- 1. 已知在cluster.csv中保存着某时期某地区传染病发病及死亡情况的统计信息。使用K均值聚类方法对传染病进行聚类分析,要求完成以下任务:
- 1. 尝试找出一个较为优化的聚类个数K(K最大为10),并说明理由;
- 2. 使用前面找出的K值,对给的数据进行聚类分析,并说明聚类结果中各个簇包含了哪些传染病;
- 3. 以发病率为横轴,病死率为纵轴,聚类簇号为颜色,绘制散点图,并为每个点标记 疾病名称,结合图形及聚类数据,解释聚类结果的各簇传染病,各自的典型特征是 什么。

答:

1. library(cluster)

data = as.data.frame(read.csv("/Users/mayuheng/Desktop/ex/ex5/
cluster.csv",fileEncoding = "GBK"))
rownames(data)=data[,1]
data=data[,-1]
wss <- numeric(10)
for (k in 1:10)</pre>

wss[k] <- sum(kmeans(data, centers=k, nstart=k)\$withinss)
plot(1:10, wss, type="b", xlab="Number of Clusters", ylab="Within Sum of Squares")</pre>

绘图如下

所以选取k=3为聚类个数。
2.
result=kmeans(data,3,nstart = 3)
data\$cluster = factor(result\$cluster)
输出result如下

K-means clustering with 3 clusters of sizes 2, 23, 2

Cluster means:

incidence deathrate fatalityrate

- 1 94.16125 0.179400000 0.198700
- 2 3.40063 0.008826087 2.343691
- 3 0.12585 0.123250000 82.357450

Clustering vector:

鼠疫	霍乱	病毒性肝炎		痢疾
2	2	1	2	
伤寒副伤寒	艾滋病	淋病		梅毒
2	2	2	2	
脊髓灰质炎	麻疹	百日咳		白喉
2	2	2	2	
流脑	猩红热	出血热	狂	E犬病
2	2	2	3	
钩端螺旋体病	布氏杆菌	病 炭	疽	乙脑
2	2	2	2	
血吸虫	疟疾	登革热	新生儿	L破伤风
2	2	2	2	
肺结核 传染	性非典型肺	炎 人禽》		
1	2	3		

Within cluster sum of squares by cluster:

[1] 125.6909 1705.7287 492.4606

(between_SS / total_SS = 92.1 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss"
- [5] "tot.withinss" "betweenss" "size" "iter"
- [9] "ifault"

输出data如下

incidence deathrate fatalityrate cluster

鼠疫	0.0001	0.0000	0.0000	2
霍乱	0.0122	0.0002	1.2579	2
病毒性肝炎	102.087	78 0.1034	0.1013	1
痢疾	32.3604	0.0085	0.0262	2
伤寒副伤寒	1.987	4 0.0013	0.0654	2
艾滋病	0.5102	0.1018	19.9520	2
淋病	12.1444	0.0002	0.0019	2
梅毒	12.8002	0.0066	0.0514	2
脊髓灰质炎	0.000	0.0000	0.0000	2
麻疹	7.6174	0.0027	0.0351	2
百日咳	0.1948	0.0003	0.1570	2
白喉	0.0001	0.0000	0.0000	2

2017~2018第二学期《数据科学与创新》(A卷) 第 2 页 共 4 页

流脑	0.1276	0.0119	9.3469	2
猩红热	2.1123	0.0000	0.0000	2
出血热	1.1547	0.0132	1.1458	2
狂犬病	0.2508	0.2459	98.0482	3
钩端螺旋体病	0.048	0.0012	2.5518	2
布氏杆菌病	1.4541	0.0000	0.0000	2
炭疽	0.0345	0.0009	2.6608	2
乙脑	0.5845	0.0354	6.0578	2
血吸虫	0.2349	0.0002	0.0977	2
疟疾	4.6035	0.0026	0.0565	2
登革热	0.0798	0.0000	0.0000	2
新生儿破伤风	0.153	0.0160	10.4407	2
肺结核	86.2347	0.2554	0.2961	1
传染性非典型朋	5炎 0.0	0.000	0.000	0 2
人禽流感	0.0009	0.0006	66.6667	3

3.
data\$disease=row.names(data)
ggplot(data=data, aes(x=incidence, y=fatalityrate, color=cluster)) + geom_point() +
geom_text(aes(label=disease), size=3,nudge_y=3)

绘图如下

所以三类疾病特点分别是少发少死,少发多死和多发少死。

2. 已知某交易数据库如下,如果支持度为0.5,置信度为0.6,请给出所有频繁项集,已经所有的关联规则,要求给出计算过程。

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

答:

A 3 B 2 C 2 D 1 E 1 F 1 AB 1 BC 1 AC 2 所以频繁项集有{A}{B}{C}{AC} 关联规则有A-C, C-A