# CORRIENTE ELECTRICA

La corriente eléctrica es el movimiento de cargas por un cable. En la realidad, estas cargas son los electrones. Los metales pueden conducir la corriente. Cuando uno pone una pila entre las 2 puntas de un cable, la pila obliga a estos electrones a moverse. La pila provoca la aparición de la corriente eléctrica.



Entonces la corriente eléctrica sería el número de cargas que circulan por segundo. Hablamos de intensidad de corriente eléctrica. (I). La I Se mide en <u>Amperes</u>.



Esta fórmula I = Carga / tiempo no la vas a usar en los problemas. Pero conviene que la conozcas para que entiendas lo que es la corriente eléctrica. Fijate: Al decir que la corriente eléctrica es el "número de cargas que circulan en cierto tiempo", indirectamente uno está hablando de una especie de "caudal". En vez de hablar de litros por segundo uno habla de "cargas por segundo". Es decir, puede entenderse la corriente eléctrica como si fuera un "caudal de cargas que circulan por un cable". O sea, una especie de líquido compuesto por cargas. De ahí viene el asunto de que a la electricidad a veces se la llama "fluido eléctrico".

## **PILAS**

Una pila es lo que vos conocés de la vida diaria. Es un poco complicado explicar como funciona una pila en la realidad. Sin hilar fino digamos que una pila es como una fuente de electrones. Algo así como un tanque lleno de cargas. Cuando uno conecta un cable a la pila las cargas (electrones) salen del tanque y empiezan a viajar por el cable.



La pila empuja a los electrones y los obliga a circular por el cable. La "fuerza" que

hace la pila para mover a las cargas por el cable se llama <u>fuerza electro motriz</u> (f.e.m). La fem vendría a ser la fuerza que empuja a los electrones. Se mide en volts. Acá en electricidad simbolizamos a las pilas de esta manera:

La fem de la pila tiene otros nombres. Se la llama también <u>diferencia de potencial</u>, <u>tensión</u>, <u>tensión de la pila</u> o <u>voltaje</u>. En la práctica se usa más que nada la palabra <u>voltaje</u>. Cuanto más voltaje tiene una pila, más fuerza tiene para empujar a los electrones. Al voltaje de la pila se lo pone generalmente con la letra <u>V</u>. A veces también se usa la letra E. ( Atento ).

## RESISTENCIA ELECTRICA

A la corriente le cuesta circular por el cable. Se dice que el cable ofrece cierta resistencia al paso de la corriente eléctrica. A esta resistencia se la pone con la letra  $\underline{\mathbf{R}}$ . Se mide en Ohms. A veces para ahorrar tiempo en vez de poner la palabra Ohms se usa el símbolo " $\underline{\Omega}$ ". (Es la letra griega Omega). El dibujito característico de una resistencia es este:

Mirá un poco el asunto: Por la resistencia circula una corriente que la llamo  $\underline{I}$ . Esta  $\underline{I}$  va en Amperes. Entre los bordes de la resistencia hay una tensión  $\underline{V}_{AB}$ . (puntos A y B). Esta tensión  $V_{AB}$  es lo que se llama <u>caída de potencial en la resistencia</u>. Se mide en volts.

## LEY DE OHM (Atento)

Analicemos un circuito eléctrico. Un circuito está constituido por una pila y una resistencia. La pila manda electrones y los electrones circulan por el cable. Estos electrones circulando es lo que se llama corriente eléctrica ( I )

Se la pone con la letra I porque el verdadero nombre de la corriente eléctrica es "Intensidad de corriente ". La ley de Ohm dice que en un circuito eléctrico siempre se cumple que  $V = I \times R$ .

En la fórmula  $V = I \times R$ ,  $\underline{V}$  es la diferencia de potencial,  $\underline{I}$  es la corriente que circula y  $\underline{R}$  es la resistencia del cable.

Es más fácil entender la ley de Ohm si uno la escribe como I = V/R.

Se puede ver mejor el significado de la fórmula I = V/R diciendo que la corriente que circula por un cable es proporcional al voltaje e inversamente proporcional a la resistencia del cable. A mayor voltaje, mayor corriente circula. A mayor resistencia, menor corriente circula.

