

Robótica de Manipulação, 1º Relatório: Cinemática

Instituto Superior Técnico MEMec

Abril 2021

Grupo 18Catarina Pires, Nº 90230 Ricardo Henriques, Nº 90349

Professores: João Reis, André Carvalho **Versão de** *Matlab* **usada:** *Matlab R2016a*

Índice

1	Introdução	2				
2	Ficheiros de <i>Matlab</i>					
3 Modelo Cinemático						
4	Modelo de Simulink para Cinemática Direta 4.1 Validação do Modelo	5				
5	Modelo de Simulink para a Jacobiana Geométrica5.1 Validação do Modelo	7				
6	Cinemática Inversa em Anel Fechado 6.1 Modelo de Simulink					
7	Solução Closed-form para a Cinemática Inversa 7.1 Modelo de Simulink	15 20 20				
8	Conclusões	21				

1 Introdução

No âmbito da unidade curricular Robótica de Manipulação, este trabalho consiste na análise do robô UR5 da Universal Robots. O foco deste relatório será na análise Cinemática do robô. Nomeadamente, é feita uma pequena inrodução aos conceitos de Cinemática Direta, matriz Jacobiana Geométrica e o efeito de singularidades na mesma, Cinemática Inevrsa, e, finalmente, é apresentada uma solução *Closed-form* para a mesma. Em cada uma desta secções é também apresentado o modelo de simulação obtido, em *Simulink*, e a sua validação com dados fornecidos no enunciado.

2 Ficheiros de *Matlab*

Para a implementação dos modelos utilizados neste relatório recorreu-se, como ponto de partida, à *toolbox Robotics_Symbolic_Matlab_Toolbox* fornecida pelo corpo docente, a qual é constituída pelas seguintes funções de *Matlab*:

- *RobotX*: Esta função devolve a tabela de parâmetros do robô, de acordo com a convenção Denavit-Hartenberg (nome mudado para *Robot_G18* na realização deste projeto);
- *DHTransf*: Devolve a matriz de transformção da articulação Denavit-Hartenberg (nome mudado para *DHTransf_G18* na realização deste projeto);
- *DKin*: Devolve a matriz de transformação do robô para o modelo de Cinemática Direta, tranformação da *frame 0* para a última *frame*. (nome mudado para *DKin_G18* na realização deste projeto)
- *vrrobot*: Cria uma animação do robô, representando os seus eixos num espaço 3D. (nome mudado para *vrrobot_G18* na realização deste projeto);
- *Kinematics_G18*: Servindo-se das unções acima descritas, define a tabela Denavit-Hartenberg do manipulador, a partir da mesma define a matriz de rotação do *end-effector* no referencial 0, *R06*, a posição final do *end-effector* no referencial 0, *p6*, e a matriz Jacobiana Geométrica em função dos ângulos de rotação nas juntas;
- Geo Jacobian: Esta função calcula matriz Jacobiana Geométrica do robô.

3 Modelo Cinemático

Primeiramente, obteve-se o modelo cinemático do braço robótico em estudo de acordo com a configuração Denavit-Hartenberg (DH). Esta convenção permite definir a posição relativa e a orientação de dois links consecutivos, de forma a calcular a equação cinemática direta para um manipulador de cadeia aberta. Para obter esta equação são necessários certos parâmetros característicos desta convenção que são apresentados de seguida:

- a_i : distância entre O_i e O'_i .
- d_i : coordenada de O'_i no eixo z_{i-1} .
- α_i : ângulo entre os eixos z_{i-1} e z_i sobre o eixo x_i sendo que este ângulo é positivo se a rotação for no sentido anti horário.
- θ_i : ângulo entre os eixos x_{i-1} e x_i sobre o eixo z_i sendo que este ângulo é positivo se a rotação for no sentido anti horário.

Nesta convenção existe um conjunto de regras que permitem não só a atribuição dos referenciais locais, como o cálculo das matrizes que permitem obter a equação cinemática. Estas regras podem ser escritas na forma de um algoritmo:

- 1: Encontrar e numerar de forma consecutiva os eixos articulados e colocar a direcção dos eixos: $z_0,...,z_n$.
- 2: Escolher a frame 0 localizando a origem no eixo z_0 . Definir x_0 e y_0 de acordo com a regra da mão direita.
- NOTA: Os passos 3 a 5 são executados de forma recursiva para i = 1,...,n-1:
- 3: Localizar a origem O_i na intersecção de z_i com a normal comum aos eixos z_{i-1} e z_i . Se z_{i-1} e z_i são paralelos e se a junta i for de rotação, O_i localiza-se de forma a que d_i =0. Se a junta i for prismática, O_i localiza-se num ponto de referência do alcance da junta.
- **4:** Escolher o eixo x_i ao longo da normal comum aos eixos z_{i-1} e z_i com a direcção da junta i para a junta i+1.
- 5: Escolher y_i de acordo com a regra da mão direita.
- 6: Escolher a frame n. Se a junta for de rotação, alinha-se z_n e z_{n-1} . Se a junta for prismática, escolhe-se z_n de forma arbitrária.
- 7: Para i=1,..,n escreve-se a tabela de parâmetros.
- 8: Escrever as matrizes de transformação homogéneas $A_i^{i-1}(q_i)$ para i=1,...,n.
- 9:Escrever a matriz final de transformação homogénea $T_n^0(\mathbf{q}) = A_0^1...A_n^{n-1}$
- 10: Escrever a função da cinemática direta $T_e^b(q) = T_0^b T_n^0(q) T_e^n$

Através da análise da figura 1 pode-se observar que o robô em estudo apresenta seis juntas, todas de rotação, apresentando, assim, seis graus de liberdade, uma rotação por cada junta. O sentido positivo das rotações encontra-se também representado na figura 1 e na figura 2.

