LOAN COPY

STATE OF NEW YORK DEPARTMENT OF CONSERVATION WATER POWER AND CONTROL COMMISSION

THE GROUND-WATER RESOURCES OF RENSSELAER COUNTY, NEW YORK

Ву

R. V. CUSHMAN

Prepared by the

U. S. GEOLOGICAL SURVEY IN COOPERATION WITH THE WATER POWER AND CONTROL COMMISSION

BULLETIN GW-21 ALBANY, N. Y. 1950

STATE OF NEW YORK

DEPARTMENT OF CONSERVATION

WATER POWER AND CONTROL COMMISSION

PERRY B. DURYEA	Conservation Commissioner, Chairman
B. D. TALLAMY	Superintendent of Public Works
NATHANIEL GOLDSTEIN	Attorney General
JOHN C. THOMPSO	ON, Executive Engineer

UNITED STATES DEPARTMENT OF THE INTERIOR

OSCAR L. CHAPMAN, Secretary

GEOLOGICAL SURVEY

WILLIAM E. WRATHER	Director
C. G. PAULSEN	Chief Hydraulic Engineer
A. N. SAYRE	Chief, Ground Water Branch
M. L. Brashears, Jr.	District Geologist

CONTENTS

	Page
Astract	1
Introduction	2
Purpose and scope of the investigation	2
Acknowledgments	2
Previous reports and investigations	
Geography	
Location and culture	
Topography and drainage	5
Climate	
Geology	8
General relations of stratigraphy and structure	8
Consolidated rocks	8
Western sequence	8
Eastern sequence	10
Unconsolidated rocks	12
Till	12
Stratified sands and gravels	13
Lacustrine deposits	13
Recent alluvium	14
Ground water	14
Source	14
Occurrence	14
Shale and slate	15
Graywacke	16
Schist	16
Limestone	16
Till	17
Lacustrine deposits	17
Stratified sands and gravels	17
Recent alluvium	20
Fluctuations of the water table	20
Recovery	21
Types of wells, by R. H. Brown	21
Well-drilling equipment and pumps, by R. H. Brown	
Local drilling techniques, by R. H. Brown	25
Methods of developing or improving yield, by R. H. Brown	26
Recovery in Rensselaer County	28
Drilled wells in consolidated rocks	28
Drilled wells in unconsolidated deposits	28
Dug wells	30
Driven wells	30
Springs	31
Utilization	31
Domestic and farm supply	31
Industrial supply	31
Municipal supply	31
Quality	34

CONTENTS—(Continued)

	Page
Temperature	
Chemical constituents in relation to use	
Dissolved solids	
Iron (Fe)	37
Manganese (Mn)	37
Chloride (Cl)	37
Sulfate (SO ₄)	37
Hardness	37
Hydrogen-ion concentration	38
Summary of ground-water conditions	38
References	

ILLUSTRATIONS

Pla	ıte		Page
	1.	Map of Rensselaer County, N. Y., showing wells and springs (Back)
	2.	Geologic map of Rensselaer County, N. Y(Back)
	3.	East-west geologic section across Rensselaer County, N. Y.(Back)
Fig	gure		
	1.	Index map of New York showing coverage of cooperative ground-water studies	3
	2.	Mean monthly precipitation and temperature at Troy, N. Y., for the period 1826 to 1930	7
	3.	Hydrograph of observation well Re 660 and the daily precipitation at Albany, N. Y.	22
	4.	Logs and construction details of two wells of the Fort Orange Paper Company, near Castleton-on-Hudson, N. Y.	29
		TABLES	
Tak	ole		Page
	1.	Monthly precipitation and temperature at Cherry Plain, N. Y., for the period 1943 to 1948	6
	2.	Geologic formations in Rensselaer County and their water- bearing properties	9
	3.	Approximate area of intake openings of open-end casings, perforated casings, and well screens	30
	4.	Records of selected springs in Rensselaer County, N. Y.	32
	5.	Temperature of ground water in well Re 660, New York	34
	6.	Chemical analyses of natural waters from Rensselaer County, N. Y.	35-36
	7.	Logs of selected wells in Rensselaer County, N. Y.	41
	8.	Records of selected wells in Rensselaer County, N. Y.	44

•		•		
			•	
		±		
			•	
				1
		•		
•				
	'			

GROUND-WATER RESOURCES OF RENSSELAER COUNTY, N. Y.

By R. V. CUSHMAN

ABSTRACT

This report has been prepared as part of a state-wide survey of the ground-water resources of New York being made by the U. S. Geological Survey in cooperation with the New York Water Power and Control Commission. Field work was done during 1946 and 1947 when records were obtained for 700 wells, borings, and springs. Sixty-five water samples also were collected for chemical analysis.

Rensselaer County is situated within the "Capital District" in east-central New York (fig. 1). The largest city is Troy. The principal occupations are manufacturing, retail trade, and farming. The area lies partly in the Ridge and Valley physiographic province and partly in the New England upland, and comprises three topographic subdivisions—a lowland, an elevated plateau, and a succession of parallel hill ranges. The climate is a humid, modified continental type marked by long, cold winters and short, warm summers. Approximately one-fourth of the total annual precipitation generally occurs in the spring, when conditions are most favorable for ground-water recharge.

The bedrock of Rensselaer County is primarily of sedimentary origin, ranges in age from Lower Cambrian to Middle Ordovician, and consists of shale and grit, and some beds of limestone and quartzite. In many places, these consolidated rocks have been compressed into closely packed folds. Joint and fracture cleavage planes are well developed. In most of the County the bedrock is mantled by unconsolidated glacial or alluvial deposits. The unconsolidated rocks consist of till or hardpan, and stratified glacial drift.

Precipitation which falls on the immediate area is the source of all ground water in Rensselaer County. Periodic measurements of water level in a well located three miles east of Defreestville since April 1946 show the fluctation of the water table is closely related to precipitation. Stratified drift and related sands and gravels of fluvial origin are the best aquifers in the County.

Records for 30 wells ending in these deposits show an average yield of 26 gallons per minute. Larger yields may be obtained from properly constructed and developed wells. Where unconsolidated deposits are thin or otherwise unproductive, water is withdrawn from the bedrock through drilled wells. The yield of bedrock wells is small when compared to those that tap the unconsolidated deposits but is generally sufficient to satisfy small domestic and farm needs. Most industrial development is located in the urban areas, and water used for manufacturing processes is generally obtained from municipal water systems. Public water supplies of ten municipalities in the County are described.

The temperature of water from wells averages about 51° F, a few degrees above the mean annual air temperature. A number of water analyses are included to show the quality of the water and its suitability with respect to utilization. The chemical quality in nearly all cases was satisfactory for most uses. There seems to be no great difference in average content of dissolved solids in the water in bedrock and in unconsolidated materials, although individual constituents show considerable variation.

INTRODUCTION

PURPOSE AND SCOPE OF THE INVESTIGATION

In 1946, the U. S. Geological Survey began an investigation of the ground-water resources of Rensselaer County as part of a state-wide program of ground-water investigations in cooperation with the New York Water Power and Control Commission to determine the quantity and quality of ground water available in the State of New York, in order to permit a fuller utilization and conservation of the resources of the State. The areas in which ground-water studies have been completed and in which work is now in progress are shown in figure 1. Reports for Columbia, Delaware, Fulton, Greene, Montgomery, Schenectady, Schoharie, and Washington Counties are being prepared. Reports have been published for Montgomery, Monroe and Albany Counties and for parts of Broome and Cortland Counties.

Field work for this report was done in 1946 and 1947. Records were obtained for approximately 700 wells and springs, and 65 water samples were collected for chemical analysis. Part of the time was spent in the study of the glacial deposits and rock formations which are the source of the ground water.

The locations of all the wells for which records are shown are given on Plate 1. It has not been possible to check in the field the exact location of some of the wells. In many cases, only incomplete records for wells were available from well drillers and owners. A few well-drilling firms keep excellent records, but most of the drillers do not keep any records except for the depth of wells and lengths of casing used. Other details of construction are reported from memory, if at all. In general, little attention is paid to unconsolidated materials which overlie the bedrock. The necessity for detailed information about subsurface conditions for the economic development of ground-water resources, as well as for other constructive purposes, makes it advisable for well drillers to maintain complete and accurate records. By so doing they will render a valuable service to the people of the State, as well as to their own profession.

The wells have been numbered in order beginning with number Re 1, and springs have been numbered in a separate series beginning with number Re 1Sp. Although the prefix "Re" signifies that the particular well or spring is located in Rensselaer County, its use was considered unnecessary in plotting well and spring locations on Plate 1, as the plate covers only the Rensselaer County area. As an aid in reporting a well or spring location anywhere in New York State, the entire State has been arbitrarily divided into a system of rectangles, each one of which has a width of 15 minutes of longitude and a height of 15 minutes of latitude. The meridian lines forming the vertical sides of the rectangles have been lettered consecutively across the State from west to east, beginning with "A" and ending with "Z". The parallels of latitude forming the horizontal sides of the rectangles have been numbered consecutively across the State from north to south, beginning with "1" and ending with "17". This explains the "coordinate" letters and numbers appearing in the margins of Plate 1, opposite the appropriate meridians and parallels of latitude. In the tables of well and spring records each location is detailed by giving first the coordinate of one corner of the rectangle concerned, followed by two other number-and-letter combinations that indicate the distance in miles and direction from the designated corner of the rectangle to the well or spring being located. For example, well Re 12 (10Z, 12.1 N, 2.9 W) will be found 12.1 miles north and 2.9 miles west of the intersection of lines 10 and Z.

ACKNOWLEDGMENTS

The writer wishes to acknowledge the generous assistance of many federal, state, county, and municipal agencies and well drillers, well owners, and consultants, who contributed valuable information for use in this report. Among these are the New York State Department of Public Health, which analyzed water samples, the Rensselaer County Health Association, the New York State Museum, the New York State Department of Commerce, the United States Weather Bureau, and the superintendents of the various municipal and district water departments in the County. Among the well drillers whose contributions of well records form the basis of this report are: Flynn Bros., Mechanicville; Lawrence Gardenier, Nassau; Gordon Gould, Chatham Center; Hall & Co., Inc., Delmar; Ralph Jensen, Poestenkill; Frank Kornetzki, Wynantskill; James McQueen & Son, Schenectady; William Shaver, Niverville; Earl Shortsleeve, Wynantskill; Stewart Bros., Scotia; and Woodcock & Sons, Smith Basin.

Figure 1.—Index map of New York showing coverage of cooperative ground-water studies.

Acknowledgments are made also to John C. Thompson, Executive Engineer, New York State Water Power and Control Commission; C. R. Cox, Chief, Bureau of Water Supply, Division of Sanitation, New York State Department of Health; John G. Broughton, State Geologist, New York State Museum; Dr. Meredith H. Thompson, Director of Environmental Hygiene, Rensselaer County Health Association; and the writer's colleagues in the U. S. Geological Survey, particularly E. S. Asselstine, for suggestions and assistance provided during the preparation of the report. the preparation of the report. Water samples, and well and spring records used in the report were collected by V. H. Rockefeller. R. H. Brown of the U. S. Geological Survey prepared part of the section of the report dealing with recovery of ground water. This report was prepared under the supervision of M. L. Brashears, Jr., District Geologist, in charge of groundwater investigations in New York and New England.

PREVIOUS REPORTS AND INVESTIGATIONS

The complex geology of the Taconic Range has long been a subject of controversy. The present interpretation of the rock features is an outgrowth of the varying views of many eminent geologists since the early part of the 19th century and, although far from complete, provides an adequate basis for a study of the underground-water resources. Painstaking study by Dale and others, (see references), of the stratigraphy and structure of the Taconic area, together with later work by Prindle and Knopf, (see references), has resulted in a geologic map covering the eastern part of Rensselaer County. Bulletin 285 of the New York State Museum contains a map covering the western part of the County. and the one by Prindle and Knopf have been used as the basis for the geologic map in the present report (pl. 2). The glacial geology of the western part of the County has been discussed by John H. Cook in, "The glacial geology of the Capital District", and a map and report on the glacial features of the Cohoes quadrangle are given in New York State Museum Bulletin 215-216 by James H. Stoller, (see references).

A brief report by the U. S. Geological Survey on the water resources of the Taconic guadrangle appeared in Water Supply Bayer 110, but at that time little was known of the

quadrangle appeared in Water-Supply Paper 110, but at that time little was known of the distribution or quality of the underground waters of the area. The U.S. Geological Survey has on file records of the stage and discharge of the Hudson River at Mechanicville since 1883; the Hoosic River at Eagle Bridge since 1916; The Walloomsac River near North Ben-

nington since 1931; and Poesten Kill near Troy since 1923.

GEOGRAPHY

LOCATION AND CULTURE

Rensselaer County is within the so-called "Capital District" in east-central New York. It is bounded on the north by Washington County, on the east by the States of Vermont and Massachusetts, on the south by Columbia County, and on the west by the Hudson River. Figure 1 shows its geographic location and extent of the area with respect to the remainder of New York State.

Rensselaer County has an area of 651 square miles and a population of over 120,-O00. The average density of population in 1940 was 187 persons per square mile, as compared to 272 for the State as a whole. Nearly one-half of the population is engaged in manufacturing or retail trade. Only about 8 percent of the employed persons in the County are farmers or agricultural workers. In 1940 there were 2,675 farms in the County, of which 92.6 percent were owner-occupied. The crops grown are hay, oats, corn, buckwheat, vegetables, and orchard fruits, mainly apples and pears. The Rensselaer Plateau, because of its poor soil coverage, has largely been abandoned by farmers and is now beginning to attract people seeking sites for summer homes. The Taconic area on the east is largely forest-covered and essentially uninhabited

forest-covered and essentially uninhabited.

The area included in the County is divided into 14 towns and 2 independent cities. Troy, the county seat, with a population of 70,304 in 1940, is the largest and by far the most important city. It is located at the head of navigation on the Hudson River and occupies a strategic position at the eastern terminus of the New York State Barge Canal and the southern end of the Hudson-Champlain Barge Canal. It is an important manufacturing town and educational center. Among the leading articles of manufacture are collars, shirts, valves, engineering and surveying instruments. Rensselaer Polytechnic Institute, the oldest engineering school in the United States, is located in this city. Rensselaer, situated on the Hudson River opposite Albany, is a manufacturing and railroad center having a population of 10,768 in 1940. Among the larger towns in the County are Hoosick Falls, Castleton-on-Hudson, Wynantskill, and East Greenbush.

TOPOGRAPHY AND DRAINAGE

The western part of Rensselaer County is in the Hudson-Champlain section of the Ridge and Valley physiographic province, whereas the eastern part is in the Taconic section of the New England Upland. In Rensselaer County these two provinces consist of three major topographic divisions: (1) on the west a gently-sloping lowland underlain by folded beds of metamorphosed shale and sandstone, (2) on the east a succession of more or less parallel north-northeast-trending ranges composed of shale and schist, and (3) a broad, high plateau area which separates the others and is underlain by a coarse grit or graywacke (pl. 3).

The lowland area consists of a low plain bordering the Hudson River separated from a westward sloping hilly area of low relief by a well-defined escarpment ranging from 100 to 200 feet in height. The plain ranges in width from ½ to 2½ miles, and consists of beds of sand, silt, and clay deposited in Pleistocene time in glacial Lake Albany. A trench about a mile wide and 200 feet deep has been carved out of the lake deposits by the Hudson River. Tributaries of the Hudson occupy postglacial chappels and reach the Hudson occupy postglacial chappels and reach the Hudson occupy postglacial chappels and reach the Hudson occupy against Tributaries of the Hudson occupy postglacial channels and reach the Hudson over a series

of waterfalls and narrow valleys cut in the surface of the old lake plain.

The altitude of the lake plain at its western edge is about 250 feet. From there, the land surface slopes gradually upward to an altitude of about 600 feet at the foot of the Rensselaer Plateau. The area is underlain by beds of folded shale and sandstone. It is mantled thinly by moraine and till, and dotted with numerous drumlins. Several larger hills composed of hard and more competent rocks rise above the lowland. The northernmost are Rice Mountain near Grant Hollow and Mt. Rafinesque east of Troy, which rise to altitudes of 900 feet and 1200 feet, respectively. Farther south is Rysedorph Hill near Rensselaer,

which owes its prominence to beds of a tough conglomerate (pl. 1).

The Rensselaer Plateau has an oval shape, and covers an area of about 175 square miles extending from the Berlin-Stephentown valley west to Poestenkill and from Boyntonville and Pittstown south to East Nassau. It rises abruptly from the lowland on the west and north, and from the Berlin-Stephentown valley on the east and south. It reaches a maximum altitude in the hilly area near Bowman Pond of about 1900 feet above sea level. The plateau is characterized by a steep escarpment along its eastern edge, by low hillocks, by nearly uniform levels, and by many ponds and extensive poorly drained areas. It is entirely underlain by a coarse grit or graywacke, with intercalated beds of red and green shale. Owing to the hardness of the graywacke, the land surface has suffered little from erosion except around the outer edges where streams have cut back into the plateau.

The Taconic ranges in the eastern part of the County consist of a succession of parallel ridges with unaccordant summits, much higher than the land forms to the west, which are flanked by valleys that are generally narrow and without flood plains. The rocks underlying the Taconic area are schist, slate, and limestone of Cambrian and Ordovician age which have been intensely folded and metamorphosed. The limestones underlie the slates and

crop out only in the valley areas.

Rensselaer County lies entirely within the Hudson River drainage basin. The northern part of the County is drained by the Hoosic River, and by a number of lateral streams, the more important of which are the Poesten Kill, Wynants Kill, Moordner Kill, and Kinderhook Creek. Numerous smaller streams enter the Hudson directly, having cut deep ravines in the clay terraces flanking the river. The main tributaries flow through hanging valleys into deep ravines cut into the terrace-capped shale adjacent to the escarpment. Below Schaghticoke the Hoosic River has cut a canyon nearly 200 feet deep in the bedrock. The Poesten Kill, which drains a large part of the Rensselaer Plateau, has cut a small gorge at Troy and another 21/2 miles to the east. All the tributaries have low gradients, except where they pass over the escarpment onto the Hudson River plain or from the high plateau to the lowlands. A large part of the drainage of the high plateau is by southward-flowing streams such as the Black River, Roaring Brook, Black Brook, and Tackawasick Creek, all of which empty into Kinderhook Creek. The remainder of the high plateau is drained by the westward flowing Poesten Kill and Quacken Kill, which have cut deep gorges at the edge of the plateau.

CLIMATE

There is considerable variation in climate throughout Rensselaer County, owing to marked differences in altitude which ranges from sea level, at the Hudson River near Troy, to about 1,900 feet above sea level on the Rensselaer Plateau, and to about 2,800 feet above sea level in the Taconic area. In general, the county has a humid, modified continental type of climate marked by long cold winters and short warm summers. The U. S. Weather Bureau maintained a station at Troy in the Hudson River valley from 1826 to 1930, inclusive, and established one at Cherryplain in the Berlin-Stephentown valley in 1943. Mean monthly precipitation and temperature at Troy for the period 1826 to 1930 are shown in figure 2, and monthly precipitation and temperature at Cherryplain from 1943 are shown in table 1. Records for each station are representative of their respective valleys, but are only generally representative of the climatic conditions in other parts of the County. Only limited climatic data are available elsewhere in the County, but it is probable that with each increasing step in altitude the average annual temperature is lower, the precipitation greater, and the frost-free season shorter. The weather record at the Troy station is believed to be nearly representative of the more populated sections of the County.

The mean annual temperature at Troy for the period 1826-1930 is 48.8° F. The minimum temperature usually occurs in January and the maximum in July. The absolute maximum and minimum recorded temperatures are 104°F. and -24°F., respectively. The mean monthly temperatures as shown in figure 2 range from a low of 22.9°F. in January to a high 74.4°F. in July.

Table 1.—Monthly precipitation and temperature at Cherryplain, New York, for the period 1943 to 1948

(Taken from Climatological Data for New York, U. S. Weather Bureau)

Precipitation in inches

Annual	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	Mar.	Feb.	Jan.	
	0.66	6.80	4.68	1.06	7.21								1943
42.71	2.20	4.05	3.22	6.40	1.72	5.64	5.23	2.37	4.39	3.77	2.26	1.46	1944
			1.66	4.25	2.24	10.40	6.18	6.47	7.05	2.12	2.70	4.01	1945
	3.29	2.40	3.48		3.89	3.64	4.40	6.69	3.19	2.11	2.77	1.56	1946
49.66	2.62	5.06	2.11	3.28	6.47	5.93	4.48	5.66	4.60	2.57	2.54	4.34	1947
• • • •	10.14	5.23	1.88		3.21	5.10			3.45	3.97	2.69	2.44	1948

Temperature in degrees F.

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
.943								64.6	56.2	47.0	33.4	18.5
944	22.6	19.5	25.8	38.4	58.4	63.2	67.4		58.8	46.3	35.8	21.0
945	12.4	22.0	41.5	49.0	51.2	61.9	66.4			16.4		
946	20.7	19.2	40.8	40.0	52.0	63.1	65.8				39.2	26.2
947	25.7	18.4	28.0				67.5	68.0	58.8	53.3	32.8	20.4
948	13.8	17.6	31.0				67.1	66.5			42.7	28.0

In the Hudson River Valley the average date of the last killing frost is between April 20 and May 1; in the low plateau area, between May 1 and May 10; and in the eastern part of the County, between May 10 and May 20. The average date of the first killing frost for the Hudson River Valley is between October 10 and October 20; and for the remainder of the County, between October 10 and October 17. The length of the frost-free season in the Hudson River Valley is from 160 to 170 days, in the low plateau from 150 to 160 days, and in the highland areas from 140 to 150 days.

The mean annual precipitation at Troy is 35.57 inches, with a mean minimum monthly precipitation of 2.19 inches in February to a mean maximum of 3.78 inches in July. Precipitation is fairly well distributed throughout the year as shown on figure 2, with approximately one-fourth of the total annual precipitation ordinarily occurring in the spring when conditions

Figure 2.—Mean monthly precipitation and temperature at Troy, N. Y. for the period 1826 to 1930.

of ground-water recharge are most favorable. The greatest recorded annual precipitation at Troy, 49.16 inches, fell in 1878, and the lowest, 18.32 inches, fell in 1939. The rather long term record at Troy shows that periods of about 20 days during which the rainfall has been very slight have often occurred between March 1 and September 16. The annual snowfall at the Troy station ranges from 40 to 60 inches.

GEOLOGY

GENERAL RELATIONS OF STRATIGRAPHY AND STRUCTURE

Both unconsolidated and consolidated rocks crop out at the land surface in Rensselaer County. The unconsolidated rocks consist chiefly of stratified and unstratified deposits of Pleistocene age along with some local deposits of stream-bed and stream-terrace materials of Recent age. The consolidated sediments are chiefly shale and grit, with some beds of limestone and a few beds of quartzite. Those exposed range in age from Lower Cambrian to Middle Ordovician. The consolidated rocks, with possibly the exception of the Snake Hill formation, are not indigenous to the County, but belong to a series of formations deposited in a trough farther to the east and moved into their present position by folding and faulting along a multiple of thrust-fault planes (pl. 3). The folding and faulting greatly compressed and strengthened the sediments, and created a multitude of fractures and cracks, some of which now serve as channels for the movement of underground waters.

The stratigraphic sequence and general lithologic and hydrologic characteristics of the rocks are summarized in table 2. The major lithologic units are described in greater detail in the succeeding pages. The areas in which the various rocks crop out at the land surface are shown on plate 2 and a cross-section of the rocks in the County is given in plate 3. The four divisions of the Schodack formation of Lower Cambrian age which have been termed by Ruedemann¹ the Schodack shales and limestones, Troy shales and limestones, Diamond Rock quartzite, and Bomoseen grit, are shown as one unit, the Schodack formation, because they are closely infolded with each other and because they have similar lithology, and hydrologic characteristics. For similar reasons the Deepkill shale, in this report, is included with the Normanskill shale.

CONSOLIDATED ROCKS

For convenience the consolidated rocks are described in two geologic sequences, a western sequence and an eastern sequence, based upon the extent of the metamorphism that the rock has undergone.

Western sequence

The rocks included by the writer in this sequence are the Nassau formation and the Schodack formation of Lower Cambrian age, and the Normanskill shale and the Snake Hill formation of Middle Ordovican age. They comprise most of a broad belt of closely related rocks extending the full length of the western part of the County, north and west of the Rensselaer Plateau, from Eagle Bridge and Buskirk on the north to East Nassau and South Schodack on the south. They were formerly known as the "Georgian" or "Taconian" beds and have been described in detail by Reudemann². All of these rocks are considered by geologists to be part of the great detached sheet of rocks that have been moved from their original position somewhere to the east, and thrust westward by mountain-building forces upon younger rocks native to the Hudson River Valley.

Because the formations in the western sequence consist mostly of a closely folded belt of green to black shale and have few lithologic properties that can be used to distinguish easily one formation from the other, they are here discussed as a unit. The general lithologic and hydrologic properties of each formation are summarized in table 2.

The calcareous sandstone of the Schodack formation merits individual discussion as it is of special concern to well drillers in the area. It usually consists of subrounded quartz grains cemented together by calcite, and in many places grades into a hard quartzite, the Diamond Rock quartzite of Ruedemann, in which the cement is mostly silica. The sandstone

^{1.} Ruedemann, Rudolf, Geology of the Capital District, New York: New York State Mus. Bull. 285, pp. 25, 73, 79, and

map, 1930.

Ruedemann, Rudolf, Geology of the Capital District, New York: op. cit. pp. 73-95.

Table 2.—Geologic formations in Rensselaer County and their water-bearing properties.

	Geologic formations	lons	Thickness (feet)	Character of material	Water-bearing properties
Recent	Alluvium		1 to 30	Clay and silt with some sand and gravel.	Relatively unimportant owing to small size of deposits.
əuəc	Stratified sand and	gravel	Up to 120	Interbedded and interlensing sands and gravels formed by sorting action of glacial meltwaters. Frequently show crossbedding.	gravels important potential source of ground water. Yields waters. wells.
otsiel	Lacustrine deposits	sits	Up to 150	Fine clay and silt deposited in glacial lake beds.	Yields small supplies, but is relatively unimportant as a source of ground water.
А	Till	~	1 to 50	Heterogeneous mixture of gravel, sand, clay, and boulders, with a predominance of clay.	and Yields small supplies of water to many dug wells and for domestic and farm purposes.
	Western Rensselaer E.	Eastern Rensselaer County			
Middle rdovician	Snake Hill formation		3,000	Dark, gray to black, bluish and greenish shales with thin sandy and black carbonaceous bands, Beds are severely crumpled and present a "glazed" appearance along cleavage and slip planes.	bluish and greenish shales Yields small supplies to drilled wells averaging 140 black carbonaceous bands, feet in depth; average yield 2 to 3 gallons per crumpled and present a minute. Water is hard and often is cloudy, freshong cleavage and slip quently contains hydrogen sulfide.
O	Normanskill shale		1,300	Dark-green to black argillaceous shale containing white-weathering calcareous and chert beds, High- ly folded.	Same as Lower Cambrian shales. Water may contain hydrogen sulfide.
Lower Ordo- vician	Wallc	Walloomsac slate	Unknown	Dark-green, fine-grained smoothed slate broken by many joints and cleavage planes.	smoothed slate broken by Yields small supplies to drilled wells averaging 180 feet in depth; wide range in yield but averages 7 gallons per minute.
	Stock	Stockbridge limestone	Unknown	Massive, fine-grained, dolomitic limestone ranging from white to blue in color. Veins of calcite and quartz common, Joints well developed and some slightly enlarged by solution.	Yields moderate supplies to drilled wells which encounter fractures; 17 to 18 gallons per minute average yield. Water has moderately large concentration of mineral matter and is usually hard.
Lower	Schodack formation		1,000	Greenish-gray, fine-grained, siliceous shale pre- senting a highly folded appearance; locally in- cludes a brick-red weathering grit, a calcareous sandstone, a thin-bedded limestone, and red and purple shale.	Yields small but reliable supplies of ground water to many drilled wells averaging 125 feet in depth; average yield 4 to 5 gallons per minute with large range. Water moderately hard and con- tains some iron, but generally astisfactory.
O	Nassau formation		400	Dark-red and green, soft shale alternating with thin beds of dark quartzite and sandstone.	
(3)	Rowe sch	Rowe schist	Unknown	Grayish, greenish, or purplish chlorite schist having a squeezed and altered appearance. Well-developed cleavage and schistosity.	Unimportant as a source of ground water owing to location in county. Probable yield similar to that of Lower Cambrian shales.
ewo.I SirdmsD	Rense	Rensselaer graywacke	1,400	Dark-green, exceedingly tough, thick-bedded, gran- ular grit or graywacke, in which quartz and feldspar grains are clearly visible; sometimes interbedded with thin strata of purplish, reddish or greenish slate.	Yields small but reliable supplies to drilled wells averaging 120 feet in depth; average yield 5 gallons per minute. Small range in yields.

may include beds of bluish fossiliferous limestone which generally have a brecciated or broken appearance. The sandstone and quartzite do not crop out at many places in Rensselaer County, but may be seen in Oakwood Cemetery in North Troy and in the north-north-eastward trending ridge extending to Speigletown. The associated beds of brecciated limestone are exposed in the vicinity of Snyders Lake in the town of North Greenbush. These rocks are generally very hard, and when encountered in drilling may cause considerable difficulty and delay, especially if quartzite is encountered. Of the available records of wells drilled in Rensselaer County, only one well, Re 218, is known to have penetrated the hard quartzite. The drilling of this well was stopped when it encountered extremely hard rock lying 156 feet below land surface.

The thickness of the Lower Cambrian and Lower and Middle Ordovician rocks is difficult to determine because of the intense folding, the easy weathering of the shale, and the lack of reliable key beds. Ruedemann³ estimates the total minimum thickness of the Lower Cambrian and Lower and Middle Ordovician rocks in the western sequence rocks in Rensselaer County to be at least 5,700 feet.

The structure of the shale belt, about 8 miles wide, is exceedingly complex. In general its members are arranged in ascending order from east to west with the oldest rocks, the Nassau formation lying farthest to the east. However, there is much repetition or intermingling of the various members, as shown by the occurrence of the Bomoseen grit at several localities near the overthrust line, several miles west of its normal position above the Nassau formation. The rocks have been compressed into a mass of closely-packed folds that are generally turned or tilted over westward, producing what is known as isoclinal folding, where all beds seem to incline in the same direction. The beds incline toward the east and in general strike in a north-northeast direction. Where harder and thicker beds are present, such as the dark quartzite of the Nassau formation, or the grits of the Normanskill shale, the folds are less compressed and more open. Examples of open type of folding may be seen on Curtis Mountain and in the vicinity of Hoags Corners in Nassau. The degree of metamorphism increases in an easterly direction. As a result, the rocks on the eastern edge of the shale belt have been altered to phyllites and have a slaty appearance. The folding has been further complicated by the development of extensive overthrust faults, shear zones, joints, and fracture cleavage. For the most part, the fault zones consist of numerous small fault planes which have only small insignificant openings. The joint planes are well defined and divide the rocks into rectangular blocks. Most of them dip a few degrees from the vertical and are spaced from 6 to 8 feet apart. They are well developed in the more massive, harder rocks such as the calcareous sandstone or quartzite layers in the Nassau formation. Fracture cleavage or parting of the rock into thin plates, which often obscures the original bedding planes, is well developed in all of the beds of shale. Very often several cleavage systems divide shales into stick-like fragments which lead to a quicker decay of the rock and permit easy access to downward-percolating waters.

Eastern sequence

The rocks included by the writer in the eastern sequence are the Rensselaer gray-wacke and the Rowe schist of Lower Cambrian (?) age, the Stockbridge limestone of Cambrian and Ordovician age, and the Walloomsac slate of Lower Ordovician age. General lithologic properties of these rocks are summarized in table 2.

The Rensselaer graywacke is one of the most conspicuous formations in the County. It forms bold cliffs around its periphery. It underlies the entire plateau, as well as several small outliers (pl. 2), and covers more than one-quarter of the area of Rensselaer County. The Rensselaer graywacke has been described in detail by Dale⁴ who estimates its total thickness to be about 1,400 feet.

The age of the Rensselaer graywacke and its stratigraphic relations with adjacent formations have been a matter of speculation for many years, chiefly because no fossils have been found in it and because its contacts with other formations are obscure. Its geographic proximity to the Catskill beds of Devonian age, located on the west side of the Hudson River south of Albany, have suggested a similar age. However, evidence obtained by Prindle and Knopf⁵, has led them to regard the graywacke as Lower Cambrian (?).

Ruedemann, Rudolf, Geology of the Capital District: op. cit., pp. 78, 87, 99, 118.
 Dale, T. N., The Rensselaer Grit Plateau in New York: U. S. Geol. Survey 13th Ann. Rept., pt. 2, pp. 291-340, 1891-92.
 Prindle, L. M., and Knopf, E. B., Geology of the Taconic Quadrangle: Amer. Jour. Sci., 5th ser., vol. 24, p. 284, 1932.

The Rensselaer graywacke does not show the intense folding and crumpling exhibited by adjacent beds of shale and slate. Rather it occurs in more open folds throughout the plateau. The graywacke has been so extensively fractured that its stratification can be determined only where it incloses beds of slate. The fractures are commonly spaced 6 to 8 feet apart and occur in two sets.

The Rowe schist forms the greater part of the Taconic Range, extending nearly the entire length of the eastern part of the County from Hoosick and North Petersburg on the north to the Columbia County boundary on the south. It crops out widely over this area, as the slopes are steep and the soil cover is thin. The age of the Rowe schist has been in doubt for many years, as fossils are not present in it and its stratigraphic relation to other rocks is not clear. Recent work in the Taconic quadrangle by Prindle and Knopf⁶ has led them to regard the Rowe schist as Lower Cambrian (?) and the equivalent of the western sequence of Lower Cambrian rocks. There is a sharp increase in degree of metamorphism eastward.

The thickness of the Rowe schist is difficult to determine owing to its metamorphosed character, but it is believed that it forms the greater part of the mass of the Taconic Range, as shown by the fact that it is exposed on the north slope of the Taconic Range at the bottom of the deep valley cut by the Hoosic River east of North Petersburg.

The Stockbridge limestone is the only thick individual formation of limestone that crops out in Rensselaer County. Because of its lower resistance to erosion it is generally exposed only in the floors of the valleys. It crops out in a long narrow belt which extends from North Hoosick to Hoosick Falls, where it turns southeast to join with a broad triangular area of limestone exposed between North Petersburg and Hoosick. Farther south it crops out in the vicinity of Petersburg, Berlin, and Stephentown, where it lies between the Rensselaer grit plateau and the Taconic Range (pl. 2).

One other area of limestone of importance is the long narrow belt of dolomitic limestone, having the same lithologic characteristics as the Stockbridge limestone, which crops out along the southwest border of the Rensselaer Plateau between Alps and West Lebanon in Columbia County. This limestone has been called by Ruedemann the Tackawasick limestone, but as it has nearly the same lithologic and hydrologic characteristics as the Stockbridge limestone it is here considered the equivalent of the Stockbridge as a source of ground water.

Where the contacts with adjacent rocks can be identified, the Stockbridge limestone is seen to directly underlie the Walloomsac slate of Ordovician age and overlie rocks of Lower Cambrian age. Fragmentary fossils have been found in several places in the Stockbridge limestone and these indicate that its age ranges from Lower Cambrian to Middle Ordovician, inclusively.

Lithologically, the Stockbridge is a massive dolomitic limestone, being generally finegrained in texture and ranging in color from a pure white to bluish gray. Some beds are pure dolomite. Veins and nodules of calcite and quartz are common. It has been metamorphosed to a considerable degree, and it contains numerous intersecting systems of joints and fault cracks which permit ready circulation of water. These fissures extend from the surface to depths of as much as 300 or 400 feet, and generally become narrower with depth. They have been locally widened near the surface by weathering and erosion, forming solution channels sometimes several inches in width. No large solution caverns, such as are typical of many other limestone terranes, have been found in the County. The Stockbridge has been severely deformed and fractured and it is impossible to determine its thickness with accuracy. It is probable that its thickness varies within wide limits, and that in places it thins out to extinction.

The Walloomsac slate underlies broad areas in the Hoosick-Berlin Valley and is everywhere separated from the adjacent Lower Cambrian shale and grit by thrust faults. It lies in an elongated belt east and southeast of the Rensselaer Plateau where it forms most of the Kinderhook Creek valley southward from Berlin to the Columbia County boundary. Another large area underlain by Walloomsac reaches from Eagle Bridge to Hoosick and extends eastward to the Vermont boundary. It appears to rest conformably on the uppermost blue phase of the Stockbridge limestone. The stratigraphic position of the Walloomsac and the fossils found in it, indicate an age that is probably equivalent to that of the upper Normanskill shale of the Hudson Valley.8

Prindle, L. M., and Knopf, E. B., Geology of the Taconic quadrangle: op. cit., p. 290. Ruedemann, Rudolf, Geology of the Capital District: op. cit., pp. 25, 115. Prindle, L. M., and Knopf, E. B., Geology of the Taconic quadrangle: op. cit., pp. 274, 275.

The Walloomsac slate consists of a thick series of dark slate and possibly represents a metamorphosed phase of the Normanskill shale. The slate is greenish in color and weathers dark gray or black. The Walloomsac is traversed by numerous joints trending in several directions and is, in addition, split into thin irregular layers by cleavage planes. When exposed at the surface, these cleavage planes often become definite cracks or openings into which water may descend. Where seen in quarries, the joints are numerous and break the Walloomsac into large polygonal blocks.

UNCONSOLIDATED ROCKS

After several periods of peneplanation, the Rensselaer County region was invaded during Pleistocene time by several extensive ice sheets which were thick enough to pass over the highest peaks of the Catskill and Adirondack Mountains. The ice sheets moved across the County from the north toward the south and southeast, as is indicated by the trend of grooves and scratch marks on exposed rock surfaces, and by the elongate trend of oval hills of glacial drift known as drumlins. These ice sheets plucked rock materials from the exposed surfaces in its path, transported them for varying distances, and then deposited them as a mantle of unconsolidated materials overlying the bedrock. Some of these materials were deposited directly by the ice, and some were sorted and deposited in layers by streams flowing from the ice. The deposits thus formed consist of (1) till, an unsorted mixture of fragments ranging in size from clay particles to cobbles; (2) stratified sand and gravel laid down around masses of stagnant ice or distributed by streams issuing from the melting ice; and (3) fine-grained silt and clay deposited in lakes created by the damming of glacial meltwaters.

There are two theories concerning the manner of disappearance of the ice sheets in eastern New York. One, the "normal-retreat" theory assumes that, while the ice front retreated northward by melting, a southward movement was maintained by the pressure of the thick ice sheet, as was the case in the Great Lakes region. As melting exceeded forward motion, long ridges of unsorted glacial debris, moraines, were built up parallel to the southern edge of the ice, and outwash aprons of stratified sand and gravel were deposited farther south by meltwater streams. Valleys of north-flowing streams were dammed by the ice, and the meltwater was impounded between the ice and the valley heads. Into the lakes thus formed

were deposited beds of sand, gravel, clay, and silt.

A second theory for the disappearance of the ice, as proposed by Cook⁹ and Flint¹⁰, is that the ice lost all power of movement, became stagnant, and dissipated in place. Long tongues and isolated masses of stagnant ice were thus left in existing valleys, and lakes were formed along the sides and over these lingering masses. Beds of clay and delta deposits were laid down in these marginal lakes and, after the complete disappearance of the ice, they existed as paired terraces with ice-contact slopes flanking the valleys. The subsequent melting of ice lobes, which were sheeted over with outwash material, created a "collapsed plain" or kettle and kame topography. The stagnation theory was advanced to explain the presence of such depositional features which are common in eastern New York, and the absence of continuous moraines and outwash features associated with the "normal retreat" of a glacier. Most of the glacial features in Rensselaer County suggest that the ice sheet dissipated by stagnation, and not by a gradual retreat.

Till

Till or ground moraine, locally termed "hardpan", constitutes the greater part of the unconsolidated materials in Rensselaer County. It consists of a heterogeneous mixture of rock fragments of all sizes from particles of clay and silt to cobbles and boulders. A few of the large boulders are composed of rock not native to Rensselaer County, but most of the fragments are derived from local rocks. As these consist largely of shale or slate, the till consists predominantly of clay. The thickness of the till is variable. Near the summit of the rock ridges and on the Rensselaer Plateau it is, in most places, less than 30 feet thick, and there are frequent exposures of bare rock. In the valleys and depressions, or where it occurs in the form of drumlins, it may be more than 100 feet thick. For example, wells Re 3 and Re 4 penetrate respectively 140 feet and 200 feet of hardpan without encountering rock. Till frequently occurs beneath other types of glacial deposits as evidenced by the thin layer of till sometimess encountered beneath the lacustrine clays in the Hudson River Valley.

Cook, John H., The disappearance of the last glacial ice sheet from eastern New York: New York State Mus. Bull. 251, pp. 158-176, Mar. 1924.
 Flint, R. F., The stagnation and dissipation of the last ice sheet: Geog. Rev., vol. 19, pp. 256-289, 1929.

Stratified sand and gravel

The stratified glacial materials, or outwash, were deposited by streams of meltwater issuing from the ice sheets. Such deposits show a fair degree of sorting and frequently show cross-bedding and evidence of scour and fill. The grains of material vary in size from silt to coarse gravels, and the beds vary greatly in thickness, sometimes lensing out in comparatively short distances. The beds of sand and gravel, being composed chiefly of reworked ice-laid material, consist for the most part of fragments of local rocks, mostly shale. As the sorting action of the waters removed most of the clay and silt particles these deposits are generally highly permeable. Stratified drift occurs (1) as terraces and kames or irregular gravel hillocks formed by deposition around and over blocks of stagnant ice, (2) as fill in valleys whose streams carried away glacial flood-waters, and (3) as delta deposits laid down by debrisladen streams entering a quiet body of water, such as a glacial lake.

Excellent examples of each of the three types of stratified drift deposits are found in Rensselaer County. The more important areas are discussed in greater detail in the section of the report concerning the occurrence of ground water in stratified deposits. A large kame and outwash area, about 4 miles long and 1 mile wide, is situated between Wynantskill and Burden Lake. These deposits were probably laid down as sheets of glacial debris over a detached body or tongue of ice that had stagnated in the area between the Greenbush hills and the Rensselaer Plateau. Subsequent melting of the buried ice formed the kettle and kame topography characteristic of this area. Excellent exposures of beds of stratified sand and gravel can be seen in road cuts and gravel pits in the vicinity of West Sand Lake. A broad terrace of stratified glacial materials, named by Woodworth the Schodack terrace¹¹, occurs southwest of East Greenbush and is thought to have been formed by deposition of gravelly materials between the rock wall of the valley and the margin of a lingering ice mass in the Hudson Valley region. Its contact with the ice tongue is well outlined by the slope of the land surface from the altitude of 300 feet to 360 feet. The broad deep depressions in the otherwise even terrace level are believed to be ice-block kettle holes formed by the burial and subsequent melting of detached masses of ice.

The sand and gravel deposits in the valley of Valatie Kill in the south-central part of Rensselaer County, and the terrace deposits bordering the Hoosic River Valley between Valley Falls and North Hoosick, were laid down as marginal valley fill by debris-laden waters issuing from the melting ice sheet. Other terrace deposits of limited extent occur in the smaller valleys throughout the County.

The broad expanse of fine gravel and coarse sand extending westward from Schaghticoke in the northwestern part of Rensselaer County are delta deposits built by the Hoosic River in the body of water that occupied the Hudson Valley in late Pleistocene time. These deposits cover an area of about 20 square miles.

Lacustrine deposits

Fine-grained lacustrine deposits are well exposed in the terraced slopes of the Hudson River Valley below an altitude of about 260 feet, and in a few small alluvial flats west and northwest of the Rensselaer Plateau escarpment. It is believed that these deposits were laid down in a large body of water formed from the meltwaters of a dwindling lobe of ice which still lingered in the Hudson Valley. This Pleistocene lake is commonly called glacial Lake Albany. The lower beds consist predominantly of clay, representing the fine-grained material or rock flour that was washed from the ice and deposited in horizontal layers on the floor of the ancient rock valley. The clays are laminated and have a bluish-gray color which grades upward into a yellowish color. They compose perhaps the lower 100 feet of the lacustrine deposits. These fine clays are overlain by about 150 feet of sand and clayey sand. The upper surface of the lacustrine deposits is characterized by several more or less flat terrace levels, and by deep transverse ravines that divide the terraces into segments.

Several other small Pleistocene lake beds are situated in Rensselaer County. Two of these are situated several miles to the east and north of Troy. They are conspicuous by their flatness, as contrasted with the irregular surface of the upland country surrounding them. It is believed these lake beds were deposited when north-flowing preglacial streams were dammed by remnants of the ice sheet and glacial debris. The northernmost of these

^{11.} Woodworth, J. B., Ancient Water Levels of the Champlain and Hudson Valleys: N. Y. State Mus. Bull. 84, pp. 122-123, 1905.

two tracts is now occupied by the waters of the Tomhannock Reservoir, a part of the public-water supply of the city of Troy. The southern tract is drained by Quacken Kill. Stoller¹² believes that a barrier of glacial material was deposited in the valley and that water was ponded north of this barrier. Only the upper part of the lacustrine deposits has been penetrated by wells. Logs of these indicate that the lake deposits consist of beds of sand, about 15 to 20 feet thick, underlain by layers of clay.

There is some evidence that a Pleistocene lake existed for a time in the Hoosic River Valley, between North Hoosick and North Petersburg. It is believed that the dam for this lake was created by stagnant ice in the vicinity of the junction of the Hoosick and Wallomsac Rivers, and that the altitude of the surface of the lake was about 550 feet above sea level. The terraces on both sides of the river south of Hoosick Falls are underlain by stratified clay and silt.

Recent alluvium

The larger streams in Rensselaer County, such as the Lower Hudson and the Hoosic and Little Hoosic Rivers, Kinderhook Creek, and Poesten Kill, and the lower courses of their tributaries are bordered by flood plains comprising a veneer of silt, clay, sand, and some gravel that were laid down by these streams in comparatively recent time. These deposits were derived from the disintegration of the bedrock and the reworking of the glacial materials, and have been spread out in flat tranverse plains or bottomlands adjacent to the parent streams. The coarser particles of the alluvium are, in general, rounded fragments of the rocks native to the region, namely, shale, slate, and grit. These deposits generally range in thickness from 10 to 50 feet and their areal extent is small.

Extensive fine-grained materials form a filling in the channel of the Hudson River from Troy southward to beyond the boundary between Rensselaer and Columbia Counties. These materials are believed to consist of fine detritus brought down by the river system above Troy and deposited in the Hudson River. These materials consist chiefly of clay and silt containing, locally, lenses of fine sand or gravel.

GROUND WATER

SOURCE

Ground water has been defined by Meinzer¹³ as "that part of the subsurface water which is in the zone of saturation", but it is popularly regarded by the layman as the water that is obtained from wells and springs. Although it is pumped or issues from the ground, its source lies in the atmosphere, and essentially all ground water is derived from rain and snow. In almost all parts of the County, the underground reservoirs are replenished directly from precipitation over the immediate area, but in some of the hilly areas there is considerable underground movement before the water is returned to the surface.

That the precipitation is sufficient to meet all demands is shown by the fact that an inch of rain will yield more than 17 million gallons of water per square mile. Thus, each inch of precipitation which falls on the land surface contributes about 11 billion gallons of water to Rensselaer County. Of this, part runs off directly in the streams, a part evaporates or is transpired by plants, and the remainder seeps into the ground and recharges the water table. Although the supply of ground water generally varies directly with the amount of precipitation, other factors also control the rate of recharge. If the temperature is very high, the rate of evaporation materially decreases the potential supply of ground water. If, on the other hand, the temperature is so low that the ground is frozen, an unusually high percentage of water, finding its descent blocked, runs off directly in the streams. During the growing season the demands of vegetation, both natural and cultivated, make heavy inroads into the ground-water supply.

OCCURRENCE

All rocks, regardless of density, contain some pore spaces. Only those pores which are large enough, however, can release water to springs and wells tapping the rock. The

Stoller, J. H., Glacial Geology of the Cohoes Quadrangle: N. Y. State Mus. Bull. 215-216, p. 16, 1918,
 Meinzer, O. E., The occurrence of ground water in the United States: U. S. Geol. Survey Water-Supply Paper 489, p. 38, 1923.

amount and size of the openings vary with the character of the rock, and the yields of wells are therefore directly related to the type of rock tapped. The percentage of total rock volume that is occupied by open spaces is a measure of the porosity of a rock. According to Meinzer¹⁴ the porosity of a sedimentary deposit depends chiefly on (1) the shape and arrangement of its contituent particles, (2) the degree of assortment of its particles, (3) the cementation and compaction to which it has been subjected since its deposition, (4) the removal of minerals through solution by percolating waters, and (5) the fracturing of the rock, resulting in joints and other openings.

Although the porosity of a rock indicates the total volume of pore space available for storing water, it is necessary to use a term, called specific yield, that indicates the amount of water that will drain out of a rock because of the action of gravity. The specific yield of a rock or soil, with respect to water, is the ratio, expressed as a percentage, of (1) the volume of water which, after being saturated, it will yield to gravity, to (2) its own volume. It is a measure of the water that is free to drain out of a material under natural conditions. The value for the specific yield of a rock or soil will be less than the value for porosity since capillary forces will prevent the draining by gravity, of all the interstices or pore spaces. In addition to specific yield, the term hydraulic permeability must be introduced to indicate the capacity of the rock or soil for transmitting water under pressure. This term, however, is useful primarily when dealing with uniform unconsolidated deposits, and should be used cautiously (if at all) when the aquifer is an indurated rock which transmits water only through fractures or solution channels. In general, the smaller the interstices of a material the lower will be its specific yield and hydraulic permeability. Thus, clay and silt, which ususally have higher porosities than sand or gravel, will yield considerably less water.

The water table is an irregular surface immediately below which all rocks are saturated with water. The source of this water is rainfall which percolates down from the surface. The water table is influenced by but does not exactly reproduce the configuration of the surface topography. Depth to the water table, below the land surface, varies seasonally and annually with variations in precipitation, runoff, withdrawals by wells, temperature, and other related factors.

Under normal water-table conditions water will rise in a well to a height corresponding to that of the water table. When a water-bearing bed is overlain by impermeable beds which serve to confine the water under pressure, an artesian system is created and water will rise in the well to a level other than that of the water table, and in some cases will flow out of the well.

Shale and slate

The shale and slate of Rensselaer County have a porosity of less than one percent and the only opening capable of transmitting water are the joints and fractures in the rock. The amount of water yielded by wells in these rocks depends chiefly upon the number and size of the water-bearing fractures intersected in drilling. Because of the erratic distribution and nature of the fractures in the shales of Rensselaer County, it is extremenly difficult to predict the success or failure of a well. It is often the case that of two wells sunk within 100 feet or so of each other in the same rock, one will yield an ample supply of water, and the other will yield only a fraction of that amount. One well may be sunk in a part of the rock in which the fractures are numerous and closely spaced or it may intersect a large open fracture. On the other hand, the second well may penetrate an area of widely spread fractures or it may intersect only very narrow fractures. However, it is very seldom that a well is drilled in shale without obtaining some water. Of 306 shale wells in Rensselaer County for which complete records are available only four, or less than two percent, are recorded as yielding no water. Fourteen wells, or less than five percent were reported as yielding less than ½ gallon per minute.

A study of the records of wells which tap shales in the County reveals that most of the failures are situated west of a line formed by the break from the low plateau of the Hudson River Valley to the Hudson plain. This line follows approximately the 300-foot contour and extends from Schaghticoke on the north to Kinderhook Lake on the south. The rocks in this locality are chiefly the Normanskill shale and the Snake Hill formation, and are overlain by a thick blanket of fine lacustrine deposits. These deposits evidently have a low

^{14.} Meinzer, O. E., The occurrence of ground water in the United States: op. cit., p. 3.

permeability and permit the percolation of only a small amount of water into the underlying rocks. Records for wells tapping rocks overlain by the lacustrine deposits indicate very low yields (table 8). For example, well Re 623, situated between Castleton-on-Hudson and Schodack Landing was drilled 232 feet below the land surface, or nearly 200 feet below the level of the bed of the Hudson River, without obtaining enough water to keep the drillings wet.

