§6. Асимптоты графика функции

Определение 6.1. Пусть функция f(x) определена в некоторой окрестности точки x_0 , кроме, быть может, самой точки x_0 . Если хотя бы один из односторонних пределов функции f(x) в точке x_0 бесконечен, то прямая L: $x = x_0$ называется вертикальной асимптотой графика функции f(x).

Прямая L: x=1 — вертикальная асимптота графиков функций f(x)=1/(x-1) и $g(x)=1/(x-1)^2$, ибо односторонние пределы этих функций в точке x=1 бесконечны: $\lim_{x\to 1\pm 0} f(x)=\pm \infty$, $\lim_{x\to 1\pm 0} g(x)=+\infty$ (рис. 6.1, 6.2).

Рис. 6.1. График функции f(x) = 1/(x-1) Рис. 6.2. График функции $f(x) = 1/(x-1)^2$ Замечание 6.1. Вертикальные асимптоты графика данной функции проходят через её точки разрыва 2-го рода, так как точка x_0 из определения 6.1 есть точка разрыва 2-го рода функции f(x) (§2, глава 4, раздел 4).

Пример 6.1. Найти вертикальные асимптоты графика функции

$$f(x) = (x-2)e^{-1/(x-2)}.$$

▶ $D(f) = (-\infty, 2) \cup (2, +\infty)$, x = 2 — точка разрыва непрерывности, $\lim_{x \to 2+0} f(x) = 0$, $\lim_{x \to 2-0} f(x) = [0 \cdot \infty]$. Преобразуем f(x) в дробь, получим неопределённость ∞/∞ , раскрывая которую, применим правило Лопиталя:

$$\lim_{x \to 2-0} (x-2)e^{-\frac{1}{x-2}} = \lim_{x \to 2-0} \frac{e^{-\frac{1}{x-2}}}{1/(x-2)} = \lim_{x \to 2-0} \frac{e^{-\frac{1}{x-2}} \cdot 1/(x-2)^2}{-1/(x-2)^2} = -\lim_{x \to 2-0} e^{-\frac{1}{x-2}} = -\infty.$$

В силу определения 6.1 прямая x=2 — вертикальная асимптота графика данной функции при $x \rightarrow 2-0$ (рис 7.3).

Определение 6.2. Пусть функция f(x) определена для сколь угодно больших по модулю значений x. Прямая L: y = kx + b называется асимптотой графика функции f(x) при $x \to +\infty$ ($x \to -\infty$), если f(x) представима в виде:

$$f(x) = kx + b + \alpha(x), \qquad (6.1)$$

где $\alpha(x) \to 0$ при $x \to +\infty$ $(x \to -\infty)$.

Замечание 6.2. Если угловой коэффициент k асимптоты L: y = kx + b равен нулю, то она называется *горизонтальной*, если же $k \neq 0$, то асимптота называется *наклонной*.

Замечание 6.3. Если $\lim_{x\to\pm\infty} f(x) = b$, то $f(x) = b + \alpha(x)$, где $\alpha(x)\to 0$ при $x\to\pm\infty$ (теорема 4.3 главы 3 раздела 4). Тогда из определения 6.2 следует, что прямая L: y=b является горизонтальной асимптотой графика f(x).

Так, прямая y=0— горизонтальная асимптота графика функции f(x)=1/(x-1) (рис. 6.1), ибо $\lim_{x\to\pm\infty}1/(x-1)=0$, а прямая y=1— горизонтальная асимптота графика функции $f(x)=\frac{x^2}{x^2+3}$ (рис. 5.3), ибо $\lim_{x\to\pm\infty}\frac{x^2}{x^2+3}=1$.

График функции f(x) может иметь различные горизонтальные асимптоты при $x \to +\infty$ и $x \to -\infty$. Так, прямая L: y = 2 — горизонтальная асимптота графика функции $f(x) = (2-x)e^x + 2$ при $x \to -\infty$ ($\lim_{x \to -\infty} f(x) = 2$)), однако она не является асимптотой этого графика при $x \to +\infty$ (рис. 5.6).

Пример 6.2. Используя определение 6.2, найти наклонные асимптоты графика функции $f(x) = x + \operatorname{arct} gx$.

▶ $\lim_{x \to +\infty} \arctan(x) = \pi/2$, поэтому $\arctan(x) = \pi/2 + \alpha(x)$, $\alpha(x) \to 0$ при $x \to +\infty$ (теорема 4.3 глава 3 раздел 4). Отсюда имеем: $f(x) = x + \pi/2 + \alpha(x)$. В силу определения 6.2 заключаем, что прямая L: $y = x + \pi/2$ — наклонная асимптота графика f(x) при $x \to +\infty$. Аналогично можно показать, что прямая L: $y = x - \pi/2$ — наклонная асимптота графика f(x) при $x \to -\infty$. \blacktriangleleft

Теорема 6.1. Для того чтобы прямая L: y = kx + b была асимптотой графика функции f(x) при $x \to +\infty$, необходимо, чтобы существовали два предела:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k , \lim_{x \to +\infty} (f(x) - kx) = b .$$
 (6.2)

и достаточно, чтобы существовал второй из них.

