Mineração de Dados Mestrado em Engenharia Informática Vitor Peixoto - A79175 10/11/2018 Universidade do Minho

## Introdução

Neste mini-teste foi atribuído um conjunto de quatro questões baseados na análise de conjuntos de dados. Essa análise é feita pela comparação da *performance* dos diversos classificadores utilizados e quando sujeitos a alterações dos parâmetros e algoritmos que os compõem.

### Exercício 1

Este primeiro exercício pede para observar o dataset labor, com o algoritmo de classificação J48 recorrendo a validação cruzada de 10 folds.

Este método consiste em 10 divisões das instâncias do dataset, sendo que a cada iteração, uma parte será usada como dados de treino e as restantes como dados de teste. Este procedimento é repetido para cada parte dividida, sendo que cada porção do dataset são dados de treino uma vez e dados de teste 9 (k-1) vezes.

Os resultados obtidos com estes parâmetros revelaram uma percentagem de cerca de 73.68% de instâncias corretamente classificadas e de 0.695 de AUC (*Area under curve*).

|                                          | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances |                                                 | ances                                | 42<br>15<br>0.4415<br>0.3192<br>0.4669<br>69.7715 9<br>97.7888 9 |                                      | 73.6842 %<br>26.3158 % |                                     |                                     |                      |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|------------------------------------------------------------------|--------------------------------------|------------------------|-------------------------------------|-------------------------------------|----------------------|
| <pre>=== Detailed Ac Weighted Avg.</pre> | TP Rate<br>0.700<br>0.757<br>0.737                                                                                                                                                                        | Class ===<br>FP Rate<br>0.243<br>0.300<br>0.280 | Precision<br>0.609<br>0.824<br>0.748 | Recall<br>0.700<br>0.757<br>0.737                                | F-Measure<br>0.651<br>0.789<br>0.740 | MCC<br>0.444<br>0.444  | ROC Area<br>0.695<br>0.695<br>0.695 | PRC Area<br>0.559<br>0.738<br>0.675 | Class<br>bad<br>good |

Figura 1: Resultados obtidos através de J48 com validação cruzada.

Este exercício pedia também para correr o mesmo algoritmo melhorado com o método de *Bagging*. *Bagging* é uma das técnicas de composição de modelos onde um conjunto de classificadores são combinados para obter um classificador mais forte e com melhores resultados.

Os resultados obtidos com a composição de Bagging sobre J48 foram muito superiores aos obtidos apenas com J48. Obtivemos uma percentagem perto dos 86% de instâncias corretamente classificadas e um AUC de 0.884.

| Correctly Classified Instances   | 49        | 85.9649 % |
|----------------------------------|-----------|-----------|
| Incorrectly Classified Instances | 8         | 14.0351 % |
| Kappa statistic                  | 0.6771    |           |
| Mean absolute error              | 0.2588    |           |
| Root mean squared error          | 0.3533    |           |
| Relative absolute error          | 56.5714 % |           |
| Root relative squared error      | 73.985 %  |           |
| Total Number of Instances        | 57        |           |

=== Detailed Accuracy By Class === Precision 0.875 Recall 0.700 Class F-Measure MCC ROC Area 0.778 0.686 0.746 0.054 0.884 bad good 0.300 0.854 0.946 0.897 0.686 0.884 0.940

Figura 2: Resultados obtidos através de Bagging sobre J48 com validação cruzada.

No exemplo do Netflix Prize apresentado na aula, a união entre as equipas e os seus classificadores permitiu um score superior. Esse caso verifica-se também na composição de modelos para este dataset onde a sobreposição entre Bagging e J48 foi benéfico na classificação das instâncias e no valor da AUC. Esta melhoria deve-se ao facto de o Bagging provocar uma melhoria em algoritmos instáveis, como é o caso do J48, uma vez que enriquece o conjunto de dados.

#### Exercício 2

Weighted Avg.

Este exercício pede para analisar e especificar os benefícios que a aplicação de *Bagging* traria num *dataset* onde foi aplicado o classificador de *Naive Bayes* com uma taxa de erro de 0.035.

