Fonctions holomorphes

Table des matières

1	Fon	ctions d'une variable complexe	2			
2	Fonctions élémentaires					
	2.1	Polynômes	2			
	2.2	Fonctions rationnelles	3			
	2.3	Fonction exponentielle	3			
	2.4	Représentation géométrique de e^z	4			
	2.5	Fonction logarithme	4			
	2.6	Puissances complexes	5			
3	Dérivation dans le plan complexe 6					
	3.1	Notions préliminaires	6			
		3.1.1 Régions de \mathbb{C}	6			
		3.1.2 Limite et continuité	6			
	3.2	Dérivation dans \mathbb{C}				
	3.3	Les équations de Cauchy-Riemann				
	3.4	Fonction exponentielle	10			
	3.5	Logarithme	10			
	3.6	Puissances	11			
4	Inté	egration dans le domaine complexe	12			
	4.1	Définition et premières propriétés	12			
	4.2	Théorème de Cauchy	15			
	4.3	Formule intégrale de Cauchy	16			
	4.4	Dérivées des fonctions holomorphes	17			
	4.5	Conséquences de la formule intégrale de Cauchy	18			
5	Séries entières 19					
	5.1	Séries entières et rayon de convergence	19			
	5.2	Fonctions analytiques et théorème de Cauchy-Taylor	19			
	5.3	Application : Principe de prolongement analytique	21			
6	Singularités 22					
	6.1	Singularités isolées	22			
	6.2	Séries de Laurent	22			
	6.3	Singularités isolées et séries de Laurent	23			

	6.4	Théorème des résidus	2 4
	6.5	Calcul des résidus	
	6.6	Évaluation d'intégrales réelles par la méthode des résidus	26
		6.6.1 Intégrales de la forme $I = \int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx$	
		6.6.2 Intégrales de la forme $I = \int_0^{2\pi} R(\cos \theta, \sin \theta) d\theta$	
		6.6.3 Transformée de Fourier : $I = \int_{-\infty}^{+\infty} f(x)e^{iax} dx$	28
		6.6.4 Intégrales de la forme $I = \int_0^{+\infty} \frac{x^{-c}}{Q(x)} dx$	26
7	Sph	ère de Riemann et transformations conformes	30
-	7.1	Sphère de Riemann	30
8	Tra		30
	8.1	Transformations homographiques de la sphère de Riemann	31
	8.2	Exemples	

1 Fonctions d'une variable complexe

Définition 1.1

- Une fonction complexe d'une variable complexe est une application d'un sous-ensemble $S \subset \mathbb{C}$ dans \mathbb{C} . On la note $f: S \to \mathbb{C}$.

- $-\omega = f(z)$ est le nombre complexe image de z par f.
- -S est l'ensemble de définition de f.

En identifiant \mathbb{C} avec \mathbb{R}^2 , on peut considérer f comme une fonction vectorielle de deux variables réelles :

$$f(z) = u(z) + iv(z),$$
 $\Re(f) = u, \ \Im(f) = v$

peut s'écrire, en posant z = x + iy = (x, y)

$$f(x,y) = u(x,y) + iv(x,y).$$

Exemple: $f(z) = z^2 = (x + iy)^2 = x^2 - y^2 + 2ixy$. Ici $u(x, y) = x^2 - y^2$ et v(x, y) = 2xy.

2 Fonctions élémentaires

2.1 Polynômes

$$f(z) = a_0 + a_1 z + \dots + a_n z^n \qquad (a_i \in \mathbb{C}, \ a_n \neq 0)$$

f est définie dans tout le plan complexe \mathbb{C} .

Exemple 1: f(z) = iz = i(x+iy) = -y + ix. Ici f(x+iy) = u(x,y) + iv(x,y) avec u(x,y) = -y et u(x,y) = x.

Géométriquement, il s'agit d'une rotation d'angle $\frac{\pi}{2}$ dans \mathbb{C} .

3

Exemple 2:
$$f(z) = z^2 = (x + iy)^2 = x^2 - y^2 + 2ixy$$

Géométriquement,

En particulier,

$$\{z, \Re(z) \ge 0, \Im(z) \ge 0\} \longrightarrow \{\omega, \Im(\omega) \ge 0\}.$$

2.2 Fonctions rationnelles

$$f(z) = \frac{p(z)}{q(z)}$$
 p, q polynômes

f est définie sur $\mathbb{C}\setminus\{z,\ q(z)\neq 0\}$.

Exemple:
$$f(z) = \frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{x - iy}{x^2 + y^2}$$
. Ici, $u(x, y) = \frac{x}{x^2 + y^2}$ et $v(x, y) = \frac{-y}{x^2 + y^2}$. En particulier, $\{z, \ 0 < |z| \le 1\}$ \longrightarrow $\{\omega, \ |\omega| \ge 1\}$.

2.3 Fonction exponentielle

On pose, par définition,

$$e^z = e^x(\cos(y) + i\sin(y))$$

avec e^x l'exponentielle réelle.

Exemple: $e^{i\pi} = e^0(\cos \pi + i \sin \pi) = -1$

Alors, la fonction exponentielle $f(z) = e^z$ a les propriétés suivantes :

(i) Elle est définie sur $\mathbb C$ et se réduit à e^x lorsque $z=x\in\mathbb R.$

$$(ii) |e^z| = e^x, \arg(e^z) = y$$

$$(iii) e^{z_1+z_2} = e^{z_1}e^{z_2}$$

 \triangleright En notant $z_1 = x_1 + iy_1$ et $z_2 = x_2 + iy_2$,

$$e^{z_1+z_2} = e^{(x_1+x_2)+i(y_1+y_2)} = e^{x+1+x_2}(\cos(y_1+y_2)+i\sin(y_1+y_2))$$

= $e^{x_1x_2}(\cos y_1+i\sin y_1)(\cos y_2+i\sin y_2)$
= $e^{z_1}e^{z_2}$

2.4 Représentation géométrique de e^z

 e^z envoie les droites parallèles à l'axe des abscisses sur les demi-droites issues de l'origine. e^z envoie les droites parallèles à l'axe des ordonnées sur les cercles centrés sur l'origine.

Proposition 2.1

Toute bande de la forme

$$S_{y_0} = \{x + iy, \ y_0 \le y < y_0 + 2\pi\}$$

est envoyée bijectivement sur $\mathbb{C}\setminus\{0\}$ par e^z .

$$\forall z, \ e^z \neq 0 \ \text{car} \ 1 = e^0 = e^{z-z} = e^z e^{-z}.$$

2.5 Fonction logarithme

On veut définir $\log(z)$ comme réciproque de e^z :

$$e^{\log(z)} = z.$$

- (i) $\log(z)$ n'est pas défini pour z=0 car $e^z\neq 0$ $\forall z$.
- (ii) Pour $z \neq 0$, on pose

$$\log(z) = \log|z| + i\arg(z) = \log|z| + i(\theta + 2k\pi)$$

où $\log |z|$ est le logarithme réel.

Alors,

$$e^{\log(z)} = e^{\log|z| + i(\theta + 2k\pi)} = e^{\log|z|} e^{i(\theta + 2k\pi)} = |z| e^{i\theta} = z.$$

Puisque $\arg(z)$ est défini à 2π près, $\log(z)$ est multiforme (possédant plusieurs déterminations)

Exemples:

$$\log(1) = \log|1| + i\arg(1) = 2ik\pi, \qquad k \in \mathbb{Z}$$
$$\log(i) = \log(|i|) + i\arg(i) = i\left(\frac{\pi}{2} + 2k\pi\right), \qquad k \in \mathbb{Z}$$

(iii) Afin d'obtenir une fonction uniforme, on restreint $\arg(z)$ à un intervalle de largeur 2π , en général $0 \le \arg(z) < 2\pi$ où $-\pi \le \arg(z) < \pi$.

Définition 2.2

La détermination principale de log(z) est

$$Log(z) = log(z) + i Arg(z), \quad -\pi \le Arg(z) < \pi$$

(iv) Afin d'obtenir $\log(z)$ continue, il faut restreindre le domaine de définition de \log .

Exemple : Ainsi définie, Log n'est pas continue sur $\mathbb{C}\setminus\{0\}$. En effet, le cercle unité (compact) a pour image $i[-\pi,\pi[$ qui ne l'est pas. On considère donc comme ensemble de définition $\mathbb{C}\setminus\mathbb{R}_-$ (\mathbb{R}_- est appelé coupure, 0 est appelé point de branchement). Sur cet ensemble, Log est continue et a pour image $i]-\pi,\pi[$.

Propriétés de $\log(z)$ (i) $\log(z)$ prolonge le logarithme réel

$$Log(z) = log(x)$$
 lorsque $z = x + i0, x > 0.$

(ii)
$$\log(z_1 z_2) = \log z_1 + \log z_2 \quad \forall z_1, z_2 \in \mathbb{C} \setminus \{0\}$$

 $\triangleright \quad \log(z_1 z_2) = \log |z_1 z_2| + i \arg(z_1 z_2) = \log |z_1| + i \arg(z_1) + \log |z_2| + i \arg(z_2) = \log z_1 + \log z_2 \quad \Box$

Exemple: $Log(-2i) = log 2 - i\frac{\pi}{2} \text{ et } log(-2i) = log 2 + i(\frac{\pi}{2} + 2k\pi)$

2.6 Puissances complexes

Soient $z, c \in \mathbb{C}, z \neq 0$. On pose

$$z^c = e^{c \log z}$$

Remarques : 1. Lorsque $c = n \in \mathbb{Z}$, on obtient $z^n = e^{n \log z}$ donc $z^n = e^{n(\log|z| + i \arg(z))} = e^{n \log|z|}e^{in \arg(z)} = |z|^n e^{in \arg(z)}$ ce qui est indépendant du choix d'argument.

2. Lorsque $c \notin \mathbb{Z}$, z^c est multiforme.

Exemple: Pour $c = \frac{1}{n}$, $n \neq 1$,

$$z^{1/n} = e^{\log(z)/n} = e^{(\log|z| + i\arg(z))/n} = |z|^{1/n} e^{i\arg(z)/n} = |z|^{1/n} e^{i(\operatorname{Arg}(z) + 2k\pi)/n}$$

Définition 2.3

La détermination principale de z^c est $e^{c \operatorname{Log}(z)}$.

Exemples: 1. $i^i = e^{i \log i} = e^{i(\log 1 + i \arg(i))} = e^{-(\frac{\pi}{2} + 2k\pi)}$. La détermination principale de i^i est donc $e^{-\frac{\pi}{2}}$.

