

Project code:【H600/H1200】 Version: 【1/4】
File name: 高性能雷达通信协议 Page: 【1】

□一般 ☑秘密 □机密

高性能雷达通信协议

南京隼眼电子科技有限公司

NanJing Hawkeye Electronic Technology Co., Ltd

File status:
[] Draft
[√] Released
[] Active
[] Expired

Proprietorship

The document and the information contained are the property of the HET. The copy, use and disclosure of the document and its information must be authorized by HET in writing.

Revised state

NO.	Version / Revision number	Content modification	Modifier	Modification date
1	1.0	初始版本	rhzhong	2023.6.14
				X
			>	- 17
			, *	/
		7	1	
		(\lambda \lam)	
		1-1-1-1		

目 录

1	目自	杓	4
2	通信	言协议	4
	2.1	通用格式	4
	2.2	通讯配置	4
	2.3	心跳报文	5
	2.4	跟踪信息集	5
3	数排	居统计	8
	3.1	实时统计信息	8
	3.2	周期统计信息	J
	3.3		10
4	CRC	校验	11
	4.1	CRC 校验说明	11
5	附件	4	15

1 目的

本文档的目的是描述高性能雷达通信协议,方便用户对接雷达数据。

2 通信协议

2.1 通用格式

本协议采用 TCP 通讯模式,雷达为服务端,雷达默认 IP: 192.168.1.40,默认端口: 8089,网络通讯全部采用<mark>小端字节序</mark>传输。

类型 序号 内容 偏移 字节数 说明 1 0xA5 1 报文头特征码 1 1 0x5A 整个报文长度,包括报文头、数据区及校验 2 2 2 报文长度 报文头 3 报文识别 4 报文类型,参见表 2-2 N字节(协议内容) 数据区 4 数据内容 N 不含自身的 CRC 校验和,从报文头开始至数 2 5 校验和 校验和 6+N 据区结束,参见 CRC 校验节

表 1 数据通讯通用格式

2.2 通讯配置

表 2 通讯报文

序号	消息类型	报文类型 (十进制)	通信方式	通信端口	周期	备 注
1	心跳报文	2002	TCP	8089	1s	雷达主送
2	跟踪信息集报文	2004	TCP	8089	50ms	雷达主送
3	实时统计信息	2031	TCP	8089		雷达发送
4	周期统计信息	2032	TCP	8089		雷达发送
5	拥堵信息上报	2074	TCP	8089		雷达发送

2.3 心跳报文

表 3 心跳报文

类型	序号	内容	偏移	字节数	说明
					偏移由小到大依次是: D[0]年(实际年份减去2000以后的值), D[1]月(1-12),
数据区	1	源设备时间	6	8	D[2]日 (1-31), D[3]时 (0-23), D[4]
					分 (0-59), D[5]秒 (0-59), D[6]-D[7]:
					毫秒 (0-999)

2.4 跟踪信息集

表 4 跟踪信息集报文

类型	序号	内容	偏移	字节数	说明
					偏移由小到大依次是: D[0]年(实际年
					份减去 2000 以后的值), D[1]月(1-12),
	1	源设备时间	6	8	D[2]日 (1-31), D[3]时 (0-23), D[4]
					分 (0-59), D[5]秒 (0-59), D[6]-D[7]:
				7/7,	毫秒 (0-999)
	2	帧号	14	2	范围 0~65535
	3	目标总数	16	2	最大 512 个目标
	4	0x01	18	2	目标 ID: 范围 0-9999
		当前目标 X 坐		,	小端模式:原始数据转为十进制数 XDEC
	5	标	20	2	X = (XDEC - 32768) /100
		175			(单位: m; 笛卡尔坐标系, 见文末附图)
		当前目标 Y 坐			小端模式:原始数据转为十进制数 YDEC
	6	标	22	2	Y = YDEC /20 (Y>0)
数据区		1/4			(单位: m; 笛卡尔坐标系, 见文末附图)
XX 1/11 C	7	当前目标 Z 坐标	24	2	小端模式:原始数据转为十进制数 ZDEC
					Z = (ZDEC - 32768) /100
					(单位: m; 笛卡尔坐标系, 见文末附图)
*					小端模式:原始数据转为十进制数 VDEC
-7/7-	8	当前目标横向速	26	2	$V_X = (VDEC - 32768) /100$
		度 Vx	20	2	(单位: m/s, 笛卡尔坐标系, 见文末附
					图,远离为正,靠近为负)
					小端模式:原始数据转为十进制数 VDEC
	9	当前目标横向速	28	2	Vy = (VDEC - 32768) /100
	3	度 Vy	28	Δ	(单位: m/s, 笛卡尔坐标系, 见文末附
					图,远离为正,靠近为负)
		目标 Xsize 大			小端模式:原始数据转为十进制数 XDEC
	10	小 ASIZE 人	30	2	Xsize = (XDEC - 32768) /100
		• •			(单位: m)

	T	ı	ı	
11	目标 Ysize 大 小	32	2	小端模式:原始数据转为十进制数 YDEC Ysize = (YDEC - 32768) /100 (单位: m)
12	目标类型	34	1	类型: 0-未定义目标, 1-小车, 2-大车, 3-摩托, 4-自行车, 5-行人
13	目标经度	35	8	按 double 读取,正为东经,负为西经, 单位度
14	置信度	43	1	
15	目标事件	44	1	0-无事件,1-逆行,2-大车超高速,3- 小车超高速,4-大车超低速,5-小车超 低速,6-停车,7-占用应急车道行驶, 8-压线,9-变道,10-占用应急车道停车, 11-占用应急车道逆行
16	目标纬度	45	8	按 double 读取,正为北纬,负为南纬,单位度
17	车道号	53	1	0-车道外或无车道标定
18	0xF0	54	1	当前目标结束符
19	0x02	55	2	目标 ID: 范围 1-9999
20	当前目标 X 坐 标	57	2	小端模式:原始数据转为十进制数 XDEC X = (XDEC - 32768) /100 (单位: m; 笛卡尔坐标系,见文末附图)
21	当前目标 Y 坐标	59	2	小端模式:原始数据转为十进制数 YDEC Y = YDEC /20 (Y>0) (单位: m; 笛卡尔坐标系,见文末附图)
22	当前目标 Z 坐	61	2	小端模式:原始数据转为十进制数 ZDEC Z = (ZDEC - 32768) /100 (单位: m; 笛卡尔坐标系,见文末附图)
23	当前目标横向速 度 Vx	63	2	小端模式:原始数据转为十进制数 VDEC Vx = (VDEC - 32768) /100 (单位: m/s,笛卡尔坐标系,见文末附图,远离为正,靠近为负)
24	当前目标横向速 度 Vy	65	2	小端模式:原始数据转为十进制数 VDEC Vy = (VDEC - 32768) /100 (单位: m/s,笛卡尔坐标系,见文末附 图,远离为正,靠近为负)
25	目标 Xsize 大 小	67	2	小端模式:原始数据转为十进制数 XDEC Xsize = (XDEC - 32768) /100 (单位: m)
26	目标 Ysize 大 小	69	2	小端模式:原始数据转为十进制数 YDEC Ysize = (YDEC - 32768) /100 (单位: m)
27	目标类型	71	1	类型: 0-未定义目标, 1-小车, 2-大车,

				3-摩托, 4-自行车, 5-行人
28	目标经度	72	8	按 double 读取,正为东经,负为西经,单位度
29	置信度	80	1	
30	目标事件	81	1	0-无事件,1-逆行,2-大车超高速,3- 小车超高速,4-大车超低速,5-小车超 低速,6-停车,7-占用应急车道行驶, 8-压线,9-变道,10-占用应急车道停车, 11-占用应急车道逆行
31	目标纬度	82	8	按 double 读取,正为北纬,负为南纬,单位度
32	车道号	90	1	0-车道外或无车道标定
33	0xF0	91	1	当前目标结束符
34	•••			
35	0xFF	18+37*N	1	数据结束符

