2021-August Session-31-08-2021 shift 1

EE24BTECH11009-Mokshith

- 16) $\cos\left(\frac{\pi}{33}\right)\cos\left(\left(\frac{2\pi}{33}\right)\cos\left(\frac{4\pi}{33}\right)\cos\left(\frac{8\pi}{33}\right)\cos\left(\frac{16\pi}{33}\right)$ is equal to:
 - a) 4
 - b) 2
 - c) 3
 - d) 1
- 17) Let the complex number z = x + iy be such that $\frac{2z 3i}{2z + i}$ is purely imaginary. If $x + y^2 = 0$, then $y^4 + y^2 - y$ is equal to:

 - a) $\frac{3}{2}$ b) $\frac{2}{3}$ c) $\frac{4}{3}$ d) $\frac{3}{4}$
- 18) If $f(x) = \frac{(\tan 1^\circ)x + \log_e(123)}{x \log_e(1234) (\tan 1^\circ)}$ and x > 0, then the least value of $f(f(x)) + f\left(f\left(\frac{4}{x}\right)\right)$ is:
 - a) 2
 - b) 4
 - c) 8
 - d) 0
- 19) The slope of the tangent at any point (x, y) on a curve y = y(x) is $\frac{x^2 + y^2}{2xy}$, x > 0. If y(2) = 0, then a value of y(8) is:
 - a) $4\sqrt{3}$
 - b) $-4\sqrt{2}$
 - c) $-2\sqrt{3}$
 - d) $2\sqrt{3}$
- 20) Let the ellipse $E: x^2 + 9y^2 = 9$ intersect the positive x and y-axes at the points **A** and **B** respectively. Let the major axis of E be a diameter of the circle C. Let the line passing through A and B meet the circle C at the point **P**. If the area of the triangle with vertices A, P, and the origin O is $\frac{m}{n}$, where m and n are coprime, then m-nis equal to:
 - a) 16
 - b) 15
 - c) 18
 - d) 17

Section B

21) Some couples participated in a mixed doubles badminton tournament. If the number of matches played, so that no couple plays in a match, is 840, then the total number

- of persons, who participated in the tournament, is _____
- 22) The number of elements in the set $\{n \in \mathbb{Z} : |n^2 10\overline{n+19}| < 6\}$ is _____.
- 23) The number of permutations of the digits 1,2,3,...,7 without repetition, which neither contain the string 153 nor the string 2467, is ____
- 24) Let $f: (-2,2) \to R$ be defined by $f(x) = \begin{cases} x[x] & \text{if } -2 < x < 0 \\ (x-1)[x] & \text{if } 0 \le x < 2 \end{cases}$ where [x]denotes the greatest integer function. If m and n respectively are the number of points in (-2, 2) at which y = |f(x)| is not continuous and not differentiable, then m + n is equal to .
- 25) Let a common tangent to the curves $y^2 = 4x$ and $(x-4)^2 + y^2 = 16$ touch the curves at the points **P** and **Q**. Then $(PQ)^2$ is equal to .
- 26) If the mean of the frequency distribution is 28, then its variance is .

Class:	0-10	10-20	20-30	30-40	40-50
Frequency:	2	3	x	5	4

- 27) The coefficient of x^7 in $(1 x + 2x^3)^{10}$ is ____. 28) Let y = p(x) be the parabola passing through the points (-1,0), (0,1) and (1,0). If the area of the region $\{(x, y) : (x + 1)^2 + (y - 1)^2 \le 1, y \le p(x)\}$ is A, then $12(\pi - 4A)$ is equal to _____.
- 29) Let a, b, c be three distinct positive real numbers such that $(2a)^{\log_e a} = (bc)^{\log_e b}$ and $(b)^{\log_e 2} = (a)^{\log_e c}$ Then 6a + 5bc is equal to .
- 30) The sum of all those terms, of the arithmetic progression 3, 8, 13, ..., 373, which are not divisible by 3, is equal to ...