Numerical Simulation and Scientific Computing I

Lecture 6: Numerical Linear Algebra II – Krylov Methods

Clemens Etl, Paul Manstetten, and Josef Weinbub

Institute for Microelectronics
TU Wien

nssc@iue.tuwien.ac.at

 Imagine you track the balance of a bank account using a single precision floating point number representing EUR. Starting with balance 0 EUR, each day 0.1EUR are transferred to the account, after how many days will the balance not increase anymore?

Poll 1

• What will be the order of magnitude of the EUR balance when it stops increasing (epsilon $\sim 10^{-7}$)?

- A) 10^3
- B) 10^6
- C) 10^7
- D) 10^9
- E) 10^{12}

- Back-of-the-envelope calculation:
 - When will the scaled epsilon be on the order of 0.1?

$$x * 10^{-7} \approx 0.1$$
$$\rightarrow x \approx 10^{6}$$

```
std::cout << "account balance" << std::endl;</pre>
  float f = 0.0f;
  double feps = std::numeric limits<float>::epsilon();
  int days = 0;
  while (f != f + 0.1f) {
    f += 0.1f;
    ++days;
  }
  std::cout << "feps=" << feps << std::endl;</pre>
  std::cout << "balance=" << f << std::endl;</pre>
  std::cout << "days=" << days << std::endl;</pre>
  std::cout << "years=" << days / 365.0 << std::endl;
  std::cout << "decades=" << days / 365.0 / 10.0 << std::endl;
// output:
// arithmetics
// account balance
// feps=1.19209e-07
// balance=2.09715e+06
// days=18073720
// years=49517
// decades = 4951.7
```

 What are potential advantages/disadvantages of using BLAS/LAPACK or Eigen?

- What are potential advantages/disadvantages of using BLAS/LAPACK or Eigen?
 - License (modified BSD vs MPL2)
 - Language (Fortran vs C++)
 - Speed (similar, but vs. implementation from scratch)
 - BLAS/LAPACK: more API than implementation

 How could you calculate an upper bound for the spectral radius for a given iteration matrix of the Jacobi method?

- Spectral radius (condition for convergence)
- Smaller than any norm
 - $\rho(X) \leq ||X||$
 - Why? $||X|| = \max_{x \neq 0} \frac{||Xx||}{||x||}$
- Choosing the maximum norm:
 - $||D^{-1}(A-D)||_{\infty} < 1 \rightarrow |a_{ii}| > \sum_{j \neq i} |a_{ij}|$
 - Strict diagonal dominance is a sufficient condition for convergence

Outline

- Motivation
- Data Structures
- Krylov Subspace
- Methods
 - GMRES
 - Conjugate Gradient (CG)
 - Bi-CG(STAB)
- Preconditioners

Goal

- Motivate the introduction of iterative methods
 - Key concept: sparsity
- Get a "feeling" of Krylov subspace methods
 - Including a short tour of popular choices
- Explore their limitations
- Some practical considerations
 - Implications for memory and data structures

What we will NOT cover

- Mathematical proofs
- Convergence analyses
- Eigenvalue problems
- Direct sparse solvers
- Multigrid
- Detail!

All that we care about

$$Ax = b$$

Take-home message

- Krylov methods can be useful when there are large, sparse matrices
 - We do not want to lose sparsity
 - We do not want to pay the $O(n^3)$ price
- Convergence can be hard
 - Choosing the correct method for the problem
 - Equal parts "art" and "science" experience & experimentation are key!
- Preconditioners can significantly increase convergence rate
 - Also make your problem more stable

Main References

- Iterative Krylov Methods for Large Linear Systems
 - Author: Henk A. van der Vorst
 - eBook available: https://catalogplus.tuwien.ac.at:443/UTW:UTW:TN_cambridge_s10_1 017_CBO9780511615115
- Eigen documentation
 - https://eigen.tuxfamily.org/dox/group___TutorialSparse.html

Additional References

- Numerical Linear Algebra
 - Authors: David Bau and Lloyd N. Trefethen
 - https://catalogplus.tuwien.ac.at:443/UTW:UTW:UTW_alma214335881 0003336
- Matrix Computations
 - Authors: Gene H. Golub and Charles F. Van Loan
 - https://catalogplus.tuwien.ac.at:443/UTW:UTW:UTW_alma214976590 0003336
- Iterative Methods for Sparse Linear Systems
 - Author: Yousef Saad
 - https://catalogplus.tuwien.ac.at:443/UTW:UTW:UTW_alma215405256 0003336

Libraries

• Any examples of linear algebra libraries?

