近世代数 环和域

任世军 e-mail:renshijun@hit.edu.cn

哈尔滨工业大学计算机学院

January 3, 2019

目录

- 环和域
- 无零因子环的特征数
- 同态和理想子环
- 极大理想和费尔马定理

环的定义

定义 13.1.1

设 R 是一个非空集合, R 上有两个代数运算, 一个称为加法, 用"+"表示, 另一个称为乘法, 用" \circ "表示。如果下面三个条件成立:

- (R,+) 是一个 Abel 群。
- ② (R,∘) 是一个半群。
- ③ 乘法对加法满足左右分配律:对 $\forall a, b, c \in R$ 有 $a \circ (b + c) = a \circ b + a \circ c$

$$(b+c)\circ a=b\circ a+c\circ a$$

则称代数系 $(R, \circ, +)$ 是一个环。

环的一些例子

Definition (定义 13.1.2)

如果环 $(R, \circ, +)$ 的乘法满足交换律,即对 $\forall a, b \in R$ 有 $a \circ b = b \circ a$,则 称 $(R, \circ, +)$ 是一个交换环或可换环。

Example (例 13.1.1)

整数集合 Z 对通常的加法和乘法构成一个环 $(Z, +, \cdot)$,这个环是一个交换环。

Example (例 13.1.2)

有理数集 Q、实数集 R 和复数集 C 对通常的加法和乘法分别构成交换环 $(Q,+,\cdot)$ 、 $(R,+,\cdot)$ 和 $(C,+,\cdot)$ 。

环的一些例子

Example (例 13.1.3)

设 M_n 为所有 $n \times n$ 实矩阵的集合,则 M_n 对矩阵的加法和乘法构成一个非交换环 $(M_n, +, \cdot)$,这个环称为 n 阶矩阵环。

Definition (定义 12.1.3)

环 $(R, \circ, +)$ 称有限换环,如果 R 是非空有限集合,即 $|R| < +\infty$ 。

Example (例 13.1.4)

文字 x 的整系数多项式之集设 Z[x] 对多项式的加法和乘法构成一个交换环。

环的一些例子

Example (例 13.1.5)

设 $S = \{0\}$,则 S 对数的通常加法和乘法构成一个环,称为零环,它仅有一个元素。

Example (例 12.1.6)

有限环的一类重要例子是模 n 剩余类环 $(Z_n, +, \cdot)$,其中 Z_n 是全体整数集合 Z 对模 n 的同余类之集

$$Z_n = \{[0], [1], \cdots, [n-1]\}$$

环中的特定术语

- 在环 $(R,+,\circ)$ 中,加法的单位元用 ${\bf 0}$ 表示,并称为 R 的零元 $({\bf x})_{\circ}$
- 对 $\forall a \in R$, a 对加法的逆元素记为 -a, 并称为 a 的负元素。
- R 中加法的逆元素称为减法,并用"—"表示,对 $\forall a, b \in R, a b$ 定义为 a + (-b)。
- a 对加法的 m 次幂记为 ma,即如果 m>0,则 $m\uparrow$ $1a=a,(m+1)a=ma+a,ma=\overline{a+a+\cdots+a};$ 如果 m<0,则 ma=(-m)(-a); 如果 m=0,则 $0a=\mathbf{0}_{\circ}$

环的性质

设 $(R, +, \circ)$ 是一个环,对 $\forall a, b, c \in R, m, n \in Z$,我们有:

1.
$$\mathbf{0} + a = a + \mathbf{0}$$

2.
$$a + b = b + a$$

3.
$$(a + b) + c = a + (b + c)$$

4.
$$-a + a = a + (-a) = 0$$

5.
$$-(a+b) = -a-b$$

6.
$$a + b = c \Leftrightarrow a = c - b$$

7.
$$-(-a) = a$$

8.
$$-(a-b) = -a+b$$

9.
$$ma + na = (m + n)a$$

10.
$$m(na) = (mn)a$$

环的性质(续)

11.
$$m(a + b) = ma + mb$$

12.
$$n(a - b) = na - nb$$

13.
$$(a \circ b) \circ c = a \circ (b \circ c)$$

14.
$$a \circ (b + c) = a \circ b + a \circ c, (b + c) \circ a = b \circ a + c \circ a$$

15.
$$\mathbf{0} \circ a = a \circ \mathbf{0} = \mathbf{0}$$

16.
$$(-a) \circ b = -(a \circ b), a \circ (-b) = -(a \circ b)$$

17.
$$(-a)(-b) = ab$$

18.
$$a(b - c) = ab - ac$$

19.
$$(\sum_{i=1}^{n} a_i)(\sum_{j=1}^{m} b_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j$$

