Hetauda School of Management and Social Science Hetauda, Makwanpur

Lab Report on C Programming
BIM [First Semester]

Submitted by	Submitted to
Student Name:	Lecturer Name:
Roll No:	Department of IT
	HSM

INDEX

Submitted to:

Submitted by:

Roll No:		Lecturer Name : Department:			
					Course / Program:
Subject :	<u>Subject :</u>				
S.N.	Lab Topic	Date	Remarks		
1.					
2.					

Hetauda School of Management and Social Science Hetauda, Makwanpur

	Lab No: <u>Report Title</u>	
Submitted by Student Name: Roll No:		Submitted to Lecturer Name: Department of IT, HSM
Lab Date:		Signature :

Submission Date:

Objective(s):

- To be familiar with control structure in C.
- To learn solving equations using C.

Title:

Write a Program in C to find all the roots of the quadratic equation.

Theory:

- 1. Explain about quadratic equation and its different root condition for different discriminant values.
- 2. Explain about control structure in C.
- 3. Explain about if else-if statement in C.
- 4. Explain about <math.h> header file and the use of pow() and sqrt() function in C.

Algorithm:

```
Step 1. Start
```

Step 2. Read the coefficients of the quadratic equation, a, b and c from the user.

```
Step 3. Calculate discriminant = (b * b) - (4 * a * c)
```

Step 4. If discriminant > 0:

```
4.1: Calculate root1 = (-b + sqrt(discriminant)) / (2 * a)
```

4.2: Calculate root2 =
$$(-b - sqrt(discriminant)) / (2 * a)$$

- 4.3: Display "Roots are real and different"
- 4.4: Display root1 and root2

Step 5: Else if discriminant = 0:

```
5.1: Calculate root2 = root1 = -b/(2*a)
```

- 5.2: Display "Root are real and equal"
- 5.3: Display either root1 or root2

Step 6. Else:

```
6.1: Calculate real number part = -b / (2 * a)
```

- 6.2:Calculate imaginary part = sqrt(-discriminant) / (2 * a)
- 6.3: Display "Roots are complex number"
- 6.4: Display both roots: Root 1 = real + imaginary"i" and Root 2= real imaginary"i"

Step 7. Stop

Flow Chart:

Code:

// Write a well documented code

Output (Compilation, Debugging & Testing):

Input: Write here what inputs were given for which variables.

Output: Write here the exact output you received for the given input in your computer screen.

Discussion and Conclusion:

- Compare your different results/output.
- Mention any unusual/(any outputs not included in your results) but seen in your program.
- What does your results mean to you.
- What other ways you could have achieved the same result i.e maybe using switch case
- Restate your main conclusion.