Libraries

Eigen

 "Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms"

PETSc

 "PETSc is a suite of data structures and routines for the scalable solution of scientific applications modeled by PDEs"

SciPy

- "SciPy is a Python-based ecosystem of open-source software for mathematics, science, and engineering"
- MTL4, Armadillo, Trilinos
 - Similar in spirit to Eigen

SLEPc

 "SLEPc, the Scalable Library for Eigenvalue Problem Computations, is a software library for the solution of large sparse eigenproblems on parallel computers"

Recap – LU Decomposition

• For a non-singular $n \times n$ matrix A, we want to solve:

$$Ax = b$$

• A decomposition exists such that:

$$PA = LU$$

- Where:
 - P is a permutation matrix
 - L is lower triangular
 - *U* is upper triangular
- Therefore:

$$Ax = b \Leftrightarrow Ly = Pb$$
$$Ux = y$$

Motivation – Computational Resources

- LU decomposition
 - $O(n^3)$ for dense matrices.
 - In more reasonable scenarios (banded matrix) $O(n^{2\frac{1}{3}})$

If the computational power increases 1000x – only a 10x increase in problem size

Sparsity

• Definitions:

- n is the matrix dimension -> n^2 total entries
- m is the number of non-zero entries

Dense Matrix

- $m \sim n^2$
- Very common in scientific problems
- e.g. 5 chemical species in a reaction

Г 1	4.6	0.7	0	3.87
9.3	1	8.5	3.7	0.7
2.3	6	2.7	7.6	5.9
1.2	0	0	4.8	9.4
L7.1	10.9	5.6	1	1]

Sparse Matrix

- $m \ll n^2$
- Usually arise from discretization of integral or differential equations
- Rule of thumb: if n is very large, then it is probably an approximation to ∞

$$\begin{bmatrix} 1 & 4.6 & 0 & 0 & 0 \\ 0 & 0 & 8.5 & 3.7 & 0 \\ 0 & 6 & 2.7 & 0 & 0 \\ 0 & 4.6 & 0 & 4.8 & 9.4 \\ 0 & 0 & 5.6 & 0 & 1 \end{bmatrix}$$

Motivation – Memory

- Source: Matrix Market A repository for test data
 - https://math.nist.gov/MatrixMarket/
 - Example: Matrix MAN 5976 (Structural Engineering)

- Structure plot: color the non-zero entries
- Bandwidth: maximum separation between non-zero entries
- Is it necessary to store the whole matrix?

Poll 2

- What will happen to the sparsity of the matrix with the following structure plot after applying LU factorization?
 - A) Keeps the same sparsity
 - B) Loses some sparsity
 - C) Becomes completely dense

Poll 2

- What will happen to the sparsity of the matrix with the following structure plot after applying LU factorization?
 - A) Keeps the same sparsity
 - B) Lose some sparsity (depending on the pivoting!)
 - C) Become completely dense

 Assume a large matrix has mostly zero entries, how to store it efficiently in terms of memory footprint?

 Assume a large matrix has mostly zero entries, how to store it efficiently in terms of memory footprint?

We don't want to store zeros!

