Experimental design

• Research model: whole etiolated(dark-grown) Arabidopsis seedlings

1 RNA-sequencing (RNA-Seq)

> Treatment: six hormones

unpublished Brassinosteroid (BR)
Salicylic acid (SA)

GR24 - Strigolactone/Karrikin (SL/KAR)

published

Abscisic acid (ABA)

Ethylene (ET)

Jasmonic acid (JA)

2 Chromatin immunoprecipitation sequencing (ChIP-Seq)

- > Treatment: air/hormone treatment for 2 h (BR, ET, JA, SA)
 - ✓ 14 key TFs across multiple hormones:

Objects in ChIP-seq analysis

Workflow of RNA-seq analysis (ET RNA-seq data)

Workflow of RNA-seq analysis (ABA, BR, JA, SA, SL_KAR RNA-seq data)

Overview of RNA-seq analysis

edgeR: Testing for DE genes (FDR $\leq 0.05/0.01$)

Workflow of detecting alternative splicing isoform switch events

Step 1: Scoring

Calculate the average expression values of the replicates for each time-point for each isoform.

Determine the switch points

Step 2: Filtering

The switch points divide the time series frame into intervals.

The probability: the sum of the frequencies that one isoform is more or less abundant than the other > 0.5

The differences: the sum of average abundance differences of the two isoforms > 1

The p-values: the significance of the differences between the isoform abundances >0.05

The min time point in interval: a measure of whether the effect of the switch is transient or long lived > 1

Step 3: Plot

Interactive visualizations of the isoform switch profiles.

Workflow of ChIP-seq data analysis

