Data preprocessing

source: https://www.kaggle.com/datasets/mrmorj/big-mart-sales

```
In [1]: import pandas as pd
        from sklearn.preprocessing import LabelEncoder
In [2]: df = pd.read_csv("train_v9rqX0R.csv")
        df.head(5)
Out[2]:
           Item MRP
        0
                  FDA15
                                9.30
                                              Low Fat
                                                          0.016047
                                                                        Dairy
                                                                               249.8092
                                                                        Soft
        1
                  DRC01
                                5.92
                                                                                48.2692
                                              Regular
                                                          0.019278
                                                                       Drinks
        2
                               17.50
                                                          0.016760
                                                                               141.6180
                  FDN15
                                              Low Fat
                                                                        Meat
                                                                    Fruits and
                                                          0.000000
        3
                  FDX07
                               19.20
                                              Regular
                                                                               182.0950
                                                                   Vegetables
        4
                 NCD19
                                8.93
                                              Low Fat
                                                          0.000000 Household
                                                                                53.8614
       df.drop(columns=['Outlet_Establishment_Year', 'Outlet_Size', 'Item_Outlet_Sales'],
In [3]:
In [4]: category_cols = [col for col in df.columns if df[col].dtype == '0']
        for col in category_cols:
            df[col] = df[col].astype('category')
In [5]:
       df.dtypes
Out[5]: Item_Identifier
                                category
        Item_Weight
                                float64
        Item_Fat_Content
                               category
        Item_Visibility
                                float64
                               category
        Item_Type
        Item_MRP
                                float64
        Outlet_Identifier
                                category
        Outlet_Location_Type
                               category
        Outlet_Type
                               category
        dtype: object
In [6]: df.head(5)
```

Out[6]:		Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	С
	0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	
	1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	
	2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	
	3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	
	4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	
	4							•

Data analysis

```
In [7]: import matplotlib.pyplot as plt
import seaborn as sns
```

In [8]: df.describe()

Out[8]:		Item_Weight	Item_Visibility	Item_MRP
	count	7060.000000	8523.000000	8523.000000
	mean	12.857645	0.066132	140.992782
	std	4.643456	0.051598	62.275067
	min	4.555000	0.000000	31.290000
	25%	8.773750	0.026989	93.826500
	50%	12.600000	0.053931	143.012800
	75%	16.850000	0.094585	185.643700
	max	21.350000	0.328391	266.888400

Numerical data value distriution


```
In [11]: sns.histplot(df, x='Outlet_Identifier', hue='Outlet_Identifier', legend="")
   plt.xticks(rotation=45,ha='right')
   plt.title('Frequency of each outlet')
   plt.xlabel("Outlet")
   plt.show()
```

Frequency of each outlet


```
In [12]: sns.histplot(df, x='Item_Type', hue='Item_Type', legend="")
  plt.title('Frequency of each item types')
  plt.xticks(rotation=45,ha='right')
  plt.xlabel("Category")
  plt.show()
```



```
In [13]: by_mall = df.groupby(['Outlet_Identifier', 'Item_Type'], observed=True).size()
    by_mall = by_mall.reset_index(name='frequency')

plt.figure(figsize=(10, 6))
    sns.barplot(data=by_mall, x='Outlet_Identifier', y='frequency', hue='Item_Type')
    plt.title('Category Frequency by Shopping Mall')
    plt.xticks(rotation=45, ha='right')
    plt.xlabel("Outlet")
    plt.legend(loc="upper right")
    plt.show()
```

Category Frequency by Shopping Mall


```
In [14]: price_by_category = df.groupby('Item_Type', observed=True)['Item_MRP'].mean().reset
    sns.barplot(price_by_category, x='Item_Type', y='avg', hue='Item_Type')
    plt.title('Average MRP of each category')
    plt.xticks(rotation=45, ha='right')
    plt.xlabel("Category")
    plt.show()
```


In [15]: sns.histplot(df, x='Outlet_Location_Type', hue='Outlet_Location_Type', legend="") plt.title('Category Frequency by Shopping Mall') plt.xlabel("Location Type") plt.show()

Category

In []: