

Robot Modelling I

Prof. Dr. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Content

- Degrees of freedom of a robotic system
- Geometric model
- Kinematic model
- Direct kinematic problem
- Inverse kinematic problem
- Dynamic model

23.11.2020 Robot modelling I 2 rrlab.cs.uni-kl.de

Degree of Freedom (DoF) f of an Object in E_3

- Number of possible independent movements in relation to the BCS
 - Minimal number of translations and rotations for complete description of the object's pose
- For objects with unconstrained movement in 3D-space f = 6
 - 3 translations
 - 3 rotations

23.11.2020 Robot modelling I 3 rrlab.cs.uni-kl.de

Kinematic Degrees of Freedom of a Robot F

- Degrees of freedom of a rotational joint: $F_R \leq 3$
 - Hinge joint
 - Cardan joint
 - Linear joint
 - Spherical joint
- DoF of a translational joint: $F_T = 1$

Relation between f and F

- The relationship holds: $F \ge f$
- Examples
 - 8-axis robot: DoF f = 6, kinematic DoF F = 8
 - Human hand: f = 6, F = 22
 - Human arm including shoulder: f = 6, F = 12
- In order to reach a DoF f = 6 for a robot's effector, it requires at least F = 6 axes of movement

23.11.2020 Robot modelling I 5 rrlab.cs.uni-kl.de

Terminology

- Geometry: Mathematical description of robot form
- Kinematics: Geometric and analytic description of mechanical systems` states of movement
- Dynamics: Investigates movement of objects based on the forces and moments acting upon them

23.11.2020 Robot modelling I 6 rrlab.cs.uni-kl.de

Geometric Model

- Displays bodies graphically
- Basis of movement calculation
- Identification of acting forces and moments
- Starting point of distance and collision measurement

23.11.2020 Robot modelling I 7 rrlab.cs.uni-kl.de

Kinematic Model

- Describes the pose (position and orientation) of bodies in space with the help of the geometric model
- Kinematic chain: Several bodies, kinematically connected via joints (e.g. robot arm)
 - Closed kinematic chains
 - Open kinematic chains
- Purpose of kinematic model
 - Determining the relation between joint values and poses
 - Reachability analysis

23.11.2020 Robot modelling I 8 rrlab.cs.uni-kl.de

Dynamic Model

- Describes forces and moments acting in a mechanical multibody system
- Purpose of dynamic model
 - Dimensioning of driving mechanism
 - Optimization of construction (light weight)
 - Consideration of bending and stiffness
 - Support for controller design

23.11.2020 Robot modelling I 9 rrlab.cs.uni-kl.de

Geometric Model

Classification:

- 2D-model
- 2,5D-model
- 3D-model
- Edge or wire-frame models
- Surface models
- Volumetric models

23.11.2020 Robot modelling I 10 rrlab.cs.uni-kl.de

Geometric Model: Block World

- Bodies represented by enveloping cuboids (bounding boxes)
- Easy calculation with regard to collision avoidance

23.11.2020 Robot modelling I 11 rrlab.cs.uni-kl.de

Geometric Model: Edge Model

- Bodies represented by polygons (edges)
- Quick visualization

23.11.2020 Robot modelling I 12 rrlab.cs.uni-kl.de

Geometric Models: Volumetric Models

- Precise representation of bodies
- Exact computation of contact points for collision avoidance
- Representation with animations

23.11.2020 Robot modelling I 13 rrlab.cs.uni-kl.de

Direct Kinematic Problem

23.11.2020 Robot modelling I 14 rrlab.cs.uni-kl.de

Inverse Kinematic Problem

How should I move my hand there?

Find the joint angles

23.11.2020 Robot modelling I 15 rrlab.cs.uni-kl.de

Kinematic Model: Links and Joints

23.11.2020 Robot modelling I 16 rrlab.cs.uni-kl.de

Kinematic Model: Puma 260

Volumetric model

- Every arm element corresponds to a rigid body
- Every arm element is joined to the next via a linear or rotational joint
- Each joint has only one DoF (rot. or transl.)
- Kinematic pair = joint + joined arm elements

Puma 260

- 6-axis robot
- Basis and 6 arm elements (links)

Kinematic Model: Coordinate Systems

In order to describe the kinematics of a robot (kinematic chain), it is necessary to define the links' poses in relation to a reference coordinate system.

