# Mapping the Perception-space of Facial Expressions

Supplementary Materials

Thomas Quettier

Paola Sessa

# Contents

| 1                       | Ger   | neral approach              | 3  |
|-------------------------|-------|-----------------------------|----|
|                         | 1.1   | Facial expression category  | 3  |
|                         | 1.2   | Perceived Intensity         | 3  |
|                         | 1.3   | Statistical models          | 4  |
|                         |       | 1.3.1 brms                  | 4  |
|                         | 1.4   | Raw data                    | 5  |
| 2                       | Fitt  | ted Models                  | 7  |
|                         | 2.1   | Bias/Uncertainty            | 10 |
|                         |       | 2.1.1 dataset_fit_ri_int    | 10 |
|                         |       | 2.1.2 dataset_fit_ri_neu    | 12 |
|                         |       | 2.1.3 dataset_fit_ri_no2int | 13 |
|                         | 2.2   | Perceived intensity         | 14 |
|                         |       | 2.2.1 dataset_fit_ri_int    | 14 |
|                         |       | 2.2.2 dataset_fit_ri_neu    | 15 |
|                         |       | 2.2.3 dataset_fit_ri_no2int | 16 |
| 3                       | Pric  | ors Sensitivity             | 17 |
|                         | 3.1   | Bias/Uncertainty            | 17 |
|                         | 3.2   | Perceived Intensity         | 18 |
| 4                       | Sug   | gestions for meta-analysis  | 19 |
|                         | 4.1   | Bias                        | 19 |
|                         | 4.2   | Uncertainty                 | 19 |
|                         | 4.3   | Perceived Intensity         | 19 |
| $\mathbf{R}^{\epsilon}$ | efere | ences                       | 20 |

### 1 General approach

The Geneva Emotion Wheel [GEW; Scherer (2005)] allows having an intuitive and informative way to collect participants' responses in a facial expression perception task. Specifically, in a single measurement is possible to have information about the facial expression *category* (i.e., the response angle around the circle) and *intensity* (i.e., the distance from the center).

#### 1.1 Facial expression category

In order to measure the response angle for each trial we transformed Cartesian coordinates  $((x_i, y_i))$  into polar coordinates  $((r_i, \theta_i))$  as in Equation (1).

$$\theta_{ij} = tan^{-1}(\frac{y_{ij}}{x_{ij}}) \tag{1}$$

In this way we have the *pressed angle* for each trial. Given that each emotion has an absolute location on the GEW, we calculated a *position-free* index of performance computing the difference between the *pressed angle* and the *ideal angle* (i.e., the GEW location of the presented emotion).

Then we calculated the ideal angle for each presented emotion, in the middle of each wheel circle. To obtain a measure comparable between emotion, we calculated the angular difference between the ideal and the pressed angle using the Equation (2)

$$Bias = ((ideal - pressed) + 180) \mod 360 - 180$$
 (2)

This new measure (bias) has several advantages. Despite each emotion have a different location within the wheel, each response is now expressed in a position-free metric. The bias is centered on 0 if there is no response tendency away from the ideal value. Otherwise, a systematic shift would move the circular mean away from 0, clockwise (positive values) or anticlockwise (negative values). Other than the circular mean, also the spread on the circle (i.e., uncertainty) is an important performance measure. The bias and the uncertainty are can be considered independent measures.

Given the periodicity of circular data, we cannot use standard statistical modeling tools (Cremers, Mulder, and Klugkist 2018; Cremers and Klugkist 2018). There are different ways to model circular data (see Cremers, Mulder, and Klugkist 2018 for an overview). We decided to use a generalized linear mixed-effect model using the *von Mises* likelihood function. The *von Mises* distribution is an alternative to the Gaussian distribution for circular data, bounded in the range  $[-\pi,\pi]$ . The two parameters of the von Mises distribution,  $\mu$  and  $k^1$  representing our *bias* and *uncertainty* parameters. To facilitate the interpretation of models' parameters, we transformed k into the circular variance using Equation (3).

$$\sigma^2 = 1 - \frac{I_1(k)}{I_0(k)} \tag{3}$$

The circular variance ranges between 0 (no uncertainty) to 1 (maximum uncertainty). The transformation is computed using the modified Bessel function  $I_i(k)$  of order i (Evans, Hastings, and Peacock 2011).

