Linear arithmetic theories: algorithms and applications

Christoph Haase Alessio Mansutti

This course

Goals:

- Introduction to logical, algorithmic and geometric aspects of arithmetic theories
- Showcase how arithmetic theories can be approached with different techniques (formal logic, automata theory and geometry)

Content:

- Classical algorithms and decision procedures
- Geometric description of the sets definable in arithmetic theories
- Recent research developments

Course overview

Monday Introduction to linear arithmetic

Tuesday Linear Programming and Integer Linear Programming

Wednesday Quantifier elimination procedures

Thursday Automata-based procedures

Friday Geometric procedures

Required background

Basic familiarity with following topics is helpful:

- Mathematical logic
- Linear algebra
- Automata theory
- Algorithms and computational complexity

Today's lecture

Introduction to linear arithmetic:

- Applications of arithmetic theories
- Syntax, semantics, normal forms

Convex geometry:

- Basic notions: hyperplanes, (convex) cones and polyhedra, hulls, . . .
- Farkas' Lemma
- Minkowski-Weyl Theorem

Applications of arithmetic theories

Directed weighted graph G = (V, E, w) such that $w \colon E \to \mathbb{R}$:

- lacksquare w assigns maximum flow capacity to edges in G
- \blacksquare flow is function $f: E \to \mathbb{R}$
- lacksquare value of flow is sum of flow leaving s
- goal: find flow with maximum value

Directed weighted graph G = (V, E, w) such that $w \colon E \to \mathbb{R}$:

- lacksquare w assigns maximum flow capacity to edges in G
- \blacksquare flow is function $f: E \to \mathbb{R}$
- lacksquare value of flow is sum of flow leaving s
- goal: find flow with maximum value

For edge $e \in E$, introduce variables f_e encoding flow conditions:

$$\bigwedge_{e \in E} 0 \le f_e \le w(e) \qquad \wedge \qquad \bigwedge_{v \in V \setminus \{s,t\}} \sum_{(u,v) \in E} f_{u,v} = \sum_{(v,u) \in E} f_{v,u}$$

Directed weighted graph G = (V, E, w) such that $w \colon E \to \mathbb{R}$:

- lacksquare w assigns maximum flow capacity to edges in G
- \blacksquare flow is function $f: E \to \mathbb{R}$
- lacksquare value of flow is sum of flow leaving s
- goal: find flow with maximum value

For edge $e \in E$, introduce variables f_e encoding flow conditions:

Given coins in denominations

$$m_1 < \cdots < m_k \in \mathbb{N},$$

Given coins in denominations

$$m_1 < \cdots < m_k \in \mathbb{N},$$

$$n = m_1 \cdot x_1 + \dots + m_k \cdot x_k$$

Given coins in denominations

$$m_1 < \cdots < m_k \in \mathbb{N},$$

$$\exists x_1 \exists x_2 \cdots \exists x_k : n = m_1 \cdot x_1 + \cdots + m_k \cdot x_k$$

Given coins in denominations

$$m_1 < \cdots < m_k \in \mathbb{N},$$

$$\forall n : c < n \rightarrow \exists x_1 \exists x_2 \cdots \exists x_k : n = m_1 \cdot x_1 + \cdots + m_k \cdot x_k$$

Given coins in denominations

$$m_1 < \cdots < m_k \in \mathbb{N},$$

$$\exists c : \forall n : c < n \rightarrow \exists x_1 \exists x_2 \cdots \exists x_k : n = m_1 \cdot x_1 + \cdots + m_k \cdot x_k$$

Artificial neuron:

Artificial neuron:

Ouput:

$$b = \begin{cases} 0 & \text{if } \sum_{i=1}^{n} w_i \cdot a_i < 0 \\ \sum_{i=1}^{n} w_i \cdot a_i & \text{otherwise} \end{cases}$$

Artificial neuron:

Ouput:

$$b = \begin{cases} 0 & \text{if } \sum_{i=1}^{n} w_i \cdot a_i < 0 \\ \sum_{i=1}^{n} w_i \cdot a_i & \text{otherwise} \end{cases}$$

In logic for $oldsymbol{w} \in \mathbb{R}^n$

$$\Phi_{\boldsymbol{w}}(\boldsymbol{x},y) := (\boldsymbol{w}^\intercal \cdot \boldsymbol{x} < 0 \to y = 0) \land (\boldsymbol{w}^\intercal \cdot \boldsymbol{x} \ge 0 \to y = \boldsymbol{w}^\intercal \cdot \boldsymbol{x})$$

Artificial neuron:

Ouput:

$$b = \begin{cases} 0 & \text{if } \sum_{i=1}^{n} w_i \cdot a_i < 0 \\ \sum_{i=1}^{n} w_i \cdot a_i & \text{otherwise} \end{cases}$$

In logic for $\boldsymbol{w} \in \mathbb{R}^n$ and $W \in \mathbb{R}^{m \times n}$:

$$\Phi_{m{w}}(m{x},y) := (m{w}^\intercal \cdot m{x} < 0
ightarrow y = 0) \land (m{w}^\intercal \cdot m{x} \ge 0
ightarrow y = m{w}^\intercal \cdot m{x})$$

$$\Phi_W(m{x},m{y}) := \bigwedge_{1 \le i \le m} \Phi_{m{w}_i}(m{x},y_i) \quad \text{where } W = \begin{pmatrix} m{w}_1 \\ \vdots \\ m{w}_m \end{pmatrix}$$

$$\Phi(\boldsymbol{x},\boldsymbol{y}) = \exists z_1 \exists z_2 : \Phi_{W_1}(\boldsymbol{x},\boldsymbol{z}_1) \land \Phi_{W_2}(\boldsymbol{z}_1,\boldsymbol{z}_2) \land \Phi_{W_3}(\boldsymbol{z}_2,\boldsymbol{y})$$

$$\Phi(\boldsymbol{x},\boldsymbol{y}) = \exists z_1 \exists z_2 : \Phi_{W_1}(\boldsymbol{x},\boldsymbol{z}_1) \land \Phi_{W_2}(\boldsymbol{z}_1,\boldsymbol{z}_2) \land \Phi_{W_3}(\boldsymbol{z}_2,\boldsymbol{y})$$

All inputs giving output (1,0):

$$\left\{oldsymbol{r}=(r_1,r_2,r_3)\in\mathbb{R}^3:\Phi[oldsymbol{r}/oldsymbol{x},(1,0)/oldsymbol{y}] ext{ is true}
ight\}$$

$$\Phi(\boldsymbol{x},\boldsymbol{y}) = \exists z_1 \exists z_2 : \Phi_{W_1}(\boldsymbol{x},\boldsymbol{z}_1) \land \Phi_{W_2}(\boldsymbol{z}_1,\boldsymbol{z}_2) \land \Phi_{W_3}(\boldsymbol{z}_2,\boldsymbol{y})$$

All inputs giving output (1,0):

$$\left\{oldsymbol{r}=(r_1,r_2,r_3)\in\mathbb{R}^3:\Phi[oldsymbol{r}/oldsymbol{x},(1,0)/oldsymbol{y}] ext{ is true}
ight\}$$

Artificial neuron network outputs probability distribution:

$$\forall x_1 \forall x_2 \forall x_3 \forall y_1 \forall y_2 : \Phi(\boldsymbol{x}, \boldsymbol{y}) \to (y_1 + y_2 = 1 \land 0 \le y_1 \land 0 \le y_2)$$

Twin prime conjecture

There are infinitely many primes p such that p+2 is also prime:

Twin prime conjecture

There are infinitely many primes p such that p+2 is also prime:

$$\forall n \exists p : n$$

Twin prime conjecture

There are infinitely many primes p such that p+2 is also prime:

$$\forall n \exists p : n$$

$$\Phi_{\mathsf{prime}}(x) := x > 1 \land \forall y \forall z : x = y \cdot z \to (y = 1 \lor y = x)$$

What do we want from arithmetic theories?

problem	domain	arithmetic functions	relations	Boolean connectives	quantifiers
max-flow	\mathbb{R}	+	=, ≤	٨	3
Frobenius	N	+	=,<	\land, \rightarrow	∃ ∀ ∃
ANN	\mathbb{R}	+	=,<	\land, \rightarrow	∀∃
twin primes	N	+, ·	=,<	\land, \lor, \rightarrow	A∃

What do we want from arithmetic theories?

problem	domain	arithmetic functions	relations	Boolean connectives	quantifiers
max-flow	\mathbb{R}	+	$=,\leq$	٨	3
Frobenius	N	+	=,<	\land, \rightarrow	∃∀∃
ANN	\mathbb{R}	+	=,<	\wedge, \rightarrow	∀∃
twin primes	N	$+, \cdot$	=,<	\land, \lor, \rightarrow	∀∃

Problems of interest:

■ Validity: Is a given formula true?