2.
$$(-1)^{\frac{1}{n}} = e^{i\frac{-\pi + 2k\pi}{n}}$$

3 Dérivation dans le plan complexe

3.1 Notions préliminaires

3.1.1Régions de \mathbb{C}

Définition 3.1

(i) Un disque de rayon ε centré en z_0 est l'ensemble

$$D_{\varepsilon}(z_0) = \{ z \in \mathcal{C}, |z - z_0| < \varepsilon \}.$$

- (ii) Un ensemble $\Omega \subset \mathbb{C}$ est ouvert si pour chaque point $z_0 \in \Omega$ il existe $\varepsilon > 0$ tel que $D_{\varepsilon}(z_0) \subset \Omega$.
 - (iii) Une région est un ensemble ouvert et connexe de \mathbb{C} .

Exemple: (i)
$$\{z, \Re(z) = 0\}$$

(ii) $\mathbb{C}\setminus\{z_1,\ldots,z_n\}$

3.1.2 Limite et continuité

Soit f définie sur $D_{\varepsilon}(z_0)$ (sauf peut-être en z_0).

Définition 3.2

On dit que f(z) admet A comme limite lorsque z tend vers z_0 , et on note

$$\lim_{z \to z_0} f(z) = A \qquad \text{ou} \qquad f(z) \xrightarrow[z \to z_0]{} A$$

si et seulement si

$$\forall \varepsilon > 0, \ \exists \delta > 0, \qquad 0 < |z - z_0| < \varepsilon \implies |f(z) - A| < \varepsilon.$$

Proposition 3.3

Si
$$\lim_{z \to z_0} f(z) = A$$
 et $\lim_{z \to z_0} g(z) = B$ alors

(i) $\lim_{z \to z_0} (f(z) + g(z)) = A + B$

(i)
$$\lim_{z \to z_0} (f(z) + g(z)) = A + B$$

$$(ii) \lim_{z \to z_0} (f(z)g(z)) = AB$$

(iii)
$$\lim_{z \to z_0} \left(\frac{f(z)}{g(z)} \right) = \frac{A}{B} \text{ si } B \neq 0.$$

Définition 3.4

Soient Ω un ouvert de \mathbb{C} , $f:\Omega\to\mathbb{C}$.

- (i) f est continue en $z_0 \in \Omega$ si et seulement si $\lim_{z \to z_0} f(z) = f(z_0)$.
- (ii) f est continue sur Ω si elle est continue en chaque point de Ω .

Remarque: f = u + iv est continue si et seulement si u et v sont continues.

Proposition 3.5

- (i) Si f et g sont continues en z_0 alors il en est de même pour f+g, fg et $\frac{f}{g}$ si $g(z_0) \neq 0$.
 - (ii) Si f est continue en z_0 et g est continue en $\omega = f(z_0)$ alors $g \circ f$ est continue en z_0 .

Exemples: (i) $f(z) = e^z$ est continue sur \mathbb{C} .

- (ii) $g(z) = \frac{1}{z}$ est continue sur $\mathbb{C}\setminus\{0\}$. (iii) $h(z) = e^{\frac{1}{z}}$ est continue sur $\mathbb{C}\setminus\{0\}$.

3.2 Dérivation dans \mathbb{C}

Soient $\Omega \subset \mathbb{C}$ un ouvert et $f: \Omega \to \mathbb{C}$.

Définition 3.6

(i) La fonction f est dérivable en $z \in \Omega$ si la limite

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

existe. On la note f'(z).

- (ii) Si f'(z) existe en tout point $z \in \Omega$ on dit que f est holomorphe sur Ω .
- (iii) On note $H(\Omega)$ l'ensemble des fonctions holomorphes sur Ω .

Remarque: La définition (i) est équivalente à l'assertion (i'): f est dérivable en $z \in \Omega$ si et seulement si

$$f(z+h) = f(z) + ah + h\varphi(h)$$

avec $a \in \mathbb{C}$ et $\varphi(h) \in \mathbb{C}$ une fonction définie pour h au voisinage de 0 et vérifiant $\lim_{h \to 0} \varphi(h) = 0$. Alors, f'(z) = a.

Proposition 3.7

Si f est dérivable en z_0 alors f est continue en z_0 .

$$\lim_{h \to 0} f(z_0 + h) - f(z_0) = \frac{f(z_0 + h) - f(z_0)}{h} \times h = f'(z) \times 0 = 0.$$

Les propriétés principales de la dérivation sont les suivantes.

Théorème 3.8

Si f et q sont dérivables en z, alors

(i)
$$(f+g)'(z) = f'(z) + g'(z)$$

$$(ii) (fg)'(z) = f'(z)g(z) + f(z)g'(z)$$

(ii)
$$(fg)'(z) = f'(z)g(z) + f(z)g'(z)$$

(iii) $\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{g(z)^2}$ si $g(z) \neq 0$.

(iv) Si f est dérivable en z et g est dérivable en $\omega = f(z)$ alors

$$(g \circ f)'(z) = g'(f(z))f'(z).$$

Exemples : (i) Polynômes : Si $f(z) = z^n$ alors $f'(z) = nz^n$ (par le point (ii) et une récurrence) donc

$$f(z) = a_n z^n + \dots + a_0 \implies f'(z) = na_n z^{n-1} + \dots a_1.$$

Les polynômes sont holomorphes sur \mathbb{C} .

(ii) Fonctions rationnelles : si $f(z) = \frac{p(z)}{q(z)}$ où p,q sont des polynômes alors

$$f'(z) = \frac{p'(z)q(z) - p(z)q'(z)}{q(z)^2}$$

sur $\mathbb{C}\setminus\{z\in\mathbb{C},\ q(z)\neq 0\}$ par le point (iii).

3.3 Les équations de Cauchy-Riemann

Considérons $f:\Omega\to\mathbb{C}$ que l'on écrit comme

$$f(z) = u(x, y) + iv(x, y).$$

On formule une condition de dérivabilité de f en terme de u et v:

Théorème 3.9

(i) Si f est holomorphe dans Ω , alors

$$f'(z) = \frac{\partial u}{\partial x}(x, y) + i\frac{\partial v}{\partial x}(x, y) = \frac{\partial v}{\partial y}(x, y) - i\frac{\partial u}{\partial y}(x, y)$$

et

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ équations de Cauchy-Riemann.

(ii) Si les dérivées partielles de u et v (dans \mathbb{R}) sont continues (u et v sont de classes \mathcal{C}^1) et vérifient les équations de Cauchy-Riemann alors f est holomorphe dans Ω .

 \triangleright (i) Si f est dérivable en z alors

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}.$$

D'abord, prenons h = t réel.

$$\frac{f(z+t) - f(z)}{t} = \frac{u(x+t,y) - u(x,y)}{t} + i\frac{v(x+t,y) - v(x,y)}{t}$$

d'où, lorsque $t \to 0$, on obtient

(i)
$$f'(z) = \frac{\partial u}{\partial x}(x,y) + i\frac{\partial v}{\partial x}(x,y).$$

Ensuite, prenons h imaginaire pur : h = it.

$$\frac{f(z+it) - f(z)}{it} = \frac{u(x, y+t) - u(x, y)}{it} + i\frac{v(x, y+t) - v(x, y)}{it}$$

d'où, lorsque $t \to 0$, on obtient

(ii)
$$f'(z) = -i\frac{\partial u}{\partial y}(x,y) + \frac{\partial v}{\partial y}(x,y).$$

Ainsi, (i) et (ii) imposent

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

(ii) Puisque f(x,y) = (u(x,y), v(x,y)) est \mathcal{C}^1 par hypothèse,

$$f(x+k,y+l) - f(x,y) = \begin{pmatrix} \frac{\partial u}{\partial x}(x,y) & \frac{\partial u}{\partial y}(x,y) \\ \\ \frac{\partial v}{\partial x}(x,y) & \frac{\partial v}{\partial y}(x,y) \end{pmatrix} \begin{pmatrix} k \\ l \end{pmatrix} + \|h\| r(h)$$

où h = (k, l) et $r(h) \xrightarrow[h \to 0]{} 0$. Avec les équations de Cauchy-Riemann, on obtient

$$f(x+k,y+l) - f(x,y) = \left(\frac{\partial u}{\partial x}k - \frac{\partial v}{\partial x}l, \frac{\partial v}{\partial x}k + \frac{\partial u}{\partial x}l\right) = \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right)(k+il)$$

en identifiant \mathbb{R}^2 et \mathbb{C} . Alors,

$$f(z+h) - f(z) = \left(\frac{\partial u}{\partial x}(z) + i\frac{\partial v}{\partial x}(z)\right)h + ||h|| r(h)$$

donc

$$f'(z) = \frac{\partial u}{\partial x}(z) + i \frac{\partial v}{\partial x}(z)$$

par la définition (i') plus haut.

Exemple: (i) $f(z) = z^2$, $f \in H(\mathbb{C})$.

$$f(z) = (x + iy)^2 = x^2 - y^2 + 2ixy.$$

Ainsi $u(x,y) = x^2 - y^2$ et v(x,y) = 2xy sont \mathcal{C}^1 . De plus,

$$\frac{\partial u}{\partial x} = 2x = \frac{\partial v}{\partial y}$$
 $\frac{\partial u}{\partial y} = -2y = -\frac{\partial v}{\partial x}$

donc u, v vérifient les équations de Cauchy-Riemann et

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 2x + 2iy = 2z.$$

(ii) $f(z) = |z|^2 = x^2 + y^2$. On a $u(x,y) = x^2 + y^2$ et v(x,y) = 0 sont \mathcal{C}^1 mais les équations de Cauchy-Riemann ne sont pas vérifiées. Ainsi $|.|^2$ n'est pas dérivable dans $\mathbb{C}\setminus\{0\}$ et n'est pas holomorphe.

Théorème 3.10

Soit $f \in H(\Omega)$ où Ω est un ouvert connexe. Si f vérifie une des conditions suivantes sur Ω , alors f est constante sur Ω .

- $(i) f \equiv 0$
- (ii) $\Re(f) = constante$ (iii) $\Im(f) = constante$ (iv) |f| = constante(v) $\overline{f} \in H(\Omega)$

- (ii) Supposons que $\Re(f)$ est constante. Alors u(x,y)=c. Par les équations de Cauchy-Riemann, $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$ et v est constante. Ainsi, f est constante.

