Question 4

November 4, 2020

1 CS5590: Foundations of Machine Learning

- 1.1 Assignment 1
- 1.2 Question 4
- 1.3 Authors

Name	Roll number	
Raj Patil	CS18BTECH11039	
Karan Bhukar	CS18BTECH11021	

```
[1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import random
```

```
[2]: d = pd.read_csv('hour.csv');d.info()
# no null vals
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17379 entries, 0 to 17378
Data columns (total 17 columns):

	#	Column	Non-Null Count	Dtype
-				
	0	instant	17379 non-null	int64
	1	dteday	17379 non-null	object
	2	season	17379 non-null	int64
	3	yr	17379 non-null	int64
	4	mnth	17379 non-null	int64
	5	hr	17379 non-null	int64
	6	holiday	17379 non-null	int64
	7	weekday	17379 non-null	int64
	8	workingday	17379 non-null	int64
	9	weathersit	17379 non-null	int64
	10	temp	17379 non-null	float64
	11	atemp	17379 non-null	float64
	12	hum	17379 non-null	float64

```
13 windspeed 17379 non-null float64
14 casual 17379 non-null int64
15 registered 17379 non-null int64
16 cnt 17379 non-null int64
dtypes: float64(4), int64(12), object(1)
memory usage: 2.3+ MB
```

[3]: d.iloc[0]

```
[3]: instant
                              1
                    2011-01-01
     dteday
     season
                              0
     yr
                              1
     mnth
                              0
     hr
                              0
     holiday
     weekday
                              6
     workingday
                              0
     weathersit
                              1
     temp
                           0.24
                        0.2879
     atemp
     hum
                           0.81
                              0
     windspeed
                              3
     casual
     registered
                             13
                             16
     Name: 0, dtype: object
```

1.3.1 subquestion 2 and 3

```
[46]: def plot(feature,d):
        if feature == 'season':
          X=["1st","2nd","3rd","4th"]
          Y = [0, 0, 0, 0]
          for i in range(d.iloc[:,2].shape[0]):
             Y[d.iloc[i,2]-1] += 1
          mean = [i/d.iloc[:,2].shape[0] for i in Y]
          for i,me in enumerate(mean):
            print("mean of count for season {} is = {}".format(i+1,me))
          plt.xlabel("Seasons")
          plt.ylabel("Count of Rented Bikes")
          plt.bar(X,Y)
        elif feature == 'yr':
          X=["1st","2nd"]
          Y=[0,0]
          for i in range(d.iloc[:,3].shape[0]):
```

```
Y[d.iloc[i,3]] += 1
   mean = [i/d.iloc[:,3].shape[0] for i in Y]
   for i,me in enumerate(mean):
     print("mean of count for year {} is = {}".format(i,me))
   plt.xlabel("year")
   plt.ylabel("Count of Rented Bikes")
   plt.bar(X,Y)
 elif feature == 'month':
   X=[1,2,3,4,5,6,7,8,9,10,11,12]
   Y = [0,0,0,0,0,0,0,0,0,0,0,0]
   month = ['January', 'February', 'March', 'April', 'May', 'June', 'July', |
→ 'August', 'September', 'October', 'November', 'December']
   for i in range(d.iloc[:,4].shape[0]):
      Y[d.iloc[i,4]-1] += 1
   mean = [i/d.iloc[:,4].shape[0] for i in Y]
   for i,me in enumerate(mean):
     print("mean of count for month {} is = {}".format(i+1,me))
   plt.xlabel("Month of the year")
   plt.ylabel("Count of Rented Bikes")
   plt.xticks(X, month, rotation ='vertical')
   plt.bar(X,Y)
 elif feature == 'holiday':
   X=["No","Yes"]
   Y=[0,0]
   for i in range(d.iloc[:,6].shape[0]):
      Y[d.iloc[i,6]] += 1
   mean = [i/d.iloc[:,6].shape[0] for i in Y]
   for i,me in enumerate(mean):
     print("mean of count for holiday {} is = {}".format(i,me))
   plt.xlabel("Holiday")
   plt.ylabel("Count of Rented Bikes")
   plt.bar(X,Y)
 elif feature == 'weekday':
   X=["Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"]
   Y = [0, 0, 0, 0, 0, 0]
   for i in range(d.iloc[:,7].shape[0]):
      Y[d.iloc[i,7]-1] += 1
   mean = [i/d.iloc[:,7].shape[0] for i in Y]
   for i,me in enumerate(mean):
     print("mean of count for weekday {} is = {}".format(i+1,me))
   plt.xlabel("Day of the week",labelpad=20)
   plt.ylabel("Count of Rented Bikes")
   plt.bar(X,Y)
```

plt.show()

[47]: plot("season",d)

