Gretimumo & Incidencijų matricos

Karolis Martinaitis

• 1) Vaizdavimui reikalingos informacijos apimtis.

• 2) Galimybė padaryti klaidą.

• 3) Kaip sužinoti viršūnes, gretimas pasirinktai viršūnei, t.y. gretimų viršūnių išrinkimas.

Gretimumo matrica

 Grafo G = (V, U) gretimumo matrica yra kvadratinė n-osios eilės matrica,

$$S = [s_{ij}], i = \overline{1, n}, j = \overline{1, n}$$

kurios elementas apibrėžiamas taip

$$s_{ij} = \begin{cases} 1, \text{ jei viršūnės } i \text{ ir } j \text{ yra gretimos,} \\ 0, \text{ priešingu atveju.} \end{cases}$$

$$S = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 1 & 1 & 1 \\ 3 & 0 & 1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 & 0 & 1 \\ 5 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 & 0 & 0 \\ 5 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

 Izomorfinių grafų gretimumo matricos gaunamos viena iš kitos nuosekliai sukeičiant vietomis eilutes ir stulpelius bijekcijoje nurodyta tvarka.

Izomorfiniai grafai

Gretimumo matrica

	1	2	3	4	5	6
1	0	0	0	1	1	1
2	0	0	0	1	1	1
$S_a = 3$	0	Oole	0	1	1	1
4	1	1	1	0	0	0
5	1	1	1	0	0	0
6	1	1	1	1 1 1 0 0	0	0

Sukeitus 2-ąją ir 5-ąją eilutes, gausime

	1	2	3	4	5	6
1	0	0	0	1	1	1
2	1	1	1	0	0	0
3	0	0		1	1	1
Δ	1	1	1	0	0	0
5	0	0	0	1	1	1
6			1	0	0	0

Ir...

...sukeitus 2-ąjį ir 5-ąjį stulpelius, gausime grafo b) gretimumo matricą

	1	2	3	4	5	6
1	0	1	0	1	0	1
2	1	0	1	0	1	0
$S_b = 3$	0	1	0	1	0	1
4	1	0	1	0	1	0
5	0	1	0	0	0	1
$S_b = \frac{1}{3}$ $S_b = \frac{1}{3}$ $S_b = \frac{1}{3}$	1	0	1	0	1	0

Bijekciją φ nusako perstatymų matrica

$$P = [p_{ij}], t = 1, n, j = 1, n, p_{ij} = \begin{cases} 1, \text{ jei } t = \varphi(j), \\ 0, \text{ priešingu atveju,} \end{cases}$$

	1	2	3	4	5	6
1	1	0	0	0	0	0
2	0	0	0	0	1	0
P = 3	0	000	1	0	0	0
4	0	0	0	1	0	0
5	0	1	0	0	0	0
6	0	0	0 0 1 0 0	0	0	1

- *Informacijos apimtis*. Gretimumo matrica turi n^2 elementų ir paprastai ji yra reta, t.y. vienetukų skaičius žymiai mažesnis nei nulių skaičius.
- Galimybė padaryti klaidą, užrašant matricą S, yra labai didelė, esant didesniam viršūnių skaičiui.
- Viršūnės, gretimos viršūnei k, randamos taip:

```
for j := 1 to n do

if s[k, j] = 1 then "j-oji viršūnė gretima viršūnei k".
```

Incidencijų matrica

 Grafo G = (V, U) incidencijų matrica yra stačiakampė

$$A = [a_{ij}] \quad i = \overline{1,n} \quad j = \overline{1,m}$$

$$i = \overline{1,n}$$

$$j = 1, m$$

Elementas orientuotojo grafo atveju apibrėžiamas taip:

$$a_{ij} = \begin{cases} 1, \text{ jei } i \text{ - toji viršūnė incidentiška } j \text{ - ajai briaunai,} \\ 0, \text{ priešingu atveju,} \end{cases}$$

Orientuotojo grafo atveju

$$a_{ij} = \begin{cases} 1, & \text{jei } i \text{-oji virš}\bar{\mathbf{u}}\text{n'e yra } j \text{-ojo lanko pradžia,} \\ -1, & \text{jei } i \text{-oji virš}\bar{\mathbf{u}}\text{n'e yra } j \text{-ojo lanko galas,} \\ 0, & \text{jei } i \text{-oji virš}\bar{\mathbf{u}}\text{n'e neincidentiška } j \text{-ajam lankui.} \end{cases}$$

Briaunos sunumeruotos tokia tvarka: (1, 2), (1, 5), (2, 5), (2, 4), (2, 3), (4, 5)

		1	2	3	4	5	6
	1	1	1	0	0	0	0
1 _	2	1	0	1	1	1	0
A =	3	0	0_{or}	0	0	1	0
	4	0	0	0	1	0	1
	5	0	1	3 0 1 0 0	0	0	1

Lankai sunumeruotos tokia tvarka: (1, 2), (1, 5), (2, 5), (2, 4), (2, 3), (4, 5)

		1	2	3	4	5	6
$A = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$	1	1	-1	0	0	0	0
	2	-1	0	_1	-1	1	0
	3	0	0	OLE O	0	-1	0
	4	0	0	0	1	0	-1
	5	0	1	1	0	0	1

• *Informacijos apimtis*. Kaip ir gretimumo matricos atveju, incidencijų matrica turi elementų ir yra reta.

 Galimybė padaryti klaidą yra didelė prie didesnių n ir m reikšmių.

 Viršūnės, gretimos viršūnei k, neorientuotojo grafo atveju randamos taip:

```
for j := 1 to m do

if a[k, j] = 1 then for i := 1 to n do

if (a[i, j] = 1) and (i <> k) then "viršūnė i yra

gretima viršūnei k";
```

Pastaba. Orientuotojo grafo atveju sąlyga "a[i, j] = 1" turi būti pakeista sąlyga "a[i, j] = -1".