Após a identificação destas características desenhou-se o diagrama de juntas e definiram-se os referenciais para cada *frame* de acordo com o algoritmo apresentado anteriormente:

- Optou-se por colocar a origem do referencial 0 na base do robô, com o eixo z_0 a apontar para cima, e o eixo x_0 alinhado com a saliência na base, que se pode observar no alçado principal na figura 1. O eixo y_0 foi obtido pela regra da mão direita;
- Em seguida, definiu-se z_1 , com sentido contrário a x_0 , e, sendo este perpendicular a z_0 , definiu-se x_1 no ponto de intercepção entre z_0 e z_1 , com sentido contrário a y_0 . O eixo y_1 foi obtido pela regra da mão direita;
- Para os referenciais 2 e 3, uma vez que z_1 , z_2 e z_3 são todos paralelos entre si, há uma infinidade de posições para x_2 e x_3 que se podem escolher. Por simplicidade, mais uma vez, escolheu-se a configuração que obriga d_2 e d_3 serem zero, alinhando x_2 e x_3 com z_0 . Os eixos y_2 e y_3 foram obtidos pela regra da mão direita para os respectivos referenciais;
- O eixo z₄ foi definido apontando para cima, e, sendo este perpendicular a z₃, definiu-se x₄ no ponto de intercepção entre z₃ e z₄, com sentido contrário a y₃. O eixo y₄ foi obtido pela regra da mão direita;

• Para o referencial 5, visto que z_5 é perpendicular a z_4 , x_5 é definido de forma semelhante ao que foi feito previamente para x_4 , sendo estes dois eixos paralelos e com o mesmo sentido. Finalmente, definiu-se y_5 pela regra da mão direita e o referencial 6 é semelhante ao referencial 5.

O diagrama juntas encontra-se representado na figura 2:

Figura 1: Desenho técnico do robô

Figura 2: Diagrama de articulações e *frames* do robô

Atendendo ao modelo encontrado e às dimensões do robô, expressas em milímetros na figura 1, preencheu-se a tabela de parâmetros, tabela 1, com os valores de d_i , θ_i , a_i e α_i .

Tabela 1: Tabela de parâmetros segundo a configuração Denavit-Hartenberg

link	d_i $[m]$	θ_i [rad]	a_i $[m]$	α_i [rad]	Offset [rad]
1	0.089	q1	0	$\frac{\pi}{2}$	$-\frac{\pi}{2}$
2	0	q2	0.425	$ \tilde{0} $	$\frac{\pi}{2}$
3	0	q3	0.392	0	$\tilde{0}$
4	0.109	q4	0	$-\frac{\pi}{2}$	$-\frac{\pi}{2}$
5	0.095	q5	0	$\frac{\pi}{2}$	0
6	0.082	q6	0	$ \tilde{0} $	0

4 Modelo de Simulink para Cinemática Direta

Após a obtenção da tabela com os parâmetros da convenção DH procedeu-se à implementação do problema da cinemática direta em *Simulink*, como se pode observar na figura 3.

É de salientar que para todas as implementações, à excepção da verificação da matriz Jacobiana, foi utilizada uma animação do braço robótico obtida pela função $vrrobot_G18$. Esta animação recebe os valores de q_i e representa o robô UR5 na respectiva configuração.

Primeiro é necessário definir a matriz DH e, para tal, chama-se a função $Robot_G18$. Em seguida, através da função $DHKin_G18$ obtém-se a matriz de rotação R_6^0 e o vetor de posição p_6^0 do

referencial local 6 no referencial 0. Recorreu-se à função do Matlab, matlabFunctionBlock para criar um bloco MATLAB Function no Simulink, que tem como argumentos de entrada os ângulos q_i , correspondentes a θ_i na matriz DH, com i=1,...,6, e como argumentos de saída as matrizes referidas anteriormente. Por motivos de organização nos modelos seguintes, a Jacobiana geométrica, mencionada na secção 5, também é um argumento de saída deste bloco, mas esta encontra-se ligada a um bloco Terminator nesta implementação. De notar que a matriz DH implementada no Matlab possui os *offsets* a 0.

No modelo em Simulink foram pré-definidas as configurações correspondentes às posições de verificação, e, em adição, é possível colocar valores arbitrários de q manualmente durante a simulação, observando o robô a mover-se na animação, em tempo real.

Figura 3: Modelo de *Simulink* para Cinemática Direta

4.1 Validação do Modelo

De forma a averiguar se a implementação está correta, procedeu-se à sua verificação colocando o robô nas posições fornecidas no apêndice A do enunciado do projeto, figura 5. As configurações q foram obtidas através do ângulo entre os eixos x_{i-1} e x_i .

Figura 4: Configuração 1 do robô para verificação do modelo

Figura 5: Configuração 2 do robô para verificação do modelo

• Posição 1

-Vetor de Entrada:
$$q = \begin{bmatrix} 0^\circ & 90^\circ & -90^\circ & 180^\circ & -90^\circ & 180^\circ \end{bmatrix}^T$$
 -Vetor de Posição do *end-effector*: $p_6^0 = \begin{bmatrix} 0.474 & -0.109 & 0.419 \end{bmatrix}^T$ (m) -Matriz de Rotação: $R_6^0 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

• Posição 2

- -Vetor de Entrada: $q = \begin{bmatrix} -90^\circ & 180^\circ & -90^\circ & -90^\circ & 90^\circ & 90^\circ \end{bmatrix}^T$ -Vetor de Posição do *end-effector*: $p_6^0 = \begin{bmatrix} -0.109 & 0.343 & 0.576 \end{bmatrix}^T$ (m)
 -Matriz de Rotação: $R_6^0 = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$

Nas imagens seguintes é possível observar a animação, matriz de rotação e vetor de posição obtidos no Simulink para as entradas referentes a cada uma das posições:

Figura 6: Validação do modelo na primeira posição

Figura 7: Validação do modelo na segunda posição

Conclui-se assim que a cinemática direta foi bem implementada.

5 Modelo de Simulink para a Jacobiana Geométrica

Cada coluna da matriz Jacobina Geométrica corresponde a uma junta no manipulador, sendo as primeiras 3 linhas relacionadas com a velocidade linear do end-effector e as últimas 3 relacionaas com a velocidade angular. O cálculo da Jacobiana geométrica é dividido, então, em 2 parcelas:

$$J = \begin{bmatrix} J_{P_1} & \dots & J_{P_n} \\ J_{O_1} & \dots & J_{O_n} \end{bmatrix}$$
 (1)

Estas parcelas relacionam-se com a velocidade linear e com a velocidade angular da seguinte forma:

$$\dot{p_e} = \sum_{i=1}^n J_{P_i} \dot{q_i} \tag{2}$$

$$\omega_e = \sum_{i=1}^n J_{O_i} \dot{q}_i \tag{3}$$

• J_p de acordo com o tipo de junta

Para uma junta prismática é calculado da seguinte forma:

$$J_P i = \overrightarrow{z}_{i-1} \tag{4}$$

Para uma junta de rotação a fórmula é a seguinte:

$$J_{P}i = \overrightarrow{z}_{i-1} \times (\overrightarrow{p}_{e} - \overrightarrow{p}_{i-1}) \tag{5}$$

• J_o de acordo com o tipo de junta

Para uma junta prismática é calculado da seguinte forma:

$$J_O i = 0^T (6)$$

Para uma junta de rotação a fórmula é a seguinte:

$$J_O i = \overrightarrow{z}_{i-1} \tag{7}$$

Os termos nas equações acima são dados por:

$$\overrightarrow{z}_{i-1} = R_1^0(q_1)...R_{i-1}^{i-2}(q_{i-1})z_0$$
(8)

$$\tilde{p}_e = A_1^0(q_1)...A_n^{n-1}(q_n)\tilde{p}_0 \tag{9}$$

$$\tilde{p}_{i-1} = A_1^0(q_1)...A_{i-1}^{i-2}(q_n)\tilde{p}_0$$
(10)

$$z_0 = [0;0;1] \tag{11}$$

$$\tilde{p}_0 = [0;0;0;1] \tag{12}$$

Para calcular a Jacobiana criou-se a função GeoJacobian.m, que recebe a matriz DH, e o tipo de cada junta do manipulador através de uma string, 'P' para juntas prismáticas e 'R' para juntas de revolução. A função começa por definir os vetores z_0 e p_0 , que, juntamente com a utilização da função $DKin_G18.m$, são usados para calcular as matrizes T_i , A_i na função, a partir das quais se obtêm as matrizes de rotação, os vetores de posição, e os eixos z, implementando as equações 8 a 10. Um vez calculados e guardados todos os valores necessários de p_i e z_i , calcula-se-se para cada junta, atendendo ao tipo de cada uma, J_P e J_O , utilizando as equações 4 a 7, para se obter a Jacobiana. Esta é uma matriz 6x6, uma vez que o robô tem seis juntas. Finalmente, utilizou-se a função de Matlab, matlabFunctionBlock, para criar um bloco de Simulink que recebe as configurações das das juntas e devolve a Jacobiana. Como referido na secção anterior, este bloco também tem R_6^0 e p_6^0 como argumentos de saída, para simplificar os modelos.

5.1 Validação do Modelo

De forma a verificar o cálculo da Jacobiana, implementou-se o modelo *Simulink* apresentado na figura 8, baseado nas equações 2 e 3.

Neste modelo definiu-se a velocidade nas juntas como uma sinusoide, a qual se integrou para obter os q, que são os argumentos de entrada no bloco da cinemática direta e Jacobiana. Os valores

de J_P e de J_O foram verificados independentemente um do outro. Para o primeiro calculou-se a diferença entre $\dot{p_e}$ e $\sum_{i=1}^n J_{P_i} \dot{q_i}$, e para o segundo calculou-se a diferença entre ω_e e $\sum_{i=1}^n J_{O_i} \dot{q_i}$, sendo que $\omega_e = [S_{32} \quad S_{13} \quad S_{21}]$, onde $S = \dot{R}R^T$.

Para confirmar se o modelo está bem implementado é preciso verificar que os valores nos diferentes *displays*, que apresentam o erro, é 0. Uma vez que os valores se encontram muito próximos de 0 pode-se concluir que a Jacobiana foi bem calculada.

Figura 8: Verificação da Jacobiana Geométrica

5.2 Singularidades

A matriz Jacobiana é função dos ângulos θ_i , q_i na implementação, com i=1,...,n. O robô UR5 apresenta 6 graus de liberdade, portanto, se o manipulador não for redundante, a característica da Jacobiana deverá ser igual a 6. Contudo, certas configurações afectam a característica da matriz, isto é, reduzem a mobilidade da estrutura. Essas configurações denominam-se singularidades. Quando uma estrutura está numa singularidade pode haver infinitas soluções para o problema cinemático. Existem 2 tipos de singularidades:

• Singularidades de fronteira:

Ocorrem quando o robô é levado ao seu limite, isto é, quando está totalmente esticado, figura 9 e 10, ou recolhido. Estas singularidades podem ser evitadas se o manipulador não for levado ao limite do seu espaço operacional.

Figura 9: Exemplo 1 de singularidades de fronteira

Figura 10: Exemplo 2 de singularidades de fronteira

• Singularidades internas:

Este tipo de singularidade ocorre dentro do espaço operacional, figuras 11 e 12, quando existe o alinhamento de dois ou mais eixos de movimento. Este é o tipo de singularidade mais difícil de evitar.

Figura 11: Exemplo 1 de singularidade interna

Figura 12: Exempo de 2 singularidade interna

De forma a resolver este problema começou-ses por fazer uma divisão entre as singularidades do braço e do pulso. As singularidades do braço estão associadas às 3 primeiras juntas sendo que as do

pulso estão associadas às 3 últimas. Desta forma, é possível dividir a Jacobiana da seguinte forma:

$$J = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix} \tag{13}$$

Sendo J_{ij} uma matriz 3x3.

Pode-se observar as singularidades do braço analisando J_{11} , e as do pulso analisando J_{22} . Existem duas abordagens para ver se o manipulador se encontra numa singularidade ou perto dela:

• Colunas da Jacobiana linearmente independentes:

Através da característica da matriz pode-se encontrar o número de colunas linearmente independentes. Se a característica for menor que 3, no caso de J_{11} para o braço, e J_{22} para o pulso, o robô encontra-se numa singularidade.

• **Determinante da Jacobiana:** Através do cálculo do determinante da matriz é possível perceber se o manipulador se está a aproximar de uma singularidade ou se está numa singularidade. Se o valor do determinante for igual a 0 o robô encontra-se numa singularidade. É possível saber se se trata de uma singularidade do braço ou do pulso se se calcular o determinante de J_{11} e de J_{22} , para o braço e pulso respectivamente. Se o valor do determinante estiver próximo de 0 então o robô encontra-se na vizinhança de uma singularidade. Esta abordagem vai ser importante na implementação da cinemática inversa.

Para verificar quais são as singularidades existentes no robô em estudo utilizou-se o seguinte modelo de *Simulink*:

Figura 13: Verificação das singularidades

Em que o bloco que possui a função ArmAndWrist retira da matriz Jacobiana as matrizes J_{11} e J_{22} para serem analisadas independentemente.

Verificou-se que existem 3 singularidades no pulso, quando o ângulo θ_5 é igual a 0,- π , ou π . Estes valores correspondem ao alinhamento do eixo z_5 com o eixo z_3 como se pode observar na figura 12.

No caso do braço, este apresenta singularidades quando está completamente esticado, e os eixos z_3 , z_2 e z_1 e z_4 se encontram no mesmo plano, figuras 9 e 11.

Outra singularidade que limita o movimento do robô que é representada por um cilindro em torno do eixo z_0 e com raio igual a 0.109m,como se pode observar na figura 14. Na figura 9 a característica de J_{11} é 1 por que não só o braço está esticado, como o manpulador se encontra nesta singularidade.

Figura 14: Espaço Operacional do Robô^[3]

6 Cinemática Inversa em Anel Fechado

No método da cinemática inversa introduz-se a posição do *end-effector*, p_0^6 , e rotação, R_0^6 , desejadas e o sistema devolve os ângulos de rotação θ_i , q_i nas implementações, para cada junta. O problema de cinemática inversa é mais complexo que o da cinemática direta, visto que podem existir múltiplas soluções para as mesmas matrizes de posição e rotação. O robô UR5 em específico possui oito soluções possíveis.

