Total No. of Questions: 09

JSPM's

Rajarshi Shahu College of Engineering, Tathawade, Pune- 411033 (An autonomous institute affiliated to Savitribai Phule Pune University)

Examination: End Semester Examinations (ESE)

Semester: 11 Academic Year: 2023-24

Class: F. Y. B. Tech. (All Programs)

Department: Engineering Sciences and Humanities

Subject Code: ES1206 Subject Name and pattern: Physics for Engineers (2023)

Duration: 2 Hour Max. Marks: 50 Marks

Instructions to the Candidates

1. In Section A, Q.1, Q. 2 and Q.3 are compulsory.

2. In section B, Solve Q.4 or Q.5, Q.6 or Q.7 and Q.8 or Q.9.

3. Assume suitable and necessary data wherever required.

4. Constants Charge on electron(e)= 1.6×10^{-19} C, Mass of electron(M_e)= 9.1×10^{-31} Kg Planck's Constant (h)= 6.626×10^{-34} J-sec, Avogadro's No. (N_A)= 6.02214076×10^{23} Mass of Proton (M_p)= 1.6×10^{-27} Kg

Q. No.		Section-A	Marks	BL	СО
1		Solve any one			
	a	Discuss the three types of damped oscillation.	3	BLI	COI
	b	Find the force constant if differential equation for linear SHM of a particle of mass 2 gm. is $\frac{d^2x}{dt^2} + 16x = 0$	3	BL2	COI
2		Solve any one			
	a	What are photometry and radiometry? Explain in short.	3	BLI	CO2
	b	Calculate the reverberation time of hall having volume 6000 m ³ and surface area of sound absorbing material is 2800 m ² . Given average coefficient of absorption 0.078 OWU.	3	BLI	CO2
3		Solve any one			
	a	Define and write the formulae 1)Numerical aperture 2) Acceptance angle	3	BLI	соз
	b	Write a short note on LIDAR.	3	BL2	соз

Section -B

4	a Deduce Schrodinger's time independent wave equation.	6	BLI	CO4
	b Explain physical significance of ψ and ψ ² .	4	BL2	CO4
	c The lowest energy of an electron trapped in an infinite potential well is 38 eV. Calculate the width of the well. OR	3	BL3	CO4
5	a State and explain Heisenberg's uncertainty principle and illustrate with an example of single slit electron Diffraction.	6	BL2	CO4
	b State De-Broglie's hypothesis. Express De Broglie's wavelength in terms of kinetic energy of the particle.	4	BL2	CO4
	The lowest energy of an electron trapped in an infinite potential well is 38 eV. Calculate width of the well.	3	BL3	CO4
6	a Derive an expression for path difference between light rays reflected by a thin transparent parallel film of refractive index μ. Write the mathematical conditions for brightness and darkness of the thin film.	6	BLI	CO5
	b State and Explain Photoelectric effect.	4	BL2	C05
	e A slit of width 'a' is illuminated by white light. For what value of 'a' will the first minimum for red light fall at an angle 30°? Wavelength of red light is 6500Å.	4	BL3	CO5
	OR			
7	a Explain Fraunhofer diffraction at a single slit. Derive expressions for resultant amplitude and resultant intensity due to single slit. State the mathematical conditions for central (principal) maximum and minima	6	BL2	CO5
	b State and Explain Compton effect.	4	BL1	CO5
	c A parallel beam of sodium light strikes a film of oil floating on water. When viewed at an angle 30° from the normal, eighth dark band is seen. Calculate the thickness of the film. Refractive index of oil is 1.46 and wavelength of light is 5890Å.	4	BL3	C05
8	a What is an earthquake? Enlist and describe different types of earthquakes.	6	BL2	CO6
	b Write any four differences between hazards and disasters.	4	BLI	CO6
	c Mention the short term and long term effects of landslides.	4	BL3	CO6
	OR	-	DES	
9	a What are the characteristics of Tsunamis? What are the engineering measures to mitigate Tsunami?	6	BL2	CO6
	b Discuss various types of natural and man-made disasters.	4	BL2	CO6
	c Describe the impacts of earthquake on the economic development of a			
	nation.	4	BL2	CO6

ALLSTHE BEST