

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

ARTIFICIAL NEURAL NETWORK

Animals are able to react adaptively to changes in their external and internal environment, and they use their nervous system to perform these behaviours.

An appropriate model/simulation of the nervous system should be able to produce similar responses and behaviours in artificial systems.

Dr. Hashim Yasin

Four Parts of Typical Nerve Cell:

□ Dendrites:

accepts the inputs

□ Soma:

process the inputs

□ Axon:

turns the process input into outputs

□ Synapses:

the electromechanical contact between the neurons

7

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

PERCEPTRON

- A simplest type of ANN system is based on a unit called a perceptron. A perceptron
 - takes a vector of real-valued inputs,
 - calculates a linear combination of these inputs,
 - then outputs a 1 if the result is greater than some threshold and -1 otherwise.
- \square More precisely, given inputs x_1 through x_n the output $o(x_1, \ldots, x_n)$ computed by the perceptron is

$$o(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 +, \dots, + w_n x_n > 0 \\ -1 & \text{otherwise} \end{cases}$$

$$o(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 +, \dots, + w_n x_n > 0 \\ -1 & \text{otherwise} \end{cases}$$

- \square where each W_i is a real-valued constant, or weight,
 - lacktriangle that determines the contribution of input x_i to the perceptron output.
- \Box The quantity (w_0) is a threshold
 - □ the weighted combination of inputs $w_1x_1 + ... + w_nx_n$ must exceed in order for the perceptron to output a 1.

□ We may imagine an additional constant input x_0 = 1, allowing to write the above inequality as,

$$\sum_{i=0}^{n} w_i x_i > 0$$

or in vector form as

$$o(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w}.\mathbf{x} > 0 \\ -1 & \text{otherwise} \end{cases}$$

$$sgn(y) = \begin{cases} 1 & \text{if } y > 0 \\ -1 & \text{otherwise} \end{cases}$$

$$\mathbf{x} = \vec{x}$$

 \square Learning a perceptron involves choosing values for the weights W_0, \ldots, W_n .

Therefore, the space H of candidate hypotheses considered in perceptron learning is the set of all possible real-valued weight vectors

$$H = \left\{ \overrightarrow{w} \mid \overrightarrow{w} \in \Re^{(n+1)} \right\}$$

$$o(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

NEURAL NETWORK COMPONENTS

Neural Network Components

- \square A **neural network** is a sorted **triple** (N, V, w) with two sets N, V and a function w,
 - \square whereas N is the set of neurons and
 - □ V is a sorted set $\{(i,j)|i,j\in N\}$ whose elements are called **connections** between neuron i and neuron j.
- □ The function $w: V \to R$ defines the **weights**, where as w(i,j),
 - The weight of the connection between neuron i and neuron j, is shortly referred to as $w_{i,j}$.

Neural Network Components

Input Neuron

An input neuron is an identity neuron. It exactly forwards the information received.

- Input neuron only forwards data
- Thus, it represents the <u>identity function</u>, which can be indicated by the symbol
- □ The input neuron is represented by the symbol

Binary Neuron

- Information processing neurons process the input information somehow, i.e. do not represent the identity function.
- A binary neuron sums up all inputs by using the weighted sum as <u>propagation function</u>, which is illustrate by the sigma sign.

 \sum

□ The <u>activation function</u> of the neuron is also binary threshold function, which can be illustrated by _____

Single-Layer Perceptron

- A Single-layer perceptron (SLP) is a perceptron having only one variableweight layer and one layer of output neurons.
- The technical view of an SLP with two input neurons and one output neuron is shown in the figure.
- The network returns the output by means of the arrow leaving the network.

Single-Layer Perceptron

A Single-layer perceptron (SLP) with several output neurons.

Neural Network Components

AND Function

OR Function

AND OR Functions

PERCEPTRON TRAINING RULE

- □ How to learn the weights for a single perceptron.
 - Begin with random weights,
 - Iteratively apply the perceptron to each training example,
 - Modifying the perceptron weights whenever it misclassifies an example.
 - This process is repeated, iterating through the training examples as many times as needed until the perceptron classifies all training examples correctly.
 - Weights are modified at each step according to the perceptron training rule.

□ The **perceptron training rule**, which revises the weight w_i associated with input x_i according to the rule:

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t - o)x_i$$

Where:

- t is target value
- o is perceptron output
- η is small constant (e.g., 0.1) called *learning rate*

- □ The weight changes Δw_{ij} need to be applied repeatedly ... for each weight w_{ij} in the network, and for each training pattern in the training set.
- One pass through all the weights for the whole training set is called one **epoch** of training
- Eventually, usually after many epochs, when all the network outputs match the targets for all the training patterns,
 - lacktriangle all the Δw_{ij} will be zero and the process of training will cease.
 - We then say that the training process has converged to a solution

Example:

- □ The training rule will increase w, if (t o), η and x_i are all positive.
 - if $x_i=0.8$, $\eta=0.1$, t=1, and o=-1, then the weight update will be

$$\Delta w_i = \eta(t - o)x_i = 0.1(1 - (-1))0.8 = 0.16.$$

- On the other hand,
 - if $x_i = 0.8$, $\eta = 0.1$, t = -1 and o = 1, then weights associated with positive x_i will be decreased rather than increased.

$$\Delta w_i = \eta(t - o)x_i = 0.1(-1 - (1))0.8 = -0.16.$$

The decision surface represented by a two-input perceptron x_1 and x_2 . (a) A set of training examples and the decision surface of a perceptron that classifies them correctly. (b) A set of training examples that is not linearly separable.

- □ The **perceptron rule** finds a successful weight vector when the training examples are **linearly separable**,
- It fails to converge if the examples are not linearly separable.
- The solution is ... Delta Rule also known as (Widrow-Hoff Rule)

Delta Rule

use gradient descent to search the hypothesis space of possible weight vectors to find the weights that best fit the training examples.

Reading Material

- Artificial Intelligence, A Modern Approach
 Stuart J. Russell and Peter Norvig
 - □ Chapter 18.
- Machine LearningTom M. Mitchell
 - Chapter 4.