CS150: Database & Datamining Lecture 23: Analytics & Machine Learning V

Xuming He Spring 2019

Acknowledgement: Slides are adopted from the Berkeley course CS186 by Joey Gonzalez and Joe Hellerstein, Toronto CSC411 by Rich Zemel, Caltech CS155 by Yisong Yue.

Supervised Learning Reinforcement & Bandit Learning Unsupervised Learning

Classification

Dimensionality Clustering Reduction

Decision tree

Input:

Alice

Gender: Female

Age: 14

Prediction: Height > 55"

Every internal node has a binary query function q(x).

Every **leaf node** has a prediction, e.g., 0 or 1.

Prediction starts at **root node**.

Recursively calls query function.

Positive response → Left Child.

Negative response → Right Child.

Repeat until Leaf Node.

Decision tree

➤ General idea

- Pick an attribute, do a simple test
- Conditioned on a choice, pick another attribute, do another test
- In the leaves, assign a class with majority vote
- Do other branches as well

Another example

- Classify fruits
 - Gives axes aligned decision boundaries

Another example

Classify fruits

Decision tree

- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (class assignments)

Decision tree function class

- "Piece-wise Static" Function Class
 - All possible partitionings over feature space.
 - Each partition has a static prediction.
- Partitions axis-aligned
 - E.g., No Diagonals

(Extensions next week)

Decision tree vs Linear model

Decision Trees are NON-LINEAR Models!

Example:

No Linear Model Can Achieve O Error

Simple Decision Tree Can Achieve 0 Error

Decision tree vs Linear model

- Decision Trees are AXIS-ALIGNED!
 - Cannot easily model diagonal boundaries

Decision tree: inference

Classification and Regression

- Each path from root to a leaf defines a region R_m of input space
- Let $\{(x^{(m_1)}, t^{(m_1)}), \dots, (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m

• Classification tree:

- discrete output
- leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \dots, t^{(m_k)}\}$

Regression tree:

- continuous output
- ▶ leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \dots, t^{(m_k)}\}$

Note: We will only talk about classification

> How do we construct a useful decision tree?

Learning the simplest (smallest) decision tree is an NP complete problem [if you are interested, check: Hyafil & Rivest'76]

- Resort to a greedy heuristic:
 - Start from an empty decision tree
 - Split on next best attribute
 - Recurse
- What is best attribute?

- What if just one node?
 - (I.e., just root node)
 - No queries
 - Single prediction for all data

1 S.

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	У

- What if 2 Levels?
 - (I.e., root node + 2 children)
 - Single query (which one?)
 - 2 predictions
 - How many possible queries?

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	У

Decision tree: Impurity

Define impurity function:

- E.g., 0/1 Loss:
$$L(S') = \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'} 1_{[\hat{y} \neq j]}$$

Impurity Reduction = 0

Classification Error

of best single prediction

No Benefit From This Split!

Decision tree: Impurity

Define impurity function:

- E.g., 0/1 Loss:
$$L(S') = \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'} 1_{[\hat{y} \neq y]}$$

S L(S) = 1

Impurity Reduction = 0

Classification Error

of best single prediction

No Benefit From This Split!

Decision tree: Impurity

Define impurity function:

- E.g., 0/1 Loss:
$$L(S') = \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'} 1_{[\hat{y} \neq y]}$$

Impurity Reduction = 1

Classification Error

of best single prediction

Choose Split with largest impurity reduction!

Decision tree: Impurity = Loss

- Training Goal:
 - Find decision tree with low impurity.

Impurity Over Leaf Nodes = Training Loss

$$L(S) = \sum_{S'} L(S')$$

S' iterates over leaf nodes Union of S' = S (Leaf Nodes = partitioning of S)

$$L(S') = \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'} 1_{[\hat{y} \neq y]}$$

Classification Error on S'

Decision tree: 0/1 Loss?

What split best reduces impurity?

$$L(S') = \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'} 1_{[\hat{y} \neq y]}$$

All Partitionings Give Same Impurity Reduction!

Decision tree: 0/1 Loss?

- 0/1 Loss is discontinuous
- A good partitioning may not improve 0/1 Loss...
 - E.g., leads to an accurate model with subsequent split...

Decision tree: Surrogate impurity

- Want more continuous impurity measure
- First try: Bernoulli Variance:

$$L(S') = \left| S' \right| p_{S'} (1 - p_{S'}) = \frac{\# pos * \# neg}{|S'|}$$
 $p_{S'} = \text{fraction of S' that are positive examples}$

Worst Purity P = 1, L(S') = |S'|*0 P = 0, L(S') = |S'|*0Perfect Purity

Assuming |S'|=1

Decision tree: Bernoulli variance

What split best reduces impurity?

$$L(S') = |S'| p_{S'} (1 - p_{S'}) = \frac{\# pos * \# neg}{|S'|}$$

p_{S'} = fraction of S' that are positive examples

Decision tree: Bernoulli variance

- Assume each partition = distribution over y
 - y is Bernoulli distributed with expected value $p_{S'}$
 - Goal: partitioning where each y has low variance

Decision tree: Surrogate impurity

Define: 0*log(0) = 0

- Entropy: $L(S') = -|S'|(p_{S'} \log p_{S'} + (1 p_{S'}) \log (1 p_{S'}))$
 - aka: Information Gain:

$$IG(A, B | S') = L(S') - L(A) - L(B)$$

- (aka: Entropy Impurity Reduction)
- Most popular.

Gini Index:

$$L(S') = |S'| \left(1 - p_{S'}^2 - \left(1 - p_{S'}\right)^2\right)$$

How do we construct a useful decision tree?

Define impurity measure L(S')

E.g., L(S') = Bernoulli Variance

Loop: Choose split with greatest impurity

reduction (over all leaf nodes).

Repeat: until stopping condition.

Step 1:

L(S) = 12/7

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	

> How do we construct a useful decision tree?

E.g., L(S') = Bernoulli Variance

Loop: Choose split with greatest impurity

reduction (over all leaf nodes).

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	

> How do we construct a useful decision tree?

Loop: Choose split with greatest impurity

reduction (over all leaf nodes).

Repeat: until stopping condition.

Step 3: Loop over all leaves, find best split.

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	

How do we construct a useful decision tree?

E.g., L(S') = Bernoulli Variance

Loop: Choose split with greatest impurity

reduction (over all leaf nodes).

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	<u>_</u> у

> How do we construct a useful decision tree?

E.g., L(S') = Bernoulli Variance

Loop: Choose split with greatest impurity

reduction (over all leaf nodes).

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	

> How do we construct a useful decision tree?

E.g., L(S') = Bernoulli Variance

Loop: Choose split with greatest impurity reduction (over all leaf nodes).

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	

- Properties of top-down learning
 - Every intermediate step is a decision tree
 - You can stop any time and have a model
 - Greedy algorithm
 - Doesn't backtrack
 - Cannot reconsider different higher-level splits.

- ➤ When to stop splitting?
 - If kept going, can learn tree with zero training error.
 - But such tree is probably overfitting to training set.
 - How to stop training tree earlier?
 - I.e., how to regularize?

Which one has better test error?

- ➤ When to stop splitting?
 - Minimum Size: do not split if resulting children are smaller than a minimum size.
 - Most common stopping condition.
 - Maximum Depth: do not split if the resulting children are beyond some maximum depth of tree.
 - Maximum #Nodes: do not split if tree already has maximum number of allowable nodes.
 - Minimum Reduction in Impurity: do not split if resulting children do not reduce impurity by at least $\delta\%$.

Decision tree: Applications

Decision trees are in XBox: Classifying body parts

Decision tree: Applications

Trained on million(s) of examples

Decision tree: Applications

• Trained on million(s) of examples

Results:

Decision tree: Summary

- Train Top-Down
 - Iteratively split existing leaf node into 2 leaf nodes
- Minimize Impurity (= Training Loss)
 - E.g., Entropy
- Until Stopping Condition (= Regularization)
 - E.g., Minimum Node Size
- Finding optimal tree is intractable
 - E.g., tree satisfying minimal leaf sizes with lowest impurity.

Decision tree: Summary

- Piecewise Constant Model Class
 - Non-linear!
 - Axis-aligned partitions of feature space
- Train to minimize impurity of training data in leaf partitions
 - Top-Down Greedy Training
- Often more accurate than linear models
 - If enough training data

Ensemble methods

- Typical application: classification
- Ensemble of classifiers is a set of classifiers whose individual decisions are combined in some way to classify new examples
- Simplest approach:
 - 1. Generate multiple classifiers
 - 2. Each votes on test instance
 - 3. Take majority as classification
- Classifiers are different due to different sampling of training data, or randomized parameters within the classification algorithm
- Aim: take simple mediocre algorithm and transform it into a super classifier without requiring any fancy new algorithm

Ensemble methods

- Differ in training strategy, and combination method
 - Parallel training with different training sets
 - 1. Bagging (bootstrap aggregation) train separate models on overlapping training sets, average their predictions
 - Sequential training, iteratively re-weighting training examples so current classifier focuses on hard examples: boosting

Why do Ensemble methods work?