Fonction exponentielle 3.4

$$e^z = e^x(\cos y + i\sin y)$$

Proposition 3.11

$$exp \in H(\mathbb{C}) \text{ et } (e^z)' = e^z.$$

 $\Rightarrow u = e^x \cos y \text{ et } v = e^x \sin y \text{ sont de classe } \mathcal{C}^1 \text{ et } \frac{\partial u}{\partial x} = e^x \cos y = \frac{\partial v}{\partial y} \text{ et } \frac{\partial u}{\partial y} = -e^x \sin y = -\frac{\partial v}{\partial x}.$ Ainsi, exp est dérivable sur \mathbb{C} et

$$(e^z)' = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = e^x(\cos y + i \sin y) = e^z.$$

Exemple: $f(z) = e^{\frac{1}{z}}$ est dérivable dan $\mathbb{C}\setminus\{0\}$ et

$$f'(z) = e^{\frac{1}{z}} \left(-\frac{1}{z^2} \right) = \frac{-e^{\frac{1}{z}}}{z^2}.$$

3.5 Logarithme

Rappel: Log: $\mathbb{C}\backslash\mathbb{R}_{-} \to \{\omega \in \mathbb{C}, -\pi < \Im\omega < \pi\}$

Proposition 3.12

Log est holomorphe dans $\mathbb{C}\backslash\mathbb{R}_-$ et $\frac{d}{dz}\log(z)=\frac{1}{z}$.

Pour z tel que $\Re(z) > 0$,

$$Log(z) = \underbrace{log(\sqrt{x^2 + y^2})}_{u(x,y)} + i \underbrace{\arctan\left(\frac{y}{x}\right)}_{v(x,y)}.$$

u et v sont de classe \mathcal{C}^1 et vérifient

$$\frac{\partial u}{\partial x} = \frac{x}{x^2 + y^2} = \frac{\partial v}{\partial y}$$

et

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = \frac{y}{x^2 + y^2}$$

Ainsi, Log est dérivable et

$$\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{Log}(z) = \frac{x - iy}{x^2 + y^2} = \frac{\overline{z}}{|z|^2} = \frac{1}{z}.$$

3.6 Puissances

Soient $a, c \in \mathbb{C}, a \neq 0$.

Rappel: $a^c = e^{c \log a}$.

Définition 3.13

$$(i) a^z = e^{z \log a}$$
$$(ii) z^c = e^{c \log z}$$

Proposition 3.14

 $z \mapsto a^z$ est dérivable sur \mathbb{C} .

ho $f:z\mapsto a^z=e^{z\log a}$ est la composée de fonctions dérivables sur $\mathbb C$ donc f est dérivable sur $\mathbb C$ et

$$f'(z) = e^{z \log a} = e^{z \log a} \log(a) = a^z \log(a).$$

Proposition 3.15

Pour toute détermination de $\log(z)$, la fonction $f: z \mapsto z^c$ est dérivable dans la région de la détermination choisie et

$$f'(z) = cz^{c-1}.$$

$$f'(z) = \frac{c}{z}e^{c\log z} = cz^{c-1}.$$

Remarque : 1. On choisit la détermination principale Log(z) définie sur $\mathbb{C}\backslash\mathbb{R}_{-}$.

2. Lorsque $c = \frac{1}{n}$, on a $f(z) = z^{\frac{1}{n}}$ qui est holomorphe sur $\mathbb{C} \setminus \mathbb{R}_{-}$ et

$$f'(z) = \frac{1}{n} z^{\frac{1}{n} - 1}.$$

Exemples : Soit Log(z) la détermination principale de log(z) sur $\mathbb{C}\setminus\mathbb{R}_-$. Trouver les régions Ω sur lesquelles les fonctions suivantes sont holomorphes, ainsi que $f(\Omega)$.

1. $f: z \mapsto \sqrt{z}$. $f(z) = e^{\frac{1}{2} \operatorname{Log}(z)}$ est composée de fonctions holomorphes.

$$\mathbb{C}\backslash\mathbb{R}_{-} \quad \xrightarrow{z\mapsto \frac{1}{2}\operatorname{Log}(z)} \quad \left\{z\in\mathbb{C},\ \Im(z)\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right\} \quad \xrightarrow{z\mapsto e^{z}} \quad \left\{z\in\mathbb{C},\ \Re(z)>0\right\}$$

2. $f: z \mapsto \sqrt{z+1}$. $f(z) = e^{\frac{1}{2} \log(z+1)}$ est composée de fonctions holomorphes.

$$\mathbb{C}[z] = 1, +\infty[$$
 $\xrightarrow{z \mapsto \sqrt{z+1}}$ $\{z \in \mathbb{C}, \Re(z) > 0\}$

3. $f: z \mapsto \sqrt{z^2+1}$. $f(z)=e^{\frac{1}{2}\operatorname{Log}(z^2+1)}$ est composée de fonctions holomorphes.

$$\mathbb{C}\backslash\{iy,\ y\in\mathbb{R},\ |y|\geq 1\} \quad \xrightarrow{z\mapsto\sqrt{z^2+1}} \quad \{z\in\mathbb{C},\ \Re(z)>0\}$$

4 Intégration dans le domaine complexe

4.1 Définition et premières propriétés

Soit $f:[a,b]\to\mathbb{C}$ une fonction continue. On écrit

$$f(t) = u(t) + iv(t).$$

Définition 4.1

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt.$$

Exemple: $f(t) = t^2 + it^3$.

$$\int_0^1 f(t)dt = \int_0^1 t^2 dt + i \int_0^1 t^3 dt = \frac{1}{3} + \frac{i}{4}.$$

Définition 4.2

Un chemin (de classe C^1 par morceaux) est une application continue $\gamma:[a,b]\to\mathbb{C}$ telle qu'il existe une partition $a=t_0< t_1< \cdots < t_n=b$ avec $\gamma_{|[t_i,t_{i+1}]}$ de classe C^1 pour $i=0,\ldots,n-1$. Si $\gamma(a)=\gamma(b)$ on parle de chemin fermé ou lacet. On note $\gamma^*=\gamma([a,b])$.

Définition 4.3

Soit γ un chemin et f une fonction continue sur γ^* . On pose

$$\int_{\gamma} f(z)dz = \sum_{i=0}^{n-1} \left(\int_{t_i}^{t_{i+1}} f(\gamma(t))\gamma'(t)dt \right).$$

Exemples : – Calculer l'intégrale de $f(z) = x^2 + ixy$ sur le chemin $\gamma(t) = t + it^2$, $0 \le t \le 1$.

$$\int_{\gamma} f(z) dz = \int_{0}^{1} (t^{2} + it^{3})(1 + 2it) dt = \int_{0}^{1} (t^{2} - 2t^{4}) dt + i \int_{0}^{1} 3t^{3} dt = \frac{-1}{15} + \frac{3}{4}i$$

 $-f(z) = \frac{1}{z}, \ \gamma(t) = e^{it}, \ 0 \le t \le 2\pi. \ Alors$

$$\int_{\gamma} \frac{\mathrm{d}z}{z} = \int_{0}^{2\pi} e^{-it} e^{it} dt = \int_{0}^{2\pi} i dt = 2i\pi.$$

Propriétés de l'intégrale sur un chemin

$$(i) \int_{\gamma} (\alpha f + \beta g) dz$$

(ii) Invariance par changement de paramètre : Un chemin $\tilde{\gamma}:[c,d]\to\mathbb{C}$ est obtenu à partir de γ par changement de paramètre s'il existe une application bijective $\varphi:[a,b]\to[c,d]$ de classe \mathcal{C}^1 avec $\varphi(a)=c$ et $\varphi(b)=d$ telle que $\gamma(t)=\tilde{\gamma}(\varphi(t))$. Alors,

$$\int_{\gamma} f \mathrm{d}z = \int_{\tilde{\gamma}} f \mathrm{d}z.$$

(théorème de changement de variables)

(iii) Si $\gamma:[a,b]\to\mathbb{C}$ est un chemin on définit

$$\overline{\gamma}(t) = \gamma(a+b-t)$$

et on a

$$\int_{\overline{\gamma}} f \mathrm{d}t = -\int_{\gamma} f \mathrm{d}t.$$

(iv) On a

$$\left| \int_{\gamma} f \mathrm{d}z \right| \le ML$$

où $M = \sup_{z \in \gamma^*} |f(z)|$, et $L = \int_a^b |\gamma'(t)| \mathrm{d}t$: longueur de γ .

ightharpoonup Si $\int_{\gamma} f dz = 0$ alors l'inégalité est vraie. Sinon, on peut écrire sous forme polaire :

$$\int_{a}^{b} f(\gamma(t))\gamma'(t)dt = re^{i\theta}.$$

Alors,

$$r = e^{-i\theta} \int_a^b f(\gamma(t))\gamma'(t)dt = \int_a^b e^{-i\theta} f(\gamma(t))\gamma'(t)dt.$$

Mais, $r \in \mathbb{R}$ donc

$$r = \Re\left(\int_a^b e^{-i\theta} f(\gamma(t)) \gamma'(t) dt\right) = \int_a^b \Re(e^{-i\theta} f(\gamma(t)) \gamma'(t)) dt \le \int_a^b \left| e^{-i\theta} f(\gamma(t)) \gamma'(t) \right| dt.$$

De plus, r > 0 donc

$$r = |r| = \left| e^{-i\theta} \int_a^b f(\gamma(t)) \gamma'(t) dt \right|.$$

Ainsi,

$$\left| \int_a^b f(\gamma(t)) \gamma'(t) \mathrm{d}t \right| \leq \int_a^b |f(\gamma(t))| |\gamma'(t)| \mathrm{d}t \leq \sup_{t \in [a,b]} |f(\gamma(t))| \int_a^b |\gamma'(t)| \mathrm{d}t.$$

Soit Ω un ouvert connexe.

Théorème 4.4

Soit f une fonction continue sur Ω . Les assertions suivantes sont équivalentes :

- $(i) \exists F \in H(\Omega), F' = f;$
- (ii) $\int_{\Omega} f dz = 0$ pour tout chemin fermé dans Ω .
- (iii) $\int_{\gamma} f dz$ ne dépend que des extrémités de γ pour tout chemin γ dans Ω .

 \triangleright $(i) \Rightarrow (ii) \text{ ON a}$

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt = \int_{a}^{b} F'(\gamma(t)) \gamma'(t) dt = \int_{a}^{b} \left(\frac{d}{dt} F(\gamma(t)) \right) dt = F(\gamma(b)) - F(\gamma(a)) = 0.$$

 $(ii) \Rightarrow (iii)$ Soient γ_0 et γ_1 deux avec ayant les mêmes extrémités. Alors $\gamma = \gamma_0 + \overline{\gamma_1}$ est un chemin fermé et

$$0 = \int_{\gamma} f \mathrm{d}z = \int_{\gamma_0} f \mathrm{d}z + \int_{\overline{\gamma_1}} f \mathrm{d}z = \int_{\gamma_0} f \mathrm{d}z - \int_{\gamma_1} f \mathrm{d}z.$$

 $(iii) \Rightarrow (i)$ On fixe $z_0 \in \Omega$ et on pose

$$F(z) = \int_{z_0}^{z} f(\zeta) d\zeta.$$

F est bien définie car indépendante du γ choisi. Montrons que F'(z)=f(z).

