ervice Man

dbx/Dolby B-C NR, Auto-Reverse Cassette Deck

RS-B58

Black Face

Cassette Deck

This is the Service Manual for the following areas.

...For all European areas except United Kingdom.

.. For United Kingdom.

RS-8R MECHANISM SERIES

Specifications

Track system:

4-track 2-channel stereo recording and

playback

Tape speed:

4.8cm/s

Wow and flutter: Frequency response:

0.05% (WRMS), ±0.14% (DIN)

Metal tape; 20~20,000 Hz

30~18,000 Hz (DIN)

 $40\sim17,000\,\text{Hz}\pm3\,\text{dB}$

CrO₂ tape; 20~19,000 Hz

30~17,000 Hz (DIN)

40~16,000 Hz ± 3dB

Normal tape; 20~18,000 Hz

30~16,000 Hz (DIN)

40~15,000 Hz ± 3dB

Dynamic range: Max. input level

Fast forward and

110dB (at 1kHz) with dbx in

improvement: 10dB or more improved with dbx in

(at 1kHz)

Signal-to-noise ratio: dbx in; 92dB (A weighted)

Dolby C NR in; 73dB (CCIR) Dolby B NR in; 67dB (CCIR)

NR out; 58dB (A weighted)

(Signal level = max. input level, CrO,

type tape)

rewind time: Approx. 90 seconds with C-60 cassette

tape

MIC; sensitivity 0.25mV, applicable microphone impedance 400Ω~10kΩ

LINE; sensitivity 60 mV, input

impedance 47kΩ or more LINE; output level 400 mV, output

impedance 1.5kΩ or less

HEADPHONES; output level 80 mV (at 8Ω) applicable headphone

impedance 8Ω~600Ω

Bias frequency: 80kHz

Heads: 2-head system

1-AX (AMORPHOUS) head for record/

playback

1-double-gap ferrite head for erasure

2 plus 1-motor system

1-Electrical governor motor

• 2-DC motor

Power requirements: D...AC; 220 V, 50-60 Hz

B...AC; 110/125/220/240 V, 50-60 Hz

Pre-set power voltage 240 V

Power consumption:

Dimensions:

Weight:

Inputs:

Outputs:

Motor:

18W

 $43cm(W) \times 9.8cm(H) \times 27.3cm(D)$ 5kg

Design and specifications are subject to change without notice.

*The term dbx is a registered trademark of dbx Inc.

* * 'Dolby' and the double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.

Technics

Matsushita Electric Trading Co., Ltd. P.O. Box 288, Central Osaka Japan

CONTENTS

ITEM	PAGE	ITEM	PAGE
• Location of Controls and Components	2	Schematic Diagram	19
Disassembly Instructions	3	Electrical Parts List	
Replacing Rotary Head Assembly	6	Circuit Boards and Wiring	
Measurement and Adjustment Methods	6	Connection Diagram	25
Microcomputer Terminal Function and		Mechanical Parts Location (included Parts List)	
Waveform	13	Cabinet Parts Location (included Cabinet,	
Block Diagram	17		31

DISASSEMBLY INSTRUCTIONS

Fig. 3

(J) How to remove flat cable

Open the lid of connector in the direction of the arrow as shown above, and extract the flat cable to disconnect. 10000000 (Flat cable connector)

(Q) How to remove nylon rivet

To remove a heat sink from the back chassis, first press nylon rivet-A from the inside in the direction indicated by the arrow as shown above, and extract the rivet to the outside. Next remove nylon rivet-B from the outside. Consequently, the heat sink can be removed from the back chassis.

Ref. No.	Procedure	To remove —.	Remove —.	Shown in fig. —.
			• 2 ornament screws(A)	1
1	1	Case cover	• 3 screws(B)	2
	·		As shown in fig. 1, pull case cover in the direction of arrow ①.	1
			• 3 screws(E)	3, 4, 5
			• 2 screws(F)	6
2	1 → 2	Front panel assembly	• 2 screws(G)	6
	_	and mechanism unit	• 2 screws(H)	6
			Pull out the connectors AFGHL(I) How to remove flat cable(J)	3 3
			Push the eject button(C)	1.
			• Cassette lid(D)	1
3	1 → 3	Mechanism unit	• 2 screws(G)	6
3 1 - 3		Wechanism unit	• 2 screws(H)	6
			• 2 screws(K)	7
			Counter belt(L)	7
4	1 → 4	FL meter assembly	• 2 screws(M)	7
5	1 → 5	Slide volume assembly	• 2 screws(N)	7
			• 2 screws(O)	7
6	1 → 6	Key board circuit	As shown in fig. 7, raise the clamper in the direction of arrows @ and arrows the leave board.	_
			direction of arrow ② and remove the key board circuit in the direction of arrow ③.	7
			• 2 screws(F)	6
			• 2 screws(H)	6
7	7	Bottom cover	• 7 screws(P)	6
			Slide the bottom cover in the direction arrow ④ and remove it.	6
			How to remove nylon rivet(Q)	3
8	$1 \rightarrow 7 \rightarrow 8$	Main circuit board	• 1 screw(E)	4
			• 1 screw(R)	3
			Remove the reel table(S)	8
9	1 → 3 → 9	FF/REW motor and drive	• 4 screws(T)	8
	. 5 - 5	motor	Unsolder the soldered portion of the FF/REW motor terminal and driver motor terminal(U)	9
10	1 → 3 → 10	Capstan motor	• 5 screws(V)	9

PRE

Removing the

The Mode Sel Bushings, as Assembly and the Button Bu parts. Be car will pop out.

Reassemblin

- 1. For repair, mechanism lower base For ground mechanism' circuit board Without gro properly.
- 2. Before attac Assembly, t (M18) and th Fig. 12, and screws (K) Counter Bel thread it over
- 7. Make su

Replacement Repeat Butto

The Blank Ski are a one-piece part.). As shown in F that the Front

Ornament Plat A are melted **Ornament Plat** To remove thi Ornament Plat part © of the seven pins (A) Fig. 2.) As mentioned by heat, both

Replacement

replaced when

To replace the the five screws three LED's. from the Base (Refer to the F RS-B58R RS-B58R

Ref. No.	Procedure	To remove —.	Remove —.	Shown in fig. —.
			• 2 ornament screws(A)	1
1	1	Case cover	3 screws(B) As shown in fig. 1, pull case cover in the	2
			direction of arrow ①.	1
			• 3 screws(E)	3, 4, 5
			• 2 screws(F)	6
2	1 → 2	Front panel assembly	• 2 screws(G)	6
		and mechanism unit	• 2 screws(H)	6
			• Pull out the connectors A F G H L(1)	3
			How to remove flat cable(J)	3
			Push the eject button(C)	1.
			• Cassette lid(D)	1
3	1 → 3	Mechanism unit	• 2 screws(G)	6
Ū		Wiconamon and	• 2 screws(H)	6
			• 2 screws(K)	7
			Counter belt(L)	7
4	1 → 4	FL meter assembly	• 2 screws(M)	7
5	1 → 5	Slide volume assembly	• 2 screws(N)	7
			• 2 screws(O)	7
6	1 → 6	Key board circuit	• As shown in fig. 7, raise the clamper in the	_
			direction of arrow ② and remove the key board	7
			circuit in the direction of arrow 3.	
			• 2 screws(F)	6
			• 2 screws(H)	6
7	7	Bottom cover	• 7 screws(P)	6
			Slide the bottom cover in the direction arrow ④ and remove it.	6
			How to remove nylon rivet(Q)	3
8	1 → 7 → 8	Main circuit board	• 1 screw(E)	4
			• 1 screw(R)	3
			Remove the reel table(S)	8
_		FF/REW motor and drive	• 4 screws(T)	8
9	1 → 3 → 9	motor	Unsolder the soldered portion of the FF/REW motor	_
			terminal and driver motor terminal(U)	9
10	1 → 3 → 10	Capstan motor	• 5 screws(V)	9

PRECAUTIONS IN DISASSEMBLY AND REASSEMBLY

Removing the Mode Select Button

The Mode Select Buttons are press-fit with the Button Bushings, as shown in Fig. 11, with the Front Panel Assembly and Button Springs between them. Remove the Button Bushings using pliers to disassemble these parts. Be careful not to lose the Button Springs as they will pop out.

