

INF1600

TP1

Par Kevin Nguyen (1839813), Farid El Fakhry(1875036)

Groupe: 03

École Polytechnique Montréal

3 Février 2019

Exercice 1

Question 1

- a) -51
- b) 107
- c) -1066
- d) -1314
- e) -128

Question 2

- a) DEC, HEX,
- b) DEC, HEX, OCT, BIN
- c) DEC, HEX, OCT, BIN
- d) OCT, DEC, HEX
- e) HEX

Question 3

- Décalage de 4 bits vers la gauche de la valeur 5(101) : 101<<4 = 1010000
- Comparaison avec un ET logique de bits entre x et 1010000
- Assigne le résultat du ET à la variable y

Question 4

a)

Nombre	Quotient	Reste
9876	4938	0
4938	2469	0
2469	1234	1
1234	617	0
617	308	1
308	154	0
154	77	0
77	38	1
38	19	0
19	9	1
9	4	1
4	2	0
2	1	0
1	0	1

Méthode de division (fait avec excel) 9876=010011010010100 -9876=101 1001 0110 1100=0xD96C

- b) -64=1011 1111=0xC0
- c) 12345=011 0000 0011 1001=0x3039

Question 5

- a) 1000 1011 + 0110 1010 = 1111 0101 = 0xF5, pas de débordement
- b) 0101 0010 + 0100 1001 = 1001 1011 = 0x9B, pas de débordement.

Exercice 2

a)
$$Taille\ (bits) = \frac{Piste}{Zone} * \frac{Secteur}{Piste} * 8 * Octet/Secteur$$

Zone	Taille(Gb=1024^3 bit)
1	1.89
2	4.24
3	4.87
4	4.96
Total	15.96Gb

Taille totale=1.995GB (GB=Gb/8)

- b) Nb de Secteurs par Zone = $\frac{Piste}{Zone} * \frac{Secteur}{Piste}$ Vitesse de lecture = VItesse Rotation * $\frac{Secteur}{Piste} * 512 * 8$
- c) La vitesse de lecture ne change pas selon le BUS
- d) La vitesse de lecture est généralement au nombre de surfaces.

Exercice 3

Zone	Nb de Secteurs	Proportion	Vitesse de		
			lecture(Mb/s)		
1	492208	11.8%	278		
2	1110720	26.5%	274		
3	1276800	30.5%	267		
4	1306800	31.2%	253		
total	4186528	100%	Moyenne=266Mb/s		

b) $(op = 13) \rightarrow R[a] \leftarrow R[a] - 1 : R[b] \leftarrow R[b] - 1 ;$

EXERCICE 5:

- b) T <- R[IR<20..18>]; R[IR<23..21> <- T + MEM2[T];

c)

Instruction	UAL	В	Α	С	D	Ε	F	G	ecrireEIP	ecrireT	ecrireReg	
T <- R[IR<2018>];	0x0A	01	0	0	0	1	0	0	0	1	0	
R[IR<2321> <- T + MEM2[T];	0X4A	XX	0	0	0	0	1	0	0	0	1	

2.

a) Soit un OP code 0b001001:

001 001 00011 00001 00010 00000100011 (big endian) donc en hexa : 0x24611023 (En little endian : 0x23106124)

b] T <- R[IR<20..18>]; T <- T+ IR<12..0>; R[IR<23..21>] <- T << R[IR<17..15>];

c)

Instruction	UAL	В	Α	С	D	Ε	F	G	ecrireEIP	ecrireT	ecrireReg
T <- R[IR<2018>];	0x0A	01	0	0	0	1	0	0	0	1	0
T <- T+ IR<120>	0X4A	XX	0	0	0	1	0	0	0	1	0
R[IR<2321>] <-	0x10	XX	0	0	0	0	1	0	0	0	1
T << R[IR<1715>];											