■ Satisfiability: Does a satisfying assignment exist?

Optimization: Maximize an objective function.

■ Geometry: Properties of sets definable in arithmetic theories.

Syntax and semantics of linear arithmetic theories

Syntax

- $x, y, z, x_1, \dots, x_n \in X$ are first-order variables
- Atomic formulas, where $a_1, \ldots, a_n, b \in \mathbb{Z}$:

$$a_1 \cdot x_1 + \dots + a_n \cdot x_n = b,$$
 $\sum_{i=1}^n a_i \cdot x_i \le b,$ $\boldsymbol{a}^\intercal \cdot \boldsymbol{x} \sim b$

Boolean connectives:

$$\neg$$
 \wedge \vee $-$

Quantifiers:

$$\exists x : \Phi(x) \qquad \forall x : \Phi(x)$$

Linear arithmetic theories: semantics

Domain of variables are reals (\mathbb{R}) or integers (\mathbb{Z}) , or subsets thereof. Write \mathbb{D} for arbitrary domain.

Linear arithmetic theories: semantics

Domain of variables are reals (\mathbb{R}) or integers (\mathbb{Z}) , or subsets thereof. Write \mathbb{D} for arbitrary domain. Assignments are mappings $\mathcal{A} \colon X \to \mathbb{D}$.

Linear arithmetic theories: semantics

Domain of variables are reals (\mathbb{R}) or integers (\mathbb{Z}) , or subsets thereof. Write \mathbb{D} for arbitrary domain. Assignments are mappings $\mathcal{A} \colon X \to \mathbb{D}$. Semantics:

$$\blacksquare \ \mathcal{A} \models \neg \Phi \iff \mathcal{A} \not\models \Phi$$

$$\blacksquare \ \mathcal{A} \models \Phi \land \Psi \iff \mathcal{A} \models \Phi \text{ and } \mathcal{A} \models \Psi$$

$$\blacksquare \ \mathcal{A} \models \Phi \lor \Psi \iff \mathcal{A} \models \Phi \text{ or } \mathcal{A} \models \Psi$$

$$\blacksquare \ \mathcal{A} \models \Phi \rightarrow \Psi \iff \mathcal{A} \models \neg \Phi \text{ or } \mathcal{A} \models \Psi$$

$$\blacksquare \ \mathcal{A} \models \exists x : \Phi(x) \iff \text{there is } a \in \mathbb{D} \text{ such that } \mathcal{A} \models \Phi[a/x]$$

$$\blacksquare$$
 $\mathcal{A} \models \forall x : \Phi(x) \iff$ for all $a \in \mathbb{D}$, $\mathcal{A} \models \Phi[a/x]$

Simplifying formulas (1)

■ Can assume negation-free formulas:

$$\neg(a = b) \iff a < b \lor b < a$$

$$\neg(a < b) \iff b \le a$$

$$\neg(a \le b) \iff b < a$$

Equality not needed:

$$a = b \iff a \le b \land b \le a$$

■ Over \mathbb{Z} only one of \leq and < needed:

$$a < b \iff a + 1 \le b$$

Simplifying formulas (2)

Prenex form:

$$Q_1x_1\,Q_2x_2\cdots Q_kx_k:\Phi(x_1,\ldots,x_k)$$
 and Φ is quantifier-free

Simplifying formulas (2)

Prenex form:

$$Q_1x_1\,Q_2x_2\cdots Q_kx_k:\Phi(x_1,\ldots,x_k)$$
 and Φ is quantifier-free

Can wlog assume formula to be in prenex form:

- push negations in front of atomic formulas
- apply equivalences from previous slide to remove negation
- ensure no two quantifiers refer to the same variable
- pull quantifiers outwards

Two vectors $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^d$ are orthogonal whenever $\boldsymbol{v}^\intercal \cdot \boldsymbol{w} = 0$.

