MORITA EQUIVALENCE AND DIFFERENTIABLE GROUPOIDS

QINGYUN ZENG

Contents

1.	Biaction groupoid	1
2.	applications	4
Ref	erences	5

1. BIACTION GROUPOID

Let $\mathcal{G}_1: X_1 \rightrightarrows X_0$ and $\mathcal{G}_2: Y_1 \rightrightarrows Y_0$ be differentiable groupoids. Suppose P is a principal $(\mathcal{G}_1, \mathcal{G}_2)$ bibundle (bitosor) such that there exists homeomorphisms $\rho_2: P/X_1 \to Y_0$ and $\rho_1: P/Y_1 \to X_0$, i.e. we have a principal $(\mathcal{G}_1, \mathcal{G}_2)$ bibundle,

then we say P is a $(\mathcal{G}_1, \mathcal{G}_2)$ equivalence, or \mathcal{G}_1 and \mathcal{G}_2 are *Morita equivalent*. We want to prove the following result.

Proposition 1.1. If \mathcal{G}_1 and \mathcal{G}_2 are Morita equivalent, then $B\mathcal{G}_1$ and $B\mathcal{G}_2$ are homotopy equivalent.

First, form the bimodule structure of P, we can construct a $(\mathcal{G}_1, \mathcal{G}_2)$ -biaction groupoid $X_1 \times_{t, X_0, \rho_1} P \times_{s, Y_0, \rho_2} Y_1 \rightrightarrows P$ with structure maps

$$s((x, p, y)) = x$$

$$\rho_1(x \cdot p) = s(x)$$

$$\rho_2(p \cdot y) = t(y)$$

$$t((x, p, y)) = x \cdot p \cdot y$$

$$\rho_1(p) = t(x)$$

$$\rho_2(p) = s(y)$$

The \mathcal{G}_1 and \mathcal{G}_2 commutes under this construction, i.e. $(x \cdot p) \cdot y = x \cdot (p \cdot y)$. Let $(x_1, p_1, y_1), (x_2, p_2, y_2)$ be two composable morphisms, then

$$t((x_1, p_1, y_1)) = x_1 \cdot p_1 \cdot y_1 = s((x_2, p_2, y_2)) = p_2$$

then

$$t((x_2, p_2, y_2)) = x_2 \cdot p_2 \cdot y_2 = x_2 x_1 \cdot p_1 \cdot y_1 y_2$$

Note that $s(x_1) = \rho_1(x_1 \cdot p) = \rho_1(x_1 \cdot p \cdot y_1) = \rho_1(p_2) = t(x_2)$. Similarly $t(y_1) = s(y_2)$. Hence the composition is well defined.

Next, let's consider the map ρ_2 . Consider the pull back groupoid $\rho_2^*\mathcal{G}_2$ along $\rho_2: P \to Y_0$.

where

$$(1.1) P \times_{s,Y_0} Y_1 \times_{t,Y_0} P = \{(p, y, p') | p, p' \in P, x \in X_1, \rho_2(p) = s(y), \rho_2(p') = t(y)\}$$

with structure maps

$$s((p, y, p')) = p \quad t((p, y, p')) = p'$$

 $(p, y, p')^{-1} = (p', y, p)$

Note that in fact $t((p, y, p')) = p' = p \cdot y$. Let (p_1, y_1, p'_1) and (p_2, y_2, p'_2) be composable morphisms, i.e. $p'_1 = p_2$ then

$$(p_1, y_1, p'_1) \cdot (p_2, y_2, p'_2) = (p_1, y_1 y_2, p'_2)$$

Since $t(y_1) = \rho_2(p \cdot y) = \rho_2(p_2) = s(y_2)$, the composition is well defined.

Similarly, we define the pull back groupoid $\rho_1^*\mathcal{G}_1 = P \times_{t,X_0} X_1 \times_{s,X_0} P \rightrightarrows P$ and we have the similar diagram

$$X_{1} \leftarrow_{\tilde{\rho_{1}}} P \times_{t,X_{0}} X_{1} \times_{s,X_{0}} P$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow$$

$$P \leftarrow_{\rho_{1}} X_{0}$$

Lemma 1.2. We claim that

Note that $P \times_{t,X_0} X_1 \times_{s,X_0} P = \rho_1^* \mathcal{G}_1$, $P \times_{s,Y_0} Y_1 \times_{t,Y_0} P = \rho_2^* \mathcal{G}_2$, and $X_1 \times_{X_0} P \times_{Y_0} Y_1 \Longrightarrow P$ is the bi-action groupoid.