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| = \frac{1}{|h|} \left| \int_{z}^{z+h} f(\zeta) d\zeta - hf(z) \right| = \frac{1}{|h|} \left| \int_{z}^{z+h} (f(\zeta) - f(z)) d\zeta \right|$$

donc, par continuité de f,

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| \le \frac{1}{|h|} \times |h| \underbrace{\sup_{\zeta \in [z,z+h]} |f(\zeta) - f(z)|}_{b \to 0}.$$

Remarque: – On voit que Log(z) n'est pas holomorphe sur $\mathbb{C}\setminus\{0\}$ car

$$\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{Log}(z) = \frac{1}{z}$$
 et $\int_{|z|=1} \frac{\mathrm{d}z}{z} = 2i\pi \neq 0$.

– On aura besoin de considérer $\int_{\mathcal{C}} f(z) dz$ où \mathcal{C} est un chemin géométrique orienté (cercle, segment, etc.). Alors on choisit un chemin $\gamma:[a,b]\to\mathbb{C}$ avec $\gamma'(t)\neq 0$ tel que $\gamma^*=\mathcal{C}$ et γ est bijective. On pose $\int_{\mathcal{C}} f(z) dz = \int_{\gamma} f(z) dz$. Cette intégrale est bien définie car $\gamma_1^*=\mathcal{C}=\gamma_2^*\Rightarrow \gamma_1,\gamma_2$ diffèrent d'un changement de paramètre d'où $\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$.

4.2 Théorème de Cauchy

Définition 4.5

Un chemin $\gamma:[a,b]\to\mathbb{C}$ est simple si $\gamma_{|[a,b[}$ est injective.

D'après le lemme de Jordan, si γ est simple et fermé alors $\mathbb{C}\backslash\gamma^*$ a deux composantes connexes :

- une composante bornée : l'intérieur de γ^* ,
- une composante non bornée : l'extérieur de γ^* .

Donc γ^* est le bord d'un compact $\mathcal{R} = \gamma^* \cup \gamma^*$. On oriente γ^* dans le sens direct.

Théorème 4.6 (Cauchy)

Si f est holomorphe et f' est continue sur un compact $\mathcal{R} \subset \Omega$ alors

$$\int_{\gamma^*} f(z)dz = 0.$$

 \triangleright (i) Rappel : théorème de Green-Riemann pour les intégrales curvilignes : avec γ, \mathcal{R} comme ci-dessus et P(x,y), Q(x,y) de classe \mathcal{C}^1 dans $\Omega \supset \mathcal{R}$ on a

$$\int_{\gamma^*} P dx + Q dy = \iint_{\mathcal{R}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

(ii) On écrit f = u + iv et f = u + iv et dz = dx + idy d'où

$$\int_{\gamma^*} f(z) dz = \int_{\gamma^*} u dx - v dy + i \int_{\gamma^*} v dx + u dy = \iint_{\mathcal{R}} \left(-\frac{\partial V}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy + i \iint_{\mathcal{R}} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy = 0$$

grâce aux équations de Cauchy-Riemann.

Remarque : (i) Cette démonstration est celle de Cauchy. On avait besoin de u, v de classe C^1 . (ii) Gorsat a donné une démonstration du théorème de Cauchy sans l'hypothèse de la continuité des dérivées partielles de u, v.

De façon plus générale : soient C_1, \ldots, C_n des chemins simples fermés tels que les C_i forment le bord d'un compact $\mathcal{R} \subset \mathbb{C}$, $\partial R = C_1 \cup \cdots \cup C_n$. On oriente les C_i dans le sens direct.

Théorème 4.7 (Cauchy)

Si f est holomorphe sur $\mathbb{R} \subset \Omega$ alors

$$\int_{\mathcal{C}_1} f(z)dz = \int_{\mathcal{C}_2} f(z)dz + \dots + \int_{\mathcal{C}_n} f(z)dz$$

 \triangleright On fait la preuve dans le cas n=2. On ajoute deux segments de liant \mathcal{C}_1 à \mathcal{C}_2 . On sépare donc \mathcal{R} en deux compacts \mathcal{R}_i et on orient le bord comme sur le schéma. Alors,

$$\int_{\mathcal{C}_1} f(z) dz - \int_{\mathcal{C}_2} f(z) dz = \int_{\Gamma_1} f(z) dz + \int_{\Gamma_2} f(z) dz = 0$$

par le théorème de Cauchy.

4.3 Formule intégrale de Cauchy

Théorème 4.8

Soit \mathcal{C} un chemin simple fermé. Supposons que f est holomorphe sur l'intérieur de \mathcal{C} et en tout point de \mathcal{C} . Soit $z_0 \in \overset{\circ}{\mathcal{C}}$. Alors,

$$f(z_0) = \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(z)}{z - z_0} dz.$$

Remarque : Ce théorème dit que f (holomorphe) est complètement déterminée dans $\overline{\circ}C$ par ses valeurs sur C!!

Exemples : Utiliser la formule intégrale de Cauchy pour calculer les intégrales suivantes.

(i)
$$\int_{|z|=1} \frac{e^z}{z} dz = \int_{|z|=1} \frac{e^z}{z-0} dz = 2i\pi e^0 = 2i\pi.$$

(ii)
$$\int_{|z|=2}^{\infty} \frac{z}{(z^2-9)(z-i)} dz = \int_{|z|=2} \frac{f(z)}{z-i} dz$$
 où $f(z) = \frac{z}{z^2-9}$. Donc

$$\int_{|z|=2} \frac{z}{(z^2-9)(z-i)} dz = 2i\pi f(i) = \frac{\pi}{5}.$$

 \triangleright (i) On a

$$\int_{\mathcal{C}} \frac{f(z)}{z - z_0} dz = \int_{\mathcal{C}} \frac{f(z) - f(z_0) + f(z_0)}{z - z_0} dz = \int_{\mathcal{C}} \frac{f(z) - f(z_0)}{z - z_0} dz + \int_{\mathcal{C}} \frac{f(z_0)}{z - z_0} dz.$$

(ii) Soit $\varepsilon > 0$. On considère le cercle $\mathcal{C}_{\varepsilon}$ centré en z_0 de rayon ε . Par le théorème de Cauchy,

$$\int_{\mathcal{C}} \frac{f(z_0)}{z - z_0} dz = \int_{\mathcal{C}_{\varepsilon}} \frac{f(z_0)}{z - z_0} dz = f(z_0) \int_0^{2\pi} \frac{1}{\varepsilon e^{it}} i\varepsilon e^{it} dt = 2i\pi f(z_0)$$

(iii) Par ailleurs, le théorème de Cauchy assure que

$$\int_{\mathcal{C}} \frac{f(z) - f(z_0)}{z - z_0} dz = \int_{\mathcal{C}_{\varepsilon}} \frac{f(z) - f(z_0)}{z - z_0} dz$$

donc, par continuité de f,

$$\left| \int_{\mathcal{C}} \frac{f(z) - f(z_0)}{z - z_0} dz \right| = \left| \int_{\mathcal{C}_{\varepsilon}} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \leq \underbrace{\sup_{t \in [0, 2\pi]} \left| f(z_0 + \varepsilon e^{it}) - f(z_0) \right|}_{\underset{\varepsilon \to 0}{\longrightarrow} 0} \times 2\pi$$

donc $\int_{\mathcal{C}} \frac{f(z) - f(z_0)}{z - z_0} dz = 0$ et donc

$$\int_{\mathcal{C}} \frac{f(z)}{z - z_0} \mathrm{d}z = 2i\pi f(z_0).$$

En général, avec les hypothèses du théorème, si $z \in \overset{\circ}{\mathcal{C}}$ alors

$$f(z) = \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

(représentation intégrale de f(z).)

4.4 Dérivées des fonctions holomorphes

On montre, à l'aide de la formule intégrale de Cauchy, que si f est holomorphe dans Ω alors toutes ses dérivées $f^{(n)}$ existent dans Ω . Étant donné

$$f(z) = \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

on dérive sous le signe intégral afin d'obtenir

$$f'(z) = \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta.$$

Théorème 4.9

Soient $\mathcal C$ un chemin simple fermé et f une fonction holomorphe sur $\overset{\circ}{\mathcal C}$ ainsi que sur $\mathcal C$. Si $z\in \overset{\circ}{\mathcal C}$

alors

$$f^{(n)}(z) = \frac{n!}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta.$$

 \triangleright Cas n=1. Écrivons f à l'aide de la formule de Cauchy :

$$\frac{1}{h} \left(\frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{\zeta - (z+h)} d\zeta - \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{\zeta - z} d\zeta \right) - \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta = \frac{1}{h} \int_{\mathcal{C}} \frac{f(\zeta)}{(\zeta - z - h)(\zeta - z)^2} d\zeta.$$

Donc

$$\left| \frac{f(z+h) - f(z)}{h} - \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{(\zeta - z)^2} dz \right| \le \frac{|h|ML}{2\pi(d - |h|)d^2} \xrightarrow[h \to 0]{} 0$$

où $d = d(z, \mathcal{C})$ L est la longueur de \mathcal{C} et M majore $|f(\zeta)|$ sur \mathcal{C} .

On en déduit le théorème suivant.

Théorème 4.10

Si
$$f \in H(\Omega)$$
 alors $\forall n \ge 0, \ f^{(n)} \in H(\Omega)$.

On a « la réciproque » suivante du théorème de Cauchy.

Théorème 4.11 (Morera)

Si f est continue dans Ω et $\int_{\mathcal{C}} f(z)dz = 0$ pour tout chemin fermé dans Ω alors $f \in H(\Omega)$.

$$ightharpoonup$$
 Si $\int_{\mathcal{C}} f(z) dz = 0$ pour tout \mathcal{C} alors il existe $F \in H(\Omega)$ tel que $F' = f$ donc $f \in H(\Omega)$.

