Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Übungsserie 15 (29.1.2024 - 2.2.2024)

Aufgabe 1:

Berechnen Sie die Längen der folgenden Kurven:

(a)
$$\vec{r}(t) = \begin{pmatrix} e^t \cos(t) \\ e^t \sin(t) \\ e^t \end{pmatrix}$$
, $t \in [0, b]$, $b \ge 0$, (b) $\vec{r}(t) = \begin{pmatrix} \frac{t^2}{2} - t + 2 \\ \frac{4}{3}t^{\frac{3}{2}} \end{pmatrix}$, $t \in [1, 5]$

(c)
$$\vec{r}(t) = \begin{pmatrix} t \\ t^2 \end{pmatrix}, \ t \in [-2, 0]$$

Aufgabe 2:

(a) Begründen Sie, warum für die Länge L des Graphen einer stetig differenzierbaren Funktion $f: [a,b] \to \mathbb{R}$

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx$$

gilt.

(b) Berechnen Sie die Länge des Funktionsgraphen von $f: [-a, a] \to \mathbb{R}$ mit $f(x) = \cosh(x)$.

Aufgabe 3:

Berechnen Sie jeweils das Kurvenintegral 1. Art $\int\limits_{\vec{r}} f \ ds$:

(a)
$$\vec{r}$$
: $[0,1] \to \mathbb{R}^2$ mit $\vec{r}(t) = \begin{pmatrix} t \\ t^2 \end{pmatrix}$, $f(x,y) = x$, (b) \vec{r} : $[0,2\pi] \to \mathbb{R}^2$ mit $\vec{r}(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$, $f(x,y) = xy$

Aufgabe 4:

Berechnen Sie jeweils das Kurvenintegral 2. Art $\int_{\vec{r}} \vec{v} \ d\vec{s}$:

(a)
$$\vec{r}$$
: $[0,2] \to \mathbb{R}^3$ mit $\vec{r}(t) = \begin{pmatrix} t \\ t^2 \\ 2 \end{pmatrix}$, $\vec{v}(x,y,z) = \begin{pmatrix} x^2y \\ x-z \\ xyz \end{pmatrix}$

(b)
$$\vec{v}(x,y) = \begin{pmatrix} y^2 \\ -x^2 \end{pmatrix}$$

- (i) \vec{r} beschreibt die geradlinige Verbindung von $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ nach $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- (ii) \vec{r} beschreibt den Viertelbogen des Einheitskreises von $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ nach $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$