ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

Εργασία 1^{η}

• Στοιχεία Φοιτητή

ΠΑΝΤΕΛΕΗΜΩΝ ΜΑΘΙΟΥΔΑΚΗΣ ΜΕΣ20022

- \bullet Διδάσκων
- Βοηθός Φροντιστηρίου

Μαρκός Κούτρας Δημητρίος Λύμπεροπούλος

Πανεπιστήμιο Πειραιά ΠΜΣ Εφαρμοσμένης Στατιστικής

Περιεχόμενα

Άς	πκηση 1	3
Άς	σχηση 2	4
Άς	σχηση 3	4
Άς	σχηση 4	5
Υπ	οερώτημα 1	5
Υπ	οερώτημα 2	5
Υπ	οερώτημα 3	6
Υπ	οερώτημα 4	6
Άς	σκηση 5	7
Υπ	οερώτημα 1	7
Άς	σχηση 6	7
Άς	σχηση 7	7
Άς	σκηση 8	8
Ερ	ώτημα +	9
Ka	ιτάλογος Σχημάτων Labels των παρατηρήσεων	3
2		3
3	1 1 1-	3
4		3
5		4
6		4
7		4
8		4
9	2	4
10		4
11		5
	•	5
13	P-P plot Studentized residuals	5
		5
15	Scatter-Plot Studentized Residuals	6
16	Levene Test Studentized Residuals $Sig = 0.232 > a \dots$	6
17	Διάγραμμα Ελέγχου Ανεξαρτησίας Καταλοίπων	6
18	Έλεγχος Ροών Ανεξαρτησίας Καταλοίπων P-value = $0.662 > \alpha = 0.05 \dots$	6
19	Έλεγχος Μοντέλου avgtripexp-avgdurexp P-value = 0.102 >	
	$\mathtt{a} = 0.05 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	7
20	Έλεγχος των μετασχηματισμένων μεταβλητών (ανεξάρτητη μετα-	
	βλητή avgaccomexp-transf). Διαχρίνουμε $Sig(β_0) = 0.001$	8

Αρχικά, όπως ορίζει το πρώτο ερώτημα, επιλέγουμε με την εντολή Select Cases τις εκτιμημένες παρατηρήσεις, estimated values = -1, με βάση τον πίνακα των labels

Στη συνέχεια, επιλέγουμε να εξαιρέσουμε τα δεδομένα με χαρακτηρισμό estimated values = -1 με την χρήση από το Select Cases : MIN(X1, X2, X3, X4, X5, X6) = -1. Συνοπτικά, έστω κι αν μία παρατήρηση είναι Estimated Value, τότε το MIN Function θα επιστρέψει τιμή -1, συνεπώς θα αφαιρεθεί.

Τελικώς, αποθηκεύουμε το καινούριο Dataset με το όνομα tourism
2014valid.

 Σ χήμα 4: tourism
2014valid

Σχήμα 1: Labels των παρατηρήσεων

Σχήμα 2: Επιλογή της MIN Function

Σχήμα 3: Δημιουργία του νέου Datacet

Παρακάτω διακρίνονται όλα τα διαγράμματα της μεταβλητής avgtriρεχρ και όλες τις άλλες μεταβλητές

/SCATTERPLOT(BIVAR)= avgtranspexp WITH /MISSING=LISTWISE. /SCATTERPLOT(BIVAR)= avgrestexp WITH avgtripexp /MISSING=LISTWISE. /SCATTERPLOT(BIVAR)= avgaccommexp WITH /MISSING=LISTWISE. /SCATTERPLOT(BIVAR)= avgdurexp WITH avgtripexp /MISSING=LISTWISE. /SCATTERPLOT(BIVAR)=trips WITH avgtripexp /MISSING=LISTWISE. /SCATTERPLOT(BIVAR)= accomarrivals WITH

Άσκηση 3

Παρατηρούμε απο τα διαγράμματα καθώς και τους συντελεστές R^2 η μεταβλητή που ερμηνεύει καλύτερα τα δεδομένα είναι η avgaccomexp με $R^2 = 0.687$. Συνεπώς, εάν ισχύουν και οι προϋποθέσεις των γραμμικών μοντέλων (Κανονικότητα καταλοίπων, ασυσχέτιστα και ομοσκεδαστικά κατάλοιπα που θα ελεγχθούν στα επόμενα ερωτήματα) τότε θα αποτελέσει ενα αρχετά χαλό μοντέλο.

 Σ υγκεκριμένα, το βέλτιστο εκτιμηθέν υπόδειγμα είναι :

```
y = 73.36 + 5.89 \cdot avgaccomexp
                                    βέλτιστο εκτιμηθέν υπόδειγμα (1)
```

$$y = \beta_0 + \beta_1 \cdot x + \epsilon$$
 αντίστοιχο θεωρητικό (2)

Υποερώτημα 1

			Coeff	icients ^a				
		Unstandardized Coefficients		Standardize d Coefficients			95.0% Confidence Interval for B	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	73.357	18.000		4.075	.001	35.923	110.791
	Average accomodation expenditure per trip	5.885	.867	.829	6.786	.000	4.082	7.689

a. Dependent Variable: Average expenditure per trip (in euros)

Σχήμα 11: Στατιστικοί Έλεγχοι του βέλτιστου μοντέλου

Όπως διαχρίνουμε απο το παραπάνω αποτέλεσμα του γραμμιχού μοντέλου, Απορρίπτεται η υπόθεση ο συντελεστής $β_1$ της μεταβλητής avgaccomexp να είναι μηδέν με Sig=.000 σε επίπεδο σημαντιχότητας $\alpha=0.05$. Συνεπώς, η μεταβλητή είναι στατιστιχά σημαντιχή. Αυτό βέβαια φαίνεται και απο το διπλανό γράφημα με εμφανή ένδειξη ύπαρξης τάσης.

Υποερώτημα 2

Για τον έλεγχο κανονικής κατανομής των καταλοίπων, μπορούμε να χρησιμοποιήσουμε τόσο γραφικούς ελέγχους, όσο και πιό αυστηρούς όπως τον έλεγχο KS-test. Δίπλα παρουσιάζονται οι γραφικές αναπαραστάσεις των τυποποιημένων Studentized residuals, ιστογράμματος και P-P Plot.

Απο το ιστόγραμμα δεν διακρίνεται κάποια ισχυρή ένδειξη κανονικότητας των καταλοίπων. Στο P-P Plot τα σημεία δεν βρίσκοντα αρκετά κοντά στις αντιστοιχες θεωρητικές τιμές των ποσοστιαίων σημείων της κανονική κατανομής.

Βέβαια, για να καταλήξουμε σε κάποιο ασφαλές συμπέρασμα, πρέπει να εφαρμόσουμε και τον έλεγχο KS-test.

Σχήμα 14: Έλεγχος KS-test

Σχήμα 12: Ιστόγραμμα Studentized residuals

Σχήμα 13: P-P plot Studentized residuals

Όπως διαχρίνουμε απο τον έλεγχο KS-test, p-value = 0.082 > a = 0.05, συνεπώς $\Delta \epsilon \nu \ A$ πορρίπτουμ ϵ την υπόθεση τα δεδομένα να ακολουθούν κανονική κατανομή.

Υποερώτημα 3

Για την υπόθεση ομοσκεδαστικότητας, πάλι θα ξεκινήσουμε με γραφικούς ελέγχους και καταλήγοντας με στατιστικό έλεγχο θα αποφανθούμε αν δέν παραβιάζεται η ομοσκεδαστικότητα. Δεξιά, παρουσιάζεται το Scatter-Plot Studentized Residuals όπου αν εξαιρέσουμε κάποιες απομωνομένες παρατηρήσεις, δέν φαίνεται να μην είναι ομοσκεδαστικά τα δεδομένα.

Προχωρώντας σε στατιστικό έλεγχο Levene, με κατηγοριοποίηση των δεδομένων ως προς την διάμεσο, δέν απορρίπτουμε τα τυποποιημένα κατάλοιπα να είναι ομοσκεδαστικά

Independent Samples Test											
Levene's Test for Equality of Variances					t-test for Equality of Means						
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	95% Confiden the Diff Lower		
Studentized Residual	Equal variances assumed	1.515	.232	-4.783	21	.000	-1.4271198	.29840380	-2.0476845	80655511	
	Equal variances not assumed			-4.666	15.174	.000	-1.4271198	.30586250	-2.0784007	77583890	

 Σ χήμα 16: Levene Test Studentized Residuals Sig = 0.232 > a

Υποερώτημα 4

Καταλήγοντας σε έλεγχο ανεξαρτησίας, πάλι παρουσιάζονται γραφικοί και στατιστικοί έλεγχοι για τον έλεγχο ανεξαρτησίας των καταλοίπων. Απο Scatter-Plot Studentized Residuals ως προς Unstandartized Predicted Values, δέν φαίνεται κάποια σαφή ένδειξη συσχέτισης καταλοίπων. Εν κατακλείδη, ο έλεγχος ροών κι αυτός $\Delta \epsilon \nu \ A$ πορρίπτει ανεξαρτησία καταλοίπων.

Runs Test

Unstandardi zed Residual
99407
11
12
23
14
.437
.662

a. Median

Σχήμα 18: Έλεγχος Ροών Ανεξαρτησίας Καταλοίπων P-value = $0.662>\alpha=0.05$

Σχήμα 15: Scatter-Plot Studentized Residuals

Σχήμα 17: Διάγραμμα Ελέγχου Ανεξαρτησίας Καταλοίπων

Υποερώτημα 1

$$AVGTRIPEXP = 73.36 + 5.89 \cdot AVGACCOMEXP$$

Άυξηση κατα 50 ευρώ δαπάνης καταλυμάτων \Rightarrow Άυξηση κατα 294.5 της ταξιδιωτικής δαπάνης (3)

$$\text{AVGTRIPEXP} = 132 + 30.1 \cdot \text{AVGDUREXP}$$

Μείωση κατα 103 ευρώ δαπάνης πολυτελων αγαθών \Rightarrow Μείωση κατα 3100.3 της ταξιδιωτικής δαπάνης (4)

Βέβαια, για το μοντέλο (4) απο έλεγχο

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

 $\Delta \epsilon \nu \ A$ πορρίπτουμ ϵ την H_0 , άρα μια μεταβολή στο avgdurexp δεν πρόχειται να προχαλέσει μεταβολή στο avgtripexp.

Άσκηση 6

Analyze \to Regression \to Linear \to avgtripexp with avgaccomexp \to Save Mean, Individual, Conf.Int 93% $93\%\Delta E$

- 1. μέση πρόβλεψη avgtripexp της Ιταλίας [155.77784, 207.28088]
- 2. πρόβλεψη Βέλγικη avgtripexp [96.39631, 342.46534]

Άσκηση 7

Άρχικα, θα μετασχηματίσουμε κατάλληλα τον έλεγχο ώστε να γραφι συναρτήσει του συντελεστή β_0 και στη συνέχεια θα μετασχηματίσουμε και τις μεταβλητές καταλλήλως για να εφαρμόσουμε τον έλεγχο υπόθεσης χωρίς την σταθερά (αφου θα γραφεί συναρτήσει του β_1)

$$H_0: 2 \cdot \beta_1 - 5 \cdot \beta_0 = 4 \Rightarrow$$
$$\beta_0 = 0.4 \cdot \beta_1 - 0.8$$

 Σ χήμα 19: Έλεγχος Μοντέλου avgtripexp-avgdurexp P-value = 0.102 > a = 0.05

 $\begin{aligned} & \text{COMPUTE avgtripexp_transf} \\ & \text{avgtripexp} \, + \, 0.8. \\ & \text{EXECUTE}. \end{aligned}$

 $\begin{array}{l} {\rm COMPUTE~avgacommexp_transf} = \\ {\rm avgaccommexp} \ +0.4. \\ {\rm EXECUTE}. \end{array}$

$$Y = \overbrace{0.4 \cdot \beta_1 - 0.8}^{\beta_0} + \beta_1 \cdot X \Rightarrow Y^* = Y + 0.8$$
$$X^* = X + 0.4$$
(5)

Αποτέλεσμα ελέγχου :
$$\mathbf{Sig} = 0.001$$

Coefficientsa

			Unstandardized Coefficients		Standardize d Coefficients		98.0% Confidence Interval for B	
Mode	ıl	В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	71.803	18.242		3.936	.001	25.877	117.729
	avgaccomexp_transf	5.885	.867	.829	6.786	.000	3.702	8.069

a. Dependent Variable: avgtripexp_transf

Σχήμα 20: Έλεγχος των μετασχηματισμένων μεταβλητών (ανεξάρτητη μεταβλητή avgaccomexp-transf). Διακρίνουμε $\mathrm{Sig}(\beta_0)=0.001$

Συνεπώς, απορρίπτουμε την $H_0: 2 \cdot \beta_1 - 5 \cdot \beta_0 = 4$

Άσκηση 8

Μετασχηματίζουμε τα δεδομένα ως εξής:

$$y = e^{\beta_0 + \beta_1 \cdot x} \Rightarrow$$

$$\log(y) = \beta_0 + \beta_1 \cdot x \Rightarrow$$

$$\ln(\text{avgtripexp}) = 4.454 + 0.028 \cdot \text{avgtranspexp}$$

$$R^2 = 0.356$$
(6)

Όταν τα μεταφορικά κόστη ανέλθουν σε 31.8 τότε η μέση ταξιδιωτική δαπάνη θα εκτιμηθεί ως :

$$\ln(\text{avgtripexp}) = 4.454 + 0.028 \cdot 31.8 = 5.344 \Rightarrow$$

$$\text{avgtripexp} = \text{e}^{5.344}$$
 (7)

 ${\tt COMPUTE\ avgtripexp_transf} =$ avgtripexp + 0.8. EXECUTE. ${\tt COMPUTE~avgacommexp_transf} =$ avgaccommexp +0.4. EXECUTE. DATASET ACTIVATE DataSet1. REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS CI (98) R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT avgtripexp_transf /METHOD=ENTER avgaccomexp_transf. COMPUTE log_avgtripexp=LN(avgtripexp). EXECUTE. REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS CI (95) R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT log_avgtripexp /METHOD=ENTER avgaccommexp.

 $\begin{array}{c} {\rm COMPUTE\ log_avgtripexp}{=} {\rm LN}(\\ {\rm avgtripexp}).\\ {\rm EXECUTE}. \end{array}$

* Encoding: UTF-8.

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI
(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT log_avgtripexp
/METHOD=ENTER avgtranspexp.

Ερώτημα +

- Ο ορισμός του επισκέπτη με βάση τα metadata της ιστοσελίδας είναι κάθε άτομο (Ευρωπαίο) που ταξιδεύει απο ένα μέρος διαφορετικό της κατοικίας του, σε ένα άλλο για λιγότερο απο 12 μήνες, με σκοπό διαφορετικό απο αυτόν που ασκεί στο καθημερινό περιβάλλον του.
- 2. Τροποι συλλογής δεδομένων
 - Ερωτηματολόγια
 - Τηλεφωνική επικοινωνία
 - Συνέντευξη πρόσωπο με πρόσωπο
- 3. Δεδομένης της 15.2.1 παραγράφου απο τα Πολωνικά αρχεία,λόγω καινούριας μεθοδολογίας υπολογισμού δεδομένων(έτος 2014),δεν έχουν υπολογιστεί αυτά τα οποία προέρχονται απο το 2014