

General Description

The MAX328/MA329 are monolithic CMOS analog multiplexers. The MAX328 is a single-ended, 1-of-8 device, and the MAX329 is a differential, 2-of-8 device.

Designed to provide the lowest possible on- and offleakages, these multiplexers switch signals from high source impedance, providing the mux operates into a high-input-impedance op amp or A/D converter. The MAX328/MAX329 are pin-for-pin replacements for the popular DG508/DG509 in these applications.

Adding an external $40k\Omega$ resistor to each input makes the MAX328/MAX329 an excellent fault-tolerant multiplexer. Low leakage (less than 1pA at +25°C) and $2.5k\Omega$ on-resistance allow the circuit to sustain 110V AC faults indefinitely while maintaining an error of less than 40nV for normal signals (i.e., 1pA times $40k\Omega$).

The MAX328/MAX329 work equally well with a single supply of 10V to 30V or dual supplies of ±5V to ±18V. They also perform well with unbalanced combinations of supply voltage, such as +12V and -5V or +5V and -15V. Low power dissipation (1.9mW with ±15V supplies) allows use in portable applications.

Applications

Control Systems Data Logging Systems Aircraft Heads-Up Displays **Data-Acquisition Systems** Signal Routing

Typical Operating Circuit

Features

- ♦ Ultra-Low Off- and On-Leakage: 1pA Typ
- ♦ Bidirectional Operation (Use as Mux or Demux)
- ◆ TTL and CMOS Logic Compatibility
- ♦ Analog Signal Range Includes Power-Supply Rails
- ♦ Switching Speeds Less Than 1.5µs
- ♦ Pin Compatible with DG508/DG509 and MAX358/MAX359
- **♦ Latchup Proof Construction**

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX328CPE	0°C to +70°C	16 Plastic DIP
MAX328CWE	0°C to +70°C	16 Wide SO
MAX328CJE	0°C to +70°C	16 CERDIP
MAX328C/D	0°C to +70°C	Dice*
MAX328EGE	-40°C to +85°C	16 QFN
MAX328EPE	-40°C to +85°C	16 Plastic DIP
MAX328EWE	-40°C to +85°C	16 Wide SO
MAX328EJE	-40°C to +85°C	16 CERDIP**
MAX328MJE	-55°C to +125°C	16 CERDIP**

^{*}Contact factory for dice specifications.

Ordering Information and Pin Configurations continued at end of data sheet. Pin Configurations

TOP VIEW A0 1 EN 2 15 A2 V- 3 14 GND MIXIM S1 4 MAX328 13 V+ S2 5 12 S5 S3 6 11 S6 S4 7 10 S7 D 8 A0 1 16 A1 EN 2 15 GND V- 3 14 V+ MIXIM S1A 4 13 S1B S2A 5 12 S2B S3A 6 11 S3B S4A 7 10 S4B 9 DB DA 8 DIP/SO

MIXIM

Maxim Integrated Products 1

^{**}Contact factory for availability. Substrate may be allowed to float or be connected to V+.

ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to V-	
V+	+44V
GND	+25V
Digital Inputs (Note 1), V _S , V _D	2V to (V+ + 2V)
Current (Any Terminal, Except S or D)	30mÁ
Continuous Current, S or D	
(pulsed at 1ms, 10% duty cycle max)	40mA

Operating Temperature Range	
MAX328/329 C	0°C to +70°C
MAX328/329 E	40°C to +85°C
MAX328/329 M	55°C to +125°C
Power Dissipation (Package) (Note 1)	
16-Pin CERDIP (Note 2)	
16-Pin Plastic DIP (Note 3)	470mW
16-Pin Wide SO (Note 4)	
16-Pin QFN (Note 5)	1538mw
Storage Temperature	65°C to +150°C

Note 1: All leads soldered or welded to PC board.