#### 1.2 Perceived Intensity

The emotion *intensity* is expressed as the difference from the center of the GEW. Values close or far from the center represent respectively neutral and high facial expression intensity. We calculated the *intensity* for

 $<sup>^{1}</sup>$ In fact, k is a concentration parameter that can be conceptually considered as the inverse of the standard deviation. When the concentration is 0 the distribution is uniform

each trial as the *euclidean distance* between the *center* and the *pressed location*. Given that the GEW has been centered (i.e., the center has coordinates x = 0, y = 0), the distance from the center is calculated as Equation (4).

$$I_{ij} = \sqrt{x^2 + y^2} \tag{4}$$

#### 1.3 Statistical models

For the response angle (i.e., bias and uncertainty) we decided to use a scale-location mixed-effect model (Bürkner 2018; Rigby and Stasinopoulos 2005). Under this framework, all parameters of a distribution can be predicted. In particular, we are predicting the circular mean (i.e., bias) and the concentration (i.e., uncertainty) Von Mises parameters as a function of Mask (with or without), Intensity (full and subtle) and Emotion (anger, happiness, disgust, fear, surprise and sadness). For the perceived intensity, we used a regular general linear mixed-effect model.

We estimated both models under a Bayesian framework the R software (R Core Team 2021) using the Brms package (Bürkner 2017) based on the STAN probabilistic programming language (Carpenter et al. 2017). The Bayesian statistics consist in combining information from prior knowledge (i.e. *priors*) and the data (i.e., *likelihood*) to obtain the *posterior* distribution (Kruschke and Liddell 2018).

In terms of contrast coding, for categorical predictors, we used sum contrasts using the contr.sum() function.

#### 1.3.1 brms

We fitted our models using the brms package. According to different models the brm setup could be different in terms of backend, number of iterations and chains and the parallelization approach. The general approach for bias/uncertainty models is the following:

```
# the scale-location specification
form <- bf(theta_cen ~ ... + (1|id),
           kappa ~ ... + (1|id))
brm(formula, # model formula
    data = data,
    prior = priors,
    family = von_mises(link = "tan_half", link_kappa = "log"),
    chains = 15.
    cores = 15,
    iter = 4000,
    sample_prior = "yes",
    save_pars = save_pars(all = TRUE),
    seed = 2022)
For the perceived intensity
brm(int ~ ... + (1|id),
    data = data,
    prior = priors,
    family = gaussian(),
    chains = 15.
    cores = 15,
```

```
iter = 4000,
save_pars = save_pars(all = TRUE),
sample_prior = "yes",
seed = 2022)
```

When fitting models with uninformative or flat priors, we used a different chains/iteration approach to improve model fitting (especially for the Von Mises model). In particular we used the *within-chains* parallelization (https://cran.r-project.org/web/packages/brms/vignettes/brms\_threading.html) for bias/uncertainty models:

For the perceived intensity models we use the same approach as the main models given the simpler fitting process.

#### 1.4 Raw data

The figure S2 represents all participants' responses for each experimental condition, directly plotted on the GEW. The figure S1 represents the GEW legend and the responses to the neutral condition.



Figure S1: GEW legend (B) and responses to neutral facial expressions as a function of the Mask condition (A)



Figure S2: GEW responses as a function of displayed Emotion, Mask and Facial Expression Intensity.

# 2 Fitted Models

Table S1 depicts all fitted models with main parameters. To read the table:

- fit\_ri\_int: the random-intercept two-way interaction model for bias/uncertainty and perceived intensity
- $fit_{ri_no2int}$ : the random-intercept model without the two-way interaction bias/uncertainty and  $perceived\ intensity$
- fit\_\*un/flat: models with completely uninformative or flat priors

Table S1: Table with model formulas, names and fitting parameters  $\,$ 

| model                                                                                                                                                                                     | name                       | chains | iter  | warmup | samples |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|-------|--------|---------|
| diff_theta ~ emotion * intensity + $(1 \mid id)$ kappa ~ emotion * intensity + $(1 \mid id)$                                                                                              | $dataset\_fit\_ri\_int$    | 15     | 4,000 | 2,000  | 30,000  |
| theta_cen $\sim 0 + \text{Intercept} + (1 \mid \text{id})$<br>kappa $\sim 0 + \text{Intercept} + (1 \mid \text{id})$                                                                      | $dataset\_fit\_ri\_neu$    | 15     | 4,000 | 2,000  | 30,000  |
| $\begin{array}{l} \text{diff\_theta} \sim \text{emotion} + \text{intensity} + (1 \mid \text{id}) \\ \text{kappa} \sim \text{emotion} + \text{intensity} + (1 \mid \text{id}) \end{array}$ | $dataset\_fit\_ri\_no2int$ | 15     | 4,000 | 2,000  | 30,000  |
| $int \sim 0 + Intercept + emotion * intensity + (1   id)$                                                                                                                                 | dataset_fit_ri_int         | 15     | 4,000 | 2,000  | 30,000  |
| $int \sim 0 + Intercept + (1 \mid id)$                                                                                                                                                    | dataset_fit_ri_neu         | 15     | 4,000 | 2,000  | 30,000  |
| $int \sim 0  +  Intercept  +  emotion  +  intensity  +  (1 \mid id)$                                                                                                                      | $dataset\_fit\_ri\_no2int$ | 15     | 4,000 | 2,000  | 30,000  |

In the next section we presented all fitted models using the same approach:

- the model name (the same name as the R object)
- prior distributions for each parameter
- model output

#### For the prior tables:

- prior: is the prior distribution with parameters. All parameters without a proper prior (i.e., different from a flat prior) are not reported in the table.
- class: is the type of parameter (b is for  $\beta$  and sd for a standard deviation parameter e.g., by-subject intercept or residual  $\sigma$ )
- coef: is the specific model parameters. If a prior is defined only for a *class*, then all parameters of that class will have the same prior
- dpar: is for distributional parameters. In the case of the von Mises model refers to k coefficients

#### For the model tables:

- param: is the model parameter name
- estimate: is the mean of the posterior distribution
- Est.Error: is the standard error of the posterior distribution
- 95% CI: is the 95% credible interval
- Rhat: is the Gelman and Rubin (Gelman and Rubin 1992) convergence index. When is below 1.1 the parameters has converged.
- Bulk/Tail Effective Sample Size: can be considered as the amount of information used for estimating a parameter. In general higher is better (see https://mc-stan.org/docs/2\_18/reference-manual/effective-sample-size-section.html). Is calculated from the number of iterations and chains of the models.

# 2.1 Bias/Uncertainty

## ${\bf 2.1.1} \quad {\bf dataset\_fit\_ri\_int}$

### **2.1.1.1** Priors

Table S2:

| prior                                     | class     | coef | dpar  |
|-------------------------------------------|-----------|------|-------|
| normal(0, 2)                              | b         |      |       |
| normal(0, 2)                              | b         |      | kappa |
| $\overline{\text{student\_t}(3, 0, 2.5)}$ | Intercept |      |       |
| $\overline{\text{normal}(5.0, 0.8)}$      | Intercept |      | kappa |
| $\overline{\text{student\_t}(3, 0, 2.5)}$ | sd        |      |       |
| student_t(3, 0, 2.5)                      | sd        |      | kappa |

### 2.1.1.2 Model

Table S3:

| param                     | median   | se      | lower    | upper    | Rhat    | Bulk_ESS     | Tail_ESS     |
|---------------------------|----------|---------|----------|----------|---------|--------------|--------------|
| emotion1                  | -0.11577 | 0.02491 | -0.16514 | -0.06794 | 1.00039 | 35,792.29214 | 24,099.78366 |
| emotion1:intensity1       | 0.04238  | 0.02471 | -0.00626 | 0.09098  | 1.00050 | 35,971.65325 | 23,669.07040 |
| emotion2                  | -0.08574 | 0.02135 | -0.12895 | -0.04499 | 1.00026 | 24,478.58369 | 22,595.57802 |
| emotion2:intensity1       | 0.12300  | 0.02130 | 0.08186  | 0.16490  | 1.00017 | 23,330.25693 | 22,417.88336 |
| emotion3                  | -0.04853 | 0.02115 | -0.09059 | -0.00799 | 1.00035 | 37,284.04441 | 25,158.03886 |
| emotion3:intensity1       | -0.01718 | 0.02107 | -0.05831 | 0.02395  | 1.00038 | 36,405.85358 | 23,868.44862 |
| emotion4                  | 0.08767  | 0.01562 | 0.05736  | 0.11831  | 1.00013 | 33,128.29099 | 25,174.62594 |
| emotion4:intensity1       | -0.06964 | 0.01574 | -0.10071 | -0.03955 | 1.00011 | 33,128.84316 | 24,451.50993 |
| emotion5                  | 0.20085  | 0.02226 | 0.15647  | 0.24390  | 1.00002 | 33,570.25696 | 24,939.35274 |
| emotion5:intensity1       | -0.10603 | 0.02253 | -0.15154 | -0.06294 | 1.00022 | 34,329.23364 | 24,255.86124 |
| intensity1                | 0.01409  | 0.00921 | -0.00412 | 0.03208  | 1.00063 | 36,621.17522 | 24,694.33769 |
| Intercept                 | 0.00080  | 0.00935 | -0.01814 | 0.01868  | 1.00054 | 34,012.56727 | 24,039.34585 |
| kappa_emotion1            | -0.88162 | 0.08952 | -1.05695 | -0.70953 | 1.00060 | 50,438.83963 | 23,648.78254 |
| kappa_emotion1:intensity1 | -0.55484 | 0.08935 | -0.72490 | -0.37501 | 1.00089 | 46,500.62889 | 22,692.13865 |
| kappa_emotion2            | 0.01333  | 0.08964 | -0.16293 | 0.18736  | 1.00024 | 52,196.56625 | 22,378.58262 |
| kappa_emotion2:intensity1 | 0.31033  | 0.08921 | 0.13016  | 0.48205  | 1.00060 | 49,254.02069 | 23,171.48194 |
| kappa_emotion3            | -0.59587 | 0.08721 | -0.76630 | -0.42595 | 1.00044 | 47,608.80334 | 23,893.12391 |
| kappa_emotion3:intensity1 | -0.42369 | 0.08925 | -0.59632 | -0.24918 | 1.00058 | 45,474.26047 | 21,615.14281 |

| param                     | median   | se      | lower    | upper    | Rhat    | Bulk_ESS     | Tail_ESS     |
|---------------------------|----------|---------|----------|----------|---------|--------------|--------------|
| kappa_emotion4            | 0.13712  | 0.09094 | -0.04336 | 0.31284  | 1.00060 | 47,995.87225 | 22,586.45969 |
| kappa_emotion4:intensity1 | -0.32506 | 0.08901 | -0.49469 | -0.14893 | 1.00013 | 50,452.23505 | 24,110.21474 |
| kappa_emotion5            | -0.59117 | 0.08782 | -0.77018 | -0.42447 | 1.00020 | 48,094.52292 | 22,418.78350 |
| kappa_emotion5:intensity1 | -0.41000 | 0.08736 | -0.58434 | -0.24143 | 1.00039 | 46,650.18766 | 22,184.54389 |
| kappa_intensity1          | 0.83063  | 0.04192 | 0.74945  | 0.91253  | 1.00032 | 49,805.43378 | 22,201.56211 |
| kappa_Intercept           | 1.82676  | 0.24658 | 1.39118  | 2.33861  | 1.00267 | 4,935.91798  | 8,126.98380  |
| sd(Intercept)             | 0.00404  | 0.00375 | 0.00000  | 0.01184  | 1.00090 | 12,027.67666 | 15,097.94032 |
| sd(kappa_Intercept)       | 0.69913  | 0.24117 | 0.37767  | 1.21601  | 1.00176 | 6,704.51776  | 10,185.36430 |

