LABORATÓRIO DE INTRODUÇÃO À ENGENHARIA DE COMPUTAÇÃO

2 - Introdução aos Circuitos Elétricos

Prof. Felipe Soares

Fontes

Fontes de Corrente Contínua (CC ou DC)

Fontes de Corrente Alternada (CA ou AC)

Fontes de Corrente Alternada (CA ou AC) - CA para CC

Circuitos Elétricos

Nosso primeiro circuito - mundo real

Nosso primeiro circuito - mundo real

Nosso primeiro circuito - mundo real

Nosso primeiro circuito - representação

Corrente

Corrente: fluxo ordenado de partículas portadoras de carga elétrica, quando existe uma diferença de potencial elétrico entre as extremidades.

Unidade: Ampere

Corrente - Amperímetro

Corrente - Amperimetro

Corrente: fluxo ordenado de partículas portadoras de carga elétrica ou o deslocamento de cargas dentro de um condutor, quando existe uma diferença de potencial elétrico entre as extremidades.

Unidade: Ampere

Tensão

Tensão: é a diferença de potencial elétrico entre dois pontos

Unidade: Volt

Tensão - Voltímetro

Tensão - Voltímetro

Tensão: é a diferença de potencial elétrico entre dois pontos

Unidade: Volt

Medindo Tensão x Corrente

Medindo Tensão x Corrente

Resistência

Resistência: capacidade de um corpo qualquer se opor à passagem de corrente elétrica.

Unidade: Ohm (Ω)

Calculando valor da Resistência

Cor	1ª Faixa	2ª Faixa	N° de zeros/multiplicador	Tolerância
Preto	0	0	0	
Marrom	1	1	1	± 1%
Vermelho	2	2	2	± 2%
Laranja	3	3	3	
Amarelo	4	4	4	
Verde	5	5	5	± 0,5%
Azul	6	6	6	± 0,25%
Violeta	7	7	7	± 0,1%
Cinza	8	8	8	± 0,05%
Branco	9	9	9	
Dourado			x0,1	± 5%
Prata			x0,01	± 10%

Potência

Potência dissipada: a grandeza física que mede a quantidade de calor que um resistor transfere para os seus arredores a cada segundo

Unidade: Watts (W)

Fórmulas

V -> tensão -> unidade Volt I -> corrente -> unidade Ampere R -> resistência -> unidade Ohm (Ω)

Lei de Ohm

Queimando Acendendo um led

Resistores em série x Resistores em paralelo

Associação de resistores em série

Associação de resistores em série

i = i1 = i2 V = V1+V2 Rs = R1 + R2

Associação de resistores em série

$$I = I1 + I2$$

 $V/Rp = V/R1 + V/R2$
 $Rp = (R1 \times R2) / (R1 + R2)$

$$I = I1 + I2$$

 $V/Rp = V/R1 + V/R2$
 $Rp = (R1 \times R2) / (R1 + R2)$

$$I = I1 + I2$$

 $V/Rp = V/R1 + V/R2$
 $Rp = (R1 \times R2) / (R1 + R2)$

$$I = I1 + I2$$

 $V/Rp = V/R1 + V/R2$
 $Rp = (R1 \times R2) / (R1 + R2)$

$$I = I1 + I2$$

 $V/Rp = V/R1 + V/R2$
 $Rp = (R1 \times R2) / (R1 + R2)$