Comparative analysis of the thermal stability of the triflate, tosylate and tetrafluoroborate diazonium salts

Alexander A. Bondarev, ¹ Evgeny V. Naumov, ¹ Assiya Zh. Kassanova², Elena A. Krasnokutskaya², Vicror D. Filimonov²

Введение

Диазониевые соли - важные и широко используемые реагенты для получения азокрасителей, модификации полимеров, поверхностей, наночастиц и во многих других важных химических процессах. Однако, их использование связано с риском, так как большинство диазониевых солей подвергается самопроизвольному разложению с выделением энергии и молекулярного азота. В литературе описаны результаты исследований чувствительности диазониевых солей к удару, воздействию пламени и света [1, 2]. Однако, мы не нашли данных по изучению кинетики разложения диазониевых солей в изотермических условиях. Для оценки безопасности хранения полученных соединений мы использовали стандартную процедуру для оценки стабильности взрывчатых веществ и порохов - STANAG, применяемую в странах НАТО [3, 4]. Кроме того был проведен более подробный кинетический анализ кривых разложения при трех температурах с целью определения энергий активации и кинетических параметров при нормальных условиях.

Материалы и методы

Для проведения исследования были синтезированы тозилатные, трифлатные и тетрафторборатные соли 4-метокси, 2-, 3- и 4-нитрофенилдиазония.

Синтез тозилата 4-нитрофенилдиазония проводили при температуре 0-5 °C. В 5 мл ледяной уксусной кислоты растворили 0,928 г п-толуолсульфокислоты и к полученному раствору добавили 0,553 г п-нитроанилина. Затем, при охлаждении по каплям прибавляли 0,6 мл бутилнитрита. Реакцию проводили до исчезновения аминов, контролируя по ТСХ с реактивом Эрлиха. Продукт проверяли качественной реакцией с бета-нафтолом. После исчезновения аминов (спустя 5-10 минут) полученную соль диазония осаждали холодным диэтиловым эфиром и фильтровали. Продукт сушили в вакуум-эксикаторе 48 часов.

Синтез трифлатов осуществляли при температуре 0-5 °C. В 5 мл ледяной уксусной кислоты растворяли 0,5 мл трифторметансульфокислоты и к полученному раствору добавляли 0,553 г п-нитроанилина. Затем при охлаждении по каплям прибавляли 0,6 мл бутилнитрита. Реакцию проводили до исчезновения аминов, контролируя по ТСХ с реактивом Эрлиха. Продукт проверяли качественной реакцией с бета-нафтолом. После исчезновения аминов (спустя 5-10 минут) полученную соль диазония осаждали холодным диэтиловым эфиром и фильтровали. Продукт сушили в вакуум-эксикаторе 48 часов.

¹Department of Biomedicine, Altai State University, Barnaul, Russia, alex_root@mail.ru

² Department of Organic Chemistry, Tomsk Polytechnic University, 634050 Tomsk, Russia

Синтез тетрафторбората 4-нитрофенилдиазония проводили при температуре -5 °C. Сначала готовили раствор 0,555 г нитрита натрия в 3 мл воды. Отдельно растворяли 1,025 г п-нитроанилина в 5 мл 40 % тетрафторборной кислоты. Затем, при охлаждении добавляли по каплям раствор нитрита натрия. Спустя 10 минут выпавший осадок фильтровали и промывали холодным диэтиловым эфиром.

Переосаждение проводили из растворов диазониевых солей в ледяной уксусной кислоте с последующим осаждением холодным диэтиловым эфиром. Затем, полученные осадки фильтровали и сушили под вакуумом в течении 48 часов как рекомендовано в статье [1].

Исследования ТГ/ДСК проводили на приборе Q600 SDT фирмы TA Instruments а атмосфере аргона.

Метод, лежащий в основе STANAG процедуры, основан на измерении максимального теплового потока в течении определенного времени при заданной температуре [3, 4]. Измерение теплового потока в изотермических условиях выполняли на микрокалориметре ТАМ III фирмы ТА Instruments в атмосфере азота.

Результаты и обсуждения

Перед началом исследования стоял вопрос о воспроизводимости результатов в зависимости от способа синтеза, партии и пробоподготовки. Устойчивость диазониевых солей очень сильно связана с наличием примесей, поэтому были проведены предварительные исследования по воспроизводимости результатов от партии и числа переосаждений. При переосаждении наблюдается тенденция уменьшения величины максимального и начального теплового потока, однако статистически достоверных различий не выявлено. Очевидно, очистку необходимо проводить до тех пор, пока величина начального теплового потока не перестанет уменьшаться. Воспроизводимость результатов изотермического разложения температура 7 разных партий диазониевых солей полученных по одной методике представлена на рисунке №1. Кроме этого, важно удаление остатков уксусной кислоты и диэтилового эфира. Поэтому полученные осадки сушили при 25 °C под вакуумом в течении 48 часов.

Рисунок 1. Воспроизводимость результатов изотермического разложения тозилата 4-нитрофенилдиазония в зависимости от полученной партии и числа переосаждений температура?

