МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №2

з дисципліни «Дискретна математика»

Виконала:

студент групи КН-114 Ярка Ірина

Викладач:

Мельникова Н.І.

Львів -2019 р.

Моделювання основних операцій для числових множин

Мета роботи: Ознайомитись на практиці із основними поняттями теорії множин, навчитись будувати діаграми Ейлера-Венна операцій над множинами, використовувати закони алгебри множин, освоїти принцип включень-виключень для двох і трьох множин та комп'ютерне подання множин.

Теоретичні відомості

Множина — це сукупність об'єктів, які називають елементами. Кажуть, що множина $A \in \mathbf{підмножиною}$ множини S (цей факт позначають $A \subseteq S$, де \subseteq — знак нестрогого включення), якщо кожен її елемент автоматично ϵ елементом множини S. Досить часто при цьому кажуть, що множина A міститься в множині S.

Якщо $A \subseteq S$ і $S \neq A$, то A називають **власною (строгою, істинною) підмножиною** S (позначають $A \subset S$, де \subset – знак строгого включення). Дві множини A та S називаються **рівними**, якщо вони складаються з однакових елементів. У цьому випадку пишуть A = S.

Якщо розглядувані множини є підмножинами деякої множини, то її називають універсумом або універсальною множиною і позначають літерою U (зауважимо, що універсальна множина існує не у всіх випадках). Множини як об'єкти можуть бути елементами інших множин, Множину, елементами якої є множини, інколи називають сімейством.

Множину, елементами якої ϵ всі підмножини множини A і тільки вони (включно з порожньою множиною та самою множиною A), називають **булеаном** або **множиною-степенем** множини A і позначають P(A).

Потужністю скінченної множини A називають число її елементів, позначають |A|.

Множина, яка не має жодного елемента, називається *порожньою* і позначається \emptyset .

Вважається, що порожня множина є підмножиною будь-якої множини, а також $A \subset A$.

Множина всіх підмножин множини A називається by називається by ножини дорівнює кількості її елементів, позначається a. Потужність порожньої множини дорівнює by дві множини by і by дрівні між собою, якщо by ab і ab

Над множинами можна виконувати дії: об'єднання, переріз, доповнення, різницю, симетричну різницю, декартів добуток.

Об'єднанням двох множин A і B (рис. 2.1, a) називають множину $A \cup B = \{x : (x \in A) \lor (x \in B)\}.$

Перетином (перерізом) двох множин A і B (рис. 2.1, δ) називають

 $A \cap B = \{x : (x \in A) \land (x \in B)\}.$

Рис. 2.1. Діаграми Ейлера-Венна об'єднання та перетину двох множин

Різницею множин *A* та *B* (рис. 2.2, *a*) називають множину $A \setminus B = \{x : (x \in A) \land (x \notin B)\}.$

Зазначимо, що $A \setminus B = A \cap B$.

Симетричною різницею множин A та B (рис. 2.2, δ) називають множину

 $A\Delta B = \{x : ((x \in A) \land (x \notin B)) \lor ((x \in B) \land (x \notin A))\}.$

Рис. 2.2. Діаграма Ейлера-Венна різниці та симетричної різниці двох множин

Пріоритет виконання операцій у спадному порядку – доповнення, переріз, об'єднання, різниця, симетрична різниця.

Закони алгебри множин

Закони асоціативності	
$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$
Закони комутативності	
$A \cup B = B \cup A$	$A \cap B = B \cap A$
Закони тотожності	
$A \cup \varnothing = A$	$A \cap U = A$
Закони домінування	
$A \cup U = U$	$A \cap \varnothing = \varnothing$
Закони ідемпотентності	
$A \cup A = A$	$A \cap A = A$
Закони дистрибутивності	
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Закони поглинання	
$(A \cup B) \cap A = A$	$(A \cap B) \cup A = A$
Закони доповнення	
$A \cup \overline{A} = U$	$A \cap \overline{A} = \emptyset$
$\overline{U} = \varnothing$	$\overline{\varnothing} = U$
$\overline{\overline{A}} = A$	$\overline{\overline{A}} = A$
Закони де Моргана	
$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$	$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$

Варіант 15

Завдання 1

Для даних скінчених множин $A = \{1,2,3,4,5,6,7\}$, $B = \{4,5,6,7,8,9,10\}$, $C = \{2,4,6,8,10\}$ та універсаму $U = \{1,2,3,4,5,6,7,8,9,10\}$ знайти множину, яку задано за допомогою операцій: а) $(C \setminus A) \cup (B \setminus A)$; б) $(B \setminus C) \cap A$. Розв'язати, використовуючи комп'ютерне подання множин.

