Вариант I.

Фамилия Имя:

1. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

Oтвет:

2. Тело движется по прямой так, что его скорость v (м/с) изменяется по закону $v(t) = 6t^2 - 12t + 12$ (t — время движения в секундах). Найдите скорость тела в момент, когда его ускорение будет равно 0.

Om eem:

3. Найдите точки минимума функции

$$f(x) = 3x^4 + 2x^3 - 18 \cdot \frac{16 - 8x^2 + x^4}{x^2 - 4}.$$

Ответ:

4. Найдите промежутки убывания функции

$$f(x) = x^4 - 2x^2.$$

Oтвет:

- **5.** Напишите уравнение касательной к графику функции $f(x) = 3e^x$ в точке $x_0 = 0$. *Ответ:*
- **6.** Найдите наименьшее значения функции $f(x) = (2x-4)^2 (2x-4)^3$ на отрезке [-1;3]. *Ответ:*
- 7. Тело движется по закону $s(t) = 6t^2 t^3$. Какова наибольшая скорость тела? Ответ:

Вариант II.

Фамилия Имя:

1. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

Ответ:

2. Найдите точки максимума функции

$$f(x) = 3x^{2} \cdot \frac{16 - 8x^{2} + x^{4}}{4 - x^{2}} - 2x^{3} + 6x^{2}.$$

Oтвет:

3. При движении точки по прямой расстояние S(t) (в метрах) от начальной точки M изменяется по закону $S(t)=t^4-4t^3-12t+8$ (t-время в секундах). Каким будет ускорение тела (в м/с²) через 3 секунды?

Oтвет:

4. Найдите промежутки возрастания функции

$$y = x^3 - 3x^2 + 2.$$

Omeem:

5. Напишите уравнение касательной к графику $f(x) = -(x-1)^2$ в точке $x_0 = 2$.

Om eem:

6. Найдите наибольшее значение функции $f(x) = (2x-4)^2 - (2x-4)^3$ на отрезке [-1;3]. *Ответ:*

7. Найдите наименьшее значение функции $f(x) = x^2 + \frac{2}{x}$ при положительных значениях аргумента.

Ответ: