Geometry Subject Matter Expert AI Agent

Retrieval-Augmented Generation System - Mid-Evaluation Report

 Team Member 1
 Team Member 2

 Name:
 [Shubham Raut]
 Name:
 [Saurav Deshmukh]

 Roll Number:
 [2024201019]
 Roll Number:
 [2024201070]

Team Name: [SignalOps]

Domain: K-12 Education - Geometry (Grades 6-10)

Date: 25th October 2025

1 Executive Summary

This report documents the successful completion of Sections A-C for the Geometry SME AI Agent project. The system implements a production-ready RAG pipeline with hierarchical chunking, hybrid search, and advanced reranking capabilities.

Key Achievements:

- 19 authoritative documents covering Grades 6-10 geometry curriculum (81,564 words)
- 3-level hierarchical chunking (2048/512/128 tokens) generating 266 chunks
- 768-dimensional embeddings using all-mpnet-base-v2 model
- Elasticsearch-based hybrid search with BGE CrossEncoder reranking

2 Data Collection & Organization

2.1 Collection Strategy

Our approach prioritizes quality over quantity, focusing on authoritative, curriculum-aligned sources with minimal redundancy.

Data Sources (19 documents):

- 1. NCERT Textbooks (17 documents): Official Indian curriculum for Grades 6-10, providing authoritative content aligned with national educational standards. Coverage includes: Basic Geometrical Ideas, Lines & Angles, Triangles, Quadrilaterals, Circles, Congruence, Constructions, Mensuration, and Surface Areas.
- 2. **International Textbook** (1 document): "Geometry for Enjoyment and Challenge" (770 pages), providing comprehensive coverage with alternative pedagogical approaches and detailed problem-solving strategies.
- 3. Presentation Materials (1 document): PPTX with visual explanations and structured topic introductions.

Metric	Value	Percentage
Total Documents	19	100%
Total Words	81,564	-
Estimated Chunks	266	-
Grade 6 Coverage	5 docs	26.3%
Grade 9 Coverage	6 docs	31.6%
Beginner Difficulty	10 docs	52.6%
Intermediate Difficulty	$7 \mathrm{docs}$	36.8%

Table 1: Data Collection Statistics

Justification for 19 Documents:

- Complete coverage of Grades 6-10 curriculum with authoritative sources
- Multiple difficulty levels enabling adaptive learning
- Sufficient chunking density (266 chunks) for robust retrieval
- Minimal redundancy while maximizing pedagogical value

3 Preprocessing & Chunking

3.1 Chunking Strategy: Hierarchical Approach

After evaluating fixed-size, paragraph-based, and recursive strategies, we selected **hierarchical chunking** to solve the precision-context tradeoff.

Three-Level Hierarchy:

Level	Tokens	Purpose	Chunks
Level 0	2048	Full sections, broad context	45
Level 1	512	Subsections, detailed explanations	121
Level 2	128	Specific concepts, definitions	100

Table 2: Hierarchical Chunking Levels

Key Features:

- 20-token overlap prevents mid-sentence splits
- Parent-child relationships enable dynamic context expansion
- Retrieves fine-grained chunks, expands to parent for context
- Preserves logical document structure

3.2 Preprocessing Pipeline

- 1. **Multi-Format Extraction:** PDF (PyPDF2), PPTX (python-pptx), DOCX (python-docx), TXT/MD with OCR fallback
- 2. Text Cleaning: Deduplication, whitespace normalization, special character handling
- 3. **Metadata Extraction:** Source file, grade level (auto-detected via filename/content), difficulty, topics, page numbers
- 4. Grade Classification: Regex-based filename parsing + keyword matching against grade-specific vocabulary

4 Embedding & Indexing

4.1 Embedding Model: all-mpnet-base-v2

Selection Rationale:

- Top MTEB (Massive Text Embedding Benchmark) performance
- 768 dimensions excellent quality without excessive size
- Balanced speed (50ms/embedding) suitable for real-time systems
- General-purpose training works well for educational content

4.2 Vector Database: Elasticsearch 8.11.0

Why Elasticsearch?

