

计算方法实验题

危国锐 120034910021

(上海交通大学海洋学院,上海 200030)

摘 要:摘要.

关键词: 关键词 1, 关键词 2

0 预备知识

0.1 插值法

函数 f(x) 关于插值区间 [a,b] 上的插值节点 x_0, \dots, x_n , 的 Lagrange 插值多项式

$$L_n(x) := \sum_{k=0}^{n} f(x_k) l_k(x), \qquad (1)$$

其中插值基函数

$$l_k(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x - x_i}{x_k - x_i} = \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)},\tag{2}$$

记号

$$\omega_{n+1}(x) := \prod_{i=0}^{n} (x - x_i). \tag{3}$$

定义 $\omega_0 \equiv 1$.

函数 f(x) 关于插值区间 [a,b] 上的插值节点 x_0, \dots, x_n , 的 Newton **差商插值多项式**

$$N_n(x) := \sum_{k=0}^n f[x_0, \dots, x_k] \omega_k(x), \qquad (4)$$

其中函数 f(x) 关于节点 x_0, \dots, x_k 的 k 阶差商定义为

$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0},$$

$$f[x_0] := f(x_0). \tag{5}$$

可以证明(参见[1,定理2.1])(1)(4)是相同的插值多项式,即有

$$L_n \equiv N_n$$
,

且插值余项

$$R_{n}(x) := f(x) - L_{n}(x) = f(x) - N_{n}(x)$$

$$= f[x, x_{0}, \dots, x_{n}] \omega_{n+1}(x)$$

$$= \frac{f^{(n+1)}(\eta)}{(n+1)!} \omega_{n+1}(x), \qquad \eta = \eta(x) \in [a, b].$$
(6)

完成日期: 2021-12-28

课程名称:研-MATH6004-M03-计算方法

0.2 数值积分

取 $I_n \coloneqq \int_a^b L_n(x) \mathrm{d}x$ 作为积分 $I \coloneqq \int_a^b f(x) \mathrm{d}x$ 的近似值,这样构造出的求积公式

$$I_n = \sum_{k=0}^n A_k f(x_k) \tag{7}$$

称为插值型的,其中求积系数 A_k 通过插值基函数 $l_k(x)$ 的积分

$$A_k = \int_a^b l_k(x) \, \mathrm{d}x \tag{8}$$

得出.

由插值余项定理(6)立得插值型求积公式(7)的余项

$$E_n[f] := I - I_n = \int_a^b R_n(x) \, \mathrm{d}x = \int_a^b \frac{f^{(n+1)}(\eta)}{(n+1)!} \omega_{n+1}(x) \, \mathrm{d}x. \tag{9}$$

如果某个求积公式对于次数不大于 m 的多项式均能准确成立,但对于 m+1 次多项式就不一定准确,则称该求积公式具有 m 次代数精度.

一般地,欲使某个求积公式具有m次代数精度,只要令它对于 $f(x) = 1, x, x^2, \cdots, x^m$ 都能准确成立.

可以证明(参见 [1,定理 4.1]),形如(7)的求积公式至少具有n次代数精度的充要条件是,它是插值型的.

设将积分区间 [a,b] 划分为 n 等份,步长 $h = \frac{b-a}{h}$. 所谓**复化求积法**,就是先用低阶的 Newton-Cotes 公式求得每个子区间 $[x_k,x_{k+1}]$ 上的积分值 I_k ,然后再求和,用 $\sum_{k=0}^{n-1} I_k$ 作为所求积分 I 的近似值.

如果一种复化求积公式 $I_n \stackrel{.}{=} h \rightarrow 0$ 时成立渐近关系式

$$\frac{I - I_n}{h^p} \to C, \qquad C = \text{const.} \neq 0, \tag{10}$$

则称求积公式 I_n 是 p 阶收敛的.

