Calcul différentiel 2

Table des matières

1. Inversion locale et fonctions implicites	
1.1. Théorème d'inversion locale · · · · · · · · · · · · · · · · · · ·	
1.2. Théorème des fonctions implicites · · · · · · · · · · · · · · · · · · ·	
2. Sous-variétés de \mathbb{R}^n	
2.1 Sous-variétés	

1. Inversion locale et fonctions implicites

1.1. Théorème d'inversion locale

Définition 1.1. Soit $k \in \mathbb{N} \setminus \{0\} \cup \{+\infty\}$, U et V deux ouverts de \mathbb{R}^n , et $f: U \to V$ une application. On dit que f est un C^k -difféomorphisme de U sur V si

- (1) f est bijective de U sur V,
- (2) f est de classe C^k sur U,
- (3) f^{-1} est de classe C^k sur V.

Remarque 1.2. Soit $f: U \to V$ un C^k -difféomorphisme, alors

$$\forall x \in U, f^{-1}(f(x)) = x$$

$$\forall y \in V, f(f^{-1}(y)) = y$$

de plus en appliquant le théorème de composition des différentielles

$$\mathrm{d}f^{-1}(f(x))\circ\mathrm{d}f(x)=\mathrm{id}_{\mathbb{R}^n}$$

$$\mathrm{d}f(f^{-1}(x))\circ\mathrm{d}f^{-1}(x)=\mathrm{id}_{\mathbb{R}^n}$$

donc df(x) est inversible avec $df(x)^{-1} = df^{-1}(f(x))$.

Exemples 1.3.

- 1. On considère $f:\mathbb{R}^n \to \mathbb{R}^n, x \mapsto Ax$ où $A \in \mathrm{GL}_n(\mathbb{R})$, alors f est C^∞ comme fonction linéaire et bijective de réciproque $y \mapsto A^{-1}y$. On remarque que f^{-1} est C^∞ comme fonction linéaire, donc f est un C^∞ -difféomorphisme.
- 2. On considère $f:U\to V, (x,y)\mapsto (x+y,xy)$ où U et V sont définis par

$$U = \left\{ (x, y) \in \mathbb{R}^2 \mid x > y \right\}$$

$$V = \left\{ (s,t) \in \mathbb{R}^2 \ | \ s^2 - 4t > 0 \right\}$$

alors f est un C^{∞} difféomorphisme de U sur V , en effet

a. f est bijective de U sur V, puisque pour $(x,y) \in U$ on a

$$(x+y)^2-4xy=x^2-2xy+y^2=(x-y)^2>0$$

donc $f(U) \subset V$, réciproquement pour $(s,t) \in V$ on cherche $(x,y) \in U$ tels que

$$\begin{cases} x + y = s \\ xy = t \end{cases}$$

c'est-à-dire x et y sont racines du polynôme $X^2 - sX + t$, comme x > y on a

$$\begin{cases} x = \frac{s + \sqrt{s^2 - 4t}}{2} \\ y = \frac{s - \sqrt{s^2 - 4t}}{2} \end{cases}$$

donc $V \subset f(U)$, f est bijective,

- b. f est de classe C^{∞} sur U car polynômiale,
- c. f^{-1} est de classe C^{∞} sur V car $(s,t)\mapsto s^2-4t$ et $\sqrt{\cdot}$ sont C^{∞} sur V.
- 3. On considère $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$, alors f est de classe C^{∞} sur \mathbb{R} et bijective. Mais son inverse $f^{-1}: \mathbb{R} \to \mathbb{R}, y \mapsto \sqrt[3]{y}$, n'est pas dérivable en 0 donc f n'est pas un C^{∞} -difféomorphisme.

2

Théorème 1.4. (Théorème d'inversion locale) Soit U un ouvert non-vide de \mathbb{R}^n et $f:U\to\mathbb{R}^n$ une application de classe C^k . On suppose qu'il existe $x_0\in U$ tel que $\mathrm{d}f(x_0)$ soit inversible. Alors il existe un voisinage ouvert U' de x_0 et un voisinage ouvert V' de $f(x_0)$ tels que $f:U'\to V'$ est un C^k -difféomorphisme.

Théorème 1.5. (Théorème d'inversion globale) Soit U un ouvert non-vide de \mathbb{R}^n et $f:U\to\mathbb{R}^n$ une application. On suppose que

- (1) f est de classe C^k sur U,
- (2) f est injective sur U,
- (3) $\forall x \in U, df(x)$ est inversible.

Alors f(U) est un ouvert de \mathbb{R}^n et $f:U\to f(U)$ est un C^k -difféomorphisme.

 $D\'{e}monstration$. Soit x_0 in U, alors d'après le théorème d'inversion locale il existe un voisinage ouvert U_{x_0} de x_0 et un voisinage ouvert $V_{f(x_0)}$ de $f(x_0)$ tels que $f:U_{x_0}\to V_{f(x_0)}$ est un C^k -difféomorphisme. En particulier $V_{f(x_0)}=f\left(U_{x_0}\right)$, et on a

$$f(U) = \bigcup_{x \in U} V_{f(x)}$$

est un ouvert de \mathbb{R}^n comme union d'ouverts. De plus puisque f est injective sur U, on en déduit que f est bijective de U sur f(U).

Soit $y_0 \in f(U)$, alors il existe un unique $x_0 \in U$ tel que $y_0 = f(x_0)$, et d'après le théorème d'inversion locale $f: U_{x_0} \to V_{y_0}$ est un C^k -difféomorphisme, on en déduit que f^{-1} est de classe C^k sur V_{y_0} . Donc f^{-1} est C^k sur f(U).

Exemples 1.6.

- 1. On considère $f: \mathbb{R}^2 \to \mathbb{R}^2, (r,\theta) \mapsto (f_1,f_2) = (r\cos(\theta),r\sin(\theta))$, alors
 - a. f est de classe C^{∞} sur \mathbb{R}^2 puisque cos et sin sont de classe C^{∞} .
 - b. On pose $U :=]0, +\infty[\times] \pi, \pi[$, qui est un ouvert de \mathbb{R}^2 sur lequel f est injective.
 - c. Soit $(r, \theta) \in U$, alors

$$J_f(r,\theta) = \begin{pmatrix} \frac{\partial f_1}{\partial r} & \frac{\partial f_1}{\partial \theta} \\ \frac{\partial f_2}{\partial r} & \frac{\partial f_2}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{pmatrix}$$

 $\operatorname{et} \det \left(J_f(r,\theta)\right) = r \cos^2(\theta) + r \sin^2(\theta) = r > 0 \text{, donc } \mathrm{d}f_{(r,\theta)} \text{ est inversible.}$

Donc d'après le Théorème 1.5 $f:U\to f(U)$ est un C^∞ -difféomorphisme.

- 2. On considère $f: \mathbb{R}^3 \to \mathbb{R}^3, (r, \theta, \varphi) \mapsto (f_1, f_2, f_3) = (r\cos(\theta)\cos(\varphi), r\sin(\theta)\cos(\varphi), r\sin(\varphi)).$
 - a. f est de classe C^{∞} sur \mathbb{R}^3 puisque cos et sin sont de classes C^{∞} .
 - b. On pose $U :=]0, +\infty[\times] \pi, \pi[\times] \frac{\pi}{2}, \frac{\pi}{2}[$, qui est un ouvert de \mathbb{R}^3 sur lequel f est injective.
 - c. Soit $(r, \theta, \varphi) \in U$, alors

$$J_f(r,\theta,\varphi) = \begin{pmatrix} \cos(\theta)\cos(\varphi) & -r\sin(\theta)\cos(\varphi) & -r\cos(\theta)\sin(\varphi) \\ \sin(\theta)\cos(\varphi) & r\cos(\theta)\cos(\varphi) & -r\sin(\theta)\sin(\varphi) \\ \sin(\varphi) & 0 & r\cos(\varphi) \end{pmatrix}$$

et le déterminant de cette matrice est

$$\det(J_f(r,\theta,\varphi)) = \sin(\varphi)(r^2\sin^2(\theta)\cos(\varphi)\sin(\varphi) + r^2\cos^2(\theta)\cos(\varphi)\sin(\varphi))$$
$$+r\cos(\varphi)(r\cos^2(\theta)\cos^2(\varphi) + \sin^2(\theta)\cos^2(\varphi))$$
$$= \sin^2(\varphi)r^2\cos(\varphi) + \cos^2(\varphi)r^2\cos(\varphi) = r^2\cos(\varphi) \neq 0$$

donc $\mathrm{d}f_{r,\theta,\omega}$ est inversible.

