Project Work in Machine Learning: M5 Competition

Michele Vece

Summary

1.1: M5 Competition

1.2: M5 Competition

1.3: M5 Competition

1.4: M5 Competition

2: Main challenges

01

Amount of data

Feature Engineering:

- high-level features on aggregated data
- · divide in subsets
- low-level features on each subset.

Model implementation:

- · divide in subsets
- train a different model on each subset

Here:

- Split data wrt state
- FE
- Split date wrt store training

02

Cross correlation

Similarities among different timeseries:

- same store, different department
- same department, different store

How to split data?

subsets that share some common behaviour may be separated 03

Sales intermittency

Are zero sales real?

· out-of-stock

Solution n. 1:

- predict sales
- predict out-of-stock probability

Solution n. 2:

 objective function that works well with nonnegative right-skewed distributions 04

Prediction Atomicity

Atomicity:

- · product-level
- · daily basis

Error-prone:

 easier to make errors than on aggregated data

Overall score:

 takes into account errors at different levels of aggregation 05

Horizon, Recursion

General rule:

 latest days have higher predictive power

Recursive data:

- · fresh data
- may contain error

Non recursive data:

- · less recent
- ground truth

3 models:

- a model per <u>all</u> weeks
- a model per <u>each</u> week
- recursive model

3: Other solutions

4: Proposed solution

4.1: Preprocessing

Calendar Sales **Prices** Historical unit sales **Dates 1 - 1969** Prices for each item, store date id wm_yr_wk item_id weekofmonth dept_id store_id weekofyear item_id cat_id dayofweek store_id wm_yr_wk dayofmonth state_id sell_price dayofyear d_1 month, year event_name_1 d_1941 event_type_1 snap_CA snap_TX snap_WI

4.2: Data Exploration

4.3: Feature engineering

Prices

Sales (1, 2)

Sales (3)

Prices

- price_last_week
- price_next_week
- price_same_dept
- price_mean
- price_std

Recursive / Non recursive

- rolling_mean_ dayofweek
- rolling_mean_7_28
- rolling_mean_28_28
- rolling_mean_28_90
- rolling_mean_28_180
- rolling_mean_28_465

Average sales

- avg_item_store
- std_item_store
- avg_item_state
- avg_dept_store
- avg_dept_state
- avg_snap
- avg_event
- avg_weekofmonth
- n_items

4.4: Model implementation

4.5: How recursive predictions work

4.6: Submission and results