20.
$$(na)b = a(nb) = nab$$

21. 如果
$$ab=ba$$
,那么 $(a+b)^n=\sum_{i=0}^n C_n^i a^i b^{n-i}$ b^n

环的例子 (零因子)

Example (例 13.1.7)

令 $C_{[-1,1]}$ 为区间 [-1,1] 上的一切实值连续函数的集合。在 $C_{[-1,1]}$ 上定 义加法和乘法如下:对 $\forall f, g \in C_{[-1,1]}, x \in [-1,1]$,

$$(f+g)(x) = f(x) + g(x) \quad (f \cdot g)(x) = f(x)g(x)$$

容易验证 $(C_{[-1,1]},+,\cdot)$ 是一个环。

考察函数 f(x), g(x),满足:

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le 1 \\ 0 &$$
其它 $g(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1 \\ x &$ 其它

零因子

Definition (定义 13.1.4)

设 $(R, +, \circ)$ 是一个环, $a \in R$ 。如果存在一个元素 $b \in R$, $b \neq 0$, 使得 ab = 0, 则称 $a \in R$ 的一个左零因子。如果存在一个元素 $c \in R$, 使得, $c \neq 0$, 使得 ca = 0, 则称 $a \in R$ 的一个右零因子。如果 a 即是 e 的一个左零因子,又是 e 的一个右零因子,则称 e 为 e 的一个零因子。

 $\mathbf{0}$ 是 R 的一个零因子。

Definition (定义 13.1.4 (无零因子环))

没有非零的左零因子,也没有非零的右零因子的环称为无零因子环。可换 无零因子环称为整环。

无零因子环和体

Theorem (定理 13.1.1)

环 R 是无零因子环的充分必要条件是在 R 中乘法满足消去律,即:

如果 $a \neq 0$,ab = ac,那么 b = c。

如果 $a \neq 0$,ba = ca,那么 $b = c_o$

Definition (定义 13.1.6)

- 一个环称为一个体,如果它满足以下两个条件:
 - (1) 它至少含有一个非零元素;
 - (2) 非零元素的全体对乘法构成一个群。

Definition (定义 13.1.7)

可换体称为域。

体和域

Example (例 13.1.8)

有理数环 O、实数环 R 和复数环 C 均是体,并且是域。

Theorem (定理 13.1.2)

至少有一个非零元素的无零因子有限环是体。

Definition (定义 13.1.8)

仅有有限个元素的体(域)称为有限体(域)。

体和域

Theorem (定理 13.1.3)

环 $(R, +, \cdot)$ 是体当且仅当 $R\setminus\{0\} \neq \phi$ 并且对 $\forall a, b \in R\setminus\{0\}$,方程 ax = b, ya = b 在 R 中有解。

Definition (定义 13.1.9)

设 p 是一个素数,则 $(Z_p, +, \cdot)$ 是一个有限域。

子环、子体(域)

Definition (定义 13.1.9)

环 $(R, +, \cdot)$ 的非空子集 S 若对其中的加法和乘法也形成一个环,则 S 称 为 R 的子环。

Definition (定义 13.1.10)

设 $(F, +, \cdot)$ 是体 $(域), E \subset F,$ 如果E对F的加法和乘法也构成一个体 (域),则称 E 为 F 的一个子体 (域)。

子环、子体(域)

Theorem (定理 13.1.4)

环 R 的非空子集 S 是 R 的子环的充分必要条件是

- (1) प्रt $\forall a,b\in S$, $ab\in S_{\circ}$
- (2) 对 $\forall a,b \in S$, $a-b \in S_{\circ}$

体 F 的非空子集 E 是 F 的子体, 当且仅当以下三个条件成立:

- (1) $|E| \geq 2_{\circ}$
- (2) 对 $\forall a,b \in E$, $a-b \in E_{\circ}$
- (3) 对 $\forall a,b \in E$, $a \neq 0$, $b \neq 0$, 都有 $ab^{-1} \in E_o$

例子

在初等代数中,如果 $a \neq \mathbf{0}$,那么 $na = \overbrace{a+a+\cdots+a} \neq \mathbf{0}$ 。这是千真万确的。 但在环中这个结论未必成立。

Example (例 13.2.1)

设 p 是一个素数,则模 p 剩余类环 Z_p 是一个域,在 Z_p 中剩余类 $[1] \neq [0]$,但 p[1] = [0]。

Example (例 13.2.2)

