

第七讲 统计回归模型(1)

周毓明

南京大学计算机科学与技术系

数学建模的基本方法

机理分析

测试分析

由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型。

通过对数据的统计分析,找出与数据拟合最好的模型 回归模型是用统计分析方法建立的最常用的一类模型

- 只简单涉及回归分析的数学原理和方法
- 通过实例讨论如何选择不同类型的模型
- 对软件得到的结果进行分析, 对模型进行改进

运筹学方法使用情况(美1983)(%)

运筹学方法在中国使用情况(随机抽样)(%)

- 1. 数学概念与模型
- 2. 实际案例与分析
- 3. 计算机典型应用

1. 数学概念与模型

- ①描述性统计
- ② 线性回归
- ③ Logistic回归

描述性统计: Location

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

2. Median
$$Md = \begin{cases} X_{(\frac{n+1}{2})}, & n \in odd \\ \frac{1}{2} [X_{(\frac{n}{2})} + X_{(\frac{n}{2}+1)}], & n \in even \end{cases}$$

3. Mode

Example:

Observations: (1, 11, 10, 2, 7, 5)

Mean: (1+11+10+2+7+5)/6 = 6

Median: $(X_{(3)} + X_{(4)})/2 = (5+7)/2 = 6$

4;5;6;6;6;7;7;7;7;7;7;8;8;8;9;10

Mean = Median = Mode = 7

4;5;6;6;6;7;7;7;7;8

$$Mean = 6.3$$
$$Median = 6.5$$

$$Mode = 7$$

6;7;7;7;7;8;8;8;9;10

Mean = 7.7 Median = 7.5 Mode = 7

描述性统计: Location (cont'd)

4. k-th Percentile

$$P_{k} = \begin{cases} X_{([|i|]+1)}, & i \notin \mathbb{Z} \\ \frac{1}{2} [X_{(i)} + X_{(i+1)}], & i \in \mathbb{Z} \end{cases} \text{ where } i = \frac{k}{100} n$$

Example:

Observations: (1, 11, 10, 2, 7, 5)

Order statistics: (1, 2, 5, 7, 10, 11)

$$P_{25} = X_{(1+1)} = X_{(2)} = 2$$
, $i = \frac{25}{100}6 = 1.5$

$$P_{50} = \frac{1}{2}[X_{(3)} + X_{(4)}] = \frac{1}{2}[5+7] = 6, \quad i = \frac{50}{100}6 = 3$$

$$P_{75} = X_{(4+1)} = X_{(5)} = 10$$
, $i = \frac{75}{100}6 = 4.5$

描述性统计: Location (cont'd)

Remarks:

1°.
$$P_{50}$$
=Md (median)

2⁰. Quartile: 3 cut points

$$Q_1 = P_{25}$$
 (25th-percentile),

$$Q_2$$
= Md (Median) = P_{50} (50th-percentile),

$$Q_3 = P_{75}$$
 (75th-percentile)

描述性统计: Location (cont'd)

Order	Value	Boundary		
1	27.75			
2	37.35			
3	38.35			
4	38.35			
5	38.75			
Second	Second Quartile			
6	39.75			
7	40.50			
8	41.00			
9	41.15			
10	42.55			
Third C	Third Quartile			
11	42.90			
12	43.60			
13	43.85			
14	47.30			
15	47.90			
Fourth	48.025			
16	48.15			
17	49.86			
18	51.25			
19	51.50			
20	56.00			
Data Tab	Data Table divided into quartiles			

描述性统计: Dispersion

16

描述性统计: Dispersion (cont'd)

1. Range:
$$R = X_{(n)} - X_{(1)}$$

2. Interquartile-range:

$$IQR = Q_3 - Q_1 = P_{75} - P_{25}$$

3. Quartile deviation: Q.D.=IQR/2

Example:

Observations: (1, 11, 10, 2, 7, 5)

