2.МУНОСИБАТ

1. $A = \{a, b\}$ $B = \{1, 2\}$. Мувофиқ гузоред

	, , , ,		
1		A	$\{(a,a),(b,b),(b,a)\}$
2		В	$\{(a,1),(a,2),(b,1)\}$
3	$A \times B$	С	$\{(a,1),(a,2),(b,1),(b,2)\}$
4	$B \times A$	D	$\{(1,a),(2,a),(1,b),(2,b)\}$
5	$A \times A$	E	$\{(a,a),(a,b),(b,a),(b,b)\}$
6	$B \times B$	F	{(1,1),(1,2),(2,1),(2,2)}

2. $A = \{a,b,c\}$ $B = \{1,2,3\}$ $R_1 \subset A \times B$, $R_2 \subset A \times B$, $R_3 \subset A \times B$, $R_4 \subset A \times B$. Мувофик гузоред.

		. 3	J 1 J 1
1		A	$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$
2		В	$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
3	$R_1 = \{(a,1), (a,2), (b,2), (b,3)\}$	С	$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
4	$R_2 = \{(a,2), (a,3), (c,1)\}$	D	$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
5	$R_3 = \{(a,1), (b,2), (c,3)\}$	Е	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
6	$R_4 = \{(a,1), (a,3), (b,1), (b,2)\}$	F	$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

3. R - муносибати «a хохари b аст», S - муносибати «b модари c » аст. Ба композитсияи муносибатхо натичаи онро мувофик гузоред.

1		A	a аммаи c аст
2		В	а духтари с аст
3	$S \circ R$	С	a холаи c аст
4	$S\circ S$	D	a модаркалони c аст
5	$R \circ R$	E	a хоҳари c аст
6	$R \circ S$	F	a модари c аст

4. R муносибат дар мачму́и A аст. Ба хосияти муносибат таърифи онро мувофиқ гузоред

	- J = P = H					
1			A	$\forall x, y xRy$		
2			В	$\forall x, y xRy => xRy$		
3	Рефлексивй		С	$\forall x xRx$		
4	Симметрй		D	$xRy \Rightarrow yRx \forall (x,y)$		
5	Антисимметрй		E	$xRy \land yRx \Longrightarrow x = y \forall (x, y)$		
6	Транзитиви		F	$(xRy \wedge yRz) => xRz$		

5. $A = \{1,2,3\}$ $R_1 = \{(1,1),(1,2),(1,3),(3,1),(2,3)\}$, $R_2 = \{(1,1),(2,1),(1,2),(2,3)\}$. Мувофик гузоред.

1		A	$\{(1,1),(1,2),(3,1),(2,3),(3,3)\}$
2		В	$\{(1,2),(2,3),(2,2),(3,3)\}$

3	Сарбасти рефлексивии R_1	С	{(1,1), (1,2), (1,3), (3,1), (2,3), (2,2), (3,3)}
4	Сарбасти рефлексивии $\it R_{ m 2}$	D	$\{(1,1),(2,1),(1,2),(2,3),(2,2),(3,3)\}$
5	Сарбасти симметрии R_1	E	{(1,1), (1,2), (1,3), (3,1), (2,1), (2,3), (3,2)}
6	Сарбасти симметрии R_2	F	{(1,1), (2,1), (1,2), (2,3), (3,2)}

6. Дар мачмуи ададхои натурали муносибати *R* дода шудааст. Мувофик гузоред.

1		A	{(1,3),(3,1),(5,1)}
2		В	$\{(1,3),(3,2),(5,2)\}$
3	$R = \{(x, y) : 2x + y = 7\}$	С	{(1,5), (2,3), (3,1)}
4	$R = \{(x, y) : x + 2y = 7\}$	D	{(1,3),(3,2),(5,1)}
5	$R = \{(x, y) : x + 2y = 9\}$	Е	{(1,4),(3,3),(5,2),(7,1)}
6	$R = \{(x, y): 2x + y = 9\}$	F	{(1,7), (2,5), (3,3), (4,1)}

7. Мувофиқ гузоред.

1			A	Фақат рефлексивй ва симметрй
2			В	Муносибати байни се мачмуъ
3	Муносибати эквивалентнокй		\mathcal{C}	Рефлексивй, симметрй,
3				транзитивӣ
4	Муносибати тартиби қатъй	I	D	антиРефлексивй, антисимметрй,
4	муносиоати тартиои қатып		D	транзитивӣ
5	Муносибати тартиби ғайриқатьй		E	Рефлексивй, антисимметрй,
	тизносибати тартиби наприкатьи		L	транзитивй
6	Муносибати бинарӣ		F	Муносибати байни ду мачмуъ

8. Мачму́ъҳои $X=\{a,b,c,d,e\}$ $Y=\{1,2,3,4,5,6\}$ ва $f:X\to Y$ дода шудаанд. Муносибат дар мачму́и X чунин муайян шудаст. x_1 φ x_2 \Leftrightarrow $f(x_1)=f(x_2)$. Фактормачму́ъҳоро ба $f:X\to Y$ мувофиқ гузоред.

1		A	$\{\{a,b,c,d\},\{e\}\}$
2		В	$\{\{a\},\{b,c,d,e\}\}$
3	f(a) = 2; $f(b) = 5$; $f(c) = 2$; $f(d) = 4$; $f(e) = 5$	С	$\{\{a,c\},\{d\},\{b,e\}\}$
4	f(a) = 2; $f(b) = 5$; $f(c) = 2$; $f(d) = 4$; $f(e) = 2$	D	$\{\{a,c,e\},\{d\},\{b\}\}$
5	f(a) = 3; $f(b) = 5$; $f(c) = 4$; $f(d) = 4$; $f(e) = 5$	Е	$\{\{a\},\{c,d\},\{b,e\}\}$
6	f(a) = 6; $f(b) = 5$; $f(c) = 2$; $f(d) = 6$; $f(e) = 5$	F	$\{\{a,d\},\{c\},\{b,e\}\}$

Провести факторизацию отображения $f: X \to Y$, если $X = \{a,b,c,d,e\}$, $Y = \{1,2,3,4,5,6\}$, а значения f(x) таковы: f(a) = 2; f(b) = 5; f(c) = 2; f(d) = 4;

Рассмотрим на множестве X отношение Φ , которое определим так: $x_1 \phi x_2 \Leftrightarrow f(x_1) = f(x_2)$. Это — отношение эквивалентности, которое порождает разбиение множества X на классы эквивалентности.

В нашем примере имеем: $[a] = [c] = \{a,c\};$ $[d] = \{d\}; [b] = [e] = \{b,e\}.$ Эти классы образуют фактор-множество множества X по отношению φ : $X / \varphi = \{\{a,c\},\{d\},\{b,e\}\}\}$. Заме-