KONKURS MATEMATYCZNY dla uczniów szkół podstawowych w roku szkolnym 2013/214

II stopień zawodów (rejonowy) 30 listopada 2013 r.

Propozycja punktowania rozwiązań zadań

Uwaga:

Za każde poprawne rozwiązanie, inne niż przewidziane w propozycji punktowania rozwiązań zadań przyznajemy maksymalną liczbę punktów.

Klucz punktowania zadań zamkniętych

Nr zadania	1	2	3	4	5	6	7	8
odpowiedź	D	C	A	C	A	D	В	C

Zadanie 9. (0-4 pkt)

Jacek wyjeżdżając na czterodniową wycieczkę zabrał ze sobą pewną kwotę pieniędzy. W pierwszym dniu wydał 30% posiadanej kwoty, w drugim o 6 zł mniej niż w pierwszym, a w trzecim połowę pozostałych pieniędzy. Na czwarty dzień zostało mu jeszcze 27 zł. Oblicz, jaką kwotę pieniędzy zabrał Jacek na wycieczkę. Zapisz obliczenia.

Rozwiązanie 1.

Z treści zadania wnioskujemy, że trzeciego dnia Jacek wydał 27 zł, czyli trzeciego i czwartego dnia wydał razem 54 zł.

Pierwszego i drugiego dnia wydał 60% posiadanej na początku kwoty minus 6 zł., zatem w trzecim i czwartym dniu pozostało mu 40% posiadanej kwoty plus 6 zł.

Na podstawie powyższych informacji wnioskujemy, że 40% posiadanej kwoty plus 6 zł jest równe 54 zł.

Stad 40% posiadanej kwoty jest równe 48 zł.

Obliczamy kwote, jaką Jacek zabrał na wycieczkę: 48:0,4=120 zł.

Odp. Jacek zabrał na wycieczkę 120 zł.

Sposób oceniania rozwiązania 1.

1 pkt – za ustalenie kwoty wydanej trzeciego dnia: 27 zł

1 pkt – za ustalenie kwoty wydanej pierwszego i drugiego dnia: 60% zabranej kwoty minus 6zł.

1 pkt – za ustalenie kwoty pozostałej na trzeci i czwarty dzień: 40% zabranej kwoty plus 6zł

1 pkt – za obliczenie kwoty zabranej na wycieczkę: 120 zł.

Rozwiązanie 2.

Jacek zabrał na wycieczkę x zł.

	wydatki	pozostało	
pierwszy dzień	30% <i>x</i>	x - 30%x = 70%x	
drugi dzień	30% <i>x</i> – 6	70%x - (30%x - 6) = 40%x + 6	
trzeci dzień	$\frac{1}{2}(40\%x+6) = 20\%x+3$	27	
czwarty dzień	27	0	

Uwaga:

Uczeń może zapisać zależności używając, zamiast oznaczeń procentowych, ułamków dziesiętnych lub zwykłych.

Zapisujemy równanie:

$$40\%x + 6 = 54$$

lub

20%x + 3 = 27, rozwiązujemy je i otrzymujemy liczbę 120.

Uwaga:

Uczeń może zapisać równanie: 30%x + 30%x - 6 + 20%x + 3 + 27 = x

Sposób oceniania rozwiązania 2.

1 pkt – za ustalenie kwoty jaka pozostała po pierwszym dniu wycieczki, np.: 70%x lub $\frac{7}{10}x$.

1 pkt – za ustalenie kwoty jaka pozostała po drugim dniu wycieczki, np.: 40%x+6 lub

$$\frac{4}{10}x + 6$$

1 pkt – za zapisanie równania $\frac{4}{10}x + 6 = 54$

lub

za ustalenie kwoty wydanej w trzecim dniu wycieczki, np. 20%x+3 i zapisanie równania: 20%x+3=27

1 pkt – za obliczenie kwoty zabranej na wycieczkę: 120 zł.

Zadanie 10. (0-4 pkt)

W trójkącie *LMK* boki *KL* oraz *KM* mają taką samą długość, a miara kąta *KLM* jest równa 72°. Przez punkt *N* leżący na boku *KM* poprowadzono prostą prostopadłą do boku *LM* trójkąta, która przecina prostą *KL* w punkcie *P* (zobacz rysunek). Oblicz miary kątów trójkąta *KNP*.

Przykładowe rozwiązanie

Z warunku zadania: |LK| = |MK| wynika, że trójkąt LMK jest równoramienny, więc $|\Box KLM| = |\Box LMK| = 72^{\circ}$.

Z sumy katów w trójkącie LQP mamy: $\Box LPQ = 180^{\circ} - 90^{\circ} - 72^{\circ} = 18^{\circ}$.

Z sumy kątów w trójkącie *QMN* obliczamy miarę kąta *QNM*: $|QNM| = 180^{\circ} - 90^{\circ} - 72^{\circ} = 18^{\circ}$.

Kąty *QNM* i *KNP* są kątami wierzchołkowymi, więc $|\Box KNP| = 18^{\circ}$.

Miarę kąta PKN można obliczyć z sumy kątów w trójkącie KNP: $|\Box PKN| = 180^\circ - 2 \cdot 18^\circ = 144^\circ$ lub

z sumy kątów w trójkącie *LMK* obliczamy $|\Box LKM| = 180^{\circ} - 2 \cdot 72^{\circ} = 36^{\circ}$, a następnie korzystamy z własności kątów przyległych do obliczenia miary kąta *PKN*: $|\Box PKN| = 180^{\circ} - 36^{\circ} = 144^{\circ}$.

Sposób oceniania

1 pkt – za ustalenie, że z własności trójkąta równoramiennego wynika równość kątów $\square KLM = \square LMK = 72^{\circ}$.

uwaga:

Uczeń nie musi zapisywać powyższej zależności. Punkt przyznajemy, gdy uczeń skorzysta z powyższej równości kątów w rozwiązaniu.

1 pkt – za obliczenie jednego z kątów: $\square QNM = 18^{\circ}$ lub $\square KPN = 18^{\circ}$.

1 pkt – za obliczenie dwóch kątów w trójkącie *KNP*, np. \square *KNP* $|=\square$ *KPN* $|=18^{\circ}$

1 pkt – za obliczenie miary wszystkich kątów w trójkącie KNP: $\Box KNP = \Box KPN = 18^{\circ}$ oraz $\Box PKN = 144^{\circ}$.

Zadanie 11. (0-4 pkt)

Drewniany klocek sześcienny pomalowano, a następnie rozcięto na 1000 jednakowych sześcianików. Z otrzymanych kostek zbudowano prostopadłościan o podstawie kwadratowej, układając kostki warstwami po 25 sztuk w ten sposób, że wszystkie pomalowane ścianki kostek położone są na powierzchni utworzonej bryły. Oblicz, ile niepomalowanych ścianek kostek znajduje się na powierzchni tego prostopadłościanu.

Rozwiązanie 1.

Liczba warstw w prostopadłościanie jest równa $1000 \div 25 = 40$. Prostopadłościan ma wymiary $5 \times 5 \times 40$.

Pomalowanych ścianek w sześcianie jest $6 \cdot 10^2 = 600$, wszystkich ścianek na powierzchni zbudowanego prostopadłościanu jest $4 \cdot 5 \cdot 40 + 2 \cdot 25 = 850$; stąd niepomalowanych ścianek jest 850 - 600 = 250.

Jest to różnica pól powierzchni obu brył.

Sposób oceniania rozwiązania 1.

- 1 pkt za obliczenie liczby pomalowanych ścianek w sześcianie 600 albo wysokości prostopadłościanu liczonej w kostkach 40.
- 1 pkt za obliczenie liczby pomalowanych ścianek w sześcianie 600 i wysokości prostopadłościanu liczonej w kostkach 40.
- 1 pkt za obliczenie liczby wszystkich ścianek występujących na powierzchni sześcianu 600 i prostopadłościanu 850.
- 1 pkt za obliczenie liczby niepomalowanych ścianek na powierzchni prostopadłościanu 250.

Rozwiązanie 2.

Liczba warstw w prostopadłościanie jest równa $1000 \div 25 = 40$. Prostopadłościan ma wymiary $5 \times 5 \times 40$.

Obliczamy liczbę kostek z pomalowanymi ściankami w sześcianie: pomalowane 3 ścianki: 8 kostek, pomalowane 2 ścianki: $12 \cdot 8 = 96$ kostek, 1 ścianka pomalowana: $6 \cdot 64 = 384$ kostki. Obliczamy liczbę kostek w prostopadłościanie: kostki narożne: 8, kostki przy krawędziach (bez kostek przy wierzchołkach): $4 \cdot 38 + 8 \cdot 3 = 176$, kostki na ścianach (bez kostek przy krawędziach): $4 \cdot 3 \cdot 38 + 2 \cdot 3 \cdot 3 = 474$. Można wyniki zebrać w tabelce:

	liczba kostek w sześcianie	liczba kostek w prostopadłościanie
3 ścianki pomalowane	8	8
2 ścianki pomalowane	96	176
1 ścianka pomalowana	384	474

Sześcianików z 3 pomalowanymi ściankami wystarczy, z 2 pomalowanymi ściankami zabraknie 176-96=80, z 1 pomalowaną ścianką zabraknie 474-384=90. Liczba niepomalowanych ścianek kostek na powierzchni prostopadłościanu jest równa $2\cdot80+90=250$.

Sposób oceniania rozwiązania 2.

- 1 pkt za obliczenie liczby kostek z pomalowanymi ściankami w sześcianie 8, 96, 384 albo wysokości prostopadłościanu liczonej w kostkach 40.
- 1 pkt za obliczenie liczby kostek z pomalowanymi ściankami w sześcianie 8, 96, 384 i wysokości prostopadłościanu liczonej w kostkach 40.
- 1 pkt za obliczenie liczby kostek z pomalowanymi ściankami w sześcianie 8, 96, 384 i w prostopadłościanie 8, 176, 474.
- 1 pkt za obliczenie liczby niepomalowanych ścianek na powierzchni prostopadłościanu: $2 \cdot 80 + 90 = 250$.