

(11) Publication number:

08269008 A

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number: 07076174

(51) Intl. Cl.: C07D207/34 A61K 31/40

(22) Application date: 31.03.95

(30) Priority:

(43) Date of application

publication:

15.10.96

(84) Designated contracting

states:

(71) Applicant: MITSUI TOATSU CHEM INC

(72) Inventor: MATSUNAGA AKIO

NAKAJIMA YUKI IWATA DAIJI

EDATSUGU HAJIME

(74) Representative:

(54) COMPOUND HAVING DISTAMYCIN-LIKE STRUCTURE AND ANTITUMOR AGENT CONTAINING THE COMPOUND

(57) Abstract:

PURPOSE: To obtain a new compound having suppressing activity against the growth of tumor cells and useful for treatment of leukemia, osteosarcoma, breast cancer, gastric cancer, etc., when used as an antitumor agent by modifying a partial structure of distamycin.

CONSTITUTION: A compound of formula I [R1 is H, R3(CH2)rC0NH (R3 is H, amino, etc.; r:0-5), etc.; R2 is H, amidino, etc.; (m) and (n) are each 0,1; (m) and (n) can not be zero at the same time; t=0-5] or its salt, e.g. 4-benzoylamino- l-methyl-N-[3-(N,N-dimethylamino)propyl]-2-pyrrolecarboxamide. The compound is obtained e.g. by hydrogenating a nitro compound of formula II in the presence of a Pd/C catalyst in a solvent such as methanol to convert to an amino compound and

subsequently subjecting the product to condensation reaction with chlorambucil of formula III. A nitro compound of formula II is obtained e.g. by starting from 4-(1-methyl-4-nitro-2-pyrrolecarboxamide)benzoic acid ethyl ester.

COPYRIGHT: (C)1996,JPO

Ī

II

III

8/27/2002

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-269008

(43)公開日 平成8年(1996)10月15日

(51) Int.Cl.6	識別記号	庁内整理番号	FI		技術表示箇所
C 0 7 D 207/34			C 0 7 D 207/34		
A 6 1 K 31/40	ADU		A 6 1 K 31/40	ADU	

審査請求 未請求 請求項の数5 OL (全 18 頁)

(21)出願番号	特願平7-76174	(71)出願人 000003126
		三井東圧化学株式会社
(22)出願日	平成7年(1995)3月31日	東京都千代田区霞が関三丁目2番5号
		(72)発明者 松永 明夫
		千葉県茂原市東郷1144番地 三井東圧化学
		株式会社内
		(72)発明者 中島 由紀
		千葉県茂原市東郷1144番地 三井東圧化学
		株式会社内
		(72)発明者 岩田 大二
		千葉県茂原市東郷1900番地の1 三井東圧
		化学株式会社内
		最終頁に続く

(54) 【発明の名称】 ディスタマイシン類似構造をもつ化合物と、それを含む抗癌剤

(57)【要約】 (修正有)

【目的】ディスタマイシン誘導体で、抗癌剤として有用 な化合物を提供する。

【構成】式(1)で表されるディスタマイシン誘導体, および当該化合物を有効成分として含有する医薬組成 物。

〔式中, R_1 はH, R_3 - (CH_2) $_r$ - CONH - 等; R_2 はH, NH_2 ,NHC (=NH) - NH_2 ,(置換) フェニル基等; R_3 はH, NH_2 ,N (CH_3) $_2$,等,を示し,m,n は0 または1 (但し同時に0 であることはない);r,t は $0\sim5$ の整数,である〕

【効果】式(1)で表される化合物は、腫瘍細胞増殖抑制作用を示し、抗癌剤として有用である。

【特許請求の範囲】

【請求項1】 次の式(1) [化1] で表される化合 * *物、またはその薬理学的に許容される塩。

【化1】

$$\begin{array}{c|c}
R_1 & H \\
N & N \\
CH_3 & N
\end{array}$$

$$\begin{array}{c|c}
H & H \\
N & N \\
CH_3 & N
\end{array}$$

$$\begin{array}{c|c}
H & CH_2 & R_2
\end{array}$$

$$\begin{array}{c|c}
H & CH_2 & R_2
\end{array}$$

[但し、Riは水素、R3-(CH2),-CONH-ある ミノ基、脂肪族アミノ基、アミジノ基、グアニジノ基、 トリメチルアンモニウム基、トリエチルアンモニウム 基、ジメチルスルホニウム基、ジエチルスルホニウム 基、フェニル基、置換されたフェニル基、ピリジル基、 N-メチルピリジル基、チエニル基、フリル基、ピロリ ル基、N-メチルピロリル基から選ばれる基あるいは式 (2) [化2] で示す基である。mとnは0または1を 示す。但し、mとnが両方同時に0であることはない。※

$$X = \begin{pmatrix} R_4 \\ - \\ - \end{pmatrix} - (CH_2)_p(CONH)_q - \begin{pmatrix} R_4 \\ - \\ - \end{pmatrix}$$

(但し、pは0~5の整数を示し、qは式(2)の化合 物がR1を示すとき1である。式(2)の化合物がR2 を示すとき0または1である。R4は炭素数1から5の アルキル基、炭素数1~5のアルコキシル基、アミノ 基、カルポキシル基、トリフルオロメチル基、ハロゲン 原子である。また、XとYは水素または-N(CH2C H2 C1) 2 であり、XとYの両方が同時に水素である ことはない。)]

【請求項2】 式(1)で表される化合物が、4-[4 - [N, N-ビス (2-クロロエチル) アミノ] フェニ ル] ブチリルアミノ基、4-[3-[N, N-ピス(2 -クロロエチル) アミノ] フェニル] プチリルアミノ 基、4- [N, N-ビス (2-クロロエチル) アミノ] ベンゾイルアミノ基、3-[N, N-ピス(2-クロロ エチル) アミノ] ベンゾイルアミノ基、または [4-N, N-ビス-(2-クロロエチル)アミノ]フェニル アミノ基の何れかを有する4-ペンゾイルアミノ-1-メチルー2-ピロールカルボキサミド誘導体である、請 40 求項1記載の化合物またはその薬理学的に許容される 塩。

【請求項3】 式(1)で表される化合物が、4-[4 - [N, N-ビス (2-クロロエチル) アミノ] フェニ ル] ブチリルアミノ基、4-[3-[N, N-ビス(2 -クロロエチル) アミノ] フェニル] ブチリルアミノ 基、4-[N, N-ビス(2-クロロエチル)アミノ] ベンゾイルアミノ基、3- [N, N-ビス(2-クロロ エチル) アミノ] ベンゾイルアミノ基、または [4-N, N-ピス- (2-クロロエチル) アミノ] フェニル 50 年、111巻、2700-2712頁)。このような構

※ t は 0 から 5 の整数を示す。(但し、R3 は水素、アミ いは式 (2) [化 2] で示す基である。 R_2 は水素、 P_3 10 ノ基、ジメチルアミノ基、脂肪族アミノ基、アミジノ 基、グアニジノ基、トリメチルアンモニウム基、トリエ チルアンモニウム基、ジメチルスルホニウム基、ジエチ ルスルホニウム基、ピリジル基、N-メチルピリジル 基、チエニル基、フリル基、ピロリル基、N-メチルピ ロリル基から選ばれる基である。rは0から5の整数で ある。)

【化2】

式(2)

アミノ基の何れかを有する1-メチル-N-フェニルー 2-ピロールカルボキサミド誘導体である、請求項1記 載の化合物またはその薬理学的に許容される塩。

【請求項4】 請求項1から3で表せる化合物を有効成 分として含有する医薬組成物。

【請求項5】 請求項1から3で表せる化合物を有効成 分として含有する抗癌剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、癌細胞の増殖を抑制す るディスタマイシン (Distamycin) 類似構造 をもつ化合物と、それを含む医薬組成物に関する。

[0002]

【従来の技術】ディスタマイシンあるいはネトロプシン (Netropsin)は、抗腫瘍活性をもつ物質とし て知られている(Nature、1964年、203 巻、1064-65頁)。これらの化合物はN-メチル ピロールを構成単位としてもつことが知られており、か つそのN-メチルピロールが2ないし3単位、アミド結 合で結合された構造を特徴としている。すなわち、この Nーメチルピロールがアミドで結合された繰り返し構造 が、抗癌作用を示す1つの構造的特徴と想像することが できる。

【0003】このディスタマイシンにアルキル化剤の部 分構造を結合した形をもつ化合物は既に示されている (J. Am. Chem. Soc. 1985年、107 巻、8266-8268頁、あるいは同雑誌1989

3 .

造をもつ抗癌剤の例も示されている(J. Med. Ch em. 1989年、32巻、774-778頁、特開昭 62-294653、特開平3-504863)。この ような化合物の抗癌活性の一部は、このアミド結合で結 合された環構造の繰り返し構造が担っている可能性があ る。ところが、これまでの少ない知見では、アミド結合 でつながれた環構造が抗癌活性の一部を担っていること は予想されても、この中でどの部分構造が本当に必要な 構造であるか、或は他にどの様な構造が代替しうるかを 数種の異なった例が示されているということは、別に望 ましい構造をもつ化合物の存在を予測させる。この様な 新たな構造の探索は、新規な抗癌剤の創製のために特に 求められていると考えられる。また、環構造の繰り返し 構造に結合させるためのアルキル化部分構造について も、どのような構造が抗癌剤として最適であるか調べら れた例も見えない。ところで、クロラムプシル(Chl orambucil) はナイトロジェンマスタード等の 抗癌剤と同じく、N, N-ビス(2-クロロエチル)ア ミノ基をもつアルキル化剤に属する抗癌剤である。クロ 20 ラムプシルの抗癌活性はDNA、酵素等へのアルキル化 を行う結果であると想像されている。この化合物の抗癌 活性は一応確立されたものであるが、活性は他の抗癌剤 と比較して、必ずしも高いとは言えない。

[0004]

【発明が解決しようとする課題】本発明者らは、ディス タマイシン類似の構造をもち、抗癌剤として重要な部分* *構造となりうる一群の化合物が存在することを予想し て、新たに抗癌活性に必要な部分構造を探索した。ま た、ディスタマイシンの抗癌活性はアルキル化部分の付 加によって高まることが期待できるので、これについて も同時に検討を行った。

[0005]

【課題を解決するための手段】本発明者らは、これらの 課題を解決するためにディスタマイシンの部分構造を変 換した新規化合物を合成して、抗癌剤として有用な作用 予想することは、現在のところ全く不可能である。特に 10 を示す骨格の探索を行った。この結果、抗癌剤として有 用な化合物として、4-ペンゾイルアミノ-1-メチル - 2 - ピロールカルボキサミド誘導体、あるいは1-メ チルーN-フェニル-2-ピロールカルボキサミド誘導 体を見いだし、本発明を完成した。これらの化合物は、 現在のところ抗癌剤として全く知見がない。これらの化 合物はディスタマイシンと同等の腫瘍細胞増殖阻害活性 を示した。更に以下に示すように、クロラムプシルある いは、それと類似の構造をもつ化合物を結合した化合物 はディスタマイシンあるいはクロラムブシルより高い抗 癌活性を示した。以上のことから、本発明者らはDNA に作用する新規物質であり、新たな抗癌剤を提供する発 明を完成するに至った。すなわち、本発明は次の式 (1) [化3] で表される化合物またはその薬理学的に 許容される塩。

[0006]

【化3】

[但し、R1 は水素、R3-(CH2),-CONH-あ るいは式(2) [化4] で示す基である。R2 は水素、 アミノ基、脂肪族アミノ基、アミジノ基、グアニジノ 基、トリメチルアンモニウム基、トリエチルアンモニウ ム基、ジメチルスルホニウム基、ジエチルスルホニウム 基、フェニル基、置換されたフェニル基、ピリジル基、 N-メチルピリジル基、チエニル基、フリル基、ピロリ 40 ロリル基から選ばれる基である。rは0から5の整数で ル基、N-メチルピロリル基から選ばれる基あるいは式 (2) [化4] で示す基である。 mとnは0または1を 示す。但し、mとnが両方同時に0であることはない。※

(但し、pは0~5の整数を示し、gは式(2)の化合 物がR1を示すとき1である。式(2)の化合物がR2

※ t は 0 から 5 の整数を示す。(但し、R3 は水素、アミ ノ基、ジメチルアミノ基、脂肪族アミノ基、アミジノ 基、グアニジノ基、トリメチルアンモニウム基、トリエ チルアンモニウム基、ジメチルスルホニウム基、ジエチ ルスルホニウム基、ピリジル基、N-メチルピリジル 基、チエニル基、フリル基、ピロリル基、Nーメチルピ ある。)

[0007]

(化4)

式(2)

アルキル基、炭素数1~5のアルコキシル基、アミノ 基、カルポキシル基、トリフルオロメチル基、ハロゲン を示すとき 0 または 1 である。 R_4 は炭素数 1 から 5 の 50 原子である。また、X と Y は水素または - N (C H_2 C

合物である。

H₂ C 1)₂ であり、XとYの両方が同時に水素である ことはない。)]

以下、本発明をさらに詳細に説明する。式(1)の化合物において、R2 およびR3 おける脂肪族アミノ基とは、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ピペラジニル基、1-メチルピペラジニル基、モルホリノ基、ピペリジノ基が望ましい。置換されたフェニル基としては、3-メトキシフェニル基、4-メトキシフェニル基、3, 4, 5-メトキシフェニル基が望ましい。ハロゲン原子とはF、C1、Brである。薬理学的に許容される塩とは、例えば塩酸塩、硫酸塩のような無機塩、p-トルエンスルホン酸塩、酢酸塩、蓚酸塩のような有機塩である。

【0008】式(1)で表される化合物のうち、4-ベ ンゾイルアミノー1-メチル-2-ピロールカルボキサ ミド誘導体とは、4-[4-[4-[N, N-ビス(2 ークロロエチル)アミノ]フェニル]ブチリルアミノ] ベンゾイルアミノー1-メチル-2-ピロールカルポキ サミド [N-置換] 誘導体、4-[4-[3-[N, N ーピス (2-クロロエチル) アミノ] フェニル] プチリ 20 ルアミノ] ベンゾイルアミノ-1-メチル-2-ピロー ルカルボキサミド [N-置換] 誘導体、4- [4-[N, N-ビス (2-クロロエチル) アミノ] ベンゾイ ルアミノ] ベンゾイルアミノー1-メチルー2-ピロー ルカルボキサミド [N-置換] 誘導体、4-[3-メチ ルー4- [4- [N, N-ビス (2-クロロエチル) ア ミノ]] ベンゾイルアミノ] ベンゾイルアミノー1ーメ チル-2-ピロールカルボキサミド [N-置換] 誘導 体、4-[3-クロロ-4-[4-[N, N-ピス(2 -クロロエチル) アミノ]] ベンゾイルアミノ] ベンゾ 30 イルアミノー1-メチル-2-ピロールカルボキサミド [N-置換] 誘導体、4-[置換] ペンゾイルアミノー 1-メチル-2-ピロールカルボキサミド [N-[4-[N, N-ビス (2-クロロエチル) アミノ] フェニ ル]] 誘導体、4-「置換] ベンゾイルアミノ-1-メ チルー2-ピロールカルボキサミド[N-4-[3-[N, N-ビス(2-クロロエチル)アミノ]フェニ ル]]誘導体の何れかを有する化合物である。

【0009】1-メチル-N-フェニル-2-ピロールカルボキサミド誘導体とは、4-[4-[4-[N, N 40-ビス (2-クロロエチル) アミノ] フェニル] ブチリルアミノ] -1-メチル-N-[置換] フェニル-2-ピロールカルボキサミド誘導体、4-[4-[3-[N, N-ビス (2-クロロエチル) アミノ] フェニル] ブチリルアミノ] -1-メチル-N-[置換] フェニル-2-ピロールカルボキサミド誘導体、4-[4-[N, N-ビス (2-クロロエチル) アミノ] ベンゾイルアミノ] -1-メチル-N-[置換] フェニルー2-ピロールカルボキサミド誘導体、3-[N, N-ビス (2-クロロエチル) アミノ] ベンゾイルアミノ] -1-メチル-N-[で加入 (2-クロロエチル) アミノ] ベンゾイルアミノー1-50

サミド誘導体、4-【置換】-1-メチル-N-[4-[4-[N, N-ピス (2-クロロエチル) アミノ] ベンゾイルアミノ] フェニル] -2-ピロールカルボキサミド誘導体、4-【置換】-1-メチル-N-[4-[3-メチル-4-[N, N-ピス (2-クロロエチル) アミノ] ベンゾイルアミノ] フェニル] -2-ピロールカルボナサミドが流体、4-【関換】-1-メチル

6メチル-N-[置換] フェニル-2-ピロールカルボキ

ル) アミノ] ベンゾイルアミノ] フェニル] -2-ピロールカルボキサミド誘導体、4-[置換] -1-メチルーN-[4-[3-クロロー4-[N, N-ピス(2-10 クロロエチル) アミノ] ベンゾイルアミノ] フェニル] -2-ピロールカルボキサミド誘導体、4-[置換] -1-メチル-N-[4-[3-[N, N-ピス(2-クロロエチル) アミノ] ベンゾイルアミノ] フェニル] -

【0010】このなかで望ましい例としては以下のものがある。それぞれは、対応する塩酸塩のような薬理学的に許容される塩の形も望ましい形である。

2-ピロールカルボキサミド誘導体の何れかを有する化

(化合物1) 4 - ベンゾイルアミノ-1-メチル-N-[3-(N, N-ジメチルアミノ) プロピル] -2-ピ ロールカルボキサミド

(化合物 2) 4 - ベンゾイルアミノー 1 - メチルーNー (2-アミジノエチル) - 2 - ピロールカルボキサミド (化合物 3) <math>4 - ベンゾイルアミノー 1 - メチルーNー (3, 4, 5-トリメトキシフェニル) - 2 - ピロールカルボキサミド

(化合物 4) 4-[(3-ホルミルアミノ) ベンゾイルアミノ] -1-メチル-N-[3-(N, N-ジメチルアミノ) プロピル] -2-ピロールカルボキサミド

(化合物 5) $4 - [(4 - \pi n) = n = 1)$ ベンゾイル アミノ] $-1 - \lambda + n = 1$ (N, N $- \beta \lambda + n = 1$) プロピル] $-2 - \alpha + n = 1$

(化合物6) 4-[3-(4-ホルミルアミノ-1-メチル-2-ピロールカルボキサミド) ベンゾイルアミノ] <math>-1-メチル-N-[3-(N,N-ジメチルアミノ) プロピル] -2-ピロールカルボキサミド

(化合物7) 4-[4-(4-ホルミルアミノ-1-メチル-2-ピロールカルボキサミド) ベンゾイルアミノ] <math>-1-メチル-N-[3-(N,N-ジメチルアミノ) プロピル] -2-ピロールカルボキサミド

(化合物8) 3-(4-ホルミルアミノ-1-メチル-2-ピロールカルボキサミド)-N-[3-(N, N-ジメチルアミノ) プロピル] ベンズカルボキサミド

(化合物9) 4-(4-ホルミルアミノ-1-メチル-2-ピロールカルボキサミド) <math>-N-[3-(N,N-3)]ジメチルアミノ) プロピル] ベンズカルボキサミド

(化合物10) 4-[3-[4-[4-[N, N-ピス(2-クロロエチル) アミノ] フェニル] プチリルアミノ] ベンゾイルアミノ] <math>-1-メチル-N-[3-(N, N-ジメチルアミノ) プロピル] -2-ピロール

カルポキサミド

(化合物 1 1) 4 - [4 - [4 - [4 - [N, N-ビス (2 - クロロエチル) アミノ] フェニル] プチリルアミノ] ベンゾイルアミノ] - 1 - メチル-N-[3 - (N, N-ジメチルアミノ) プロビル] - 2 - ピロールカルボキサミド

(化合物 12) 4-[3-[4-[4-[4-[N, N- ビス (2-クロロエチル) アミノ] フェニル] プチリルアミノ] -1-メチル-2-ピロールカルボキサミド] ベンゾイルアミノ] -1-メチル-N-[3-(N, N-ジメチルアミノ) プロピル] -2-ピロールカルボキサミド

(化合物13) 4- [4- [4- [4- [4- [N, N-ビス (2-クロロエチル) アミノ] フェニル] ブチリルアミノ] -1-メチル-2-ピロールカルボキサミド] ベンゾイルアミノ] -1-メチル-N- [3- (N, N-ジメチルアミノ) プロピル] -2-ピロールカルボキサミド

(化合物 1 4) 4 - [3 - [4 - [N, N-ビス (2 - クロロエチル) アミノ] ベンゾイルアミノ] ベンゾイル 20 アミノ] -1-メチル-N-[3-(N, N-ジメチルアミノ) プロピル)] -2-ピロールカルボキサミド(化合物 1 5) 4 - [4 - [4 - [N, N-ビス (2 - クロロエチル) アミノ] ベンゾイルアミノ] ベンゾイルアミノ] -1-メチル-N-[3-(N, N-ジメチルアミノ) プロピル] -2-ピロールカルボキサミド

(化合物17) 4-[4-[3-[N,N-ピス(2-クロロエチル) アミノ] ベンゾイルアミノ] ベンゾイルアミノ] ー1-メチル-N-[3-(N,N-ジメチルアミノ) プロピル] <math>-2-ピロールカルボキサミド

(化合物 1 9) 4 - [4 - [3 - [4 - [N, N-ビス 40 (2 - クロロエチル) アミノ] ベンゾイルアミノ] - 1 - メチル-2 - ピロールカルボキサミド] ベンゾイルアミノ] - 1 - メチル-N - [3 - (N, N - ジメチルアミノ) プロピル] - 2 - ピロールカルボキサミド

(化合物20)4-[3-(ホルミルアミノ)ベンゾイルアミノ]-1-メチル-N-(2-アミジノエチル)-2-ピロールカルボキサミド

(化合物21) 4- [4-(ホルミルアミノ) ベンゾイルアミノ] -1-メチル-N-(2-アミジノエチル) -2-ピロールカルボキサミド 8

(化合物22)4-[3-(4-ホルミルアミノ-1-メチル-2-ピロールカルボキサミド)ベンゾイルアミノ]-1-メチル-N-(2-アミジノエチル)-2-ピロールカルボキサミド

(化合物 2 3) $4 - [4 - (4 - \pi n) = \pi n]$ メチルー 2 - ピロールカルボキサミド) ベンゾイルアミノ] - 1 - メチルー $N - (2 - \pi n)$ エチル) - 2 - ピロールカルボキサミド

(化合物24) 4- [4- [4- [4- [4- [N, N]] 10 -ピス(2-クロロエチル) アミノ] フェニル] プチリルアミノ] -1-メチル-2-ピロールカルボキサミド] ベンゾイルアミノ] -1-メチル-N-(2-アミジノエチル) -2-ピロールカルボキサミド

