7e. Lineare Programmierung Das duale Simplex-Verfahren

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Das Simplex-Verfahren und Dualität
- Das duale Simplex-Verfahren
- Beispiel: Neue Nebenbedingungen
- Beispiel: Störungen in den rechten Seiten

Das duale Programm

Minimiere
$$c^T x$$
 über $x \in \mathbb{R}^n$

u.d.N. $Ax = b$, $A \in \mathbb{R}^{m \times n}$
 $x \geq 0$
Lagrange-Funktion

$$\mathcal{L}(x,\lambda) = c^T x + \lambda^T (b - Ax) \quad | \ b = Ax \Rightarrow \lambda \in \mathbb{R}^m$$

$$= b^T \lambda + x^T (c - A^T \lambda) \quad | \ x \geq 0 \Rightarrow c - A^T \lambda \geq 0$$
Maximiere $b^T \lambda$ über $\lambda \in \mathbb{R}^m$

u.d.N. $A^T \lambda \leq c$

Programm in Standardform

Minimiere
$$c^T x$$
 über $x \in \mathbb{R}^n$ u.d.N. $Ax = b, \ A \in \mathbb{R}^{m \times n}$ Dualität u.d.N. $A^T \lambda \leq c$ u.d.N. $A^T \lambda \leq c$

- Das Simplex-Verfahren liefert eine Lösung des primalen Problems
- Ist das optimale Simplex-Tableau bekannt, so kann man eine Lösung des dualen Problems einfach bestimmen

Kanonische Form

Von nun an bezeichnen wir \mathcal{B} als eine Basis, auch wenn $A_{\mathcal{B}}^{-1}b \ngeq 0$

Minimiere
$$c^Tx$$

u.d.N. $Ax = b$

$$x \ge 0$$

$$A_B \coloneqq A[:, \mathcal{B}] \text{ ist regulär}$$

$$A_{\mathcal{N}} \coloneqq A[:, \mathcal{N}], \ \mathcal{N} = \mathcal{B}^c$$
Minimiere $c_{\mathcal{N}}^T x_{\mathcal{N}} + c_{\mathcal{B}}^T x_{\mathcal{B}}$
u.d.N. $A_{\mathcal{N}} x_{\mathcal{N}} + A_{\mathcal{B}} x_{\mathcal{B}} = b$

$$x_{\mathcal{N}}, x_{\mathcal{B}} \ge 0$$
multipliziere die NB durch $A_{\mathcal{B}}^{-1}$ eliminiere $x_{\mathcal{B}}$ aus der Zielfunktion

Minimiere $(c_{\mathcal{N}} - A_{\mathcal{N}}^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}})^T x_{\mathcal{N}} + c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} b$

Minimiere
$$(c_{\mathcal{N}} - A_{\mathcal{N}}^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}})^T x_{\mathcal{N}} + c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} b$$

u.d.N. $A_{\mathcal{B}}^{-1} A_{\mathcal{N}} x_{\mathcal{N}} + x_{\mathcal{B}} = A_{\mathcal{B}}^{-1} b$
 $x_{\mathcal{N}}, x_{\mathcal{B}} \geq 0$ Wir bezeichne

Wir bezeichnen dies als eine kanor of b Form, auch wenn $A_{\mathcal{B}}^{-1}b \ngeq 0$

Satz 6.16. Zulässigkeit und Optimalität

Minimiere
$$(c_{\mathcal{N}} - A_{\mathcal{N}}^T \overline{A_{\mathcal{B}}^{-T} c_{\mathcal{B}}})^T x_{\mathcal{N}} + c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} b$$

u.d.N. $A_{\mathcal{B}}^{-1} A_{\mathcal{N}} x_{\mathcal{N}} + x_{\mathcal{B}} = \overline{A_{\mathcal{B}}^{-1} b}$
 $x_{\mathcal{N}}, x_{\mathcal{B}} \geq 0$ $\overline{x}_{\mathcal{B}}$

Basislösung zur Basis \mathcal{B} $\bar{x}_{\mathcal{N}}\coloneqq 0, \bar{x}_{\mathcal{B}}\coloneqq A_{\mathcal{B}}^{-1}b$ $\bar{\lambda}\coloneqq A_{\mathcal{B}}^{-T}c_{\mathcal{B}}\in\mathbb{R}^m$

