Algoritmos voraces Algoritmos y estructuras de datos II

José Antonio Hernández López¹

¹Departamento de Informática y Sistemas Universidad de Murcia

2 de marzo de 2025

Índice

Algoritmo voraz y el problema de la

2 Mochila no 0/1

José A. (UMU) Algoritmos voraces 2 de marzo de 2025

Algoritmo voraz

Definición

Los algoritmos voraces (o de avance rápido) son un tipo de algoritmos que construyen la solución paso a paso y, en cada paso, toma un decisión que es *localmente óptima* con la esperanza de que, al final, lleguemos a la solución óptima global.

- Una vez que se toma la decisión, no hay vuelta atrás.
- Se suelen utilizar en problemas de optimización.
- Hay veces que obtenemos la solución óptima usando un algoritmo voraz y otras que no (en la gran mayoría no).
- Suelen ser métodos iterativos muy rápidos y eficientes (suele ser posible tener una implementación recursiva).

Algoritmo voraz: esquema

En cada paso de un algoritmo voraz hace lo siguiente:

- Se toma una decisión voraz en base a información local de P y se añade a la solución S. Si es la solución final, terminamos.
- Se construye un subproblema P' en base a la decisión voraz de la misma naturaleza que P.
- lacktriangle Volver a ejecutar 1 y 2 para P' hasta que tengamos la solución final.

Descripción del problema

- La rana empieza en la posición 0 y quiere llegar a la posición n.
- Hay nenúfares en varias posiciones. Hay uno en la posición 0 y otra en la posición n.
- La rana puede saltar, como máximo, d unidades en un solo salto.
- Objetivo: Encontrar el camino que la rana debería seguir que minimize el número de saltos. Se asume que existe una solución.

5/22

Max jump size: 3

Nuestra decisión voraz: en cada paso escoger el nenúfar más alejado.

El problema P inicial está parametrizado por (i, f) donde i es el inicio y f es el final. Así pues, en cada paso,

- La decisión voraz viene dada por el nenúfar / más alejado alcanzable desde i que no sobrepase a f. Si es f, entonces hemos terminado. Si no es f, se añade a S.
- 2 Construimos P(I, f) (llegar de I a f).
- **3** Volver a ejecutar 1 y 2 para P(I, f) hasta llegar a f.

S.append(eleccion_voraz)

x = eleccion_voraz

29 nenufares = [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1]

```
1 def rana voraz(nenufares, d):
       # inicializamos la solución como lista vacía
       S = []
       # posición actual
      x = 0
6
      # tamaño tablero
       n = len(nenufares) - 1
8
9
       while x < n:
10
           # si podemos saltar al final y terminar lo hacemos
11
           if x + d >= n
12
               x = n
13
           else:
14
               # elección voraz: escogemos el nenúfar
15
               # más alejado de x al que podemos saltar
16
               eleccion_voraz = -1
               for j in range(d, 0, -1):
                   if nenufares[x + i] == 1:
18
19
                       eleccion_voraz = x + j
20
                       break
21
22
               # añadimos la elección voraz a S
```

31 rana_voraz(nenufares, d)
32 # salida: [3, 5, 8]

return S

23

24

25

26 27

28

30 d = 3

transformamos el problema en uno más pequeño avanzando la pos actual

Teorema del algoritmo voraz

Para este problema, ¿el algoritmo voraz devuelve la solución óptima?

José A. (UMU) Algoritmos voraces 2 de marzo de 2025 9/22

Teorema del algoritmo voraz

Para este problema, ¿el algoritmo voraz devuelve la solución óptima? En general, probar que un algoritmo voraz devuelve la solución óptima, no es trivial...

Teorema del algoritmo voraz

Dado un algoritmo voraz diseñado para un problema de optimización P, si se cumplen estas dos condiciones:

- Propiedad de la decisión voraz: existe una solución óptima de P que contiene la decisión voraz ⇒ tomando la decisión voraz vamos encaminados a la solución óptima final
- Subestructura óptima: Sea I la decisión voraz para P y S' la solución al problema P', entonces I unido a S' es una solución óptima de P \Rightarrow podemos resolver el subproblema que queda de la misma manera.

entonces el agoritmo devuelve la solución óptima.

9/22

Teorema del algoritmo voraz aplicado a 🐸

Dado el problema P(i, f):

- Propiedad de la decisión voraz: si estoy en la posición i y escojo el más alejado I, existe una solución S de P(i, f) que empieza por I.
- Subestructura óptima: Sea I la decisión voraz y S' la solución de P(I, f), entonces I concatenado con S' es la solución óptima de P(i, f).

10 / 22

Lema

Propiedad de la decisión voraz: si estoy en la posición i y escojo el más alejado I, existe una solución S de P(i, f) que empieza por I.

José A. (UMU) Algoritmos voraces 2 de marzo de 2025 11/22

Lema

Propiedad de la decisión voraz: si estoy en la posición i y escojo el más alejado I, existe una solución S de P(i, f) que empieza por I.

Demostración. Sea S' una solución óptima que no contiene a I. Como Ies el elemento más alejado de i, habrá uno o más elementos en S' que estén antes que I. Si es solo un elemento I' < I, entonces creamos

- $S = \{I\} \cup (S' \{I'\})$. Esta S es:
 - Una solución válida del problema porque si de l' se puede llegar al segundo de S' desde I porque estaría más cerca.
 - Es una solución óptima porque |S| = |S'| ya que estamos solo cambiando un elemento.

Si hay más de un elemento $l'_1, \ldots, l_k < l$, entonces estaríamos ante una contradicción. Pues creando $S = \{I\} \cup (S' - \{I'_1, \dots, I_k\})$. Se tendría que |S| < |S'| y S' no sería una solución óptima.

Lema

Subestructura óptima: Sea I la decisión voraz y S' la solución de P(I, f), entonces I concatenado con S' es la solución óptima de P(i, f).

12 / 22

José A. (UMU) Algoritmos voraces 2 de marzo de 2025

Lema

Subestructura óptima: Sea I la decisión voraz y S' la solución de P(I, f), entonces I concatenado con S' es la solución óptima de P(i, f).

Demostración. Por reducción al absurdo. Supongamos que existe W solución óptima de P(i, f) tal que $|W| < |S' \cup \{I\}| = |S'| + 1$. Entonces:

- **1** Si W contiene a I como primer elemento, entonces $W \{I\}$ sería una solución válida de P(I, f) tal que $|W \{I\}| = W 1 < |S'|$. Lo que sería una contradicción pues S' es una solución óptima de P(I, f).
- ③ Si W no contiene a I, entonces tiene que haber nenúfares L en W antes que I ya que I es el nenúfar más alejado posible alcanzable desde i. W-L es una solución válida P(I,f) tal que |W-L|=|W|-|L|<|S'|, contraducción.
- ③ Si W contiene a I pero no como primer elemento, entonces entonces tiene que haber nenúfares L en W antes que I. Así pues, $W-L-\{I\}$ es una solución válida de P(I,f) tal que

Descripción del problema

- Tenemos $O = \{1, \dots, n\}$, n objetos con pesos $p_i > 0$ beneficios $b_i > 0$.
- En la mochila tenemos que meter objetos, con un peso máximo de M.
- Objetivo: Llenar la mochila maximizando el beneficio sin superar la capacidad máxima. Se asume que el problema no es trivial (es decir, $\sum_{i=1}^{n} p_{i} > M$).

13 / 22

Descripción del problema

- Tenemos $O = \{1, \dots, n\}$, n objetos con pesos $p_i > 0$ beneficios $b_i > 0$.
- ullet En la mochila tenemos que meter objetos, con un peso máximo de M.
- **Objetivo:** Llenar la mochila maximizando el beneficio sin superar la capacidad máxima. Se asume que el problema no es trivial (es decir, $\sum_{i=1}^{n} p_i > M$).

Por ejemplo: n = 3, M = 20 y

$$p = (18, 15, 10)$$

$$b = (25, 24, 15)$$

- **1** $S_1 = (1, 2/15, 0)$, beneficio = 28, 2
- ② $S_2 = (0, 2/3, 1)$, beneficio = 31

Las soluciones se representan como una tupla/array de n elementos $0 \le s_i \le 1$. En este caso S_1 es mejor que S_2 .

El problema P está parametrizado por (M,O) donde M es el peso máximo de la mochila y O son los objetos. Así pues, en cada paso,

- Tomamos una decisión voraz y la añadimos a S. La decisión voraz es el objeto I que metemos con su proporción x_I .
- ② Construimos $P(M x_l p_l, O \{l\})$
- Volver a ejecutar 1 y 2 para $P(M x_l p_l, O \{l\})$.

El problema P está parametrizado por (M,O) donde M es el peso máximo de la mochila y O son los objetos. Así pues, en cada paso,

- Tomamos una decisión voraz y la añadimos a S. La decisión voraz es el objeto I que metemos con su proporción x_I .
- ② Construimos $P(M x_I p_I, O \{I\})$
- **3** Volver a ejecutar 1 y 2 para $P(M x_I p_I, O \{I\})$.

Nota

Vamos a asumir que, una vez seleccionado el objeto, la proporción que vamos a añadir va a ser la máxima posible. Es decir, si el objeto seleccionado cabe entero, lo metemos. Si no cabe, metemos lo máximo posible de eso objeto hasta llenar la mochila.

```
1 def seleccion_voraz(0, B, P, capacidad_restante):
4 def mochila(0, B, P, M):
       # solución como array de Os de longitud el número de objetos
6
       S = [0] * len(0)
       # peso actual
8
       m = 0
9
       # los objetos disponibles en cada paso
10
       O_disponibles = set(0)
11
       while m < M:
12
           capacidad_restante = M - m
13
           # selecciono el objeto y la cantidad que quiero meter
14
           x_1, 1 = seleccion_voraz(0_disponibles, B, P, capacidad_restante)
15
          # añado la solución
16
           S[1] = x_1
17
18
           # transformo el problema en uno más pequeño
19
           # elimino el objeto seleccionado de los disponibles
20
           O_disponibles.remove(1)
21
           # aumento el peso actual
22
           m += x_1*P[1]
23
       return S
```

Mochila no 0/1 🎒

Posibles criterios:

• El objeto con más beneficio

José A. (UMU) Algoritmos voraces 2 de marzo de 2025 16/22

Posibles criterios:

• El objeto con más beneficio 🗙

$$n = 4; M = 10$$

$$p = (10, 3, 3, 4)$$

$$b = (10, 9, 9, 9)$$

Si ejecutamos el algoritmo con este criterio obtendríamos un beneficio total de 10 pues solo escogeríamos el primer elemento. Esta solución dista de la óptima...

Posibles criterios:

• El objeto con más beneficio \times n = 4; M = 10

$$p = (10, 3, 3, 4)$$

b = (10, 9, 9, 9)

Si ejecutamos el algoritmo con este criterio obtendríamos un beneficio total de 10 pues solo escogeríamos el primer elemento. Esta solución dista de la óptima...

El objeto menos pesado

Posibles criterios:

• El objeto con más beneficio \times n = 4: M = 10

$$p = (10, 3, 3, 4)$$

$$b = (10, 9, 9, 9)$$

Si ejecutamos el algoritmo con este criterio obtendríamos un beneficio total de 10 pues solo escogeríamos el primer elemento. Esta solución dista de la óptima...

• El objeto menos pesado $\times n = 2$; M = 10

$$p = (10, 9)$$

$$b = (10, 1)$$

Siguiendo un razonamiento similar, al ejecutar el algoritmo no obtenemos la solución óptima.

• El objeto con mejor proporción b_i/p_i ... V

Teorema del algoritmo voraz aplicado a 🎒

Dado el problema P(M, O) y el algoritmo voraz de la mejor proporción:

- Propiedad de la decisión voraz: existe una solución óptima que contiene al elemento con mejor proporción y en la mayor cantidad posible.
- Subestructura óptima: sea x_l la decisión voraz escogida para P(M,O) y S' la solución óptima de $P(M-x_lp_l,O-\{l\})$, entonces $\{x_l\}\cup S'$ es solución óptima de P(M,O).

17/22

Lema

Propiedad de la decisión voraz: existe una solución óptima que contiene al elemento con mejor proporción y en la mayor cantidad posible.

José A. (UMU) Algoritmos voraces 2 de marzo de 2025 18 / 22

 $^{^1}$ ya que si no existiera al menos uno significaría que o bien, la mochila está vacía o bien solo está i en la solución pero no en la mayor cantidad posible $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$

Lema

Propiedad de la decisión voraz: existe una solución óptima que contiene al elemento con mejor proporción y en la mayor cantidad posible.

Demostración. Sea S la solución óptima de P e i el objeto con mejor proporción. Entonces tenemos dos opciones:

- lacksquare S contiene a i y en la mayor cantidad posible. No hay nada que hacer y hemos terminado
- ② S no contiene a i o lo contiene pero no en la mayor cantidad posible.

En este segundo caso, podemos suponer que existe otro objeto en la solución j con $0 \neq x_i \in S^1$. Este objeto cumple que

$$\frac{b_i}{p_i} \geq \frac{b_j}{p_j}.$$

¹ya que si no existiera al menos uno significaría que o bien, la mochila está vacía o bien solo está i en la solución pero no en la mayor cantidad posible a la la solución pero no en la mayor cantidad posible.

Dado un r > 0, construimos un S' quitando un peso r de j y poníendoselo a i. Sea x_i' y x_i' las cantidades de cada objeto que se quitan/añaden tales que $p_j x_i' = r$ y $p_i x_i' = r$ (lo que se añade de cada objeto es igual a r). Así pues

• Si $\frac{b_i}{p_i} > \frac{b_j}{p_i}$, entonces

$$b(S') = b(S) - b_j x'_j + b_i x'_i = b(S) + r \left(\frac{b_i}{p_i} - \frac{b_j}{p_j} \right) > b(S).$$

Esto no puede darse ya que hemos supuesto que S es la solución óptima.

José A. (UMU)

• No nos queda más remedio que suponer que $\frac{b_i}{p_i} = \frac{b_j}{p_i}$, entonces

$$b(S') = b(S) - b_j x'_j + b_i x'_i = b(S) + r \left(\frac{b_i}{p_i} - \frac{b_j}{p_j}\right) = b(S)$$

Esto podría darse y corresponde al caso de que haya objetos que tengan la misma proporción beneficio-peso que i. En ese caso, como para cada r siempre podemos pasar ese peso de un objeto $i \neq i$ a i y obtener una solución igual de buena (óptima), pues pasamos peso de todos los objetos distintos a i hasta conseguir la mayor cantidad posible.

Lema

Subestructura óptima: sea x_I la decisión voraz escogida para P(M,O) y S' la solución óptima de $P(M-x_Ip_I,O-\{I\})$, entonces $\{x_I\}\cup S'$ es solución óptima de P(M,O).

Lema

Subestructura óptima: sea x_I la decisión voraz escogida para P(M,O) y S' la solución óptima de $P(M-x_Ip_I,O-\{I\})$, entonces $\{x_I\}\cup S'$ es solución óptima de P(M,O).

Por reducción a lo absurdo, supongamos que existe W solución óptima de P(M,O) tal que $b(W)>b(\{x_l\}\cup S')=b(S')+x_lb_l$. Sea $W'=W-\{x_l\}$, entonces:

$$p(W') = p(W) - x_I p_I = M - x_I p_I$$

 $b(W') = b(W) - x_I b_I > b(S')$

de este modo, llegamos a una contradicción.


```
1 def seleccion_voraz(0, B, P, capacidad_restante):
       1 = -1
       l_prop = -1
       for o in 0:
           if B[o]/P[o] > 1_prop:
               1_{prop} = B[o]/P[o]
               1 = 0
9
10
       if capacidad_restante > P[1]:
11
           return 1, 1
12
       else:
13
           return capacidad_restante/P[1], 1
```