Non-Homogenous Lecture 12: Linear System

Theorom

Suppose the equation Aze=b is consistent for some given b, and let p be a solution. Then the solution set of Aze=b is the set of all vectors of the form $w-p+v_h$, where v_h is a solution of the homogenous equation Aze=b

Proof of (1)	
11001 01 0-7	
Λ Λ	
1. Any vector of the form	$\overline{}$
The record of one doing	
0+ Vi is a solution to	
1 Any vector of the form p+ vn is a solution to Az= b plug p+vn in	
12 = b	
plug parh in	
Compute	
A (p+V)=Ap+Avn=b+O=b	
HUP+VW=Ap+AVn=b+U=b	
	<u></u>
p is a particular solution to A= b plus p in so = results in b	
p is a particular solution	
Δ'-Φ	
00 /1× = 0	/
plug & MOO &	/
results in b	/
<u> </u>	-/-
un any solution 50	
/1 3C = 0 8	
if i plug vn mgo) 18	
results in 8	

Proof of (2)

2. Every solution of Az-6 has the form p+ Vh

Let \vec{w} be a solution to $A\vec{z} - \vec{b}$. Now $\vec{w} - \vec{p}$ is a solution to the homogenous equation $A\vec{z} - \vec{o}$ since

A(3)=A(3)-A(p)=b-b= 6

w has the form

p+(w-p) and w-p is a solution to the homogenous equation Ax==

Notes

Aze-8 always has atleat one solution

Az-b might not be consistent

if Ax=b has any solutions then the theorem applies

important