

Elementos de física

Guía de asignatura

Última actualización: Julio de 2022

1. Información general

Nombre de la asignatura	Elementos de física
Código	11310015
Tipo de asignatura	Obligatoria
Número de créditos	3
Tipo de crédito	2A+1B
Horas de trabajo semanal con	5
acompañamiento directo del	
profesor	
Horas semanales de trabajo	4
independiente del estudiante	
Prerrequisitos	Cálculo 2 (Código: 11310004)
Correquisitos	Ninguno
Horario	Teoría: lunes 11:00 – 13:00, salón 509 CASUR
	Laboratorios G1: viernes 7:00 – 10:00, salón 204
	CASUR
	Laboratorios G2: viernes 15:00 – 18:00, Auditorio 2 –
	Edificio nuevo – Claustro.
	Tutoría: lunes 13:00 – 14:00, salón 604 CASUR
	(Alexander Cardona Rodríguez – laboratorios y tutoría)
Líder de área	José Julián Jiménez Rincón

2. Información del profesor y monitor

Nombre del profesor	David Felipe González Rodríguez, PhD.	
Perfil profesional	David Gonzalez es ingeniero mecánico graduado de la	
	Universidad de los Andes (Bogotá, Colombia). Realizó una	
	maestría en ingeniería mecánica, en esta misma universidad,	
	enfocándose en las áreas de termodinámica, transferencia	
	de calor y conversión de energía. Completó sus estudios	
	doctorales en Purdue University (Indiana, USA) enfocándose	
	en el área de manufactura aditiva y materiales inteligentes.	

	Sus intereses de investigación actuales se centran en la optimización de procesos de manufactura aditiva y la fabricación, caracterización y producción de materiales inteligentes para aplicaciones industriales.
Correo electrónico institucional	Davidfeli.gonzalez@urosario.edu.co
Lugar y horario de atención	Atención directa con agendamiento previo vía email.
Página web u otros medios (opcional)	

3. Resumen y propósitos del curso

Este es un curso que presenta los conceptos básicos de la mecánica Newtoniana asumiendo conocimientos en cálculo diferencial, integral y rudimentos de cálculo vectorial. El curso presenta inicialmente los conceptos centrales de la mecánica clásica como trayectoria, momento, fuerza, trabajo, energía y las leyes de conservación en física en el contexto de la mecánica clásica. Al final del curso se presentan algunos fundamentos de la mecánica de fluidos como densidad, viscosidad, presión y ecuación de Bernoulli.

4. Conceptos fundamentales

- 1. Vectores y cinemática.
- 2. Leyes de Newton: masa y fuerza
- 3. Energía cinética y trabajo. Teorema trabajo-energía
- 4. Energía potencial y fuerzas conservativas. Fuerzas no conservativas
- 5. Momentum lineal y su conservación
- 6. Centro de masa. Colisiones
- 7. Oscilaciones y movimiento armónico simple
- 8. Mecánica de fluidos

5. Resultados de aprendizaje esperados (RAE)

- 1. Predecir el comportamiento de un sistema físico a partir de la aplicación de los modelos de cinemática y dinámica en situaciones ideales.
- 2. Identificar y utilizar los conceptos presentados por las leyes de Newton para resolver el

movimiento de un sistema de partículas.

- 3. Identificar y utilizar las leyes de conservación de momentum lineal y energía en la resolución de problemas físicos.
- 4. Aplicar los conceptos de densidad, presión y flujo a la solución de problemas sencillos de mecánica de fluidos.

6. Modalidad del curso

Presencial

7. Estrategias de aprendizaje

La secuencia de aprendizaje que se trabajará en el curso es la siguiente:

- Antes de clase: El estudiante debe estudiar el material propuesto por el profesor: Lecturas, documentos, videos, etc.
- Durante la clase: El profesor de la sección de teoría hace un resumen del tema durante el cual los estudiantes pueden resolver las dudas generadas durante el estudio del material previo o durante la explicación.
- Después de clase: Los estudiantes resuelven ejercicios relacionados con el tema individualmente o bajo la guía del profesor de la sección de laboratorio.
- Laboratorio: Durante las secciones prácticas se realizarán actividades experimentales relacionadas con el tema de clase, así como talleres de ejercicios teóricos en las ocasiones en las que no haya práctica de laboratorio.

8. Actividades de evaluación

Actividad de evaluación	Porcentaje	Fecha examen
Parcial 1	20%	22 Agosto
Parcial 2	20%	26 Septiembre
Parcial 3	20%	31 Octubre
Parcial 4	20%	21 Noviembre
Trabajo en clase (talleres y prácticas de laboratorio)	15%	
Trabajo en clase (Quices)	5%	

9. Programación de actividades

Sesión	Tema	Evaluación	Recursos
25 Jul	Introducción		
1 Ago	Cinemática: movimiento en una dimensión		[1] Cap. 1 y 2
5 Ago	Taller y quiz 1		
8 Ago	Cinemática: movimiento en dos dimensiones		[1] Cap. 3
12 Ago	Laboratorio 1: Unidades y errores de medición		
19 Ago	Taller y quiz 2		
22 Ago	PRIMER PARCIAL		
26 Ago	Leyes de Newton		[1] Cap. 4
29 Ago	Aplicación de las leyes de Newton		[1] Cap. 5
2 Sep	Laboratorio 2: Movimiento de proyectiles		
5 Sep	Trabajo y Energía cinética		[1] Cap. 6
9 Sep	Taller y quiz 3		
12 Sep	Energía potencial y Conservación de la energía		[1] Cap. 7
16 Sep	Laboratorio 3: Leyes de Newton		
19 Sep	Energía potencial y Conservación de la energía		[1] Cap. 7
23 Sep	Laboratorio 4: Fricción		
26 Sep	SEGUNDO PARCIAL		
30 Sep	Momento lineal, impulso y propulsión de cohetes		[1] Secs. 8.1, 8.2, 8.6
3 Oct	Centro de masa y colisiones		[1] Secs. 8.3-8.5
7 Oct	Taller y quiz 4		
10 Oct	Oscilaciones y Movimiento armónico simple		[1] Cap. 13
14 Oct	Laboratorio 5: Conservación del momento lineal		
28 Oct	Taller y quiz 5		
28 Oct	Laboratorio 6: Oscilador armónico		
31 Oct	TERCER PARCIAL		

24 Oct	Mecánica de fluidos		[1] Cap. 14
11 Nov	Taller y quiz 6		
18 Nov	Laboratorio 7: Principio de Arquímedes		
21 Nov	CUARTO PARCIAL		

10. Factores de éxito para este curso

A continuación, se sugieren una serie de acciones que pueden contribuir, de manera significativa, con el logro de metas y consecuentemente propiciar una experiencia exitosa en este curso:

- 1. Planificar y organizar el tiempo de trabajo individual que le dedicará al curso
- 2. Organizar el sitio y los materiales de estudios
- 3. Tener un grupo de estudio, procurar el apoyo de compañeros
- 4. Cultivar la disciplina y la constancia, trabajar semanalmente, no permitir que se acumulen temas ni trabajos
- 5. Realizar constantemente una autoevaluación, determinar si las acciones realizadas son productivas o si por el contrario se debe cambiar de estrategias
- 6. Asistir a las horas de consulta del profesor, participar en clase, no quedarse nunca con la duda
- 8. Propiciar espacios para el descanso y procurar tener buenos hábitos de sueño
- 9. Tener presente en todo momento valores como la honestidad y la sinceridad, al final no se trata solo de aprobar un examen, se trata de aprender y adquirir conocimientos. El fraude es un autoengaño

11. Bibliografía y recursos

[1] Sears & Zemansky's University Physics (13th ed.); H.D. Young, R.A. Freedman. Addison-Wesley (2012)

12. Bibliografía y recursos complementarios

- [2] An Introduction to Mechanics (2nd ed.); D. Kleppner and R. Kolenkow. Cambridge University Press (2014)
- [3] An Introduction to Computer Simulation Methods (3rd ed.); H. Gould, J. Tobochnik, W. Christian. Addison-Wesley (2007)

