### <u>Remarks</u>

The Applicants reaffirm the election of Claims 1 - 4 for immediate prosecution. Claims 5 - 10 have been cancelled. The Applicants reserve the right to file one or more divisional applications directed to the subject matter of the cancelled claims.

The Applicants note with appreciation the Examiner's helpful comment concerning Claim 4 and the rejection under 35 U.S.C. \$112. Claim 4 has been amended to replace "organic" with "inorganic." Withdrawal of the \$115 rejection is respectfully requested.

The Applicants have amended Claim 1 to specify that about 1% to about 99% by area of the surface of the iron powder is covered with the inorganic compound. Support may be found in paragraph [0032] in the Applicants' Specification.

The Applicants have added new Claims 11—22. Support for Claim 11 may be found in paragraph [0046]. Claim 12 is similar to original Claim 3 except that it depends from Claim 11. Support for Claims 13 and 16 may be found at paragraph [0032]. Support for Claims 17 may be found at paragraphs [0031] and [0058]. Support for Claims 14 and 18 may be found in paragraph [0031]. Finally, Claim 15 is similar to original Claim 4 except that it depends from new Claim 14.

Claims 19—22 are modeled after Claims 1—4 except that Claim 1 further recites the quantities of C. Si, Mn, P and S present in the iron powder particles. Support may be found in paragraph [0046].

Furning now to the merits, the Applicants respectfully submit that none of the cited references disclose, teach or suggest the claimed covering rate of about 1% to about 99% by area of the surface of the fron powder. Careful scruting of all of the publications applied under 35 U.S.C.

\$102 reveals their utter failure to disclose, either explicitly or implicitly, every claimed aspect as recited in amended Claim 1.

For example, Japka discloses that an alloy material substantially covers the surface of the iron particles. This is essentially a disclosure that the surface of the iron particles is about 100% covered. This is reinforced within Japka at Column 2, beginning at line 54, wherein Japka teaches that the premix composition of CIP and alloy material are prepared by intensively mixing the respective powders to enable the alloy powders to suitably cover the CIP material. It is clear from this disclosure that it is the intention, by virtue of the intense mixing, for the alloy powder to fully cover the CIP powder particles. This is not what the Applicants claim.

In Ogura, oxide is formed by a reaction between metal elements in the iron powder and oxygen gas. As a consequence, oxide on the actual surface of the powder particles, and not in the vicinity of the surface or near the surface, would be very small in total content. This can be observed by reference to Column 4, lines 27 – 36 of Ogura. It should also be noted at Column 5, lines 52 56 of Ogura that oxidation is performed at a considerably low temperature of 100 – 200°C and, as a consequence, the alloying element could hardly segregate at the actual surface. As a consequence, the covering rate of less than about 1% in Ogura would be expected by those of ordinary skill in the art. Accordingly, Ogura falls outside of the claimed range.

Kindlimann essentially suffers the same deficiencies as Ogura except that nitride is formed by nitrogen gas. Although a higher temperature is suggested by Kindlimann, any segregation of alloying element to the actual surface is simply not taught or suggested. This can be seen at Column 3, lines 22 – 56. Accordingly, diffusion of nitrogen into the iron (stainless steel) particles of the powder to form nitride is suggested. Again, one of ordinary skill in the art would not expect a

covering rate of about 1% - about 99% as recited in amended Claim 1. Thus, Kindlimann is outside of the claimed range and is inapplicable.

Fustukian, in one of their Examples, which is the only iron Example, discloses thorium nitride. This is formed by applying thorium nitride solution to the iron. Fustukian teaches at Column 8, lines 6—16 that the reaction occurs "almost instantaneously." Consequently, the covering rate would be expected by those of ordinary skill in the art to be 100%. Again, this falls outside of the range set forth in Claim 1.

Moro discloses inorganic insulating material being mixed with iron powder and insulating resin as shown in Fig. 1 or dispersed in the insulating resin and mixed with iron powder as set forth in Column 6, lines 22 – 43. It is quite difficult to specifically define the covering rate in such a surface treatment. However, one of ordinary skill in the art would not expect for the covering rate to be within the claimed range.

As a result of the failure of the above disclosures to disclose the claimed covering rate of about 1% to about 99% by area, the Applicants respectfully submit that they are inapplicable under 35 U.S.C. §102. Withdrawal of those rejections is respectfully requested.

There are additional reasons why those disclosures do not apply to amended Claim 1. For example, Moro discloses TiC and TiN as an insulating material at Column 6, lines 23 – 37. This disclosure conflicts with the fact that the electric resistivity of those two compounds is  $2 \times 10^{-1} \Omega$  m and  $2.17 \times 10^{-1} \Omega$  m, respectively. Accordingly, it simply does not make sense to use TiC or TiN as insulating material for the purpose disclosed at Column 1, lines 23 – 25 of Moro. In fact, attilization of the morganic compounds having an electric resistivity of  $1 \times 10^{-1}\Omega$  m or less does not

make sense for the same reason. Therefore, Moro is utterly inapplicable to Claim 1. It should also be noted that "titania" is TiO- having an electric resistivity of more than about  $1 \times 10^{-5} \Omega$  m.

With respect to new Claim 17. Moro would not be applicable because the compounds are co-added with an insulating resin, thereby removing conductive connections between the iron particle and the inorganic compound. In the case of newly added Claims 14 and 18, an iron particle coated with insulated coating would hardly be expected to have any reducing action. Thus, Moro would not apply to those claims as well.

Japka fails to disclose an electric resistivity of the inorganic compound as being about 1 x  $10^4 \ \Omega$ -m or less. The Applicants note that a discussion of "tintanium oxide" is insufficient as disclosure for an inorganic compound having an electric resistance of 1 x  $10^4 \ \Omega$ -m or less. As an example, TiO<sub>2</sub> has an electric resistivity higher than 1 x  $10^4 \ \Omega$ -m or less. The Applicants invite the Examiner's attention to Table 1 in the Specification and Document 1, attached hereto, at page 265 in which electrical resistance is roughly estimated by reciprocal transformation of electrical conductivity. Document 1 contains excerpts from "Enchiridion of Oxides: (originally issued in Moscow in 1969; translated to Japanese and issued by Yugen Kaisha (limited private company). Nisso Tsushinsha in June 30, 1970; released by Kabushiki Kaisha (Corporation) Agune. Also, it must be realized that metals disclosed by Japka, which are elemental metals, are not "inorganic compounds" as recited in the solicited claims.

With respect to new Claims 14, 17 and 18, those claims are patentable because the organic binder used to attach the compound in Japka would inhibit conductive connections and would not increase reducing action.

Ogura fails to disclose an electric resistivity of  $1 \times 10^{2} \Omega$  m or less. Disclosure of an "oxide" is not sufficient disclosure to indicate that an inorganic compound has electric resistivity of  $1 \times 10^{2} \Omega$  m or less. For example,  $1 i O_{2}$  has an electric resistance more than  $1 \times 10^{2} \Omega$  m, while 1 i O is less than about  $1 \times 10^{2}$ . The Applicants again invite the Examiner's attention to Table 1 in the Specification and Document 2, attached hereto, at page 26. Document 2 contains excerpts from "Conductive Oxides" (fourth printing (revision) issued on October 15, 1993; attributed to Nomio Tsuda, Keiitiro Nasu, Atsushi Fujimori and Kiitchi Shiratori; issued by Kabushiki Kaisha Shokabo). It cannot be determined which one Ogura is trying to identify. Also, according to Document 1, at least the electric resistance of  $1 \times 10^{2} \Omega$  m. Further, there is no suggestion that the electric resistance of  $1 \times 10^{2} \Omega$  m. Further, there is no suggestion that the electric resistance of  $1 \times 10^{2} \Omega$  m or less.

Fustukian also fails to disclose an electric resistivity of an inorganic compound being about  $1 \times 10^{4} \Omega$  m or less. According to Document 1, at least the electric resistances of TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub> (already demonstrated), BeO (page 263), MgO (page 264) and UO<sub>3</sub> (page 271) are higher than 1 ×  $10^{4}\Omega$  m. Further, there is no suggestion that electric resistance of CaO (page 265), Y<sub>2</sub>O<sub>3</sub>, ZrO<sub>2</sub> (page 268), La<sub>2</sub>O<sub>3</sub>, CeO<sub>2</sub> (page 269), HfO<sub>2</sub>, WO<sub>3</sub> (page 270) or ThO<sub>2</sub> (page 271) at ambient temperatures should be 1 ×  $10^{7}\Omega$  m or less.

Luk only disclose metals, not an "inorganic compound." As noted above, elemental metal is not an inorganic compound.

Arvidsson fails to disclose an electrical resistivity of an inorganic compound being about 1  $\times$  10  $^{+}\Omega$  m or less. Unfortunately, V/O<sub>2</sub> has an electrical resistivity of 3  $\times$  10  $^{+}\Omega$  m (Document 1, page 266), which is more than the claimed electric resistivity. On the other hand, V/O<sub>2</sub> has a

resistivity less than about  $1 \times 10^{3} \Omega \cdot m$  (Table 2 in the Specification and Document 1, page 265). However, Arvidsson does not say which one he means. The electric resistivities of TiO<sub>2</sub> and TiO have been discussed above. Thus, disclosure of "titanium oxide" or "vanadium oxide" does not provide sufficient designation to those of ordinary skill in the art to which valency of titanium and or vanadium is meant. Further, according to Document 1, at least the electric resistances of some oxides of Al (Al<sub>2</sub>O<sub>3</sub>), Si (SiO<sub>2</sub>), Mn (MnO), Fe (Fe<sub>2</sub>O<sub>3</sub>; page 267), Co (CoO; page 267), Cu (CuO, etc; page 267), Nb (Nb<sub>2</sub>O<sub>3</sub>; page 269), Ag (AgO; page 269), Sn (SnO<sub>2</sub>; page 269) and Bi (Bi<sub>2</sub>O<sub>3</sub>; page 270) are higher than  $1 \times 10^{3} \Omega \cdot m$ .

Further, the electric resistivity of MnS is  $1 \times 10^{2} \ \Omega$ -m, which is nore than the claimed amount. Also, there is nothing on the record that indicates that the electric resistivity of Fe<sub>2</sub>P is  $1 \times 10^{2} \ \Omega$ -m or less.

With respect to the metals disclosed by Arvidsson, namely Cu, Ni, Mo, Ti or V, they are not inorganic compounds.

With respect to new Claims 14, 17 and 18, those claims are patentable because the organic binder used to attach the compound in Arvidsson would inhibit conductive connection and would not increase reducing action.

Finally, Batchelor does not disclose inorganic compounds on an iron particle. Instead, Batchelor discloses metals, which are not inorganic compounds. Also, Batchelor suggests that halogenated organic compound is dehalogenated by a receiving electron from H<sub>2</sub> by the catalytic effect of the metal on zero valence metals such as iron. This is set forth in Column 5, lines 23—42. However, such a catalytic effect is not known for such an organic compound. In sharp contrast, in the invention, the halogenated, hydrocarbon receives an electron from the iron powder without the

aide of intermediate H<sub>2</sub> and the existence of the inorganic compound on the surface of the iron particle accelerates the function of providing the electron to the halogenated hydrocarbon.

As a consequence, Batchelor fails to teach or suggest the claimed invention.

Withdrawal of the 35 U.S.C. \$\$102 and 103 rejections is respectfully requested, based on the clear differences of the invention as recited in the solicited claims over the prior art.

In light of the foregoing, we respectfully submit that the entire Application is now in condition for allowance, which is respectfully requested.

Respectfully submitted,

1

T. Daniel Christenbury Reg. No. 31,750 Attorney for Applicants

TDC:lh (215) 656-3381

---0009**4** 98098 168075

### XNMNHECKNE CBOЙCTBA **ОКИСЛОВ** ФИЗИКО-

Ť

F.

