Bosch Fit.Fest GenAl Hackathon

Team GenStar

Content

Problem Statement	3
Proposed Solution	4
Architecture	13
Performance Analysis	14
References	15

Problem Statement

- Building a document Q&A solution to automatically answer questions about documents in natural language using a chatlike interface.
- Automatic **parsing** and storage of content from text, tables, and images in documents.
- **Retrieval** of text, tables, and images in response to user input prompts, providing contextually relevant content from the document.
- **Probing questions** asked towards users to gather detailed information, resolve ambiguities, and stimulate further discussion, ultimately fostering a comprehensive exploration of the topic.

Proposed Solution

- This project tackles the challenge of inefficient document exploration by creating a user-friendly, chat-based Q&A system. Here's a breakdown of the key components:
 - Data Preprocessing: Text and table data are extracted from documents.
 - Table Summarization: LLM summarizes the extracted tables.
 - Semantic Chunking: Textual content is segmented into meaningful chunks using a technique called semantic chunking.
 - Data Storage: Extracted data (text chunks and summarized tables) is stored in a vector database like Qdrant for efficient retrieval.

Query Processing:

- A Retrieval-Augmented Generation (RAG) fusion method is employed.
 - User provides a natural language query.
 - The LLM generates multiple similar queries based on the original user query.
- o Top K relevant chunks are retrieved from Qdrant based on the generated similar queries.

Answer Generation:[Text, Table]

- The retrieved text chunks (context) and chat history (if applicable) are combined with the user's original query.
- Cohere's open-source LLM leverages this information to generate a comprehensive answer.
- For table reconstruction we use prompt engineering with json based output to generate table.

• Clarification and Refinement:

- The LLM can ask clarifying questions if it feels uncertain about the answer.
- o This back-and-forth interaction helps refine the user's intent and improve answer accuracy

• Semantic Caching:

- By storing previous questions and answer pairs, every time a new question comes in, we look it up on the cache if there's a similar question, and if yes we simply use that response instead of doing another LLM call.
- This can save lots of cost and latency.

• Image Retrieval: [Added in Phase-2]

- We have utilized Google Gemini pro Multimodal model to intelligently extract the description of the image and store them along with existing data in VectorDB.
- All the images are encoded and stored in MongoDB can generate image on the fly rather than storing it on the disk.
- We have added several attributes such as car_name, image_id etc as meta data to each chunk for effective retrieval.
- When user gives a query it retirves similar chunks as contexts. If any of the retrived contexts belongs to that of image description.
- We take all those image descriptions along with query to make another LLM call to intelligently choose the best image along with similarity based filtering.
- Once we get the best image and we along with its description we make another LLM call to do final answer text generation.

Image Retrieval Results

Image Based Search: [Added in Phase-3]

- We have utilized OpenAI CLIP to extract image embeddings and stored them in VectorDB.
- User given image we find the CLIP embedding and based on that we find most similar image from the VectorDB. Then We have stored image_id and their corresponding description in MongoDB.
- So, Once we get the most similar image_id we extract the corresponding image description. we display the description to the user.

• Image + Text Based Search: [Added in Phase-3]

- Same pipeline as above.
- Once we have description of the most similar image we pass the description along with the user query to LLM with RRF RAG Pipeline.
- LLM returns the answer based on the context, user_query and image_description.

Improvements/ Features added in Phase-2

- Image context retrieval feature
- Parallelization of following features:
 - Chat history retrieval
 - Finding suitable images using image summary
 - Checking whether to ask probing questions or not.
- By adding these parallelization we **reduced the latency** of the response from upper bound 30 seconds to 15 seconds.

Improvements/ Features added in Phase-3

- Image based search
- Image + Text based search
- Carousel to display the pages in pdf matching the user query.

 By adding these parallelization we reduced the latency of the response from upper bound 30 seconds to 15 seconds.

Image Based Search Results

Windshield wipers

Operates as follows when the ignition switch is turned ON.

MIST: For a single wiping cycle, move the lever upward (or downward) and release it. The wipers will operate continuously if the lever is held in this position.

OFF: The wiper is not in operation

INT: The wiper operates intermittently at the same wiping intervals. Use this mode in light rain or mist. To vary the speed setting, turn the speed control knob. (if equipped)

LO: The wiper runs at a lower speed.

HI: The wiper runs at a higher speed.

Information

If there is heavy accumulation of snow or ice on the windshield, defrost the

Windshield washers

In the OFF position, pull the lever gently toward you to spray washer fluid on the windshield and to run the wipers 1-3 cycles. The spray and wiper operation will continue until you release the lever.

If the washer does not work, you may need to add washer fluid to the washer fluid reservoir.

Image Based Search Results

Architecture

Performance Analysis

- The **Latency** of the chatbot ranges between 10 15 seconds depending on the speed of internet connection.
- We evaluated the **accuracy** of probing questions mechanism and found it to be effective when we set threshold of cosine similarity between query and context as 0.3.

Github Repo Link: click here

_ Deployed Chatbot application: <u>click here</u>

References

- 1. Article on Advanced RAG Techniques by Pinecone.
- 2. Research Paper on RAG Fusion by Zackary Rackauckas.
- 3. Notebook by Greg Kamradt on Semantic Chunking.
- 4. Cohere API Documentation.
- 5. LangChain Documentation.
- 6. <u>Qdrant Documentation.</u>
- 7. Reduce LLM Cost and Latency with Semantic Cache.