PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 95/22611 C12N 15/12, 15/16, A61K 48/00, 38/39, C07K 14/47, A61L 27/00 (43) International Publication Date: 24 August 1995 (24.08.95) (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, (21) International Application Number: PCT/US95/02251 (22) International Filing Date: 21 February 1995 (21.02.95) MX, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TI, TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG). (30) Priority Data: 08/199,780 18 February 1994 (18.02.94) 30 September 1994 (30.09.94) 08/316,650 US (71) Applicant: THE REGENTS OF THE UNIVERSITY OF Published MICHIGAN [US/US]; Wolverine Tower, Room 2071, 3003 Without international search report and to be republished South State Street, Ann Arbor, MI 48109-1280 (US). upon receipt of that report. (74) Agent: PARKER, David, L.; Arnold, White & Durkee, P.O. Box 4433, Houston, TX 77210 (US).

(54) Title: METHODS AND COMPOSITIONS FOR STIMULATING BONE CELLS

(57) Abstract

Disclosed are methods, compositions, kits and devices for use in transferring nucleic acids into bone cells in situ and/or for stimulating bone progenitor cells. Type II collagen and, particularly, osteotropic genes, are shown to stimulate bone progenitor cells and to promote bone growth, repair and regeneration in vivo. Gene transfer protocols are disclosed for use in transferring various nucleic acid materials into bone, as may be used in treating various bone-related diseases and defects including fractures, osteoporosis, osteogenesis, imperfecta and in connection with bone implants.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

· Austria	GB	United Kingdom	MR	Mauritania
Australia	GE	Georgia	MW	Malawi
Barbados	GN	Guinea	NE	Niger
Belgium	GR	Greece	NL	Netherlands
Burkina Faso	HU	Hungary	NO	Norway
Bulgaria	IE	Ireland	NZ	New Zealand
Benin	IT	Italy	PL	Poland
Brazil	JP	Japan	. PT	Portugal
Belarus	~ KE	Kenya	RO	Romania
Canada	KG	Kyrgystan	RU	Russian Federation
Central African Republic	KP		SD	Sudan
•		of Korea	SE	Sweden
Switzerland	KR	Republic of Korea	SI	Slovenia
Côte d'Ivoire			SK	Slovakia
Cameroon			SN	Senegal
China				Chad
				Togo
				Tajikistan
•				Trinidad and Tobago
•				Ukraine
		•	-	United States of America
				Uzbekistan
				Viet Nam
	2-221		***	, me , 180 m
	Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazīl Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Czechoslovakia Czech Republic Germany Denmark Spain Finland France	Australia GE Barbados GN Belgium GR Bukina Faso HU Bulgaria IE Benin IT Brazil JP Belarus KE Canada KG Central African Republic KP Congo Switzerland KR Côte d'Ivoire KZ Cameroon LI China LK Czechoslovakia LU Czech Republic LV Germany MC Denmark MD Spain MG Finland ML France MN	Australia Barbados Barbados GN Guinea Belgium GR Greece Burkina Faso HU Hungary Bulgaria IE Ireland Benin IT Italy Brazīl JP Japan Belarus KE Kenya Canada KG Kyrgystan Central African Republic Congo of Korea Switzerland KR Republic of Korea Switzerland KR Republic of Korea Câmeroon LI Liechenstein China LK Sri Lanka Czech Republic LV Latvia Germany MC Monaco Denmark MD Republic of Moldova Spain MG Madagascar Finland MI Mali France MN Mongolia	Australia GE Georgia MW Barbados GN Guinea NE Belgium GR Greece NL Burkina Faso HU Hungary NO Bulgaria IE Ireland NZ Benin IT Ialy PL Brazil JP Japan PT Belarus KE Kenya RO Canada KG Kyrgystan RU Central African Republic KP Democratic People's Republic SD Congo of Korea SE SE Switzerland KR Republic of Korea SI Côte d'Ivoire KZ Kazakhstan SK Cameroon LI Liechtenstein SN China LK Sri Lanka TD Czechoslovakia LU Luxembourg TG Czech Republic LV Latvia TJ Germany MC Monaeo TT

- 1 -

DESCRIPTION

Methods and Compositions for Stimulating Bone Cells

The present application is a continuation-in-part of U.S. Serial Number 08/316,650, filed September 30, 1994; which is a continuation-in-part of U.S. Serial Number 08/199,780, filed February 18, 1994; the entire text and figures of which disclosures are specifically incorporated herein by reference without disclaimer. The United States government has certain rights in the present invention pursuant to Grant HL-41926 from the National Institutes of Health.

15 1. Field of the Invention

The present invention relates generally to the field of bone cells and tissues. More particularly, certain embodiments concern the transfer of genetic material into bone and other embodiments concern type II collagen. In certain examples, the invention concerns the use of type II collagen and nucleic acids to stimulate bone growth, repair and regeneration. Methods, compositions, kits and devices are provided for transferring an osteotropic gene into bone progenitor cells, which is shown to stimulate progenitor cells and to promote increased bone formation in vivo.

2. Description of the Related Art

30

35

Defects in the process of bone repair and regeneration are linked to the development of several human diseases and disorders, e.g., osteoporosis and osteogenesis imperfecta. Failure of the bone repair mechanism is, of course, also associated with significant complications in clinical orthopaedic practice, for example, fibrous non-union following bone fracture,

- 2 -

implant interface failures and large allograft failures. The lives of many individuals would be improved by the development of new therapies designed to stimulate and strengthen the fracture repair process.

5

10

Naturally, any new technique to stimulate bone repair would be a valuable tool in treating bone fractures. A significant portion of fractured bones are still treated by casting, allowing natural mechanisms to effect wound repair. Although there have been advances in fracture treatment in recent years, including improved devices, the development of new processes to stimulate, or complement, the wound repair mechanisms would represent significant progress in this area.

15

20

25

A very significant patient population that would benefit from new therapies designed to promote fracture repair, or even prevent or lessen fractures, are those patients suffering from osteoporosis. The term osteoporosis refers to a heterogeneous group of disorders characterized by decreased bone mass and fractures. Clinically, osteoporosis is segregated into type I and type II. Type I osteoporosis occurs predominantly in middle aged women and is associated with estrogen loss at the menopause, while osteoporosis type II is associated with advancing age.

An estimated 20-25 million people are at increased risk for fracture because of site-specific bone loss.

The cost of treating osteoporosis in the United States is currently estimated to be in the order of \$10 billion per year. Demographic trends, i.e., the gradually increasing age of the US population, suggest that these costs may increase 2-3 fold by the year 2020 if a safe and

- 3 -

effective treatment is not found.

5

10

35

The major focus of current therapies for osteoporosis is fracture prevention, not fracture repair. This is an important consideration, as it is known that significant morbidity and mortality are associated with prolonged bed rest in the elderly, especially those who have suffered hip fracture. New methods are clearly needed for stimulating fracture repair, thus restoring mobility in these patients before the complications arise.

Osteogenesis imperfecta (OI) refers to a group of inherited connective tissue diseases characterized by bone and soft connective tissue fragility (Byers and 15 Steiner, 1992; Prockop, 1990). Males and females are affected equally, and the overall incidence is currently estimated to be 1 in 5,000-14,000 live births. Hearing loss, dentinogenesis imperfecta, respiratory 20 insufficiency, severe scoliosis and emphysema are just some of the conditions that are associated with one or more types of OI. While accurate estimates of the health care costs are not available, the morbidity and mortality associated with OI certainly result from the extreme 25 propensity to fracture (OI types I-IV) and the deformation of abnormal bone following fracture repair (OI types II-IV) (Bonadio and Goldstein, 1993). The most relevant issue with OI treatment is to develop new methods by which to improve fracture repair and thus to improve the quality of life of these patients. 30

The techniques of bone reconstruction, such as is used to reconstruct defects occurring as a result of trauma, cancer surgery or errors in development, would also be improved by new methods to promote bone repair. Reconstructive methods currently employed, such as using autologous bone grafts, or bone grafts with attached soft

- 4 -

tissue and blood vessels, are associated with significant drawbacks of both cost and difficulty. For example, harvesting a useful amount of autologous bone is not easily achieved, and even autologous grafts often become infected or suffer from resorption.

The process of bone repair and regeneration resembles the process of wound healing in other tissues. A typical sequence of events includes; hemorrhage; clot formation; dissolution of the clot with concurrent removal of damaged tissues; ingrowth of granulation tissue; formation of cartilage; capillary ingrowth and cartilage turnover; rapid bone formation (callus tissue); and, finally, remodeling of the callus into cortical and trabecular bone. Therefore, bone repair is a complex process that involves many cell types and regulatory molecules. The diverse cell populations involved in fracture repair include stem cells, macrophages, fibroblasts, vascular cells, osteoblasts, chondroblasts, and osteoclasts.

10

15

20

Regulatory factors involved in bone repair are known to include systemic hormones, cytokines, growth factors, and other molecules that regulate growth and differentiation. Various osteoinductive agents have been purified and shown to be polypeptide growth-factor-like molecules. These stimulatory factors are referred to as bone morphogenetic or morphogenic proteins (BMPs), and have also been termed osteogenic bone inductive proteins or osteogenic proteins (OPs). Several BMP (or OP) genes have now been cloned, and the common designations are BMP-1 through BMP-8. New BMPs are in the process of discovery. Although the BMP terminology is widely used, it may prove to be the case that there is an OP

-5-

counterpart term for every individual BMP (Alper, 1994).

BMPs 2-8 are generally thought to be osteogenic, although BMP-1 is a more generalized morphogen (Shimell et al., 1991). BMP-3 is also called osteogenin (Luyten et al., 1989) and BMP-7 is also called OP-1 (Ozkaynak et al., 1990). BMPs are related to, or part of, the transforming growth factor- β (TGF- β) superfamily, and both TGF- β 1 and TGF- β 2 also regulate osteoblast function (Seitz et al., 1992). Several BMP (or OP) nucleotide sequences and polypeptides have been described in U.S. Patents, e.g., 4,795,804; 4,877,864; 4,968,590; 5,108,753; including, specifically, BMP-1 disclosed in U.S. Patent 5,108,922; BMP-2A (currently referred to as BMP-2) in U.S. Patents 5,166,058 and 5,013,649; BMP-2B (currently referred to as BMP-4) disclosed in U.S. Patent 5,013,649; BMP-3 in 5,116,738; BMP-5 in 5,106,748; BMP-6 in 5,187,076; BMP-7 in 5,108,753 and 5,141,905; and OP-1, COP-5 and COP-7 in 5,011,691.

20

25

10

15

Other growth factors or hormones that have been reported to have the capacity to stimulate new bone formation include acidic fibroblast growth factor (Jingushi et al., 1990); estrogen (Boden et al., 1989); macrophage colony stimulating factor (Horowitz et al., 1989); and calcium regulatory agents such as parathyroid hormone (PTH) (Raisz and Kream, 1983).

Several groups have investigated the possibility of using bone stimulating proteins and polypeptides, particularly recombinant BMPs, to influence bone repair in vivo. For example, recombinant BMP-2 has been employed to repair surgically created defects in the mandible of adult dogs (Toriumi et al., 1991), and high doses of this molecule have been shown to functionally repair segmental defects in rat femurs (Yasko et al., 1992). Chen and colleagues showed that a single

- 6 -

application of 25-100 mg of recombinant TGF- β l adjacent to cartilage induced endochondral bone formation in the rabbit ear full thickness skin wounds (Chen et al., 1991). It has also been reported that an application of TGF- β l in a 3% methylcellulose gel was able to repair surgically induced large skull defects that otherwise heal by fibrous connective tissue and never form bone (Beck et al., 1991).

10

15

20

25

However, there are many drawbacks associated with these type of treatment protocols, not least the expensive and time-consuming purification of the recombinant proteins from their host cells. Also, polypeptides, once administered to an animal are more unstable than is generally desired for a therapeutic agent, and they are susceptible to proteolytic attack. Furthermore, the administration of recombinant proteins can initiate various inhibitive or otherwise harmful immune responses. It is clear, therefore, that a new method capable of promoting bone repair and regeneration in vivo would represent a significant scientific and medical advance with immediate benefits to a large number of patients. A method readily adaptable for use with a variety of matrices and bone-stimulatory genes would be particularly advantageous.

SUMMARY OF THE INVENTION

30 The present invention overcomes one or more of these and other drawbacks inherent in the prior art by providing novel methods, compositions and devices for use in transferring nucleic acids into bone cells and tissues, and for promoting bone repair and regeneration.

35 Certain embodiments of the invention rest, generally, with the inventors' surprising finding that nucleic acids can be effectively transferred to bone progenitor cells

in vivo and that, in certain embodiments, the transfer of an osteotropic gene stimulates bone repair in an animal.

The invention, in general terms, thus concerns methods, compositions and devices for transferring a nucleic acid segment into bone progenitor cells or tissues. The methods of the invention generally comprise contacting bone progenitor cells with a composition comprising a nucleic acid segment in a manner effective to transfer the nucleic acid segment into the cells. The cells may be cultured cells or recombinant cells maintained in vitro, when all that is required is to add the nucleic acid composition to the cells, e.g., by adding it to the culture media.

15

20

25

10

5

Alternatively, the progenitor cells may be located within a bone progenitor tissue site of an animal, when the nucleic acid composition would be applied to the site in order to effect, or promote, nucleic acid transfer into bone progenitor cells in vivo. In transferring nucleic acids into bone cells within an animal, a preferred method involves first adding the genetic material to a bone-compatible matrix and then using the resultant matrix to contact an appropriate tissue site within the animal. The "resultant" matrix may, in certain embodiments, be referred to as a matrix impregnated with genetic material, or it may take the form of a matrix-nucleic acid mixture, or even conjugate.

An extremely wide variety of genetic material can be transferred to bone progenitor cells or tissues using the compositions and methods of the invention. For example, the nucleic acid segment may be DNA (double or single-stranded) or RNA (e.g., mRNA, tRNA, rRNA); it may also be a "coding segment", i.e., one that encodes a protein or polypeptide, or it may be an antisense nucleic acid molecule, such as antisense RNA that may function to

- B -

disrupt gene expression. The nucleic acid segments may thus be genomic sequences, including exons or introns alone or exons and introns, or coding cDNA regions, or in fact any construct that one desires to transfer to a bone progenitor cell or tissue. Suitable nucleic acid segments may also be in virtually any form, such as naked DNA or RNA, including linear nucleic acid molecules and plasmids; functional inserts within the genomes of various recombinant viruses, including viruses with DNA genomes and retroviruses; and any form of nucleic acid segment, plasmid or virus associated with a liposome or a gold particle, the latter of which may be employed in connection with the gene gun technology.

15 The invention may be employed to promote expression of a desired gene in bone cells or tissues and to impart a particular desired phenotype to the cells. This expression could be increased expression of a gene that is normally expressed (i.e., "over-expression"), or it 20 could be used to express a gene that is not normally associated with bone progenitor cells in their natural environment. Alternatively, the invention may be used to suppress the expression of a gene that is naturally expressed in such cells and tissues, and again, to change 25 or alter the phenotype. Gene suppression may be a way of expressing a gene that encodes a protein that exerts a down-regulatory function, or it may utilize antisense technology.

30 1. Bone Progenitor Cells and Tissues

10

35

In certain embodiments, this invention provides advantageous methods for using genes to stimulate bone progenitor cells. As used herein, the term "bone progenitor cells" refers to any or all of those cells that have the capacity to ultimately form, or contribute to the formation of, new bone tissue. This includes

various cells in different stages of differentiation, such as, for example, stem cells, macrophages, fibroblasts, vascular cells, osteoblasts, chondroblasts, osteoclasts, and the like. Bone progenitor cells also include cells that have been isolated and manipulated in vitro, e.g., subjected to stimulation with agents such as cytokines or growth factors or even genetically engineered cells. The particular type or types of bone progenitor cells that are stimulated using the methods and compositions of the invention are not important, so long as the cells are stimulated in such a way that they are activated and, in the context of in vivo embodiments, ultimately give rise to new bone tissue.

15 The term "bone progenitor cell" is also used to particularly refer to those cells that are located within, are in contact with, or migrate towards (i.e., "home to"), bone progenitor tissue and which cells directly or indirectly stimulate the formation of mature 20 bone. As such, the progenitor cells may be cells that ultimately differentiate into mature bone cells themselves, i.e., cells that "directly" form new bone tissue. Cells that, upon stimulation, attract further progenitor cells or promote nearby cells to differentiate into bone-forming cells (e.g., into osteoblasts, 25 osteocytes and/or osteoclasts) are also considered to be progenitor cells in the context of this disclosure - as their stimulation "indirectly" leads to bone repair or regeneration. Cells affecting bone formation indirectly may do so by the elaboration of various growth factors or 30 cytokines, or by their physical interaction with other cell types. Although of scientific interest, the direct or indirect mechanisms by which progenitor cells

- 10 -

stimulate bone or wound repair is not a consideration in practicing this invention.

Bone progenitor cells and bone progenitor tissues may be cells and tissues that, in their natural environment, arrive at an area of active bone growth, repair or regeneration (also referred to as a wound repair site). In terms of bone progenitor cells, these may also be cells that are attracted or recruited to such an area. These may be cells that are present within an artificially-created osteotomy site in an animal model, such as those disclosed herein. Bone progenitor cells may also be isolated from animal or human tissues and maintained in an in vitro environment. Suitable areas of the body from which to obtain bone progenitor cells are areas such as the bone tissue and fluid surrounding a fracture or other skeletal defect (whether or not this is an artificially created site), or indeed, from the bone marrow. Isolated cells may be stimulated using the methods and compositions disclosed herein and, if desired, be returned to an appropriate site in an animal where bone repair is to be stimulated. In such cases, the nucleic-acid containing cells would themselves be a form of therapeutic agent. Such ex vivo protocols are well known to those of skill in the art.

10

15

20

25

30

35

In important embodiments of the invention, the bone progenitor cells and tissues will be those cells and tissues that arrive at the area of bone fracture or damage that one desires to treat. Accordingly, in treatment embodiments, there is no difficulty associated with the identification of suitable target progenitor cells to which the present therapeutic compositions should be applied. All that is required in such cases is to obtain an appropriate stimulatory composition, as disclosed herein, and contact the site of the bone fracture or defect with the composition. The nature of

35

this biological environment is such that the appropriate cells will become activated in the absence of any further targeting or cellular identification by the practitioner.

5 Certain methods of the invention involve, generally, contacting bone progenitor cells with a composition comprising one or more osteotropic genes (with or without additional genes, proteins or other biomolecules) so as to promote expression of said gene in said cells. As outlined above, the cells may be contacted in vitro or in 10 vivo. This is achieved, in the most direct manner, by simply obtaining a functional osteotropic gene construct and applying the construct to the cells. The present inventors surprisingly found that there are no particular molecular biological modifications that need to be 15 performed in order to promote effective expression of the gene in progenitor cells. Contacting the cells with DNA, e.g., a linear DNA molecule, or DNA in the form of a plasmid or other recombinant vector, that contains the gene of interest under the control of a promoter, along 20 with the appropriate termination signals, is sufficient to result in uptake and expression of the DNA, with no further steps necessary.

In preferred embodiments, the process of contacting the progenitor cells with the osteotropic gene composition is conducted in vivo. Again, a direct consequence of this process is that the cells take up and express the gene and that they, without additional steps, function to stimulate bone tissue growth, repair or regeneration.

An assay of an osteoinductive gene may be conducted using the bone induction bioassay of Sampath and Reddi (1981; incorporated herein by reference). This is a rat bone formation assay that is routinely used to evaluate the osteogenic activity of bone inductive factors.

10

15

20

However, for analyzing the effects of osteotropic genes on bone growth, one is generally directed to use the novel osteotomy model disclosed herein.

5 2. Osteotropic Genes

As used herein, the terms "osteotropic and osteogenic gene" are used to refer to a gene or DNA coding region that encodes a protein, polypeptide or peptide that is capable of promoting, or assisting in the promotion of, bone formation, or one that increases the rate of primary bone growth or healing (or even a gene that increases the rate of skeletal connective tissue growth or healing). The terms promoting, inducing and stimulating are used interchangeably throughout this text to refer to direct or indirect processes that ultimately result in the formation of new bone tissue or in an increased rate of bone repair. Thus, an osteotropic gene is a gene that, when expressed, causes the phenotype of a cell to change so that the cell either differentiates, stimulates other cells to differentiate, attracts boneforming cells, or otherwise functions in a manner that ultimately gives rise to new bone tissue.

25 In using the new osteotomy model of the invention, an osteotropic gene is characterized as a gene that is capable of stimulating proper bone growth in the osteotomy gap to any degree higher than that observed in control studies, e.g., parallel studies employing an 30 irrelevant marker gene such as β -galactosidase. This stimulation of "proper bone growth" includes both the type of tissue growth and the rate of bone formation. using the model with a 5 mm osteotomy gap, an osteotropic gene is generally characterized as a gene that is capable of promoting or inducing new bone formation, rather than 35 abnormal bone fracture repair, i.e., fibrous non-union. In using the 2 mm osteotomy gap, one may characterize

WO 95/22611

osteotropic genes as genes that increase the rate of primary bone healing as compared to controls, and more preferably, genes capable of stimulating repair of the osteotomy defect in a time period of less than nine weeks.

In general terms, an osteotropic gene may also be characterized as a gene capable of stimulating the growth or regeneration of skeletal connective tissues such as, e.g., tendon, cartilage, and ligament. Thus, in certain embodiments, the methods and compositions of the invention may be employed to stimulate the growth or repair of both bone tissue itself and also of skeletal connective tissues.

15

20

25

10

5

A variety of osteotropic genes are now known, all of which are suitable for use in connection with the present invention. Osteotropic genes and the proteins that they encode include, for example, systemic hormones, such as parathyroid hormone (PTH) and estrogen; many different growth factors and cytokines; chemotactic or adhesive peptides or polypeptides; molecules such as activin (U.S. Patent 5,208,219, incorporated herein by reference); specific bone morphogenetic proteins (BMPs); and even growth factor receptor genes.

Examples of suitable osteotropic growth factors include those of the transforming growth factor (TGF) gene family, including TGFs 1-3, and particularly TGF-β1, TGF-β2 and TGF-β3, (U.S. Patents 4,886,747 and 4,742,003, incorporated herein by reference), with TGF-α (U.S. Patent 5,168,051, incorporated herein by reference) also being of possible use; and also fibroblast growth factors (FGF), previously referred to as acidic and basic FGF and now referred to as FGF1-9; granulocyte/macrophage colony stimulating factor (GMCSF); epidermal growth factor (EGF); platelet derived growth factor (PDGF); insulin-

10

15

20

25

- 14 -

like growth factors (IGF), including IGF-I and IGF-II; and leukemia inhibitory factor (LIF), also known as HILDA and DIA. Any of the above or other related genes, or DNA segments encoding the active portions of such proteins, may be used in the novel methods and compositions of the invention.

Certain preferred osteotropic genes and DNA segments are those of the TGF superfamily, such as TGF- β 1, TGF- β 2, TGF- β 3 and members of the BMP family of genes. For example, several BMP genes have been cloned that are ideal candidates for use in the nucleic acid transfer or delivery protocols of the invention. Suitable BMP genes are those designated BMP-2 through BMP-12. BMP-1 is not considered to be particularly useful at this stage.

There is considerable variation in the terminology currently employed in the literature in referring to these genes and polypeptides. It will be understood by those of skill in the art that all BMP genes that encode an active osteogenic protein are considered for use in this invention, regardless of the differing terminology that may be employed. For example, BMP-3 is also called osteogenin and BMP-7 is also called OP-1 (osteogenic protein-1). It is likely that the family of factors termed OP(s) is as large as that termed BMP(s), and that these terms, in fact, describe the same set of molecules (Alper, 1994).

The DNA sequences for several BMP (or OP) genes have been described both in scientific articles and in U.S. Patents such as 4,877,864; 4,968,590; 5,108,753.

Specifically, BMP-1 sequences are disclosed in U.S. Patent 5,108,922; BMP-2A (currently referred to as BMP-2) in U.S. Patents 5,166,058 and 5,013,649; BMP-2B (currently referred to as BMP-4) disclosed in U.S. Patent 5,013,649; BMP-3 in 5,116,738; BMP-5 in 5,106,748; BMP-6

35

in 5,187,076; and BMP-7 in 5,108,753 and 5,141,905; all incorporated herein by reference). The article by Wozney et al., (1988; incorporated herein by reference) is considered to be particularly useful for describing BMP molecular clones and their activities. DNA sequences encoding the osteogenic proteins designated OP-1, COP-5 and COP-7 are also disclosed in U.S. Patent 5,011,691.

All of the above issued U.S. Patents are 10 incorporated herein by reference and are intended to be used in order to supplement the present teachings regarding the preparation of BMP and OP genes and DNA segments that express osteotropic polypeptides. As disclosed in the above patents, and known to those of 15 skill in the art, the original source of a recombinant gene or DNA segment to be used in a therapeutic regimen need not be of the same species as the animal to be treated. In this regard, it is contemplated that any recombinant PTH, TGF or BMP gene may be employed to 20 promote bone repair or regeneration in a human subject or an animal, e.g., a horse. Particularly preferred genes are those from human, murine and bovine sources, in that such genes and DNA segments are readily available, with the human or murine forms of the gene being most 25 preferred for use in human treatment regimens. Recombinant proteins and polypeptides encoded by isolated DNA segments and genes are often referred to with the prefix "r" for recombinant and "rh" for recombinant human. As such, DNA segments encoding rBMPs, such as rhBMP-2 or rhBMP-4, are contemplated to be particularly 30 useful in connection with this invention.

The definition of a "BMP gene", as used herein, is a gene that hybridizes, under relatively stringent hybridization conditions (see, e.g., Maniatis et al., 1982), to DNA sequences presently known to include BMP gene sequences.

To prepare an osteotropic gene segment or cDNA one may follow the teachings disclosed herein a dalso the teachings of any of patents or scientific documents specifically referenced herein. Various nucleotide 5 sequences encoding active BMPs are disclosed in U.S. Patents 5,166,058, 5,013,649, 5,116,738, 5,106,748, 5,187,076, 5,108,753 and 5,011,691, each incorporated herein by reference. By way of example only, U.S. Patent 5,166,058, teaches that hBMP-2 is encoded by a nucleotide sequence from nucleotide #356 to nucleotide #1543 of the sequence shown in Table II of the patent. One may thus obtain a hBMP-2 DNA segment using molecular biological techniques, such as polymerase chain reaction (PCR™) or screening a cDNA or genomic library, using primers or 15 probes with sequences based on the above nucleotide sequence. The practice of such techniques is a routine matter for those of skill in the art, as taught in various scientific articles, such as Sambrook et al., (1989), incorporated herein by reference. Certain documents further particularly describe suitable 20 mammalian expression vectors, e.g., U.S. Patent 5,168,050, incorporated herein by reference.

Osteotropic genes and DNA segments that are
particularly preferred for use in certain aspects of the present compositions and methods are the TGF, PTH and BMP genes. TGF genes are described in U.S. Patents 5,168,051; 4,886,747 and 4,742,003, each incorporated herein by reference. TGFα may not be as widely applicable as TGFβ, but is proposed for use particularly in applications involving skeletal soft tissues. The PTH gene, or a DNA segment encoding the active fragment thereof, such as a DNA segment encoding a polypeptide that includes the amino acids 1-34 (hPTH1-34; Hendy et al., 1981; incorporated herein by reference) is another

5

10

15

20

25

30

- 17 -

preferred gene; as are the BMP genes termed BMP-4 and BMP-2, such as the gene or cDNA encoding the murine BMP-4 disclosed herein.

It is also contemplated that one may clone further genes or cDNAs that encode an osteotropic protein or polypeptide. The techniques for cloning DNA molecules, i.e., obtaining a specific coding sequence from a DNA library that is distinct from other portions of DNA, are well known in the art. This can be achieved by, for example, screening an appropriate DNA library, as disclosed in Example XV herein, which relates to the cloning of a wound healing gene. The screening procedure may be based on the hybridization of oligonucleotide probes, designed from a consideration of portions of the amino acid sequence of known DNA sequences encoding related osteogenic proteins. The operation of such screening protocols are well known to those of skill in the art and are described in detail in the scientific literature, for example, in Sambrook et al., (1989), incorporated herein by reference.

Osteotropic genes with sequences that vary from those described in the literature are also encompassed by the invention, so long as the altered or modified gene still encodes a protein that functions to stimulate bone progenitor cells in any direct or indirect manner. These sequences include those caused by point mutations, those due to the degeneracies of the genetic code or naturally occurring allelic variants, and further modifications that have been introduced by genetic engineering, i.e., by the hand of man.

Techniques for introducing changes in nucleotide

sequences that are designed to alter the functional properties of the encoded proteins or polypeptides are well known in the art, e.g., U.S. Patent 4,518,584,

- 18 -

incorporated herein by reference, which techniques are also described in further detail herein. Such modifications include the deletion, insertion or substitution of bases, and thus, changes in the amino acid sequence. Changes may be made to increase the osteogenic activity of a protein, to increase its biological stability or half-life, to change its glycosylation pattern, and the like. All such modifications to the nucleotide sequences are encompassed by this invention.

5

10

15

20

25

It will, of course, be understood that one or more than one osteotropic gene may be used in the methods and compositions of the invention. The nucleic acid delivery methods may thus entail the administration of one, two, three, or more, osteotropic genes. The maximum number of genes that may be applied is limited only by practical considerations, such as the effort involved in simultaneously preparing a large number of gene constructs or even the possibility of eliciting a significant adverse cytotoxic effect. The particular combination of genes may be two or more distinct BMP genes; or it may be such that a growth factor gene is combined with a hormone gene, e.g., a BMP gene and a PTH gene; a hormone or growth factor gene may even be combined with a gene encoding a cell surface receptor capable of interacting with the polypeptide product of the first gene.

In using multiple genes, they may be combined on a single genetic construct under control of one or more promoters, or they may be prepared as separate constructs of the same of different types. Thus, an almost endless combination of different genes and genetic constructs may be employed. Certain gene combinations may be designed to, or their use may otherwise result in, achieving synergistic effects on cell stimulation and bone growth,

5

10

15

20

any and all such combinations are intended to fall within the scope of the present invention. Indeed, many synergistic effects have been described in the scientific literature, so that one of ordinary skill in the art would readily be able to identify likely synergistic gene combinations, or even gene-protein combinations.

It will also be understood that, if desired, the nucleic segment or gene could be administered in combination with further agents, such as, e.g., proteins or polypeptides or various pharmaceutically active agents. So long as genetic material forms part of the composition, there is virtually no limit to other components which may also be included, given that the additional agents do not cause a significant adverse effect upon contact with the target cells or tissues. The nucleic acids may thus be delivered along with various other agents, for example, in certain embodiments one may wish to administer an angiogenic factor, and/or an inhibitor of bone resorption, as disclosed in U.S. Patents 5,270,300 and 5,118,667, respectively, each incorporated herein by reference.

3. Gene Constructs and DNA Segments

25 .

30

35

As used herein, the terms "gene" and "DNA segment" are both used to refer to a DNA molecule that has been isolated free of total genomic DNA of a particular species. Therefore, a gene or DNA segment encoding an osteotropic gene refers to a DNA segment that contains sequences encoding an osteotropic protein, but is isolated away from, or purified free from, total genomic DNA of the species from which the DNA is obtained. Included within the term "DNA segment", are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phage, retroviruses, adenoviruses, and the like.

- 20 -

The term "gene" is used for simplicity to refer to a functional protein or peptide encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences and cDNA sequences. "Isolated substantially away from other coding sequences" means that the gene of interest, in this case, an osteotropic gene, forms the significant part of the coding region of the DNA segment, and that the DNA segment does not contain large portions of naturallyoccurring coding DNA, such as large chromosomal fragments 10 or other functional genes or cDNA coding regions. course, this refers to the DNA segment as originally isolated, and does not exclude genes or coding regions, such as sequences encoding leader peptides or targeting sequences, later added to the segment by the hand of man. 15

. This invention provides novel ways in which to utilize various known osteotropic DNA segments and recombinant vectors. As described above, many such vectors are readily available, one particular detailed example of a suitable vector for expression in mammalian cells is that described in U.S. Patent 5,168,050, incorporated herein by reference. However, there is no requirement that a highly purified vector be used, so long as the coding segment employed encodes a osteotropic protein and does not include any coding or regulatory sequences that would have a significant adverse effect on bone progenitor cells. Therefore, it will also be understood that useful nucleic acid sequences may include additional residues, such as additional non-coding 30 sequences flanking either of the 5' or 3' portions of the coding region or may include various internal sequences, i.e., introns, which are known to occur within genes.

20

25

After identifying an appropriate osteotropic gene or 35 DNA molecule, it may be inserted into any one of the many vectors currently known in the art, so that it will

- 21 -

direct the expression and production of the osteotropic protein when incorporated into a bone progenitor cell. In a recombinant expression vector, the coding portion of the DNA segment is positioned under the control of a promoter. The promoter may be in the form of the promoter which is naturally associated with an osteotropic gene, as may be obtained by isolating the 5' non-coding sequences located upstream of the coding segment or exon, for example, using recombinant cloning and/or PCR[™] technology, in connection with the compositions disclosed herein.

10

15

20

25

30

35

In other embodiments, it is contemplated that certain advantages will be gained by positioning the coding DNA segment under the control of a recombinant, or heterologous, promoter. As used herein, a recombinant or heterologous promoter is intended to refer to a promoter that is not normally associated with an osteotropic gene in its natural environment. Such promoters may include those normally associated with other osteotropic genes, and/or promoters isolated from any other bacterial, viral, eukaryotic, or mammalian cell. Naturally, it will be important to employ a promoter that effectively directs the expression of the DNA segment in bone progenitor cells.

The use of recombinant promoters to achieve protein expression is generally known to those of skill in the art of molecular biology, for example, see Sambrook et al., (1989). The promoters employed may be constitutive, or inducible, and can be used under the appropriate conditions to direct high level or regulated expression of the introduced DNA segment. The currently preferred promoters are those such as CMV, RSV LTR, the SV40 promoter alone, and the SV40 promoter in combination with various enhancer elements.

1.0

15

20

Osteotropic genes and DNA segments may also be in the form of a DNA insert which is located within the genome of a recombinant virus, such as, for example a recombinant adenovirus, adeno-associated virus (AAV) or retrovirus. In such embodiments, to place the gene in contact with a bone progenitor cell, one would prepare the recombinant viral particles, the genome of which includes the osteotropic gene insert, and simply contact the progenitor cells or tissues with the virus, whereby the virus infects the cells and transfers the genetic material.

In certain preferred embodiments, one would impregnate a matrix or implant material with virus by soaking the material in recombinant virus stock solution, e.g., for 1-2 hours, and then contact the bone progenitor cells or tissues with the resultant, impregnated matrix. Cells then penetrate, or grow into, the matrix, thereby contacting the virus and allowing viral infection which leads to the cells taking up the desired gene or cDNA and expressing the encoded protein.

In other preferred embodiments, one would form a matrix-nucleic acid admixture, whether using naked DNA, a plasmid or a viral vector, and contact the bone 25 progenitor cells or tissues with the resultant admixed matrix. The matrix may then deliver the nucleic acid into the cells following disassociation at the cell surface, or in the immediate cellular environment. 30 Equally, the matrix admixture itself, especially a particle- or fiber-DNA admixture, may be taken up by cells to provide subsequent intracellular release of the genetic material. The matrix may then be extruded from the cell, catabolized by the cell, or even stored within 35 the cell. The molecular mechanism by which a bonecompatible matrix achieves transfer of DNA to a cell is immaterial to the practice of the present invention.

4. Bone-Compatible Matrices

In certain preferred embodiments, the methods of the invention involved preparing a composition in which the osteotropic gene, genes, DNA segments, or cells already incorporating such genes or segments, are associated with, impregnated within, or even conjugated to, a bone-compatible matrix, to form a "matrix-gene composition" and the matrix-gene composition is then placed in contact with the bone progenitor cells or tissue. The matrix may become impregnated with a gene DNA segment simply by soaking the matrix in a solution containing the DNA, such as a plasmid solution, for a brief period of time of anywhere from about 5 minutes or so, up to and including about two weeks.

Matrix-gene compositions are all those in which genetic material is adsorbed, absorbed, impregnated, conjugated to, or otherwise generally maintained in contact with the matrix. "Maintained in contact with the matrix" means that an effective amount of the nucleic acid composition should remain functionally associated with the matrix until its transfer to the bone progenitor cell or its release in the bone tissue site.

25

30

35

10

15

20

The type of matrix that may be used in the compositions, devices and methods of the invention is virtually limitless, so long as it is a "bone-compatible matrix". This means that the matrix has all the features commonly associated with being "biocompatible", in that it is in a form that does not produce a significant adverse, allergic or other untoward reaction when administered to an animal, and that it is also suitable for placing in contact with bone tissue. A "significant" adverse effect is one that exceeds the normally accepted side-effects associated with any given therapy.

"Bone-compatible", as used herein, means that the matrix (and gene) does not produce a significant adverse or untoward reaction when placed in contact with bone. In certain embodiments, when electing to use a particular bone compatible matrix, one may, optionally, take various other factors into consideration, for example, the capacity of the matrix to provide a structure for the developing bone, its capacity to be resorbed into the body after the bone has been repaired, and such like.

10 However, these properties are not required to practice the invention and are merely exemplary of the factors that may be considered.

In other embodiments, one may also consider the likelihood that the matrix will be transported into the 15 cell, e.g., by active or passive membrane transport. Where such transport and subsequent nucleic acid release is contemplated, other properties of the matrix and gene may be assessed in optimizing the matrix-gene formulation. For example, adenovirus vectors may provide 20 for advantageous DNA release in such embodiments. Matrices that are readily metabolized in the cytoplasm would also likely be preferred in such embodiments. Matrices that are later released from the cell, and preferably, also removed from the surrounding tissue 25 area, would be another preferred form of matrix for use in such embodiments.

The choice of matrix material will differ according
to the particular circumstances and the site of the bone
that is to be treated. Matrices such as those described
in U.S. Patent 5,270,300 (incorporated herein by
reference) may be employed. Physical and chemical
characteristics, such as, e.g., biocompatibility,
biodegradability, strength, rigidity, interface
properties, and even cosmetic appearance, may be
considered in choosing a matrix, as is well known to

5

those of skill in the art. Appropriate matrices will deliver the gene composition and, in certain circumstances, may be incorporated into a cell, or may provide a surface for new bone growth, i.e., they may act as an in situ scaffolding through which progenitor cells may migrate.

A particularly important aspect of the present invention is its use in connection with orthopaedic implants and interfaces and artificial joints, including 10 implants themselves and functional parts of an implant, such as, e.g., surgical screws, pins, and the like. preferred embodiments, it is contemplated that the metal surface or surfaces of an implant or a portion thereof, such as a titanium surface, will be coated with a 15 material that has an affinity for nucleic acids, most preferably, with hydroxyl apatite, and then the coatedmetal will be further coated with the gene or nucleic acid that one wishes to transfer. The available chemical groups of the absorptive material, such as hydroxyl 20 apatite, may be readily manipulated to control its affinity for nucleic acids, as is known to those of skill in the art.

In certain embodiments, non-biodegradable matrices may be employed, such as sintered hydroxylapatite, aluminates, other bioceramic materials and metal materials, particularly titanium. A suitable ceramic delivery system is that described in U.S. Patent 4,596,574, incorporated herein by reference. Polymeric matrices may also be employed, including acrylic ester polymers, lactic acid polymers, and polylactic polyglycolic acid (PLGA) block copolymers, have been disclosed (U.S. Patent 4,526,909, U.S. Patent 4,563,489, Simons et al., 1992, and Langer and Folkman, 1976, respectively, each incorporated herein by reference).

PCT/US95/02251

10

15

20

In certain embodiments, it is contemplated that a biodegradable matrix will likely be most useful. A biodegradable matrix is generally defined as one that is capable of being resorbed into the body. Potential biodegradable matrices for use in connection with the compositions, devices and methods of this invention include, for example, biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxylapatite, PLGA block copolymers, polyanhydrides, matrices of purified proteins, and semi-purified extracellular matrix compositions.

One preferred group of matrices are collagenous matrices, including those obtained from tendon or dermal collagen, e.g., type I collagen, which is generally prepared from dermis; those obtained from cartilage, such as type II collagen; and various other types of collagen. Collagens may be obtained from a variety of commercial sources, e.g., Sigma that supplies type II collagen obtained from bovine trachea; and Collagen Corporation. Collagen matrices may also be prepared as described in U.S. Patents 4,394,370 and 4,975,527, each incorporated herein by reference.

The various collagenous materials may also be in the form of mineralized collagen. One preferred mineralized collagenous material is that termed UltraFiber™, obtainable from Norian Corp. (Mountain View, CA). U.S. Patent 5,231,169, incorporated herein by reference, describes the preparation of mineralized collagen through the formation of calcium phosphate mineral under mild agitation in situ in the presence of dispersed collagen fibrils. Such a formulation may be employed in the

- 27 -

context of delivering a nucleic acid segment to a bone tissue site.

Certain other preferred collagenous materials are those based upon type II collagen. Type II collagen 5 preparations have been discovered to have the surprising and advantageous property of, absent any osteotropic gene, being capable of stimulating bone progenitor cells. Prior to the present invention, it was thought that 10 type II collagen only had a structural role in the cartilage extracellular matrix and the present finding that type II collagen is actually an osteoconductive/osteoinductive material is unexpected. The present invention thus contemplates the use of a 15 variety of type II collagen preparations as gene transfer matrices or bone cell stimulants, either with or without DNA segments, including native type II collagen, as prepared from cartilage, and recombinant type II collagen.

20

25

30

PLGA block copolymers may also be employed as gene transfer matrices. Such polymers have been shown to readily incorporate DNA, are commercially available, non-toxic, and hydrolyze at defined rates, (i.e. they facilitate the sustained release of pharmaceutical agents). PLGA block copolymers have two particular advantageous properties in that, first, they exhibit reversible thermal gelation, and second, may be combined with other agents that allow for radiographic visualization.

5. Nucleic Acid Transfer Embodiments

Once a suitable matrix-gene composition has been
35 prepared or obtained, all that is required to deliver the
osteotropic gene to bone progenitor cells within an
animal is to place the matrix-gene composition in contact

- 28 -

with the site in the body in which one wishes to promote bone growth. This may be achieved by physically positioning the matrix-gene composition in contact with the body site, or by injecting a syringeable form of the matrix-gene composition into the appropriate area.

The matrix-gene composition may be applied to a simple bone fracture site that one wishes to repair, an area of weak bone, such as in a patient with

10 osteoporosis, or a bone cavity site that one wishes to fill with new bone tissue. Bone cavities may arise as a result of an inherited disorder, birth defect, or may result following dental or periodontal surgery or after the removal of an osteosarcoma.

15

20

25

The use of PLGA and like compounds as matrices allows the matrix-DNA composition to be syringeable, which is achieved by, generally, admixing the matrix-gene composition with a pluronic agent. The resultant matrix-gene-pluronic may be stored within a thermal-jacket syringe, maintained at a temperature of about 4°C, immediately prior to administration to the body. In this temperature and environment, the composition will be a liquid. Following insertion into the body, the composition will equilibrate towards body temperature, and in so-doing will form a gelatinous matrix.

The above phenomenon is termed "reversible thermal gelation", and this allows for a controlled rate of gelation to be achieved. The manner of using pluronic agents in this context will be known to those of skill in the art in light of the present disclosure. Matrix-gene-pluronic compositions may also be admixed, or generally associated with, an imaging agent so that the present gene transfer technology may be used in imaging modalities. In these cases, the attending physician or veterinarian will be able to monitor the delivery and

- 29 -

positioning of the matrix-gene composition. Many safe and effective imaging agents, such as the radiographic compound calcium phosphate, are available that may be used in conjunction with fluoroscopy, or even with tomography, to image the body or tissue site while the composition is being delivered.

Where an image of the tissue site is to be provided, one will desire to use a detectable imaging agent, such as a radiographic agent, or even a paramagnetic or radioactive agent. Many radiographic diagnostic agents are known in the art to be useful for imaging purposes, including e.g., calcium phosphate.

10

30

35

In the case of paramagnetic ions, examples include chromium (III), manganese (II), iron (III), iron (III), cobalt (II), nickel (II), copper (II), neodymium (III), samarium (III), ytterbium (III), gadolinium (III), vanadium (II), terbium (III), dysprosium (III), holmium (III) and erbium (III), with gadolinium being generally preferred. Ions useful in other contexts, such as X-ray imaging, include but are not limited to, lanthanum (III), gold (III), lead (II), and especially bismuth (III).

Although not generally preferred, radioactive isotopes are not excluded and may be used for imaging purposes if desired. Suitable ions include iodine¹³¹, iodine¹²³, technicium^{99m}, indium¹¹¹, rhenium¹⁸⁸, rhenium¹⁸⁶, gallium⁶⁷, copper⁶⁷, yttrium⁹⁰, iodine¹²⁵ and astatine²¹¹.

The amount of gene construct that is applied to the matrix and the amount of matrix-gene material that is applied to the bone tissue will be determined by the attending physician or veterinarian considering various biological and medical factors. For example, one would wish to consider the particular osteotropic gene and matrix, the amount of bone weight desired to be formed,

- 30 -

the site of bone damage, the condition of the damaged bone, the patient's or animal's age, sex, and diet, the severity of any infection, the time of administration and any further clinical factors that may affect bone growth, such as serum levels of various factors and hormones. The suitable dosage regimen will therefore be readily determinable by one of skill in the art in light of the present disclosure, bearing in mind the individual circumstances.

10

15

20

25

30

5

In treating humans and animals, progress may be monitored by periodic assessment of bone growth and/or repair, e.g., using X-rays. The therapeutic methods and compositions of the invention are contemplated for use in both medical and veterinary applications, due to the lack of species specificity in bone inductive factors. In particular, it is contemplated that domestic, farm and zoological animals, as well as thoroughbred horses, would be treatable using the nucleic acid transfer protocols disclosed herein.

The present methods and compositions may also have prophylactic uses in closed and open fracture reduction and also in the improved fixation of artificial joints. The invention is applicable to stimulating bone repair in congenital, trauma-induced, or oncologic resection-induced craniofacial defects, and also is useful in the treatment of periodontal disease and other tooth repair processes and even in cosmetic plastic surgery. The matrix-gene compositions and devices of this invention may also be used in wound healing and related tissue repair, including, but not limited to healing of burns, incisions and ulcers.

The present invention also encompasses DNA-based compositions for use in cellular transfer to treat bone defects and disorders. The compositions of the invention

- 31 -

generally comprise an osteotropic gene in association with a bone-compatible matrix, such as type II collagen, wherein the composition is capable of stimulating bone growth, repair or regeneration upon administration to, or implantation within, a bone progenitor tissue site of an animal. The osteotropic gene or genes may be any of those described above, with TGF- α (for soft skeletal tissues), TGF- β 1, TGF- β 2, TGF- β 3, PTH, BMP-2 and BMP-4 genes being generally preferred. Likewise, irrespective of the choice of gene, the bone-compatible matrix may be any of those described above, with biodegradable matrices such as collagen and, more particularly, type II collagen, being preferred.

10

35

In still further embodiments, the present invention 15 concerns osteotropic devices, which devices may be generally considered as molded or designed matrix-gene compositions. The devices of the invention naturally comprise a bone-compatible matrix in which an osteotropic 20 gene is associated with the matrix. The combination of genes and matrix components is such that the device is capable of stimulating bone growth or healing when implanted in an animal. The devices may be of virtually any size or shape, so that their dimensions are adapted 25 to fit a bone fracture or bone cavity site in the animal that is to be treated, allowing the fracture join and/or bone regrowth to be more uniform. Other particularly contemplated devices are those that are designed to act as an artificial joint. Titanium devices and hydroxylapatite-coated titanium devices will be preferred 30 in certain embodiments. Parts of devices in combination with an osteotropic nucleic acid segment, such as a DNAcoated screw for an artificial joint, and the like, also fall within the scope of the invention.

Therapeutic kits comprising, in suitable container means, a bone compatible matrix, such as type II collagen

or a PLGA block polymer, and an osteotropic gene form another aspect of the invention. Such kits will generally contain a pharmaceutically acceptable formulation of the matrix and a pharmaceutically acceptable formulation of an osteotropic gene, such as PTH, BMP, TGF- β , FGF, GMCSF, EGF, PDGF, IGF or a LIF gene. Currently preferred genes include PTH, TGF- β 1, TGF- β 2, TGF- β 3, and BMP-4 genes.

The kits may comprise a single container means that 10 contains both the biocompatible matrix and the osteotropic gene. The container means may, if desired, contain a pharmaceutically acceptable sterile syringeable matrix, having associated with it, the osteotropic gene composition and, optionally, a detectable label or 15 imaging agent. The syringeable matrix-DNA formulation may be in the form of a gelatinous composition, e.g., a type II collagen-DNA composition, or may even be in a more fluid form that nonetheless forms a gel-like composition upon administration to the body. 20 cases, the container means may itself be a syringe, pipette, or other such like apparatus, from which the matrix-DNA material may be applied to a bone tissue site or wound area. However, the single container means may contain a dry, or lyophilized, mixture of a matrix and 25 osteotropic gene composition, which may or may not require pre-wetting before use.

Alternatively, the kits of the invention may

comprise distinct container means for each component. In such cases, one container would contain the osteotropic gene, either as a sterile DNA solution or in a lyophilized form, and the other container would include the matrix, which may or may not itself be pre-wetted with a sterile solution, or be in a gelatinous, liquid or other syringeable form.

- 33 -

The kits may also comprise a second or third container means for containing a sterile, pharmaceutically acceptable buffer, diluent or solvent. Such a solution may be required to formulate either the DNA component, the matrix component, both components separately, or a pre-mixed combination of the components, into a more suitable form for application to the body, e.g., a more gelatinous form. It should be noted, however, that all components of a kit could be supplied in a dry form (lyophilized), which would allow for "wetting" upon contact with body fluids. Thus, the presence of any type of pharmaceutically acceptable buffer or solvent is not a requirement for the kits of the invention. The kits may also comprise a second or third container means for containing a pharmaceutically acceptable detectable imaging agent or composition.

The container means will generally be a container such as a vial, test tube, flask, bottle, syringe or other container means, into which the components of the kit may placed. The matrix and gene components may also be aliquoted into smaller containers, should this be desired. The kits of the present invention may also include a means for containing the individual containers in close confinement for commercial sale, such as, e.g., injection or blow-molded plastic containers into which the desired vials or syringes are retained.

Irrespective of the number of containers, the kits
of the invention may also comprise, or be packaged with,
an instrument for assisting with the placement of the
ultimate matrix-gene composition within the body of an
animal. Such an instrument may be a syringe, pipette,
forceps, or any such medically approved delivery vehicle.

35

10

15

- 34 -

6. Type II Collagen as an Osteoconductive/inductive Material

The present invention also provides methods for stimulating bone progenitor cells, as may be applied, in certain circumstances, to promote new bone formation, or to stimulate wound-healing. As such, the bone progenitor cells that are the targets of the invention may also be termed "wound healing bone progenitor cells". Although the function of wound healing itself may not always be required to practice all aspects of the invention, and although a mechanistic understanding is not necessary to practice the invention, it is generally thought that the wound healing process does operate during execution of the invention.

10

15

20

25

30

35

To stimulate a bone progenitor cell in accordance with these aspects of the invention, generally one would contact a bone progenitor cell with a composition comprising a biologically effective amount of type II collagen. Although preparations of crushed bone and mineralized collagen have been shown to be osteoconductive, this property has not previously been ascribed to type II collagen. The present inventors have found that type II collagen alone is surprisingly effective at promoting new bone formation, it being able to bridge a 5 mm osteotomy gap in only eight weeks in all animals tested (FIG. 5A, FIG. 5B, FIG. 6A, FIG. 6B, FIG. 6C, FIG. 6D, FIG. 7A, FIG. 7B, FIG. 8A, FIG. 8B, and FIG. 8C).

The forms of type II collagen that may be employed in this invention are virtually limitless. For example, type II collagen may be purified from hyaline cartilage of bovine trachea, or as isolated from diarthrodial joints or growth plates. Purified type II collagen is commercially available and may be purchased from, e.g., Sigma Chemical Company, St. Louis, MO. Any form of

recombinant type II collagen may also be employed, as may be obtained from a type II collagen-expressing recombinant host cell, including bacterial, yeast, mammalian, and insect cells. One particular example of a recombinant type II collagen expression system is a yeast cell that includes an expression vector that encodes type II collagen, as disclosed herein in Example VI.

The type II collagen used in the invention may, if desired, be supplemented with additional minerals, such as calcium, e.g., in the form of calcium phosphate. Both native and recombinant type II collagen may be supplemented by admixing, adsorbing, or otherwise associating with, additional minerals in this manner. Such type II collagen preparations are clearly distinguishable from the types of "mineralized collagen" previously described, e.g., in U.S. Patent 5,231,169 that describes the preparation of mineralized total collagen fibrils.

20

25

30

.10

15

An object of this aspect of the invention is to provide a source of osteoconductive matrix material, that may be reproducibly prepared in a straightforward and cost-effective manner, and that may be employed, with or without an osteotropic gene segment, to stimulate bone progenitor cells. Recombinant type II collagen was surprisingly found to satisfy these criteria. Although clearly not required for effective results, the combination of native or recombinant type II collagen with mineral supplements, such as calcium, is encompassed by this invention.

A biologically effective amount of type II collagen is an amount of type II collagen that functions to stimulate a bone progenitor cell, as described herein. By way of example, one measure of a biologically effective amount is an amount effective to stimulate bone progenitor cells to the extent that new bone formation is evident. In this regard, the inventors have shown that 10 mg of lyophilized collagen functions effectively to close a 5 mm osteotomy gap in three weeks. This information may be used by those of skill in the art to optimize the amount of type II collagen needed for any given situation.

Depending on the individual case, the artisan would, 10 in light of this disclosure, readily be able to calculate an appropriate amount, or dose, of type II collagen for stimulating bone cells and promoting bone growth. terms of small animals or human subjects, suitable effective amounts of collagen include between about 1 mg and about 500 mg, and preferably, between about 1 mg and 15 about 100 mg, of lyophilized type II collagen per bone tissue site. Of course, it is likely that there will be variations due to, e.g., individual responses, particular tissue conditions, and the speed with which bone formation is required. While 10 mg were demonstrated to 20 be useful in the illustrative example, the inventors contemplate that 1, 5, 10, 15, 20, 30, 40, 50, 75, 100, 125, 150, 200, 300 mg, and the like, may be usefully employed for human patients and small animals. Of course, any values within these contemplated ranges may 25 be useful in any particular case.

Naturally, one of the main variables to be accounted for is the amount of new bone that needs to be generated in a particular area or bone cavity. This can be largely a function of the size of the animal to be treated, e.g., a cat or a horse. Therefore, there is currently no upper limit on the amount of type II collagen, or indeed on the amount of any matrix-gene composition, that can be employed in the methods of the invention, given careful supervision by the practitioner.

- 37 -

In contacting or applying type II collagen, with or without a DNA segment, to bone progenitor cells located within a bone progenitor tissue site of an animal, bone tissue growth will be stimulated. Thus, bone cavity sites and bone fractures may be filled and repaired.

The use of type II collagen in combination with a nucleic acid segment that encodes a polypeptide or protein that stimulates bone progenitor cells when expressed in said cells is preferred, as described above. Nucleic acid segments that comprise an isolated PTH gene, BMP gene, growth factor gene, growth factor receptor gene, cytokine gene or a chemotactic factor gene are preferred, with PTH, TGF- β and BMP genes being most preferred. The genes function subsequent to their transfer into, and expression in, bone progenitor cells of the treated animal, thus promoting bone growth.

Although type II collagen alone is effective, its combined use with an osteotropic gene segment may prove to give synergistic and particularly advantageous effects. Type II collagen, whether native or recombinant, may thus also be formulated into a therapeutic kit with an osteotropic gene segment, in accordance with those kits described herein above. This includes the use of single or multiple container means, and combination with any medically approved delivery vehicle, including, but not limited to, syringes, pipettes, forceps, additional diluents, and the like.

30

10

15

20

25

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings form part of the present specification

35 and are included to further demonstrate certain aspects
of the present invention. The invention may be better
understood by reference to one or more of these drawings

in combination with the detailed description of specific embodiments presented herein.

FIG. 1. A model of DNA therapy for bone repair.

5

10

- FIG. 2A. A schematic model of the cellular and molecular basis of the direct DNA transfer mechanism into osteogenic cells in vivo. Shown is the method of creating osteotomy and placing gene-activated matrix in situ.
- FIG. 2B. A schematic model of the cellular and molecular basis of the direct DNA transfer mechanism into osteogenic cells in vivo. Shown is the method of fracturing repair cells where blood vessels grow into the gene-activated matrix (FIG. 2A).
- FIG. 2C. A schematic model of the cellular and molecular basis of the direct DNA transfer mechanism into osteogenic cells in vivo. Shown are fractured cells taking up DNA as an episomal element, i.e. direct gene transfer in vivo.
- FIG. 2D. A schematic model of the cellular and
 molecular basis of the direct DNA transfer mechanism into
 osteogenic cells in vivo. Shown are fractured repair
 synthesizing and secreting recombinant proteins encoded
 by the episomal DNA.
- FIG. 2E. A schematic model of the cellular and molecular basis of the direct DNA transfer mechanism into osteogenic cells in vivo. Shown is the resulting new bone formation.
- FIG. 3A. Achilles' tendon gene transfer is shown as a time course overview at 3 weeks post-surgery.