A técnica de *Bagging* reduz a variância do erro do classificador. Isto funciona para algoritmos instáveis, como é o caso de algoritmos que envolvem árvores de decisão (i.e. *J48*). No entanto, para algoritmos mais estáveis, como é o caso de *Naive Bayes*, esta técnica pode mesmo aumentar a variância, uma vez que este algoritmo apresenta uma variância por si só já baixa.

Tendo então em conta a já insignificativa taxa de erro apresentada pelo algoritmo *Naive Bayes unbagged*, pode-se assumir que a aplicação de *Bagging* neste caso poderá não ser benéfica e aumentar a taxa de erro nas instâncias corretamente classificadas.

#### Exercício 3

Neste exercício era pedido um estudo sobre o custo de erros no dataset vote usando os classificadores J48 e Naive Bayes.

Antes de iniciarmos o estudo, temos de entender que há duas maneiras de tornar um classificador sensível ao custo: por *Classification* ou por *Learning*. O método *Classification* usa um classificador *standard*, ajustando o *output* à matriz de custo. O método *Learning* aprende um novo classificador ótimo, reajustando os exemplos mal classificados por duplicação de exemplos ou por reajustamento dos pesos.

Para conseguir estudar o custo dos erros, foram definidas 3 matrizes de custo:

$$M1 = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$$

$$M2 = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$$

$$M3 = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$

Vamos agora passar ao estudo dos custos neste dataset:

Usamos o classificador J48 aplicado num modelo sensível ao custo por Classification. Obtivemos os seguintes resultados para as respetivas matrizes de custo:

| M1 | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances | 419<br>16<br>0.9224<br>24<br>0.0552<br>0.0368<br>0.1918<br>7.7558 %<br>39.3895 % | 96.3218 %<br>3.6782 % | === Confusion Matrix ===  a b < classified as 259 8   a = democrat 8 160   b = republican  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------|
| M2 | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances | 420<br>15<br>0.9277<br>20<br>0.046<br>0.0345<br>0.1857<br>7.271 %<br>38.1387 %   | 96.5517 %<br>3.4483 % | === Confusion Matrix ===  a b < classified as 257 10   a = democrat 5 163   b = republican |
| М3 | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances | 419<br>16<br>0.9224<br>32<br>0.0736<br>0.0368<br>0.1918<br>7.7558 %<br>39.3895 % | 96.3218 %<br>3.6782 % | === Confusion Matrix ===  a b < classified as 259 8   a = democrat 8 160   b = republican  |

Figura 3: Resultados obtidos através de J48 com Cost-Sensitive Classification aplicado nas 3 matrizes.

Apesar de o algoritmo aplicado sobre as três matrizes ser exatamente o mesmo, o número de instâncias corretamente classificadas em M2 é diferente, pois a própria matriz de custo influencia a aprendizagem do classificador, podendo afetar a sua performance. Assim sendo, neste caso, para as matrizes M1, M2 e M3, obtivemos um custo de 24, 20 e 32, respetivamente.

Usamos agora o mesmo classificador J48 mas com um modelo Cost-Sensitive por Learning. Os resultados obtidos foram os seguintes:

| M1 | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Relative absolute error Total Number of Instances                             | 419<br>16<br>0.9224<br>24<br>0.0552<br>0.0683<br>0.1838<br>14.3944 %<br>37.7491 %<br>435 | 96.3218 %<br>3.6782 % | === Confusion Matrix ===  a b < classified as 259 8   a = democrat 8 160   b = republican  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------|
| M2 | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Relative absolute error Total Number of Instances                             | 419<br>16<br>0.9229<br>21<br>0.0483<br>0.063<br>0.1775<br>13.2887 %<br>36.4589 %         | 96.3218 %<br>3.6782 % | === Confusion Matrix ===  a b < classified as 256 11   a = democrat 5 163   b = republican |
| МЗ | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances | 419<br>16<br>0.9224<br>32<br>0.0736<br>0.0611<br>0.1748<br>12.887 %<br>35.9085 %<br>435  | 96.3218 %<br>3.6782 % | === Confusion Matrix ===  a b < classified as 259 8   a = democrat 8 160   b = republican  |

Figura 4: Resultados obtidos através de J48 com Cost-Sensitive Learning aplicado nas 3 matrizes.

