Ph202

Chapitre 1 - Partie 2 : Outils 3D

E. Riedinger Département des Sciences Physiques

Janvier - Février 2020

E. Riedinger

Ph202 Ch.1 Partie 2

- 1.1 Vecteurs

- 1. Repérage spatial
- 1.1 Vecteurs

Caractéristiques d'un vecteur

direction, sens et norme

Représentation possible à partir de n'importe quel point

Notations relatives aux vecteurs

Sur l'axe des x : vecteur unitaire noté $\overrightarrow{u_x}$

F vecteur

 \overrightarrow{F} norme (positive) de \overrightarrow{F}

 F_x composante (algébrique) de \overrightarrow{F} sur l'axe des $x: F_x = \overrightarrow{F} \cdot \overrightarrow{u_x}$

Éviter les confusions!

ma = F différent de

 $ma_{\times} = F_{\times}$ différent de

 $m\overrightarrow{a} \equiv \overrightarrow{F}$

1.2 Repères

Repère

 $\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$: origine + base de vecteurs

Tout vecteur de l'espace se décompose (=composantes) sur la base de vecteurs choisie.

$$\overrightarrow{A} = A_1 \overrightarrow{i} + A_2 \overrightarrow{j} + A_3 \overrightarrow{k} = \begin{vmatrix} A_1 \\ A_2 \\ A_3 \end{vmatrix}$$

Choix : base de vecteurs orthonormée directe (→ angles orientés)

Règle des trois doigts de la main droite

1.3 Repères usuels et coordonnées

Cartésiennes

Base $(\overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$

Coordonnées x, y, z

Directions : $\overrightarrow{u_x}$ abscisse $\overrightarrow{u_v}$ ordonnée, $\overrightarrow{u_z}$ cote

Cylindriques

Base $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_z})$

Coordonnées r, θ , z

Directions : $\overrightarrow{u_r}$ radiale $\overrightarrow{u_{\theta}}$ orthoradiale, $\overrightarrow{u_z}$ cote

1.3 Repères usuels et coordonnées

Sphériques

Base $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_\phi})$

Coordonnées : r, θ , ϕ

heta : colatitude

 ϕ : azimut ou longitude

Directions :

 $\overrightarrow{u_r}$ vers le haut (radiale),

 $\overrightarrow{u_{\theta}}$ vers le Sud, $\overrightarrow{u_{\phi}}$ vers l'Est

1.3 Cas particulier : repère polaire

Polaires

Plan des coordonnées polaires : à 2D

Utile pour l'étude d'un mouvement de rotation dans un plan.

Coordonnées : r, θ

Interprétation : r et θ correspondent au module et à l'argument d'un nombre complexe z représentant \overrightarrow{OM} .

$$z = re^{i\theta} = r\cos\theta + ir\sin\theta = x + iy$$

1.3 Cas particulier : repère polaire

Attention

Les vecteurs de la base polaire sont tournants : $\overrightarrow{u_r}(\theta)$ et $\overrightarrow{u_\theta}(\theta)$ (θ dépend de la position de M)

$$\frac{d\overrightarrow{u_x}}{d\theta} = \frac{d}{d\theta} \left(\cos\theta \overrightarrow{u_x} + \sin\theta \overrightarrow{u_y} \right) = -\sin\theta \overrightarrow{u_x} + \cos\theta \overrightarrow{u_y} = \overrightarrow{u_\theta}$$

Formules à retenir

$$\frac{d\overrightarrow{u_r}}{d\theta} = \overrightarrow{u_\theta}$$
 et $\frac{d\overrightarrow{u_\theta}}{d\theta} = -\overline{u}$

E. Riedinger

- 1.2 Repères
- 1.3 Repères usuels, coordonnées

1.3 Cas particulier : repère polaire

Dimensions

Coordonnées cartésiennes x, y: longueurs Coordonnées polaires : r longueur, θ angle

La position d'un point M est parfaitement connue par ses coordonnées.

