Chapitre 3 Méthodes d'accès au support

Objectifs

- Etudier les fonctionnalités de la sous couche MAC
- Etudier les principes qui caractérisent une transmission dans un les LANs et WLANs
- Catégoriser les techniques d'accès aux médium
- Etudier différents protocoles d'accès au médium pour les LANs et
 WLANs

Couche Liaison

- Rôle
 - Contrôler le lien logique
 - LLC: Link Layer Control
 - Accéder au medium
 - MAC : Medium Access Control

Délimitation de trames Contrôle d'erreurs Contrôle de flux

Contrôle d'accès au support Emission/réception trame LLC
MAC

Application

Transport

Réseau

Liaison

Physique

Problématiques

Toutes les stations reçoivent le signal (message)

Possibilité de collision ou de bruit sur le support

Problématiques

Seul le destinataire reçoit le message

Etoile avec Switch

Ad hoc (infrastructure)

Point d'accès (AP)

Problématiques

- Un support unique partagé par l'ensemble des stations raccordées au support
- Les stations ne peuvent pas utiliser simultanément le support
- Nécessité d'arbitrage
- Une méthode d'accès, décrit les règles qui régissent chaque matériel pour:
 - L'accès au support de transmission
 - La transmission sur le support de transmission
 - La libération du support de transmission

Classification des méthodes d'accès

- Accès statique
 - La bande passante est répartie de façon invariante dans le temps entre les stations
- Accès dynamique
 - La bande passante est allouée à la demande
 - La méthode d'accès dépend de la topologie logique qui elle est liée à la topologie physique et décrit comment circulent les messages entre les composants

Classification des méthodes d'accès

Méthodes d'accès pour les LANs et WLANs

On distingue principalement trois techniques pour les LANs:

La contention

 Chaque station émet quand elle en a besoin après écoute du canal (Carrier Sense), qui doit être disponible

Le polling

 Un équipement du réseau (maître) est désigné comme administrateur du canal, il interroge dans un ordre prédéterminé chaque noeud

Le jeton passant

• Une petite trame jeton (token) circule est répétée de poste en poste jusqu'à ce qu'une machine qui désire émettre le conserve pendant un temps fixé.

Accès déterministe: LANs & WLANs

- Application
 - Topologie en étoile
 - Topologie en bus
 - Topologie en anneau
 - Topologie sans fil ad hoc avec infrastructure

Accès déterministe: LANs & WLANs

- Application
 - Utilisé dans Les LANs et WLANs de petite taille
 - Topologie en bus
 - Topologie en anneau
 - Topologie en étoile
 - Topologie sans fil ad hoc avec infrastructure

Interrogation ou Polling

Principes

Temps

- Avantages
 - simple
 - équitable
- Inconvénients
 - Manque d'efficacité (overhead)
 - Approche centralisée
 - fiabilité du primaire
 - goulot d'étranglement du primaire

Interrogation ou Polling

Questions?

- Comment donner le droit de transmettre?
 À tour de rôle (scrutation périodique)
 Selon un ordre connu par le maître
- Comment le secondaire rend t-il la main? Implicitement : à la fin de la transmission de sa trame Explicitement : par une trame spéciale envoyée au maître
- Comment le maître est-il choisi (élu) ?
 De manière statique (par re-configuration du réseau)
 Dynamiquement (par une procédure d'élection)

Deux mécanismes

NB: le message à transmettre a une @source et une @destination, différentes de celles du jeton qui précisent la source et la destination du jeton

Jeton

Principe général

- Un jeton passe de station en station
- La station qui détient le jeton peut transmettre ses trames
- La station qui finit de transmettre ses données libère le jeton
- Types de jeton
 - > Simple: transmettre ce que l'on veut tant qu'on a le jeton
 - ▶ Temporisé : transmettre pendant un laps de temps connu à l'avance
 - A priorité liée à la nature de la trame: transmettre des trames avec une priorité supérieure ou égale à celle inscrite sur le jeton reçu