3 数据统计

3.1 实时统计信息

表 5 实时统计信息

类型		序号	内容	偏移	字节数	说明
	帧信	1	源设备时间	6	8	偏移由小到大依次是: D[0]年(实际年份减去 2000 以后的值), D[1]月(1-12), D[2]日(1-31), D[3]时(0-23), D[4]分(0-59), D[5]秒(0-59), D[6]-D[7]: 毫秒(0-999)
	息	2	帧号	14	2	范围 0~65535
		3	存在目标总数	16	1	范围 0-64
		4	存在目标 ID	17	2	范围 0-9999
		5	存在目标车道 ID	19	1	范围 1-16
		6	设备 ID	20	1	范围 0-255
		7	测量线 ID	21	1 -/-	需要配置测量线
		8	继电器 ID	22	1)
		9	存在目标类型	23	1	类型: 0-未定义目标, 1-小车, 2-大车, 3- 摩托, 4-自行车, 5-行人
		10	目标状态	24	1	0-正常, 1-逆行
数据区	存	11	存在目标当前 速度	25	2	小端模式:原始数据转为十进制数 VDEC V = (VDEC - 32768) /100 (单位: m/s)
	在	12	0xF0	27	1	当前目标结束符
	目	13	存在目标 ID	28	2	范围 0-9999
	标信息	14	存在目标车道 ID	30	1	范围 1-16
	心	15	设备 ID	31	1	范围 0-255
		16	测量线 ID	32	1	需要配置测量线
	7, .	17	继电器 ID	33	1	
K		18	存在目标类型	34	1	类型: 0-未定义目标,1-小车,2-大车,3- 摩托,4-自行车,5-行人
		19	目标状态	35	1	0-正常, 1-逆行
		20	存在目标当前 速度	36	2	小端模式:原始数据转为十进制数 VDEC V = (VDEC - 32768) /100 (单位: m/s)
		21	0xF0	37	1	当前目标结束符
		22	•••	•••	•••	
	结	23	0xFF	17+12*N	1	数据结束符

	束			
	符			

3.2 周期统计信息

表 6 周期统计信息

类型		序号	内容	偏移	字节数	说明
	总车道统	1	源设备时间	6	8	偏移由小到大依次是: D[0]年(实际年份 减去 2000 以后的值), D[1]月(1-12), D[2] 日(1-31), D[3]时(0-23), D[4]分(0-59), D[5]秒(0-59), D[6]-D[7]; 毫秒(0-999)
	计	2	总车流量	14	2	范围 0-65535
	信息	3	平均车速	16	2	小端模式:原始数据转为十进制数 VDEC V = (VDEC - 32768) /100 (单位: m/s)
		4	车头时距	18	2	小端模式: 原始数据转为十进制数 HTDEC ht = HTDEC /100 (单位: s/辆)
		5	车头间距	20	2	小端模式:原始数据转为十进制数 HSDEC h _s = HSDEC /100 (单位: m/辆)
		6	使能车道总数	22	, 1	0-16
数据	分	7	车道 id	23	1	1–16
区 区	车	8	该车道车流量	24	2	范围 0-65535
<u> </u>	道统计	9	该车道平均车	26	2	小端模式:原始数据转为十进制数 VDEC V = (VDEC - 32768) /100 (单位: m/s)
	信息	10	该车道时间占 有率	28	2	小端模式: 原始数据转为十进制数 PDEC P = PDEC / 100
-7	17,7	11	该车道车头时 距	30	2	小端模式:原始数据转为十进制数 HTDEC ht = HTDEC /100 (单位: s/辆)
K	//	12	该车道车头间 距	32	2	小端模式:原始数据转为十进制数 HSDEC h _s = HSDEC /100 (单位: m/辆)
		13	0xF0	34	1	当前车道结束符
		14	车道 id	35	1	1-16
		15	该车道车流量	36	2	范围 0-65535
		16	该车道平均车 速	38	2	小端模式:原始数据转为十进制数 VDEC V = (VDEC - 32768) /100

