Module 1: Linear Differential Equations with constant coefficients.

QNO	Questions
1	The Differential Equation f D y = \emptyset x , where \emptyset x = 0 is known as equation
2	The Differential Equation f D y = \emptyset x , where \emptyset $x \neq 0$ is known as equation
3	In the Differential Equation f D y = \emptyset x , where \emptyset x = 0, then the itself is a general Solution
4	The solution of $D^2 - a^2 y = 0$ is
5	The particular Integral of $D^2 - 6D + 9$ $y = log2$ is
6	Given $f(D) y = \emptyset(x)$ if m_1 and m_2 are real and distinct roots of the Auxillary Equation,
	then the complimentary function is
7	The Particular Integral of x''' $t - 8x$ $t = 1$ is
8	The value of $\frac{1}{D} f x$ is
9	The phenomenon of the impressed frequency becoming equal to the natural frequency of the system is referred to as
10	The Displacement in Simple Harmonic Motion $\frac{d^2x}{dt^2} = -\mu^2x$ is

Module 2 :Variable Coefficients & Partial Differential Equations

QNO	Question
1.	The equation $a_0x^2y^{\prime\prime\prime}+a_1xy^{\prime\prime}+a_2y=\varphi(x)$ is called
2.	The general solution of $[x^2D^2 + (3.5)xD + 1]y = 0$ is
3.	If D = d/dz and z = logx, then the differential equation $x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} = 6x$ becomes
	22 2 2 2
4.	The order and the degree of the P.D.E $\frac{\partial^2 z}{\partial x^2} + \frac{\partial z}{\partial x}^2 + \frac{\partial z}{\partial y} = 3$ is
	and
5.	The auxiliary equations of Lagrange's linear equation $Pp + Qq = R$ is
6.	Find the general solution of Linear homogeneous differential equation $x^2y'' - 4xy'' +$
	4y = 0
7.	The partial differential equation obtained from $z = ax + by + ab$ by eliminating a and
	<i>b</i> is
8.	Elimination of a function f from $z = f(y/x)$ gives a partial differential equations
9.	The general one dimensional heat equation is
10.	The general one dimensional wave equation is

Module – 3 (Vector Differential Calculus)

1.	Gradient of a scalar field is Quantity.
2.	Divergence of a vector field is Quantity.
3.	The directional derivative of a scalar function \emptyset at any point is along 20 .
4.	If $div\vec{F} = 0$ then \vec{F} is
5.	If $curl\vec{F} = 0$ then \vec{F} is called
6.	If $\vec{r} = xi + yj + zk$ then curl \vec{r} is

7. Any integral which is to be evaluated over a volume is called a_____

8. Green's Theorem formula is given by _____

9. Stoke's Theorem formula is given by _____

10. Gauss divergence Theorem Formula is given by------

Module - 4 Infinite Series

Q. N.	Questions
1	In a series of positive terms $\sum u_{\underline{n}}$ if $\log_{\underline{n} \to \underline{\infty}} u_{\underline{n}}$ then $\sum u_{\underline{n}}$ is
2	Which one of the test does not give absolute convergence of a series?
3	State D'Alembart's ratio test.
4	The Bessel's Differential equation is given by
5	Write the orthogonality relation for Bessel's function.
6	Show that $J_0'(x) = -J_1(x)$.
7	What is the condition of convergence according to Cauchy's root test?
8	Test the convergence of the series $1 - \frac{\overline{1}}{2^2} + \frac{\overline{1}}{3^2} - \frac{\overline{1}}{4^2} + \cdots \dots \dots$
9	Write Rodrigue's formula.
10	Write the values of $P_2(x)$ and $P_3(x)$.

Module 5 : Elementary Numerical Methods

Q.No	Question
1.	If $y_0, y_1, y_2 \dots y_n$ are the functional values of y corresponding to equally spaced
	$x_{\underline{0}}, x_{\underline{1}}, x_{\underline{2}} \dots x_{\underline{n}}$ values then we can form a difference table up to
2.	For the given data, the value of $\Delta^2 y_1$ is
	x 10 20 30 40
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	y 43 47 54 61
3.	If $f(x)$ is a polynomial of degree n then $\Delta^{\overline{n}} f(x)$ is a
4.	Let h be the finite difference, then the Forward difference operator $\Delta f x = $
5.	"Method of False position" is also known as
6.	In which case does Newton Raphson method is not applicable?
7.	In Numerical Integration, the area enclosed by the curve $f(x)$ between $x = a$ and
	x = b is divided in to n equal parts of length $h =$
8.	When we divide the area enclosed by the curve $y = f(x)$ between $x = a$ to $x = b$ in
	to <i>n</i> equal parts we get values of <i>y</i>
9.	Simpson's $3/8^{th}$ rule is applied when $n = \frac{b-a}{h}$ is multiple of
10.	In an Integral $I = \frac{\overline{b}}{a} f(x) dx$, if the interval (a,b) is divided into 8 equal parts then we
	use numerical integration rule to evaluate the integral