The well records in table 8 indicate the range in depth and yield of wells that tap shale and slate. The average depth of 328 wells, including overburden, is 127 feet. Depths range from 18 to 639 feet and the average penetration of bedrock is 88 feet. About 95 percent of the wells are less than 300 feet deep and 88 percent are less than 200 feet deep. The average yield of the 328 wells is 4.7 gallons per minute and ranges from 0 to 40 gallons per minute. Most of the records of yield are those reported by the driller, and are based on bailing tests made at the time the wells were drilled. About 92 percent of the wells yield less than 10 gallons per minute, and 73 percent less than 5 gallons per minute. Of the total number of wells, 219 or 60 percent, yield less than the average.

A summary of average depth and yield by specific formations shows very little difference between the various types of shale and slate in Rensselaer County. The average yield from the Walloomsac slate is somewhat more than 2 gallons per minute higher than the overall average, and that from the Snake Hill formation about 2 gallons per minute lower. This variation in yield can probably be explained by the difference in size of the openings or fractures in the two types of rock. The Snake Hill formation is a relatively weak rock, and, therefore, cannot be expected to maintain large open fractures, whereas the slates are hard and dense, and are thus capable of maintaining open joints and fractures.

The records show that there is a general increase in yield with increasing depths to about 300 feet. At depths greater than this there is little or no increase in yield as the number and size of the joints diminish with depth. If water is not found in a particular well within 300 feet of the surface the prospect of obtaining a supply at greater depths is poor. When drilling in shale the best sites for wells are in depressions, even minor ones, in the surface, as these generally indicate that the rock underlying them is weaker and hence more likely to be highly fractured and water-bearing than that forming the adjacent hills.

Graywacke

This rock is massive and extremely dense and hard, and has a tendency to fracture under pressure rather than to crumple or fold. Thus joints are numerous and well developed. Owing to the difficulties encountered in drilling this hard rock, only a few wells have been drilled into it. The average yield of 13 wells, known to penetrate the Rensselaer graywacke, is 5.1 gallons per minute, their average depth being 120 feet. They yield water of good quality. Before drilling into the graywacke, it is advisable to inspect the area to locate, if possible, one of the many layers of shale interbedded with the graywacke. These beds quite often stand nearly vertical and afford much easier drilling owing to their comparative softness. For example, well Re 347, situated in the graywacke area, is reported to have passed through 60 feet of green shale below about 60 feet of hardpan and boulders. This well is reported to yield 15 gallons per minute. All wells known to have penetrated the Rensselaer graywacke have yielded at least a small supply of water.

Schist

Owing to the ruggedness of the land surface in the areas underlain by the Rowe schist, there are few habitations. The steep slopes, thinly covered by till, give rise to many small springs and seeps which are utilized to a small degree for domestic and farm use. No wells are known to penetrate the schist, and little is known of its water-bearing properties. The Rowe schist is a relatively impervious rock, but it is broken by many joints and cleavage fractures, indicating hydrologic properties similar to shale and slate in Rensselaer County.

Limestone

The Stockbridge limestone is a hard compact rock, that has been subjected to considerable metamorphism and it contains very few voids. For this reason, circulation and storage of water are confined mainly to joints and fractures. Wells penetrating large fractures or solution channels can be expected to yield considerable water but will yield only small

amounts where the joints are narrow. Because of its limited area of outcrop and because of the availability of numerous small springs arising from glacial deposits in its outcrop area in the eastern part of the County, the Stockbridge limestone is little used as a source of water. Reliable records of yield are available for only 4 wells that penetrate the Stockbridge. They have an average yield of 18 gallons per minute, and range in yield from 4 to 30 gallons per minute. A fifth well which taps the Stockbridge near the Vermont boundary east of Hoosick, Re 202, is reported to yield 75 gallons per minute. This is believed to be exceptional and, therefore, has not been included in the average given above. The average depth of all 5 wells is about 200 feet. No large solution caverns, such as are typical of limestone terranes in other areas, have yet been encountered. The Stockbridge has the highest average yield of all the bedrock formations in Rensselaer County and is believed to be a potential source of moderate supplies of ground water.

Till

Till, in one form or another, although relatively impervious usually yields sufficient water to wells for general household and farm use. Ground water is usually pumped from the till by means of dug wells, which offer the advantage of a large infiltration area, a large storage capacity, and comparatively inexpensive construction cost. The water level in shallow wells of this type is usually at low stages in the summer, and many become dry during extended periods of drought. As a result, wells of this type are gradually being replaced by deeper drilled wells wherever the till is underlain by more permeable rocks. In some places, however, the underlying rocks are less permeable than the till and it is not possible to tap more productive rocks.

A few drilled wells in Rensselaer County obtain moderate supplies of water from lenses and layers of sand and gravel in the glacial till. In most cases, the water in these coarser interbeds is under artesian pressure. For example, wells Re 2 and Re 4 penetrate 76 and 200 feet of till, respectively, and are reported to give a continuous flow of water at the top of the well casing. Both wells are situated on the side of a steep hill, and are believed to have encountered one or more lenses of coarser material within the till. It is reported that the water level in well Re 2 will rise about 15 feet above the land surface. In addition, several drilled wells in Rensselaer are reported to obtain water from the base of the till at the contact with the underlying bedrock, and a few wells in the Hudson River Valley obtain water from a layer of till which lies below lacustrine clay. The average yield from 15 drilled wells which tap the till is about 10 gallons per minute. No records are available but most dug wells in till probably yield considerably less than this. Springs issue from steep banks of till throughout the County, but the flow from these is small and fluctuates with the seasons, usually drying up entirely in the summer. Many such springs issue from a contact of the till with bedrock or at the contact of a more clayey zone. A flow of about 45 gallons per minute was observed at one of the larger till springs, Re 2Sp, in May 1947.

Lacustrine deposits

Because of its very low permeability, clay is a poor water-bearing material, and, consequently, there are few records of wells ending in clay. Only one well, Re 308, is reported to yield water from clay. It is a large-diameter well used to supply boiler water for locomotives. According to the owner it yields 300 gallons per minute, but can be pumped dry in 12 hours of continuous pumping. Locally, some lenses of fine sand are included in deposits of lacustrine clay and in some cases, these, as with till, furnish small supplies of water. However, the impervious beds of clay confine the ground water in water-bearing beds beneath them, and often give rise to flowing wells. Several drilled wells in the Hudson River Valley obtain moderate supplies from layers of sand and gravel beneath lake clays.

Stratified sand and gravel

Owing to the abundance of coarse-grained particles and its well-sorted character, the beds of stratified sand and gravel are the most prolific aquifers in the County. Depositional conditions during Pleistocene time were varied and relatively complex. Because of this, the character and, consequently, the permeability of the stratified deposits differ considerably within relatively small distances, causing in some cases abrupt changes from coarse to fine materials. Data for wells ending in stratified deposits indicate an average yield of about 26 gallons per minute, the range in yield being from $1\frac{1}{2}$ to 190 gallons per minute. The

yield of only 7 of the 30 wells was grater than the average. In most cases, only small to moderate yields were sought and undoubtedly much greater yields could have been obtained from more adequately developed wells of larger diameter.

The coarser stratified glacial materials are the most important potential source of large supplies of ground water in Rensselaer County. Unfortunately, only a relatively small part of the County is underlain by such deposits. The more important deposits of coarse stratified materials are situated (1) in the Wynants Kill-Burden Lake kame and kettle area, (2) in the Schodack terrace, (3) in the Schaghticoke area, (4) in the Hoosic River lacustrine deposits east of North Hoosick, (5) in the deposits of glacial Lake Albany in the Hudson River Valley, and (6) in the Hudson River alluvium below Troy.

The kame and kettle area in the towns of Poestenkill and North Greenbush has an irregular polygonal shape with an area of approximately 8 square miles. It is bounded on the northwest by the town of Wynantskill, on the southwest by West Sandlake, on the southeast by Averill Park, and on the northeast by Moules Lake. The valley of the Wynants Kill between West Sandlake and Wynantskill forms its western boundary. An arm of this same area extends northward from Averill Park to Poestenkill. The surface topography is rough and uneven, and is easily recognizable by its numerous irregularly-shaped knobs, depressions, and small lakes. It is believed that a thin lobe of stagnant ice persisted in a preglacial depression long after the main part of the ice sheet had disappeared from the Hudson Valley region. Glacial till and other rock debris from the higher land to the west, south, and east were washed upon the lingering ice lobe, covering it with a layer of stratified sand and gravel. The ice subsequently melted from beneath this cover, creating a "collapsed plain". As the ice melted from beneath the cover of stratified debris, marginal lakes were created into which fine sands and clay were washed.

The present valley of the Wynants Kill from Wynantskill to West Sandlake is entrenched into what is probably the material deposited in the bed of a marginal lake. At well Re 438, 65 feet of clay and hardpan were penetrated before bedrock was encountered. The thickness of the outwash and delta deposits in the area is exceedingly variable, ranging from a few feet to over 120 feet. The thickest deposits appear to be located near the margins of the old buried ice mass. The thickest deposits so far penetrated are situated in the upper valley of the Wynants Kill, south and east of West Sandlake. For example, wells Re 433 and Re 434 each penetrated 120 feet of sand and gravel before reaching bedrock. And, wells Re 420 and Re 422 penetrated 115 feet and 74 feet of unconsolidated deposits, respectively, before reaching bedrock.

Most of the drilled wells in the Wynants Kill area pass through the beds of stratified sand and gravel and obtain water from the underlying bedrock, as only small supplies were sought. This has been done, not because of any difficulty in developing a supply in the stratified material, but because it has been determined that when only a small supply is required, the time of drilling and the cost of a well ended in bedrock are generally less than those for one screened in the stratified deposits. It is reported that the cost of a well screen and the time required to set it, and develop the surrounding material, are generally greater than the cost and time of drilling a well to bedrock.

The stratified glacial deposits are tapped by only a few wells in the Wynants Kill area. The largest development is at the Pawling Sanatorium near the village of Wynantskill, where three shallow driven wells are pumped at the average rate of about 20,000 gallons a day. The wells are 26 feet deep and have a maximum combined yield of about 80 gallons a minute. A log of the materials penetrated by one of the wells at the Sanatorium, well Re 151, is given in table 7. Well Re 318, 60 feet deep, also taps the stratified deposits. It is not equipped with a screen and draws water through the open end of the well casing and yields about 10 gallons a minute.

The stratified glacial materials in the Schodack terrace consist mainly of well-sorted beds of coarse clean sand and gravel. Lack of complete data make it difficult to determine the character and thickness of the terrace deposits. However, exposures in local gravel pits show coarse beds and lenses of cross-bedded sand and gravel. That the deposits are highly permeable is evidenced by the absence of standing water in most of the kettle holes that dot its surface. The log of the public-supply well at East Greenbush, Re 475, shows 10 feet of coarse sand below 60 feet of gravel. On the basis of this and other data, it is

estimated that the average thickness of the terrace deposits is about 100 feet, ranging from a feather edge at the inner margin at East Greenbush and Schodack Center to well over 100 feet near its center.

Although conclusive data are not available, it is believed that the deposits underlying the Schodack terrace are a potential source of considerable ground water, as the stratified beds are relatively thick and yield water freely. For example, the well of the East Greenbush Terrace Water Company, Re 475, yield water at the rate of 30 gallons per minute with a drawdown of only 5 feet. The diameter of this well is 8 inches and it is finished with only 10 feet of screen. Other wells indicate similar features and show that water may be developed at nearly all horizons in the terrace deposits. Many seepage springs issue from the edges of the terrace deposits. They are especially numerous along the western base of the terrace and are abundant at that place because bedrock lies at or just below the land surface, preventing further downward percolation. It is estimated that some of these springs flow as much as 80 gallons per minute. The Fred Lemka spring, Re 12Sp, for example, yields 50 gallons per minute (table 4). Springs of the seepage type also issue along the bases of the sloping sides of the deeper kettle holes in the terrace, and at the foot of the steep sides of the Moordener Kill Valley, where it crosses the terrace.

Judging from the abundance of springs, and the yield and specific capacity of the wells which tap the terrace deposits, it would appear that these deposits are a potential source of considerable ground water. In view of this, it is surprising that a large percentage of the wells drilled in the area have passed entirely through the stratified deposits and have been ended in bedrock, a much less satisfactory source of water. It is believed that large yields can be obtained from the terrace deposits if tapped by properly constructed and developed wells.

The beds of stratified sand and gravel lying just west of Schaghticoke have been deeply dissected by the Hoosic River. It has cut a channel through the old delta beds to bedrock and thus offers an excellent opportunity to examine the character of the Pleistocene deposits. In general, there is a layer of dark-gray till, about 40 feet thick, at the base of the section, just above bedrock. The till is overlain by about 100 feet of fine stratified material, chiefly fine clayey sand. In turn, this material is overlain by more than 200 feet of coarse sand and gravel. One mile below Schaghticoke there is a total thickness of about 260 feet of sediments overlying the bedrock in the gorge of the Hoosic River. However, wells Re 26 and Re 73, situated nearer to the head of the old delta, encountered rock at only 70 and 98 feet below land surface, respectively.

The structure of the stratified materials at the mouth of the Hoosic River does not appear to be favorable for the storing of large supplies of water. The thick deposit of fine sand and clay below the coarse surficial beds tends to limit downward percolation of ground water, causing it to discharge at many springs along the valley walls of the Hoosic River. Because of this, the water table lies at relatively great depths below the land surface. At well Re 73, for example, it is reported to be about 80 feet below land surface. Several drilled wells in the vicinity of Schaghticoke have passed through the entire thickness of the unconsolidated deposits without encountering any noticeable amount of water, and all drilled wells in the area obtain water from bedrock.

The unconsolidated materials in the valley of the Hoosic River between North Hoosick and the Massachusetts boundary are believed to consist essentially of fine-grained materials. Well records indicate bedrock is overlain in most places by only blue and white clay. Few data have been obtained that would indicate the range in thickness of these materials. However, well Re 95, near the side of the valley, penetrated 88 feet of white clay before reaching bedrock, and well Re 94, closer to the center of the present channel of the Hoosic River, penetrated 121 feet of blue clay underlain by 5 feet of gravel, in which it is ended. Other wells, such as well Re 203 in the village of Hoosick Falls and well Re 269 in the center of the present valley above North Petersburg, encountered somewhat similar conditions. Locally, however, there are excellent water-bearing sands and gravels interbedded with or lying above the clays. These coarse beds were probably laid down as outwash or as delta deposits of smaller tributary streams entering the glacial lake in which the clays were deposited. For example, the terrace along State Highway 22 between North Hoosick and Hoosick Falls is composed of such coarse deposits and exposures of coarse stratified gravels are visible in a gravel bank on the east side of the Hoosic River, about one mile

north of Hoosick Falls. Well Re 106 was drilled into this deposit and the log (table 7) shows 79 feet of sand, gravel and clay, underlying a bed of clay 103 feet thick. This well is reported to yield about 17 gallons per minute.

The municipal water supply for the village of Hoosick Falls is withdrawn from a bed of coarse gravel situated along the Hoosic River. Its source consists of four dug wells, 12 feet in diameter, having a maximum capacity of 1,300,000 gallons per day. A more complete description of this supply system is given under the section on Public Water Supplies in this report. Another deposit of coarse sand and gravel is situated in the vicinity of the village of Hoosick. Several wells in that area indicate favorable conditions. One of these, well Re 104, passed through 64 feet of unconsolidated material before penetrating bedrock. Another, well Re 103, a driven well 12 feet deep which taps the gravel, has a yield of 20 gallons per minute. On the basis of available records, it would appear that additional large supplies of water could be pumped from the more or less discontinuous beds of coarse water-bearing materials lying along the valley of the Hoosic River. In most cases, the Hoosic River flows over a part of each deposit. Thus, water pumped from wells would be replenished by inflow from the Hoosic River.

The silt and clay laid down in glacial Lake Albany deposits, because of their fine-grained character, are very poor water-bearing formations. Most of the wells in areas underlain by Lake Albany deposits obtain water from bedrock, and a high percentage of these yield less than 1 gallon per minute. It is believed that the thick blanket of lake clays limits the downward percolation of precipitation and most of that part of the precipitation not consumed by plants or dissipated by evaporation, is carried off by streams flowing in the deep transverse gullies that cut through the layers of clay. In addition, the drainage afforded by these deep ravines tends to keep the water table at a very low stage.

Nevertheless, several satisfactory domestic wells have been developed in coarser-grained layers immediately overlying the bedrock along the eastward margin of the lake deposits, particularly along State Highway 40 east of the City of Rensselaer. In this area, several wells, such as Re 150, Re 490, and Re 543, encountered thin layers of sand lying on bedrock and beneath relatively thick deposits of clay. Yields of more than 10 gallons a minute have been obtained from such wells but only after careful development.

Available well logs and records show that the channel filling of the Hudson River consists chiefly of clay and silt, locally interstratified with lenses of sand and gravel. The lenses of coarser material are potential sources of moderate supplies of ground water, but their character, extent, and thickness vary widely and must first be determined by the drilling of test wells. One well, Re 528, known to obtain water from interstratified coarse material, is at the plant of the Bayer Chemical Company situated one mile south of Rensselaer. This well is 37 feet deep and is finished with a screen set in an envelope of gravel. It is reported to yield 115 gallons per minute, with a drawdown of 22 feet after 96 hours of pumping, giving a specific capacity of 5.23 gallons per minute per foot of drawdown. A log of the material encountered in well Re 528 is given in table 7.

Recent alluvium

The Recent river alluvium in Rensselaer County consists chiefly of layers and lenses of fine sand and silt of limited extent, and thickness and, therefore, with the exception of the deposits in the inner valley of the Hudson River, is not an important potential source of ground water.

FLUCTUATIONS OF THE WATER TABLE

The water table represents the upper limit of the zone of saturation, below which the voids and other openings in all rocks are completely saturated with water under hydrostatic pressure. It is an undulating surface that generally follows in subdued fashion the rise and fall of the land surface, being closer to the land surface in the valleys than in the uplands. The water table does not remain static but fluctuates much like the water level of a surface reservoir. It rises when the amount of recharge to the ground-water reservoir exceeds discharge and declines when discharge from the ground-water reservoir exceeds the amount of recharge. The amount of rainfall or snowmelt that penetrates the soil and descends to the zone of saturation is the principal factor that controls the rise of the water table. Dis-

charge from wells, from seeps and springs, and through evaporation and transpiration are the principal factors that cause a water table to decline. The fluctuation of the water table can be readily observed in wells, and may furnish valuable information in connection with studies of the amount of ground water available, the relation of precipitation to the recharge of ground water reservoirs, the determination of whether a permanent and progressive decline of the water table is taking place, the effects of land drainage projects on the water table, and the effects of soil-erosion control methods on the water table. In Rensselaer County, the U. S. Geological Survey is obtaining periodic measurements of the fluctuation of the water table at an observation well, Re 660, situated about 3 miles east of Defreestville. Well Re 660 is a relatively shallow dug well of large diameter that taps Pleistocene till.

Observations of water level in this well were begun in April 1946. A hydrograph showing the fluctuation of the water level in well Re 660 is given in figure 3, along with a graph of the monthly precipitation at Albany, New York. Very little ground water is withdrawn in the vicinity of this well and the fluctuation of water level in it results chiefly from changes in the rate of precipitation, plant use, and natural discharge into nearby streams.

RECOVERY

Types of wells15.

Meinzer¹⁶ has defined a well as "an artificial excavation" that derives some fluid from the interstices of the rocks or soil that it penetrates, except that the term is not applied to ditches or tunnels that lead ground water to the surface by gravity.

Well construction is probably one of the oldest trades or arts known to man. The history of its development may be traced from the primitive activities of the Egyptians, 5,000 years ago, up through the developments and improvements introduced by early Chinese engineers to the early well-construction work performed in Europe and the United States. The majority of wells constructed in the United States, up to and for some years after the Civil War, were dug wells cased with brick or stone or any other material that would prevent the excavation from caving in. Settlement of the Middle West, however, created an early need for additional water supplies as the creeks and ponds that were first used by the pioneers became overtaxed. The drilled well thus came into common use as a relatively inexpensive means of obtaining water in a short length of time.

Wells are commonly classified by types according to the particular method of construction that is used. Thus five general types are recognized; namely, dug, bored, jetted, driven, and drilled. Each has particular advantages that make it more desirable than the others under certain local conditions. The type names themselves suggest the type of construction used to build the wells. The first four types of wells are usually put down to relatively shallow depths (less than 50 feet) and are often constructed with hand tools. The fifth type, covering drilled wells, is probably the most important type of well in use today.

Briefly, a dug well, as the name implies, is usually excavated with hand tools and lined with brick, stone, steel, wood cribbing, tile, or other suitable material. The diameter is seldom less than 3 feet and may be as great as 80 feet or more depending upon the yield that is desired and the rate at which the water-bearing strata will yield water.

A bored well is constructed with an earth auger, of either the hand or power operated type, and cased with standard well casing. It is used where speed of construction and economy of material are essential and where relatively small quantities of water are available at shallow depths in such unconsolidated formations as glacial till or alluvial valley deposits. The diameter of a bored well is not great, since it is limited by the diameter of the auger that can be used.

A jetted well is constructed where no rocks or boulders are present. It is particularly adapted to localities where water occurs in sand at shallow depths. It is a simple and dependable type of well that can be constructed rapidly with hand tools without recourse to bulky power tools. The basic method of construction involves "washing" a casing vertically into the ground until it has reached a point below the water table. The well pipe, with a

^{15.} In assembling data for this section frequent reference was made to War Department Technical Manual TM 5-297, Well Drilling,

Nov. 29, 1948.

16. Meinzer, O. E., Outline of Ground-Water Hydrology: Water Supply Paper 494, p. 60, 1923.

suitable screen attached, is then lowered into the casing and the casing is pulled leaving the well pipe and screen in the ground in position for pumping.

A driven well is adapted to localities where no rock is present and where the water-bearing material will yield at least moderate supplies of water. As the name suggests, it is constructed by driving a pointed screen called a "drive point", attached to sufficient length of pipe, into the water-bearing formation.

Drilled wells, as previously indicated, constitute the most important and most widely used type or class of wells. The two principal methods of drilling are the percussion tool, or spudding method, and the hydraulic rotary method. Each method has its own appropriate use under certain kinds of conditions. The percussion or cable-tool method involves construction of a hole by the percussion and cutting action of a club-like, chisel-edge drilling bit that is alternately raised and dropped. The formation through which the hole is being drilled is thus broken into small fragments that become churned and mixed into a sludge. At intervals the sludge is removed from the hole with either a bailer or a sand pump. In hard rock the hole usually is drilled without casing but in unconsolidated materials well casing is repeatedly driven down so that only a few feet of open drill hole extends below it.

The hydraulic-rotary method involves rotating suitable tools that cut, chip, and abrade the rock formations into small particles. Special drilling mud is pumped down the hollow rotating drill rod, out through the drill bit attached to the lower end of the pipe, and returned back up to the land surface through the annular space between the drill rod and the walls of the hole. As the mud returns to the land surface it not only carries along the drill cuttings from the hole but seals the formations that have been penetrated, thus preventing caving. Generally, the well casing is lowered and set into place in one continuous operation after the well has been drilled to the required depth.

In the foregoing paragraphs five basic types of wells have been briefly described. In recent years, however, two new types of wells have been developed that stem from one or more of the five basic types.

The gravel-wall or gravel-packed well is constructed after first drilling a hole by either the cable-tool or hydraulic-rotary method. It is most commonly constructed by using hydraulic-rotary tools and is designed for use where the water-bearing material is composed of fine-grained sand that would otherwise require exceedingly fine screen openings. Although several methods of construction are possible, they are all designed to produce an envelope of uniform-sized gravel around the well screen. This permits use of larger-sized screen openings and, consequently, the recovery of a larger amount of ground water from the formation. The gravel envelope, however, must be correctly sized and extensive enough to permit the building up, around the screen, of a graduated wall of assorted sand and gravel.

The multiple-horizontal collector type of well was developed and first used just prior to World War II. The emergency nature of the water-supply requirements for many war industries prompted the construction of this type of well, during the war years, at many sites where other types of wells would not have produced the desired yields. A multiple horizontal collector well is constructed by sinking a reinforced concrete shaft or caisson, having an inside diameter of about 15 feet, down through the water-bearing strata and sealing it at the bottom with a heavy reinforced concrete plug. Perforated screen pipes, commonly 8 inches in diameter, are then jacked out horizontally into selected portions of the water-bearing stratum or strata for distances as great as 300 feet. The number of these "radial well points" is based on the capacity of the water-bearing formation or the yield desired. Obviously this type of well is especially adapted for use at sites where the water-bearing formation consists of a thin layer (or thin layers) of sand or gravel that could only be tapped by a well creating an exceedingly low drawdown. This type of well is also adapted for use at sites adjacent to rivers or lakes which are underlain by materials which will permit infiltration of water to the radial collectors of the well.

The types of wells available and in use today, therefore, are sufficiently varied to insure successful recovery of ground water from almost any type of water-bearing formation that test-well drilling may uncover.

Well-drilling equipment and pumps.

Early development of equipment used in drilling water wells was stimulated, in the United States, primarily by experience gained in drilling to great depths for oil and gas. In recent years, however, development has been spurred by the rapidly expanding requirements of the water-supply industry itself. As the fund of general information concerning geology and the occurrence of ground water in the United States expanded, industries and municipalities probed deeper and deeper into the earth in search of satisfactory ground water supplies. In Texas, water-bearing sands have been successfully tapped at depths in excess of 4,500 feet, and on Long Island, New York, wells tap water-bearing strata at depths in excess of 1,000 feet.

In many parts of the United States a single water-bearing stratum at a given site will not furnish an adequate supply of water. This would immediately fix and perhaps drastically limit the extent to which the area could be developed were it not for the fact that by modern methods of exploratory drilling and subsequent precise placing of well casing and screens, the low individual yields of several water-bearing strata, located at different depths below the land surface, may be combined in a single well to permit more complete utilization of the total supply available at the site.

Screens in use today in sand or gravel wells represent radical departures from the early types of screens. Former designs were predicated upon the assumption that the size of individual openings should be small enough to exclude, or prevent from passing through, from 60 to 80 percent of the fine-grained materials in the water-bearing aquifer. This practice resulted in unreasonably low values for the amount of water that could be recovered from an aquifer, clearly indicating a highly inefficient type of screen. Furthermore, the efficiency often declined with use since the screen openings usually consisted merely of square openings in wire mesh or some convenient pattern of round holes in the steel casing. A single grain of sand was sufficient to clog either type of opening, thus reducing the effectiveness of the screen. Accordingly, design refinements were repeatedly made until the present-day types of screens were evolved. These screens generally have openings calculated to exclude only about 30 percent of the fine-grained materials in the aquifer. Instead of round or square holes the openings are sharp-edged slots, widening abruptly toward the inside. The advantages of this type of opening should be obvious. A single sand grain cannot clog a slot because it can make contact at only two points, and it is only necessary for a grain to pass the sharp outer edges of the slot in order to pump out with the water.

Construction of the gravel-walled type of well previously described has been made possible by the design of two general types of underreaming tools for enlarging the diameter of a drilled hole in the particular water-bearing stratum or strata selected for development. One type of tool consists primarily of a jetting device that removes the water-bearing formation by hydraulic means. The second type of tool is a mechanical reamer having blades that can be expanded to cut out the formation to the desired diameter.

Improved designs of fishing tools now assist the driller in overcoming some of the unavoidable accidents that occur in well drilling. Despite all precautions, tools are occasionally lost or jammed in a well, causing delays ranging from a few hours up to several weeks. Any devices that can be effectively employed to overcome these difficulties are therefore of considerable importance to the individual driller and to the entire water-well drilling industry

Perhaps one of the most significant developments in the well drilling industry was the motorization of drilling equipment, providing complete portability and permitting well-drilling operations to be conducted in areas that hitherto would have been either physically or economically inaccessible. As a corollary to the truck-mountings for the drill-rigs of today there has occurred a radical stream-lining of the rigs themselves with considerable elimination of unnecessary weight. Improved designs permit easier and more rapid setting up of equipment with better handling of tools and casing. Thus, the amount of footage drilled per machine-hour today is much greater than it has been in the past.

Accompanying the development of improved well-drilling supplies and equipment permitting the construction of wells in progressively deeper-lying aquifers, there has been a continual challenge to pump manufacturers to design new and more efficient types of pumps capable of bringing water to the land surface not only from shallow levels (25 feet or less) but also from levels as much as several hundred feet beyond the suction limit. Many

types and sizes of pumps are now available and space need not be taken here to describe them all. Several of the newest types, however, are worthy of consideration.

The ejector or jet pump,¹⁷ developed for domestic and farm use, will operate satisfactorily in relatively small diameter wells and under conditions where the water level is as much as 85 feet below the land surface. The pump is simple in construction and quiet in operation, and can be installed at some distance from the well. Its operation is similar to that of two pumps working together, one discharging into the other. With the pump primed and operating, water under high pressure is re-delivered to the jet, or ejector nozzle, located at the lower (intake) end of a vertical venturi tube set in the well near the lowest known or anticipated pumping water level. As the water at high velocity leaves the jet and passes through the venturi tube a partial vacuum is created around the nozzle. Water from the well flows into this space from the suction pipe, and is caught by the fastmoving stream. The mixture is carried into the expanded end of the venturi tube where the change from velocity head to pressure head is sufficient to lift the water to an elevation within reach of the vacuum created by the centrifugal pump at the top of the well. The centrifugal pump again develops a pressure head, delivering some of the water to a storage tank or a pneumatic pressure tank, and returning the rest to the jet to repeat the cycle.

The deep-well turbine type of pump is manufactured in a variety of models ranging in capacity from as low as 30 gallons per minute to as high as 7,000 gallons per minute. This type of pump cannot be efficiently used, however, on wells smaller than 4 inches in diameter. A typical installation consists of a vertical motor at ground level, driving a vertical shaft extending down into the well below the lowest known or anticipated pumping level. This shaft drives one or more impellers operating on the same principle as a centrifugal pump. Thus water from the well passes through a short length of suction pipe, enters the center or eye of the impeller, and is moved outward and upward by centrifugal force created by the rotation of the impeller within its housing. Because of the limitation on the size and operating speed of a single impeller, however, it is often necessary to add additional impellers to develop sufficient total force or pressure to raise the water to the desired height. Turbine pumps using more than one impeller are called "multi-stage" pumps.

For wells in which the water level is more than 150 feet below the land surface, the so-called "Hi-Lift" type of pump may be desirable. This pump is designed for relatively low capacities (30 to 60 gallons per minute) and requires a minimum well diameter of 4 inches. It operates on a principle that may be likened to the displacement of a piston in a cylinder of infinite length. A typical installation consists of a vertical motor at ground level, driving a vertical shaft extending down into the well, below the lowest pumping level. This shaft drives a rotor of helical form inside a stationary housing or "stator" having a double helical form. These helices in reality are worm-threads so that the single worm-thread of the rotor may be said to mesh with the double worm-thread of the stator. As the rotor turns, therefore, water is squeezed ahead of the rolling action of the rotor along the inner surface of the stator. A pump of this type can be used to pump water from depths as great as 400 feet below the land surface.

The prospective well owner of today, therefore, can be assured not only that his well will be constructed to take advantage of the maximum amount of recoverable ground water at the site, but also that some type of pump is available to fit the particular conditions at the site and to develop the safe yield of the well.

Local drilling techniques

Pertinent to the recovery of ground water for private, municipal, and industrial use are a study of the methods employed by local drillers, the status of development of drilling techniques in the light of improved types of wells and screens, and improvements in drilling and pumping equipment. Within 50 miles of the area covered by this report there are more than 30 drilling firms known to be currently engaged in well drilling operations. The services that they are equipped to perform range from construction of small-diameter driven or jetted wells to large-diameter (50-inch) wells, and the maximum depth to which any well can be drilled is about 3,000 feet. Supplementing these general services about 10 of these drillers are equipped to install well screens and can install gravel-packed wells. One of

^{17.} Garver, Harry L., Safe Water for the Farm: U. S. Department of Agriculture Farmer's Bull. No. 1978, September, 1946.

these drillers has coring equipment and core barrel equipment for collecting either samples of rocks or undisturbed soil samples.

A majority of all wells investigated in the area are drilled wells over 50 feet deep. Drilled wells in the area are of two general types depending upon whether they penetrate bedrock or terminate in unconsolidated materials blanketing the bedrock. Casing for a well of the former type is generally driven to rock, and an uncased hole is drilled into the rock to a depth sufficient to give the required yield of water. At some sites, however, the rock formation is so tight that the required yield of water cannot be obtained no matter how deep the well is drilled. Casing for a well terminating in an unconsolidated material may be left open where the water-bearing material consists of a coarse gravel. It may also be plugged and then either slotted or fitted with a properly designed screen where the water-bearing material consists of fine gravel or sand. Wells finished in rock, or "rock wells" as they are often popularly called, present no serious constructional difficulties to the average driller. He may drill with confidence, knowing that when he reaches bedrock he will have a solid foundation upon which to seat his casing and that the finish of the well will then be merely a matter of drilling sufficient depth of open hole in the rock. Occasionally, however, such a procedure will not result in a successful well. The joints and crevices in the bedrock may not be numerous enough or large enough to transmit the desired quantity of water to the well. With the casing firmly seated in the bedrock any possible increments to the well supply through drainage or seepage from the unconsolidated materials overlying the rock are effectively cut off. Well records indicate that often there is a thin layer of water-bearing gravel immediately overlying the rock. Thus the meager supplies of some rock wells might conceivably have been augmented by slotting or screening the casing just above the rock.

Occasionally, however, economic considerations influence or dictate the type of well that is to be drilled. For example, if the quantity and quality of the ground water in the bedrock are satisfactory it may be more economical to ignore highly productive water-bearing sands or gravels whose development would require a screened well, and drill a "rock well" requiring no finishing other than an open hole.

Wells finished in unconsolidated materials require considerably more skill and judgment on the part of the driller. Not only must the water-bearing sands and gravels present at the site be accurately located but the particular sand or gravel or combination thereof that will give the best yield must be selected. Sufficent sampling of the material in the selected aquifer must be done to permit determination of the proper-sized slots or screen openings, and considerable skill must be exercised in setting the screen at the proper level and sealing it off from undesirable waters from other levels.

Nearly all drillers in the area are equipped with cable-tool (percussion) well-drilling rigs. The few exceptions are drillers who operate light-weight portable-type rigs for installing small-diameter and relatively shallow driven or jetted wells. As noted previously, among the drillers equipped with cable-tool rigs only about 10 are equipped to install well screens and are prepared to construct gravel-packed wells. Most of the drilling in this area, therefore, has been limited either to "rock" wells or wells having an "open" finish in coarse gravel.

Methods of developing or improving yield

Development of a well has been defined¹⁸ as the "post-drilling treatment—to establish the maximum rate of usable water yield." Local conditions may often suggest methods of accomplishing this that differ from the several standard methods commonly used in screened wells drilled to tap sand or gravel aquifers, for example, the previously mentioned possibility of increasing the yield of some rock wells by slotting the casing just above bedrock level. Wells are "developed" primarily to increase the yield at a given drawdown or to reduce the drawdown as much as possible when pumping at the designed rate.

Methods commonly used to improve the yield of a well include *surging*, *over-pumping*, *backwashing*, and *acid treatment*. With the exception of the acid treatment method they are each designed to wash the fine sand, silt, and clay from the water-bearing formation immediately surrounding the well screen and assist in the building up of a natural gravel wall

^{18.} War Department Technical Manual TM 5-297, op. cit., p. 173.

around the screen. Thus, water will enter the well more freely and the rate of yield per foot of drawdown (specific capacity) will be increased.

Surging a well is probably one of the best methods of development under the average conditions encountered in sand and gravel aquifers. The method utilizes some form of tight-fitting plunger that is operated up and down inside the well casing from a point about 15 feet below the static water level. This action surges the water in the sand or gravel formation, loosening the finer sand or gravel grains and aiding in carrying them through the screen slots into the well where they are periodically removed either by bailing or by pumping. The well is alternately surged and bailed (or pumped) until little or no sand is pulled in through the screen. The surging method is particularly effective inasmuch as the forceful stirring of the water repeatedly disturbs the finer sand particles preventing them from bridging against each other to close the voids or openings between the larger grains or pebbles.

The over-pumped method of developing a well, ending in sand or gravel, involves pumping it at a rate that creates excessive drawdown. This rate may or may not exceed the rate at which the finished well is to be pumped depending upon the condition of the well at the time drilling was completed. The method is intended primarily to clear the well at or below the maximum rate at which it is capable of yielding water, and cannot be used effectively to build up any graded envelope of gravel around the screen. If the well clears satisfactorily, at a final rate considerably in excess of the desired rate of pumpage it is safe to assume the well will not fail in regular service. If it does not clear, or if the desired rate of pumpage cannot be reached, then some more effective means of development must be used. The method is better suited for use at sites where it is anticipated that not much sand will be pumped during the development process.

Developing a well by backwashing may be accomplished by a number of different methods, each one of which surges or agitates the water in the formation at the well, preventing "bridging" of the sand particles and removing a large portion of the finer material. If a pump is used, three different operating procedures are possible to secure the desired results. (1) The pump may be operated at its highest capacity, until maximum drawdown of the water level is obtained, wheneupon it is stopped, the water drains rapidly out of the pump column, and the well is allowed to regain its original static water level. The process is repeated until no further improvement in yield is noted. (2) The pump may be operated to obtain maximum drawdown and then stopped and started alternately at short intervals. Thus the water level in the well is held down and frequently agitated in the formation adjacent to the well by the backwash of water in the pump column. (3) The pump may be operated until water begins to discharge at the surface. The pump is then stopped and the water allowed to drain from the column. The process merely agitates the water in the formation and is repeated as many times as is necessary.

Backwashing may also be performed by pouring water into the well as rapidly as possible and then bailing vigorously with a sand pump or bailer. Where possible a more forceful method utilizes a water-tight hose or pipe connection to the top of the well permitting water from a standpipe or pressure main to be forced down in large volume and under high pressure for 2 to 5 minutes. The connection is then removed and the well bailed vigorously.

Acid treatment of a well provides a means for regaining some of the yield that has been lost owing to gradual incrustation of the well screen. All ground water is corrosive or incrusting to a certain degree depending on the amount and kinds of substances it contains in solution. Under pumping conditions, some of the salts normally held in solution in ground water may be precipitated on the well screen and on the gravel and sand grains adjacent to the screen owing to the sudden decrease in pressure as the water flows from the formation into the well. This is particularly apt to occur where the water contains carbonate or sulfate salts. If the screen is constructed of brass, bronze, or stainless steel these incrustations may be removed by introducing at the screen level a sufficient quantity of commercial hydrochloric acid or sulfuric acid to fill the screen and creates about a 10 to 25 percent solution. This is allowed to stand for 1 to 2 hours and the well is then gently surged for several minutes and allowed to stand again for 2 hours or more. Finally the well is bailed clean and pumped until all traces of the acid are removed. Depending upon the yield noted during this pumping period, the process may need to be repeated one or more times.

Other methods of improving or developing the yield of a well include dynamiting and combined surging and pumping through use of compressed air or surge blocks. "Dry ice"

may be used to stimulate surging or pressure effects through the bubbling action that occurs when it is submerged in the well. Local conditions will usually suggest, if not determine, the particular method of development that should prove most effective.

Recovery in Rensselaer County

Ground water in Rensselaer County is recovered chiefly from drilled and dug wells, driven wells and springs being used only to a small extent. Of the approximtely 700 records of wells and springs obtained for this report, about 80 percent are of drilled wells which tap bedrock or unconsolidated overburden. Drilled wells in bedrock predominate in Rensselaer County, as bedrock lies relatively close to the land surface over most of the County and much of the overburden does not readily yield water to wells. A large percentage of drilled wells are used to supply farms, which in recent years have required an increased amount of water chiefly for sanitary purposes. Dug wells comprise about 15 percent of the wells investigated. Only a few small-diameter driven wells were located. It should be recognized that the large proportion of deep drilled wells is partly influenced by the methods of field investigation. Records of deep drilled wells often constitute the principal source of information as to the geologic and ground-water conditions of an area, and a deliberate attempt is made to collect records for many drilled wells, whereas collection of records of dug wells is not stressed.

However, in the area covered by this report, the percentage of records for the several types of wells was influenced primarily by geologic conditions, and by the scope and type of industrial activity in the County.

Drilled wells in consolidated rocks: Records were obtained for about 475 wells drilled in bedrock, this being the type most successful in Rensselaer County, as the extent and thickness of gravel deposits is limited in many places. Drilling to bedrock also eliminates the necessity of setting screens or slotting the well casing. Most of the bedrock wells are 6 inches in diameter. All of the wells for which records are available were drilled by the cable-tool method, no rotary drilling having been done by drillers in Rensselaer County.

The average depth of 345 drilled wells in consolidated rocks is 128 feet, the range in depth being 18 to 639 feet. The average yield of these wells is about 5 gallons per minute but several have moderately large yields. For example, well Re 202 is reported to yield 75 gallons per minute, the largest yield for any of the rock wells that were investigated. This well ends in limestone and probably intersects sizeable solution fractures. Another similar well, Re 281, is reported to yield 40 gallons per minute. It has a diameter of 12 inches and a depth of 298 feet, and flows at the land surface at the rate of 3 gallons per minute (table 8). Most rock wells are reported to have encountered more than one set of water-bearing joints or fractures.

Drilled wells in unconsolidated deposits: Records for about 75 wells which end in outwash materials or sandy till were collected. These wells are used principally for industrial and domestic purposes and range in depth from 7 to 200 feet. They have an average yield of about 18 gallons per minute but several yield large supplies of water. Those having the largest yields are used for industrial purposes and are finished with screens, some being gravel-packed. However, wells ending in unconsolidated deposits are surprisingly few in number, the records revealing that most drilled wells that penetrate stratified sand and gravel are cased through the entire thickness of the overburden to tap the underlying rock. It is believed that the yield of many such wells could be increased considerably if they were screened in the unconsolidated deposits.

Efficient methods of increasing the intake area of such wells are given in the foregoing section on local drilling techniques. An example of the possibility of increasing the yield of wells in Rensselaer County is shown by the experience of the Fort Orange Paper Company, near Castleton-on-Hudson about $2\frac{1}{2}$ miles southwest of the Schodack terrace. The logs and construction details of two of their wells are shown in figure 4. At this plant a 12-inch hole (well 2) was first drilled through the unconsolidated deposits to bedrock and a casing was set to bedrock. An 8-inch hole in bedrock was then drilled to a depth of 97 feet below land surface. The yield of the rock well was tested and found to be about 25 gallons per minute. A 6-inch well screen was then set opposite the bed of water-bearing sand and gravel lying just above bedrock and a wall of gravel was introduced around the outside of the screen. After a period of development, which included agitation and pumping, the yield of the well was

Figure 4.—Logs and construction details of two wells of the Fort Orange Paper Company, near Castleton-on-Hudson, N. Y.

increased to 190 gallons a minute, with a drawdown of 15 feet. Another similar well (well 1), having a yield of 135 gallons per minute and a drawdown of 17 feet, was then constructed.

The well records for Rensselaer reveal that some of the drilled wells that tap the unconsolidated sediments receive water only through the open end of the well casing. Thus, the amount of water that can be pumped from the well is limited by the diameter of the open end of the well pipe. Operational difficulties are sometimes encountered with this type of well as heavy pumping, which results in a large drawdown, tends to draw some of the fine materials of the stratified deposits through the open end of the well and causes damage to the pump and other parts of the distribution system. Table 3 shows the approximate intake area for different sizes and types of well casings and screens used to finish drilled wells in unconsolidated deposits and shows the advantage to be derived by using a well screen.

Table 3.—Approximate area of intake openings of open-end casings, perforated casings, and well screens.

	Intake area		ngth of perforated casing end (square inches)	
Diameter	of open-end		Well	screen
of casing (inches)	casing (square inches)	Casing perforated with 4-inch holes on 3-inch centers	Intake area 10 percent of screen area	Intake area 20 percent of screen area
12	113	14	226	452
10	78	12	190	380
8	50	9	152	304
6	28	7	113	226
4	13	5	76	151

Dug wells: Dug wells are found chiefly in the upland rural areas and are used principally for domestic and farm supply. Most of the dug wells range from 2 to 4 feet in diameter and from 10 to 20 feet in depth. Because of the large infiltration area available, dug wells are able to extract small supplies from materials of low permeability. This factor, coupled with the large reservoir facilities offered, makes the dug well an adequate source for many homes and farms. The dug well, however, is susceptible to failure during lengthy dry periods when the water table declines below the bottom of shallow wells. In addition, this type of well generally has a casing constructed of loose stone or brick with innumerable openings that permit the inflow of polluted surface and shallow soil water. Construction of a satisfactory dug well, therefore, requires careful sealing against pollution from surface sources as well as adequate depth to assure an unfailing supply of water during drought periods.

Driven wells: Driven wells are not common in Rensselaer County owing to the prevalence of clay in the glacial materials, and those reported are situated in valley areas, particularly in the eastern part of the County, underlain by coarse gravel deposits where the water table is high. Most all of the driven wells in the County are 1½ inches in diameter. They range in depth from 10 to 35 feet and are usually equipped with a 3-foot long screen (drive point). Such wells can be installed only in soft permeable materials and generally cannot be driven through bouldery clay, layers of hardpan, or other indurated materials. The driven well can usually be pushed to greater depths than the dug well, and thus to a certain extent it reduces the opportunity for inflow of polluted surface waters and for failure during dry periods. In addition, the cost of a driven well is relatively small. The largest yield for such a well in Rensselaer County is that of well Re 103. This well, which is 12 feet deep and 1½ inches in diameter, yields 20 gallons per minute.

Springs: Small seepage springs are numerous in Rensselaer County and issue from openings in permeable material or from the contact of a permeable material with an underlying relatively impermeable material. Throughout the County many such springs are along the slopes of valleys and in hilly areas. The majority of the springs are of small magnitude, many ceasing to flow altogether during the dry season. The records for selected springs given in table 4 are considered representative of the largest springs in the County. Most of these are seepage springs with yields ranging from 10 to 50 gallons per minute. Several large springs of this type are in a linear belt along the western base of the Schodack terrace, approximately where the bedrock crops out at the land surface. There water moves downward through the permeable gravel and issues at the surface at the contact between the gravel and the bedrock. A belt of similar but smaller springs exists along the base of the Hoosic River delta. Here the water comes to the surface above a bed of impermeable clay or till. Most of the springs in the County are used for domestic and farm supply. However, two small public supplies obtain water from municipally-owned springs.

The largest spring in Rensselaer County, "Cold Spring", is reported to yield 1,000 gallons per minute. It is situated south of Pittstown at the base of the Rensselaer Plateau, and flows from beneath a large talus slope consisting of huge blocks of Rensselaer graywacke that have broken away from the edge of the plateau and rolled down to its base. "Cold Spring" drains a part of the plateau but the water, which forms a small brook, is not utilized.

UTILIZATION

Tabulation of the wells and springs in tables 4 and 8 shows that about 86 percent of those in use are being pumped for domestic or farm purposes. Of the remainder, 16 wells and 3 springs are utilized at industrial and commercial plants and 22 wells and 3 springs are used for public supply.

Domestic and Farm Supply

In areas not served by a public system, domestic water supplies throughout the County are obtained almost exclusively from wells and springs. The domestic uses of water include drinking, cooking, washing, and sewage disposal, and these needs are normally met by dug or drilled wells of low yield. Water for cattle and other farm animals is also obtained by the same method, and in many cases where the number of stock to be cared for is small one well may suffice for both the farm and the household. The average consumption from this type of well is generally less than 500 gallons per day.

Industrial supply

The quality of ground water withdrawn for industrial use in Rensselaer County is small and restricted mainly to pumpage by light industry such as creameries and garages. Most of the heavy industry in the County is situated in or near the larger towns and cities and utilizes municipal water supplies. Records were obtained for 6 creamery wells in Rensselaer County.

Municipal supply

Seven of the ten municipal water supplies in Rensselaer County are supplied wholly or in part by ground water, and five of these seven are supplied wholly by ground water.

Water District 1 of the Town of Berlin maintains a small supply for summer residents of the Tabortown area. Its source of supply consists of a shallow dug well situated about 15 feet from the west shore of Round Pond. Water is pumped from the well by a turbine pump having a capacity of 16 gallons per minute, and is elevated to a steel standpipe having a capacity of 11,000 gallons. The water is chlorinated and distributed by gravity. A population of about 200 is served.

The municipally-owned water supply for the town of Castleton-on-Hudson is obtained from several springs along the base of the Schodack terrace in the vicinity of Vlockie Kill. The water is impounded by an earthen-type reservoir having a capacity of 6 million gallons and is then delivered by gravity to the distribution system. A population of about 1,600 consumes an average of 150,000 gallons per day. The water is chlorinated during the summer.

Table 4.—Records of selected springs in Rensselaer County, New York.

Re 1Sp 10Z, 12.1N, 6.6E Lewis Watt 720 Hillside Poleistocene gravel 7. Parm Water Re 3Sp 10Z, 8.1N, 6.6E Lewis Watt 720 Hillside Rowe schist 10 Farm Water Re 3Sp 10Z, 4.1N, 10.8E FC. Paddock 600 Hillside Rowe schist 10 Farm Water Re 3Sp 10Z, 4.1N, 10.8E FCed Berhardt 1,460 Upland Renselear graywack 1,000 PWS Re 5Sp 10Z, 2.4N, 6.8W Samuel Kelly 770 Upland Renselear graywack 1,000 PWs Re 5Sp 10Z, 2.4N, 6.8W Samuel Kelly 770 Upland Renselear graywack 1,000 PW Re 5Sp 10Z, 2.4N, 6.8W Samuel Kelly 70 Upland Pleistocene till 3 6 Dom PW Re 5Sp 10Z, 2.4N, 6.6S 4.2E	Spring	I	Location	ព្រះ	Alt	Altitude above sea level (feet) ^b	re Topography	Geologic subdivision	Yield (gallons per minute)	Temperature (°F.)	Use	Remarks
10Z, 8.1N, 6.6E Lewls Watt 720 Hillside Pleistocene till 45 Farm 10Z, 4.1N, 10.8E F. C. Paddock 600 Hillside Rowe schist 10 PWS 10Z, 0.2N, 7.6E Fred Eberhardt 1.460 Upland Renselaer graywacke PWS 10Z, 8.NY, 6.5W Samuel Kelly 875 Valley Pleistocene till 8 50 Dom 10Z, 2.4N, 6.5W Samuel Kelly 875 Valley Pleistocene till 8 50 Dom 10X, 7.28, 7.0E Nelson Brookner 580 Hillside Pleistocene grayel 10 Ind 10Y, 7.6S, 6.2E G. E. Fellowes 400 Valley Pleistocene grayel 10 Ind 10Y, 18.1S, 2.2E Fract N. Lemka 260 Hillside Pleistocene deposits 10 PWS 10Y, 18.1S, 2.2E Freed N. Lemka 260 Valley Pleistocene deposits 10 PWS <t< th=""><th></th><th>10Z,</th><th>12.1N,</th><th>9.0E</th><th>Walloomsac Paper Company, Inc.</th><th>500</th><th>Valley</th><th>Pleistocene gravel</th><th>•</th><th>•</th><th>Dom</th><th>Spring flows into concrete collecting basin.</th></t<>		10Z,	12.1N,	9.0E	Walloomsac Paper Company, Inc.	500	Valley	Pleistocene gravel	•	•	Dom	Spring flows into concrete collecting basin.
10Z, 3.8X, 4.5E F. C. Paddock 600 Hillside Rowe schist 10 Farm 10Z, 3.8X, 4.5E Town of Petersburg 900 Upland Peistocene till 15 PWS 10Z, 3.8X, 4.5E Fred Eberhardt 1,460 Upland Rensselaer graywacke Dom 10Z, 3.8X, 6.3E "Cold Spring" 700 Upland Rensselaer graywacke 1,000 Dom 10Z, 2.4X, 5.8W Samuel Kelly 875 Valley Pleistocene till 8 50 Dom 10X, 7.2S, 7.0E Nelson Brookner 80 Hillside Pleistocene sand 10 PWS 10X, 7.2S, 1.6E Hampton Manor 260 Hillside Pleistocene gravel 10 PWS 10X, 18.3S, 2.2E Fred N. Lemka 260 Valley Pleistocene deposits 50 PWS 10X, 18.0S, 2.6E Castleton Water 280 Valley Pleistocene deposits PWS 10X, 14.8S,			8.1N,	6.6E	Lewis Watt	720	Hillside	Pleistocene till	45		Farm	Water piped to trough.
10Z, 8.3N, 4.5E Town of Petershurg 900 Upland Pleistocene till 15 Town of Petershurg 900 Upland Renselaer graywacke Dom 10Z, 8.7N, 0.3E "Cold Spring" 700 Upland Renselaer graywacke 1,000 Dom 10Z, 2.4N, 6.8W Samuel Kelly 875 Valley Pleistocene till 3 50 Dom 10Y, 7.3S, 7.0E Nelson Brookner 580 Hillside Pleistocene gravel 10 Dom 10Y, 6.5S, 2.8E William Platt 800 Valley Pleistocene gravel 10 PWS 10Y, 18.1S, 2.2E Fred N. Lemka 260 Hillside Pleistocene deposits 50 54 Dom 10Y, 18.4S, 2.4E A. Exert Best 80 Valley Pleistocene deposits PWS 10Y, 14.8S, 2.4E M. Krug 280 Valley Pleistocene deposits Dom 10Y, 18.3S, 2.8E Harry M. Green 280 Valley Pleistocene deposits	ı	10Z,	4.1N,	10.8E	F. C. Paddock	009	Hillside	Rowe schist	10	:	Farm	
10Z, 8.8N, 4.6E Fred Eberhardt 1.460 Upland Renselaer graywacke Dom 10Z, 2.4N, 6.8W 6.8W "Cold Spring" 700 Upland Renselaer graywacke 1,000 10Z, 2.4N, 6.8W 5.8W Samuel Kelly 875 Valley Pleistocene till 8 50 Dom 10Y, 7.6S, 6.2B Relinkes 400 Valley Pleistocene sand 50 Dom 10Y, 6.6S, 2.8E William Plakt 80 Valley Pleistocene gravel 10 PWS 10Y, 13.1S, 2.2B Fred N. Lemka 260 Valley Pleistocene deposits 50 PWS 10Y, 13.8S, 3.0E Everett Best 80 Valley Pleistocene deposits 10 Dom 10Y, 13.8S, 3.6E Gastleton Water 250 Valley Pleistocene deposits PWS 10Y, 14.8S, 2.4E M. Krug 280 Valley Pleistocene deposits Do			0.2N,	7.5E	Town of Petersburg		Upland	Pleistocene till	15	•	PWS	Several springs at this location.
10Z, 3.7X, 6.3E "Cold Spring" 700 Upland Rensselaer graywacke 1,000 10Z, 2.4N, 5.8W Samuel Kelly 875 Valley Pleistocene till 8 50 Dom 10Y, 7.2S, 7.0E Nelson Brookner 580 Hillside Pleistocene sand 50 Dom 10Y, 7.6S, 6.S, 2.8E William Platt 800 Valley Pleistocene gravel 10 Ind 10Y, 18.1S, 2.2E Fred N. Lemka 260 Hillside Pleistocene deposits 50 54 Dom 10Y, 18.1S, 2.2E Fred N. Lemka 260 Valley Pleistocene deposits 10 PWS 10Y, 18.1S, 2.2E Gompany Valley Pleistocene deposits Dom 10Y, 14.8S, 2.4E M. Krug Valley Pleistocene deposits PWS 10Y, 12.8S, 2.4E M. Krug Valley Pleistocene deposits Dom 10Y, 12.8S, 7.8E Harry M. Green 280 Valley		10Z,	3.8N,	4.5E		1,460	Upland	Rensselaer graywacke	:	:	Dom	
10Y, 2.4N, 6.8W Samuel Kelly 875 Valley Pleistocene till 8 50 Dom 10Y, 7.2S, 7.0S A.0E Nelson Brookner 580 Hillside Pleistocene sand 50 Dom 10Y, 6.6S, 2.8E G. E. Fellowes 400 Valley Pleistocene sand 10 Ind 10Y, 9.2S, 1.6E Hampton Manor 260 Hillside Pleistocene deposits 50 PWS 10Y, 13.1S, 2.2E Everett Best 300 Valley Pleistocene deposits 50 54 Dom 10Y, 13.6S, 3.0E Everett Best 300 Valley Pleistocene deposits PWS 10Y, 14.8S, 2.4E M. Krug Valley Pleistocene deposits Dom 10Y, 12.8S, 2.4E M. Krug Valley Pleistocene deposits Dom 10Y, 12.8S, 2.4E M. Krug Valley Pleistocene deposits Dom 10Y, 6.7S, 7.8E Sabad Springs'' 480 Valley Pleis			3.7N,	0.3E	"Cold Spring"	400	Upland	Rensselaer graywacke	1,000	:		Water forms stream at outlet.
10Y, 7.2S, 7.0E Nelson Brookner 580 Hillside Pleistocene sand 2 Dom 10Y, 7.6S, 6.2E G. E. Fellowes 400 Valley Pleistocene sand 50 Ind 10Y, 6.6S, 2.8E William Platt 300 Valley Pleistocene gravel 12 PWS 10Y, 13.1S, 2.2E Fred N. Lemka 260 Hillside Pleistocene deposits 50 54 Dom 10Y, 13.8S, 3.0E Everett Best 300 Valley Pleistocene deposits 10 PWS 10Y, 14.8S, 2.4E M. Krug 280 Valley Pleistocene deposits Dom 10Y, 12.8S, 2.4E M. Krug 280 Valley Pleistocene deposits Dom 10Y, 12.8S, 2.4E Marry M. Green 280 Valley Pleistocene deposits Dom 10Y, 6.7S, 7.8E "Sand Springs" 480 Valley Pleistocene deposits Dom 10Y, 6.7S, 7.8E "Sand Springs" <			2.4N,	5.8W	Samuel Kelly	875	Valley	Pleistocene till	60	50	Dom	
10Y, 7.6S, 6.2B G. E. Fellowes 400 Valley Pleistocene sand 50 Ind 10Y, 6.6S, 2.8B William Platt 800 Valley Pleistocene sand 10 Ind 10Y, 13.1S, 1.5E Hampton Manor 260 Hillside Pleistocene gravel 12 PWS 10Y, 13.1S, 13.1S, 13.1S, 13.1S, 13.2S 3.0E Everett Best 800 Valley Pleistocene deposits 10 Dom 10Y, 14.8S, 2.4E A. Krug 280 Valley Pleistocene deposits PWS 10Y, 12.8S, 2.4E Harry M. Green 280 Valley Pleistocene deposits Dom 10Y, 12.8S, 2.4E Harry M. Green 280 Valley Pleistocene deposits Dom 10Y, 12.8S, 2.4E Harry M. Green 280 Valley Pleistocene deposits Dom 10Y, 12.8S, 2.8E Harry M. Green 280 Valley Pleistocene deposits Dom 10Y, 6.7S, 7.3E <				7.0E	Nelson Brookner	580	Hillside	Pleistocene till	67	:	Dom	Spring supplies 9 homes.d
10Y, 6.6S, 2.8E William Platt 800 Valley Pleistocene sand 10 Ind 10Y, 13.1S, 1.5E Hampton Manor 260 Hillside Pleistocene gravel 12 PWS 10Y, 13.1S, 13.1			7.6S,	6.2E	屈	400	Valley	Pleistocene sand	50		Ind	(p)
10Y, 9.28, 1.6E Hampton Manor 260 Hillside Pleistocene gravel 12 PWS 10Y, 18.15, 2.2E Fred N. Lemka 260 Valley Pleistocene deposits 50 54 Dom 10Y, 18.8S, 3.0E Everett Best 300 Valley Pleistocene deposits 10 Dom 10Y, 14.8S, 2.4E M. Krug 280 Valley Pleistocene deposits Dom 10Y, 12.8S, 2.3E Harry M. Green 280 Valley Pleistocene deposits Dom 10Y, 6.7S, 7.3E "Sand Springs" 480 Valley Pleistocene deposits Ind	Re 10Sp		6.6S,	2.8E	William Platt	300	Valley	Pleistocene sand	10		Ind	(p)
10Y, 13.1S, 2.2E Fred N. Lemka 260 Valley Pleistocene deposits 50 54 Dom 10Y, 13.8S, 3.0E Everett Best 30 Valley Pleistocene deposits 10 Dom 10Y, 14.8S, 2.4E M. Krug 280 Valley Pleistocene deposits Dom 10Y, 12.8S, 2.3E Harry M. Green 280 Valley Pleistocene deposits Dom 10Y, 6.7S, 7.3E "Sand Springs" 480 Valley Pleistocene deposits 10 Ind	Re 11Sp	10Y,	9.2S,	1.5E	Hampton Manor	260	Hillside	Pleistocene gravel	12		PWS	(p)
10Y, 18.8S, 3.0E Everett Best 300 Valley Pleistocene deposits 10 Dom 10Y, 16.0S, 1.6E 2.6E Castleton Water Company 250 Valley Pleistocene deposits PWS 10Y, 14.8S, 2.4E M. Krug 280 Valley Pleistocene deposits Dom 10Y, 12.8S, 2.3E Harry M. Green 280 Valley Pleistocene deposits 40 Dom 10Y, 6.7S, 7.3E "Sand Springs" 480 Valley Pleistocene deposits 10 Ind	Re 12Sp	10Y, 1		2.2E	Fred N. Lemka	260	Valley	Pleistocene deposits	50	54	Dom	Spring has several openings.d
10Y, 16.0S, 2.6E Castleton Water Company 260 Valley Pleistocene deposits PWS 10Y, 14.8S, 2.4E M. Krug 280 Valley Pleistocene deposits Dom 10Y, 12.3S, 2.3E Harry M. Green 280 Valley Pleistocene deposits 40 Dom 10Y, 6.7S, 7.3E "Sand Springs" 480 Valley Pleistocene deposits 10 Ind	Re 13Sp	10Y,	13.8S,	3.0E	Everett Best	300	Valley	Pleistocene deposits	10	:	Dom	(4)
10Y, 14.8S, 2.4E M. Krug 280 Valley Pleistocene deposits 10Y, 12.3S, 2.3E Harry M. Green 280 Valley Pleistocene deposits 40 10Y, 6.7S, 7.3E "Sand Springs" 480 Valley Pleistocene deposits 10	Re 14Sp	10Y, 1		2.6E	Castleton Water Company	250	Valley	Pleistocene deposits	:	:	PWS	Several springs at this location.a
10Y, 12.3S, 2.3E Harry M. Green 280 Valley Pleistocene deposits 40 10Y, 6.7S, 7.3E "Sand Springs" 480 Valley Pleistocene deposits 10	Re 15Sp	10Y, 1	14.8S,	2.4E	M. Krug	280	Valley	Pleistocene deposits	:	:	Dom	
10Y, 6.7S, 7.3E "Sand Springs" 480 Valley Pleistocene deposits 10	Re 16Sp	10Y, 1		2.3E	Harry M. Green	280	Valley	Pleistocene deposits	40	:	Dom	
	Re 17Sp			7.3E	"Sand Springs"	480	Valley	Pleistocene deposits	10	:	Ind	

For explanation of location symbols see section, "Purpose and Scope of the Investigation."
 P Approximate altitude from topographic map.
 Dom, domestic; Ind, industrial; PWS, public water supply.
 For chemical analysis see Table 6.

The water supply for the village of East Greenbush is obtained partly from the City of Rensselaer which has extended its mains to the northern part of the village, and partly from a privately-owned corporation known as the Terrace Water Company. This company furnishes water to about 100 persons from a drilled well, Re 475, which taps gravel at a depth of 78 feet. This well delivers water at a rate of about 50 gallons per minute to two 1,500 gallon storage tanks. Average daily consumption is about 8,000 gallons. An analysis of the chemical content of water taken from this well is given in table 6.

Hoosick Falls, the third largest municipality in Rensselaer County, obtains its water from a group of large dug wells and an auxiliary infiltration gallery near the Hoosic River at the southern limits of the village. The dug wells are 12 feet in diameter and are cased with concrete pipe. They are interconnected and water is withdrawn by one pump. At present only three of the four wells are being operated. The infiltration gallery is located at a bend of the Hoosic River about 100 feet from its banks. It is 670 feet long, 12 feet deep, and terminates in a suction well which is pumped by 2 turbine pumps. The water is chlorinated at the pumping station, and is raised to a 470,000 gallon storage reservoir from which it flows by gravity to the distribution system. Average daily consumption is reported to be about one million gallons, of which about 50 percent is used by local industries.

The water supply for the village of Nassau is obtained from an impounding reservoir on a small stream about $1\frac{1}{2}$ miles east of the village. The water is pumped to an elevated standpipe having a capacity of 175,000 gallons and is distributed by gravity. Average consumption of the population of 670 is about 40,000 gallons per day. The village also maintains an auxiliary supply well situated in the valley of the Valatie Kill in the southern part of the town. A description of this drilled well, Re 537, is given in table 8, and a log of the materials it penetrated is in table 7. An analysis of the chemical content of water taken from this well is given in table 6.

Petersburg is supplied by several small upland seepage springs which discharge or are piped into a concrete reservoir situated one-half mile west of town. The capacity of the reservoir is 1,680,000 gallons and the water is distributed by gravity to about 58 homes. The average daily consumption is about 20,000 gallons. A drilled bedrock well located near the reservoir is maintained as an auxiliary supply. This well, Re 281, has a natural flow of about 3 gallons per minute. An analysis of the chemical content of a water sample taken from this well is given in table 6. Other data for the well are given in table 8.

Schaghticoke obtains its water supply from two dug wells of large diameter, and an auxiliary drilled well situated about 100 feet from the north shore of Electric Lake in the northeastern part of the village. The dug wells are 20 feet deep and are about 100 feet apart. They have a syphon connection and are pumped into a clearing basin and from there to a 75,000 gallon capacity elevated steel tank. The auxiliary drilled well, Re 24, has a natural flow of about 3 gallons per minute. The maximum daily consumption of the village is reported to be 50,000 gallons per day, with average daily consumption of 35,000 gallons. A description of this well is given in table 8, and an analysis of the water is given in table 6.

Three municipalities in the County are supplied entirely by surface water. They are Berlin, Rensselaer, and Troy. The village of Berlin, population 600, obtains it water from Kendall Pond on the Rensselaer Plateau about $1\frac{1}{2}$ miles west of the village. The water is piped by gravity to a 750,000-gallon earth-concrete storage reservoir near the village from which it is distributed by gravity. About 70 percent of the population is served by the municipal system. The maximum daily consumption is 75,000 gallons. An analysis of water taken from Kendall Pond is given in table 6.

The City of Rensselaer, the second largest city in the County, is supplied at present entirely by water pumped from the Hudson River. Water is withdrawn from the river through a 20-inch intake situated 3 feet below low water level. It is raised by low-lift pumps to sedimentation tanks from which it flows by gravity over sand filters and in to a clearing basin. It is then pumped to a concrete storage reservoir, having a capacity of 5,500,000 gallons, and is distributed by gravity. The average consumption is about 3 million gallons a day. The City of Rensselaer is seeking to develop a new water supply of a daily capacity of about 4 million gallons from nearby surface-or ground-water sources. An analysis of the water from the Hudson River at Rensselaer is given in table 6.

The City of Troy, the largest municipality in the County, obtains its water from several impounding reservoirs located in the uplands to the east. The reservoir system has a storage

capacity of nearly 14 billion gallons and includes the large Tomhannock Reservoir in Pittstown, the Brunswick and Vanderheyden Reservoirs in Brunswick, and the Dunham Reservoir in Grafton. The average daily consumption is about 25 million gallons, of which about 13 percent is used by local industries. Analyses of water taken from the Troy reservoirs are given in table 6.

QUALITY

Temperature

The temperature of the water used for cooling or air-conditioning purposes is of more importance than its chemical quality. Water with consistently low temperature is preferred and in this respect ground water is superior to surface water. The temperature of surface waters responds to the local atmospheric conditions and may range from 32° F. to more than 80° F. throughout the course of a year. The temperature of ground water, however, at depths of as much as 100 feet, generally remains within a few degrees of the mean annual air temperature of the region, regardless of the season. The ground-water temperature increases with depth at the rate of about 1°F. for each 100 feet. The mean annual air temperature at Troy during the period 1826 to 1930 was 49°F., whereas temperatures listed in table 8 for 18 wells indicate an average temperature of 51°F. These wells range from 14 to 320 feet in depth and most of them tap bedrock.

The temperature of water obtained from shallow wells may be expected to vary more throughout the year than that of water obtained from deeper wells. Temperatures of water in a shallow dug well, Re 660, are given in table 5.

Table 5.—Temperature of ground water in well Re 660, New York.

Date	Temperature of ground water (°F.)	Date	Temperature of ground water (°F.)
2/12/47	43.0	3/15/47	41.0
2/15/47	41.0	3/22/47	40.5
2/22/47	40.0	3/29/47	41.0
2/27/47	40.0	4 /9/47	41.0
3/ 6/47	41.0	7/26/47	52.0
3/ 9/47	41.0	7/30/47	51.0

Well Re 660 is 4 feet in diameter and was not pumped during the period covered by the temperature observations. Thus, the temperatures observed may not represent the true temperature of the ground water. However, it is believed they indicate in a general way the range of temperature of the ground water at shallow depths.

Chemical constituents in relation to use

The general chemical quality of the ground water in Rensselaer County is shown in table 6. Analyses are given for 65 samples collected by the U. S. Geological Survey and analyzed in the laboratories of the New York State Department of Health at Albany or of the U. S. Geological Survey at Washington, D. C. Other data for these wells are given in table 8.

Table 6.—Chemical analyses of natural waters from Rensselaer County, New York.

(Analyses by New York State Department of Health unless indicated otherwise.

Dissolved constituents given in parts per million)

well										Harc	Hardness (as CaCOs)	acos)	alka-	
spring De spring De number (f	Depth Depth (feet)	Geological subdivision of surface source	Date of collection	Dis- solved solids	Iron (Fe)	Manga- nese (Mn)	Bicar- bonate (HCOs)	Sulfate (SO4)	Chlo- ride (Cl)	Total	Car- bonate	Noncar- bonate	linity (as CaCOs)	Нd
Re 4 2	200	Pleistocene till	2/23/46	310	0.35	0.05	280	43	2.6	170	170	0	230	8.1
Re 24 1	154	Pleistocene deposits	2/26/46	227	1,	1.0	244	12	5.8	190	190	0	200	7.1
Re 30	35	Pleistocene deposits	3/1/46	114	ಣ	.25	00	11	2.0	62	62	0	74	7.7
Re 36 1	170	Schodack formation	4/26/47	453	.03	60.	191	100	35	200	157	43	157	7.5
Re 39	64	Schodack formation	2/28/46	205	.03	1.	177	14	8.4	150	145	ю	145	7.8
Re 68	25	Pleistocene deposits	3/5/46	505	1.0	.02	341	54	20	310	280	30	280	7.5
Re 91	29	Pleistocene deposits	2/26/46	130	1.5	1.	102	3.6	1.6	92	88	6	888	8.1
Re 94 1	126	Pleistocene deposits	3/9/46	225	1.0	.25	204	27	2:	172	170	2	170	7.6
Re 110 2	226	Stockbridge limestone	4/15/47	331	:03	.01	326	24	5.0	290	267	23	267	7.4
Re 113 2	224	Walloomsac slate	4/22/47	284	.03	.01	207	35	2.6	260	170	00	170	7.5
Re 146	93	Pleistocene gravel	3/13/46	149	уĊ	.25	150	8.5	œ	64	64	0	123	7.7
Re 149 1	112	Normanskill shale	3/14/46	200	1.0	.01	159	27	23	76	76	0	130	7.5
Re 175 1	174	Snake Hill formation	4/25/47	295	.03	.01	288	91	13	50	20	0	236	9.1
Re 178	170	Snake Hill formation	6/4/47	222	.1	.01	185	1.7	5.0	100	100	0	152	7.7
Re 198 2	221	Walloomsac slate	4/14/47	340	.05	4.	224	55	21	250	184	72	184	7.3
Re 203	86	Pleistocene deposits	3/22/48	413	2.5	ιŝ	224	40	40	220	184	38	184	7.7
Re 204ª	12	Pleistocene deposits	9/5/44	:	.03	:	96	:	6.0	06	62	11	42	6.8
Re 218 1	156	Schodack formation	4/25/47	252	.15	80.	116	30	1.0	228	95	133	95	7.5
Re 234	18	Pleistocene deposits	3/28/46	99	.1	.01	21	11	1,8	32	17	15	17	6.3
Re 279	48	Schodack formation	4/26/44	:	80.	:	29	:	တ္	32	24	00	24	6.9
Re 281 2	298	Schodack formation	8/23/40	:	.07	:	118	:	4.	84	84	0	97	7.9
Re 285bc	82	Rensselaer graywacke	9/5/47	134	88.	0.	118	16	2.2	100	97	co	97	7.5
Re 288	52	Rensselaer graywacke	4/26/47	138	.25	.01	87	15	1.6	84	7.1	13	7.1	6.5
Re 301 1	168	Nassau formation	4/17/47	313	.03	80.	210	11	37	230	172	92	172	7.4
Re 302	92	Nassau formation	3/7/46	158	.03	80.	120	21	4.0	88	88	0	86	7.5
Re 309	14	Pleistocene gravel	4/3/46	172	oj.	.01	16	16	0.6	86	75	23	75	6.7
Re 312 1	160	Nassau formation	12/4/46	:	.25	:	104	:	7.6	108	84	24	84	7.1
Re 328	18	Pleistocene gravel	10/24/45	:	4.	:	43	:	89	106	35	11	60	7.1
Re 334	12	Pleistocene gravel	4/8/46	53	.2	.01	15	6.5	1.2	34	12	22	12	6.8
Re 337	62	Walloomsac slate	4/80/47	105	ō.	.75	80	14	1.0	74	99	00	99	7.5
Re 347 1	120	Rensselaer graywacke	4/30/47	99	.2	.01	29	2.6	∞.	99	48	67	48	7.0
Re 352	7	Pleistocene gravel	4/11/46	104	.1	.01	43	16	8,8	09	35	25	35	6.8
Re 399	20	Orbedell framestic	7 /00 /47											

Table 6.—Chemical analyses of natural waters from Rensselaer County, New York. (Concluded)

(Analyses by New York State Department of Health unless indicated otherwise. Dissolved constituents given in parts per million)

Well										Hard	Hardness (as CaCOs)	aCOs)	Total	
or spring number	Depth (feet)	Geological subdivision of surface source	Date of collection	Dis- solved solids	Iron (Fe)	Manga- nese (Mn)	Bicar- bonate (HCOs)	Sulfate (SO4)	Chlo- ride (Cl)	Total	Car- bonate	Noncar- bonate	aika- linity (as CaCOs)	Hď
Re 426	62	Walloomsac slate	4/23/46	417	2.0	80.	279	69	2.2	30	30	0	229	9.3
Re 4334	340	Schodack formation	5/13/46	:	2.	:	180	-	5.0	48	48	0	148	7.5
Re 434	174	Schodack formation	4/20/46	165	.05	.03	140	20	1.2	84	84	0	115	7.8
Re 459	63	Pleistocene sand	6/20/46	497	1.	1.5	289	20	17	290	237	63	237	7.0
Re 475	98	Pleistocene gravel	6/21/46	:	.03	:	134	:	5.0	144	110	34	110	7.8
Re 481	102	Normanskill shale	5/18/46	535	2.0	2.	256	131	7.4	300	210	06	210	7.1
Re 496	65	Pleistocene till	5/31/46	359	1.	.01	226	46	20	176	176	0	185	7.0
Re 537	34	Pleistocene deposits	5/18/38	:	.03	:	30		2.4	50	25	25	25	9.9
Re 555	45	Schodack formation	3/6/47		1,	:	120	:	09	128	86	30	86	6.0
Re 579	116	Rensselaer graywacke	5/12/47	261	.03	80.	236	32	ο.	200	193	-	193	7.3
Re 592	85	Normanskill shale	3/15/46	238	1.5	1.0	183	13	13	03	80	0	150	7.3
Re 593	28	Pleistocene gravel	3/15/46	412	r.	.03	271	104	12	270	222	48	222	7.3
Re 599	156	Schodack formation	6/22/44		т.	:	117	:	16	104	96	88	96	7.7
Re 627	130	Schodack formation	6/5/47	153	.25	.02	83	21	3.2	94	89	26	89	7.1
Re 639	125	Schodack formation	6/5/47	197	.03	80*	155	30	3.6	104	104	0	127	7.8
Re 1Sp	:	Pleistocene till	3/7/46	118	.03	.01	61	25	5.8	74	20	24	20	6.7
Re 4Sp	:	Pleistocene till	3/9/46	45	2.	.02	24	8.8	4.	30	20	10	20	6.3
Re 8Sp	:	Pleistocene till	11/17/42	•	rċ	:	20	:	2.0	32	16	16	16	7.0
Re 9Sp	:	Pleistocene deposits	5/13/46	06	70.	.01	49	20	3.0	54	40	14	40	6.6
Re 10Sp	:	Pleistocene deposits	6/10/46	183	1.	.01	121	28	4.2	116	66	17	66	7.2
Re 11Sp	:	Pleistocene deposits	8/3/45	•	4.	:	216	:	8.8	200	177	23	177	7.7
Re 12Sp	:	Pleistocene deposits	6/10/46	145	67	.01	117	22	2.0	100	96	4	96	8.0
Re 13Sp	:	Pleistocene deposits	6/10/46	165	.03	.01	156	18	1.6	124	124	0	128	7.6
Re 14Sp	:	Pleistocene deposits	5/14/46	:	.03	:	95	:	3.2	82	78	4	78	9.7
	Babcocl	Babcock Lake, Grafton	8/8/44	:	80		7	:	1.8	22	9	16	9	7.1
	Hudson	Hudson River at Rensselaer	11/20/42	:	7.	:	54	:	5.0	48	44	4	44	7.3
	Hoosic	Hoosic River at Schaghticoke	7/18/24				104		8,8	94	85	6	982	:
	Round Pond,	Pond, Berlin	9/30/40	:	.04	:	34	:	9.	34	28	9	28	6.3
	Town c	Town of Berlin, Kendall Pond	4/20/47	:	4.	:	11	:	4.	14	6	ъ	6	7.1
	City of	of Troy, Grafton Reservooir	7/27/45	:	4.	:	4	:	4.2	12	က	6	က	6.8
	City of	City of Troy, Tomhannock Reservoir	ir 7/27/45	:	27.	:	27	:	2.0	28	22	9	22	6.8
	City of	City of Troy, Vanderheyden Reservoir	oir 7/27/45		4.	:	49	:	8.0	40	40	0	40	7.1
a Fluoric	Fluoride O OF D D M	M												

Fluoride, 0.05 P.P.M. Analysis by Quality of Water Branch, U. S. Geological Survey. Analysis by Quality of Calcium, 32 P.P.M.; Magnesium, 4.9 P.P.M.; Sodium and Potassium, 7.9 P.P.M.; Fluoride, 0.1 P.P.M.; Nitrate, 0.5 P.P.M. Analysis obtained from the Permutit Company, New York.