Order statistics: (1, 2, 5, 7, 10, 11)

$$R = X_{(6)} - X_{(1)} = 11 - 1 = 10$$

$$IQR = Q_3 - Q_1 = 10 - 2 = 8$$

描述性统计: Dispersion (cont'd)

4. Mean Absolute Deviation

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |X_i - \overline{X}|$$
 (统计量), $MAD = \frac{1}{N} \sum_{i=1}^{N} |X_i - \mu|$ (参数)

5. Variance

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 (统计量), $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2$ (参数)

6. Standard Deviation

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} X_i^2 - \mu^2}$$
 (参数)

描述性统计: Box plot

Elements of a Box Plot Smallest data Largest data point point not below not exceeding Suspected Outlier inner fence inner fence outlier 0 X Median Inner Outer Inner Outer Fence Fence Fence Fence Q_1 -1.5(IQR) $Q_3+1.5(IQR)$ Interquartile Range Q_1 -3(IQR) $Q_3+3(IQR)$ 19

描述性统计: Box plot

描述性统计: Box plot

Comparison of recall between our approach when FR=0.3 and Dejavu

Y. Duan, et al. Improving Cluster Selection Techniques of Regression Testing by Slice Filtering.

SEKE 2010.

描述性统计: Skewness and Kurtosis

1. Skewness: a measure of symmetry, or more precisely, the lack of symmetry

$$skewness = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^3}{(n-1)S^3}$$

2. Kurtosis: a measure of whether the data are peaked or flat relative to a normal distribution

$$kurtosis = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^4}{(n-1)S^4} - 3$$

描述性统计: Skewness and Kurtosis

r.v. $X \sim N(\mu, \sigma^2)$

the pdf for X is
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}, -\infty < \mu < \infty, \sigma > 0$$

$$E(X) = \mu$$
 , $Var(X) = \sigma^2$

$$P(\mu - \sigma \le X \le \mu + \sigma) = 0.683$$

 $P(\mu - 2\sigma \le X \le \mu + 2\sigma) = 0.954$
 $P(\mu - 3\sigma \le X \le \mu + 3\sigma) = 0.997$

$$P(a \le X \le b) = F(b) - F(a)$$

$$= \int_{a}^{b} f(x)dx = \int_{a}^{b} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx = ??$$

• X ~ $N(\mu, \sigma^2)$ standardized $Z \sim N(\theta, 1)$

$$Z = \frac{X - \mu}{\sigma} \sim N(0.1)$$

• the pdf for Z is

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}},$$
$$-\infty < z < \infty$$

$$P(Z \le z) = \Phi(z) = \int_{-\infty}^{z} \phi(z) dz = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz = ?? \quad (\triangle \xi)$$

•
$$P(Z \ge z_{\alpha}) = P(Z \le -z_{\alpha}) = \alpha$$

•
$$\Phi(z_{\alpha}) = 1 - \Phi(-z_{\alpha}) \Rightarrow \Phi(z_{\alpha}) + \Phi(-z_{\alpha}) = 1$$

§1: $z_{0.025} = 1.96$, $z_{0.05} = 1.645$

Example

TABLE 1
Descriptive Statistics of the Classes

Metric	N.	Max.	75%	Median	25%	Min:	Mean	Std. dev.	Skewness	Kurtosis
LCOM1	4830	171850	87	23	6	0	174.247	2615.348	59.225	3851.002
LCOM2	4830	166390	6.0	13	1	0	151.022	2508.804	60.757	3997.301
LCOM3	4830	492	7	4	2	1	6,250	11.641	19.300	874.415
LCOM4	4830	282	4	2	1	1	3.300	6.796	24.413	825.727
Co	4830	1	0.333	0.089	-0.017	-2	0.026	0.609	-1.195	2.946
Co"	4830	1	0.5	0.308	0.167	0	0.338	0.306	0.922	-0.149
LCOM5	3735	2	0.933	0.833	0.667	0	0.764	0.294	-0.603	2.360
Coh	3735	1	0.458	0.267	0.150	Ö	0.338	0.249	1.085	0.600
TCC	4417	1	1	0.5	0.167	0	0.503	0.410	0.071	-1.642
LCC	4417		3	0.672	0.2	0	0.562	0.425	-0.195	-1.688
ICH	4938	2976	17	4	0	0	16,115	73,573	22,495	722.809