4.5 Conséquences de la formule intégrale de Cauchy

Théorème 4.12 (Inégalités de Cauchy)

Si $\overline{D(z_0,r)} \subset \Omega$, $f \in \overline{H(\Omega) |et|f(z)| \leq M} |sur \partial \overline{D(z_0,r)}|$ alors

$$|f^{(n)}(z_0)| \le \frac{n!}{r^n} M.$$

$$|f^{(n)}(z_0)| \le \frac{n!}{2\pi} \times \frac{M}{r^{n+1}} \times 2\pi r = \frac{n!}{r^n} M.$$

Théorème $4.13 \; (Liouville)$

Si $f \in H(\mathbb{C})$ et f est bornée alors f est constante.

ightharpoonup Soit $z \in \mathbb{C}$. On considère $\overline{D(z,r)} \in \mathbb{C}$. D'après les inégalités de Cauchy, $|f'(z)| \leq \frac{M}{r} \xrightarrow[r \to +\infty]{} 0$ donc f'(z) = 0. Comme $f'(z) = 0 \ \forall z \in \mathbb{C}$, f est constante.

5 Séries entières

Séries entières et rayon de convergence

Définition 5.1

Une série entière est une série du type $\sum_{n=0}^{\infty} a_n(z-z_0)^n$.

Exemple : La série géométrique $\sum z^n$ converge (vers $\frac{1}{1-z}$) si et seulement si |z| < 1.

Théorème 5.2

Soit $\sum a_n(z-z_0)^n$ une série entière. Alors il existe $R \in [0,+\infty]$, appelé rayon de convergence, tel que la série converge uniformément et absolument dans $D(z_0, R)$ (et diverge à l'extérieur). On l'obtient par la formule :

$$\frac{1}{R} = \limsup_{n \to +\infty} (|a_n|^{\frac{1}{n}}).$$

Proposition 5.3

On peut également calculer R grâce :

- au critère de Cauchy : $\frac{1}{R} = \lim_{n \to +\infty} (|a_n|^{\frac{1}{n}})$ (si cette limite existe); au critère de d'Alembert : $\frac{1}{R} = \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|$ (si cette limite existe).

Exemples: $-\sum \frac{z^n}{n!}$ a pour rayon de convergen $R = +\infty$.

 $-\sum n!z^n$ a pour rayon de convergence R=0.

Théorème 5.4

Les séries entières sont holomorphes dans leur disque ouvert de convergence.

Si $f: z \mapsto \sum a_n(z-z_0)^n$ est une série entière (de rayon R), alors sa dérivée est f'(z) = $\sum na_n(z-z_0)^{n+1}$ (et elle a même rayon de convergence).

Corollaire 5.5

Une série entière admet des dérivées de tout ordre dans son disque ouvert de convergence.

Fonctions analytiques et théorème de Cauchy-Taylor

Définition 5.6

On dit que $f:\Omega\to\mathbb{C}$ est analytique si $\forall D(z_0,r)\subset\Omega$, il existe une série $\sum a_n(z-z_0)^n$

20

convergente dans $D(z_0, r)$ et telle que

$$f(z) = \forall z \in D(z_0, r), \qquad \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

Remarque: 1. Si f est analytique alors $f \in H(\Omega)$.

2. Si
$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 dans $D(z_0, r)$ alors

$$\forall n \in \mathbb{N}, \qquad a_n = \frac{f^{(n)}(z_0)}{n!}$$

d'où

$$f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \qquad \text{série de Taylor.}$$

En effet, $f(z) = a_0 + a_1(z - z_0) + \dots \Rightarrow f(z_0) = a_0, \ f'(z_0) = a_1, \ f''(z_0) = 2a_2, \dots$

Théorème 5.7 (Cauchy-Taylor)

Soit $f \in H(\Omega)$. Alors pour tout disque $D(z_0, r) \subset \Omega$,

$$\forall z \in D(z_0, r), \qquad f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

 \triangleright On note $\mathcal{C} = \partial \overline{D(z_0, r)}$. Par la formule intégrale de Cauchy, on a :

$$\forall z \in D(z_0, r), \qquad f(z) = \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{\zeta - z}$$

Or

$$\frac{f(\zeta)}{\zeta - z} = \frac{f(\zeta)}{(\zeta - z_0) - (z - z_0)} = \frac{f(\zeta)}{\zeta - z_0} \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} \\
= \frac{f(\zeta)}{\zeta - z_0} \left(1 + \frac{z - z_0}{\zeta - z_0} + \dots + \left(\frac{z - z_0}{\zeta - z_0} \right)^{N-1} + \frac{\left(\frac{z - z_0}{\zeta - z_0} \right)^N}{1 - \frac{z - z_0}{\zeta - z_0}} \right)$$

donc

$$f(z) = \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{\zeta - z_0} d\zeta + \frac{z - z_0}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{(\zeta - z_0)^2} d\zeta + \dots + \frac{(z - z_0)^{N-1}}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{(\zeta - z_0)^N} d\zeta + \rho_N(z)$$

$$= f(z_0) + f'(z_0)(z - z_0) + \dots + \frac{f^{(N-1)}(z_0)}{(N-1)!} (z - z_0)^{N-1} + \rho_N(z)$$

avec

$$\rho_N(z) = \frac{(z - z_0)^N}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{(\zeta - z_0)^N (\zeta - z)} d\zeta$$

Donc cette série converge vers f(z) si et seulement si $\lim_{N \to +\infty} \rho_N(z) = 0$. Mais

$$|\rho_N(z)| \le \frac{|z - z_0|^N}{2\pi} \times \frac{M}{r^N d} \times 2\pi r$$

avec $M = \sup_{\zeta \in \mathcal{C}} |f(\zeta)|$ et $d = \inf_{\zeta \in \mathcal{C}} |\zeta - z|$. Donc

$$|\rho_N(z)| \le \frac{Mr}{d} \left(\frac{|z-z_0|}{r}\right)^N \xrightarrow[N \to +\infty]{} 0$$

$$\operatorname{car} \frac{|z - z_0|}{r} < 1.$$

Corollaire 5.8

f est holomorphe sur Ω si et seulement si f est analytique sur Ω .

Exemples: 1. $e^z = 1 + z + \frac{z^2}{2} + \dots + \frac{z^n}{n!} + \dots$, $z \in \mathbb{C}$. $f(z) = e^z$ est holomorphe dans \mathbb{C} d'où $e^z = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} z^n, \, \forall n \in \mathbb{N}, \, f^n(0) = e^0 = 1$

- 2. $Log(1+z) = z \frac{z^2}{2} + \frac{z^3}{3} \frac{z^4}{4} + \dots + \frac{(-1)^{n-1}}{n} z^n + \dots, \ |z| < 1.$ 3. On définit $\sin(z) = z \frac{z^3}{3!} + \frac{z^5}{5!} \frac{z^7}{7!} + \dots, \ z \in \mathbb{C}$ et $\cos(z) = 1 \frac{z^2}{2} + \frac{z^4}{4!} \frac{z^6}{6!} + \dots, \ z \in \mathbb{C}.$

Application: Principe de prolongement analytique

Théorème 5.9

Si
$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 dans $D(z_0, r)$ avec $f(z_0) = 0$, alors
$$- \text{ soit } f(z) = \text{° pour tout } z \in D(z_0, r)$$

$$- \text{ soit il existe } \varepsilon \leq r \text{ tel que } f \text{ n'a pas de zéro dans } D'(z_0, \varepsilon) = \{z \in \mathbb{C}, \ 0 < |z - z_0| < \varepsilon\}.$$

 \triangleright On suppose $f \neq 0$ dans $D(z_0, r)$. Par changement de variable, on suppose $z_0 = 0$ donc f(0) = 0. Alors $f(z) = a_m z^m + a_{m+1} z^{m+1} + \dots$ avec $a_m \neq 0$, $m \geq 1$. Un tel $a_m \neq 0$ existe car $f \neq 0$ dans $D(z_0,r)$. Donc $f(z) = z^m(a_m + a_{m+1}z + \dots) = z^m(a_m + h(z))$ avec $h(z) = a_{m+1}z + \dots$ analytique et h(0) = 0. Par continuité de h, il existe $\varepsilon \leq r$ tel que $|h(z)| < |a_m|$ dans $D(0,\varepsilon)$ donc $f(z) = z^m(a_m + h(z)) \neq 0 \text{ dans } D'(0, \varepsilon).$ П

Définition 5.10

Soit
$$f: \Omega \to \mathbb{C}$$
. On pose $Z(f) = \{z \in \Omega, \ f(z) = 0\}$ (zéros de f).

Théorème 5.11 (zéros isolés)

Si $f \in H(\Omega)$, Ω connexe, alors

- soit $Z(f) = \Omega$, - soit Z(f) n'a pas de point d'accumulation dans Ω .

Découle du théorème précédent (exercice)

Corollaire 5.12 (Principe de prolongement analytique)

Si f et g sont holomorphes dans Ω connexe et f = g sur un ensemble de points ayant un point d'accumulation dans Ω , alors f = g dans Ω .

Théorème des zéros isolés à f - g.

Singularités 6

6.1Singularités isolées

Définition 6.1

La fonction f admet une singularité isolée en z_0 si f est holomorphe dans un disque épointé $D'(z_0, r) = \{ z \in \mathbb{C}, \ 0 < |z - z_0| < r \}$

Exemples : 1. $\frac{z^2+1}{z-1}$ a un singularité isolée en z=1. 2. $\frac{1}{z^2(z-1)}$ a des singularités isolées en z=0 et z=1.

- 3. $e^{\frac{1}{z}}$ a une singularité isolée en z=0.
- 4. Mais Log(z) a une singularité non isolée en z=0.

6.2Séries de Laurent

On considère la couronne $A = \{z \in \mathbb{C}, r_1 < |z - z_0| < r_2\}, 0 \le r_1 < r_2.$

Théorème 6.2

Si f est holomorphe dans A, alors

$$\forall z \in A, \qquad f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n + \sum_{n=1}^{+\infty} \frac{b_n}{(z - z_0)^n}.$$

Les deux séries convergent absolument dans A et uniformément dans tout compact $K \subset A$. Les coefficients a_n, b_n sont donnés par

$$a_n = \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$
 et $b_n = \frac{1}{2i\pi} \int_{\mathcal{C}} f(\zeta)(z - z_0)^{n-1} d\zeta$

pour $C = \{z \in \mathbb{C}, |z - z_0| = r\}$ avec $r_1 < r < r_2$.

Remarque : 1. Ce développement est appelé série de Laurent de f dans la couronne A.

2.
$$\sum_{n=0}^{+\infty} a_n (z-z_0)^n$$
 est la partie analytique et $\sum_{n=1}^{+\infty} \frac{b_n}{(z-z_0)^n}$ est la partie principale.