Two vectors $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^d$ are orthogonal whenever $\boldsymbol{v}^\intercal \cdot \boldsymbol{w} = 0$.

What is the set of vectors/points orthogonal to a non-zero vector $oldsymbol{v} \in \mathbb{R}^d$?

Two vectors $oldsymbol{v}, oldsymbol{w} \in \mathbb{R}^d$ are orthogonal whenever $oldsymbol{v}^\intercal \cdot oldsymbol{w} = 0.$

What is the set of vectors/points orthogonal to a non-zero vector $oldsymbol{v} \in \mathbb{R}^d$?

$$H \coloneqq \left\{ oldsymbol{x} \in \mathbb{R}^d : oldsymbol{v}^\intercal \cdot oldsymbol{x} = 0
ight\} \; \leftarrow \; \mathsf{a} \; \mathsf{hyperplane!}$$

Two vectors $oldsymbol{v}, oldsymbol{w} \in \mathbb{R}^d$ are orthogonal whenever $oldsymbol{v}^\intercal \cdot oldsymbol{w} = 0$.

What is the set of vectors/points orthogonal to a non-zero vector $oldsymbol{v} \in \mathbb{R}^d$?

$$H \coloneqq \left\{ oldsymbol{x} \in \mathbb{R}^d : oldsymbol{v}^\intercal \cdot oldsymbol{x} = 0
ight\} \; \leftarrow \; ext{a hyperplane!}$$
 $H^+ \coloneqq \left\{ oldsymbol{x} \in \mathbb{R}^d : oldsymbol{v}^\intercal \cdot oldsymbol{x} \geq 0
ight\} \; ext{and}$ and $H^- \coloneqq \left\{ oldsymbol{x} \in \mathbb{R}^d : oldsymbol{v}^\intercal \cdot oldsymbol{x} \leq 0
ight\} \; ext{are its half-spaces}$

(v is always in $H^+)$

$$H \coloneqq \left\{ oldsymbol{x} \in \mathbb{R}^d : oldsymbol{v}^\intercal \cdot oldsymbol{x} = 0
ight\} \; \leftarrow \; \mathsf{hyperplane}$$

Given $c \in \mathbb{Z} \setminus \{0\}$,

$$H_c \coloneqq \left\{ oldsymbol{x} \in \mathbb{R}^d : oldsymbol{v}^\intercal \cdot oldsymbol{x} = c
ight\} \; \leftarrow \; ext{affine hyperplane!}$$

If c > 0 then $H_c \subseteq H^+$ else $H_c \subseteq H^-$

(Polyhedral) cones

$$\mathbf{C} \coloneqq \left\{ A \cdot oldsymbol{\lambda} : oldsymbol{\lambda} \in \mathbb{R}^d \text{ and } oldsymbol{\lambda} \geq \mathbf{0}
ight\} \; \leftarrow \mathsf{a} \; \mathsf{cone!}$$

We denote this set by cone(A).

(Polyhedral) cones

$$\mathbf{C} \coloneqq \left\{ A \cdot oldsymbol{\lambda} : oldsymbol{\lambda} \in \mathbb{R}^d \text{ and } oldsymbol{\lambda} \geq \mathbf{0}
ight\} \leftarrow \mathsf{a} \text{ cone!}$$

We denote this set by cone(A).

Equivalently,

$$\mathbf{C} \coloneqq \left\{ oldsymbol{x} \in \mathbb{R}^d : B \cdot oldsymbol{x} \geq \mathbf{0}
ight\} \; \leftarrow \mathsf{also} \; \mathsf{a} \; \mathsf{cone!}$$

Farkas' lemma

Lemma (Farkas; 1902)

Let $A \in \mathbb{R}^{m \times d}$ and $\mathbf{b} \in \mathbb{R}^m$. Exactly one of the following two assertions holds:

- 1. There is $x \in \mathbb{R}^d$ such that $A \cdot x = b$ and $x \ge 0$.
- 2. There is $\mathbf{v} \in \mathbb{R}^m$ such that $\mathbf{v}^\intercal \cdot A \geq \mathbf{0}$ and $\mathbf{v}^\intercal \cdot \mathbf{b} < 0$.