Donc d'après le Théorème 1.5 $f:U\to f(U)$ est un C^∞ -difféomorphisme.

- 3. On pose $U:=R^2\setminus\{(0,0)\}$ et on considère $f:U\to\mathbb{R}^2,(x,y)\mapsto(x^2-y^2,2xy)$, alors
 - a. f est de classe C^{∞} sur U puisque f est polynômiale.
 - c. Soit $(x, y) \in U$, alors

$$J_f(x,y) = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$$

et $\det(J_f(x,y)) = 4(x^2 + y^2) > 0$ sur U, donc $\mathrm{d}f_{x,y}$ est inversible.

Donc d'après le Théorème $1.4\ f: U \to \mathbb{R}^2$ est un C^{∞} -difféomorphisme local en tout point de U. Mais f(-1,-1)=f(1,1), donc $f: U \to \mathbb{R}^2$ n'est pas C^{∞} -difféomorphisme global.

b. On pose $U' := \{(x,y) \in U \mid x > 0\}$, qui est un ouvert de \mathbb{R}^2 sur lequel f est injective. En effet si $f(x_1,y_1) = f(x_2,y_2)$, alors on pose

$$\begin{cases} (x_1,y_1) = r_1(\cos(\theta_1),\sin(\theta_1)) \\ (x_2,y_2) = r_2(\cos(\theta_2),\sin(\theta_2)) \end{cases} \quad \text{où } r_1,r_2 > 0 \text{ et } \theta_1,\theta_2 \in]-\frac{\pi}{2},\frac{\pi}{2}[$$

et on trouve

$$\begin{cases} r_1^2\cos(2\theta_1) = r_2^2\cos(2\theta_2) \\ r_1^2\sin(2\theta_1) = r_2^2\sin(2\theta_2) \end{cases} \Rightarrow \begin{cases} r_1 = r_2 \\ \theta_1 = \theta_2 \bmod 2\pi \end{cases} \Rightarrow \begin{cases} r_1 = r_2 \\ \theta_1 = \theta_2 \end{cases}$$

donc $(x_1, y_1) = (x_2, y_2)$ et f est bien injective.

Donc d'après le Théorème 1.5 $f: U' \to f(U')$ est un C^{∞} -difféomorphisme.

1.2. Théorème des fonctions implicites

Théorème 1.7. (Théorème des fonctions implicites) Soit U un ouvert de $\mathbb{R}^n \times \mathbb{R}^p$, $(a,b) \in U$ et $f = (f_1, ..., f_p) : U \to \mathbb{R}^p$ une application de classe C^k . On suppose que f(a,b) = 0 et que la matrice jacobienne de f par rapport à la deuxième variable en (a,b) est inversible. Alors il existe un voisinage ouvert V de a, un voisinage ouvert W de b avec $V \times W \subset U$ et une application $\varphi : V \to W$ qui est C^∞ avec $\varphi(a) = b$, tels que

$$\begin{cases} (x,y) \in V \times W \\ f(x,y) = 0 \end{cases} \Longleftrightarrow \begin{cases} x \in V \\ y = \varphi(x) \end{cases}$$

 $\text{de plus pour tout } x \in V, \mathrm{d}\varphi(x) = - \left(\mathrm{d}_y f(x,\varphi(x))\right)^{-1} \circ \mathrm{d}_x f(x,\varphi(x)).$

Exemples 1.8.

1. On considère $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 + y^2 - 1$ et $\mathbb{S}^1 := \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0\}$. Les dérivées partielles de f sont

$$\frac{\partial f}{\partial x}(x,y) = 2x \text{ et } \frac{\partial f}{\partial y}(x,y) = 2y.$$

