CS338 HW1

Brock Ellefson

March 4, 2017

1

1.1 State Diagrams of DFA

Figure 1: $\{w|w \text{ contains the substring 0101 (i.e., } w = x0101y \text{ for some } x \text{ and } y)\}$

Figure 2: {w|w doesn't contain the substring 110}

1.2 State Diagrams of NFA

Figure 3: $\{w|w \text{ contains the substring 0101 (i.e., } w = x0101y \text{ for some } x \text{ and } y)\}$

Figure 4: $\{w|w \text{ has either an even amount of 0's or exactly 2 1's}\}$

2 NFA to DFA

Figure 5: 1.16 part a

Figure 6: 1.16 part b

3 Regular Expression to NFA

Figure 7: (0 U 1)* 000 (0 U 1)*

Figure 8: (((00)*(11)) U 01)*

4 Finite Automata to Regular Expression

```
(a*ba*) U (a*ba*b)*a*ba*
```

5 Pumping Lemma

5.1 $A = \{a^{n3} | n \ge 0\}$

Assume that A is a regular language. $S = a^{p3}$

By the pumping lemma, S can be decomposed into xyz such that

 $xy^iz \in A$

 $|\mathbf{y}| > 0$

 $|xy| \leq P$

As $xy^iz \in A$, y can only contains 1 'a' per pump

So, if we pump 2 times (i = 2),

xyz:

00000000

xyyz:

00000000

Then there will be 9 'a's after the second pump. This is not in the language.

This contradicts the pumping lemma

Therefore B is not a regular language.

5.2 B =
$$\{0^n 1^m 0^n | m, n \ge 0\}$$

Assume that B is a regular language. $S = 0^p 10^p$

By the pumping lemma, S can be decomposed into xyz such that

 $xy^iz \in A$

|y| > 0

 $|xy| \le P$

As $|xy| \le P$, y can only contains k > 0 amount of 0's.

So, if we pump 0 times (i = 0),

 xy^0z

Then there will be 0^{p-k} on the first set of 0's and 0^p on the second set of 0's

This contradicts the pumping lemma

Therefore B is not a regular language.