Etude analytique du produit scalaire dans le plan

I. Le produit scalaire dans le plan

Définitions :

Soient \vec{u} et \vec{v} deux vecteurs du plan.

- Le produit scalaire des deux vecteurs \vec{u} et \vec{v} est le nombre réel $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times cos(\vec{u}, \vec{v})$.
- Le nombre réel positif $\vec{u} \cdot \vec{u}$ est appelé le carré scalaire du vecteur \vec{u} et on écrit $\vec{u}^2 = \vec{u} \cdot \vec{u} = ||\vec{u}||^2$.

Application 0:

Soit *ABC* un triangle rectangle et isocèle en *B* tel que AB = 2 et $AC = \sqrt{8}$ et $(\overline{AB}; \overline{AC}) \equiv \frac{\pi}{4} [2\pi]$.

Calculer les produits scalaires \overrightarrow{AB} . \overrightarrow{AC} , \overrightarrow{BA} . \overrightarrow{BC} et \overrightarrow{CA} . \overrightarrow{CB} .

Définition (Orthogonalité de deux vecteurs)

Soient \vec{u} et \vec{v} deux vecteurs non nuls.

 \vec{u} et \vec{v} sont orthogonaux, si et seulement si $\vec{u} \cdot \vec{v} = 0$. On écrit $\vec{u} \perp \vec{v}$.

II. Expression analytique du produit scalaire dans un repère orthonormé

1. Repère orthonormé

PP Définition :

Soit (\vec{i}, \vec{j}) une base du plan, et 0 un point du plan.

- On dit que (\vec{i}, \vec{j}) est une base orthonormée si : $\vec{i} \cdot \vec{j} = 0$ et $||\vec{i}|| = ||\vec{j}|| = 1$.
- On dit que $(0, \vec{i}, \vec{j})$ est un repère orthonormé si (\vec{i}, \vec{j}) est une base orthonormée.
- Si (\vec{i}, \vec{j}) est une base orthonormée et $(\overline{\vec{i}, \vec{j}}) \equiv \frac{\pi}{2} [2\pi]$ alors $(0, \vec{i}, \vec{j})$ est appelé repère orthonormé direct.

Dans toute la suite du chapitre, on considère que le plan est rapporté à un repère orthonormé direct $(0, \vec{\imath}, \vec{j})$.

2. Expression analytique du produit scalaire

Propriété :

Soient $\vec{u}(x; y)$ et $\vec{v}(x'; y')$ deux vecteurs du plan, on a $\vec{u} \cdot \vec{v} = xx' + yy'$.

Application @:

Calculer $\vec{u} \cdot \vec{v}$ dans les cas suivants :

- **0** $\vec{u}(2; -3)$ et $\vec{v}(-1; 2)$.
- **2** $\vec{u} = (\sqrt{3} 1)\vec{i} 1\vec{j}$ et $\vec{v} = (\sqrt{3} + 1)\vec{i} + 2\vec{j}$. Conclure.

Propriété :

Soient $\vec{u}(x; y)$ et $\vec{v}(x'; y')$ deux vecteurs du plan. On a $\vec{u} \perp \vec{v} \Leftrightarrow xx' + yy' = 0$.

Application 3:

Déterminer la valeur de m pour que les vecteurs $\vec{u}(3; -1 + m)$ et $\vec{v}(2 - m; 5)$ soient orthogonaux.

3. Norme d'un vecteur - distance entre deux points

Propriété (Norme d'un vecteur)

Soit $\vec{u}(x; y)$ un vecteur du plan. La norme du vecteur \vec{u} est $||\vec{u}|| = \sqrt{\vec{u}^2} = \sqrt{x^2 + y^2}$.

Propriété (Distance entre deux points)

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan, on a $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

Application @:

On considère les points A(-3; 1); B(1; 1) et C(-3; 5).

Calculer les distances AB, AC et BC puis déterminer la nature du triangle ABC.

4. Expression de $cos(\theta)$ et $sin(\theta)$

Activité D:

- **1.** Montrer que $\cos \theta = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}}$
- **2.** On considère le vecteur $\vec{w}(-y; x)$
- a.Montrer que : $(\vec{v}; \vec{w}) \equiv \frac{\pi}{2} \theta[2\pi]$.
- b. Montrer que $\sin \theta = \frac{xy'-xy'}{\sqrt{x^2+y^2} \times \sqrt{x'^2+y'^2}}$

Propriété:

Soient $\vec{u}(x; y)$ et $\vec{v}(x'; y')$ deux vecteurs non nuls du plan et θ une mesure de l'angle orienté $(\widehat{u}; \overrightarrow{v})$.

On a
$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times \|\vec{v}\|} = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}} \text{ et } \sin \theta = \frac{\det(\vec{u}; \vec{v})}{\|\vec{u}\| \times \|\vec{v}\|} = \frac{xy' - x'y}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}}.$$

Application 5:

On considère les vecteurs $\vec{u}(-\sqrt{3}; -3)$ et $\vec{v}(-1; \sqrt{3})$ et θ la mesure principale du l'angle $(\vec{u}: \vec{v})$.

Calculer $cos(\theta)$ et $sin(\theta)$ puis déduire la valeur de θ .

Propriété :

Soit *ABC* un triangle. La surface de *ABC* est $S = \frac{|\det(\overrightarrow{AB};\overrightarrow{AC})|}{2}$

Application ©:

On considère les points A(-3; 1); B(1; 1) et C(-5; -1).

- **1.** Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- **2.** Calculer $det(\overrightarrow{AB} \cdot \overrightarrow{AC})$ puis déduire la surface du triangle ABC.
- **3.** Calculer $cos(\overrightarrow{AB}; \overrightarrow{AC})$ et $sin(\overrightarrow{AB}; \overrightarrow{AC})$

III. Droite dans le plan

🗷 Activité Q:

Soient A(1; 2) et B(-2; 3) deux points du plan et (Δ) la droite passant par A et perpendiculaire à (AB).

- 1. Donner une équation cartésienne de (AB).
- **2.** Soit $M(x,y) \in (\Delta)$.
 - a. Vérifier, sans calcul, que $\overrightarrow{AM} \cdot \overrightarrow{AB} = 0$.
 - b. En déduire une équation cartésienne de (Δ) .

1. Vecteur normal à une droite :

// Définition :

Soit $(D) = D(A; \vec{u})$ une droite passant par le point A et de vecteur directeur \vec{u} . Tout vecteur non nul et orthogonal à \vec{u} est appelé **vecteur normal** à la droite (D).

Propriété :

Soit (D) une droite d'équation cartésienne : ax + by + c = 0.

- Le vecteur $\vec{n}(a;b)$ est un vecteur normal à (D).
- Le vecteur $\vec{u}(-b; a)$ est un vecteur directeur de (D).

Application O:

Donner un vecteur normal à la droite (D) dans chacun des cas suivants :

2 (D):
$$2x - 1 = 0$$

2. Equation d'une droite définie par un point et un vecteur normal

Propriété

Une équation de la droite (D) passant par le point $A(x_A; y_A)$ et de vecteur normal $\vec{n}(a; b)$ est $a(x - x_A) + b(y - y_A) = 0$.

O Exemple:

Déterminons une équation cartésienne de la droite (D) passant par le point A(1;2) et de

Soit M(x; y) un point du plan, on a $M(x; y) \in (D) \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0$.

$$\Leftrightarrow (x-1) \times 5 + (y-2) \times 3 = 0.$$

$$\Leftrightarrow 5x - 5 + 3y - 6 = 0.$$

$$\Leftrightarrow 5x + 3y - 11 = 0.$$

Donc, une équation cartésienne de (D) est : 5x + 3y - 11 = 0.

Application 8:

Déterminer dans chacun des cas suivants une équation cartésienne de la droite (D).

- **1** (D) est la droite passant par le point A(2; 3) et de vecteur normal $\vec{n}(2; -1)$.
- **2** (D) est la médiatrice du segment [AB] tel que A(3; -1) et B(-1; 5).

3. Positions relatives de deux droites

Propriété :

Soient (D) et (D') deux droites et \vec{n} et $\vec{n'}$ leurs vecteurs normaux respectives. On a

- $(D) \perp (D') \Leftrightarrow \vec{n} \perp \vec{n'} \Leftrightarrow \vec{n} \cdot \vec{n'} = 0.$
- $(D)//(D') \Leftrightarrow \det(\vec{n}; \vec{n}') = 0.$

Application 9:

Etudier la position relative des droites (D) et (D') définies par (D): 2x + y - 1 = 0 et (D'): -x + 2y + 3 = 0.

4. Distance d'un point à une droite :

Propriété :

Soit (D) une droite d'équation : ax + by + c = 0 et $A(x_A; y_A)$ un point du plan.

La distance du point A à la droite (D) est $d(A; (D)) = \frac{|ax_A + by_A + c|}{|ax_A + by_A|}$

O Exemple:

On considère la droite (D) d'équation 4x + 3y + 1 = 0 et les points A(2; 1) et B(-1; 1).

On a
$$d(A; (D)) = \frac{|2 \times 4 + 1 \times 3 + 1|}{\sqrt{4^2 + 3^2}} = \frac{12}{5} \text{ et } d(B; (D)) = \frac{|-1 \times 4 + 1 \times 3 + 1|}{\sqrt{4^2 + 3^2}} = 0 \text{ donc } B \in (D)$$

Application @@:

On considère la droite (D) d'équation x - 2y + 8 = 0 et le point A(-3; 5), H le projeté orthogonal de A sur (D).

- **1.** Déterminer d(A;(D)).
- 2. Déterminer les coordonnées du point H.

Etude analytique d'un cercle IV.

1. Equation d'un cercle défini par son centre et son rayon

Activité 3:

On considère (\mathcal{C}) le cercle de centre $\Omega(1;1)$ et de rayon 2.

- **1.** Parmi les points A(3; 1) et B(2; 2) déterminer qui appartient au cercle (\mathcal{C}) .
- **2.** Soit M(x; y) point du plan.

Montrer que $M(x; y) \in (\mathcal{C}) \Leftrightarrow x^2 + y^2 - 2x - 2y - 2 = 0$.

Définition :

Le cercle (\mathcal{C}) de centre $\Omega(a; b)$ et de rayon R est l'ensemble des points M du plan tels que $\Omega M = R$.

Propriété :

Une équation cartésienne du cercle de centre $\Omega(a;b)$ et de rayon R est $(x-a)^2 + (y-b)^2 = R^2$ que l'on peut écrire $x^2 + y^2 - 2ax - 2by + c = 0$ où $c = a^2 + b^2 - R^2.$

Application @@:

Déterminer une équation du cercle (\mathcal{C}) dans chacun des cas suivants :

- **1** (C) de centre $\Omega(-2;3)$ et de rayon 4.
- **2** (\mathcal{C}) de centre A(2;3) et passe par le point B(1;-3).

Application @@:

Déterminer l'ensemble des points M(x; y) du plan vérifient l'équation (E) dans les cas suivants:

 $(E): x^2 - x + y^2 + 3y - 4 = 0.$

2. Equation d'un cercle défini par son diamètre

On considère le cercle (\mathcal{C}) de diamètre [AB].

On a: $M(x; y) \in (\mathcal{C}) \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{BM} = 0$

$$\Leftrightarrow (x - x_A)(x - x_B) + (y - y_A)(y - y_B) = 0.$$

Propriété:

Soient A et B deux points distincts du plan.

L'ensemble des points Mdu plan qui vérifient $\overrightarrow{AM} \cdot \overrightarrow{BM} = 0$ est le cercle de diamètre [AB] et d'équation cartésienne $(x - x_A)(x - x_B) + (y - y_A)(y - y_B) = 0$.

On considère les points A(-1; 2) et B(-5; 4)

Déterminer une équation du cercle (\mathcal{C}) de diamètre [AB] par deux méthodes.

3. Représentation paramétrique d'un cercle

On considère le cercle (\mathcal{C}) de centre $\Omega(a;b)$ et de rayon R.

On a: $M(x; y) \in (\mathcal{C}) \Leftrightarrow (x - a)^2 + (y - b)^2 = R^2$

$$\Leftrightarrow \left(\frac{x-a}{R}\right)^2 + \left(\frac{y-b}{R}\right)^2 = 1.$$

Donc il existe un réel θ tel que $\frac{x-a}{R} = \cos \theta$ et $\frac{y-b}{R} = \sin \theta$. Alors : $M(x; y) \in (\mathcal{C}) \Leftrightarrow (\exists \theta \in IR) : \begin{cases} x = a + r \cos \theta \\ y = b + r \sin \theta \end{cases}$

Propriété:

Le cercle (\mathcal{C}) de centre $\Omega(a; b)$ et de rayon R est l'ensemble des points M(x; y)du plan qui vérifient le système (S): $\begin{cases} x = a + R \cos \theta \\ y = b + R \sin \theta \end{cases}$

Le système (S) est appelé une représentation paramétrique du cercle (\mathcal{C}).

Application @@:

1. Déterminer l'ensemble des points M(x; y) du plan qui vérifient le système :

$$\begin{cases} x = -1 + 2\cos\theta \\ y = 3 + 2\sin\theta \end{cases} / (\theta \in \mathbb{R}).$$

- **2.** Soit (\mathcal{C}_1) le cercle de centre $\Omega(-1; 2)$ et de rayon $\sqrt{3}$.
 - a. Donner une représentation paramétrique du cercle (C_1) .
 - b. Donner les coordonnées de deux points du cercle (\mathcal{C}_1) .
- **3.** Donner une représentation paramétrique du cercle (\mathcal{C}_2) d'équation $x^2 + y^2 + 4x - 6y + 9 = 0$.

Intérieur et extérieur d'un cercle

Propriété :

Soit (C) un cercle d'équation $x^2 + y^2 + ax + by + c = 0$ et $M(x_0; y_0)$ un point du plan.

- M est un point du cercle (C) si et seulement si $x_0^2 + y_0^2 + ax_0 + by_0 + c = 0$.
- M est à l'intérieur du cercle (\mathcal{C}) si et seulement si $x_0^2 + y_0^2 + ax_0 + by_0 + c < 0$.
- M est à l'extérieur du cercle (C) si et seulement si $x_0^2 + y_0^2 + ax_0 + by_0 + c > 0$.

Application @5:

- 1. Résoudre graphiquement les inéquations suivantes :
 - $2 + y^2 + 2x 6y + 9 \ge 0 .$
 - $2 x^2 + y^2 + 2y 3 < 0.$
- **2.** Résoudre graphiquement le système suivant $\begin{cases} x^2 + y^2 2x + 2y 7 < 0 \\ x y + 1 > 0 \end{cases}$

5. Positions relatives d'une droite et d'un cercle

Pour étudier la position relative d'un cercle (\mathcal{C}) de centre Ω et de rayon R avec une droite (D) on peut calculer la distance $d(\Omega;(D))$ et la comparer au rayon R.

Propriété :

Soit (\mathcal{C}) un cercle de centre Ω et de rayon R et (D) est une droite du plan.

- Si $d(\Omega; (D)) > R$, alors la droite (D) ne coupe pas le cercle (C).
- Si $d(\Omega; (D)) = R$, alors la droite (D) et le cercle (C) ont un seul point commun.
- Si $d(\Omega; (D)) < R$, alors la droite (D) coupe le cercle (C) en deux points distincts.

Application OG:

Etudier la position relative du cercle (C) et la droite (D), en déterminant les coordonnées des points d'intersection s'ils existent, dans chacun des cas suivants :

- **1** (C): $x^2 + y^2 + 2x 2y = 0$ et (D): x + y + 2 = 0.
- **2** (C): $x^2 + y^2 2x + 4y 11 = 0$ et (D): x + y = 3.
- **3** (C): $x^2 + y^2 + 2x 6y = 6$ et (D): 4x 3y = 8.
 - 6. Equation cartésienne d'une droite tangente à un cercle en un point donné de ce cercle

PP Définition :

Soit (C) un cercle de centre Ω et de rayon R et A est un point de (C).

On dit qu'une droite (D) est tangente à (C) au point A si et seulement si (D) et (ΩA) sont perpendiculaires au point A.

Propriété :

Soit (\mathcal{C}) un cercle de centre Ω et A est un point de (\mathcal{C}) et M est un point d'une droite(D). (D) est tangente à (\mathcal{C}) au point A si et seulement si \overrightarrow{AM} . $\overrightarrow{A\Omega} = 0$.

Application OO:

On considère le cercle (C) d'équation $x^2 + y^2 - 2x - 4y = 0$.

- **1.** Vérifier que A(2; 4) est un point du cercle (C).
- **2.** Déterminer une équation de la tangente au cercle (\mathcal{C}) en A.

O Exercice de synthèse:

Dans un plan muni d'un repère orthonormé direct $(0; \vec{i}; \vec{j})$, on considère les points A(2; -1) B(-4; -3), C(1; -3).

- **1.** a. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
 - b. Calculer $cos(\overrightarrow{AB}; \overrightarrow{AC})$ et $sin(\overrightarrow{AB}; \overrightarrow{AC})$ en déduire la mesure principale de l'angle \overrightarrow{AB} , \overrightarrow{AC} .
- c. Calculer la surface du triangle ABC.
- **2.** Déterminer une équation cartésienne de la droite (D) passant par B et perpendiculaire (AC).
- **3.** On considère le cercle (C) d'équation $x^2 + y^2 + 2x + 4y 5 = 0$.
- a. Déterminer le rayon et les coordonnées du centre de (C).
- b. Vérifier que (C) est le cercle de diamètre [AB].
- c. Donner une équation cartésienne de la droite (Δ) tangente à (\mathcal{C}) au point A.
- d. Donner une représentation paramétrique de (C).
- **4.** Etudier la position relative du cercle (C) et la droite (D), en déterminant les coordonnée des points d'intersection s'ils existent.
- **5.** Résoudre graphiquement le système suivant $\begin{cases} x^2 + y^2 + 2x + 4y 5 < 0 \\ x + 2y + 10 \ge 0 \end{cases}$