▶Пусть прямая L: y = kx + b — асимптота графика функции f(x) при $x \to +\infty$. Тогда в силу определения 6.2 функция f(x) представима в виде (6.1). Поделим обе части этого равенства на x: $\frac{f(x)}{x} = k + \frac{b}{x} + \frac{\alpha(x)}{x}$ и в полученном равенстве перейдём к пределу при $x \to +\infty$. Имеем $\lim_{x \to +\infty} \left(k + \frac{b}{x} + \frac{\alpha(x)}{x}\right) = k$, так как $\lim_{x \to +\infty} \left(\frac{b}{x} + \frac{\alpha(x)}{x}\right) = 0$. Но тогда существует и предел $\lim_{x \to +\infty} \frac{f(x)}{x} = k$. Перепишем равенство (6.1) в виде: $f(x) - kx = b + \alpha(x)$ и перейдём в полученном равенстве к пределу при $x \to +\infty$. Имеем

 $\lim (b + \alpha(x)) = b$, так как $\alpha(x) \to 0$ при $x \to +\infty$. Но тогда существует и предел $\lim_{x\to +\infty} (f(x) - kx) = b$.

что существует $\lim_{x \to +\infty} (f(x) - kx) = b$. Обратно, предположим, $f(x) - kx = b + \alpha(x)$ или $f(x) = kx + b + \alpha(x)$, где $\alpha(x) \to 0$ при $x \to +\infty$ (теорема 4.3 глава 3 раздел 4). Таким образом, показано, что функция f(x)представима в виде (6.1), а это и означает, в соответствии с определением 6.2, что прямая L: y = kx + b -асимптота графика функции f(x) при $x \to +\infty$.

Замечание 6.4. Теорема 6.1 остаётся справедливой и для случая $x \to -\infty$. График функции f(x) может иметь различные асимптоты при $x \to +\infty$ и при $x \to -\infty$, поэтому пределы из равенств (6.2) отдельно рассматриваются для каждого из этих случаев.

 $f(x) = \sqrt{1 + x^2}$

(6.2):

Пример 6.3. Найти асимптоты графика функции $f(x) = \sqrt{1+x^2}$.

ightharpoonupГрафик f(x) не имеет вертикальных асимптот, ибо функция не имеет точек разрыва 2-го рода. Вычислим для f(x) пределы из равенства (6.2). Имеем:

$$\lim_{x \to \pm \infty} \frac{\sqrt{1+x^2}}{x} = \lim_{x \to \pm \infty} \frac{|x|\sqrt{1/x^2+1}}{x} = \begin{cases} -1, x \to -\infty, \\ +1, x \to +\infty. \end{cases}$$

Получили два значения κ : $k_1 = -1$ (при $x \to -\infty$) и $k_2 = +1$ (при $x \to +\infty$). С каждым из них вычислим второй из пределов

a).
$$k_1 = -1$$
, $\lim_{x \to -\infty} (\sqrt{1 + x^2} + x) = [\infty - \infty] = \lim_{x \to -\infty} \frac{1 + x^2 - x^2}{\sqrt{1 + x^2} - x} = 0 \Rightarrow b_1 = 0$;

$$6). \ k_2 = +1, \ \lim_{x \to +\infty} (\sqrt{1+x^2} - x) = [\infty - \infty] = \lim_{x \to -\infty} \frac{1+x^2-x^2}{\sqrt{1+x^2}+x} = 0 \Longrightarrow b_2 = 0.$$

Заключаем, что график данной функции имеет две наклонных асимптоты $L_1: y = -x$ при $x \to -\infty$ и $L_2: y = x$ при $x \to +\infty$ (рис. 6.3).

Геометрическая интерпретация понятия асимптоты

Каждое из определений 6.1 и 6.2 допускает одну и ту же геометрическую трактовку: расстояние d точки M(x, f(x)) графика Γ функции f(x) до прямой L, являющейся асимптотой графика Γ , стремится к нулю при неограниченном удалении точки M от начала координат.

Рис. 6.4. К геометрической интерпретации понятия вертикальной асимптоты

Рис. 6.5. К геометрической интерпретации понятия наклонной асимптоты

В самом деле, пусть прямая L: $x = x_0$ — вертикальная асимптота графика функции f(x), тогда $f(x) \to \infty$ при $x \to x_0 - 0$ или при $x \to x_0 + 0$, поэтому точка M(x,f(x)) неограниченно удаляется от начала координат, и в то же время $d = |x - x_0| \to 0$ (рис. 6.4). Пусть прямая L: y = kx + b — наклонная асимптота графика данной функции Γ при $x \to +\infty$. Опустим из точки $M(x,f(x)) \in \Gamma$ перпендикуляр на ось Ox и через P обозначим точку его пересечения с асимптотой L (рис. 6.5), $P(x,y_P)$, при этом $y_P = kx + b$. При $x \to +\infty$ точка M(x,f(x)) неограниченно удаляется от начала координат, а

$$MP = |f(x) - y_p| = |f(x) - kx - b| \rightarrow 0$$

(определение 6.2). Так как $0 \le d < MP$ (рис. 6.5), то заключаем, что $d \to 0$ при $x \to +\infty$.

Замечание 6.5. Геометрическая интерпретация понятия асимптоты используется при построении математических эскизов графиков функций.

Замечание 6.6. Формула (6.1) является асимптотическим разложением функции f(x) при $x \to +\infty$ ($x \to -\infty$) (§9, глава 3, раздел 4). Линейная функция g(x) = kx + b из этой формулы может служить аппроксимацией f(x) при достаточно больших по модулю значениях аргумента x.