整理: 骆霄龙 授课教师: 胡太忠

13级《实用随机过程》期中考试试题

(2015-11-4)

1. 设 x₁,...,x_n 为正常数,请用概率的方法证明

$$\frac{1}{n}\sum_{i=1}^{n}x_{i} \ge \left(\prod_{i=1}^{n}x_{i}\right)^{1/n}.$$

- 2. 设 $X_1 \sim \text{Exp}(\lambda_1)$, $X_2 \sim \text{Exp}(\lambda_2)$, $X_3 \sim \text{Exp}(\lambda_3)$ 且三个随机变量相互独立, 其中
- 3. 考虑一个 $M/G/\infty$ 随机服务系统, 顾客到达系统的规律可以用齐次 Poisson 过程来 描述,单位时间内平均到达的顾客数为1,每个顾客需要服务员提供的服务时间是独 立同分布的, 其共同分布的概率密度函数为 $g(u) = 2(1+u)^{-3}$, $u \ge 0$, 系统有无穷多 个服务员 (即顾客到达系统后立即能得到服务). 以 A_t 表示时刻 t 系统中处于工作状 态的服务员个数.
 - (1) 已知时间段 (1,10] 到达了 2 位顾客, 求时间段 (15,20] 到达 2 位顾客的概率;
 - (2) 求 A₅ 的概率分布; フ A₅ ~ Poi(音)?
 - (3) 求 Cov(A₄, A₅).
- 4. 假设顾客到达银行的规律可用强度参数 $\lambda=2$ 的齐次 Poisson 过程来描述,每位到 达的顾客以概率 1/2 为男性. 已知在前 10 个单位时间里有 100 个顾客到达该银行, 问在该时间段到达该银行的女性顾客平均有多少?
- 5. 设 $\{X_n, n \geq 1\}$ 为独立同分布的随机变量序列,共同分布为参数 λ 的指数分布, N为几何分布随机变量,独立于 $\{X_n, n \geq 1\}$,其中

$$P(N = n) = p(1 - p)^{n-1}, n \ge 1.$$

求 $S = \sum_{k=1}^{N} X_k$ 的分布, 并基于齐次 Poisson 过程的相关理论加以解释.

13 级《实用随机过程》期中考试试题解答

- 1. 证明: 设 X 为一个随机变量,满足 $P(X = \log x_i) = 1/n, i = 1, ..., n.$ 对 $\phi(x) = e^x$ 应用 Jensen 不等式 $\mathsf{E}\phi(X) \geq \phi(\mathsf{E}X)$, 立得所欲证不等式。

$$P(X_3 > X_2, X_1 + X_2 > X_3) = E[P(X_3 > X_2, X_1 + X_2 > X_3 | X_1, X_2)]$$

$$= \int_0^\infty \int_0^\infty \lambda_1 \lambda_2 e^{-\lambda_1 x_- \lambda_2 y} \int_y^{x+y} \lambda_3 e^{-\lambda_3 z} dz$$

$$= \frac{\lambda_2 \lambda_3}{(\lambda_1 + \lambda_3)(\lambda_2 + \lambda_3)}$$
则用 HPP 的独立增量性,得

- 3. 解: 顾客到达过程 $\{N(t)\}$ 为 $\mathrm{HPP}(1)$, 即强度参数 $\lambda=1$
 - (1) 利用 HPP 的独立增量性,得

$$P(N(20) - N(15) = 2|N(10) - N(1) = 2) = P(N(20) - N(15) = 2) = 12.5e^{-5}$$
. 记服务时间生存函数为 $\overline{G}(u) = (1+u)^{-2}$ 押码比较原

- (2) 记服务时间生存函数为 $\overline{G}(u) = (1+u)^{-2}$, 把到达的顾客分为以下 3 类: I型:于(0,4]到达,且于时刻5未被服务完毕;
- II型: 于 (0,4) 到达, 且于 (4.5) 内被服务完毕;
- III 型:于 (4,5] 到达,且于时刻 5 未被服务完毕
- 具体分类如下:于任意时刻 s 到达的顾客,以概率 $p_i(s)$ 被划入第 i 型顾客, i=1,2,3

以 N_i 记 (0,5] 时段第 i 型顾客的总数, 则 $A_5=N_1+N_3,\,A_4=N_1+N_2.$ 由 Poisson 过程的抽样性质知: N_1, N_2, N_3 相互独立, 且皆服从 Poisson 分布, 对应的 Poisson 参 数分别为

$$\lambda_1 = \lambda \int_0^5 p_1(s)ds = 1/3$$

$$\lambda_2 = \lambda \int_0^5 p_2(s)ds = 7/15$$

$$\lambda_3 = \lambda \int_0^5 p_3(s)ds = 1/2.$$

于是 $A_5 \sim \text{Poisson}(5/6)$ $\text{Cov}(A_1, A_5) = \text{Var}(N_1) = 1/3$.