$$X + YZ = (X + Y)(X + Z)$$

$$(a \cdot b) + (a \cdot \overline{b}) = a$$

$$(a + b) \cdot (a + \overline{b}) = a$$

$$a \cdot (\overline{a} + b) = a \cdot b$$

$$a + (\overline{a} \cdot b) = a + b$$

ab
$$+ab = a(b+b) = a$$

 $ab + ab = a(b+b) = a$
 $a+b)(a+b) = a+b$
 $a = ab = ab$
 $a = ab = ab$
 $a + ab = a+b$

15.
$$X + X \cdot Z = X$$

$$16. X \cdot (X+Y) = X$$

17.
$$(X+Y)\cdot (X+Z) = X+Y\cdot Z$$

18.
$$X + \overline{X} \cdot Y = X + Y$$

19.
$$X \cdot Y + Y \cdot Z + \overline{X} \cdot Z = X \cdot Y + \overline{X} \cdot Z$$

16.
$$\times .(\times + \times) = \times .(\times + \times) = \times$$

$$17. (x + y)(x + z) = x.x + x.z + y.x + y.z$$

$$= x + xz + x.y + yz$$

$$= x (1+z+y) + y.z$$

$$= x + y.z$$

15.
$$X + X \cdot Z = X$$

$$16. X \cdot (X+Y) = X$$

17.
$$(X+Y)\cdot (X+Z) = X+Y\cdot Z$$

18.
$$X + \overline{X} \cdot Y = X + Y$$

19.
$$X \cdot Y + Y \cdot Z + \overline{X} \cdot Z = X \cdot Y + \overline{X} \cdot Z$$

18,
$$X + \overline{X}.Y = (X + \overline{X}).(X + Y) = X + Y$$

19.
$$XY + Y.\overline{z} + \overline{X}\overline{z} = XY + Y\overline{z}.(X + \overline{X}) + \overline{X}\overline{z}$$

$$= XY + XY\overline{z} + \overline{X}\overline{z}Y + \overline{X}\overline{z}$$

$$= XY(1+\overline{z}) + \overline{X}\overline{z}(\underline{Y}+1)$$

$$= XY + \overline{X}\overline{z}$$

Exercice 1

Établir les tables de vérité des fonctions suivantes, puis les écrire sous les deux formes canoniques :

1.
$$F_1 = XY + YZ + XZ$$

2.
$$F_2 = X + YZ + \overline{Y} \overline{Z} T$$

3.
$$F_3 = (X + Y)(\overline{X} + Y + Z)$$

4.
$$F_4 = (\overline{X} + \overline{Z})(X + \overline{T} + Z)Y\overline{Z}$$

5.
$$F_5 = (\overline{X}Y + X\overline{Y})\overline{Z} + (\overline{X}\overline{Y} + XY)Z$$

6.
$$F_6 = \overline{X} + YZ$$

7.
$$F_7 = \overline{X} \overline{Y} Z + X \overline{Y} Z + X \overline{Y} \overline{Z} + X Y \overline{Z} + X Y Z$$

8.
$$F_8 = (\overline{X} + \overline{Y} + Z)(X + \overline{Y} + Z)(X + \overline{Y} + \overline{Z})(X + Y + \overline{Z})(X + Y + Z)$$

1.
$$F_1 = XY + YZ + XZ$$

$$M = 3$$

La rable de verité

		, ♥							
	maxterm	minterm	×	Y	2	ХΥ	ΥZ	X 7	F,
η ₀ = μν ₂ =	- X +Y+Z	mo = x y =	0	0	0	0	O	O	<u>©</u>
		_{Μ1} = ₹ ₹ ₹	(0)	O		٥	0	J	0
		m _e = x y, Z	0		0	U	0	Ο	(D)
,		IMZ 1	3			0	1	O	
PLI= MU=	X+Y+Z	m4= X 7 =	1	0	0	0	O	0	0
1		1 m5	d	0		0	О	١	0
		m6			9	{	0	0	(D)
17,=m,==================================	ξ+ <u>γ</u> + <u>Σ</u>	m ₇ = X.Y.7		ſ		ļ	(-	

$$F_1 = M_3 + M_5 + M_6 + M_7$$

$$F_1 = \overline{X}YZ + X\overline{Y}Z + XY\overline{Z} + XYZ$$

Common ique

 $\leq \pi$

$$F_1 = \overline{F_1} = \overline{m_0 + m_1 + m_2 + m_4}$$

$$F_1 = \overline{F_1} = \overline{m_0} \cdot \overline{m_1} \cdot \overline{m_2} \cdot \overline{m_4}$$

$$F_1 = \overline{m_0} \cdot \overline{m_1} \cdot \overline{m_2} \cdot \overline{m_4}$$

$$F_1 = \overline{m_0} \cdot \overline{m_1} \cdot \overline{m_2} \cdot \overline{m_4}$$

$$F = (X + Y + 7) \cdot (X + Y + 7) \cdot (X + Y + 7) \cdot (X + Y + 7)$$
 2^{eme} forme canomique

$$m_0 = \overline{X}.\overline{Y}.\overline{Z}$$

$$\Pi_0 = \overline{m}_0 = \overline{\overline{X}.\overline{Y}.\overline{Z}} = \overline{\overline{X}} + \overline{\overline{Y}}+\overline{\overline{Z}}$$

$$= \overline{X} + \overline{Y} + \overline{Z}$$

$$m_5 = \chi.\overline{y}.\overline{z}$$

$$\Pi_5 = \overline{m}_5 = \overline{\chi}.\overline{y}.\overline{z} = \overline{\chi}+\overline{y}+\overline{z}$$

$$= \overline{\chi}+\gamma+\overline{z}$$

	X	Y	己	T	<i>スン</i> ぇぇ	χγ̄ᢓ	ΥZT	: F4	= X Y = T + X Y = + Y = T
w 2 W 1	0 00 0	DO 00	001-	0 0 1	၁ ၁ ၁ ၁ 0	0 0 0	0000	00000	F4=M4+M12+M13
m 4	00000	1	0	0-0-	-000	ပ ဝ ဝ ခ	-000	0000	= X Y Z 〒 + X Y Z
WID WD WA	{ { {	0000	0 0 1	0 6	0 0 0 0	0 0 0	0000	0000	+ 727
m ₁₂ m ₁₃ m ₁₄ m ₁₅	~ F		0	- 0 AC	ට ට ට ට	1 0 0		000	

$$\binom{3210}{1100} = 2 + 2 = 8 + 4 = 12$$

8.
$$F_8 = (\overline{X} + \overline{Y} + Z)(X + \overline{Y} + \overline{Z})(X + \overline{Y} + \overline{Z})(X + Y + \overline{Z})(X + Y + Z)$$

$$= (2 + (\overline{X} + \overline{Y})(X + \overline{Y}))(\overline{Z} + (X + \overline{Y}).(X + Y)).(X + Y + Z)$$

$$= (\overline{Z} + (\overline{Y} + X + \overline{X}))(\overline{Z} + (X + \overline{Y}))(X + Y + Z)$$

$$= (\overline{Z} + (\overline{Y} + X + \overline{Y}))(X + Y + Z)$$

$$= (\overline{Z} + (\overline{Y} + X + \overline{Y}))(X + Y + Z)$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y}))(X + (X + Y + Z))$$

$$= (\overline{Z} + (\overline{X} + \overline{Y})(X + \overline{Y})(X + \overline{Y})(X + \overline{Y})(X + \overline{Y})$$

$$= (\overline{Z} + (\overline{X} + \overline{Y})(X + \overline{Y})(X$$

$$F_8 = \left(\frac{x}{2} \left(\frac{1+y}{y} \right) + \frac{y}{2} \left(\frac{1+x}{y} \right) \right) \left(\frac{x+y+z}{y} \right)$$

$$= \left(\frac{x}{2} + \frac{y}{2} \right) \left(\frac{x+y+z}{y} \right)$$

$$= \frac{x}{2} + \frac{x}{2} + \frac{x}{2} + \frac{x}{2} + \frac{y}{2} + \frac{y}$$

$$F_8 = \underline{XYZ} + \underline{XYZ} + \underline{XYZ} + \underline{XYZ} + \underline{XYZ}$$

$$F_8 = X\overline{Y}\overline{Z} + X\overline{Y}\overline{Z} + XYZ$$

$$=$$
 m_4 + m_5 + m_7

$$1. \quad F_1 = XY + YZ + XZ$$

M=3

La rable de verité

×	ХΥ	ΥZ	ΧZ	F,	
000	0	O	O	<u>©</u>	
(D 0 D	0	0	ى ى	0	
0 0	U	O	Ο	0	
(3 L)	0	1	O	\bigcirc	
(100)	0	O	0	0	
	0	0	١	0	
0	{	0	0	(D)	
	ţ	{	-	(1)	

Tobleau de Karmangh

$$F_1 = X7 + Y7 + XY$$

Exercice 2

Complémenter les expressions suivantes (sans simplification) :

1.
$$F_1 = \overline{X}\overline{Y} + XY + \overline{X}Y$$

2.
$$F_2 = X(\overline{Y}\overline{Z} + YZ) + \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z$$

3.
$$F_3 = X\overline{Y} + Z\overline{T} + \overline{X}\overline{Y} + \overline{Z}\overline{T}$$

4.
$$F_4 = X\overline{Y}Z\overline{T} + \overline{X}YT + \overline{X}\overline{Z} + (Z+T)(X\overline{Y}+Z)$$

5.
$$F_5 = (X + Y)(\overline{X} + Z)$$

6.
$$F_6 = (\overline{X} + \overline{Y} \overline{Z}T)(XY + Z + \overline{T})(\overline{X} + \overline{Y} + Z)$$

1.
$$F_1 = \overline{X}\overline{Y} + XY + \overline{X}Y$$

$$\overline{F}_{,} = \overline{\overline{X}} \overline{\overline{Y}} + \overline{X} \overline{Y} + \overline{X} \overline{Y}$$

$$= (\overline{\overline{X}}, \overline{\overline{Y}}) \cdot (\overline{\overline{X}}, \overline{Y}) \cdot (\overline{\overline{X}}, \overline{Y})$$

$$= (\overline{\overline{X}}, \overline{\overline{Y}}) \cdot (\overline{\overline{X}}, \overline{\overline{Y}}) \cdot (\overline{\overline{X}}, \overline{\overline{Y}})$$

$$= (\overline{X}, \overline{Y}) \cdot (\overline{X}, \overline{Y}) \cdot (\overline{X}, \overline{Y})$$

$$= (\overline{X}, \overline{Y}) \cdot (\overline{X}, \overline{Y}) \cdot (\overline{X}, \overline{Y})$$

4. $F_4 = X\overline{Y}Z\overline{T} + \overline{X}YT + \overline{X}\overline{Z} + (Z+T)(X\overline{Y}+Z)$

$$\overline{F}_{4} = \overline{X}\overline{Y}\overline{Z}\overline{T} + \overline{X}YT + \overline{X}\overline{Z} + (\overline{Z}+T)(\overline{X}\overline{Y}+\overline{Z})$$

$$= (\overline{X}\overline{Y}\overline{Z}\overline{T}) \cdot (\overline{X}\overline{Y}\overline{T}) \cdot (\overline{X}\overline{Z}) \cdot (\overline{Z}+T) \cdot (\overline{X}\overline{Y}+\overline{Z})$$

$$= (\overline{X}+\overline{Y}+\overline{Z}+\overline{T}) \cdot (\overline{X}+\overline{Y}+\overline{T}) \cdot (\overline{X}+\overline{Z}) \cdot (\overline{Z}+\overline{T}) + (\overline{X}\overline{Y}+\overline{Z})$$

$$= (\overline{X}+Y+\overline{Z}+T) \cdot (X+\overline{Y}+\overline{T}) \cdot (X+\overline{Z}) \cdot (\overline{Z}\overline{T} + (\overline{X}\overline{Y})\cdot \overline{Z})$$

$$= (\overline{X}+Y+\overline{Z}+T) \cdot (X+\overline{Y}+\overline{T}) \cdot (X+\overline{Z}) \cdot (\overline{Z}\overline{T} + (\overline{X}+\overline{Y})\cdot \overline{Z})$$