

Aprendizagem Guiada para Análise Morfossintática usando Redes Neurais Recursivas

Marcos Vinícius Treviso marcos vtreviso@gmail.com

Orientador: Fábio Natanael Kepler Trabalho de Conclusão de Curso I

8 de julho de 2015

Universidade Federal do Pampa

Agenda da apresentação

Introdução

Fundamentação

Trabalhos relacionados

Metodologia

Cronograma

Referências

Introdução

- Part-of-speech (POS) Tagging
- O problema
- Objetivos

POS Tagging

É conhecido em Processamento de Linguagem Natural (PLN) como o ato de classificar uma palavra pertencente a um conjunto de textos em uma classe gramatical.

- Acurácia
- Aplicações
- Desafios

O problema

- Há muita ambiguidade no português
- Estratégia trivial não é eficaz
- É necessário analisar o contexto
- Aprendizado de máquina

Objetivos

- Novo método para POS Tagging
 - A príncipio para o português brasileiro
- Estado da arte
 - Novas técnicas
 - Novas abordagens
- Análise de eficiência
 - Acurácia
 - Tempo de treinamento

Fundamentação

- Aprendizado de máquina
- Córpus
- Representação das palavras
- Redes neurais
- Aprendizagem profunda

Aprendizado de máquina

- Aprendizado supervisionado
 - Regressão
 - Classificação
- Aprendizado não supervisionado

Córpus

- Coleções de textos agrupados
- Anotação gramatical manual
- Córpus para o português brasileiro:

Córpus	Sentenças	Palavras	Classes gramaticais
Mac-Morpho original	53,374	1,221,465	41
Mac-Morpho revisado ¹	49,932	945,958	26
Tycho Brahe	55,932	1,541,654	265

- Por que não combiná-los?

1. Revisado em: (FONSECA; ROSA; ALUÍSIO, 2015).

Representação das palavras

- Dados de entrada (features)
- Vetores reais valorados em um espaço multidimensional (word embeddings)
- Mais desempenho de aplicações em PLN e menos engenharia de features
- Conseguem capturar informações sintáticas e semânticas
- Geradas de maneiras diferentes dependendo da técnica utilizada

Técnicas para geração de word embeddings

- Matriz de coocorrência
- Neural Language Model (NLM): Através de redes neurais
- Hyperspace Analogue to Language (HAL): Matriz de coocorrência com um método de decomposição (Escalamento Multidimensional)
- Modelação *Skip-Gram* (SG): Previsão de palavras vizinhas num conjunto de tamanho finito.
- Global Vectors (GloVe): Razão das probabilidades na matriz de coocorrência em relação ao contexto de uma outra palavra do vocabulário.

 $W: word \rightarrow \mathbb{R}^n$

Técnicas para geração de word embeddings

- Palavras similares estão próximas.

Fonte: Turian, Ratinov e Bengio (2010)

Redes neurais

- Simulação do cérebro humano
- Unidades de ativação: $a_i^{(j)}$
- Pesos: $\theta^{(j)}$
- Função de ativação: g(z)
- Parâmetros: $z^{(j+1)} = \theta^{(j)} a^{(j)}$

Redes neurais

- Processo de aprendizagem:

Fonte: Ng (2015)

14

Redes neurais

- Processo de aprendizagem:

Fonte: Ng (2015)

Aprendizagem profunda

- Muitas tranformações não lineares
- Objetivo de aprender automaticamente boas features
- Crescimento do desempenho computacional
- Redes neurais com múltiplas camadas

Adaptade de: Bengio, Goodfellow e Courville (2015)

Trabalhos relacionados

• Escopo do português brasileiro

Autores	Modelo	Representação das palavras	Córpus
Kepler (2005)	VLMM	Sequência de caracteres	Tycho Brahe
Santos e Zadrozny (2014)	Redes neurais profundas	Vetores (CharWNN)	Tycho Brahe; Mac-Morpho
Fonseca, Rosa e Aluísio (2015)	Redes neurais	Vetores (NLM, HAL, SG)	Tycho Brahe; Mac-Morpho
Este trabalho	Redes neurais recursivas	Vetores Vetores (NLM, SG, GloVe)	Tycho Brahe; Mac-Morpho

- Estado da arte com 97,57% de acurácia para todas palavras (FONSECA; ROSA; ALUÍSIO, 2015)
- Estado da arte com 94,34% de acurácia para palavras fora do vocábulario (FONSECA; ROSA; ALUÍSIO, 2015)

Metodologia

- Representação das palavras
- Pontuações para estrutura gramatical
- Treinamento

Representação das palavras

- Técnicas:
 - NLM
 - SG
 - GloVe

$$w_i \in \omega \to v_i \in \mathbb{R}^d$$

 $c_i \in \gamma \to z_i \in \mathbb{R}^d$

- Capitalização
- Prefixos

Pontuações para estrutura gramatical

- Janela de palavras com tamanho t:

$$V_n = \{v_{n-(t-1)/2}, ..., v_n, ..., v_{n+(t-1)/2}\}$$

- Pontuações para estrutura gramatical:

$$s_c(V_n)$$
 $A_{c.d.e}$

- Pontuação final para w_i^t dado c_1^t :

$$S(w_1^t, c_1^t) = \sum_{k=1}^t \left(rg \max_{1 \leq i \leq t, i
otin Q} (s_{c_i}(V_i) + A_{c_{i-1}, c_i, c_{i+1}})
ight)$$

Treinamento

- Treinamento supervisionado
- Rede neural recursiva
- Aprendizagem guiada por palavras mais fáceis (SHEN; SATTA; JOSHI, 2007)

- Composição dos vetores:

$$v_n = v_n + z_c$$

21

Treinamento

Treinamento

- Ajustamentos feitos para maximizar:

$$\sum_{(w_1^t,c_1^t)\in\phi}P(c_1^t|w_1^t,\theta)$$

- Função de custo:

$$J(\theta) = log\left(\sum_{u_1^t \in \gamma^t} e^{S(w_1^t, u_1^t)}\right) - S(w_1^t, c_1^t)$$

- Gradiente Descendente, Gradiente Descendente Estocástico, Adagrad, Adadelta, etc. (BENGIO; GOODFELLOW; COURVILLE, 2015)

Cronograma

- A1 Implementação do modelo neural recursivo
- A2 Treinamento do modelo
- A3 Avaliação dos resultados obtidos
- A4 Escrita da monografia

	Agosto	Setembro	Outubro	Novembro	Dezembro
A 1	X	Χ	Χ		
A2		X	X	X	
A3			Χ	X	X
A4				Χ	Χ

Referências I

BENGIO, Y.; GOODFELLOW, I. J.; COURVILLE, A. Deep learning. Book in preparation for MIT Press. 2015. Disponível em:

http://www.iro.umontreal.ca/~bengioy/dlbook. 16, 23 FONSECA, E. R.; ROSA, J. L. G.; ALUÍSIO, S. M. Evaluating word embeddings and a revised corpus for part-of-speech tagging in portuguese. *Journal of the Brazilian Computer Society*, Springer, v. 21, n. 1, p. 1–14, 2015.

9, 17

KEPLER, F. N. *Um etiquetador morfo-sintático baseado em cadeiasi de Markov de tamanho variável*. Tese (Doutorado) — Instituto de Matemática e Estatística da Universidade de São Paulo, 12/04/2005., 2005.

17

Referências II

```
NG, A. Course of Machine Learning. [S.I.], 2015. Disponível em: <a href="https://www.coursera.org/learn/machine-learning/">https://www.coursera.org/learn/machine-learning/</a>>. 14, 15
SANTOS, C. N. dos; ZADROZNY, B. Training state-of-the-art portuguese pos taggers without handcrafted features. In: Computational Processing of the Portuguese Language. [S.I.]: Springer, 2014. p. 82–93. 17
SHEN, L.; SATTA, G.; JOSHI, A. Guided learning for bidirectional sequence classification. In: CITESEER. ACL. [S.I.], 2007. v. 7, p. 760–767. 21
```

Referências III

TURIAN, J.; RATINOV, L.; BENGIO, Y. Word representations: a simple and general method for semi-supervised learning. In: ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. *Proceedings of the 48th annual meeting of the association for computational linguistics.* [S.I.], 2010. p. 384–394.

12

Aprendizagem Guiada para Análise Morfossintática usando Redes Neurais Recursivas

Marcos Vinícius Treviso

marcosvtreviso@gmail.com

Orientador: Fábio Natanael Kepler

8 de julho de 2015

Universidade Federal do Pampa

Redes neurais recursivas

- Grafo computacional parece como uma árvore
- Aplica-se transformações recursivamente
- Composição da saída com entrada

