

A human is pushing on the end-effector of the 3-DoF robot shown above. (Top Drawing) The human applies a 15 N force along the negative y_b axis. (Bottom Drawing) The human keeps this force aligned with the negative y_b axis as the robot moves.

What wrench does the robot need to apply at the end-effector to maintain static equilibrium?

Solution: Opposite force of +15N over positive y-axis.

Thus the wrench required is provided below with the formulae: $F_b = \begin{bmatrix} m_b \\ f_b \end{bmatrix}$ and moment m_b is zero as the force is directly applied over the body frame.

```
clc
clear

syms theta1 theta2 theta3 real

% Opposite force of +15 N over positive y-axis
% Thus the wrench required is provided below with the formulae: Fb = [mb;fb] and moment is zero as the force is directly applied over the body frame

Fb = [0;0;0;0;15;0];
```

<u>Case 1:</u> Let \diamondsuit = 1 and let \diamondsuit = $[0, \diamondsuit/4, \diamondsuit/4]$ '. Find the joint torques needed to balance out the force applied by the human.

<u>Case 2:</u> Let \spadesuit = 1 and let \spadesuit = $[0, \ \spadesuit/8, \ 0]$ '. Find the joint torques needed to balance out the force applied by the human

```
theta = [theta1;theta2;theta3];

omega = [0;0;1];

q1 = [0;0;0];

q2 = [1;0;0];

q3 = [2;0;0];

S1 = [omega; -cross(omega, q1)];

S2 = [omega; -cross(omega, q2)];

S3 = [omega; -cross(omega, q3)];

S_eq = [S1, S2, S3];

M = [eye(3), [3;0;0]; 0 0 0 1];

% T with initial joint positions

T_{-0} = simplify(expand(fk(M, S_eq, theta)))

T_{-0} = \left(\cos(\theta_1 + \theta_2 + \theta_3) - \sin(\theta_1 + \theta_2 + \theta_3) + \cos(\theta_1 + \theta_2) + \cos(\theta_1)\right)
```

 $\begin{bmatrix} \sin(\theta_1 + \theta_2 + \theta_3) & \cos(\theta_1 + \theta_2 + \theta_3) & 0 & \sin(\theta_1 + \theta_2 + \theta_3) + \sin(\theta_1 + \theta_2) + \sin(\theta_1) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

R_0 = T_0(1:3, 1:3);
JS = simplify(expand(JacS(S_eq, theta))) %Space Jacobian

JS = $\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & \sin(\theta_1) & \sin(\theta_1 + \theta_2) + \sin(\theta_1) \\
0 & -\cos(\theta_1) & -\cos(\theta_1 + \theta_2) - \cos(\theta_1) \\
0 & 0 & 0
\end{pmatrix}$

 $Jb = simplify(expand(adjointM(inv(T_0))*JS)) %Body Jacobian$

Jb =

$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1 \\
\sin(\theta_2 + \theta_3) + \sin(\theta_3) & \sin(\theta_3) & 0 \\
\cos(\theta_2 + \theta_3) + \cos(\theta_3) + 1 & \cos(\theta_3) + 1 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

J_geometric = simplify(expand([R_0, zeros(3); zeros(3), R_0] * Jb)) %Geometric
Jacobian

```
J_geometric =
```

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
-\sigma_1 - \sin(\theta_1 + \theta_2) - \sin(\theta_1) & -\sigma_1 - \sin(\theta_1 + \theta_2) & -\sigma_1 \\
\sigma_2 + \cos(\theta_1 + \theta_2) + \cos(\theta_1) & \sigma_2 + \cos(\theta_1 + \theta_2) & \sigma_2 \\
0 & 0 & 0
\end{pmatrix}$$

where

$$\sigma_1 = \sin(\theta_1 + \theta_2 + \theta_3)$$

$$\sigma_2 = \cos(\theta_1 + \theta_2 + \theta_3)$$

% Fs calculation:

Fs = simplify(expand(adjointM(inv(T_0)))'*Fb)

Fs =

$$\begin{pmatrix}
0 \\
0 \\
15\cos(\theta_2 + \theta_3) + 15\cos(\theta_3) + 15 \\
-15\sin(\theta_1 + \theta_2 + \theta_3) \\
15\cos(\theta_1 + \theta_2 + \theta_3) \\
0
\end{pmatrix}$$

% symbolic tau calculation
tau = simplify(expand(JS'*Fs))

tau =

$$\begin{pmatrix}
15\cos(\theta_2 + \theta_3) + 15\cos(\theta_3) + 15 \\
15\cos(\theta_3) + 15 \\
15
\end{pmatrix}$$

% CASE 1

Case1_tau = double(subs(tau,[theta1,theta2,theta3],[0,pi/4,pi/4]))

Case1_tau = 3×1 25.6066 25.6066

15.0000

```
% CASE 2
Case2_tau = double(subs(tau,[theta1,theta2,theta3],[0,pi/8,0]))

Case2_tau = 3×1
    43.8582
    30.0000
    15.0000
```

Let ∥ � ∥ be the magnitude (i.e., the length) of the joint torque vector.

- Find a joint position ♦ that maximizes || ♦ ||
- Find a joint position � that minimizes ∥�∥

```
% ||tau||
magnitude_tau = simplify(expand(norm(tau)))
magnitude_tau =
```

 $\frac{15\sqrt{2}\sqrt{\cos(2\theta_3) + 4\cos(\theta_3) + 2(\cos(\theta_2 + \theta_3) + \cos(\theta_3) + 1)^2 + 5}}{2}$

```
% Maximum ||tau|| with theta1 = theta2 = theta3 = 0
% or theta1 = 90 degrees, theta2 = 0, theta3 = 0
Max_mag_tau = double(subs(magnitude_tau,[theta1,theta2,theta3],[0,0,0]))
```

Max mag tau = 56.1249

```
% f = (15*sqrt(sym(2))*sqrt(cos(2*theta3) + 4*cos(theta3) + 2*(cos(theta2 + theta3)
+ cos(theta3) + 1)^2 + 5))/2

% Minimum ||tau|| with theta1 = 90 degrees, theta2 = 90 degrees, theta3 = 180
degrees
Min_mag_tau = double(subs(magnitude_tau,[theta1,theta2,theta3],[-pi/2,pi/2,pi]))
```

Min_mag_tau = 15

```
% Verifying the optimal results of all theta values for maximum and minimum
% evaluation of the magnitude of joint torque values:

fprintf(['Verifying results for maximum and minimum magnitude of tau with' ...
    'optimal theta values:\n']);
```

Verifying results for maximum and minimum magnitude of tau withoptimal theta values:

% Define the objective function to maximize Magnitude_tau

```
objectiveFunction_Max = @(theta) -double(norm(subs(magnitude_tau, [theta1, theta2, theta3], double(theta))));
% Define the objective function to mainimize Magnitude_tau
objectiveFunction_Min = @(theta) double(norm(subs(magnitude_tau, [theta1, theta2, theta3], double(theta))));

% Define initial guess for thetas
x0 = [pi/4, pi/4, pi/4];

% Define bounds on thetas
lb = [0, 0, 0];
ub = [pi, pi, pi];

% Set up the optimization options
options = optimoptions('fmincon', 'Display', 'iter'); % Display optimization process

% Solve the optimization problem to find maximum magnitude_tau
[xMax, fMax] = fmincon(objectiveFunction_Max, x0, [], [], [], lb, ub, [], options);
```

				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
0	4	-3.919689e+01	0.000e+00	9.966e+00	
1	8	-5.609177e+01	0.000e+00	1.272e+01	1.060e+00
2	12	-5.608346e+01	0.000e+00	9.967e-02	6.658e-02
3	16	-5.611481e+01	0.000e+00	2.462e-01	1.043e-01
4	20	-5.612178e+01	0.000e+00	3.808e-02	4.584e-02
5	24	-5.612351e+01	0.000e+00	3.991e-02	9.528e-03
6	28	-5.612379e+01	0.000e+00	8.705e-03	8.547e-03
7	32	-5.612387e+01	0.000e+00	2.934e-03	8.270e-03
8	36	-5.612392e+01	0.000e+00	7.059e-03	2.686e-02
9	40	-5.612394e+01	0.000e+00	8.432e-03	1.066e-01
10	44	-5.612391e+01	0.000e+00	5.702e-03	2.502e-01
11	48	-5.612387e+01	0.000e+00	2.014e-03	3.047e-01
12	52	-5.612386e+01	0.000e+00	1.000e-03	1.057e-01
13	56	-5.612436e+01	0.000e+00	3.966e-02	3.296e-02
14	60	-5.612466e+01	0.000e+00	4.157e-03	2.772e-02
15	64	-5.612466e+01	0.000e+00	2.304e-03	9.228e-03
16	68	-5.612466e+01	0.000e+00	2.000e-04	1.521e-03
17	72	-5.612479e+01	0.000e+00	7.200e-05	1.730e-03
18	76	-5.612482e+01	0.000e+00	4.355e-05	8.456e-04
19	80	-5.612485e+01	0.000e+00	1.109e-05	8.913e-04
20	84	-5.612486e+01	0.000e+00	2.976e-06	4.371e-04
21	88	-5.612486e+01	0.000e+00	9.574e-07	2.019e-04

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

```
% Display the results (Maximum)
fprintf('Maximum Magnitude_tau: %f\n', abs(-fMax)); % Negate the value back to the
original form
```

```
fprintf('Optimal values for theta1, theta2, and theta3: %f, %f, %f\n',
rad2deg(xMax(1)), rad2deg(xMax(2)), rad2deg(xMax(3)));
```

Optimal values for theta1, theta2, and theta3: 89.992386, 0.012731, 0.007796

% Solve the optimization problem to find minimum magnitude_tau [xMin, fMin] = fmincon(objectiveFunction_Min, x0, [], [], [], [], lb, ub, [], options);

First-order

Norm of

Iter	F-count	f(x)	Feasibility	optimality	step
0	4	3.919689e+01	0.000e+00	2.214e+01	·
1	8	1.626950e+01	0.000e+00	6.725e+00	2.648e+00
2	13	1.531488e+01	0.000e+00	2.331e+00	6.207e-01
3	17	1.500300e+01	0.000e+00	4.903e-01	2.868e-01
4	21	1.501394e+01	0.000e+00	4.960e-01	2.316e-01
5	25	1.501695e+01	0.000e+00	9.723e-02	9.207e-02
6	29	1.500593e+01	0.000e+00	1.378e-01	1.109e-01
7	33	1.500462e+01	0.000e+00	2.021e-02	8.398e-03
8	37	1.500207e+01	0.000e+00	2.610e-02	5.367e-02
9	41	1.500075e+01	0.000e+00	2.970e-02	5.741e-02
10	45	1.500030e+01	0.000e+00	1.618e-02	3.999e-02
11	49	1.500013e+01	0.000e+00	7.487e-03	2.953e-02
12	53	1.500007e+01	0.000e+00	2.871e-03	1.762e-02
13	57	1.500005e+01	0.000e+00	5.473e-04	7.422e-03
14	61	1.500005e+01	0.000e+00	2.000e-04	1.676e-03
15	65	1.500002e+01	0.000e+00	2.684e-03	1.976e-02
16	69	1.500001e+01	0.000e+00	4.277e-04	8.775e-03
17	73	1.500001e+01	0.000e+00	2.442e-04	3.851e-03
18	77	1.500001e+01	0.000e+00	4.907e-05	6.269e-04
19	81	1.500001e+01	0.000e+00	4.000e-05	8.088e-05
20	85	1.500000e+01	0.000e+00	1.377e-04	1.197e-02
21	89	1.500000e+01	0.000e+00	5.174e-04	7.289e-03
22	93	1.500000e+01	0.000e+00	9.668e-05	2.785e-03
23	97	1.500000e+01	0.000e+00	8.002e-06	5.607e-04
24	101	1.500000e+01	0.000e+00	8.000e-06	9.221e-05
25	105	1.500000e+01	0.000e+00	5.457e-04	1.075e-02
26	109	1.500000e+01	0.000e+00	2.207e-04	5.955e-03
27	113	1.500000e+01	0.000e+00	3.215e-05	2.612e-03
28	117	1.500000e+01	0.000e+00	5.963e-06	5.719e-04
29	121	1.500000e+01	0.000e+00	1.135e-05	1.139e-04
30	125	1.500000e+01	0.000e+00	2.641e-05	5.544e-04
				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
31	129	1.500000e+01	0.000e+00	8.033e-05	3.022e-03
32	133	1.500000e+01	0.000e+00	2.478e-04	1.476e-02
33	137	1.500000e+01	0.000e+00	4.596e-04	3.045e-02
34	141	1.500000e+01	0.000e+00	8.102e-04	8.421e-02
35	145	1.500000e+01	0.000e+00	1.127e-03	1.524e-01
36	149	1.500000e+01	0.000e+00	9.945e-04	1.782e-01
37	153	1.500000e+01	0.000e+00	2.145e-04	1.382e-01
38	157	1.500000e+01	0.000e+00	4.519e-06	1.195e-02
39	161	1.500000e+01	0.000e+00	1.825e-06	1.939e-03
40	165	1.500000e+01	0.000e+00	1.600e-06	5.409e-04
41	169	1.500000e+01	0.000e+00	2.055e-04	4.460e-02
42	173	1.500000e+01	0.000e+00	1.798e-05	3.395e-02
43	177	1.500000e+01	0.000e+00	1.452e-05	9.646e-03
44	181	1.500000e+01	0.000e+00	5.795e-06	1.337e-04

45 185 1.500000e+01 0.000e+00 3.196e-07 2.981e-05

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

```
% Display the results (Minimum)
fprintf('Minimum Magnitude_tau: %f\n', abs(-fMin)); % Negate the value back to the
original form
```

Minimum Magnitude tau: 15.000000

```
fprintf('Optimal values for theta1, theta2, and theta3: %f, %f, %f\n',
rad2deg(xMin(1)), rad2deg(xMin(2)), rad2deg(xMin(3)));
```

Optimal values for theta1, theta2, and theta3: 90.001144, 90.817724, 179.176356