Simple Linear Regression

UTKARSH GAIKWAD

CLASS STARTING SHARP AT 11:42 AM

Checking relationships between 2 variables

Income per month	Spending	Spending ~ Income
100000	50000	
80000	35000	
60000	29000	
45000	20000	
30000	15000	
Independent Feature	Dependent Feature / Targ	et Feature

Visualizing the Relationship between Income vs Spend

Predicting Spend based on income

Which line to fit for this problem?

Least Squared Error model

Equation Of Line

y = mx + c

y : Dependent Feature(Target)

x: Independent Feature

m: Slope of a line

c: y intercept of a line

What happens if we change Line intercept?

At x = 0, y = c (intercept)

What is slope?

If x increases by 1 or unit value, how much will y change?

Eg.
$$y = 2*x + 3$$

x0 = 3 increases by one, x1 = 4

$$y0 = 2*3+3 = 9$$

$$y1 = 2*4+3 = 11$$

$$y1-y0 = 11-9 = 2$$

Slope =
$$(y2-y1)/(x2-x1)$$

When x increased by 1, y increased by 2

$$y = \frac{2*x}{2} + 3$$
, Slope = 2

Lines with different slopes

Simple linear Regression Objective

- \triangleright fit a line $yactual = \beta_0 + \beta_1 \cdot x + \varepsilon$
- \triangleright ypred = $\beta_0 + \beta_1 \cdot x$
- Minimise the Squared error for given relationships
- Least Squares error method
- ightharpoonup Formula for slope : $m{eta}_1 = rac{cov(x,y)}{var(x)} = rac{\Sigma(x-\overline{x})(y-\overline{y})/n}{\Sigma(x-\overline{x})^2/n}$
- ightharpoonup Formula for Intercept : $ho_0 = \overline{y}
 ho_1 \cdot \overline{x}$
- $\triangleright \overline{x}$: Mean of all x values
- $ightharpoonup \overline{y}$: Mean of all y values

Solving income vs Spend problem

Income per month (x)	Spending (y)
100000	50000
80000	35000
60000	29000
45000	20000
30000	15000

Spending = $\beta_0 + \beta_1 \cdot Income + \varepsilon$

B0 and B1 Calculation

Income per month (x)	Spending (y)	X mean	Y mean	x-xmean	y-ymean	prod	(x-xmean)^2
100000	50000	63000	29800	37000	20200	747400000	1369000000
80000	35000	63000	29800	17000	5200	88400000	289000000
60000	29000	63000	29800	-3000	-800	2400000	9000000
45000	20000	63000	29800	-18000	-9800	176400000	324000000
30000	15000	63000	29800	-33000	-14800	488400000	1089000000

300600000

616000000

Formula for slope : $\beta_1 = \frac{cov(x,y)}{var(x)} = \frac{\Sigma(x-\overline{x})(y-\overline{y})}{\Sigma(x-\overline{x})^2}$

Formula for Intercept : $oldsymbol{eta}_0 = \overline{y} - oldsymbol{eta}_1 \cdot \overline{x}$

SUM	1503000000	3080000000
COV	300600000	616000000

В0	0.4880
B1	-943.1818

Regression Line

Income vs Spend Regression Line

Metrics to evaluate Model (Regression only)

- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- Mean Absolute Percentage Error (MAPE)
- > R squared

Mean Squared Error

Income per month (x)	Spending (y)	Ycap	Error	Squared Error
100000	50000	47855.52	2144.48	4598796.70
80000	35000	38095.78	-3095.78	9583848.98
60000	29000	28336.04	663.96	440844.26
45000	20000	21016.23	-1016.23	1032731.07
30000	15000	13696.43	1303.57	1699298.47

B1	0.488
ВО	-943.182

Sum	17355519.48
Count	5
Average	3471103.896
MSE	3471103.896
RMSE	1863.089879

$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$	RMSE =)	2
--	--------	---	---

Mean Absolute Error

$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Income per month (x)	Spending (y)	Ycap	Error	absolute error
100000	50000	47855.52	2144.48	2144.48
80000	35000	38095.78	-3095.78	3095.78
60000	29000	28336.04	663.96	663.96
45000	20000	21016.23	-1016.23	1016.23
30000	15000	13696.43	1303.57	1303.57

Sum	8224.03
Count	5
MAE	1644.81

Mean Absolute Percentage Error

$$MAPE = \frac{1}{N} \sum_{t=1}^{N} \left| \frac{E_t - A_t}{A_t} \right|$$

Income per month	Spend ing (y)	Ycap	Error	absolut e error	Abs Perc error
100000	50000	47855.5	2144	2144.5	4.29%
80000	35000	38095.8	-3096	3095.8	8.85%
60000	29000	28336	664	663.96	2.29%
45000	20000	21016.2	-1016	1016.2	5.08%
30000	15000	13696.4	1304	1303.6	8.69%
				MAPE	5.84%

R squared metric

Formula

$$R^2 = 1 - rac{RSS}{TSS}$$

 R^2 = coefficient of determination

RSS = sum of squares of residuals

TSS = total sum of squares

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

R squared metric Calculation

Income per month (x)	Spending (y)	Ycap	Error	Error^2	yi - ymean	(yi - ymean)^2
100000	50000	47855.52	2144.48	4598796.70	20200	408040000
80000	35000	38095.78	-3095.78	9583848.98	5200	27040000
60000	29000	28336.04	663.96	440844.26	-800	640000
45000	20000	21016.23	-1016.23	1032731.07	-9800	96040000
30000	15000	13696.43	1303.57	1699298.47	-14800	219040000

ymean	29800
ymean	29800

RSS	17355519.48	TSS	750800000
R2	0.9769		

Thank You

PING ME ON SKYPE GROUP FOR ANY QUERIES

PERFORM THE PRACTICAL AND YOU CAN LEAVE FOR THE DAY