THE UNIVERSITY OF SYDNEY

FACULTIES OF ARTS, ECONOMICS, EDUCATION, ENGINEERING AND SCIENCE

MATH1902

LINEAR ALGEBRA (ADVANCED)

June 1999

TIME ALLOWED: Two Hours

LECTURERS: WG Gibson

RB Howlett

This Examination has 3 Printed Components.

- 1. AN EXTENDED ANSWER QUESTION PAPER (THIS BOOKLET, GREEN 80/16): 3 PAGES NUMBERED 1 TO 3; 7 QUESTIONS NUMBERED 1 TO 7.
- 2. A MULTIPLE CHOICE QUESTION PAPER (YELLOW 80/16A): 3 PAGES NUMBERED 1 TO 3; 15 QUESTIONS NUMBERED 1 TO 15.
- 3. A MULTIPLE CHOICE ANSWER SHEET (WHITE 80/16B): 1 PAGE.

Components 2 and 3 MUST NOT be removed from the examination room.

This Examination has 2 Sections: Extended Answer and Multiple Choice.

The Extended Answer Section is worth 70% of the total marks for the paper: all questions may be attempted; questions are of equal value; working must be shown.

The Multiple Choice Section is worth 30% of the total marks for the paper: all questions may be attempted; questions are of equal value; answers must be coded onto the Multiple Choice Answer Sheet.

Calculators will be supplied; no other electronic calculators are permitted.

- 1. (i) Let $\mathbf{p} = \overrightarrow{OP}$ and $\mathbf{q} = \overrightarrow{OQ}$ be the position vectors of the points P and Q. Show that the midpoint of the line PQ has position vector $(\mathbf{p} + \mathbf{q})/2$.
 - (ii) Use vector methods to prove that the figure formed by joining the midpoints of a plane quadrilateral is a parallelogram.
- 2. (i) Find the fifth roots of unity; that is, find all the solutions of the equation $w^5 = 1$ where w is a complex number.
 - (ii) Show that the equation $(1-z)^5=z^5$ has solutions $z=\frac{1}{2}, \quad \frac{1}{2}(1\pm i\tan\frac{\pi}{5}), \quad \frac{1}{2}(1\pm i\tan\frac{2\pi}{5}).$
- 3. Given the planes: $p_1: 3x + 2y z = 1$, $p_2: \mathbf{r} \cdot (\mathbf{i} \mathbf{j} \mathbf{k}) = 3$,

find

- (i) a vector \mathbf{v}_1 perpendicular to p_1 ;
- (ii) a vector \mathbf{v}_2 perpendicular to p_2 ;
- (iii) a point P lying on both p_1 and p_2 ;
- (iv) the equation of the line of intersection of p_1 and p_2 .
- 4. (i) What does it mean to say that a matrix B is a reduced row-echelon matrix?
 - (ii) Using the fact (which you are not asked to prove) that any matrix can be transformed into a reduced row-echelon matrix by a sequence of elementary row operations, explain why for every $r \times n$ matrix A there is an invertible $r \times r$ matrix M such that MA is a reduced row-echelon matrix.
 - (iii) Let A be an $r \times n$ matrix, B an $n \times p$ matrix, and C a $p \times q$ matrix. Prove that (AB)C = A(BC).

5. (i) Describe how a permutation of $\{1, 2, ..., n\}$ may be associated with a diagram, from which one may determine whether the permutation is even or odd. Use the permutation

$$\tau = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{array}\right)$$

to illustrate your answer.

(ii) Using the elementary row operations method, compute the determinant of the following matrix A:

$$A = \begin{bmatrix} 2 & 2 & 4 & -2 \\ 3 & 3 & 6 & 5 \\ 4 & 4 & 11 & 1 \\ 1 & 2 & 2 & -1 \end{bmatrix}$$

(iii) Suppose that A, B, C and D are $n \times n$ matrices, all of which are invertible, and suppose that

$$B(C + AD) = B + C.$$

Find a formula that expresses A in terms of B, C and D. (That is, make A the subject of the formula.)

- 6. (i) (a) Let A be an $n \times n$ matrix. What does it mean to say that a matrix B is an inverse of the matrix A?
 - (b) Suppose that B and C are both inverses of the matrix A. Prove that B = C.

(ii) Let
$$M = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 4 \\ -2 & -5 & 0 \end{bmatrix}$$
.

- (a) Calculate the inverse of M.
- (b) Find a matrix X such that $XM = \begin{bmatrix} -1 & 3 & 4 \\ 1 & -1 & 5 \end{bmatrix}$.
- 7. Let A be a 7×7 matrix whose entries are real numbers.
 - (i) By considering the characteristic equation of A, show that A has at least one real eigenvalue.
 - (ii) Suppose that A satisfies the equation $A^2 + A = cI$, where I is the 7×7 identity matrix, and c is some fixed real number. Show that every eigenvalue λ of A satisfies $\lambda^2 + \lambda = c$.
 - (iii) Prove that the number c in Part (ii) must satisfy $c \ge -1/4$.

THIS PAGE INTENTIONALLY LEFT BLANK