A cinemática inversa apenas apresenta soluções *closed-form* para manipuladores que têm uma estrutura cinemática simples. Estas limitações devem-se ao facto da relação entre as variáveis de junta e as variáveis operacionais ser extremamente não-linear. Por outro lado, a cinemática diferencial permite um mapeamento linear entre a velocidade nas juntas e a velocidade operacional, embora esta seja dependente da configuração das juntas, equação 14.

$$v_e = \begin{bmatrix} \dot{p_e} \\ \omega_e \end{bmatrix} = J(q)\dot{q} \tag{14}$$

Onde v_e , $\dot{p_e}$, e ω_e correspondem aos o vetores de velocidade, velocidade linear, e velocidade angular do *end-effector*, \dot{q} é o vetor de velocidades nas juntas, e J é a matriz Jacobiana que depende das configurações das juntas.

Se *J* tiver característica igual ao número de graus de liberdade do manipulador, as velocidades nas juntas podem ser obtidas pela expressão 15:

$$\dot{q} = J^{-1}(q)v_e \tag{15}$$

Admitindo que as condições iniciais são conhecidas, as configurações das juntas podem ser obtidas por integração da velocidade, \dot{q} , ao longo do tempo. Este método de cinemática inversa é independente da solvabilidade da estrutura cinemática, contudo a Jacobiana tem de ser quadrada e todas as suas colunas devem ser linearmente independentes, para que esta seja invertível. Caso contrário, como visto anteriormente, o manipulador é redundante e ocorre uma singularidade.

Na implementação numérica, a velocidade nas juntas é obtida por,

$$q_{(t_{k+1})} = q_{(t_k)} + J^{-1}(q_{(t_k)})v_{e(t_k)}\Delta t$$
(16)

Contudo, os valores obtidos por esta computação não satisfazem a equação 15. Para corrigir isto, implementa-se então um algoritmo de cinemática inversa que tem em conta o erro da posição e o erro da rotação. Este método trata-se de cinemática inversa em anel fechado.

O erro da posição é definido por,

$$e_p = p_d - p_e(q) \tag{17}$$

Onde p_d denota o vetor de posição desejada do *end-effector* no referencial 0, e p_e denota a posição instâtanea do *end-effector* para uma dada configuração das juntas obtida por cinemática inversa.

A expressão do erro da orientação depende de uma representação particular da orientação do end-effector, nomeadamente de ângulos de Euler, ângulo e eixo, e do quaternião unitário. Nesta implementação utilizou-se um algoritmo de cinemática inversa baseado no quaternião unitário. Definindo $\mathcal{Q}_d = \{\eta_d, \varepsilon_d\}$ e $\mathcal{Q}_e = \{\eta_e, \varepsilon_e\}$ como os quaterniões associados à orientação desejada, R_d , e à orientação obtida por cinemática inversa, R_e , o erro associado à orientação pode então ser descrito pela matriz $R_d R_e^T$, e, em termos do quaternião, pode-se escrever $\Delta \mathcal{Q} = \{\Delta \eta, \Delta \varepsilon\}$, em que,

$$\Delta \mathcal{Q} = \mathcal{Q}_d * \mathcal{Q}_e^{-1} \tag{18}$$

Assim, o erro associado à orientação é dado por:

$$e_O = \Delta \varepsilon = \eta_e(q)\varepsilon_d - \eta_d \varepsilon_e(q) - S(\varepsilon_d)\varepsilon_e(q)$$
(19)

Em que S() é um operador antissimétrico. Definindo a matiz instantânea de orientação obtida por cinemática inversa, R_e ,

$$R_e = \left[\begin{array}{ccc} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{array} \right]$$

Pode-se escrever η_e e ε_e em função de R_e como,

$$\eta_e = 0.5\sqrt{r_{11} + r_{22} + r_{33} + 1} \tag{20}$$

$$\varepsilon_{e} = 0.5 \begin{bmatrix} sign(r_{32} - r_{23})\sqrt{r_{11} - r_{22} - r_{33} + 1} \\ sign(r_{13} - r_{31})\sqrt{r_{22} - r_{11} - r_{33} + 1} \\ sign(r_{21} - r_{12})\sqrt{r_{33} - r_{11} - r_{22} + 1} \end{bmatrix} , \forall \eta_{e} \neq 0$$
(21)

Onde a função sign(x) é igual a 1 se $x \ge 0$, -1 se x < 0 e 0 se x = 0.

O vetor ε_e , expresso acima na equação 21, é posteriormente utilizado na implementação da cinemática inversa em anel fechado. Assumindo que o manipulador não passa por nenhuma singularidade, a solução para a velocidade nas juntas pode ser obtida, para um manipulador não redundante, através da inversa da Jacobiana por:

$$\dot{q} = J^{-1}(q) \begin{bmatrix} \dot{p}_d + K_P e_P \\ \dot{\phi}_d + K_O e_O \end{bmatrix}$$
 (22)

Onde K_P e K_O são matrizes de ganhos positivas definidas.

Desta forma, é possível representar o algoritmo da cinemática inversa em anel fechado pelo diagrama de blocos apresentado na figura 15.

Figura 15: Diagrama de Blocos do algoritmo de Cinemática Inversa

É de salientar que, na proximidade de singularidades, pode-se substituir a inversa da matriz Jacobiana pela sua transposta, uma vez que esta deixa de ser invertível se o manipulador se encontrar numa singularidade.

6.1 Modelo de Simulink

Na implementação em *Simulink* da cinemática inversa, figuras 16 e 17, criou-se um subsistema denominado *CLIK* (*Closed-Loop Inverse Kinematics*) onde se reproduziu o diagrama de blocos ilustrado na figura 15. Este subsistema tem como entradas a posição e orientação do *end-effector* desejadas, as velocidades linear e angular do *end-effector* desejadas (que nesta implementação são 0 visto que não se pretende que o *end-effector* siga uma trajectória), as configurações iniciais, e as matrizes de ganhos K_P e K_O . Como saída,s apresenta o erro da orientação, o erro da posição, a velocidade nas juntas (que não foi analisada neste trabalho), e as configurações das juntas que servem de entrada à animação do braço robótico.

Figura 16: Entradas e saídas do subsistema da cinemática inversa em anel fechado

No bloco que permite escolher a posição e a orientação desejadas deve-se colocar as coordenadas desejadas do *end-effector* em relação ao referencial 0, em metros, e os ângulos de Euler desejados, em graus. Dentro deste bloco os ângulos são transformados na matriz de rotação desejada pela matriz de rotação ZYZ, equação 23. O valores de posição e rotação de validação foram

pré-definidos no modelo para a sua rápida utilização,tal como as correspondentes condições iniciais escolhidas.

$$R(\Phi) = R_z(\phi)R_y(\theta)R_z(\psi) = \begin{bmatrix} c_\phi c_\theta c_\psi - s_\phi s_\psi & -c_\phi c_\theta s_\psi - s_\phi c_\psi & c_\phi s_\theta \\ s_\phi c_\theta c_\psi + c_\phi s_\psi & -s_\phi c_\theta s_\psi + c_\phi c_\psi & s_\phi s_\theta \\ -s_\theta c_\psi & s_\theta s_\psi & c_\theta \end{bmatrix}$$
(23)

Onde a se usou as abreviaturas: $cos(\phi) = c_{\phi}$, $cos(\theta) = c_{\theta}$ e $cos(\psi) = c_{\psi}$, e igualmente para os senos.

Relativamente aos ganhos K_P e K_O , verificou-se que o aumento destes ganhos torna o sistema mais oscilatório, aproximando-o mais de singularidades. O aumento de K_O em particular tem um grande influência no comportamento do manipulador, sendo que se verificou que se podia aumentar mais o K_P , sem que o manipulador passasse por uma singularidade, se se mantivesse o valor de K_O baixo. Isto salienta a necessidade do manipulador ter de seguir uma trajectória. Também se verificou que, se o manipulador acertar a posição antes de finalizar a correção da orientação, são evitadas singularidade mais facilmente. Assim, é conveniente utilizar um valor de K_O menor que K_P , definindo-se então $K_P = 3$ e $K_O = 1.5$.

Para tornar a simulação robusta a situações em que o robô passa na vizinhança de singularidades, a cada iteração é calculado o determinante da matriz Jacobiana, e se este for maior que 0.005 efectua-se a inversão da matriz, caso contrário, utiliza-se a sua transposta.

Figura 17: Implementação em Simulink da cinemática inversa em anel fechado

6.1.1 Validação do Modelo

Para a validação do modelo obtido, recorreu-se, mais uma vez, às configurações ilustradas na figura 5, cujos vetores q já foram previamente apresentados na secção 4. As posições iniciais foram escolhidas atendendo ao facto que o robô UR5 tem oito soluções possíveis para uma dada posição e orientação (combinações do braço estar à esquerda ou à direita, o cotovelo estar para cima ou para baixo, e o pulso estar para cima ou para baixo), e que se deve evitar ao máximo que o manipulador passe por uma singularidade.

• Posição 1

-Vetor de Posição do *end-effector*: $p_6^0 = \begin{bmatrix} 0.474 & -0.109 & 0.419 \end{bmatrix}^T$ (m)

-Ângulos de Euler: $\phi=0^\circ,~\theta=90^\circ,~\psi=90^\circ$ -Posição Inicial: $\begin{bmatrix}0&0&-\pi/4&-\pi/6&-\pi/3&-\pi/2\end{bmatrix}^T$

Figura 18: Resultados da primeira posição do robô para verificação do modelo

• Posição 2

- -Vetor de Posição do *end-effector*: $p_6^0 = [-0.109 \quad 0.343 \quad 0.576]^T$ (m)
- -Ângulos de Euler: $\phi = 90^{\circ}$, $\theta = -90^{\circ}$, $\psi = 0^{\circ}$
- -Posição Inicial: $[-\pi/2 \ 4\pi/3 \ -\pi/4 \ -4\pi/6 \ 1 \ 0]^T$

Figura 19: Resultados da segunda posição do robô para verificação do modelo

Dos dados experimentais observou-se que na verificação 1 o ângulo q_6 obtido foi -180° em vez de 180° , e na verificação 2 o ângulo q_4 obtido foi 270° em vez de -90° , como definidos anteriormente. Estas disparidades não foram consideradas significantes, uma vez que o manipulador se encontra, efectivamente, na configuração desejada. Assim, pode-se verificar que a implementação da cinemática inversa está a funcionar como era previsto.

7 Solução *Closed-form* para a Cinemática Inversa

Como abordado anteriormente, através da cinemática inversa pode-se obter os valores das variáveis de junta do manipulador através da posição e orientação desejadas do *end-effector*, isto é, obter os valores de θ_i para i=1,...,n através de T_n^0 , em que:

$$T_n^0 = \begin{bmatrix} R_n^0 & p_n^0 \\ 0 & 1 \end{bmatrix} \tag{24}$$

$$R_n^0 = \begin{bmatrix} x_x & y_x & z_x \\ x_y & y_Y & z_y \\ x_z & y_z & z_z \end{bmatrix}$$
 (25)

$$p_n^0 = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} \tag{26}$$

De forma a resolver o problema em causa utilizou-se a abordagem do desacoplamento.

• Cálculo de θ_1 :

Para encontrar o ângulo θ_1 é preciso de encontrar o vetor de posição da *frame* 5 em relação à *frame* 0. Tal é conseguido fazendo a translação de distância d_6 na direção negativa de z_6 , como se pode observar na figura seguinte:

Figura 20: Esquema geométrico para encontrar a origem do *frame* 5^[3]

$$\vec{p}_{5}^{0} = T_{6}^{0} \begin{bmatrix} 0 \\ 0 \\ -d_{6} \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 (27)

Com a localização da *frame* 5 pode-se desenhar a seguinte vista aérea do robô:

Figura 21: Esquema geométrico para encontrar θ_1

Da figura 21 pode-se observar que $\theta_1 = \phi + \psi + \pi/2$ onde:

$$\psi = atan2\left((p_5^0)_y, (p_5^0)_x \right)$$
 (28)

$$\phi = \pm \arccos\left(\frac{d_4}{(p_5^0)_{xy}}\right) \tag{29}$$

Através da equação 29 pode-se observar que existem duas posições para o ombro: para a esquerda ou para a direita. Na implementação deste método, visando resolver esta situação, analisam-se as coordenadas x e y da posição desejada do end-effector, determinando a posição do ombro de acordo com o quadrante em que se encontra a projeção de O_6 no plano $O_0x_0y_0$. Verifica-se também que esta equação só tem solução caso $d_4 > (p_5^0)_{xy}$. Esta particularidade forma um cilindro inacessível, que foi abordado na subsecção 5.2.

• Cálculo de θ₅:

É possível calcular-se θ_5 uma vez que θ_1 já é conhecido. Recorrendo à vista aérea anterior mas considerando a localização da *frame* 6 em relação à *frame* 1:

Figura 22: Esquema geométrico para encontrar θ_5

Observando que:

$$(p_6^1)_z = d_6 cos(\theta_5) + d_4 = (p_6^0)_x sin(\theta_1) - (p_6^0)_y cos(\theta_1)$$
(30)

Desta forma, é possível resolver a equação anterior em ordem a θ_5 :

$$\theta_5 = \pm \arccos\left(\frac{(p_6^1)_z - d_4}{d_6}\right) \tag{31}$$

Através da equação 31 verifica-se que existem duas posições para o pulso: para baixo ou para cima. Na implementação deste método, para solucionar este problema analisou-se a primeira coluna da matriz de rotação desejada, mais especificamente a última entrada que representa a posição de x_6 em relação a z_0 . Verificando se este valor é positivo ou negativo, é possível averiguar em que direção se encontra o pulso.

• Cálculo de θ_6 :

Em seguida calculou-se θ_6 a partir de θ_5 . Começa-se por encontrar a transformação da *frame* 6 para a *frame* 1:

$$T_1^6 = ((T_1^0)^{-1} T_6^0)^{-1} (32)$$

Através da matriz de transformação homogénea T_1^6 chega-se às seguintes igualdades:

$$sin(\theta_6)sin(\theta_5) = z_{v} \tag{33}$$

$$cos(\theta_6)sin(\theta_5) = z_x \tag{34}$$

Desta forma, pode-se resolver a equação anterior em relação a θ_6 :

$$\theta_6 = atan2(z_y, z_x) \tag{35}$$

- **NOTA:** As 3 juntas que faltam podem ser calculadas considerando que estas formam um manipulador com 3 juntas de rotação.
- Cálculo de θ_3 :

Em primeiro lugar determina-se a posição da frame 3 em relação à frame 1:

$$T_4^1 = T_6^1 T_4^6 = T_6^1 (T_5^4 T_6^5)^{-1} (36)$$

$$\overrightarrow{p}_{3}^{1} = T_{4}^{1} \begin{bmatrix} 0 \\ d_{4} \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
(37)

Pode-se então desenhar o plano que contém as *frames* 1 a 3 como se pode observar na seguinte figura:

Figura 23: Esquema geométrico para encontrar $\theta_3 e \theta_2$

Pela lei dos cossenos, $a^2 + b^2 - 2abcos(\beta) = c^2$ em que β é o ângulo entre os lados a e b do triângulo,tem-se que:

$$cos(\varepsilon) = \frac{||\overrightarrow{p}_{3}^{1}||^{2} - a_{2}^{2} - a_{3}^{2}}{2a_{2}a_{3}}$$
(38)

E através das propriedades dos cossenos:

$$cos(\varepsilon) = -cos(\pi - \varepsilon) = -cos(-\theta_3) = cos(\theta_3)$$
 (39)

Resolvendo as equações 38 e 39 em ordem a θ_3 :

$$\theta_3 = \pm arcos\left(\frac{||\overrightarrow{p}_3^1||^2 - a_2^2 - a_3^2}{2a_2a_3}\right) \tag{40}$$

Esta equação tem solução desde que o arcos \in [-1,1]. Valores elevados da norma do vetor \overrightarrow{p}_3 podem levar a que o valor exceda 1. Fisicamente este fenómeno traduz-se na direção máxima que o robô atinge em todas as direções, criando um espaço operacional esférico abordado na subsecção 5.2.

• Cálculo de θ₂:

Através da figura 23 verifica-se que:

$$\theta_2 = \delta - \in \tag{41}$$

$$\delta = atan2\left((p_3^1)_y, (p_3^1)_x \right) \tag{42}$$

$$\frac{\sin(\varepsilon)}{||\overrightarrow{p}_{3}^{1}||^{2}} = \frac{\sin(\epsilon)}{a_{3}} \tag{43}$$

Desta forma, obtem-se o ângulo θ_2 :

$$\theta_2 = atan2\left((p_3^1)_y, (p_3^1)_x\right) - arcsin\left(\frac{a_3sin(\varepsilon)}{||\overrightarrow{p}_2^1||^2}\right)$$
(44)

Existem duas soluções para θ_2 e θ_3 , que são cotovelo para cima ou cotovelo para baixo.

Cálculo de θ₄:

Por fim, falta apenas o cálculo de θ_4 . Em primeiro lugar calcula-se T_4^3 :

$$T_4^3 = T_1^3 T_4^1 = (T_2^1 T_3^2)^{-1} T_4^1$$
(45)

Através da primeira coluna da matriz de transformação homogénea T_4^3 pode-se calcular:

$$\theta_4 = atan2(x_v, x_x) \tag{46}$$

Após o cálculo dos seis ângulos é fácil ver que existem, de facto, oito soluções possíveis.

7.1 Modelo de Simulink

De forma a perceber se a solução apresentada anteriormente está correta implementou-se o seguinte modelo apresentado na figura 24 no *Simulink*. Este modelo consiste num bloco *MATLAB Function* onde estão definidas as equações abordadas anteriormente para o cálculo dos ângulos θ_i com i=1,...,6, q_i na implementação. As entradas para este bloco são a matriz de rotação R_6^0 e o vetor de posição p_6^0 desejados, e a saída são os ângulos q_i . Mais uma vez, as posições e rotações de verificação foram pré-definidas, e para ajuda à validação de resultados também se utilizou a animação do manipulador, e *displays* para as configurações das juntas em graus, e para as matrizes de posição e rotação obtidas pela cinematica direta, a partir das configurações provenientes da cinemática inversa.

Figura 24: Modelo Simulink para a Cinemática Inversa

7.1.1 Validação do Modelo

Para verificar a implementação foram usadas, mais uma vez, as configurações da figura 5 dadas no enunciado. Os resultados encontram-se apresentados nas figuras seguintes:

Figura 25: Resultados e configuração obtida para a verificação 1

Figura 26: Resultados e configuração obtida para a verificação 2

Para a segunda configuração o ângulo q_1 , ou θ_1 na notação teórca, obtido é 270° e não -90°, como inicialmente definido, contudo a posição é exactamente a mesma e, visto que o manipulador não tem de seguir nenhuma trajectória, este erro não foi considerado significante. Um fenómeno semelhante ocorre na primeira configuração em q_4 , ou θ_4 , em que se obteve o resultado de -180° em vez de 180°. Conclui-se, assim, que os ângulos e a configuração obtidas para ambos os exemplos estão corretos, e, portanto, a solução apresentada para a cinemática inversa foi bem implementada.

8 Conclusões

Após o estudo da cinemática do robô UR5 conseguiu-se concluir que a implementação dos diferentes conceitos e métodos foi bem sucedida, uma vez que os resultados obtidos foram os pretendidos. Ao implementar estes métodos foi possível entender melhor o funcionamento de um robô manipulador e os conceitos ligados à sua cinemática, assim como as limitações do seu movimento, nomeadamente o conceito de singularidade e a forma como estas podem ser ultrapassadas.

Referências

- [1] Robotics Modelling, Planning and Control, B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo 2009 Springer-Verlag
- [2] Apontamentos da disciplina Robótica de Manipulação: Jorge Martins 2009 IST
- [3] Ryan Keating, *UR5 Inverse Kinematics*, M.E. 530.646, Johns Hopkins University, Baltimore, Maryland, EUA, 2016