1.1 Grundlagen

1.2 Homomorphie- und Isomorphiesätze

Sind G und G' Gruppen und $\varphi:G\longrightarrow G'$ ein Gruppenhomomorphismus. Dann gilt:

$$G/\operatorname{Kern}(\varphi) \cong \operatorname{Bild}(\varphi)$$

Beispiele 1.1 (a) $G/Z(G) \cong \operatorname{Aut}_i(G)$

Satz 1

Sei G eine Gruppe, $N \subseteq G$ ein Normalteiler und $H \subseteq G$ eine Untergruppe.

(a) Es gilt:

$$H/(H \cap N) \cong HN/N$$

Dabei sei $HN := \{h \cdot n : h \in H, n \in N\}$

(b) Ist $N \subseteq H$ und H ein Normalteiler in G, so gilt:

$$(G/N)/(H/N) \cong G/H$$

1.2.1 Exakte Sequenzen

Definition + Bemerkung 1.2 1. Eine Sequenz

$$1 \longrightarrow G_0 \longrightarrow \cdots \longrightarrow G_{i-1} \xrightarrow{\varphi_i} G_i \xrightarrow{\varphi_{i+1}} G_{i+1} \longrightarrow \cdots \longrightarrow G_n \longrightarrow 1$$

von Gruppenhomomorphismen heißt exakt an der Stelle G_i , wenn

$$\operatorname{Bild}(\varphi_i) = \operatorname{Kern}(\varphi_{i+1})$$

gilt. Die Sequenz heißt exakt, wenn sie an jeder Stelle exakt ist.

2. Eine Sequenz

$$1 \longrightarrow G' \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} G'' \longrightarrow 1$$

von Gruppenhomorphismen heißt kurze Sequenz.

3. Eine kurze Sequenz ist genau dann exakt, wenn die folgenden Bedingungen erfüllt sind:

- a) α ist injektiv (sprich: man kann G' als Untergruppe von G auffassen)
- b) β ist surjektiv
- c) $Bild(\alpha) = Kern(\beta)$

Beispiele 1.3

Ist G eine Gruppe und $N \subseteq G$, so ist die folgende kurze Sequenz exakt:

$$1 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 1$$

Eine kurze exakte Sequenz *spaltet*, wenn es einen Gruppenhomomorphismus $\gamma: G'' \longrightarrow G$ gibt mit $\beta \circ \gamma = \mathrm{id}_{G''}$.

$$1 \longrightarrow G' \stackrel{\alpha}{\longrightarrow} G \quad \stackrel{\beta}{\longrightarrow} \quad G'' \longrightarrow 1$$

In diesem Fall ist γ injektiv, man kann also auch G'' als Untergruppe von G auffassen.

1.3 Kommutatoren

Bemerkung 1.4

Grundlegende Eigenschaften von Kommutatoren.

1. Genau dann ist eine Gruppe G abelsch, wenn $K(G) = \{e\}$.

Bemerkung 1.5

Kommutatoren und Homomorphismen.

Seien G und G' eine Gruppen und $\varphi: G \to G'$ ein Gruppenhomomorphismus.

- (a) $\varphi([a, b]) = [\varphi(a), \varphi(b)].$
- (b) $\varphi(K(G)) \subseteq K(G')$
- (c) Ist φ zudem noch surjektiv, so gilt: $\varphi(K(G)) = K(G') = K(\varphi(G))$.

Beweis:

- (a) $\varphi([a,b]) = \varphi(aba^{-1}b^{-1}) = \varphi(a)\varphi(b)\varphi(a)^{-1}\varphi(b)^{-1} = [\varphi(a), \varphi(b)]$
- (b) Sei $[a, b] \in K(G)$. Dann ist $\varphi([a, b]) = [\varphi(a), \varphi(b)] \in K(G')$
- (c) Sei $[a',b'] \in K(G')$. Da φ surjektiv ist, gibt es $a,b \in G$ mit $\varphi(a)=a'$ und $\varphi(b)=b'$. Dann gilt $[a',b']=[\varphi(a),\varphi(b)]=\varphi([a,b])\in\varphi(K(G))$.

