Calc 3 18.10.ZI Ex Find the points on the sphere

x2+y2+z2=4 closest to and

furthest from (3,-1,1) Litiging te optimize distance Subject to sphere optimize $f(x,y)=(x-3)^2+(y+1)^2+(z-1)^2$ subject to $x^2+y^2+z^2=4$ $f(x,y,z) = x^{2} - 6x + 9 + y^{2} + 2y + 1 + z^{2} - 2z + 1$ $(x^{2} + y + z^{2}) = (-11) + 6x - 2y + 2z$ So we will work with $F(x,y,z) = f(x,y,z) - \lambda g(x,y,z)$ $2-2\lambda z g(x,y,z)$ $7F = (-6-2\lambda x, 2-2\lambda y) f(x^2 + y^2 + z^2 y)$ $6-2\lambda x = 0$ $2-2\lambda z = 0$ $2-2\lambda z = 0$ Observe $\lambda = \pm \sqrt{11}$ $\sqrt{x^2 + y^2 + z^2 - 4} - \sqrt{4}$ $\sqrt{x^2 + y^2 + z^2} - \sqrt{4}$ (2,2,3)) Now, there is two cases (2 pts) B= (+6, -2, 2)

D. M. Y

8 6

gwithout lid Exercise: A box is to be built with surface area 12. What's the maximum Double Integrals (15.1) Idea " We have functions of mysen Several variables, What should it mean to integrate them? In Calc I: Area under the curve 0 antider ivitine In Calc III: Am The definite integral of Four region R should be the "net volume" of form R SofdA = volume dable is respect to Area region loday > R is as simple as possible (Ris a rectangle) R R = [a, b] [c, d]Fixing 6 = {(x, y) | x = [a, 6], y ∈ [c,d]} 66 Using the same trick form f(x, y) calcI, we can approx. Be Var function the volume over B by Using left lower corner points to determine height of boxes via S(corner point)

Good: Use calcules I to solve SIR fdA SSR SJA > SX SV Theo Prop Furbini's Theorem: If f(x,y) is Cont on restangle R=[a6] [cd], the S(56 S(x,y)dx) dy = SSR & AA Exe Compute Spx xxc2(y) dA for R=(0,2]x[0,]] By Furbinis Theorem

Sulf x see 2(y) dx) dy

y=0 x=8 (= Sec (y) (x dx) dy I Sec 2 dy

ex. Compute $S_R = 1 + x + y$ degree $S_R = 1 + x + y$ $S_R = 1 + x$ $= \frac{(14+x)^{2}}{(\ln(14+x)) - \ln(13+x)} \frac{1}{(\ln(3+x))} \frac{1}{(\ln(3+x-1))^{2}}$ $= (4+x) \ln(11+x) - (1) - (3+x) (\ln(3+x-1))^{2}$