1. Problemas basados en la Mochila:

1.1. Determinar para cada caso cuales objetos se deben llevar, maximizando la suma de los valores de los elementos sin sobrepasar la capacidad:

Ī	Num	1	2	3	4
	Tamaño	3	5	9	5
	Valor	45	30	45	10

Capacidad Máxima: 16

Num	1	2	3	4	5	6	7	8
Peso	2	20	20	30	40	30	60	10
Valor	15	100	90	60	40	15	10	1

Capacidad Máxima: 102

Num	1	2	3	4	5	6	7
Peso	31	10	20	19	4	3	6
Valor	70	20	39	37	7	5	10

Capacidad Máxima: 50

Num	1	2	3	4	5	6	7	8
Peso	25	35	45	5	25	3	2	2
Valor	350	400	450	20	70	8	5	5

Capacidad Máxima: 104

2. Problema basado en TSP:

2.1 Determinar cual es la mejor ruta que minimice el recorrido por las ciudades ubicadas en las siguientes coordenadas: (graficar la solución del recorrido)

No.	Х	У	No.	Х	У	No.	Х	Υ
1	1	1	8	2.5	7.5	15	7	15.5
2	1	3	9	2.5	1	16	7	13.5
3	1	7	10	3.5	2	17	7	12.1
4	1	8	11	3.5	8.2	18	7	12
5	2.5	14	12	3.5	12.9	19	7	10
6	2.5	13.5	13	3.5	13.2	20	7	4
7	2.5	13	14	3.5	13.9			

Tabla 5. Coordenadas de las 20 ciudades.

3. Problemas de maximización de funciones:

3.1 Determinar los valores de x_1 , x_2 , ..., x_{10} de tal forma que la siguiente función se maximice:

$$F(x_1,x_2,...,x_{10}) = (x_1 * x_2 * x_3 * x_4 * x_5)/(x_6 * x_7 * x_8 * x_9 * x_{10})$$
 donde $x_1,...,x_{10} = [1 ... 10]$

3.2 Determinar el valor de x que minimice la siguiente expresión:

$$F(x) = x^4 - 12x^3 + 15x^2 + 56x - 60$$