Navigation to Multiple Semantic Targets in Novel Indoor Environments

Siddharth Goel

Advised By – Kostas Daniilidis, Georgios Georgakis, Bernadette Bucher

Visual Navigation in Indoor Environments

Navigation from a random starting position to a point, object, or area using egocentric perception (RGB-D images) in an unseen novel environment

Key Challenges

- ➤ No access to environment map
- Layout complexity of indoor environments
- ➤ Dynamic layouts from scene to scene (generalization)
- ➤ Large number of semantic object categories

Multi-object Navigation (MultiObjNav)

Motivation

Real life scenarios: Get a glass of water from the refrigerator or asking the agent to pick an item from the table and hand it over to the person on the sofa

<u>Task</u>

- Navigation to *N* (more than one) semantic object
- Unique and non-repetitive target objects
- Generalization of object goal navigation task

<u>Assumptions</u>

Same as visual navigation task i.e.

- No map of the environment
- Only access to egocentric perception images

Complexity

Increases with the number of target objects. 3-object navigation is considered more difficult than 2-object navigation

Multi-Object Navigation Approach

Multi-Object Navigation- Semantic Map

Learning to Map (L2M)^[1]

We investigate and improve upon the semantic map prediction module presented in L2M^[1]

- Learns to predict the semantic information outside the field of view of the agent
- Ensemble of hierarchical segmentation models
- Two stage prediction occupancy (unknown, free, occupied) f^o and semantic (chair, table, bed) f^s
- Trained end-to-end using pixel-wise cross-entropy losses for both occupancy and semantic prediction

L2M - Semantic Map Prediction

Pre-trained UNet model for predicting semantic segmentation $(\hat{s_t})$ of RGB observations

L2M - Semantic Map Prediction Loss

- Both the occupancy and semantic models train end-to-end.
- Total loss L_{sem} is the sum of occupancy loss (L^0) and semantic loss (L^S)

$$L_{sem} = \lambda^{O} L^{O} + \lambda^{S} L^{S}$$

• Both L^O and L^S are pixel-wise cross-entropy losses

Improving L2M semantic map prediction

Higher weight for Semantic prediction model loss

- Observations comprising semantic objects (chair, table, bed) are much less in number than observations comprising free space, walls, and floor resulting in an extreme class imbalance.
- L^O tends to dominate the total loss in $L_{sem} = \lambda^O L^O + \lambda^S L^S$ when $\lambda^O = \lambda^S$
- The loss function must put more emphasis on identifying objects to counter the overwhelming effect of L^0
- Fine tune values of λ^o and λ^s in $L_{sem} = \lambda^O L^O + \lambda^S L^S$

Occupany Loss weight	Semantic loss weight
1	1
1	10
0.1	10
0.1	100

Improving L2M semantic map prediction

Use focal loss in place of cross-entropy (CE) loss for semantic object prediction

- Focal loss is a specialized loss function for the scenario with exponentially large number of easy negatives (*unknown, occupied, free*) and very less number of hard positives (semantic objects).
- It employs a multiplicative factor of $(1 p_i)^{\gamma}$ which weighs down the loss value for easy negatives, where γ is a tunable hyperparameter.

$$CE Loss = -\sum_{i=1}^{N} y_i \log(p_i)$$

Focal Loss =
$$-\sum_{i=1}^{N} y_i (1-p_i)^{\gamma} \log(p_i)$$

Mean F1 score for spatial and object prediction for different loss functions

Improving L2M semantic map prediction

Incorporate LSTM layer

- Each episode is a sequence of observations
- The temporal information such as chairs are in vicinity of table or cushion co-occur with bed or sofa should be incorporated in the model
- Incorporate LSTM layer in the neural net architecture to maintain temporal consistency among the sequence of RGB-D egocentric observations

Mean F1 score for spatial and object prediction with LSTM layer

Experimental Results

Semantic Segmentation Metrics

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Semantic map prediction results

Occupancy Prediction						
Method	Acc(%)	IoU(%)	F1(%)			
L2M	65.2	45.5	61.9			
L2M+FocalLoss+LSTM	66.0	46.5	63.0			
Semantic Prediction						
L2M	31.2	20.1	30.5			
L2M+FocalLoss+LSTM	29.0	21.1	31.7			

Goal Selection Policy

Multi-object Navigation

Multi-Object Navigation- Goal Selection

Goal Selection policy - MultiObjNav

- Pursue success over short length paths
- Balance exploitation of semantic information with exploration of the map

$$\underset{\rho_i \in \rho}{\operatorname{arg\,max}} \sum_{j=0}^{N-1} \alpha_0^{-j} \left(\mu_j(p_t, \hat{s}_t) + \alpha_1 \sigma_j(p_t, \hat{s}_t) - \alpha_2 d_{j,j+1} \right)$$

where

 p_t : observation

 \hat{s}_t : semantic segmentation

 $\mu_i(p_t, \hat{s}_t)$: mean estimate of the ensemble models

 $\sigma_i(p_t, \hat{s}_t)$: the standard deviation of the target class probability

 $d_{i,j+1}$: euclidean distance between j^{th} and $(j+1)^{th}$ node

 α_o , α_1 , α_2 : hyperparameters

N : number of target objects

 ρ : Set of candidate paths

Experiments & Results

Multi-object Navigation

Experimental Setup

Al-Habitat (https://aihabitat.org/)

High-performance 3D simulator with configurable agents, multiple sensors, and generic 3D dataset handling

Matterport 3D

Dataset containing reconstructions of real indoor scenes from 90 buildings

- Total number of scenes: 10
- Total number of episodes: 680
- Experiments conducted for 2-object navigation
- Target object combinations [chair, table],
 [bed,cabinet], [bed, sofa], [table, cabinet], [table,
 sofa], [cabinet, sofa], [table, bed], [chair, cabinet],
 [chair, sofa], [chair, bed]

Habitat Simulator configuration

Parameter	Value		
Max. episode steps	1000		
Sensors	['RGB', 'Depth']		
Height of agent(m)	1.5		
Task type	ObjectNav-v1		
Possible Actions	['Stop', 'Move Forward',		
	'Turn Left', 'Turn Right']		
Move forward distance (cm)	25		
Turn left/right angle	10°		

RGB frames from two different scenes in Matterport3D dataset along with their corresponding depth images

Multi Object Navigation Metrics

- <u>Success</u> Binary indicator for episode success if the agent is able to navigate to all the target semantic objects within the allowed number of steps
- <u>Progress</u> Ratio of number of semantic objects reached successfully by the agent to the total number of target semantic objects. If the agent navigates to 2 out of 3 target objects then progress is equal to 2/3 = 0.66
- Success weighted by path length (SPL) quantifies the distance covered by an agent in a successful episode.

$$SPL = Success.d/max(p,d)$$

• Progress weighted by Path Length (PPL) - measures the distance covered by an agent in an unsuccessful episode.

$$PPL = Progress.d/max(p,d)$$

where

d: length of the shortest route spanning agent's starting position and all the objects

p: total distance travelled by the agent

Experimental Results - MultiObjNav

Two sets of experiments were performed for 2-object navigation

- Agent does not have access to stop oracle
 The agent agent must take stop decision by itself after recognizing a goal state
- Agent has access to stop oracle
 The agent refers to the oracle to check if it has reached the goal state

Multi-object Navigation Experimental Results

Method	Success(%)	Progress(%)	SPL(%)	PPL(%)
Multi-obj-L2M	2.35	11.98	2.46	9.27
Multi-obj-L2M-OS	17.60	41.53	15.98	35.30

OS: oracle stop

Experimental Results - MultiObjNav

- Agent performance based on target object categories
- Agent performs better on objects which
 - co-occur
 - have high frequency

Thank You !!!!