Vecteur position (cf. Ch. 2)

 \overrightarrow{OM} : ses composantes sont des longueurs.

Cartésiennes $\overrightarrow{OM} = x\overrightarrow{u_x} + y\overrightarrow{u_y}$

Polaires $\overrightarrow{OM} = r\overrightarrow{u_r}$ (dépendance en θ = direction de $\overrightarrow{u_r}$).

Ne pas confondre

Les coordonnées du point M ne correspondent pas aux composantes du vecteur position \overrightarrow{OM} (sauf en cartésiennes).

2.1 Produit scalaire

Produit scalaire de deux vecteurs

$$\overrightarrow{A} \cdot \overrightarrow{B} = A \times B \times \cos\left(\widehat{\overrightarrow{A}, \overrightarrow{B}}\right)$$

Calcul:
$$\overrightarrow{A} \cdot \overrightarrow{B} = \begin{vmatrix} A_1 \\ A_2 \\ A_3 \end{vmatrix} \begin{vmatrix} B_1 \\ B_2 \\ B_3 \end{vmatrix} = A_1B_1 + A_2B_2 + A_3B_3$$

Projection d'un vecteur : utiliser le produit scalaire!

La composante A_x d'un vecteur \overrightarrow{A} selon la direction $\overrightarrow{u_x}$ vaut $\overrightarrow{A} \cdot \overrightarrow{u_x}$ $\overrightarrow{A} \cdot \overrightarrow{u_x} = A \times 1 \times \cos(\theta)$ et $\cos \theta = \frac{A_x}{A}$

Exemple

Composantes du vecteur \overrightarrow{P} dans la base $(\overrightarrow{u_x}, \overrightarrow{u_y})$? **—

$$P_{x} = \overrightarrow{P} \cdot \overrightarrow{u_{x}} = P \cos \left(\alpha + \frac{\pi}{2}\right) = -P \sin \alpha$$

$$P_{y} = \overrightarrow{P} \cdot \overrightarrow{u_{y}} = P \cos \left(\alpha + \pi\right) = -P \cos \alpha$$

2.2 Produit vectoriel

Produit vectoriel

 $\overrightarrow{A} \wedge \overrightarrow{B}$ est un vecteur défini par :

- $\overrightarrow{A} \wedge \overrightarrow{B}$ est orthogonal à \overrightarrow{A} et à \overrightarrow{B}
- $\bullet \ \left(\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{A} \wedge \overrightarrow{B}\right) \text{ forment un trièdre direct (} \to \text{règle 3 doigts main droite)}$
- $\bullet \ \left\| \overrightarrow{A} \wedge \overrightarrow{B} \right\| = A \times B \times \left| \sin \left(\widehat{\overrightarrow{A}, \overrightarrow{B}} \right) \right| \left(\begin{array}{c} \text{ou aire parallélogramme} \\ \text{formé par } \overrightarrow{A} \text{ et } \overrightarrow{B} \end{array} \right)$

Calcul (démo ex. TD)

$$\overrightarrow{A} \wedge \overrightarrow{B} = \begin{vmatrix} A_1 \\ A_2 \\ A_3 \end{vmatrix} \begin{vmatrix} B_1 \\ B_2 \\ B_3 \end{vmatrix} = \begin{vmatrix} A_2B_3 - A_3B_2 \\ A_3B_1 - A_1B_3 \\ A_1B_2 - A_2B_1 \end{vmatrix}$$

Exemple

En cylindriques

$$\overrightarrow{u_z} \wedge \overrightarrow{u_r} = \begin{vmatrix} 0 & 1 & 0 \\ 0 & \wedge & 0 \\ 1 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix}$$

(vérifier résultat d'après définition : base orthonormée directe!)

E. Riedinger

Ph202 Ch.1 Partie 2

2.2 Produit vectoriel

Remarque : si \overrightarrow{A} , \overrightarrow{B} deux vecteurs toujours dans un même plan, alors $\overrightarrow{C} = \overrightarrow{A} \wedge \overrightarrow{B}$ toujours dans direction fixe $\overrightarrow{u_z} \perp$ au plan. $C_z = \overrightarrow{C} \cdot \overrightarrow{u_z}$ positif ou négatif selon signe angle $(\overrightarrow{A}, \overrightarrow{B})$

Exemple (cartésiennes)

$$\overrightarrow{A} = \begin{vmatrix} 2 \\ 0 \\ 0 \end{vmatrix}$$
 et $\overrightarrow{B} = \begin{vmatrix} 2 \\ -3 \\ 0 \end{vmatrix}$ alors $\overrightarrow{C} = \begin{vmatrix} 2 \\ 0 \\ 0 \end{vmatrix} \wedge \begin{vmatrix} 2 \\ -3 \\ 0 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 2 \times (-3) \end{vmatrix} = -6\overrightarrow{u}_{z}$

E. Riedinger

Ph202 Ch.1 Partie 2

- 3.1 Vecteur déplacement élémentaire
 - 3 Application

- 3 Vecteurs particuliers
- 3.1 Déplacement élémentaire

Variation infinitésimale de chaque coordonnée d'un point $M \longrightarrow \text{déplacement infinitésimal}$: représenté dans l'espace par un vecteur noté $d \ \ell \ (\text{ou } d \ \overrightarrow{OM})$ appelé vecteur déplacement élémentaire. Ses composantes sont donc des longueurs (infinitésimales).

- 3.1 Vecteur déplacement élémentaire

3.1 Déplacement élémentaire

Vecteur déplacement élémentaire

Différentielle du vecteur position $(d\overrightarrow{OM} = d\overrightarrow{\ell})$

Représente variation infinitésimale du vecteur position \overrightarrow{OM} (due à la variation infinitésimale de chaque coordonnée)

Démonstration

Cartésiennes
$$d\left(x\overrightarrow{u_x} + y\overrightarrow{u_y}\right) = dx\overrightarrow{u_x} + dy\overrightarrow{u_y}$$

Polaires $d\left(r\overrightarrow{u_r}\right) = dr\overrightarrow{u_r} + rd\left(\overrightarrow{u_r}\right) = dr\overrightarrow{u_r} + rd\theta\overrightarrow{u_\theta}$

Vecteur		Cartésiennes (2D)		Polaires		
Position	ОМ	$x\overrightarrow{u_x} + y\overrightarrow{u_y} =$	x y	$r\overrightarrow{u_r} =$	<i>r</i> 0	
Dépl. élém.	\overrightarrow{dOM}	$dx\overrightarrow{u_x} + dy\overrightarrow{u_y} =$	dx dy	$dr\overrightarrow{u_r} + rd\theta\overrightarrow{u_\theta}$	=	dr rdθ

- 3.1 Vecteur déplacement élémentaire
 - 2 Application
- 3.3 Application

3.1 Déplacement élémentaire

Exemple 1

Déplacement élémentaire le long d'un cercle de centre O (polaires)

En polaires : cercle de centre $O: r = r_0$ constante dr = 0 donc $d\overrightarrow{OM} = r_0 d\theta \overrightarrow{u_\theta} = \begin{vmatrix} 0 \\ r_0 d\theta \end{vmatrix}$

Exemple 2

Déplacement élémentaire le long d'une parabole

En cartésiennes $y = x^2$.

Différentielle : dy = 2xdx (variations de x et y liées!)

$$d\overrightarrow{OM} = dx\overrightarrow{u_x} + 2xdx\overrightarrow{u_y} = \begin{vmatrix} dx \\ 2xdx \end{vmatrix}$$

3.1 Vecteur déplacement élémentair

3.2 Vecteur gradient

3.2 Gradient

U grandeur scalaire définie en tout point M de l'espace : champ Exemple : température T(M), pression P(M)... U(x, y, z) ou $U(r, \theta, z)$ (U dépend de M donc de ses coordonnées)

Vecteur gradient d'un champ U

 $\overrightarrow{\operatorname{grad}}U$ caractérise les variations locales de U au point considéré

Définition

$$dU = \overrightarrow{\mathsf{grad}} U \cdot \mathsf{d} \overrightarrow{OM}$$

- Repérage spatial
 Opérations
 Vecteurs particuliers
- 1 Vecteur déplacement élémentair
- 3.2 Vecteur gradient
- 3.3 Application

3.2 Gradient

$dU = \overrightarrow{\mathbf{grad}} U \cdot \mathbf{d} \overrightarrow{OM}$

Au point considéré $\overrightarrow{\text{grad}}U$ est orienté dans la direction des plus $\overrightarrow{\text{grandes}}$ variations de U dans le sens croissant $\overrightarrow{\text{grad}}U$ est orthogonal aux surfaces ou courbes isoU (= de niveau)

Expressions du gradient

Cartésiennes (2D)
$$\overrightarrow{\operatorname{grad}} U = \left| \begin{array}{c} \frac{\partial U}{\partial x} \\ \frac{\partial U}{\partial y} \end{array} \right|$$

Polaires
$$\overrightarrow{\operatorname{grad}} U = \left| \begin{array}{c} \frac{\partial U}{\partial r} \\ \frac{1}{r} \frac{\partial U}{\partial r} \end{array} \right|$$

- .1 Vecteur déplacement élémentai
- 3.2 Vecteur gradient

3.2 Gradient

Justification

En cartésiennes (2D)

Différentielle :
$$dU = \begin{pmatrix} \frac{\partial U}{\partial x} \end{pmatrix} dx + \begin{pmatrix} \frac{\partial U}{\partial y} \end{pmatrix} dy$$

$$\overrightarrow{\text{grad}} U = \begin{vmatrix} G_X \\ G_y \end{vmatrix} \text{ où } G_X \text{ etc composantes du gradient (inconnues)}$$

$$d\overrightarrow{OM} = \begin{vmatrix} dx \\ dy \\ dy \end{vmatrix}$$

$$donc \ \overrightarrow{\text{grad}} U \cdot d\overrightarrow{OM} = G_X dx + G_Y dy : \text{ on identifie à } dU$$

$$Conclusion \ \overrightarrow{\text{grad}} U = \begin{vmatrix} \frac{\partial U}{\partial x} \\ \frac{\partial U}{\partial y} \\ \frac{\partial U}{\partial y} \end{vmatrix}$$

Remarque

dimension des composantes de $\overrightarrow{grad}U$ = dimension de U / longueur

- Repérage spatial
 Opérations
 Vecteurs particuliers
- 1 Vecteur déplacement élémentais
- 3.2 Vecteur gradient
 - .3 Application

3.2 Gradient

Exemple (2D)

$$U(x,y) = x^2 - 4x + y^2 + 2y$$

$$\overrightarrow{\text{grad}}\text{U} = (2x-4)\overrightarrow{u_x} + (2y+2)\overrightarrow{u_y}$$
. Nul au point $(x=2; y=-1)$.

E. Riedinger

Ph202 Ch.1 Partie 2

- 1.1 Vecteur déplacement élémentair
- .2 Vecteur gradier
- 3.3 Application

Circulation C d'un vecteur \overrightarrow{D} sur une courbe orientée Γ

$$C = \int_{\Gamma} \overrightarrow{D} \cdot d\overrightarrow{OM}$$

Cas général : la circulation dépend du chemin (courbe Γ) suivi

Propriété

Si \overrightarrow{D} est le gradient d'un champ U alors la circulation de \overrightarrow{D} est indépendante du chemin Γ suivi

 $dC = \overrightarrow{D} \cdot d\overrightarrow{OM}$ est une différentielle totale

$$\overrightarrow{D} = \overrightarrow{\text{grad}} U \text{ donc}$$

$$C = \int_{\Gamma} \overrightarrow{D} \cdot d\overrightarrow{OM} = \int_{\Gamma} \overrightarrow{\text{grad}} U \cdot d\overrightarrow{OM} = \int_{\Gamma} dU = [U]_A^B$$

$$C = U(B) - U(A) \text{ ne dépend que du point de départ } A \text{ et d'arrivée } B$$

- 3.1 Vecteur déplacement élémenta
- 3.3 Application

Comment savoir si \overrightarrow{D} est un gradient?

Théorème de Schwarz

Les dérivées croisées d'une fonction f(x, y) de 2 variables sont

égales : $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$

Si \overrightarrow{D} est un gradient de U:

ses composantes contiennent les dérivées partielles de *U* donc doivent vérifier le théorème de Schwarz.

Si théorème non vérifié alors \overrightarrow{D} n'est pas un gradient (cf. Ph201)

- 1 Vecteur déplacement élémentair
- 3.2 Vecteur gradiei
- 3.3 Application

Exemple 1

Calculer (cartésiennes) la circulation C de $\overrightarrow{D} = \begin{vmatrix} 0 \\ x \end{vmatrix}$ entre A(0;0) et B(1;1) sur Γ_1 droite y = x puis sur Γ_2 parabole $y = x^2$ *

Si
$$\overrightarrow{D}$$
 gradient de U alors $\overrightarrow{D} = \left| \begin{array}{c} 0 \\ x \end{array} \right| = \left| \begin{array}{c} \frac{\partial U}{\partial x} \\ \frac{\partial U}{\partial y} \end{array} \right|$.

Dérivées croisées $\frac{\partial}{\partial y}(0) = 0$ et $\frac{\partial}{\partial x}(x) = 1$ différentes donc \overrightarrow{D} n'est pas un gradient : C dépend du chemin suivi.

Sur
$$\Gamma_1$$
: on a $dy = dx$ donc $d\overrightarrow{OM} = dx\overrightarrow{u_x} + d\overrightarrow{u_y}$

$$C = \int_{\Gamma_1} \overrightarrow{D} \cdot d\overrightarrow{OM} = \int_{\Gamma_1} x dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}$$

Sur
$$\Gamma_2$$
: $y = x^2$ donc $d\overrightarrow{OM} = dx\overrightarrow{u_x} + 2xdx\overrightarrow{u_y}$

$$C = \int_{\Gamma_2} \overrightarrow{D} \cdot d\overrightarrow{OM} = \int_{\Gamma_2} 2x^2 dx = \left[\frac{2x^3}{3}\right]_0^1 = \frac{2}{3}$$

- .1 Vecteur déplacement élémentair
- 2 Application
- 3.3 Application

Exemple 2

Même question avec
$$\overrightarrow{E} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$

Si
$$\overrightarrow{E}$$
 gradient de U alors $\overrightarrow{E} = \begin{vmatrix} x \\ 0 \end{vmatrix} = \begin{vmatrix} \frac{\partial U}{\partial x} \\ \frac{\partial V}{\partial y} \end{vmatrix}$.

Dérivées croisées $\frac{\partial}{\partial y}(x) = 0$ et $\frac{\partial}{\partial x}(0) = 0$ égales donc \overrightarrow{E} est un gradient : C indépendante du chemin suivi.

$$\overrightarrow{\operatorname{grad}} U = \begin{vmatrix} \frac{\partial U}{\partial x} \\ \frac{\partial X}{\partial y} \end{vmatrix} = \begin{vmatrix} x \\ 0 \end{vmatrix} \operatorname{donc} U = \frac{1}{2}x^2(+\operatorname{cste})$$

La circulation C de \overrightarrow{E} sur n'importe quel chemin Γ entre A(0;0) et B(1;1) est égale à $C=U(B)-U(A)=\frac{1}{2}$ Vérification possible sur Γ_1 , Γ_2 etc.

E. Riedinger