 \triangleright On pose $z_0 = 0$ sans perte de généralité. Soit $z \in A$. On choisit $s_1, \underline{s_2}$ tels que $r_1 < s_1 < |z| < s_2 < r_2$ et on note C_i le cercle de rayon s_i centré en $z_0 = 0$. Soit $\gamma = \partial \overline{D(z, \varepsilon)}$ dans l'intérieur de la couronne délimitée apr C_1 et C_2 .

$$(i) \ f(z) = \frac{1}{2i\pi} \int_{\mathcal{C}_1} \frac{f(\zeta)}{\zeta - z} \mathrm{d}\zeta - \frac{1}{2i\pi} \int_{\mathcal{C}_1} \frac{f(\zeta)}{\zeta - z} \mathrm{d}\zeta. \ \text{En effet, par le th\'eor\`eme de Cauchy, on a} :$$

$$\frac{1}{2i\pi} \int_{\mathcal{C}_2} \frac{\zeta}{\zeta - z} d\zeta = \frac{1}{2i\pi} \int_{\mathcal{C}_1} \frac{f(z)}{\zeta - z} d\zeta + \underbrace{\frac{1}{2i\pi} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta}_{\text{(formule intégrale de Cauchy)}}$$

$$(ii) \ \frac{f(\zeta)}{\zeta - z} = \frac{f(\zeta)}{\zeta(1 - \frac{z}{\zeta})} = \frac{f(\zeta)}{\zeta} \left(1 + \frac{z}{\zeta} + \left(\frac{z}{\zeta}\right)^2 + \dots\right).$$
 Cette série converge uniformément pour

tout $\zeta \in \mathcal{C}_2$. Donc on peut intégrer terme à terme :

$$\frac{1}{2i\pi} \int_{\mathcal{C}_2} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{+\infty} \underbrace{\left(\frac{1}{2i\pi} \int_{\mathcal{C}_2} \frac{f(\zeta)}{\zeta^{n+1}} d\zeta\right)}_{z} z^n$$

$$(iii) \text{ De même, } -\frac{f(\zeta)}{\zeta - z} = \frac{f(\zeta)}{z} \frac{1}{1 - \frac{\zeta}{z}} = \sum_{n=0}^{+\infty} f(\zeta) \frac{\zeta^n}{z^{n+1}} \text{ pour } \zeta \in \mathcal{C}_1 \text{ et}$$
$$-\frac{1}{2i\pi} \int_{\mathcal{C}_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{+\infty} \left(\int_{\mathcal{C}_1} f(\zeta) \zeta^n d\zeta \right) \frac{1}{z^{n+1}} = \sum_{n=1}^{+\infty} \frac{b_n}{z^n}$$

avec
$$b_n = \frac{1}{2i\pi} \int_{\mathcal{C}_1} f(\zeta) z^{n-1} d\zeta.$$

(iv) Convergence uniforme sur tout compact $K\subset A$ et unicité de la série de Laurent : exercice.

Exemples : Trouver la série de Laurent en $z_0 = 0$ des fonctions suivantes.

1.
$$\frac{\sin z}{z}$$
. $\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$ donc

$$\frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \dots \quad \text{partie analytique}$$

2.
$$\frac{1}{z(z-1)} = \frac{1}{z} \left(\frac{-1}{1-z} \right) = \frac{1}{z} (-1-z-z^2-\dots) = \underbrace{-\frac{1}{z}}_{\text{partie principale}} \underbrace{-1-z-z^2-\dots}_{\text{partie analytique}}$$

3.
$$e^{\frac{1}{z}} = 1 + \sum_{n=1}^{+\infty} \frac{1}{n!} \left(\frac{1}{z}\right)^n$$
.

6.3 Singularités isolées et séries de Laurent

On suppose que f admet une singularité isolée en z_0 et que

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n + \sum_{n=1}^{+\infty} \frac{b_n}{(z - z_0)^n}$$

dans $D'(z_0, r)$.

Définition 6.3

- 1. z_0 est une singularité effaçable si $b_n = 0$ pour tout n.
- 2. z_0 est un pôle d'ordre m si $b_m \neq 0$ et $b_k = 0$ pour tout k > m. Si m = 1, alors z_0 est appelé un pôle simple.
 - 3. z_0 est une singularité essentielle si $b_n \neq 0$ pour un nombre infini de n.

Théorème 6.4

- Si f admet une singularité isolée en z_0 , alors :
 - (i) Les assertions suivantes sont équivalentes :
 - $-z_0$ est effaçable
 - f peut être prolongé en une fonction holomorphe dans $D(z_0,r)$.
 - $\lim f(z)$ existe.

 - f est bornée dans $D'(z_0, r)$. $\lim_{z \to z_0} (z z_0) f(z) = 0$.
 - (ii) Les assertions suivantes sont équivalentes :
 - $-z_0$ est un pôle d'ordre m.
 - $-\lim_{z \to z_0} (z z_0)^m f(z) = L \neq 0$
 - $-f(z) = \frac{g(z)}{(z-z_0)^m}$, g holomorphe sur un voisinage de z_0 et $g(z_0) \neq 0$.

Exercice.

Théorème 6.5 (Casorati-Weierstrass)

Soit z_0 une singularité essentielle de f. Alors l'image par f de tout disque épointé $D'(z_0,\varepsilon)$ est dense dans \mathbb{C} .

- Supposons le contraire. Alors il existe $\omega \in \mathbb{C}$ et $\delta > 0$ tels que $|f(z) \omega| > \delta$ pour tout $z \in D'(z_0, \varepsilon)$. Ceci implique $\left|\frac{1}{f(z)-\omega}\right| < \delta^{-1}$ d'où $g(z) = \frac{1}{f(z)-\omega}$ est analytique et bornée dans $D'(z_0,\varepsilon)$. Donc elle peut être prolongée en une fonction analytique dans $D(z_0,\varepsilon)$ (également notée g). Comme g n'est pas constante dans $D(z_0,\varepsilon)$ (sinon f le serait également et z_0 ne serait pas une singularité essentielle), on a :
 - soit $g(z_0) \neq 0$ d'où $f(z) = \omega + \frac{1}{g(z)}$ est analytique en z_0 : contradiction.
- soit g admet un zéro d'ordre k en z_0 et alors $f(z) = \omega + \frac{1}{g(z)}$ a un pôle d'ordre k en z_0 : contradiction.

Théorème des résidus 6.4

Soit $f \in H(\Omega \setminus \{z_0\})$ avec série de Laurent dans $D'(z_0, r)$

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n + \sum_{n=1}^{+\infty} \frac{b_n}{(z - z_0)^n}.$$

Définition 6.6

Le résidu de f en z_0 est le coefficient b_1 dans la série de Laurent. On le note $Res(f, z_0)$.

Proposition 6.7

Soit $f \in H(D'(z_0,r))$ et $\mathcal{C} \subset D'(z_0,r)$ un cercle centré en z_0 . Alors

$$\int_{\mathcal{C}} f(z)dz = 2i\pi Res(f, z_0)$$

 $> f(z) = \sum_{n=0}^{+\infty} a_n (z-z_0)^n + \sum_{n=1}^{+\infty} \frac{b_n}{(z-z_0)^n} \text{ dans } D'(z_0,r). \text{ Puisque les séries convergent uniformément sur } \mathcal{C}, \text{ on a :}$

$$\int_{\mathcal{C}} f(z) dz = \sum_{n=0}^{+\infty} a_n \int_{\mathcal{C}} (z - z_0)^n dz + \sum_{n=1}^{+\infty} \int_{\mathcal{C}} \frac{dz}{(z - z_0)^n} = 2i\pi b_1 = 2i\pi \text{Res}(f, z_0)$$

$$\operatorname{car} \int_{\mathcal{C}} (z - z_0)^n dz = \begin{cases} 0 & \text{si } n \in \mathbb{Z} \setminus \{-1\} \\ 2i\pi & \text{si } n = -1 \end{cases}.$$

Théorème 6.8 (des résidus de Cauchy)

Soient C un chemin fermé simple, f analytique sur C et dans l'intérieur de C sauf pour des singularités isolées z_1, \ldots, z_m dans l'intérieur de C (il y en a un nombre fini dans un compact). Alors

$$\int_{\mathcal{C}} f(z)dz = 2i\pi \sum_{k=1}^{m} \operatorname{Res}(f, z_k)$$

Soit c_k un cercle de rayon ε autour de z_k , k = 1, ..., m. (On prend ε assez petit pour que $\mathcal{C}_k \subset \overset{\circ}{\mathcal{C}}$ et $\overline{D(z_i, \varepsilon)} \cap \overline{D(z_j, \varepsilon)} = \emptyset$ si $i \neq j$). Alors, par le théorème de Cauchy,

$$\int_{\mathcal{C}} f(z) dz = \int_{\mathcal{C}_1} f(z) dz + \dots + \int_{\mathcal{C}_k} f(z) dz = 2i\pi \operatorname{Res}(f, z_1) + \dots + 2i\pi \operatorname{Res}(f, z_k)$$

par la proposition précédente.

6.5 Calcul des résidus

(i) Si f admet un pôle simple en z_0 , alors :

$$f(z) = \frac{b_1}{z - z_0} + a_0 + a_1(z - z_0) + \dots$$

d'où $b_1 = \lim_{z \to z_0} (z - z_0) f(z)$.

Si $f(z) = \frac{A(z)}{B(z)}$ avec A, B analytiques, $A(z_0) \neq 0$, $B(z_0) = 0$, $B'(z_0) \neq 0$ alors

$$b_1 = \lim_{z \to z_0} (z - z_0) \frac{A(z)}{B(z) - B(z_0)} = \frac{A(z_0)}{B'(z_0)}.$$

(ii) Si f a un pôle d'ordre m en z_0 ,

$$f(z) = \frac{b_m}{(z - z_0)^m} + \dots + \frac{b_1}{z - z_0} + a_0 + \dots$$

alors

$$(z-z_0)^m f(z) = b_m + \dots + b_1(z-z_0)^{m-1} + \dots$$

donc

$$b_1 = \lim_{z \to z_0} = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} \left((z - z_0)^m f(z) \right).$$

(v) Si f a une singularité essentielle en z_0 , il faut trouver b_1 à l'aide de la série de Laurent.