# СПРАВОЧНИК

Пол редакцией чл.-корр. АН УССР F: B. CAMCOHOBA

/32





1.3 13 16

издательство «металлургия», москва 1969

图文化物准能 (Enchiridion of Oxides)



4. 4I. 4LY17 F. Y. 777347 7. エリ、アルイキナ 2. 4. ABY+ F. IR. XThayz 7, 27, ++byy 1. 24. + XD1 工学修士 エム、エス、コヴアリチエンコ ヤ、エス、マラホフ 4. コンラボヴァ 7. F. KT 329 工学修士 ・エヌ・イ、トカチエンコ 「学修士」 エル、エム、サンニコヴ7 物理数学修士 工學#土 和四個學生 工學像工 ソ連科学アカデミー会員 **外理数学体**上 ソ連科学アカデミー会員 物理數学修士 工事像于 **物理数字像**上

金属酸化物は、各種の工学分野で乗も広く用いられている材料の部類に属する。本便覧は酸化物の物理的性 範 物理化学的性質および化学的性質を体系化したものであり、例えば、酸化物に関する全般的な情報。すなわち、酸化物の観気的、磁気的、光学的、熱力学的、機械的、敷始、核物理的、化学的性質や耐火性が示されるとともに、金属酸化物の主な応用分野や金属一酸化物の2元米状態図が示される。

### E X

11134 98198

6≒: -4

|   | ĺ   |                                                                                                                                   | <b>,</b>    |           |         |           | ` ~      |     |      | 47 | ¥,                            | <i>*</i> | , <del>•</del> | r ac             | ンス             | 01       | =        |      | 1.2        | 1.5        | े <del>प</del> | -    | 15           | . 58 | , ,          |
|---|-----|-----------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|-----------|----------|-----|------|----|-------------------------------|----------|----------------|------------------|----------------|----------|----------|------|------------|------------|----------------|------|--------------|------|--------------|
|   | •   |                                                                                                                                   |             |           |         |           |          |     |      |    |                               |          |                |                  | ,              |          |          |      |            |            |                |      |              |      | ,            |
| • | •   | o≨                                                                                                                                | •           | •         | •       | •         | •        |     | •    | •  | •                             | •        | •              | •                |                |          |          |      |            | •          |                |      |              |      |              |
| • | ٠   | 医器型                                                                                                                               | •           | •         | •       | •         | •        | •   | •    | •  | •                             | •        | •              | •                | •              |          | •        |      |            | •          |                |      |              |      |              |
| • | •   |                                                                                                                                   | •           | •         | •       | •         | •        | ٠   | •    | •  |                               | •        | •              | •                |                | •        | •        |      |            | •          |                | •    | •            |      |              |
| • | •   | -4<br>-D                                                                                                                          | •           | •         | •       | •         | ٠        | •   | •    | •  | •                             | •        | •              | •                | ź              |          |          |      |            |            |                |      |              |      |              |
| • | •   | #3                                                                                                                                | •           | •         | •       | •         | ٠        | •   | ٠    | •  |                               | ٠        |                | •                | *              | •        |          |      |            |            |                |      | $\widehat{}$ |      |              |
| • | •   | <del>-</del> | ٠           | ٠         | •       | •         | •        | •   | ٠    |    | 翘                             |          | •              |                  | ソラ             | ٠        |          |      |            |            |                |      | 英麗芸          |      |              |
| • | ٠   | 纒                                                                                                                                 | •           | •         | `       | -3-4      | •        | ٠   | •    | •  |                               | •        | ٠              |                  | +              |          |          | •    |            |            |                |      | 芝            |      |              |
| • | ٠   | 輯                                                                                                                                 | ٠           | 4         | かった     | <b>※</b>  | •        | •   | •    | •  | 辉                             | •        | •              | * <del>}</del> - | 岩              | •        | 新        | •    | ٠          |            |                |      | )            |      | ,            |
| 1 | •   | (大)                                                                                                                               | •           |           | *       | 5         | •        | •   | •    |    | *                             | •        |                | 7                |                |          | *        |      |            |            |                |      | *            |      |              |
|   | •   | と化学型監器級成步工                                                                                                                        |             | 细         | ン化ポテン   | メンの製何学的党数 | •        | ٠   | •    | •  | <del>ن</del><br>ب <u>ل</u> لا | •        | •              | H                | <b>X</b>       | •        | ιυ       |      |            |            | ٠              |      | *            |      |              |
|   | •   | ₹/                                                                                                                                | 阿           | 7         | ∺<br>لد | **        |          | •   | •    | •  |                               |          |                | <b>E</b>         | 9              | •        | P        | •    | •          |            |                |      |              |      |              |
|   | ٠   | .1                                                                                                                                | 777         |           | X       | 7         | 赵        |     |      | •  | 8                             |          | i              | 30               | E E            |          | 意        |      |            |            |                | •    | 交            |      |              |
|   | ٠   | ž.                                                                                                                                | 羅           | 10        | *       |           | <b>3</b> |     | 90   |    | 3                             | *        | ŗ.             | E E              | Ħ              | ##<br>15 | ×        | Na   | <b>~</b> o | 剪          |                |      | é            |      | . ب          |
| į |     | 数的产                                                                                                                               | 3} <u>+</u> | Ħ         | è       | ب         | \$       | X   | 差    | 纽  | 心<br>注                        | #        | <u>_</u>       | <b>*</b>         | <b>3</b>       | 7        | -><br>2€ | 燃料   | 大部         | <b>2</b> 4 | <u>*</u>       | 8:   | ₩<br>40      | Z.   | ***          |
| 2 | מנו | 1                                                                                                                                 | 化学的酷性質      | 町立原子の電子開造 | 原子のイ    | 原子と1      | 戦化物の組成   | 拓質坂 | 結晶構造 | 五  | 熱的並びに熱力学的諸性                   | 假增生成熟    | エントロピ          | 酸化物生成の自由エネルギ     | 個化物生成反応の軟力学的ボテ | 風点と視点    | <b> </b> | 然后详净 | 教服细教       | 分子熱容量      | 山麓容量           | 恐能變  | 化学結合の分解エ     | 分解熱  | 相致既熟         |
|   | u ~ |                                                                                                                                   |             |           |         |           |          | _   | -    | -  |                               | 74       | •              | _                | Marie 1        |          | 142      | 100  | _          | 1          | _              | 1832 | 1            | K.   | <del>-</del> |
|   | ¥E  | 祵                                                                                                                                 |             | -         | . 7     | M 3       | 4        | 4   | 9    | 7  |                               | -        | 2              | 3                | 4              | 2        | 4        |      | (B)        | 2          | 10             | =    | 12           | 2    | 4            |
|   |     | ) <del>14</del>                                                                                                                   |             |           |         |           |          |     |      |    | 紙2番                           |          |                |                  |                |          |          |      |            |            |                |      |              |      |              |
|   |     | 終                                                                                                                                 |             |           |         |           |          |     |      |    | arc.                          |          |                |                  |                |          |          |      |            |            |                |      |              |      |              |

Na 1316 - F. His

| 285<br>286<br>292<br>292<br>293                                   | 505<br>507<br>508<br>508<br>509<br>510                   | 510<br>511<br>512<br>512<br>514                                     | 404<br>404<br>411<br>417<br>423                                     | 443                                               |
|-------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|
|                                                                   |                                                          |                                                                     |                                                                     | • •                                               |
|                                                                   |                                                          |                                                                     | 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                           |                                                   |
|                                                                   | ·····································                    |                                                                     | ····<br>10세五5<br>14 ···                                             | <b>米</b> 联 · · · · · · · · · · · · · · · · · · ·  |
| • • • • •                                                         | # ) ;                                                    | - HK 1.6<br>4 蘇密<br>2                                               | ・・・・<br>と酸化物<br>(化物の確<br>よびスラ<br>な日 途                               | 元 · · · · · · · · · · · · · · · · · · ·           |
| 題 知 田                                                             | 面折移<br>酸化物内での音楽<br>分子に関するデー<br>ファン・デル・リ<br>臨界性質<br>後 等 陸 | 後に始の複数性<br>優に物の高速中性子による医動作用<br>化学 的および 勉 媒 的 性 強<br>優に物の化学的性質       | 財 火 性<br>固相における物質と酸化物の相互反応<br>一・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | - 酸素 2 元系の状限因・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |
| 禁止等の個<br>誘電性質<br>光学的性質<br>酸化物の色<br>輻射能                            | 面折布 優化物内での当分子に関するテンプン・デル・ 臨界性質                           | 最大者の状格性<br>優先物の南部中<br>化学 的 お よ U<br>優先物の先学的<br>種媒母質                 | 成 火 性間相化物 超相化物 格爾金属                                                 | 話號                                                |
| 5<br>本<br>2                                                       | なるちゅう                                                    | 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                             | 本 な                                                                 | ₩                                                 |
| ±€                                                                | ·                                                        | 张                                                                   | <b>然</b> ,                                                          | 400年                                              |
| 162<br>163<br>164<br>165<br>171                                   | 178<br>180<br>180<br>209<br>212<br>222                   | 225<br>229<br>231<br>234<br>238<br>242                              | 245<br>253<br>255<br>260<br>261                                     | 262<br>262<br>273<br>274<br>276<br>281            |
|                                                                   |                                                          |                                                                     |                                                                     |                                                   |
| * * * * * * * * * * * * * * * * * * * *                           |                                                          |                                                                     |                                                                     |                                                   |
| · · · · · · · · · · · · · · · · · · ·                             |                                                          |                                                                     | · · · · · · · · · · · · · · · · · · ·                               |                                                   |
|                                                                   | *                                                        |                                                                     |                                                                     |                                                   |
| 多形面核陽段と禁患<br>特性温度<br>結晶格子x ネルギー<br>酸化速度<br>金属み1び非金属内の酸素           | 株光通版<br>数類圧<br>繁安定性<br>**ス状験化物の自由エネル<br>磁液的性質            |                                                                     | 鉱物スケールによる適度<br>数小硬度<br>圧縮液<br>弾性定数<br>電気的性質と磁気性質                    |                                                   |
| 多形菌核陽段と発動<br>特性温度<br>格晶格子エネルギー<br>酸化速度<br>金属お1び非金属内。<br>酸化物内の諸元素の | 聚物医氏<br>聚物压<br>聚功定性<br>多为状态化物。<br>超多数合作值                 | 株学性保護されて野路教育アンプルの保護を行うとは、日本教育を、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | ケールK<br>展・・<br>数・・                                                  | <b>发</b>                                          |
|                                                                   |                                                          | <b>発酵性保険</b><br>せん野路数<br>ボアソン比<br>引展歯さ<br>日務数さ<br>田が数さ<br>世が数さ      | 数物スケ<br>数小硬度<br>圧縮液<br>導性定数<br>電性完数                                 | 等電影<br>然間性質<br>門洗品質性質<br>耐気性質<br>解放例性質            |
| 177 188 198 198 200 200 200 200 200 200 200 200 200 20            | 7 - 22<br>22<br>25<br>24<br>24<br>第3 章                   | 1 2 x 4 2 8 8 7                                                     | 765 8 9 10 10 11 11 11 11 11 11 11 11 11 11 11                      | 1 2 2 2 3                                         |
|                                                                   | <u>₹₹</u>                                                |                                                                     | al properties agnetic rties                                         | ctrical 6                                         |
|                                                                   |                                                          | Chapter 4:                                                          | Electrical properties and Magnetic properties                       | conduction                                        |
|                                                                   |                                                          | Cha                                                                 | <u></u> 4                                                           | W                                                 |

