Information Retrieval and Web Search

Cornelia Caragea

Computer Science University of Illinois at Chicago

Credits for slides: Mooney

Evaluation of Retrieval Models

Required Reading

- "Information Retrieval" textbook
 - Chapter 8: Evaluation in IR

Announcements

• Second programming assignment will be out today.

Why System Evaluation?

- There are many retrieval models/ algorithms/ systems, which one is the best?
- What is the best component for:
 - Ranking function (dot-product, cosine, ?)
 - Term selection (stopword removal, stemming, ?)
 - Term weighting (TF, TF-IDF, ?)
- How far down the ranked list will a user need to look to find some/all relevant documents?

Difficulties in Evaluating IR Systems

- Effectiveness is related to the relevancy of retrieved items.
- Typically, relevancy is not binary but continuous.
- Even if relevancy is binary, it can be a difficult judgment to make.
- From a human standpoint, relevancy is:
 - Subjective: Depends upon a specific user's judgment.
 - Situational: Relates to a user's current needs.
 - Cognitive: Depends on human perception and behavior.
 - Dynamic: Changes over time.

Human Labeled Corpora (Gold Standard)

- Start with a corpus of documents.
- Collect a set of queries for this corpus.
- Have one or more human experts exhaustively label the relevant documents for each query.
- Typically assumes binary relevance judgments.
- Requires considerable human effort for large document/query corpora.

 $Recall = \frac{\text{Number of relevant documents retrieved}}{\text{Total number of relevant documents}}$

 $Precision = \frac{\text{Number of relevant documents retrieved}}{\text{Total number of documents retrieved}}$

Contingency Table

	Relevant	Non-relevant
Retrieved	tp	fp
Not retrieved	fn	tn

From all the documents that are relevant out there, how many did the IR system retrieve?

$$\mathsf{Recall} = \frac{tp}{tp + fn}$$

From all the documents that are retrieved by the IR system, how many are relevant?

$$\mathsf{Precision} = \frac{tp}{tp + fp}$$

$$\mathsf{Accuracy} = \frac{tp + tn}{tp + fp + fn + tn}$$

Is Accuracy an appropriate measure to evaluate IR systems?

From all the documents that are relevant out there, how many did the IR system retrieve?

$$\mathsf{Recall} = \frac{tp}{tp + fn}$$

From all the documents that are retrieved by the IR system, how many are relevant?

$$\mathsf{Precision} = \frac{tp}{tp + fp}$$

$$\mathsf{Accuracy} = \frac{tp + tn}{tp + fp + fn + tn}$$

Is Accuracy an appropriate measure to evaluate IR systems? No. The data is extremely skewed ($\approx 99.9\%$ of documents are non-relevant).

Precision

• The ability to retrieve top-ranked documents that are mostly relevant.

Recall

• The ability of the search to find all of the relevant items in the corpus.

Determining Recall is Difficult

- Total number of relevant items is not always available:
 - Sample across the database and perform relevance judgment on these items.
 - Apply different retrieval algorithms to the same database for the same query. The aggregate of relevant items is taken as the total relevant set.

Computing Recall/Precision Points

- For a given query, produce the ranked list of retrievals.
- Adjusting a threshold on this ranked list produces different sets of retrieved documents, and therefore different recall/precision measures.
- Mark each document in the ranked list that is relevant according to the gold standard.
- Compute a recall/precision pair for each position in the ranked list that contains a relevant document.

Computing Recall/Precision Points: Example 1

Computing Recall/Precision Points: Example 2

n	doc#	relevant	
1	588	Х	
2	576		
3	589	х	
4	342		
5	590	х	
6	717		
7	984		
8	772	х	
9	321	Х	
10	498		
11	113		
12	628		
13	772		
14	592	Х	

Let total # of relevant docs = 6 Check each new recall point:

Computing Recall/Precision Points: Example 2

n	doc#	relevant	
1	588	Х	Let total # of relevant docs = 6
2	576		Check each new recall point:
3	589	Х	D 1/6 0 1/7 D 1/1 1
4	342		R=1/6=0.167; P=1/1=1
5	590	Х	D-2/6-0 222, D-2/2-0 667
6	717		R=2/6=0.333; P=2/3=0.667
7	984		R=3/6=0.5; P=3/5=0.6
8	772	Х	10 370 0.3, 1 373 0.0
9	321	Х	R=4/6=0.667; P=4/8=0.5
10	498		
11	113		R=5/6=0.833; P=5/9=0.556
12	628		
13	772		
14	592	Х	R=6/6=1.0; p=6/14=0.429