# ${\bf 2.1.2} \quad {\bf dataset\_fit\_ri\_neu}$

# **2.1.2.1** Priors

Table S4:

| prior                                      | class | coef | dpar  |
|--------------------------------------------|-------|------|-------|
| uniform(-3.141593, 3.141593)               | b     |      |       |
| $ \overline{\operatorname{normal}(0, 2)} $ | b     |      | kappa |
| $\frac{}{\mathrm{student\_t}(3,0,2.5)}$    | sd    |      |       |
| student_t(3, 0, 2.5)                       | sd    |      | kappa |

## 2.1.2.2 Model

Table S5:

| param               | median   | se      | lower    | upper   | Rhat    | Bulk_ESS    | Tail_ESS     |
|---------------------|----------|---------|----------|---------|---------|-------------|--------------|
| Intercept           | -0.81268 | 0.52553 | -1.91335 | 0.18745 | 1.00126 | 6,175.18053 | 10,181.92417 |
| kappa_Intercept     | -0.35478 | 0.50416 | -1.40755 | 0.57519 | 1.00147 | 7,479.90394 | 11,941.26084 |
| sd(Intercept)       | 1.43909  | 0.47347 | 0.78255  | 2.45705 | 1.00112 | 9,680.74060 | 14,365.14617 |
| sd(kappa_Intercept) | 1.47660  | 0.49706 | 0.79487  | 2.53982 | 1.00088 | 9,700.76637 | 13,893.90982 |

# ${\bf 2.1.3} \quad {\bf dataset\_fit\_ri\_no2int}$

### **2.1.3.1** Priors

Table S6:

| prior                                      | class     | coef | dpar  |
|--------------------------------------------|-----------|------|-------|
| normal(0, 2)                               | b         |      |       |
| $ \overline{\operatorname{normal}(0, 2)} $ | b         |      | kappa |
| ${\text{student\_t}(3, 0, 2.5)}$           | Intercept |      |       |
| $\overline{\text{normal}(5.0, 0.8)}$       | Intercept |      | kappa |
| ${\text{student\_t}(3, 0, 2.5)}$           | sd        |      |       |
| $\overline{\text{student\_t}(3, 0, 2.5)}$  | sd        |      | kappa |

### 2.1.3.2 Model

Table S7:

| param               | median   | se      | lower    | upper    | Rhat    | Bulk_ESS     | Tail_ESS     |
|---------------------|----------|---------|----------|----------|---------|--------------|--------------|
| emotion1            | -0.08834 | 0.02114 | -0.12970 | -0.04678 | 1.00051 | 36,635.26322 | 21,738.53023 |
| emotion2            | 0.00405  | 0.01434 | -0.02440 | 0.03224  | 1.00088 | 39,833.92249 | 22,610.65459 |
| emotion3            | -0.06262 | 0.01712 | -0.09594 | -0.02915 | 1.00024 | 41,207.45935 | 22,148.04181 |
| emotion4            | 0.04070  | 0.01283 | 0.01584  | 0.06600  | 1.00104 | 41,389.67755 | 22,827.17159 |
| emotion5            | 0.12566  | 0.01890 | 0.08886  | 0.16284  | 1.00008 | 39,355.58206 | 22,063.61307 |
| intensity1          | 0.02291  | 0.00790 | 0.00689  | 0.03787  | 1.00023 | 37,071.06907 | 23,828.26662 |
| Intercept           | -0.00444 | 0.01010 | -0.02392 | 0.01585  | 1.00042 | 28,356.92264 | 19,444.94103 |
| kappa_emotion1      | -0.76276 | 0.10291 | -0.96990 | -0.56992 | 1.00041 | 36,861.76452 | 21,775.93078 |
| kappa_emotion2      | 0.03551  | 0.09402 | -0.14751 | 0.22283  | 1.00007 | 33,006.92194 | 23,942.25040 |
| kappa_emotion3      | -0.35040 | 0.09255 | -0.54026 | -0.17645 | 1.00074 | 38,920.41118 | 23,048.05791 |
| kappa_emotion4      | 0.32536  | 0.09198 | 0.14699  | 0.50737  | 1.00073 | 40,690.90270 | 22,757.88179 |
| kappa_emotion5      | -0.49009 | 0.09429 | -0.67548 | -0.30644 | 1.00046 | 38,326.48302 | 23,008.47089 |
| kappa_intensity1    | 0.74659  | 0.05103 | 0.64842  | 0.84746  | 1.00007 | 34,588.76328 | 23,842.82041 |
| kappa_Intercept     | 1.52577  | 0.13925 | 1.27789  | 1.82382  | 1.00115 | 9,846.40811  | 11,673.97900 |
| sd(Intercept)       | 0.01127  | 0.00868 | 0.00000  | 0.02843  | 1.00024 | 10,751.29409 | 16,062.78418 |
| sd(kappa_Intercept) | 0.41417  | 0.12721 | 0.22714  | 0.68637  | 1.00108 | 9,597.94446  | 14,310.41526 |

# 2.2 Perceived intensity

## ${\bf 2.2.1} \quad {\bf dataset\_fit\_ri\_int}$

### **2.2.1.1** Priors

Table S8:

| prior                                     | class | coef      | dpar |
|-------------------------------------------|-------|-----------|------|
| $\overline{\operatorname{normal}(0, 50)}$ | b     |           |      |
| normal(150, 100)                          | b     | Intercept |      |
| $\frac{1}{\text{student\_t}(3, 0, 73.3)}$ | sd    |           |      |
| student_t(3, 0, 73.3)                     | sigma |           |      |

### 2.2.1.2 Model

Table S9:

| param               | median    | se      | lower     | upper     | Rhat    | Bulk_ESS     | Tail_ESS     |
|---------------------|-----------|---------|-----------|-----------|---------|--------------|--------------|
| emotion1            | -9.12751  | 2.91322 | -14.77151 | -3.37663  | 1.00030 | 31,307.02867 | 22,688.50716 |
| emotion1:intensity1 | -9.68978  | 2.92192 | -15.39165 | -3.94756  | 1.00036 | 31,007.36247 | 23,093.63475 |
| emotion2            | 4.21392   | 2.88005 | -1.32542  | 9.93550   | 1.00023 | 31,725.51330 | 22,469.26596 |
| emotion2:intensity1 | 7.49754   | 2.89363 | 1.90703   | 13.29611  | 1.00040 | 31,827.03057 | 23,739.16216 |
| emotion3            | -6.44682  | 2.89581 | -12.15740 | -0.84802  | 1.00049 | 31,076.61242 | 23,451.09598 |
| emotion3:intensity1 | 10.44558  | 2.87395 | 4.88791   | 16.15655  | 1.00023 | 31,867.48667 | 23,050.01512 |
| emotion4            | 23.33171  | 2.84179 | 17.68467  | 28.86713  | 1.00047 | 29,818.78978 | 23,013.74947 |
| emotion4:intensity1 | -3.00723  | 2.87351 | -8.57920  | 2.66032   | 1.00022 | 31,805.68826 | 22,535.03571 |
| emotion5            | -17.68282 | 2.92852 | -23.32054 | -11.89165 | 1.00003 | 31,114.77378 | 23,072.40002 |
| emotion5:intensity1 | -12.06066 | 2.95506 | -17.85851 | -6.33906  | 1.00008 | 31,001.25866 | 22,571.22367 |
| intensity1          | 19.76942  | 1.29421 | 17.22271  | 22.28959  | 1.00060 | 35,107.86275 | 23,140.95614 |
| Intercept           | 175.95613 | 5.48875 | 165.38172 | 187.19248 | 1.00192 | 7,373.36541  | 11,664.82695 |
| sd(Intercept)       | 17.92092  | 4.62737 | 11.03811  | 27.96330  | 1.00079 | 8,016.76319  | 14,507.62950 |

# ${\bf 2.2.2} \quad {\bf dataset\_fit\_ri\_neu}$

## 2.2.2.1 Priors

Table S10:

| prior                                    | class | coef      | dpar |
|------------------------------------------|-------|-----------|------|
| normal(0, 50)                            | b     |           |      |
| normal(150, 100)                         | b     | Intercept |      |
| $\frac{1}{\text{student\_t}(3, 0, 6.5)}$ | sd    |           |      |
| student_t(3, 0, 6.5)                     | sigma |           |      |

## 2.2.2.2 Model

Table S11:

| param         | median   | se       | lower    | upper    | Rhat    | Bulk_ESS    | Tail_ESS    |
|---------------|----------|----------|----------|----------|---------|-------------|-------------|
| Intercept     | 44.09534 | 13.37081 | 18.15515 | 71.19100 | 1.00478 | 3,440.76832 | 5,243.24029 |
| sd(Intercept) | 45.01356 | 9.30684  | 30.31093 | 64.87365 | 1.00100 | 5,871.38332 | 9,278.86391 |

# ${\bf 2.2.3} \quad {\bf dataset\_fit\_ri\_no2int}$

### **2.2.3.1** Priors

Table S12:

| prior                   | class | $\operatorname{coef}$ | dpar |
|-------------------------|-------|-----------------------|------|
| normal(0, 50)           | b     |                       |      |
| normal(150, 100)        | b     | Intercept             |      |
| student_t(3, 0, 73.3)   | sd    |                       |      |
| $student_t(3, 0, 73.3)$ | sigma |                       |      |

## 2.2.3.2 Model

Table S13:

| param         | median    | se      | lower     | upper     | Rhat    | Bulk_ESS     | Tail_ESS     |
|---------------|-----------|---------|-----------|-----------|---------|--------------|--------------|
| emotion1      | -9.14336  | 2.95525 | -14.88024 | -3.32928  | 1.00010 | 28,921.47204 | 23,195.76636 |
| emotion2      | 4.30457   | 2.92373 | -1.41506  | 10.03496  | 1.00047 | 29,688.75934 | 23,784.49224 |
| emotion3      | -6.36217  | 2.92281 | -12.09495 | -0.66197  | 1.00025 | 27,843.35293 | 22,913.32066 |
| emotion4      | 23.41703  | 2.95518 | 17.49283  | 29.08029  | 1.00033 | 28,406.51204 | 22,711.48359 |
| emotion5      | -17.96003 | 2.96206 | -23.95241 | -12.23642 | 1.00033 | 28,746.89089 | 23,073.95167 |
| intensity1    | 19.86470  | 1.30928 | 17.28930  | 22.40732  | 0.99995 | 35,188.10851 | 22,042.63382 |
| Intercept     | 175.96062 | 5.52007 | 164.93550 | 186.90922 | 1.00102 | 6,528.09033  | 10,160.18207 |
| sd(Intercept) | 17.91262  | 4.71946 | 11.03395  | 28.30958  | 1.00180 | 6,541.37053  | 11,308.48578 |

# 3 Priors Sensitivity

In this section, using the same approach as before, we presented the same set of models fitted using very uninformative or flat priors. The rationale is to assess the impact of our main priors specification on parameter values. Comparing the values of the parameters with models in Section 2, there is almost no effect of our priors specification. Some models (especially TAS and AQ models) could have different priors on similar parameters depending on model complexity and convergence issues.

### 3.1 Bias/Uncertainty

3.2 Perceived Intensity

### 4 Suggestions for meta-analysis

In this section, there are some suggestions for including these results into a meta-analysis. Firstly, if the presented results are not sufficient, the online OSF repository (https://osf.io/e2kcw/) contains raw data to compute all relevant measures. In general, for Bayesian models, each parameter or posterior contrast has a full posterior probability. This makes the computation of new measures (e.g., standardized effect sizes) and standard errors relatively easy. The only difference from standard calculations is that each new measure will have a full posterior distribution. These new distributions can be summarized (e.g., using the median) and used for the meta-analytic model.

#### 4.1 Bias

To our knowledge, for the bias, there is no straightforward standardized effect size measure to compute, especially for a meta-analytic model. A possibility is using a general index of overlap between two posterior distributions (e.g., for a specific post-hoc contrast) as proposed by Pastore and Calcagnì (2019). However, the meta-analytic comparison with standard effect sizes index is not straightforward.

