6 Page 45

- **2.1** Assume that for some $k \in N$ such that n < k < n + 1, by Lemma 2.1(ii) k < n + 1 implies either k < n or k = n, if k < n by transitivity of < on N and our assumption that n < k we get n < n, if k = n again by assumption n < n, but n < n contradicts Theorem 2.2.
- **2.2** Assume to the contrary that m < n but n < m + 1, but it means that there is some n such that m < n < m + 1 which contradicts previous exercise. Assume m < n, by previous argument $m + 1 \le n$, but n < n + 1, thus m + 1 < n + 1. assume two distinct natural number m, n then either m < n or n < m, so we get S(m) < S(n) or S(n) < S(m), in both case $S(n) \neq S(m)$.
- **2.3** For every $n \in N$ let f(n) = S(n), therefore $ran \ f = N \{0\}$ (since otherwise for some k, $0 = S(k) = k + 1 = k \cup \{k\}$ implies $k \in 0$) which is a proper subset of N, by previous exercise f is one-to-one because S(n) is one-to-one.
- **2.4** if $n \in N, n \neq 0$ then $n \in ranf$ in previous exercise, then there is some $k \in N$ such that f(k) = S(k) = k + 1 = n, because f is one-to-one, k is unique.

- **2.5** Define function g on N by g(n) = S(S(n)) = (n+1)+1, like previous argument we can prove that g is one-to-one and onto $N \{0, 1\}$, so for ever $n \in N \{0, 1\}$ we get unique $k \in N$ such that (k + 1) + 1 = n.
- **2.6** if $m \in N$ and m < n then clearly $m \in n$. we prove it by induction on n that if $m \in n$ then $m \in N$, this is trivially true for n = 0. assume the hypothesis and that $m \in n + 1$ then either m = n or $m \in n$, if m = n then $m \in N$, since $n \in N$. if $m \in n$ then by induction hypothesis we get $m \in N$.
- **2.7** Let $x \in m$, since n is the set of natural number less that n and x < m < n, we get $x \in n$, also m < n implies $m \in n$ but $m \notin m$, thus $m \subset n$. Now assume $m \subseteq n$, then there is some $q \in n$ such that $q \notin m$, but q is a natural number, thus q < n and $q \not< m$ or equivalently m < q, by transitivity m < n which means $m \in n$.
- **2.8** Assume that there is such function f, then $ranf \subseteq N$ must have a least element u, thus u = f(k) for some $k \in N$, but then definition of f implies f(k) > f(k+1) which contradicts the assumption that f(k) is the least element of ranf.
- **2.9** Let $Y \subseteq X$, but then $X \subseteq N$ implies $Y \subseteq N$ so Y have a least element on order <, it means there is some $u \in Y$ such that for every $n \in Y, u < n$, but since $< \cap X^2 \subseteq <$ and $Y \subseteq X$ we conclude that for every $n \in Y, u < \cap X^2 n$.
- **2.10** Let $X \subseteq A$, then either $X \subseteq N$ or $N \in X$, if $X \subseteq N$ then \prec is ordering of N so it has a least element, if $N \in X$, consider $X \{N\}$, clearly it has the least element u, because $u \prec N$ it is the least element of X too.
- **2.11** Assume P(n) does not hold for some $k \leq n$, let X be the set of these elements, by well-ordering it has least element u, (*) for every $k \leq v < u$ we have P(v), if u = 0 then k = 0 by assumption so it is ordinary induction and we are done, if $u \neq 0$ then for some successor element l, u = u' + 1, but since k < u, we get $k \leq u'$ then it follows from (*) P(u'), but then by (b) P(u' + 1) = P(u) holds which contradicts our assumption.

2.12 Assume to the contrary that for some $n \in N$, $n \leq K$ the property P(n) does not hold, thus the set $X = \{\neg P(n) : (\exists n \in N) (n \leq k)\}$ is non-empty, by well-ordering there is an element $u \in X$ such that is the least element of X. u could not be 0 because P(0) holds, so it is a successor element, thus u = u' + 1 for some $u' \in N$. since it is the least element, for every t < u, P(t) holds, since $u' < u \leq k$, P(u') holds, then by (b) P(u' + 1) = P(u) holds, a contradiction.

2.13 Assume that for all l < n, P(m, l)

fix m_0 , we prove $P(m_0, n)$ for all n. assume that for all $l < n, P(m_0, l)$, since for all l < n when $k = m_0, P(k, l)$ holds then $P(m_0, n)$ also holds by (**).