(化合物 2 5) 4 - [3 - [4 - [N, N - ピス (2 - クロロエチル) アミノ] ベンゾイルアミノ] ベンゾイルアミノ] ー1 - メチル-N - (2 - アミジノエチル) - 2 - ピロールカルボキサミド

(化合物26) 4- [4- [4- [N, N-ビス(2- クロロエチル) アミノ] ベンゾイルアミノ] ベンゾイルアミノ] ー1-メチル-N- (2-アミジノエチル) -2-ピロールカルボキサミド

(化合物27) 4-[3-[3-[N, N-ピス(2-クロロエチル) アミノ] ベンゾイルアミノ] ベンゾイルアミノ] ベンゾイル アミノ] -1-メチル-N-(2-アミジノエチル) -2-ピロールカルボキサミド

(化合物 2 8) 4 - [4 - [3 - [N, N - ピス (2 - クロロエチル) アミノ] ペンゾイルアミノ] ペンゾイルアミノ] ー 1 - メチルーN - (2 - アミジノエチル) ー 2 - ピロールカルボキサミド

30 (化合物29) 4- [4- [4- [3- [N, N-ピス (2-クロロエチル) アミノ] ベンゾイルアミノ] -1 -メチル-2-ピロールカルボキサミド] ベンゾイルアミノ] -1-メチル-N-(2-アミジノエチル) -2 -ピロールカルボキサミド

(化合物30) 4- [4-[3-[4-[N, N-ピス(2-クロロエチル) アミノ] ベンゾイルアミノ] -1-メチル-2-ピロールカルボキサミド] ベンゾイルアミノ] -1-メチル-N-(2-アミジノエチル) -2-ピロールカルボキサミド

(化合物31)4-[3-[4-[4-[N, N-ピス(2-クロロエチル)アミノ]ベンゾイルアミノ]-1-メチル-2-ピロールカルボキサミド]ベンゾイルアミノ]-1-メチル-N-(2-アミジノエチル)-2-ピロールカルボキサミド

(化合物32) 4- [4- [4- [4- [N, N-ピス(2-クロロエチル) アミノ] ベンゾイルアミノ] -1 -メチル-2-ピロールカルボキサミド] ベンゾイルアミノ] -1-メチル-N-(2-アミジノエチル) -2 -ピロールカルボキサミド

(化合物33) 4-[3-[4-[3-[N, N-ピス

(2-クロロエチル) アミノ] ベンゾイルアミノ] -1 -メチル-2-ピロールカルボキサミド] ベンゾイルア - ピロールカルボキサミド

(化合物34) 4-[4-[3-[N, N-ビス (2-プロモエチル) アミノ] ベンゾイルアミノ] -1 -メチル-2-ピロールカルボキサミド] ベンゾイルア $[2] - 1 - \lambda \mathcal{F} \mathcal{N} - N - (2 - \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F}) - 2$ - ピロールカルボキサミド

ーピス(2-クロロエチル)アミノ]フェニル]プチリ ルアミノ] -1-メチル-2-ピロールカルポキサミ [N] N = [N - (3, 4, 4)]5-トリメトキシフェニル)-2-ピロールカルボキサ ミド

(化合物 3 6) 4- [4- [4- [4- [4- [N, N **−ビス(2−クロロエチル)アミノ]フェニル]ブチリ** ルアミノ] -1-メチル-2-ピロールカルボキサミ ド] ベンゾイルアミノ] -1-メチル-N-(3, 4, 5-トリメトキシフェニル) -2-ピロールカルボキサ 20 ミド

(化合物37) 4-[3-[4-(N, N-ジメチルア ミノ) プチリルアミノ] ベンゾイルアミノ] -1-メチ ルーN- [4- [N, N-ビス (2-クロロエチル) ア ミノ] フェニル] -2-ピロールカルボキサミド

(化合物38) 4- [4-.[4-(N, N-ジメチルア ミノ) プチリルアミノ] ベンゾイルアミノ] -1-メチ N-N-[4-[N, N-ビス (2-クロロエチル)] アミノ] フェニル] -2-ピロールカルボキサミド

(化合物39) 4-[3-(グアニジノアセチルアミ ノ) ペンゾイルアミノ] -1-メチル-N-[4-[N, N-ビス(2-クロロエチル)アミノ]フェニ ル] -2-ピロールカルボキサミド

(化合物40) 4-[4-(グアニジノアセチルアミ ノ) ベンゾイルアミノ] -1-メチル-N-「4-[N, N-ピス (2-クロロエチル) アミノ] フェニ ル] -2-ピロールカルボキサミド

(化合物41) 4-[3-[4-[4-(N, N-ジメ チルアミノ) プチリルアミノ] -1-メチル-2-ピロ ールカルボキサミド] ベンゾイルアミノ] -1-メチル 40 -N-[4-[N, N-ビス (2-クロロエチル) アミ ノ] フェニル] -2-ピロールカルボキサミド

(化合物42) 4- [4- [4- [4- (N, N-ジメ チルアミノ) プチリルアミノ] -1-メチル-2-ピロ ールカルボキサミド] ベンゾイルアミノ] -1-メチル -N-[4-[N, N-ピス (2-クロロエチル) アミ ノ] フェニル] -2-ピロールカルボキサミド

(化合物 43) 4-[3-[4-(グアニジノアセチル アミノ) -1-メチル-2-ピロールカルボキサミド]

10 ービス(2-クロロエチル)アミノ]フェニル]-2-ピロールカルボキサミド

(化合物44) 4- [4- [4- (グアニジノアセチル アミノ) -1-メチル-2-ピロールカルボキサミド] ベンゾイルアミノ] -1-メチル-N-[4-[N, N]ービス(2-クロロエチル)アミノ]フェニル]-2-ピロールカルボキサミド

(化合物 45) 4-[3-[4-(N, N-ジメチルア ミノ) プチリルアミノ] ベンゾイルアミノ] -1-メチ (化合物35) 4-[3-[4-[4-[4-[N, N 10 ル-N-[4-[N, N-ビス (2-プロモエチル) ア ミノ] フェニル] -2-ピロールカルボキサミド

> (化合物46) 4-[3-(グアニジノアセチルアミ ノ) ベンゾイルアミノ] -1-メチル-N-[3-[N, N-ピス (2-クロロエチル) アミノ] フェニ ル] -2-ピロールカルボキサミド

(化合物47) 4- [3- [4-(N, N-ジエチルア ミノ) ブチリルアミノ] ベンゾイルアミノ] -1-メチ N-N-[4-[N, N-ピス (2-クロロエチル)] アミノ] フェニル] -2-ピロールカルボキサミド

(化合物48) 4-[3-(グアニジノアセチルアミ ノ) ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス (2-プロモエチル) アミノ] フェニ ル] -2-ピロールカルボキサミド

(化合物49) 4- [4- [4-(N, N-ジメチルア ミノ) プチリルアミノ] ペンゾイルアミノ] -1-メチ ル-N-[3-[N, N-ピス (2-クロロエチル) ア ミノ] フェニル] -2-ピロールカルボキサミド

(化合物50) 4-[4-(グアニジノアセチルアミ J) ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ビス(2-プロモエチル)アミノ]フェニ ル] -2-ピロールカルボキサミド

(化合物51) 4-[3-[4-(N, N-ジメチルア ミノ) ブチリルアミノ] ベンゾイルアミノ] -1-メチ ル-N-[3-[N, N-ピス (2-クロロエチル) ア ミノ] フェニル] -2-ピロールカルボキサミド

(化合物 5 2) 4 - [4 - [4 - (N, N-ジエチルア ミノ) プチリルアミノ] ペンゾイルアミノ] -1-メチ W-N-[4-[N, N-ピス (2-クロロエチル)]ア ミノ]フェニル] -2-ピロールカルボキサミド

(化合物 5 3) 4-[3-(グアニジノアセチルアミ ノ) ベンゾイルアミノ] -1-メチル-N-[3-[N, N-ピス (2-プロモエチル) アミノ] フェニ ル] -2-ピロールカルボキサミド

(化合物54) 4-[3-(グアニジノアセチルアミ ノ) ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス (2-クロロエチル) アミノ] フェニ ル] -2-ピロールカルボキサミド

(化合物 5 5) 4 - [3 - [4 - [4 - (N, N-ジエ チルアミノ) プチリルアミノ] -1-メチル-2-ピロ -N-[4-[N, N-ピス (2-クロロエチル) アミ ノ] フェニル] -2-ピロールカルポキサミド

(化合物 5 6) 4- [4- [4- (N, N-ジエ チルアミノ) ブチリルアミノ] -1-メチル-2-ピロ ールカルポキサミド] ペンゾイルアミノ] -1-メチル -N-[4-[N, N-ピス (2-クロロエチル) アミ ノ]フェニル]-2-ピロールカルボキサミド

(化合物 5 7) 4 - [3 - [4 - (ピペリジノアセチル アミノ) -1-メチル-2-ピロールカルポキサミド] -ビス(2-クロロエチル)アミノ]フェニル]-2-ピロールカルポキサミド

(化合物 5 8) 4 ~ [4 - [4 - (グアニジノアセチル アミノ) -1-メチル-2-ピロールカルボキサミド] ベンゾイルアミノ] -1-メチル-N-[4-[N, N -ビス(2-プロモエチル)アミノ]フェニル]-2-ピロールカルボキサミド

(化合物 59) 4- [3-[4-(N, N-ジメチルア ミノ) ブチリルアミノ] ペンゾイルアミノ] -1-メチ N-N-[4-[N, N-ピス (2-クロロエチル)] ア 20ミノ] フェニル] -2-ピロールカルポキサミド

(化合物60) 4-[3-(ピペラジノアセチルアミ ノ) ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ビス (2-クロロエチル) アミノ] フェニ ル] -2-ピロールカルポキサミド

(化合物 6 1) 4 - [3 - [4 - (N, N-ジメチルア ミノ) ブチリルアミノ] ベンゾイルアミノ] -1-メチ N-N-[4-[N, N-ピス (2-プロモエチル)] アミノ] フェニル] -2-ピロールカルボキサミド

ノ) ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス (2-クロロエチル) アミノ] フェニ ル] -2-ピロールカルボキサミド

(化合物 63) 4- [4- [4-(N, N-ジメチルア ミノ) プチリルアミノ] ペンゾイルアミノ] -1-メチ ル-N-[3-[N, N-ピス (2-プロモエチル) ア ミノ] フェニル] -2-ピロールカルボキサミド

(化合物64) 4-[4-(ピペラジノアセチルアミ ノ) ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス (2-クロロエチル) アミノ] フェニ ル] -2-ピロールカルポキサミド

(化合物 6 5) 4 - [3 - [4 - (N, N - ジエチルア ミノ) プチリルアミノ] ペンゾイルアミノ] -1-メチ N-N-[4-[N, N-ピス(2-プロモエチル)]ア ミノ] フェニル] -2-ピロールカルボキサミド

(化合物 6 6) 4 - [4 - [4 - (N, N-ジメチルア ミノ) プチリルアミノ] ペンゾイルアミノ] -1-メチ N-N-[4-[N, N-ピス(2-プロモエチル)]ア ミノ] フェニル] -2-ピロールカルボキサミド

(化合物 6 7) 4 - [3 - (4 - ピリジルアセチルアミ 50 ルーN - [4 - [N, N-ビス (2 - クロロエチル)ア

12

ノ) ペンゾイルアミノ] -1-メチル-N-[4-[N, N-ビス (2-クロロエチル) アミノ] フェニ ル] -2-ピロールカルポキサミド

(化合物 6 8) 4- [4-(3-ピリジルアセチルアミ ノ) ペンゾイルアミノ] -1-メチル-N-[4-[N, N-ビス(2-クロロエチル)アミノ]フェニ ル] -2-ピロールカルポキサミド

(化合物 6 9) 4 - [3 - [4 - (N, N-ジメチルア ミノ) プチリルアミノ] ベンゾイルアミノ] -1-メチ ベンゾイルアミノ] -1-メチル-N-[4-[N, N 10 ル-N-[4-[N, N-ピス (2-クロロエチル) ア ミノー3ーメチル]フェニル]ー2ーピロールカルポキ

> (化合物 70) 4- [4-[4-(N, N-ジメチルア ミノ) プチリルアミノ] ベンゾイルアミノ] -1-メチ ル-N-[4-[N, N-ピス (2-クロロエチル) ア ミノー3-メチル]フェニル]-2-ピロールカルポキ サミド

> (化合物 7 1) 4 - [3 - (グアニジノアセチルアミ **ノ)ベンゾイルアミノ]-1-メチル-N-[4-**[N, N-ピス (2-クロロエチル) アミノー3-メチ ル] フェニル] -2-ピロールカルボキサミド

> (化合物 7 2) 4 - [4 - (グアニジノアセチルアミ **ノ)ベンゾイルアミノ]-1-メチル-N-[4-**[N, N-ピス(2-クロロエチル)アミノ-3-メチ ル] フェニル] -2-ピロールカルポキサミド

(化合物 73) 4-[3-[4-[4-(N, N-ジメ チルアミノ) ブチリルアミノ] -1-メチル-2-ピロ ールカルポキサミド] ベンゾイルアミノ] -1-メチル -N-[4-[N, N-ピス (2-クロロエチル) アミ (化合物62) 4-[3-(3-ピリジルアセチルアミ 30 ノ-3-メチル]フェニル]-2-ピロールカルボキサ 3 ₹

> (化合物 7 4) 4- [4- [4- [4- (N, N-ジメ チルアミノ) プチリルアミノ] -1-メチル-2-ピロ ールカルボキサミド] ベンゾイルアミノ] -1-メチル -N-[4-[N. N-ビス (2-クロロエチル) アミ ノー3-メチル]フェニル]-2-ピロールカルボキサ ミド

(化合物 7 5)・4 - [3 - [4 - (グアニジノアセチル アミノ) -1-メチル-2-ピロールカルポキサミド] ーピス(2ークロロエチル)アミノー3ーメチル]フェ ニル] -2-ピロールカルポキサミド

(化合物 7 6) 4 - [4 - (グアニジノアセチル アミノ) -1-メチル-2-ピロールカルポキサミド] ペンゾイルアミノ] -1-メチル-N-[4-[N, N ーピス(2-クロロエチル)アミノ-3-メチル]フェ ニル] -2-ピロールカルボキサミド

(化合物 7 7) 4 - [3 - [4 - (N, N-ジエチルア ミノ) プチリルアミノ] ペンゾイルアミノ] -1-メチ

ミノー3-メチル] フェニル] -2-ピロールカルボキ サミド

(化合物80) 4-[3-(ピペリジノアセチルアミノ) ベンゾイルアミノ] <math>-1-メチル-N-[4-[N,N-ピス(2-クロロエチル) アミノ-3-メチル] フェニル] <math>-2-ピロールカルボキサミド

サミド

ミノー3ーメチル]フェニル]-2-ピロールカルボキ 10

(化合物 8 1) 4-[4-[4-(N,N-ジエチルア ミノ) ブチリルアミノ] ベンゾイルアミノ] <math>-1-メチル-N-[4-[N,N-ピス (2-クロロエチル) ア ミノ-3-メチル] フェニル] <math>-2-ピロールカルボキサミド

(化合物82) 4-[4-(4-ピリジルアセチルアミノ) ベンゾイルアミノ] <math>-1-メチル-N-[4-[N,N-ピス(2-クロロエチル) アミノ-3-メチル] フェニル] <math>-2-ピロールカルボキサミド

(化合物 8 3) 4 - [3 - [4 - (N, N - ジメチルア ミノ) プチリルアミノ] ベンゾイルアミノ] <math>-1 - メチル-N-[4 - [N, N - ビス (2 - プロモエチル) アミノ <math>-3 - メチル] フェニル] -2 - ピロールカルボキサミド

(化合物 8 4) 4-[4-(N, N-ジメチルア 30 ミノ) プチリルアミノ] ベンゾイルアミノ] <math>-1-メチル-N-[4-[N, N-ビス (2-プロモエチル) アミノ-3-メチル] フェニル] <math>-2-ピロールカルボキサミド

(化合物85) 4-[3-(3-ピリジルアセチルアミノ) ベンゾイルアミノ] <math>-1-メチル-N-[4-[N,N-ピス(2-クロロエチル) アミノ-3-メチル] フェニル] <math>-2-ピロールカルボキサミド

(化合物86) 4-[4-(3-ピリジルアセチルアミノ) ベンゾイルアミノ] <math>-1-メチル-N-[4-[N,N-ピス(2-クロロエチル) アミノ-3-メチル] フェニル] <math>-2-ピロールカルボキサミド

(化合物87) 4-[3-[4-[4-(N,N-ジエチルアミノ) プチリルアミノ] <math>-1-メチル-2-ピロールカルボキサミド] ベンゾイルアミノ] <math>-1-メチル-N-[4-[N,N-ピス(2-クロロエチル) アミノ-3-メチル] フェニル] <math>-2-ピロールカルボキサミド

(化合物 8 8) 4 - [4 - [4 - [4 - (N, N-ジエ チルアミノ) プチリルアミノ] - 1 - メチル- 2 - ピロ 50 ールカルボキサミド] ベンゾイルアミノ] -1-メチル -N-[4-[N, N-ピス (2-クロロエチル) アミ ノ-3-メチル] フェニル] -2-ピロールカルボキサ

14

ミド

(化合物89) 4-[3-(4-ピリジルアセチルアミノ-1-メチル-2-ピロールカルボキサミド) ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス(2-クロロエチル) アミノ-3-メチル] フェニル] -2-ピロールカルボキサミド

(化合物90) 4-[4-(4-ピリジルアセチルアミノ-1-メチル-2-ピロールカルボキサミド) ベンゾイルアミノ] <math>-1-メチル-N-[4-[N,N-ピス(2-クロロエチル) アミノ-3-メチル] フェニル] <math>-2-ピロールカルボキサミド

(化合物91) 4-(3-ピペラジノアセチルアミノペンゾイルアミノ)-1-メチル-N-[4-[N, N-ピス(2-クロロエチル) アミノ-3-メチル] フェニル]-2-ピロールカルボキサミド

(化合物92)4-[3-(4-ピリジルアセチルアミ20 ノ)ベンゾイルアミノ]-1-メチル-N-[4-[N, N-ピス(2-クロロエチル)アミノ-3-メチル]フェニル]-2-ピロールカルボキサミド

(化合物 9 3) 4 - [3 - [4 - (N, N - ジメチルア ミノ) ブチリルアミノ] ベンゾイルアミノ] <math>-1 - メチル-N-[4 - [N, N - ビス (2 - クロロエチル) アミノ-2 - メチル] フェニル] <math>-2 - ビロールカルボキサミド

(化合物 9 4) 4 - [3 - (グアニジノアセチルアミノ) ベンゾイルアミノ] <math>-1 - メチル-N-[4 - [N, N-ピス (2-クロロエチル) アミノー2-メチル] フェニル] <math>-2-ピロールカルボキサミド

(化合物 9 5) 4 - [4 - [4 - (N, N - ジメチルア ミノ) ブチリルアミノ] ベンゾイルアミノ] <math>-1 - メチル-N-[4 - [N, N - ピス (2 - クロロエチル) ア ミノ-2 - メチル] フェニル] <math>-2 - ピロールカルボキ サミド

(化合物96)4-[4-(グアニジノアセチルアミノ)ベンゾイルアミノ]-1-メチル-N-[4-[N, N-ピス(2-クロロエチル)アミノ-2-メチ40ル]フェニル]-2-ピロールカルボキサミド

(化合物 9 7) 4 - [3 - [4 - (N, N - ジェチルア ミノ) プチリルアミノ] ベンゾイルアミノ] <math>-1 - メチル-N-[4 - [N, N - ピス (2 - クロロエチル) アミノ-2-メチル] フェニル] <math>-2 - ピロールカルボキサミド

(化合物 9 8) 4-[4-(4-(ピリジルアセチルアミノ) ベンゾイルアミノ] <math>-1-メチル-N-[4-[N, N-ピス (2-クロロエチル) アミノ<math>-2-メチル] フェニル] -2-ピロールカルボキサミド

(化合物99) 4~[3-(グアニジノアセチルアミ

ノ)ペンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス (2-クロロエチル) アミノー3-メチ ル] フェニル] -2-ピロールカルポキサミド

(化合物100) 4-(4-ピペリジノアセチルアミノ ベンゾイルアミノ) -1-メチル-N-[4-[N, N]]ーピス(2-クロロエチル)アミノー3-メチル]フェ ニル] -2-ピロールカルボキサミド

(化合物101) 4-[3-[3-(N, N-ジメチル アミノ) プロピルカルボキサミド] ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス(2-クロロ 10 エチル) アミノー3ークロロ] フェニル] -2-ピロー ルカルポキサミド

(化合物102) 4-[4-[3-(N, N-ジメチル アミノ) プロビルカルボキサミド] ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス(2-クロロ エチル) アミノー3ークロロ] フェニル] -2-ピロー ルカルポキサミド

(化合物103) 4-[3-(グアニジノアセチルアミ ノ) ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ビス (2-クロロエチル) アミノー3-クロ 20 ロ]フェニル]-2-ピロールカルボキサミド

(化合物104) 4- [4-(グアニジノアセチルアミ ノ) ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ビス(2-クロロエチル)アミノ-3-クロ ロ] フェニル] -2-ピロールカルポキサミド

(化合物105) 4-[3-[4-[3-(N, N-ジ メチルアミノ) プロピルカルボキサミド] -1-メチル -2-ピロールカルボキサミド] ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス(2-クロロエ チル) アミノー3ークロロ] フェニル] -2-ピロール 30 カルポキサミド

(化合物106) 4-[4-[4-[3-(N, N-ジ メチルアミノ) プロピルカルポキサミド] -1-メチル -2-ピロールカルボキサミド]ベンゾイルアミノ]-1-メチル-N-[4-[N, N-ピス(2-クロロエ チル) アミノー3ークロロ] フェニル] -2-ピロール カルポキサミド

(化合物107) 4-[3-[4-(グアニジノアセチ ルアミノ) -1-メチル-2-ピロールカルポキサミ ド] ペンゾイルアミノ] -1-メチル-N-[4-[N, N-ビス(2-クロロエチル)アミノ-3-クロ ロ] フェニル] -2-ピロールカルポキサミド

(化合物108) 4- [4-[4-(グアニジノアセチ ルアミノ) -1-メチル-2-ピロールカルポキサミ ド] ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス(2-クロロエチル) アミノ-3-クロ ロ] フェニル] -2-ピロールカルポキサミド

(化合物109) 4-[3-[3-(N, N-ジエチル アミノ) プロビルカルボキサミド] ベンゾイルアミノ]

エチル) アミノー3ークロロ] フェニル] -2-ピロー ルカルポキサミド

(化合物110) 4- [4-[3-(N, N-ジエチル アミノ) プロピルカルポキサミド] ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス(2-クロロ エチル) アミノー3ークロロ] フェニル] -2-ピロー ルカルポキサミド

(化合物111) 4-[3-[4-[3-(N, N-ジ エチルアミノ) プロピルカルポキサミド] -1-メチル - 2 - ピロールカルボキサミド] ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ビス(2-クロロエ チル) アミノー3ークロロ] フェニル] -2-ピロール カルポキサミド

(化合物112) 4-[4-[3-(N, N-ジ エチルアミノ) プロピルカルボキサミド] -1-メチル -2-ピロールカルボキサミド]ベンゾイルアミノ]-1-メチル-N-[4-[N, N-ビス(2-クロロエ チル) アミノー3ークロロ] フェニル] -2-ピロール カルポキサミド

(化合物113) 4-[3-(グアニジノアセチルアミ ノ) ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス(2-クロロエチル)アミノ-3-クロ ロ] フェニル] -2-ピロールカルボキサミド

(化合物114) 4-[4-[3-(N, N-ジメチル アミノ)プロピルカルボキサミド]ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス(2-クロロ エチル)アミノー3ークロロ]フェニル]ー2ーピロー ルカルポキサミド

(化合物115) 4-[4-(グアニジノアセチルアミ ノ) ベンゾイルアミノ] -1-メチル-N- [4-[N, N-ピス (2-クロロエチル) アミノー3-クロ ロ] フェニル] -2-ピロールカルボキサミド

(化合物116) 4-[4-[3-(N, N-ジエチル アミノ) プロピルカルボキサミド] ベンゾイルアミノ] -1-メチル-N-[4-[N, N-ピス(2-クロロ エチル) アミノー3-クロロ] フェニル] -2-ピロー ルカルポキサミド

【0011】これらの化合物は、以下のように合成する ことができる。この説明の中、あるいは実施例の中で、 DCCはN, N'-ジシクロヘキシルカルボジイミド、 CDIはN, N'-カルポニルジイミダゾール、HOS uはN-ヒドロキシこはく酸イミド、EDCIは1-(3-ジメチルアミノプロピル)-3-エチルカルポジ イミド塩酸塩、DECPはジエチルシアノホスホネイ ト、HOBtは1-ヒドロキシペンゾトリアゾール、D MFはジメチルホルムアミドを示す。Pd/Cはパラジ ウム付活性炭であり、通常はパラジウムは5ないし10 %である。ディスタマイシン誘導体の一般的な合成方法 は、文献 (例えば、J. Org. Chem., 1981 -1-メチル-N-[4-[N, N-ピス (2-クロロ 50 年、46巻、3492-3497頁、J. Org. Ch

em., 1985年、50巻、3774-3779頁、 J. Am. Chem. Soc., 1990年、112 巻、838-845頁等)に既に示されており、これら の方法に準じて行うことができる。

【0012】これらの化合物の合成は、各々二トロ化合 物を前駆体として、このニトロ基を相応するアミノ基に 還元し、それに対してカルボニル基を酸塩化物として、 あるいは一般的な縮合剤(例えば、DCC、CDI、E DCI、DECP等) によって縮合することができる。 当然、DCCにHOB t を加える等の方法も一般的に行 10 - アミノー 2 - ピロールカルボキサミド)- N - [3 -われる方法であり、この場合にも使用できる。これらの 化合物の合成には、2つ以上のアミド化反応を行うが、 その順番は自由に選んで行うことができる。

【0013】次に合成方法について具体的に説明する。 これらの化合物の合成は、各々二トロ化合物を前駆体と して、このニトロ基を相応するアミノ基に還元し、それ* *に対してカルボニル基を酸塩化物として、あるいは一般 的な縮合剤(例えば、DCC、CDI、EDCI、DE

CP等が用いられる。またDCCにHOBtを加える等 の方法も一般的に行われる方法であり、この場合にも使 用できる。) によって縮合し、その縮合反応を繰り返す ことによって行うことができる。2つ以上のアミド化反 応を行う場合、その順番は自由に選んで行うことができ

18

【0014】主要な中間体である3-(1-メチル-4 (N, N-ジメチルアミノ) プロピル] フェニルカルボ キサミドは、以下の式に示す方法で合成できる。 [化 5].

[0015]

【化5】

1-メチル-4-ニトロ-2-ピロールカルポン酸を塩 化チオニルを用いて塩化物とし、3-アミノ-N-[3 - (N, N-ジメチルアミノ) プロピル] フェニルカル ボキサミド(m-ニトロ安息香酸を塩化チオニルで処理 し、トリエチルアミン存在下3-(N, N-ジメチルア ミノ) プロピルアミンと反応して得られる3-ニトロー 30 N-[3-(N, N-ジメチルアミノ) プロビル] フェ ニルカルボキサミドを対応するアミノ化合物に還元した もの。) と反応し合成できる。以上の反応はクロロホル ム、塩化メチレン、ベンゼン、トルエン等の一般的な溶※

1-メチル-4-ニトロ-2-ピロールカルボン酸を塩 化チオニルあるいは塩化チオニルとDMFの混合物を用 40 いて酸クロライドに変換する。この時、溶媒はクロロホ ルム、塩化メチレン、ベンゼン、トルエンあるいはジエ チルエーテル等の一般的な溶媒を用いることができる。 この時の反応温度は0℃から還流温度が望ましい。反応 は普通30分間から24時間程度で行えるが、TLC等 で反応の進行状況を調べながら行うのがよい。この酸ク ロライドと4-アミノ安息香酸エチルをトリエチルアミ ン存在下反応させることにより目的物を得る。溶媒はク ロロホルム、塩化メチレン、ペンゼン、トルエンあるい

※媒中で行うことができる。塩化チオニルを用いてカルボ ン酸を塩化物に変換する反応においては、反応温度は、 室温から溶媒の還流温度で行うことができる。反応は普 通30分間から24時間程度で行えるが、TLC等で反 応の進行状況を調べながら行うのがよい。また、4-(1-メチル-4-ニトロ-2-ピロールカルボキサミ ド) 安息香酸エチルは、次式のように合成することがで きる[化6]。

[0016]

[化6]

はジエチルエーテル等の一般的な溶媒を用いることがで きる。この時の反応温度は0から30℃が望ましい。反 応は普通30分間から24時間程度で行えるが、TLC 等で反応の進行状況を調べながら行うのがよい。

【0017】また、4-[4-(1-メチル-4-ニト ロー2-ピロールカルボキサミド) ペンゾイルアミノ] プロピル] -2-ピロールカルボキサミドは次式に示す 方法で合成できる [化7]。

[0018]

【化7】

4- (1-メチル-4-ニトロ-2-ピロールカルボキサミド) 安息香酸は、4- (1-メチル-4-ニトロ-2-ピロールカルボキサミド) 安息香酸エチルを水酸化ナトリウム水溶液とエタノールの混合溶媒中で加熱することにより得られる。この時エタノールは5~90%の範囲であり、反応温度は80℃から還流温度である。反応は普通30分間から10時間程度で行えるが、TLC等で反応の進行状況を調べながら行うのがよい。次に、4- (1-メチル-4-ニトロ-2-ピロールカルボキサミド) 安息香酸と、4-アミノーメチル-N-[3-(N, N-ジメチルアミノ) プロピル] -2-ピロール*

*カルボキサミドをDCCとHOBt存在下(あるいは他のの一般的な縮合剤でもよい)反応させることにより目的物を得る。この時の溶媒は一般的な溶媒が用いられるがDMFが比較的よい結果を与える。反応温度は0~30℃が比較的よい結果を与える。反応は普通30分間から24時間程度で行えるが、TLC等で反応の進行状況を調べながら行うのがよい。さらに化合物13(実施例9)を例に合成方法を説明する[化8]。

[0019]

(化8)

1) H2 Pd/C

4-(1-メチル-4-ニトロ-2-ピロールカルボキ サミド) ベンゾイルアミノ] -1-メチル-N-[3-(N, N-ジメチルアミノ) プロピル] -2-ピロール カルポキサミドをPd/Cを触媒に用いて接触水素添加 を行い、対応するアミノ体を合成することができる。こ の時の溶媒は一般的な溶媒が用いられるが、特にメタノ ール、エタノール等がよい結果を与える。必須ではない が、反応系にニトロ化合物の1~1. 2倍モルの塩酸を 加えて還元することもできる。 反応は普通20分間から 5時間程度で行える。ここで得るアミノ体にクロラムブ シルをDCCとHOB t 存在下(他の一般的な縮合剤も 用いることができる)に反応させて目的物を得ることが できる。この時の溶媒は一般的な溶媒が用いられるが、 DMFが比較的よい結果を与える。反応温度は0~30 ℃が比較的よい結果を与える。反応は普通30分問から 24時間程度で行えるが、TLC等で反応の進行状況を 調べながら行うのがよい。同様に他の化合物も合成できる。また、R:またはR2部分の構造の変換は、以上の方法に準じて行うことができる。

【0020】本発明の化合物の投与方法としては、投与対象の症状等により当然異なるが、成人1日当り、0.01-1000mgを1度に、または数回に分割し、錠剤、顆粒剤、散剤、懸濁剤、カプセル剤、シロップ剤等の経口投与剤または注射剤、座剤、輸血用等張液等の非経口投与剤として投与できる。

【0021】製剤化は公知の方法によって可能である。 例えば錠剤とする場合、吸着剤としては結晶性セルロース、軽質無水ケイ酸等を用い、賦形剤としてはトウモロコシデンプン、乳糖、燐酸カルシウム、ステアリン酸マグネシウム等が用いられる。崩壊剤としてはデンプン、 寒天、炭酸カルシウム等を、潤沢剤としてはステアリン 60 酸マグネシウム、タルク等を用いる。また、注射剤とす

る場合、化合物の水溶液または、綿実油、トウモロコシ 油、ラッカセイ油、オリーブ油等を用いた非水性溶液、 さらに本発明の化合物に小も加え、適切な甲面苗性剤の 存在下に懸濁性水溶液、さらにはHCO-60等の界面 活性剤等を用いた乳濁液として使用される。なお、本発 明の化合物の副作用は、抗癌剤として用いる程度には問 題がないレベルである。

[0022]

【実施例】以下に本発明の実施例として、化合物の合成 例および抗癌活性試験例について詳細に説明するが、本 10 発明はこれらに限定されるものではない。

実施例1 4-ベンゾイルアミノ-1-メチル-N-[3-(N, N-ジメチルアミノ)プロピル]<u>-2-ピ</u> ロールカルポキサミド [化9]

[0023]

【化9】

4-アミノ-1-メチル-N-[3-(N, N-ジメチ ルアミノ) プロピル] -2-ピロールカルボキサミド 0.07g(0.31mmol)を塩化メチレン5mL に溶解し、氷冷下 トリエチルアミン 52μL (0.3) 9mmo1、1.2等モル)、ベンゾイルクロライド * 22

*43 µ L (0.37 mm o 1、1.2 等モル) を加え、 氷浴をはずし、1時間攪拌した。溶媒を減圧下留去した 後、成連をクロロホルムにしかし、シリカゲルカラムで 精製し(クロロホルム/メタノール/アンモニア水 1 00/5/0.5で溶出)溶出フラクションを濃縮、塩 化メチレン-エーテルから結晶化し、標題化合物を黄白 色結晶として得た。(70mg、69%)

mp. 130-134°C

NMR (CDC1₃) δ : 8. 16 (s, 1H), 7. 88 (d, 2H), 7.69 (bs, 1H), 7.50 (m, 3H), 7. 32 (s, 1H), 6. 61 (s, 1H), 3.93 (s, 3H), 3.44 (dd, 2 H), 2. 55 (t, 2H), 2. 37 (s, 6H), 1. 78 (ddd, 2H)