1 多项式插值(Lagrange)与数值求积

1.1 描述

1 在区间[-1,1]上取 $x_k = -1 + \frac{2}{n}k$, $k = 0,1,2,\cdots,n$, n=10 , 对函数 $f(x) = \frac{1}{1+25x^2}$ 作多项式插值,分别画出插值函数及 f(x) 的图形,并估计误差。由此插值公式推导对应的积分公式(积分系数可以用积分公式求数值解),代数精度,及积分余项,并用此积分公式计算 $\int_{-1}^{1} \frac{1}{1+25x^2} dx$ 并估计误差。

1.2 解决方案

Lagrange 插值多项式(1)成为

$$L_n(x) = \sum_{k=0}^{n} f(x_k) \prod_{\substack{i=0\\i\neq k}}^{n} \frac{x - x_i}{x_k - x_i}.$$
 (11)

由定理 2.2 得插值余项

$$R_n(x) := f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x), \tag{12}$$

其中 $\xi = \xi(x) \in [-1,1]$. 从而,用插值多项式(11)逼近f(x)的截断误差限是

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|,$$
 (13)

其中

$$M_{n+1} \coloneqq \max_{-1 < x < 1} |f^{(n+1)}(x)|.$$

式(11)的图像示于图 1,可见 Runge 现象.

相应于(11)的插值型积分公式(7)为

$$I_n[f] = \sum_{k=0}^{n} A_k f(x_k), \tag{14}$$

其中积分系数(8)为

$$A_{k} = \int_{a}^{b} \prod_{\substack{i=0\\i\neq k}}^{n} \frac{x - x_{i}}{x_{k} - x_{i}} dx.$$
 (15)

用 MATLAB 编程算得

$$A_0 = A_{10} = 0.0536682967238523,$$

 $A_1 = A_9 = 0.355071882849661,$
 $A_2 = A_8 = -0.162087141253808,$
 $A_3 = A_7 = 0.909892576559243,$
 $A_4 = A_6 = -0.870310245310246,$
 $A_5 = 1.42752926086259.$

由定理 4.1 得 (15) 至少有 n 次代数精度. 当 n 为偶数时,由 (参见 [1,定理 4.2])

$$E_n[x^{n+1}] = 0 (16)$$

知此时 (15) 至少具有 n+1 次代数精度.

按 [1,pp.85] 之法可证明, 当 n 为偶数时, 积分余项

$$E_n[f] := I - I_n[f] = \int_{-1}^{1} \frac{f^{(n+2)}(\xi)}{(n+2)!} (x - x_0) \omega_{n+1}(x) \, \mathrm{d}x. \tag{17}$$

用 MATLAB 编程可验证 $E_{10}[x^{12}] \neq 0$, 故 I_{10} 具有 11 次代数精度. 由(17),用(14)近似求积的截断误差限为

$$\left| E_n \left[\frac{1}{1 + 25x^2} \right] \right| \le \frac{M_{n+2}}{(n+2)!} \left| \int_{-1}^{1} (x - x_0) \omega_{n+1}(x) \, \mathrm{d}x \right|, \tag{18}$$

其中

$$M_{n+2} := \max_{-1 \le x \le 1} \left| \frac{\mathrm{d}^{n+2}}{\mathrm{d}x^{n+2}} \left(\frac{1}{1 + 25x^2} \right) \right|.$$

用 MATLAB 编程算得

$$I_{10}^{(1)} \left[\frac{1}{1 + 25x^2} \right] = 0.934660111130700,$$

这与积分精确值

$$I = \frac{1}{5} \arctan 5x \Big|_{-1}^{1} \approx 0.549360306778006$$

相去甚远,误差 $\left|I - I_{10}^{(1)}\right| \approx 0.385$.

图 1 Lagrange 插值多项式-等距节点

2 多项式插值(Chebyshev)与数值求积

2.1 描述

2 在区间[-1,1]上取点
$$x_k = \cos \frac{2k+1}{2(n+1)} \pi$$
 , $k = 0,1,2,\dots,n$, n=10, 对函数 $f(x) = \frac{1}{1+25x^2}$

作多项式插值,分别画出插值函数及 f(x) 的图形,并估计误差。若取 n=0, 1, 2, 由此插值公式推导对应的积分公式,积分余项,及代数精度,并用此积分公式计算 $\int_{-1}^{1} \frac{1}{1+25x^2} dx$ 并估计误差。

2.2 解决方案

与第 1 题相比,本题采取了不同的插值节点. 新的 Lagrange 插值多项式仍具有(11)的形式,其图像示于图 2. 可见 Runge 现象比第 1 题有所改善.

新的插值截断误差限仍具有(13)的形式. 特别地,当 n=0,1,2 时,插值截断误差限 $|R_0[f]| \le M_1|x-0| \le M_1,$

计算方法实验题
$$|R_1[f]| \le \frac{M_2}{2!} \left| \left(x - \frac{\sqrt{2}}{2} \right) \left(x + \frac{\sqrt{2}}{2} \right) \right| \le \frac{M_2}{4},$$

$$|R_3[f]| \le \frac{M_3}{3!} \left| \left(x - \frac{\sqrt{3}}{2} \right) x \left(x + \frac{\sqrt{3}}{2} \right) \right| \le \frac{M_3}{24}.$$

相应的插值型积分公式仍具有(14)的形式. 特别地, 当n=0,1,2时, 相应的积分公式 成为

$$\begin{split} I_0[f] &= 2f(0), \\ I_1[f] &= f\left(\frac{\sqrt{2}}{2}\right) + f\left(-\frac{\sqrt{2}}{2}\right), \\ I_2[f] &= \frac{4}{9}f\left(\frac{\sqrt{3}}{2}\right) + \frac{10}{9}f(0) + \frac{4}{9}f\left(-\frac{\sqrt{3}}{2}\right). \end{split}$$

容易验证 I_0, I_1, I_2 分别具有 1 次、1 次、3 次代数精度. 相应的积分余项成为

$$E_n[f] = \int_{-1}^{1} f(x) dx - I_n[f].$$

计算得

$$I_0 \left[\frac{1}{1 + 25x^2} \right] = 2,$$

$$I_1 \left[\frac{1}{1 + 25x^2} \right] = \frac{4}{27},$$

$$I_2 \left[\frac{1}{1 + 25x^2} \right] = \frac{274}{237},$$

这与精确值 $I = \frac{1}{5} \arctan 5x \Big|_{-1}^{1} \approx 0.549360306778006$ 相去甚远.

用 MATLAB 编程算得

$$I_{10}^{(2)} \left[\frac{1}{1 + 25x^2} \right] \approx 0.566156473259776,$$

这与精确值比较接近,误差 $\left|I - I_{10}^{(2)}\right| \approx 1.68 \times 10^{-2}$.

图 2 Lagrange 插值多项式-Chebyshev

3 分段线性插值与复化求积

3.1 描述

3 在区间[-1,1]上取 $x_k = -1 + \frac{2}{n}k$, $k = 0,1,2,\cdots,n$, n=10 , 对函数 $f(x) = \frac{1}{1+25x^2}$ 作分段折线函数插值,分别画出插值函数及 f(x) 的图形,并比较误差。由此插值公式推导对应的积分公式,积分余项,及算法的收敛阶,并用此积分公式计算 $\int_{-1}^{1} \frac{1}{1+25x^2} dx$ 并估计误差。

3.2 解决方案

用插值基函数表示的分段线性插值函数为 $(h \coloneqq \frac{b-a}{h}, x_i \coloneqq a + ih, i = 0, \cdots, n)$

$$I_h(x) = \sum_{k=0}^{n} f(x_k) l_k(x),$$
 (19)

其中插值基函数

$$l_{j}(x) = \begin{cases} \frac{x - x_{j-1}}{x_{j} - x_{j-1}}, & x_{j-1} \leq x \leq x_{j}, & (j = 0 \text{ mbz}) \\ \frac{x - x_{j+1}}{x_{j} - x_{j+1}}, & x_{j} \leq x \leq x_{j+1}, & (j = n \text{ mbz}) \\ 0, & x \notin [x_{j-1}, x_{j+1}]. \end{cases}$$
(20)

分段线性插值函数(19)的图像示于图 3,可见插值误差小于第 1 题和第 2 题的.相应于(19)的插值型积分公式为

$$I_n^{(3)}[f] = \sum_{k=0}^n A_k f(x_k), \tag{21}$$

其中积分系数

$$A_k = \int_a^b l_k(x) \, \mathrm{d}x = \begin{cases} h/2, & k = 0, n, \\ h, & k = 1, \dots, n - 1. \end{cases}$$
 (22)