Trade-off between Recall and Precision

Interpolating a Recall/Precision Curve

- Interpolate a precision value for each standard recall level:
 - $r_i \in \{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$
 - $r_0 = 0.0, r_1 = 0.1, \cdots, r_{10} = 1.0$
- The interpolated precision at a certain recall level is defined as the highest precision found for any recall level $r' \geq r$:

$$Prec(r) = \max_{r' > r} Prec(r')$$

Interpolating a Recall/Precision Curve: Example 1

Interpolating a Recall/Precision Curve: Example 2

Interpolating a Recall/Precision Curve: Example 2

Average Recall/Precision Curve

- Typically, we calculate average performance over a large set of queries.
- Compute average precision at each standard recall level across all gueries.
- Plot average precision/recall curves to evaluate overall system performance on a document/query corpus.

Compare Two or More Systems

• The curve closest to the upper right-hand corner of the graph indicates the best performance

R-Precision

 Precision at the R-th position in the ranking of results for a query that has R relevant documents.

n	doc#	relevant	D = # of relevant does = #
1	588	х	R = # of relevant docs =
2	589	х	
3	576		
4	590	х	
5	986		
6	592	х	R-Precision = $4/6 = 0.67$
7	984		
3	988		
9	578		
0	985		
1	103		
2	591		
3	772	х	
	990		

F-Measure

- One measure of performance that takes into account both recall and precision.
- Harmonic mean of recall and precision:

$$F = \frac{2\mathsf{PR}}{\mathsf{P} + \mathsf{R}} = \frac{2}{\frac{1}{\mathsf{P}} + \frac{1}{\mathsf{R}}}$$

 Compared to arithmetic mean, both need to be high for harmonic mean to be high.

E-Measure (parameterized F Measure)

 A variant of F measure that allows weighting emphasis on precision over recall:

$$E = \frac{(1+\beta^2)PR}{\beta^2P + R} = \frac{1+\beta^2}{\frac{1}{P} + \frac{\beta^2}{R}}$$

• $\beta = 1$: Equally weight precision and recall (E=F).

Mean Average Precision (MAP)

- Average Precision: Average of the precision values at the points at which each relevant document is retrieved.
 - Ex1: (1 + 1 + 0.75 + 0.667 + 0.38 + 0)/6 = 0.633
 - Ex2: (1 + 0.667 + 0.6 + 0.5 + 0.556 + 0.429)/6 = 0.625
- Mean Average Precision: Average of the average precision values for a set of queries.

Mean Reciprocal Rank (MRR)

• Mean Reciprocal Rank:

$$MRR = \frac{1}{|Q|} \sum_{q=1}^{|Q|} \frac{1}{r_q}$$

where r_q is the rank at which the first correct prediction was found for query q in Q.

Issues with Relevance

- Marginal Relevance: Do later documents in the ranking add new information beyond what is already given in higher documents.
 - Choice of retrieved set should encourage diversity and novelty.
- Coverage Ratio: The proportion of relevant items retrieved out of the total relevant documents known to a user prior to the search.
 - Relevant when the user wants to locate documents which they have seen before (e.g., the budget report for Year 2014).

Other Factors to Consider

- User effort: Work required from the user in formulating queries, conducting the search, and screening the output.
- Response time: Time interval between receipt of a user query and the presentation of system responses.
- Form of presentation: Influence of search output format on the user's ability to utilize the retrieved materials.
- Collection coverage: Extent to which any/all relevant items are included in the document corpus.

Experimental Setup for Benchmarking

- Performance is measured by benchmarking. That is, the retrieval effectiveness of a system is evaluated on a given set of documents, queries, and relevance judgments.
- Performance data is valid only for the environment under which the system is evaluated.

Benchmarks Collections

Contain:

- A set of standard documents and queries/topics.
- A list of relevant documents for each query.

Benchmarking - The Problems

- Performance data is valid only for a particular benchmark.
- Building a benchmark corpus is a difficult task.
- Benchmark foreign-language corpora are more and more developed.
- Interesting paper on building a large dataset for emotion detection: http://www.aclweb.org/anthology/P17-1067