5.5 C

第 4 单 — Chapter 4

電気的性質と磁気性質 Geberal properties and magnetic properties

英空中で蒸留した幅 めて植物な水 | 然格BeO, | 超質量2.25-1 (r³ | kg/m² 空気, Po<sub>1</sub>=0,22· 10<sup>5</sup> N/㎡ Pot Set 樕 Æ 基绍水 conductivity Reference > E [172, 173, 256] [104, 150, 56] [104, 150, 55; (104, 150, 56) 5,6 10<sup>-0</sup> (1104 150, 56) 赵 (202) (202) (202) [202] [3] [202] [142] [148] [142] [142] [502] <u>6</u> 6 6 6 × Electrical Enperature Electrical Yesistivity Tenperature conductivi 23.10 <sup>-8</sup> 280.10 <sup>-8</sup> 2,6.10-8 11.10-8 6,70 10<sup>-6</sup> 9,62.10<sup>-6</sup> Electrical conductivities 2,85.10-6 4,41.10-6 18,9.10-6 20.10 0, V/m 1,67.10-3, 景园祭 6.10-7 4 · 10 - 10 ı\_01 6 10\_1 品块 254 263 269 273 283 291 299 307 323 291 773 1273 1573 1773 1573 1273 933 1013 1173  $\rho$ ,  $\Omega$  - m紅花物 9.10 1,6.104 3.104 2.10 Oride P 100 (1. W) o, ⊀  $H_{\mathbf{x}}$ B<sub>C</sub>O

| 98195-       | · 传统              |                                                    | 4:14:                                     | 1 * [ ]                                                                                                                                    | -:::                                     | ~ <u>-</u>           |                      |               | 131                  |                      |          |                                                    | Na. 1 <u>316</u>                                          | <u> </u>                      | <u> </u>                      |
|--------------|-------------------|----------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|----------------------|---------------|----------------------|----------------------|----------|----------------------------------------------------|-----------------------------------------------------------|-------------------------------|-------------------------------|
| <b>₹</b>     | 25.10-4           |                                                    |                                           |                                                                                                                                            |                                          |                      |                      | r = 0,2 2 ·   | \δ.<br>≅             | /32                  | 铁鉱       | D KB()                                             | 0 <b>M</b> H O                                            | 心をの                           |                               |
| Æ            |                   | 2 一<br>五<br>五                                      | _                                         |                                                                                                                                            | 田村岳品                                     | 中军品                  | 事料事                  | 学気, Poy-:0,22 | Z<br>-               |                      | 工業用品鉄鉱   | 工業維度の1480                                          | 工業組度のMp.0                                                 | 分光分析和度的                       | STEEN NO.                     |
| *            | [104, 150,<br>56] | [104, 150, 56]<br>[104, 150, 56]<br>[104, 950, 56] | [104, 150, 56]<br>[415]<br>[104, 150, 56] | <u>4</u> <del>2</del> | [104]                                    | [142]                | [42]<br>[42]<br>[42] | [173, 257]    | (205)<br>(104)       | 40.5                 | (78)     | [78]<br>[78]<br>[150]                              | (150)<br>(150)<br>(150)<br>(150)                          | 150]                          | (150)<br>(150)<br>(150)       |
| 景風器          | 1.10-5            | 1   1                                              | 111                                       | 111                                                                                                                                        |                                          | 111                  | 11!                  | 2,82.10-3     | 10_3                 | i /                  | 111      | 111                                                | 1111                                                      | 111                           | 1 1 1                         |
| 语。<br>N.     | 1273              | 1473<br>1673<br>1879                               | 2073<br>1073<br>2273                      | 293<br>392<br>557                                                                                                                          | 573<br>773                               | 1273<br>1273<br>1273 | 1573<br>1773<br>2273 | 1573          | 1273<br>1073<br>1173 | 1273<br>1473<br>1673 | 1773     | 1753<br>1223<br>1273                               | 1373<br>1473<br>1573<br>1673<br>1773                      | 1073<br>1173<br>1273          | 1373<br>1573<br>1773          |
| 阻坑省<br>ρ,Ω·π | 8.10              | 4 · 104<br>25 · 10*<br>350                         | 65<br>3·10 <sup>7</sup><br>16             | 5,5.10<br>6,0.10<br>10                                                                                                                     | $\frac{10^{12}-10^{13}}{9\cdot 10^{14}}$ | 6.10°<br>1-10°       | 7.1 <b>0</b><br>2.10 | 1             | 1,8.10               | 1,9.10<br>101.6.1    | 1,15.101 | 2.10<br>12.0.10 <sup>2</sup><br>95.10 <sup>4</sup> | 62 - 101<br>30 - 101<br>9 - 101<br>3 - 101<br>1 - 5 - 101 | 4,0.10°<br>1,2.10°<br>7,1.10° | 6,8.10°<br>1,0.10°<br>2,0.10° |
| water        |                   |                                                    | BeO                                       | Na <sub>1</sub> O <sub>2</sub>                                                                                                             |                                          | MKO                  |                      |               |                      |                      |          | -                                                  |                                                           |                               |                               |
| 原子散号         |                   |                                                    |                                           | =                                                                                                                                          |                                          | 12                   |                      |               |                      | `                    |          |                                                    |                                                           |                               |                               |

つづき

|             |         |                  | -                     | · · · · · · · · · · · · · · · · · · · |             |                                |           |                               |            |            | •           |        |                    | ن<br>ا<br>ا     |         | <del>,,</del> ^                   |                          |        | V2.05      | ٥٢٨     |         |                | ·              |
|-------------|---------|------------------|-----------------------|---------------------------------------|-------------|--------------------------------|-----------|-------------------------------|------------|------------|-------------|--------|--------------------|-----------------|---------|-----------------------------------|--------------------------|--------|------------|---------|---------|----------------|----------------|
|             |         |                  |                       |                                       |             |                                |           |                               |            |            |             |        |                    |                 |         |                                   |                          |        |            | ,       |         |                |                |
|             | 基本      |                  | , Ø 1.                | 400                                   | 単結晶コランダム    | 7720 A 12 US, 周<br>数数 10210 H2 |           |                               |            |            |             |        |                    | 711134          | 76      |                                   |                          |        | 人造単結晶コラングム |         | -       |                |                |
|             |         |                  | : 41                  | 1                                     | 中格品         | 数                              |           |                               |            |            |             | 中林品    |                    | 発結務             | 94      |                                   |                          |        | 人造車        |         | 古典      | <<br>:         |                |
|             | 女       | 1                |                       | <u>888</u>                            | 1091        | 1501                           | [051]     | [150]                         | [150]      | 200        | 142)        | [42]   | 104                | 23              | [104]   | 383                               | 50.5                     | 200    |            | 101     |         | (63)<br>[234]  | (234)<br>(234) |
| 無知時         | 0.11/11 | 1                | 1 1                   | 1 1                                   | 1 1         |                                |           | :                             | 1 1        | Į Į        | 1 !         |        | 1,4.10             | , !             | ;       | !   1                             |                          | : !    | 1          | 1 :     | ° 01    |                | . '            |
| M M         | ж,      | 1873             | 373                   | 473<br>573                            |             | 1273                           | 1373      | 1473                          | 296<br>373 | 573<br>873 | 773<br>1273 | 1573   | 1273<br>287<br>473 | 673             | 1073    | 1373                              | 1998<br>2083             | 2148   | 1598       | 8621    | 293     | 973            | 1473           |
| 既坑拳         | 0.01 m  | 5.102            | 10 10 13<br>↑ 2 10 13 | 4.104<br>3.104<br>3.5.104             | ×(0,8-9,0)× | (5,0-1,0)x                     | *(0.10.4) | ×(9, = -0, 4)<br>×(0, = -0, × | 3.2.1012   | 1, 2, 10,  | 9 · 104     | 3 - 10 | 3 104              | 3-1010<br>4-104 | 3,5.10° | 801 : 10<br>101 : 10<br>101 : 101 | 4, 25 : 04<br>2, 9 : 104 | 7,7:10 | Z, U - 10* | 2 . 101 | r.01·1个 | 2 103<br>2 103 | 3.101          |
| 67 (1 1/2)  |         | M <sub>E</sub> O |                       |                                       |             | AI,O,                          |           |                               |            | _          |             | _      |                    |                 |         |                                   |                          |        |            |         | 7       |                |                |
| <b>←</b> \$ | 自立      | 1.2              | -                     |                                       |             | =                              |           |                               |            |            |             |        |                    |                 |         |                                   |                          |        |            |         |         |                |                |
|             |         |                  |                       |                                       |             | R <sub>2</sub> O <sub>3</sub>  |           | -                             |            |            |             |        |                    |                 |         |                                   |                          |        |            | S.C.    | 4       |                |                |

| 9529541             | 5月17世 <u>——</u> 8444                                                                                        |                                                                                                   | <u> </u>                     |                                                        | Na 1916, _ 8. 19                                                                                                                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>4</b>            |                                                                                                             | 19/32                                                                                             | $A=6,7.10^{3}v/m$            | (1 = 1 € 6 // // // // // // // // // // // // /       |                                                                                                                                                                 |
|                     |                                                                                                             |                                                                                                   | A=5,                         | 8 = 18<br>                                             |                                                                                                                                                                 |
| 対                   | [234]<br>[160]<br>[160]<br>[205]<br>[202]<br>[303]                                                          | COCOONO                                                                                           | [257, 173]<br>[205]<br>[128] | 216]<br>2216]<br>148]<br>148]                          | [194]<br>[194]<br>[194]<br>[194]<br>[149]<br>[220]<br>[220]<br>[220]<br>[220]<br>[220]<br>[220]                                                                 |
| 出 / な. カ            | 7.10 <sup>-15</sup><br>7.10 <sup>-12</sup><br>1.10 <sup>-8</sup><br>10 <sup>-1</sup><br>15.10 <sup>-6</sup> |                                                                                                   | 8,65.10                      | 1         6                                            |                                                                                                                                                                 |
| <b>記</b><br>不       | 1673<br>400<br>500<br>668<br>1273<br>308                                                                    | 1036<br>1503<br>1608<br>1643<br>1733<br>1733<br>1733<br>1808<br>1643<br>1833                      | 1973<br>1273<br>1000         | 200<br>300<br>400<br>1073<br>1473                      | 293<br>573<br>1273<br>1273<br>1689<br>1689<br>293<br>293<br>148<br>168<br>198<br>233<br>233<br>233                                                              |
| <b>斑玩譽</b> ρ.11 ⋅ π | 2.104                                                                                                       | 70.104<br>41,75.104<br>10,4.102<br>20,45<br>0,91<br>7,3.104<br>9,6<br>70.104<br>10,4.102<br>20,45 | 4,4.108                      | 2,66-10*<br>3,16-10*<br>3,16-10*<br>1,2-10*<br>8,5-10* | 11,73.101<br>74,9<br>74,9<br>6,5.10 <sup>-5</sup><br>1,76.10 <sup>-5</sup><br>4,93.104<br>8,47.10 <sup>1</sup><br>13,7<br>5,67<br>1,91<br>8,15.10 <sup>-1</sup> |
| BR (C.Sh)           | °So.                                                                                                        | . CaO                                                                                             | \$c <b>3</b> 0\$             | TiO,                                                   | V,04<br>V,04                                                                                                                                                    |
| 原子審号                | 16                                                                                                          | 50                                                                                                | 21                           | 22                                                     | 23                                                                                                                                                              |
|                     |                                                                                                             |                                                                                                   |                              | 7.05                                                   | √20°5<br>√30°5                                                                                                                                                  |

\*(...

9月29日\_16時27

鉄

鱼

溪

活进程

岩理

177719

[215] [215] [182]

~64·10" 60·10"

4,74.104 7,7.10<sup>-3</sup> 6,24 10<sup>1</sup> 10,38 8,23.10<sup>-1</sup> 6,82.10<sup>-1</sup>  $m \cdot \nabla \cdot \theta$  $2,17.10^{-2}$ 1,32.10-1 抵坑率  $2,4\cdot10^{-1}$ 1011 6,70-104 1,44 0.1 Fe<sub>3</sub>O<sub>4</sub> 政化物 Fe<sub>2</sub>O<sub>3</sub> FeO්<u>ට</u> ල්<u>ට</u> 3 3 3 原子舊身 26 27 87 F203 Fe304 0,3 酸素化でも熱した 熱体 No. 歐 ᆂ 用格品

1273 1593 843 973 1273 1285

KASASAKI STEEL

[275, 259] [149].

[149] [149] [149] [149]

[202]

(4,8-4,7)× ×10\* (11,6-11,7)·10² 10³ [360] [360]

7.10-14

293 673 293 573 1273

> [57, 22] [209]

[69]

(3.6 - 3.4)× × 101 (7.0-7,2)× × 101

1573

[63] [49]

[149] [149] [205]

295 369 600 623 1473 1618 1023 1273 513 223 223 293 423

> 7,8-10<sup>-1</sup> 4,0-10<sup>-1</sup> 2,13-10<sup>-1</sup>

> > 3

Cr02 1254

2,3 10<sup>-1</sup> 12,65

10,7 2,69 0,42 1,3-10<sup>r</sup>

7O∧ ←

CF2C3 24 CFO.

[246] [746] [146]

2,1.10

MnO

10-3

11911

5.10<sup>-1</sup> 3,3.10<sup>-1</sup> 37,9 4,5

295 293 773 943 873 1273 1373

10.10g

20/32

[144] [144] [265] [259] [190] [149, 63, 199] [149, 63, 199] [205] [78]

[217]

 $10^{-6} - 10^{-7}$ 

293 863 863 1273 1518 1273 293 400 500 500 973 1: 13.6

[149, 673] [149, 673]

1273

3,2.10-4 9,6.10-1

[149, 673]

10-6--1010

293

Cu,O,

1 CM203+

259)

(691

[149]

893 1273 1553 293

2,0-10t 1,43-10<sup>-1</sup> 7,2-10<sup>-3</sup>

MnrO

MAGENN

(149, 673) 1149, 673] (149, 673)

1273

35,5 1,67 0,0208

その他の確化物を3 劣極性

149] 205]

[179]

1,4-10<sup>-2</sup>
2,5-10<sup>-3</sup>
1-0,1
(0,2-0,3)×
×10<sup>4</sup>
(2,8-3,0)×
×10<sup>4</sup>
285
10-10<sup>4</sup>
538
736

1173

>2,12.104

つづき

袌

華岡春日,2/1

飌

鸣

旺氧名 0, O. n. m

操化物

原子母母

できた。 町 Xunhth 強と 田利年哲

[220] [220] [220]

321 338 358

> 1,43.10<sup>-1</sup> 1,00.10<sup>-1</sup> 7,96.10<sup>-2</sup> 6,15.10<sup>-2</sup> 4,89.10<sup>-2</sup>

3,01 10<sup>-1</sup> 2,69.10<sup>-1</sup> 1,86.10<sup>-1</sup>

0,7

V205 23

375 400 440 773

[220] [220] [220] [179] [671]

1273

 $(1,0^{-1},1)\times \times 10^{-2}$ 

 $0, 18) \cdot 10^{-2}$ 

(0,17...

243

[200]

2113£

9E29E

**3**4

室

¥

帝尼斯  $\sigma, v/\pi$ 

温度

"6港江元

各種の配加剤を与わ

\*4#484\*1 87881 780+10+8888480+

(150) (150) (150) (11) (169) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (209) (

3,0 - 80 360 - 80 3,1 - 10 - 4 3,1 - 10 - 4

2.1/32

いるいる存成数万年のに

[356]

188-10#

293

97 · 10\* 490 · 10\* 10 · 10\*

0,03-1

|                |       |              | 8 3                     | ~ -                                           |                                    |                         |                                     |                                 |          |                | <del></del> ,            | <b>A</b>                                           |                                     | <u> </u>                                        |                                                      |                                     |              | 001                       |                                |
|----------------|-------|--------------|-------------------------|-----------------------------------------------|------------------------------------|-------------------------|-------------------------------------|---------------------------------|----------|----------------|--------------------------|----------------------------------------------------|-------------------------------------|-------------------------------------------------|------------------------------------------------------|-------------------------------------|--------------|---------------------------|--------------------------------|
|                |       | 西公奉 0 0 章    | 1,6.40-2                | 0,37.10 <sup>-2</sup><br>8,6.10 <sup>-4</sup> | -                                  |                         | 67,3                                | 0,326<br>0,05<br>(0,01          | 2        | :              | 4.0<br>0,0               | 65,6<br>2,66                                       | 0,1<br>1.10<br>0,22                 | 10                                              | <b>5</b> 0 <b>5</b> 0 <b>5</b> 0 <b>5</b> 0 <b>6</b> | 3,4<br>2,24,10 <sup>1</sup><br>2,13 | 1,87.10-1    | 0,50-10                   | 1101                           |
|                |       | <b>松北物</b>   |                         | Nb <sub>2</sub> O <sub>8</sub>                | O,4N                               | MoO <sub>3</sub>        | Ago<br>CASO                         | In.O.                           | 7        | (              | SnO <sub>2</sub>         |                                                    | ВаО                                 | La,O,                                           | CrO <sub>3</sub>                                     |                                     | Pro          | Pro.                      | Nd <sub>2</sub> O <sub>8</sub> |
|                |       | 医小斑          | <u></u> 型               | 7                                             |                                    | 42                      | 1 44                                | 49                              |          | SnOz           | 200                      |                                                    | 56                                  | LA20357                                         | C. O. 58                                             |                                     | 69           |                           | 8                              |
| 40<br>40<br>40 | - A   | Trees, Spike |                         | 20.                                           | , 함                                |                         |                                     | 200 V 200 V                     |          | ×              |                          |                                                    |                                     |                                                 | -                                                    |                                     |              |                           |                                |
| •              |       | 霍            | 数化研究をよりにお               | カ森<br><b>政化</b> 超鉛を900C<br>近年                 | 5.7%, 0 kk 103~<br>106m 116の真空中で単定 | $p_{O_4} = 10^{-4}$ and | $P_0 = 10^{-4}$ may $P_0 = 150$ may |                                 | 成長単結晶    | 空氣. Po =0.22   | X10 N / m<br>A=296 @ / m | =16770°K                                           |                                     |                                                 | があっての                                                |                                     |              |                           |                                |
|                | !     | ķ<br>≅       | [63]<br>[83]            | [214]                                         |                                    | [192]                   |                                     | (149)<br>(149)<br>(149)         |          | [257]<br>[173] | (128)                    |                                                    | (234, 56)<br>(234, 56)<br>(234, 56) | [234, 56]<br>[104, 150]<br>[104, 150]           | <u> </u>                                             | <u> </u>                            | 104. 150]    | [150]<br>[150]            | [150]                          |
| ļ              | 新聞書   | 0.v/m        | 6,7.101                 | 1,2.10.2                                      |                                    | 0,84-103<br>27-10*      | 4,7.101<br>82.10 <sup>-3</sup>      |                                 | 4-45     | 1,28.10        | ,                        | 1 1                                                |                                     | 1.1                                             | ~                                                    | . :                                 |              |                           | -                              |
|                | 四四    | ٤            | 1073<br>  1623<br>  293 | 293                                           |                                    | 293<br>293              | 773                                 | 433<br>878<br>1273<br>1593      | 40 -4,2  | 1473           | 1000                     | 973                                                | 973                                 | 573<br>673<br>873                               | 1073                                                 | 1673<br>1873                        | 2073<br>2273 | 973                       |                                |
| ,<br>i         |       | m - 11 · 0   | 5.10                    |                                               |                                    |                         |                                     | 93,4<br>0,59<br>0,026<br>0,0166 |          |                | 5,4.10                   | 2,2.10 <sup>3</sup><br>3.6<br>1,0.40 <sup>-7</sup> | 104 10-10-2                         | 3.104<br>8.10 <sup>3</sup><br>7.10 <sup>8</sup> | 8·101<br>1·101                                       | 1-01-1                              | 5 10-2       | 7,7.10 -7 9 9 4 9 4 10 -2 |                                |
|                | 五 保化物 |              | Ouz                     |                                               |                                    |                         |                                     | 3                               |          |                | -                        | 1017                                               |                                     |                                                 |                                                      |                                     |              |                           |                                |
|                |       |              |                         |                                               |                                    |                         |                                     | <u>.</u>                        | <u> </u> | (10, (3))      | 16 5 7 1 S               |                                                    |                                     |                                                 |                                                      |                                     |              |                           | _                              |

. . .

 $A - .87 \cdot 10^{a} \ v/m$   $B - 6325^{9}K$   $A = 567 \ v/m$   $B = 11140^{9}K$ 

 $A = 24,10^4 \text{ } v / m$   $B = 22400^{\circ} \text{K}$ 

1000-626

1000 

No 1316

11111111111

0177

=

霏

[356] [356] [148] [148] [148] [149] [153, 78] [153, 78] [145] [145] [145] [145] [143, 150] [149] [149] [128] [128] [128] [128]

 $(1-2) \cdot 10^{-2}$ 3.10-6

293
293
293
293
293
293
293
1473
1058
1058
11273
11273
11273
11270
11260
11270
11270
11270
11270
11270
11270
11270
11270
11270
11270
11270
11270
11270
11270
11270
11270
11270

ろうな

| **                            | 1 1  | <b>≅</b>    |         | m/a,    | ~<br>~~/~;<br>¥                                                    | 7 X                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                   |                | 5.873<br>K以下                  |                   | i.                      |                              |                                       | _                  |            | _     |              |                                          |
|-------------------------------|------|-------------|---------|---------|--------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|----------------|-------------------------------|-------------------|-------------------------|------------------------------|---------------------------------------|--------------------|------------|-------|--------------|------------------------------------------|
| 炬                             |      | B - 13400 K | 1       | A = 405 | $A = 443  v/m \\ B = 159107K$                                      | A = 1010 v<br>B = 17550 K |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                   | ;<br>;<br>;    | の13年指から873<br>でからの間接数で数化しなった。 | 1                 |                         |                              |                                       |                    | 其空内で試験。    | イフィ科形 | るなった。        | \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| 女                             |      | 14091       |         |         | [254]<br>[128]                                                     |                           | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [96]<br>[96]<br>[47] | (78)<br>(78)      | [201]          |                               |                   | [0/]                    | [149]<br>[149]               | (621)<br>(821)                        | n                  |            |       | [57]<br>[78] | 103                                      |
| 4 国 年 0 . 2 / 11              |      | 01-01-9-01  | 556     | ; [     | 11                                                                 | 111                       | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11!                  | 1 1               | 01 (           |                               | ; · · · · ·       |                         | 1 1 1                        | 23<br>6083                            |                    | ===        |       | 1 : 1        |                                          |
| 函 、                           | 0001 | 293         | 1380    | 1000    | . —<br>1880<br>1880<br>1880<br>1880<br>1880<br>1880<br>1880<br>188 | 633                       | 98.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>198.5<br>1 | 293<br>293           | 503               | <br>: 5년<br>(반 |                               | 293               | ्रा<br>श्रद्ध<br>श्रद्ध |                              | 1073<br>1173<br>273                   | 293                | 867<br>818 |       | 67.6         | 293 – 273 – 273                          |
| (成就条) (2) (2) (2) (2) (3) (4) | 420* | 3           | 10 - 10 | 0.17    | 1,67 10**                                                          | : <u>2</u>                | 3,5 · 10**<br>- 10*<br>5 · 10*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.1                 | 8 10 -b<br>2 10 6 |                |                               | 2.10 -6<br>1.10-6 |                         | 2,67-10 <sup>3</sup><br>12,2 | 9,08.10.7                             | 10° - 10°          | 60, 15,    | •0:   | 3.107        | 4.1011                                   |
| 际代数                           | Sm,O | ELC         | Ornel   |         | Dy.O.                                                              | E O                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tajo, Tajo           | ReO,              |                |                               | ReO,              | Dic Oald                |                              | ـــــــــــــــــــــــــــــــــــــ | Bi <sub>2</sub> O, |            |       |              |                                          |

| 3E 3E29E_1   | 64.65 <u></u>                                                                       | -<br>-]4+]                                         | T20+10 4202140H                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|-------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 54           | ·<br> <br>                                                                          | <u>ን- የብኝ</u>                                      | 22/32                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | A. 63.46                                                                            | 水業券間気内で                                            | 2.4.3.5.7.3.5.7.7.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.3.5.7.5.7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>₹</b>     | [104, 150]<br>[104, 150]<br>[104, 150]<br>[142]<br>[142]<br>[142]<br>[142]<br>[142] | [224]<br>[167]<br>[167]<br>[167]<br>[167]<br>[167] | (238)<br>(238)<br>(238)<br>(238)<br>(238)<br>(238)<br>(238)<br>(238)<br>(238)<br>(238)                                                                                                                              | 238<br>238<br>238<br>238<br>238<br>238<br>238<br>238<br>238<br>238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 海田市          |                                                                                     | 3.16-4                                             | 3.10 <sup>-3</sup><br>0,209<br>0,316<br>0,525<br>0,738<br>1,17<br>1,27<br>0,04<br>0,1                                                                                                                               | 2 10 - 2 2 10 - 3 2 10 - 2 2 10 - 3 2 10 - 2 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 10 - 3 2 1 |
| 頭。           | 1073<br>1273<br>1478<br>773<br>1273<br>1573<br>1773                                 | 1630<br>2000<br>293<br>773<br>293                  | 293<br>213<br>227<br>227<br>288<br>288<br>293<br>373<br>373<br>473<br>473<br>523                                                                                                                                    | 673<br>623<br>623<br>623<br>773<br>773<br>873<br>673<br>1273<br>1273<br>1273<br>1273<br>1273<br>1273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 戡坑崋<br>ρ,Ω·加 | 8 - 102<br>1, 1 - 107<br>1 - 106<br>1 - 106<br>7 7                                  | 0,1<br>0,01<br>3,8.10 <sup>-2</sup><br>5           | 3 10 <b>-3</b>                                                                                                                                                                                                      | 10.7<br>0,42<br>5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 版化物          | ThO                                                                                 | no.                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 原子番号         | 05 T 00                                                                             | 92                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

かん

200

13年 9月29日 16時1日出

¥

至 ⋈

ە <del>بر</del>

理

# HV/deg 熱起電力保

×1203至合金磁加

| 中華 類 数 化 數     | - 22             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23    |       |       |       | 25 Min <sub>2</sub> O <sub>6</sub> |              |       | 27       | 28       | 62       | Ş       | 2               | 40           | 41 Nb <sub>8</sub> O <sub>5</sub> | 7                 |       |          |       | 47<br>WO.            |             | $\frac{}{}$               | 5             |
|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|------------------------------------|--------------|-------|----------|----------|----------|---------|-----------------|--------------|-----------------------------------|-------------------|-------|----------|-------|----------------------|-------------|---------------------------|---------------|
|                |                  | e de la constante de la consta |       |       | ψ×.   |       | وتنتها                             | <del>)</del> | ~     |          | 10 p     | <b>.</b> |         | <del>-^</del> - | ~ <i>;</i> ; | <u> </u>                          | -                 |       |          |       | D                    |             | <del></del>               | <del></del> ; |
| 墓              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |       |       | -                                  |              | -     |          |          |          |         |                 |              | •                                 |                   | _     |          | ,     | 400℃で過剰後             | <u> </u>    |                           |               |
| 女              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [150] | [150] | [051] | (:50) | [150]                              | [150]        | [150] | [238]    | [238]    | [238]    | [238]   | [238]           | (238)        | (238)                             | [238]             | [238] | [258]    | (238) |                      |             |                           |               |
| 海国教            | 0,3              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6,93  | 1,40  | 2,05  | 3,72  | 7,30                               | 12,6         | 23,50 | 1.10 -5  | 2,5.10-6 | 9.10 -8  | 30.10 8 | 15.10 4         | 50.10        | 1,3.10-3                          | $3 \cdot 10^{-2}$ | 0.07  | C, 14    | 0,24  | 1,4.10 <sup>-3</sup> | 極後面         | <u>│</u><br>から来めた <u></u> |               |
| <b>配</b><br>第。 | 673              | 973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 295   | 3.3   | 333   | 369   | 428                                | 496          | 009   | 293      | 323      | 37.3     | 423     | 473             | 523          | 573                               | 623               | 673   | 723      | 773   |                      | < 573   ₽   | ——<br>/)率は次式:             | _             |
| 既如治<br>0.02·m  | 3,3              | 0,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |       |       |                                    |              |       | 40 - 104 |          |          |         | _               |              |                                   |                   |       |          |       |                      | <del></del> |                           |               |
| 174.12         | r <sub>0</sub> 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     |       |       |       | -                                  | -            |       | 0°0      |          |          |         |                 | _            | <u>-</u> -                        | -                 |       | <u>.</u> |       |                      |             | 1                         |               |
| 海野             | 75               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |       |       | _                                  | _            |       |          |          |          | _       |                 |              |                                   |                   |       |          |       |                      |             | -   <u>u</u>              |               |

23/32 ((17144) 野界安

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

0,11

90

電性質

画书

. 2003年 9月29日 16時0日<sub>世</sub>

現場に役立つ豊富な設計データを収録し ●チタンについて平易次解明した良書

オリシャー , V. × 学機械製体における

田008/6 記画

4,500PE

担告

昭和45年6月30日発行

黑

**化物** 

選

2

놡 狱

3.8頁 2 日本語全訳版 A 5 判

7696T モスクリ 機械製作出版所

Вф K

11 316

1章 化学機械製作で用いられるチョ

る様

東京都千代田区一番町10番地

臣

ĸ

武

電話 (03) 262-7254 版替口座番号 東京 98975

版替口座番号 大阪 7062

和数山市吹屋町2下目1日番組

有限会社日・ソ通信社

透照

经货

16 16

有限会社 ロ・ノ通信社勘訳部

<治金>□脳所 キスクフ W. Vr. + LVII

成本出版的

ы

19654

電器(0754) 22-8272

2章 (チョンの耐食性

メタン製の化学機器並びに装置

ナタンとその合金の機械加工

チタンとその合金の止縮加L 5#

ナタン製化学製造の銀出及びコ ナダンとその合金の路盤 **好** 9

` .

ニットの私立並びに発費用ジル

とその合金

**₩** 

Document 2

物性科学選書鈴木平·近角閣信·中嶋貞雄協樂

34 98195 168 65

# 電気伝導性酸化物

Conductive Oxides

果就理例大学整度 和MY-KSFROOM 发育大学为数度 大区大学用的理学 時 主 理 学 的 主 理 学 的 主 理 等 的 计 强 等 10 计 强 等 10 计 计 进 计 阻 等 10 计 进 田 惟 雄 那須奎一加 藤 森 10 円 島 紀一

(改 訂 版)



東京 裳 華 房 発行 Shokabo

92/6 (Lfx?) 6.2 49 2/10/32/32/ (Lfx?) 26.2 48 2/10/32/32/ (Lfx?) 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48 2/10/32/ 26.2 48

- E-

本晋は引用された多くの研究成果の上に成り立っている、各著者に栄養なる秩序を表する次第である。また,高温超伝導の分野では,とりわけ,重要な論文の見落しがあることと思われるが,御寛容を賜りたい。

1993 4: 9 H

津田惟雄 那須奎一郎 職森 淳 白鳥紀一

content

9**=** 9**=**19E

L A

1. はじめに ..........

2. 酸化物中の電子状態と電気伝導 electronic state in oxide and electrical conduction

| MIT (metal - insulator | Iransition)           | \$2.9 员等体管化物 | 2.9.1 NaCI構造の数化物伝導体     |            | 2.9.2 =774 A         | 2.9.3 ルチル構造・・・・・・・・・・・43 | 2.9.4 ペロブスカイト構造・・・・・46 | 2.9.5 KiNiF, 禁語 ······50   | 2.9.6 ReO, M, WO,51 | _                   | 29                   | 2.9.8 スピネル・・・・・・54   | 2.9.9 低冰元酸化物55                                  | 器             |
|------------------------|-----------------------|--------------|-------------------------|------------|----------------------|--------------------------|------------------------|----------------------------|---------------------|---------------------|----------------------|----------------------|-------------------------------------------------|---------------|
| \$2.1 配位子場中のイオン5       | 86.2 電子のエネルギーバンド・・・10 | 3.2.3 電子相談   | 52.4 紀子 - フォノン招互作用・・・11 | 2.4.1 断%还位 | 2.4.2 電子-フォノン相互作用・12 | 2.4.3 ボーラロン・・・・・16       | \$2.5 th th            | 2.5.1 Anderson 局在 ······17 | 2.5.2 変援ホッピング:      | VRH (variable range | 81 ········· (Bujdoy | 9-2-0 MeuカとHall移動度18 | 3.7. A16 T. | 86.8 安昌-祖佐体虹线 |

\*4:434\*0 37850 780+10+8535480+

## 強い電子格子相互作用と多体問題 ઌ૽

| 3.4.5 光務起吸収 ************************************ | 3.4.6 1 次元栋母 Peierls- | Hubbard モデル ・・・・99 | 3.4.7 ソリトン型級和 ・・・・・・101 | 3.4.8 ポーラロン型機和過程 …106 | 53.5   超伝導と電荷密度波の対立 | 201                | 3.5.1 多ポーラロン来と | 有効ハミルトニアン ・109     | 3.5.2 相 図111 | §3.6 独储合多電子格子派の | 超伝導転移温度115             | 3.6.1 7.の期待される佐道115 | 3.6.2 Teの弱相合強結合内棒 | 理論 個面                 | \$3.7 非規形抵動と強く結合する | 電子系の超伝導・・・・・・119 | 3.7.1 格子板動の非線形性, | 非關和性 ************************************ | 3.7.2 非精和型Peier1s- | Hubbard 換聲·····124    | 3.7.3 非額和性と金属治療体   | (CDW, SDW) 転移 ··125 | 3.7.4 同位元素効果と非調和性 | 128                 | 文 既 ······132     |
|--------------------------------------------------|-----------------------|--------------------|-------------------------|-----------------------|---------------------|--------------------|----------------|--------------------|--------------|-----------------|------------------------|---------------------|-------------------|-----------------------|--------------------|------------------|------------------|-------------------------------------------|--------------------|-----------------------|--------------------|---------------------|-------------------|---------------------|-------------------|
| [3.1 BUDE68                                      | (3.2 優結合電子格子系の一体問題    | 2272               | 3.2.1 TT27x/>のあれこ       | れ, 祖互作用の包々な形          | 72                  | 3.2.2 弱格合と広がったボーラロ | <b>*L</b>      | 3.2.3 伪桔合,自己束制,自独的 | 並進対称性の破れ、次元  | <u>1475</u>     | 3.2.4 自己來緯の動力学・・・・・・79 | 43.3 64指合電子格子系の二体問題 | 8585              | 3.3.1 バイ・ボーラロン・・・・・82 | 3.3.2 自己來增加起子の     | 電荷分離狀態85         | 13.4 摄1次元氧荷密度弦中の | は起子, ボーラロン,                               | 88                 | 3.4.1 差島状態と相関・・・・・・91 | 3.4.2 CDW における励起子の | 非線形格子溫和93           | 3.4.3 配荷移動型励起于94  | 3.4.4 共码 Raman 散乱 E | STE からの発光 ····・96 |

| × |  |
|---|--|
| • |  |
|   |  |
|   |  |
| - |  |

2003年 9月29日 06月19分

.≍

# 4. 電子間相互作用

| \$4.1 ACDE                                       | <b>認有移動型 ······155</b>     |
|--------------------------------------------------|----------------------------|
| 14.2 電子関相互作用のモデル化                                | 4.5.2 配面即机互作用理编 … 158      |
|                                                  | \$4.6 磁気的相互作用163           |
| §4.3 1電子近似と電子相関·····142                          | 4.6.1 超交换相互作用 ·······163   |
| : 4.3.1 Hartree - Fock 近似 · · · · 143            | 4.6.2 金属中の局在モーメント          |
| 4:3.2 局所密度近似145                                  | 991                        |
| 4.3.3 電子相隔効果146                                  | 54.7 電子相関の強い金属168          |
| 94:4 通移会関イオンの電子状態                                | 4.7.1 金属-冶除体配移168          |
| 271                                              | 4.7.2 Hubbardモデルを用いた       |
| 14.1 Hartree - Fock 近似による                        | 第子相関の単独に ・・・169            |
| 取股1、147                                          | - 4.7.3 Fermi 液体としての性質     |
| 音4.4.2 配位子場理論149                                 | 0.11                       |
| - 4.4.3 Molt 格像体の d パンドと                         | § 4.8 長距離 Coulomb 相互作用 175 |
| キャリアの導入・・・・・153                                  | 4.8.1 【 图合原子值状態 ·····176   |
| 84.5 d電子とp電子の組成 …155                             | 4.8.2 Anderson 局在177       |
| 4.5.1 Mott-Hubbard型と                             | ★ ★181                     |
| •                                                |                            |
|                                                  | ** 437 AP X 4 / 7 4 / 1    |
| S. A. KARINA                                     | 小女的女母 电压键化物                |
|                                                  |                            |
| §5.1 ReOs, 最も伝導度の高い                              | 務告合選伝導と温度に依存               |
| (2) de (元学体 ······185                            | する磁性・・・・・・・・211            |
| 5.1.1 結晶構造185                                    | 5.3.1 枯晶構造212              |
| □5.1.2 <b>電子の</b> 仕質 ······187                   | 5.3.2 11子の性質216            |
| §5.2. SnO <sub>2</sub> と TiO <sub>4</sub> 酸化物半弹体 | 5.3.3 超伝導の性質 ・・・・・・217     |
| 261                                              | 5.3.4 組織体:等でない状態密度         |
| 125.2.1 SnO <sub>2</sub> のxx と構造・・・・197          |                            |
| - 5.2.2 SnO,の電気伝導度・・・・199                        | 5.3.5 金属- 色操体标移 (NUT)      |
| 5.2.3 SnO. O 光学的性質·····205                       | 223                        |
| 5-2.4 TiOs206                                    | 5.3.6 LiV.O. ZnV.O224      |
| \$5:3 LITLO, E LIVO, :                           | \$5.4 WO, E M. WO,:        |

当55世经**过过,表** 

N: 1316 - 2 IT

|                   |                   |                                                 | 及完全             | Na.Ta,Wi.,O,                              | M.NbO,           | N=H                              | Nai-,Sr. NbO, | K RTIO, | R=La    |                      | )   <b>2</b>                 |          | (n=2, 3, ∞)                                              | C4V0,                               |              |              | Ta-Sr,VO                                    |                     |
|-------------------|-------------------|-------------------------------------------------|-----------------|-------------------------------------------|------------------|----------------------------------|---------------|---------|---------|----------------------|------------------------------|----------|----------------------------------------------------------|-------------------------------------|--------------|--------------|---------------------------------------------|---------------------|
|                   |                   |                                                 |                 |                                           |                  |                                  |               |         |         |                      |                              |          |                                                          |                                     |              |              |                                             |                     |
|                   |                   | (4.55.10を見よ)                                    | 女               | (1,61,65,79,156 reform                    | 64, 65           | 73, 79, 157, 27 <b>4,</b><br>275 | 381           | 158     | 857     | - 159                | 160, 161                     |          | 162-166                                                  | 191                                 | 168          |              |                                             | 169, 170            |
|                   | 状態と現気伝導           | どめた。南西林にしいて                                     | 報 7) 昭          | Y magnetic<br>Pauli para, Susceptifilly   | Curie - Weiss 60 |                                  | 温度によらない       | 温度によらない | 温度によらない | 資用性, 高温で Curle-Weiss | not Pauli para.              |          | Pauli para.                                              |                                     |              | Pauli para,  | Curie - <b>We</b> iss                       | Curie - Weiss       |
| conductive oxides | 2. 債化幼中の電子状態と電気伝導 | 2-2 表(砂原性砂化砂(稲辺牛導体II松倒にとどめた、高辺林については §5.10 を見よ) | 和范景(· m, 300 K) | CID Pesistuity<br>3×10-7,<br>超压等 Ti=2.3 K | 2×10-            | 1.3×10°*                         | 2.7×10 °      | 7×10-'  | 2×10-1  | 110-/<br>会属 - 矩棒体数移  | 1473 K で金属 2・巻発存形象           |          | 2×10-*(T-T <sub>c</sub> ),<br>起压遏 T <sub>c</sub> -13.7 R | 会局 - le操体赋移<br>Livus Alvas Cross.es |              | x<0.2 全局、组记算 | x=0.6で色属-色像<br>体転移, 超伝導 7:=<br>3.6 K(x=0.2) | 8×10 '              |
| Conduct           | 7 56.2.2          | 2-2 本(初配任政化                                     | 路 化物            | NaCl # cx ide                             | 0.0              | NPO                              | LaO           | OPN     | SmO     | EuO, ,               | LIVO,<br>( <b>码</b> th NaCI) | Spinel B | LiTuo,                                                   | Ling Tie O. (MLi, Al, Cr)           | Lite.M.TigO. | M∹Mg         | MeMa                                        | LiV <sub>P</sub> O. |

z

12.8 全属-他操体転移: MIT

蔥 176, 177

隔化率

**蕉灯亭 '(·m, 300 K)** 

|                   |                                                                     |                                | ź         |
|-------------------|---------------------------------------------------------------------|--------------------------------|-----------|
| Na. Ta, Wi., O.   | $10^{-3.8}(x=0.64), x=$                                             |                                | 176.177   |
|                   | y=0.18 で金属-船場                                                       |                                | -         |
| ••                | 体転移、アンダーソン                                                          |                                |           |
| (<br>             | 局在?,保證整化なし                                                          |                                |           |
| Ma, NbC,          |                                                                     |                                | 178, 179  |
| ·M=Er             | $4 \times 10^{-1} (x = 0.76)$                                       |                                |           |
|                   | 0.65くよく0.92で会園                                                      |                                |           |
| Nai-,Sr. NbO,     | アンダーソン局在!                                                           |                                | 180       |
| . KTiO.           |                                                                     |                                | 181, 182  |
| R=La              | 2×.0-1, 金属?-柜罐                                                      | canted antiferro.              | •         |
|                   | 体医移(125K)                                                           | T> Tn=126 K で大                 |           |
| (<br>1            |                                                                     | きな Pauli para.                 |           |
| <b>X</b> = Ce     | 金属 7 - 他因体任何                                                        | T <sub>N</sub> =116 K, complex |           |
| ن.                | (100 - 65 K)                                                        | antiferro, antiferro-          |           |
| ا<br>نخو          |                                                                     | mag. metal?                    |           |
| Cans Thomas       | 層状、遺元されて                                                            | LILY Pauli para.               | 182 a.    |
| (% t = 2 % 0)     | 資産、あるのかなのの項・金属・金属を作品                                                |                                |           |
| 2,00              |                                                                     | ,                              |           |
| \$ \              | 4 × 10".                                                            | Pauli para,                    | 28        |
| S'AO'             | 3×10-/- 中部四                                                         | 85 K 以下で <b>弱い (</b> er        | 82, 83    |
| يد:               |                                                                     | romag                          |           |
|                   |                                                                     | 85 K 以上でCurie -                |           |
|                   |                                                                     | Weiss 7 & Pauli                |           |
| ک<br>د            |                                                                     | para. Torvi                    |           |
| C.Lar. Sr.VO.     | 日~0.23 金月                                                           |                                | 183, 187  |
|                   | スく0.23 半導体                                                          | antiferro. Carie               |           |
| น์เรา             |                                                                     | Veiss (4)                      | •         |
| 9 W               |                                                                     | アンダーソン居在                       |           |
| Sr → Ba           | エ=0.3で活性エグル<br>ボー=0 008 27                                          |                                | 184       |
|                   | 0.000 cv                                                            | ,                              |           |
| (2) (1.2.3,)      | $n \ge 2$ T 會層,4×10 * $(n=2), 2 \times 10^{-3}(3), 10^{-3}(\infty)$ | (118 Pauli para.               | 185~188   |
| CaiBachoo.        | 金属、シケヘドゥ SK                                                         |                                | 161 ~ 691 |
|                   | 以上で非角質の                                                             |                                |           |
| Line Silver Union | 句成、少なくからちに又上む非価信義                                                   |                                | 191       |
| Ta Sroupe         | 44 ( F & 50 K EI F                                                  |                                | 101       |
|                   | 一種的                                                                 |                                | 101       |
| COL. Sr. VO.      | $3.2 \times 10^{-4} (x=0.5)$                                        |                                | 184       |
|                   | $d\varphi/dT = 0(z = 0.4 - 0.45)$                                   |                                |           |
|                   |                                                                     |                                |           |

128, 172 - 174 171, 172

Pauli para. Pauli para. Pauli para. 175

Pauli para.

6.7×10° 6.2×10-6 9 31×6.7

A - K

A ∹Rb A TI

9.17.193-8 -83

ArPaWadua 統結体 (PerovskitesRの構造)

祖伝導 Te=7 7 K (Rb, hexagenal)

M.ReO. M.Wo,

Re(),

E BACCHOSEL

169, 170 79, 170

4×10-3, 124 K 7 含 ferrimagnetic, 属 γ - 他操体監算 7.- 8:0 K

Perovskire ReO,

F0.0

∴ + 770 7 € = ↑

| 以外后进          |
|---------------|
| -             |
| ريد           |
| 是十块组          |
| ->            |
| 4.            |
|               |
| 9             |
| <del>[-</del> |
| \$            |
|               |
| ši            |
| 5             |

# § 2.8 金属-他是体底移:MIT

| <b>金属 - 他是体标形:MIT</b> 29 | 母 化 國 化       | 3 104 a                        | - 201 - 単語版でのなぶ |                   |             | antiferroman 104 0 |           | Curie - Weiss 104 a | Curie - Weiss 104 c | Pauli para |                                                | 205                    |              | 116 207 - 200 | 603 - 107 '017 | Pauli para. 211 a |                 | Pauli para. 211 a | 108-110, 212 | Pauli para. | Pauli para, | Pauli para. | 213~216                               |          | 312 216  | 287      | 217      |        | Kis 7. antiferro 219                                                               | 100016              | ₹.)<br>10 - 4 - 3 |
|--------------------------|---------------|--------------------------------|-----------------|-------------------|-------------|--------------------|-----------|---------------------|---------------------|------------|------------------------------------------------|------------------------|--------------|---------------|----------------|-------------------|-----------------|-------------------|--------------|-------------|-------------|-------------|---------------------------------------|----------|----------|----------|----------|--------|------------------------------------------------------------------------------------|---------------------|-------------------|
| 12.8 金属-化磁体              | 在抗型(·m、300 K) | 大學士                            | 金融              | A. not perovskite | •           | 金属, mul perovskite | •         | . 9                 | . عد                | 34         | 410-*, do/dT>0;<br>待品超位等 T=0.4<br>電流组体 0.013/分 | T.5×10-* 競格供 金属(F<0.5) | AEK 7°=13 K  | 程伝導 7.=22 K   | 超位導 75=3.53K   |                   | <b>求≦0.05金属</b> | x≤0.3公原 P         |              |             |             |             | x=0 治操体,<br>SrTiO <sub>1-</sub> , 超反政 |          | 1.4×10-  | 1.4×10-4 | 2.9×10-1 |        | 10-1, 168 K か台道 1-6 田森存成 40 日 田本存成 40 日間 1-5 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 | 9×10-3, 960 H H D A |                   |
|                          | 政化物           | Cal-1Mg,RuO, (T=0.1, 0.3, 0.5) | .Cal-rSr.RuO,   | S BaRuo,          | Bai-JK.RuO, | BalSrikuo,         | LanNackno | La M.Pho.           | (M=Ca, Sr. Ba)      | SrIrO,     | :BaP6O <sub>4</sub>                            | Bal-Sr.PbOs-           | BaPbi-aBi.Os | Ba1-,K,BiO,   | BaPh. nStano,  | Sr(Pb1-,Sb2)O3-,  | Sr(Pbr-4BL)01-1 | Ba(Phi-rSbs)Os-s  | Man Man      | ر<br>ا<br>ا | 10 H 21     | M = Ba      | (Ba, Ca, Sr) TiO                      | KSbO, TV | La.Re.O. | La.Ru.O. | BirRinon | コランゲム型 | , V.O.                                                                             | Ti <sub>r</sub> O,  |                   |

| 见东伝尊  |
|-------|
| 尼子状想と |
| な代数中の |
| 2.    |

| ルナノン・MoO, 単<br>(マグネリ組含む)<br>VO,<br>CCO,<br>NbO, | (NOS 1111)                                       | 路代母                                                      | 4                       |
|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|-------------------------|
| (O)                                             |                                                  |                                                          | - 1                     |
| CrO,<br>NbO,                                    | 5×10-*(370K), 公司<br>(>340K)                      |                                                          | 5C, 79, 223-225         |
| ,000                                            | 3X 10 X 8                                        | 41 000 / The County                                      |                         |
|                                                 | 1070Kで6株に浴っ                                      | лепотав. < 392К                                          | 77, 79                  |
| ,                                               | (金萬-段陽体転移)                                       |                                                          | 127 '077                |
| 140Q                                            | 5×10 ■                                           | Pauli para.                                              | 79, 228, 229            |
| 'O.A.                                           | 3×10 '                                           | Pauli para.                                              | 228                     |
| Ke(),                                           | 10寸, 2相                                          | Paul para.                                               | 228                     |
| K dO,                                           | 2×10-,                                           | Pauli para.                                              | 74, 230 ~ 214           |
| RhO,                                            | 7.01>                                            | Paull para.                                              | 228 236                 |
| O.                                              | 6×10-7                                           | Pauli para.                                              | 228 239                 |
| iro,                                            | 5×10-'                                           | Pauli para.                                              | 74, 228, 230 –          |
| P10,                                            | 6×10-1 4682                                      |                                                          | 567                     |
| C.V.                                            | AND CONTRACTOR                                   | raun para                                                | 78, 228, 235            |
| (a 7)                                           | 10.400000000000000000000000000000000000          | 一次元スピン配列                                                 | 236-238                 |
| (9-1-1)( A)                                     | 20-14-(2,5,8)<br>(n=4,5,5,8)                     | antiferronag. 7 infixed CDW-SDW 7 inetablic and antifer- | 76, 223, 239—<br>247    |
| Ti.O.                                           | 10-4. 会展>469 K                                   |                                                          |                         |
| Ti, O1 = 1 ( M = 4 - 9)                         | 10-1 金剛 (高麗休                                     |                                                          | (5<br>26 248 245        |
|                                                 | G 80                                             |                                                          | 647'97'0)               |
|                                                 | Dipolatomic conduction? (n=4),<br>半等体-半等体配移      |                                                          |                         |
| SnO <sub>r-s</sub>                              | 经运业基本、<2×10・                                     |                                                          | e de                    |
| Na, ITO,                                        |                                                  |                                                          | . 13Z                   |
| K-NIF, IL                                       |                                                  |                                                          |                         |
| Lakii0,<br>{n = 1 in LaurNia<br>(brii)          | 正規程は、他操体ギャップ 4cV、正規程政に<br>近いもの 650Kで金<br>馬・絶替は転移 | Corie - Weiss,<br>canted antiferromag.                   | 120 – 122, 252 –<br>254 |
| Las NirOy (n-2)                                 | 金属                                               |                                                          | 199                     |
| $L_{A_{\bullet}}N_{i},O_{i\bullet}(M=3)$        | <b>企局</b>                                        |                                                          | 100                     |
| La. Sr, NiO,                                    | 金属(x>0.8)                                        |                                                          | 954~949 i               |
| CIN'PN                                          | $d\rho/dT > 0$ , > 500 K                         | Cune - Weiss                                             | 259                     |
| La, SuO,                                        | 10°, do/dT-0                                     |                                                          | 253, 258~260            |

| MIT           |
|---------------|
| • •           |
| <b>自</b> 及体転移 |
| ,             |
| <b>☆M</b>     |
| .\$2.8        |

|                                           | 52.8 金属-19                                                                               | 金属-均限体転移:MIT                                    | æ                              |
|-------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------|
| 嚴化物                                       | 低抗率 (n·m, 300K)                                                                          | 祖代典                                             | **                             |
| Las-xLr.CuO. (Pr.                         |                                                                                          |                                                 | - 1                            |
| Sr.RuO,<br>Sr,RhO,                        | 画み 10-4<br>10-1, 4p/4T>0<br>(<150 K)<br>dp/dT<0(>150 K)                                  | 240 K で z 極大                                    | 104, <b>262</b> , 262 a<br>263 |
| MY10-2075<br>MV10-2<br>M=Tm<br>M=Lu       | 10. 牛神体                                                                                  |                                                 | 264                            |
| M=T1                                      | 十字字<br>0.1, do/dT>0(油 気<br>的保度範囲で)                                                       | ferromag, $T_c$ =80 K<br>ferromag, $T_c$ =117 K | 797                            |
| (dalforO)-v<br>M=Y<br>M=Nd                | 松陽体?<br>金属, 仓属祝陽体数<br>移?                                                                 | スピンプラス ?<br>letromag.                           | 265                            |
| M≃Sm<br>M≃Gd                              | 会局,会局-化保体层<br>移 ?<br>金属 7,企場 - 相関体<br>気移 ?                                               | ferromag.<br>ferromag.                          |                                |
| M=Tb<br>M=La                              | 相偏体~<br>2次元, パイロクロア<br>でない                                                               |                                                 |                                |
| beTecOr.,<br>iRm.Or.,<br>M = Tt<br>M = Pb | <b>金属 - 福祉体転の?</b><br>5×10 <sup>-1</sup> 、ペロブスカイ<br>トに <b>転</b> 歩する                      | Pauli para.<br>Pauli para.                      | 264                            |
| M=B1<br>M=Lu<br>M=Y                       | 7×10 <sup>-</sup> (Bi - Gd で金<br>高 - 危傷体症物)<br>10 <sup>-1</sup><br>色像体, correlation      | Pauli para.                                     |                                |
| Pb.Pis-Ku,                                | induced insulator 2<br>1.3×10 <sup>-5</sup> (圧砂体),<br>合為(エ>1.5), 金属-<br>総株体フンダーソン転<br>移1 |                                                 |                                |
| alkiis - a FBz JU7-y                      | $d\rho/dT > 0(x < 0.4),$<br>$d\rho/dT < 0(x > 0.4)$<br>$5 \times 10^{-3} (x = 0.4)$      |                                                 | 153                            |

| 1. 気伝道 |
|--------|
| A)     |
| の電子供職と |
| ~      |
| ابيغ   |
| 8      |
| 在几秒中   |
| 10     |
|        |

| 264 264 264 264 266 - 268 266 - 268 266 - 268 272 273 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | るのを                      | 低铅序(·m, 300 K)                                | 盛化斯               | ##<br>  <del> </del> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------|-------------------|----------------------|
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MzRhiO, "                |                                               |                   | ١                    |
| # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M = T                    | My.                                           |                   | 102                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M- 105                   | 5 4 4                                         |                   |                      |
| 3×10 <sup>-1</sup> 、ペロフスカイ Pauli para. 2×10 <sup>-1</sup> (**10 <sup>-</sup> |                          |                                               |                   |                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W81                      |                                               | Pauli para.       |                      |
| 12×10*   Pauli para.   Pauli para.   2×10*   Pauli para.   10*1-10*   Pauli para.   10*1-10*   Pauli para.   2×10*   Pauli para.   1×10*   Pauli para.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M.ReiO.                  | i<br>i                                        |                   | į                    |
| 2×10** 2×10**  (×10**  (×10**  (×10**  2×10**  2×10**  2×10**  2×10**  2×10**  4×10**  4×10**  9×10**  4×10**  9×10**  4×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  1.5×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**  2×10**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M=Ph                     |                                               | ;                 | 264                  |
| 2×10** 2×10** (×10**) (×10**) (×10**) (×10**) (×10**) (×10**) (×10************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                               | Pauli para.       |                      |
| 2×10 <sup>-1</sup> (×10 <sup>-1</sup> (×10 <sup>-1</sup> (×10 <sup>-1</sup> 10 <sup>-1</sup> 10 <sup>-1</sup> 11 2×10 <sup>-1</sup> 4×10 <sup>-1</sup> 1×10 <sup>-1</sup> 2×10 <sup>-1</sup> 4×10 <sup>-1</sup> 4×10 <sup>-1</sup> 4×10 <sup>-1</sup> 10 10 <sup>-1</sup> (10) 6×10 <sup>-1</sup> 10 10 10 <sup>-1</sup> (10) 6×10 <sup>-1</sup> 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D', W                    | 2×10 ×                                        |                   |                      |
| 2×10 <sup>-1</sup> (×10 <sup>-1</sup> (×10 <sup>-1</sup> (×10 <sup>-1</sup> 10 <sup>-1</sup> 10 <sup>-1</sup> 11 2×10 <sup>-1</sup> 1×10 <sup>-1</sup> Pauli para. 1×10 <sup>-1</sup> Pauli par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maosio,                  |                                               |                   | 76.4                 |
| 10 <sup>-1</sup> -10 <sup>-1</sup>   Pauli para.   10 <sup>-1</sup> -10 <sup>-1</sup>   Pauli para.   2×10 <sup>-1</sup>   2×10 <sup>-1</sup>   Pauli para.   2×10 <sup>-1</sup>   Pauli para.   2×10 <sup>-1</sup>   Pauli para.   1×10 <sup>-1</sup>   Pauli para.   10 <sup>-1</sup>   Pauli Pauli para.   10 <sup>-1</sup>   Pauli Pauli Pauli para.   10 <sup>-1</sup>   Pauli P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M - 11                   | 2×10.1                                        |                   |                      |
| 10-'-10-' 2×10-' 2×10-' 2×10-' 2×10-' 2×10-' 2×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 4×10-' 5×10-' 5×10-' 5×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-' 6×10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M=Pb                     | €×10-4                                        | Pauli naci        |                      |
| 2×10 <sup>-3</sup> 2×10 <sup>-3</sup> 2×10 <sup>-3</sup> 2×10 <sup>-3</sup> 2×10 <sup>-3</sup> 4×10 <sup>-4</sup> 4×10 <sup>-4</sup> 9×10 <sup>-7</sup> 単結晶 4×10 <sup>-4</sup> 単結晶 4×10 <sup>-4</sup> (Sc), 8× (第電 ヒークを除き113×10 <sup>-3</sup> (In) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing w (C) L (Ing) MAE W, 1.04 K(X - Ing) MAE W, 1.04 K(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M=Ln                     | 10-4-10-4                                     | , mon pard.       |                      |
| 2×10 <sup>-3</sup> 2×10 <sup>-3</sup> 2×10 <sup>-3</sup> 2×10 <sup>-3</sup> 4×10 <sup>-4</sup> 4×10 <sup>-4</sup> 4×10 <sup>-4</sup> 9×10 <sup>-7</sup> 10) 10) 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mdro,                    |                                               |                   | ;                    |
| 2×10 <sup>-1</sup> Pauli para. 2×10 <sup>-1</sup> Pauli para. 2×10 <sup>-1</sup> Pauli para. 4×10 <sup>-1</sup> 单结晶 4×10 <sup>-1</sup> 单结晶 4×10 <sup>-1</sup> 单结晶 4×10 <sup>-1</sup> 单结晶 10 <sup>-2</sup> (10) A× 6位 E — 2 全线 ≥ 113 x 10 <sup>-2</sup> (10) Add E(X — NO <sub>3</sub> ), 0.3 K(E), 0.15 Add E(X — NO <sub>3</sub> ), 0.3 K(E), 0.15 Add E(X — NO <sub>3</sub> ), 0.3 K(E), 0.15 Add E(X — NO <sub>3</sub> ), 0.4 Add E(X — NO <sub>3</sub> ), 0.4 Add E(X — NO <sub>3</sub> ), 0.5 Add E(X — O <sub>3</sub> ), 0.5 Add E(X — O <sub>3</sub> ), 0.5 Add E(X — O <sub>4</sub> ), 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \ \[\bar{\chi} \]        | 3 × 16-3                                      |                   | 264                  |
| 2×10 <sup>-3</sup> Pauli para. 2×10 <sup>-3</sup> Pauli para. 2×10 <sup>-3</sup> Pauli para. 4×10 <sup>-4</sup> ¥\$4  9×10 <sup>-4</sup> ¥\$4  10 <sup>-5</sup> (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 01 7                                          |                   |                      |
| 2×10 <sup>-3</sup> Pauli para.<br>+ 本版な<br>+ 本版な<br>+ 本版な<br>- 1×10 <sup>-4</sup> 単格品<br>- 1×10 <sup>-4</sup> 単格品<br>- 1×10 <sup>-4</sup> 「Sc), 8× (GE ヒークを除き) IIX<br>- 10 <sup>-5</sup> (In)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M = P0                   | 2×10-1                                        | Pauli para,       |                      |
| + ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M = B.                   | 2×10-1                                        | Pauli para.       |                      |
| + 等体                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $M = L_{U}$              | 1×10-1                                        |                   |                      |
| + 等体                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M.Pu.O,                  |                                               |                   |                      |
| # 2 章 位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $M = P_{\rm h}$          | <b>数据</b> 册                                   |                   | 597                  |
| 9×10 <sup>-1</sup> 単結品<br>4×10 <sup>-4</sup> 単結品<br>(全属<br>10 <sup>-5</sup> (10)<br>超伝導, 1.04 K(X-15)<br>(BE,)<br>(BE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)<br>(CBE,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M=T.                     | · · · · · · · · · · · · · · · · · · ·         |                   |                      |
| 9×10 <sup>-4</sup> 単作品<br>4×10 <sup>-4</sup> 単作品<br>2.5×10 <sup>-4</sup> (Sc), 8× (G電ビーフを接き1112<br>10 <sup>-5</sup> (In)<br>超伝導, 1.04 K(X-<br>NO <sub>1</sub> ), 0.3 K(E), 0.15<br>K(BF)<br>2.5 K(BF)<br>3.5 K(BF)<br>2.5 K(BF)<br>2.5 K(BF)<br>2.7 K(BF)<br>3.7 K(BF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £ 0 (6                   |                                               |                   |                      |
| 4×10 <sup>-4</sup> 単语名<br>全様<br>1.5×10 <sup>-4</sup> (Sc), 8× (GC ビークを除き113×<br>10 <sup>-3</sup> (In)<br>超伝導, 1.04 K(X - 温度度(CC L(In)<br>MO <sub>3</sub> ), 0.3 K(E), 0.15<br>K(BE)<br>2×10 <sup>-4</sup> (エ = 0.08, 偽括<br>K), 2.2 K ≥ で名元等<br>(K), 2.2 K ≥ で名元等<br>にならない。<br>2×10 <sup>-4</sup> 会質 * (エ = Curic - Weiss<br>0.53)<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71,0,-,                  | 9×10-7 植体.凡                                   |                   | ,                    |
| 2. (A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                     |                                               |                   | <b>897</b> ∼998      |
| 2.6 Curie - Weiss 1.5 × 10 <sup>-3</sup> (1a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1</b>                 | ere were                                      |                   | <b>566 ~ 268</b>     |
| 1.5×10 <sup>-4</sup> (Se), 8× (6温 ヒークを除き1213<br>10 <sup>-5</sup> (In)<br>超伝導, 1.04 K(X-<br>NO <sub>5</sub> ), 0.3K(E), 0.15<br>K(BE)<br>K(BE)<br>A 在 (エ>0.01), 4× Pauli para,<br>10 <sup>-6</sup> (エ=0.08, 始枯<br>K), 2.2 K ≥ で格反導<br>にならない。<br>2×10 <sup>-6</sup> 、会境 * (エ= Curie - Weiss<br>0.53)<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LATED.                   | <b>₩</b>                                      | Curie - Weirs     | 692                  |
| MG (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Delta w O_{i} M C_{i}$ | -(Sc),                                        | (6位ヒークを除き)113     | 270                  |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                               | 清水質化なし(内)         |                      |
| 2 全種(エン0.01), 4× Pauli para, 10 <sup>-6</sup> (エ=0.08, 強結<br>(K), 2.2 II 之で独西線<br>にたらない<br>2×10 <sup>-6</sup> , 会稿 2 (エニ Curie - Weiss 0.53)<br>2・4 ポーラロン, 1次元<br>10 <sup>-4</sup> , 半導体 スイボー Curie - Weiss, 船敷屋                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y COST                   | 超伝導, 1.04K(X<br>NO,), 0.3K(F), 0.15<br>K(BF,) |                   | 271                  |
| 2 全職(エ>0.01), 4× Pauli para, 10 <sup>-4</sup> (エ=0.08, 発格 Kh. 2.2 II シ で的伝導 にならない。 2×10 <sup>-2</sup> , 会職? (エニ Curie - Weiss 0.53) ペイポーラロン, 1次元 10 <sup>-4</sup> , 半導体、バイボー Curie - Weiss, 配類社 ラロン, 1次元 カロン, 12元 カロン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 东北大市城                    |                                               |                   |                      |
| 10 <sup>-6</sup> (エ= 0.08, 像格<br>体), 2.2 以 よで独伝導<br>にならない<br>2×10 <sup>-8</sup> , 会様 ? (エニ Curie - Weiss<br>0.53)<br>**4 ボーラロン, 1次元<br>10 <sup>-4</sup> , 半導体, バイボー Curie - Weiss, 船類転<br>ラロン 1 音                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.11x- b                 | 会概(F>0.01), 4×                                | Pauli nara        | 27.0                 |
| 2×10-1 会員・(エニ Curie - Weiss 0.55) イイボーラロン, 1次元 10*1、半導体、バイボー Curie - Weiss, 超数数 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | 10-6 (エニの.08. 始格(水), 2.2以まで招信等                |                   | 7 / 7                |
| 2×10~ 公覧。(エニ Curie - Weiss<br>0.65)<br>マイギープロン, 1次治<br>10~ 半導体, ハイボー Curie - Weiss, 超数程<br>ラロン - ドギ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.V.                     | WZ 9 Z -1                                     |                   |                      |
| 4.4.10 - 立事・(デー<br>0.53)<br>- 4.4.4.デーラロン, [次治<br>10.1、半等件、イイボー<br>ラロン - ドロ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MacCa                    | 34                                            |                   | 82.2                 |
| 744 光一プロン,1次出10.4 半事件,74 光一ルロン,1 半事件,74 光一ルロン - 1 千市                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                        | 4×10 1 20 1 (元三<br>0.55)                      | Curie - Weiss     |                      |
| 10.7、半等体、ベイボーラロン 一千円                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :                        | ハイボーラロン,1次治                                   |                   |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M=Na                     | 10.7、半学年、ベムボールで、 一杯()                         | Cmie - Weiss, 船気柱 |                      |

| 101     | Ξ |
|---------|---|
| •       | ٠ |
| - HEART | 5 |
| 1       | r |
| 4       | Ì |
| 6.2.8   | • |

| 33                                      | THE TAX                                           | 1          | 613        |         |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |               |                |     |                   |       |          |                  |                      |           |                                       |      |                                                  |       |                 |                  |                  |                      |    |
|-----------------------------------------|---------------------------------------------------|------------|------------|---------|------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|----------------|-----|-------------------|-------|----------|------------------|----------------------|-----------|---------------------------------------|------|--------------------------------------------------|-------|-----------------|------------------|------------------|----------------------|----|
| EB : MIT                                | 五日                                                |            |            |         |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |               |                |     |                   |       |          |                  |                      |           |                                       |      |                                                  |       | ,               |                  |                  | antiferro, 7 < 110 K |    |
| 12-8 全居~格塔体在房:MIT                       | 低的平 (0.m. 300.K)                                  |            | 他操体?-超后遗体后 | -       | 下 t do/dT <0, 1次 | 125KWFT do lar | <a 1="" th="" ₹50.<=""><th>(×10 4(K)</th><th>180 K &amp;</th><th>Incommensitale</th><th>CDW</th><th>90K Commensurale,</th><th>I Kr.</th><th>地層体</th><th>commensurate CDW</th><th>120 K(K), 80 K (Na),</th><th>120 K(TJ)</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>2 MX</th><th>incom. CDW 109 K,</th><th>100 K</th><th>incom. CDW 115K</th><th>incom. CDW 500 K</th><th>lacom, CDW 610 K</th><th><b>共學9-1</b></th><th></th></a> | (×10 4(K) | 180 K &       | Incommensitale | CDW | 90K Commensurale, | I Kr. | 地層体      | commensurate CDW | 120 K(K), 80 K (Na), | 120 K(TJ) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 MX | incom. CDW 109 K,                                | 100 K | incom. CDW 115K | incom. CDW 500 K | lacom, CDW 610 K | <b>共學9-1</b>         |    |
| San | 1. <b>1</b> 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (モジンアンプロンズ | Li Mo.O.   | , crick | 100 mg           | E LEAMOO,      |                                                                                                                                                                                                                                                                                                                                                                                                                                             | K-Min MoO | (M=K, Rb, T1) |                | 3   | VI<br>Video of    |       | KalaMoo, | Nish Mos On      | M=Na K. TU           |           | 9                                     |      | (2 4 () 1 () () () () () () () () () () () () () |       | 8= × = 8        | 8 = N < C)       | 01=1             | Y-Moi-O.             | R. |

製冶+2 扱で示すように,MIT の低温絶縁体相で反強磁性が現れることがあ 類素の単位脱が半分の大きさになって、そのため絶縁体になるであろうと指 都心たのは Slater であるが、現実にそのために MIT がほこったのかどうか 以権造相転移をともなうだけに判定がむずかしい。

**繋冷なりが集中的に寄与して相変態を起こすことがある。たとえば、金属の** 饕餮のならば、1改元のときと同じように、私はのの外乱に対して不安定 豪かり、ので変調されたより安定な状態。電荷密度液 (CDW, charge density ※元数が高い場合でも, 特別な条件下では ある特定の放数の電子なりフォ jěřni,面の形が正方形をしているとする,その相対する級を結よ波数ペクト

Little 型類点導 Little - type super-341 excitation energy Raman 数包 Raman scaffering edge sharing octahedron 197 ReO, 開選 ReO, stribcture 185 magnetic critical scattering Fe) ruby 42 critical separation 23, 239 Racah parameter 153 ルチル nubile 43,206 gid - band model conductivity 239 リシダドバンド模型 ₹ La.CuO, 370 励起子 exciton BSCCO 405 断界間隔, 長さ 国起エネルギー LSCO 368 风柜分陆 85 YBC0 391 9.共有八百体 ルビ…(A1,0<u>3</u>) CT励起子 EuO 343 **欧界版**6. 4 Ф 5 \$ fluctuation /117,142,146, 有効質量(電子)(パンド構造も見よ) 跨戰開数 dielectric function 239 positron am**nihilation** Behr magneton number 22 有勿於一了超子数 Au effectivi 誘電視失 dielectric loss 318 新聞定数 dielectric constant **46, 75, 169,** 210, 216 12 更小尺反強國性 canted Luttinger's theorem nagnetism 51, 356 effective mass Racah 147 19. Lukinger の定理 YBCO 389 Fe.O. 328 170, 328, 383 SrO, 200 TiO, 209 ReO: 190 WO, 233 SnO<sub>1</sub> 209 TiO, 209 WCo 233 Si 201 提取主油铁 196, 259 10 pt EuO

### 世紀田見

3**5** 35135

16年195

1936 年兵軍農山乡,東京大学程学紀曾理学科等,同大学院 科学技術介無徵材質研究所終合研究實を経て 現在 東京型村 故他员物理学事门取得转了,同大学的性极为为强性的门助年, 大学教授 (四学的店用给酒学科),理探

1996年山阳県出身,東北大学理学的治理学科等。同大学院 西学研究科物理学等收修了,東京大学物性研究所助手,分子 四学研究的动物的专足( 现在 两二本小年一物理学研究的授 閏(配合研究大学的大学),给您理论等以,原则。

1953 华東京福出身,東京大学理学即物理学科卒,同大学院 短年采取死件的理学等交、科学技術厅林做材质研究所主任厅 完宜を且て 明在 東京大学垃圾器(翅学的物理学科),理像 1936 年子展界出身,東京大学理学的协理学科等。同大学物 性研究所屬于七层て 现在 大阪大学博师 (理学舒幼理学师) 中以以紹化物理学, 理時

# 物性的学出售 電気伝導性酸化物 使卸烟

第一版先行即 增補第3 瓦発行 政訂第 4 超另行 1993年10月15日 1987年7月25日 1983年1月20日

|    |   | <b>.</b>       |  |
|----|---|----------------|--|
| ξ  | 3 | 銮              |  |
| \$ | 8 | <del>[</del> = |  |
|    |   |                |  |

須肇 Ħ 菜 盎

名子名 民国はかい一に利求してあります。

Castalliana a

東京都子代田區四番町6~1 3362

20

Ŷ,

-111 #3

6 - 99fi -英 休兵会員 是石匠

中央印解株式会社 印刷所

板倉蟹本印刷株式会社 凯林历

[出版物の捷写利用規程] で定める特別許諾を必要 とする出版物です。すでに日本校写像センナーと名 袋じられています, 本書は、日本貿写物センター | 広奥和をされている方も事前に日本独写権センター 日 (日本復写信センター委託出版格 特別扱い) 本書の無断復写は、音音に記しての例外を限さ (中 03-3269-5784) の計略を得てください。

ISBN 4 - 7853 - 2606 - 9

自然科学者協会会員 私同社人

Printed in Japan