

Currently, shopping experiences lack adaptation to customers' emotional states.

Is it possible to detect customers' emotional states and tailor their shopping experiences accordingly?

PROBLEMS TO SOLVE

- Within the data what are the key nuances that distinguish one emotion from another?
- Can we use Convolutional Neural Networks perform well when detecting these nuances?
- Will using transfer learning techniques with pre-trained models give us better results?
- Will the black and white images be easier to detect than colored images?

sad neutral neutral

DATA EXPLORATION

- After viewing the data, it appears the neutral emotions are the most subtle. This means they could easily be mistaken for sadness or perhaps happiness.
- In the surprise emotion dataset, a significant number of individuals were observed with their mouths open, reminiscent of an expression of astonishment or awe. I was concerned the models would zone in on that visual cue.
- Like the surprise emotion, the happy emotion had a significant visual cue of smiling.
- I hoped that the models would not only focus on the obvious cues, such as open or smiling mouths, but also take into account the expressions of the eyes.

neutral

FEATURE IMPORTANCE

From Multiple Models

- The images show highlighted areas where the models found the most significant when categorizing the images.
- Most models focused on the mouth area as expected.
- But also a lot of the models focused on other areas like the eyes, hands, and the cheek area.

PROPOSED MODEL SOLUTION

- Convolutional Neural Network model with at minimum 1,401,716 trainable parameters.
- It has given the best performance on unseen data.
- It performs slightly better on RGB images vs grayscale.
- It doesn't indicate any overfitting on the training data.
- It focuses not only on the mouth but also the eyes in order to categorize the images.
- It made very few errors on the validation data. The lowest f1-score was 59% on the sad emotion.

PROPOSED BUSINESS SOLUTION

- Improving customer experience leads to enhance sales and brand loyalty. Integrating emotion recognition into recommendation systems to provide personalized product recommendations will achieve this.
- Implement systems that detect customers' emotions in real-time during their shopping experience, allowing the business to adapt their offerings.
- Invest in larger datasets of colored diverse images with noisier backgrounds to make the models more robust.

CHALLENGES

- What ethical considerations need to be taken into account regarding the use of computer vision technology?
- How will privacy concerns be addressed, particularly regarding the collection and use of facial data?
- What are the implications of using facial images of minors?
- Obtaining informed consent from individuals whose facial data is being collected and analyzed is essential.
- Emotions and facial expressions can vary across cultures, and what may be considered a normative expression in one culture may not be in another. It's crucial to ensure diversity in the data collected, encompassing a range of races and cultures.

MODEL COMPARISON

Model	Training Data Accuracy	Validation Data Accuracy	Test Data Accuracy
CNN Model 3	69%	73%	73%
VGG16 Model 2	42%	47%	70%
RGB Model	60%	68%	68%
Grayscale Model	63%	71%	66%
CNN Model 2	62%	68%	66%
ResNet V2 Model	52%	57%	55%
VGG16 Model 1	48%	52%	51%
EfficientNet Model	27%	37%	25%

PREDICTIONS ON TEST AND TRAIN DATA

