LAMPIRAN VI PERATURAN GUBERNUR JAWA TIMUR

NOMOR : 72 TAHUN 2013 TANGGAL : 16 OKTOBER 2013

PERHITUNGAN VOLUME DAN BEBAN PENCEMARAN MAKSIMUM

Perhitungan Volume Air Limbah Maksimum dan beban Pencemaran Maksimum untuk menentukan Mutu Air Limbah:

1. Penetapan Baku Mutu Air Limbah pada pembuangan air limbah melalui penetapan Volume Air Limbah Maksimum, sebagai mana tercantum dalam Lampiran I untuk masing-masing jenis industri didasarkan pada tingkat produksi bulanan yang sebenarnya . Untuk itu digunakan perhitungan sebagai berikut:

$$Vm = \underline{DM}$$
Pb

Keterangan:

Vm = Volume Air Limbah maksimum sebagaimana tercantum dalam ketentuan pada Lampiran I yang sesuai dengan industri yang bersangkutan, dinyatakan dalam m³ Air Limbah persatuan produk

DM = Debit Air Limbah maksimum yang dibolehkan bagi industri yang bersangkutan , dinyatakan dalam m³/bulan.

Pb = Produksi sebenarnya dalam sebulan, dinyatakan dalam satuan produk per bulan yang sesuai dengan yang tercantum pada Lampiran I untuk industri yang bersangkutan

2. Debit Air Limbah yang sebenarnya dihitung dengan cara berikut:

$$DA = Dp x H$$

Keterangan:

DA = Debit air limbah yang sebenarnya, dinyatakan dalam m³/bulan

Dp = Hasil Pengukuran debit Air Limbah dinyatakan dalam m³/hari

H = Jumlah hari kerja pada bulan yang bersangkutan

3. Beban pencemaran sebenarnya dihitung dengan cara sebagai berikut:

$$BPA = (CA)j \times Va \times f$$

Keterangan:

BPA = Beban Pencemaran sebenarnya dinyatakan dalam kg parameter per satuan produk

(CA)j = Kadar sebenarnya unsur pencemar j dinyatakan dalam g/m³

Va = Volume Air Limbah sebenarnya tercantum dalam Lampiran I yang sesuai dengan jenis industri yang bersangkutan, dinyatakan dalam M³ persatuan produk.

f = Faktor Konversi = 1/1000

4. Beban pencemaran maksimum industri terpadu (misal 2 (dua) jenis industri yang terletak pada satu lokasi) dan instalasi pengolah limbahnya dijadikan satu dihitung dengan cara sebagai berikut:

$$BPM_T = (Vm_1x(CM)J_1) + (Vm_2x(CM)J_2)$$

Keterangan:

BPM_T = Beban pencemaran sebenarnya dinyatakan dalam kg parameter

Vm₁ = Volume maksimum Air Limbah industri 1 sesuai kapasitas produksi sebenarnya dinyatakan dalam m³ per hari

Vm₂ = Volume maksimum Air Limbah industri 2 sesuai kapasitas produksi sebenarnya dinyatakan dalam m³ per hari

 $(CM)J_1$ = Kadar maksimum unsur pencemar J industri 1 dinyatakan dalam kg/m³

 $(CM)J_2$ = Kadar maksimum unsure pencemar J industri 2 dinyatakan dalam kg/m³

Contoh perhitungan besaran pada setiap parameter dimaksud sebagai

beriku: industry yang menghasilkan produk kecap dan saos.

Produksi kecap: 10 ton kedelai/hari

Produksi saos : 6 ton/hari

Diketahui:

Baku mutu industry kecap

Parameter	Kadar maksimum (mg/L)
BOD5	150
COD	300
TSS	100
рН	6,0 – 9,0
Volume Air Limbah Maksimum (M³/ton kedelai)	10

Baku mutu air limbah industry saos

BAKU MUTU AIR LIMBAH		
UNTUK INDUSTRI SAOS		
Volume Limbah Cair Maximum per satuan produk		
6 M³/ ton produk		
Parameter	Kadar Maximum (mg/L)	
BOD_5	100	
COD	250	
TSS	100	
рН	6-9	

a. Perhitungan parameter BOD₅:

Industri kecap:

Beban BOD₅

- = $\frac{150 \text{ mg/l} \times 10 \text{ M}^3/\text{ton produk} \times 10 \text{ ton kedelai/hari}}{1000}$
- = 15 kg/hari

Debit maks

- = 10 m³/ton kedelai x 10 ton kedelai/hari
- = 100 m³/hari

Industri saos:

Beban BOD₅

- = $\frac{100 \text{ mg/l x 6 M}^3/\text{ton produk x 6 ton produk/hari}}{1000}$
- = 3,6 kg/hari

