食品微生物学

微生物的定义与特性

雷晓凌

微生物 无处不在

O horizon

-Layer of under plant materia

A horizon

Surface soil (organic matter in color, is tille agriculture; p and microorg grow here; m activity high)

B horizon

Subsoil (mine humus, and sileached from surface accur here; little org matter; micro activity lower than at A hori

Chorizon

Soil base (ded directly from underlying be microbial active generally very

微生物与食品的关系

制造食品

食品腐败变质

食物中毒

食品微生物学(Food microbiology)

◆食品微生物学(着重基础): 研究食品中的微生物及其生命 活动规律的一门科学。 ◆食品微生物学(着重应用):
研究微生物在食品腐败、食源性疾病和食品生产上的作用和控制。

食品微生物学:研究食品中的微生物及其生命活动规律,以及微生物在食品生产和食品质量安全上的作用与控制的学科。

◎什么是微生物?

1、微生物的定义

微生物 (microorganism or microbe):

指所有形体微小,具有单细胞或简单多细胞结构,或没有细胞结构的一群最低等生物。

原核类:细菌,放线菌,古菌,蓝细菌,

支原体, 立克次氏体, 衣原体

真核类:真菌(酵母菌,霉菌),原生动物,

显微藻类

非细胞类:病毒,类病毒,朊病毒

微生物细胞。

(a)平板上培养的发光细菌;

b)2mm单个菌落含有超过10⁷个细胞;

(c)扫描电镜观察的发光细 菌细胞

(b) Virus Types

(a)细胞型 原核生物

真核生物

(b)病毒型

The diversity of the microbial world.

微生物有什么特性?

2、微生物的特性

微生物

个体结构非常简单,多数是单细胞,能独立生存。

高等生物

许多细胞组成,细胞有功能分工,互相依赖,难以独立生存。

生物由细胞构成。

植物和动物是由非常多细胞构成。如人体约由1800万亿个细胞组成。

微生物多数是单细胞。

(1) 体积小, 比面积大

- *微生物细胞大小: 0.5~10 μm
- *动物细胞大小: 20~30 μm
- *植物细胞大小: 10~100 μm

- *微生物的个体极其微小,比表面积极大,与外界物质交换能力极 强。
- *微生物的其他特性均与此特性密切相关。

动植物和微生物 与外界物质交换方式

动物、植物由特定细胞与外界进行物质交换

(2) 种类多,分布广

记载的微生物仅约20万种(1995年),远较动植物少。

种类多

据估计实际存在微生物总数约在50万至600万种。

种类多一分布广

营养要求不同:无机物、有机物甚至是有毒物质均可。生长条件不同:低温、高温;

有氧、无氧;酸性、碱性均可。

食品: 酸奶、奶酪、面包、酒等。

药物: 抗生素、维生素等

水、土、气

各种自然环境

食品

新鲜食品 腌制食品 干制食品

动植物体内体表

与外界接触部分

极端环境

高温、低温、 极酸、极碱、 盐湖等

微生物无处不在,对人类和自然界的影响非常重要。

地球内外微生物数量分布

栖息地	总百分比/%		
海洋下面	66		
陆地下面	26		
表层土壤	4.8		
海洋	2.2		
其他栖息地	1.0		

表 1 已分离的极端嗜压微生物

Table 1 Examples of culturable obligately piezophilic microorganisms

菌株 Strain	分离地点 Separation site	分离时间 Separation time	最适压力 Optimum pressure (MPa)	最适温度 Optimum temperature (°C)
Colwellia sp. MT41 ^[10]	马里亚纳海沟	1981	103.0	2
Moritella yayanosii DB 21MT-5 ^[11]	马里亚纳海沟	1998	80.0	10
Shewanella benthica DB 21MT-2 ^[11]	马里亚纳海沟	1998	70.0	10
Colwellia hadaliensis BNL-1 ^[12]	波多黎各海沟	1988	92.5	10
Shewanella sp. DB 172F ^[13]	Izu-Bonin trench	1996	70.0	10
Shewanella sp. PT48 ^[14]	菲律宾海沟	1986	62.0	3
Shewanella sp. PT99 ^[14]	菲律宾海沟	1986	62.0	3
Pyrococcus yayanosii CH1 ^[15]	Mid-Atlantic Ridge	2009	52.0	98

胃(pH2, 10⁴细胞/g)

小肠(pH4-5, 10⁸细胞/g)

大肠(pH7, 10¹¹细胞/g)

(a)

人的胃肠道

(3) 繁殖快, 代谢强

繁殖快

细菌繁殖速度为20~30 min/代。

酵母菌繁殖速度为60~120 min/代。

细菌:大肠杆菌(E. coli)适合条件下为 $12\sim20 min/代,为分裂繁殖, n 代为<math>2^n$ 。

一个细胞经24 h繁殖后,应该为2⁷²,即大约4.7×10²²个细胞。 实际上液体中的浓度仅达10⁸~10⁹个/mL。

繁殖快

吸收营养物质快,合成细胞物质快,才能繁殖快。

实例

- ①酸奶发酵: 40~45℃, 3~5 h, 菌体数量从10³~10⁴个/mL, 升到10⁶~10⁷个/mL。
- ②虾变质: 28℃,6~8 h,菌体数量 从104~105个/g,升到107~108个/g

代谢强

分解合成能力强,利用营养物质转 化为细胞物质或代谢产物能力强。

实例

- ①酸奶发酵:将乳糖或蔗糖转化为乳酸,使pH 从6.3下降至4.1~4.4,转化能力强。
- ②虾变质:将蛋白质转化为挥发性盐基氮、胺等产物,分解能力强。

(4) 易变异, 适应强

适应强

自发突变率为10-5~10-10, 繁殖快,变异发生率较高。

极易受到环境的影响而发生 变异,适应环境的变化。

例子:

- ①海洋真菌,进入海洋可能发生变异,适应海洋环境。
- ②"超级细菌",人畜禽使用多种抗生素,经受过多种抗生素 能生存下来的细菌就成为"超级细菌"。

变异因素:环境突然变化,条件极端等,变异率提高。

变异:引起基因突变,致突变物质也常常是致癌物。

应用:

诱变育种:提高微生物的代谢产物产量等。

致癌物或污染物检验: Ames试验(污染物致突变性检测),

用沙门氏菌进行检测。

微生物特性

- (1) 体积小, 比面积大
- (2) 种类多,分布广
- (3) 繁殖快,代谢强
- (4) 易变异,适应强

利与弊

- 1、什么是微生物,微生物包括哪些类群?
- 2、简述微生物的特性?
- 3、试根据微生物的特性,谈谈为什么说微生物既是人类的敌人, 更是人类的朋友?

网络: "超级细菌"