## RELACION DE LA LEY DE OHM CON EL CAUDAL QUE CIRCULA POR UN TUBO

La circulación de las cargas eléctricas en un cable se parece a la circulación de las moléculas de agua por un tubo. Fijate. Antes cuando un líquido iba por un tubo usábamos la ley de Poiseouille que decía  $\Delta P = Q_{\times}R_{H}$ .

En la ley de Poiseouille, el  $\Delta P$  era la diferencia de presión,  $\mathbf{R}_H$  era la resistencia hidrodinámica y  $\mathbf{Q}$  era el caudal que circulaba. En la fórmula  $\Delta P = \mathbf{Q} \times \mathbf{R}_H$  el caudal  $\mathbf{Q}$  es proporcional a la diferencia de presión  $\Delta P$  e indirectamente proporcional a la resistencia hidrodinámica  $\mathbf{R}_H$ . Podemos hacer un razonamiento parecido para la corriente eléctrica. El caudal sería la corriente  $\mathbf{I}$ , la presión sería el voltaje  $\mathbf{V}$  y la resistencia hidrodinámica sería la resistencia del cable  $\mathbf{R}$ . A su vez la pila cumpliría la función de una bomba que impulsa el líquido para que circule.

El caudal Q es la cantidad de litros que pasan por segundo. La corriente también sería una "especie de caudal". Sería el caudal de cargas que pasan por segundo. La diferencia de presión obliga a un líquido a moverse. El voltaje de la pila sería algo parecido. La diferencia de potencial de la pila obliga a las cargas a circular por el cable. El tubo por donde va el agua tiene resistencia hidrodinámica y pierde presión. En el tubo hay una caída de presión. El cable por donde circulan las cargas tiene resistencia eléctrica y las cargas pierden voltaje. Hay una caída de potencial. ¿ Ves como es el asunto?

## RESISTENCIAS EN SERIE Y EN PARALELO (Importante)

## RESISTENCIAS EN SERIE

Suponete que tengo dos resistencias una a continuación de la otra. A esto se llama conectar las resistencias " en serie ". Las R pueden tener distinto valor. Mirá el dibujo de 2 resistencias  $R_1$  y  $R_2$  puestas en serie:

La pregunta es : ¿Qué resistencia tienen  $R_1 y R_2$  cuando las pongo juntas? O sea, quiero reemplazar a las dos R por una sola R que tenga una resistencia equivalente. A la  $R_{EQ}$  se la llama resistencia equivalente o resistencia total. ( $R_{EQ}$  o  $R_T$ ). Para dos resistencias en <u>serie</u>, la resistencia equivalente es la suma de las resistencias. Es decir:

Este mismo razonamiento se aplica para cualquier cantidad de resistencias conectados en serie (se suman las R).

#### RESISTENCIAS EN PARALELO

Vamos ahora a resistencias en Paralelo. Fijate. Tengo una conexión en paralelo cuando pongo los resistencias uno al lado de la otra. Para que las resistencias estén en paralelo tiene que haber una ramificación. Sería algo así:

En el caso de resistencias en paralelo la R total se calcula sumando las inversas:

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$
RESISTENCIAS
EN PARALELO

¿ Qué pasa si en vez de tener 2 R en paralelo tengo 3 R en paralelo ? Rta: bueno, si las tres resistencias tienen resistencias  $R_1$ ,  $R_2$  y  $R_3$  me quedaría :

$$\frac{1}{Re} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Y lo mismo va para muchas resistencias conectados en paralelo. (Es decir, tengo que poner que 1 sobre la  $R_{TOTAL}$  es la suma de todas las 1/R).

Quiero que veas una fórmula importante. Si a vos te dan 2 resistencias en paralelo y despejás de la fórmula, te queda esto:

$$R_{T} = \frac{R_{1} \times R_{2}}{R_{1} + R_{2}} \leftarrow \frac{\text{FORMULA PARA}}{2 \text{ RESISTENCIAS}}$$
EN PARALELO.

Esta fórmula se usa bastante porque ya tiene la  $R_{TOTAL}$  despejada. Ojo, esta fórmula es para  $\underline{DOS}$  resistencias. Si tenés 3, no sirve. ( Para 3 resistencias  $\underline{NO}$  se puede hacer  $1/R_{TOT} = R_1 \times R_2 \times R_3 / R_1 + R_2 + R_3$  ).

<u>NOTA</u>: Para dibujar las resistencias en serie o en paralelo se suelen usar estos dibujitos que pongo acá.