Bemerkung 1.6

Kommutatoren und Normalteiler.

Es sei G eine Gruppe.

- (a) Es sei $N \subseteq G$. Genau dann ist G/N abelsch, wenn $K(G) \subseteq N$.
- (b) $G^{ab} := G/K(G)$ ist eine abelsche Gruppe.

Beweis:

- (a) \Rightarrow Es sei G abelsch. Also: $K(G) = \{e\} \subseteq N$.
 - \Leftarrow Es sei $K(G) \subseteq N$ und $\pi : G \to G/N$ die kanonische Projektion. Da π surjektiv ist, gilt: $\pi(K(G)) = K(\pi(G)) = K(G/N)$. Da $K(G) \subseteq N$, ist $K(G/N) = \{N\}$. Also ist G/N abelsch.
- (b) Blatt 3, Aufgabe 1, a).
- (c) Blatt 3, Aufgabe 1, b).

Beispiele 1.7 1. Symmetrische Gruppe:

- a) $K(S_1) =$
- b) $K(S_n) = A_n$ (für $n \ge 2$)
- 2. Alternierende Gruppe:
 - a) $K(A_2) = K(A_3) = {id}$
 - b) $K(A_4) = V_4 = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (kleinsche Vierergruppe)
 - c) $K(A_n) = A_n$ (für $n \ge 5$)
- 3. Diedergruppe.

1.4 Konstruktion von Gruppen

1.4.1 Direktes Produkt

1.4.2 Semidirektes Produkt

Seien H, N Gruppen und $\phi: H \to \operatorname{Aut}(N)$ ein Gruppenhomomorphismus. Auf der Menge $G := N \times H$ definiert man eine Verknüpfung \star wie folgt:

$$(n_1, h_1) \star (n_2, h_2) := (n_1 \phi(h_1)(n_2), h_1 h_2),$$

wobei jeweils die Verknüpfungen in N bzw. H verwendet werden.

 (G,\star) heißt semidirektes Produkt von H mit N.

G ist eine Gruppe, die $N \times \{e_H\}$ als Normalteiler und $\{e_N\} \times H$ als Untergruppe enthählt.

Bemerkung 1.8

(Splitting Lemma)

Sei

$$1 \longrightarrow G' \stackrel{\alpha}{\longrightarrow} G \stackrel{\beta}{\longrightarrow} G'' \longrightarrow 1$$

eine kurze exakte Sequenz, die spaltet. Das bedeutet, dass es einen Gruppenhomomorphismus $\gamma:G''\to G$ gibt mit $\beta\circ\gamma=\mathrm{id}_{G''}$

G ist dann bezüglich einer geeigneten Abbildung $\varphi: G'' \longrightarrow \operatorname{Aut}(G')$ ein semidirektes Produkt von G' und G''.

Setze

$$\varphi(h)(n) := \alpha^{-1}(\gamma(h)\alpha(n)\gamma(h^{-1}))$$

Da α und γ injektiv sind, kann man sich G' ung G'' als Untergruppe von G vorstellen. In diesem Fall ergibt sich

$$\varphi(h)(n) := hnh^{-1}$$

1.5 Eigenschaften von Gruppen

1.5.1 Zyklische Gruppen

Definition + Bemerkung 1.9 (a) G heißt zyklisch, wenn es ein $g \in G$ gibt mit $G = \langle g \rangle$.

1.5.2 Abelsche Gruppen

Definition + Bemerkung 1.10 (a) A heißt **freie abelsche Gruppe** mit Basis X, wenn jedes $a \in A$ eine eindeutige Darstellung $a = \sum_{x \in X} n_x x$ hat mit $n_x \in \mathbb{Z}$, $n_x \neq 0$ nur für endlich viele $x \in X$. Ist in dieser Situation |X| = n, so heißt n der **Rang** von A. A ist isomorph zu $\mathbb{Z}^X := \bigoplus_{x \in X} \mathbb{Z}$

(b) (UAE der freien abelschen Gruppe) Zu jeder abelschen Gruppe A und jeder Abbildung $f: X \to A$ gibt es genau einen Homomorphismus $\varphi: \mathbb{Z}^X \to A$ mit $\forall x \in X: \varphi(x) = f(x)$

Beispiele 1.11

X endlich, $X = \{x_1, \dots, x_n\}$. Dann ist $\mathbb{Z}^X \cong \mathbb{Z}^n$

 \mathbb{Z}^n ist "so etwas ähnliches" wie ein Vektorraum ("freier Modul"). Insbesondere lassen sich die Gruppenhomomorphismen $\mathbb{Z}^n \to \mathbb{Z}^m$ durch eine $m \times n$ -Matrix mit Einträgen in \mathbb{Z} beschreiben.

Satz 2 (Elementarteilersatz)

Sei H eine Untergruppe von \mathbb{Z}^n $(n \in \mathbb{N} \setminus \{0\})$. Dann gibt es eine Basis $\{x_1, \ldots, x_n\}$ von \mathbb{Z}^n , ein $r \in \mathbb{N}$ mit $0 \le r \le n$ und $a_1, \ldots, a_r \in \mathbb{N} \setminus \{0\}$ mit a_i teilt a_{i+1} fr $i = 1, \ldots, r-1$, so daß a_1x_1, \ldots, a_rx_r eine Basis von H ist. Insbesondere ist H ebenfalls eine freie abelsche Gruppe.

Klassifizierung:

Satz 3 (Struktursatz für endlich erzeugte abelsche Gruppen) Sei A endlich erzeugte abelsche Gruppe.

$$\Rightarrow A \cong \mathbb{Z}^r \oplus \bigoplus_{i=1}^m \mathbb{Z}/a_i\mathbb{Z}$$

mit $a_1, \ldots, a_m \in \mathbb{N}$, $\forall i : a_i \geq 2$, a_i teilt a_{i+1} für $i = 1, \ldots, m-1$. Dabei sind r, m und die a_i eindeutig bestimmt.

Abgeschlossenheit:

- 1. Untergruppen abelscher Gruppen sind abelsch.
- 2. Faktorgruppen abelscher Gruppen sind abelsch.
- 3. Produkte abelscher Gruppen sind abelsch.
- 4. Direkte Summen abelscher Gruppen sind abelsch.
- 5. Seien G, G' Gruppen, $\varphi: G \longrightarrow G'$ ein Gruppenhomomorphismus. Ist G abelsch, so ist $\varphi(G)$ auch abelsch.

Beispiele für abelsche Gruppen:

- zyklische Gruppen
- Gruppen der Ordnung p oder p^2
- Aut(G) ist zyklisch
- G = H/[H, H]
- Für alle $x \in G$ gilt $x^2 = e$.

Beispiele für nicht abelsche Gruppen:

- \bullet D_n
- S_n (für $n \ge 3$)
- A_n (für $n \ge 4$)

1.5.3 Einfache Gruppen

Beispiele 1.12 (a) Es gibt keine einfachen Gruppen der Ordnung 21.

Beweis: Die Sätze von Sylow liefern, dass es nur eine 7-Sylowgruppe gibt. Diese muss also auch Normalteiler sein.

(b) Es gibt keine einfachen Gruppen der Ordnung 30.

Beweis: Es sei G eine Gruppe der Ordnung 30. Die Sätze von Sylow liefern $s_3 \in \{1, 10\}$ und $s_5 \in \{1, 6\}$. Falls $s_3 = 1$ oder $s_5 = 1$ gilt, so gibt es nach dem vorigen Argument einen Normalteiler in G. Es gelte also im folgenden $s_3 = 10$ und $s_5 = 6$. Die 5-Sylowgruppen sind zyklisch und bis auf das Neutralelement disjunkt. In den 5-Sylowgruppen liegen also $6 \cdot 4 = 25$ Elemente $(\neq e_G)$. Die 3-Sylowgruppen sind zyklisch und bis auf das Neutralelement diskunkt. In den 3-Sylowgruppen liegen also $10 \cdot 2 = 20$ Elemente $(\neq e_G)$. Je eine 3-Sylowgruppe und eine 5-Sylowgruppe schneiden sich trivial. Es gibt also mindestens 25 + 20 + 1 = 46 Elemente in G. Widerspruch.

