PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-166102

(43) Date of publication of application: 16.06.2000

(51)Int.Cl.

H02J 7/00

(21)Application number: 10-330739

(71)Applicant: YAMATAKE CORP

(22)Date of filing:

20.11.1998

(72)Inventor: KOSUGE HIROAKI

(54) BACKUP METHOD AND BACKUP DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To quantitatively discriminate the service life of a lithium secondary battery so that the battery may be used for a long period as a secondary battery for backup. SOLUTION: When a voltage V of a lithium secondary battery becomes VL or lower while the battery is in a backup standby mode, charging of the battery by a constant-current charging method is started (point t3). When the voltage V of the battery charged by the constant-current charging method becomes a fully charged voltage VH, the charging method of the battery is switched to a constant-voltage charging method (point t4). When a current I of the battery charged by the constant-voltage charging method becomes a charge-completing current IL, the charging is stopped (point t5). When the voltage value of the battery becomes the value VL or lower due to self- discharge thereafter, the charging of the battery by the constantcurrent and constant-voltage charging methods is

restarted (point t6). This charging- discharging cycle is repeated. The service life of the battery is discriminated based on the constant-current charging time T1 and charging interval T2 of the battery.

LEGAL STATUS

[Date of request for examination]

28.09.2001

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

3571558

[Date of registration]

02.07.2004

[Number of appeal against examiner's decision

of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-166102 (P2000-166102A)

(43)公開日 平成12年6月16日(2000.6.16)

(51) Int.Cl.⁷ H 0 2 J 7/00 識別記号

FI H02J 7/00 デーマコート*(参考) A 5G003

審査請求 未請求 請求項の数8 OL (全 9 頁)

(21)出願番号

特願平10-330739

(22)出願日

平成10年11月20日(1998.11.20)

(71)出顧人 000006666

株式会社山武

東京都渋谷区渋谷2丁目12番19号

(72)発明者 小菅 博章

東京都渋谷区渋谷2丁目12番19号 株式会

社山武内

(74)代理人 100064621

弁理士 山川 政樹

Fターム(参考) 50003 AA01 BA01 CA03 CA04 CA14

CC02 EA06

(54) 【発明の名称】 バックアップ方法およびパックアップ装置

(57)【要約】

【課題】 バックアップ用の2次電池としてリチウムイオン2次電池を長寿命で使用する。リチウムイオン2次電池の寿命を定量的に判断する。

【解決手段】 リチウムイオン2次電池のバックアップ 待機中、その電圧値VがVL以下となれば、定電流充電 を開始する(t3点)。この定電流充電によってその電 圧値Vが満充電電圧値VHとなれば、定電圧充電に切り 替える(t4点)。この定電圧充電によって充電電流値 Iが充電完了電流値 I Lとなれば充電を停止する(t5点)。その後、自己放電によってその電圧値VがVL以下となれば、定電流充電法および定電圧充電法による充電を再開する(t6点)。この充放電サイクルを繰り返す。定電流充電時間T1、充電間隔T2に基づいて寿命を判断する。

【特許請求の範囲】

【請求項1】 主電源の断を検出して負荷への電源の供給を前記主電源からリチウムイオン2次電池に切り替えるバックアップ方法であって、

前記リチウムイオン2次電池のバックアップ待機中、 前記リチウムイオン2次電池の電池容量が前記負荷が最 低限必要とする電池容量以上の値として定められた所定 値以下となった場合、

前記リチウムイオン2次電池に対する前記主電源からの 充電を開始し、

この充電によって前記リチウムイオン2次電池が満充電 状態となればその充電を停止し、

この充電停止後の放電によって前記リチウムイオン2次電池の電池容量が前記所定値以下となればその充電を再開するようにしたことを特徴とするバックアップ方法。

【請求項2】 主電源の断を検出して負荷への電源の供給を前記主電源からリチウムイオン2次電池に切り替えるバックアップ方法であって、

前記リチウムイオン2次電池のバックアップ待機中、 前記リチウムイオン2次電池の電圧値が前記負荷が最低 20 限必要とする電圧値VLL以上の値として定められた所 定電圧値VL以下となった場合、

前記リチウムイオン2次電池に対する前記主電源からの 充電を定電流充電法により開始し、

この定電流充電法による充電によって前記リチウムイオン2次電池の電圧値が満充電電圧値VH(VH>VL)となれば、

前記リチウムイオン2次電池に対する前記主電源からの 充電を定電圧充電法に切り替え、

この定電圧充電法による充電によって前記リチウムイオン2次電池への充電電流値が満充電状態を示す充電完了電流値ILとなればその充電を停止し、

この充電停止後の放電によって前記リチウムイオン2次電池の電圧値が前記所定電圧値VL以下となれば前記定電流充電法および定電圧充電法による充電を再開するようにしたことを特徴とするバックアップ方法。

【請求項3】 請求項1において、前記リチウムイオン2次電池に対する充電停止から充電再開までの充電間隔および前記リチウムイオン2次電池に対する充電時間の少なくとも一方に基づいて前記リチウムイオン2次電池の寿命を判断するようにしたことを特徴とするバックアップ方法。

【請求項4】 請求項2において、前記リチウムイオン2次電池に対する充電停止から充電再開までの充電間隔および前記リチウムイオン2次電池に対する定電流充電法による充電時間の少なくとも一方に基づいて前記リチウムイオン2次電池の寿命を判断するようにしたことを特徴とするバックアップ方法。

【請求項5】 主電源の断を検出する主電源断検出手段と、

この主電源断検出手段によって主電源の断が検出された場合、負荷への電源の供給を前記主電源からリチウムイオン2次電池に切り替えるバックアップ切替手段と、前記リチウムイオン2次電池の電池容量を監視する電池容量監視手段と、

前記リチウムイオン2次電池のバックアップ待機中、前記リチウムイオン2次電池の電池容量が前記負荷が最低限必要とする電池容量以上の値として定められた所定値以下となった場合、前記リチウムイオン2次電池に対する前記主電源からの充電を開始し、この充電によって前記リチウムイオン2次電池が満充電状態となればその充電を停止し、この充電停止後の放電によって前記リチウムイオン2次電池の電池容量が前記所定値以下となればその充電を再開する充電制御手段とを備えたことを特徴とするバックアップ装置。

【請求項6】 主電源の断を検出する主電源断検出手段 と、

この主電源断検出手段によって主電源の断が検出された場合、負荷への電源の供給を前記主電源からリチウムイオン2次電池に切り替えるバックアップ切替手段と、

前記リチウムイオン2次電池の電圧値を監視する電圧監 視手段と、

前記リチウムイオン2次電池への充電電流値を監視する 電流監視手段と、

前記リチウムイオン2次電池のバックアップ待機中、前 記リチウムイオン2次電池の電圧値が前記負荷が最低限 必要とする電圧値VLL以上の値として定められた所定 電圧値VL以下となった場合、前記リチウムイオン2次 雷池に対する前記主電源からの充電を定電流充電法によ り開始し、この定電流充電法による充電によって前記リ チウムイオン2次電池の電圧値が満充電電圧値VH(V H>VL)となれば、前記リチウムイオン2次電池に対 する前記主電源からの充電を定電圧充電法に切り替え、 この定電圧充電法による充電によって前記リチウムイオ ン2次電池への充電電流値が満充電状態を示す充電完了 電流値ILとなればその充電を停止し、この充電停止後 の放電によって前記リチウムイオン2次電池の電圧値が 前記所定電圧値VL以下となれば前記定電流充電法およ び定電圧充電法による充電を再開する充電制御手段とを 備えたことを特徴とするバックアップ装置。

【請求項7】 請求項5において、前記リチウムイオン2次電池に対する充電停止から充電再開までの充電間隔および前記リチウムイオン2次電池に対する充電時間の少なくとも一方に基づいて前記リチウムイオン2次電池の寿命を判断する寿命判断手段を備えたことを特徴とするバックアップ装置。

【請求項8】 請求項6において、前記リチウムイオン 2次電池に対する充電停止から充電再開までの充電間隔 および前記リチウムイオン2次電池に対する定電流充電 法による充電時間の少なくとも一方に基づいて前記リチ

.

ウムイオン2次電池の寿命を判断する寿命判断手段を備 えたことを特徴とするバックアップ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、主電源の断を検出して負荷への電源の供給を主電源からリチウムイオン 2次電池に切り替えるバックアップ方法およびバックアップ装置に関するものである。

[0002]

【従来の技術】停電時の主電源の断に備え、大規模シス 10 テムではUPS等の無停電電源を使用して24時間稼働 の機器のバックアップを行うのに対して、小規模システ ムでは電池等を使用して24時間稼働の機器のバックア ップを行っている。電池としては、充電ができない1次 電池とニッケルカドミウム電池や小型鉛蓄電池等の充電 可能な2次電池とに大別される。この電池のうち、小規 模システムにおける機器(コントローラ等の機器や非常 照明)のバックアップ用としては、2次電池が用いられ ている。すなわち、1次電池では一度の停電で交換が必 要となるが、2次電池では繰り返し使用が可能であるの 20 で一度の停電で交換する必要はない。特に、ニッケルカ ドミウム電池は、充放電回路が容易にできること、価格 が安い、熱に強い等の利点があり、小規模システムにお ける機器のバックアップ用電池として広く使用されてい る。この場合、ニッケルカドミウム電池は、常に充電可 能であり、満充電状態を維持させながら使用する。

[0003]

【発明が解決しようとする課題】しかしながら、ニッケルカドミウム電池は、公害規制物質のカドミウムを含んでおり、様々な公害対策を行う必要がある。また、エネ 30ルギー密度が低く、機器の質量増加につながる。そこで、本出願人は、公害規制物質を含まず、かつエネルギー密度の高いリチウムイオン2次電池を使用すれば、公害対策を行う必要がなく、機器の小型・軽量化が可能となる。

【0004】しかし、リチウムイオン2次電池は、長期に満充電状態を維持すると、電池劣化につながり、寿命が短くなる。すなわち、リチウムイオン2次電池は、その特性として、電池電圧がある電圧以上で満充電となり、このとき電池内部が非常に活性化し、活物質の電気 40分解速度が速い状態にあり、長期にこの状態が続くと、電池の劣化につながる。すなわち、ニッケルカドミウム電池をリチウムイオン2次電池に置き換え、ニッケルカドミウム電池と同様にリチウムイオン2次電池を満充電状態を維持させながら使用すると、電池劣化が早く、短寿命となり、頻繁に交換しなければならなくなる。

【0005】なお、リチウムイオン2次電池は、携帯電話等で多く用いられているように、一度充電したら機器の使用により放電し、再度充電するということを繰り返すサイクル用のメイン電池である。すなわち、満充電状 50

態を長期に保持させることなく、ある期間内に使用する ことを前提としており、ニッケルカドミウム電池のよう に満充電状態を維持させながら使用するバックアップ用 途としては考慮されていない。

【0006】また、リチウムイオン2次電池を満充電状態を維持させながら使用した場合、ニッケルカドミウム電池でも同様であるが、寿命判断が困難であり、劣化が判らない。このため、定期的に電池交換を行う必要があり、寿命に達していないにも拘わらず早期に電池交換が行われてしまうなどの問題が生じる。

【0007】本発明はこのような課題を解決するためになされたもので、その目的とするところは、バックアップ用の2次電池としてリチウムイオン2次電池を長寿命で使用することのできるバックアップ方法およびバックアップ装置を提供することにある。また、バックアップ用の2次電池としてリチウムイオン2次電池を長寿命で使用することができ、かつその寿命を定量的に判断することの可能なバックアップ方法およびバックアップ装置を提供することにある。

[0008]

