AMENDMENTS TO THE CLAIMS

The following Listing of Claims will replace all prior versions, and listings of claims in the application.

1-78. (Cancelled)

79. (New) A compound having one of the following structures:

or pharmaceutically acceptable salt thereof;

wherein R1 and R2 are hydrogen or lower alkyl;

R₃, R₅ and R₆ are C₁₋₆ alkyl;

the bond is a single bond or a double bond;

 R_4 is halogen, $-OR^{4A}$, $-OC(=O)R^{4A}$ or $-NR^{4A}R^{4B}$; wherein R^{4A} and R^{4B} are independently hydrogen; a nitrogen protecting group selected from a carbamate, an amide, a cyclic imide derivative, an N-alkyl amine, an N-aryl amine, an imine derivative or an enamine derivative or an oxygen protecting group selected from a substituted methyl ether, a substituted ethyl ether, a substituted benzyl ether, a silyl ether, an ester, a carbonate, a cyclic acetal or a ketal; or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a $C_{3\cdot20}$ heterocyclic or $C_{3\cdot14}$ heteroaryl moiety; or R_4 , taken together with the carbon atom to which it is attached

forms a moiety having the structure:
$${}^{*}_{N} = 0$$

or R^{4/A} and R^{4/B} are independently a C₁₋₆ alkyl group optionally substituted with one or more of C₁₋₂₀ aliphatic; C₃₋₁₄ aryl; C₃₋₁₄ heteroaryl; C₁₋₂₀ alkylC₃₋₁₄aryl; C₁₋₂₀ alkylC₃₋₁₄arylthio; C₃₋₁₄ arylthio; C₃₋₁₄ arylthio; C₃₋₁₄ arylthio; C₃₋₁₄ arylthio; C₁₋₂₀ alkylthio; C₃₋₁₄ arylthio; C₃₋₁₅ arylthio; C₁₋₂₀ alkylthio; C₃₋₁₆ arylthio; C₁₋₂₀ alkylthio; C₃₋₁₇ arylthio; CH₂CH₂CH; -CH₂CH; -CON; -CN; -CH₂CF; -CH₂CF; -CH₂CF; -CH₂CH₂CH; -CH₂CH₂CH; -CH₂CH₃CH; -CON(R_x); -CO(O)R_x; -OCO(R_x); -OCO(N_x); -N(R_x); S(O)₂R_x; -NR_x(CO)R_x wherein each occurrence of R_x is independently C₁₋₂₀ aliphatic, heteroC₁₋₂₀aliphatic, C₃₋₁₄ aryl, C₃₋₁₄ heteroaryl, C₁₋₂₀ alkylC₃₋₁₄aryl or C₁₋₂₀ alkylC₃₋₁₄heteroaryl;

 X_1 is O, S, NR^{X1} or $CR^{X1}R^{X2}$; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, or a substituted or unsubstituted $C_{1\cdot 20}$ alkyl, hetero $C_{1\cdot 20}$ alkyl, $c_{3\cdot 14}$ aryl or $C_{3\cdot 14}$ heteroaryl, or a nitrogen protecting group selected from a carbamate, an amide, a cyclic imide derivative, an N-alkyl amine, an N-aryl amine, an imine derivative or an enamine derivative:

 ${f Q}$ is hydrogen, halogen, -CN, -S(O) $_{1-2}{f R}^{QI}$, -NO $_2$, -COR QI , -CO $_2{f R}^{QI}$, -NR $^{QI}C(=0){f R}^{Q2}$, -NR $^{QI}C(=0){f R}^{Q2}$, or a substituted or unsubstituted ${\bf C}_{1-20}$ aliphatic, heteroC $_1$ -20aliphatic, C $_3$ -20 alicyclic, heteroC $_3$ -20alicyclic, C $_3$ -14 heteroaryl moiety, or -WR QI ; wherein W is independently O, S or NR Q3 and each occurrence of ${\bf R}^{QI}$, ${\bf R}^{Q2}$ and ${\bf R}^{Q3}$ is independently hydrogen, or a substituted or unsubstituted C $_{1-20}$ aliphatic, heteroC $_{1-20}$ aliphatic, C $_3$ -20 alicyclic, heteroC $_3$ -20 alicyclic, C $_3$ -14 heteroaryl moiety;

 $Y_2 \ is \ hydrogen, or \ a \ substituted \ or \ unsubstituted \ C_{1-20} \ alkyl, \ heteroC_{1-20} alkyl, \ cyclo \ C_{3-10} alkyl, \ heteroayl \ moiety; \ or -WR^{Y1};$

W is O or NH; and

 R^{Yl} and R^{Y2} are independently hydrogen, or a substituted or unsubstituted $C_{1\cdot20}$ aliphatic, hetero $C_{1\cdot20}$ aliphatic, $C_{3\cdot20}$ alicyclic, hetero $C_{3\cdot20}$ alicyclic, $C_{3\cdot14}$ aryl or $C_{3\cdot14}$ heteroaryl moiety; wherein for the compound of formula (a), when X^I is O and the bond —— is a double bond, Q is hydrogen, halogen, -CN, $-S(O)_{1\cdot2}R^{Q1}$, $-NO_{2\cdot}$, $-CO_{2\cdot}R^{Q1}$, $-NQ^{Q1}C(=O)R^{Q2}$, $-NR^{Q1}C(=O)R^{Q2}$, $-NR^{Q1}C(=O)R^{Q2}$, $-NR^{Q1}C(=O)R^{Q2}$, and $-R^{Q2}C(=O)R^{Q1}C(=O)R^{Q2}$, or $-R^{Q1}C(=O)R^{Q2}C(=O)R^{Q2}$, and $-R^{Q2}C(=O)R^{Q1}C(=O)R^{Q2}C(=O)R^{Q2}$, and $-R^{Q2}C(=O)R$

aliphatic, hetero C_{1-20} aliphatic, C_{3-20} alicyclic, hetero C_{3-20} alicyclic, C_{3-14} aryl or C_{3-14} heteroaryl moiety.

80. (New) The compound of claim 1 having one of the following structures:

or pharmaceutically acceptable salt thereof.

81. (New) The compound of claim 2, wherein the compound has the structure:

wherein n is 3; Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; R^{8B} is hydrogen or C_{1-6} alkyl; and X, Y and Z are independently a bond, $-O_7$, $-S_7$, $-C(=O)_7$, $-NR^{Z1}$, $-CHOR^{Z1}$, $-CHOR^{Z1}$, $-CHOR^{Z1}R^{Z2}$, C=S, $C=N(R^{Y1})$ or -CH(Hal); or a substituted or unsubstituted C_{0-6} alkylidene or C_{0-6} alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO_2 , COCO, $CONR^{Z1}$, $OCONR^{Z1}$, $NR^{Z1}NR^{Z2}$, $NR^{Z1}NR^{Z2}CO$, $NR^{Z1}CO$

or pharmaceutically acceptable salt thereof.

82. (New) The compound of claim 2, wherein the compound has the structure:

wherein n is 3; Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; R^{8B} is hydrogen or C_{1-6} alkyl; and Y is $-CHOR^{Y1}$, $-CHNR^{Y1}R^{Y2}$, C=0, C=S, $C=N(R^{Y1})$ or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, C_{1-20} alkyl, hetero C_{1-20} alkyl, C_{3-14} aryl, C_{3-14} heteroaryl or C_{1-20} acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or a pharmaceutically acceptable salt thereof.

83. (New) The compound of claim 2, wherein the compound has the structure:

wherein n is 3; Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl; R^{8B} is hydrogen or C_{1-6} alkyl; and R^{Y} is hydrogen, halogen, ${}^{\circ}OR^{Y1}$ or ${}^{\circ}NR^{Y2}$; wherein R^{Y1} and R^{Y2} are independently hydrogen, C_{1-20} alkyl, hetero C_{1-20} alkyl, C_{3-14} arpl, C_{3-14} heteroaryl or C_{1-20} acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety;

or a pharmaceutically acceptable salt thereof.

84. (New) The compound of claim 80, wherein the compound has the structure:

wherein n is 3; Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; and R^{SB} is hydrogen or C_{1-6} alkyl;

or a pharmaceutically acceptable salt thereof.

85. (New) The compound of claim 79, wherein the compound has the structure:

$$\begin{pmatrix} P_{0} & P$$

wherein n is 3; and Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl;

or a pharmaceutically acceptable salt thereof.

86. (New) The compound of claim 79, wherein the compound has the structure:

$$\begin{array}{c} R^{\gamma 1} \\ R^{\gamma 2} \\ R^{\gamma 2} \\ R^{\gamma 2} \\ R^{\gamma 4} \\ R^{\gamma 5} \\ R^{\gamma 6} \\ R^{\gamma 7} \\$$

wherein n is 3; and R^{Y1} and R^{Y2} are independently hydrogen or C_{1-6} alkyl; or a pharmaceutically acceptable salt thereof.

87. (New) The compound of claim 80, wherein the compound has one of the following structures:

W is O or NH;

 R^{Y1} is hydrogen, or a substituted or unsubstituted $C_{1\cdot 20}$ aliphatic, hetero $C_{1\cdot 20}$ aliphatic, $C_{3\cdot 20}$ alicyclic, hetero $C_{3\cdot 20}$ alicyclic, $C_{3\cdot 14}$ aryl or $C_{3\cdot 14}$ heteroaryl moiety;

R7 is a substituted or unsubstituted C1-6 alkyl or heteroC1-6 alkyl moiety;

 R_8 is a substituted or unsubstituted $C_{1\cdot20}$ alkyl, hetero $C_{1\cdot20}$ alkyl, cyclo $C_{3\cdot20}$ alkyl, heterocyclo $C_{3\cdot20}$ alkyl, $C_{3\cdot14}$ heteroaryl moiety; and Alk is a substituted or unsubstituted $C_{6\cdot6}$ alkylidene or $C_{9\cdot6}$ alkenylidene chain wherein up to two non-adjacent

methylene units are independently optionally replaced by CO, CO $_2$, COCO, CONR Z1 , OCONR Z1 , NR Z1 NR Z2 NR Z2 CO, NR Z1 CO, NR Z1 CO $_2$, NR Z1 CO $_3$ NR Z2 , O, SO $_2$, NR Z1 SO $_2$ NS Z1 , NR Z1 SO $_2$ NR Z2 , O, S, or NR Z1 ; wherein each occurrence of R Z1 and R Z2 is independently hydrogen, C $_{1-20}$ alkyl, heteroC $_{1-20}$ alkyl, C $_{3-14}$ aryl, C $_{3-14}$ heteroaryl or C $_{1-20}$ acyl; wherein for compounds of formula (a), when X 1 is O, the bond aaa is a single bond; or a pharmaceutically acceptable salt thereof.

88. (New) The compound of claim 80, wherein the compound has one of the following structures:

wherein Y₂ and R^{Y1} are independently hydrogen or C₁₋₆ alkyl; or a pharmaceutically acceptable salt thereof.

89. (New) The compound of claim 80, wherein the compound has one of the following structures:

wherein Y_2 and R^{Y1} are independently hydrogen or C_{1-6} alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; R^{8B} is hydrogen or C_{1-6} alkyl; and X, Y and Z are independently a bond, $-O_7$, $-S_7$, $-C(=O)_7$, $-NR^{Z1}$, $-CHOR^{Z1}$, $-CHOR^{Z1}$, $-CHOR^{Z1}$, or -CH(Hal); or a substituted or unsubstituted C_{0-6} alkylidene or C_{0-6} alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO_2 , COCO, $CONR^{Z1}$, $OCONR^{Z1}$, $NR^{Z1}NR^{Z2}$, $NR^{Z1}NR^{Z2}CO$, $NR^{Z1}CO_2$, $NR^{Z1}CO_2$, $NR^{Z1}CO_3$

