NYC Taxi Fare Prediction

Professor Dr. Wencen Wu Fall 2019 : CMPE 257 Team 13

Farhan Bhoraniya (014506531) Kalyani Deshmukh (011414663) Mukesh Mogal (014529112) Samruddhi Patil (014550094)

Motivation

- Idea is to predict the NYC Taxi fare based on pickup and drop off location
- One can get approx fare by distance but it does not give you accurate fare
- Fare depends on the other factors like time of the ride, the day of the week, year of the ride as the fares increase with the inflation

Outline

- Task
 - Predicting the NYC taxi fare
- Dataset
 - Around 55 Million rows and 7 Columns
- Models
 - Linear Regression
 - LGBM (Light Gradient Boosting Machine)
 - Random Forest
 - XGBoost
 - Keras

Project Flow

Before Preprocessing

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	${\sf dropoff_latitude}$	passenger_count
count	5.000000e+06	5.000000e+06	5.000000e+06	4.999964e+06	4.999964e+06	5.000000e+06
mean	1.134080e+01	-7.250678e+01	3.991974e+01	-7.250652e+01	3.991725e+01	1.684695e+00
std	9.820175e+00	1.280970e+01	8.963509e+00	1.284777e+01	9.486767e+00	1.331854e+00
min	-1.000000e+02	-3.426609e+03	-3.488080e+03	-3.412653e+03	-3.488080e+03	0.000000e+00
25%	6.000000e+00	-7.399206e+01	4.073491e+01	-7.399139e+01	4.073404e+01	1.000000e+00
50%	8.500000e+00	-7.398181e+01	4.075263e+01	-7.398016e+01	4.075315e+01	1.000000e+00
75%	1.250000e+01	-7.396711e+01	4.076712e+01	-7.396367e+01	4.076811e+01	2.000000e+00
max	1.273310e+03	3.439426e+03	3.310364e+03	3.457622e+03	3.345917e+03	2.080000e+02

Statistical details of the training dataset before preprocessing

Data Preprocessing Steps

- Removed invalid number of passengers
- Changed data-types
- Removed too high or too low fares
- Removed invalid latitudes and longitudes
- Separated date time field into different fields
- Calculated Harversine distance and JFK distance

```
Haversine a = \sin^2(\Delta \phi/2) + \cos \phi_1 \cdot \cos \phi_2 \cdot \sin^2(\Delta \lambda/2) formula: c = 2 \cdot atan2(\sqrt{a}, \sqrt{1-a}) d = R \cdot c where \phi is latitude, \lambda is longitude, R is earth's radius (mean radius = 6,371km); note that angles need to be in radians to pass to trig functions!
```

After Preprocessing

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	${\tt dropoff_latitude}$	passenger_count	hour	day	month	weekday	year	haversine_distnace	direction	JFK_distance
count	5.308606e+07	5.308606e+07	5.308606e+07	5.308606e+07	5.308606e+07	5.308606e+07	5.308606e+07	5.308606e+07	5.308606e+07	5.308606e+07	5.308606e+07	5.308606e+07	5.308606e+07	5.308606e+07
mean	8.139474e+00	-4.045287e+01	2.022644e+01	-4.045287e+01	2.022644e+01	1.691975e+00	1.351765e+01	1.571170e+01	6.268899e+00	3.040971e+00	2.011745e+03	2.116131e+00	3.186229e-01	1.247493e+01
std	9.522861e+00	2.544103e+01	1.272051e+01	2.544103e+01	1.272051e+01	1.307223e+00	6.515234e+00	8.685037e+00	3.436881e+00	1.949043e+00	1.866117e+00	2.492550e+00	1.669659e+00	2.160912e+00
min	1.110000e+00	-7.499804e+01	3.903129e+01	-7.499828e+01	3.901662e+01	1.000000e+00	0.000000e+00	1.000000e+00	1.000000e+00	0.000000e+00	2.009000e+03	1.000002e-01	-3.141579e+00	2.463167e-03
25%	6.000000e+00	-7.399229e+01	4.073662e+01	-7.399159e+01	4.073563e+01	1.000000e+00	9.000000e+00	8.000000e+00	3.000000e+00	1.000000e+00	2.010000e+03	8.051371e-01	-8.954245e-01	1.255060e+01
50%	8.500000e+00	-7.398213e+01	4.075340e+01	-7.398064e+01	4.075389e+01	1.000000e+00	1.400000e+01	1.600000e+01	6.000000e+00	3.000000e+00	2.012000e+03	1.363401e+00	-1.269430e-01	1.289996e+01
75%	1.250000e+01	-7.396851e+01	4.076756e+01	-7.396560e+01	4.076841e+01	2.000000e+00	1.900000e+01	2.300000e+01	9.000000e+00	5.000000e+00	2.013000e+03	2.464340e+00	2.260265e+00	1.325358e+01
max	3.993300e+02	-7.000039e+01	4.199717e+01	-7.000227e+01	4.199811e+01	6.000000e+00	2.300000e+01	3.100000e+01	1.200000e+01	6.000000e+00	2.015000e+03	9.965149e+01	3.141593e+00	2.044714e+02

Statistical details of the training dataset after data preprocessing

Distance vs Fare

• This graph indicates that the fare varies with the distance almost linearly but it is also dependent on other features.