【課題を解決するための手段】このような目的を達成す るために、第1発明(請求項1に係る発明)および第5 発明 (請求項5に係る発明) は、リチウムイオン2次電 池のバックアップ待機中、リチウムイオン2次電池の電 池容量が負荷が最低限必要とする電池容量以上の値とし て定められた所定値以下となった場合、リチウムイオン 2次電池に対する主電源からの充電を開始し、この充電 によってリチウムイオン2次電池が満充電状態となれば その充電を停止し、この充電停止後の放電によってリチ ウムイオン2次電池の電池容量が所定値以下となればそ の充電を再開するようにしたものである。この発明によ れば、リチウムイオン2次電池のバックアップ待機中、 リチウムイオン2次電池の電池容量が所定値以下となる と、リチウムイオン2次電池に対する主電源からの充電 が開始され、この充電によってリチウムイオン2次電池 が満充電状態となればその充電が停止される。そして、 この充電停止後の放電(自己放電や電池容量監視部への 微小電流の流出)によってリチウムイオン2次電池の電 池容量が所定値以下となればその充電が再開され、この 充放電サイクルが繰り返される。

【0009】第2発明(請求項2に係る発明)および第6発明(請求項6に係る発明)は、リチウムイオン2次電池のバックアップ待機中、リチウムイオン2次電池の電圧値が負荷が最低限必要とする電圧値VLL以上の値として定められた所定電圧値VL以下となった場合、リチウムイオン2次電池に対する主電源からの充電を定電流充電法により開始し、この定電流充電法による充電によってリチウムイオン2次電池の電圧値が満充電電圧値VH(VH>VL)となれば、リチウムイオン2次電池に対する主電源からの充電を定電圧充電法に切り替え、

この定電圧充電法による充電によってリチウムイオン2 次雷池への充電電流値が満充電状態を示す充電完了電流 値!しとなればその充電を停止し、この充電停止後の放 電によってリチウムイオン2次電池の電圧値が所定電圧 値VL以下となれば定電流充電法および定電圧充電法に よる充雷を再開するするようにしたものである。この発 明によれば、リチウムイオン2次電池のバックアップ待 機中、リチウムイオン2次電池の電圧値が所定電圧値V L以下となると、リチウムイオン2次電池に対する主電 源からの充電が定電流充電法により開始される。この定 10 電流充電法による充電によって、リチウムイオン2次電 池の電圧値が満充電電圧値VHとなると、定電圧充電法 による充電に切り替えられる。この定電圧充電法による 充電によって、リチウムイオン2次電池への充電電流値 が充電完了電流値ILとなれば、その充電が停止され る。そして、この充電停止後の放電(自己放電や電池容 **量監視部への微小電流の流出)によって、リチウムイオ** ン2次電池の電圧値が所定電圧値VL以下となれば定電 流充電法および定電圧充電法による充電を再開され、こ の充放電サイクルが繰り返される。

【0010】第3発明(請求項3に係る発明)および第7発明(請求項7に係る発明)は、は、第1発明および第5発明において、リチウムイオン2次電池に対する充電停止から充電再開までの充電間隔およびリチウムイオン2次電池に対する充電時間の少なくとも一方に基づいてリチウムイオン2次電池の寿命を判断するようにしたものである。この発明によれば、リチウムイオン2次電池に対する充電間隔や充電時間に基づいて、リチウムイオン2次電池の寿命が判断される。すなわち、リチウムイオン2次電池が劣化すると、充電停止から充電再開までの充電間隔が短くなる。また、充電時間が長くなる。したがって、この充電間隔や充電時間を監視することにより、リチウムイオン2次電池の寿命を判断することが可能である。

【0011】第4発明(請求項4に係る発明)および第8発明(請求項8に係る発明)は、第2発明および第6発明において、リチウムイオン2次電池に対する充電停止から充電再開までの充電間隔およびリチウムイオン2次電池に対する定電流充電法による充電時間の少なくとも一方に基づいてリチウムイオン2次電池の寿命を判断するようにしたものである。この発明によれば、リチウムイオン2次電池に対する充電間隔や定電流充電法による充電時間に基づいて、リチウムイオン2次電池が劣化すると、充電停止から充電再開までの充電間隔が短くなる。また、定電流充電法による充電時間が長くなる。したがって、この充電間隔や充電時間を監視することにより、リチウムイオン2次電池の寿命を判断することが可能である。

[0012]

【発明の実施の形態】以下、本発明を実施の形態に基づき詳細に説明する。図1はこの発明の一実施の形態を示すバックアップ装置のブロック図である。このバックアップ装置1は、機器4内に収容され、交流電源2と負荷3との間に位置する。

【0013】バックアップ装置1は、バックアップ用の2次電池としてリチウムイオン2次電池1-1を備え、直流電源回路1-2と、電源断検出回路1-3と、バックアップ切替部1-4と、定電流定電圧充電制御部1-5と、スイッチ部1-6と、電流監視部1-7と、電圧監視部1-8と、タイマ部1-9と、寿命判断部1-10と、寿命通知部1-11とを有している。

【0014】直流電源回路1-2は交流電源2からの交流を直流に変換する。電源断検出回路1-3は、直流電源回路1-2の直流出力を主電源として監視し、主電源の断を検出していない場合にはバックアップ切替部1-4をメイン電源ラインLMとの接続モード(メインモード)とし、主電源の断を検出した場合にはバックアップ切替部1-4をバックアップ電源ラインLBとの接続モード(バックアップモード)とする。

【0015】バックアップ切替部1-4は、一方の切替端子1-4aがメイン電源ラインLMを介して直流電源回路1-2に接続され、他方の切替端子1-4bがリチウムイオン2次電池1-1に接続され、コモン端子1-4cが負荷3に接続されている。メインモードではコモン端子1-4cと切替端子1-4bとが接続状態となる。バックアップモードではコモン端子1-4cと切替端子1-4bとが接続状態となる。

【0016】電圧監視部1-8はリチウムイオン2次電池1-1の電圧値(電池電圧)Vを監視する。電流監視部1-7はリチウムイオン2次電池1-1への充電電流 Iを監視する。スイッチ部1-6は、定電流定電圧充電制御部1-5と電流監視部1-7との間に設けられ、そのオン/オフが定電流定電圧充電制御部1-5によって制御される。

【0017】定電流定電圧充電制御部1-5は、直流電源回路1-2からの直流出力によって動作し、電圧監視部1-8での監視電圧Vおよび電流監視部1-7での監視電流Iに基づいて、後述する定電流定電圧法(定電流充電法+定電圧充電法)によって、直流電源回路1-2からのリチウムイオン2次電池1-1への充電を制御する。

【0018】タイマ部1-9は、定電流定電圧充電制御部1-5によるリチウムイオン2次電池1-1の充電制御に際して、定電流充電法による充電時間(定電流充電時間)T1および充電停止から充電再開までの充電間隔T2を計測する。寿命判断部1-10は、タイマ部1-9によって計測された充電時間T1と充電間隔T2からリチウムイオン2次電池1-1の寿命を判断し、その判断結果を寿命通知部1-11へ送る。寿命通知部1-1

1 は、寿命判断部 1-1 0 からの判断結果をオペレータ (機器操作者) に例えば L E D を点灯させるなどして視覚的に通知する。

【0019】〔非停電時の負荷への電源の供給〕非停電時、電源断検出回路1-3は主電源の断を検出していないので、バックアップ切替部1-4をメインモードとする。これにより、直流電源回路1-2と負荷3との間がメイン電源ラインLMを介して接続され、直流電源回路1-2からの直流出力が負荷3へ供給される。

【0020】〔停電時の負荷への電源の供給〕停電時、電源断検出回路1-3は主電源の断を検出するので、バックアップ切替部1-4をバックアップモードとする。これにより、リチウムイオン電池1-1と負荷3との間がバックアップ電源ラインLBを介して接続され、リチウムイオン電池1-1からの直流出力が負荷3へ供給される。すなわち、負荷3への電源がリチウムイオン電池1-1によってバックアップされ、負荷3におけるデータ欠落等が防止される。

