Prof. Dr.-Ing. habil. Daniel Balzani

Übung 11: Gauss-Quadratur

Die Formel für die numerische Integration mittels Gauss-Quadratur lautet

$$\int_{-1}^{1} f(\xi) \, d\xi \approx \sum_{i=1}^{n} w_i \, f(\xi_i) . \tag{11.1}$$

Dabei sind w_i die Wichungsfaktoren und ξ_i die Gausspunkte.

Aufgabe 11.1: Quadratisches Viereckselement

Für das quadratische isoparametrische Viereckselement wird die Gaussintegrationsordnung n=3 gewählt.

- a) Wie viele Gausspunkte hat das Element dann?
- b) Ist die Gaussintegration der Ordnung n=3 für eine quadratische Funktion $f(\xi)$ (Polynomgrad p=2) exakt? Welche Bedingung muss erfüllt sein?
 - Hinweis: Da bei Viereckselementen die Übertragung von einer auf zwei Koordinatenrichtungen direkt möglich ist reicht es in dieser Aufgabe eine Funktion $f(\xi)$ mit nur einer Koordinate zu betrachten.
- c) Gibt es Gründe eine höhere Integrationsordnung als nötig zu verwenden? Erläutern Sie ihre Antwort anhand eines Beispiels.

Findet die Gaussintegration über das Intervall [-1,1] statt so lassen sich die Gausspunke ξ_i $(i=1,\ldots,n)$ als Nullstellen des n-ten Legendrepolynoms bestimmen:

$$P_n(\xi) = \frac{1}{2^n \, n!} \, \frac{\mathrm{d}^n}{\mathrm{d}\xi^n} (\xi^2 - 1)^n \tag{11.2}$$

- d) Wie lautet das Legendrepolynom 3. Ordnung?
- e) Bestimmen Sie die entsprechenden Gausspunktkoordinaten ξ_i

Die Zugehörigen Wichtungsfaktoren w_i lassen sich über folgende Beziehung bestimmen:

$$w_i = \int_{-1}^1 l_i(\xi) \, d\xi \tag{11.3}$$

Dabei ist l_i das i-te Lagrangepolynom (Polynomgrad: n-1) mit den Gausspunkten ξ_i als Stützstellen.

f) Bestimmen Sie die zu den Gausspunktkoordinaten gehörigen Wichtungsfaktoren w_i