Neste caso, obtivemos um custo de 24, 21 e 32 para cada uma das matrizes de custo. Estes resultados obtidos com *Learning* foram muito semelhantes aos obtidos com *Classification*.

Passamos agora para *Naive Bayes* aplicado num modelo sensível ao custo por *Classification*. Os resultados obtidos foram os seguintes:

| M1 | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances | 390<br>45<br>0.7849<br>74<br>0.1701<br>0.1034<br>0.3216<br>21.8131 %<br>66.0582 % | 89.6552 %<br>10.3448 % | === Confusion Matrix ===  a b < classified as 238 29   a = democrat 16 152   b = republican |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------|
| M2 | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Relative absolute error Total Number of Instances                             | 396<br>39<br>0.8152<br>48<br>0.1103<br>0.0897<br>0.2994<br>18.9047 %<br>61.4968 % | 91.0345 %<br>8.9655 %  | === Confusion Matrix ===  a b < classified as 237 30   a = democrat 9 159   b = republican  |
| М3 | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances | 392<br>43<br>0.7949<br>86<br>0.1977<br>0.0989<br>0.3144<br>20.8437 %<br>64.5736 % | 90.1149 %<br>9.8851 %  | === Confusion Matrix ===  a b < classified as 238 29   a = democrat 14 154   b = republican |

Figura 5: Resultados obtidos através de Naive Bayes com Cost-Sensitive Classification aplicado nas 3 matrizes.

Neste caso, obtivemos um custo de 74, 48 e 86 para cada uma das matrizes de custo M1, M2 e M3, respetivamente.

Usamos novamente o classificador *Naive Bayes* aplicado agora em num modelo sensível ao custo por *Learning*. Os resultados obtidos foram os seguintes:

| M1 | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances | 391<br>44<br>0.7899<br>73<br>0.1678<br>0.1014<br>0.3096<br>21.3742 %<br>61.728 %  | 89.8851 %<br>10.1149 % | === Confusion Matrix ===  a b < classified as 238 29   a = democrat 15 153   b = republican |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------|
| M2 | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Root relative absolute error Total Number of Instances                        | 395<br>40<br>0.8102<br>50<br>0.1149<br>0.098<br>0.2954<br>20.6591 %<br>60.6777 %  | 90.8046 %<br>9.1954 %  | === Confusion Matrix ===  a b < classified as 237 30   a = democrat 10 158   b = republican |
| МЗ | Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Total Cost Average Cost Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances | 392<br>43<br>0.7949<br>86<br>0.1977<br>0.0995<br>0.2977<br>20.9815 %<br>61.1406 % | 90.1149 %<br>9.8851 %  | === Confusion Matrix ===  a b < classified as 238 29   a = democrat 14 154   b = republican |

Figura 6: Resultados obtidos através de Naive Bayes com Cost-Sensitive Learning aplicado nas 3 matrizes.

Neste caso, obtivemos um custo de 73, 50 e 86 para cada uma das matrizes de custo M1, M2 e M3, respetivamente. Os resultados obtidos neste caso, foram novamente semelhantes entre *Learning* e *Classification*.

No cômputo geral, os custos obtidos com J48 foram melhores aos obtidos com Naive Bayes. Isto deve-se às matrizes de confusão obtidas com NB terem mais instâncias como FP e FN. Multiplicando esses valores pelo respetivo valor na matriz de custo, obtém-se o custo total dos

erros, tendo neste caso o custo sido maior com o algoritmo NB.

# Exercício 4

Este exercício pedia para considerar o dataset unbalanced e comparar o desempenho dos algoritmos de clustering k-means e EM.

Inicialmente corremos o dataset com o algoritmo EM, ignorando a classe 'outcome' visto ser a classe do resultado. Quando o número de clusters como -1 para este algoritmo, ele irá determinar o número de clusters.

Correndo então este algoritmo, ele indica 18 como o número de *clusters* através de validação cruzada. Estes 18 *clusters* devem-se ao facto de o algoritmo dividir as instâncias 'active' da classe 'outcome' em vários *clusters* em vez de as por num só, ao passo que as instâncias de 'inactive' estão bem distribuídas. A distribuição das instâncias do 'outcome' pode ser vista no seguinte gráfico:



Figura 7: Distribuição de 'outcome' pelos clusters.

A execução do algoritmo *EM* é extremamente lenta (cerca de 48 segundos) dada a necessidade de cálculo do número de *clusters*, verificando-se uma descida significativa (para 0.4 segundos) quando esse número é fornecido.

O algoritmo EM foi executado com 2 iterações e apresentou a seguinte colocação das instâncias do dataset nos respetivos clusters:

| Cluste | ered In | 151 | tance |
|--------|---------|-----|-------|
| 0      | 45      | (   | 5%)   |
| 1      | 25      | (   | 3%)   |
| 2      | 133     | (   | 16%)  |
| 3      | 42      | (   | 5%)   |
| 4      | 26      | (   | 3%)   |
| 5      | 56      | (   | 7%)   |
| 6      | 46      | (   | 5%)   |
| 7      | 38      | (   | 4%)   |
| 8      | 22      | (   | 3%)   |
| 9      | 54      | (   | 6%)   |
| 10     | 69      | (   | 8%)   |
| 11     | 37      | (   | 4%)   |
| 12     | 55      | (   | 6%)   |
| 13     | 58      | (   | 7%)   |
| 14     | 13      | (   | 2%)   |
| 15     | 61      | (   | 7%)   |
| 16     | 48      | (   | 6%)   |
| 17     | 28      | (   | 3%)   |
|        |         |     |       |

Figura 8: Distribuição das instâncias pelo algoritmo EM.

Tendo agora um número de *clusters* definido, podemos executar também o algoritmo kmeans. K-means é um algoritmo simples, iterativo e baseado nas distâncias entre instâncias (distância euclidiana, neste caso). Difere do algoritmo EM na medida em que o EM se baseia na probabilidade (expetativa) de um ponto pertencer a um *cluster* específico.

Este algoritmo correu em apenas 0.05 segundos, com 20 iterações, com uma soma dos erros quadrados de cerca de 321.32 e apresentou a seguinte colocação das instâncias do *dataset* nos respetivos *clusters*:

| Cluste | ered In | 151 | tances |
|--------|---------|-----|--------|
| 0      | 22      | (   | 3%)    |
| 1      | 19      | (   | 2%)    |
| 2      | 75      | (   | 9%)    |
| 3      | 27      | (   | 3%)    |
| 4      | 52      | (   | 6%)    |
| 5      | 122     | (   | 14%)   |
| 6      | 39      | (   | 5%)    |
| 7      | 102     | (   | 12%)   |
| 8      | 52      | (   | 6%)    |
| 9      | 21      | (   | 2%)    |
| 10     | 10      | (   | 1%)    |
| 11     | 72      | (   | 8%)    |
| 12     | 45      | (   | 5%)    |
| 13     | 37      | (   | 4%)    |
| 14     | 38      | (   | 4%)    |
| 15     | 30      | (   | 4%)    |
| 16     | 57      | (   | 7%)    |
| 17     | 36      | (   | 4%)    |
|        |         |     |        |

Figura 9: Distribuição das instâncias pelo algoritmo k-means.

#### Conclusão

Com este mini-teste, foi possível tirar algumas conclusões ao longo do trabalho desenvolvido:

- A técnica de *Bagging* é muito eficiente sobre o algoritmo *J48*, conseguindo melhorar significativamente a *performance* deste algoritmo.
- Nem sempre esta técnica é benéfica na classificação de instâncias de um dataset. Em algoritmos estáveis, como o Naive Bayes, a técnica de Bagging pode até diminuir a performance do algoritmo.
- O estudo sobre o custo dos erros é essencial para diminuir os casos de FN e FP numa matriz de confusão.
- Há dois métodos de modelos *Cost-sensitive*, podendo ser aplicados sob um algoritmo (*J48*, *Naive Bayes*, etc.) e a sua performance pode variar de acordo com o *dataset*, sendo importante testar todas as possibilidades e escolher a que minimiza o custo dos erros.
- As técnicas de *clustering* são importantes no agrupamento de instâncias similares entre si.

Resumindo, este trabalho assumiu um papel importante e positivo no acompanhamento e aprofundamento das matérias lecionadas nas aulas da Unidade Curricular de Mineração de Dados.