(c) Es gibt keine einfachen Gruppen der Ordnung 36.

Beweis: Es sei G eine Gruppe der Ordnung 36. Die Sätze von Sylow liefern $s_2 \in \{1,3,9\}$ und $s_3 \in \{1,4\}$. Ohne Einschränkung gelte $s_3 = 4$. Je 2 3-Sylowgruppen sind konjugiert, deshalb operiert G auf der Menge M der 3-Sylowgruppen durch Konjugation (nichttrivial). Nenne diese 3-Sylowgruppen $M = \{1,2,3,4\}$. Man erhählt durch diese Operation einen Gruppenhomomorphismus $\varphi: G \to \operatorname{Perm}(M) = S_4$. φ ist nicht injektiv, da |G| = 36, $|S_4| = 24$. φ ist nicht der triviale Homomorphismus, da G nichttrivial auf M operiert. Kern (φ) ist also ein echter, nichttrivialer Normalteiler in G.

(d) Es gibt keine einfachen Gruppen der Ordnung 300.

Beweis: Es sei G eine Gruppe der Ordnung 300. Die Sätze von Sylow liefern $s_2 \in \{1,3,5,15,25,75\}$, $s_3 \in \{1,4,10,25,100\}$ und $s_5 \in \{1,6\}$. Ohne Einschränkung gelte $s_5 = 6$. Je 2 5-Sylowgruppen sind konjugiert, deshalb operiert G auf der Menge M der 5-Sylowgruppen durch Konjugation (nichttrivial). Nenne diese 5-Sylowgruppen $M = \{1,2,3,4,5,6\}$. Man erhählt durch diese Operation einen Gruppenhomomorphismus $\varphi: G \to \operatorname{Perm}(M) = S_6$. |G| = 300 ist kein Teiler von $|S_6| = 720$, also ist φ nicht injektiv. φ ist nicht der triviale Homomorphismus, da G nichttrivial auf G0 operiert. G1 ist also ein echter, nichttrivialer Normalteiler in G2.

(e) Gruppen der Ordnung 2m (m ungerade) enthalten einen Normalteiler der Ordnung m. Hinweis: Satz von Cayley. Zeige, dass eine Untergruppe der S_n , die eine ungerade Permutation enthält, einen Normalteiler von Index 2 besitzt (Isomorphiesätze).

Beweis: Es sei U eine Untergruppe der S_n , $\sigma \in U \setminus A_n$ (d.h. σ ungerade). A_n ist ein Normalteiler in S_n , U ist eine Untergruppe in S_n , also ist nach den Isomorphiesätzen UA_n eine Untergruppe von S_n und $U \cap A_n$ ein Normalteiler in U. Weiter gilt: $U/(U \cap A_n) \cong UA_n/A_n$. Andererseits ist $UA_n \lneq A_n \leq S_n$. Da $(S_n : A_n) = 2$ muss also $UA_n = S_n$ gelten. Einsetzen: $U/(U \cap A_n) \cong S_n/A_n$. Insbesondere: $(U : (U \cap A_n)) = (S_n : A_n) = 2$