IR (KBr); 3300, 2946, 2818, 16 51, 1527cm-1元素分析(計算値H2Oを含む) C:62.41, H:7.56, N:16.17 (分析 值) C:61.75、H:7.37、N:15.96 [0024] 実施例2 4-[3-[4-[4-[N,20 N-ピス (2-クロロエチル) アミノ] フェニル] ブチ リルアミノ] ベンゾイルアミノ] - 1 - メチル- N -[3-(N, N-ジメチルアミノ)プロピル]-2-ピ ロールカルボキサミド [化10]

[0025]

【化10】

1-メチル-N-[3-(N, N-ジメチルアミノ)プ ロピル] -2-ピロールカルボキサミド

3-二トロ安息香酸 0. 22g (1. 32mmol)を 塩化メチレン8mLに溶解(溶解残あり)し、塩化チオ ニルO. 15mL (2. 1mmol, 1. 6eg) を加 え、DMF10滴を滴下後、室温で1時間攪拌した。反 応終了後、溶媒および未反応の塩化チオニルを減圧下留 去した。残渣を塩化メチレン20mLに溶解し、窒素雰 囲気下氷冷攪拌した。トリエチルアミンO. 18mL (1. 3mmol, 1. 0eq)、4-アミノ-1-メ 40 チル-N-[3-(N, N-ジメチルアミノ)プロピ ル] -2-ピロールカルポキサミドの塩化メチレン溶液 5mLを順に加え、氷浴をはずし1時間攪拌した。反応 終了を確認後、塩化メチレンと水を加えて分液し、水層 を塩化メチレンで抽出し、塩化メチレン層を合わせて、 0. 5 N水酸化ナトリウム、飽和食塩水で1度ずつ洗浄 し硫酸ナトリウムで乾燥後、減圧下濃縮した。生じた固 体をメタノールとエーテルで洗い、標題化合物を淡黄白 色結晶として得た。(0.25g、52%)

mp. 173-176℃

(反応1) 4-[(3-ニトロペンゾイル) アミノ] - 30 NMR (DMSO-d₆) δ:10.66 (s, 1 H), 8. 78 (s, 1H), 8. 42 (t, 2H), 8. 14 (t, 1H), 7. 82 (t, 1H), 7. 3 1 (s, 1 H), 6. 8 9 (s, 1 H), 3. 8 4 (s, 3H), 3. 20 (m, 2H), 2. 25 (t, 2H), 2. 14 (s, 6H), 1. 62 (m, 2H) 元素分析(計算値1/3H2Oを含む) C:56.9 8、H: 6. 29、N: 18. 54 (分析値) C: 5 7. 05, H: 6. 17, N: 18. 25

> 【0026】(反応2)4-[3-[4-[4-[N, N-ビス (2-クロロエチル) アミノ] フェニル] プチ リルアミノ] ベンゾイルアミノ] -1-メチル-N-[3-(N, N-ジメチルアミノ) プロピル] -2-ビ ロールカルボキサミド

クロラムプシル 0. 17g(0.56mmol)をTH F5mLに溶解し、CDIO. 12g (0. 74mmo 1, 1. 3 e q) を加え、窒素気流下室温で1. 5時 間、40℃で30分間攪拌した。氷冷し4-(3-アミ ノベンゾイル) アミノ-1-メチル-N-[3-(N,N-ジメチルアミノ)プロピル]-2-ピロールカルボ 50 キサミド (100%として0.54mmol) / THF

--234--

4mL溶液を5分かけシリンジから滴下した。氷浴をはずし室温で20時間反応後、減圧下濃縮しシリカゲルカラムにて精製し(クロロホルム/メタノール8-12%で溶出)、酢酸エチルとエーテルより結晶化することで標題化合物を白色結晶として得た。(80mg, 23%)

mp. 147-152℃

NMR (DMDO-d₆) δ : 10. 25 (s, 1 H), 10. 05 (s, 1 H), 8. 12 (t, 1 H), 8. 06 (s, 1 H), 7. 80 (d, 1 H), 7. 56 (d, 1 H) 7. 40 (t, 1 H), 7. 25 (s, 1 H), 7. 05 (d, 2 H), 6. 85 (s, 1 H), 6. 67 (d, 2 H), 3. 82 (s, 3 H), 3. 70 (s, 8 H), 3. 20 (q, 2 H), 2. 52 (t, 2 H), 2. 33 (t, 2 H), 2. 27 (t, 2 H), 2. 16 (s, 6 H) 1. 86 (m, 2 H) 1. 62 (m, 2 H)

IR (KBr) 2946, 1633, 1520, 128 1, 806cm⁻¹

元素分析(計算値1/2H₂Oを含む) C:60.1 8、H:6.79、N:13.22、C1:11.10 (分析値) C:60.37、H:6.79、N:12. 74、C1:11.09

【0027】 実施例3 <u>4-ベンゾイルアミノ-1-メ</u> チル-N-(2-アミジノエチル) -2-ピロールカル ポキサミド [化11]

[0028]

(化11)

4-アミノ-1-メチル-N-(2-アミジノメチル)-2-ピロールカルボキサミド0.12g(0.57mmol)を塩化メチレン2mL、ピリジン1.5mL、DMF6mLに溶解し、氷冷、窒素気流下ペンゾイルクロライド0.1mL(0.86mmol)を滴下した。滴下終了後、氷浴をはずし1時間攪拌し、溶媒を減圧下留去した。残渣をシリカゲルカラムで精製(15%のメタノールを含むクロロホルム+酢酸で溶出)し、溶出フラクションを濃縮し酢酸エチル-アセトニトリルより結晶化した。(0.13g、73%)

NMR (DMSO-d₆) δ : 10. 36 (s, 1H), 9. 03 (bs, 2H), 8. 69 (bs, 2H), 8. 29 (t, 1H), 7. 94 (d, 2H), 7. 50 (m, 3H), 7. 30 (s, 1H), 6. 98 (s, 1H), 3. 83 (s, 3H), 3. 66 (m, 2H), 2. 64 (t, 2H)

【0029】実施例4 <u>4-ベンゾイルアミノ-1-メ</u> <u>チル-N-(3, 4, 5-トリメトキシフェニル)-2</u> 50 24

<u>- ピロールカルボキサミド</u> [化12]

[0030]

【化12】

4-アミノ-1-メチル-N-(3, 4, 5-トリメトキシフェニル)-2-ピロールカルボキサミド(1. 2 8 mmol)をピリジン20mLに溶解し、窒素気流下氷冷攪拌した。塩化ベンゾイル0.18mL(1.55 mmol, 1.2等モル)を加え、室温にもどし1時間攪拌した。減圧下溶媒を留去し、塩化メチレン-水で分液し溶媒を留去した。残渣をシリカゲルカラムで精製し(クロロホルム/メタノール1~2%で溶出)、溶出フラクションを濃縮し、塩化メチレン-エーテルより結晶化することで標題化合物を白色結晶として得た。(0.34g、65%)

mp. 212-215°C (dec.)

20 NMR (CDC 13) δ:7. 91 (s, 1H), 7. 85 (d, 2H), 7. 64 (s, 1H), 7. 53 (q, 1H), 7. 48 (q, 2H), 7. 18 (s, 1H), 6. 87 (m, 3H), 3. 93 (s, 3H), 3. 86 (s, 6H), 3. 82 (s, 3H) IR (KBr); 3353, 2935, 2863, 1648, 1510 cm⁻¹元素分析 (計算値3/4H₂Oを含む) C:62. 48、H:5. 84、N:9. 98 (分析値) C:62. 65、H:5. 63、N:9. 85

30 【0031】実施例5 <u>3-(4-ホルミルアミノ-1</u> -メチル-2-ピロールカルポキサミド)-N-[3-(N, N-ジメチルアミノ)プロピル]ペンズカルポキ サミド [化13]

[0032]

【化13】

(反応1) <u>3-ニトロ-N-[3-(N, N-ジメチ</u>ルアミノ) プロピル] フェニルカルボキサミド

mーニトロ安息香酸10.0g(60mmol)と塩化チオニル21.4g(180mmol)を混合し、3時間加熱環流させた。溶媒を留去し、塩化メチレン50m Lに溶解し、3-(N, N-ジメチルアミノ)プロピルアミン6.13g(60mmol)とトリエチルアミン6g(60mmol)の混液(塩化メチレン50mL中)に氷冷下滴下した。室温で提拌、一夜放置。氷水にあけクロロホルムで抽出した。クロロホルム層を水洗し、硫酸ナトリウムで乾燥して目的物8.0mg(53.2%)を得た。エーテルーへキサンで再結晶した

(薄黄色の粉末)。

NMR (CDC1₃) δ : 9. 55 (b, 1H) 、8. 56 (s, 1H) 、8. 33 (d, 1H) 、8. 26 (d, 1H) 、7. 64 (t, 1H) 、3. 61 (m, 2H) 、2. 59 (m, 2H) 、2. 38 (s, 6H) 、1. 80 (m, 2H)

【0033】(反応2) <u>3-アミノ-N-[3-</u> (N, N-ジメチルアミノ) プロピル] フェニルカルボ キサミド

3-二トローN-[3-(N, N-ジメチルアミノ) プ 10 ロピル] フェニルカルボキサミド2.3g(9mmo 1)を80mLのメタノールに溶解し、320mgの10%Pd/Cを加えて、室温で水素添加した。ニトロ体消失後、触媒を除き、メタノールを留去した。シリカゲルカラム(クロロホルムにメタノール15-30%を含む)で精製した。やや赤味を帯びた透明の液体を得た。2.0g(98.7%)

NMR (CDC l_3) δ : 7. 19 (t, 1H), 7. 12 (s, 1H), 7. 10 (d, 1H), 6. 84 (d, 1H), 4. 40 (s, 3H), 3. 42 (m, 2H), 2. 46 (m, 2H), 2. 31 (s, 6H), 1. 80 (t, 2H)

【0034】(反応3) 3-(1-メチル-4-二ト D-2-ピロールカルボキサミド) <math>-N-[3-(N,N-ジメチルアミノ) プロピル] フェニルカルボキサミド

1ーメチルー4ーニトロー2ーピロールカルボン酸425mg(2.5mmol)を塩化チオニルを用いて酸塩化物とし、これに塩化メチレン5mLを加えて氷冷下3ーアミノーNー[3ー(N,Nージメチルアミノ)プロ30ピル]フェニルカルボキサミド553mg(2.5mmol)の塩化メチレン懸濁液(ほとんど溶けている)30mLとトリエチルアミン1mLの混合溶液中に滴下した。5分間で室温に戻し、そのまま2時間攪拌した(溶液は白濁)。やや黄色味を帯びた白色粉末を濾取した。塩化メチレンで洗って420mgを得た。これをメタノールで再結晶して376mg(40.3%)を得た。さらに濾液から670mgの結晶を得た(混合物)。

NMR (DMSO-d₆) δ : 10. 30 (s, 1 H), 10. 15 (b, 1H), 8. 64 (t, 1 H), 8. 23 (d, 2H), 7. 88 (d, 1H), 7. 78 (s, 1H), 7. 59 (d, 1H), 7. 4 3 (t, 1H), 3. 97 (s, 3H), 3. 07 (m, 2H), 2. 74 (s, 6H), 1. 91 (m, 2H)

【0035】(反応4) 3-(1-メチル-4-アミノ-2-ピロールカルボキサミド)-N-[3-(N, N-ジメチルアミノ)プロピル]フェニルカルボキサミド

300mg (0. 80mmol) の3- (1-メチル- 50 C:54. 50、H:6. 42、N:15. 31、C

26

4-ニトロー2-ピロールカルボキサミド)-Nー [3 - (N, N-ジメチルアミノ) プロピル] フェニルカルボキサミドを150 mLのメタノールに溶解し、100 mgの10% Pd/Cを加え、室温で小素気流下または雰囲気下で攪拌した。Pd/Cを除き、THFに置換しながらメタノールを留去した。200 mg (72.5%)。

NMR (DMSO-d₆) δ: 9. 69 (s, 1H)、8. 57 (t, 1H)、8. 18 (s, 1H)、7. 8 (d, 1 H)、7. 35 (t, 1H)、6. 57 (s, 1H)、6. 40 (s, 1 H)、3. 75 (s, 3 H)、2. 98 (m, 2 H)、1. 90 (m, 2H)、1. 76 (m, 2H) [0036] (反応5) 3-(4-ホルミルアミノ-1-メチル-2-ピロールカルボキサミド) -N- [3-(N, N-ジメチルアミノ) プロピル] フェニルカルボキサミド

ギ酸1. 0mLをTHF1. 5mLに溶かし、CDI4 71mg (2.6mmol) を、3mLのTHFに溶か 20 したものに加えて、15分間攪拌した。これを-40℃ (ドライアイス+四塩化炭素+アセトン)で3-(1-メチルー4-アミノー2-ピロールカルボキサミド)-N-[3-(N, N-ジメチルアミノ) プロピル] フェ ニルカルボキサミド200mg (0.58mmol)を 7mLのメタノールに溶かした溶液に滴下した。-40 ℃で15分間攪拌し、溶媒を留去して、シリカゲルカラ ム (溶出溶媒:クロロホルム85+メタノール15+ア ンモニア水6)で精製した。やや黄色のアモルファス状 になったが結晶化しなかった。190mg (87.8 %)。これを2mLのイソプロピルアルコールに溶解 し、酢酸エチル2mLを加え、塩酸(4N)/ジオキサ ン0. 1mLを加え、生じた結晶を濾取した。吸湿して アメ状となり、濾取の時にロスがあった。エーテル中で よく洗い、粉末とした。100mg (48%)。mp. 103℃から変化が認められたが、140℃以上で分解 した。

NMR (DMSO-d $_{6}$) δ : 10. 14 (s, 1 H), 10. 05 (b, 1H), 9. 99 (s, 1 H), 8. 62 (t, 1H), 8. 22 (s, 1H), 8. 14 (s, 1H), 7. 86 (d, 1H), 7. 53 (d, 1H), 7. 39 (t, 1H), 7. 27 (s, 1H), 7. 07 (s, 1H), 3. 85 (s, 3 H), 3. 08 (m, 2 H), 2. 50 (s, 6 H), 1. 93 (m, 2H)

IR (KBr) 3405, 3082, 2961, 2707, 1655, 1586, 1542, 1482, 1402, 1304cm⁻¹

元素分析 (計算値H₂ Oを含む) C:53.58、H: 6.63、N:16.80、C1:8.32 (分析値) C:54.50、H:6.42、N:15.31 C

1:8.22

【0037】 実施例6 <u>4-[3-[4-[4-[4-</u> [N, N-ピス (2-クロロエチル) アミノ] フェニ <u>ル] プチリルアミノ] -1-メチル-2-ピロールカル</u> ポキサミド] ベンゾイルアミノ] -1-メチル-N-*

* (3, 4, 5-トリメトキシフェニル) - 2-ピロール カルボキサミド [化14] [0038] 【化14】

(反応1) 4-[N-(3-アミノベンゾイル)アミ 10 J] -1-メチル-N-(3, 4, 5ートリメトキシフェニル)-2-ピロールカルボキサミド

1-メチル-4- [N-(3-ニトロペンゾイル) アミ J] -N-(3, 4, 5-トリメトキシフェニル) <math>-2-ピロールカルボキサミドO. 16g(0.36mmo 1) をDMF 3mL, メタノール2mLに溶解し10% Pd/Cをスパーテル1杯加え接触水素添加を行った。 反応終了後触媒を濾別し、減圧下濃縮することにより標 題化合物を薄茶色オイルとして得た。これをそのまま次 反応へ用いた。

【0039】(反応2) 4-[4-[ピス(2ークロ ロエチル) アミノ] フェニル] ブチリルクロライド クロラムプシル 0. 13g (0. 43 mm o 1) をクロ ロホルム2mLに溶解し、オキシ塩化リン1.0gを加 え、60℃オイルパス中4時間攪拌した。減圧下濃縮 し、未反応のオキシ塩化リンを除くため少量の石油エー テルで4回洗浄し、標題化合物を黄色オイルとして得 た。これをそのまま次反応へ用いた。

【0040】(反応3) 4-[3-[4-[4-[4 <u>- [N, N-ピス (2-クロロエチル) アミノ] フェニ 30</u> ル] プチリルアミノ] -1-メチル-2-ピロールカル <u>ポキサミド] ベンゾイルアミノ] -1-メチル-N-</u> (3, 4, 5~トリメトキシフェニル) -2~ピロール カルポキサミド

4-[(3-アミノベンゾイル)アミノ]-1-メチル -N-(3, 4, 5-h) +h+2 +h+2 +h+2 +h+3 +h+4 +h+4ロールカルポキサミド (ニトロ体より100%として 0. 22mmol) をピリジン2mLに溶解し、窒素気 流下、氷冷攪拌した。4-[N, N-ピス(2-クロロ チレン2. 5 m L 溶液を滴下し、室温にもどし 2 時間攪 拌した。減圧下濃縮した後、残渣をアセトンに溶かしシ リカゲルに吸着させ、カラムクロマトにて粗精製を行い (クロロホルム/メタノール 6~10%で溶出)、さ らにTLCで精製(クロロホルム/メタノール100/ 10) し、エーテル/アセトンより結晶化することによ り標題化合物を淡黄色結晶として得た。(26mg、1 1%)

mp. 280℃以上

NMR (DMSO-d₆+CDCl₃) δ:9.97 50 ルより結晶化することにより標題化合物を白色結晶とし

(s, 1H), 9.69 (s, 1H), 9.37 (s, 1 H), 8, 1 1 (s, 1 H), 7, 8 8 (d, 1 H) 、7. 6 (d, 1 H) 、7. 3 6 (t, 1 H) 、 7. 30 (s, 1H), 7. 18 (s, 1H), 7. 1 5 (s, 2H), 7. 1 (d, 2H), 6. 64 (d, 2 H), 3. 9 5 (s, 3 H), 3. 8 6 (s, 6 H) 、3. 77 (s, 3H) 、3. 71 (m, 4H) 、 3. 65 (m, 4H), 2. 41 (t, 2H), 2. 2 (t, 2H), 1. 98 (m, 2H)

IR (KBr); 3305, 2963, 1645, 15 20 19, 1450cm⁻¹元素分析(計算値3/4H₂Oを 含む) C:59.71、H:5.92、N:9.71、 (分析値) C:59.53、H:5.65、N:9.7

【0041】実施例7 4-[3-[4-(N, N-ジ メチルアミノ) プチリルアミノ] ベンゾイルアミノ] -1-メチル-N- [4- [N, N-ピス (2-クロロエ チル) アミノ] フェニル] -2-ピロールカルポキサミ ド[化15]

[0042]

【化15】

4-[3-[4-(N, N-ジメチルアミノ) プチリル アミノ] ベンゾイルアミノ] -1-メチル-2-ピロー ルカルボン酸 0. 15g (0. 40 mm o 1)、HOB t 6 0 mg (0. 4 4 mm o 1) をナスフラスコに入れ 窒素置換した。そこに、4-[N, N-ビス(2-クロ エチル) アミノ] フェニルブチリルクロライド/塩化メ 40 ロエチル)] アミノアニリン塩酸塩0.12g(0.4 5mmol)をDMF4mLに溶解しトリエチルアミン 62 μL (0. 44 mm o 1) を加えた溶液を加え、氷 冷下攪拌した。DCC93mg (0. 45mmol) の DMF (2 m L) 溶液を滴下し (2 分間) 氷浴をはずし 2時間攪拌した後、室温で一昼夜放置した。生じた結晶 を濾別後、濃縮し、残渣をシリカゲルカラムにて精製 (クロロホルム/メタノール10~15%で溶出)し、 更にTLC (クロロホルム:メタノール:アンモニア水 =100:20:1)で精製し、塩化メチレンーエーテ

て得た。(83mg、35%)

mp. 173℃から分解が始まり、明確な融点はもたな かった。

NMR (DMSO-d₆) $\delta:10.3$ (s, 1H), 10.1 (s, 1H), 9.7 (s, 1H), 8.1 (s, 1H), 7.8 (d, 1H), 7.6 (d, 1 H), 7. 54 (d, 2H), 7. 4 (t, 1H), 7. 34 (s, 1H), 7. 1 (s, 1H), 6. 7 (d, 2H), 3. 9 (s, 3H), 3. 7 (s, 8 H), 2. 4 (t, 2H), 2. 3 (t, 2H), 1. 7 (m, 2H)

IR (KBr) 3304, 2953, 1642, 151*

元素分析(計算値、H2Oを含むとして)C:57.5 2、H:6.32、N:13.94、(分析值) C:5 7. 53, H: 6. 0, N: 14. 25

30

【0043】 実施例8 4-[3-[4-[4-[4-[N, N-ピス (2-クロロエチル) アミノ] フェニ<u>ル] プチリルアミノ] -1-メチル-2-ピロールカル</u> <u>ボキサミド] ベンゾイルアミノ] -1-</u>メチル-N-<u>[3-(N, N-ジメチルアミノ)プロピル]-2-ピ</u> 10 ロールカルボキサミド [化16]

[0044]

【化16】

(反応1) 4-[3-(1-メチル-4-ニトロ-2- ピロールカルボキサミド) ベンゾイルアミノ] -1- 20 <u>メチル-N-[3-(N, N-ジメチルアミノ)プロピ</u> ル] -2-ピロールカルボキサミド

4- (3-ニトロペンゾイルアミノ) -1-メチル-N - [3-(N, N-ジメチルアミノ) プロピル] - 2-ピロールカルボキサミド 0. 50g (1. 34mmo 1)を常法に従い接触水素添加を行い、対応するアミノ 体へと導いた。これをDMF6mLに溶解し、1-メチ ルー4-ニトロー2-ピロールカルボン酸0.23g (1. 35mmol、1. 0等モル)、HOBt 0. 2 0g (1.48mmol, 1.1等モル)を順に加え、 窒素雰囲気下氷冷攪拌し、DCC0. 30g (1. 45 mmol、1. 1等モル) を加え、室温にもどし4時間 攪拌後、一晩静置した。翌日生じた白色結晶をろ別後濾 液を濃縮し、残渣に塩化メチレン-0.5 N水酸化ナト リウム水溶液を加えたところ結晶が析出した。生じた結 晶を濾取し、塩化メチレン層濃縮残渣とあわせシリカゲ ルカラムクロマトにて精製した(塩化メチレン/メタノ ール(24%)で溶出)。塩化メチレンより結晶化する ことにより標題化合物を白色結晶として0.50g (1.01mmol、75,3%) 得た。

mp. 202-204°C

NMR (DMSO-d₆) $\delta:10.31$ (s, 1H) 10. 29 (s, 1H) 8. 24 (s, 1H) 8. 23 (s, 1H) 8. 1 (t, 1H) 7. 9 (d, 1H) 7. 77 (s, 1H) 7. 65 (d, 1H) 7. 47 (t, 1H) 7. 27 (s, 1H) 6. 85 (s, 1 H) 4. 0 (s, 3 H) 3. 8 (s, 3 H) 3. 2 (q, 2H) 2. 25 (t, 2H) 2. 1 (s, 6H) 1. 6 (m, 2H)

- [N, N−ビス (2−クロロエチル) アミノ] フェニ ル] ブチリルアミノ] -1-メチル-2-ピロールカル ボキサミド] ベンゾイルアミノ] -1-メチル-N-[3-(N, N-ジメチルアミノ) プロピル] -2-ピ ロールカルボキサミド

4-[3-(1-メチル-4-ニトロ-2-ピロールカ ルボキサミド) ベンゾイルアミノ] -1-メチル-N-[3-(N, N-ジメチルアミノ) プロピル] -2-ピ ロールカルボキサミド 0. 35g (0. 71mmol) を、10%Pd/C存在下接触水素添加を行い、対応す るアミノ体へ導いた。これをDMF10mLに溶解し、 30 クロラムプシル246mg (0.71mmol, 1.0 等モル)、HOB t 1 1 3 mg (0. 8 4 mm o l, 1. 2等モル) を加え、窒素雰囲気下氷冷攪拌した。D CCO. 16g (0.84mmol, 1.2等モル)を 加え氷浴をはずし6.5時間攪拌を続けた。生じた固体 を濾別後濾液を減圧下濃縮し、残渣を塩化メチレンに溶 解し、0.5 N水酸化ナトリウム水溶液で洗浄、塩化メ チレン抽出、塩化メチレン層をあわせて飽和食塩水洗浄 を行った。硫酸ナトリウムで乾燥後濃縮し、シリカゲル カラムにて精製(塩化メチレン/メタノール (20%) 40 にて溶出)し、エーテルより結晶化することにより標題 化合物 0.34g(63%)を淡黄白色結晶として得 た。mp. 220℃から茶色に変化したが、明確な融点 は示さなかった。

NMR (DMSO-d₆) δ :10.26 (s, 1 H), 10.0 (s, 1H), 9.8 (s, 1H), 8. 2 (s, 1 H), 8. 13 (t, 1 H), 7. 9 (d, 1H), 7. 6 (d, 1H), 7. 4 (t, 1 H), 7. 27 (s, 1H), 7. 2 (s, 1H), 7. 04 (d, 2H), 7. 03 (s, 1H), 6. 8 [0045] (反応2) <u>4-[3-[4-[4-[4</u> 50 6 (s, 1 H), 6. 6 7 (d, 2 H), 3. 8 4

(s, 3H), 3. 83 (s, 3H), 3. 67 (s. 8H), 3. 2 (q, 2H), 2. 37 (t, 2H), 2. 24 (s, 6H), 1. 83 (m, 2H), 1. 6 7 (m. 2H)

IR (KBr) cm⁻¹; 3287, 2950, 164 7, 1519, 1439, 1284, 806, 745 元素分析(計算值) C:59.29、H:6.55、 N:14.56、C1:9.21 (分析値) C:59. 57, H: 6. 69, N: 14. 07, C1: 9. 40 * *【0046】 実施例9 4-[4-[4-[4-[4-[N, N-ビス (2-クロロエチル) アミノ] フェニ ル] プチリルアミノ] -1-メチル-2-ピロールカル ポキサミド] ペンゾイルアミノ] -1-メチル-N-[3-(N, N-ジメチルアミノ) プロピル] -2-ピ ロールカルポキサミド [化17]

[0047] 【化17】

4-(1-メチル-4-ニトロ-2-ピロ ールカルポキサミド)安息香酸エチル

1-メチル-4-ニトロ-2-ピロールカルポン酸0. 3g(1.76mmol)をエーテル9mLに懸濁し、 溶解するまでDMFを加え、塩化チオニル 0. 31g (2.6 mmol, 1.5等モル)を加え、室温で1時 20 間攪拌した。溶媒を減圧下留去した後残渣を塩化メチレ ン6mLに溶解し、氷冷下4-アミノ安息香酸エチル 0.29g(1.76mmol, 1.0等モル)、トリ エチルアミン0. 24mL (1. 72mmol, 0. 9 8等モル)を加えた。室温に戻し2.5時間攪拌後、水 と塩化メチレンを加え分液操作を行ったところ、水層に 目的物が抽出されたため、5N 水酸化ナトリウム水溶 液にて水層をアルカリ性にし、塩化メチレンで抽出し た。硫酸ナトリウムで乾燥の後濃縮し、残渣をシリカゲ ルカラムクロマトにて精製し(塩化メチレン/メタノー 30 ル(8%)で溶出)、エーテルで結晶化することによ り、標題化合物を茶白色結晶として得た。(0.2g、 36%)

mp. 210-212°C

NMR (DMSO-d₆) $\delta:10.4$ (s, 1H), 8. 25 (s, 1H), 7. 95 (d, 1H), 7. 8 8 (d, 1 H), 4. 3 (q, 2 H), 3. 97 (s, 3H), 1. 33 (t, 3H)

【0048】(反応2) 4-(1-メチル-4-ニト ロー2-ピロールカルポキサミド) 安息香酸

4-(1-メチル-4-ニトロ-2-ピロールカルボキ サミド) 安息香酸エチル 0. 21g (0.66 mm o 1)をエタノール5mLに懸濁し、1N水酸化ナトリウ ム水溶液5mLを加え90℃で1時間加熱攪拌した。エ タノールを減圧下留去し、残った水溶液を4N塩酸にて 酸性にし、生じた固体を適過することにより、標題化合 物を茶白色結晶として得た。(0.15g、79%) NMR (DMSO-d₆) δ : 10. 38 (s, 1 H), 8. 25 (s, 1H), 7. 9 (d, 1H), 7. 86 (d, 1 H), 7. 77 (s, 1 H), 3. 9 50 - N- [3- (N, N-ジメチルアミノ) プロピル] -

7 (s, 3H)

【0049】(反応3) 4-[4-(1-メチル-4 <u>ーニトロー2-ピロールカルポキサミド)ベンゾイルア</u> ミノ] -1-メチル-N-[3-(N, N-ジメチルア ミノ)プロピル]-2-ピロールカルボキサミド

4-アミノ-1-メチル-N-[3-(N, N-ジメチ ルアミノ) プロピル] -2-ピロールカルボキサミド (相応するニトロ体 0.55mmolより接触水素添加 により合成)をDMF5mLに溶解し、4-(1-メチ ルー4-二トロー2-ピロールカルボキサミド) 安息香 酸 0. 15g (0. 52mmol、0. 94等モル)、 HOB t (82mg、1. 1等モル) を加え、窒素気流 下氷冷攪拌した。DCCO. 12g (0.58mmo 1)を加え、室温にもどし3.5時間攪拌し、一晩放置 した。翌日生じている固体をろ別し、溶媒を減圧下留去 した。残渣をシリカゲルカラムクロマトにて精製し(塩 化メチレン (メタノール16-20%を含む))、エー テルより結晶化することにより、標題化合物を淡黄色結 晶として得た。(0.13g、47%)

NMR (DMSO-d₆) δ : 10. 34 (s, 1 H), 10. 3 (s, 1H), 8. 25 (s, 1H), 8. 13 (t, 1H), 7. 94 (d, 2H), 7. 8 5 (d, 2 H), 7. 76 (s, 1 H), 7. 27 (s, 1H), 6. 9 (s, 1H), 4. 0 (s, 3 H), 3.8 (s, 3H), 3.2 (q, 2H) 2. 47 (t, 2H), 2.3 (t, 6H), 1.7 (m, 2H)

【0050】(反応4) 4-[4-[4-[4-[4-<u>- [N, N-ビス(2-クロロエチル)アミノ] フェニ</u> ル] プチリルアミノ] -1-メチル-2-ピロールカル <u>ポキサミド] ベンゾイルアミノ] -1-メチル-N-</u> <u>[3-(N, N-ジメチルアミノ)プロピル]-2-ピ</u> ロールカルポキサミド

4-[4-(1-メチル-4-ニトロ-2-ピロールカ ルポキサミド) フェニルカルボキサミド] -1-メチル

2-ピロールカルボキサミド 0. 13g (0. 26mm ol)をメタノールに溶解し、10%Pd/Cを用いて 接触水素添加を行い、対応するアミノ体を合成した。触 州を適別後、森州を滅圧で図去し、茂油をDMF CmL に溶解した。クロラムプシル85mg (0. 28mmo 1, 1. 1等モル)、HOBt 45mg (0. 33mm o1, 1. 3等モル)を加え、窒素気流下氷冷攪拌し、 DCC61mg (0.3mmol, 1.15等モル) を 加え、室温にもどし4. 5時間攪拌後、そのまま一夜放 置した。生じた固体を濾別し、濾液を減圧下濃縮し、残 10 渣を塩化メチレンに溶解し、0.5N水酸化ナトリウム 水溶液ついで飽和食塩水で洗浄し、硫酸ナトリウムで乾 燥後、減圧下溶媒を留去した。残渣をシリカゲルカラム クロマトにて精製し(塩化メチレン/メタノール(20 %)で溶出)エーテルで結晶化することにより標題化合 物を淡黄白色結晶として得た。(57mg、29%) NMR (DMSO-d₆) δ : 10. 16 (s, 1 H), 10.0 (s, 1H), 9.8 (s, 1H). 8. 1 (t, 1 H), 7. 9 (d, 1 H), 7. 8 4 (d, 1H), 7. 26 (s, 1H), 7. 23 (s, 1 H), 7. 0 4 (d, 2 H), 7. 0 3 (s, 1 H), 6. 9 (s, 1 H), 6. 67 (d, 2 H), *

(表-1) 抗腫瘍活性試験結果

*3.84 (s, 3H), 3.82 (s, 3H), 3.7 (s, 8H), 3. 2 (q, 2H), 2. 25 (t, 2 H), 1.83 (m, 2H), 1.7 (m, 2H) IR (KB1) (cm1); 3293, 2950, 16 44, 1519, 1438, 1247, 762 元素分析(計算値0.3CH2Cl2,2.2H2Oを含 む) C:56. 31、H:6. 54、N:13. 72、 C1:11. 20 (分析値) C:56. 53、H:6. 54, N:13. 96, C1:11. 00 【0051】実施例10 (抗腫瘍活性試験) これらの化合物の抗癌活性について説明する。 (表-1) に代表的な化合物の抗腫瘍活性を示す。方法は、イ ンビトロの腫瘍細胞増殖阻害作用の測定であり、MTT アッセイとして確立されたものである。Cancer Res., 1988年、48巻、589-601頁に示 された方法に準じて50%の増殖阻害を起こすのに必要 な濃度を求めた。単位はマイクログラム/ミリリットル である。腫瘍細胞としてはP-388を用いた (表-1) [表1]。 [0052]

.34

化合物50%阻止濃度化合物327 (マイクログラム/mL)化合物105化合物1211化合物132化合物353化合物374ディスタマイシン36

【表1】

以上の結果からこれらの化合物の活性が高く、抗癌剤として有用であることが示された。これ故に、本発明の化合物は、優れた活性を持つ抗癌剤として使用される。使用される癌種は、白血病、骨肉腫、乳癌、卵巣癌、胃癌、大腸癌、肺癌および頭頸部癌等である。

[0053]

【発明の効果】本発明に示す化合物は、腫瘍細胞増殖抑制作用を示し、白血病、骨肉腫、乳癌、卵巣癌、胃癌、 大腸癌、肺癌および頭頸部癌等の治療に有用である。

フロントページの続き

(72)発明者 枝次 一

千葉県茂原市東郷1900番地の1 三井東圧 化学株式会社内