Storing Sparse Matrices - COO

- COO: Coordinate Format
 - Define 3 vectors of size m: V, IA and JA
 - V contains all non-zero entries
 - IA, JA contain the corresponding i and j indices
 - Storage requirement: 3*m*

$$\begin{bmatrix} 1 & 4.6 & 0 & 0 & 0 \\ 0 & 0 & 8.5 & 3.7 & 0 \\ 0 & 6 & 2.7 & 0 & 0 \\ 0 & 4.6 & 0 & 4.8 & 9.4 \\ 0 & 0 & 5.6 & 0 & 1 \end{bmatrix}$$

$$V = \begin{bmatrix} 1 & 4.6 & 6 & 4.6 & 8.5 & 2.7 & 5.6 & 3.7 & 4.8 & 9.4 & 1 \end{bmatrix}^T$$
 $IA = \begin{bmatrix} 0 & 0 & 2 & 3 & 1 & 2 & 4 & 1 & 3 & 3 & 4 \end{bmatrix}^T$
 $JA = \begin{bmatrix} 0 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 4 & 4 \end{bmatrix}^T$

Polls 3 & 4

- 3 Which size would you generally use to store integers?
 - A) 16-bit
 - B) 32-bit
 - C) 64-bit
- 4 Which size would you generally use to store floating-point numbers?
 - A) 16-bit
 - B) 32-bit
 - C) 64-bit

Polls 3 & 4

- 3 Which size would you generally use to store integers?
 - A) 16-bit
 - B) 32-bit
 - C) 64-bit
- 4 Which size would you generally use to store floating-point numbers?
 - A) 16-bit
 - B) 32-bit
 - C) 64-bit
- What is the memory cost in bytes for a COO matrix with 16 entries?

Polls 3 & 4

- 3 Which size would you generally use to store integers?
 - A) 16-bit
 - B) 32-bit
 - C) 64-bit
- 4 Which size would you generally use to store floating-point numbers?
 - A) 16-bit
 - B) 32-bit
 - C) 64-bit
- What is the memory cost in bytes for a COO matrix with 16 entries?
 - 16 * (2*4 (ints) + 8 (double)) = 256 B

Storing Sparse Matrices - CCS

- CCS: Compressed Column Storage
 - V, IA are the same as in COO
 - JA is a vector of size (n + 1)
 - *JA* points to the index of *IA* where the next column stars
 - Storage requirement: 2m + n + 1

$$\begin{bmatrix} 1 & 4.6 & 0 & 0 & 0 \\ 0 & 0 & 8.5 & 3.7 & 0 \\ 0 & 6 & 2.7 & 0 & 0 \\ 0 & 4.6 & 0 & 4.8 & 9.4 \\ 0 & 0 & 5.6 & 0 & 1 \end{bmatrix}$$

$$V = \begin{bmatrix} 1 & 4.6 & 6 & 4.6 & 8.5 & 2.7 & 5.6 & 3.7 & 4.8 & 9.4 & 1 \end{bmatrix}^T$$

$$IA = \begin{bmatrix} 0 & 0 & 2 & 3 & 1 & 2 & 4 & 1 & 3 & 3 & 4 \end{bmatrix}^T$$

$$JA = \begin{bmatrix} 0 & 1 & 4 & 7 & 9 & 11 \end{bmatrix}^T$$

Storing Sparse Matrices – Special Cases

- CRS: Compressed Row Storage
 - Same as CCS, exchanging row and column (and the roles of IA, JA)
- Eigen:
 - Defaults to column-major storage
 - Variation of CCS
 - Adds a buffer between each column to insert new elements
 - Additional vector to store the number of non-zero entries
 - SparseMatrix::makeCompressed() transforms to standard CCS

Classical Iterative Methods

- Iterative Method: given Ax = b, generate a sequence $\{x^{(k)}\}$ which converges to $x = A^{-1}b$
 - Without explicitly calculating A^{-1} Why?
- Instead of solving Ax = b, replace by a simpler $Kx_0 = b$
 - x_0 approximates x as $x = x_0 + z$
 - Plugging back in: $A(x_0 + z) = b \rightarrow Az = b Ax_0$
- Use the simpler K again
 - $Kz_0 = b Ax_0$ leading to a new approximation $x_1 = x_0 + z_0$
 - In general: $x_{i+1} = x_i + K^{-1}(b Ax_i)$
- Examples:
 - Jacobi: K = D
 - Gauss-Seidel: K = D + L