令 $G_1 = (b)$, $G_2 = (c)$ 是两个循环群,b 的阶是无穷大,c 的阶是 n,如果用"+" 表示其中的代数运算,那么 $G_1 = \{mb|m \in Z\}$, $G_2 = \{\mathbf{0}, c, 2c, \cdot, (n-1)c\}$ 。令 $R = G_1 \times G_2 = \{(mb, kc)|mb \in G_1, kc \in G_2\}$,在 R 中定义加法和乘法如下: 对 $\forall (m_1b, k_1c), (m_2b, k_2c) \in R$, $(m_1b, k_1c) + (m_2b, k_2c) = ((m_1+m_2)b, (k_1+k_2)c)$, $(m_1b, k_1c) \circ (m_2b, k_2c) = ((m_1m_2)b, (k_1k_2)c)$ 。 可以证明 R 是一个环。 (0,0) 为 R 的零元素。 (b,0), (0,c) 对加法的阶分别为 ∞ , n。

无零因子环——定理、推论

Theorem (定理 13.2.1)

在一个无零因子环中,每个非零元素对加法的阶均相同。

Corollary (推论 13.2.1)

体和域中每个非零元素对加法的阶均相同。

Definition (定义 13.2.1)

无零因子环中非零元素对加法的阶称为该环的特征数,简称为特征。域 (体) 中非零元素对加法的阶称为域(体)的特征数,简称为特征。

无零因子环——定理、推论

Theorem (定理 13.2.2)

若无零因子环 R 的特征数为正整数 p, y p 一定是素数。

Corollary (推论 13.2.2)

整环、体、域的特征数或是无穷大,或是素数。

Theorem (定理 13.2.3)

在特征为 p 的域里, $f(a+b)^p = a^p + b^p, (a-b)^p = a^p - b^p$

同构的定义、定理

Definition (定义 13.3.1)

设 $(R,+,\circ)$ 与 $(\bar{R},\bar{+},\bar{\circ})$ 是两个环 (体、域),如果存在一个一一对应 $\phi:R\to \bar{R}$,使得对 $\forall a,b\in R$,都有 $\phi(a+b)=\phi(a)\bar{+}\phi(b),\phi(a\circ b)=\phi(a)\bar{\circ}\phi(b)$,则称 R 与 $(\bar{R}$ 同构。记为 $R\cong \bar{R}$, ϕ 称为一个从 R 到 \bar{R} 的同构映射。

Theorem (定理 13.3.1)

设 $(R,+,\circ)$ 是一个环 (体、域), $(\bar{R},\bar{+},\bar{\circ})$ 是一个具有两个代数运算的代数系, 如果存在一个一一对应 $\phi:R\to \bar{R}$, 使得上面的条件(满足运算)成立。则 $(\bar{R},\bar{+},\bar{\circ})$ 是一个环 (体、域).

同态的定义、定理

Definition (定义 13.3.2)

设 $(R, +, \circ)$ 与 $(\bar{R}, \bar{+}, \bar{\circ})$ 是两个环 (体、域),如果存在一个映射

 $\phi: R \to \overline{R}$,使得对 $\forall a, b \in R$,都有

 $\phi(\mathbf{a} + \mathbf{b}) = \phi(\mathbf{a}) \bar{+} \phi(\mathbf{b}), \phi(\mathbf{a} \circ \mathbf{b}) = \phi(\mathbf{a}) \bar{\circ} \phi(\mathbf{b})$,则称 R 与 $\bar{\mathbf{R}}$ 同态。记为

 $R \sim \bar{R}$, ϕ 称为一个从 R 到 \bar{R} 的同态映射。如果 ϕ 是满射, ϕ 称为满同态.

Theorem (定理 13.3.2)

设 ϕ 是一个从环 R 到环 \bar{R} 的满同态,则:

- (1) $\phi(0) = \bar{0}_o$
- (2) 如果环 R 和环 \bar{R} 分别有单位元 e 和 \bar{e} , 则 $\phi(e)=\bar{e}_{o}$
- (3) $\forall a \in R$, $\phi(-a) = -\phi(a)_{\circ}$
- (4) 如果 $a \in R$, a 有逆元素 a^{-1} ,则 $\phi(a^{-1}) = (\phi(a))^{-1}$ 。
- (5) 如果 S 是 R 的一个子环,则 $\phi(S)$ 是 \bar{R} 的一个子环。
- (6) 如果 \bar{S} 是 \bar{R} 的一个子环,则 $\phi^{-1}(\bar{S})$ 是 \bar{R} 的一个子环。

理想

Definition (定义 13.3.3)