90. (New) The compound of claim 80, wherein the compound has one of the following structures:

Y₂ and R^{Y1} are independently hydrogen or C₁₋₆ alkyl;

 R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; R^{8B} is hydrogen or C_{1-6} alkyl; and Y is $-CHOR^{Y1}$, $-CHNR^{Y1}R^{Y2}$, C=O, C=S, $C=N(R^{Y1})$ or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, C_{1-20} alkyl, hetero C_{1-20} alkyl, C_{3-14} aryl, C_{3-14} heteroaryl or C_{1-20} acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, form a C_{3-20} heterocyclic or C_{3-14} heteroaryl moiety;

or a pharmaceutically acceptable salt thereof.

91. (New) The compound of claim 80, wherein the compound has one of the following structures:

wherein Y2 and RY1 are independently hydrogen or C1-6 alkyl;

 R^{8B} is hydrogen or C_{1-6} alkyl; and R^Y is hydrogen, halogen, $-OR^{Y1}$ or $-NR^{Y1}NR^{Y2}$; wherein R^{Y1} and R^{Y2} are independently hydrogen, $C_{1\cdot20}$ alkyl, hetero $C_{1\cdot20}$ alkyl, $C_{3\cdot14}$ aryl, $C_{3\cdot14}$ heteroaryl or $C_{1\cdot20}$ acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, form a $C_{3\cdot20}$ heterocyclic or $C_{3\cdot14}$ heteroaryl moiety; or a pharmaceutically acceptable salt thereof.

92. (New) The compound of claim 80, wherein the compound has one of the following structures:

wherein Y2 and RY1 are independently hydrogen or C1-6 alkyl;

 R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic $C_{1\text{-}6}$ alkyl moiety; and R^{88} is hydrogen or $C_{1\text{-}6}$ alkyl;

or a pharmaceutically acceptable salt thereof.

93. (New) The compound of claim 79, wherein the compound has one of the following structures:

wherein Y_2 and R^{Y1} are independently hydrogen or $C_{1\cdot 6}$ alkyl; or a pharmaceutically acceptable salt thereof.

94. (New) The compound of claim 79, wherein the compound has one of the following structures:

and R^{Y1} and R^{Y2} are independently hydrogen or C_{1-6} alkyl; or a pharmaceutically acceptable salt thereof.

- 95. (New) The compound of claim 79, wherein R₁ and R₂ are each hydrogen.
- 96. (New) The compound of claim 79, wherein R₃ is C₁₋₆ alkyl.
- 97. (New) The compound of claim 96, wherein R₂ is methyl.
- 98. (New) The compound of claim 79, wherein R_5 and R_6 are each methyl; R_4 is OH, OAc, NH₂ or halogen, or R_4 taken together with the carbon atom to which it is attached forms a moiety having the structure:
- 99. (New) The compound according to any one of claims 81 or 89, wherein R_7 is $C_{1\text{-}6}$ alkyl.
- 100. (New) The compound according to claim 99, wherein R₇ is methyl.
- 101. (New) The compound according to claim 79 of formula (b) or (c) or the compound of formula (a) wherein when X^1 is O, the bond $\stackrel{...}{=}$ is a single bond, wherein Q has the structure:

wherein R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; R_8 is a substituted or unsubstituted C_{3-20} carbocyclic, C_{3-20} heterocyclic, C_{3-14} aryl or C_{3-14} heteroaryl moiety; and X, Y and Z are independently a bond, $-O_-$, $-S_-$, $-C(=O)_-$, $-NR^{Z1}_-$, $-CHOR^{Z1}_-$, $-CHOR^{Z1}_-$, $-CHNR^{Z1}_-$, $-CHNR^{Z1}$

