Ściągawka

Marcin Kotowski, Michał Kotowski

11 czerwca 2012

Ściągawka ma charakter pomocniczy - w szczególności, zamieszczone tu zadania służą jedynie do samodzielnego zrobienia (nie trzeba ich przysyłać).

1 Wielomiany

Rozpatrzmy dowolny zbiór współczynników R (mogą to być np. liczby rzeczywiste \mathbb{R} albo \mathbb{Z}_p). Niech R[x] oznacza zbiór wielomianów o współczynnikach z R. Mając zadany dowolny wielomian $f \in R[x]$, możemy utworzyć pierścień wielomianów modulo f, oznaczany R[x]/(f), w następujący sposób. Dwa wielomiany $g, h \in R[x]$ uznajemy za równoważne (ozn. $g \sim_f h$), jeśli istnieje wielomian $a \in R[x]$ taki, że h = g + af.

Zadanie 1.1. Udowodnij, że relacją \sim_f jest relacją równoważności, to znaczy jest: a) zwrotna: dla każdego $g \in R[x]$ zachodzi $g \sim_f g$); b) symetryczna $(g \sim_f h \text{ wtedy } i \text{ tylko wtedy, } gdy <math>h \sim_f g$); c) przechodnia (jeśli $g \sim_f h$ i $h \sim_f p$, to $g \sim_f p$)

Relacja \sim_f jest relacją równoważności, a więc dzieli R[x] na klasy abstrakcji - klasę abstrakcji wielomianu f oznaczamy przez [f]. Elementami R[x]/(f) są klasy abstrakcji, z działaniami zdefiniowanymi:

- [g] + [h] := [g + h]
- $\bullet \ [g] \cdot [h] := [g \cdot h]$

Zauważ, że a priori taki sposób określenia działań może nie być poprawny - prawa strona może bowiem zależeć od wyboru reprezentantów klas abstrakcji. To znaczy, jeśli dla dwóch wielomianów g, g' mamy [g] = [g'] (czyli $g \sim_f g'$), to powinniśmy mieć [g+h] = [g] + [h] = [g'] + [h] = [g'+h], czyli [g'+h] = [g+h]. Należy sprawdzić, że tak istocie jest!

Zadanie 1.2. Udowodnij, że wyżej zdefiniowane działania są dobrze określone w tym sensie, że nie zależą od wyboru reprezentantów klas abstrakcji (np. że jeśli [g] = [g'] i [h] = [h'], to [g+h] = [g'+h'] i tak samo dla mnożenia).

Zadanie 1.3. Niech [0] będzie klasą abstrakcji wielomianu tożsamościowo równego 0. Jakie inne wielomiany leżą w klasie abstrakcji [0]? Analogicznie, niech [1] będzie klasą abstrakcji wielomianu stale równego 1. Jakie inne wielomiany, leżą w klasie abstrakcji [1]?

Zadanie 1.4. Udowodnij, że [0] pełni rolę elementu neutralnego dodawania (tzn. [g] + [0] = [g]), a [1] elementu neutralnego mnożenia ($[g] \cdot [1] = [g]$).

Możemy myśleć o R[x]/(f) jako o wielomianach R[x] z dodatkowo wprowadzoną relacją f=0 - porównaj to np. ze sposobem zdefiniowania \mathbb{Z}_n jako liczb całkowitych \mathbb{Z} z dodatkową relacją n=0 (gdzie dwie liczy a,b uznajemy za równoważne, jeśli a=b+kn). Załóżmy, że dla każdej klasy abstrakcji wybraliśmy (dowolnie) dokładnie jednego reprezentanta. Łatwo np. sprawdzić, że za reprezentanta [f] można wybrać 0. Działania w R[x]/(f) przeprowadzamy teraz w ten sposób - chcąc dodać dwa elementy [g] i [h] bierzemy ich reprezentantów, dodajemy ich do siebie otrzymując wielomian r, a następnie szukamy reprezentanta r; analogicznie z mnożeniem.

Aby podać konkretny przykład, rozważmy następujący sposób zdefiniowania liczb zespolonych. Wielomian $f(x) = x^2 + 1$ nie ma pierwiastków rzeczywistych. Rozważmy teraz pierścień wielomianów modulo f, $\mathbb{R}[x]/(f)$. Jakiej postaci są jego elementy? Nietrudno udowodnić (np. przez indukcję po stopniu wielomianu), że każdy wielomian $g \in \mathbb{R}[x]$ jest równoważny wielomianowi postaci a + bx i wszystkie wielomiany tej postaci są parami nierównoważne. Wybierzmy więc wszystkie wielomiany postaci a + bx jako reprezentantów. Dodawanie jest oczywiste, jak wygląda mnożenie? Niech [g] = a + bx, [h] = c + dx, mamy wtedy:

$$[g] \cdot [h] = [(a+bx)(c+dx)] = [ac + (ad+bc)x + bdx^2] = (ac-bd) + (ad+bc)x$$

gdzie skorzystaliśmy z relacji $x^2=-1$, więc $[x^2+1]=[0]\Rightarrow [x^2]=[-1]$. Oczywiście nietrudno zauważyć, że utożsamiając $[x]\in\mathbb{R}[x]/(f)$ z $i=\sqrt{-1}$ otrzymujemy standardową strukturę liczb zespolonych.

W ramach ćwiczenia możesz się zastanowić, co się stanie, gdy jako f weźmiemy wielomian mający pierwiastki w \mathbb{R} , np. f = (x-1)(x-2). Czy $\mathbb{R}[x]/(f)$ będzie wtedy ciałem? (wskazówka: jeśli K jest ciałem oraz dla $a, b \in K$ mamy $a \cdot b = 0$, to a = 0 lub b = 0)