- $A_B^{-1}b \ge 0 \Leftrightarrow \bar{x}$ ist primal zulässig primal zulässige kanonische Form
- $c_{\mathcal{N}} A_{\mathcal{N}}^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}} \ge 0 \iff \bar{\lambda} \text{ ist dual zulässig (d.h. } A^T \bar{\lambda} \le c)$ dual zulässige kanonische Form
- Es gilt $c^T \bar{x} = b^T \bar{\lambda} = c_B^T A_B^{-1} b$. Außerdem sind $\bar{x}, \bar{\lambda}$ optimal, falls das LP sich gleichzeitig in primal und dual zulässigen Formen befindet

Beweis

$$\bar{\lambda} \coloneqq A_{\mathcal{B}}^{-T} c_{\mathcal{B}}$$

Behauptung: $c_{\mathcal{N}} - A_{\mathcal{N}}^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}} \geq 0 \Leftrightarrow \bar{\lambda}$ ist dual zulässig, d.h. $A^T \bar{\lambda} \leq c$

$$c_{\mathcal{N}} - A_{\mathcal{N}}^{T} A_{\mathcal{B}}^{-T} c_{\mathcal{B}} \ge 0$$

$$c_{\mathcal{B}} - A_{\mathcal{B}}^{T} A_{\mathcal{B}}^{-T} c_{\mathcal{B}} = 0$$

$$c - A^{T} A_{\mathcal{B}}^{-T} c_{\mathcal{B}} \ge 0$$

$$\bar{\lambda} = A_{\mathcal{B}}^{-T} c_{\mathcal{B}}$$

$$A^{T} \bar{\lambda} \le c$$

Beweis

$$\bar{\lambda} \coloneqq A_{\mathcal{B}}^{-T} c_{\mathcal{B}}$$

Behauptung: $c^T \bar{x} = b^T \lambda = c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} b$

$$b^{T}\bar{\lambda} = b^{T}A_{\mathcal{B}}^{-T}c_{\mathcal{B}}$$

$$= \bar{x}_{\mathcal{B}}^{T}c_{\mathcal{B}}$$

$$= \bar{x}^{T}c$$

$$\bar{x}_{\mathcal{N}} = 0$$

Seien \bar{x} , $\bar{\lambda}$ zulässig, so sind sie optimal aufgrund der schwachen Dualität (Satz 5.13)

Programme in Symmetrischer Form

Minimiere $c^T x$ über $x \in \mathbb{R}^n$ u.d.N. $Ax \leq b$ $x \ge 0$ Lagrange-Funktion $\mathcal{L}(x,y) = c^T x + \mu^T (b - Ax) \qquad | b - Ax \ge 0 \Rightarrow \mu \le 0$ $= b^T \mu + x^T (c - A^T \mu) \quad | \ x \ge 0 \Rightarrow c - A^T \mu \ge 0$ Das Duale Maximiere $b^T \mu$ über $\mu \in \mathbb{R}^m \leftarrow$ u.d.N. $A^T \mu \leq c$

Satz 6.17. Programme in Symmetrischer Form

u.d.N. $Ax \leq b$

$$x \ge 0$$

Schlupfvariablen

-z	x_1	x_n	s_1	s_m	RS
1	c_1	c_n	0	0	0
0	a_{11}	a_{1n}	1	0	b_1
0	a_{m1}	a_{mn}	0	1	b_m

Maximiere $b^T \mu$

u.d.N. $A^T \mu \leq c$

 $\mu \leq 0$

dual optimale Lösung

$ar{\mu}_i$	=	$-y_i$
-------------	---	--------

-z	x_1	x_n	s_1	s_m	RS
1	\bar{c}_1	\bar{c}_n	y_1	y_m	$-\bar{z}$
0	\bar{a}_{11}	\bar{a}_{1n}	β_{11}	β_{1n}	$ar{b}_1$
0	\bar{a}_{m1}	\bar{a}_{mn}	eta_{m1}	eta_{mm}	$ar{b}_m$

Optimales Simplex-Tableau

Beweis: Duale Programme

⇒ Wir wenden Satz 6.16 um eine optimale Lösung des Dualen von der optimalen Simplex-Tableau zu bestimmen

Beweis

Minimiere
$$c^T x$$

u.d.N. $Ax + s = b$
 $x, s \ge 0$

- Sei \mathcal{B} eine optimale Basis und sei $\bar{\mu} = A_{\mathcal{B}}^{-T} c_{\mathcal{B}}$ der zugehörige Dualpunkt
- Seien \bar{c} , y die zugehörigen optimalen Zielfunktionskoeffizienten von x, s

Satz 6.16
$$\begin{bmatrix} \bar{c} \\ y \end{bmatrix} = \begin{bmatrix} c \\ 0 \end{bmatrix} - \begin{bmatrix} A & I \end{bmatrix}^T \bar{\mu} \qquad \longleftrightarrow \qquad \begin{matrix} \bar{c} = c - A^T \bar{\mu} \\ y = -\bar{\mu} \end{matrix}$$

Plan

- Das Simplex-Verfahren und Dualität
- Das duale Simplex-Verfahren
- Beispiel: Neue Nebenbedingungen
- Beispiel: Störungen in den rechten Seiten

Primales und duales Simplex-Verfahren

 $x_{\mathcal{N}}, x_{\mathcal{B}} \geq 0$

Minimiere
$$c^Tx$$
 wähle $\mathcal{B}=\{i_1,\dots,i_m\}\subseteq\{1,\dots,n\}$: u.d.N. $Ax=b$ $A_\mathcal{B}\coloneqq A[:,\mathcal{B}]$ ist regulär $x\geq 0$ $A_\mathcal{N}\coloneqq A[:,\mathcal{N}],\ \mathcal{N}=\mathcal{B}^c$ Minimiere $\left(c_\mathcal{N}-A_\mathcal{N}^TA_\mathcal{B}^{-T}c_\mathcal{B}\right)^Tx_\mathcal{N}+c_\mathcal{B}^TA_\mathcal{B}^{-1}b$ primal zulässige kan. Form, falls $A_\mathcal{B}^{-1}b\geq 0$ u.d.N. $A_\mathcal{B}^{-1}A_\mathcal{N}x_\mathcal{N}+x_\mathcal{B}=A_\mathcal{B}^{-1}b$ dual zulässige kan. For, falls $c_\mathcal{N}-A_\mathcal{N}^{-1}A_\mathcal{B}^{-T}c_\mathcal{B}\geq 0$

- Das (primales) Simplex-Verfahren bleibt in primal zulässiger kanonischer Form und verkleinert $c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} b$ bis die kanonische Form dual zulässig wird
- Das duales Simplex-Verfahren bleibt in dual zulässiger kanonischer und vergrößert $c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} b$ bis die kanonische Form primal zulässig wird

Geometrische Intuition

Minimiere
$$-c_1x_1 - c_2x_2$$

u.d.N. $a_{11}x_1 + a_{12}x_2 + s_1 = b_1$
 $a_{21}x_1 + a_{22}x_2 + s_2 = b_2$
 $x_1, x_2, s_1, s_2 \ge 0$

- Basislösungen sind die Schnittpunkte der Geraden
- Primal zulässige Basislösungen gehören zum Zulässigkeitsbereich $\Leftrightarrow x_1, x_2, s_1, s_2 \geq 0$ A, B, C, D

• Dual zulässige Basislösungen liefern optimalen oder überoptimalen Funktionswert D, E, F

Beispiel

-z	x_1	x_2	x_3	x_4	RS
1	0	1	1	0	3
0	1	4	0	0	4
0	0	-4	- 2	1	-1

- Dual zulässige kanonische Form mit Basisvariablen x_1, x_4 :
 - Die Koeffizientenmatrix von x_1 , x_4 ist die Einheitsmatrix
 - Die Zielfunktionskoeffizienten von x_1, x_2 sind gleich Null
 - Alle anderen Zielfunktionskoeffizienten sind nichtnegativ
- Das duale Simplex-Verfahren ist anwendbar

Aus der Basis austretende Variable

-z	x_1	x_2	x_3	x_4	RS
1	0	1	1	0	3
0	1	4	0	0	4
0	0	-4	- 2	1	-1

- Wir bewegen uns zu einer benachbarten dual zulässigen Basislösung mit kleinerem Zielfunktionswert
- Die erste Basisvariable mit negativem Wert tritt aus der Basis aus $\Rightarrow x_4$
- Nach dem Austritt aus der Basis wird x_4 gleich Null

In die Basis eintretende Variable

-z	x_1	x_2	x_3	x_4	RS
1	0	1	1	0	3
0	1	4	0	0	4
0	0	-4	-2	1	-1

$$|Z_0|$$
 $Z_0 + tZ_2$:
 $|Z_1|$ $Z_2 = (1 - 4t)x_2 + (1 - 2t)x_3 + tx_4 - 3 + t$
 $|Z_2|$

- Der Funktionswert (für $x_2 = x_3 = x_4 = 0$) steigt mit t
- Für welche t bleiben die Zielfunktionskoeffizienten nichtnegativ?

$$x_{2}: \quad 1-4t \geq 0$$

$$x_{3}: \quad 1-2t \geq 0$$

$$x_{4}: \quad t \geq 0$$

$$t \leq \frac{1}{4}$$

$$t \leq \frac{1}{2}$$

$$t \geq 0$$

$$t \leq \frac{1}{4}$$

$$t \geq 0$$

$$t \leq \frac{1}{4}$$

$$t \geq 0$$

$$x_{2} \text{ tritt aus der Basis aus für } t = 1$$

$$t \le \frac{1}{4}$$

$$t \le \frac{1}{2} \qquad \Leftrightarrow \qquad 0 \le 1$$

$$t \ge 0$$

$$\Leftrightarrow 0 \le t \le \frac{1}{4}$$

Schritt des dualen Simplex-Verfahrens

-z	x_1	x_2	x_3	x_4	RS
1	0	1	1	0	3
0	1	4	0	0	4
0	0	-4	- 2	1	-1

Pivotisierung

-z	x_1	x_2	x_3	x_4	RS
1	0	0	0.5	0.25	2.75
0	1	0	- 2	1	3
0	0	1	0.5	-0.25	0.25

optimales Tableau

Optimale Lösung:

$$\bar{x}_1 = 3, \bar{x}_2 = 0.25$$
 $\bar{x}_3 = 0, \bar{x}_4 = 0$ $\bar{z} = -2.75$

Beispiel: Leerer Zulässigkeitsbereich

		RS	x_4	x_3	x_2	x_1	-z	
	Z_0	3	0	1	1	0	1	
$lpha_4$ tritt aus der Basis au	Z_1	4	0	0	4	1	0	
	Z_2	-1	1	2	4	0	0	

$$Z_0 + tZ_2$$
: $z = (1 + 4t)x_2 + (1 + 2t)x_3 + tx_4 - 3 + t$

- Zielfunktionskoeffizienten sind nichtnegativ für alle $t \geq 0$
- Der zugehörige duale Punkt ist zulässig für alle $t \geq 0$
- Der primale Zulässigkeitsbereich ist leer nach Satz 6.3

Das duale Simplex-Verfahren

Minimiere
$$(c_{\mathcal{N}} - A_{\mathcal{N}}^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}})^T x_{\mathcal{N}} + c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} b$$

u.d.N. $A_{\mathcal{B}}^{-1} A_{\mathcal{N}} x_{\mathcal{N}} + x_{\mathcal{B}} = A_{\mathcal{B}}^{-1} b$
 $x_{\mathcal{N}}, x_{\mathcal{B}} \geq 0$

- Kanonische Form zur Basis ${\mathcal B}$
- Für das duale Simplex-Verfahren muss die anfängliche kanonische Form dual zulässig sein:

$$c_{\mathcal{N}} - A_{\mathcal{N}}^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}} \ge 0$$

Das duale Simplex-Verfahren

$$ar{A} = A_{\mathcal{B}}^{-1}A, \ \ ar{b} = A_{\mathcal{B}}^{-1}b$$

$$ar{c} = c - c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1}b$$

Initialisierung: Dual zulässige Basis \mathcal{B} und $\mathcal{N}=\mathcal{B}^c$

Plan

- Das Simplex-Verfahren und Dualität
- Das duale Simplex-Verfahren
- Beispiel: Neue Nebenbedingungen
- Beispiel: Störungen in den rechten Seiten

Neue Nebenbedingung

Minimiere
$$c^Tx$$
 Minimiere c^Tx u.d.N. $a_i^Tx \le b_i$, $i=1,\ldots,m$ u.d.N. $a_i^Tx \le b_i$, $i=1,\ldots,m$
$$x \ge 0$$

$$a_{m+1}^Tx \le b_{m+1}$$

$$x \ge 0$$

- Sei $ar{x}$ mit dem Simplex-Verfahren gefundene Lösung des linken Problems
- Dann kann man das rechte Problem effizient mit dem dualen Simplex-Verfahren lösen

Beispiel: Neue Nebenbedingung

Simplex-Verfahren

-z	x_1	x_2	s_1	RS
1	0	1	1	5
0	1	2	1	5

optimales Tableau

Minimiere	$-x_1 - x_2$
u.d.N.	$x_1 + 2x_2 \le 5$
	$3x_1 + x_2 \le 6$
	$x_1, x_2 \ge 0$

-z	x_1	x_2	s_1	s_2	RS
1	0	1	1	0	5
0	1	2	1	0	5
0	3	1	0	1	6

-z	x_1	x_2	s_1	s_2	RS
1	0	1	1	0	5
0	1	2	1	0	5
0	0	- 5	-3	1	- 9

Eliminiere x_1 aus der s_2 -Zeile

dual zulässiges kan. Tablea

Beispiel: Neue Nebenbedingung

-z	x_1	x_2	s_1	s_2	RS	
1	0	1	1	0	5	
0	1	2	1	0	5	
0	0	- 5	- 3	1	- 9	
1/5)1/3						

- s_2 ist die erste Basisvariable mit negativem Wert -9 $\Rightarrow s_2$ tritt aus der Basis aus
- x_2, s_1 sind die Variablen mit negativen Koeffizienten in s_2 -Zeile
- Quotientenregel: 1/5 < 1/3, also tritt x_2 in die Basis ein

Pivotisierung

-z	x_1	x_2	s_1	s_2	RS
1	0	1	1	0	5
0	1	2	1	0	5
0	0	- 5	-3	1	- 9

Pivotisierung

			s_1	_	
1	0	0	0.4	0.2	3.2
0	1	0	-0.2	0.4	1.4
0	0	1	0.6	-0.2	1.8

optimales Tableau

Optimale Lösung:
$$\bar{x}_1=1.4$$
, $\bar{x}_2=1.8$

Optimale Lösung des Dualen: $\bar{\mu}_1=-0.4,\;\bar{\mu}_2=-0.2\;$ (Satz 6.17)

Plan

- Das Simplex-Verfahren und Dualität
- Das duale Simplex-Verfahren
- Beispiel: Neue Nebenbedingungen
- Beispiel: Störungen in den rechten Seiten

Störungen in der rechten Seiten

Minimiere
$$c_1x_1 + c_2x_2$$

u.d.N. $a_{11}x_1 + a_{12}x_2 \le b_1 + \Delta$
 $a_{21}x_1 + a_{22}x_2 \le b_2$
 $x_1, x_2 \ge 0$

- Sei $\bar{x}(0)$ mit dem Simplex-Verfahren gefundene optimale Lösung für $\Delta=0$
- Gehört Δ dem Gültigkeitsbereich, so kann man eine optimale Lösung $\bar{x}(\Delta)$ durch die Sensitivitätsanalyse finden
- Ansonsten kann man $\bar{x}(\Delta)$ mit dem dualen Simple-Verfahren finden

Beispiel

Minimiere
$$-x_1 - x_2$$

u.d.N. $x_1 + 2x_2 \le 5$
 $3x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

Min	imiere $-x_1 - x_2$
A	u.d.N. $x_1 + 2x_2 \le 5 - 4$
	$3x_1 + x_2 \le 6$
	$x_1, x_2 \geq 0$

-z	$ x_1 $	x_2	s_1	s_2	RS
1	0	0	0.4	0.2	3.2
0	1	0	-0.2	0.4	1.4
0	0	1	0.6	-0.2	1.8

-z	x_1	x_2	s_1	s_2	RS
1	0	0	0.4	0.2	$3.2 + 0.4 \times (-4) = 1.6$
0	1	0	-0.2	0.4	$1.4 - 0.2 \times (-4) = 2.2$
0	0	1	0.6	-0.2	$1.8 + 0.6 \times (-4) = -0.6$

optimales Tableau

Sensitivitätsanalyse

dual zulässiges Table

Schritt des dualen Simplex-Verfahrens

-z	x_1	x_2	s_1	s_2	RS
1	0	0	0.4	0.2	1.6
0	1	0	-0.2	0.4	2.2
0	0	1	0.6	-0.2	-0.6

- x_2 ist die erste Basisvariable mit negativem Wert -0.6 $\Rightarrow x_2$ tritt aus der Basis aus
- s_2 ist die einzige Variable mit negativem Koeffizienten in der x_2 -Zeile $\Rightarrow s_2$ tritt in die Basis ein

Duales Simplex-Schritt

-z	x_1	x_2	s_1	s_2	RS
1	0	0	0.4	0.2	1.6
0	1	0	-0.2	0.4	2.2
0	0	1	0.6	-0.2	-0.6

Pivotisierur	ng
-	→

-z	x_1	x_2	s_1	s_2	RS
1	0	1	1	0	1
0	1	2	1	0	1
0	0	- 5	-3	1	3

optimales Tableau

Primal optimale Lösung: $\bar{x}_1 = 1$, $\bar{x}_2 = 0$

Dual optimale Lösung: $\bar{\mu}_1 = -1$, $\bar{\mu}_2 = 0$

Zusammenfassung

- Das Simplex-Verfahren und Dualität
- Das duale Simplex-Verfahren
- Beispiel: Neue Nebenbedingungen
- Beispiel: Störungen in den rechten Seiten

Nächstes Video

• 7a. Nichtlineare Optimierung: Quadratische Programmierung