Jeton

Exemple: algorithme du jeton temporisé

Y. FAYE

- Le jeton circule sur l'anneau et donne, selon son état(libre ou occupé) le droit d'émettre à la station qui le détient
- Une station qui veut émettre
 - Attend un jeton marqué libre:
 - change l'état du jeton (occupé)
 - Emet son message avec les adresses source, destination et un état de jeton occupé
 - Une station qui reçoit un message avec un état du jeton (occupé)
 - Consulte l'adresse de destination,
 - Si c'est la sienne, elle copie la trame et fait suivre la trame
 - Consulte l'adresse source
 - Si c'est la sienne, elle retire la trame et émet un jeton (libre)

- Mode de transmission du jeton
 - Se fait toujours vers l'équipement suivant, sans qu'il y ait besoin de le désigner explicitement: le jeton est non adressé.

A veut émettre à B, il attend d'avoir le jeton

B reçoit la trame, la copie, la laisse continuer sa rotation

A a le jeton, il envoie son message

A reçoit sa trame, et libère le jeton

Jeton sur bus

- Un anneau virtuel est créé: la dernière station du bus est le successeur de la première
- Seule la station en possession du jeton peut émettre
 - Si elle n'a rien à émettre, elle envoie le jeton à son successeur logique jeton adressé
 - Si elle a de l'information à émettre, elle envoie puis passe le jeton à son successeur

- Mode de transmission du jeton
 - Se fait toujours vers le successeur en précisant explicitement dans le jeton l'adresse successeur en plus l'adresse source: le jeton adressé.

Jeton

Avantages/Inconvénients

- Avantages
 - chaque station est assurée de pouvoir émettre avant un délai borné
- Inconvénients
 - Famine: une station qui fonctionne mal peut monopoliser le jeton
 - **Overhead du jeton:** on consomme plus de la bande passsante pour le passage du jeton que pour transmettre des données)

Accès aléatoire: LANs & WLANs

Application

Topologie en bus

Topologie sans fil ad hoc avec infrastructure

Topologie sans fil ad hoc sans infrastructure

- Transmission sur un canal sans fil
 - Antenne omnidirectionnelle

Antenne unidirectionnelle

Topologies

Point à point

Point multi-points

Portée de transmission

Zone où une transmission est reçue avec succès s'il n'y a pas d'interférence

La zone de couverture dépend de la puissance et de l'atténuation du signal

- Portée de détection de transmission
 - Zone où une transmission est détectée

La zone de détection dépend de la sensibilité de l'antenne

Zone d'interférence

Zone où une transmission est détectée

Zone d'interférence entre A et B

> La zone d'interférence dépend de la zone de détection, qui dépend de la sensibilité de l'antenne

La station cachée

Une station dans la zone d'interférence d'un émetteur peut être une station cachée vis-à-vis de cet émetteur: Exemple A est caché pour C

E entend A, E entend C et peut recevoir de C: il ne va pas transmettre au même moment qu'A et/ou C

A transmet à B, C n'entend pas A et transmet à B au même moment: interférence sur B

La station exposée

- Une station dans la zone de détection de porteuse d'un émetteur et hors de la zone d'interférence d'un récepteur
- Exemple
 - C est dans la zone de détection de l'émetteur A
 - Hors de la zone d'interférence de B
 - C est exposé à A
 - A transmet à B, C entend A et conclut qu'elle ne peut pas transmettre à D, or s'il transmettait, cela créerait des interférences seulement dans la zone d'interférence entre C et A, et B ne serait pas gênée.