事实上,(21)便是复化梯形公式

$$I_n^{(3)}[f] = T_n[f] := \frac{h}{2} \left[f(a) + 2 \sum_{k=1}^n f(x_k) + f(b) \right],$$
 (23)

其积分余项

$$I[f] - T_n[f] = \frac{b - a}{12} h^2 f''(\eta), \qquad \eta \in [a, b].$$
 (24)

由(24)可看出,复化求积公式(23)是二阶收敛的. 计算出

$$I_{10}^{(3)} = T_{10} \left[\frac{1}{1 + 25x^2} \right] = 0.551221719457014,$$

可见这与精确值相当接近,其误差 $\left|I-I_{10}^{(3)}\right| \approx 1.86 \times 10^{-3}$ 比第 2 题 $I_{10}^{(2)}$ 的还要小.

4 复化 Gauss-Legendre 公式求积

4.1 描述

4 在区间[-1,1]上,将区间等分 10 等分,每一段上用两点 Gauss 型公式进行积分计算,得到复化 Gauss 型积分公式,推导此积分公式,积分余项,及算法的收敛阶,并用此积分公式计算 $\int_{-1}^{1} \frac{1}{1+25x^2} dx$ 并估计误差。

4.2 解决方案

记 $h\coloneqq \frac{b-a}{h},\; x_i\coloneqq a+ih,\; i=0,\cdots,n.$ 在小区间 $[x_{k-1},x_k]$ 上应用两点 Gauss-Legendre 公

式

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right) \tag{25}$$

得

$$\int_{x_{k-1}}^{x_k} f(x) \, \mathrm{d}x \approx \frac{h}{2} \left[\tilde{f}_k \left(-\frac{1}{\sqrt{3}} \right) + \tilde{f}_k \left(\frac{1}{\sqrt{3}} \right) \right],\tag{26}$$

其中

$$\tilde{f}_k(t) := f\left(\frac{h}{2}t + a + \left(k - \frac{1}{2}\right)h\right). \tag{27}$$

于是得到复化两点 Gauss-Legendre 公式

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx I_{n}^{(4)}[f] := \sum_{k=1}^{n} \frac{h}{2} \left[\tilde{f}_{k} \left(-\frac{1}{\sqrt{3}} \right) + \tilde{f}_{k} \left(\frac{1}{\sqrt{3}} \right) \right]. \tag{28}$$

由 [1,定理 4.5] 得 (26) 的积分余项

$$|R_k(x)| = \left| \frac{f^{(4)}(\xi)}{4!} \int_{x_{k-1}}^{x_k} (x - x_{k-1})^2 (x - x_k)^2 \, \mathrm{d}x \right| \le \frac{M_4}{4!} h\left(\frac{h}{2}\right)^4,\tag{29}$$

进而复化两点 Gauss-Legendre 公式(28)的积分余项

$$|R(x)| \le \sum_{k=1}^{n} |R_k(x)| \le \frac{M_4}{384} \frac{(b-a)^5}{n^4} = \frac{M_4(b-a)}{384} h^4.$$
 (30)

可见(28)是四阶收敛的.

计算得

$$I_{10}^{(4)} \left[\frac{1}{1 + 25x^2} \right] \approx 0.549360306778006,$$

可见这与精确值非常接近,其误差 $\left|I-I_{10}^{(4)}\right| \approx 5.613 \times 10^{-4}$ 比第 3 题 $I_{10}^{(3)}$ 的还要小.

5 讨论与结论

致谢

参考文献

[1] 李庆阳,王能超,易大义.数值分析[M].第 5 版.武汉:华中科技大学出版社,2021.

危国锐 男, 1998年生, 硕士研究生.

E-mail: weiguorui@sjtu.edu.cn

附录 本实验使用的 Matlab 源代码

Title

Guorui Wei

(School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China)

Abstract: Abstract.

Keywords: keyword1, keyword2