Reassembling the Mechanism Unit

- 1. For repair, measurement or adjustment with the mechanism removed from the unit be sure to ground the lower base plate of the mechanism.
- For grounding, connect a extension cord to the mechanism's lower base plate and the ground of main circuit board.
- Without grounding, the mechanism does not operate properly.
- 2. Before attaching the Mechanism Unit to the Front Panel Assembly, thread the Counter Belt over the Reel Table (M18) and the 6-pin Jumper Socket Cover as shown in Fig. 12, and then secure the Mechanism Unit with two screws (K) (Refer to the Fig. 7.). Then, remove the Counter Belt from the 6-pin Jumper Socket Cover, and thread it over the Tape Counter Pulley as shown in Fig.

MECHANISM UNIT M18: REEL TABLE

Fig. 12

PRECAUTIONS FOR PARTS REPLACEMENT

Replacement of the Blank Skip/Music Select/Music Repeat Button

The Blank Skip, Music Select and Music Repeat Buttons are a one-piece resin molded part (It is supplied as a single

As shown in Fig. 1, this button is fixed in such a manner that the Front Panel Assembly is sandwiched between the Ornament Plate (G5-1) and the button (G5-2) and three pins A are melted by heat. (Four pins (B) are used to fix the Ornament Plate. Refer to Fig. 2.)

To remove this part, first, remove the four lugs on the Ornament Plate from the Front Panel. Then, while pulling part © of the Ornament Plate toward the front, heat the seven pins (A) and (B) with a soldering iron. (Refer to the Fig. 2.)

As mentioned above, this part is fixed by melting the pins by heat, both the Ornament Plate and button must be replaced when replacement is required.

Replacement of Parts on the Keyboard Circuit

To replace the parts on the keyboard circuit, first, remove the five screws (F), and then desolder six terminals (G) of three LED's. The Operation Chassis can then be removed from the Base Plate and the parts be replaced. (Refer to the Fig. 3).

KEY BOARD CIRCUIT **CHASSIS**

REPLACING ROTARY HEAD ASSEMBLY

Considerations in mounting the rotary head assembly

- 1. This recorder requires a record/playback head of extremely precise head height. In replacing the rotary head, install a factory-adjusted full rotary head assembly.
 - [Never attempt to disassemble the rotary head assembly by removing screws (A).]
- 2. In installing the replacement rotary head assembly, make certain that the change gear is placed at location (B) on the change rod. (See Fig. 1.)
- 3. Trace the record/playback head lead-wire as follows (Refer to Fig. 2.):
 - Set the record/playback head in its forward playback direction.
 - Slacken the wire between the head assembly and the mechanism angle-R (by making a 5 or 6mm turnup).

Fig. 1

MEASUREMENT AND ADJUSTMENT METHODS

NOTES: Set switches and controls in the following positions, unless otherwise specified.

- Make sure heads are clean
- Make sure capstan and pressure roller are clean
- Judgeable room temperature 20±5°C (68±9°F)
- NR switch: OUT
- Timer start switch: OFF Input level control: Maximum
- · Blank skip switch: OFF . Music select switch: OFF
 - Music repeat switch: OFF

Align between

the top face of

A Head adjustment

Condition:

Playback mode

(Forward • Reverse) · Normal tape mode

Equipment: • VTVM

- Oscilloscope
- Test tape (azimuth)...QZZCFM
 - Test tapeQZZCRD

Align between

HEAD HEIGHT ADJUSTMENT

- 1. Turn the tape guide height adjustment screw and the erase head height adjustment screw on the rotary head assembly counterclockwise until the upper end face of the erase head and of the tape guide are aligned on the same plane as the top face of their respective guide pins. (Refer to Figs. 2, 3 and 4).
- 2. Put a point ink-mark on the head of each
- adjustment screw. 3. With the marks as guides, turn the erase head height adjustment screw 3.2 turns clockwise and the tape guide height adjustment screw 2.5 turns clockwise.
- 4. Install a test tape (tape with mirror: QZZCRD) on the recorder; place the recorder in the FORWARD PLAY mode. Make fine adjustments of the erase head height and tape guide height adjustment screws as necessary, to attain on the record-
- ing/reproducing head face the tape position shown in Fig. 5. 5. Run the tape in the forward play mode and check it for zigzag running. (Shown in Fig. 5) If zigzag tape running occurs, repeat step 4.
- 6. Place the recorder in the reverse play mode and perform the above steps 4 and 5.
- 7. Repeat steps 5 and 6 two or three times and verify that the tape position shown in Fig. 5 is ensured.

Erase head

L-CH/R-CH output balance adjustment

- 8. Make connections as shown in fig. 6.
- 9. In the forward playback mode, playback the 8kHz signal from the test tape (QZZCEM).

Adjust the azimuth screw (Forward) shown in fig. 7 for maximum output L-CH and R-CH levels.

When the output levels of L-CH and R-CH are not at maximum at the same point adjust as follows.

- 10. Turn the azimuth screw (Forward) shown in fig. 7 to find angles A and C (points where peak output levels for left and right channels are obtained). Then, locate angle B between angles A and C, i.e., point where L-CH and R-CH outputs are balanced. (Refer to figs. 7 and 8.)
- 11. In the reverse playback mode, adjust the azimuth screw (reverse) in the same way described above.

L-CH/R-CH phase adjustment

- 12. Make connections as shown in fig. 9.
- 13. In the forward playback mode, playback the 8kHz signal from the test tape (QZZCFM). Adjust the azimuth screw (Forward) shown in fig. 7 so that pointers of the two VTVMs swing to maximum and a lissajous waveform as illustrated in fig. 9-1 is obtained on the oscilloscope.
- 14. In the reverse playback mode, adjust the azimuth screw (reverse) in the same way described above.

Fig. 9

Fig. 9-1

Checking the difference in level between forward and reverse running

- 15. Reproduce the playback level adjustment signal (315Hz at 0dB) on the standard playback adjustment tape, and check that the difference between the level in forward running and that in reverse running is within 1.0dB.
- 16. After adjustment, lock the erase head height, tape guide height and angle adjustment screws.

Head Height Adjustment using the Head Adjustment Jig (QZZ0207)

The head adjustment jig (QZZ0207) enables accurate, speedy head height adjustment in the following manner.

- a. Place the plate onto the mechanism.
- b. Set the mechanism to the PLAY mode.
- c. Place the check bar onto the plate.
- d. Pass the check bar through each tape guide.
- e. Adjust the height screw so that the check bar does not touch any of the tape guides.
- Run a mirror tape (QZZCRD) and check to see that the tape does not touch (twist arround, etc.) the tape guide.
- g. After that, adjust items 4 thru 13 in the adjustment procedure.

Ш

Digital frequency counter

Fig. 10

Takeup torque

Condition:

Playback mode

Equipment: DC voltmeter

• Test tape...QZZSRKCT

- Set the test tape (or RT-60) into the cassette holder.
- 2. Adjust the takeup torque adjusting potentiometer VR601 in the forward playback mode for 3.5 volts between the FF/REW motor terminals.
- 3. Run the QZZSRKCT takeup torque measurement tape in the forward playback mode and check that the torque is within quoted tolerance.