Debit maks

- = 6 m³/ton produk x 6 ton produk/hari
- $= 36 \text{ m}^3/\text{hari}$

Beban BOD $_5$ campuran = 15 kg/ton + 3,6 kg/ton = 18,6 kg/hari Debit campuran maksimum = 100 m 3 /hari + 36 m 3 /hari = 136 m 3 /hari Kadar BOD $_5$ maksimum = beban BOD $_5$ campuran maksimum

Debit campuran maksimum

- = <u>18,6 kg/hari</u> 136 m³/hari
- $= 0.138 \text{ kg/m}^3$
- = 138 mg/l

b. Perhitungan parameter COD:

Industri kecap:

Beban COD

- = $\frac{300 \text{ mg/l x } 10 \text{ M}^3/\text{ton produk x } 10 \text{ ton kedelai/hari}}{1000}$
- = 30 kg/hari

Debit maks

- = 10 m³/ton kedelai x 10 ton kedelai/hari
- = 100 m³/hari

Industri saos:

Beban COD

- = $\frac{250 \text{ mg/l} \times 6 \text{ M}^3/\text{ton produk} \times 6 \text{ ton produk/hari}}{1000}$
- = 9 kg/hari

Debit maks

- = 6 m³/ton produk x 6 ton produk/hari
- = 36 m³/hari

Beban COD campuran = 30 kg/ton + 9 kg/ton = 39 kg/hari Debit campuran maksimum = 100 m³/hari + 36 m³/hari = 136 m³/hari Kadar COD maksimum = beban COD campuran maksimum

Debit campuran maksimum

- = <u>39 kg/hari</u> 136 m³/hari
- $= 0.287 \text{ kg/m}^3$
- 0,207 kg/III-
- = 287 mg/l

c. Perhitungan

c. Perhitungan parameter TSS:

Industri kecap:

Beban TSS

- = $\frac{100 \text{ mg/l} \times 10 \text{ M}^3/\text{ton produk} \times 10 \text{ ton kedelai/hari}}{1000}$
- = 10 kg/hari

Debit maks

- = 10 m³/ton kedelai x 10 ton kedelai/hari
- = 100 m³/hari

Industri saos:

Beban TSS

- = $\frac{100 \text{ mg/l x 6 M}^3/\text{ton produk x 6 ton produk/hari}}{1000}$
- = 3,6 kg/hari

Debit maks

- = 6 m³/ton produk x 6 ton produk/hari
- $= 36 \text{ m}^3/\text{hari}$

Beban TSS campuran = 10 kg/ton + 3.6 kg/ton = 13.6 kg/hariDebit campuran maksimum = $100 \text{ m}^3/\text{hari} + 36 \text{ m}^3/\text{hari} = 136 \text{ m}^3/\text{hari}$ Kadar BOD₅ maksimum = $\underline{\text{beban BOD}_5}$ campuran maksimum

Debit campuran maksimum

= <u>13,6 kg/hari</u> 136 m³/hari

 $= 0.1 \text{ kg/m}^3$

= 100 mg/l

Dari perhitungan tersebut Baku Mutu Air Limbah Indusri Campuran Kecap dan saos dapat ditentukan sebagai berikut:

Parameter	Kadar maksimum (mg/L)
BOD5	138
COD	287
TSS	100
рН	6,0 - 9,0
Volume Air Limbah Maksimum	13,6

5. Beban pencemaran maksimum perhari dihitung dengan cara sebagai berikut:

Keterangan:

BPM1 = Beban Pencemaran Maksimum per hari yang dibolehkan bagi industri yang bersangkutan dinyatakan dalam kg parameter hari.

BPM = Kg Parameter pencemar persatuan produk.

- Pb = Produk sebenarnya dalam sebulan, dinyatakan dalam satuan produk yang sesuai dengan yang tercantum dalam Lampiran I, II, III, IV dan V untuk Industri yang bersangkutan.
- H = Jumlah hari produksi per bulan.

Contoh perhitungan:

BPM1 = (kg BOD/m³ produk) x m³ prod/bulan/(hari/bulan) = kg BOD/ hari

6. Beban pencemaran maksimum yang sebenarnya dihitung dengan cara sebagai berikut:

$$BPA_i = (CA)j \times Dp \times f$$

Keterangan:

BPA_j = Beban Pencemaran perhari sebenarnya dinyatakan dalam kg parameter per hari

(CA)j = Kadar sebenarnya unsur pencemar j dinyatakan dalam g/m³

Dp = Hasil pengukuran debit Air Limbah, dinyatakan dalam m³ /hari

f = Faktor Konversi = 1 / 1000

Dengan demikian penilaian beban pencemaran adalah:

BPA tidak boleh lebih dari BPM BPA_J tidak boleh lebih dari BPM_i

GUBERNUR JAWA TIMUR

ttd

Dr. H. SOEKARWO