Richardson Iteration

• Even simpler approximation: K = I

$$x_{k+1} = x_k + K^{-1}(b - Ax_k)$$

$$x_{k+1} = x_k + b - Ax_k$$

$$x_{k+1} = x_k + r_k$$

One way of rewriting

$$x_{k+1} = (I - A)x_k + b$$

Residuals

$$\begin{aligned} x_{k+1} &= x_k + r_k \\ \Leftrightarrow r_{k+1} &= (I-A)r_k = (I-A)(I-A)r_{k-1} \\ \Leftrightarrow r_{k+1} &= (I-A)^{k+1}r_0 \end{aligned}$$

Convergence when

$$||I - A|| < 1$$

Richardson Iteration - Subspace

The total iteration

$$x_{k+1} = x_k + r_k$$

$$x_{k+1} = x_{k-1} + r_{k-1} + r_k$$

$$x_{k+1} = x_0 + r_0 + \dots + r_k$$

• Finally, plugging r_i

$$x_{k+1} = x_0 + \sum_{i=0}^{k} (I - A)^i r_0 = x_0 + z$$

• We can assume w.l.o.g. $x_0 = 0$

$$x_{k+1} \in span\{r_0, Ar_0, ..., A^k r_0\}$$

Krylov Subspace - Definition

• Definition: given a non-zero vector v and a non-singular square matrix A, the m-dimensional Krylov subspace is:

$$K^{m}(A; v) := span(v, Av, A^{2}v, ..., A^{m-1}v)$$

- Krylov Subspace Methods try to:
 - Use all information available in K^m
 - Construct a solution according to some "optimality"
 - More than one option different methods!

Optimality Approaches

Ritz-Galerkin: Construct x_k s.t. the residual $r_k = b - Ax_k$ is orthogonal to the current subspace

$$r_k \perp K^{k}(A, r_0)$$

Ex: Conjugate Gradients, Lanczos

Minimum norm residual: Find x_k from least squares

$$\min \|b - Ax_k\|_2; \ x_k \in K^k(A; r_0)$$

Ex: MINRES, GMRES

Petrov-Galerkin: Construct x_k s.t. the residual $r_k = b - Ax_k$ is orthogonal to some other subspace

Ex:
$$K^k(A^T; s_0) \rightarrow \text{Bi-CG}$$

Also: minimum norm error

Conjugate Gradients (CG) - Motivation

Assume that A is symmetric positive definite:

$$A = A^T$$
; $x^T A x > 0 \ \forall x \setminus 0$

• We can define a function $\phi(x)$

$$\phi(x) = \frac{1}{2}x^T A x - x^T b$$

• Such that:

$$Ax = b \Leftrightarrow \min_{x} \phi(x)$$

• Algorithm idea: from a given x_k , construct x_{k+1} from a search direction p_k and optimality criterion α

$$x_{k+1} = x_k + \alpha p_k$$

• If $p_k = r_k$, we have the method of steepest descent

CG - A-norm

• Definition:

$$||x||_A = \sqrt{x^t A x}$$

We can define the error

$$e_k = x_k - x_*$$

It can be shown that

$$\phi(x_k) = \frac{1}{2} \|e_k\|_A + \phi(x_*)$$

- CG is [Trefethen & Bau]: a system of recurrence formulas generating the unique sequence $x_k \in K^k$ minimizing $||e_k||_A$
 - Trick Ritz-Galerkin: $r_k \perp K^k(A, r_0)$. Therefore it is "conjugate"!
 - Minimizes the A-norm error, not the residual!

CG - Basic Algorithm (Hestenes & Stiefel)

$$x_0 = 0; r_0 = b; p_0 = r_0$$

for k = 1, 2, ...

$$\alpha_k = \frac{r_{k-1}^T r_{k-1}}{p_{k-1}^T A p_{k-1}}$$

$$x_k = x_{k-1} + \alpha_k p_{k-1}$$

$$r_k = r_{k-1} - \alpha_k A p_{k-1}$$

$$\beta_k = \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}}$$

$$p_k = r_k + \beta_k p_{k-1}$$

- 1) step length
- 2) approximate solution
- 3) residual
- 4) improvement this step
- 5) search direction

Plus: convergence termination criterion!

Polls 5 & 6

$$x_0 = 0$$
; $r_0 = b$; $p_0 = r_0$
for $k = 1, 2, ...$

$$\alpha_k = \frac{r_{k-1}^T r_{k-1}}{p_{k-1}^T A p_{k-1}}$$

$$x_k = x_{k-1} + \alpha_k p_{k-1}$$

$$r_k = r_{k-1} - \alpha_k A p_{k-1}$$

$$\beta_k = \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}}$$

$$p_k = r_k + \beta_k p_{k-1}$$

- 1) step length
- 2) approximate solution
- 3) residual
- 4) improvement this step
- 5) search direction
- Poll 5: How many matrix-vector products per CG iteration?
- Poll 6: How many vector-vector products per CG iteration?

Polls 5 & 6

$$x_0 = 0$$
; $r_0 = b$; $p_0 = r_0$
for $k = 1,2,...$

$$\alpha_k = \frac{r_{k-1}^T r_{k-1}}{p_{k-1}^T A p_{k-1}}$$

$$x_k = x_{k-1} + \alpha_k p_{k-1}$$

$$r_k = r_{k-1} - \alpha_k A p_{k-1}$$

$$\beta_k = \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}}$$

$$p_k = r_k + \beta_k p_{k-1}$$

- 1) step length
- 2) approximate solution
- 3) residual
- 4) improvement this step
- 5) search direction
- Poll 5: How many matrix-vector products per CG iteration? 1
- Poll 6: How many vector-vector products per CG iteration?

CG – Strengths and Weaknesses

Strengths

- Only one matrix-vector operation per iteration
- Simple implementation
- Very fast convergence (if the eigenvalues are well distributed...)
- Low memory requirements

Weaknesses

Only symmetric positive definite (s.p.d.) matrices

Krylov Subspace - Definition

• Definition: given a non-zero vector v and a non-singular square matrix A, the m-dimensional Krylov subspace is:

$$K^{m}(A; v) := span(v, Av, A^{2}v, ..., A^{m-1}v)$$

- Krylov Subspace Methods try to:
 - Use all information available in K^m
 - Construct a solution according to some "optimality"
 - More than one option different methods!

Bases on Krylov Subspace – Arnoldi Iteration

- Problem with $A^k r_0$ -> becomes almost linearly dependent
- Arnoldi algorithm (Modified Gram-Schmidt):

$$\begin{aligned} v_1 &= r_0/\|r_0\|_2 & \text{first Krylov vector} \\ \text{for } j &= 1, \dots, m-1 \\ & t &= Av_j & \text{new candidate vector} \\ \text{for } i &= 1, \dots, j & \\ & h_{i,j} &= v_i^T t & \\ & t &= t - h_{i,j} v_i & \\ & h_{j+1,j} &= \|t\|_2 \\ & v_{j+1} &= t/h_{j+1,j} & \end{aligned}$$
 subtract the projections on previous vectors

In practice: Householder reflections

Bases on Krylov Subspace – Hessenberg Matrices

• We just generated an $m \times m$ matrix H_m such that:

$$V_m^T A V_m = H_m$$

•
$$H_m$$
 is upper Hessenberg
$$H_m = \begin{bmatrix} \blacksquare & \blacksquare & \blacksquare & \blacksquare & \blacksquare \\ \blacksquare & \blacksquare & \blacksquare & \blacksquare \\ 0 & \blacksquare & \blacksquare & \blacksquare \\ 0 & 0 & \blacksquare & \blacksquare \\ 0 & 0 & 0 & \blacksquare & \blacksquare \end{bmatrix}$$