Standard value: 50±10 gr-cm

Tape speed

Condition: · Playback mode Equipment:

· Digital frequency counter

Record/playback

Test tape

Test tape...QZZCWAT

Tape speed accuracy

- 1. Test equipment connection is shown in fig. 10.
- 2. Playback test tape (QZZCWAT 3,000 Hz), and supply playback signal to the digital frequency counter.
- Measure this frequency.
- 4. On the basis of 3,000 Hz, determine value by following formula:

Tape speed accuracy = $\frac{f - 3,000}{3,000} \times 100(\%)$

where, f = measured value

5. Take measurement at middle section of tape

Standard value: +1.5%

6. If measured value is not within the standard value, adjust it by using the tape speed adjustment VR shown in Fig. 1.

Tape speed fluctuation

Make measurements in same manner as above (beginning, middle and end of tape), and determine the difference between maximum and minimum values and calculate as follows:

Tape speed fluctuation = $\frac{f_1 - f_2}{3.000} \times 100(\%)$ $f_1 = maximum value, f_2 = minimum value$

Standard value: Less than 1%

NOTE:

Please use non metal type screwdriver when you adjust tape speed on this unit.

Playback frequency response

Condition:

· Playback mode

Equipment: VTVM

(Forward • Reverse) · Normal tape mode

 Oscilloscope Test tape...QZZCFM

- 1. Test equipment connection is shown in fig. 6.
- Playback the frequency response portion of test tape (QZZCFM).
 Measure output level at 315Hz, 12.5kHz, 8kHz, 4kHz, 1kHz, 250Hz, 125 Hz and 63 Hz, and compare each output level with the standard frequency 315Hz, at LINE OUT.
- 4. Make measurements for both channels.
- 5. Make sure that the measured values are within the range specified in the frequency response chart. (Shown in fig. 11).

Playback frequency response (Forward • Reverse)

Fig. 11

Playback gain

Condition:

· Playback mode

· Normal tape mode

Equipment:

VTVM

Oscilloscope

Test tape...QZZCFM

- 1. Test equipment connection is shown in fig. 6.
- Playback standard recording level portion on test tape (QZZCFM 315 Hz) and, using VTVM, measure the output level at test points [TP7 (L-CH), TP8 (R-CH)].
- 3. Make measurements for both channels.

Standard value: 0.42±0.05V [around 0.28V: at test points TP7 (L-CH) and TP8 (R-CH)]

Adjustment

- If the measured value is not within standard the adjust VR1 (L-CH) or VR2 (R-CH) (See fig. 1).
 After adjustment, check "Playback frequency response" again.

Erase current

Condition:

· Record mode VTVM

· Metal tape mode

Oscilloscope

Equipment:

- Test equipment connection is shown in fig. 12.
- Place UNIT into metal tape mode.
- 3. Press the record and pause buttons.
- 4. Read voltage on VTVM and calculate erase current by following formula:

Voltage across resistor R301

Erase current (A) = 1 (Ω)

Standard value: 155±15mA (Metal)

Erase head Record mode O \cap Oscilloscope

Fig. 12

Adjustment

• If the measured value is not within standard value, adjust VR10 (shown in fig. 1).

Overall frequency response

Condition:

- · Record/playback mode
- Normal tape mode
- CrO₂ tape mode
- · Metal tape mode
- Input level control...MAX

Equipment:

- VTVM
- ATTAF oscillator
- Oscilloscope
 Resistor (600Ω)
- Test tape
 - (reference blank tape)
 - ...QZZCRA for Normal ...QZZCRX for CrO₂
 - ...QZZCRZ for Metal

Note:

Before measuring and adjusting, the overall frequency response make sure of the playback frequency response (For the method of measurement, please refer to the playback frequency response).

(Recording equalizer is fixed)

- 1. Make connections as shown in fig. 13.
- Place UNIT into normal tape mode and insert the normal reference blank test tape (QZZCRA).
- Supply a 1kHz signal from the AF oscillator through ATT to LINE IN.
- Adjust ATT so that input level is -20dB below standard recording level (standard recording level = 0 VU).
- Adjust the AF oscillator frequency to 1kHz, 50Hz, 100Hz, 200Hz, 500Hz, 4kHz, 8kHz, 10kHz and 12.5kHz signals, and record these signals on the test tape.
- Playback the signals recorded in step 5, and check if the frequency response curve is within the limits shown in the overall frequency response chart for normal tapes (fig. 14).
 - (If the curve is within the charted specifications, proceed to steps 7, 8 and 9.)

Fig. 13

Overall frequency response chart (Normal)

Adjustment (A):

When the curve exceeds the overall specified frequency response chart (fig. 14) as shown in fig. 15.

- Increase bias current by turning VR301 (L-CH) and VR302 (R-CH). (See fig. 1 on page 6.)
- Repeat steps 5 and 6 for confirmation (Proceed to steps 7, 8 and 9 if the curve is now within the charted specifications as shown fig. 14.)

Fig. 15

 If the curve still exceeds the specifications (fig. 14), increase bias current further and repeat steps 5 and 6. Adjustment (B):

When the curve falls below the overall specified frequency response chart (fig. 14) as shown in fig. 16.

- Reduce bias current by turning VR301 (L-CH) and VR302 (R-CH).
- 2) Repeat steps 5 and 6 for confirmation (Proceed to steps 7, 8 and 9 if the curve is now within the charted specifications as shown fig.

Fig. 16

- 14.)
- If the curve still falls below the charted specifications (fig. 14), reduce bias current further and repeat steps 5 and 6.

7. Place UNIT into CrO₂ tape mode.

- 8. Change test tape to CrO₂ reference blank test tape (QZZCRX), and record 1kHz, 50 Hz, 100 Hz, 200 Hz, 500 Hz, 4kHz, 8kHz, 10 kHz and 15kHz signals. Then, playback the signals and check if the curve is within the limits shown in the overall frequency response chart or CrO₂ tapes (fig. 17).
- 9. Place UNIT into metal tape mode and change test tape to metal reference blank test tape (QZZCRZ), and record 1kHz, 50Hz, -3dB 100Hz, 200Hz, 500Hz, 4kHz, 8kHz, 10kHz, 12.5kHz and 15kHz signals. Then, playback the signals and check if the curve is within -6dB the limits shown in the overall frequency response chart for metal tapes (fig. 17).
- Confirm that bias currents are approximately as follows when the UNIT is set at different tape mode.
 - Read voltage on VTVM between ground and test point (TP3 for L-CH, TP4 for R-CH) and calculate bias current by following formula:

Bias current (A) = $\frac{\text{Value read on VTVM (V)}}{10 (\Omega)}$

around 200 μ A (Normal position) Standard value: around 300 μ A (CrO $_2$ position) around 400 μ A (Metal position)

Overall frequency response chart (CrO₂, Metal)

Fig. 17

Overall gain

Condition:

- · Record/playback mode
- Normal tape mode
- Input level controls...MAX
- Standard input level;

MIC-72±4dB LINE IN-24±4dB Equipment:

- ATT Oscilloscope
- Resistor (600Ω)
- Test tape

(reference blank tape) ...QZZCRA for Normal

· Output level control...MAX

· Balance control...Center

- 1. Test equipment connection is shown in fig. 18.
- 2. Insert the normal reference blank tape (QZZCRA).
- 3. Place UNIT into record mode.
- 4. Supply a 1kHz signal through ATT (-24dB) from AF oscillator, to LINE IN.
- 5. Adjust ATT until monitor level at LINE OUT becomes 0.42 V.
- Playback recorded tape, and make sure that the output level at LINE OUT becomes 0.42V.
- If measured value is not 0.42V±2dB, adjust it by using VR3 (L-CH) or VR4 (R-CH).
- 8. Repeat from step (2).

