

EVOLUTION

1.	The	mechanism of evolution calle	ed "nat	tural selection" was proposed by:
	(A)	Lamarck	(B)	Darwin
	(C)	Cuvier	(D)	Mendel
2.	The	endosymbiont hypothesis wa	s prop	osed by:
	(A)	Lamarck	(B)	Wallace
	(C)	Margulis	(D)	Lyell
3.	The inva	evolutionary hypothesis ginated to enclose its copy of		"the prokaryotic cell membrane c material" is said to be:
	(A)	Ecotsymbiont hypothesis	(B)	Membrane invagination hypothesis
	(C)	Unit membrane hypothesis	(D)	Endosymbiont hypothesis
4.	The	integration of the principles	of gene	etics and evolution is called as:
	(A)	Lamarckism	(B)	Theory of special creation
	(C)	Neo Darwinism	(D)	Mendelism
5.	How	many finches did Darwin co	llect o	n galapagos island?
	(A)	30 types	(B)	20 types
	(C)	13 types	(D)	25 types
6.	The	study of distribution of living	g thing	s on earth is called:
	(A)	Biogeography	(B)	Biology
	(C)	Comparative anatomy	(D)	Molecular biology
7.	The	breeding of domesticated pla	ints an	d animals refers to:
	(A)	Artificial selection	(B)	Selection by chance
	(C)	Wild selection	(D)	Natural selection

8.	The shuffling of alleles due to meiosis and random fertilization having no effect on over all genetic structure of a population signifies:				
	(A)	Went's theorem	(B)	Fischer's theorem	
	(C)	Hardy-Weinberg theorem	(D)	Binomial theorem	
9.	In H	lardy Weinberg's equation i.e.	$p^{2} +$	$2pq + q^2 = 1$ p-stands for:	
	(A)	None	(B)	Gene frequency of one allele	
	(C)	Frequency of whole gene pool	(D)	Both (A) and (B)	
10.		tropical rain forests have b inal extent?	een 1	reduced to what percentage of their	
	(A)	44%	(B)	10%	
	(C)	84%	(D)	20%	
11.	The	smallest biological unit that ca	n evo	olve over time is:	
	(A)	A community	(B)	A population	
	(C)	A species	(D)	An ecosystem	
12.	The	first eukaryotic cell appeared	abou	t how many years ago?	
	(A)	1.5 billion	(B)	2.4 billion	
	(C)	3.9 billion	(D)	3.5 billion	
13.	The	"ontogeny recapitulates phylo	geny'	" supports the evidence from:	
	(A)	Comparative embryology	(B)	Fossil record	
	(C)	Comparative anatomy	(D)	Molecular biology	
14.		l the members of a population allele is:	n are	homozygous for the same allele then	
	(A)	Variable	(B)	Abnormal	
	(C)	Fixed	(D)	Normal	
15.	The	species which are near to beco	me e	ndangered are called as:	
	(A)	Threatened species	(B)	Endangered species	
	(C)	Wild species	(D)	None	
16.	_	study of total aggregate of gwn as:	genes	in a population at any one time is	
	(A)	Population genetics	(B)	Molecular biology	
	(C)	Embryology	(D)	Cytogenetics	

17. As per natural selection the survival in struggle for existence is not It depends on surviving individuals:				struggle for existence is not random.
	(A)	Interaction	(B)	Ancestry
	(C)	Hereditary constitution	(D)	Phenotype
18.	Whi	ch one of the following is not	declai	red as an extinct species in Pakistan?
	(A)	Asian lion	(B)	Green parrot
	(C)	Indian rhino	(D)	Cheetah
19.		rudimentary structures that ote past are said to be:	had i	mportant functions in ancestors in the
	(A)	Functional organs	(B)	Vestigial organs
	(C)	Visceral organs	(D)	Assimilatory organs
20.	The	level of classification between	speci	es and family is called as:
	(A)	Genus	(B)	Phylum
	(C)	Division	(D)	Group
21.	The	ory of special creation:		
	(A)	60°C	(B)	Lynn Margulis
	(C)	Darwin	(D)	C. Linnaeus
22.	Arc	haeobacteria:		
	(A)	120°C	(B)	Lynn Margulis
	(C)	C. Linnaeus	(D)	Darwin
23.	Edo	symbiont hypothesis:		
	(A)	C. Linnaeus	(B)	Lynn Margulis
	(C)	120°C	(D)	Darwin
24.	H.M	I.S. Beagle:		
	(A)	C. Linnaeus	(B)	120°C
	(C)	Lynn Margulis	(D)	Darwin
25.	Inhe	eritance of acquired character	istics	
	(A)	Sedimentary rocks	(B)	Lamarck
	(C)	Homologus organs	(D)	Analogous organs

26.	Foss	sils:		
	(A)	Sedimentary rocks	(B)	Lamarck
	(C)	Homolgous organs	(D)	Hydrothermal vents
27.	Fore	e limbs of man and wings of ba	t:	
	(A)	Hydrothermal vents	(B)	Sedimentary rocks
	(C)	Analogous organ	(D)	Homologous organs
28.	Hot	springs:		
	(A)	Homologous organs	(B)	Sedimentary rocks
	(C)	Analogous organs	(D)	Hydrothermal vents
29.	Euk	aryotic cells:		
	(A)	Mutation		
	(B)	Lamarckism		
	(C)	Membrane invagination hypoth	nesis	
	(D)	Population		
30.	Neo	Darwinism:		
	(A)	Modern synthesis	(B)	Population
	(C)	Mutation	(D)	Lamarckism
31.	A gr	oup of interbreeding individua	als:	
	(A)	Lamarckism	(B)	Membrane invagination hypothesis
	(C)	Modern synthesis	(D)	Population
32.	Cha	nge in genetic make up:		
	(A)	Lamarckism	(B)	Modern synthesis
	(C)	Population	(D)	Mutation
33.	Win	gs of bats:		
	(A)	Fixed	(B)	Hardy Weinberg theorem
	(C)	Convergent evolution	(D)	Variable
34.	(p +	q) ² :		
	(A)	Variable	(B)	Hardy Weinberg theorem
	(C)	Fixed	(D)	Extinct species

35.	Asia	Asian lion:						
	(A)	Extinct species	(B)	Hardy Weinberg theorem				
	(C)	Convergent evolution	(D)	Fixed				
36.	Hon	nozygous:						
	(A)	Extinct species	(B)	Fixed				
	(C)	Hardy Weinberg theorem	(D)	Convergent evolution				
37.	Essa	y on the principle of populat	ion:					
	(A)	Analogous organs	(B)	Evidence of evolution				
	(C)	Finches	(D)	Cuvier				
38.	Gala	apagos:						
	(A)	Evidence of evolution	(B)	Analogous organs				
	(C)	Cuvier	(D)	Finches				
39.	Fun	ctionally alike but structurall	y different:					
	(A)	Evidence of evolution	(B)	Fishes				
	(C)	Analogous organs	(D)	Cuvier				
40.	Con	nparative anatomy:						
	(A)	Analogous organs	(B)	Evidence of evolution				
	(C)	Fishes	(D)	Cuvier				
41.	The	origin of species:						
	(A)	Genetic drift	(B)	Darwin				
	(C)	Glycogen	(D)	Vestigial organ				
42.	Ear	muscles in man:						
	(A)	Genetic drift	(B)	Vestigial organ				
	(C)	Darwin	(D)	Respiratory protein				
43.	Cha	Change in the frequency of alleles occurring by chance:						
	(A)	Darwin	(B)	Genetic drift				
	(C)	Vestigial organ	(D)	Glycogen				
44.	Cyto	ochrome:						
	(A)	Vestigial organ	(B)	Genetic drift				
	(C)	Respiratory protein	(D)	Darwin				

45.	. The theory of natural selection was supported by:					
	(A)	Darwin	(B)	Aristotle		
	(C)	Linnaeus	(D)	Lamarck		
46.	The	theory of natural selection wa	s fori	nulated by:		
	(A)	Darwin	(B)	Linnaeus		
	(C)	Lamarck	(D)	Aristotle		
47.	The	essay "Principle of population	ı" wa	s published by:		
	(A)	Cuvier	(B)	Lyell		
	(C)	Malthus	(D)	Mendel		
48.	Mat	ch theory of natural selection	with	one of the followings:		
	(A)	Natural selection	(B)	Evolution		
	(C)	Divine creation	(D)	Principle of population		
49.	Prin	ciple of geology was published	l by:			
	(A)	Darwin	(B)	Lyell		
	(C)	Linnaeus	(D)	Lamarck		
50.	Pap	ers on inheritance was publish	ed by	':		
	(A)	Cuvier	(B)	Lyell		
	(C)	Malthus	(D)	Mendel		
51.	Mat	ch catastrophism with one of	the fo	llowing:		
	(A)	Lyell	(B)	Cuvier		
	(C)	Malthus	(D)	Mendel		
52.	The	prokaryotes arise how many	years	ago?		
	(A)	1.5 billion	(B)	3.5 million		
	(C)	3.5 billion	(D)	4.5 billion		
53.	The	bacteria living in hydrotherm	al vei	nt are:		
	(A)	Cyanobacteria	(B)	Eubacteria		
	(C)	Archeobacteria	(D)	All of the above		
54.	Arc	heobacteria can tolerate tempe	eratui	re upto:		
	(A)	100°C	(B)	105°C		
	(C)	110°C	(D)	120°C		

55.	The compound used first by photosynthetic organism as a hydrogen sources was:					
	(A)	Water	(B)	Methane		
	(C)	Hydrogen sulphide	(D)	Hydrogen per oxide		
56.	Ozo	ne is formed from:				
	(A)	Water	(B)	Hydrogen		
	(C)	CO_2	(D)	Oxygen		
57.	Eno	ugh protective ozone was built	abou	it how many years ago?		
	(A)	320 million	(B)	420 million		
	(C)	420 billion	(D)	320 billion		
58.	Life	can form abiotically only in:				
	(A)	Oxidizing environment	(B)	Reducing environment		
	(C)	Both (A) and (B)	(D)	None of the above		
59.	The	idea of endosymbiont was pro	posed	l by:		
	(A)	Cuvier	(B)	Lyell		
	(C)	Malthus	(D)	Margulis		
60.	In e	ndosymbiont idea, flagella are	form	ed from:		
	(A)	Aerobic bacteria	(B)	Cyanobacteria		
	(C)	Spirochete	(D)	None of the above		
61.	The	chloroplast of the eukaryotes	was f	ormed from:		
	` ′	Aerobic bacteria	(B)	Spirochete		
	(C)	Cyanobacteria	(D)	None of the above		
62.	The	idea of inheritance of acquired				
	(A)	Darwin		Lyell		
	(C)	Linnaeus	` /	Lamarck		
63.		island near South American c				
	` '	Iceland		Galapagos		
- 1	` '	Cape Verde	` ′	None of the above		
64.		win came back to Great Britai		1024		
	(A)	1932	(B)	1934		
	(C)	1936	(D)	1939		

65.	er than Darwin was developed by			
	(A)	Wallace	(B)	Lyell
	(C)	Linnaeus	(D)	Lamarck
66.	Desc	cent with modification means:		
	(A)	Similar characters	(B)	Same ancestor
	(C)	Different ancestors	(D)	None of the above
67.	Pop	ulation genetics emphasized or	ı:	
	(A)	Acquired characters	(B)	Qualitative characters
	(C)	Quantitative characters	(D)	None of the above
68.	Mod	lern synthesis includes:		
	(A)	Taxonomy	(B)	Population genetics
	(C)	Palaeontology	(D)	All of the above
69.	Mat	ch divergent evolution with on	e of t	the following:
	(A)	Analogy	(B)	Anatomy
	(C)	Homology	(D)	Palaeontology
70.	Ver	miform appendix in man is:		
	(A)	Analogous structure	(B)	Homologous structure
	(C)	Vestigial structure	(D)	None of the above
71.	Whi	ch of the followings is not a ve	stigia	d organ?
	(A)	Appendix	(B)	Skeleton of whale
	(C)	Pelvic in man	(D)	Leg bone in snakes
72.	Whi	ch is mismatched for homolog	ous s	tructures?
	(A)	Foreleg of horse	(B)	Wing of birds
	(C)	Wing of insects	(D)	Flipper of whale
73.	Whi	ch is mismatched for analogou	ıs str	uctures?
	(A)	Forelimb of bat	(B)	Wing of birds
	(C)	Wing of insects	(D)	Flipper of whale
74.	In to	errestrial vertebrates, the gills	are n	nodified to form:
	(A)	Ear muscles	(B)	Eustachian tube
	(C)	Lungs	(D)	Larynx

75.	75. The proteins found in all aerobic species are:			
	(A)	Haemoglobin	(B)	Cytochrome
	(C)	Albumin	(D)	Keratin
76.	The	total aggregate gene of popula	tion i	is:
	(A)	Poly gene	(B)	Gene pool
	(C)	Gene interaction	(D)	None of the above
77.				ers in a population is 320 and number of dominant alleles in this population
	(A)	320	(B)	600
	(C)	800	(D)	100
78.	The	mammal which live only in A	meric	a is:
	(A)	Kangaroo	(B)	Elephant
	(C)	Armadillos	(D)	Echidna
79.	The	oldest known fossils:		
	(A)	Fish	(B)	Prokaryotes
	(C)	Protozoans	(D)	Algae
80.	Foss	sil record shows that the earlies	st kno	own vertebrate fossils of:
	(A)	Reptiles	(B)	Fishes
	(C)	Amphioxus	(D)	Amphibians
81.	The	second oldest vertebrate fossil	:	
	(A)	Reptiles	(B)	Fishes
	(C)	Amphioxus	(D)	Amphibians
82.	The	latest fossil found is:		
	(A)	Reptiles	(B)	Birds
	(C)	Amphioxus	(D)	Amphibians
83.	Whi	ch of the following is a fossil?		
	(A)	Cast	(B)	Impression
	(C)	Resin	(D)	None of the above

84.	Mos	st fossils are found in:		
	(A)	Hard rocks	(B)	Sedimentary rocks
	(C)	Soft rocks	(D)	Ignitions rocks
85.	The	structures which have commo	on ori	gin but different function:
	(A)	Analogous structures	(B)	Homologous structures
	(C)	Vestigial structures	(D)	None of the above
86.	The	structures which have similar	ity in	function are:
	(A)	Analogous structures	(B)	Homologous structures
	(C)	Vestigial structures	(D)	None of the above
87.	Mat	ch convergent evolution with	one of	f the followings:
	(A)	Analogy	(B)	Homology
	(C)	Anatomy	(D)	Paleontology
88.		number of alleles of a recess l of 100. Its frequency is:	ive cl	naracter in a population is 300 out of
	(A)	0.7	(B)	0.3
	(C)	0.5	(D)	0.4
89.	The	re are 160 heterozygous plants	s in to	tal of 500. Its genotypic frequency will
	(A)	0.64	(B)	0.32
	(C)	0.04	(D)	0.44
90.	Har	dy-Weinberg law is used to m	easur	e:
	(A)	Gene pool	(B)	Allelic ratio
	(C)	Allelic frequency	(D)	None of the above
91.	In a	llelic frequency $P + Q =$		
	(A)	0.2	(B)	0.8
	(C)	1.0	(D)	2.0
92.	In a will		.2, th	e allelic frequency of the heterozygous
	(A)	0.64	(B)	0.32
	(C)	0.04	(D)	1.00

93.		a population P = 0.8 and Q = 0.2, the allelic frequency of the recessive trait l be:			
	(A)	0.64	(B)	0.32	
	(C)	0.04	(D)	1.00	
94.	Whi	ch of the followings cannot ch	ange	allelic frequency?	
	(A)	Genetic drift	(B)	Random mating	
	(C)	Section	(D)	Migration	
95.	Whi	ich of the followings can chang	e alle	lic frequency?	
	(A)	Genetic drift	(B)	Migration	
	(C)	Section	(D)	All of the above	
96.	The	forest of the world have been	reduc	eed by:	
	(A)	30%	(B)	44%	
	(C)	54%	(D)	60%	
97.	The	main reason of the extinction	of the	species is:	
	(A)	Pollution	(B)	Over population	
	(C)	Habitat destruction	(D)	Rain	
98.	The	measure to prevent the extinc	tion o	of species is:	
	(A)	Pollution control	(B)	Supply of water	
	(C)	National parks	(D)	Breading	
99.	The	evolution of photosynthetic pr	okar	yotes took place due to:	
	(A)	High concentration of CO ₂ in a	tmos	phere	
	(B)	High concentration of O ₂ in atr	nospł	nere	
	(C)	Limited supply of nutrient sour	rces		
	(D)	High temperature in the primit	ive en	vironment	
100.	The	theory of special creation says	:		
	(A)	All living organisms formed fr	om ar	ncestors	
	(B)	All living organisms formed sp	ontar	neously	
	(C)	All living organisms formed by	divi	ne	
	(D)	None of the above			

101. The theory of natural selection says:

- All living organisms formed from ancestors (A)
- All living organisms formed spontaneously **(B)**
- All living organisms formed by divine **(C)**
- None of the above **(D)**

Evolution is a: 102.

- Change of shape of body (A)
- **(B)** Change of body form
- Change of gene frequency **(C)**
- **(D)** Change of body organs

Biology F.Sc. Part-II

103. The evolution of aerobic prokaryotes took place due to:

- High concentration of CO₂ in atmosphere (A)
- High concentration of O₂ in atmosphere **(B)**
- Limited supply of nutrient sources **(C)**
- High temperature in the primitive environment **(D)**

An acquired character is: 104.

- A character inherited by an organism
- It can pass from parent to offspring
- It never passes from parent to offspring
- It provides raw material for evolution

According to endosymbiotic theory mitochondria is: 105.

- Cellular body which produce energy (A)
- Anaerobic bacteria which produces energy (B)
- Aerobic bacteria which produces energy
- Photosynthetic bacteria undergoes photosynthesis

106. According of endosymbiotic theory chlorophyll is:

- Cellular body which produce energy
- Anaerobic bacteria which produce energy **(B)**
- Aerobic bacteria which produce energy **(C)**
- Photosynthetic bacteria undergoes photosynthesis **(D)**

107. The main objection on Lamarckism was that:

- (A) A character inherited by an organism
- **(B)** It can pass from parent to offspring
- (C) It cannot pass from parent to offspring
- **(D)** It provides raw material for evolution

108. The observation of the Darwin about the species of Galapagos was that:

- (A) They do not resemble with other species
- (B) They show resemblance with the South American species
- (C) They have ancestors only in Galapagos
- (D) None of the above

109. Descent with modification means:

- (A) All organisms show resemblances
- (B) The organisms do not show resemblances
- (C) The organisms show resemblances but later change
- **(D)** None of the above

110. Neo Darwinism means:

- (A) Concept of evolution on the basis of population genetics
- **(B)** Concept of evolution on the basis of Mendalism
- (C) Concept of evolution on the basis of natural selection
- **(D)** All of the above

111. Homologous structures:

- (A) Have same structures but different functions
- (B) Have same functions but different structures
- (C) Have different structures and function
- (**D**) None of the above

112. Analogous structures:

- (A) Have same structures but different functions
- (B) Have same functions but different structures
- (C) Have different structures and functions
- **(D)** None of the above

Multiple	? Choi	ce Questions	220		Biology F.Sc. Part-II
113.		ch is actual ıkaryotes?	evidence supporting t	he endo	osymbiotic theory for the origin
	(A)	Fossil evide	ence suggest early eukar	yotes at	e Proteobacteria
	(B)	Free-living	mitochondria still exist	in some	environments
	(C)	Mitochondr	ria and chloroplasts have	their o	wn DNA
	(D)	All of the al	bove are true		
114.		do scientist etic material		han Di	NA, may have been the original
	(A)	Most organi	isms on Earth use RNA	as their	genetic material
	(B)	The simples	st life forms, viruses, us	RNA	
	(C)	RNA is mor	re stable than DNA		
	(D)	RNA has th	e ability to catalyze a fe	w simp	le, chemical reactions
115.	dom	A total of 1700 US Caucasian newborns have cystic fibrosis. C for normal dominant over c for cystic fibrosis. What percent age of the above population have cystic fibrosis (cc of q^2)?			-
	(A)	0.059%	(B)	0.023	%
	(C)	0.015%	(D)	0.034	%
116.		many of the		OVE ST	TATEMENT) of the population
	(A)	1260	(B)	1620	
	(C)	100	(D)	1001	
117.		many of the	•	OVE ST	TATEMENT) in the population
	(A)	79.56%	(B)	86%	
	(C)	92.15%	(D)	22.54	%
118.	anen	nia (ss), wh		popula	th a severe form of sickle-cell tion will be more resistant to the sickle-cell gene?

