Machine Learning

Machine Learning

Machine? Learning?

A computer. Improve through experience

Build computer programs

- Improve itself at some task
- Through experience

Experience

Through training examples

Machine Learning

Subfield of computer science

Give computers ability to learn

Without being explicitly programmed

Study and construction of algorithms

Learn from and make predictions on data

Employed in a range of computing tasks

- Programming explicit algorithms is infeasible
- Spam filtering, detection of network intruders, optical character recognition (OCR) and search engines

Relations to Other Subjects

Artificial Intelligence

- Provide a way for implementing A.I.
- A.I. methods for human-level cognitive tasks
 - Most cognitive tasks classification / prediction

Statistics

- Learning with mathematics
- Mostly aimed for prediction tasks
- Most ML methods are from statistics
 - Training data / experience E

Relations to Other Subjects

Pattern Recognition

- One of applications of A.I.
 - An application of Machine Learning Methods
 - For signals, graphics, and multimedia
- Mostly for classification tasks

Data Mining

- Machine learning with very large or distributed data sets
 - Traditional methods only work for limited-size data set
 - New efficient algorithms are necessary

Classification of Machine Learning Tasks

Classification of Machine Learning Tasks

Supervised learning

- Present computer with examples
 - Inputs and their desired outputs
- Given by a "teacher"
- Learn a general rule that maps inputs to outputs

Unsupervised learning

- No labels are given
- Find structure of input its own
- Discover hidden patterns in data

Classification of Machine Learning Tasks

Semi-supervised learning

- Between supervised and unsupervised learning
- Teacher gives an incomplete training signal
 - Training set with some or many missing target outputs

Reinforcement learning

- Computer program interacts with a dynamic environment
- Perform a certain goal
 - Drive vehicle or play game against an opponent
- Feedback are provided
 - In terms of rewards and punishments
 - When it navigates its problem space

Supervised Learning

Infer a function from labeled training data

- Analyze training data
- Produce an inferred function
- Use for mapping new examples

Training data

- A set of training examples
- Each is a pair
 - Input object (typically a vector)
 - Desired output value (also called supervisory signal)

Optimal scenario

Determine class labels for unseen instances correctly

Supervised Learning

Given data $\{(x_1, y_1), ..., (x_n, y_n)\}$

Seek a function that explains relationship between

- Input attribute x
- Output attribute y
- \circ $y = f(x) + \epsilon$

Algorithms

- Naive Bayes classifier
- Neural network
- Support vector machines
- Nearest Neighbor Algorithm

Unsupervised Learning

Infer a function

Describe hidden structure from unlabeled data

Distinguishable from other learning schemes

- Examples given are unlabeled
- No error or reward signal
- Cannot evaluate a potential solution
- No objective evaluation
 - Accuracy of the structure output

Approaches

Clustering

Supervised Learning

Supervised Learning

A computer program

- Learn from experience E
 - In some class of tasks T with performance P
- Its performance at tasks in T improves with experience E
 - Performance is measured by P

Supervised Learning

Tasks for Supervised Learning

Classification / Prediction

By making a target function

- Estimate a mathematical model
- Through a set of training examples

Only outputs are different

- Classification Discrete values
 - True or false, Yes or no, Class A to class F
- Prediction Continuous values

Examples of Learning Tasks

Classification

- Recognize spoken words
- Classify new astronomical structures

Prediction

- Stock trend
- Robot control

Summary of Supervised Learning

A job of estimating a function (program, ?)

- Take E (training data) as inputs
- Output as accurate as possible
 - Solve problems in task T

Learning job may be iterative

- Improve the function accuracy
 - Not just one time but many times

Designing a Supervised Learning System

Designing a Supervised Learning System

- 1. Exact type of knowledge to be learned, i.e., the '?'
- A program? A decision tree? Logical rules? A function?
- Usually a mathematical function
- 2. Representation for this target knowledge, or function
- Format of f(x)? Sine wave? Exponential?
- Usually f(x) = wx + b or polynomial
- 3. A function approximation algorithm

Chess playing program

- Input: Any board state
- Output: Legal moves

Experience E = <input, output>

E = (State, Legal moves)

- Under any state
 - Return the best move among legal moves
- Best is judged by performance P
 - Rules of the game

Function '?' = ChooseMove

- ChooseMove: State → Move
- How to compare resulting Move?

Easier alternative

- y: State \rightarrow R
 - A function evaluating any state into a real number
 - The higher the score, the better the state
- State S₀
 - Under legal moves M₁, M₂, M₃, ...
 - Generates S₁, S₂, S₃, ...
 - $\circ y: S_1 \rightarrow R_1, y:S_2 \rightarrow R_2, \dots$
 - Choose the best state (i.e. the move)

Learned function is changed

From symbolic to numerical

Function y is usually not efficiently computable

Hard to find it exactly

Our target

- Estimate an approximate function \hat{y} to replace y
 - Representation of \hat{y}

Representations for description of \hat{y}

- A look up table
- A collection of logical rules
- A polynomial function
- A simple linear combination

$$\hat{y}(S) = w_0 + w_1 x_1 + w_2 x_2 + ... + w_n x_n$$

where $S = \langle x_1, x_2, ..., x_n \rangle$

A Basic Function Approximation Algorithm

Data for Training Algorithm

A set of training examples

- Each is a pair
 - <S, Value_s> = <input, output>
 - S = State, Value_S = Value of State S

• E.g.
$$<(x_1=1, x_2=3, x_3=0, ...), 50>$$

- Record in a database
- Many records in the database

1	$(x_1=1, x_2=3, x_3=0,)$	50
2		40
÷	÷	:
m	•••	35

Evaluating Function Estimation

Approximating \hat{y} using training data

- \circ E = (S, Value_s)
- A score $\hat{y}(S)$ can be obtained for state S
 - Evaluation of S

$\hat{y}(S) = W_0 + W_1 X_1 + W_2 X_2 + ... + W_n X_n$

where
$$S = \langle x_1, x_2, ..., x_n \rangle$$

Error can be measured

Between True and Estimated values

• Error_S =
$$(Value_S - \hat{y}(S))^2$$

$$Error = \sum_{\substack{\langle S, \, Value_S \rangle \\ \in \, Training \, Data}} (Value_S - \hat{y}(S))^2$$

1	$(x_1=1, x_2=3, x_3=0,)$	50
2		40
m		35

Evaluating Function Estimation

Find ŷ

Such that error can be minimized

Since
$$\hat{y} = \sum w_i x_i$$
, $i = 0$ to n

- x_i are constants (input data)
- Adjust $w_i \rightarrow Adjust \hat{y}$
 - Minimize the error
- Algorithm is called LMS (Least Mean Square)
 - A very rational and easy training rule

$$\hat{y}(S) = w_0 + w_1 x_1 + w_2 x_2 + ... + w_n x_n$$

where $S = \langle x_1, x_2, ..., x_n \rangle$

Adjust Weights

For each training example <S, Value_s>

- Use current weights w_i
 - Calculate ŷ(S)

$$\hat{y} = \sum w_i x_i$$

• For each weight w_i , update it as

$$w_i \leftarrow w_i + \eta \ (Value_S - \hat{y}(S)) \ x_i$$

 $w_2 \leftarrow 1 + 0.05 \ (50 - 48) \ 3 = 1.3$

A small constant controlling learning rate, "eta"

Neural Network

Neural Network

A famous and powerful learning method

- Linear and nonlinear target function
- Single output
 - Real-valued, discrete-valued
- Multiple output
 - Vector-valued
- Other features
 - Robust (insensitive to noise)
 - Noise = some misleading / incorrect input values
 - Easy to implement
 - Fast and efficient
 - But hard to interpret

Neural Network Representation

Consist of at least three layers

Neural Network Representation

Input layer

- Accept values of training examples <x, y>
 - If x is 7-tuple, then 7 input neurons

Output layer

- Similar to input layer
 - If y is triple, then 3 output neurons

Hidden layer

- Handle unknowns
- Handle nonlinearity within data
- Number of hidden neurons
 - Usually > input neurons

Neural Network Representation

Between any two layers

- Connected by some arcs
- Associated with a weight

Train neural network

- Update the weights in layers
- Fixed representation for target function

Example of Steering Control

Appropriate Problem

Problems have

- Instances (data records)
 - Many attribute-value pairs
 - Input = matrix or vector
- Target function may be any data type
 - Discrete-valued, real-valued, or a vector of attributes
- Noisy training data

Properties of NN learning

Training takes long time

- From seconds to hours
- Or even days or weeks

Trained target function

- Execution takes very short time
 - Several seconds
- NN structure
 - Linear combination of weights and inputs
 - *y = wx+b* = **wx**

Abbreviated as SVM

Main application

- Classification
- Regression
 - Model/Function estimation
 - Approximation

Can only build linear functions

- Goal: nonlinear functions
 - \circ Done by some nonlinear transformation ϕ
 - Nonlinear input spaces → High dimensional linear feature spaces
 - Build linear functions

Special property

Required hidden units are automatically determined

k-Nearest Neighbor Method

k-Nearest Neighbor

Nearest neighbors of an instance

Defined on Euclidean distance

Euclidean distance

- An instance $\mathbf{x} = \langle x_1, x_2, ..., x_n \rangle$
- Distance between two instances x, y

k-NN for Discrete Values (Classes)

Compare query x

- With every training example $\langle y, f(y) \rangle$
- For k = 1
 - Return most similar object ŷ
 - Based on Euclidean equation
 - Assign $f(\hat{y})$ to f(x)
- \circ For k > 1
 - Retrieve a set of k similar instances $\hat{\mathbf{y}}_i$

$$f(\mathbf{x}) \leftarrow \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^{k} \delta(v, f(\hat{\mathbf{y}}_i))$$

V = all possible classes {square, tri}

Class of y

3-NN

$$\delta(a,b) = 1 \text{ if } a = b$$

 $\delta(a,b) = 0 \text{ if } a \neq b$

k-NN for Continuous Target Values

Replace function of estimating class

$$f(\mathbf{x}) \leftarrow \frac{1}{k} \sum_{i=1}^{k} f(\hat{\mathbf{y}}_i)$$

Continuous target values

- Return the mean of
 - Target values of k similar nearest neighbors

Distance-Weighted NN

Refinement to kNN

- k similar instances are weighted
 - Based on their distance to x

Suggested weights for instance

$$w_i \equiv \frac{1}{d(\mathbf{x}, \mathbf{y}_i)^2} \qquad \text{If } d(\mathbf{x}, \mathbf{y}_i) \text{ is zero}$$

$$f(\mathbf{x}) = f(\mathbf{y}_i)$$

For discrete value: target class

$$f(\mathbf{x}) \leftarrow \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^{k} w_i \delta(v, f(\hat{\mathbf{y}}_i))$$

Distance-Weighted NN

For continuous value: target value

$$f(\mathbf{x}) \leftarrow \frac{\sum_{i=1}^{k} w_i f(\hat{\mathbf{y}}_i)}{\sum_{i=1}^{k} w_i} \qquad w_i \equiv \frac{1}{d(\mathbf{x}, \mathbf{y})}$$

If $w_i = 1$ for all i, this term = k i.e. kNN

Remarks on kNN

Pros

- Distance-weighted kNN is highly effective
- Robust to noisy training data
 - Provided a large set of training examples

Cons

- Similarity metric depends on all attributes
 - Some attributes may be irrelevant = noise
 - Misleading / wrong
- Distance metric = Euclidean space
 - Do not guarantee that it can represent similarity

Unsupervised Learning – Clustering

Clustering

Divide a set of objects into groups

- Objects in same group are similar
- Objects in different groups are not similar

Input

- A set of points P
- A set of centers C (optional)

Clustering

Assign every point of P to the nearest center in C

Clustering Problem

Clustering Problem

Applications of Clustering

Image Processing

- Cluster images
 - Based on visual content

Web

- Cluster groups of users
 - Based on access patterns on webpages
- Cluster webpages
 - Based on content

Bioinformatics

- Cluster similar proteins together
 - Similarity in chemical structure or functionality

Clustering Problem

Discrete vs continuous clustering

Discrete clustering

Restrict centers of clustering to a subset of input

Continuous clustering

Centers might be placed anywhere in given metric space

Clustering Algorithm

K-Centers clustering

K-Median clustering

K-Means clustering

Hierarchical clustering

K-Means Clustering

Minimize function:

$$E(\Gamma, V) = \sum_{i=1}^{k} \sum_{j=1}^{n} \gamma_{ij} \left\| \overline{x}_{j} - \overline{v}_{i} \right\|^{2}$$

Data points: $X = \{\overline{x}_1, \overline{x}_2, L, \overline{x}_n\}$

Clusters: $C_1, C_2, L C_k$

Centers: $V = \{\overline{v_1}, \overline{v_2}, L, \overline{v_k}\}$

Partition matrix: $\Gamma = \{\gamma_{ij}\}$

$$\gamma_{ij} = \begin{cases} 1 & \text{if } \overline{x}_j \in C_i \\ 0 & \text{otherwise} \end{cases}$$

Iterative algorithm

- Initialize the centers V (the position of k centers)
 - By randomly picking points from X
- Assign each data point to the nearest center
 - Recalculate partition matrix and $E(\Gamma, V)$
- Adjust the position of each center
- Repeat above two steps until convergence

K-Means Clustering

Disadvantages

Dependent on initialization

