

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	

Рубежный контроль №2

По предмету: «Анализ алгоритмов»

Сравнение реализации регулярных выражений через библиотеки и автоматами

Студент: Гасанзаде М.А.,

Группа: ИУ7-56Б

Оглавление

Введение	3
1. Аналитическая часть	4
1.1 Описание алгоритмов	4
1.2 Вывод:	5
2. Технологическая часть	6
2.1 Требования к программному обеспечению	6
2.2 Средства реализации	6
2.3 Листинг кода	6
2.4 Описание тестирования	8
3.Экспериментальная часть	9
3.1 Пример работы программы	9
3.2 Сравнительный анализ алгоритмов	9
3.3 Сравнительный анализ на материале экспериментальных данн	ных 9
3.3 Вывод	10
Заключение	11
Список литературы	12

Введение

Регулярные выражения — Истоки регулярных выражений лежат в теории автоматов, теории формальных языков и классификации формальных грамматик по Хомскому. Эти области изучают вычислительные модели (автоматы) и способы описания и классификации формальных языков. В 1940-х гг. Уоррен Маккалок и Уолтер Питтс описали нейронную систему, используя простой автомат в качестве модели нейрона.

Математик Стивен Клини позже описал эти модели, используя свою систему математических обозначений, названную «регулярные множества». Кен Томпсон встроил их в редактор QED, а затем в редактор ed под UNIX. С этого времени регулярные выражения стали широко использоваться в UNIX и UNIX-подобных утилитах, например, в expr, awk, Emacs, vi, lex и Perl.

Автоматы — Автомат это совокупность (X, S, δ) , где X алфавит, S непустое множество, элементы которого называются состояниями автомата, δ функция из $S \cup X$ в S, она называется функцией перехода.

Целью данной лабораторной работы является изучение данных алгоритмов и оценка этих алгоритмов по затратам времени и памяти.

Теория автоматов лежит в основе всех цифровых технологий и программного обеспечения, так, например, компьютер является частным случаем практической реализации конечного автомата.

1. Аналитическая часть

В данном разделе будут представлены описания регулярных выражений и автоматов.

1.1 Описание алгоритмов

Регулярные выражения - формальный язык поиска и осуществления манипуляций с подстроками в тексте, основанный на использовании метасимволов. Для поиска используется строка-паттерн (шаблон, маска) состоящая из символов и метасимволов и задающая правило поиска. Для манипуляций с текстом дополнительно задаётся строка замены, которая также может содержать в себе специальные символы.

Автоматы - Автомат имеет следующие составляющие:

- 1) входные переменные, которые представляют собой воздействия, генерируемые извне и влияющие на поведение исследуемой системы;
- 2) выходные переменные, называемые реакцией системы, представляющие собой величины, характеризующие поведение данной системы.

Входные полюсы (входные каналы) соответствуют местам поступления входных переменных, снабжаются стрелками, направленными внутрь «черного ящика». Входные и выходные переменные с точки зрения абстрактной теории автоматов не имеют какого-либо физического смысла.

Предполагается, что любая система, представляемая основной моделью, управляется некоторым синхронизирующим источником. Все переменные системы изменяются в определенные дискретные моменты времени, в которые подается синхронизирующий сигнал. Эти моменты времени называются тактами (тактовыми моментами) и обозначаются буквой ts. Тогда поведение системы в любой момент времени не зависит от интервала времени между и ts_l. Кроме того, независимой величиной, относительно которой определяются все переменные системы, является не время, а порядковый номер, связанный с тактом. Системы, удовлетворяющие вышеизложенным предположениям, называются синхронными. Асинхронные же системы, меняют свои сигналы, не привязываясь к синхронизирующему сигналу.

1.2 Вывод:

В данном разделе были рассмотрены реализации поиска слова в строке.

2. Технологическая часть

В данном разделе будут приведены требования к программному обеспечению, средства реализации, листинг кода и примеры тестирования.

2.1 Требования к программному обеспечению

На вход подаётся код в виде длинной строки, содержащий математические данные(sin,cos...) и разделенная \n. На выходе указать, сколько раз было встретились слова.

Требуется замерить время работы обоих реализаций.

2.2 Средства реализации

В качестве языка программирования был выбран Python в связи с его широким функционалом и огромнейшим набором библиотек, а также из-за привычного для меня синтаксиса. Среда разработки - стандартная IDLE Python. Время работы программы замеряется с помощью библиотеки функции perf_counter из библиотеки time[1].

2.3 Листинг кода

Листинг кода был представлен на листингах 1, 2, 3.

Листинг 1. Поиск слова с помощью регулярных выражений.

```
import re
from time import perf_counter

start = perf_counter()
pattern = re.compile(r'[asin|acos|sin|cos|sqrt|abs|tan|sqr]+\(')
matches = pattern.finditer(code_to_search)
count = 0
for match in matches:
    print(matches)
    count+=1

print(count)
stop = perf_counter()
time = stop - start
print("Elapsed time:", time)

f= open("time.txt","a+")
f.write("Time with re %f\n" % time)
f.close()
```

Листинг 2. Поиск слова с автоматами, без использования каких-либо библиотек.

```
from time import perf counter
start = perf counter()
text = code to search.split("\n")
k = 0
for i in range(len(text)):
   if 'acos(' in text[i]:
        k += 1
    elif 'asin(' in text[i]:
       k += 1
    elif 'sin(' in text[i]:
       k += 1
    elif 'cos(' in text[i]:
        k += 1
    elif 'tan(' in text[i]:
       k += 1
    elif 'atan(' in text[i]:
       k += 1
    elif 'abs(' in text[i]:
       k += 1
    elif 'sqrt(' in text[i]:
       k += 1
print('Count', k)
stop = perf counter()
time = stop - start
print("Elapsed time:", stop-start)
f= open("time.txt","a+")
f.write("Time with at %f\n" % time)
f.close()
```

Листинг 3. Текст на котором выполнялось тестирование и замеры.

```
code_to search = '''
from math import sin
sin(m) +
sin
asin(db) +
acos(rnrf)+
prosto stroka tang()
just string but in english sqrt(1)+
sadece bir xett cos()+
cos
sqrt()+
sqrt
abs!
abs() +
abs)
abs[()]
```

2.4 Описание тестирования

Было сделано 13 замеров времени для каждой из реализаций.

Таблица 1 — Данные тестов при 8 совпадениях

Регулярными выражениями	С помощью автоматов
0.042347	0.009796
0.045695	0.018142
0.048732	0.020606
0.100947	0.018051
0.088357	0.015749
0.092935	0.018869
0.090647	0.017277
0.091942	0.018694
0.096962	0.015488
0.093488	0.027529
0.091514	0.026849
0.093907	0.030135
0.145669	0.011706

Все тесты пройдены успешно.

2.1 Вывод

В данном разделе мы рассмотрели листинг кода, а также убедились в безошибочной работе программы.

3. Экспериментальная часть.

В данном разделе будут рассмотрены примеры работ программы.

3.1 Пример работы программы

На рисунках 1, 2 приведены изображения внешнего вида интерфейса программы во время его работы

Count 8
Elapsed time: 0.014600400000000001

Рисунок 1 - пример работы программы с автоматами.

Count 8 Elapsed time: 0.0103154

Рисунок 2 - пример работы программы с регулярными выражениями.

3.2 Сравнительный анализ алгоритмов

Как мы видим обе реализации достаточно быстры, но реализация автоматами немного выигрывает. Более подробно можно рассмотреть по графикам.

3.3 Сравнительный анализ на материале экспериментальных данных

Алгоритмы были протестированы по скорости работы, график представлен на рисунке 3.

Рисунок 3 – Замер времени

3.3 Вывод

В данном разделе был представлен эксперимент по замеру времени. Не производилась оценка памяти, т.к. в Python3 без при использования функций — def выделяется 31.4 мб памяти, и она каждый раз инкрементируется. Так как наша реализация достаточно проста и не использует def память будет выделена только 1 раз.

Заключение

В данной работе были реализованы и протестированы два современных методов поиска слов в строке. Проведён сравнительный анализ обоих реализаций.

Реализация с автоматами показала себя стабильнее и быстрее чем через регулярные выражения.

Список литературы

- 1. time Time access and conversions // Python URL: https://docs.python.org/3/library/time.html
- 2. Regular expression operations URL: https://docs.python.org/3/library/re.html
- 3. Дж. Фридл Регулярные выражения
- 4. Белоусов А.И. Математика в техническом университете