UFSC-CTC-INE Curso de Sistemas de Informação INE 5600 – Bancos de Dados III

BDT:

Bancos de Dados Temporais

Banco de Dados Temporal (BDT)

- Mantém a evolução de um dado no tempo
 - manutenção de todos os estados de um dado
 - passado, presente e futuro
- Exemplos de aplicações
 - Área médica
 - quadro clínico de pacientes, diagnósticos, ...
 - Sistemas de informação geográfica
 - crescimento demográfico, desmatamento, ...
 - e-commerce
 - evolução de vendas, ...

BD Convencional X BDT

BD Convencional

- mantém apenas o estado corrente do dado
- gerenciamento temporal deve ser realizado pela aplicação
 - definição explícita de propriedades temporais, consultas temporais devem ser previstas, ...

BD Temporal

- representação de estados passados,
 presente e futuros de um dado
- gerenciamento temporal é controlado pelo SGBD Temporal
 - definição implícita de propriedades temporais, linguagens de consulta estendidas, ...

BD Convencional

- Tempo instantâneo
 - registra apenas o dado válido no momento atual

BD Temporal

- Possui tempo de validade (TV) e, em alguns casos, também o tempo de transação (TT)
 - TV: validade do dado no mundo real (definido pelo usuário)
 - TT: validade da transação que gerou o dado (controlado pelo SGBD)

Granularidade do Dado Temporal

- Aspectos a considerar em modelagens BDT
- Granularidade temporal (discretização)
 - duração do período de tempo (chronon)
 - ano, mês, dia, hora, ...
 - pode variar de dado para dado
- Granularidade do fato do mundo real
 - porção do fato que se deve registrar a evolução temporal
 - fato completo, alguns atributos, alguns dos seus relacionamentos, ...

Granularidade - Exemplo

QuadroClinicoPacientes

<u>ID</u>	temperatura	pressão	batimento cardíaco
-----------	-------------	---------	--------------------

- manter evolução de todos os atributos (fato como um todo)
- granularidade temporal (chronon): hora

Empregados

<u>ID</u>	nome	salário	função	CPF

- manter evolução dos atributos salário e função
- chronon para salário: mês
- chronon para função: ano

Rótulo do Dado Temporal

- Formas de representação de atributos temporais
 - instante
 - intervalo
- Constante now
 - indica o momento presente e separa o passado do futuro

Instante Temporal

- Representação de um ponto no tempo
 - relacionado à ocorrência de um evento
- Exemplos

Infrações Rodoviárias

Infrator	Local	Rodovia	Instante
João	Fpolis	SC 401	14/3/2018
Pedro	Palhoça	BR 101	18/1/2019

Publicações

Autor	Conferência	Instante
João	SBBD	2012
João	VLDB	2013
Ana	SBBD	2013

Intervalo de Tempo

- Tempo decorrido entre dois instantes
 - composto por um conjunto finito de chronons
 - representado por um intervalo [t1, t2]
 - t1 <= t2
 - *t1* ou *t2* podem ser *now* (intervalo com tamanho variável e válido no presente)
 - t1 = « (início da contagem temporal: -∞ ou um tempo predefinido)
 - t2 =» (final da contagem temporal: + ∞ ou um tempo predefinido)

Intervalo – Exemplos

Empregados

<u>ID</u>	nome	salário	Início	Fim
1	João	500.00	Mai/17	Ago/17
1	João	620.00	Set/17	Mar/18
1	João	680.00	Abr/18	now
2	Maria	600.00	«	Mar/17
2	Maria	650.00	Abr/18	now

EscalaLimpeza

CPF	andar	Início	Fim
101	3	10/05/18	12/05/18
101	térreo	22/05/18	27/05/18
222	2	13/05/18	16/05/18

Suporte a Dados Temporais na Prática

- Suporte parcial por SGBDs tradicionais
 - exemplo1: Oracle 12c suporta TV para colunas definidas pelo usuário e consultas por TV
 - exemplo2: IBM DB2 10 suporta TV e TT, tabelas históricas definidas pelo usuário e consultas por ambos os tempos
- Alguns protótipos acadêmicos
 - TimeDB
 - Tiger
- Importante aplicação
 - Data Warehouse (DW)

Atualização de Dados Temporais

- Modificação da história dos dados do BDT
- Premissa básica
 - atualizações preservam dados históricos
- nada é excluído! (a princípio...)
- Execução das operações depende
 - do tipo de BDT
 - Somente TV, somente TT ou ambos
 - do tipo de rótulo temporal
 - Instante ou intervalo