(B) 20%

(D) 0%

(A) 42%

(C) 30%

119.	There are 100 students in a class. Ninety-six did well in the course whereas four blew it totally and received a grade of F. Sorry. In the highly unlikely event that these traits are genetic rather than environmental, if these traits involve dominant and recessive alleles, and if the four (4%) represent the frequency of the homozygous recessive condition, please calculate the following:								
(a)	The frequency of the recessive allele:								
	(A) 20%	(B) 60%							
	(C) 34%	(D) 47%							
(b)	The frequency of the dominant allele:								
	(A) 20%	(B) 60%							
	(C) 80%	(D) 10%							
(c)	The frequency of heterozygous individuals:								
	(A) 22%	(B) 24%							
	(C) 26%	(D) 32%							
120.	20. A very large population of randomly-mating laboratory mice conta white mice. White coloring is caused by the double recessive genoty genotypic frequencies for this population is:								
	(A) 5	(B) 6							
	(C) 0	(D) 1							
121.	A rather large population of Biology instructors have 395 red-sided individuals and 557 tan-sided individuals. Assume that red is totally recessive, please calculate the following:								
(a)	The allele frequencies of each allele:								
	(A) 0.355	(B) 0.620							
	(C) 0.0222	(D) 0.156							
(b)	The expected genotype frequencies:								
	(A) 0.216	(B) 0.316							
	(C) 0.116	(D) 0.416							
(c)	The number of heterozygous individuals that you would predict to be in this population:								
	(A) About 436	(B) 480							
	(C) 225	(D) 400							

(d) The expected phenotype frequencies:

(A) 0.312

(B) 0.584

(C) 0.211

(D) 0.416

(e) Conditions happen to be really good this year for breeding and next year there are 1.245 young "potential" Biology instructors. Assuming that all of the Hardy-Weinberg conditions are met, how many of these would you expect to be red-sided and how many tan-sided?

(A) 518 red

(B) 215 red

(C) 307 red

(D) 111 red

Answers

Sr.	Ans.								
1.	(B)	2.	(C)	3.	(B)	4.	(C)	5.	(C)
6.	(A)	7.	(A)	8.	(C)	9.	(B)	10.	(A)
11.	(C)	12.	(A)	13.	(A)	14.	(C)	15.	(A)
16.	(A)	17.	(C)	18.	(B)	19.	(B)	20.	(A)
21.	(D)	22.	(A)	23.	(B)	24.	(D)	25.	(B)
26.	(A)	27.	(D)	28.	(D)	29.	(C)	30.	(A)
31.	(D)	32.	(D)	33.	(C)	34.	(B)	35.	(A)
36.	(B)	37.	(D)	38.	(D)	39.	(C)	40.	(B)
41.	(B)	42.	(B)	43.	(B)	44.	(C)	45.	(A)
46.	(B)	47.	(C)	48.	(C)	49.	(B)	50.	(D)
51.	(A)	52.	(C)	53.	(C)	54.	(D)	55.	(C)
56.	(D)	57.	(B)	58.	(B)	59.	(D)	60.	(C)
61.	(C)	62.	(D)	63.	(B)	64.	(C)	65.	(A)
66.	(B)	67.	(C)	68.	(D)	69.	(C)	70.	(C)
71.	(C)	72.	(C)	73.	(D)	74.	(B)	75.	(B)
76.	(B)	77.	(C)	78.	(C)	79.	(B)	80.	(B)
81.	(C)	82.	(B)	83.	(D)	84.	(B)	85.	(B)
86.	(A)	87.	(A)	88.	(B)	89.	(B)	90.	(C)
91.	(C)	92.	(B)	93.	(C)	94.	(B)	95.	(D)
96.	(B)	97.	(C)	98.	(C)	99.	(C)	100.	(C)
101.	(A)	102.	(C)	103.	(B)	104.	(C)	105.	(D)
106.	(C)	107.	(C)	108.	(B)	109.	(C)	110.	(D)

Sr.	Ans.	Sr.	Ans.	Sr.	Ans.	Sr.	Ans.	Sr.	Ans.
111.	(A)	112.	(B)	113.	(C)	114.	(B)	115.	(A)
116.	(B)	117.	(A)	118.	(A)	119.	(a) (A)	120.	(D)
							(b) (C)		
							(c) (D)		
121.	(a) (D)								
	(b) (D)								
	(c) (A)								
	(d) (D)								
	(e) (A)								