- Each link receives a fixed local CS
- Origin of each CS in joint responsible for moving given link
- A transformation matrix, relating the local CS to the reference system, needs to be determined for every link
- Transformation of local CS to reference CS via description vector or 4×4 homogenous transformation matrix.

23.11.2020 Robot modelling I 18 rrlab.cs.uni-kl.de

Link Parameters

- Every link i is connected through 2 confining joints i and i + 1
- Let g_i and g_{i+1} be movement axes of joints (skewed to each other)
- Let a_i be the normal between g_i and g_{i+1}
- The distance of intersections of a_{i-1} and a_i with g_i is referred to as joint offset d_i
- Angle θ_i between a_{i-1} und a_i is referred to as joint angle
- Length of a_i (shortest distance between g_i and g_{i+1}) is called link length
- Angle α_i between g_i und g_{i+1} is called link twist

23.11.2020 Robot modelling I 19 rrlab.cs.uni-kl.de

Parameters of Joints

Parameter	Symbol	Rotational joint	Prismatic joint
Link length	а	Invariant	Invariant
Link twist	α	Invariant	Invariant
Joint distance	d	Invariant	Variable
Joint angle	θ	Variable	Invariant

23.11.2020 Robot modelling I 20 rrlab.cs.uni-kl.de

Derivation of Joint Distance and Angle

23.11.2020 Robot modelling I 21 rrlab.cs.uni-kl.de

Denavit-Hartenberg-Convention

Definition of coordinate systems for every joint:

- Origin of CS i lies in intersection of a_i and g_{i+1}
- Axis z_i lies along the joint axis g_{i+1}
- Axis x_i follows as extension of normal a_i
- Complemented by axis y_i , so that a clockwise CS follows
- Origin of CS 0 can be freely placed along g_1
- The last coordinate system lies in the end effector

23.11.2020 Robot modelling I 22 rrlab.cs.uni-kl.de

Denavit-Hartenberg-Convention

23.11.2020 Robot modelling I 23 rrlab.cs.uni-kl.de

Kinematic Model

- Transformation from OCS of link i to OCS of link i-1 via Denavit-Hartenberg-Transformation
- Requirements
 - All CS follow the Denavit-Hartenberg-Convention
 - Parameters of link i are known

 Literature: Denavit, Hartenberg: "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices", Journal of Applied Mechanics, vol 77, pp 215-221

23.11.2020 Robot modelling I 24 rrlab.cs.uni-kl.de

Denavit-Hartenberg-Transformation

Transformation from OCS_i to OCS_{i-1}

(1) Rotation θ_i around z_{i-1} -axis so that x_{i-1} -axis lies parallel to x_i -axis

$$R_{Z_{i-1}}(\theta_i) = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & 0 & 0\\ \sin \theta_i & \cos \theta_i & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(2) Translation d_i along z_{i-1} -axis to the intersection point of z_{i-1} and x_i

$$T_{Z_{i-1}}(d_i) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 25 rrlab.cs.uni-kl.de

Denavit-Hartenberg-Transformation

Transformation from OCS_i to OCS_{i-1}

(3) Translation a_i along x_i -axis in order to make the origins of the coordinate systems congruent

$$T_{x_i}(a_i) = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(4) Rotation α_i around x_i -axis, to transform the z_{i-1} -axis into z_i

$$R_{x_i}(\alpha_i) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_i & -\sin \alpha_i & 0 \\ 0 & \sin \alpha_i & \cos \alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 26 rrlab.cs.uni-kl.de

Denavit-Hartenberg-Transformation

In matrix notation, the D-H-Transformation of the coordinate system of link i-1 to i looks like:

$$_{i}^{i-1}A = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(a_i) \cdot R_{x_i}(\alpha_i)$$

$$= \begin{bmatrix} \cos\theta_i & -\sin\theta_i \cdot \cos\alpha_i & \sin\theta_i \cdot \sin\alpha_i & a_i \cdot \cos\theta_i \\ \sin\theta_i & \cos\theta_i \cdot \cos\alpha_i & -\cos\theta_i \cdot \sin\alpha_i & a_i \cdot \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 27 rrlab.cs.uni-kl.de

Denavit-Hartenberg-Transformation (Inverse)

The inverse of transformation matrix ${}^{i-1}_iA$ corresponds to the transformation from CS_{i-1} to CS_i :

$${}^{i-1}_{i}A^{-1} = {}^{i}_{i-1}A$$

$$= \begin{bmatrix} \cos\theta_i & \sin\theta_i & 0 & -a_i \\ -\cos\alpha_i\sin\theta_i & \cos\theta_i\cdot\cos\alpha_i & \sin\alpha_i & -d_i\sin\alpha_i \\ \sin\theta_i\cdot\sin\alpha_i & -\sin\alpha_i\cos\theta_i & \cos\alpha_i & -d_i\cos\alpha_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 28 rrlab.cs.uni-kl.de

Direct Kinematic Model

To determine the pose of the manipulator (Tool Center Point, TCP) in relation to the BCS, the D-H-matrices are multiplied in order of the corresponding links:

$$\underset{\mathsf{TCP}}{\mathsf{Basis}} A = \underset{1}{\mathsf{Basis}} A(\theta_1) \cdot \underset{2}{\overset{1}{\mathsf{2}}} A(\theta_2) \cdots \underset{n-1}{\overset{n-2}{\mathsf{2}}} A(\theta_{n-1}) \cdot \underset{n}{\overset{n-1}{\mathsf{1}}} A(\theta_n)$$

23.11.2020 Robot modelling I 29 rrlab.cs.uni-kl.de

Direct Kinematics: Approach with D-H

(1) Finding the normal a_i

- Joint axes g_i
- a_i points from g_i to g_{i+1}

(2) Defining the CS

- Origin O_i in the intersection of a_i
 with g_{i+1}
- x_i lies on normal a_i and points in the same direction
- z_i lies on g_{i+1} , in the direction allowing joint rotation or translation in mathematically positive sense
- y_i completes the clockwise CS; at TCP, y_i indicates width of opening

Direct Kinematics: Approach with D-H

Special cases of (1), (2)

- g_i and g_{i+1} intersect
 - Direction of x_i not defined
 - x_i arises from x_{i-1} through smallest possible rotation around z_{i-1}
- g_i and g_{i+1} are parallel or collinear
 - Intersection of a_i and g_{i+1} not well defined
 - Determine the normals by backstepping (recursively)
 - Starting at next uniquely identifiable origin O_j with j > i
 - At last joint, the origin is in the center of TCP

23.11.2020 Robot modelling I 31 rrlab.cs.uni-kl.de

Direct Kinematics: Approach with D-H

- (3) Determining the transformation matrix i+1_iA
 - Rotation of CS of joint i around z_{i-1} with joint angle θ_i $\rightarrow x'_{i-1}$ is parallel to x_i
 - Translation by d_i along z_{i-1}
 - \rightarrow Origin lies in intersection of z_{i-1} and x_i
 - Translation by $|a_i|$ along x_i
 - → Origins are congruent
 - Rotation around x_i with twist α_i $\rightarrow Z'_{i-1}$ is parallel to z_i
 - ${}^{i-1}_{i}A = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(|a_i|) \cdot R_{x_i}(\alpha_i)$

23.11.2020 Robot modelling I 32 rrlab.cs.uni-kl.de

Joint	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	$oldsymbol{ heta_2}$
3	a_3	0	0	$ heta_3$

$$\begin{bmatrix} \cos \theta_i & -\sin \theta_i \cdot \cos \alpha_i & \sin \theta_i \cdot \sin \alpha_i & a_i \cdot \cos \theta_i \\ \sin \theta_i & \cos \theta_i \cdot \cos \alpha_i & -\cos \theta_i \cdot \sin \alpha_i & a_i \cdot \sin \theta_i \\ 0 & \sin \alpha_i & \cos \alpha_i & d_i \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow i^{-1}A = \begin{bmatrix} c_i & -s_i & 0 & a_i \cdot c_i \\ s_i & c_i & 0 & a_i \cdot s_i \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 33 rrlab.cs.uni-kl.de

