1. Write a pois.prob() function that computes P(X = x), $P(X \neq x)$, P(X < x), $P(X \leq x)$, P(X > x), and $P(X \geq x)$. Enable the user to specify the rate parameter λ .

```
pois.prob <- function(x, lambda, type="<="){
    # Use dpois and ppois to conditionally return the correct probability

if (type == "<=") {
    p = ppois(x, lambda)
} else if (type == "<") {
    p = ppois(x-1, lambda)
} else if (type == "=") {
    p = dpois(x, lambda)
} else if (type == "!=") {
    p = 1 - dpois(x, lambda)
} else if (type == ">=") {
    p = 1 - ppois(x, lambda)
} else if (type == ">=") {
    p = 1 - ppois(x, lambda)
} else {
    p = 1 - ppois(x+1, lambda)
}
return(p)
}
```

2. Write a beta.prob() function that computes P(X=x), $P(X\neq x)$, P(X< x), $P(X\leq x)$, P(X>x), and $P(X\geq x)$ for a beta distribution. Enable the user to specify the shape parameters α and β .

```
beta.prob <- function(x, a, b, type="<="){
    # Use dbeta and pbeta to conditionally return the correct probability

if (type == "<=" | type == "<") {
    p = pbeta(x, a, b)
}else if (type == "=") {
    p = 0
}else if (type == "!=") {
    p = 1
}else {
    p = 1 - pbeta(x, a, b)
}
return(p)
}</pre>
```