Proof. Let's consider $P \times_{s,Y_0} Y_1 \times_{t,Y_0} P \Longrightarrow P$ first. By definition,

(1.3)
$$\rho_2^* \mathcal{G}_2 = \{ (p, y, p') | p, p' \in P \text{ such that } \rho_2(p) = s(y), \rho_2(p') = t(y) \}$$

Now define a map $\phi: X_1 \times_{X_0} P \times_{Y_0} Y_1 \to P \times_{Y_0} Y_1 \times_{Y_0} P$ by

(1.4)
$$\phi: (x, p, y) \mapsto (p, y, x \cdot p \cdot y).$$

Let (x_1, p_1, y_1) and (x_2, p_2, y_2) be composable, so $t((x_1, p_1, y_1)) = x_1 \cdot p_1 \cdot y_1 = s((x_2, p_2, y_2)) = p_2$. Then

$$\phi((x_1, p_1, y_1)) \cdot \phi((x_2, p_2, y_2)) = (p_1, y_1, x_1 \cdot p_1 \cdot y_1) \cdot (p_2, y_2, x_2 \cdot p_2 \cdot y_2)$$

$$= (p_1, y_1, x_1 \cdot p_1 \cdot y_1) \cdot (x_1 \cdot p_1 \cdot y_1, y_2, x_2 x_1 \cdot p_1 \cdot y_1 y_2)$$

$$= (p_1, y_1 y_2, x_2 x_1 \cdot p_2 \cdot y_1 y_2)$$

$$= \phi((x_1, p_1, y_1) \cdot (x_2, p_2, y_2))$$

since $t(y_1) = \rho_2(x_1 \cdot p_1 \cdot y_1) = \rho_2(p_2) = s(y_2)$.

Next, define $\psi: P \times_{Y_0} Y_1 \times_{Y_0} P \to X_1 \times_{X_0} P \times_{Y_0} Y_1$ by

(1.5)
$$\psi : (p, y, p') = (x(p, y, p'), p, y)$$

where $x(p, y, p') \in X_1$ is given by

$$t(x) = \rho_1(p) \quad s(x) = \rho_1(p')$$

Note that x(p, p') is uniquely determined by p and p' since the \mathcal{G}_1 action on P is free. Let (p_1, y_1, p'_1) and (p_2, y_2, p'_2) be composable, i.e. $p'_1 = p_1 \cdot y_1 = p_2$ and $t(y_1) = \rho_2(p_1 \cdot y_1) = s(y_2)$. Then

$$\psi((p_1, y_1, p_1')) \cdot \psi((p_2, y_2, p_2')) = (x_1(p_1, p_1'), p_1, y_1) \cdot (x_2(p_2, p_2'), p_2, y_2)$$

Since $t((x_1(p_1, p_1'), p_1, y_1)) = x_1 \cdot p_1 \cdot y_1$, $\rho_2(x_1 \cdot p_1 \cdot y_1) = \rho_2(p_1 \cdot y_1) = \rho_2(p_2) = s(y_2)$. Hence they are composable and we get

$$(x_1(p_1, p'_1), p_1, y_1) \cdot (x_2(p_2, p'_2), p_2, y_2) = (x_2x_1, p_1, y_1y_2)$$
$$= \psi(p_1, y_1y_2, x_2x_1 \cdot p_1 \cdot y_1y_2)$$

By our construction, $t(x_1) = \rho_1(p_1)$ and $s(x_1) = \rho_1(p_1') = \rho_1(x_1 \cdot p_1) = \rho_1(x_1 \cdot p_1 \cdot y_1)$. Similarly $s(x_2) = \rho_1(p_2') = \rho_1(x_2 \cdot p_2 \cdot y_2)$. Since both \mathcal{G}_1 , \mathcal{G}_2 actions are free, we get $p_1' = x_1 \cdot p_1 \cdot y_1$ and $p_2' = x_2 \cdot p_2 \cdot y_2$. Hence

$$\psi((p_1, y_1y_2, x_2x_1 \cdot p_1 \cdot y_1y_2)) = \psi((p_1, y_1y_2, p_2)).$$

Finally, let's show both $\psi \circ \phi$ and $\phi \circ \psi$ are homotopic to identities. First

(1.6)
$$\psi \circ \phi((x, p, y)) = \psi((p, y, x \cdot p \cdot y)) = (x, p, y)$$

since $t(x) = \rho_1(p)$ and $s(x) = \rho_1(x \cdot p \cdot y) = \rho_1(x \cdot p)$. Conversely,

(1.7)
$$\phi \circ \psi((p, y, p')) = (x(p, p'), p, y) = (p, y, p')$$

since $(x \cdot p \cdot y = p')$ as verified before.

Therefore, the groupoid $\rho_2^*\mathcal{G}_2$ is equivalent to $X_1 \times_{X_0} P \times_{Y_0} Y_1 \rightrightarrows P$. The proof of $\rho_1^*\mathcal{G}_1$ is similar.

Denote the groupoid $X_1 \times_{X_0} P \times_{Y_0} Y_1 \rightrightarrows P$ by \mathcal{P} . Now it suffices to show $B\mathcal{G}_1 \simeq B\mathcal{P} \simeq B\mathcal{G}_2$. More generally, we have

Lemma 1.3. Let $\mathcal{G}: X_1 \rightrightarrows X_0$ be a differentiable groupoid. Suppose $p: M \to X_0$ be a surjective submersion, then the classifying space of the pullback groupoid $p^*\mathcal{G}$ is homotopic to $B\mathcal{G}$.

Proof. First, let's recall a basic result by Quillen:

Theorem 1.4 (Quillen Theorem A). If C, C' are topological categories and $f: C \to C'$ is a continuous functor, if $B(d \downarrow f)$ is contractible for any object d in C', then the induced maps $Bf: BC \to BC'$ is a homotopic equivalence.

We have the following diagram

With a little abuse of notations, we denote the function $\rho_2^*\mathcal{G}_2 \to \mathcal{G}_2$ also by ρ_2 . Now let's look at the comma category $y \downarrow \rho_2$. The object of $y \downarrow \rho_2$ consists of pairs (x, v) such that $v: y \to \rho_2(x)$ in Y_1 . Morphisms between (x, v) and x', v' are maps $w: x \to x'$ such that $\rho_2(w)v = v'$, i.e. the commutative digram

First we will show that $y \downarrow \rho_2$ has an initial object. Let $p \in P$ be any element such that $\rho_2(p) = y$, then we claim $(p, \mathbb{1}_y) \in \mathsf{ob}(y \downarrow \rho_2)$ is initial. Let (x, v) be arbitrary. Since $v: y \to \rho_2(x)$, we have the following diagram

Since ρ_2 is a submersion, we can lift $v: \rho_2(p) \to \rho_2(x)$ to $\tilde{v}: p \to x$ in $\rho_2^*\mathcal{G}_2$. Hence our claim is verified. Next, we have

Theorem 1.5 (Segal 1967). If C, C' are topological categories and $F_0, F_1 : C \to C'$ are continuous functors, and $F : F_0 \to F_1$ is a morphism of functors, then the induced maps $BF_0, BF_1 : BC \to BC'$ are homotopic.

As a consequence, any functor which is a left or right adjoint induced a homotopy on the classifying spaces. Since there is an adjunction $[0] \rightleftharpoons C$, C has an initial object implies BC is contractible. Therefore, $B(y \downarrow \rho_2)$ is contractible for any $y \in Y_0$, which implies that $B\rho_2^*\mathcal{G}_2$ is homotopic to $B\mathcal{G}_2$.

Now we see that $B\mathcal{G}_1 \simeq B\mathcal{P} \simeq B\mathcal{G}_2$.

2. Applications

Let (V_1, F_1) , (V_2, F_2) be two foliations with groupoid holonomy \mathcal{G}_1 and \mathcal{G}_2 . An application of f of C^{∞} class is given of V_1/F_1 in V_2/F_2 is given by its graph G_f which is a variety (not necessarily separated) of class C^{∞} equipped with a C^{∞} application $r: G_f \to V_1$ and $s: G_f \to V_2$, and actions of \mathcal{G}_1 and \mathcal{G}_2 commutes so that $r: G_f \to V_1$ is a principal groupoid fibration \mathcal{G}_2 , that is, r is surjective for all $x, y \in G_f$ such that if r(x) = r(y), then there exists a unique $\gamma \in CG_2$ with $x\gamma = y$, and the action of \mathcal{G}_2 is proper.

Recall that if we have $x \in G_f$, $\gamma_2 \in \mathcal{G}_2$ such that $s(x) = r(\gamma_2)$ and $x\gamma_2 \in G_f$ with $r(x\gamma_2) = r(x)$, $s(x\gamma_2) = s(\gamma_2)$. If $\gamma_1 \in \mathcal{G}_1$ with $s(\gamma_1) = r(x)$, then $\gamma_1 x \in G_f$, $r(\gamma_1 x) = r(x)$, $s(\gamma_1 x) = s(x)$, and $\gamma_1 x \gamma_2 = \gamma_1(x\gamma_2)$.