- [4] How to Write a Good Scientific Paper; C.A. Mack. SPIE Press (2018) https://doi.org/10.1117/3.2317707.sup
- [5] Physics for Scientists and Engineers (6th ed.); P.A. Tipler, G. Mosca. W.H. Freeman and Company (2008)
- [6] Conceptual Physics (12th ed.); P.G. Hewitt. Pearson (2014)

Acuerdos para el desarrollo del curso

Todas las sesiones y actividades del curso son de carácter teórico-práctico; es decir, incluyen clases magistrales, discusiones, ejercicios y laboratorios. No está permitido comer o usar la computadora o dispositivos móviles para realizar actividades no relacionadas con la clase durante su duración.

Para todas las sesiones se espera que el estudiante realice un trabajo independiente previo que permite un avance continuo en los temas y facilite el entendimiento y la discusión en clase de los mismos.

No se realizará aproximación de notas al final del semestre. Las notas solo serán cambiadas con base en reclamos OPORTUNOS dentro de los límites de tiempo determinados por el Reglamento Académico. Si por motivos de fuerza mayor el estudiante falta a algún parcial o quiz, deberá seguir el procedimiento regular determinado por el Reglamento Académico para presentar supletorios. No habrá acuerdos informales al respecto. No se eximirá a ningún estudiante de ningún examen. Los exámenes parciales se presentarán de forma sincrónica a través de la plataforma zoom, las cámaras deben estar encendidas durante el examen y los micrófonos abiertos.

ASISTENCIA AL CURSO

Con el propósito de afianzar el modelo pedagógico contemplado en el Proyecto Educativo Institucional y promover un rendimiento académico óptimo, es necesario asegurar un espacio de interacción entre estudiantes y profesores que facilite la reflexión y el debate académico en tormo al conocimiento. En este sentido, se valora la participación en las actividades académicas y esta se considera como un deber y un derecho del estudiante. (Artículo 48 Reglamento Académico). <u>De no asistir a más del 80% de las clases, el 20% (correspondiente a trabajo en clase) se pierde con 0.0.</u>

Obligatorio: Si el estudiante se presenta 20 minutos luego de dar inicio a alguna evaluación parcial o final, no podrá presentarla y deberá solicitar supletorio siguiendo la reglamentación institucional.

PROCESOS DISCIPLINARIOS-FRAUDE EN EVALUACIONES

Teniendo en cuenta el reglamento formativo-preventivo y disciplinario de la Universidad del Rosario, y la certeza de que las acciones fraudulentas van en contra de los procesos de enseñanza y aprendizaje, cualquier acto corrupto vinculado a esta asignatura será notificado a la secretaría académica correspondiente de manera que se inicie el debido proceso disciplinario. Se recomienda a los estudiantes leer dicho reglamento para conocer las razones, procedimientos y consecuencias que este tipo de acciones pueden ocasionar, así como sus derechos y deberes asociados a este tipo de procedimientos.

La asignatura no tiene ningún tipo de bono.

13. Respeto y no discriminación

Si tiene alguna discapacidad, sea este visible o no, y requiere algún tipo de apoyo para estar en igualdad de condiciones con los(as) demás estudiantes, por favor informar a su profesor(a) para que puedan realizarse ajustes razonables al curso a la mayor brevedad posible. De igual forma, si no cuenta con los recursos tecnológicos requeridos para el desarrollo del curso, por favor informe de manera oportuna a la Secretaría Académica de su programa o a la Dirección de Estudiantes, de manera que se pueda atender a tiempo su requerimiento.

Recuerde que es deber de todas las personas respetar los derechos de quienes hacen parte de la comunidad Rosarista. Cualquier situación de acoso, acoso sexual, discriminación o matoneo, sea presencial o virtual, es inaceptable. Quien se sienta en alguna de estas situaciones puede denunciar su ocurrencia contactando al equipo de la Coordinación de Psicología y Calidad de Vida de la Decanatura del Medio Universitario (Teléfono o WhatsApp 322 2485756).