Name: Udandarao Sai Sandeep

Roll Number: 180123063

Dept.: Mathematics and Computing

Q1.

The following parameters have been set (as given in question): $\mu = 0.1$, $\sigma = 0.2$, r = 0.05, t = 0, $S_0 = 100$, $T = 180 \ days$

• Stock Price for ten different simulations (using risk neutral GBM equation):

• Stock Price for ten different simulations (using real world GBM equation):

$$S(t_{i+1}) = S(t_i) \exp \left(\left(\mu - \frac{1}{2} \sigma^2 \right) (t_{i+1} - t_i) + \sigma \sqrt{t_{i+1} - t_i} Z_{i+1} \right)$$

Here, we have compared the stock price values for risk neutral and real-world scenarios for one of the simulations.

Six month fixed-strike Asian Option Price was calculated for Strike prices 90,105 and 110. To calculate the Asian Option Payoff, arithmetic mean (of the strike prices in the 6-month period) was used. The option price was calculated as follows:

$$H(0) = e^{-rT} \sum_{i=0}^{M} \frac{1}{M} * (Payoff of Option)$$

The graphical plots of the Option Prices vs Number of Simulations are as follows:

Average Call option price for K = 90 is 11.32566

Average Call option price for K = 105 is 1.76843

Average Call option price for K = 110 is 0.69037

Average Put option price for K = 90 is 0.23942

Average Put option price for K = 105 is 5.43707

Average Put option price for K = 110 is 9.37288

Sensitivity analysis of the option prices was done (on the model parameters T, K, r, sigma).

Q2:

Variance reduction techniques was done using <u>antithetic variables</u>. (In this technique, the variance is reduced using an antithetic variable (negative value for every corresponding positive value.))The reduction in variance is evident from the following graphs:

Variance of Call option price without variance reduction for K = 90 is **0.0465**

Variance of Call option price with variance reduction for K = 90 is **0.0025**

Variance of Call option price without variance reduction for K = 105 is **0.01992**

Variance of Call option price with variance reduction for K = 105 is **0.02815**

Variance of Call option price without variance reduction for K = 110 is **0.00487**

Variance of Call option price with variance reduction for K = 110 is 0.01234

Variance of Put option price without variance reduction for K = 90 is **0.00298**

Variance of Put option price with variance reduction for K = 90 is 0.00066

Variance of Put option price without variance reduction for K = 105 is **0.0619**

Variance of Put option price with variance reduction for K = 105 is **0.01016**

Variance of Put option price without variance reduction for K = 110 is **0.09944**Variance of Put option price with variance reduction for K = 110 is **0.00177**

