Obrázek 1: $N_i(v) = v(z_{i-1})$ opět vyjde že splníme definici konečného prvku

Poznámka (K lineárnímu Lagrangeovu prvku). K čemu to je? Porovnejme jak vypadá pokud budeme KP skládat

- (a) Takto prvky vypadají v případě, že uzly jsou v rozích trojúhelníků. všimněme si že funkce je spojitá
- (b) Takto prvky vypadají v případě, že uzly nejsou v rozích trojúhelníků. Jsou spojité v jedné hodnotě ale jinak většinou nejsou.

Většinou doporučujeme používat uzly v rozích z důvodů nespojitosti, ale existují příklady kdy se používá druhá možnost. Například se zmiňme o tzv. Cruzeix-Raviartův prvek. Ten se používá v problematice proudění u tzv. nekonformní metody konečných prvků.

0.1 Kvadratický Lagrangeův prvek

 ${\mathcal P}$ obsahuje polynomy stupně menší než 2

$$v \in \mathcal{P} \implies v(x_1, x_2) = a + bx_1 + cx_1 + dx_1^2 + ex_1x_2 + fx_2^2 \implies \dim \mathcal{P} = 6$$
 (1)
 $\mathcal{N} = (N_1, ..., N_6) : N_j(v) = v(z_{j-1}), j = 1, ..., 6 \text{ pro } v \in C(\bar{K})$

Tvrzení 0.1

 \mathcal{N} je báze $\mathcal{P}^{\#}$

Obrázek 3: Kvadratický Lagrangeův prvek

 $D\mathring{u}kaz$: Použijeme opět kritérium: $(N_i(v) = 0 \forall j = 1, ..., 6) \implies v \equiv 0.$

Tedy nechť: $v(z_5) = 0, v(z_n) = 0, ..., v(z_0) = 0$

 V_1 dána funkcionálem $L_1:V_1\equiv L_1(x_1,x_2)=0$ a dim $V_1=1$ a $v(z_0)=0,v(z_1)=0,v(z_3),$ tj. Kvadratický polynom 1 proměnné se rovná 0 ve 3 bodech, $\Longrightarrow v|_{V_1}\equiv 0$

Použijeme lemma o redukci: $v(x_1,x_2)=L_1(x_1,x_2)w_1(x_1,x_2), w_1$ je lineární polynom, kde $L_1(z_j)\neq 0$ pro j=2,4,5

Protože $v(z_j) = 0, j = 2, 4, 5 \implies w_1(z_j) = 0, j = 2, 4, 5$

 $w_1(z_2)=0, w_1(z_4)=0$ a $w_1|_{V_2}$ je lineární polynom jedné proměnné = 0 ve 2 bodech $\implies w_1|_{V_2}\equiv 0 \implies (V_2\equiv L_2(x_1,x_2)=0) \implies$

 $\implies w_1(x_1,x_2) = L_2(x_1,x_2) * w_2(x_1,x_2), w_2 \equiv \text{const a } w_2(z_5) = 0 \implies v = L_1L_2w_2 \equiv 0 \text{ všude } \implies \mathcal{N} \text{ je báze}$

Poznámka (Lagrangeovy prvky stupně $\mathcal{D} > 2$).

- (a) Lagrangeovy prvky stupně 3
- (b) Lagrangeovy prvky stupně 4

0.2 Hermiteův prvek

Obrázek 5: Hermiteův prvek

Funckionály v \mathcal{N} používající hodnoty funkcí a jejich derivací (tj. \mathcal{P} obsahuje alespoň kubické polynomy)

Nechť tedy dim
$$\mathcal{P} = 10$$
 (kubické) $\Longrightarrow \mathcal{N} = (N_1, ..., N_{10})$:
 $N_j(v) = v(z_{j-1}, j = 1, 2, 3), \ N_10(v) = v(z_3) \text{ a } v'(z_0) = \binom{N_4(v)}{N_5(v)}, v'(z_1) = \binom{N_6(v)}{N_7(v)}, v'(z_2) = \binom{N_8(v)}{N_9(v)},$

Tvrzení 0.2

 \mathcal{N} je báze $\mathcal{P}^{\#}$

 $D\mathring{u}kaz$: využití redukce: na V_1 : $v|_{V_1}$ je kubický polynom 1 proměnné jehož 2 hodnoty a 2 derivace = 0. $\implies v|_{V_1} \implies v = L_1w_1,\,w_1$ je Kvadratický

 $w_1|_{V_2}$ je kvadratický (1 hodnota, 2 derivace = 0) $\implies w|_{V_2} \equiv 0 \implies w_1 = L_2w_2, w_2$ je lineární, $w_2|_{V_3}$ je lineární polynom (derivace = 0) \implies je konstantní.

Nakonec použijme
$$z_3 \implies v = L_1 L_2 L_3 w_3 \equiv 0 \implies \mathcal{N}$$
 je báze.

Rozmysleme jak se přenáší v' na $w'_{1,2}$

0.3 Argyrisův prvek

Obrázek 6: Argyrisův prvek

Funckionály používající hodnoty 1. a 2. derivace argumentu. \mathcal{P} obsahuje polynomy stupně menší nebo rovno $5 \Longrightarrow \dim \mathcal{P} = 21$, tj. $N_j(v) = v(z_{j-1}, j = 1, 2, 3), \ v'(z_0) = \binom{N_4(v)}{N_5(v)}, v'(z_1) = \binom{N_6(v)}{N_7(v)}, v'(z_2) = \binom{N_8(v)}{N_9(v)}, \ v''(z_0) = \binom{N_10(v)N_12(v)}{N_12(v)N_11(v)}, \ v''(z_1) = \binom{N_13(v)N_15(v)}{N_15(v)N_14(v)}, \ v''(z_2) = \binom{N_16(v)N_17(v)}{N_17(v)N_18(v)}, \ N_{19}(v) = \partial_n v(z_3), \ N_{20}(v) = \partial_n v(z_4), \ N_{21}(v) = \partial_n v(z_5), \ \text{kde } \partial_n v(z_j) = v'(z_j) \cdot \vec{n}(z_j)$

Tvrzení 0.3

 \mathcal{N} je báze $\mathcal{P}^{\#}$

Poznámka. Hermite/Agyris: používáme $v'(z_j) \in \mathbb{R}^2, v''(z_j) \in \mathbb{R}^{2,2}$, například $v'(z_j) = \binom{\partial_{x_1} v(z_j)}{\partial_{x_2} v(z_j)}$ nebo $v'(z_j) = \binom{\partial_{s_1} v(z_j)}{\partial_{s_2} v(z_j)}$. Porovnání můžeme vidět v 7

Interpolant 1

Poznámka. Obecnější funkce budeme promítat do \mathcal{P} (nejdříve na jediném konečném prvku, pak na síti)

Definice 1.1. Nechť $(\mathcal{K}, \mathcal{P}, \mathcal{N})$ je konečný prvek, dim $\mathcal{P} = d, (\Phi_1, ..., \Phi_d)$ je uzlová báze, D_{N_j} je definiční obor funkcionálu $N_j \in \mathcal{N}, j=1,...,d$

Pak výraz $y_k u = \sum_{j=1}^d N_j(u) \Phi_j$ pro $u \in \bigcap_{j=1}^d D_{N_j}$ se nazývá lokální interpolant funkce u

Poznámka. Jde o souřadnicové vyjádření v bázi $(\Phi_1,...,\Phi_d)$, tj
 pro $\hat{u}\in\mathcal{P}$ je $\sum_{j=1}^{d} N_j(\hat{u}) \Phi_j = \hat{u}$, ale pro $\hat{i} \notin \mathcal{P}$ nikoliv

Obrázek 8

 $P\check{r}iklad$. Lineární Lagrange $(\mathcal{K}, \mathcal{P}, \mathcal{N}), N_1(v) = v(0,0), N_2(v) = v(1,0), N_3(v) = v(1,0)$ v(0,1)

Určíme nulovou bázi, $\Phi_j(x_1, x_2) = c_{1j} + c_{2j}x_1 + c_{3j}x_2$: $N_j(\Phi_l) = \delta_{jl}$ Rovnice:

fix align

$$j = 1c_{11}$$
 $= 1j = 2$ $c_{12} = 0j = 3$ $c_{13} = 0$ (2)
 c_{11} $+c_{21} = 0$ $c_{12} + c_{22} = 1$ $c_{13} + c_{23} = 0$ (3)
 c_{11} $+c_{31} = 0$ $c_{12} + c_{32} = 0$ $c_{13} + c_{33} = 1$ (4)

$$c_{11} + c_{21} = 0$$
 $c_{12} + c_{22} = 1$ $c_{13} + c_{23} = 0$ (3)

$$c_{11} + c_{31} = 0$$
 $c_{12} + c_{32} = 0$ $c_{13} + c_{33} = 1$ (4)

Z čehož dostaneme:

$$\Phi_1(x_1, x_2) = 1 - x_1 - x_2, \Phi_2(x_1, x_2) = x_1, \Phi_3(x_1, x_2) = x_2 \tag{5}$$