Tesina 2 di modelli econometrici

Federico Spatola

November 18, 2019

1 Consegna

Scaricate i dati sul PIL trimestrale italiano a prezzi costanti e destagionalizzato (possibilmente gli ultimi dati disponiili su OECD http://stats.oecd.org) e tenendo conto di quanto appreso a lezione effettuate un'analisi secondo l'approccio di Box e Jenkins al fine di fare una previsione a uno, due, tre e quattro trimestri in avanti per il tasso di crescita trimestrale annualizzato del PIL in valori percentuali.

2 Analisi preliminare-Dataset 1960-2019

Si condurra' l'analisi su due differenti Dataset, per entrambi si faranno delle pseudo previsioni su uno stesso campione e si confronteranno i valori dell'RMFSE, infine utilizzando il modello con l'RMFSE minore si daranno le previsioni del tasso di crescita trimestrale annualizzato del PIL in valori percentuali. Adesso, si considera la serie storica del Pil ai prezzi costanti con dati destagionalizzati scaricabile da https://stats.oecd.org/Index.aspx?DataSetCode=QNA#.

Si nota la crescita logaritmica e quindi una forte asimmetria, per ridurla si passa alla serie dei logaritmi poi alla serie delle differenze prime di quest'ultima e infine si moltiplica per 100, ottenendo un approssimazione del tasso di crescita trimestrale del PIL in valori percentuali, da notare che moltiplicando ancora per 4 si potrebbe effettuare l'analisi direttamente sul tasso trimestrale annualizzato. Tenendo l'intero campione Il Test di Burtlett mostra che c'e' una forte correlazione tra i ritardi, allora si e' deciso di eliminare le osservazioni fino al primo trimestre del 1971, cosi' facendo si ottiene un considerevole miglioramento nella stazionarieta' della serie:

Di seguito il correlogramma:

Autocorrelation function for pld_GDP $$***, **, *$ indicate significance at the 1%, 5%, 10% levels using standard error 1/T^0.5$

LAG	ACF		PACF		Q-stat.	[p-value]
LAG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	ACF 0.5236 0.3000 0.1674 0.0002 -0.0565 -0.0878 -0.0243 0.0683 0.0878 0.15518 0.2096 0.1975 0.1157 0.0699 0.0805	*** ** ** ** **	PACF 0.5236 0.0355 -0.0038 -0.1291 -0.0203 -0.0331 0.0843 0.0962 0.0107 0.0824 0.1005 0.0438 -0.0480 0.0148 0.0788	***	0-stat. 54.2925 72.2004 77.8040 77.8040 78.4493 80.0171 80.1381 81.0977 82.6904 87.4726 96.6421 104.8294 107.6538 108.6898 110.0737 112.3045	[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
17 18 19 20	0.0539 0.0564 0.0757 0.0478		0.0319 0.0121 0.0202 -0.0173		112.3045 112.9310 113.6201 114.8695 115.3708	[0.000] [0.000] [0.000] [0.000]

3 Identificazione

Il correlogramma suggerisce che la serie storica si possa identificare con un modello $AR(\rho)$. Si sceglie $\rho = 12$, si considerano i modelli AR(0),...,AR(12) e dunque si utilizzano i criteri informativi per verificare quale di questi si adatta meglio ai dati, in particolare si usa in Gretl la funzionalita' Var Lag Selection.

VAR system, maximum lag order 12

The asterisks below indicate the best (that is, minimized) values of the respective information criteria, AIC = Akaike criterion, BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.

lags	loglik	p(LR)	AIC	BIC	HQC
1	-190.22235		2.100791*	2.135867*	2.115009*
2	-190.15597	0.71560	2.110994	2.163609	2.132321
3	-190.15524	0.96946	2.121915	2.192068	2.150352
4	-188.22018	0.04915	2.111696	2.199387	2.147241
5	-188.09356	0.61481	2.121241	2.226470	2.163896
6	-187.97804	0.63075	2.130908	2.253675	2.180671
7	-187.68839	0.44659	2.138671	2.278976	2.195544
8	-186.58066	0.13663	2.137494	2.295337	2.201475
9	-186.43464	0.58892	2.146827	2.322208	2.217917
10	-185.41984	0.15426	2.146665	2.339585	2.224865
11	-184.31618	0.13736	2.145532	2.355990	2.230841
12	-184.08023	0.49211	2.153882	2.381879	2.246300

Entrambi i criteri AIC e BIC suggeriscono di scegliere AR(1).

