Design of Synchronous Sequential Circuits

October 12, 2020

Introduction

- ▶ In case of a sequential circuit, the outputs depend not only on the present inputs but also on the internal state of the circuit.
- The internal state also changes with time.
- ► The number of states of a circuit is finite, and hence, a sequential circuit is also called a Finite State Machine (FSM).
- Most of the practical circuits are sequential in nature.
- In case of combinational circuit, truth table, Boolean expressions can be used to represent the behaviour of the circuit. Similarly, a FSM can be represented either in the form of state table or state diagram.

Examples

- ▶ A circuit to detect 3 or more consecutive 1's in a serial bit stream.
- ▶ The bits are applied serially in synchronism with clock.
- ► The output will become 1 when it detects 3 or more consecutive 1's in the stream.

Input 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 output 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1

Figure: State Diagram of the proposed circuit

Examples

Table: State Table of the Proposed Circuit

	I/P	= 0	I/P	= 1
PS	NS	O/P	NS	O/P
Α	Α	0	В	0
В	Α	0	C	0
C	Α	0	D	1
D	Α	0	D	1

Mealy and Moore FSM

- ▶ Formal definition of FSM: A deterministic FSM can be mathematically defined as a 6 tuples: $(\Sigma, \Gamma, S, s_0, \delta, \omega)$
- ▶ Σ \Rightarrow Set of input combinations. Γ \Rightarrow Set of output combinations. S \Rightarrow A finite set of states. s_0 \subset S \Rightarrow is the initial state. δ \Rightarrow is the state transition function (it gives the next state). ω \Rightarrow is the output function.
- ▶ δ : $S \times \Sigma$ Present state and present inputs determine the next state (NS).
- $ightharpoonup \omega: S imes \Sigma o \Gamma$ For Mealy machine (output depends on PS + Inputs)
- ▶ For Moore machine: $\omega : S \to \Gamma$ (output depends on the present state).
- Pictorial Depiction.

Design of Synchronous Sequential Circuits

- From a description of the problem, obtain a state table or state diagram.
- ► Check whether the table contains any redundant states; if so remove them.
- ▶ Select a state assignment and determine the type of Flip-flop.
- Derive transition and output tables.
- Derive the excitation table and obtain excitation and output functions.
- ▶ Minimize the function and obtain the circuit diagram.

Construction of State diagram/Table from Specification

- A state diagram specifies the different states of a FSM, the condition under which state changes occur, and the corresponding output.
- States are denoted as circles, and labelled with unique symbols.
- Transitions are represented as directed arrows between pair of states.
- ▶ Each transition is labelled by α/β , where α denotes input combination and β denotes output combination.
- ▶ A state table is an alternative way of representing state diagram.
- ► For each value of present state, it specifies the next state and output for every input combination.

Example -1

Design a serial parity detector

- ➤ A continuous stream of bits is fed to a circuit in synchronism with clock. The circuit will generating a bit stream as output, where a 0 will indicate even number of 1's seen so far and a 1 will indicate odd numbers of 1's seen so far.
- ▶ The state diagram of the aforesaid problem is given below:

Figure: State Diagram of the proposed circuit

Table: State Table of the Proposed Circuit

	I/P	= 0	I/P	= 1
PS	NS O/P		NS	O/P
even	even	0	odd	1
odd	odd	1	even	0

Example-2

Design a sequence detector

- ▶ A circuit accepts a serial bit stream 'X' as input and produce a serial bit stream 'Z' as output.
- Whenever the bit pattern '0110' appears in the input stream, its output Z = 1 and at all other times, Z = 0.
- Overlapping occurrences of the patterns are also detected.
- ▶ This is an example of Mealy Machine.
- ▶ The state diagram of the proposed circuit is given below:

Figure: State Diagram of the proposed circuit

State Table Minimization

- Basic Concept:
 - Identify equivalent states and merge them into a single state.
 - Can lead to more compact representation.
- State Equivalence: Two states S_i and S_j are said to be equivalent if and only if for every single input sequence X, the outputs are the same and the next states are equivalent. $\omega(S_i,X)=\omega(S_j,X)$ and $\delta(S_i,X)\equiv\delta(S_j,X)$ Where $\omega(S_i,X)$ is the output for the present state S_i and input X and $\delta(S_i,X)$ is the corresponding next state.