```
mean of count for season 1 is = 0.2440876920421198 mean of count for season 2 is = 0.25369699062086426 mean of count for season 3 is = 0.25870303239541975 mean of count for season 4 is = 0.24351228494159619
```


[48]: plot("yr",d)

mean of count for year 0 is = 0.4974394384026699 mean of count for year 1 is = 0.5025605615973301

[49]: plot("month",d)

```
mean of count for month 1 is = 0.08222567466482536 mean of count for month 2 is = 0.07716209218021751 mean of count for month 3 is = 0.08475746590712929 mean of count for month 4 is = 0.08268600034524426 mean of count for month 5 is = 0.08562057655791472 mean of count for month 6 is = 0.0826862247540135 mean of count for month 7 is = 0.08562057655791472 mean of count for month 8 is = 0.08487254732723402 mean of count for month 9 is = 0.08268600034524426 mean of count for month 10 is = 0.08268600034524426 mean of count for month 11 is = 0.08268600034524426 mean of count for month 12 is = 0.08268600034524426
```


[50]: plot("holiday",d)

mean of count for holiday 0 is = 0.971229644973819mean of count for holiday 1 is = 0.028770355026181024

[51]: plot("weekday",d)

```
mean of count for weekday 1 is = 0.1426434202198055
mean of count for weekday 2 is = 0.1411473617584441
mean of count for weekday 3 is = 0.14241325737959606
mean of count for weekday 4 is = 0.14218309453938663
mean of count for weekday 5 is = 0.1431037459002244
mean of count for weekday 6 is = 0.2885091202025433
```


1.4 cleaning up data

```
[4]: data = d.drop(['instant','casual','registered'],axis=1)

# casual and registered are not features: they are certain predictors of count

# probably meant to be used in the anomaly detection challenge

# sticking to zero-indexed data
```

1.5 splitting data:

using a phase indicator: train as 0, val as 1 and test as 2

```
[5]: data['split'] = 0
```

```
[6]: # data.loc[data['dteday'].str[-2:].astype(int) < 20, 'split'] = 0 #train split
data.loc[data['dteday'].str[-2:].astype(int) >= 20, 'split'] = 2 # test split
assert len(data) == data[data['split']==0]['split'].

→count()+data[data['split']==2]['split'].count()
```

```
[7]: # ## validation split
# choosing 20 percent of the train data to be validation
# starting after the first 100 records as validating right away makes no sense
val_candidates = [i for i in range(100,len(data)) if data.iloc[i]['split']==0 ]
val_chosen = random.sample(val_candidates,int(0.2*(len(val_candidates) +100)))
```

```
data.iloc[val_chosen,-1] = 1
```

```
[8]: # ## some final processing
data = data.drop('dteday',axis=1) # not needed anymore
```