Copied from: Yuming Zhou, et al. Examining the potentially confounding effect of class size on Associations between object-oriented metrics. IEEE Transactions on Software Engineering, 2009, 35(5): 607-623.

Pati	Serum IL-6	Brain IL-6 (pg/ml)
ent	(pg/ml)	
i	$\boldsymbol{\mathcal{X}}$	У
1	22.4	134.0
2	51.6	167.0
3	58.1	132.3
4	25.1	80.2
5	65.9	100.0
6	79.7	139.1
7	75.3	187.2
8	32.4	97.2
9	96.4	192.3
10	85.7	199.4

The population simple linear regression model:

$$y=\alpha+\beta x$$
 + ε or $m_{y|x}=\alpha+\beta x$
Nonrandom or Random
Systematic Component
Component

Where y is the **dependent** (response) **variable**, the variable we wish to explain or predict; x is the **independent** (explanatory) **variable**, also called the **predictor variable**; and ε is the **error term**, the only random component in the model, and thus, the only source of randomness in y.

 $m_{y/x}$ is the mean of y when x is specified, all called the **conditional mean** of Y.

 α is the **intercept** of the systematic component of the regression relationship. β is the **slope** of the systematic component.

The simple linear regression model posits an exact linear relationship between the **expected** or average value of Y, the dependent variable Y, and X, the independent or predictor variable:

 $m_{V/X} = \alpha + \beta X$

Actual observed values of Y (y) differ from the expected value $(m_{y|x})$ by an unexplained or random error (ε) :

$$y = m_{y|x} + \varepsilon$$
$$= \alpha + \beta x + \varepsilon$$

Assumptions of the Simple Linear Regression Model

- The relationship between X and Y is a straight-Line (linear) relationship.
- The values of the independent variable X are assumed fixed (not random); the only randomness in the values of Y comes from the error term \mathcal{E}_{i}
- The errors \mathcal{E}_{j} are uncorrelated (i.e. Independent) in successive observations. The errors \mathcal{E}_{j} are Normally distributed with mean 0 and variance σ^{2} (Equal variance). That is: $\mathcal{E}_{j} \sim N(0, \sigma^{2})$

Estimation: The Method of Least Squares

Estimation of a simple linear regression relationship involves finding estimated or predicted values of the intercept and slope of the linear regression line.

The estimated regression equation:

$$y = a + bx + e$$

where \boldsymbol{a} estimates the *intercept* of the population regression line, α ;

b estimates the **slope** of the population regression line, β ; and **e** stands for the observed errors ----- the residuals from fitting the estimated regression line a+bx to a set of n points.

The estimated regression line:

$$\hat{y} = a + b x$$

where \hat{y} (y - hat) is the value of Y lying on the fitted regression line for a given value of X.

Errors in Regression

Least Squares Regression

The sum of squared errors in regression is:

SSE =
$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

SSE: sum of squared errors

The **least squares regression line** is that which *minimizes* the SSE with respect to the estimates a and b.

