Journal Report 2 9/9/19-9/13/19 Victoria Agrinya Computer Systems Research Lab Period 1, White

Daily Log

Monday September 9

Discovered the Spotipy library on Github. Spotipy is a Python library that provides direct access to Spotify's Web API, which is incredibly useful and convenient. I still need my Spotify developer account to access certain things such as user data from Spotify, but Spotipy has a module that allows you to input your Spotify developer credentials and retrieve such data. I attempted to install Spotipy via pip in the command line, but that didn't work.

Tuesday September 10

After spending nearly the entire class period doing research into why I couldn't install Spotipy using pip, I finally figured it out thanks to Stack Exchange: Spotipy was being installed to the Python 2.7 folder on my computer, but since I use Python 3.7, my IDE couldn't find the library and assumed it had never been installed. I worked around this by using a specific command in my terminal that had pip install Spotipy to my Python 3.7 folder. Now I have access to the Spotipy library!

Thursday September 12

I started learning how to use Spotipy. After reading a lot of the library's documentation, I figured out how to create objects and prove authentication via my app client. After tinkering unsuccessfully for some time, I finally managed to retrieve audio feature analysis for individual tracks and learned how to get artist-specific data such as popularity and what genres of music the artist produces. At first I thought that I had to input the artist's actual name as a string, but it turns out that each artist, track, and playlist on Spotify has a unique identifier string known as a URI (uniform resource identifier), which is what the Spotipy functions take as input in order to retrieve data from an artist's profile or audio features from a song.

```
#Usetoria Agrinya
#Last update: 9/12/19

import spotipy
from spotipy.oauth2 import SpotifyClientCredentials

manager = SpotifyClientCredentials("8f408e92f7d24929ae7ac2613ebc11dc", "59dcf725c5494f7a8b31672ff4d46655")

vic = spotipy.Spotify(client_credentials_manager = manager)

id = "spotify:track:2nMeu6UenVvwUktBCpLMK9"

di = vic.audio_features(id)
print (di)
```

Figure 1: Feature extraction using a song's unique Spotify URI.

Timeline

Date	Goal	Met
8/26/19-	Learn about CS Research class, proce-	Yes
9/30/19	dures, and requirements	
9/2/19-	Create an EchoNest developer ac-	No, but learned that several EchoN-
9/6/19	count and acquire authentication to-	est developer tools had been acquired
	kens to use their song analysis fea-	by Spotify and all EchoNest song fea-
	tures	tures can be accessed through the
		Spotify Web API
9/9/19-	Learn how to use Spotify Web API	Mostly, still have to figure out how to
9/13/19	with Python and collect preliminary	get data from a playlist
	song feature data from several Bill-	
	board Top 100 songs	
9/16/19-	Figure out a way to extract data from	In progress
9/20/19	playlists with several songs without	
	having to input each song's URI indi-	
	vidually	
9/23/19-	Build a logistic curve that takes one	In progress
9/27/19	specific feature of several popular	
	songs to plot another song's poten-	
	tial popularity on the curve (I'll be	
	comparing a few different methods of	
	supervised learning before I integrate	
	MFCC)	

Reflection

This week, I found a super useful library that will tremendously benefit my work. It took me a long time to figure out how to install it, but I was able to in the end. I also had to play around with it in order to figure out what sort of data I had to input to get song and artist-specific data, but again, I figured that out. My next step is to figure out how to retrieve data from a playlist, since I'll be using features of songs on the Billboard Hot 100 playlist as metrics for my predictions.