Dissolved solids: The dissolved solids are the residue left upon evaporation of a water sample. The residue may also contain a small quantity of organic material and a little water of crystallization. Water with less than 500 parts per million (one grain per U. S. gal. equals 17.118 p. p. m.) of dissolved solids is generally satisfactory for domestic use, except for the difficulties resulting from excessive hardness or iron content. Water with more than 1,000 parts per million is likely to contain enough of certain constituents to produce a noticeable taste or to make the water unsuitable in other respects. All the analyses of ground water in Rensselaer County show less than 1,000 parts per million of dissolved solids but two show more than 500 parts per million. Only five show less than 100 parts per million (table 6). Water obtained from unconsolidated deposits is generally somewhat lower in mineral content than that obtained from the consolidated deposits. Of the latter, the shale and slate generally yield water with the highest dissolved mineral content, and the Rensselaer graywacke, occupying the highlands to the east, yields water with the lowest dissolved mineral content.

Iron. (Fe): Iron is dissolved from many rock materials. If a water contains much more than 0.3 part per million of iron the excess may separate out when exposed to the air and settle as a reddish sediment. Iron in the water sometimes stains cooking utensils and bathroom fixtures and it is very troublesome to industries such as laundering, tanning, and paper manufacturing. Iron is found in noticeable amounts in the ground water of Rensselaer County, and nearly half of the samples analyzed show over 0.3 part per million of iron, with eight of these showing over 1.0 part per million (table 6). Wells in unconsolidated deposits generally yield water having a slightly higher iron content than do wells in consolidated rocks. The average iron content of 28 samples from wells tapping unconsolidated deposits is 0.40 part per million, whereas the average for 29 rock wells is 0.31 part per million. Waters in the Pleistocene till have the highest iron content, and those in the Rensselaer graywacke have the least.

Manganese (Mn): When present in quantities greatly exceeding 0.05 part per million, manganese causes gray to black discolorations on many of the materials it contacts. It also causes clogging deposits in pipes and is particularly troublesome in laundry and textile plants. Nineteen of the analyses showed over 0.05 part per million of manganese and three of these had over 1.0 part per million. The mean manganese content of the analyzed samples shown in table 6 is 0.17 part per million.

Chloride (Cl): Chloride is dissolved in small quantities from many rock materials and is one of the principal constituents in sea water. Sewage also may contain appreciable quantities of chloride, and a chloride content higher than normal for the region may be considered an indication of pollution. In areas such as Rensselaer County this is particularly true in the case of shallow wells because the chloride content normally increases with the depth of the well. The U. S. Public Health Service recommends 250 parts per million as a limit for chloride in potable water. No waters exceeding this limit have been reported in Rensselaer County and only one well yields water that has more than 100 parts per million of chloride. The average chloride content for the wells and springs shown in table 6 is 12 parts per million.

Sulfate (SO₄): Sulfate is dissolved in large quantities from gypsum and is formed from the oxidation of iron sulfides principally pyrite. Sulfate in small amounts has little effect on the general use of a water but magnesium sulfate and sodium sulfate may be present in sufficient quantity to give a bitter taste. Sulfate in a hard water may increase the cost of softening and will form a hard adhering scale in a steam boiler. The U. S. Public Health Service recommends 250 parts per million as the limit for sulfate in a potable water. None of the analyses for Rensselaer County exceeded this figure and the average sulfate content of waters from 38 wells shown in table 6 is 36 parts per million.

Hardness: Hardness of a water is most commonly recognized by the amount of soap required with the water to form a lather in washing. In addition to increasing the consumption of soap, the constituents that cause hardness, calcium and magnesium, are also the active agents in the formation of the greater part of all scale in steam boilers and in vessels in which water is heated or evaporated. Table 6 shows the total hardness as well as the carbonate and noncarbonate hardness of waters analyzed. Carbonate hardness, caused by the presence of calcium and magnesium bicarbonates (temporary hardness), can largely be removed by boiling the water. The noncarbonate hardness (permanent hardness), is due to

the presence of calcium and magnesium chlorides or sulfates which cannot be removed by boiling. The noncarbonate hardness generally forms a harder scale, but there is no difference between the two as far as consumption of soap is concerned. Water with a hardness of less than 50 parts per million is generally considered as soft, and softening treatment is rarely justified. Hardness between 50 and 150 parts per million does not seriously interfere with the use of water for most purposes but it does increase the consumption of soap. Accordingly, softening may be profitable for laundries or other industries that use large quantities of soap. Treatment for the prevention of scale is necessary for the successful operation of steam boilers using water with a hardness approaching 150 parts per million, Hardness in excess of 150 parts per million is noticeable to everyone, and where the hardness is 200 or 300 parts per million it is frequent practice to soften water for household use or to install cisterns to collect rain water. Where municipal water supplies are softened an attempt is generally made to reduce the hardness to about 60 parts per million. The additional improvement from further softening an entire public supply is not deemed worth the added cost.

The analyses for Rensselaer County show a wide range in total hardness, (table 6 showing a range from 30 to 310 parts per million), and 17 waters analyzed had a hardness of more than 150 parts per million. Only one shows more than 300 parts per million. The average total hardness for all the waters analyzed is 126 parts per million. In general, the consolidated deposits yield water that is harder than water from the unconsolidated deposits, but within each group there is a wide range according to locale and type of sediment involved.

Hydrogen-ion concentration (pH): The hydrogen-ion concentration of a water is expressed by the unit pH, and its importance lies in its indication of the corrosiveness of the water. The pH of a water is the negative exponent of the concentration of hydrogen-ions in grams per liter. Thus a low pH value means a high concentration of hydrogen-ions, or a high acidic value, and a high pH value indicates a low concentration of hydrogen-ions, or a low acidic value. A neutral water has a pH of 7.0. The waters analyzed from Rensselaer County show a range in pH from 6.0 to 9.3 and an average value of 7.6. The pH value should be determined immediately after the sample is collected because changes in the alkalinity of the water occur upon contact with the air. The analyses in table 6 were not made until several days after the samples were collected, and the pH reported may not be representative of the original waters as they came from the wells and springs.

SUMMARY OF GROUND WATER CONDITIONS

The primary source of ground water in Rensselaer County is the rain and snow that fall on the immediate area. There is no indication of any extensive subterranean flow of ground water into the County from adjacent areas. Ground water generally occurs throughout the County under water-table conditions. Flowing wells are not uncommon but are believed to be caused by local conditions. No extensive artesian horizons are known.

Almost without exception the consolidated rocks in the area are dense, compact, impervious rocks which yield water only from joints, bedding planes, or solution channels. Openings of this nature are difficult to anticipate and generally tend to pinch out with depth. Yields from rock wells, therefore, show a considerable range, but on the whole they are rather poor, and generally are sufficient only for domestic and general farm use. However, most rock wells are used for domestic and farm supplies, and no attempt was made in drilling them to develop the maximum yield of the rocks tapped. It appears certain, therefore, that deeper wells of larger diameter that are completely developed, would generally yield considerably more water than is indicated by the records given in table 8. The shales of the Hudson River Valley that are overlain by thick deposits of clay, generally have the smallest yield, whereas the Stockbridge limestone, which is traversed by large open joints in places enlarged by solution, generally has the greatest yield.

The unconsolidated glacial deposits constitute the most important potential source of ground water in the area. They range from unassorted till to well-sorted outwash deposits and consequently there is considerable range in yields. The till yields only small quantities of water to dug wells of large diameter and is tapped only for domestic purposes. The clay, which constitutes the finer outwash deposits, is practically impervious. The sand yields water readily to dug and driven wells. The coarser glacial deposits are the most prolific aquifers in

the County, but have been tapped by only a few wells. The quality of water obtained from the glacial deposits shows a considerable range, but on the average the water has a lower mineral content than does that obtained from rock aquifers. The unconsolidated deposits constitute the only major source from which future demands for large quantities of water can be satisfied. However, only a relatively small part of the County is underlain by deposits of this nature. These have been tapped by only a few wells, and because of this their extent and character are only partly known. It is believed, however, that large supplies can be developed from the coarser glacial deposits, particularly from those that lie in the valleys and are traversed by streams.

Ground water in Rensselaer County is recovered chiefly by means of wells. Some small springs of the gravity type are utilized primarily for domestic and farm purposes. Dug and driven wells are utilized mostly for domestic and farm purposes, whereas the drilled wells are used for the same purposes and also for industrial and public supplies. The individual industrial demand for ground water, however, is slight. Most industry is concentrated in urban areas, and consequently any large demand for water for industrial purposes has been met by the municipal supplies. The total pumpage for industrial use from privately owned wells and springs throughout the County is about 100,000 gallons per day. Seven of the ten public supplies in Rensselaer County are obtained from ground water, and the average daily consumption at these ground-water plants is about 1,300,000 gallons per day.

REFERENCES

- Cook, John H., The disappearance of the last glacial ice sheet from eastern New York: New York State Mus. Bull. 251 pp. 158-176, 1924.
- Cook, John H., The glacial geology of the Capital District: New York State Mus. Bull. 285, pp. 181-199, 1930.
- Cushing, H. P., and Ruedemann, R., Geology of Saratoga Springs and vicinity: New York State Mus. Bull. 169, Feb. 1914.
- Dale, T. N., The Rensselaer grit plateau in New York: U. S. Geol. Survey Ann. Rep't. 13, pt. 2, pp. 291-340, 1893.
- Dale, T. N., Structural details in the Green Mountain region and in eastern New York: U.S. Geol. Survey Ann. Rep't. 16, pt. 1, pp. 543-570, 1896.
- Dale, T. N., The slate belt of eastern New York and western Vermont: U. S. Geol. Survey Ann. Rep't. 19, pt. 3, pp. 153-300, 1899.
- Dale, T. N., Geology of the Hudson Valley between the Hoosic and the Kinderhook: U. S. Geol. Survey Bull. 242, 1904.
- Flint, R. F., The stagnation and dissipation of the last glacial ice sheet from eastern New York: New York State Mus. Bull. 251, Mar. 1924.
- Garver, H. L., Safe Water for the Farm: U. S. Dept. Agr. Farmers Bull., 1978, Sept. 1946.
- Goldring, Winifred, Geology of the Coxsackie quadrangle, New York: New York State Mus. Bull. 332, Feb. 1943.
- Latimer, W. J., Diebold, C. H., Secor, Wilbur, Mead, C. P., and Howard Montague, Jr., Soil survey of Rensselaer County, New York: U. S. Dept. Agr., Bur. Chemistry and Soils Ser., No. 15, Mar. 1937.
- Meinzer, O. E., Outline of ground-water hydrology: U. S. Geol. Survey Water Supply Paper 494, 1923.
- Prindle, L. M., and Knopf, E. B., Geology of the Taconic quadrangle: Amer. Jour. Sci., 5th ser, vol. 24, pp. 257-302, 1932.
- Ruedemann, R., Geology of the Capitol District: New York State Mus. Bull. 285, Dec. 1930.
- Stoller, J. H., Glacial geology of the Cohoes quadrangle: New York State Mus. Bull. 215-216, Nov.-Dec. 1918.
- Well drilling: War Dept. Tech. Manual TM 5-297, Nov. 29, 1943.
- Woodworth, J. B., Ancient water levels of the Champlain and Hudson Valleys: New York State Mus. Bull. 84, 1905.

Table 7.—Logs of selected wells in Rensselaer County, New York.

Re 17;	10Z, 9.2N, 5.9W; B. Whinnery, Schaghticoke; drilled by Francis Flynn in 1945; altitude about 370 feet above mean sea level. Sand Gray clay Shale	(feet) 40 37	Depth (feet) 40 77 90
Re 43;	10Z, 13.0N, 5.5E; Hood Milk Co., Eagle Bridge; drilled by J. A. Mc-Queen and Son in 1945; altitude about 390 feet above mean sea level. Sand and gravel Clay and gravel	(feet)	Depth (feet) 38 60
Re 75;	10Z, 13.3N, 6.8W; Frank Quackenbush, Schaghticoke; drilled by M. Sanders in 1945; altitude about 100 feet above mean sea level. Clay Hardpan Shale	Thickness (feet) 40 53 3	Depth (feet) 40 93 96
Re 94;	10Z, 8.0N, 7.3E; Fred Strait, Hoosick Falls; drilled by J. A. Mc-Queen and Son in 1945; altitude about 450 feet above mean sea level. Blue clay Gravel	(feet)	Depth (feet) 121 126
Re 95;	10Z, 7.6N, 10.5 E; Sanford Hewitt, Hoosick Falls; drilled by J. A. McQueen and Son in 1944; altitude about 460 feet above mean sea level. Top soil White clay Slate	(feet) 30 58	Depth (feet) 30 88 102
Re 106;	10Z, 10.9N, 7.7E; Howard B. Thompson, North Hoosick; drilled by Stewart Bros. in 1938; altitude about 510 feet above mean sea level. Sand	(feet) 15 103 6 42	Depth (feet) 15 118 124 166 197
Re 150;	11Z, 10.0N, 10.8W; J. Nelson Morford, Rensselaer; drilled by Hall and Co. in 1939; altitude about 240 feet above mean sea level. Yellow and blue clay Sand Shale, at	Thickness (feet) 55 2	Depth (feet) 55 57 57
Re 151;	11Z, 13.4N, 5.9W; Pawling Sanatorium, Wynantskill; driven wells; altitude about 500 feet above mean sea level. Top soil Gravel Clay Sand Shale	Thickness (feet) 2 30 45 3 12	Depth (feet) 2 32 77 80 92
Re 202;	10Z, 9.9N, 11.2E; Ralph Hall, Hoosick Falls; drilled by Olson in 1945; altitude about 640 feet above mean sea level. Yellow clay Limestone	Thickness (feet) 127 40	Depth (feet) 127 167

Re 337;	11Z, 3.7N, 6.2E; W. K. Hotch, Steventown; drilled by F. Korvetzki; altitude about 880 feet above mean sea level. Clay Hardpan Slate	Thickness (feet) 20 28 14	Depth (feet) 20 48 62
Re 396;	11Z, 10.0N, 7.5W; G. W. Briscoe, West Sandlake; drilled by R. Jensen; altitude about 430 feet above mean sea level. White and gray clay Shale	Thickness (feet) 58 92	Depth (feet) 58
Re 424;	11Z, 9.1N, 1.6W; H. G. Haskell, Sandlake; drilled by Stewart Bros. In 1939; altitude about 900 feet above mean sea level. Clay and till Rensselaer graywacke Red shale Gray sandstone Red shale Gray sandstone	(feet) 180 110 52 12 24	Depth (feet) 180 290 342 354 378 400
Re 459;	11Z, 2.2N, 12.7W; Ft. Orange Paper Co., Castleton; drilled by Hall and Co.; altitude about 20 feet above mean sea level. Clay Sand and fine gravel Shale	26	Depth (feet) 20 46 97
Re 475;	11Z, 6.3N, 10.6W; Terrace Water Co., East Greenbush; drilled by Wm. Shaver in 1937; altitude about 260 feet above mean sea level. Clay Gravel Coarse sand	(feet) 8 6 0	Depth (feet) 8 68 78
Re 491;	11Z, 7.3N, 11.4W; Corliss Realty Co., Rensselaer; drilled by Germantown Artesian Well Co. in 1927; altitude about 250 feet above mean sea level. Clay Sand Shale	(feet) 50 2	Depth (feet) 50 52 130
Re 527;	11Z, 0.4S, 0.8W; K. Light, Brainard; drilled by Germantown Artesian Well Co. in 1927; altitude about 560 feet above mean sea level. Clay Shale Graywacke	Thickness (feet)	Depth (feet) 28 40 70
Re 528.	Bayer Chemical Company, Rensselaer. Drilled by Kelley Well Co., in 1930. Altitude about 10 feet above mean sea level. Driller's log. Clay Sand Clay, at	Thickness (feet) 10 27	Depth (feet) 10 37 37
Re 529.	Huyck and Sons Mills, Rensselaer. Drilled by Germantown Artesian Well Co. in 1925. Altitude about 10 feet above sea level. Driller's log. Clay Gravel Shale, at	Thickness (feet) 36 9	Depth (feet) 36 45 45

Table 7.—Logs of selected wells in Rensselaer County, New York. (Concluded)

Re 531;	11Z, 2.5N, 12.2W; Louis W. Hoffman, Castleton; drilled by Hall and Co. in 1937; altitude about 150 feet above mean sea level. Clay Sand Shale	Thickness (feet) 100 24 86	Depth (feet) 100 124 210
Re 536;	11Z, 1.1N, 10.5W; Herman Dederick, So. Schodack; drilled by Hall and Co. in 1942; altitude about 260 feet above mean sea level. Clay Shale Limestone Shale	Thickness (feet) 3 19 41 38	Depth (feet) 3 22 63 101
Re 537;	11Z, 1.0N, 6.0W; Village of Nassau; drilled by Hall and Co. in 1938; altitude about 400 feet above mean sea level. Gravel Sand Clay	Thickness (feet) 18 9 7	Depth (feet) 18 27 34
Re 650;	11Z, 1.4S, 10.7W; Alonzo Park, Schodack Landing; drilled by Wm. Shaver in 1945; altitude about 230 feet above mean sea level. Yellow soil Blue clay Coarse gravel	(feet) 8	Depth (feet) 8 89 92

Table 8.—Records of selected wells in Rensselaer County, New York

Temper- ature (°F.) Use t Remarks	Dom	Dom Well flows.	Farm Well flows. Water has hydrogen suffide odor.	Dom Well flows 15 gallons per hour.	· · Farm	Dom	51 Dom	Dom	Dom	Dom Well flows 1 gallon per minute.	Dom	Dom	52 Farm Well reported to flow when drill- ed in 1940.	Farm	Dom	Dom (h)	Dom	Dom Water has hydrogen sulfide odor.	Dom	Farm	Farm	PWS Well flows,8	Com Water has hydrogen sulfide odor.	Dom	Dom	Dom (\$)	Dom	
Yield (gallons T per minute)	9		:	ro.	4	9	:	15	10	65	4	:	10	9	14	9	11/2	9	12	en	10	8	10	:	81/2	:	10	
Method of lift e	Suction	:	None	:	:	Force	Suction	Jet	Force	:		Force	Jet	Jet	Jet	:	Suction	Force	Force	Jet	:	Centri- fugal	Force	Centri- fugal	Suction	Suction	:	
Water level below land surface (feet) d	10	+20	+20	:	20	:	တ	:	20	:	:	10	12	35	35	22	:	:	28	20	02	:	30	:	13	:	17	
Geologic subdivision	Normanskill	Pleistocene	Pleistocene till	Pleistocene	Normanskill shale	Normanskill shale	Normanskill	Normanskill shale	Normanskill shale	Schodack formation	Normanskill shale	Schodack	Normanskill shale	Schodack formation	Pleistocene	Normanskill shale	Normanskill shale	Snake Hill formation	Schodack formation	Pleistocene till	Normanskill shale	Pleistocene	Normanskill shale	Normanskill shale	Rensselaer graywacke	Pleistocene gravel	Schodack	A CA Bernard
Depth to bedrock (feet)	80	:	:	:	21	99	30	18	06	130	145	16	20	40	:	77	40	100	61		909	:	02	0	23	:	20	
Diameter (inches)	9	9	9	9	œ	9	9	9	9	ဖွာ့	9	9	9	9	9	9	9	9	œ	9	9	8	9	9	9	11/2	9	
Depth (feet)	77	92	160	200	350	104	89	20	196	162	220	100	162	125	62	90	98	150	130	H	200	154	321	92	88	35	136	
Type of well	Drl	Drl	Drl	Drl	Drl	Drl	DrI	DrI	Drl	DrI	DrI	Drl	DrI	Drl	ΓĹ	Drl	Drl	Drl	Dri	DrI	Drl	Drl	Drl	DrI	DrI	Drv	Dri	
Altitude above sea level (feet) b	860	420	360	330	400	909	440	540	860	300	350	540	440	200	400	360	380	320	410	320	430	270	388	400	1,000	630	575	
A ab Owner	Vible	Margaret Carney	Frank J. Morgan	Sven Anderson	John Bates	E. C. Dusenberry	Brunswick School	Milton Barber	M. Berry	Joseph Tully	Howard Herrington	Mitchell Caswell	William Gage	William Dorr	James Simpson	Bert Whinnery	Laura Peterson	E. C. Sherman	Joseph Tully	Julia Malm	Elbert Reed	Town of Schaghticoke	Rensselaer Agricultural Society	Joseph Rodriguez	Chester Ellett	J. Yacevich	Edward Prout	
# LL	6.5W	6.4W	W9.9	6.5W	6.2W	6.8W	7.8W	7.0W	6.8W	W6.7	1.1W	2.9W	1.8W	2.2W	W.20	% 2.9W	5.4W	W6.9 W	7.2W	6.6W	7.0W	4.2W	4.7W	6.8W	W6.0	8.8W	5.1W	
Location*	Z, 6.3N,	, 6.0N,	Z, 5.9N,	c, 6.7N,	Z, 7.7N,	Z, 3.8N,	z, 1.6N,	z, 1.4N,	z, 2.1N,	z, 2.4N,	10Z, 12.0N,	10Z, 12.1N,	10Z, 11.9N,	10Z, 12.8N,	10Z, 11.2N,	z, 9.1N,	Z, 9.0N,	z, 8.0N,	Z, 3.4N,	Z, 7.2N,	Z, 4.2N,	10Z, 10.5N,	10Z, 10.8N,	Z, 5.1N,	Z, 1.2N,	Z, 0.1N,	Z, 0.9N,	
Well	Re 1 10Z,	Re 2 10Z,	Re 3 10Z,	Re 4 10Z,	Re 5 10Z,	Re 6 10Z,	Re 7 10Z,	Re 8 10Z,	Re 9 10Z,	Re 10 10Z,	Re 11 10Z	Re 12 10Z	Re 13 10Z	14	Re 16 10Z	Re 17 10Z,	Re 18 10Z,	Re 19 10Z,	Re 20 10Z,	Re 21 10Z,	Re 23 10Z,	Re 24 10Z	26	Re 27 10Z,	Re 28 10Z,	Re 30 10Z,	Re 32 10Z,	

Table 8.—Records of selected wells in Rensselaer County, New York (Continued)

Remarks			(8)		(8)		Well finished with 12 feet of 8- inch screen with size of open- ings ranging up to 1/4 inch. ¹ b							Water has hydrogen sulfide odor.		Water has hydrogen sulfide odor.		Well flows,			Water has hydrogen sulfide odor.	(8)			(h)		
Use f	Farm	Dom	Dom	Dom	Dom	Ind	Ind	Dom	Dom	Dom	Dom	Dom	Dom	Dom	Dom	None V	Dom	Farm \	Dom	Dom	Dom	Farm (Dom	Dom	Farm (Dom	Dom
Temper- ature (°F.)		:	:	:	:	51	46	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Yield (gallons 1 per minute)	9	9	2	9	8	20	09		%*	63	31/2	21/2	:	:	:	-	4		%	15	ေ	:	9	4	10	9	1/2
Method (of lift e m	Jet	Jet	:	Force	:	Suction	Suction	:	Jet	:	:	Jet	Jet	Force	Suction	None	Suction	Suction	Force	Force	:	Suction	Jet	Jet	Force	Jet	Suction
Water level below land Method surface of (feet) d lift e 1	7	9	80		16	6	14	17	4	:	12	:	67	15	:	:	70	:	100	40	45	:	25	80	32	18	_
W be Geologic subdivision	Schodack	Schodack	Schodack formation	Schodack formation	Schodack	Pleistocene gravel	Pleistocene gravel	Schodack formation	Schodack formation	Schodack formation	Schodack formation	Schodack formation	Snake Hill formation	Snake Hill formation	Snake Hill formation	Snake Hill formation	Snake Hill formation	Pleistocene gravel	Snake Hill formation	Normanskill shale	Snake Hill formation	Pleistocene gravel	Normanskill shale	Normanskill shale	Pleistocene gravel	Nassau formation	Schodack
Depth to bedrock (feet)	4	∞	37	14	14	:	:	17	14	20	30	32	10	22	20	162	136	:	100	0	18	:	75	86	:	70	32
Diameter (inches)	9	9	9	9	9	180	8	9	9	9	9	9	9	9	9	9	9	48	9	9	9	36	9	9	9	9	9
Depth (feet)	100	108	170	150	64	14	88	09	47	92	09	08	72	165	49	639	215	47	504	265	118	25	84	151	93	116	28
Type of well °	Drl	Drl	Drl	Drl	DrI	Dug	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Dug	Drl	Drl	Drl	Dug	Drl	Drl	Dri	Drl	Drl
Altitude above sea level (feet) b	700	610	260	260	360	360	y 390	380	410	360	370	430	09	80	40	220	210	200	220	430	10	300	540	390	100	555	280
A ab Owner (V Matthew Flatley			V H. V. Hayner	Edward C. Brownell								/ Robert McMurray		/ L. W. Millard					J George Kupiec	/ Harry Albro				Frank Quackenbush	Charles	John T. Smith
Location	10Z, 1.3N, 4.2W	1	10Z, 0.5N, 5.7W	10Z, 0.4N, 6.1W	10Z, 14.2N, 3.3E	1	l !				10.2N,	13.8N,	10Z, 9.5N, 9.0W	1	10Z, 5.8N, 8.5W	5.1N,	7.9N,	6.3N,	5.6N,	10Z, 8.5N, 5.9W	10Z, 10.7N, 9.3W				13.3N,	4.3N,	10Z, 3.9N, 2.6W
Well	34	35	36	37	33	42	43	44	45	46	48	49	20	52	22	26	28	09	61	63	65	89	71	73	75	82	Re 83 1

See footnotes at end of table.