• Also note:

$$AV_{m-1} = V_m \overline{H}_m$$

where \overline{H}_m has an additional row with only $h_{m+1,m}$

Generalized Minimal Residual Method (GMRES)

• Objective: $\min \|b - Ax_k\|_2$; $x_k \in K^k(A; r_0)$

- Approach:
 - 1 Generate Basis
 - 2 Optimality Constraint
 - 3 Solution construction

< Arnoldi iteration >

$$\min_{y} \|\beta e_1 - \overline{H}_m y\|_2; \ \beta = \|r_0\|_2$$

$$x_m = x_0 + V_m y$$

- Key insight of GMRES: introduce the optimality constraint into the basis generation
 - Usually implemented by Givens rotations during the base generation
- Restarted GMRES: GMRES(m)
 - Only perform GMRES up to dimension m, then restart with current solution x_m

GMRES – Convergence

Matrix with uniform real spectrum

Source: van der Vorst: Iterative Krylov Methods for Large Linear Systems, 1st ed., 2003

GMRES – Convergence

Defective (non-diagonalizable) matrix

Source: van der Vorst: Iterative Krylov Methods for Large Linear Systems, 1st ed., 2003

GMRES – Strengths and Weaknesses

Strengths

- The residual is non-increasing
- Only "good" breakdowns (if $x_{i < m}$ is already the exact solution)
- Exact for m = n
- In practice, it is the most robust method

Weaknesses

- Memory requirement (dense in m)
- Also not the fastest
- Not in Eigen! (although: Eigen-unsupported)
- Very hard to prove convergence in arbitrary cases

Bi-Conjugate Gradients (Bi-CG)

- Is it possible to avoid building the m dimensional Hessenberg matrix?
 - We would like a simple recursion like CG, but for non-s.p.d. matrices!
- Insight: build a similar scheme to CG, but searching now on the subspace $K^k(A^T; s_0)$
 - Petrov-Galerkin
- Disadvantages:
 - Requires computing $A^T x$
 - Subject to serious breakdown: if the dot product between one vector in $K^k(A^T; s_0)$ and other in $K^k(A; r_0)$ (where the solution is being built) is zero, the method fails.
 - Convergence can be erratic

BiCG – Basic Algorithm

$$x_{0} = 0; p_{0} = r_{0} = b; q_{0} = s_{0} = arbitrary$$
 for $k = 1, 2, ...$
$$\alpha_{k} = \frac{s_{k-1}^{T} r_{k-1}}{q_{k-1}^{T} A p_{k-1}}$$
 serious breakdown
$$x_{k} = x_{k-1} + \alpha_{k} p_{k-1}$$

$$r_{k} = r_{k-1} - \alpha_{k} A p_{k-1}$$

$$s_{k} = s_{k-1} - \alpha_{k} A^{T} q_{k-1}$$

$$\beta_{k} = \frac{s_{k}^{T} r_{k}}{s_{k-1}^{T} r_{k-1}}$$

$$p_{k} = r_{k} + \beta_{k} p_{k-1}$$

$$q_{k} = s_{k} + \beta_{k} q_{k-1}$$

BiCG – Erratic Convergence

Indefinite matrix

Source: van der Vorst: Iterative Krylov Methods for Large Linear Systems, 1st ed., 2003

Bi-CG stabilized (Bi-CGSTAB)

- Problems Bi-CGSTAB addresses:
 - Avoids computing $A^T x$
 - "Smoothens" convergence
- Intuition: combine a GMRES(1) step after each Bi-CG step
 - Natural extension: Bi-CGSTAB(l) uses GMRES(l)
- Still susceptible to serious breakdown!
- We will stop at that, the method is (even more) complicated...
 - But: available on EIGEN!

Quiz – Question 5

 What is the benefit of preconditioning a problem before solving it?

