MATH 202 Spring 2010

Exam 3-Practice

1. Use power series to find the numerical value of each limit. You might like to use the facts

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \cdots,$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \frac{7x^5}{256} - \frac{21x^6}{1024} + \cdots,$$

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} + \dots$$

(a)
$$\lim_{x \to 0} \frac{\log(x^3 + 1)}{\sin(2x^3)}$$

(b)
$$\lim_{x \to 0} \frac{\arctan(x) - \sin(x)}{x^3}$$

(c)
$$\lim_{x \to 0} \frac{\arctan(x) - \sin(x)}{x^4}$$

- 1 2. Use the *ratio* test to determine of the series $\sum_{k=0}^{\infty} \frac{\left(\frac{k}{3}\right)^k}{k!}$ converges or diverges.
- $\boxed{5}$ 3. Find the numerical value of $\sum_{k=4}^{\infty} \left(\frac{1}{2}\right)^k$.

4. The de Jonquiére function Li₂ can be defined by Li₂(x) = $\sum_{k=1}^{\infty} \frac{x^k}{k^2}$ and dom(Li₂) = (-1,1)

 $\boxed{5}$ (a) Find the *numerical value* of Li₂(0).

[5] (b) Find the *radius of convergence* for the power series $\sum_{k=1}^{\infty} \frac{x^k}{k^2}$.

[5] (c) Find the *numerical value* of $\text{Li}_2'(0)$. Hint: $\text{Li}_2(x) = x + \frac{x^2}{4} + \frac{x^3}{9} + \cdots$.

5. Determine convergence or divergence of each series. Fully justify your work.

This doesn't mean you need to use our definition of convergent; instead use the theorems we've estiblished.

$$\boxed{5} \qquad \text{(a) } \sum_{k=1}^{\infty} \frac{1}{k}$$

$$5$$
 (b) $\sum_{k=0}^{\infty} (-1)^k$

[5] (c)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}$$

$$\boxed{5} \qquad \text{(d) } \sum_{k=0}^{\infty} \frac{1}{k!}$$

- 5 6. My friend Milhous claims that the sum $\sum_k f_k$ converges provided that the sequence f converges to zero. Show Milhous an example of a sequence f that converges to zero, but the sum $\sum_k f_k$ diverges.
 - 7. For all real numbers *x*, we have $\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$.
- (a) Find the power series representation for $\sin(x) x$ centered at zero. **Hint:** When you don't know where to start, go to your happy place: write the first few terms of the Taylor series for sine centered at zero. Then subtract x.

[2] (b) For $x \neq 0$, find the *first two nonzero terms* in a power series representation for $\frac{\sin(x)-x}{x^3}$. Again, try visiting your happy place.

(c) Use the above result to find the *numerical value* of the limit

$$\lim_{x\to 0}\frac{\sin(x)-x}{x^3}.$$

8. Define a function erf by the definite integral $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$. Find a power series representation for erf. Find the radius of convergence of this power series.