102. (New) The compound according to claim 79 of formula (b) or (c) or the compound of formula (a) wherein when X¹ is O, the bond ... is a single bond, wherein Q has the structure:

wherein R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic C_{1-6} alkyl moiety; R_8 is a substituted or unsubstituted C_{3-20} carbocyclic, C_{3-20} heterocyclic, C_{3-14} aryl or C_{3-14} heteroaryl moiety; and R^Y is hydrogen, halogen, $-OR^{Y1}$ or $-NR^{Y1}NR^{Y2}$; wherein R^{Y1} and R^{Y2} are independently hydrogen, C_{1-20} alkyl, hetero C_{1-20} alkyl, C_{3-14} aryl, C_{3-14} heteroaryl or C_{1-20} acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, form a C_{3-20} heterocyclic or C_{3-14} heteroaryl moiety.

103. (New) The compound of any one of claims 87, 98, or 99, wherein R₈ is one of:

wherein p is an integer from 0 to 5, as valency allows; q is 1 or 2, r is an integer from 1 to 6; each occurrence of R^{8A} is independently hydrogen, $C_{1\cdot 20}$ alkyl, hetero $C_{1\cdot 20}$ alkyl, $C_{3\cdot 14}$ aryl, $C_{3\cdot 14}$ heteroaryl, $-(C_{1\cdot 20}$ alkyl) $C_{3\cdot 14}$ aryl or $-(C_{1\cdot 20}$ alkyl) $C_{3\cdot 14}$ heteroaryl, $-OR^{8C}$, $-SR^{8C}$, $-N(R^{8C})_2$, $-SO_2N(R^{8C})_2$, $-(C=O)N(R^{8C})_2$, halogen, -CN, $-NO_2$, $-(C=O)OR^{8C}$, $-N(R^{8C})(C=O)R^{8D}$, wherein each occurrence of R^{8C} and R^{8D} is independently hydrogen, $C_{1\cdot 6}$ alkyl, $C_{1\cdot 6}$ heteroalkyl, $C_{3\cdot 14}$ aryl, $C_{3\cdot 14}$ heteroaryl, $-(C_{1\cdot 20}$ alkyl) $C_{1\cdot 20}$ aryl or $-(C_{1\cdot 20}$ alkyl) $C_{3\cdot 14}$ heteroaryl; and each occurrence of R^{8B} is independently hydrogen or $C_{1\cdot 6}$ alkyl.

104. (New) The compound of claim 103, wherein R₈ has the structure:

wherein R8B is hydrogen or C1-6 alkyl.

105. (New) The compound of claim 80 or 87, wherein Y_2 is $C_{1.6}$ alkyl and R^{Y1} is hydrogen or $C_{1.6}$ alkyl.

106. (New) The compound of claim 80 or 87, wherein R Y1 is H and Y2 is CF3.

107. (New) The compound of claim 94, wherein R₄ is hydroxyl, C₁₋₆ alkoxy, acyloxy, amino or halogen, or R₄ taken together with the carbon atom to which it is attached forms a moiety

108. (New) The compound of claim 94, wherein R_4 is OH, OAc, NH_2 or F, or R_4 taken together with the carbon atom to which it is attached forms a moiety having the structure:

109. (New) The compound of claim 94, wherein the stereocenter ORs has the following

stereochemistry:
$$OR_3$$

110. (New) The compound of claim 94, wherein the stereocenter OR₃ has the following

stereochemistry:
$$\begin{picture}(100,0) \put(0,0){\line(0,0){100}} \put(0$$

111. (New) The compound of claim 94, wherein R₃, R₅ and R₆ are each methyl and R₄ is OH, OAc, NH₂ or F, or R₄ taken together with the carbon atom to which it is attached forms a moiety

112. (New) The compound according to claim 79, wherein the compound is selected from:

or

or a pharmaceutically acceptable salt thereof.

113. (New) A compound having the formula

or pharmaceutically acceptable salt thereof.

