GeoSPARQL: an introduction

C. Métral

Semantic Web Technologies

Representing Spatial Data

Available vocabulary, such as:

WGS84 Geo Positioning (geo)

Handling Spatial Data

Need for spatial reasoning

Examples

- What are the monuments in parks of Geneva?
- What are the universities within 20 km?
- What are the commercial land parcels that touch some arterial streets?

=> Need **geospatial concepts and properties** if the relationships (between monuments and parks or between parcels and streets) are not explicit

Handling Spatial Data with semantics

Examples

- What are the monuments in parks of Geneva that have been made by Paul Landowski?
- What are the universities within 20 km that propose courses on RDF?

=> Need RDF(S) + geospatial concepts and properties for representing such resources

Simple Features Model

Definition

- It is a specification of the Open Geospatial Consortium, which defines a general architecture for geographic data and for their geometries
- More precisely
 - It describes a way to represent geospatial data using a hierarchy of classes
 - It defines **functions** for accessing, operating and constructing these data

Features and Geometries

Feature

- Any entity in the real world with some spatial location
- Examples: a university, a parcel, a street...

Geometry

- Any geometric shape, such as a point, a line, a polygon, that is used as a representation of a feature's spatial location
- Examples: a point for a university, a polygon for a parcel...

Coordinate Reference System/Spatial Reference System

- Part of the metadata associated with a geometry
- Examples: (X,Y) coordinates, longitude and latitude...

Topological relationships

Each spatial entity is inherently related to some other spatial entities -> 8 geospatial topological relations to describe relationships between entities in space

```
equals
```

disjoint

intersects at least one point in common (not disjoint)

touches at least one boundary point in common, but no interior

points

within

contains inverse of within

overlaps

crosses

Examples of topological spatial relations

Touches(a,b) Within(a,b) b b a a Touches(a,b) Crosses(a,b) a b Crosses(a,b) Overlaps(a,b) a a b

From http://en.wikipedia.org/wiki/Spatial_relation

Handling and Querying Spatial Data

Examples

- What are the universities within 20 km that propose courses on RDF?
- What are the monuments in parks of Geneva that have been made by Paul Landowski?
- => Need of spatial reasoning with semantic reasoning
- => Need geospatial queries

GeoSPARQL

Definition

A spatial extension to the SPARQL query language for geospatial information

Built on existing standards

- World Wide Web Consortium W3C Semantic Web: RDF, RDFS, SPARQL...
- Open Geospatial Consortium OGC Simple Features model, geometry models...
- ISO/TC 211

• ...

GeoSPARQL

Provides the following features

- An RDF/OWL vocabulary for representing spatial information consistent with the Simple Features Model
- A set of SPARQL extension functions for spatial computations
- A set of RIF (Rule Interchange Format) rules for query transformation

SPARQL query

What are the universities that propose courses on RDF?

```
@prefix cui: <http://cui.unige.ch/> .
SELECT ?i
WHERE {
   ?i a cui:University.
   ?i cui:course ?c .
   ?c cui:keyword ?k .
   FILTER (?k = "RDF")
```

GeoSPARQL query

What are the universities within 20 km (from a reference point with lat=46.202 and lon=6.146) that propose courses on RDF? SELECT ?i WHERE { ?i a cui:University. ?i spatial:nearby(46.202 6.146 20 'km'). ?i cui:course ?c . ?c cui:keyword ?k . FILTER (?k = "RDF")

Spatial RDFS

Main geospatial classes and property

Geospatial and domain classes

From [3]

Main geospatial classes and property

geo:Feature class

A thing with a spatial location (a city, a monument...)

geo:Geometry class

A representation of a spatial location (a set of coordinates)

geo:SpatialObject class

A superclass of both Feature and Geometry classes

geo:hasGeometry property

To link a feature to its geometry that represents its spatial extent A given feature may have many associated geometries for varying purposes

Example: a city can be represented either by a point or a polygon according to the scale or to the size of the city

See http://www.opengis.net/ont/geosparql

Definition of geo:SpatialObject class

```
geo:SpatialObject a rdfs:Class,
owl:Class;
```

rdfs:label "Spatial Object"@en;

rdfs:comment "The class Spatial Object represents everything that can have a spatial representation. It is superclass of feature and geometry"@en.

Definition of geo:Feature class

Definition of geo: Geometry class

```
geo:Geometry a rdfs:Class,
                owl:Class;
rdfs:label "Geometry"@en;
rdfs:subClassOf geo:SpatialObject;
owl:disjointWith geo:Feature;
rdfs:comment "The class represents the top-level geometry"
  type. This class is equivalent to the UML class
  GM Object defined in ISO 19107, and it is superclass of
  all geometry types "@en .
```

Definition of geo:hasGeometry property

Main geometry representations

WKT (Well-known text)

Text markup language for representing vector geometry objects Defined by the Open Geospatial Consortium (OGC)

Example: the point with 2D coordinates (x=10, y=23) defined by the string "POINT (10,23)"

GML (Geography Markup Language)

```
XML-based language
Defined by the OGC
```

Example: definition of the point (10,23)

```
<gml:Point srsDimension="2" >
      <gml:pos>10 23</gml:pos>
</gml:Point>
```

Main geometry types (WKT)

TYPE	SHAPE	Geometry Class	SYNTAX
POINT	•	sf:Point	POINT(longitude latitude)
LINESTRING	~	sf:LineString	LINESTRING(long1 lat1, long2 lat2,)
POLYGON		sf:Polygon	POLYGON((long1 lat1, long2 lat2,, long1 lat1))
POLYGON (WITH HOLE)		sf:Polygon	POLYGON((long1 lat1, long2 lat2,, long1 lat1), (longA latA, longB latB,, longA latA))

To create a WKT geometry, a resource should be declared to be the appropriate type from the table above, and given an **asWKT** property with a literal of the appropriate form.

From [2]
See also http://www.opengis.net/ont/sf

Datatype properties for geo:Geometry

- Explicitly typed as owl:DatatypeProperty and rdf:Property
 - geo:dimension
 - geo:coordinateDimension
 - geo:spatialDimension
 - geo:isEmpty
 - geo:isSimple
 - geo:is3D

Implementations may do both.

From [3]

Example: representation of a spatial resource

```
ex:Monument1 a geo:Feature;

rdfs:label "Washington Monument";

geo:hasGeometry ex:Point1 .

ex:Point1 a sf:Point;

geo:asWKT "POINT(-77.03524

38.889468)"^^geo:wktLiteral.
```

- 1. The resource is a feature
- 2. This feature has a label
- 3. This feature has a geometry (geo-location)
- 4. This geometry is a point
- 5.This point is defined according the WKT representation by 2 coordinates (longitude latitude)

 From [2]

Another example: semantic part

From [3]

Example: definition of the (semantic) structure

```
@prefix...
ex:Monument a owl:Class;
                rdfs:subClassOf ex:Attraction.
ex:Park a owl:Class;
         rdfs:subClassOf ex:Attraction.
ex:Museum a owl:Class;
              rdfs:subClassOf ex:Attraction.
ex:Restaurant a owl:Class:
              rdfs:subClassOf ex:Service
ex:Attraction a owl:Class;
               rdfs:subClassOf ex:PointOfInterest.
ex:Service a owl:Class;
            rdfs:subClassOf ex:PointOfInterest.
ex:PointOfInterest a owl:Class;
                    rdfs:subClassOf geo:Feature.
```

Example: definition of the geospatial data

```
@prefix...
ex:Monument1 a ex:Monument;
               rdfs:label "Washington Monument";
               geo:hasGeometry ex:Point1.
ex:Point1 a sf:Point;
          geo:asWKT "POINT(-77.03524 38.889468)"^^geo:wktLiteral .
ex:Park1 a ex:Park;
          rdfs:label "Example Park";
          geo:hasGeometry ex:Polygon1.
ex:Polygon1 a sf:Polygon;
            geo:asWKT "POLYGON((-77.05 38.87, -77.02 38.87, -77.02 38.9,
                        -77.05 38.9, -77.05 38.87))"^^geo:wktLiteral.
```