### 4.2 Uncertainty

For the uncertainty it is possible to use directly the values from the posterior contrasts. The uncertainty (i.e., circular variance) is expressed on a scale from 0 to 1 (similar to a probability). All posterior contrasts can be interpreted as probability ratios and odds ratios. Also, the standard error can be calculated as the standard deviation of the posterior distribution. Furthermore, it is also possible to convert from odds ratio (or similar measures) to other effect size indexes (e.g., Cohen's d, see https://easystats.github.io/effectsize/reference/d to r.html).

#### 4.3 Perceived Intensity

For the perceived intensity it is possible to use a standard Cohen's d measure. The only general caveat about calculating a Cohen's d with multilevel models concerns which standard deviation(s) to use (Brysbaert and Stevens 2018; Westfall, Kenny, and Judd 2014)

### References

- Brysbaert, Marc, and Michael Stevens. 2018. "Power Analysis and Effect Size in Mixed Effects Models: A Tutorial." J Cogn 1 (1): 9. https://doi.org/10.5334/joc.10.
- Bürkner, Paul-Christian. 2017. "brms: An R Package for Bayesian Multilevel Models Using Stan." *Journal of Statistical Software*, *Articles* 80 (1): 1–28. https://doi.org/10.18637/jss.v080.i01.
- ———. 2018. "Advanced Bayesian Multilevel Modeling with the R Package brms." The R Journal 10 (1): 395–411. https://doi.org/10.32614/RJ-2018-017.
- Carpenter, Bob, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. "Stan: A Probabilistic Programming Language." *Journal of Statistical Software*, Articles 76 (1): 1–32. https://doi.org/10.18637/jss.v076.i01.
- Cremers, Jolien, and Irene Klugkist. 2018. "One Direction? A Tutorial for Circular Data Analysis Using R with Examples in Cognitive Psychology." Front. Psychol. 9 (October): 2040. https://doi.org/10.3389/fpsyg.2018.02040.
- Cremers, Jolien, Kees Tim Mulder, and Irene Klugkist. 2018. "Circular Interpretation of Regression Coefficients." Br. J. Math. Stat. Psychol. 71 (1): 75–95. https://doi.org/10.1111/bmsp.12108.
- Evans, M, N Hastings, and B Peacock. 2011. "Von Mises Distribution." In *Statistical Distributions*, 191–92. Gelman, Andrew, and Donald B Rubin. 1992. "Inference from Iterative Simulation Using Multiple Sequences." *SSO Schweiz. Monatsschr. Zahnheilkd.* 7 (4): 457–72. https://doi.org/10.1214/ss/1177011136.
- Kruschke, John K, and Torrin M Liddell. 2018. "The Bayesian New Statistics: Hypothesis Testing, Estimation, Meta-Analysis, and Power Analysis from a Bayesian Perspective." *Psychon. Bull. Rev.* 25 (1): 178–206. https://doi.org/10.3758/s13423-016-1221-4.
- Pastore, Massimiliano, and Antonio Calcagnì. 2019. "Measuring Distribution Similarities Between Samples: A Distribution-Free Overlapping Index." Front. Psychol. 10 (May): 1089. https://doi.org/10.3389/fpsyg.2019.01089.
- R Core Team. 2021. "R: A Language and Environment for Statistical Computing." Vienna, Austria: R Foundation for Statistical Computing.
- Rigby, R A, and D M Stasinopoulos. 2005. "Generalized Additive Models for Location, Scale and Shape (with Discussion)." J. R. Stat. Soc. Ser. C Appl. Stat. 54 (3): 507–54. https://doi.org/10.1111/j.1467-9876.2005.00510.x.
- Scherer, Klaus R. 2005. "What Are Emotions? And How Can They Be Measured?" Soc. Sci. Inf. 44 (4): 695-729. https://doi.org/10.1177/0539018405058216.
- Westfall, Jacob, David A Kenny, and Charles M Judd. 2014. "Statistical Power and Optimal Design in Experiments in Which Samples of Participants Respond to Samples of Stimuli." *J. Exp. Psychol. Gen.* 143 (5): 2020–45. https://doi.org/10.1037/xge0000014.