# EMPIRE DA

0.1

Generated by Doxygen 1.8.6

Fri Sep 26 2014 18:02:52

# **Contents**

| 1 | EMF  | PIRE Da   | ta Assimi    | ilation Documentation             |  | 1  |
|---|------|-----------|--------------|-----------------------------------|--|----|
|   | 1.1  | Downlo    | oading       |                                   |  | 1  |
|   | 1.2  | Compi     | ling         |                                   |  | 1  |
|   |      | 1.2.1     | Compilat     | tion of the source code           |  | 1  |
|   |      | 1.2.2     | Compilat     | tion of the documentation         |  | 2  |
|   | 1.3  | Custor    | mising for s | specific models                   |  | 2  |
|   | 1.4  | Testing   |              |                                   |  | 3  |
|   | 1.5  | Linking   | g to your m  | nodel using EMPIRE                |  | 3  |
|   | 1.6  | Runnir    | ng           |                                   |  | 3  |
|   | 1.7  | Bug R     | eports and   | d Functionality Requests          |  | 3  |
| 2 | Data | a Type lı | ndex         |                                   |  | 5  |
|   | 2.1  | Data T    | ypes List    |                                   |  | 5  |
| 3 | File | Index     |              |                                   |  | 7  |
|   | 3.1  | File Lis  | st           |                                   |  | 7  |
| 4 | Data | a Type C  | ocument      | tation                            |  | 9  |
|   | 4.1  | comm      | s Module F   | Reference                         |  | 9  |
|   |      | 4.1.1     | Detailed     | Description                       |  | 9  |
|   |      | 4.1.2     | Member       | Function/Subroutine Documentation |  | 9  |
|   |      |           | 4.1.2.1      | allocate_data                     |  | 9  |
|   |      |           | 4.1.2.2      | deallocate_data                   |  | 10 |
|   |      |           | 4.1.2.3      | initialise_mpi                    |  | 10 |
|   |      | 4.1.3     | Member       | Data Documentation                |  | 10 |
|   |      |           | 4.1.3.1      | cpl_mpi_comm                      |  | 10 |
|   |      |           | 4.1.3.2      | gblcount                          |  | 10 |
|   |      |           | 4.1.3.3      | gbldisp                           |  | 10 |
|   |      |           | 4.1.3.4      | mype_id                           |  | 10 |
|   |      |           | 4.1.3.5      | myrank                            |  | 10 |
|   |      |           | 4.1.3.6      | npfs                              |  | 10 |
|   |      |           | 4.1.3.7      | nproc                             |  | 10 |

iv CONTENTS

|     |         | 4.1.3.8     | pf_mpi_comm                       | 10 |
|-----|---------|-------------|-----------------------------------|----|
|     |         | 4.1.3.9     | pfrank                            | 11 |
| 4.2 | histogr | ram_data N  | Module Reference                  | 11 |
|     | 4.2.1   | Detailed    | Description                       | 11 |
|     | 4.2.2   | Member      | Function/Subroutine Documentation | 11 |
|     |         | 4.2.2.1     | kill_histogram_data               | 11 |
|     |         | 4.2.2.2     | load_histogram_data               | 11 |
|     | 4.2.3   | Member      | Data Documentation                | 11 |
|     |         | 4.2.3.1     | rank_hist_list                    | 11 |
|     |         | 4.2.3.2     | rank_hist_nums                    | 11 |
|     |         | 4.2.3.3     | rhl_n                             | 11 |
|     |         | 4.2.3.4     | rhn_n                             | 11 |
| 4.3 | hqht_p  | olus_r Mod  | lule Reference                    | 12 |
|     | 4.3.1   | Member      | Function/Subroutine Documentation | 12 |
|     |         | 4.3.1.1     | hqhtr_factor                      | 12 |
|     |         | 4.3.1.2     | kill_hqhtr                        | 12 |
|     |         | 4.3.1.3     | load_hqhtr                        | 12 |
| 4.4 | pf_con  | itrol Modul | e Reference                       | 12 |
|     | 4.4.1   | Detailed    | Description                       | 13 |
|     | 4.4.2   | Member      | Function/Subroutine Documentation | 13 |
|     |         | 4.4.2.1     | allocate_pf                       | 13 |
|     |         | 4.4.2.2     | deallocate_pf                     | 14 |
|     |         | 4.4.2.3     | parse_pf_parameters               | 14 |
|     |         | 4.4.2.4     | set_pf_controls                   | 15 |
|     | 4.4.3   | Member      | Data Documentation                | 16 |
|     |         | 4.4.3.1     | pf                                | 16 |
| 4.5 | pf_con  | trol::pf_co | ntrol_type Type Reference         | 16 |
|     | 4.5.1   | Member      | Data Documentation                | 18 |
|     |         | 4.5.1.1     | count                             | 18 |
|     |         | 4.5.1.2     | couple_root                       | 18 |
|     |         | 4.5.1.3     | efac                              | 18 |
|     |         | 4.5.1.4     | gen_data                          | 18 |
|     |         | 4.5.1.5     | gen_q                             | 18 |
|     |         | 4.5.1.6     | human_readable                    | 18 |
|     |         | 4.5.1.7     | init                              | 18 |
|     |         | 4.5.1.8     | keep                              | 18 |
|     |         | 4.5.1.9     | len                               | 18 |
|     |         | 4.5.1.10    | mean                              | 19 |
|     |         | 4.5.1.11    | nens                              | 19 |
|     |         | 4.5.1.12    | nfac                              | 19 |

CONTENTS

|     |         | 4.5.1.13   | nudgefac                          | 19 |
|-----|---------|------------|-----------------------------------|----|
|     |         | 4.5.1.14   | particles                         | 19 |
|     |         | 4.5.1.15   | psi                               | 19 |
|     |         | 4.5.1.16   | qscale                            | 19 |
|     |         | 4.5.1.17   | rho                               | 19 |
|     |         | 4.5.1.18   | talagrand                         | 19 |
|     |         | 4.5.1.19   | time                              | 19 |
|     |         | 4.5.1.20   | time_bwn_obs                      | 19 |
|     |         | 4.5.1.21   | time_obs                          | 19 |
|     |         | 4.5.1.22   | timestep                          | 20 |
|     |         | 4.5.1.23   | type                              | 20 |
|     |         | 4.5.1.24   | ufac                              | 20 |
|     |         | 4.5.1.25   | use_mean                          | 20 |
|     |         | 4.5.1.26   | use_rmse                          | 20 |
|     |         | 4.5.1.27   | use_talagrand                     | 20 |
|     |         | 4.5.1.28   | use_traj                          | 20 |
|     |         | 4.5.1.29   | use_var                           | 20 |
|     |         | 4.5.1.30   | use_weak                          | 20 |
|     |         | 4.5.1.31   | weight                            | 20 |
| 4.6 | qdata I | Module Re  | eference                          | 20 |
|     | 4.6.1   | Detailed   | Description                       | 21 |
|     | 4.6.2   | Member     | Function/Subroutine Documentation | 21 |
|     |         | 4.6.2.1    | killq                             | 21 |
|     |         | 4.6.2.2    | loadq                             | 21 |
|     | 4.6.3   | Member     | Data Documentation                | 21 |
|     |         | 4.6.3.1    | qcol                              | 21 |
|     |         | 4.6.3.2    | qdiag                             | 21 |
|     |         | 4.6.3.3    | <b>qn</b>                         | 21 |
|     |         | 4.6.3.4    | qne                               | 21 |
|     |         | 4.6.3.5    | grow                              | 21 |
|     |         | 4.6.3.6    | qscale                            | 21 |
|     |         | 4.6.3.7    | qval                              | 21 |
| 4.7 | randon  | n Module F | Reference                         | 22 |
|     | 4.7.1   | Detailed   | Description                       | 22 |
|     | 4.7.2   | Member     | Function/Subroutine Documentation | 22 |
|     |         | 4.7.2.1    | bin_prob                          | 23 |
|     |         | 4.7.2.2    | Ingamma                           | 23 |
|     |         | 4.7.2.3    | random_beta                       | 24 |
|     |         | 4.7.2.4    | random_binomial1                  | 24 |
|     |         | 4.7.2.5    | random_binomial2                  | 24 |

vi CONTENTS

|      |         | 4.7.2.6 random_cauchy                    | 24 |
|------|---------|------------------------------------------|----|
|      |         | 4.7.2.7 random_chisq                     | 25 |
|      |         | 4.7.2.8 random_exponential               | 25 |
|      |         | 4.7.2.9 random_gamma                     | 25 |
|      |         | 4.7.2.10 random_gamma1                   | 26 |
|      |         | 4.7.2.11 random_gamma2                   | 26 |
|      |         | 4.7.2.12 random_inv_gauss                | 27 |
|      |         | 4.7.2.13 random_mvnorm                   | 27 |
|      |         | 4.7.2.14 random_neg_binomial             | 28 |
|      |         | 4.7.2.15 random_normal                   | 28 |
|      |         | 4.7.2.16 random_order                    | 29 |
|      |         | 4.7.2.17 random_poisson                  | 30 |
|      |         | 4.7.2.18 random_t                        | 30 |
|      |         | 4.7.2.19 random_von_mises                | 30 |
|      |         | 4.7.2.20 random_weibull                  | 31 |
|      |         | 4.7.2.21 seed_random_number              | 31 |
|      | 4.7.3   | Member Data Documentation                | 31 |
|      |         | 4.7.3.1 dp                               | 31 |
| 4.8  | rdata N | Module Reference                         | 31 |
|      | 4.8.1   | Detailed Description                     | 32 |
|      | 4.8.2   | Member Function/Subroutine Documentation | 32 |
|      |         | 4.8.2.1 killr                            | 32 |
|      |         | 4.8.2.2 loadr                            | 32 |
|      | 4.8.3   | Member Data Documentation                | 32 |
|      |         | 4.8.3.1 rcol                             | 32 |
|      |         | 4.8.3.2 rdiag                            | 32 |
|      |         | 4.8.3.3 rn                               | 32 |
|      |         | 4.8.3.4 rne                              | 32 |
|      |         | 4.8.3.5 rrow                             | 32 |
|      |         | 4.8.3.6 rval                             | 32 |
| 4.9  | sizes N |                                          | 32 |
|      | 4.9.1   | Detailed Description                     | 32 |
|      | 4.9.2   | Member Data Documentation                | 33 |
|      |         | 4.9.2.1 obs_dim                          | 33 |
|      |         | 4.9.2.2 state_dim                        | 33 |
| File | Docum   | entation 3                               | 35 |
| 5.1  |         |                                          | 35 |
|      | 5.1.1   |                                          | 35 |
|      |         |                                          | 35 |
|      |         |                                          |    |

5

CONTENTS vii

|     |         | 5.1.1.2      | dist_st_ob                               | 36 |
|-----|---------|--------------|------------------------------------------|----|
|     |         | 5.1.1.3      | $h \ \ldots \ldots \ldots \ldots \ldots$ | 37 |
|     |         | 5.1.1.4      | $ht \ldots \ldots \ldots \ldots \ldots$  | 38 |
|     |         | 5.1.1.5      | q                                        | 39 |
|     |         | 5.1.1.6      | qhalf                                    | 41 |
|     |         | 5.1.1.7      | $r \ldots \ldots \ldots \ldots$          | 42 |
|     |         | 5.1.1.8      | rhalf                                    | 43 |
|     |         | 5.1.1.9      | solve_hqht_plus_r                        | 44 |
|     |         | 5.1.1.10     | solve_r                                  | 45 |
|     |         | 5.1.1.11     | solve_rhalf                              | 46 |
| 5.2 | src/cor | ntrolers/old | l_pf_couple.f90 File Reference           | 47 |
|     | 5.2.1   | Function/    | Subroutine Documentation                 | 47 |
|     |         | 5.2.1.1      | couple_pf                                | 47 |
| 5.3 | src/cor | ntrolers/pf_ | control.f90 File Reference               | 47 |
| 5.4 | src/cor | ntrolers/pf_ | couple.f90 File Reference                | 47 |
|     | 5.4.1   | Function/    | Subroutine Documentation                 | 48 |
|     |         | 5.4.1.1      | empire                                   | 48 |
| 5.5 | src/cor | ntrolers/pf_ | parameters.dat File Reference            | 48 |
|     | 5.5.1   | Variable I   | Documentation                            | 49 |
|     |         | 5.5.1.1      | gen_data                                 | 49 |
|     |         | 5.5.1.2      | gen_Q                                    | 49 |
|     |         | 5.5.1.3      | human_readable                           | 49 |
|     |         | 5.5.1.4      | keep                                     | 49 |
|     |         | 5.5.1.5      | nfac                                     | 49 |
|     |         | 5.5.1.6      | nudgefac                                 | 49 |
|     |         | 5.5.1.7      | Qscale                                   | 49 |
|     |         | 5.5.1.8      | time_bwn_obs                             | 49 |
|     |         | 5.5.1.9      | time_obs                                 | 49 |
|     |         | 5.5.1.10     | type                                     | 49 |
|     |         | 5.5.1.11     | ufac                                     | 49 |
|     |         | 5.5.1.12     | use_mean                                 | 49 |
|     |         | 5.5.1.13     | use_rmse                                 | 49 |
|     |         | 5.5.1.14     | use_talagrand                            | 49 |
|     |         | 5.5.1.15     | use_traj                                 | 49 |
|     |         | 5.5.1.16     | use_var                                  | 49 |
|     |         | 5.5.1.17     | use_weak                                 | 49 |
| 5.6 | src/cor | ntrolers/siz | es.f90 File Reference                    | 50 |
| 5.7 | src/dat | a/Qdata.f9   | 00 File Reference                        | 50 |
| 5.8 | src/dat | a/Rdata.f9   | 0 File Reference                         | 50 |
| 5.9 | src/DO  | C_READN      | ME.txt File Reference                    | 50 |

