

DIPARTIMENTO DI

INGEGNERIA INDUSTRIALE

Statistics	World	Italy
Share of hydroelectric plants in total electrical generation	17%	17%
Share of hydroelectric plants in total renewable capacity generation	45%	38%
Untapped economic potential	47%	7%
Current average age of the plants fleet	31.3 years	51.1 years

Source: IEA (2021), Hydropower Data Explorer, International Energy Agency

2020 Annual World Generation 4 418 TWh = $4.4 * 10^6$ MWh (Average annual electrical consumption per person in Italy = 5 MWh, in Niger 0,15 MWh)

Per capita electricity generation from hydropower, 2022

Source: Ember (2022); Energy Institute - Statistical Review of World Energy (2023); Population based on various sources (2023)

Top 5 Countries Depending on Hydropower	Capacity GIW	Hydro % of Total Domestic Production
Paraguay	8.81	100%
Norway	31.6	96%
Nepal	1.02	95%
Tajikistan	5.8	95%
Brazil	100.27	64%

Hydropower Capacity by Country

Statistics - World

Hydropower gross capacity additions by region

IEA. All rights reserved.

Notes: ME = Middle East. "Advanced economies" refers to OECD member countries and non-OECD EU member states

Note: ME = Middle East.

Age profile of installed hydropower capacity, 2020

IEA. All rights reserved.

Source: IEA (2021), Hydropower Special Market Report, International Energy Agency

General Overview of a Plant

- Reservoir
- Intake structures (dam, weir, barrages, grids, valves)
- Offtake structures (channel, penstock, surge tank, valves)
- Turbine (stator, rotor)
- Generator (rotor, stator)
- Electrical equipment (transformer, switches, HV power lines)
- Outflow channel or tunnel

Definitions

 Hydraulic Head → Amount of energy that can be theoretically extracted from a specific mass of water, expressed as a difference in altitude.
 Ideally: the difference in altitude between the free water surfaces of the upper reservoir and a lower reservoir (hydrostatic head).

$$H = \Delta h + \frac{\Delta p}{\rho g} + \frac{\Delta (u^2)}{2 g}$$

Hydraulic Diameter of a Pipe → Diameter of a round pipe with the same cross section area

$$D_h = \sqrt{4\frac{A}{\pi}}$$

Flow rate → Amount of water flowing in a pipe cross section

$$Q = \frac{\dot{m}}{\rho} = u A = u 4\pi D_h^2$$

Power and Energy

Theoretical Power

$$P_{t} = \dot{m} g \left(\Delta h + \frac{\Delta p}{\rho g} + \frac{\Delta (u^{2})}{2 g} \right) = \rho g Q H$$

Effective Power

$$P = \eta \rho g Q H$$

Produced Energy

$$E = \int_0^T P(t) dt = \int_0^T \eta(t) \rho g Q(t) H(t) dt$$

 Capacity Factor → Parameter showing how much the plant is used.

$$C_f = \frac{\text{Total amount of energy produced in a year}}{\text{Rated Power} \cdot 24 \text{ h/day} \cdot 365 \text{ day/year}} = \frac{E}{P \cdot T}$$

- Hydraulic Head changes depending on the reservoir level (dam) and on the water flow rate (run-on-river)
- Flow rate can change drastically along the year, depending on rainy or dry seasons and specific meteorological events!
- In hydropower plants C_f ranges between 10% (irregular streams) and 70% (stable water flows with reservoirs)

Run-of-River Plants

- Running water flow (from large rivers to small streams)
- Weir (barrage) providing controlled damming of the water
- Very low to medium Heads
- Medium to high Flow Rates
- No off-take structures, only spillways
- Little impact on the surrounding environment

Run of River Hydropower

Run-of-River Plants with Diversion

- An offtake channel diverts part of the water flow to the generation site
- A penstock can be used in case of medium to high Hydraulic Head
- Used to preserve the water elevation with respect to the outflow and obtain increased Hydraulic Head
- Lower impact on the riverbed

Diversion Hydropower

Run-of-River Plants with Diversion

Reservoir Plants

- Reservoir with a dam
- Intake structures (grids, valves)
- Offtake structures
 - Penstock
 - Surge tank or well (water hammer)
 - Main valve
- Turbine
- Electrical equipment
- Outflow channel or tunnel

Reservoir Plants

- Medium to very large Hydraulic Heads
- Low to medium Flow Rate
- Depending on the local topography, small dams can contain very large reservoirs (lakes)
- High impact on the local environment (often whole valleys are inundated)
- Requires massive civil works
- Reduction of water spilling and maximization of the capacity factor

Reservoir Area

Catchment Area or Source Area

Reservoir-allocated Area or Inundated Land Area

Pumped Storage Plants

- Use of two water reservoir at two different altitudes
- The plant generates energy by flowing water through the turbine (from upper basin to lower basin)
- The plant can pump back water from the lower basin to the upper basin (consuming energy)
- The plant stores energy thanks to the gravitational potential of the moved water

Pumped Storage Plants

- Upper reservoir (usually with a dam)
- Lower reservoir (with/without a dam))
- Intake / offtake structures
 - Grids
 - Penstock(s)
 - Surge tanks or wells
 - Intake valves, main valve, and diverting valves
- Reversible turbine o turbine and pump
- Reversible electrical generator / motor

