Objet : mise en équation de réactions biochimiques Objectifs : comprendre la loi d'action de masse et la conservation de la matière

Dégradation

On commence par la dégradation d'un substrat de manière standard

$$A \xrightarrow{k} \emptyset$$

- 1. Ecrire l'équation différentielle qui gouverne l'évolution de A et écrire le script qui permet de résoudre cette équation pour une condition initiale choisie
- 2. [optionnel] Avec votre cours, donner la formule mathématique de la solution de l'équation, vous pouvez comparer la formule théorique et la résolution numérique
- 3. On suppose qu'on mesure la concentration de cette molécule sur 10 minutes après une injection et que cela donne :

T(min)	С
0	1.0
1.0	0.7952
2.0	0.3795
3.0	0.2960
4.0	0.3842
5.0	0.2343
6.0	0.3253
7.0	0.0511
8.0	0.0432
9.0	0.0224
10.0	0.0143

représenter les données

- 4. Donner une estimation de la demi vie de A (plusieurs possibilités : lecture graphique, calcul avec le cours ...)
- 5. Ajuster le(s) paramètre(s) de votre équation avec ces données et comparer votre solution et les données pour confirmer votre estimation (ou pas :-))

Réaction suicide

Cette fois on considère la réaction suivante entre deux types de molécules A et B

$$A + B \xrightarrow{k} \varnothing$$

- 1. Ecrire les équations d'évolutions de A et B en fonction du temps
- 2. Trouver une relation entre A et B (indice : que vaut $\frac{dA}{dt} \frac{dB}{dt}$)
- 3. Ramener le système à la résolution d'une seule équation différentielle
- 4. Résoudre numériquement et tracer A et B en fonction du temps
- 5. [optionnel] En remarquant que $\frac{1}{A} \frac{1}{A+Cste} = \frac{Cste}{A(A+Cste)}$ on peut résoudre analytiquement l'équation

Formation de dimères et trimères

On considère une réaction pour laquelle un monomère A se combine à lui-même pour produire un dimère selon la réaction :

$$A + A \stackrel{k_1}{\rightleftharpoons} B$$

- 1. Ecrire le système d'équations différentielles qui gouvernent l'évolution des espèces A et B en utilisant la loi d'action des masses (on supposera $B_0 = 0$)
- 2. Quelle quantité est conservée? Peut-on ramener le système à une seule équation différentielle? Comment?
- 3. En prenant $k_{-1} = k_1 = 1$, resoudre numériquement le système et tracer A et B en fonction du temps
- 4. Etudions le système à l'équilibre. On appelle B^* la valeur de B à l'équilibre. Peut-on trouver B^* en fonction de k_{-1}, k_1 et A_0 ?

Trimérisation : un monomère A se combine trois fois pour faire un trimère C, selon la réaction :

$$A + A + A \xrightarrow{k_1} C$$

La probabilité qu'une trimérisation arrive est rare - en général elle implique un complexe dimère transitoire B selon les réactions :

$$A + A \rightleftharpoons B$$

$$A+B \stackrel{k_2}{\rightleftharpoons} C$$

- 1. Utiliser la loi d'action de masse pour trouver les équations d'évolution
- 2. Que donne le système à l'équilibre? (on prendra $B_0 = C_0 = 0$)
- 3. Résoudre numériquement en prenant $k_{-1}=k_1=1$ et $k_{-2}=k_2=1$
- 4. Que faut-il supposer pour que la réaction soit une trimérisation imédiate $(A + A + A \xrightarrow{k_1} C)$, quelles hypothèses sur les taux k_i ?
- 5. Ecrire la résolution numérique pour une trimérisation imédiate. En supposant les conditions de la question précédente remplies, comparer les 2 résultats numériques.

Réaction Enzyme-Substrat (Ligand/Récepteur)

On essaie de voir ce que donne l'équation du cours :

$$L+R \rightleftharpoons R_1$$

1. Ecrire les équations d'évolutions ainsi que la loi de conservation. En (re)déduire une relation à l'équilibre sans simulation.

2. On suppose qu'il y a un compétiteur

$$I + R \stackrel{k_2}{\rightleftharpoons} R_2$$

(Re)déduire l'évolution et re-vérifier les calculs du cours avec la résolution numérique du système.

3. On considère toujours la réaction avec un compétiteur, mais on suppose que I est constant et que R suit l'équation suivante :

$$\frac{dR}{dt} = k_{-1}R_1 - \frac{k_1}{\kappa + I}LR$$

- (a) adapter le système d'équation (pour les autres espèces)
- (b) vérifier qu'augmenter I diminue bien R_1 à l'équilibre.

Pathway simple

On décrit un pathway de production de protéine suivant :

— l'ADN est en deux modes – ouvert ou fermé

'opening' dna : $O \xrightarrow{p} C$ 'closing' dna : $C \xrightarrow{q} O$

— Une fois ouvert celui-ci peut être transcript et donne un ARN

transcription : $O \xrightarrow{r} O + R$

— Cet ARN peut soit se dégrader soit être traduit en protéine.

rna degradation : $R \xrightarrow{\bar{\mu}} \varnothing$ translation : $R \xrightarrow{s} R + P$

— La protéine peut se dégrader.

protein degradation : $P \xrightarrow{\lambda} \emptyset$

- 1. Faire un schéma explicatif
- 2. Ecrire les équations d'évolution et resoudre numériquement l'équation (jouer avec les paramètres)
- 3. On suppose maintenant que la protéine inhibe sa propre expression : essayer d'implémenter ce changement (plusieurs modélisations sont possibles), puis étudier le comportement