On remarque que pour $(x, y) \in \mathbb{R}^2$ vérifiant

$$\begin{cases} (x,y) \in \mathbb{S}^1 \\ \frac{\partial f}{\partial y}(x,y) \neq 0 \end{cases} \Longleftrightarrow \begin{cases} (x,y) \in \mathbb{S}^1 \\ y \neq 0 \end{cases}$$

on a $(x,y) \in \mathbb{S}^1 \setminus \{(1,0),(-1,0)\}$. On peut donc appliquer le Théorème 1.7, au voisinage Vde x, \mathbb{S}^1 est le graphe d'une application $\varphi: V \to \mathbb{R}$. De plus on a

$$\forall x \in V, x^2 + \varphi(x)^2 - 1 = 0$$

en dérivant on trouve

$$\forall x \in V, 2x + 2\varphi(x)\varphi'(x) = 0$$

et donc $\varphi'(x)=-\frac{x}{\varphi(x)}$. 2. On considère $f:\mathbb{R}^3\to\mathbb{R}, (x,y,z)\mapsto x^2+y^2+z^2-1$, $\mathbb{S}^2:=\{(x,y,z)\in\mathbb{R}^3\mid f(x,y,z)=0\}$. Les dérivées partielles de f sont

$$\forall a \in \{x, y, z\}, \frac{\partial f}{\partial a}(x, y, z) = 2a.$$

On remarque que pour $(x, y, z) \in \mathbb{R}^3$ vérifiant

$$\begin{cases} (x, y, z) \in \mathbb{S}^2 \\ \frac{\partial f}{\partial z}(x, y, z) \neq 0 \end{cases} \iff \begin{cases} (x, y, z) \in \mathbb{S}^2 \\ z \neq 0 \end{cases}$$
$$\iff \begin{cases} (x, y, z) \in \mathbb{S}^2 \\ (x, y, z) \neq (a, b, 0) \text{ où } (a, b) \in \mathbb{S}^1 \end{cases}$$

on a $(x,y,z)\in\mathbb{S}^2\setminus \big(\mathbb{S}^1\times\{0\}\big)$. On peut donc appliquer le Théorème 1.7, au voisinage V de (x,y), \mathbb{S}^2 est le graphe d'une application $\varphi:V\to\mathbb{R}$. De plus on a

$$\forall (x,y) \in V, x^2 + y^2 + \varphi(x,y)^2 - 1 = 0$$

en dérivant par rapport à x on trouve

$$\forall (x,y) \in V, 2x + 2\frac{\partial f}{\partial x}(x,y)\varphi(x,y) = 0$$

donc $\frac{\partial f}{\partial x}(x,y) = -\frac{x}{\varphi(x,y)}$, et en dérivant par rapport à y on trouve

$$\forall (x,y) \in V, 2y + 2\frac{\partial f}{\partial y}(x,y)\varphi(x,y) = 0$$

donc $\frac{\partial f}{\partial y}(x,y) = -\frac{y}{\varphi(x,y)}$.

2. Sous-variétés de \mathbb{R}^n

2.1. Sous-variétés

Définition 2.1. Soit X une partie de \mathbb{R}^n . On dit que X est une sous-variété de \mathbb{R}^n de classe C^k et de dimension $d \in \mathbb{N}$, si pour tout $x \in X$ il existe un voisinage ouvert V de x dans \mathbb{R}^n et un C^k -difféomorphisme φ d'un ouvert U de \mathbb{R}^n dans V, tels que

$$V\cap X=\varphi\big(U\cap \big(\mathbb{R}^d\times\{0\}\big)\big).$$

On appelle *codimension* de X l'entier n-d.

Remarque 2.2. Une sous-variété de dimension 1 est une *courbe*, une sous-variété de dimension 2 est une *surface*, une sous-variété de dimension n-1 (codimension 1) est une *hypersurface*

Exemples 2.3.

- 1. Une courbe dans \mathbb{R}^2 est difféomorphe à un segment.
- 2. On considère le cercle \mathbb{S}^1 , on pose $U':=]0,+\infty[\times]-\pi,\pi[,V=\mathbb{R}^2\setminus\{]-\infty,0]\times\{0\}\}$, ainsi que $\psi:U'\to V,(r,\theta)\mapsto r(\cos(\theta),\sin(\theta))$ qui est un difféomorphisme de classe C^∞ . On a

$$\begin{split} V \cap \mathbb{S}^1 &= \mathbb{S}^1 \setminus \{(-1,0)\} \\ &= \psi(\{1\} \times] - \pi, \pi[) \\ &= \psi(U' \cap (\{1\} \times \mathbb{R})) \end{split}$$

on prend alors $U:]-\pi,\pi[\times]0,+\infty[$ et $\varphi:U\to V,(\theta,r)\mapsto \psi(r+1,\theta)$, donc \mathbb{S}^1 est bien une sous-variété de \mathbb{R}^2 de classe C^∞ et de dimension 1.