Result:

$${}_{3}^{0}A = {}_{1}^{0}A \cdot {}_{2}^{1}A \cdot {}_{3}^{2}A = \begin{bmatrix} c_{123} & -s_{123} & 0 & a_{1} \cdot c_{1} + a_{2} \cdot c_{12} + a_{3} \cdot c_{123} \\ s_{123} & c_{123} & 0 & a_{1} \cdot s_{1} + a_{2} \cdot s_{12} + a_{3} \cdot s_{123} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 34 rrlab.cs.uni-kl.de

Joint	a_i	α_i	d_i	θ_i
1	0	-90°	0	$ heta_1$
2	0	90 °	d_2	$oldsymbol{ heta}_2$
3	0	0	d_3	0

$${}_{1}^{0}A = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}A = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 35 rrlab.cs.uni-kl.de

$${}_{3}^{2}A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow {}_{0}^{3}A = {}_{1}^{0}A \cdot {}_{2}^{1}A \cdot {}_{3}^{2}A = \begin{bmatrix} c_{1} \cdot c_{2} & -s_{1} & c_{1} \cdot s_{2} & c_{1} \cdot s_{2} \cdot d_{3} - s_{1} \cdot d_{2} \\ s_{1} \cdot c_{2} & c_{1} & s_{1} \cdot s_{2} & s_{1} \cdot s_{2} \cdot d_{3} + c_{1} \cdot d_{2} \\ -s_{2} & 0 & c_{2} & c_{2} \cdot d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 36 rrlab.cs.uni-kl.de

Direct Kinematics: Example 3

Joint	a_i	α_i	d_i	θ_i
1	0	90°	0	$ heta_1$
2	a_2	0	0	$\boldsymbol{\theta}_2$
3	a_3	0	0	θ_3

23.11.2020 Robot modelling I 37 rrlab.cs.uni-kl.de

Direct Kinematics: Example 4

Joint	a_i	α_i	d_i	θ_i
1	0	90°	0	$ heta_1$
2	a_2	0	0	$oldsymbol{ heta_2}$
3	0	90°	0	$\theta_3 + 90^{\circ}$
4	0	-90°	d_4	$oldsymbol{ heta_4}$
5	0	90°	0	$\theta_5 - 90^{\circ}$
6	0	0	d_6	$\theta_6 + 90^{\circ}$

23.11.2020 Robot modelling I 38 rrlab.cs.uni-kl.de

Principle Screws

For a central screw we have

$$A_S(h,\phi,\vec{g}) = \begin{bmatrix} R_{\vec{g}}(\theta) & h\vec{g} \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{4\times4}$$

If
$$\vec{g} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, i.e. $\vec{g} = \vec{x}_{i-1}$

$$\Rightarrow A(h, \phi, \vec{x}_{i-1}) = \begin{bmatrix} 1 & 0 & 0 & h \\ 0 & C\theta & -S\theta & 0 \\ 0 & S\theta & C\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 39 rrlab.cs.uni-kl.de

Compound Screws

Similar to homogeneous Matrices, screws can be combined:

$${}^{k-2}S(h,\phi,\vec{g},\vec{P}) = {}^{k-2}S(h_1,\phi_1,\vec{g}_1,\vec{P}_1){}^{k-1}S(h_2,\phi_2,\vec{g}_2,\vec{P}_2)$$

General solution is lengthy, but not needed.

23.11.2020 Robot modelling I 40 rrlab.cs.uni-kl.de

D&H with Screws

- We have θ_i , d_i , a_i and α_i from D&H for $i^{-1}A$.
- Then we have two central screws:

$$\begin{split} & \stackrel{i-1}{i}A = S(d_i,\theta_i,z_{i-1}) \star S(a_i,\alpha_i,x_i) \quad (\star \text{ consecutive processing}) \\ & = \begin{bmatrix} C\theta_i & -S\theta_iC\theta_i & S\theta_iS\alpha_i & \alpha_iC\theta_i \\ S\theta_i & C\theta_iC\alpha_i & -C\theta_iS\theta_i & \alpha_iS\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 41 rrlab.cs.uni-kl.de

• From this, we can compute the compound $S(h, \phi, \vec{g}, \vec{P})$:

$$\cos \phi = \frac{1}{2} \left(tr({}^{G}R_{B}) - 1 \right)$$
$$= \frac{1}{2} \left(\cos \theta_{i} + \cos \theta_{i} \cos \alpha_{i} + \cos \alpha_{i} - 1 \right)$$

$$\vec{g} = \frac{1}{2S\phi} \begin{bmatrix} \sin \alpha_i + \cos \theta_i \sin \alpha_i \\ \sin \theta_i \sin \alpha_i \\ \sin \theta_i + \cos \alpha_i \sin \theta_i \end{bmatrix}$$

23.11.2020 Robot modelling I 42 rrlab.cs.uni-kl.de

- As deduced before
- Screw $S(h, \phi, \vec{g}, \vec{P})$, where P = (x, y, z) with x = 0:

$$= \frac{1}{2S\phi} \begin{bmatrix} S\alpha_i + C\theta_i S\alpha_i & -S\theta_i C\alpha_i & S\theta_i S\alpha_i \\ S\theta_i S\alpha_i & 1 - C\theta_i C\alpha_i & -C\theta_i S\alpha_i \\ S\theta_i + C\alpha_i S\theta_i & S\alpha_i & C\alpha_i \end{bmatrix}^{-1} \begin{bmatrix} a_i C\theta_i \\ a_i S\theta_i \\ d \end{bmatrix}$$

Consider that \vec{q} is not parallel to x-axis

23.11.2020 Robot modelling I 43 rrlab.cs.uni-kl.de

- As deduced before
- Screw $S(h, \phi, \vec{q}, \vec{P})$, where P = (x, y, z) with y = 0:

$$\begin{bmatrix} h \\ x \\ z \end{bmatrix} = \begin{bmatrix} g_1 & 1 - r_{11} & -r_{13} \\ g_2 & -r_{21} & -r_{23} \\ g_3 & -r_{31} & 1 - r_{33} \end{bmatrix}^{-1} \begin{bmatrix} r_{14} \\ r_{24} \\ r_{34} \end{bmatrix}$$

$$= \frac{1}{2S\phi} \begin{bmatrix} S\alpha_i + C\theta_i S\alpha_i & 1 - C\theta_i & S\theta_i S\alpha_i \\ S\theta_i S\alpha_i & S\theta_i & -C\theta_i S\alpha_i \\ S\theta_i + C\alpha_i S\theta_i & 0 & C\alpha_i \end{bmatrix}^{-1} \begin{bmatrix} a_i C\theta_i \\ a_i S\theta_i \\ d \end{bmatrix}$$

Consider that \vec{g} is not parallel to y-axis

23.11.2020 Robot modelling I 44 rrlab.cs.uni-kl.de

- As deduced before
- Screw $S(h, \phi, \vec{g}, \vec{P})$, where P = (x, y, z) with z = 0

$$= \frac{1}{2S\phi} \begin{bmatrix} S\alpha_i + C\theta_i S\alpha_i & 1 - C\theta_i & -S\theta_i S\alpha_i \\ S\theta_i S\alpha_i & S\theta_i & 1 - C\theta_i S\alpha_i \\ S\theta_i + C\alpha_i S\theta_i & 0 & C\alpha_i \end{bmatrix}^{-1} \begin{bmatrix} a_i C\theta_i \\ a_i S\theta_i \\ d \end{bmatrix}$$

Consider that \vec{g} is not parallel to z-axis

For usage check first y-axis!

23.11.2020 Robot modelling I 45 rrlab.cs.uni-kl.de

Direct Kinematics: Example 1

•
$$\phi_i = \theta_i$$

$$\hat{g}_i = (0,0,1)^T$$

$$\bullet \quad h_i = 0$$

$$\vec{P}_i = \left(\frac{a_i(2C\theta - 1)}{4S\theta}, \frac{a_i(2C\theta - 1)}{4C\theta - 1}, 0\right)^T$$

Joint	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	$ heta_2$
3	a_3	0	0	$ heta_3$

23.11.2020 Robot modelling I 46 rrlab.cs.uni-kl.de

Exponential Representation of a Screw

 Similar to exponential coordinates for a rotation, a transformation can be notated.

$$\vec{q}'' = \vec{P} + e^{\phi \hat{g}(\vec{q} - \vec{P})} + h\vec{g}$$

$$=: [T] \begin{bmatrix} \vec{q} \\ 1 \end{bmatrix}$$

Where,

$$[T] = \begin{bmatrix} e^{\phi \vec{g}} & (I - e^{\phi \vec{g}})\vec{P} + h\vec{g} \\ 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 47 rrlab.cs.uni-kl.de

Exponential representation of central Screws

• For central screws $\vec{P} = \vec{0}$ the same holds:

$$T] = \begin{bmatrix} e^{\phi \hat{\vec{g}}} & h\vec{g} \\ 0 & 1 \end{bmatrix}$$

Note that:

$$e^{\begin{bmatrix} \phi \hat{g} & 0 \\ 0 & 0 \end{bmatrix}} = \begin{bmatrix} e^{\phi \hat{g}} & 0 \\ 0 & 1 \end{bmatrix}$$

and,

$$e^{\begin{bmatrix} 0 & h\vec{g} \\ 0 & 0 \end{bmatrix}} = \begin{bmatrix} I_3 & h\vec{g} \\ 0 & 1 \end{bmatrix}$$

23.11.2020 Robot modelling I 48 rrlab.cs.uni-kl.de

Exponential representation of D&H

Therefore:

$$[T] = e^{\begin{bmatrix} \phi \hat{g} & h \vec{g} \\ 0 & 0 \end{bmatrix}} =: e^{\xi(h,\phi,\vec{g})}$$

For D&H this means:

$$i^{-1}{}_{i}A = S(d_{i}, \theta, z_{i-1}) \star S(a_{i}, \alpha_{i}, x_{i-1})$$
$$= e^{\xi(d_{i}, \theta_{i}, z_{i-1})} e^{\xi(a_{i}, \alpha_{i}, x_{i})}$$

23.11.2020 Robot modelling I 49 rrlab.cs.uni-kl.de

Direct Kinematic: Example 1

$$\begin{array}{ll}
 & i^{-1}A = e^{\xi(0,\theta_i,z_{i-1})}e^{\xi(a_i,0,x_i)} \\
 & = e^{\begin{bmatrix} \theta_i \hat{z}_{i-1} & 0 \\ 0 & 0 \end{bmatrix}}e^{\begin{bmatrix} 0 & a_i x_i \\ 0 & 0 \end{bmatrix}} \\
 & = \begin{bmatrix} e^{\theta_i z_{i-1}} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I_3 & a_i x_i \\ 0 & 1 \end{bmatrix}$$

Joint	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	$oldsymbol{ heta}_2$
3	a_3	0	0	$ heta_3$

23.11.2020 Robot modelling I 50 rrlab.cs.uni-kl.de

Dual-Quaternion Arithmetic Operations

- The elementary arithmetic operations for dual-quaternions are (Reminder: $Q = (q_1, q_2, q_3, q_4)$, $q_i = q_{ri} + \varepsilon \cdot q_{di}$, $\varepsilon^2 = 0$ with r as real part/quartenion and d as dual part/quartenion):
 - Scalar multiplication: $sq = sq_r + sq_d\varepsilon$

$$sq = sq_r + sq_d \varepsilon$$

Addition:

$$q_1 + q_2 = q_{r1} + q_{r2} + (q_{d1} + q_{d2})\varepsilon$$

Multiplication:

$$q_1q_2 = q_{r1}q_{r2} + (q_{r1}q_{d2} + q_{d1}q_{r2})\varepsilon$$

Conjugate:

$$q^* = q_r^* + q_d^* \varepsilon$$

23.11.2020 Robot modelling I rrlab.cs.uni-kl.de

Dual-Quaternion Arithmetic Operations

Magnitude:

$$||q|| = qq^*$$

Unit condition:

$$||q|| = 1$$
$$q_r^* q_d + q_d^* q_r = 0$$

 The unit dual-quaternion is our key concern as it can represent any rigid rotational and translational transformations.

23.11.2020 Robot modelling I 52 rrlab.cs.uni-kl.de

Dual-Quaternion representation

• Only rotation around \vec{g} with angle ϕ , then:

$$q_{rot} = ((\cos\left(\frac{\phi}{2}\right), 0), (g_1 \sin\left(\frac{\phi}{2}\right), 0), (g_2 \sin\left(\frac{\phi}{2}\right), 0), (g_3 \sin\left(\frac{\phi}{2}\right), 0))$$

$$= (\cos\left(\frac{\phi}{2}\right), g_1 \sin\left(\frac{\phi}{2}\right), g_2 \sin\left(\frac{\phi}{2}\right), g_3 \sin\left(\frac{\phi}{2}\right))$$

• Only translation by \vec{t} with no rotation

$$q_{trans} = \left((1,0), \left(0, \frac{t_1}{2} \right), \left(0, \frac{t_2}{2} \right), \left(0, \frac{t_3}{2} \right) \right)$$

$$= (1, \varepsilon \frac{t_1}{2}, \varepsilon \frac{t_2}{2}, \varepsilon \frac{t_3}{2})$$

23.11.2020 Robot modelling I 53 rrlab.cs.uni-kl.de

Dual-Quaternions representation

Combination of both as q:

•
$$q_r = q_{rot,r}$$

• $q_d = \frac{q_{trans,d}q_{rot,r}}{2}$
 $q = ((C\phi - \varepsilon \frac{S\phi(g_1t_1 + g_2t_2 + g_3t_3)}{2}),$
 $(g_1S\phi + \varepsilon \frac{C\phi(t_2g_3 - t_3g_2)}{2}),$
 $(g_2S\phi + \varepsilon \frac{C\phi(t_2g_3 - t_3g_2)}{2}),$
 $(g_3S\phi + \varepsilon \frac{C\phi(t_2g_3 - t_3g_2)}{2}))$

23.11.2020 Robot modelling I 54 rrlab.cs.uni-kl.de

Direct Kinematic: Example 1

- $i^{-1}q = (C\theta, \varepsilon a_i S\theta, \varepsilon a_i C\theta, S\theta)$
- And the transformation is then:

$$P' = {}_{i}^{i-1}q \cdot P \cdot {}_{i}^{i-1}q^*$$

Joint	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	$ heta_2$
3	a_3	0	0	$ heta_3$

23.11.2020 Robot modelling I 55 rrlab.cs.uni-kl.de

Robot Kinematics

- Describes relations between joint angle space and the end effector's pose space in world coordinates
 - Joint angle space:
 Robot coordinates, configuration space
 - EE: Abbreviation for end effector
- Direct kinematic problem (forward kinematics)
- Inverse kinematic problem (backward kinematics)

23.11.2020 Robot modelling I 56 rrlab.cs.uni-kl.de

Direct Kinematic Problem

- The manipulator's pose is to be determined from D-Hparameters and joint
- $ec{ heta}$ given

23.11.2020 Robot modelling I 57 rrlab.cs.uni-kl.de

Direct Kinematics Summary

- Sketch of the manipulator
- Enumerate links: Basis = 0, last link = n
- Identify and enumerate the joints
- Draw axes z_i for every joint i
- Determine parameters a_i between z_{i-1} and z_i
- Draw x_{i-1} -axes
- Determine parameter α_{i-1} (twist around x_{i-1} -axes)
- Determine parameter d_i (offset)
- Determine angle θ_i around z_i -axes
- Joint-transformation matrices A_{i-1.1}

23.11.2020 Robot modelling I 58 rrlab.cs.uni-kl.de

Next Lecture ...

Robot modelling

- Inverse kinematic problem
- Algebraic and geometric solutions
- Numerical methods
- Optimization

23.11.2020 Robot modelling I 59 rrlab.cs.uni-kl.de