Julia, Mia, and Vishnu

The Ultimate Analysis

Predicting an ultimate frisbee player's effectiveness on the field

A primer on Ultimate

Non-contact sport (7v7)

Passing disc to score in the end zone (1 point)

Combines elements of soccer and football

Self-officiated

Ultimate at Vassar

Long history of Ultimate at Vassar

Mixed, women's, and men's teams

~110 players each year

Self-coached and student-run

Research goals

Rationale: We collect a small amount of stats each game, but do not have the resources to keep track of player impact

Goal: To quantify individual player impact based on a small collection of statistics

THE DATA

15 variables, 1665 rows which correspond to individual players

SOURCE: USA Ultimate, uploaded to Kaggle.com

ABOUT: Division 1 & 3 Men & Women's College Ultimate Frisbee Championships 2024

CLEANING/WRANGLING: Minimal, data was already clean and tidy, no missing values

Outcome: +/score per game

the difference between the points scored for the team and the points against the team while the player is on the field, used to measure a player's effectiveness

CODEBOOK

Player = name of player
Level = "Division 1", "Division 3"
Gender = "Women", "Men"

Turns = # turnovers player threw **Ds** = # defensive blocks player made

Assists = # assists player threw Points = # points player scored plus_minus = player's +/- score

```
team_games = # games played
turns_per_game = avg turnovers
per game
ds_per_game = avg defensive
blocks per game
ast_per_game = avg assists per
game
pts_per_game = avg points per
game
pls_mns_per_game = avg +/- per
game
```

EDA

EDA

EDA

Modeling methodology

Outcome (scaled): plus/minus score per game

Explanatory variables (scaled):

- 1. Turns per game
- 2. Points per game
- 3. Ds per game
- 4. Assists per game

Models: Linear, Ridge, and Lasso for each division/gender grouping

Diagnostics: 5-fold cross validation, R², RMSE

Linear Regression Results

	Division 1		Division 3	
	Men	Women	Men	Women
n	521	452	372	320
Cross-validated R ²	1.00	1.00	1.00	1.00
Cross-validated RMSE	0.00	0.00	0.00	0.00

Assessing multicollinearity

No apparent multicollinearity!

Ridge Regression Results

	Division 1		Division 3	
	Men	Women	Men	Women
n	521	452	372	320
Cross-validated R ²	0.999	0.999	0.997	0.995
Cross-validated RMSE	0.01	0.02	0.02	0.05

Ridge Regression Results

Ridge Regression Results

Lasso Regression Results

	Division 1		Division 3	
	Men	Women	Men	Women
n	521	452	372	320
Cross-validated R ²	1.00	1.00	1.00	1.00
Cross-validated RMSE	0.001	0.001	0.001	0.001

Best alpha: 0.001

Example Application

Player A

Division 1, Male

Turns per game: 2.5

Ds per game: 1.0

Assists per game: 4.0

Points per game: 2.0

Predicted Plus/Minus per game:

Ridge: 4.49

Linear: 4.50

Lasso: 4.49

Limitations

- Small feature set: Split model into four categories (women's and men's D- I and D-Ⅲ)
- Potential data imbalance: Model performance depends on number of observations in group
- Unrealistic R² value: Many models had an R² value of 1

Ethical considerations

Benefits:

- Enhanced performance insights: Provide data-driven insights
- Objective evaluation: Reduces subjective bias in player evaluations

Risks:

- Privacy concerns: Public and anonymous yet questions on consent and extent to which athletes are aware of their data being used
- Potential for misuse: Model used without broader outlook on athlete potential
- Bias and fairness: If the data contains bias, model perpetuates it

Future steps

- Broader dataset: Need more than just college-level data for model to have larger applicability
- Testing: Run model on actual data collected at Vassar
- R² value: Fix the R² value

Conclusion

- Research aim: Predict player plus-minus using 4 individual player stats
- Best model all have about an equal R² of 1
- Results suggest plus-minus can be predicted from the variables used
- Player stats can be collected but plus-minus is hard to calculate, this model offers an accurate calculation.

Thank you!

