AcF305:

International Financial and Risk Management Week 4

Dr. Mykola Babiak Lancaster University Management School

Outline of Lecture 4

- Essential reading: Chapter 5 of Sercu (2009).
- Topics:
 - Forward quotes with bid/ask spreads: How are forwards quoted in the presence of bid/ask spreads? Is there a relation between spreads and maturity? Why?
 - Covered interest parity with bid/ask spreads: How does covered interest parity work in the presence of bid/ask spreads? What are possible and what are impossible quotes?
 - Using forward contracts in Risk Management: What does hedging mean? How does hedging work in theory? How is hedging done in practice? What is a speculator? What are simple and more complicated speculation strategies?

Forward Quotes with Bid/Ask Spreads I

- In the real-world with bid/ask spreads, forwards can still be quoted 'outright' or as a swap rate.
 - Outright: The rate at which agents can buy currency in the future.
 - Swap: Difference between forward rate and spot rate.
- To obtain outright quotes from swap rates, add (or subtract) first quote from spot bid rate and add (or subtract) second from spot ask rate.

```
Example 1: spot rates: USD/EUR 1.1774–78; swap rates USD/EUR 0.0001920 and 0.00028.
```

- Outright forward bid = 1.1774 + 0.0001920 = USD/EUR 1.1775920
- Outright forward ask = 1.1778 + 0.0001928 = USD/EUR 1.1779928

Example 2: spot rates: SEK/EUR 9.5160–64; swap rates SEK/EUR – 0.0005210 and – 0.0004780

- Outright forward bid = 9.5160 0.0005210 = SEK/EUR 9.515479
- Outright forward ask = 9.5164 0.0004780 = SEK/EUR 9.515922

Forward Quotes with Bid/Ask Spreads II

- Second law of imperfect exchange markets
 - The forward spread is always larger than the spot spread
 - Spreads always increase with maturity
- Some newspaper suppress the sign of the swap rate (+/-). What shall be done then?
 - → if you added spot rates and swap rates and the spread declined, you should have subtracted

Figure 5.2. The bid-ask spread in a forward is wider than in a spot. For negative swap rates the bid is the bigger one, in absolute terms, while for positive swap rates the ask is the bigger one. This is equivalent to observing a larger total bid-ask spread in the forward market.

Provisions for Default I

- Why do spreads increase with maturity ("Law of imperfect markets")?
 - 1. The longer the maturity, the lower the transaction volume.
 - spreads tend to be high in thin markets
 - 2. Higher uncertainty about customer creditworthiness.
 - this increases the default risk.
 - 3. Spot rates can change much more over longer horizons
 - this implies more risk to the bank (the bank's payoff has more time to become very unfavourable)

Provisions for Default I

- Then again, conditional on maturity, how do banks deal with default risk?
 - Right of offset: If one party defaults, the other party does not need to honour its obligations.

Example: Banks sells FC 1 forward to A for a price of HC $F_{t_0,T}$. A defaults. Bank can sell FC 1 in spot market. Maximum loss: $(F_{t_0,T} - S_T)$.

 Interbank, credit agreements: Banks only deal with other banks that are well-known; there are also credit limits.

Provisions for Default II

- Answer (continued):
 - Firms, credit agreements or securities: Banks also only deal with well-known customers; others need to post a margin.
 - Example: A wants to sell forward GBP 1m for USD 1.5m. Bank asks for a 25% margin: A must deposit 1m*1.5*0.25 = USD 375,000.
 - Restricted use: Banks only allow customers to use forward contracts for hedging purposes; speculation is frowned upon.
 - Short lives: Banks do not offer long maturity contracts to risky customers; instead, these have to roll over short-term contracts.
 - Example: A wants to buy USD 1m for INR $F_{t,T}$ at T = 3 years. The bank can offer either (a) a 3-year contract or (b) 3 consecutive 1-year contracts.

Suppose:
$$F_{0,3} = 40$$
, $F_{0,1} = 40.3$, $F_{1,2} = 37.2$ and $F_{2,3} = 35.9$.
 $S_1 = 38$, $S_2 = 36$ and $S_3 = 34$. A defaults in year 3.

Maximum loss of option (a) 6m [34–40] vs. option (b) 1.9m [34–35.9].

Arbitrage in Forward Markets with Bid/Ask Spreads

- Spot market: bid-ask quotes are the least favourable rate for the bank's costumer. The same applies for the synthetic forwards.
- Check through synthetically selling one unit of FC:

$$FC_T \rightarrow FC_t \rightarrow HC_t \rightarrow HC_T$$

Use the diagram: 1 unit of $FC = S_t^{bid} \frac{1 + r_{t,T}^{bid}}{1 + r_{t,T}^{*ask}}$ units of HC.

Check through synthetically buying FC with one unit of HC:

$$HC_{\tau} \rightarrow HC_{t} \rightarrow FC_{t} \rightarrow FC_{\tau}$$

Use the diagram: 1 unit of $HC = (1/S_t^{ask}) \frac{1 + r_{t,T}^{*bid}}{1 + r_{t,T}^{ask}}$ units of FC.

• Synthetic:
$$[F_{t,T}^{bid}, F_{t,T}^{ask}] = \left[S_t^{bid} \frac{1 + r_{t,T}^{bid}}{1 + r_{t,T}^{*ask}}, S_t^{ask} \frac{1 + r_{t,T}^{ask}}{1 + r_{t,T}^{*bid}}\right]$$
 (both in HC/FC).

Spot/Forward/Money Market Diagram: Spreads

Figure 5.3. Spot/forward/money market diagram with bid-ask spreads.

(Permanently) Possible and Impossible Quotes

• Some conceivable quotes:

Figure 5.4. Synthetic and actual forward rates: some conceivable combinations.

- Remember: Traders always buy low and sell high → bid < ask.
- Relative to the synthetic quotes, discuss with course-mates:
 - 1. Which case(s) lead(s) to arbitrage opportunities? Why?
 - 2. Which case(s) do(es) not permit arbitrage, yet can nevertheless not be a stable equilibrium? Why?
 - 3. Which case(s) is (are) a stable equilibrium? Why?

Using Forwards to Hedge Contractual Exposure

- Some definitions:
 - Hedging: Eliminating (or, at least, reducing) the variability of the HC
 value of future cash inflows or outflows denominated in FC.
 - Contractual exposure: Arises from a signed contract which ensures a known cash inflow or outflow in FC at some specified future time. Measures by what multiple the HC value of a cash flow denominated in FC changes with a Δ change in the exchange rate:

$$B_{t,T}^* = \frac{\Delta \widetilde{V_T}}{\Delta \widetilde{S_T}}$$

- Example:
 - 1. When S_T is 118 JPY/USD, then V_T is equal to 118,000 JPY.
 - 2. When S_T is 122 JPY/USD, then V_T is equal to 122,000 JPY.
 - 3. $B_{t,T}^* = (122,000 118,000) / (122 118) = USD 1,000$
- As $V_T = C^* * S_T$, $B_{t,T}^*$ (the derivative of V_T w.r.t. S_T) is simply C^* , the contractual payment denominated in FC.

Some Hedging Technicalities I

• Net exposure: Firms only hedge *net* exposures, i.e. the difference between inflows and outflows on each future date:

	30 days		60 days	
Item	In	Out	In	Out
(a) A/R	100,000	_	2,200,000	_
(b) Commodity sales contracts	0	_	0	_
(c) Expiring deposits	3,000,000	_	0	_
(d) Forward purchases	0	_	0	_
(e) Inflows from forward loans in FC	0	_	0	_
(f) A/P	_	2,300,000	_	1,000,000
(g) Commodity purchase contracts:	_	0	_	0
(h) Loan due	_	0	_	2,300,000
(i) Forward sales	_	0	_	0
(j) Outflows for forward deposits in FC	_	0	_	0
Net flow	+800,000		-1,100,000	

- Perfect hedge: Sell FC 800k forward in 30 days and buy FC −1,100k forward in 60 days (alternatives discussed later).
- Default risk: If other party fails to deliver, hedge becomes open position.
 - Example: If FC 800k will not be delivered in 30 days, hedging firm nonetheless has to deliver FC 800k to the bank.
 - Solution: Buy FC 800k forward and *reverse* (i.e. eliminate) the hedge; potentially costly: $F_{t_0,T} F_{t,T}$ could be negative.
- If default risk is substantial, then firm can buy insurance from banks (bank guarantees), private or government agencies.

Some Hedging Technicalities II

- Hedging bins: It can be beneficial to pool net exposures which are close to one another (in time) into bins.
 - Advantage: Saves transaction costs (i.e. make use of netting over time or of economies of scale).
 - Disadvantage: Creates interest rate risk, which can be hedged, too.
- Example: Assume company X expects SEK 100m at beginning of year t=5 and SEK 50m at the end of year t=5: hedge with one forward with maturity July 1 (middle of year).
 - 1. Deposit the SEK 100m for ½.
 - 2. Borrow against the SEK 50m for ½ year.
 - 3. Sell forward the proceeds of the deposit and the loan on July 1.
- Danger! Interest rate risk (how do you do the discounting/compounding?)

Alternatives to Hedging with Forwards

- Extreme bin: Hedge PV of all exposures with one instrument (forward or equivalent) with same PV.
 - No company follows this extreme approach \rightarrow too risky.
- Match future cash inflows and cash outflows.
 - Difficult, as cash inflows and outflows are seldom certain. Also, certain firms (e.g. exporters) typically have much larger FC inflows than outflows.
- Only invoice in HC.
 - Feasibility of this strategy limited by counterparty's preferences,
 market power and company strategy.

Using Forwards for Speculation

- Several different definitions:
 - 1. Speculators take on positions for financial reasons, not because they need the asset or want to hedge (... but most investors fulfill these conditions).
 - 2. Speculators take on risk (... but even the market portfolio is risky).
 - 3. Speculators give up diversification to bet on the future direction of an assets' market value.
- Conditions for successful speculation:
 - 1. Speculator can spot mispricing which market has (foolishly) not yet noticed.
 - 2. Market will soon notice its error and will take on speculator's view.
 - 3. Gains from this price adjustment outweigh costs from under-diversification.
- Example: speculation with forwards

Figure 5.5. Speculating in the spot market: (a) buy forward; (b) sell forward.

Speculation – More Complex Strategies I

- Assume: An agent wants to speculate on F_{τ_1,τ_2} , i.e. he believes the forward rate for delivery at T_2 will have gone up by T_1 .
 - Buy forward now (at time t) and sell forward in future (at time T_1), both for delivery at T=2.
 - Payoff at time T_2 : $\tilde{F}_{T_1,T_2} F_{t,T_2}$
- Speculate on drop in F_{T_1,T_2} : reverse strategy.
- Note that the forward rate = spot rate + swap rate. As a result, the above strategy is a bet on both spot rate and swap rate.

- Payoff at time
$$T_2$$
: $\tilde{S}_{T_1} + \tilde{w}_{T_1, T_2} - S_t - w_{t, T_2} = (\tilde{S}_{T_1} - S_t) + (\tilde{w}_{T_1, T_2} - w_{t, T_2})$

• Exercise: Think that an agent wants to speculate on swap rate \widetilde{w}_{T_1,T_2} alone, i.e. he believes that the swap rate will have gone up by T_1 – relative to the swap rate at time t with delivery at time T_2 . The example in the book is rather difficult and misleading, ignore it.

Summary, Homework and Additional Reading

- In this lecture, we dealt with:
 - Forward quotes with bid/ask spreads.
 - Covered interest parity with bid/ask spreads.
 - Using forward contracts: Hedging, speculation and other uses.
- At home, you will need to cover:
 - More background knowledge on using forward markets for information reasons and for legal reasons.
- Additional reading:
 - The Economist (2009), "Corporate hedging gets harder: The perils of prudence", *The Economist*, 18 June 2009.