

דפי נוסחאות		
אלגברה של ווקטורים		
$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$	הצגה קרטזית	
$\vec{A} \cdot \vec{B} = \vec{A} \vec{B} \cos \theta_{AB} = A_x B_x + A_y B_y + A_z B_z$	מכפלה סקלרית	
$\hat{A} = \frac{\vec{A}}{A} \qquad , \qquad A = \left \vec{A} \right = \sqrt{A_x^2 + A_y^2 + A_z^2}$	ווקטור יחידה בכיוון של $ar{A}$	
. הכיוון נקבע על ידי כלל יד ימין , $\left ec{A} imes ec{B} ight = \left ec{A} ight \left ec{B} ight \sin heta_{AB}$	מכפלה ווקטורית	
$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	מכפלה וקטורית ברכיבים	
קינמטיקה של גוף נקודתי		
$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$	ווקטור מיקום במערכת קרטזית	
$\Delta \vec{r} = \vec{r} \left(t_2 \right) - \vec{r} \left(t_1 \right)$	העתק	
$\vec{\mathbf{v}} = \frac{d\vec{r}}{dt}$	מהירות קווית (כווקטור)	
$\vec{a} = \frac{d\vec{v}}{dt}$	תאוצה קווית	
$\vec{r}(t) = \vec{r}_0 + \int_{t_0}^t \vec{v}(t)dt , \vec{v}(t) = \vec{v}_0 + \int_{t_0}^t \vec{a}(t)dt$	קשר בין מיקום, מהירות ותאוצה	
תנועה יחסית		
$\vec{r}_{AB} = \vec{r}_A - \vec{r}_B$	מיקום יחסי	
$\vec{\mathbf{v}}_{AB} = \vec{\mathbf{v}}_A - \vec{\mathbf{v}}_B$	מהירות יחסית	
$\vec{a}_{AB} = \vec{a}_A - \vec{a}_B$	תאוצה יחסית	

דינמיקה		
$\Sigma \vec{F} = m\vec{a}$	החוק השני של ניוטון	
$f_k = \mu_k N$	חיכוך קינטי	
$f_s \le \mu_s N$	חיכוך סטטי	
F = -k x	חוק הוק (כוח קפיץ)	
עבודה ואנרגיה		
$W_F(A \to B) = \int_A^B \vec{F} \cdot d\vec{r}$	עבודה של כוח	
$P = \frac{dW}{dt} = \vec{F} \cdot \vec{\mathbf{v}}$	הספק	
$P = \frac{dW}{dt} = \vec{F} \cdot \vec{v}$ $W = \int_{t_1}^{t_2} P(t) dt$	עבודת כוח משתנה בזמן	
$E_k = \frac{1}{2}m \mathrm{v}^2$	אנרגיה קינטית	
$W_{total} = \Delta E_k$ $U = mgh$	משפט עבודה – אנרגיה קינטית	
U = mgh	אנרגיה פוטנציאלית כובדית	
$U = \frac{1}{2}k x^2$	אנרגיה פוטנציאלית אלסטית	
כאשר W_c היא עבודת הכוח המשמר $W_c=-\Delta U$	עבודת כוחות משמרים	
ו- U היא האנרגיה חפוטנציאלית.		
$\vec{F} = -\nabla U = -\left(\frac{\partial U}{\partial x}\hat{i} + \frac{\partial U}{\partial y}\hat{j} + \frac{\partial U}{\partial z}\hat{k}\right)$	כוח משמר ואנרגיה פוטנציאלית	
$E = E_k + U$	אנרגיה מכאנית כוללת	
$E_1 + W_{n.c} = E_2$	משפט עבודה-אנרגיה מכאנית	
. כאשר $W_{n.c}$ היא עבודת הכוחות הלא משמרים		
נקף ותנע		
$J = \int_{t_1}^{t_2} \vec{F}(t) dt$ $\vec{p} = m\vec{v}$	הגדרת המתקף	
$\vec{p} = m\vec{\upsilon}$	הגדרת התנע	
ביחות $\Sigma ec{F}_{ext}$ הוא שקול הכוחות , $ec{J}_{\Sigma ec{F}_{ext}} = \Delta ec{P}$	משפט מתקף תנע –קווי	
החיצוניים ו- $ec{P}=\Sigmaec{p}$ הוא התנע הכללי של המערכת.		

