onoio

Introduction to TCP/IP

Table of Contents

O

- A Brief History of TCP/IP
- TCP/IP and the DoD Model
- The Process/Application Layer Protocols
- The Host-to-Host/Transport Layer Protocols
- The Internet Layer Protocols

A Brief History of TCP/IP

A Brief History of TCP/IP

- TCP/IP (Transmission Control Protocol/Internet Protocol) is a set of network protocols (Protocol Suite) that enable communication between computers
- TCP first came on the scene in 1974
- Divided into two distinct protocols, TCP and IP in 1978
- Became the officials means of data transport for ARPANet in 1983
- Mostly developed in UC Berkeley simultaneously with Berkeley version of UNIX (BSD)

TCP/IP and the DoD Model

O

- The DoD (Department of Defense) created TCP/IP to ensure and preserve data integrity
- The DoD model is a condensed version of the OSI model

Network Access Layer

- Defines details of how data is physically sent through the network
- Main protocols are Ethernet, Token Ring, FDDI, X.25, and Frame Relay

Internet Layer

- Packs data into data packets known as IP datagrams
- Responsible for routing of IP datagrams
- Main protocols are IP, ICMP, ARP, and IGMP

Host-to-Host Layer (Transport Layer)

- Permits devices on the source and destination to carry on a conversation
- Defines the level of service and status of the connection used when transporting data
- Main protocols are TCP and UDP

TCP: Transmission Control Protocol **UDP**: User Datagram Protocol

Process/Application layer

- Enables applications to communicate with each other.
- Provides access to the services that operate at the lower layers of the DoD model.
- It contains a protocol that implements user-level functions such as mail delivery, file transfer, and remote login.
- Includes all higher-level protocols: DNS, HTTP, Telnet, SSH, FTP, SNMP, DHCP, etc.

DNS: Domain Name Service **HTTP**: Hyper-text Transfer Protocol

SSH: Secure Shell

FTP: File Transfer Protocol

SNMP: Simple Network Management Protocol **DHCP**: Dynamic Host Configuration Protocol

- Main functions: routing and providing a single network interface to upper layers
- Main protocols:
 - Internet Protocol (IP)
 - Internet Control Message Protocol (ICMP)
 - Address Resolution Protocol (ARP)
 - Reverse Address Resolution Protocol (RARP)

- Internet Protocol (IP) looks at each packet's destination address, then, using a routing table, it decides where a packet is to be sent next, choosing the best path.
- To find the receiver host, sender has to find out:

- O
- Internet Control Message Protocol (ICMP) is a management protocol and messaging service provider for IP
- ICMP messages are sent as IP packets
- Common events that ICMP relates to:
 - Destination unreachable
 - Buffer full
 - Hops
- Ping and Traceroute use ICMP

 Address Resolution Protocol (ARP) is a procedure for mapping a dynamic IP address to a permanent physical machine address in a LAN

• Essentially matches

IPv4 Address
32-bit

MAC Address
48-bit

Looking for physical address of a node with IP address 141.23.56.23

Request
System A

a. ARP request is broadcast

 Host machines that don't know their own IP address can use the Reverse ARP (RARP) protocol for discovery

 ARP is replaced by Neighbor Discovery Protocol with the use of IPv6

4.

- **TCP** and **UDP** are the main protocols for Transport Layer
- Transport layer defines a protocol as well as a port

			TCP Segm	ent l	Header	Forma	at		
Bit#	# 0 7 8 15 16 23 24								
0	Source Port Destination Port								
32	Sequence Number								
64		Acknowledgment Number							
96	Data Offset Res Flags Window Size								
128	He	Header and Data Checksum Urgent Pointer							
160		Options							

- TCP and UDP are the main protocols for Transport Layer
- TCP is full-duplex, connection-oriented, reliable and accurate protocol
- In order to send information, TCP establishes a connection with the receiving host (connection-oriented)
- TCP takes information and breaks it into <u>segments</u>
- TCP sends this segments in the order that application intended
- After segments are sent TCP waits for the acknowledgement for each segment
- Retransmits the segments that aren't acknowledged (<u>reliable</u>)

Header and Data Checksum

•	UDP us	ses less	bandwidth	compare	ed to TC	P
---	---------------	----------	-----------	---------	-----------------	---

- UDP transports data much faster than TCP
- UDP doesn't care the order of the segments
- UDP doesn't care if the segment is received by the recipient (no acknowledgement) (not reliable)
- UDP doesn't establish a connection with the receiver (connectionless protocol)
- Mostly used while speed is more important than reliability (like video teleconferencing or SNMP)

	TCP Segment Header Format							
Bit #	0	7	8	15	16	23	24	31
0		Source Port Destination Port						
32		Sequence Number						
64		Acknowledgment Number						
96	Data Offset	Data Offset Res Flags Window Size						
128	Header and Data Checksum Urgent Pointer							
160		Options						

	UDP Datagram Header Format							
Bit #	0	7	8	15	16	23	24	31
0	0 Source Port Destination Port							
32	32 Length Header and Data Checksum							

ТСР	UDP
Connection-oriented	Connectionless
Slow	Fast
Guaranteed transmission	No guarantee
Flow control	No flow control
Reliable	Unreliable
Virtual circuit	No virtual circuit
Acknowledgement	No acknowledgement
20 byte header	8 byte header

The Process/Application Layer Protocols

Application Layer

- There are many application layer protocols:
 - Remote access (SSH, RDP, ...)
 - File Transfer (FTP, FTPS, SFTP, ...)
 - Email (POP, IMAP, SMTP, ...)
 - Web (HTTP, HTTPS)

FTP Protocol

- <u>F</u>ile <u>T</u>ransfer <u>P</u>rotocol lets us transfer files between any two machines.
- Uses TCP protocol on port 20 and 21
- FTP functions are limited to listing and manipulating directories, typing file contents, and copying files between hosts.

FTP Protocol Elements

Channels

- o Data
- Connection (control)

Data Structures

File, Record, Page

• FTP Commands

- USER
- PASS
- LIST
- MKD
- 0 ..

FTP Replies

- 200 Okay
- o 530 Not logged in
- 225 Data connection open; no transfer in progress
- 0 ..

Other File Transfer Protocols

Name	TCP/UDP	Port	Description
FTPS	TCP	20/21	FTP Secure is an extension of FTP that adds support for TLS encryption.
TFTP	UDP	69	Trivial FTP is the stripped-down, stock version of FTP. TFTP is fast and so easy to use. It can only send and receive files.
SFTP	TCP	22	Same as FTP but <u>Secure FTP</u> uses an encrypted connection through an SSH session, which encrypts the connection.

SSH Protocol

- <u>Secure Shell protocol creates a secure connection to enable users to execute commands on remote machines</u>
- Uses TCP Port 22

Other Remote Access Protocols

Name	TCP/UDP	Port	Description
Telnet	TCP	23	Teletype Network Protocol allows a user on a remote client machine to access the resources of another machine. Uses plain text communication.
RDP	TCP	3389	Remote Desktop Protocol is a proprietary protocol developed by Microsoft. It allows you to connect to another computer and run programs. Windows, and Macs now come with a preinstalled RDP client.

HTTP and HTTPS Protocols

- Hypertext Transfer Protocol (HTTP) is used for communication between clients and web servers
- Uses TCP Port 80
- HTTPS adds encryption via TLS (or SSL) and instead uses port 443
- Example Methods:
 - GET
 - **POST**
 - 0
- Example Response Codes
 - 200: The request was successful
 - 404: Page not found

HTTP Reposnse Header

Email Protocols

Name	TCP/UDP	Port	Description
POP	TCP	110	Post Office Protocol gives us a storage facility for incoming mail (the latest version is POP3). A newer standard, IMAP, is being used more and more in place of POP3.
IMAP	TCP	143	Internet Message Access Protocol makes it so you get control over how you download your mail, with it, you also gain some much-needed security. It has some serious authentication features. IMAP4 is the current version.

Multimedia Protocols

Name	TCP/UDP	Port	Description
SIP (VoIP)	TCP or UDP	5060 or 5061	<u>Session Initiation Protocol</u> is a popular protocol used to for multimedia communication sessions for many things like voice and video calls, streaming, instant messaging, and online games over the Internet.
RTP (VoIP)	UDP TCP	5004 5005	Real-time Transport Protocol describes a packet-formatting standard for delivering audio and video over the Internet.
MGCP	TCP	2427 2727	Media Gateway Control Protocol is a standard protocol for handling the signaling and session management needed during a multimedia conference.
H.323	TCP	1720	<u>H.323</u> is a protocol that provides a standard for video on an IP network that defines how real-time audio, video, and data information is transmitted.

Utility Protocols

Name	TCP/UDP	Port	Description
SNMP	UDP TCP	161 25	Simple Network Management Protocol collects and manipulates valuable network information. It gathers data by polling the devices on the network. This protocol can also stand as a watchdog over the network or simplify network management.
NTP	UDP	123	Network Time Protocol is used to synchronize the clocks on our computer to one standard time source. This protocol works by synchronizing devices to ensure that all the computers on a given network agree on the time.

Domain Name Service (DNS) Server

- Finds the IP addresses of hostnames
- Computers use IP addresses, humans use names
- Easier to remember www.amazon.com than 18.66.112.8
- There are thousands of DNS servers
- Managed and controlled by The Internet Assigned Numbers Authority (IANA)
- IANA is operated by the Internet Corporation for Assigned Names and Numbers (ICANN)

Domain Name Service (DNS) Server

- .com A commercial organization
- .edu An educational establishment, such as a university
- .gov A branch of the U.S. government
- .int An international organization, such as NATO or the United Nations
- .mil A branch of the U.S. military
- .net A network organization
- .org A nonprofit organization
- Some DNS names end with country name like:
 .jp (Japan)
 .ca (Canada)
 .uk (Great Britain)

DHCP

DHCP (UDP 67/68): Dynamic Host Configuration Protocol assigns IP Address to hosts. It allows for easier administration and works well in small to very large network environments. Many types of hardware can be used as a DHCP Server, including a Cisco Router. There is a lot of information a DHCP server can provide to a host when the host is requesting an IP address from DHCP Server like

- IP Address
- Subnet Mask
- Domain Name
- Default Gateways
- DNS Server Address

LDAP

LDAP (TCP 389): Lightweight Directory Access Protocol standardizes how you access directories.

Encryption Protocols

TLS/SSL: Both Transport Layer Security and its forerunner, Secure Sockets Layer, are cryptographic protocols that are useful for enabling secure online data-transfer activities like browsing the Web, instant messaging, Internet faxing, and so on.