【0021】〔バックアップ待機中のリチウムイオン2次電池への充電〕非停電時、電源断検出回路1-3が主 20電源の断を検出していない状態では、リチウムイオン電池1-1と負荷3との間は切り離されており、リチウムイオン電池1-1はバックアップ待機中となる。この場合、定電流定電圧充電制御部1-5は、直流電源回路1-2からの直流出力によって動作し、リチウムイオン2次電池1-1への充電を制御する。

【0022】〔未充電のリチウムイオン2次電池が初めてセットされた場合の充電動作〕未充電のリチウムイオン2次電池1-1をセットすると、電圧監視部1-8は、リチウムイオン2次電池1-1の電圧値Vが負荷3 30が最低限必要とする電圧値VLU以上の値として定められた再充電開始電圧値VL以下であることを検出し(図2に示すステップ201)、定電流定電圧充電制御部1-5へ定電流充電法による充電(定電流充電)を開始するように指令を出す。

【0023】この電圧監視部1-8からの指令を受けて、定電流定電圧充電制御部1-5は、スイッチ部1-6をオンとする。これにより、定電流定電圧充電制御部1-5,スイッチ部1-6,電流監視部1-7,電圧監視部1-8を充電経路として、リチウムイオン2次電池1-1への直流電源回路1-2からの充電が開始される(ステップ202:図3に示すしの点)。この時、タイマ部1-9は、定電流充電時間T1の計測を開始する(ステップ203)。また、この定電流充電において、定電流定電圧充電制御部1-5は、リチウムイオン2次電池1-1への充電電流 「を予め定められた一定値1Hとする。

【0024】 この定電流充電によって、リチウムイオン 2次電池1-1の電圧値Vは徐々に上昇し、やがて定電 流充電の完了を示す満充電電圧値VHに到達する(図3 50 に示す (1点)。この場合、リチウムイオン2次電池1-1が新品であり、劣化していないとすると、タイマ部1-9において計測中の定電流充電時間T1が寿命判断時間として定められる一定時間TS1に達する前に(ステップ204のYES)、リチウムイオン2次電池1-1の電圧値Vは満充電電圧値VHに到達する。

【0025】リチウムイオン2次電池1-1の電圧値Vが満充電電圧値VHに到達すると、電圧監視部1-8は定電流定電圧充電制御部1-5へ、定電圧充電法による充電(定電圧充電)に切り替えるように指令を出す(ステップ205のYES)。

【0026】この電圧監視部1-8からの指令を受けて、定電流定電圧充電制御部1-5は、タイマ部1-9 ヘストップ指令を送り、タイマ部1-9での定電流充電時間T1の計測を停止させる(ステップ206)。また、定電流定電圧充電制御部1-5は、リチウムイオン2次電池1-1への定電流充電を停止し、満充電電圧値VHによる定電圧充電を開始する(ステップ207:図3に示すt1点)。

【0027】この定電圧充電によって、リチウムイオン2次電池1-1への充電電流Iは徐々に下降し、やがて定電圧充電の完了(満充電状態)を示す充電完了電流値ILに到達する(図3に示すt2点)。リチウムイオン2次電池I-1への充電電流Iが充電完了電流値ILに到達すると、電流監視部1-7は定電流定電圧充電制御部1-5へ定電圧充電を停止するように指令を出す(ステップ208のYES)。

【0028】この電流監視部1-7からの指令を受けて、定電流定電圧充電制御部1-5は、スイッチ部1-6をオフとし、リチウムイオン2次電池1-1への充電を停止する(ステップ209)。これにより、リチウムイオン2次電池1-1への充電電流Iが零とされ(図3に示すt2点)、リチウムイオン2次電池1-1への充電が完了する。この時、タイマ部1-9は、充電間隔T2の計測を開始する(ステップ210)。

【0029】 〔リチウムイオン2次電池の放電および再充電動作〕図3に示したt2点でリチウムイオン2次電池1-1への充電電流Iが零とされると、リチウムイオン2次電池1-1は自己放電や電圧監視部1-8等への微小電流の流出により、徐々にその電池容量が減少して行く。この電池容量の減少により、リチウムイオン2次電池1-1の電圧値Vは徐々に下降して行き、やがて再充電開始電圧値VLに到達する(図3に示すt3点)。 【0030】リチウムイオン2次電池1-1の電圧値Vが再充電開始電圧値VLに到達すると、電圧監視部1-8は定電流定電圧充電制御部1-5へ定電流充電を開始するように指令を出す(ステップ211)。

【0031】この電圧監視部1-8からの指令を受けて、定電流定電圧充電制御部1-5は、タイマ部1-9へストップ指令を送り、タイマ部1-9での充電間隔T

2の計測を停止させる(ステップ212)。リチウムイオン2次電池1-1が新品であり、劣化していないとすると、タイマ部1-9において計測される充電間隔T2は寿命判断時間として定められる一定時間TS2よりも長い。これにより、ステップ213のYESに応じてステップ202へ進み、ステップ202以降の動作を繰り返す。すなわち、図3に示す $t3\sim t4$ 点では定電流充電を行い、 $t4\sim t5$ 点では定電圧充電を行い、 $t5\sim t6$ では充電を停止する、という充放電サイクルを繰り返す。

【0032】このように、本実施の形態によるバックアップ装置1によれば、リチウムイオン2次電池1-1のバックアップ待機中、リチウムイオン2次電池1-1への充電は行われるが、満充電状態に達すると自己放電などによってすぐにその状態から解放されるので、満充電状態を維持させながら使用する時間が極端に少なく、リチウムイオン2次電池1-1の寿命が長くなる。これにより、バックアップ用の2次電池としてリチウムイオン2次電池1-1を長寿命で使用することができるようになり、機器の小型・軽量化を促進することが可能となる。また、公害対策を行う必要もなくなる。

【0033】 [リチウムイオン2次電池の寿命判断および通知] リチウムイオン2次電池1-1の使用期間が長期に渡るにつれ、定電流充電時間T1は長くなり、充電停止から充電再開までの充電間隔T2は短くなる。そこで、本実施の形態では、ステップ204において、定電流充電時間T1と寿命判断時間TS1とを比較するようにしている。また、ステップ213において、充電間隔T2と寿命判断時間TS2とを比較するようにしている。

【0034】すなわち、本実施の形態では、定電流充電時間T1が寿命判断時間TS1よりも長い場合には(T1>TS1)、寿命判断部1-10においてリチウムイオン2次電池1-1の寿命と判断し、その判断結果を寿命通知部1-11へ送る(ステップ214)。また、充電間隔T1が寿命判断時間TS2よりも短い場合には(T2<TS2)、寿命判断部1-10においてリチウムイオン2次電池1-10寿命と判断し、その判断結果を寿命通知部1-11な、寿命判断部1-10からの判断結果をオペレータに、例えばLEDを点灯させるなどして視覚的に通知する。これにより、リチウムイオン2次電池1-10寿命を定量的に判断することができ、定期的な電池交換が不要となる。

【0035】 (停電発生時の定電流充電時間T1および 充電間隔T2の計測) 停電が発生すると (ステップ21 6)、電源断検出回路1-3が主電源の断を検出し、バックアップ切替部1-4をバックアップモードとし、負荷3への電源供給をリチウムイオン電池1-1に切り替える (ステップ217)。この場合、リチウムイオン2 50 次電池 1-1の電圧値 V は再充電開始電圧値 V L から満充電電圧 V H までの範囲内にあるので、すなわち負荷 3 が最低限必要とする電圧値 V L L 以上の値を確保しているので、支障なく負荷 3 をバックアップすることができる。

【0036】この時、定電流定電圧充電制御部1-5へは直流電源回路1-2からの直流出力が与えられなくなり、定電流定電圧充電制御部1-5を経由するタイマ部1-9への電源供給も中断される。このため、タイマ部1-9での定電流充電時間T1および充電間隔T2の計測動作そのものが行われず、定電流充電時間T1および充電間隔T2に基づく寿命判断は行われない。

【0037】 〔復電時のリチウムイオン 2 次電池への充電〕 復電すると(ステップ 218)、電源断検出回路 1-3 は、バックアップ切替部 1-4 をメインモードとし、負荷 3 への電源供給を直流電源回路 1-2 からの主電源に切り替える(ステップ 219)。この時、リチウムイオン 2 次電池 1-1 の電圧値 V が再充電開始電圧値 V 上以下であれば($V \le V$ L)、電圧監視部 1-8 は定電流定電圧充電制御部 1-5 へ定電流充電を開始するように指令を出す(ステップ 201)。

【0038】なお、本実施の形態では、再充電開始電圧値VLを負荷3が最低限必要とする電圧値VLL以上の値としたが、この再充電開始電圧値VLは負荷3の消費電流やバックアップ時間などに依存する。すなわち、負荷3の消費電流やバックアップ時間などに応じ、VLL以上の適切な値として再充電開始電圧値VLを定める。【0039】また、本実施の形態では、定電流充電時間

T1および充電間隔T2を計測し、各個にリチウムイオン2次電池1-1の寿命判断を行うようにしたが、定電流充電時間T1と充電間隔T2とを組み合わせてリチウムイオン2次電池1-1の寿命判断を行うようにしてもよく、また、定電流充電時間T1および充電間隔T2の何れか一方でリチウムイオン2次電池1-1の寿命判断を行うようにしてもよい。また、定電流充電時間T1に定電圧充電時間T3を加えたものを充電時間T4とし、この充電時間T4によって寿命判断を行うようにしてもよい。

【0040】また、本実施の形態では、リチウムイオン2次電池1-1を定電流定電圧法(定電流充電法+定電圧充電法)によって充電するようにしたが、必ずしも定電流定電圧法を採用しなくてもよい。一般に、リチウムイオン2次電池1-1に対しては、定電流定電圧法によって充電が行われる。

[0041]

【発明の効果】以上説明したことから明らかなように本 発明 (第1~第8発明)によれば、リチウムイオン2次 電池のバックアップ待機中、リチウムイオン2次電池へ の充電は行われるが、満充電状態に達すると自己放電な どによってすぐにその状態から解放されるものとなり、

満充電状態を維持させながら使用する時間が極端に少なく、リチウムイオン2次電池の寿命が長くなる。これにより、バックアップ用の2次電池としてリチウムイオン2次電池を長寿命で使用することができるようになり、機器の小型・軽量化を促進することが可能となる。また、公害対策を行う必要もなくなる。また、本発明(第3発明、第4発明、第7発明、第8発明)によれば、リチウムイオン2次電池の寿命を定量的に判断することができ、定期的な電池交換を不要とすることが可能となる。

【図面の簡単な説明】

【図1】 本発明の一実施の形態を示すバックアップ装置のブロック図である。

【図2】 このバックアップ装置の動作を説明するため

のフローチャートである。

【図3】 このバックアップ装置におけるリチウムイオン2次電池のバックアップ待機中の充放電状況を示す電圧値と電流値の波形図である。

【符号の説明】

1 …バックアップ装置、2 …交流電源、3 …負荷、4 … 機器、1-1 …リチウムイオン2 次電池、1-2 …直流電源回路、1-3 …電源断検出回路、1-4 …バックアップ切替部、1-5 …定電流定電圧充電制御部、1-6 …スイッチ部、1-7 …電流監視部、1-8 …電圧監視部、1-9 …タイマ部、1-10 …寿命判断部、1-11 …寿命通知部、L M …メイン電源ライン、L B …バックアップ電源ライン。

[図3]

【図2】