Parabola function

Sums of Squares, Cross Products, and Least Squares Estimators

Sums of Squares and Cross Products:

$$l_{xx} = \sum (x_i - \overline{x})^2 = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}$$

$$l_{yy} = \sum (y_i - \overline{y})^2 = \sum y_i^2 - \frac{\left(\sum y_i\right)^2}{n}$$

$$l_{xy} = \sum (x_i - \overline{x})(y_i - \overline{y}) = \sum x_i y_i - \frac{\left(\sum x_i\right)(\sum y_i)}{n}$$

Least – squares re gression estimators:

$$b = \frac{l_{xy}}{l_{xx}}$$

$$\hat{y} = a + bx$$

$$a = \overline{y} - b \overline{x}$$

Patient	x	у	x^2	y^2	$x \times y$
1	22.4	134. 0	501.76	17956.0	3001.60
4	25. 1	80.2	630.01	6432.0	2013.02
8	32.4	97.2	1049.76	9447.8	3149. 28
2	51.6	167.0	2662.56	27889.0	8617. 20
3	58. 1	132.3	3375.61	17503.3	7686.63
5	65. 9	100.0	4342.81	10000.0	6590.00
7	75. 3	187. 2	5670.09	35043.8	14096. 16
6	79. 7	139. 1	6352.09	19348.8	11086.27
10	85. 7	199.4	7344. 49	39760.4	17088.58
9	96.4	192.3	9292.96	36979.3	18537.72
Total	592.6	1428.7	41222.14	220360.5	91866.46

regression equation:

$$\hat{y} = 72.96 + 1.18x$$

$$l_{xx} = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n} = 41222.14 - \frac{592.6^2}{10} = 6104.66$$

$$l_{yy} = \sum y_i^2 - \frac{\left(\sum y_i\right)^2}{n} = 220360.47 - \frac{1428.70^2}{10} = 16242.10$$

$$l_{xy} = \sum x_i y_i - \frac{\sum x_i \sum y_i}{n} = 91866.46 - \frac{592.6 \times 1428.70}{10} = 7201.70$$

$$b = \frac{l_{xy}}{l_{xx}} = \frac{7201.70}{6104.66} = 1.18$$

$$a = \overline{y} - b\overline{x} = \frac{1428.7}{10} - (1.18)\left(\frac{592.6}{10}\right)$$

$$= 72.96$$

How Good is the Regression?

The coefficient of determination, \mathbb{R}^2 , is a descriptive measure of the strength of the regression relationship, a measure how well the regression line fits the data.

$$(y - \overline{y}) = (y - \hat{y}) + (\hat{y} - \overline{y})$$

Total = Unexplained Explained
Deviation Deviation Deviation
(Error) (Regression)

$$\sum (y - \overline{y})^2 = \sum (y - \hat{y})^2 + \sum (\hat{y} - \overline{y})^2$$

SST = SSE + SSR

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Percentage of total variation explained by the regression.

The Coefficient of Determination

$$R^{2} = \frac{SSR}{SST} = \frac{bl_{xy}}{l_{yy}} = \frac{1.180 \times 7201.70}{16242.10}$$
$$= 0.5231 = 52.31\%$$

Figure 18.1 Regression line between serum IL-6 and brain IL-6

Assumptions of Regression

- Homoscedasticity(等方差)
 - The probability distribution of the errors has constant variance
- Independence of Errors
 - Error values are statistically independent
- Normality of Error
 - Error values (ε) are normally distributed for any given value of X

Residual Analysis

$$e_i = Y_i - \hat{Y}_i$$

- The residual for observation i, e_i, is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
 - Examine for linearity assumption
 - Examine for constant variance for all levels of X (homoscedasticity)
 - Evaluate independence assumption
 - Evaluate normal distribution assumption
- Graphical Analysis of Residuals
 - Can plot residuals vs. X

Residual Analysis for Linearity

Residual Analysis for Homoscedasticity

Residual Analysis for Independence

Residual Analysis for Normality

How do you know the residuals are normally distributed?

Plot the residuals in Q-Q plot, which is a way to test normality. The idea of the Q-Q plot is that it plots the actual data along the y-axis, and the values that the data would have if they were exactly the percentiles of a normal curve (bell curve). So if the data is approximately like that of a bell curve, the line should look fairly close to straight. If not, it should be off.

Solution to non-normality: Transformation of the dependent variable.

