Image as a Foreign Language: BEIT Pretraining for Vision and Vision-Language Tasks

Authors: Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu Kriti Aggarwal, Owais Khan Mohammed, Saksham Singhal, Subhojit Som, Furu Wei, Microsoft Corporation

Presenter: Tianyi Wang

Overview

- Introduction of BEIT-3
- Artitecture of BEIT-3
- Pretraing task and setup
- Experiment
- Conclusion
- Q&A

Why BEIT-3?

Convergence of Modalities:

- Trend: Increasing integration of language, vision, and multimodal pretraining.
- Objective: Build a versatile foundation model capable of handling multiple modalities.

Why BEIT-3?

- Transformers in Vision and Multimodal Problems:
 - Unified Architectures:
 Adoption of Transformer
 models for various
 modalities.
 - Tailored Solutions: Providing seamless and effective solutions for diverse downstream tasks.

Why BEIT-3?

- Masked Data Modeling and Scaling:
 - Simplification: Adopting a mask-then-predict approach for pretraining tasks.
 - Scaling: Focusing on enlarging the model size and dataset to boost generalization and performance.

Category	Task	Dataset	Metric	Previous SOTA	BEIT-3
	Semantic Segmentation	ADE20K	mIoU	61.4 (FD-SwinV2)	62.8 (+1.4)
Vision	Object Detection Instance Segmentation	COCO COCO	AP AP	63.3 (DINO) 54.7 (Mask DINO)	63.7 (+0.4) 54.8 (+0.1)
·	Image Classification	ImageNet†	Top-1 acc.	89.0 (FD-CLIP)	89.6 (+0.6)
	Visual Reasoning	NLVR2	Acc.	87.0 (CoCa)	92.6 (+5.6)
	Visual QA	VQAv2	VQA acc.	82.3 (CoCa)	84.0 (+1.7)
Vision-Language	Image Captioning	COCO‡	CIDEr	145.3 (OFA)	147.6 (+2.3)
	Finetuned Retrieval	COCO Flickr30K	R@1	72.5 (Florence) 92.6 (Florence)	76.0 (+3.5) 94.2 (+1.6)
	Zero-shot Retrieval	Flickr30K	R@1	86.5 (CoCa)	88.2 (+1.7)

(a) Vision Encoder

Masked Image Modeling Image Classification (IN1K) Semantic Segmentation (ADE20K) Object Detection (COCO)

(a) Vision Encoder

Masked Image Modeling Image Classification (IN1K) Semantic Segmentation (ADE20K) Object Detection (COCO)

Masked Image Modeling

Image Classification

(a) Vision Encoder

Masked Image Modeling Image Classification (IN1K) Semantic Segmentation (ADE20K) Object Detection (COCO)

Semantic Segmentation

(a) Vision Encoder

Masked Image Modeling Image Classification (IN1K) Semantic Segmentation (ADE20K) Object Detection (COCO)

Object Detection

(c) Fusion Encoder

Masked Vision-Language Modeling Vision-Language Tasks (VQA, NLVR2)

A baseball [MASK] throwing [MASK] ball .

A baseball player throwing a ball .

(a) Dual Encoder

Image-Text Retrieval (Flickr30k, COCO)

A baseball player throwing a ball .

(e) Image-to-Text Generation

Image Captioning (COCO)

A baseball player is [MASK]

Masked Language Modeling

Masked Image Modeling

BZIJ-3

BZIJ-3

A baseball [MASK] throwing [MASK] ball.

Masked Vision - Language Modeling

Pretraining Setup and Scaling Up

Model	#Layers	Hidden	MLP	#Parameters			70	
1,10401	"Lay or 5	Size	Size	V-FFN	L-FFN	VL-FFN	Shared Attention	Total
BEIT-3	40	1408	6144	692M	692M	52M	317M	1.9B

Data	Source	Size
Image-Text Pair	CC12M, CC3M, SBU, COCO, VG	21M pairs
Image	ImageNet-21K	14M images
Text	English Wikipedia, BookCorpus, OpenWebText, CC-News, Stories	160GB documents

Experiment - Vision-Language Downstream Tasks

- Objective: Assess BEIT-3's performance in tasks that require understanding both images and text.
- Tasks Include:
 - Image captioning
 - Text-to-image synthesis
 - Visual question answering

Experiment - Vision - Language Task

Model	VQ	VQAv2		NLVR2		COCO Captioning		
11000	test-dev	test-std	dev	test-P	B@4	M	C	S
Oscar [LYL ⁺ 20]	73.61	73.82	79.12	80.37	37.4	30.7	127.8	23.5
VinVL [ZLH ⁺ 21]	76.52	76.60	82.67	83.98	38.5	30.4	130.8	23.4
ALBEF [LSG ⁺ 21]	75.84	76.04	82.55	83.14	-		-	_
BLIP [LLXH22]	78.25	78.32	82.15	82.24	40.4	1-	136.7	_
SimVLM [WYY ⁺ 21]	80.03	80.34	84.53	85.15	40.6	33.7	143.3	25.4
Florence [YCC ⁺ 21]	80.16	80.36	-	long!	-	-	, - ,	_
OFA [WYM ⁺ 22]	82.00	82.00	_	-	43.9	31.8	145.3	24.8
Flamingo [ADL ⁺ 22]	82.00	82.10	-	-	-	-	138.1	-
CoCa [YWV ⁺ 22]	82.30	82.30	86.10	87.00	40.9	33.9	143.6	24.7
BEIT-3	84.19	84.03	91.51	92.58	44.1	32.4	147.6	25.4

Visual Question Answering

- Objective: Evaluate BEIT-3's prowess in purely visual tasks.
- Tasks Include:
 - Object detection
 - Semantic segmentation
 - Image classification

Model	Extra OD Data	Maximum	COCO	COCO test-dev	
Model	Extra OD Data	Image Size	AP ^{box}	AP ^{mask}	
ViT-Adapter [CDW ⁺ 22]	-	1600	60.1	52.1	
DyHead [DCX ⁺ 21]	ImageNet-Pseudo Labels	2000	60.6	-	
Soft Teacher [XZH ⁺ 21]	Object365	1-1	61.3	53.0	
GLIP [LZZ ⁺ 21]	FourODs	i. - -i	61.5	-	
GLIPv2 [ZZH ⁺ 22]	FourODs	-	62.4	-	
Florence [YCC ⁺ 21]	FLOD-9M	2500	62.4	-	
SwinV2-G [LHL ⁺ 21]	Object365	1536	63.1	54.4	
Mask DINO [LZX ⁺ 22]	Object365	1280	-	54.7	
DINO [ZLL ⁺ 22]	Object365	2000	63.3	E-	
BEIT-3	Object365	1280	63.7	54.8	

Madal	Coor Sine	ADE2	ADE20K		
Model	Crop Size	mIoU	+MS		
HorNet [RZT ⁺ 22]	640^{2}	57.5	57.9		
SeMask [JSO ⁺ 21]	640^{2}	57.0	58.3		
SwinV2-G [LHL+21]	896^{2}	59.3	59.9		
ViT-Adapter [CDW ⁺ 22]	896^{2}	59.4	60.5		
Mask DINO [LZX ⁺ 22]	-,-	59.5	60.8		
FD-SwinV2-G [WHX ⁺ 22]	896^{2}	-	61.4		
BEIT-3	896^{2}	62.0	62.8		

Model	Extra Data	Image Size	ImageNet
With extra private image	e-tag data		
SwinV2-G [LHL ⁺ 21]	IN-22K-ext-70M	640^{2}	90.2
ViT-G [ZKHB21]	JFT-3B	518^{2}	90.5
CoAtNet-7 [DLLT21]	JFT-3B	512^{2}	90.9
Model Soups [WIG+22]	JFT-3B	500^{2}	91.0
CoCa [YWV ⁺ 22]	JFT-3B	576^{2}	91.0
With only public image-	tag data		
BEIT [BDPW22]	IN-21K	512^{2}	88.6
CoAtNet-4 [DLLT21]	IN-21K	512^{2}	88.6
MaxViT [TTZ ⁺ 22]	IN-21K	512^{2}	88.7
MViTv2 [LWF ⁺ 22]	IN-21K	512^{2}	88.8
FD-CLIP [WHX ⁺ 22]	IN-21K	336^{2}	89.0
BEIT-3	IN-21K	336^{2}	89.6

Experiment - Ablation Studies

Transformer	VQA	NLVR2	2 F30K
Standard	76.1	80.8	82.8
Multiway	76.8	81.4	84.4

(a) Multiway Transformer improves the performance over the conventional one.

Target	VQA	NLVR2	2 F30K
DALL-E [47]	73.2	77.7	76.6
Pixel (w/ norm) [19]	73.3	77.1	75.9
VQ-KD _{CLIP} [43]	76.8	81.4	84.4

(d) Targets used for image reconstruction. VQ-KD_{CLIP} [43] works the best.

Strategy	VQA	NLVR2	F30K
Joint	75.7	79.0	83.1
Separate	76.8	81.4	84.4

(b) Separate masking in MVLM is helpful.

Mono	Multi	VQA	NLVR2	F30K
×	×	71.5	69.3	77.8
1	X	73.2	76.4	81.3
X	1	76.5	80.6	82.7
1	1	76.8	81.4	84.4

(e) Whether we enable text reconstruction for monomodal (mono) and multimodal (multi) data.

Mono	Multi	VQA	NLVR2	F30K
1	X	71.3	64.6	79.3
X	1	75.8	79.3	81.1
1	1	76.8	81.4	84.4

(c) Whether we conduct masked prediction for monomodal (mono) and multimodal (multi) data.

٠.	Mono	Multi	VQA	NLVR2	F30K
200	×	X	71.6	74.3	71.7
	1	X	75.8	79.8	82.0
	×	1	75.6	79.5	81.9
	1	1	76.8	81.4	84.4

(f) Whether we enable image reconstruction for monomodal (mono) and multimodal (multi) data.

Experiment - Summary

Conclusion

- BEIT-3, a general-purpose multimodal foundation model:
 - achieves state-of-the-art performance across a wide range of vision and vision-language benchmarks.
- Innovative Approach:
 - monomodal(images, texts) and multimodal (image-text pair)
- Multiway Transformer:
 - emphasizes the efficiency of Multiway Transformers in addressing a variety of vision and vision-language tasks.
- Future Direction

Q&A

Which of the following best describes the purpose of "Unified Architectures" in the context of BEiT-3?

- A) It allows BEiT-3 to process only image data.
- B) It enables separate specialized architectures for each data type.
- C) It provides BEiT-3 the ability to handle both individual (monomodal) and combined (multimodal) data types within a single framework.
- D) It restricts BEiT-3 to text-only tasks.

Which of the following best describes the purpose of "Unified Architectures" in the context of BEiT-3?

- A) It allows BEiT-3 to process only image data.
- B) It enables separate specialized architectures for each data type.
- C) It provides BEiT-3 the ability to handle both individual (monomodal) and combined (multimodal) data types within a single framework.
- D) It restricts BEiT-3 to text-only tasks.

Why is scaling up models and systems often considered beneficial in deep learning?

- A) To improve model generalization and performance on complex tasks.
- B) To reduce the amount of training data required.
- C) To make models more interpretable.
- D) To decrease computational resources and speed up training.

Why is scaling up models and systems often considered beneficial in deep learning?

A) To improve model generalization and performance on complex tasks.

- B) To reduce the amount of training data required.
- C) To make models more interpretable.
- D) To decrease computational resources and speed up training.