An Integrated trust and reputation model for open multi-agent systems

A paper by Trung Dong Huynh, Nicholas R. Jennings & Nigel R. Shadbolt (2006)

Jaspreet Singh & Daniël Stekelenburg

Overview

- 1. Terminology
- 2. The FIRE Model
- 3. Results
- 4. Conclusions

.. an open MAS?

"...systems in which agents can freely join and leave at any time and where the agents are owned by various stakeholders with different aims and objectives."

.. an open MAS?

"...systems in which agents can freely join and leave at any time and where the agents are owned by various stakeholders with different aims and objectives."

This causes some uncertainties:

- 1. Agents tend to be self-interested and may be unreliable
- No agent can know everything about the environment
- 3. No central authority can control everything

Sources of trust/reputation

Source	Туре
Direct experience Witness experience Role-bases rules Third-party references	Interaction trust Witness reputation Role-based trust Certified reputation

Fire

Uses all four sources of information

Works, based on the following assumptions:

- Agents are willing to share their experiences with others (as witnesses or as referees)
- Agents are honest in exchanging information with one another.

Fire

Uses all four sources of information

Works, based on the following assumptions:

- Agents are willing to share their experiences with others (as witnesses or as referees)
- Agents are honest in exchanging information with one another.

So... we do not consider the problem of lying and inaccuracy.

How to quantify trust/reputation?

The old way

Just take the average of all the ratings.

How to quantify trust/reputation?

The old way

Just take the average of all the ratings.

However... these ratings are not equally relevant:

- Older ratings might not be as relevant as new ones
- Some ratings are more credible than other depending on the source

So in what other way can we quantify trust?

The FIRE way

Every rating is a tuple r = (a, b, c, i, v).

Where a and b are the agents participating in transaction i. Value $v \in [-1, +1]$ is the rating given by agent a to agent b regarding regarding topic c (e.g. quality, honesty).

These ratings are stored in the agent's local database.

The FIRE way

Every rating is a tuple r = (a, b, c, i, v).

Where a and b are the agents participating in transaction i. Value $v \in [-1, +1]$ is the rating given by agent a to agent b regarding regarding topic c (e.g. quality, honesty).

These ratings are stored in the agent's local database.

Since ratings become outdated over time, an agent only stores the latest ${\cal H}$ transactions it gave to other agents.

The FIRE way

Use a rating weight function ω_K for every type of trust, where $K \in \{I, R, W, C\}$.

The FIRE way

Use a rating weight function ω_K for every type of trust, where $K \in \{I, R, W, C\}$.

This gives us:

$$\mathcal{T}_K(a, b, c) = \frac{\sum_{r_i \in \mathcal{R}_K(a, b, c)} \omega_K(r_i) \cdot v_i}{\sum_{r_i \in \mathcal{R}_K(a, b, c)} \omega_K(r_i)}$$
(1)

The FIRE way

$$\mathcal{T}_K(a,b,c) = \frac{\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i) \cdot v_i}{\sum_{r_i \in \mathcal{R}_K(a,b,c)} \omega_K(r_i)}$$
(2)

What about reliability

