Алгоритмы компьютерной алгебры

Конспект лекций

2019

Содержание

1	Лен	кция 1.
	1.1	Основные факты из теории многочленов
	1.2	Многочлены с рациональными коэффициентами
		1.2.1 Алгоритм Кронекера
		1.2.2 Алгоритм Евклида
		1.2.3 Каноническое разложение
2	Лен	кция 2.
	2.1	Каноническое разложение
		Уравнения третьей степени
		2.2.1 Уравнения с комплексными коэффициентами
		2.2.2 Уравнения с рациональными коэффициентами

1. Лекция 1.

Предмет изучения компьютерной алгебры - точные вычисления. Рассматриваются именно алгоритмы точного, а не приближенного вычисления, как в вычислительной математике. Эти алгоритмы лежат в основе математических пакетов МАТ-LAB, Mathematica. Основной объект исследований - числовые системы с точными вычислениями.

1.1. Основные факты из теории многочленов

Определение 1. *Числовым полем* называется множество $F \subset \mathbb{C}$, если:

- 1. $0, 1 \in F$
- 2. $|F| \ge 2$,
- 3. $\forall a, b \in F : a \pm b, \ ab \in F; \ b \neq 0, \frac{a}{b} \in F.$

Пример 1. Числовые поля - \mathbb{C} , \mathbb{R} , \mathbb{Q} , $\{a+b\sqrt{2}, a,b\in\mathbb{Q}\}$

Множество многочленов над полем рациональных чисел обозначается как $\mathbb{Q}[x]$, над целыми — $\mathbb{Z}[x]$, над произвольным числовым полем F - F[x].

Определение 2. Многочлен $f(x) \in F[x]$, отличный от константы, называют **приводимым** над полем F, если он допускает представление вида $f(x) = \varphi(x)\psi(x)$, где $\varphi(x), \psi(x) \in F[x]$ и $\deg \varphi, \deg \psi < \deg f$, и **неприводимым**, если он не допускает такого разложения (то есть один из многочленов φ, ψ является константой).

1. $\deg f = 1$. Пусть f допускает разложение: $f(x) = \varphi(x)\psi(x)$.

$$\deg_{=0}\varphi, \deg_{=0}\psi < \deg f \Rightarrow \deg f = 0.$$

Полученное противоречие доказывает неприводимость любого многочлена первой степени.

2. Пусть $\deg f > 1$ и $f(\alpha) = 0, \alpha \in F$.

$$(x - \alpha) \mid f(x) \Rightarrow \exists g(x) : f(x) = (x - \alpha)g(x).$$

$$\deg(x - \alpha) = 1 < \deg f.$$

$$\deg g = \deg f - 1 < \deg f.$$

Если многочлен f имеет корень в поле F, то f приводим над полем F.

Обратное утверждение. Если многочлен $f \in F[x]$ степени 2 или 3 приводим над полем F, то он имеет в этом поле корень.

Доказательство. Допустим, многочлен приводим, следовательно, $f(x) = \varphi(x)\psi(x)$.

$$\deg \varphi, \deg \psi < \deg f \Rightarrow \deg \varphi = 1$$
 или $\deg \psi = 1$.

Допустим,
$$\varphi(x) = ax + b, a \neq 0 \Rightarrow \alpha = -\frac{b}{a}, \alpha \in F.$$

Пример 2.

- 1. $f(x) = x^2 1 = (x 1)(x + 1)$. Многочлен приводим над полями $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- 2. $f(x) = x^2 2 \in \mathbb{Q}[x]$. У него нет рациональных корней, следовательно, он неприводим над \mathbb{Q} . Но $f(x) = (x \sqrt{2})(x + \sqrt{2}) \Rightarrow f(x)$ приводим над \mathbb{R} .
- 3. $f(x) = x^2 + 1$ неприводим над \mathbb{Q} и \mathbb{R} . Но $f(x) = (x i)(x + i) \Rightarrow f(x)$ приводим над \mathbb{C} .

Многочлены второй и третьей степени приводимы над полем F тогда и только тогда, когда имеют в этом корень. Для многочленов степени, больше чем 3, данное утверждение не является справедливым.

Пример 3. $f(x) = (x^2 + 1)^2 \in \mathbb{R}[x]$ не имеет действительных корней, но приводим.

Определение 3. Многочлен называется **нормированным**, если его старший ко-эффициент равен единице.

Теорема 1 (Фундаментальная теорема о многочленах). Пусть $f \in F[x]$, $deg \ f \geqslant 1$. Тогда f допускает разложение $f(x) = a_0 \varphi_1(x) \varphi_2(x) ... \varphi_k(x)$, где $a_0 \in F$, $\varphi_i \in F[x]$ и любой многочлен φ_i - нормированный и неприводимый. При этом данное разложение является единственным с точностью до порядка следования сомножителей.

1.2. Многочлены с рациональными коэффициентами

Задача. Дан многочлен с рациональными коэффициентами. Необходимо найти разложение этого многочлена в произведение многочленов с рациональными коэффициентами.

Пусть $f \in \mathbb{Q}[x]$. Если мы умножим этот многочлен на подходящее число N (наименьшее общее кратное коэффициентов членов многочлена), то $Nf(x) \in \mathbb{Z}[x]$. Таким образом, приводимость f равносильна приводимости Nf, следовательно, разложение многочлена с рациональными коэффициентами можно свести к разложению многочлена с целыми коэффициентами.

Теорема 2. Если многочлен $f \in \mathbb{Z}[x]$ допускает разложение в произведение многочленов с рациональными коэффициентами, то он допускает разложение в произведение многочленов тех же степеней с целыми коэффициентами.

1.2.1. Алгоритм Кронекера

Задача. Дан многочлен $f \in \mathbb{Z}[x]$, $deg \ f > 1$. Можно ли подобрать $u(x), v(x), \ u, v \in \mathbb{Z}[x]$ и $deg \ u, \ deg \ v < deg \ f$?

Предположение 1. Все возникающие натуральные числа можно факторизовать.

Предположение 2. Многочлен формальной степени n можно найти c помощью интерполяционного многочлена по n+1 точке $x_0, x_1, ..., x_n$ и значениям многочлена e этих точках $f(x_0), f(x_1), ..., f(x_n)$.

$$\begin{cases} f(x_0) = u(x_0)v(x_0), \\ f(x_1) = u(x_1)v(x_1), \\ \dots \\ f(x_n) = u(x_n)v(x_n). \end{cases}$$

Рассмотрим точки $x_0, x_1, ..., x_n \in \mathbb{Z}$.

$$\forall i \in [0, n] : f(x_i) \in \mathbb{Z} \Rightarrow u(x_i), v(x_i) \in \mathbb{Z}, \ deg \ u = m.$$

Пусть все рассматриваемые точки - не корни многочлена f. Тогда $u(x_i) \mid f(x_i)$, $u(x_i)$ может принимать только конечное множество значений, состоящее из делителей $f(x_i)$. Коэффициенты многочлена u восстанавливаются по его значениям. Далее следует непосредственная проверка того, является ли u делителем f. Алгоритм Кронекера используется для сведения от выбора из бесконечного числа вариантов к выбору из конечного числа вариантов.

Теорема 3 (Признак Эйзенштейна). Пусть многочлен

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in \mathbb{Z}[x], \ n > 1, \ a_0 \neq 0.$$

Если существует простое число p такое, что $p \nmid a_0, p \mid a_1, p \mid a_2, ..., p \mid a_{n-1} u$ $p^2 \nmid a_n$, то f неприводим над \mathbb{Q} .

Пример 4. Многочлен $f(x) = x^n - 2$ не приводим над \mathbb{Q} для $\forall n \ge 1$. Таким образом, существуют неприводимые многочлены над \mathbb{Q} любой степени.

1.2.2. Алгоритм Евклида

Если многочлены $f,g \in F[x], g \neq 0$, то имеет место следующее представление: $f(x) = g(x)h(x) + r(x), h, r \in F[x]$ и r = 0 или $r \neq 0$, $deg \ r < deg \ g$. Если считать, что степень нулевого многочлена r = 0 равна $-\infty$, то можно рассматривать только вариант $deg \ r < deg \ g$.

Определение 4. Если многочлены $f, g \in F[x]$, то многочлен $\varphi \in F[x]$ называют наибольшим общим делителем (НОД) f u g, если:

- 1. $\varphi(x) \mid f(x), \ \varphi(x) \mid g(x),$
- 2. $\forall \psi \in F[x] : \psi(x) \mid f(x), \ \psi(x) \mid g(x) \Rightarrow \psi(x) \mid \varphi(x).$

Можно доказать, что НОД всегда существует и находится с точностью до множителя.

Определение 5. Если НОД многочленов f(x) и g(x) - нормированный многочлен, то он обозначается как (f(x), g(x)).

Алгоритм Евклида. Шаг 1.

$$f(x) = g(x)h_1(x) + r_1(x).$$

$$(f(x), g(x)) = (g(x), r_1(x)), deg r_1 < deg g.$$

Алгоритм Евклида. Шаг 2.

$$g(x) = r_1(x)h_2(x) + r_2(x).$$

$$(g(x), r_1(x)) = (r_1(x), r_2(x)), deg r_2 < deg r_1.$$

Если степень многочлена f (делимого) меньше, чем степень многочлена g (делителя), то алгоритм сам поменяет их местами:

$$f(x) = g(x) \cdot 0 + f(x)$$
$$g(x) = f(x)h_1(x) + r_1(x)$$

Поскольку остаток - неотрицательный, то процесс завершится.

Алгоритм Евклида. Заключительные шаги.

$$r_{k-2}(x) = r_{k-1}(x)h_k(x) + r_k(x)$$
$$r_{k-1}(x) = r_k(x)h_{k+1}(x)$$
$$(r_{k-2}(x), r_{k-1}(x)) = (r_{k-1}(x), r_k(x))$$

Строго говоря, $(r_{k-1}(x), r_k(x))$ необязательно равен $r_k(x)$. $r_k(x)$ является лишь одним из НОД.

1.2.3. Каноническое разложение

Определение 6. Пусть для многочлена f(x) существует разложение:

$$f(x) = ap_1(x)p_2(x)...p_k(x),$$

где все многочлены p_i - неприводимые и нормированные. Тогда такое разложение называют разложением на неприводимые множители или факторизацией многочлена.

Определение 7. Пусть для многочлена $f(x) \in F[x]$ существует разложение:

$$f(x) = a_0(p_1(x))^{k_1}(p_2(x))^{k_2}...(p_r(x))^{k_r},$$

где все многочлены p_i - неприводимые, нормированные и попарно различные. Тогда такое разложение называют каноническим разложением над полем, а значение k_i - кратностью множителя p_i . Если $k_i = 1$, то множитель p_i называется простым.

Задача. Дан многочлен f. Нужно найти вид $f(x) = a\varphi_1(x)(\varphi_2(x))^2...(\varphi_s(x))^s$, в котором φ_i - произведение всех множителей кратности i.

Пример 5. Получить каноническое разложение многочлена

$$f(x) = (x-1)(x-2)(x^2+x+1)^2(x^2-x+1)^2(x^3-2)^3.$$

$$f(x) = \varphi_1(x)(\varphi_2(x))^2(\varphi_3(x))^3.$$

$$\varphi_1(x) = (x-1)(x-2).$$

$$\varphi_2(x) = (x^2+x+1)(x^2-x+1).$$

$$\varphi_3(x) = x^3-2.$$

2. Лекция 2.

2.1. Каноническое разложение

Рассмотрим каноническое разложение многочлена f(x):

$$f(x) = a_0(p_1(x))^{k_1}(p_2(x))^{k_2}...(p_r(x))^{k_r}$$

Вынесем первый полином $p_1(x)$:

$$f(x) = a_0(p_1(x))^{k_1}(p_2(x))^{k_2}...(p_r(x))^{k_r} = (p_1(x))^{k_1}g(x), (g(x), p_1(x)) = 1.$$

$$f'(x) = k_1(p_1(x))^{k_1-1} \cdot (p_1(x))'g(x) + (p_1(x))^{k_1}g'(x) =$$

$$= (p_1(x))^{k_1-1} \cdot (k_1(p_1(x))'g(x) + p_1(x)g'(x)).$$

Докажем, что многочлен $k_1(p_1(x))'g(x) + p_1(x)g'(x)$ не делится на $p_1(x)$. Допустим, что он делится. Так как второе слагаемое $p_1(x)g'(x)$ делится на $p_1(x)$, то должно делиться и первое. Однако $(p_1(x))'$ не делится на $p_1(x)$, так как его степень меньше, чем у $p_1(x)$. Но и $(g(x), p_1(x)) = 1$, следовательно, первое слагаемое не делится на p_1 , не делится и вся сумма. Полученное противоречие доказывает, что многочлен $k_1(p_1(x))'g(x) + p_1(x)g'(x)$ не делится на $p_1(x)$.

Таким образом, если неприводимый многочлен p(x) входит в каноническое разложение f(x) в степени k, то этот многочлен входит в каноническое разложение f'(x) в степени k-1.

$$f'(x) = na_0(p_1(x))^{k_1-1}(p_2(x))^{k_2-1} \dots (p_r(x))^{k_r-1}(p_{r+1}(x))^{k_{r+1}}(p_{r+2}(x))^{k_{r+2}} \dots$$

$$(f(x), f'(x)) = (p_1(x))^{k_1-1}(p_2(x))^{k_2-1} \dots (p_r(x))^{k_r-1}.$$

Будем предполагать, что старший коэффициент равен 1.

$$f(x) = \varphi_1(x) \cdot (\varphi_2(x))^2 \cdot \dots \cdot \varphi_k(x)^k.$$

$$(f(x), f'(x)) = \varphi_2(x) \cdot (\varphi_3(x))^2 \cdot \dots \cdot \varphi_k(x)^{k-1}.$$

$$u_1(x) = f(x).$$

$$u_2(x) = (f(x), f'(x)) = (u_1(x), u'_1(x)).$$

$$u_3(x) = (u_3(x), u'_3(x)) = \varphi_3(x) \cdot (\varphi_4(x))^2 \cdot \dots \cdot \varphi_k(x)^{k-2}.$$

$$u_4(x) = (u_4(x), u'_4(x)) = \varphi_4(x) \cdot (\varphi_5(x))^2 \cdot \dots \cdot \varphi_k(x)^{k-3}.$$

$$\dots$$

$$u_{k-1}(x) = (u_{k-2}(x), u'_{k-2}(x)) = \varphi_k(x).$$

$$u_k(x) = (u_{k-1}(x), u'_{k-1}(x)) = 1.$$

$$v_{1}(x) = \frac{u_{1}(x)}{u_{2}(x)} = \varphi_{1}(x) \cdot \varphi_{2}(x) \cdot \dots \cdot \varphi_{k}(x).$$

$$v_{2}(x) = \frac{u_{2}(x)}{u_{3}(x)} = \varphi_{2}(x) \cdot \dots \cdot \varphi_{k}(x).$$

$$\dots$$

$$v_{k-1}(x) = \frac{u_{k-1}(x)}{u_{k}(x)} = \varphi_{k}(x).$$

$$\varphi_{1}(x) = \frac{v_{1}(x)}{v_{2}(x)}, \ \varphi_{2}(x) = \frac{v_{2}(x)}{v_{2}(x)}, \ \dots$$

2.2. Уравнения третьей степени

2.2.1. Уравнения с комплексными коэффициентами

$$a_0x^3 + a_1x^2 + a_2x + a_3 = 0, a_i \in \mathbb{C}, a_0 \neq 0.$$

Шаг 1. Разделим обе части уравнения на a_0 .

$$x^3 + ax^2 + bx + c = 0.$$

Шаг 2. Введем замену $x = y - \frac{a}{3}$.

$$(y - \frac{a}{3})^3 + a(y - \frac{a}{3})^2 + b(y - \frac{a}{3}) + c = 0.$$

$$y^3 - ay^2 + \dots + ay^2 + \dots = 0$$
 (других квадратов нет).

Получено уравнение вида $x^3 + px + q = 0$, $p,q \in \mathbb{C}$. Рассмотрим простейшее уравнение третьей степени $x^3 = 1$:

$$x^{3} = 1 \Rightarrow x = \cos \frac{2\pi k}{3} + i \sin \frac{2\pi k}{3}, k = 0, 1, 2.$$

- $k = 0 \Rightarrow x = cos(0) + i \cdot sin(0) = 1 + 0 = 1$.
- $k = 1 \Rightarrow x = \cos(\frac{2\pi}{3}) + i \cdot \sin(\frac{2\pi}{3}) = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = \omega.$
- $k = 2 \Rightarrow x = \cos(\frac{4\pi}{3}) + i \cdot \sin(\frac{4\pi}{3}) = -\frac{1}{2} i\frac{\sqrt{3}}{2} = \omega^2$.

Рассмотрим общий случай: $x^3 = a, \ a \in \mathbb{C}, \ a \neq 0$, если есть корень x_0 , то:

$$x_0 = x_0 \cdot 1, \ x_1 = x_0 \omega, \ x_2 = x_0 \omega^2.$$

Теперь переменную x рассмотрим как сумму переменных u и v: x = u + v.

$$(u+v)^3 + p(u+v) + q = 0.$$

$$u^{3} + 3u^{2}v + 3uv^{2} + v^{3} + p(u+v) + q = 0.$$

$$(u^3 + v^3 + q) + (u + v)(3uv + p) = 0.$$

Потребуем, чтобы $u^3 + v^3 + q = 0$ и 3uv + p = 0.

$$\begin{cases} u^3 + v^3 + q = 0, \\ 3uv + p = 0. \end{cases} \Rightarrow \begin{cases} u^3 + v^3 = -q, \\ uv = -\frac{p}{3}. \end{cases}$$

Выполним (неэквивалентный!) переход к u^3v^3 .

$$\begin{cases} u^3 + v^3 = -q, \\ u^3 v^3 = -\frac{p^3}{27}. \end{cases}$$

Так как переход к кубу неэквивалентен, то появятся лишние решения, поэтому нужно будет вернуться к уравнению: $uv=-\frac{p}{3}$. Значения u^3 и v^3 можно рассматривать в качестве корней следующего квадратного

уравнения:

$$z^2+qz-\frac{p^3}{27}=0.$$

$$z=-\frac{q}{2}\pm\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}.$$

$$x=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}\ (\mathbf{\Phi}\mathbf{o}\mathbf{p}\mathbf{м}\mathbf{y}\mathbf{л}\mathbf{a}\ \mathbf{K}\mathbf{a}\mathbf{p}\mathbf{д}\mathbf{a}\mathbf{h}\mathbf{o}).$$

$$u^3v^3=-\frac{p^3}{27}.$$

$$uv=-\frac{p}{3}\text{ или }-\frac{p}{3}\omega\text{ или }-\frac{p}{3}\omega^2.$$

Пусть найдены $u_0, v_0 \Rightarrow u_0 v_0 = -\frac{p}{3}$.

$$u_{1} = u_{0}\omega, v_{1} = v_{0}\omega^{2}$$

$$u_{2} = u_{0}\omega^{2}, v_{2} = v_{0}\omega$$

$$x_{1} = u_{0} + v_{0}$$

$$x_{2} = \omega u_{0} + \omega^{2}v_{0}$$

$$x_{3} = \omega^{2}u_{0} + \omega v_{0}$$

$$x_{2} = -\frac{u_{0} + v_{0}}{2} + i\sqrt{3} \frac{u_{0} - v_{0}}{2}$$

$$x_{3} = -\frac{u_{0} + v_{0}}{2} - i\sqrt{3} \frac{u_{0} - v_{0}}{2}$$

2.2.2. Уравнения с рациональными коэффициентами

Определение 8. Рассмотрим следующее уравнение:

$$x^{3} + px + q = 0, \ p, q \in \mathbb{R}, \ p \neq 0.$$

Дискриминантом такого уравнения называют выражение D:

$$D = -108(\frac{q^2}{4} + \frac{p^3}{27}) = -27q^2 - 4p^3.$$

Определение 9. Рассмотрим следующее уравнение:

$$x^n + a_1 x^{n-1} + \dots + a_n = 0,$$

у которого есть корни $x_1, x_2, ..., x_n$. Дискриминантом такого уравнения называют выражение D:

$$D = \prod_{1 \le i < j \le n} (x_i - x_j)^2.$$

D > 0.

$$\frac{q^2}{4} + \frac{p^3}{27} < 0 \Rightarrow p < 0, uv = -\frac{p}{3} > 0.$$

$$x = \sqrt[3]{A + Bi} + \sqrt[3]{A - Bi}.$$

$$|A + Bi| = |A - Bi|.$$

$$u = R \cdot (\cos(\varphi) + i \cdot \sin(\varphi)).$$

$$v = R \cdot (\cos(\psi) + i \cdot \sin(\psi)).$$

$$R = \sqrt[6]{A^2 + B^2}.$$

$$uv = R^2 \cdot (\cos(\varphi + \psi) + i \cdot \sin(\varphi + \psi)).$$

$$\varphi = -\psi \Rightarrow u + v = 2R \cdot \cos(\varphi).$$

$$u - v = 2i \cdot \sin(\varphi).$$

$$x_1 = u + v \in \mathbb{R}.$$

$$x_{2,3} = -\frac{u + v}{2} \pm i\sqrt{3} \cdot \frac{2i \cdot \sin(\varphi)}{2} \in \mathbb{R}.$$

D < 0.

$$x = \sqrt[3]{A+B} + \sqrt[3]{A-B}.$$

$$B \neq 0 \Rightarrow A+B \neq A-B \Rightarrow \sqrt[3]{A+B} \neq \sqrt[3]{A-B}.$$

$$u = \sqrt[3]{A+B} \in \mathbb{R}.$$

$$x_1 = u+v \in \mathbb{R}.$$

$$x_{2,3} = -\frac{u+v}{2} \pm \frac{i\sqrt{3}}{2}(u-v) \in \mathbb{C}.$$

$$D=0.$$

$$x = \sqrt[3]{A} + \sqrt[3]{A}.$$

u - вещественный кубический корень из $A,\ uv=-\frac{p}{3} \Rightarrow v \in \mathbb{R},\ \text{но } v$ - тоже вещественный кубический корень из A, следовательно, u=v.

$$\begin{cases} x_1 = u + v = 2u, \\ x_{2,3} = -\frac{u+v}{2} \pm \frac{i\sqrt{3}}{2}(u-v) = -u. \end{cases}$$