

University of British Columbia ELEC291/ELEC292

Lab 3: 555 timer and Capacitance Meter

Dr. Jesús Calviño-Fraga P.Eng.
Department of Electrical and Computer Engineering, UBC
Office: KAIS 3024

E-mail: jesusc@ece.ubc.ca Phone: (604)-827-5387

January 28, 2022

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised withou

Objectives

- · Lab 3 requirements.
- The 555 timer.
- Read capacitors.
- Measure Frequency
- Measure Period
- 32-bit unsigned integer arithmetic.

ELEC291/ELEC292 Lab 3

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Lab Requirements

- 555 Timer:
 - a) Test the 555 timer as an A-stable oscillator.
 - b) Use a 555 timer to measure capacitance:
 - Range: 1nF to 1μF. No decimal places required.
 - Display value using LCD.
 - Program AT89LP51RC2 using assembly language.

ELEC291/ELEC292 Lab 3

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

555 Timer astable (oscillator)

 $f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B)C}$

FIGURE 4. Astable

ELEC291/ELEC292 Lab 3

4

Information in BB2Scope Manual

555 Timer A-stable Oscillator

The picture of the bread-boarded circuit below shows a 555 timer configured as an A-stable oscillator (R1=R2=2.2k Ω ; C=0.1uF). The power for the 555 timer IC (approximately 5V) is obtained from the Gen2BB board +5V output. The schematic diagram of this circuit can be found here:

https://ohmslawcalculator.com/555-astable-calculator

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without

Information in BB2Scope Manual

The figure below was obtained while the 555 timer A-stable oscillator was connected to BB2Scope board. CH1 shows the output of the timer (IC pin 3), while CH2 shows the voltage at the timing capacitor (IC pin 2).

ELEC291/ELEC292 Lab 3

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Multisim 555 Timer Wizard

ELEC291/ELEC292 Lab 3

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Capacitor Types

- Ceramic. Small values, small size, good price, good tolerance (lowest around ±1%)
- Electrolytic. Large value, high tolerance (±10% minimum), don't age well, big size, very temperature sensitive.
- Tantalum. Large value, low voltage, small size, expensive, lowest tolerance around ±5%.
- Mica. Best capacitors ever! Lowest tolerance around ±0.5%. Very small values. VERY expensive, around 4\$ each!
- Polyester Film. Wide range values, inexpensive, good tolerance, price depends on tolerance and voltage rating
- Glass.

ELEC291/ELEC292 Lab 3

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

How to read Capacitor Codes

- Large capacitors have their values printed on them, for example 10μF, 50V, 85C.
- Most small capacitors use a three number code system:

ELEC291/ELEC292 Lab 3

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

П

How to read Capacitor Codes

• Tolerance is indicated by a letter after the value:

Е	± 0.5%
F	± 1%
G	± 2%
Н	± 3%
J	± 5%
K	± 10%
М	± 20%
N	± 30%
Р	+100% ,-0%
Z	+80%, -20%

If tolerance is not indicated assume it is 'Z': +80%, -20%.

ELEC291/ELEC292 Lab 3

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

How to read Capacitor Codes

- Examples:
 - 103J
 - $10 \times 10^3 \pm 5\% = 0.01 \mu F \pm 5\%$
 - -681
 - 68 x 10¹ +80%, -20% = 680pF +80%, -20%
 - -104Z
 - $10 \times 10^4 + 80\%$, $-20\% = 0.1 \mu F + 80\%$, -20%
 - 224M
 - $22 \times 10^4 \pm 20\% = 0.22 \mu F \pm 20\%$
 - 473K
 - $47 \times 10^3 \pm 10\% = 47 \text{nF} \pm 10\%$

ELEC291/ELEC292 Lab 3

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

13

Using the Kit Multimeter to Measure Capacitance

Marking says: 103

ELEC291/ELEC292 Lab 3

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Using a Counter to Measure Frequency

- By definition "frequency" in Hz is the number of pulses in one second, so:
 - 1) Set up the counter to count pulses in one of the pins in the microcontroller.
 - 2) Reset the counter to zero.
 - 3) Enable the counter.
 - 4) Wait one second.
 - 5) Disable the counter. The counter register (THx, TLx) has the frequency in Hz!

ELEC291/ELEC292 Lab 3

15

Freq_RC2.asm

· Available on Canvas

ELEC291/ELEC292 Lab 3

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Measure Period Using a Timer in the 8051

- We can measure the period of a wave in integer numbers of the timer clock period.
 Some math may be required!
- Works quite well for slow signals.
- Measuring period is way faster than measuring frequency.

ELEC291/ELEC292 Lab 3

© Jesús Calvíño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Measure Period Using a Timer in the 8051

- To measure period we have to:
 - 1) Set up the timer.
 - 2) Connect the signal to be measured to <u>any</u> available pin. Also, set the pin as input.
 - 3) Reset the timer to zero.
 - 4) Wait for the input signal to transition from zero to one.
 - 5) Start the timer.
 - 6) Wait for the input signal to transition from zero to one.
 - 7) Stop the timer! The timer SFRs (THx, TLx) have the period in timer-input-period units!

ELEC291/ELEC292 Lab 3

20

32-bit Arithmetic Library Math32

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

- Math32.asm has the following functions:
 - Hex2bcd: Converts the 32-bit binary number in 'x' to a 10-digit packed BCD in 'bcd' using the double-dabble algorithm. Largest BCD possible is 4,294,967,295.
 - Bcd2hex: Converts the 10-digit packed BCD in 'bcd' to a 32-bit binary number in 'x'. Largest hex number is 0xffffffff.
 - add32: x = x + y
 - sub32: x = x − y
 - mul32: x = x * y
 - **div32**: x = x / y
 - x_lt_y: mf=1 if x < y (mf is a bit)
 - **x** gt y: mf=1 if x > y
 - x_eq_y: mf=1 if x = y
 - x_gteq_y: mf=1 if x >= y
 - x_lteq_y: mf=1 if x <= y</p>
 - xchg_xy: exchange x and y
 - copy_xy: copy x to y
- Math32.asm has the following macros:
 - Load_X or Load_Y: load x or y with a 32-bit constant

ELEC291/ELEC292 Lab 3

22

Math32 Test Program

- Mathtest.asm shows how to:
 - Define the x, y, bcd, and mf variables.
 - Include the math32 library in your program.
 - Use the Load_X and Load_X macros.
 - Convert a binary to BCD using bin2bcd and display it using the LCD.
 - Use the add32, sub32, mul32, and div32 functions.
 - Evaluate a formula using only integers.

ELEC291/ELEC292 Lab 3

23

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Warning: You are using integer arithmetic!

$$Vout = \frac{ADC}{\left(2^{10} - 1\right)} \times V_{REF} = \frac{ADC}{1023} \times 410$$
 Formula we want to calculate

Suppose ADC=612, compute Vout

$$Vout = \frac{612}{1023} \times 410$$
 Wrong!
Vout=(612/1023) x 410 = (0) x 410 =0

Vout=(612 x 410) / 1023 = (250920) /1023 = 245 | Right!

ELEC291/ELEC292 Lab 3

24

Final Remarks

- Lab 3 is an excellent starting point for project 1!
- Copy 16-bit timer count to 32-bit x:

```
mov x+0, TL2
mov x+1, TH2
mov x+2, #0; load high bits with zero
mov x+3, #0; load high bits with zero
```

ELEC291/ELEC292 Lab 3

© Jesús Calviño-Fraga, 2009-2022. Not to be copied, used, or revised without explicit written permission from the copyright owner.