Standard value: 0.42 V±2dB

[around 0.28V: at test points TP7 (L-CH) and TP8 (R-CH)]

Fig. 18

Dolby NR circuit

Condition:

- Record mode
- . Dolby NR switch...IN/OUT
- · Dolby NR select switch...B/C
- Input level control...MAX

- Equipment:

- Resistor (600Ω)

Record side

- Check of the Dolby-B type encoder characteristics
- 1. Make connections as shown in fig. 19.
- 2. Set the unit to the record mode. (NR select switch is OUT.)
- 3. Apply a 1kHz signal to LINE IN.
- 4. Adjust the ATT so that the output level at TP7 (L-CH) and TP8 (R-CH) is 12.3 mV.
- 5. The output level at pin 14 should be 0dB.
- Set the NR select switch to B, and make sure that the output signal level at pin 14 of IC3 (L-CH) and IC4 (R-CH) is +6dB±2.5dB.
- Set the NR select switch to OUT, and adjust the frequency to 5kHz. The output signal level at pin 14 should be 0dB.
- Set the NR select switch to B and make sure that the output signal level at pin 14 of IC3 (L-CH) and IC4 (R-CH) is +8dB±2.5dB.
- Check to Dolby-C type encoder characteristics
- 9. Repeat steps 1-5 above.
- Set the NR select switch to C and make sure that the output signal level at pin 14 of IC3 (L-CH) and IC4 (R-CH) is + 11.5dB±2.5dB.
- Set the NR select switch to OUT and adjust the frequency to 5kHz.
 The output signal at pin 14 should be 0dB.
- Set the NR select switch to C and make sure that the output signal level at pin 14 of IC3 (L-CH) and IC4 (R-CH) is +8.5dB±2.5dB.

Fig. 19

Attack recovery time adjustment

(dbx circuit)

Condition:

- Record mode
- Input level control...MAX
- Noise reduction selector

...dbx tape

Equipment:

- VTVM
- ATTAF oscillator
- DC voltmeter
- Make the connections as shown in fig. 20 and apply 1kHz -27dB signal from LINE IN, and set the noise reduction selector to dbx tape position.
- Set the unit to record mode, adjust ATT so that the signal level at C107 (L-CH) and C108 (R-CH) is 300 mV.
- 3. Read voltage on DC volt meter.

Reference value: 15±0.5mV

 If measured value is not within reference, adjust VR9 (shown in fig. 1).

Fig. 20

Input scanning time adjustment

Condition: Stop mode Equipment:

Oscilloscope

1. Place the recorder in the stop mode.

2. Connect an oscilloscope to pin 31 of IC601, as shown in Fig. 21.

3. If the measured value is not within standard value, correct it by opening or closing the jumper junctions (A) and (B) as follows (See Fig. 22):

After closing (A) and opening (B), read the resulting value.

- If it is less than 70 Hz, close (B).
- If more than 120 Hz, open (A) but close (B).
- If opening (A) and closing (B) do not cause the reading to be less than 120 Hz, open both (A) and (B).

Main Circuit Board

Fluorescent meter

Condition:

Fig. 21

Record mode

Input level controls...MAX

Equipment:

VTVM ATT

AF oscillator

Check for FL meter

To check the accuracy of the FL meter, measure the output level at test point [TP7 (L-CH), TP8 (R-CH)].

1. Make connections as shown (See fig. 23).

2. Connect a wire between TP501 and TP502 terminal (See fig. 24).

3. In the recording pause mode, apply 1kHz (-24dB) to LINE IN. 4. Adjust ATT so that output level at test point [TP7 (L-CH), TP8 (R-CH)] is 0.28 V.

VTVM Oscilloscope TP7 (L-CH) Main circuit board LINE IN :0000 ATT Record mode TP8 (R-CH) AF oscillator VTVM Oscilloscopi

Fig. 23

Checking FL meter 0dB segment display ON/OFF

Change the output level at test point [TP7 (L-CH), TP8 (R-CH)] from 0.28 V -1dB (\(\frac{1}{2}50 \text{mV} \)) to 0.28 V +1dB (\(\frac{1}{3}10 \text{mV} \)) by adjusting the attenuator, and check that the FL meter 0dB segment display OFF state changes to the ON state.

Checking FL meter -40dB segment display ON/OFF

Lower the signal level 28dB below the standard input level (-24dB-28dB=-52dB=2.5mV) and then further lower the level 12dB (-52dB-12dB=-64dB=0.63mV) by adjusting the attenuator. While lowering the level as described above, make sure that only the -40dB display remains lit the dims or goes off at the lowest level.

Adjustment for FL meter

Make connections as shown (See fig. 23).
 Connect a wire between TP501 and TP502 terminal (See fig. 24).

In the recording pause mode, apply 1kHz (-24dB) to LINE IN.

Adjust ATT so that output level at test point [TP7 (L-CH), TP8 (R-CH)] is 0.28 V.

-40dB adjustment

5. Adjust ATT so that the level adjusted at step 4 is reuced by 40dB.

6. At this time, check that -40dB indicator is dimmed (intermediate brightness between full brightness and light-out: See fig. 25).

7. If the indicator is not lighted halfway as described in step 6, adjust VR8.

0dB adjustment

8. Restore the condition of step 4 (set output level to 0.28V at test point [TP7 (L-CH), TP8 (R-CH)].

At this time, check that 0dB indicator is dimmed (intermediate brightness between full brightness and light-out (See fig. 26).

10. If improper, adjust VR501.

11. Repeat adjustments at steps 4, 5, 6, 7, 8, 9 and 10 two or three times.

12. Disconnect the wire between TP501 and TP502 terminal, which had been connected at step 2.

Fig. 24

Fig. 25

Fig. 26

MICROCOMPUTER TERMINAL FUNCTION AND WAVEFORM (IC601: MN1405RMS)

(BOTTOM VIEW)

Terminal No.	Symbol	Name	Function/operation		
1.	VSS	GND			
2.	CO11	Music select (M.S) command	• "High" level with music select at ON.		
3.	CO10	Blank skip (B.S) command	• "High" level with blank skip at ON.		
4.	CO9	Music repeat (M.R) command	• "High" level with music repeat at ON.		
5.	CO8	REC MUTE	• "High" level pulse with REC MUTE button pressed during REC PLAY. Pressed Approx. 4sec.		
6.	CO7	CUE/REVIEW MUTE	"High" level pulse with CUE/REVIEW button pressed during PLAY. Pressed Released OV Released		
7.	CO6	Drive motor CCW rotation command	 "High" level pulse in each mode in operational sequence REV PLAY → PAUSE → STOP → FOW PLAY. During switching between REV PLAY and FOW PLAY. 		

Terminal No.	Symbol	Name	Function/operation	
8.	CO5	Drive motor CW rotation command	"'High" level pulse in each mode in operational sequence FO PLAY → PAUSE → STOP → REV PLAY. ""High" level pulse in each mode in operational sequence FO PLAY → PAUSE → STOP → REV PLAY. """ """ """ """ """ """ """ """ """ """ """ """ "" "" """	
9.	CO4	Muting for all amplifiers	"High" level during FF, REW and STOP. "Low" level during REC, PLAY and CUE/REV.	
10.	СОЗ	Bias oscillation ON/OFF	Goes to "High" immediately after REC or PAUSE operation. Remains in "High" during REC or PLAY operation. Goes to "Low" approximately 175 msec after the STOP command is given. REC OV Approx. 175 msec. REC • PAUSE mode	
11.	CO2	FF/REW motor rotation select (FF/REW motor CCW rotation command)	"High" level during: FOW PLAY FOW FF REV REW	
12.	CO1	FF/REW motor rotation select (FF/REW motor CW rotation command)	• "High" level during: REV FF FOW REW	
13.	СОф	FF and REW blinking- indication command	• "High" level during FF and REW. +5V 100msec. 100msec.	
14.	AI3	Reading of input switch state CAM B (S606)	• Input in switching-over from FOW PLAY to REV PLAY. DIRECTION SW +5V 40msec. 100msec. 150msec. 270 msec. 40msec.	
15.	AI2	Reading of input switch state CAM A (S605)	+5V - High" level during FOW "Low" level during REV	
16.	Al1	Connection to + B (bias)		
17.	ΑΙφ	Reading of input switch state REC INH	"High" level when a tape not prepared with miserase prevention masking is loaded. "Low" level with the cassette lid open.	
18.	BI3	Reading of input switch state DIR	• Waveform when the cassette lid is closed with no tape loading. When any other switches are pressed +5V 2msec. 10msec.	

