Health Care Project

In [1]:

```
# importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
```

In [2]:

```
dt=pd.read_excel('Health_Care_dataset.xlsx')
dt.head()
```

Out[2]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [3]:

```
dt.shape
```

Out[3]:

(303, 14)

In [4]:

```
dt.isnull().values.any()
```

Out[4]:

False

In [5]:

```
data=dt
young_ages=data[(data.age>=29)&(data.age<40)]
middle_ages=data[(data.age>=40)&(data.age<55)]
elderly_ages=data[(data.age>55)]
print('Young Ages :',len(young_ages))
print('Middle Ages :',len(middle_ages))
print('Elderly Ages :',len(elderly_ages))
```

Young Ages : 16 Middle Ages : 128 Elderly Ages : 151

In [6]:

```
sns.barplot(x=['young ages','middle ages','elderly ages'],y=[len(young_ages),len(middle_ages),len(
elderly_ages)])
plt.xlabel('Age Range')
plt.ylabel('Age Counts')
plt.title('Ages State in Dataset')
plt.show()
```


In [7]:

```
colors = ['blue','green','yellow']
plt.figure(figsize = (5,5))
plt.pie([len(young_ages),len(middle_ages),len(elderly_ages)],labels=['young ages','middle ages','e
lderly ages'],colors=colors, autopct='%1.1f%%')
plt.title('Age States',color = 'blue',fontsize = 15)
plt.show()
```

Age States

In [8]:

```
dt=dt
plt.scatter(dt['age'],dt['chol'])
plt.xlabel("age")
plt.ylabel("chol")
plt.show()
```


In [9]:

```
sns.countplot(data=dt, x="target", hue="sex", palette="bwr")
```

Out[9]:

<AxesSubplot:xlabel='target', ylabel='count'>

In [10]:

```
pd.crosstab(dt.sex,dt.target).plot(kind="bar",figsize=(15,6),color=['#1CA53B','#AA1111' ])
plt.title('Heart Disease Frequency for Sex')
plt.xlabel('Sex (0 = Female, 1 = Male)')
plt.legend(["Haven't Disease", "Have Disease"])
plt.ylabel('Frequency')
plt.show()
```


In [11]:

Out[11]:

	age	sex	chest_pain_type	resting_blood_pressure	cholesterol	fasting_blood_sugar	rest_ecg	max_he
0	63	1	3	145	233	1	0	_
1	37	1	2	130	250	0	1	
2	41	0	1	130	204	0	0	
3	56	1	1	120	236	0	1	
4	57	0	0	120	354	0	1	
4								>

In [12]:

```
pd.crosstab(dt.age,dt.target).plot(kind="bar",figsize=(20,6))
plt.title('Heart Disease Frequency for Ages')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.savefig('heartDiseaseAndAges.png')
plt.show()
```


In [13]:

```
dt['sex'][dt['sex'] == 0] = 'female'
dt['sex'][dt['sex'] == 1] = 'male'
dt['chest_pain_type'][dt['chest_pain_type'] == 0] = 'typical angina'
dt['chest_pain_type'][dt['chest_pain_type'] == 1] = 'atypical angina'
dt['chest pain type'][dt['chest pain type'] == 2] = 'non-anginal pain'
dt['chest pain type'][dt['chest pain type'] == 3] = 'asymptomatic'
dt['fasting blood sugar'][dt['fasting blood sugar'] == 0] = 'lower than 120mg/ml'
dt['fasting_blood_sugar'][dt['fasting_blood_sugar'] == 1] = 'greater than 120mg/ml'
dt['rest_ecg'][dt['rest_ecg'] == 0] = 'normal'
dt['rest_ecg'][dt['rest_ecg'] == 1] = 'ST-T wave abnormality'
dt['rest_ecg'][dt['rest_ecg'] == 2] = 'left ventricular hypertrophy'
dt['exercise_induced_angina'][dt['exercise_induced_angina'] == 0] = 'no'
dt['exercise_induced_angina'][dt['exercise_induced_angina'] == 1] = 'yes'
dt['st_slope'][dt['st_slope'] == 1] = 'upsloping'
dt['st_slope'][dt['st_slope'] == 2] = 'flat'
dt['st_slope'][dt['st_slope'] == 3] = 'downsloping'
dt['thalassemia'][dt['thalassemia'] == 1] = 'normal'
dt['thalassemia'][dt['thalassemia'] == 2] = 'fixed defect'
dt['thalassemia'][dt['thalassemia'] == 3] = 'reversable defect'
```

```
/usr/local/lib/python3.7/site-packages/ipykernel launcher.py:1: SettingWithCopyWarnin
g:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
  """Entry point for launching an IPython kernel.
/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarnin
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er guide/indexing.html#returning-a-view-versus-a-copy
  This is separate from the ipykernel package so we can avoid doing imports until
/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:8: SettingWithCopyWarnin
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:9: SettingWithCopyWarnin
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
  if __name__ == '__main__':
/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:11: SettingWithCopyWarni
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er guide/indexing.html#returning-a-view-versus-a-copy
  # This is added back by InteractiveShellApp.init path()
/usr/local/lib/python3.7/site-packages/ipykernel launcher.py:15: SettingWithCopyWarni
ng:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
  from ipykernel import kernelapp as app
/usr/local/lib/python3.7/site-packages/ipykernel launcher.py:16: SettingWithCopyWarni
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
  app.launch new instance()
/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:18: SettingWithCopyWarni
ng:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:22: SettingWithCopyWarni
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er guide/indexing.html#returning-a-view-versus-a-copy
/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:23: SettingWithCopyWarni
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
```

er_guide/indexing.html#returning-a-view-versus-a-copy

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:24: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

In [14]:

```
dt.head()
```

Out[14]:

	age	sex	chest_pain_type	resting_blood_pressure	cholesterol	fasting_blood_sugar	rest_ecg	ma
0	63	male	asymptomatic	145	233	greater than 120mg/ml	normal	
1	37	male	non-anginal pain	130	250	lower than 120mg/ml	ST-T wave abnormality	
2	41	female	atypical angina	130	204	lower than 120mg/ml	normal	
3	56	male	atypical angina	120	236	lower than 120mg/ml	ST-T wave abnormality	
4	57	female	typical angina	120	354	lower than 120mg/ml	ST-T wave abnormality	
4								•

In [15]:

```
sns.countplot(data=dt, x="target", hue="sex", palette="bwr")
```

Out[15]:

<AxesSubplot:xlabel='target', ylabel='count'>

In [16]:

```
d1=pd.get_dummies(dt.sex)
d2=pd.get_dummies(dt.chest_pain_type)
d3=pd.get_dummies(dt.fasting_blood_sugar)
d4=pd.get_dummies(dt.rest_ecg)
d5=pd.get_dummies(dt.exercise_induced_angina)
d6=pd.get_dummies(dt.st_slope)
d7=pd.get_dummies(dt.thalassemia)
```

In [17]:

```
dt.drop(['sex','chest_pain_type','fasting_blood_sugar', 'rest_ecg','exercise_induced_angina','st_s
lope','thalassemia'],axis=1,inplace=True )
dt= pd.concat([dt,d1,d2,d3,d4,d5,d6,d7],axis=1)
```

```
In [18]:
dt.head()
Out[18]:
   age resting_blood_pressure cholesterol max_heart_rate_achieved st_depression num_major_vessels
                                                                                              0
0
    63
                         145
                                     233
                                                            150
                                                                          2.3
1
    37
                         130
                                     250
                                                            187
                                                                          3.5
                                                                                              0
2
                         130
                                     204
    41
                                                            172
                                                                          1.4
                                                                                              0
3
    56
                         120
                                     236
                                                            178
                                                                          8.0
                                                                                              0
                                                                                              0
    57
                         120
                                     354
                                                            163
                                                                          0.6
5 rows × 27 columns
In [19]:
dt[['male','female']].head()
Out[19]:
   male
         female
0
              0
      1
              0
2
      0
              1
3
              0
      1
4
      0
              1
In [20]:
dt.shape
Out[20]:
(303, 27)
In [21]:
dt.columns
Out[21]:
                                    'age',
                                                  'resting_blood_pressure',
Index([
                           'cholesterol',
                                                  'max_heart_rate_achieved',
                         'st_depression',
                                                        'num_major_vessels',
                                 'target',
                                                                     'female',
                                   'male',
                                                              'asymptomatic',
                                                         'non-anginal pain',
                      'atypical angina',
                        'typical angina',
                                                    'greater than 120mg/ml',
                  'lower than 120 \text{mg/ml'},
                                                    'ST-T wave abnormality',
                                                                     'normal',
       'left ventricular hypertrophy',
                                     'no',
                                                                        'yes',
                                                                       'flat',
                                        0,
                             'upsloping',
                                                                            0,
                                                                     'normal',
                          'fixed defect',
                    'reversable defect'],
      dtype='object')
```

Applying Logistic Regression

```
In [22]:
X=dt.drop(["target"],axis=1)
y=dt.target
In [23]:
from sklearn.model_selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=4)
In [24]:
from sklearn.linear_model import LogisticRegression
In [25]:
model=LogisticRegression()
model.fit(X_train,y_train)
/usr/local/lib/python3.7/site-packages/sklearn/utils/validation.py:1692: FutureWarnin
g: Feature names only support names that are all strings. Got feature names with dtyp
es: ['int', 'str']. An error will be raised in 1.2.
  FutureWarning,
/usr/local/lib/python3.7/site-packages/sklearn/linear_model/_logistic.py:818: Converg
enceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
Out[25]:
LogisticRegression()
In [26]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='12', random state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)
Out[26]:
LogisticRegression(multi_class='ovr', n_jobs=1, solver='liblinear')
In [27]:
predictions=model.predict(X test)
/usr/local/lib/python3.7/site-packages/sklearn/utils/validation.py:1692: FutureWarnin
g: Feature names only support names that are all strings. Got feature names with dtyp
es: ['int', 'str']. An error will be raised in 1.2.
  FutureWarning,
In [28]:
from sklearn.metrics import classification_report
```

```
classification_report(y_test,predictions)
Out[29]:
                           recall f1-score
                                                                    0
                                                                            0.85
               precision
                                             support\n\n
         0.88
0.92
                     25\n
                                                                0.91
                                    1
                                            0.94
                                                      0.89
                                                                            36\n\n
                                                                   0.90
accuracy
                                  0.90
                                             61\n
                                                     macro avg
                                                                               0.90
0.90
           61\nweighted avg
                                  0.90
                                            0.90
                                                      0.90
                                                                  61\n'
In [30]:
from sklearn.metrics import confusion matrix
confusion_matrix(y_test,predictions)
Out[30]:
array([[23, 2],
      [ 4, 32]])
In [31]:
from sklearn.metrics import accuracy_score
In [32]:
accuracy_score(y_test,predictions)
Out[32]:
0.9016393442622951
Applying Decission Tree
In [34]:
X=dt.drop(["target"],axis=1)
y=dt.target
In [35]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=42)
In [36]:
from sklearn import tree
In [37]:
md=tree.DecisionTreeClassifier()
In [38]:
md.fit(X_train,y_train)
/usr/local/lib/python3.7/site-packages/sklearn/utils/validation.py:1692: FutureWarnin
g: Feature names only support names that are all strings. Got feature names with dtyp
es: ['int', 'str']. An error will be raised in 1.2.
  FutureWarning,
Out[38]:
DecisionTreeClassifier()
```

In [29]:

```
In [39]:
md.score(X_test,y_test)
/usr/local/lib/python3.7/site-packages/sklearn/utils/validation.py:1692: FutureWarnin
g: Feature names only support names that are all strings. Got feature names with dtyp
es: ['int', 'str']. An error will be raised in 1.2.
  FutureWarning,
Out[39]:
0.8360655737704918
Applying Random Forest
In [40]:
X=dt.drop(["target"],axis=1)
y=dt.target
In [41]:
from sklearn.model_selection import train test split
X train, X test, y train, y test = train test split(X,y,test size=0.2,random state=42)
In [42]:
from sklearn.ensemble import RandomForestClassifier
In [43]:
rf = RandomForestClassifier (n_estimators=100)
In [44]:
rf.fit(X_train, y_train)
/usr/local/lib/python3.7/site-packages/sklearn/utils/validation.py:1692: FutureWarnin
g: Feature names only support names that are all strings. Got feature names with dtyp
es: ['int', 'str']. An error will be raised in 1.2.
  FutureWarning,
```

Out[44]:

RandomForestClassifier()

In [45]:

```
accuracy = rf.score(X_test, y_test)
print("Accuracy = {}%".format(accuracy * 100))
```

Accuracy = 88.52459016393442%

/usr/local/lib/python3.7/site-packages/sklearn/utils/validation.py:1692: FutureWarnin g: Feature names only support names that are all strings. Got feature names with dtyp es: ['int', 'str']. An error will be raised in 1.2. FutureWarning,

In [46]:

```
predictions=rf.predict(X_test)
```

/usr/local/lib/python3.7/site-packages/sklearn/utils/validation.py:1692: FutureWarnin g: Feature names only support names that are all strings. Got feature names with dtyp es: ['int', 'str']. An error will be raised in 1.2. FutureWarning,

```
In [47]:
```

```
from sklearn.metrics import classification_report
```

CLASSIFICATION REPORT

In [48]:

```
classification_report(y_test,predictions)
```

Out[48]:

```
recall f1-score
                                                                              0.89
               precision
                                                support\n\n
                                                                      0
          0.88
0.86
                      29\n
                                     1
                                             0.88
                                                        0.91
                                                                  0.89
                                                                              32\n\n
accuracy
                                   0.89
                                               61\n
                                                       macro avg
                                                                       0.89
                                                                                 0.88
0.88
            61\nweighted avg
                                   0.89
                                              0.89
                                                        0.89
                                                                    61\n'
```

In [49]:

```
from sklearn.metrics import accuracy_score
```

In [50]:

```
accuracy_score(y_test,predictions)
```

Out[50]:

0.8852459016393442

Using Support Vector Machine

In [51]:

```
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix, classification_report
import pandas as pd

x=dt.drop(["target"],axis=1)
y=dt.target
print(x.shape,y.shape)
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.30)
```

(303, 26) (303,)

for linear kernal

In [52]:

```
obj=SVC(kernel="linear")
obj.fit(xtrain,ytrain)
predict=obj.predict(xtest)
print("accc score",accuracy_score(predict,ytest))
print("confussion matrix",confusion_matrix(predict,ytest))
print("classification report",classification_report(predict,ytest))
```

/usr/local/lib/python3.7/site-packages/sklearn/utils/validation.py:1692: FutureWarnin g: Feature names only support names that are all strings. Got feature names with dtyp es: ['int', 'str']. An error will be raised in 1.2. FutureWarning,

accc score 0.8461538461538461 confussion matrix [[30 3] [11 47]]

classification (report		precision	recall	f1-score	support
0	0.73	0.91	0.81	33		
1	0.94	0.81	0.87	58		
accuracy			0.85	91		
macro avg	0.84	0.86	0.84	91		
weighted avg	0.86	0.85	0.85	91		

/usr/local/lib/python3.7/site-packages/sklearn/utils/validation.py:1692: FutureWarnin g: Feature names only support names that are all strings. Got feature names with dtyp es: ['int', 'str']. An error will be raised in 1.2.
FutureWarning,

rbf kernal

```
In [54]:
```

```
obj=SVC(kernel="rbf",gamma=0.5)
obj.fit(xtrain,ytrain)
predict=obj.predict(xtest)
print("*******for rbf kernal******")
print("accc score",accuracy score(predict,ytest))
print("confussion matrix",confusion matrix(predict,ytest))
print("classification report", classification report(predict, ytest))
*******for rbf kernal*****
accc score 0.5494505494505495
confussion matrix [[ 0 0]
 [41 50]]
classification report
                                      precision
                                                    recall f1-score
                                                                         support
           0
                    0.00
                               0.00
                                          0.00
                                                       0
           1
                    1.00
                               0.55
                                          0.71
                                                      91
                                          0.55
                                                      91
    accuracy
                    0.50
                               0.27
                                          0.35
                                                      91
   macro avg
weighted avg
                    1.00
                               0.55
                                          0.71
                                                      91
/usr/local/lib/python3.7/site-packages/sklearn/utils/validation.py:1692: FutureWarnin
g: Feature names only support names that are all strings. Got feature names with dtyp
es: ['int', 'str']. An error will be raised in 1.2.
  FutureWarning,
/usr/local/lib/python3.7/site-packages/sklearn/utils/validation.py:1692: FutureWarnin
g: Feature names only support names that are all strings. Got feature names with dtyp
es: ['int', 'str']. An error will be raised in 1.2.
  FutureWarning,
/usr/local/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1318: Undef
inedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels
with no true samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1318: Undef
inedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels
with no true samples. Use `zero_division` parameter to control this behavior.
    _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1318: Undef
inedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels
with no true samples. Use `zero_division` parameter to control this behavior.
    _warn_prf(average, modifier, msg_start, len(result))
```