Computational Finance

Jan 9, 2023

Surname-Name:
e-mail:
Consider Exercise1.m. 1. which option is priced (Call-Put, European-Barrier and, if Barrier, which type)? Which dynamic for the underlying asset? *Which PIDE is considered? (write the PIDE and the transformation used, if any (log-price, log-moneyness etc.)? *Which discretization? (Explicit/Implicit Euler, Crank nicholson-thete).
method)?
2. write a Montecarlo code to price the same derivative, and compare the prices (Finite Difference price VS Montecarlo confidence interval). Price FD:
3. modify Exercise1.m to price an American option, and compare the obtained price with the one of a European option. *Comment the comparison. Price:
4. modify the Montecarlo code to evaluate a Geometric Asian option with maturity $T=2$ and payoff
$\left(\left(\prod_{n=1}^{24} S(n\Delta t) \right)^{1/24} - S(T) \right)^{+}, \Delta t = 1/12,$
and an underlying asset where the log-price follows a Variance Gamma of parameters
$\sigma = 0.12, \ \theta = 0.03, \ k = 0.20$
Price with simulations:
* Multichance students can avoid this part