Note 2: Derate 12mW/°C above +75°C. Note 3: Derate 6.3mW/°C above +75°C. Note 4: Derate 10mW/°C above +75°C. Note 5: Derate 19.2mW/°C above +75°C.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V+ = +15V, V- = -15V, GND = 0V, T_A = +25^{\circ}C, unless otherwise noted.)$

							LIM	ITS			
PARAMETER		SYMBOL	TEST CONDITIONS		MAX328M MAX329M			MAX328C/E MAX329C/E			UNITS
					MIN	TYP	MAX	MIN	TYP	MAX	
SWITCH											
Analog Signal R	ange	Vanalog			±15			±15			V
Drain-Source		Daggern	$V_D = 10V,$ $I_S = 100\mu A$	Seq. each switch on,		1.5	2.5		1.5	3.5	· kΩ
On-Resistance		R _{DS} (ON)	V _D = -10V, I _S = 100μA	V _{AL} = 0.8V, V _{AH} = 2.4V		1.0	2.5		1.0	3.5	KLZ
Greatest Chang Drain-Source Or Resistance Betw Channels	า-	ΔR _{DS} (ON)	$R_{DS(ON)} = \frac{R_{DS(ON)} \text{ Max} - R_{DS(ON)}}{R_{DS(ON)} \text{ Ave}}$)		2			2		%
Source Off-Leak Current (Note 6)	0	Is(OFF)	$V_S = 10V, V_D = -10V$ $V_S = -10V, V_D = 10V$	V _{EN} = 0V		0.1	±10		0.1	±10	рА
			$V_D = 10V, V_S = -10V$			0.3	±10		0.3	±10	
Drain Off-	MAX328	1	V _D = -10V, V _S = 10V	.,		1.0	±10		1.0	±10	
Leakage Current (Note 6)	MAY220	I _{D(OFF)}	V _D = 10V, V _S = -10V	$V_{EN} = 0V$, VEN = 0V	0.3	±10		0.3	±10	рА
	IVIAA329		$V_D = -10V, V_S = 10V$			0.5	±10		0.5	±10	
Drain On- M Leakage	MAX328		V_{S} (all) = V_{D} = 10V	Seg. each		3.0	±10		3.0	±10	pA
	IVIANUZU	I _{D(ON)}	V_S (all) = V_D = -10V	switch on,		2.0	±10		2.0	±10	
Current (Note 6)	MAX329	(טוט) (טוי	V_{S} (all) = V_{D} = 10V	$V_{AL} = 0.8V$,		1.5	±10		1.5	±10	
	0.020		V_{S} (all) = V_{D} = -10 V	$V_{AH} = 2.4V$		1.0	±10		1.0	±10	

ELECTRICAL CHARACTERISTICS (continued)

(V+ = +15V, V- = -15V, GND = 0V, T_A = +25°C, unless otherwise noted.)

		TEST CONDITIONS				LIM	IITS	LIMITS						
PARAMETER	SYMBOL			MAX328M MAX329M			MAX328C/E MAX329C/E			UNITS				
				MIN	TYP	MAX	MIN	TYP	MAX					
INPUT														
Address Input Current,	I _{AH}	$V_A = 2.4V$			0.001	±1		0.001	±1	μA				
Input Voltage High	ЧН	V _A = 15V			0.001	±1		0.001	±1	μΑ				
Address Input Current,	I _{AL}	$V_{EN} = 2.4V$	All		0.001	±1		0.001	±1	μΑ				
Input Voltage Low	'AL	$V_{EN} = 0V$	$V_A = 0V$		0.001	±1		0.001	±1	μ, (
DYNAMIC				,										
Switching Time of Multiplexer	ttransition	See Figure 1				1.0			1.5	μs				
Break-Before-Make Interval	topen	See Figure 2			0.2			0.2		μs				
Enable Turn-On Time	ton(EN)	See Figure 3				1.0			1.5	μs				
Enable Turn-Off Time	toff(EN)	See Figure 3				0.7			1.0	μs				
Off-Isolation	OIRR	$V_{EN} = 0V$, $R_L = 1k\Omega$, C $V_S = 7V_{RMS}$, $f = 500kH$	•		84			84		dB				
Source Off-Capacitance	C _{S(OFF)}	Vs = 0V	$V_{EN} = 0V,$ f = 1MHz		1.8			1.8		pF				
Drain Off- MAX32	3		$V_{EN} = 0V$,		8.0			8.0						
Capacitance MAX32	CD(OFF)	$V_D = 0V$	f = 1MHz		4.0			4.0		рF				
		$V_A = +10V$			1			1						
Charge Injection (Note 8) Q(INJ)	$V_A = 0V$			2	5		2	5	рс				
		V _A = -10V			4			4						
SUPPLY														
Positive Supply Current	l+	$V_{EN} = 2.4V$	$V_A = 0V/5V$		4.5	200		4.5	200	μΑ				
Negative Supply Current	I-	$V_{EN} = 2.4V$	$V_A = 0V/5V$		1	-100		1	-100	μΑ				
Power-Supply Range for Continuous Operation (Note 7)	VOP	-		±5		±18	±5		±18	V				

Note 6: All leakage parameters are 100% tested at maximum rated operating temperature, i.e., +70°C, +85°C, +125°C, and guaranteed by correlation at +25°C.

Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

Note 7: Electrical characteristics, such as On-Resistance, change when power supplies other than ±15V are used. Power-supply range is a design characteristic, not production tested.

Note 8: Guaranteed by design.

ELECTRICAL CHARACTERISTICS (Over Temperature)

(V+ = +15V, V- = -15V, GND = 0V, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

					LIMITS								
PARAMETER		SYMBOL	TEST CONDITIONS		MAX328M MAX329M			MAX328C/E MAX329C/E			UNITS		
					MIN	TYP	MAX	MIN	TYP	MAX			
SWITCH													
Analog Signal R	ange	Vanalog			±15			±15			V		
Drain-Source		Process	$V_D = 10V,$ $I_S = 100\mu A$	Seq. each switch on,		2.2	4		1.9	5	kΩ		
On-Resistance		R _{DS(ON)}	$V_D = -10V,$ $I_S = 100\mu A$	V _{AL} = 0.8V, V _{AH} = 2.4V			1.5	4		1.2	5	K22	
Source Off-		leve==>	$V_S = 10V, V_D = -10V$	\/=\. O\/			±5			±5	^		
Leakage Curren	t (Note 9)	IS(OFF)	$V_{S} = -10V, V_{D} = 10V$ $V_{EN} = 0V$				±5			±5	nA		
D : 0"	MAX328		$V_D = 10V, V_S = -10V$				±20			±20			
Drain Off- Leakage	IVIANUZU	I _{D(OFF)}	$V_D = -10V, V_S = 10V$	V _{EN} = 0V			±20			±20	nA		
Current (Note 9)	MAX329	ID(OFF)	$V_D = 10V, V_S = -10V$				±10			±10			
, ,	IVIANUZU		$V_D = -10V, V_S = 10V$				±10			±10			
Dunin On	MAX328		V_{S} (all) = V_{D} = 10V	Seg. each			±20			±20			
Drain On- Leakage	all 1 O 1 1-	I _{D(ON)}	V_{S} (all) = V_{D} = -10V	switch on,			±20			±20	nA		
Current (Note 9)	MAX329		V_{S} (all) = V_{D} = 10V	$V_{AL} = 0.8V$,			±10			±10	'''		
	1411 0 (020		V_{S} (all) = V_{D} = -10V	$V_{AH} = 2.4V$			±10			±10			
INPUT													
Address Input C		I _{AH}	V _A = 2.4V	<u> </u>		0.01	±1		0.01	±1	μA		
Input Voltage Hi	gh	'/\\\\	V _A = 15V			0.01	±1		0.01	±1	μ, ,		
Address Input C		I _{AL}	V _{EN} = 2.4V	All		0.01	±1		0.01	±1	μΑ		
Input Voltage Lo	W	·/ \L	V _{EN} = 0V	$V_A = 0V$		0.01	±1		0.01	±1	L		

Note 9: Leakage parameters are 100% tested at maximum rated operating temperature, i.e., +70°C, etc.

Typical Operating Characteristics

 $(T_A = +25$ °C, unless otherwise noted.)

Pin Description

	Pl	N .			
MAX	X328	MAX	(329	NAME	FUNCTION
DIP/SO	QFN	DIP/SO	QFN		
1, 15, 16	15, 14, 13	_	_	A0, A2, A1	Address Input
_	_	1, 16	15, 14	A0, A1	Address Input
2	16	2	16	EN	Enable
3	1	3	1	V-	Negative-Supply Voltage Input
4–7	2–5	_	_	S1–S4	Analog Inputs—Bidirectional
_	_	4–7	2–5	S1A-S4A	Analog Inputs—Bidirectional
8	6	_	_	D	Analog Outputs—Bidirectional
_	_	8, 9	6, 7	DA, DB	Analog Outputs—Bidirectional
9–12	7–10	_	_	S8–S5	Analog Inputs—Bidirectional
_	_	10–13	8–11	S4B–S1B	Analog Inputs—Bidirectional
13	11	14	12	V+	Positive-Supply Voltage Input
14	12	15	13	GND	Ground

Truth Table—MAX328

A ₂	A 1	Α ₀	EN	ON SWITCH
Х	Χ	Χ	0	None
0	0	0	0	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Truth Table—MAX329

A ₁	A ₀	EN	ON SWITCH
X	Χ	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

Note: Logic "0" = $V_{AL} \le 0.8V$, Logic "1" = $V_{AH} \ge 2.4V$

Figure 1. Access Time vs. Logic Level (High)

Figure 2. Break-Before-Make Delay (topen)

Figure 3. Enable Delay (ton(EN), toff(EN))

Applications Information

Figure 4 is a typical circuit for converting the MAX328/MAX329 into a fault-tolerant mux. In this application, the internal diodes limit the voltage at the MAX328 input to ±15.7V (±15V supplies). No external diodes need to be added with the MAX328/MAX329, unlike conventional multiplexers requiring external diodes.

The resistors, R, need to be $39k\Omega$ or higher to limit the power dissipation in the resistor when a 120V AC fault occurs (i.e., power dissipation is $(120\text{-}16)^2/39k\Omega$ or 0.28W. This is why a 1/2/W resistor is needed). The circuit withstands an indefinite fault to a 120V AC line with no damage to any component.

In addition to allowing fault-protection, the guaranteed low leakage of the MAX328/MAX329 also reduces signal errors. The circuit in Figure 4 produces an error voltage of 10pA (max leakage) x 39k Ω or 0.39µV at room temperature and 39µV at +125°C. Therefore, for 10V signals, the MAX328/MAX329 allows 17-bit resolution (38µV = 1LSB) over the full temperature range.

Figure 4. Fault-Tolerant MUX (indefinitely withstands 120V AC fault voltages)

Chip Topographies

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX329CPE	0°C to +70°C	16 Plastic DIP
MAX329CWE	0°C to +70°C	16 Wide SO
MAX329CJE	0°C to +70°C	16 CERDIP
MAX329C/D	0°C to +70°C	Dice*
MAX329EGE	-40°C to +85°C	16 QFN
MAX329EPE	-40°C to +85°C	16 Plastic DIP
MAX329EWE	-40°C to +85°C	16 Wide SO
MAX329EJE	-40°C to +85°C	16 CERDIP**
MAX329MJE	-55°C to +125°C	16 CERDIP**

^{*}Contact factory for dice specifications.

_Pin Configurations (continued)

Package Information

For the latest package outline information, go to **www.maxim-ic.com/packages**.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

^{**}Contact factory for availability. Substrate may be allowed to float or be connected to V+.