Timing studies and plans for Phase-2 electrons/photons

Soham Bhattacharya¹ (On behalf of the Egamma POG)

¹DESY, Hamburg

UPSG Future LLP and Timing Workshop September 22, 2021

Overview

- Preliminary study of the use of MTD for Phase-II EB electrons.
 - Cleaning the isolation using MTD timing.
 - Using MTD timing as an input feature for training.
- Summary plans and prospects.

Previous presentations:

[MTD DPG, 26th June 2020] [UPSG workshop, 7th July 2020]

Technical details

- MTD timing information available in CMSSW_11_1_0_pre6 for PFCandidates ("packedPFCandidates" in MiniAOD) and 4D-vertices ("offlineSlimmedPrimaryVertices4D" in MiniAOD).
- Usage details: https://twiki.cern.ch/twiki/bin/viewauth/CMS/PhaseIIFSObjectRecipes
- PU0 ZEE sample:
 RelValZEE_14_CMSSW_11_1_0_pre6-110X_mcRun4_realistic_v3_2026D49noPU-v1_MINIAODSIM
- PU200 ZEE sample: RelValZEE_14_CMSSW_11_1_0_pre6-PU25ns_110X_mcRun4_realistic_v3_ 2026D49PU200-v1_MINIAOSIM
- PU0 QCD sample:
 RelValQCD_Pt15To7000_Flat_14_CMSSW_11_1_0_pre6-110X_mcRun4_realistic_v3_ 2026D49noPU-v1_MINIAODSIM
- PU200 QCD sample:
 RelValQCD_Pt15To7000_Flat_14_CMSSW_11_1_0_pre6-PU25ns_110X_mcRun4_realistic_v3_2026D49PU200-v1_MINIAODSIM
- In the ZEE samples, the reco-electrons are gen-matched.

Use of MTD timing

- Can be used to clean the isolation sum (reduce pileup contribution).
- For each PF candidate, compute the $\Delta(\text{time})$ significance w.r.t. the primary vertex (PV): $\sigma_t = \frac{|\Delta t|}{\delta t} = \frac{|t_{\text{PF}} t_{\text{PV}}|}{\left[(\delta t_{\text{PF}})^2 + (\delta t_{\text{PV}})^2\right]^{1/2}}, \text{ where, } \delta t \text{ is the error on the measured time.}$
- Results also with Δt w.r.t. the electron.
- Sig-PF cand.: PF candidates associated to the electron.
- Iso-PF cand.: PF candidates not associated to the electron, in a cone of dR < 0.3 around the electron.
- Iso-PF cand. from pileup has a large tail in the ZEE and QCD samples.
 Hence a cut can be used to reduce the contribution from pileup in the isolation sum.

$\overline{I_{0.3}}$ (dz, dt, σ_t w.r.t. PV)

Compute the relative isolation (charged) variable by summing over the charged iso-PF candidates in a cone of dR < 0.3 w.r.t. the electron:

$$I_{0.3}^{\text{ch}} = \frac{\frac{\sum\limits_{\text{iso-PF cand}} E_{\text{T}}}{E_{\text{T}}}}{E_{\text{T}}^{\text{e}}}$$

ROC (dz, dt, σ_t w.r.t. PV)

ROC (selections w.r.t. electron)

MTD time as a feature for ID training

- Peak at 0: Electrons that have no iso-PF candidates.
 - Can be used as a feature for training the ID.

Summary

DESY.

Summary

• Phase-2 EB electrons:

- dz, dt, σ_t w.r.t. PV:
 - Performance with cuts on dt comparable to cuts on σ_t .
 - \bullet dz, dt, σ_t w.r.t. electron:
 - Performance with cuts on dt worse than cuts on σ_t .
- $I_{0.3}$ (w.r.t. PV) seems to be better than $I_{0.3}$ (w.r.t. electron).
- Some improvement seen in the performance of $I_{0.3}$ (w.r.t. PV) using the MTD timing: At 80% signal eff., bkg. eff. decreases from 11% to 10%.

Available tasks:

- E_{T} -weighted $\langle \sigma_t \rangle$ looks promising can be used for ID training.
- Check EB photon isolation.
- Check **HGCal e/gamma** isolation.
 - Possibility of greater impact in the endcaps due to higher contamination from PU.
- Check the impact of using timing information from the ECAL and HGCal.
- Most welcome to join the effort and contribute to these studies.
- Feel free to contact us if interested (EPR points available).

Backup

dt and σ_t

ullet Can calculate σ_t and dt w.r.t. the PV, or w.r.t. the electron (sig).

• Can calculate dz w.r.t. the PV, or w.r.t. the electron (sig).