Terminal No.	Symbol	Name	Function/operation
19.	BI2	Reading of input switch state REC • PLAY	• Waveform when the cassette lid is closed with no tape loading. When any other switches are pressed +5V OV 10 msec.
20.	Bi1	Reading of input switch state BS • PAUSE • FF	Waveform when the cassette lid is closed with no tape loading. When any other switches are pressed OV
21.	ВІф	Reading of input switch state BS • PAUSE • FF	• Waveform when the cassette lid is closed with no tape loading. When any other switches are pressed +5V 2msec.
22.	ΕΟφ	REC indication output	"High" level concurrently with REC command. In TIMER REC mode, "High" level just after power on. In TIMER REC mode, "High" level remains unchanged even if the automatic stop reset mechanism operates with power on. REC command H
23.	EO1	PAUSE indication output	• "High" level concurrently with PAUSE command. PAUSE command H OV L
24.	EO2	Reel takeup torque selection and blank skip LED indication	"High" level during PLAY. "Low" level during FF, REW and STOP.
25.	EO3	DIRECTION indication output	"Low" level during FORWARD. "High" level during REVERSE.
26.	_		Connection to GND.
27.	RST	Reset terminal	• Terminal for reset signal to computer. • Reset at "Low" level (less than 0.8 volts). 5.4V 3.5V Power ON 0.6 sec.
28.	CSLCT		Non connection.
29.	SNS∳	End-of-tape detection	+5V PLAY End of tape STOP OV → 70~130 msec.

Terminal No.	Symbol	Name	Function/operation
30.			Non connection.
31.	DOφ		
32.	DO1		Approx. 11 msec.— T1 T6
33.	DO2	Input switch scanning	DO1 ON T2 OFF T7 DO2 T3 T8 DO3 T4 T9
34.	DO3		DO3 T5 T10 T10 T0 T10 T10 T10 T10 T10 T10 T10
35.	DO4		Pulse width: Ta = Approx. 2.0msec, Tb = Approx. 100μsec.
36.	DO5		
37.	DO6		Non connection.
38.	DO7		
39.	V _{DD}	Power supply terminal	Operative on 4.6 to 6.0 volts (typically 5.5 volts).
40.	osc	Oscillation terminal	 Generates oscillation at approximately 600kHz. Because the connection of a probe affects the terminal, nothing should be connected to this terminal for any other measurements. Use DO other to 4 in measuring the computer's velocity; Approx. 125 Hz in STOP condition.

NOTES:

S663, S664

- S1-1, S1-2......Dolby-C IN/OUT switch (shown in OUT position). • S2-1, S2-2...... Dolby-B IN/OUT switch (shown in OUT position). • S3-1, S3-2..dbx "Tape" IN/OUT switch (shown in OUT position). ...dbx "Disc" IN/OUT switch (shown in OUT position).
 ...Power ON/OFF switch (shown in OFF position). • S4-1, S4-2.... • S301 • S302. ...AC power voltage select switch. ... Auto tape select switch (for Metal tape). • S601.. • S602. .. Auto tape select switch (for CrO₂ tape). • S603.. .Half switch (shown in OFF position). • S604. .REC inhibit switch (shown in OFF position). • S605.. .Forward/Reverse detection switch (shown in OFF position). · S606. . Mode detection switch (shown in OFF position). • S651. .Rewind switch (shown in OFF position). ..F.F switch (shown in OFF position). · S652 • S653.. .. Record switch (shown in OFF position). • S654.. Direction switch (shown in OFF position). • S655. ..Stop switch (shown in OFF position). • S656.. .. Pause switch (shown in OFF position). • S657.. .Play switch (shown in OFF position). · S658. .Music repeat switch (shown in OFF position). S659 .Blank Skip switch (shown in OFF position). · \$660. ..Rec Mute switch (shown in OFF position). · S661. .Music select switch (shown in OFF position).Timer switch (shown in 1 position).
 (1...TIMER REC, 2...OFF, 3...TIMER PLAY)
 Mode selection switch (/ / /). · S662.
- ...Playback gain adjustment VR. • VR3, 4 Overall gain adjustment VR. VR5, 6 Input level controls. VR7 .Balance control. ..FL meter adjustment VR (-40dB indication). VB8 VR9 . ..Attack recoveriv time adjustment VR. • VR10 ..Erase current adjustment VR. • VR301, 302Bias current adjustment VR. • VR501FL meter adjustment VR (0dB indication). .. Takeup torque adjustment VR. • ()This symbol indicates the PNP switching transistor. ())This symbol indicates the NPN switching transistor.
 () this arrow indicates the flow of the recording signal. (NR OUT).
 () this arrow indicates the flow of the playback signal. (NR OUT).
 () this arrow indicates the flow of the recording signal and playback signal combination.

playback signal combination.

• (- -) this arrow indicates the flow of the control signal.

BLOCK DIAGRAM

IC501

1	←11.1 V	
2	-8.4V (-8.6V)	
3	10.4V	
4		
5		
6	40.41/	Segment
23	-10.1 V	9.3V
24	-6.3V (-6.4V)	
25	6.8V (6.7V)	CFM 6.4V
26	-8.3V (-8.4V)	
27	-9.4V (-9.5V)	CFM -7.5 V
28	-9.4V (-9.5V)	CFM -7.5V
		7.5 V

35 36

37

38

40 2.2V

0 V

0 V

0 V 39 5.4 V

IC60	11	
1	0٧	
2	0 V	MS 5.3 V
3	0 V	BS 5.3 V
4	0٧	MR 5.3 V
5	0٧	REC MUT 5.3V
6	0 V	C/R 5.3 V
7	0 V	
8	0 V	
9	0 V	STOP 5.3 V
10	0V ((3.8V)
11	5.3 V	REV/PLAY 0V
12	0 V	REV/PLAY 5.3 V
13	0 V	O LANCE PROPERTIES AND LEWIS CO. LEW
14	0 V	
15	5.4 V	REV 0V
16	5.4 V	
17	0 V	
18	1.0 V	(0 V)

NOTES:

NOTES.	
• S1-1, S1-2	.Dolby-C IN/OUT switch (shown in OUT position).
 S2-1, S2-2 	.Dolby-B IN/OUT switch (shown in OUT position).
• S3-1, S3-2	.dbx "Tape" IN/OUT switch (shown in OUT position).
• S4-1, S4-2	.dbx "Disk" IN/OUT switch (shown in OUT position).
• S301	Power ON/OFF switch (shown in OFF position).
• S302	. AC power voltage select switch (for United Kingdom only).
• S601	.Auto tape select switch (for Metal tape).
• S602	.Auto tape select switch (for CrO ₂ tape).
• S603	Half switch (shown in OFF position).
• S604	.REC inhibit switch (shown in OFF position).
• S605	Forward/Reverse detection switch (shown in OFF position).
• S606	.Mode detection switch (shown in OFF position).
• S651	Rewind switch (shown in OFF position).
• S652	F.F switch (shown in OFF position).
• S653	Record switch (shown in OFF position).
• S654	Direction switch (shown in OFF position).
• S655	.Stop switch (shown in OFF position).
• S656	.Pause switch (shown in OFF position).

· S657 .Play switch (shown in OFF position).

.Music repeat switch (shown in OFF position). S658. .Blank Skip switch (shown in OFF position). • S659. • S660. .Rec Mute switch (shown in OFF position). • S661. .Music select switch (shown in OFF position). • S662.

 S663, S664 • VR1, 2 .

..Overall gain adjustment VR. VR3, 4 • VR5, 6 .Input level controls. • VR7 .Balance control. VR8 .FL meter adjustment VR (-40dB indication).

 VR9 .Attack recoverly time adjustment VR. ..Erase current adjustment VR. VR10 VR301, 302 ..Bias current adjustment VR. ..FL meter adjustment VR (0dB indication). • VR501

• VR601 .Takeup torque adjustment points. • Point (A), (B) ...Input scanning time adjustment VR. • L1, L2 ..Skewing Network.

 L3, L4 .Bias Trap Coil. L5, L6 ..Peaking Coil. .Choke Coil. • L7 ... • L301. ..Bias Trap Coil.

• L601~L604Choke Coil. .Choke Coil. MPX1, 2Multiplex Filter.

• Resistance are in ohms (Ω), 1/4 watt unless specified otherwise. $1 K = 1.000(\Omega)$, $1 M = 1.000 k(\Omega)$.

• Capacity are in micro-farads (μF) unless specified otherwise.

• The mark (♥) shows test point. e.g. ♥= Test point 1.

16	5.4 V		
17	0٧		and the second s
18	1.0 V	(0 V)	
19	1.0 V	(0 V)	
20	1.0 V		
21	٥٧		STREET, STREET
22	٥٧	(5.3 V)	
23	0 V		PAUSE 5.4 V
24	5.3 V		STOP 0V
25	0 V		REV 5.4 V
26	٥٧		
27	0V		Power ON 0V
28	5.4 V		NOT THE OWN PARTY AND THE PART
29	5.4 V		TAPE END 5.4V
30	0 V		
31	1.0 V		The state of the s
0.5	1.0 V		

IC60	12		IC60)3	
1	10.1 V	(0.1 V)	1	9.0V (8.9V)	MS
2		(2.1V) PAUSE 0V	2	9.0V (8.9V)	BS
3	0.2 V	STOP 10.4 V	3	9.0V (8.9V)	MR
4	1.8 V	REV 0V	4	9.6V (10.1V)	REC MUTE
5	0 V	REV 0.9V	_ 5	10.1 V (10.2 V)	C/R
6	4.1 V	REV/PLAY 0V	6	0 V	0 V
7	4.1 V	N. (All Control of the Control of t	7	6.3 V	
8	0 V	REV/PLAY	8	0 V	
0	UV	5.0 V	9	0 V	
9	٥٧	REV/PLAY 5.3 V	10	0 V	
10	5.3 V	REV/PLAY 0V	11	0 V	C/R 5.3 V
11	1.8 V	REV 0V	12	0 V	REC MUTE 5.3V
12	0 V	REV 5.4V	13	0 V	MR 5.3 V
13	5.3 V	STOP 0V	14	0 V	BS 5.3 V
14	0 V	PAUSE 5.3V	15	0 V	MS 5.3 V
15	0 V	(5.3 V)	16	13.8V (13.6V)	
16	+	(13.6V)			

 All voltage values shown in circuitry are under no signal condition and playback mode with volume control at minimum position otherwise

)Voltage values at record mode. Tape.....Voltage values at dbx tape mode. discVoltage values at dbx disc mode. CrO2Voltage values at CrO2 tape mode. MetalVoltage values at Metal tape mode. StopVoltage values at Stop mode.Voltage values at CUE/REV mode. FF/REWVoltage values at FF/REW mode. REC MUTEVoltage values at REC MUTE mode. 70 μsVoltage values at CrO₂ or Metal tape mode. NR INVoltage value at which the noise reduction switch is turned on.Voltage values at Dolby-B mode.Voltage values at Dolby-C mode.Voltage values at music select mode.Voitage values at blank skip mode.Voltage values at music repeat mode. CFMVoltage value at which the test tape QZZCFM (315Hz/0dB) is played.

SegmentVoltage value at which the corresponding FL meter segment is lit.

POWER ONVoltage value at which the power source is on.

TAPE ENDVoltage at the end of the cassette tape. S603: OFFVoltage at which the S603 switch is off. For measurement use VTVM.

- () indicates B+ (bias).
- (•) indicates B (bias).
- (•) indicates the flow of the playback signal. (NR out).
- () indicates the flow of the recording signal. (NR out).
- Important safety notice

Components identified by ≜ mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

· Described in the schematic diagram are two types of numbers; the supply parts numbers and production parts number for transistors and diodes. One type of number is used for supply parts number and production parts number when they are identical.

e.g. Q1 2SC1844(E,F)-Production parts number [2SC1844E]--Supply parts number D212 -Production parts number 1S2473T77 -[MA 161]--Supply parts numbers

- The supply parts number is described alone in the replacement parts list.
- . This schematic diagram may be modified at any time with the development of new technology.

SPECIFICATIONS

- * Input level control...MAX
- * Balance control Center

Playback S/N ratio * Test tapeQZZCFM	Greater than 45dB		
Overall distortion * Test tapeQZZCRA for NormalQZZCRX for CrO ₂ QZZCRZ for Metal	Less than 4%		
Overall S/N ratio *Test tapeQZZCRA	Greater than 43dB (without NAB filter)		

ELECTRICAL PARTS LIST

NOTES: RESISTORS	CAPACITORS
ERDCarbon	ECBACeramic
ERGMetal-oxide	ECG□Ceramic
ERSMetal-oxide	ECK□Ceramic
EROMetal-film	ECC□Ceramic
ERXMetal-film	ECF□Ceramic
ERQFuse type metallic	ECQMPolyester film
ERCSolid	ECQEPolyester film
ERFCement	ECQFPolypropylene
	ECE□Electrolytic
	ECE□NNon polar electrolytic
	ECQSPolystyrene
	ECS□Tantalum
	QCSTantalum

REPLACEMENT PARTS LIST

Important safety notice Components identified by A mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

Ref. No. Part No.		Ref. No.	Part No.
RE	SISTORS	R 37, 38	ERD25TJ104
R 1, 2	ERD25TJ273	R 39, 40	ERD25FJ103
R 3, 4	ERD25TJ394	R 41, 42	ERD25FJ472
R 5, 6	ERD25FJ102	R 43, 44	ERD25FJ272
R 7, 8	ERD25TJ273	R 45, 46	ERD25TJ183
R 9, 10	ERD25FJ102	R 47, 48	ERD25FJ181
R 11, 12	ERD25FJ472	R 49, 50, 5	1, 52
R 13, 14	ERD25TJ224		ERD25FJ103
R 15, 16	ERD25FJ100	R 53, 54	ERD25FJ101
R 17, 18	ERD25FJ472	R 55, 56	ERD25FJ512
R 19	ERD25FJ561	R 57, 58	ERD25FJ102
		R 59, 60	ERD25TJ224
R 20	ERD25TJ223		
R 21, 22	ERD25TJ563	R 61, 62	ERD25TJ683
R 23, 24	ERD25FJ101	R 63, 64	ERD25FJ512
R 25, 26	ERD25FJ102	R 65, 66	ERD25FJ222
R 27, 28	ERD25FJ181	R 67, 68	ERD25TJ823
R 29, 30	ERD25TJ334	R 69, 70	ERD25FJ472
R 31, 32	ERD25FJ682	R 71, 72	ERD25TJ123
R 33, 34	ERD25FJ562	R 73, 74	ERD25TJ473
R 35, 36	ERD25TJ225	R 75, 76	ERD25TJ753

EQUIVALENT CIRCUIT

IC501: AN6870N

Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.		Part No.	Ref. No	Darit N	Dank No. 20 To 1
R 77, 78	ERD25TJ334	R 337	ERD25TJ563	C 43, 44	ECEA1CS100	TE	RANSISTORS	nei. Ni		Part Name & Descriptio
R 79, 80, 8	1, 82 ERD25TJ394	R 338 Z	A ERQ14AJ180 ERD25FJ120	C 45, 46 C 47	ECQM1H472J				MUL	TIPLEX FILTERS
		R 340	ERD25FJ120	C 47	ECFDD103KV	Q 1, 2, 3	2SD1011 2SB1036	MPX 1	, 2 QLM9Z10K	Multiplex Filter
R 83, 84 R 85	ERD25TJ334 ERD25FJ222	R 341 R 342, 343	ERD25FJ471	C 49, 50	ECEA1CS100	Q 5, 6	2SD1450			COILS
R 86	ERD25FJ472	R 345	3 ERD25FJ102 ERD25FJ103	C 51, 52 C 53, 54	ECEA1ES4R7 ECQM1H473J2	Q 7, 8 Q 9, 10,	2SK330GRY			COILS
R 87 R 88	ERD25FJ222 ERD25FJ472	R 346	ERD25FJ332	C 55, 56	ECQM1H333JZ		2SD1450	L 1, 2 L 3, 4	ELM7Q306/	
R 91, 92	ERD25TJ153	R 347	ERD25FJ391	C 57, 58,	59, 60 ECQM1H104J2		15, 16, 17, 18, 19, 2	20, 15, 6	QLQX0343F	(WA Bias Trap Coil Peaking Coil
R 93, 94	ERD25FJ102	R 349	ERD25FJ103	C 61, 62	ECQM1H104J2 ECQM1H333J2		2SC2603 2SD1011	L7	QLQX10120	OT Choke Coil
R 95, 96, 97	, 98 ERD25TJ104	R 351 R 352	ERD25FJ103 ERD25FJ562	0.60.64		Q 25, 26,		L 301	QLB0198 602, 603, 604	Bias Trap Coil
R 99, 100	ERD25FJ332	R 353	ERD25TJ223	C 63, 64 C 65	ECQM1H224JZ ECQM1H104JZ		2SC2603 2SA1115	1	ELEH101KA	Choke Coil
R 101, 102,	103, 104 ERD25TJ223	R 354	ERD25FJ103	C 66	ECEA50Z3R3	Q 31, 32	2SK330GRY	L 651	QLQX1012E	T Choke Coll
		R 355 R 356, 357	ERD25FJ472 7, 358, 359, 360, 36	C 67, 68	ECEA1HSR22	0.00.04			TR	ANSFORMER
	ERD25FJ822 ERD25TJ333		ERD25FJ103		ECQM1H104JZ	Q 33, 34 Q 35, 36	2SJ105GR 2SD1450	T 301	_	
R 109, 110	ERD25TJ244	R 362 R 363	ERD25TJ563 ERD25FJ682	C 73, 74,	75, 76 ECQM1H332JZ	Q 37, 38	2SA1115		▲ QLPD86ELX	AC Power Transformer
	ERD25TJ154	R 364	ERD25TJ563	C 77, 78	ECCD1H331J	Q 39, 40,	41, 42 2SC2603	[For	all European a	reas except United Kingdom.
R 115, 116	ERD25FJ472 ERD25TJ333	R 365 R 366	ERD25TJ223 ERD25TJ154	C 79, 80	ECQM1H223JZ	a 001, 00	2 2SD592		▲ QLPA76ELX United Kingdom	
R 117, 118	ERD25FJ682	R 367	ERD25TJ104	C 81, 82 C 83, 84	ECCD1H471J ECEA50MR68R	Q 303 Q 304	2SA719	[, 0,	Office Kingdo	11.]
R 119, 120,	121, 122 ERD25FJ332	R 368	ERD25FJ103			Q 304	2SA1115 UN4211TA		_	FUSES
R 123, 124	ERD25TJ223	R 369 R 370	ERD25FJ332 ERD25TJ333	C 85, 86 C 87, 88	ECEA1CS100 ECQM1H472JZ	Q 306	2SD1265	F 2. 3	∆ XBAQ05002	Fuse (T1A)
	ERD25FJ472	R 371	ERD25TJ563	C 89, 90	ECEA16Z10	Q 307	2SB941	,,,,		. 400 (. 17)
3 127, 128	ERD25TJ153	R 372, 373 R 374	ERD25FJ103 ERD25FJ221	C 91, 92	ECQM1H333JZ	Q 308	2SD1275			
R 129	ERD25FJ472	R 375	ERD25FJ681	C 93, 94 C 95, 96	ECEA50MR33R ECEA0JS470	Q 309, 31	0, 311, 312, 313		:	SWITCHES
R 130 R 131 132	ERD25TJ274 ERD25FJ102	R 376	ERD25FJ470	C 97, 98	ECCD1H391J	Q 314	2SC2603 2SA1115	810	_	
	ERD25FJ102	R 377 R 501, 502	ERD25FJ102 ERD25FJ152	C 99, 100 C 101	ECQM1H223JZ	Q 315	2SC3242	S 1, 2, 3	3, 4 QSW2240	Push Switch (NR Selecto
	ERD25FJ151	R 503, 504	ERD25TJ684	C 102, 103	ECEA1CS100 , 104	Q 316 Q 317	UN4211TA 2SC2603	S 301	△ QSW1127	Push Switch
	ERD25FJ472 ERD25TJ153	R 505, 506 R 507	ERD50FJ271 ERD25FJ182		ECEA1HS010		9, 320, 321, 322	S 302		(Power ON/OFF)
R 141	ERD25FJ103	R 508	ERD25FJ471	C 105	ECEA1AS471	Q 501	2SA1115		∆ QSR1407	Rotary Switch (AC Power
R 142	ERD25TJ104	R 509	ERD25TJ684	C 106	ECEA0JS331		2SC3311 3, 504, 505, 506, 507	(Гал	D=0 - 4 161 1	Voltage Selector)
R 143	ERD25FJ102	R 510 R 511	ERG1ANJ181 ERD25FJ472	C 107, 108	ECEA1HS100 ECKD2H121KB		2SA1115	1, 0,	United Kingdon 02, 603, 604	1.]
	ERD25TJ473			C 111, 112	ECKD1H561KB	Q 508	2SC2603		QSB0296	Leaf Switch
	ERD25FJ222 ERD25TJ153		ERD25FJ103 516, 517, 518, 519	C 113, 114	ECEA50ZR33	Q 601	2SC2603			(Metal Tape/CrO₂ Tape/ Half/REC Inhibit)
148	ERD25FJ151	520, 521	ERD25TJ563		ECEA1CN100 ECQM1H273JZ		3 2SA1115 5 UN4211TA	S 605, 6		rianneo ininoiti)
R 149 R 150 151	ERD25FJ102 ERG2ANJ560	R 523 R 601	ERD25FJ222	C 119, 120	ECFDD472KVY	Q 604, 603	UN42111A		QSB0295	Leaf Switch (Forward
R 152	ERD25FJ103	R 602	ERD25FJ181 ERD25FJ102	C 125, 126,	127, 128 ECEA1HS010	DIODES	& RECTIFIERS	S 651, 6	52, 653	Reverse Detection)
153, 154	ERD25TJ104	R 603	ERD25TJ223		ECEA INSUID	D 1	MA161		QSWY207A	Key Board Switch
1 133, 136	ERD25FJ102	R 604 R 605	ERD25FJ562 ERD25TJ393	C 133, 134		D 3, 4	MA161	S 654 6	55, 656, 657, 658	(REW/F.F/REC)
₹ 157, 158	ERD25TJ123	R 606	ERD25TJ223	C 135 C 136	ECFDD103KVY ECQM1H104JZ	D 5	MA1056	, , , , ,	SSG13	Key Board Switch
