

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

 ОТЧЕТ

 по лабораторной работе № __1__

 Синхронные одноступенчатые тригтеры со статическим и динамическим управлением записью

 Дисциплина: Архитектура ЭВМ

 Студент
 ИУ7-44Б (Группа)
 — Тартыков Л.Е. (И.О. Фамилия)

 Преподаватель
 Попов А.Ю.
 Попов А.Ю.

(Подпись, дата)

(И.О. Фамилия)

Цель работы — изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

- 1. Исследовать работу асинхронного RS-триггера с инверсными входами (см. рис. 3) в статическом режиме. Для этого необходимо:
- собрать схему RS-триггера на ЛЭ И-НЕ;
- к выходам Q и Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах составить таблицу переходов.

Собранная схема асинхронного триггера на ЛЭ И-НЕ

Таблица переходов данного асинхронного RS-триггера

~S	~R	\mathbf{Q}_{t}	\mathbf{Q}_{t+1}	Пояснение
0	0	0	X	Запрещенная
0	0	1	X	операция
0	1	0	1	Установка 1
0	1	1	1	
1	0	0	0	Установка 0
1	0	1	0	
1	1	0	0	- Хранение
1	1	1	1	

- 2. Исследовать работу синхронного RS-триггера (см. рис. 4) в статическом режиме. Для этого необходимо:
- собрать схему RS-триггера на ЛЭ И-НЕ (рис. 4);
- к выходам Q и Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах S, R и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору S, R и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени tn), затем при C=1 (момент времени tn+1) определяется Qn+1 и снова при C=0 переход в режим хранения.

Таблица переходов синхронного RS-триггера

С	S	R	\mathbf{Q}_{t}	Q_{t+1}	Пояснение
0	\forall	\forall	Q_{t}	Q_{t}	Хранение
1	0	0	0	0	Хранение
1	0	0	1	1	
1	0	1	0	0	Vetauonya O
1	0	1	1	0	Установка 0
1	1	0	0	1	Установиа 1
1	1	0	1	1	Установка 1
1	1	1	0	Х	Запрещенная
1	1	1	1	X	операция

- 3. Исследовать работу синхронного D-триггера (см. рис. 5) в статическом режиме. Для этого необходимо:
- собрать схему D-триггера на ЛЭ И-НЕ (рис. 5); в приложении Multisim можно использовать макросхему D-триггера;
- к выходам Q и Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору D и Q будет

соответствовать 3 строки: сначала задать C=0 (момент времени tn), затем при C=1 (момент времени tn+1) определяется Qn+1 и снова при C=0 происходит переход в режим хранения.

Собранная схема D-триггера на ЛЭ И-НЕ

Таблица переходов D-триггера

С	D	Qt	Q _{t+1}	Пояснение
0	0	0	0	Хранение
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	Установка 0
1	0	1	0	
1	1	0	1	Установка 1
1	1	1	1	

- 4. Исследовать схему синхронного D-триггера с динамическим управлением записью (рис. 6) в статическом режиме. В приложениях Electronics Workbench и Multisim имеются макросхемы такого триггера. Для этого необходимо:
- к выходам Q и ~Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста следует отметить реакцию триггера на изменения сигнала D при C=0 и при C=1, а также способность триггера принимать сигнал D только по перепаду 0/1 сигнала C.

Собранная схема синхронного D-триггера с динамическим управлением записью в статическом режиме

Таблица переходов синхронного D-триггера с динамическим управлением записью в статическом режиме

С	D	Qt	Q _{t+1}	Пояснение
Х	Х	0	0	Хранение информации
Х	Х	1	1	информации
0->1	0	0	0	Установка 0
0->1	0	1	0	
0->1	1	0	1	Установка 1
0->1	1	1	1	

- 5. Исследовать схему синхронного DV-триггера с динамическим управлением записью в динамическом режиме. Для этого необходимо:
- построить схему синхронного DV-триггера на основе синхронного D-триггера и мультиплексора MS 2-1 (выход MS 2-1 соединить с D-входом триггера, вход 0 MS 2-1 соединить с выходом Q триггера. Тогда вход 1 MS 2-1 будет D-входом, адресный вход A MS 2-1 входом V синхронного DV-триггера), вход C D-триггера входом C DV- триггера;
- подать сигнал генератора на вход счетчика и на С-вход DV-триггера;
- подать на входы D и V триггера сигналы с выходов 2-го и 3-го разрядов счетчика;
- снять временные диаграммы синхронного DV-триггера;
- объяснить работу синхронного DV-триггера по временным диаграммам.

Собранная схема синхронного DV-триггера с динамическим управлением записью в динамическом режиме

Временные диаграммы синхронного DV-триггера

- 6. Исследовать работу DV-триггера, включенного по схеме TV-триггера (рис. 8). Для этого необходимо:
- на вход D подать сигнал Q , на вход C подать сигналы генератора, а на вход V с выхода 3-го разряда счетчика;
- снять временные диаграммы Т-триггера;
- объяснить работу синхронного Т-триггера по временным диаграммам

Собранная схема DV-триггера, включенного по схеме TV-триггера

Временная диаграмма

Пояснение к диаграмме: когда C=1 и V=1 DV-триггер принимает информационный сигнал, действующий на входе D; при этом Q и $^{\sim}$ Q меняют свои значения