```
In [1]: #Codes Provided in the Class for Lab-4
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          from unicodedata import normalize
In [2]: | import os, ssl
          if (not os.environ.get('PYTHONHTTPSVERIFY', '') and getattr(ssl, ' create unverified)
               ssl. create default https context = ssl. create unverified context
In [3]: table MN = pd.read html('https://en.wikipedia.org/wiki/Minnesota')
          table MN
Out[3]:
                                                                 Minnesota
          [
           0
                                                                      State
           1
                                                      State of Minnesota
                .mw-parser-output .ib-settlement-cols{text-ali...
           2
           3
                Nickname(s): Land of 10,000 Lakes; North Star S...
           4
                Motto(s): L'Étoile du Nord (French: The Star o...
           5
                                             Anthem: "Hail! Minnesota"
           6
                Map of the United States with Minnesota highli...
           7
                                                                   Country
           8
                                                        Before statehood
           9
                                                  Admitted to the Union
           10
                                                                   Capital
           11
                                                             Largest city
           12
                                        Largest metro and urban areas
                                                                Government
           13
           14
                                                                • Governor
           15
                                                  · Lieutenant Governor
           16
                                                              Legislature
           17
                                                            · Upper house
In [4]:
          print(f'Total tables: {len(table MN)}')
          Total tables: 29
         table MN[0]
In [5]:
Out[5]:
                                             Minnesota
                                                                                    Minnesota.1
            0
                                                 State
                                                                                          State
            1
                                       State of Minnesota
                                                                                State of Minnesota
            2
                  .mw-parser-output .ib-settlement-cols{text-ali...
                                                          .mw-parser-output .ib-settlement-cols{text-ali...
            3
              Nickname(s): Land of 10,000 Lakes; North Star S... Nickname(s): Land of 10,000 Lakes; North Star S...
            4
                 Motto(s): L'Étoile du Nord (French: The Star o...
                                                          Motto(s): L'Étoile du Nord (French: The Star o...
            5
                                 Anthem: "Hail! Minnesota"
                                                                          Anthem: "Hail! Minnesota"
            6
                Map of the United States with Minnesota highli...
                                                         Map of the United States with Minnesota highli...
            7
                                                Country
                                                                                    United States
            8
                                        Before statehood
                                                                                Minnesota Territory
                                     Admitted to the Union
                                                                May 11, 1858 (32nd State in the Union)
            9
           10
                                                Capital
                                                                                      Saint Paul
           11
                                            Largest city
                                                                                     Minneapolis
```

	Minnesota	Minnesota.1
12	Largest metro and urban areas	Minneapolis–Saint Paul
13	Government	Government
14	• Governor	Tim Walz (DFL)
15	Lieutenant Governor	Peggy Flanagan (DFL)
16	Legislature	Minnesota Legislature
17	• Upper house	Senate
18	• Lower house	House of Representatives
19	Judiciary	Minnesota Supreme Court
20	U.S. senators	Amy Klobuchar (DFL)Tina Smith (DFL)
21	U.S. House delegation	4 Democrats3 Republicans1 vacancy (list)
22	Area	Area
23	• Total	86,935.83 sq mi (225,163 km2)
24	• Land	79,626.74 sq mi (206,232 km2)
25	• Water	7,309.09 sq mi (18,930 km2) 8.40%
26	• Rank	12th
27	Dimensions	Dimensions
28	• Length	about 400 mi (640 km)
29	• Width	200-350 mi (320-560 km)
30	Elevation	1,200 ft (370 m)
31	Highest elevation (Eagle Mountain[1][2])	2,301 ft (701 m)
32	Lowest elevation (Lake Superior[1][2][3])	602 ft (183 m)
33	Population (2021)	Population (2021)
34	• Total	5,707,390[4]
35	• Rank	22nd
36	• Density	68.9/sq mi (26.6/km2)
37	• Rank	30th (2015 estimate)
38	Median household income	\$74,593[5]
39	• Income rank	13th
40	Demonym(s)	Minnesotan
41	Language	Language
42	Official language	None
43	• Spoken language	English 88.9% Spanish Somali Hmong[6]
44	Time zone	UTC-06:00 (Central)
45	• Summer (DST)	UTC-05:00 (CDT)
46	USPS abbreviation	MN
47	ISO 3166 code	US-MN
48	Traditional abbreviation	Minn.
49	Latitude	43°30′ N to 49°23′ N
50	Longitude	89°29′ W to 97°14′ W

2008

2008

2006

2006

2004

2002

2002

2000

2000

11

12

13

15

17

18

19

President 43.8%

President 47.6%

Governor 44.4%

Senator 43.3%

42.0%

46.7%

37.9%

49.5%

45.5%

Senator

Governor

Senator

Senator

President

54.1%

42.0%

45.7%

58.1%

51.1%

33.5%

47.3%

47.9%

48.8%

2.1%

16.0%

7.6%

4.0%

1.3%

22.1%

1.0%

6.6%

7.9%

```
In [6]: table_MN[13]
Out[6]:
                                      0
                                                                                     1
            0
                                   Parks
                                                                             Voyageurs
            1
                              Monuments
                                                                Grand Portage Pipestone
            2
                                            Mississippi National River and Recreation Area...
                                  Rivers
            3
                             Scenic Trails
                                                                      North Country Trail
                          WildlifeRefuges
                                          Agassiz Big Stone Crane Meadows Glacial Ridge ...
            4
            5
               WetlandManagementDistricts
                                              Big Stone Detroit Lakes Fergus Falls Litchfiel...
                                                                      Chippewa Superior
            7
                        NaturalLandmarks
                                         Ancient River Warren Channel Cedar Creek Ecosy...
            8
                              Wilderness
                                             Agassiz Boundary Waters Canoe Area Tamarac
          table MN = pd.read html('https://en.wikipedia.org/wiki/Minnesota', match='Election
          len(table MN)
In [8]:
Out[8]: 1
In [9]:
          table_MN[0]
Out[9]:
                         Office
                                 GOP
                                         DFL Others
                Year
                      President 45.3%
               2020
                                       52.4%
                                                2.3%
                2020
                                43.5%
                                       48.8%
                                                7.7%
                       Senator
                                42.4%
                                                3.7%
             2
                2018
                      Governor
                                       53.9%
                2018
                                36.2%
             3
                       Senator
                                       60.3%
                                                3.4%
                2018
                                42.4%
                       Senator
                                       53.0%
                                                4.6%
                2016
                      President 44.9%
                                       46.4%
                                                8.6%
                2014
                                44.5%
                                       50.1%
                                                5.4%
                      Governor
                2014
                       Senator
                                42.9%
                                       53.2%
                                                3.9%
                2012 President 45.1% 52.8%
                                                2.1%
             9
                2012
                       Senator
                                30.6%
                                       65.3%
                                                4.1%
                2010
                      Governor
                               43.2%
                                       43.7%
                                                13.1%
```

	Year	Office	GOP	DFL	Others
20	1998	Governor	34.3%	28.1%	37.6%
21	1996	President	35.0% 51.1%		13.9%
22	1996	Senator	41.3% 50.3%		8.4%
23	1994	Governor	63.3%	34.1%	2.6%
^4	1004	0	40 40/	4 4 4 0 /	0 00/

In [10]: df=table_MN[0]

Out[10]:

	Year	Office	GOP	DFL	Others
0	2020	President	45.3%	52.4%	2.3%
1	2020	Senator	43.5%	48.8%	7.7%
2	2018	Governor	42.4%	53.9%	3.7%
3	2018	Senator	36.2%	60.3%	3.4%
4	2018	Senator	42.4%	53.0%	4.6%
5	2016	President	44.9%	46.4%	8.6%
6	2014	Governor	44.5%	50.1%	5.4%
7	2014	Senator	42.9%	53.2%	3.9%
8	2012	President	45.1%	52.8%	2.1%
9	9 2012 Senator		30.6%	65.3%	4.1%
10	2010 Governor		43.2%	43.7%	13.1%
11	2008	2008 President		54.1%	2.1%
12	2008	Senator	42.0%	42.0%	16.0%
13	2006	Governor	46.7%	45.7%	7.6%
14	2006	Senator	37.9%	58.1%	4.0%
15	2004	President	47.6% 51.1%		1.3%
16	2002	Governor	44.4%	33.5%	22.1%
17	2002	Senator	49.5%	47.3%	1.0%
18	2000	President	45.5%	47.9%	6.6%
19	2000	Senator	43.3%	48.8%	7.9%
20	1998	Governor	34.3%	28.1%	37.6%
21	1996	President	35.0%	51.1%	13.9%
22	1996	Senator	41.3%	50.3%	8.4%
23	1994	Governor	63.3%	34.1%	2.6%
24	1994	Senator	49.1%	44.1%	6.8%
25	1992	President	31.9%	43.5%	24.6%

```
In [11]:
```

```
In [12]: #changing value from integer to float, first replace the integer with nothing
df['GOP'].replace({'%':''}, regex=True).astype('float')
```

Out[12]:

0	45.3
1	43.5
2	42.4
3	36.2
4	42.4
5	44.9
6	44.5
7	42.9
8	45.1
9	30.6
10	43.2
11	43.8
12	42.0
13	46.7
14	37.9
15	47.6
16	44.4
17	49.5
18	45.5
19	43.3
20	34.3
21	35.0
22	41.3
23	63.3

In [13]:

Out[13]:

	Year	Office	GOP	DFL	Others
0	2020	President	45.3%	52.4%	2.3%
1	2020	Senator	43.5%	48.8%	7.7%
2	2018	Governor	42.4%	53.9%	3.7%
3	2018	Senator	36.2%	60.3%	3.4%
4	2018	Senator	42.4%	53.0%	4.6%
5	2016	President	44.9%	46.4%	8.6%
6	2014	Governor	44.5%	50.1%	5.4%
7	2014	Senator	42.9%	53.2%	3.9%
8	2012	President	45.1%	52.8%	2.1%
9	2012	Senator	30.6%	65.3%	4.1%
10	2010	Governor	43.2%	43.7%	13.1%
11	2008	President	43.8%	54.1%	2.1%
12	2008	Senator	42.0%	42.0%	16.0%
13	2006	Governor	46.7%	45.7%	7.6%
14	2006	Senator	37.9%	58.1%	4.0%
15	2004	President	47.6%	51.1%	1.3%
16	2002	Governor	44.4%	33.5%	22.1%
17	2002	Senator	49.5%	47.3%	1.0%
18	2000	President	45.5%	47.9%	6.6%
19	2000	Senator	43.3%	48.8%	7.9%
20	1998	Governor	34.3%	28.1%	37.6%
21	1996	President	35.0%	51.1%	13.9%

```
        Year
        Office
        GOP
        DFL
        Others

        22
        1996
        Senator
        41.3%
        50.3%
        8.4%

        23
        1994
        Governor
        63.3%
        34.1%
        2.6%

        24
        1994
        Senator
        49.1%
        44.1%
        6.8%
```

In [14]: df['GOP']=df['GOP'].replace({'%':''}, regex=True)

In [15]:

Out[15]:

	Year	Office	GOP	DFL	Others
0	2020	President	45.3	52.4%	2.3%
1	2020	Senator	43.5	48.8%	7.7%
2	2018	Governor	42.4	53.9%	3.7%
3	2018	Senator	36.2	60.3%	3.4%
4	2018	Senator	42.4	53.0%	4.6%
5	2016	President	44.9	46.4%	8.6%
6	2014	Governor	44.5	50.1%	5.4%
7	2014	Senator	42.9	53.2%	3.9%
8	2012	President	45.1	52.8%	2.1%
9	2012	Senator	30.6	65.3%	4.1%
10	2010	Governor	43.2	43.7%	13.1%
11	2008	President	43.8	54.1%	2.1%
12	2008	Senator	42.0	42.0%	16.0%
13	2006	Governor	46.7	45.7%	7.6%
14	2006	Senator	37.9 58.1%		4.0%
15	2004	President	47.6	51.1%	1.3%
16	2002	Governor	44.4	33.5%	22.1%
17	2002	Senator	49.5	47.3%	1.0%
18	2000	President	45.5	47.9%	6.6%
19	2000	Senator	43.3	48.8%	7.9%
20	1998	Governor	34.3	28.1%	37.6%
21	1996	President	35.0	51.1%	13.9%
22	1996	Senator	41.3	50.3%	8.4%
23	1994	Governor	63.3	34.1%	2.6%
24	1994	Senator	49.1	44.1%	6.8%
25	1992	President	31.9	43.5%	24.6%

```
In [16]: df['GOP']=df['GOP'].astype('float')
```

In [17]:

Out[17]:

	Year	Office	GOP	DFL	Others	
0	2020	President	45.3	52.4%	2.3%	

```
Year
           Office GOP
                         DFL Others
                                7.7%
 1 2020
                  43.5 48.8%
          Senator
 2 2018 Governor
                  42.4 53.9%
                                3.7%
 3
   2018
          Senator
                  36.2 60.3%
                                3.4%
 4 2018
                  42.4 53.0%
                                4.6%
          Senator
                  44.9 46.4%
                                8.6%
 5 2016 President
   2014
                  44.5 50.1%
                                5.4%
         Governor
7 2014
                  42.9 53.2%
                                3.9%
          Senator
   2012 President
                  45.1 52.8%
                                2.1%
   2012
                  30.6 65.3%
                                4.1%
 9
          Senator
10 2010 Governor
                  43.2 43.7%
                               13.1%
11 2008 President
                  43.8 54.1%
                                2.1%
12 2008
                  42.0 42.0%
                               16.0%
          Senator
13 2006 Governor
                  46.7 45.7%
                                7.6%
14 2006
          Senator
                  37.9 58.1%
                                4.0%
   2004 President
                  47.6 51.1%
                                1.3%
15
16 2002
                  44.4 33.5%
                               22.1%
        Governor
17 2002
                  49.5 47.3%
                                1.0%
          Senator
                                6.6%
18 2000 President 45.5 47.9%
                  43.3 48.8%
19 2000
          Senator
                                7.9%
20 1998
         Governor
                  34.3 28.1%
                               37.6%
21 1996
                  35.0 51.1%
                               13.9%
         President
22 1996
          Senator 41.3 50.3%
                                8.4%
                                2.6%
23 1994
        Governor
                  63.3 34.1%
24 1994
          Senator 49.1 44.1%
                                6.8%
```

```
In [18]: df=df.replace({'%':''}, regex=True)
```

In [19]: | df.head()

Out[19]:

	Year	Office	GOP	DFL	Others
0	2020	President	45.3	52.4	2.3
1	2020	Senator	43.5	48.8	7.7
2	2018	Governor	42.4	53.9	3.7
3	2018	Senator	36.2	60.3	3.4
4	2018	Senator	42.4	53.0	4.6

```
In [20]: df[['GOP','DFL','Others']]=df[['GOP','DFL','Others']].apply(pd.to_numeric)
```

In [21]:

Out[21]:

	Year	Office	GOP	DFL	Others	
0	2020	President	45.3	52.4	2.3	

	Year	Office	GOP	DFL	Others
1	2020	Senator	43.5	48.8	7.7
2	2018	Governor	42.4	53.9	3.7
3	2018	Senator	36.2	60.3	3.4
4	2018	Senator	42.4	53.0	4.6
5	2016	President	44.9	46.4	8.6
6	2014	Governor	44.5	50.1	5.4
7	2014	Senator	42.9	53.2	3.9
8	2012	President	45.1	52.8	2.1
9	2012	Senator	30.6	65.3	4.1
10	2010	Governor	43.2	43.7	13.1
11	2008	President	43.8	54.1	2.1
12	2008	Senator	42.0	42.0	16.0
13	2006	Governor	46.7	45.7	7.6
14	2006	Senator	37.9	58.1	4.0
15	2004	President	47.6	51.1	1.3
16	2002	Governor	44.4	33.5	22.1
17	2002	Senator	49.5	47.3	1.0
18	2000	President	45.5	47.9	6.6
19	2000	Senator	43.3	48.8	7.9
20	1998	Governor	34.3	28.1	37.6
21	1996	President	35.0	51.1	13.9
22	1996	Senator	41.3	50.3	8.4
23	1994	Governor	63.3	34.1	2.6
24	1994	Senator	49.1	44.1	6.8

In [22]: table_GDP = pd.read_html('https://en.wikipedia.org/wiki/Economy_of_the_United_State

In [23]: df_GDP=table_GDP[3]
df_GDP

Out[23]:

Year	GDP (in Bil. US\$PPP)	GDP per capita (in US\$ PPP)	GDP (in Bil. US\$nominal)	GDP per capita (in US\$ nominal)	GDP growth (real)	Inflation rate (in Percent)	Unemployment (in Percent)	Government debt (in % of GDP)
0 1980	2857.3	12552.9	2857.3	12552.9	-0.3%	13.5%	7.2%	NaN
1 1981	3207.0	13948.7	3207.0	13948.7	2.5%	10.4%	7.6%	NaN
2 1982	3343.8	14405.0	3343.8	14405.0	-1.8%	6.2%	9.7%	NaN
3 1983	3634.0	15513.7	3634.0	15513.7	4.6%	3.2%	9.6%	NaN
4 1984	4037.7	17086.4	4037.7	17086.4	7.2%	4.4%	7.5%	NaN
5 1985	4339.0	18199.3	4339.0	18199.3	4.2%	3.5%	7.2%	NaN
6 1986	4579.6	19034.8	4579.6	19034.8	3.5%	1.9%	7.0%	NaN
7 1987	4855.3	20001.0	4855.3	20001.0	3.5%	3.6%	6.2%	NaN
8 1988	5236.4	21376.0	5236.4	21376.0	4.2%	4.1%	5.5%	NaN

	Year	GDP (in Bil. US\$PPP)	GDP per capita (in US\$ PPP)	GDP (in Bil. US\$nominal)	GDP per capita (in US\$ nominal)	GDP growth (real)	Inflation rate (in Percent)	Unemployment (in Percent)	Government debt (in % of GDP)
9	1989	5641.6	22814.1	5641.6	22814.1	3.7%	4.8%	5.3%	NaN
10	1990	5963.1	23848.0	5963.1	23848.0	1.9%	5.4%	5.6%	NaN
11	1991	6158.1	24302.8	6158.1	24302.8	-0.1%	4.2%	6.9%	NaN
12	1992	6520.3	25392.9	6520.3	25392.9	3.5%	3.0%	7.5%	NaN
13	1993	6858.6	26364.2	6858.6	26364.2	2.8%	3.0%	6.9%	NaN
14	1994	7287.3	27674.0	7287.3	27674.0	4.0%	2.6%	6.1%	NaN
15	1995	7639.8	28671.5	7639.8	28671.5	2.7%	2.8%	5.6%	NaN
16	1996	8073.1	29947.0	8073.1	29947.0	3.8%	2.9%	5.4%	NaN
17	1997	8577.6	31440.1	8577.6	31440.1	4.4%	2.3%	4.9%	NaN
18	1998	9062.8	32833.7	9062.8	32833.7	4.5%	1.5%	4.5%	NaN
19	1999	9631.2	34496.2	9631.2	34496.2	4.8%	2.2%	4.2%	NaN
20	2000	10251.0	36312.8	10251.0	36312.8	4.1%	3.4%	4.0%	NaN
21	2001	10581.9	37101.5	10581.9	37101.5	1.0%	2.8%	4.7%	53.1%
22	2002	10929.1	37945.8	10929.1	37945.8	1.7%	1.6%	5.8%	55.5%
23	2003	11456.5	39405.4	11456.5	39405.4	2.8%	2.3%	6.0%	58.6%
24	2004	12217.2	41641.6	12217.2	41641.6	3.9%	2.7%	5.5%	66.1%
25	2005	13039.2	44034.3	13039.2	44034.3	3.5%	3.4%	5.1%	65.5%
26	2006	13815.6	46216.9	13815.6	46216.9	2.8%	3.2%	4.6%	64.2%
27	2007	14474.3	47943.4	14474.3	47943.4	2.0%	2.9%	4.6%	64.6%
28	2008	14769.9	48470.6	14769.9	48470.6	0.1%	3.8%	5.8%	73.4%
29	2009	14478.1	47102.4	14478.1	47102.4	-2.6%	-0.3%	9.3%	86.6%
30	2010	15049.0	48586.3	15049.0	48586.3	2.7%	1.6%	9.6%	95.1%
31	2011	15599.7	50008.1	15599.7	50008.1	1.6%	3.1%	8.9%	99.5%
32	2012	16254.0	51736.7	16254.0	51736.7	2.3%	2.1%	8.1%	103.0%
33	2013	16843.2	53245.5	16843.2	53245.5	1.8%	1.5%	7.4%	104.5%
34	2014	17550.7	55083.5	17550.7	55083.5	2.3%	1.6%	6.2%	104.5%
35	2015	18206.0	56729.7	18206.0	56729.7	2.7%	0.1%	5.3%	104.9%
36	2016	18695.1	57840.0	18695.1	57840.0	1.7%	1.3%	4.9%	106.9%
37	2017	19479.6	59885.7	19479.6	59885.7	2.3%	2.1%	4.4%	106.0%
38	2018	20527.2	62769.7	20527.2	62769.7	2.9%	2.4%	3.9%	107.1%
39	2019	21372.6	65051.9	21372.6	65051.9	2.3%	1.8%	3.7%	108.5%
40	2020	20893.8	63358.5	20893.8	63358.5	-3.4%	1.2%	8.1%	133.9%
41	2021	22939.6	69375.4	22939.6	69375.4	6.0%	4.3%	5.4%	133.3%
42	2022	24796.1	74725.0	24796.1	74725.0	5.2%	3.5%	3.5%	130.7%
43	2023	25938.2	77881.3	25938.2	77881.3	2.2%	2.7%	3.0%	131.1%
11	3U34	ኃ ደሷደቦ ላ	2071 <i>1</i> 2	3608U <i>\</i>	Q∩71 <i>1</i> Q	1 7%	2 6%	3 Uo%	121 7%
1.0		c ()							

In [24]: df_GDP.info()

0

-0.3

2.5

return x

```
In [26]: #strip removes extra spaces
from unicodedata import normalize
def clean_normalize_whitespace(x):
    if isinstance(x, str):
        return normalize('NFKC', x).strip()
else:
```

```
In [27]: df_GDP = df_GDP.applymap(clean_normalize_whitespace)
```

In [28]: df_GDP

Out[28]:

	Year	GDP (in Bil. US\$PPP)	GDP per capita (in US\$ PPP)	GDP (in Bil. US\$nominal)	GDP per capita (in US\$ nominal)	GDP growth (real)	Inflation rate (in Percent)	Unemployment (in Percent)	Government debt (in % of GDP)
0	1980	2857.3	12552.9	2857.3	12552.9	-0.3%	13.5%	7.2%	NaN
1	1981	3207.0	13948.7	3207.0	13948.7	2.5%	10.4%	7.6%	NaN
2	1982	3343.8	14405.0	3343.8	14405.0	-1.8%	6.2%	9.7%	NaN
3	1983	3634.0	15513.7	3634.0	15513.7	4.6%	3.2%	9.6%	NaN
4	1984	4037.7	17086.4	4037.7	17086.4	7.2%	4.4%	7.5%	NaN
5	1985	4339.0	18199.3	4339.0	18199.3	4.2%	3.5%	7.2%	NaN
6	1986	4579.6	19034.8	4579.6	19034.8	3.5%	1.9%	7.0%	NaN
7	1987	4855.3	20001.0	4855.3	20001.0	3.5%	3.6%	6.2%	NaN
8	1988	5236.4	21376.0	5236.4	21376.0	4.2%	4.1%	5.5%	NaN
9	1989	5641.6	22814.1	5641.6	22814.1	3.7%	4.8%	5.3%	NaN
10	1990	5963.1	23848.0	5963.1	23848.0	1.9%	5.4%	5.6%	NaN
11	1991	6158.1	24302.8	6158.1	24302.8	-0.1%	4.2%	6.9%	NaN
12	1992	6520.3	25392.9	6520.3	25392.9	3.5%	3.0%	7.5%	NaN
13	1993	6858.6	26364.2	6858.6	26364.2	2.8%	3.0%	6.9%	NaN
14	1994	7287.3	27674.0	7287.3	27674.0	4.0%	2.6%	6.1%	NaN
15	1995	7639.8	28671.5	7639.8	28671.5	2.7%	2.8%	5.6%	NaN
16	1996	8073.1	29947.0	8073.1	29947.0	3.8%	2.9%	5.4%	NaN
17	1997	8577.6	31440.1	8577.6	31440.1	4.4%	2.3%	4.9%	NaN
18	1998	9062.8	32833.7	9062.8	32833.7	4.5%	1.5%	4.5%	NaN
19	1999	9631.2	34496.2	9631.2	34496.2	4.8%	2.2%	4.2%	NaN
20	2000	10251.0	36312.8	10251.0	36312.8	4.1%	3.4%	4.0%	NaN
21	2001	10581.9	37101.5	10581.9	37101.5	1.0%	2.8%	4.7%	53.1%
22	2002	10929.1	37945.8	10929.1	37945.8	1.7%	1.6%	5.8%	55.5%
23	2003	11456.5	39405.4	11456.5	39405.4	2.8%	2.3%	6.0%	58.6%
24	2004	12217.2	41641.6	12217.2	41641.6	3.9%	2.7%	5.5%	66.1%
25	2005	13039.2	44034.3	13039.2	44034.3	3.5%	3.4%	5.1%	65.5%
26	2006	13815.6	46216.9	13815.6	46216.9	2.8%	3.2%	4.6%	64.2%

GDP nor

	Year	GDP (in Bil. US\$PPP)	GDP per capita (in US\$ PPP)	GDP (in Bil. US\$nominal)	GDP per capita (in US\$ nominal)	GDP growth (real)	Inflation rate (in Percent)	Unemployment (in Percent)	Government debt (in % of GDP)
27	2007	14474.3	47943.4	14474.3	47943.4	2.0%	2.9%	4.6%	64.6%
28	2008	14769.9	48470.6	14769.9	48470.6	0.1%	3.8%	5.8%	73.4%
29	2009	14478.1	47102.4	14478.1	47102.4	-2.6%	-0.3%	9.3%	86.6%
30	2010	15049.0	48586.3	15049.0	48586.3	2.7%	1.6%	9.6%	95.1%
31	2011	15599.7	50008.1	15599.7	50008.1	1.6%	3.1%	8.9%	99.5%
32	2012	16254.0	51736.7	16254.0	51736.7	2.3%	2.1%	8.1%	103.0%
33	2013	16843.2	53245.5	16843.2	53245.5	1.8%	1.5%	7.4%	104.5%
34	2014	17550.7	55083.5	17550.7	55083.5	2.3%	1.6%	6.2%	104.5%
35	2015	18206.0	56729.7	18206.0	56729.7	2.7%	0.1%	5.3%	104.9%
36	2016	18695.1	57840.0	18695.1	57840.0	1.7%	1.3%	4.9%	106.9%
37	2017	19479.6	59885.7	19479.6	59885.7	2.3%	2.1%	4.4%	106.0%
38	2018	20527.2	62769.7	20527.2	62769.7	2.9%	2.4%	3.9%	107.1%
39	2019	21372.6	65051.9	21372.6	65051.9	2.3%	1.8%	3.7%	108.5%
40	2020	20893.8	63358.5	20893.8	63358.5	-3.4%	1.2%	8.1%	133.9%
41	2021	22939.6	69375.4	22939.6	69375.4	6.0%	4.3%	5.4%	133.3%
42	2022	24796.1	74725.0	24796.1	74725.0	5.2%	3.5%	3.5%	130.7%
43	2023	25938.2	77881.3	25938.2	77881.3	2.2%	2.7%	3.0%	131.1%

GDP nor

Out[34]:

```
-0.3
       1
            2.5
        2
            -1.8
        3
            7.2
        5
            4.2
            3.5
        6
        7
            3.5
        8
            4.2
        9
            3.7
       10
            1.9
       11
          -0.1
            3.5
       12
       13
           2.8
       14
            4.0
       15 2.7
       16
            3.8
       17
            4.4
       18
            4.5
       19
           4.8
       20 4.1
       21 1.0
       22
            1.7
        23
             2.8
        24
            3.9
       25
            3.5
       26 2.8
       27
            2.0
       28 0.1
        29 -2.6
        30 2.7
       31 1.6
In [33]: df GDP['GDP growth (real)']=df GDP['GDP growth (real)'].replace({'%': ''}, regex=Tr
In [34]:
```

Out[35]:

```
-0.3
        1
             2.5
        2
            -1.8
        3
             4.6
             7.2
             4.2
             3.5
        7
             3.5
             4.2
        8
             3.7
        10
             1.9
            -0.1
        11
        12
             3.5
        13
             2.8
        14
             4.0
        15
             2.7
        16
             3.8
        17
             4.4
        18
            4.5
            4.8
        19
             4.1
        20
            1.0
        21
             1.7
        22
In [35]: df_GDP['GDP growth (real)'].replace({'%':'','-':'-'}, regex=True).astype('float')
```

```
0
              -0.3
         1
               2.5
         2
              -1.8
         3
               4.6
         4
               7.2
         5
               4.2
         6
               3.5
         7
               3.5
         8
               4.2
         9
               3.7
         10
               1.9
In [36]: #if your data have any character
         df['Year'].replace({'%': '', '-': '-', '\(est\)': ''}, regex=True).astype('int')
Out[36]: 0
         1
               2020
         2
               2018
               2018
         3
         4
               2018
               2016
         5
         6
               2014
         7
               2014
         8
               2012
         9
               2012
         10
               2010
         11
               2008
         12
               2008
         13
               2006
               2006
         14
         15
               2004
         16
               2002
         17
               2002
         18
               2000
         19
               2000
         20
               1998
         21
               1996
              1996
         22
         23
               1994
         24
               1994
         25
               1992
         Name: Year, dtype: int32
In [37]: #change the columns according to the recent one (dict.fromkeys (df GDP.columns, 'float
         col_type = {
         'Year': 'int',
          'GDP (in Bil. US$PPP)': 'float',
          'GDP per capita (in US$ PPP)': 'float',
          'GDP (in Bil. US$nominal)': 'float',
          'GDP per capita (in US$ nominal)': 'float',
          'GDP growth (real)': 'float',
          'Inflation rate (in Percent)': 'float',
          'Unemployment (in Percent)': 'float',
          'Government debt (in % of GDP)': 'float'
In [38]: dict.fromkeys(df_GDP.columns, 'float')
Out[381:
```

```
{'Year': 'float',
           'GDP (in Bil. US$PPP)': 'float',
           'GDP per capita (in US$ PPP)': 'float',
           'GDP (in Bil. US$nominal)': 'float',
           'CDP ner canita (in IIQ$ nominal)! . !float!
In [39]: clean dict = {'%': '', '-': '-', '\(est\)': ''}
In [40]:
         df GDP.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 47 entries, 0 to 46
         Data columns (total 9 columns):
                                                 Non-Null Count Dtype
          #
              Column
                                                 _____
           0
              Year
                                                 47 non-null
                                                                 int64
          1
              GDP (in Bil. US$PPP)
                                                 47 non-null
                                                                 float64
                                                47 non-null
              GDP per capita (in US$ PPP)
                                                                 float64
                                              47 non-null float64
              GDP (in Bil. US$nominal)
             GDP per capita (in US$ nominal) 47 non-null float64
           4
           5
             GDP growth (real)
                                                47 non-null object
             Inflation rate (in Percent)
Unemployment (in Percent)
                                                47 non-null
                                                                object
             Unemployment (in Percent) 47 non-null object Government debt (in % of GDP) 26 non-null object
           7
         dtypes: float64(4), int64(1), object(4)
         memory usage: 3.4+ KB
In [41]: df GDP = df GDP.replace(clean dict, regex=True).replace({ '-n/a ': np.nan}).astype(
In [42]: df GDP.columns
Out[42]: Index(['Year', 'GDP (in Bil. US$PPP)', 'GDP per capita (in US$ PPP)',
                 'GDP (in Bil. US$nominal)', 'GDP per capita (in US$ nominal)',
                 'GDP growth (real)', 'Inflation rate (in Percent)',
                 'Unemployment (in Percent)', 'Government debt (in % of GDP)'],
                dtype='object')
In [43]: plt.style.use('seaborn-whitegrid')
         df GDP.plot.line(x='Year', y=['Inflation rate (in Percent)', 'Unemployment (in Percent)',
Out[43]: <AxesSubplot:xlabel='Year'>
          14

    Inflation rate (in Percent)

    Unemployment (in Percent)

          12
           10
           8
           6
           2
           0
             1980
                     1990
                             2000
                                      2010
                                              2020
                                Year
In [44]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
```

```
In [45]: mtcars = pd.read_csv('mtcars_analysis.csv')
```

In [46]: mtcars

Out[46]:

	Unnamed: 0	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
7	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
8	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
9	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
10	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
11	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
12	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
13	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
15	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
16	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
17	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
18	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
19	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
21	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
22	AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
23	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
24	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
25	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
26	Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
27	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
28	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
29	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
30	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

```
In [47]: mtcars=mtcars.rename(columns={'Unnamed: 0':'model'})
```

```
In [48]: mtcars
```

Out[48]:

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
5	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
7	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
8	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
9	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
10	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
11	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
12	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
13	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
15	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
16	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
17	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
18	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
19	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
21	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
22	AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
23	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
24	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
25	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
26	Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
27	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
28	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
29	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
30	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

In [49]: mtcars.index=mtcars.model

In [50]: mtcars

Out[50]:

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
model												
Mazda RX4	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
model												
Datsun 710	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Chrysler Imperial	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
Fiat 128	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Toyota Corona	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
Dodge Challenger	Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
AMC Javelin	AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
Camaro Z28	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
Pontiac Firebird	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
Fiat X1-9	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
Porsche 914-2	Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
Lotus Europa	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
Ford Pantera L	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
Ferrari Dino	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6

In [51]: del mtcars['model']

In [52]: mtcars

Out[52]:

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
model											
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb	
model												
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1	
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4	
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2	
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2	
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4	
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4	
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3	
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3	
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3	
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4	
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4	
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4	
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1	
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2	
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1	
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1	
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2	
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2	
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4	
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2	
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1	
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2	
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2	
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4	
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6	

cyl 6.187500 disp 230.721875 146.687500 hp drat 3.596563 wt 3.217250 17.848750 qsec 0.437500 VS 0.406250 am3.687500 gear 2.812500 dtype: float64

```
In [54]: mtcars.mean(axis=0)
```

Out[54]:

```
mpg
                20.090625
        cyl
                 6.187500
             230.721875
        disp
               146.687500
        hp
                3.596563
        drat
                 3.217250
        wt
                17.848750
        qsec
                0.437500
        VS
In [55]: mtcars.mean(axis=1)
Out[55]: model
                              29.907273
        Mazda RX4
        Mazda RX4 Wag
                             29.981364
        Datsun 710
                             23.598182
        Hornet 4 Drive
                             38.739545
                           53.664545
        Hornet Sportabout
        Valiant
                             35.049091
        Duster 360
                            59.720000
        Merc 240D
                            24.634545
        Merc 230
                            27.233636
        Merc 280
                             31.860000
        Merc 280C
                            31.787273
        Merc 450SE
                            46.430909
        Merc 450SL
                            46.500000
                      46.350000
        Merc 450SLC
        Cadillac Fleetwood 66.232727
Lincoln Continental 66.058545
        Chrysler Imperial 65.972273
        Fiat 128
                            19.440909
        Honda Civic
                            17.742273
        Toyota Corolla
                            18.814091
        Toyota Corona
                            24.888636
        Dodge Challenger
                             47.240909
        AMC Javelin
                             46.007727
                             58.752727
        Pontiac Firebird
                            57.379545
        Fiat X1-9
                            18.928636
        Porsche 914-2
                            24.779091
        Lotus Europa
                             24.880273
        Ford Pantera L
                            60.971818
        Ferrari Dino
                            34.508182
                            63.155455
        Maserati Bora
        Volvo 142E
                             26.262727
        dtype: float64
In [56]: mtcars.median()
Out[56]: mpg
                19.200
        cyl
                6.000
               196.300
        disp
        hp
               123.000
        drat
                 3.695
                 3.325
        wt
                17.710
        qsec
                 0.000
        VS
                0.000
        am
                 4.000
        gear
        carb 2.000
        dtype: float64
```

dtype: float64

```
In [57]: mtcars.median(axis=1)
Out[57]: model
        Mazda RX4
                             4.000
        Mazda RX4 Wag
                            4.000
        Datsun 710
                            4.000
        Hornet 4 Drive
                             3.215
        Hornet Sportabout
                             3.440
        Valiant
                             3.460
        Duster 360
                            4.000
        Merc 240D
                            4.000
        Merc 230
                            4.000
        Merc 280
                            4.000
        Merc 280C
                             4.000
        Merc 450SE
                            4.070
        Merc 450SL
                            3.730
        Merc 450SLC
                            3.780
        Cadillac Fleetwood 5.250
        Lincoln Continental 5.424
Chrysler Imperial 5.345
        Fiat 128
                            4.000
        Honda Civic
                            4.000
        Toyota Corolla
                            4.000
        Toyota Corona
                            3.700
        Dodge Challenger
        AMC Javelin
                             3.435
        Camaro Z28
                             4.000
        Pontiac Firebird
                            3.845
        Fiat X1-9
                            4.000
        Porsche 914-2
                            4.430
        Lotus Europa
                             4.000
        Ford Pantera L
                            5.000
                            6.000
        Ferrari Dino
        Maserati Bora
                            8.000
        Volvo 142E
                             4.000
```

```
In [58]: norm_data = pd.DataFrame(np.random.normal(size=100000))
    norm_data.plot(kind="density",
        figsize=(10,10));
    plt.vlines(norm_data.mean(), # Plot black line at mean
        ymin=0,
        ymax=0.4,
        linewidth=5.0);
    plt.vlines(norm_data.median(), # Plot red line at median
        ymin=0,
        ymax=0.4,
        linewidth=2.0,
        color="red");
```



```
In [60]: norm_data = np.random.normal(size=50)
    outliers = np.random.normal(15, size=3)
    combined_data = pd.DataFrame(np.concatenate((norm_data, outliers), axis=0))
    combined_data.plot(kind="density",
        figsize=(10,10),
        xlim=(-5,20));
    plt.vlines(combined_data.mean(), # Plot black line at mean
        ymin=0,
        ymax=0.2,
        linewidth=5.0);
    plt.vlines(combined_data.median(), # Plot red line at median
        ymin=0,
        ymax=0.2,
```


In [61]: mtcars.mode()

Out[61]:

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	10.4	8.0	275.8	110.0	3.07	3.44	17.02	0.0	0.0	3.0	2.0
1	15.2	NaN	NaN	175.0	3.92	NaN	18.90	NaN	NaN	NaN	4.0
2	19.2	NaN	NaN	180.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	21.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	21.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
5	22.8	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
6	30.4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

```
In [62]: max(mtcars["mpg"])
```

Out[62]: 33.9

```
In [63]: min(mtcars["mpg"])
```

Out[63]: 10.4

```
In [64]: max(mtcars["mpg"])-min(mtcars["mpg"])
Out[64]: 23.5
In [65]: five num = [mtcars["mpg"].quantile(0),
          mtcars["mpg"].quantile(0.25),
          mtcars["mpg"].quantile(0.50),
          mtcars["mpg"].quantile(0.75),
          mtcars["mpg"].quantile(1)]
         five num
Out[65]: [10.4, 15.425, 19.2, 22.8, 33.9]
In [66]: mtcars["mpg"].describe()
Out[66]: count
                  32.000000
                  20.090625
         mean
                  6.026948
         std
                  10.400000
         min
                  15.425000
         25%
                  19.200000
         50%
         75%
                  22.800000
         max
                  33.900000
         Name: mpg, dtype: float64
In [67]: mtcars["mpg"].quantile(0.75) - mtcars["mpg"].quantile(0.25)
Out[67]: 7.375
In [68]: mtcars.boxplot(column="mpg",
          return type='axes',
          figsize=(8,8))
Out[68]: <AxesSubplot:>
          35
          30
          25
          20
          15
                                      mpg
```

```
In [69]: | mtcars["mpg"].quantile(0.75)-mtcars["mpg"].quantile(0.25)
Out[69]: 7.375
In [70]: mtcars["mpg"].var()
Out[70]: 36.32410282258065
In [71]: | mtcars["mpg"].std()
Out[71]: 6.026948052089105
In [72]: abs median_devs = abs(mtcars["mpg"] - mtcars["mpg"].median())
         abs median devs.median() * 1.4826
Out[72]: 5.41149000000001
In [73]: mtcars["mpg"].skew() # Check skewness
Out[73]: 0.6723771376290805
In [74]: mtcars["mpg"].kurt() # Check kurtosis
Out[74]: -0.0220062914240855
In [75]: norm data = np.random.normal(size=100000)
         skewed_data = np.concatenate((np.random.normal(size=35000)+2,
         np.random.exponential(size=65000)),
         axis=0)
         uniform data = np.random.uniform(0,2, size=100000)
         peaked_data = np.concatenate((np.random.exponential(size=50000)),
         np.random.exponential(size=50000)*(-1)),
         axis=0)
         data df = pd.DataFrame({"norm":norm_data,
         "skewed":skewed data,
         "uniform":uniform data,
         "peaked":peaked_data})
```

```
In [76]: data_df.plot(kind="density",
    figsize=(10,10),
    xlim=(-5,5));
```



```
In [77]: data_df.skew()
```

Out[77]: norm 0.000344 skewed 1.029248 uniform 0.004356 peaked 0.010979 dtype: float64

```
In [78]: data_df.kurt()
```

Out[78]: norm -0.017676 skewed 1.440956 uniform -1.200284 peaked 2.927368 dtype: float64

```
In [79]: #Question 1. Find any other HTML data table online that potentially can be useful f
#your assignments project. Read it using read_html() function and apply appropriate
#cleaning.

table bd = table MN = pd.read html('https://en.wikipedia.org/wiki/Economy of Bangla
```

table_bd = table_MN = pd:lead_ntml(nccps.//en.wikipedia.org/wiki/Economy_or_Bangla

Out[79]:

```
[
             Dhaka, the financial centre of Bangladesh
0
1
                                               Currency
2
                                            Fiscal year
3
                                    Trade organizations
4
                                          Country group
5
                                              Statistics
6
                                              Population
7
                                                     GDP
8
                                               GDP rank
9
                                             GDP growth
10
                                         GDP per capita
11
                                    GDP per capita rank
12
                                          GDP by sector
13
                                        Inflation (CPI)
14
                          Population below poverty line
15
                                       Gini coefficient
16
                                Human Development Index
```

In [80]: #Question 1. Find any other HTML data table online that potentially can be useful f
#your assignments project. Read it using read_html() function and apply appropriate
#cleaning.
print(f'Total tables: {len(table bd)}')

Total tables: 21

- -----

Out[81]:

	Year	GDP(in bn. US\$ PPP)	GDP per capita(in US\$ PPP)	GDP growth(real)	Inflation rate(in Percent)	Unemployment Rate (in Percent)	Government debt(in % of GDP)	Total Investment (in % of GDP)
0	1980	41.2	500	3.1 %	15.4 %	NaN	NaN	14.44 %
1	1981	47.4	560	5.6 %	14.5 %	NaN	NaN	17.16 %
2	1982	52.0	597	3.2 %	12.9 %	NaN	NaN	17.36%
3	1983	56.5	633	4.6 %	9.5 %	NaN	NaN	16.56 %
4	1984	61.0	664	4.2 %	10.4 %	NaN	NaN	16.48 %
5	1985	65.3	693	3.7 %	10.5 %	NaN	NaN	15.83 %
6	1986	69.3	715	4.0 %	10.2 %	NaN	NaN	16.18 %
7	1987	73.1	735	2.9 %	10.8 %	NaN	NaN	15.47 %
8	1988	77.5	759	2.4 %	9.7 %	NaN	NaN	15.74 %
9	1989	84.0	801	4.3 %	8.7 %	NaN	NaN	16.12 %
10	1990	91.1	848	4.6 %	10.5 %	NaN	NaN	16.46 %
11	1991	98.1	892	4.2 %	8.3 %	2.20 %	NaN	16.90 %
12	1992	105.1	935	4.8 %	3.6 %	2.25 %	NaN	17.31 %
13	1993	112.3	977	4.3 %	3.0 %	2.37 %	NaN	17.95 %
14	1994	119.9	1021	4.5 %	6.2 %	2.44 %	NaN	18.40 %
15	1995	128.2	1069	4.8 %	10.1 %	2.48 %	NaN	19.12 %
16	1996	137.1	1120	5.0 %	2.5 %	2.51 %	NaN	20.73 %
17	1997	146.8	1175	5.3 %	5.0 %	2.69 %	NaN	21.82 %

