Diskret Matematik - IT, TMV200, HT08

Veckoblad 2

Under veckan kommer vi att ha de avslutande föreläsningarna på temat om logik. Först kommer vi att göra det sista i kapitel 3 (partiella ordningar) och sedan går vi igenom kapitel 6 som handlar om rekursion och induktion samt motsägelsebevis. På fredagen kommer vi dessutom att kunna njuta av en timmes gästföreläsning om logik inom datavetenskap.

- Rekommenderade övningar i kapitel 3 är 20, 22–26 (plus 1–16 och 19 om ni inte redan gjort dem).
- I kapitel 6 så rekommenderas alla övningar. Ni kommer att ha tid i början av nästa vecka att jobba lite med dessa också. Det finns också extra övningar att hämta på kursens hemsida.

Kryssuppgifter

Innan ni börjar med de två första uppgifterna ska ni ha gjort de flesta av uppgifterna i kapitel 3.

- 1. Låt M vara mängden av alla de 10 siffrorna 0 till 9. Sätt A till delmängden av potensmängden av M som innehåller de mängder som innehåller siffran 3 och som högst innehåller 4 siffror. T.ex. så innehåller A mängderna $\{1,3,7,8\}$ och $\{3,5\}$, men inte $\{1,3,7,8,9\}$ och $\{5,6\}$. Betrakta relationen "delmängd till" på A. Detta är en partiell ordning. Varför? Är det en total ordning? Ange alla minimala respektive maximala element samt i förekommande fall minsta respektive största element. (Om det blir många i något fall så räcker det att beskriva vilka det är.)
- 2. Låt \mathcal{R} vara relationen

$$\mathcal{R} = \{((a, b), (c, d)) \in \mathbb{R}^2 \times \mathbb{R}^2 : \max\{|a|, |b|\} = \max\{|c|, |d|\}\}$$

på \mathbb{R}^2 .

- (a) Visa att \mathcal{R} är en ekvivalensrelation.
- (b) Rita i ett koordinatsystem in ekvivalensklassen av (1, 1).
- (c) Beskriv alla ekvivalensklasser geometriskt.
- (d) Ge en representant ur varje ekvivalensklass.
- 3. Efter att ha gjort uppgift 3 i kapitel 6 samt någon av extrauppgifterna om rekursion och induktion.

Vi definierar polynomen $P_n(x)$ för $n \in \mathbb{N}$ rekursivt genom

$$\begin{cases}
P_0(x) = 1, \\
P_{n+1}(x) = P_n(x)(x-1) + x, & n \ge 0.
\end{cases}$$

- (a) Beräkna $P_3(x)$.
- (b) Visa att $P_n(3) = 2^{n+2} 3$ för alla $n \in \mathbb{N}$.