Farkas' lemma

Lemma (Farkas; 1902)

Let $A \in \mathbb{R}^{m \times d}$ and $\mathbf{b} \in \mathbb{R}^m$. Exactly one of the following two assertions holds:

- 1. There is $x \in \mathbb{R}^d$ such that $A \cdot x = b$ and $x \ge 0$.
- 2. There is $v \in \mathbb{R}^m$ such that $v^\intercal \cdot A \ge 0$ and $v^\intercal \cdot b < 0$.

Proof.

Either b belongs to $cone(A) = \{A \cdot \lambda : \lambda \in \mathbb{R}^d \text{ and } \lambda \geq 0\}$ or there is a hyperplane separating cone(A) from b. The former case implies (1), the latter implies (2).

Convex sets and convex hulls

A set $S\subseteq \mathbb{R}^d$ is convex whenever $[x,y]\subseteq S$ for every $x,y\in S$

Convex sets and convex hulls

A set $S\subseteq \mathbb{R}^d$ is convex whenever $[x,y]\subseteq S$ for every $x,y\in S$

For $S \subseteq \mathbb{R}^d$, the convex hull conv(S) of S is:

- \blacksquare the (unique) smallest convex set containing S, or
- \blacksquare the intersection of all convex sets containing S, or
- \blacksquare the set of all convex combinations of elements of S:

$$\operatorname{conv}(S) := \left\{ \lambda_1 \boldsymbol{v}_1 + \ldots + \lambda_n \boldsymbol{v}_n \colon \boldsymbol{v}_1, \ldots \boldsymbol{v}_n \in S, \ \sum_{i=1}^n \lambda_i = 1 \ \text{and} \ \lambda_1, \ldots, \lambda_n \geq 0
ight\}.$$

Convex polyhedra

A set S is a polyhedron if:

- $lacksquare S = \{m{x} \in \mathbb{R}^d : A \cdot m{x} \geq m{b}\}$ for some matrix $A \in \mathbb{Q}^{n \times d}$ and vector $m{b} \in \mathbb{Q}^d$, or
- lacksquare $S = \operatorname{conv}(V) + \operatorname{cone}(W)$ for some finite sets $V, W \subseteq \mathbb{Q}^d$.

22/27

Convex polyhedra

A set S is a polyhedron if:

- $lacksquare S=\{m{x}\in\mathbb{R}^d:A\cdotm{x}\geqm{b}\}$ for some matrix $A\in\mathbb{Q}^{n imes d}$ and vector $m{b}\in\mathbb{Q}^d$, or
- lacksquare $S = \operatorname{conv}(V) + \operatorname{cone}(W)$ for some finite sets $V, W \subseteq \mathbb{Q}^d$.

H is a supporting hyperplane of S whenever $S \cap H \neq \emptyset$ and $S \subseteq H^+$.

Convex polyhedra

A set S is a polyhedron if:

- lacksquare $S=\{m{x}\in\mathbb{R}^d:A\cdotm{x}\geqm{b}\}$ for some matrix $A\in\mathbb{Q}^{n imes d}$ and vector $m{b}\in\mathbb{Q}^d$, or
- $\blacksquare \ S = \operatorname{conv}(V) + \operatorname{cone}(W) \ \text{for some finite sets} \ V, W \subseteq \mathbb{Q}^d \,.$

H is a supporting hyperplane of S whenever $S \cap H \neq \emptyset$ and $S \subseteq H^+$.

A set F is a face of S if

- \blacksquare either F = S, or
- $F = S \cap H$ for some supporting hyperplane H of S.

The geometry of a system of inequalities over the **reals**

Theorem (Minkowski-Weyl; 1897, 1935)

Consider $S \subseteq \mathbb{R}^d$. The two following statements are equivalent:

(H)
$$S = \{ m{x} \in \mathbb{R}^d : A \cdot m{x} \geq m{b} \}$$
 for some matrix $A \in \mathbb{Q}^{n \times d}$ and vector $m{b} \in \mathbb{Q}^d$

(V)
$$S = \operatorname{conv}(V) + \operatorname{cone}(W)$$
 for some finite sets $V, W \subseteq \mathbb{Q}^d$.