Performance

- MAC définit deux méthodes d'accès différentes,
 - Distributed Coordination Function (DCF) appelé aussi mode d'accès à compétition,
 - Transport de données asynchrones
 - Les stations ont la même chance pour l'accès au support
 - Topologies ad hoc avec et sans infrastructure
 - Point Coordination Function (PCF) appelé mode d'accès contrôlé ou Polling
 - Pour les applications temps réels (vidéos, voix etc..)
 - Une station émet que si elle est autorisée
 - Une station reçoit que si elle est sélectionnée
 - Topologies avec infrastructure

Contexte

- Testé dans les années 70 sur un réseau reliant huit îles hawaïennes afin d'attribuer un canal à accès multiple à un ensemble de stations.
- La plus ancienne des Méthodes CSMA/xx
- Deux variantes :
 - ALOHA pure
 - ALOHA à tranches (Slotted ALOHA)

Aloha pure

Principe

- Une station émet dés lors qu'elle le souhaite (sans aucune précaution)
- Après transmission, la station attend un Ack
- Si l'Ack ne lui parvient pas au bout d'un délai fixé (probabilité de collision), elle retransmet sa trame au terme d'un délai aléatoire

Slotted ALOHA

Principe

- Améliore pure Aloha en découpant le temps en slots
- Une station émet dés lors qu'elle le souhaite, uniquement au début d'un slot

CSMA: Carrier Sense Multiple Acces

Principe

Améliore pure Aloha, ne pas transmettre si le support A est déjà occupé.

Exemple: ne pas couper la parole aux autres

Une écoute du canal avant transmission

CSMA: Variantes

 Selon le type de décision prise par la station émettrice lorsqu'elle détecte le canal occupé

CSMA persistant ou 1-persistant

- Ecoute persistant (continue) du canal,
- Emettre immédiatement (probabilité=1) dés qu'il devient libre.
 - En cas de collision, attendre un délai aléatoire avant retransmission

CSMA non persistant

- Ecoute du canal et transmettre s'il est libre
- S'il est occupé, attendre une durée aléatoire avant d'écouter à nouveau

CSMA p-persistant

- Ecoute persistant du canal, puis transmettre avec une probabilité p dés qu'il devient libre,
- S'il est occupé, attendre le début du slot prochain et transmettre avec une probabilité p

CSMA: Collisi Detection

- Applicable aux LANs (Topologie Bus)
- Standard IEEE 802.3
- Principe: reprend CSMA
- Si le canal est libre: transmettre immédiatement (1-persistant) tout en continuant d'écouter le canal pendant sa transmission (™+détection des collisions)
 - En cas de collision, envoyer des données de bourrage (pour rendre la collision détectable par toutes les stations impliquées) et arrêter la transmission.
 - Chaque station impliquée déroule un algorithme de reprise de transmission
- > Si le canal est occupé: attendre qu'il redevienne libre
- Détection de collision difficile dans les WLAN

CSMA: Carrier Sense Multiple Acces

Backoff

CSMA utilise un délai à observer avant retransmission: Backoff=période calculée de manière aléatoire

Applicable aux WLANs

- CSMA/CD inadapté pour les WLAN
 - Ne permet pas de transmettre et d'écouter en même temps (détection de collision)
 - Les liaisons sans fil ne sont pas full duplex
 - La puissance d'émission est différente de celle de réception
 - Affaiblissement des signaux → (difficile de faire une comparaison pour reconnaitre une collision)
 - Problème en cas de station cachée et de station exposée
- CSMA/CA
 - Accès au support basé sur des temporisateurs
 - Un système d'acquittement
 - Une gestion de reprise sur collision par des timers

- Techniques et types
- Les Temporisateurs
 - Pour délimiter les trames: Inter Frame Space (IFS)
 - Plus l'IFS est court, plus l'accès est prioritaire
 - SIFS (Short IFS): utilisé pour la transmission d'un même dialogue (données+Ack)
 - PIFS (PCF IFS): utilisé par le point d'accès en mode PCF (lui permet un accès prioritaire sur les stations).
 - DIFS (DCF IFS): temporisateur inter trame en mode DCF
 - SIFS < PIFS < DIFS
- Méthodes CSMA/CA
 - CSMA/CA basé sur les acquittements
 - CSMA/CA basé sur la réservation

CSMA/CA sans réservation

CSMA/CA avec réservation