$$A = \{1, 2, 3, 4, 5, 6, 7\} = \{1, 1, 1, 1, 1, 1, 1, 0, 0, 0\}$$

$$B = \{4, 5, 6, 7, 8, 9, 10\} = \{0, 0, 0, 1, 1, 1, 1, 1, 1, 1\}$$

$$C = \{2,4,6,8,10\} = \{0, 1, 0, 1, 0, 1, 0, 1, 0, 1\}$$

- a) $(C \setminus A) \cup (B \setminus A) = \{8, 9, 10\} = \{0, 0, 0, 0, 0, 0, 0, 1, 1, 1\}$
 - $(C \setminus A) = \{8, 10\} = \{0, 0, 0, 0, 0, 0, 0, 1, 0, 1\}$
 - $(B \setminus A) = \{8, 9, 10\} = \{0, 0, 0, 0, 0, 0, 0, 1, 1, 1\}$
 - $(C \setminus A) \cup (B \setminus A) = \{8, 9, 10\} = \{0, 0, 0, 0, 0, 0, 0, 1, 1, 1\}$
- 6) $(B \setminus C) \cap A = \{9\} = \{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0\}$
 - $(B \setminus C) = \{5, 7, 9\} = \{0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0\}$
 - $(B \setminus C) \cap A = \{9\} = \{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0\}$

Завдання 2

На множинах задачі 1 побудувати булеан множини $B\Delta C \setminus C$. Знайти його потужність.

$$B\Delta C \setminus C = \{2\}$$

- $B\Delta C = (B \setminus C) \cup (C \setminus B) = \{2, 9\}$
- $B\Delta C \setminus C = \{2\}$

$$P(B\Delta C \setminus C) = \{2\}$$

$$|B\Delta C \setminus C| = \{\emptyset, \{2\}\} = 2$$

Завдання 3

Нехай маємо множини: N — множина натуральних чисел, Z — множина цілих чисел, Q — множина раціональних чисел, R — множина дійсних чисел; A, B, C — будь-які множини. Перевірити які твердження є вірними (в останній задачі у випадку невірного твердження достатньо навести контрприклад, якщо твердження вірне — навести доведення):

- а) $4 \in \{1, 2, 3, \{4, 5\}\}$ твердження істинне;
- б) Q∈ R твердження істинне;
- в) $Q \cap R = R$ твердження хибне;
- г) $Z \cup Q \subset Q \setminus N$ твердження хибне;
- д) якщо $A \subset B$, то $A \setminus C \subset B \setminus C$ твердження хибне, оскільки:

Отже, якщо $A \subseteq B$, то $B \setminus C \subseteq A \setminus C$, а не навпаки.

Завдання 4

Логічним методом довести тотожність:

$$A \setminus B \cap C = (C \setminus A) \cup (B \cap C).$$

- $C \setminus A = C \cap \neg A$ Застосуємо закон дистрибутивності
- $(C \cap \neg A) \cup (B \cap C) = C \cap (\neg A \cup B) = A \setminus B \cap C$, що і треба було довести.

Завдання 5

Зобразити на діаграмі Ейлера-Венна множину:

$$(A \cap B \triangle C) \cup (B \setminus (A \setminus C)).$$

Завдання 6

Множину зображено на діаграмі. Записати її за допомогою операцій.

$$(D \setminus A \setminus C) \cup (C \cap A \cap D) \cup (C \setminus D \setminus A) \cup ((A \cap B) \setminus (D \cup C))$$

Завдання 7

7. Спростити вигляд множини, яка задана за допомогою операцій, застосовуючи закони алгебри множин (у відповідь множини можуть входити не більше одного разу): $(A \cap B \cap C) \cup (\neg B \cap C) \cup \neg C$.

$$(A \cap B \cap C) \cup (B \cap C) \cup C = A \cup B \cup C.$$

Завдання 8

У коробці знаходяться m кульок, які пополовині розмальовані двома кольорами — синім і жовтим. Половинки N кульок розмальовані синім кольором, а половинки K кульок — жовтим. L кульок мають і синю і жовту половинки. Скільки кульок не мають цих кольорів і скільки кульок розфарбовані лише цими кольорами?

- 1) $K \cap N \cap L$;
- 2) $K \Delta N \setminus L$.

Додаток 2

15. Ввести з клавіатури дві множини цілих чисел. Реалізувати операції об'єднання та перерізу над цими множинами. Вивести на екран новоутворені множини. Знайти програмно їх потужності.

Скріншоти коду:

```
#include <stdio.h>
#include <stdlib.h>
void main(void) {
    int u, k, r, * p1, * p2, * p3, * ptr, * ptr1, t, counter1, * u1, * masp, amount = 0;
    printf("Enter the number of universum: ");
     int* universum = (int*)malloc(u * sizeof(int));
int* mas10 = (int*)malloc(u * sizeof(int));
     masp = mas10;
     int* mas20 = (int*)malloc(u * sizeof(int));
     printf("\nUniversum is: ");
for (int i = 0; i < u; i++) {</pre>
          universum[i] = i +1;
printf("%d ", universum[i]);
     printf("\nHow much elements will be in a 1 set? \n");
scanf("%d", &k);
     int* mas1 = (int*)malloc(k * sizeof(int));
     p1 = mas1;
     printf("Enter them all, please:\n ");
for (int i = 0; i < k; i++, p1++) {
    printf("Set 1 [%d] = ", i + 1);
    scanf("%d", p1);
    if (*p1 > u)
                printf("Sorry, wrong numbers! Please try one more time!\n");
     int tmp;
                 if (mas1[i] > mas1[i + 1]) {
                      tmp = mas1[i];
                      mas1[i] = mas1[i + 1];
                      mas1[i + 1] = tmp;
     for (int i = 0; i < k; i++)
           printf("%d ", mas1[i]);
     printf("\n");
for (int i = 0, *u1 = universum; i < u; i++, u1++)</pre>
           for (int j = 0; j < k; j++)
                 if (*u1 == mas1[j])
                      amount++;
                      *masp = 1;
                      masp++;
                      break;
               (amount == 0)
                 *masp = 0;
                masp++;
```

```
amount = 0;
     printf("%d ", mas10[i]);
printf("\nHow much elements will be in a 2 set? \n");
scanf("%d", &r);
int* mas2 = (int*)malloc(r * sizeof(int));
printf("Enter them all, please:\n ");
for (int i = 0; i < r; i++, p2++) {
    printf("Set 2 [%d] = ", i + 1);
    scanf("%d", p2);</pre>
     if (*p2 > u)
          printf("Sorry, wrong numbers! Please try one more time!\n");
          exit(1);
          if (mas2[i] > mas2[i + 1]) {
               tmp = mas2[i]
               mas2[i] = mas2[i + 1];
               mas2[i + 1] = tmp;
masp = mas20;
printf("%d", mas2[i]);
printf("\n");
for (int i = 0, *u1 = universum; i < u; i++, u1++)</pre>
     for (int j = 0; j < k; j++)
          if (*u1 == mas2[j])
               amount++;
               *masp = 1;
               masp++;
          *masp = 0;
          masp++;
     amount = 0;
     printf("%d ", mas20[i]);
printf("\nCombining sets: \n");
int* mas4 = (int*)malloc(u * sizeof(int));
     mas4[i] = mas10[i] \mid mas20[i];
     if (mas4[i] == 1)
     printf("%d ", mas4[i]);
```

```
printf("Powerset of combining is %d", countc);
int* mas3 = (int*)malloc(u * sizeof(int));
   mas3[i] = mas10[i] & mas20[i];
    if (mas3[i] == 1)
   printf("%d ", mas3[i]);
puts(" ");
printf("\nPowerset of intersection is %d", counti);
```

Результати виконання:

```
Enter the number of universum: 20
Universum is: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
How much elements will be in a 1 set?
Enter them all, please:
Set 1 [1] =7
 Set 1 [2] =4
 Set 1 [3] =9
 Set 1 [4] =13
 Set 1 [5] =19
 4 7 9 13 19
00010010100010000010
How much elements will be in a 2 set?
Enter them all, please:
Set 2 [1] =9
 Set 2 [2] =5
 Set 2 [3] = 2
 Set 2[4] = 4
 Set 2[5] = 7
 2 4 5 7 9
010110101000000000000
Combining sets:
01011010100010000010
Powerset of combining is 7
Intersection of sets:
000100101000000000000
Powerset of intersection is 3
```

У програмі наявна також перевірка на коректне введення даних (елемент множини не може бути більшим, ніж елементи універсуму):

```
Enter the number of universum: 20

Universum is: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
How much elements will be in a 1 set?
5
Enter them all, please:
    Set 1 [1] = 2
    Set 1 [2] = 21
    Sorry, wrong numbers! Please try one more time!
```

Висновок

Ми на практиці ознайомились із основними поняттями теорії множин, навчились будувати діаграми Ейлера-Венна операцій над множинами, використали закони алгебри множин, освоїли принцип включень-виключень для двох і трьох множин та комп'ютерне подання множин.