Algorytm Carliera dla $1|r_j, q_j|C_{max}$

Mariusz Makuchowski

13 maja 2019

Algorytm Carliera

Algorytm Carliera dla problemu $1|r_j, q_j|C_{max}$ jest algorytmem dokładnym bazującym na metodzie podziału i ograniczeń (B&B).

Podstawowymi elementami algorytmu Carliera są:

- algorytm Schrage dla problemu $1|r_j, q_j|C_{max}$; wyznaczenie UB;
- algorytm Schrage dla problemu $1|r_j, q_j, pmtn|C_{max}$; wyznaczenie LB;
- wyznaczanie bloku oraz zadania krytycznego.

Dolne ograniczenie

Uogólnienie problemu $1|r_j, q_j|C_{max}$ do problemu $1|r_j, q_j, pmtn|C_{max}$.

- każde rozwiązanie problemu $1|r_j, q_j|C_{max}$ jest także rozwiązaniem problemu $1|r_j, q_j, pmtn|C_{max}$.
- optymalne rozwiązanie problemu $1|r_j, q_j|C_{max}$ jest więc nie lepsze niż optymalne rozwiązanie problemu $1|r_j, q_j, pmtn|C_{max}$.
- znalezienie rozwiązania optymalnego w problemie $1|r_j,q_j,pmtn|C_{max}$ jest łatwe, zmodyfikowana postać algorytmu Schrage. Złożoność $O(n\log n)$.

Rozwiązanie optymalne π^*

Rozwiązanie optymlane oznaczamy przez:

$$\pi^* \in \arg\min_{\pi \in \Pi} C_{max}(\pi)$$

Dolne LB i górne UB ograniczenie tego rozwiązania to:

$$LB = C^*_{max,pmtn} \leqslant C_{max}(\pi^*) \leqslant C_{max}(\pi^S) = UB$$

Relacje kolejnościowe zadań

W problemie występuje relacja kolejnościowa zadań (i,j); jeżeli zadanie j musi wykonać się po zakończeniu zadania i. Relacje tworzą porządek topologiczny zadań.

Dla algorytmów Schrage można zastosować:

$$r_j := \max\{r_j, r_i + p_i\}$$

$$q_i := \max\{q_i, q_j + p_j\}$$

bez utraty rozwiązania optymalnego.

Ścieżka krytyczna w rozwiązaniu

j				4			7
r_i	10	13	11	20	30	0	30
$\vec{p_i}$				4		6	
q_j	7	26	24	21	8	17	0

Zadanie krytyczne w rozwiązaniu

j	1	2	3	4	5	6	7
rj	10	13	11	20	30	0	30
p_i	5	6	7	4	3	6	2
q_j	7	26	24	21	8	17	0

 ${\cal C}$ jest o zadaniem największej pozycji w (A, B) takie, że $q_{\cal C} < q_{\cal B}$ K jest blokiem zadań (C+1, B)

Zadanie krytyczne

- Jeżeli w rozwiązaniu π^S nie istnieje zadanie krytyczne C to rozwiązanie jest optymalne w tym węźle
- Jeżeli istnieje zadanie C to w rozwiązaniu optymlanym znaduje się ono
 - przed blokiem K;

$$q_c := p(K) + q(K)$$

za blokiem K

$$r_c := p(K) + r(K)$$

```
gdzie:
```

$$p(K) = \sum_{j \in K} p_j$$

$$r(K) = \min_{j \in K} r_j,$$

$$q(K) = \min_{j \in K} q_j$$

Węzeł algorytmu Carliera

- Z każdy węzeł algorytmu utożsamia nam zbiór wszystkich rozwiązań, z narzuconymi relacjami kolejnościowymi
- rozwiązanie optymalne węzła to lepsze z rozwiązań:
 - bieżące rozwiązanie π^S ,
 - najlepsze z rozwiązań z dodatkową relajcą: zadanie C przed zadaniami K,
 - najlepsze z rozwiązań z dodatkową relajcą: zadanie C za zadaniami K,

Dodatkowe elementy

- Dodatkowe testy eliminacyjne
- Dodatkowe szybkie LB dla powstających węzłów
- Zachłanna strategia przeglądania węzłów potomnych

Przykład: węzeł 1

					5		7
r_i	10	13	11	20	30	0	30
p_i	5	6	7	4	3	6	2
q_j	7	26	24	21	8	17	0

- $C_{\text{max}}(\pi^S) = 53$, LB=49, UB = 53;
- Nowy problem (węzeł 2) $r_1 = r(K) + p(K) = 11 + 17 = 28$, $H(\{1, 2, 3, 4\}) = 11 + 22 + 7 = 40 < UB$ więc analizujemy.
- Nowy problem (węzeł 3) $q_1 = q(K) + p(K) = 21 + 17 = 38$, $H(\{1,2,3,4\}) = 10 + 22 + 21 = 53 \geqslant UB$ więc zamykamy.

Przykład: węzeł 2

j	1	2	3	4	5	6	7
$\overline{r_i}$	28	13	11	20	30	0	30
p_i	5	6	7	4	3	6	2
q_j	7	26	24	21	8	17	0

- $C_{\text{max}}(\pi^S) = 50$, LB=49, UB=50;
- Nowy problem (węzeł 4) $q_3 = q(K) + p(K) = 26 + 6 = 32$, $H(\{2,3\}) = 11 + 13 + 26 = 50 \geqslant UB$ więc zamykamy.
- Nowy problem (węzeł 5) $r_3 = r(K) + p(K) = 13 + 6 = 19$, $H(\{2,3\}) = 13 + 13 + 24 = 50 \ge UB$ więc zamykamy.

Przykład: rozwiązanie optymalne

Brak otwarych węzłów, wiec posiadmy rozwiązani optymalne.

j	1	2	3	4	5	6	7
$\overline{r_i}$	10(28)	13	11	20	30	0	30
p_i	5	6	7	4	3	6	2
q_j	7	26	24	21	8	17	0

Przykład: drzewo analizowanych rozwiązań

