Cognome:		Nome:		matricola:	
Cognonic.	. ,	1 tollic	,	manicola.	_ •

ESERCIZI (Max 24 punti)

Tempo a disposizione: 45 minuti

CONSEGNARE SOLO QUESTO FOGLIO

X =;

Y =;

 $W = \dots$;

 $Z = \dots$;

 $S = \dots$;

 $T = \dots$;

Dovunque appaiano, utilizzare i seguenti valori delle variabili indicate negli esercizii.

X =(numero di lettere che compongono il Cognome) - 2. (max 9) Y =(numero di lettere che compongono il 1° Nome) - 2. (max 9)

W = 1 se Y è pari; W = 0 se Y è dispari; Z = 1 se X è pari; Z = 0 se X è dispari;

S = (penultima cifra del numero di Matricola).

T = (ultima cifra del numero di Matricola).

 Si descriva la funzione dei comandi whatis e apropos, evidenziandone le differenze. Si citi inoltre almeno un comando ad essi equivalente. Enunciare la differenza tra i comandi ps e top, dettagliando l'output prodotto da entrambi.

 Dato il file pippo con ACL pari a -rwxr-xrwx, indicare come cambiano tali permessi in sequenza all'esecuzione dei seguenti comandi:

chmod 755 pippo chmod a-x+w pippo chmod o-x pippo 7. Qual è la differenza tra multiprocessore vero e sistema distribuito?

 Indicare il comando per listare tutti i file contenuti nella directory /usr/bin che hanno il primo carattere alfabetico minuscolo e terminano con un numero. 8. Due studenti del corso di SO discutono di *page replacement* con LRU approssimato. Gianluigi sostiene che, in assenza di pagine con R=0 e C=0, vanno sostituiti i page frame con R=0 e C=1. Barbara non è d'accordo e sostiene che, sempre in assenza di pagine con R=0 e C=0, vanno sostituiti i page frame con R=0 e C=1. Con chi sei d'accordo e perchè?

4. Si supponga che la cwd sia /home/userA. Si disegni l'albero delle directories (e files) generato al termine dell'esecuzione dei seguenti comandi:

touch file1 file2
mkdir dir1
mkdir dir1/dir2
cd dir1
cp ../f* dir2
cd cp f* dir1

9. Specificare a cosa è dovuto il **risparmio di tempo di un processo** *n-threaded* rispetto alla cooperazione di n processi single-threaded.

 Si scriva una pipeline di comandi che consenta di visualizzare i nomi delle directory contenute nella cwd, comprese quelle nascoste. 10. Cosa s'intende per schedulazione fattibile dei sistemi real-time e perché si dice che tale problema appartiene alla classe NP hard?

POLITECNICO DI BARI

11. Si abbia un HD costituito da 200 cilindri, le cui testine siano posizionate sul cilindro 1XY e procedono ad eseguire operazioni di I/O per cilindri crescenti. Ipotizzando un **algoritmo di disk scheduling di tipo** *C-LOOK* e supponendo che si abbia una coda di richieste per i seguenti cilindri:

si determini la successione di servizio delle richieste e si stabilisca il tempo di seek complessivo sapendo che il tempo minimo di seek è di 0,1 msec.

- 12. Quale sarà il **numero di pagine di una memoria virtuale** che può estendersi fino a X6 Gbyte e che prevede page frame di 6Y Kbyte?
- 13. Le seguenti matrici descrivano lo stato corrente di un sistema in cui sono in esecuzione 5 processi (P0, P1, P2, P3, P4) e sono disponibili 4 tipi di risorse (A, B, C e D) disponibili nel sistema nel rispettivo numero massimo (8, 10, 10, 10) di esemplari. Si attualizzi con i propri valori di X e Y le matrici *Allocation* e *Max* e si determini se il sistema è in uno stato ammissibile. Spiegare perché.

Si determini quindi se il sistema si trova in uno **stato sicuro**. Spiegare perché.

	<u>Allocation</u>	<u> Max</u>
	ABCD	ABCD
P_0	0 0 1 2	0 0 1 2
P_1	1 1 0 0	1 7 5 0
P_2	1 3 2 4	2 3 X 6
P_3	0 2 3 1	0 X 5 2
P_4	5 0 2 2	8 6 Y 5

 Date la Page Map Table del processo 3X5 riportata, si costruisca da essa la parte interessata della Memory Block Table.

P	I bit	↑ EPMT	В
0	1	20	4
1	0	9	25
2	Z	13	6
3	0	17	32
4	W	22	8
5	0	18	27
6	1	32	10
		DMT	

В	Task ID	P	S bit
3			
4			
5			
6			
7			
8			
9			

PMT

Memory Block Table

- 15. Si supponga che un **processo periodico in tempo reale** sia pronto all'istante t=10 sec, che la sua deadline sia pari a 1Y sec e il suo computation time sia di X sec. Se all'istante t=10 sec sorge la necessità di eseguire un **processo aperiodico** con deadline uguale a quella del processo periodico e con computation time 2*(1+W+Z)sec, sarà possibile garantirne la deadline? Motivare la risposta.
- 16. In un *file system UNIX-like* che pre-alloca 16 blocchi per volta, vi sono, nell'index block, 16 puntatori a blocchi allocati, di cui
 - 13 puntatori diretti a blocchi di dati
 - 1 puntatore al blocco di 1^a indirezione
 - 1 puntatore al blocco di 2^a indirezione
 - 1 puntatore al blocco di 3^a indirezione

Se la dimensione di un blocco è 2^(X-1) Kb, **quanti blocchi di dati e quanti di indirezione** costituiranno il file dopo 6S560 operazioni di scrittura?

E quale sarà la dimensione del file?

AFFERMAZIONI

Si considerino le seguenti affermazioni.

Si barri la casella "Sicuramente Vera" (SV), se si è sicuri che l'affermazione è vera.

Si barri, invece, la casella "Sicuramente Falsa" (SF), se si è sicuri che l'affermazione è falsa.

Per ogni risposta corretta 1 punto. Per ogni risposta errata -1 punto. Le affermazioni senza risposta comportano 0 punti.

Affermazione	SV	SF
Un processo in tempo reale può essere eseguito in un tempo inferiore al suo <i>computation time</i> .		
Il DMA è usato non solo per dispositivi ad alta velocità di I/O.		
Un interrupt sincrono può essere originato soltanto da un evento hardware.		
Una struttura di directory a grafo aciclico permette solo la condivisione di file.		
La indicizzazione di un file può richiedere un consistente numero di blocchi-indice.		
Un CPU scheduler non-preemptive è una delle condizioni necessarie per il deadlock.		

POLITECNICO DI BARI		Corso di Laurea in Ing. dell'Automazione (DM 509)
Cognome:	; Nome:	; matricola:;
	Proble	ema

CONSEGNARE SOLO QUESTO FOGLIO

Max 6 punti

Tempo a disposizione: 30 minuti

Si progetti, mediante flow-chart o linguaggio strutturato, una <u>procedura</u> che realizzi l'**algoritmo Round-Robin** modificato per lo scheduling della CPU.

In particolare si vuole che la procedura, ricevuti in input il numero **N** dei task, il vettore **TASK_ID** degli identificatori degli N task ed il corrispondente vettore **TIME** dei tempi di CPU impiegati, restituisca i due vettori ordinati in ordine crescente di priorità assegnata dall'algoritmo.