Още задачи върху динамично програмиране

Тодор Дуков

Два интересни примера

За първия пример, нека имаме някакъв краен речник D от непразни думи над $\Sigma = \{a, ..., z\}$. Ще искаме при подаден низ над Σ да видим дали той може да се разбие на думи от речника (с възможни повторения). Нека например да вземем речника $D = \{\text{mango, i, icecream, like, with}\}$. Тогава думата "ilikeicecreamwithmango" може да се разбие на "i like icecream with mango".

Нека е подаден един низ $\alpha \in \Sigma^*$. Ако $\alpha = \varepsilon$, то тогава очевидно можем да получим α чрез конкатенация на думи от D. Ако $\alpha \neq \varepsilon$ и α се получава чрез конкатенация на думи от D, то тогава има $\beta \in \Sigma^*$ и $\gamma \in D$, за които е изпълнено, че $\alpha = \beta \gamma$ и β може да се получи чрез думи от D. Но $\gamma \neq \varepsilon$, т.е. успяхме да сведем задачата за α до задача за β , като $|\beta| < |\alpha|$. Нека сега да формализираме тези разсъждения. Нека $\alpha = \alpha_1 \dots \alpha_n$, където $\alpha_i \in \Sigma$. Тогава булевата функция $\mathrm{WB}_{D,\alpha}(i)$, която казва дали $\alpha_1 \dots \alpha_i$ може да се разбие на думи от D, изглежда така:

$$\mathrm{WB}_{D,lpha}(i) = egin{cases} \mathbb{T} &, \text{ ако } i=0 \\ \bigvee_{j=1}^i (lpha_j \dots lpha_i \in D \ \& \ \mathrm{WB}_{D,lpha}(j-1)) &, \text{ иначе} \end{cases}$$

На нас това, което ни трябва, е $WB_{D,\alpha}(|\alpha|)$. С малко мислене върху това как се пресмята $WB_{D,\alpha}$, човек може да стигне до следното итеративно решение:

```
bool word_break(string s, vector<string> &word_dict)
   {
        int n = s.size();
        vector<bool> wb(n + 1, false);
        wb[0] = true;
       for (int i = 1; i <= n; ++i)
            for (const string &word : word_dict)
10
                if (i < word.size())</pre>
11
                    continue;
                if (i == word.size() || wb[i - word.size()])
                    if (s.substr(i - word.size() + 1, word.size()) == word)
                         wb[i] = true;
                         break;
                }
            }
        return wb[n];
25
```

Ако $|\alpha|=n, |D|=m$, и $\max\{|\beta|\mid \beta\in D\}=k$, то това решение има сложност по време $O(n\cdot m\cdot k)$, понеже за всяко $1\leq i\leq n$ и за всяка дума $\beta\in D$ (те са m на брой) проверяваме дали $\alpha_{i-|\beta|+1}\ldots\alpha_i=\beta$, което става за време O(k), и дали $\mathrm{WB}_{D,\alpha}(i-|\beta|)=\mathbb{T}$, което поради наличието на масива wb става за константно време. Този масив доста помага, ако не го бяхме ползвали, сложността щеше да се опише (горе долу) с рекурентното уравнение:

$$T(n) = \sum_{i=1}^{n} (m \cdot k \cdot T(n-i)) + \Theta(1).$$

Сложността по памет очевидно е $\Theta(n)$, заради допълнителния масив, който заделяме.

Вторият пример ще бъде под формата на игра. Наредени са n монети със стойности съответно v_1, \ldots, v_n . Редуваме се с опонент да теглим една монета от избран от краищата на редицата, докато монетите не свършат. Накрая всеки човек печели толкова, колкото е изтеглил. В случай че играем първи, каква печалба можем да си гарантираме? Първо да започнем с двата най-прости типа игри – с една или две монети. В играта с една монета е ясно, че най-голямата печалба, която можем да си гарантираме, е стойността на монетата. В игра с две монети със стойности съответно v_1, v_2 , най-голямата гарантирана печалба е очевидно $\max\{v_1, v_2\}$. Нека сега в общия случай имаме следната партия:

$$v_1$$
 v_2 \cdots v_{n-1} v_n

Ще се опитаме да сведем тази по-сложна партия, до няколко по-прости. Имаме две възможности:

1. Ако изберем първата монета, опонента ще трябва да избира в конфигурацията:

Той също има две възможности:

(а) Ако опонента избере първата монета, ни оставя в конфигурацията:

$$v_3$$
 v_4 \cdots v_{n-1} v_n

Тук можем да си мислим, че ние сме си заделили на страна печалба v_1 , опонента си е заделил на страна печалба v_2 , и играта започва наново в горната конфигурация.

(б) Ако пък избере последната монета, ни оставя в конфигурацията:

$$v_2$$
 v_3 \dots v_{n-2} v_{n-1}

Тук можем да си мислим, че ние сме си заделили на страна печалба v_1 , опонента си е заделил на страна печалба v_n , и играта започва наново в горната конфигурация.

2. Ако изберем последната монета, опонента ще трябва да избира в конфигурацията:

$$(v_1)$$
 (v_2) \dots (v_{n-2}) (v_{n-1})

Той също има две възможности:

(а) Ако опонента избере първата монета, ни оставя в конфигурацията:

$$v_2$$
 v_3 \cdots v_{n-2} v_{n-1}

Тук можем да си мислим, че ние сме си заделили на страна печалба v_n , опонента си е заделил на страна печалба v_1 , и играта започва наново в горната конфигурация.

(б) Ако пък избере последната монета, ни оставя в конфигурацията:

$$v_1$$
 v_2 \cdots v_{n-3} v_{n-2}

Тук можем да си мислим, че ние сме си заделили на страна печалба v_n , опонента си е заделил на страна печалба v_{n-1} , и играта започва наново в горната конфигурация.

Нека $\mathrm{MP}(i,j)$ е максималната печалба, която може да се спечели от първия играч (в първоначалната игра), ако може да събира монети със стойности съответно v_i,\ldots,v_j . По предните разсъждения можем да пресметнем тази печалба рекурсивно така:

$$\mathrm{MP}(i,j) = \begin{cases} v_i & \text{, ако } i = j \\ \max\{v_i,v_j\} & \text{, ако } i = j+1 \\ \max\{v_i + \min\{\mathrm{MP}(i+2,j),\mathrm{MP}(i+1,j-1)\},v_j + \min\{\mathrm{MP}(i+1,j-1),\mathrm{MP}(i,j-2)\}\} & \text{, иначе} \end{cases}$$

Във хода на втория играч минимизираме, защото той печели възможно най-много, когато ние печелим възможно най-малко. За задача на читателя оставяме да пресметне MP(1,n) итеративно.

Задачи

 $3a\partial a^{\prime}a^{\prime}a^{\prime}1$. Формула ще наричаме всеки низ от вида $B_0\sigma_1B_1\sigma_2B_2\dots B_{n-1}\sigma_nB_n$, където $B_i\in\{\mathbb{T},\mathbb{F}\}$ и $\sigma_i\in\{\vee,\wedge,\oplus\}$. Например низът $\mathbb{T}\wedge\mathbb{F}\oplus\mathbb{F}\vee\mathbb{T}$ е формула. В зависимост от това как слагаме скобите, оценката на израза може да е различна. Например изразът $(\mathbb{T}\wedge(\mathbb{F}\oplus\mathbb{F})\vee\mathbb{T}))$ се остойностява като \mathbb{F} , докато изразът $(\mathbb{T}\wedge(\mathbb{F}\oplus\mathbb{F})\vee\mathbb{T}))$ се остойностява като \mathbb{T} , въпреки че и двата израза се получават от примерната формула. Да се напише колкото се може по-бърз алгоритъм, който при подадена формула да върне броят на различни скобувания, за които съответния израз се остойностява като \mathbb{T} . След това да се докаже неговата коректност, и да се изследва сложността му по време.

3aдача 2. Имаме професионален крадец, който иска да ограби къщите в дадена улица. Проблемът е, че ако той ограби две съседни къщи, алармата ще се активира и полицията ще дойде. Той не иска това, защото в такъв случай няма да спечели нищо. Да се напише колкото се може по-бърз алгоритъм, който при подаден масив от естествени числа $L[1\dots n]$, където L[i] е печалбата от къща i, връща максималната печалба на крадеца. След това да се докаже неговата коректност, и да се изследва сложността му по време.

3aдача 3. Да се напише колкото се може по-бърз алгоритъм, който при подадена булева матрица $M[1 \dots n, 1 \dots m]$ намира най-голямото квадратче в M, съставено от 1, и връща неговото лице. След това да се докаже неговата коректност, и да се изследва сложността му по време.

3aдача 4. Един целочислен масив $A[1 \dots n]$ наричаме аритметичен, ако $n \geq 3$ и за всяко $1 \leq i \leq n-2$ е изпълнено, че A[i+2] - A[i+1] = A[i+1] - A[i]. Да се напише колкото се може по-бърз алгоритъм, който при подаден целочислен масив $A[1 \dots n]$ намира броя на подредиците на A, които са аритметични масиви. След това да се докаже неговата коректност, и да се изследва сложността му по време.

3adaча 5. Имаме n на брой къщи, които искаме да оцветим със цветове c_1, c_2, c_3 , като не може две съседни къщи да имат еднакъв цвят. Масив на цените ще наричаме всеки двумерен масив от положителни числа $P[1 \dots n, 1 \dots 3]$, където P[i,j] ще бъде цената за боядисване на къща i със цвят c_j . Да се напише колкото се може по-бърз алгоритъм, който при подаден двумерен масив от положителни числа, намира минималната цена за боядисване на всички къщи. След това да се докаже неговата коректност, и да се изследва сложността му по време.

 $3a\partial a$ ча 6. Върху един масив от естествени числа $A[1\dots n]$ можем да прилагаме следните две операции:

- да увеличим A[i] с единица за някое $1 \le i \le n$;
- ullet да намалим A[i] с единица за някое $1 \leq i \leq n$.

Да се напише колкото се може по-бърз алгоритъм, който при подаден масив от естествени числа A[1...n] връща минималния брой операции, които са нужни, за да стане масива монотонно ненамаляващ. След това да се докаже неговата коректност, и да се изследва сложността му по време.

3aдача 7. Нека $n,l,r\in\mathbb{N}$ и $l\leq r$. Един масив $A[1\dots n]$ ще наричаме (n,l,r)-интересен, ако:

- $l \leq A[i] \leq r$ за всяко $1 \leq i \leq n$;
- $\sum_{i=1}^{n} A[i] \equiv 0 \pmod{3}$.

Да се напише колкото се може по-бърз алгоритъм, който при подадени $n, l, r \in \mathbb{N}$, за които $l \leq r$, връща броя на (n, l, r)-интересни масиви. След това да се докаже неговата коректност, и да се изследва сложността му по време.