

Slides from Mohit lyyer, Vicente Ordonez, Fei-Fei Li, Justin Johnson, and Jacob Andreas

Introduction / Foundations

Captioning

A silver car is in front of a white van in a mall parking lot.

Question Answering

- What kind of car is in the foreground?
- What is written on the truck?
- What time of day was the picture taken?

- Who designed the car in the foreground?
- What does the "E" stand for in the name on the truck?
- What is the name of the mall where the picture was taken?

- Who designed the car in the foreground? Giorgetto Giugiaro
- What does the "E" stand for in the name on the truck?
- What is the name of the mall where the picture was taken?

- Who designed the car in the foreground? Giorgetto Giugiaro
- What does the "E" stand for in the name on the truck? Emmett
- What is the name of the mall where the picture was taken?

- Who designed the car in the foreground? Giorgetto Giugiaro
- What does the "E" stand for in the name on the truck? Emmett
- What is the name of the mall where the picture was taken? Twin

 Pines Mall

 Pines Mall

 Pines Mall

 Pines Mall

Image Editing

Add a van full of Lybians to the image

0.8	0.85	0.9	0.95	0.9	0.85	0.8	0.75	0.7	0.65
0.85	0.8	0.75	0.7	0.65	0.6	0.55	0.5	0.45	0.4
0.9	0.75	0.6	0.5	0.4	0.35	0.4	0.45	0.5	0.55
0.95	0.85	0.7	0.55	0.4	0.3	0.35	0.4	0.45	0.5
0.9	0.75	0.6	0.45	0.3	0.25	0.3	0.35	0.4	0.45
0.85	0.7	0.55	0.4	0.25	0.2	0.25	0.3	0.35	0.4
8.0	0.65	0.5	0.35	0.2	0.15	0.2	0.25	0.3	0.35
0.75	0.6	0.45	0.3	0.15	0.1	0.15	0.2	0.25	0.3
0.7	0.55	0.4	0.25	0.1	0.05	0.1	0.15	0.2	0.25
0.65	0.5	0.35	0.2	0.05	0.0	0.05	0.1	0.15	0.2

Black and white images are just a w by h matrix.

	0.90	0.85	0.80	0.75	0.75	0.80	0.85	0.90	
0.90	0.85	0.80	0.75	0.70	0.70	0.75	0.80	0.85	0.90
0.85	0.80	0.75	0.70	0.65	0.65	0.70	0.75	0.80	0.85
0.80	0.75	0.70	0.65	0.60	0.60	0.65	0.70	0.75	0.80
0.75	0.70	0.65	0.60	0.55	0.55	0.60	0.65	0.70	0.75
0.40	0.35	0.30	0.25	0.20	0.20	0.25	0.30	0.35	0.40
0.35	0.30	0.25	0.20	0.15	0.15	0.20	0.25	0.30	0.35
0.30	0.25	0.20	0.15	0.10	0.10	0.15	0.20	0.25	0.30
0.25	0.20	0.15	0.10	0.05	0.05	0.10	0.15	0.20	0.25
0.20	0.15	0.10	0.05	0.00	0.00	0.05	0.10	0.15	0.20

0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20
0.07	0.09	0.11	0.13	0.15	0.17	0.19	0.21	0.23	0.25
0.12	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30
0.17	0.19	0.21	0.23	0.25	0.27	0.29	0.31	0.33	0.35
0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.40
0.27	0.29	0.31	0.33	0.35	0.37	0.39	0.41	0.43	0.45
0.32	0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50
0.37	0.39	0.41	0.43	0.45	0.47	0.49	0.51	0.53	0.55
0.42	0.44	0.46	0.48	0.50	0.52	0.54	0.56	0.58	0.60
0.47	0.49	0.51	0.53	0.55	0.57	0.59	0.61	0.63	0.65

0.20	0.18	0.16	0.14	0.12	0.10	0.08	0.06	0.04	0.02
0.25	0.23	0.21	0.19	0.17	0.15	0.13	0.11	0.09	0.07
0.30	0.28	0.26	0.24	0.22	0.20	0.18	0.16	0.14	0.12
0.35	0.33	0.31	0.29	0.27	0.25	0.23	0.21	0.19	0.17
0.40	0.38	0.36	0.34	0.32	0.30	0.28	0.26	0.24	0.22
0.45	0.43	0.41	0.39	0.37	0.35	0.33	0.31	0.29	0.27
0.50	0.48	0.46	0.44	0.42	0.40	0.38	0.36	0.34	0.32
0.55	0.53	0.51	0.49	0.47	0.45	0.43	0.41	0.39	0.37
0.60	0.58	0.56	0.54	0.52	0.50	0.48	0.46	0.44	0.42
0.65	0.63	0.61	0.59	0.57	0.55	0.53	0.51	0.49	0.47

Turning Pixels into Meaning: Kernel

$$g(x,y) = \sum_{u} \sum_{v} k(u,v) f(x-u, y-v)$$
 (1)

(Image from Apple)

Turning Pixels into Meaning: Kernel

$$g(x,y) = \sum_{u} \sum_{y} k(u,v) f(x-u, y-v)$$
 (1)

(Image from Apple)

Description and outputs from https://setosa.io/ev/image-kernels/

blur

 0.0625
 0.1250
 0.0625

 0.1250
 0.2500
 0.1250

 0.0625
 0.1250
 0.0625

De-emphasizes differences in adjacent pixel values.

Description and outputs from https://setosa.io/ev/image-kernels/

sharpen

0.0000	-1.0000	0.0000
-1.0000	5.0000	-1.0000
0.0000	-1.0000	0.0000

Emphasizes differences in adjacent pixel values. This makes the image look more vivid.

Description and outputs from https://setosa.io/ev/image-kernels/

emboss

-2.0000	-1.0000	0.0000
-1.0000	1.0000	1.0000
0.0000	1.0000	2.0000

Gives the illusion of depth by emphasizing the differences of pixels in a given direction (from the top left to the bottom right).

Description and outputs from https://setosa.io/ev/image-kernels/

outline

$$\begin{bmatrix} -1.0000 & -1.0000 & -1.0000 \\ -1.0000 & 8.0000 & -1.0000 \\ -1.0000 & -1.0000 & -1.0000 \end{bmatrix}$$

Highlights large differences. A pixel with similar neightbors appears black; one with different neighbors is white.

You can also learn kernels as part of network

Don't have to compute kernel on every pixel

Alexnet

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

Started Deep Learning Revolution

Geological formation, formation

(geology) the geological features of the earth

1808 80 pictures Po

86.24% Popularity Percentile Wordnet IDs

What's the problem?

- Need to learn complicated matrices to capture features
- Not clear what you should pay attention to at any layer
- Despite nonlinearities, still need to learn matrices to create correct representations

What's the problem?

- Need to learn complicated matrices to capture features
- · Not clear what you should pay attention to at any layer
- Despite nonlinearities, still need to learn matrices to create correct representations

