Introduction to Linear Models (Regression)

Hunter Glanz

OUTLINE

Motivation

Univariate

Bivariate

Multivariate

- ▶ What are the observations?
- ► What variables do we have?

3 / 32

Multivariate

Motivation

•00

Motivation

•00

- ▶ What are the observations?
- ▶ What variables do we have?
- What are the values of these variables like?

3 / 32

Motivation

- ▶ What are the observations?
- ► What variables do we have?
- ▶ What are the values of these variables like?
- ► What kinds of relationships are there among the variables we have?

- ► What are the observations?
- ► What variables do we have?
- ▶ What are the values of these variables like?
- ► What kinds of relationships are there among the variables we have?

Storytelling with data!

The Carseats Dataset in the ISLR package for R

- ▶ 400 observations on the following variables:
 - Sales (in thousands) at each location
 - CompPrice
 - Income

Motivation

000

- Advertising
- Population
- Price
- ShelveLoc
- Age
- Education
- Urban
- US
- More info here:

https://rdrr.io/cran/ISLR/man/Carseats.html

Research Questions

- ▶ What kinds of questions might you ask of this dataset?
- What kinds of questions might have caused you to collect/obtain these data?

Research Questions

- ▶ What kinds of questions might you ask of this dataset?
- What kinds of questions might have caused you to collect/obtain these data?
- Primary question:

Research Questions

000

- What kinds of questions might you ask of this dataset?
- What kinds of questions might have caused you to collect/obtain these data?
- Primary question:

Can we predict Sales using the other information in this dataset?

What do we know about Sales?

Other Possible Visualizations...?

Other Possible Visualizations...?

Another Visualization?

Another Visualization? With the Mean...

Without knowing any other information or using any other data, what would your prediction for Sales be?

Motivation

- Without knowing any other information or using any other data, what would your prediction for Sales be?
 - ► The most representative value of Sales that we have access to, right?!

0000

Motivation

- Without knowing any other information or using any other data, what would your prediction for Sales be?
 - ► The most representative value of Sales that we have access to, right?!
- ▶ The mean or average of Sales is a good start: 7.5 thousand

But we DO have more data!

▶ Does knowing whether a store is in the U.S. or not help in predicting Sales?

But we DO have more data!

▶ Does knowing whether a store is in the U.S. or not help in predicting Sales?

Does being in the U.S. change our Sales prediction?

► If you knew a store was in the U.S., what would your prediction for Sales be?

Motivation

- ► If you knew a store was in the U.S., what would your prediction for Sales be?
 - ► The most representative value of Sales for stores in the U.S. that we have access to, right?!

Motivation

- ► If you knew a store was in the U.S., what would your prediction for Sales be?
 - ► The most representative value of Sales for stores in the U.S. that we have access to, right?!
- ▶ The mean or average of Sales in the U.S. is a good start:

- ► If you knew a store was in the U.S., what would your prediction for Sales be?
 - ► The most representative value of Sales for stores in the U.S. that we have access to, right?!
- ▶ The mean or average of Sales in the U.S. is a good start:
 - ► Compute the average Sales for stores in the U.S.
 - Compute the average Sales for stores not in the U.S.

So what did we just do?!

So what did we just do?!

What are we doing **statistically**?

▶ Does knowing whether a store is in the U.S. change our prediction of Sales? OR

What are we doing **statistically**?

- ▶ Does knowing whether a store is in the U.S. change our prediction of Sales? OR
- ▶ Is there a relationship between a store's location and its Sales? OR

- ▶ Does knowing whether a store is in the U.S. change our prediction of Sales? OR
- ▶ Is there a relationship between a store's location and its Sales? OR
- ▶ Is there a difference in the average Sales between stores in the U.S. and stores outside the U.S.?

- ▶ Does knowing whether a store is in the U.S. change our prediction of Sales? OR
- ▶ Is there a relationship between a store's location and its Sales? OR
- ▶ Is there a difference in the average Sales between stores in the U.S. and stores outside the U.S.?
 - ► Hopefully this last question sounds familiar...

What are we doing statistically?

Motivation

- ▶ Does knowing whether a store is in the U.S. change our prediction of Sales? OR
- ▶ Is there a relationship between a store's location and its Sales? OR
- ▶ Is there a difference in the average Sales between stores in the U.S. and stores outside the U.S.?
 - Hopefully this last question sounds familiar...

Two-sample ...

- Does knowing whether a store is in the U.S. change our prediction of Sales? OR
- Is there a relationship between a store's location and its Sales? OR
- ▶ Is there a difference in the average Sales between stores in the U.S. and stores outside the U.S.?
 - Hopefully this last question sounds familiar...

Two-sample ...

- t-test
- confidence interval

But What About the Lines on Those Graphs?!

Motivation

▶ What's the equation of a horizontal line?

► Sales alone:

$$Sales = \beta_0 + \epsilon$$

Univariate

Bivariate

0000000000000

Motivation

Our Models Thus Far

Sales alone:

$$Sales = \beta_0 + \epsilon$$

Sales on US:

$$Sales = \beta_0 + \beta_1 USYes + \epsilon$$

• where we assume $\epsilon \sim N(0, \sigma^2)$.

► Sales alone:

$$E[Sales] = \beta_0$$

$$\hat{Sales} = \hat{\beta}_0 = 7.5$$

► Sales alone:

$$E[Sales] = \beta_0$$

$$Sa\hat{l}es = \hat{\beta}_0 = 7.5$$

► Sales on US:

$$E[Sales|US] = \beta_0 + \beta_1 USYes$$

$$\hat{Sales} = \hat{\beta}_0 + \hat{\beta}_1 USYes = 6.823 + 1.0439 USYes$$

- ▶ We estimate the **average** Sales using the fitted model!
- $\hat{\beta}_1$: we **expect** a 1.0439 thousand unit increase in Sales if a store is in the U.S.

What is the relationship between Sales and Price?

► How do we usually describe/interpret such plots?

▶ What does *correlation* measure?

Motivation

- ▶ What does *correlation* measure?
 - ► The **strength** and **direction** of the **linear** relationship between **two quantitative** variables.
- ▶ What are the possible values correlation, r, can take?

Motivation

- ▶ What does *correlation* measure?
 - ► The **strength** and **direction** of the **linear** relationship between **two quantitative** variables.
- ▶ What are the possible values correlation, r, can take?
 - ▶ Between -1 and 1

Multivariate

Motivation

- ▶ What does *correlation* measure?
 - The strength and direction of the linear relationship between two quantitative variables.
- ▶ What are the possible values correlation, *r*, can take?
 - ▶ Between -1 and 1
- What else do usually hear about correlation?!

Motivation

- ▶ What does *correlation* measure?
 - The strength and direction of the linear relationship between two quantitative variables.
- ▶ What are the possible values correlation, *r*, can take?
 - ▶ Between -1 and 1
- What else do usually hear about correlation?!
 - correlation does not imply causation

Can We Go Beyond Correlation?

What is your estimate of the correlation between Sales and Price?

21 / 32

Can We Go Beyond Correlation?

What is your estimate of the correlation between Sales and Price?

- r = -0.445
- ► How else could we describe the relationship between these two variables?

(Least Squares) Best Fit Line

The Model Equation of the Best Fit Line

► Sales on Price:

$$Sales = \beta_0 + \beta_1 Price + \epsilon$$

The Model Equation of the Best Fit Line

Univariate

Sales on Price:

$$Sales = \beta_0 + \beta_1 Price + \epsilon$$

$$E[Sales|Price] = \beta_0 + \beta_1 Price$$

The Model Equation of the Best Fit Line

► Sales on Price:

$$Sales = \beta_0 + \beta_1 Price + \epsilon$$

$$E[Sales|Price] = \beta_0 + \beta_1 Price$$

$$\hat{Sales} = \hat{\beta}_0 + \hat{\beta}_1 Price = 13.641915 - 0.053073 Price$$

- ▶ We estimate the **average** Sales using the fitted model!
- $\hat{\beta}_1$: we **expect** a 0.053073 thousand (53.073) unit decrease in Sales for every dollar increase in Price. (not causation!)

Fitting Linear Models in R

```
> m <- lm(Sales ~ Price, data = data)
> summarv(m)
call:
lm(formula = Sales ~ Price. data = data)
Residuals:
   Min
           10 Median 30
-6.5224 -1.8442 -0.1459 1.6503 7.5108
coefficients:
           Estimate Std. Error t value Pr(>|t|)
Price
          -0.053073 0.005354 -9.912 <2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.532 on 398 degrees of freedom
Multiple R-squared: 0.198. Adjusted R-squared: 0.196
F-statistic: 98.25 on 1 and 398 DF. p-value: < 2.2e-16
```

Check out the estimate column for the coefficient estimates!

Our Dataset is Rich...Let's Use It!

► Could we use both Price and US to help predict Sales?

Our Dataset is Rich...Let's Use It!

► Could we use both Price and US to help predict Sales?

What Do We Do With Three Variables?

▶ What are our model options?

YOLO Lines!

► We could allow for completely different fitted lines for each of the two groups:

Same Slope for Both Groups

➤ We could force the line for each of the two groups to have the same slope:

Same Intercept for Both Groups

▶ We could force the line for each of the two groups to have the same intercept:

Fitting Bigger Models in R

Motivation

```
> m <- lm(Sales ~ Price + US, data = data)
> summary(m)
call:
lm(formula = Sales ~ Price + US, data = data)
Residuals:
   Min 10 Median 30
                              Max
-6.9269 -1.6286 -0.0574 1.5766 7.0515
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
Price -0.05448 0.00523 -10.416 < 2e-16 ***
       1.19964 0.25846 4.641 4.71e-06 ***
USYes
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.469 on 397 degrees of freedom
Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
```

Multivariate

How do the interpretations change?

We could allow for completely different fitted lines for each of the two groups:

We can get crazy!

32 / 32