Deep Recurrent neural networks and LSTM

Recurrent Neural Network

Bidirectional RNN

- 下一個字的出現決定於之前的字
- 前一個字的出現也決定於後面的字

• Given function f: h^t,y^t=f(h^{t-1},x)

Deep RNN

Pyramid RNN

Significantly speed up training

• Reducing the number of time steps

W. Chan, N. Jaitly, Q. Le and O. Vinyals, "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition," ICASSP, 2016

Naïve RNN

• Given function f: h',y=f(h,x)

Problems with traditional RNN

- When dealing with a time series, it tends to forget old information. When there is a distant relationship of unknown length, we wish to have a "memory" to it.
- Vanishing gradient problem.

W有被連續乘多次之效果

Use a storage for retaining the information, and use a gate deciding how much information being retained

Electrical Engineering Department o

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

i_t decides what componentis to be updated.C'_t provides change contents

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Updating the cell state

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Decide what part of the cell state to output

Naïve RNN(傳統) vs LSTM

h changes faster, ht and ht-1 can be very different

Using storage c to control its change rate, ct is ct-1 added by something

GRU – gated recurrent unit

(more compression)

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

It combines the forget and input into a single update gate. It also merges the cell state and hidden state. This is simpler than LSTM. There are many other variants too.

Electrical Engineering Department of National Cheng Kung University

Feed-forward vs Recurrent Network

- 1. Feedforward network does not have input at each step
- 2. Feedforward network has different parameters for each layer

$$a^{t} = f(a^{t-1}, x^{t}) = \bigcirc W^{h} a^{t-1} + W^{i}x^{t} + b^{i}$$

We will turn the recurrent network 90 degrees.

Highway Network

$$h' = \sigma (W \ a^{t-1})$$
 $z = \sigma (W \ a^{t-1})$
 $a^t = z \odot a^{t-1} + (1-z) \odot h$

Highway Network

Residual Network

Training Very Deep Networks https://arxiv.org/pdf/1507.0622 8v2.pdf

Deep Residual Learning for Image Recognition http://arxiv.org/abs/1512.03385

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector h:

$$h_t = f_W(h_{t-1}, x_t)$$
 \downarrow $h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$ $y_t = W_{hy}h_t$

RNN: Computational Graph

Re-use the same weight matrix at every time-step

How do we train the network?

One to many: Produce output

Sequence to Sequence: Many-to-one + one-to-many

Truncated Backpropagation through time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation through time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through time

Sequence to sequence chat model

LSTM Decoder

Applications of LSTM / RNN

Seq2Seq: 解決output 與input 須等長之困擾 using encoder and decoder

Neural machine translation

Baidu's speech recognition using RNN

Speech recognition example (Deep Speech)

Attention

Image caption generation using attention (From CY Lee lecture)

z⁰ is initial parameter, it is also learned

Image Caption Generation

Image Caption Generation

Image Caption Generation

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML, 2015