ТГ/ДСК исследуемых образцов показали, что все соли разлагаются с выделением тепла и потерей массы. Для тозилата 4-нитрофенилдиазония наблюдается основной экзотермический пик при 137,28 °C с выделением 340 Дж/г. Для трифлата 4-нитрофенилдиазония наблюдается основной экзотермический пик при 117,8 °C с выделением 140 Дж/г. Для тозилата 4-метоксифенилдиазония наблюдается два пика переходящих друг в друга, эндотермический при 88,4 °C с поглощением 102 Дж/г и экзотермический пик при 136,6 °C с выделением 329 Дж/г.

Результаты изотермического разложения при 75 °C, 80 °C, 90 °C представлены в таблице №1 и рисунках №1-3. По результатам эксперимента значения максимального теплового потока для 4-нитрофенилдиазониевых солей практически не зависят от аниона и значительно превышают допустимый уровень STANAG процедуры для условий безопасного хранения. Согласно процедуре, вещество является стабильным при хранении, если при температуре 75 °C в течении 19 дней тепловой поток не превысит 63,1 мкВт/г, при 80 °C 114 мкВт/г в течении 10,6 дней и при 85 °C измерения проводят 6 дней и тепловой поток должен быть меньше 201 мкВт/г. Трифлат 4-метоксифенилдиазония также не удовлетворяет критерию STANAG процедуры и является нестабильной при хранении, но имеет значительно меньшие показатели максимального теплового потока. В ряду трифлатов 4-, 3- и 2-нитрофенилдиазония наблюдается уменьшение величины максимального теплового потока.

Таблица 1. Интегральная энтальпия и величина максимального теплового потока при разложении солей

Substance	ΔH, kJ/mol			P max, mW/g		
	75°	$80^{\rm o}$	85°	75°	80°	85°
p-NO ₂ -Ph-N ₂ BF ₄	173.0	156.0	147.0	20.02	31.63	66.87
p-NO ₂ -Ph-N ₂ TsO	253.0	232.4	231.0	21.10	34.82	64.60

	ΔH, kJ/mol			P max, mW/g		
Substance - p-NO ₂ -Ph-N ₂ TfO	200.0	235.1	250.0	20.12	47.89	101.50
m-NO ₂ -Ph-N ₂ TfO	227,9	230.0	225.4	6,57	14.15	28.8
o-NO ₂ -Ph-N ₂ + TfO	-	330,0	416,4	-	1.49	2.33
p-CH ₃ O-Ph-N ₂ + TfO	183.1	183.2	-	1.34	2.97	5.37

Сравнивая время разложения табл?? можно заметить, что тетрафторбораты разлагаются быстрее, чем тозилаты и трифлаты при всех трех температурах. На рисунке №2 приведены экспериментальные значения теплового потока при разложении солей. Время разложения трифлата 4-нитрофенилдиазония значительно меньше, чем метокси производного.

Был проведен кинетический анализ кривых изотермического разложения и определены основные параметры аппроксимирующих уравнений. Наблюдаемые зависимости тепловых потоков лучше всего описываются с помощью кинетического уравнений для автокаталитических реакций: $a \ A \to c \ C$

$$\frac{d[C]}{dt} = k \cdot ([A]_0 - \frac{a}{c}([C] - [C]_0)) \cdot [C]_0$$

Кинетические параметры представлены в таблице №2.

Исключением является трифлат о-нитрофенилдиазония, изотермическая кривая которого плохо описывается простым автокаталитическим процессом и имеет более сложный характер. Следовательно требуется процедура деконволюции и выделения первичных процессов. Деконволюцию проводили путем компьютерного моделирования комбинаций автокаталитических реакций с различными тепловыми эффектами и кинетическими параметрами. Полученная экспериментальная кривая теплового потока лучше всего описывается композицией двух процессов - небольшого по величине эндотермического процесса с теплотой ΔH =20 кДж/моль с кинетическими параметрами - k_1 =1.3, C_{01} =0.0007 и основным экзотермическим автокаталитическим процессом с теплотой ΔH =-430 кДж/моль , k_2 =0,08, C_{02} =0,0020 при 85 °C. На рисунке 3 приведены результаты деконволюции.

Рисунок 2. Значения теплового потока изотермического разложения солей \ref{cone} при температуре 85 °C

Рисунок 3. Экспериментальная кривая и результат деконволюции теплового потока изотермического разложения трифлата 2-нитрофенилдиазония №№ при температуре 85 °C, a-?, b-?, c - ?, d-?

Таблица 2. Кинетические параметры реакций разложения диазониевых солей

Substance	P ₀ , mW			k, g · mol $^{-1}$ · c $^{-1}$		
	75°	80°	85°	75°	$80^{\rm o}$	85°
p-NO ₂ -Ph-N ₂ BF ₄	39.241	89.598	180.42	0.0186	0.0344	0.0721
p-NO ₂ -Ph-N ₂ + TsO	1.957	2.745	4.152	0.0289	0.0539	0.1030
p-NO ₂ -Ph-N ₂ TfO	0.900	1.311	7.952	0.0316	0.0630	0.1680
m-NO ₂ -Ph-N ₂ + TfO	0.0094	1.10	4.42	0.00912	0.01958	0.0429
o-NO ₂ -Ph-N ₂ TfO	-	5.59	14.7	-	0.0011	0.00076
p-CH ₃ O-Ph-N ₂ + TfO	1.477	3,200	11.379	0.0021	0.0044	0.0128

Время разложения трифлата 4-нитрофенилдиазония значительно меньше, чем метокси производного. Кривые теплового потока при разложении представлены на рисунке 6. Как и

ожидалось, вид заместителя оказывает существенное влияние на стабильность диазониевой соли.

Рисунок 4. Изотермическое разложение трифлатов 4-метоксифенилдиазония и 4-нитрофенилдиазония при температуре 85 °C

Существенное влияние на стабильность диазониевых солей оказывает положение заместителя в бензольном кольце. Для трифлатов нитрофенилдиазония наибольшей стабильностью обладает орто- производное, значительно менее стабильно мета- и наименьшей стабильностью обладает трифлат пара-нитрофенилдиазония при всех трех температурах. Однако, требуется более подробный анализ с аппроксимацией на стандартные условия. Результаты представлены в таблице №2 и рисунке №5.

Рисунок 5. Тепловой поток при изотермическом разложении трифлатов 2-, 3- и 4-нитрофенилдиазония при температуре 85 °C

Анализируя кинетические данные при различной температуре и аппроксимируя с помощью уравнения Аррениуса рассчитали кинетические параметры реакций разложения на температуру 25 °C. Результаты анализа представлены графически на рисунке №6. Сравнивая показатели, можно сделать вывод, что трифлат 4-метоксифенилдиазония значительно стабильнее в хранении при стандартных условия, чем все нитро производные. Замена аниона также оказывает существенное влияние на сроки хранения. При различных положениях нитро группы в бензольном кольце наибольшей стабильностью обладает трифлат 3-нитрофенилдиазония, значительно меньшей стабильностью обладает пара- производное и самой низкой орто-замещенная соль диазония ср. с табл. 2 7. Рассчитанные кинетические параметры диазониевых солей в стандартных условиях представлены в таблице №3 и графически на рисунках 7-8.

Рисунок 6. Анализ Аррениуса для реакций разложения некоторых диазониевых солей.

Таблица №3.

Рассчитанные значения кинетических параметров реакций разложения диазониевых солей при 25 °C.

Рисунок 7. Рассчитанные кинетические кривые разложения трифлатов 2-, 3- и 4-нитрофенилдиазония при 25 °C.

Рисунок 8. Рассчитанные кинетические кривые разложения тозилата, трифлата и тетрафторбората 4-нитрофенилдиазония при 25 °C.

Выводы

В результате эксперимента тепловые потоки для всех изученных нами диазониевых солей значительно превышают разрешенные значения для STANAG процедуры и потенциально опасны в хранении.

Проведенный анализ Аррениуса и аппроксимация кривых разложения на нормальные условия показала, что сравнение кинетики при более высоких температурах не всегда качественно описывает сравнительную стабильность при нормальных условиях, в следствии различия механизмов и энергий активации.

Эксперимент показал, что природа заместителя и его положение существенно влияют на кинетику разложения солей. Вероятно, это связано с электронным строением и стабильностью самого диазониевого катиона. В случае орто-нитрофенилдиазония имеют место более сложные процессы связанные, вероятно, с перегруппировкой или иными побочными процессами после выделения молекулярного азота. Этот факт подтверждается существенным отличием в энергии активации для трифлата 4-нитрофенилдиазония от других изученных диазониевых солей.

В меньшей степени на стабильность солей влияет вид аниона. Однако, в случае трифлата 4-нитрофенилдиазония наблюдается значительное увеличение стабильности. Предположительно, влияние аниона связано с изменением вероятности протекания различных механизмов при разложении солей. Очевидно, что для оценки стабильности солей диазония необходимо подробное изучение механизмов реакций протекающих при разложении.

Список литературы

- 1. R. Ullrich, Th. Grewer, "Decomposition of aromatic diazonium compounds", Thermochimica Acta, 225 (1993) 201-211
- 2. Jinyu Chen, Chao Zhao, Renxiang Wang, Shuguang Cao, Weixiao Cao, "Photochemical and thermal decomposition of diphenylamine diazonium salts", Journal of Photochemistry and Photobiology A: Chemistry 125 (1999) 73-78
- 3. U. Ticmanis, S. Wilker, G. Pantel, P. Guillaume, C. Balès, N. van der Meer. Principles of a STANAG for the estimation of the chemical stability of propellants by Heat Flow Calorimetry", Proc. Int Annu. Conf. ICT 31, 2 (2000).
- 4. P. Guillaume, M. Rat, S. Wilker, G. Pantel, "Microcalorimetric and Chemical Studies of Propellants", Proc. Int Annu. Conf. ICT 29, 133 (1998).