	Year	GDP(in bn. US\$ PPP)	GDP per capita(in US\$ PPP)	GDP growth(real)	Inflation rate(in Percent)	Unemployment Rate (in Percent)	Government debt(in % of GDP)	Total Investment (in % of GDP)
18	1998	155.9	1223	5.0 %	8.6 %	2.83 %	NaN	22.12 %
19	1999	166.9	1284	5.4 %	6.2 %	3.10 %	NaN	22.72 %
20	2000	180.2	1361	5.6 %	2.5 %	3.27 %	NaN	23.81 %
21	2001	193.2	1434	4.8 %	1.9 %	3.55 %	NaN	24.17 %
22	2002	205.7	1501	4.8 %	3.7 %	3.96 %	NaN	24.34 %
23	2003	221.9	1594	5.8 %	5.4 %	4.32 %	44.3 %	24.68 %
24	2004	241.9	1713	6.1 %	6.1 %	4.30 %	43.5 %	24.99 %
25	2005	265.5	1855	6.3 %	7.0 %	4.25 %	42.3 %	25.83 %
26	2006	292.4	2018	6.9 %	6.8 %	3.59 %	42.3 %	26.14 %
27	2007	319.7	2183	6.5 %	9.1 %	3.77 %	41.9 %	26.18 %
28	2008	344.0	2325	5.5 %	8.9 %	4.07 %	40.6 %	26.20 %
29	2009	365.0	2441	5.3 %	4.9 %	5.00 %	39.5 %	26.21 %
30	2010	391.7	2592	6.0 %	9.4 %	3.37 %	35.5 %	26.25 %
31	2011	425.8	2785	6.5 %	11.5 %	3.71 %	36.6 %	27.42 %
32	2012	460.8	2979	6.3 %	6.2 %	4.04 %	36.2 %	28.26 %
33	2013	496.5	3171	6.0 %	7.5 %	4.43 %	35.8 %	28.39 %
34	2014	537.3	3396	6.3 %	7.0 %	4.41 %	35.3 %	28.58 %
35	2015	581.6	3638	6.8 %	6.2 %	4.42 %	33.6 %	28.89 %
36	2016	629.9	3900	7.2 %	5.7 %	4.35 %	33.3 %	29.65 %
37	2017	710.5	4331	7.6 %	5.6 %	4.37 %	32.6 %	30.51 %

In [82]: #Question 1. Find any other HTML data table online that potentially can be useful f
#your assignments project. Read it using read_html() function and apply appropriate
#cleaning.
len(table_bd)

Out[82]: 21

In [83]: #Question 1. Find any other HTML data table online that potentially can be useful f #your assignments project. Read it using read_html() function and apply appropriate #cleaning.

df = table_bd[2]
df.head(10)

Out[83]:

		Year	GDP(in bn. US\$ PPP)	GDP per capita(in US\$ PPP)	GDP growth(real)	Inflation rate(in Percent)	Unemployment Rate (in Percent)	Government debt(in % of GDP)	Total Investment (in % of GDP)	
_	0	1980	41.2	500	3.1 %	15.4 %	NaN	NaN	14.44 %	
	1	1981	47.4	560	5.6 %	14.5 %	NaN	NaN	17.16 %	
	2	1982	52.0	597	3.2 %	12.9 %	NaN	NaN	17.36%	
	3	1983	56.5	633	4.6 %	9.5 %	NaN	NaN	16.56 %	
	4	1984	61.0	664	4.2 %	10.4 %	NaN	NaN	16.48 %	
	5	1985	65.3	693	3.7 %	10.5 %	NaN	NaN	15.83 %	
	6	1986	69.3	715	4.0 %	10.2 %	NaN	NaN	16.18 %	

GDP(in GDP per Inflation Government Total GDP Unemployment capita(in rate(in Investment Year bn. US\$ debt(in % of growth(real) Rate (in Percent) PPP) US\$ PPP) GDP) (in % of GDP) Percent)

Out[86]:

	Year	GDP(in bn. US\$ PPP)	GDP per capita(in US\$ PPP)	GDP growth(real)	Inflation rate(in Percent)	Unemployment Rate (in Percent)	Government debt(in % of GDP)	Total Investment (in % of GDP)
0	1980	41.2	500	3.1	15.4	NaN	NaN	14.44
1	1981	47.4	560	5.6	14.5	NaN	NaN	17.16
2	1982	52.0	597	3.2	12.9	NaN	NaN	17.36
3	1983	56.5	633	4.6	9.5	NaN	NaN	16.56
4	1984	61.0	664	4.2	10.4	NaN	NaN	16.48
5	1985	65.3	693	3.7	10.5	NaN	NaN	15.83
6	1986	69.3	715	4.0	10.2	NaN	NaN	16.18
7	1987	73.1	735	2.9	10.8	NaN	NaN	15.47
8	1988	77.5	759	2.4	9.7	NaN	NaN	15.74
9	1989	84.0	801	4.3	8.7	NaN	NaN	16.12

In [87]: #Question 1. Find any other HTML data table online that potentially can be useful f
#your assignments project. Read it using read_html() function and apply appropriate
#cleaning.
df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40 entries, 0 to 39
Data columns (total 8 columns):
# Column Non-Null Count Dtype
```

In [89]: #Question 1. Find any other HTML data table online that potentially can be useful f
#your assignments project. Read it using read_html() function and apply appropriate
#cleaning.
df = df.applymap(clean normalize whitespace)

Out[90]:

	Year	GDP(in bn. US\$ PPP)	GDP per capita(in US\$ PPP)	GDP growth(real)	Inflation rate(in Percent)	Unemployment Rate (in Percent)	Government debt(in % of GDP)	Total Investment (in % of GDP)
0	1980	41.2	500	3.1	15.4	NaN	NaN	14.44
1	1981	47.4	560	5.6	14.5	NaN	NaN	17.16
2	1982	52.0	597	3.2	12.9	NaN	NaN	17.36
3	1983	56.5	633	4.6	9.5	NaN	NaN	16.56
4	1984	61.0	664	4.2	10.4	NaN	NaN	16.48
5	1985	65.3	693	3.7	10.5	NaN	NaN	15.83
6	1986	69.3	715	4.0	10.2	NaN	NaN	16.18
7	1987	73.1	735	2.9	10.8	NaN	NaN	15.47
8	1988	77.5	759	2.4	9.7	NaN	NaN	15.74
9	1989	84.0	801	4.3	8.7	NaN	NaN	16.12
10	1990	91.1	848	4.6	10.5	NaN	NaN	16.46
11	1991	98.1	892	4.2	8.3	2.20	NaN	16.90
12	1992	105.1	935	4.8	3.6	2.25	NaN	17.31
13	1993	112.3	977	4.3	3.0	2.37	NaN	17.95
14	1994	119.9	1021	4.5	6.2	2.44	NaN	18.40
15	1995	128.2	1069	4.8	10.1	2.48	NaN	19.12
16	1996	137.1	1120	5.0	2.5	2.51	NaN	20.73
17	1997	146.8	1175	5.3	5.0	2.69	NaN	21.82
18	1998	155.9	1223	5.0	8.6	2.83	NaN	22.12
19	1999	166.9	1284	5.4	6.2	3.10	NaN	22.72
20	2000	180.2	1361	5.6	2.5	3.27	NaN	23.81

	Year	GDP(in bn. US\$ PPP)	GDP per capita(in US\$ PPP)	GDP growth(real)	Inflation rate(in Percent)	Unemployment Rate (in Percent)	Government debt(in % of GDP)	Total Investment (in % of GDP)
21	2001	193.2	1434	4.8	1.9	3.55	NaN	24.17
22	2002	205.7	1501	4.8	3.7	3.96	NaN	24.34
23	2003	221.9	1594	5.8	5.4	4.32	44.3	24.68
24	2004	241.9	1713	6.1	6.1	4.30	43.5	24.99
25	2005	265.5	1855	6.3	7.0	4.25	42.3	25.83
26	2006	292.4	2018	6.9	6.8	3.59	42.3	26.14
27	2007	319.7	2183	6.5	9.1	3.77	41.9	26.18
28	2008	344.0	2325	5.5	8.9	4.07	40.6	26.20
29	2009	365.0	2441	5.3	4.9	5.00	39.5	26.21
30	2010	391.7	2592	6.0	9.4	3.37	35.5	26.25
31	2011	425.8	2785	6.5	11.5	3.71	36.6	27.42
32	2012	460.8	2979	6.3	6.2	4.04	36.2	28.26
33	2013	496.5	3171	6.0	7.5	4.43	35.8	28.39
34	2014	537.3	3396	6.3	7.0	4.41	35.3	28.58
35	2015	581.6	3638	6.8	6.2	4.42	33.6	28.89
36	2016	629.9	3900	7.2	5.7	4.35	33.3	29.65
37	2017	710.5	4331	7.6	5.6	4.37	32.6	30.51

Out[92]:

```
0
              1980
        1
              1981
         2
              1982
         3
              1983
         4
              1984
         5
              1985
         6
              1986
         7
              1987
         8
              1988
         9
              1989
        10
              1990
        11
              1991
        12
              1992
        13
              1993
        14
              1994
        15
              1995
        16
              1996
        17
              1997
        18
              1998
        19
              1999
        20
              2000
         21
              2001
              2002
         22
         23
              2003
         24
              2004
         25
              2005
In [93]: #Question 1. Find any other HTML data table online that potentially can be useful t
```

```
#your assignments project. Read it using read html() function and apply appropriate
clean dict = {'%': '', '-': '-', '\(est\)': ''}
```

```
In [94]: | df1 = df.dropna(axis=1)
```

		JDP (IN DN. USS PPP)	GDF ber	Capita (III		-
0	1980	41.2			500	3.1
1	1981	47.4			560	5.6
2	1982	52.0			597	3.2
3	1983	56.5			633	4.6
4	1984	61.0			664	4.2
5	1985	65.3			693	3.7
6	1986	69.3			715	4.0
7	1987	73.1			735	2.9
8	1988	77.5			759	2.4
9	1989	84.0			801	4.3
	1990				848	
10		91.1				4.6
11	1991	98.1			892	4.2
12	1992	105.1			935	4.8
13	1993	112.3			977	4.3
14	1994	119.9			1021	4.5
15	1995	128.2			1069	4.8
16	1996	137.1			1120	5.0
17	1997	146.8			1175	5.3
18	1998	155.9			1223	5.0
19	1999	166.9			1284	5.4
20	2000	180.2			1361	5.6
21	2001	193.2			1434	4.8
22	2002	205.7			1501	4.8
23	2002	221.9			1594	5.8
24	2003	241.9			1713	6.1
25	2004				1855	
		265.5				6.3
26	2006	292.4			2018	6.9
27	2007	319.7			2183	6.5
28	2008	344.0			2325	5.5
29	2009	365.0			2441	5.3
30	2010	391.7			2592	6.0
31	2011	425.8			2785	6.5
32	2012	460.8			2979	6.3
33	2013	496.5			3171	6.0
34	2014	537.3			3396	6.3
35	2015	581.6			3638	6.8
36	2016	629.9			3900	7.2
37	2017	710.5			4331	7.6
38	2018	785.9			4730	7.9
39	2019	869.4			5228	8.1
	Inflatio	on rate(in Percent)	Total In	vestment (:	in % of GDP)	
0		15.4			14.44	
1		14.5			17.16	
2		12.9			17.36	
3		9.5			16.56	
4		10.4			16.48	
5		10.5			15.83	
6		10.2			16.18	
7		10.8			15.47	
8		9.7			15.47	
9						
		8.7			16.12	
10		10.5			16.46	
#Qu	estion 1	l. Find any other H	TML data	table onli	ne that poten	tially can be us

Year GDP(in bn. US\$ PPP) GDP per capita(in US\$ PPP) GDP growth(real) \

```
<class 'pandas.core.frame.DataFrame'>
          RangeIndex: 40 entries, 0 to 39
          Data columns (total 6 columns):
           # Column
                                                  Non-Null Count Dtype
                                                 40 non-null int64
40 non-null float64
40 non-null int64
              Year
           0
              GDP(in bn. US$ PPP)
           1
                                               40 non-null
           2 GDP per capita(in US$ PPP)
           3 GDP growth(real) 40 non-null object
4 Inflation rate(in Percent) 40 non-null object
5 Total Investment (in % of GDP) 40 non-null object
In [96]: #Question 2. Implement an example of data retrieval using one of the packages liste
          #in the table.
          import tweepy
          from tweepy import Stream
          from tweepy import OAuthHandler
          import pandas as pd
          import numpy as np
          import re
          import csv
In [97]: #Question 2. Implement an example of data retrieval using one of the packages liste
          #in the table.
          bearer tocken = 'AAAAAAAAAAAAAAAAAAAAIQnVgEAAAAAG3oZJnERuECSPzZX1k1kx8FRXNc%3DxxEI
          client = tweepy.Client(bearer tocken)
          path = 'C:/DIT45602/lectures/'
          screen name = 'iamsrk'
In [98]: #Question 2. Implement an example of data retrieval using one of the packages liste
          #in the table.
          tweets = client.get users tweets(client.get user(username=screen name).data['id'])
          outtweets = [[tweet.id, tweet.text] for tweet in tweets.data]
          with open(path + '%s tweets.csv' % screen name, 'w', encoding='utf-8') as f:
                   writer = csv.writer(f)
                   writer.writerow(["id","text"])
                   writer.writerows(outtweets)
                   print('saved - ' + path )
          pass
          saved - C:/DIT45602/lectures/
In [99]: #Question 2. Implement an example of data retrieval using one of the packages liste
          #in the table.
           # Printing tweets of Prime Minister of Bangladesh Sheikh Hasina form her Twitter \operatorname{pt}
          def remove pattern(text,pattern):
               \# re.findall() finds the pattern i.e Guser and puts it in a list for further \mathsf{td}
              r = re.findall(pattern, text)
               # re.sub() removes @user from the sentences in the dataset
               for i in r:
                   text = re.sub(i, "", text)
               return text
In [100]: #Question 2. Implement an example of data retrieval using one of the packages liste
           #in the table.
          ## Suppose we have a text with many email addresses
          str = 'purple alice@google.com, blah monkey bob@abc.com blah dishwasher'
```

```
## Here re.findall() returns a list of all the found email strings
emails = re.findall(r'[\w\.-]+@[\w\.-]+', str) ## ['alice@google.com', 'bob@abc.com
for email in emails:
    # do something with each found email string
    print(email)
alice@google.com
bob@abc.com
```

In [101]: #Question 2. Implement an example of data retrieval using one of the packages liste
in the table.
Printing tweets of Prime Minister of Bangladesh Sheikh Hasina form her Twitter pr
raw_tweets = pd.read_csv('C:/DIT45602/lectures/'+screen_name+'_tweets.csv')
raw tweets

Out[101]:

	id	text
0	1503604476934242308	Kuch kuch hone wala hai, OTT ki duniya mein. h
1	1499700448005337089	Extremely happy to see #LoveHostel receiving
2	1499011302806605826	Ok boys and girls time to get back to work. Ha
3	1499010940058345475	If I knew you were coming home would have told
4	1499010607403524104	Aaj kal toh Thums Up hi pi raha hoonmaybe it
5	1499010039322853376	Toh aadha replykarok #Pathaan https://t.co
6	1499009660505911302	Dimaag try kar shaayad work karegaMann pyaar
7	1499009443773616128	Thoda tum adjust kar lena thoda main kar dunga
8	1499009111400144896	Arre yaar Aamir kehta hai pehle Pathaan dikha!
9	1499008466035167234	Ok next time I will be 'Khabardaar' #Pathaan h

In [102]: #Question 3: Add legend to the plot with caption for all lines on the plot. #Graph-1 #Comment-In this plot which colors represent which data comes automatically. #I addeed title in the graph. plt.style.use('seaborn-whitegrid') df_GDP.plot.line(x='Year', y=['Inflation rate (in Percent)', 'Unemployment (in Percent)', 'Unemployment (in Percent)'.

Out[102]: Text(0.5, 1.0, 'Changes of Employment with Inflation')

In [103]: #Question 3: Add legend to the plot with caption for all lines on the plot. #Graph-2

```
norm data = pd.DataFrame(np.random.normal(size=100000))
norm data.plot(kind="density",
figsize=(10,10));
arr1 = plt.vlines(norm data.mean(), # Plot green line at mean
ymin=0,
ymax=0.4,
linewidth=5.0,
color="green");
arr2 = plt.vlines(norm data.median(), # Plot red line at median
ymin=0,
ymax=0.4,
linewidth=2.0,
color="red");
plt.legend([arr1, arr2], ['mean', 'median'], bbox to anchor=(1.0, 1), loc='upper left'
plt.title('Descriptive statistics of Random Generated Dataset')
plt.show()
```



```
In [104]: #Question 3: Add legend to the plot with caption for all lines on the plot.
#Graph-3

skewed_data = pd.DataFrame(np.random.exponential(size=100000))
skewed_data.plot(kind="density",
    figsize=(10,10),
    xlim=(-1,5));
arr1 = plt.vlines(skewed_data.mean(), # Plot yellow line at mean
    ymin=0,
    ymax=0.8,
    linewidth=5.0,
```

```
color="yellow");
arr2 = plt.vlines(skewed_data.median(), # Plot red line at median
ymin=0,
ymax=0.8,
linewidth=2.0,
color="red");
plt.legend([arr1, arr2], ['mean', 'median'], bbox_to_anchor=(1.0, 1), loc='upper left'
plt.title('Descriptive statistics of Random Generated skewed_data')
plt.show()
```



```
In [105]: #Question 3: Add legend to the plot with caption for all lines on the plot.
          #Graph-4
          norm data = np.random.normal(size=50)
          outliers = np.random.normal(15, size=3)
          combined data = pd.DataFrame(np.concatenate((norm data, outliers), axis=0))
          combined_data.plot(kind="density",
           figsize=(10,10),
           xlim = (-5, 20);
          arr1 = plt.vlines(combined data.mean(), # Plot black line at mean
           ymin=0,
           ymax=0.2
           linewidth=5.0,
           color="black");
          arr2 = plt.vlines(combined data.median(), # Plot red line at median
           ymin=0,
           ymax=0.2,
           linewidth=2.0,
           color="red");
```

```
plt.legend([arr1, arr2], ['mean', 'median'], bbox_to_anchor=(1.0, 1), loc='upper left'
plt.title('Descriptive statistics of Random Generated norm_data')
plt.show()
```



```
In [106]: #Question 3: Add legend to the plot with caption for all lines on the plot.
#Graph-4(Box plot)
mtcars.boxplot(column="mpg",
    return_type='axes',
    figsize=(8,8)
)
plt.title('Box Plot of mpg column of mtcars Dataset')
plt.legend(bbox_to_anchor=(1.0, 1),loc='upper right', title='max - 33.9\nmin - 10.4
plt.show()
```

No handles with labels found to put in legend.


```
In [107]: #Question 3: Add legend to the plot with caption for all lines on the plot.
          #Graph-5
          #Comment-In this plot which colors represent which data comes automatically.
          #I addeed title in the graph.
          norm_data = np.random.normal(size=100000)
          skewed data = np.concatenate((np.random.normal(size=35000)+2,
           np.random.exponential(size=65000)),
          axis=0)
          uniform_data = np.random.uniform(0,2, size=100000)
          peaked_data = np.concatenate((np.random.exponential(size=50000),
           np.random.exponential(size=50000)*(-1)),
          axis=0)
          data df = pd.DataFrame({"norm":norm data,
           "skewed":skewed data,
          "uniform":uniform_data,
          "peaked":peaked_data})
          data df.plot(kind="density",
           figsize=(10,10),
           xlim=(-5,5));
          plt.title('Plot of Random Generated Exponential Data')
```


In [108]: #Question 4: Plot boxplots for all numerical columns in the dataset and provide you
#comments on what you observe.
mtcars

Out[108]:

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
model											
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb	
model												
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3	
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3	
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4	
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4	
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4	
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1	
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2	
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1	
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1	
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2	
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2	
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4	
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2	
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1	
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2	
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2	
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4	
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6	

In [109]: #Question 4: Plot boxplots for all numerical columns in the dataset and provide you
#comments on what you observe.
mtcars.describe()

Out[109]:

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am
count	32.000000	32.000000	32.000000	32.000000	32.000000	32.000000	32.000000	32.000000	32.000000
mean	20.090625	6.187500	230.721875	146.687500	3.596563	3.217250	17.848750	0.437500	0.406250
std	6.026948	1.785922	123.938694	68.562868	0.534679	0.978457	1.786943	0.504016	0.498991
min	10.400000	4.000000	71.100000	52.000000	2.760000	1.513000	14.500000	0.000000	0.000000
25%	15.425000	4.000000	120.825000	96.500000	3.080000	2.581250	16.892500	0.000000	0.000000
50%	19.200000	6.000000	196.300000	123.000000	3.695000	3.325000	17.710000	0.000000	0.000000
75%	22.800000	8.000000	326.000000	180.000000	3.920000	3.610000	18.900000	1.000000	1.000000
max	33.900000	8.000000	472.000000	335.000000	4.930000	5.424000	22.900000	1.000000	1.000000

In [110]: #Question 4: Plot boxplots for all numerical columns in the dataset and provide you
#comments on what you observe.
mtcars.median()

Out[110]:

mpq

19.200

```
cyl
                    6.000
                  196.300
          disp
                  123.000
          hp
In [111]: #Question 4: Plot boxplots for all numerical columns in the dataset and provide you
          #comments on what you observe.
          mtcars.boxplot(column="mpg",
          return type='axes',
          figsize=(8,8)
          plt.title('Box Plot of mpg column of mtcars Dataset')
          #Comments on Box-plot
          #A boxplot describes summary of five numbers of a dataset.
          #These are minimum, first quartile, median, third quartile, and maximum numbers.
          #Min number is 10.40 (the black line below the box).
          #Median is 19.2 (the middle grean line in the box).
          #First quarantile number is 15.42 which is below median.
          #Third quarantile number is 22.8 which is greater than median.
          #Max number is 33.9 (the black line above the box).
```

#There is one outlier in the dataset (circle above the max line).

Out[111]: Text(0.5, 1.0, 'Box Plot of mpg column of mtcars Dataset')


```
In [112]: #Question 4: Plot boxplots for all numerical columns in the dataset and provide you
    #comments on what you observe.
    mtcars.boxplot(column="cyl",
        return_type='axes',
        figsize=(8,8)
    )
    plt.title('Box Plot of cyl column of mtcars Dataset')

#Comments on Box-plot
```

```
#A boxplot describes summary of five numbers of a dataset.

#These are minimum, first quartile, median, third quartile, and maximum numbers.

#Min number is 4 (the black line below the box).

#Median is 6 (the middle grean line in the box).

#First quarantile number is 4 which is equal to median.

#Third quarantile number is 8 which is greater than median.

#Max number is 8 (the black line above the box).

#There is no outliers in the dataset.
```

Out[112]: Text(0.5, 1.0, 'Box Plot of cyl column of mtcars Dataset')

Out[113]: Text(0.5, 1.0, 'Box Plot of disp column of mtcars Dataset')


```
In [114]: #Question 4: Plot boxplots for all numerical columns in the dataset and provide you #comments on what you observe.

mtcars.boxplot(column="hp",
    return_type='axes',
    figsize=(8,8)
)

plt.title('Box Plot of hp column of mtcars Dataset')

#Comments on Box-plot

#A boxplot describes summary of five numbers of a dataset.

#These are minimum, first quartile, median, third quartile, and maximum numbers.

#Min number is 52 (the black line below the box).

#Median is 123 (the middle grean line in the box).

#First quarantile number is 96.5 which is below median.

#Third quarantile number is 180 which is greater than median.
```

```
#Max number is 335 (the black line above the box).

#There is one outlier in the dataset(circle above the max line).

Out[114]: Text(0.5, 1.0, 'Box Plot of hp column of mtcars Dataset')
```


Out[115]: Text(0.5, 1.0, 'Box Plot of drat column of mtcars Dataset')


```
In [116]: #Question 4: Plot boxplots for all numerical columns in the dataset and provide you #comments on what you observe.

mtcars.boxplot(column="wt",
    return_type='axes',
    figsize=(8,8)
)

plt.title('Box Plot of wt column of mtcars Dataset')

#Comments on Box-plot

#A boxplot describes summary of five numbers of a dataset.

#These are minimum, first quartile, median, third quartile, and maximum numbers.

#Min number is 1.51 (the black line below the box).

#Median is 3.325 (the middle grean line in the box).

#First quarantile number is 2.58 which is below median.

#Third quarantile number is 3.61 which is greater than median.
```

1.5

```
#Max number is 5.42 (the black line above the box).

#There are three outliers in the dataset(circle above the max line).

Out[116]: Text(0.5, 1.0, 'Box Plot of wt column of mtcars Dataset')
```

Out[117]: Text(0.5, 1.0, 'Box Plot of gsec column of mtcars Dataset')


```
In [118]: #Question 4: Plot boxplots for all numerical columns in the dataset and provide you #comments on what you observe.

mtcars.boxplot(column="vs",
    return_type='axes',
    figsize=(8,8)
)

plt.title('Box Plot of vs column of mtcars Dataset')

#Comments on Box-plot

#A boxplot describes summary of five numbers of a dataset.

#These are minimum, first quartile, median, third quartile, and maximum numbers.

#Min number is 0.

#Median is 0 (grean line in the box).

#First quarantile number is 0.

#Third quarantile number is 1 which is greater than median.
```

```
#Max number is 1(the black line above the box).
Out[118]: Text(0.5, 1.0, 'Box Plot of vs column of mtcars Dataset')
```


Out[119]: Text(0.5, 1.0, 'Box Plot of am column of mtcars Dataset')


```
In [120]: #Question 4: Plot boxplots for all numerical columns in the dataset and provide you #comments on what you observe.

mtcars.boxplot(column="gear",
    return_type='axes',
    figsize=(8,8)
)

plt.title('Box Plot of gear column of mtcars Dataset')

#Comments on Box-plot

#A boxplot describes summary of five numbers of a dataset.

#These are minimum, first quartile, median, third quartile, and maximum numbers.

#Min number is 3 (the black line below the box).

#Median is 4 (grean up in the box).

#First quarantile number is 3 which is below median.

#Third quarantile number is 4 which is greater than median.

#Max number is 5 (the black line above the box).
```

#No outliers
Out[120]: Text(0.5, 1.0, 'Box Plot of gear column of mtcars Dataset')

Out[121]: Text(0.5, 1.0, 'Box Plot of carb column of mtcars Dataset')