159, 160, 1	61, 162 ERD25FJ225	R 607	ERD25FJ562	C 137	ECEA1ES4R7	D 6 D 301	MA161 MA1220M			(DIRECTION/STOP/
163, 164	ERD25FJ182	R 608	ERD25TJ183	C 138	ECKD1H223ZF ECCD1H470KC	D 302	MA1075LF	S 660	QSWY207A	PAUSE/PLAY/M.R/B.S) Key Board Switch
165, 166	ERD25FJ682 ERD25FJ102	R 609	ERD25FJ103	C 303	ECQP1153JZ	D 303, 304	305, 306, 307 SM112	S 661	68648	(RÉC MUTE)
169, 170	ERD25FJ390	R 610 R 615	ERD25TJ393 ERD25FJ562	C 304 C 305	ECFDD153KVY	D 308, 309	310, 311, 312, 313,	S 662	SSG13 QSS1306	Key Board Switch (M.S) Slide Switch
171, 172	ERD25FJ821	R 616, 617, 6	518		ECFDD822KVY ECEA1ES220	314, 315	316, 317			(Timer REC/PLAY)
175, 176	RD25FJ272 RD25FJ103		ERD25FJ561 ERD25FJ471			D 319, 320,	MA 161 321, 322, 323, 324,	S 663, 66	A	
177, 178	RD25FJ222	R 620	ERD25FJ562	C 308, 309	ECKD1H223ZF ECEA1CS331	325, 326	327, 328	0 000, 00	QSW2241	Push Switch
179, 180 E	RD25FJ272		ERD25TJ473	C 312	ECKD1H223ZF	D 329	MA161 LD702DU			(Mode Selector)
181, 182	RD25FJ222	11 022	ERD25FJ821	C 313 C 314 △	ECEA1ES220 ECEA1ES472					JACKS
183, 184 185, 186	RD25FJ151	VARIABLE	RESISTORS	C 315 A	ECEA1CS222		603, 604, 605, 606, 609, 610, 611, 612,	1400	_	
187 E	RD25FJ270	VR 1, 2	QVNB3A00B223	C 316 △ C 317	ECEA1ES332	613, 614,		J 1, 2, 3,	4 QEJ5030C	Jack Board (LINE IN/OUT)
189, 190 E	RD25FJ680	VR 3, 4	QVNB3A00B103	C 318	ECEA1CS330 ECEA1CS100	D 616	MA161	J 5, 6	QJA0452	Microphone Jack
	RD25FJ1R0 RD25FJ100		QVBP1PUA54 QVAL5KUG15	C 319	ECQM1H394JZ	D 616 D 617	SLR34YC SLR34GC	J 7	QJA0266	Headphones Jack
303, 304 E	RD25FJ562	VR 8, 9	QVNB3A00B222	C 320	ECEA1ES4R7	D 618	SLR34URC		CON	INECTORS
305, 306 E	RD25FJ100	VR 10	QVNB3A00B103	C 321	ECEA1HS010	D 619 D 620	LN322GP LN422YP	CN 1		
307 E	RD25FJ222	VR 501, 302 (QVNB3A00B474 QVNB3A00B223	C 323 C 324	ECEA1HS010 ECEA1CS100	D 621	LN322GP	CN 1	QJT1090 QJT1054	Check Pin Contact
311 E	RD25FJ222		EVNK4AA00B22	C 325	ECEATOS 100	D 622, 623	QVDLS005M	CN 3	QJS1920TN	2 Pin Socket
	RD25FJ562 RD25TJ473	CAPA	CITORS	C 326, 327	ECEA1CS330	D 624	ion LED P.C.B) SM112	CN 4 CN 5	QJP1920TN QJS1921TN	2 Pin Post
316, 317			OTTONS	C 328 C 329 A	ECEA1CS100 ECQU2A103MF			CN 6	QJP1921TN	3 Pin Socket 3 Pin Post
∆ E 318, 319	RD2FCJ4R7		ECEA1HS010	C 330	ECQM1H474JZ	INTEGRA	TED CIRCUITS	CN 7 CN 8	QJS1922TN	6 Pin Socket
∆ E	RD25FJ681		ECQM1H224JZ ECEA1ES4R7	C 331	ECEA1CS100	IC 1	M5218L	CN 9	QJP1922TN QJS1997S	6 Pin Post Jumper Socket (3 Pin)
320 Δ E	RX2ANJ8R2	C 7, 8	ECCD1H820K	C 501, 502	ECEA1HS010	IC 2 IC 3, 4	M5220L	CN 10	QJS1961S	Jumper Socket (5 Pin)
322 E	RD25FJ102 RD25FJ103		ECEA1HS010 ECKD1H331KB	C 505	ECFDD473KVY	IC 5, 6	NE654N NE652N	CN 11	QJS1962S	Jumper Socket (7 Pin)
200	RD25TJ153	C 13, 14 E	CEA0JS101	C 506	ECEA1CS100 ECFDD153KXY	IC 7	AN6258	CN 12	QJS1983S	Jumper Socket (7 Pin) Jumper Socket (8 Pin)
324 F	RD25TJ683	C 17, 18	CQM1H103JZ	C 601	ECCD1H331J	IC 8 IC 9, 10	AN6291 AN6203	CN 13	QJS2000S	Jumper Socket
325 E	RD25FJ472		CKD1H331KB CFDD152KVY		ECEA1CS100 ECEA1HS010	IC 11, 12	M5218L	CN 14	QJS2001S	(6 Pin/Type-L) Jumper Socket
326, 327 E	RD25FJ103			C 604	ECEAUJS101	IC 301, 302 IC 501	M5218L			(9 Pin/Type-L)
329 EI	RD25FJ272 RD25FJ101		CFDD122KVY CEA1ES4R7	C 605	ECKD1H223ZF	,0 501	AN6870N			
330 EI	RD25FJ103	C 27, 28 E	CKD1H681KB	COMBINA	TION PARTS		MN1405RMS			
331 E	RD25TJ104 RD25TJ124	C 29, 30 E	CEA1HS010	Z 1, 2	XRP152K473	IC 602 IC 603	AN6270 AN6271			
33 EF	RD25FJ100	C 33, 34 E	CQM1H154JZ	Z 3, 4	XRP220K124					
	RD25FJ102	C 35, 36 E	CEA1ES4R7	Z 5, 6	XRP181K153	I.C PR	OTECTOR			
	RD25TJ184				XRP470K683 XRP221K334	ICP 601	QRUF10WH			
35 EF		. ~ ~ ~ TU E								
-	RD25TJ104		CQM1H472.17		XBEQ4392K XBEQ5562K					

CIRCUIT BOARDS AND WIRING CONNECTION DIAGRAM

CONNECTION OF A FLAT CABLE

Connect the flat cable to the jumper socket so that the white line on the flat cable corresponds to the band mark side of the connection symbol (yellow or white symbol on the PC board) for the jumper socket. (This connection may differ from those for conventional models.)

- The circuit shown in on the conductor side indicates printed circuit on the back side of the printed circuit board.
- All voltage values shown in circuitry are under no signal condition and playback mode with volume control at minimum position.
- This circuit board diagram may be modified at any time with the development of new technology.

ORGOrange BLUBlue PNK.....Pink BRN Brown RED.....Red GRY.....Gray SLDShield Wire GRNGreen L. BLULight Blue WHTWhite NIL.....No Color Mark YEL.....Yellow

B..... For United Kingdom.

