MA0301 ELEMENTARY DISCRETE MATHEMATICS NTNU, SPRING 2022

Set 4

Deadline: Deadline: Monday 14.02.2022, 11:59 pm

Exercise 1. Consider the set $X = \{a, b, c\}$.

- a) What is the power set $\mathcal{P}(X)$?
- b) Show that for any set Y, the relation defined by set inclusion $R = \{\langle A, B \rangle | A \subseteq B\}$ defines a partial ordering on $\mathcal{P}(Y)$.
- c) Draw the Hasse diagram for $\mathcal{P}(X)$ with the partial ordering given by set inclusion like in b).

Exercise 2. Consider the set $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}.$

- a) Define the relation R on X that relates every number in X to those that have the same number of divisors as it.
- b) Show that R is an equivalence relation.
- c) Find the partition of X corresponding to R.

Exercise 3. Let $p \in \mathbb{Z}$. Define the following relation

$$R_p = \{\langle x, y \rangle | \exists n \in \mathbb{Z} : x = y + n \cdot p\} \subset \mathbb{Z} \times \mathbb{Z}.$$

- a) Show that R is an equivalence relation.
- b) Characterize the equivalence classes of R_p . How many are there for a fixed p?.

Exercise 4. a) Let X be a set and let $R_1 \subseteq X \times X$ and $R_2 \subseteq X \times X$ be two equivalence relations on X. Show that $R_1 \cap R_2$ also defines an equivalence relation.

b) Let the cardinality of X be finite. Define $R \subseteq X \times X$ to be any relation on X. We make a list with all equivalence relations that contain R:

$$\{R_1, R_2, \dots, R_n\} = \{R_i \subseteq X \times X | (R \subseteq R_i) \land (R_i \text{ is an equivalence relation})\}.$$

Note that this list is finite because X has finite cardinality. Prove that $\tilde{R} := R_1 \cap R_2 \cap \ldots \cap R_n$ is the smallest equivalence relation on X that contains R i.e that for all equivalence relations $A \subset X \times X$ such that $R \subseteq A$ it follows that $\tilde{R} \subseteq A$. We call \tilde{R} the equivalence relation generated by R.

c) What is the equivalence relation generated by the relation from exercise 1 a)?

Date: February 4, 2022.

1