例

- (3) Rの閉区間 [a,b] 上で定義された実数値連続関数全体の集合 C[a,b] において、可算とスカラー倍演算を
 - $\bullet (f+g)(x) = f(x) + g(x)$
 - $\bullet (cf)(x) = cf(x)$

と定めると、C[a,b] はこれらの演算に関して線形空間をなす可算が結合則を満たすことは次のようにして確かめられる任意の $f,g,h\in C[a,b]$ と $x\in [a,b]$ に対して ((f+g)+h)(x)=(f+g)(x)+h(x)=(f(x)+g(x))+h(x)=f(x)+(g(x)+h(x))=f(x)+(g+h)(x)=(f+(g+h))(x)

3.1 ノルム空間

定義 3.1

- X: 実線形空間
- $\bullet \parallel \bullet \parallel : X \to \mathbf{R}$

このとき $\| \bullet \|$ が X 上のノルム \Leftrightarrow 任意の $x, y \in X, a \in \mathbf{R}$ に対して

よって (f+q)+h=f+(q+h)

- (a) $||x|| \ge 0$ かつ $||x|| = 0 \Leftrightarrow x = 0$ (非負性)
- (b) $\|x+y\| < \|x\| + \|y\|$ (三角不等式)
- (c) $\|\alpha x\| = |\alpha| \|x\|$ (同次性)

また、ノルムが定義された実線形空間をノルム空間という

注 「X はノルム空間」と言ったり、どのノルムを考えるのか明示したいときは「 $(X, \parallel \bullet \parallel)$ はノルム空間」と言ったりする

例

- (1) $\| \bullet \|_2$: $\mathbf{R}^N \to \mathbf{R}$ を $\| \mathbf{x} \|_2 = \sqrt{x_1^2 + \dots + x_N^2}$ (ただし $\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}$) と定めると $\| \bullet \|_2$ は \mathbf{R}^N 上のノルム
- (2) $\| \bullet \|_1$: $\mathbf{R}^N \to \mathbf{R}$ を $\| \mathbf{x} \|_1 = |x_1| + \cdots + |x_N|$ と定めると $\| \bullet \|_1$ は \mathbf{R}^N 上のノルム
- $(3) \parallel \bullet \parallel_{\infty}: \mathbf{R}^N \to \mathbf{R}$ を $\parallel \mathbf{x} \parallel_{\infty} = \max_{1 \leq i \leq N} \mid x_i \mid$ と定めると $\parallel \bullet \parallel_{\infty}$ は \mathbf{R}^N 上のノルム

(4) $1 \le p$ とする。 $\| \bullet \|_p : \mathbf{R}^N \to \mathbf{R}$ を $\| \mathbf{x} \|_p = (|x_1|^p + \dots + |x_N|^p)^{\frac{1}{p}}$ と定めると $\| \bullet \|_p$ は \mathbf{R}^N 上のノルム

注 ノルム空間 $(X, \| \bullet \|)$ に対して、 $d: X^2 \to \mathbf{R}$ を $d(x,y) = \|x-y\|$ と定めると d は X 上の距離関数

証明 cf.p16 $x, y, z \in X$ を任意に取る。

$$(D_1)$$
 $d(x,y) = ||x-y|| \ge 0$ (ノルムの非負性より) $d(x,y) = 0 \Leftrightarrow ||x-y|| = 0 \Leftrightarrow x-y = 0$ (ノルムの非負性より)

$$(D_2)$$
 $d(y,x) = ||y-x|| = ||-(x-y)|| = ||(-1)(x-y)|| = ||-1|||x-y|| = d(x,y)$

$$(D_3) \ d(x,z) + d(z,y) = ||x-z|| + ||z-y|| \ge ||(x-z) + (z-y)|| = ||x-y|| = d(x,y)$$