Exemples: 1. Res $\left(\frac{1}{z^2+1}, i\right)$? pôle simple: $\frac{1}{z^2+1} = \frac{1}{(z+i)(z-i)}$ et

$$\lim_{z \to i} (z - i) \frac{1}{(z - i)(z + i)} = \frac{1}{2i} = -\frac{i}{2}$$

ou bien $\frac{1}{(z^2+1)'}\Big|_{z=i} = \frac{1}{2z}\Big|_{z=i} = \frac{1}{2i} = -\frac{i}{2}$.

2. Res $\left(\frac{1}{(z-1)^2z}, 1\right)$: pôle d'ordre 2.

$$\operatorname{Res}\left(\frac{1}{(z-1)^2 z}, 1\right) = \frac{1}{(2-1)!} \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{(z-1)^2}{(z-1)^2 z}\right) \Big|_{z=1} = \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{1}{z}\right) \Big|_{z=1} = -\frac{1}{z^2} \Big|_{z=1} = -1$$

$$\operatorname{Res}\left(\frac{1}{(z-1)^2 z}, 0\right) = \lim_{z \to 0} z \times \frac{1}{(z-1)^2 z} = 1.$$

Exemple : Calculer $\int_{\mathcal{C}} \frac{\mathrm{d}z}{z^2(2z+1)}$, \mathcal{C} cercle |z|=1. Par le théorème des résidus

$$\int_{\mathcal{C}} \frac{\mathrm{d}z}{z^2(2z+1)} = 2i\pi \left(\operatorname{Res}\left(\frac{1}{z^2(2z+1)}, 0\right) + \operatorname{Res}\left(\frac{1}{z^2(2z+1)}, -\frac{1}{2}\right) \right)$$

- Pôle simple en $z = -\frac{1}{2}$

$$\lim_{z \to -\frac{-1}{2}} \left(z + \frac{1}{2}\right) \frac{1}{z^2(2z+1)} = 2.$$

- Pôle d'ordre 2 en z=0 :

$$\lim_{z \to 0} \frac{1}{(2-1)!} \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{1}{2z+1} \right) = -2$$

donc

$$\int_{\mathcal{C}} \frac{\mathrm{d}z}{z^2(2z+1)} = 0.$$

6.6 Évaluation d'intégrales réelles par la méthode des résidus

6.6.1 Intégrales de la forme $I = \int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx$

avec P(x), Q(x) des polynômes, $Q(x) \neq 0$ pour tout $x \in \mathbb{R}$, $\deg(Q) - \deg(P) \geq 2$ (ceci implique la convergence de l'intégrale).

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx = 2i\pi \sum_{k} \operatorname{Res}\left(\frac{P(z)}{Q(z)}, z_{k}\right)$$

où $\{z_k\}$ sont les zéros de Q(z) tels que $\Im(z_k)>0$.

- ightharpoonup Soit \mathcal{C}_R le contour défini par le demi-cercle : $[-R,R] \cup \underbrace{\{z \in \mathbb{C}, \ |z|=R, \ \Im(z) \geq 0\}}_{\Gamma_R}$.
 - (i) Par le théorème des résidus :

$$\int_{\mathcal{C}_R} \frac{P(z)}{Q(z)} dz = 2i\pi \sum_k \operatorname{Res} \left(\frac{P(z)}{Q(z)}, z_k \right)$$

où $\{z_k\}$ sont les zéros de Q à l'intérieur de \mathcal{C}_R . Pour R assez grand, \mathcal{C}_R contient tous les zéros de Q ayant $\Im(z_k) > 0$.

(ii)
$$\int_{\mathcal{C}_R} \frac{P(z)}{Q(z)} dz = \int_{-R}^R \frac{P(x)}{Q(x)} dx + \int_{\Gamma_R} \frac{P(z)}{Q(z)} dz.$$

(iii) Lorsque R tend vers $+\infty$.

$$\lim_{R \to +\infty} \int_{-R}^{R} \frac{P(x)}{Q(x)} \mathrm{d}x = I$$

et

$$\lim_{R \to +\infty} \int_{\Gamma_R} \frac{P(z)}{Q(z)} \mathrm{d}z = 0$$

car pour R assez grand, comme $deg(Q) - deg(P) \ge 2$,

$$\left| \int_{\Gamma_R} \frac{P(z)}{Q(z)} dz \right| \le \frac{K}{R^2} \times \pi R \xrightarrow[R \to +\infty]{} 0.$$

Exemple: $\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^4 + 1} = 2i\pi \sum_{k=1}^{2} \text{Res}\left(\frac{1}{z^4 + 1}, z_k\right)$. Les zéros de $z^4 + 1$ avec $\Im(z_k) > 0$ sont $z_1 = e^{i\frac{\pi}{4}}$ $z_2 = e^{i\frac{3\pi}{4}}$.

On a

$$\operatorname{Res}\left(\frac{1}{z^4+1}, e^{i\frac{\pi}{4}}\right) = \left(\frac{1}{4z^3}\right)_{z=e^{i\frac{\pi}{4}}} = \frac{1}{4e^{i\frac{3\pi}{4}}} = -\frac{1}{8}(\sqrt{2} + i\sqrt{2}).$$

$$\operatorname{Res}\left(\frac{1}{z^4+1}, e^{i\frac{3\pi}{4}}\right) = \frac{1}{4e^{i\frac{9\pi}{4}}} = -\frac{1}{8}(-\sqrt{2} + i\sqrt{2})$$

donc

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^4 + 1} = 2i\pi \left(-\frac{i\sqrt{2}}{4} \right) = \frac{\pi\sqrt{2}}{2}.$$

 $\underline{\wedge} L$ 'intégrale d'une fonction à valeurs réelles sur $\mathbb R$ est réelle.

Vérification que $\lim_{R\to +\infty} \int_{\Gamma_R} \frac{\mathrm{d}z}{z^4+1} = 0$:

$$\left| \int_{\Gamma_R} \frac{\mathrm{d}z}{z^4 + 1} \right| \le \frac{1}{R^4 - 1} \times \pi R \xrightarrow[R \to +\infty]{} 0.$$

Intégrales de la forme $I = \int_{0}^{2\pi} R(\cos \theta, \sin \theta) d\theta$

telles que R(x, y) est une fonction rationnelle n'ayant pas de pôle sur le cercle $x^2 + y^2 = 1$.

Méthode : On pose $z = e^{i\theta}$ d'où

$$\cos \theta = \frac{z + z^{-1}}{2}$$
 $\sin \theta = \frac{z - z^{-1}}{2i}$ $d\theta = \frac{dz}{2i}$

et

$$\int_0^{2\pi} R(\cos\theta,\sin\theta) d\theta = \int_{\mathcal{C}} \frac{1}{iz} R\left(\frac{z+z^{-1}}{2},\frac{z-z^{-1}}{2i}\right) dz = 2i\pi \sum_k \operatorname{Res}\left(\frac{1}{z} R\left(\frac{z+z^{-1}}{2},\frac{z-z^{-1}}{2i}\right),z_k\right)$$

où $\{z_k\}$ sont les pôles dans \mathcal{C} .

Exemple: On a:

$$\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta} = \int_{|z|=1} \frac{dz}{iz \left(2 + \frac{z+z^{-1}}{2}\right)} = \frac{2}{i} \int_{|z|=1} \frac{dz}{z^2 + 4z + 1}$$
$$= \frac{2}{i} \times 2i\pi \operatorname{Res}\left(\frac{1}{z^4 + 4z + 1}, \sqrt{3} - 2\right) = \frac{2\pi}{\sqrt{3}}.$$

Transformée de Fourier : $I = \int_{-\infty}^{+\infty} f(x)e^{iax}dx$

où $a>0,\,f(z)$ a un nombre fini de points singuliers, tous pôles, aucun sur l'axe $Ox,\,|f(z)|\leq \frac{K}{|z|}$ pour |z| grand, $\Im(z) > 0$. Alors

$$\int_{-\infty}^{+\infty} f(x)e^{iax} dx = 2i\pi \sum_{k} \text{Res}\left(e^{iaz}f(z), z_{k}\right)$$

où $\{z_k\}$ sont les pôles de $e^{iaz}f(z)$ avec $\Im(z_k) > 0$.

 Γ_2

En calculant la valeur de l'intégrale on montre la convergence. On pose

où $\{z_k\}$ sont les pôles dans $\overset{\circ}{\mathcal{C}}$.

(ii) Lorsque T est grand, tous les pôles de $e^{iz}f(z)$ avec $\Im(z)>0$ sont contenus dans \mathcal{C} . Lorsque $x_1 \to +\infty$ et $x_2 \to +\infty$, on a:

$$\int_{\Gamma_i} e^{iz} f(z) dz \longrightarrow 0 \qquad (i = 1, 2, 3)$$

$$\operatorname{donc} \int_{-\infty}^{+\infty} \mathrm{d}x = 2i\pi \sum_{k} \operatorname{Res}(). \text{ En effet,}$$

$$(iii) \left| \int_{\Gamma_2} f(z)e^{iz} \mathrm{d}z \right| = \left| -\int_{-x_1}^{x_2} f(x+iT)e^{i(x+iT)} \mathrm{d}x \right| \underbrace{\leq}_{x_1, x_2 \text{ grands}} \frac{1}{T}e^{-T}T \leq Ke^{-T} \to 0$$

$$(iv) \left| \int_{\Gamma_1} f(z)e^{iz} \mathrm{d}z \right| = \left| \int_0^T f(x_2+iy)e^{i(x_2+iy)} \mathrm{d}y \right| \leq \int_0^T \frac{K}{x_2}e^{-y} \mathrm{d}y = \frac{K}{x_2}(1-e^{-T}) \to 0$$
et idem pour \int_{Γ} .

Exemple: $\int_{-\infty}^{+\infty} \frac{xe^{ix}}{x^2+1} dx = \frac{i\pi}{e}$. En effet

$$\int_{-\infty}^{+\infty} \frac{xe^{ix}}{x^2 + 1} dx = 2i\pi \operatorname{Res}\left(\frac{z}{z^2 + 1}e^{iz}, z = i\right)$$

et

$$\operatorname{Res}\left(\frac{z}{z^2+1}e^{iz},i\right) = \lim_{z \to i} \left(\frac{(z-i)z}{(z-i)(z+i)}e^{iz}\right) = \frac{1}{2e}.$$

Remarque : Avec les mêmes hypothèses sur f :

$$\int_{-\infty}^{+\infty} f(x) \cos x dx = \Re \left(\int_{-\infty}^{+\infty} f(x) e^{ix} dx \right)$$

$$\int_{-\infty}^{+\infty} f(x) \sin x dx = \Im \left(\int_{-\infty}^{+\infty} f(x) e^{ix} dx \right)$$

 $car e^{ix} = cos x + i sin x.$

Exemple:

$$\int_{-\infty}^{+\infty} \frac{x \cos x}{x^2 + 1} dx = \Re\left(\frac{i\pi}{e}\right) = 0$$
$$\int_{-\infty}^{+\infty} \frac{x \sin x}{x^2 + 1} dx = \Im\left(\frac{i\pi}{e}\right) = \frac{\pi}{e}.$$

6.6.4 Intégrales de la forme $I = \int_0^{+\infty} \frac{x^{-c}}{Q(x)} dx$

avec 0 < c < 1 et Q(x) polynôme tel que $Q(x) \neq 0, \ \forall x \geq 0$.

$$\int_0^{+\infty} \frac{x^{-c}}{Q(x)} dx = \frac{2i\pi}{(1 - e^{2i\pi c})} \sum_k \text{Res}\left(\frac{z^{-c}}{Q(z)}, z_k\right)$$

où les $\{z_k\}$ sont les zéros de Q(z).

On évalue ces intégrales en utilisant le contour suivant :

 \mathcal{C} : contour "trou de serrure"

Exemple: $\int_{0}^{+\infty} \frac{x^{-\frac{1}{2}}}{1+x} dx$. On prend $z^{-\frac{1}{2}} = e^{-\frac{1}{2}\log z}$ avec la détermination $\log(z) = \log|z| + 1$ $i \arg(z)$ où $0 < \arg(z) < 2\pi$. (i) Sur $L_1: z^{-\frac{1}{2}} = e^{-\frac{1}{2}\log x} = x^{-\frac{1}{2}}$

(ii) Sur $L_2: z^{-\frac{1}{2}} = e^{-\frac{1}{2}(\log x + 2i\pi)} = x^{-\frac{1}{2}}e^{-i\pi}$.

(iii) Lorsque $r \to 0$ et $R \to +\infty$:

$$\int_{\mathcal{C}} \frac{z^{-\frac{1}{2}}}{1+z} \mathrm{d}z = \lim_{r \to 0}$$

quelques cours, dont sur papier

7 Sphère de Riemann et transformations conformes

Sphère de Riemann

On peut compactifier \mathbb{C} en ajoutant un "point à l'infini", ∞ . Une base de voisinages de ∞ est donnée par :

$$U_{\varepsilon} = \left(\left\{z, \ |z| > \frac{1}{\varepsilon}\right\} \cup \infty\right).$$

On identifie $\overline{C}=\mathbb{C}\cup\infty$ avec $S^2=\{(x,y,z),\,x^2+y^2+z^2=1\}\subset\mathbb{R}^3$ par projection stéréographique. On note N = (0, 0, 1).

$$\begin{array}{ccc} \mathbb{C} & \xrightarrow{\sim} & S^2 \backslash \{N\} \\ z & \mapsto & \left(\frac{z+\overline{z}}{1+|z|^2}, \frac{z-\overline{z}}{i(1+|z|^2)}, \frac{|z|^2-1}{|z|^2+1}\right). \end{array}$$

Dessin : le plan équatorial de la sphère de Riemann est identifié à \mathbb{C} . Un point $z \in \mathbb{C}$ est envoyé sur l'intersection du segment [N, z] et de la sphère unité.

Définition 7.1

 $\overline{\mathbb{C}} = \mathbb{C} \cup \infty$ est la sphère de Riemann.

Transformations conformes 8

On considère $z_0 \in \Omega$, $\gamma : [a, b] \to \Omega$ une courbe \mathcal{C}^1 simple (donc $\gamma'(t) \neq 0$) tels que $\gamma(t_0) = z_0$.

Définition 8.1

L'angle entre des courbes γ_1, γ_2 en un point d'intersection z_0 est l'angle entre $\gamma_1'(t)$ et $\gamma_2'(t)$ en z_0 mesuré dans le sens direct.

Théorème 8.2

Si $f \in H(\mathbb{C})$ et $f'(z_0) \neq 0$ alors l'angle entre γ_1 et γ_2 en z_0 est égal à l'angle entre $f \circ \gamma_1$ et $f \circ \gamma_2$ en $f(z_0)$.

 \triangleright On considère $\frac{\mathrm{d}}{\mathrm{d}t}f(\gamma(t))\big|_{t=t_0}=f'(z_0)\gamma'(t_0)$. Donc

$$\arg f(\gamma(t))'_{t=t_0} = \arg(f'(z_0)\gamma'(t_0)) = \arg(f'(z_0)) + \arg(\gamma'(t_0)).$$

Alors le vecteur tangent de $\gamma(t)$ en z_0 subit une rotation par $\arg(f'(z_0))$, d'où le résultat.

Remarque : On dit que $f \in H(\mathbb{C})$ est conforme (préserve les angles) en chaque point z_0 où $f'(z_0) \neq 0$.

Exemple: $f(z) = e^z$ est holomorphe dans \mathbb{C} et $f'(z) = e^z \neq 0$ est donc conforme.

Définition 8.3

Deux ouverts Ω_1 et Ω_2 sont biholomorphes (ou isomorphes) s'il existe $f \in H(\Omega_1)$ tel que $f(\Omega_1) = \Omega_2$ et f est injective (ou $f^{-1} \in H(\Omega_2)$)

(bicontinus par le théorème de l'application ouverte)

Théorème 8.4 (Riemann mapping theorem)

Tout ouvert $\Omega \subset \mathbb{C}$ qui est homéomorphe à D(0,1) et distinct de \mathbb{C} est isomorphe à D(0,1).

Remarque : \mathbb{C} ne peut pas être isomorphe à D(0,1) car si $H \in H(\mathbb{C})$, $f : \mathbb{C} \to D(0,1)$ serait entière et bornée donc constante par le théorème de Liouville.

8.1 Transformations homographiques de la sphère de Riemann

Considérons les transformations homographiques (ou transformations de Möbius)

$$F(z) = \frac{az+b}{cz+d} \qquad ad-bc \neq 0.$$

Si on multiplie les constantes a, b, c, d par un même nombre complexe non nul, on obtient la même transformation. Donc on considère que les coefficients sont définis à un facteur constant près.

(i) $F: \mathbb{C}\setminus\{-\frac{d}{c}\}\to\mathbb{C}\setminus\{\frac{a}{c}\}$ est un isomorphisme (biholomorphe) car

$$F'(z) = \frac{(cz+d)a - (az+b)c}{(xz+d)^2} = \frac{ad-bc}{(cz+d)^2} \neq 0$$

et $F^{-1}(z) = \frac{dz-b}{-cz+a}$ est son inverse.

- (ii) On peut considérer F comme une application de $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$ avec $F\left(-\frac{d}{c}\right) = \infty$ et $F(\infty) = \frac{a}{c}$.
- (iii) Toute transformation homographique est la composition des homographies simples suivantes :
 - translation $z \mapsto z + b$
 - rotation : $z \mapsto az$, |a| = 1
 - homothétie : $z \mapsto rz$, r > 0
 - inversion : $z \mapsto \frac{1}{z}$.

En effe,t si c=0,

$$F(z) = \frac{az+b}{d} = \frac{a}{d}z + \frac{b}{d}.$$

Si $c \neq 0$,

$$F(z) = \frac{az+b}{cz+d} = \frac{a}{c} + \frac{\frac{bc-ad}{c^2}}{z+\frac{d}{c}}.$$

 $F = F_4 \circ F_3 \circ F_2 \circ F_1$ avec

$$z_1 = F_1(z) = z + \frac{d}{c}$$

$$z_2 = F_2(z_1) = \frac{1}{z_1}$$

$$z_3 = F_3(z_2) = \frac{bc - ad}{c^2} z_2$$

$$z_4 = F_4(z_3) = z_3 + \frac{a}{c}.$$

Maintenant, on note \mathcal{F} l'ensemble des cercles et droites dans \mathbb{C} .

Théorème 8.5

 \mathcal{F} est invariant par toute transformation homographique.

 \triangleright Il est clair que translations, rotations et homothétie transforment cercles en cercles et droites en droites. Il reste à vérifier que \mathcal{F} est invariant par inversion $z \mapsto \frac{1}{z}$ (exercice).

Donc une transformation homographique transforme cercles en cercles ou droites et droites en droites ou cercles.

Lemme 8.6

Si une homographie fixe 3 points alors c'est l'identité.

 $F(z) = \frac{az+b}{cz+d} = z \Rightarrow az+b = cz^2+dz \Rightarrow cz^2+(d-a)z-b = 0$. Cette équation a au plus deux racines sauf si b=c=0 et a=d auquel cas F(z)=z.

Théorème 8.7

Soient z_1, z_2, z_3 trois points distincts dans $\overline{\mathbb{C}}$ et $\omega_1, \omega_2, \omega_3$ trois points points distincts dans \overline{C} . Alors il existe une unique transformation homographique F telle que $F(z_i) = \omega_i$ pour i = 1, 2, 3.

ightharpoonup — Unicité : Si F et G vérifient les conditions du théorème alors $G^{-1} \circ F(z_i) = z_i$ pour i = 1, 2, 3 donc $G^{-1} \circ F = \operatorname{Id}$ soit G = F.

- Soit $\{a,b,c\}$ un triplet de points distincts. Alors

$$F(z) = \frac{b-c}{b-a} \frac{z-a}{z-c}$$

est une homographie et $F(a) = 0, F(b) = 1, F(c) = \infty$. Donc si $F(\{z_1, z_2, z_3\}) = \{0, 1, \infty\}$ et $G(\{\omega_1, \omega_2, \omega_3\}) = \{0, 1, \infty\}$ alors $G^{-1} \circ F(\{z_1, z_2, z_3\}) = \{\omega_1, \omega_2, \omega_3\}$.

Corollaire 8.8

- (i) Soit $\gamma, \delta \in \mathcal{F}$. Alors il existe un homographie F telle que $F(\gamma) = \delta$.
- (ii) Tout disque ouvert est isomorphe à tout demi-plan ouvert par une transformation homographique.

8.2 Exemples

(i) Soit $D=\{z,|z|>1\}$ et $\mathbb{H}=\{z,\ \Im(z)>0\}$ le demi-plan supérieur. Alors

$$F(z) = \frac{z - i}{z + i}$$

est un isomorphisme entre \mathbb{H} et D.

En effet, $F(\{0, 1, +\infty\}) = \{-1, -i, 1\}$ donc $F(\mathbb{R} \cup \infty) = \{z, |z| = 1\}$ et F(i) = 0.

(ii) $F(z) = \frac{1+z}{1-z}$ envoie le demi-cercle supérieur sur le quart de plan supérieur droit.