CS4224/CS5424 Quiz 1: Distributed Database Design

1. Consider a database stored in a cluster of 5 nodes (A,B,C,D, and E) using Consistent Hashing with the following hashed values assigned to the nodes: h(A) = 50, h(B) = 30, h(C) = 70, h(D) = 10, and h(E) = 90. Assume that the database records are partitioned based on the hashed values of the key attribute k given by h(k).

Identify the node for storing each of the following record insertions with key k: (1) h(k) = 55, (2) h(k) = 100, and (3) h(k) = 58.

Solution: (1) C. (2) D. (3) C.

- 2. Consider the relation Employee (<u>eid</u>, name, age, department, title) where Domain(department) = {"IT", "Sales"}.
 - (a) Compute the minterm predicate partitioning F_a of Employes wrt the set of queries $S_a = \{Q_1, Q_2, Q_3, Q_4\}$, where each $Q_i = \sigma_{p_i}(Employee)$ and
 - $p_1 = (age \le 30)$
 - $p_2 = (age \le 60)$
 - $p_3 = (\text{department} = \text{"IT"})$
 - $p_4 = (\text{department} = \text{``Sales''})$
 - (b) Compute the minterm predicate partitioning F_b of *Employes* wrt the set of queries $S_b = \{Q_5, Q_6\}$, where each $Q_i = \sigma_{p_i}(Employee)$ and
 - $p_5 = (age \le 30) \land (department = "IT")$
 - $p_6 = (age \le 60) \land (department = "Sales")$
 - (c) For each of the following statements, state whether it is true or false:
 - i. F_a is a complete partitioning wrt Q_5 .
 - ii. F_a is a complete partitioning wrt Q_6 .
 - iii. F_b is a complete partitioning wrt Q_1 .
 - iv. F_b is a complete partitioning wrt Q_2 .
 - v. F_b is a complete partitioning wrt Q_3 .
 - vi. F_b is a complete partitioning wrt Q_4 .

Solution:

- (a) $P = \{p_1, p_2, p_3, p_4\}$. $MTPred(P) = \{m_1, m_2, m_5, m_6, m_{13}, m_{14}\}$, where
 - $m_1 = age > 60 \land department = "Sales"$
 - $m_2 = age > 60 \land department = "IT"$
 - $m_5 = age > 30 \land age \le 60 \land department = "Sales"$
 - $m_6 = age > 30 \land age \le 60 \land department = "IT"$
 - $m_{13} = age \le 30 \land department = "Sales"$
 - $m_{14} = age \le 30 \land department = "IT"$
- (b) $P = \{p_5, p_6\}$. $MTPred(P) = \{m_0, m_1, m_2\}$, where
 - $m_0 = (age > 60) \lor (department = "IT" \land age > 30)$
 - $m_1 = age \le 60 \land department = "Sales"$
 - $m_2 = age \le 30 \land department = "IT"$
- (c) i. F_a is a complete partitioning wrt Q_5 . True.
 - ii. F_a is a complete partitioning wrt Q_6 . True.

- iii. F_b is a complete partitioning wrt Q_1 . False.
- iv. F_b is a complete partitioning wrt Q_2 . False.
- v. F_b is a complete partitioning wrt Q_3 . False.
- vi. F_b is a complete partitioning wrt Q_4 . False.
- 3. Consider the relations R, S, T, and U, where $\{R_1, R_2\}$, $\{S_1, S_2\}$, and $\{T_1, T_2\}$, are respectively, the horizontal fragmentations of relations R, S, and T.
 - (a) Compute the derived horizontal fragmentation of relation U wrt the fragmentation of R.
 - (b) Compute the derived horizontal fragmentation of relation U wrt the fragmentation of S.
 - (c) Compute the derived horizontal fragmentation of relation U wrt the fragmentation of T.
 - (d) Which of these derived horizontal fragmentations are complete partitionings?
 - (e) Which of these derived horizontal fragmentations are disjoint partitionings?

R_1		S_1		T_1							
X	В		\mathbf{Y}	\mathbf{C}		\mathbf{Z}	\mathbf{A}				
5	80		20	6		83	187			U	
10	55		13	8		8	140		A	В	\mathbf{C}
11	25		10	2		9	100		140	55	2
		•			-				100	70	4
R_2			S_2		T_2			198	80	0	
X	В		Y	\mathbf{C}		\mathbf{Z}	A		150	70	4
18	25		4	1		10	198		100	25	1
7	40		55	0		46	104	· '			
4	70		10	4		11	166				

Solution:	$\begin{array}{c ccccc} & U_1 \\ \hline A & B & C \\ \hline 140 & 55 & 2 \\ 198 & 80 & 0 \\ 100 & 25 & 1 \\ \hline \\ & & & & & & \\ \hline & & & & & \\ \hline & & & &$	$\begin{array}{c c c} U_1 \\ \hline A & B & C \\ \hline 140 & 55 & 2 \\ \hline \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & &$	$\begin{array}{c cccc} & U_1 \\ \hline A & B & C \\ \hline 140 & 55 & 2 \\ 100 & 70 & 4 \\ 100 & 25 & 1 \\ \hline & & & & & & \\ U_2 & \hline & & & & & \\ \hline A & B & C \\ \hline 198 & 80 & 0 \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	
(d) (a) and (b) (e) (b) and (c)	(1)	()	()	