Pumped Storage Plants

- Very similar to Reservoir Plants
- Need of a reversible turbine or need of an additional pump
- Often built underground
- Very high impact on the local environment (need of two lakes)
- Optimal use of water
- Maximization of the capacity factor
- Possibility to store energy
- Supply of additional services to the grid

Run-of-river

Reservoir

Three Gorges Dam (Yangtze River, China)

Head: 80 m
 Flow Rate: 30 000 m³/s
 Reservoir: 39.3 km³
 Dam Length: 2.34 km

• Rated Power: 22.5 GW Energy Production: 111.8 TWh/year (2020) $C_F = 56.7\%$ (2020)

Itaipu Dam (Paraná River, Brazil + Paraguay)

Head: 118 m Flow Rate: 14 000 m³/s Reservoir: 29 km³ Dam Length: 7.92 km

• Rated Power: 14 GW Energy Production: 76.4 TWh/year (2020) $C_F=62.3\%$ (2020)

Lago Malga Bissina - Centrale Malga Boazzo

• Head: 470 m Flow Rate: 17 m³/s

• Reservoir: 61 · 10⁶ m³ Dam Length: 565 m

Evaluation of the site

Potential energy production = Precipitation x Catchment area x Gravity x Head

$$E_{pot} = R_{prec} A_{catch} gH$$

Catchment Area = Area surrounding a river that feeds that river, or whose soil absorb water that will seep into the river.

Precipitation = Volume of water rained over a specific surface in a specific amount of time (year)

$$R_{prec} = \frac{\int_0^T Q_{rain} dt}{A T} = \frac{h_{prec}}{T}$$

Tools

- Historical river flow rates and precipitation data
- Hydrology studies to predict the overall water flow at the point of intake of the hydropower plant

Water Flow Statistical Distribution

Hydrograph - Water flow through time

Flow Duration Curve

Shows the amount of time (or % of time in the year) in which the flow rate is higher than a specific value

Characteristic Flow rates

- Minimum Vital Flow

 MVF
 Minimum flow rate
 needed to keep the
 river alive (fish
 travelling, animal and
 plant sustenance,
 ecological needs)
- Maximum Flow RateMF
- Nominal Flow RateNF

Hydrograph

Flow Duration Curve

Cut-off flow rates

Hydroelectric turbines can be partialized, but usually have a cut-off threshold at 30% of the nominal power.

With fixed Head, this means 30% of nominal flow rate

An optimal sizing can be found and depends on the shape of the FDC

Flow Duration Curve

Efficiency

To evaluate the power available at the turbine, we must consider the losses due to the water intake (concentrated) and transport (distributed)

$$P_{
m turb} = P_{
m t} - \Delta P_{
m conc} - \Delta P_{
m dist} =
ho \ g \ Q \ H - Q \ \Delta p_{
m conc} - Q \ \Delta p_{
m dist}$$
 $H_{
m net} = H - \Delta H_{
m conc} - \Delta H_{
m dist}$
 $P_{
m turb} =
ho \ g \ Q \ H_{
m net}$
Net Hydraulic Head

• Turbine efficiency η_T typically is in the range 85% – 92%.

$$P_{\text{out}} = \eta_T P_{\text{turb}} = \eta_T \rho g Q H_{\text{net}}$$

• The efficiency of conversion to electricity, including electric generator, gears, transformer and the consumption of auxiliaries must also be considered ($\eta_{conv}\eta_{aux}$)

$$P = \eta_{\text{aux}} \eta_{\text{conv}} \eta_T \rho g Q H_{\text{net}}$$

Hydraulic Losses

Distributed Pressure Losses

Darcy-Weisbach Equation

$$rac{\Delta p}{L} = f_{
m D} \cdot rac{
ho}{2} \cdot rac{\left\langle v
ight
angle^2}{D_H}$$

$$\Delta H_{\rm dist} = f_D \frac{L}{D_h} \frac{\Delta (u^2)}{2 g}$$

Darcy Friction Factor

$$K = f_D \frac{L}{D_h} \longrightarrow \Delta H_{\text{conc}} = K \frac{\Delta (u^2)}{2 g}$$

Hydraulic Losses

Coefficients for Localized Losses

Valves

Type of Valve	K_{v}
Spherical	0.05
Gate	0.2
Butterfly	0.6
Eccentric	1.0

Inlets

Bends

Contractions

Fig. 5.27. Sudden expansion coefficient Kes

Hydraulic losses

Pressure Losses in the Penstock

$$-\Delta H_{con1} = h + v_u^2/2g (Ke + Kb1 + Kb2 + Kc)$$
 (Upper Section)

$$-\Delta H_{con2} = h + v_m^2/2g \text{ Kex}$$
 (Intermediate Section)

$$-\Delta H_{con3} = h + v_1 \frac{2}{2}g (Kb3 + Kv)$$
 (Lower Section)

$$-\Delta H_{con} = \Delta H_{con1} + \Delta H_{con2} + \Delta H_{con3}$$
 (Total head losses)

End of the Lesson

