Diszkrét matematika I. középszint

5. előadás

Mérai László diái alapján

Komputeralgebra Tanszék

2014. ősz

Számfogalom bővítése

A természetes számokból kiindulva megkonstruálhatók a

- ullet természetes számok: $\mathbb{N}=\{0,1,\dots\};$
- egész számok: $\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\};$
- racionális számok: $\mathbb{Q} = \{p/q : p, q \in \mathbb{Z}, q \neq 0\}$;
- valós számok: $\mathbb{R} = ?$;
- komplex számok: $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}.$

Kérdések

- Milyen fontos tulajdonságokkal rendelkeznek az adott számhalmazok?
- Mik a valós számok?
- Mi a pontos kapcsolat a műveletek és a számhalmazok között?
 N-ben nincs kivonás, de Z-ben van,
 Z-ben nincs osztás, de O-ban van...

Természetes számok

Peano-axiómák

Legyen \mathbb{N} egy halmaz, $^+$ egy unér művelet (rákövetkező). Ekkor

- 1. $0 \in \mathbb{N}$:
- 2. $n \in \mathbb{N} \Rightarrow n^+ \in \mathbb{N}$:
- 3. $n \in \mathbb{N} \Rightarrow n^+ \neq 0$:
- 4. $n, m \in \mathbb{N}$ esetén $n^+ = m^+ \Rightarrow n = m$:
- 5. $(S \subset \mathbb{N}, 0 \in S, (n \in S \Rightarrow n^+ \in S)) \Rightarrow S = \mathbb{N}.$

Megjegyzések

- Az axiómák egyértelműen definiálják N-et.
- Mindegyik axióma szükséges.
- N halmaz megkonstruálható: $0 := \emptyset$, $0^+ := \{\emptyset\}$, $(0^+)^+ := \{\emptyset, \{\emptyset\}\}, \dots$
- $1 := 0^+$, $2 := 1^+$, ...

Műveletek természetes számokkal

N-en természetes módon definiálhatjuk az összeadást (HF), például $n+1:=n^+, n+2:=(n^+)^+, \ldots$

Állítás

Ha k, m, $n \in \mathbb{N}$, akkor

- 1. (k+m)+n=k+(m+n) (asszociativitás);
- 2. k + m = m + k (kommutativitás);
- 3. 0 + n = n + 0 = n (van nullelem/egységelem/semleges elem).

Félcsoportok

Definíció

A G halmaz a * művelettel félcsoport, ha * asszociatív G-n. Ha létezik $n \in G$: $\forall g \in G : n * g = g * n = g$, akkor az n egységelem (nullelem, neutrális elem), G pedig egységelemes félcsoport.

Példa

- \mathbb{N} az + művelettel egységelemes félcsoport n=0 egységelemmel.
- \mathbb{Q} a · művelettel egységelemes félcsoport n=1 egységelemmel.
- C^{k×k} a mátrixszorzással egységelemes félcsoport az egységmátrixszal, mint egységelemmel.

Egész számok

Az $\mathbb N$ halmazon nem (mindig) tudjuk a kivonást elvégezni. A kivonás elvégzéséhez elég (lenne), hogy a 0-ból ki tudjuk vonni az adott n számot (ellentett):

Definíció

Legyen G egy egységelemes félcsoport a * művelettel és n egységelemmel. A $g \in G$ elem inverze (ellentettje) a $g^{-1} \in G$ elem, melyre $g * g^{-1} = g^{-1} * g = n$.

Ha minden $g \in G$ elemnek létezik inverze, akkor G csoport. Ha * kommutatív, akkor G Abel-csoport.

Állítás

 $\mathbb Z$ a legszűkebb olyan (Abel-) csoport, mely tartalmazza $\mathbb N$ -et.

Megjegyzés

 \mathbb{Z} megkonstruálható \mathbb{N} -ből: az $(r,s) \sim (p,q)$, ha r+q=p+s ekvivalenciareláció osztályai az egész számok.

Csoportok

További példák csoportokra:

- ullet Q az + művelettel, a 0 egységelemmel.
- ullet $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$ a \cdot művelettel, az 1 egységelemmel.
- $\{M\in\mathbb{C}^{k\times k}: \det M\neq 0\}$ a mátrixszorzással, és az egységmátrixszal, mint egységelemmel.
- X → X bijektív függvények a ∘ művelettel, és az id_X : x → x identikus leképzéssel, mint egységelemmel.