### **EJEMPLO**:

CALCULAR LA RESISTENCIA EQUIVALENTE PARA DOS RESISTENCIAS CONECTADAS EN SERIE Y EN PARALELO CUYOS VALORES SON  $R_1=10\ \Omega$  Y  $R_2=5\ \Omega$ 

#### **SOLUCION:**

Cuando las pongo en serie directamente hago  $R_{TOTAL} = R_1 + R_2 \rightarrow R_{TOTAL} = 15 Ohms$ Cuando las pongo en paralelo hago un dibujito y aplico la fórmula:

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} \qquad \Rightarrow \quad \frac{1}{R_T} = \frac{1}{5 \cdot \Omega} + \frac{1}{10 \cdot \Omega}$$

$$\Rightarrow \mathbf{R}_{\text{TOTAL}} = \mathbf{3.33 \ Ohms}$$

<u>IMPORTANTE</u>: La resistencia equivalente de una conexión en paralelo siempre es <u>MENOR QUE LA MENOR</u> de las resistencias. Fijate que calculé la  $R_{EQ}$  para 2 resistencias en paralelo de 5 y de 10 y me dió  $R_{EQ}$  = 3,33, que es menor que 5.

## EFECTO JOULE - POTENCIA EN CIRCUITOS ELÉCTRICOS

A veces piden calcular la potencia que se gasta cuando una corriente circula por una resistencia. Se habla de potencia gastada, potencia consumida o potencia que hay que entregar. Esta potencia es la energía disipada por el rozamiento de las cargas contra el cable. Es energía que se libera en forma de calor. A este calentamiento de los cables cuando circula una corriente eléctrica se lo llama "Efecto Joule". A veces vas a ver que el enchufe de la pared está calentito. Eso pasa por el efecto Joule. Mucha corriente circuló por el enchufe y el enchufe se calentó. Lo mismo va para las lamparitas. Una lamparita se calienta por efecto Joule. (O sea, lo que se calienta es la resistencia, aclaro).



Para calcular la potencia que consume una resistencia se usa alguna de estas 3 fórmulas: Potencia =  $V_{\times}I$  o Potencia =  $R_{\times}I^2$  o Potencia =  $V^2/R$ .

$$Pot = V.I = RI^2 = \frac{V^2}{R}$$
 $\leftarrow$ 
 $Potencia$ 
 $(WATTS)$ 

Podés usar cualquiera de las 3 fórmulas dependiendo de los datos que te den.

### RESISTIVIDAD DE UN CABLE

Supongamos que tengo un cable por donde circula una corriente. Ese cable tiene cierta resistencia al paso de la corriente.



Se comprobó que la resistencia que tiene el cable es proporcional al la longitud del cable e inversamente proporcional a la sección. La fórmula es :

El valor Rho ( $\rho$ ) es lo que se llama <u>RESISTENCIA ESPECÍFICA</u>. La resistencia específica depende del material del cable. Cada material tiene un valor de Rho. El cobre tiene un valor, el hierro tiene otro valor y el carbón otro valor. Rho me da la resistencia en Ohmios tiene un cable de 1 metro de longitud y de 1 m² de sección.

EJEMPLO: CALCULAR LA RESISTENCIA ESPECÍFICA PARA UN CABLE DE 100 m DE LARGO QUE TIENE UNA SECCION DE 1 cm<sup>2</sup> Y UNA RESISTENCIA DE 10 Ohms

SOLUCIÓN:

$$R = \int \frac{L}{s}$$

$$\Rightarrow 10 \Omega = \rho \times \frac{100 \text{ m}}{0,00001 \text{ m}^2}$$

$$\rightarrow \rho = 10^{-6} \Omega \times m$$

Nota: El valor de la R específica de un material depende de la temperatura. Generalmente, a mayor temperatura, mayor Rho. Esto vale para la mayoría de los materiales, pero no para todos. Este aumento de la resistividad con la temperatura provoca que la resistencia de un cable también aumente con la temperatura. Por ejemplo, si medís la resistencia de una lamparita con un tester te va a dar cierto valor. Ese valor es la resistencia del filamento de la lamparita a temperatura ambiente. Pero cuando la lamparita está prendida, la temperatura es de más de 1000 grados. De manera que la resistencia del filamento a esa temperatura va a ser mucho más grande.

## CIRCULACION DE LA CORRIENTE EN UN CIRCUITO ELECTRICO

Supongamos que tengo un circuito formado por una pila y una resistencia. La pila empuja a los electrones y los obliga a moverse por el cable. Los electrones salen de un polo de la pila, circulan por el circuito, pasan por la resistencia y vuelven a la pila por el otro lado. Sería algo así:



Fijate que la corriente viaja por el circuito como si fuera agua por un tubo. A lo largo del circuito no hay "corriente que se pierde". Todo el caudal que sale, es el caudal que entra. Todas las cargas que salen por un lado de la pila vuelven a entrar por el otro lado de la pila. No hay cargas que se pierdan.

Este concepto es muy importante. La corriente es un caudal que circula. El caudal no se pierde. Todo lo que entra, sale. Todo lo que sale, entra.

### CAIDA DE POTENCIAL EN UNA RESISTENCIA

A medida que el agua circula por un tubo, pierde presión. De la misma manera, a medida que la corriente circula por un cable, pierde "voltaje". Entre las puntas de una resistencia hay una diferencia de potencial. Se la suele llamar V o  $V_{AB}$ . Esta diferencia de potencial es la caída de potencial en la resistencia.

El asunto es así: La corriente circula por el circuito. Da vueltas y vueltas. Cuando la corriente pasa por la resistencia, el voltaje cae. A la entrada de la resistencia, el voltaje es alto, a la salida de la resistencia el voltaje es bajo.



Fijate. Suponé que tengo un circuito con una pila de 10 voltios. A la salida de la pila el potencial es 10 volts. En todo el cable que sigue el potencial sigue siendo 10 volts Eso pasa hasta llegar a la resistencia. Ahí se produce una caída de potencial. En la resistencia el potencial va cayendo gradualmente. Si hay una sola resistencia en el circuito, el potencial a la entrada de la resistencia será 10 volts y a la salida de la resistencia será 0 volts. Mirá bien este dibujo:



La caída de potencial en la resistencia se calcula con la siguiente fórmula:

$$V_{\text{FIR}}$$
  $I_{\text{F}} \frac{V}{R}$   $R_{\text{F}} \frac{V}{I}$  Caída de potencial en una resistencia

En esta fórmula, V es la caída de potencial en la resistencia, I es la corriente que circula por la resistencia y R es el valor de la resistencia.

Quiero ampliar un poco más el asunto para que veas bien como esto de la caída de potencial. Voy a mirar lo que pasa adentro de la resistencia. Fijate:



Puede asegurarte que si entendiste este dibujo, entendiste la ley de Ohm.

### EJEMPLOS DEL USO DE LA LEY DE OHM

1 - PARA EL SIGUIENTE CIRCUITO CALCULAR LA CORRIENTE QUE CIRCULA, LA CAIDA DE POTENCIAL EN LA RESISTENCIA Y LA POTENCIA CONSUMIDA



**SOLUCION**:

$$I = \frac{V}{R} = \frac{10 \text{ VOLT}}{2 \Omega} = 5 \text{ AMPERE}$$

La caída de potencial en la resistencia es directamente el voltaje de la pila, o sea 10 Volts. Es decir, a la izquierda de la resistencia el potencial es 10 volts y a la derecha de la resistencia es CERO.

La potencia consumida vale: Pot =  $V \times I = 10 \text{ Volt} \times 5 \text{ Ampere}$ 

2 - PARA EL SIGUIENTE CIRCUITO CALCULAR LA CORRIENTE QUE CIRCULA, LA CAIDA DE POTENCIAL EN CADA RESISTENCIA Y LA POTENCIA CONSUMIDA EN TOTAL Y POR CADA RESISTENCIA



<u>Solución</u>: La resistencia total del circuito es  $2\Omega + 3\Omega = 5\Omega$ 

La corriente que circula por el circuito va a ser:

$$I = \frac{V}{R} = \frac{10 \text{ VOLT}}{5 \Omega} = 2 \text{ AMPERE}$$

Esta corriente circula por todo el circuito. Sale de la pila, pasa por la  $R_1$ , pasa por la  $R_2$  y vuelve a la pila.

La caída de potencial en cada resistencia la calculo como V = I x R

$$V_{R1} = I \times R_1 = 2A \times 2\Omega = 4 \text{ Volts}$$

CAIDA DE POTENCIAL

EN LA  $R_1$ 
 $V_{R2} = I \times R_2 = 2A \times 3\Omega = 6 \text{ Volts}$ 

CAIDA DE POTENCIAL

EN LA  $R_2$ 

Fijate que las caídas de potencial me dieron 4 volts y 6 volts. Si las sumo <u>obtengo la caída de potencial total</u>, o sea, 10 volts. La caída de potencial total siempre tiene que ser igual al voltaje de la pila.

La potencia en cada resistencia la calculo como Pot = V×I

Pot<sub>R1</sub> = 
$$V_{R1} \times I = 4V \times 2A = 8$$
 Watts

Pot<sub>R2</sub> =  $V_{R2} \times I = 6V \times 2A = 12$  Watts

Potencia

For Enlar

For Enlar

For Enlar

For LAR

For Enlar

Fijate por favor que la potencia total consumida por el circuito es la suma de las potencias. Es decir :

Notá esto: También podría haber calculado esta potencia total haciendo la cuenta : caída de potencial total  $\times$  I<sub>TOTAL</sub>. O sea, Pot<sub>TOTAL</sub> = 10 V  $\times$  2 A = 20 Watts

3 - PARA EL SIGUIENTE CIRCUITO CALCULAR LA CORRIENTE QUE CIRCULA, LA CAIDA DE POTENCIAL EN CADA RESISTENCIA, LA CORRIENTE EN CADA RESISTENCIA Y LA POTENCIA CONSUMIDA EN TOTAL Y POR CADA RESISTENCIA



SOLUCION: Acá tengo 2 resistencias en paralelo. Calculo la resistencia equivalente

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$R_T = \frac{R_1 \times R_2}{R_1 + R_2}$$

$$R_T = \frac{4 \Omega \times 6 \Omega}{4 \Omega + 6 \Omega}$$

## → R<sub>TOTAL</sub> = 2,4 Ohms

Hagamos un análisis de cómo circulan las corrientes por el circuito. De la pila sale cierta intensidad de corriente I. Esta I entra al paralelo y se divide en 2 corrientes  $I_1$  e  $I_2$ .



Ahora, es importante darse cuenta que la caída de potencial en las 2 resistencias es la misma. Esta caída de potencial es 10 Volt. (El voltaje de la pila).

$$V_{R1} = 10 \text{ Volts}$$
 CAIDAS DE POTENCIAL  
 $\leftarrow$  EN LA R<sub>1</sub> Y EN LA R<sub>2</sub>  
 $V_{R2} = 10 \text{ Volts}$ 

Calculo la corriente en cada resistencia:

$$I_1 = V_1 / R_1 = 10 \text{ V} / 4 \Omega = \underline{2.5 \text{ A}}$$

$$I_2 = V_2 / R_2 = 10 \text{ V} / 6 \Omega = \underline{1.66 \text{ A}}$$
CORRIENTES EN
$$LA R_1 \text{ Y EN LA } R_2$$

La corriente total es la suma de las corrientes. En este caso la  $I_{TOTAL}$  vale:

$$I = 2.5 A + 1.66 A = 4.166 A$$

Fijate que también podría haber calculado la corriente total usando la resistencia equivalente. En ese caso tendría que haber hecho la cuenta:

$$I_{TOT} = V_{PILA} / R_{EQUIV} = 10 \text{ V} / 2,4 \Omega = 4,166 \text{ A}$$

La potencia en cada resistencia la calculo como Pot = V×I

Pot<sub>R1</sub> = 
$$V_{R1} \times I$$
 = 10  $V \times 2,5$   $A = 25$  Watts

Pot<sub>R2</sub> =  $V_{R2} \times I$  = 10  $V \times 1,66$   $A = 16,6$  Watts

Potencia

Potencia

Potencia

Potencia

Potencia

Fijate por favor que la potencia total consumida por el circuito es la suma de las 2 potencias. Es decir :

También podría haber calculado esta potencia total haciendo la cuenta : caída de potencial total  $\times$  I<sub>TOTAL</sub>. O sea, Pot<sub>TOTAL</sub> = 10 V  $\times$  4,166 A = 41,66 Watt

### PROBLEMAS DE ELECTRICIDAD

UN CILINDRO DE PLASTILINA CONDUCTORA SE CONECTA A UNA FUENTE DE TENSIÓN DE MODO QUE CIRCULA POR ÉL UNA CORRIENTE DE 100 mA.. SE AMASA EL CILINDRO PARA FORMAR OTRO DE LONGITUD MITAD QUE EL ANTERIOR Y SE LO VUELVE A CONECTAR A LA MISMA FUENTE DE TENSIÓN. ¿ CUANTO VALE LA NUEVA CORRIENTE ?