The geometry of a system of inequalities over the **reals**

Theorem (Minkowski-Weyl; 1897, 1935)

Consider $S \subseteq \mathbb{R}^d$. The two following statements are equivalent:

- (H) $S = \{ m{x} \in \mathbb{R}^d : A \cdot m{x} \geq m{b} \}$ for some matrix $A \in \mathbb{Q}^{n \times d}$ and vector $m{b} \in \mathbb{Q}^d$
- (V) $S = \operatorname{conv}(V) + \operatorname{cone}(W)$ for some finite sets $V, W \subseteq \mathbb{Q}^d$.

Proof by authority.

"This classical result is an outstanding example of a fact which is completely obvious to geometric intuition, but which wields important algebraic content and is not trivial to prove." (R. T. Rockafellar)

The two definitions of convex cones are equivalent

Minkowski-Weyl theorem for cones

Consider $S \subseteq \mathbb{R}^d$. The two following statements are equivalent:

(H)
$$S = \{ \boldsymbol{x} \in \mathbb{R}^d : A \cdot \boldsymbol{x} \geq \boldsymbol{0} \}$$
 for some matrix $A \in \mathbb{Q}^{n \times d}$

(V) $S = \operatorname{cone}(W)$ for some finite sets $W \subseteq \mathbb{Q}^d$.

The two definitions of convex cones are equivalent

Minkowski-Weyl theorem for cones

Consider $S \subseteq \mathbb{R}^d$. The two following statements are equivalent:

- (H) $S = \{x \in \mathbb{R}^d : A \cdot x \ge 0\}$ for some matrix $A \in \mathbb{Q}^{n \times d}$
- (V) $S = \operatorname{cone}(W)$ for some finite sets $W \subseteq \mathbb{Q}^d$.

Smart calls to Farkas' Lemma

The two definitions of convex cones are equivalent

Minkowski-Weyl theorem for cones

Consider $S \subseteq \mathbb{R}^d$. The two following statements are equivalent:

- (H) $S = \{x \in \mathbb{R}^d : A \cdot x \ge 0\}$ for some matrix $A \in \mathbb{Q}^{n \times d}$
- (V) $S = \operatorname{cone}(W)$ for some finite sets $W \subseteq \mathbb{Q}^d$.

Minkowski-Weyl theorem: reducing polyhedra to cones

Minkowski-Weyl theorem for cones

Consider $S \subseteq \mathbb{R}^d$. The two following statements are equivalent:

- (H) $S = \{ \boldsymbol{x} \in \mathbb{R}^d : A \cdot \boldsymbol{x} \ge \boldsymbol{0} \}$ for some matrix $A \in \mathbb{Q}^{n \times d}$
- (V) S = cone(W) for some finite sets $W \subseteq \mathbb{Q}^d$.

Minkowski-Weyl theorem for polyhedra

Consider $S \subseteq \mathbb{R}^d$. The two following statements are equivalent:

- (H) $S = \{ \boldsymbol{x} \in \mathbb{R}^d : A \cdot \boldsymbol{x} \geq \boldsymbol{b} \}$ for some matrix $A \in \mathbb{Q}^{n \times d}$ and vector $\boldsymbol{b} \in \mathbb{Q}^d$
- (V) $S = \operatorname{conv}(V) + \operatorname{cone}(W)$ for some finite sets $V, W \subseteq \mathbb{Q}^d$.

Minkowski-Weyl theorem: reducing polyhedra to cones

Summary of today's lecture

- Applications of arithmetic theories
- Syntax and semantics of linear arithmetic theories
- Convex geometric objects
- Farkas' lemma
- Minkowski—Weyl theorem

Summary of today's lecture

- Applications of arithmetic theories
- Syntax and semantics of linear arithmetic theories
- Convex geometric objects
- Farkas' lemma
- Minkowski—Weyl theorem

Agenda for the rest of the week

Tomorrow Linear programming and Integer linear programming

Wednesday Quantifier elimination procedures

Thursday Automata-based procedures

Friday Geometric procedures