Movie Genre Prediction

- Milestone 1

Group 2: Charles, Giffin, Jon G, Canxiu

Problem Definition: Movie Genre prediction

The problem is supervised text classification, and our goal is to investigate which supervised machine learning methods are best suited to solve it.

Given a new movie information (overview, company, director, budget, ...), we want to assign it to one of top genres. The classifier makes the assumption that each new movie is assigned to at least one dominant genres. This is multi-label classification problem.

Input: Overview (Text) + other supporting features (Numerical)

Output: Genre

Initial Data Exploration

Link to dataset:

https://www.kaggle.com/datasets/juzershakir/tmdb-movies-dataset?select=tmdb movies data.csv

The dataset contains observations of 10k+ movies like title, popularity, budget, revenue, cast, director, tagline, keywords, **overview**, **genres**, release date, runtime etc.

- Clean and pre-processing 'overview'
- Upto 5 Genres per movie and thousands of combination. Parse Genre column into five columns for further analysis
- Split the data 80/20

#	Column	Non-Null Count	Dtype
0	id	8693 non-null	int64
1	imdb_id	8684 non-null	object
2	popularity	8693 non-null	float64
3	budget	8693 non-null	int64
4	revenue	8693 non-null	int64
5	original_title	8693 non-null	object
6	cast	8642 non-null	object
7	homepage	2358 non-null	object
8	director	8658 non-null	object
9	tagline	6413 non-null	object
10	keywords	7525 non-null	object
11	overview	8689 non-null	object
12	runtime	8693 non-null	int64
13	genres	8675 non-null	object
14	production_companies	7872 non-null	object
15	release_date	8693 non-null	object
16	vote_count	8693 non-null	int64
17	vote_average	8693 non-null	float64
18	release_year	8693 non-null	int64
19	budget_adj	8693 non-null	float64
20	revenue_adj	8693 non-null	float64
21	genres_1	8675 non-null	object
22	genres_2	6795 non-null	object
23	genres_3	4044 non-null	object
24	genres_4	1564 non-null	object
25	genres_5	410 non-null	object

Text Cleaning

Movie: The Hunger Games: Mockingjay - Part 2

Overview:

With the nation of Panem in a full scale war, Katniss confronts President Snow in the final showdown. Teamed with a group of her closest friends $\tilde{A} \not e \hat{a}$, $\neg \hat{a} \not e \hat{c}$ including Gale, Finnick, and Peeta $\tilde{A} \not e \hat{a}$, $\neg \hat{a} \not e \hat{c}$ Katniss goes off on a mission with the unit from District 13 as they risk their lives to stage an assassination attempt on President Snow who has become increasingly obsessed with destroying her. The mortal traps, enemies, and moral choices that await Katniss will challenge her more than any arena she faced in The Hunger Games.

Data preprocessing steps by using spacy:

- Remove accent characters
- Expand contractions
- Remove special characters
- Remove stop words

NLP Pre-processing: Lemmatization and Part-of-speech (POS) tagging

New columns:

- 1. Overview_lemma; Overview_nouns; Overview_adjectives; Overview_verbs and Overview_nav
- 2. No tokens
- 3. Overview_person; Overview_org; Overview_date; Overview_time; Overview_money and overview_gpe

NLP Pre-processing - Named Entity Recognition

- Person
- Organization
- Date, Time
- Money
- Geopolitical entity

Define scope: Narrow down to top 10 genres

Data Exploration - ROI and Genre

Data Exploration - Explore important features related to Genres

Data Exploration - Explore important features related to Genres

ANOVA For 'Budget' and Genre Columns

```
ANOVA results for genres 1:
                           df F
                                               PR(>F)
                 sum sq
C(genres 1) 6.914923e+17 19.0 42.760898 1.423597e-152
Residual
           7.366378e+18 8655.0
                                    NaN
                                                  NaN
ANOVA results for genres 2:
                           df
                                              PR(>F)
                 sum sq
C(genres 2) 4.754949e+17
                         19.0 24.454908 1.678480e-83
Residual
           6.933229e+18 6775.0
                                    NaN
                                                 NaN
ANOVA results for genres 3:
                           df
                                              PR(>F)
                 sum sq
C(genres 3) 3.085076e+17 19.0 11.667588 1.947609e-35
Residual 5.600014e+18 4024.0
                                    NaN
                                                 NaN
ANOVA results for genres 4:
                 sum sq df
                                    F
                                            PR(>F)
C(genres 4) 1.503698e+17 19.0 4.77677 5.693018e-11
Residual
           2.558114e+18 1544.0
                                  NaN
                                               NaN
ANOVA results for genres 5:
                        df
                                    \mathbf{F}
                                         PR(>F)
                 sum sq
C(genres 5) 4.075705e+16
                         18.0 1.129875
                                       0.320091
Residual
           7.835680e+17 391.0
                                  NaN
                                           NaN
```

ANOVA For 'Popularity' and Genre Columns

```
ANOVA results for genres 1:
                           df
                sum sq
                                              PR(>F)
                         19.0 21.47669 6.684103e-73
C(genres 1) 405.888959
Residual
            8609.012900 8655.0
                                    NaN
                                                 NaN
ANOVA results for genres 2:
                           df
                                               PR(>F)
                sum sq
                         19.0
C(genres 2) 239.451115
                               10.412953 2.981967e-31
Residual
            8199.713423 6775.0
                                     NaN
                                                  NaN
ANOVA results for genres 3:
                           df
                                              PR(>F)
                sum sq
C(genres 3) 226.894664
                          19.0
                               7.226218 1.443606e-19
Residual
            6649.937577 4024.0
                                    NaN
                                                 NaN
ANOVA results for genres 4:
                           df
                                          PR(>F)
                sum sq
             99.488065
                         19.0
                               2.479652
                                         0.000399
C(genres 4)
Residual
            3260.423445 1544.0
                                    NaN
                                             NaN
ANOVA results for genres 5:
                          df
                                    F
                                        PR(>F)
                sum sq
C(genres 5) 23.128089 18.0 1.988585
                                       0.009611
Residual
            252.638728 391.0
                                  NaN
                                           NaN
```

ANOVA For 'Revenue' and Genre Columns

```
ANOVA results for genres 1:
                              df
                                                   PR(>F)
                  sum sq
C(genres 1) 6.152287e+18
                            19.0 24.944903
                                             5.406090e-86
Residual
            1.123487e+20 8655.0
                                        NaN
                                                      NaN
ANOVA results for genres 2:
                              df
                                                   PR(>F)
                  sum sq
C(genres 2) 4.403851e+18
                            19.0
                                 14,500926
                                             2,228284e-46
            1.082911e+20
Residual
                          6775.0
                                        NaN
                                                      NaN
ANOVA results for genres 3:
                              df
                                                  PR(>F)
                  sum sq
C(genres 3) 3.341307e+18
                            19.0 7.760037 1.915735e-21
Residual
            9.119206e+19
                          4024.0
                                       NaN
                                                     NaN
ANOVA results for genres 4:
                              df
                                                  PR(>F)
                  sum sq
C(genres 4) 1.984719e+18
                            19.0
                                 4.068595 9.572616e-09
Residual
             3.964133e+19
                          1544.0
                                       NaN
                                                     NaN
ANOVA results for genres 5:
                             df
                                             PR(>F)
                  sum sq
                           18.0 2.284664
C(genres 5) 8.039354e+17
                                           0.002159
Residual
            7.643692e+18
                          391.0
                                      NaN
                                                NaN
```

Genre_1 tokenization based on Overview_lemma

Next steps

Solve Multi-label classification problem by using problem transformation methods to transform the multi-label problem into a set of binary classification problems, which can then be handled using single-class classifiers.

genres	
Drama Adventure Science Fiction	Horror: 0.02%
Family Animation Adventure Comedy	Romance: 0.02%
Comedy Animation Family	Adventure: 99.96%
Action Adventure Crime	
Science Fiction Fantasy Action Adventure	Documentary: 0.0%

Feature engineering for consideration:

- 1. Counting methods (Bag of Words, Bag-of-ngram and TF-IDF)
- 2. Word Embedding model (Word2Vec, GloVe and fasttext)
- 3. Language model (BERT)
- 4. Topic model (LDA/LSI)
- 5. Document Clustering with Similarity Features