Problems:

Chap 14: 30, **38**, **53**, 56 Chap 15: 6, **8**, 10, 12

Problem 14.30. Show that $A = \{(3x, y) \mid x, y \in \mathbb{Z}\}$ is a maximal ideal in $\mathbb{Z} \oplus \mathbb{Z}$. Generalize. What happens if 3x is replaced by 4x? Generalize.

Solution:

First note that the ring $\mathbb{Z} \oplus \mathbb{Z}$ is generated by the elements (1,0) and (0,1). Suppose that there exists an ideal B with $A \subset B \subseteq \mathbb{Z} \oplus \mathbb{Z}$. Then there is some element $(x,y) \in B \setminus A$. Clearly $(0,1) \in A \subset B$ and $(x,0) = (x,y) \cdot (1,0) \in B$ since B is an ideal. We proceed to show that $(1,0) \in B$ and hence $B = \mathbb{Z} \oplus \mathbb{Z}$.

Now x must be congruent to 1 or 2 modulo 3. If $x \equiv 1 \mod 3$, then x = 3q + 1 for some $q \in \mathbb{Z}$. Since $(3q,0) \in A \subset B$, $(1,0) = (x,0) - (3q,0) \in B$ (since B is a subring) and therefore $B = \mathbb{Z} \oplus \mathbb{Z}$. Alternatively, if $x \equiv 2 \mod 3$, then x = 3q + 2. By a similar argument, $(2,0) \in B$. Hence $(1,0) = (3,0) - (2,0) \in B$, and $B = \mathbb{Z} \oplus \mathbb{Z}$.

If 3x is replaced by 4x, then A would be not be a maximal ideal since it would be contained in the ideal $B = \{(2x, y) \mid x, y \in \mathbb{Z}\}.$

In general, if p is prime then $\{(px,y) \mid x,y,\in\mathbb{Z}\}$ is maximal but if p is composite, it is not maximal.

Problem 14.38. Prove that $I = \langle 2 + 2i \rangle$ is not a prime ideal of $\mathbb{Z}[i]$. How many elements are in $\mathbb{Z}[i]/I$? What is the characteristic of $\mathbb{Z}[i]/I$?

Solution:

I is not a prime ideal since 2(1+i) = 2+2i but 2 and 1+i are not in I since otherwise we arrive at a contradiction:

$$(a+bi)(2+2i) = 2 \implies 4a = 2$$

which has no integer solutions. Similarly,

$$(a+bi)(2+2i) = 1+i \implies 4a = 2.$$

Since $\mathbb{Z}[i]/I$ has a unity, 1+I, we can check the characteristic using Theorem 13.3:

$$0 + I = (1 - i)(2 + 2i) + I = 4 + I = 4(1 + I),$$

and hence it has characteristic 4.

The elements of $\mathbb{Z}[i]/I$ are:

$$I, 1 + I, 2 + I, 3 + I, i + I, (1 + i) + I, (2 + i) + I, (3 + i) + I$$

since in this ring 2 = 2i. Hence there are eight elements.

Problem 14.53. Show that $\mathbb{Z}_3[x]/\langle x^2+x+1\rangle$ is not a field.

Solution:

Note that $x^2 + x + 1 = (x + 2)^2$ in $\mathbb{Z}_3[x]$. Hence $\langle x^2 + x + 1 \rangle \subset \langle x + 2 \rangle \subset \mathbb{Z}_3$, with strict inclusions since $x + 2 \notin \langle x^2 + x + 1 \rangle$ and $1 \notin \langle x + 2 \rangle$. Since $\langle x^2 + x + 1 \rangle$ is thus not a maximal ideal, $\mathbb{Z}_3[x]/\langle x^2 + x + 1 \rangle$ cannot be a field.

Produced by: Kyle Dahlin

Problem 14.56. Show that $\mathbb{Z}[i]/\langle 1-i\rangle$ is a field. How many elements does this field have?

Solution:

Since in this ring, $-1 = (i + (1 - i))^2 = 1^2 = 1$, we must have that 2 = 0. Furthermore, since $0 + \langle 1 - i \rangle = (1 - i) + \langle 1 - i \rangle$, we get that $1 + \langle 1 - i \rangle = i + \langle 1 - i \rangle$. Finally, $0 + \langle 1 - i \rangle \neq 1 + \langle 1 - i \rangle$ since, if this were true there would exist $a, b \in \mathbb{Z}$ such that:

$$a(1-i) = 1 + b(1-i)$$

$$a - ai - 1 - b + bi = 0$$

$$(a - b - 1) + (-a + b)i = 0$$

which implies that a = b and a = b + 1, which has no solutions in \mathbb{Z} .

Therefore $\mathbb{Z}[i]/\langle 1-i\rangle = \{0+\langle 1-i\rangle, 1+\langle 1-i\rangle\}$. Since every non-zero element (namely $1+\langle 1-i\rangle$) has an inverse (in this case, itself) this is a field.

Problem 15.6. Show that the correspondence $x \mapsto 3x$ from \mathbb{Z}_4 to \mathbb{Z}_{12} does not preserve multiplication.

Solution:

Let ϕ represent this correspondence. Then $\phi(1 \times 1) = 3 \neq 9 = \phi(1) \times \phi(1)$.

Problem 15.8. Prove that every ring homomorphism ϕ from \mathbb{Z}_n to itself has the form $\phi(x) = ax$, where $a^2 = a$.

Solution:

Let $\phi: \mathbb{Z}_n \to \mathbb{Z}_n$ be a ring homomorphism. Let $a = \phi(1)$. Since any $x \in \mathbb{Z}_n$ is uniquely defined by repeated addition of 1 x times, i.e. $x = x \cdot 1$, we know that $\phi(x) = \phi(x \cdot 1) = x \cdot \phi(1) = ax$. Finally, $a = \phi(1) = \phi(1^2) = \phi(1)^2 = a^2$.

Problem 15.10.

- a. Is the ring $2\mathbb{Z}$ isomorphic to the ring $3\mathbb{Z}$?
- b. Is the ring $2\mathbb{Z}$ isomorphic to the ring $4\mathbb{Z}$?

Solution:

a. No. Suppose there exists an isomorphism ϕ between $2\mathbb{Z}$ and $3\mathbb{Z}$. Then $\phi(2) = 3z$ for some $0 \neq z \in \mathbb{Z}$. Then since ϕ is a homomorphism it must preserve both addition and multiplication, meaning that:

$$6z = \phi(2) + \phi(2) = \phi(2+2) = \phi(4) = \phi(2^2) = \phi(2)^2 = 9z^2$$

Since $z \neq 0$, z must be an integer solution to the equation 3z = 2, which is impossible. Hence no such isomorphism can exist. b. Proceed similarly as in (a.): If there were an isomorphism, it would have the property $\phi(2) = 4z$ for some z. Then

$$8z = \phi(2+2) = \phi(2^2) = 16z^2$$

which has no non-zero integer solutions. Hence there can be no isomorphism.

Problem 15.12. Let $\mathbb{Z}_3[i] = \{a+bi \mid a, b \in \mathbb{Z}_3\}$. Show that the field $\mathbb{Z}_3[i]$ is ring-isomorphic to the field $\mathbb{Z}_3[x]/\langle x^2+1\rangle$.

Solution:

Define $\phi: \mathbb{Z}_3[x] \to \mathbb{Z}_3[i]$ by $\phi(f(x)) = f(i)$. Then clearly ϕ is an onto correspondence, since $\phi(a+bx) = a+bi$ for any $a,b \in \mathbb{Z}_3$.

 ϕ is clearly a ring homomorphism since

$$\phi(f(x) + g(x)) = f(i) + g(i)$$

and

$$\phi(f(x)g(x)) = f(i)g(i)$$

is just evaluation of a polynomial, similar to Example 3.

<u>Claim</u>: $\ker \phi = \langle x^2 + 1 \rangle$.

Clearly $\langle x^2+1\rangle\subseteq\ker\phi$ since $\phi(x^2+1)=i^2+1=2+1=0$. Now suppose that $f(x)\in\ker\phi$ but $f(x)\not\in\langle x^2+1\rangle$. By basic results about polynomials over real numbers, f(i)=0 implies that f(2i)=0 and hence $(x-i)(x-2i)=x^2+1$ divides f(x), a contradiction. Hence $\ker\phi=\langle x^2+1\rangle$.

By the First Isomorphism Theorem for Rings, $\mathbb{Z}_3[x]/\ker\phi=\mathbb{Z}_3[x]/\langle x^2+1\rangle\approx\mathbb{Z}_3[i]$.