

Steve B. Howell
NASA Ames Research Center

Outline

- Stellar Variability a la Kepler
- Vetting (Small) ExoPlanets, Locally
- Other Solar Systems
- Fun, New, Exciting Discoveries

Kepler's Field of View

Stellar variability

- Take a sample of Kepler stars observed in the first month of operation
- Divide the sample into Dwarfs and Giants
- Examine the underlying variability of the light curves in this data set
- State the findings and discuss what it means for stars
- Ciardi et al. 2011 has details

Distribution of sample stars within Kepler FOV

Light curves were 30 minute sampling and 33.5 days long

129,000 Dwarfs
17,000 Giants
Separated by KIC
photometry used to
estimate Teff and log g

Stars
separated by
spectral type
within each
group

Photometric dispersion vs.
Kepler magnitude

Colored dots are exoplanet host stars. The grey lines are two measures of the median uncertainty for the data.

Distribution (Log) of the photometric dispersion separated by Teff, log g

Photometric dispersion for dwarfs, giants separated by Teff. Known exoplanets marked on top

Stellar Sample Results

- Using ~140,000 30-min sampled, 33 day long Kepler light curves, we find,
 - 25% of all dwarfs are variable, 100% for the bright stars
 - G dwarfs are the most stable, floor <=0.04mmag
 - All giants are variable
 - (floor ~0.1, 0.3, 10 mmag for G,K,M)
 - Variability fraction increases from 1 day to 33 days
 - Stars closer to galactic plane are more variable
 - May be real (age?) or higher background

Hi-Res Observations

- Kepler exoplanet candidate stars are followed up by ground-based observations
- High resolution imaging is key
- Speckle observations performed at WIYN telescope
- Use duel channel EMCCD camera

Duel Channel Speckle Camera at WIYN Telescope

Effective Int. Time for Speckle

Reconstructed Speckle Image

Delta Mag for Speckle Observations

Plate limit for Speckle Observations

Keck AO − J, K bands

F6IV star with 1.6Re candidate. (top)Raw light curve, (middle)zoom, (bottom) phased transit

Kepler Saturated Image

Kepler Difference image – Real, Model

Keck Hi-Res velocities – not even close

Locations of Kepler Planet Candidates

Numbers of Planet Candidates

Kepler Candidates as of February 1, 2011

Multiple Planet Systems

Multi's by Period and Radius

Kepler finds very few giant planets in systems of multiple planets Top log scale Bottom linear scale Single planets = red Multiples = blue CoRoT = green

Lots of Small Planets

Smallest planets still missed due to few low S/N transit events

Comparison by Single or Multiple

120 100 logs 1 Normalized area Histograms for multiple and single planet systems.

Planets smaller than Neptune dominate both samples, But more so for the multiple systems

Host Star Effective Temperature - a proxy for stellar mass

May show that single planets are more common around hotter stars

3 planet system

- 7.6, 14.9, 3.5 days
- 6.0, 8.6, 2.3 Rearth
- RV and TTV detection of larger planets.
- Possible RV detection of inner planet

Spectroscopy & Speckle Followup

- Spectra 4-m Kitt Peak
 - A-star ~8850 K
 - Broad Balmer series
 - Not suitable for highprecision RV

•WIYN Speckle

- 2nd star detected
 - 1.2" separation
- Kepler: 4"/pixel
- Dilution is
 - 32%
- Transit is deeper than observed
- Spitzer confirmed

Large TTVs

- 1 planets
- 10.9 days
- 2.5 Rearth
- Larger TTV
- Another planet/star?

Long Period

- 1 planet
- 10000 days (30 years)
- 1.3 Rj
- 48 hour transit!
- Outer solar system

- All current
 KOIs
- 1820 KOIs
- Size to scale
- Colours match eye response
- Actual limbdarkening
- Modeled impact parameter

• Image by Jason Rowe, See: http://www.flickr.com/photos/astroguy/5548755082/

Kepler's Large, Close-In Planets

