ricinoleat, K-Palmitat, Antimonbrenzcatechinat oder Zinnbrenzcatechinat.
 - 8. Nukleierungsmittel, wie z. B. 4-tert-Butylbenzoesäure, Adipinsäure, Diphenylessigsäure.
 - 9. Füllstoffe und Verstärkungsmittel, wie z. B. Calciumcarbonat, Silikate, Glasfasern, Asbest, Talk, Kaolin, Glimmer, Bariumsulfat, Metalloxide und -hydroxide, Ruß, Graphit.
- 10. Sonstige Zusätze, wie z. B. Weichmacher, Gleitmittel, Emulgatoren, Pigmente, Optische Aufheller, Flammschutzmittel, Antistatika, Treibmittel.
 - Die Costabilisatoren werden beispielsweise in Konzentrationen von 0,01 bis 10 %, bezogen auf das Gesamtgewicht des zu stabilisierenden Materials, zugesetzt.
 - Die Einarbeitung der Verbindungen der Formel (1) sowie gegebenenfalls weiterer Additive in das polymere, organische Material erfolgt nach bekannten Methoden, beispielsweise vor oder während der Formgebung oder auch durch Aufbringen der gelösten oder dispergierten Verbindungen auf das polymere, organische Material, gegebenentalls unter nach träglichem Verdunsten des Lösungsmittels. Die Verbindungen der Formel (1) können auch in Form eines Masterbatches, der diese beispielsweise in einer Konzentration von 2,5 bis 25 Gew.-%

enthält, den zu stabilisierenden Materialien zugesetzt werden.

Die Verbindungen der Formel (1) können auch vor oder während der Polymerisation oder vor der Vernetzung zugegeben werden.

Die Verbindungen der Formel (1) können in reiner Form oder in Wachsen, Oelen oder Polymeren verkapselt in das zu stabilisierende Material eingearbeitet werden.

Die Verbindungen der Formel (1) können auch auf das zu stabilisierende Polymer aufgesprüht werden. Sie sind in der Lage, andere Zusätze (z. B. die oben angegebenen herkömmlichen Additive) bzw. deren Schmelzen zu verdünnen, so daß sie auch zusammen mit diesen Zusätzen auf das zu stabilisierende Polymer aufgesprüht werden können. Besonders vorteilhaft ist die Zugabe durch Aufsprühen während der Desaktivierung der Polymerisationskatalysatoren, wobei z. B. der zur Desaktivierung verwendete Dampf zum Versprühen verwendet werden kann.

Bei kugelförmig polymerisierten Polyolefinen kann es z. B. vorteilhaft sein, die Verbindungen der Formel (1), gegebenenfalls zusammen mit anderen Additiven, durch Aufsprühen zu applizieren.

Die so stabilisierten Materialien können in verschiedenster Form angewendet werden, z. B. als Folien, Fasern, Bändchen, Formmassen, Profile oder als Bindemittel für Lacke, Klebstoffe oder Kitte.

15

30

Die vorliegende Erfindung betrifft auch ein Verfahren zum Stabilisieren eines organischen Materials gegen oxidativen, thermischen oder lichtinduzierten Abbau, das dadurch gekennzeichnet ist, daß man diesem mindestens eine Verbindung der Formel (1) einverleibt oder auf dieses aufbringt.

Wie bereits hervorgehoben, werden die erfindungsgemäßen Verbindungen besonders vorteilhaft als Stabilisatoren in Polyolefinen eingesetzt, vor allem als Thermostabilisatoren. Ausgezeichnete Stabilisierung wird z. B. dann erhalten, wenn man sie in Kombination mit organischen Phosphiten oder Phosphoniten einsetzt. Dabei weisen die erfindungsgemäßen Verbindungen den Vorteil auf, daß sie bereits in außerordentlich geringen Mengen wirksam sind. Sie werden z. B. in Mengen von 0,0001 bis 0,015, insbesondere 0,0001 bis 0,008 Gew. % bezogen auf das Polyolefin, eingesetzt. Das organische Phosphit oder Phosphonit wird zweckmäßig in einer Menge von 0,01 bis 2, insbesondere 0,01 bis 1 Gew. %, ebenfalls bezogen auf das Polyolefin, eingesetzt. Als organische Phosphite bzw. Phosphonite werden vorzugsweise solche eingesetzt, wie sie in der deutschen Patentanmeldung P 42 02 276.2 beschrieben sind. Siehe dort insbesondere die Patentansprüche, die Beispiele sowie die Seiten 5, letzter Absatz bis Seite 11. Besonders zweckmäßige Phosphite und Phosphonite sind auch Punkt 4 der obigen Auflistung von Costabilisatoren zu entnehmen.

Ebenfalls Gegenstand der Erfindung sind neue Verbindungen der Formel (1),

worin R_2 , R_3 , R_4 und R_5 unabhängig voneinander Wasserstoff, C_1-C_{25} -Alkyl, C_7C_9 -Phenylalkyl, unsubstituiertes oder durch C_1-C_4 -Alkyl substituiertes Phenyl, unsubstituiertes oder durch C_1-C_4 -Alkyl substituiertes C_5-C_8 -Cycloalkyl; C_1-C_{18} -Alkoxy, C_1-C_{25} -Alkanoyloxy, C_3-C_{25} -Alkenoyloxy, durch Sauerstoff, Schwefel oder

unterbrochenes C_3-C_{25} -Alkanoyloxy; C_6-C_9 -Cycloalkylcarbonyloxy, Benzoyloxy oder durch C_1-C_{12} -Alkyl substituiertes Benzoyloxy darstellen, worin R_{13} Wasserstoff oder C_1-C_8 -Alkyl bedeutet, oder ferner die Reste R_2 und R_3 oder die Reste R_4 und R_5 zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Phenylring bilden, R_4 zusätzlich $-(CH_2)_n-COR_{14}$ darstellt, worin n 0, 1 oder 2 ist, R_{14} Hydroxy,

$$\left[-O^{\circ} \frac{1}{r} M^{r+}\right]$$
.

$$C_1$$
- C_{18} -Alkoxy oder $-N$
 R_{16}
65

bedeutet, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff oder C₁-C₁₈-Alkyl darstellen, M ein r-wertiges

Metallkation ist und r 1, 2 oder 3 bedeutet, R_7 , R_8 , R_9 und R_{10} unabhängig voneinander Wasserstoff, C_1-C_4 -Alkyl oder C_1-C_4 -Alkoxy bedeuten, mit der Bedingung, daß mindestens einer der Reste R_7 , R_8 , R_9 und R_{10} Wasserstoff ist, R_{11} und R_{12} unabhängig voneinander Wasserstoff, C_1-C_4 -Alkyl oder Phenyl darstellen, und wenn R_3 , R_5 , R_6 , R_7 und R_{10} Wasserstoff sind, R_4 zusätzlich einen Rest der Formel (2)

bedeutet, worin R2, R8, R9, R11 und R12 die obige Bedeutung haben und R1 wie unten für m = 1 angegeben definiert ist und R17 und R18 unabhängig voneinander Wasserstoff, C1-C12-Alkyl oder Phenyl darstellen, oder R17 und R18 zusammen mit dem C-Atom, an das sie gebunden sind, einen unsubstituierten oder durch 1 bis 3 C1-C4-Alkyl substituierten C5-C7-Cycloalkylidenring bilden, m eine ganze Zahl aus dem Bereich von 1 bis 6 bedeutet, und wenn m 1 ist, R1 Hydroxy, C1-C30-Alkoxy, durch Sauerstoff, Schwefel oder

30

40

50

55

60

65

5

unterbrochenes $C_3 - C_{30}$ -Alkoxy; $C_7 - C_9$ -Phenylalkoxy, $C_5 - C_{12}$ -Cycloalkoxy, $C_2 - C_{18}$ -Alkenyloxy, unsubstituiertes oder durch $C_1 - C_{12}$ -Alkyl substituiertes Phenoxy,

$$\begin{bmatrix} -O^{\bullet} & \frac{1}{r} M^{r+} \end{bmatrix}, -N_{R_{16}}^{R_{15}}, -O^{-}(CH_{2})_{p}^{-P} \xrightarrow{O^{-}R_{19}} 0 \text{der } -OCH_{2}^{-}C^{-}CH_{2}OH \text{ bedeutet},}$$

R₁₃, R₁₆, r und M die obige Bedeutung haben, R₁₉ und R₂₀ unabhängig voneinander C₁—C₄-Alkyl bedeuten, p 1 oder 2 ist, und R₆ Wasserstoff oder einen Rest der Formel (3)

bedeutet, worin R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} , R_{11} und R_{12} die obige Bedeutung haben; oder wenn m 2 ist, R_1 C_2-C_{12} -Alkandioxy, durch Sauerstoff, Schwefel oder

-OCH₂-CH=CH-CH₂O- oder -OCH₂-C=C-CH₂O- darstellt, wobei R_{13} die obige

10

15

20

25

40

50

Bedeutung hat; oder wenn m 3 ist, R₁ C₃-C₁₀-Alkantrioxy, -OCH₂-C-CH₂OH oder CH₂O-

 CH_2CH_2O 1
-OCH₂CH₂-N-CH₂CH₂Odarstellt; oder wenn m 4 ist, $R_1 C_4$ - C_{10} -Alkantetraoxy,

-OCH₂ O— CH₃-CH-CH₂ CH₂-CH-CH₃
-OCH₂-C-CH₂O- (-OCH₂-CH-CH₂)₂O oder CH₃-CH-CH₂ CH₂-CH-CH₃

CH₂O- CH₂O- CH₂-CH-CH₃ CH₃-CH-CH₂ CH₂-CH-CH₃

bedeutet; oder wenn m 5 ist, R₁ C₅-C₁₀-Alkanpentaoxy ist; oder wenn m 6 ist, R₁

Bevorzugte Gruppen von neuen Verbindungen der Formel (1) entsprechen den in den oben für die erfindungsgemäßen Zusammensetzungen ausgedrückten Bevorzugungen.

Bevorzugt sind außerdem Verbindungen der Formel (1), worin R_2 , R_3 , R_4 und R_5 unabhängig voneinander Wasserstoff, C_1-C_{18} -Alkyl, Benzyl, Phenyl, C_5-C_8 -Cycloalkyl, C_1-C_8 -Alkoxy, C_1-C_{18} -Alkanoyloxy, C_3-C_{18} -Alkenoyloxy oder Benzoyloxy darstellen, R_4 zusätzlich (CH₂)_n-COR₁₄ bedeutet, m 1 bis 4 ist, und wenn m 1 ist, R_1 Hydroxy, C_1-C_{18} -Alkoxy, durch Sauerstoff, Schwefel oder

unterbrochenes C₃-C₁₈-Alkoxy; Benzyloxy, C₅-C₈-Cycloalkoxy, unsubstituiertes oder durch C₁-C₈-Alkyl substituiertes Phenoxy,

$$-N_{R_{16}}^{R_{15}}$$
 oder $-O-(CH_2)_p-P$ O- R_{20}

darstellt, wobei R_{13} , R_{15} , R_{16} , p, R_{19} und R_{20} die obige Bedeutung haben; oder wenn m 2 ist, R_1 C_2-C_{12} -Alkandioxy oder durch Sauerstoff unterbrochenes C_3-C_{25} -Alkandioxy darstellt; oder wenn m 3 ist, R_1 C_3-C_{10} -Alkantrioxy bedeutet; oder wenn m 4 ist, R_1

darstellt.

Bevorzugt sind auch Verbindungen der Formel (1), worin mindestens zwei der Reste R₂, R₃, R₄ und R₅ für Wasserstoff stehen.

Besonders bevorzugt sind Verbindungen der Formel (1), worin R3 und R5 Wasserstoff sind.

Ebenfalls bevorzugt sind Verbindungen der Formel (1), worin m 1 ist.

Von besonderem Interesse sind Verbindungen der Formel (1), worin m 1 ist, R_1 Hydroxy, C_1-C_{18} -Alkoxy, durch Sauerstoff unterbrochenes C_3-C_{18} -Alkoxy, unsubstituiertes oder durch C_1-C_8 -Alkyl substituiertes Phenoxy,

$$-N_{R_{16}}^{R_{15}}$$
 oder $-O-(CH_2)_p-P_{O-R_{20}}^{O}$

darstellt, wobei R_{15} und R_{16} unabhängig voneinander Wasserstoff oder C_1-C_{12} -Alkyl sind, R_2 Wasserstoff, C_1-C_{18} -Alkyl oder Cyclohexyl bedeutet, R_3 , R_5 , R_7 und R_{10} Wasserstoff sind, oder die Reste R_2 und R_3 zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Phenylring bilden, R_4 Wasserstoff, C_1-C_6 -Alkyl, Cyclohexyl, C_1-C_4 -Alkoxy oder $-(CH_2)_2-COR_{14}$ darstellt, worin R_{14} C_1-C_4 -Alkyl bedeutet, R_8 , R_9 , R_{11} und R_{12} unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl bedeuten, und wenn R_6 Wasserstoff ist, R_4 zusätzlich einen Rest der Formel (2)

25

40

45

50

55

65

bedeutet, worin R₁, R₂, R₈, R₉, R₁₁ und R₁₂ die obige Bedeutung haben, R₁₇ und R₁₈ unabhängig voneinander Wasserstoff oder C₁—C₄-Alkyl darstellen, oder R₁₇ und R₁₈ zusammen mit dem C-Atom, an das sie gebunden sind, einen C₅—C₇-Cycloalkylidenring bilden, R₆ Wasserstoff oder einen Rest der Formel (3)

bedeutet, worin R₁, R₂, R₃, R₄, R₅, R₇, R₈, R₉, R₁₀, R₁₁ und R₁₂ die obige Bedeutung haben.

Speziell bevorzugt sind Verbindungen der Formel (1), worin m 1 ist, R₁ Hydroxy, C₁—C₁₈-Alkoxy, unsubstituiertes oder durch C₁—C₄-Alkyl substituiertes Phenoxy;

darstellt, wobei R_{15} und R_{16} unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl sind, p 1 oder 2 ist und R_{19} und R_{20} C_1-C_4 -Alkyl darstellen, R_2 Wasserstoff oder C_1-C_{18} -Alkyl bedeutet, R_3 , R_5 , R_7 , R_{10} , R_{11} und R_{12} Wasserstoff sind, R_4 Wasserstoff oder C_1-C_4 -Alkyl bedeutet, und wenn R_6 Wasserstoff ist, R_4 zusätzlich einen Rest der Formel (2)

bedeutet, R₁₇ und R₁₈ zusammen mit dem C-Atom, an das sie gebunden sind, einen Cyclohexylidenring bilden, R₈

und R₉ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten, R₆ Wasserstoff oder einen Rest der Formel (3)

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{8}
 R_{10}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R_{11}
 R_{12}
 R_{11}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

bedeutet, worin R₁, R₂, R₃, R₄, R₅, R₇, R₈, R₉, R₁₀, R₁₁ und R₁₂ die obige Bedeutung haben.

Die erfindungsgemäßen Verbindungen der Formel (1) können auf an sich bekannte Weise hergestellt werden.

Beispielsweise, und dies ist bevorzugt, wird ein Phenol der Formel (4),

15

30

45

worin R₂, R₃, R₄ und R₅ die angegebenen Bedeutungen haben, mit einer am Phenylring substituierten Mandelsäure der Formel (5) oder (6), worin R₁, R₇, R₈, R₉, R₁₀, R₁₁ und R₁₂ die angegebenen Bedeutungen haben, bei erhöhter Temperatur, insbesondere Temperaturen von 130 bis 200°C in der Schmelze oder in einem Lösungsmittel gegebenenfalls unter leichtem Vakuum, umgesetzt. Bevorzugt wird die Reaktion in einem Lösungsmittel wie beispielsweise Essigsäure oder Ameisensäure in einem Temperaturbereich von 50 bis 130°C durchgeführt. Die Reaktion kann durch Zusatz einer Säure wie Salzsäure, Schwefelsäure oder Methansulfonsäure katalysiert werden. Die Umsetzung kann z. B. in der Weise durchgeführt werden, wie sie in den in der Beschreibungseinleitung angegebenen Literaturstellen beschrieben ist.

Die am Phenylring substituierten 4-Hydroxymandelsäuren der Formel (5) sind in der Literatur bekannt oder können beispielsweise gemäß W. Bradley et al, J. Chem. Soc. 1956, 1622; EP-A-146269 oder DE 29 44 295 in analoger Weise hergestellt werden.

Die am Phenylring substituierten 4-Carboxymethoxy-mandelsäuren der Formel (6), worin R₁ Hydroxy bedeutet, können nach allgemein bekannten Veretherungsbedingungen ausgehend aus den Phenolen der Formel (5) z. B. gemäß Organikum 1986, Seite 194–200, beispielsweise durch Alkylierung unter basischen Bedingungen mit einem α-Chloresssigsäure-Derivat der Formel

verethert werden.

Die Phenole der Formel (4) sind ebenfalls bekannt oder können nach an sich bekannten Verfahren erhalten werden.

$$R_{17}$$
 R_{18} R_{18} R_{19} R

Bisphenolverbindungen der Formel (7) können gemäß Houben-Weyl, Methoden der organischen Chemie,

Band 6/1c, 1030, hergestellt werden.

Die durch diese Umsetzung erhaltenen 3-(Carboxymethoxyphenyl)benzofuran-2-one der Formel (1), worin R₁ Hydroxy darstellt und m 1 bedeutet, können nach allgemein bekannten Veresterungs- und Amidierungs-Methoden, z. B. gemäß Organikum 1986, Seite 402-410 mit m wertigen Alkoholen der Formel R₁¹(OH)_m, worin R₁¹(O)_m – für R₁ ohne Hydroxy steht und m eine ganze Zahl aus dem Bereich von 1 bis 6 bedeutet, oder mit primären oder sekundären Aminen der Formel

15

derivatisiert werden.

20
$$R_2$$
 R_3 R_4 R_5 R_7 R_8 R

Die Dimerisierung der Verbindungen der Formel (8), worin R21 die Formel

40

50

60

bedeutet, zur Herstellung von Verbindungen der Formel (1), worin R_6 eine Gruppe der Formel (3) ist [Verbindungen der Formel (9)] erfolgt durch Oxidation mit beispielsweise Jod unter basischen Bedingungen in einem organischen Lösungsmittel bei Raumtemperatur. Als Base eignet sich besonders Natriumethylat, als Lösungsmittel Ethanol und Diethylether.

Die folgenden Beispiele erläutern die Erfindung weiter. Angaben in Teilen oder Prozenten beziehen sich auf das Gewicht.

Beispiel 1

a) Herstellung von 3-(4-Carboxymethoxyphenyl)-5-methyl-benzofuran-2-on (Verbindung (101), Tabelle 1).

Ein Gemisch von 41,6 g (0,39 Mol) p-Kresol und 29,0 g (0,13 Mol) 4-Carboxymethoxymandelsäure wird unter Stickstoffatmosphäre während 90 Minuten bei 185°C gehalten, wobei das gebildete Wasser abdestilliert wird. Das überschüssige p-Kresol wird anschließend unter vermindertem Druck abdestilliert. Kristallisation des Rückstandes aus 75 ml Xylol liefert 31,4 g (81 %) 3-(4-Carboxymethoxyphenyl)-5-methyl-benzofuran-2-on, Smp. 198–203°C (Verbindung (101), Tabelle 1).

In Analogie zu Beispiel 1 werden aus den im folgenden Abschnitt beschriebenen substituierten Mandelsäuren die Verbindungen (102) und (103) hergestellt.

b) Herstellung von 4-Carboxymethoxy-3-methyl-mandelsäure

Eine Lösung von 9,11 g (0,05 Mol) 4-Hydroxy-3-methyl-mandelsäure und 6,0 g (0,15 Mol) Natriumhydroxid in 25 ml Wasser wird mit 4,7 g (0,05 Mol) Chloressigsäure versetzt und anschließend während 3 Stunden bei 80°C gerührt. Das Reaktionsgemisch wird mit konzentrierter Salzsäure angesäuert, mit Eis/Wasser abgekühlt, das ausgefallene Produkt filtriert, mit Wasser gewaschen und am Hochvakuum getrocknet Es resultieren 5,65 g (62 %) 4-Carboxymethoxy-3-methyl-mandelsäure, Smp. 95—100°C.

In Analogie zu Beispiel 1b) wird aus der 3,5-Dimethyl-4-hydroxy-mandelsäue die 4-Carboxymethoxy-3,5-dimethyl-mandelsäure, Smp. 150 – 152°C in einer Ausbeute von 60 % erhalten.

c) Herstellung von 4-Hydroxy-3-methyl-mandelsäure

32,4 g (0,30 Mol) o-Kresol werden in 150 ml 2N Natriumhydroxid-Lösung unter Stickstoffatmosphäre gelöst. Nach Abkühlen auf +5°c werden 4,8 g (0,12 Mol) Natriumhydroxid und 13,3 ml (0,12 Mol) 50 % wässrige Glyoxylsäure zugegeben und das Reaktionsgemisch während 4 Stunden bei Raumtemperatur gerührt. Nach jeweils 4 Stunden werden zweimal weitere 0,12 Mol Natriumhydroxid und Glyoxylsäure zugegeben (total 0,36 Mol). Das Reaktionsgemisch wird anschließend noch 12 Stunden gerührt dann mit konzentrierter Salzsäure neutralisiert und mit zweimal 75 ml Petrolether gewaschen. Die wäßrige Phase wird nun mit konzentrierter Salzsäure angesäuert und mit Ether mehrmals extrahiert. Die organischen Phasen werden vereinigt, über Magnesiumsulfat getrocknet und am Vakuumrotationsverdampfer eingeengt. Es resultieren 30,1 g (55 %) 4-Hydroxy-3-methyl-mandelsäure, Smp. 115—120°.

5

25

40

45

50

55

Beispiel 2

Herstellung von 5-Methyl-3-(4-n-octadecyloxycarbonylmethoxy)phenylbenzofuran-2-on (Verbindung (105), Tabelle 1).

Ein Gemisch von 5,0 g (18,5 mMol) 1-Octadecanol, 5,0 g (16,8 mMol) 3-(4-Carboxymethoxyphenyl)-5-methylbenzofuran-2-on (Verbindung (101), Beispiel 1) und 1,0 g (5,3 mMol) p-Toluolsulfonsäure wird unter leichtem Vakuum (150 Torr) während ca. 1 Stunde bei 200°C gerührt. Anschließend wird das Reaktionsgemisch mit 60 ml Ligroin verdünnt und mit Eis/Wasser abgekühlt. Das ausgefallene Produkt wird filtriert. Kristallisation des Rückstandes aus Ligroin liefert 7,5 g (81 %) 5-Methyl-3-(4-n-octadecyloxycarbonylmethoxy)phenyl-benzofuran-2-on, Smp. 85–87°C (Verbindung (105), Tabelle 1).

In Analogie zu Beispiel 2 werden aus den entsprechenden Benzofuran-2-onen und Alkoholen die Verbindungen (104), (107) und (108) hergestellt.

Beispiel 3

Herstellung von 5,7-Dimethyl-3-(4-n-octadecyloxycarbonylmethoxy)phenylbenzofuran-2-on (Verbindung (109), Tabelle 1).

Ein Gemisch von 18,3 g (0,15 Mol) 2,4-Dimethylphenol und 11,3 g (0,05 Mol) 4-Carboxymethoxy-mandelsäure wird während 3,5 Stunden bei ca. 185°C gerührt. Das überschüssige 2,4-Dimethylphenol wird anschliessend am Hochvakuum abdestilliert. Der Rückstand wird mit 12,5 g (0,046 Mol) 1-Octandecanol und 0,3 g (1,58 mMol) p-Toluolsulfonsäure versetzt und während 1,5 Stunden unter leichtem Vakuum (50 mbar) bei ca. 185°C gehalten. Das Reaktionsgemisch wird mit 50 ml Toluol verdünnt und mit Wasser gewaschen. Die organischen Phasen werden vereinigt, über Magnesiumsulfat getrocknet und Vakuumrotationsverdampfer eingeengt Kristallisation des Rückstandes aus Acetonitril liefert 9,9 g (38 %) 5,7-Dimethyl-3-(4-n-octadecyloxycarbonylmethoxy)phenylbenzofuran-2-on, Smp. 57-59°C (Verbindung (109), Tabelle 1).

In Analogie zu Beispiel 3 wird aus dem entsprechenden Benzofuran-2-on die Verbindung (110) hergestellt.

Beispiel 4

Eine Lösung von 6,0 g (20,0 mMol) 3-(4-Carboxymethoxyphenyl)-5-methylbenzofuran-2-on (Verbindung (101), Beispiel 1), 4,12 g (20,0 mMol) N,N'-Dicyclohexylcarbodiimid, 0,1 g (0,82 mMol) 4-Dimethylaminopyridin und 3,36 g (21,8 mMol) Hydroxyethyldimethylphosphonat in 50 ml absolutem Dichlormethan wird während 2,5 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wird filtriert und das Filtrat an Kieselgel mit dem Laufmittelsystem Dichlormethan/Ethylacetat = 3:2 chromatographiert. Es resultieren 7,30 g (84 %) der öligen Verbindung (111) (Tabelle 1).

In Analogie zu Beispiel 4 wird aus dem Hydroxymethyldiethylphosphonat die Verbindung (112) erhalten.

Beispiel 5

Ein Gemisch von 6,95 g (64,3 mMol) p-Kresol und 4,83 g (21,4 mMol) 4-Carboxymethoxy-mandelsäure wird unter Stickstoffatmosphäre während 2,5 Stunden bei ca. 185°C gehalten. Das überschüssige p-Kresol wird anschließend unter vermindertem Druck abdestilliert. Der Rückstand wird mit 6,3 g (42 mMol) p-Kresolacetat und 50 mg Dibutylzinnoxid versetzt. Das Reaktionsgemisch wird während 4 Stunden unter leichtem Vakuum (600 mbar) bei 180°C gehalten. Das überschüssige p-Kresolacetat wird am Hochvakuum abdestilliert. Chromatographie des Rückstandes an Kieselgel mit dem Laufmittelsystem Dichlormethan/Hexan = 3:1 und Kristallisation der reinen Fraktionen aus Methanol liefert 2,3 g (28 %) der Verbindung (106) (Tabelle 1), Smp. 139-142°C.

Beispiel 6

Ein Gemisch von 10,3 g (50 mMol) 2,4-Di-tert-butylphenol, 11,3 g (50 mMol) 4-Carboxymethoxy-mandelsäure und 0,5 g (5,2 mMol) Methansulfonsäure in 25 ml Essigsäure wird während 4 Stunden am Rückfluß gekocht. Die Essigsäure wird anschließend abdestilliert, der Rückstand mit 50 ml Ethanol versetzt und in einer Apparatur mit Molekularsieb-Aufsatz während 2 Stunden am Rückfluß gekocht. Das Reaktionsgemisch wird eingeengt, der Rückstand mit Toluol verdünnt und mit verdünnter Natriumbicarbonat-Lösung gewaschen. Die organische Phasen werden vereinigt, über Magnesiumsulfat getrocknet und am Vakuumrotationsverdampfer eingeengt.

Kristallisation des Rückstandes aus Ligroin liefert 16,1 g (76 %) der Verbindung (113), Smp. 95-96°C (Tabelle

In Analogie zu Beispiel 6 werden aus dem entsprechenden Phenolen die Verbindungen (114) und (120) hergestellt. Zur Herstellung der Verbindung (120) werden 2 Äquivalente 4-Carboxymethoxy-mandelsäure bezüglich eingesetztem Bisphenol verwendet.

Beispiel 7

Ein Gemisch von 5,0 g (11,8 mMol) 5,7-Di-tert-butyl-3-(4-ethyloxycarbonylmethoxyphenyl)benzofuran-2-on (Verbindung (113), Beispiel 6) und 2 g stark saurem Ionenaustauscher (Dowex) in 50 ml Methanol wird während 4 Stunden unter Rückfluß gekocht. Das Reaktionsgemisch wird filtriert und das Filtrat am Vakuumrotationsverdampfer eingeengt. Kristallisation des Rückstandes aus Ligroin liefert 3,0 g (62 %) 5,7-Di-tert-butyl-3-(4-methoxycarbonylmethoxyphenyl)benwfuran-2-on, Smp. 115-117°C (Verbindung (115), Tabelle 1).

Beispiel 8

15

50

55

60

65

Ein Gemisch von 20,6 g (0,10 Mol) 2,4-Di-tert-butylphenol, 22,6 g (0,10 Mol) 4-Carboxymethoxy-mandelsäure und 1 g (10 mMol) Methansulfonsäure in 50 ml Essigsäure wird während 15 Stunden am Rückfluß gekocht Die Essigsäure wird anschließend abdestilliert. Der Rückstand wird in 100 ml Dichlormethan gelöst und dreimal mit Wasser gewaschen. Die organischen Phasen werden vereinigt, über Magnesiumsulfat getrocknet und am Vaku-umrotaionsverdampfer eingeengt Kristallisation des Rückstandes aus Ligroin liefert 31,0 g (78 %) 5,7-Di-tert-butyl-3-(4-Carboxymethoxyphenyl)benzofuran-2-on, Smp. 158 – 162°C (Verbindung (116), Tabelle 1).

Beispiel 9

Ein Gemisch von 7,93 g (20 mMol) 5,7-Di-tert-butyl-3-(4-Carboxymethoxyphenyl)benzofuran-2-on (Verbindung (116), Beispiel 8), 4,13 g (20,0 mMol) N,N'-Dicyclohexylcarbodümid, 120 mg (1,0 mMol) 4-Dimethylaminopyridin und 2,6 g (35,5 mMol) Di-n-butylamin in 50 ml Dichlormethan werden während 2 Stunden bei Raumtemperatur gerührt. Das Reaktionsgmisch wird filtriert und das Filtrat am Vakuumrotationsverdampfer eingeengt. Chromatographie des Rückstandes an Kieselgel mit dem Laufmittel-System Ethylacetat/Hexan = 5:1 liefert 5,4 g (53 %) der Verbindung (117) (Tabelle 1) in Form eines Harzes.

In Analogie zu Beispiel 9 wird ausgehend von n-Butylamin die Verbindung (118) hergestellt

Beispiel 10

Herstellung von Bis-3,3'-[5,7-di-tert-butyl-3-(4-ethoxycarbonylmethoxyphenyl)benzofuran-2-on] (Verbindung (119), Tabelle 1).

Zu einer Natriumethylat-Lösung, hergestellt durch Zugabe von 0,92 g (40,0 mMol) Natrium in 80 ml absoluten Ethanol, werden unter Stickstoffatmosphäre 17,0 g (40,0 mMol) 5,7-Di-tert-butyl-3-(4-ethoxycarbonylmethoxyphenyl)benzofuran-2-on (Verbindung (113), Beispiel 6) gegeben. Anschließend wird bei Raumtemperatur während ca. 10 Minuten eine Lösung von 5,10 g (40,0 mMol) Jod in 50 ml Diethylether zugetropft. Das Reaktionsgemisch wird noch 1,5 Stunden nachgerührt, danach mit 250 ml Wasser verdünnt und mit Dichlormethan extrahiert. Die organischen Phasen werden abgetrennt, mit Wasser gewaschen, vereinigt, über Magnesiumsulfat getrocknet und am Vakuumrotationsverdampfer eingeengt. Zweimalige Kristallisation des Rückstandes aus Ethanol liefert 2,88 g (17 %) Bis-3,3'-[5,7-di-tert-butyl-3-(4-ethoxycarbonylmethoxyphenyl)benzofuran-2-on], Smp. 180—185° C (Verbindung (119), Tabelle 1).

Tabelle 1

Nr.	Verbindung	Smp. (°C)	C (%), H (%) (berechnet/gefunden)	Ausbeute (%)	5
101	CH ₃	198-203	68,45 4,73 68,13 4,86	81	10
102	CH ₃ CH ₃ OH	195-198	Charakterisiert durch H-NMR in DMF-d ₇ $\delta(H^*) = 5,23 \text{ ppm}$	90	20
103	CH ₃ CH ₃ C-OH	175-180	69,93 5,56 69,96 5,73	71	30 35
104	O-n-C ₁₂ H ₂₅ CH ₃	69-70	74,65 8,21 74,67 8,10	61	45

DE 43 16 622 A1

	Nr.	Verbindung	Smp. (°C)	C (%), H (%) (berechnet/gefunden)	Ausbeute (%)
10	105	O C O - O - O - C 18 H 37	85-87	76,33 9,15 76,38 9,26	81
20	106	CH ₃ O CH ₂ CH ₃ CH ₃	139-142	Charakterisiert durch H-NMR in CDCl ₃ $\delta(H^*) = 4,82 \text{ ppm}$	28
30 35	107	O H * O C O -n -C 18 H37 CH3 CH3	96-97	Charakterisiert durch ¹ H-NMR in CDCl ₃ $\delta(H^*) = 4.75 \text{ ppm}$	81
40	108	CH ₃ CH ₃ C-O-n-C ₁₆ H ₃₇	84-86	76,78 9,40 76,89 9,53	64

DE 43 16 622 A1

110 H ₃ C H ₃ C H ₃ C H ₄ C H ₅ C H ₅ C H ₇	* O_C_O-n-C_18H37 CH3 O_C-O-n-C_18H37 CH4	57-59	Charakterisiert durch ¹ H-NMR in CDCl ₃ $\delta(H^*) = 4,80 \text{ ppm}$	38
н _з с-ċ-сн _з ċн _з	1* O.c.O-n-C ₁₈ H ₃₇			
o-€`H*	√L _O -ĊH₂	Oel	Charakterisiert durch H-NMR in CDCl ₃ $\delta(H^*) = 4,82 \text{ ppm}$	60
111 CH ₃	O'C',O'CH2 O'CH2 CH2 OCH3	Oel	Charakterisiert durch ¹ H-NMR in CDCl ₃ δ(H*) = 4,80 ppm	84
112 OH*	0.5c,0.5H²	Harz	Charakterisiert durch 1 H-NMR in CDCl ₃ $\delta(H^*) = 4,80$ ppm	78

DE 43 16 622 A1

	Nr.	Verbindung	Smp. (°C)	C (%), (berechnet	H (%) /gefunden)	Ausbeute (%)
10	113	H ₃ C CH ₃ O H O _{.C} .OCH ₂ CH ₃ H ₃ C CH ₃ O CH ₂ CH ₃ CH ₃ CH ₃	95-96	73,56 73,42	7,60 7,64	76
20	114	n-H ₃₃ C ₁₆ CH ₃ O-CH ₂ CH ₃ CH ₃	Harz	76,78 76,85	9,40 9,59	39
30	115	H ₃ C, CH ₃ O, CH ₃ O, CH ₃ H ₃ C, CH ₃ O, CH ₃	115-117	73,15 73,27	7,37 7,46	62
45	116	H ₃ C, CH ₃ O, O H O _{.C} .OH H ₃ C, CH ₃ O, CH ₂ H ₃ C - C - CH ₃ CH ₃	158-162	72,71 72,59	7,12 7,41	78

Nr.	Verbindung	Smp. (°C)	C (%), H (%), N (%) (berechnet/gefunden)		
117	H ₃ C CH ₃ O H O CH ₂ H ₃ C C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	Harz	75,70 8,93 2,76 75,43 8,82 3,06	53	1
118	H ₃ C CH ₃ O H * O C NH H ₃ C CH ₃ O CH ₂ ** H ₃ C CH ₃ O CH ₂ ** H ₃ C C CH ₃ O CH ₂ **	Нагz	Charakterisiert durch ¹ H-NMR in CDCl ₃ $\delta(H^*) = 4,80 \text{ ppm}$ $\delta(H^{**}) = 4,48 \text{ ppm}$	47	2
119	H ₃ C C CH ₃ O C CH ₂ OCH ₂ CO ₂ CH ₂ CH ₃ 2	180-185	73,73 7,38 73,74 7,44	17	3
120	CH ₃ C-C-CH ₃ H ₃ C-C-CH ₃ OH ₃ C-C-CH ₃ H ₃ C-C-CH ₃ OH ₃ C-C-CH ₃ H ₃ C-C-CH ₃ OH ₃ C-C-CH ₃ H ₃ C-C-C-CH ₃	Harz	Charakterisiert durch H-NMR in CDCl ₃ δ(H*) = 4,60 ppm	11	4

Beispiel 11

Stabilisierung von Polypropylen bei Mehrfachextrusion.

1,3 kg Polypropylenpulver (Profax 6501), das mit 0,025 % Irganox® 1076 3-[3,5-Ditert-butyl-4-hydroxyphenyl]propionsäure-n-octadecylester) vorstabilisiert wurde (mit einem bei 230°C und mit 2,16 kg gemessenen Schmelzindex von 3,2), werden gemischt mit 0,05 % Irganox® 1010 (Pentaerythrit-tetrakis-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionat], 0,05 % Calciumstearat, 0,03 % Dihydrotalcit (DHT 4A, Kyowa Chemical Industry Co., Ltd., [Mg45Al2(OH)13CO3·3,5 H2O]) und 0,015 % Verbindung aus Tabelle 1. Diese Mischung wird in einem Extruder mit einem Zylinderdurchmesser von 20 mm und einer Länge von 400 mm mit 100 Umdrehungen pro Minute extrudiert, wobei die 3 Heizzonen auf die folgenden Temperaturen eingestellt werden: 260, 270, 280°C. Das Extrudat wird zur Kühlung durch ein Wasserbad gezogen und anschließend granuliert. Dieses Granulat wird wiederholt extrudiert. Nach 3 Extrusionen wird der Schmelzindex gemessen (bei 230°C mit 2,16 kg). Große Zunahme des Schmelzindex bedeutet starken Kettenabbau, also schlechte Stabilisierung. Die Resultate sind in Tabelle 2 zusammengefaßt.

65

Tabelle 2

	Verbindung aus Tabelle 1	Schmelzindex nach 3 Extrusionen
5	_	20,0
	106	7,4
	107	7,6
	110	7,0
10		Beispiel 12

Stabilisierung von Polyethylen während der Verarbeitung.

100 Teile Polyethylenpulver (Lupolen 5260 Z) werden mit 0,05 Teilen Pentaerythrit-tetrakis-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionat], 0,05 Teilen Tris-(2,4-di-tert-butylphenyl)-phosphit und 0,05 Teilen Verbindung aus Tabelle 1 gemischt und in einem Brabender Plastographen bei 220°C und 50 Umdrehungen pro Minute geknetet. Während dieser Zeit wird der Knetwiderstand als Drehmoment kontinuierlich registriert. Im Verlauf der Knetzeit beginnt das Polymere nach längerer Konstanz zu vernetzen, was anhand der raschen Zunahme des Drehmoments festgestellt werden kann. In der Tabelle 3 ist die Zeit bis zur merklichen Zunahme des Drehmoments als Maß der Stabilisatorwirkung angegeben. Je länger diese Zeit ist, desto besser ist die Stabilisatorwirkung.

Tabelle 3

25	Verbindung aus Tabelle 1	Zeit bis zum Anstieg von Drehmoment (Min)
	_	9,0
	105	29,5
	106	33,0
30	107	30,0
	110	30,0
	111	27,0
	112	28,5

Patentansprüche

- 1. Zusammensetzung enthaltend
- a) ein dem oxidativen, thermischen oder lichtinduzierten Abbau unterworfenes organisches Material und
- b) mindestens eine Verbindung der Formel (1),

worin R_2 , R_3 , R_4 und R_5 unabhängig voneinander Wasserstoff, $C_1 - C_{25} - C$ -Alkyl, $C_7 - C_9$ -Phenylalkyl, unsubstituiertes oder durch $C_1 - C_4$ -Alkyl substituiertes Phenyl, unsubstituiertes oder durch $C_1 - C_4$ -Alkyl substituiertes $C_5 - C_8$ Cycloalkyl; $C_1 - C_{18}$ -Alkoxy, Hydroxy, $C_1 - C_{25}$ -Alkanoyloxy, $C_3 - C_{25}$ -Alkenoyloxy, durch Sauerstoff, Schwefel oder

35

40

55

65

unterbrochenes C_3-C_{25} -Alkanoyloxy; C_6-C_9 -Cycloalkylcarbonyloxy, Benzoyloxy oder durch C_1-C_{12} -Alkyl substituiertes Benzoyloxy darstellen, worin R_{13} Wasserstoff oder C_1-C_8 -Alkyl bedeutet, oder ferner die Reste R_2 und R_3 oder die Reste R_4 und R_5 zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Phenylring bilden, R_4 zusätzlich $-(CH_2)_n-COR_{14}$ darstellt, worin n 0,1 oder 2 ist, R_{14} Hydroxy,

$$\left[-O \frac{1}{r} M^{r+} \right]$$
, C_1 - C_{18} -Alkoxy oder $-N \stackrel{R_{15}}{R_{16}}$

bedeutet, R_{15} und R_{16} unabhängig voneinander Wasserstoff oder C_1-C_{18} -Alkyl darstellen, M ein r-wertiges Metallkation ist und r 1,2 oder 3 bedeutet, R_7 , R_8 , R_9 und R_{10} unabhängig voneinander Wasserstoff, C_1-C_4 -Alkyl oder C_1-C_4 -Alkoxy bedeuten, mit der Bedingung, daß mindestens einer der Reste R_7 , R_8 , R_9 und R_{10} Wasserstoff ist, R_{11} und R_{12} unabhängig voneinander Wasserstoff, C_1-C_4 -Alkyl oder Phenyl darstellen, und wenn R_3 , R_5 , R_6 , R_7 und R_{10} Wasserstoff sind, R_4 zusätzlich einen Rest der Formel (2)

bedeutet, worin R_2 , R_8 , R_9 , R_{11} und R_{12} die obige Bedeutung haben und R_1 wie unten für m=1 angegeben definiert ist und R_{17} und R_{18} unabhängig voneinander Wasserstoff, C_1-C_{12} -Alkyl oder Phenyl darstellen, oder R_{17} und R_{18} zusammen mit dem C-Atom, an das sie gebunden sind, einen unsubstituierten oder durch 1 bis $3 C_1-C_4$ -Alkyl substituierten C_5-C_7 -Cycloalkylidenring bilden, m eine ganze Zahl aus dem Bereich von 1 bis 6 bedeutet, und wenn m 1 ist, R_1 Hydroxy, C_1-C_{30} -Alkoxy, durch Sauerstoff, Schwefel oder

unterbrochenes $C_3 - C_{30}$ -Alkoxy; $C_7 - C_9$ -Phenylalkoxy, $C_5 - C_{12}$ -Cycloalkoxy, $C_2 - C_{18}$ -Alkenyloxy, unsubstituiertes oder durch $C_1 - C_{12}$ -Alkyl substituiertes Phenoxy,

$$\left[-0^{\circ} \frac{1}{\Gamma} M^{\Gamma+}\right]$$
, $-N_{R_{16}}^{R_{15}}$, $-O-(CH_2)_p$ - P
 $O-R_{19}$
 $O-R_{20}$
 $O-R_$

 R_{13} , R_{15} , R_{16} , r und M die obige Bedeutung haben, R_{19} und R_{20} unabhängig voneinander $C_1 - C_4$ -Alkyl dedeuten, p 1 oder 2 ist, und R_6 Wasserstoff oder einen Rest der Formel (3)

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{8}
 R_{7}
 R_{8}
 R_{9}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 $R_$

bedeutet, worin R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} , R_{11} und R_{12} die obige Bedeutung haben; oder wenn m 2 ist, R_1 C_2 — C_{12} -Alkandioxy, durch Sauerstoff, Schwefel oder

65

60

43 16 622

-OCH₂-CH=CH-CH₂O- oder -OCH₂-C=C-CH₂O- darstellt, wobei R₁₃ die obige

10

5

Bedeutung hat; oder wenn m 3 ist, R₁ C₃-C₁₀-Alkantrioxy, -OCH₂-C-CH₂OH oder CH₂O-

20

15

darstellt; oder wenn m 4 ist, R₁ C₄-C₁₀-Alkantetraoxy,

bedeutet; oder wenn m 5 ist, R₁ C₅-C₁₀-Alkanpentaoxy ist; oder wenn m 6 ist, R₁

35

40

30

2. Zusammensetzung gemäß Anspruch 1, worin R2, R3, R4 und R5 unabhängig voneinander Wasserstoff, C₁-C₁₈-Alkyl, Benzyl, Phenyl, C₅-C₈-Cycloalkyl, C₁-C₈-Alkoxy, Hydroxy, C₁-C₁₈-Alkanoyloxy, C3-C18-Alkenoyloxy oder Benzoyloxy darstellen, R4 zusätzlich -(CH2)n-COR14 bedeutet, m 1 bis 4 ist, und wenn m 1 ist, R₁ Hydroxy, C₁ - C₁₈-Alkoxy, durch Sauerstoff, Schwefel oder

N-R₁₃ 45

> unterbrochenes C₃-C₁₈-Alkoxy; Benzyloxy, C₅-C₈-Cycloalkoxy, unsubstituiertes oder durch C₁-C₈-Alkyl substituiertes Phenoxy,

50

$$-N$$
 R_{15}
oder
 $-O-(CH_2)_p-P$
 $O-R_{18}$
 $O-R_{29}$

55

darstellt, wobei R13, R15, R16, p, R19 und R20 die obige Bedeutung haben; oder wenn m 2 ist, R1 C2-C12-Alkandioxy oder durch Sauerstoff unterbrochenes C₃-C₂₅-Alkandioxy darstellt; oder wenn m 3 ist, R₁ C₃-C₁₀-Alkantrioxy bedeutet; oder wenn m 4 ist, R₁

60

darstellt.

3. Zusammensetzung gemäß Anspruch 1, worin mindestens zwei der Reste R2, R3, R4 und R5 für Wasserstoff stehen.

4. Zusammensetzung gemäß Anspruch 3, worin R3 und R5 Wasserstoff sind.

5. Zusammensetzung gemäß Anspruch 1, worin m 1 ist.

6. Zusammensetzung gemäß Anspruch 1, worin R_3 , R_5 , R_7 und R_{10} unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl sind, R_2 Wasserstoff oder C_1-C_{18} -Alkyl bedeutet, R_4 Wasserstoff, C_1-C_{12} -Alkyl, C_1-C_8 -Alkoxy oder $-(CH_2)_n-COR_{14}$ darstellt, worin n 0,1 oder 2 ist, R_{14} Hydroxy oder C_1-C_{12} -Alkoxy bedeutet, R_{11} und R_{12} unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl sind, m 1 ist und R_1 Hydroxy, C_1-C_{18} -Alkoxy, durch Sauerstoff unterbrochenes C_3-C_{18} -Alkoxy, unsubstituiertes oder durch C_1-C_8 -Alkyl substituiertes Phenoxy,

darstellt, wobei R₁₅ und R₁₆ unabhängig voneinander Wasserstoff oder C₁ - C₁₂-Alkyl sind.

7. Zusammensetzung gemäß Anspruch 1, worin m 1 ist, R_1 Hydroxy, $C_1 - C_{18}$ -Alkoxy, durch Sauerstoff unterbrochenes $C_3 - C_{18}$ -Alkoxy, unsubstituiertes oder durch $C_1 - C_8$ -Alkyl substituiertes Phenoxy,

$$_{1}^{1}$$
 $_{16}^{R_{15}}$ oder $_{0}^{O}$ $_{10}^{O}$ $_{19}^{O}$ $_{0}^{R_{19}}$ $_{0}^{O}$ $_{19}^{R_{19}}$ $_{0}^{O}$ $_{19}^{R_{19}}$ $_{0}^{O}$

darstellt, wobei R_{15} und R_{16} unabhängig voneinander Wasserstoff oder C_1-C_{12} -Alkyl sind, R_2 Wasserstoff, C_1-C_{18} -Alkyl oder Cyclohexyl bedeutet, R_3 , R_5 , R_7 und R_{10} Wasserstoff sind, oder die Reste R_2 und R_3 zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Phenylring bilden, R_4 Wasserstoff, C_1-C_6 -Alkyl, Cyclohexyl, C_1-C_4 -Alkoxy oder $-(CH_2)_2-COR_{14}$ darstellt, worin R_{14} C_1-C_4 -Alkyl bedeutet, R_8 , R_9 , R_{11} und R_{12} unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl bedeuten, und wenn R_6 Wasserstoff ist, R_4 zusätzlich einen Rest der Formel (2)

$$R_{2}$$
 R_{17}
 R_{18}
 R_{8}
 R_{8}
 R_{10}
 R_{11}
 R_{12}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{1

bedeutet, worin R_1 , R_2 , R_8 , R_9 , R_{11} und R_{12} die obige Bedeutung haben, R_{17} und R_{18} unabhängig voneinander Wasserstoff oder C_1 — C_4 -Alkyl darstellen, oder R_{17} und R_{18} zusammen mit dem C-Atom, an das sie gebunden sind, einen C_5 — C_7 -Cycloalkylidenring bilden, R_6 Wasserstoff oder einen Rest der Formel (3)

$$R_{2}$$
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{8}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{16}
 R_{17}
 R_{18}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

bedeutet, worin R₁, R₂, R₃, R₄, R₅, R₇, R₈, R₉, R₁₀, R₁₁ und R₁₂ die obige Bedeutung haben.

8. Zusammensetzung gemäß Anspruch 1, worin m 1 ist, R₁ Hydroxy, C₁—C₁₈-Alkoxy, unsubstituiertes oder durch C₁—C₄-Alkyl substituiertes Phenoxy;

65

5

35

iertes $C_5 - C_8$ -Cycloalkyl; $C_1 - C_{18}$ -Alkoxy, $C_1 - C_{25}$ -Alkanoyloxy, $C_3 - C_{25}$ -Alkenoyloxy, durch Sauerstoff, Schwefel oder

unterbrochenes C_3-C_{25} -Alkanoyloxy; C_6-C_9 -Cycloalkylcarbonyloxy, Benzoyloxy oder durch C_1-C_{12} -Alkyl substituiertes Benzoyloxy darstellen, worin R_{13} Wasserstoff oder C_1-C_8 -Alkyl bedeutet, oder ferner die Reste R_2 und R_3 oder die Reste R_4 und R_5 zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Phenylring bilden, R_4 zusätzlich $-(CH_2)_n-COR_{14}$ darstellt, worin n 0,1 oder 2 ist, R_{14} Hydroxy,

$$\left[-0^{\circ} \frac{1}{r} M^{r+}\right]$$
,

C1-C18-Alkoxy oder

$$-N_{R_{16}}$$

bedeutet, R_{15} und R_{16} unabhängig voneinander Wasserstoff oder C_1-C_{18} -Alkyl darstellen, M ein r-wertiges Metallkation ist und r 1,2 oder 3 bedeutet, R_7 , R_8 , R_9 und R_{10} unabhängig voneinander Wasserstoff, C_1-C_4 -Alkyl oder C_1-C_4 -Alkoxy bedeuten, mit der Bedingung, daß mindestens einer der Reste R_7 , R_8 , R_9 und R_{10} Wasserstoff ist, R_{11} und R_{12} unabhängig voneinander Wasserstoff, C_1-C_4 -Alkyl oder Phenyl darstellen, und wenn R_3 , R_5 , R_6 , R_7 und R_{10} Wasserstoff sind, R_4 zusätzlich einen Rest der Formel (2)

$$R_{2}$$
 R_{17}
 R_{18}
 R_{18}
 R_{19}
 R_{11}
 R_{12}
 R_{12}
 R_{17}
 R_{18}
 R_{19}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{17}
 R_{18}
 R_{18}
 R_{18}
 R_{19}
 R_{19}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 $R_$

bedeutet, worin R_2 , R_8 , R_9 , R_{11} und R_{12} die obige Bedeutung haben und R_1 wie unten für m=1 angegeben definiert ist und R_{17} und R_{18} unabhängig voneinander Wasserstoff, C_1-C_{12} -Alkyl oder Phenyl darstellen, oder R_{17} und R_{18} zusammen mit dem C-Atom, an das sie gebunden sind, einen unsubstituierten oder durch 1 bis 3 C_1-C_4 -Alkyl substituierten C_5-C_7 -Cycloalkylidenring bilden, m eine ganze Zahl aus dem Bereich von 1 bis 6 bedeutet, und wenn m 1 ist, R_1 Hydroxy, C_1-C_{30} -Alkoxy, durch Sauerstoff, Schwefel oder

unterbrochenes C_3-C_{30} -Alkoxy; C_7-C_9 -Phenylalkoxy, C_5-C_{12} -Cycloalkoxy, C_2-C_{18} -Alkenyloxy, unsubstituiertes oder durch C_1-C_{12} -Alkyl substituiertes Phenoxy,

$$\left[-O^{\theta} \stackrel{1}{\xrightarrow{r}} M^{r+} \right], \quad -N_{R_{16}}^{R_{15}}, \quad -O \cdot (CH_2)_p \cdot P \stackrel{O}{\xrightarrow{P}} O \cdot R_{19} \\ O \cdot R_{20} \qquad Oder \quad -OCH_2 \cdot C \cdot CH_2OH \quad bedeutet, \\ O \cdot R_{20} \qquad CH_2OH \qquad 60$$

 R_{13} , R_{16} , R_{16} , r und M die obige Bedeutung haben, R_{19} und R_{20} unabhängig voneinander C_1-C_4 -Alkyl bedeuten, p 1 oder 2 ist, und R_6 Wasserstoff oder einen Rest der Formel (3)

65

45

5

10

15

20

25

30

35

40

45

50

55

60

65

bedeutet, worin R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} R_{11} und R_{12} die obige Bedeutung haben; oder wenn m 2 ist, R_1 C_2 — C_{12} -Alkandioxy, durch Sauerstoff, Schwefel oder

N—R₁₃ unterbrochenes C₃-C₂₅-Alkandioxy, -OCH₂-C-CH₂OH CH₂OH

-OCH₂-CH=CH-CH₂O- oder -OCH₂-C≡C-CH₂O- darstellt, wobei R₁₃ die obige

Bedeutung hat; oder wenn m 3 ist, R₁ C₃-C₁₀-Alkantrioxy, OCH₂-C-CH₂OH oder CH₂O-

 CH_2CH_2O | darstellt; oder wenn m 4 ist, R_1 C_4 - C_{10} -Alkantetraoxy,

bedeutet; oder wenn m 5 ist, R₁ C₅-C₁₀-Alkanpentaoxy ist; oder wenn m 6 ist, R₁

13. Verbindungen gemäß Anspruch 12, worin R_2 , R_3 , R_4 und R_5 unabhängig voneinander Wasserstoff, C_1-C_{18} -Alkyl, Benzyl, Phenyl, C_5-C_8 -Cycloalkyl, C_1-C_8 -Alkoxy, C_1-C_{18} -Alkanoyloxy, C_3-C_{18} -Alkenoyloxy oder Benzoyloxy darstellen, R_4 zusätzlich $-(CH_2)_n-COR_{14}$ bedeutet, m 1 bis 4 ist, und wenn m 1 ist, R_1 Hydroxy, C_1-C_{18} -Alkoxy, durch Sauerstoff, Schwefel oder

unterbrochenes C_3-C_{18} -Alkoxy; Benzyloxy, C_5-C_8 -Cycloalkoxy, unsubstituiertes oder durch C_1-C_8 -Alkyl substituiertes Phenoxy,

$$-N_{R_{16}}^{R_{15}}$$
 oder $-O-(CH_2)_p-P_2^{O}$

darstellt, wobei R_{13} , R_{15} , R_{16} , p, R_{19} und R_{20} die obige Bedeutung haben; oder wenn m 2 ist, R_1 C_2 — C_{12} -Alkandioxy oder durch Sauerstoff unterbrochenes C_3 — C_{25} -Alkandioxy darstellt; oder wenn m 3 ist, R_1 C_3 — C_{10} -Alkantrioxy bedeutet; oder wenn m 4 ist, R_1

5

10

25

darstellt.

14. Verbindungen gemäß Anspruch 12, worin mindestens zwei der Reste R2, R3, R4 und R5 für Wasserstoff stehen.

15. Verbindungen gemäß Anspruch 12, worin R3 und R5 Wasserstoff sind.

16. Verbindungen gemäß Anspruch 12, worin m 1 ist.

17. Verbindungen gemäß Anspruch 12, worin m 1 ist, R_1 Hydroxy, C_1-C_{18} -Alkoxy, durch Sauerstoff unterbrochenes C_3-C_{18} -Alkoxy, unsubstituiertes oder durch C_1-C_8 -Alkyl substituiertes Phenoxy,

$$-N_{R_{16}}^{R_{15}}$$
 oder $-O-(CH_2)_p$ $-P$ $O-R_{19}$ $O-R_{20}$

darstellt, wobei R_{15} und R_{16} unabhängig voneinander Wasserstoff oder C_1-C_{12} -Alkyl sind, R_2 Wasserstoff, C_1-C_{18} -Alkyl oder Cyclohexyl bedeutet, R_3 , R_5 , R_7 und R_{10} Wasserstoff sind, oder die Reste R_2 und R_3 zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen Phenylring bilden, R_4 Wasserstoff, C_1-C_6 -Alkyl, Cyclohexyl, C_1-C_4 -Alkoxy oder $-(CH_2)_2-COR_{14}$ darstellt, worin $R_1A_2-C_4$ -Alkyl bedeutet, R_6 , R_9 , R_{11} und R_{12} unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl bedeuten, und wenn R_6 Wasserstoff ist, R_4 zusätzlich einen Rest der Formel (2)

$$R_{2}$$
 R_{17}
 R_{18}
 R_{8}
 R_{10}
 R_{12}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 $R_{$

bedeutet, worin R_1 , R_2 , R_8 , R_9 , R_{11} und R_{12} die obige Bedeutung haben, R_{17} 7 und R_{18} unabhängig voneinander Wasserstoff oder C_1-C_4 -Alkyl darstellen, oder R_{17} und R_{18} zusammen mit dem C-Atom, an das sie gebunden sind, einen C_5-C_7 -Cycloalkylidenring bilden, R_6 Wasserstoff oder einen Rest der Formel (3)

$$R_2$$
 R_3
 R_4
 R_5
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_9
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

bedeutet, worin R₁, R₂, R₃, R₄, R₅, R₇, R₈, R₉, R₁₀, R₁₁ und R₁₂ die obige Bedeutung haben. 18. Verbindungen gemäß Anspruch 12, worin m 1 ist, R₁ Hydroxy, C₁—C₁₈-Alkoxy, unsubstituiertes oder durch C1-C4-Alkyl substituiertes Phenoxy;

oder

darstellt, wobei R_{15} und R_{16} unabhängig voneinander Wasserstoff oder C_1 — C_4 -Alkyl sind, p 1 oder 2 ist und R_{19} und R_{20} C_1 — C_4 -Alkyl darstellen, R_2 Wasserstoff oder C_1 — C_{18} -Alkyl bedeutet, R_3 , R_5 , R_7 , R_{10} , R_{11} und R_{12} Wasserstoff sind, R_4 Wasserstoff oder C_1 — C_4 -Alkyl bedeutet, und wenn R_6 Wasserstoff ist, R_4 zusätzlich einen Rest der Formel (2)

bedeutet R₁₇ und R₁₈ zusammen mit dem C-Atom, an das sie gebunden sind, einen Cyclohexylidenring bilden, R₈ und R₉ unabhängig voneinander Wasserstoff oder C₁—C₄-Alkyl bedeuten, R₆ Wasserstoff oder einen Rest der Formel (3)

bedeutet, worin R₁, R₂, R₃, R₄, R₅, R₇, R₈, R₉, R₁₀ R₁₁ und R₁₂ die obige Bedeutung haben.

19. Verwendung der Verbindungen der in Anspruch 1 definierten Formel (1) als Stabilisatoren für organische Materialien gegen oxidativen, thermischen oder lichtinduzierten Abbau.

20. Verfahren zum Stabilisieren eines organischen Materials gegen oxidativen, thermischen oder lichtinduzierten Abbau, dadurch gekennzeichnet, daß man diesem mindestens eine Verbindung der in Anspruch 1 definierten Formel (1) einverleibt oder auf dieses aufbringt.