Example of a query

Retrieve the geometry information of ex:Monument1

```
PREFIX geo: <a href="http://www.opengis.net/ont/geosparql#">http://www.opengis.net/ont/geosparql#</a>
PREFIX ex: <a href="http://cui.unige.ch/">http://cui.unige.ch/>
SELECT ?wkt
WHERE {
               ex:Monument1 geo:hasGeometry?g.
               ?g geo:asWKT ?wkt .
}
-> "POINT(-77.03524 38.889468)"
```

GeoSPARQL relationships

```
Topological relationships:
equals
disjoint
intersects
touches
within
contains
overlaps
crosses
```

Different syntaxes according to the relations family: for example, geo:sfEquals (Simple Features), geo:ehEquals (Egenhofer), geo:rcc8eq (RCC8) for the equals relation

Simple features topological relations

Relation Name	Relation URI	Domain/Range	Applies To Geometry Types
equals	geo:sfEquals	geo:SpatialObject	All
disjoint	geo:sfDisjoint	geo:SpatialObject	All
intersects	geo:sfIntersects	geo:SpatialObject	All
touches	geo:sfTouches	geo:SpatialObject	All except P/P
within	geo:sfWithin	geo:SpatialObject	All
contains	geo:sfContains	geo:SpatialObject	All
overlaps	geo:sf0verlaps	geo:SpatialObject	A/A, P/P, L/L
crosses	geo:sfCrosses	geo:SpatialObject	P/L, P/A, L/A, L/L

Egenhofer topological relations

Relation Name	Relation URI	Domain/Range	Applies to Geometry Types
equals	geo:ehEquals	geo:SpatialObject	All
disjoint	geo:ehDisjoint	geo:SpatialObject	All
meet	geo:ehMeet	geo:SpatialObject	All except P/P
overlap	geo:ehOverlap	geo:SpatialObject	All
covers	geo:ehCovers	geo:SpatialObject	A/A, A/L, L/L
covered by	geo:ehCoveredBy	geo:SpatialObject	A/A, L/A, L/L
inside	geo:ehInside	geo:SpatialObject	All
contains	geo:ehContains	geo:SpatialObject	All

RCC8 topological relations

Relation Name	Relation URI	Domain/Range	Applies to Geometry Types
equals	geo:rcc8eq	geo:SpatialObject	A/A
disconnected	geo:rcc8dc	geo:SpatialObject	A/A
externally connected	geo:rcc8ec	geo:SpatialObject	A/A
partially overlapping	geo:rcc8po	geo:SpatialObject	A/A
tangential proper part inverse	geo:rcc8tppi	geo:SpatialObject	A/A
tangential proper part	geo:rcc8tpp	geo:SpatialObject	A/A
non- tangential proper part	geo:rcc8ntpp	geo:SpatialObject	A/A
non- tangential proper part inverse	geo:rcc8ntppi	geo:SpatialObject	A/A

From [1]

RCC8 topological relations

From

http://www.gitta.info/SpatialQueries/en/html

	poly-poly	line-line	point- point	poly-line	poly-point	line-point
Disjoint		77		Į	•	
Meet		\ <u> </u>			•	/
Overlap		4				
Contains				X	•	/
Inside				1	•	
Covers				Z		
Covered by				Z		
Equal		1	•			

Equivalent RCC8, Egenhofer and Simple Features Topological Relations

Simple Features RCC8		Egenhofer	
equals	equals	equal	
disjoint	disconnected	disjoint	
intersects	¬ disconnected	¬ disjoint	
touches	externally connected	meet	
within	non-tangential proper part + tangential proper part	inside + coveredBy	
contains	non-tangential proper part inverse + tangential proper part inverse	contains + covers	
overlaps	partially overlapping	overlap	

From [1]

34

Example of a query

Find the monuments that are within ex:Park1 PREFIX geo: http://www.opengis.net/def/geosparql/ PREFIX ex: http://cui.unige.ch/> SELECT ?f WHERE { ex:Park1 geo:hasGeometry ?g1. ?f a ex:Monument; geo:hasGeometry?g2. ?g2 geo:sfWithin ?g1 . -> ex:Monument1

GeoSPARQL query functions

As topological relationships but use the prefix *geof* instead of *geo*: for example, *geof:sfEquals* (and not anymore *geo:sfEquals*)

Returns *true* or *false* instead of a geometry as it is with the topological relations

Example of a query

Find whether there are monuments that are within ex:Park1

```
PREFIX geo: <a href="http://www.opengis.net/def/geosparql/">http://www.opengis.net/def/geosparql/</a>
PREFIX geof: <a href="http://www.opengis.net/def/function/geosparql/">http://www.opengis.net/def/function/geosparql/</a>>
PREFIX ex: <a href="http://cui.unige.ch/">http://cui.unige.ch/>
SELECT ?f
WHERE {
                ex:Park1 geo:hasGeometry?g1.
                ?f a ex:Monument;
                 geo:hasGeometry?g2.
                ?g2 geof:sfWithin ?g1.
                                                                                        From [2]
-> true
```

Other query functions

Properties	Parameters	Returns
geof:distance	Geom1, Geom2, unitsURI	xsd:double
geof:buffer	Geom1, radius, unitsURI	Geometry literal
geof:convexHull	Geom1	Geometry literal
geof:intersection	Geom1, Geom2	Geometry literal
geof:union	Geom1, Geom2	Geometry literal
geof:difference	Geom1, Geom2	Geometry literal
•••		
geof:envelope	Geom1	Geometry literal
geof:boundary	Geom1	Geometry literal
geof:getsrid	Geom1	SRID of literal

From [2]

Query Transformation Rules

- Allow for an additional layer of abstraction in SPARQL queries
- If a feature is used as the subject or object of a topological relation, the query is automatically rewritten to compare the geometry linked, thus removing the abstraction for processing

 From [4]

Before:

```
...
SELECT ?f
WHERE {
     ?f a ex:Monument;
     ?f geo:sfWithin ex:Park1.
}
```

Query Transformation Rules

```
After:
...
SELECT ?f
WHERE {
    ex:Park1 geo:hasGeometry ?g1 .
    ?f a ex:Monument;
    geo:hasGeometry ?g2 .
    ?g2 geo:sfWithin ?g1 .
}
```

From [2]

Implementation: some sites

Some triple store implementations that can spatially index information in the vocabulary, and perform spatial reasoning

AllegroGraph

for geospatial and temporal reasoning

https://franz.com/agraph/allegrograph/

Stardog

https://www.stardog.com

https://www.stardog.com/docs/java/snarl/com/complexible/stardog/spatial/geosp

<u>arql</u>

Strabon

spatiotemporal RDF store with a subset of GeoSPARQL

https://strabon.di.uoa.gr

Implementation: some sites

GraphDB

limited custom geospatial queries possible over WGS84 data (GraphDBfunctions)

GeoSPARQL sites (Online queries)

http://www.geosparql.org/

http://linkedgeodata.org/sparql

On GraphDB

Usage

- Plugin control predicates
- Enable plugin with

```
PREFIX : <a href="http://www.ontotext.com/plugins/geosparql#>"> INSERT DATA { :s :enabled "true" . }
```

- Disable plugin with PREFIX: "> INSERT DATA { :s :enabled "false" . }
- Note that
 - When the plugin is disabled, it does not index any data or process updates. It does not handle any of the GeoSPARQL predicates either
 - All GeoSPARQL functions starting with geof: like *geof:sfOverlaps* do not use any indexes and are always enabled

Some references

- [1] OGC GeoSPARQL A Geographic Query Language for RDF Data, Open Geospatial Consortium, OGC 11-052r4 http://www.opengis.net/doc/IS/geosparql/1.0
- [2] GeoSPARQL user guide, Dave Kolas & Robert Battle, 1/19/2012
- [3] Getting started with GeoSPARQL, Dave Kolas, Matt Perry & John Herring, OGC, Oct 29 2013

http://www.ssec.wisc.edu/meetings/geosp_sem/presentations/GeoSPA RQL_Getting_Started%20-%20KolasWorkshop%20Version.pdf

[4] GeoSPARQL: Enabling a Geospatial Semantic Web, Robert Battle, Dave Kolas

http://www.semantic-web-journal.net/sites/default/files/swj176_0.pdf

Some references

W3C Geospatial Ontologies

http://www.w3.org/2005/Incubator/geo/XGR-geo-ont/

Geonames interface http://www.geonames.org/

Vocabularies for geospatial modelling http://geovocab.org/

Basic Geo (WGS84 lat/long) Vocabulary

https://www.w3.org/2003/01/geo/

Annex: acronyms

GeoJSON Geographic JavaScript Object Notation

GFM General Feature Model (as defined in ISO 19109)

GML Geography Markup Language

KML Keyhole Markup Language

OWL OWL 2 Web Ontology Language

RCC Region Connection Calculus

RDF Resource Description Framework

RDFS RDF Schema

RIF Rule Interchange Format

SPARQL SPARQL Protocol and RDF Query Language

WKT Well Known Text (as defined by Simple Features or ISO 19125)

W3C World Wide Web Consortium (<u>http://www.w3.org/</u>)

XML Extensible Markup Language

Annex: XML namespaces

```
http://www.opengis.net/ont/geosparql#
geo:
       http://www.opengis.net/def/function/geosparql/
geof:
       http://www.opengis.net/def/rule/geosparql/
geor:
       http://www.opengis.net/ont/gml#
gml:
0.001
       http://www.w3.org/2002/07/owl#
           http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdf:
rdfs:
       http://www.w3.org/2000/01/rdf-schema#
sf:
       http://www.opengis.net/ont/sf#
       http://www.w3.org/2001/XMLSchema#
xsd:
```

Annex: Turtle prefixes

```
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix geo: <http://www.opengis.net/ont/geosparql#> .
@prefix geof: < http://www.opengis.net/def/function/geosparql/> .
@prefix geor: < http://www.opengis.net/def/rule/geosparql/> .
@prefix sf: < http://www.opengis.net/ont/sf# > .
@prefix gml: < http://www.opengis.net/ont/gml# > .
@prefix owl: < http://www.w3.org/2002/07/owl#> .
```

Annex: SPARQL prefixes

```
PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/2000/01/rdf-schema#</a>
PREFIX xsd: <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#</a>
PREFIX geo: <a href="http://www.opengis.net/ont/geosparql#">http://www.opengis.net/ont/geosparql#</a>
PREFIX geof: <a href="http://www.opengis.net/def/function/geosparql/">http://www.opengis.net/def/function/geosparql/</a>
PREFIX geor: <a href="http://www.opengis.net/ont/sf#">http://www.opengis.net/ont/sf#</a>
PREFIX gml: <a href="http://www.opengis.net/ont/gml#">http://www.opengis.net/ont/gml#</a>
PREFIX owl: <a href="http://www.w3.org/2002/07/owl#">http://www.w3.org/2002/07/owl#</a>
```

Annex: SPARQL prefixes

```
PREFIX geo: <a href="http://www.w3.org/2003/01/geo/wgs84_pos#">http://www.geonames.org/ontology#</a>
PREFIX geom: <a href="http://geovocab.org/geometry#">http://geovocab.org/geometry#</a>
PREFIX spatial: <a href="http://geovocab.org/spatial#">http://geovocab.org/spatial#</a>
PREFIX loticoowl: <a href="http://www.lotico.com/ontology/">http://www.lotico.com/ontology/</a>
PREFIX my: <a href="http://example.org/ApplicationSchema#">http://example.org/ApplicationSchema#</a>
```