Table 8.—Records of selected wells in Rensselaer County, New York (Continued)

Remarks						(8)	(g) (h)	(h)					Drawdown reported to be 77 feet after pumping at the rate of 5 gallons per minute for 5 hours. ^h			(8)			(8)				-				
Use t	Dom	Farm	Dom	Dom	Farm	-	Dom		Farm	Farm	Dom		Dom	Dom	Ind		Farm	Farm	Dom	Dom	pul	Dom	Farm	Дош	Dom	Dom	Dom
Temper- ature (°F.)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	-	:	:	:	:	920	:	:	:	:	20	:
Yield gallons per ninute)	4	7	က	4	9	:	26	7	ော	7	9	20	16	:	2	30	8	:	က	4	-	တ	က	11/2	4	∞	က
Method (of	Suction	:	Jet	Jet	Jet	Suction	Jet	Jet	Force	Jet	Force	Suction	Force	Suction	Jet	Jet	Jet	Suction	Force	Force	Force	Force	Force	Force	Force	Force	Suction
Water level below land Method (surface of (feet) diff on	15	10	7	14	:	17	20	20	13	4	23	9	23	10	9	83	65	:	:	75	∞	:	20	89	30	42	10
W be Geologic	Schodack	Schodack	Schodack	Schodack formation	Normanskill shale	Normanskill shale	Pleistocene gravel	Walloomsac slate	Walloomsac slate	Schodack formation	Walloomsac slate	Pleistocene gravel	Pleistocene gravel	Walloomsac slate	Walloomsac slate	Stockbridge limestone	Pleistocene gravel	Pleistocene till	Walloomsac slate	Schodack formation	Schodack formation	Schodack formation	Schodack formation	Nassau formation	Nassau formation	Nassau formation	Schodack
Depth to bedrock (feet)	6	96	9	7	21	24	:	88	30	20	32	:	197	10	80	91/2	:	:	40	108	∞	32	10	144	31	80	21
Diameter (inches)	9	9	9	9	9	9	9	9	9	9	9	11/2	œ	9	9	9	9	36	œ	9	8	9	9	9	9	9	9
Depth (feet)	131	210	20	92	85	67	126	102	177	70	312	12	197	118	200	226	94	9	224	240	205	133	175	197	120	320	75
Type of well c	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	D-F	Į.	Drv	ī-d	Drl	Drl	Drl	Drl	Dag	Drl	Drl	Drl	Dri	Drl	DrI	Drl	Drl	Drl
Altitude above sea level (feet) b	280	260	200	400	445	400	440	440	009	200	200	450	510	280	430	440	400	180	009	420	400	360	260	700	520	099	200
ab Owner (Howard Tate	Ernest Rowland	Fred W. Myer	Herbert Olsen	Bernice N. Ryan	Jesse Frisbie	Fred Strait	Sanford Hewitt	George A. Leonard	Steven Dumal	Episcopal Rectory	Charles Brown	Howard Thompson	Frank Somerville	White Flo-Matic	1	1	Thomas O'Malley	Harry McGrath	E. M. Duncan	Howard Winnie	Harry Bovee	Walt Wienger	Armand Renaud	First Presbyterian Church	1	George Krough
Location*	10Z, 4.4N, 1.9W	10Z, 8.8N, 3.2W	10Z, 3.3N, 4.5W	10Z, 4.8N, 1.5W	10Z, 3.9N, 4.9W	10Z, 11.4N, 0.8W	Z, 9.0N, 7.3E	10Z, 7.6N, 7.4E	10Z, 8.6N, 8.0E	10Z, 13.4N, 0.5E	10Z, 8.0N, 8.8E	10Z, 7.9N, 8.5E	10Z, 11.8N, 7.7E	10Z, 13.4N, 11.3E	10Z, 12.2N, 8.0E	10Z, 12.6N, 7.8E	10Z, 12.9N, 6.8E	Re 112 10Z, 11.5N, 8.7E	10Z, 12.7N, 8.1E	10Y, 1.0S, 7.7E	10Y, 1.5S, 7.4E	10Y, 1.4S, 7.5E	10Y, 1.5S, 8.8E	10Y, 2.4S, 9.9E	10Y, 1.1S, 9.7E	10Y, 1.4S, 9.9E	10Z, 2.7N, 3.1W
Well	Re 84 10	Re 87 10	Re 88 10	Re 89 10	90	91	Re 94 10Z,	Re 95 10	Re 98 10				Re 106 10	Re 107 10		Re 110 10	Re 111 10	Re 112 10	Re 113 10	Re 115 10	Re 119 10	Re 120 10			Re 129 10		Re 136 10

Table 8.—Records of selected wells in Rensselaer County, New York (Continued)

Remarks						Well flows 1 gallon per minute.					onsists of three similar wells connected to one discharge line,								iows,	lows 2 gallons per minute.					ater is turbid and has hydrogen sulfide odor 8	ater is turbid and has hydro-	ater is turbid and has hydro-
						Well fi			(g)	(h)	Consists of connected line.h								Well flows.	Well flows					Water	Water	Water
Use f	Farm	Farm	Dom	Dom	Dom	Dom	Dom	Farm	Ind	Dom	PWS	Dom	Dom	Ind	Ind	Dom	Farm	Dom	Dom	Dom	Farm	Farm	Dom	Dom	Dom	Dom	Farm
Temper- ature (°F.)	:	:	:	:	:	:	:	:	:	:	:	:	:	20	:	:	:	:	:	:	:	:	:	:	:	:	:
Yield (gallons per minute)	:	:	60	:	8	2	:	4	10	12	62	2	ıc	:	:	:	:	17	67	17	00	:	:	:	4	ra	27
	Force	Force	Jet	Suction	Force	Suction	:	Force	Force	Suction	Centri- fugal	Suction	Force	Suction	Bucket	Suction	Suction	:	None	Force	Suction	Suction	Suction	Suction	Jet	Jet	Force
Water level below land Method surface of (feet) ^d lift ^e	:	06	14	:	28	:	:	15	18	20	το ,	10	18	12	11/2	9	:	:	:	:	œ	10	12	13	18	10	30
Wa bel Geologic su subdivision (1	Schodack	Nassau formation	Schodack formation	Pleistocene	Nassau formation	Pleistocene gravel	Nassau formation	Schodack formation	Normanskill shale	Pleistocene gravel	Pleistocene gravel	Schodack formation	Schodack formation	Pleistocene gravel	Pleistocene till	Pleistocene	Pleistocene gravel	Schodack formation	Pleistocene gravel	Schodack	Normanskill shale	Recent gravel	Recent gravel	Recent gravel	Snake Hill formation	Snake Hill formation	Snake Hill formation
Depth to bedrock (feet)	:	88	30	:	80	:	117	45	20	:	:	2.2	20	:	:	:	:	7	:	94	35	:	:	:	23	12	20
Diameter l (inches)	9	9	9	11%	9	9	9	9	œ	00	67	9	9	9	36	48	48	9	9	9	9	36	11%	24	9	9	9
Depth (feet)	120	162	96	22	135	93	294	95	112	22	26	125	92	06	6	00	22	85	77	118	112	13	15	19	174	47	170
Type of well c	DrI	Drl	Drl	Drv	Drl	Drl	Drl	Drl	Drl	Drl	Drv	Drl	Drl	Drl	Dug	Dug	Dug	Drl	Drl	Drl	Drl	Dug	Drv	Dug	Drl	Drl	Drl
Altitude above sea level (feet) b	099	200	510	508	200	482	002	540	300	240	1 500	200	200	440	940	800	460	420	420	420	540	220	100	100	140	100	200
abo Owner (Milo Hayner	Frank Bulson	G. H. Carragan	George Lockrow	V. Hoffman	John Bubie	Everett Goyer	William Moody	Jordan Dairy	J. N. Morford	Pawling Sanatorium	Charles Herrick	Fitting Brothers	Wagan Dairy Company	Matthew Walukas	Edward J. Miller	Otto Knauer	Gilbert Yates	Clayton Stevens	Ruth Stevens	William Croll	Marvin Button	K. Weir	Charles Button	Joseph Delano	M. Stoliaroff	Andrew Chuba
	5.7W	2.8W	3.0W	2.3W	9.3E	9.5E	10.6E	8.6E	2.9E	2.1E	7.1E	8.0E	7.6E	6.7E	10.4E	10.8E	8.9E	2.7W	2.3W	2.2W	1.7W	6.8W	7.6W	7.4W	8.0W	8.7W	8.9W
Location*	1.3N,	1		1.5N,			_		6.2S,	7.4S,	4.0S,			3.0S,	5.9S, 10.4E		2.3S,	8.3N,	8.3N,	8.3N,	7.7N,	10.1N,	0.3N,	1	1 .	11.7N,	10.1N,
ĭ	10Z,	10Z,		10Z,	10Y,						- 1				10Y,	10Y,				10Z,	10Z,	10Z, 10.1N,	10Z, 10.3N,	10Z, 1	10Z, 12.1N,	10Z, 11.7N,	10Z, 10.1N,
Well	11		Re 140	Re 141							- 1			Re 156	Re 160					Re 168		Re 170	Re 172	Re 173 10Z, 10.7N,	4		Re 178

See footnotes at end of table.

Table 8.—Records of selected wells in Rensselaer County, New York (Continued)

Remarks													Consists of an infiltration gallery and used as an auxiliary public supply.														
Use !	Farm	Dom	Dom	Farm	Farm	Farm	Farm	Farm	Dom (g)	Farm	Farm (h)		PWS Con	None	Farm	PWS	None	Dom	Dom	Dom (g)	PWS	Farm	Dom	Dom	Dom	Farm	Farm
Temper- ature (°F.) U	48 F	D	. D	:	¥	: :	 E	 F	D	F	F	· Ind	<u>.</u> :	z :	 Fi	P	× :		D	D	F	<u>.</u>	D	 Q		E	:
Yield (gallons Te per ; minute) (9	4	:	81/2	10	L	:	1	9	21/2	75	30	000 ne	6	15	1	16	4	20	:	:	:	7	17	:	တ	ю
	Force	Suction	Suction	Force	Suction	Jet	Suction	Force	Force	Jet	Suction	Deep-well turbine	Deep- 1,000 well turbine	None	Suction	Suction	None	Force	Suction	Jet	Suction	Suction	Jet	Jet	Suction	Suction	Force
Water level below land Method surface of (feet) ^d lift ^e	:	12	10	20		40	15	17	9	11	9	28	:	:	:	16	:	1	31	:	:	29	7	9	:	14	27
W b Geologic subdivision	Normanskill shale	Schodack formation	Schodack formation	Schodack formation	Schodack formation	Schodack formation	Pleistocene gravel	Walloomsac slate	Walloomsac slate	Walloomsac slate	Stockbridge limestone	Pleistocene gravel	Pleistocene gravel	Normanskill shale	Schodack formation	Pleistocene till	Normanskill shale	Nassau formation	Pleistocene gravel	Schodack formation	Pleistocene till	Schodack formation	Normanskill shale	Normanskill shale	Pleistocene	Normanskill shale	Schodack formation
Depth to bedrock (feet)	29	20	∞	20	81	150	:	73	4	11	127	:	:	42	20	:	0	10	:	26	:	10	28	17	:	14	88
Depth to Diameter bedrock (inches) (feet)	9	9	9	9	9	9	36	8	9	9	9	œ	12	9	œ	œ	9	9	9	9	9	9	9	9	48	9	9
Depth (feet)	200	64	28	150	118	165	30	201	221	163	167	86	12	106	65	\$2	20	98	40	156	100	51	112	126	25	80	182
Type of well °	Drl	Drl	Drl	Drl	Drl	Drl	Dug	Dri	Drl	Drl	Drl	Drl	Dug	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Dug	Drl	Drl
Altitude above sea level (feet) b	n 580	009	989	540	450	440	400	980	006	830	650	410	420	100	100	009	100	620	460	520	200	780	430	420	280	009	540
A ab Owner	Sherman Herringt	W. Hoosick Baptist Church	Robert Abbott	Earl Sherman	J. Obermier	Paul Baker	J. T. Lohnes	Vincent LeBlanc	Douglas Bateholz	Ralph Rimkunas	Ralph Hall	Noble & Wood Machinery Co.	Hoosick Falls Water Company	Mrs. Edwin Hill	Leo Lutz	Hoosick School 10	Howard Hill	Keller & Kittell	Hans Hansen	William Sherman	Pittstown School 10	Gregory Wandzilak	Leo Schmidt	Joseph Schmidt	C. Abbott	Charles Bolander	Edward Cutler
Location*	10Z, 10.6N, 0.8W	10Z, 10.8N, 3.8E	Re 184 10Z, 10.5N, 3.9E	10Z, 11.3N, 3.3E	10Z, 12.8N, 2.2E	10Z, 13.3N, 3.5E	10Z, 10.2N, 2.3W	10Z, 10.3N, 10.2E	10Z, 10.6N, 10.7E	10Z, 11.3N, 10.9E	10Z, 9.9N, 11.2E	10Z, 10.6N, 7.4E	10Z, 9.9N, 7.5E	Re 205 10Z, 13.2N, 5.2E	10Z, 12.0N, 4.4E	10Z, 12.6N, 5.6E	10Z, 11.6N, 4.9E	10Z, 6.8N, 4.0E	10Z, 10.3N, 6.9E	10Z, 6.2N, 2.7W	10Z, 6.0N, 2.4W	10Z, 5.4N, 3.7W	10Z, 7.5N, 4.4W	10Z, 7.6N, 4.3W	10Z, 10.0N, 1.2E	10Z, 9.5N, 0.5E	10Z, 9.1N, 1.6E
Well	11	Re 183	Re 184	Re 185	Re 186	Re 187	Re 193	Re 197 1	Re 198 1	Re 201 1	Re 202 1	Re 203 1	Re 204	Re 205	Re 206 1		Re 209 1	Re 210 1	Re 212 1	Re 218	Re 219 1	Re 223 1	Re 225 1	Re 226 1	Re 228	Re 229	Re 230

See footnotes at end of table.

Table 8.—Records of selected wells in Rensselaer County, New York (Continued)

Locationa 8.1N 0.7E		Owner	above sea level (feet) b	Type of well c	Depth (feet)	Diameter bedrock (inches) (feet)	to bedrock (feet)	Geologic	below lan surface (feet) d		(gallons per minute)	Temper- ature (°F.)	Use t	Remarks
4 15		nen Agan	027	<u> </u>	98	9	9	Schodack formation	15	Suction	<u>-</u>	:	Dom	
Z.5 E		Nathan Cottrell	580	Drv	18	1%	:	Pleistocene gravel	15	Suction	:	:	Dom	(8)
2.9E	- 1	Charles Piritz	740	Drl	06	9	20	Schodack formation	20	Jet	10	:	Dom	
4.1E		Sidney Brownell	700	Drl	124	9	10	Schodack formation	:	Force	9	:	Dom	
0.2W		Pittstown School 6	620	Drl	124	9	45	Normanskill shale	:	Suction	:	:	PWS	
0.1W		Pittstown School 9		Drl	29	9	15	Normanskill shale	:	Suction	:	:	PWS	
4.0E		Clarence Eldred	006	Dug	24	48	:	Pleistocene till	17	Suction	:	:	Dom	
2.3E		Clarence Bulson	740	Dag	œ	36	8	Pleistocene till	:	Suction	:	:	Dom	
7.6E		M. Goodermote	1,120	Drl	150	9	7.0	Walloomsac	21	Force	4	:	Farm	
7.1E		J. Bonesteel	800	Drl	75	9	25	Walloomsac	8	Suction	1	:	Dom	
6.6E		John Sweeney	800	Drl	87	9	:	Pleistocene gravel	10	Suction	10	:	Dom	
5.3E		A. M. Smith	1,780	Drl	200	9	9	Rensselaer	36	Force	:	:	Dom	
3.1E		John Denew	170	Dug	12	86	:	Pleistocene	9	Pitcher	:	:	Dom	
4.7E		Lily A. Wolf	1,700	Drl	56	9	12	Rensselaer	:	:	:	:	Dom	
3.6E		K. B. Gordenier	1,660	Dug	10	36	:	Pleistocene	ro	Suction	:	:	Dom	
7.2E		A. C. Jones	1,120	Drl	128	9	20	Walloomsac	:	Force	:	:	Dom	
4.0E		Albert Teal	1,720	Dug	ы	36	:	Pleistocene gravel	:	Suction	:	:	Dom	
9.3E		Archie Rudd	520	Drl	100	9	:	Pleistocene gravel	14	Suction	:	:	Farm	
5.0N, 10.1E		Albert Kyer	200	Drl	109	8	:	Pleistocene gravel	20	Jet	:		Farm	
8.2E	- 1	T. M. Barber	200	Drl	98	9	:	Pleistocene gravel	10	Suction	:	:	Dom	
8.0E		H. J. Moses	725	Drl	48,	ေ	တ	Schodack formation	:	:	:	:	None	(8)
7.6E		Petersburg Water Company	940	DrI	298	12	100	Schodack	:	Deep-well	11 40	:	PWS	Well flows 3 gallons per min-
3.7E		Y. W. C. A.	1,580	Drl	220	9	15	Rensselaer	15	Force	172	:	PWS	2005
2.9E	- 1	C. F. Lyon	1,540	Drl	82	9	14	Rensselaer	15	Force	11/2	:	Dom	(8)
2.5E		Charles Elk en burgh	1,500	Įά	103	9	:	Pleistocene	:	:	:	:	Dom	
1.8E		Troy Boys Club	1,700	Drl	85	00	0	Rensselaer	:	Force	4	:	PWS	
1.9E		Grafton School 6	1,500	Drl	52	9	14	Rensselaer	15	Suction	65	:	PWS	(8)
3.1E		Reuben Lamphere	1,425	Drl	88	9		Plaistonana					4	

Table 8.—Records of selected wells in Rensselaer County, New York (Continued)

10Z, 1.4N, 1.8E Charles Rivers 1.400 10Z, 1.3N, 2.8E James Bowman 1,480 10Z, 3.1N, 6.3E May Brihahn 1,480 10Z, 6.0N, 0.7E Leo Tracy 560 10Z, 6.8N, 5.2E Edith North 900 10Z, 6.6N, 2.5E Joseph J. Sullivan 600 10Z, 6.7N, 2.2E Pittstown School 600 10Z, 5.2N, 0.8E I. Ivankantz 540 10Z, 5.2N, 6.4E Holard Main 1,240 10Z, 6.6N, 6.4E Arnold Kuebler 820 10Z, 6.4N, 6.4E George Eldred 800 10Z, 1.2N, 4.6E R. L. Johnson 1,460	0 Drl 0 Drl		(TENDERED)	(1777)) uoisivipqns	(leet)	u a m	minute)	(°F.)	Use r	Remarks
1.8N, 2.8E James Bowman 3.1N, 6.3E May Brihahn 6.0N, 0.7E Leo Tracy 6.8N, 5.2E Edith North 6.6N, 2.5E Joseph J. Sullivan 6.7N, 2.2E Pittstown School 1 5.2N, 0.8E I. Ivankantz 1.8N, 9.4E Holard Main 5.6N, 6.4E Arnold Kuebler 6.4N, 6.4E George Eldred 1.2N, 4.6E R. L. Johnson		18	36	:	Pleistocene till	:	Suction	:	:	Dom	
3.1N, 6.3E May Brihahn 6.0N, 0.7E Leo Tracy 6.8N, 5.2E Edith North 6.6N, 2.5E Joseph J. Sullivan 6.7N, 2.2E Pittstown School 1 5.2N, 0.8E I. Ivankantz 1.8N, 9.4E Holard Main 5.6N, 6.4E Arnold Kuebler 6.4N, 6.4E George Eldred 1.2N, 4.6E R. L. Johnson		72	9	62	Rensselaer graywacke	35	Suction	31/2	:	Dom	
6.0N, 0.7E Leo 'Iracy 6.8N, 5.2E Edith North 6.6N, 2.5E Joseph J. Sullivan 6.7N, 2.2E Pittstown School 1 5.2N, 0.8E I. Ivankantz 1.8N, 9.4E Holard Main 5.6N, 6.4E Arnold Kuebler 6.4N, 6.4E George Eldred 1.2N, 4.6E R. L. Johnson		105	9	30	Rensselaer graywacke	:	Suction	%	:	Dom	
6.8N, 5.2E Edith North 6.6N, 2.5E Joseph J. Sullivan 6.7N, 2.2E Pittstown School 1 5.2N, 0.8E I. Ivankantz 1.8N, 9.4E Holard Main 5.6N, 6.4E Arnold Kuebler 6.4N, 6.4E George Eldred 1.2N, 4.6E R. L. Johnson	0 Drl	103	9	47	Nassau formation	16	Suction .	9	:	Dom	
6.6N, 2.5E Joseph J. Sullivan 6.7N, 2.2E Pittstown School 1 5.2N, 0.8E I. Ivankantz 1.8N, 9.4E Holard Main 5.6N, 6.4E Arnold Kuebler 6.4N, 6.4E George Eldred 1.2N, 4.6E R. L. Johnson	0 Drl	106	9	60	Nassau formation	25	Force	20	:	Dom	
6.7N, 2.2E Pittstown School 1 5.2N, 0.8E I. Ivankantz 1.8N, 9.4E Holard Main 5.6N, 6.4E Arnold Kuebler 6.4N, 6.4E George Eldred 1.2N, 4.6E R. L. Johnson	0 Drl	168	9	9	Nassau formation	6	Jet	9	:		(8)
5.2N, 0.8E I. Ivankantz 1.8N, 9.4E Holard Main 5.6N, 6.4E Arnold Kuebler 6.4N, 6.4E George Eldred 1.2N, 4.6E R. L. Johnson	0 Drl	92	9	00	Nassau formation	∞	Suction	2	:	PWS	(8)
1.8N, 9.4E Holard Main 5.6N, 6.4E Arnold Kuebler 6.4N, 6.4E George Eldred 1.2N, 4.6E R. L. Johnson	0 Drl	122	9	30	Nassau formation		Suction	4	:	Farm	Well flows.
5.6N, 6.4E Arnold Kuebler 6.4N, 6.4E George Eldred 1.2N, 4.6E R. L. Johnson	0 Dug	32	36	:	Pleistocene till	24	Hand	:	:	Dom	
6.4N, 6.4E George Eldred 1.2N, 4.6E R. L. Johnson	0 Drl	98	9	30	Nassau formation	:	Force	7	:	Dom	Well flows 3 gallons per hour.
1.2N, 4.6E R. L. Johnson	0 Dug	30	98	:	Pleistocene till	7	Suction	:	:	Dom	
	0 Drl	80	9	10	Rensselaer graywacke	30	Suction	1/3		Dom	
10Z, 6.3N, 8.9E Boston and Maine 465 Railroad	5 Dug	18	120	:	Pleistocene gravel	15	Suction	300	:	Ind	
10Z, 5.2N, 8.7E Fred Brenenstuhl 470	0 Drv	14	11%	:	Pleistocene gravel	:	Suction	9	:	Dom	(8)
10Y, 5.8S, 11.8E N. Benderheim 1,200	nd 0	15	48	:	Pleistocene till	10	Suction	:	:	Dom	
10Y, 7.6S, 9.8E Ben Gauch 80	800 Drl	160	9	40	Nassau formation	20	:	4	:	Dom	(8)
10Y, 6.0S, 8.7E M. J. Mangan 560	0 Drl	82	9	0	Nassau formation	20	Force	80	:	Dom	
8.5S, 9.8E Faith Mills	0 Drl	81	9	10	Nassau formation	9	Jet.	31/2	:	Ind	
10Y, 8.0S, 10.1E Leon Smith 790	0 Drl	80	9	36	Nassau formation	00	Jet	80	:	Dom	
10Y, 7.9S, 10.6E Averill Park 770 Central School	0 Drl	09	ο¢	:	Pleistocene gravel	4	Suction	10	:	PWS	
10Y, 4.8S, 7.5E Charles Link 600	0 Drl	110	9	0	Schodack formation	:	Force	4	:	Dom	
10Y, 0.2S, 5.0E Wallace-Bryce 400 Beverage Co.	0 Drl	240	∞	40	Schodack formation	20	:	10	:	Ind	
10Y, 13.8S, 8.2E Imperial Pen 540 Company	0 Drl	275	9	35	Nassau formation	:	Force	œ	:	Ind	
10Z, 14.0S, 6.4E Sheffield Farms 870 Company	0 Dug	10	96	:	Pleistocene gravel	9	Suction	10	:	Ind	
10Z, 13.8S, 6.2E Taconic Valley 900 Grange	gnq 0	18	36	:	Pleistocene gravel	:	Suction	:	:	Dom	(8)
10Z, 10.9S, 6.8E A. F. Giles 1,160	0 Drl	157	9	116	Walloomsac slate	28	Suction	4	:	Dom	
10Z, 7.8S, 7.2E Arthur Mann 1.080		12	11%	:	Pleistocene gravel	80	Suction	31/2	:	Dom	(8)
10Z, 12.9S, 6.1E George Carpenter 1,100	0 Drl	62	9	:	Pleistocene gravel	·:	None	11/2	:	None	

Table 8.—Records of selected wells in Rensselaer County, New York (Continued)

rks						nes.										distance and the state of the s		10 gallons per min- finished with 6 feet screen.								nes.
Remarks		(g) (p)				Well flows at times				(8)		(8)						Well flows 10 gal ute. Well finishe of 5-inch screen.							b	Well flows at times
Use f	Dom	Dom	Farm	Dom	Farm	Dom	Dom	Dom	Dom	Dom	Dom	Farm	PWS	Dom	Dom	Dom	Dom	Farm	Dom	Dom	Dom	Dom	Dom	Dom	Farm	Dom
Temper- ature (°F.)	28	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:
Yield (gallons per minute)	:	-		:	10	7	:	:	15	15	16	17	11	4	18	13	60	40	:	:	:	2	4	:	:	20
	Suction	Suction	Suction	:	Suction	Jet	Suction	Suction	Force	Force	Force	Jet	Force	Force	Suction	Jet	Jet	Suction	Suction	Suction	Suction	:	Suction	Suction	Suction	Suction
Water level below land Method surface of (feet) d lift e	12	17	œ	16	13	:	:	15	15	30	21	20	:	46	28	10	35	:	:	00	20	40	18	œ	17	4
W be Geologic subdivision	Pleistocene till	Walloomsac slate	Pleistocene till	Pleistocene	Pleistocene gravel	Stockbridge limestone	Stockbrldge limestone	Pleistocene gravel	Rensselaer graywacke	Rensselaer graywacke	Pleistocene gravel	Pleistocene gravel	Rensselaer graywacke	Pleistocene gravel	Nassau formation	Nassau formation	Pleistocene gravel	Pleistocene gravel	Pleistocene till	Pleistocene till	Pleistocene gravel	Walloomsac slate	Pleistocene gravel	Pleistocene gravel	Pleistocene gravel	Walloomsac
Depth to bedrock (feet)	:	48	:	:	:	109	:	:	10	09	:	:	30	:	7	29	:	:	:	:	:	38	:	:	:	₹.
Depth to Diameter bedrock (inches) (feet)	36	9	36	36	9	80	9	36	œ	8	9	36	®	9	9	9	9	ဖ	36	36	11%	œ	11/4	1%	1%	9
Depth (feet)	15	62	16	22	48	200	165	18	165	120	48	7	190	105	76	120	132	92	25	30	20	156	19	10	17	149
Type of well °	Dug	Drl	Dug	Dug	Drl	Drl	Drl	Dug	Drl	Drl	DrI	Dag	Drl	Drl	Drl	Drl	Drl	Drl	Dug	Dug	Drv	Drl	Drv	Drv	Drv	Drl
Altitude above sea level (feet) b	1,460	920	1,580	1,760	920	920	1,000	1,100	1,460	1,420	088	860	066	800	160	860	860	780	1,040	1,770	1,100	880	800	700	800	800
A ab Owner	O. Egli	W. K. Hatch	John Haffay	W. H. Momrow	Harry Wylie	George Pohlmann	Delmar Ellis	H. F. Clark	Edwin Greely	Jesse F. Snow	M. Burdick	F. Smith	4-H Club Camp	C. D. Boughton	Edward Hall	Karl Reide	Arnold Reide	Leha Krasne	C. D. Strauss	Robert Goodermate 1,770	Wilson Jones	Morris Whitney	C. Williams	Wallace Griswold	Erwin Greene	James W. Wylle
e	1.1E	5.8E	1.8E	2.8E	7.2E	6.8E	7.9E	4.8E	3.9E	1.5E	5.8瓦	5.4E	0.2E	12,2E	12.2E	12.0E	12.0E	0.8E	2.0E	4.7E	8.5E	6.8E	6.4E	7.1E	7.4E	7.3E
Location ^a	7.18,	13.8S,	8.0S,	7.9S,	16.1S,	16.78,	14.5S,	12.8S,	12.7S,	12.1S,	14.0S,	14.5S,	11.2S,	10Y, 10.8S, 12.2E	10Y, 13.9S, 12.2E	10Y, 10.4S, 12.0E	10Y, 10.5S, 12.0E	16.4S,	15.4S,	6.4S,	2.98,	5.03,	3.5S,	1.2S,	1.3S.	0.58,
T	10Z,	10Z,	10Z,	10Z,	10Z,	10Z, 16.7S,	10Z, 14.5S,	10Z, 12.8S,	10Z, 12.7S,	10Z,	10Z, 14.0S,	10Z,	10Z,	10Y,	10Y,	10Y,	10Y,	10Z, 16.4S,	10Z, 15.4S,	10Z,	10Z,	10Z,	10Z,	10Z,	10Z,	10Z,
··Well number	Re 336	Re 337	Re 338		1	Re 341	Re 343	Re 345		Re 347				Re 355	Re 356	Re 357	Re 358	Re 359	Re 360	Re 363	Re 365	Re 367	Re 368	Re 370	Re 371	Re 372

See footnotes at end of table.

