

Autgobe
$$\Lambda$$
 $\overline{z}:f(n-1)+f(n-2)=2.f(n-2)-f(n-3)$

IA

 $f(2)+f(1)=2f(1)+f(0)$
 $(=>1+1=2.1+0)$
 $(=>2=2)$

IV

Wir setzen voious, $n=k$ $k \in \mathbb{N} : k>3$
 $f(k-1)+f(k-2)=2f(k-2)+f(k-3)$

IS

Angenommen, $n=k+1$
 $f(k)+f(k-1)\stackrel{?}{=}2f(k-1)+f(k-2)$ subtrahiency

 $=f(k)=f(k-1)+f(k-2)$

ID as gift, we'l is so engage ben's t, doss $f(n)=f(n-1)+f(n-2)$ stimmt.

(Lout dem Blatt)

Aufgabe 2

c) Ja, das ist möglich New Huffman - (ode 33 ist in der huminierung der Codemontlänge ontimal aber nicht hinsichtlich der Geschwindigheit der Decodierung.

```
# Load n = 10 into S[30]
LOADI 10
STORE 30
# Initialize carry into S[31] (a)
LOADI 1
STORE 31
# Initialize carry for solution in S[33] (b)
LOADI 0
STORE 33
# -----
# Subtract one from n
LOAD 30
SUBI 1
STORE 30
# Jump to end if n < 0
JUMPC < 9
# Load b onto b-temp and initialize a-temp
LOAD 33
STORE 32
# Calculate b
LOAD 33
ADD 31
STORE 33
# Set a to previous b
LOAD 32
STORE 31
JUMP -11
# Print the result and loop forever
PRINT 33
```

JUMP 0

misstry special cases for n=0, 1

a)

Behauptung: Wenn ein Zeichen a_i in dem Alphabet $A = \{a_1, \dots, a_m\}$ eine Häufigkeit $p(a_i) > 0.5$ hat wird der Huffman-Code ihm ein Codewort der Länge 1 zugeordnen.

Angenommen $p(a_i) > 0.5$, dann übersteigt die Häufigkeit von a_i die kombinierte Häufigkeit vom dem Rest im Alphabet, da die Summe der Häufigkeiten gleich 1 ist. Das bedeutet, dass kein anderer Knoten oder keine Kombination von Knoten eine höhere Häufigkeit als a_i erreichen kann.

b)

Behauptung: Falls einem Zeichen a_i in einem Huffman Code ein Codewort der Länge 1 zugewiesen wird, muss dessen Häufigkeit $p(a_i)$ mindestens $\frac{1}{3}$ betragen.

 $\mathbf{c})$

Behauptung: Bei einer Gleichverteilung der Zeichenhäufigkeiten $p(a_i) = \frac{1}{m}$ in einem Huffman Code, wobei die Anzahl der Zeichen m eine Zweierpotenz ist, beträgt die mittlere Codelänge $\log_2(m)$.