El largo del cilindro se acorta. Como el volumen se conserva, el radio del cilindro tiene que aumentar. Planteo entonces que el volumen al principio es igual al volumen al final:  $\mu = \mu_{Z} - \mu_{Z}$ 



EN EL SIGUIENTE CIRCUITO LA PILA TIENE UNA (d) TENSION DE 10 VOLTIOS Y LAS RESISTENCIAS VALEN  $R_1$  = 1  $\Omega$ ,  $R_2$  = 2  $\Omega$ ,  $R_3$  = 3  $\Omega$  y  $R_4$  = 4  $\Omega$ . CALCULAR:



- a) LA RESISTENCIA EQUIVALENTE
- b) LA CORRIENTE QUE CIRCULA POR LA PILA
- c) LA CORRIENTE QUE CIRCULA POR R1 Y R2

A ver: ¿ quién está en paralelo y quién está serie?

Rta: Una forma de ver esto es buscando nodos, que son los puntos en donde la corriente puede tomar distintos caminos. Acá los marqué con a y b. Entonces, las cosas que estén en una de las ramas que salen de cada nodo están en paralelo con las cosas de las otras ramas que nacen del mismo nodo. O sea: la  $R_1$  está en paralelo con la  $R_2$  la  $R_3$ , y la  $R_4$ . Ahora bien, las cargas que pasan por  $R_2$  son las mismas que pasan por  $R_3$  y  $R_4$ , luego estas R están en serie. Entonces la cuenta que tenemos que hacer para calcular la R equivalente es:

$$\frac{1}{R_{equiv}} = \frac{1}{R_1} + \frac{1}{R_2 + R_3 + R_4}$$
Están en serie

Conclusión:

R<sub>EQUIV</sub> = 0,9 Ohms

b) - La corriente que circula por la pila va a ser:

c) - Calculo la corriente que va por  $R_1$  y la que va por las  $R_{2,3,y,4}$ :

$$I_1 = V_{AB}/R_1 = 10 \text{ V}/1 \Omega = \underline{10 \text{ A}}$$
  
 $I_{2,3 \text{ y},4} = V_{AB}/R_{2,3 \text{ y},4} = 10 \text{ V}/9 \Omega = \underline{1,11 \text{ A}}$ 

La corriente total es la suma de las corrientes. En este caso la  $I_{\text{TOTAL}}$  vale:

$$I = 10 A + 1,11 A = 11,11 A$$
 (VERIFICA)

EN EL CIRCUITO DE LA FIGURA LA PILA TIENE UNA TENSIÓN DE 9V Y LOS VALORES DE LAS RESISTENCIAS SON  $R_1=180~\Omega,~R_2=960~\Omega~Y~R_3=100~\Omega.$  ENCONTRAR:

- a ) LA DIFERENCIA DE POTENCIAL EN CADA UNA DE LAS TRES RESISTENCIAS.
- b) LA POTENCIA ENTREGADA POR LA PILA.



Para calcular las caídas de potencial, necesito saber cuál es la corriente que circula por las resistencias. Para eso lo que tengo que hacer primero es encontrar la R equivalente. Entonces, si pensás en la corriente que sale de la pila ( siguiendo la flecha del dibujo), todas las cargas van a pasar por  $R_1$ . En cambio por  $R_2$  y  $R_3$  pasan distintas cargas: unas que van por el cable de arriba y otras por el de abajo. O sea: erre dos y erre tres están en paralelo; y erre uno está en serie con ellas dos. Por lo tanto, la resistencia equivalente es:

$$R_{\text{equiv}} = R_1 + \frac{1}{\left(\frac{1}{R_2} + \frac{1}{R_3}\right)} = R_1 + \frac{R_2 \cdot R_3}{R_2 + R_3} =$$

= 
$$180 \Omega + \frac{960 \Omega \cdot 100 \Omega}{960 \Omega + 100 \Omega} = 270,57 \Omega$$

Por lo tanto, la corriente total, que es la que circula por la  $R_1$ , es:

$$E = R_{\text{equiv}} \cdot I_{\text{total}}$$
  $\Rightarrow$   $I_{\text{total}} = \frac{E}{R_{\text{equiv}}} = \frac{9\text{V}}{270,57\Omega} = 0,033 A$ 

Con esto ya podemos calcular la caída en R<sub>1</sub>:

$$V_1 = R_1 \cdot I_1 = R_1 \times I_{total} = 180 \Omega \times 0.033A$$

$$V_1 = 5.99 \text{ V}$$

Y como las otras dos R están en paralelo, tienen la misma diferencia de potencial entre sus extremos, o sea:

$$V_2 = V_3$$

Para determinar  $V_2$  hay que mirar el circuito y ver que si entre los puntos a y c hay una tensión E, y yendo de a hacia c, se produce una caída de potencial  $V_1$ , el potencial del punto b con respecto al c va a ser lo que queda: esto es  $E-V_1$  ( lo que había menos lo que cayó )



$$\Rightarrow V_2 = E - V_1 = 9 \text{ V} - 5,99 \text{ V}$$
$$\Rightarrow V2 = 3.01 \text{ V}$$

b) - Para calclar la potencia total entregada por la pila hago:

Pot<sub>TOTAL</sub> = 
$$V_{PILA} \times I_{TOTAL} = 9 \text{ V} \times 0,033 \text{ A} = 0.3 \text{ Watts}$$

EN EL CIRCUITO ELÉCTRICO DE LA FIGURA SE SABE QUE LAS RESISTENCIAS 2 Y 3 DISIPAN LAS POTENCIAS  $P_2 = 25$  W Y  $P_3 = 75$  W. CALCULAR LA CORRIENTE QUE ENTREGA LA FUENTE DE TENSIÓN SI SU VOLTAJE ES DE 36 V.



Acá la corriente tiene solamente dos caminos por donde ir ( por  $R_1$  o por  $R_2$  ). La corriente total entregada por la batería será la suma la  $I_1$  y la  $I_2$ . Para calcular estas corrientes tenemos la potencia disipada en cada R, entonces hacemos:

$$P_1 = I_1 \cdot V_1 \quad \Rightarrow \quad I_1 = \frac{P_1}{V_1} \quad \text{y} \quad P_2 = I_2 \cdot V_2 \quad \Rightarrow \quad I_2 = \frac{P_2}{V_2}$$

Pero la tensión sobre ambas resistencias es la misma y es igual a la de la pila, porque no hay ninguna caída de potencial antes de estas resistencias en paralelo. Entonces:

$$I_1 = \frac{P_1}{V_1} = \frac{P_1}{E} = \frac{25 \text{ W}}{36 \text{ V}} = 0,69 \text{ A}$$
  $\Rightarrow$   $I_2 = \frac{P_2}{V_2} = \frac{P_2}{E} = \frac{75 \text{ W}}{36 \text{ V}} = 2,08 \text{ A}$ 

Por lo tanto, la corriente total entregada por la batería es:

$$I_{total} = I_1 + I_2 = 0.69 A + 2.08 A$$

$$\rightarrow I_{total} = 2.77 A$$

## TESTER, VOLTÍMETRO Y AMPERÍMETRO

Un voltímetro mide el voltaje, o la diferencia de potencial entre dos puntos. <u>Se</u> <u>conecta en paralelo</u>. Tiene una resistencia muy alta. Al ser alta la resistencia, la corriente va por el circuito en vez de pasar por el aparato.

El amperímetro mide la intensidad de la corriente que pasa por un cable. <u>Se</u>

<u>conecta en serie</u>. Tiene una resistencia muy chica El circuito no cambia por el hecho de tener el amperímetro ahí metido. Hay un aparato que se puede usar como voltímetro o amperímetro o medidor de resistencias. Es el Tester. Un tester es una cosa así:



El tester tiene una palanquita que lo convierte en voltímetro, amperímetro o medidor de resistencia. Después, según como uno conecte el tester al circuito, se puede medir el voltaje, la corriente o la resistencia.

Pongo ahora varios circuitos y te indico como hay que conectar el voltímetro o el amperímetro para medir la tensión o el voltaje en el circuito. Llamo  $\underline{A}$  al Amperímetro y  $\underline{V}$  al voltímetro. Fijate:

