## Methods of Computational Physics

Ayush Paliwal

January  $4^{th}$ , 2020

## Partial Differential Equations

a) The imaginary time Scrödinger equation -  $-\frac{d\psi}{dt} = -\frac{h^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi$ , where  $V = \frac{L^2}{2X_o^2\pi}\cos^2(\frac{\pi x}{L})$  Rewriting it in dimensionless form, using -  $\frac{X}{X_o} = \tilde{X}, X_o^2 = \frac{h}{m\omega}$  and  $\tau = \hbar\omega t$ 

$$\frac{\partial \psi}{\partial \tau} = \frac{1}{2} \frac{\partial^2 \psi}{\partial \tilde{x}^2} - \frac{1}{2} \left[ \left( \frac{L}{x_o \pi} \cos \left( \frac{\pi \tilde{x} x_o}{L} \right) \right)^2 - \tilde{E_T} \right] \psi$$

where  $\tilde{E} = \frac{E}{\hbar \omega}$ .

Critical value E\* as  $\frac{L}{X_o} \to \infty$  can be estimated to be equivalent to  $\frac{1}{2}(\frac{L}{\pi x_o})^2$  without any calculation. As  $\tau \to \infty$ ,  $\frac{L}{X_o} \to \infty$ , the wave function limits to a gaussian.

b) Defining a tridiagonal matrix -

$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 0 & . & . & . & . & . & 1\\ 1 & -2 & 1 & 0 & . & . & . & . & 0\\ 0 & 1 & -2 & 1 & 0 & . & . & . & 0\\ . & 0 & 1 & -2 & 1 & 0 & . & . & 0\\ . & . & 0 & 1 & -2 & 1 & 0 & 0\\ . & . & . & 0 & 1 & -2 & 1 & 0\\ . & . & . & . & 0 & 1 & -2 & 1\\ 1 & 0 & 0 & . & . & 0 & 1 & -2 \end{pmatrix} \text{ and } \beta = D\frac{\Delta t}{\Delta x^2}$$

I initialize my wavefunction with a delta function, initially, -  $\delta(x - L/2)$ . With L=20x<sub>o</sub> and discretizing space into 200 grid points, I propagate my wavefunction for a  $\tau_{fin} = 200$  using 3 methods -

- Forward Euler  $\psi(x, t+1) = (I + \beta A I.V)\psi(x, t)$ , where I is an identity matrix of the dimensions of A (200x200).
- Crank-Nicolson  $\psi(x,t+1) = (I \frac{\beta A}{2})^{-1}(I + \frac{\beta A}{2} I.V)\psi(x,t)$
- $\bullet \ \ \text{Pseudo-spectral -} \ \psi(x,t+1) = \exp\big(\frac{-V(x)\Delta t}{2}\big)FFT_x^{-1}[\exp\big(-Dq^2\Delta t\big)FFT_q[\exp\big(\frac{-V(x)\Delta t}{2}\big)\psi(x,t)]]$

| Method      | $\Delta t$ | $E_T$          |
|-------------|------------|----------------|
| F. Euler    | 0.0091     | 0.499068233535 |
| C. Nicolson | 0.1        | 0.499068233535 |
| Pseudo sp.  | 1          | 0.079898       |



Figure 1: Wavefunction at the  $t=\tau_{fin}$ 

Figure 2: Stability of the norm of Psi(x)

## Euler Forward



Figure 3: Wavefunction at the t= $\tau_{fin}$  Crank-Nicolson



Figure 4: Wavefunction at the t= $\tau_{fin}$ Pseudo-spectral

c) For L= $3x_o$ , width of the wavefunction is more broad in comparison to L= $20x_o$ 

| Method      | $\Delta t$ | $E_T$    |
|-------------|------------|----------|
| F. Euler    | 0.0022     | 0.216780 |
| C. Nicolson | 0.1        | 0.216780 |
| Pseudo sp.  | 1          | 0.070381 |

Above table depicts parameters for  $\tau_{fin}=200$ 



Figure 5: Wavefunction at the t= $\tau_{fin}$ 

Figure 6: Stability of the norm of Psi(x)

 $L=3x_o$ 



Figure 7: Wavefunction at the  $\mathbf{t} = \tau_{fin}$ 

Crank-Nicolson



Figure 8: Wavefunction at the t= $\tau_{fin}$ 

Pseudo-Spectral