WHAT IS CLAIMED IS:

1. A method for connecting component-side pad electrodes and
substrate-side pad electrodes when a surface-mount component is mounted onto
the substrate, wherein the component-side pad electrodes are formed on the
surface of the component opposed to a substrate, solder bumps are formed on the
component-side pad electrodes, and substrate-side pad electrodes are formed on
the surface of the substrate, the method comprising:
arranging the substrate-side pad electrodes inside a component-
corresponding region which corresponds to the plan view of the surface-mount
component;
setting the length of each of the substrate-side pad electrodes in the
direction substantially perpendicular to the outer edge of the component-
corresponding region larger than the length of the corresponding component-side
pad electrode in the direction substantially perpendicular to the outer edge of the
surface-mount component;

placing the surface-mount component on the substrate so that each of the solder bumps are opposed to a predetermined substrate-side pad electrode; and melting the solder bumps by heating to connect each of the component-side pad electrodes to one of the substrate-side pad electrodes through the solder.

- 2. A method for connecting pad electrodes in accordance with claim 1, wherein the width of each of said component-side pad electrodes and the width of the solder bump on each of said component-side pad electrodes are larger than the width of each of said substrate-side pad electrodes.
- 3. A method for inspecting the connection state of pad electrodes
 comprising the steps of:
 connecting the pad electrodes by a connection method in accordance with

4 claim 1;

9

10

11

X-ray transmission image; and

5	detecting the shapes of the solder after each of said solder bumps has
6	been melted and flowed on one of said substrate-side pad electrodes by a
7	nondestructive inspection; and
8	making a pass/fail discrimination of the connection state between each of
9	the component-side pad electrodes and one of the substrate-side pad electrodes.
1	4. A method for inspecting the connection state of pad electrodes
2	comprising the steps of:
3	connecting the pad electrodes by a connection method in accordance with
4	claim 2;
5	detecting the shapes of the solder after each of said solder bumps has
6	been melted and flowed on one of said substrate-side pad electrodes by a
7	nondestructive inspection; and
8	making a pass/fail discrimination of the connection state between each of
9	the component-side pad electrodes and one of the substrate-side pad electrodes.
1	5. A method for inspecting the connection state of the pad electrodes
2	comprising the steps of:
3	connecting the pad electrodes by a connection method in accordance with
4	claim 1;
5	obtaining an X-ray transmission image by radiating X rays from the back
6	surface side of said substrate; and
7	detecting the shape of solder after each of said solder bumps has been
8	melted and flowed on one of said substrate-side pad electrodes, from the obtained

making a pass/fail discrimination of the connection state between each of

the component-side pad electrodes and one of the substrate-side pad electrodes.

14

by melting of a solder bump.

1	6. A method for inspecting the connection state of the pad electrodes
2	comprising the steps of:
3	connecting the pad electrodes by a connection method in accordance with
4	claim 2;
5	obtaining an X-ray transmission image by radiating X rays from the back
6	surface side of said substrate; and
7	detecting the shape of solder after each of said solder bumps has been
8	melted and flowed on one of said substrate-side pad electrodes, from the obtained
9	X-ray transmission image; and
10	making a pass/fail discrimination of the connection state between each of
11	the component-side pad electrodes and one of the substrate-side pad electrodes.
1	7. A connection structure comprising:
2	a substrate having a surface and substrate-side pad electrodes formed on
3	the substrate surface;
4	a surface-mount component having a surface and component-side pad
5	electrodes formed on the surface, the surface being opposed to the substrate with
6	each component-side pad electrode opposed to one of the substrate-side pad
7	electrodes;
8	wherein the substrate-side pad electrodes are arranged inside a
9	component-corresponding region, the length of each of the substrate-side pad
10	electrodes being larger than that of the corresponding component-side pad
11	electrode, and wherein each of the component-side pad electrodes is connected to
12	the corresponding substrate-side pad electrode by a solder which has flowed
13	between the component-side pad electrodes and the substrate-side pad electrodes

- 8. A connection structure between the pad electrodes in accordance
- with claim 7, wherein the width of each of said component-side pad electrodes is
- 3 set to be larger than the width of each of said substrate-side pad electrodes.