Table 8.—Records of selected wells in Rensselaer County, New York (Continued)

Remarks			Total hardness reported to be 95 parts per million; chloride 1.0 part per million.			6.		Well flows 8 gallons per minute.s												Total hardness reported to be 220 parts per million.			Drawdown reported 73 feet after pumping at the rate of 10 gallons per minute for 7 hours.			
Use f	None	u.		Dom	Farm	ä	PWS		Farm	(h) m	Farm	Farm	E	ā	m	PWS	æ	E E	E	PWS To	Farm	m	Q		m (g)	ë
	ž	Dom	Dom	Ď	Fa	Dom	P	Dom	Fa	Dom	Fa	F.	Dom	Dom	Dom	PV	Dom	Dom	Dom	P	Fa	Dom	Dom	Dom	Dom	Dom
Temper- ature (°F.)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Yield (gallons per minute)	:	က	4	11/2	œ	:	:	13	ಣ	-	22	2	20	-	65	4	-	2	00	ಚಾ	4	4	10	ro.	4	9
Method of lift e	None	Force	Force	Force	Suction	Suction	Force	Suction	Suction	Suction	Suction	Force	Jet	Jet	Force	Force	Suction	Jet	Jet	Force	Force	Jet	Force	Suction	Force	Suction
Water level below land surface (feet) d	:	=	:	15	20	:	:	:	:	17	2	7	4	14	28	10	20	20	45	12	:	37	37	18	9	12
V Geologic subdivision	Pleistocene	Walloomsac	Pleistocene gravel	Schodack	Pleistocene	Schodack formation	Schodack	Schodack formation	Schodack formation	Schodack formation	Schodack formation	Schodack formation	Schodack	Schodack	Schodack	Stockbridge	Nassau formation	Nassau formation	Pleistocene gravel	Nassau formation	Nassau formation	Nassau formation	Nassau formation	Nassau formation	Nassau formation	Schodack formation
Depth to edrock (feet)	:	30	:	35	:	15	20	20	20	28	10	7	9	12	17	30	14	30	:	10	74	57	180	18	135	2
Diameter bedrock (inches) (feet)	36	9	9	9	9	9	10	9	9	9	9	9	9	9	œ	9	9	9	9	9	9	9	6 0	9	9	9
Depth 1 (feet)	30	7.1	00	117	30	72	200	82	107	150	22	126	87	78	80	267	28	117	118	140	102	114	400	110	173	09
$\begin{array}{c} \text{Type} \\ \text{of} \\ \text{well } ^c \end{array}$	Dug	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Dri	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl
Altitude above sea level (feet) b	1,000	1,030	320	340	300	380	380	360	440	430	400	420	480	009	540	570	009	100	700	700	620	006	006	570	099	200
A abs Owner (H. M. Kuhn		E. E. Bills	William O'Connor	Harold Wilbur	J. T. Campbell	North Greenbush School	Herman Epstein	Glenn Ferguson	George W. Briscoe	J. Kruczlniaki	Chester Ostrander	J. E. Mowry	B. Motilage Sons	T. Southworth	East Nassau Central School	George Dunworth	A. E. Smith	George Grenier	Y. M. C. A.	A. Perrault	J. M. Mesnig	H. G. Haskell	Charles Orr	William Kenney	Joel Hitchcock
	8.4E	7.8E	2.9E	3.4E	3.5E	4.2E	3.5E	4.4E	5.1E	5.4E	5.2E	3.2E	2.8E	7.2E	5.5E	12.7E	9.2E	11.5E	9.7E	10.1E	9.0E	10.8E	11.2E	7.7E	8.1E	7.3正
Location*	5.1S,	4.9S,	6.58,	5.1S,	4.0S,	4.1S,			7.0S,	7.58,	5.1S,	7.4S,	9.48,	9.53,	8.8%	10Y, 16.9S, 12.7E	9.38,	9.5S, 11.5E	8.1S,		7.4S,	9.0S, 10.8E	8.2S, 11.2E	10.5S,	10.9S,	7.4S,
	10Z,	10Z,	10Y,	10Y,	10Y,	10Y,	10Y,	10Y,	10Y,		10Y,	10Y,	10Y,		10Y,		10Y,	10Y,			10Y,	10Y,	10Y,	10Y, 10.5S,	10Y,	10Y,
Well	Re 373	Re 374 10Z,	Re 378		Re 383	Re 386 10Y,	Re 388	Re 392	Re 394	Re 396	Re 402	Re 404	Re 409	Re 410	Re 411	Re 415	Re 418	Re 419	Re 420	Re 421	Re 422	Re 423	Re 424 10Y,	Re 425	Re 426 10Y, 10.9S,	Re 428

See footnotes at end of table.

Table 8.—Records of selected wells in Rensselaer County, New York (Continued)

Remarks		(8)	(8)			Water has hydrogen sulfide odor.		Water has hydrogen sulfide odor.		Water has hydrogen sulfide odor.	Well finished with 20 feet of 8- inch screen, No. 125 slot. Drawdown reported 22 feet after pumping 220 gallons per minute, recovered 21.5 feet in 5 minutes, **	Drawdown reported 4 feet after pumping at the rate of 4 gal- lons per minute for 12 hours.	Water has hydrogen sulfide odor.		Water has hydrogen sulfide odor.		Water has hydrogen sulfide odor.			Well finished with a screen. Drawdown reported 4 inches after pumping 50 gallons per minute for 48 hours, h	Water has hydrogen sulfide odor.			Water has hydrogen sulfide odor.
Use f	Dom	Dom	Dom	Dom	Dom	Dom	Dom	Дош	Dom	Farm	Ind	Dom	None	Dom	Dom	Dom	Farm	PWS	Dom	PWS	Dom	Dom	Dom	Dom
Temper- ature (°F.)	:	:	:	:	:	:	:	52	:	20	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Yield (gallons Toper per minute)	10	21/2	4	-	$2^{1/2}$:	6	81/2	23	1	220	4	1/10	11/2	%	4	31/2	21/2	11/2	20		7,	11	4
	Suction	Suction	Force	Jet	Force	Force	Jet	:	Force	Force	Suction	Suction	:	:	Force	Force	Force	Force	Force	Centri- fugal	:	Suction	Suction	Force
Water level below land Method surface of (feet) ^d lift •	11	08	84	76	:	35	17	25	92	13	b-	12	63	6	10	10	:	21	53	:	20	:	15	21
Geologic s subdivision	Schodack formation	Schodack formation	Schodack	Schodack formation	Schodack formation	Schodack formation	Schodack formation	Normanskill shale	Normanskill shale	Normanskill shale	Pleistocene gravel	Pleistocene sand	Normanskill shale	Normanskill shale	Schodack formation	Schodack formation	Normanskill shale	Schodack formation	Schodack formation	Pleistocene gravel	Normanskill shale	Normanskill shale	Normanskill shale	Normanskill shale
Depth to bedrock (feet)	و	120	120	99	20	30	34	98	88	9	•	:	105	13	117	14	40	32	92	:	13	œ	15	21
Depth to Diameter bedrock (inches) (feet)	9	9	9	80	9	9	œ	9	9 .	9	12 to 8	24	9	9	9	9	9	9	9	s S	9	9	9	9
Depth (feet)	86	340	174	169	64	180	145	100	181	103	97	18	326	111	152	88	300	200	128	98	92	88	7.7	102
Type of well °	Drl	DrI	Drl	Drl	Pro	Drl	DrI	Drl	Drl	Drl	Drl	Dug	Drl	Drl	Drl	DrI	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl
Altitude above sea level (feet) b	680	009	280	400	470	280	300	210	260	200	20	210	200	180	350	430	230	440	320	260	180	100	260	150
Al abo Owner (3	S. N. Blakeman	K. S. Buck	William S. Fletcher	Ralph Barringer	Joseph Bastian	C. W. Herrington	Charles Neale	E. T. Newberry	W. Onderdonk Estate	Charles Peter	Fort Orange Paper Company	Charles Cooper	Brookview School	Irwin Newkirk	James Shappey	Philip Raeder	J. T. May	E. Schodack School	M. Fisher	East Greenbush Terrace Water Co.	J. Wishart	A. E. Van Patten	Jesse Cunningham	L. Tibbetts
Location ^a	10Y, 7.5S, 6.1E	10Y, 7.9S, 7.5E	10Y, 8.0S, 7.6E	10Y, 4.7S, 6.8E	10Y, 10.8S, 3.5E	10Y, 9.7S, 2.4E	10Y, 9.0S, 2.5E	10Y, 8.7S, 1.3E	10Y, 7.5S, 2.6E	10Y, 14.9S, 0.9E	Re 459 10Y, 14.9S, 0.3E	10Y, 14:5S, 1.5E	10Y, 14.4S, 1.7E	10Y, 14.4S, 1.0E	10Y, 13.2S, 3.5E	10Y. 13.2S, 5.1E	10Y, 7.4S, 1.8E	10Y, 13.2S, 6.0E	10Y, 11.3S, 2.4E	Re 475 10Y, 11.1S, 2.3E	Re 476 10Y, 11.6S, 1.2E	Re 477 10Y, 11.7S, 0.7E	10Y, 9.3S, 1.0E	10Y, 8.7S, 0.4E
Well	Re 430 1	Re 433 1	Re 434 1	Re 438 1	Re 442 1	Re 450 1	Re 452 1	Re 454 1	Re 456 1	Re 458 1	Re 459 1	1	Re 461 1	Re 465 1	Re 466 1	Re 468 1	Re 469 1	Re 470 1	Re 474 1	Re 475 1	Re 476 1	Re 477 1	Re 479 1	Re 481 10Y,

See footnotes at end of table.

Table 8.—Records of selected wells in Rensselaer County, New York (Continued)

Remarks												0										ell finished with 19 feet of 42- inch screen. Drawdown report- ed to be 22 feet after pumping 115 gallons per minute for 96 hours.		reports dry hole.h		
			(h)		(8)																(h)	Well finished inch screen ed to be 22 115 gallons hours.		Driller rep		
Use t	Dom	None	Dom	Dom	Dom	Dom	Dom	Farm	Dom	Farm	Farm	Dom	Farm	Farm	Dom	Farm	Dom	Dom	Dom	Farm	Dom	Ind	Ind	None	Dom	Dom
Temper- ature (°F.)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Yield (gallons per minute)	10	0	-	ro.	-	1/2	63	21/2	20	10	:	:	:		11/2	:	10	20	:	4	:	115	45	0	4	. 9
	Suction	None	Suction	Suction	Suction	Suction	Suction	Force	Force	Force	Force	Force	Jet	Force	:	Force	Force	Suction	Suction	Force	Suction	Suction	:	:	Suction	:
Water level below land Method surface of (feet) d lift •	:	145	26	0	30	24	10	17	08	œ	15	15			18	:	16	120	15	27	:	4	:	:	22	13
W Geologic subdivision	Schodack formation	Pleistocene sand	Normanskill shale	Schodack formation	Pleistocene till	Nassau formation	Nassau formation	Nassau formation	Pleistocene gravel	Nassau formation	Nassau formation	Nassau formation	Schodack formation	Pleistocene gravel	Schodack formation	Schodack formation	Nassau formation	Nassau formation	Pleistocene gravel	Nassau formation	Rensselaer graywacke	Pleistocene sand	Pleistocene gravel	Normanskill shale	Normanskill shale	Schodack formation
Depth to bedrock (feet)	15	:	52	22	:	36	œ	14	:	œ	80	7	ıc.	:	135	0	9	49	:	09	28	:	:	124	9	30
Diameter (inches)	9	စ	9	9	9	9	9	9	9	9	9	9	9	9	9	9	. 9	9	11%	9	9	24	œ	9	9	9
Depth (feet)	64	170	130	118	65	61	42	175	148	157	66	110	86	260	286	166	310	149	20	168	70	37	45	210	57	120
Type of well c	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	Drl	DrI	Drl	Drd	PLQ	Drl	Drl	Drl	Drl	Drv	Drl	Drl	Dug	Drl	Drl	Drl	Drl
Altitude above sea level (feet) b	430	100	270	460	290	410	200	480	620	520	099	880	009	100	460	200	280	620	540	480	260	10	10	150	160	270
aby Owner (M. Hacker	Strong Point School	Corliss Realty Co.	C. Luxemus	J. Leberman	Philip Kreis	Harry Pickenik	W. D. Bruschel	David Justus	Frank Tuecser	Charles Senrick	A. L. Weindel	Samuel Smith	Rudolph John	J. W. Herring	Edward Kells	Samuel Smith	M. F. Murray	Abe Friedman	Charles Lacey	K. Light	Bayer Chemical Company	Huyck & Sons Mills	L. W. Hoffman	Earl Bristo	Harry Stammel
'n	4,4E	0.3E	1.6E	6.0E	8.2E	7.4E	7.1E	8.1E	8.5E	7.8E	10.7E	11.8E	9.9E	11.5E	6.2E	6.0E	8.9E	8.9E	12.1E	0.1S, 10.9E		0.1E	0.3E		0.6E	2.3E
Location	10Y, 14.7S,	10Y, 14.0S,	10Y, 10.1S,	10Y, 16.8S,	10Y, 16.2S,	10Y, 15.3S,	10Y, 14.7S,	Re 504 10Y, 14.9S.	10Y, 13.2S,	10Y, 12.3S,	10Y, 11.8S, 10.7E	10Y, 12.1S, 11.8E	10Y, 14.1S,	10Y, 14.2S, 11.5E	10Y, 14.3S,	10Y, 15.1S,	10Y, 14.1S,	10Y, 15.1S,	10Y, 16.3S, 12.1E				10Y, 7.7S,	10Y, 15.1S,	10Y, 15.2S.	10Y, 12.7S,
Well	Re 487 10	Re 488 10	Re 491 10	Re 494 10	Re 496 10		Re 501 10	Re 504 10	Re 506 10			Re 510 10			Re 517 10											Re 535 10

Table 8.—Records of selected wells in Rensselaer County, New York (Continued)

																				1	1			sulfide	loca-					
Remarks																								hydrogen	nilar wells at this loca-					
	(p)	(g) (p)												(8)						(8)				Water odor.s	Three similar v				(8)	
Use f	Dom	PWS	Dom	PWS	Dom	Dom	Dom	Dom	Dom	Dom	Dom	PWS	Dom	Dom	Dom	Dom	Dom	Dom	Dom	Farm	None	Dom	Dom	Ind	Ind	Dom	None	Dom	None	Dom
Temper- ature (°F.)	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:		:	:	20	:	:	:	54	99	:	:	:	:	:
	4	140	63	60	10	3	:	:	60	15	21/2	17	60	:	10	2	11/2	10	1/2	%	1	1	11%	:	200 Ine	ಣ	1	က	:	11/2
Method (of	Force	Suction	Force	Force	Force	Force	Force	Jet	Force	Suction	Jet	Force	Force	:	Suction	Force	Force	Suction	:	Force	:	:		Deep-well turbine	Deep- 20 well turbine	:	None	:	None	Suction
Water level Yield below land Method (gallons surface of per (feet) ^d lift e minute)	30	9	40	. 22	7.1	4	:	:	6	14	12	50	28	:	19	25	47	11	17	45	17	20	4	12	15	35	18	25	:	12
W Geologic subdivision	Schodack formation	Pleistocene	Pleistocene gravel	Schodack	Normanskill shale	Schodack	Schodack	Nassau formation	Nassau formation	Nassau formation	Nassau formation	Schodack formation	Schodack formation	Schodack formation	Pleistocene gravel	Schodack formation	Schodack formation	Schodack formation	Nassau	Rensselaer graywacke	Normanskill shale	Schodack formation	Pleistocene gravel	Normanskill shale	Pleistocene gravel	Normanskill shale	Schodack formation	Normanskill shale	Schodack formation	Schodack formation
Depth to sedrock (feet)	8	:	:	45	162	17	65	25	0	10	45	75	70	e2	:	14	45	14	46	32	17	51	:	15	:	31	0	64	16	10
Depth to Diameter bedrock (inches) (feet)	9	89	9	9	9	9	9	œ	œ	9	9	00	9	9	9	9	9	9	9	80	9	9	9	9	00	ω	9	∞	9	9
Depth 1 (feet)	101	34	112	100	208	200	145	162	150	93	100	105	103	45	45	140	220	114	112	116	67	66	48	200	28	100	86	145	156	20
Type of well c	Drl	Į.	Dri	Ē	D-I	Dri	Dri	Drl	Dri	Drl	Drl	Drl	Dri	Dri	Dri	Dri	Drl	Drl	Dri	Dri	Drl	Dri	Drl	Drī	Dri	Drl	Drl	Drl	Drl	Dri
Altitude above sea level (feet) b	260	400	310	350	190	400	400	380	370	480	300	200	160	370	320	380	360	480	420	1,100	100	490	340	20	90	40	410	240	340	
A abb	Herman Dederick	Village of Nassau	J. Van Campen	H. E. Hallenbeck	William Kammer	M. E. Panitch	William L. Thompson	F. E. McGrath	Monica Bambrick	Franklin Schacht	G. A. Fredericks	East Greenbush School	D. B. Andrews	Williams Hans	Roy Zimmerman	E. F. Henninger	F. I. Galer	Prescott Mead	W. G. Harrington	Bert Teal	Herbert Dumont	E. F. Malka	Tatios Tergian	Collar City Creamery	Borden Company	H. A. Geiser	S. S. Engle	Elizabeth Friend	George A. Radz	J. M. Paul
4 (1	2.4E	7.0E	2.8E	4.0E	0.8E	9.0E	2.7E	6.8E				2.2E		3.0E	3.5E		2.6E	9.0豆	6.6E	11.6E	0.8E	5.7E		9.5W	9.8W	8.3W			5.1E	6.4E
Location*	10Y, 16.4S,	10Y, 16.5S,	10Y, 14.3S,	10Y, 14.1S,	Y, 8.0S,	10Y, 16.0S,	Y, 7.5S,	10Y, 17.4S,	Y, 12.8S,	10Y, 10.6S,	Y, 9.0S,	10Y, 10.4S,	10Y, 12.0S,	10Y, 12.0S,	10Y, 11.9S,	Y, 12.4S,	10Y, 11.3S,	10Y, 15.8S,	10Y, 16.5S,	1		Y, 3.6S,			Z, 0.8N,		Y, 0.6S,	-	4	Y, 5.7S,
Well	11			1	Re 543 10Y,			Re 547 10							Re 556 10							Re 590 10Y,			Re 593 10Z,				Re 599 10Y,	Re 607 10Y,

Table 8.—Records of selected wells in Rensselaer County, New York (Concluded)

Remarks					Well finished with 4 feet of 6- inch screen. Installation of screen increased flow from 7 to 42 gallons per minute.					Water has hydrogen sulfide odor.												. S. Geological Survey observa- tion well.	Water has hydrogen sulfide odor.					
					Well incl scr			9		Wate				(8)				(p)				j, t						
Use t	Dom	Dom	Farm	Dom	Dom	None	PWS	Dom	PWS	Dom	Dom	Farm	Dom	Dom	Dom	Farm	Dom	Farm	Farm	Farm	Dom	None	Farm	Dom	Dom	Dom	Dom	None
Temper- ature (°F.)	:	:	:	:	46	:	:	:	28	:	:	:	:	:	:	:	:	52	:	:	:	:	:	53	:	:	:	:
Yield (gallons per minute)	30	6	21/2	ro.	42	0	24	31/2	13	75*	6	4	ro.	2	80	:	:	30	16	20	6	:	rċ	œ	4	6	2	1
Method of lift *	:	Suction	Force	Suction	Force	None	Force	Force	Suction	Suction	Force	Suction	Force	Force	Force	Force	Suction	:	Force	Jet	Force	None	Force	Force	:	:	Force	Force
Water level below land Method surface (feet) d lift o r		17	48	10	00	:	15	:	20	90	15	10	: \	45	:	:	:	27	τĊ	10	:	:	:	:	:	7	œ	30
Geologic subdivision	Schodack	Pleistocene gravel	Walloomsac slate	Nassau formation	Pleistocene gravel	Normanskill shale	Normanskill shale	Schodack formation	Schodack formation	Normanskill shale	Pleistocene gravel	Schodack formation	Schodack formation	Schodack formation	Schodack formation	Schodack formation	Schodack formation	Pleistocene gravel	Nassau formation	Nassau formation	Nassau formation	Pleistocene till	Normanskill shale	Schodack formation	Schodack formation	Nassau formation	Nassau formation	Pleistocene gravel
Depth to bedrock (feet)	0	:	136	0	:	20	48	30	75	86	:	17	64	65	0	10	ဇာ	:	9	0	180	:	ю	32	23	6	16	:
Diameter (inches)	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	. 9	9	9	9	မွ	8	မ	9	9	9	မှ	ထ
Depth 1	69	105	478	09	66	232	159	130	06	130	20	97	185	125	285	180	20	92	85	98	219	15	144	66	06	25	64	140
Type of well	DrI	Drl	Drl	Drl	Drl	Drl	Drl	Drl	P _r	Drl	占	Drl	Drl	Drl	Drl	Drl	Dri	Drl	DrI	Drl	DrI	Dug	DrI	Dr.I	Drl	Drl	Drl	Drl
Altitude above sea level (feet) b	375	160	069	820	009	20	80	330	280	170	330	450	275	300	460	280	200	230	260	240	20	450	200	240	460	ıt 640	720	1,220
ah Owner (Milton Gray	August Harlfinger	A. Tessier	Myers Cohen	Louis Krasne	John Comingo	Schodack Landing School	Robert Recker	Frank Sheehy	Michael Morgan	Joseph Gauseman	Hans Maier	A. Mark	J. C. Wendt	Adolph Petsch	Samuel Steinberg	Ida Donnely	Alonzo Parks	Walter Bertram	M. Fredenburg	J. F. McGuire	Edward Hardgrove	A. Grooten, Jr.	Earl Peckham	Frank Rose	Charles Windelspecht 640	Lewis H. Meek	Harry Jasper
Location*	4.4S, 6.0E	10Z, 17.3S, 0.7E	10Z, 17.3S, 2.6E	10Y, 16.6S, 10.9E	10Y, 16.4S, 12.9E	0.3N, 0.8W	1.4S, 1.0W	10Y, 16.8S, 3.9E	10Y, 16.0S, 3.6E	10Y, 16.3S, 0.3E	1.0S, 0.4W	0.3S, 4.8E	0.4S, 3.8E	0.8S, 3.7E	10Y, 12.5S, 7.3E	10Y, 12.1S, 6.0E		1.5S, 2.3E	0.9S, 8.2E	0.9S, 8.8E	0.3S, 11.0E	9.2S, 4.9E	1.4S, 0.8W	1.5S, 1.0E	10Y, 14.7S, 3.8E	10Y, 11.1S, 9.5E	9.5S, 9.3E	10Z, 10.8S, 0.9E
Well number L	Re 608 10Y,	Re 611 10Z,	Re 613 10Z,	Re 621 10Y,	Re 622 10Y,	Re 623 11Y,	Re 624 11Y,	1	Re 628 10Y,		Re 636 11Y,	Re 637 11Y,	Re 638 11Y,	Re 639 11Y,			Re 648 10Y, 11.2S,	Re 650 11Y,	Re 651 11Y,	Re 652 11Y,	Re 656 11Y.	Re 660 10Y,	Re 661 11Y,	Re 663 11Y,			Re 666 10Y,	Re 675 10Z,

For explanation of location symbols see section, "Purpose and scope of the investigation".
 For explanation of methods of lift and pumping equipment see section, "Recovery".
 Postporoximate altitude from topographic map.
 For chemical analysis see table 6.
 Reported average water level.