WO 95/22611

PCT/US95/02251

- 39 -

FIG. 3B. Achilles' tendon gene transfer is shown as a time course overview at 9 weeks post-surgery.

FIG. 3C. Achilles' tendon gene transfer is shown as a time course overview at 12 weeks post-surgery.

FIG. 3D. Achilles' tendon gene transfer is shown as a time course immunohistochemistry study. Shown is the microscopy of tendon tissue that received SIS implant impregnated with expression plasmid DNA. Note the positive cytoplasmic staining of fibroblastic cells 9 weeks post-surgery.

FIG. 3E. Achilles' tendon gene transfer is shown as

15 a time course immunohistochemistry study. Shown is the
microscopy of tendon tissue that received SIS implant
alone, without DNA. Note the relative absence of
cytoplasmic staining.

FIG. 4. Monitoring of cruciate ligament gene transfer using a substrate utilization assay. Three weeks following the implantation of SIS soaked in a solution of the pSV40β-gal expression plasmid, tendon tissue was harvested, briefly fixed in 0.5%
glutaraldehyde, and then incubated with X-gal according to published methods. Tissues were then embedded in paraffin and sections were cut and stained with H and E. Note the positive (arrows) staining in the cytoplasm of granulation tissues fibroblasts.

30

35

10

FIG. 5A. Direct DNA transfer into regenerating bone: β -gal activity. The figure compares β -galactosidase activity in homogenates of osteotomy gap tissue from two Sprague-Dawley rats. In animal #1, the UltraFiber[™] implant material was soaked in a solution of pSV40 β -gal DNA, Promega) encoding bacterial β -galactosidase. In animal #2, the implant material was

15

soaked in a pure solution of pGL2-Promoter Vector DNA (Promega) encoding insect luciferase. Enzyme activity was determined using substrate assay kits (β -galactosidase and Luciferase Assay Systems, Promega). Note that significant β -galactosidase activity was found only in the homogenate prepared from animal #1.

FIG. 5B. Direct DNA transfer into regenerating bone: luciferase activity. The figure compares luciferase activity in aliquots of the homogenates described in FIG. 5A. Luciferase activity was determined using the commercial reagents and protocols (Promega) described in FIG. 5A. Note that significant luciferase activity is found only in the homogenate prepared from animal #2.

FIG. 6A. Osteotomy gene transfer monitored by PTH studies. In this study an expression plasmid coding for a functional 34 amino acid peptide fragment of human parathyroid hormone (PTH1-34) was transferred and expressed in vivo using the GAM technology. The progress of new bone formation in the gap was monitored radiographically for three weeks and the animals were sacrificed. Shown is a radiograph of the osteotomy gap of the control animal that received an antisense hPTH1-34 GAM construct. There was no evidence of radiodense tissue in the gap.

FIG. 6B. Osteotomy gene transfer (FIG. 6A)

monitored by PTH studies. Shown is a histological section of osteotomy repair tissue from the same control animal. The section is characterized by the presence of granulation tissue fibroblasts and capillaries.

35 FIG. 6C. Osteotomy gene transfer (FIG. 6A)
monitored by PTH studies. Shown is a radiograph of the
osteotomy gap that received the sense PTH1-34 GAM

- 41 -

construct. Note the presence of radiodense tissue in the gap (arrow).

FIG. 6D. Osteotomy gene transfer (FIG. 6A) monitored by PTH studies. Shown is a histological section of osteotomy repair tissue from the same control animal. The section is characterized by the presence of trabecular bone plates that extend into the gap from the surgical margin.

10

15

20

25

- FIG. 7A. Osteotomy gene transfer BMP-4 studies. Shown is immunohistochemical evidence of BMP-4 transgene expression by granulation tissue fibroblasts near the center of an osteotomy gap three weeks after surgery. Note the positive (arrows) staining of spindled cells. The BMP-4 transgene included an epitope tag (HA epitope, Pharmacia) that facilitated the identification of transgenic BMP-4 molecules. Tissue staining was performed using commercially available polyclonal anti-HA antibodies and standard procedures. Immunostaining was localized only to gap tissues. Control sections included serial sections stained with pre-immune rabbit serum and tissue sections from 13 control osteotomy gaps. In both instances all controls were negative for peroxidase staining of granulation tissue fibroblasts.
- FIG. 7B. Osteotomy gene transfer BMP-4 studies. Shown is the histology of newly formed bone as early as three weeks following gene transfer (FIG. 7A).

30

35

FIG. 8A. Radiographic evidence of bridging new bone formation (arrows) as a consequence of BMP-4 gene transfer and expression at six weeks' post surgery. 9 and 16 weeks post-op, are presented in FIG. 8B and FIG. 8C, respectively, to demonstrate the orderly growth of new bone in situ over time. This animal, which has been maintained for 23 weeks, has been ambulating normally

- 42 -

without an external fixator for the past 7 weeks. Similar results have been obtained in a second long term animal (of two) that is now 17 weeks post-op.

- FIG. 8B. Radiographic evidence of bridging new bone formation (arrows) as a consequence of BMP-4 gene transfer and expression at nine weeks' post surgery (see FIG. 8A).
- FIG. 8C. Radiographic evidence of bridging new bone formation (arrows) as a consequence of BMP-4 gene transfer and expression at sixteen weeks' post surgery (see FIG. 8A).
- of the control group that received an osteotomy plus a collagen sponge without DNA of any type. The animal was maintained for 9 weeks following surgery and then sacrificed. Progress of new bone formation in the gap was monitored radiographically and histologically. Shown is a radiograph of the osteotomy gap at 9 weeks. Note the absence of radiodense tissue in the gap.
- FIG. 9B. Shown is a histological section of
 osteotomy gap tissue from the control animal used in FIG
 9A. The section is characterized by the presence of
 granulation tissue fibroblasts and capillaries.
- FIG. 10. PLJ-HPTH1-34 expression construct. A cDNA fragment coding for a prepro-hPTH1-34 peptide was generated by PCR™ (Hendy et al., 1981) and then ligated into a BamHI cloning site in the PLJ retroviral expression vector (Wilson et al., 1992). Several independent clones with the insert in the coding orientation were isolated and characterized.

FIG. 11. Southern analysis of retroviral

integration in the YZ-15 clone. 10 mg of YZ-15 genomic DNA were digested with KpnI (for which there is a unique site in the vector LTR) and analyzed by Southern blotting. A cDNA fragment that coded for prepro-hPTH1-35 was used as a probe. The positive control for the Southern hybridization conditions was a KpnI digest of genomic DNA from Rat-1 cells infected and selected with the recombinant, replication-defective retrovirus PLJhPTH1-84 (Wilson et al., 1992). KpnI digests of DNA were also prepared from two negative controls: native Rat-1 10 cells and Rat-1 cells infected and selected with BAG ("BAG cells", (Wilson et al., 1992), a replicationdefective recombinant retrovirus that encodes β galactosidase, which is an irrelevant marker gene in these studies. Lane assignments were as follows: 1, 15 PLJ-hPTH1-84 cells; 2 BAG cells; 3, YZ-15; 4, native Rat-1 cells. DNA sizes (kb) are shown at the left of the figure. As expected, a fragment of the predicted size (e.g., 4.3 kb) is seen only in lane 1 (the positive control) and in lane 3 (YZ-15 DNA). 20

FIG. 12. Northern blot analysis of a transduced Rat-1 clone. Poly-A(*)RNA was prepared from the YZ-15 clone and analyzed by Northern blotting as described 25 (Chen et al., 1993). FIG. 12 contains two panels on a single sheet. Poly-A(*) RNA prepared from PLJ-hPTH1-84 cells, BAG cells, and native Rat-1 cells were used as positive and negative controls. Four probes were applied to a single blot following sequential stripping: hPTH1-30 34, β -gal, Neo, and β -actin. Lane assignments were as follows: 1, PLJ-hPTH1-84 cells; 2, BAG cells; 3, YZ-15 cells; 4, native Rat-1 cells. As expected, the hPTH1-34 transcript is seen only in lane 1 (positive control) and in lane 3-4; a Neo transcript is seen in lanes 1-3; a β -gal transcript is seen only in lane 2; and β -actin 35 transcripts are seen in lanes 1-4.

- 44 -

FIG. 13. Northern analysis of poly-A(*) RNA demonstrating expression of the PTH/PTHrP receptor in osteotomy repair tissue.

- FIG. 14. Overlapping murine cDNA clones representing the LTBP-like (LTBP-3) sequence. A partial representation of restriction sites is shown. N, NcoI; P, PvuII; R, RsaII; B, BamHI; H, HindIII. The numbering system at the bottom assumes that the "A" of the initiator Met codon is nt #1.
 - FIG. 15A. A schematic showing the structure of the murine fibrillin-1 gene product. Structural domains are shown below the diagram. Symbols designating various structural elements are defined in the legend to FIG. 15B.

15

35

- FIG. 15B. A schematic showing the structure of the murine LTBP-like (LTBP-3) molecule. Domains #1-5 are denoted below the diagram. Symbols designate the 20 following structural elements: EGF-CB repeats: open rectangles; TGF-bp repeats: open ovals; Fib motif: open circle; TGF-bp-like repeat: patterned oval; cysteine-rich sequences: patterned rectangles; proline/glycine-rich region: thick curved line, domain #2; proline-rich 25 region, thick curved line, domain #3. Note that symbols designating the signal peptide have been deleted for simplicity. Additionally, the schematic assumes that EGF-like and EGF-CB repeats may extend for several amino 30 acids beyond the C, position.
 - FIG. 15C. A schematic showing the structure of human LTBP-1. Domains #1-5 are denoted below the diagram. The symbols designating the structural elements are defined in the legend to FIG. 15B.
 - FIG. 16. Overview of expression of the new LTBP-

- 45 -

like (LTBP-3) gene during murine development as determined by tissue in situ hybridization. FIG. 16 consists of autoradiograms made by direct exposure of tissue sections to film after hybridization with radiolabeled probes. Day 8.5-9.0 sections contained embryos surrounded by intact membranes, uterine tissues, and the placental disk, cut in random planes. Day 13.5 and 16.5 sections contain isolated whole embryos sectioned in the sagittal plane near or about the midline. Identical conditions were maintained throughout autoradiography and photography, thereby allowing a comparison of the overall strength of hybridization in all tissue sections. The transcript is expressed in connective tissue, mesenchyme, liver, heart and CNS.

15

20

5

10

FIG. 17A. Selected microscopic views of mouse LTBP-3 gene expression in day 8.5-9.0 p.c. mouse developing tissues. All photographs in FIG. 17A- FIG. 17D were taken from the same slides used to prepare whole mount sections (after dipping slides in radiographic emulsion). Shown is the neural tube, brightfield image. 1 cm = 20 mm.

FIG. 17B. Selected microscopic views of mouse

25 LTBP-3 gene expression in day 8.5-9.0 p.c. mouse
developing tissues. Shown is the neural tube, darkfield
image. Note expression by neuroepithelial cells and by
surrounding mesenchyme. 1 cm = 20 mm.

FIG. 17C. Selected microscopic views of mouse LTBP-3 gene expression in day 8.5-9.0 p.c. mouse developing tissues. Shown is the heart, brightfield image. The figure demonstrates expression by myocardial and endocardial (arrowheads) cells. 1 cm = 20 mm.

35

FIG. 17D. Selected microscopic views of mouse LTBP-3 gene expression in day 8.5-9.0 p.c. mouse

- 46 -

developing tissues. Shown is the heart, darkfield image. The figure demonstrates expression by myocardial and endocardial (arrowheads) cells. Darkfield photomicrographs were taken after exposure of tissues to photographic emulsion for 2 weeks. In this image and the one shown in FIG. 17B, red blood cell and other plasma membranes give a faint white signal that contributes to the background of the experiment. 1 cm = 20 mm.

10

15

5

FIG. 18A. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. All photographs in FIG. 18A - FIG. 18P were taken from the same slides used to prepare whole mount sections (after dipping slides in radiographic emulsion). Shown is the cartilage model of developing long bone from lower extremity, brightfield image. Expression by chondrocytes and by perichondrial cells is seen in FIG. 18B. 1 cm = 20 mm.

20

25

30

35

FIG. 18B. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is the cartilage model of developing long bone from lower extremity, darkfield image. Note expression by chondrocytes and by perichondrial cells. In all darkfield views of FIG. 18, red blood cell and other plasma membranes give a faint white signal that contributes to the background of the experiment. Note the absence of spurious hybridization signal in areas of the slide that lack cellular elements. 1 cm = 20 mm.

FIG. 18C. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is the lung, brightfield image. 1 cm = 20 mm.

FIG. 18D. Microscopy of mouse LTBP-3 gene

- 47 -

expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is the heart, brightfield image. 1 cm = 20 mm.

FIG. 18E. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is the lung, darkfield image. Note expression by epithelial cells of developing airway and by the surrounding parenchymal cells. 1 cm = 20 mm.

10

5

FIG. 18F. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is the heart, darkfield image. Note continuing expression by myocardial cells. 1 cm = 20 mm.

15

FIG. 18G. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is the pancreas, brightfield image. 1 cm = 20 mm.

20

FIG. 18H. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is the intestine, brightfield image. 1 cm = 20 mm.

25

FIG. 18I. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is the pancreas, darkfield image. Note expression by acinar epithelial cells. 1 cm = 20 mm.

30

35

FIG. 18J. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is intestine, darkfield image. Note the expression in epithelial and subepithelial cells. 1 cm = 20 mm.

FIG. 18K. Microscopy of mouse LTBP-3 gene

- 48 -

expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is kidney, brightfield image. 1 cm = 20 mm.

- FIG. 18L. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is skin, brightfield image. 1 cm = 20 mm.
- 10 FIG. 18M. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is kidney, darkfield image. Note expression by blastemal cells beneath the kidney capsule, epithelial cells of developing nephrons and tubules, and the interstitial mesenchyme. 1 cm = 20 mm.
- FIG. 18N. Microscopy of mouse LTBP-3 gene
 expression in day 13.5 and day 16 p.c. mouse developing
 tissues. Shown is the skin, darkfield image. Note the
 expression by epidermal, adnexal and dermal cells of
 developing skin. 1 cm = 20 mm.
- FIG. 180. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing tissues. Shown is the retina, brightfield image. 1 cm = 20 mm.
- FIG. 18P. Microscopy of mouse LTBP-3 gene expression in day 13.5 and day 16 p.c. mouse developing 30 tissues. Shown is the retina, darkfield image. Note expression by retinal epithelial cells and by adjacent connective tissue cells. 1 cm = 20 mm.
- FIG. 19. Time-dependent expression of the LTBP-3

 gene by MC3T3-E1 cells. mRNA preparation and Northern
 blotting were preformed as described in Example XIV.

 Equal aliquots of total RNA as determined by UV

WO 95/22611

spectroscopy were loaded in each lane of the Northern gel. As demonstrated by UV spectroscopy were loaded in each lane of the Northern gel. As demonstrated by methylene blue staining (Sambrook et al., 1989), equal amounts of RNA were transferred to the nylon membrane. The results demonstrate a clear, strong peak in LTBP-3 gene expression by 14 days in culture. Weaker signals denoting LTBP-3 gene expression also can be observed after 5 days and 28 days in culture.

.10

5

FIG. 20. Antisera #274 specifically binds LTBP-3 epitopes. Transfection of 293T cells with a full length mouse LTBP-3 expression plasmid followed by radiolabeling, preparation of medium sample, immunoprecipitation, and 4-18% gradient SDS-PAGE were 15 performed as described in Example XIV. The figure presents a SDS-PAGE autoradiogram of medium samples following a 2 day exposure to film. Lane assignments are as follows: Lane 1, radiolabeled 293T medium (prior to 20 transfection) immunoprecipitated with preimmune serum; Land 2, radiolabeled 293T medium (prior to transfection) immunoprecipitated with antibody #274; Lane 3, radiolabeled 393T medium (following transfection and preincubation with 10 μg of LTBP-3 synthetic peptide cocktail) immunoprecipitated with antibody #274; and Lane 25 4, radiolabeled 293T medium (following transfection) immunoprecipitated with antibody #274. As indicated by the bar, the full length LTBP-3 molecule migrated at 180-190 kDa.

30

FIG. 21. Co-immunoprecipitation of LTBP-3 and TGR-β1 produced by MC3T3-E1 cells. Aliquots (~10⁶ incorporated CPM) of radiolabeled media produced by MC3T3-E1 cells after 7 days in culture were immunoprecipitated as described in Example XIV. Bars indicate the position of cold molecular weight standards used to estimate molecular weight (Rainbow mix.

- 50 -

Amersham). Immunoprecipitates were separated using 4%-18% gradient SDS-PAGE and reducing conditions. The figure shows a negative control lane 1 consisting of MC3T3-El medium immunoprecipitated with anti-LTBP-3 antibody #274. Western blotting was performed using the lower portion of the gradient gel and a commercially available antibody to TGF-β1 (Santa Cruz Biotechnology, Inc.). Antibody staining was detected using commercially available reagents and protocols (ECL Western Blotting Reagent, Amersham). MC3T3-El medium was immunoprecipitated with anti-LTBP-2 antibody #274.

FIG. 22A. Radiographic analysis of the type II collagen osteotomy gap three weeks after surgery.

15

25

30

35

10

FIG. 22B. Radiographic analysis of the type I collagen osteotomy gap three weeks after surgery.

FIG. 22C. Histologic analysis of the type II collagen osteotomy shown in FIG. 22A.

FIG. 23A. Adenovirus-mediated gene transfer into bone repair/regeneration cells in vivo. Positive (arrows) β -gal cytoplasmic staining is observed in the fracture repair cells.

FIG. 23B. Adenovirus-mediated gene transfer into bone repair/regeneration cells in vivo. Serial section negative control strained with the vehicle of the β -gal antibody plus a cocktail of non-specific rabbit IgG antibodies.

FIG. 23C. Adenovirus-mediated gene transfer into bone repair/regeneration cells in vivo. Osteotomy site was filled with a fibrous collagen implant material soaked in a solution of the replication-defective recombinant adenovirus $AdRSV\beta$ -gal (-1011 plaque forming

- 51 -

units/ml). Note the positive (arrow) β -gal nuclear staining of chondrocytes within the osteotomy site, as demonstrated by immunohistochemistry using a specific anti- β -gal antibody.

5

- FIG. 24. The murine BMP-4 amino acid sequence, SEQ ID NO:1. The HA epitope is shown in bold at the extreme carboxy terminus of the sequence.
- 10 FIG. 25. DNA sequence of the murine LTBP-3 gene (SEQ ID NO:2).
 - FIG. 26. Amino acid sequence of the murine LTBP-3 gene product (SEQ ID NO:3).

15

- FIG. 27. DNA sequence of the murine LTBP-2 gene (SEQ ID NO:17).
- FIG. 28. Amino acid sequence of the murine LTBP-2 gene product (SEQ ID NO:18).

DESCRIPTION OF THE PREFERRED EMBODIMENT

25 1. Applications of Bone Repair Technology to Human Treatment

The following is a brief discussion of four human conditions to exemplify the variety of diseases and disorders that would benefit from the development of new technology to improve bone repair and healing processes. In addition to the following, several other conditions, such as, for example, vitamin D deficiency; wound healing in general; soft skeletal tissue repair; and cartilage and tendon repair and regeneration, may also benefit from technology concerning the stimulation of bone progenitor cells.

- 52 -

The first example is the otherwise healthy individual who suffers a fracture. Often, clinical bone fracture is treated by casting to alleviate pain and allow natural repair mechanisms to repair the wound. While there has been progress in the treatment of fracture in recent times, even without considering the various complications that may arise in treating fractured bones, any new procedures to increase bone healing in normal circumstances would represent a great advance.

10

15

20

25

30

35

A second example which may benefit from new treatment methods is osteogenesis imperfecta (OI). OI encompasses various inherited connective tissue diseases that involve bone and soft connective tissue fragility in humans (Byers and Steiner, 1992; Prockop, 1990). About one child per 5,000-20,000 born is affected with OI and the disease is associated with significant morbidity throughout life. A certain number of deaths also occur, resulting in part from the high propensity for bone fracture and the deformation of abnormal bone after fracture repair (OI types II-IV; Bonadio and Goldstein, 1993). The relevant issue here is quality of life; clearly, the lives of affected individuals would be improved by the development of new therapies designed to stimulate and strengthen the fracture repair process.

OI type I is a mild disorder characterized by bone fracture without deformity, blue sclerae, normal or near normal stature, and autosomal dominant inheritance (Bonadio and Goldstein, 1993). Osteopenia is associated with an increased rate of lone bone fracture upon ambulation (the fracture frequency decreases dramatically at puberty and during young adult life, but increases once again in late middle age). Hearing loss, which often begins in the second or third decade, is a feature of this disease in about half the families and can

WO 95/22611

30

35

- 53 -

progress despite the general decline in fracture frequency. Dentinogenesis imperfecta is observed in a subset of individuals.

In contrast, OI types II-VI represent a spectrum of more severe disorders associated with a shortened lifespan. OI type II, the perinatal lethal form, is characterized by short stature, a soft calvarium, blue sclerae, fragile skin, a small chest, floppy appearing lower extremities (due to external rotation and abduction of the femurs), fragile tendons and ligaments, bone fracture with severe deformity, and death in the perinatal period due to respiratory insufficiency. Radiographic signs of bone weakness include compression of the femurs, bowing of the tibiae, broad and beaded ribs, and calvarial thinning.

OI type III is characterized by short stature, a triangular facies, severe scoliosis, and bone fracture

20 with moderate deformity. Scoliosis can lead to emphysema and a shortened life-span due to respiratory insufficiency. OI type IV is characterized by normal sclerae, bone fracture with mild to moderate deformity, tooth defects, and a natural history that essentially is intermediate between OI type II and OI type I.

More than 200 OI mutations have been characterized since 1989 (reviewed in Byers and Steiner, 1992; Prockop, 1990). The vast majority occur in the COL1A1 and COL1A2 genes of type I collagen. Most cases of OI type I appear to result from heterozygous mutations in the COL1A1 gene that decrease collagen production but do not alter primary structure, i.e., heterozygous null mutations affecting COL1A1 expression. Most cases of OI types II-IV result from heterozygous mutations in the COL1A1 and COL1A2 genes that alter the structure of collagen.

10

15

20

25

A third important example is osteoporosis. The term osteoporosis refers to a heterogeneous group of disorders characterized by decreased bone mass and fractures. An estimated 20-25 million people are at increased risk for fracture because of site-specific bone loss. Risk factors for osteoporosis include increasing age, gender (more females), low bone mass, early menopause, race (Caucasians), low calcium intake, reduced physical activity, genetic factors, environmental factors (including cigarette smoking and abuse of alcohol or caffeine), and deficiencies in neuromuscular control that create a propensity to fall.

More than a million fractures in the USA each year can be attributed to osteoporosis, and in 1986 alone the treatment of osteoporosis cost an estimated 7-10 billion health care dollars. Demographic trends (i.e., the gradually increasing age of the US population) suggest that these costs may increase 2-3 fold by the year 2020 if a safe and effective treatment is not found. Clearly, osteoporosis is a significant health care problem.

Clinically, osteoporosis is segregated into type I and type II. Type I osteoporosis occurs predominantly in middle aged women and is associated with estrogen loss at the menopause, while osteoporosis type II is associated with advancing age. Much of the morbidity and mortality associated with osteoporosis results from immobilization of elderly patients following fracture.

30

Current therapies for osteoporosis patients focus on fracture prevention, not fracture repair. This remains an important consideration because of the literature, which clearly states that significant morbidity and mortality are associated with prolonged bed rest in the elderly, particularly those who have suffered hip fractures. Complications of bed rest include blood clots

- 55 -

and pneumonia. These complications are recognized and measures are usually taken to avoid them, but these measures hardly represent the best approach to therapy. Thus, the osteoporotic patient population would benefit from new therapies designed to strengthen bone and speed up the fracture repair process, thereby getting these people on their feet before the complications arise.

A fourth example is related to bone reconstruction and, specifically, the ability to reconstruct defects in 10 bone tissue that result from traumatic injury; cancer or cancer surgery; birth defect; a developmental error or heritable disorder; or aging. There is a significant orthopaedic need for more stable total joint implants, and cranial and facial bone are particular targets for 15 this type of reconstructive need. The availability of new implant materials, e.g., titanium, has permitted the repair of relatively large defects. Titanium implants provide excellent temporary stability across bony 20 defects. However, experience has shown that a lack of viable bone bridging the defect can result in exposure of the appliance, infection, structural instability and, ultimately, failure to repair the defect.

Autologous bone grafts are another possible reconstructive modality, but they have several demonstrated disadvantages in that they must be harvested from a donor site such as iliac crest or rib, they usually provide insufficient bone to completely fill the defect, and the bone that does form is sometimes prone to infection and resorption. Partially purified xenogeneic preparations are not practical for clinical use because microgram quantities are purified from kilograms of bovine bone, making large scale commercial production both costly and impractical. Allografts and demineralized bone preparations are therefore often employed.

25

30

15

Microsurgical transfers of free bone grafts with attached soft tissue and blood vessels can close bony defects with an immediate source of blood supply to the graft. However, these techniques are time consuming, have been shown to produce a great deal of morbidity, and can only be used by specially trained individuals. Furthermore, the bone implant is often limited in quantity and is not readily contoured. In the mandible, for example, the majority of patients cannot wear dental appliances using presently accepted techniques (even 10 after continuity is established), and thus gain little improvement in the ability to masticate. Toriumi et al., have written that, "reconstructive surgeons should have at their disposal a bone substitute that would be reliable, biocompatible, easy to use, and long lasting and that would restore mandibular continuity with little associated morbidity."

In connection with bone reconstruction, specific 20 problem areas for improvement are those concerned with treating large defects, such as created by trauma, birth defects, or particularly, following tumor resection. The success of orthopaedic implants, interfaces and artificial joints could conceivably be improved if the 25 surface of the implant, or a functional part of an implant, were to be coated with a bone stimulatory agent. The surface of implants could be coated with one or more appropriate materials in order to promote a more effective interaction with the biological site 30 surrounding the implant and, ideally, to promote tissue repair.

2. Bone Repair

35 Bone tissue is known to have the capacity for repair and regeneration and there is a certain understanding of the cellular and molecular basis of these processes.

- 57 -

initiation of new bone formation involves the commitment, clonal expansion, and differentiation of progenitor cells. Once initiated, bone formation is promoted by a variety of polypeptide growth factors, Newly formed bone is then maintained by a series of local and systemic growth and differentiation factors.

The concept of specific bone growth-promoting agents is derived from the work of Huggins and Urist. et al., 1936, demonstrated that autologous transplantation of canine incisor tooth to skeletal muscle resulted in local new bone formation (Huggins et al., 1936). Urist and colleagues reported that demineralized lyophilized bone segments induced bone formation (Urist, 1965; Urist et al., 1983), a process that involved macrophage chemotaxis; the recruitment of progenitor cells; the formation of granulation tissue, cartilage, and bone; bone remodeling; and marrow differentiation. The initiation of cartilage and bone formation in an extraskeletal site, a process referred to as osteoinduction, has permitted the unequivocal identification of initiators of bone morphogenesis (Urist, 1965; Urist et al., 1983; Sampath et al., 1984; Wang et al., 1990; Cunningham et al., 1992).

25

30

35

10

15

20

Significant progress has now been made in characterizing the biological agents elaborated by active bone tissue during growth and natural bone healing. Demineralized bone matrix is highly insoluble; Sampath and Reddi (1981) showed that only 3% of the proteins can be extracted using strong combinations of denaturants and detergents. They also showed that the unfractionated demineralized bone extract will initiate bone morphogenesis, a critical observation that led to the purification of "osteoinductive" molecules. Families of proteinaceous osteoinductive factors have now been purified and characterized. They have been variously

- 58 -

referred to in the literature as bone morphogenetic or morphogenic proteins (BMPs), osteogenic bone inductive proteins or osteogenic proteins (OPs).

5 3. Bone Repair and Bone Morphogenetic Proteins (BMPs)

10

15

20

25

30

Following their initial purification, several bone morphogenetic protein genes have now been cloned using molecular techniques (Wozney et al., 1988; Rosen et al., 1989; summarized in Alper, 1994). This work has established BMPs as members of the transforming growth factor- β (TGF- β) superfamily based on DNA sequence homologies. Other TGF molecules have also been shown to participate in new bone formation, and TGF- β is regarded as a complex multifunctional regulator of osteoblast function (Centrella et al., 1988; Carrington et al., 1988; Seitz et al., 1992). Indeed, the family of transforming growth factors (TGF- β 1, TGF- β 2, and TGF- β 3) has been proposed as potentially useful in the treatment of bone disease (U.S. Patent 5,125,978, incorporated herein by reference).

The cloning of distinct BMP genes has led to the designation of individual BMP genes and proteins as BMP-1 through BMP-8. BMPs 2-8 are generally thought to be osteogenic (BMP-1 may be a more generalized morphogen; Shimell et al., 1991). BMP-3 is also called osteogenin (Luyten et al., 1989) and BMP-7 is also called OP-1 (Ozkaynak et al., 1990). TGFs and BMPs each act on cells via complex, tissue-specific interactions with families of cell surface receptors (Roberts and Sporn, 1989; Paralkar et al., 1991).

Several BMP (or OP) nucleotide sequences and vectors, cultured host cells and polypeptides have been described in the patent literature. For example, U.S. Patents, 4,877,864, 4,968,590 and 5,108,753 all concern

- 59 -

osteogenic factors. More specifically, BMP-1 is disclosed in U.S. Patent 5,108,922; BMP-2 species, including MBP-2A and BMP-2B, are disclosed in U.S. Patents 5,166,058, 5,013,649, and 5,013,649; BMP-3 in 5,116,738; BMP-5 in 5,106,748; BMP-6 in 5,187,076; and BMP-7 in 5,108,753 and 5,141,905; all incorporated herein by reference. Various BMP clones and their activities are particularly described by Wozney et al., (1988; incorporated herein by reference). DNA sequences encoding the osteogenic proteins designated OP-1, COP-5 and COP-7 are also disclosed in U.S. Patent 5,011,691. Although the BMP terminology is widely used, it may prove to be the case that there is an OP counterpart term for every individual BMP (Alper, 1994).

15

20

25

30

35

10

4. Bone Repair and Growth Factors and Cytokines

Transforming growth factors (TGFs) have a central role in regulating tissue healing by affecting cell proliferation, gene expression, and matrix protein synthesis (Roberts and Sporn, 1989). While not necessarily a direct effect, Bolander and colleagues have provided evidence that TGF- β 1 and TGF- β 2 can initiate both chondrogenesis and osteogenesis (Joyce et al., 1990; Izumi et al., 1992; Jingushi et al., 1992). In these studies new cartilage and bone formation appeared to be dose dependent (i.e., dependent on the local growth factor concentration). The data also suggested that TGF- β 1 and TGF- β 2 stimulated cell differentiation by a similar mechanism, even though they differed in terms of the ultimate amount of new cartilage and bone that was formed.

Other growth factors/hormones besides TGF and BMP may influence new bone formation following fracture.

Bolander and colleagues injected recombinant acidic fibroblast growth factor into a rat fracture site

- 60 -

(Jingushi et al., 1990). The major effect of multiple high doses (1.0 mg/50 ml) was a significant increase in cartilage tissue in the fracture gap, while lower doses had no effect. These investigators also used the reverse transcriptase-polymerase chain reaction (PCR™) technique to demonstrate expression of estrogen receptor transcripts in callus tissue (Boden et al., 1989). These results suggested a role for estrogen in normal fracture repair.

10

15

20

Horowitz and colleagues have shown that activated osteoblasts will synthesize the cytokine, macrophage colony stimulating factor (Horowitz et al., 1989). The osteotropic agents used in this study included lipopolysaccharide, PTH1-84, PTH1-34, vitamin D and all-trans retinoic acid. This observation has led to the suggestion that osteoblast activation following fracture may lead to the production of cytokines that regulate both hematopoiesis and new bone formation. Various other proteins and polypeptides that have been found to be expressed at high levels in osteogenic cells, such as, e.g., the polypeptide designated Vgr-1 (Lyons et al., 1989), also have potential for use in connection with the present invention.

25

30

35

5. Bone Repair and Calcium Regulating Hormones

Calcium regulating hormones such as parathyroid hormone (PTH) participate in new bone formation and bone remodeling (Raisz and Kream, 1983). PTH is an 84 amino acid calcium-regulating hormone whose principle function is to raise the Ca⁺² concentration in plasma and extracellular fluid. Studies with the native hormone and with synthetic peptides have demonstrated that the aminoterminus of the molecule (aa 1-34) contains the structural requirements for biological activity (Tregear et al., 1973; Hermann-Erlee et al., 1976; Riond, 1993).

- 61 -

PTH functions by binding to a specific cell surface receptor that belongs to the G protein-coupled receptor superfamily (Silve et al., 1982; Rizzoli et al., 1983; Juppner et al., 1991).

5

10

25

30

Using a retroviral approach, a human full-length PTH gene construct has been introduced into cultured rat fibroblasts to create recombinant PTH-secreting cells. These cells were then transplanted into syngeneic rat recipients that were observed to develop hypercalcemia mediated by the increased serum concentrations of PTH (Wilson et al., 1992). The object of these studies was to create an animal model of primary hyperparathyroidism.

15 PTH has a dual effect on new bone formation, a somewhat confusing aspect of hormone function despite intensive investigation. PTH has been shown to be a potent direct inhibitor of type I collagen production by osteoblasts (Kream et al., 1993). Intact PTH was also shown to stimulate bone resorption in organ culture over 20 30 years ago, and the hormone is known to increase the number and activity of osteoclasts. Recent studies by Gay and colleagues have demonstrated binding of [125I] PTH(1-84) to osteoclasts in tissue sections and that osteoclasts bind intact PTH in a manner that is both saturable and time- and temperature dependent (Agarwala and Gay, 1992). While these properties are consistent with the presence of PTH/PTHrP receptors on the osteoclast cell surface, this hypothesis is still considered controversial. A more accepted view, perhaps, is that osteoclast activation occurs via an osteoblast signaling mechanism.

On the other hand, osteosclerosis may occur in human 35 patients with primary hyperparathyroidism (Seyle, 1932). It is well known that individuals with hyperparathyroidism do not inexorably lose bone mass, but

- 62 -

eventually achieve a new bone remodeling steady state after an initial period of net bone loss. Chronic, low dose administration of the amino-terminal fragment of PTH (aa 1-34) also can induce new bone formation according to a time- and dose-dependent schedule (Seyle, 1932; Parsons and Reit, 1974).

Human PTH1-34 has recently been shown to: stimulate DNA synthesis in chick osteoblasts and chondrocytes in culture (van der Plas, 1985; Schluter et al., 1989; 10 Somjen et al., 1990); increase bone cell number in vivo (Malluche et al., 1986); enhance the in vitro growth of chick embryonic cartilage and bone (Kawashima, 1980; Burch and Lebovitz, 1983; Lewinson and Silbermann, 1986; Endo et al., 1980; Klein-Nulend et al., 1990); enhance 15 surface bone formation (both cortical and trabecular bone) in normal and osteogenic animals and in humans with osteoporosis (Reeve et al., 1976; Reeve et al., 1980; Tam et al., 1982; Hefti et al., 1982; Podbesek et al., 1983; 20 Stevenson and Parsons, 1983; Slovik et al., 1986; Gunness-Hey and Hock, 1984; Tada et al., 1988; Spencer et al., 1989; Hock and Fonseca, 1990; Liu and Kalu, 1990; Hock and Gera, 1992; Mitlak et al., 1992; Ejersted et al., 1993); and delay and reverse the catabolic effects of estrogen deprivation on bone mass (Hock et al., 1988; 25 Hori et al., 1988; Gunness-Hey and Hock, 1989; Liu et al., 1991). Evidence of synergistic interactions between hPTH-1-34 and other anabolic molecules has been presented, including insulin-like growth factor, BMP-2, growth hormone, vitamin D, and TGF- β (Slovik et al., 30 1986; Spencer et al., 1989; Mitlak et al., 1992; Canalis et al., 1989; Linkhart and Mohan, 1989; Seitz et al., 1992; Vukicevic et al., 1989).

Anecdotal observation has shown that serum PTH levels may be elevated following bone fracture (Meller et al., 1984; Johnston et al., 1985; Compston et al., 1989;

- 63 -

Hardy et al., 1993), but the significance of this observation is not understood. There are apparently no reports in the literature concerning attempts to localize either PTH or the PTH/PTHrP receptor in situ in human fracture sites or in experimental models. Furthermore, no attempt has been made to augment bone repair by the exogenous addition of PTH peptides. Although hPTH1-34 is known to function as an anabolic agent for bone, prior to the present invention, much remained to be learned about the role (if any) of PTH during bone regeneration and repair.

6. Protein Administration and Bone Repair

Several studies have been conducted in which preparations of protein growth factors, including BMPs, have been administered to animals in an effort to stimulate bone growth. The results of four such exemplary studies are described blow.

20

25

30

35

Toriumi et al., studied the effect of recombinant BMP-2 on the repair of surgically created defects in the mandible of adult dogs (Toriumi et al., 1991). Twentysix adult hounds were segregated into three groups following the creation of a 3 cm full thickness mandibular defect: 12 animals received test implants composed of inactive dog bone matrix carrier and human BMP-2, 10 animals received control implants composed of carrier without BMP-2, and BMP-4 animals received no implant. The dogs were euthanized at 2.5-6 months, and the reconstructed segments were analyzed by radiography, histology, histomorphometry, and biomechanical testing. Animals that received test implants were euthanized after 2.5 months because of the presence of well mineralized bone bridging the defect. The new bone allowed these animals to chew a solid diet, and the average bending strength of reconstructed mandibles was 27% of normal

- 64 -

('normal' in this case represents the unoperated, contralateral hemimandible). In contrast, the implants in the other two groups were non-functional even after 6 months and showed minimal bone formation.

5

10

15

20

25

30

35

Yasko et al., published a related study in which the effect of BMP-2 on the repair of segmental defects in the rat femur was examined (Yasko et al., 1992). The study design included a group that received a dose of 1.4 mg of BMP-2, another group that received 11.0 mg of BMP-2, and a control group that received carrier matrix alone. Endochondral bone formation was observed in both groups of animals that received BMP-2. As demonstrated by radiography, histology, and whole bone (torsion) tests of mechanical integrity, the larger dose resulted in functional repair of the 5-mm defect beginning 4.5 weeks after surgery. The lower dose resulted in radiographic and histological evidence of new bone formation, but functional union was not observed even after 9 weeks post surgery. There was also no evidence of bone formation in control animals at this time.

Chen et al., showed that a single application of 25-100 mg of recombinant $TGF-\beta 1$ adjacent to cartilage induced endochondral bone formation in the rabbit ear full thickness skin wounds (Chen et al., 1991). Bone formation began 21 days following the creation of the wound and reached a peak at day 42, as demonstrated by morphological methods. Active bone remodeling was observed beyond this point.

In a related study, Beck et al., demonstrated that a single application of TGF- β l in a 3% methylcellulose gel was able to repair surgically induced large skull defects that otherwise heal by fibrous connective tissue and never form bone (Beck et al., 1991). Bony closure was achieved within 28 days of the application of 200 mg of

- 65 -

 $\mathsf{TGF}\text{-}\beta\mathsf{l}$ and the rate of healing was shown to be dose dependent.

Studies such as those described above have thus established that exogenous growth factors can be used to stimulate new bone formation/repair/regeneration in vivo. Certain U.S. Patents also concern methods for treating bone defects or inducing bone formation. For example, U.S. Patent 4,877,864 relates to the administration of a therapeutic composition of bone inductive protein to treat cartilage and/or bone defects; U.S. Patent 5,108,753 concerns the use of a device containing a pure osteogenic protein to induce endochondral bone formation and for use in periodontal, dental or craniofacial reconstructive procedures.

However, nowhere in this extensive literature does there appear to be any suggestion that osteogenic genes themselves may be applied to an animal in order to promote bone repair or regeneration. Indeed, even throughout the patent literature that concerns genes encoding various bone stimulatory factors and their in vitro expression in host cells to produce recombinant proteins, there seems to be no mention of the possibility of using nucleic acid transfer in an effort to express an osteogenic gene in bone progenitor cells in vivo or to promote new bone formation in an animal or human subject.

7. Biocompatible Matrices for use in Bone Repair

30

35

5

10

15

20

25

There is a considerable amount of work that has been directed to the development of biocompatible matrices for use in medical implants, including those specifically for bone implantation work. In context of the present invention, a matrix may be employed in association with the gene or DNA coding region encoding the osteotropic polypeptide in order to easily deliver the gene to the

- 66 -

site of bone damage. Such matrices may be formed from a variety of materials presently in use for implanted medical applications.

In certain cases, the matrix may also act as a "biofiller" to provide a structure for the developing bone and cartilage. However, the formation of such a scaffolding structure is not a primary requirement, rather, the main requirements of the matrix are to be biocompatible and to be capable of delivering a nucleic acid segment to a bone cell or bone tissue site.

Matrices that may be used in certain embodiments include non-biodegradable and chemically defined matrices, such as sintered hydroxyapatite, bioglass, aluminates, and other ceramics. The bioceramics may be altered in composition, such as in calcium-aluminatephosphate; and they may be processed to modify particular physical and chemical characteristics, such as pore size, particle size, particle shape, and biodegradability. Certain polymeric matrices may also be employed if desired, these include acrylic ester polymers and lactic acid polymers, as disclosed in U.S. Patents 4,526,909, and 4,563,489, respectively, each incorporated herein by reference. Particular examples of useful polymers are those of orthoesters, anhydrides, propylene-cofumarates, or a polymer of one or more α -hydroxy carboxylic acid monomers, e.g., α-hydroxy acetic acid (glycolic acid) and/or α -hydroxy propionic acid (lactic acid).

30

35

10

15

20

25

Some of the preferred matrices for use in present purposes are those that are capable of being resorbed into the body. Potential biodegradable matrices for use in bone gene transfer include, for example, PLGA block copolymers, biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxyapatite, and polyanhydrides. Furthermore, biomatrices comprised of

5

10

15

- 67 -

pure proteins and/or extracellular matrix components may be employed.

The inventors have shown the use of bone or dermal collagenous materials as matrices, as may be prepared from various commercially-available lyophilized collagen preparations, such as those from bovine or rat skin, as well as PLGA block copolymers. Collagen matrices may also be formulated as described in U.S. Patent 4,394,370, incorporated herein by reference, which concerns the use of collagenous matrices as delivery vehicles for osteogenic protein. UltraFiber, as may be obtained from Norian Corp. (Mountain View, CA), is a preferred matrix. Preferred matrices are those formulated with type II collagen, and most preferably, recombinant type II collagen and mineralized type II collagen.

Further suitable matrices may also be prepared from combinations of materials, such as PLGA block copolymers, which allow for sustained release; hydroxyapatite; or 20 collagen and tricalciumphosphate. Although sufficient sequestration and subsequent delivery of an osteotropic gene is in no way a limitation of the present invention, should it be desired, a porous matrix and gene combination may also be administered to the bone tissue 25 site in combination with an autologous blood clot. basis for this is that blood clots have previously been employed to increase sequestration of osteogenic proteins for use in bone treatment (U.S. Patent 5,171,579, incorporated herein by reference) and their use in 30 connection with the present invention is by no means excluded (they may even attract growth factors for cytokines).

8. Collagen

Although not previously proposed for use with a nucleic acid molecule, the use of collagen as a pharmaceutical delivery vehicle has been described. The 5 biocompatibility of collagen matrices is well known in the art. U.S. Patents 5,206,028, 5,128,136, 5,081,106, 4,585,797, 4,390,519, and 5,197,977 (all incorporated herein by reference) describe the biocompatibility of 10 collagen-containing matrices in the treatment of skin lesions, use as a wound dressing, and as a means of controlling bleeding. In light of these documents, therefore, there is no question concerning the suitability of applying a collagen preparation to a tissue site of an animal. 15

U.S. Patent 5,197,977 describes the preparation of a collagen-impregnated vascular graft including drug materials complexed with the collagen to be released slowly from the graft following implant. U.S. Patent 4,538,603 is directed to an occlusive dressing useful for treating skin lesions and a granular material capable of interacting with wound exudate. U.S. Patent 5,162,430 describes a pharmaceutically acceptable, non-immunogenic composition comprising a telopeptide collagen chemically conjugated to a synthetic hydrophilic polymer.

Further documents that one of skill in the art may find useful include U. S. Patents 4,837,285, 4,703,108, 4,409,332, and 4,347,234, each incorporated herein by reference. These references describe the uses of collagen as a non-immunogenic, biodegradable, and bioresorbable binding agent.

35 The inventors contemplate that collagen from many sources will be useful in the present invention.

Particularly useful are the amino acid sequences of type

- 69 -

II collagen. Examples of type II collagen are well known in the art. For example, the amino acid sequences of human (Lee et al., 1989), rat (Michaelson et al., 1994), and murine (Ortman et al., 1994) have been determined (SEQ ID NO:10, SEQ ID NO:12, and SEQ ID NO:14, respectively).

Although not previously known to be capable of stimulating bone progenitor cells itself, type II collagen is herein surprisingly shown to possess this property, which thus gives rise to new possibilities for clinical uses.

9. Nucleic Acid Delivery

15

10

5

The transfer of nucleic acids to mammalian cells has been proposed a method for treating certain diseases or disorders. Nucleic acid transfer or delivery is often referred to as "gene therapy". Initial efforts toward postnatal (somatic) gene therapy relied on indirect means 20 of introducing genes into tissues, e.g., target cells were removed from the body, infected with viral vectors carrying recombinant genes, and implanted into the body. These type of techniques are generally referred to as ex vivo treatment protocols. Direct in vivo gene transfer 25 has recently been achieved with formulations of DNA trapped in liposomes (Ledley et al., 1987); or in proteoliposomes that contain viral envelope receptor proteins (Nicolau et al., 1983); calcium phosphatecoprecipitated DNA (Benvenisty and Reshef, 1986); and DNA 30 coupled to a polylysine-glycoprotein carrier complex (Wu and Wu, 1988). The use of recombinant replicationdefective viral vectors to infect target cells in vivo has also been described (e.g., Seeger et al., 1984).

35

In recent years, Wolff et al., demonstrated that direct injection of purified preparations of DNA and RNA

- 70 -

into murine skeletal muscle resulted in significant reporter gene expression (Wolff et al., 1990). This was an unexpected finding, and the mechanism of gene transfer could not be defined. The authors speculated that muscle cells may be particularly suited to take up and express polynucleotides in vivo or that damage associated with DNA injection may allow transfection to occur.

Wolff et al., suggested several potential applications of the direct injection method, including (a) the treatment of heritable disorders of muscle, (b) the modification of non-muscle disorders through muscle tissue expression of therapeutic transgenes, (c) vaccine development, and (d) a reversible type of gene transfer, in which DNA is administered much like a conventional pharmaceutical treatment. In an elegant study Liu and coworkers recently showed that the direct injection method can be successfully applied to the problem of influenza vaccine development (Ulmer et al., 1993).

20

25

30

35

10

15

The use of gene transfer to synoviocytes as a means of treating arthritis has also been discussed (Bandara et al., 1992; Roessler et al., 1993). The protocols considered have included both the ex vivo treatment of isolated synoviocytes and their re-introduction into the animal and also direct gene transfer in which suitable vectors are injected into the joint. The transfer of marker genes into synoviocytes has already been demonstrated using both retroviral and adenoviral technology (Bandara et al., 1992; Roessler et al., 1993).

Despite the exclusive emphasis on protein treatment by those working in the field of new bone growth, the present inventors saw that there was great potential for using nucleic acids themselves to promote bone regeneration/repair in vivo. This provides for a more sophisticated type of pharmaceutical delivery. In

- 71 -

addition to the ease and cost of preparing DNA, it was also reasoned that using DNA transfer rather than peptide transfer would provide many further advantages. For example, DNA transfer allows for the expression or over-expression of integral membrane receptors on the surface of bone regeneration/repair cells, whereas this cannot be done using peptide transfer because the latter (a priori) is an extracellular manipulation. Importantly, DNA transfer also allows for the expression of polypeptides modified in a site-directed fashion with the very minimum of additional work (i.e., straightforward molecular biological manipulation without protein purification) as well as sustained release of therapies delivered by an injectable route.

15

20

25

5

10

The advantages of using DNA are also manifold regarding the development of pharmaceutical products and effective means of delivery. Here, important advantages include the ability to prepare injectable formulations, especially those compositions that exhibit reversible thermal gelation, and the opportunity to combine such injectables with imaging technology during delivery. "Sustained release" is also an important advantage of using DNA, in that the exogenously added DNA continues to direct the production of a protein product following incorporation into a cell. The use of certain matrix-DNA compositions also allows for a more typical "sustained release" phenomenon in that the operative release of DNA from the matrix admixture can also be manipulated.

30

35

The inventors contemplated that both naked DNA and viral-mediate DNA could be employed in an effort to transfer genes to bone progenitor cells. In beginning to study this, the most appropriate animal model had to be employed, that is, one in which the possibilities of using nucleic acids to promote bone repair could be adequately tested in controlled studies.

- 72 -

10. Osteotomy Model

Prior to the present invention, three model systems were available for study in this area, including Mov13 mice, an animal model of OI. Unfortunately, each of the 5 models suffers from significant drawbacks. With the Mov13 mice, first, these mice typically die in young adulthood because of retrovirus-induced leukemia (Schnieke et al., 1983); second, gene transfer studies in Mov13 mice conducted between postnatal weeks 8-16 (i.e., 10 prior to the development of leukemia) may be complicated by a natural adaptation in which a significant amount of new bone is deposited on the periosteal surface (Bonadio et al., 1993); and third, an osteotropic gene transferred into an osteotomy site may synergize with the active 15 retrovirus and make it even more virulent.

Another system is the *in vivo* bone fracture model created by Einhorn and colleagues (Bonnarens and Einhorn, 1984). However, this model is a closed system that would not easily permit initial studies of gene transfer *in vivo*. The organ culture model developed by Bolander and colleagues (Joyce et al., 1990) was also available, but again, this model is not suitable for studying gene transfer *in vivo*. Due to the unsuitability of the above models for studying the effects of gene transfer on bone repair and regeneration, the inventors employed a rat osteotomy system, as described below.

The important features of the rat osteotomy model are as follows: under general anesthesia, four 1.2 mm diameter pins are screwed into the femoral diaphysis of normal adult Sprague-Dawley rats. A surgical template ensures parallel placement of the pins. An external fixator is then secured on the pins, and a 2 mm, or 5 mm, segmental defect is created in the central diaphysis with a Hall micro 100 oscillating saw. A biodegradable

- 73 -

implant material, soaked in a solution of plasmid DNA, other genetic construct or recombinant virus preparation, is then placed in the intramedullary canal and the defect is closed (FIG. 5A, FIG. 5B, FIG. 6A, FIG. 6B, FIG. 6C, FIG. 6D, FIG. 7A, FIG. 7B, FIG. 8A, FIG. 8B, FIG. 8C).

New bone formation can be detected as early as three weeks later in the 2 mm gap, although up to 9 weeks is generally allowed for new bone formation to occur. The fixator provided the necessary stability, and there were no limitations on animal ambulation. The surgical protocol has been successfully performed on 21/21 animals to date. None of these animals have died. Assays of new bone formation are performed after sacrifice, except plain film radiography, which is performed weekly from the time of surgery to sacrifice.

Previous studies in Sprague-Dawley rats have shown that the 5 mm osteotomy gap will heal as a fibrous non-union, whereas a gap of less than 3 mm, (such as the 2 mm gap routinely employed in the studies described herein) will heal by primary bone formation. Studies using the 5 mm gap thus allow a determination of whether transgene expression can stimulate new bone formation when fibrous tissue healing normally is expected. On the other hand, studies with the 2 mm gap allow a determination of whether transgene expression can speed up natural primary bone healing. Controls were also performed in which animals received no DNA (FIG. 9A and FIG. 9B).

30

35

10

15

20

25

11. Gene Transfer Promotes Bone Repair In Vivo

The present inventors surprisingly found that gene transfer into bone progenitor cells in vivo (i.e., cells in the regenerating tissue in the osteotomy gap) could be readily achieved. Currently, the preferred methods for achieving gene transfer generally involve using a fibrous

- 74 -

collagen implant material soaked in a solution of DNA shortly before being placed in the site in which one desires to promote bone growth. As the studies presented herein show, the implant material facilitates the uptake of exogenous plasmid constructs by cells (in the osteotomy gap) which clearly participate in bone regeneration/repair. The transgenes, following cellular uptake, direct the expression of recombinant polypeptides, as evidenced by the *in vivo* expression of functional marker gene products.

10

30

35

Further studies are presented herein demonstrating that the transfer of an osteotropic gene results in cellular expression of a recombinant osteotropic 15 molecule, which expression is directly associated with stimulation of new bone formation. After considering a relatively large number of candidate genes, a gene transfer vector coding for a fragment of human parathyroid hormone (hPTH1-34) was chosen for the 20 inventors' initial studies. Several factors were considered in making this choice: (a), recombinant hPTH1-34 peptides can be discriminated from any endogenous rat hormone present in osteotomy tissues; (b), hPTH1-34 peptides will stimulate new bone formation in Sprague-Dawley rats, indicating that the human peptide 25 can efficiently bind the PTH/PTHrP receptor on the rat osteoblast cell surface; and (c), there is only one PTH/PTHrP receptor, the gene for this receptor has been cloned, and cDNA probes to the receptor are available.

Thus, in terms of understanding the mechanism of action of the transgene on new bone formation in vivo, the inventors reasoned it most straightforward to correlate the expression of recombinant hPTH1-34 peptide and its receptor with new bone formation in the rat osteotomy model. Of course, following these initial studies, it is contemplated that any one of a wide

15

20

25

30

35

variety of genes may be employed in connection with the bone gene transfer embodiments of the present invention.

Previous studies have indicated that hPTH1-34 is a more powerful anabolic agent when given intermittently as opposed to continuously. Despite the fact that an anabolic effect would still be expected with continuous dosing, as documented by the studies of Parsons and coworkers (Tam et al., 1982; Spencer et al., 1989), there was a concern that the PLJ-hPTH1-34 transgene may not function very effectively as transfected cells would be expected to express recombinant hPTH1-34 molecules in a constitutive manner. The finding that transfection and expression of the LPH-hPTH1-34 transgene did effectively stimulate bone formation in the rat osteotomy model was therefore an important result.

As the osteotomy site in this model is highly vascularized, one possible complication of the studies with the PLJ-hPTH1-34 transgene is the secretion of recombinant human PTH from the osteotomy site with consequent hypercalcemia and (potentially) animal death. Weekly serum calcium levels should therefore be determined when using this transgene. The fact that no evidence of disturbed serum calcium levels has been found in this work is therefore a further encouraging finding.

These studies complement others by the inventors in which direct gene transfer was employed to introduce genes into Achilles' tendon and cruciate ligament, as described in Example XI.

Various immediate applications for using nucleic acid delivery in connection with bone disorders became apparent to the inventors following these surprising findings. The direct transfer of an osteotropic gene to promote fracture repair in clinical orthopaedic practice

- 76 -

is just one use. Other important aspects of this technology include the use of gene transfer to treat patients with "weak bones", such as in diseases like osteoporosis; to improve poor healing which may arise for unknown reasons, e.g., fibrous non-union; to promote implant integration and the function of artificial joints; to stimulate healing of other skeletal tissues such as Achilles' tendon; and as an adjuvant to repair large defects. In all such embodiments, DNA is being used as a direct pharmaceutical agent.

12. Biological Functional Equivalents

10

15

20

As mentioned above, modification and changes may be made in the structure of an osteotropic gene and still obtain a functional molecule that encodes a protein or polypeptide with desirable characteristics. The following is a discussion based upon changing the amino acids of a protein to create an equivalent, or even an improved, second-generation molecule. The amino acid changes may be achieved by changing the codons of the DNA sequence, according to the following codon table:

- 77 -

Table 1

Amino Acids			Code	ons					
Alanine .	Ala	À	GCA	GCC	GCG	GCU			
Cysteine	Cys	С	UGC	UGU					
Aspartic acid	Asp	D	GAC	GAU					
Glutamic acid	Glu	E	GAA	GAG					
Phenylalanine	Phe	F	UUC	טטט					
Glycine	Gly	G	GGA	GGC	GGG	GGU			
Histidine	His	H	CAC	CAU					
Isoleucine	Ile	r	AUA	AUC	AUU				
Lysine	Lys	ĸ	AAA	AAG					
Leucine	Leu	L	UUA	DOG.	CUA	CUC	CUG	CUU	
Methionine	Met	M	AUG	•					
Asparagine	Asn	N	AAC	AAU					
Proline	Pro	P	CCA	CCC	CCG	CCU			
Glutamine	Gln	Q	CAA	CAG					
Arginine	Arg	R	AGA	AGG	CGA	CGC	CGG	CGU	
Serine	Ser	s	AGC	AGU	UCA	UCC	UCG	UCU	
Threonine	Thr	Ŧ	ACA	ACC	ACG	ACU			
Valine	Val	V	GUA	GUC	GUG	GUU			
Tryptophan	Trp	W	UGG						
Tyrosine	Tyr	Y	UAC	UAU					

For example, certain amino acids may be substituted 25 for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules. Since it is the interactive capacity and nature of a 30 protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence, and, of course, its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated by 35 the inventors that various changes may be made in the DNA sequences of osteotropic genes without appreciable loss of their biological utility or activity.

In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982, incorporate herein by reference). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.

Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics (Kyte and Doolittle, 1982), these are: Isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

It is known in the art that certain amino acids may

be substituted by other amino acids having a similar
hydropathic index or score and still result in a protein
with similar biological activity, i.e., still obtain a
biological functionally equivalent protein. In making
such changes, the substitution of amino acids whose

hydropathic indices are within ±2 is preferred, those
which are within ±1 are particularly preferred, and those
within ±0.5 are even more particularly preferred.

It is also understood in the art that the

substitution of like amino acids can be made effectively
on the basis of hydrophilicity. U.S. Patent 4,554,101,
incorporated herein by reference, states that the

- 79 -

greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein.

5

10

As detailed in U.S. Patent 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 ± 1); glutamate (+3.0 ± 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5 ± 1); alanine (-0.5); histidine *-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4).

15

20

It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent, and in particular, an immunologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within ±2 is preferred, those which are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.

As outlined above, amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions which take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.

35

10

20

25

30

13. Site-Specific Mutagenesis

Site-specific mutagenesis is a technique useful in the preparation of individual peptides, or biologically functional equivalent proteins or peptides, through specific mutagenesis of the underlying DNA. technique further provides a ready ability to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA. Sitespecific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences. which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Typically, a primer of about 17 to 25 nucleotides in length is preferred, with about 5 to 10 residues on both sides of the junction of the sequence being altered.

In general, the technique of site-specific mutagenesis is well known in the art, as exemplified by various publications. As will be appreciated, the technique typically employs a phage vector which exists in both a single stranded and double stranded form. Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage. These phage are readily commercially available and their use is generally well known to those skilled in the art. Double stranded plasmids are also routinely employed in site directed mutagenesis which eliminates the step of transferring the gene of interest from a plasmid to a phage.

In general, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector or melting apart of two strands of a

double stranded vector which includes within its sequence a DNA sequence which encodes the desired osteotropic protein. An oligonucleotide primer bearing the desired mutated sequence is prepared, generally synthetically. This primer is then annealed with the single-stranded vector, and subjected to DNA polymerizing enzymes such as E. coli polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate cells, such as E. colicells, and clones are selected which include recombinant vectors bearing the mutated sequence arrangement.

15

20

10

The preparation of sequence variants of the selected osteotropic gene using site-directed mutagenesis is provided as a means of producing potentially useful species and is not meant to be limiting as there are other ways in which sequence variants of osteotropic genes may be obtained. For example, recombinant vectors encoding the desired osteotropic gene may be treated with mutagenic agents, such as hydroxylamine, to obtain sequence variants.

25

14. Monoclonal Antibody Generation

Means for preparing and characterizing antibodies are well known in the art (See, e.g., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; incorporated herein by reference).

The methods for generating monoclonal antibodies (MAbs) generally begin along the same lines as those for preparing polyclonal antibodies. Briefly, a polyclonal antibody is prepared by immunizing an animal with an immunogenic composition in accordance with the present invention and collecting antisera from that immunized animal. A wide range of animal species can be used for the production of antisera. Typically the animal used for production of anti-antisera is a rabbit, a mouse, a rat, a hamster, a guinea pig or a goat. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.

20

25

30

10

15

As is well known in the art, a given composition may vary in its immunogenicity. It is often necessary therefore to boost the host immune system, as may be achieved by coupling a peptide or polypeptide immunogen to a carrier. Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers. Means for conjugating a polypeptide to a carrier protein are well known in the art and include glutaraldehyde, m-maleimidobencoyl-N-hydroxysuccinimide ester, carbodiimyde and bis-biazotized benzidine.

As is also well known in the art, the immunogenicity
of a particular immunogen composition can be enhanced by
the use of non-specific stimulators of the immune
response, known as adjuvants. Exemplary and preferred

- 83 -

adjuvants include complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed *Mycobacterium tuberculosis*), incomplete Freund's adjuvants and aluminum hydroxide adjuvant.

5

10

15

The amount of immunogen composition used in the production of polyclonal antibodies varies upon the nature of the immunogen as well as the animal used for immunization. A variety of routes can be used to administer the immunogen (subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal). The production of polyclonal antibodies may be monitored by sampling blood of the immunized animal at various points following immunization. A second, booster injection, may also be given. The process of boosting and titering is repeated until a suitable titer is achieved. When a desired level of immunogenicity is obtained, the immunized animal can be bled and the serum isolated and stored, and/or the animal can be used to generate MAbs.

20.

25

30

MAbs may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Patent 4,196,265, incorporated herein by reference. Typically, this technique involves immunizing a suitable animal with a selected immunogen composition, e.g., a purified or partially purified LTBP-3 protein, polypeptide or peptide. The immunizing composition is administered in a manner effective to stimulate antibody producing cells. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep frog cells is also possible. The use of rats may provide certain advantages (Goding, 1986, pp. 60-61), but mice are preferred, with the BALB/c mouse being most preferred

10

15

as this is most routinely used and generally gives a higher percentage of stable fusions.

Following immunization, somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the MAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibody-producing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible. Often, a panel of animals will have been immunized and the spleen of animal with the highest antibody titer will be removed and the spleen lymphocytes obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately 5 X 107 to 2 X 108 lymphocytes.

20

25

The antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized. Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render then incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas).

30

35

Any one of a number of myeloma cells may be used, as are known to those of skill in the art (Goding, pp. 65-66, 1986; Campbell, pp. 75-83, 1984). For example, where the immunized animal is a mouse, one may use P3-X63/Ag8, X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and

15

20

4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 are all useful in connection with human cell fusions.

One preferred murine myeloma cell is the NS-1 myeloma cell line (also termed P3-NS-1-Ag4-1), which is readily available from the NIGMS Human Genetic Mutant Cell Repository by requesting cell line repository number GM3573. Another mouse myeloma cell line that may be used is the 8-azaguanine-resistant mouse murine myeloma SP2/0 non-producer cell line.

Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells usually comprise mixing somatic cells with myeloma cells in a 2:1 proportion, though the proportion may vary from about 20:1 to about 1:1, respectively, in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes. Fusion methods using Sendai virus have been described by Kohler and Milstein (1975; 1976), and those using polyethylene glycol (PEG), such as 37% (v/v) PEG, by Gefter et al. (1977). The use of electrically induced fusion methods is also appropriate (Goding pp. 71-74, 1986).

Fusion procedures usually produce viable hybrids at 25 low frequencies, about 1 \times 10 $^{-6}$ to 1 \times 10 $^{-8}$. However, this does not pose a problem, as the viable, fused hybrids are differentiated from the parental, unfused cells (particularly the unfused myeloma cells that would normally continue to divide indefinitely) by culturing in 30 a selective medium. The selective medium is generally one that contains an agent that blocks the de novo synthesis of nucleotides in the tissue culture media. Exemplary and preferred agents are aminopterin, 35 methotrexate, and azaserine. Aminopterin and methotrexate block de novo synthesis of both purines and pyrimidines, whereas azaserine blocks only purine

- 86 - -

synthesis. Where aminopterin or methotrexate is used, the media is supplemented with hypoxanthine and thymidine as a source of nucleotides (HAT medium). Where azaserine is used, the media is supplemented with hypoxanthine.

5

10

15

20

25

The preferred selection medium is HAT. Only cells capable of operating nucleotide salvage pathways are able to survive in HAT medium. The myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and they cannot survive. The B cells can operate this pathway, but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B cells.

This culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants (after about two to three weeks) for the desired reactivity. The assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays, cytotoxicity assays, plaque assays, dot immunobinding assays, and the like.

The selected hybridomas would then be serially diluted and cloned into individual antibody-producing cell lines, which clones can then be propagated indefinitely to provide MAbs. The cell lines may be exploited for MAb production in two basic ways. A sample of the hybridoma can be injected (often into the peritoneal cavity) into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion. The injected animal develops tumors secreting the specific monoclonal

antibody produced by the fused cell hybrid. The body fluids of the animal, such as serum or ascites fluid, can then be tapped to provide MAbs in high concentration. The individual cell lines could also be cultured in vitro, where the MAbs are naturally secreted into the culture medium from which they can be readily obtained in high concentrations. MAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as HPLC or affinity chromatography.

15. LTBP-3

10

Other aspects of the present invention concern isolated DNA segments and recombinant vectors encoding 15 LTBP-3, and the creation and use of recombinant host cells through the application of DNA technology, that express LTBP-3 gene products. As such, the invention concerns DNA segment comprising an isolated gene that encodes a protein or peptide that includes an amino acid 20 sequence essentially as set forth by a contiguous sequence from SEQ ID NO:3. These DNA segments are represented by those that include a nucleic acid sequence essentially as set forth by a contiguous sequence from SEQ ID NO:2 (FIG. 25). Compositions that include a 25 purified protein that has an amino acid sequence essentially as set forth by the amino acid sequence of SEQ ID NO:3 (FIG. 26) are also encompassed by the invention.

30

35

The TGF- β s represent a family of structurally related molecules with diverse effects on mammalian cell shape, growth, and differentiation (Roberts and Sporn, 1990). Initially synthesized as a precursor consisting of an amino-terminal propeptide followed by mature TGF- β , two chains of nascent pro-TGF- β associate in most tissues to form a Mr ~106,000 inactive disulfide-bonded dimer.

Homodimers are most common, but heterodimers have also been described (Cheifetz et al., 1987; Ogawa et al., 1992). During biosynthesis the mature $TGF-\beta$ dimer is cleaved from the propeptide dimer. TGF- β latency results in part from the non-covalent association of propeptide and mature TGF- β dimers (Pircher et al., 1984, 1986; Wakefield et al., 1987; Millan et al., 1992; Miyazono and Heldin, 1989). Consequently, the propeptide dimer is often referred to as the latency associated protein (LAP), and LAP plus the disulfide-bonded TGF- β dimer are 10 also known as the small latent complex. extracellular space small latent complexes must be dissociated to activate mature TGF- β . The mechanism of activation of the latent complex is thought to be one of the most important steps governing TGF- β effects (Lyons 15 et al., 1988; Antonelli-Orlidge et al., 1989; Twardzik et al., 1990; Sato et al., 1993).

In certain lines of cultured cells small latent growth factor complexes may contain additional high 20 molecular weight proteins. The best characterized of these high molecular weight proteins is the latent TGF-etabinding protein, or LTBP (Miyazono et al., 1988; Kanzaki et al., 1990; Tsuji et al., 1990; Olofsson et al., 1992; Taketazu et al., 1994). LTBP produced by different cell 25 types is heterogeneous in size, perhaps because of alternative splicing or because of tissue-specific proteolytic processing (Miyazono et al., 1988; Wakefield et al., 1988; Kanzaki et al., 1990; Tsuji et al., 1990). Latent TGF- β complexes that contain LTBP are known as 30 large latent complexes. LTBP has no known covalent linkage to mature TGF- β , but rather it is linked by a disulfide bond to LAP.

Regarding the novel protein LTBP-3, the present invention concerns DNA segments, that can be isolated from virtually any mammalian source, that are free from total genomic DNA and that encode proteins having LTBP-3-like activity. DNA segments encoding LTBP-3-like species may prove to encode proteins, polypeptides, subunits, functional domains, and the like.

DNA molecule that has been isolated free of total genomic DNA of a particular species. Therefore, a DNA segment encoding LTBP-3 refers to a DNA segment that contains LTBP-3 coding sequences yet is isolated away from, or purified free from, total genomic DNA of the species from which the DNA segment is obtained. Included within the term "DNA segment", are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phagemids, 20 phage, viruses, and the like.

Similarly, a DNA segment comprising an isolated or purified LTBP-3 gene refers to a DNA segment including LTBP-3 coding sequences and, in certain aspects, regulatory sequences, isolated substantially away from other naturally occurring genes or protein encoding sequences. In this respect, the term "gene" is used for simplicity to refer to a functional protein, polypeptide or peptide encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences and smaller engineered gene segments that express, or may be adapted to express, proteins, polypeptides or peptides.

"Isolated substantially away from other coding sequences" means that the gene of interest, in this case, a gene encoding LTBP-3, forms the significant part of the

- 90 -

coding region of the DNA segment, and that the DNA segment does not contain large portions of naturally-occurring coding DNA, such as large chromosomal fragments or other functional genes or cDNA coding regions. Of course, this refers to the DNA segment as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.

In particular embodiments, the invention concerns
isolated DNA segments and recombinant vectors
incorporating DNA sequences that encode an LTBP-3 species
that includes within its amino acid sequence an amino
acid sequence essentially as set forth in SEQ ID NO:3.
In other particular embodiments, the invention concerns
isolated DNA segments and recombinant vectors
incorporating DNA sequences that include within their
sequence a nucleotide sequence essentially as set forth
in SEQ ID NO:2.

20 The term "a sequence essentially as set forth in SEQ ID NO:3" means that the sequence substantially corresponds to a portion of SEQ ID NO:3 and has relatively few amino acids that are not identical to, or a biologically functional equivalent of, the amino acids of SEQ ID NO:3. The term "biologically functional 25 equivalent" is well understood in the art and is further defined in detail herein (for example, see section 7, preferred embodiments). Accordingly, sequences that have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more preferably, 30 between about 91% and about 99%; of amino acids that are identical or functionally equivalent to the amino acids of SEQ ID NO:3 will be sequences that are "essentially as set forth in SEQ ID NO:3".

35

In certain other embodiments, the invention concerns isolated DNA segments and recombinant vectors that

- 91 -

include within their sequence a nucleic acid sequence essentially as set forth in SEQ ID NO:2. The term "essentially as set forth in SEQ ID NO:2" is used in the same sense as described above and means that the nucleic acid sequence substantially corresponds to a portion of SEQ ID NO:2 and has relatively few codons that are not identical, or functionally equivalent, to the codons of SEQ ID NO:2. Again, DNA segments that encode proteins exhibiting LTBP-3-like activity will be most preferred.

10

15

20

5

It will also be understood that amino acid and nucleic acid sequences may include additional residues, such as additional N- or C-terminal amino acids or 5' or 3' sequences, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the maintenance of biological protein activity where protein expression is concerned. The addition of terminal sequences particularly applies to nucleic acid sequences that may, for example, include various non-coding sequences flanking either of the 5' or 3' portions of the coding region or may include various internal sequences, i.e., introns, which are known to occur within genes.

25

30

35

Naturally, the present invention also encompasses DNA segments that are complementary, or essentially complementary, to the sequence set forth in SEQ ID NO:2. Nucleic acid sequences that are "complementary" are those that are capable of base-pairing according to the standard Watson-Crick complementarity rules. As used herein, the term "complementary sequences" means nucleic acid sequences that are substantially complementary, as may be assessed by the same nucleotide comparison set forth above, or as defined as being capable of hybridizing to the nucleic acid segment of SEQ ID NO:2,

PCT/US95/02251

under relatively stringent conditions such as those described herein.

The nucleic acid segments of the present invention, regardless of the length of the coding sequence itself, 5 may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore 10 contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, nucleic acid fragments may be prepared that include a short 15 contiquous stretch identical to or complementary to SEQ ID NO:2, such as about 14 nucleotides, and that are up to about 10,000 or about 5,000 base pairs in length, with segments of about 3,000 being preferred in certain cases. DNA segments with total lengths of about 1,000, about 20 500, about 200, about 100 and about 50 base pairs in length (including all intermediate lengths) are also contemplated to be useful.

It will be readily understood that "intermediate lengths", in these contexts, means any length between the quoted ranges, such as 14, 15, 16, 17, 18, 19, 20, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers through the 200-500; 500-1,000; 1,000-2,000; 2,000-3,000; 3,000-5,000; 5,000-10,000 ranges, up to and including sequences of about 12,001, 12,002, 13,001, 13,002 and the like.

35 It will also be understood that this invention is not limited to the particular nucleic acid and amino acid sequences of SEQ ID NO:2 and SEQ ID NO:3. Recombinant

vectors and isolated DNA segments may therefore variously include the LTBP-3 coding regions themselves, coding regions bearing selected alterations or modifications in the basic coding region, or they may encode larger polypeptides that nevertheless include LTBP-3-coding regions or may encode biologically functional equivalent proteins or peptides that have variant amino acids sequences.

The DNA segments of the present invention encompass 10 biologically functional equivalent LTBP-3 proteins and peptides. Such sequences may arise as a consequence of codon redundancy and functional equivalency that are known to occur naturally within nucleic acid sequences 15 and the proteins thus encoded. Alternatively, functionally equivalent proteins or peptides may be created via the application of recombinant DNA technology, in which changes in the protein structure may be engineered, based on considerations of the properties 20 of the amino acids being exchanged. Changes designed by man may be introduced through the application of sitedirected mutagenesis techniques, e.g., to introduce improvements to the antigenicity of the protein or to test mutants in order to examine activity at the 25 molecular level.

If desired, one may also prepare fusion proteins and peptides, e.g., where the LTBP-3 coding regions are aligned within the same expression unit with other proteins or peptides having desired functions, such as for purification or immunodetection purposes (e.g., proteins that may be purified by affinity chromatography and enzyme label coding regions, respectively).

Recombinant vectors form further aspects of the present invention. Particularly useful vectors are contemplated to be those vectors in which the coding

portion of the DNA segment, whether encoding a full length protein or smaller peptide, is positioned under the control of a promoter. The promoter may be in the form of the promoter that is naturally associated with a LTBP-3 gene, as may be obtained by isolating the 5' non-coding sequences located upstream of the coding segment or exon, for example, using recombinant cloning and/or PCR[™] technology, in connection with the compositions disclosed herein.

10

15

20

25

30

In other embodiments, it is contemplated that certain advantages will be gained by positioning the coding DNA segment under the control of a recombinant, or heterologous, promoter. As used herein, a recombinant or heterologous promoter is intended to refer to a promoter that is not normally associated with an LTBP-3 gene in its natural environment. Such promoters may include LTBP-3 promoters normally associated with other genes, and/or promoters isolated from any bacterial, viral, eukaryotic, or mammalian cell. Naturally, it will be important to employ a promoter that effectively directs the expression of the DNA segment in the cell type, organism, or even animal, chosen for expression. The use of promoter and cell type combinations for protein expression is generally known to those of skill in the art of molecular biology, for example, see Sambrook et al., 1989. The promoters employed may be constitutive, or inducible, and can be used under the appropriate conditions to direct high level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins or peptides. Appropriate promoter systems contemplated for use in high-level expression include, but are not limited

10

15

20

to, the *Pichia* expression vector system (Pharmacia LKB Biotechnology) (see Example XVI herein).

In connection with expression embodiments to prepare recombinant LTBP-3 proteins and peptides, it is contemplated that longer DNA segments will most often be used, with DNA segments encoding the entire LTBP-3 protein or functional domains, subunits, etc. being most preferred. However, it will be appreciated that the use of shorter DNA segments to direct the expression of LTBP-3 peptides or epitopic core regions, such as may be used to generate anti-LTBP-3 antibodies, also falls within the scope of the invention. DNA segments that encode peptide antigens from about 15 to about 50 amino acids in length, or more preferably, from about 15 to about 30 amino acids in length are contemplated to be particularly useful.

The LTBP-3 gene and DNA segments may also be used in connection with somatic expression in an animal or in the creation of a transgenic animal. Again, in such embodiments, the use of a recombinant vector that directs the expression of the full length or active LTBP-3 protein is particularly contemplated.

In addition to their use in directing the expression of the LTBP-3 protein, the nucleic acid sequences disclosed herein also have a variety of other uses. For example, they also have utility as probes or primers in nucleic acid hybridization embodiments. As such, it is contemplated that nucleic acid segments that comprise a sequence region that consists of at least a 14 nucleotide long contiguous sequence that has the same sequence as, or is complementary to, a 14 nucleotide long contiguous sequence of SEQ ID NO:2 will find particular utility.

Longer contiguous identical or complementary sequences, e.g., those of about 20, 30, 40, 50, 100, 200, 500, 1000

10

35

(including all intermediate lengths) and even up to full length sequences will also be of use in certain embodiments.

The ability of such nucleic acid probes to specifically hybridize to LTBP-3-encoding sequences will enable them to be of use in detecting the presence of complementary sequences in a given sample. However, other uses are envisioned, including the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.

Nucleic acid molecules having sequence regions consisting of contiguous nucleotide stretches of 10-14, 15 15-20, 30, 50, or even of 100-200 nucleotides or so, identical or complementary to SEQ ID NO:2, are particularly contemplated as hybridization probes for use in, e.g., Southern and Northern blotting. This would allow LTBP-3 structural or regulatory genes to be 20 analyzed, both in diverse cell types and also in various mammalian cells. The total size of fragment, as well as the size of the complementary stretch(es), will ultimately depend on the intended use or application of the particular nucleic acid segment. Smaller fragments 25 will generally find use in hybridization embodiments, wherein the length of the contiguous complementary region may be varied, such as between about 10-14 and about 100 nucleotides, but larger contiguous complementarity stretches may be used, according to the length 30 complementary sequences one wishes to detect.

The use of a hybridization probe of about 10-14 nucleotides in length allows the formation of a duplex molecule that is both stable and selective. Molecules having contiguous complementary sequences over stretches greater than 10 bases in length are generally preferred,

.5

10

15

though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having genecomplementary stretches of 15 to 20 contiguous nucleotides, or even longer where desired.

Hybridization probes may be selected from any portion of any of the sequences disclosed herein. All that is required is to review the sequence set forth in SEQ ID NO:2 and to select any continuous portion of the sequence, from about 10-14 nucleotides in length up to and including the full length sequence, that one wishes to utilize as a probe or primer. The choice of probe and primer sequences may be governed by various factors, such as, by way of example only, one may wish to employ primers from towards the termini of the total sequence.

The process of selecting and preparing a nucleic acid segment that includes a contiguous sequence from 20 within SEQ ID NO:2 may alternatively be described as preparing a nucleic acid fragment. Of course, fragments may also be obtained by other techniques such as, e.g., by mechanical shearing or by restriction enzyme digestion. Small nucleic acid segments or fragments may 25 be readily prepared by, for example, directly synthesizing the fragment by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Also, fragments may be obtained by application of nucleic acid reproduction technology, such 30 as the PCR™ technology of U.S. Patent 4,603,102 (incorporated herein by reference), by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art 35 of molecular biology.

- 98 -

Accordingly, the nucleotide sequences of the invention may be used for their ability to selectively form duplex molecules with complementary stretches of LTBP-3 gene or cDNA fragments. Depending on the application envisioned, one will desire to employ varying 5 conditions of hybridization to achieve varying degrees of selectivity of probe towards target sequence. For applications requiring high selectivity, one will typically desire to employ relatively stringent conditions to form the hybrids, e.g., one will select 10 relatively low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of 50°C to 70°C. Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand, and would be particularly 15 suitable for isolating LTBP-3 genes.

Of course, for some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template or where one 20 seeks to isolate LTBP-3-encoding sequences from related species, functional equivalents, or the like, less stringent hybridization conditions will typically be needed in order to allow formation of the heteroduplex. In these circumstances, one may desire to employ 25 conditions such as about 0.15 M to about 0.9 M salt, at temperatures ranging from 20°C to 55°C. Crosshybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated 30 that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a 35 method of choice depending on the desired results.

- 99 -

In certain embodiments, it will be advantageous to employ nucleic acid sequences of the present invention in combination with an appropriate means, such as a label, for determining hybridization. A wide variety of appropriate indicator means are known in the art, including fluorescent, radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal. In preferred embodiments, one will likely desire to employ a fluorescent label or an enzyme tag, such as urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmental undesirable reagents. In the case of enzyme tags, colorimetric indicator substrates are known that can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples.

10

15

35

In general, it is envisioned that the hybridization probes described herein will be useful both as reagents 20 in solution hybridization as well as in embodiments employing a solid phase. In embodiments involving a solid phase, the test DNA (or RNA) is adsorbed or otherwise affixed to a selected matrix or surface. This 25 fixed, single-stranded nucleic acid is then subjected to specific hybridization with selected probes under desired conditions. The selected conditions will depend on the particular circumstances based on the particular criteria required (depending, for example, on the G+C content, type of target nucleic acid, source of nucleic acid, size 30 of hybridization probe, etc.). Following washing of the hybridized surface so as to remove nonspecifically bound probe molecules, specific hybridization is detected, or even quantitated, by means of the label.

The following examples are included to demonstrate preferred embodiments of the invention. It should be

- 100 -

appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

EXAMPLE I

ANIMAL MODEL FOR ASSESSING NEW BONE FORMATION

15

20

25

30

35

ŀ

10

As various animal models were not suitable for studying the effects of nucleic acid transfer on bone formation, the inventors employed the following model system. The important features of the rat osteotomy model are as described in the following protocol (which is generally completed in 25-35 minutes).

The osteotomy was performed on one femur per animal. Right to left differences have not been apparent, but such differences are monitored in these studies, since the limb receiving the osteotomy is randomized.

After pre-operative preparation (i.e., shaving and Betadine[®] scrub), adult male Sprague Dawley rats (~500 gm, retired male breeders) were anesthetized using a 3% halothane 97% oxygen mixture (700 ml/min. flow rate). A lateral approach to the femur was made on one limb. Utilizing specially designed surgical guides, four 1.2-mm diameter pins were screwed into the diaphysis after predrilling with a high speed precision bit. A surgical template ensured precise and parallel placement of the pins. The order of pin placement was always the same:

- 101 -

outer proximal first and then outer distal, inner proximal and inner distal (with "outer" and "inner" referring to the distance from the hip joint). Pin placement in the center of the femur was ensured by fluoroscopic imaging during pin placement. The external fixator was secured on the pins and a t mm or 2 mm segmental defect was created in the central diaphysis through an incision using a Hall Micro 100 Oscillating saw (#5053-60 Hall surgical blades) under constant irrigation. Other than the size of the segmental defect, there is no difference between the 5 mm and 2 mm osteotomy protocols (FIG. 5A, FIG. 5B, FIG. 6A, FIG. 6B, FIG. 6C, FIG. 6D, FIG. 7A, FIG. 7B, FIG. 8A, FIG. 8B, FIG. 8C).

15 ·

20

25

30

10

5

The contents of the osteotomy site were irrigated with sterile saline and the fibrous collagen implant material, previously soaked in a solution of plasmid DNA or other DNA construct, if appropriate, was placed in situ. The wound was then closed in layers. Since the fixator provided the necessary stability no limitations on animal ambulation existed, and other supports were not required. The surgical protocol has been successfully performed on 53 animals to date, including 35 controls (Table 2 and FIG. 24). None of these animals have died and no significant adverse effects have been observed, other than complications that might be associated with surgical fracture repair. Minor complications that were experienced include 1 animal that developed a postoperative osteomyelitis and 1 animal in which 2/4 pins loosened as a consequence of post-operative bone fracture.

10

15

20

25

30

- 102 -

EXAMPLE II

IMPLANT MATERIAL FOR USE IN BONE GENE TRANSFER

Various implant materials may be used for transferring genes into the site of bone repair and/or regeneration in vivo. These materials are soaked a solution containing the DNA or gene that is to be transferred to the bone regrowth site. Alternatively, DNA may be incorporated into the matrix as a preferred method of making.

One particular example of a suitable material is fibrous collagen, which may be lyophilized following extraction and partial purification from tissue and then sterilized. A particularly preferred collagen is the fibrous collagen implant material termed UltraFiber, as may be obtained from Norian Corp., (Mountain View, CA). Detailed descriptions of the composition and use of UltraFiber are provided in Gunasekaran et al., (1993a, b; each incorporated herein by reference).

A more particularly preferred collagen is type II collagen, with most particularly preferred collagen being either recombinant type II collagen, or mineralized type II collagen. Prior to placement in osteotomy sites, implant materials are soaked in solutions of DNA (or virus) under sterile conditions. The soaking may be for any appropriate and convenient period, e.g., from 6 minutes to over-night. The DNA (e.g., plasmid) solution will be a sterile aqueous solution, such as sterile water or an acceptable buffer, with the concentration generally being about 0.5 - 1.0 mg/ml. Currently preferred plasmids are those such as pGL2 (Promega), pSV40β-gal, pAd.CMVlacZ, and pLJ.

- 103 -

EXAMPLE III PARATHYROID HORMONE GENE CONSTRUCTS

The active fragment of the human parathyroid hormone gene (hPTH1-34) was chosen as the first of the osteotropic genes to be incorporated into an expression vector for use in gene transfer to promote new bone formation in the rat osteotomy model.

transgene in the pLJ expression vector (FIG. 10), since this vector was appropriate for studies of transgene function both in vitro and in vivo. A schematic of the PLJ-hPTH1-34 transgene is shown in FIG. 10. The DNA and amino acid sequences of the hPTH1-34 are well known, e.g., see Hendy et al., (1981, incorporated herein by reference). To insert the transgene into the PLJ expression vector PCR™ of a full-length PTH recombinant clone was employed, followed by standard molecular biological manipulation.

A retroviral stock was then generated following $CaPO_4$ -mediated transfection of ϕ crip cells with the PLJ-hPTH1-34 construct, all according to standard protocols (Sambrook et al., 1989). Independent transduced Rat-1 clones were obtained by standard infection and selection procedures (Sambrook et al., 1989).

One clone (YZ-15) was analyzed by Southern analysis,

demonstrating that the PLJ-hPTH1-34 transgene had stably
integrated into the Rat-1 genome (FIG. 11). A Northern
analysis was next performed to show that the YZ-15 clone
expressed the PLJ-hPTH1-34 transgene, as evidenced by the
presence of specific PLJ-hPTH1-34 transcripts (FIG. 12).

25

- 104 -

EXAMPLE IV

PARATHYROID HORMONE POLYPEPTIDE EXPRESSION AND ACTIVITY

A sensitive and specific radioimmunoassay was

performed to demonstrate that the YZ-15 cells expressed
and secreted a recombinant hPTH1-34 molecule (Table 2).
The radioimmunoassay was performed on media from
transduced Rat-1 clones. To quantify secretion of the
recombinant hPTH-1-34 peptide produced by YZ-15 cells,
the culture medium from one 100 mm confluent dish was
collected over a 24 hour period and assayed with the NH2terminal hPTH RIA kit (Nichols Institute Diagnostics)
according to the manufacturer's protocol. PLJ-hPTH1-87
cells and BAG cells served as positive and negative
controls, respectively.

Protein concentrations in Table 2 are expressed as the average of three assays plus the standard deviation (in parenthesis). The concentration of the 1-34 and full length (1-84) peptides was determined relative to a standard curve generated with commercially available reagents (Nichols Institute Diagnostics).

Table 2

25	CELL LINES	PTH (pg/ml)
	YZ-15	247 (± 38)
	PLJ-hPTH1-84	2616 (± 372)
	BAG	13 (± 3)

30

35

20

As shown in Table 2, PTH expression was detected in both YZ-15 cells and PLJ-hPTH1-84 cells. BAG cells produced no detectable PTH and served as a baseline for the RIA. These results demonstrate that YZ-15 cells expressed recombinant hPTH1-34 protein.

The recombinant hPTH1-34 molecule was added to rat

15

35

osteosarcoma cells and a cAMP response assay conducted in order to determine whether the secreted molecule had biological activity. Unconcentrated media was collected from YZ-15 cells, PLJ-hPTH1-84 cells, and BAG cells and was used to treat ROS17/2.8 cells for 10 minutes, as described (Majmudar et al., 1991). cAMP was then extracted from treated cells and quantified by RIA (Table 3). The amount of cAMP shown is the average of three assays. The standard deviation of the mean is shown in parenthesis.

Table 3

CELL LINES	cAMP (pmol)
YZ-15	20.3 (± 0.25)
PLJ-hPTH184	88.5 (± 4.50)
BAG	7.6 (± 0.30)

A cAMP response was induced by the recombinant PTH secreted by the YZ-15 cells and by PLJ-hPTH1-84 cells.

BAG cells produced no PTH and served as the baseline for the cAMP assay. These results provide direct in vitro evidence that the PLJ-hPTH1-34 transgene directs the expression and secretion of a functional osteotropic agent.

EXAMPLE V BONE MORPHOGENETIC PROTEIN (BMP) GENE CONSTRUCTS

- The murine bone morphogenetic protein-4 (BMP-4) was chosen as the next of the osteotropic genes to be incorporated into an expression vector for use in promoting bone repair and regeneration.
 - A full length murine BMP-4 cDNA was generated by screening a murine 3T3 cell cDNA library (Stratagene). The human sequence for BMP-4 is well known to those of

- 106 -

skill in the art and has been deposited in Genbank. Degenerate oligonucleotide primers were prepared and employed in a standard PCR $^{\text{m}}$ to obtain a murine cDNA sequence.

5

10

The ends of the cDNA clone were further modified using the polymerase chain reaction so that the full length cDNA $(5'\rightarrow 3')$ direction encodes the natural murine initiator Met codon, the full length murine coding sequence, a 9 amino acid tag (known as the HA epitope), and the natural murine stop codon. The amino acid sequence encoded by the murine BMP-4 transgene is shown in FIG. 24; this entire sequence, including the tag, is represented by SEQ ID NO:1.

15

20

Placement of the HA epitope at the extreme carboxy terminus should not interfere with the function of the recombinant molecule sequence in vitro or in vivo. The advantage of the epitope is for utilization in immunohistochemical methods to specifically identify the recombinant murine BMP-4 molecule in osteotomy tissues in vivo, e.g., the epitope can be identified using a commercially available monoclonal antibody (Boehringer-Mannheim), as described herein.

25

30

35

Studies to demonstrate that the murine BMP-4 transgene codes for a functional osteotropic agent include, for example, (a) transfection of COS cells and immunoprecipitation of a protein band of the correct size using a monoclonal anti-HA antibody (Boehringer-Mannheim); and (b) a quantitative in vivo bone induction bioassay (Sampath and Reddi, 1981) that involves implanting proteins from the medium of transfected COS cells beneath the skin of male rats and scoring for new bone formation in the ectopic site.

- 107 -

EXAMPLE VI

DETECTION OF mRNA BY TISSUE IN SITU HYBRIDIZATION

The following technique describes the detection of

5 mRNA in tissue obtained from the site of bone
regeneration. This may be useful for detecting
expression of the transgene mRNA itself, and also in
detecting expression of hormone or growth factor
receptors or other molecules. This method may be used in

10 place of, or in addition to, Northern analyses, such as
those described in FIG. 13.

DNA from a plasmid containing the gene for which mRNA is to be detected is linearized, extracted, and 15 precipitated with ethanol. Sense and antisense transcripts are generated from 1 mg template with T3 and T7 polymerases, e.g., in the presence of [35 S] UTP at >6 mCi/ml (Amersham Corp., >1200 Ci/mmol) and 1.6 U/ml RNasin (Promega), with the remaining in vitro transcription reagents provided in a kit (SureSite, 20 Novagen Inc.). After transcription at 37°C for 1 hour, DNA templates are removed by a 15 minute digestion at 37°C with 0.5 U/ml RNase-free DNase I, extracted, and precipitated with ethanol. Riboprobes are hydrolyzed to an average final length of 150 bp by incubating in 40 $\ensuremath{\text{mM}}$ 25 NaHCO3, 60 mM Na2CO3, 80 mM DTT at 60°C, according to previously determined formula. Hydrolysis is terminated by addition of sodium acetate, pH 6.0, and glacial acetic acid to 0.09 M and 0.005% (v/v), respectively, and the probes are then ethanol precipitated, dissolved in 30 0.1 M DTT, counted, and stored at -20°C until use.

RNase precautions are taken in all stages of slide preparation. Bouins fixed, paraffin embedded tissue sections are heated to 65°C for 10 minutes, deparaffinized in 3 changes of xylene for 5 minutes, and rehydrated in a descending ethanol series, ending in

35

phosphate-buffered saline (PBS). Slides will be soaked in 0.2 N HCl for 5 min., rinsed in PBS, digested with 0.0002% proteinase K in PBS for 30 minutes at 37°C and rinsed briefly with DEPC-treated water. After equilibrating for 3 minutes in 0.1 M triethanolamine-HCl (TEA-HCl), pH 8.0, sections are acetylated in 0.25% (v/v)acetic anhydride in 0.1 M TEA-HCl for 10 minutes at room temperature, rinsed in PBS, and dehydrated in an ascending ethanol series. Each section receives 100-200 ml prehybridization solution (0.5 mg/ml denatured RNase-10 free tRNA (Boehringer-Mannheim), 10 mM DTT, 5 mg/ml denatured, sulfurylated salmon sperm DNA, 50% formamide, 10% dextran sulfate, 300 mM NaCl, 1X RNase-free Denhardt's solution (made with RNase-free bovine serum albumin, Sigma), 10 mM Tris-HCl, pH 7.4, 1 mM EDTA) and 15 then incubate on a 50°C slide warmer in a humidified enclosure for 2 hours. The sulfurylated salmon-sperm DNA blocking reagent is used in both prehybridization and hybridization solutions to help reduce nonspecific binding to tissue by 35SH groups on the probe. It is 20 prepared by labeling RNase-free salmon sperm DNA (Sigma) with non-radioactive α -thio-dCTP and α -thio-dATP (Amersham) in a standard random oligonucleotide-primed DNA labeling reaction. Excess prehybridization solution 25 is removed with a brief rinse in 4X SSC before application of probe.

Riboprobes, fresh tRNA and sulfurylated salmon sperm DNA will be denatured for 10 minutes at 70°C, and chilled on ice. Hybridization solution, identical to prehybridization solution except with denatured probe added to 5 × 10⁶ CPM/ml, is applied and slides incubated at 50°C overnight in sealed humidified chambers on a slide warmer. Sense and antisense probes are applied to serial sections. Slides are rinsed 3 times in 4X SSC, washed with 2X SSC, 1 mM DTT for 30 min. at 50°C, digested with RNase A (20 mg/ml RNase A, 0.5 M NaCl, 10

10

15

mM Tris, pH 8.0, 1 mM EDTA, pH 8.0) for 30 min. at 37°C, and rinsed briefly with 2X SSC, 1 mM DTT. Three additional washes are performed, each at 50°C for 30 minutes: once in 2X SSC, 50% formamide, 1 mM DTT, and twice in 1X SSC, 0.13% (w/v) sodium pyrophosphate, 1 mM DTT.

Slides are dehydrated in an ascending ethanol series (with supplementation of the dilute ethanols (50% and 70%) with SSC and DTT to 0.1X and 1 mM, respectively). Slides are exposed to X-ray film for 20-60 hours to visualize overall hybridization patterns, dipped in autoradiographic emulsion (Kodak NTB-2, diluted to 50% with 0.3 M ammonium acetate), slowly dried for 2 hours, and exposed (4°C) for periods ranging from 8 days to 8 weeks. After developing emulsion, sections are counter strained with hematoxylin and eosin, dehydrated, and mounted with xylene-based medium. The hybridization signal is visualized under darkfield microscopy.

20

25

35

The above in situ hybridization protocol may be used, for example, in detecting the temporal and spatial pattern of PTH/PTHrP receptor expression. A suitable rat PTH/PTHrP receptor cDNA probe (R15B) is one that consists of a 1810 bp region encoding the full length rat bone PTH/PTHrP receptor (Abou-Samra et al., 1992). The cDNA fragment is subcloned into pcDNA 1 (Invitrogen Corp., San Diego, CA) and is cut out using XbaI and BamHI. This probe has provided positive signals for northern blot analysis of rat, murine, and human osteoblastic cell lines, rat primary calvarial cells, and murine bone tissue. The pcDNA I plasmid contains a T7 and SP6 promoter that facilitate the generation of cRNA probes for in situ hybridization. The full length transcript has been used to detect PTH/PTHrP receptor in sections of bone (Lee et al., 1994). The PTHrP cDNA probe (Yasuda et al., 1989) is a 400 bp subcloned fragment in

WO 95/22611 PCT/US95/02251

- 110 -

pBluescript (Stratagene). This probe has been used for in situ hybridization, generating an antisense cRNA probe using BamHI cleavage and the T3 primer and a sense cRNA probe using EcoRI cleavage and the T7 primer.

5

EXAMPLE VII

IN VIVO PROTEIN DETECTION FOLLOWING TRANSGENE EXPRESSION

1. β -galactosidase Transgene

10

15

Bacterial β -galactosidase can be detected immunohistochemically. Osteotomy tissue specimens are fixed in Bouins fixative, demineralized, and then split in half along the longitudinal plane. One-half of each specimen is embedded in paraffin for subsequent immunohistochemical identification of the bacterial β -galactosidase protein.

For immunohistochemistry, cross-Sections (2-3 mm 20 thick) were transferred to poly-L-Lysine coated microscope slides and fixed in acetone at 0°C for at least 20 min. Sections were rehydrated in PBS. Endogenous peroxidase activity was quenched by immersion of tissue sections in 0.1% hydrogen peroxide (in 95% 25 methanol) at room temperature for 10 min, and quenched sections were washed 3x in PBS. In some cases, sectioned calvariae were demineralized by immersion in 4% EDTA, 5% polyvinyl pyrrolidone, and 7% sucrose, pH 7.4, for 24 h at 4°C. Demineralized sections were washed 3x before application for antibodies. Primary antibodies were used 30 without dilution in the form of hybridoma supernatant. Purified antibodies were applied to tissue sections at a concentration of 5 mg/ml. Primary antibodies were detected with biotinylated rabbit antimouse IgG and 35 peroxidase conjugated streptavidin (Zymed Histostain-SPkit). After peroxidase staining, sections were counterstained with hematoxylin.

- 111 -

Bacterial β -gal can also be detected by substrate utilization assays. This is conducted using commercially available kits (e.g., Promega) according to the manufacturers' instructions.

5

2. Luciferase Transgene

Luciferase can be detected by substrate utilization assays. This is conducted using commercially available kits (e.g., Promega) according to the manufacturers' instructions.

3. PTH Transgenes

15

20

25

Recombinant PTH, such as hPTH1-34 peptide, is assayed in homogenates of osteotomy gap tissue, for example, using two commercially available radioimmunoassay kits according to the manufacturer's protocols (Nichols Institute Diagnostics, San Juan Capistrano, CA).

One kit is the Intact PTH-Parathyroid Hormone 100T Kit. This radioimmunoassay utilizes an antibody to the carboxy terminus of the intact hormone, and thus is used to measure endogenous levels of hormone in gap osteotomy tissue. This assay may be used to establish a baseline value PTH expression in the rat osteotomy model.

The second kit is a two-site immunoradiometric kit for the measurement of rat PTH. This kit uses affinity purified antibodies specific for the amino terminus of the intact rat hormone (PTH1-34) and thus will measure endogenous PTH production as well as the recombinant protein. Previous studies have shown that these antibodies cross-react with human PTH and thus are able to recognize recombinant molecules in vivo.

WO 95/22611 PCT/US95/02251

- 112 -

Values obtained with kit #1 (antibody to the carboxy terminus) are subtracted from values obtained with kit #2 (antibody to the amino terminus) to obtain an accurate and sensitive measurements. The level of recombinant peptide is thus correlated with the degree of new bone formation.

4. BMP Transgene

10 Preferably, BMP proteins, such as the murine BMP-4
transgene peptide product, are detected
immunohistochemically using a specific antibody that
recognizes the HA epitope (Majmudar et al., 1991), such
as the monoclonal antibody available from BoehringerMannheim. Antibodies to BMP proteins themselves may also
be used. Such antibodies, along with various immunoassay
methods, are described in U.S. Patent 4,857,456,
incorporated herein by reference.

Osteotomy tissue specimens are fixed in Bouins fixative, demineralized, and then split in half along the longitudinal plane. One-half of each specimen is embedded in paraffin for subsequent immunohistochemical identification of the recombinant murine BMP-4 molecule.

25

20

5

EXAMPLE VIII

DIRECT GENE TRANSFER INTO REGENERATING BONE IN VIVO

To assess the feasibility of direct gene transfer into regenerating bone in vivo, marker gene transfer into cells in the rat osteotomy model was employed. These studies involved two marker genes: bacterial β -galactosidase and insect luciferase.

35

Aliquots of a fibrous collagen implant material were soaked in solutions of pure marker gene DNA. The implant

WO 95/22611 PCT/US95/02251

- 113 -

materials were then placed in the osteotomy site, and their expression determined as described above.

It was found that both marker genes were

5 successfully transferred and expressed, without any
failures, as demonstrated by substrate utilization assays
(FIG. 5A, FIG. 5B, FIG. 6A, FIG. 6B, FIG. 6C and FIG.
6D). Since mammalian cells do not normally synthesize
either marker gene product, this provides direct evidence
10 that osteotomy repair cells were transfected in vivo and
then expressed the β-galactosidase and luciferase
transgenes as a functional enzymes.

EXAMPLE IX

15 ADENOVIRAL GENE TRANSFER INTO REGENERATING BONE IN VIVO

One of the alternative methods to achieve in vivo gene transfer into regenerating bone is to utilize an adenovirus-mediated transfer event. Successful adenoviral gene transfer of a marker gene construct into bone repair cells in the rat osteotomy model has been achieved (FIG. 23A, FIG. 23B, and FIG. 23C).

20

35

The inventors employed the adenoviral vector pAd.

CMVlacZ, which is an example of a replication-defective adenoviral vector which can replicate in permissive cells (Stratford-Perricaudet et al., 1992). In pAd.CMVlacZ, the early enhancer/promoter of the cytomegalovirus (CMV) is used to drive transcription of lacZ with an SV40 polyadenylation sequence cloned downstream from this reporter (Davidson et al., 1993).

The vector pAd.RSV4 is also utilized by the inventors. This vector essentially has the same backbone as pAdCMVlacZ, however the CMV promoter and the single BglII cloning site have been replaced in a cassette-like fashion with BglII fragment that consists of an RSV

promoter, a multiple cloning site, and a poly(A*) site. The greater flexibility of this vector is contemplated to be useful in subcloning osteotropic genes, such as the hPTH1-34 cDNA fragment, for use in further studies.

5

10

15

20

To generate recombinant PTH adenovirus, a 100-mm dish of 293 cells is transfected using calcium phosphate with 20 mg of a plasmid construct, e.g., the plasmid containing the hPTH1-34 insert linearized with NheI, plus 2 mg of wild type adenovirus DNA digested with XbaI and The adenovirus DNA is derived from adenovirus type 5, which contains only a single XbaI and ClaI sites and has a partial deletion of the E3 region. Approximately 7 days post-transfection, cells and media are harvested and a lysate prepared by repeated freeze-thaw cycles. This lysate is diluted and used to infect 60 -mm dishes of confluent 293 cells for 1 hour. The cells are then overlaid with 0.8% agar/1X MEM/2% calf serum/12.5 mM MgCl₂. Ten days post-infection, individual plaques are to be picked and used to infect 60-mm dishes of 293 cells to expand the amount of virus. Positive plaques are selected for further purification and the generation of adenoviral stocks.

To purify recombinant adenovirus, 150-mm dishes of 75-90% confluent 293 cells are infected with 2-5 PFU/cell, a titer that avoids the potential cytotoxic effects of adenovirus. Thirty hours post-infection, the cells are rinsed, removed from the dishes, pelleted, and resuspended in 10 mM Tris-HCl, pH 8.1. A viral lysate is generated by three freeze-thaw cycles, cell debris is removed by centrifugation for 10 min. at 2,000 rpm, and the adenovirus is purified by density gradient centrifugation. The adenovirus band is stored at -20°C in sterile glycerol/BSA until needed.

The solution of virus particles was sterilized and

- 115 -

incubated with the implant material (from 6 min to overnight), and the virus-impregnated material was implanted into the osteotomy gap; where viral infection of cells clearly occurred. The results obtained clearly demonstrated the exquisite specificity of the anti- β -gal antibody (Sambrook et al., 1989), and conclusively demonstrated expression of the marker gene product in chondrocyte-like cells of the osteotomy gap. The nuclear-targeted signal has also been observed in pre-osteoblasts.

EXAMPLE X

TRANSFER OF AN OSTEOTROPIC GENE STIMULATES BONE REGENERATION/REPAIR IN VIVO

15

20

30

35

10

In order for a parathyroid hormone (PTH) transgene to function as an osteotropic agent, it is likely that there is a requirement for the PTH/PTHrP receptor to be expressed in the bone repair tissue itself. Therefore, the inventors investigated PTH/PTHrP receptor expression in the rat osteotomy model.

A Northern analysis of poly-A(*) RNA was conducted which demonstrated that the PTH/PHTrP receptor was expression in osteotomy repair tissue (FIG. 13).

The inventors next investigated whether gene transfer could be employed to create transfected cells that constitutively express recombinant hPTH1-34 in vivo, and whether this transgene can stimulate bone formation. The rate of new bone formation is analyzed as follows. At necropsy the osteotomy site is carefully dissected for histomorphometric analysis. The A-P and M-L dimensions of the callus tissue are measured using calipers. Specimens are then immersion fixed in Bouins fixative, washed in ethanol, and demineralized in buffered formic acid. Plastic embedding of decalcified materials is used because of the superior dimensional stability of

- 116 -

methacrylate during sample preparation and sectioning.

Tissue blocks are dehydrated in increasing alcohol concentrations and embedded. 5 mm thick sections are cut in the coronal plane using a Reichert Polycut microtome. Sections are prepared from midway through the width of the marrow cavity to guard against a sampling bias. Sections for light microscopy are stained using a modified Goldner's trichrome stain, to differentiate bone, osteoid, cartilage, and fibrous tissue. Sections are cover-slipped using Eukitt's mounting medium (Calibrated Instruments, Ardsley, NY). Histomorphometric analyses are performed under brightfield using a Nikon Optiphot Research microscope. Standard point count stereology techniques using a 10 mm x 10 mm eyepiece grid reticular are used.

Total callus area is measured at 125X magnification as an index of the overall intensity of the healing reaction. Area fractions of bone, cartilage, and fibrous tissue are measured at 250 X magnification to examine the relative contribution of each tissue to callus formation. Since the dimensions of the osteotomy gap reflect the baseline (time 0), a measurement of bone area at subsequent time intervals is used to indicate the rate of bone infill. Statistical significance is assessed using analysis of variance, with post-hoc comparisons between groups conducted using Tukey's studentized range t test.

In the 5-mm rat osteotomy model described above, it was found that PTH transgene expression can stimulate bone regeneration/repair in live animals (FIG. 6A, FIG. 6B, FIG. 6C, and FIG. 6D). This is a particularly important finding as it is known that hPTH1-34 is a more powerful anabolic agent when given intermittently as opposed to continuously, and it is the continuous-type delivery that results from the gene transfer methods used

- 117 -

here.

5

10

15

Although the present inventors have already demonstrated success of direct gene transfer into regenerating bone in vivo, the use of ex vivo treatment protocols is also contemplated. In such embodiments, bone progenitor cells would be isolated from a particular animal or human subject and maintained in an in vitro environment. Suitable areas of the body from which to obtain bone progenitor cells are areas such as the bone tissue and fluid surrounding a fracture or other skeletal defect (whether or not this is an artificially created site) and from the bone marrow. Isolated cells would then be contacted with the DNA (or recombinant viral) composition, with, or preferably without, a matrix, when the cells would take up the DNA (or be infected by the recombinant virus). The stimulated cells would then be returned to the site in the animal or patient where bone repair is to be stimulated.

20

EXAMPLE XI

TRANSFER OF GENES TO ACHILLES' TENDON AND TO CRUCIATE LIGAMENT IN VIVO

The studies on regenerating bone described above complement others by the inventors in which gene transfer was successfully employed to introduce genes into Achilles' tendon (FIG 3A, FIG. 3B, FIG. 3C, FIG. 3D, and FIG. 3E) and cruciate ligament (FIG. 4).

30

35

The Achilles' tendon consist of cells and extracellular matrix organized in a characteristic tissue architecture. Tissue wounding can disrupt this architecture and stimulate a wound healing response. The wounded tendon will regenerate, as opposed to scar, if its connective tissue elements remain approximately intact. Regeneration is advantageous because scar tissue is not optimally designed to support normal mechanical

- 118 -

function. Segmental defects in tendon due to traumatic injury may be treated with biological or synthetic implants that encourage neo-tendon formation. This strategy is limited, however, by the availability of effective (autologous) biological grafts, the long term stability and compatibility of synthetic prostheses, and the slow rate of incorporation often observed with both types of implants.

10 The inventors hypothesized that the effectiveness of biological grafts may be enhanced by the over-expression of molecules that regulate the tissue regeneration response. Toward this end, they developed a model system in which segmental defects in Achilles' tendon are created and a novel biomaterial, is used as a tendon implant/molecular delivery agent. In the present example, the ability to deliver and express marker gene constructs into regenerating tendon tissue is demonstrated.

20

25

30

35

Plasmid (pSVβgal, Promega) stock solutions were prepared according to standard protocols (Sambrook et al., 1989). SIS graft material was prepared from a segment of jejunum of adult pigs (Badylak et al., 1989). At harvest, mesenteric tissues were removed, the segment was inverted, and the mucosa and superficial submucosa were removed by a mechanical abrasion technique. After returning the segment to its original orientation, the serosa and muscle layers were rinsed, sterilized by treatment with dilute peracetic acid, and stored at 4°C until use.

Mongrel dogs (all studies) were anesthetized, intubated, placed in right-lateral recumbency upon a heating pad, and maintained with inhalant anesthesia. A lateral incision from the musculotendinous junction to the plantar fascia was used to expose the Achilles'

PCT/US95/02251

- 119 -

tendon. A double thickness sheet of SIS was wrapped around a central portion of the tendon, both ends were sutured, a 1.5 cm segment of the tendon was removed through a lateral opening in the graft material, and the graft and surgical site were closed. The leg was immobilized for 6 weeks and then used freely for 6 weeks. Graft tissues were harvested at time points indicated below, fixed in Bouins solution, and embedded in paraffin. Tissue sections (8 μ m) were cut and used for immunohistochemistry.

In an initial study, SIS material alone (SIS-alone graft) engrafted and promoted the regeneration of Achilles' tendon following the creation of a segmental defect in mongrel dogs as long as 6 months post surgery. The remodeling process involved the rapid formation of granulation tissue and eventual degradation of the graft. Scar tissue did not form, and evidence of immune-mediated rejection was not observed.

20

30

10

15

In a second study, SIS was soaked in a plasmid DNA solution (SIS+plasmid graft) and subsequently implanted as an Achilles' tendon graft (n=2 dogs) or a cruciate ligament graft (n=2 dogs) in normal mongrel dogs. A pSV β gal plasmid that employs simian virus 40 regulatory sequences to drive β -galactosidase (β -gal) activity was detectable by immunohistochemistry using a specific antibody in 4/4 animals. As a negative control, β -gal activity was not detected in the unoperated Achilles' tendon and cruciate ligament of these animals. It appeared, therefore, that SIS facilitated the uptake and subsequent expression of plasmid DNA by wound healing cells in both tendon and ligament.

A third study was designed to evaluate the time course of β -gal transgene expression. SIS + plasmid grafts were implanted for 3, 6, 9, and 12 weeks (n=2 dogs

30

35

- 120 -

pr time point) and transgene expression was assayed by
immunohistochemistry and by in situ hybridization.
Cross-sections (8-μm) of Bouins fixed, paraffin embedded
tissue were cut and mounted on ProbeOn Plus slides

(Fisher). Immunohistochemistry was performed according
to the protocol provided with the Histostain-SP kit
(Zymed). In brief, slides were incubated with a well
characterized anti-β-galactosidase antibody (1:200
dilution, 5'→3'), washed in PBS, incubated with a

biotinylated second antibody, washed, stained with the
enzyme conjugate plus a substrate-chromogen mixture, and
then counterstained with hematoxylin and eosin.

Bacterial β-gal activity was detected in tendons

that received the SIS+plasmid graft (8/8 animals).

Although not rigorously quantitative, transgene
expression appeared to peak at 9-12 weeks. Bacterial
β-gal gene expression was not detected in animals that
received SIS-alone grafts (N=2, 3 weeks and 12 weeks).

Again, scar tissue did not form and evidence of immunemediated rejection was not observed.

This study demonstrated that the mucosal biomaterial SIS can function as an autologous graft that promotes the regeneration of tissues such as Achilles' tendon and anterior cruciate ligament. SIS can also be used to deliver a marker gene construct to regenerating tissue.

EXAMPLE XIII

MECHANICAL PROPERTIES OF NEW BONE FORMATION

The mechanical properties of new bone formed during gene transfer may be measured using, e.g., whole bone torsion tests which create a stress state in which the maximum tensile stresses will occur on planes that lie obliquely to the bone's longitudinal axis. Such tests may provide important inferences about the mechanical

WO 95/22611

35

- 121 -

anisotropy of callus tissue and the degree of osseous integration of new bone tissue. These tests are particularly advantageous in the evaluation of fracture specimens, e.g., the irregular shape of callus tissue typically precludes the use of whole bone 4-point bending tests because it is impossible to reproducibly align the points from specimen to specimen.

Femurs are tested on an MTS Servohydraulic Testing Machine while moist and at room temperature. A torque 10 sensor and rotary variable displacement transduces provides data for torque-angular displacement curves. Specially designed fixtures support each bone near the metaphyseal-diaphyseal junctions, and apply a 2-point 15 load to the diaphysis. Tests are conducted at a constant rate of displacement equal to 20 degrees/sec. A 250 inch-ounce load cell measures the total applied force. All bones are tested while moist and room temperature. Torque and angular displacement data are acquired using an analog-to-digital converter and a Macintosh computer 20 and software. From this data, the following variables are calculated: a) maximum torque, b) torsional stiffness, the slope of the pre-yield portion of the curve determined from a linear regression of the data, c) energy to failure, the area under the torque-angular 25 displacement curve to the point of failure, and d) the angular displacement ratio, the ratio of displacement at failure to displacement at yield. Statistical significance is determined Analysis of Variance followed by multiple comparisons with appropriate corrections 30 (e.g., Bonferroni).

This invention also provides a means of using osteotropic gene transfer in connection with reconstructive surgery and various bone remodelling procedures. The techniques described herein may thus be employed in connection with the technology described by

10

15

20

25

- 122 -

Yasko et al., 1992; Chen et al., 1991; and Beck et al., 1991, each incorporated herein by reference.

EXAMPLE XIV

TYPE II COLLAGEN PROMOTES NEW BONE GROWTH

Certain matrix materials are capable of stimulating at least some new growth in their own right, i.e., are "osteoconductive materials". Potential examples of such materials are well known in the field of orthopedic research and include preparations of hydroxyapatite; preparations of crushed bone and mineralized collagen; PLGA block copolymers and polyanhydride. The ability of these materials to stimulate new bone formation distinguishes them from inert implant materials such as methylcellulose, which have in the past been used to deliver BMPs to sites of fracture repair.

This Example relates to a study using the rat osteotomy model with implants made of collagen type I (Sigma), collagen type II (Sigma), and UltraFiber (Norian Corp.). These materials have been placed in situ without DNA of any type. Five animals received an osteotomy with 10 mg of a type II collagen implant alone (10 mg refers to the original quantity of lyophilized collagen). Five of five control animals received an osteotomy with 10 mg of a type I collagen implant alone. Animals were housed for three weeks after surgery and then sacrificed.

30

35

The results of these studies were that SIS appeared to retard new bone formation; type I collagen incited a moderately intense inflammatory response; and UltraFiber™ acted as an osteoconductive agent. The type II collagen implant studies yielded surprising results in that 10 mg of this collagen was found to promote new bone formation in the 5-mm osteotomy model (FIG. 22A, FIG. 22B, and FIG.

- 123 -

22C). New bone - bridging the osteotomy gap - was identified three weeks after surgery in 5/5 animals that received a type II collagen implant alone (i.e., minus DNA of any type). In contrast, fibrous granulation tissue, but no evidence of new bone formation, was obtained in 5/5 animals receiving a type I collagen implant alone.

Radiographic analysis demonstrated conclusively that all animals receiving an osteotomy with a type II collagen implant without exception showed radio-dense material in the osteotomy gap (FIG. 22A). In sharp contrast, radiographic analysis of all animals receiving a type I collagen implant revealed no radio-dense material forming in the osteotomy gap (FIG. 22B). The arrow in FIG. 22A point to the new bone growth formed in the osteotomy gap of type II collagen implanted-animals. No such new bone growth was observed in the animals receiving type I collagen implants (FIG. 22B).

20

25

30

35

10

15

FIG. 22C demonstrates the results of the osteotomy with a type II collagen implant. The arrow points to the area of new bone formed in the osteotomy gap. In contrast, only fibrous granulation tissue was identified in the type I collagen gap.

Previous studies have suggested that type II collagen plays only a structural role in the extracellular matrix. The results of the type II collagen implant studies are interesting because they demonstrate a novel and osteoconductive role for type II collagen during endochondral bone repair. To further optimize the osteoconductive potential of type II collagen, a yeast expression vector that encodes for type II collagen (full length α 1(II) collagen) will be employed to produce recombinant α 1(II) collagen protein.

- 124 -

EXAMPLE XV

IDENTIFICATION OF FURTHER OSTEOTROPIC GENES:

ISOLATION OF A NOVEL LATENT TGF- β BINDING PROTEIN-LIKE (LTBP-3) GENE

The TGF- β s represent a family of structurally related molecules with diverse effects on mammalian cell shape, growth, and differentiation (Roberts and Sporn, Initially synthesized as a precursor consisting 10 of an amino-terminal propeptide followed by mature $TGF-\beta$, two chains of mascent pro-TGF- β associate in most tissues to form a Mr ~106,000 inactive disulfide-bonded dimer. Homodimers are most common, but heterodimers have also been described (Cheifetz et al., 1987; Ogawa et al., 15 1992). During biosynthesis the mature $TGF-\beta$ dimer is cleaved from the propeptide dimer. TGF- β latency results in part from the non-covalent association of propeptide and mature TGF- β dimers (Pircher et al., 1984 and 1986; Wakefield et al., 1987; Millan et al., 1992; see also 20 Miyazono and Heldin, 1989). Consequently, the propeptide dimer is often referred to as the latency associated protein (LAP), and LAP plus the disulfide-bonded TGF-etadimer are also known as the small latent complex. 25 extracellular space small latent complexes must be dissociated to activate mature TGF-eta. The mechanism of activation of the latent complex is thought to be one of the most important steps governing TGF- β effects (Lyons et al., 1988; Antonelli-Orlidge et al., 1989; Twardzik et 30 al., 1990; Sato et al., 1993).

In certain lines of cultured cells small latent growth factor complexes may contain additional high molecular weight proteins. The best characterized of these high molecular weight proteins is the latent TGF-β binding protein, or LTBP (Miyazono et al., 1988; Kanzaki et al., 1990; Tsuji et al., 1990; Olofsson et al., 1992; Taketazu et al., 1994). LTBP produced by different cell

types is heterogeneous in size, perhaps because of alternative splicing or because of tissue-specific proteolytic processing (Miyazono et al., 1988; Wakefield et al., 1988; Kanzaki et al., 1990; Tsuji et al., 1990). Latent TGF- β complexes that contain LTBP are known as large latent complexes. LTBP has no known covalent linkage to mature TGF- β , but rather it is linked by a disulfide bond to LAP.

Two LTBPs have been isolated to date. The deduced 10 human LTBP-1 amino acid sequence is comprised of a signal peptide, 16 epidermal growth factor-like repeats with the potential to bind calcium (EGF-CB repeats), 2 copies of a unique motif containing 8 cysteine residues, an RGD cell attachment motif, and an 8 amino acid motif identical to 15 the cell binding domain of the laminin B2 chain (Kanzaki et al., 1990). There is evidence that LTBP-1 binds calcium, which, in turn, induces a structural change that protects LTBP from proteolytic attack (Colosetti et al., 1993). LTBP-2 shows 41% sequence identity to LTBP-1, and 20 its structural domains show a similar overall organization (Moren et al., 1994).

While the functions of LTBP-1 and LTBP-2 presently are unknown, several ideas have been put forward in the 25 literature. First, LTBP may regulate the intracellular biosynthesis of latent TGF- β precursors. Cultured erythroleukemia cells efficiently assemble and secrete large latent TGF-eta complexes, whereas they slowly secrete small latent TGF-eta complexes that contain anomalous 30 disulfide bonds (Miyazono et al., 1991; Miyazono et al., Therefore, LTBP may facilitate the normal assembly and secretion of latent TGF-eta complexes. Second, LTBP may target latent TGF-eta to specific types of connective tissue. Recent evidence suggests that the 35 large latent TGF- β complex is covalently bound to the extracellular matrix via LTBP (Taipale et al., 1994).

15

20

- 126 -

Based on these observations, LTBP has been referred to as a "matrix receptor", i.e. a secreted protein that targets and stores latent growth factors such as $TGF-\beta$ to the extracellular matrix. Third, LTBP may modulate the activation of latent complexes. This idea is based in part on recent evidence which suggests that mature $TGF-\beta$ is released from extracellular storage sites by proteases such as plasmin and thrombin and that LTBP may protect small latent complexes from proteolytic attack (Falcone et al., 1993; Benezra et al., 1993; Taipale et al., 1994), i.e. protease activity may govern the effect of TGF- β in tissues, but LTBP may modulate this activity. Fourth, LTBP may plays an important role in targeting the latent TGF- β complex to the cell surface, allowing latent TGF- β to be efficiently activated (Flaumenhaft et al., 1993).

A. MATERIALS AND METHODS

1. cDNA Cloning

Aliquots (typically 40-50,000 PFU) of phage particles from a cDNA library in the λZAPII® vector made from NIH 3T3 cell mRNA (Stratagene) and fresh overnight XL1-Blue™ cells (grown in Luria broth supplemented with 25 0.4% maltose in 10 mM MgSO₄) were mixed, incubated for 15 min. at 37°C, mixed again with 9 ml of liquid (50°C) top layer agarose (NZY broth plus 0.75% agarose), and then spread evenly onto freshly poured 150 mm NZY-agar plates. Standard methods were used for the preparation of plaque-lifts and filter hybridization (42°C, in buffer containing 50% formamide, 5X SSPE, 1X Denhardt's, 0.1% SDS, 100 mg/ml salmon sperm DNA, 100 mg/ml heparin). Filters were washed progressively to high stringency 35 (0.1% SSC/0.1% SDS, 65°C). cDNA probes were radiolabeled by the nick translation method using commercially available reagents and protocols (Nick Translation Kit,

- 127 -

Boehringer Mannheim). Purified phage clones were converted to pBluescript[®] plasmid clones, which were sequenced using Sequenase (v2.0) as described (Chen et al., 1993; Yin et al., 1995). Sequence alignment and identity was determined using sequence analysis programs from the Genetics Computer Group (MacVector).

2. Tissue In Situ Hybridization

To prepare normal sense and antisense probes, a 10 unique 342 bp fragment from the 3' untranslated region (+3973 to +4314, counting the "A" of the initiator Met codon as +1; see "ish", Fig. 1) was subcloned into the pBSKS+ plasmid (Stratagene, Inc.). Template DNA was linearized with either EcoRI or BamHI, extracted, and 15 precipitated with ethanol. Sense and antisense transcripts were generated from 1 mg template with T3 and T7 polymerases in the presence of [35S]UTP at >6 mCi/ml (Amersham, >1200 Ci/mmol) and 1.6 U/ml RNasin (Promega), 20 with the remaining in vitro transcription reagents provided in a kit (SureSite, Novagen Inc.). After transcription at 37°C for 1 h, DNA templates were removed by a 15 min. digest at 37°C with 0.5 U/ml RNase-free DNase I, extracted, and precipitated with ethanol. 25 Riboprobes were hydrolyzed to an average final length of 150 bp by incubating in 40 mM NaHCO3, 60 mM Na2CO3, 80 mM DTT for ~40 min. at 60°C. Hydrolysis was terminated by addition of sodium acetate, pH 6.0, and glacial acetic acid to .09 M and 0.56% (v/v), respectively, and the probes were then ethanol precipitated, dissolved in 0.1 M 30 DTT, counted, and stored at -20°C until use. Day

8.5-9.0, day 13.5, and day 16.5 mouse embryo tissue

sections (Novagen) and the in situ hybridization protocol

- 128 -

were exactly as described (Chen et al., 1993; Yin et al., 1995).

3. Northern Analysis

5

10

15

MC3T3-E1 cell poly(A+) RNA (2-10 mg aliquots) was electrophoresed on a 1.25% agarose/2.2 M formaldehyde gel and then transferred to a nylon membrane (Hybond-N, Amersham). The RNA was cross-linked to the membrane by exposure to a UV light source (1.2 × 106 mJ/cm², UV Stratalinker 2400, Stratagene) and then pre-hybridized for >15 min. at 65°C in Rapid-Hyb buffer (Amersham, Inc.). A specific cDNA probe consisting solely of untranslated sequence from the 3' end of the transcript was ³²P-labeled by random priming and used for hybridization (2 h at 65°C). Blots were washed progressively to high stringency (0.1X SSC/0.1% SDS, 65°C), and then placed against x-ray film with intensifying screens (XAR, Kodak) at -86°C.

20

4. Antibody Preparation

LTBP-3 antibodies were raised against a unique peptide sequence found in domain #2 (amino acids 155-167). Peptide #274 (GESVASKHAIYAVC) (SEQ ID NO:16) 25 was synthesized using an ABI model 431A synthesizer employing FastMoc chemistry. The sequence was confirmed using an ABI473 protein sequencer. A cysteine residue was added to the carboxy-terminus to facilitate crosslinking to carrier proteins. For antibody 30 production, the synthetic peptide was coupled to rabbit serum albumin (RSA) using MBS (m-maleimidobenzoic acid-N-hydroxysuccinimide ester) at a substitution of 7.5 mg peptide per mg of RSA. One mg of the peptide-RSA conjugate in 1 ml of Freund's complete adjuvant was 35 injected subcutaneously at 10 different sites along the backs of rabbits. Beginning at 3 weeks after initial

- 129 ~

immunization, the rabbits were given bi-weekly booster injections of 1 mg peptide-RSA in 100 ul of Freund's incomplete adjuvant. IgG was prepared by mixing immune serum with caprylic acid (0.7 ml caprylic acid per ml serum), stirring for 30 min., and centrifuging at 5,000 x g for 10 min. The supernatant was decanted and dialyzed against two changes of phosphate buffered saline (PBS) overnight at 4°C. The antibody solution was then affinity purified by passing it over a column containing the immunizing peptide coupled to Affi-gel 10 affinity support. Bound antibodies were eluted with 0.2 M glycine (pH 2.3), immediately dialyzed against PBS, and concentrated to 1 mg/ml. prior to storage at -70°C.

15 5. Transfection

Transient transfection was performed using standard protocols (Sambrook et al., 1989). Briefly, subconfluent cells (covering ~20% of a 100 mm plastic tissue culture dish) were washed 2x in DMEM tissue culture medium (GIBCO) and then incubated for 3 hrs. at 37°C in a sterile mixture of DEAE-dextran (0.25 mg/ml), chloroquine (55 mg/ml), and 15 mg plasmid DNA (Courey and Tjian, 1988). Cells then were shocked by incubation with 10% DMSO in sterile PBS for 2 min. at 37°C, washed 2x with DMEM (Sambrook et al., 1989), and incubated in DMEM plus 10% fetal calf serum and antibiotics for 72 hr. at 37°C.

6. Immunoprecipitation

30

35

10

20

25

For immunoprecipitation, 1 ml of antibody (1:400 final concentration, in PBS-TDS buffer: 0.38 mM NaCl, 2.7 mM KCl, 8.1 mM Na₂HPO₄, 1.5 mM KH₂PO₄, 1% Triton X-100, 0.5% Deoxycholic acid, and 0.1% SDS) was added to 1 ml of radiolabeled medium proteins. The mixture was incubated with shaking at 4°C for 1 hr., protein A-sepharose CL-4B beads were added (200 ml, 10% suspension), and this

- 130 -

mixture was incubated with shaking for one additional hour at 4°C. Immunoprecipitated proteins were pelleted by brief centrifugation, the pellet was washed 6x with PBS-TDS buffer, 2x protein loading dye was added, and the samples were boiled for 5 min. and then fractionated on 4-18% gradient SDS-PAGE (Bonadio et al., 1985). Cold molecular weight markers (200 kDa-14.3 kDa, Rainbow mix, Amersham) were used to estimate molecular weight. The gel was dried and exposed to film for the indicated time at room temperature.

7. Western Analysis

Fractionated proteins within SDS-polyacrylamide gels

were transferred to a nitrocellulose filter for 2 hours
using Tris-glycine-methanol buffer, pH 8.3 at 0.5 mA/cm².
The filter was blocked, incubated with nonfat milk plus
antibody (1:1000 dilution) for 2 hr, and washed.
Antibody staining was visualized using the ECL Western

blotting reagent (Amersham) according to the
manufacturer's protocols.

B. RESULTS

In this study, the inventors isolated and characterized a novel murine fibrillin-like cDNA encoding LTBP-3. To clone the murine LTBP-3 gene, cDNA from a 3T3 cell cDNA library was amplified using human fibrillin-1 PCR^m primers under low stringency conditions (i.e., annealing at 37°C initially for 10 cycles, followed by annealing at 60°C for 30 cycles). The results indicated that a murine DNA fragment of unexpectedly low homology (-50%) to human fibrillin-1 was obtained. Molecular cloning of the authentic murine fibrillin-1 transcript was also performed, confirming the human and murine fibrillin-1 coding sequences share >95% sequence identity. The murine fibrillin-1 and PCR^m sequences were

different, which suggested that the PCR™ product may have been derived from a related, fibrillin-like cDNA. 3T3 cell cDNA library was screened at high stringency using the murine PCR™ product as the probe in order to test this hypothesis. A cDNA walking strategy eventually yielded seven overlapping cDNA clones (FIG. 14). It provides a unique mRNA of 4,314 nucleotides, with an open reading frame of 3,753 nucleotides (SEQ ID NO:2). deduced molecule is a unique polypeptide of 1,251 amino 10 acids (SEQ ID NO:3). Excluding the signal peptide (21 amino acids), the novel fibrillin-like molecule consists of five structurally distinct regions (Region 1- Region 5), and although similar to murine fibrillin-1 (FIG. 15A), its domain structure is unique as is evidenced by the schematic representation of LTBP-3 shown in FIG. 15B.

Domain #1 is a 28 amino acid segment with a net basic charge (est. pI, 12.36) that may allow for binding acidic molecules in the extracellular matrix (e.g., 20 acidic proteoglycans). Sequences rich in basic amino acids may also function as endoproteolytic processing signals (Barr, 1991; Steiner et al., 1992), which suggests that the NH2-terminus may be proteolytically processed. Domain #2 extends for of 390 amino acids, consisting of an EGF-like repeat, a 135 amino acid 25 segment that was proline-rich (20.7%) and glycine-rich (11.8%) but not cysteine-rich, a Fibmotif (Pereira et al., 1993), an EGF-CB repeat, and a TGF-bp repeat. Domain #3 is a 113 amino acid segment characterized by its high proline content (21%). Domain #4 extends for 30 678 amino acids and consists of 14 consecutive cysteinerich repeats. Based on structural homologies, 12/14 repeats were epidermal growth factor-calcium binding (EGF-CB) motifs (Handford et al., 1991), whereas 2/14 were transforming growth factor- β -binding protein (TGF-35 bp) motifs (Kanzaki et al., 1990). Finally, domain #5 is a 22 amino acid segment at the carboxy-terminus. The

10

15

- 132 -

conceptual amino acid sequence encoded by the open reading frame consisted of 1,251 amino acids (FIG. 15B) with an estimated pI of 5.92, a predicted molecular mass of 134,710 Da, and five potential *N*-linked glycosylation sites. No RGD sequence was present.

Northern blot analysis of murine embryo RNA using a 3' untranslated region probe identified a transcript band of ~4.6 kb. In this regard, 4,310 nt have been isolated by cDNA cloning, including a 3' untranslated region of 401 nt and a 5' upstream sequence of 156 nt. The apparent discrepancy between the Northern analysis result and the cDNA sequence analysis suggested that the 5' upstream sequence may include ~300 nt of additional upstream sequence. This estimate was consistent with preliminary primer extension mapping studies indicating that the 5' upstream sequence is 400-500 nt in length.

A total of 19 cysteine-rich repeats were found in domains #2 and #4 of the murine LTBP-like (LTBP-3) 20 polypeptide. Thirteen were EGF-like and 11/13 contained the calcium binding consensus sequence. This consensus was derived from an analysis of 154 EGF-CB repeats in 23 different proteins and from structural analyses of the 25 EGF-CB repeat, both bound and unbound to calcium ion (Selander-Sunnerhagen et al., 1992). Variations on the consensus have been noted previously and one of these, D-L-N/D-E-C1, was identified in the third EGF-like repeat of domain #4. In addition, a potential calcium binding sequence which has not previously been reported (E-T-N/D-30 E-C₁) was identified in the first EGF-like repeat of domain #4. Ten of thirteen EGF-CB repeats also contained a second consensus sequence which represents a recognition sequence for an Asp/Asn hydroxylase that coand post-translationally modifies D/N residues (Stenflo 35 et al., 1987; Gronke et al., 1989).

- 133 -

Although about one-half the size, the deduced polypeptide was organized like fibrillin-1 in that it consisted of a signal peptide followed by 5 structurally distinct domains, i.e., two domains with numerous EGF-like, EGF-CB and Fib repeats and a third with a proline-rich sequence (Pereira et al., 1993). However, comparison of each of these domains using the GAP and BESTFIT programs (Genetics Computer Group) has revealed a low level of amino acid homology of only 27% over the five structural domains shared by the deduced murine polypeptide and human fibrillin-2. These values are low for a putative fibrillin family member because fibrillin-1 and fibrillin-2 share ~50% identity (Zhang et al., 1994).

15

20

25

30

35

10

A search of available databases revealed that the deduced murine polypeptide was most similar to the human and rat latent TGF-eta binding proteins (Kanzaki et al., 1990; Tsuji et al., 1990). In this regard LTBP was found to be similar to fibrillin in that it could also be divided into five structurally distinct domains (FIG. 15A, FIG. 15B, and FIG. 15C). These include a relatively short domain downstream of the signal peptide with a net basic charge (amino acids 21-33, est. pI, 11.14); a domain consisting of EGF-like, EGF-CB, TGF-bp, and Fib motifs plus a proline-rich and glycine-rich sequence (amino acids 34-407); a proline-rich domain (amino acids 408-545); a large, domain consisting of EGF-CB, TGF-bp, and TGF-bp-like repeat motifs (amino acids 546-1379); and a relatively short domain at the carboxy terminus (amino acids 1380-1394). Amino acid sequence comparison of the deduced murine and human polypeptides shows 60% identity for domain #1, 52% identity for domain #2, 30% identity for domain #3, 43% identity for domain #4, and 7% identity for domain #5. The average identity over the five domains shared by the murine polypeptide and human

- 135 -

cardiovascular tissue (myocardium plus endocardium) was also observed.

Microscopy of day 13.5 and day 16.5 embryos demonstrated expression of the murine gene by skeletal 5 muscle cells and by cells involved in intramembranous and endochondral bone formation. The transcript was expressed by osteoblasts and by periosteal cells of the calvarium, mandible and maxilla. The transcript was also identified in both cartilage and bone of the lower 10 extremity. A positive signal was detected in perichondrial cells and chondrocytes (proliferating > mature > hypertrophic) of articular cartilage, the presumptive growth plate, and the cartilage model within the central canal. The positive signal was also 15 expressed by blood vessel endothelial cells within the mid-diaphysis, and the surrounding muscle cells (FIG. 18A, FIG. 18B, FIG. 18C, FIG. 18D, FIG. 18E, FIG. 18F, FIG. 19G, FIG. 18H, FIG. 18I, FIG. 18J, FIG. 18K, FIG. 18L, FIG. 18M, FIG. 18N, FIG. 18O, and FIG. 18P). 20

Respiratory epithelial cells lining developing small airways and connective tissue cells in the pulmonary interstitium expressed the murine transcript, as did myocardial cells (atria and ventricles) and endocardial 25 cushion tissue. Cells within the walls of large arteries also expressed the transcript. Expression of the murine gene was identified in several organs of the alimentary system, including the tongue, esophagus, stomach, small and large intestine, pancreas and liver. Mucosal 30 epithelial cells lining the upper and lower digestive tract plus the smooth muscle and connective tissue cells found in the submucosa expressed the transcript, as did acinar cells of the exocrine pancreas. Despite the high level of transcript expression in the liver, these 35 results suggest both cell populations express the LTBP-3 transcript.

35

- 136 -

In the kidney, expression above the basal level was observed in cells of developing nephrons, the ureteric bud, kidney blastema and the kidney interstitium. In the skin, epidermal and adnexal keratinocytes, dermal connective tissue cells, and brown fat cells within the dorsal subcutis expressed the murine transcript. In the central and peripheral nervous systems, ganglion cells within the cerebrum, brainstem, spinal cord, and peripheral nerves expressed the murine transcript. The transcript was also intensely expressed by cells of the developing murine retina.

Thus, the murine gene is widely expressed by both epithelial and connective tissue cells, a pattern that would be expected for a latent $TGF-\beta$ binding protein. 15 Three final observations argue that the LTBP-like (LTBP-3) sequence presented in FIG. 25 is not simply the murine homologue of human LTBP. First, domain #4 of the murine LTBP-like (LTBP-3) sequence has a smaller number of EGFlike repeat motifs than human and rat LTBP (8 versus 11). 20 Second, portions of the human and rat LTBP-like coding sequence were characterized and found to share ~90% identity with human and rat LTBP but only 65% identity with the murine LTBP-like gene. Third, the human LTBP and LTBP-like genes are localized to separate chromosomes. Human LTBP was assigned to human chromosome 2 based on the analysis of human x rodent somatic cell hybrid lines (Stenman et al., 1994). The present invention represents the first mapping of an LTBP gene in 30 the murine. The human LTBP-like genes was recently localized to chromosome 11 band q12, while the murine gene was mapped to murine chromosome 19, band B (a region of conserved synteny), using several independent approaches, including fluorescent in situ hybridization.

The first indication of alternative splicing came from molecular cloning studies in the murine, in which

10

15

30

35

- 137 -

independent cDNA clones were isolated with a deletion of 51 bp from the coding sequence. PCR™/Southern blot analysis provided additional evidence that the homologous 51 bp sequence was alternatively spliced in normal murine embryo tissues.

Northern blot analysis also demonstrated that the novel fibrillin gene was also expressed in rat callus three weeks after osteotomy, after mineralization has begun. Gene expression in normal adult rat bone tissue was insignificant, which suggests that microfibrils are an important part of the bone fracture healing response. The novel fibrillin-like gene was expressed in callus as a pair of alternatively spliced transcripts. This result has been independently reproduced on three occasions. Molecular cloning of the novel fibrillin gene in both murine and rat has identified potential splice junction sites for the alternative splicing event.

MC3T3-El murine pre-osteoblasts were used to demonstrate that the murine gene product was capable of binding TGF-β. MC3T3-El cells were utilized because they synthesize and secrete TGF-β, which may act as an autocrine regulator of osteoblast proliferation (Amarnani et al., 1993; Van Vlasselaer et al., 1994; Lopez-Casillas et al., 1994).

To determine whether or not MC3T3-E1 cells co-expressed the murine gene product of TGF- β , cells were plated on 100-mm dishes under differentiating conditions (Quarles et al., 1992) and the medium was replaced twice weekly. Parallel dishes were plated and assayed for cell number and alkaline phosphatase activity, which confirmed that osteoblast differentiation was indeed taking place. Equal aliquots of total cellular RNA was prepared from these MC3T3-E1 cells after 5, 14 and 28 days in culture for Northern blot analysis. As shown in FIG. 19,

- 138 -

expression of the new murine gene peaked on day 14 of culture. Since MC3T3-E1 cells also show a peak in alkaline phosphatase activity on day 14 of culture (Quarles et al., 1992), the results suggest for the first time that LTBP-2 gene expression is an early marker of osteoblast differentiation.

C. DISCUSSION

10 This study reports the molecular cloning of a novel LTBP-like gene that contains numerous EGF-like repeats. Northern analysis indicates that the gene encodes a single transcript of ~4.6 kb in murine embryo tissues. The deduced amino acid sequence of the murine gene product appears to be a secreted polypeptide of 1,251 15 amino acids. Although it is similar to fibrillin, the overall structural organization and expression pattern of this gene product most resembles LTBP, a latent TGF- β binding protein that was originally isolated and characterized by Heldin and co-workers (Kanzaki et al., 20 1990). Several observations strongly suggest that LTBP and the murine LTBP-like gene product are therefore derived from related but distinct genetic loci. First, LTBP and the LTBP-like coding sequence share ~40% 25 identity and differences exist in the number of EGF-CB repeats in the deduced polypeptide sequence of the two molecules. Second, a portion of the murine LTBP gene has been cloned and shown to share ~90% identity with human and rat LTBP. Conversely, portions of the human and rat LTBP-like genes have been cloned and shown to share ~90% 30 identity with the murine LTBP-like gene. Third, LTBP and the LTBP-like gene reside on different human chromosomes (Stenman et al., 1994). Taken together, these data suggest that a family of at least two LTBP genes exists.

Similarities in the structural organization of LTBP-1 and the fibrillin-1 and fibrillin-2 polypeptides have

- 139 -

been noted previously (Pereira et al., 1993; Zhang et al., 1994; Taipale et al., 1994). For example, LTBP-1 and the fibrillins are all secreted extracellular matrix constituents. Moreover, each polypeptide can be 5 organized into five domains, two of which consists predominantly of EGF-CB and TGF-bp repeat motifs. LTBP-1 and fibrillin-1 also share a domain that is proline-rich, and LTBP possesses an 8-cysteine repeat previously referred to as the "Fib motif" because it was assumed to be unique to fibrillin (Pereira et al., 1993). 10 similarities likely explain the initial isolation and cloning of the LTBP-2 PCR^{m} product, especially since the human oligonucleotide primers used to initially amplify murine cDNA were designed to direct the synthesis of an 15 EGF-CB repeat in domain #4.

Another point of distinction between LTBP-2 and fibrillin concerns the spacing of conserved cysteines C4 and C5 in EGF-like repeats. Fibrillin-1 and fibrillin-2 each contain >50 such repeats, and in every one the 20 spacing is C_4-X-C_5 . While this pattern is repeated in a majority of the EGF-like repeats in LTBP-1 and LTBP-2, both genes also contain repeats with the spacing $C_4-X-X C_{\scriptscriptstyle{5}}$. Although the significance of this observation is unclear, variation in the number of amino acids between C4 25 and $C_{\scriptscriptstyle S}$ would not be expected to alter the function of the EGF-like repeat. Mature EGF is a 48 amino acid secreted polypeptide consisting of two subdomains that have few interdomain contacts (Engel, 1989; Davis, 1990). The larger NH2-terminal subdomain consists of residues 1-32 30 and is stabilized by a pair of disulfide bonds (C_1-C_3) and C_2 - C_4), whereas the smaller COOH-terminal subdomain (amino acids 33-48) is stabilized by a single disulfide bond (C_5 - C_6). The COOH-terminal subdomain has a highly conserved 35 conformation that only is possible if certain residues and the distances between them are well conserved, while conformation-sequence requirements for the NH2-terminal

- 140 -

subdomain are relatively relaxed. Variation in C_4 - C_5 spacing would not be expected to alter conformation because these residues do not normally form a disulfide bond and the spacing variation occurs at the interface of subdomains that would not be predicted to interact. The cloning of additional genes will decide whether variation in C_4 - C_5 spacing is a reliable discriminator between members of the LTBP and fibrillin gene families.

10 The LTBP-2 gene is expressed more widely during development than fibrillin-1 or fibrillin-2. Studies in developing murine tissues have shown that the Fbn-1 gene is expressed by mesenchymal cells of developing. connective tissue, whereas the murine LTBP-like gene is 15 intensely expressed by epithelial, parenchymal and stromal cells. Earlier reports have suggested that TGF- β plays a role in differentiation and morphogenesis during murine development (Lyons and Moses, 1990), when TGF- β is produced by epithelial, parenchymal and stromal cells. Tsuji et al., (1990) and others have suggested that the 20 expression of TGF- β binding proteins should mirror that of TGF- β itself; the expression pattern of the LTBP-2 gene over the course of murine development is consistent with this expectation. However, the LTBP-2 gene may not be completely co-regulated with TGF- β . TGF- β gene and 25 protein expression during murine development has been surveyed extensively (Heine et al., 1987; Lehnert and Akhurst, 1988; Pelton et al., 1989; Pelton et al., 1990a,b; Millan et al., 1991); these studies have not 30 identified expression by skeletal muscle cells, chondrocytes, hepatocytes, ganglion cells, mucosal cells lining the gut, and epithelial cells of developing nephrons. It is conceivable that the LTBP-2 molecule has

- 141 -

an additional function in certain connective tissues besides targeting $TGF-\beta$.

The binding properties of the LTBP-2 gene product

are under investigation. Formally, the LTBP-2

polypeptide may bind a specific TGF-β isoform, another

member of the TGF-β superfamily (e.g., a bone

morphogenetic protein, inhibin, activin, or Mullerian

inhibiting factor), or a growth factor unrelated to TGF
β. Anti-peptide antibodies to the murine LTBP-2

polypeptide have been generated and osteoblast cell lines

that express the molecule at relatively high levels have

been identified. Studies with these reagents suggest

that LTBP-2 assembles intracellularly into large latent

complexes with a growth factor that is being

characterized by immunological methods.

The presence of dibasic amino acids in the LTBP-2 sequence suggests that it may undergo cell- and tissuespecific proteolysis. TGF- β regulates extracellular 20 matrix production by suppressing matrix degradation (through a decrease in the expression of proteases such as collagenase, plasminogen activator, and stromelysin plus an increase in the expression of proteinase 25 inhibitors such as plasminogen activator inhibitor-1 and tissue inhibitor of metalloproteinase-1) and by stimulating matrix macromolecule synthesis (for recent review, see Lyons and Moses, 1990; Massague, 1990; Laiho and Keski-Oja, 1992; Miyazono et al., 1992). Conversely, production of extracellular matrix has been shown to down 30 regulate TGF- β gene expression (Streuli et al., 1993). TGF- β may therefore regulate extracellular matrix production through a sophisticated feedback loop that influences the expression of a relatively large number of genes. LTBP-1 and LTBP-2 may contribute to this regulation by facilitating the assembly and secretion of large latent growth factor complexes and then targeting

1.

- 142 -

the complex to specific connective tissues (Taipale et al., 1994).

If LTBP-3 is like LTBP-1, it has the potential to function as a secreted, extracellular structural protein. 5 As demonstrated here, domain #1 of LTBP-3 appears to be a unique sequence that likely has a globular conformation. Domain #1 also is highly basic and may facilitate LTBP-2 binding to acidic molecules (e.g., acidic proteoglycans) within the extracellular space. Sequences rich in basic 10 amino acids have also been shown to function as endoproteolytic processing signals for several peptide hormones (Barr, 1991; Steiner et al., 1992). possible, therefore, that the NH2-terminus of LTBP-3 is 15 proteolytically processed in a tissue-specific manner. Domains #2 and #4 consist of consecutive cysteine-rich repeats, the majority of which are of the EGF-CB type. Besides binding calcium (Corson et al., 1993), these repeats may provide LTBP-3 with regions conformation capable of interacting with other matrix macromolecules 20 (Engel, 1989). Domain #3 is proline rich and may be capable of bending (or functioning like a hinge) in three-dimensional space (MacArthur and Thornton, 1991). (In this regard, domain #2 is of interest because it has a similar stretch of 135 amino acids that is both 25 proline- and glycine-rich. Since glycine-rich sequences are also thought to be capable of bending or functioning like a hinge in three-dimensional space, this amino acid sequence may interrupt the extended conformation of 30 domain #2, thereby providing it with a certain degree of flexibility in three-dimensional space.) Domain #5 also appears to be a unique sequence having a globular conformation. The absence of a known cell attachment motif may indicate that, in contrast to LTBP-1, the LTBP-3 molecule may have a more limited role in the 35 extracellular matrix (i.e., that of a structural protein)

- 143 -

in addition to its ability to target latent $TGF-\beta$ complexes to specific connective tissues.

MC3T3-El pre-osteoblasts co-express LTBP-3 and TGF- β 1 and these proteins form a complex in the culture 5 These results are particularly interesting because bone represents one of the largest known repositories of latent TGF- β (200 μ g/kg bone; Seyedin et al., 1986 and 1987), and because this growth factor plays a critical role in the determination of bone 10 structure and function. For example, $TGF-\beta$ is thought to (i) provide a powerful stimulus to bone formation in developing tissues, (ii) function as a possible "coupling factor" during bone remodeling (a process that coordinates bone resorption and formation), and (iii) 15 exert a powerful bone inductive stimulus following fracture. Activation of the latent complex may be an important step governing TGF- β effects, and LTBP may modulate the activation process (e.g., it may "protect" small latent complexes from proteolytic attack). 20

Expression of large latent TGF- β complexes bearing LTBP may be physiologically relevant to, i.e., may be part of the mechanism of, the pre-osteoblast → osteoblast differentiation cascade. This is based on the evidence 25 that MC3T3-E1 cells express large latent TGF- β 1 complexes bearing LTBP-2 precisely at the time of transition from the pre-osteoblast to osteoblast phenotype (-day 14 in culture, or, at the onset of alkaline phosphatase expression; see Quarles et al., 1992). The organ culture 30 model, for example, likely is comprised of differentiated osteoblasts but few bond progenitors, making it a difficult model at best in which to study the differentiation cascade (Dallas et al., 1984). It is also well known that MG63, ROS17/2.8 and UMR 106 cells 35 are rapidly dividing <u>and</u> they express the osteoblast phenotype. Thus, these osteoblast-like cell lines do not

- 144 -

show the uncoupling of cell proliferation and cell differentiation that characterizes the normal (physiologically relevant) pre-osteoblast \rightarrow osteoblast transition (Gerstenfeld et al., 1984; Stein and Lian, 1993). Therefore, the production of small versus large latent TGF- β complexes may be associated with specific stages in the maturation of bone cells.

LTBP-3 may bind calcium, since EGF-CB repeats have been shown to mediate high affinity calcium binding in LTBP-1 and other proteins (Colosetti et al., 1993). Calcium binding, in turn, may contribute to molecular conformation and the regulation of its interactions with other molecules. The presence of dibasic amino acids suggests that LTBP-3 may also undergo cell- and 15 tissue-specific proteolysis. TGF- β regulates extracellular matrix production by suppressing matrix degradation (through a decrease in the expression of proteases such as collagenase, plasminogen activator, and stromelysin plus an increase in the expression of 20 proteinase inhibitors súch as plasminogen activator inhibitor-1 and tissue inhibitor of metalloproteinase-1) and by stimulating matrix macromolecule synthesis (for recent reviews, see Lyons and Moses, 1990; Massague, 1990; Laiho and Keski-Oja, 1992; and Miyanzono et al., 25 1993). Conversely, production of extracellular matrix has been shown to down regulate $TGF-\beta$ gene expression (Streuli et al., 1993). TGF- β may therefore regulate extracellular matrix production through a sophisticated 30 feedback loop that influences the expression of a relatively large number of genes. LTBP-1, LTBP-2, and LTBP-3 may contribute to this regulation by facilitating the assembly and secretion of large latent growth factor

- 145 -

complexes and then targeting the complex to specific connective tissues (Taipale et al., 1994).

EXAMPLE XVI

5 PREPARATION OF ANTIBODIES AGAINST THE LTBP-3 GENE PRODUCT

An affinity-purified antibody (#274) capable of immunoprecipitating was prepared against the murine LTBP-3 gene product. A full-length murine cDNA was assembled into the pcDNA3 mammalian expression vector (Invitrogen) and expressed following transient transfection of 293T cells. Nascent polypeptides, radiolabeled by addition of 35 S Cys to the medium of transfected cells, were immunoprecipitated using affinity-purified antibody #274. As shown in FIG. 20, the new murine polypeptide was estimated to be 180-190 kDa. To ensure the specificity of #274 binding, we showed that preincubation with 10 μ g of synthetic peptide blocks immunoprecipitation of the 180-190 kDa band.

20

25

30

35

10

15

Finally, MC3T3-E1 cells were cultured for 7 days under differentiating conditions and double-labeled with 30 $\mu\text{Ci/ml}$ ³⁵S cysteine and ³⁵S methionine in deficient media. Radiolabeled media was dialyzed into cold PBS with protease inhibitors. Aliquots of the dialyzed medium sample (106 incorporated CPM) were analyzed by a combined immunoprecipitation/Western analysis protocol. The murine polypeptide was clearly and reproducibly secreted by MC3T3-E1 cells, migrating under reducing conditions as a single band of 180-190 kDa (FIG. 21). Consistent with the results of previous studies (e.g., Miyazono et al., 1988; Dallas et al., 1994; Moren et al., 1994), bands of 70 and 50 kDa corresponding to the TGF- β 1 precursor were co-immunoprecipitated with the 180 kDa LTBP-3 protein. Weak bands of 40 and 12 kDa were also identified in experiments in which only immunoprecipitation was performed. The latter were not

- 146 -

included in FIG. 21 because they migrated within that portion of the gel included in the Western analysis. Protein bands of 70-12.5 kDa are not variant forms of LTBP-3; FIG. 20 demonstrates that LTBP-3 migrates as a single band of 180-190 kDa following transient 5 transfection of 293T cells, which fail to make TGF- β 1. By immunoprecipitation, a unique band consistent with monomeric mature TGF- β 1 was found in the LTBP-2 immunoprecipitate. Antibody #274 is incapable of binding $\mathtt{TGF-}\beta\mathtt{1}$ as determined by radioimmunoassay using 10 commercially available reagents (R&D Systems) and the manufacturer's suggested protocols. These results have been reproduced in 6 independent experiments which utilized 3 separate lots of MC3T3-E1 medium. new murine LTBP-3 polypeptide binds TGF- β in vitro. 15

EXAMPLE XVII

ISOLATION OF A GENE ENCODING MURINE LTBP-2

In addition to determining the DNA and corresponding polypeptide sequence of the murine LTBP-3 gene, the murine LTBP-2 gene was also cloned and sequenced.

The complete cDNA nucleotide sequence for murine 25 LTBP-2 is shown in FIG. 27 (SEQ ID NO:17). The deduced amino acid sequence is shown in FIG. 28 (SEQ ID NO:18).

EXAMPLE XVIII

30 EXPRESSION OF RECOMBINANT TYPE II COLLAGEN

The Pichia Expression Kit (Invitrogen, Inc.) may be used to prepare recombinant type II collagen. This kit, based on the methylotrophic yeast, Pichia pastoris, allows high-level expression of recombinant protein in an easy-to-use relatively inexpensive system. In the absence of the preferred carbon source, glucose, P.

10

- 147 -

pastoris utilizes methanol as a carbon source. The AOXI promoter controls the gene that codes for the expression of the enzyme alcohol oxidase, which catalyzes the first step in the metabolism of methanol. This promoter, which is induced by methanol, has been characterized and incorporated into a series of Pichia expression vectors. This feature of Pichia has been exploited to express high levels of recombinant proteins often in the range of grams per liter. Because it is eukaryotic, P. pastoris utilizes posttranslational modification pathways that are similar to those used by mammalian cells. This implies that the recombinant type II collagen will be glycosylated and will contain disulfide bonds.

15 The inventors contemplate the following particular elements to be useful in the expression of recombinant type II collagen: the DNA sequence of human type II collagen (SEQ ID NO:11) (Lee et al., 1989); rat type II collagen (SEQ ID NO:13) (Michaelson, et al., 1994);

20 and/or mouse type II collagen (SEQ ID NO:15) (Ortman, et al., 1994). As other sources of DNA sequences encoding type II collagen are available, these three are examples of many sequence elements that may be useful in the present invention.

25

30

For preparation of a recombinant type II collagen, the native type II collagen cDNA is modified by the addition of a commercially available epitope tag (the HA epitope, Pharmacia, LKB Biotechnology, Inc.). Such fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, by application of nucleic acid reproduction technology, such as the PCR technology of U.S. Patent 4,603,102 (herein incorporated by reference) or by introducing selected sequences into recombinant vectors for recombinant production. (PCR^m is a registered trademark of Hoffmann-LaRoche, Inc.). This is followed by cloning into the

15

20

25

- 148 -

Pichia expression vector. The resulting plasmid is characterized by DNA sequence analysis, linearized by digestion with NotI, and spheroplasts will be prepared and transformed with the linearized construct according to the manufacturer's recommendations.

Transformation facilitates a recombination event in vivo between the 5' and 3' AOX1 sequences in the Pichia vector and those in the Pichia genome. The result is the replacement of AOX1 with the gene of interest.

Transformants are then plated on histidine-deficient media, which will select for successfully transformed cells. Transformants are further selected against slow growth on growth media containing methanol. Positive transformants are grown for 2 days in liquid culture and then for 2-6 days in broth that uses methanol as the sole carbon source. Protein expression is evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western hybridization using a commercially available polyclonal antisera to the HA epitope (Pharmacia).

Recombinant type II collagen protein can be purified according to the manufacturer's recommendations, dialyzed against double distilled, deionized water and lyophilized in 10 mg aliquots. The aliquots are sterilized and used as implant material for the osteoconductive matrices.

30 * * *

All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations

- 149 -

may be applied to the composition, methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

- 150 -

REFERENCES

The following literature citations as well as those cited above are incorporated in pertinent part by

- 5 reference herein for the reasons cited in the above text.
- Abou-Samra et al., "Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol triphosphates and increases intracellular free Calcium," Proc. Natl. Acad. Sci. U.S.A., 89:2732-2736, 1992.
- 15 Agarwala and Gay, J. Bone Min. Res., 7:531, 1992.
 - Alper, "Boning up: newly isolated proteins heal bad breaks," Science, 263:324-325, 1994.
- 20 Amarnani et al., J. Bone Min. Res., 8:157-164, 1993.
 - Antonelli-Olridge et al., Proc. Natl. Acad. Sci. USA, 86:4544-4548, 1989.
- 25 Badylak et al., J. Surg. Res., 47:74-80, 1989.
 - Bandara et al., "Gene Transfer to Synoviocytes:
 Prospects for Gene Treatment of Arthritis," DNA Cell
 Biol., 11:(3):227-231, 1992.
- Barr, Cell, 66:1-3, 1991.

30

- Beck et al., "TGF-beta 1 induces bone closure of skull
 defects," J. Bone Miner. Res., 11:1257-65, 1991.
- Benezra et al., Blood, 81:3324-3331, 1993.
 - Benvenisty and Reshef, Proc. Natl. Acad. Sci. U.S.A., 83:9551, 1986.
- Boden et al., "Estrogen receptor mRNA expression in callus during fracture healing in the rat," Calcif. Tissue Int., 45:34-325, 1989.
- Bonadio et al., "An adaptive response by murine skeletal tissues that significantly increases the mechanical properties of cortical bone: implications for the treatment of skeletal fragility," J. Clin. Invest., 92:1697-1705, 1993.
- 50 Bonadio et al., J. Biol. Chem., 260:1734-1742, 1985.
 - Bondaio and Goldstein, "Our understanding of inherited

.5

10

15

30

35

- 151 -

skeletal fragility and what this has taught us about bone structure and function, In: Molecular and Cellular Biology of Bone, "Noda, M., ed., Academic Press, Inc., San Diego, CA. pp. 169-189, 1993.

Bonewald et al., Mol. Endocrinol., 5:741-751, 1991.

Bonnarens and Einhorn, "Production of a standard closed fracture in laboratory animal bone," J. Orthop. Res., 2:97-101, 1984.

Burch and Lebovitz, "Parathyroid hormone stimulates growth of embryonic chick pelvic cartilage in vitro," Calcif. Tissue Int., 35:526-532, 1983.

Byers and Steiner, "Osteogenesis imperfecta," Annu. Rev. Med., 43:269-289, 1992.

Campbell, in Monoclonal Antibody Technology, Laboratory
Techniques in Biochemistry and Molecular Biology Vol. 13,
Burden and Von Knippenberg, Eds. pp. 75-83, Amsterdam,
Elseview, 1984

Canalis et al., "Insulin-like growth factor-1 mediates selective anabolic effects of parathyroid hormone in bone culture," J. Clin. Invest., 83:60-65, 1989.

Carrington et al., "Accumulation, localization, and compartmentation of transforming growth factor b during endochondral bone development," J. Cell Biol., 107:1969-1975, 1988.

Centrella et al., "Skeletal tissue and transforming growth factor-b," FASEB J., 22:23066-3073, 1988.

Cheifetz et al., Cell, 48:409-415, 1987.

Chen et al., "Bone morphogenetic protein-2b stimulation of growth and osteogenic phenotypes in rat osteoblast-like cells: comparison with TGF-beta 1,"

J. Bone Miner. Res., 6:1387-93, 1991.

Chen et al., "Structure, chromosomal localization, and expression pattern of the murine Magp gene," J.

Biol. Chem., 268:27381-27389, 1993.

Colosetti et al., FEBS Letters, 320:140-144, 1993.

Compston et al., "Elevated serum intact parathyroid hormone levels in elderly patients with hip fracture," Clin. Endo., 31:667-672, 1989.

Courey and Tjian, Cell, 55:887-898, 1988.

55 Cunningham et al., "Osteogenic and recombinant bone morphogenetic protein 2B are chemotactic for human

55

- 152 -

monocytes and stimulate transforming growth factor b1 mRNA expression, " *Proc. Natl. Acad. Sci. U.S.A.*, 89:11740-11744, 1992.

- 5 Dallas et al., J. Biol. Chem., 269:6815-6822, 1994.
 - Davidson et al., "A model system for in vivo gene transfer into the central nervous system using an adenoviral vector," Nature Genetics, 3:219-223, 1993.
 - Davis, New Biologist, 2:410-419, 1990.
- Ejersted et al., "Human parathyroid hormone (1-34) and (1-84) increase the mechanical strength and thickness of cortical bone in rats," J. Bone Min. Res., 8:1097-1101, 1993.
- Endo et al., "Vitamin D3 metabolites and PTH
 synergistically stimulate bone formation of chick
 embryonic femur in vitro," Nature, 286:262-264,
 1980.
 - Engel, FEBS Letters, 251:1-7, 1989.
- 25
 Falcone et al., J. Biol. Chem., 268:11951-11958, 1993.
 Flaumenhaft et al., J. Cell Biol., 120:995-1002, 1993.
- Franseschi and Iyer, J. Bone Min. Res., 7:235-246, 1992.
 Gefter et al., Somatic Cell Genet. 3:231-236 (1977)
- Goding, 1986, in Monoclonal Antibodies: Principles and Practice, 2d ed., Orlando, Fla., Academic Press, 1986, pp. 60-61, 65-66, 71-74.

Gerstenfeld et al., Dev. Biol., 122:49-60, 1987.

- 40 Gronke et al., Proc. Natl. Acad. Sci. USA, 86:3609-3613, 1989.
- Gunasekaran et al., "Mineralized Collagen As A Substitute for Autograft Bone That Can Deliver Bone Morphogenic Protein," The 19th Annual Meeting of the SOCIETY FOR BIOMATERIALS, April 28, p. 253, 1993a.
- Gunasekaran et al., Norian Corporation, Mountain View, CA. Abstract V7.5, p. 426, 1993b. The 19th Annual Meeting of the SOCIETY FOR BIOMATERIALS, April 28.
 - Gunness-Hey and Hock, "Increased trabecular bone mass in rats treated with human synthetic parathyroid hormone," *Metabl. Bone Dis.*, 5:177-180, 1984.
 - Gunness-Hey and Hock, "Loss of the anabolic effect of

35

- 153 -

parathyroid hormone on bone after discontinuation of hormone in rats, " Bone, 10:447-452, 1989.

- Handford et al., EMBO J., 9:475-480, 1990.
 - Hardy et al., "Serum ionized calcium and its relationship to parathyroid hormone after tibial fracture," J. Bone Jt. Surg., 75:645-649, 1993.
- 10 Hefti et al., Clin. Sci., 62:389-396, 1982.
 - Heine et al., J. Cell Biol., 105:2861-2876, 1987.
- Hendy et al., "Nucleotide sequence of cloned cDNAs encoding human preproparathyroid hormone," Proc. Natl. Acad. Sci. U.S.A., 78:7365-7369, 1981.
- Herrmann-Erlee et al., "Effects on bone in vitro of bovine parathyroid hormone and synthetic fragments representing residues 1-34, 2-34 and 3-34,"

 Endocrine Research Communications, 3:21-35, 1976.
- Hock and Fonseca, "Anabolic effect of human synthetic parathyroid hormone (1-34) depends on growth hormone," Endocrinology, 127:1804, 1990.
- Hock and Gera, "Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone,"

 J. Bone and Min. Res., 7:65-72, 1992.
 - Hock et al., "Human parathyroid hormone- (1-34) increases bone mass in ovariectomized and orchidectomized rats," Endocrinology, 122:2899-2904, 1988.
 - Hori et al., "Effect of human parathyroid hormone [PTH (1-34)] on experimental osteopenia of rats induced by ovariectomy," J. Bone Min. Res., 3:193-199, 1988.
- 40 Horowitz et al., "Functional and molecular changes in colony stimulating factor secretion by osteoblasts,"

 Connective Tissue Res., 20:159-168, 1989.
- Huggins et al., "Experiments on the theory of
 osteogenesis. The influence of local calcium
 deposits on ossification; the osteogenic stimulus of
 epithelium," Arch. Surg., 32:915, 1936.
- Izumi et al., "Transforming growth factor bl stimulates
 type II collagen expression in cultured periostealderived cells, " J. Bone Min. Res., 7:115-11, 1992.
- Jingushi et al., "Acidic fibroblast growth factor injection stimulates cartilage enlargement and inhibits cartilage gene expression in rat fracture healing," J. Orthop. Res., 8:364-371, 1990.

35

45

55

- 154 -

Jingushi et al., "Genetic expression of extracellular
 matrix proteins correlates with histologic changes
 during fracture repair," J. Bone Min. Res., 7:10451055, 1992.

Johnston of al

- Johnston et al., "Heterogeneity of fracture syndromes in postmenopausal women," J. Clin. Endo. Metab., 61:551-556, 1985.
- Joyce et al., "Transforming growth factor- β and the initiation of chondrogenesis and osteogenesis in the rat femur," J. Cell Biol., 110:195-2007, 1990.
- Juppner et al., "A G-protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide," Science, 254:1024-1026, 1991.
 - Kanzaki et al., Cell, 61:1051-1061, 1990.
- Kawashima, "Growth stimulative effect of parathyroid hormone, calcitonin and N⁶, 02'-dibutyryl adenosine 3', 5'-cyclic monophosphoric acid on chick embryonic cartilage cultivated in a chemically defined medium," Endocrinol. Jpn., 27:349-356, 1980.

Klein-Nulend et al., "Comparison of the effects of synthetic human parathyroid hormone-related peptide of malignancy and bovine PTH-(1-34) on bone formation and resorption in organ culture,"

Endocrinology, 126:223-227, 1990.

Kohler and Milstein, Nature 256:495-497 (1975)

Kohler and Milstein, Eur. J. Immunol. 6:511-519 (1976)

Kovacina et al., Biochem. Biophys. Res. Commun., 160:393-403, 1989.

Kozak, J. Biol. Chem., 266:19867-19870, 1991.

Kream et al., "Parathyroid hormone represses al(I)
 collagen promoter activity in cultured calvariae
 from neonatal transgenic mice," Mol. Endocrinology,
7:399-408, 1993.

Kyte and Doolittle, J. Mol. Biol., 157:105-132, 1982.
Laiho and Keski-Oja, 1992.

- 50 Langer and Folkman, "Polymers for the sustained release of proteins and other macromolecules."

 Nature, 263:797-800, 1976.
 - Ledley, J. Pediatrics, 110:1, 1987.
 - Lee et al., "Identification of the molecular defect in a

30

- 155 -

family with spondyloepiphyseal dysplasia," Science, 244:978-980, 1989.

- Lee et al., "Parathyroid hormone induces sequential c-fos expression in bone cells in vivo: in situ localization of its receptor and c-fos mRNAs,"

 Endocrinology,
 - Lehnert and Akhurst, Development, 104:263-273, 1988.
- Lewinson and Silbermann, "Parathyroid hormone stimulates proliferation of chondroprogenitor cells in vitro,"

 Calcif. Tissue Int. 38:155-162, 1986.
- 15 Li et al., Mammalian Genome, in press, 1994.
 - Linkhart and Mohan, "Parathyroid hormone stimulates release of insulin-like growth factor-1 (IGF-1) and IGF-II from neonatal mouse calvaria in organ culture," Endocrinology, 125:1484-1491, 1989
- Liu and Kalu, "Human parathyroid hormone (1-34) prevents bone loss and augments bone formation in sexually mature ovariectomized rats," J. Bone Min. Res., 5:973-982, 1990.
 - Liu et al., "Preexisting bone loss associated with ovariectomy in rats is reversed by parathyroid hormone," J. Bone and Mins. Res., 6:1071-1080, 1991.
 - Lopez-Casillas et al., J. Cell Biol., 124:557-568, 1994.
- Luyten et al., "Purification and partial amino acid sequence of osteogenic, a protein initiating bone differentiation," J. Biol. Chem., 264:13377-13380, 1989.
 - Lyons and Moses, Eur. J. Biochem., 187:467-473, 1990.
- 40 Lyons et al., J. Cell Biol., 106:1549-1665, 1988.
 - Lyons et al., Proc. Natl. Acad. Sci. U.S.A., 86:4554-4558, 1989.
- 45 MacArthur and Thornton, J. Mol. Biol., 218:397-412, 1991.
- Majmudar et al., "Bone cell culture in a three-dimensional polymer bead stabilizes the differentiated phenotype and provides evidence that osteoblastic cells synthesize type III collagen and fibronectin," J. Bone and Min. Res., 6:869-881, 1991.
- Malluche et al., "1,25-dihydroxyvitamin D maintains bone cell activity, and parathyroid hormone modulates bone cell number in dogs," *Endocrinology*, 119:1298-

15

- 156 -

1304, 1986,

- Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, 1982.
- Massague, Annu. Rev. Cell Biol., 6:597-641, 1990.
- Meller et al., "Mineral and endocrine metabolism during fracture healing in dogs," Clin. Orthop. Rel. Res., 10 187:289-295, 1984.
 - Michaelson et al., "T-cell recognition of carbohydrates on type II collagen," J. Exp. Med., 180:745-749, 1994.
- Millan et al., Development, 111:131-144, 1991.
- Mitlak et al., "Intermittent administration of bovine PTH-(1-34) increases serum 1,25-dihydroxyvitamin D concentrations and spinal bone density in senile (23 month) rats," J. Bone Min. Res., 7:479-484, 1992.
 - Miyazono and Heldin, Nature, 338:158-160, 1989.
- 25 Miyazono et al., EMBO J., 10:1091-1101, 1991.
 - Miyazono et al., J. Biol. Chem., 267:5668-5675, 1992.
 - Miyazono et al., J. Biol. Chem., 263:6407-6415, 1988.
- Nicolau et al., Proc Natl. Acad. Sci. U.S.A. 80:1068, 1983.
- Ogawa et al., J. Biol. Chem., 267:2325-2328, 1992.
- Ohlin et al., J. Biol. Chem., 263:7411-7414, 1988.
 - Olofsson et al., J. Biol. Chem., 267:19482-19488, 1992.
- Ortman et al., "BUB/BnJ (H-2q) is a TCR deletion mutant mouse strain (TCR V beta a KJ16-) that is susceptible to type II collagen-induced arthritis," J. Immunol., 152:4175-4182, 1994.
- Ozkaynak et al., "OP-1 cDNA encodes an osteogenic protein in the TGF-b famil." EMBO J., 9:2085-2093, 1990.
- Paralkar et al., "Identification and characterization of cellular binding proteins (receptors) for recombinant human bone morphogenetic protein 2B, an initiator of bone differentiation cascade," Proc. Natl. Acad. Sci. U.S.A., 88:3397-3401, 1991.
- Parsons and Reit, "Chronic response of dogs to
 parathyroid hormone infusion," Nature, 250:254-257,
 1974.

40

50

55

- 157 -

Pelton et al., Development, 106:759-767, 1989.

Pelton et al., Dev. Biol., 141:456-460, 1990a.

5 Pelton et al., Development, 110:609-620, 1990b.

Pereira et al., Human Mol. Genet., 2:961-968, 1993.

Persson et al., J. Biol. Chem., 264:16897-16904, 1989.

Pircher et al., Biochem. Biophys. Res. Commun., 136:30-37, 1986.

Pircher et al., Cancer Res., 44:5538-5543, 1984.

15

Podbesek et al., "Effects of two treatment regimes with synthetic human parathyroid hormone fragment on bone formation and the tissue balance of trabecular bone in greyhounds," *Endocrinology*, 112:1000-1006, 1983.

Prockop, "Mutations that alter the primary structure of type I collagen. The perils of a system for generating large structures by the principle of nucleated growth," J. Biol. Chem., 265:15349-15352, 1990.

Quarles et al., J. Bone Min. Res., 7:683-692, 1992.

Raisz and Kream, Regulation of bone formation, " N. Engl. 30 J. Med., 309:29-35, 1983.

Reeve et al., "Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial," Br. Med. J., 1340-1344, June 7, 1980.

Reeve et al., Anabolic effect of low doses of a fragment of human parathyroid hormone ont he skeleton in postmenopausal osteoporosis," Lancet, 1035-1038, May 15, 1976.

Riond, Modulation of the anabolic effect of synthetic human parathyroid hormone fragment (1-34) in the bone of growing rats by variations in dosage regimen, " Clin. Sci., 85:223-228, 1993.

Rizzoli et al., "Binding of radioiodinated parathyroid hormone to cloned bone cells," *Endocrinology*, 113:1832, 1983.

Roberts and Sporn, "The transforming growth factor-betas. In: Handbook of Experimental Pharmacology: Peptide Growth Factors and Their Receptors," M.B. Sporn and A.B. Roberts, Eds., Springer-Verlag, Heidelberg, 95(Part 1):419-472, 1990.

45

- 158 -

- Roessler et al., "Adenoviral-mediated Gene Transfer to Rabbit Synovium In Vivo.," J. Clin. Invest., 92:1085-1092, 1993.
- Rosen et al., "Purification and molecular cloning of a novel group of BMPs and localization of BMP mRNA in developing bone," Connect. Tissue Res., 20:313-319, 1989.
- 10 Sambrook et al., Molecular Cloning, A Laboratory Manual.
 Cold Spring Harbor Laboratory Press, pp. 18.60,
 1989.
- Sampath and Reddi, "Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation," Proc. Natl. Acad. Sci. U.S.A., 78:7599-7603, 1981.
- Sampath et al., "In vitro transformation of mesenchymal cells derived from embryonic muscle into cartilage in response to extracellular matrix components of bone," Proc. Natl. Acad. Sci. U.S.A. 81:3419-3423, 1984.
- 25 Sato et al., J. Cell Biol., 123:1249-1254, 1993.
 - Schluter et al., "The central part of parathyroid hormone stimulates thymidine incorporation of chondrocytes," J. Biol. Chem., 264:11087-11092, 1989.
 - Schnieke et al., "Embryonic lethal mutation in mice induced by retrovirus insertion into the al(I) collagen gene," Nature, 304:315-320, 1983.
- 35 Seeger et al., Proc. Natl. Acad. Sci. U.S.A., 81:5849, 1984.
- Seitz et al., "Effect of transforming growth factor b on parathyroid hormone receptor binding and cAMP formation in rat osteosarcoma cells," J. Bone Min. Res., 7:541-546, 1992.
 - Selander-Sunnerhagen et al., J. Biol. Chem., 267:19642-19649, 1992.
 - Selye, Endocrinology, 16:547, 1932.
 - Seyedin et al., J. Biol. Chem., 261:5693-5695, 1986.
- 50 Seyedin et al., J. Biol. Chem., 262:1946-1949, 1987.
 - Shimell et al., "The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein 1," Cell, 67:469-481, 1991.
- Silve et al., "Parathyroid hormone receptor in intact

- 159 -

embryonic chicken bone: characterization and cellular localization, " J. Cell. Biol., 94:379, 1982.

- 5 Simons et al., "Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo, Nature, 359:67-70, 1992.
- Slovik et al., "Restoration of spinal bone in osteoporotic men by treatment with human parathyroid hormone (1-34) and 1,25-dihydroxyvitamin D," J. Bone Min. Res., 1:377-381, 1986.
- Somjen et al., "Stimulation of cell proliferation in skeletal tissues of the rat by defined parathyroid hormone fragments," Biochem J., 272:781-785, 1990.
- Spencer et al., "Parathyroid hormone potentiates the effect of insulin-like growth factor-I on bone formation," Acta Endocrinological (Copenh), 121:435-442, 1989.

Stenflo et al., 1987.

- 25 Stein and Lian, Enddocr. Rev., 14:424-442, 1993.
 Steiner et al., J. Biol. Chem., 267:23435-23438, 1992.
- Stenflo et al., Proc. Natl. Acad. Sci. USA, 84:368-372, 1987.
 - Stenman et al., Cytogenet. Cell Genet., 66:117-119, 1994.
- Stevenson and Parsons, "Effects of parathyroid hormone and the synthetic 1-34 amino-terminal fragment in rats and dogs," *J. Endocr.*, 97:21-30, 1983.
- Stratford-Perricaudet et al., "Widespread long-term gene transfer to mouse skeletal muscles and heart," J. Clin. Invest., 90:626-630, 1992.
 - Streuli et al., J. Cell Biol., 120:253-260, 1993.
 - Tada et al., Bone, 11:163-169, 1988.

- Taipale et al., J. Cell Biol., 124:171-181, 1994.
 - Taketazu et al., Lab. Invest., 70:620-630, 1994.
- Tam et al., "Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration," Endocrinology, 110:506-512, 1982.
 - Toriumi et al., "Mandibular reconstruction with a

- 160 -

recombinant bone-inducing factor, Arch. Otolaryngol. Head Neck Surg., 117:1101-1112, 1991.

- Tregear et al., "Bovine parathyroid hormone: minimum chain length of," Endocrinology, 93:1349-1353, 1973.
 - Tsuji et al., Proc. Natl. Acad. Sci. U.S.A., 87:8835-8839, 1990.
- 10 Twardzik et al., Ann. N.Y. Acad. Sci., 593:276-284, 1990.
 - Ulmer et al., "Heterologous protection against influenza by injection of DNA encoding a viral protein," Science, 259:1745-1749, 1993.
- Urist, "Bone formation by autoinduction," Science, 150:893-899, 1965.
- Urist et al., "Bone cell differentiation and growth factors," Science, 220:680-686, 1983.
- van der Plas, "Direct effect of parathyroid hormone on the proliferation of osteoblast-like cells; a possible involvement of cyclic AMP," Biochem. Biophys. Res. Comm., 129:918-925, 1985.
 - Van Vlasselaer et al., J. Cell Biol., 124:579-577, 1994.
- Vukicevic et al., "Stimulation of the expression of osteogenic and chondrogenic phenotypes in vitro by osteogenic," Proc. Natl. Acad. Sci. U.S.A., 86:8793-8797, 1989.
 - Wakefield et al., J. Cell Biol., 105:965-975, 1987.
- 35 Wakefield et al., J. Biol. Chem., 263:7646-7654, 1988.
- Wang et al., "Recombinant human bone morphogenetic protein induces bone formation," Proc. Natl. Acad. Sci. U.S.A., 87:2220-2224, 1990.
 - Wilson et al., "Somatic gene transfer in the development of an animal model for primary hyperparathyroidism," Endocrinology, 130:2947-2954, 1992.
 - Wolff et al., "Direct gene transfer into mouse muscle in vivo," Science, 247:1465-1468, 1990.
- Wozney et al., "Novel regulators of bone formation: 50 molecular clones and activities," Science, 242:1528-1534, 1988.
- Yasko et al., "The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats," J. Bone Joint

- 161 -

Surg., 5:659-70, 1992.

Yasuda et al., "Rat parathyroid hormonelike peptide: Comparison with the human homologue and expression malignant and normal tissue," Mol. Endocrinol., 3:518-525, 1989.

Zhang et al., J. Cell Biol., 124:855-863, 1994.

- 162 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

	(I) GENE	INI DIGITION.
5	(i)	APPLICANT:
		(A) NAME: REGENTS OF THE UNIVERSITY OF MICHIGAN
		(B) STREET: 3003 S. State Street
		The Wolverine Tower, Room 2071
		(C) CITY: Ann Arbor
10		(D) STATE: Michigan
		(E) COUNTRY: United States of America
		(F) POSTAL (ZIP) CODE: 48109-1280
	(ii)	INVENTORS: BONADIO, Jeffrey
15		ROESSLER, Blake J.
		GOLDSTEIN, Steven A.
	•	LIN, Wushan
	12221	MANUE OF THEMSON ASSESSED ON THE STATE OF TH
20	(111)	TITLE OF INVENTION: METHODS AND COMPOSITIONS
20	•	FOR STIMULATING BONE CELLS
	(iv)	NUMBER OF SEQUENCES: 18
	(v)	CORRESPONDENCE ADDRESS:
25		(A) ADDRESSEE: Arnold, White & Durkee
		(B) STREET: P.O. Box 4433
		(C) CITY: Houston
		(D) STATE: Texas
		(E) COUNTRY: United States of America
30		(F) ZIP: 77210
		·w
	(vi)	COMPUTER READABLE FORM:
		(A) MEDIUM TYPE: Floppy disk
		(B) COMPUTER: IBM PC compatible
35		(C) OPERATING SYSTEM: PC-DOS/MS-DOS/ASCII

(D) SOFTWARE: PatentIn Release #1.0, Version #1.30

- 163 -

(vii) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER: UNKNOWN
- (B) FILING DATE: CONCURRENTLY HEREWITH
 - (C) CLASSIFICATION: UNKNOWN

5

(viii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: US 08/316,650
- (B) FILING DATE: 30-SEP-1994
- (C) CLASSIFICATION: UNKNOWN

10

- (A) APPLICATION NUMBER: US 08/199,780
- (B) FILING DATE: 18-FEB-1994
- (C) CLASSIFICATION: UNKNOWN

15 (ix) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Parker, David L.
- (B) REGISTRATION NUMBER: 32,165
- (C) REFERENCE/DOCKET NUMBER: UMIC009P--

20 (x) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (512) 418-3000
- (B) TELEFAX: (713) 789-2679
- (C) TELEX: 79-0924

25

30

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 417 amino acids
- (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

NO:1
I
SEQ
DESCRIPTION:
SEQUENCE
(xi)

Gln Val 15	Gly Lys	Ser Gly	Gln Met	Ile Pro 80	Glu Glu 95	Pro Ala
Met Val Val Leu Leu Cys (Thr 30	Arg	Leu	Val	Glu	Arg 110
Leu	Glu	Arg 45	Leu	Ala	Glu	Glu
Leu	Pro	G1y	Thr 60	Ser	Gly	Pro
Val	Met	Ala Gly Gly Arg 45	Ala	Lув 75	Leu Gln Ser Gly Glu 90	$\mathbf{T}\mathbf{y}\mathbf{r}$
Val 10	Leu	Ala	Glu	Ser	Gl n 90	Glu
Met	Ser 25	His	Phe	Pro	Leu	Leu 105
Met Leu	Ala	Gln Gly	Asp	Gln	Arg	G1γ
Met	Thr Asp	Gln	Arg 55	Pro	Tyr	Thr
Arg	Thr	Ile	Leu	Arg 70	Leu	Gly
Asn 5	Ala	Glu	Leu	Arg	Asp Leu 85	Gln
Gly Asn Arg 5	Gly Ala 20	Ala	Glu	Arg	Ser	Ser 100
Pro	Leu Gly	Val 35	нів	Leu Arg	Met	Gln
Ile	Leu	Ьув	Ser 50	$_{ m G1y}$	Tyr	G]u
Met 1	Leu	Ьув	Gln	Phe 65	Asp	Glu
				:		

10

S

Glu	Asn	Arg 160	Phe	Val	His	Arg	Thr
Leu	Phe	Leu	Gly 175	Met	Arg	Leu	
Glu Glu His 125	Phe	Glu	Gln	Glu 190	Val	Val	Glu Val
Glu 125	Phe	Ala	Glu	Ala	Leu 205	Ala	
	Arg 140	Ser	Trp	Pro	Ser	Pro 220	Pro Asn Tyr Gly Leu Ala Ile
His	Phe	Ser 155	Pro Asp 170	Pro	Thr	Ser	Leu
His	Ala	Ile	Pro 170	Lуз	Leu Leu Asp 200	Val	Gly
Ser Phe 120	Ser	Val	Gly	Met 185	Leu	Phe Asp Val	Tyr
Ser 120	Ser	Glu	Gln	Val	Leu 200	Phe	Asn
Ser	Glu 135	Glu Asn 150	Asp	Glu	Arg	Thr 215	Pro
Val	Ser	Glu 150	Gln Val 165	Tyr	Thr	Glu	Gln
Ala Asn Thr Val 115	Pro Gly Thr	Pro		Ile	Ile	Trp	Glu Lys
Asn	Gly	Ile	Arg Glu	Asn 180	Leu	Arg	Glu
Ala 115	Pro	Leu Ser Ser 145	Arg	Met	His 195	Thr	Arg
Ser	11e	Ser	Phe	Arg	\mathtt{Gl}_{Y}	Val 210	Trp .Thr
Ser	Asn	Leu 145	Leu	His	Pro	Asn	Trp

-166-

Ser	Leu	Arg Arg	Lys	Val 320	Tyr	Thr	Ile
11e 255	Pro		Lys	Asp Val 320	Phe 335	Ser	Ser
Ser	Arg 270	Leu Thr 285	Ser	Ser	Ala	Asn 350	Ser
Val	Leu		Ser	Phe	Gln	Leu	Asn 3
His	Gln	Thr	Arg 300	Asp	Tyr	His	Val
Gln Gly Gln His Val 250	Ala	Gly His	Gln	.Val 315	Gly	Asp	Ser
Gly 250	Asn Trp 265	Gly	Pro	Tyr	Pro Gly 330		Asn
Gln	Asn 265	Gly Arg 280	His	Leu	Pro	Pro Leu Ala 345	Gln Thr Leu Val Asn 360
His	$_{ m G1y}$	G1y 280	His	Ser	Ala	Pro	Leu 360
Thr	Ser	Азр	Lув 295	Hís	Val		Thr
Arg	Gly	His	Pro	Arg 310	Ile	Pro Phe	Gln
Gln Thr Arg Thr His ` 245	Pro Gln Gly Ser Gly 260	$\mathtt{Gl}_{\mathbf{y}}$	Ser	Arg Arg His 310	Trp 325		Val
	Pro 260	Thr Phe Gly His Asp 275	Arg	Сув	Asp	Asp Cys 340	ile
Leu His	Leu		Ьув	Asn	Trp Asn Asp	G1y	Ala 355
	Ser	Leu 'Val	Ala 290	Ьγв	Trp	His	His
His	Arg	Leu	Ser	Asn 305	$_{ m G1y}$	Сув	Asn
							. •

Leu	
Met	
Ser	
$_{\rm Ile}$	
Ala	380
Ser	
Lea	
Glu	
$_{ m Thr}$	
Pro	375
Val	
Сув	
Сув	
Ala	
Lys	370
Pro	

375

Tyr Leu Asp Glu Tyr Asp Lys Val Val Leu Lys Asn Tyr Gln Glu Met

400

Val Val; Glu Gly Cys Gly Cys Arg Tyr Pro Tyr Asp Val Pro Asp Tyr

410

405

Ala

10

(2) INFORMATION FOR SEQ ID NO:2:

(A) LENGTH: 3753 base pairs (i) SEQUENCE CHARACTERISTICS:

15

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

TOPOLOGY: linear <u>(D</u>

20

(ii) MOLECULE TYPE: DNA (genomic)

Ŋ

-168-

96

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..3753

ATG CGC CAG GCC GCA TTG GGG CTG CTG GCA CTA CTC CTG CTG GCG CTG Met Arg Gln Ala Ala Leu Gly Leu Leu Ala Leu Leu Leu Leu Ala Leu (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: 10 ហ

CIG GGC CCC GGC GGC CGA GGG GIG GGC CGG CCG GGC AGC GGG GCA CAG Gly Gly Arg Gly Val Gly Arg Pro Gly Ser Gly Ala Gln 20 Gly Pro Leu

GCG GGG GCG CGC TGG GCC CAA CGC TTC AAG GTG GTC TTT GCG CCT Val Phe Ala Pro 45 Ala Gly Ala Gly Arg Trp Ala Gln Arg Phe Lys Val 40 15

144

Val Ile Cys Lys Arg Thr Cys Leu Lys Gly Gln Cys Arg Asp Ser Cys GTG ATC TGC AAG CGG ACC TGT CTG AAG GGC CAG TGT CGG GAC AGC TGT 20

192

. 25

240			288			336				384			432				480		
ACC	Thr	80	מממ	Pro		מממ	Pro			GGA	Gly		TCC	Ser			AGC	Ser	160
AGC	Ser		CTA	Leu	95	TGT	Cys			ACC	Thr		ATG	Met			GCT	Ala	
CAC	His		CCT	Pro		CTG	Leu	110		GGA	Gly		gcc	Ala			GTG	Val	
GGC	Gly		TGC	Сув		TGC	Суз			GCA	Ala	125	CGG	Arg			TCT	Ser	
AAC	Asn		GTG	Val		CAG	$_{ m Gln}$			GCT	Ala		GAC	Asp	140			Glu	
GAG	Glu	75	GTG	Val		AAC	Asn			CCT	Pro		CCC	Pro			GGA GAG	Gly	155
GGA	Gly		GTG	Val	90	CGA AAC	Arg			GTG CCT GCT GCA GGA	Val		TGG	Trp			GAA	Glu	
ATC	Ile		වුදුල් ලුදුල	Arg		TCC	Ser	105		CAG	Gln		ວອອ	Gly			CCA	Pro	
CTC	ren		TTC	Phe		TCT	Ser			IGC	Суз	120	CCC	Pro			သည	Ala	
ACG	Thr		သည	Ala		TGC	Сув			TIC	Phe		299	Gly	135		CLL	Leu	
ATG	Met	70	TCT	Ser			Gln			CGC			TCA	Ser			CCC	Pro	150
MAC	Asn		GGT	G1y	85	GGC CAG	$_{\rm Gly}$		•	999	Gly Arg		AGT	Ser			CCG	Pro	
ICC	Ser		ACC	Thr		GGT	$_{\rm Gly}$	100		ACG	Thr		999	G1y			CIG	Leu	
ညည	Gly		CTC	Leu		AAC	Asn			TIC	Phe	115	ACC	Thr			SCG	Pro	
CAG	Gln		ACG · CTC	Thr		ATG	Met			GAT	Asp		299	Gly '	130		CCC	Gly]	
CAG	Gln (65	GAC 1	Asp		TGC	Cys			0 0 0 0 0	Pro 1	÷	GCT	Ala (•		ACA (Thr	145
			Ŋ				10					15				20			

528	576	624	672	720	768
_,			-	•	• •
CCG	GGG Gly	AAC Asn	ATC	CCG Pro 240	GGC
GGG G1y 175	CTG	GTG	CGC	CTG	CTG Leu 255
CCC	CCC Pro 190	GTG	CAC	TTG	CCA
CCT	GTG	CCC Pro 205			
GAT Asp	TTG	CCC	CAG GTG Gln Val 220	TCC CAG CAC Ser Gln His 235	CAA AAG Gln Lys
ATC GCA GAT Ile Ala Asp 170	TTC Phe		GTT	TCC Ser 235	ACT
ATC 11e	GCC	GCT Ala	TCC	TCT Ser	CCC Pro 250
GTG Val	GCA Ala 185	cag gcr ccg gin Ala Pro	GCT	GCC	CCA
cAG Gln	CAT		GAA Glu	CCA	AGG Arg
GTG Val	CAA Gln	GAA GTG Glu Val 200	CCT Pro 215	GGC	CCG AGG Pro Arg
GCG	GCA	GCA	CCT	GAA Glu 230	CAC
TAC TYT 165	CCT	TCG	CAC His	GCT	CCG Pro 245
ATT Ile	CCT Pro 180	ATC	CAT	AAC Asn	CCC
GCC	GGT	CAA ATC TCG GCA Gln Ile Ser Ala 195	GTC Val	CCG AAC Pro Asn	AAG Lys
AAA CAC GCC ATT TAC GCG Lys His Ala Ile Tyr Ala 165	GAG	GGA G1y	CGT Arg 210	GGG Gly	CCC
AAA Lys	GGG	CCA	GTG Val	GAG Glu 225	CAT
	10	-	10		_

816	864	912	096	1008	1056
CCT	ACT	ACA	TGC Cys 320	AAC ABn	AAC Asn
AAC Asn	GGT Gly	TAT Tyr	GAC	ATC Ile 335	AAC Asn
AGC Ser 270	ATC Ile	CAG Gln		GAT	CTC AAC Leu Asn 350
GGC	AGC Ser 285	CTT	GGT GCT Gly Ala	CAG GAT Gln Asp	TGC (Cys I
CAG GAC ACA TTG CCC AAG CAG CCT TGT GGC AGC Gln Asp Thr Leu Pro Lys Gln Pro Cys Gly Ser 260 265	GGT AGC Gly Ser 285	CAG Gln 300	GTG Val	TGC CAG Cys Gln	GAC 7
CCT	TGC	CCA	GAG Glu 315	CAC His	GGT GAC Gly Asp
CAG Gln	TGC	TGC Cys	GGG	ACC CAC Thr His	CAT His
AAG Lys 265	GAT Asp	AAG Lys	CGT	AGC	TGC Cys 345
CCC	GAA G1u 280	CAC His	GTA Val	AAC	GTG
TTG	CAG Gln	TGT Cys 295	CCT	CTC	AAT Asn
ACA	AAG Lys	AAG Lys	GTA Val 310	AGG	GGG AAT Gly Asn
GAC	ACC	AGC	CCT GTA Pro Val 310	AAG Lys 325	CCC
CAG Gln 260	GGC CTT ACC Gly Leu Thr 275 ;	caa Gln	AAG Lys	TAC AAG AGG CTC AAC AGC Tyr Lys Arg Leu Asn Ser 325	GCG ATG CCC GGG AAT Ala Met Pro Gly Asn 340
TTC	GGC Gly 275	GGA Gly	CAG AAG Gln Lys	GGC G1y	GCG
TGC Cys	CCT	TGG Trp 290	GTG Val	CAG Gln	
CGC	TTG	GCC	GGG Gly 305	CCC	GAA TGT Glu Cys

ហ

		•			
1104	1152	1200	1248	1296	1344
CCC	TGT Cys	ACA Thr 400	GGT Gly	GAG Glu	GAC Asp
	CTG	ACC	TGG Trp (415	AAG (Lys (CCA G
TTG	AGC	CTG .		TTC A Phe I	CCA C
AGC Ser 365	AAG	CCT	GTG GGT AAA GCC Val Gly Lys Ala	GCC 7	CTC C Leu P
CAT	CCA GAG GAG AAG Pro Glu Glu Lys 380	CAC His	AGT GTG GGT AAA Ser Val Gly Lys 410	GGT ACA GCA GCC Gly Thr Ala Ala	CAC (His I
GGT	GAG Glu	CAG Gln 395	GTG Val	ACA (Thr)	CCT CAC Pro His
CCC	CCA	TGC Cys	AGT Ser 410	Gly '	TAT (
CCG	GCC GAC AAA Ala Asp Lys 375	CAG Gln	TGT	GAT (ASP (425	CCA TAT Pro Tyr
TGC Cys 360	gac Asp	CAC His	TGC	CCG GCA GAT Pro Ala Asp 425	GTA (Val 1
GTC Val	GCC Ala 375	GAA Glu	TGC	CCG	AGG (Arg 1
TGT Cys	TGC ATT Cys Ile	ACC Thr 390		TGC	TGG GAA AGG GTA Trp Glu Arg Val
CGC	ТСС	AGC	CAG CTC Gln Leu 405		TGG (Trp (
TAT Tyr	cAG Gln	GTG Val	CGC	CAG CGC Gln Arg 420	GGC G
TCT Ser 355	GCA GCA Ala Ala 370	CTT	ACC	TGC	CCC (Pro 6
GGC	GCA Ala	CGC	CTA	CGG	TGC (Cys)
CCT	CIC	TTC Phe 385	CGC Arg	GCC	ATC '
	ស	10	5	0:	

		•			
1392	1440	1488	1536	1584	1632
GAC	CCA Pro 480	CCA	ACC	CCT	GTG Val
CCC	GCA	CCA Pro 495	ACC	CCA (GCA G
GCA Ala	CGA		ACC 1 Thr 1 510	TCC C	AGT G Ser A
CCT CTT CCT GCA Pro Leu Pro Ala 460	AGC	ACC ATG GAT Thr Met Asp	ACT 7 Thr 1	CGC CCC TCC Arg Pro Ser 525	
CTT Leu 460	CCC	GAG GAA GAG AGA GGA GTG ACC ATG Glu Glu Glu Arg Gly Val Thr Met 490	CCC	CGC (Arg I	CTG CCA GAC TTG CCC CCA TCC CGA Leu Pro Asp Leu Pro Pro Ser Arg 535 540
CCT	AGC Ser 475	GTG Val	CAC His	Ser 2	CCA 1 Pro 8
GGG GGA AAG CGA CTT CTC Gly Gly Lys Arg Leu Leu 455	GAA Glu	GGA GTG Gly Val 490	AGC	CTC ATC TCT Leu Ile Ser	CCC (
CII	CCT	aga Arg	CAG Gln 505	CTC	rrg (
AAG CGA Lys Arg 455	CTT	GAG AGA Glu Arg	CAG Gln	GAG Glu 520	CCA GAC TTG Pro Asp Leu 535
AAG Lys 455	CAG Gļn	GAA	GTG Val	CCA GAG Pro Glu 520	CCA (Pro 1 535
GGA G1y	CCC CAG CAG Pro Gln Gln 470	GAG Glu	CGA TCG GTG Arg Ser Val	TAC	CTG (Iren I
$_{\rm GGG}$	CCC	ACA Thr 485	GAG CGA Glu Arg 500	CCÍ Pro	TTC (Phe)
CCA	CCC AAA Pro Lys	GAC	GAG Glu 500	CGG Arg	CGG
CAT	CCC Pro	GAG	gag Glu	CCC Pro 515	CAC
CAC His 450	CCA	CTC	AGT	CCC	TTC Phe 530
GCT	.GGG Gly 465	CCC	GTG Val	Ser	ACC Thr 1
	ហ	10	15	20	

-174-

GAG AGIU I	CAG A	TCC T	TGT G	GGC A1 Gly 11 61	GGC TAC
ATC GCC Ile Ala	AAT ATC Asn Ile	TGC CAC Cys His	GTT GAT Val Asp 595	ATC TGT Ile Cys 610	
C CCC	C TGT e Cys	C TGC s Cys 580	r Grg	r ATG	CGC CTC Arg Leu
C ACT		C AAC 3 Asn 0	AAC	AAC Asn	CAC His
	GGC CAT Gly His 565	GCT	GAG	ACT	GTG Val
CAG GTC ACA GAG ACC GAT GAG Gln Val Thr Glu Thr Asp Glu 550	GGA	GCT GGC TAC Ala Gly Tyr	GAG TGC GAG Glu Cya Glu 600	GGT Gly 615	GGT Gly
ACA Thr	CAG Gln	TAC	GAG Glu 600	GGC	GCA Ala
GAG	TGT	CGG Arg 585	GCA	TCC	GGG Gly
ACC	GTG Val 570	TCA	GAG Glu	TAC Tyr	GGC Gly
GAT Asp 555	CCT	CAC	CCC	AAT	CGC
GAG Glu	GGC	CCG	TGC	TGT Cys 620	TCG
TGC Cys	CCC	CAG Gln	66C 61y 605	CAC His	TGC
CGA	TCG	CAC His 590	CCC	TGC	GTG Val
TTG Leu	GAT Asp 575	CGC TAC Arg Tyr	GGG	AAC	GAC Asp
AAC Asn 560	TAC Tyr	TAC	ААА Lys	CGA Arg	CTG Leu
1680	1728	1776	1824	1872	1920

-175-

•					
1968	2016	2064	2112	2160	2208
ATC Ile	CTC Leu	GAC	TTC	GCC Ala 720	GGA Gly
TGC Cys 655	CGG	CGC GAC Arg Asp	AGC	GGG GCC Gly Ala 720	CCT (Pro (
TTC	GGC TAC Gly Tyr 670	TGT Cys	GGC G1y		TCT (Ser)
GGC Gly	GGC	GAG Glu 685	CCT	TGC CAG CCT GGC TAC CGT AGC CAG GGG GGC Cys Gln Pro Gly Tyr Arg Ser Gln Gly Gly 710	TGC
GGT	CCT	ATC GAC Ile Asp	AAA Lys 700	CAG Gln	CCC
GAC	TAT Tyr	ATC Ile	AAC	AGC Ser 715	ACC CCC Thr Pro
GGG Gly 650	TGC Cys	GAC	GAA Glu	CGT	
TGT Cys	AAC Asn 665	CCC ATT TGC GAA GAC ATC GAC Pro Ile Cys Glu Asp Ile Asp 680	тст	TAC Tyr	GAA GGT ACC Glu Gly Thr 730
CTG	AAA TGC Lys Cys	TGC Cys 680	GGC AAA TGT Gly Lys Cys 695	GGC	TCC
CAC His	ААА Lyв	ATT Ile	GGC G1y 695	CCT	
CCT	TAC	Pro	GAT ABP	CAG CCT Gln Pro 710	GAA
AAG Lys 645	CAC His	CGA CCG Arg Pro	CCT	TGC	AAC GAA TGC Asn Glu Cys 725
GCC	GGT CAC Gly His 660	CGA Arg	TGC Cys	GCC	GTC
TGC	CCT	TCC Ser 675	ACC Thr	ATC GCC Ile Ala	CGT GAT GTC AAC GAA TGC Arg Asp Val Asn Glu Cys 725
GAG	TTC	GCC	AGC Ser 690	TGC	CGT Arg
AAC	AAC	AAG	CCT	AAG Lys 705	TGT Cys 7
		10	. 12	0	•

2256	2304	2352	2400	2448	2496
GCC CAG GGG Ala Gln Gly 750	GAT GAC TGT Asp Asp Cys	ACA CCA GGC Thr Pro Gly	3G GAT CGG 39 Asp Arg 800	GCC TGC ATC Ala Cys Ile 815	CTC TGT CCC Leu Cys Pro 830
ACG TGT GC Thr Cys Al	GTG Val 765	TGC ACG AAC AC Cys Thr Asn Th 780	CTG TCA AGG Leu Ser Arg	GCG	TGT Cys
TGC Cys	TGC ATA GAC Cys Ile Asp	ATC TGC AC Ile Cys Th	TAT CAT CT Tyr His Le 795	TTC	TCC TAC AGA Ser Tyr Arg
TAC Tyr 745	AGT	GGC	GGC	ТСУВ	GGT Gly 825
GGT	CGC	TGC CAA GAT Cys Gln Asp 775	c CTC TCC s Leu Ser 0	T GAT GAA e Asp Glu	ATC AAT ACC AAT Ile Asn Thr Asn
A CTT CCG s Leu Pro 0	c ACA GGA g Thr Gly	GTG Val	r cag rec s Gln Cys 790	GAC ATT 1 Asp Ile 805	C ATC AAT s Ile Asn
r Gag aaa CTT 3 Glu Lys Leu 740	A ACC CGC Thr Arg 755	GGG Gly	CAG TGT	TGT GAG	GAC TGC Asp Cys 820
TGG TGT Trp Cys	ATA CGA Ile Arg	GAG GCT Glu_Ala 770	TCT TTC Ser Phe 785	AGC CGC Ser Arg	GGG GGT Gly Gly
	ហ	10	15	C	

2544				7607		2640			2688			2736				2784		
GAT	Asp		ر د د	Asn		ACC	Thr	880	AAG	Lys		TTG	Leu			299	Gly	
ATA	Ile		ָּט מ	Glu		CIC	Leu		AAG	Lys		GTA	Val			GCT	Ala	
GAT	Asp		נ ב ב	CVB		ACA	Thr					AGC	Ser	910		GGA	Gly	
AAA	Lys	845	ָרָ ני	Ala		TTC	Phe		GTG GAG CAG CCC CAC CAC	His		GAC	Asp			CTG	ren (925
AAG	Lys		Ę	His	860	GGT	Gly		ည္သ	Pro		TGT	Сув			TCT	Ser	
IGC	Cys		נ	Pro		GAG	Glu	875	CAG	Gln		TTC	Phe			TGC	Cys	
AAG	Lys		5 F	Leu		GAT	Asp		GAG	Glu Gln	890	GTG	Val			TGT	Сув	
AGG	Gly Arg	•	TGC	Суз		TGT	Cys		GTG	Val		ACA	Thr	905		TGC	Сув	
GGC	$_{\rm Gly}$	840	CTG	Leu		GTC	Val		GAG	Glu		GAC ACA	Asp			GAA	Glu	920
agc	$_{\rm Gly}$		gga	Gly	855	TGT	Сув		GAG	Glu		GAT	Asp			CAG	Gln	
GTG	Leu Val		. S	Pro		GTC	Val	870	TGT	Сув		TTC	Phe			CAG	Gln	
TIG	Leu		GAC	Asp		TAT	Tyr		999	G1y	882	AAC				ACT	Thr	
<u>555</u>	Arg		CAG	Gln	~	TCC	Ser			His		CTT	Leu Asn	900			Val	
CAT	His	835	AGC	Ser		299	$_{\rm Gly}$		CAG	Gln		TAC	Tyr			AAT GTC	Asn	915
GGT	$_{ m G1y}$		TGC	Cys	850	CAG	Gln		GAC CAG CAT	Asp		TGC	Суз			ACC	Thr	
CIG	Leu		GAG	Glu		CIC	Leu	865	CAG	Gln	.:	GAG	Glu			GCT	Ala	
			ιυ				10				15				20			

2832	2880	2928	2976	3024	3072
GCC	CAA Gln 960	TGC	TĊG Ser	GGC Gly	AAC Asn
TCA Ser	GGA Gly	GAA TGC Glu Cys 975	AAC	3AT ASP	Ser 1
AGC	TCA	GAC	GTG Val	TAC GAT GGC Tyr Asp Gly	3AG 7
TAC Tyr	CAC	ATC Ile	TGT (Cys)	TAC TAC GAT Tyr Tyr Asp 1005	AT G
TGT CCA GTC TAC AGC TCA GCC Cys Pro Val Tyr Ser Ser Ala 940	CTA	GAC	AAG '	TTC :	TTG CAT GAG Leu Asp Glu 1020
CCA	GAT GGG AAA AGG CTA Asp Gly Lys Arg Leu 955	CGT	GGC G1Y	GGC 3	TGC 1 Cys I
TGT Cys	GAT GGG AAA AGG Asp Gly Lys Arg 955	CAC CGT His Arg 970	GCA GAG ATC TGC AAG GAG GGC Ala Glu Ile Cys Lys Glu Gly 985	cag (GAG 1 Glu C
CCC	GGG G1y	GCC	AAG GAG Lye Glu 985	AAG (Lys (SAC (
TAT	gat Asp	CCT	TGC	TGC AAG CAG Cys Lys Gln 1000	3TG (
GAA ATC Glu Ile 935	CCT	ATT	ATC	TAC TYF (GTG GAC GTG GAC GAG Val Asp Val Asp Glu 1015
GAA Glu	GTG Val 950	TGC Cys	GAG Glu	TGC	GTG C
TGC	CTG	CTA Leu 965	GCA	GAG 7	TGC (Cys V
CAC His	CAC AGC His Ser	GAA	GGG G1y 980	TAC (Tyr (GAG 1 Glu (
GGA GAC Gly Asp 930		ТСУВ	TTT	GGC . Gly . 995	
GGA GAC Gly Asp 930	TTT	CAT	TTG	CCC (Pro (CTG CTG Leu Leu 1010
TGG	GAA Glu 945	CAA	ATA Ile	CAG (Glu I	AAC CAS AS I
	r.	10	15	20	

3120	3168	3216	3264	3312	3360
TGC AGG AAC GGA GTG TGT GAG AAC ACG TGG CGG CTA CCG TGT GCC TGC	ACT CCG CCG GCA GAG TAC AGT CCC GCA CAG GCC CAG TGT CTG ATC CCG	GAG AGA TGG AGG ACG CCC CAG AGA GAC GTG AAG TGT GCT GGG GCC AGC Glu Arg Trp Ser Thr Pro Gln Arg Asp Val Lys Cys Ala Gly Ala Ser 1060	GAG GAG AGG ACG GCA TGT GTA TGG GGC CCC TGG GCG GGA CCT GCC CTC	ACT TTT GAT GAC TGC TGC CGC CAG CCG CGG CTG GGT ACC CAG TGC	AGA CCG TGC CCG CCA CGT GGC ACC GGG TCC CAG TGC CCG ACT TCA CAG
Cys Arg Asn Gly Val Cys Glu Asn Thr Trp Arg Leu Pro Cys Ala Cys	Thr Pro Pro Ala Glu Tyr Ser Pro Ala Gln Ala Gln Cys Leu Ile Pro		Glu Glu Arg Thr Ala Cys Val Trp Gly Pro Trp Ala Gly Pro Ala Leu	Thr Phe Asp Asp Cys Cys Arg Gln Pro Arg Leu Gly Thr Gln Cys	Arg Pro Cys Pro Pro Arg Gly Thr Gly Ser Gln Cys Pro Thr Ser Gln
1025 1035	1055		1075	1090	1105

ហ

	1205 1210 1215	
	Glu Arg Cys Val Asn Thr Ser Gly Ser Phe Arg Cys Val Cys Lys Ala	g
3648	GAG CGG TGC GTG AAC ACC AGT GGA TCC TTC CGC TGT GTC TGC AAA GCT	ט
		0
		-
	lle Asp Glu Cys Arg Glu Leu Asn Gln Arg Gly Leu Leu Cys Lys Ser	H
3600	ATT GAT GAG TGC CGA GAA CTG AAC CAG CGG GGA CTG CTG TGT AAG AGC	Æ
		ru.
	Cys Pro Gly Gly Phe Gln Leu Asp Ala Ser Arg Ala Arg Cys Val Asp	J
3552	TGT CCT GGA GGC TTT CAG CTG GAC GCC TCC CGT GCC CGC TGC GTG GAC	
	1155 1160 1165	
	Cys Val Ser Gly Pro Cys Val Pro Arg Pro Gly Gly Ala Val Cys Glu	0
3504	TGT GTG AGC GGA CCG TGT GTG CCA CGG CCA GGC GGG GCG GTA TGC GAG	C
	1140 1145 1150	
	Ser Pro Arg Asp Glu Asp Ser Ser Glu Glu Asp Ser Asp Glu Cys Arg	O.J
3456	TCT CCG CGA GAC GAA GAC AGC TCA GAG GAG GAT TCA GAT GAG TGC CGT	5 1
	1125 1130 1135	
	Ser Glu Ser Asn Ser Phe Trp Asp Thr Ser Pro Leu Leu Leu Gly Lys	. ,
3408	AGT GAG AGC AAT TCT TTC TGG GAC ACA AGC CCC CTG CTA CTG GGG AAG	~

-181-

3698 GGC TTC ACG CGC AGC CGT CAC GGG CCT GCG TGC CTC AGC GCC GCC Gly Phe Thr Arg Ser Arg Pro His Gly Pro Ala Cys Leu Ser Ala Ala 1230 1225 1220

3744 GCT GAT GAT GCC ATA GCC CAC ACC TCA GTG ATC GAT CAT CGA GGG Ala Asp Asp Ala Ala Ile Ala His Thr Ser Val Ile Asp His Arg Gly 1245 1240 1235°

ស

TAT TIT CAC

3753

10 Tyr Phe His 1250 (2) INFORMATION FOR SEQ ID NO:3:

15

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1251 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

u Ala Leu 15	ly Ala Gln 30	e Ala Pro	p Ser Cys	s Ser Thr 80	o Leu Pro 95	u Cys Pro 0	: [5 sq # 1 s
u Leu Leu Ala 15	Ser G	l Val Phe 45	Cys Arg Asp 60	n Gly His	l Cys Pro	Cys Leu 110	ָר ק
Leu Ala Leu Leu 10	Pro Gly	. Lys Val	Gln	Glu Asn 75	Val Val Val 90	Asn Gln	Dro ala
Leu Ala 10	Gly Arg 25	Gln Arg Phe 40	Lys Gly	Ile Gly	Arg	Ser Arg	רביז תובי
Gly Leu	Gly Val	Ala Gln 40	Cys Leu 55	Thr Leu	Ala Phe	Cys Ser	Dhe Gva
Gln Ala Ala Leu Gly 5	Pro Gly Gly Arg 20	Arg Trp	Arg Thr	Asn Met	Gly Ser 85	Gly Gln	Gly Arg
		Gly Ala Gly Arg Trp Ala 35	Сув Lув	Gly Ser	Leu Thr	Asn Gly Gly 100	Phe Thr
Met Arg 1	Leu Gly	Ala Gly	Val Ile 50	Gln Gln 65	Asp Thr	Cys Met	Pro Asp
	ស	-	10	r T		20	

-183-

Pro	Thr	Thr	Сув 320	Asn	Asn	Pro	c_{YS}
Asn	Glγ	Tyr	Asp	Ile 335	Asn	Gly	Leu
Ser 270	Ile	Gln	Ala	Asp	Leu 350	Leu	Ser
$_{ m G1y}$	Ser 285	Leu	Gly	Gln	Сув	Ser 365	Гуз
Cys	\mathtt{Gly}	Gln 300	Val	Сув	Азр	His	Lys Pro Glu Glu Lys
Pro	Сув	Pro	Glu 315	His	$_{\rm Gl\gamma}$	Gly	Glu
Gln	Сув	Сув	oly Glu 315	Thr 330	His	Pro	Pro
Lys 265	Glu Asp 280	Lув	Arg	Ser	Сув 345	Pro	Lys
Pro	Glu 280	His				сув 360	Asp
Leu	Gln	Cys 295	Pro Val	Leu Asn	Asn Val	Val	Ala
Thr	Lys Gln	Lув	val 310	Arg	Gly	Сув	Ile Ala Asp
Asp	Thr	Ser	Pro	Lys 325	Pro	Arg	Cys
Gln Asp 260	Leu	Gln	Ĺуз	Tyr	Met 340	Tyr	Gln
Phe	Gly 275	Gly	Gln	$_{ m G1y}$	Ala	Ser 355	Ala
Сув	Pro	Trp 290	Val	Gln	Cys	G1y	Ala
Arg	Leu	Ala	G1y 305	Pro	Glu	Pro	Leu
	Ŋ		10	ц	2	20	

Arg Leu Val Ser Thr Glu His Gln Cys Gln His Pro Leu Thr 390 395 Leu Thr Arg Gln Leu Cys Cys Cys Ser Val Gly Lys Ala Trp 410 415 Arg Cys Gln Arg Cys Pro Ala Asp Gly Thr Ala Ala Phe Lys 420 430 Cys Pro Gly Trp Glu Arg Val Pro Tyr Pro His Leu Pro Pro Pro 435 440 445 His His Pro Gly Gly Lys Arg Leu Leu Pro Leu Pro Ala Pro 450 460 475 Pro Pro Lys Pro Gln Gln Leu Pro Glu Ser Pro Ser Arg Ala 470 475 Leu Glu Asp Thr Glu Glu Arg Gly Val Thr Met Asp Pro 485 486 Ser Glu Glu Arg Ser Val Gln Gln Ser His Pro Thr Thr Thr 795		LO	·	0	ហ		. 0	
Arg Leu Val Ser Thr Glu His Gln Cys Gln His Pro Leu Thr 390 395 Leu Thr Arg Gln Leu Cys Cys Cys Ser Val Gly Lys Ala Trp 405 Arg Cys Gln Arg Cys Pro Ala Asp Gly Thr Ala Ala Phe Lys 420 Cys Pro Gly Trp Glu Arg Val Pro Tyr Pro His Leu Pro Pro 435 His His Pro Gly Gly Lys Arg Leu Leu Pro Leu Pro Ala Pro 450 Pro Pro Lys Pro Gln Gln Leu Pro Glu Ser Arg Ala 470 Leu Glu Asp Thr Glu Glu Glu Arg Gly Val Thr Met Asp Pro 495 Ser Glu Glu Arg Ser Val Gln Gln Gln Ser His Pro Thr Thr Thr	Phe 385	Arg	Ala	11e	Ala	Gly 465	Pro	Val
Leu Val Ser Thr Glu His Gln Cys Gln His Pro Leu Thr Arg Gln Leu Cys Cys Cys Ser Val Gly Lys Ala Trp 405 Thr Arg Gln Leu Cys Cys Cys Ser Val Gly Lys Ala Trp 410 Pro Gly Trp Glu Arg Val Pro Tyr Pro His Leu Pro Pro 435 His Pro Gly Gly Lys Arg Leu Leu Pro Leu Pro Ala Pro Pro 455 His Pro Gly Gln Leu Pro Glu Ser Pro Ser Arg Ala 470 Pro Lys Thr Glu Glu Arg Gly Val Thr Met Asp Pro 495 Glu Asp Thr Glu Glu Glu Arg Gly Val Thr Thr Thr Thr Thr	Arg	Leu	Arg	Сув	His 450	Pro	Leu	Ser
Val Ser Thr Glu His Gln Cys Gln His Pro Leu Thr 390 Arg Gln Leu Cys Cys Cys Ser Val Gly Lys Ala Trp 405 Gln Arg Cys Pro Ala Asp Gly Thr Ala Ala Phe Lys 420 Gly Trp Glu Arg Val Pro Tyr Pro His Leu Pro Pro Pro Gly Gly Lys Arg Leu Leu Pro Leu Pro Ala Pro Lys Pro Gly Glu Ser Arg Afs Asp Thr Glu Glu Arg Gly Val Thr Met Asp Pro 495 Glu Arg Ser Val Gln Gln Ser His Pro Thr Thr Thr	Leu	Thr					Glu	Glu
Ser Thr Glu His Gln Cys Gln His Pro Leu Thr 390 Gln Leu Cys Cys Cys Ser Val Gly Lys Ala Trp 405 Arg Cys Pro Ala Asp Gly Thr Ala Ala Phe Lys 425 Trp Glu Arg Val Pro Tyr Pro His Leu Pro Pro Pro 440 Trp Glu Arg Leu Leu Pro Leu Pro Ala Pro Pro His Leu Pro Ala Pro 455 Gly Gly Gly Lys Arg Leu Leu Pro Leu Pro Ala Pro 475 Thr Glu Glu Leu Pro Glu Ser Pro Ser Arg Ala 470 Thr Glu Glu Arg Gly Val Thr Met Asp Pro 485 Hrg Ser Val Gln Gln Ser His Pro Thr Thr Thr	Val	Arg		Gly		Ьуз	Asp	Glu 500
Thr Glu His Gln Cys Gln His Pro Leu Thr 390 Leu Cys Cys Cys Ser Val Gly Lys Ala Trp 410 Cys Pro Ala Asp Gly Thr Ala Ala Phe Lys 425 Glu Arg Val Pro Tyr Pro His Leu Pro Pro 440 Gly Lys Arg Leu Leu Pro Leu Pro Ala Pro 450 Gln Gln Leu Pro Glu Ser Pro Ser Arg Ala 470 Glu Glu Glu Arg Gly Val Thr Met Asp Pro 490 Ser Val Gln Gln Ser His Pro Thr Thr Thr	Ser	Gln 405	Arg	Trp	G1y		Thr 485	Arg
Gln Cys Gln His Pro Leu Thr 395 Cys Ser Val Gly Lys Ala Trp 410 Asp Gly Thr Ala Ala Phe Lys 425 Pro Tyr Pro His Leu Pro Pro 445 Leu Leu Pro Leu Pro Ala Pro 460 Afo Ars Glu Ser Pro Ser Arg Ala 475 Gln Ser His Pro Thr Thr Thr	390	Leu	Сув	Glu	$_{ m G1y}$		Glu	
Gln Cys Gln His Pro Leu Thr 395 Cys Ser Val Gly Lys Ala Trp 410 Asp Gly Thr Ala Ala Phe Lys 425 Pro Tyr Pro His Leu Pro Pro 445 Leu Leu Pro Leu Pro Ala Pro 460 Afo Ars Glu Ser Pro Ser Arg Ala 475 Gln Ser His Pro Thr Thr Thr	Glu	Сув	Pro	Arg	<u>Гув</u> 455	Gln	Glu	
Gln Cys Gln His Pro Leu Thr 395 Cys Ser Val Gly Lys Ala Trp 410 Asp Gly Thr Ala Ala Phe Lys 425 Pro Tyr Pro His Leu Pro Pro 445 Leu Leu Pro Leu Pro Ala Pro 460 Afo Ars Glu Ser Pro Ser Arg Ala 475 Gln Ser His Pro Thr Thr Thr	His	Сув	Ala	Val 440	Arg	Leu	Glu	Gln
Pro Leu Thr Lys Ala Trp 415 Ala Phe Lys 430 Leu Pro Pro Pro Ala Pro Ret Asp Pro Thr Thr Thr	Gln		Asp 425	Pro	Leu		Arg	
Pro Leu Thr Lys Ala Trp 415 Ala Phe Lys 430 Leu Pro Pro Pro Ala Pro Ret Asp Pro Thr Thr Thr	Сув	Ser 410	G1y	Tyr	Leu	Glu	G1y 490	Ser
Pro Leu Thr Lys Ala Trp 415 Ala Phe Lys 430 Leu Pro Pro Pro Ala Pro Ret Asp Pro Thr Thr Thr	Gln 395	Val	Thr		Pro	Ser 475	Val	
Pro Leu Thr Lys Ala Trp 415 Ala Phe Lys 430 Leu Pro Pro Pro Ala Pro Ret Asp Pro Thr Thr Thr	нів	Gly	Ala	His	Leu 460	Pro	Thr	Pro
Leu Thr Ala Trp Phe Lys 430 Pro Pro Arg Ala Arg Pro Arr Thr	Pro	Ьγв	Ala	Leu 445	Pro	Ser	Met	Thr
Thr Trp 415 Lys Pro Pro Tro Tro	Leu		Phe 430	Pro	Ala	Arg	Asp	Thr 510
Thr Glu Asp Prc Prc		Trp 415	Lys			Ala	Pro 495	Thr
	Thr 400	$_{ m G1y}$	Glu	Asp	Asp	Pro 480	Pro	Thr

						·	
Pro	Val	Asn 560	Tyr	Tyr	Lys	Arg	Leu 640
Pro	Ala	Arg Leu	Asp 575	Arg	$\mathtt{Gl}_{\mathbf{y}}$	Asn	Val Asp Leu 640
Ser	Ser	Arg	Ser	His 590	Pro	Суз	
Pro 525	Arg	Сув	Pro	Gln	Gly 605	His	Cys
Arg	Ser 540	Glu	σιу	Pro	Сув	Cys 620	Ser
Ser	Pro	Asp 555	Pro	His	Pro	Asn	Gly Arg 635
Ile	Pro	Thr	Val 570	Ser	Glu	Tyr	Gly
Pro Glu Leu Ile 520	Leu	Glu	Сув	Arg 585	Ala	Ser	$_{ m G1y}$
Glu 520	Asp	Thr	Gln	Tyr	Glu 600	Gly Gly 615	Gly Ala
Pro	Pro 535	Val	G1y	Gly	Сув	G1y 615	Gly
Pro Tyr	Leu	Gln 550	нів	Ala	Glu	Thr	val 630
Pro	Phe	$\mathtt{Th} r$	G1y 565	Asn	Asn	Asn	Leu His
Pro Arg 515	Arg	Pro	Сув	Cys 580	Val	Сув Меt	Leu
Pro 515	His	Ala	Ile	нів	Asp 595	Сув	Tyr Arg
Pro	Phe 530	Ile	Asn	Сув	Val	11e 610	Tyr
Ser	Thr	Glu 545	Gln	Ser	Сув	Gly	Gly 625
	2		10	r.	2	20	

			•				
Ile	Leu	Asp	Phe	Ala 720	Gly.	Gly	Cys
Cys 655	Tyr Arg 670	Ile Asp Glu Cys Arg 685	Ser	Ser Gln Gly Gly Gly Ala	Pro 735	Gln	
Leu Cys Gly Asp Gly Gly Phe 650		Cys	Pro Gly	$^{ m G1}{ m y}$	Ser	Ala 750	Cys Ile Asp Val Asp Asp 765
Gly	Pro Gly	Glu 685	Pro	Gly	Cys	Thr Cys Ala 750	Val ,
Glγ	Pro	Asp	Glu Asn Lys 700	Gln	Pro	Thr	Asp
Авр	Tyr	Ile	Asn	Ser 715	Thr	Cys	Ile
G1 <i>y</i> 650	Сув	Glu Asp	Glu	Arg	Gly 730	Arg	Cys
Сув	Cys Asn Cys 665	Glu	$Cy_{\mathbf{S}}$	Tyr	Glu	Tyr 745	Ser
Leu	Сув	Cys 680	Ьув	Pro Gly	Ser	Ser	Leu 760
His	Lув	Ile	G1y 695	Pro	Сув	Gly	Arg
Lys Pro His 645	Tyr	Pro	Pro Asp	Gln 710	Asn Glu Cys 725	Pro	Gly .
Lys 645	Gly His 660	Pro	Pro	Сув	Asn 725	Leu	Thr
Asn Glu Cys Ala		Arg	Thr . Cys	Ala		Glu Lys Leu Pro Gly Ser Tyr Arg 740	Thr Arg Thr Gly Arg Leu Ser 755
Сув	Pro	Ser 675	Thr	Ile	Cys Arg Asp Val	Glu	Thr .
Glu	Phe	Ala	Ser 690	Сув	Arg	Сув	Arg
Asn	Asn	Lув	Pro	Lys 705	Сув	Trp	Ile.
	rv		10	7	}	50	

						•	
Glγ	Arg	Ile	Pro	Asp	Asn	Thr 880	Lys
Pro	Asp	Cys 815	Сув	Ile	Glu	ren	Lys 895
Thr	Arg	Ala	Leu Cys 830	Авр	Cys	Thr	His
Asn	Ser	Pro Ala	Сув	Lys Asp 845	Ala		
Thr 780	Leu	Pro	Arg	Ьув	His 860	${\tt Gly}$	Pro
Cys	His 795	Asp Phe 810	Tyr	Сув	Gln Asp Pro Gly Leu Cys Leu Pro His 855	Val Cys Val Cys Asp Glu Gly Phe 870	Glu Glu Val Glu Gln Pro His 890
Ile	Gly Tyr	Asp 810	Ile Asn Thr Asn Gly Ser 825	Ьув	Leu	Авр	Glu 890
Gln Asp Gly 775	$\mathtt{Gl}_{\mathbf{y}}$	Сув	Gly 825	Gly His Arg Leu Val Gly Gly Arg Lys 835	Суз	Суз	Val
Asp	Ser	Glu	Asn	Gly 840	Leu	Val	Glu
	Leu	Asp	Thr	Gly	G1y 855	Сув	Glu
Сув	Cys 790	11e	Asn	Val	Pro	Val 870	Сув
Val	Gln	Asp 805	Ile	Leu	Asp	Tyr	Gly Cys 885
Lys	Сув	Glu	Cys 820	Arg	Gln	Ser	His
G1y	Gln	Cys	Asp	His 835	Ser	Gly	Gln His
Glu Ala Gly Lys Val 770	Phe	Arg	Gly Gly Asp Cys 820	$\mathtt{Gl}_{\mathbf{Y}}$	Cys 850	Gln Gly Ser Tyr	Asp
Glu	Ser 785	Ser	Gly	Геи	Glu	Leu 865	Gln Asp
	Ŋ		10	г п	}	20	

Asn Leu Leu Glu Cys Val Asp Val Asp Glu Cys Leu Asp Glu Ser Asn 1010

		·				
Leu	Gly	Ala	Gln 960	Cys	Ser	Gly
Val	Ala	Ser	Gly		Asn	Tyr Tyr Asp Gly 1005
Ser Val 910	Gly	Ser	Ser	Asp Glu 975	Val 990	ľyr
Cys Asp	Leu 925	Tyr	нів	Ile	Сув	Tyr' 1005
Cys	Ser	Val 940	Arg Leu His 955	Asp		Phe
Phe	Cys	Pro	Arg 955	Arg	Gly	Gly
Val	Cys	Сув	Lys	His Arg 970	Lys Glu Gly Lys 985	Gln (
Thr 905	Gln Glu Cys 920	Pro		Ala	Lys 985	Lys (
Asp Asp Thr 905	Glu 920	Tyr	Pro Asp Gly	Pro	Cys	Cys Lys 1000
Asp	Gln	11e 935	Pro	Ile	Ile	Tyr
Phe	Gln	Gļu ile Tyr ,935	Val 950	Сув	Glu	Cys
Leu Asn 900		Сув	Leu Val 950	Glu Leu Cys 965		Glu
Leu 900	Asn Val Thr 915	His	Ser	Glu	Gly Ala 980	Tyr
Tyr		Gly Asp His 930	His	Сув	Phe	G1y 995
Glu Cys	Thr		Phe	His	Leu	Pro
G]u	Ala	Trp	Glu 945	Gln	Ile.	Gln
	rv		10	r r	}	20

Ser Pro Arg Asp Glu Asp Ser Ser Glu Glu Asp Ser Asp Glu Cys Arg 1140

Cys 1040	Pro	Ser	Leu	Cys	Gln . 1120	Lys
Ala	11e 1055	Ala	Ala	Gln	Ser	Gly] 1135
Сув	Leu	Gly 1 1070	Pro	Thr	Thr	red (
Pro	Сув	Ala	Gly Pro Ala 1085	${ t Gl} { t Y}$	Pro	ren]
Leu	Gln	Сув	Ala	Leu (Сув	ren]
Arg]	Gln Ala Gln Cys Leu Ile Pro 1050	Pro Gln Arg Asp Val Lys Cys Ala Gly Ala 1065	Trp	Cys Arg Gln Pro Arg Leu Gly Thr Gln 1095	Gln Cys 1115	Ser Pro Leu Leu Leu Gly Lys 1130
Trp	Gln / 1050	Val	Pro	Pro	Ser	Ser 1130
Thr	Pro Ala	Asp 1065	Trp Gly Pro 1080	Gln	Gly	
Asn		Arg	Trp (Arg	Thr	Trp Asp Thr
Glu	Ser	Gln	Val	Сув 1 1095	$_{ m G1y}$	Trp
Cys (Glu Tyr 1045	Pro	Cys	Сув	Arg (Phe
Val	Glu 7 1045	Thr	Ala	Сув	Pro	Ser Phe 1125
$_{ m G1y}$	Pro Ala	Trp Ser Thr 1060	Arg Thr Ala 1075	Phe Asp Asp 1090	Pro	Asn
Asn	Pro	Trp	Arg 1075	Asp		Ser
Cys Arg Asn Gly Val Cys Glu Asn Thr Trp Arg Leu Pro Cys Ala Cys 1025 1035 1030	Pro	Arg	Glu Glu	Phe 1090	Arg Pro J. Bro Pro Arg Gly Thr 1105	Glu
Cys 1	Thr	Glu	Glu	Thr	Arg 1105	Ser
	ស		10	15	•	20

Tyr Phe His

20

Cys Val Ser Gly Pro Cys Val Pro Arg Pro Gly Gly Ala Val Cys Glu 1155	Pro Gly Gly Phe Gln Leu Asp Ala Ser Arg Ala Arg Cys Val Asp 1170	Ile Asp Glu Čys Arg Glu Leu Asn Gln Arg Gly Leu Leu Cys Lys Ser 1185 1190	Glu Arg Cys Val Asn Thr Ser Gly Ser Phe Arg Cys Val Cys Lys Ala 1205	Arg Ser Arg Pro His Gly Pro Ala Cys Leu Ser Ala Ala 1220 1220	Ala Asp Asp Ala Ala Ile Ala His Thr Ser Val Ile Asp His Arg Gly 1235
Cys Val Ser (Cys Pro Gly 1170	Ile Asp Glu 1185	Glu Arg Cys	Gly Phe Thr	Ala Asp Asp 1 1235
	· ທ		10	15	

(2) INFORMATION FOR SEQ ID NO:4:

- 192 -

	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 24 base pairs	
•	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
5	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
10	·	
	AACATGACGC TCATCGGAGA GAAC	24
	·	
	(2) INFORMATION FOR SEQ ID NO:5:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 18 base pairs	
•	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	•
20	·	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
25	AGGTGATCGC AGATCCTC	18
	(2) INFORMATION FOR SEQ ID NO:6:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 24 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5		
	(ii) MOLECULE TYPE: DNA (genomic)	

- 193 -

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
•	TACCGATGCT ACCGCAGCAA TCTT	24
5		
	(2) INFORMATION FOR SEQ ID NO:7:	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 22 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	ATGCCTAAAC TCTACCAGCA CG	22
20		
	(2) INFORMATION FOR SEQ ID NO:8:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 22 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	GAGTCACGTC ATCCATTCCA CA	22
	•	

WO 95/22611 PCT/US95/02251

- 194 -

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 22 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CGTCCAAGTT GTGTCTTAGC AG

22

15

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 53 amino acids
- (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

-195-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Gly Pro Pro Gly Pro Gln Gly Ala Thr Gly Pro Leu Gly Pro Lys Gly 10

Gln Thr Gly Glu Pro Gly Ile Ala Gly Phe Lys Gly Glu Gln Gly Pro

25

Lys Gly Glu Thr Gly Pro Ala Gly Pro Gln Gly Ala Pro Gly Pro Ala

10

Gly Glu Glu Gly Lys

(2) INFORMATION FOR SEQ ID NO:11: 15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 159 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

20

(ii) MOLECULE TYPE: DNA (genomic)

Ŋ

۲
::
NO:11
a
SEQ
 E
LION
H
Ä
DESCRIP
Ş
SEQUENCE
ğ
S
<u>.</u>
X

09	120	159
GACGGGTGAG	ACCTGCTGGG	
CCAAAGGTCA	GAGAGACTGG	
CCTCTGGGCC	GGCCCCAAGG	GAAGGAAAA
TGCAACTGGT	AGGTGAACAA	TGCTGGTGAA
GTCCTCAAGG	CTGGCTTCAA	೦೦೦೦೩೦೦೦೦
GGCCCTCCCG GTCCTCAAGG TGCAACTGGT CCTCTGGGCC CCAAAGGTCA GACGGGTGAG	CCCGGCATCG CTGGCTTCAA AGGTGAACAA GGCCCCAAGG GAGAGACTGG ACCTGCTGGG	CCCCAGGGAG CCCCTGGCCC TGCTGGTGAA GAAGGAAAA
ហ		

10 (2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1442 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

20

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:12:

					•		
Гец	Gly	Lys	Cys	Pro 80	Ser	Ile	d C
Leu 15	Ala	Trp	Leu	Ile	Ala 95		Arg Asp Gly Pro Ala Gly Glu Gln Gly Pro Arg Gly Asp Arg Gly Agn
Ser Leu Val Leu Leu Thr 10	Glu 30	Arg Tyr Lys Asp Lys Asp Val Trp 40		Glu	Thr	Pro Gly Asp 110	Arg
Leu	Gln	Asp 45	Cys Arg Ile Cys Val Cys Asp Thr Gly Asn Val 55	Pro		Pro	Asp
Leu	Gln Gly Gln Asp Ala 25	Lys	G1y 60	Asn	Pro Ala Asp Leu Ala 90	Glu	Gly
Val	Asp	Asp	Thr	Cys Leu Asn 75	Asp	G1y	Arg
Leu 10	Gln	Lys	Asp	Cys ·	Ala 90	Gly Gln Lys Gly Glu 105	Pro
Ser	G1y 25	Tyr	Сув	Asp Asp Ile Ile Cys Glu Asp Pro Asp 65	Pro	Gln 105	$_{ m G1y}$
Met ile Arg Leu Gly Ala Pro Gln 1 5	Gln	Arg 40	Val	Pro	Сув	Gly	Gln
Pro	Сув	Gln	Сув 55	Азр	Pro Ile	ьув	G1u
Ala	Leu Arg	$_{ m G1y}$	Ile	Glu 70		Leu Gly Pro Lys 100	Gly
G1y 5	Leu	Cys≀Leu Gln Asn 35	Arg	Сув	Gly Glu Cys Cys 85	Gly	Ala
Leu	Ala Val 20	Gln	Cys	Ile	Cys	Leu 100	Pro
Arg	Ala	. Leu 35	Ser	Ile	Glu	Arg Lys	Gly
T T E	Ala	Сув	Ser 50	Asp	Gly	Arg	Asp
Mer 1	Ile	Ser	Pro	Asp 65	Phe	$_{ m G1y}$	Arg

Ŋ

Val Lys Gly His Arg Gly Tyr Pro Gly Leu Asp Gly Ala Lys Gly Glu 245

20

Glu	Pro 160	Gln	$_{ m G1y}$	Asp	Pro	Gly 240
Asp	Gly	Pro Gln 175	Ser	Gly	ren	Pro
Tyr	Pro Met	Gly	Val 190	Pŗo	$_{ m G1y}$	ren T
$\mathtt{Gl}\mathbf{y}$	Pro	Pro	$_{ m G1y}$	Lys 205	Arg	31у 1
Gly 140	σ1γ		Pro Gly Val Ser 190	Gly	Glu ,	Pro (
Gln Met Ala Gly Gly Tyr Asp Glu 140	Gln Met Gly Val Met Gln Gly 150 155	Pro Ala Gly Ala 170	Glu	Pro Arg Gly Pro Pro Gly Pro Ala Gly Lys Pro Gly Asp 205	Ser Gly Glu Arg Gly Leu Pro 220	Gly Thr Pro Gly Leu Pro Gly 235
Met	Met	Ala 170	Glu Pro Gly 185	Pro	Ser	31y :
Gln	Val	Pro	Pro 185	$_{ m G1y}$		Pro (
Ala Ala 135	Gly	Pro Arg Gly Pro Pro Gly 165	Glu	Pro 200	Gly	Phe
Ala 135	Met	Pro	Pro Gly	Pro	Pro 215	$_{\rm G1y}$
Phe	Gln 150	Pro	Pro	$_{ m G1}_{ m y}$	Lys	Arg Gly 230
Asn	Gly Ala	Gly 165	Asn	Arg	$_{ m G1y}$	Ala
Gly Glu Lys Asn 130	$_{ m G1y}$	Arg	Phe Gln Gly Asn 180	Pro	Ala	31y .
Ġ] u	$\mathfrak{G}1y$	Pro	Gln	Gly 195	Glu	Wet (
Gly 130	Lys Ala 145	Gl _{Y,} 1	Phe	Met	Gly 210	Pro 1
Lys	Lys 145	Met	Gly	Pro	Asp Gly Glu Ala Gly Lys Pro Gly Lys 210	Gly Pro Met Gly Ala 225
					:	
•						

Asn	Gly	Gln	Pro 320	$_{ m G1y}$	Asn	Asp	Gly
Gly Ser Pro Gly Glu Asn 270	Arg	Gly Ala Arg Gly Asn Asp Gly 300	Gly	Pro Thr 335	Gln Gly Ser Arg Gly Glu Pro Gly Asn 345	Pro Gly Thr Asp 365	Ala
Gly 270	Gly Leu Pro Gly Glu Arg 285	Asp	Pro Val Gly Pro Ala Gly Gly 315	Pro	Pro 350	Gly	Pro Gly Ile Ala
Pro	G1Y 285	Asn	Ala	Gly Glu Ala Gly 330	Glu	Pro 365	Gly
Ser	Pro	Gly 300	Pro	Ala	Gly	Gly Asn	Pro
Gly	ren	Arg	Gly 315	glu	Arg	Gly	Gly Ala
Glu Ser 265	Glγ	Ala	Val	G1Y 330	Ser	Ser	Gly
	Pro Arg 280	в1у	Pro	Lув	Gly 345	Ala	Ala
Gly	Pro 280	Ala Ala 295	Gly	Ala	Gln	Gly Ala 360	Ser
Lys	Gly	Ala 295	Gly Pro Pro Gly 310	Pro Gly Ala	Ala	Pro Ala	Gly Ala Lys Gly Ser Ala
Pro Gly Val Lys 260	Met	б1у	Pro 310	Pro	Gly Ala	Pro	Гув
Gly	Pro	Ala	Gly	Pro Gly Ala 325	Pro Glu 340	Gly	Ala
	Pro Gly 275	Pro	Ala	Gly	Pro 340	Ser Pro	Gly
Ala Gly Ala		Thr Gly Pro Ala Gly 290	Pro Gly Pro Ala 305	Pro	Gly		Pro
Gly	Ser	Thr 290	Gly	Phe	Arg	Gly	Ile
Ala	Gly	Arg	Pro 305	Gly	Ala	Pro	Gly
				•			

10

ഗ

Ala 400	Ala	Gly	Ala	Arg	Gly 480	Pro	Pro
Ala Pro Gly Phe Pro Gly Pro Arg Gly Pro Pro Gly Pro Gln Gly Ala 385 395 400	Gly Pro Leu Gly Pro Lys Gly Gln Ala Gly Glu Pro Gly Ile Ala 405	Phe Lys Gly Asp Gln Gly Pro Lys Gly Glu Thr Gly Pro Ala Gly 420 420	Gly Ala Pro Gly Pro Ala Gly Glu Glu Gly Lys Arg Gly Ala 435	Gly Glu Pro Gly Gly Ala Gly Pro Ile Gly Pro Pro Gly Glu Arg 450	Pro Gly Asn Arg Gly Phe Pro Gly Gln Asp Gly Leu Ala 470	Gly 495	
Gln	$_{ m G1y}$	Pro 430	Arg	Gly	Leu	Gly Pro Ser Gly Leu Ala 490	Gly Ala Asn Gly Asp Pro Gly Arg Pro Gly Glu Pro Gly Leu 500 510
Pro	Pro	Gly	Lys 445	Pro	Gly	Leu	Pro
$_{ m G1y}$	Glu	Thr	Gly	Pro 460	Asp	Gly	Glu
Pro 395	Gly	Glu	Glu	вιу	Gln 475	Ser	Gly
Pro	Ala 410	Gly	Glu	IIe	б1у	Pro 490	Pro
Gly	Gln	Lув 425	Gly	Pro	Pro	Gly	Arg 505
Arg	Gly	Pro	Ala 440	в1у	Phe	Arg	$_{ m G1y}$
Pro	Ьув	Gly	Pro	Ala 455	Gly	Pro Gly Glu Arg 485	Pro
G1y 390	Pro	Gln	Gly	Glγ	Arg 470	Gly	Asp
Pro	G1y 405	Asp	Pro	Glγ	Asn		Gly
Phe	Leu	Gly 420	Ala	Pro	в1у	Gly Ala	Asn 500
Gly	Pro .	Lys	Gly 435	Glu	Pro	Gly	Ala
Pro	$_{ m G1y}$	Phe	Gln	Gly 450	Gly Ala 465	Pro Lys	б1у
Ala 385	Thr	Gly	Pro	Arg	Gly 465	Pro	Ьув
						·	

10

ល

				·			
Gly	Pro	Pro 560	Glγ	Glu	Arg	Gly	Ile 640
Gln Gly	Gly	Phe	Lув 575	Gly	Glu	Pro	Gly Ile 640
Gly Pro 525	Pro	Gly	Gly Glu	Asp 590	Gly		
Gly 525		Met	Gly	Ьув	Ala 605	Gln Gly Leu 620	Pro Pro Gly Pro Pro Gly Glu Gly Gly Lys Gln Gly Asp Gln 625 635
Ala	Gly Arg 540	Val	Ala	Gly	Pro Ala 605	Gln 620	$_{ m Gly}$
Asp	Asp	Pro Gly 555	Lys	Pro	Gly	Phe	Gln [.] 635
Gly Leu Thr Gly Arg Pro Gly Asp Ala 520	Glu Asp		Gly Lys 570		Ser	$_{ m G1y}$	Ьув
Pro	Gly	Gly Gln	Pro	Gly Leu 585		Ser	Gly
Arg 520	Pro		Glu	Arg	Pro Gly Pro 600	Pro	Gly
Gly	Gly Ala 535	Arg	$_{ m G1y}$	Leu	Pro	Pro Gly Pro 615	Glu
Thr	Gly	Gln Gly Ala Arg 550	Gly Ala Asn Gly Glu 565	Gly Ala Pro Gly Leu Arg 580	Pro	Pro	Gly 630
Leu	Ser	Gly	Ala 565	Pro	Gly Pro	Gly Glu Gln Gly Ala 610	Pro
Gly	Pro	Gľn	Gly	Ala 580	Ala	Glγ	Pro
Arg 515	Val Gly 530	Pro	Ĺув		Gly Ala Ala 595	Gln	Gly
Gly Ala	Val 530	Pro Gly 545	Pro	Leu. Ala	Gly	Glu 610	Pro
$_{ m Gly}$	Ьув	Pro 545	Gly	Leu	Thr	Gly	Pro 625
				·			

Arg	Gly	Ala	Gln	Gly 720	Lys	Ala	$_{ m G1\gamma}$
Glu 655		Gly Ala		Lув	G1y 735	Pro	Ser
Gly	Leu 670	Ьув	Gly	Pro	Pro	Gly Pro 750	Pro
Arg	Gln Gly Leu Gln 670	Gly Pro Lys 685	Pro	Gly	Ala	Pro	Gly 765
Pro	Gln	Gly	Pro 700	Ala	Gly	Pro	Pro
Pro Gly Glu Ala Gly Ala Pro Gly Leu Val Gly Pro Arg Gly Glu Arg 645 655	Pro Gly Ala 665	Asp	Pro Asp Gly Pro Pro Gly Ala Gln Gly Pro Pro Gly Leu 695	Pro Gly Glu Arg Gly Ala Ala Gly Ile Ala Gly Pro Lys Gly	Arg Gly Asp Val Gly Glu Lys Gly Pro Glu Gly Ala Pro Gly 725	Gly Pro Ile Gly Pro Pro	Gly Pro Pro Gly Pro 765
Val 650	Gly	Thr	Gln	Gly	Pro 730	Ile	в1у
Leu	Pro 665	Pro Gly Thr 680	Ala	Ala	$_{ m G1y}$	Pro 745	Ala
Gly	Ser		Gly	Ala	Lyв	Glγ	Glu 760
Pro	Gly	Thr	Pro 695	Gly	Glu	Thr	Gly
Ala	Arg	Pro Gly Thr	Pro	Arg 710	Gly	Leu	Ιув
Gly 645	Glu	Pro	$_{ m G1y}$	Glu	Val 725	Gly	Glu
Ala	Pro Gly Glu Arg Gly 660	Leu	Asp	Gly	Asp	Gly Arg Gly Leu Thr 740	Gly Ala Asn Gly Glu Lys Gly Glu Ala 755
Glu		с В1У 675	Pro	Pro	Gly	Gly	Asn 755
$_{ m G1y}$	Phe	Pro Arg	Ala Gly 690	Gly Met 705	Arg	Gly	Ala
Pro	Gly	Pro	Ala	G1y 705	Asp	Авр	Gly
				÷		•	

10

ស

			,				
Pro	Pro 800	Gly	Pro	Pro	Gly	Lys 880	Ala
Thr Gly Ala Arg Gly Ala Pro Gly Glu Pro Gly Glu Thr Gly Pro 770	Gln	Ala Gly 815	G1y		Pro	$_{ m G1y}$	Pro Lys Gly Val Arg Gly Asp Ser Gly Pro Pro Gly Arg Ala 885 895
Thr	Gly Ala Asp Gly 795	Gly Gln Lys Gly Asp 810	Pro Gln Gly 830	Gly Ala Gln Gly Pro 845	Pro		Gly
Glu	Asp	Gly	Pro	Gln 845	Val Gly 860	Gly Pro Ala Gly Pro Pro Gly Pro Ala 870	Pro
Gly 780	Ala	Ьув	Pro Gly	Ala	Val 860	Gly	Pro
Pro	Gly 795	Gln	Pro	Gly	Arg	Pro 875	Gly
Glu	Pro		Gly Ala 825	Arg	Gly	Pro	Ser 890
Gly	Pro	Asp Gln Gly Glu Ala 805	G1y 825	Gly Ala 840	Ala	Gly	Asp
Pro	Phe Ala Gly 790	Glu	Ser	Gly 840	Gly Ala 855	Ala	Gly
Ala 775	Ala	Gly	Pro	Pro Lys	G1y 855	Pro	Arg
Gly	Phe 790	Gln	Gly	Pro	Pro	Gly 870	Val
Arg	$_{ m Gly}$	Авр 805	Pro Gln Gly 820	Gly	Phe	Pro	G1y 885
Ala	Pro Ala	Gly		Thr	Gly	Gly Asn	Lys
$_{ m G1y}$		Lya Lya	Gly	Val 835	Thr		Pro
Thr 770	Gly	Ala	Pro	Gly	Ala 850	Asn	$_{ m G1y}$
Ser	Pro 785	Gly	Ala	Thr	Gly	Ala 865	Asp
				•			

ហ

15

			•	•			
Gly	Pro	Arg	Gly 960	Pro	Glu	Gly	Ala
	Gly	Gln	Pro Gly 960	G1Y 975	Arg	Ala	Pro Gly Ala
Glu 910	Pro	Gly	Glu	Pro	G1y 990	Ala	Pro
Glγ	Pro 925	Pro	Gly	Pro	Pro Gly Arg 990	Gly /	Ala
Gly Asp Pro Gly Leu Glu Gly Pro Ala Gly Ala Pro Gly Glu LyB 905 910	Gly	Gly Gln Arg Gly Ile Val Gly Leu Pro Gly 935	Phe Pro Gly Leu Pro Gly Pro Ser Gly Glu 950	Gly Pro Pro Gly 975	Gly Glu	Asp Gly Ala 1005	Leu Gly Ala 1020
Ala	Glu Pro Gly Asp Asp Gly Pro Ser Gly Leu Asp 915	Gly	Pro 955	Gly Asp Arg 970	Gly	Pro Gly Ala Asp Gly Pro Pro Gly Arg 995	Leu
$^{ m Gly}$	Leu	Val	$_{ m G1y}$	Asp 970	Gly Pro Ala 985	Gly	Lys Gly Asp Arg Gly Glu Thr Gly Ala 1010
Ala 905	$_{ m G1y}$	Ile	Pro	$_{ m G1}_{ m y}$	Pro 985	Pro	Gļy
Pro	Ser 920	Gly	ren	Ser	Gly	Pro]	Thr
Gly	Pro	Arg 935	Gly	Ala	Thr	g1y	Glu '
G]u	Gly	Gln	Pro 950	Pro Gly Ala 965	Pro Gly Leu Thr 980	Авр	Gly
Гец	Asp	G1y	Phe	Pro 965	Gly	Ala	Arg
G1y 900	Asp	Gln Gly Leu Ala 930	Gly Glu Arg Gly 945	Gln Gly Ala	Pro 980	$_{ m G1y}$	Asp
Pro	Gly 915	Leu	Arg	Gly	Pro	Pro 995	Gly
Asp	Pro	G1y 930	Glu		$_{ m G1y}$	Ser	Lys (
ĞI y	Glu	Gln	G1y 945	Lys	Val	Gly	Val
				÷			
							,

			•				
Gln 1040	Ser Gly 1055	Asp	Arg	Gly	Pro 1120	Pro	Gly
ьув	Ser (Gly	нів	Ser	Gly	Ile 1135	ľhr
Gly	Pro	Arg (Gly	Pro	Arg	317	Glu : 1150
Thr	Gly	Pro	Lys (1085	Gly	Pro ,	Asn (31y (
Pro Gly Pro Pro Gly Ser Pro Gly Pro Ala Gly Pro Thr Gly Lys 1025 1035	Gly Asp Arg Gly Glu Ala Gly Ala Gln Gly Pro Met Gly 1045	Pro Ala Gly Ala Arg Gly Ile Ala Gly Pro Gln Gly Pro Arg Gly Asp 1060 1065	Lys Gly Glu Ser Gly Glu Gln Gly Glu Arg Gly Leu Lys Gly His 1075 1085	Phe Thr Gly Leu Gln Gly Leu Pro Gly Pro Pro Gly Pro Ser 1090 1095	Gly Pro Ala Gly Pro Ser Gly Pro Arg Gly Pro 1110 1112	Asp Gly Ser Asn Gly Ile Pro 1130	Gly Pro Pro Gly Pro Arg Gly Arg Ser Gly Glu Thr Gly 1140 1150
Gly 1	Pro	Gln	Gly	Pro	Ser (Gly	Arg :
Ala	Gly 1050	Pro	Arg	Gly	Pro	Asp (Gly
Pro	Gln	Gly 1065	Glu	Pro	$_{ m G1}_{ m y}$	Lyв	Arg (
Gly	Ala	Ala	Gly (1080	Leu	Ala	Gly Pro Ser Gly Lys 1125	Pro
Pro 0	Gly	Ile	Gln	Gly 1	Pro)	Ser	Gly
Ser 1	Ala 5	Gly	Glu	Gln	Gly 1	Pro	Pro
Gly	Glu 1 1045	Arg 0	$_{ m G1y}$	Leu	Ser	Gly 1125	Pro
Pro	\mathtt{Gl}_{Y}	Ala 1 1060	Ser	$_{ m G1y}$	Ala	Val	Gly :
Pro	Arg	ĞİY	Glu :	Thr	$_{ m G1y}$	Pro	Pro Ile
G1y 5	Asp	Ala	$_{ m G1y}$	Phe 1	Asp Gln Gly Ala 1105	Pro Gly Pro Val	Pro
Pro (Gly	Pro	Lys	Gly	Asp (Pro .	$_{\mathrm{Gl}\gamma}$

ស

Pro	Arg	Asp 1200	Ser	Ιлув	Trp	Asp	Tyr 1280
Gly	Gly Leu Gly Gln Arg 1180	Ala	Ly8 121!	Ser Arg Lys 1230	His Pro Glu 1245	Leu	Val
Pro	Gly	Glu	Leu	Ser 1	Pro	Thr	Сув
Pro 11165	Leu	Asp	\mathtt{Thr}	G1y	His 1245	Сув	Thr
Val Gly Pro Pro Gly Ser Pro Gly Pro Pro Gly Pro Gly Pro 1155 1160	Gly] 1180	Tyr Met Arg Ala Asp Glu Ala 1195	Leu Arg Gln His Asp Val Glu Val Asp Ala 1205	Pro Asp Gly	Ala Arg Thr Cys Gln Asp Leu Lys Leu Cys 1235	Ile Asp Pro Asn Gln Gly Cys Thr Leu Asp 1255	Cys Asn Met Glu Thr Gly Glu Thr Cys Val Tyr 1270 1276
Pro	Phe Ala	Arg /	Авр	Pro	Leu	Gln	Gly (1275
Pro	Phe	Met	Val 2	Ile Arg Ser 1225	Ĺув	Asn	Thr
Gly 0	Gly Pro Gly Ile Asp Met Ser Ala 1170		G]u	Arg 8	Leu	Pro	Glu
Pro (Ser	Pro Asp Pro Met Gln 1190	Val	11e	Asp]	Asp 5	Met
Ser	Met :	Met 0	Авр	Ser	Gln	11e /	Asn 0
$_{ m G1}_{ m y}$	Авр	Pro 1	His 5	Glu	Сув	Trp	
Pro	. 11e	Asp	Gln 1 1205	Gln Ile Glu 1220	Thr	Ser Gly Asp Tyr Trp 1250	Ala Met Lys Val Phe 1265
Pro 5	Gly	Pro	Arg	Gln :	Arg 5	Asp	Val
Gly 1 1155	Pro 0	Gly Gly	Leu	Asn	Ala / 1235	G1y 0	Lys
Val	G1y 1170	Glu Lys 1185	Thr	Leu Asn	Pro	Ser (Met 5
Pro	Pro	Glu 1185	Ser	Leu	Asn	Lys	Ala 1265
				•			

Ser	Phe	Val	Ile	Gly 1360	Met	Gly	Arg
Lys (Gly	Asn Val	Asn	Ala	Glu 1375	Авр	Tyr
Ser Ser Lys Ser 1295	Gly Glu Thr Met Asn Gly Gly Phe 1305	Thr Ala 1325	Glu Gly Ser Gln Asn Ile 1340	Glu Ala Ala Gly 136	Ala Leu Leu Ile Gln Gly Ser Asn Asp Val Glu Met 1365 1375	Thr Tyr Thr Ala Leu Lys Asp Gly 1385	Ile Glu Tyr Arg 1405
Ser	Asn	Thr 1	Ser	Glu	Asp	Leu	
Pro Asn Pro Ála Thr Val Pro Arg Lys Asn Trp Trp 1285	Met	Pro Asn	Gly (Leu Asp 1355	Asn	Ala	Gly Lys Trp Gly Lys Thr Val 1400
1 Trp	Thr	Pro	. GJu	. Leu 7	. Ser 0	Thr	Thr
1290	, Glu 15	Ala	Ser Thr	Tyr	Gly 8	Tyr 5	ьув
ј Гув	gly (Ser Tyr Gly Asp Gly Asn Leu Ala 1315	l Ser	Ala	Glu	Thr 7	. G1y 0
Arg	Phe .	/ Asn] 1320	Leu Leu 1335	I Ie	ı Ile	r Phe	Trp (
l Pro	ile Trp	; G1 ,	J Leu 1	Asn Ser 1350	ı Lev	Gly Asn Ser Arg 1380	′ Гув
r Va] 85		Y Ası	Leu Arg	s Asn :	a Let 55	ı Seı	: Gly
a Thr 1 1285	Lys His 1300	r G1)	e Lei	в Lув	8 Ala 1 1365	Y Asr 30	3 Thr
o Ála	s Lys 1	r Ty: 15	r Phe	в Сув	в Lyв	u Gly 1	Lys His 1395
n Pr	u Lys		Met Thr 1330	Thr Tyr His 1345	Asn Leu Lys	a Glu	r Lys 1 1395
o Ag	Lys Glu	s Phe	n Me 13	Thr Ty 1345	n Le	g Ala	s Thr
Pr	Ĺγ	His	Gln	TT 13	As	Arg	Сув
						•	

Ser Gln Lys Thr Ser Arg Leu Pro Ile Ile Asp Ile Ala Pro Met Asp

1415

Ile Gly Gly Ala Glu Glu Phe Gly Val Asp Ile Gly Pro Val Cys

1440 1435 1430

Phe Leu

1425

ស

(2) INFORMATION FOR SEQ ID NO:13: 10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 267 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

15

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

	•							
9	120	180	240	267				
ACGTGTGGGA	CTGGTACAAG	ACTCATTGTA	TTTGAATCTT					
Arcgrercac	AATGAAGTGT CTTTCAATTG TGAGCAAACC CTGGACCACA ATACTATGTA CTGGTACAAG	CAAGACTCTA AGAAATTGCT GAAGATTATG TTTAGCTACA ATAATAAGCA ACTCATTGTA	AACGAAACAG TICCAAGGCG CTICICACCI CAGICTICAG AIAAAGCICA TITGAAICIT					
AIAGGCCCII IGGAGACGGC IGIIIICCAG ACICCAAACI AICGIGICAC ACGIGIGGA	CTGGACCACA	TTTAGCTACA	CAGTCTTCAG		••	 	cids	
IGITITICAG	TGAGCAAACC	GAAGATTATG	CTTCTCACCT	GGAGGAC	(2) INFORMATION FOR SEQ ID NO:14:	SEQUENCE CHARACTERISTICS:	(A) LENGTH: 54 amino acids	nino acid
TGGAGACGGC	CTTTCAATTG	AGAAATTGCT	TTCCAAGGCG	CGAATCAAGT CTGTAGAGCT GGAGGAC	ATION FOR S	SQUENCE CHAI	(A) LENGTH:	(B) TYPE: amino acid
AIAGGCCCIT	AATGAAGTGT	CAAGACTCTA	AACGAAACAG	CGAATCAAGT	(2) INFORM	(1) SI		<i>:</i>
		Ŋ			01		٠	15

(ii) MOLECULE TYPE: peptide

20

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Gly Pro Ser Gly Asp Gln Gly Ala Ser Gly Pro Ala Gly Pro Ser Gly 1 5 15 Pro Arg Gly Pro Pro Gly Pro Val Gly Pro Ser Gly Lys Asp Gly Ala

Ŋ

25 30 . Asn Gly Ile Pro Gly Pro Ile Gly Pro Pro Gly Pro Arg Ser

40 4

10 Gly Glu Thr Gly Pro Ala

20

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

15

(A) LENGTH: 731 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

20

(ii) MOLECULE TYPE: DNA (genomic)

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:15:

	agaatataga	TAGATATGTC	AGAATATAGA TAGATATGTC TGTGCTGACC GTGGCCTTTT GCCTCTTCCT TCTACACAGG	GIGGCCTITI	GCCTCTTCCT	TCTACACAGG	09
GTCCI	TTCTGG	AGACCAAGGT	GICCTICIGG AGACCAAGGI GCTICIGGIC CIGCIGGICC IICIGGCCCI AGAGIAAGIG	CIGCIGGICC	TTCTGGCCCT	AGAGTAAGTG	120
ACAT	SGAGTT	GGAAGATGGA	ACATGGAGTT GGAAGATGGA GGGGGCCCTT CAGAGAGTGT GGGCCTGTGT TCCCATGGGG	CAGAGAGTGT	essecrists	TCCCATGGGG	180
AGGG	AAATGC	rgcrgcrrcr	AGGGAAATGC TGCTGCTTCT GGGGAAGCTG TGGGCTCAGG GGTCCTCACT CAGTAATGGG	TGGGCTCAGG	GGTCCTCACT	CAGTAATGGG	240
GGCA	SGACTG	GCTCATGTGC	GGCAGGACTG GCTCATGTGC CTATGGCCAG AAAAGCGCCT GAGGCCACAA TGGCTGTAAG	AAAAGCGCCT	GAGGCCACAA	TGGCTGTAAG	300
ACAA	ACATGA	ATCAGCCTCT	ACAAACATGA ATCAGCCTCT CGCTGTCAGA CAGAACAGCA TTTTACAAAG AGGAGCTTAG	CAGAACAGCA	TTTTACAAAG	AGGAGCTTAG	360
GAGG	GTAGGC	AAGCCATGGA	GAGGGTAGGC AAGCCATGGA GCTATCCTGC TGGTTCTTGG CCAAATAGAG ACCAACTTAG	TGGTTCTTGG	CCAAATAGAG	ACCAACTTAG	420
GGTT	CCATGA	CTGAGCATGT	GGTTCCATGA CTGAGCATGT GAAGAACTGG GGGCGGAGTG GCTGGTGCTA TCAGGACAGC	GGGCGGAGTG	GCTGGTGCTA	TCAGGACAGC	480
CACC	TACCCA	GCCCCAGCGA	CACCTACCCA GCCCCAGCGA CTCCCCAGCC TTCCCTGTGG TGACCACTCT TTCCTCACGA	TTCCCTGTGG	TGACCACTCT	TTCCTCACGA	540
CCTC	cercretere	TTGCAGGGTC	TIGCAGGGIC CICCIGGCCC CGICGGICCC ICTGGCAAAG AIGGIGCIAA	cerceerccc	TCTGGCAAAG	ATGGTGCTAA	009
TGGA	ATCCCT	GGCCCCATTG	TGGAATCCCT GGCCCCAITG GGCCTCCTGG ICCCCGTGGA CGATCAGGCG AAACCGGCCC	TCCCCGTGGA	CGATCAGGCG	AAACCGGCCC	099

720 731 TGCTGTAAGT GTCCTGACTC CTTCCCTGCT GTCGAGGTGT CCCTACCATC CGGGAGGCTT (A) LENGTH: 14 amino acids (C) STRANDEDNESS: single (i) SEQUENCE CHARACTERISTICS: (2) INFORMATION FOR SEQ ID NO:16: (ii) MOLECULE TYPE: protein (B) TYPE: amino acid TOPOLOGY: linear <u>a</u> GAGCTCTTTT T ស 10

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:16:

15

20 Gly Glu Ser Val Ala Ser Lys His Ala Ile Tyr Ala Val Cys 1 5

(2) INFORMATION FOR SEQ ID NO:17:

••
TERISTICS
Ħ
H
ខ
Ξ
窗
H
Ŋ
5
5
CHARAC
8
_
回
טַ
Z.
띈
ನ
EQUENCE
ល
-
$\overline{}$
~

(A) LENGTH: 5502 base pairs

TYPE: nucleic acid (B) STRANDEDNESS: single <u>(C</u>

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "DNA"

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..5502

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

ATG GAG AGC ACC TCC CCG CGA GGT CTC CGG TGC CCA CAG CTC TGC AGC

48

Met Glu Ser Thr Ser Pro Arg Gly Leu Arg Cys Pro Gln Leu Cys Ser 1255

1260

1265

ហ

10

96			144			192	•		240			288				336		
TGC	Сув		GTC	Val		GAA	Glu	1315	CAC	Нiв		GAC	Asp			CAG	Gln	
GCT CGC TGC TCC GGA	Gly		GCT			TCC ATA GGG AGA TAC	Tyr		AGC AGG GAT GCG AAT CGG TTG TGG CAC CCC GTG GGC AGC CAC	Ser	1330	TAC AGT CTG TTC CGA GAG CCT GAC				ပ္ပင္သ	Ala	
TCC	Ser		CTG	Leu		AGA	Arg		၁၅၅	Gly		GAG	Glu	1345		CCG	Pro	_
TGC	Сув	1280	CCA CIT GTC CTG	Pro Leu Val Leu Ala		999	Gly		GTG	Pro Val		CGA	Arg Glu Pro			TCG CCC TCT GAG TGG AAC CAG CCG GCC	Glu Trp Asn Gln	1360
CGC	Arg		CTT	Leu	1295	ATA	Ser Ile	_	CCC	Pro		TTC	Phe			AAC	Asn	
GCT	Ala		₹ D	Pro		TCC	Ser	1310	CAC	Trp His		CTG	Len			\mathbf{TGG}	Trp	
CCG ACC ACC	Thr		TGG AGG GGC TTC CTG	Trp Arg Gly Phe Leu		CAT GCC CAA CGG GAT	ABp		TGG	Trp	1325	AGT	Ser	_		GAG	Gla	
ACC	Pro Thr Thr	10	TTC	Phe		CGG	Arg		TTG	Leu		TAC	T	1340		TCT	Pro Ser	ın
CCG		1275	טטט	Gly		CAA	Gln		CGG	Asn Arg		GTG	Val			ccc		1355
AGA GCG	Ala		AGG	Arg	1290	333	His Ala	10	AAT			AAG	Lys			TCG	Ser	
AGA	Arg		700			CAT		1305	909	Ala	0	ggg	Ala			TTG	Leu	
GGC GCC ATG	Met		T. D.	Arg	•	GGG ACA AGT	Ser		GAT	Ser Arg Asp Ala	1320	GCT GCA GCC AAG GTG	Ala Ala	10		GGC	Val Pro Gly	
ggg	Gly Ala	_	ลูก เ	Val		ACA	Thr		AGG	Arg	•	GCT		1335		CCC	Pro	_
ggc	Gly	1270	ָלָי ט	Arq	, ,	999	Gly		AGC			SCC GCA GCG	Ala			GCG CCG GTC CCC GGC TTG	Val	1350
TCT	Ser		CAA	Gln	1285	TTG ATG	Leu Met	_	CCA GCT	Pro Ala		GCA	Ala			CCG	Pro	
CAC	Нів		ATC	Ile		TTG	Leu	1300	CCA	Pro		CCC	Pro			gag	Ala	
			ហ	ı			10				15				20			

g g	GGG A	AAC CCG Asn Pro 1365	CCG	GGA Gly	TGG Trp	CTC	GCA (Ala (1370	GAG Glu	GGG AAC CCG GGA TGG CTC GCA GAG GCC GAG GCC AGG AGG CCA CCT CGA Gly Asn Pro Gly Trp Leu Ala Glu Ala Glu Ala Arg Arg Pro Pro Arg 1365	GAG GCC Glu Ala	GCC	AGG AGG Arg Arg 1375	AGG Arg	CCA	CCT	CGA	384
71 TE	ACC C Thr G 1380	CAG (Gln (CAG Gln	CTG	CAG CTG CGT Gln Leu Arg		CGA GTC Arg Val 1385	CAG	CCA	CCT GTC CAG Pro Val Gln 1390	GTC (Val (1390	cAG	ACT	CGG	AGA Arg	AGC Ser 1395	432
E E	CAT C	CCC (CGG	GGC G1y	CAG (Gln (1400	Gln	CAG CAG CAG Gln Gln Gln 1400	ATA Ile	CCC CGG GGC CAG CAG ATA GCA GCC CGG GCT GCA CCT Pro Arg Gly Gln Gln Ile Ala Ala Arg Ala Aro 1400	GCC (Ala 2 1405	CGG Arg	GCT	GCA Ala	CCT	TCT GTC Ser Val 1410	GTC Val	480
A .	GCG C	Arg]	CTG	GAA Glu 1415	GAA ACC Glu Thr 1415	CCT	CAG Gln	cag cga Gln Arg	CTG GAA ACC CCT CAG CGA CCC GCG GCT Leu Glu Thr Pro Gln Arg Pro Ala Ala 1415 1420	GCG	GCT	GCA Ala	CGG	CGA GGG Arg Gly 1425	GGG	ČGG Arg	528
ប ង	CTC A	ACT O	GGG 3	AGA	GGG AGA AAT GTC Gly Arg Asn Val 1430	GTC Val		GGG (Gly (1435	TGC GGG GGA CAG TGC Cys Gly Gly Gln Cys 1435	CAG	TGC	TGC	CCA (Pro 1440	GGA	CCA GGA TGG Pro Gly Trp 1440	ACA Thr	576
A E	ACA I Thr S	TCA AAC Ser Asn	AAC	AGC	ACC	AAC Asn	AAC CAC TGT Asn His Cys 1450	тст Сув	TCA AAC AGC ACC AAC CAC TGT ATC AAA CCT GTG TGT CAG CCT CCC Ser Asn Ser Thr Asn His Cys Ile Lys Pro Val Cys Gln Pro Pro	AAA Lys	CCT GTG TGT Pro Val Cys	GTG Val	тст Сув	cag ccr Gln Pro	CCT	CCC	624

	TGT	CAG	AAC	CGA		TCC	TGC	AGC	AGG		CAG	GTC	TGC	ATC	TGC (cer	672
	Cy8 1460	GIn	Asn	Arg	Gly	Ser Cys 1465	Сув	Ser	Arg	Pro (Gin Val 1470	/a1	Cys	Ile (Cyls .	Arg 1475	
ហ	TCT Ser	GGC	TTC	TTC CGT Phe Arg		GCG ·	GGG GCG CGC TGT GAG GAG GTC ATC Gly Ala Arg Cys Glu Glu Val Ile 1480	тст	GAG	TGT GAG GAG GTC ATC Cye Glu Glu Val Ile 1485	GTC .	ATC 11e	CCT	GAG GAG Glu Glu 1490	GAG GAA Glu Glu 1490	GAA Glu	720
10	TTT Phe	GAC Asp	CCT	CAG 1 Gln 1	CAG AAT GCC AGG Gln Asn Ala Arg 1495	GCC	AGG	CCT Pro	GTG CCC Val Pro 1500	CCT GTG CCC AGA CGC Pro Val Pro Arg Arg 1500	AGA	CGC	TCA	GTG Val 150	GAG Glu 5	AGA Arg	768
15	GCA	GCA CCC GGT Ala Pro Gly 1510	GGT (G1y)	CCT Pro	CAC His	AGA	AGC	AGT GAG GCC Ser Glu Ala 1515	GAG Glu	GCC .	AGA	GGA Gly	AGT CTA Ser Leu 1520	CTA	GTG V	Acc Thr	816
	AGA Arg	ATA 11e 152!	CAG Gln 5	CCG	CIG	GTA	CTG GTA CCA CCA TCA Leu Val Pro Pro Pro Ser 1530	CCA	CCA	Ser	CCA	CCT (Pro 1	CCT CCA TCT Pro Pro Ser 1535	Ser	CGG	CGC Arg	864
20	CTC Leu	AGC Ser	CAG Gln	CCC	TGG Trp	CCC (Pro]	CCC CTG CAG CAG CAC Pro Leu Gln Gln His 1545	cag Gln	CAG Gln	CAC	TCA GGG Ser Gly 1550	GGG Gly	CCG	CCG TCC AGG Pro Ser Arg	AGG	ACA Thr 1555	912

:

	1650	1645	1640	
	o Lys Ser Gly Phe	Leu Tyr Ser Gln Gly Gly His Gly His Asp Pro Lys	Thr Leu Tyr Ser Gln Gly (
1200	C AAG TCT GGC TTC	CAG GGT GGC CAT GGG CAT GAC CCC AAG TCT	ACC TTG TAC AGT CAG GGT	
				20
	1635	1630	1620 1625	
	Glu Lys Gly Asp Thr Thr	Cys Ala Asn Ser Cys Glu Ly	Cys Ala Arg Gly Arg Cys	
1152	G GGT GAC ACC ACC	CGG GGA CGC TGT GCC AAC AGC TGT GAG AAG GGT GAC ACC ACC	TGT GCC CGG GGA CGC TGT	
	15	1610 1615	1605	15
	e Cys Lys Gln Thr	Val Phe Thr Pro Thr Ile Cys Lys	Ile Lys Lys Ile Lys Val Val Phe	
1104	C TGC AAG CAG ACC	GTC TTC ACC CCC ACC AT	ATC AAG AAA ATC AAA GTC GTC TTC ACC CCC ACC ATC TGC AAG CAG ACC	
	1600	1595	1590	
	Leu Asn Leu Thr Glu Lys	Pro Pro Trp Gly Leu As	His Val Asn His Leu Ser	10
1056	CTG AAC CTC ACC GAG AAA	CIC TCA CCC CCC TGG GGG CTG AA	CAT GIG AAC CAT CIC ICA	
	1585	1580	1575	
	Ser Pro Gln Ala Ala	Ser Gly Leu Glu Leu Arg Asp Ser Se	Ala Leu Pro Ser Gly Leu	
1008	C CCA CAG GCA GCA	TCA GGA CTC GAG CTG AGA GAC AGC CCA CAG GCA GCA	GCT TIG CCT TCA GGA CTC	ល
	1570	1565	1560	
	n Leu Met Ser Asn	Pro Ala Thr Gly Ala Asn Gly Gln	Val Arg Arg Tyr Pro Ala	
096	G CTG ATG TCC AAC	ACT GGT GCC AAT GGC CAG	GIT CGI CGG TAT CCG GCC ACT	

	His Gln Val 1745	Ile	Pro Pro Glu Ala Ser Val Gln Ile 1740	Val	Ser	Ala : 1740	GIu	Pro	Pro	His	His His 1735		Gin ile	Val G
1488	CCG CCT GAG GCC TCT GTG CAG ATT CAC CAG GTG	ATT	CAG	GTG	TCT	ည္သ	GAG	CCT	CCG	CAC	CAT	ATT	7	CAA
	1730				1725				•	1720				
	Val Asn Pro Ser Leu Val Lys	Ser	Pro	Asn	Val	Ser	Ala	Asn Gln Leu Ala	Gln	Asn	Ser	Leu	Pro]	Σ.
1440	TCT AAC CAG CTC GCC TCT GTG AAC CCC TCG CTG GTG AAG	TCG	CCC	AAC	GTG	TCT	gcc	CTC	CAG	AAC	TCI	CIG CCT CIC	H	×
	1715		_	1710					1705					
	Phe	Ser	Arg His Arg Thr Leu Leu Glu Gly Pro Leu Lys Gln Ser Thr	Гув	Len	Pro	GLy	G]u	Leu	Len	Thr	Arg	18	_
765T	ָן יין	ָ רַ	5	5	5	ر ر	5 ,	5	2	9	ָ נ	5	,	١ ١
			1695				_	1690					1685	
	Arg Gly Ser	Gly	Pro Ala Gly Arg	Pro	Glu	Arg	Pro Asp Arg	Pro	Gln	Pro	Val	Leu Pro	en	. 7
1344	CCA GAC AGG GAA CCT GCA GGG CGA GGT TCC	999	GCA	CCT	GAA	AGG	GAC	CCA	CAG	ဥ္ပဌ	ccr grc ccg	CCL	CTG	F 1
		1680					1675					1670		
	Pro Ala Asn Ser Thr Gly Lys Phe Cys	Gly	Thr	Ser	Asn	Ala	Pro	Сув	Trp	Сув	Gly Arg Asp Glu Cys	Авр	rg	_
1296	CCA GCC AAC TCC ACA GGA AAG TTC TGC	GGA	ACA	TCC	AAC	၁၁၅		TGT	TGG	TGC	GAG	GAC GAG	විවිට	7 \
	1665					1660					1655			
	Gly Arg Cys Ile	G1y	Gly	Cys Leu Asn	Leu	Сув	Pro	Ile	Gln		Phe Cys	Tyr	Ile	<u> </u>
1248	CAA ATC CCC TGC CTG AAT GGT GGC CGC TGC ATC	ටුවුව	GGT	AAT	CTG	TGC	CCC	ATC	CAA	IGC	TAT TTC TGC	rat	ATC	-

	D D	S S S S	GTC	Ç	GGT.	GOO COG GTO CAG GGT GAG CTG GAC COC GTG CTG GAG GAC AAC AGT GTG	ST.	CARC	נטט	ST ST	CTC	GAG	S A C	DAA	AGT	פּוני	1536	
	Ala	Arg	Val	Val Arg	G1y	Glu	Leu	Asp	Leu Asp Pro Val	Val	Leu	Glu	Asp	Leu Glu Asp Asn	Ser	Val) 	
	-		1750	0				1755	10				1760	_				
ហ	GAG		ACC AGA Thr Arg 1765	AGA GCC Arg Ala	TCT	CAT	CGC CARG I	CGC CCC CAC Arg Pro His	CAC His	GGC	AAC Asn	CTA GGC Leu Gly 1775	GGC Gly 5	CAC	AGC Ser	CCC	1584	
10	TGG (Trp)	TGG GCC Trp Ala 1780	AGC Ser	AGC AAC Ser Asn	AGC	TGG GCC AGC AAC AGC ATA CCC GCT CGG GCC GGA GAG GCC CCT CGG Trp Ala Ser Agn Ser Ile Pro Ala Arg Ala Gly Glu Ala Pro Arg 1780	ATA CCC GCT CGG GCC Ile Pro Ala Arg Ala 1785	GCT	CGG Arg	GCC	GGA (Gly (1790	GGA GAG GCC Gly Glu Ala 1790	GCC	CCT	CCT CGG Pro Arg	CCA Pro 1795	1632	
15	CCA	CCA	CCA GTG Pro Val	CTG	TCT Ser 1800	agg Arg	CAT His	TAT	GGA	GGA CTT CTG Gly Leu Leu 1805	CTG Leu	GGC CAG Gly Gln	CAG Gln	TGT Cys	TAT GGA CTT CTG GGC CAG TGT TAC CTG Tyr Gly Leu Leu Gly Gln Cys Tyr Leu 1805	CTG	1680	
	AGC ACG Ser Thr	ACG	GTG	AAT Asn 1815	GGA Gly 5	AAT GGA CAG TGT GCT AAC CCC CTA GGT AGT CTG ACT Asn Gly Gln Cys Ala Asn Pro Leu Gly Ser Leu Thr 1815	TGT	GCT Ala	AAC (ABD 1820	CCC Pro	CTA	GGT Gly	AGT	CTG Leu 1829		TCT	1728	
20	CAG Gln	GAG Glu	GAC ASP	TGC Cys	GAG GAC TGC TGT Glu Asp Cys Cys 1830	GAG GAC TGC TGT GGC AGT GTG GGG ACC TTC Glu Asp Cys Cys Gly Ser Val Gly Thr Phe 1830	GGC AGT GTG GGG ACC Gly Ser Val Gly Thr 1835	GTG Val	GGG Gly	ACC	TTC	TGG Trp	GGG Gly 1840	GGG GTG ACC Gly val Thr		TCC Ser	1776	

;

.

٠.

1824	1872	1920	1968	2016	2064
GCT CCC TGC CCA CCC AGA CAA GAG GGT CCA GCC TTC CCA GTG ATT Ala Pro Cys Pro Pro Arg Gln Glu Gly Pro Ala Phe Pro Val Ile 1845 1855	AAC CTC Asn Leu 1875	TGC AAG Cys Lys 1890	GAC TCG GAG TGC GTG AAC ACC AGG GGC AGC TAC CTG TGC ACC TGC AGG Asp Ser Glu Cys Val Asn Thr Arg Gly Ser Tyr Leu Cys Thr Cys Arg 1895	GAC AAG ASP Lys	TCT GGT Ser Gly
CCA	GGA TAC AAG AGA CTG Gly Tyr Lys Arg Leu 1870	CTG ACC CTG GGC CTC Leu Thr Leu Gly Leu 1885	ACC 7 Thr (TCA AGG AGC CGC TGC GTA TCG Ser Arg Ser Arg Cys Val·Ser 1915	TCA CTG GGG Ser Leu Gly
GCC TTC Ala Phe 1855	TAC AAG AGA Tyr Lys Arg 1870	GGC Gly	TGC	GTA 7 Val :	CTG
GCC Ala 1855	AAG Lys	CTG ACC CTG Leu Thr Leu 1885	CTG	TGC	TCA
CCA	TAC TYT 1870	ACC Thr	TAC	CGC	TAC CGG
GGT Gly	GGA	CTG 1 Leu 1 1885	GGC AGC Gly Ser 1900	AGC	TAC Tyr
GAG Glu	Gln	ТСС	GGC 3	TCA AGG Ser Arg 1915	CTA TGC Leu Cys
CAA Gln	CCC	GAG Glu	AGG Arg	TCA Ser 1915	CTA
AGA (Arg (1850	GAG TGT Glu Cys 1865	AAT Asn	ACC	CCG	GGA Gly
CCC	GAG : Glu (ATC Ile	AAC	GAT	CAG Gln
CCA	CTG	CAA GAT ATC AAT GAG Gln Asp Ile Asn Glu 1880	TGC GTG Cys Val 1895	CIG	TCC ATG CAG CAG GGA CTA TGC TAC CGG Ser Met Gln Gln Gly Leu Cya Tyr Arg
TGC	cag Gln	CAA Gln	TGC (Cys 1	CTC ATG Leu Met 1910	ATG Met
CCC	GGC Gly	ТGС	GAG	CTC 1 Leu 1	TCC Ser
GCT (Ala)	AAT Asn	CAC His	rcg	GGC	GTC TCC ATG CAG CAG GGA Val Ser Met Gln Gln Gly
TGT	GAA Glu 1860	AGC	GAC	CCT	GCT Ala
	rv	10	15	00	

	ACC	\mathbf{TGC}	TGC ACC	CTG	CCI	TTG	CCT TTG GTT	CAT	CGG	ATC	CGG ATC ACC AAG	AAG	CAG	ATA	IGC	TGC	2112	
	Thr	Cys	Cys Thr		Leu Pro	Len	Val	Leu Val His Arg	Arg	Ile	Ile Thr Lys	Lys	Gln	Ile	Сув	Сув		
	1940					1945	رب ا				1950	6				1955		
1	Ç	Ç	Ę	Ē	7		7	ָ ב	Ç	Ç	Š	Ę	É	Š	Ę	Ç		
Ω) (၁	TGC AGC	5	5	2	¥	ָ כ פ	9	5	AG	CGI GIG GGC AAA GCC IGG GGI AGC ACA IGI GAA CAG	151	445	S.A.C	זפן ככר	ני	7100	
	Сув	Ser	Arg	Val	Gly	Гьув	Ala	Trp	Gly	Ser	Arg Val Gly Lys Ala Trp Gly Ser Thr Cys	Сув	Glu	Gln	Сув Рго	Pro		
					1960	0				1965	D.				1970			
	CTG	CCT	GGC	ACA	GAA	CCC	TTC	AGG:	GAG	ATC	GGC ACA GAA GCC TTC AGG GAG ATC TGC CCT GCT	CCI	GCT	GGC	GGC CAT	ggc	2208	
10	Leu	Pro	Gly	Thr	Glu	Thr Glu Ala	Phe	Arg	Glu	Glu Ile	Сув	Pro	Ala	G1y	Gly His	Gly		
				1975	5				1980	0	٠			1985	10			
	•											٠						
	TAC	ACC	TAC	TCG	AGC	TCA	GAC	: ATC	ညည	CTG	TAC TCG AGC TCA GAC ATC CGC CTG TCT ATG	ATG		AAA	AGG AAA GCC	GAA	2256	
	Tyr	Thr	Tyr	Ser	Ser	Ser	Asp.	Ile	Arg	Leu	Tyr Ser Ser Asp Ile Arg Leu Ser Met	Met		Arg Lys	Ala	Glu		
15		÷	1990	0				1995	D.				2000	_				
				,														
	GAA	GAA GAG GAA CTG GCT AGC CCC TTA AGG GAG CAG ACA GAG CAG AGC ACT	GAA	CTG	GCI	, AGC	3 33	TTA	AGG	GAG	CAG	ACA	GAG	CAG	AGC	ACT	2304	
	Glu	Glu	Glu Glu Leu Ala	Leu	Ala	Ser	Pro	Pro Leu Arg	Arg	Glu	Glu Gln Thr Glu Gln	Thr	Glu	Gln	Ser	Thr		
		2005	ın		•		2010	0				2015	ហ	,				
20.																		
	GCA	CCC	CCA	CCT	GGG	CAA	GCA	GAG	AGG	CAA	CCA CCT GGG CAA GCA GAG AGG CAA CCA CTC CGG	CIC	CGG	GCA	SCA GCC	ACC	2352	
	Ala	Pro	Pro	Pro	G1y	Gln G	Ala	Glu	Arg	Glu	Pro Pro Gly Gln Ala Glu Arg Gln Pro Leu Arg	Leu	Arg	Ala	Ala	Thr		
	2020	0				2025	īŪ.				2030		_			2035		

GCC	GCC ACC	TGG	ATT		GCT	GAG GCT GAG ACC	ACC	CIC	CCT GAC AAA Pro Asp Lvs	GAC	AAA	GGT	GAC	TCT CGG Ser Ard	CGG	2400	
									2045		i		•				
GCT	GTT Val	CAG	ATC 7 11e 7 2055	CAG ATC ACA ACC AGT GCT Gln Ile Thr Thr Ser Ala 2055	ACC	AGT	GCT	CCC (Pro 1 2060	CCC CAC CTA CCT GCC CGG GTA Pro His Leu Pro Ala Arg Val 2060	CTA	CCT	GCC	CGG (Arg 1 2065	GTA Val	CCA	2448	
GGG Gly	GGG GAT Gly Asp	GCC Ala 2070	GCC ACT Ala Thr 2070		gga aga gly arg	CCA	GCA (Ala 1	GCA CCA TCC TTG Ala Pro Ser Leu 2075	TCC	TTG	CCT	GGA (Gly (2080	GGA CAG GGC Gly Gln Gly 2080	GGC	ATT Ile	2496	
CCA	CCA GAG AGT Pro Glu Ser 2085	AGT Ser 5	CCA	CCA GCA GAA GAG CAA GTG ATT CCC TCC AGT GAT GTC Pro Ala Glu Glu Gln Val Ile Pro Ser Ser Asp Val 2090	GAA	GAA GAG CAA GTG Glu Glu Gln Val 2090	CAA Gln	GTG	ATT	Pro	TCC 1 Ser 8 2095	TCC AGT Ser Ser 2095	GAT	GTC	TTG	2544	
GTG 7	GTG ACA Val Thr 2100	CAC His	Ser	GTG ACA CAC AGC CCC CCA GAC TTT GAT Val Thr His Ser Pro Pro Asp Phe Asp 2100	CCA Pro 2105	CCA GAC Pro Asp 2105	TTT	GAT Asp		CCA TGT TTT Pro Cys Phe 2110	TTT Phe	GCT	TTT GCT GGA GCC Phe Ala Gly Ala	GCC	TCC Ser 2115	2592	
AAC	ATC 11e	ATC TGT Ile Cys		GGC CCT GGG ACC Gly Pro Gly Thr 2120	666 61y 0	CCT GGG ACC TGT GTG AGC CTC CCA AAT GGA TAC AGA Pro Gly Thr Cys Val Ser Leu Pro Asn Gly Tyr Arg 2120	TGT Cys	TGT GTG Cys Val	AGC (Ser 1 2125	AGC CTC CCA AAT Ser Leu Pro Asn 2125	CCA	AAT Asn	gga Gly	TAC 7 Tyr 7 2130	TAC AGA Tyr Arg 2130	2640	

	\mathbf{TGT}	GTC	TGC	AGC	AGC CCT	GGC	GGC TAC	CAG CTA CAC	CIA		CCC	AGC	CAA	CCC AGC CAA GAC TAC		TGT	2688	
	Сув	Val	Сув		Ser Pro Gly Tyr Gln Leu His	Gly	Tyr	Gln	Leu	His	Pro	Ser Gln		Авр Тут		Сув		
				2135	10				2140					2145				
	Ę	Ę	ť	6	ć	Ę	Ē	5	(A	5	E	É	ξ	, (. 5	ĵ	ָר נ	
n	T T	145	250	3	ACT GAT GAC AAC GAG 1GI ATG AGG AAC CCC 1GI GAA GGA AGG CGC	5	אופ	555	Ş	ر ر	757	5	555	500	5	,	06/7	
	Thr	Asp	Asp	Aen	Asp Asn Glu Cys Met	Сув	Met	Arg Asn Pro	Asn	Pro	Сув	Glu	Glu Gly Arg	Arg	Gly	Arg		
		•	2150					2155					2160					
	TGT		AAC	AGT	GTC AAC AGT GTG	ဥဌဌ	TCC	TCC TAC TCC TGC	TCC	TGC	CTC	TGC TAT	TAT	CCI	CCT GGC TAC	TAC	2784	
10	Сув		Val Asn	Ser	Val	Gly	Ser	Ser Tyr Ser	Ser	Сув	Leu	сув Туг		Pro	Gly	Tyr		
		2165	10				2170					2175						
	ACA	CTA	GTC	ACC	ACA CTA GTC ACC CTC GGA GAC ACA CAG GAG TGC CAA GAT ATC GAT	GGA	GAC	ACA	CAG	GAG	TGC	CA	GAT	ATC.	GAT	GAG	2832	
	Thr	Thr Leu	Val	Thr	Leu	Leu Gly Asp Thr Gln Glu	Asp	Thr	Gln		Сув	Gln	Asp	Ile,	Cys Gln Asp Ile Asp Glu	Glu	•	
15	2180					2185					2190					2195		
	TGT	GAG	GAG CAG	ည္သ	CCC GGG GTG TGC AGT GGT GGG CGA TGC AGC AAC ACG GAG	GTG	TGC	AGT	GGT	້ອອອ	CGA	IGC	AGC	MAC	ACG	GAG	2880	
	Сув	Glu	Gln	Pro		Gly Val	Сув	Ser	Gly	Gly Gly Arg		Сув	Ser	Ser Asn Thr	rhr	Glu		
					2200	_				2205				•	2210			
20						•				•								
	၁၅၅	TCG	TAC	CAC	CAC TGC GAG TGT GAT CGG GGC TAC ATC ATG GTC AGG AAA	GAG	TGT	GAT	SSS	- ၁၅၅	TAC	ATC	ATG	3TC	AGG	AAA	2928	
	$_{\rm G1y}$	Ser	Tyr	Нів	His Cys Glu Cys Asp Arg Gly Tyr Ile Met Val Arg Lys	Gla	Сув	Asp	Arg (Gly .	Tyr	Ile	Met	Val	Arg	Lys		
		•		2215	16				2220					2225				

2976	3024	3072	3120	3168	3216
H O	[→ 80;	GAG Glu 2275	d a	ບຸ ຊ,	ပေးကာ
CCT	TGT Cys	GAG Glu 227!	GAA Glu 0	gac Abp	TGC
TGC Cya	GCC Ala	AAT Abn	ATG (Met (2290	CCA Pro	TCG Ser
ACC	CTG GCC Leu Ala	GTC Val	AAC Asn	ACC (Thr] 2305	GCC
GGT ACC TGC Gly Thr Cys 2240	ACT TGT CTG GCC Thr Cys Leu Ala 2255	TGT GTA GAT Cys Val Asp 2270	ATC AAC ATG Ile Asn Met 2290	GAG GTC ACC Glu Val Thr 2305	CGA GCC TCG Arg Ala Ser
CCT	ACT TGT Thr Cys 2255	GTA Val	TGC	GAG	AGC
CAC	TAC	TGT (Cys 1 2270	AGG	TAT Tyr	GCC
CGT	TCC TAC Ser Tyr	AGC	GGA AGG TGC ATC AAC ATG Gly Arg Cys Ile Asn Met 2285		TGT GCC AGC Cys Ala Ser
TGC	GGC	GGG .	CAT	CCG GGC Pro Gly 2300	GAG
ATC AAC GAA TGC Ile Asn Glu Cys 2235	TCC CCT GGC Ser Pro Gly 2250	AGT	CCT GGG ATA TGT ACC CAT Pro Gly Ile Cys Thr His 2280	GAG Glu	gac Abp
AAC Asn	TCC (Ser 1 2250	CAG Gln	TGT	TGT	GTG Val
ATC Ile	AAC	GGC CAG Gly Gln 2265	ATA Ile	TCC	gat Asp
GAT	GTC	GTA Val	GGG 1 Gly :	TGC Cys	CGA
CAA GAT Gln Asp	TGC GTC AAC Cyg Val Asn	TAT Tyr	CCT	AGA ' Arg (2295	TGC Cys
TGT CAA GAT ATC AAC GAA TGC CGT CAC CCT GGT ACC TGC CCT Cys Gln Asp Ile Asn Glu Cys Arg His Pro Gly Thr Cys Pro 2230	aga Arg	авс 61у	ACC	TTT	GGC TGC CGA GAT GTG GAC GAG TGT GCC AGC CGA GCC TCG Gly Cyb Arg Abp Val Abp Glu Cyb Ala Ser Arg Ala Ser
CAC	GGG AGA Gly Arg 2245	GAG Glu	CTG	TCC	a.a.g L.y.s
GGA (GAT ASP	GAG GAG GGC Glu Glu Gly 2260	TGT CTG Cys Leu	GGC TCC Gly Ser	AAG Lys
	ស	9	51		0

()	CCC ACG GGC CTC	CTC	r TGC	CIC	AAC	ACG	GAG	ರಿಲಿ	TCC		ACC .	rgc ,		225	3264
Thr Gly Leu 2325	Leu		Сув	Leu	Leu Asn Thr 2330		Glu	Gly	Ser.	Phe Thr 2335		Cys	Ser	Ala	
TGT CAG AGC GGG ' Cys Gln Ser Gly '	r Gly	לי לי	TAC	TGG (Trp 72345	GTG Val	AAC	TGG GTG AAC GAA GAT Trp Val Asn Glu Asp 2345	TGG GTG AAC GAA GAT GGC ACT GCC TGT Trp Val Asn Glu Asp Gly Thr Ala Cys 2345	GGC 1 G1y 7 2350	GGC ACT GCC TGT Gly Thr Ala Cy8 2350	GCC		GAA GAC Glu Asp 235	GAC Asp 2355	3312
TTG GAT GAA TGT GCC TTC CCT GGA GTC Leu Asp Glu Cys Ala Phe Pro Gly Val 2360	a TGT (E 10	GCC 7 Ala 1 2360	GCC TTC Ala Phe 2360	CCT	GGA	CCT GGA GTC Pro Gly Val	TGC (Cys 2365	CCC	ACA	GGC GTC Gly Val		TGC ACC Cys Thr 2370	ACC Thr	3360
AAT ACT GTA GGC TCC TTC TCC TGC AAG GAC TGT Asn Thr Val Gly Ser Phe Ser Cys Lys Asp Cys 2375	A GGC 1 1 Gly 8 2375	C 1 Y S 75	ည္ခ်င္တ	rrc r Phe	Ser	TGC	AAG (Lys 1 2380	AAG GAC Lys Asp 2380	TGT Cye	GAC ABP	CAG	CAG GGC TAC Gln Gly Tyr 2385	TAC	cgg Arg	3408
CCC AAC CCC CTG GGC AAC AGA TGC GAA GAT GTG GAT GAG TGT GAA GGT Pro Asn Pro Leu Gly Asn Arg Cys Glu Asp Val Asp Glu Cys Glu Gly 2390 2395	c CTG C o Leu C	g a	33,	c AAC Y ABE	AAC AGA Asn Arg	TGC (Cys (2395	GAA Glu 5	TGC GAA GAT Cys Glu Asp 2395	GTG	GAT	GAG TGT Glu Cys 2400	тст Сув	GAA	GGT	3456
CCC CAA AGC AGC TGC Pro Gln Ser Ser Cys	C AGC 1	ប្ដូ	TGC	c cee	3 GGA (1 G1) (2410	cac Gly	GAA Glu	CGG GGA GGC GAA TGC AAG AAC ACA GAA GGT Arg Gly Gly Glu Cye Lye Aen Thr Glu Gly 2410	AAG	AAG AAC ACA GAA GGT Lys Asn Thr Glu Gly 2415	ACA Thr	GAA	GGT G1y	TCC	3504

3552	3600	3648	3696	3744	3792
ATG Met 2435	ပ္စာ	ပ္ပ	4 3	· ප ප	≰ 0
ATG Met 243	CCT CAC Pro His 2450.	CCC Pro	GAA	GAG	CCA
ACC		GCA Ala	gat Abd	ACA Thr	TCC Ser
GGC	GCT	TGT GCA Cys Ala 2465	GTT Val	AAC Asn	CCC
AAT Asn	TGT	CTC	GAT GTT Asp Val 2480	GTC	CAG Gln
GTC		TGC	cAG	TGT GTC AAC Cys Val Asn 2495	GCT TCC TTC CAG CCC TCC Ala Ser Phe Gln Pro Ser
CAG CTG GTC Gln Leu Val 2430	GAG	TTC	TGC	CAC His	TCC
CAG Gln	GAA GAG CAT Glu Glu His 2445	TTC Phe	AGA Arg	GGA	GCT
TTC	GGG	TCC TTC TTC TGC Ser Phe Phe Cys 2460	ACC	GGA Gly	ACT
GGC Gly	GTT Val	66C 61y	GCT GAG GGG GGC ACC AGA TGC CAG GAT GTT Ala Glu Gly Gly Thr Arg Cys Gln Asp Val 2475	GCA GCC ACA GAC CCG TGT CCG GGA GGA CAC TGT GTC AAC ACA GAG Ala Ala Thr Asp Pro Cys Pro Gly Gly His Cys Val Asn Thr Glu 2485	CTG TGT GAG ACT GCT Leu Cys Glu Thr Ala
cag Gln 5	TGT	CTG	GGG Gly	TGT (Cys)	TGT Cye
CAC (His (2425	GAG	AGC	GAG	CCG	CTG TGT Leu Cys
тGт Сув	AAT Asn 244(AAC Asn	GCT	GAC	TGT Cy8
CTC	GTG Va _l	CTC AAC Leu Asn 2455	AGT Ser	ACA	AGC
TGC	GAC	TGC	GCT AGT Ala Ser 2470	GCC	TTC
Gln	Glu	GAG Glu	TTT	GCA GCC Ala Ala 2485	TCC
TAC CAA TGC CTC TGT CAC CAG GGC TTC CAG CTG GTC AAT GGC ACC ATG Tyr Gln Cys Leu Cys His Gln Gly Phe Gln Leu Val Asn Gly Thr Met 2420 2420	TGT	GGC Gly	GGC TTT Gly Phe	TGT Cys	GGC :
	rv.	10	15	(;	

		2610		ı		ı	2605	ı				2600					
	Glu	Asn Glu	Val	Asp	Val	Trp Glu Cys Val	Glu	Trp		Ser Gly		Ser Pro	Thr	Glu	Phe	Gly	
4080	GAG	AAC GAG	GTG	GAT	GLT	TCA CCA TCA GGC TGG GAG TGT GTT GAT GTG	GAG	TGG	ggc	TCA	CCA	TCA		GAG ACC	TTC	299	
																	20
	2595					2590					2585					2580	
	Gln	Asp	Сув	Leu	Сув	Phe Arg Cys	Phe	Ser	Gly	Thr Asp Gly Ser	Thr	Asn	Asp	Cys Asp Asn	Phe	Gly Phe	
4032	CAG	GAC	TGT	CTG	TGC	TGT GAC AAC ACG GAC GGC TCC TTC CGC TGC CTG TGT GAC CAG	TIC	ICC	GGC	GAC	ACG	AAC	GAC	TGI	TTC	GGC TTC	
											•		-				
	•				2575					2570					2565		15
	His	Asn	Gly	Сув	Val	Cys Ala Asn Asp Thr Val Cys	Авр	Agn	Ala	Сув	Ile Asp Glu	Авр	Ile	Ile Asp	Ile	Сув	
3984	CAT	AAC	999	TGT	GTG	GCC AAT GAC ACT GTG TGT GGG AAC	GAC	AAT	gcc	TGT	GAA	GAT	ATA GAT GAA	GAC	ATT	TGC	
				2560					2555					2550	•		
	Авр	Gly	Asn	Pro Asn	Ala	Tyr Val	Tyr	Phe	Gly Phe	Pro	Gln	сув	Leu Asp	Leu	Ile	Сув	10
3936	GAC	GGA	AAT	SC	909	TAT GTG GCG CCA AAT GGA	TAT	CCT GGA TTC	GGA	CCT	CAG	TGC	GAC	CTG GAC TGC	ATC	TGC	
			2545					2540					2535				
	Arg	Tyr	Ser Tyr		Pro Gly	Cys Glu Asn Ser	Asn	Glu	Сув	Gly Ala Trp Arg	Trp	Ala	Gly	Сув	Val	Pro	
3888	ວຍວ	TAC	TCC TAC		CCL	TGC GGA GCC: TGG AGG TGT GAG AAC AGT CCT GGT	AAC	GAG	TGT	AGG	TGG	GCC.	GGA	TGC	cce ere	CCG	ស
		2530					2525				_	2520					
	Asp	Glu Asp	Arg		Glu	Glu Cys Glu Asp	Glu	Asp	Ile	Авр	Leu	Сув	Glu	Gly. Glu Cys Leu Asp	Ser	Asp	
3840	GAC	GAA	CGT	GAC	GAG GAC	TGT	GAT GAG TGT	GAT	ATT	GAT	TIG	TGT	GAA	GGA GAA TGT TTG GAT ATT	GAC AGC	GAC	

4128	4176	4224	4272	4320	4368
TGT GAG CTC ATG ATG GCA GTG TGT GGG GAT GCG CTC TGT GAG AAC GTG Cys Glu Leu Met Met Ala Val Cys Gly Asp Ala Leu Cys Glu Asn Val 2615	GAC CTT GAG GAG TAC GAC Asp Leu Glu Glu Tyr Asp 2640	GCA GAA GAA GGA CAC TGC CGT CCT CGG GTG GCT GGA GCT CAG AGA ATC Ala Glu Glu Gly His Cys Arg Pro Arg Val Ala Gly Ala Gln Arg Ile 2645	CCA AGC CTT ATC CGC ATG GAA Pro Ser Leu Ile Arg Met Glu 2670	CCT CCC TGC TCT CAA ATC CTG GGC Pro Pro Cys Ser Gln Ile Leu Gly 2685	ACT CAG GGT GCC AGA TGG Thr Gln Gly Ala Arg Trp 2705
TGT GGG GAT GCG Cys Gly Asp Ala 2620	TGC GCC AGT Cys Ala Ser 2635	TGC CGT CCT CGG GTG GCT Cys Arg Pro Arg Val Ala 2650	CCA	GGT CCT CCC TGC Gly Pro Pro Cys 2685	TGC TGC TGC ACT Cys Cys Thr 2700
ATG ATG GCA GTG Met Met Ala Val 2615	C CTG TGC CTT te Leu Cys Leu	A CAC TGC CGT (-) His Cys Arg 2650	ACA Thr	GAA CAC AAT GGT GGT Glu His Asn Gly Gly 2680	TCC ACA CAG GCC GAG TGC TGC TGC ACT Ser Thr Gln Ala Glu Cy8 Cy8 Thr 2695
TGT GAG CTC AT Cys Glu Leu Me 26	GAA GGC TCC TTC Glu Gly Ser Phe 2630	GCA GAA GAA GGA Ala Glu Glu Gly 2645	CCA GAG GTC CGG Pro Glu Val Arg 2660	TGC TAC TCT GA Cyg Tyr Ser Gl	CAG AAC TCC AC Gln Asn Ser Th
	ທ	10	15	Ç) N

			·	2800					2795	•			_	2790			
	Gly	Cys Gln Asp His Asn Glu Cys Gln Asp Leu Ala Cys Glu Asn	Glu	Сув	Ala	Leu	Asp	Gln	Сув	Glu	Asn	His	Asp	Gln	Суз	Lys	
4656	GGT	CAG GAT CAC AAC GAA TGC CAG GAC TTG GCC TGT GAG AAC GGT	GAG	TGT	၁၁၅	TTG	GAC	CAG	TGC	GAA	AAC	CAC	GAT	CAG	AAG TGC	AAG	
																	20
			2785					2780					2775				
	Arg	Ser	Ser	Ala	Авр	Tyr Asp Ala	Tyr His	Tyr	Gly	Pro	Asn	Leu Cys		Сув	Ile	Tyr	
4608	AGG	TGC CTG TGC AAC CCT GGC TAC CAC TAT GAT GCC TCC AGC AGG	ICC	ညည	GAT	TAT	GAC	TAC	ညည	CCT	AAC	TGC	CTG		TAC ATT	TAC	
																	}
	•	0770					2765	,				2760				ı	r.
	Gly	Pro Gly	Val	Ile	Asn	Ser	Сув	Arg	Gly Arg Cys Ser Asn Ile Val	Asn	Leu Cys Gln Asn	Сув		Ala	Gly Pro Ala	G1y	
4560	GGC	CCT GGC	GTG	ATA	AAC	TCA	TGC	CGA	၁၅၅	AAT	CAG	TGC	GGG CCT GCT CTC TGC CAG AAT GGC CGA TGC TCA AAC ATA GTG	GCT	CCI	999	
	2755				_	2750					2745				_	2740	
	Phe	ren	Val	сув	Glu	Asp Ala Asp Glu Cys	Ala	Asp	Thr	Met Tyr	Met	Gln Thr		Gly	Phe	Thr	10
4512	TTT	ACA TTT GGA CAA ACC ATG TAT ACA GAT GCC GAT GAA TGT GTA CTG	GTA	TGT	GAA	GAT	ටුටු	GAT	ACA	TAT	ATG	ACC	CAA	GGA	TTT	ACA	
					2735				_	2730				10	2725		
	Trp	Ala	Gly	gla	Val	Ile Pro Val Glu Gly Ala	Ile	Tyr	Gln Gly	Gln	$_{\rm G1y}$	Pro Ser		Сув	Gln Leu Cys	Gln	
4464	TGG	CAG CTC TGC CCC AGT GGT CAA GGT TAC ATC CCA GTG GAA GGA GCC TGG	GGA	GAA	GTG	CCA	ATC	TAC	GGT	CAPA	GGT	AGT	CCC	TGC	CTC	CAG	Ŋ
				2720					2715				_	2710			
	Ser	Phe	Glu	Ser Val Glu	Ser	Pro Ser Glu Asp	Glu	Ser	Pro	Сув	Pro	Ala	Ala Cys Ala	Ala	сіу гув	G1y	
4416	AGT	TGC CCA TCT GAG GAC TCA GTT GAA TTC	GAA	GLT	TCA	GAC	GAG	TCI	CCA	TGC	CCC	gcg	GGA AAG GCC TGT GCG CCC	000	AAG	GGA	

4704	4752	4800	4848	4896	4944
GAG TGT GTG AAC CAA GAA GGC TCC TTC CAT TGC CTC TGC AAT CCC CCC Glu Cys Val Asn Gln Glu Gly Ser Phe His Cys Leu Cys Asn Pro Pro 2805	CTC ACC CTA GAC CTC AGT GGG CAG CGC TGT GTG AAC ACG ACC AGC AGC Leu Thr Leu Asp Leu Ser Gly Gln Arg Cys Val Asn Thr Thr Ser Ser 2820	ACG GAG GAC TTC CCT GAC CAT GAC ATC CAC ATG GAC ATC TGC TGG AAA Thr Glu Agp Phe Pro Asp His Asp Ile His Met Asp Ile Cys Trp Lys 2840	AAA GTC ACC AAT GAT GTG TGC AGC CAG CCC TTG CGT GGG CAC CAT ACC Lys Val Thr Asn Asp Val Cys Ser Gln Pro Leu Arg Gly His His Thr 2855	ACC TAT ACA GAA TGC TGC TGC CAA GAT GGG GAG GCC TGG AGC CAG CAA Thr Tyr Thr Glu Cys Cys Cys Gln Asp Gly Glu Ala Trp Ser Gln Gln 2870	TGC GCT CTG TGC CCG CCC AGG AGC TCT GAG GTC TAC GCT CAG CTG TGC Cys Ala Leu Cys Pro Pro Arg Ser Ser Glu Val Tyr Ala Gln Leu Cys 2885
	ம	10	15		

	AAC	AAC GTG		CGG	ATT	GCT CGG ATT GAG GCA GAG CGC GGA GCA GGG ATC CAC	GCA	GAG	CGC	GGA	GCA	999	ATC	CAC	TTC	ട്ട	4992
	Asn	Asn Val	Ala	Arg	Ile	Glu Ala	Ala	Glu Arg			Gly Ala Gly Ile	Gly		His	Phe	Arg	
	2900	_		.•	•	2905				,	2910					2915	
ı	į	7	į			Ţ	. [Ţ	Ę	Š	Ę		Ę	CAR RAC ECC CAC		Ç	
n	ל ל	ָר פ	IWI		TWI	GAG TAI GGC	ררז פפר	ר פפ	כד	3	TWO	ל ל	ננ	445	7	נונ	0 # 0 C
	Pro	Gly	Tyr	ĞΙŲ	Tyr	Glu Tyr Gly Pro Gly Leu Asp Asp Leu Pro	Pro	Gly	Leu	Asp	Авр	Leu	Pro	Glu	Asn Leu	ren	
					2920	_				2925					2930		
· ·	, E	Ţ	Ę	Ę	Ţ	Ę	<u>.</u> .	Ē	É	, ,	e Ç	É	Ş		ć	Ţ	0
	TAC	<u>ာ</u>	GGC CCA GAT GGG GCT	CAT)) ()	ב ב			INI	AAC	TAT AAC TAC CIA GGC	CIA	ָרָ פֿ		CCC GAG	GAC	2000
10	Tyr	Gly	Pro	Pro Asp Gly	Gly	Ala	Pro	Phe		Туг Авп	Tyr	Leu Gly	Gly		Pro Glu	Asp	
			. •	2935					2940	_	-		٠	2945			
	ACT	ညည	CCI	CCT GAG CCT	CCT	ggg	TTC	TCC	AAC	CCA	TCC AAC CCA GCC AGC CAG	AGC	CAG	CCC	GGA GAC	ĠAC	5136
	Thr	Ala		Pro Glu	Pro	Pro Pro Phe			Asn	Pro	Ala	Ser	Gln.	Ser Asn Pro Ala Ser Gln Pro Gly		Asp	
15			2950	_	•			2955					2960				
							•										
	AAC	ACA	AAC ACA CCT GTC CTT GAG CCT CCT CTG CAG CCC TCT GAA CTT	GIC	CTT	GAG	CCT	CCT	CTG	CAG	CCC	TCT	GAA	CLT	CAG	CCT	5184
	Asn	Thr	Thr Pro Val Leu Glu Pro Pro Leu	Val	Leu	Glu	Pro	Pro	Leu	Gln	Pro	Ser Glu	Glu	Leu	Gln	Pro	
	•	2965	10				2970	_	٠			2975					
20																	
	CAC	TAT	TAT CTA GCC AGC CAC TCA GAA CCC	BCC	AGC	CAC	TCA	GAA	ပ္လင္သင္သ	CCT	CCT GCC TCC TTC	TCC		GAA GGC	GGC	CTT	5232
	His	Tyr	His Tyr Leu Ala Ser His Ser Glu Pro Pro Ala Ser	Ala	Ser	His	Ser	Glu	Pro	Pro	Ala	Ser	Phe	Glu	Gly	Leu	
	2980	_				2985					2990	_				2995	

5280	5328	5376	5424	5472	5502
	CAG Gln		ACA		
GGC Gly	TGC GAC TGC TTT GAG GGC TTC Cys Asp Cys Phe Glu Gly Phe 3020	GCG CCC ACA TTG GCC TGT GTG GAT GTG AAC GAG TGT GAA GAC Ala Pro Thr Leu Ala Cys Val Asp Val Asn Glu Cys Glu Asp 3030	AAC GGG CCT GCA CGA CTC TGT GCA CAC GGT CAC TGT GAG AAC ACA Aen Gly Pro Ala Arg Leu Cye Ala His Gly His Cys Glu Asn Thr 3045		
TGT GAG AAT Cys Glu Asn	TGC TTT Cys Phe	GTG AAC Val Asn	GGT CAC 7 Gly His (GGT TAC GTG GCA Gly Tyr Val Ala 3070	
AAT GGC TGT Asn Gly Cys 3005	TGC GAC Cys Asp 3020	TGT GTG GAT GTG Cys Val Asp Val 3035	GCA CAC Ala His	TCG CCA Ser Pro	GAG TAG Glu * 3085
ATC CTG	TAC ACT Tyr Thr	GCC TGT (Ala Cys 3035	CTC TGT Leu Cys 3050	CAC TGT	
TGT GGC CYB G1y 3000	GTG CGG GAG GGC TAC ACT Val Arg Glu Gly Tyr Thr 3015	ACA TTG GCC Thr Leu Ala	GCA CGA Ala Arg	CGC TGC CAC Arg Cys His 3065	CCC CCA CAC TGT GCG GCC AAG Pro Pro His Cys Ala Ala Lys 3080
GAG GAA Glu Glu	GTG CGG GAG GGC Val Arg Glu Gly 3015	GCG CCC ACA Ala Pro Thr 3030	GGG CCT	Ser Tyr	CCC CCA CAC
CAG GCT Gln Ala	GTG CGT Val Arg	CTG GAT	TTG AAC GGG CCT GCA CGA CTC TGT Leu Aen Gly Pro Ala Arg Leu Cye 3045	GAG GGT Glu Gly 3060	GGC CCC
	rv.	10	15	c c	

	ř						
His 80	Asp	Gln	Arg	Ser	Val 160	Arg	Thr
Ser	Pro 95	Ala	Pro	Arg	Ser	Pro Ala Ala Arg Arg Gly Arg 170	
Glγ	Glu	Pro 110	Pro	Arg Arg	Pro	Arg	Pro Gly Trp 190
Pro Val	Ser Leu Phe Arg 90	Glu Trp Asn Gln	Arg 125	Gln Thr 140	Ala	Arg	Pro
Pro	Phe	Asn	Glu Ala Arg Arg 125	Gln 140	Ala	Ala	Cys
Leu Trp His	Leu	Trp	Ala	Pro Val	Arg 155	Ala	Сув
Trp		Glu	Glu	Pro	Ala	Ala 170	Cys Gly Gly Gln Cys 185
Leu	Tyr	Ser 105	Glu Ala 120	Pro	Ala	Pro	G1y 185
Arg	Val	Pro	Glu 120	Val Gln 135	Ile	Gln Arg	Gly
Asn	Ala Lys Val	Leu Ser	Leu Ala	Val 135	Gln	Gln	Сув
Asp Ala Asn 70	Ala	Leu	Leu	Arg	Gln Gln Gln 150	Pro	Val
	Ala 85	Gly	Trp	Leu Arg	Gln	Thr 165	Asn Val
Arg	Ala	Pro 100	Gly	Leu	Gly	Glu	Arg 180
Ser	Ala	Val	Pro 115	Gln Gln 130	Pro Arg Gly	Leu	Gly Arg 180
Ala	Ala	Pro	Asn	Gln 130	Pro	Arg	Thr
Pro 65	Pro	Ala	Gly	Thr	His 145	Ala	Leu
	ស		10	ti T	c -	20	

-:
Ψ.
0
NO:18
Ω
_
Ø
SEQ
ß
~
FOR
Ĭ,
Ž
\mathbf{c}
2
-
₹
2
Q
INFORMATION
٠.
_
$\widetilde{\mathfrak{D}}$
$\overline{}$

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1834 amino acids

ហ

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Glu Ser Thr Ser Pro Arg Gly Leu Arg Cys Pro Gln Leu Cys Ser 1 5 15 His Ser Gly Ala Met Arg Ala Pro Thr Thr Ala Arg Cys Ser Gly Cys

15

30

25

Ile Gln Arg Val Arg Trp Arg Gly Phe Leu Pro Leu Val Leu Ala Val

20

Leu Met Gly Thr Ser His Ala Gln Arg Asp Ser Ile Gly Arg Tyr Glu

Met GIY inr ser his Ala Gin Arg Asp ser ile GIY A

Pro	Arg	Glu 240	Arg	Thr	Arg	Thr	Asn
Cys Gln Pro Pro 205	Сув	Glu	Glu 255	Val	Arg	Arg	Ser
Gln	11e	Glu	Val	Leu 270	Ser	Ser	Met
С <u>у</u> в 205	CyB	Pro	Ser	Ser	Pro 285	Pro	Leu
Cys Ile Lys Pro Val 200	Val 220	Ile	Arg	Gly	Pro	G1y 300	Gln
Pro	Gln	Val 235	Arg	Arg	Pro	Ser	Gly 315
Lув	Pro	Glu	Pro 250	Ala	Ser	нів	Aen
IIe	Arg	Glu	Val	Glu Ala 265	Pro	Gln	Ala
Сув 200	Ser	Сув	Pro	Ser	Pro 280	Gln	$_{\rm Gly}$
нів	Сув 215	Arg	Arg	Ser	Pro	Leu 295	Thr
Asn Ser Thr Asn His 195	Ser	Ala 230		Arg	Val	Pro	Ala 310
Thr	Gly	Gly	Asn Ala 245		Leu		Pro
Ser	Arg	Arg	Gln	Pro His 260	Pro	Pro Trp	Tyr
Asn 195	Asn	Phe	Pro	Gly	Gln 275	Gln	Arg
Ser	Gln 210	Gly	Asp	Pro	Ile	Ser 290	Arg
Thr	Сув	Ser 225	Phe	Ala	Arg	Leu	Val
	ហ		10	r -	3	20	

			•				
Ala	Lys	Thr	Thr	Phe 400	Ile	Сув	Ser
Pro Gln Ala 335	Glu Lys	Gln	Thr	Gly	Сув 415	Phe	Glý
Glu	Thr 350	Lув	Gly Asp	Ser	Gly Arg Cys	Gly Lys 430	Glu Pro Ala Gly Arg Gly 445
Pro	Leu	Сув 3	Gly	Lув	Gly	Gly	Gly 445
Ser	Asn	Ile	Lys 380	Pro	Gly	Thr	Ala
Ser	Leu	Thr	Glu	A3p 395	Leu Asn 410	Ser	Pro
Авр 330	Trp Gly Leu Asn Leu 345	Pro	Сув	Gly His		Asn	G]u
Ser Gly Leu Glu Leu Arg Asp Ser 325	Trp 345	Phe Thr 360	Ser	$_{ m G1y}$	Сув	Pro Ala Asn Ser 425	Arg
Leu	Pro		Asn	Gln Gly Gly His 390	Pro	Pro	Pro Gln Pro Asp Arg 440
Glu	Pro	Val	Cys Ala	Gly	Ile	Сув	Pro
Leu	Ser	Lys Val		G1y 390	Gln	Trp	Gln
G1y 325	His Leu 340	Lys	Gly Arg	Gln	Сув 405	Сув	Pro
Ser	Н1В 340		Gly	Ser	Phe	Arg Asp Glu Cys Trp 420	
Leu Pro	Asn	Lys 355	Arg	Tyr	Tyr	Asp	Pro Val 435
Leu	Val	Lув	Ala 370	Leu	Ile	Arg	Leu
Ala	Нів	Ile	Сув	Thr 385	Arg	Gly	His
	ហ		10	15		. 20	

Thr	Lys 480	Val	Val	Pro	Pro	Leu 560	Ser
Phe	Val	Gln Val 495	Ser	Ser			Thr :
Thr	Ser Leu	нів	Asn 510	нів	Pro Arg	Сув Тут	ren ,
Ser	Ser	Ile	Авр	Gly 525	Ala	Gln	Ser
Gln 460	Pro	Gln	Glu	Leu Gly 525	Glu 540	Gly Gln	Gly
His Arg Thr Leu Leu Glu Gly Pro Leu Lys 450	Asn 475	Val	Leu	Gly Asn	Gly Glu 540	Leu 555	Leu
Leu	Ser Val	Ser 490	Val	$_{ m G1y}$	Ala	Leu	Pro 570
Pro		Ala	Pro Val 505	Нів	Arg	Gly Leu	Asn
Gly	Ala	Pro Glu Ala	Leu Asp	Pro 520	Ala	Tyr	Ala
Glu 455	Leu	Pro	Leu	Arg	Pro 535	His	Cys
Leu	Asn Gln Leu Ala 470	Pro	Glu	нів	Ile	Arg 550	Gln
Leu	Asn	Нія 485	$_{ m G1y}$	Ser	Ser	Ser	Gly 565
Thr	Ser	His	Arg 500	Ala	Asn	Leu	Asn
Arg	Leu	. 11e	Val	Arg 515	Ser	Val	Val
H18 450	Pro	Gln	Arg	Thr	Ala 530	Pro	Thr
Arg	Leu 465	Val	Ala	Glu	Trp	Pro 545	Ser
		•	10		1	. 50	

Ser Val Gly Thr Phe Trp Gly Val Thr Ser 585 590	Arg Gln Glu Gly Pro Ala Phe Pro Val Ile 600	Cys Pro Gln Gly Tyr Lys Arg Leu Asn Leu 615	Asn Glu Cys Leu Thr Leu Gly Leu Cys Lys 635	Thr Arg Gly Ser Tyr Leu Cys Thr Cys Arg 650	Pro Ser Arg Ser Arg Cys Val Ser Asp Lys 665	Gln Gln Gly Leu Cys Tyr Arg Ser Leu Gly Ser Gly 680	Val His Arg Ile Thr Lys Gln Ile Cys Cys
Asp Cys Cys Gly 580	1 Pro Cys Pro Pro Arg 595	Gly Gln Leu Glu	Cys Gln Asp Ile 630	Glu Cys Val Asn 645	Pro Gly Leu Met Leu Asp 1 660	Ser Met 675	Cys Thr Leu Pro Leu Val His
Gln Glu	Cys Ala 5	Glu Asn 610	10 Ser His 625	Asp Ser		Ala Val 20	Thr Cys

			•				
					-		
Pro 720	$\mathtt{Gl}_{\mathtt{Y}}$	Glu	Thr	Thr	Arg 800	Pro	Ile
.Cy8	His 735	Ala	Ser	Ala	Ser	Val 815	
Glu Gln	Gly	Lys 750	Gln	Ala	Авр	Arg	Gly Gln Gly 830
Glu	Ala	Arg	Glu 765		$_{ m G1y}$	Ala	31y (
Cya	Pro	Met	Thr	Leu Arg 780		Pro	Pro (
Thr 715	Сув	Arg Leu Ser 745	Gln	Pro	Авр Lув 795	Leu	Leu
Ser	130	Leu	Glu	Gln	Pro	His 810	
Trp Gly	Glu	Arg 745	Arg	Arg	Leu	Pro	Pro Ser 825
Trp	Arg	Ile	Pro Leu Arg 760	Glu	Thr Leu	Ala	
Gly Lys Ala 710	Phe	Авр	Pro	Ala 775	GIn	Ser	Pro Ala
Lув 710	Glu Ala 725	Ser	Ser	Gly Gln	Ala Glu 790	Thr	Arg
Gly	Glu 725	Ser	Ala	$_{ m G1y}$	Glu	Thr 805	Gly Arg
Val	Thr	Ser 740	Leu	Pro	Ile	Ile	Thr 820
Arg	$\mathtt{Gl}_{\mathbf{y}}$	Tyr	Glu 755	Pro	Trp	Gln	Ala
Ser	Pro	Thr	Glu	Pro 770	Thr	Val	Asp
Cys 705	Leu	Tyr	Glu	Ala	Ala 785	Ala	Gly
	ហ		10	15	}	20	

					-		
Leu	Ser	Arg 880	Сув	Arg	Tyr	Glu	Glu 960
Val	Ala	Tyr	Тут 895	Gly Arg	Gly	Авр	Thr
Ser Asp 845	Gly Ala	\mathtt{Gly}	Gln Asp		Pro	Ile	Asn '
Ser 845	Ala	Pro Asn	Gln	Gly Arg 910	Tyr 925		Ser
Ser	Phe 860	Pro	Ser	Glu	Сув	Gln Asp 940	Сув
Pro	Сув	Leu 875	Pro	Сув	Leu	Сув	Arg 955
Ile	Pro	Ser	Н1я 890	Pro	СУВ		Gly Gly Arg
Val	Asp	Val	Leu	Asn 905	Ser	Gln Glu	Gly
Glu Gln Val 840	Phe	Сув	Gln	Arg	Tyr 920	Thr	Ser
Glu	Pro Asp 855	Thr	Tyr	Met	Ser	Leu Gly Asp Thr 935	Сув
Glu		G1y 870	Gly	Cyв	Gly	$_{ m G1y}$	Val 950
Pro Ala	Pro	Pro	Pro 885	Glu	Val	Leu	Gly .
Pro	Ser	, G1y	Ser	Asn 900	Ser	Thr	Pro Gly Val
Ser 835	His	Сув	Сув	Asp Asn 900	Asn 915	Leu Val Thr 930	Gln
Glu	Thr 850	Ile	Val	Asp		Leu 930	Glu
Pro	Val	Asn 865	Сув	Thr	Cys Val	Thr	Сув 945
	N		10	2.	}	20	

Lys Lys Gly Cys Arg Asp Val Asp Glu Cys Ala Ser Arg Ala Ser Cys

1065

20

Pro Thr Gly Leu Cys Leu Asn Thr Glu Gly Ser Phe Thr Cys Ser Ala

1080

1075

			÷		•
Lув	Pro	Сув	Glu	Glu 1040	Asp
Arg Lys 975	Сув	Cys Leu Ala 1005		Met	Pro Asp 1055
Val	Thr 990	Leu	Val	Asn	Thr
Met	G1y.	Cys 1005	Авр	Ile	Val
Ile	Pro	Thr	Val 1	Сув	Glu
Ser Tyr His Cys Glu Cys Asp Arg Gly Tyr Ile Met 970	Gln Asp Ile Asn Glu Cys Arg His Pro Gly Thr 980 980	Tyr	Cys Val Asp Val Asn 1020	Pro Gly Ile Cys Thr His Gly Arg Cys 1030	
G1y 970	Arg	Pro Gly Ser 1000	Ser	Gly	Pro Gly Tyr 1050
Arg	Сув 985	Gly	в1у	His	Pro
Asp	Glu	Pro (Ser	Thr	Glu
Сyв	Asn	Ser	Gln (Сув	Сув
Glu	11e	Val Asn Ser	Gly Gln Ser Gly Ser 1015	Ile (1030	Ser
Сув 965	Asp	Val	Val	в1у	Cys (
His	Gln 980	Asp Gly Arg Cys 995	Tyr	Pro	Arg
Tyr	Сув	Arg 995		Cys Leu Thr 1025	Phe
Ser	His	$_{ m G1y}$	Glu Gly 1010	Leu	Ser
Gly	$_{\rm Gly}$	Asp	Glu	Cys] 1025	Gly
	w ·		10	15	

Gln Ser Gly Tyr Trp Val Asn Glu Asp Gly Thr Ala Cys Glu Asp 1090	val Cys Pro Thr Gly Val Cys Thr 1115	Cys Lys Asp Cys Asp Gln Gly Tyr Arg 1130	Cys, Glu Asp Val Asp Glu Cys Glu Gly 1145	Gly Gly Glu Cys Lys Asn Thr Glu Gly Ser 1160	Gln Cys Leu Cys His Gln Gly Phe Gln Leu Val Asn Gly Thr Met 1170	Gly Glu Glu His Cys Ala Pro His 1195	Ser Phe Phe Cys Leu Cys Ala Pro 1210
Cys Gln Ser Gly Tyr Trp Val As 1090	Leu Asp Glu Cys Ala Phe Pro Gly Val 1105	Asn Thr Val Gly Ser Phe Ser Cy 1125	Pro Asn Pro Leu Gly Asn Arg Cy 1140	Pro Gln Ser Ser Cys Arg Gly Gly 1155	Tyr Gln Cys Leu Cys His Gln Gl	Cys Glu Asp Val Asn Glu Cys Val Gly 1185	Gly Glu Cys Leu Asn Ser Leu Gly Ser 1205
	ស		10		3	20	

Gly Phe Ala Ser Ala Glu Gly Gly Thr Arg Cys Gln Asp Val Asp Glu 1220	Cys Ala Ala Thr Asp Pro Cys Pro Gly Gly His Cys Val Asn Thr Glu 1235 1240	Gly Ser Phe Ser Cys Leu Cys Glu Thr Ala Ser Phe Gln Pro Ser Pro 1250	0 Asp Ser Gly Glu Cys Leu Asp Ile Asp Glu Cys Glu Asp Arg Glu Asp 1265 1280	Pro Val Cys Gly Ala Trp Arg Cys Glu Asn Ser Pro Gly Ser Tyr Arg 1285 1290	Cys Ile Leu Asp Cys Gln Pro Gly Phe Tyr Val Ala Pro Asn Gly Asp 1300 1305	Cys Ile Asp Ile Asp Glu Cys Ala Asn Asp Thr Val Cys Gly Asn His 1315 1320	Gly Phe Cys Asp Asn Thr Asp Gly Ser Phe Arg Cys Leu Cys Asp Gln
			10	15	i	20	

						•	
Gly Phe Glu Thr Ser Pro Ser Gly Trp Glu Cys Val Asp Val Asn Glu 1345 1350 1350	Cys Glu Leu Met Ala Val Cys Gly Asp Ala Leu Cys Glu Asn Val 1365	glu Gly Ser Phe Leu Cys Leu Cys Ala Ser Asp Leu Glu Glu Tyr Asp 1380 1385	Ala Glu Gly His Cys Arg Pro Arg Val Ala Gly Ala Gln Arg Ile 1395	Pro Glu Val Arg Thr Glu Asp Gln Ala Pro Ser Leu Ile Arg Met Glu 1410 1415	Cys Tyr Ser Glu His Asn Gly Gly Pro Pro Cys Ser Gln Ile Leu Gly 1425 1430 1430	Gln Asn Ser Thr Gln Ala Glu Cys Cys Thr Gln Gly Ala Arg Trp 1445 1450	Gly Lys Ala Cys Ala Pro Cys Pro Ser Glu Asp Ser Val Glu Phe Ser 1460
	Ŋ		10			. 20	

				•			
Gln Leu Cys Pro Ser Gly Gln Gly Tyr Ile Pro Val Glu Gly Ala Trp 1475 1480	Thr Phe Gly Gln Thr Met Tyr Thr Asp Ala Asp Glu Cys Val Leu Phe 1490	Gly Pro Ala Leu Cys Gln Asn Gly Arg Cys Ser Asn Ile Val Pro Gly 1505 1520	Tyr Ile Cys Leu Cys Asn Pro Gly Tyr His Tyr Asp Ala Ser Ser Arg 1525 1530	Lys Cys Gln Asp His Asn Glu Cys Gln Asp Leu Ala Cys Glu Asn Gly 1540 1545	Glu Cys Val Asn Gln Glu Gly Ser Phe His Cys Leu Cys Asn Pro Pro 1555	Leu Thr Leu Asp Leu Ser Gly Gln Arg Cys Val Asn Thr Thr Ser Ser 1570 1575	Thr Glu Asp Phe Pro Asp His Asp Ile His Met Asp Ile Cys Trp Lys 1585 1590
	ហ		10	Г	C T	20	

His Thr 1615	Ser Gln Gln 1630	Leu Cys	Phe Arg	Asn Leu 1680	Glu Asp 1695	сіу Авр	31n Pro
Leu Arg Gly His	3lu Ala Trp Ser (Ser Ser Glu Val Tyr Ala Gln Leu Cys 1640	Na Gly Ile His 1660	Asp Leu Pro Glu) 1675	Asn Tyr Leu Gly Pro Glu Asp 1690	da Ser Gln Pro Gly Авр 1710	ro Ser Glu Leu Gln Pro 1725
ys Ser Gln Pro I 1610	Cys Gin Asp Gly Glu Ala Trp 1625	rg Ser Ser Glu V 1640	Glu Ala Glu Arg Gly Ala Gly Ile His Phe Arg 1655	Glu Tyr Gly Pro Gly Leu Asp Asp Leu Pro Glu Asn Leu 1670 168	Pro Phe Tyr Asn T 1690	Phe Ser Asn Pro Ala 1705	ro Pro Leu Gln Pro 1720
. Thr Asn Asp Val Cys Ser Gln Pro Leu Arg Gly His His Thr 1605 1615	Thr Glu Cye Cye 1620	. Leu Cys Pro Pro Arg 1635	Ala Arg Ile		Pro Asp Gly Ala 1685	Pro Glu Pro Pro 1700	Pro Val Leu Glu Pro 1715
Lyв Val	Thr Tyr 5	Cys Ala	10 Asn Val 3	Pro Gly Tyr 1665	Tyr Gly	Thr Ala 20	Asn Thr

Leu	
Gly	
gJu	
Phe	o .
Ser	1740
Ala	
Pro	
Pro	
Glu	
Ser	1735
His	
Ser	
Ala	
Leu	_
Tyr	1730
His	

Gln Ala Glu Glu Cys Gly Ile Leu Asn Gly Cys Glu Asn Gly Arg Cys

Ŋ

Val Arg Val Arg Glu Gly Tyr Thr Cys Asp Cys Phe Glu Gly Phe Gln

Leu Asp Ala Pro Thr Leu Ala Cys Val Asp Val Asn Glu Cys Glu Asp

Leu Asn Gly Pro Ala Arg Leu Cys Ala His Gly His Cys Glu Asn Thr

Glu Gly Ser Tyr Arg Cys His Cys Ser Pro Gly Tyr Val Ala Glu Pro

Gly Pro Pro His Cys Ala Ala Lys Glu

CLAIMS

1. A method for transferring a nucleic acid segment into bone progenitor cells, comprising contacting bone progenitor cells with a composition comprising an isolated nucleic acid segment so as to transfer said nucleic acid segment into said cells.

10

15

- 2. The method of claim 1, wherein said cells are located within a bone progenitor tissue site of an animal and said tissue site is contacted with said composition so as to promote nucleic acid transfer into bone progenitor cells in situ.
- 3. The method of claim 2, wherein the contacting process comprises bringing said isolated nucleic acid segment into contact with a bone-compatible matrix to form a matrix-nucleic acid segment composition and bringing said matrix-nucleic acid segment composition into contact with said tissue site.

25

- 4. The use of a composition comprising an isolated nucleic acid segment and a bone-compatible matrix in the preparation of a formulation or medicament for transferring a nucleic acid segment into bone progenitor cells.
- A use according to claim 4, wherein said formulation or medicament is intended for use in transferring a
 nucleic acid segment into bone progenitor cells within a bone progenitor tissue site of an animal.

- 6. A use according to claim 5, wherein said formulation or medicament is prepared by bringing an isolated nucleic acid segment into contact with a bone-compatible matrix to form a matrix-nucleic acid segment formulation or medicament intended for use in transferring a nucleic acid segment into bone progenitor cells within a bone progenitor tissue site of an animal.
- 7. A use according to claim 6, wherein said formulation or medicament is prepared by bringing an isolated nucleic acid segment into contact with a bone-compatible matrix and a pluronic agent to form a syringeable matrix-nucleic acid segment formulation or medicament.

8. A use according to claim 6, wherein said formulation or medicament further comprises a detectable agent for use in an imaging modality.

20

9. A use according to claim 8, wherein said formulation or medicament further comprises a radiographic agent.

- 10. A use according to claim 8, wherein said formulation or medicament further comprises a paramagnetic ion.
- 30 11. A use according to claim 8, wherein said formulation or medicament further comprises a radioactive ion.
- 12. A use according to claim 4, wherein said nucleic 35 acid segment is a DNA molecule.

WO 95/22611 PCT/US95/02251

- 250 -

- 13. A use according to claim 4, wherein said nucleic acid segment is an RNA molecule.
- 5 14. A use according to claim 4, wherein said nucleic acid segment is an antisense nucleic acid molecule.
- 15. A use according to claim 4, wherein said nucleic acid segment is a linear nucleic acid molecule, a plasmid, a recombinant insert within the genome of a recombinant virus, or a nucleic acid segment associated with a liposome.

16. A use according to claim 15, wherein said nucleic acid segment is a nucleic acid segment associated with a liposome.

17. A use according to claim 4, wherein said nucleic acid segment encodes a polypeptide or protein that stimulates bone progenitor cells when expressed in said cells.

18. A use according to claim 6, wherein said bonecompatible matrix is a collagenous, metal, hydroxylapatite, bioglass, aluminate, bioceramic, acrylic ester polymer or lactic acid polymer matrix.

19. A use according to claim 18, wherein said bone-compatible matrix is a titanium matrix.

35

20

25

- 20. A use according to claim 19, wherein said bone-compatible matrix is a titanium matrix coated with hydroxylapatite.
- 21. A use according to claim 18, wherein said bone-compatible matrix is a collagen preparation.
- 22. A use according to claim 21, wherein said bonecompatible matrix is a type II collagen preparation.
- 23. A use according to claim 22, wherein said bonecompatible matrix is a type II collagen preparation obtained from hyaline cartilage.
- 24. A use according to claim 22, wherein said bone-20 compatible matrix is a recombinant type II collagen preparation.
- 25. A use according to claim 22, wherein said bonecompatible matrix is a mineralized type II collagen preparation.
- 26. A method of stimulating bone progenitor cells,
 30 comprising contacting bone progenitor cells with a composition comprising an isolated osteotropic gene so as to promote expression of said gene in said cells.
- 35 27. The method of claim 26, wherein said cells are located within a bone progenitor tissue site of an animal

- 252 -

and said tissue site is contacted with said composition so as to promote bone tissue growth.

28. The method of claim 27, wherein the contacting process comprises bringing said osteotropic gene into contact with a bone-compatible matrix to form a matrix-gene composition and bringing said matrix-gene composition into contact with said tissue site.

10

15

- 29. The use of a composition comprising an isolated osteotropic gene in the preparation of a formulation or medicament for use in promoting expression of the gene in bone progenitor cells and for stimulating said bone progenitor cells.
- 30. A use according to claim 29, wherein said
 20 formulation or medicament is intended for use in
 promoting expression of the gene in bone progenitor cells
 within a bone progenitor tissue site of an animal and for
 stimulating said bone progenitor cells to promote bone
 tissue growth.