$4 \mod AR(1)$

Di seguito l'output OLS relativo al modello AR(1). Model 4: OLS, using observations 1971:2-2019:3 (T = 194) Dependent variable: pld GDP

	coeffi	cient	std.	error	t-ratio	p-value	
const pld_GDP_1	0.194 0.523			668534 612289	3.423 8.557	0.0008 3.65e-15	***
Mean dependent		0.4052			ependent var		
Sum squared re	sid	97.826	45	S.E. 01	f regression	0.71380	92
R-squared		0.2761	01	Adjuste	ed R-squared	0.27233	31
F(1, 192)		73.230	30	P-value	e(F)	3.65e-	15
Log-likelihood		-208.86	17	Akaike	criterion	421.723	35
Schwarz criter	ion	428.25	92	Hannan-	-Quinn	424.370	90
rho		-0.0141	49	Durbin'	's h	-0.37738	88

5 Diagnostiche

5.1 Test di autocorrelazione

Di seguito, si allega l'LMTest di autocorrelazione.

```
LM test for autocorrelation up to order 1 -
Null hypothesis: no autocorrelation
Test statistic: LMF = 0.136319
with p-value = P(F(1, 191) > 0.136319) = 0.712377

LM test for autocorrelation up to order 5 -
Null hypothesis: no autocorrelation
Test statistic: LMF = 0.987305
with p-value = P(F(5, 187) > 0.987305) = 0.426792
```

Si accetta l'ipotesi di non autocorrelazione.

6 Previsione

Si comincia effettuando una pseudo-previsione, lasciando fuori dal campione di stima le osservazioni successive al primo trimestre del 2016.

For 68% confidence intervals, t(192, 0.16) = 0.997

	pld_GDP	prediction	std. error	68% interval
2016:1	0.320004	0.438739		
2016:2	0.173952	0.424486		
2016:3	0.562286	0.417018		
2016:4	0.337373	0.413105		
2017:1	0.586971	0.411055		
2017:2	0.375569	0.409980		
2017:3	0.397395	0.409417		
2017:4	0.481712	0.409123		
2018:1	0.105888	0.408968		
2018:2	-0.079237	0.408887		
2018:3	-0.122701	0.408845		
2018:4	0.046755	0.408822		
2019:1	0.117247	0.408811		
2019:2	0.069557	0.408805		

Forecast evaluation statistics

Mean Error	-0.17238
Root Mean Squared Error	0.2784
Mean Absolute Error	0.22863
Mean Percentage Error	-63.762
Mean Absolute Percentage Error	223.78
Theil's U	2.9385
Bias proportion, UM	0.38337
Regression proportion, UR	0.019239
Disturbance proportion, UD	0.59739

Risulta che l' RMFSE e' uguale a 0.2784.

7 Analisi preliminare

Adesso si considera la serie storica della variazione percentuale congiunturale del Pil ai prezzi di mercato con dati destagionalizzati, scaricabile da http://dati.istat.it/.

 ${\bf Variazione\ percentuale} =$ 2 1 0.5 0 Var_cong -0.5 -1 -2 -2.5 -3 2000 2005 2010 2015 Di seguito il correlogramma : ACF for Var_cong +- 1.96/T^0.5 0.5 -0.5 0 6 8 10 12 lag PACF for Var_cong +- 1.96/T^0.5 0.5 -0.5 -1 6 8 10 12 14 16 18

Il Test di Burtlett rifiuta al 5 per cento, l'ipotesi che l'autocorrelazione sia nulla per k=1,2,8,9.

8 Identificazione

Si procede analogamente a come si e' fatto per il primo Dataset, si suppone che il modello vero sia un $AR(\rho)$. Si sceglie $\rho = 9$, si considerano i modelli AR(0),...,AR(9) e dunque si utilizzano i criteri informativi per verificare quale di questi si adatta meglio ai dati. La prima operazione da effettuare e' eliminare le prime 9 osservazioni. Dopo di che si stimano i modelli OLS con differente numero di ritardi.

```
AR(0) Akaike criterion 157.5466 Schwarz criterion 159.8904
AR(1) Akaike criterion 118.5814 Schwarz criterion 123.2690
AR(2) Akaike criterion 119.8479 Schwarz criterion 126.8793
AR(3) Akaike criterion 121.3995 Schwarz criterion 130.7747
AR(4) Akaike criterion 123.3005 Schwarz criterion 135.0195
AR(5) Akaike criterion 124.8252 Schwarz criterion 138.8880
AR(6) Akaike criterion 125.7703 Schwarz criterion 142.1770
AR(7) Akaike criterion 125.8305 Schwarz criterion 144.5809
AR(8) Akaike criterion 126.8732 Schwarz criterion 147.9674
AR(9) Akaike criterion 128.8724 Schwarz criterion 152.3104 .
```

Si sceglie ancora il modelloAR(1).

9 modello AR(1)

Di seguito l'output OLS relativo al modello AR(1). Model 23: OLS, using observations 1998:2-2019:2 (T = 85) Dependent variable: Var_cong

	coefficient	std. error	t-ratio	p-value
const Var_cong_1	0.0463612 0.631583	0.0574077 0.0839892	0.8076 7.520	0.4216 5.83e-11 ***
Mean dependent			ndent var	0.674314
Sum squared res	id 22.7174		egression	0.523168
R-squared	0.40522	0 Adjusted	R-squared	0.398054
F(1, 83)	56.5474	7 P-value(F)	5.83e-11
Log-likelihood	-64.5303	2 Akaike cr	iterion	133.0606
Schwarz criteri	on 137.945	9 Hannan-Qu	inn	135.0256
rho	0.06326	9 Durbin's	h	0.921849

10 Diagnostiche

10.1 Test di autocorrelazione

Di seguito, si allega l'LMTest di autocorrelazione.

```
LM test for autocorrelation up to order 5 -
Null hypothesis: no autocorrelation
Test statistic: LMF = 0.755854
with p-value = P(F(5, 78) > 0.755854) = 0.584352

LM test for autocorrelation up to order 1 -
Null hypothesis: no autocorrelation
Test statistic: LMF = 0.79898
with p-value = P(F(1, 82) > 0.79898) = 0.374014
```

Si accetta l'ipotesi di non autocorrelazione.

10.2 QLR-Test

Si esegue il QLR-Test.

Quandt likelihood ratio test for structural break at an unknown point, with 15 percent trimming:

The maximum F(2, 81) = 5.58982 occurs at observation 2008:3 Asymptotic p-value = 0.0594151 for chi-square(2) = 11.1796

Il Test ci fornisce il trimestre in cui si verifica il break strutturale. Se ne terra' conto in seguito.

11 Previsione

Si comincia effettuando una pseudo-previsione, lasciando fuori dal campione di stima le osservazioni successive al primo trimestre del 2016 quindi circa il 20 per cento del campione.

68% interval

For	68%	confidence	intervals,	t(69,	0.16)	= 1.002	
		Var cond	predicti	ion	std.	error	

		p			
2016:1	0.239	0.279	0.5708	-0.293 -	0.850
2016:2	0.227	0.217	0.6738	-0.458 -	0.892
2016:3	0.375	0.178	0.7102	-0.533 -	0.890
2016:4	0.469	0.154	0.7241	-0.571 -	0.879
2017:1	0.560	0.139	0.7294	-0.592 -	0.870
2017:2	0.380	0.129	0.7315	-0.603 -	0.862
2017:3	0.410	0.123	0.7324	-0.610 -	0.857
2017:4	0.378	0.120	0.7327	-0.614 -	0.854
2018:1	0.219	0.117	0.7328	-0.617 -	0.851
2018:2	0.010	0.116	0.7329	-0.618 -	0.850
2018:3	-0.134	0.115	0.7329	-0.619 -	0.849
2018:4	-0.060	0.114	0.7329	-0.620 -	0.848
2019:1	0.126	0.114	0.7329	-0.620 -	0.848
2019:2	0.024	0.114	0.7329	-0.620 -	0.848

Forecast evaluation statistics

Mean Error	0.085252
Root Mean Squared Error	0.21556
Mean Absolute Error	0.17931
Mean Percentage Error	-36.626
Mean Absolute Percentage Error	170.28
Theil's U	1.6873
Bias proportion, UM	0.15641
Regression proportion, UR	7.3265e-05
Disturbance proportion, UD	0.84352

L'RMSE e' piu' piccolo di quello trovato sul Dataset precedente, per questo motivo si sceglie di basare le previsioni, richieste nella consegna, su questo Dataset. Usando tutte le osservazioni si da' la seguente previsione dinamica quattro trimestri in avanti:

Le previsioni corrispondono alle variazioni percentuali congiunturali previste dal modello. Se si vuole ottenere la stima del PIL nel terzo trimestre del 2019 si considera il valore nel secondo trimestre (secondo i dati del dataset..) e si calcola:

$$2093509 + \frac{2093509 \cdot \text{prediction}}{100} = 2093509 + \frac{2093509 \cdot 0.062}{100} = 2094953.52.$$

Analogamente si stimano i valori del Pil previsti nei successivi tre trimestri.

Adesso, si sceglie di considerare solo il campione successivo al break strutturale.

Forecast evaluation statistics

Mean Error	0.13073
Root Mean Squared Error	0.22967
Mean Absolute Error	0.18357
Mean Percentage Error	33.314
Mean Absolute Percentage Error	94.595
Theil's U	1.2015
Bias proportion, UM	0.324
Regression proportion, UR	6.6759e-05
Disturbance proportion, UD	0.67593

Si nota che l'RMSE e' leggermente peggiorato, probabilmente poiche' il campione di stima e' risultato troppo piccolo. Si prova adesso un altra strada ovvero si prova ad eliminare le osservazioni outliers 2008:4 e 2009:1, supponendo quindi che il trend osservato in quei trimestri non si verifichera' nei prossimi anni. In particolare si suppone che i due trimestri abbiano registrato la medesima crescita del trimestre 2008:3. Si ottiene la serie storica in figura.

Utilizzando sempre il modello AR(1) si ottengono le pseudo-previsioni:

Forecast evaluation statistics

Mean Error 0.056682 Root Mean Squared Error 0.20769 Mean Absolute Error 0.176 Mean Percentage Error 73.432 Mean Absolute Percentage Error 209.69 Theil's U 1.9317 Bias proportion, UM 0.074484 Regression proportion, UR 0.00028986 Disturbance proportion, UD 0.92523

L'RMSE di questo modello e' il risultato migliore ottenuto. Si da' una nuova previsione dinamica quattro trimestri in avanti.

Dunque le stime che si danno per i tassi di crescita trimestrali annualizzati in termini percentuali per i prossimi 4 trimestri sono rispettivamente $4 \cdot 0.076\% = 0.304\%, 0.428\%, 0.5\%$ e 0.540%.