```
[9]: norm = ['weathersit','season','mnth','hr','weekday']
# ones to be normalized
# could check a one hot-encoded version of season as well
# but they follow an order so going with this for now
for n in norm:
    data.loc[:,n] = data[n]/max(data[n])
```

main routines have been well documented in the model.py module in the same directory proceeding with analysis in the notebook from now on

1.6 this is the report with experiments

1.7 check model.py for code: it is self-explanatory(well-commented)

2 Poisson regression

- modelling the rate per hour to the be parameter of a poisson model
- as the count is always positive, modelling the parameter as a log linear model

hence for the parameters W_{d-vect} and features X_{d-vect} , the probability density is given as:

$$f(y) = \frac{\lambda^y \cdot e^{-\lambda}}{y!}$$

where

$$\lambda = e^{W^T X}$$

2.1 some nuances

- we will have to use an iterative method for optimization as a closed form solution won't be possible, due to the exponential term in the log-likelihood
- using the negative-log likelihood as the loss function
- using an $\ln \eta$
- for L1 and L2 regression, introducing hyper-parameters α and β respectively and these will be altered in the validation phase via grid search
- only the previous data can be used for prediction hence we will have to update the weight vector intermittently
- proceeding with a batch size of 1
- will have modes for processing: train, val and test
- will differentiate w.r.t W in the train mode
- will differentiate w.r.t hyper-parameter in val mode
- will only output prediction in test mode
- normalizing some features to the train set and fitting the test to it while prediction, for better performance and also for the last sub-question

3 subquestion 1

4 Likelihood and Loss function

for an X, y pair: the likelihood will be

$$\mathcal{L}(W) = \frac{e^{-\lambda} \lambda^y}{y!}$$

$$\therefore ln(\mathcal{L}(W)) = yln(\lambda) - \lambda - ln(y!)$$

ignoring the constant factorial from here onwards

$$ln(\mathcal{L}(W)) = yW^T X - e^{W^T X}$$

employing the loss function to be the negative log likelihood

$$\therefore L(loss) = e^{W^T X} - yW^T X$$

also note the derivative:

$$\nabla L = e^{W^T X} X - yX = X(e^{W^T X} - y)$$

4.1 L1 regularization

for α as hyper-parameter we have an additional term of $\alpha|W|$ with the loss function

$$\nabla L_{L1} = (existing \ term) \cdots + \alpha \nabla ||W||$$

$$||W|| = (||W||^2)^{\frac{1}{2}}$$
$$\therefore \nabla ||W|| = \frac{1}{2} ||W||^{2^{\frac{-1}{2}}} \cdot 2W = \frac{W}{||W||}$$

overall(for training phase)

$$\therefore \nabla L_{L1} = X(e^{W^T X} - y) + \alpha \frac{W}{\|W\|}$$

4.2 L2 regularization

for β as hyper-parameter we have an additional term of $\beta \|W\|^2$ with the loss function

$$\nabla L_{L2} = (existing \ term) \cdots + \beta \nabla ||W||^2$$

overall(for training phase)

$$\therefore \nabla L_{L2} = X(e^{W^T X} - y) + 2\beta W$$

4.3 Experiments

```
[60]: import importlib import model
```

```
[61]: importlib.reload(model) # for quick retesting
```

[61]: <module 'model' from '/mnt/c/leisure and imp docs/BTECH CSE 4 yrs/3rd year/sem5/Foundations of Machine Learning/fml-assignment-1/Question 4/model.py'>

```
[103]: base = model.BaseModel(0.0001,13,data,-1,-2);
L1 = model.L1Model(0.0001,13,data,-1,-2,0.0001);
L2 = model.L2Model(0.0001,13,data,-1,-2,0.0001);
```

Notes: - note that the question demands that we use only the previous data to predict what comes next - for this we predict whenever we encounter a test split index right away - also, we are processing the index one by one (batch-size=1) - validating at random times from the train set (except the first 100 train split indices)

check model.py: it has been completely documented

4.4 full pass on dataset

base model

```
[104]: base.full_pass()
```

100% | 17379/17379 [00:13<00:00, 1327.98it/s]

L1 model

```
[105]: L1.full_pass()
```

100% | 17379/17379 [00:13<00:00, 1298.18it/s]

L2 model

```
[106]: L2.full pass()
```

```
100% | 17379/17379 [00:13<00:00, 1327.64it/s]
```

4.5 errors

```
[107]: print('base error:', base.test_rms())
print('L1 error :', L1.test_rms())
print('L2 error :', L2.test_rms())
```

base error: 214.5731040277971 L1 error : 155.5828397399973 L2 error : 159.57408948642873 4.6 note the performance improvement with the same lr with regularization checking final W:

4.6.1 full disclosure:

• the grid search in our model.py is not completely functional and so has been commented out for now

4.7 subquestion 5

4.7.1 for checking which features are the most important: looking at the absolute value of the weights

using the weights from the selection operator for now:

```
[129]: weights = L1.W
```

```
[131]: weights # 0 is the bias
```

note the large values for index number 3,4,9,10,11,12

these can be used to infer the most prominent features

```
[144]: prominent = [features[i-1] for i in [3,4,9,10,11,12]] prominent
```

```
[144]: ['mnth', 'hr', 'temp', 'atemp', 'hum', 'windspeed']
```

Note that these make sense at the first look: - more bikers later in the year than before(for month) - temperature: people get out on a sunny day - feeling temperature: as expected - this is a stronger predictor than temperature - hum: less people get out on humid days - windspeed: who doesn't like to ride on windy days...

[]: