O que mais precisamos aprender

- Estruturas de dados (Vetores, Matrizes, Filas e Pilhas);
- Git;
- Estatística Básica;
- Regra de três;
- Introdução a armazenamento de dados ;

Estruturas de dados

Estruturas de dados : Conceitos

Uma estrutura de dados pode ser dividia em dois pilares fundamentais : dado e estrutura.

DADO

Dados são qualquer sequência de um ou mais símbolos que tenham significado por ato(s) específico(s) de interpretação.

ESTRUTURA

Elemento estrutural responsável por carregar as informações dentro de uma estrutura de software

Estruturas de dados

Estruturas de dados : Conceitos

Uma estrutura de dados pode ser dividia em dois pilares fundamentais : dado e estrutura.

DADO

Tipos de dados:

- Inteiro
- Ponto flutuante
- Caractere
- Texto

ESTRUTURA

Tipos de estruturas:

- Vetores
- Pilhas
- Filas
- Listas

Estruturas de dados

Principais tipos de estruturas de dados

- Vetores
 - Unidimensionais
 - o Bidimensionais (Matrizes)
- Pilhas (não estudaremos agora)
- Filas (não estudaremos agora)

Tipo	Nome	Capacidade

Tipo	Nome	Capacidade
cadeia		

Tipo	Nome	Capacidade
cadeia	vetorAlunos	

Tipo	Nome	Capacidade	
cadeia	vetorAlunos	5	cadeia vetorAlunos[5]

Tipo	Nome	Capacidade	
cadeia	vetorAlunos	5	cadeia vetorAlunos[5]

[0]		[1]	[2]	[3]	[4]
Harr	γ Не	ermione f	Rony	Cho	Draco

Tipo	Nome	Capacidade	
cadeia	vetorAlunos	5	cadeia vetorAlunos[5]

[0]	[1]	[2]	[3]	[4]	
Harry	Hermione	Rony	Gina	Neville	

```
vetorAlunos[3] = "Gina"
vetorAlunos[4] = "Neville"
```


- É uma das estruturas de dados mais simples e mais utilizadas dentre todas.
- Principais características:
 - Indexação com início em 0 (zero)
 - Adição e pesquisa de novos elementos de forma aleatória
 - Acesso aos elementos através de índices
 - Possuem tamanho finito de elementos
 - Carregam dados de tipos específicos
 - Podem possuir uma ou mais dimensões

O que são matrizes?

O que são matrizes?

• São vetores em duas dimensões;

O que são matrizes?

• São vetores em duas dimensões;

		Capac	idade
Tipo	Nome	Linha	Coluna
cadeia	matrizNumeros	4	4

cadeia matrizNumeros [4] [4]

	[0]	[1]	[2]	[3]
[0]	5	2	0	7
[1]	3	9	6	9
[2]	7	1	8	3
[3]	3	4	5	8

	[0]	[1]	[2]	[3]
[0]	5	2	0	7
[1]				
[2]				
[3]				

```
matrizNumeros[0][0] = 5
matrizNumeros[0][1] = 2
matrizNumeros[0][2] = 0
matrizNumeros[0][3] = 7
```


	[0]	[1]	[2]	[3]
[0]	5	2	0	7
[1]	3	9	6	9
[2]	7	1	8	3
[3]	3	4	5	8

```
matrizNumeros[2][1] = 1
matrizNumeros[1][3] =
matrizNumeros[2][0] =
matrizNumeros[2][2] =
```


	[0]	[1]	[2]	[3]
[0]	5	2	0	7
[1]	3	9	6	9
[2]	7	1	8	3
[3]	3	4	5	8

```
matrizNumeros[2][1] = 1
matrizNumeros[1][3] = 9
matrizNumeros[2][0] =
matrizNumeros[2][2] =
```


	[0]	[1]	[2]	[3]
[0]	5	2	0	7
[1]	3	9	6	9
[2]	7	1	8	3
[3]	3	4	5	8

```
matrizNumeros[2][1] = 1
matrizNumeros[1][3] = 9
matrizNumeros[2][0] = 7
matrizNumeros[2][2] =
```


	[0]	[1]	[2]	[3]
[0]	5	2	0	7
[1]	3	9	6	9
[2]	7	1	8	3
[3]	3	4	5	8

```
matrizNumeros[2][1] = 1
matrizNumeros[1][3] = 9
matrizNumeros[2][0] = 7
matrizNumeros[2][2] = 8
```


Fila e Pilha

Fila versus Pilha