The differentiability of the actions by \mathcal{G}_1 and \mathcal{G}_2 is defined as follows:

Let $\mathcal{G}_1 \times_{V_1} G_f = \{(\gamma_1, x) | r(x) = s(\gamma_1)\}$ and $G_f \times_{V_2} \mathcal{G}_2 = \{(x, \gamma_2) | r(\gamma_2) = s(x)\}$. These are varieties as $s : \mathcal{G}_1 \to V_1$, $r : \mathcal{G}_2 \to V_2$ are submersions. The actions $(\gamma_1, x) \mapsto \gamma_1 x$ and $(x, \gamma_2) \mapsto x\gamma_2$ are C^{∞} .

Note that then G_f is foliated by $F = (dr)^{-1}(F_1)$, and the quotient space V_1/F_1 is isomorphic to G_f/F by r and the action s defines a homomorphism of the holonomy groupoid of the laminated graph G_f, F) with values in \mathcal{G}_2 . Therefore, we can regard f as a homomorphism of the holonomy groupoid of a desingularization of V_1/F_1 in \mathcal{G}_2 (or in groupoid of any desingularization).

An equivalent way of defining an application f of V_1/F_1 in V_2/F_2 is given by the notion of a cocycle of \mathcal{G}_1 with values in \mathcal{G}_2 . Let $\{\Omega_i\}$ be an open covering of V_1 with C^{∞} functions $g_{ij}: \mathcal{G}_{1,i}^j \to \mathcal{G}_2$, where

(2.1)
$$\mathcal{G}_{1,i}^{j} = \{ \gamma \in \mathcal{G}_{1}, r(\gamma) \in \Omega_{i} \text{ and } s(\gamma) \in \Omega_{j} \}$$

such that $g_{ji}(\gamma^{-1}) = g_{ij}(\gamma)^{-1}$ for $\gamma \in G^j_{1,i}$. If $\gamma' \in G^j_{1,k}$ and $s(\gamma) = r(\gamma')$, $s(g_{i,j}(\gamma)) = r(g_{j,k}(\gamma'))$, then

$$(2.2) g_{i,k}(\gamma \gamma') = g_{i,j}(\gamma)g_{j,k}(\gamma').$$

Hence $\mathcal{G}'_1 = \coprod_{i,j} \Omega^j_{1,i}$ is a Groupoid, which is equivalent to \mathcal{G}_1 , and g is a homomorphism of \mathcal{G}_1 to \mathcal{G}_2 . Note that if $g_{i,j}$ is a cocycle, then $r(g_{i,j}(\gamma))$ only depends on i and $r(\gamma)$. Define $f_i : \Omega_i \to V_2$ by $f_i(r(\gamma)) = r(g_{ij}(\gamma))$. By replacing the covering by refinement, we can assume Ω_i 's are open trivialization of transversals $T_{1,i}$ and $f(\Omega_i)$ are included in the transversals $T_{2,i}$. Let $T_1 = \prod_i T_{1,i}$ and $T_2 = \prod_i T_{2,i}$. Let

(2.3)
$$g'_{i,j}: \mathcal{G}^{T_{1,i}}_{1,T_{1,j}} \to \mathcal{G}^{T_{2,i}}_{2,T_{2,j}}$$

be the projected transversal of the restriction of g_{ij} to $\mathcal{G}_{1,T_{1,j}}^{T_{1,i}}$. Note that T_j is a transverse of (V_i, F_j) , and T_1 is faithful (i.e. meets all leaves of (V_1, F_1) , and $g'_{i,j}$ defines a C^{∞} homomorphism $g': \mathcal{G}_{1,T_1}^{T_1} \to \mathcal{G}_{1,T_2}^{T_2}$.)

Proposition 2.1. An C^{∞} application $f: V_1/F_1 \to V_2/F_2$ is defined by the following equivalent data

- (1) A \mathcal{G}_1 principal G_f over V_1 with structure groupoid \mathcal{G}_2 .
- (2) A cocycle of \mathcal{G}_1 in \mathcal{G}_2 .
- (3) A homomorphism $\mathcal{G}'_1 \to \mathcal{G}'_2$ where \mathcal{G}'_i is equivalent to \mathcal{G}_j .
- (4) A homomorphism $\phi: \mathcal{G}_{1,T_1}^{T_1} \to \mathcal{G}_{1,T_2}^{T_2}$ where T_j is a faithful transverse of (V_j, F_j) .

REFERENCES

- 1. Segal, Graeme. Classifying spaces and spectral sequences, *Publications Mathmatiques de l'IHS*. 34 (1968): 105-112
- 2. Moerdijk, I., Mrcun, J. Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics, (2003)

 $\it Current\ address$: Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104

 $E\text{-}mail\ address: \verb|qze@math.upenn.edu||$