Egész számok szorzása

Az egész számok körében definiálhatjuk a · műveletet:

Ha
$$n \in \mathbb{N}$$
, $m \in \mathbb{Z}$, akkor legyen $n \cdot m = \underbrace{m + m + \dots + m}$.

ı darab

Ha $n \not\in \mathbb{N}$, akkor legyen $n \cdot m = - \big((-n) \cdot m \big)$.

Állítás

A $\mathbb Z$ a \cdot műveletre kommutatív egységelemes félcsoport. (A \cdot kommutatív, asszociatív, van egységelem.)

A két művelet nem "független":

Állítás

 \mathbb{Z} -n a · az +-ra nézve disztributív:

 $\forall k, l, m \in \mathbb{Z}$ -re: $k \cdot (l + m) = k \cdot l + k \cdot m$.

Gyűrűk

Definíció

Legyen R egy halmaz két binér művelettel: *, \circ . Ekkor az R gyűrű, ha

- R a * művelettel Abel-csoport (0-val, mint egységelemmel);
- R a o művelettel félcsoport;
- a \circ a *-ra nézve disztributív: $r \circ (s * t) = (r \circ s) * (r \circ t); \quad (s * t) \circ r = (s \circ r) * (t \circ r).$

Az R egységelemes gyűrű, ha R-en a \circ műveletre nézve van egységelem. Az R kommutatív gyűrű, ha a \circ művelet (is) kommutatív.

Példa

- \mathbb{Z} az $(+,\cdot)$ műveletekre egységelemes kommutatív gyűrű.
- A páros számok halmaza gyűrű, de nem egységelemes.
- ℚ, ℝ, ℂ egységelemes kommutatív gyűrűk.
- $\mathbb{C}^{k \times k}$ egységelemes gyűrű, de nem kommutatív.

Nullosztómentes gyűrűk

A gyűrűkben általában nem lehet elvégezni az osztást:

- \mathbb{Z} -ben nem oldható meg a 2x = 1 egyenlet.
- ullet $\mathbb{R}^{2 imes2}$ -ben nem oldható meg az alábbi egyenlet

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \cdot X = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

Definíció

Ha egy $(R, *, \circ)$ gyűrűben $\forall r, s \in R, r, s \neq 0$ esetén $r \circ s \neq 0$, akkor R nullosztómentes gyűrű.

Példa

Nem nullosztómentes gyűrű

$$\bullet \ \mathbb{R}^{2\times 2} \colon \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$$

11.

Testek

Szeretnénk \mathbb{Z} -ben az osztást elvégezni. Mivel az osztás nem "szép" művelet (nem asszociatív), ezért azt a reciprokkal (inverzzel) való szorzással helyettesítenénk.

Definíció

Legyen K egy halmaz, azon két művelet: *, \circ . A K ferdetest, ha

- K gyűrű;
- $K^* = K \setminus \{0\}$ a \circ művelettel csoport.

Megjegyzés Ha K^* csoport, akkor minden elemnek létezik inverze (reciproka), így minden elemnel tudunk osztani.

Állítás

Q az N-et tartalmazó legszűkebb test.

Megjegyzés

 \mathbb{Q} megkonstruálható \mathbb{Z} segítségével: az $(r,s) \sim (p,q)$ $(s,q \neq 0)$, ha $r \cdot q = p \cdot s$ ekvivalenciareláció osztályai a racionális számok.

Testek

Példa

- R, C
- $\{r+s\sqrt{2}: r,s\in\mathbb{Q}\}$:

$$\frac{1}{r+s\sqrt{2}} = \frac{1}{r+s\sqrt{2}} \cdot \frac{r-s\sqrt{2}}{r-s\sqrt{2}} =$$
$$= \frac{r-s\sqrt{2}}{r^2-2s^2} = \frac{r}{r^2-2s^2} + \frac{-s}{r^2-2s^2}\sqrt{2}$$

• Kvaterniók $\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$, továbbá $i^2 = j^2 = k^2 = -1$, ij = k, ji = -k, ... Nemkommutatív ferdetest!

