Метод ранжирования информационных источников по степени доверия

Выполнил: Павелко Павел Юрьевич, ИУ7-81 Руководитель: Бекасов Денис Евгеньевич, ИУ7

МГТУ им. Баумана

Москва, 2017

Цель

Разработка системы мониторинга новостей с последующим ранжированием источников по степени доверия

Задачи

- Проанализировать предметную область
- 2 Разработать метод ранжирования источников
- Разработать программное обеспечение
- Провести исследование для выбора параметров метода

Актуальность

- Более 100 тыс. новостных сообщений ежедневно от почти 7 тыс. значимых источников
- Достоверность новостей вызывает сомнения
- Эксперты способны проверить лишь новости популярных источников

Вывод

Необходим метод распространения оценки эксперта на схожие новости менее популярных источников с последующим ранжированием источников по степени доверия

Постановка задачи

Павелко Павел Юрьевич

Предложенный метод

Павелко Павел Юрьевич Москва, 2017 5/16

Потоки данных в системе

Мониторинг новостей

Павелко Павел Юрьевич Москва, 2017 7 / 16

Извлечение содержимого

Readability Algorithm

- Оценка узлов DOM-дерева по различным показателям:
 - ① Длина текста и доля ссылок в тексте
 - 2 Количество запятых в тексте
 - 3 Доля изображений, списков и т.д.
 - Классы, идентификаторы и теги
- Ранжирование узлов по данной оценке
- 3 Объединение наиболее значимых узлов
- 4 Извлечение текстового содержимого

Кластеризация новостей

Выбор алгоритма кластеризации

	k-cp.	разд. k-ср.	HAC	DHCA	ICA
Адаптивное кол-во класт.	_	+	+	+	+
Иерархические кластеры	_	+	+	+	_
Онлайновый алгоритм	_	_	_	+	+
Возможность оптимизаций	+	_	_	_	+

Алгоритмы

k-cp — метод К-средних

разд. k-cp — разделяющий метод k-средних

HAC — Hierarchical Agglomerative Clustering

DHC — Dynamic Hierarchical Compact Algorithm

ICA — Incremental Clustering Algorithm

Incremental Clustering Algorithm

Добавление новости:

UPGMA:

$$upgma(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{\mathbf{x} \in C_i} \sum_{\mathbf{y} \in C_j} sim(\mathbf{x}, \mathbf{y}),$$

где C_i, C_j — кластеры

 \mathbf{x}, \mathbf{y} — новости как «мешки слов» $sim(\cdot, \cdot)$ — мера схожести новостей:

 $sim(\mathbf{x}, \mathbf{y}) = \mathbf{x}\mathbf{y} \cdot (1 - \text{штра}\phi(x, y))$

Ранжирование источников

Павелко Павел Юрьевич Москва, 2017 12 / 16

Исследование влияния меры сходства на качество кластеризации

Цель эксперимента

Оценить влияние на качество кластеризации меры схожести

Набор данных

2005 новостей и 263 кластера от агрегатора «Яндекс.Новости»

Метрика качества

$$F = \sum_{c \in C} \frac{|o|}{n} \max_{c \in C} F_1(c, o),$$
 где $F_1(c, o) = \frac{2 \cdot P(c, o) \cdot R(c, o)}{P(c, o) + R(c, o)}$

Исследование влияния меры сходства на качество кластеризации

Мера схожести		F-метрика
Эвклидово расстояние	$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$	0.89
Косинусная мера	$sim_c(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\ \mathbf{x}\ \ \mathbf{y}\ }$	0.92
Мера Жаккара	$sim_j(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\ \mathbf{x}\ ^2 + \ \mathbf{y}\ ^2 - \mathbf{x} \cdot \mathbf{y}}$	0.91
Эвклидово расстояние со штраф.	$d(\mathbf{x}, \mathbf{y}) \cdot (1 + penalty(x, y))$	0.89
Косинусная мера со штрафами	$sim_c(\mathbf{x}, \mathbf{y}) \cdot (1 - penalty(x, y))$	0.93
Мера Жаккара со штрафами	$sim_j(\mathbf{x}, \mathbf{y}) \cdot (1 - penalty(x, y))$	0.92

Выводы из работы

- Проанализирована предметная область
- 2 Разработан метод ранжирования источников
- Разработано программное обеспечение
- Исследовано влияние меры схожести на качество кластеризации

Дальнейшее развитие

- Построение тематического рейтинга источников
- Агрегированная экспертная оценка
- Ранжирование экспертов
- Нахождение дубликатов и определение первоисточника
- Связывание сюжетов по тематике