17. Oblicz ile jest rozróżnialnych naszyjników złożonych z p kamieni (p-liczba pierwsza). Możemy kamienie te wybrać dysponując nieograniczoną liczbą nierozróżnialnych kamieni białych i czarnych.

$$X-zbiór$$
 naszyjników $p=2$ osobno $\Rightarrow 3$ naszyjniki $|X|=2^p$ $p>2$ działamy na X grupo, dihedralno, D_p $10p1=2p$ (p symetri i p obrotów) $2iczamy$ punkty state elementów D_p id: 2^p obrot o dowolny ko_it : z pierwszości p so tylko 2 punkty state dla wizdego punkty state dla wizdego punkty state dla wizdego punkty state dla wizdego symetrie: $(wszystkie\ czame\ biolebox{ which is a purami ten no 2 sposoby (z^{p-1}) symetri $(zyii\ 2p\cdot 2^{p-1})$ symetri $(zyii\ 2p\cdot 2^{p-1})$ (z^{p-1}) $(z^{p-1})$$