Számok és rendezés

Z-n a természetes módon definiálhatjuk a rendezést:

- Adott $n \in \mathbb{N}$, $n \neq 0$ esetén legyen 0 < n.
- Legyen továbbá n < m, ha 0 < m n.

Ekkor a rendezés kompatibilis a műveletekkel:

Állítás

Ha k, m, $n \in \mathbb{Z}$, akkor

- $\bullet \ k < m \Rightarrow k + n < m + n,$
- $m, n > 0 \Rightarrow m \cdot n > 0$.

Definíció

Egy R gyűrű rendezett gyűrű, ha van az R-en definiálva egy rendezés, mely kielégíti a fenti tulajdonságokat.

14.

Rendezett testek

A $\mathbb Z$ -n definiált rendezés kiterjeszthető $\mathbb Q$ -ra: $\frac{p}{q} < \frac{r}{s}$, ha ps < rq.

A kiterjesztés azonban nem lesz "teljes", $\mathbb Q$ nem lesz felső határ tulajdonságú.

Emlékeztető

Egy X halmaz felső határ tulajdonságú, ha minden $\emptyset \neq Y \subset X$ felülről korlátos részhalmaznak van supremuma.

Állítás

$$\sqrt{2} \notin \mathbb{Q}$$
.

Speciálisan \mathbb{Q} nem felső határ tulajdonságú: $\{r \in \mathbb{Q} : r \leq \sqrt{2}\}$ felülről korlátos, de nincs supremuma (sup = $\sqrt{2} \notin \mathbb{Q}$).

Bizonyítás

Indirekt tfh $\exists n, m \in \mathbb{N}^+$: $(m/n)^2 = 2$. Válasszuk azt az m, n párt, ahol (m, n) = 1. Most $m^2 = 2n^2 \Rightarrow 2 \mid m$. Legyen $m = 2k \Rightarrow m^2 = 4k^2 = 2n^2 \Rightarrow 2 \mid n \Rightarrow (m, n) > 2$.

Valós számok

Valós számok axiómája

Legyen $\mathbb R$ az $\mathbb N$ -et tartalmazó legszűkebb felső határ tulajdonsággal rendelkező rendezett test.

Megjegyzés

- A valós számok halmaza lényegében egyértelmű.
- \mathbb{R} megkonstruálható: legyen \mathbb{R} a \mathbb{Q} kezdőszeletei: Egy $A \subset \mathbb{Q}$ kezdőszelet, ha $A \neq \mathbb{Q}$, és $r \in A$, $s < r \Rightarrow s \in A$; például $\sqrt{2} \leftrightarrow \{r \in \mathbb{Q} : r \leq \sqrt{2}\}$.

 \mathbb{N} , \mathbb{Z} , \mathbb{Q} definiálható \mathbb{R} segítségével is:

- \mathbb{N} : a $0, 1 \in \mathbb{R}$ elemeket tartalmazó legszűkebb félcsoport;
- $\mathbb{Z} = \mathbb{N} \cup (-\mathbb{N});$
- $\mathbb{Q} = \{r/s \in \mathbb{R} : r, s \in \mathbb{Z}, s \neq 0\}.$

2014. ősz

Osszefoglaló

Műveletek halmazokon

Struktúra

Peano axiómák

félcsoport: van asszociatív művelet

csoport: van inverz

gyűrű: két művelet,

*-ra kommutatív csoport,

o-re félcsoport, disztributivitás

ferdetest: két művelet.

*-ra kommutatív csoport,

o-re a 0 kivételével csoport.

disztributivitás

Példa

N

$$(\mathbb{N},+)$$
, (\mathbb{Z},\cdot)

$$(\mathbb{Z},+)$$
, (\mathbb{Q}^*,\cdot) , $(\mathbb{Z}_m,+)$, (\mathbb{Z}_p^*,\cdot)

$$(\mathbb{Z},+,\cdot)$$
, $(\mathbb{Z}_m,+,\cdot)$,

$$(\mathbb{R}^{k \times k}, +, \cdot)$$

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} , \mathbb{H} , \mathbb{Z}_p

Dálda

Összefoglaló

Churcharina

Műveletek és rendezés

Struktura	Pelda
rendezett gyűrű	\mathbb{Z}
rendezett test	\mathbb{Q} , \mathbb{R}
felsőhatár tulajdonságú test	\mathbb{R}

17.