# Implementing MEMS: Make vs. Buy?

Sensors Expo 2014

Alissa M. Fitzgerald, Ph.D. | 24 June 2014





#### **Overview**

- About us
- Choosing a sensor specification
- Buy vs. make
- Other creative options to acquire MEMS

# **AMFitzgerald: Your Partner in MEMS Product Development**



Sensors Expo 2014, Rosemont, IL

#### A complete supply chain from concept to production



- Multi-disciplinary, expert engineering team
- Custom MEMS development from start to finish
- Design and process integration for volume production
- In-house prototype fabrication, easy transition to production partners

# Choosing a sensor specification

# Types of commercially-available MEMS sensors



Accelerometers



Microphones





Gyroscopes



Oscillators



Magnetometers



Thermopiles



RF components

## Why MEMS are exciting for so many applications

- Smaller, better, cheaper
  - But not always all three
- Ease of electronics integration enables sophisticated capabilities in small form factor:
  - Multiple sensors
  - Signal processing and analysis
  - Telemetry capability
  - Low power

Stacked MEMS and ASIC chips, wirebonded

#### Integrated Pressure Sensor



Source: IMD



Source: Chipworks/Kionix



## **Specifications**

#### Primary

- Sense range, sensitivity
- Power (voltage/current)
- Linearity
- Accuracy, resolution
- What makes "great" vs. "good" sensor
  - Cross-axis sensitivity, noise rejection
  - Dynamic response, settling time
  - Temp coeffs of resistance, frequency, sensitivity, etc.
  - Stability/drift (hours, days, years?)
  - Noise/jitter
  - Overdrive protection, self-test

## Price vs. performance tradeoffs

## MEMS available for a range of specifications

| Quality<br>Grade | Gyroscope<br>Manufacturers | Typical<br>Price | Gyro Bias<br>Stability |
|------------------|----------------------------|------------------|------------------------|
| Military         | Silicon Sensing Systems    | \$500            | < 0.01 deg/s           |
| Automotive       | Bosch                      | \$8              | 1 deg/s                |
| Consumer         | InvenSense                 | \$2              | 10 deg/s               |

# "You get what you pay for"

## Compensation tactics for sensor shortcomings

#### ASIC

- Signal conditioning
- Noise rejection, filtering
- Amplification
- Sensor Fusion
  - Accel + Magnetometer = Simple Gyro
- Software
  - "Never solve in hardware what you can solve with good software"



# First, know what's important to your business and product

#### Strategy

- First to market?
- Raise barriers to entry?
- Tolerance for risk
  - Technical vs. marketing
  - IP
- Resources
  - Engineering staff
  - Supply chain
  - Budget
  - Time

# What you can purchase/license







Source: NASA



#### When to buy

- Short time to market (< 3 years)</li>
- Unit cost is a priority
- Loose sensor specifications, or
- System can add value or compensate for sensor shortcomings
- Lack of silicon supply chain and domain expertise

#### When to buy: IP considerations

- MEMS has crowded IP landscapes with litigious stakeholders
  - Microphone
  - Gyroscope







Source: Yole Developpment

## The "white-label" model: microphones

Top Global MEMS Microphone Suppliers Ranked by Revenue (Millions of US Dollars)

| Rank    | Company            | 2012 Revenue  | 2011 Revenue | 2012 Market<br>Share % |           |
|---------|--------------------|---------------|--------------|------------------------|-----------|
| 1       | Knowles            | \$291         | \$272        | 50%                    |           |
| 2       | AAC                | \$98          | \$48         | 17%                    | Infineo   |
| 3       | Analog Devices     | \$78          | \$45         | 13%                    |           |
| 4       | Goertek            | \$46          | \$12         | 8%                     |           |
| 5       | STMicroelectronics | \$21          | \$6          | 4%                     | "white-la |
| 6       | Hosiden            | \$12          | \$7          | 2%                     | ──   MEMS |
| 7 & 8   | BSE                | \$10          | \$6          | 2%                     |           |
|         | Wolfson            | \$10          | \$1          | 2%                     |           |
| 9       | Bosch              | \$9           | \$9          | 2%                     | to thes   |
| 10      | NeoMEMS            | \$4           | \$0          | 1%                     | reselle   |
| 11 & 12 | MEMSensing         | \$1           | \$0          | 0%                     |           |
|         | TDK-EPC            | \$1           | \$1          | 0%                     | Compan    |
|         | Others             | \$2           | \$1          | 0%                     |           |
|         | Total              | <b>\$</b> 583 | \$408        | 100%                   |           |

Source: IHS Inc., May 2013

 Resellers add value on ASIC (sensitivity, signal-to-noise), packaging (acoustic performance, reliability).

#### When to make

- Unusual sensor specifications
  - Form factor, performance, environment
  - Medical, scientific instruments, aerospace, oil/gas
- Sensor itself enables major competitive advantage for your product
- New sensor technology with strong patent opportunities
- Critical need to control the supply chain
  - Quality control
  - Regulatory issues
  - Barriers to competition

## Make: You'll need an ASIC\* and a package, too

#### **Stacked**



Source: Chipworks photo of Kionix KXM52

## Side-by-side



Source: Chipworks photo of Bosch SMB380

## \*Application-Specific Integrated Circuit

#### Make: everything from scratch, cost and timeline minimums



#### Bringing a mature prototype to production



## Make: Supply chain creation and management



- An entire supply chain must be qualified, developed and managed
- Time and money to link the supply chain is easily underestimated



#### Hybrid: Buy (or License) and Make

- Save 1-2 years of development by licensing existing MEMS technology
  - Universities: Stanford, Michigan, Georgia Tech, etc.
  - R&D groups: Fraunhofer, Leti, parc, imec, etc.
  - Corporate Portfolios: HP accelerometer, etc.
- Make sure prototypes already exist and function well!
  - "Paper" designs are <u>not</u> production-ready
  - Lack of standard MEMS processes
- Then modify licensed IP to suit

## Multi-project wafers (MPW)

- Leverage qualified processes
- Customer must provide the chip design
- Small chip volumes
  - Good for samples



#### **Some MEMS MPWs**

| Facility   | Service Name | Target Market  | Process                             | Wafer size |
|------------|--------------|----------------|-------------------------------------|------------|
| ST         | Thelma       | Motion sensors | Thick epi-poly                      | 200        |
| Dalsa      | MIDIS        | Motion sensors | SOI with vacuum and pressure cavity | 200        |
| X-FAB      | XMB-10       | Motion sensors | Cavity SOI                          | 150, 200   |
| InvenSense | NF Shuttle   | Motion sensors | CMOS cap, SOI<br>wafer              | 200        |

## AMFitzgerald's RocketMEMS<sup>TM</sup>: Semi-custom sensors





Variety of RocketMEMS Pressure Sensors

- MEMS solutions for OEMs and system integrators
  - AMFitzgerald reference designs
  - ISO-certified foundries
  - Cost-effective multi project wafer runs
- Customer provides desired sensor specification
- 2. AMFitzgerald tailors reference design to meet customer's spec
- 3. Silex manufactures wafers
- 4. AMFitzgerald tests and delivers sensors to customer

#### **Pitfalls**

- Very little in MEMS is "turnkey"
  - "Buy" is not always a fast option
  - "Make" does not always provide a high level of control
- Caveat emptor
  - "Show me the silicon...and the data"
- Pick your IP battles
  - The more valuable patents may be in the package or system, not the MEMS chip

#### **Summary**

- Make vs. buy choices are very specific to application and business profile
- MEMS industry ecosystem offers a lot of options in either path
- We can help you please visit us at Booth #311