Preconditioners - Motivation

 We have seen problematic convergence behavior depending on the spectrum of A

 Rule of thumb: iterative methods perform better when the eigenvalues are clustered

Source: van der Vorst: Iterative Krylov Methods for Large Linear Systems, 1st ed., 2003

Preconditioners - Definition

Construct a matrix K such that the system

$$K^{-1}Ax = K^{-1}b$$

is more easily solvable $-> K^{-1}A$ has better spectral properties

- Note
 - K is in some sense an approximation to A
 - K^{-1} is simple to compute: We do not want to store $K^{-1}A!$
 - Ky = z is simpler to solve
 - Also: the Jacobi method is a preconditioned Richardson iteration

$$D^{-1}Ax = D^{-1}b$$

Preconditioners - Example

- Diagonal scaling/Jacobi preconditioner: K = diag(A)
 - Applied to the CG method

Source: Trefethen, Bau: Numerical Linear Algebra, 1st ed., 1997

Poll 7

• Are both methods converging?

Source: Trefethen, Bau: Numerical Linear Algebra, 1st ed., 1997

Preconditioners - Types

Left Preconditioning

$$K^{-1}Ax = K^{-1}b$$

- Note: this means that the residual changes: $\overline{r_0} = K^{-1}(b Ax_0)$
- Right Preconditioning

$$AK^{-1}Kx = b$$

- Note: now the solution lies in a different Krylov subspace
- Mixed/Two-sided Preconditioning

$$K_1^{-1}AK_2^{-1}K_2^{-1}x = K_1^{-1}b$$

Incomplete LU factorization

• We know that, given an LU factorization, it is easy to solve LUx = b

• What if we calculate a simpler, incomplete LU? $A \approx LU$

- Simplest idea: only calculate L and U for elements with the same indices that are non-zero in A
 - Keep the same sparsity
 - Does not always help convergence...
- More advanced schemes: set tolerances to drop elements
 - Depends on the heuristics...

Note – Direct solvers are still relevant!

The Sparse LU Challenge

- Given a square A, find the permutation matrices P and Q such that the factorization $PAQ^T = LU$ is:
 - Reasonably stable
 - L and U are close to being optimally sparse
- Many approaches
 - Example: http://eigen.tuxfamily.org/dox/classEigen_1_1SparseLU.html
- Can benefit from BLAS!
- Some sparsity will be lost...

Take-home message – version 2

- Krylov methods can be useful when there are large, sparse matrices
 - We do not want to lose sparsity
 - We do not want to pay the $O(n^3)$ price
 - But not always better than direct methods...
- Convergence can be hard
 - Choosing the correct method for the problem
 - Equal parts "art" and "science" experience & experimentation are key!
 - Some idea about the spectrum of the matrix is helpful
- Preconditioners can significantly increase convergence rate
 - Also make your problem more stable
 - This is where a lot of mathemagic is hidden

Rules of Thumb for Choosing Methods

- If the matrix is symmetric positive definite:
 - Conjugate Gradients
- If the problem is "nasty":
 - GMRES + lots of memory + lots of computing time
- If performance is key:
 - Bi-CGSTAB (or other hybrid methods) + lots of robustness testing
- Always investigate preconditioners
 - But remember that they involve trial-and-error
- If you can afford the memory, test sparse direct methods

Quiz

 Q1: Represent the following matrix in the compressed row storage (CBS) format

storage (CRS) format

$$\begin{bmatrix} 1 & 4.6 & 0 & 0 & 0 \\ 0 & 0 & 8.5 & 3.7 & 0 \\ 0 & 6 & 2.7 & 0 & 0 \\ 0 & 4.6 & 0 & 4.8 & 9.4 \\ 0 & 0 & 5.6 & 0 & 1 \end{bmatrix}$$

- Q2: Under which conditions would you use the CG method instead of GMRES?
- Q3: What information from a matrix A could be useful to help choosing an adequate solver?
- Q4: Is it possible to generate true random numbers from a digital computer (e.g. x86 architecture)?
- Q5: How would you estimate the value of π using random numbers?

Next stop

- Random Number Generation
- Introduction to Monte Carlo