R语言: QQ图/PP图

SPSS: QQ图/PP图

R语言: QQ图/PP图

```
n = 100
a = rnorm(n) #产生100个正态随机变量
t = rank(a) / n #求观察累积概率,即百分位
q = qnorm(t) #求百分位对应的数值(正态分布下)
plot(a, q) #画Q-Q图
```


Residual Analysis for Normality

Solution to non-normality:

Transformation of the dependent variable.

Example: log transformation

Excel Residual Output

RESI	RESIDUAL OUTPUT					
	Predicted House Price	Residuals				
1	251.92316	-6.923162				
2	273.87671	38.12329				
3	284.85348	-5.853484				
4	304.06284	3.937162				
5	218.99284	-19.99284				
6	268.38832	-49.38832				
7	356.20251	48.79749				
8	367.17929	-43.17929				
9	254.6674	64.33264				
10	284.85348	-29.85348				

Does not appear to violate any regression assumptions 48

Measuring Autocorrelation: The Durbin-Watson Statistic

- Used when data are collected over time to detect if autocorrelation is present
- Autocorrelation exists if residuals in one time period are related to residuals in another period

Autocorrelation

 Autocorrelation is correlation of the errors (residuals) over time

Time (t) Residual Plot

 Here, residuals show a cyclic pattern, not random

 Violates the regression assumption that residuals are random and independent

The Durbin-Watson Statistic

■ The Durbin-Watson statistic is used to test for autocorrelation

H₀: residuals are not correlated

H₁: autocorrelation is present

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

- The possible range is $0 \le D \le 4$
- D should be close to 2 if H₀ is true
- D less than 2 may signal positive autocorrelation, D greater than 2 may signal negative autocorrelation

Summary

- 1. **Regression analysis** is applied for prediction while control effect of independent variable X.
- 2. The principle of least squares in solution of regression parameters is to minimize the residual sum of squares.
- 3. The coefficient of determination, \mathbb{R}^2 , is a descriptive measure of the strength of the regression relationship.
- 4. There are two confidence bands: one for mean predictions and the other for individual prediction values
- 5. Residual analysis is used to check goodness of fit for models

- Relate one or more independent (predictor)
 variables to a dependent (outcome) variable
 - Ordinary linear regression
 - Continuous outcome variable
 - Determine the relationship between a continuous outcome variable and the predictor variable(s)
 - Logistic regression
 - Binary outcome variable
 - Determine the relationship between the probability of the outcome occurring and the predictor variable(s)

An example: faulty or not faulty

Module id	Faulty?	SLOC
1	0	3
2	1	34
3	0	17
4	0	6
5	0	12
6	1	15
7	1	26
8	1	29
9	0	14
10	1	58
11	0	2
12	1	31
13	1	26
14	0	11

- We will be interested then in inference about the <u>probability of</u> <u>having faults</u>
- Were we to use linear regression, we would postulate:

Prob (Faulty=1) =
$$\alpha + \beta *SLOC + u$$

Linear Probability Models

_	-1-1	_
~	70.0	re
_		
713	723	

模型		非标准化系数		标准系数		
		В	标准 误差	试用版	t	Sig.
1	(常里)	032	.162		197	.847
	SLOC	.026	.006	.759	4.044	.002

a. 因变量: faulty

Prob (Faulty=1) = -0.32 + 0.026*SLOC

- The results suggest that an increase in 1 SLOC increases the probability of having faults, on average, by approx. 0.026 or 2.6%.
- So what would the model predict if a module has 100 SLOC?

Prob (Faulty=1) = -0.32 + 0.026*100 = 2.28

Linear Probability Models: What is wrong?

- Basically, the linear relation we had postulated before between X and Y is not appropriate when our dependent variable is dichotomic. Predictions for the probability of the event occurring would lie outside the [0,1] interval, which is unacceptable.
- Other two subtle problems:
 - Distribution of u_i is not normal as we wished it to be
 - The variance of u_i is not constant (problem of heteroscedasticity)

Non Linear Probability Models

- We want to be able to model the probability of the event occurring with an explanatory variable 'X', but we want the predicted probability to remain within the [0,1] bounds.
 - There is a threshold above which the probability hardly increases as a reaction to changes in the explanatory variable
- Many functions meet these requirements (non-linearity and being bounded within the [0,1] interval)
- We will focus on the Logistic

The Logit Model

- A Logit Model states that:
 - Prob(Y=1) = F(a + bX)
 - Prob(Y=0) = 1 F(a + bX)

$$F(a+bX) = P(Y=1 | X) = \frac{1}{1+e^{-(a+bX)}}$$

- Where F(.) is the 'Logistic Function'.
- So, the probability of the event occurring is a logistic function of the independent variables

The Logit Model

方程中的变量

		В	S.E,	Wals	df	Sig.	Exp (B)
步骤 1ª	SLOC	.495	.384	1.660	1	.198	1.640
	常里	-8.496	6.016	1.994	1	.158	.000

a. 在步骤 1 中輸入的变量: SLOC.

P(faulty = 1 | SLOC) =
$$\frac{1}{1 + e^{-(-8.496 + 0.495*SLOC)}}$$

Evaluating Logit Regressions

Statistics for comparing alternative logit models:

- Percent Correct Predictions
- Pseudo-R²

Percent Correct Predictions

分类表^a

已观测		已预测			
		Fau			
			.00	1.00	百分比校正
步骤 1	Faulty .00		7	0	100.0
	1.00		1	6	85.7
总计百分比				92.9	

a. 切割值为 .500

- The "Percent Correct Predictions" statistic assumes that if the estimated p is greater than or equal to .5 then the event is expected to occur and not occur otherwise.
- By assigning these probabilities 0s and 1s and comparing these to the actual 0s and 1s, the % correct Yes, % correct No, and overall % correct scores are calculated.
- Note: subgroups for the % correctly predicted is also important, especially if most of the data are 0s or 1s

Pseudo-R² Values

模型汇总

步骤	-2 对数似然值	Cox & Snell R 方	Nagelkerke R 方
1	4.729ª	.650	.866

a. 因为参数估计的更改范围小于 .001,所以估计在迭代次数 9 处终止。

- There are psuedo- R^2 statistics that make adjustment for the (0,1) nature of the actual data: two are listed above
- Their computation is somewhat complicated but yield measures that vary between 0 and (somewhat close to) 1 much like the R² in a LP model.

Odds Ratio

- Interpretation of Regression Coefficient (b):
 - In linear regression, the slope coefficient is the change in the mean response as x increases by 1 unit
 - In logistic regression, we can show that:

$$Odds(Y = 1 | X) = \frac{\Pr(Y = 1 | X)}{1 - \Pr(Y = 1 | X)} = e^{a + bX}$$

$$OR_{X,X+1}(Y=1) = \frac{Odds(Y=1|X+1)}{Odds(Y=1|X)} = e^{b}$$

e^b represents the change in the odds of the outcome (multiplicatively) by increasing x by 1 unit

Magnitude of association

$$Pr(Y = 1) = \frac{e^{a+bX}}{1+e^{a+bX}}$$

$$OR_{X,X+1}(Y=1) = \frac{Odds(Y=1|X+1)}{Odds(Y=1|X)} = e^{b}$$

$$OR_{X,X+\sigma}(Y=1) = \frac{Odds(Y=1 \mid X+\sigma)}{Odds(Y=1 \mid X)} = e^{b\sigma}$$

Assumptions

- The only "real" limitation on logistic regression is that the outcome must be discrete
- Linearity in the logit the regression equation should have a linear relationship with the logit form of the DV. There is no assumption about the predictors being linearly related to each other
- No outliers
- Independence of errors

小结

- ■描述性统计
- ■线性回归
- Logistic回归

Thanks for your time and attention!

