Distributed algorithms: a formulary

Mattia Setzu

2017

1 Broadcast

\mathbf{Model}	Description	Messages	\mathbf{Time}
Graph	Broadcast on a general graph	$\sum_{n} deg(v) - 1 = 2m - n + 1$	n-1
Hypercube	Descending broadcast on an hypercube	n-1	n-1
Tree	Broadcast on a tree	n+1	n-1
Tree	Broadcast on a tree $(k^* \text{ initiators})$	$n + k^* - 2$	n-1

2 Serialization

\mathbf{Model}	Description	Messages	${f Time}$
Graph	Sequential token on generic graph	$\geq m$	$\geq n-1$
Graph $[DF + +]$	Asynchronous system with received and ack messages	4m - n + 1	2n-2
Graph $[DF^*]$	Asynchronous system with received messages	4m - 2n + 1	2n - 12

3 Spanning tree formation

\mathbf{Model}	Description	Messages	\mathbf{Time}
Shout	Common knowledge eager tree formation	4m - 2n + 2	n+1
Mega-Merger	Lazy mandate, eager-absorption city formation	$5n\log n + 2m - n + 1$	2n-2
Yo-Yo	Asynchronous system with received messages	$2m+2\sum_{n}\log n+n+1$	$\overline{\log(n)}$

4 Minimum finding

Model	Description	Messages	\mathbf{Time}
All the way	Wasteful minimum finding in ring	$\mathcal{O}(n^2)$	\overline{n}
As far as it can	Message-efficient minimum finding in ring	$\mathcal{O}(n^2), \Theta(n), \Omega(.69 \log n)$	\overline{n}
Controlled distance	Controlled As far	$7n\log(n)$	$\sum_{i=0}^{\log n} 2^i$
Staged distance	Limitless distance control	$2n\log n + n$	\overline{n}
Stages with feedback	Stage with feedback on triples	$3n\log_3 n + n \text{ or } 1.89n\log n$	$\log_3(n)$
Swinging pendulum	Limitless distance control	$1.44n\log n$	$\mathcal{O}(n)$

5 SATURATION

Model	Description	Messages	\mathbf{Time}
Saturation	Relax-contract saturation finding	2n	2n
Saturated eccentricity	Find eccentricity through saturation	4n	4n
Saturated center	Find center through saturation	4n	4n