קינמאטיקה-תנועה לאורך קו ישר

מהירות קבועה או ממוצעת

$$v = \frac{\Delta x}{\Delta t} = \frac{x - x_0}{t - t_0}$$

תאוצה קבועה או ממוצעת

$$a = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0}$$

תנועה שוות תאוצה

 $v(t) = v_0 + a(t - t_0)$: מהירות -תלות בזמן מקום -תלות בזמן (משוואת התנועה):

 $x(t) = x_0 + v_0(t - t_0) + \frac{a}{2}(t - t_0)^2$

 $v^2(t) = v_0^2 + 2a(x - x_0)$: מהירות, תאוצה והעתק

B מהירות יחסית של גוף A ביחס לגוף $\vec{\mathcal{U}}_{AB} = \vec{\mathcal{U}}_A - \vec{\mathcal{U}}_B$

דינאמיקה		
w = m g	משקל	
$F = k\Delta x$	כוח אלסטי (קפיצי)	
	גודל כוח החיכוך	
$f_s \leq \mu_s N$	חיכוך סטטי	
$f_k = \mu_k N$	חיכוך קינטי	

 $\Sigma \vec{F} = m \vec{a}$ החוק השני של ניוטון

עבודה אנרגיה והספק

עבודה של כוח קבוע (בגודל ובכיוון)

 $W = F_x \Delta x = |F| \cos \alpha |\Delta x|$

$$E_k = \frac{1}{2} m v^2$$

 $E_k = \frac{1}{2} m v^2$ אנרגיה קינטית

אנרגיה פוטנציאלית כובדית (קרוב לכדוהייא)

אנרגיה פוטנציאלית אלסטית

$$E_s=rac{1}{2}k\,\Delta x^2$$
 ($E_s=0$ במצב רפוי (במצב רפוי $W_{total}=\Delta E_k$

$$W_{total} = \Delta E_k$$

עבודת שקול הכוחות הלא משמרים (אנרגיה מכנית כוללת $E=E_{\scriptscriptstyle k}+E_{\scriptscriptstyle p}+E_{\scriptscriptstyle el}$

 $E_1 + \sum W_{F(\neq mg, \neq k\Delta x)} = E_2$

$$\sum W_{F(\neq mg, \neq k\Delta x)} = E_2 - E_1$$

$$\overline{P} = \frac{\Delta W}{\Delta t}$$

הספק ממוצע

קבלים

 $C = \frac{q}{V}$ (הגדרה כללית) קיבול של קבל

 $C = rac{arepsilon_r arepsilon_0 A}{\sigma}$ (מקבל למילוי למילוי דיאלקטרי מקדם - $arepsilon_r$) קיבול של קבל

$$U=rac{QV}{2}=rac{CV^2}{2}=rac{Q^2}{2C}$$
 אנרגיה חשמלית אגורה בקבל טעון

חיבור קבלים במקביל

 $V_1 = V_2 = \dots = V_T$, $q_1 + q_2 + \dots = q_T$, $C_T = C_1 + C_2 + \dots$

 $V_1 + V_2 + \dots = V_T$, $q_1 = q_2 = \dots = q_T$, $\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$

 $I = rac{\Delta q}{\Delta t}$ עצמת הזרם החשמלי (הגדרה כללית)

$$V=RI$$
 חוק אוהם

$$R = \rho \frac{l}{A}$$
 התנגדות הנגד

$$W_{A o B} = V_{AB} \cdot I \cdot t$$
 עבודת הזרם החשמלי

 $\overline{P = I \cdot \varepsilon}$ ההספק המסופק ע"י מקור מתח:

$$P=I\cdot V_{AB}=I^2\cdot R=rac{{V_{AB}}^2}{R}$$
 הספק חום בנגד

חיבור נגדים בטור

$$;R_T=R_1+R_2+\dots \quad I_1=I_2=\dots=I_T, \quad V_1+V_2+\dots=V_T$$
 $V_1=V_2=\dots=V_T, \quad I_T=I_1+I_2+\dots \quad \frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}+\dots \; ;$

כללי קירכהוף:

(1)
$$\Sigma I_{node} = 0$$
 $(\sum I_{in} = \sum I_{out})$

(2) $\Sigma \Delta \varphi_{iclosed\ loop} = 0$

RC מעגלי

קבל של פריקה או טעינה טורי מורי RC זרם במעגל

$$i(t) = i_0 e^{-t/\tau}, \qquad i_0 = \frac{\varepsilon}{R+r}, \qquad \tau = RC$$

$$\ln i(t) = \ln i_0 - t / \tau$$

מתח על קבל במעגל *RC* טורי בזמן טעינה של קבל

$$V_C(t) = \varepsilon (1 - e^{-t/\tau})$$

מטען על קבל במעגל RC טורי בזמן טעינה של קבל

$$Q(t) = C\varepsilon(1 - e^{-t/\tau})$$

מתח על קבל במעגל טורי RC מתח על קבל במעגל שמעוו מתח מתח של המכללה האקדמות להנדסה ע"ש סמי שמעוו

 $V_C(t) = \sqrt{8} e^{-t/ au}$ אפוס באר שבע ביאליק 84, 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | אפוס אשדוד ז'בוטינסקי 84, 84 פוס באר שבע ביאליק 85, 84 און אפוס אשדוד ז'בוטינסקי

מטען על קבל במעגל טורי RC בזמן במעגל של קבל

$$Q(t) = C\varepsilon e^{-t/\tau}$$

חוק קולון

כוח חשמלי בין מטענים נקודתיים

$$F = \frac{k|q_1q_2|}{r^2} = \frac{|q_1q_2|}{4\pi\varepsilon_0 r^2}$$

$$k = 9 \times 10^9 \frac{N \cdot m^2}{Coul^2}, \quad \varepsilon_0 = 8.84 \times 10^{-12} \frac{Coul^2}{N \cdot m^2}$$

$$ec{E} = rac{ec{F}}{a}$$
 שדה חשמלי (הגדרה כללית)

 $E=rac{kQ}{r^2}$ שדה חשמלי סביב מטען נקודתי או כדור מוליך

$$E=rac{\sigma}{2arepsilon_{
m o}}$$
 שדה חשמלי של לוח אינסופי טעון

$$\sigma = rac{Q}{4}$$
 היא צפיפות מטען שטחית היא צפיפות מיען כאשר

אנרגיה פוטנציאלית ופוטנציאל חשמלי

אנרגיה פוטנציאלית חשמלית של שני מטענים נקודתיים:

$$U = \frac{kq_1q_2}{r}$$

$$arphi = rac{U}{q}$$
 : (הגדרה כללית) $arphi$ המדרה שמלי $arphi$

פוטנציאל חשמלי סביב מטען נקודתי או כדור מוליך

$$\varphi = \frac{kQ}{r}$$
 $(\varphi \ (r \to \infty) = 0)$

מתח חשמלי (הפרש פוטנציאלים) בשדה חשמלי אחיד $V = E \Lambda x$

V = Ed מתח חשמלי בין זוג לוחות טעונים:

עבודת כוח חשמלי

ל- A מנקודה q מנקודת מטען בהעברת מטען מנקודה A

$$W_{el}^{A \to B} = q(\varphi_A - \varphi_B) = qV_{AB} \qquad :B$$

(Bו-וA ו-נקודות בין הנקודות אוה V_{AB}

Bל-לA מנקודה G מנקודת מטען בהעברת מטען בהעבודה ל-

$$W_{el}^{A \to B} = q(\varphi_B - \varphi_A) = qV_{BA}$$

מגנטיות

 $F = q v B \sin \alpha = q v \, B$ כוח מגנטי על מטען השמלי נקודתי נקודתי נקודתי מגנטי על מטען

רכיב לשדה - רכיב רכיב רכיב רכיב רכיב רכיב -
$$v_{\perp} = vSin \alpha$$
) תאוצה רדיאלית
$$a_R = \frac{V^2}{R}$$

 $F = IlBSin\alpha$

כוח מגנטי על תייל ישר נושא זרם בשדה מגנטי

 $\overline{I_2}$ כוח ליחידת אורך בין שני תיילים ישרים, ארוכים ומקבילים זה לזה, הנושאים זרמים וו

$$\mu_0=4\pi imes10^{-7}$$
 $[rac{N}{A^2}=rac{T\cdot m}{A}]$ קבוע מגנטי: $rac{F}{l}=rac{\mu_0I_1I_2}{2\pi d}$ שדה מגנטי במרחק r מתייל ישר וארוך נושא זרם r

 $B=rac{\mu_0 NI}{2R}$ שדה מגנטי במרכז כריכה מעגלית או סליל דק עשוי N כריכות

כא"מ מושרה

 $\Phi = BACos \, lpha$ שטף מגנטי דרך מסגרת מוליכה

 $arepsilon = -Nrac{\Delta\Phi}{\Delta t}$ (כא"מ מושרה בסליל בעל בעל כריכות) הוק פראדי-לנץ

 B_{\perp} כא"מ מושרה בין המהירות בניצב למוט, $arepsilon=B_{\perp}l\,V_{\!\!\perp}$ מגנטי במאונך לשדה מנטי המהירות מוט מוליך הנע במאונך לשדה מגנטי - רכיב השדה בניצב למישור תנועת המוט)

 $F = rac{B_{\perp}^2 l^2 \, V_{\perp}}{R}$ כוח מושרה על מוט מוליך הנע במאונך לשדה מגנטי

$$k = 9 \times 10^9 \, \frac{N \cdot m^2}{Coul^2}$$

$$k = 9 \times 10^{9} \frac{N \cdot m^{2}}{Coul^{2}}$$

$$\varepsilon_{0} = 8.85 \times 10^{-12} \frac{Coul^{2}}{N \cdot m^{2}}$$

(e) מטען ומסה של אלקטרון

$$m_e = 9.11 \times 10^{-31} kg$$
, $q_e = -1.6 \times 10^{-19} Coul$

(n) מטען ומסה של פרוטון (p) וניוטרון

$$m_p = m_n = 1.67 \times 10^{-27} kg$$
, $q_p = +1.6 \times 10^{-19} Coul$, $q_n = 0$

$$\mu_0 = 4\pi imes 10^{-7} \quad [rac{N}{A^2} = rac{T \cdot m}{A}]$$
 קבוע מגנטי:

$\int dx = x$	$\frac{dx}{dx} = 1$
$\int a f dx = a \int f dx$	$\frac{d}{dx}(a f) = a \frac{df}{dx}$
$\int (f+g)dx = \int f dx + \int g dx$	$\frac{d}{dx}(f(x)+g(x)) = \frac{df}{dx} + \frac{dg}{dx}$
$\int x^m dx = \frac{x^{m+1}}{m+1} \left(m \neq -1 \right)$	$\frac{d}{dx}x^m = mx^{m-1}$
$\int \frac{dx}{x} = \ln x $	$\frac{d}{dx}\ln x = \frac{1}{x}$
$\int e^{ax+b} = \frac{1}{a}e^{ax+b}$	$\frac{d}{dx}e^{f(x)} = e^{f(x)}\frac{df}{dx}$
$\int \sin(x) dx = -\cos x$	$\frac{d}{dx}\sin(x) = \cos(x)$
$\int \cos(x) = \sin(x)$	$\frac{d}{dx}\cos(x) = -\sin(x)$
$\int \tan(x) dx = -\ln(\cos x)$	$\frac{d}{dx}\tan(x) = \frac{1}{\cos^2 x}$
$\int \sin^2(x) = \frac{x}{2} - \frac{1}{4}\sin(2x)$	
$\int \cos^2(x) = \frac{x}{2} + \frac{1}{4}\sin(2x)$	
$\int x e^{-ax} = \frac{-1}{a^2} (ax+1)e^{-ax}$	
$\int \frac{dx}{\left(x^2 \pm a^2\right)^{3/2}} = \frac{\pm x}{a^2 \sqrt{x^2 \pm a^2}}$	
$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan\left(\frac{x}{a}\right)$	
$\int \frac{xdx}{\left(x^2 + a^2\right)^{3/2}} = -\frac{1}{\sqrt{(x^2 + a^2)}}$	
$\int \frac{dx}{a^2 - x^2} = \frac{1}{2} \ln \left(\frac{x + a}{x - a} \right)$	
$\int \frac{x}{\sqrt{x^2 - a^2}} dx = \sqrt{x^2 - a^2}$	
$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln\left(x + \sqrt{x^2 \pm a^2}\right)$	