环 R 的子环 N 称为 R 的一个左(右)理想(子环),如果对 $\forall r \in R, rN \subseteq N(Nr \subseteq N)$ 。如果 N 即是 R 的左理想,又是 R 的右理想,则称 N 是 R 的理想。

理想的判定条件:

- (1) 对 $\forall n_1, n_2 \in N$,都有 $n_1 n_2 \in N_{\circ}$
- (2) 对 $\forall r \in R, n \in N$,都有 $rn \in N, nr \in N_{\circ}$

Example (例 13.3.1)

设 $N = \{2n | n \in Z\}$,则 $N \in Z$ 的一个子环,并且还是理想。

Example (例 13.3.2)

设 a 是可换环 R 的一个元素,则 R 中一切形如 ra + na $(r \in R, n \in Z)$ 的元素构成的集合是 R 的一个理想子环。

Theorem (定理 13.3.2)

设 $\{H_i\}_{i \in I}$ 是环 R 的理想构成的集族,则 $\cap_{i \in I} H_i$ 是 R 的理想。

Corollary (推论 13.3.1)

理想。

理想

Definition (定义 13.3.4)

设 A 是环 R 的一个非空子集,则 R 中所有包含 A 的理想的交称为由 A 生成的理想,记为 (A)。若 $A = \{a\}$,则记 (A) = (a)。若 $A = \{a_1, a_2, \cdots, a_n\}$,则记 $(A) = (a_1, a_2, \cdots, a_n)$ 。由一个元素 A 生成的理想 (A) 称为 (A) 的主理想。

Theorem (定理 13.3.3)

体(域)中只有两个理想,它们是 {0} 和体(域)自身。

Definition (商环)

设 R 是一个环,N 是 R 的一个理想。N 对加法的所有陪集构成的集合为 $S = \{x + N | x \in R\}$ 。在该集合上定义加法和乘法如 下: $\forall x, y \in R, (x+N) + (y+N) = (x+y) + N, (x+N) \circ (y+N) = (x \circ y) + N$,可以证明 $(S, +, \circ)$ 是一个环,称为商环,记为 R/N。

极大理想和费尔马定理

Definition (定义 13.5.1)

环 R 的理想子环 H 称为 R 的极大理想子环,如果 H 是 R 的真理想并且 R 不存在真理想 N 使得 $H \subseteq N$ 。

Example (例 13.5.1)

设 p 是一个素数,则由 p 生成的主理想 (p) 是整数环 Z 的极大理想子环。

证: 设 N 是 Z 的一个理想,并且 $(p) \subsetneq N$,于是有一个元素 $a \in N$,但是 $a \notin (p)$,所以 p 不整除 a,从而 (a,p) = 1,所以存在两个整数 $r_1, r_2 \in Z$,使得 $r_1a + r_2p = 1$,由于 N 是理想并且 $a \in N$, $p \in (p)$ $\subsetneq N$,故 $1 = r_1a + r_2p \in N$,这样就有 N = Z。所以 (p) 是极大理想。

这个例子的逆也成立。

极大理想和费尔马定理(续)

Theorem (定理 13.5.1)

 $B R = - \Lambda A$ 是一个有单位元 B R 的可换环,B R 的理想。B R 是域当且仅当 B R 的极大理想子环。

证: \Rightarrow) R/H 是域, $H \subsetneq N$,N 是 R 的理想,有 $a \in N$, $a \notin H$,a + H $\neq H$,有 $x \in R$ 使得 (a + H)(x + H) = e + H,故有 $h \in H$ 使得 $e = ax + h \in N$,故 N = R。

 \Leftarrow) H 为 R/H 的零元素, e+H 是 R/H 的单位元素, 只须证明对 $\forall a+H\in R/H, a\notin H$, a+H 可逆就可以了。即 $\exists x\in R$, 使得

$$(a+H)(x+H)=e+H$$

即 $ax-e \in H$,令 $N = \{h + ax | h \in H, x \in R\}$,显然 N 为 R 的理想并且 $H \subsetneq N$,所以有 N = R,从而有 $x \in R$, $h \in H$ 使得 h + ax = e,这样有 (a + H)(x + H) = e + H。故 R/H 是域。

极大理想和费尔马定理(续)

Theorem (定理 13.5.2)

设 p > 2 是一个整数。如果存在正整数 x, 1 < x < p 使得

- (1) $x^{p-1} \equiv 1 \pmod{p}$ 并且
- (2) $x^i \not\equiv 1 \pmod{p}, i = 1, 2, \dots, p-2$

则 p 是一个素数。又若 p 是一个素数,则对任何正整数 a 有: $a^p \equiv a$ $(\text{mod } p)_o$