アルゴリズム論2

第 11 回: 三角形分割 (2)

関川 浩

2016/11/30

- 三角形分割の定義と性質 (前回)
- Voronoi 図と Delaunay 三角形分割の構成アルゴリズム (今回)
- Delaunay 三角形分割の性質 (次回)

- Voronoi 図
 - Voronoi 図の定義
 - Delaunay 三角形分割

- 2 Voronoi 図構成アルゴリズム
 - 逐次添加法
 - 分割統治法
 - 幾何学的変換を用いる方法

- ① Voronoi 図
- ② Voronoi 図構成アルゴリズム

Voronoi 図の定義

 $A, B \in \mathbb{R}^2$ に対し d(A, B) を A と B の Euclid 距離とする

定義 1 (Voronoi 図)

 $P_1, \ldots, P_n \in \mathbb{R}^2$

- $V(P_i) \stackrel{\mathrm{def}}{=} \bigcap_{j \neq i} \{P \mid d(P,P_i) < d(P,P_j)\}$ を Voronoi 領域という 点数を明示したいときは $V_n(P_i)$ と書く P_i を $V(P_i)$ の母点という
- Voronoi 図: $V(P_i)$ による平面の分割
- Voronoi 辺: 二つの Voronoi 領域の周の共通部分
- Voronoi 点: Voronoi 領域の (周の) 頂点

注意

Voronoi 点は, そこで接している Voronoi 領域 (一般には 3 個) の母点 から等距離の点

Delaunay 三角形分割

定義 2 (Delaunay 三角形分割)

Delaunay 三角形分割:

次数が 4 以上の Voronoi 点がないとき, Voronoi 辺を共有する二つの母点を直線分で結んで得られる, 母点の集合の三角形分割

(左) Voronoi 図, (右) Delaunay 三角形分割

Delaunay 三角形分割の性質

 $P_1, \ldots, P_n \in \mathbb{R}^2$ の Delaunay 三角形分割の任意の三角形 $P_i P_j P_k$ を取る

 P_1, \ldots, P_n のうち, 三角形 $P_i P_j P_k$ の外接円内にある点は P_i, P_j, P_k のみ

証明

 $V(P_i)$, $V(P_j)$, $V(P_k)$ に共通な Voronoi 点を P とする

- \bullet P は三角形 $P_iP_iP_k$ の外心
- \bullet P_1, \ldots, P_n のうち, P から一番近い点は P_i, P_j, P_k の三点よって. 主張は成立

注意: Delaunay 三角形分割は, その他, いろいろな性質を持つが次回に

- 1 Voronoi ☒
- ② Voronoi 図構成アルゴリズム

Voronoi 図構成アルゴリズムの種類

Voronoi 図 (Delaunay 三角形分割) 構成アルゴリズム

逐次添加法

- 最悪 $O(n^2)$
- 必要な記憶領域: O(n)
- 4 分木 (各内部ノードが 4 個までの子ノードを持つ木構造のデータ 構造) を用いた前処理で平均 O(n) に

分割統治法

- 最悪 O(n log n)
- 必要な記憶領域: O(n)

幾何学的変換を用いる方法

高い確率で O(n log n)

逐次添加法のアルゴリズム (1/4)

逐次添加法のアルゴリズム (全体像)

入力: $P_1, \ldots, P_n \in \mathbb{R}^2$

出力: 入力に対する Voronoi 図 V_n

- (1) P_1 に対する Voronoi 図 V_1 を構成し m=1 とおく
- (2) m=n なら V_m を返して終了
- (3) V_m に一つの母点 P_{m+1} を追加して P_1, \ldots, P_{m+1} に対する Voronoi 図 V_{m+1} を構成
- (4) m+1 を改めて m として (2) へ

逐次添加法のアルゴリズム (2/4)

(3) の詳細 (その 1)

(3-1)

 P_1, \ldots, P_m の中で P_{m+1} に一番近い点 $P_{i(1)}$ を求める $(\iff P_{m+1} \in V_m(P_{i(1)})$ となる $P_{i(1)}$ を求める)

- (a) P_1, \ldots, P_m の中から任意に一点を取る (P とする)
- (b) $V_m(P)$ と隣り合う $V_m(P_i)$ で $d(P_{m+1},P_i) < d(P_{m+1},P)$ となるものを探す

なければ $P_{i(1)} = P$ として (3-1) 終了

(c) P_i を改めて P として (b) へ

逐次添加法のアルゴリズム (3/4)

(3) の詳細 (その 2)

(3-2)

Voronoi 図を更新する

- (b) $\overline{P_{i(j)}P_{m+1}}$ の垂直二等分線と $V_m(P_{i(j)})$ の辺との交点の一方を Q_j とする

 Q_j がのっている辺で $V_m(P_{i(j)})$ と隣接する Voronoi 領域の母点を $P_{i(j+1)}$ とする

- (c) $P_{i(j+1)} = P_{i(1)}$ なら
 - ullet V_m の辺のうち多角形 $P_{i(1)}\dots P_{i(j)}$ 内にある部分を消去し
 - $V_{m+1}(P_{m+1}) = (多角形 P_{i(1)} \dots P_{i(j)})$ を追加したものを V_{m+1} として (3-2) 終了
- (d) j+1 を改めて j として (b) へ

逐次添加法のアルゴリズム (4/4)

注意

完全なアルゴリズムとするには以下のような場合への対応が必要

- $P_{m+1} \notin CH(\{P_1, ..., P_m\})$ となる場合 ($\iff V_{m+1}(P_{m+1})$ が非有界となる場合)
- ullet Q_i が Voronoi 点に一致する場合

誤差の影響

(3-2) (c) $\lceil P_{i(j+1)} = P_{i(1)} \rfloor$ が成立すべきところで、計算誤差があると不成立の恐れ (無限ループの恐れ)

逐次添加法の例 (1/5)

逐次添加法の例 (2/5)

逐次添加法の例 (3/5)

逐次添加法の例 (4/5)

逐次添加法の例 (5/5)

分割統治法

分割統治法

 $S \subset \mathbb{R}^2$: n 個の母点の集合

以下を再帰的に繰り返す

- S を x 座標の大小でほぼ同じ大きさの集合 S_1 と S_2 に分割
- それぞれ別の Voronoi 図 $V(S_1)$, $V(S_2)$ を構成
- \bullet $V(S_1)$ と $V(S_2)$ を合併して全体の Voronoi 図を構成

注意

実際に $O(n \log n)$ で計算するアルゴリズムを構成するには, さまざまな注意が必要 (省略)

幾何学的変換を用いる方法 (1/2)

Delaunay 三角形分割の構成は凸包構成に帰着可能

以下の補題が成立

補題 1

点 $P_i(x_i,y_i)$ (i=1,2,3,4) に対して, 点 P_4 が点 P_1 , P_2 , P_3 の外接円の内側, 境界上, 外側にあることと,

$$\begin{vmatrix} x_1 & y_1 & x_1^2 + y_1^2 & 1 \\ x_2 & y_2 & x_2^2 + y_2^2 & 1 \\ x_3 & y_3 & x_3^2 + y_3^2 & 1 \\ x_4 & y_4 & x_4^2 + y_4^2 & 1 \end{vmatrix}$$

が正, 0, 負であることは同値

幾何学的変換を用いる方法 (2/2)

以下の対応を考える

$$\mathbb{R}^2 \ni P_i(x_i, y_i) \longmapsto P'_i(x_i, y_i, x_i^2 + y_i^2) \in \mathbb{R}^3 \quad (i = 1, \dots, n)$$

補題1を利用すると以下がいえる

補題 2

 P'_1, \ldots, P'_n の凸包の z 軸に関する下側境界を (x,y) 平面に正射影したものは P_1, \ldots, P_n の Delaunay 三角形分割になる

⇒ Delaunay 三角形分割の構成が 3 次元の凸包構成に帰着