Zu der eigentlichen Aussage: Sei G eine Gruppe der Ordnung 2m, m ungerade. Nach dem Satz von Cayley ist $\tau:G\to \operatorname{Perm}(G),\ g\mapsto \tau_g$ ein injektiver Homomorphismus $(\tau_g\colon \operatorname{Konjugation\ mit\ }g).$ Nummeriert man die Elemente von G durch, so kann man den Homomorphismus auch als $\tau:G\to S_{2m}$ auffassen. Da τ injektiv ist, ist $U:=\tau(G)$ eine Untergruppe von S_n und $U\cong G$. In G gibt es ein Element der Ordnung 2 (Sylow), in U also auch. Es sei also $\sigma\in U$ mit $\operatorname{ord}(\sigma)=2.$

to be continued

1.5.4 Auflösbare Gruppen

Definition + Bemerkung 1.13 (a) Eine Gruppe heißt *auflösbar*, wenn sie eine Normalreihe mit abelschen Faktorgruppen besitzt.

- (b) Eine endliche Gruppe ist genau dann auflösbar, wenn die Faktoren in ihrer Kompositionsreihe zyklisch von Primzahlordnung sind.
- (c) Sei

$$1 \longrightarrow G' \longrightarrow G \longrightarrow G'' \longrightarrow 1$$

eine kurze exakte Sequenz von Gruppen. Dann gilt:

G ist auflösbar $\Leftrightarrow G'$ und G'' sind auflösbar.

Ist N ein Normalteiler in G, so gilt also:

G ist auflösbar $\Leftrightarrow N$ und G/N sind auflösbar.

1.5.5 Freie Gruppen

1.6 Monographien von Gruppen

1.6.1 Symmetrische Gruppe

Eigenschaften:

- Anzahl der Elemente: $|S_n| = n!$
- Im allgemeinen *nicht* abelsch.

1.6.2 Alternierende Gruppe

Eigenschaften:

- Anzahl der Elemente: $|A_n| = n!/2$
- Im allgemeinen *nicht* abelsch.

1.6.3 Diedergruppe

- Definition: $D_n := \langle D, S \rangle$, $\operatorname{ord}(D) = n$, $\operatorname{ord}(S) = n$
- Anzahl der Elemente: $|D_n| = 2n$
- Im allgemeinen *nicht* abelsch.

Charakterisierende Eigenschaft:

- Es gibt ein Element S der Ordnung 2.
- Es gibt ein Element D der Ordnung n.
- $SD = D^{-1}S$

Rechenregeln in der Diedergruppe

- 1. $D^n = e$
- 2. $S^2 = e$
- 3. $(D^i S)^2 = e$
- 4. $SD = D^{-1}S$
- 5. $SD^{i} = D^{n-i}S$

Weitere Eigenschaften:

1. Zentralisator: $\langle D \rangle$

Beispiele 1.14 • D_6 , $N := < D^3 > \le D_6$

• D_{12} , $N := < D^3 > \le D_{12}$ D_{12}/N ist nicht abelsch.

1.7 Bestimmung aller Isomorphieklassen

Einige Kandidaten für Untergruppen:

- Zyklische Gruppen
- Abelsche Gruppen
- Diedergruppe D_n
- Alternierende Gruppe A_n
- Kleinsche Vierergruppe V₄
- Quaternionengruppe

Bestimmen Sie alle Isomorphieklassen von Gruppen der Ordnung n.

- Satz von Lagrange
- Sätze von Sylow
- abelsch oder nicht abelsch? (Klassifizierung endlicher abelscher Gruppen)

Spezialfälle

- n = p Primzahl (nur die zyklische Gruppe)
- $n = p^2$, p Primzahl (\mathbb{Z}_{p^2} oder $\mathbb{Z}_p \times \mathbb{Z}_p$)
- n = 2p, $p \ge 3$ Primzahl (nur Diedergruppe und zyklische Gruppe)
- n = pq, p, q Primzahlen, p > q, q teilt nicht p 1: \mathbb{Z}_{pq}

Seien U_1, \ldots, U_k k paarweise (bis auf das Neutralelement) disjunkte Untergruppen von G. Dann gilt: xy = yx, für $\in G_i$, $y \in G_i$

Wenn alle Sylowgruppen normal in einer Gruppe G sind, so ist G isomorph zum direkten Produkt dieser Sylowgruppen.