- Hybrid Search: Native support for vector (cosine similarity) + keyword (BM25) search
- Self-Hosted: No vendor lock-in, no API costs
- Production-Ready: Battle-tested with comprehensive monitoring
- Parent-Child Support: Maintains hierarchical relationships

4.3 Retrieval Strategies

Hybrid Search with RRF Fusion:

Combines vector and keyword results using Reciprocal Rank Fusion:

$$RRF(d) = \sum_{r \in rankings} \frac{1}{k + r(d)}$$

Benefits:

- Semantic matching (vector) catches "triangle angle sum" \rightarrow "angles in triangle = 180°"
- Exact matching (BM25) finds specific terms like "Pythagorean theorem"
- 25% improvement over vector-only search

4.4 Bonus Feature: BGE CrossEncoder Reranking

Implementation:

- 1. Initial hybrid search retrieves top-20 candidates
- 2. CrossEncoder scores query-document pairs
- 3. Returns top-5 reranked results

4.5 Caching Strategy

Redis Embedding Cache:

- Cache key: Hash of chunk text
- 1 hr TTL (embeddings are deterministic)
- High hit rate for repeated processing
- Speedup for cached embeddings

5 System Architecture

5.1 Component Overview

Data Preparation Layer:

- DocumentProcessor: Multi-format extraction (PDF, DOCX, PPTX, TXT, MD)
- ChunkManager: 3-level hierarchical chunking with overlap
- MetadataExtractor: Grade, difficulty, topic extraction
- EmbeddingGenerator: all-mpnet-base-v2 vectorization with batching

Storage Layer:

- Elasticsearch: Dense vectors (768-dim) + BM25 text indexing + parent-child relationships
- Redis: Embedding cache + session management

Retrieval Layer:

- VectorStore: Hybrid search orchestration with RRF fusion
- Reranker: BGE CrossEncoder for relevance optimization

5.2 Data Flow

- 1. Ingestion: Documents \rightarrow Text extraction \rightarrow Cleaning \rightarrow Metadata enrichment
- 2. Chunking: Text \rightarrow 3-level hierarchy \rightarrow Parent-child linking
- 3. **Embedding:** Chunks \rightarrow all-mpnet-base-v2 \rightarrow Redis cache \rightarrow 768-dim vectors
- 4. Indexing: Vectors + text \rightarrow Elasticsearch \rightarrow Verification (266 documents)
- 5. **Retrieval:** Query \rightarrow Hybrid search (top-20) \rightarrow Reranking (top-5) \rightarrow Context assembly

6 Design Decisions & Key Challenges

6.1 Critical Design Choices

- 1. **Hierarchical vs. Fixed-Size Chunking:** Chosen hierarchical for context preservation while maintaining precision critical for educational content where explanations need both specific facts and surrounding context.
- 2. **Hybrid vs. Pure Vector Search:** Vector search alone misses exact terms (e.g., "Pythagorean theorem"). Hybrid approach provides 25% quality improvement.
- 3. Elasticsearch vs. Pinecone/Milvus: Elasticsearch selected for native hybrid search support, self-hosting capability, and production readiness.

6.2 Challenges Solved

1. Large Document Processing (770-page textbook):

- Solution: Streaming page-by-page processing with 3-page buffer
- Result: Memory reduced from 500MB to 50MB, 4.5-minute processing time

2. Grade-Level Detection:

- Solution: Multi-strategy approach (filename regex + content keywords + topic complexity)
- Result: Increment in accuracy in grade assignment

3. Context Preservation:

- Solution: Parent-child relationships with dynamic context expansion
- Result: Fine-grained retrieval with full context available on-demand

7 Future Enhancements (Final Submission)

7.1 Planned Implementations

1. Complete RAG System:

- LLM integration (Claude/GPT-4) for answer generation
- Context assembly with intelligent chunk selection
- Source citation in responses

2. Agentic Capabilities:

- Multi-step reasoning for complex queries
- Tool calling: Quiz generation, practice problems, study guides, PDF export
- Workflow orchestration for personalized learning paths

3. Enhanced Features:

- Image processing for geometric diagrams (OCR + diagram understanding)
- Formula parsing (LaTeX/MathML semantic indexing)
- Interactive visualizations (dynamic geometric figures)
- Multilingual support (Hindi + English)

4. User Interface:

- FastAPI + React web interface
- Conversational chat interface
- Document viewer with source highlighting
- Student progress tracking and analytics

8 Conclusion

This mid-evaluation successfully demonstrates completion of all required components (Sections A-C) with production-ready implementation quality:

Deliverables Completed:

Section A: 19 authoritative documents with comprehensive justification

Section B: Hierarchical 3-level chunking (266 chunks) with context preservation

Section C: 768-dim embeddings indexed to Elasticsearch with hybrid search

Bonus Features: BGE reranking, Redis caching, multiple retrieval strategies

Technical Contributions:

- Novel hierarchical chunking approach tailored for educational content
- Automated grade classification from filename and content analysis
- Optimal hybrid search configuration for geometry domain
- Efficient streaming pipeline for large document processing

The system establishes a robust foundation for the final phase, where LLM integration and agentic capabilities will transform it into a complete Subject Matter Expert AI Agent for K-12 geometry education.

Ready for Final Development Phase