Steps for Minimization using Implication Table

- 1 Construct an Implication table that contains a square for every pair of states.
- 2 Compare each pair of rows in the state table, if the output associated with state S_i and S_j are different, place 'X' in square $S_i S_j$ to indicate S_i and S_j are not equivalent. If the outputs are same, place the implied pair in the square $S_i S_j$. (if the next states of S_i and S_j are m and n respectively for some input X, then m n is an implied pair.
- 3 Go through the table square by square if square $S_i S_j$ contains the implied pair m -n and square m n contains a 'X' then, S_i and S_j are not equivalent and place 'X' in square $S_i S_j$.
- 4 If any 'X' is added in step 3, repeat step 3 until no more 'X' can be added.
- 5 For each square S_i S_j that does not contain 'X', the states S_i and S_i are equivalent.

Example

Consider the following state table:

Table: An example state table

	I/P	= 0	I/P	= 1
PS	NS	O/P	NS	O/P
а	а	0	b	0
b	С	0	d	0
С	а	0	d	0
d	е	0	f	1
е	а	0	f	1
f	g	0	f	1
g	а	0	f	1

Figure: Implication table for the above mention state table

Serial Adder Design

- A serial adder has two external inputs and one external outputs.
- ▶ The state table and state diagram are shown below:

Figure: State table and state diagram of serial adder.

State Assignment and Transition/output Table

- ► There are two states and so one bit is sufficient. Suppose A = 0 and B = 1. Note that this not unique.
- ► Transition/output Table is shown below:

Table: Transition/output Table of a Serial Adder.

	NS				(Outpo	ıt (Z)
PS	00	01	10	11	00	01	10	11
0	0	0	0	1	0	1	1	0
1	0	1	1	1	1	0	0	1

► Selection of memory element: Suppose we use D flip-flop

Excitation and Output Table

► The excitation/output table is show below:

Table: Transition/output Table of a Serial Adder.

PS(y)	X_1	X_2	NS	D	Z
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	1	1

► The expression for $Z = X_1 \oplus X_2 \oplus y$ and $D = X_1X_2 + X_1y + X_2y$

Example 2: Design of a Sequence Detector

- ► A circuit accepts a serial bit stream 'X' as input and produce a serial bit stream 'Z' as output.
- Whenever the bit pattern '0110' appears in the input stream, its output Z = 1 and at all other times, Z = 0.
- Overlapping occurrences of the patterns are also detected.
- ▶ This is an example of Mealy Machine.
- ▶ The state diagram of the proposed circuit is given below:

Figure: State Diagram of the proposed circuit

Example 2: Design of a Sequence Detector

▶ The state table of the sequence detector is as follows:

PS	NS, Z				
	X = 0	X = 1			
$\overline{S_0}$	S ₁ , 0	<i>S</i> ₀ , 0			
S_1	S_1 , 0	<i>S</i> ₂ , 0			
S_2	S_1 , 0	<i>S</i> ₃ , 0			
S_3	S_1 , 1	<i>S</i> ₀ , 0			

▶ The states are assigned as $S_0 = 00$, $S_1 = 01$, $S_2 = 10$, and $S_3 = 11$. The transition/output table is shown below:

PS	N	S	7	7
	X = 0	X = 1	X = 0	X = 1
00	01	00	0	0
01	01	10	0	0
10	01	11	0	0
11	01	00	1	0

Example 2: Design of a Sequence Detector

 Suppose we use T flip-flop as memory element, then the excitation table is as follows:

X	<i>y</i> ₁	<i>y</i> ₂	<i>Y</i> ₁	<i>Y</i> ₂	T_1	T_2	Z
0	0	0	0	1	0	1	0
0	0	1	0	1	0	0	0
0	1	0	0	1	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	0	0	0	0
1	0	1	1	0	1	1	0
1	1	0	1	1	0	1	0
1	1	1	0	0	1	1	0

The expressions for T_1 , T_2 and Z are as follows: $T_1 = \overline{X}y_1 + Xy_2$, $T_2 = \overline{X}\overline{y_2} + Xy_2 + y_1y_2$ and $Z = \overline{X}y_1y_2$