Atualização de Dados Temporais

- Não há uma política única e consolidada para gerenciamento de atualizações
- Algumas classificações de critérios
 - passado imutável ou mutável
 - pode-se modificar somente o presente ou previsões futuras OU pode-se modificar também o passado
 - conflitos de validade permitidos ou proibidos
 - se permitidos, deve-se ajustar as validades dos dados históricos envolvidos para resolver o conflito

Exclusão de Dados

- Não remove fisicamente o dado
 - significa apenas o fim da sua validade
- Exclusão física
 - conhecida por vacuuming
 - executada (raramente)
 - quando a história do dado não é mais relevante para a aplicação
 - para diminuir o volume de dados

Exemplo de Contexto Temporal

Evolução dos salários do empregado João

Exemplo de Atualização: Inclusão Convencional

- Considerada a primeira ocorrência de um dado (no presente)
- Exemplo
 - João foi admitido e passa a trabalhar na empresa no próximo mês com salário de R\$ 1200.00
 - observação: assuma hoje como 12/04/16

Inclusão Temporal

- Insere informações históricas sobre um dado
 - correções ou detalhamentos na história atual
- Exemplo 1
 - Hoje se descobriu que João recebia R\$ 1300.00 no período de 12/09/16 a 31/12/16

Inclusão Temporal

Consultas em BDT

- BDs convencionais
 - consultas a dados correntes
- BDs temporais
 - maior amplitude de consulta
 - consultas a dados em qualquer tempo
- Linguagem de Consulta temporal
 - extensão de uma linguagem convencional
 - consultas em diferentes histórias
 - manipulação de atributos e rótulos temporais

Consultas em BDTs

- Quatro possibilidades de consulta
 - 1. a dados correntes
 - 2. a dados históricos (passado e futuro)
 - 3. a dados correntes de uma história passada
 - 4. a dados históricos de uma história passada

Exemplos de Consultas

- 1. A dados correntes
 - qual é o salário de João?
- 2. A dados históricos
 - qual era o salário de João em 01/01/2017?
- 3. A dados correntes de uma história passada
 - qual era o salário de João, considerando o que se acreditava como verdadeiro em 20/05/2017?
- 4. A dados históricos de uma história passada
 - qual era o salário de João em 01/01/2017, considerando o que se acreditava como verdadeiro em 20/05/2017?

Linguagem TSQL2

- Linguagem temporal de maior consenso
 - proposta por uma equipe de pesquisadores da Arizona University
 - extensão da linguagem SQL2
- Linguagem proposta para um modelo relacional estendido com rótulos temporais
- Suportes principais
 - TT e TV
 - granularidade (chronons)
 - rótulos instante e intervalo temporal

Definição de Tabelas

- Possibilidade de criação de tabelas nãotemporais e temporais
- Sintaxe
 - o chronon do tempo de transação é definido pelo SGBDT

```
CREATE TABLE nome_tabela
(definição_atributos)
[AS [VALID [EVENT] granularidade]
      [[AND] TRANSACTION]]
```

Exemplos

```
CREATE TABLE Departamentos
  (nome char(40), orçamento integer)

CREATE TABLE Empregados
  (CPF numeric(11), nome char(100), salário float, cargo char(30))
```

AS VALID DAY AND TRANSACTION

CREATE TABLE ParticipaçõesEventos (CPF numeric(11), evento char(40))

AS VALID EVENT YEAR

Inclusão de Dados

Sintaxe

- Defaults
 - intervalo
 - [data_corrente, now]
 - evento
 - data_corrente

Exemplos

```
INSERT INTO Empregados - inclusão no presente
VALUES (101001111111, 'Joao
   Sá', 2500.00, 'analista')
INSERT INTO Empregados
VALUES (11101110111, 'Maria
   Souza', 2300.00, 'secretária')
VALID PERIOD \[01-01-2019 - 31-12-2019]'
INSERT INTO ParticipaçõesEventos
VALUES (101001111111, 'SBBD 2018')
VALID INSTANT '01-10-2018'
```

Consultas Convencionais

- Consultas sobre dados correntes
 - válidos no presente

```
exibe atributos temporais por default
SELECT
FROM Empregados
                   não exibe atributos temporais
SELECT SNAPSHOT CPF, nome
FROM Empregados
WHERE salário > = 5000.00
```

Busca de Atributos Temporais

```
SELECT INSTANT (P) ← instante

FROM ParticipaçõesEventos P

WHERE P.CPF = 10100011101
```

```
SELECT SNAPSHOT E.salário,

BEGIN (VALID (E)) — início de validade

FROM Empregados E

WHERE E.nome = 'João Sá'
```

Cláusulas Temporais

- INTERSECT
 - intersecção no tempo
- OVERLAPS
 - sobreposição no tempo
- PRECEDS / BEFORE
 - precede no tempo
- FOLLOWS / AFTER
 - sucede no tempo
- MEETS
 - "casa" (encontro no tempo)

•...

Exemplos

 Nomes de empregados que trabalharam na empresa com o mesmo salário e cargo durante todo o 2018

```
SELECT SNAPSHOT E.nome

FROM Empregados E

WHERE VALID(E) OVERLAPS PERIOD '[01-01-2018 - 12-31-2018]'
```

 CPFs das pessoas que publicaram antes do SBBD 2012

```
SELECT SNAPSHOT P.CPF
FROM PublicaçõesEventos P, P1
WHERE P1.evento = 'SBBD2012'
WHERE INSTANT(P) PRECEDS INSTANT(P1)
```

Retorno a Histórias Passadas

- Consultas envolvendo tempo de transação
 - qual era o salário de João Sá que se acreditava como válido em 20/05/2017?

```
SELECT SNAPSHOT salário

FROM Empregados E

WHERE E.nome = 'João Sá'

AND TRANSACTION(E) OVERLAPS DATE '20-05-2017'

AND VALID(E) OVERLAPS DATE '20-05-2017'
```

Vacuuming

```
VACUUM Empregados E
WHERE BEGIN(TRANSACTION(E))
PRECEDS DATE '01-01-1990'
```

Modelagem Temporal em BD Relacional

- Três alternativas mais comuns
 - tabela instantânea/temporal
 - tabela instantânea e tabela temporal
 - tabela temporal delta

Tabela Instantânea/Temporal

 Mantém dados instantâneos e temporais em uma única tabela

- Vantagem
 - menor número de tabelas
- Desvantagens
 - redundância de dados
 - desempenho ruim para consultas instantâneas

Tabelas Instantânea e Temporal

 Mantém dados instantâneos e temporais em tabelas separadas

- Vantagem
 - melhor desempenho para consultas instantâneas
- Desvantagens
 - redundância de dados
 - maior número de tabelas

Tabela Temporal Delta

- Mantém tabelas temporais separadas para cada atributo
 - definidas apenas para atributos temporais

Tab X-Inst

Tab X - a₁-Temp

. . .

Vantagem

evita redundância

Tab X - a_n-Temp

 $| \underline{ID} | a_n | T_{início} | T_{fim}$

- Desvantagem
 - desempenho ruim para consultas temporais
 - maior número de tabelas

Atividade 2: Apresentar uma modelagem relacional temporal válida o domínio abaixo referente a uma oficina de manutenção de automóveis

Para cada automóvel que permanece na oficina é cadastrado: *placa*, *ano*, *modelo* e *marca*. Todo automóvel pertence a um cliente, cujos dados de interesse são: *CPF*, *nome*, *endereço* e *celular*. Para cada automóvel é gerada uma OS (Ordem de Serviço), que é identificada por um *número* e possui serviços a serem realizados no automóvel. Um serviço possui um *código* e uma *descrição*. Cada serviço a ser realizado em uma OS apresenta um *orçamento*. Na oficina trabalham empregados. Cada empregado possui um *CPF*, *nome*, *salário* e *especialidades* (pintura, chapeação, etc). Um empregado pode estar escalado para a execução de várias OSs. Um valor da *mão de obra* deve ser informado para cada empregado trabalhando em uma OS. Uma OS pode ser executada por diversos empregados.

Tarefas:

- 1) Faça a modelagem ER (modelagem conceitual) a partir do texto acima
- 2) Gere a modelagem relacional (modelagem lógica) a partir da modelagem ER
- 3) Modifique a modelagem relacional para gerar uma modelagem temporal

Você pode usar uma das seguintes ferramentas:

- a) brModelo v.3.2: http://www.sis4.com/brModelo/download.html
- b) brModelo versão Web: https://www.brmodeloweb.com/

Atividade 2 (cont.)

- Para cada tabela que você definir como temporal, especificar:
 - a) Se haverá TV e/ou TT
 - b) Qual o rótulo temporal: evento ou intervalo;
 - c) Qual a granularidade (chronon) da tabela (year, month, day, ...)

Atividade 2 (cont.)

- Exemplo hipotético
 - Gerei inicialmente uma tabela convencional Pessoas (ID, CPF, nome, profissão, cidade) a partir do mapeamento de uma entidade Pessoas
 - Para a modelagem temporal desta tabela, decido que quero manter o histórico apenas dos atributos profissão e cidade. Também decido pela alternativa "tabela instantânea e tabela temporal" da seguinte forma:

continua

Pessoas (ID, CPF, nome)

Pessoas_Temp (ID, profissão, cidade, T_inicio, T_fim)

TV e TT; Rótulo: intervalo; Granularidade: day

Atividade 2 (cont.)

• Na ferramenta, você deverá gerar uma nova tabela temporal (Pessoas_Temp) e alterar a tabela Pessoas:

