Quantum Theory, Groups and Representations

January 31, 2025

1 Representation theory

Definition 1.1. A representation (π, V) of a group G over a vector space V is an application $\pi : G \to GL(V)$ such that $\forall g_1, g_2 \in G, \ \pi(g_1 \cdot g_2) = \pi(g_1) \pi(g_2)$.

- A representation (π, V) is said irreducible if there is no proper subset W ⊂ V such that π_W:
 G → GL(W) is a representation.
 Another way to express that is that the only invariant¹ subvector spaces of the representation are {0} and V.
- Otherwise, (π, V) is said reducible.

Definition 1.2. A unitary representation (π, V) , where V is a \mathbb{K} -EV equiped with an inner product $\langle , \rangle : V \times V \to \mathbb{K}$, is a representation which preserves the inner product such that:

$$\forall q \in G, \ \forall v, w \in V, \ \langle v, w \rangle = \langle \pi(q)v, \pi(q)w \rangle.$$

If V is finite dimensionnal (of dimension n), we can treat the representation as an element of $\mathcal{M}_{n\times n}(\mathbb{K})$, and for a unitary transformation, $\pi: G \to U(n)$.

Definition 1.3. (Direct sum representation). Given representations π_1 and π_2 of dimensions n_1 and n_2 , there is a representation of dimension $n_1 + n_2$ called the direct sum of the two representations, denoted $\pi_1 \oplus \pi_2$. This representation is given by the homomorphism:

$$(\pi_1 \oplus \pi_2) : g \in G \mapsto \begin{pmatrix} \pi_1(g) & \mathbf{0} \\ \mathbf{0} & \pi_2(g) \end{pmatrix}.$$

Theorem 1.1. A unitary transformation π over a finite dimensionnal vector space V can be written as $\oplus \pi_i$, where $\{\pi_i\}$ is a set of irreducible representations.

Proof. If (π, V) is irreducible, then it's obvious.

Otherwise, there exists $W \subset V$ such that (π_W, W) is a representation.

Since $V = W \oplus W^{\perp}$, we want to check if $(\pi_{W^{\perp}}, W^{\perp})$ is a representation.

• Let $w \in W$ and $v \in W^{\perp}$, then obviously $v \perp w \Leftrightarrow \langle v, w \rangle = \langle \pi(g)v, \pi(g)w \rangle = 0$. Since (π_W, W) is a representation, $\pi(g)w \in W$ and thus $\forall g \in G, \ \pi(g)v \perp W$. This means that $\forall g \in G, \ \forall v \in W^{\perp}, \ \pi(g)v \in W^{\perp}$. Thus, $\pi_{W^{\perp}}, W^{\perp}$ is a representation.(It respects the group product since (π, V) is a representation.)

Thus:

$$(\pi, V) = (\pi_W, W) \oplus (\pi_{W^{\perp}}, W^{\perp}).$$

We can then repeat this process until each subrepresentation is irreducible.

¹A subspace $V' \subseteq V$ is called invariant if $\pi(g)V' \subseteq V'$ for all $g \in G$.

Theorem 1.2. Schur's Lemna: If a **complex** representation (π, V) is irreducible, then the only application $M: V \to V$ commuting with all the $\pi(g)$ is $M = \lambda \mathbb{I}$, $\lambda \in \mathbb{C}$.

Proof. Let's assume that (π, V) is an irreducible representation and that $\forall g \in G, [M, \pi(g)] = 0$. Since V is a \mathbb{C} -vector space, the equation:

$$\det(M - \lambda \mathbb{I}) = 0$$

has n roots (counting the multiplicity) and thus we can find all the eigenspaces:

$$U_{\lambda} = \{ v \in V | Mv = \lambda v \} = \ker (M - \lambda \mathbb{I}) \neq \emptyset.$$

Since π and M commute, $v \in \ker(M - \lambda \mathbb{I}) \implies \forall g \in G \ \pi(g)v \in \ker(M - \lambda \mathbb{I})$. As a consequence, $(\pi, \ker(M - \lambda \mathbb{I}))$ is a representation of G since $\ker(M - \lambda \mathbb{I})$ is stable under the action of π . Since we supposed that (π, V) is irreducible then either:

- $U_{\lambda} = \ker (M \lambda \mathbb{I}) = \emptyset$, but it's not possible since U_{λ} is an eignespace.
- $U_{\lambda} = \ker (M \lambda \mathbb{I}) = V \Leftrightarrow \forall v \in V, (M \lambda \mathbb{I})v = 0$, which implies that $M = \lambda \mathbb{I}$.

Theorem 1.3. If G is an abelian group, then all of its irreducible representations are one dimensionnal.

Proof. Consider an abelian (=commutative) group G and $g \in G$. Any representation (π, V) of G will satisfy:

$$\forall h \in G, \ \pi(g)\pi(h) = \pi(h)\pi(g).$$

and if π is irreducible, by using Schur's Lemna, $\pi(h) = \lambda \mathbb{I} \simeq \lambda$ for $\lambda \in \mathbb{C}$.

2 Lie Algebra

The main idea is that a representation π is homomorphic and this proporty allows to charachterize π only in term of its derivative π' . π' is a linear map from the tangent space to G at the identity to the tangent space of U(n) at the identity. The tangent space to G at the identity will carry some extra structure coming from the group law and this vector space with this structure will be called the Lie algebra of G, while π' will be an example of a Lie algebra representation.

Definition 2.1 (Lie Group). A Lie group G is a differentiable manifold equiped with a group law.

Definition 2.2 (Lie Algebra). The Lie Algebra of a Lie group G is the tangent space of G at the identity.

Definition 2.3 (Lie Algebra of a matrix group G). For G a Lie group of $n \times n$ invertible matrices, the Lie algebra of G (written Lie(G) or \mathfrak{g}) is the space X of $n \times n$ matrices such that $e^{tX} \in G$ for $t \in \mathbb{R}$.

We have defined the exponential of the matrices throug its power serie

$$e^{A} = \mathbf{1} + A + \frac{1}{2}A^{2} + \dots + \frac{1}{n!}A^{n} + \dots$$
 (2.1)

which can be shown to converge for any matrix A.

Proof. We define the matrix absolute value of $A = (a_{ij})$ to be

$$|A| = \sqrt{\sum_{i,j} |a_{ij}|^2}.$$

For an $n \times n$ real matrix A the absolute value |A| is the distance from the origin O in \mathbb{R}^{n^2} of the point

$$(a_{11}, a_{12}, \ldots, a_{1n}, a_{21}, a_{22}, \ldots, a_{2n}, \ldots, a_{n1}, \ldots, a_{nn}).$$

If A has complex entries, and if we interpret each copy of \mathbb{C} as \mathbb{R}^2 , then |A| is the distance from O of the corresponding point in \mathbb{R}^{2n^2} . Similarly, if A has quaternion entries, then |A| is the distance from O of the corresponding point in \mathbb{R}^{4n^2} .

In all cases, |A - B| is the distance between the matrices A and B, and we say that a sequence A_1, A_2, A_3, \ldots of $n \times n$ matrices has $limit\ A$ if, for each $\varepsilon > 0$, there is an integer M such that

$$m > M \implies |A_m - A| < \varepsilon.$$

The key property of the matrix absolute value is the following inequality, a consequence of the triangle inequality (which holds in the plane and hence in any \mathbb{R}^k) and the CauchySchwarz inequality. Submultiplicative property. For any two real $n \times n$ matrices A and B,

$$|AB| \le |A||B|$$
.

Proof. If $A = (a_{ij})$ and $B = (b_{ij})$, then it follows from the definition of matrix product that

$$|(i, j)$$
-entry of $AB| = |a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}|$
 $\leq |a_{i1}b_{1j}| + |a_{i2}b_{2j}| + \dots + |a_{in}b_{nj}|$

by the triangle inequality

$$= |a_{i1}||b_{1i}| + |a_{i2}||b_{2i}| + \cdots + |a_{in}||b_{ni}|$$

by the multiplicative property of absolute value

$$\leq \sqrt{|a_{i1}|^2 + \dots + |a_{in}|^2} \sqrt{|b_{1j}|^2 + \dots + |b_{nj}|^2}$$

by the CauchySchwarz inequality.

Now, summing the squares of both sides, we get

$$|AB|^{2} = \sum_{i,j} |(i,j)\text{-entry of }AB|^{2}$$

$$\leq \sum_{i,j} (|a_{i1}|^{2} + \dots + |a_{in}|^{2})(|b_{1j}|^{2} + \dots + |b_{nj}|^{2})$$

$$= \sum_{i} (|a_{i1}|^{2} + \dots + |a_{in}|^{2}) \sum_{j} (|b_{1j}|^{2} + \dots + |b_{nj}|^{2})$$

$$= |A|^{2}|B|^{2}, \text{ as required. } \square$$

It follows from the submultiplicative property that $|A^m| \leq |A|^m$. Along with the *triangle inequality* $|A+B| \leq |A| + |B|$, the submultiplicative property enables us to test convergence of matrix infinite series by comparing them with series of real numbers. In particular, we have:

Convergence of the exponential series. If A is any $n \times n$ real matrix, then

$$1 + \frac{A}{1!} + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots$$
, where $1 = n \times n$ identity matrix,

is convergent in \mathbb{R}^{n^2} .

Proof. It suffices to prove that this series is absolutely convergent, that is, to prove the convergence of

$$|1| + \frac{|A|}{1!} + \frac{|A|^2}{2!} + \frac{|A|^3}{3!} + \dots$$

This is a series of positive real numbers, whose terms (except for the first) are less than or equal to the corresponding terms of

$$1 + \frac{|A|}{1!} + \frac{|A|^2}{2!} + \frac{|A|^3}{3!} + \dots$$

by the submultiplicative property. The latter series is the series for the real exponential function $e^{|A|}$; hence the original series is convergent.