Доп по линейной алгебре

(Конспектировал Иван-Чай) 11.09.2023

Содержание

1 Векторы

Def 1. Чет про направленные отрезки.

Def 2. Вектор - класс эквивалентности направленных отрезкв.

Операции

- Сложение.
- Умножение на число $\overrightarrow{b}=\overrightarrow{a}\lambda,\lambda\in\mathbb{R}\hookrightarrow |\overrightarrow{b}|=\lambda|\overrightarrow{a}|.$

Def 3. Линейная комбинация векторов $\vec{a_1}, \vec{a_2} \dots$ - это $\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \dots$

Def 4. Линейная оболочка векторов — это множество всех линейных комбинаций данных векторов.

- Тривиальная $\Leftrightarrow \forall i \lambda_i = 0$
- Нетривиальная $\Leftrightarrow \exists i \lambda_i \neq 0$

Def 5. $a_1, a_2, \dots a_n$ - линейно зависимые, если нетривиальная линейная комбинация, такая что

$$\sum_{i=1}^{n} \lambda_i \vec{a_i} = 0(*).$$

Def 6. $a_1, a_2 \dots a_n$ - линейно независимые, если из (*) \Rightarrow следует тривиальностькомбинации.

Если выписать векторы в матрицу A, и $\det A = 0$, то они линейно зависимые

Def 7. Три вектора комплонарны, если они лежат в одной плоскости.

 $\mathbf{St.}$ Три вектора линейно зависимы \Leftrightarrow они компланарны.

Def 8. Упорядоченная совокупность $mpex(\partial byx)$ линейно независимых векторов в пространстве (на плоскости) называется базисом.

St. Пусть $\vec{a_1}, \vec{a_2}, \vec{a_3}$ - базис, тогда $\forall \vec{v} \hookrightarrow \exists \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} : \vec{v} = \lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \lambda_3 \vec{a_3}$.

2 Геометрия

Def 9. Система координат - это базис и начало отсчета.