Mathematics Department

COLLEGE ALGEBRA Learning Module #5

Topic	Simplifying, Addition, Multiplication & Division of Fractions
Duration	3 hours
Lesson Proper	 I. Simplifying Fractions A. Lecture: ✓ A fraction is said to be in simplified form if the numerator and denominator have no common factor except 1. ✓ If a common factor appears in the numerator and denominator such can be renowned by division using the property of real numbers.
	$\frac{ac}{bc} = \frac{a}{b} \qquad b \neq 0, \qquad c \neq 0$
	$\frac{(x-y)}{(x-y)} = 1$ and $\frac{(x-y)}{y-x} = \frac{(x-y)}{-(x-y)} = -1$
	B. Illustrations: Problem #1: $\frac{x^2-4}{2x-4}$
	Solution: Factoring the polynomial in the Numerator and Denominator $ \frac{(x+2)(x-2)}{2(x-2)} \text{Difference of Two Squares} \\ \text{Common Monomial Factor} $
	Take note: $(x-2)$ resulted to be the Common Factor
	Making Use of Cancellation Method: $\frac{(x+2)(x-2)}{2(x-2)} = \frac{x+2}{2}$
	Problem #2: $\frac{2x^2 - 3x + 1}{2x^2 + x - 1}$
	Solution: $\frac{(2x-1)(x-1)}{(2x-1)(x+1)} = \frac{(x-1)}{(x+1)}$
	Take note: Numerator and Denominator are both factorable by other Types of factoring.

Problem #3:
$$\frac{-x^2-1}{1-x^4}$$

Solution:

Arrange polynomial in the Denominator in Standard Form $ax^2 + bx + c$

$$\frac{-x^2 - 1}{-x^4 + 1} = Factoring - 1$$

$$\frac{-(x^2+1)}{-(x^4-1)} = \frac{-(x^2+1)}{-(x^2+1)(x^2-1)} = \frac{1}{x^2-1} = \frac{1}{(x+1)(x-1)}$$

C. Self-Evaluation:

Solve the following problems:

- 1. $\frac{5x-6}{10x-12}$ 2. $\frac{4cd-xcd}{8-2x}$ 3. $\frac{x^2-16}{x^2+4x}$ 4. $\frac{3+2x-x^2}{1+5x+4x^2}$

5.
$$.\frac{6abc-18ab}{3a^2bc-9a^2b}$$
 6. $\frac{2x+4y}{x^2+2xy}$ 7. $\frac{x^2-1}{x^2-x}$ 8. $\frac{x^2-x-6}{x^2-5x+6}$

6.
$$\frac{2x+4y}{x^2+2xy}$$

7.
$$\frac{x^2-1}{x^2-x}$$

8.
$$\frac{x^2-x-6}{x^2-5x+6}$$

II. Addition and Subtraction of Fractions

A. Lecture:

- ✓ Addition of Fractions depends on the kinds of denominator the fraction have.
- 1. To add two fractions with the same denominator, use

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c} \qquad , \quad c \neq 0$$

Illustrations:

a.
$$\frac{x-3}{x-2} + \frac{1}{x-2} = \frac{x-3+1}{x-2} = \frac{x-2}{x-2} = 1$$

b.
$$\frac{2x}{x-1} + \frac{2}{1-x} = \frac{2x}{x-1} + \frac{2}{-(x-1)} = \frac{2x}{x-1} - \frac{2}{x-1} = \frac{2x-2}{x-1} = \frac{2(x-1)}{(x-1)} = 2$$

2. To add two fractions with different denominators

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} , \quad b \neq 0 , \quad d \neq 0$$

$$a.\frac{2}{3} + \frac{5}{4}$$

Find the LCD which is 12. Then find the equivalent fraction

$$\sqrt{\frac{2}{3}} = \frac{8}{12}$$
 $\sqrt{\frac{5}{4}} = \frac{15}{12}$ \div 3

$$\frac{2}{3} + \frac{5}{4}$$
 is equivalent to
$$\frac{8+15}{12} = \frac{23}{12}$$

b.
$$\frac{2x}{x-1} + \frac{2}{1-x} = \frac{2x}{x-1} + \frac{2}{-(x-1)} = \frac{2x-2}{x-1} = 2$$

How to find the LCM (Least Common Multiple) of the following sets of expressions:

C. Examples:

Find the least common multiple of the following sets of expressions:

a.
$$x^2$$
 and x^3

b.
$$uw^4x^3y^9$$
 and $w^6x^7y^2z$

c.
$$(x^3-1)$$
; (x^2-1) ; (x^2-2x-1)

d.
$$(x+1)(x^2-2x+1)$$
; $(x^2-x-2)^2$; $(x^2-1)(x-2)^3$

e.
$$(x^2-1)(x-1)$$
; x^3-1 ; $(x^2+x+1)^2$

Ans.
$$(x + 1)(x - 1)^2(x^2 + x + 1)^2$$

Solutions:

- a. The greatest power serves as the LCM. Thus, the LCM of x^2 and x^3 is x^3 .
- b. Selecting the greatest power for each kind of variable gives the LCM of $uw^4x^3y^9$ and $w^6x^7y^2z$ as $u6x^7y^9z$
- c. $x^3 1 = (x 1)(x^2 + x + 1)$; $x^2 1 = (x + 1)(x 1)$; $x^2 2x 1 = (x 1)^2$.

