Modéliser le comportement linéaire et non linéaire des systèmes multiphysiques

Révisions 3 – Modélisation par fonction de transfert et schéma-blocs

Sciences
Industrielles de
l'Ingénieur

1 Définitions

Définition — Fonction de transfert – Transmittance.

Soit un système linéaire continu linéaire invariant dont on note le signal d'entrée e et le signal de sortie s, régit par une équation différentielle à coefficient constants. Dans le domaine de Laplace et sous les conditions de Heaviside, on définit la fonction de transfert du système par la fonction H telle que :

$$H(p) = \frac{S(p)}{E(p)} = \frac{\sum_{i=0}^{m} b_i p^i}{\sum_{i=0}^{n} a_i p^i} = \frac{N(p)}{D(p)}.$$

Définition — Classe, ordre, pôles et zéros.

H(p) est une fonction rationnelle en p. En factorisant le numérateur et le dénominateur, H(p) peut s'écrire sous cette forme :

$$H(p) = \frac{N(p)}{D(p)} = K \frac{(p-z_1)(p-z_2)...(p-z_m)}{p^{\alpha}(p-p_1)(p-p_2)...(p-p_n)}$$

- Les z_i sont les **zéros** de la fonction de transfert (réels ou complexes).
- Les p_i sont les **pôles** de la fonction de transfert (réels ou complexes).
- Le degré de D(p) est appelé ordre n du système ($n \ge m$ pour les systèmes physiques).
- L'équation D(p) = 0 est appelée équation caractéristique.
- Le facteur constant *K* est appelé gain du système.
- S'il existe une (ou des) racines nulles d'ordre α de D(p), un terme p^{α} apparaît au dénominateur. α est la classe (ou type) de la fonction de transfert. Il correspond au nombre d'intégrations pures du système.

Définition — Modélisation d'un bloc.

Soit un système d'entrée E(p), de sortie S(p), caractérisé par une fonction de transfert H(p). Ce système est alors représenté par le schéma bloc ci-contre. La relation entrée – sortie du système se met alors sous la forme :

$$S(p) = E(p) \cdot H(p).$$

Définition — Modélisation d'un comparateur.

Soit l'équation $S(p) = E_1(p) - E_2(p)$. Cette équation se traduit par le schéma ci-contre.

2 Algèbre de blocs

Pour modifier un schéma-blocs, il faut s'assurer que lorsque on modifie une partie du schéma, les grandeurs d'entrée et de sortie sont identiques avant et après la transformation.

Résultat — Blocs en série.

$$E(p) \longrightarrow H_1(p) \longrightarrow H_2(p) \longrightarrow S(p) \qquad \Leftrightarrow \qquad E(p) \longrightarrow H_1(p)H_2(p) \longrightarrow S(p)$$

Résultat — Blocs en parallèle.

Résultat — Réduction de boucle - À MAITRISER PARFAITEMENT.

Résultat — Comparateurs en série.

Résultat — Point de prélèvement.

3 Fonctions usuelles

Définition — Fonction de transfert en boucle fermée – FTBF. Formule de Black

$$H(p) = \frac{S(p)}{E(p)} = \frac{H_1(p)}{1 + H_1(p)H_2(p)}$$

Définition — Fonction de transfert en boucle ouverte – FTBO.

$$FTBO(p) = \frac{R(p)}{\varepsilon(p)} = H_1(p)H_2(p)$$

Définition — Théorème de superposition.

Soit un système d'entrées E_1 et E_2 et de sortie S. On note $H_1 = \frac{S}{E_1}$ lorsque E_2 est nulle et $H_2 = \frac{S}{E_2}$ lorsque E_1 est nulle. En superposant, on a alors : $S = H_1E_1 + H_2E_2$.