viii CONTENTS

| 5.10 | src/filte | rs/eakf_an     | alysis.f90 File Reference                                                                                                                 | 50 |
|------|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | 5.10.1    | Function/S     | Subroutine Documentation                                                                                                                  | 50 |
|      |           | 5.10.1.1       | eakf_analysis                                                                                                                             | 50 |
| 5.11 | src/filte | rs/enkf_sp     | ecific.f90 File Reference                                                                                                                 | 51 |
|      | 5.11.1    | Function/S     | Subroutine Documentation                                                                                                                  | 51 |
|      |           | 5.11.1.1       | get_local_observation_data                                                                                                                | 51 |
|      |           | 5.11.1.2       | $h\_local \ \dots $                 | 52 |
|      |           | 5.11.1.3       | localise_enkf                                                                                                                             | 52 |
|      |           | 5.11.1.4       | solve_rhalf_local                                                                                                                         | 53 |
| 5.12 | src/filte | rs/equivale    | ent_weights_step.f90 File Reference                                                                                                       | 53 |
|      | 5.12.1    | Function/S     | Subroutine Documentation                                                                                                                  | 53 |
|      |           | 5.12.1.1       | equal_weight_filter                                                                                                                       | 53 |
| 5.13 | src/filte | rs/etkf_ana    | alysis.f90 File Reference                                                                                                                 | 54 |
|      | 5.13.1    | Function/S     | Subroutine Documentation                                                                                                                  | 54 |
|      |           | 5.13.1.1       | etkf_analysis                                                                                                                             | 54 |
| 5.14 | src/filte | rs/letkf_ana   | alysis.f90 File Reference                                                                                                                 | 55 |
|      | 5.14.1    | Function/S     | Subroutine Documentation                                                                                                                  | 55 |
|      |           | 5.14.1.1       | letkf_analysis                                                                                                                            | 55 |
| 5.15 | src/filte | rs/proposa     | I_filter.f90 File Reference                                                                                                               | 56 |
|      | 5.15.1    | Function/S     | Subroutine Documentation                                                                                                                  | 56 |
|      |           | 5.15.1.1       | proposal_filter                                                                                                                           | 56 |
| 5.16 | src/filte | rs/sir_filter. | .f90 File Reference                                                                                                                       | 57 |
|      | 5.16.1    | Function/S     | Subroutine Documentation                                                                                                                  | 57 |
|      |           | 5.16.1.1       | sir_filter                                                                                                                                | 57 |
| 5.17 | src/filte | rs/stochast    | tic_model.f90 File Reference                                                                                                              | 58 |
|      | 5.17.1    | Function/S     | Subroutine Documentation                                                                                                                  | 58 |
|      |           | 5.17.1.1       | check_scaling                                                                                                                             | 58 |
|      |           | 5.17.1.2       | stochastic_model                                                                                                                          | 58 |
| 5.18 | src/ope   | rations/ger    | n_rand.f90 File Reference                                                                                                                 | 59 |
|      | 5.18.1    | Function/S     | Subroutine Documentation                                                                                                                  | 59 |
|      |           | 5.18.1.1       | mixturerandomnumbers1d                                                                                                                    | 59 |
|      |           | 5.18.1.2       | $mixturer and omnumbers 2d \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $                                                                        | 60 |
|      |           | 5.18.1.3       | normalrandomnumbers1d                                                                                                                     | 61 |
|      |           | 5.18.1.4       | $normal random numbers 2d \ \dots $ | 62 |
|      |           | 5.18.1.5       | $random\_seed\_mpi \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $                                                                                | 62 |
|      |           | 5.18.1.6       | uniformrandomnumbers1d                                                                                                                    | 63 |
| 5.19 | src/ope   | erations/ope   | erator_wrappers.f90 File Reference                                                                                                        | 63 |
|      | 5.19.1    | Function/S     | Subroutine Documentation                                                                                                                  | 64 |
|      |           | 5.19.1.1       | bprime                                                                                                                                    | 64 |
|      |           | 5.19.1.2       | $innerhqht\_plus\_r\_1  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots$                                                           | 64 |

CONTENTS

|      |           | 5.19.1.3 inr     | nerr_1           |             |     | <br> | <br> | <br>. 65 |
|------|-----------|------------------|------------------|-------------|-----|------|------|----------|
|      |           | 5.19.1.4 k       |                  |             |     | <br> | <br> | <br>. 66 |
| 5.20 | src/ope   | rations/pertur   | b_particle.f90 F | File Refere | nce | <br> | <br> | <br>. 67 |
|      | 5.20.1    | Function/Sub     | oroutine Docum   | entation .  |     | <br> | <br> | <br>. 68 |
|      |           | 5.20.1.1 pe      | rturb_particle   |             |     | <br> | <br> | <br>. 68 |
|      |           | 5.20.1.2 up      | date_state       |             |     | <br> | <br> | <br>. 68 |
| 5.21 | src/ope   | erations/resam   | ple.f90 File Re  | ference     |     | <br> | <br> | <br>. 69 |
|      | 5.21.1    | Function/Sub     | proutine Docum   | entation .  |     | <br> | <br> | <br>. 69 |
|      |           | 5.21.1.1 res     | sample           |             |     | <br> | <br> | <br>. 69 |
| 5.22 | src/test  | s/alltests.f90   | File Reference   |             |     | <br> | <br> | <br>. 70 |
|      | 5.22.1    | Function/Sub     | proutine Docum   | entation .  |     | <br> | <br> | <br>. 70 |
|      |           | 5.22.1.1 all     | tests            |             |     | <br> | <br> | <br>. 70 |
| 5.23 | src/test  | s/test_h.f90 F   | ile Reference    |             |     | <br> | <br> | <br>. 71 |
|      | 5.23.1    | Function/Sub     | proutine Docum   | entation .  |     | <br> | <br> | <br>. 71 |
|      |           | 5.23.1.1 tes     | st_h             |             |     | <br> | <br> | <br>. 71 |
| 5.24 | src/test  | s/test_hqhtr.f9  | 00 File Referen  | ce          |     | <br> | <br> | <br>. 71 |
|      | 5.24.1    | Function/Sub     | proutine Docum   | entation .  |     | <br> | <br> | <br>. 71 |
|      |           | 5.24.1.1 tes     | st_hqhtr         |             |     | <br> | <br> | <br>. 71 |
| 5.25 | src/test  | s/test_q.f90 F   | ile Reference    |             |     | <br> | <br> | <br>. 72 |
|      | 5.25.1    | Function/Sub     | proutine Docum   | entation .  |     | <br> | <br> | <br>. 72 |
|      |           | 5.25.1.1 tes     | st_q             |             |     | <br> | <br> | <br>. 72 |
| 5.26 | src/test  | s/test_r.f90 Fi  | le Reference .   |             |     | <br> | <br> | <br>. 72 |
|      | 5.26.1    | Function/Sub     | proutine Docum   | entation .  |     | <br> | <br> | <br>. 73 |
|      |           | 5.26.1.1 tes     | st_r             |             |     | <br> | <br> | <br>. 73 |
| 5.27 | src/test  | s/tests.f90 File | e Reference .    |             |     | <br> | <br> | <br>. 73 |
|      | 5.27.1    | Function/Sub     | proutine Docum   | entation .  |     | <br> | <br> | <br>. 73 |
|      |           | 5.27.1.1 h_      | tests            |             |     | <br> | <br> | <br>. 73 |
|      |           | 5.27.1.2 hq      | htr_tests        |             |     | <br> | <br> | <br>. 74 |
|      |           | 5.27.1.3 q_      | tests            |             |     | <br> | <br> | <br>. 75 |
|      |           | 5.27.1.4 r_t     | ests             |             |     | <br> | <br> | <br>. 75 |
| 5.28 | src/utils | s/comms.f90 F    | File Reference   |             |     | <br> | <br> | <br>. 76 |
| 5.29 | src/utils | s/data_io.f90 F  | File Reference   |             |     | <br> | <br> | <br>. 76 |
|      | 5.29.1    | Function/Sub     | proutine Docum   | entation .  |     | <br> | <br> | <br>. 76 |
|      |           | 5.29.1.1 ge      | t_observation_   | data        |     | <br> | <br> | <br>. 76 |
|      |           | 5.29.1.2 ou      | tput_from_pf .   |             |     | <br> | <br> | <br>. 77 |
|      |           | 5.29.1.3 sa      | ve_observation   | _data       |     | <br> | <br> | <br>. 77 |
|      |           | 5.29.1.4 sa      | ve_truth         |             |     | <br> | <br> | <br>. 78 |
| 5.30 |           |                  | 90 File Referer  |             |     |      |      |          |
|      | 5.30.1    |                  | proutine Docum   |             |     |      |      |          |
|      |           | 5.30.1.1 dia     | ignostics        |             |     | <br> | <br> | <br>. 78 |

CONTENTS

| Index |                                          | 82 |
|-------|------------------------------------------|----|
| 5.34  | src/utils/random_d.f90 File Reference    | 81 |
|       | 5.33.1.2 quicksort_d                     |    |
|       | 5.33.1.1 insertionsort_d                 |    |
|       | 5.33.1 Function/Subroutine Documentation | 80 |
| 5.33  | 3 src/utils/quicksort.f90 File Reference | 80 |
| 5.32  | 2 src/utils/histogram.f90 File Reference | 80 |
|       | 5.31.1.1 genq                            | 80 |
|       | 5.31.1 Function/Subroutine Documentation | 79 |
| 5.31  | src/utils/genQ.f90 File Reference        | 79 |
|       | 5.30.1.2 trajectories                    | 79 |

# **Chapter 1**

# **EMPIRE Data Assimilation Documentation**

**Author** 

Philip A. Browne p.browne@reading.ac.uk

Date

Time-stamp: <2014-09-26 18:02:48 pbrowne>

# 1.1 Downloading

These codes are hosted on www.bitbucket.org and can be attained with the following commands:

git clone https://www.bitbucket.org/pbrowne/empire-data-assimilation.git

Copyright

These codes are distributed under the GNU GPU v3 License. See LICENSE.txt.

## 1.2 Compiling

### 1.2.1 Compilation of the source code

The Makefile must be editted for the specific compiler setup. In the main directory you will find the file Makefile. Edit the variables as follows:

• FC The fortran compiler

This has been tested with gfortran 4.8.2

- FCOPTS The options for the fortran compiler
- LIB\_LIST The libraries to be called. Note this must include BLAS and LAPACK

To compile the source code, simply then type the command

make

If successful, the following executables are created in the bin/ folder:

- · empire
- · alltests
- test h
- · test\_hqhtr
- test\_q
- test r

To remove the object and executable files if compilation fails for some reason, run the following:

make clean

#### 1.2.2 Compilation of the documentation

Documentation of the code is automatically generated using Doxygen, dot and pdflatex.

All of these packages must be installed for the following to work.

make docs

This will make an html webpage for the code, the mainpage for which is located in doc/html/index.html.

A latex version of the documentation will be built to the file doc/latex/refman.pdf.

To simply make the html version of the documentation (if pdflatex is not available) then use the command

make doc\_html

# 1.3 Customising for specific models

This is where the science and all the effort should happen!!

The file model\_specific.f90 should be editted for the specific model which you wish to use. This contains a number of subroutines which need to be adapted for the model and the observation network. We list these subsequently.

- configure\_model This is called early in the code and can be used to read in any data from files before subsequently using them in the below operations.
- h This is the observation operator
- · ht This is the transpose of the observation operator
- r This is the observation error covariance matrix R
- rhalf This is the square root of the observation error covariance matrix  $R^{\frac{1}{2}}$
- solve\_r This is a linear solve with the observation error covariance matrix, i.e. given b, find x such that Rx = b or indeed,  $x = R^{-1}b$
- solve\_rhalf This is a linear solve with the square root of the observation error covariance matrix, i.e. given b, find x such that  $R^{\frac{1}{2}}x = b$  or indeed,  $x = R^{-\frac{1}{2}}b$
- q This is the model error covariance matrix Q
- qhalf This is the square root model error covariance matrix  $Q^{\frac{1}{2}}$
- solve\_hght\_plus\_r This is a linear solve with the matrix  $(HQH^T + R)$

Not all of these subroutines will be required for each filtering method you wish to use, so it may be advantageous to only implement the necessary ones.

1.4 Testing 3

## 1.4 Testing

You can test your user supplied routines by running the test codes found in the folder bin/.

These are by no means full-proof ways of ensuring that you have implemented things correctly, but should at least check what you have done for logical consistency.

For example, they will test if  $HH^Tx = x$ , and if  $Q^{\frac{1}{2}}Q^{\frac{1}{2}}x = Qx$  for various different vectors x.

# 1.5 Linking to your model using EMPIRE

Full instructions on how to put the EMPIRE MPI commands into a new model can be found at www.met.-reading.ac.uk/~darc/empire.

# 1.6 Running

For example, to run **N\_MDL** copies of the model with **N\_DA** copies of empire, then the following are possible:

```
mpirun -np N_MDL model_executable : -np N_DA empire
aprun -n N_MDL -N N_MDL model_executable : -n N_DA -N N_DA empire
```

The empire executable is controlled by the namelist data file pf\_parameters.dat. As such, this file should be put in the directory where empire is executed.

# 1.7 Bug Reports and Functionality Requests

While the code is not too large, you may email me the issue or request here.

However there is a webpage set up for this:

https://bitbucket.org/pbrowne/empire-data-assimilation/issues

| <b>EMPIRE</b> | Data | <b>Assimilation</b> | <b>Documentation</b> |
|---------------|------|---------------------|----------------------|
|---------------|------|---------------------|----------------------|

# Chapter 2

# **Data Type Index**

# 2.1 Data Types List

Here are the data types with brief descriptions:

| comins                                                                        |    |
|-------------------------------------------------------------------------------|----|
| Module containing EMPIRE coupling data                                        | ç  |
| nistogram_data                                                                |    |
| Module to control what variables are used to generate rank histograms         | 11 |
| nqht_plus_r                                                                   | 12 |
| of_control                                                                    |    |
| Module pf_control holds all the information to control the the main program   | 12 |
| of_control::pf_control_type                                                   | 16 |
| pdata                                                                         |    |
| Module as a place to store user specified data for $Q$                        | 20 |
| andom                                                                         |    |
| A module for random number generation from the following distributions:       | 22 |
| data                                                                          |    |
| Module to hold user supplied data for $R$ observation error covariance matrix | 31 |
| sizes                                                                         |    |
| Module that stores the dimension of observation and state spaces              | 32 |

6 **Data Type Index** 

# **Chapter 3**

# File Index

# 3.1 File List

Here is a list of all files with brief descriptions:

| model_specific.f90                      |
|-----------------------------------------|
| src/controlers/old_pf_couple.f90        |
| src/controlers/pf_control.f90           |
| src/controlers/pf_couple.f90 47         |
| src/controlers/pf_parameters.dat        |
| src/controlers/sizes.f90                |
| src/data/Qdata.f90                      |
| src/data/Rdata.f90                      |
| src/filters/eakf_analysis.f90           |
| src/filters/enkf_specific.f90           |
| src/filters/equivalent_weights_step.f90 |
| src/filters/etkf_analysis.f90           |
| src/filters/letkf_analysis.f90          |
| src/filters/proposal_filter.f90         |
| src/filters/sir_filter.f90              |
| src/filters/stochastic_model.f90        |
| src/operations/gen_rand.f90             |
| src/operations/operator_wrappers.f90    |
| src/operations/perturb_particle.f90     |
| src/operations/resample.f90             |
| src/tests/alltests.f90                  |
| src/tests/test_h.f90                    |
| src/tests/test_hqhtr.f90                |
| src/tests/test_q.f90                    |
| src/tests/test_r.f90                    |
| src/tests/tests.f90                     |
| src/utils/comms.f90                     |
| src/utils/data_io.f90                   |
| src/utils/diagnostics.f90               |
| src/utils/genQ.f90                      |
| src/utils/histogram.f90                 |
| src/utils/quicksort.f90                 |
| src/utils/random_d f90                  |

8 File Index

# **Chapter 4**

# **Data Type Documentation**

## 4.1 comms Module Reference

Module containing EMPIRE coupling data.

#### **Public Member Functions**

- subroutine allocate data
- subroutine deallocate\_data
- subroutine initialise\_mpi

subroutine to make EMPIRE connections and saves details into pf\_control module

#### **Public Attributes**

- integer cpl\_mpi\_comm
- integer mype\_id
- integer myrank
- integer nproc
- integer pf\_mpi\_comm
- integer pfrank
- integer npfs
- integer, dimension(:), allocatable gblcount
- integer, dimension(:), allocatable gbldisp

## 4.1.1 Detailed Description

Module containing EMPIRE coupling data.

# 4.1.2 Member Function/Subroutine Documentation

4.1.2.1 subroutine comms::allocate\_data ( )

#### 4.1.2.2 subroutine comms::deallocate\_data ( )

Here is the caller graph for this function:



#### 4.1.2.3 subroutine comms::initialise\_mpi ( )

subroutine to make EMPIRE connections and saves details into pf\_control module Here is the caller graph for this function:



#### 4.1.3 Member Data Documentation

- 4.1.3.1 integer comms::cpl\_mpi\_comm
- 4.1.3.2 integer, dimension(:), allocatable comms::gblcount
- 4.1.3.3 integer, dimension(:), allocatable comms::gbldisp
- 4.1.3.4 integer comms::mype\_id
- 4.1.3.5 integer comms::myrank
- 4.1.3.6 integer comms::npfs
- 4.1.3.7 integer comms::nproc
- 4.1.3.8 integer comms::pf\_mpi\_comm

#### 4.1.3.9 integer comms::pfrank

The documentation for this module was generated from the following file:

• src/utils/comms.f90

# 4.2 histogram\_data Module Reference

Module to control what variables are used to generate rank histograms.

#### **Public Member Functions**

- subroutine load\_histogram\_data subroutine to read from variables\_hist.dat which variables to be used to make the rank histograms
- subroutine kill\_histogram\_data
   subroutine to clean up arrays used in rank histograms

#### **Public Attributes**

- integer, dimension(:), allocatable rank\_hist\_list
- integer, dimension(:), allocatable rank\_hist\_nums
- integer rhl n
- integer rhn\_n

#### 4.2.1 Detailed Description

Module to control what variables are used to generate rank histograms.

#### 4.2.2 Member Function/Subroutine Documentation

4.2.2.1 subroutine histogram\_data::kill\_histogram\_data( )

subroutine to clean up arrays used in rank histograms

4.2.2.2 subroutine histogram\_data::load\_histogram\_data( )

subroutine to read from variables\_hist.dat which variables to be used to make the rank histograms

#### 4.2.3 Member Data Documentation

- 4.2.3.1 integer, dimension(:), allocatable histogram\_data::rank\_hist\_list
- 4.2.3.2 integer, dimension(:), allocatable histogram\_data::rank\_hist\_nums
- 4.2.3.3 integer histogram\_data::rhl\_n
- 4.2.3.4 integer histogram\_data::rhn\_n

The documentation for this module was generated from the following file:

• src/utils/histogram.f90

# 4.3 hqht\_plus\_r Module Reference

#### **Public Member Functions**

- · subroutine load\_hqhtr
- subroutine hqhtr\_factor
- subroutine kill\_hqhtr

## 4.3.1 Member Function/Subroutine Documentation

```
4.3.1.1 subroutine hqht_plus_r::hqhtr_factor ( )
```

Here is the caller graph for this function:



- 4.3.1.2 subroutine hqht\_plus\_r::kill\_hqhtr ( )
- 4.3.1.3 subroutine hqht\_plus\_r::load\_hqhtr ( )

Here is the call graph for this function:



The documentation for this module was generated from the following file:

• src/data/Rdata.f90

## 4.4 pf\_control Module Reference

module pf\_control holds all the information to control the the main program

Collaboration diagram for pf\_control:



#### **Data Types**

• type pf\_control\_type

#### **Public Member Functions**

- subroutine set\_pf\_controls
  - subroutine to ensure  $pf\_control$  data is ok
- subroutine parse\_pf\_parameters
  - subroutine to read the namelist file and save it to pf datatype Here we read pf\_parameters.dat
- subroutine allocate\_pf
  - subroutine to allocate space for the filtering code
- subroutine deallocate\_pf
  - subroutine to deallocate space for the filtering code

#### **Public Attributes**

• type(pf\_control\_type) pf

the derived data type holding all controlling data

#### 4.4.1 Detailed Description

module pf\_control holds all the information to control the the main program

#### 4.4.2 Member Function/Subroutine Documentation

4.4.2.1 subroutine pf\_control::allocate\_pf()

subroutine to allocate space for the filtering code

Here is the caller graph for this function:



4.4.2.2 subroutine pf\_control::deallocate\_pf ( )

subroutine to deallocate space for the filtering code

4.4.2.3 subroutine pf\_control::parse\_pf\_parameters ( )

subroutine to read the namelist file and save it to pf datatype Here we read pf\_parameters.dat pf\_parameters.dat is a fortran namelist file. As such, within it there must be a line beginning &pf\_params

To make it (probably) work, ensure there is a forward slash on the penultimate line and a blank line to end the file This is just the fortran standard for namelists though.

On to the content...in any order, the pf\_parameters.dat may contain the following things: Integers:

- time\_obs
- time\_bwn\_obs

Reals, double precision:

- nudgefac
- nfac
- ufac
- Qscale
- keep
- rho
- len

#### 2 Characters:

- type
- 1 Character:

• init

## Logicals:

- gen\_Q
- gen\_data
- use\_talagrand
- use\_weak
- use\_var
- use\_traj
- use\_rmse
- human\_readable

Here is the caller graph for this function:



#### 4.4.2.4 subroutine pf\_control::set\_pf\_controls ( )

subroutine to ensure pf\_control data is ok

Here is the call graph for this function:



Here is the caller graph for this function:



## 4.4.3 Member Data Documentation

## 4.4.3.1 type(pf\_control\_type) pf\_control::pf

the derived data type holding all controlling data

The documentation for this module was generated from the following file:

• src/controlers/pf\_control.f90

# 4.5 pf\_control::pf\_control\_type Type Reference

#### **Public Attributes**

· integer nens

the total number of ensemble members

• real(kind=kind(1.0d0)), dimension(:), allocatable weight

the negative log of the weights of the particles

• integer time\_obs

the number of observations we will assimilate

integer time\_bwn\_obs

the number of model timesteps between observations

• real(kind=kind(1.0d0)) nudgefac

the nudging factor

logical gen\_data

true generates synthetic obs for a twin experiment

· logical gen\_q

true attempts to build up Q from long model run

logical human\_readable

unused

• integer timestep =0

the current timestep as the model progresses

• real(kind=kind(1.0d0)), dimension(:,:), allocatable psi

state vector of ensemble members on this mpi process

• real(kind=kind(1.0d0)), dimension(:), allocatable mean

mean state vector

real(kind=kind(1.0d0)) nfac

standard deviation of normal distribution in mixture density

• real(kind=kind(1.0d0)) ufac

half width of the uniform distribution in mixture density

- real(kind=kind(1.0d0)) efac
- real(kind=kind(1.0d0)) keep

proportion of particles to keep in EWPF EW step

• real(kind=kind(1.0d0)) time

dunno

real(kind=kind(1.0d0)) qscale

scalar to multiply Q by

• real(kind=kind(1.0d0)) rho

enkf inflation factor so that  $P_f = (1 + \rho)P_f$ 

• real(kind=kind(1.0d0)) len

R localisation length scale.

integer couple\_root

empire master processor

· logical use\_talagrand

switch if true outputs rank histograms

· logical use\_weak

switch unused

• logical use mean

switch if true outputs ensemble mean

· logical use\_var

switch if true outputs ensemble variance

logical use\_traj

switch if true outputs trajectories

· logical use\_rmse

switch if true outputs Root Mean Square Errors

 integer, dimension(:,:), allocatable talagrand

storage for rank histograms

· integer count

number of ensemble members associated with this MPI process

• integer, dimension(:), allocatable particles particles associates with this MPI process

• character(2) type

which filter to use

· character(1) init

which method to initialise ensemble

#### 4.5.1 Member Data Documentation

4.5.1.1 integer pf\_control::pf\_control\_type::count

number of ensemble members associated with this MPI process

4.5.1.2 integer pf\_control::pf\_control\_type::couple\_root

empire master processor

4.5.1.3 real(kind=kind(1.0d0)) pf\_control::pf\_control\_type::efac

4.5.1.4 logical pf\_control::pf\_control\_type::gen\_data

true generates synthetic obs for a twin experiment

4.5.1.5 logical pf\_control::pf\_control\_type::gen\_q

true attempts to build up Q from long model run

4.5.1.6 logical pf\_control::pf\_control\_type::human\_readable

unused

4.5.1.7 character(1) pf\_control::pf\_control\_type::init

which method to initialise ensemble

4.5.1.8 real(kind=kind(1.0d0)) pf\_control::pf\_control\_type::keep

proportion of particles to keep in EWPF EW step

4.5.1.9 real(kind=kind(1.0d0)) pf\_control::pf\_control\_type::len

R localisation length scale.

4.5.1.10 real(kind=kind(1.0d0)), dimension(:), allocatable pf\_control::pf\_control\_type::mean mean state vector 4.5.1.11 integer pf\_control::pf\_control\_type::nens the total number of ensemble members 4.5.1.12 real(kind=kind(1.0d0)) pf\_control::pf\_control\_type::nfac standard deviation of normal distribution in mixture density 4.5.1.13 real(kind=kind(1.0d0)) pf\_control::pf\_control\_type::nudgefac the nudging factor 4.5.1.14 integer, dimension(:), allocatable pf\_control::pf\_control\_type::particles particles associates with this MPI process 4.5.1.15 real(kind=kind(1.0d0)), dimension(:,:), allocatable pf\_control::pf\_control\_type::psi state vector of ensemble members on this mpi process 4.5.1.16 real(kind=kind(1.0d0)) pf\_control::pf\_control\_type::qscale scalar to multiply Q by 4.5.1.17 real(kind=kind(1.0d0)) pf\_control::pf\_control\_type::rho enkf inflation factor so that  $P_f = (1 + \rho)P_f$ 4.5.1.18 integer, dimension(:,:), allocatable pf\_control::pf\_control\_type::talagrand storage for rank histograms 4.5.1.19 real(kind=kind(1.0d0)) pf\_control::pf\_control\_type::time

4.5.1.19 real(kind=kind(1.0d0)) pf\_control::pf\_control\_type::time

dunno

4.5.1.20 integer pf\_control::pf\_control\_type::time\_bwn\_obs

the number of model timesteps between observations

4.5.1.21 integer pf\_control::pf\_control\_type::time\_obs
the number of observations we will assimilate

4.5.1.22 integer pf\_control::pf\_control\_type::timestep =0 the current timestep as the model progresses 4.5.1.23 character(2) pf\_control::pf\_control\_type::type which filter to use 4.5.1.24 real(kind=kind(1.0d0)) pf\_control::pf\_control\_type::ufac half width of the uniform distribution in mixture density 4.5.1.25 logical pf\_control::pf\_control\_type::use\_mean switch if true outputs ensemble mean 4.5.1.26 logical pf\_control::pf\_control\_type::use\_rmse switch if true outputs Root Mean Square Errors 4.5.1.27 logical pf\_control::pf\_control\_type::use\_talagrand switch if true outputs rank histograms 4.5.1.28 logical pf\_control::pf\_control\_type::use\_traj switch if true outputs trajectories 4.5.1.29 logical pf\_control::pf\_control\_type::use\_var switch if true outputs ensemble variance 4.5.1.30 logical pf\_control::pf\_control\_type::use\_weak switch unused

4.5.1.31 real(kind=kind(1.0d0)), dimension(:), allocatable pf\_control::pf\_control\_type::weight the negative log of the weights of the particles

The documentation for this type was generated from the following file:

• src/controlers/pf control.f90

## 4.6 qdata Module Reference

Module as a place to store user specified data for Q.

#### **Public Member Functions**

- subroutine loadq
  - Subroutine to load in user data for Q.
- · subroutine killq

#### **Public Attributes**

- integer qn
- integer qne
- integer, dimension(:), allocatable grow
- integer, dimension(:), allocatable qcol
- real(kind=kind(1.0d0)), dimension(:), allocatable qval
- real(kind=kind(1.0d0)), dimension(:), allocatable qdiag
- real(kind=kind(1.0d0)) qscale

#### 4.6.1 Detailed Description

Module as a place to store user specified data for Q.

· the model error covariance matrix

#### 4.6.2 Member Function/Subroutine Documentation

4.6.2.1 subroutine qdata::killq ( )

SUbroutine to deallocate user data for Q

4.6.2.2 subroutine qdata::loadq ( )

Subroutine to load in user data for Q.

#### 4.6.3 Member Data Documentation

- 4.6.3.1 integer, dimension(:), allocatable qdata::qcol
- 4.6.3.2 real(kind=kind(1.0d0)), dimension(:), allocatable qdata::qdiag
- 4.6.3.3 integer qdata::qn
- 4.6.3.4 integer qdata::qne
- 4.6.3.5 integer, dimension(:), allocatable qdata::qrow
- 4.6.3.6 real(kind=kind(1.0d0)) qdata::qscale
- 4.6.3.7 real(kind=kind(1.0d0)), dimension(:), allocatable qdata::qval

The documentation for this module was generated from the following file:

• src/data/Qdata.f90

#### 4.7 random Module Reference

A module for random number generation from the following distributions:

#### **Public Member Functions**

- real(kind=kind(1.0d+0)) function random\_normal ()
   function to get random normal with zero mean and stdev 1
- real(kind=kind(1.0d+0)) function random\_gamma (s, first)
- real(kind=kind(1.0d+0)) function random\_gamma1 (s, first)
- real(kind=kind(1.0d+0)) function random gamma2 (s, first)
- real(kind=kind(1.0d+0)) function random\_chisq (ndf, first)
- real(kind=kind(1.0d+0)) function random\_exponential ()
- real(kind=kind(1.0d+0)) function random weibull (a)
- real(kind=kind(1.0d+0)) function random beta (aa, bb, first)
- real(kind=kind(1.0d+0)) function random\_t (m)
- subroutine random\_mvnorm (n, h, d, f, first, x, ier)
- real(kind=kind(1.0d+0)) function random\_inv\_gauss (h, b, first)
- integer function random\_poisson (mu, first)
- integer function random\_binomial1 (n, p, first)
- real(kind=kind(1.0d+0)) function bin\_prob (n, p, r)
- real(dp) function Ingamma (x)
- integer function random\_binomial2 (n, pp, first)
- integer function random\_neg\_binomial (sk, p)
- real(kind=kind(1.0d+0)) function random\_von\_mises (k, first)
- real(kind=kind(1.0d+0)) function random\_cauchy ()
- subroutine random\_order (order, n)
- · subroutine seed random number (iounit)

#### **Public Attributes**

• integer, parameter dp = SELECTED REAL KIND(12, 60)

#### 4.7.1 Detailed Description

A module for random number generation from the following distributions:

Distribution Function/subroutine name

Normal (Gaussian) random\_normal Gamma random\_gamma Chi-squared random\_chisq Exponential random\_exponential Weibull random\_Weibull Beta random\_beta t random\_t Multivariate normal random\_mvnorm Generalized inverse Gaussian random\_inv\_gauss Poisson random\_Poisson Binomial random\_binomial1 \* random\_binomial1 \* random\_binomial2 \* Negative binomial random\_neg\_binomial von Mises random\_von\_Mises Cauchy random\_Cauchy

#### 4.7.2 Member Function/Subroutine Documentation

4.7.2.1 real(kind=kind(1.0d+0)) function random::bin\_prob ( integer, intent(in) *n*, real(kind=kind(1.0d+0)), intent(in) *p*, integer, intent(in) *r* )

Here is the call graph for this function:



Here is the caller graph for this function:



4.7.2.2 real (dp) function random::Ingamma (real (dp), intent(in) x)

Here is the caller graph for this function:



4.7.2.3 real(kind=kind(1.0d+0)) function random::random\_beta ( real(kind=kind(1.0d+0)), intent(in) aa, real(kind=kind(1.0d+0)), intent(in) bb, logical, intent(in) first )

Here is the call graph for this function:



4.7.2.4 integer function random::random\_binomial1 ( integer, intent(in) *n*, real(kind=kind(1.0d+0)), intent(in) *p*, logical, intent(in) *first* )

Here is the call graph for this function:



4.7.2.5 integer function random::random\_binomial2 ( integer, intent(in) *n*, real(kind=kind(1.0d+0)), intent(in) *pp*, logical, intent(in) *first* )

Here is the call graph for this function:



4.7.2.6 real(kind=kind(1.0d+0)) function random::random\_cauchy ( )

4.7.2.7 real(kind=kind(1.0d+0)) function random::random\_chisq ( integer, intent(in) ndf, logical, intent(in) first )

Here is the call graph for this function:



4.7.2.8 real(kind=kind(1.0d+0)) function random::random\_exponential()

Here is the call graph for this function:



Here is the caller graph for this function:



 $4.7.2.9 \quad real(kind=kind(1.0d+0)), intent(in) \ \textit{s, logical, intent(in) first })$ 

Here is the call graph for this function:



Here is the caller graph for this function:



4.7.2.10 real(kind=kind(1.0d+0)) function random::random\_gamma1 ( real(kind=kind(1.0d+0)), intent(in) s, logical, intent(in) first

Here is the call graph for this function:



Here is the caller graph for this function:



4.7.2.11 real(kind=kind(1.0d+0)) function random::random\_gamma2 ( real(kind=kind(1.0d+0)), intent(in) s, logical, intent(in) first

Here is the call graph for this function:





4.7.2.12 real(kind=kind(1.0d+0)) function random::random\_inv\_gauss ( real(kind=kind(1.0d+0)), intent(in) *h*, real(kind=kind(1.0d+0)), intent(in) *b*, logical, intent(in) *first* )

Here is the call graph for this function:



4.7.2.13 subroutine random::random\_mvnorm ( integer, intent(in) *n*, real(kind=kind(1.0d+0)), dimension(:), intent(in) *h*, real(kind=kind(1.0d+0)), dimension(:), intent(in) *d*, real(kind=kind(1.0d+0)), dimension(:), intent(in) *t*, logical, intent(in) *first*, real(kind=kind(1.0d+0)), dimension(:), intent(out) *x*, integer, intent(out) *ier* )



4.7.2.14 integer function random::random\_neg\_binomial ( real(kind=kind(1.0d+0)), intent(in) sk, real(kind=kind(1.0d+0)), intent(in) p )

Here is the call graph for this function:



4.7.2.15 real(kind=kind(1.0d+0)) function random::random\_normal ( )

function to get random normal with zero mean and stdev 1

Returns

fn\_val





4.7.2.16 subroutine random::random\_order ( integer, dimension(n), intent(out) order, integer, intent(in) n)



4.7.2.17 integer function random::random\_poisson ( real(kind=kind(1.0d+0)), intent(in) mu, logical, intent(in) first )

Here is the call graph for this function:



4.7.2.18 real(kind=kind(1.0d+0)) function random::random\_t ( integer, intent(in) m )

Here is the call graph for this function:



4.7.2.19 real(kind=kind(1.0d+0)) function random::random\_von\_mises ( real(kind=kind(1.0d+0)), intent(in) k, logical, intent(in) first )



4.8 rdata Module Reference 31

4.7.2.20 real(kind=kind(1.0d+0)) function random::random\_weibull ( real(kind=kind(1.0d+0)), intent(in) a )

Here is the call graph for this function:



4.7.2.21 subroutine random::seed\_random\_number ( integer, intent(in) iounit )

Here is the call graph for this function:



### 4.7.3 Member Data Documentation

4.7.3.1 integer, parameter random::dp = SELECTED\_REAL\_KIND(12, 60)

The documentation for this module was generated from the following file:

• src/utils/random\_d.f90

# 4.8 rdata Module Reference

Module to hold user supplied data for *R* observation error covariance matrix.

#### **Public Member Functions**

- subroutine loadr

  Subroutine to load data for R.
- subroutine killr

# **Public Attributes**

- integer rn
- integer rne

- integer, dimension(:), allocatable rrow
- integer, dimension(:), allocatable rcol
- real(kind=kind(1.0d0)), dimension(:), allocatable rval
- real(kind=kind(1.0d0)), dimension(:), allocatable rdiag

#### 4.8.1 Detailed Description

Module to hold user supplied data for *R* observation error covariance matrix.

#### 4.8.2 Member Function/Subroutine Documentation

```
4.8.2.1 subroutine rdata::killr ( )
```

SUbroutine to deallocate R data

4.8.2.2 subroutine rdata::loadr ( )

Subroutine to load data for R.

#### 4.8.3 Member Data Documentation

- 4.8.3.1 integer, dimension(:), allocatable rdata::rcol
- 4.8.3.2 real(kind=kind(1.0d0)), dimension(:), allocatable rdata::rdiag
- 4.8.3.3 integer rdata::rn
- 4.8.3.4 integer rdata::rne
- 4.8.3.5 integer, dimension(:), allocatable rdata::rrow
- 4.8.3.6 real(kind=kind(1.0d0)), dimension(:), allocatable rdata::rval

The documentation for this module was generated from the following file:

• src/data/Rdata.f90

### 4.9 sizes Module Reference

Module that stores the dimension of observation and state spaces.

#### **Public Attributes**

• integer obs dim

size of the observation space

· integer state\_dim

dimension of the model

# 4.9.1 Detailed Description

Module that stores the dimension of observation and state spaces.

4.9 sizes Module Reference 33

# 4.9.2 Member Data Documentation

4.9.2.1 integer sizes::obs\_dim

size of the observation space

4.9.2.2 integer sizes::state\_dim

dimension of the model

The documentation for this module was generated from the following file:

• src/controlers/sizes.f90

| Data Type Documentatio | or |
|------------------------|----|
|------------------------|----|

# **Chapter 5**

# **File Documentation**

# 5.1 model\_specific.f90 File Reference

#### **Functions/Subroutines**

```
• subroutine configure_model
```

subroutine called initially to set up details and data for model specific functions

• subroutine solve\_r (obsDim, nrhs, y, v, t)

subroutine to take an observation vector y and return v in observation space.

• subroutine solve\_rhalf (obsdim, nrhs, y, v, t)

subroutine to take an observation vector y and return v in observation space.

• subroutine solve\_hqht\_plus\_r (obsdim, y, v, t)

subroutine to take an observation vector y and return v in observation space.

• subroutine q (nrhs, x, Qx)

subroutine to take a full state vector x and return Qx in state space.

• subroutine qhalf (nrhs, x, Qx)

subroutine to take a full state vector x and return  $Q^{1/2}x$  in state space.

• subroutine r (obsDim, nrhs, y, Ry, t)

subroutine to take an observation vector x and return Rx in observation space.

• subroutine rhalf (obsDim, nrhs, y, Ry, t)

subroutine to take an observation vector x and return Rx in observation space.

• subroutine h (obsDim, nrhs, x, hx, t)

subroutine to take a full state vector x and return H(x) in observation space.

subroutine ht (obsDim, nrhs, y, x, t)

subroutine to take an observation vector y and return  $x = H^T(y)$  in full state space.

• subroutine dist\_st\_ob (xp, yp, dis, t)

subroutine to compute the distance between the variable in the state vector and the variable in the observations

#### 5.1.1 Function/Subroutine Documentation

```
5.1.1.1 subroutine configure_model ( )
```

subroutine called initially to set up details and data for model specific functions

Here is the caller graph for this function:



5.1.1.2 subroutine dist\_st\_ob ( integer, intent(in) *xp*, integer, intent(in) *yp*, real(kind=kind(1.0d0)), intent(out) *dis*, integer, intent(in) *t* )

subroutine to compute the distance between the variable in the state vector and the variable in the observations  $\text{Compute } \operatorname{dist}(x(xp),y(yp))$ 

#### **Parameters**

| in  | хр  | the index in the state vector           |
|-----|-----|-----------------------------------------|
| in  | ур  | the index in the observation vector     |
| out | dis | the distance between x(xp) and y(yp)    |
| in  | t   | the current time index for observations |



5.1.1.3 subroutine h ( integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(state\_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *hx*, integer, intent(in) *t* )

subroutine to take a full state vector x and return H(x) in observation space.

#### Given x compute Hx

#### **Parameters**

| in  | obsdim | the dimension of the observations                         |
|-----|--------|-----------------------------------------------------------|
| in  | nrhs   | the number of right hand sides                            |
| in  | X      | the input vectors in state space                          |
| out | hx     | the resulting vector in observation space where $hx = Hx$ |
| in  | t      | the timestep                                              |



5.1.1.4 subroutine ht ( integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(state\_dim,nrhs), intent(out) *x*, integer, intent(in) *t* )

subroutine to take an observation vector  $\mathbf{y}$  and return  $\mathbf{x} = H^T(y)$  in full state space.

Given y compute  $x = H^T(y)$ 

| in  | obsdim | the dimension of the observations                                                |
|-----|--------|----------------------------------------------------------------------------------|
| in  | nrhs   | the number of right hand sides                                                   |
| in  | у      | the input vectors in observation space                                           |
| out | X      | the resulting vector in state space where $\mathbf{x} = \mathbf{H}^T \mathbf{y}$ |
| in  | t      | the timestep                                                                     |



5.1.1.5 subroutine q ( integer, intent(in) *nrhs*, real(kind=rk), dimension(state\_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(state\_dim,nrhs), intent(out) *Qx* )

subroutine to take a full state vector x and return Qx in state space.

Given x compute Qx

#### **Parameters**

| in  | nrhs | the number of right hand sides       |
|-----|------|--------------------------------------|
| in  | X    | the input vector                     |
| out | qx   | the resulting vector where $Qx = Qx$ |





5.1.1.6 subroutine qhalf ( integer, intent(in) *nrhs*, real(kind=rk), dimension(state\_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(state\_dim,nrhs), intent(out) *Qx* )

subroutine to take a full state vector  ${\bf x}$  and return  ${\bf Q}^{1/2}{\bf x}$  in state space.

Given x compute  $Q^{\frac{1}{2}}x$ 

| in  | nrhs | the number of right hand sides                    |
|-----|------|---------------------------------------------------|
| in  | X    | the input vector                                  |
| out | qx   | the resulting vector where $Qx = Q^{rac{1}{2}}x$ |

Here is the caller graph for this function:



5.1.1.7 subroutine r ( integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *Ry*, integer, intent(in) *t* )

subroutine to take an observation vector x and return Rx in observation space.

Given y compute Ry

#### **Parameters**

| in  | obsdim | the dimension of the observations     |
|-----|--------|---------------------------------------|
| in  | nrhs   | the number of right hand sides        |
| in  | у      | the input vector                      |
| out | ry     | the resulting vectors where $Ry = Ry$ |
| in  | t      | the timestep                          |

Here is the caller graph for this function:



5.1.1.8 subroutine rhalf ( integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *Ry*, integer, intent(in) *t* )

subroutine to take an observation vector x and return Rx in observation space.

Given y compute  $R^{\frac{1}{2}}y$ 

| in | obsdim | the dimension of the observations |
|----|--------|-----------------------------------|
| in | nrhs   | the number of right hand sides    |

| in  | у  | the input vector                                   |
|-----|----|----------------------------------------------------|
| out | ry | the resulting vector where $Ry = R^{\frac{1}{2}}y$ |
| in  | t  | the timestep                                       |

Here is the caller graph for this function:



5.1.1.9 subroutine solve\_hqht\_plus\_r ( integer, intent(in) *obsdim*, real(kind=rk), dimension(obsdim), intent(in) *y*, real(kind=rk), dimension(obsdim), intent(out) *v*, integer, intent(in) *t* )

subroutine to take an observation vector y and return v in observation space.

Given y find v such that  $(HQH^T + R)v = y$ 

| in  | obsdim | the dimension of the observations        |
|-----|--------|------------------------------------------|
| in  | у      | the input vector                         |
| out | V      | the result where $v = (HQH^T + R)^{-1}y$ |
| in  | t      | the timestep                             |



5.1.1.10 subroutine solve\_r ( integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *v*, integer, intent(in) *t* )

subroutine to take an observation vector y and return v in observation space.

Given y find v such that Rv = y

| in | obsdim | the dimension of the observations |
|----|--------|-----------------------------------|
|----|--------|-----------------------------------|

| in  | nrhs | the number of right hand sides    |
|-----|------|-----------------------------------|
| in  | у    | input vector                      |
| out | V    | result vector where $v = R^{-1}y$ |
| in  | t    | the timestep                      |

Here is the caller graph for this function:



5.1.1.11 subroutine solve\_rhalf ( integer, intent(in) *obsdim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *v*, integer, intent(in) *t* )

subroutine to take an observation vector y and return v in observation space.

Given y find v such that  $R^{\frac{1}{2}}v = y$ 

# **Parameters**

| in  | obsdim | the dimension of the observations           |
|-----|--------|---------------------------------------------|
| in  | nrhs   | the number of right hand sides              |
| in  | у      | input vector                                |
| out | V      | result vector where $v = R^{-\frac{1}{2}}y$ |
| in  | t      | the timestep                                |



# 5.2 src/controlers/old\_pf\_couple.f90 File Reference

#### **Functions/Subroutines**

· program couple\_pf

# 5.2.1 Function/Subroutine Documentation

# 5.2.1.1 program couple\_pf()

Here is the call graph for this function:



# 5.3 src/controlers/pf\_control.f90 File Reference

# **Data Types**

- module pf\_control
  - module pf\_control holds all the information to control the the main program
- type pf\_control::pf\_control\_type

# 5.4 src/controlers/pf\_couple.f90 File Reference

# **Functions/Subroutines**

• program empire

the main program

# 5.4.1 Function/Subroutine Documentation

# 5.4.1.1 program empire ( )

the main program

Here is the call graph for this function:



# 5.5 src/controlers/pf\_parameters.dat File Reference

#### **Variables**

- &pf\_params time\_obs =10
- &pf\_params time\_bwn\_obs =72
- &pf\_params nudgefac =0.5D3
- &pf\_params gen\_data =.false.
- &pf params nfac =1.0D-5
- &pf\_params ufac =1.0D-5
- &pf\_params keep =0.95D0
- &pf\_params Qscale =1.0D3
- &pf\_params human\_readable =1.0D3
- &pf params use talagrand =.true.
- &pf\_params use\_weak =.false.
- &pf\_params use\_mean =.false.
- &pf\_params use\_var =.false.
- &pf\_params use\_rmse =.true.
- &pf\_params gen\_Q =.false.
- &pf\_params use\_traj =.true.
- &pf\_params type ='EW'

#### 5.5.1 Variable Documentation

- 5.5.1.1 & pf\_params gen\_data =.false.
- 5.5.1.2 & pf\_params gen\_Q =.false.
- 5.5.1.3 & pf\_params human\_readable =1.0D3
- 5.5.1.4 & pf\_params keep =0.95D0
- 5.5.1.5 & pf\_params nfac =1.0D-5
- 5.5.1.6 & pf\_params nudgefac =0.5D3
- 5.5.1.7 & pf\_params Qscale =1.0D3
- 5.5.1.8 & pf\_params time\_bwn\_obs =72
- 5.5.1.9 & pf\_params time\_obs =10
- 5.5.1.10 & pf\_params type ='EW'
- 5.5.1.11 & pf\_params ufac =1.0D-5
- 5.5.1.12 & pf\_params use\_mean =.false.
- 5.5.1.13 & pf\_params use\_rmse =.true.
- 5.5.1.14 & pf\_params use\_talagrand =.true.
- 5.5.1.15 & pf\_params use\_traj =.true.
- 5.5.1.16 & pf\_params use\_var =.false.
- 5.5.1.17 & pf\_params use\_weak =.false.

# 5.6 src/controlers/sizes.f90 File Reference

# **Data Types**

· module sizes

Module that stores the dimension of observation and state spaces.

# 5.7 src/data/Qdata.f90 File Reference

#### **Data Types**

· module qdata

Module as a place to store user specified data for Q.

# 5.8 src/data/Rdata.f90 File Reference

#### **Data Types**

module rdata

Module to hold user supplied data for R observation error covariance matrix.

• module hqht\_plus\_r

# 5.9 src/DOC\_README.txt File Reference

# 5.10 src/filters/eakf\_analysis.f90 File Reference

#### **Functions/Subroutines**

• subroutine eakf\_analysis (num\_hor, num\_ver, this\_hor, this\_ver, boundary, x, N, stateDim, obsDim, rho)

# 5.10.1 Function/Subroutine Documentation

5.10.1.1 subroutine eakf\_analysis ( integer, intent(in) num\_hor, integer, intent(in) num\_ver, integer, intent(in) this\_hor, integer, intent(in) this\_ver, integer, intent(in) boundary, real(kind=rk), dimension(statedim,n), intent(inout) x, integer, intent(in) N, integer, intent(in) stateDim, integer, intent(in) obsDim, real(kind=rk), intent(in) rho)





# 5.11 src/filters/enkf\_specific.f90 File Reference

#### **Functions/Subroutines**

- subroutine h\_local (num\_hor, num\_ver, this\_hor, this\_ver, boundary, nrhs, stateDim, x, obsDim, y)
- subroutine solve rhalf local (num hor, num ver, this hor, this ver, boundary, nrhs, obsDim, y, v)
- subroutine <a href="mailto:get\_local\_observation\_data">get\_local\_observation\_data</a> (num\_hor, num\_ver, this\_hor, this\_ver, boundary, obsDim, y)
- subroutine localise\_enkf (enkf\_analysis)

#### 5.11.1 Function/Subroutine Documentation

5.11.1.1 subroutine get\_local\_observation\_data ( integer, intent(in) num\_hor, integer, intent(in) num\_ver, integer, intent(in) this\_hor, integer, intent(in) this\_ver, integer, intent(in) boundary, integer, intent(in) obsDim, real(kind=rk), dimension(obsdim), intent(out) y )

Here is the call graph for this function:





5.11.1.2 subroutine h\_local ( integer, intent(in) num\_hor, integer, intent(in) num\_ver, integer, intent(in) this\_hor, integer, intent(in) this\_ver, integer, intent(in) boundary, integer, intent(in) nrhs, integer, intent(in) stateDim, real(kind=rk), dimension(statedim,nrhs), intent(in) x, integer, intent(in) obsDim, real(kind=rk), dimension(obsdim,nrhs), intent(out) y)

Here is the call graph for this function:



Here is the caller graph for this function:



5.11.1.3 subroutine localise\_enkf ( integer, intent(in) enkf\_analysis )



5.11.1.4 subroutine solve\_rhalf\_local ( integer, intent(in) num\_hor, integer, intent(in) num\_ver, integer, intent(in) this\_hor, integer, intent(in) this\_ver, integer, intent(in) boundary, integer, intent(in) nrhs, integer, intent(in) obsDim, real(kind=rk), dimension(obsdim,nrhs), intent(in) y, real(kind=rk), dimension(obsdim,nrhs), intent(out) v)

Here is the caller graph for this function:



# 5.12 src/filters/equivalent\_weights\_step.f90 File Reference

#### **Functions/Subroutines**

subroutine equal\_weight\_filter
 subroutine to do the equivalent weights step

#### 5.12.1 Function/Subroutine Documentation

5.12.1.1 subroutine equal\_weight\_filter ( )

subroutine to do the equivalent weights step



Here is the caller graph for this function:



# 5.13 src/filters/etkf\_analysis.f90 File Reference

# **Functions/Subroutines**

• subroutine etkf\_analysis (num\_hor, num\_ver, this\_hor, this\_ver, boundary, x, N, stateDim, obsDim, rho)

subroutine to perform the ensemble transform Kalman filter

#### 5.13.1 Function/Subroutine Documentation

5.13.1.1 subroutine etkf\_analysis ( integer, intent(in) num\_hor, integer, intent(in) num\_ver, integer, intent(in) this\_hor, integer, intent(in) this\_ver, integer, intent(in) boundary, real(kind=rk), dimension(statedim,n), intent(inout) x, integer, intent(in) N, integer, intent(in) stateDim, integer, intent(in) obsDim, real(kind=rk), intent(in) rho)

subroutine to perform the ensemble transform Kalman filter





# 5.14 src/filters/letkf\_analysis.f90 File Reference

# **Functions/Subroutines**

• subroutine letkf\_analysis (x, N, stateDimension, obsDim, y, rho, len, t)

subroutine to perform the ensemble transform Kalman filter as part of L-ETKF

# 5.14.1 Function/Subroutine Documentation

5.14.1.1 subroutine letkf\_analysis ( real(kind=rk), dimension(statedimension,n), intent(inout) x, integer, intent(in) N, integer, intent(in) stateDimension, integer, intent(in) obsDim, real(kind=rk), dimension(obsdim), intent(in) y, real(kind=rk), intent(in) t) intent(in) rho, real(kind=rk), intent(in) len, integer, intent(in) t)

subroutine to perform the ensemble transform Kalman filter as part of L-ETKF

| in     | n              | number of ensemble members                                          |
|--------|----------------|---------------------------------------------------------------------|
| in     | statedimension | current size of state dimension                                     |
| in     | obsdim         | total number of observations                                        |
| in,out | X              | Forecast ensemble on entry, analysis ensemble on exit               |
| in     | у              | The observation                                                     |
| in     | rho            | Inflation parameter; forecast perturbations will be scaled by 1+rho |
| in     | len            | Localisation length scale                                           |
| in     | t              | the timestep                                                        |

Here is the call graph for this function:



Here is the caller graph for this function:



# 5.15 src/filters/proposal\_filter.f90 File Reference

# **Functions/Subroutines**

• subroutine proposal\_filter

Subroutine to perform nudging in the proposal step of EWPF.

# 5.15.1 Function/Subroutine Documentation

5.15.1.1 subroutine proposal\_filter ( )

Subroutine to perform nudging in the proposal step of EWPF.



Here is the caller graph for this function:



# 5.16 src/filters/sir\_filter.f90 File Reference

#### **Functions/Subroutines**

• subroutine sir\_filter

Subroutine to perform SIR filter (Sequential Importance Resampling)

#### 5.16.1 Function/Subroutine Documentation

5.16.1.1 subroutine sir\_filter ( )

Subroutine to perform SIR filter (Sequential Importance Resampling)

Here is the call graph for this function:



Here is the caller graph for this function:



# 5.17 src/filters/stochastic\_model.f90 File Reference

# **Functions/Subroutines**

- subroutine stochastic\_model
   subroutine to simply move the model forward in time one timestep PAB 21-05-2013
- subroutine <a href="mailto:check\_scaling">check\_scaling</a> (x, fx, b, scales)

# 5.17.1 Function/Subroutine Documentation

- 5.17.1.1 subroutine check\_scaling ( real(kind=rk), dimension(state\_dim), intent(in) x, real(kind=rk), dimension(state\_dim), intent(in) fx, real(kind=rk), dimension(state\_dim), intent(in) b, real(kind=rk), dimension(9), intent(inout) scales )
- 5.17.1.2 subroutine stochastic\_model ( )

subroutine to simply move the model forward in time one timestep PAB 21-05-2013



Here is the caller graph for this function:



# 5.18 src/operations/gen\_rand.f90 File Reference

#### **Functions/Subroutines**

- subroutine uniformrandomnumbers1d (minv, maxv, n, phi)
  - generate one dimension of uniform random numbers
- subroutine normalrandomnumbers1d (mean, stdev, n, phi)
  - generate one dimension of Normal random numbers
- subroutine normalrandomnumbers2d (mean, stdev, n, k, phi)
  - generate two dimensional Normal random numbers
- subroutine mixturerandomnumbers1d (mean, stdev, ufac, epsi, n, phi, uniform)
  - generate one dimensional vector drawn from mixture density
- subroutine mixturerandomnumbers2d (mean, stdev, ufac, epsi, n, k, phi, uniform)
  - generate two dimensional vector, each drawn from mixture density
- subroutine random\_seed\_mpi (pfid)
  - Subroutine to set the random seed across MPI threads.

### 5.18.1 Function/Subroutine Documentation

5.18.1.1 subroutine mixturerandomnumbers1d ( real(kind=kind(1.0d0)), intent(in) *mean,* real(kind=kind(1.0d0)), intent(in) *stdev,* real(kind=kind(1.0d0)), intent(in) *ufac,* real(kind=kind(1.0d0)), intent(in) *epsi,* integer, intent(in) *n,* real(kind=kind(1.0d0)), dimension(n), intent(out) *phi,* logical, intent(out) *uniform* )

generate one dimensional vector drawn from mixture density

#### **Parameters**

| in  | mean    | Mean of normal distribution                                                 |
|-----|---------|-----------------------------------------------------------------------------|
| in  | stdev   | Standard deviation of normal distribution                                   |
| in  | ufac    | half-width of uniform distribution that is centered on the mean             |
| in  | epsi    | Proportion controlling mixture draw. if random_number > epsi then draw from |
|     |         | uniform, else normal                                                        |
| in  | n       | size of output vector                                                       |
| out | phi     | n dimensional mixture random numbers                                        |
| out | uniform | True if mixture drawn from uniform. False if drawn from normal              |

Here is the call graph for this function:



5.18.1.2 subroutine mixturerandomnumbers2d ( real(kind=kind(1.0d0)), intent(in) *mean*, real(kind=kind(1.0d0)), intent(in) *stdev*, real(kind=kind(1.0d0)), intent(in) *ufac*, real(kind=kind(1.0d0)), intent(in) *epsi*, integer, intent(in) *n*, integer, intent(in) *k*, real(kind=kind(1.0d0)), dimension(n,k), intent(out) *phi*, logical, dimension(k), intent(out) *uniform* )

generate two dimensional vector, each drawn from mixture density

#### **Parameters**

| in  | mean    | Mean of normal distribution                                                         |
|-----|---------|-------------------------------------------------------------------------------------|
| in  | stdev   | Standard deviation of normal distribution                                           |
| in  | ufac    | half-width of uniform distribution that is centered on the mean                     |
| in  | epsi    | Proportion controlling mixture draw. if random_number > epsi then draw from         |
|     |         | uniform, else normal                                                                |
| in  | n       | first dimension of output vector                                                    |
| in  | k       | second dimension of output vector                                                   |
| out | phi     | n,k dimensional mixture random numbers                                              |
| out | uniform | k dimensional logical with uniform(i) True if phi(:,i) drawn from uniform. False if |
|     |         | drawn from normal                                                                   |





5.18.1.3 subroutine normalrandomnumbers1d ( real(kind=rk), intent(in) *mean,* real(kind=rk), intent(in) *stdev,* integer, intent(in) *n,* real(kind=rk), dimension(n), intent(out) *phi* )

generate one dimension of Normal random numbers

#### **Parameters**

| in  | n     | size of output vector                     |
|-----|-------|-------------------------------------------|
| in  | mean  | mean of normal distribution               |
| in  | stdev | Standard Deviation of normal distribution |
| out | phi   | n dimensional normal random numbers       |

Here is the call graph for this function:





5.18.1.4 subroutine normalrandomnumbers2d ( real(kind=rk), intent(in) *mean*, real(kind=rk), intent(in) *stdev*, integer, intent(in) *n*, integer, intent(in) *k*, real(kind=rk), dimension(n,k), intent(out) *phi* )

generate two dimensional Normal random numbers

#### **Parameters**

| in  | n     | first dimension of output vector          |
|-----|-------|-------------------------------------------|
| in  | k     | second dimension of output vector         |
| in  | mean  | mean of normal distribution               |
| in  | stdev | Standard Deviation of normal distribution |
| out | phi   | n,k dimensional normal random numbers     |

Here is the call graph for this function:



Here is the caller graph for this function:



5.18.1.5 subroutine random\_seed\_mpi ( integer, intent(in) pfid )

Subroutine to set the random seed across MPI threads.

#### **Parameters**

| in | pfid | The process identifier of the MPI process |
|----|------|-------------------------------------------|

Here is the caller graph for this function:



5.18.1.6 subroutine uniformrandomnumbers1d ( real(kind=rk), intent(in) *minv*, real(kind=rk), intent(in) *maxv*, integer, intent(in) *n*, real(kind=rk), dimension(n), intent(out) *phi* )

generate one dimension of uniform random numbers

#### **Parameters**

| in  | n    | size of output vector                 |
|-----|------|---------------------------------------|
| in  | minv | minimum value of uniform distribution |
| in  | maxv | maximum value of uniform distribution |
| out | phi  | n dimensional uniform random numbers  |

Here is the caller graph for this function:



# 5.19 src/operations/operator\_wrappers.f90 File Reference

#### **Functions/Subroutines**

- subroutine k (y, x)
  - Subroutine to apply K to a vector y in observation space where  $K := QH^T(HQH^T + R)^{-1}$ .
- subroutine innerr\_1 (y, w)
  - subroutine to compute the inner product with  $R^{-1}$
- subroutine innerhqht\_plus\_r\_1 (y, w)
  - subroutine to compute the inner product with  $(HQH^T + R)^{-1}$
- subroutine bprime (y, x, QHtR\_1y, normaln, betan)
  - subroutine to calculate nudging term and correlated random errors efficiently

### 5.19.1 Function/Subroutine Documentation

5.19.1.1 subroutine bprime ( real(kind=rk), dimension(obs\_dim,pf%count), intent(in) y, real(kind=rk), dimension(state\_dim,pf%count), intent(out) x, real(kind=rk), dimension(state\_dim,pf%count), intent(out) QHtR\_1y, real(kind=rk), dimension(state\_dim,pf%count), intent(in) normaln, real(kind=rk), dimension(state\_dim,pf%count), intent(out) betan )

subroutine to calculate nudging term and correlated random errors efficiently

#### **Parameters**

| in  | у       | (obs_dim,pf%count) vectors of innovations $y - H(x^{n-1})$                |
|-----|---------|---------------------------------------------------------------------------|
| out | X       | (state_dim,pf%count) vectors of $\rho H^T R^{-1}[y - H(x^{n-1})]$         |
| out | QHtR_1y | (state_dim,pf%count) vectors of $\rho QH^TR^{-1}[y-H(x^{n-1})]$           |
| in  | normaln | (state_dim,pf%count) uncorrelated random vectors such that normaln(:,i) ~ |
|     |         | $\mathcal{N}(0,I)$                                                        |
| out | betan   | (state_dim,pf%count) correlated random vectors such that betan(:,i) ~     |
|     |         | $\mathcal{N}(0,Q)$                                                        |

Here is the call graph for this function:



Here is the caller graph for this function:



5.19.1.2 subroutine innerhqht\_plus\_r\_1 ( real(kind=rk), dimension(obs\_dim), intent(in) y, real(kind=rk), intent(out) w ) subroutine to compute the inner product with  $(HQH^T+R)^{-1}$ 

#### **Parameters**

| in  | у | vector in observation space      |
|-----|---|----------------------------------|
| out | W | scalar with value $y^T R^{-1} y$ |

Here is the call graph for this function:



Here is the caller graph for this function:



5.19.1.3 subroutine innerr\_1 ( real(kind=rk), dimension(obs\_dim,pf%count), intent(in) y, real(kind=rk), dimension(pf%count), intent(out) w )

subroutine to compute the inner product with  $R^{-1}$ 

### Parameters

| in  | у | multiple vectors in observation space (pf%count of them)                      |
|-----|---|-------------------------------------------------------------------------------|
| out | W | multiple scalars (pf%count) where w(i) has the value $y(:,i)^T R^{-1} y(:,i)$ |

Here is the call graph for this function:



Here is the caller graph for this function:



5.19.1.4 subroutine k ( real(kind=rk), dimension(obs\_dim,pf%count), intent(in) y, real(kind=rk), dimension(state\_dim,pf%count), intent(out) x )

Subroutine to apply K to a vector  $\mathbf{y}$  in observation space where  $K := QH^T(HQH^T + R)^{-1}$ .

#### **Parameters**

| in  | У | vector in observation space |
|-----|---|-----------------------------|
| out | X | vector in state space       |

Here is the call graph for this function:



Here is the caller graph for this function:



# 5.20 src/operations/perturb\_particle.f90 File Reference

### **Functions/Subroutines**

• subroutine perturb\_particle (x)

Subroutine to perturb state vector with normal random vector drawn from  $\mathcal{N}(0,Q)$ .

• subroutine update\_state (state, fpsi, kgain, betan)

Subroutine to update the state.

#### 5.20.1 Function/Subroutine Documentation

5.20.1.1 subroutine perturb\_particle ( real(kind=rk), dimension(state\_dim), intent(inout) x )

Subroutine to perturb state vector with normal random vector drawn from  $\mathcal{N}(0,Q)$ .

Here is the call graph for this function:



Here is the caller graph for this function:



5.20.1.2 subroutine update\_state ( real(kind=rk), dimension(state\_dim), intent(out) *state*, real(kind=rk), dimension(state\_dim), intent(in) *fpsi*, real(kind=rk), dimension(state\_dim), intent(in) *kgain*, real(kind=rk), dimension(state\_dim), intent(inout) *betan* )

Subroutine to update the state.

This can be changed for the specific model if it needs to be

#### **Parameters**

| in     | fpsi  | deterministic model update $f(x^{n-1})$ |
|--------|-------|-----------------------------------------|
| in     | kgain | nudging term                            |
| in,out | betan | Stochastic term                         |
| out    | state | The updated state vector                |

Here is the caller graph for this function:



# 5.21 src/operations/resample.f90 File Reference

### **Functions/Subroutines**

• subroutine resample

Subroutine to perform Universal Importance Resampling.

## 5.21.1 Function/Subroutine Documentation

#### 5.21.1.1 subroutine resample ( )

Subroutine to perform Universal Importance Resampling.

Here is the call graph for this function:



Here is the caller graph for this function:



# 5.22 src/tests/alltests.f90 File Reference

## **Functions/Subroutines**

• program alltests program to run all tests of user specific functions

## 5.22.1 Function/Subroutine Documentation

### 5.22.1.1 program alltests ( )

program to run all tests of user specific functions

Here is the call graph for this function:



# 5.23 src/tests/test\_h.f90 File Reference

#### **Functions/Subroutines**

• program test\_h

program to run tests of user supplied observation operator

#### 5.23.1 Function/Subroutine Documentation

### 5.23.1.1 program test\_h ( )

program to run tests of user supplied observation operator

Here is the call graph for this function:



# 5.24 src/tests/test\_hqhtr.f90 File Reference

#### **Functions/Subroutines**

• program test\_hqhtr

program to run tests of user supplied linear solve

#### 5.24.1 Function/Subroutine Documentation

5.24.1.1 program test\_hqhtr ( )

program to run tests of user supplied linear solve

 $(HQH^T + R)^{-1}$ 

Here is the call graph for this function:



# 5.25 src/tests/test\_q.f90 File Reference

#### **Functions/Subroutines**

program test\_q
 program to run tests of user supplied model error covariance matrix

#### 5.25.1 Function/Subroutine Documentation

#### 5.25.1.1 program test\_q ( )

program to run tests of user supplied model error covariance matrix Here is the call graph for this function:



# 5.26 src/tests/test\_r.f90 File Reference

## **Functions/Subroutines**

· program test\_r

program to run all tests of user supplied observation error covariance matrix/

#### 5.26.1 Function/Subroutine Documentation

#### 5.26.1.1 program test\_r ( )

program to run all tests of user supplied observation error covariance matrix/

Here is the call graph for this function:



## 5.27 src/tests/tests.f90 File Reference

### **Functions/Subroutines**

- subroutine h\_tests ()
- subroutine r\_tests ()
- subroutine q\_tests ()
- subroutine hqhtr\_tests ()

#### 5.27.1 Function/Subroutine Documentation

## 5.27.1.1 subroutine h\_tests ( )

These are some tests to check that the observation operator is implemented correctly Here is the call graph for this function:



Here is the caller graph for this function:



### 5.27.1.2 subroutine hqhtr\_tests ( )

These are some tests to check that the linear solve operator is implemented correctly

This should check the operation  $(HQH^T+R)^{-1}$  is working

Here is the call graph for this function:



Here is the caller graph for this function:



### 5.27.1.3 subroutine q\_tests ( )

These are some tests to check that the model error covariance matrix is implemented correctly Here is the call graph for this function:



Here is the caller graph for this function:



#### 5.27.1.4 subroutine r\_tests ( )

These are some tests to check that the observation error covariance matrix is implemented correctly Here is the call graph for this function:



Here is the caller graph for this function:



## 5.28 src/utils/comms.f90 File Reference

## **Data Types**

· module comms

Module containing EMPIRE coupling data.

# 5.29 src/utils/data\_io.f90 File Reference

#### **Functions/Subroutines**

• subroutine get\_observation\_data (y)

Subroutine to read observation from a file Uses pftimestep to determine which observation to read.

• subroutine save\_observation\_data (y)

Subroutine to save observation to a file Uses pftimestep to determine which observation to save.

subroutine save\_truth (x)

Subroutine to save truth to a file

· subroutine output\_from\_pf

subroutine to ouput data from the filter

#### 5.29.1 Function/Subroutine Documentation

5.29.1.1 subroutine get\_observation\_data ( real(kind=rk), dimension(obs\_dim), intent(out) y )

Subroutine to read observation from a file

Uses pftimestep to determine which observation to read.

#### **Parameters**

| out | у | The observation |
|-----|---|-----------------|
|-----|---|-----------------|

Here is the caller graph for this function:



### 5.29.1.2 subroutine output\_from\_pf ( )

subroutine to ouput data from the filter

Here is the caller graph for this function:



5.29.1.3 subroutine save\_observation\_data ( real(kind=rk), dimension(obs\_dim), intent(in) y )

Subroutine to save observation to a file

Uses pftimestep to determine which observation to save.

#### **Parameters**

| in | У | The observation |
|----|---|-----------------|
|----|---|-----------------|

Here is the caller graph for this function:



5.29.1.4 subroutine save\_truth ( real(kind=rk), dimension(state\_dim), intent(in) x )

Subroutine to save truth to a file

Parameters

| in | X | The state vector |
|----|---|------------------|

Here is the caller graph for this function:



# 5.30 src/utils/diagnostics.f90 File Reference

#### **Functions/Subroutines**

subroutine diagnostics

Subroutine to give output diagnositics such as rank histograms and trajectories.

· subroutine trajectories

subroutine to output trajectories

#### 5.30.1 Function/Subroutine Documentation

5.30.1.1 subroutine diagnostics ( )

Subroutine to give output diagnositics such as rank histograms and trajectories.

Here is the call graph for this function:



Here is the caller graph for this function:



### 5.30.1.2 subroutine trajectories ( )

subroutine to output trajectories

Here is the caller graph for this function:



# 5.31 src/utils/genQ.f90 File Reference

## **Functions/Subroutines**

· subroutine genq

Subroutine to estimate Q from a long model run.

### 5.31.1 Function/Subroutine Documentation

#### 5.31.1.1 subroutine genq ( )

Subroutine to estimate Q from a long model run.

Here is the caller graph for this function:



# 5.32 src/utils/histogram.f90 File Reference

## **Data Types**

• module histogram\_data

Module to control what variables are used to generate rank histograms.

# 5.33 src/utils/quicksort.f90 File Reference

### **Functions/Subroutines**

- recursive subroutine quicksort\_d (a, na)
  - subroutine to sort using the quicksort algorithm
- subroutine insertionsort\_d (A, nA)

subroutine to sort using the insertionsort algorithm

#### 5.33.1 Function/Subroutine Documentation

5.33.1.1 subroutine insertionsort\_d ( real(kind=kind(1.0d0)), dimension(na), intent(inout) A, integer, intent(in) nA)

subroutine to sort using the insertionsort algorithm

#### **Parameters**

| in,out | а  | array of doubles to be sorted |
|--------|----|-------------------------------|
| in     | na | dimension of array a          |

Here is the caller graph for this function:



5.33.1.2 recursive subroutine quicksort\_d ( real(kind=kind(1.0d0)), dimension(na), intent(inout) a, integer, intent(in) na )

subroutine to sort using the quicksort algorithm

#### **Parameters**

| in,out | а  | array of doubles to be sorted |
|--------|----|-------------------------------|
| in     | na | dimension of array a          |

Here is the call graph for this function:



Here is the caller graph for this function:



# 5.34 src/utils/random\_d.f90 File Reference

# **Data Types**

module random

A module for random number generation from the following distributions:

# Index

| allocate_data                   | diagnostics.f90, 78             |
|---------------------------------|---------------------------------|
| comms, 9                        | diagnostics.f90                 |
| allocate_pf                     | diagnostics, 78                 |
| pf_control, 13                  | trajectories, 79                |
| alltests                        | dist_st_ob                      |
| alltests.f90, 70                | model_specific.f90, 36          |
| alltests.f90                    | dp                              |
| alltests, 70                    | random, 31                      |
| ,                               | ,                               |
| bin_prob                        | eakf_analysis                   |
| random, 22                      | eakf_analysis.f90, 50           |
| bprime                          | eakf_analysis.f90               |
| operator_wrappers.f90, 64       | eakf_analysis, 50               |
|                                 | efac                            |
| check_scaling                   | pf_control::pf_control_type, 18 |
| stochastic_model.f90, 58        | empire                          |
| comms, 9                        | pf_couple.f90, 48               |
| allocate data, 9                | enkf_specific.f90               |
| cpl mpi comm, 10                | get_local_observation_data, 51  |
| deallocate_data, 9              | h_local, 51                     |
| gblcount, 10                    | localise_enkf, 52               |
| gbldisp, 10                     | solve rhalf local, 52           |
| initialise_mpi, 10              | equal_weight_filter             |
| mype id, 10                     | equivalent_weights_step.f90, 53 |
| · · ·                           |                                 |
| myrank, 10                      | equivalent_weights_step.f90     |
| npfs, 10                        | equal_weight_filter, 53         |
| nproc, 10                       | etkf_analysis                   |
| pf_mpi_comm, 10                 | etkf_analysis.f90, 54           |
| pfrank, 10                      | etkf_analysis.f90               |
| configure_model                 | etkf_analysis, 54               |
| model_specific.f90, 35          |                                 |
| count                           | gblcount                        |
| pf_control::pf_control_type, 18 | comms, 10                       |
| couple_pf                       | gbldisp                         |
| old_pf_couple.f90, 47           | comms, 10                       |
| couple_root                     | gen_Q                           |
| pf_control::pf_control_type, 18 | pf_parameters.dat, 49           |
| cpl_mpi_comm                    | gen_data                        |
| comms, 10                       | pf_control::pf_control_type, 18 |
|                                 | pf_parameters.dat, 49           |
| data_io.f90                     | gen_q                           |
| get_observation_data, 76        | pf_control::pf_control_type, 18 |
| output_from_pf, 77              | gen_rand.f90                    |
| save_observation_data, 77       | mixturerandomnumbers1d, 59      |
| save_truth, 78                  | mixturerandomnumbers2d, 60      |
| deallocate_data                 | normalrandomnumbers1d, 61       |
| comms, 9                        | normalrandomnumbers2d, 61       |
| deallocate_pf                   | random_seed_mpi, 62             |
| pf_control, 14                  | uniformrandomnumbers1d, 63      |
| diagnostics                     | genQ.f90                        |
| <b>5</b>                        | •                               |

| genq, 79                        | len                             |
|---------------------------------|---------------------------------|
| genq, 70                        | pf control::pf control type, 18 |
| genQ.f90, 79                    | letkf_analysis                  |
| get_local_observation_data      | letkf_analysis.f90, 55          |
| enkf specific.f90, 51           | letkf_analysis.f90              |
| get_observation_data            | letkf_analysis, 55              |
| data_io.f90, 76                 | Ingamma                         |
| uuu                             | random, 23                      |
| h                               | load_histogram_data             |
| model_specific.f90, 36          | histogram_data, 11              |
| h local                         | load_hqhtr                      |
| enkf_specific.f90, 51           | hqht_plus_r, 12                 |
| h_tests                         | loadq                           |
| tests.f90, 73                   | qdata, 21                       |
| histogram_data, 11              | loadr                           |
| kill_histogram_data, 11         | rdata, 32                       |
| load_histogram_data, 11         | localise_enkf                   |
| rank_hist_list, 11              | enkf specific.f90, 52           |
| rank_hist_nums, 11              | 01114_0p00110.100, 02           |
| rhl_n, 11                       | mean                            |
| rhn_n, 11                       | pf_control::pf_control_type, 18 |
| hqht_plus_r, 12                 | mixturerandomnumbers1d          |
| hqhtr_factor, 12                | gen_rand.f90, 59                |
| kill_hqhtr, 12                  | mixturerandomnumbers2d          |
| load_hqhtr, 12                  | gen_rand.f90, 60                |
| hqhtr_factor                    | model_specific.f90, 35          |
| hqht_plus_r, 12                 | configure_model, 35             |
| hqhtr_tests                     | dist_st_ob, 36                  |
| tests.f90, 74                   | h, 36                           |
| ht                              | ht, 37                          |
| model_specific.f90, 37          | q, 39                           |
| human_readable                  | qhalf, 41                       |
| pf_control::pf_control_type, 18 | r, 42                           |
| pf_parameters.dat, 49           | rhalf, 43                       |
|                                 | solve_hqht_plus_r, 44           |
| init                            | solve_r, 45                     |
| pf_control::pf_control_type, 18 | solve_rhalf, 46                 |
| initialise_mpi                  | mype_id                         |
| comms, 10                       | comms, 10                       |
| innerhqht_plus_r_1              | myrank                          |
| operator_wrappers.f90, 64       | comms, 10                       |
| innerr_1                        |                                 |
| operator_wrappers.f90, 65       | nens                            |
| insertionsort_d                 | pf control::pf control type, 19 |
| quicksort.f90, 80               | nfac                            |
| k                               | pf_control::pf_control_type, 19 |
| operator_wrappers.f90, 66       | pf_parameters.dat, 49           |
| keep                            | normalrandomnumbers1d           |
| pf_control::pf_control_type, 18 | gen_rand.f90, 61                |
| pf_parameters.dat, 49           | normalrandomnumbers2d           |
| kill_histogram_data             | gen_rand.f90, 61                |
| histogram_data, 11              | npfs                            |
| kill_hqhtr                      | comms, 10                       |
| hqht_plus_r, 12                 | nproc                           |
| killq                           | comms, 10                       |
| qdata, 21                       | nudgefac                        |
| killr                           | pf_control::pf_control_type, 19 |
| rdata, 32                       | pf_parameters.dat, 49           |
| ruata, uz                       | pi_parameters.uat, 43           |

| obs_dim                         | use_weak, 20                    |
|---------------------------------|---------------------------------|
| sizes, 33                       | weight, 20                      |
| old_pf_couple.f90               | pf_couple.f90                   |
| couple_pf, 47                   | empire, 48                      |
| operator_wrappers.f90           | pf_mpi_comm                     |
| bprime, 64                      | comms, 10                       |
| innerhqht_plus_r_1, 64          | pf_parameters.dat               |
| innerr_1, 65                    | gen_Q, 49                       |
| k, 66                           | gen_data, 49                    |
| output_from_pf                  | human_readable, 49              |
| data io.f90, 77                 | keep, 49                        |
| _ ,                             | nfac, 49                        |
| parse_pf_parameters             | nudgefac, 49                    |
| pf_control, 14                  | Qscale, 49                      |
| particles                       | time_bwn_obs, 49                |
| pf_control::pf_control_type, 19 | time_obs, 49                    |
| perturb_particle                | type, 49                        |
| perturb_particle.f90, 68        | ufac, 49                        |
| perturb_particle.f90            | · ·                             |
| perturb_particle, 68            | use_mean, 49                    |
| update state, 68                | use_rmse, 49                    |
| pf                              | use_talagrand, 49               |
| pf control, 16                  | use_traj, 49                    |
| pf_control, 12                  | use_var, 49                     |
| • —                             | use_weak, 49                    |
| allocate_pf, 13                 | pfrank                          |
| deallocate_pf, 14               | comms, 10                       |
| parse_pf_parameters, 14         | proposal_filter                 |
| pf, 16                          | proposal_filter.f90, 56         |
| set_pf_controls, 15             | proposal_filter.f90             |
| pf_control::pf_control_type, 16 | proposal_filter, 56             |
| count, 18                       | psi                             |
| couple_root, 18                 | pf_control::pf_control_type, 19 |
| efac, 18                        | 1 = 1 = 21 7                    |
| gen_data, 18                    | q                               |
| gen_q, 18                       | model_specific.f90, 39          |
| human_readable, 18              | q_tests                         |
| init, 18                        | tests.f90, 74                   |
| keep, 18                        | qcol                            |
| len, 18                         | gdata, <mark>21</mark>          |
| mean, 18                        | qdata, 20                       |
| nens, 19                        | killq, 21                       |
| nfac, 19                        | loadq, 21                       |
| nudgefac, 19                    | qcol, 21                        |
| particles, 19                   | qdiag, 21                       |
| psi, 19                         | qn, 21                          |
| qscale, 19                      | qne, 21                         |
| ·                               |                                 |
| rho, 19                         | grow, 21                        |
| talagrand, 19                   | qscale, 21                      |
| time, 19                        | qval, 21                        |
| time_bwn_obs, 19                | qdiag                           |
| time_obs, 19                    | qdata, 21                       |
| timestep, 19                    | qhalf                           |
| type, 20                        | model_specific.f90, 41          |
| ufac, 20                        | qn                              |
| use_mean, 20                    | qdata, 21                       |
| use_rmse, 20                    | qne                             |
| use_talagrand, 20               | qdata, 21                       |
| use_traj, 20                    | qrow                            |
| use_var, 20                     | qdata, 21                       |
|                                 |                                 |

| Qscale                          | random, 27                      |
|---------------------------------|---------------------------------|
| pf_parameters.dat, 49           | random_mvnorm                   |
| qscale                          | random, 27                      |
| pf_control::pf_control_type, 19 | random_neg_binomial             |
| qdata, 21                       | random, 27                      |
| quicksort.f90                   | random_normal                   |
| insertionsort_d, 80             | random, 28                      |
| quicksort_d, 81                 | random_order                    |
| quicksort_d                     | random, 29                      |
| quicksort.f90, 81               | random_poisson                  |
| qval                            | random, 29                      |
| qdata, 21                       | random_seed_mpi                 |
|                                 | gen_rand.f90, 62                |
| r                               | random_t                        |
| model_specific.f90, 42          | random, 30                      |
| r_tests                         | random von mises                |
| tests.f90, 75                   | random, 30                      |
| random, 22                      | random_weibull                  |
| bin_prob, 22                    | random, 30                      |
| dp, 31                          | rank hist list                  |
| Ingamma, 23                     |                                 |
| random_beta, 23                 | histogram_data, 11              |
| random_binomial1, 24            | rank_hist_nums                  |
| random binomial2, 24            | histogram_data, 11              |
| random_cauchy, 24               | rcol                            |
| random_chisq, 24                | rdata, 32                       |
| random_exponential, 25          | rdata, 31                       |
| random_gamma, 25                | killr, 32                       |
| — <del>-</del>                  | loadr, 32                       |
| random_gamma1, 26               | rcol, 32                        |
| random_gamma2, 26               | rdiag, 32                       |
| random_inv_gauss, 27            | rn, 32                          |
| random_mvnorm, 27               | rne, 32                         |
| random_neg_binomial, 27         | rrow, 32                        |
| random_normal, 28               | rval, 32                        |
| random_order, 29                | rdiag                           |
| random_poisson, 29              | rdata, 32                       |
| random_t, 30                    | resample                        |
| random_von_mises, 30            | resample.f90, 69                |
| random_weibull, 30              | resample.f90                    |
| seed_random_number, 31          | resample, 69                    |
| random_beta                     | rhalf                           |
| random, 23                      | model_specific.f90, 43          |
| random_binomial1                | rhl n                           |
| random, 24                      | histogram_data, 11              |
| random_binomial2                | rhn n                           |
| random, 24                      | histogram_data, 11              |
| random_cauchy                   | rho                             |
| random, 24                      | pf_control::pf_control_type, 19 |
| random_chisq                    | rn                              |
| random, 24                      |                                 |
| random_exponential              | rdata, 32                       |
| random, 25                      | rne                             |
| random_gamma                    | rdata, 32                       |
| random, 25                      | rrow                            |
| random_gamma1                   | rdata, 32                       |
| random, 26                      | rval                            |
|                                 | rdata, 32                       |
| random_gamma2                   | cava observation data           |
| random, 26                      | save_observation_data           |
| random_inv_gauss                | data_io.f90, 77                 |

| save_truth                                  | stochastic_model.f90                         |
|---------------------------------------------|----------------------------------------------|
| data_io.f90, 78                             | check_scaling, 58                            |
| seed_random_number                          | stochastic_model, 58                         |
| random, 31                                  | talagrand                                    |
| set_pf_controls                             | talagrand                                    |
| pf_control, 15                              | pf_control::pf_control_type, 19              |
| sir_filter                                  | test_h                                       |
| sir_filter.f90, 57                          | test_h.f90, 71                               |
| sir_filter.f90                              | test_h.f90                                   |
| sir_filter, 57                              | test_h, 71                                   |
| sizes, 32                                   | test_hghtr                                   |
| obs_dim, 33                                 | test_hqhtr.f90, 71                           |
| state_dim, 33                               | test_hqhtr.f90                               |
| solve_hqht_plus_r                           | test_hqhtr, 71                               |
| model_specific.f90, 44                      | test_q                                       |
| solve_r                                     | test_q.f90, 72                               |
| model_specific.f90, 45                      | test_q.f90                                   |
| solve_rhalf                                 | test_q, 72                                   |
| model_specific.f90, 46                      | test_r<br>test_r.f90, 73                     |
| solve_rhalf_local                           | test_r.f90                                   |
| enkf_specific.f90, 52                       |                                              |
| src/DOC_README.txt, 50                      | test_r, 73<br>tests.f90                      |
| src/controlers/old_pf_couple.f90, 47        |                                              |
| src/controlers/pf_control.f90, 47           | h_tests, 73                                  |
| src/controlers/pf_couple.f90, 47            | hqhtr_tests, 74                              |
| src/controlers/pf_parameters.dat, 48        | q_tests, 74                                  |
| src/controlers/sizes.f90, 50                | r_tests, 75<br>time                          |
| src/data/Qdata.f90, 50                      |                                              |
| src/data/Rdata.f90, 50                      | pf_control::pf_control_type, 19 time_bwn_obs |
| src/filters/eakf_analysis.f90, 50           | pf_control::pf_control_type, 19              |
| src/filters/enkf_specific.f90, 51           | pf_parameters.dat, 49                        |
| src/filters/equivalent_weights_step.f90, 53 | time obs                                     |
| src/filters/etkf_analysis.f90, 54           | pf_control::pf_control_type, 19              |
| src/filters/letkf_analysis.f90, 55          | pf_parameters.dat, 49                        |
| src/filters/proposal_filter.f90, 56         | timestep                                     |
| src/filters/sir_filter.f90, 57              | pf_control::pf_control_type, 19              |
| src/filters/stochastic_model.f90, 58        | trajectories                                 |
| src/operations/gen_rand.f90, 59             | diagnostics.f90, 79                          |
| src/operations/operator_wrappers.f90, 63    | type                                         |
| src/operations/perturb_particle.f90, 67     | pf_control::pf_control_type, 20              |
| src/operations/resample.f90, 69             | pf_parameters.dat, 49                        |
| src/tests/alltests.f90, 70                  | pi_paramotoro.dat, 10                        |
| src/tests/test_h.f90, 71                    | ufac                                         |
| src/tests/test_hqhtr.f90, 71                | pf_control::pf_control_type, 20              |
| src/tests/test_q.f90, 72                    | pf_parameters.dat, 49                        |
| src/tests/test_r.f90, 72                    | uniformrandomnumbers1d                       |
| src/tests/tests.f90, 73                     | gen_rand.f90, 63                             |
| src/utils/comms.f90, 76                     | update_state                                 |
| src/utils/data_io.f90, 76                   | perturb_particle.f90, 68                     |
| src/utils/diagnostics.f90, 78               | use_mean                                     |
| src/utils/genQ.f90, 79                      | pf_control::pf_control_type, 20              |
| src/utils/histogram.f90, 80                 | pf_parameters.dat, 49                        |
| src/utils/quicksort.f90, 80                 | use_rmse                                     |
| src/utils/random_d.f90, 81                  | pf_control::pf_control_type, 20              |
| state_dim                                   | pf_parameters.dat, 49                        |
| sizes, 33                                   | use_talagrand                                |
| stochastic_model                            | pf_control::pf_control_type, 20              |
| stochastic_model.f90, 58                    | pf_parameters.dat, 49                        |
|                                             | · —                                          |

```
use_traj
    pf_control::pf_control_type, 20
    pf_parameters.dat, 49

use_var
    pf_control::pf_control_type, 20
    pf_parameters.dat, 49

use_weak
    pf_control::pf_control_type, 20
    pf_parameters.dat, 49

weight
    pf_control::pf_control_type, 20
```