25

31. A use according to claim 30, wherein said formulation or medicament is prepared by bringing an osteotropic gene into contact with a bone-compatible matrix to form a matrix-gene formulation or medicament intended for use in promoting expression of the gene in bone progenitor cells within a bone progenitor tissue site of an animal and for stimulating said bone progenitor cells to promote bone tissue growth.

- 32. A use according to claim 31, wherein said formulation or medicament is prepared by bringing an osteotropic gene into contact with a bone-compatible matrix and a pluronic agent to form a syringeable matrixgene formulation or medicament.
- 33. A use according to claim 31, wherein said formulation or medicament further comprises a detectable10 agent for use in an imaging modality.
- 34. A use according to claim 33, wherein said formulation or medicament further comprises a radiographic agent.
- 35. A use according to claim 34, wherein said formulation or medicament further comprises calcium phosphate.
 - 36. A use according to claim 33, wherein said formulation or medicament further comprises a paramagnetic ion.

25

37. A use according to claim 36, wherein said formulation or medicament further comprises chromium (III), manganese (II), iron (III), iron (II), cobalt (II), nickel (II), copper (II), neodymium (III), samarium (III), ytterbium (III), gadolinium (III), vanadium (II), terbium (III), dysprosium (III), holmium (III) or erbium (III).

38. A use according to claim 33, wherein said formulation or medicament further comprises a radioactive ion.

5

39. A use according to claim 38, wherein said formulation or medicament further comprises iodine¹³¹, iodine¹²³, technicium^{99m}, indium¹¹¹, rhenium¹⁸⁸, rhenium¹⁸⁶, gallium⁶⁷, copper⁶⁷, yttrium⁹⁰, iodine¹²⁵ or astatine²¹¹.

10

40. A use according to claim 29, wherein said osteotropic gene is in the form of plasmid DNA, a DNA insert within the genome of a recombinant adenovirus, a DNA insert within the genome of a recombinant adeno-associated virus (AAV), a DNA insert within the genome of a recombinant retrovirus, or a DNA segment associated with a liposome.

20

41. A use according to claim 40, wherein said osteotropic gene is in the form of an osteotropic gene associated with a liposome.

25

- 42. A use according to claim 29, wherein said osteotropic gene is a parathyroid hormone (PTH) gene, a bone morphogenetic protein (BMP) gene, a growth factor gene, a growth factor receptor gene, a cytokine gene or a chemotactic factor gene.
- 43. A use according to claim 42, wherein said osteotropic gene is a transforming growth factor (TGF)

 35 gene, a fibroblast growth factor (FGF) gene, a granulocyte/macrophage colony stimulating factor (GMCSF)

gene, an epidermal growth factor (EGF) gene, a platelet derived growth factor (PDGF) gene, an insulin-like growth factor (IGF) gene, or a leukemia inhibitory factor (LIF) gene.

5

- 44. A use according to claim 43, wherein said osteotropic gene is a TGF- α , TGF- β 1 or TGF- β 2 gene.
- 10
 - 45. A use according to claim 42, wherein said osteotropic gene is a PTH gene.
- 15 46. A use according to claim 42, wherein said osteotropic gene is a BMP gene.
- 47. A use according to claim 46, wherein said osteotropic gene is a BMP-2 or BMP-4 gene.
 - 48. A use according to claim 31, wherein said bone-compatible matrix is a collagenous, metal,
- 25 hydroxylapatite, bioglass, aluminate, bioceramic, acrylic ester polymer or lactic acid polymer matrix.
- 49. A use according to claim 48, wherein said bone-30 compatible matrix is a titanium matrix.
 - 50. A use according to claim 49, wherein said bone-compatible matrix is a titanium matrix coated with hydroxylapatite.

- 51. A use according to claim 48, wherein said bone-compatible matrix is a collagen preparation.
- 5 52. A use according to claim 51, wherein said bone-compatible matrix is a type II collagen preparation.
- 53. A use according to claim 52, wherein said bone-10 compatible matrix is a type II collagen preparation obtained from hyaline cartilage.
- 54. A use according to claim 52, wherein said bone-15 compatible matrix is a recombinant type II collagen preparation.
- 55. A use according to claim 52, wherein said bone-20 compatible matrix is a mineralized type II collagen preparation.
- 56. A use according to claim 31, wherein said matrixgene composition is applied to a bone fracture site in said animal.
- 57. A use according to claim 31, wherein said matrix-30 gene composition is implanted within a bone cavity site in said animal.
- 58. A use according to claim 31, wherein said bone cavity site is the result of dental or periodontal surgery or the removal of an osteosarcoma.

- 59. A composition comprising an isolated nucleic acid. segment in association with a bone-compatible matrix.
- 5 60. The composition of claim 59, wherein said nucleic acid segment is a DNA molecule.
- 61. The composition of claim 59, wherein said nucleic 10 acid segment is an RNA molecule.
 - 62. The composition of claim 59, wherein said nucleic acid segment is an antisense nucleic acid molecule.

15

- 63. The composition of claim 59, wherein said nucleic acid segment is a linear nucleic acid molecule, a plasmid, a recombinant insert within the genome of a recombinant virus, or a nucleic acid segment associated with a liposome.
 - 64. The composition of claim 63, wherein said nucleic acid segment is associated with a liposome.

25

- 65. The composition of claim 59, wherein said nucleic acid segment encodes a polypeptide or protein that stimulates bone progenitor cells when expressed in said cells.
 - 66. The composition of claim 59, wherein said bone-compatible matrix is a collagenous, titanium,
- hydroxylapatite, hydroxylapatite-coated titanium, bioglass, aluminate, bioceramic, acrylic ester polymer or

10

15

20

25

lactic acid polymer matrix.

- 67. The composition of claim 66, wherein said bonecompatible matrix is a collagen preparation.
 - 68. The composition of claim 67, wherein said bone-compatible matrix is a type II collagen preparation.

69. The composition of claim 68, wherein said bone-compatible matrix is a type II collagen preparation obtained from hyaline cartilage.

70. The composition of claim 68, wherein said bone-compatible matrix is a recombinant type II collagen preparation.

71. The composition of claim 68, wherein said bone-compatible matrix is a mineralized type II collagen preparation.

72. The composition of claim 59, further defined as a syringeable composition.

73. The composition of claim 59, wherein said composition further comprises a detectable agent for use in an imaging modality.

35

- 74. The composition of claim 73, wherein said composition further comprises a radiographic agent.
- 5 75. The composition of claim 73, wherein said composition further comprises a paramagnetic ion.
- 76. The composition of claim 73, wherein said composition further comprises a radioactive ion.
- 77. A composition comprising an isolated osteotropic gene in association with a bone-compatible matrix, said composition being capable of stimulating bone growth when administered to a bone progenitor tissue site of an animal.
- 78. The composition of claim 77, wherein said
 20 osteotropic gene is in the form of plasmid DNA, a DNA
 insert within the genome of a recombinant adenovirus, a
 DNA insert within the genome of a recombinant adenoassociated virus (AAV), a DNA insert within the genome of
 a recombinant retrovirus, or a DNA segment associated
 25 with a liposome.
- 79. The composition of claim 78, wherein said osteotropic gene is in the form of an osteotropic gene30 associated with a liposome.
- 80. The composition of claim 77, wherein said osteotropic gene is a PTH, BMP, TGF-α, TGF-β1, TGF-β2,
 35 FGF, GMCSF, EGF, PDGF, IGF or a LIF gene.

81. The composition claim 80, wherein said osteotropic gene is a TGF- α , TGF- β 1, TGF- β 2, PTH, BMP-2 or BMP-4 gene.

5

82. The composition of claim 77, wherein said bone-compatible matrix is a collagenous, metal, hydroxyapatite, bioglass, aluminate, bioceramic, acrylic ester polymer or lactic acid polymer matrix.

10

83. The composition of claim 82, wherein said bone-compatible matrix is a titanium matrix.

15

84. The composition of claim 83, wherein said bone-compatible matrix is a titanium matrix coated with hydroxylapatite.

- 85. The composition of claim 82, wherein said bone-compatible matrix is a collagen preparation.
- 25 86. The composition of claim 85, wherein said bonecompatible matrix is a type II collagen preparation.
- 87. The composition of claim 86, wherein said bone-30 compatible matrix is a type II collagen preparation obtained from hyaline cartilage.
- 88. The composition of claim 86, wherein said bone-compatible matrix is a recombinant type II collagen preparation.

- 261 -

89. The composition of claim 86, wherein said bone-compatible matrix is a mineralized type II collagen preparation.

5

90. The composition of claim 77, further defined as comprising an isolated osteotropic gene in association with a bone-compatible matrix and a pluronic agent, the composition forming a syringeable composition.

10

91. The composition of claim 77, wherein said composition further comprises a detectable agent for use in an imaging modality.

15

92. The composition of claim 91, wherein said composition further comprises a radiographic agent.

20

- 93. The composition of claim 92, wherein said composition further comprises calcium phosphate.
- 25 94. The composition of claim 91, wherein said composition further comprises a paramagnetic ion.
- 95. The composition of claim 94, wherein said

 composition further comprises chromium (III), manganese
 (II), iron (III), iron (II), cobalt (II), nickel (II),
 copper (II), neodymium (III), samarium (III), ytterbium
 (III), gadolinium (III), vanadium (II), terbium (III),
 dysprosium (III), holmium (III) or erbium (III).

- 262 -

- 96. The composition of claim 91, wherein said composition further comprises a radioactive ion.
- 5 97. The composition of claim 96, wherein said composition further comprises iodine¹³¹, iodine¹²³, technicium^{99m}, indium¹¹¹, rhenium¹⁸⁸, rhenium¹⁸⁶, gallium⁶⁷, copper⁶⁷, yttrium⁹⁰, iodine¹²⁵ or astatine²¹¹.
- 98. A kit comprising, in suitable container means, a pharmaceutically acceptable bone-compatible matrix and a pharmaceutically acceptable osteotropic gene preparation.
- 99. The kit of claim 98, wherein said bone-compatible matrix is a collagenous, titanium, hydroxylapatite, hydroxylapatite-coated titanium, bioglass, aluminate, bioceramic, acrylic ester polymer or lactic acid polymer 20 matrix.
 - 100. The kit of claim 99, wherein said bone-compatible matrix is a titanium matrix.
 - 101. The kit of claim 99, wherein said bone-compatible matrix is a hydroxylapatite-coated titanium matrix.
- 30 102. The kit of claim 99, wherein said bone-compatible matrix is a collagenous matrix.

25

103. The kit of claim 102, wherein said bone-compatible matrix is a type II collagen matrix.

- 263 -

104. The kit of claim 103, wherein said bone-compatible matrix is a type II collagen matrix obtained from hyaline cartilage.

105. The kit of claim 103, wherein said bone-compatible matrix is a recombinant type II collagen matrix.

- 10 106. The kit of claim 103, wherein said bone-compatible matrix is a mineralized type II collagen matrix.
- 107. The kit of claim 98, wherein said osteotropic gene preparation comprises a linear osteotropic gene, a plasmid including an osteotropic gene, a recombinant virus having a genome that includes an osteotropic gene or an osteotropic gene associated with a liposome.
- 108. The kit of claim 98, wherein said osteotropic gene preparation comprises a lyophilized gene preparation.
- 25 109. The kit of claim 98, wherein said osteotropic gene preparation comprises a PTH, TGF, BMP, FGF, GMCSF, EGF, PDGF, IGF or a LIF gene.
- 110. The kit of claim 109, wherein said osteotropic gene preparation comprises a PTH, TGF-&1, TGF-&2, TGF-&3, BMP-2 or a BMP-4 gene.
- 35 111. The kit of claim 98, further comprising a pluronic agent.

5

- 112. The kit of claim 98, further comprising a detectable agent for use in an imaging modality.
- 113. The kit of claim 112, wherein said composition further comprises a radiographic agent.
- 10 114. The kit of claim 113, wherein said composition further comprises calcium phosphate.
- 115. The kit of claim 112, wherein said composition further comprises a paramagnetic ion.
- 116. The kit of claim 115, wherein said composition further comprises chromium (III), manganese (II), iron (II), iron (III), cobalt (II), nickel (II), copper (II), neodymium (III), samarium (III), ytterbium (III), gadolinium (III), vanadium (II), terbium (III), dysprosium (III), holmium (III) or erbium (III).
- 25
 117. The kit of claim 112, wherein said composition further comprises a radioactive ion.
- 118. The kit of claim 117, wherein said composition further comprises iodine¹³¹, iodine¹²³, technicium^{99m}, indium¹¹¹, rhenium¹⁸⁸, rhenium¹⁸⁶, gallium⁶⁷, copper⁶⁷, yttrium⁹⁰, iodine¹²⁵ or astatine²¹¹.
 - 119. The kit of claim 98, wherein said bone-compatible

matrix and said osteotropic gene preparation are present within a single container means.

- 5 120. The kit of claim 119, wherein said container means is a syringe or pipette.
- 121. The kit of claim 98, wherein said bone-compatible

 10 matrix and said osteotropic gene preparation are present
 within distinct container means.
- 122. The kit of claim 98, further comprising a third
 container means comprising a pharmaceutically acceptable
 diluent.
 - 123. The kit of claim 98, further comprising a syringe, pipette or forceps.

20

124. An osteotropic device, comprising an isolated osteotropic gene capable of expression in bone progenitor cells, the gene associated with an amount of a bone-compatible matrix effective to absorb said gene, wherein said device is capable of stimulating bone formation when implanted within a bone progenitor tissue site of an animal.

- 125. The device of claim 124, wherein said device is a titanium or a hydroxylapatite-coated titanium device.
- 35 126. The device of claim 124, wherein said device is shaped to join a bone fracture site in said animal.

127. The device of claim 124, wherein said device is shaped to fill a bone cavity site in said animal.

5

128. The device of claim 124, wherein said device is an artificial joint.

10 129. A DNA segment comprising an isolated gene that encodes a protein or peptide that includes an amino acid sequence essentially as set forth by a contiguous sequence from SEQ ID NO:3.

15

130. The DNA segment of claim 129, comprising an isolated gene that includes a nucleic acid sequence essentially as set forth by a contiguous sequence from SEQ ID NO:2.

20

131. A composition comprising a purified protein that has an amino acid sequence essentially as set forth by the amino acid sequence of SEQ ID NO:3.

25

132. A method for stimulating a bone progenitor cell, comprising contacting a bone progenitor cell with a composition comprising a biologically effective amount of type II collagen.

30

35

133. The use of a composition comprising a biologically effective amount of type II collagen in the preparation of a formulation or medicament for stimulating a bone progenitor cell.

- 134. A use according to claim 133, wherein said composition comprises type II collagen purified from hyaline cartilage.
- 135. A use according to claim 133, wherein said composition comprises recombinant type II collagen.
- 10 136. A use according to claim 133, wherein said composition comprises type II collagen further supplemented with minerals.
- 15 137. A use according to claim 136, wherein said composition comprises type II collagen further supplemented with calcium.
- 20 138. A use according to claim 133, wherein said composition comprises between about 1 mg and about 500 mg of type II collagen.
- 25 139. A use according to claim 138, wherein said composition comprises between about 1 mg and about 100 mg of type II collagen.
- 30 140. A use according to claim 139, wherein said . composition comprises about 10 mg of type II collagen.
- 141. A use according to claim 133, wherein said
 composition comprises type II collagen in combination
 with a nucleic acid segment that encodes a polypeptide or

protein that stimulates bone progenitor cells when expressed in said cells.

- 5 142. A use according to claim 141, wherein said nucleic acid segment comprises an isolated PTH gene, BMP gene, growth factor gene, growth factor receptor gene, cytokine gene or chemotactic factor gene.
- 143. A use according to claim 142, wherein said nucleic acid segment comprises an isolated BMP gene.
- 15 144. A use according to claim 143, wherein said nucleic acid segment comprises an isolated BMP-2 or BMP-4 gene.
- 145. A use according to claim 141, wherein said
 20 composition further comprises a detectable agent for use
 in an imaging modality.
- 146. A use according to claim 133, wherein said
 25 formulation or medicament is intended for use in
 stimulating a bone progenitor cell located within a bone
 progenitor tissue site of an animal and for promoting
 bone tissue growth.
- 147. A use according to claim 146, wherein said formulation or medicament is intended for use in implantation within a bone cavity site in an animal and for promoting bone tissue growth in said bone cavity site.

- 269 -

148. A use according to claim 146, wherein said formulation or medicament is intended for use in implantation within a bone fracture site in an animal and for promoting bone tissue growth in said bone fracture site.

- 149. A method for promoting bone growth, comprising contacting a bone progenitor tissue site of an animal with a composition comprising type II collagen in an amount effective to activate bone progenitor cells of said tissue site.
- 15 150. The use of a composition comprising a biologically effective amount of type II collagen in the preparation of a formulation or medicament for promoting bone growth in a bone progenitor tissue site of an animal.
- 20 151. A use according to claim 150, wherein said composition comprises recombinant type II collagen.
- 25 152. A use according to claim 150, wherein said composition comprises type II collagen further supplemented with minerals.
- 153. A use according to claim 150, wherein said composition comprises type II collagen and an osteotropic gene in a combined amount effective to activate bone progenitor cells of said tissue site.

- 270 -

154. A use according to claim 153, wherein said composition comprises type II collagen in combination with a PTH, TGF-S or BMP gene.

5

155. A use according to claim 153, wherein said composition further comprises a detectable agent for use in an imaging modality.

1/45

FIG. 1

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 4
SUBSTITUTE SHEET (RULE 26)

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 6D

SUBSTITUTE SHEET (RULE 26)

FIG. 7A

FIG. 7B

FIG. 8A

FIG. 8B

FIG. 8C

FIG. 9A

FIG. 9B

10/45

FIG. 10

SUBSTITUTE SHEET (RULE 26)

1 2 3 4

4.3-

FIG. 11

FIG. 12

CONTROL FEMUR

OSTEOTOMY FEMUR

FIG. 13

SUBSTITUTE SHEET (RULE 26)

FIG. 14

SUBSTITUTE SHEET (RULE 26)

FIG. 16

FIG. 17A

FIG. 17B

FIG. 17C

FIG. 17D

FIG. 18A

FIG. 18B

21/45

FIG. 18C

FIG. 18D

FIG. 18E

FIG. 18F

FIG. 18G

FIG. 18H

FIG. 181

FIG. 18J

FIG. 18K

FIG. 18L

FIG. 18M

FIG. 18N

FiG. 180

FIG. 18P

SUBSTITUTE SHEET (RULE 26)

WO 95/22611

30/45

FIG. 20

WO 95/22611

RECTIFIED SHEET (RULE 91)
ISA/EP

FIG. 22A

FIG. 22C

FIG. 23A

FIG. 23B

FIG. 23C

FIG. 24

MIPGNRMIMV VLLCQVLLGG ATDASLMPET GKKKVAEIQG HAGGRRSGQS HELLRDFEAT LLQMFGLRRR Popsksavip dymsdlyrlo sgeeeeeegs ogtgleyper passantvss thheehleni pgtsessafr TRWETFDVSP AVLRWTREKQ PNYGLAIEVT HLHQTRTHQG QHVSISRSLP QGSGNWAQLR PLLVTFGHDG FPPNLSSIPE NEVISSAELR LFREQVDQGP DWEQGFHRMN IYEVMKPPAE MVPGHLITRL LDTSLVRHNV RGHTLTRRSA KRSPKHHPOR SSKKNKNCRR HSLYVDFSDV GWNDWIVAPP GYQAFYCHGD CPFPLADHLN STINHAIVQTL VISVIBSIPK ACCVPTELSA ISMLYLDEYD KVVLKINYQEM VVEGCGCRYP YDVPDYA

ATG CGC CAG GCC GCA TTG GGG CTG CTG GCA CTA CTC CTG CTG GCG CTG CTG GGC 54 G L G R ₽ G S А 0 А G CGC TGG GCC CAA CGC TTC AAG GTG GTC TTT GCG CCT GTG ATC TGC AAG CGG ACC 162 ĸ v v TGT CTG AAG GGC CAG TGT CGG GAC AGC TGT CAG CAG GGC TCC AAC ATG ACG CTC 216 R D O ATC GGA GAG AAC GGC CAC AGC ACC GAC ACG CTC ACC GGT TCT GCC TTC CGC GTG 270 N G H S T D L GTG GTG TGC CCT CTA CCC TGC ATG AAC GGT GGC CAG TGC TCT TCC CGA AAC CAG 324 C M N G G 0 С S S Q 108 TGC CTG TGT CCC CCG GAT TTC ACG GGG CGC TTC TGC CAG GTG CCT GCT GCA GGA 378 T G R F C Q G 126 ACC GGA GCT GGC ACC GGG AGT TCA GGC CCC GGC TGG CCC GAC CGG GCC ATG TCC 432 т G S S G P G . W S 144 ACA GGC CCG CTG CCC CTT GCC CCA GAA GGA GAG TCT GTG GCT AGC AAA CAC 486 GCC ATT TAC GCG GTG CAG GTG ATC GCA GAT CCT CCC GGG CCG GGG GAG GGT CCT 540 P 180 CCT GCA CAA CAT GCA GCC TTC TTG GTG CCC CTG GGG CCA GGA CAA ATC TCG GCA 594 GAA GTG CAG GCT CCG CCC CCC GTG GTG AAC GTG CGT GTC CAT CAC CCT CCT GAA 648 v GCT TCC GTT CAG GTG CAC CGC ATC GAG GGG CCG AAC GCT GAA GGC CCA GCC TCT 702 R I G G .S 234 TCC CAG CAC TTG CTG CCG CAT CCC AAG CCC CAG CAC CCG AGG CCA CCC ACT CAA 756 H P ĸ P Q Н R P AAG CCA CTG GGC CGC TGC TTC CAG GAC ACA TTG CCC AAG CAG CCT TGT GGC AGC 810 T AAC CCT TTG CCT GGC CTT ACC AAG CAG GAA GAT TGC TGC GGT AGC ATC GGT ACT 864 ĸ 0 E D C C G · S GCC TGG GGA CAA AGC AAG TGT CAC AAG TGC CCA CAG CTT CAG TAT ACA GGG GTG 918 H K C P CAG AAG CCT GTA CCT GTA CGT GGG GAG GTG GGT GCT GAC TGC CCC CAG GGC TAC 972 ν AAG AGG CTC AAC AGC ACC CAC TGC CAG GAT ATC AAC GAA TGT GCG ATG CCC GGG 1026 N S T H C Q D I N E C A M P

FIG. 25-1

AAT GTG TGC CAT GGT GAC TGC CTC AAC AAC CCT GGC TCT TAT CGC TGT GTC TGC 1080 D C L N N P G S Y R C с н G CCG CCC GGT CAT AGC TTG GGT CCC CTC GCA GCA CAG TGC ATT GCC GAC AAA CCA 1134 G P GAG GAG AAG AGC CTG TGT TTC CGC CTT GTG AGC ACC GAA CAC CAG TGC CAG CAC 1188 R L E H 0 H 396 CCT CTG ACC ACA CGC CTA ACC CGC CAG CTC TGC TGC TGT AGT GTG GGT AAA GCC 1242 T R 0 L TGG GGT GCC CGG TGC CAG CGC TGC CCG GCA GAT GGT ACA GCA GCC TTC AAG GAG 1296 С P D R A G T A R 0 A ATC TGC CCC GGC TGG GAA AGG GTA CCA TAT CCT CAC CTC CCA CCA GAC GCT CAC 1350 V E R P Y P H L P D CAT CCA GGG GGA AAG CGA CTT CTC CCT CTT CCT GCA CCC GAC GGG CCA CCC AAA 1404 P L P CCC CAG CAG CTT CCT GAA AGC CCC AGC CGA GCA CCC CTC GAG GAC ACA GAG 1458 P SRA E D E. 486 GAA GAG AGA GGA GTG ACC ATG GAT CCA CCA GTG AGT GAG GAG CGA TCG GTG CAG 1512 M D P v R CAG AGC CAC CCC ACT ACC ACC ACC TCA CCC CCC CGG CCT TAC CCA GAG CTC ATC 1566 н T S P P R P Y E I 522 TCT CGC CCC TCC CCA CCT ACC TTC CAC CGG TTC CTG CCA GAC TTG CCC CCA TCC 1620 H R CGA AGT GCA GTG GAG ATC GCC CCC ACT CAG GTC ACA GAG ACC GAT GAG TGC CGA 1674 P 0 v T T A E D TTG AAC CAG AAT ATC TGT GGC CAT GGA CAG TGT GTG CCT GGC CCC TCG GAT TAC 1728 G H G Q С v С TCC TGC CAC TGC AAC GCT GGC TAC CGG TCA CAC CCG CAG CAC CGC TAC TGT GTT 1782 R S H P GAT GTG AAC GAG TGC GAG GCA GAG CCC TGC GGC CCC GGG AAA GGC ATC TGT ATG 1836 G P С E E G А K AAC ACT GGT GGC TCC TAC AAT TGT CAC TGC AAC CGA GGC TAC CGC CTC CAC GTG 1890 N С Ħ С N R R V 630 GGT GCA GGG GGC CGC TCG TGC GTG GAC CTG AAC GAG TGC GCC AAG CCT CAC CTG 1944 С R TGT GGG GAC GGT GGC TTC TGC ATC AAC TTC CCT GGT CAC TAC AAA TGC AAC TGC 1998 С I N F РСН Y ĸ TAT CCT GGC TAC CGG CTC AAG GCC TCC CGA CCG CCC ATT TGC GAA GAC ATC GAC 2052 R P P I A s GAG TGT CGC GAC CCT AGC ACC TGC CCT GAT GGC AAA TGT GAA AAC AAA CCT GGC 2106 E C R D P S T C P D G K C E N K P G 702

FIG. 25-2

AGC TTC AAG TGC ATC GCC TGC CAG CCT GGC TAC CGT AGC CAG GGG GGC GGG GCC 2160 A CQPGYRSQGGA720 TGT CGT GAT GTC AAC GAA TGC TCC GAA GGT ACC CCC TGC TCT CCT GGA TGG TGT 2214 E GAG AAA CTT CCG GGT TCT TAC CGT TGC ACG TGT GCC CAG GGG ATA CGA ACC CGC 2268 G· Y C T R C ACA GGA CGC CTC AGT TGC ATA GAC GTG GAT GAC TGT GAG GCT GGG AAA GTG TGC 2322 С G C 774 CAA GAT GGC ATC TGC ACG AAC ACA CCA GGC TCT TTC CAG TGT CAG TGC CTC TCC 2376 Q 0 S 792 GGC TAT CAT CTG TCA AGG GAT CGG AGC CGC TGT GAG GAC ATT GAT GAA TGT GAC 2430 S R D R C R D 810 TTC CCT GCG GCC TGC ATC GGG GGT GAC TGC ATC AAT ACC AAT GGT TCC TAC AGA 2484 G G D CIN G TGT CTC TGT CCC CTG GGT CAT CGG TTG GTG GGC GGC AGG AAG TGC AAG AAA GAT 2538 G H R L v G G R ĸ ATA GAT GAG TGC AGC CAG GAC CCA GGC CTG TGC CTG CCC CAT GCC TGC GAG AAC 2592 CTC CAG GGC TCC TAT GTC TGT GTC TGT GAT GAG GGT TTC ACA CTC ACC CAG GAC 2646 G CAG CAT GGG TGT GAG GAG GTG GAG CCC CAC CAC AAG AAG GAG TGC TAC CTT 2700 C E E ·V E Q P Ħ H K K E C AAC TTC GAT GAC ACA GTG TTC TGT GAC AGC GTA TTG GCT ACC AAT GTC ACT CAG 2754 CAG GAA TGC TGT TGC TCT CTG GGA GCT GGC TGG GGA GAC CAC TGC GAA ATC TAT 2808 G H CCC TGT CCA GTC TAC AGC TCA GCC GAA TTT CAC AGC CTG GTG CCT GAT GGG AAA 2862 S S E F H S A AGG CTA CAC TCA GGA CAA CAA CAT TGT GAA CTA TGC ATT CCT GCC CAC CGT GAC 2916 ATC GAC GAA TGC ATA TTG TTT GGG GCA GAG ATC TGC AAG GAG GGC AAG TGT GTG 2970 Ε AAC TCG CAG CCC GGC TAC GAG TGC TAC TGC AAG CAG GGC TTC TAC TAC GAT GGC 3024 P G Y E С Y C K Q G F Y Y AAC CTG CTG GAG TGC GTG GAC GTG GAC GAG TGC TTG GAT GAG TCT AAC TGC AGG 3078 $\mathbf{C} \cdot \mathbf{L}$ R 1026 AAC GGA GTG TGT GAG AAC ACG TGG CGG CTA CCG TGT GCC TGC ACT CCG CCG GCA 3132 W P C A C N R L GAG TAC AGT CCC GCA CAG GCC CAG TGT CTG AGC CCG GAG GAG ATG GAG CAC GCC 3186 C L S P E

FIG. 25-3

CCA GAG AGA CGT GAA GTG TGC TGG GGC CAG CGA GGA GAG GAC GGC ATG TGT ATG 3240 RREVC W G Q R G E D G M C M 1080 GGG CCC CTG GCG GGA CCT GCC CTC ACT TTT GAT GAC TGC TGC TGC CGC CAG CCG 3294 G P A T F D C R Q P 1098 CGG CTG GGG TAC CAG TGC AGA CCG TGC CCG CCA CGT GGC ACC GGG TCC CAG TGC 3348 Y Q CRPCP ₽ R G CCG ACT TCA CAG AGT GAG AGC AAT TCT TTC TGG GAC ACA AGC CCC CTG CTA CTG 3402 S E S N S L L L 1134 GGG AAG TCT CCG CGA GAC GAA GAC AGC TCA GAG GAG GAT TCA GAT GAG TGC CGT 3456 R DEDSSE В TGT GTG AGC GGA CCG TGT GTG CCA CGG CCA GGC GGG GCG GTA TGC GAG TGT CCT 3510 v PRPG G A GGA GGC TTT CAG CTG GAC GCC TCC CGT GCC CGC TGC GTG GAC ATT GAT GAG TGC 3564 D A s R A R CGA GAA CTG AAC CAG CGG GGA CTG CTG TGT AAG AGC GAG CGG TGC GTG AAC ACC 3618 <u>T</u> 1206 Q R G L L C K S E V AGT GGA TCC TTC CGC TGT GTC TGC AAA GCT GGC TTC ACG CGC AGC CGC CCT CAC 3672 R С v C K A G F GGG CCT GCG TGC CTC AGC GCC GCC GCT GAT GCA GCC ATA GCC CAC ACC TCA 3726 A A A D D A A I A H T S 1242

FIG. 25-4

110 132 154 198 220 242 264 286 308 176 330 352 374 418 440 462 184 Gln Gln Glu Pro Pro G1yLys Thr Cys Pro Leu Gln G1yGln Thr Gly Ser His Asn Val Ser Ser Сув Gln Ala Gly Ala Pro Ser Gln G1yIle Ser Pro Thr Gly Asn Leu Val Gln Суз Leu G1yPro Asn Len Pro Ala Len Ser Asp Суз Lea Gly Pro Gly Gln Arg Pro Asp Glu Gln Asp Thr G1yLeu Ala Gly Сув Thr Arg Asp Ala Leu Pro Gly Leu Ala Leu Pro Ala His Arg Ser Thr Pro Pro Phe Asp Tyr Lys Leu Lys Pro Leu Gly Ala Leu Trp Сув Thr Ser Gly Leu Ile G1yPro Gln Сув Glu Gln TyrHis Cys Arg G1yThr Arg Gln Asp Сyв Ala Pro Val Leu His Gln Len Cys Lys Leu Ala Ser Arg G1yG1ySer Val Lys Glu Ile Ser Pro Ser G1yThr Gln Ala G1yGln Pro His Lys Gln Gln Len G1yGly G1yVal Ser Val Cys Ser Len Asn Ala Lys Pro Leu Ser G1yThr Ala Leu Thr Pro Pro Ser Gly Val Val Val Leu Gly Leu Leu Gly Ser Arg Pro Pro Leu Cys Ċys Gly Нiв Arg Сув Phe Val Pro Glu His Pro Len Ala G1yAsn Ala Ç Gln Lys Met Tyr Phe Val Gly Lys Gly Asp Pro Gly Phe Cys Ala Gln Ala His Thr Asn Met Сув Ala Ile Ala Asn Glu Gln Pro His Ala Met Pro Сув Gln Leu Leu Ala Glu Ala Leu Сув Phe Arg Ala Ala Ala Leu Cys Gly Pro Lea Thr Ala Arg Val ThrLeu Arg Asp His Arg G1yLys Gly Pro His Val Aen Pro Pro LyB Сyв Сув Ser GlyVal Asp Lys Ser Сув Ile Len Pro Gln Pro Asn Ser Glu Asp Gly Gly Pro Pro Glu Pro Lys Thr Pro Val Leu Ile Leu Pro Ala Pro Ser Asn Сув Glu Leu Ala Gly Thr Trp Sér Gly Arg Gln Gly Pro Lys Ala Pro Pro Pro Ile Glu Pro Thr Сув Phe Ala Glu Pro Gly Arg Arg Arg Leu Val Gly G1yAla Pro Ala Pro Pro Val Ile Hiв Сув Trp Val Asp Val Asp Pro Gln Glu Gly Ala $_{\rm Gly}$ Ser Gly Gln Arg Pro Pro Ala Asn Ser Lys Val Thr Arg His Pro Gln Val Ser Pro Ser Glu Glu Thr Val Сув GlyAsp Leu Val Val Asp Lys Ser Val Gly Val

IG. 26-1

550 572 638 594 99 726 748 682 770 792 814 836 858 880 902 924 704 Ala Ala Thr Thr Gln Pro Cys Gla His Ser Asn Leu Leu Asn Gln Ser Thr Ser Phe Сув Сув Gly Val Arg CyB G1yLeu Thr Leu Asn Val Pro Arg Ile Asp Tyr Asp Len Ser G1ySer Ile Gln Gly Ile Arg Asp Met Ser Сув Lys Pro Pro G1ySer Arg Ser Glu Gly Cya Asn Сув Gly Gln CyB Cys Glu Val Авр Glu Gln Tyr Ile His Pro Ile Phe Glu Ala Val Arg Pro Asp Glu Leu Gln Phe ABp Гуз Gln Val His Glu Leu His Leu Asp G1ySer Суз Gly Ile Ser Сув Pro Ser Lys Thr Gln Gln Glu Ser Сув Ser Lys Lys Ьув Ile Arg His Ala G1yCya Cys Val Gly Gly Val Val Сув Arg His Glu Glu His Pro Arg Ile Gly Asp Lys G1ySer Pro Tyr Сув Asn Pro Gly Glu Asp Asn TyrTyr Pro Len Ser Asp Сув Thr Gly Leu Gln Leu Ser Asp Val Pro Thr Tyr Pro Pro Gln Pro Gly Arg Arg Pro Ser Trp Arg Asn Сув Gly Gln Ala Tyr Asp Arg Asn Ala Сyв Tyr Len Tyr Сув Arg G1yG1yThr Arg ABn Asp Ser Glu Leu Pro Leu Asn Len Pro His Tyr Pro Сув Ser LyB G1yGly Thr Thr Thr Gly Val Val Cys Pro Arg Glu Pro Arg Pro Ser Gly Ser Arg Ile Arg Asn Lys Gln GluSer Ser Asn Lув Pro Pro Сув Gly Asp Сув Leu Tyr Thr Ile Thr Leu Glu Cys Asp Gln Pro Arg Asp Ala Сув Arg Lys Asn Сув Phe Arg Thr Asp Сув His Cys Asn Arg Cys Ile Gln Arg Ser Thr Ser Asp Gla G1yThr Arg Thr Glu Сув Gla Сув сув Ala G1yGly Cys Leu Gly Gly Cys Val Ьув Glu Gln Asn His Ala Val Leu Tyr ABp Ser Lys Tyr Val Ser her Val

16. 26-2

1012 1056 1078 1122 1144 1166 1188 1210 1232 1034 1100 сув Leu Ser Pro Glu Gly Lys Cys Val Ala Arg Ala Thr Ile Ser Ser Gly Asn Leu Leu Glu Ser Len Pro Asn Thr GlnAsp Gly Asp Gly Ser Glu Glu Суз Arg Gln Ser Leu Ser Ile Gly Glu Gln Asp Arg Thr Asp Pro Thr Cys Lys Asp Ala Glu Сув Pro Arg Asn Ala Arg Val Val Tyr Суз Gln Сув Pro Pro Сув Val $_{\rm Gly}$ Ser Ile Tyr Asn Ala Сув Gln Сув Gly Ala Ser Arg Val Glu Phe His Arg Pro Ala Gly Asp Ser Lys Сув Arg Ile Asp His Ala Glu Pro Lys Gln Gly Ala Asp Arg Сув Ser G1yGly Pro Phe Arg Сув Ser Cys Ile Leu Phe Gly Asn Tyr Thr Leu $_{\rm G1y}$ Ser Ser Glu Lys Thr Leu Ser Ala LyB Ser Gly Ser Val Cys Arg Glu Ala Leu Сув Arg Val Leu Val Gln Leu Asp Pro Сув Leu Thr Glu Cys Tyr Leu Asp Asp Pro Pro Thr Pro Ala Pro Arg Pro Arg Leu Phe Ser Ala His Glu Cys Gln Cys Phe Gly Thr Gly G1yCys Thr Asp Glu Ile Asp Gly Tyr Сув Pro Ala Pro Gla Gly Arg Ala Ala Ala Asp Ala Thr Trp Arg Trp. Asp $_{\rm Gly}$ Gln Lys Asp Asn Cys Gln Pro Cys Ser Pro Cys Phe Ser Pro Val Ser CyB Len Val His Arg Asp Gln Asp Trp Gly Ser Val Leu Asn G]u Glu Trp Thr Asn Arg Glu Ser Glu Val Gly

FIG. 26-3

ATGGAGAGCA	CCTCCCCGCG	ATGGAGAGCA CCTCCCCGCG AGGTCTCCGG TGCCCACAGC TCTGCAGCCA CTCTGGCGCC ATGAGAGCGC CGACCACCGC	TGCCCACAGC	TCTGCAGCCA	CTCTGGCGCC	ATGAGAGCGC	CGACCACCGC	80
TCGCTGCTCC	rcccrccrcc cdarccarcc	AACGGGTGCG	TTGGAGGGGC	TTCCTGCCAC	TTGTCCTGGC	TGTCTTGATG	GGGACAAGTC	160
ATGCCCAACG	ATGCCCAACG GGATTCCATA	GGGAGATACG	AACCAGCTAG	CAGGGATGCG	AATCGGTTGT	GGCACCCCGT	GGGCAGCCAC	240
CCCGCAGCGG	CCCGCAGCGG CTGCAGCCAA	GGTGTACAGT	CTGTTCCGAG	AGCCTGACGC	GCCGGTCCCC	GGCTTGTCGC	CCTCTGAGTG	320
GAACCAGCCG	GAACCAGCCG GCCCAGGGGA	ACCCGGGATG	GCTCGCAGAG	GCCGAGGCCA	GGAGGCCACC	TCGAACCCAG	CAGCTGCGTC	400
GAGTCCAGCC	GAGTCCAGCC ACCTGTCCAG	ACTCGGAGAA	GCCATCCCCG	GGGCCAGCAG	CAGATAGCAG	CCCGGGCTGC	ACCTTCTGTC	480
GCGCGCCIGG	GCGCCCTGG AAACCCCTCA	GCGACCCGCG	GCTGCACGGC	GAGGGCGGCT	CACTGGGAGA	AATGTCTGCG	GGGGACAGTG	560
r crecccassa	CTGCCCAGGA TGGACAACAT	CAMACAGCAC	CAACCACTGT	ATCAAACCTG	TGTGTCAGCC	TCCCTGTCAG	AACCGAGGCT	640
CCTGCAGCAG	ccrecaecae eccccaegro	TGCATCTGCC	GTTCTGGCTT	CCGTGGGGCG	CGCTGTGAGG	AGGTCATCCC	TGAGGAGGAA	720
TTTGACCCTC	TTTGACCCTC AGAATGCCAG	GCCTGTGCCC	AGACGCTCAG	TGGAGAGAGC	ACCCGGTCCT	CACAGAAGCA	GTGAGGCCAG	800
AGGAAGTCTA	AGGAAGTCTA GTGACCAGAA	TACAGCCGCT	GGTACCACCA	CCATCACCAC	CTCCATCTCG	GCGCCTCAGC	CAGCCCTGGC	880
CCCTGCAGCA	CCCTGCAGCA GCACTCAGGG	CCGTCCAGGA	CAGITCGICG	GTATCCGGCC	ACTGGTGCCA	ATGGCCAGCT	GATGTCCAAC	960
g GCTTTGCCTT	GCTTTGCCTT CAGGACTCGA	GCTGAGAGAC	AGCAGCCCAC	AGGCAGCACA	TGTGAACCAT	CICICACCCC	CCTGGGGGCT 1	1040
GAACCTCACC	GAACCTCACC GAGAAAATCA		AGAAAATCAA AGTCGTCTTC	ACCCCCACCA	TCTGCAAGCA	GACCTGTGCC	CGGGGACGCT 1	1120
S GTGCCAACAG	GTGCCAACAG CTGTGAGAAG	GGTGACACCA	CCACCTTGTA	CAGTCAGGGT	GGCCATGGGC	ATGACCCCAA	GTCTGGCTTC 1	1200
GTATCTATT	CGTATCTATT TCTGCCAAAT	CCCCTGCCTG	AATGGTGGCC	GCTGCATCGG	CCGGGACGAG	TGCTGGTGTC	CAGCCAACTC 1	1280
CACAGGAAAG	CACAGGAAAG TTCTGCCATC	reccrerccc	GCAGCCAGAC	AGGGAACCTG	CAGGGCGAGG	TTCCCGGCAC	AGAACCCTGC 1	1360.
TGGAAGGTCC	TGGAAGGTCC CCTGAAGCAA	TCCACCTTCA	CGCTGCCTCT	CTCTAACCAG	CTCGCCTCTG	TGAACCCCTC	GCTGGTGAAG 1	1440
GTGCAAATTC	GTGCAAATTC ATCACCCGCC	TGAGGCCTCT	GTGCAGATTC	ACCAGGTGGC	CCGGGTCCGG	GGTGAGCTGG	ACCCCGTGCT 1	1520
GGAGGACAAC	GGAGGACAAC AGTGTGGAGA	CCAGAGCCTC	TCATCGCCCC	CACGGCAACC	TAGGCCACAG	CCCCTGGGCC	AGCAACAGCA 1	1600
TACCCGCTCG	TACCCGCTCG GGCCGGAGAG	GCCCTCGGC	CACCACCAGT	GCTGTCTAGG	CATTATGGAC	TICTGGGCCA GIGTIACCIG		1680
AGCACGGTGA	AGCACGGTGA ATGGACAGTG	TGCTAACCCC	CTAGGTAGTC	TGACTTCTCA	GGAGGACTGC	TGTGGCAGTG	TGGGGACCTT 1	1760
CTGGGGGGTG	CTGGGGGTG ACCTCCTGTG	CTCCCTGCCC	ACCCAGACAA	GAGGGTCCAG	CCTTCCCAGT	GATTGAAAAT	GGCCAGCTGG 1	1840
AGTGTCCCCA	AGTGTCCCCA AGGATACAAG	AGACTGAACC	TCAGCCACTG	CCAAGATATC	AATGAGTGCC '	TGACCCTGGG	CCTCTGCAAG 1	1920

FIG. 27-1

2160 2240 2480 2560 2720 2800 3040 SACTCGGAGT GCGTGAACAC CAGGGGCAGC TACCTGTGCA CCTGCAGGCC TGGCCTCATG CTGGATCCGT CAAGGAGCCG 2000 2880 2960 3280 2640 3120 3360 3200 3440 TCCGCCTGTC TGCTACCGGT CACTGGGGTC TGGTACCTGC ACCCTGCCTT GCCTGGGGTA GCACATGTGA ACAGTGTCCC CCACCTGGGC TGACTCTCGG TGGATACAGA GGAACCCCTG GATATCGATG AGTGTGAGCA GCCCGGGGTG TGCAGTGGTG GGCGATGCAG CAACACGGAG TACATCATGG TCAGGAAAGG ACACTGTCAA GATATCAACG AATGCCGTCA GGCTCCTACA CTTGTCTGGC CTGTGAGGAG GGCTATGTAG TATGAGGTCA CCCCAGACAA GAAGGGCTGC CGAGATGTGG ACGAGTGTGC GGAAGACCAG CACCATCCTT CACAGCCCCC GTCACCCTCG CAACATGGAA GAGGGCTCCT TCACCTGCTC AGCCTGTCAG AGCGGGTACT GCCCCACAGG CGTCTGCACC GCGAAGATGT TGCTCCTCAC GCACCAGATG GATGAATGTG CAGCCACAGA CCCGTGTCCG GGAGGACACT GTGTCAACAC AGAGGGCTCC TTCAGCTGTC IGTGTGAGAC TGCTTCCTTC CAGCCCTCCC CAGACAGCGG AGAATGTTTG GATATTGATG AGTGTGAGGA CCGTGAAGAC AGCTCAGACA CACTGCACCC CTGACAAAGG CTTGGTGACA GATGICAATG AGTGICTGAC CCCTGGGATA TGTACCCATG GAAGGIGCAT GCCTCCCAAA GAGTGTATGA CTACACACTA AAGAGCATTG GGCAACAGAT TTCCTACCAA TCAACAGCCT GGGCTCCTTC TTGTGCCTCT GTGCACCCGG CTTTGCTAGT GCTGAGGGGG GCCATGGCTA CACCTACTCG CAGAGCAGAG GAGACCCTCC GGGCTCCTAC TCCTGCCTCT GCTATCCTGG CCAGTGATGT ACCTGTGTGA GGATGCCACT CCCAGCCAAG ACTACTGTAC TGATGACAAC CCAGCTGGTC AATGGCACCA TGTGTGAGGA CGTGAATGAG TGTGTTGGGG CCTGGAGTCT CAACCCCCTG GAAGGTCCCC AAAGCAGCTG CCGGGGAGGC GAATGCAAGA ACACAGAAGG GCTGCAGCCG TGTGGGCAAA TAGCCCCTTA AGGGAGCAGA GATTGAGGCT GGGTACCAGG TGGCCCTGGG ATGTGCCTTC GTGATTCCCT GCTACCGGCC GCAGGGACTA TGCCCTGCTG CCGCCACCTG CTACCTGCCC CCAACATCTG AGAAGAGCAA CAACTCCCCT CCTCAACACG GCCTGTGAAG ACTTGGATGA CTGCAAGGAC TGTGACCAGG TCTCCATGCA CAGATATGCT CAGGGAGATC AGGAACTGGC CGGGCAGCCA TGCTCCCCAC AGAGTCCAGC GCTGGAGCCT CCAGCTACAC CAAGGAAGA GGGCGCTGTG TCAACAGTGT TGATCGGGGC GGAGATGCGT TGAGCCGGGC CGGGCCTCTG SAGACACACA GGAGTGCCAA GGCTCGTACC ACTGCGAGTG GACAAGGCTG GATCACCAAG GCCGAAGAAG GCAACCACTC TCACAACCAG GCCTGGACAG GGCATTCCAG CAGACTITGA ICCAIGITIT rgrercreca ecceregera CCCTGGTACC TGCCCTGATG GAGCTGTGTA GCTCCTTCTC CAGAAGCCTT GATGCTCCTG TCGTGCCCCA AGATGGCACT CTGCGTATCG regricates CTGCCTGGCA TATGAGGAAA AAGCAGAGAG GCTGTTCAGA GCCAGAGTGG GGCTCCTTTA CAGCCGAGCC GGGTGAACGA AATACTGTAG GGATGAGTGT ACCAGGGCTT SGCGAGTGCC CCAGGATGTT IRSTITUTE SHEET (RIII

FIG. 27-2

5502	AG	GCCAAGGAGT	ACACTGTGCG	CAGGCCCCCC	GTGGCAGAGC	GCCACTGTTC GCCAGGTTAC	GCCACTGTTC
TCCTATCGCT 5440	CACAGAGGGT TCCTATCGCT	ACTGTGAGAA	GCACACGGTC	ACGACTCTGT	ACGGGCCTGC	GAACGAGTGT GAAGACTTGA	GAACGAGTGT
GTGTGGATGT 5360	ACATTGGCCT	GGATGCGCCC	GCTTCCAGCT	TGCTTTGAGG	CACTTGCGAC	GGGAGGGCTA	GTGCGTGTGC GGGAGGG
TGGCCGCTGC 5280	GCTGTGAGAA	ATCCTGAATG	GGAATGTGGC	TTCAGGCTGA	TTCGAAGGCC	CCCTGCCTCC	ACTCAGAACC CCCTGCC
CIAGCCAGCC 5200	GCCTCACTAT	CTGAACTTCA	CTGCAGCCCT	TGAGCCTCCT	CACCTGTCCT	GGAGACAACA	CAGCCAGCCG GGAGACA
CCAACCCAGC 5120	CCTCCCTTCT	TGCCCCTGAG	CCGAGGACAC	TACCTAGGCC	CTTCTATAAC	ATGGGGCTCC	TACGGCCCAG ATGGGGC
TGAAAACCTC 5040	ACGATCTGCC	ccreeccree	TGAGTATGGC	GGCCAGGCTA	ATCCACTTCC	CGGAGCAGGG	AGGCAGAGCG CGGAGCA
GCTCGGATTG 4960	GTGCAACGTG	ACGCTCAGCT	TCTGAGGTCT	GCCCAGGAGC	CICIGIGCCC	CAGCAATGCG	GGCCTGGAGC CAGCAAT
AAGAT¢GGGA 4880	TGCTGCTGCC	CTATACAGAA	ACCATACCAC	Treceresec	CAGCCAGCCC	AAAGTCACCA ATGATGTGTG	AAAGTCACCA
CTGCTGGAAA 4800	ACATGGACAT	CATGACATCC	CTTCCCTGAC	GCACGGAGGA	ACGACCAGCA	GTGGGCAGCG CTGTGTGAAC	GTGGGCAGCG
CTAGACCTCA 4720	CCCCTCACC	TCTGCAATCC	TTCCATTGCC	AGAAGGCTCC	GTGTGAACCA	AACGGTGAGT	GGCCTGTGAG AACGGTG
GCCAGGACTT 4640	CACAACGAAT	GTGCCAGGAT	CCAGCAGGAA	TATGATGCCT	TGGCTACCAC	TGTGCAACCC	TACATTIGCC IGIGCAA
AGTGCCTGGC 4560	GCTCAAACAT	AATGGCCGAT	TCTCTGCCAG	TIGGGCCIGC	TGTGTACTGT	TGTATACAGA TGCCGATGAA	TGTATACAGA
GGACAAACCA 4480	CTGGACATTT	TGGAAGGAGC	TACATCCCAG	TGGTCAAGGT	TCTGCCCCAG	CTCAGTTGAA TTCAGTCAGC	CTCAGTTGAA
CATCTGAGGA 4400	GCGCCCIGCC	AAAGGCCTGT	CCAGATGGGG	ACTCAGGGTG	GTGCTGCTGC	CAGAACTCCA CACAGGCCGA	CAGAACTCCA
AATCCTGGGC 4320	CCTGCTCTCA	GGTGGTCCTC	TGAACACAAT	AATGCTACTC	ATCCGCATGG	AGGACCAGGC ICCAAGCCIT	AGGACCAGGC
GTCCGGACAG 4240	AATCCCAGAG	GAGCTCAGAG	CGGGTGGCTG	CIGCCGICCI	AAGAAGGACA	TACGACGCAG	CCTTGAGGAG TACGACG
GCGCCAGTGA 4160	CTGTGCCTTT GCGCCAGTGA	AGGCTCCTTC	AGAACGTGGA	GCGCTCTGTG	GTGTGGGGAT	TGATGGCAGT	TGTGAGCTCA TGATGGC
TGTGAACGAG 4080	AGTGTGTTGA	TCAGGCTGGG	GACCTCACCA	AGGGCTTCGA	CTGTGTGACC	CGGACGCTC CTTCCGCTGC	CGGACGGCTC
TGTGACAACA 4000	CCATGGCTTC	TGTGTGGGAA	AATGACACTG	TGAATGTGCC	TTGACATAGA	GGCGCCAAAT GGAGACTGCA	GGCGCCAAAT
GATTCTATGT 3920	TGCCAGCCTG GATTCTATGT	CATCCTGGAC	CCTACCGCTG	AGTCCTGGTT	CCGGIGIGCG GAGCCIGGAG GIGIGAGAAC AGICCIGGII CCIACCGCIG CAICCIGGAC	GAGCCTGGAG	SOSTELESSO

SUBSTITUTE SHEET (RUI F 26)

FIG. 27-3

102	<u> </u>
180	GDNTPVLEPPLQPSELQPHYLASHSEPPASFEGLQAEECGILNGCENGRCVRVREGYTCDCFEGFQLDAPTLACVDVNECEDLNGPARLC
171	CCCQDGEAWSQQCALCPPRSSEVYAQLCNVARIEAERGAGIHFRPGYEYGPGLDDLPENLYGPDGAPFYNYLGPEDTAPEPPFSNPASQP
162	YDASSRKCQDHNECQDLACENGECVNQEGSFHCLCNPPLTLDLSGQRCVNTTSSTEDFPDHDIHMDICWKKVTNDVCSQPLRGHHTTYTE
153	ONSTQAECCCTQGARWGKACAPCPSEDSVEFSQLCPSGQGYIPVEGAWTFGQTMYTDADECVLFGPALCQNGRCSNIVPGYICLCNPGYH
144	SGWECVDVNECELMMAVCGDALCENVEGSFLCLCASDLEEYDAEEGHCRPRVAGAQRIPEVRTEDQAPSLIRMECYSEHNGGPPCSQILG
135	QPSPDSGECLDIDECEDREDPVCGAWRCENSPGSYRCILDCQPGFYVAPNGDCIDIDECANDTVCGNHGFCDNTDGSFRCLCDQGFETSP
126	CLCHQGFQLVNGTMCEDVNECVGEEHCAPHGECLNSLGSFFCLCAPGFASAEGGTRCQDVDECAATDPCPGGHCVNTEGSFSCLCETASF
117	EGSFTCSACQSGYWVNEDGTACEDLDECAFPGVCPTGVCTNTVGSFSCKDCDQGYRPNPLGNRCEDVDECEGPQSSCRGGECKNTEGSYQ
108	CPDGRCVNSPGSYTCLACEEGYVGQSGSCVDVNECLTPGICTHGRCINMEGSFRCSCEPGYEVTPDKKGCRDVDECASRASCPTGLCLNT
9	ECMRNPCEGRGRCVNSVGSYSCLCYPGYTLVTLGDTQECQDIDECEQPGVCSGGRCSNTEGSYHCECDRGYIMVRKGHCQDINECRHPGT
	LPARVPGDATGRPAPSLPGQGIPESPAEEQVIPSSDVLVTHSPPDFDPCFAGASNICGPGTCVSLPNGYRCVCSPGYQLHPSQDYCTDDN
81	LPGTEAFREICPAGHGYTYSSSDIRLSMRKAEEEELASPLREQTEQSTAPPPGQAERQPLRAATATWIEAETLPDKGDSRAVQITTSAPH
72	NECLTLGLCKDSECVNTRGSYLCTCRPGLMLDPSRSRCVSDKAVSMQQGLCYRSLGSGTCTLPLVHRITKQICCCSRVGKAWGSTCEQCP
63	APRPPVLSRHYGLLGQCYLSTVNGQCANPLGSLTSQEDCCGSVGTFWGVTSCAPCPPRQEGPAFPVIENGQLECPQGYKRLNLSHCQDJ
54	RTLLEGPLKQSTFTLPLSNQLASVNPSLVKVQIHHPPEASVQIHQVARVRGELDPVLEDNSVETRASHRPHGNLGHSPWASNSIPARAGE
45	· TPTICKQTCARGRCANSCEKGDTTTLYSQGGHGHDPKSGFRIYFCQIPCLNGGRCIGRDECWCPANSTGKFCHLPVPQPDREPAGRGSRH
36	VTRIQPLVPPPSPPPSRRLSQPWPLQQHSGPSRTVRRYPATGANGQLMSNALPSGLELRDSSPQAAHVNHLSPPWGLNLTEKIKKIKVVF
27	NVCGGQCCPGWTTSNSTNHC1KPVCQPPCQNRGSCSRPQVC1CRSGFRGARCEEV1PEEEFDPQNARPVPRRSVERAPGPHRSSEARGSL
18	LFREPDAPVPGLSPSEWNQPAQGNPGWLAEAEARRPPRTQQLRRVQPPVQTRRSHPRGQQQIAARAAPSVARLETPQRPAAARRGRLTGR
o	MESTSPRGLRCPQLCSHSGAMRAPTTARCSGCIQRVRWRGFLPLVLAVLMGTSHAQRDSIGRYEPASRDANRLWHPVGSHPAAAAAKVYS

FIG. 28

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.