Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance

NeurIPS 2019

Kimia Nadjahi¹, Alain Durmus², Umut Şimşekli¹, Roland Badeau¹

¹ Télécom Paris, ² ENS Paris-Saclay

Background

Minimum distance estimation (MDE)

Given i.i.d. observations $Y_{1:n} = (Y_1, \dots, Y_n)$ and a family of distributions indexed by a parameter θ , the goal of MDE is:

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} \mathbf{D}(\hat{\mu}_n, \mu_\theta) , \qquad (1)$$

where **D**: distance (or divergence) between probability measures, μ_{θ} : probability measure indexed by θ , Θ : parameter space, and $\hat{\mu}_{n}$: empirical measure of $Y_{1:n}$.

1

Optimal transport (OT): Wasserstein distance

For $p \geq 1$,

$$\mathcal{P}_p(\mathsf{Y}) = \big\{ \mu \in \mathcal{P}(\mathsf{Y}) \, : \, \textstyle \int_{\mathsf{Y}} \|y - y_0\|^p \mathrm{d}\mu(y) < +\infty, \, \text{ for some } y_0 \in \mathsf{Y} \big\}.$$

The Wasserstein distance of order p between any $\mu, \nu \in \mathcal{P}_p(Y)$ is,

$$\mathbf{W}_p^p(\mu,\nu) = \inf_{\gamma \in \Gamma(\mu,\nu)} \left\{ \int_{\mathbf{Y} \times \mathbf{Y}} \|x - y\|^p \mathrm{d}\gamma(x,y) \right\} \ ,$$

where $\Gamma(\mu, \nu)$: the set of probability measures γ on $(Y \times Y, \mathcal{Y} \otimes \mathcal{Y})$ satisfying $\gamma(A \times Y) = \mu(A)$ and $\gamma(Y \times A) = \nu(A)$ for any $A \in \mathcal{B}(Y)$.

Problem: calculating W_p is computationally expensive.

... but \mathbf{W}_p in 1D has a closed-form formula, which gives rise to an alternative OT distance: the Sliced-Wasserstein distance (SW).

Computational Optimal Transport: Sliced-Wasserstein distance

Let \mathbb{S}^{d-1} be the *d*-dimensional unit sphere, $\langle \cdot, \cdot \rangle$ the Euclidean inner-product, and for any $u \in \mathbb{S}$, $u^*(y) = \langle u, y \rangle$.

SW of order p between $\mu, \nu \in \mathcal{P}_p(Y)$ is,

$$SW_{p}^{p}(\mu,\nu) = \int_{\mathbb{S}^{d-1}} W_{p}^{p}(u_{\sharp}^{\star}\mu, u_{\sharp}^{\star}\nu) d\sigma(u)$$
 (2)

where σ : uniform distribution on \mathbb{S}^{d-1} , and for any measurable function $f: Y \to \mathbb{R}$ and $\zeta \in \mathcal{P}(Y)$, $f_{\sharp}\zeta$: the push-forward measure of ζ by f.

 \Rightarrow SW has significantly lower computational requirements than the Wasserstein distance.

MDE + Computational OT

We plug SW_p in place of **D** in MDE.

Minimum Sliced-Wasserstein estimator (MSWE) of order p:

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} \mathsf{SW}_p(\hat{\mu}_n, \mu_{\theta})$$

Minimum expected Sliced-Wasserstein estimator (MESWE) of order p:

$$\hat{\theta}_{n,m} = \operatorname{argmin}_{\theta \in \Theta} \mathbb{E} \left[\mathsf{SW}_p(\hat{\mu}_n, \hat{\mu}_{\theta,m}) | Y_{1:n} \right]$$

Very popular and successful in recent machine learning applications, but their theoretical properties have not yet been fully established. \Rightarrow We investigate them in our paper!

4

Contributions

Theoretical results

Topology induced by SW.

Let $p \in [1, +\infty)$. The convergence in \mathbf{SW}_p implies the weak convergence of measures on \mathbb{R}^d .

Asymptotic properties of SW-based estimators.

- Existence and consistency of MSWE.
- Existence and consistency of MESWE.
- MESWE converges to MSWE.

Central Limit Theorems.

MSWE and the associated goodness-of-fit statistics converge to a random variable in distribution, with a rate of \sqrt{n} . Contrary to Wasserstein-based estimators, our result is not restricted to the 1D case, but holds for any dimension value.

Experiments

We empirically confirm our theoretical findings on:

- Multivariate Gaussians in \mathbb{R}^{10} : inference on the mean and scaling factor of the covariance.
- Elliptically contoured stable distributions in \mathbb{R}^{10} : inference on the location parameter, comparison of our estimators to Wasserstein-based estimators.
- SW-based GANs for image generation, applied on MNIST: inference on the neural network parameters.

Conclusion

Summary

- We investigated the asymptotic properties of estimators that are obtained by minimizing (expected) SW.
- We validated our theorems on both synthetic data and neural networks.
- Future work: derive analogous asymptotic guarantees for estimators based on extensions of SW.