Selecting the greatest power for each kind of factor, we get:

$$LCM = (x - 1)^2(x^2 + x + 1)(x + 1)$$

d. Express the given into its prime factors. For each kind of factor, choose the greatest power to comprise the LCM.

$$(x+1)(x^2 - 2x + 1) = (x+1) | (x-1)^2 | (x^2 - x - 2)^2 = (x+1)^2 | (x-2)^3 (x^2 - 1)(x-2)^3 = (x+1) | (x-1) | (x-2)^3$$

Selecting the greatest power for each kind of factor, we get:

$$LCM = (x+1)^2(x-1)^2(x+2)^3$$

D. Self-Evaluation:

Solve the following problems:

1.
$$\frac{7}{36} - \frac{2}{45} + \frac{11}{60}$$

$$3.\frac{2}{x-y} - \frac{3}{x+y}$$

$$2.\frac{11}{42} - \frac{2}{63} + \frac{5}{72}$$

4.
$$\frac{2x-1}{x^2(x-1)^2} - \frac{2}{(x^2-1)(x-1)}$$

III. Multiplication and Division of Fractions

A. Lecture:

✓ To multiply and divide two fractions, make use of the following theories:

$$\frac{a}{b}, \frac{c}{d} = \frac{ac}{bd} \qquad \text{where} \quad b \neq 0, \quad d \neq 0$$

$$\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc} \qquad \text{where} \quad b \neq 0, \quad d \neq 0$$

B. Illustrations:

a. $\frac{3}{5} \cdot \frac{10}{21} = \frac{2}{7}$ \Rightarrow Dividing 3 & 21 by a 3 CF · Dividing 5 & 10 by 5

b.
$$\frac{8x^3}{9y^2} \div \frac{4x^2}{3y} = \frac{8x^3}{9y^2} \cdot \frac{3y}{4x^2} = \frac{2x}{3y}$$

c.
$$\frac{x^2-1}{x-1} \div (x+1) \Rightarrow \frac{(x+1)(x-1)}{(x-1)} \cdot \frac{1}{(x+1)} = 1$$

C. Examples:

Problem #1:

$$\frac{x^{2}y - xy}{y^{2} - 1} \cdot \frac{y^{3} + y^{2}}{x^{3} - x^{2}} \div \frac{y^{2}}{y - 1}$$

$$= \frac{xy(x - 1)}{(y + 1)(y - 1)} \cdot \frac{y^{2}(y + 1)}{x^{2}(x - 1)} \cdot \frac{y - 1}{y^{2}} = \frac{y}{x}$$

Problem #2

$$\frac{x^4 - 16}{x^3 - 64} \cdot \frac{x^2 + 4x + 16}{x^4 - 5x^2 + 4} \div \frac{x^3 + 4x}{x^3 - 3x^2 - 4x}$$

$$= \frac{(x^2 + 4)(x + 2)(x - 2)}{(x - 4)(x^2 + 4x + 16)} \cdot \frac{x^2 + 4x + 16}{(x - 2)(x + 2)(x + 1)(x - 1)} \cdot \frac{x(x + 1)(x - 4)}{x(x^2 + 4)}$$

$$= \frac{1}{x - 1}$$

Problem #3:

$$\frac{y^3 - 27}{9y - y^3} \div \frac{y^4 + 3y^3 + 9y^2}{y^4 + 3y^3}$$

$$= \frac{(y - 3)(y^2 + 3y + 9)}{y(3 - y)(3 + y)} \cdot \frac{y^3(y + 3)}{y^2(y^2 + 3y + 9)} = -1$$

D. Self-Evaluation:

Solve the following problems:

1.
$$\frac{16a^2b^4c^3}{27a^4c^2} \div \frac{8b^2c^3}{9a^2c^3}$$

$$2. \ \frac{xy-x^2}{x^2} \div \frac{xy-y^2}{y^2}$$

3.
$$\frac{4x^3 - 4x^2 + x}{8x^2 - 4x} \div \frac{4x^3 - 2x^2}{4x^3}$$
 4.
$$\frac{x^4 - 27x}{x^2 - 6x + 9} \div \frac{x^3 + 3x^2 + 9x}{x^2 - 9}$$

4.
$$\frac{x^4-27x}{x^2-6x+9} \div \frac{x^3+3x^2+9x}{x^2-9}$$

5.
$$\frac{x^2 - y^2}{ax + bx - ay - by} \div \frac{ax - 2ay + bx - 2by}{x^2 + 3xy + 2y^2}$$