

BRAC University Department of Computer Science and Engineering

CSE 443: Bioinformatics-I (D)

Quiz 01: Summer 2025 Time: 20 Minutes Marks: 15

		ſ			
Name		ID		Section	
1. Wh	ny the origin of replication is typically AT-rich?				
	a dataset of 10 sequences, a motif of length 9 is known he total number of candidate motifs? (assuming sec			oer sequei	nce. Wha
	nat is the profile probability of k-mer 'ATG' given position 3: $G=0.2$ "'?	rofile:	" Position 1: A=0.2	2 Position	2: T=0.3
(a (b (c	aich of these does NOT improve motif search accura Adding pseudocounts Considering reverse complements Increasing motif length excessively Using more sequences	.cy?			
5. Rev	verse complements may affect frequency counts of n	notifs.	[True / False]		
6. Th	e consensus string is the most frequent k-mer in the	e data	set. [True / False]		

7. The profile matrix stores raw counts only. [True / False]

8.	Gibbs sampling is more likely to escape local optima than Greedy Motif Search. [True / False]
9.	Which 3-mer has the highest profile probability from profile A:[0.3,0.1,0.4], C:[0.2,0.2,0.3], G:[0.2,0.4,0.1], T:[0.3,0.3,0.2]? (a) ATG (b) TCG (c) ACG (d) TTG
10.	How many distinct 7-mers are in a 1000 bp genome?
11.	Gibbs sampling updates one motif at a time. [True / False]
12.	Gibbs sampling can yield different results on the same data. [True / False]
13.	If $Skew[100] = 1$ and $Skew[101] = 2$, what nucleotide is at position 101?
14.	Which one is not a reason for failure in motif search algorithms?
	 (a) Motif length (b) No pseudocounts (c) Local optimum convergence (d) Uniform GC content
15.	The Hamming distance can be used to compare a motif to a profile. JUSTIFY. [True / False]