- Based on one of two basic observations:
 - 1. Variance reduction: if the training sets are completely independent, it will always help to average an ensemble because this will reduce variance without affecting bias (e.g., bagging)
 - reduce sensitivity to individual data points
 - 2. Bias reduction: for simple models, average of models has much greater capacity than single model (e.g., hyperplane classifiers, Gaussian densities).
 - Averaging models can reduce bias substantially by increasing capacity, and control variance by fitting one component at a time (e.g., boosting)

Bagging

Goal: reduce variance

- Ideal setting: many training sets S'
 - Train model using each S'
 - Average predictions

Variance reduces linearly Bias unchanged

$$E_{S}[(h_{S}(x) - y)^{2}] = E_{S}[(Z-\tilde{z})^{2}] + \tilde{z}^{2}$$
Expected Error
On single (x,y)

Variance Bias

$$Z = h_S(x) - y$$

 $\check{z} = E_S[Z]$

Bagging = Bootstrap Aggregation

Goal: reduce variance

- In practice: resample S' with replacement
 - Train model using each S'
 - Average predictions

Variance reduces sub-linearly (Because S' are correlated) Bias often increases slightly

$$E_{S}[(h_{S}(x) - y)^{2}] = E_{S}[(Z-\tilde{z})^{2}] + \tilde{z}^{2}$$
Expected Error
On single (x,y)

Variance Bias

$$Z = h_S(x) - y$$

 $\check{z} = E_S[Z]$

- Goal: reduce variance
 - Bagging can only do so much
 - Resampling training data asymptotes
- Random Forests: sample data & features!
 - Sample S'
 - Train DT
 - At each node, sample features
 - Average predictions

Further de-correlates trees

Loop: Sample T random splits at each Leaf.

Choose split with greatest impurity

reduction.

Repeat: until stopping condition.

Step 1:

1

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	V

Loop: Sample T random splits at each Leaf.

Choose split with greatest impurity

reduction.

Repeat: until stopping condition.

Step 1:

1 0

Step 2:

Randomly decide only look at age, Not gender.

	Name	Age	Male?	Height > 55"
	Alice	14	0	1
	Bob	10	1	1
	Carol	13	0	1
3'-	Dave	8	1	0
	Erin	11	0	0
	Frank	9	1	1
	Gena	10	0	0
			X	

Loop: Sample T random splits at each Leaf.

Choose split with greatest impurity

reduction.

Repeat: until stopping condition.

Randomly decide only look at gender.

	Name	Age	Male?	Height > 55"
	Alice	14	0	1
	Bob	10	1	1
	Carol	13	0	1
s'-	Dave	8	1	0
	Erin	11	0	0
	Frank	9	1	1
	Gena	10	0	0
·			X	y

Loop: Sample T random splits at each Leaf.

Choose split with greatest impurity

reduction.

Repeat: until stopping condition.

Randomly decide only look at age.

Name	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
		X	

S'-

Random Forests: Summary

Extension of Bagging to sampling Features

- Generate Bootstrap S' from S
 - Train DT Top-Down on S'
 - Each node, sample subset of features for splitting
 - Can also sample a subset of splits as well
- Average Predictions of all DTs

Boosting: Overview

- ➤ Boosting for **classification** works by combining weak learners into a more accurate ensemble classifier
 - A weak learner need only do better than chance

- Training consists of multiple boosting rounds
 - During each boosting round, we select a weak learner that does well on examples that were hard for the previous weak learners
 - "Hardness" is captured by weights attached to training examples

Boosting: Model

➤ Defines a classifier using an additive model:

> We need to define a family of weak classifiers

 $f_k(x)$ from a family of weak classifiers

Boosting: Learning Procedure

- Initially, weight each training example equally, e.g., 1/N
- In each boosting round:
 - Find the weak learner that achieves the lowest weighted training error
 - Raise the weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)

Final classifier is a combination of weak classifiers

Boosting: AdaBoost algorithm

• Init
$$D_1(x) = 1/N$$

E.g., best decision stump

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

$$y_i \in \{-1,+1\}$$

- Train classifier h_t(x) using (S,D_t)
- Compute error on (S,D_t): $\varepsilon_t = L_{D_t}(h_t) = \sum_i D_t(i)L(y_i, h_t(x_i))$
- Define step size a_t : $a_t = \frac{1}{2} \log \left\{ \frac{1 \varepsilon_t}{\varepsilon_t} \right\}$
- Update Weighting: $D_{t+1}(i) = \frac{D_t(i)\exp\{-a_t y_i h_t(x_i)\}}{Z_t}$
- **Return:** $h(x) = sign(a_1h_1(x) + ... + a_nh_n(x))$

Normalization Factor s.t. D_{t+1} sums to 1.

Boosting: Applications

Boosting: Applications

Supervised Learning Reinforcement & Bandit Learning Unsupervised Learning

Classification

Dimensionality Clustering Reduction

