BİL 470 KRİPTOGRAFİ VE BİLGİSAYAR GÜVENLİĞİ

(08.01.2021)

Araştırma: OSI temel referans modelinin uygulama katmanında (katman 7), ağ katmanında (katman 3) ve taşıma katmanında (katman 4) kriptografik protokollerin uygulanmasının göreli avantajları ve dezavantajlarını araştırarak öneklerle karşılaştırmalı olarak açıklayın.

OSI Modeli

OSI modeli, İngilizce açılımı Open Systems Interconnection olup ağlar oluşturulurken türden ve donanımdan tamamen bağımsız noktalar arasındaki iletişimin nasıl ilerleyeceğine dair bir standart belirlemek için ISO tarafından geliştirilmiştir. Buradaki amaç, ağ mimarilerinin ve protokollerinin bir ağ ürünü bileşeni gibi kullanılmasını sağlamaktır.

7 katmandan oluşan bu modelde her bir katmanın görevi, bir üst katmana servis sağlamaktır. Standartlaşmış bu hiyerarşik model, ağ dizaynı ve yönetiminin daha kolay olmasını sağlar. Her katmanda çalışan protokoller ve bu protokollerin görevleri vardır.

OSI Avantajları:

- Ağ için gerekli donanım ve yazılımların belirlenmesini sağlar.
- Ağ boyunca gerçekleşen işlemlerin iletişimini ve anlaşılmasını sağlar.
- Hata ayıklamada oldukça yararlıdır.

Katman 3: Ağ Katmanı (Network)

Ağ katmanı, kısaca adresleme yapılan katmandır. Verinin varış noktasına giden en kısa, en uygun yolu bulmak için yönlendirme algoritmalarını kullanarak rota belirler. Bu rota yönlendiriciler tarafından kullanılacaktır. Kaynak ve hedef ağ adresleri (IP) dışında paketin toplam boyutu, TTL, servis tipi, versiyon, hata denetimi gibi bilgiler de bulundurmaktadır. Bu adresleme işlemi dinamik veya statik gerçekleştirilebilir. Mantıksal adreslerin fizikse adrese çevirimi yanı sıra ağ trafiği, yönlendirme, adres planlaması da yapılmaktadır. Uzaktan bağlanma bu katmana bağlıdır.

Güvenlik

Herhangi bir güvencesi ve güvence zorunluluğu yoktur. Açık bir IP adresine denk gelen özel bir adres ile saklama yolu, kapsamlı bir savunma çözümü getirir. Virtual Private Networking (VPN) varlığı, iletişimin şifrelendiği anlamına gelir fakat verinin şifrelendiği anlamına gelmez.

Dynamic Host Configuration Protocol (DHCP) Dinamik Ana Bilgisayar Yapılandırma Protokolü, yönetim kolaylığı, düşük insan hatası riski ve esnekliği olduğu için yaygındır. Ağın yetkisiz erişimden korunmasını sağlar. IP çakışmaları veya uzun oturumlar için DHCP uygun olabilir. DDoS saldırıları, kötü trafik olası risklerdir.

Katman 4: Taşıma/İletim Katmanı (Transport) ***

Taşıma/İletim katmanı, gelen verinin bölütler olarak taşındığı katmandır. Gelen veri, bölüt adı verilen parçalara bölünerek taşınır ve uçtan uca iletim sağlanmış olur. Diğer katmanlarda yapılan hata denetimlerinden sonra hata düzeltme işlemi burada gerçekleştirilir. Gönderici tarafında bölme işlemleri yapılırken, alıcı tarafında başlıktan servis nokta adresi okunarak yönlendirme yapılır ve veri bütünlüğü için sıralama ve toplama işlemleri yapılır. Bağlantıya Dayalı Servis'te alıcı, bir onay göndererek bölüt veya bölüt grubunun gönderildiğinden emin olur (TCP). Bağlantısız Servis ise onay gönderip cevap beklemediği için daha hızlıdır ama daha az güvenilirdir. (UDP)

Güvenlik

Bir bilgisayar sisteminin binlerce bağlantı noktası (port) vardır. Bu bağlantı noktaları 3 farklı kategoride sınıflandırılır: tanınmış (well-known), kaydedilmiş (registered) ve dinamik. Bu noktada güvenlik sağlanır. Örneğin trojanlar belirli TCP ve USP bağlantı noktalarını hedefler. Virüs tarama programları bu korumayı sağlar.

Genişletilmiş Üç Yönlü El Sıkışma, müzakere verilerini ve anahtar değişim verilerini sağlamak için geleneksel TCP el sıkışma tekniklerini genişletir.Durum Geçişi, yetkili aktarımları ayırt etmek için ana bilgisayar durumunu kullanan güvenli bir TCP yöntemidir. Veri bütünlüğü, bir saldırganın verileri değiştirip değiştirmediğini belirlemek için MAC (Mesaj Kimlik Doğrulama Kodu) aracılığıyla sağlanabilir. Veri gizliliği, şifreleme yoluyla elde edilebilir ve veri bütünlüğü ile aynı zamanda ele alınmalıdır.

Katman 7: Uygulama Katmanı (Application/Desktop)

İnsan-bilgisayar etkileşimini sağlayan, uygulamaların ağ servislerine ulaşabildiği katmandır. Son kullanıcıya en yakın katman olan uygulama katmanı, bilgisayar uygulamaları ile ağ arasında bir köprü görevi görerek ağın kullanılabilmesi için araçlar sunar. İletişim kuracağı bilgisayarın uygun olup olmadığını tespit eder, iletişimi senkronize eder. Diğer katmanlardan farklı olarak sadece bu katman servis **sağlamaz**. E-posta, veritabanı gibi uygulamaların yanında Microsoft API'leri bu katmanda çalışır.

Güvenlik

İletişimde bulunan kişiler, servis kalitesi ve verinin sözdizimi ile ilgili kısıtlamalar tanımlıdır, kullanıcı yetkilendirme ve gizlilik dikkate alınır. En yaygın kimlik doğrulama yöntemi kullanıcı adı ve şifre ikilisidir. Şifrenin uzunluğu, karmaşıklığı, ne sıklıkla değiştirildiği de güvenlik açısından önem arz eder. Windows 2000 ve üstünde kullanılan kimlik doğrulama protokolü <u>Kerberos</u>, zamana duyarlı bir protokoldür.

E-maillerde kullanılan Pretty Good Privacy (PGP) gibi şifreleme yöntemleri bu seviyede gerçeklenir. Çok katmanlı şifreleme kaynak tüketimini arttırsa da veri gizliliğini sağlamanın en iyi yollarındandır.

Bot gibi kötü amaçlı yazılımlara (malware) karşı antivirüs programları kullanılmalıdır.

OSI Modeli						
		Veri		Protokoller		
	Katman	Birimi	Ĭşlevi			
3.Ağ	Ortam	Paket/ Datagram	Çok düğümlü bir ağın, adreslendirme, yönlendirme (routing) ve trafik denetimi gibi süreçler kullanılarak yapılandırılması ve yönetilmesi.	AppleTalk, ICMP, IPsec, IPv4, IPv6, MPLS, ARP, RARP, ICMP, RIP, EIGRP) ISO/IEC 8208, X.25 (PLP), ISO/IEC 8878, X.223, ISO/IEC 8473-1, CLNP X.233, ISO/IEC 10589, IS-IS		
4.Taşıma	Sunucu	Bölüt	Veri bölümlerinin, bölütleme, alındılama ve çoğullama gibi işlemlerle ağ üzerinde noktalara güvenli bir şekilde iletilmesi.	TCP, UDP, DCCP, SCTP		
7.Uygulama	Sunucu	Veri	Kaynak paylaşımı, uzaktan dosya erişimi, dizin hizmetleri veya sanal uçbirimler gibi üst seviye APIler	NFS, SMB, AFP, FTAM, NCP, SMTP, http, FTP, POP3, SNMP SSH, TFTP, DNS		

3. AĞ KATMAN PROTOKOLLERİ					
	Amaç/Görev	Port/Adres Boyu	Tür	Özellikler ve Farklılıklar	
IPV4 (İnternet Protokolü Versiyon 4)	Taşıma katmanından gelen hizmet isteklerine cevap vermek	32 bitlik adres	İnternet Katman Protokolü	Açık Tıkanıklık Bildirimi Uçtan uca adreslemede yetersizlik, veri gizliliği ve bütünlüğündeki yetersizlik	
IPV6 (İnternet Protokolü Versiyon 6)	Taşıma katmanından gelen hizmet isteklerine cevap vermek	128 bitlik adres	İnternet Katman Protokolü	Daha güvenli iletişim, geliştirilmiş servis kalitesi, otomatik adres yapılandırması, çoklu gönderim desteği. VPN tedarikçileri, IPv6'yı desteklemesi için sunucularını yükseltme konusunda tepkisizler	
AppleTalk	Macintosh bilgisayarlar arası iletişim	128 bitlik adres	Protokol Yığını	Belli donanımdaki makinelerin birbirine bağlanmasını sağlaması Farklı marka/donanım makinelere uyumsuzluk.	
CLNS/ DECNet (Bağlantısız Ağ Servisi / Connectionless Network Service)	Gelen hizmet isteklerine cevap vermek		Yönlendirme Protokolü	IPv4'e benzerdir. Ana bilgisayarları (uç sistemleri), yönlendiricilerle (ara sistemler) bağlama	
ARP (Adres Çözümleme Protokolü / Address Resolution Protocol)	2. katmana ait adres bilinmiyorsa ARP adresi ile fiziksel adres öğrenilir	48 bitlik adres (MAC)	Haberleşme Protokolü	Ağ katmanı adreslerinin veri bağlantısı katmanı adreslerine çözümlenmesini sağlar. İnternet standardıdır. En çok kullanılan ağ arayüzü Ethernet'tir.	
ICMP (İnternet Kontrol Mesaj Protokolü/ Internet Control Message Protocol)	Veri alışverişindeki hata ve geri bildirimleri sağlar.		Kontrol Protokolü	Hata mesajları ve TCP/IP yazılımının bir takım kendi mesaj trafiği amaçları için kullanılır.	

4. TAŞIMA KATMAN PROTOKOLLERİ					
	Amaç/Görev	Port/Adres Boyu	Tür	Özellikler ve Farklılıklar	
TCP (Gönderim	Veri	20-60 Bayt	Veri İletişim	Gelişmiş bilgisayar ağlarında paket anahtarlamalı bilgisayar	
Kontrol Protokolü/	gönderimi	(Bölüt/Segment)	Protokolü	iletişiminde kayıpsız veri gönderimi sağlar. Gönderim	
Transmission				sağlanana kadar deneme yapıldığı için hızlı olmayabilir.	
Control Protocol)				UDP'den yavaştır. Bölütler numaralandırılır.	
UDP (Kullanıcı	Veri	8 Bayt (Veri	Veri İletişim	İletişim kanallarını veya veri yollarını kurmak için önceden	
Veribloğu İletişim	gönderimi	bloğu/Datagram)	Protokolü	haberleşmeye gerek yoktur, bağlantı kurmadan verileri yollar.	
Protokolü/ User				Fakat mesajın iletilmesi garantilenmediği için güvenilir	
Datagram Protocol)				değildir.	
DCCP (Veribloğu	Veri	12/16 Bayt (Veri	Veri İletişim	Mesaj tabanlı bir taşıma protokolüdür. Çokluortam trafiğini	
Tıkanıklık Kontrol	gönderimi	bloğu/Datagram)	Protokolü	desteklemek için önerilmiştir. Veri iletimi güvenilir değildir.	
Protokolü/ Datagram				UDP'nin tıkanıklık kontrolü, tokalaşma ve bağlantı kurumu	
Congestion Control				özellikleri eklenmiş veya TCP'nin güvenilirlik, sıralı paket	
Protocol)				iletimi ve bayt akışı gibi özelliklerinin çıkarılmış hali olarak	
				tanımlanabilir.	
SCTP (Akış Kontrol	Veri	12 Bayt + Veri	Veri İletişim	Mesaj karışıklığı anında mesajların sıralı ve güvenli bir şekilde	
İletişim Protokolü/	gönderimi	yığını (Veri	Protokolü	iletimini sağlar. İşlem yönelimli olduğu yani mesaj parçaları	
Stream Control		bloğu/Datagram)		arasında veri transferi gerçekleştirdiği için UDP ile benzerlik	
Transmission				gösterirken, TCP akış yönelimli olduğu yani akış olarak taşıdığı	
Protocol)				için farklıdır.	

7. UYGULAMA KATMANI PROTOKOLLERİ					
	Amaç/Görev	Port	Tür	Özellikler ve Farklılıklar	
AFP (Apple Dosya	Ağ üzerinden dosya	548	Şahsi ağ protokolü	AFS (Apple Dosya Servisi/Apple File Service)'nin	
Protokolü/ Apple	paylaşımı			bir parçası olup Mac İşletim Sistemleri için dosya	
Filing Protocol)				servisi sunar.	
SMTP (Basit Mail	Basit mail gönderme	25 (şifresiz),	Mail Protokolü	Email'i yerel bir istemciden uzaktaki sunucuya ve	
Transfer		465		oradan da alıcının email sunucusuna göndermek için	
Protokolü/Simple				uzak sunucuyla iletişim kurulur.	
Mail Transfer					
Protocol)	D " 1	21			
FTP (Adres	Dosya gönderme	21,		İnternete bağlı iki bilgisayar arasında dosya	
Çözümleme Protokolü / Address		gönderilirken		transferini sağlayan bir protokoldür. Güvenli olarak	
Resolution Protocol)		boş olan		tasarlanmamıştır.	
IMAP (İnternet	Emailleri yerel email	143	Mail Protokolü	Çift yönlüdür. Yalnızca email başlık bilgisi indirilir.	
Mesaj Erişim	istemcilerine almak	(şifresiz),	Wiaii i iotokolu	Email'in kendisi sunucuda bırakılır.	
Protokolü/Internet	istemenerine annak	993		Linan in kendisi sanacada birakini.	
Message Access					
Protocol)					
POP3 (Postane	Yerel email istemcilerinin	110	Mail Protokolü	Tek yönlüdür. Bu email istemcilerinde genellikle	
Protokolü 3/Post	uzak email sunucusu ile	(şifresiz),		indirilen email'lerin bir kopyasının sunucuda tutulup	
Office Protocol 3)	iletişim kurmasında ve	995		tutulmaması hakkında bir seçenek olur.	
	email'leri indirme				
SSH (Güvenli	İletişimi şifreleyerek ve	22 (TCP),	Uzak Yönetim	Host ile istemci arasında transfer edilen bilgilerin	
Kabuk/Secure Shell)	kimlik doğrulamaları	(UDP)	Protokolü	güvenliğinden şifreleme yöntemi ile emin olması	
	yaparak güvenli bir				
	mekanizma sunma				

KRİPTOGRAFİK KATMAN PROTOKOLLERİ						
	Katman	Amaç/Görev	Özellikler ve Farklılıklar	Örnekleri		
IPsec (IP Güvenliği)	Ağ	Bulunduğu katman	Veri bütünlüğü ve kaynak asıllama sağlar.	VPN (Sanal Özel		
		protokolü (IPv6) için	Trafik analizine karşı tam güvenliği yoktur.	Ağ- Virtual Private		
		güvenlik mimarisi	İşletim sisteminden düşük düzeyde destek gerektirir.	Network)		
			İstemci ve sunucu tarafında özel yazılım gerektirir.	RF24XX		
SSL (Güvenli Yuva	Taşıma	Verileri şifreler	Basitliği güçlü yönlerindendir.	IPPS (İnternette		
Katmanı- Secure			Sürüm geri alma saldırılarına duyarlı açıklar.	Yazıdırma Prokolü)		
Socket Layer)			Sertifikalar sahte olabilir			
TLS	Taşıma	Verileri şifreler, güvenli	SSL öncüsüdür.	Tarayıcılarda yaygın		
(Aktarım Katmanı		web bağlantıları kurmak	X.509 sertifikalarını destekler.	olarak		
Güvenliği-Transport		için kullanılır.	Ortadaki Adam Saldırısına savunmasızdır.	kullanılmaktadır.		
Layer Security)			Kimlik doğrulama			
SSH (Güvenli	Taşıma	Uzaktan şifreli sunucuları	Bağlantının uçlarında dijital sertifika kullanarak	Putty (SSH istemci)		
Kabuk- Secure		kontrol etmek için	doğrular ve şifreler şifrelenerek korunur.	OSSH		
Shell)		kullanılır. (oturum açma,	Ortadaki Adam Saldırısına savunmasızdır.			
		yetkilendirme)	TCP port 22 üzerinde çalışır.			
			X.509 sertifikalarını destekler.			
PGP (Oldukça İyi	Uygulama	Mail güvenliği	Kişisel kullanım için uygundur.			
Gizlilik(?) - Pretty			Daha az masraflıdır.			
Good Privacy)			Metin şifreleme			
			VPN'de kullanılabilir.			
			Diffie-Hellman Sayısal imza kullanır.			
S/MIME(Güvenli/	Uygulama	Mail güvenliği	Endüstriyel kullanım için uygundur.			
Çok Amaçlı İnternet			Daha masraflıdır.			
Posta Uzantısı -			Metin dışında multimedya dosya şifreleme			
Secure/Multipurpose			Yalnızca e-posta hizmetinde kullanılır.			
Internet Mail			Elgamal Sayısal imza kullanır			
Extension)						

HTTPS (Köprü	Uygulama	HTTP'nin güvenli	TLS/SSL sertifikası yüklenmiş olan web siteleri olan	
Metin Aktarım		uzantısıdır.	web siteleri sunucu ile güvenli bir bağlantı kurmak	
Protokolü)			için kullanılır.	
			Saldırganların bağlantıya sızarak veri çalınmasını	
			zorlaştırır.	
			Kişisel veri, ödeme gibi verileri korur.	

Kaynaklar:

https://bidb.itu.edu.tr/seyir-defteri/blog/2013/09/07/osi-katmanlar%C4%B1

Görsel 1: https://www.beyaz.net/tr/network/makaleler/osi_referans_modeli_ve_katmanli_iletisim_hiyerarsik_ag_modeli.html

 $\underline{https://www.geeks for geeks.org/layers-of-osi-model/}$

https://www.imperva.com/learn/application-security/osi-model/

https://en.wikipedia.org/wiki/OSI model

A Layered Security Model: OSI and Information Security, Kari A. Pace GSEC Practical

https://bidb.itu.edu.tr/seyir-defteri/blog/2013/09/07/a%C4%9F-katman%C4%B1-(network-layer)

https://www.tutorialspoint.com/network_security/network_security_layer.htm

 $\frac{https://devrimdanyal.medium.com/k\%C4\%B1sa-k\%C4\%B1sa-modern-\%C5\%9Fifreleme-protokolleri-ve-kar\%C5\%9F\%C4\%B11a\%C5\%9Ft\%C4\%B1rmas\%C4\%B1-639db16d1ab8$