114. (New) A compound having the structure:

or pharmaceutically acceptable salt thereof;

wherein R1 and R2 are each independently hydrogen

 $\mathbf{R_3}$, $\mathbf{R_5}$ and $\mathbf{R_6}$ are $\mathbf{C_{1-6}}$ alkyl;

 R_4 is halogen, $-OR^{4A}$, $-OC(=O)R^{4A}$ or $-NR^{4A}R^{4B}$; wherein R^{4A} and R^{4B} are independently hydrogen, or substituted or unsubstituted C_{1-6} alkyl; a nitrogen protecting group selected from a carbamate, an amide, a cyclic imide derivative, an N-alkyl amine, an N-aryl amine, an imine derivative or an enamine derivative or an oxygen protecting group selected from a methyl ether, a substituted methyl ether, a substituted benzyl ether, a silyl ether, an ester, a carbonate, a cyclic acetal or a ketal; or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a $C_{3\cdot20}$ heterocyclic or $C_{3\cdot14}$ heteroaryl moiety; or R_4 , taken together with the carbon atom to which it is attached forms a moiety having the structure:

$$\sum_{i=1}^{N} N_{i}^{p^{N}} \sum_{i=1}^{N} N_{$$

 X_1 is O, S, NR^{X1} or $CR^{X1}R^{X2}$; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, or substituted or unsubstituted C_{1-20} alkyl, hetero C_{1-20} alkyl, cyclo C_{3-10} alkyl, heterocyclo C_{3-10} alkyl, C_{3-14} aryl or C_{3-14} heteroaryl, or a nitrogen protecting group selected from a carbamate, an amide, a cyclic imide derivative, an N-alkyl amine, an N-aryl amine, an imine derivative or an enamine derivative; and

 Y_1 and Y_2 are independently hydrogen, or a substituted or unsubstituted C_{1-20} alkyl, hetero C_{1-20} alkyl, cyclo C_{3-10} alkyl, heterocyclo C_{3-10} alkyl, C_{3-14} aryl, or C_{3-14} heteroaryl moiety; or $-WR^{Y1}$; wherein W is independently $-O_{7}$, $-S_{7}$ or NR^{Y2} wherein each occurrence of R^{Y1} and R^{Y2}

is independently hydrogen or an C_{1-20} alkyl, hetero C_{1-20} alkyl, c_{3-14} aryl or C_{3-14} heterocyclo C_{3-10} alkyl, C_{3-14} aryl or C_{3-14} heteroaryl moiety; or Y_1 and Y_2 together with the carbon atom to which

they are attached form a moiety having the structure:
$${}^{P_{N_2}} = {}^{P_{N_2}} = {}^{P_{N_2$$

115. (New) The compound of claim 114 having the structure:

wherein n is 3; and Y₁ and Y₂ are independently hydrogen, C₁₋₆alkyl, or CF₃.

116. (New) The compound of claim 114 having the structure:

wherein Y₁ and Y₂ are independently hydrogen, C₁₋₆alkyl, or CF₃.

- 117. (New) The compound of claim 115 or 116, wherein R₅ and R₆ are each methyl.
- 118. (New) The compound of claim 115 or 116, wherein R₃ is lower alkyl.
- 119. (New) The compound of claim 118, wherein R₃ is methyl.

- 120. (New) The compound of claim 115 or 116, wherein R₄ is OH, OAc, NH₂ or halogen.
- 121. (New) A pharmaceutical composition comprising: a pharmaceutically acceptable carrier, adjuvant or vehicle; and a compound according to any one of claims 79, 112, 113, or 114, or a pharmaceutically acceptable salt thereof.
- 122. (New) The pharmaceutical composition of claim 121, further comprising a cytotoxic agent.
- 123. (New) The pharmaceutical composition of claim 122, wherein the cytotoxic agent is an anticancer agent.
- 124. (New) The pharmaceutical composition of claim 123, wherein the anticancer agent is 12,13-desoxyepothilone B, (E)-9,10-dehydro-12,13-desoxyEpoB, 26-CF3-(E)-9,10-dehydro-12,13-desoxyEpoB, taxol, radicicol orTMC-95A/B.
- 125. (New) The pharmaceutical composition of claim 121, further comprising a palliative agent.