Day of Month vs Fare

• Lack of variation of the fare w.r.t. Date make this feature insignificant.

Day of Week vs Fare

• Similarly, day of the week is also an insignificant feature which can be removed.

Correlation Matrix

fare_amount -	1.000	0.414	-0.193	0.308	-0.155	0.015	-0.017	0.001	0.025	0.003	0.121	0.806	-0.021	-0.639		
pickup_longitude -	0.414	1.000	0.033	0.302	0.056	0.002	0.019	-0.000	0.007	-0.023	0.010	0.446	0.217	-0.545	- c	0.8
pickup_latitude -	-0.193	0.033	1.000	0.061	0.407	-0.007	0.024	-0.002	-0.001	-0.035	-0.013	-0.207	0.148	0.379		
dropoff_longitude -	0.308	0.302	0.061	1.000	0.155	-0.000	-0.046	0.000	0.004	-0.001	0.008	0.348	-0.334	-0.448		
dropoff_latitude -	-0.155	0.056	0.407	0.155	1.000	-0.004	0.017	-0.002	-0.002	-0.026	-0.006	-0.170	-0.069	0.316	- c	0.4
passenger_count -	0.015	0.002	-0.007	-0.000	-0.004	1.000	0.016	0.004	0.005	0.035	0.005	0.008	0.001	-0.008		
hour -	-0.017	0.019	0.024	-0.046	0.017	0.016	1.000	0.001	-0.005	-0.087	-0.000	-0.026	0.033	0.028		
day -	0.001	-0.000	-0.002	0.000	-0.002	0.004	0.001	1.000	-0.016	0.007	-0.009	0.001	-0.000	-0.002	- 0	0.0
month -	0.025	0.007	-0.001	0.004	-0.002	0.005	-0.005	-0.016	1.000	-0.008	-0.119	0.009	0.003	-0.011		
weekday -	0.003	-0.023	-0.035	-0.001	-0.026	0.035	-0.087	0.007	-0.008	1.000	0.007	0.014	-0.010	-0.012		-0.4
year -	0.121	0.010	-0.013	0.008	-0.006	0.005	-0.000	-0.009	-0.119	0.007	1.000	0.013	-0.007	-0.026		
haversine_distnace -	0.806	0.446	-0.207	0.348	-0.170	0.008	-0.026	0.001	0.009	0.014	0.013	1.000	-0.011	-0.612		
direction -	-0.021	0.217	0.148	-0.334	-0.069	0.001	0.033	-0.000	0.003	-0.010	-0.007	-0.011	1.000	0.112		-0.8
JFK_distance -	-0.639	-0.545	0.379	-0.448	0.316	-0.008	0.028	-0.002	-0.011	-0.012	-0.026	-0.612	0.112	1.000		
	fare_amount -	pickup_longitude -	pickup_latitude -	ropoff_longitude -	dropoff_latitude -	passenger_count -	- hour -	day -	month -	weekday -	year -	versine_distnace -	direction -	JFK_distance -	_	

Model Implementation and their RMSE

Model	RMSE
Linear Regression	5.207
LGBM	3.381
Random Forest	3.18
XGBoost	3.047
Keras Regression	1.680

Root Mean Squared Error was used as a performance indicator and Keras Regression gave the best results.

Predictions

	Data		Prediction						
Pickup Location	Drop Off Location	Fare Amount	Linear Regression	LGBM	Random Forest	XGBoost	Keras		
40.77 N 73.97 W	40.77 N 73.96 W	10.1	6.645	6.642	9.64	6.82	9.58		
40.74 N 73.98 W	40.70 N 74.01 W	16.5	20.866	13.932	18.66	17.02	16.09		
40.73 N 74.00 W	40.74 N 73.98 W	7.7	7.3254	7.519	9.06	7.58	7.65		
40.73 N 74.00 W	40.82 N 73.92 W	24.9	24.063	24.182	25.87	27.24	26.89		

Conclusion & Future Scope

- Results are fairy accurate and comparable with all models according to the obtained RMSE for each models.
- Models have tradeoff between accuracy, memory and execution time.
- To further improve the accuracy we can consider other features like traffic, driving speed etc.
- Also usage of Google map APIs for journey details would improve the accuracy

Contribution

Task	Name				
Data Pre-processing	Samruddhi, Farhan				
Feature Engineering	Kalyani, Mukesh				
Linear Regression	Samruddhi				
LGBM	Samruddhi				
Random Forest	Farhan				
XGBoost	Kalyani				
Keras Regression	Mukesh				

References

- 1. Dataset: https://www.kaggle.com/c/new-york-city-taxi-fare-prediction/data
- 2. Linear regression: https://scikit-learn.org/stable/modules/generated/sklearn.linear-model.LinearRegression.html
- 3. LGBM: https://lightgbm.readthedocs.io/en/latest/index.html
- 4. Random Forest: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
- 5. Keras regression: https://keras.io/

Thank You!!