					(单位: m/s)
	17	该车道时间占	40	40 2	小端模式:原始数据转为十进制数 PDEC
	17	有率	40	2	P = PDEC / 100
		运左 道左礼时			小端模式:原始数据转为十进制数 HTDEC
	42	2	$h_{\rm t}$ = HTDEC /100		
		匹			(单位: s/辆)
		法左送左刘向	44	2	小端模式:原始数据转为十进制数_HSDEC
	19	该车道车头间 距			$h_s = HSDEC /100$
		匹			(单位: m/辆)
	20	0xF0	46	1	当前车道结束符
	21	•••	•••	•••	
结					Y Y
束	22	0xFF	23+12 * N	1	数据结束符
符					

3.3 拥堵信息

表 7 拥堵信息

가는 포니		岸 口	上应	/白 7分	トナーH- WL-	\\\ n\
类型	1	序号	内容	偏移	字节数	说明
数据区	总车道信		源设备时间	6	8	偏移由小到大依次是:年(实际年份减去2000以后的值),月(1-12),日(1-31),时(0-23),分(0-59),秒(0-59),D[6]-D[7]:毫秒(0-999)
	息		总空间占用 率	14	4	浮点型,按浮点数读取
			是否拥堵	18	1	1-拥堵,0-正常
			预留	19	4	
		1,5-	车道总数	23	1	0-16
	分	1 K	车道 id	24	1	1-16
	车道		该车道空间 占有率	25	4	浮点型,按浮点数读取
	信息		该车道是否 拥堵	29	1	1-拥堵,0-正常
	/ \		拥堵长度	30	4	
			0xF0	34	1	当前车道结束符
			车道 id	35	1	1-16
			该车道空间 占有率	36	4	浮点型,按浮点数读取
			该车道是否 拥堵	40	1	1-拥堵,0-正常

		拥堵长度	41	4	
		0xF0	45	1	当前车道结束符
		•••	•••	•••	
	结束符	0xFF	24+11*N	1	数据结束符

4 CRC 校验

4.1 CRC 校验说明

通信报文中的 CRC 校验示例代码如下: const static uint8 auchCRCLo[]=

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,

0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,

0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,

0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,

0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,

0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,

0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,

0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,

0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,

```
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF,
0x6F,
    0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79,
0xBB,
    0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75,
0xB5,
    0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90,
0x91,
    0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x90,
0x5C,
    0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98,
0x88,
    0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C,
0x8C,
    0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81,
0x80,
    0x40
    };
    /* Table of CRC values for high-order byte */
    const static uint8 auchCRCHi[]=
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81,
    0x40, 0x01, 0x00, 0x80, 0x41, 0x00, 0x01, 0x81, 0x40, 0x00, 0x01, 0x81, 0x40, 0x01,
0xC0,
    0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01,
    0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80,
```

0x41,

```
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1,
0x81,
    0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0,
    0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01,
    0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81,
    0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0,
    0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01,
    0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,
0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81.
    0x40, 0x01, 0x00, 0x80, 0x41, 0x01, 0x00, 0x80, 0x41, 0x00, 0x01, 0x81, 0x40, 0x01,
0xC0,
    0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01,
    0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,
0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81,
    0x40
    }:
    uint16 Modbus_CRC16(uint8 *Buff_addr, uint16 len)
    {
```

```
uint8 uchCRCHi = 0xFF ; /* 初始化高字节*/
uint8 uchCRCLo = 0xFF ; /* 初始化低字节*/
uint16 i, uIndex ; /*CRC表索引*/

for(i=0;i<len;i++)
{
    uIndex = uchCRCLo^Buff_addr[i];
    uchCRCLo= uchCRCHi^auchCRCHi[uIndex];
    uchCRCHi= auchCRCLo[uIndex];
}
return ((uchCRCHi<<8) | uchCRCLo);
}
```

5 附件

雷达示意图

雷达坐标系描述