Лекция № 5

Методы нулевого порядка

(8) Метод Нелдера-Мида (деформируемого многогранника)

Алгоритм метода:

1) Задается начальная система точек (многогранник), включающая в себя n+1 точку: $X^{0(1)}$. $X^{0(2)}$... $X^{0(n+1)}$.

Замечание. Для функции 2-х переменных задается три начальные точки: $\mathbf{X}^{0(1)}, \mathbf{X}^{0(2)}, \mathbf{X}^{0(3)}$.

- 2) Вычисляется значение функции во всех точках многогранника и выбирается:
 - лучшая точка $X^{(\pi)}$: $f(X^{(\pi)}) = \min_{i} \left[f(X^{k(i)}) \right]$, здесь k номер итерации, i номер точки;
 - худшая точка $X^{(x)}$: $f(X^{(x)}) = \max_{i} [f(X^{k(i)})]$.
- 3) Далее заданная система из n+1 точки перестраивается, для этого строится центр тяжести системы заданных точек за исключением худшей:

$$X^{(II)} = \frac{1}{n} (\sum_{i=1}^{n=1} X^{k(i)} - X^{(x)})$$

(для функции 2-х переменных точка $X^{(u)}$ – середина отрезка, соединяющего точки за исключением худшей)

4) Выполняется операция *отражение* худшей точки через центр тяжести:

$$X^{(\text{orp})} = X^{(\text{II})} + \alpha \cdot (X^{(\text{II})} - X^{(\text{X})})$$

здесь $\alpha > 0$ — параметр отражения (рекомендуемое значение $\alpha = 1$).

5) Формируется новая система точек (многогранник). Для этого в точке $X^{(\text{отр})}$ вычисляется значение функции, полученное значение сравнивается с $f(X^{(\pi)})$:

• если $f(X^{(\text{отр})}) < f(X^{(\Pi)})$ — точка «лучше лучшей», то выполняется операция *растяжение:* $X^{(\text{pct})} = X^{(\Pi)} + \gamma (X^{(\text{отр})} - X^{(\Pi)}),$

здесь $\gamma > 0$ ($\gamma \neq 0$) — параметр растяжения (рекомендованное значение $\gamma \in [2, 3]$)

При этом если $f(X^{(pct)}) < f(X^{(otp)})$, то в новой системе точек точка $X^{(x)}$ будет заменена на $X^{(pct)}$, если же $f(X^{(pct)}) \ge f(X^{(otp)})$, то в новой системе точек точка $X^{(x)}$ будет заменена на $X^{(otp)}$.

На рисунке представлен случай, когда $f(X^{(pcr)}) > f(X^{(orp)})$, точка $X^{(pcr)}$ аннулируется, в новой системе точек $X^{(x)}$ будет заменена на $X^{(orp)}$.

• если $f(X^{(\pi)}) \le f(X^{(\text{отр})}) < f(X^{(x)})$ — точка «лучше худшей, но хуже лучшей», то выполняется операция *сжатие*:

$$X^{(cж)} = X^{(ii)} + \beta(X^{(x)} - X^{(ii)}),$$

здесь $\beta > 0$ $(\beta \neq 0)$ — параметр сжатия (рекомендованное значение $\beta \in [0.4, 0.6]$).

При этом если $f(X^{(cж)}) < f(X^{(oтp)})$, то в новой системе точек точка $X^{(x)}$ будет заменена на $X^{(cж)}$, если же $f(X^{(cx)}) \ge f(X^{(otp)})$, то в новой системе точек точка $X^{(x)}$ будет заменена на $X^{(otp)}$.

На рисунке представлен случай, когда $f(X^{(cж)}) < f(X^{(otp)})$, точка $X^{(x)}$ будет заменена на $X^{(cж)}$.

• если $f(X^{(\text{отр})}) \ge f(X^{(x)})$ — точка «хуже худшей», то выполняется операция <u>редукция</u>, при этом формируется новый многогранник, содержащий точку $X^{(\pi)}$ с уменьшенными вдвое сторонами:

$$X^{k+1(i)} = X^{(\pi)} + 0,5(X^{k(i)} - X^{(\pi)}), i = 1..n+1$$

Таким образом, в результате выполнения этого пункта алгоритма формируется новая система точек (многогранник), причем в случае возникновения операций растяжения и сжатия перестраивается только одна точка — $X^{(x)}$, в случае возникновения операции редукции — все точки, за исключением $X^{(\pi)}$.

6) Процедура 2)-5) повторяется до выполнения критерия окончания счета.

Дополнительные критерии окончания метода:

- при выполнении предельного числа итераций: k = M;
- при однократном или двукратном одновременном выполнении двух условий: $\left\| X^{k+1} X^k \right\| < \widetilde{\epsilon}, \qquad \left| f(X^{k+1}) f(X^k) \right| < \widetilde{\epsilon} \ , \ \text{где} \ \ \widetilde{\epsilon} \ \ \text{малое} \ \text{положительное} \ \text{число}.$

(9) Метод случайного поиска (адаптивный метод случайного спуска)

Алгоритм метода:

- 1) Задается начальная точка X^0 и начальное значение параметра $\, r_0 \, .$
- 2) Строится система пробных точек (обычно 5–10 точек): $X^{np(i)} = X^k + r_k \xi^i$, здесь k- номер итерации, ξ^k- случайный вектор единичной длины, i- номер пробной точки.

Построенные пробные точки оказываются лежащими на гиперсфере радиуса r_k (в случае двух переменных – на окружности радиуса r_k).

3) Для каждой пробной точки вычисляется значение функции $f(X^{\text{пр(i)}})$ и выбирается наилучшая $X^{(\pi)}$, для которой $f(X^{(\pi)}) = \min \left[f(X^{\text{пр(i)}}) \right]$. Выбор может осуществляться как автоматически, так и при участии пользователя.

- 4) Проверяется условие: $f(X^{(\pi)}) < f(X^k)$:
 - если условие выполнено, то система пробных точек считается удачной, далее возможно два продолжения алгоритма:
 - 4.1) $X^{k+1} = X^{(\pi)}$;
 - 4.2) в направлении, соединяющем точки X^k и $X^{(\pi)}$, делается ускоряющий шаг: $X^{k+1} = X^{(\pi)} + \lambda (X^{(\pi)} X^{(k)})$, в этом случае, если оказывается, что $f(X^{k+1}) \ge f(X^k)$, принимается $X^{k+1} = X^{(\pi)}$;

Удачная система пробных точек

• если условие не выполняется, делается попытка построить новую удачную систему пробных точек. если при этом число неудачных попыток достигает некоторого заданного числа P, текущий радиус r_k уменьшается (автоматически или пользователем).

Неудачная система пробных точек (возможна повторная попытка)

Неудачная система пробных точек (необходимо уменьшить радиус)

5) Процедура 2)-4) повторяется до выполнения критерия окончания счета.

Основной критерий окончания метода: $|\mathbf{r}^k| < \epsilon$

Дополнительные критерии окончания метода:

- при выполнении предельного числа итераций: k = M;
- при однократном или двукратном одновременном выполнении двух условий: $\left\| X^{k+1} X^k \right\| < \widetilde{\epsilon}, \qquad \left| f(X^{k+1}) f(X^k) \right| < \widetilde{\epsilon} \;, \; \text{где } \widetilde{\epsilon} \; \text{-- малое положительное число.}$

(10) Метод конфигураций (Хука-Дживса)

Метод представляет собой комбинацию исследующего (исследовательского) поиска с циклическим изменением переменных и ускоряющего поиска по образцу.

Процесс поиска минимума функции всегда начинается с исследующего поиска.

Исследующий поиск осуществляется вдоль координатных направлений, результатом его являются так называемые точки базиса, в которых вычисляется значение функции f(X).

Поиск по образцу осуществляется в направлении, соединяющем две последующие точки базиса. В точках полученных «по образцу» значение функции не вычисляется, они служат лишь для проведения в них исследующего поиска.

Лекция №5 стр.6

Алгоритм метода:

1) Задается начальная точка X^0 и начальные значение приращений $dx_1^0, dx_2^0, ..., dx_n^0$. Точка X^0 называется точкой старого базиса.

2) Проводится исследующий поиск, в результате которого каждая координата новой точки X^{k+1} вычисляется по алгоритму:

$$x_i^{k+1} = \begin{cases} x_i^k + dx_i^k, & \text{если } f(x_1^k, x_2^k...x_i^k + dx_i^k...x_n^k) < f(x_1^k, x_2^k...x_i^k...x_n^k) \\ x_i^k - dx_i^k, & \text{если } f(x_1^k, x_2^k...x_i^k - dx_i^k...x_n^k) < \min \left(f(x_1^k, x_2^k...x_i^k...x_n^k), f(x_1^k, x_2^k...x_i^k + dx_i^k...x_n^k) \right) \\ x_i^k, & \text{в противном } \text{случае} \end{cases}$$

В результате исследующего поиска получается точка X^{k+1} .

Если при этом $X^{k+1} \neq X^k$, то X^{k+1} — точка нового базиса.

Если $X^{k+1} = X^k$, то исследующий поиск неудачен. В этом случае необходимо уменьшить значения приращений $dx_1^k, dx_2^k...dx_n^k$ и повторить исследующий поиск.

Удачный исследующий поиск.

Последовательно проверяются направления «вправо-влево», затем «вверх-вниз», если функция возрастает, то точки аннулируются, если убывает — принимаются.

 \mathbf{X}^{cf} – точка старого базиса, \mathbf{X}^{Hf} – точка нового базиса

Неудачный исследующий поиск.

 X^{c6} – точка старого базиса, точка нового базиса не может быть построена

3) Из точки нового базиса может быть:

- продолжен исследующий поиск со старыми или новыми значениями приращений (шаг 2) алгоритма);
- проведен поиск по образцу по алгоритму: $X^{\text{обр}} = X^k + t_k(X^k X^{k-1})$.

В точке $X^{\text{обр}}$ значение функции не вычисляется, из этой точки проводится исследующий поиск, в результате которого получается точка $X^{\text{ип}}$.

Если $X^{\text{ип}} \neq X^{\text{обр}}$, то точка $X^{k+1} = X^{\text{ип}}$ становится точкой нового базиса, а X^k — точкой старого базиса.

Если $X^{\text{ип}} = X^{\text{обр}}$, то поиск по образцу считается неудачным, точки $X^{\text{ип}}, X^{\text{обр}}$ – аннулируются, при этом точка X^k остается точкой нового базиса, а X^{k-1} – точкой старого базиса.

4) Процедура 3) повторяется до выполнения критерия окончания счета.

Основной критерий окончания метода: $dx_i^k < \epsilon$, i = 1..n.

Дополнительные критерии окончания метода:

- при выполнении предельного числа итераций: k = M;
- при однократном или двукратном одновременном выполнении двух условий:

 $\left\|X^{k+1}-X^k\right\|<\widetilde{\epsilon}, \qquad \left|f(X^{k+1})-f(X^k)\right|<\widetilde{\epsilon}$, где $\widetilde{\epsilon}$ – малое положительное число.