Theory of the Motion of the Moon; containing a New Calculation of the Expressions for the Coordinates of the Moon in terms of the Time. By Ernest W. Brown, M.A., Sc.D.

PART I. CHAPTERS I.-IV.

INTRODUCTION.

The formation of numerical expressions, deduced as a consequence of the Newtonian laws of motion and gravitation, which shall represent the position of the Moon at any time, may be roughly divided into three stages. As a first step we eonsider each of the three bodies—the Sun, the Earth, and the Moon—as a sphere of mass equal to its actual mass and arranged in eoncentrie spherical layers of equal density. The Earth (or the eentre of mass of the Earth and Moon) is supposed to move round the Sun in a certain ideal elliptic orbit, and all disturbanees of this orbit and of the Moon from any other source than the ideal Sun and Earth are neglected. This first stage constitutes nearly the whole of the labour of solving the problem of three bodies as far as the particular configuration of the Sun-Earth-Moon system is concerned. When this is done we proceed to the second step, which involves the determination of the effects due to the difference between the actual and ideal motions of the Earth and Sun, to the influences exerted by the other bodies of the solar system, and to the differences between the real and ideal arrangements of the The calculations so far may, theoretically at least, be masses of the bodies. made without any knowledge of the configuration of the system at any given

time or times beyond a general idea of the order of magnitude of certain of the constants involved. The third and final stage consists in a determination by observation of the various constants which have entered into the theory, and the substitution of their values so as to obtain numerical expressions for the coordinates in terms of the time.

In actual practice these lines of division cannot be satisfactorily kept, partly from the length and complexity of the calculations necessary to obtain algebraical expressions sufficiently complete, and partly from a similar difficulty in comparing large numbers of observations with the results of the theory for the purpose of obtaining the values of the constants involved. Certain of the latter, however, particularly those most frequently occurring, namely, the mean motions of the Sun (or Earth) and Moon, can be obtained, with very little knowledge of the theory, with sufficient accuracy to enable us to use their numerical values at the outset, and so to save a large part of the labour. The first and second steps may be separated without much difficulty, and it is the first which forms the chief object of this Memoir.

Of the methods which have been devised to solve the first part of the problem, those of HANSEN and DELAUNAY must take the first place, not because they were intrinsically the best adapted to the purpose, but because in the hands of their authors they were actually carried out with a degree of detail greater than any other. It is not necessary to discuss here their respective merits; it is sufficient to recall the fact that Hansen's was entirely numerical, and was made the basis of the tables of the Moon used at the present time, although the latter were published forty years ago, while Delaunay's was, owing to the method used, entirely algebraical. Further, Hansen embraced the whole problem in his theory; Delaunay only lived long enough to complete the first step; his work, however, has been carried on by other writers, and will attain its completion in the tables now in The earlier method of Laplace, adopted also by process of formation. Damoiseau and Plana, and that of Lubbock and de Pontécoulant, although perhaps unsuitable to obtain the accuracy required at the present day, attained results which were at the time as much in advance of those previously published as those of Hansen and Delaunay were over all earlier theories.

But if we look only to suggestions of methods of treatment, quite apart from the extent to which they were actually carried out, the most fruitful

contributions to the first part of the problem were undoubtedly those of Euler, who preceded all the writers just mentioned. His two treatises of 1753 and 1772 contain three distinct methods; and it is not a little remarkable that the theories of Hansen and Delaunay may be said to be ultimately based on two of them, while the third forms the foundation of the method developed below. Amongst the points of correspondence between the first theory of Euler and the theory of Hansen, it is sufficient to note the manner in which the true longitude and the radius vector of the Moon are expressed. Hansen, however, covered up most of the traces of any such connection by his peculiar method of using a so-called "variable time" and by developing his formulæ with the aid of the method of variation of arbitrary constants. His formulæ can be otherwise obtained, as Hansen himself and others have shown; even if it were not so, we owe the application of the arbitrary constants method to celestial mechanics in the first place to Euler. latter method, which is contained in the appendix to Euler's volume of 1753, was rendered a practical one under the masterly treatment of Delaunay; but it is doubtful if anyone but the originator of the method would have had the courage to undertake the laborious calculations necessary to bring the work to a successful conclusion.

The theory of Euler, published in 1772, is of particular interest here, since it suggested the method used below. It is based on the use of rectangular axes, of which two move in their own plane with constant angular velocity, and on a division of the inequalities into classes according to the composition of their coefficients. This work of Euler seems to have received but little attention, apart from the practical results obtained; no attempt was made to develop his method further. It was reserved for Dr. G. W. Hill, over a hundred years later, to take the next step by so altering the forms of the equations, while prescrying the original ideas on which they were constructed, that they might be made available for accurate calculation. His two papers, "Researches in the Lunar Theory," published in the first volume of the American Journal of Mathematics, and "On the Part of the Motion of the Lunar Perigee which is a Function of the Mean Motions of the Sun and Moon," published separately, and also in the eighth volume of the Acta Mathematica, showed what the method was capable of effecting, and opened out a new region for practical calculations and theoretical researches.

"Dans cette œuvre," says M. Poincaré in the preface to the first volume of his Mécanique Céleste, "il est permis d'apercevoir le germe de la plupart des

progrès que la science a faits depuis."

In this connection the work of Adams must be mentioned. Starting from an entirely different point of view, that of effecting an accurate determination of the mean motions of the principal arguments, he obtained the corresponding part of the motion of the node by a method somewhat similar to that used by Dr. Hill for the perigee. One of the main difficulties in the latter case—the reduction of the equations to a suitable form—does not occur in the case of the node, and there is no indication in the single paper which Adams published on that subject in the Monthly Notices for 1877 that he contemplated the use of moving rectangular coordinates. But that he was investigating the properties of the latter may be inferred from another paper on the lunar theory in the same volume of the Monthly Notices.

During the last six years I have been attempting to develop the ideas contained in the "Researches" by calculating the coefficients of terms with certain definite characteristics.* Dr. Hill had obtained those which had the characteristic unity, that is, which were functions of the mean motions of the Sun and Moon only, and also that part of the motion of the perigee which was a function of the same quantities; ADAMS had done the same thing for the motion of the node. It therefore remained to obtain the general equations, to put them into forms suitable for calculation, and to show how the other parts of the motions of the perigee and node might be obtained. Experiments were made with the inequalities whose characteristics are the first, second, and third powers of the ratio of the mean parallaxes of the Sun and Moon, and the same powers of the eccentricity of the Moon. forms of the equations which were there used were, however, troublesome, chiefly from their liability to produce errors in the actual calculations. In a paper which will be hereafter referred to, for the sake of brevity, as the "Investigations," † I showed how this difficulty might be avoided without, I

^{*} The "characteristic" of any part of a coefficient is defined to be that part in its expression which consists of powers and products of the eccentricities, the inclination, and the ratio of the mean parallaxes. The other factor is a function of the ratio of the mean motions, and it also depends on the nature of the coordinate used. See Chap. I. § 15, below.

+ "Investigations in the Lunar Theory," Amer. Jour. Math. vol. xvii. pp. 318-358.

think, causing any increase in the labour of making the calculations, and it has certainly diminished the actual time required for their performance. In fact, at least three fourths of the calculations might be performed by a computer whose stock-in-trade amounted to little more than a thorough knowledge of logarithms. An effective control over the computations can be kept at almost every step; and as the operations which would be turned over to the computer are always the same, he would soon be able to do his work with very little supervision.

It is intended to apply the method so as to completely solve the problem of the Moon's motion as far as it is affected by the Sun and Earth alone, the action of the Moon only on these bodies being included, and the three bodies being treated as particles of equal masses. The degree of accuracy aimed at is that the coefficients of all periodic terms in longitude, latitude, and parallax shall be included which are greater than o''o1, and that they shall be correct to this amount. The number of terms required is undoubtedly very great. The calculation of coefficients up to the sixth order inclusive with respect to e, k—the lunar eccentricity and inclination—will be necessary; those of the seventh order may be replaced by their elliptic values. The corresponding orders for e', a—the solar eccentricity and the ratio of the mean parallaxes—are deduced from the fact that e' is roughly of the order e^3 or e', and that a is of the order e^2 or e'.

To obtain the coefficients with the above-mentioned degree of accuracy it will be necessary to calculate terms contained in about one hundred characteristics. These will include about five hundred periodic terms, and will require the actual calculation of perhaps two thousand separate coefficients. The results now published contain the terms present in fourteen characteristics—that is to say, about one-seventh of the whole. Notwithstanding the fact that the number of terms contained in the higher characteristics is much greater than that in the lower ones, the work done so far probably amounts to more than one-fifth of the whole. This is due to the fact that a much higher degree of accuracy is required for the lower terms than is actually necessary to obtain the corresponding coefficients correctly to o''.o1; the presence of small divisors causes a loss of accuracy, which has to be continually borne in mind in judging of the number of places of decimals which are to be calculated. For example, the term, the mean motion of

whose argument is twice the difference between the mean motions of the perigee and node, requires that the calculations be actually carried three places of decimals further than would be necessary for a term of the same order with no small divisor. Fortunately, however, the majority of the terms which cause the most trouble, due to the presence of small divisors, are those which contain both e', a in their characteristics, and therefore the number of eharacteristics of this nature to be considered is much smaller than would otherwise be the case.

The theory will be an algebraical one throughout, with the single and important exception that the numerical value of the ratio of the mean motions of the Sun and Moon is substituted. The reasons for this may be briefly stated as follows:—First, slow convergence of the series which represent the coefficients arranged according to powers of m or m,* e, k, e', a, takes place mainly along powers of m; secondly, the value of m is known from observation with great accuracy; thirdly, estimates would have to be made of the values of the eonstants e, k used in this theory from the values of differently defined constants of eccentricity and latitude used in other theories; fourthly, wery little, if any, extra trouble is caused by leaving e, k, e', a arbitrary. Thus the theory, while remaining to a large extent algebraical, will possess all the advantages of a purely numerical theory. It may be also mentioned that, by combining the results of this theory with Dr. Hill's modification of DELAUNAY, it can be effectively used for researches by the method of the variation of arbitrary constants. The procedure is intrinsically contained in my paper "On the Theoretical Values of the Secular Acceleration in the Lunar Theory" in the Monthly Notices for March 1897.

Of the four chapters which are now published, the first contains the whole theory, with certain exceptions, so far as it is necessary for the continuous development of the numerical results. The exceptions are those parts of the theory which refer to numerical results previously obtained and which are not necessary for those which follow. For example, all details of purely theoretical interest are omitted, and no account is given of Dr. Hill's method for the determination of the intermediate orbit used here (which I

^{*} As usual m=n'/n, m=n'/(n-n'), where n, n' are the observed mean motions of the Moon and Sun.

have called the "variation curve"), or of those methods used by him and Adams for finding the principal parts of the motions of the perigee and node. All that is necessary is a quotation of the numerical results, and they will be found in their proper places with the sources from which they have been obtained. The following is the table of contents:—

Chapter I.—General Development of the Theory.

Section (i). An investigation of the disturbing function used, with the necessary corrections.

Section (ii). The two forms of the equations of motion.

Section (iii). Development of the disturbing function according to powers of I/a', z, e'.

Section (iv). The form of the solution. The general system of notation adopted to represent the coefficients, arguments, &c.

Section (v). Method of solution. Preparation of the equations of motion.

Section (vi). Exact definitions of the arbitrary constants used in the theory.

Section (vii). Methods used for the solution of the equations of condition satisfied by the coefficients. The long and short period terms which give rise to small divisors. Manner of obtaining the higher parts of the motions of the perigee and node.

Section (viii). Details concerning the numerical calculations and the methods used to verify them.

Section (ix). Transformation to polar coordinates.

Chapter II.—Terms of zero order.* Numerical results.

Chapter III.—Numerical results for terms of the first order.

Chapter IV.—Numerical results for terms of the second order.

Future chapters will contain the terms of the third, fourth . . . orders.

With regard to the calculations, no trouble has been spared to secure correctness. Errors are of two kinds, those which are merely numerical and those which are partly algebraical—i.e. due to the use of a wrong series of factors or to the omission of some series of terms. To test the former, equations of verification were computed at every step, and the nature of the method rendered these very numerous. An error of the latter kind may

^{*} The word "order" here and elsewhere refers only to e, e', k, a, and not to m.

escape such a verification, and will generally produce a large discordance; the results were therefore tested by a rough comparison with those of another theory—say, that of Delaunay. One searching test of this kind has been applied to the majority of the terms now published, namely, the comparison of the motions of the perigee and node deduced therefrom with those deduced by Hansen and Delaunay.

The results obtained so far point to certain appreciable errors in the theories of Hansen and Delaunay. Dr. Hill has shown * that the last two terms of Delaunay's expression for the part of the motion of the perigee which depends on m only are wrong. The part of the motion of the perigee which depends on e2 I have calculated in two quite different ways, and it appears that the last two, if not the last three, of these terms of Delaunay's expression are seriously erroneous.† An error in Delaunay's expression for the part of the motion of the node which depends on e'2 was actually traced down to an error of transcription in his theory. Hansen's theoretical value for the annual motion of the node appears to be at least one if not two seconds in error.§ Professor Newcomb in his discussion of the results obtained for the coefficient of parallactic inequality | considers that Hansen's value is about o":30 in error: this amount, though small in itself, is of importance if the coefficient be used to obtain the solar parallax. I hope before long to finish the computation of this coefficient so as to obtain it within o"co2, and, at a later period, the values of the annual motions of the perigee and node, so far as these depend on solar action only, correct to o".o1.

CHAPTER I

GENERAL DEVELOPMENT OF THE THEORY.

Section (i).—The Problem of Three Bodies and the Disturbing Function.

I. The disturbing function used by all investigators except Hansen gives only a portion of the inequalities produced by the Sun in the motion of the Moon. This form of the disturbing function will be used below, and

^{*} Annals of Mathematics, vol. ix. pp. 31-41.
† Monthly Notices, vol. lvii. p. 336.
\$ Ibid. p. 340.

\$ Astron. Jour. vol. xv. p. 167.

therefore we shall, in this section, investigate the small additions which must be made to it in order that the whole of the effect of the Sun on the Moon's motion may be obtained. The method of this section is similar to that of Prof. Newcomb in "The Actions of the Planets on the Moon" (Amer. Eph. Papers, vol. v).

Let X, Y, z, r be the coordinates and distance of the Moon referred to axes fixed in direction and passing through the centre of the Earth; x', y', z', r', those of the Sun referred to parallel axes through the centre of mass of the Earth and Moon; M, E, m', the masses of the Moon, Earth, and Sun reckoned in astronomical units. The x-coordinates of the Moon, Earth, and Sun referred to parallel axes through the centre of mass of the three bodies are respectively

$$\frac{EX}{E+M} - \frac{m' \ x'}{m' + E + M}, \qquad -\frac{MX}{E+M} - \frac{m' \ x'}{m' + E + M}, \qquad \frac{(E+M) \ x'}{m' + E + M}$$

with similar expressions for the other coordinates.

Let T be the kinetic energy of the system relative to the centre of mass. Then

$$2T = M \left\{ \left(\frac{E}{E+M} \frac{dX}{dt} - \frac{m'}{m' + E+M} \frac{dx'}{dt} \right)^{2} + \dots + \dots \right\}$$

$$+ E \left\{ \left(\frac{M}{E+M} \frac{dX}{dt} + \frac{m'}{m' + E+M} \frac{dx'}{dt} \right)^{2} + \dots + \dots \right\}$$

$$+ m' \left\{ \left(\frac{E+M}{m' + E+M} \frac{dx'}{dt} \right)^{2} + \dots + \dots \right\}$$

$$= \mu_{1} \left(\dot{X}^{2} + \dot{Y}^{2} + \dot{z}^{2} \right) + \mu_{2} \left(\dot{x}'^{2} + \dot{y}'^{2} + \dot{z}'^{2} \right),$$

where

$$\mu_1 {=} \frac{EM}{E + M}, \qquad \mu_2 {=} \frac{m'\left(E {+} M\right)}{m' {+} E {+} M}. \label{eq:mu_1}$$

Let F be the potential energy of the system. By Lagrange's equations we then have for the Moon's motion relative to the Earth—

$$\mu_1 \frac{d^2 X}{dt^2} \! = \! \frac{\partial F}{\partial X}, \qquad \mu_1 \frac{d^2 Y}{dt^2} \! = \! \frac{\partial F}{\partial Y}, \qquad \mu_1 \frac{d^2 z}{dt^2} \! = \! \frac{\partial F}{\partial z},$$

and for the Sun's motion relative to the centre of mass of the Earth and Moon—

$$\mu_2 \frac{d^2 x'}{dt^2} = \frac{\partial F}{\partial x'}, \qquad \mu_2 \frac{d^2 y'}{dt^2} = \frac{\partial F}{\partial y'}, \qquad \mu_2 \frac{\partial^2 z'}{dt^2} = \frac{\partial F}{\partial z'},$$

F being expressed in terms of X, Y, z, x', y', z'.

48

Let r_1' be the distance of the Sun from the Earth, Δ its distance from the Moon. Then

$$F=rac{EM}{r}+rac{Em'}{r_1'}+rac{Mm'}{\Delta}$$
 ;

and

$$r^{2} = X^{2} + Y^{2} + z^{2},$$
 $r'^{2} = x'^{2} + y'^{2} + z'^{2},$ $r_{1}'^{2} = r'^{2} + 2 \frac{M}{E + M} r' r S + \frac{M^{2}}{(E + M)^{2}} r^{2},$ $\Delta^{2} = r'^{2} - 2 \frac{E}{E + M} r' r S + \frac{E^{2}}{(E + M)^{2}} r^{2},$ $rr' S = Xx' + Yy' + zz'.$

where

S is therefore the cosine of the angle subtended by Δ at the centre of mass of the Earth and Moon.

2. We shall first consider the effect of the Moon's motion on the Sun and determine the deviation of the Sun's motion from an elliptic orbit in the plane of reference. For this purpose we may omit the first term of F, since it does not contain x', y', z'. Then

$$\frac{F}{\mu_2} = \frac{m' + E + M}{E + M} \left(\frac{E}{r_1'} + \frac{M}{\Delta} \right).$$

Expanding $1/r_1'$, $1/\Delta$ in powers of r/r', we obtain

$$\frac{F}{\mu_2} = (m' + E + M) \left[\frac{1}{r'} + \frac{EM}{(E+M)^2} \frac{r^2}{r'^3} \left(\frac{3}{2} S^2 - \frac{1}{2} \right) + \dots \right].$$

The order of the second term in comparison with the first is in the ratio

$$Mr^2$$
: $Er'^2=1$: 12,000,000

approximately. The order of the next term is in the ratio $Mr^3 : Er^{/3}$, a quantity which may and will be totally neglected. A sufficient correction to the elliptic motion of the Sun about the centre of mass of the Earth and Moon may therefore be obtained by using

$$(m'+E+M)\frac{EM}{(E+M)^2}\frac{r^2}{r'^3}\left(\frac{3}{2}S^2-\frac{1}{2}\right)$$

as the disturbing function, and substituting for the coordinates of the Mcon their elliptic values, together with the principal inequalities due to the Sun,

as found in Chaps. II., III. below. If n' be the observed mean motion of the Sun, we define the mean distance a' by the equation

$$m' + E + M = n'^2 a'^3$$
.

3. Next, for the motion of the Moon we have, on expanding F and rejecting the useless term m'(E+M)/r',

$$\begin{split} \frac{F}{\mu_1} &= \frac{E + M}{r} + \frac{m'(E + M)}{EM} \left(\frac{E}{r_1'} + \frac{M}{\Delta} \right) \\ &= \frac{E + M}{r} + \frac{m'r^2}{r'^3} \left[\left(\frac{3}{2} \mathbf{S}^2 - \frac{1}{2} \right) + \frac{E - M}{E + M} \frac{r}{r'} \left(\frac{5}{2} \mathbf{S}^3 - \frac{3}{2} \mathbf{S} \right) \right. \\ &\quad + \frac{E^2 - EM + M^2}{(E + M)^2} \frac{r^2}{r'^2} \left(\frac{35}{8} \mathbf{S}^4 - \frac{15}{4} \mathbf{S}^2 + \frac{3}{8} \right) \\ &\quad + \frac{E^3 - E^2M + EM^2 - M^3}{(E + M)^3} \frac{r^3}{r'^3} \left(\frac{63}{8} \mathbf{S}^5 - \frac{35}{4} \mathbf{S}^3 + \frac{15}{8} \mathbf{S} \right) + \dots \right]. \end{split}$$

The expansion is carried as far as will be necessary, since we shall neglect quantities of the orders r^4/r'^4 , Mr^3/Er'^3 .

The force-function which we shall use is that ordinarily used, namely,

$$S = \frac{E+M}{r} + m' \left[\frac{1}{\sqrt{r'^2 - 2rr'S + r^2}} - \frac{1}{r'} - \frac{rS}{r'^2} \right]
= \frac{E+M}{r} + n'^2 a'^3 \frac{r^2}{r'^3} \left[\left(\frac{3}{2} S^2 - \frac{1}{2} \right) + \frac{r}{r'} \left(\frac{5}{2} S^3 - \frac{3}{2} S \right) \right]
+ \frac{r^2}{r'^2} \left(\frac{35}{8} S^4 - \frac{15}{4} S^2 + \frac{3}{8} \right)
+ \frac{r^3}{r'^3} \left(\frac{63}{8} S^5 - \frac{35}{4} S^3 + \frac{15}{8} S \right) + \dots \right] \qquad \dots \tag{1}$$

In this, the elliptic values of x', y' (z'=0) are substituted and m' is put equal to $n'^2a'^3$ instead of $n'^2a'^3-E-M$. It is necessary to consider what corrections must be made when Ω is used instead of F/μ_1 .

- 4. The corrections are of three kinds and are so small that we need only consider their effects to the first order of the disturbance.
- (a) Correction due to putting $n'^2a'^3=m'$ instead of m'+E+M. We must add to \aleph the terms

$$-(E+M)\frac{r^2}{r^{73}} \left[\frac{3}{2} S^2 - \frac{1}{2} + \frac{r}{r'} \left(\frac{5}{2} S^3 - \frac{3}{2} S \right) \right].$$
 ROYAL ASTRON. Soc., Vol. LIII.

This correction will be sufficiently accounted for if we multiply all the inequalities due to the Sun by

$$\hat{\mathbf{r}} - \frac{E + M}{m'} = \hat{\mathbf{r}} - \frac{\hat{\mathbf{r}}}{330000},$$

approximately.*

(b) Correction due to using the elliptic instead of the true values of the solar coordinates. We must add to & the term

$$n^{\prime 2}a^{\prime 3}\delta\left[\frac{r^2}{r^{\prime 3}}\left(\frac{3}{2}S^2-\frac{1}{2}\right)\right],$$

where δ operates on x', y', z', and $\delta x'$, $\delta y'$, $\delta z'$ are the perturbations of x', y', z', as found in δ 2.

(c) Correction due to the difference between F/μ_1 and Ω . Since the terms in F/μ_1 or Ω involving $n'^2 a'^3 \frac{r^2}{r'^3} \left(\frac{r}{r'}\right)^j$ give inequalities having the factor $(a/a')^j$, where a is the "constant" of the Moon's distance, this correction may be partly made by multiplying the inequalities having the factor $(a/a')^j$ by

$$\left(\frac{E-M}{E+M}\right)^{j}$$
.

To the order considered here, there will then remain to be added to $\ensuremath{\mathtt{\varpi}}$ the term

$$n'^{2}a'^{3}\frac{r^{2}}{r'^{3}}\left[\frac{EM}{(E+M)^{2}}\cdot\frac{r^{2}}{r'^{2}}\left(\frac{35}{8}S^{4}-\frac{15}{4}S^{2}+\frac{3}{8}\right)\right].$$

- 5. The method of procedure is therefore as follows:—The values of X, Y, z are first obtained by using \otimes with $m'=n'^2a'^3$, z'=0 and elliptic values for x', y'. With the values of X, Y, z thus formed we compute $\delta x'$, $\delta y'$, $\delta z'$ by means of the disturbing function in $\S 2$. The corrections to X, Y, z, noted in (a), (b), (c) above, are then easily obtained. The first step is that
- * Except for the mean motion of the perigee where the second and succeeding terms, which are of the order of the square and higher powers of the disturbing forces, are a little greater in actual value than the first term. The correction may be made with sufficient accuracy by multiplying the mean motion of the perigee by

$$I - \frac{I}{2} \frac{E + M}{m'} - \frac{I}{2} \cdot 2 \frac{E + M}{m'} = I - \frac{3}{2} \frac{E + M}{m'}$$

See Monthly Notices, 1897 June.

which very frequently bears the name of the "Lunar Theory." It will be noticed from this investigation that the elliptic values of the solar coordinates to be used are those referred to the centre of mass of the Earth and Moon.

6. Let

x, y, z, be the coordinates of the Moon, referred to rectangular axes through the Earth's centre, of which those of x, y are in the plane of the Sun's orbit (supposed fixed and elliptic), the positive direction of the moving x-axis being constantly directed to the mean place of the Sun;

$$r^2 = x^2 + y^2 + z^2$$
;
 $\rho^2 = x^2 + y^2$;

n, n', the observed mean motions of the Moon and Sun;

r', e', a', the radius vector, eccentricity, and semi-axis major of the Sun's orbit (§ 5);

v, the solar equation of the centre;

 $S_1 = x \cos v + y \sin v.$

So that

$$rr'S = Xx' + Yy' + zz' = r'(x \cos v + y \sin v) = r'S_1$$

and

$$r^2 = \rho^2 + z^2$$
.

Also, representing $\sqrt{-1}$ by ι , let

$$\begin{split} u &= x + y\iota, & s &= x - y\iota, & us &= \rho^2 \;; \\ m &= \frac{n'}{n - n'}, & \kappa &= \frac{E + M}{(n - n')^2} \;; \\ \zeta &= \exp. \; (n - n')(t - t_\circ)\iota, \\ D &= \frac{1}{(n - n')\iota} \frac{d}{dt} = \zeta \frac{d}{d\zeta} \;; \end{split}$$

where t_0 is a constant to be defined later.

The equations of motion, referred to the moving axes and with the force-function \otimes (§ 3), are

$$\begin{aligned} \frac{d^2x}{dt^2} - 2n'\frac{dy}{dt} - n'^2x &= \stackrel{\circ}{c} & \Omega \\ \frac{d^2y}{dt^2} + 2n'\frac{dy}{dt} - n'^2y &= \stackrel{\circ}{c} & \Omega \\ \frac{d^2z}{dt^2} &= \stackrel{\circ}{c} & \Omega \\ \frac{d^2z}{dt^2} &= \stackrel{\circ}{c} & \Omega \end{aligned}$$

Let

$$\Omega' = \Omega + \frac{1}{2}n'^{2}(x^{2} + y^{2}) = \Omega + \frac{1}{2}n'^{2}us,$$

and transform to the independent variables u, s, z and the dependent variable ζ . The equations become

$$D^{2}u + 2mDu = -\frac{2}{(n-n')^{2}} \frac{\partial \mathcal{D}'}{\partial s},$$

$$D^{2}s - 2mDs = -\frac{2}{(n-n')^{2}} \frac{\partial \mathcal{D}'}{\partial u},$$

$$D^{2}z = -\frac{1}{(n-n')^{2}} \frac{\partial \mathcal{D}'}{\partial z},$$

where, by Sect. (i),

$$\mathcal{S}' = \frac{E+M}{(us+z^2)!} + n'^2 a'^3 \left[\frac{1}{(r'^2-2r'\mathcal{S}_1 + us+z^2)!} - \frac{1}{r'} - \frac{\mathcal{S}_1}{r'^2} \right] + \frac{1}{2} n'^2 us.$$

This gives, on expansion according to powers of 1/r', after some transformations,

$$\frac{2}{(n-n')^2} \hat{s}' = \frac{2\kappa}{(us+z^2)!} + \frac{3}{4} m^2 (u+s)^2 - m^2 z^2 + 9 \cdot 1$$

where

suppose, where ω_q is the part of \otimes_1 which involves u, s, z to the degree q; S_1 is of the first degree with respect to u, s. It will be noticed that ω_2 is zero when e'=0.

53

The equations may now be written—

$$(D+m)^{2}u + \frac{1}{2}m^{2}u + \frac{3}{2}m^{2}s - \frac{\kappa u}{(us+z^{2})^{\frac{3}{2}}} = -\frac{\partial \Omega_{1}}{\partial s}, \qquad \dots \qquad \dots$$
 (3)

$$(D-m)^2 s + \frac{1}{2} m^2 s + \frac{3}{2} m^2 u - \frac{\kappa s}{(us+z^2)^{\frac{3}{2}}} = -\frac{\partial \Omega_1}{\partial u}, \qquad \dots \qquad \dots$$
 (3')

$$(D^2 - \mathbf{m}^2)z - \frac{\kappa z}{(us + z^2)^{\frac{3}{2}}} = -\frac{1}{2} \frac{\partial \, \Omega_1}{\partial z} \qquad \dots \qquad \dots$$
 (4)

These are the fundamental equations in the theory. Since u, s are conjugate complexes, either of the first two equations is sufficient; we shall use the first in the ealeulations.

7. Homogeneous Form of the Equations.—Multiply the three equations by Ds, Du, 2Dz respectively, and add. We obtain

$$\begin{split} D \Big[Du \cdot Ds + (Dz)^2 + \frac{3}{4} \mathbf{m}^2 (u+s)^2 - \mathbf{m}^2 z^2 + \frac{2\kappa}{(us+z^2)^{\frac{1}{2}}} \Big] \\ = - \Big[\frac{\partial \mathcal{L}_1}{\partial s} Ds + \frac{\partial \mathcal{L}_1}{\partial u} Du + \frac{\partial \mathcal{L}_1}{\partial z} Dz \Big]. \end{split}$$

Since Ω_1 is a function of u, s, z, r', v only, and since r', v are supposed to be known functions of the time,

$$D \otimes_{1} = \frac{\partial \otimes_{1}}{\partial u} Du + \frac{\partial \otimes_{1}}{\partial s} Ds + \frac{\partial \otimes_{1}}{\partial z} Dz + \frac{\partial \otimes_{1}}{\partial t} Dt ;$$

and therefore the right-hand member of the previous equation

$$= \frac{\partial \Omega_{1}}{\partial t} Dt - D \Omega_{1} = \frac{1}{(n - n')\iota} \frac{\partial \Omega_{1}}{\partial t} - D \Omega_{1}$$

$$= D' \Omega_{1} - D \Omega_{1} = D[D^{-1}(D' \Omega_{1}) - \Omega_{1}].$$

where D^{-1} denotes the operation inverse to D (i.e. integration with respect to ζ followed by a division by ζ), and $D' \Omega_1$ denotes the operation D performed on Ω_1 only so far as ζ occurs in r', v.

With this form of the right-hand member we can integrate and obtain

$$Du \cdot Ds + (Dz)^{2} + \frac{3}{4} m^{2} (u+s)^{2} - m^{2} z^{2} + \frac{2\kappa}{(us+z^{2})^{\frac{1}{2}}} = C' - \Im_{1} + D^{-1}(D' \Im_{1})$$
 (5)

Now add this to the sum of (3), (3'), (4) multiplied by s, u, 2z respectively. Since, by Euler's theorem,

$$s \frac{\partial \Omega_1}{\partial s} + n \frac{\partial \Omega_1}{\partial u} + z \frac{\partial \Omega_1}{\partial z} = \sum_{q=2}^{\infty} q \omega_q$$

we obtain an equation which may be written-

Also multiply (3) by s, (3') by u and subtract; multiply (3) by z and (4) by u and subtract. The two resulting equations are

$$D(uDs - sDu - 2mus) + \frac{3}{2}m^2(u^2 - s^2) = s\frac{\partial \Omega_1}{\partial s} - u\frac{\partial \Omega_1}{\partial u} \quad \dots \qquad (7)$$

$$D(uDz - zDu) - 2mzDu - m^2uz - \frac{3}{2}m^2z(u+s) = z\frac{\partial \Omega_1}{\partial s} - \frac{1}{2}u\frac{\partial \Omega_1}{\partial z} \quad \dots$$
 (8)

Instead of the last we may obtain the more symmetrical form,

$$D[(u-s)Dz - zD(u-s)] - 2mzD(u+s) - m^2z(u-s)$$

$$= z\left(\frac{\partial \mathcal{S}_1}{\partial s} - \frac{\partial \mathcal{S}_1}{\partial u}\right) - \frac{1}{2}(u-s)\frac{\partial \mathcal{S}_1}{\partial z}$$
(8')

The equations (6), (7), (8) will be called the *homogeneous equations*. Their left-hand members are homogeneous and of the second degree with respect to u, s, z, while their right-hand members are, abstraction being made of C', of the 2nd, 3rd . . . degrees with respect to the same variables.*

Section (iii.).—Development of
$$\otimes_1$$
.

8. In the last section, the development of Ω_1 according to powers of 1/a' has been given; the result is there numbered (2). We must now further develop it according to powers of e' and z, which are small quantities of the first order. The development will not be carried beyond quantities of the orders—

$$\frac{a^3}{a'^3}$$
, $\frac{a^2}{a'^2}e'$, $\frac{a^2}{a'^2}z^2$, $\frac{a}{a'}e'^3$, e'^5 .

By the definition of S_1 we have

$$S_1 = x \cos v + y \sin v$$
$$= \frac{1}{2} (ue^{-v} + se^{v})$$

^{*} Fuller explanations of the transformations in the section are given in the Treatise on the Lunar Theory, Chap. II. (iii.).

Substituting in (2) and remembering that

$$\Omega_1 = \omega_2 + \omega_3 + \omega_4 + \omega_5$$

we have, to the orders of small quantities just mentioned,

$$\begin{split} \omega_2 &= \mathrm{m}^2 \left[\frac{3}{4} (u^2 \mathfrak{a}_2 + s^2 \bar{\mathfrak{a}}_2) + \frac{1}{2} u s \mathfrak{h}_2 - z^2 \mathfrak{h}_2 \right], \\ \omega_3 &= \frac{\mathrm{m}^2}{a'} \left[\frac{5}{8} (u^3 \mathfrak{a}_3 + s^3 \bar{\mathfrak{a}}_3) + \frac{3}{8} (u^2 s \mathfrak{c}_3 + u s^2 \bar{\mathfrak{c}}_3) - \frac{3}{2} u z^2 \mathfrak{c}_3 - \frac{3}{2} s z^3 \bar{\mathfrak{c}}_3 \right], \\ \omega_4 &= \frac{\mathrm{m}^2}{a'^2} \left[\frac{35}{64} (u^4 \mathfrak{a}_4 + s^4 \bar{\mathfrak{a}}_4) + \frac{5}{16} (u^3 s \mathfrak{c}_4 + u s^3 \bar{\mathfrak{c}}_4) + \frac{9}{32} u^2 s^2 \mathfrak{h}_4 \right. \\ &\qquad \qquad \left. - z^2 \left(\frac{15}{8} u^2 \mathfrak{c}_4 + \frac{15}{8} s^2 \bar{\mathfrak{c}}_4 + \frac{9}{4} u s \mathfrak{h}_4 \right) \right], \\ \omega_5 &= \frac{\mathrm{m}^2}{a'^3} \left[\frac{63}{128} (u^5 + s^5) + \frac{35}{128} (u^4 s + u s^4) + \frac{15}{64} (u^3 s^2 + u^2 s^3) \right]; \\ \mathfrak{a}_2 &= \frac{a'^3}{r^3} e^{-2u \mathfrak{c}} - 1, \qquad \mathfrak{a}_3 &= \frac{a'^4}{r'^4} e^{-3u}, \qquad \mathfrak{a}_4 &= \frac{a'^5}{r'^5} e^{-4u}, \\ \mathfrak{b}_2 &= \frac{a'^3}{r'^3} - 1, \qquad \mathfrak{b}_4 &= \frac{a'^5}{r'^5}, \\ \mathfrak{c}_3 &= \frac{a'^4}{a'^4} e^{-u}, \qquad \mathfrak{c}_4 &= \frac{a'^5}{a'^5} e^{-2u \mathfrak{c}}; \end{split}$$

where

and $\bar{\mathfrak{a}}_2$, $\bar{\mathfrak{b}}_2$, . . are the values of \mathfrak{a}_2 , \mathfrak{b}_2 , . . when $-\iota$ has been put for ι .

9. The quantities \mathfrak{a}_2 , \mathfrak{b}_2 , are to be expanded in powers of e'; they are well-known elliptic expansions and they have been computed by several investigators. They may be conveniently obtained from the expressions given by Delaunay in chap. ii. vol. i. of his *Théorie de la Lune* by giving to the angle, there called \mathfrak{a} , suitable values, or from the tables of Cayley (*Mem. R.A.S.* vol. xxix., *Coll. Works*, vol. iii).

Putting Exp. $l'\iota = \zeta^m$ (see § 11, below), where l' is the solar mean anomaly, we obtain

$$\begin{split} \mathfrak{a}_2 &= -\frac{5}{2}e'^2 + \frac{1}{16}e'^4 \\ &+ \left(-\frac{1}{2}e' + \frac{1}{16}e'^3 - \frac{5}{384}e'^5 \right) \zeta^{\mathrm{m}} + \left(\frac{7}{2}e' - \frac{123}{16}e'^3 + \frac{489}{128}e'^5 \right) \zeta^{-\mathrm{m}} \\ &+ \circ \cdot \zeta^{2\mathrm{m}} \\ &+ \left(\frac{1}{4}e'^3 + \frac{11}{768}e'^5 \right) \zeta^{3\mathrm{m}} \\ &+ \left(\frac{845}{48}e'^3 - \frac{32525}{768}e'^5 \right) \zeta^{-3\mathrm{m}} \\ &+ \frac{1}{24}e'^4 \zeta^{4\mathrm{m}} \\ &+ \frac{81}{1280}e'^5 \zeta^{5\mathrm{m}} \\ &+ \frac{228347}{3840}e'^5 \zeta^{-5\mathrm{m}} \end{split}$$

$$\begin{split} \mathfrak{b}_2 = & \frac{3}{2}e'^2 + \frac{15}{8}e'^4 + \left(\frac{3}{2}e' + \frac{27}{16}e'^3 + \frac{261}{128}e'^5\right) \left(\zeta^{\mathrm{m}} + \zeta^{-\mathrm{m}}\right) \\ & + \left(\frac{9}{4}e'^2 + \frac{7}{4}e'^4\right) \left(\zeta^{2\mathrm{m}} + \zeta^{-2\mathrm{m}}\right) \\ & + \left(\frac{53}{16}e'^3 + \frac{393}{256}e'^5\right) \left(\zeta^{3\mathrm{m}} + \zeta^{-3\mathrm{m}}\right) \\ & + \left(\frac{77}{16}e'^4\left(\zeta^{4\mathrm{m}} + \zeta^{-4\mathrm{m}}\right) + \frac{1773}{256}e'^5\left(\zeta^{5\mathrm{m}} + \zeta^{-5\mathrm{m}}\right), \\ \mathfrak{a}_3 = \mathbf{I} - 6e'^2 + \left(-e' + \frac{5}{2}e'^3\right)\zeta^{\mathrm{m}} + \left(5e' - 22e'^3\right)\zeta^{-\mathrm{m}} \\ & + \frac{1}{8}e'^2\zeta^{2\mathrm{m}} + \frac{127}{8}e'^2\zeta^{-2\mathrm{m}} + 0 \cdot e'^3\zeta^{3\mathrm{m}} + \frac{163}{4}e'^3\zeta^{-3\mathrm{m}}, \\ \mathfrak{c}_3 = \mathbf{I} + 2e'^2 + \left(e' + \frac{5}{2}e'^3\right)\zeta^{\mathrm{m}} + \left(3e' + \frac{11}{4}e'^3\right)\zeta^{-\mathrm{m}} \\ & + \frac{11}{8}e'^2\zeta^{2\mathrm{m}} + \frac{53}{8}e'^2\zeta^{-2\mathrm{m}} + \frac{23}{8}e'^3\zeta^{3\mathrm{m}} + \frac{77}{6}e'^3\zeta^{-3\mathrm{m}}, \\ \mathfrak{a}_4 = \mathbf{I} - \frac{3}{2}e'\zeta^{\mathrm{m}} + \frac{13}{2}e'\zeta^{-\mathrm{m}}, \\ \mathfrak{c}_4 = \mathbf{I} + \frac{1}{2}e'\zeta^{\mathrm{m}} + \frac{9}{2}e'\zeta^{-\mathrm{m}}, \\ \mathfrak{b}_4 = \mathbf{I} + \frac{5}{2}e'\left(\zeta^{\mathrm{m}} + \zeta^{-\mathrm{m}}\right). \end{split}$$

The values of $\bar{\mathfrak{a}}_2$, $\bar{\mathfrak{c}}_2$, ... are obtained from those of \mathfrak{a}_2 , \mathfrak{c}_2 , ... by putting $1/\xi$ for ξ .

Section (iv).—Form of the Solution. Notation.

10. Let V be the true longitude in the plane of X Y or x y reckoned from the fixed axis of X and ϕ the latitude above this plane. Also let D, l, l', F denote the same angles as in Delaunay's theory, Chap. xi. vol. ii. *i.e.* let

 $D = (n-n')t + \epsilon - \epsilon' = Half arg.$ of the "Variation," $l = cnt + \epsilon - \varpi$ = Arg. of the Principal Elliptic Term, $l' = n't + \epsilon' - \varpi'$ = ,, "Annual Equation," $F = gnt + \epsilon - \theta$ = ,, Principal term in Latitude.

Here, as usual, ϵ , ϖ , θ are the values of the mean longitudes of the Moon and of its perigee and node at time t=0; ϵ' is the mean longitude of the Sun at time t=0 and ϖ' the (constant) longitude of its perigee; (1-c)n, (1-g)n are the mean motions of the perigee and node.

We then have

$$X=\rho \cos V$$
, $Y=\rho \sin V$, $z=\rho \tan \phi = r \sin \phi$,

Whence, as we shall put $\zeta = \exp$. Di, $(\delta 11)$,

$$\begin{split} x &= \rho \cos \left(V - n't - \epsilon' \right) = \rho \cos \left(V - nt - \epsilon + \mathbf{D} \right), \\ y &= \rho \sin \left(V - n't - \epsilon' \right) = \rho \sin \left(V - nt - \epsilon + \mathbf{D} \right) \; ; \end{split}$$

$$u = \rho \exp ((V - nt - \epsilon + D)\iota \qquad s = \rho \exp ((V - nt - \epsilon + D)\iota)$$

$$u\zeta^{-1} = \rho \exp ((V - nt - \epsilon)\iota, \qquad s\zeta = \rho \exp ((V - nt - \epsilon)\iota) \qquad \dots \qquad (9)$$

It is well known that, with the limitations here imposed, r, $V-n^t-\epsilon$, ϕ are expressible by sums of periodic terms whose arguments are (algebraic) sums of multiples of the four angles D, l, l', F. Hence r, y, z are expressible in the forms

$$\begin{cases} x \\ y \\ z \end{cases} = \mathbf{a} \mathbf{\Sigma} A_{i, p, q, r} \begin{cases} \cos \\ \sin \\ \sin \end{cases} (i \mathbf{D} + pl + rl' + q\mathbf{F}), \qquad i, p, q, r = 0, \pm 1, \pm 2, \dots.$$

where **a** is a linear constant and A a coefficient; the sign of summation Σ denotes that the sum of all such terms must be taken. Remembering the definition of u, s, it is evident that u, s, zi may be therefore expressed in the form

$$u, s, z_l = a \sum A_{l, p, q, r} \exp \left(i D + p l + r l' + q F\right) \iota$$

with certain limitations which will be set down later.

There are four sets of notations required. First, for the exponentials; secondly, for the constants of distance, eccentricity, latitude and ratio of the mean parallaxes; thirdly, for the numerical parts of the coefficients (these parts are functions of m only, and the numerical value of m is used throughout); fourthly, for the terms of u, s, z which are of a particular order.

11. Notation for the Exponentials.—Recalling that m = n' / (n-n'), we may evidently write

$$D = (n - n') (t - t_0),$$

$$l = c (n - n') (t - t_1),$$

$$l' = m (n - n') (t - t_3),$$

$$F = g (n - n') (t - t_2),$$

where

$$c(n-n')=cn, g(n-n')=gn,$$

and the signification of t_0 , t_1 , t_2 , t_3 is obvious.

We have, in Section (ii), defined ζ by the equation

$$\zeta = \exp((n-n')(t-t_0)\iota$$

and we now give to t_0 in this expression the same meaning as it has in D, so that $\zeta = \exp$. D_i.

Let, for a moment,

$$\zeta_c^c = \exp c(n-n')(t-t_1)\iota$$
.

Remembering the definition of the operator D we have

$$D^{j}(\zeta^{i}\zeta_{c}^{pc}) = (i + pc)^{j}\zeta^{i}\zeta_{c}^{pc},$$

where i, j, p are positive or negative integers.

Now, in the method pursued here, we shall always proceed by equating to zero the coefficients of like powers of ζ , ζ_c^c in equations which consist of such expressions as that just written down, and it will never be necessary to substitute the value of c in the *indices*; its value is only substituted in the coefficients. The above equation shows that the coefficients will be the same whether we write $\zeta^i \zeta_c^{pc}$, or ζ^{i+pc} . Further, as the suffix c always occurs in the index whenever it is present as a suffix, the *suffix* is unnecessary for purposes of distinction and we shall omit it in future. The same remarks apply to

$$\zeta_{\rm m}^{\rm rm} = \exp r l' \iota, \qquad \zeta_{\rm g}^{\rm rg} = \exp q F \iota.$$

We may therefore put

$$\exp. (iD + pl + rl' + qF) \iota = \xi^{i + pc + rm + qz},$$

the index of ζ always denoting the coefficient of t in the corresponding argument divided by n-n'.

N

12. Notation for the Arbitrary Constants and the Parameters.—There are six arbitrary constants present in the solution. Three of these— ϵ , ϖ , θ , or t_0 , t_1 , t_2 —have already been considered; they are contained in D, l, F, or in ζ , ζ^c , ζ^g . The other arbitraries to be used will be denoted by

connected by one relation. The exact definitions of e, k,—the constants of eccentricity and inclination—will be found in Section (vi); n has been defined as the observed mean motion; the linear constant, a, is connected with n, e, k, E+M by a relation which will be defined in the same Section. In elliptic motion, this relation would be $n^2a^3=E+M$; in the actual case the relation differs a little from this.

The parameters in powers of which expansion will be made are

m, e,
$$e'$$
, k, $a = \frac{a}{a'}$.

The numerical value of m is used, but the other parameters are left arbitrary.

13. Notation for the Numerical Coefficients.—From what precedes, it is evident that u, s, z_i may be expressed in the form

$$u, s, z = \mathbf{a} \Sigma \Lambda_{i, p, q, r} \zeta^{i+p\mathbf{c}+r\mathbf{m}+qz},$$

or, as it will be more convenient to write it,

$$u\zeta^{-1}$$
, $s\zeta$, $z\iota=a\Sigma A_{i, p, q, r}\zeta^{i+pc+rm+qg}$, $i, p, q, r=+\infty \ldots -\infty$.

The latter form has the following properties, which are easily deduced from the known properties of the expressions for V, r, ϕ .

- (a) sζ is deduced from uζ⁻¹ by putting 1/ζ for ζ;
 if 1/ζ be put for ζ in the expression for zι, the coefficient merely changes sign;
- (b) i is odd or even according as A contains odd or even powers of α ;
- (c) q is even in the expressions for $u\zeta^{-1}$, $s\zeta$ and odd in that for $z\iota$;
- (d) A is of the order $e^{|p|} e'^{|r|} k^{|q|}$ at least, and it contains higher powers of c, e', k which differ from |p|, |r|, |q| by even integers.
- 14. I now give the general notation adopted throughout. It is devised so as to represent every part of every coefficient.

The general term in $u\zeta^{-1}$ or z_ι will be expressed by

$$a(\epsilon^{p+p'}\epsilon'^{p'}\eta^{r+r'}\eta'^{r'}k^{q+q'}k'^{q'}a^{s'})_i e^{p+2p'}e'^{r+2r'}k^{q+2q'}a^{s'}\zeta^{2i\pm pc\pm rm\pm qg} \qquad \dots \qquad \dots \qquad (10)$$

where *

$$p, q, r, p', q', r', s'=0, 1, 2, \dots,$$

 $2i=0, \pm 1, \pm 2, \dots$

The coefficient (), above written corresponds to the upper signs in the index of ζ .

With the lower sign of pc, interchange the indices of ϵ , ϵ' ;

With the lower sign of rm, interchange the indices of η , η' ;

With the lower sign of qg, interchange the indices of k, k'.

The sum of all such terms for all values of p, q, r, p', q', r', s', 2i gives the complete expression of $u\xi^{-1}$ or of $z\iota$.

From the properties (a), (b), (c), (d) just given, it is evident that when q is even, (10) gives the general term of $u\zeta^{-1}$; that when q is odd (10) gives the general term of z_i , and that then

$$(\epsilon^{p+p'}\epsilon'^{p'}\eta^{r+r'}\eta'^{r'}k^{q+q'}k'^{q'}\alpha^{s'})_i = -(\epsilon^{p'}\epsilon'^{p+p'}\eta^{r'}\eta'^{r+r'}k^{q'}k'^{q+q'}\alpha^{s'})_{-i} ;$$

that $s\zeta$ is deduced from $u\zeta^{-1}$ by putting $1/\zeta$ for ζ ; that s', 2i are odd or even together.

When 2i is odd, we shall frequently denote this fact by putting $2i=2i_1$, so that i_1 will denote an odd multiple of $\pm \frac{1}{2}$. When an index of any symbol inside (), is zero, the symbol is simply omitted.

In the cases of the coefficients of the first order, namely, $(\epsilon)_i$, $(\epsilon')_i$, $(\eta)_i$, $(\eta')_i$, $(k)_i$, $(k')_i$, the brackets () will be omitted for the sake of brevity, as

they are unnecessary.

Particular Case.—In the case where $p, q, \ldots s'$ are all zero no letter would occur inside (). This being inconvenient we shall denote the corresponding coefficient by a_i . Thus, the terms independent of e, e' k, a in $u\zeta^{-1}$ are denoted by

 $\mathrm{a}\Sigma_{i}a_{i}\zeta^{2i}, \qquad \qquad i=0, \ \pm 1, \ \pm 2, \ \ldots$

These are the terms of order zero (\S 15 below). There are no such terms in z.

^{*} No confusion will be caused by this new use of the letters r, r', since they only occur, in this sense, in the indices of η , η' , e', and have positive integral values.

15. Characteristic and Order.—The factor

$$e^{p+2p'}e'^{r+2r'}\mathbf{k}^{q+2q'}\alpha^{s'}$$

of the general coefficient will be called the characteristic part of the coefficient or, briefly, the *characteristic*.

The Order is the sum of the indices of e, e', k, a. The order of the general term is therefore

$$p + 2p' + r + 2r' + q + 2q' + s'$$
.

The word "order," as used here, is thus independent of m—a necessary restriction, since the numerical value of m is substituted at the outset.

A few remarks and an example may make the notation laid down in § 14 clearer. It will be observed that

 ϵ , ϵ' are always associated with e; η , η' are always associated with e'; k, k' are always associated with k; α is always associated with $\alpha = a/a'$;

while, as is well known, e is associated with the index c; e' with the index m; k with the index g; and an odd power of a with an odd value of 2i.

If the numerical value of m had *not* been substituted at the outset, we could further have denoted the particular power of m involved by inserting m^{j} inside ()_i; the coefficient ()_i would then have been a positive power series in m, with a numerical factor for each power of m, which factor is always the ratio of two integers.

The actual arrangement of $\epsilon^{p+p'}$, $\epsilon'^{p'}$, ... inside ()_i is immaterial, but we shall, in general, retain the arrangement of § 14.

Example.—The numerical part of the coefficient of $\zeta^{3+2m-2g}$ which has the characteristic $e^{i4}k^2a$ in $ii\zeta^{-1}$ is denoted by

$$(\eta^3\eta'k'^2a)_{\frac{1}{2}}$$
.

For here, p=0, p'=0; r=2, r'=1; q=2, q'=0 with the indices of k, k' interchanged; 2i=3; k'=1. The series of terms in $n\xi^{-1}$ which will be found along with this term, are those of the same characteristic which are

obtained by putting ζ^{-1} for ζ and whose indices differ from the given index of ζ by even whole numbers. See \S 27 below. They are

$$ae'^4k^2\alpha \Sigma_{i_1}[(\eta^3\eta'k'^2a)_{i_1}\zeta^{2i_1+2m-2g}+(\eta\eta'^3k^2a)_{i_1}\zeta^{2i_1-2m+2g}],$$

where

$$2i_1=\pm 1$$
, ± 3 , ± 5 , . . .

16. Notation for terms with a given Characteristic or of a given Order.— It will frequently be convenient to specify such terms in a brief manner; this may be done by means of a suffix attached to u, s, z. Thus all terms in u with characteristic e^2 may be denoted by u_{e^2} , those with characteristic e'a by $u_{e'a}$, and generally, those with characteristic λ by u_{λ} .

The terms of a given order are denoted by numerical suffixes. Thus, u_3 denotes all terms of the third order; u_0 , those of zero order; and so on.

Section (v). Method of Solution. Preparation of the Equations.

- 17. The general feature of the method consists in the successive determination of the terms of orders $0, 1, 2, \ldots$ with respect to powers and products of e, e', k, a in the coordinates u, z. As will be seen from the results of Section (ii), there are two methods of procedure—one by the use of the equations (3), (4), and the other by the use of the homogeneous equations (6), (7), (8). At the same time it may be stated that we need by no means confine ourselves to either of the two sets of equations, but use one or the other or both as may seem most convenient for the particular class of inequalities under consideration at any stage of the approximations.
- 18. Terms of Order Zero.—These terms, the coefficients of which are functions of m only, constitute a closed orbit with reference to the moving axes which is really the primary or "intermediate" orbit in the same sense as the elliptic orbit of the older theories; it may be called the Variation Curve since its principal periodic term is known as the "Variation." According to the notation of the last Section it is given by

$$u_0 \zeta^{-1} = \mathbf{a} \Sigma a_i \zeta^{2i}, \qquad s_0 \zeta = \mathbf{a} \Sigma a_{-i} \zeta^{2i}. \qquad \dots \qquad \dots$$
 (11)

These values u_0 , s_0 of u, s constitute a particular solution of the equation

$$(D+m)^2 u + \frac{1}{2} m^2 u + \frac{3}{2} m^2 s - \frac{\kappa u}{\rho^3} = 0 \quad \dots \quad \dots \quad (12)$$

or, in the homogeneous form, of the equations,

$$D^{2}(us) - Du \cdot Ds - 2m(uDs - sDu) + \frac{9}{4}m^{2}(u+s)^{2} = C'$$

$$D(uDs - sDu - 2mus) + \frac{3}{2}m^{2}(u^{2} - s^{2}) = 0$$
... (12')

since here, $\Omega_1 = 0$, z = 0. The constant C' is a function of a, m, while a is a function of E + M, n, m.

The values of u, s being substituted in the equations of either form (by preference, the latter), we obtain a number of equations of condition which suffice to determine aa_i . In consequence of the presence of a, one of the a_i is arbitrary; we put $a_0 = \mathbf{1}$. The whole theory of these terms and the numerical results have been fully worked out by Dr. Hill in his paper "Researches in the Lunar Theory" (Amer. Jour. Math. vol. i.); the results will be given in Chap. II.

19. Terms of the First Order.—We put

where

$$u=u_0+u_1,$$
 $z=z_1,$ $u_1=u_e+u_{c'}+u_{a'}$ $z_1=z_k,$

and neglect powers and products u_1 , s_1 , z_2 , above the first. In the general equations of Section (ii) we put

Further, when $\Theta_1 = \omega_2$ we neglect e'^2 and higher powers, and when $\Theta_1 = \omega_3$ we put e' = 0; in both cases u_0 , s_0 may be put for u, s in Θ_1 .

The right-hand members of the equations thus consist entirely of known terms. Putting $u=u_0+u_1$, $s=s_0+s_1$, $z=z_1$, and expanding the last terms of the left-hand members, it is easily seen that the equations (3), (4) for u_1 , z_1 become

where, putting $\rho_0^2 = v_0^{\varrho_0}$,

$$M = \sum_{i} M_{i} \zeta^{2i} = \frac{1}{2} m^{2} + \frac{1}{2} \frac{\kappa}{\rho_{0}^{3}}$$

$$N = \sum_{i} N_{i} \zeta^{2i} = \frac{3}{2} m^{2} + \frac{3}{2} \frac{\kappa u_{0}^{2} \zeta^{-2}}{\rho_{0}^{5}}$$
... ... (14)

and A consists of a ζ -series with known coefficients, and $\lambda = e'$ or a. When $u_1 = u_e$, we have A = 0. The sets of inequalities corresponding to u_e , u_e , u_a , z_k can evidently be separately determined. In each case the appropriate expressions for u_1 , s_1 , s_1 , are substituted, and equations of condition for the unknown coefficients are obtained by equating the coefficients of the various powers of ζ to zero; they are then solved by continued approximation.

In the equation for u_e , the questions of the arbitrary constant of eccentricity and of the motion of the perigee arise, and in that for z_k , the arbitrary constant of latitude and the motion of the node; these will be dealt with in

their proper place (§§ 25, 26).

The homogeneous forms of the equations may be considered in a similar manner. I do not give the developments here as they may be easily inferred from the more general treatment in § 22 of this Section. Further information is given in chapter xi. of the "Treatise on the Lunar Theory" and in the papers on the Parallactic and Elliptic Inequalities (Amer. Jour. Math. vols. xiv., xv.).

The numerical results for the terms of the first order are contained in

Chapter III below.

20. Terms of the Second and Higher Orders. Development of the Equations (3), (4).—The terms of the first order having been obtained, we proceed to show generally how the terms of any order and characteristic may be found when those of lower orders have been calculated. We shall deal with both sets of equations as either may be useful in certain cases. In this section the equations (3), (4) are considered.

They may be written,

$$\zeta^{-1}(D+m)^{2}u + \frac{1}{2}m^{2}u\zeta^{-1} + \frac{3}{2}m^{2}s\zeta \cdot \zeta^{-2} - \frac{\kappa u\zeta^{-1}}{r^{3}} = -\zeta^{-1}\frac{\partial \Omega_{1}}{\partial s} \qquad (15)$$

$$(D^2 - \mathbf{m}^2)z - \frac{\kappa z}{r^3} = -\frac{1}{2} \frac{\partial \Omega_1}{\partial z} \qquad \dots \qquad \dots \qquad \dots$$
 (16)

Suppose that it be required to determine all terms having the characteristic λ , say u_{λ} , in u, and those of characteristic λ , say z_{λ} , in z.

^{*} Of course λ can never be the same in the z-equation as it is in the u-equation. Consequently, as terms of different characteristics are never found in the same set of equations of condition, the equations (15), (16), are never considered together in finding any particular set of coefficients.

We put

$$u=u_0 + \Sigma u_{\mu} + u_{\lambda},$$
 $z=\Sigma z_{\mu},$ in (15),
 $u=u_0 + \Sigma u_{\mu},$ $z=\Sigma z_{\mu} + z_{\lambda},$ in (16).

Here Σu_{μ} , Σz_{μ} contain all terms in u, z, except u_0 , u_{λ} , z_{λ} , which will contribute to give terms with characteristic λ . These expressions are substituted in the equations, which are then expanded according to powers of $u-u_0$, z, all powers of u_{λ} , z_{λ} above the first and products of u_{λ} , z_{λ} with u_{μ} , z_{μ} being, of course, omitted. It will be remembered that $r^2 = us + z^2$.

Choosing out the terms which may produce terms with the characteristic $\boldsymbol{\lambda}$ we find

where

$$P = \sum_{i} P_{i} \zeta^{2i} = a \frac{\kappa u_{0} \zeta^{-1}}{\rho_{0}^{5}}, \qquad Q = \sum_{i} Q_{i} \zeta^{2i} = a \frac{\kappa u_{0}^{3} \zeta^{-3}}{\rho_{0}^{7}},$$

$$R = \sum_{i} R_{i} \zeta^{2i} = a^{2} \frac{\kappa u_{0}^{2} \zeta^{-2}}{\rho_{0}^{7}}, \qquad T = \sum_{i} T_{i} \zeta^{2i} = a^{2} \frac{\kappa u_{0}^{4} \zeta^{-4}}{\rho_{0}^{9}},$$

$$S = \sum_{i} S_{i} \zeta^{2i} = a^{2} \frac{\kappa}{\rho_{0}^{5}}, \qquad P = \sum_{i} P_{-i} \zeta^{2i}, \quad R = \sum_{i} R_{-i} \zeta^{2i}, \text{ etc.}$$

$$(19)$$

the values of \overline{P} , \overline{R} being obtained from those of P, R by interchanging $u_{\nu}\zeta^{-1}$, $s_{0}\zeta$, that is, by putting $1/\zeta$ for ζ .*

21. Some remarks on these equations are necessary. In the first place, the left-hand members of (3), (4) being linear with respect to u, s, and to z respectively (exception being made of the terms containing κ ; these will be considered immediately), the parts $u_0 + \sum u_\mu$ of u and $\sum z_\mu$ of z cannot contribute anything to terms with characteristic λ as far as the *coefficients* of these periodic terms are concerned. But the operators D^2 , D cause the coefficients in u_μ , z_μ to be respectively multiplied by factors of the forms

$$(2i+pc+rm+qg)^2$$
, $(2i+pc+rm+qg)$,

and c, g contain powers and products of e^2 , e'^2 , k^2 , α^2 . Hence it will be necessary in some of the terms, whose orders are higher than the second, to include D^2u_{μ} , Du_{μ} , D^2z_{μ} in the equations.

In general, all the unknowns are contained in the left-hand members of (17) or (17') and (18) or (18'), while the terms of the right-hand members are entirely known. Exception to the last statement only holds when we are determining an unknown part of c or g. It must be remembered that, in

^{*} In the *Investigations*, p. 327, where these expressions are used, one or two errors must be noted. The factor a (there called a_0) is omitted from the values of P, P, Q and the factor a^2 from those of R, \overline{R} , T, S. The notations for R, R should be interchanged, that is R_{-i} put for R_i , to bring them into uniformity with those for P, \overline{P} .

reality, c and g are supposed to represent the complete values at the outset, but that, in forming the equations of condition, all terms of higher orders in the values of c, g, than those actually under consideration are neglected. Hence an unknown part of c or g will, in certain cases, arise from the terms containing the operator D in the right-hand members. These cases are more fully considered in the next Section.

As to the terms involving \otimes_1 , since \otimes_1 is of the first order at least, apart from the order of the terms in u, we can evidently substitute $u_0 + \sum u_{\mu}$ for u and $\sum z_{\mu}$ for z therein.

The rest of the terms arise from the expansions of $\frac{\kappa u \zeta^{-1}}{r^3}$, $\frac{\kappa z}{r^3}$ in powers of Σu_{μ} , Σz_{μ} . Those containing the first powers of these quantities are omitted, since they evidently cannot produce terms with the characteristic λ . It will be noticed that the terms are written in two ways, (17), (18) and (17), (18').

If we take the first forms, namely (17), (18), for calculation, the process is to calculate each $\sum u_{\mu}/u_0$, $\sum z_{\mu}/\rho_0$ (which consists in a single easy multiplication of each $u_{\mu}\xi^{-1}$ by $s_0\xi/\rho_0^2$ and of each z_{μ} by $1/\rho_0$), to form the various products inside the parentheses, and finally to multiply the resulting series by $\kappa u_0 \xi^{-1}/\rho_0^3$ and κ/ρ_0^2 in the respective equations. For this purpose the values of

$$a \frac{s_0 \zeta}{{\rho_0}^2}, \frac{a}{{\rho_0}}, \frac{\kappa u_0 \zeta^{-1}}{a {\rho_0}^3}, \frac{\kappa}{a {\rho_0}^2},$$

expressed as even-power series in ζ are given at the end of Chapter II.

If we take the second forms, namely, (17'), (18'), the various multiplications which have to be made are evident, and the values of P, Q, \ldots necessary for this, expressed as power series in ζ , are given in the same place. There can be little doubt that the first forms give shorter calculations, and they have a further advantage in the fact that the only trouble necessary for transferring to polar coordinates consists in the calculations of powers of $\sum u_{\mu}/u_0$, $\sum z_{\mu}/\rho_0$ (see Section ix), and this labour will therefore have already been finished. Indeed, the second forms would not have been given here at all, were it not for the fact that I failed to see the great advantage of the first forms for the higher inequalities, and consequently used the second forms in

the calculation of all the second order inequalities and of a few of the third order.*

A great advantage of these equations is that the chief labour—the multiplication of series—can be easily arranged for an ordinary computer, and much of the merely mechanical labour may thereby be distributed (see Sect. viii).

The numerical results for terms of the second order are given in Chapter IV. below; those for terms of the third and higher orders will be

given in chapters to be published hereafter.

22. First and Higher Order Terms. Homogeneous Equations.—The separation of the homogeneous equations into known and unknown parts is effected in a similar manner. The substitutions for u, z are the same as in § 20. If the homogeneous equations be used for actually finding the coefficients, the forms obtained in equations (20), (21), (22) are of no assistance, except as a guide; this will be evident by a glance at §§ 32–36. They have been, however, almost exclusively used for verifying the results obtained from the equations of § 20, and they are given mainly for that purpose here.

They are

$$\begin{split} D^2(u_0s_\lambda + s_0u_\lambda) - Du_0Ds_\lambda - Ds_0Du_\lambda - 2\operatorname{m}(u_0Ds_\lambda - s_0Du_\lambda + u_\lambda Ds_0 - s_\lambda Du_0) \\ &\quad + \frac{9}{2}\operatorname{m}^2(u_0 + s_0)(u_\lambda + s_\lambda) \end{split}$$

$$= \operatorname{Part}, \ \operatorname{char^c}. \ \lambda, \ \operatorname{in} \left[C' - \sum_{q=2}^\infty (q+1)\omega_q + D^{-1}(D'\otimes_1) \right] \\ &\quad - \left\{ D^2(\Xi u_\mu \cdot \Xi s_\mu) - D\Xi u_\mu \cdot D\Xi s_\mu - 2\operatorname{m}(\Xi u_\mu D\Xi s_\mu - \Sigma s_\mu D\Xi u_\mu) + \frac{9}{4}\operatorname{m}^2(\Xi u_\mu + \Xi s_\mu)^2 \right. \\ &\quad \left. - \left(D\Xi z_\mu \right)^2 - \frac{3}{2}\operatorname{m}^2(\Xi z_\mu)^2 \right\} \right] \qquad \cdots \qquad \cdots \qquad (20) \\ &\quad D(u_0Ds_\lambda - s_0Du_\lambda + u_\lambda Ds_0 - s_\lambda Du_0 - 2\operatorname{m}u_0s_\lambda - 2\operatorname{m}s_0u_\lambda) + 3\operatorname{m}^2(u_0u_\lambda - s_0s_\lambda) \end{split}$$

$$= \operatorname{Part}, \ \operatorname{char^c}. \ \lambda, \ \operatorname{in} \left[s\frac{\partial \otimes_1}{\partial s} - u\frac{\partial \otimes_1}{\partial u} \right. \\ &\quad - \left\{ D(\Xi u_\mu \cdot D\Xi s_\mu - \Xi s_\mu \cdot D\Xi u_\mu - 2\operatorname{m}\Xi u_\mu \cdot \Xi s_\mu) + \frac{3}{2}\operatorname{m}^2(\Xi u_\mu)^2 - \frac{3}{2}\operatorname{m}^2(\Xi s_\mu)^2 \right\} \right] \quad \cdots \qquad (21) \end{split}$$

^{*} From the remarks just made, it might have seemed an improvement to put $u=u_0v$, $s=s_0\bar{v}$, $z=\rho_0w$ and to find v, \bar{v} , w only. This, however, only throws some of the labour of forming u_{μ}/u_0 , etc., on to the solution of the equations of condition; the latter process is far less mechanical than the former and much more liable to error, and there will be no saving of labour.

$$\begin{split} D(u_0Dz_{\lambda}-z_{\lambda}Du_0) - 2\mathrm{m}z_{\lambda}Du_0 - \mathrm{m}^2u_0z_{\lambda} - \frac{3}{2}\mathrm{m}^2z_{\lambda}(u_0+s_0) \\ = \mathrm{Part}, \ \mathrm{char}^c. \ \lambda, \ \mathrm{in} \left[z\frac{\partial \, \Omega_1}{\partial s} - \frac{1}{2}u\frac{\partial \, \Omega_1}{\partial z} \right. \\ \left. - \left\{D(\Sigma u_{\mu} \, . \, D\Sigma z_{\mu} - \Sigma z_{\mu} \, . \, D\Sigma u_{\mu}) - 2\mathrm{m}\Sigma z_{\mu} \, . \, D\Sigma u_{\mu} - \mathrm{m}^2\Sigma u_{\mu}. \, \Sigma z_{\mu} \right. \\ \left. - \frac{3}{2}\mathrm{m}^2\Sigma z_{\mu}(\Sigma u_{\mu} + \Sigma s_{\mu})\right\} \right] \qquad \ldots \qquad (22) \end{split}$$

As before, the left-hand members contain the unknown terms. The right-hand members consist entirely of known terms, except when new parts of the motions of perigee or node are under consideration. In certain cases it will be necessary to suppose u_0 , s_0 to be included in Σu_{μ} , Σs_{μ} ; see the remarks at the beginning of § 21. In the terms involving a_1 ; we may substitute $u_0 + \Sigma u_{\mu}$, Σz_{μ} for u, z, respectively; the method by which the calculations are to be actually performed will be given in Section (vii).

In the case of the first order terms, Σu_{μ} , Σz_{μ} are both zero, and the limitations of \otimes_1 are the same as those given in § 19.

Section (vi). Definitions of the Arbitrary Constants.

- 23. Of the six arbitrary constants of the solution, three have already been defined, namely, the three angular constants in the arguments D, l, F. A fourth, n, has also been defined as the observed mean motion. It remains to give an exact definition to a, the linear constant (which replaces the mass E+M), and to e, k, the constants of eccentricity and inclination.
- 24. Definition of a.—In elliptic motion, a is defined by means of the relation $n^2a^3=E+M$. For many purposes this is much the most convenient definition even when we proceed to determine the solar inequalities in the lunar theory. But in the theory developed here, the calculations may be materially shortened by a different definition of a.

The value of u_o is given by

$$u_0 \zeta^{-1} = a \Sigma_i a_i \zeta^{2i}, \quad i = 0, \pm 1, \pm 2, \dots$$

From the form of this it is evident that either a or a_0 may be chosen to be anything we wish. The most convenient definition is obtained by putting

70

so that

$$a = \left(\frac{E+M}{n^2}\right)^{\frac{1}{3}} f(m) \dots \dots (23)$$

where f(m) is a function of m which, in the ease of the Moon, is very nearly unity.

The definition must now be extended so as to eover the case when inequalities of any order are being eonsidered. The general form of all the inequalities which have arguments of the form ζ^{2i} (2*i* even), are given by (§ 14)

 $u\zeta^{-1} \!=\! \mathbf{a} \Sigma_i \! \left[a_i \! + \! \Sigma (\boldsymbol{\epsilon}^{p\prime} \boldsymbol{\epsilon}^{\prime p\prime} \boldsymbol{\eta}^{\circ\prime} \boldsymbol{\eta}^{\prime r} k^{q\prime} k^{\prime q\prime} \boldsymbol{\alpha}^{2s\prime})_i \mathbf{e}^{2p\prime} e^{\prime 2p\prime} \mathbf{k}^{2q\prime} \boldsymbol{\alpha}^{2s\prime} \right] \! \zeta^{2i}$

where

$$i=0, \pm 1, \pm 2, \ldots; p', q', r', s'=0, 1, 2, \ldots$$
 (except $p'=q'=r'=s'=0$);

and Σ ()_i denotes the sum of all such terms for the values of p', q', r', s', given. The eoefficient of ζ^0 in $u\zeta^{-1}$, by means of which a is to be defined, is therefore, since $a_o = 1$,

$$\begin{split} & \mathbf{a} \big[\mathbf{I} + \boldsymbol{\Sigma} (\boldsymbol{\epsilon}^{p'} \boldsymbol{\epsilon}'^{p'} \boldsymbol{\eta}'' \boldsymbol{\eta}'' \boldsymbol{\eta}'' k'^{q'} k'^{q'} \boldsymbol{\alpha}^{2s'})_0 \mathbf{e}^{2p'} e'^{2r'} \mathbf{k}^{2q'} \boldsymbol{\alpha}^{2s'} \big], \\ &= & \mathbf{a} (\mathbf{I} + \boldsymbol{\nu}), \quad \text{suppose,} \end{split}$$

so that ν is a small quantity of the second order at least.

There are two practical methods of defining a, each of which has its use according to the equations we employ.

One of these is to so define a that every term in ν is zero, and therefore that the coefficient of ζ^0 is represented by a at every stage of the approximations. This definition requires the determination of some additional terms to a whenever we are finding inequalities of the form ζ^{2i} . If we are using the homogeneous equations, this is undoubtedly the best definition, for then the determination of the additional terms in a can be left till the end of the work, and as a only appears in the parallax and not in the longitude and latitude, a very great degree of accuracy in its value is not required. In using the equations (3), (4), however, it would cause inconvenience as we should then have to find a further approximation to a at each step. As the latter equations are those mainly used here, we shall adopt another definition better adapted to the calculations.

This second definition (which we shall use below) is to give to a the meaning which it receives from the intermediate orbit only and to retain it throughout. Thus a is defined by the equation (23) making $a\{(E+M)/n^2\}^{-1}$

a numerical constant which never alters. The coefficients ν are now no longer zero, but are definite functions of e^2 , e'^2 , k^2 , a^2 , being determined along with the other coefficients of ξ^{2i} in the ordinary way. This definition is necessary because of the want of homogeneity of the equations (3), (4).* In finding the parallax from the value of u, all that will be necessary will be to find a/r and then to multiply all the terms by a numerical quantity (which approaches unity very closely) in order to obtain $[(E+M)/n^2]^{\frac{1}{2}}/r$ —the quantity usually obtained by lunar theorists.

Hence, the linear constant a is defined to be the coefficient of ζ^0 in $u_0\zeta^{-1}$, where $u_0\zeta^{-1}$ represents the intermediate orbit or variation curve only. Its value is given in Chap. II., and it retains this value throughout the whole of the approximations.

25. Definition of e. The first of equations (13) for the determination of the inequalities depending on the first power of e is, since A=0,

$$\zeta^{-1}(D+m)^2u_e + Mu_e\zeta^{-1} + Ns_e\zeta = 0$$

the solution of which is obtained by assuming

$$u_{\mathbf{e}}\zeta^{-1} = \operatorname{ae}\Sigma_{i}(\epsilon_{i}\zeta^{2i+c} + \epsilon'_{i}\zeta^{2i-c}), \quad i = 0, \pm 1, \pm 2, \dots$$

When the substitution is made, and the coefficients of the various powers of $\zeta^{2i\pm c}$ equated to zero, we obtain a series of equations of condition for the determination of the unknowns ϵ_i , ϵ'_i , e, which are homogeneous and of the first degree with respect to ϵ_i , ϵ'_i . The determination of e is made by considering the necessary relation which must exist between these equations; it is actually found by a different method (see § 28 (b)), and we suppose it known. One of the ϵ_i , ϵ'_i , is arbitrary. The values of ϵ_i , ϵ'_i may all be made definite by taking e as the arbitrary constant and putting

$$\epsilon_0 - \epsilon'_0 = 1$$
.

^{*} This is the definition intended in the remarks on p. 343 of the *Investigations*. A want of clearness in the statement of the definition in that paper has caused a misapprehension of its meaning. Mr. P. H. Cowell in his paper "On the Inclinational Terms" (Amer. Jour. Math. vol. xviii.) uses the homogeneous equations for the determination of the coefficients $(kk')_b$, and naturally finds it more convenient to put $(kk')_0 = 0$. He, however, does not find the addition to the value of a (there called a_0); this requires a reference to one of the equations containing κ . The definition is, I hope, made quite clear in § 24 above.

The coefficients of ζ^c , ζ^{-c} in $u\zeta^{-1}$ are $ae\epsilon_0$, $ae\epsilon_0'$, respectively. Since, by equations (9),

 $u\zeta^{-1} = \rho \cos(V - nt - \epsilon) + \iota \rho \sin(V - nt - \epsilon),$

the coefficient of a sin l in ρ sin $(\mathit{V}\!-\!\mathit{nt}\!-\!\epsilon)$ will be *

$$e(\epsilon_0 - \epsilon_0') = e$$

by the use of the assumed relation. The value of e thus defined is very nearly twice the constant of eccentricity used by Delaunay.

The general form of all the terms in $u\zeta^{-1}$, which involve ζ^{c} , ζ^{-c} , is (§ 14),

$$\begin{split} \operatorname{ae} \big[\mathbf{\Sigma}_{p',\;q',\;r',\;s'} \big\{ (\boldsymbol{\epsilon}^{1+p'} \boldsymbol{\epsilon}'^{p'} \boldsymbol{\eta}'^{r'} k^{q'} k'^{q'} \boldsymbol{\alpha}^{2s'})_0 \zeta^{\mathbf{c}} \\ &+ (\boldsymbol{\epsilon}^{p'} \boldsymbol{\epsilon}'^{1+p'} \boldsymbol{\eta}'^{r} \mu'^{r'} k^{q'} k'^{q'} \boldsymbol{\alpha}^{2s'})_0 \zeta^{-\mathbf{c}} \big\} \, \mathrm{e}^{2p'} e'^{2r'} \mathbf{k}^{2q'} \boldsymbol{\alpha}^{2s'} \big]. \end{split}$$

The definition of e must be extended so as to cover all these terms. It has been found most convenient to define it to be such that the coefficients of ζ^c and ζ^{-c} in the above expression are equal, except when p'=q'=r'=s'=0, when we have already defined it by making their difference unity. Denoting, for a moment, each of these equal coefficients by β , so that the terms containing ζ^c , ζ^{-c} in $u\zeta^{-1}$ are given by

$$ae(\epsilon_0 \zeta^c + \epsilon_0 \zeta^{-c}) + ae\beta(\zeta^c + \zeta^{-c}),$$

it is evident that the coefficient of a sin l in ρ sin $(V-nt-\epsilon)$ will be $e(\epsilon_0-\epsilon_0')$ = e.

Hence the constant of eccentricity e is defined to be the coefficient of a sin l in the final expression of ρ sin $(V-nt-\epsilon)$ as a sum of periodic terms, where $V-nt-\epsilon$ is the difference of the true and mean longitudes and ρ is the projection of the Moon's radius vector on the plane of reference.

26. Definition of k. The second of equations (13) for the determination of z_k is

$$D^2z_k - 2Mz_k = 0$$

in which we substitute

$$z_{\mathbf{k}} \iota = \operatorname{ak} \Sigma_{i} (k_{i} \zeta^{2i+g} + k'_{i} \zeta^{2i-g})$$

where $k'_i = -k_{-i}$.

^{*} This definition, for the terms with characteristic e, is the same as that which I adopted in "The Elliptic Inequalities" (Amer. Jour. Math. vol. xv. p. 261); e is there called Y_6 .

The constant k is now defined to be such that

$$k_0 = -k'_0 = 1$$
,

so that 2k is the coefficient of a sin F in the expression of z as a sum of periodic terms. The constant k differs little from Delaunay's constant y.

The general form of all inequalities containing only $\zeta^{\pm g}$ in $z\iota$ is

$$\mathrm{ak} \mathbf{\Sigma}_{p',\,q',\,r',\,s'} (\boldsymbol{\epsilon}^{p'} \boldsymbol{\epsilon}'^{p'} \boldsymbol{\eta}' \boldsymbol{\eta}'^{r'} k^{1+q'} k'^{q'} \boldsymbol{\alpha}^{2s'})_0 \mathrm{e}^{2p'} e'^{2r} \, \mathrm{k}^{2q'} \boldsymbol{\alpha}^{2s'} (\boldsymbol{\zeta}^{\mathsf{g}} - \boldsymbol{\zeta}^{-\mathsf{g}}),$$

and the definition of k must be extended so as to cover all these terms. We now define it to be such that

$$(\epsilon^{p'}\epsilon'^{p'}\eta''\eta''k^{1+q'}k'^{q'}\alpha^{2s'})_0 = 0,$$

for all values of p', q', r', s', except for p'=q'=r'=s'=0, when we have already put ()₀ equal to unity. It is to be remembered that if we interchange the accents and the sign of i, the coefficient merely changes sign; hence the coefficient corresponding to that just written down is also zero.

Hence, the constant of latitude k is defined to be the coefficient of $2a \sin F$ in the expression of z as a sum of periodic terms.

Section (vii).—Solution of the Equations of Condition. Motions of the Perigee and Node.

It will here be necessary to divide up the subject according as we are treating the equation (17) for u, the equation (18) for z, the homogeneous equations (20), (21) for u, or the homogeneous equation (22) for z.

27. The Equation (17) for u. The general type of equation for the terms of characteristic λ in u is

$$\zeta^{-1}(D+\mathbf{m})^2 u_{\lambda} + M u_{\lambda} \zeta^{-1} + N s_{\lambda} \zeta = \mathbf{a} \lambda \Lambda \quad \dots \qquad (24)$$

where it is to be remembered that M, N are known even-power series in ζ with numerical coefficients (equations (14)) and A contains the known terms with characteristic λ arising from the right-hand member. In only one case do the latter terms contain an unknown quantity; this case, which involves the determination of a part of the motion of the perigee, will be treated in \S 28 (b).

ROYAL ASTRON. Soc., Vol. LIII.

Of the terms with characteristic λ , suppose that we require to know those in $u\zeta^{-1}$ which involve $\zeta^{2i\pm\tau}$, where τ is one of the values of

$$\pm pc \pm rm \pm 2qg$$
,

the right-hand member containing such terms. Let, therefore, these terms in A be denoted by

$$A = \sum_{i} (A_{i} \zeta^{2i+\tau} + A'_{i} \zeta^{2i-\tau}).$$

We substitute

$$u_{\lambda} \zeta^{-1} = a \lambda \sum_{i} (\lambda_{i} \zeta^{2i+\tau} + \lambda'_{i} \zeta^{2i-\tau}). \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$
 (25)

where λ_i , λ'_i are the unknown coefficients to be found, and equate to zero the coefficients of $\zeta^{2i+\tau}$, $\zeta^{-2i-\tau}$. The result is

$$(2i + \tau + 1 + m)^{2}\lambda_{i} + \sum_{j} M_{j}\lambda_{i-j} + \sum_{j} N_{j}\lambda'_{j-i} = A_{i}$$

$$(2i + \tau - 1 - m)^{2}\lambda'_{-i} + \sum_{j} M_{j}\lambda'_{-i-j} + \sum_{j} N_{j}\lambda_{j+i} = A'_{-i}$$
... (26)

where $j=0, \pm 1, \pm 2, \ldots$ and 2i either $=0, \pm 2, \pm 4, \ldots$ or $=\pm 1, \pm 3, \pm 5, \ldots$ Since τ multiplies λ_i and λ'_{-i} it is evident that the complete values of c, g on the left may be replaced by their values c_0 , g_0 which are functions of m only.

The M_i , N_i have quickly decreasing values for increasing values of i (see Chapter II.) and, in general, the same remark applies to A_i , A'_{-i} , λ_i , λ'_{-i} . The equations may thus be solved by continued approximation. The unknown terms of lowest order in the equations (26) are

$$[(2i+ au+1+m)^2+M_0]\lambda_i+N_0\lambda'_{-i}, \ N_0\lambda_i+[(2i+ au-1-m)^2+M_0]\lambda'_{-i},$$

respectively. The equations (26) are therefore those of principal importance in finding λ_i , λ'_{-i} .

When we solve them as two simultaneous equations to find λ_i , λ'_{-i} , the common divisor is

$$[(2i+\tau+1+{\rm m})^2+M_0][(2i+\tau-1-{\rm m})^2+M_0]-N_0^2\;;$$

and, by the results contained in Part III. of the *Investigations*, it will be seen that this is very nearly equal to

$$(2i+\tau)^2[(2i+\tau)^2-c_0^2]$$
 (27)

If we had eliminated all the other unknowns from the equations (26), this expression would have been a factor of the divisor, the other factor being very nearly unity. In considering the solution it is then only necessary to treat the cases where the expression (27) becomes small.

- 28. There are four special cases to consider—namely, the eases when either factor of (27) is zero or small. We recall (\S 14) that when inequalities involving odd powers of α are under consideration, 2i is an odd positive or negative integer. It is unnecessary to prove many of the statements made below; their truth, if not evident, can easily be demonstrated.
- (a) The case $2i+\tau=0$. Here we must have $\tau=0$, i=0, owing to the incommensurability of c, g, in, 1. It is a question of determining coefficients of ζ^{2i} ; there are no coefficients λ'_i and the two equations coalesce into one which is of principal importance in determining λ_0 .
- (b) The case $2i+\tau=\pm c_0$. Motion of the Perigee. Here $i=0, \tau=c_0$; $\tau=-e_0$ is the same case as $\tau=c_0$ as we consider ζ^c , ζ^{-c} together. In this ease Λ contains an unknown quantity—namely, the part of the motion of the perigee which has the characteristic λ/e , say, $c_{\lambda/e}$, and it will be found possible to put

$$A_i = B_i + c_{\lambda/e}b_i$$
, $A'_i = B'_i + c_{\lambda'e}b'_i$

where B_i , b_i , B'_i , b'_i are entirely known. It will be found also that b_i , b'_i are always the same whatever λ may be.

Substitute these values for A_i , A'_{-i} in (26). Multiply the first equation by ϵ_i , the second by ϵ'_{-i} , and take the sum for all values of i. Since $\tau=c_0$, we find

$$\begin{split} \Sigma_{i} & \left[(2i + \mathbf{c}_{0} + \mathbf{I} + \mathbf{m})^{2} \lambda_{i} \boldsymbol{\epsilon}_{i} + (2i + \mathbf{c}_{0} - \mathbf{I} - \mathbf{m})^{2} \lambda'_{-i} \boldsymbol{\epsilon}'_{-i} \right] \\ & + \Sigma_{i} \Sigma_{j} M_{j} (\lambda_{i-j} \boldsymbol{\epsilon}_{i} + \lambda'_{-i-j} \boldsymbol{\epsilon}'_{-i}) + \Sigma_{i} \Sigma_{j} N_{j} (\lambda'_{j-i} \boldsymbol{\epsilon}_{i} + \lambda_{j+i} \boldsymbol{\epsilon}'_{-i}) \\ & = \Sigma_{i} \left[B_{i} \boldsymbol{\epsilon}_{i} + B'_{-i} \boldsymbol{\epsilon}'_{-i} + \mathbf{c}_{\lambda/e} (b_{i} \boldsymbol{\epsilon}_{i} + b'_{-i} \boldsymbol{\epsilon}'_{-i}) \right] \quad \dots \quad \dots \quad (28) \end{split}$$

But for the terms with characteristic e, we have

$$\begin{split} &(2\boldsymbol{i}+\mathbf{c}_0+\mathbf{I}+\mathbf{m})^2\boldsymbol{\epsilon}_i+\boldsymbol{\Sigma}_j\boldsymbol{M}_j\boldsymbol{\epsilon}_{i-j}+\boldsymbol{\Sigma}_j\boldsymbol{N}_j\boldsymbol{\epsilon}'_{j-i}\!=\!\mathbf{0},\\ &(2\boldsymbol{i}+\mathbf{c}_0-\mathbf{I}-\mathbf{m})\boldsymbol{\epsilon}'_{-i}+\boldsymbol{\Sigma}_j\boldsymbol{M}_j\boldsymbol{\epsilon}'_{-i-j}+\boldsymbol{\Sigma}_j\boldsymbol{N}_j\boldsymbol{\epsilon}_{j+i}\!=\!\mathbf{0}. \end{split}$$

Substituting these in the previous equation, it is easily seen * that the left-hand member vanishes and therefore the right-hand member of (28) equated to zero determines $e_{\lambda/e}$. (See *Investigations*, p. 336).

^{*} For we have $\Sigma_i \Sigma_j M_i \lambda_{i-j} \epsilon_i = \Sigma_i \Sigma_j M_{-j} \lambda_i \epsilon_{i-j}$ and $M_{-j} = M_j$, etc.

When the value of this quantity has been found, the equations (26) may be solved by continued approximation, all the λ_i , λ'_i being expressed in terms of λ_0 , λ'_0 . One of the two equations for λ_0 , λ'_0 can then be deduced from the other. An arbitrary relation connects the λ_i , λ'_i . We have already (§ 25) settled this relation to be such that $\lambda_0 = \lambda'_0$. The determination of a new part of the motion of the perigee thus goes with a more accurate definition of the constant of eccentricity.

The manner in which c_0 may be best obtained is fully discussed by Dr. Hill in his paper "On the Part of the Motion of the Lunar Perigee, &c." (Acta Math. vol. viii.). Its value is there found to fifteen places of decimals. The parts of c which have the characteristics e^2 , ℓ'^2 , k^2 , α^2 properly belong to Chapter V. ("Inequalities of the Third Order") of this memoir. The calculations, however, have been advanced in this particular direction so that c_{e^2} , $c_{e^{2}}$, c_{k^2} might be obtained; they will be found in the appendix to Chapter IV.

of long period compared with the lunar month. A troublesome defect of the method arises here. The divisor (27) contains the square of $2i+\tau$, while the corresponding coefficients λ_i , λ'_{-i} are in general of the same order of magnitude as $A_i/(2i+\tau)$. The reason of this is easily seen on solving the equations: one of them, in fact, generally differs from being deducible from the other by a quantity which is of the order of magnitude $2i+\tau$. This is illustrated in a striking manner by the long-period inequality whose argument is 2F-2l (which is one of the most troublesome in any method). Here $2i+\tau=2g_0-2c_0=+\cdot0272$, nearly, and therefore $(2i+\tau)^2=+\cdot00074$, while the corresponding numerical coefficients are of the order of magnitude unity.

The difficulty in all these cases is best avoided by computing the homogeneous equation (21) for the particular value of $2i+\tau$, and combining it with one of the equations (26). In (21) the terms divided by $(2i+\tau)^2$ have the factor m^2 , and therefore with the same degree of accuracy in the known parts of the equation we are able to obtain λ_i , λ'_{-i} more accurately than if we simply used the two equations (26).

(d) The case $2i+\tau\pm c_o$ small compared with unity. The numerous short-period inequalities the mean motions of whose arguments approximate to that of the principal elliptic term; e.g. the Evection and the Parallactic Inequality. The method is not in defect here, since the divisor is of the same numerical

magnitude as that arising in any other method. It will be noticed that the divisors are smaller according as the periods approach more nearly to that of the principal elliptic term and not to the lunar mean sidereal or synodic periods.

- 29. When the pair of equations for λ_i , λ'_{-i} possess a small divisor, the approximations proceed slowly. In some of these cases it is advisable to save labour by finding $\lambda_{i\pm 1}$, $\lambda'_{i\pm 1}$, in terms of λ_i , λ'_{-i} and the known quantities, from the equations with suffixes $\pm i\pm 1$, and to substitute the results in the equations with suffix i before solving the latter. In all cases where the difficulty occurred, it has been avoided by this device.
- 30. The Equation (18) for z. The course of the argument is very similar to that in $\S\S$ 27, 28, and therefore the results will be given briefly.

The general type of equation for the terms with characteristic λ in z is, by the equation (18),

$$D^2 z_{\lambda} - 2M z_{\lambda} = a \lambda A \iota \quad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (29)$$

where A represents the known terms. For the terms which involve $\xi^{2i\pm\tau}$, we find

and substitute

since in z we always have $\lambda'_{-i} = -\lambda_i$. The equations of condition are

$$(2i+\tau)^2\lambda_i - 2\Sigma_i M_i \lambda_{i-j} = A_i \qquad \dots \qquad \dots \qquad \dots \qquad (32)$$

where $j=0, \pm 1, \pm 2, \ldots$ and 2i either $=0, \pm 2, \pm 4, \ldots$ or $=\pm 1, \pm 3, \pm 5 \ldots$

The equations (32) are solved by continued approximation—that written down being of principal importance in finding λ_i . The eoefficient of λ_i is

$$(2i+\tau)^2-2M_0$$

which, if we had eliminated all the other unknowns, would have been

$$(2i+\tau)^2-g_0^2$$
 (33)

multiplied by a numerical factor which is nearly unity.

31. There are only two cases to consider, namely, those in which $2i + \tau \pm g_o$ is zero or small compared with unity. Hence no long-period inequalities can

give rise directly to large eoefficients in z; thus the eases (a), (c) of \S 28 do not arise; the eases corresponding to (b), (d) are those numbered (b'), (d') below.

(b') The case $2i + \tau = \pm g_0$. Motion of the Node. Here i = 0, $\tau = \pm g_0$, and A contains an unknown part of the motion of the node of the form $g_{\lambda/k}$. We find

$$A_i = B_i + g_{\lambda,k}b_i$$

where B_i , b_i are entirely known. Substituting for A_i in (32), multiplying the equation by k_i and summing for all values of i, we obtain

$$\Sigma_{i}(2i+g_{0})^{2}\lambda_{i}k_{i}-2\Sigma_{i}\Sigma_{j}M_{j}\lambda_{i-j}k_{i}=\Sigma_{i}B_{i}k_{i}+g_{\lambda'k}\Sigma_{i}b_{i}k_{i}.$$

But for the terms with characteristic k we have

$$(2i+g_0)^2k_i-2\sum_i M_i k_{i-i}=0.$$

On substituting this in the previous equation, the left-hand member vanishes and we find

$$\mathbf{g}_{\lambda/\mathbf{k}} = -(\mathbf{\Sigma}_i B_i k_i) \div (\mathbf{\Sigma}_i b_i k_i) \qquad \dots \qquad \dots$$

When this has been ealculated, the equations may be solved by continued approximation. The existence of the relation (34) implies the arbitrariness of one of the λ_i : this has been defined to be such that $\lambda_0 = 0$ (§ 26).

The determination of g_0 has been made by Adams (M. N. vol. xxxviii., Coll. Works, vol. i.) and later by Mr. P. H. Cowell ($Amer.\ Jour.\ Math.\ vol.\ xviii.$) where full explanations of the method used will be found. The advance numerical results for g_{e^2} , $g_{e^{i^2}}$, g_{k^2} , are given in the Appendix to Chap. IV. below, g_{k^2} having been found by Mr. Cowell in the paper just referred to.*

^{*} Mr. Cowell objects to the above (which was given in a slightly different form in the *Investigations*) as a practical method, on account of the supposed length of the calculations. He, however, uses equation (8) to find g_{k^2} and the accompanying coefficients $(k^2k')_i$, while the above method contemplates the use of the equation (4). In the latter, the coefficients A_i or B_i , b_i are determined just as in any other set of inequalities; the only labour that remains in order to find $g_{\lambda/k}$ is the few minutes' work necessary to calculate the equation (34) above. The answer is, therefore, that the homogeneous equation (8), or the equation (4) should be used to calculate both the coefficients λ_i and $g_{\lambda/k}$, not one for the coefficients and the other for $g_{\lambda/k}$.

- (d') The case $2i+\tau\pm g_0$ small compared with unity. The inequalities whose periods are nearly equal to that of the principal term in latitude. The remarks made in § 28 (d) apply also here with one or two evident changes; they need not, therefore, be repeated.
- 32. The Homogeneous Equations (6), (7) for u.—Suppose that it be required to determine the terms in $u\zeta^{-1}$ with characteristic λ and arguments $2i\pm\tau$, where τ is one of the values of $\pm pc\pm rm\pm 2qg$, those with lower characteristics having been found. It will be necessary here to slightly alter the notation of the last paragraphs by specifying the whole of the argument as well as the characteristic in the notation.

Let the particular terms in $u_{\lambda}\zeta^{-1}$ which have the arguments $2i\pm\tau$ be denoted by

The coefficients $\lambda_{\tau,i}$, $\lambda_{-\tau,i}$ are the unknowns, and are the same quantities as those previously denoted by λ_i , λ'_i .

The equations being of the second degree with respect to u, s, z, we must consider how terms with characteristic λ and arguments $2i \pm \tau$ arise in such expressions as $D^2(us)$, u^2 , &c. The required terms will be made up of terms with characteristic μ , arguments $\pm (2i + \sigma)$, combined with terms with characteristic ν and arguments $\pm (2i + \tau - \sigma)$, where

$$\mu\nu = \lambda$$
.

In conformity with the notation for terms with characteristic λ , let these terms be expressed by

$$u_{\mu} \zeta^{-1} = a \mu \Sigma_{\sigma, i} (\mu_{\sigma, i} \xi^{2i + \sigma} + \mu_{-\sigma, i} \zeta^{2i - \sigma})$$

$$u_{\nu} \zeta^{-1} = a \nu \Sigma_{\sigma, i} (\nu_{\tau - \sigma, i} \xi^{2i + \tau - \sigma} + \nu_{\sigma - \tau, i} \xi^{2i - \tau + \sigma})$$

$$\dots$$

$$\dots$$

$$\dots$$

$$\dots$$

$$\dots$$

$$\dots$$

It is evident that these may be made to include the terms (35) by putting $\mu=\lambda$, $\sigma=\tau$ in the first, or $\nu=\lambda$, $\sigma=0$ in the second.

To obtain the corresponding terms in s, we put $1/\zeta$ for ζ . As i receives negative as well as positive values, these may be written

$$s_{\mu} \zeta = a \mu \sum_{\sigma, i} (\mu_{-\sigma, -i} \zeta^{2i + \sigma} + \mu_{\sigma, -i} \zeta^{2i - \sigma}), \\ s_{\nu} \zeta = a \nu \sum_{\sigma, i} (\nu_{\sigma - \tau, -i} \zeta^{2i + \tau - \sigma} + \nu_{\tau - \sigma, -i} \zeta^{2i - \tau + \sigma}), \end{cases}$$
 ... (36')

Whence, for all terms with characteristic λ and arguments $2j+\tau$,

$$us = a^{2} \lambda \Sigma_{\sigma, j, i} \mu_{\sigma, i} \nu_{\sigma - \tau, i - j} \zeta^{2j + \tau},$$

$$D(u\zeta^{-1}) \cdot D(s\zeta) = a^{2} \lambda \Sigma_{\sigma, j, i} (2i + \sigma) (2j - 2i + \tau - \sigma) \mu_{\sigma, i} \nu_{\sigma - \tau, i - j} \zeta^{2j + \tau},$$

$$u^{2} = a^{2} \lambda \Sigma_{\sigma, j, i} \mu_{\sigma, i} \nu_{\tau - \sigma, j - i - 1} \zeta^{2j + \tau},$$

$$s^{2} = a^{2} \lambda \Sigma_{\sigma, j, i} \mu_{\sigma, i} \nu_{\tau - \tau, \sigma, -j - i - 1} \zeta^{2j + \tau}, \text{ etc.}$$
(37)

Since j, i were supposed to have the same range of values, it is evident that i may receive the values $0, \pm 1, \pm 2, \ldots$ while 2j receives either the values $0, \pm 2, \pm 4, \ldots$ or the values $\pm 1, \pm 3, \pm 5, \ldots$ according as λ contains even or odd powers of α . It is not necessary to specify summation with regard to μ or ν ; it may be understood in the summation with regard to σ . The above expressions are so adjusted that the same set of values for σ will be available in all of them.

In general, for characteristics of orders which give sensible terms in the lunar theory, the number of values of μ , ν , σ is quite small. [For example, if $\lambda = e^2 e'$, $\tau = 2c - m$, we have the following pairs of values for μ , σ respectively: 1,0; e, c; e', -m; e^2 , 2c; ee', c-m; $e^2 e'$, 2c-m. The corresponding values of ν are derived from the relation $\mu\nu = \lambda$.] When $\mu = 1$, $\sigma = 0$, the coefficient is $1_{0,i}$; it is that denoted previously by a_i .

The equations (6), (7) must now be put into the forms which will give results best adapted for numerical calculation when we substitute the expressions (37) in them.

The first process is the calculation of the terms involving z, \aleph_1 in the equations; they are evidently known terms, and the calculations consisting chiefly of multiplications, the latter do not call for special remark.

When these terms have been obtained the equation may be put into the form, after integrating (7),

$$L^{2}(us) - DuDs - 2m(uDs - sDu) + \frac{9}{4}m^{2}(u+s)^{2} = L$$
 ... (38)

$$uDs - sDu - 2mus + \frac{3}{2}m^2D^{-1}(u^2 - s^2) = \Lambda$$
 ... (39)

where L contains the known terms arising from z, \aleph_1 , in (6) and $D\Lambda$ the known terms arising from \aleph_1 in (7). No arbitrary constant is needed in Λ , for the coefficient of ζ^0 always vanishes in (7).

The forms of the terms which go to make up L, Λ show immediately that, for terms with characteristic λ , and arguments $2i+\tau$, we shall have

$$L = a^{2}\lambda \sum_{j} L_{j} (\zeta^{2j+\tau} + \zeta^{-2j-\tau}),$$

$$\Lambda = a^{2}\lambda \sum_{j} \Lambda_{j} (\zeta^{2j+\tau} + \zeta^{-2j-\tau}).$$

The left-hand members of (38), (39) are also of similar form; hence, it is only necessary to equate the coefficients of $\zeta^{2j+\tau}$ to zero in (38), (39) in order to find those of $\zeta^{2j+\tau}$ in $u\zeta^{-1}$.

Multiply (39) by 2m+1 and add to (38). The result may be written

$$D^{2}(us) - D(u\zeta^{-1}) \cdot D(s\zeta) - \left(1 + 2m - \frac{1}{2}m^{2}\right)us$$

$$+ \frac{9}{4}m^{2}u^{2} + \frac{3}{2}m^{2}(2m+1)D^{-1}(u^{2}) + \frac{9}{4}m^{2}s^{2} - \frac{3}{2}m^{2}(2m+1)D^{-1}(s^{2})$$

$$= L + (2m+1)\Lambda \qquad \dots \qquad (40)$$

an equation which replaces (38).

33. Substituting the results (37) in (40), (39), and equating the coefficients of $\zeta^{2j+\tau}$ to zero, we find

$$\begin{split} & \Sigma_{\sigma, i} \left[\left\{ (2j + \tau)^{2} - (2i + \sigma)(2j - 2i + \tau - \sigma) - \mathbf{I} - 2\mathbf{m} + \frac{\mathbf{I}}{2} \mathbf{m}^{2} \right\} \mu_{\sigma, i} \nu_{\sigma - \tau, i - j} \right. \\ & \quad + \left. \left(\frac{9}{4} \mathbf{m}^{2} + \frac{3}{2} \mathbf{m}^{2} \frac{2\mathbf{m} + \mathbf{I}}{2j + \tau} \right) \mu_{\sigma, i} \nu_{\tau - \sigma, j - i - 1} \right. \\ & \quad + \left. \left(\frac{9}{4} \mathbf{m}^{2} - \frac{3}{2} \mathbf{m}^{2} \frac{2\mathbf{m} + \mathbf{I}}{2j + \tau} \right) \mu_{-\sigma, i} \nu_{\sigma - \tau, -j - i - 1} \right] = L_{j} + (2\mathbf{m} + \mathbf{I}) \Lambda_{j} \qquad \dots \qquad \dots \qquad (41) \\ & \Sigma_{\sigma, i} \left[(2j - 4i + \tau - 2\sigma - 2\mathbf{m} - 2) \mu_{\sigma, i} \nu_{\sigma - \tau, i - j} \right. \\ & \quad + \left. \frac{3}{2} \frac{\mathbf{m}^{2}}{2j + \tau} \left\{ \mu_{\sigma, i} \nu_{\tau - \sigma, j - i - 1} - \mu_{-\sigma, i} \nu_{\sigma - \tau, -j - i - 1} \right\} \right] = \Lambda_{j} \qquad \dots \qquad \dots \qquad (42) \end{split}$$

The unknown quantities which are found by means of these equations are given by the values $\mu=\lambda$, $\sigma=\tau$, and $\mu=1$, $\sigma=0$. Since the a_i are known numerical quantities, the equations are linear with respect to the unknowns $\lambda_{\pm\tau,j}$ and they can be solved by the ordinary methods of continued approximation.

The equations written down are those of principal importance in finding $\lambda_{\tau,j}$, $\lambda_{-\tau,-j}$. The principal terms involving these two quantities are obtained by putting

$$\sigma = \tau$$
, $i = j$; whence $\mu_{\sigma, i} = \lambda_{\tau, j}$ and $\nu_{\sigma = \tau, i = j} = a_0 = 1$, $\sigma = 0$, $i = 0$; whence $\mu_{\sigma, i} = a_0 = 1$ and $\nu_{\sigma = \tau, i = j} = \lambda_{-\tau, -j}$.

ROYAL ASTRON. Soc., Vol. LIII.

The corresponding terms in the respective equations are

$$\begin{cases}
(2j+\tau)^2 - 1 - 2m + \frac{1}{2}m^2 \\ (\lambda_{\tau,j} + \lambda_{-\tau,-j}), \\
- (2j+\tau)(\lambda_{\tau,j} - \lambda_{-\tau,-j}) - (2+2m)(\lambda_{j,j} + \lambda_{-\tau,-j}),
\end{cases} (43)$$

The method of solution of the simultaneous equations is therefore evident. We find the sum of the two unknowns from the first equation, and thence, substituting, their difference from the second equation.

The greater part of the labour of calculation consists in the computation of the first term of each equation, owing to the fact that the coefficients of $\mu_{\sigma,i}\nu_{\sigma-\tau,i-j}$ are different for different values of i,j. The coefficient in question in equation (41) is best written

$$\left(\tau^{2}-\sigma\tau+\sigma^{2}-1-2m+\frac{1}{2}m^{2}\right)+\left(4j^{2}-4ij+4i^{2}\right)+\left(4j-2i\right)\tau+\left(4i-2j\right)\sigma.$$

The first term of this remains the same while σ remains the same and when $\tau-\sigma$ is put for σ ; the second term is always integral; the third and fourth terms require only multiplication by integers. Hence, after the first term has been obtained, no logarithmic multiplications are necessary to find the whole set of coefficients corresponding to the different values of i, j. The last remark applies also to the corresponding coefficient in (42). The rest of the numerical coefficients in both equations do not involve i.

34. We can deduce from (41), (42) forms in which the coefficient of $a_0\lambda_{\tau,j}$ is -1 and that of $a_0\lambda_{-\tau,-j}$ is 0, so that there will be no need to solve two simultaneous equations as the final step in each approximation to a pair of the unknowns. The details of the algebraical steps are sufficiently simple, and I merely give an outline.*

The expressions (43) show that if we multiply (41), (42) by

$$2m + 2 - 2j - \tau$$
, $(2j + \tau)^2 - 1 - 2m + \frac{1}{2}m^2$,

respectively, add and divide the resulting equation by

$$2(2j+\tau)\left\{(2j+\tau)^2-1-2m+\frac{1}{2}m^2\right\},$$

^{*} Further details will be found in Chap. XI. (ii) of my Treatise on the Lunar Theory, where the spirit of this method is applied to a particular case.

the coefficient of $\lambda_{-\tau,-j}$ will be zero, and that of $\lambda_{\tau,j}$ will be -1. The result is

$$\Sigma_{\sigma,i} \left[[2j + \tau, 2i + \sigma] \mu_{\sigma,i} \nu_{\sigma - \tau, i - j} + [2j + \tau,] \mu_{\sigma,i} \nu_{\tau - \sigma, -i - 1} + (2j + \tau,) \mu_{-\sigma,i} \nu_{\sigma - \tau, -j - i - 1} \right] = II_{\tau,j} \qquad \dots \qquad \dots \qquad 44)$$

where

$$[2j+\tau, 2i+\sigma] = -\frac{2i+\sigma}{2j+\tau} \frac{2(2j+\tau)^2 - 2 - 4m + m^2 + (2i+\sigma-2j-\tau)(2j+\tau-2-2m)}{2(2j+\tau)^2 - 2 - 4m + m^2}$$

$$[2j+\tau,] = -\frac{3}{4} m^2 \frac{(2j+\tau)^2 - 4(2j+\tau) - 2 - 2(2j+\tau+4)m - 9m^2}{(2j+\tau)^2 \{2(2j+\tau)^2 - 2 - 4m + m^2\}} \dots (45)$$

$$(2j+\tau,) = -\frac{3}{4} m^2 \frac{5(2j+\tau)^2 - 8(2j+\tau) + 2 - 2(10j+5\tau-4)m + 9m^2}{(2j+\tau)^2 \{2(2j+\tau)^2 - 2 - 4m + m^2\}}$$

$$H_{\tau,j} = \frac{(2m+2-2j-\tau)L_j + \left\{ (2j+\tau)^2 - 1 - 2m + \frac{1}{2}m^2 + (2m+1)(2m+2-2j-\tau) \right\}_j \Lambda_j}{(2j+\tau)\left\{ 2(2j+\tau)^2 - 2 - 4m + m^2 \right\}} \dots \dots \dots (46)$$

The equation for $\lambda_{-\tau,-j}$ is obtained from (44) by changing the signs of τ, j . 35. The case (c) of § 28 deserves mention in connection with equation (44). It will be noticed that whenever the square of $2i+\tau$ appears as a divisor, namely, in the second and third terms of (44) and in $\Lambda_j/(2j+\tau)$, (since Λ_j already contains it as a divisor), the terms have the factor m^2 . The use of equation (7) or (42) for the calculation of the coefficients of long-period inequalities has been noticed in § 28 (c). Thus (41), (42) and (44) are free from the objection remarked in that paragraph.

It may be also noticed that the expressions (43) show that when $2j+\tau$ is small, the corresponding loss of accuracy in the results arises in the difference of $\lambda_{\tau,j}$, $\lambda_{-\tau,-j}$ and not in their sum. This, translated to polar coordinates, is equivalent to saying that the loss of accuracy in the coefficients of long-period inequalities is chiefly felt in the longitude and but little in the parallax. In the case of short-period inequalities with small divisors the loss of accuracy falls on both coordinates. See also § 31.

With regard to the relative advantages and disadvantages of the equations (3), (4) and the homogeneous equations, from the point of view of actual calculation, it seems, from the experience gained in using both forms, that on the whole the advantage lies with the former. This is certainly true for inequalities of the second order and very probably for those of the third order

also. For inequalities of higher orders, the operations in the former are numerous but simple, and capable of continual verification; those in the latter are rather less numerous but more complicated, more productive of error, less easily verified at the various stages, and are much less easily arranged for a computer. The equations (3), (4) are now being used for the inequalities of the third order.

If the homogeneous equations be used, the expansions (41), (42) are preferable in actual calculation to (44). This remark does not, of course, apply to the inequalities of zero order, computed by Dr. Hill in the *Researches*.

36. The Homogeneous Equation (8) or (8') for z may be treated in a similar manner, and a formula similar to (41) or (42) obtained for it. The calculations and results are much simpler, first on account of the less complicated form of (8); and, secondly, on account of the fact that there is only one equation of principal importance for the determination of each unknown, instead of two equations for each pair of unknowns. As the equation (4) will probably be used for all inequalities, I shall not develope the equation (8).

The motions of the perigee and node are found by continued approximation along with the unknown coefficients. It is possible to eliminate all the latter and to get single equations for the parts of the motions of the perigee or node corresponding to those given in §§ 28, 31 above; but this will be no saving of time, as the equations are somewhat complicated. The formulæ necessary will therefore not be given here.

Section (viii). Calculation and Verification.

37. It has already been stated that one of the chief objects aimed at in the developments given above was the reduction of the calculations to forms which made them as far as possible merely mechanical. This is the case with the right-hand members of (17), (18) or (17'), (18'). In the case of the former, $\frac{\kappa u_0 \zeta^{-1}}{a\rho_0^3}$, $\frac{\kappa}{a\rho_0^2}$, are calculated, once for all, from the values of u_0 , s_0 . At each stage of the approximations u_μ/u_0 is obtained from the value of u_μ by multiplication of $u_\mu \zeta^{-1}$ by $1/u_0 \zeta^{-1} = s_0 \zeta/\rho_0^2$, the last quantity being found by "special values." The remainder of the calculations of the right-hand members are then simple multiplications of ζ series. In the case of the equations (17'), (18') (which were used for the results of Chap. IV. and for some of

those which will be published in Chap. V.) P, \bar{P} , Q, . . . were calculated by the method of special values from those of u_0 , s_0 ; the remainder of the process is then as before.

38. The plan adopted for the multiplication of any two ζ-series, say

$$(\Sigma_i a_i \zeta^{2i+a})(\Sigma_i \beta_i \zeta^{2i+\beta}) = \Sigma_{i,j} a_{j-i} \beta_i \zeta^{2j+\beta}$$

consists in taking out the logarithms of the α_i and arranging them along a slip of paper in the order . . . α_2 , α_1 , α_0 , α_{-1} , α_{-2} , . . . ; the logarithms of the β_i are arranged along another slip in the order . . . β_{-2} , β_{-1} , β_0 , β_1 , β_2 . . . The two slips being placed over one another, the sums of all the logarithms for a given value of j are taken without moving the slips, and they are written down in a column. The number corresponding to each logarithm is then taken from the tables and the results added for each value of j. Thus to find the coefficient of $\zeta^{4+a+\beta}$ in the product, that is $\Sigma_i \alpha_{2-i} \beta_i$, the slips are placed so that α_2 falls under β_0 , then α_1 falls under β_1 , &c. The arrangement of this part of the sheet is then—

Values of		$a_{j-i}\beta_i$	
j i	\log	,	number
2			••
-2			• •
— 1	••		
0	**		k •
••	••		••
Sum, $j=2$			• •

The process can be thus arranged for a computer, and the mere copying of figures from one sheet to another is very rarely necessary.

The result of each multiplication of series is verified by adding the sums for all values of j. The sum should be equal to $(\Sigma_i \alpha_i)(\Sigma_i \beta_i)$.

39. The values of the A_i , A'_{-i} in equations (26), (32) are in general carried to the same number of places of decimals for each value of i. In the solution of the equations of condition, large divisors frequently occur for large values of i and the λ_i , λ'_i are obtained to one or two more places of decimals for large values of i. Thus it is in general possible to find D^2u_{λ} to the same degree of accuracy as the A_i , A'_i . Exception only occurs in the eases of some long and short period inequalities; when it occurs, the corresponding values of

 A_i , A'_i are taken to one or two more places of decimals or the homogeneous equation (7) is used, as explained in § 28 (c).

The object of taking the values of λ_i , λ'_i to more decimals for large values of i is to render the equation of verification more searching. For verification I use one of the homogeneous equations with $\zeta=1$; the calculation of it is never very long, and it appears to furnish a good test. See *Investigations*, p. 343.

40. In the following chapters I give in general two sets of numerical results: First, the values of the right-hand coefficients A_i , A'_i ; and, secondly, the values of λ_i , λ'_i . They are taken exactly as they stood in my manuscripts. Although many of them will not be more than two units wrong in the last place given, the number of the calculations prevents this being said of all. They are intended to be trustworthy as far as the last figure but one in each case. The sums of the numbers in each column are always given, so that any error of transcription or typography may be detected should it occur.

All calculations are made at least twice, separated by an interval of time. The general plan, when several hours a day were available, was to have two or three separate sets of calculations proceeding together. Each of these would be carried to a certain stage and, after the lapse of a day or two, they would be gone over again, the errors, if any, corrected, the results verified (whenever this was possible) and they would then be taken a stage further. In this way an error running through several pages of calculations was avoided.

Section (ix). Transformation to Polar Coordinates.

$$\rho \exp. (V - nt - \epsilon)\iota = u\xi^{-1},$$

$$\rho \exp. - (V - nt - \epsilon)\iota = s\xi,$$

$$\rho \tan \phi = s.$$

Hence

$$2\iota(V - nt - \epsilon) = \log u\zeta^{-1} - \log s\zeta,$$

$$\frac{\mathbf{I}}{r} = \frac{\mathbf{I}}{(us + z^2)^{\frac{1}{2}}}$$

$$\phi = \tan^{-1}\frac{\pi}{o}.$$

Let V_0 be the part of V corresponding to the values u_0 , s_0 of u, s and let

$$\begin{split} V - nt - \epsilon &= \mathbf{V}_0 + \mathbf{\Sigma} \mathbf{V}_{\mu}, \\ u &= u_0 + \mathbf{\Sigma} u_{\mu}, \\ s &= s_0 + \mathbf{\Sigma} s_{\mu}, \\ z &= \mathbf{\Sigma} z_{\mu}. \end{split}$$

Then

$$\begin{aligned} & 2\iota \mathbf{V}_0 \!\!=\!\! \log u_0 \zeta^{-1} \!\!-\!\! \log s_0 \zeta, \\ & 2\iota (\mathbf{V}_0^{-} \!+\! \mathbf{\Sigma} \mathbf{V}_{\mu}) \!\!=\!\! \log (u_0 + \!\mathbf{\Sigma} u_{\mu}) \zeta^{-1} \!\!-\!\! \log (s_0 + \!\mathbf{\Sigma} s_{\mu}) \zeta, \end{aligned}$$

and

$$2\iota \Sigma V_{\mu} = \log \left(\mathbf{I} + \frac{\Sigma u_{\mu}}{u_{0}} \right) - \log \left(\mathbf{I} + \frac{\Sigma s_{\mu}}{s_{0}} \right)$$

$$= \frac{\Sigma u_{\mu}}{u_{0}} - \frac{\Sigma s_{\mu}}{s_{0}} - \frac{\mathbf{I}}{2} \left(\frac{\Sigma u_{\mu}}{u_{0}} \right)^{2} + \frac{\mathbf{I}}{2} \left(\frac{\Sigma s}{s_{0}} \right)^{2} + \dots$$

$$(47)$$

Also

$$\tan V_0 = \frac{1}{\iota} \frac{u_0 \zeta^{-1} - s_0 \zeta}{u_0 \zeta^{-1} + s_0 \zeta} = \frac{\sum_i (a_i - a_{-i}) \sin 2iD}{\sum_i (a_i + a_{-i}) \cos 2iD} \qquad \dots \qquad \dots$$
(48)

The value of V_0 may be calculated by the method of special values from those of a_i . The various terms of the right-hand member of (47) will have been already found in the calculation of the inequalities. Whence by addition we obtain the true longitude V.

42. With the same substitutions, we have

$$\frac{a}{r} = \frac{a}{r_0} \left[\mathbf{I} + \frac{\sum u_{\mu}}{u_0} + \frac{\sum s_{\mu}}{s_0} + \frac{\sum u_{\mu}}{u_0} \cdot \frac{\sum s_{\mu}}{s_0} + \left(\frac{\sum z_{\mu}}{\rho_0} \right)^2 \right]^{-\frac{1}{2}} \dots \qquad \dots$$
 (49)

where

$$n^2a^3 = E + M$$
.

The right-hand member of this equation is then expanded. The various products will have been found, as before. All that remains to find a/r is to multiply the result by

$$\frac{a}{r_0} = \frac{a}{a} \cdot \frac{a}{\rho_0}$$
 (since $r_0 = \rho_0$),

which is found from Chap. II.

We may also use equation (5) of § 7 to find 1/r, the eonstant term being obtained by (49) or by the method contained in Part ii. of the *Investigations*.

43. Finally

$$\phi = \frac{z}{\rho} - \frac{1}{3} \left(\frac{z}{\rho}\right)^3 + \frac{1}{5} \left(\frac{z}{\rho}\right)^5 - \dots,$$

and

$$\frac{z}{\rho} = \frac{\sum z_{\mu}}{\rho_0} \left[1 + \frac{\sum u_{\mu}}{u_0} + \frac{\sum s_{\mu}}{s_0} + \frac{\sum u_{\mu}}{u_0} \cdot \frac{\sum s_{\mu}}{s_0} \right]^{-\frac{1}{2}} \qquad \dots \qquad \dots$$
 (50)

The expansions and multiplications will have all been performed, and thence ϕ may be easily found.

Hence the whole process of transforming to polar coordinates will be first, for the longitude, the addition of ecrtain known series and the calculation of V_0 ; secondly, for the parallax, the addition of known series and a multiplication of the whole by a/ρ_0 ; thirdly, for the latitude, the addition of known series.

CHAPTER H

TERMS OF ORDER ZERO.

Section (i). Values of
$$a_i$$
, a.

44. The coefficients of order zero have been obtained by Dr. Hill * to 15 places of decimals. They are given by the particular solution of equations (12) or (12') of § 18. This solution is expressed by

$$u_0 \zeta^{-1} = \mathbf{a} \Sigma_i a_i \zeta^{2i}$$
, where $a_0 = \mathbf{1}$.

The value of m = n'/(n-n') used is

$$m = + .08084 89338 08311 6.$$

^{* &}quot;Researches in the Lunar Theory," Amer. Jour. Math., vol. i. pp. 247-249. The coefficient denoted above by aa_i is denoted by a_i in Dr. Hill's paper.

Values of

<i>i</i> .	a_i .
6	+ .00000 00000 00004
5	+ '00000 00000 01107
4	+ '00000 00001 75268
3	+ '00000 00300 31632
2	+ .00000 58786 56578
I	+ '00151 57074 79563
0	+ 1
— 1	— ·008 6 9 57 46 9 61540
-2	+ '00000 01637 90486
-3	+ '00000 00024 60393
-4	+ '00000 00000 12284
-5	+ '00000 00000 00064
- 6	+ .00000 00000 00000
Sum	+ '99282 60356 45842

The relation between a and a where

$$n^2a^3 = E + M$$
,

is given by

$$\frac{a}{a}$$
 = + '99909 31419 75298.

This relation will not be required after the end of this Chapter until we come to the deduction of the lunar parallax and the expression of the coefficients containing $\alpha = a/a'$ in terms of a/a'.

45. From the results of the previous section we deduce the series for

$$M, N, P, Q, R, S, T, \frac{a}{u_0 \zeta^{-1}}, \frac{a}{\rho_0}, \frac{\kappa u_0 \zeta^{-1}}{a \rho_0^3}, \frac{\kappa}{a \rho_0^2}$$

See Chap. I., §§ 19, 20, 37. The series for \overline{P} , \overline{Q} , . . . are obtained from those for P, Q, . . . by putting $1/\zeta$ for ζ ; this is the same as putting -i for i in the suffixes of the coefficients.

ROYAL ASTRON. Soc., Vol. LIII.

 $M=\sum_{i}M_{i}\zeta^{2i}, \qquad N=\sum_{i}N_{i}\zeta^{2i}.$ Values of

i.	1	M_i .		1	V_i .	
5	+.00000	00000	5	+ .00000	00 0 09	0
4	+.00000	00056	5	+ .00000	00824	6
3	+.00000	06029	7	+ .00000	70129	7
2	+.00006	28883	4	+ '00054	79401	6
I	+.00630	84231	2	+ .03686	55171	8
0	+.58902	22856	4	+1.75707	88032	7
– r	+.00630	84231	2	+ '01078	63527	2
-2	+.00006	28883	4	+ .00001	25690	4
-3	+.00000	06029	7	+ .00000	00982	3
-4	+.00000	00056	5	+ .00000	00007	6
—5	+.00000	00000	5			
Sum	+ .60176	61259	0	+1.80529	83776	9

The series M is given by Dr. Hill in his paper just referred to. The series M, N are both given on p. 328 of the *Investigations*.

$$P = \sum P_i \zeta^{2i}$$
, $\overline{P} = \sum P_{-i} \zeta^{2i}$, $Q = \sum Q_i \zeta^{2i}$.*
Values of

		· wruch or	
i.	. P_{i} .	×	Q_i .
5	+ .00000	00005	+ '00000 00020
4	+ .00000	00465	+ '00000 01462
3	+ .00000	40164	+ '00001 04704
2	+ '00032	38766	+ '00066 73632
ı	+ .02280	40093	+ .03476 15314
0	+1.17126	77322	+1'17132 34260
- I	+ .01084	13484	- *00112 12092
-2	+ .00010	24640	+ '00000 31923
-3	+ .00000	09526	+ *00000 00327
-4	+ .00000	00092	+ .00000 00007
-5	+ .00000	10000	
Sum	+1.50264	49558	+1.20564 49557

^{*} The series \overline{Q} will not be required.

 $\begin{array}{ll} R = \sum R_i \zeta^{2i}, & S = \sum S_i \zeta^{2i}, & T = \sum T_i \zeta^{2i} \\ \overline{R} = \sum R_{-i} \zeta^{2i}, & \overline{S} = S & T = \sum T_{-i} \zeta^{2i} \\ & \text{Values of} \end{array}$

i.	R_i .		S_i .	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	T_i .	
5	+ .00000	00016	+ .00000	00004	+ .00000	00047
4	+ .00000	01268	+ .00000	00384	+ .00000	03170
3	+ .00000	93162	+ .00000	34249	+ .00001	96595
2	+ .00061	05520	+ .00058	51417	+ .00102	79688
I	+ .03299	09904	+ '02103	03831	+ '04494	46487
0	+1.17129	65655	+1.17171	87304	+1.14153	01076
I	+ .00906	65690	+ '02103	03831	- °002 89	67092
- 2	+ .00008	18396	+ .00028	51417	+ .00000	06964
-3	+ .00000	07394	+ .00000	34249	+ .00000	00136
-4	+ .00000	00066	+ .00000	00384	+ .00000	00006
-5	+ .00000	00001	+ .00000	00004		
Sum	+1.51435	67072	+1.51435	67074	+1.51432	67077

The series P, Q are given on p. 328 of the *Investigations*. The coefficient R_i of that memoir is here called R_{-i} . The coefficients Q_3 , Q_{-3} are corrected here, each of them having been diminished by one unit in the ninth place.

46. Values of the coefficients of ζ^{2i} in the expansions of

i.	$u_0\zeta^-$	1.		<u> </u>	<u>a</u> .	
5			+	.00000	00000	I
4			+	.00000	00012	2
3	00000	00156	+	.00000	01632	9
2	00000	35815	+	100002	29007	0
1	00121	57497	+	.00358	99818	9
0	+ '99997	36392	+	'99999	97077	7
— I	+ .00869	54035	+	.00328	99818	9
— 2	+ .00004	54483	+	100002	29007	0
-3	+ ,00000	06521	+	.00000	01632	9
-4	+ .00000	00056	+	.00000	00012	2
-5			+	,00000	00000	I
Sum	+1.00722	58019	+	1.00222	58019	9

Values of the coefficients of ζ^{2i} is	$_{ m in}$ the $_{ m c}$	expansions of
---	--------------------------	---------------

i.	$\frac{\kappa u_0 \zeta^{-1}}{a {\rho_0}^3}$.	$\frac{\kappa}{\mathrm{a}{\rho_0}^2}$.
5	+ .00000 00001 3	+ '00000 00000' 4
4	+ '00000 00144 3	+ .00000 00048 2
3	+ .00000 12028 3	+ .00000 02721 0
2	+ '00015 17769 1	+ .00006 87211 8
1	+ .01430 14901 8	+ '00841 09322 7
0 -	+1.17141 74324 9	+1.12144 29201 8
— 1	+ '00242 99016 5	+ '00841 09322 7
-2	+ '00001 62575 2	+ .00006 84211 8
-3	+ .00000 01111 8	+ '00000 05751 9
-4	+ .00000 00008 8	+ .00000 00048 2
-5	+ .00000 00000 I	+ '00000 00000 4
Sum	+1.18840 84972 1	+1.18840 84972 4

These four series will not be required until Chap. V., as the calculations of Chap. IV. were made with P, \overline{P} , Q; for a few of the inequalities of Chap. V. the series R, \overline{R} , S, T have been used.

CHAPTER III

TERMS OF THE FIRST ORDER.

47. The terms of the first order have been treated in Chap. I., § 19. The results contained in this chapter are classified in the following table:—

G			Quantities found here.		
Section.	Characteristic.	Arguments.	Coefficients.	Motions of Args.	
(i)	e	<i>2i</i> ±e	ϵ_i, ϵ'_i	c_0	
(ii)	e'	$_{2i\pm\mathrm{m}}$	$\eta_{i},\ {\eta'}_{i}$		
(iii)	α	$_{2}i_{_{1}}$	$(a)_{i_1}$	\$	
(iv)	k	$\pm (2i+g)$	$k_i, k'_{-i} (= -k_i)$	g_0	

where

$$i=0, \pm 1, \pm 2, \ldots, 2i_1, =\pm 1, \pm 3, \pm 5 \ldots$$

The formulæ furnished by equations (15), (16) of Chap. I. will be given in each case, although the results may have been otherwise obtained. References will be made to all previously published results.

48. The value of c₀, which is the part of c depending only on m, has been found by Dr. Hill * to 15 places of decimals. It is,

$$c_0 = +1.07158$$
 32774 16012.

The equation satisfied by c_0 and the terms with characteristic e is

$$\zeta^{-1}(D+m)^2u_e + Mu_e\zeta^{-1} + Ns_e\zeta = 0.$$

The solution is

$$u_{\mathbf{e}}\zeta^{-1} = \operatorname{ae}\Sigma_{i}(\epsilon_{i}\zeta^{2i+c} + \epsilon'_{i}\zeta^{2i-c}).$$

The equations of condition for the unknowns having been obtained by substituting the assumed solution in the differential equation, and equating the coefficients of the various powers of ζ to zero, we may solve them with the above value of c, so as to give ϵ_i , ϵ'_i in terms of ϵ_0 , ϵ'_0 .

Let

$$\epsilon_i = \mathbf{b}_i \epsilon_0 + \beta_i \epsilon'_0, \qquad \epsilon'_i = \mathbf{b}'_i \epsilon_0 + \beta'_i \epsilon'_0.$$
Values of

i.	b_i .	$oldsymbol{eta_i}.$
5		
4	+ .00000 00002	00000 00009
3	+ '00000 00843	00000 00708
2	+ '00001 47376	00000 85378
I	+ .00308 02927	— .00092 80067
0	+1	0
 1	+ .01999 88763	+ '20567 90112
-2	+ .00001 12202	+ '00007 34691
-3	- '00000 00193	00000 01734
-4	0000 00001	- '00000 00012
- 5		*
Sum	+1.02310 54925	+ '20481 56898

^{* &}quot;Motion of the Perigee, etc.," Acta Math. vol. viii. p. 35.

Values of

<i>i</i> .	\mathbf{b}_{i}' .	$oldsymbol{eta_i'}.$
5		- '00000 00002
4	- '00000 00029	- '00000 00212
3	00000 04039	00000 29218
2	- •00005 93876	00043 20782
1	 01054 68058	- °07779 5543°
0	•	+1
— 1	— ∙ 00108 65960	00019 29999
-2	+ .00000 01043	00000 08018
-3	+ .00000 00054	00000 00022
-4		- Market State Control of the Contro
- 5		
Sum	- .01169 30892	+ '92157 25684

The arbitrary constant e is defined (Chap. I., § 25) to be such that $\epsilon_0 - \epsilon_0' = 1$.

Either of the two remaining equations of condition (those of principal importance for finding ϵ_0 , ϵ'_0) then gives

$$\epsilon_0 + \epsilon'_0 = -.49679$$
 18022.

From these two equations we find ϵ_0 , ϵ'_0 , and thence, from the numbers just given, the values of ϵ_i , ϵ'_i .

Values of

i_{ullet}	ϵ_{i} .	ϵ_{i}' .
5		+ ,00000 00001
4	+ .00000 00002	+ .00000 00125
3	+ '00000 00742	+ .00000 50821
2	+ .00001 co972	+ .00030 84234
I	+ .00146 95307	+ .05556 82459
0	+ .52160 40989	- '74839 59011
— I	- ·14889 75297	- '00012 67065
-2	00005 20854	+ '00000 06713
-3	+ .00000 01220	+ .00000 00048
- 4	+ .00000 c0000	
- 5		,
Sum	+ '10413 43128	69264 31618

I obtained these results by the use of the homogeneous equations.* A different set of values for b_i , b'_i , β_i , β'_i will naturally arise if we use the equation at the beginning of this section. One slight error which occurred in the reduction of $b'_4\epsilon_0 + \beta'_4\epsilon_0$ to the final value of ϵ'_4 was discovered and corrected.

The short-period inequality with a small divisor is the "Evection"; the corresponding coefficients are ϵ_{-1} , ϵ'_{1} .

49. The equation is

$$\zeta^{-1}(D+\mathbf{m})^2 u_{e'} + M u_{e'} \zeta^{-1} + N s_{e'} \zeta = -\frac{\partial \Omega_1}{\partial s} \zeta^{-1}.$$

In the right-hand member we put $\otimes_1 = \omega_2$, z = 0, $u = u_0$, $s = s_0$, and neglect powers of e' above the first (Chap. I., § 19).

Hence, by Chap. I., Sect. (iii),

$$\begin{split} \frac{\partial \mathop{\otimes}_{1}}{\partial s} & \zeta^{-1} \!\! = \!\! \mathbf{m^{2}} \!\! \left[\underbrace{\frac{3}{2} \widetilde{\mathfrak{a}}_{2} s_{0} + \frac{1}{2} \mathfrak{b}_{2} u_{0}}_{\mathbf{2}} \right] \!\! \zeta^{-1} \\ & = \!\! \frac{3}{4} \!\! \mathbf{m^{2}} e' \! \left[(u_{0} \!\! \zeta^{-1} \! + \! 7 s_{0} \!\! \zeta \cdot \zeta^{-2}) \!\! \zeta^{\mathbf{m}} \! + \! (u_{0} \!\! \zeta^{-1} \! - \! s_{0} \!\! \zeta \cdot \zeta^{-2}) \!\! \zeta^{-\mathbf{m}} \right] \!\! . \end{split}$$

The solution is

$$u_{e'}\zeta^{-1} = ae'\Sigma_i(\eta_i\zeta^{2i+m} + \eta'_i\zeta^{2i-m}).$$

The equations of condition are formed and then solved by continued approximation.

Values of i. η_i' . η_i . 5 -.00000 00000 +.00000 00000 -.00000 00004 +.00000 59 4 00572 +.00000 03956 -.00000 76025 --.00000 +.00002 -- .00103 48418 +.00692 08210 -.09186 +.09869 93227 89451 **—**∙03636 42746 8 + '00448 82585 5 +.00000 17438 00 +.00000 00322 23 -.00000 00041 96 +.00000 00002 -- 5 +.00000 00000 Sum -·I2927 43232 +11019 05512

^{* &}quot;The Elliptic Inequalities in the Lunar Theory," Amer. Jour. Math. vol. xv. pp. 259-261.

The above method was used to calculate all these coefficients. The long period inequality with a small divisor is the "Annual Equation," having the coefficients η_0 , η'_0 . The method of § 29 was used in the approximations to these two coefficients.

The values of the corresponding terms in the true longitude have been given in a note in the *Monthly Notices*, vol. liv. p. 471.

Section (iii). Characteristic a=a/a'.

50. The equation is

$$\zeta^{-1}(D+\mathbf{m})^2u_a+Mu_a\zeta^{-1}+Ns_a\zeta=-\frac{\partial \, \otimes_1}{\partial s}\zeta^{-1}.$$

In the right-hand member we put $\omega_1 = \omega_3$, z = 0, $\ell' = 0$, $u = u_0$, $s = s_0$. Hence, by Chap. I., Sect. (iii),

$$\frac{\partial \Omega_1}{\partial s} \zeta^{-1} = \mathbf{a} \cdot \frac{3}{4} \mathbf{m}^2 \cdot \frac{1}{\mathbf{a}^2} \left[\frac{5}{2} (s_0 \zeta)^2 \zeta^{-3} + \frac{1}{2} (u_0 \zeta^{-1})^2 \zeta + (u_0 s_0) \zeta^{-1} \right].$$

The solution is

$$u_a \zeta^{-1} = \mathbf{a} \alpha \Sigma_i(\alpha)_i \zeta^{2i},$$

where

$$2i=\pm 1$$
, ± 3 , ± 5

Values of

2i,		(α) _i	•
9		+.00000	10000
7		+.00000	00072
5		+.00000	04839
3		00002	88448
1		06417	03547
- 1		+.17899	19628
-3		'00293	82096
- 5		00000	18325
- 7		00000	00029
- 9			
Sum	•••	+.11185	32095

These coefficients I found to seven places of decimals in a paper "On the Parallactic Inequalities in the Lunar Theory"* by the use of the homogeneous equations. They have been recalculated and extended to ten places by the above method; errors of one unit only in the sixth places of decimals in the values of $a_{-\frac{1}{2}}$, $a_{\frac{3}{2}}$ were detected. Dr. Hill in his paper "On the Periodic Solution, &c.,"† using my former values as a first approximation has also recalculated these terms to a high degree of accuracy by a totally different method.

The short-period inequality with a small divisor is the "Parallactic Inequality," having the coefficients a_1 , a_{-1} .

Section (iv). Characteristic k. Value of g₀.

51. The part of the value of g which depends on m only, namely g_0 , has been obtained by Professor J. C. Adams and Mr. P. H. Cowell (see the references in δ 31). The latter finds

$$g_0 = 1.08517 \quad 14265 \quad 58.$$

The slightly different result obtained by ADAMS is due to the use of a different value for m.

The equation giving go and the terms with characteristic k is

$$D^2z_k - 2Mz_k = 0.$$

The solution is

$$z_k \iota = \operatorname{ak} \Sigma_i k_i (\zeta^{2i+g} - \zeta^{-2i-g}).$$

The constant k is defined (Chap. I., § 26) to be such that

$$k_0 = 1$$
.

^{*} Amer. Jour. Math. vol. xiv. p. 157. A different notation is there used.

[†] Astron. Jour. vol. xv. pp. 137-143. Dr. Hill informs me that the large correction which he obtained to my value of the coefficient of the Parallactic Inequality n longitude, amounting to 5 units in the fifth place of decimals in the value of a_1-a_{-1} , was due to a slight error in reducing them to his form. As the resulting value was only used as a first approximation, his final results are, of course, correct.

Mr. Cowell finds the following values (loc. cit. p. 113).

Values of

i.	k_{i} .				
5	+ .00000	00000 01			
4	+ .00000	00001 75			
3	+ .00000	00299 82			
2	+ .00000	58673 61			
I	+ .00121	22192 28			
0	+1				
— I	03698	39313 94			
2	00004	65750 01			
-3	00000	01755 37			
-4	00000	00008 87			
-5	00000	00000 05			
Sum	+ '96448	74339 23			

I have verified these results by means of the homogeneous equation (7) with $\aleph_1=0$, by putting $\zeta=+1$, -1, successively, after the substitution of the values in the equation.

The short-period term with a small divisor is that having the numerical coefficient k_{-1} .

CHAPTER IV

TERMS OF THE SECOND ORDER.

Section (i). Formulæ.

52. The general type of the equation for u for terms with characteristic λ , and arguments $2i \pm \tau$, is, by Chap. I., § 20,

$$\zeta^{-1}(D+m)^2 u_{\lambda} + M u_{\lambda} \zeta^{-1} + N s_{\lambda} \zeta = a \lambda \Lambda \qquad \dots \qquad \dots \qquad \dots$$

$$A = \sum_{i} \left(A_i \zeta^{2i+\tau} + A'_i \zeta^{2i-\tau} \right) \text{ when } \tau \neq 0,$$

and $A = \sum_{i} A_{i} \, \xi^{2i} \text{ when } \tau = 0.$

where

Here, by Chap. I., equation (17'),

a\lambda = Part, char^e. \(\lambda\), in
$$\frac{1}{a} \left[-a \frac{\partial \, \otimes \, 1}{\partial s} \, \zeta^{-1} + \frac{3}{8} \, P \, (\Sigma u_{\mu} \, \zeta^{-1})^{2} + \frac{15}{8} \, Q \, (\Sigma s_{\mu} \, \zeta)^{2} + \frac{3}{4} \, P \, (\Sigma u_{\mu}) \, (\Sigma s_{\mu}) - \frac{3}{2} \, P \, (\Sigma z_{\mu})^{2} \right] \qquad \dots (2)$$

$$\Sigma u_{\mu} = u_{e} + u_{e'} + u_{a}, \qquad \Sigma z_{\mu} = z_{k}.$$

In all cases s is derived from u by putting $1/\zeta$ for ζ . The first term of (17') contributes nothing to the terms of the second order.

Also, by Chap. I., Sect. (iii), substituting for u, s, z and neglecting powers and products of u_{μ} , s_{μ} , z_{μ} , we have

where

 $\overline{\mathfrak{a}}_2$, \mathfrak{b}_2 take their values as far as e'^2 when multiplied by u_0 , s_0 ; $\overline{\mathfrak{a}}_2$, \mathfrak{b}_2 take their values as far as e' when multiplied by u_{μ} , s_{μ} ; $\overline{\mathfrak{a}}_3$, \mathfrak{c}_3 , $\overline{\mathfrak{c}}_3$ take their values as far as e' when multiplied by u_0 , s_0 ; $\overline{\mathfrak{a}}_3$, \mathfrak{c}_3 , $\overline{\mathfrak{c}}_3$ are unity when multiplied by u_{μ} , s_{μ} .

The solution is of the form

$$u_{\lambda} \zeta^{-1} = a \lambda \Sigma_{i} (\lambda_{i} \zeta^{2i+\tau} + \lambda'_{i} \zeta^{2i-\tau}), \text{ when } \tau \neq 0, \qquad \dots \qquad \dots \qquad \dots \qquad (4)$$

and

$$u_{\lambda} \zeta^{-1} = a \lambda \Sigma_i \lambda_i \zeta^{2i}$$
, when $\tau = 0$... (4')

The process consists in first finding the series for A in each case, and then, after the substitution of the solution in the differential equation, to form the equations of condition for the unknown coefficients. These are solved by continued approximation, there being one pair of equations of principal importance in finding each pair of coefficients λ_i , λ'_{-i} . The known values c_0 , g_0 of c, g, and the definitions of e, k given in Chap. III. are sufficient. The further definition of the linear constant (§ 24) occurs in sections (ii), (iv), (v), (viii) below.

53. The general type of the equation for z, for terms with characteristic λ and arguments $2i+\tau$, is, by Chap. I., § 20,

where

$$A = \sum_{i} A_{i} (\zeta^{2i+\tau} - \zeta^{-2i-\tau}).$$

Here, by Chap. I., equation (18'),

The first term of equation (18') contributes nothing to the terms of the second order.

Also, by Chap. I., Sect. (iii), substituting for u, s, z the values just given and neglecting powers and products of u_{μ} , s_{μ} , z_{μ} ,

where \mathfrak{b}_2 takes its value as far as e'.

The solution is

$$z_{\lambda} \iota = a \lambda \Sigma_{i} \lambda_{i} (\zeta^{2i+\tau} - \zeta^{-2i-\tau}) \qquad \dots \qquad \dots \qquad \dots \qquad (8)$$

The process is the same as before. There is only one equation of principal importance in finding any coefficient λ_i . The known values c_0 , g_0 of c, g and the definitions of the arbitrary constants given in Chap. III. are sufficient.

54. The following table gives the various classes of terms of the second order, with the sections in which they are considered below.

Section.	λ.	Arguments.	Type of Coefficients.
(ii)	e^2	2 <i>i</i> ±2c, 2 <i>i</i>	$(\epsilon^2), (\epsilon'^2), (\epsilon\epsilon')$
(iii)	ee'	$2i\pm(c+m)$, $2i\pm(c-m)$	$(\epsilon \eta), (\epsilon' \eta'), (\epsilon \eta'), (\epsilon' \eta)$
(iv)	e'^2	$2i\pm 2m$, $2i$	$(\eta^2),(\eta'^2),(\eta\eta')$
(v)	\mathbf{k}^2	2 <i>i</i> ±2g, 2 <i>i</i>	$(k^2), (k'^2), (kk')$
(vi)	ea	$_2i_1\pm c$	$(\epsilon a), (\epsilon' a)$
(vii)	e'a	$_2i_1\pm\mathrm{m}$	$(\eta a), (\eta' a)$
(viii)	$oldsymbol{a}^2$	2i	(a^2)
(ix)	ke	$\pm (2i+g+c), \pm (2i+g-c)$	$\pm(k\epsilon), \pm(k\epsilon')$
(x)	ke'	$\pm (2i+g+m), + (2i+g-m)$	$\pm (k\eta), \pm (k\eta')$
(xi)	$k\alpha$	$\pm (2i_1+g)$	$\pm (ka)$

where

$$2i=0, \pm 2, \pm 4 \dots, 2i_1=\pm 1, \pm 3, \pm 5 \dots$$

The coefficients in the last column have the suffixes i or i_1 , when the corresponding arguments have them, that is, according as the coefficients do not or do contain the first power of a. It will be remembered that when the characteristic contains an odd power of k (that is, for the terms in z), $(k'\epsilon')_i = -(k\epsilon)_{-i}$, $(k'\epsilon)_i = -(k\epsilon')_{-i}$, etc. Hence, Sections (ii)-(viii) contain all second order terms in u, Sections (ix)-(xi) all second order terms in z.

The results selected for publication are the numerical values of A_i , A'_i and those of the unknowns λ_i , λ'_i .

The degree of accuracy to which the various results have been carried depend, first, on the general numerical magnitude of the characteristic; secondly, for A_i , A'_i , on the cases where $2i \pm \tau$, $2i \pm \tau \pm c$, or $2i \pm \tau \pm g$ become small; thirdly, for λ_i , λ'_i , on the accuracy required for certain terms of higher orders. The approximate numerical magnitudes of the characteristics are given by

$$e=11$$
, $e'=017$, $k=045$, $a=0026$.

For further remarks on the numerical results, see Chap. I., Sect. (viii). References to previously published results are given in all cases.

Section (ii). Characteristic e².

55. Here $\lambda=e^2$, and $2i+\tau$ has the values $2i\pm 2c$ forming one set of equations of condition and the value 2i forming another set. The values of A corresponding to the two sets are obtained from equation (2) of this chapter, and they are given in the following table:—

	, with	es of 11. Commons of	
i.	$\zeta^{2i+2\mathbf{c}}$. $\zeta^{2i-2\mathbf{c}}$.		$\zeta^{2i}.$
5	+ .00000 0002	+ '00000 0397	+.00000 0029
4	+ .00000 0146	+ '00002 4815	+.00000 4028
3	+ '00001 0222	+ '00125 4227	+.00022 3358
2	+ .00064 6617	+ .03959 7603	+.01501 0121
I	+ '03321 1631	- ∙08783 1650	+ 41545 8343
0	+1.08874 2537	+ 21926 5334	46585 5712
— I	— 10743 6306	+ .00383 3333	+ .08798 3630
-2	+ .00888 0539	+ .00005 3547	+.00151 7439
-3	+ '00015 0316	+.00000 0664	+.00005 1196
-4	+ '00000 2104	+.00000 0008	+.00000 0263
— 5	+ .00000 0056	:	+.00000 0003
Sum	+1.02420 7834	+.17619 8278	+:05229 2758

Values of A. Coefficients of

The solution is expressed by (Chap. I., Sect. (iv)),

$$\mathfrak{U}_{e^2}\zeta^{-1} = \operatorname{ae}^{2}\Sigma_{i}\left[(\epsilon^{2})_{i}\zeta^{2i+23} + (\epsilon'^{2})_{i}\zeta^{2i-2c} + (\epsilon\epsilon')_{i}\zeta^{2i}\right].$$

Solving the two sets of equations of condition—namely, that giving $(\epsilon^2)_i$, $(\epsilon'^2)_i$ and that giving $(\epsilon\epsilon')_i$ —we obtain the values of these coefficients.

Values of

•	(•	^{;2})i.		(4	$\ell'^2)_i$.		(€	$\epsilon')_{i}$.	
5	+.00000	00000	ı	+.00000	00049		+.00000	00004	0
4	+.00000	00011	0	+.00000	04893		+.00000	00459	5 *
3	+.00000	01135	4	+.00001	84244		+.00000	47226	4
2	+.00001	16070	9	+:00428	5788		+.00046	03442	
I	+ .00113	37013		+ .01564	7028		+.03917	99373	
0	+ .09405	3537		+ .03180	1697		13311	2689	
- 1	06517	3271		+.00009	45654		+:01492	2756	
-2	+.00133	0056		+.00000	06650		+ .00003	21364	
-3	+.00000	17404		+.00000	00057	4	+.00000	02603	
-4	+.00000	00260		+.00000	00000	6	+.00000	00022	8
-5	+.00000	00003					+.00000	00000	2
Sum	+.03131	7512		+ .05184	8668		07852	2483	

These coefficients were given to eight places of decimals on pp. 325, 323 of my paper referred to in § 48, having been obtained by the use of the homogeneous equations. The notation is different. The symbols (ϵ^2) , (ϵ'^2) are there denoted by f/Y_0^2 , f'/Y_0^2 respectively; the symbol $(\epsilon\epsilon')_i$ used here is not the exact equivalent of $\delta a_i/Y_0^2$ in that paper, owing to the meaning there assigned to a_0 being different from that of a. To compare them we must put

$$(\epsilon \epsilon')_i = (a_0 \delta a_i + a_i \delta a_0) \div Y_0^2 a_0^2$$

the terms in the right-hand member being the quantities contained in the paper referred to.

An error of one unit in the sixth place of the value of $(\epsilon^2)_{-2}$, or f_{-2} in the paper, was discovered, inducing smaller errors in the other coefficients. All the coefficients have been re-calculated by the method of this memoir and the results, as seen above, extended to nine places of decimals.

The long-period inequality with a small divisor is that having the coefficients $(\epsilon^2)_{-1}$, $(\epsilon'^2)_1$. This was separately calculated by the homogeneous equations as in the "Elliptic Inequalities" and the results were verified by the equations of condition which the above method furnishes.

Section (iii). Characteristic eé.

56. Here $2i + \tau$ has the two sets of values $2i \pm (c+m)$ and $2i \pm (c-m)$. The corresponding values of A are given in the following tables.

Value of A. Coefficients of

i.	ζ ^{2l+c+m} .	ζ ² <i>i</i> -e-m,
5	—·ooooo ooo2	+.00000 0204
4	— .00000 0159	+ 00001 2849
3	—·oooo1 o382	+.00066 4341
2	00056 4777	+.02214 1177
I	— •02154 4824	+ .02587 20248
0	26294 86805	08121 00493
– I	+:04040 23983	00205 8170
— 2	+.00196 1854	00005 0845
-3	+ .00006 3492	00000 0753
-4	+.00000 0984	00000 0000
- 5	+.00000 0013	
Sum	- '24264 0083	03462 9230

Value of A. Coefficients of

i.	⟨ 2 <i>i</i> +c−m,	ζ ² <i>i</i> · c+m.
5	+.00000 0016	—·ooooo oo32
4	+.00000 1031	00000 2037
3	+.00006 2570	—·ooo11 oo38
2	+.00341 6192	—·00414 1602
I	+111582 9253	—·04792 22751
0	+.23207 94821	+.09218 67678
— 1	02089 28787	+.01113 8493
-2	— :00037 5417	+.00032 6072
-3	—·ooooo 9929	+.00000 4995
-4	- .00000 0149	+.00000 0066
-5	—·ooooo ooo2	+.0000 0001
Sum	+.33011 3168	+.05148 0411

The solution is

$$u_{\mathrm{e}_{\mathrm{c}}}\zeta^{-1}\!=\!\mathrm{ae}_{\mathrm{c}}'\Sigma_{i}[(\epsilon\eta)_{i}\zeta^{2i+\mathrm{e}+\mathrm{m}}\!+\!(\epsilon'\eta')_{i}\zeta^{2i-\mathrm{e}-\mathrm{m}}\!+\!(\epsilon\eta')_{i}\zeta^{2i+\mathrm{e}-\mathrm{m}}\!+\!(\epsilon'\eta)_{i}\zeta^{2i-\mathrm{e}+\mathrm{m}}],$$

the first two terms forming one set of equations of condition, and the other two another set.

Values of

i.	(εη) _i .	$(\epsilon'\eta')_i$.
5		+.00000 00023
4	0000 00016	+:00000 02402
3	-:00000 01635	+ '00002 40337
2	—·00001 6044 0	+.00223 19829
I	00143 2419	+.16155 5585
0	09352 2778	+ 14515 115
— 1	— '37910 7012	+:00011 3163
— 2	00035 1502	00000 09258
-3	+ .00000 14383	00000 00095
-4	+.00000 00149	coooo ooooı
- 5	+.00000 00001	
Sum	-·47443 1467	+ '30874 192

i.	$\left(\epsilon\eta' ight)_{i}.$	$\left(\epsilon'\eta\right)_{i}$.		
5	+.00000 00001	00000 00003		
4	+.00000 00101	—·ooooo oo346		
3	+.00000 10050	00000 34589		
2	+:00009 30969	- '00032 25311		
1	+:00721 48506	- 02437 4803		
0	+12769 0229	22224 552		
1	+:03961 720	00035 7897		
-2	+.00004 6236	+.00000 62531		
-3	00000 01813	+.00000 00635		
-4	00000 00020	+.00000 00006		
-5		8		
Sum	+17466 244	- '24729 793		

ROYAL ASTRON. Soc., Vol. LIII.

The short period inequalities having small divisors are those with coefficients $(\epsilon \eta)_0$, $(\epsilon' \eta')_0$; $(\epsilon \eta)_{-1}$, $(\epsilon' \eta')_1$; $(\epsilon \eta')_0$, $(\epsilon' \eta)_0$; $(\epsilon \eta')_{-1}$, $(\epsilon' \eta)_1$. For the purpose of obtaining these with the required accuracy, the corresponding coefficients in A are carried one place further than the rest. The values of A have been computed by both (17), (17') of \S 20. The slow approximations to the values of the coefficients with suffix zero were avoided by the method of \S 29.*

The values of the coefficients of the corresponding terms in the true longitude have been published in a note in the *Monthly Notices*, Vol. LV. p. 4.

Section (iv). Characteristic $e^{\prime 2}$.

57. Here $2i+\tau$ has the two sets of values $2i\pm 2m$ and 2i. The terms are similar in form to those of Section (ii).

i.	ζ ^{2i+2m} .		ζ ² i-2n	·.	ζ ²ⁱ .	
5			+:00000	003	'00000	001
4	+.00000	003	+.00000	166	00000	052
3	+.00000	236	+.00008	791	00002	893
2	+.00010	062	+.00308	035	00113	096
I	+ '00208	790	+.01194	981	01221	048
0	+.01086	3018	+ .00684	6387	03584	293
— I	08426	889	00006	164	+ .02561	810
-2	+.00013	885	+.00000	798	- •00005	617
-3	+.00000	733	+.00000	019	00000	228
-4	+.00000	013			00000	003
— 5	The state of the s					
Sum	07106	865	+.02191	268	02665	421

Values of A. Coefficients of

^{*} The results for the coefficients in A are not theoretically accurate in the last places of decimals given. The small divisors occurring in the coefficients mentioned and the other divisors are of such a size that the results for the coefficients $(\epsilon \eta)_b$ &c., are, however, theoretically accurate to the last place given in each case.

The solution is

$$u_{e^{i2}}\zeta^{-1} = ae^{i2}\sum_{i}[(\eta^{2})_{i}\zeta^{2i+2m} + (\eta'^{2})_{i}\zeta^{2i-2m} + (\eta\eta')\zeta],$$

which gives two sets of equations of condition as in Section (ii).

Values of

<i>i</i> .	$\left(\eta^2 ight)_i$	•	(η'2) _i .	(ητ	n') _i .
5			+.00000	00003	00000	00001
4	+.00000	00004	+.00000	00290	00000	00083
3	+.00000	0035	+.00000	2938	00000	08202
2	+.00000	2205	+.00027	6586	00007	6201
ı	00003	277	+.02192	232	00585	014
0	05446	177	+.07221	455	01024	957
-1	-10598	405	+ .00002	267	+:02515	958
-2	+.00001	0669	+.00000	0016	•00000	1878
-3	+.00000	0238	+.00000	0003	00000	0060
-4	+.00000	00026			00000	00005
-5						-
Sum	- '16046	544	+ .09448	911	+ .00898	090

The long-period inequality with a small divisor is that having the coefficients $(\eta^2)_0$, $(\eta'^2)_0$. To obtain it with sufficient accuracy, the homogeneous equation (7) or (42) of Chap. I. was calculated for $2i+\tau=2m$, and combined with one of the equations of condition of principal importance in finding these coefficients by the above method; the corresponding terms in A are carried one place further. The slowness of the approximations was avoided as before.

Section (v). Characteristic k².

58. Here $2i+\tau$ has the two sets of values, $2i\pm 2g$ and 2i. The forms are similar to those of Sections (ii), (iv).

Values of A. Coefficients of

i.	$oldsymbol{\zeta}^{2i+2g}.$	ζ ^{2ί−2} g.	ζ ²ⁱ .
5	+ .0000 0001	+ .0000 0002	+ .00000 0002
4	+ .00000 0098	+ '00000 0373	+ '00000 0420
3	+ .00000 8104	+ .00001 9158	+ '00003 0535
2	+ 00061 3392	+ .00019 2702	+ '00179 3676 &
I	+ .03948 0728	09576 3403	+ .05619 8303
0	+1.75467 4677	+1.75605 5745	-3.21593 8315
— I	- ·11368 2769	+ .02156 4305	+ .09211 3861
-2	+ .00110 0801	+ .00022 7392	, + '00118 5620
-3	+ .00001 6227	+ '00000 2257	+ '00001 2707
-4	+ .00000 0148	+ '00000 0022	+ .00000 0150
-5	+ 00000 0002		+ .0000 0001
Sum	+1.68230 1529	+1.68230 1529	—3. 3 6460 3061

The solution is

$$u_{\mathbf{k}^2}\zeta^{-1} \!\!=\! \mathbf{a}\mathbf{k}^2 \! \mathbf{\Sigma}_i \! [(k^2)_i \! \zeta^{2i+2\mathbf{g}} \! + \! (k'^2)_i \! \zeta^{2i-2\mathbf{g}} \! + \! (kk')_i \! \zeta^{2i}].$$

Values of

<i>i</i> .	$(k^2)_i$.		$(k'^2)_i$.			$\left(kk'\right)_{i}.$			
5				+ .00000	00000	8	00000	00000	1
4	+.00000	00000	2	+ .00000	00096		00000	00014	9
3	+.00000	00009	0	+ .00000	13301		00000	0198 3	
2	+.00000	01113		+ .00020	4729		- '00002	78210	
I	+.00001	40450		+ .04329	3868		- '00434	42967	
0	+.00162	67611		+ .98752	5842		-1.00079	9130	
-r	09302	7702		+ .00120	88256		+ .08149	6924	
-2	+.00081	6246		+ .00000	58653		+ .00000	25048	
-3	+.00000	14413		+ .00000	00300		+ .00000	03390	
-4	+.00000	00059		+ .00000	00001	8	+ .00000	00016	6
-5	+.00000	00000	4				+ .00000	00000	1
Sum	-:09053	9090		+1.03254	0500		- '92358	1678	

These coefficients were given to seven places of decimals by Mr. P. H. Cowell on pp. 119, 117 of his paper referred to in § 31 above, being obtained by means of the homogeneous equations. With his values as a first approximation, I recalculated and extended them to nine places by the above method. Small errors in $(k^2)_{-1}$, $(k'^2)_1$ were found. These two coefficients are those of a long-period term with a small divisor. The former was obtained by means of equation (44) of Chap. I., the latter being then found from one of the two equations of condition furnished by the general method used for the rest of the coefficients. The coefficients $(kk')_i$ in Mr. Cowell's paper are such that $(kk')_0 = 0$; to compare them with those given here, a transformation like that noted at the end of Sect. (ii) of this chapter must be made. The value of δa_0 in that formula is the $(kk')_0$ of the table in this section.

Section (vi). Characteristic ea.

59. Here $2i+\tau=2i_1\pm c$ where $2i_1$ is an odd positive or negative integer. It is not necessary to insert the suffix of i_1 in the tables.

Value of A. Coefficients of

2 <i>i</i> .	ζ²i+c.	ζ²i-e,		
9	+.00000 002	+.00000 010		
7	+.00000 023	00000 676		
5	- 00003 223	00135 769		
3	- ·00682 665	-10010 7438		
I	-·51730 75492	+13499 37257		
- r	+14791 32045	-10012 41023		
-3	00226 4428	00655 106		
- 5	—·00141 822	 00004 061		
-7	- ·00000 864	00000 022		
- 9	- '00000 004			
Sum	- 37994 400	- .07319 405		

The solution is

$$u_{e} \zeta^{-1} = ae\alpha \sum_{i} [(\epsilon \alpha)_{i} \zeta^{2i+c} + (\epsilon' \alpha)_{i} \zeta^{2i-c}],$$
 2*i* odd.

Values of

2 <i>i</i> .	$\left(\epsilon a\right)_{i}$.	$(\epsilon'a)_i$.
9	+.0000 00001	+.00000 00007
7	+.00000 00151	00000 0210
5	+.00000 0067	00006 8421
3	- •00018 3543	01423 8397
I	04675 5060	-13023 797
- 1	+.19695 832	— .01226
-3	+.01753 2892	00059 1716
- 5	- .00014 5521	00000 1318
-7	00000 0318	00000 00010
- 9	00000 00008	
Sum	+.16740 685	-·15740 328

The long-period inequality is that having $(\epsilon \alpha)_{-\frac{1}{2}}$, $(\epsilon' \alpha)_{\frac{1}{2}}$ as coefficients. The homogeneous equation (42) of Chap. I. with $2i+\tau=-1+c$ was used with one of the two ordinary equations of condition giving these two coefficients, the other being, as usual, used as a control. The slow progress of the approximations was avoided as before.

Section (vii). Characteristic e'a.

60. Here $2i + \tau = 2i_1 \pm m$. The suffix of i_1 will be omitted.

Value of A. Coefficients of

2 <i>i</i> .	⟨ ^{2i+m} .	ζ²i-m.
9		+ 00000 003
7	+.00000 012	-·ooooo 1 3 8
5	+:00004 540	00033 248
3	+.00405 8824	02654 623
-1	+.06010 42164	- 05865 88010
— 1	04094 6441	+.01713 45698
-3	- •06584 676	+.01489 4425
- 5	—·ooo36 752	+.00006 690
-7	— '00000 2II	+.00000 036
- 9		
Sum	—·o4295 427	- °05344 261

The solution is

$$u_{e'} \, \zeta^{-1} \! = \! ae'a \Sigma_i \! \left[(\eta a)_i \! \zeta^{2i+\mathrm{m}} \! + \! (\eta' a)_i \! \zeta^{2i-\mathrm{m}} \right], \qquad 2i \text{ odd.}$$
Values of

2 <i>i</i> .	$(\eta \alpha)_i$.	$\left(\eta'\mathfrak{a}\right)_{i}.$
9	+.00000 00010	+ .00000 00019
7	+.00000 0123	+ .00000 0156
5	+.00001 8262	+ .00000 8023
3	+.00286 0184	+ '00008 9662
I	+.21611 841	- ·02661 542
—r	+.03082 496	-1.21100 393
-3	-·o1661 267	+ .00301 4686
-5	-·o0001 8246	+ .00000 4431
-7	- '00000 0037	+ .00000 0012
- 9	+.0000 00001	10000 00001
Sum	+:53319 099	-1.53450 241

The short-period inequalities are those having the coefficients $(\eta \alpha)_{\frac{1}{2}}$, $(\eta'\alpha)_{-\frac{1}{2}}$; $(\eta\alpha)_{-\frac{1}{2}}$, $(\eta'\alpha)_{\frac{1}{2}}$; the former pair, owing to the near coincidence of 1+m with c_0 , having a very small divisor. The corresponding values of the coefficients in A are carried to more places and the slow progress of the approximations to the first pair was avoided as before.

Section (viii). Characteristic α^2 .

61. Here $\tau=0$.

Value of A. Coefficients of

i.	ζ²ί.	
4	00000	OI
3	00001	02
2	00025	53
ı	+:05977	63
0	-:03355	85
— I	+:00220	05
2	01280	45
-3	00006	20
-4	00000	04
Sum	+:01528	58

The solution is

$$u_{\alpha^2}\zeta^{-1} = a\alpha^2 \Sigma_i(\alpha^2)_i \zeta^{2i}$$
.

Values of

i.		$\left(a^{2} ight) _{i}.$	
4		+.00000	0007
3	,	+.00000	097
2		+.00009	3 ⁸ 5
1		+:00722	77
c)	00960	28
I		00720	42
 2	:	00142	707
- 3	;	00000	223
- 4		-,00000	0008
Sum	• • •	01031	38

These coefficients were obtained to six places of decimals on p. 157 of my paper referred to in § 50 above by using the homogeneous equations. They have been recalculated by the method of this chapter and extended to seven places. In comparing the earlier results with those given here, the transformation noted at the end of Sect. (ii) of this chapter must be made. The errors in the earlier results were very small.

62. Having finished the terms of the second order in u, we now come to those in z which are distinguished by having the first power of k in all their characteristics. For these terms the equations (5)–(8) of Sect. (i) of this chapter are used. The calculations cause very little trouble and are not long. In the short-period inequalities with small divisors, the progress of the approximations is not very slow. Long-period inequalities do not produce small divisors.

Section (ix). Characteristic ke.

63. Here $2i+\tau$ takes the two sets of values $\pm (2i+g+c)$ and $\pm (2i+g-c)$, each set giving an independent set of equations of condition for the coefficients.

Values of A. Coefficients of

i.	⟨ ² i+g-c.	€ 2 <i>i</i> + g - c ,
5	+ .0000 0001	+ .0000 0010
4	+ .00000 0024	+ .00000 0814
3	+ '00000 4225	+ .00006 2824
2	+ '00032 0242	+ .00398 8176
τ	+ *02045 4910	+ 16874 9622
0	+ .87305 5636	+ .86734 1740
— I	+ 13526 5495	- 01316 9637
-2	— ·00250 6140	- '00046 2414
-3	00008 9740	- '00000 7977
-4	- '00000 1579	00000 0109
-5	0000 0010	0000 0001
Sum	+1.02650 3085	+1.02620 3084

Coef. of ζ^{2i-g-c} = - coef. of $\zeta^{-2i+g-c}$, Coef. of ζ^{2i-g+c} = - coef. of $\zeta^{-2i+g-c}$.

The solution is

$$\begin{split} z_{\mathbf{k}\mathbf{e}^l} &= \mathbf{a} \mathbf{k}\mathbf{e} \boldsymbol{\Sigma}_i [(\epsilon k)_i \zeta^{2i+g+\mathbf{c}} + (\epsilon' k')_i \zeta^{2i-g-\mathbf{c}} + (\epsilon' k)_i \zeta^{2i+g-\mathbf{c}} + (\epsilon k')_i \zeta^{2i-g+\mathbf{c}}] \\ &= \mathbf{a} \mathbf{k}\mathbf{e} \boldsymbol{\Sigma}_i [(\epsilon k)_i (\zeta^{2i+g+\mathbf{c}} - \zeta^{-2i-g-\mathbf{c}}) + (\epsilon' k)_i (\zeta^{2i-g-\mathbf{c}} - \zeta^{-2i-g+\mathbf{c}})]. \end{split}$$

Values of

i.	i . $(\epsilon k)_i$. $(\epsilon' k)_i$.	
5		+.00000 00001 I
4	+.00000 00006 0	+ 00000 00149 3
3	+.00000 00740 3	+ 00000 20814 9
2	+:00001 00784 2	+ '00030 77463
I	+:00146 61399	+ .05543 3972
0	+.52001 3501	73687 7762
- I	— ·11999 3099	- 00811 4895
- 2	—·00179 7078	—·oooo4 46815
-3	00000 93584	- 00000 03014 9
-4	—·00000 00626 5	00000 00021 4
- 5	-·00000 00004 I	00000 00000 I
Sum	+:13059 0286	68929 3827

There is no short-period inequality with a small divisor. ROYAL ASTRON. Soc., Vol. LIII.

Section (x). Characteristic ke'.

64. Here $2i+\tau$ has the two sets of values $\pm (2i+g+m)$ and $\pm (2i+g-m)$, giving rise to two independent sets of equations of condition.

Values of A. Coefficients of

i.	ζ2%+g+m.	Ç ²ⁱ +g− m .
5		+*00000 0002
4	-·ooooo oo34	+.00000 0222
3	- •00000 2530	+.00001 7263
2	- .00016 8839	+.00114 5257
I	- .00794 5172	+.05318 2849
0	- 00150 67489	00386 17596
— I	+ 05329 66967	00788 15823
- 2	00090 3017	+.00013 7147
-3	—·oooo2 6532	+.00000 3923
-4	00000 0433	+.00000 0091
-5	00000 0006	+.0000 0001
Sum	+*04274 3385	+*04274 3383

Coef. of $\zeta^{2i-g-m} = -\cos f$. of $\zeta^{-2i+g+m}$, Coef. of $\zeta^{2i-g+m} = -\cos f$. of $\zeta^{-2i+g-m}$.

The solution is

$$\begin{split} z_{\mathbf{k}e^{i}}\iota \!=\! \mathbf{a}\mathbf{k}e^{i}\mathbf{\Sigma}_{i}\!\big[(\eta k)_{i}\!(\zeta^{2i+\mathsf{g}+\mathsf{m}}\!-\!\zeta^{-2i-\mathsf{g}-\mathsf{m}}) + (\eta^{i}k)_{i}\!(\zeta^{2i+\mathsf{g}-\mathsf{m}}\!-\!\zeta^{-2i-\mathsf{g}+\mathsf{m}}) \big]. \\ \text{Values of} \end{split}$$

i.	$(nk)_{\varepsilon}$.		$(\eta k)_i.$ $(\eta^\epsilon k)_i.$			
		,				
5				+,00000	00000	2
4	00000	00004	5	+.00000	00030	2
3	,00000	00549	5	+ 00000	03925	4
2	*00000	71590		+.00002	16918	
I	- °00092	26112		+-00680	83683	
٥	01600	9252		+.01924	4655	
- I	- °11002	6721		+ '04091	0818	
- 2	00033	46147		+-00008	41128	
-3	00000	20106		+.00000	04271	
-4	00000	00139	3	+.00000	00026	7
-5	00000	10000	0	+.00000	00000	1
Sum	-·I2730	2438		+.06710	0471	

The short-period inequalities having small divisors are those with coefficients $(\eta k)_0$, $(\eta k)_{-1}$, $(\eta' k)_0$, $(\eta' k)_{-1}$; for these the corresponding values of A_i are carried to ten places of decimals.

Section (xi). Characteristic ka.

65. Here $2i+\tau = \pm (2i_1+g)$. The suffix of i_1 will be omitted.

Value of A. Coefficients of

2i.	Ç 2 <i>l</i> + g	
9	+-00000	0008
7	+,00000	0534
5	+ .00003	6082
3	00008	7162
E	-19302	7070
— ¥	18559	9847
-3	+ 00734	3267
-5	+.00062	8303
-7	- '00000	0473
-9	00000	0013
sum	- 37131	6371

Coef. of $\zeta^{2i-g} = -\cos f$. of ζ^{-2i-g} .

The solution is

 $z_{\mathbf{R}^{a}} = \mathbf{a} \mathbf{k} \mathbf{a} \mathbf{\Sigma}_{a} (ka)_{i} (\zeta^{2i-g} - \zeta^{-2i-g})_{i}$ 22 odd.

Values of

2i.	$(ka)_i$.		
9	+.00000	00000	7
7	+.00000	00072	0
5	+.00000	05027	
3	*00005	33463	
ı	06026	0507	
-1	+.12913	4186	
-3	+ .00375	4653	
-5	+.00000	67585	
-7	+.00000	00082	
-9	*00000	00000	9
Sum	+ .10228	2262	

There are no short-period inequalities with small divisors.

(To be continued.)

Appendix.—The terms of the third order (Chap. V.) are in process of calculation. The following results, properly belonging to Chap. V., have already been obtained and may be recorded here. They have been used as the basis of a paper in the Monthly Notices, "On the Mean Motions of the Lunar Perigee and Node" (1897 March).

Let

$$\begin{split} \mathbf{c} &= \mathbf{c_0} + \mathbf{e^2} \mathbf{c_{e^2}} + e'^2 \mathbf{c_{e^{\prime 2}}} + \mathbf{k^2} \mathbf{c_{k^2}}, \\ \mathbf{g} &= \mathbf{g_0} + \mathbf{e^2} \mathbf{g_{e^2}} + e'^2 \mathbf{g_{e^{\prime 2}}} + \mathbf{k^2} \mathbf{g_{k^2}}. \end{split}$$

Then

$$e_{e^2} = +.00268$$
 575, $g_{e^3} = +.00318$ 579, $e_{e'^2} = -.03465$ 53, $g_{e'^2} = +.00564$ 65, $e_{k^2} = +.05384$ 91, $g_{k^2} = -.00806$ 633.

The value of g_{k^2} is quoted from Mr. Cowell's paper referred to in § 31 above.

Haverford College, Pa. U.S.A.: 1897 May 12.

Theory of the Motion of the Moon; containing a New Calculation of the Expressions for the Coordinates of the Moon in Terms of the Time. By Ernest W. Brown, M.A., Sc.D., F.R.S.

[Received 1899 February 3.]

PART II. CHAPTER V.

In the following pages I continue the Memoir the first part of which was published under the same title in the Memoirs of the Royal Astronomical Society in 1897. The general theory was given in Chap. I. as completely as I could then foresee would be necessary for the whole work. In Chaps. II., III., IV. the numerical results up to and inclusive of the terms of the second order were given.

As the work progressed modifications tending to simplify or abbreviate the calculations naturally occurred. These, however, were fewer than might have been expected. The most important of them is given in Section (ii) below, consisting of a new method for finding the values of the final coefficients, after those of the quantities denoted in Chap. I. by Λ have been obtained. Previously this process consisted in solving, by continued approximation, for each characteristic and argument, a set of linear equations which were generally about 20 in number, with 20 unknowns. This process I had not succeeded in arranging conveniently for the computer, and as, in the terms of the third order, it involved about one-third of the whole work, some change was desirable. The investigation which led up to the new

method for this purpose was made from a different point of view some three years ago; its usefulness became apparent directly the arrangement of the work for the computer was under consideration. Moreover, the numerical errors made in solving the linear equations were quite numerous; under the method of Section (ii) they have been no more frequent than in other parts of the work.

The numerical results given below are the values for all the terms of the third order, with certain subsidiary results which the above-mentioned modifications require. The degree of accuracy which the theory up to this point attains may be best appreciated by a statement of the maximum number of coefficients of the fourth and higher orders, which may be as great as 1" of arc in longitude. Of the fourth order, one of 4" and three of 2", which contain only e, k in their characteristics, and twenty of 1"; of the fifth order there are two of 1", which involve both e, k. Moreover, the principal parts of nearly all of these are the purely elliptic terms.

I have received very great help in performing the calculations from Mr. Ira I. Sterner, A.B., of Haverford College, who has, since 1897 September, been my only assistant. That so much has been achieved in the time we were able to give is largely due to his accuracy and capability. Much of the work done by him would scarcely have been attempted by an ordinary computer without very extended instructions, while his knowledge of arithmetical processes has not only been a great saving of time and labour, but has made the chief part of my task—that of testing and correcting his work—a comparatively light one.*

The following is the table of contents of Chap. V.:—

Section (i). A brief outline of the application of the general method to the terms of the third order in the calculation of the series A.

Section (ii). New method for solving the linear equations when the series A have been obtained. Numerical values of certain quantities required in this method.

Section (iii). Modification of this method, in order to avoid, as far as possible, the loss of accuracy arising with long-period terms.

Section (iv). The method of calculating the new parts of the motions of

^{*} A portion of the expense of making the computations necessary to obtain the results given below has been met by a grant from the Government Grant Fund of the Royal Society.

the perigee and node, and the coefficients arising therewith. Numerical values of certain quantities required.

Section (v). The final numerical results for the series A, and for the coefficients of all terms of the third order in u, z.*

Section (i). Formulæ and Tests.

66. About two-thirds of the whole labour of obtaining the coefficients of the third order consists in the calculation of Λ . The products in the third line of equation (17) and of the second line of (18) in Chap. I., are formed by putting

$$u_{\mu} = u_1 + v_2$$
, $s_{\mu} = s_1 + s_2$, $z_{\mu} = z_1 + z_2$

and choosing out the parts of the third order. The products in the fourth and fifth lines of (17) and the third line of (18) are obtained with

Here
$$\begin{aligned} u_{\mu} = u_{\mathbf{l}}, \ s_{\mu} = s_{\mathbf{l}}, \ z_{\mu} = z_{\mathbf{l}} \\ u_{1} = u_{\mathbf{e}} + u_{e^{\mathbf{l}}} + u_{a}, \ z_{1} = z_{\mathbf{k}}, \\ u_{2} = u_{\mathbf{e}^{2}} + u_{\mathbf{e}e^{\mathbf{l}}} + u_{e^{\mathbf{l}^{2}}} + u_{\mathbf{k}^{2}} + u_{\mathbf{e}_{\bullet}} + u_{e^{\mathbf{l}}} + u_{\bullet^{2}}, \\ z_{2} = z_{\mathbf{k}\mathbf{e}} + z_{\mathbf{k}e^{\mathbf{l}}} + z_{\mathbf{k}^{*}}, \end{aligned}$$

the expression for s_2 being similar to that for u_2 .

The parts arising from Ω_1 , namely, $\frac{\partial \Omega_1}{\partial s} \zeta^{-1}$, $-\frac{1}{2} \frac{\partial \Omega_1}{\partial z}$, are treated in like manner.

The parts arising from the first terms in the right-hand members of the equations, are treated in Section (iv) below; they only appear when the terms of arguments $2i\pm c$, $2i\pm g$ are under consideration.

The general method of procedure has been as follows:—The computer having performed the calculations allotted to him, I go over them all and test them by all the means available. Each multiplication of series is tested by sums as explained in Section (viii), Chap. I. The final values of A are tested in the same manner, but in larger groups, so as to make certain that no series of terms has been omitted; for this, the values of A for each character-

* It is intended to give the subsidiary results in a final chapter, or chapters, when the whole theory has been completed.

ROYAL ASTRON. Soc., Vol. LIII.

istic, with $\zeta=1$, are all added together and the sums compared with the corresponding sums obtained as directly as possible from the algebraical formulæ, which become quite simple when $\zeta=1$. It is true that this method will not test for all kinds of errors, e.g. the accidental interchange of u and s, but reliance has been placed less on test equations than on the care which has been taken to avoid errors. The calculations made after the method of Section (ii) were treated in the same way as far as possible; a further and very searching test was obtained by forming D^2u_{λ} , Du_{λ} with $\zeta=1$, for each value of τ and substituting the results in equation (24) of Chap. I. In the cases where calculations were not turned over to the computer, they were gone over again after an interval of time and, when possible, tested. Increased accuracy in making the calculations was always found whenever blocks of the same nature were performed together.

Section (ii). Method of solving the Linear Differential Equations.

67. The equation (24) of Chap. I. to be solved is

Let

$$\begin{split} & \Sigma \epsilon_i \zeta^{2i+1+c_o} {=} u_1', & \Sigma \epsilon_i' \zeta^{2i+1-c_o} {=} u_2', & Du_0 {=} a u_3', \\ & \Sigma \epsilon'_{-i} \zeta^{2i-1+c_o} {=} s_i', & \Sigma \epsilon_{-i} \zeta^{2i-1-c_o} {=} s_2', & Ds_0 {=} a s_3'. \end{split}$$

Then u'_j , s'_j , j=1, 2, 3, form three particular integrals of (1) when A=0. In a paper to be published elsewhere, I have shown that the fourth particular integral can be given the forms

$$\begin{split} u &= \mathbf{u}_{4}' = \mathbf{u}_{3}' D^{-1} \bigg(\frac{\mathbf{u}_{1}' D \mathbf{u}_{2}' - \mathbf{u}_{2}' D \mathbf{u}_{1}'}{\mathbf{u}_{3}' \mathbf{s}_{3}'} \bigg) \\ &= \frac{\mathbf{I}}{\mathbf{2}} \mathbf{u}_{3}' \left[\frac{\mathbf{s}_{1}' \mathbf{u}_{2}' - \mathbf{u}_{1}' \mathbf{s}_{2}'}{\mathbf{u}_{3}' \mathbf{s}_{3}'} + D^{-1} \left(\frac{\mathbf{C}_{12}}{\mathbf{u}_{3}' \mathbf{s}_{3}'} - \frac{\mathbf{s}_{1}' \mathbf{u}_{2}' - \mathbf{u}_{1}' \mathbf{s}_{2}'}{\mathbf{u}_{3}' \mathbf{s}_{3}'} \left(2\mathbf{m} + \frac{D \mathbf{u}_{3}'}{\mathbf{u}_{3}'} - \frac{D \mathbf{s}_{3}'}{\mathbf{s}_{3}'} \right) \right\} \bigg] \\ s &= \mathbf{s}_{4}' = \overline{\mathbf{u}_{4}'}, \end{split}$$

where C₁₂ is a constant given by

$$C_{12} = s_2' D u_1' - u_1' D s_2' + u_2' D s_1' - s_1' D u_2' - 2 m (s_1' u_2' - u_1' s_2')$$

= $2 \Sigma (2i + 1 + m + c_0)^2 + 2 \Sigma (2i - 1 - m + c_0) \epsilon_{-i}'^2$,

the bar over u_4' denoting that ζ^{-1} has been put for ζ , that is $-\iota$ for ι in the expression for u_4' .

It is further shown that

$$\frac{{\bf u_4}'}{{\bf C}_{12}}\!\!=\!\!{\bf u_3}'D^{-1}{\bf q}+{\bf u_4}\zeta\!=\!{\bf u_3}'\iota(n-n')\;(t-t_0){\bf q}+{\bf u_4}\zeta',$$

where q is the constant term under the sign D^{-1} in the expansion of u_4'/C_{12} in powers of ζ^2 and $u_4\zeta$ is a series of the same form as u_3 .

Finally, it is shown that the solution of (1) when A is not zero can be put into the form

$$u_{\lambda} = \frac{1}{C_{12}} \left[u_{1}' D^{-1} (s_{2}' A' + u_{2}' \overline{A'}) - u_{2}' D^{-1} (s_{1}' A' + u_{1}' \overline{A'}) \right] + u_{4} \zeta D^{-1} (s_{3}' A' + u_{3}' \overline{A'})$$

$$- u_{3}' D^{-1} \{ (s_{4} \zeta^{-1} A' + u_{4} \zeta \overline{A'}) - q D^{-1} (s_{3}' A' + u_{3}' \overline{A'}) \} \qquad \dots \qquad \dots \qquad (2)$$

in which the bar over A has the same meaning as before.

This is the form required; it will be noticed at once that most of th operations will consist of multiplications of series, and will therefore be in line with the work which was necessary for the calculation of A.

68. It is advisable to make a few changes in order that the formula may be more compact. We first observe that for all purposes except the parts due to \otimes , we require, not u_{λ} , but u_{λ}/u_0 ; the parts due to \otimes have the factor m², and are therefore small, and the multiplication of u_{λ}/u_0 by u_0 is easier than that of u_{λ} by $1/u_0$ owing to the fact that u_0 has one coefficient As there is no increase of trouble involved in finding u_{λ}/u_0 , we shall do so.

Write therefore—

$$u_{1} = \frac{u_{1}' \zeta^{-1-c_{0}}}{\epsilon_{0}'}, \quad u_{2} = \frac{u_{2}' \zeta^{-1+c_{0}}}{\epsilon_{0}'}, \quad s_{1} = \frac{s_{1}' \zeta^{1-c_{0}}}{\epsilon_{0}'}, \quad s_{2} = \frac{s_{2}' \zeta^{1-c_{0}}}{\epsilon_{0}'} \dots \quad \dots \quad \dots \quad (3)
 u_{3} = u_{3}' \zeta^{-1}, \quad s_{3} = s_{3}' \zeta \quad \dots \quad \dots \quad \dots \quad \dots \quad (4)
 U_{1} = \frac{a\epsilon_{0}' u_{1}' \zeta^{-c_{0}}}{C_{12}u_{0}}, \quad U_{2} = \frac{a\epsilon_{0}' u_{2}' \zeta^{c_{0}}}{C_{12}u_{0}}, \quad U_{3} = \frac{au_{3}'}{u_{0}}, \quad U_{4} = \frac{au_{4} \zeta}{u_{0}} \dots \quad \dots \quad \dots \quad (5)$$

$$U_{1} = \frac{a\epsilon_{0}'u_{1}'\zeta^{-\epsilon_{0}}}{C_{12}u_{0}}, \quad U_{2} = \frac{a\epsilon_{0}'u_{2}'\zeta^{\epsilon_{0}}}{C_{12}u_{0}}, \quad U_{3} = \frac{au_{3}'}{u_{0}}, \quad U_{4} = \frac{au_{4}\zeta}{u_{0}}... \quad ... \quad ... \quad (5)$$

These ten quantities are then all series of the form $\sum p_i \zeta^{2i}$ with numerical coefficients, and the constant coefficients in u2, s3, U3, are all unity.

Also, $D^{-1}(X\zeta^{\circ})$ may be written $\zeta^{\circ}(D+c)^{-1}X$; the operation $D^{-1}\zeta^{\tau}$ consisting of a division by τ , the operation $(D+c)^{-1} \zeta^{\tau}$ will consist of a division by $\tau + c$.

The formula (2) may now be written

168

Next, put

$$Q_{\lambda} = (D - \mathbf{c}_{0})^{-1} (\mathbf{s}_{2} A + \mathbf{u}_{2} \overline{A}), \qquad V_{\lambda} = D^{-1} (\mathbf{s}_{3} A + \mathbf{u}_{3} \overline{A}),
W_{\lambda} = \mathbf{s}_{4} A + \mathbf{u}_{4} \overline{A}, \qquad T_{\lambda} = D^{-1} (\mathbf{q} \mathbf{V}_{\lambda} - \mathbf{W}_{\lambda})$$
 (7)

Then since

$$\overline{\mathbf{s}_1} = \mathbf{u}_2$$
, $\overline{\mathbf{u}}_1 = \mathbf{s}_2$, $\overline{\mathbf{u}}_3 = -\mathbf{s}_3$, $\overline{\mathbf{u}}_4 = \mathbf{s}_4$, $\overline{D} = -D$,

and therefore

$$-(D+c_0)^{-1}(s_1A+u_1\overline{A})=\widetilde{Q}_{\lambda}, \quad u_3\overline{A}=-\overline{s_3A}, \quad u_4\overline{A}=\overline{s_4A}, \quad \overline{V}_{\lambda}=V_{\lambda}, \quad \overline{W}_{\lambda}=W_{\lambda}, \quad \overline{T_{\lambda}}=-T_{\lambda},$$

the equation (6) takes the final form

$$\frac{1}{\lambda} \frac{\mathbf{u}_{\lambda}}{\mathbf{u}_{0}} = \mathbf{U}_{1} \mathbf{Q}_{\lambda} + \mathbf{U}_{2} \overline{\mathbf{Q}}_{\lambda} + \mathbf{U}_{3} \mathbf{T}_{\lambda} + \mathbf{U}_{4} \mathbf{V}_{\lambda} \qquad \dots \qquad \dots \qquad \dots \qquad (8)$$

69. The calculations are arranged as follows:—The series u_2 , s_2 , s_3 , s_4 , U_1 , U_2 , U_3 , U_4 are obtained once for all by multiplication or "special values," and the logarithms of the coefficients written out on slips, as explained in Chap. I., Section (viii). The slips containing A having been made out for each value of λ , the multiplications

$$s_2\Lambda$$
, $u_2\overline{\Lambda}$, $s_3\Lambda$, $s_4\Lambda$ (9)

are performed by the computer, and thence the values of Q_{λ} , V_{λ} , T_{λ} are, by a few easy processes, obtained. The slips containing these latter are then made out, those for Q_{λ} serving for \overline{Q}_{λ} . Finally the multiplications

$$U_1Q_{\lambda}, U_2\bar{Q}_{\lambda}, U_3T_{\lambda}, U_4V_{\lambda}$$
 (10)

are performed by the computer, and thence, by addition, the value of u_{λ}/u_0 is obtained.

The series A are of the form $\sum_{i} p_{i} \xi^{2i+\tau} + \sum_{i} p_{i} \xi^{2i-\tau}$. When τ is not zero, the process for each such double set involves sixteen multiplications of series of the form $(\sum p_{i} \xi^{2i})(\sum q_{i} \sum^{2i})$. When $\tau=0$, half the number suffices. When $\tau=c$, a new part of the motion of the perigee is under consideration, and though the same process may be used, it is not convenient (see Section (iv) below).

When $\tau=0$ and 2i is even, it would appear that T_{λ} gives rise to terms with the time as a factor. It is shown in the paper referred to at the beginning of this section that such terms can always be made to disappear. However, none such occur amongst the terms of the third order. In any

case the method of this section will not be used for them, as the approximations in the ordinary method are rapid, owing to the absence of any small divisors.

The same method may be applied, using well-known formulæ, to the calculation of z_{λ} , but it appeared easier, at any rate in the terms of the third order, to use the method given in Chap. I.

The chief objection to the method consists in the fact that the small coefficients which accompany large values of i appear as differences between comparatively large numbers. This fact does not impair the required accuracy of the results, but the multiplications are much longer than they otherwise would be. Thus the coefficient of ζ^{-6-3c} in u_{e^2}/e^3u_0 appears as follows:—

From
$$U_1Q$$
, $-\circ\circ\circ\circ\circ$ 418
,, $U_2\overline{Q}$, $+\circ\circ\circ\circ\circ$ 496
,, U_3T , $+\circ\circ\circ\circ\circ$ 316
,, U_4V , $-\circ\circ\circ\circ\circ$ 392
Sum $+\circ\circ\circ\circ\circ$ $\circ\circ\circ$

On the other hand, as the presence of this difficulty can be shown to be peculiar to the method, it furnishes a means of detecting a certain class of error.

70. The following are the numerical results required for the method of this Section:—

i \mathbf{u}_2 . 83. 84. s_2 .00000 002 4 279 -- '00000 COI2 -.00000 017 .00000 -- '00000 003 3 4.00000 '00041 2 I I ,00000 0491 - '00000 980 .00860 927 +19895 07424 5747 + .03593 1 358 -.33619 118 **-** 93146 .00424 - .00648 148 -.00196 .00010 930 - I 357 7122 410 -,00001 .00000 090 - '00002 -- '00004 349 9393 -.00000 032 - .00000 010 ,00000 001 .00000 0210 -3.00000 0002 -4 -- 90206 171 367 Sum -13914 + '92550 -1.013271971 334

Values of the coefficients of ζ^{2i} in

i	U_i .	U ₂ .	U ₃ .	U.4
4		00000 003		
3	—·ooooo 015	- '00000 417	+ .00000 013	00000 022
2	00002 034	- '00066 197	+ .00001 892	- '00003 094
I	 00317 658	- 16544 214	+ .00303 148	- 00506 996
0	- .73476 985	+2.18200 12	+1	- 93154 984
- 1	+.42803 606	+ '01934 438	+ '01739 126	+ .02782 838
-2	+ .00387 413	+ '00016 590	+ '00015 057	+.00024 067
-3	+.00003 326	+ '00000 142	+ '00000 129	+:00000 206
-4	+ .00000 020	+ .00000 001	+ .00000 001	+ '00000 002

Values of the Coefficients of ζ^{zi} in

q=+1.51415 29.

71. In the terms of the third order the above process has been actually used. In those of higher orders a slight abbreviation of the work will be made by the following change.

Put

– :30602

318

Sum

$$A = \frac{3}{4} \frac{k u_0 \zeta^{-1}}{\rho_0^3} A_1, \qquad \dots \qquad \dots \qquad \dots$$
 (10)

366

- 90857

983

and, instead of u_2 , s_2 , s_3 , s_4 use each of these series multiplied by $3\kappa u_0 \zeta^{-1}/4\rho_0^3$. The latter four new series can be obtained once for all.

The advantage gained from this change will be seen by looking at equation (17) of Chap. I. The terms A consist of two parts. The first is the part due to the first line of the second member of the equation; the terms in this line are small, being due to δc and δc , and their multiplication by $4\rho_0^3/3\kappa u_0\zeta^{-1}$ to get the corresponding part of A_1 will be short. The second is the part due to the succeeding lines of the equation; these always form the principal part of A, and they all have the above-mentioned factor.

Section (iii). The Terms of Long Period.

72. Small divisors arise when the period of any term approximates to that of the principal elliptic term or when it is long. In the former case, the small divisor arises in the first and second terms of (8), being due to the

operators $(D \pm c_0)^{-1}$. In the latter case, as was pointed out (Chap. I., § 28'(c)), the *square* of the divisor occurs, but this difficulty may be avoided by the use of the homogeneous equation (21). I shall now show how the latter equation may be adapted when the methods of the last section are used.

The long-period small divisor arises only in V, T, owing to the operator D^{-1} . But (omitting the suffix λ for brevity)

$$T = D^{-1}(qV - W), V = D^{-1}(As_3 + \overline{A}u_3),$$

so that the square of the small divisor arises in the part

$$D^{-1}(qV) = qD^{-2}(As_3 + \overline{A}u_s)$$

of T. This is therefore the term to be considered.

We have

$$DV = As_3 + \bar{A}u_3 = \frac{1}{a}(A\zeta Ds_0 + \bar{A}\zeta^{-1}Du_0)$$

= $\frac{1}{a}\{(\bar{A}\zeta^{-1}u_0 - A\zeta s_0) + \bar{A}\zeta^{-1}(Du_0 - u_0) + A\zeta(Ds_0 + s_0)\}$... (11)

But by equation (21), Chap. I.,

$$u_0 D^2 s_{\lambda} + u_{\lambda} D^2 s_0 - s_0 D^2 u_{\lambda} - s_{\lambda} D^2 u_0 - 2 \operatorname{m} D \left(s_0 u_{\lambda} + u_0 s_{\lambda} \right) + 3 \operatorname{m}^2 \left(u_0 u_{\lambda} - s_0 s_{\lambda} \right) = a^2 \lambda \Lambda',$$

where Λ' denotes all the terms of characteristic λ except those due to u_{λ} , s_{λ} , in the expansion of

$$D(sDu - uDs + 2mus) + \frac{3}{2}m^2(s^2 - u^2) + s\frac{\partial \Omega}{\partial s} - u\frac{\partial \Omega_1}{\partial u} \qquad \dots \qquad \dots \qquad (12)$$

This equation may be written—

$$\begin{split} &u_0 \bigg[(D-\mathbf{m})^2 s_{\lambda} + \frac{\mathbf{I}}{2} \bigg(\mathbf{m}^2 + \frac{\kappa}{r_0^3} \bigg) s_{\lambda} + \frac{3}{2} \bigg(\mathbf{m}^2 + \frac{\kappa s_0^2}{r_0^5} \bigg) u_{\lambda} \bigg] \\ &- s_0 \bigg[(D+\mathbf{m})^2 u_{\lambda} + \frac{\mathbf{I}}{2} \bigg(\mathbf{m}^2 + \frac{\kappa}{r_0^3} \bigg) u_{\lambda} + \frac{3}{2} \bigg(\mathbf{m}^2 + \frac{\kappa u_0^2}{r_0^5} \bigg) s_{\lambda} \bigg] = \mathbf{a}^2 \lambda \Lambda', \end{split}$$

or, using equation (24) of Chap. I.,

$$u_0 \bar{A} \zeta^{-1} - s_0 A \zeta = a \Lambda'$$
.

Whence, restoring the suffix λ ,

$$V_{\lambda} = D^{-1} \Lambda_{\lambda}' + \frac{1}{a} D^{-1} \left\{ \tilde{A} \zeta^{-1} (Du_0 - u_0) + A \zeta (Ds_0 + s_0) \right\} \qquad \dots \qquad \dots \qquad (13)$$

where a² λ $D^{-1} \Lambda_{\lambda}'$ will denote the *known* terms of characteristic λ , in

$$sDu - uDs + 2mus + D^{-1}\left(\frac{3}{2}m^2(s^2 - u^2) + s\frac{\partial}{\partial s}\frac{\Omega_1}{\partial s} - u\frac{\partial}{\partial u}\frac{\Omega_1}{\partial u}\right) \qquad \dots \qquad \dots \qquad (14)$$

The portion of (14) under the operator D^{-1} contains the factor m^2 at least; hence the effect of the small divisor (which is never of an order higher than m^2) is neutralised in the first term of V. The same thing occurs with the remainder of the expression for V, owing to the fact that Du_0-u_0 and Ds_0+s_0 contain the factor m^2 at least. Hence V can be found to the same degree of accuracy as A, and the loss of accuracy in u_{λ} is limited to that due to the *first* power of the small divisor.

In using this we first find A as usual, and with it calculate the coefficient of the particular power of ζ in the second part of (13). The terms containing this power of ζ for the given value of λ are then chosen out of the expression (14), and thence V is obtained to the required accuracy for this power of ζ . The method of Section (ii) serves for all the other powers of ζ .

Section (iv). The New Parts of the Motions of the Perigee and Node.

73. The method of calculating c_{Ne} is explained in Chap. I., § 28 (b); when this quantity has been obtained A is completely known. Putting $\lambda_0 = \lambda_0'$ (§25) and omitting one of the equations for i=0, we can solve the linear equations by continued approximation. The omitted equation serves as a test. Either this or the method of Section (ii) somewhat modified, can be used, but it is more convenient to proceed in the following manner.

In § 28 (b), we have put $A = B + c_{\lambda/e}$ b. Hence write the solution in the form

$$\lambda_{i} = {}_{1}\lambda_{i} + \lambda_{0}(f')_{i} + c_{\lambda/e}(c)_{i},$$

$$\lambda'_{i} = {}_{1}\lambda'_{i} + \lambda_{0}(f')_{i} + c_{\lambda/e}(c')_{i},$$

$$15)$$

except for i=0.

Herc $_1\lambda_{i_1}1\lambda_i'$, are obtained by solving equation (26) of Chap. I. with $A_i=B_i$, $A_i'=B_i'$, $\lambda_0=0=\lambda_0'$.

The terms $(f)_i \lambda_0$, $(f')_i \lambda_0$ are obtained by solving the same equation with $A_i = 0 = A_i'$, $\lambda_0 = \lambda_0'$ (§25), in terms of λ_0 . (If, instead of $\lambda_0 = \lambda_0'$, we had put $\lambda_0 - \lambda_0' = 1$, we should have found ε_i , ε_i' .)

The terms $(c)_i$, $(c')_i$ are obtained by solving with $A_i = b_i$, $A'_i = b'_i$, $\lambda_0 = 0 = \lambda'_0$.

In all three cases the equations for i=0 are omitted.

We now substitute the values of λ_i , λ'_i , thus obtained, in the two equations for i=0 and obtain two equations of the form

$$\frac{1}{1} \lambda_0 + \lambda_0(f_0) + \mathbf{c}_{\lambda/e}(c_0) = 0$$

$$\frac{1}{1} \lambda'_0 + \lambda_0(f_0') + \mathbf{c}_{\lambda/e}(c_0') = 0$$

$$\vdots \qquad \dots \qquad \dots \qquad \dots$$

$$\dots \qquad \dots \qquad \dots$$

$$\dots \qquad \dots \qquad \dots$$

in which everything is known except λ_0 . If the work be correct these should give the same value of λ_0 , and thence, substituting in (15), the values of λ_i , λ_i' .

The coefficients $(f)_i$, $(f')_i$, $(c)_i$, $(c)_i$, being independent of λ , are found once for all; they are given below. The advantage of this procedure arises from the omission of the equations for i=0 in the solution of the linear equations: the approximations are rapid.

The same process is used for the nodal motion with the z-equation. But as we here put $\lambda_0 = 0 = \lambda_0'$ (§ 26), the equations (15), (16) reduce to

$$\lambda_{i} = {}_{1}\lambda_{i} + g_{\lambda k}(g)_{i}, \text{ (except } i = 0) \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$

$${}_{1}\lambda_{0} + g_{\lambda k}(g_{0}) = 0 \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$

$$(15)'$$

The equation (16)' serves then as a test. In all coefficients arising in the z-equation we have $q_i = -q'_{-i}$.

74. The following are the numerical results required for the method of this Section:—

i.	$(f)_i$.	$(f')_i$.
3	00000 009	00000 039
2	'00001 269	00006 201
T	00213 186	-:01412 29
0		
T	+ 01261 31	- 00293 224
- 2	+ '00002 655	00000 071
-3	00000 001	
Sum	+ 01049 50	— '01711 8 ₃

ROYAL ASTRON. Soc., Vol. LIII.

$$(f_0) = +6.97857 932$$

 $(f_0) = +2.34613 680$

$$(c_0) = +1.07940 266$$

$$(c'_0) = + .02014 438$$

i. !	$(c)_i$.	(c') _i .	$(g)_{i}$.
4		- '00000 007	
3	- '00000 002	- '00000 936	00000 001
2	00000 348	00132 001	00000 298
1	— ·00071 843	- '22311 94	- 00111 579
0			No.
— I	+ '71453 80	+ '00038 928	+ '19835 12
- 2	+ .00001 640	+ '00000 037	+ '00030 486
-3	00000 066		+ .00000 118
-4	00000 001		+ '00000 001
Sum	+ '71383 51	- '22408 92	+ '19753 85

Section (v). Values of A, $u_{\lambda} \zeta^{-1}/a\lambda$, $\iota z_{\lambda}/a\lambda$.

75. The following tables show the characteristics, arguments, and types of coefficients of the terms of the third order according to the scheme adopted in Chap. I., Section (iv). The numerical results are given below in the same order, and will be found in the §§ given in the first columns.

§	λ	Arguments.	Types of Coefficients in $u_{\lambda} \zeta^{-1}/a\lambda$.
76	e^3	2 <i>i</i> ±3e; 2 <i>i</i> ±e	$(\varepsilon'), (\varepsilon'^3); (\varepsilon^2 \varepsilon'), (\varepsilon \varepsilon'^2)$
77	e^2e'	$2i\pm(2c+m)$; $2i\pm(2c-m)$; $2i\pm m$	$(\epsilon^2\eta), (\epsilon'^2\eta'); (\epsilon^2\eta'), (\epsilon'^2\eta); (\epsilon\epsilon'\eta), (\epsilon\epsilon'\eta')$
78	ee'2	$2i \pm (c + 2m)$; $2i \pm (c - 2m)$; $2i \pm c$	$(\varepsilon\eta^2), (\varepsilon'\eta'^2) \; ; \; (\varepsilon\eta'^2), (\varepsilon'\eta^2) \; ; \; (\varepsilon\eta\eta'), (\varepsilon'\eta\eta')$
79	e'^3	$2i\pm3$ m; $2i\pm$ m	$(\eta^3),(\eta'^3)\;;\;(\eta^2\eta'),(\eta\eta'^2)$
80	$\mathrm{e}\mathrm{k}^2$	$2i\pm(c+2g)$; $2i\pm(c-2g)$; $2i\pm c$	$(\epsilon k^2), (\epsilon' k'^2); (\epsilon k'^2), (\epsilon' k^2); (\epsilon k k'), (\epsilon' k k')$
81	$e'\mathbf{k}^2$	$2i \pm (m + 2g)$; $2i \pm (m - 2g)$; $2i \pm m$	$(\eta k^2), (\eta' k'^2); (\eta k'^2), (\eta' k^2); (\eta k k'), (\eta' k k')$
82	$e^2 \alpha$	$2i_1 \pm 2c$; $2i_1$	$(\varepsilon^2 \alpha), (\varepsilon'^2 \alpha); (\varepsilon \varepsilon' \alpha)$
83	ee'a	$2i_1 \pm (c + m)$; $2i_1 \pm (c - m)$	$(\varepsilon\eta\alpha),(\varepsilon'\eta'\alpha);(\varepsilon\eta'\alpha),(\varepsilon'\eta\alpha)$
84	$e'^2\alpha$	$2i_1\pm 2\mathrm{m}$; $2i_1$	$(\eta^2 a), (\eta'^2 a); (\eta \eta' a)$
85	k²a	$_2i_1\pm _2\mathrm{g}$; $_2i_1$	$(k^2a),(k'^2a);(kk'a)$
86	ea ²	2 <i>i</i> <u>-⊢</u> c	$(\epsilon \alpha^2), (\epsilon' \alpha^2)$
87	$e'a^2$	$_2i\pm\mathrm{m}$	$(\eta u^2),(\eta' \alpha^2)$
88	α^3	$oldsymbol{2i_1}$	(a^3)

§	λ	Arguments.	Types of Coefficients in $\iota z_{\lambda}/a\lambda$.
89	ke ²	$\pm (2i + g \pm 2c); \pm (2i + g)$	$\pm(k\epsilon^2), \pm(k\epsilon'^2); \pm(k\epsilon\epsilon')$
90	$\mathrm{ke}e'$	$\pm \{2i + g \pm (c + m)\}$; $\pm \{2i + g \pm (c - m)\}$	$\pm(k\epsilon\eta), \pm(k\epsilon'\eta'); \pm(k\epsilon\eta'), \pm(k\epsilon'\eta)$
91	ke'^2	$\pm (2i+g\pm 2m); \pm (2i+g)$	$\pm (k\eta^2), \pm (k\eta'^2); \pm (k\eta\eta')$
92	k^3	$\pm (2i+3g)$; $\pm (2i+g)$	$\pm(k^3)$; $\pm(k^2k')$
93	keα	$\pm (2i_1+g\pm c)$	$\pm(k\epsilon a), \pm(k\epsilon' a)$
94	ke'a	$\pm (2i_1+g\pm m)$	$\pm (k\eta a), \pm (k\eta' a)$
95	ka^2	$\pm (2i+g)$	$\pm (ka^2)$

The following long-period terms have been obtained with the required accuracy by the method of Section (iii):—

Arguments.	Coefficients.
$\pm (-2 + 2c + m),$	$(\epsilon^2\eta)_{-1},(\epsilon'^2\eta')_{\scriptscriptstyle 1}$
$\pm (-2 + 2c - m),$	$(\epsilon^2\eta')_{-x},(\epsilon'^2\eta)_x$
±m,	$(\epsilon\epsilon'\eta)_\circ$, $(\epsilon\epsilon'\eta')_\circ$
$\pm (-1 + c - m),$	$(\epsilon \eta' a)_{-1}, \ (\epsilon' \eta a)_{1}$

The values of V_{λ} for these terms, obtained as shown in Section (ii), agreed, as far as they went, with the values obtained by Section (iii); this agreement furnished a valuable test.

Equation (8) of Chap. I. was used to obtain $(k\eta'^2)_{-1}$ with sufficient accuracy.

Preliminary values of the parts of the motion of the perigee and node having e^2 , e'^2 , k^2 , as factors were given in an Appendix at the end of Chap. IV. The values found below differ slightly from these. This is partly due to the fact that they have been re-ealculated by a different and more accurate method. In one case—that of g_{e^2} —an error was found in one of the final steps of the early calculations (where no test equation had been computed); this induced an error in c_{k^2} which was deduced from it by using the connecting relation which I gave in a paper, "Investigations in the Lunar Theory." * These two quantities having been re-calculated independently, and the values satisfying the relation just mentioned, they may be accepted as final.

^{*} Amer. Jour. Math., Vol. xvii. p. 349.

The numerical results now follow. The values of A_{λ} for the terms arising in u are given in two parts—those arising from the expansion of $\kappa u \zeta^{-1}/r^3$, denoted by K_{λ} , and those arising from $-\frac{\partial \otimes_1}{\partial s} \zeta^{-1}$, denoted by \otimes_{λ} . Then

$$\Lambda_{\lambda} = K_{\lambda} + \otimes_{\lambda}$$

except for the exponents $2i \pm c$, $2i \pm g$, where

$$B_{\lambda} = K_{\lambda} + \otimes_{\lambda}$$

The numbers are the coefficients corresponding to the power of ζ (that is, the argument) which is placed at the head of each pair of columns. The separation of A_{λ} , B_{λ} in z is unnecessary, as the parts arising from \otimes require but little calculation.

The suffix of i_1 is omitted in the tables. Further details concerning the results will be found in Chaps. I.-IV.

76. Characteristic e³.

 $\otimes_{e^3} = 0$. Values of

	$K_{e^{\pm}}$:	= A _e :.	$K_{\mathrm{e}^{3}}=B_{\mathrm{e}^{7}}.$				
i.	2i + 3c.	2i - 3c.	2i + c.	2i - c.			
5		+.00000 612	+.00000 012	+:00000 175			
4	+.00000 025	+:00025 037	+.00000 883	+.00000 139			
3	+.00001 201	+.00618 376	+:00046 189	+.00371 182			
2	+:00079 199	+:00932 740	+ 01879 136	+.08978 705			
1	+:03251 1864	-05285 4356	+:45337 5630	+.00093 0745			
0	+.79860 3673	+:09945 4882	- '29234 3773	09815 4555			
— I	- ·18057 2435	+.00264 8901	00031 9004	+.05851 8714			
-2	+.00415 328	+:00004 931	+:01207 313	+.00155 388			
-3	+.00086 991	+.00000 074	+:00031 268	+.00002 902			
-4	+.00002 123	obupping mightly stop.	+.00000 579	+.00000 048			
- 5	+.00000 0.40	PA P	+:00000 007				
Sum	+.65639 546	+.06506 716	+.19236 675	+ 05647 029			

Values of

$\left(\epsilon^{s}\right)_{i}$.		(€'°);	•)	(e*e')	ı.	(ee'')	
Manager Symmetric Control of the Con	w	+.00000	010	V-1		+.00000	002
		+.00000	701	+.00000	009	+.00000	138
+.00000	014	+.00038	889	+.00000	678	+.00009	907
100001	122	+.00176	65	+.00048	105	+.00528	276
+.00079	516	00218	478	+.02520	232	—·oo568	84
+ .04147	214	+.00522	993	04231	894	- 04231	894
03023	295	+.00004	365	+.01685	68	+.00328	278
+.00184	26	+.00000	052	+.00068	577	+ .00003	537
+.00004	509	+.00000	001	+.00000	497	+.00000	031
+.00000	032	decentaries de la constitución d		+.00000	006		
		manufacture from the control of the					
+:01393	37	+:00525	18	+.00091	89	03 931	56
	+ '00000 + '00001 + '00079 + '04147 - '03023 + '00184 + '00004 + '00000	+ '00000 014 + '00001 122 + '00079 516 + '04147 214 - '03023 295 + '00184 26 + '00004 509 + '00000 032	+ '00000 + '00000 + '00000 + '00001 + '00079 516 + '04147 214 - '03023 295 + '00004 + '00004 509 + '00000 + '00000 + '00000 - '00000 + '00000 + '00000 + '00000	+ '00000 010 + '00000 701 + '00000 122 + '00079 516 + '00176 65 - '00218 478 + '04147 214 - '03023 295 + '0004 365 + '00184 26 + '00000 052 + '00000 032	+ '00000 010 + '00000 701 + '00000 + '00001 122 + '00176 65 + '00048 + '00079 516 - '00218 478 + '02520 + '04147 214 + '00522 993 - '04231 - '03023 295 + '00004 365 + '01685 + '00184 26 + '00000 052 + '00068 + '00004 509 + '00000 001 + '00000 + '00000 032	+ ·00000 010 + ·00000 701 + ·00000 009 + ·00001 122 + ·00176 65 + ·00048 105 + ·00079 516 - ·00218 478 + ·02520 232 + ·04147 214 + ·00522 993 - ·04231 894 - ·03023 295 + ·00004 365 + ·01685 68 + ·00184 26 + ·00000 052 + ·0068 577 + ·00004 509 + ·00000 001 + ·00000 497 + ·00000 032	+ '00000 010 + '00000 010 + '00000 011 + '00000 701 + '00000 678 + '00000 + '00001 122 + '00176 65 + '00048 105 + '00528 + '0079 516 - '00218 478 + '02520 232 - '00568 + '04147 214 - '03023 295 + '00004 365 + '01685 68 + '00328 + '00184 26 + '00000 052 + '00000 497 + '00000 + '00000 032 + '00000 006

 $c_{e^2} = + .00268 571$

77. Characteristic e²e'.

Values of $K_{e^2e'} + \otimes_{e^2e'}$.

i.		2 <i>i</i> +	2e + m.			2 <i>i</i> —	2c-m.	
5			**************************************		+.00000	711	The second secon	
4	00000	044			+:00033	841		
3	— '00002	526			+.01105	768	00000	024
2	- '00120	655	00000	006	+:21675	309	00002	100
I	04218	737	00000	5532	'21126	OII	00007	0187
0.	- '74778	99 t	00046	3158	13819	518	00047	5411
— I	- '27045	446	00077	1829	00442	874	+.00046	0625
-2	+ .04960	312	00054	348	00009	192	+.00000	551
-3	+ .00141	627	00014	708	00000	152	+.00000	006
-4	+ '00002	806	00000	166	00000	003		
-5	+ .00000	046	00000	002	V (1)			
Sum	-1.01001	608	00193	282	-:12498	I 2 I	00010	c64

i.		2 <i>i</i> +	2c — m.	,			2 <i>i</i> -	-2c + m.	
5	+ .00000	004			0	0000	108		
4	+ .00000	249			0	0005	063		
3	+ .00013	421				1810	981	00000	024
2	+ .00280	739	00000	006	0	3489	248	- '00002	107
I	+ .19198	213	00000	5509	0	1655	646	- '00012	2352
0	+ '91682	513.	00046	0625	+.1:	8214	920	+:00208	0639
— I	02110	681	+.00047	5411	+.0	1811	441	00322	6913
-2	- '00724	120	+ .00002	019	+.0	0046	244	00003	856
- 3	- '00020	193	+ '00002	100	+.00	0000	837	00000	040
-4	00000	395	+.00000	024	+.00	0000	013		
— 5	00000	009							
Sum	+1.05280	741	+.00010	065	+.1	4741	409	-:00132	890

Characteristic e^2e' .

Values of $K_{e^2e'} + \otimes_{e^2e'}$.

i.		26	i+m.				2 <i>i</i> – m.	
5	00000	020			+ .00000	109		
4	oooo1	021			+ .00006	185		
3	00049	120	00000	002	+ '00284	107	00000	002
2	-01737	829	00000	227	+ .09173	506	00000	226
ı	—·32 0 01	822	00019	2836	+1.28586	47 I	00019	1967
0	-11424	811	+ .00014	0471	- 10877	253	+ '00072	5730
- 1	+ 27689	127	+ .00449	4856	- '06274	527	00072	5730
-2	+.01000	170	00134	464	00188	121	+.00019	197
-3	+ .00053	060	0000 I	580	00003	788	+.00000	2 26
-4	+ .00000	392	00000	016	00000	057	+.00000	002
- 5	+.00000	006			00000	100		
Sum	-·16441	868	+ .00304	960	+1.50406	631	0	

Values of

i.	$\left(\epsilon^2\eta\right)_i$. $\left(\epsilon'^2\eta'\right)_i$.		$(\epsilon^2 \eta')_i$.	$(\epsilon'^2\eta)_i$.	
5		+.00000 008		—.ooooo ooi	
4		+.00000 601	+ '00000 002	- •00000 099	
3	- ⁺00000 029	+ .00047 850	+ .00000 126	00006 734	
2	-·00002 19I	+.02396 981	+ 00011 095	-:00327 305	
I	00143 289	+ .03768 72	+ 00590 206	+ .02902 28	
0	- •06288 748	01411 942	+ .08337 053	+ .02431 890	
- I	-·1474I 25	00006 809	—·o3817 68	+.00036 494	
- 2	+.00695 047	-'00000 112	00113 005	+.00000 631	
-3	+.00001 714	—·00000 002	00000 207	+.00000 007	
-4	+:00000 036		00000 004		
- 5					
Sum	- '20478 71	÷ °04795 39	+ 05007 62	+.05037 16	

Mr. Ernest W. Brown, Theory of the

Characteristic e^2e' .

Values of

i.	(ε ε' η⟩ί•	(εε'η')į.
5		100 00000 +
4	- .00000 012	+ '00000 076
3	00000 929	+ '00005 597
2	- '00062 354	+ '00347 999
I	— '02957 776	+ 12638 533
0	- .19519 75	+ 14774 72
— I	+ '04554 004	- 00648 982
-2	+ '00017 353	- '00002 504
-3	+ .00000 307	- '00000 046
-4	+ '00000 co3	00000 001
-5		
Sum	– ·17969 15	+ '27115 39

78. Characteristic ee'2.

Values of $K_{ee'} + \otimes_{ee'}$.

			varues (. 1 − 65 e	era•					
i.	$2i+e\div 2m$.				ŧ	2i-c-2m.				
5			he Allan Anna		+	.00000	241		Nor	
4	+ .00000	017			+	.00013	651			
3	+ .00000	873			+	.00213	044	00000	014	
2	+ '00029	198	+ .00000	001	+	12386	659	00001	320	
1	+ .00371	387	00000	380	+	.09957	946	- '00120	073	
0	10101	661	00138	503	1	.03198	329	+ .00293	329	
I	+ .02016	537	+ .06034	441	+	.00023	064	- '00045	811	
2	+ .02162	607	01019	166	+	00002	797	00000	705	
-3	+ .00026	850	00010	231	+	,00000	062	00000	008	
-4	+ ,00001	033	- '00000	099	+	100000	001			
-5	+ .00000	018	00000	001	1					
Sum .	- '02463	141	+ .04860	062	+	19728	136	+ '00125	398	

 ${\it Characteristic}\ \ {\it ee'^2}.$

Values of $K_{ee^{i2}} + \otimes_{ee^{i2}}$.

i,	2i+c-2m.	2i-c+2m.
5	+ .00000 010	+ .00000 009
4	+ .00001 003	+ .00000 103
3	+ '00049 475	+ .00006 288
2	+ .01857 41700000 023	+ .00106 03100000 060
I	+ '38487 310 - '00004 615	- '01398 065 - '00028 638
0	+ .55041 66600544 464	+ .08802 983 + .01764 269
— I	- ·00540 404 - ·00018 882	+ .06570 34402534 819
-2	+ .00012 22400011 332	+ .00505 82300034 010
-3	+ .00000 63700000 128	+ '00003 953 - '00000 403
-4	+ '00000 014 - '00000 002	+ .00000 06300000 004
-5		+ ,00000 001
Sum	+ .62813 04400283 439	+ '14294 950 - '00836 674

		- w = - m.mm						-		
i.		2i+c.				2i - c.				
5	00000	005	-	7 7 7 16 18 1		- ,00000	073	TTTO-0774-0774-0784-084-00-036-044-036-0	The second secon	
4	00000	310				00003	719			
3	- '0 0 016	037				- '00153	051	00000	011	
2	00628	749	00000	043		- '03870	578	- ,00001	092	
1	- 14287	981	00003	572	.	- '14727	365	00093	229	
0	— '17975	583	00139	125	1.	06084	008	+ .01360	110	
I	- 	850	— '00761	209	1.	- '02253	804	+ .01000	4 5 5	
-2	00621	038	+ '00299	069		00064	816	+ .00015	062 -	
-3	- '00015	985	+ '00002	956		- ,00001	220	+ .00000	126	
-4	00000	283	+ .00000	029	A Bonnessen	00000	020	+ .00000	001	
-5	00000	005					-			
Sum	- '39344	826	00601	895	1 .	52161	654	+ .02278	422	

ROYAL ASTRON. Soc., Vol. LIII.

Characteristic ee'^2 .

Values of

i.	$\left(\epsilon\eta^2 ight){}_{i}.$	$(\epsilon'\eta'^2)_i$.	$(\epsilon\eta'^2)_i$.	$(\epsilon'\eta^2)_i$.
4		+ '00000 210	+ ,00000 010	
3	+ .00000 011	+ .00012 848	+ .00000 759	- '00000 227
2	+ .00000 279	+ *00994 322	+ .00020 404	- '00051 717
1	- '00000 203	+ '36932 90	+ '02381 252	10115 01
0	- '05024 49	+ 10676 52	+ 14026 79	- '23325 20
- I	- ·78467 70	- ·0000I 322	+ '29493 28	- '00039 221
-2	- '00147 012	+ .00000 026	+ .00003 622	+ '00003 448
-3	+ '00000 949	+ .00000 +	00000 018	+ '00000 047
-4	+ .00000 013			The state of the s
Sum	83637 85	+ '48618 51	+ '45956 44	- '33525 78

i.	(ϵηη');.	$(\epsilon'\eta\eta')_{\iota}.$
4	- '00000 003	— ·ooooo o59
3	00000 236	— .00004 352
2	00016 176	- '00264 878
ı	- '00797 920	- ·o8755 9o
0	02023 661	02023 661
I	+ 14228 77	+ '00040 089
-2	+ '00037 254	- '00000 957
-3	— ·ooooo 231	- '00000 014
-4	- '00000 003	
Sum	+ '11427 79	- '11009 73

79. Characteristic e'^3 .

Values of $K_{e^{\prime 3}} + \otimes_{e^{\prime 3}}$.

i.		2 <i>i</i> +	- 3m.		2i-3m.				
5					+.00000	026			
4	00000	001			+.00001	439			
3	+.00000	003			+.00063	617	00000	001	
2	+:00002	943	00000	001	+:01785	243	00000	180	
I	+:00165	270	00000	866	+:04256	833	00017	494	
0	+:02364	0522	00875	9209	+.01905	8519	- '01 242	3782	
— I	+:00827	230	-18242	850	+:00027	208	00041	049	
-2	+:00292	678	00129	328	+.00000	321	00000	047	
-3	+.00006	929	'00001	486			+.00000	001	
-4	+.00000	116	,00000	014					
-5	+.00000	002							
Sum	+.03659	222	19280	466	+:08037	539	01301	148	

i.	$2i+\mathrm{m}$.				2 <i>i</i> −m.				
5	+.00000	001			00000	010			
4	+.00000	066			00000	629			
3	+ .00002	869			00028	158	00000	001	
2	+.00072	679	00000	001	00825	586	00000	123	
r	+.00088	954	00002	564	04906	880	00011	396	
0	02263	5731	00385	1214	02019	3073	-:00275	2931	
I	- .00919	324	+.08674	5 6 1	+.00009	023	00087	633	
-2	00124	392	+.00067	905	+.00010	367	00005	386	
-3	00002	899	+.00000	633	+.00000	278	00000	064	
-4	00000	051	+.00000	005	+.00000	002			
- 5									
Sum	03145	670	+.08355	418	—·o776o	900	00379	896	

Characteristic e'3.

Values of

i.	$(\eta^3)_i$.	$(\eta'^3)_i$,	$(\eta^2\eta')_i.$	$(\eta\eta'^2)_{m i}.$
4		+.00000 021	+.00000 001	00000 008
3		+.00001 650	+.00000 026	- •00000 655
2	 00000 004	+'00113 404	+.00002 762	- •00044 497
r	00003 123	+.05909 118	+ 00021 277	—·02145 800
0	- 04032 334	+ 06189 440	- •00900 66	- ·00500 46
I	- .26598 707	-'00002 034	+.08932 148	00064 950
- 2	+.00004 936		'00001 321	+.00000 032
-3	+'00000 132		00000 049	+ .00000 003
-4	+.00000 001	The state of the s		
Sum	30629 099	+.15511 269	+.08054 21	—·o2756 33

80. Characteristic ek².

\otimes_{ek^2} =0. Values of K_{ek^2} = A_{ek^2} .

i,	2i+c+2g.	2i-c-2g.	2i+c-2g.	2i-c+2g.
5		+ '00000 043	+'00000 002	+ '00000 001
4	+.00000 00	+ '00002 579	+ '00000 223	+ '00000 066
3	+:00000 333	+ '00117 070	+:00013 299	+ '00004 388
2	+ 00022 70	+ .02820 996	+ .00612 433	+ '00236 501
ı	+ 01269 44	.0 - 13388 3190	+15651 5020	+ '07579 4392
0	+:46462 68	0 +1.31574 3309	- 43104 1098	-1.33711 7389
- I	45325 810	0 + .02784 3049	+:25309 9644	+ '05938 0541
-2	+.01230 676	+ '00041 405	+.00545 699	+ '00187 632
-3	+.00036 210	+ '00000 526	+.00008 172	+ '00003 410
- 4	+.00000 66	+ .00000 000	+.00000 106	+ '00000 049
-5	+.00000 000	1	+.00000 001	
Sum	+ .0 3696 913	+1.53925 945	00959 709	-1·19762 199

 ${\it Characteristic~ek^2.}$

 $\otimes_{ek^i} = 0$. Values of $K_{ek^i} = B_{ek^o}$.

i.	2i + c.	2i-c.
5		—·ooooo oo5
4	'00000 025	'00000 313
3	- '00001 523	-·ooo15 379
2	'00072 658	00524 052
I	02123 4090	- 09199 9007
0	03507 4881	02732 4124
— 1	04932 6078	+.06866 6563
-2	+ 01296 733	+.00145 824
-3	+.00028 345	+.00002 175
4	+.00000 425	+.00000 028
-5	+.00000 007	
Sum	-·o9312 201	- °545 7 379

Values of

î.	$(\epsilon k^2)_i$.		$(\epsilon' k'^2)_i$.			$(\epsilon k'^2)_i$.		$(\epsilon'k^2)_i$.	
4			+.00000	053	1	+.00000	002		
3			+.00004	989	ł	+.00000	085	*00000	008
2	+,00000	027	+.00382	36		00001	633	-,00001	355
J	+ '00002	256	01711	531		02889	967	-*00235	066
0	+ .00138	r 66	+:24987	870		+.64704	18	- 46343	59
I	-·07 I 20	080	+.00146	418		+.05538	425	+ 17077	937
-2	+.00889	2 1	+.00001	008		+.00030	609	+:00029	727
-3	+.00002	331	+.00000	007		+.00000	207	+.00000	136
-4	+.00000	030				+.00000	002	+.00000	002
Sum	-·o6o85 o	56	+.23814	17		+.67381	91	- '29472	22

Characteristic ek².

Values of

i.	$(\epsilon k k')_i$.	$(\epsilon'kk')_i$.
4		00000 013
3	00000	o41 −·oooo1 274
2	00003 7	797 — 00130 683
I	-:00279 1	137 —13063 320
0	-01298 6	6 40 − .01298 640
— r	+.50845 0	990 + 01621 815
-2	+ .00369 5	243 +·00008 801
-3	+.00001 8	4.00000 029
-4	+.00000 0	012
Sum	+ '28662 4	-·12863 254

 $c_{k^2} = + .05385$ 595

81. Characteristic e'k2.

Values of $K_{e'\mathbf{k}^2} + \otimes_{e'\mathbf{k}^2}$.

1	1									
i.	Transfer of the second of the	2i+m+2g.				2i-m-2g.				
5					+.00000	015				
4	00000	001			+.00000	870				
3	00000	05 T			+ .00043	519	00000	100		
2	00001	838			+.01232	953	00000	099		
ı	+.00038	7658	00000	0271	-:24500	7602	*00020	8242		
0	+:09673	8490	00005	9900	+:09029	2445	00529	7319		
- r	29235	4798	03343	2753	00832	9223	+.00000	0725		
-2	+.00803	763	00148	971	00018	592	+.00000	004		
-3	+.00014	185	00000	704	00000	278				
-4	+.00000	255	00000	005	00000	004	4			
-5	+.00000	003			-					
Sum	-:18703	549	03498	972	12042	955	00550	580		

$Characteristic\ e'{\bf k^2}.$

Values of $K_{e'\mathbf{k}^2} + \otimes_{e'\mathbf{k}^2}$.

i.		2 <i>i</i> + m	1-2g.		Opening the second seco	2i – n	n + 2g.	-
5	00000	002						
4	00000	210			+.0000	00 012		
3	00011	304	'00000	001	+.000	00 679		
2	00357	523	00000	105	+.000	35 223		
1	+.10356	8572	- '00024	0255	+.0110	07 0715	00000	0040
0	- 12143	6400	00164	8838	-'114	12 7077	00000	0725
— I	+ .06401	3724	00006	4252	+.108	78 3159	+ .00229	7319
-2	+.00135	509	00000	051	'003.	44 466	+.00020	824
-3	+ '00002	016			0000	5 398	+.00000	099
-4	+.00000	028			000	00 067	+.00000	001
- 5								
Sum	+ '04353	104	-:00195	492	+ '002	58 66 3	+ .00220	579

i.	2i + m.			$2i-\mathrm{m}.$				
5				The Particulation	beautiful and the second and the sec			
4	00000	037			+.00000	015		
3	00003	183		1	+.00003	380		
2	00228	182	+.00000	013	+ .00379	855	+.00000	014
1	-:11219	5215	+.00001	8123	+ '24359	2093	+.00005	1752
0	+01112	0432	+.00210	9609	+.01082	3449	+.00530	5862
- r	+:24707	3790	+ .03394	4779	- 11769	1816	00530	5862
-2	+.00645	043	+ '00014	863	00193	573	00002	175
-3	+.00010	319	+.00000	095	− '00002	555	00000	014
-4	+.00000	141	+.00000	100	00000	031		
-5	+.00000	002		1				
Sum	+.12021	004	+ 03622	223	+ '1 3862	464	0	// · · · · · · · · · · · · · · · · · ·

Characteristic $e'k^2$.

Values of

î.	$(\eta k^2)_i$.	$(\eta' k'^2)_i$.	$(\eta \lambda'^2)_i.$	$(\eta' k^2)$ i.
4		+.00000 016	00000 002	
3		+ '00001 505	00000 389	+.00000 001
2	00000 00I	+ '00143 501	00047 166	+.00000 116
r	+.00000 630	+10274 226	- 07635 55	+.00008 216
٥	+ 00163 202	+ 04278 164	08014 891	+ 00269 177
I	21446 825	-·ooo81 115	+.00666 731	+12718 46
-2	+ 00412 476	-·ooooo 673	+ 00005 120	- 00186 746
-3	+ 00001 413	00000 006	+ 00000 039	'00000 421
-4	+.00000 000	1		—·ooooo oo4
Sum	20869 096	+.14612 618	15026 11	+.12809 10

i.	$(\eta k k')_{i*}$	$(\eta'kk')_i$.		
4		-,00000 001		
3	+.00000 042	00000 270		
2	+.00004 801	'00025 922		
I	+ .00488 835	-·o2176 661		
0	+:48307 75	52538 39		
— r	+:24918 465	08400 495		
-2	+.00062 213	—·ooo16 o48		
-3	+.00000 383	00000 081		
-4	+.00000 003			
Sum	+.73785 86	- 63157 87		

82. Characteristic $e^2\alpha$.

Values of $K_{e^{2}a} + \otimes_{e^{2}a}$.

2 <i>i</i> ,	2i	+ 2 e.	2i-2c.	
9	+ .00000 001		- '00001 077	
7	+ '00000 074		- ·ooo82 168 - ·ooooo 035	ŗ į
5	00008 103	00000 000	- '03612 906 - '00002 740)
3	01022 020	- '00000 799	- '06573 304 + '00014 077	,
ı	- 56564 675	00001 101	+ '18304 866 - '00221 738	;
r	+ '57575 118	+ .00081 505	- '07199 098 + '00283 928	;
-3	- '02847 660	00807 22	- ·ooo53 429	i
-5	- '00534 300	+ .00064 919	+ '00000 433 - '00004 003	
-7	- '00006 515	- '00013 766	+ '00000 021 - '00000 043	
-9	- '00000 042	— '00000 173	and the second s	
Sum	- '03463 152	00737 189	+ '00783 338 - '00237 460	deconogrami

2 <i>i</i> ,	The state of the s	2i.
9	- '00000 031	
7	00004 021	- '00000 004
5	00628 904	- '00000 328
3	- '29 3 81 090	- '00025 250
ı	- 17424 233	+ '00173 425
I	- .06079 808	- '00562 393
-3	- °04075 791	+ '00820 455
-5	- '00043 426	- '00126 848
-7	– '00000 129	- '00001 642
-9	+ '00000 003	00000 018
Sum	- '57640 463	+ '00277 397

ROYAL ASTRON. Soc., Vol. LIII.

Characteristic $e^2\alpha$.

Values of

2i.	$(\epsilon^2 lpha)_i$,	$(\epsilon'^2\alpha)_i$.	$(\epsilon \epsilon' \alpha)_i$.
9		- '00000 017	
7	+ '00000 002	- '00002 360	- ,00000 100
5	00000 099	00247 899	- '00016 334
3	- '00025 786	- '06279 45	- '01741 144
I	 03029 187	07046 35	- .10960 28
- r	+ 12685 76	- '00347 720	+ '21027 9
-3	+ .11221 33	- '00016 375	- '00049 006
-5	- '00010 571	00000 080	- 00007 754
-7	- '00000 946	00000 001	— '00000 038
-9	— .00000 006		
Sum	+ '21170 50	- '13940 25	+ '08252 9

83. Characteristic ee'a.

Values of $K_{ee'a} + \otimes_{ee'a}$.

2 i.	$2i + \epsilon$. 1. m	2 <i>i</i> -c-m.			
	21.7	7 111.	21-0	21-c-m.		
9	+ '00000 05		+ .00000 10			
7	+ '00003 67		- '00008 15	- '00000 021		
5	+ '00250 00	+ '00000 004	– . 01113 14	- '00001 929		
3	+ '13660 87	+ .00000 191	- '33312 49	00120 624		
1	+ 4.65374 56	- .00038 845	 1545 7 19	+ '01267 384		
-1	- '19743 34	+ '00791 743	+ '93078 13	+ .00811 227		
-3	— ·06923 50	+ '09670 148	+ .01215 20	+ .00880 652		
-5	- '00082 91	- '01012 338	+ .00018 99	+ .00009 282		
-7	+ .00001 12	— ·00011 510	+. 00000 21	+ .00000 001		
9	+ '00000 04	- '00000 117		+ .00000 001		
Sum	+ 4.52540 59	+ '09399 246	+ '44719 05	+ *02816 330		

Characteristic ee'a.

Values of $K_{ee'a} + \otimes_{ee'a}$

2i.	2 <i>i</i> +	e-m.	2i-c+m.
9	+ .00000 06		+ '00000 75
7	+ .00001 84	00000 001	+ '00050 84 + '00000 001
5	+ '00022 61	00000 083	+ '02742 74 + '00000 061
3	01926 58	- '00007 155	+ '90964 64 - '00004 517
I	- '37493 92	- '00415 929	- ·80846 72 + ·00545 089
-1	- .79391 61	+ .00386 259	- ·o ₇₅₃₇ 94 + ·o ₁₉₂₃ 289
-3	+ '19032 70	- '01502 541	+ '00025 71 - '03283 987
-5	+ .00311 02	+ '00197 731	+ '00010 73 - '00044 785
-7	+ '00003 94	+ .00001 000	+ .00000 5800000 482
-9	+ '00000 04	+ .00000 020	+ .00000 0100000 002
Sum	– •99469 57	- '01339 400	+ '05411 04 - '00865 339

Values of

2 <i>i</i> .	$(\epsilon\etalpha)_i.$	$(\epsilon'\eta'\alpha)_i$.	$(\epsilon\eta'\alpha)_i$.	$(\epsilon' \eta \alpha)_i$
9	***************************************			+ '00000 01
7	+ .00000 02	00000 19	+ '00000 02	+ .00000 96
5	+ '00004 40	00021 00	+ .00000 43	+ '00099 47
3	+ .00454 88	- '05773 38	- '00053 32	+ '09020 60
r	+ '40017 48	- 13184 7	- '04137 23	+ '32607 7
-ı	+ .01876 3	+ .13596 59	- '78645 2	+ '01623 91
-3	+ 11064 27	+ '00107 47	+ '01255 04	- ·oo345 75
- 5	- '00122 87	+ 00000 51	+ '00025 44	- '00001 33
-7	- '0000 0 40	+ .00000 01	+ .00000 12	
- 9				
Sum	+ '53294 1	- '05304 8	— ·81554 4	+ '43005 6

84. Characteristic e'2a.

· Values of $K_{e^{\prime 2}a} + \mathfrak{Q}_{e^{\prime 2}a^*}$

2i.	$2i+2\mathrm{m}$,			2 <i>i</i> -2m.				
9	00000	030			+,00000	124		
7	00001	921			+.00003	767	00000	002
5	00108	806	00000	011	00018	847	-,00000	286
3	04289	260	00001	784	08297	640	00026	318
1	49418	300	00443	201	07733	041	- ·01694	340
- I	02683	885	+.00621	162	- 15682	286	+.00130	863
-3	01458	690	50109	340	00657	451	+.00001	217
-5	+ '00020	815	'00201	2 I 2	00010	781	00001	889
-7	+.00000	792	00001	913	00000	141	'00000	025
-9	+.00000	015	00000	018	00000	002		
Sum	- '57939	270	20103	317	32396	298	01290	780

2i.			2 i.		county Promises and Promises an
9	+.00000	163	annangananga p aga njadahan kabulan dalah di dian Milaba		
7	+.00011	559			
5	+.00672	559		+.00000	012
3	+ .25523	830		-'00001	306
1	+.50942	997		00212	710
-1	+17913	588		00450	279
-3	+ .04356	335		+ .06839	549
-5	+.00066	997		+.00060	357
-7	+.00000	796		+.00000	560
-9	+.00000	007		+.00000	006
Sum	+ .99488	831		+ .05933	189

Characteristic $e'^2\alpha$.

Values of

2 <i>i</i> .	$(\eta^2 a)_i$.		$(\eta'^2 lpha)_{i}$.		$(\eta\eta'\alpha)_i$.	
7	'00000	02	+.00000	II	+.00000	15
5	'00002	75	+.00006	42	+ '00015	08
3	00236	65	+.00181	74	+ '01214	19
1	10866	00	+ .07247	89	+ .01284	7
- r	22746	69	+ 06296	01	+ .24960	2
-3	05932	75	00033	14	+.02080	95
-5	00010	54	00000	31	+.00004	58
-7	00000	03			+.00000	02
Sum	- '39795	43	+:13698	72	+.29562	9

85. Characteristic $k^2\alpha$.

Values of $K_{\mathbf{k}^2a} + \mathfrak{Q}_{\mathbf{k}^2a}$.

2i.	2i + 2g.			2i+2g. $2i-2g.$			AMAZZARIKO Asiningan istorika da kalendarika da kalendarika da kalendarika da kalendarika da kalendarika da ka	
9	CONTRACTOR OF THE STREET		del y y et del filologica (et filologica) y en emperatura del comunidad en et land de distribuir, este distribuir	ur. anna da Linda de Caración de Prima de Caración de	00000	019		***************************************
7	'00000	039			00001	583	'00000	001
5	'00003	127			-'00107	524	00000	139
3	00219	273	00000	028	02025	402	00023	440
I	10174	5302	00002	1640	+.07691	4545	00386	808 3
-ı	+ 31567	8728	01403	7700	30025	2743	01234	2006
-3	00281	851	02319	39 I	- '00124	397	00008	150
-5	00082	686	00111	28 1	+ .00001	569	00000	o6 0
-7	00000	723	. 00000	681	+.00000	043	00000	001
-9	00000	007	00000	005				
Sum	+ .50802	637	03839	320	24618	133	01652	800

Characteristic $k^2\alpha$.

Values of $K_{\mathbf{k}^{c_a}} + \mathfrak{S}_{\mathbf{k}^{c_a}}$.

2 i.			2 <i>i</i> .	e commendado en esta como como en esta esta en esta en esta en esta en esta en esta en entre de entre de entre	
9	,00000	013			
7	00000	700			
5	00034	902		+.00000	018
3	01038	934		+ '00002	577
Ι	+ .05314	0982		+.00381	1636
- 1	+ .04282	1667		+:02680	3012
-3	03191	55I		+ .02342	170
-5	00027	549		+.00014	068
— 7	00000	145		+.00000	098
-9				+.00000	001
Sum	+ :05302	471		+ .02420	397

Values of

2i.	$(k^2lpha)_i.$	$(k^{i_2} \alpha)_i$.	$(kk'\alpha)_i$.
9		00000 002	
7		—·ooooo 229	+ .00000 012
5	+.00000 011	- '00037 096	+ '00002 509
3	+.00001 162	- 07251 89	+ .00430 805
r	+ 00131 775	- . 43498 445	+ .84123 81
— r	+.18884 734	06346 523	-2.33191 84
-3	+.16000 08	00005 398	- '0024 4 631
-5	00041 866	+.00000 052	- .00000 465
-7	- .00000 086		+ .00000 001
-9	'00000 00 I		
Sum	+ 35065 81	- '57139 53	—1 .48879 80

86. Characteristic ea².

Values of $K_{ea^2} + \otimes_{ea^2}$.

i.	2i+c,			2i-c.				
5	No.				+.00000	05		
4	+.00000	24			+:00002	45	00000	02
3	+ .00015	3 6	00000	01	+:00117	89	00000	22
2	+ .00520	57	-·00001	19	+ '04732	91	-'00023	56
r	+.16389	96	-'00121	83	+:07138	99	+ '00490	20
0	- 13821	47	+.00035	22	- 04822	18	+ .00736	36
-1	+:02858	03	+.01208	22	+.02221	98	+ '00169	14
2	+.00750	77	+.03393	88	+.00062	41	00922	16
-3	+.00013	52	00184	24	+.00001	36	80000'-	67
-4	+.00000	23	00001	63	+.00000	02	00000	08
- 5	+.00000	01	000000	01				
Sum	+ .06723	22	+:04328	4 T	+ .09455	88	+ '00440	99

Values of

i.	$(\epsilon lpha^2)_i$.	$(\epsilon'\alpha^2)_i$.
4		+.00000 04
3	+.00000 22	+.00003 11
2	+.00012 11	+00229 11
I	+.00899 23	+.10121 1
0	 01666 28	- ∙01666 28
-ı	22632 4	+ .00183 95
-2	+.00943 38	- 00054 38
-3	00011 98	— '00000 2 I
- 4	-·00000 c4	
Sum	557421 0	+.08846 4

 $e_{x^2} = -.02212$ 6.

87. Characteristic $e'a^2$.

Values of $K_{e'a^2} + \otimes_{e'a^2}$.

i.	2i + m.			2 <i>i</i> – m.				
5	and the second s				+ .00000	02		
4	+ .00000	OI			+.00000	56		
3	80000	40	00000	01	+.00013	63	-,00000	07
2	- '01320	15	,00001	42	00223	69	00008	17
I	-1.06476	55	00361	78	+ '04455	94	00852	49
0	+ '23300	345	00545	494	+ '20737	158	00450	490
- I	+ '00948	95	'01227	27	- '21793	97	+ .00700	56
-2	- '00075	36	08834	34	00061	52	+.01108	38
-3	+ '00003	33	00070	66	+.00000	45	+ .00002	95
-4	+ .00000	08	00000	56	+.00000	01	+.00000	04
-5								
Sum	83627	74	-'10941	53	+.03158	59	+.00203	7 I

Values of

i.	$(\eta lpha^2)_i$.	$(\eta'\alpha^2)_i$.
4	The state of the s	+.00000 oI
3	00000 22	+.00001 12
2	00051 33	+.00063 84
1	- ⋅09673 62	+ 00542 42
0	+.05209 5	+ 07246 1
1	—·o1o35 45	- 02641 18
-2	- 01043 59	+ .00131 14
-3	00002 64	+ 00000 27
-4	 '00000 02	
Sum	- °06597 4	+.05343 8

Characteristic α^3 . 88.

Values of

 $K_{a^3} + \otimes_{a^3}$.

2 <i>i</i> .			2 <i>i</i> .	
7	00001	2		
5	00094	2	'00	0 1000
3	'01711	5	00	141 9
1	+.00371	9	00	396 6
- r	+.00142	4	00	726 8
-3	00256	8	01	1393 I
-5	00013	0	01	353 6
-7			00	0008 9
Sum	—·o1562	4	-·oz	1021 9

2i.	$(lpha^3)_i$.		
7	+.00000	I	
5	+,00001	5	
3	00125	9	
I	- 09620		
-r	+ . 27025		
-3	00349	9	
-5	00082	8	
-7	00000	2	
Sum	+ •16845		

Characteristic k³. 89.

Values of

	$A_{\mathbf{k}^0}.$	$B_{\mathbf{k}^{\mathrm{q}}}$,	$(k^3)_i$.	$(\check{k}^2k')_i.$
i.	2 i + 3g.	2i+g.		
5 4		00000 010		- '00000 00014
3	+ 00000 007	00000 744	+.00000 00000	'00000 0164
2	+.00000 543	00049 643	+.00000 0111	'00002 1515
ı	+.00036 1540	02324 4118	+ 00001 4145	- 00277 8178
0	+.01675 5677	01731 6970	+ 00168 5259	0
I	02777 8633	+.00363 2982	- 06974 485	-°01224 585
-2	+.00186 956	00042 284	- 00158 665	- 00007 8594
-3	-·oooo1 059	00000 958	—·ooooo 620	- '00000 0527
-4	00000 048	-'00000 014	- '00000 0039	— '၁००००
-5	·oòooo oo1		00000 00002	
Sum	—·oo879 744	03786 464	06963 822	—·01512 483

g_{k³}=-·oo8o6 6255. ROYAL ASTRON. Soc., Vol. LIII.

90. Characteristic ke².

Values of

		$B_{ m ke^2}$.	
<i>i</i> .	2i+g+2c.	2i+g-2c.	2 <i>i</i> + g.
5		+.00000 036	+.00000 002
4	+:00000 012	+ '00002 174	+:00000 360
3	+.00000 010	+:00106 751	+.00022 053
2	+:00056 581	+ .03177 374	+.01086 142
ı	+.02815 3088	00388 7463	+.32763 8723
0	+.86762 4162	+:00460 5675	+.00651 0052
- r	01571 9318	02414 0044	+ 00267 1924
-2	+:00148 491	00079 507	- •00902 610
-3	 00085 550	-·oooo1 611	
-4	00002 977	'00000 025	00000 62I
- 5	00000 063		00000 010
Sum	+.88123 197	+.00863 009	+.33856 875

Values of

i.	$(k\epsilon^2)_i$.	$(\lambda \epsilon'^2)_i$.	$(k\epsilon\epsilon')_i$.
5		+.00000 00048	+.00000 00004
4	+.00000 00010	+.00000 0487	+:00000 00463
3	+:00000 01131	+.00004 8331	+:00000 4718
2	+.00001 1286	+ 00427 6263	+ .00046 0120
T *	+.00112 1329	+ .01675 340	+.03928 1120
0	+ 09379 8299	- .08141 572	0
I	- •04400 679	00307 9003	00716 888
- 2	-·00161 311	00003 4589	00124 5876
-3	-·ooo13 5500	- 00000 0350	00001 4005
-4	- ·00000 1470	00000 00032	00000 0141
-5	00000 0015	1	00000 00013
Sum	+.04917 444	- • 06348 088	+ '03131 713

 $g_{e^2} = + .00318 6183.$

91. Characteristic kee.

Values of $A_{\text{ke}e'}$.

i.	2i+g+c+m.	2i+g-c-m.	2i + g + e - m.	2i+g-c+m.
5		+ .00000 021	+.00000 001	00000 003
4	—·ooooo 014	+.00001 399	+.00000 096	—·ooooo 205
3	-:00001 008	+.00076 253	+ ·00006 148	-:00011 203
2	- .00054 981	+ :02945 645	+.00318 851	00437 856
T.	02125 360	+.39674 479	+.10486 822	06183 438
0	28354 837	 26071 788	+:33223 139	+.29819 178
—I	+.35289 056	+ .03417 336	03919 252	05967 106
-2	- 01531 540	+.00126 893	+ .00654 802	00435 546
-3	00103 612	+.00002 634	+.00025 093	- 00011 193
-4	—·oooo2 518	+.00000 041	+.00000 224	00000 203
-5	- .00000 045		+.00000 000	- .00000 003
Sum	+.03116 138	+.50125 913	+.41096 206	+16772 422

Values of

i.	(k∈η)) _i .	(λε'η	') _i .	(λ∈η'	$)_i$.	(<i>k</i> ∈'η));.
5			+.00000	00023	+.00000	00001	00000	00003
4	,00000	00014	+.00000	02390	+.00000	00099	00000	00336
3	00000	01579	+ .00003	3817	+.00000	09940	00000	3300
2	00001	5276	+.00220	1482	+.00009	2083	00029	9393
ı	'00132	5491	+15623	236	+:00707	5760	-:02027	447
0	- ∵07509	456	+ .2 2035	892	+.10622	739	25455	973
1	31367	703	+ '01194	449	+ .03225	857	02563	651
-2	01000	189	+.00000	4212	+.00276	085	00033	4698
-3	00009	1842	+.00000	0822	+.00003	0390	00000	355 ²
-4	00000	0874	+.00000	00070	+.00000	0174	00000	00351
— 5	-•00000	00083	Police of the Control		+.00000	0002	00000	00003
Sum	'40020	713	+.39082	635	+ 14846	622	30111	172

92. Characteristic ke'2.

Values of

i.	A	1 _{ke'2} .	$B_{\mathrm{k}e^{i2}}$.
	2 <i>i</i> + g + 2m.	2 <i>i</i> +g-2m.	$2i+\mathrm{g}.$
5		+.00000 002	
4	+.00000 003	+.00000 220	00000 061
3	+.00000 163	+ .00012 938	00003 696
2	+ '00005 277	+ .00598 953	00170 201
1	-·ooo18 o37	+15607 842	-·04382 8741
0	+ 00147 449	00328 213	+.01075 1875
I	+ 15457 297	- ⋅00057 354	- 04205 6780
-2	—·00623 77I	00027 313	+ 00314 314
-3	- '00023 118	00000 738	+ 00009 501
-4	00000 469	, —·ooooo o14	+ .00000 183
-5	00000 009		+ '00000 002
Sum	+:14944 785	+:15806 323	-:07363 323

Values of

i.	$(k\eta^2)_i$.	$(k\eta'^2)_i$.	$(\lambda \eta \eta')_i$.
5		+.00000 00003	0000 0000I
- 4	+ .0000 00004	+:00000 00293	00000 00079
3	+.00000 0032	+:00000 2898	- •00000 0786
2	+.00000 1954	+ .00027 1352	- 00007 1657
1	00002 8799	+.02119 6537	- .00525 9644
0	 00455 928	+ .00832 47	0
-1	-·25292 577	+ .02434 304	+12438 368
2	00147 2986	+ '00000 4232	+.00064 3737
-3	00001 3120	00000 0173	+.00000 2169
-4	00000 0120	—·00000 0002	+ .00000 0046
-5	00000 00013		+.00000 00003
Sum	25899 812	+.05414 26	+ 11970 054

 $g_{e'^2} = + .00564 6535.$

93. Characteristic kea.

Values of

2 i.	A	kea•	(//·ea) ; .	$(k\epsilon'a)_i$.	
	2i+g+c.	2 <i>i</i> + g - e.			
9	100 00000.+	+.00000 012	+,00000 00001	+ .00000 00012	
7	+ .00000 102	00000 684	+ '00000 00117	00000 0196	
5	+ 00001 277	- 00141 686	+ .00000 0096	'00006 6448	
3	- '00397 241	10868 994	—·ooo17 88o6	- 01376 9493	
Ţ	-:40314 298	+ 00080 657	- ∵0.4580 8867	—·01190 80	
-1	+ '00752 301	- .01874 851	+.04850 79	+ '09203 77	
-3	03088 873	+.01680 051	+ 06482 90	+ 00233 1866	
-5	+ 00382 908	+ 00023 291	+:00067 3777	+ .00001 1263	
- 7	+:00006 094	+ .00000 141	+ 00000 3486	+.00000 0041	
-9	+ .00000 022	-'00000 002	+.00000 0017	00000 00003	
Sum	-· ₄₂₆₅₇ 671	-11093 092	+ 06802 66	+ 06863 70	

94. Characteristic ke'a.

Values of

2 <i>i</i> .	$A_{\mathbf{k}\psi\alpha}$.		$(\lambda \eta \alpha)_i$.	$(\lambda \eta' a)_{i}$.
	2i+g+m.	2i+g-m.		Y 0,000
9	+ '00000 007	+ .00000 012	+.00000 00008	+ .00000 00012
7	+ .00000 686	+ '00000 797	+ 00000 01232	+ '00000 01283
5	+ '00057 193	+ '00028 744	+ .00001 82526	+ '00000 8209
3	+ .03963 137	+ .00232 832	+.00285 0132	+ '00013 6733
ı	+1.80162 111	- 00466 404	+.21292 301	00839 428
1	05655 671	+1.79013 231	+ 04334 669	-1.51928 973
-3	+ .03667 959	- '03946 234	+ 01706 372	- '02090 548
-5	+ '00051 28.4	- •00099 194	+ .00005 4299	00009 7841
-7	00000 093	00001 460	+.00000 0000	- '00000 0584
-9	00000 014	00000 019	00000 00013	00000 00037
Sum	+1.82246 599	+1.74762 311	+:57625 629	-1.54854 285

95. Characteristic ka2.

Values of

·	· · · · · · · · · · · · · · · · · · ·		
	$B_{\mathbf{k}a^2}$.	* 100	/1 %
	2 <i>i</i> +g.		(ka^2) .
4	+ 00000 07	4	+ 00000 0009
3	+ 00004 57	3	+ 00000 098
-2	+ 00228 18	2	+ 00009 683
1	+ 07204 28	1	+ 00862 452
o	+ 02497 59	o	, o
—r	+ 02728 33	-i	- 07777 0
-2	- '00073 96	-2	- 00023 555
-3	- 00003 63	=3	- 00000 214
-4	00000 08	-4	- 00000 002
Sum	+ 12585 35	Sum	06928 5

 $g_{\alpha} = + \circ 1110 \quad 58$ (To be continued.)

Haverford College, Pa., U.S.A.: 1899 January 21.

Errata in Part I.

```
Page 45, line 11, for "a'" read "a'."

" 63, last line, for "\frac{3}{2} m^2" read "\frac{3}{2} m^22-\frac{3}{2}."

" 69, line 9, for "; " read ",".

" 75, line 4 from bottom, for "(...)" read "(...)"."

" 107, line 10, for "-00585 014" read "-00585 0139."

" " 11, for "-01024 957" read "-01024 9560."

" " 12, for "+02515 958" read "+02515 9581."

" " 17, for "+00898 090" read "+00898 0914."

" 116, Appendix. See corrected values given above.
```

Theory of the Motion of the Moon; containing a New Calculation of the Expressions for the Coordinates of the Moon in Terms of the Time. By Ernest W. Brown, Sc.D., F.R.S.

[Received 1900 May 25; read 1900 June 8.]

PART III. CHAPTER VI.

In the first two parts of this Memoir, published under the same title in the Memoirs of the Royal Astronomical Society in 1897, 1899, the general theory and the numerical results, up to and inclusive of the third-order terms, have been given. This part contains the numerical results for the terms of the fourth order.

The methods adopted are in general the same as those used for the third-order terms. Instead of finding the values of u_{λ}/u_0 directly and then deducing those of u_{λ} , as in the third-order terms, I have found the values of u_{λ} directly. This change was found advisable when preparations were being made for the calculation of the fifth-order terms. It was seen that the non-homogeneous equations (17), (18) of Chap. I. would involve much more calculation than the homogeneous equations (6), (7), (8) of the same chapter, and the latter require the results for u_{λ} and not those for u_{λ}/u_0 . In the former case u/r^3 has to be expanded to the fifth order, an enormous piece of work; in the latter case we only require the calculation of such expressions as u^2 , uD^2 , &c., to the fifth order, and this has been so arranged as to require much less computation. The only other change from the methods of Chap. V. is that mentioned in § 71.

As in the earlier work all the assistance I have had in performing the computations has been rendered by Mr. Ira I. Sterner, A.M., and I take this opportunity of again expressing my obligations to him for the ability and accuracy with which he has conducted the work allotted to him.* I have also done a considerable amount of calculation myself, especially in the later portions of the work.

^{*} The expense of making the computations necessary to obtain the results given below has been met by a grant from the Government Grant Fund of the Royal Society.

The following is the table of contents of Chap. V.:-

Section (i). A brief outline of the steps followed in the application of the general method to the terms of the fourth order.

Section (ii). The final numerical results for the series \mathfrak{A} , A, and for the coefficients of all terms of the fourth order in u, z.

Section (i). Formulæ and Method of Procedure.

96. The method employed is in general the same as that outlined in § 66. The products in the third line of equation (17) and in the second line of (18) of Chap. I. are formed by putting

$$u_{\mu} = u_1 + u_2 + u_3$$
, $s_{\mu} = s_1 + s_2 + s_3$, $z_{\mu} = z_1 + z_2 + z_3$

and choosing the parts of the fourth order. The products in the fourth and fifth lines of (17) and in the third line of (18) are similarly obtained with

$$u_{\mu} = u_1 + u_2$$
, $s_{\mu} = s_1 + s_2$, $z_{\mu} = z_1 + z_2$.

The additional parts of (17), (18) in which we put

$$u_{\mu} = u_{1}, \quad s_{\mu} = s_{1}, \quad z_{\mu} = z_{1},$$

are respectively

$$\frac{\kappa u_{0} \zeta^{-1}}{\rho_{0}^{3}} \left\{ \frac{35}{128} \left(\frac{\Sigma u_{\mu}}{u_{0}} \right)^{4} + \frac{315}{128} \left(\frac{\Sigma s_{\mu}}{s_{0}} \right)^{4} + \frac{15}{32} \left(\frac{\Sigma u_{\mu}}{u_{0}} \right)^{3} \frac{\Sigma s_{\mu}}{s_{0}} + \frac{35}{32} \left(\frac{\Sigma s_{\mu}}{s_{0}} \right)^{3} \frac{\Sigma u_{\mu}}{u_{0}} + \frac{45}{64} \left(\frac{\Sigma u_{\mu}}{u_{0}} \right)^{2} \left(\frac{\Sigma s_{\mu}}{s_{0}} \right)^{2} - \left(\frac{\Sigma z_{\mu}}{\rho_{0}} \right) \left[\frac{105}{16} \left(\frac{\Sigma u_{\mu}}{u_{0}} \right)^{2} + \frac{45}{16} \left(\frac{\Sigma s_{\mu}}{s_{0}} \right)^{2} + \frac{45}{8} \frac{\Sigma u_{\mu}}{u_{0}} \cdot \frac{\Sigma s_{\mu}}{s_{0}} \right] + \frac{15}{8} \left(\frac{\Sigma z_{\mu}}{\rho_{0}} \right)^{4} \right\}$$

and

$$\frac{\kappa}{s_0^2} \left[-\frac{\Sigma s_\mu}{\rho_0} \left(\frac{35}{16} \left(\frac{\Sigma u_\mu}{u_0} \right)^3 + \frac{35}{16} \left(\frac{\Sigma s_\mu}{s_0} \right)^3 + \frac{45}{16} \left(\frac{\Sigma u_\mu}{u_0} \right)^2 \right. \\ \left. \frac{\Sigma s_\mu}{s_0} + \frac{45}{16} \left(\frac{\Sigma s_\mu}{s_0} \right)^2 \left. \frac{\Sigma u_\mu}{u_0} \right\} + \frac{15}{4} \left(\frac{\Sigma z}{\rho_0} \right)^3 \left(\frac{\Sigma u_\mu}{u_0} + \frac{\Sigma s_\mu}{s_0} \right) \right].$$

The meanings of the various symbols have been explained in Chap. I.

The parts arising from Ω , namely, $\frac{\partial \Omega}{\partial s} \zeta^{-1}$, $-\frac{1}{2} \frac{\partial \Omega}{\partial z}$, are treated in like manner.

In the parts of equations (17), (18),

$$\zeta^{-1} (D^2 + \mathbf{2} \text{ m } D) \ge u_{\mu}, \qquad -D^2 \Sigma z_{\mu},$$

we substitute

$$u_{\mu}=u_{2}, \qquad z_{\mu}=z_{2}$$

and proceed as follows: in those parts of the arguments of u_2 , z_2 which contain c, g we must use the values of c, g to the second order (that is, we must retain the parts of these two quantities which depend on e^2 , e'^2 , k^2 , a^2); when the operations D^2 , D have been performed the portions of the fourth order must be retained. In all other operations the parts c_0 , g_0 of c, g will be sufficient.

The general procedure in performing the calculations and the methods of testing the results are in other respects the same as those explained in § 66.

97. The series finally obtained before proceeding to the solution of the linear differential equations are not, in the case of equation (17), the actual right-hand members, but series \mathfrak{A} , where

 $A = \frac{3}{4} \frac{\kappa u_0 \zeta^{-1}}{\rho_0^3} \mathfrak{A}.$

The reasons for this have been stated in § 71 (the symbol $\mathfrak A$ is there denoted by A_1).

In consequence of this change the series s_2 , u_2 , s_3 , s_4 (§§ 68-70) must be replaced by series \hat{s}_2 , u_2 , \hat{s}_3 , \hat{s}_4 , where

 $\mathfrak{u}_{2} = \frac{3}{4} \frac{\kappa u_{0} \zeta^{-1}}{\rho_{0}^{3}} u_{2}, \quad \hat{\mathfrak{s}}_{p} = \frac{3}{4} \frac{\kappa u_{0} \zeta^{-1}}{\rho_{0}^{3}} \mathbf{s}_{p} \qquad (p = 2, 3, 4).$

Further, as we shall find $u_{\lambda}\zeta^{-1}/a$ directly, instead of finding u_{λ}/u_0 first, we use series \mathfrak{U}_1 , \mathfrak{U}_2 , \mathfrak{U}_3 , \mathfrak{U}_4 , where

$$\mathfrak{U}_{p} = \frac{u_{0}\zeta^{-1}}{n} \mathbf{U}_{p} \qquad (p=1, 2, 3, 4).$$

The values of these eight new series are given below.

i.	₿₂.	\mathfrak{u}_2 .	€₃.	€4.
4	+ '00000 023	00000 003	—·00000 002	+.00000 003
3	+.00002 287	—·ooooo 402	00000 210	+.00000 300
2	+ 00217 032	00048 522	-:00020 726	+ .00028 048
T	+.17116 620	—·o6341 516	01843 390	+.02121 123
0	— ·2 9502 375	+ .87776 191	—·87862 801	81835 400
	- · · · · · · · · · · · · · · · · · · ·	+.01093 391	—·oo581 778	00739 195
-1		+ .00011 479	-·oooo4 631	00000 101
-2 -3	-·ooooo 017	+.00000 113	00000 038	00000 053
-4	·	+.00000 001	2000	
Sum	— ·12401 934	+.82490 732	90313 576	- ⋅80401 335

i.	$\mathfrak{u}_{\scriptscriptstyle 1}$.	$\mathfrak{u}_{\scriptscriptstyle 2}$.	$\mathfrak{U}_{\mathfrak{s}}.$	u ₄ .
4 3 2 1 0 -1 -2 -3	'00000 022 '00002 946 '00428 758 '73409 342 +- '43443 130 +- '00015 197 '00000 036	- '00000 004 - '00000 608 - '00089 987 - '16212 885 +2'18355 94 + '00036 969 - '00000 196 - '00000 001	+ '00000 021 + '00002 939 + '00454 712 + 1 + '00869 575 - '00000 049 - '00000 001	'00000 032 '00004 410 '00648 148 '93146 358 +- '03592 927 '00000 147 '00000 003
$\frac{-4}{\text{Sum}}$	-:30382 777	+ 2.02089 53	+1.01327 197	'90206 171

Section (ii). Values of \mathfrak{A} , $u_{\lambda} \zeta^{-1}/a\lambda$; A, $\iota z_{\lambda}/a\lambda$.

98. The following tables show the characteristics, arguments, and types of coefficients of the terms of the fourth order according to the scheme adopted in Section (iv), Chap. I. The numerical results are given below in the same order, and will be found in the §§ given in the first columns.

§	λ	Arguments.	Types of Coefficients in $u_{\lambda}\zeta^{-1}/a\lambda$.
99	e ⁴	2i±4c; 2i±2c; 2i	$(\epsilon^4),(\epsilon'^4)\;;\;(\epsilon^3\epsilon'),(\epsilon\epsilon'^3)\;;\;(\epsilon^2\epsilon'^2)$
100	e^3e'	$2i\pm(3c+m)$; $2i\pm(3c-m)$; $2i\pm(c+m)$; $2i\pm(c-m)$	$(\varepsilon^3\eta), (\varepsilon'^3\eta'); (\varepsilon^3\eta'), (\varepsilon'^3\eta); (\varepsilon^2\varepsilon'\eta), (\varepsilon\varepsilon'^2\eta') (\varepsilon^2\varepsilon'\eta'), (\varepsilon\varepsilon'^2\eta)$
101	$e^2e'^2$	$2i\pm(2c+2m)$; $2i\pm(2c-2m)$; $2i\pm2c$; $2i\pm2m$; $2i$	$(\epsilon^2\eta^2), (\epsilon'^2\eta'^2); (\epsilon^2\eta'^2), (\epsilon'^2\eta^2); (\epsilon^2\eta\eta'), (\epsilon'^2\eta\eta'); (\epsilon\epsilon'\eta^2), (\epsilon\epsilon'\eta'^2); (\epsilon\epsilon'\eta\eta')$
102	. ee ⁻³	$ 2i\pm(c+3m); 2i\pm(c-3m); 2i\pm(c+m);$ $2i\pm(c-m)$	$(\epsilon\eta^3), (\epsilon'\eta'^3); (\epsilon\eta'^3), (\epsilon'\eta^3); (\epsilon\eta^2\eta'), \epsilon'\eta\eta'^2) (\epsilon\eta\eta'^2), (\epsilon'\eta^2\eta')$
103	e'4	$2i\pm 4m$; $2i+2m$; $2i$	$(\eta^4),(\eta'^4)\;;\;(\eta^3\eta'),(\eta\eta'^5)\;;(\eta^2\eta'^2)$
104	$\mathrm{e}^2\mathrm{k}^2$	$2i\pm(2c+2g); 2i\pm(2c-2g); 2i\pm2c; 2i\pm2g; 2i$	$(\epsilon^2 k^2), (\epsilon'^2 k'^2); (\epsilon^2 k'^2), (\epsilon'^2 k^2); \ (\epsilon^2 k k'), (\epsilon'^2 k k'); (\epsilon \epsilon' k^2), (\epsilon \epsilon' k'^2); (\epsilon \epsilon' k k')$
105	ee'k²	$2i\pm(c+m+2g)$; $2i\pm(c+m-2g)$; $2i\pm(c-m-2g)$; $2i\pm(c-m-2g)$; $2i\pm(c+m)$; $2i\pm(c-m)$	$(\epsilon \eta k^2), (\epsilon' \eta' k'^2); (\epsilon \eta k'^2), (\epsilon' \eta' k^2); \\ (\epsilon \eta' k^2), (\epsilon' \eta k'^2); (\epsilon \eta' k'^2), (\epsilon' \eta k^2); \\ (\epsilon \eta k k'), (\epsilon' \eta' k k'); (\epsilon \eta' k k'), (\epsilon' \eta k k')$
106	$e^{\prime 2}\mathrm{k}^2$	$2i \pm (2m + 2g); 2i \pm (2m - 2g);$ $2i \pm 2m; 2i \pm 2g; 2i$	$(\eta^2 k^2), \ (\eta'^2 k'^2); \ (\eta^2 k'^2), \ (\eta'^2 k^2); \ (\eta^2 k k'), \ (\eta'^2 k k'); \ (\eta\eta' k^2), \ (\eta\eta' k'^2); \ (\eta\eta' k k')$
107	k^4	$2i\pm4g$; $2i\pm2g$; $2i$	$(k^4),(k^{\prime 4})\;;\;(k^3k^\prime),(kk^{\prime3})\;;\;(k^2k^{\prime2})$
108	$e^3\alpha$	$_{2i_{1}\pm3c}$; $_{2i_{1}\pm c}$	$(\varepsilon^3\alpha), (\varepsilon'^3\alpha); (\varepsilon^2\varepsilon'\alpha), (\varepsilon\varepsilon'^2\alpha)$
109	e ² e'a	$2i_1\pm(2c+m)$; $2i_1\pm(2c-m)$; $2i_1\pm m$	$(\epsilon^2\eta a), (\epsilon'^2\eta' a); (\epsilon^2\eta' a), (\epsilon'^2\eta' a); (\epsilon\epsilon'\eta' a), (\epsilon\epsilon'\eta' a)$
110	ee'^2a	$2i_1\pm(c+2m)$; $2i_1\pm(c-2m)$;	$(\epsilon\eta^2\alpha), (\epsilon'\eta'^2\alpha); (\epsilon\eta'^2\alpha), (\epsilon'\eta^2\alpha); (\epsilon\eta\eta'\alpha), (\epsilon'\eta\eta'\alpha)$
111	e'^3a	$2i_1\pm 3m$; $2i_1\pm m$	$(\eta^3 \alpha), (\eta'^3 \alpha); (\eta^2 \eta' \alpha), (\eta \eta'^2 \alpha)$
112	$\mathrm{ek}^{2}a$	$2i_1\pm(c+2g); 2i_1\pm(c-2g);$ $2i_1\pm c$	$(\epsilon k^2 a), (\epsilon' k'^2 a); (\epsilon k'^2 a), (\epsilon' k^2 a); \ (\epsilon k k' a), (\epsilon' k k' a)$
113	$e'\mathbf{k}^2a$	$2i_1\pm(m+2g)$; $2i_1\pm(m-2g)$; $2i_1\pm m$	$(\eta k^2 a), (\eta' k'^2 a); (\eta k'^2 a), (\eta' k^2 a); (\eta k k' a), (\eta' k k' a)$
114	${ m e}^2a^2$	2 <i>i</i> ±2c; 2 <i>i</i>	$(\varepsilon^2 \alpha^2), (\varepsilon'^2 \alpha^2); (\varepsilon \varepsilon' \alpha^2)$
115	$ee'a^2$	$2i\pm(c+m)$; $2i\pm(c-m)$	$(\varepsilon\eta\alpha^2),(\varepsilon'\eta'\dot{\alpha}^2);(\varepsilon\eta'\alpha^2),(\varepsilon'\eta\alpha^2)$
116	$k^2 a^2$	2i±2g; 2i	$(k^2 \alpha^2), (k'^2 \alpha^2) ; (kk' \alpha^2)$

§	λ	Arguments.	Types of Coefficients in $\omega_{\lambda}/a\lambda$.
117	ke ³ ke ² e'	$2i+g\pm 3c$; $2i+g\pm c$ $2i+g\pm (2c+m)$; $2i+g\pm (2c-m)$; $2i+g\pm m$	$(k\varepsilon^3), (k\varepsilon'^3); (k\varepsilon^2\varepsilon'), (k\varepsilon\varepsilon'^2) \ (k\varepsilon^2\eta), (k\varepsilon'^2\eta'); (k\varepsilon^2\eta'), (k\varepsilon'^2\eta'); \ (k\varepsilon\varepsilon'\eta), (k\varepsilon\varepsilon'\eta')$
119	kee'2	$2i+g\pm(c+2m); 2i+g\pm(c-2m);$ $2i+g\pm c$	$(k \epsilon \eta^2), (k \epsilon' \eta'^2); (k \epsilon \eta'^2), (k \epsilon' \eta^2); \ (k \epsilon \eta \eta'), (k \epsilon' \eta \eta')$

§	λ	Arguments.	Types of Coefficients in $\iota z_{\lambda}/a\lambda$.
120	ke' ³	$2i+g\pm 3m$; $2i+g\pm m$	$(k\eta^3),(k\eta'^3)\;;(k\eta^2\eta'),(k\eta\eta'^2)$
121	k³e	$2i + 3g \pm c$; $2i + g \pm c$	$(k^3\epsilon),(k^3\epsilon')\;;\;(k^2k'\epsilon),(k^2k'\epsilon')$
122	k^3e'	$2i + 3g \pm m$; $2i + g \pm m$	$(k^3\eta),(k^3\eta');(k^2k'\eta),(k^2k'\eta')$
123	ke²a	$2i_1 + g \pm 2c$; $2i_1 + g$	$(k\epsilon^2a),(k\epsilon'^2a)\;;\;(k\epsilon\epsilon'a)$
124	kee'a	$2i_1 + g \pm (c + m)$; $2i_1 + g \pm (c - m)$	$(k \varepsilon \eta a), (k \varepsilon' \eta' a) \; ; \; (k \varepsilon \eta' a), (k \varepsilon' \eta a)$
125	ke'2a	$2i_1 + 3g \pm 2m$; $2i_1 + g$	$(k\eta^2a),(k\eta'^2a);(k\eta\eta'a)$
126	k^3a	$_{2i_{1}+3g}; _{2i_{1}+g}$	$(k^3a)\;;\;(k^2k'a)$
127	kea ²	$2i+g\pm c$	$(k \cdot a^2), (k \varepsilon' a^2)$
128	ke'a2	$2i+g\pm m$	$(k\eta a^2),(k\eta' a^2)$

The coefficients of $\iota z_{\lambda}/a\lambda$ change their signs when the corresponding arguments change their signs.

The following long-period terms have been obtained with the required accuracy by the method of Section (iii), Chap. V.:—

$$\begin{array}{lll} \text{Arguments.} & \text{Coefficients.} \\ \pm (-2 + 2 \text{c}), & (\varsigma^3 \epsilon')_{-1}, (\epsilon \epsilon'^3)_t \\ \pm (-2 + 2 \text{c} - 2 \text{m}), & (\epsilon^2 \eta'^2)_{-1}, (\epsilon'^2 \eta^2)_t \\ \pm (2 \text{c} - 2 \text{g}), & (\epsilon'^2 k'^2)_{\circ}, (\epsilon'^2 k^2)_{\circ} \\ \pm (2 + 2 \text{m} - 2 \text{g}), & (\eta^2 k'^2)_{1}, (\eta'^5 k'^2)_{-1} \end{array}$$

The values of V_{λ} for these terms, obtained by the method of Section (ii), Chap. V., agreed, as far as they went, with the values obtained by Section (iii); this agreement furnished a valuable test.

In the solution of the linear differential equations those sets of terms with arguments 2i have no small divisors; the continued approximation method was, therefore, employed for such terms instead of the method of Section (ii), Chap. V.* The continued approximation method was also employed in the solution of the differential equations for the terms with characteristics $\ell^3\alpha$, $e^2\alpha^2$, $e\ell^2\alpha^2$, $e\ell^2\alpha^2$, and for all the terms in z.

The numerical results now follow. The values of \mathfrak{A}_{λ} for the terms arising in u are given in two parts—those arising from the expansion of $\varkappa u \zeta^{-1}/r^3$, denoted by \mathfrak{K}_{λ} , and those arising from $-\frac{1}{2}(D^2+2\mathrm{m}D)\Sigma u_{\mu}+\frac{\partial\Omega_1}{\partial s}$, denoted by \mathfrak{L}_{λ} . Then

$$\mathcal{U}_{\lambda} = \mathfrak{K}_{\lambda} + \mathfrak{L}_{\lambda} = \frac{4\rho_{0}^{3}}{3\kappa u_{0}\zeta^{-1}}A_{\lambda} \qquad \mathfrak{K}_{\lambda} = \frac{4\rho_{0}^{3}}{3\kappa u_{0}\zeta^{-1}}K^{\lambda} \,,$$

$$\mathfrak{L}_{\lambda} = \frac{4\rho_{0}^{3}}{3\kappa u_{0}\zeta^{-1}} \times \text{part, characteristic } \lambda, \text{ in} - \left\{ (D^{2} + 2mD)\Sigma u_{\mu} + \frac{\partial\Omega_{1}}{\partial s} \right\} \zeta^{-1} \,,$$

where A_{λ} is the right-hand member of equation (17), Chap. I.

* The method for obtaining the results given in the section referred to has been published in the Camb. Phil. Trans. vol. xviii. pp. 94-106, under the title, "On the Solution of a Pair of Simultaneous Linear Differential Equations, which occur in the Lunar Theory."

In the case of z, we have

$$A_{\lambda} = K_{\lambda} + L_{\lambda}$$

where A_{λ} is the right-hand member of equation (18), Chap. I., K_{λ} is the part arising from the expansion of $\kappa z/r^3$, and L_{λ} is the part arising from the expansion of $-D^2\Sigma z_{\mu} - \frac{1}{2}\frac{\partial\Omega}{\partial z}$.

The numbers are the coefficients corresponding to the power of ζ (that is, the argument) which is placed at the head of each column or pair of columns.

The suffix of i_1 is omitted in the tables. Further details concerning the results will be found in Chaps. I.–1V.

99. Characteristic e⁴.

Values of $\Re + \xi$. For arguments $2i \pm 4c$, 2i, $\xi = 0$.

i.	2 <i>i</i> + 4c.	2 <i>i</i> – 4e.	2 <i>i.</i> »
5		+:00003 95	+:00000 28
4	+ '00000 02	+.00103 13	+ 00013 62
3	+.00001 08	+.00204 86	+:00587 17
2	+ 00059 44	+ '00427 24	+ 14884 07
r	+ '02594 23	- .03457 94	06923 47
0	+.67584 28	+.05789 84	- ∙06099 65
- r	22643 43	+.00198 63	00928 89
-2	+.00669 89	+.00004 43	+.01353 65
-3	+ 00045 68	+ 00000 07	+.00042 91
-4	+ '00010 24		+.00000 99
-5	+ 00000 34		+.00000 01
Sum	+'48321 77	+:03274 21	+.02933 69

		2i †	2e.	2i-2c.				
5	+.00000	CI			+.00001	79		
4	+.00000	63			+.00077	93		
3	+:00046	28		,	+.01685	8τ	+.00000	10
2	+ .02001	44	00000	02	4.00431	95	+.00012	18
r	+:51237		00002	62	+.00596	01	+.00018	42
0		91	'00371	87	03008	47	00011	35
I	+ .00727	•	+.00098	30	+ .04523	3 2	00000	16
-2	+:00121	42	+.00001	06	+.00154	64		
-3	+.00184				+.00003	45		
-4	+.00000				+.00000	04		
-5	+.00000	13						
Sum	+ '29567	35	-:00275	15	+ .04763	47	'00007	81

Characteristic e4.

Values of

i.	$(\epsilon^4)_i$.	(ϵ'¹);·	$(\epsilon^3\epsilon')_{i\bullet}$	(ee's);.	$(\epsilon^2 \epsilon'^2)_i$.
4 3 2 1 0 -1 -2 -3	+ '00001 I + '00054 4 + '02003 5 - '01647 0 + '00217 0 + '00004 0	+ 00003 9 + 00020 3 + 00014 3 - 00077 4 + 00145 3 + 00002 5	+ 00000 8 + 00043 8 + 01597 2 - 02093 6 + 00474 6 + 00039 2 + 00005 I	+ '00001 9 + '00069 4 + '00034 4 - '00172 8 + '00573 7 + '00118 3 + '00001 9	+ '00000 24 + '00013 21 + '00489 88 - '00639 9 - '01524 5 + '00222 8 + '00036 48 + '00000 57
-4	+.00000 3		+'00000 2		+.00000 01
Sum	+:00633 3	+.00108 8	+.00067 3	+ .00626 8	- '01401 2

100. Characteristic e³e'.

Values of $\Re + \mathfrak{L}$.

i.		2i + 3e + m.						2 <i>i</i> – 3c – m.		
-		-				+ .00002	26			
5	00000	05			-	+.00276	44			
4	- '00002	51			opening and a second a second and a second a	+.05206	64	00000	2 I	
3	00128	53				+ .05714	34	00000	99	
2	- '·04820	5 3 69		00000	16	12700	10	+ '00002	49	
1				00023	27	10600	69	'00020	08	
0	- '91127			- '00003	_ 1	00429	96	+.00023	15	
-1	- '44433			+ .00003		00010	63	+.00000	40	
- 2	•	37				00000	22	+.00000	01	
-3	+ '00794			00006						
- 4	+ .00027	94			50		•			
- 5	+ .00000	63		00000	02					
Sum	-1.37027	86		- '00027	87	12236	92	+ .00004	77	

Characteristic e³e'.

Values of $\Re + \mathfrak{L}$.

i.		2i+30	c-m.	2i - 3c + m.				
5	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		00001	05		
4	+ .00000	25		1	00040	31		
3	+ .00013	46		1	00782	47	00000	20
2	+ .00624			!	+.01126	09	00001	09
1	+ .18642	•	00000	16	06276	16	00007	40
0	+1.09809			36	+.13395	42	+.00112	18
			+.00019	86	+.01266	24	00162	22
— I	- '19917		- 00002	30	+ 00049	22	00002	77
-2	+ .00202	43	+.00000	96	+.00001	02	00000	04
-3	00101	90		-	+.00000	02		
- 4	00003	82	+.00000	22	, 00000			
- 5	00000	02					and the same of th	
Sum	+1.09573	ΟI	00004	78	+.09068	02	— •00056	54

i.		2i + c + m.					2 <i>i</i> -c-m.			
5	_`_	00000	03			+.00001	97			
4	ł	- '0000	53			+.00096	49			
3	i	- '00077				+ 03453	15	+.00000	OI	
2		- '02927	29	00000	o 8	+.57798	75	+.00000	04	
ı		- '57119	•	00012	14	+ .00103	66	+.00193	32	
0		63687	_	+.00132	94	- '20284	99	+.00026	58	
		+ '03451		+ 00209		- 06986	67	00025	82	
I			_	+ 00021	27	00267	69	+.00014	10	
- 2		,	Ü	- '00020	68	00006	43	+.00000	24	
-3		+ .00332		00000	34	00000	09			
-4		+ .00008	35 16	00000	01					
<u>-5</u>		+ .00000						1		
Sum		-1.13130	82	+.00333	38	+.42998	15	+.00508	47	

Characteristic e^3e' .

Values of $\Re + \mathfrak{L}$.

i.		2i+c-m.					2 <i>i</i> – c + m.			
5	+ .00000	17		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00000	33				
4	+ .00008				- ·ooo15 - ·oo593	73 15	00000	02		
3	+ ·00426 + ·14161		00000	22	11616	23	00003	40		
ı	+1.78220	15	'00030	33	- 03064		—·00029 —·00056	97 43		
0	+ ·20914 - ·01155	40 70	-·00135 -·00034	79 43	+ '07494		+.00162			
— I — 2	- ·01469		-	47	+ '01289		00098	79		
-3	00022	16	+ '00002	95	+ .00032	40	00000 00001	68 02		
- 4	00000 00001	36 04	+.00000	05	+.00000	77 02	00000			
			- ` 0020I	24	+.16798	05	00025	09		
Sum	+2.11049		- '00201	24	+.16798	05	00025	09		

Values of

<i>i</i> .	$\left(\epsilon^3\eta ight)_i$.	$(\epsilon'^3\eta')_{m{i}}.$	$\left(\epsilon^3\eta'\right)_i$.	$(\epsilon'^3\eta)_i$.
4		+ '00008 7		00001 3
3		+ .00321 8	-† '00000 2	- .00040 9
2	'00002 4	+ .00936 8	+.00011 0	+ .00307 6
1	00125 5	00590 5	+ .00445 3	00913 3
0	-·04042 4	—·oo396 9	+.05193 1	+.00576 7
– I	06117 4	00006 I	—·o2861 3	+:00024 4
— 1 — 2	+ 00900 2	00000 I	- •00166 0	+:00000 5
-3	+.00036 0		-·oooc4 7	
-4	+.00000 4			
Sum	- ·09351 I	+ '00273 7	+ 02617 6	—·ooo46 3

Characteristic e³e'.

Values of

i.	$(\epsilon^2 \epsilon' \eta)_{i}$.	$\left(\epsilon\epsilon'^2\eta'\right)_{i}$.	$\left(\epsilon^2\epsilon'\eta'\right)_i$.	$(\epsilon\epsilon'^2\eta)_{i}$.
4		+.00002 0	+.00000 I	-·oocoo 2
3	-·oooo1 5	+.00101 2	+.00008 3	00017 0
2	-·ooo8o o	+ .03124 7	+·oo380 o	-·oo593 2
I !	02711 8	+.00408 0	+.09003 4	- ·01970 4
0	- ⋅08633 °	04425 8	+.01113 1	+ .07463 4
— I	+.03812 8	00268 8	+.03997 4	+.01114 3
- 2	+·00390 I	 ·00003 8	- ∙00060 0	+.00010 0
-3	+.00004 9	00000 I	- ·00000 8	+:00000 4
-4	+.00000 I		00000 I	
4		6	+'14441 4	+:06017 2
Sum	07218 4	—·o1o62 6	+.14441 4	

101. Characteristic e²e′².

Values of $\Re + \mathfrak{L}$.

i.		+ 2m.	2i-2e-2m.					
5					+.00004	49		
i					+ .00504	02		
4	Laccon	55			+ .06459	05	00000	10
3	+.00001				+.86143	06	00016	58
2		27	1 100000	40	- .47189		00028	97
1	+.00793	85	+ .00000		07081		00100	51
0	— :37149	07	00042	61			 .00034	89
- I	— ·665	19	00102	94		30	00000	73
-2	+.50580	05	00298	76	+.00004			• -
-3	+ .00849	83	00133	65	+.00000	11	00000	01
-4	+.00021	90	00002	05				
_ ₅	+.00000	49	00000	03				
Sum	-·81644	32	00282	64	+ .38573	67	00181	79

Characteristic $e^2e'^2$.

Values of $\Re + \mathfrak{L}$.

i	2i + 2c	-2m.	2i - 2e + 2m.		
5			'00000 05		
4	+ '00001 24		-·oooo1 73		
3	+ '00072 90		-·00278 o1	+ 00000 02	
2	+ '02854 11	— °00000 02	- '18735 97	-·oooo1 29	
I	+ 59904 28	—·00002 69	+14699 65	— :00046 45	
0	+1.59100 21	'00126 11	+ 25718 37	+ '00742 25	
- I	+ .13902 30	+ .00089 20	+.06791 35	01218 97	
-2	- '03928 35	+.00012 22	+:00269 03	00031 19	
-3	- '00052 55	—·oooo1 86	+:00006 59	- 00000 46	
-4	- '00000 42	 '00000 03	+ 00000 07	-·ooooo o1	
<u>-5</u>	- ,00000 01				
Sum	+1.98857 01	- '00025 66	+ 28469 30	-·oo556 1o	

i	2 <i>i</i> -	+ 2c.	· 2i-	- 2ċ.
5			-'0000I 20	
4	'00000 48		- 00058 51	° 00000 01
3	- 00024 76		-01832 28	00001 42
2	01039 63	+ .00000 27	23064 49	00208 94
1	25413 96	+.00031 20	02504 78	-'00311 93
0	54218 73	+ 04731 79	- •09083 51	+ .00876 11
-r .	02036 16	- '01141 91	- '02701 79	+ .00555 46
-2	- 04993 83	00067 12	00096 10	+.00010 91
-3	00225 16	+ .00038 18	—·00002 02	+ '00000 15
-4	00006 08	+.00000 29	00000 05	+ .00000 or
— 5	00000 07	+.00000 01	· transmission	
Sum	—·87959 16	+:03593 31	-:39344 73	+ '00920 34

$Characteristic\ {\rm e}^{{\it 2}}e'^{\it 2}.$

Values of $\Re + \mathfrak{k}$.

<i>i.</i>	2i + 2	em.	2i-2	2i-2m.		
			+ '00000 79			
5	+ .00000 27		+ .00036 03			
4	+ .00005 82		+ 01554 27	00000 c I		
3		+.00000 16	+ '41891 21	oooo1 o6		
2	- ·01244 90	00017 67	+ 3.40300 52	00103 89		
I	-1.03333 26	+.00096 19	- '10257 34	+.00056 05		
0	11065 41	+ .00658 16	- '20699 71	00117 71		
- I	+ '75079 48		- ·oo256 42	00016 26		
-2	+ .02144 80		- ·ooooi 78	-·ooooo 31		
-3	+ '00157 54	—·oco16 17		v		
-4	+ '00003 37	- '00000 22	+ .00000 03			
-5	+ .00000 08					
Sum	— ·35 ² 54 4 ⁸	- ∵00146 16	+3.52567 60	00183 19		

i.	2i.	
5	00000 10	
4	— '000II 2I	
3	00497 96	—.ooooo oı
2	- 14155 47	-·ocooo 92
I	-1°235 ⁸ 7 3 ²	—·ooo76 o2
0	- ·39760 68	00044 40
- I	- ·24832 43	+.00439 86
	— ·01642 02	+.00294 30
- 2	- ⋅00048 60	+.00005 04
-3	00001 19	+.00000 07
-4		
- 5	— ·ooooo o3	
Sum	-2.04537 07	+.00617 92

Characteristic $e^2e'^2$.

Values of

i.	$(\epsilon^2\eta^2)_i$.	$(\epsilon'^2\eta'^2)_i$.	$(\epsilon^2\eta'^2)_i$.	$(\epsilon'^2\eta^2)_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}.$
4		+.00002 3		00000 I
3	+·00000 2	+.00275 9	+.00001 2	-:ooo16 I
2	+.00001 0	+.08682 8	+.00062 3	— .0 1601 0
1	+.00011 0	+ .07421 6	+ '02043 7	-14196
0	- •02678 9	-·00684 I	+.10603 8	+ '03200 2
—I	—·28583 I	-·ooooo 3	+:21767	+.00132 2
- 2	+.02348 4	+.00000 1	- 00396 8	+.00003 4
-3	+ .00 000 9	To make	00001 0	+.00000 I
- 4	+:00000 4			
Sum	-·28891 I	+:15704 3	+:34080	-:12474

i.	$(\epsilon^2\eta\eta')_l.$	$(\epsilon'^2\eta\eta')$.	$(\epsilon\epsilon'\eta^2)_i$.	$(\epsilon\epsilon'\eta'^2)_i$,	$(\epsilon\epsilon'\eta\eta')_i$.
4 3 2 1 0 -1 -2	'00000 4 '00022 4 '00815 4 '03958 2 '05663 '00702 8	'00001 5 '00072 8 '02068 2 '05116 '00131 0 '00042 6 '00001 1	'00000 3 '00073 6 '07832 4 '18186 '10559 3 '00083 1	+ '00000 7 + '00037 8 + '01603 8 + '30827 9 + '16309 - '02533 0 - '00004 7	00000 20 00011 78 00514 67 10410 4 09951 9 02118 2 00021 77
-3 -4	- '00002 2 - '00000 2		+ '00002 I	İ	00000 01
Sum	11165	+ 02799	-15448	+ '46242	53029 5

102. Characteristic ee'3.

Values of $\Re + \mathfrak{L}$.

<i>i</i> . ;	2i+c+3m.				2i-c-3m.				
5					+.00001	II			
4					+ .00024	24			
3	00000	23			+.02308	42	00000	02	
2	+.00001	06			+.52094	60	00002	74	
r	+.00353	66	+.00005	17	+.26017	23	00414	10	
0	04803		00372	49	01662	47	+.00308	04	
-ı	+.13629	36	+.13899	OI	+:00047	49	00034	45	
-2	+.09169	96	04090	63	+.00000	48	+.00000	03	
-3	+.00306	65	00057	7 8	00000	OI			
4	+.00006		000000	7 I					
- 5	+.00000	11	00000	OI					
Sum	+:18663	51	+ :09379	56	+ .78864	09	00143	24	

i.		2i + c - 3m.				2i - c + 3m.				
5										
4	+ .00004	19			+.00000	09				
3	+ '00205	95			+ '00012	66				
2	+ '07211	99	00000	I 2	+.00833	00	+.00000	13		
r	+1.18314	59	00012	04	+ 10347	72	00023	73		
0	+ '27486	46	- '00493	83	+:11154	53	+:02718	31		
- I	+ :03165	59	- '00125	28	4 .50318	44	- ∙06705	07		
- 2	+ .00139	35	00057	45	+.00898	11	00176	45		
-3	+ '00002	18	coooo	18	+.00022	34	- '00002	60		
-4	+ .00000	02			+.coooo	45	00000	03		
— 5										
Sum	+1.26233	32	—·oc691	90	+ '43586	34	04189	44		

Characteristic ee'3.

Values of $\Re + \mathfrak{L}$.

i.		e + m.			2i-0	e-m.		
5			- seed for Vr		00000	44		
4	+.00000	13			00024	16		
3	+.00010	29			00971	5 2	00000	34
2	+ .00305	38	00000	20	21574	67	00041	10
1	+.01409	57	00027	39	37164	88	02742	72
0	-15495	99	-:01772	85	 ∙04966	63	+ .02712	44
-r	-15945	22	03853	74	+:00145	78	00097	05
-2	03562	96	+.01719	29	+ .00029	53	00008	42
-3	00122	46	+.00024	26	+.00000	94	00000	14
-4	00002	66	+:00000	30				
- 5	00000	04	+,00000	CI				
Sum	33406	96	03910	32	64526	05	00177	33

i.	The state of the s	2 <i>i</i> +	- c — m.			2 <i>i</i> -	e + m.	
5			2 - A. Comp. To 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10					
4	00001	78			+.00001	34		
3	00094	85	+.00000	01	00001	OI	+.00000	05
2	03389	63	+.00001	58	03797	42	+.00006	02
1	- ⋅568 3 6	53	+:00196	08	-14814	17	+.00318	13
0	19411	40	+.01863	26	- ∙06658	97	+ .02765	65
- r	05160	44	+:00491	80	- ∙09074	64	+ .03547	34
-2	00689	49	+ .00272	61	00401	73	+ .00083	57
-3	00002	02	00000	95	000009	86	+.00001	19
-4	400000	10	00000	03	00000	13	+.00000	oı
- 5				•]			
Sum	- ⋅85589	13	+ .02824	36	-:34756	59	+ .06721	.96

Characteristic ee'3.

Values of

i.	$(\epsilon\eta^3)_i$.	$(\epsilon'\eta'^3)_i$.	$(\epsilon\eta'^{s})_{i}.$	$(\epsilon'\eta^3)_i$.
4		+.00001 4	+.00000 1	
3		+.00078 6	+ 00004 2	+:00000 4
2	— .00000 I	+ '03522 1	+.00213 8	+ '00037 4
1	00004 8	+.78390	+.06613 8	+:00357
o	04064	+.11111	+:17385	58352
— I	-1.52648	—·00001 2	+.03836	+ '00097 5
— 2	- '00492 4		00003 4	+:00014 7
-3	+ '00004 7			+:00000 3
-4	+ .00000 I		6.	
Sum	-1.57208	+ .03105	+.58049	27820

i.	$(\epsilon\eta^2\eta')_i.$	$(\epsilon'\eta\eta'^2)_i$.	$(\epsilon\eta\eta'^2)_i$.	$(\epsilon'\eta^2\eta')_i.$
4		00000 6		
3	+.00000 1	-·ooo31 1	- •00001 9	00000 5
2	+ .00006 4	01336 8	- 00094 I	00119 8
I	- ⁺00045 I	- 28623	02764 6	+12094
	- '19733	+ '54293	+ '23524	74298
_ r	+ .50408	-'00002 3	- '41624	+ '00049 2
-2	+ 00184 5	+ '00000 3	'00008 8	00005 7
-3	- 00001 6		00000 I	
-4	— '00000 I	e e e e e e e e e e e e e e e e e e e		
Sum	+.30819	+ '24300	50940	62278

103. Characteristic e'4.

Values of $\Re + \mathfrak{L}$.

i.		2 <i>i</i> + 4m.				2 <i>i</i> – 4m.				
5				***************************************	+.00000	13	4			
4					+ 00005	52				
3			pa.	1	+ .00257	7 I				
2	+.00001	02	00000	01	+ .07920	62	00000	22		
I	+ '00 132	73	+.00014	65	+.13198	73	00036	II		
0	+.03140	86	:00886	25	+ '02357	85	-:02153	32		
-r	+ 02695	70	- '39736	75	+ '00022	85	00052	41		
-2	+.01319	27	00549	20	+.00000	28	+.00000	07		
-3	+ .00032	92	00006	61						
-4	+.00000	75	00000	08						
-5	+.00000	01								
Sum	+ .07326	26	- '41164	25	+'23763	69	- '02241	99		

i.		2i + 2m.				2i-2m.				
5	<u> </u>				day and de consentration and an artist of the consentration and an artist of the consentration and artist of the consentration are also artist of the consentration and artist of the consentr			Applications of the Control of the C		
4					00003	04				
3	'00000	81			-:00143	50				
2	- '00003	41	+,00000	03	- :04376	96		00000	10	
1	00080	80	+.00000	32	-15494	59		00034	2 I	
o '	'02145	30	00619	14	—·o1687	08		+.00132	00	
<u>-1</u>	'03026	82	+.24551	88	'00020	08		+.00031	30	
-2	00693	33	+:00294	84	'00000	49		00000	01	
-3	00019	14	+.00003	64	00000	II		+.00000	02	
-4	00000	35	+.00000	04						
-5										
Sum	– ·05969	96	+.54531	61	'21725	85		+ .00150	00	

Characteristic e'^4 .

Values of $\Re + \mathfrak{L}$.

i.			2 <i>i</i> .		
5		-			
4	+.00000	53			
3	+.00021	42			
2	+.00536	69		+.00000	10
I	+.01023	21		00004	58
0	01872	34		00267	32
— 1	+.00169	56		01129	18
-2	+.00048	57		-:00037	20
-3	+.00002	50		00000	57
-4	+.00000	04		00000	01
—5					
Sum	— ¹00009	82		-:01438	76

Values of

i.	(η ⁴) _i .	$(\eta'^i)_i$.	$(\eta^3\eta')_i$.	$(\eta\eta'^3)_i$.	$(\eta^2\eta'^2)_i$.
3 2 1 0 -1 -2 -3	+ '00001 0 - '02698 - '61854 2 + '00019 2 + '00000 6	+ '00007 5 + '00398 6 + '14687 7 + 04747 - '00019 2 + '00000 1	+ · · · · · · · · · · · · · · · · · · ·	'00003 8 '00198 9 '06580 0 '08045 '00019 8	+ '00000 50 + '00019 44 + '00245 9 - '00536 0 - '00885 8 + '00000 37 + '00000 03
Sum	− ·64531	+.19822	+:31895	—·14848	01155 6

104. Characteristic e²k².

Values of $\Re + \ell$. For arguments $2i \pm 2c \pm 2g$, 2i, $\ell = 0$.

<i>i</i> ,	2i+2c+2g.	2i-2c-2g.	2 <i>i</i> + 2c - 2g.	2i-2c+2g.
5		+ '00000 50		—·ooooo o7
4	—,ooooo oı	+ '00021 12	+.00000 11	+.00000 11
3	+.00000 02	+ '00430 10	+.00002 24	+.00000 41
2	+.00007 82	+ '02174 09	 00175 00	—·00591 44
1	+.00500 23	- 18229 57	27258 99	—·86503 82
0	+ 22308 59	+1.17697 36	+.53053 65	+.25012 59
r	- .69815 36	+ '03394 87	-·15877 59	—·o5478 89
-2	+:03225 26	+ '00062 72	+ '04235 33	+ 00037 20
-3	+.00096 80	+ '00000 89	+:00128 22	+ '00002 35
-4	+.00000 o1	_	+.00002 42	+.00000 10
- 5	+.00000 17		+ 00000 03	, 55000 10
Sum	—·43670 14	+1.0222 08	+14110 42	- '37518 46

i.		2i+	- 2e.			2 <i>i</i> ·	-2c.	
5				No.	00000	14		-
4	- '00000	04			00010	32	+.00000	01
3	- '00002	44			00525	50	+ '00002	
2	- '00123		00000	45	16771	28	+ .00304	27
I	- '02814		-00052	60	+:04896	69	+ .00369	•
0	+1.68846	• •	- `07456	96	+.68013	38	00829	-
— I	+ '04541	74	+:01971	25	+:07005	51	00003	
-2	03109	66	+'00021	32	+:00187	82	00000	-
-3	+ '00182	I 2	+.00000	05	+.00003	40 -		- 3
-4	+ .00009	20			+.00000	08		
5	+ .00000	19						
Sum	+1.67530	04	05517	39	+.62799	64	— :00156	64

${\it Characteristic}\ e^2k^2.$

Values of $\Re + e$.

i.		2 <i>i</i> +	· 2g.	1		2 <i>i</i> –	2g.		2 <i>i</i> .	
5	+ .00000	01			+.00000	04			0000 0	04
4	+ .00000	09		1	+.00003	74			00001	39
3	+ .00001	91		1	+.00068	73			— .00076	69
2	+ .00099	15			- 03325	97	+.00000	13	03247	94
I	+ '01302	76	00000	01	+.58101	50	+ 00076	36	57621	43
0	-4.51169	89	00009	89	67308	93	- ∙01560	86	-1.44031	63
-I	+ '35823		+ .00168	86	+ '44117	02	00003	52	- *05952	65
-2	00820	20	+.00000	54	+.01307	25	00000	OI	+ .02225	23
-3	+ .00032	11			+.00024	35			+ .00062	31
-4	+ .00001	18			+.00000	49			+ .00001	20
— ₅	+ .00000	02			+.00000	01			+ .00000	01
Sum	-4.14726	15	+00159	50	+:02987	23	-:01487	90	-2.08638	02

Values of

i.	$\left(\epsilon^2k^2 ight)_i$.	$(\epsilon'^2k'^2)_{i^*}$	$(\epsilon^2 k'^2)_{i^*}$	$(\epsilon'^2k^2)_i$.
4		+.00001 0		
3		+.00042 2		-·oooo 7
2		+.00100 2	-·00017 0	-·00079 o
ı	+.00002 4	- .03189 0	02398 8	- °07175 9
0	+.00085 7	+ .09359 9	07730	+:34043
- I	-·04605 I	+.00113 0	01031 8	00454 5
-2	+ 01017 3	+.00001 1	+.00422 4	+.00008 9
-3	+:00009 1		+.00004 8	+.00000 I
-4	+.00000 4		+.00000 I	
Sum	-·o3490 2	+.06436 7	10740	+.56345

Characteristic e²k².

Values of

i.	$\left(\epsilon^2kk'\right)_i$.	$\left(\epsilon'^2k'k'\right)_i$.	$(\epsilon\epsilon'k^2)_i$.	$\left(\epsilon\epsilon'k'^2\right)_i$.	$\left(\epsilon\epsilon'kk'\right)_{i}$.
4		-·ooooo 4		+.00000 1	- •00000 03
3	00000 I	-·ooo27 I		+.00000 7	-·oooo2 43
2	00003 2	01602 8	-·oooo3 2	00323 2	-·00151 42
I	00105 2	03306	00370 3	02056	—·○5637 I
0	+.088;3 1	+.25316 0	- 35724 2	+ '01475 2	-·36003 o
-r	+.05520	+.00622 2	+.16072	+.03914 8	+ .03525 8
-2	+.00101 8	+.00006 9	00146 8	+.00045 8	+ '00247 04
-3	+.00026 3	+.00000 1	+.00003 8	+ .00000 2	+.00002 72
-4	+ 00000 2		+.00000 1		+.00000 03
Sum	+'14416	+ '21009	—·2 0169	+ .03028	- 38018 4

105. Characteristic ee'k2.

Values of $\Re + \varrho$.

i.		2i+c+	m + 2g.		2i - c - m - 2g.					
5					+.00000	42				
4	00000	05			+.00021	14				
3	00000	08			+.00877	6 o				
2	- •00006	92			+.16983	13	00002	30		
1	00326	07	+.00000	01	-:34429	60	+.00016	72		
0	08618	70	+ .00002	01	-36413	27	00179	20		
-1	-1.19923	59	00937	10	— .02535	01	+.00000	33		
- 2	+ .07743	85	+:00064	02	00060	82	+.00000	01		
-3	+ .00306	69	00012	20	00001	04				
4	+. 00008	06	00000	16	00000	03				
-5	+ .00000	20								
Sum	-1.20876	61	00883	42	'55557	48	'00164	44		

Charaeteristic ee'k2.

Values of $\Re + e$.

i.		2i + c + m - 2g.				2i-c-m+2g.					
5			Angelin and Angeli		+.00000	08					
4	'00000	2 I		1	+.00000	08					
3	00018	74			+.00008	57					
2	00927	28	'00000	20	+ '00432	54					
1	- '30774	52	+:00027	64	+ 09701	39	-'00002	07			
0	+:00314		-01050	06	- •00505	45	+.00286	25			
- I	+ '70749		+.01481	40	- 10767	95	+.00265	37			
-2	+ .03875		+ .00002	33	00459	77	00 016	85			
-3	+.00089	18	+.00000	02	00010	12	+.00000	02			
-4	+.00001	51			00000	13					
-5	+.00000	03									
Sum	+ '43300	43	+ '00764	13	01600	76	+ .00232	72			

i.		2i + c - m + 2g.				2i-c+m-2g.					
5			And the second s		00000	04					
4	00000	05			00001	96					
3	+ .00000	80			00 2 5 2	47					
2	+ '00045	81			`06776	15	00002	05			
I	+ .02115				+ 09205	6 1	- •00026	88			
0	+.21254	26	- `00002	16	+ 47352	52	+.00138	82			
— I	+:30194		+ .00120	35	+13623	37	00006	50			
— 2	-:02729	45	00014	91	+ .00367	59	*00000	08			
-3	00103	o 8	+ '00002	15	+.00006	67					
-4	- '00002		-j- `0 0 000	02	+.00000	03					
- 5	00000	OI			1						
Sum	÷ ·50775	24	+ .00164	45	+ .63522	17	+ '00103	31			

Characteristic $ee'k^2$.

Values of $\Re + \mathfrak{L}$.

<i>i</i> .		2i+c-	m-2g.			2i-c+	m + 2 g.	
5	+.00000	03						
4	-1 00001	31			00000	08		
3	+ .00024	6 r			00000	82		
2	+ .01389	61	00000	20	00027	59		
I	+ '47952	76	+.00019	55	+.00611	99	•00000	46
0	- °03394	87	00262	24	-17243	46	+ .0004	49
-ı	- .08746	22	00288	95	+.18225	78	02624	
-2	00530	01	•00000	88	+.00774	06	+.00118	16
-3	00012	49			+.00027	29	00000	14
-4	00000	19			+.00000	73		
<u>-5</u>								
Sum	+ .36714	54	00232	72	+:02367	90	02432	2 I

i.	2 <i>i</i> + c + m.				2i-c-m.			
5					- ,00000	18		
4	+ .00000	01			00006	09		
3	+ .00003	75			00323	90	+.00000	50
2	+ '00182	63	+.00000	37	-:10552	73	+.00060	49
I	+ .04846	15	+ '00044	97	59901	89	+ .03886	04
0	+1.24970	06	+ .02492	64	+ '37321	43	+:00038	74
 1	- '30203	78	+:00957	00	-11431	89	00019	28
- 2	+ .06212	35	+.00498	51	00316	98	00001	52
-3	+ '00254	52	+.00004	I 2	00002	58	00000	02
-4	+ .00002	27	+.00000	04	00000	05		
- 5	+ .00000	06						
Sum	+1.06274	02	+ :03997	65	- '45217	86	+ .03964	95

Characteristic ee'k2.

Values of $\Re + \mathfrak{L}$.

<i>i</i> .	2i+c-m.			$2i - c \div m$.				
5	+ .00000	03			00000	03		
4	- '00000	41			+.00000	95		
3	- '00021	94	00000	02	+ '00052	42	00000	07
2	- '01004	62	*00002	58	+.01909	27	•00008	59
r	- '19834	06	00318	89	+ '45975	74	00548	87
0 '	-1.50651		03223	59	- 47842	15	01404	66
_ I	+ '16517	85	'00201	12	+ .50668	08	+ .00025	86
-2	- '02140	03	00073	39	+.01029	82	+.00010	47
-3	00061	Ü	00000	60	+*00024	04	+.00000	13
4	- '00001	18			+.00000	40		
- 5	00000	03						
Sum	<u>-1.27167</u>	19	03820	19	+.51848	54	 °01898	73

Values of

<i>i</i> .	$(\epsilon\eta k^2)_i$.	$(\epsilon'\eta'k'^2)_i$.	$(\epsilon \eta k'^2)_i$.	$(\epsilon' \eta' k^2)_i$.
4	-	+ '00000 7		
3		+ .00047 2	00000 5	00000 I
2		+.01892	—·00020 I	00011 6
ī	+ '00000 2	08133	+ 01155	01009 1
0	+.00079 3	05729 2	-13724	+ .04755
- I	—·14433	00121 6	+.12104 1	— ·18609
-2	+ .04641	-·oooo1 5	+ 00216 2	—·ooo7o 8
-3	+.00043 6		+.00002 2	'00000 4
-4	+ .00000 4			
Sum	 ∙09669	-·I2042	+.02733	- 14946

Characteristic ec'k².

Values of

i.	$(\epsilon \eta' k^2)_i$.	$(\epsilon'\eta k'^2)_{m i}.$	$(\epsilon \eta' k'^2)_i$.	$(\epsilon'\eta k^2)_i$.	
4		—·00000 2	+.00000 I		
3		—·ooo15 1	+.00000 8		
2	+ '00000 2	01142	00028 7	+.00002 0	
r	+ .00014 0	+ .03952	-12043	+:00146 6	
0	+.00519 5	+ .08429 0	+ 14853	07174	
— r	+ .03209	+ .00694 2	- o1646 7	+ '52873	
-2	- •00641	+.00009 5	00027 5	+ .00182 4	
-3	00013 7	+.00000 1	00000 3	+.00001 3	
-4	—,00000 I				
Sum	+:03085	+.11958	+.01108	+'46031	

<i>i</i> .	$(\epsilon \eta k k')_i$.	$(ullet'\eta'kk')_i$.	$(\epsilon \eta' k k')_i$.	$(\epsilon'\eta kk')_i$.
4		- '00000 I		
3	+ '00000 2	- '00015 0	00000 6	+ .00001 9
2	+ '00009 7	 00960 3	-·00039 I	+ '00082 7
1	+ '00671 7	- '35943	—·o1857 9	08330
0	+ '46038	82002	65366	+1.10600
-I	+ '59651	02285 7	+.46862	+ '05037 5
-2	+ '02033 9	– .0001.7	—·oo525 9	+ .00064 8
-3	+ '00017 6	— '00000 I	00003 9	+ '00000 7
-4	+ '00000 2		ooooo 1	
Sum	+1.08455	—I'2I224	—·20932	+1.16224

106. Characteristic e'2k2.

Values of $\Re + \mathfrak{L}$.

<i>i</i> .		2i + 21	n+2g.			2 <i>i</i> — 2n	1-2g.	
				, ·-	+.00004	18		
4	:00000	02			+.00224	16		
3	00000	_			+:07521	17	+.00000	14
2	+.00000		00000	08	53998		00079	35
I	+ .00043		+ .00101		+.07918		 00969	97
0	+ .09250				00013		+ .00005	11
-1	- .68816		09327		+.00002		+.00000	01
-2	+ .03258	74	 00795		1			
-3	+.00101	97	 00005	78	+.00000	12		
-4	+.00001	95	00000	05				
Sum	- .55 8 89	47	-:10027	95	38338	33	01047	0 6

i.		2i + 2n	n-2g.		2i-2m+2g.				
4	+.00000	20			,	02			
3	+.00006	94			+.00001				
2	+ .00203	74	+.00000	01	+.00119		00000	04	
ı	+.12148	35	+.00010	7 9	+ .04889		+.00001		
0	-12571	86	00395	81	-11524			31	
- ı	+ 21424	14	00030	39	+.12137		- '00042	•	
-2	+ .00727	26	00000	43	-·00002	-	00000		
- 3	+.00014	40			+ 00002	•		·	
-4	+.00000	18			+ 00000	1,1			
Sum	+:21953	35	-:00415	83	+.05620	77	—·ooo78	3 9	

Characteristic e'^2 k².

Values of $\Re + \mathfrak{L}$.

i.		2 <i>i</i> +	- 2m.			2 <i>i</i> –	- 2m.	
4	00000	08			00000	89		
3	- .00002	15			- 00047	64		
2	 00156	93	00000	OI	01535	04		
I	11202	11	00000	61	+ 44404	18	+:00000	55
0	-17343	72	- .00016	14	-13677	02	+:01266	
-r	+ .52334	25	+11337	32	10334	50	+ .00245	57
-2	+ .02473	90	+.00103	26	 00042	17	+ .00002	21
-3	+ .00028	62	+.00000	90	+.00000	55	+,00000	02
-4	+.00001	06	+.00000	01	+.00000	OI		
Sum	+ .5828	84	+ '11423	73	+:18767	48	+ '01515	22

i.		2i	+ 2 g.		2i-2g.				
4				***************************************	00001	75	4	***************************************	
3	00000	51	ø		00108				
2	00024	95			04714		+.00000	10	
I	00940	95	+:00000	12	+.29280	13	+ .00080	•	
0	- ⋅∘35∘5	90	00082	3 6	00795		- •02647		
— I	+:32065	65	+:03486	41	05402		00010	-	
-2	02496	30	+.00468	96	00194	98	+ '00000	•	
-3	 00056	64	+.00002	20	'00004	05			
<u>-4</u>	00000	91	+.00000	02	00000	_			
Sum	+:25039	49	+.03875	35	+.18028	20	- ∵02577	57	

Characteristic e'2k2.

Values of $\Re + \mathfrak{L}$.

i.	2	ii.
4	+ 00000 33	
3	+.00013 97	
2	+ '00404 21	
ı	'22402 63	+.00011 04
0	+ 33808 64	
<u>-1</u>	-32859 84	- °05109 26
- 2	-01208 10	 00033 08
-3	00024 56	'00000 27
-4	'00000 33	
Sum	—·22268 3I	—·o5278 68

Values of

i.	$(\eta^2 k^2)_i$.	$(\eta'^2k'^2)_i$.	$(\eta^2 k^{r_2})i$.	$(\eta'^2 k^2)_i$.
3 2 I O - I - 2	+ '00000 7 + '00167 8 - '38676 9 + '01312 8 + '00008 1	+ '00009 7 + '00617 8 + '17825 2 + '02792 3 - '00001 8 + '00000 1	+ '00000 I '00012 8 '07136 '08335 9 +- '02048 7 +- '00026 7 +- '00000 3	+ '00000 6 + '00033 3 + '00475 7 + '13082
Sum	-·37187 5	+.51543 3	13409	+ '13592

Characteristic $e'^2 k^2$.

Values of

i.	$(\eta^2 k k')_i$.	$(\eta'^2 k k')_i$.	$(\eta\eta'k^2)_i$.	$(\eta\eta'k'^2)_i$.	$(\eta\eta'kk')_i$.	
3	;	- '00002 0		—·oooo4 6	+.00000 68	
2	—·00001 9	00142 2	—.ooooo 1	-:00348 4	+.00048 87	
1	00001 I	07253 2	+.00001 2	-19279	+.02689 8	
0	+:27381	 : 41568	+.00101 0	01919 5	+.08383 2	
—ı	+:59306 6	- .05074 8	+ 30225	00469 2	26628 1	
-2	+.00284 8	00001 6	- .00945 8	00006 7	00121 21	
-3	+ 00002 4	+,00000 I	-·oooo4 3	—.00000 I	 00000 96	
Sum	+.86972	- '54042	+ '29377	'22027	—·15628 o	

107. Characteristic k.⁴

Values of \Re . For arguments $2i \pm 4g$, 2i, $\mathfrak{L}=0$.

i.	2 <i>i</i> + 4g.		2i-4g	•	2 <i>i</i> .	
4			+.00000	44		
3			+.00026	86	+ '00002	20
2	+.00000	07	+.01034	01	+ '00183	54
I	+.00002	65	-12623	98	+ 12460	70
0	+ .00288	65	+.02178	99	-3 .96849	90
I	09817	71	+ '00042	43	+ '09150	ÒΙ
-2	+ 01326	43	+.00000	58	+ '00077	12
-3	+ .00008	29	ve .		+ .00000	57
-4	+.00000	24		annow 9		
Sum	08188	38	-:09337	67	-3.74975	76

Characteristic k^4 .

Values of $\Re + \varrho$.

<i>i</i> .	2 <i>i</i> +	2g.	2i-2g.			
4			00000 03	yes manusalah h. Affirms a manusalah h. Affir		
3	+ '00000 03		- '00003 75			
2	+ .00008 00		+ *00059 77	- -°00000 33		
ı	+ *01375 25	+ '00000 02	<u> </u>	00193 31		
0	+1.96250 00	+ '00025 03	+1.95644 07	+:03951 52		
-1	+ '01515 37	00427 50	- '01125 33	+ .00008 92		
-2	+ '00211 13	—·oooo1 36	- '00040 44	+ '00000 04		
-3	+ '00007 78	,00000 OI	- ⁺ 00000 64			
-4	+ *00000 15					
Sum	+1.99367 80	00403 82	+1.93271 74	+ .03766 84		

Values of

<i>i</i> .	$(k^i)_i$.	$(k')_i$.	$(\lambda^3 \lambda')_i$.	$(kk'^3)_i$.	$(k^2k'^2)_{i}$.
3		+.00001 3		00000 6	+.00000 02
3 2		+ 00072 4		00053 8	+ '00002 68
1		05111 5	—·oooo3 6	03284	-'00012 0
0	+.00001 1	+.00171 4	—·00096 I	+.08818 1	99206 1
— ı	+ .00029 6	÷.00001 2	+ .02794	00131 8	+.06300 5
-2	+.00413 0		+ .00260 9	00001 2	+.00004 69
-3	+ 00004 2		+.00000 9		+ .00000 03
Sum	+ '00446 9	 04864 9	+:02956	+ .95356	92910 5

108. Characteristic e³a.

Values of $\Re + \mathfrak{L}$.

2 <i>i</i> .		2i	+ 3e.			2i -	-3e.	
9					00018	7 I		
7	+ .00000	19			01000	07	00000	34
5	— ·00002	09			- .09655	71	+.00000	30
3	0 0939	13	00000	27	+ .04866	76	+.00008	93
1	63721	77	00036	52	+.18199	35	00037	34
— I	+1.02819	96	+ '00042	40	05478	44	+.00181	04
-3	+ .05883	14	+ '00032	86	00065	86	00181	00
- 5	02176	80	+.00032	12	+.00000	19	00003	19
- 7	00114	07	100001	62			00000	04
- 9	00001	96	00001	67				
Sum	+ '44747	47	+ .00073	54	+ '06817	5 I	'00031	64

2 <i>i</i> .			2i + e.				2 <i>i</i> – c.	
9	+ '00000	04			- '00002	05		
7	- '00005	87			- '00220	26	00000	03
5	- '00326	16	00000	17	-12122	64	- `00004	70
3	- '48587	63	00023	37	- .64460	95	00001	98
r	— ·71097	95	+:00184	02	+.18169	80	00102	75
— I	+ .19813	19	-:00148	48	—·I 5240	58	00236	47
-3	- 13854	40	00165	65	04646	56	+ .00442	62
- 5	- '01271	97	+.00110	69	— . 00069	53	00100	85
— 7	'00020	42	-`00022	96	00000	45	00001	93
- 9	00000	24	00000	40	00000	03	00000	03
Sum	-1.12821	41	00066	32	78593	25	00012	I 2

Characteristic e³a.

Values of

2i.	$\left(\epsilon^{s}\alpha\right)_{i}$.	$\left(\epsilon'^{3}\alpha\right)_{i}$.	$(\epsilon^2 \epsilon' \alpha)_i$.	$\left(\epsilon\epsilon'^2a\right)_i$.
9		-·oooo 5		— ,00000 I
7		— •00039 * 8	—·ooooo 2	 00006 6
5	—·ooooo 3	— .00925 5	-:00023 9	 00436 5
3	- '00027 4	01426	-:01591 3	- °5569 °
1	– :01911 6	+ 01030 2	- .05442 6	-10225
<u>-1</u>	+ .07964 1	—·00130 2	+.18385	— .02624 3
-3	+ 03460	- .00005 9	—·01911 2	- .00089 3
-5	—·oo230 3	1	- ⋅00023 8	'00004 I
-7	00002 7		0000I o	
- 9	- 00000 I			
Sum	+ .09252	- °01498	+.09388	—·18955

109. Characteristic e²e'a.

Values of $\Re + \mathfrak{L}$.

2 i.	2i + 20	· + m.	2i - 20	e-m.	2i + 2c - m.		
9			00009				
7	+ .00003		 ∙oo668		+ '00004		
5	+ .00265		29203	- '00027	+ .00036		
3	+ .16050			+ .00137	03993	00004	
I	+6.03740	—,00001	-11737	00649	— '77599	- 00262	
— I	- '42403	+ .00261	+.74524	+ 00422	-1.83937	+.00191	
-3	- 12488	`04085	+.01684	+ .00599	+ .12188	+.00182	
- 5	- *04515	+ .00832	+ .00052	+.00009	+ '03582	00200	
-7	- '00078	 00159			+ '00071	+.00028	
- 9	+ .00001	'00003			+ '00002		
Sum	+5.60551	-'03152	+.07026	+ '00491	-2.46646	—·00062	

Characteristic $e^2e'\alpha$.

Values of $\Re + \Re$.

2i.	2i 2	ec+m.	2 <i>i</i> -	+ m.	2i-	-m.
9	+ '00012	Vol. No. Millerman . more Milley y top y commission designations	+.00002		+ '00002	and the second second second second second
7	+.00688		+ .00112		- '00023	
5	+:26155	+.00001	+.06615		03842	00002
3	+:39707	+ .00047	+2.47134	+.00001	-1.40678	00179
1	62492	00995	+ .89452	+ '00425	69566	+ .00653
- I	10020	+ 01256	27015	- °3575	+:30308	- '01102
-3	- '00121	-:01973	- '20414	+ 04986	+:32001	00456
-5	+ .00013	00042	-:00349	-01142	+.00706	+ .00259
-7	+.00001	00001	'00002	00021	+.00010	+.00004
-9					And the second second	
Sum	- ∙o6o88	01707	+ 2.95538	+.00674	-1.21082	00823

Values of

2;.	$(\epsilon^2 \eta \alpha)_{i}$	$(\epsilon'^2\eta'\alpha)_{i,}$	$(\epsilon^2 \eta' \alpha)_{i}$	$(\epsilon'^2\eta\alpha)_{i}$	$(\epsilon\epsilon'\eta\alpha)_{i,}$	$(\epsilon\epsilon'\eta'\alpha)_{i,}$
7		0002		+:0003		
5		0177		+:0129	+ '0023	0013
3	+.0021	'2686	0011	0879	+.1281	0746
I	+ 2742	1039	- 0435	+2.1242	+1.4461	0768
-ı	- ∙0294	+:0341	-1.0316	0010	1597	-3.8796
-3	+ :4801	+.0002	+ '4427	0009	0009	+.0135
-5	`0003	and the same of th	+.0013	Parameter and Pa	0007	+:0002
-7	0002		0001		TERROPE ANALAS	
Sum	+.7295	-:3558	6323	+2.0476	+1'4152	-4.0186

110. Characteristic ee'2a.

Values of $\Re + \Re$.

2i.	2 <i>i</i> + c + 2m.	2i-c-2m.	2 <i>i</i> + c – 2m.		
9		+.00001 I			
7	- •00004 4	+.00026 6	+.00012 0		
5	- 00287 6	-·04865 0 -·00005 2	+.00424 100000 3		
3	13497 9 +.00000 7	—·76647 7 —·00666 6	-·0220I 2 -·00024 5		
ı	-2·50990 8 -·00292 0	—·62264 6 +·○3178 7	+.56600 801504 5		
_ı	-·80061 9 +·01047 I	-·45296 4 +·o1308 5	-·47218 9 +·01051 8		
-3	-·15688 6 +·34620 1	-·o1619 4 -·ooo36 4	-·o6595 8 +·oo408 9		
-5	-·00452 7 -·05404 8	00031 200003 2	- '00350 9 + '00233 8		
$\begin{vmatrix} -7 \end{vmatrix}$	+ 00011 7 - 00079 1	— '00000 2 — '00000 I	00007 7 +.00000 5		
-9	-·.00001 0				
Sum	-3.60972 2 +·29891 0	-1.90698 I + 03775 2	50335 6 +.00463 I		

2 <i>i</i> .	2i-c+2m.	2i + c.	2i-c.		
9			+.00004 6		
7	—·00061 0	+.00023 9	+·00360 I		
5	02829 2 00000 I	+.01488 2 +.00000 1	+.14809 300000 3		
3	-·35775 3 -·ooo13 1	+.64255 4 +.00010 7	+2.01342 2 +.00266 3		
ı	-·52080 9 +·00478 9	+2.14321 801498 3	+.68113 3 +.01973 1		
-ı	+.06614 8 +.09080 3	+ 73440 6 + 03484 2	+ 40067 2 + 02618 8		
-3	+·00826 5 —·13086 1	+.61312 711872 9	+ .06910 6 + .04654 8		
- 5	+.00092 100267 4	+.02246 9 +.01657 8	+.00143 3 +.00084 0		
-7	+ 00003 6 - 00003 7	+.00041 2 +.0003 1	+ '00003 4 + '00001 2		
- 9	00000 I	+.00000 3 +.00000 3			
Sum	-·83209 4 -·03811 3	+4'17161 6 -'08195 0	+4'24754 3 +'09600 9		

Characteristic ee'2a.

Values of

2 <i>i</i> .	$(\epsilon\eta^2\alpha)_i$.	$(\epsilon'\eta'^2\alpha)_i$.	$(\epsilon \eta'^2 a)_i$.	$(\epsilon'\eta^2a)_i$.	(εηη'α) _i .	$(\epsilon'\eta\eta'\alpha)_i$.
5		- '0023	,	-,0011	+:0004	+'0071
3	0020	-1649	+.0001	- 0297	+'0211	+ .2706
I	— ·1865	-1208	+ .0021	-1912	+1708	0926
— I	- 2071	0297	'0445	+.1006	+ '4363	+ '0461
-3	+ '4312	'0004	—·ooo4	0126	0316	+ 0067
-5	0061		+.0001	0001	+ '0023	+.0001
Sum	+ 0265	3181	— ∙0396	-:1341	+:5993	+ .5380

111. Characteristic e'3a.

Values of $\Re + \mathfrak{L}$.

2 <i>i</i> .	2i + 3m.				2 <i>i</i> – 3m.				
9					+.00001	4			
7	+.00000	9			+.00037	I			
5	+ .00043	4			+.00820	4	00000	4	
3	+:00474	3	+.00006	4	19909	9	00062	0	
r	- 29874	9	00700	I	-:04918	3	 •3895	6	
-r	00992	9	+.05054	9	09102	7	+.00285	0	
-3	- ∙∘3587	3	60765	5	+:00026	9	00063	4	
-5	+ .00204	6	00855	2	+:00004	9	00000	8	
-7	+.00006	6	00010	0	+.00000	I			
- 9	+.00000	2	00000	I					
Sum	-:33725	ı	57269	6	-:33045	I	- .○3737	2	

Characteristic e'^3a .

Values of $\Re + \mathfrak{L}$.

2 <i>i</i> .			2i + m.			2 <i>i</i> –	-m.	
9					+ ,00000	9		
7	00012	9			+ '00040	8		
5	- ∙00858	7			+ '02460	2	+.00000	I
3	'26123	8	00002	3	+ .83332	0	+ *00004	5
ı	- 01739	6	 00566	6	+ '25130	2	— •00662	8
-ı	+ .08868		- ∵03773	4	00639	3	+ 01028	3
-3	+ '14305	5	+:31427	9	- '04100	1	00738	4
-5	+ .00288		+ .00347	8	- '00104	5	'00021	0
-7	+ '00004	4	+ *00004		00001	8	,00000	4
-9	+.00000	ı	+.00000	1				
Sum	—·o5270	7	+*27437	5	+1.06118	4	00389	7

Values of

2i.	$(\eta^s a)_i$.	$(\eta'^3 a)_i$.	$(\eta^2\eta'\alpha)_i$.	$(\eta\eta'^2a)_i$.
5	+.00001	+.00036	00028	+ '00072
3	'00012	+ .00972	-01429	+ .03354
I	0723	+:3042	-:3287	2531
-1	- '7294	+ .0898	+.7869	+ '9756
-3	— ·1709	'00002	+ 08589	 00436
-5	00046		+.00058	'00004
Sum	- '9732	+:4041	+:5298	+ '7524

112. Characteristic ek²a.

Values of $\Re + \mathfrak{L}$.

2i.	2i + c + 2g.				2i-c-2g.			
9			the state of the s		00002	63	round recurrence industrial enterior indicate and in indicate and indi	
7	00000	06			00232	93		
5	+ .00000	13			-12694	76	00003	62
3	- '00042	98	+.00000	01	+.18390	29	00016	14
ı	02218	61	+.00003	60	+.53086	82	+:00590	31
— r	+1.98177	62	00800	76	54487	76	-:00573	30
-3	+ '21544	85	+:01729	16	00453	24	00009	31
-5	03539	84	00025	38	+.00001	95	00000	10
-7	− .00064	34	00017	96	+.00000	06		
- 9	00000	68	00000	19				
Sum	+2.10826	09	+:00887	48	-:26392	20	-:00012	16

2i.		2i	+ c - 2g.		2i-c+2g.			
9	00000	09				w	- V	***************************************
7	00013	36			- ,00000	25		
5	01084	86	00000	15	00030	68		
3	21891	28	+.00014	8 r	- '01792	58	00000	56
I	-14053	51	00594	66	+1.70964	27	+ .00024	14
-1	+.54234	01	+.01310	49	- :18777	oı	+.02119	52
-3	— ·14735	54	+.01154	11	'11929	11	02572	49
— 5	00168	14	+ .00004	72	00276	70	+.00047	81
-7	00000	68	+.00000	02	- '00003	48	00000	26
-9					00000	01	00000	or
Sum	-:27713	45	+:01859	34	+1.38154	45	00354	85

Characteristic ek²a.

Values of $\Re + \mathfrak{L}$.

2i.	-	2 <i>i</i>	+ c.			2 <i>i</i> -	- c.	
9	The second secon	***			+ .00000	34		
7	+ .00001	07			+ '00023	93	+.00000	03
5	+ .00159	86	00000	10	+ .02399	07	+ .00005	16
3	+ .11928	89	00009	19	+1.20798	22	00409	44
1	+6.75069	59	+.01948	61	-1.78455	48	02157	33
- 1	-1.93792	53	04226	85	+1.07322	87	02465	4 I
-3	+ 19026	33	02071	99	- '02962	91	+:00703	99
-5	00889	43	+ .00496	60	00036	56	+.00013	23
-7	00013	71	+ .00004	56	+ .00000	03	+.00000	15
-9	00000	10	+.00000	04				
Sum	+5.11487	97	- .∘3858	32	+ '79089	5 I	04312	62

Values of

2i.	$(\epsilon k^2 a)_{i}$		$(\epsilon'k'^2a)_i$.		$(\epsilon k^{r_2} \mathbf{a})_{i_*}$		(ε'k²a` _i ,	
7			00013	7	00000	5		
5			01181	I	00052	0	+.00000	4
3	+ .00005	3	08718	3	04041	2	+.00064	2
ı	+.00184	9	− ·03664	I	50550		+.11126	3
-ı	+.15208	4	04612	8	+.17870	T	+.10583	
-3	+:15427		00017	7	01258	5	04372	5
-5	00719	0			00006	3	-:00007	6
-7	00005				00000	I	00000	I
Sum	+:30401	7	18206	7	07709		+:17424	

Characteristic $ek^2\alpha$.

Values of

2i.	(εkk'α) _i .	(€′kk′a);.
7	+ .00000 +	+ '00001 5
5	+ .00006 3	+ .00199 I
3	+ .00669 3	+ 16219 6
ı	+ '56588 5	+1.44113
-1	-2.22530	— ·o3941 I
-3	- 10800 4	- •00373 9
-5	 00080 9	 .00001 2
-7	— .00000 2	
Sum	— 1·76148	+1.26184

113. Characteristic e' $k^2\alpha$.

Values of $\Re + 2$.

2 <i>i</i> .	2 <i>i</i> + m + 2g.			2i-m-2g.			metalahkan Manderstorrengan samukal	
9					- ,00000	71		
7	+ .00000	18			- '00049	35		
5	+ '00017	33			03515	46	00000	07
3	+ .01544	48	+.00000	02	07602	70	00097	56
I	+1.06559	78	+.00041	62	- '28776	46	00955	78
 1	60593	45	- 04399	7 I	+3.05205	66	01139	56
-3	+ .00478	07	- .11860	46	+ • 05553	97	+ .00003	02
- 5	— ' 01154	32	00649	08	+ .00070	44	+.00000	06
-7	- '00014	63	•00006	41	+ .00000	78		
- 9	00000	21	00000	05				
Sum	+ '46837	23	- 16874	07	+2.70886	17	- .02190	89

Characteristic e'k²a.

Values of $\Re + \mathfrak{L}$.

2 <i>i</i> .		2i + m	-2g.			2i - m + 2	?g.	
9	+.00000	20						
7	+ .00051	14			+ .00000	18		
5	+ 01621	97	*00000	34	+ .00002	23		
3	+ •49466	56	+.00069	13	+ '00293	93	+.00000	05
I	97149	67	- •00578	50	+ .07585	28	00011	26
— I	02020	43	04771	53	- 2.92221	25	01749	37
-3	+ .00342	46	00060	99	+ .181.22	84	+.02886	88
-5	+ 00035		00000	62	+ '00704	50	+.00308	27
-7	+.00000	91			+ .00000	40	+.00001	74
-9	+.00000	02			+ .00000	06	+.00000	01
Sum	- .47678	70	05342	85	- 2.65444	83	+ 01436	32

2i.		2	$i+\mathrm{m}$.			2i	- m.	
9	00000	04			00000	10		
7	00001	65			+ .00003	17		
5	00120	99			+ '00417	52	+.00000	02
3	09289	49	+.00003	48	+ '33260	11	+.00008	40
ı	-1.26453	15	00687	78	+1.00124	29	+.01019	64
- I	+ '43988	60	+.19119	70	- '44129	44	+.02820	24
-3	08252		+.11614	20	+ .19227	95	03913	82
-5	00097		+.00120	59	+ .00314	co	`00025	30
-7	+ .00000	62	+.00001	11	+ .00003	92	00000	19
-9	00000	02			+ .00000	04		
Sum	-1.00258	76	+.30170	30	+1.09254	46	00091	01

Characteristic e'k²a.

Values of

2 <i>i</i> .	$(\eta k^2 a)_i$.	$(\eta' k'^2 a)_i$.	$(\eta k'^2 a)_i$.	$(\eta' k^2 a)_i$.
7		00002 9	+.00001 I	
5		00335 8	+·00142 I	+.00000 I
3	+ 00004 4	- 34996	+17656	+.00008 6
1	+.00328 8	68238	02358	+.00346 5
- I	+.10426	+.20321 2	- •01345 1	48005
-3	+ '74417	+.00284 3	+ .00013 4	20583
-5	- 00328 7	+.00001 9	+.00000 9	+.00157 1
—7	0000 I	,		+ '00000 5
Sum	+.:84926	'52935	+.14111	68075
				[

2i.	$(\eta k k' a)_i$.	$(\eta'kk'a)_i$.
7	— '00000 2	+ '00000 2
5	00056 2	+ '00022 0
3	— ·03252 o	+ '02120 2
I	-4'31577	+ '71841
- 1	- I.35650	+12.28216
-3	- '00148 2	+ .03487 2
-5	- ·oooo1 7	+ .00019 4
-7		+ .00000 I
Sum	- 5·67626	+13.05703

114. Characteristic $e^2\alpha^2$.

Values of $\Re + e$.

i.	2i + 2c.		2i-	- 2c.	2 <i>i</i> .	
4	The special and the second sec		+ .00058		+ .00004	
3	+.00018		+.01624	00004	+ .00581	
2	+ .00754		+ '29412	00033	+ '12784	-·ooo35
ı	+.56891	00061	-12528	00745	+1.02879	+ .00473
0	37623	+.03189	06085	+.00066	- '30835	00958
— I	-14252	01204	+ .02427	+ .00084	+ '21573	01470
-2	+ .06237	-:03041	+.00086	00632	+ '01220	+ .02769
-3	+ .00174	+ .00492	+.00003	80000-	+ .00031	00245
-4	+:00004	00024			+ ,00001	00003
Sum	—·17797	- .00646	+'14970	-01272	+1.07941	+ . 00531

Values of

i.	$(\epsilon^2 \mathfrak{a}^2)_i$.	$(\epsilon'^2 \alpha^2)_i$.	$(\epsilon\epsilon'\alpha^2)_i$.
3		+.00069	+,00008
2	4.00018	+ .0330	+ '00442
1	+ '00829	+ .035	+ .08709
0	- '02731	0025	-
— I	- •095	+ .00077	+ .0172
- 2	0249	00020	+ '00291
-3	+ .00054		00008
Sum	-:138	+ '067	+ '0321

115. Characteristic eé a².

Values of $\Re + \Re$.

i.	2i + c	+ m.	2i-c-m.		
4			+'00021	***************************************	
3	00009		+ .00753	00001	
2 .	02560		+.56212	00263	
1	-2.75577	00278	+ .20795	+ .00899	
0	+1.34099	00605	+ '41844	+ .00925	
-ı	+ .08386	+.01829	-:34740	+.01662	
-2	+ '04510	+ • 24946	00299	+.00849	
-3	+ .00099	02085	— ⁺00002	+ .00007	
-4	+ .00003	00024			
Sum	-1.31049	+ .23783	+*54587	+ .04078	

i.	2i +	c—m.	2 <i>i</i> -c+m,		
4	+ '00003		00006		
3	+'00125		00753		
2	+.03440	00003	- '72035	`00053	
I	+ '23283	00644	-1.13600	+:00531	
0	+ .61656	+ .02227	+ '22661	+ .02298	
-r	40173	+.00163	+ .03323	+.05310	
-2	—· 10185	- ⋅05084	+ '00479	 ∙07805	
-3	00100	+.00181	+ '00021	'00102	
-4	00001	+ '00002	+ .00001	00001	
Sum	+:38048	-:03158	-1.29909	+.00148	

Characteristic $ee'\alpha^2$.

Values of

i.	$(\epsilon\eta\alpha^2)_i.$	$(\epsilon'\eta'\alpha^2)_i$.	$(\epsilon \eta' \alpha^2)_i$.	$(\epsilon'\eta\alpha^2)_i$.
3	00001	+.00026	+.00003	00037
2	00131	+.00751	+.00109	03513
1	12949	+.1213	+.01164	-1270
0	+1225	+ 2751	+ 2975	- .5059
_r	- ·1899	01338	5103	+ .01300
-2	+.0662	+.00047	01632	00417
-3	'00 I 2 I	The state of the s	+.00010	00002
Sum	:1332	+.3913	+ .0837	— ·6596

116. Characteristic k²α².

Values of $\Re + \mathfrak{L}$.

i.	2i+2g.		2 <i>i</i> -	- 2g.	2 <i>i</i> .		
3	+.00001		+:00037		+ '00004		
2	+.00047		+.12316	+.00009	- *00055	+:00002	
I	+.01697	+ .00027	22860	+.00117	-1.20841	00180	
0	- ·46493	03704	07083	10214	+ '74163	+.10001	
-I	23351	03121	+.08806	 ·02647	- 10082	+13475	
-2	+ 04289	- ∙03335	+ 00279	00018	+ .00400	+ :02164	
-3	+:00017	00009	+.00002		+ .00015	+*00014	
Sum	- ·63793	-10142	 • 5500	—·12753	86399	+.25566	

Values of

i.	$(k^2 a^2)_i$,	$(k'^2a^2)_i$.	$(kk'\mathfrak{a}^2)_i.$
3		+.00012	—·00001
2		+ .02250	00110
I	4.00008	+.632	— ·17168
0	- ·○3354	- ∙0508	+.5100
—ı	- .623	+ .00535	+.2299
-2	0300	+.00009	+.00274
-3	—·00002		+.00001
Sum	— ·686	+.609	+.2708

117. Characteristic ke³.

Values of K+L. For arguments $2i+g\pm 2c$, L=0.

i.	2i + g + 3c.	2i+g-3c.
5		+:00000 56
4	+.00000 03	+.00022 74
3	+'00001 44	+.00533 39
2	+.00074 35	+.00402 52
I	+ 03004 59	01541 20
0	+.71696 43	07503 40
— I	—·10081 77	02229 53
-2	+.00022 10	00089 00
-3	- '0002I 24	'00002 15
-4	- `00015 28	—·ooooo o3
-5	'00000 65	
Sum	+.64680 00	—·10406 10

i.			2 <i>i</i> +g+c.			2	i+g-c.	
5	+.00000	01			+.00000	16		
4	+.00000	83			+.00008	52		
3	+ .00043	36			+.00340	2 I		
2	+.01736	50	00000	07	+.07930	55	'00000	I 2
I	+.40822	14	-:00007	16	+ 00652	77	00011	17
0	 .01854	4 I	00635	5 3	+.06525	69	+.00001	00
r	+.00110	98	+.00022	09	02001	07	00001	6 1
-2	00204	37	`00003	89	01211	33	00000	02
-3	00229	06	00000	04	000050	44		
-4	00000	76			00001	26		
-5	'00000	25			00000	02		
Sum	+:40415	97	00624	60	+.15193	78	-,00011	92

Characteristic ke³.

Values of

i.	$\left(k\epsilon^{3} ight) _{i}$.	$\left(\lambda \epsilon'^{3} ight) _{i}.$	$(k\epsilon^2\epsilon')_i$.	$(k\epsilon\epsilon'^2)_i$.
4		+:00000 70	+,00000 01	+.00000 14
3	+.00000 01	+.00038 82	+:00000 68	+.00009 92
2	+.00001 12	+.00180 89	+:00048 15	+ .00531 28
1	+:00079 37	+ .01349 47	+ .02534 49	+.00501 04
0	+:04139 88	02230 57	·00708 0 2	-
-r	- .°02439 31	00142 20	00106 86	- ∙00749 18
-2	+:00007 65	'00002 50	00094 57	- .00083 02
-3	- .00012 24	00000 03	- .00016 94	- .00001 49
-4	-·oooo1 23		—·ooooo 3o	—·00000 02
Sum	+ 01774 95	- .00805 42	+.01656 64	- ∙05626 6 3

118. Characteristic ke²e'.

Values of K+L.

i.	2i+g+2c+m.			2i+g-2c-m.				
5		THE PROPERTY SERVICES	AMERICAN DE LA COMPANION DE LA		+.00000	66		
4	00000	04		1	+.00030	69		
3	'00002	30			+.01035	92	+.00000	05
2	00107	37	+.00000	01	+ 16457	95	+.00004	19
1	03569	68	+ 00001	10	01782	22	+.00019	40
0	 *54560	36	+.00091	97	+.00562	27	00079	83
- 1	05701	99	00043	15	+ .04641	16	00003	02
-2	+:00702	83	00001	58 :	+.00505	05	00000	03
-3	00663	19	00000	13	+.00002	09		
-4	00036	53			+.00000	09		
-5	00001	01						
Sum	63939	64	+.00048	22	+.51120	66	00062	24

Characteristic ke²e'.

Values of K+L.

i.		2i+g+2	ec-m.	2i+g-2c+m.				
5					00000	08		
4	+.00000	26			00004	42		
3	+.00012	68			00149	82	+.00000	05
2	+ .00239	69	+.00000	oı	02391	83	+.00004	19
1	+.14580	39	+,00001	10	 00160	56	+.00019	40
0	+.65773	97	+.00091	9 7	+:00971	18	00079	83 -
-ı	-:00337	70	00043	15	08389	85	00003	02
-2	+.00043	36	00001	58	—·00626	45	00000	03 -
-3	+ 00177	32	00000	13	00019	66		
-4	+.00007	9 7			00000	40		
-5	+.00000	20						
Sum	+.80798	14	+:00048	22	-10771	89	—·00062	24

i,		2 <i>i</i> +	g+m.			2i+g	g — m.	
5	00000	02			+ .00000	I 2		
4	00000	91	*		+ .00002	78		
3	00043	65			+ .00260	01		
2	-01468	09	+.00000	47	+ .08024	40	+.00000	29
τ	23463	84	+.00040	37	+ '96859	73	+:00025	48
0	02250	64	+.00011	90	- '01639	85	00012	32
-1	+.01212	91	— :00065	50	- '00262	58	+.00018	93
-2	04967	40	oooo t	82	+ '01797	5 3	00001	06
-3	00305	52	00000	02	+ '00079	78	00000	01
-4	00009	00			+ '00002	02		
-5	00000	17			+ .00000	01		
Sum	-:30996	33	00014	60	+1.02126	95	+ '00031	31

Characteristic ke^2e' .

Values of

i.	$(k\epsilon^2\eta)_i$.	$(k\epsilon'^2\eta')_{i}$.	$(k\epsilon^2\eta')_i$.	$(k\epsilon'^2\eta)_i$.
4		+.00000 69		00000 09
3	—·ooooo o3	+ .00047 35	+.00000 19	—·oooo6 38
2	-·00002 IO	+ 02356 09	+ .00010 88	-:00297 65
r	 00134 79	+ 03846 7	+ .00579 68	+.01507 7
0	- ⋅05587 76	+ 04524 8	+:07543 81	-:04015 9
<u> </u>	—·10870 51	+ '00541 35	02061 5	-01098 67
2	—·00801 92	+.00008 30	'00037 8	00027 16
-3	 00111 32	+ .00000 +11	+ '00025 36	- '00000 42
-4	—·oooo1 83		+ '00000 37	ooooo oı
Sum	— :17510 26	+11325 4	+.00001 1	03938 6

i.	$(\lambda \epsilon \epsilon' \eta)_i$.	$(k\epsilon\epsilon'\eta')_i$.
4	'00000 OI	+:00000 07
3	- .00000 89	+.00002 25
2	- •00058 91	+.00344 00
I	—·o2666 26	+.12360 04
. 0	—·I 2700 5	+ 08781 9
, —1	02647 80	+ 00687 6
-2	00730 21	+.00231 70
-3	- 00014 20	+.00003 48
-4	00000 20	+.00000 04
Sum	—·18819 o	+:22414 5

119. Characteristic kee'2.

Values of K+L.

i.		2i+g-	+ c + 2m.		The state of the s	2i+g-	-c-2m.	
5					+.00000	2 I		
4	+.00000	02			+ 00012	17		
3	+.00000	72			+ '00499	31	+,00000	02
2	+ '00020	64	00000	01	+12823	94	+ .00005	61
ı	+.00011	43	+.00000	86	+.78746	00	+ .00234	71
0	17808	97	+ '00295	39	-17852	33	- .00867	68
I	+ 71766	93	00484	03	+ .01447	οı	'00000	22
-2	- ∙05048	72	00012	45	00026	52	+.00000	02
-3	 .00595	51	00000	10	00001	76		
-4	00020	16			000000	04		
— 5	00000	48						
Sum	+ '48325	90	00200	34	+ '75647	99	'00630	54

i.		2 <i>i</i> +	g+c-2m.			2 <i>i</i> +	g-c+2m.	
5	+.00000	02						
4	+.00000	94			+.00000	01		
3	+.00046	I 2			00006	97		
2	+.01699	66	+.00000	10	00721	63	+.00000	16
I	+.33938	80	+.00009	10	35159	54	+.00061	65
٥	+.30913	00	+ .00473	20	+.31108	88	:01333	33
- 1	-:33037	02	-:00144	85	-12455	46	00037	07
-2	+:00733	70	+.00000	07	01967	10	- '00000	40
-3	+.00010	31	+.00000	OI	00075	20		
- 4	00000	05			00001	81		
— 5	00000	Οĭ			00000	oı		
Sum	+ 34305	47	+ .00337	63	-19278	83	01308	99

Characteristic kee $^{\prime 2}$.

Values of K+L.

i.		2i + g	;+e.			2i+g	ς−e.	
5	X			programe - Parameter (School School S	00000	05		
4	:00000	29			00003	45		
3	'00014	54			00140	70	00000	08
2	00554	•	+.00000	44	03566	80	00007	79
T	11838		+ '00042	44	50913	34	00712	07
0 1	05326		+ .03416	32	03830	00	00675	32
_ I	-13926		00502	70	+.10605	30	00121	32
-2	+ '03413		+.00010	36	+.01041	88	0000 I	72
- 3	+ .00264		+.00000	13	+:00033	81	00000	01
-4	+ '00007	99			+.00000	72		
- 5	+.00000	16						****
Sum	—·27974	60	+ .02966	99	16474	63	- .01548	31

Values of

i.	$(\lambda \epsilon \eta^2)_i$	$(k\epsilon'\eta'^2)_i$.	$(k\epsilon\eta'^2)_{i_*}$	$(k\epsilon'\eta^2)_i$
4		+ '00000 21	+.00000 01	
3	+.00000 01	+.00012 61	+:00000 75	 '00000 24
2	+ '00000 52	+.00971 71	+ .00049 28	— ·00052 32
1	-·oooo2 93	+:35173 91	+ 02306 46	 •09968 00
0	-·o4371 56	+.12803 06	+11337 20	- ⋅ 25777
-1	-·66115 99	+.00480 33	+.28041 72	- .05958 97
-2	- °03574 62	-·oooo1 15	+ .00383 22	00122 11
-3	- '00052 45	00000 05	+.00001 56	00002 38
-4	- ∙00000 69			 00000 03
 Sum	-·74117 71	+ '52443 63	+'42120 40	-:41911 14

Characteristic kee'2.

Values of

i.	$(k\epsilon\eta\eta')_{i}$		$(k\epsilon'\eta\eta')_{i_i}$		
4		***************************************	00000	06	
3	:00000	23	00004	14	
2	'00015	34	- '00245	63	
I	`00732	98	− ·07397	30	
0	00507	19	+ .03863	62	
- r	+:12496	93	+ '03793	55	
-2	+:01613	76	+.00073	98	
-3	+ .00051	08	+.00001	02	
-4	+.00000	26	+.00000	OI	
Sum	+.12876	29	+ .00082	05	

120. Characteristic ke'3.

Values of K+L.

<i>i</i> .	2i + g + 3m.					2i+g-3m.			
5	The property of a state of the				+.00000	03			
4					+.00001	51			
3	00000	03			+ .00070	49			
2	+.00000	03			+ .02390	I 2	+.00000	36	
ı	00019	08	+,00001	88	+:39028	72	+ .00034	06	
0	01185	45	+ .02137	21	02187	35	+ 02201	69	
- I	+:39014	38	00489	89	00064	00	+.00003	96	
-2	 02391	05	00002	03	00019	99	+.00000	02	
-3	00120	16	- '00000	01	00000	23			
-4	00003	10							
-5	-:00000	05							
Sum	+:35298	49	+ .01642	16	+.39219	30	+.02240	09	

Characteristic ke'3.

Values of K+L.

i	2i+g+m. $2i+g-m$.							
5								
4	+.00000	o ₅			00000	64		
3	+ .00005	55			00050	19		
2	+:00062	54	+.00000	05	00972	22		04
1	+ .00138	41	+.00008	89	15175	42	00000	49
0	00357	95	+.01135	25	+.00011	85	+.01084	69
— I	14427	67	00318	17	+ .00047	58	+.00059	32
-2	+.01680		00002	14	00094	04	+.00000	45
-3	+ .00071	34	00000	01	00006	78	+.00000	01
-4	+.00001	7 T			00000	20		
-5	+.00000	०३						
Sum	-12838	76	+ .00820	87	-:16219	06	+.01113	94

Values of

<i>i</i>	$(k\eta^3)_i$.	$(\lambda\eta'^3)_i$.	$(\lambda \eta^2 \eta')$.	$(\hbar\eta\eta'^2)_i$.
4	a v	+ '00000 02		-,00000 oI
3		+.00001 20	+.00000 02	'00000 63
2		+.00110 23	+ '00002 50	00041 80
r	— '00001 49	+ .05659 12	+:00025 06	01944 00
0	+.00482 66	00172 9	+ ·06378 I	- ∙06330 2
— I	—·53°57 5°	-·00381 2	+ 30385 23	+.00018 0
2	00513 58	—·oooo2 82	+ .00300 03	00013 08
-3	 00006 46	10 00000	+.00003 26	—·ooooo 29
-4	—·ooooo oS		+ '00000 04	i I
Sum	 53096 45	+.05214 3	+ 37095 5	08311 0

121. Characteristic k³e.

Values of K+L. For arguments $2i+3g\pm c$, L=0.

i.	2 <i>i</i> + 3g +	е.	2i+3g-	c.
5		F		
4			1	
3	+.00000	04	00000	43
2	+.00001	74	00041	18
I	+:00087	34	- '03237	90
0	+:02556	39	-1.65684	02
-ı	27846	00	11911	13
-2	-:00185	73	+ '00073	33
-3	00022	02	00001	73
-4	00001	68	00000	IO
-5	00000	06		
Sum	25409	98	-1.80503	16

i.		2i + g +	- с.		2i+g-c.					
5						We also an agreement and a second				
4	00000	02			00000	65				
3	—·00002	16	00000	01	00036	08	+.00000	16		
2	00100	69	00000	57	- '01471	73	+ .00012	30		
1 1	02309	88	00055	8 r	- '24570	64	+ .01382	37		
0	+.86505	05	04955	90	+ 2.50685	95	00124	00		
- I .	09633	83	+:00172	26	+ 10206	41	+.00199	63		
- 2	00055	86	00030	34	+ '00127	02	+ .00005	2 I		
-3	00016	69	00000	33	+ .00000	58	+.00000	02		
-4	00000	52								
- 5	+.00000	01								
Sum	+ '74385	41	04870	70	+2.34940	86	+ '01475	69		

Characteristic k^3e .

Values of

i.	$(k^3\epsilon)_i$.		$(\lambda^3 \epsilon')_{\ell}$.		$(k^2k'\epsilon)_i$.		- (,	$k^2k'\epsilon')_i$	
4							'0	00000	01
3			00000	OI	00000	03	*(10000	11
2	+.00000	03		35	00002	72	•	90100	94
ſ	+ '00002		00233	85	00128	45	+ - ·	ა8994	42
0	+.00140	98	46095	52	+.53202	5 9	-2.	12659	97
<u> </u>	-·o6570		+ 10654	96	+ .07945	50	+ '	02789	93
2	+ .00250	93	+.00092	26	+:00007	65	+ .	00009	36
-3	'00012	15	+.00000	06	-·00001	17	+ .	00000	02
- 4	00000	15			00000	02			
Sum	—·06188	50	35580	45	+:31326	35	-2	18963	14

122. Characteristic k³e'.

Values of K+L.

i.		2i + 3	g + m.	2i + 3g - m.				
4								
3			*		+.00000	09		
2	00000	04			+.00002	63		
ı	+.00020	12	+.00000	01	+ 00212	35	+.00000	Οi
0	+ .02002	74	+.00001	65	+:02223	28	+.00001	65
I	10032		 ∙00068	38	+.02116	77	:00068	38
-2	+.00835		00001	56	 00348	15	—.0000 I	56
-3	00022		00000	01	+.00007	67	'00000	OI
-4	'00000				+.00000	22		
Sum	—···07197	26	00068	20	+ .04217	86	00068	29

Characteristic k^3e' .

Values of K+L.

i.		2 <i>i</i> +	g + m.			2i + g -	m.	
4	+.00000	04	The second secon		00000	19		· ·
3	+.00001	83			00010	25		
2	+.00000	10	00000	08	00457	80	+.00000	40
.1	+ .02712	05	00007	43	-10787	11	+.00030	28
0	+:04871	79	:00030	12	+ .04461	77	+.00031	18
-ı	01092	69	+.00136	02	+.00213	57	00077	72
-2	-:00329	91	+.00001	45	80100.+	00	00000	49
-3	00011	5 9	+.00000	02	+ 00002	9 5		
-4	'00000,	26			+.00000	ó8		
Sum	+.06241	36	+:00099	86	06468	98	00016	35

Values of

i.	$(k^3\eta)_i.$	$(\lambda^3\eta')_i$.	$(k^2k'\pmb{\eta})_i.$	$(k^2k'\eta')_i$.
4				
3			+.00000 04	—·00000 22
2		+.00000 11	+.00003 83	- ⁺00020 05
I	+ '00000 74	+.00008 48	+ .00343 98	-·01413 28
0	+.00180 50	+ 00264 45	+ 26780 3	- ·26499 7
- I	- 16631 44	+ 10195 2	+.01283 48	+.01063 3
-2	 00845 96	+.00444 82	- .00045 07	+.00012 08
-3	00002 92	+.00002 14	—·ocooo 54	+.00000 14
-4	- •00000 05	+·00000 or	—·ooooo oı	
Sum	—·17302 37	+.10912 5	+.28366 0	

123. Characteristic $ke^2\alpha$.

Values of K+L.

2 <i>i</i> .		2i+	g + 2c.	2 <i>i</i> + g – 2c.					
9				1	00000	95			
7	+ .00000	10			00075	30	+.00000	т4	
5	00002	78	+.00000	03	- ∙03408	84	+.00010	98	
3	—·00924	98	+.00003	19	-14174	34	'00052	08	
I	 ·50561	36	+ .00244	75	+.23592	66	+.00565	45	
-1	+.33265		—·oo237	97	+ .08570	37	00163	11	
-3	—·11496	98	+ 00092	44	+.02136	26	00008	48	
-5	+ .00857	_	00003	05	+ '00044	80	00000	10	
-7	+.00130		00000	38	+.00000	48			
-9	+.00003	01							
'_ Sum	28732	41	+.00099	01	+:16685	14	+ .00325	80	

-						
:	2i			2i+g.		
	9	00000	02			
ŀ	7	00002	82		+.00000	01
i	5	00553	48		+.00001	32
İ	3	—·2647 I	64		+.00101	68
1	τ	30003	95		00456	62
	- 1	26242	77		+:00689	56
<u> </u>	-3	+.05329	6 1		— '0002 I	48
i -	-5	+.01064	96		00003	40
-	- 7	+.00023	81		00000	05
_	-9	+.00000	29			
j s	um	- .76859	01		+.00311	02

Characteristic ke²a.

Values of

2 <i>i</i> .	$(\dot{k}\epsilon^2a)_\ell$.	$(\lambda^2 \epsilon'^2 a)^{\kappa}_{i}$,	$(k\epsilon\epsilon'a)_i$.
9		—·ooooo o2	
7		 .00005 31	00000 10
5 .	-·ooooo 10	00241 69	00016 04
3	- '00025 49	- ⋅05586 70	 .01707 71
1	-	20534 29	09528 85
- 1	+ .08743 57	+.02665 51	+.51904 30
-3	+.10022 96	+.00111 50	+:02244 01
-5	+.00201 11	+.00001 32	+.00077 23
- 7	+.00010 26	+.00000 01	+.00000 74
- 9	+.00000 10		+.00000 01
Sum	+.16249 55	'23556 97	+'12973 59

124. Characteristic kee'a.

Values of K+L.

2i.	2i+g+c	e+m.			2 <i>i</i> + g - c -	·m.	
9				+.00000	4	A CONTRACTOR OF THE CONTRACTOR	
7	+ .00003 0	,		00006	I		
5	+ .00513 0			01062	8	+.00004	6
3	+ .11381 3	00000	3	- '4°554	7	+.00911	0
t	+3.68451 4	+.00250	2	+.03619	5	- '04405	2
— I	— '01515 8	02278	5	+ .00622	8	- .00129	8
-3	— ·16887 · 4	00097	0	- ·12646	4	+.00011	I
- 5	+ .02886 2	-'00030	8	00363	7	+.00000	2
- 7	+ .00074 8	•00000	3	— .00006	7		
- 9	+ .00001 0						
Sum	+3.64608 7	'02156	7	'50392	7	'03905	1

Characteristic kee'a.

Values of K+L.

2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -					1					
· 2i.		2i+g+e-m.						2 + g - e + m	•	
9					/	+	.00000	7		
7	+.00001	9				+	.00044	1		
5	+.00038	6	+.00000	2		+	.02328	2	00000	2
3	-:01159	3	+.00028	5		+	74244	I	+.00043	3
ı	'29154	5	+.01677	6		+	.00857	2	02096	1
— I	+.01202	9	01348	2			.06503	7	01387	3
-3	+.03803	6	+.00033	8		+	.07677	2	00103	3
-5	02610	6	+ .00003	9		+	.00203	5	'00001	2
-7	00076	4			ŧ	+	,00001	8		
-9	10000.	4								
Sum	—·27 955	2	+ .00394	8		+	.78853	1	03544	8
						.,		_		

Values of

2i.	$(\lambda \epsilon \eta a)_{\mathbb{N}}$	$(\lambda \epsilon' \eta' a)_{i,i}$	$(k\epsilon\eta'\alpha)_{i,j}$	$(k\epsilon'\eta\alpha)_{i,}$
7	-			+.00000 0
5	+.00001 1	- .00048 2	+:00000 8	+:00098 2
3	+ .00425 2	- ⋅∘5375 8	00047 6	+.08783 6
Γ	+.39617 9	+:03317	- °0 3291 0	4212
— 1	08295	1332	+.1685	+ 23485
-3	+.58612 6	—·o1555 7	12480	+.01085 4
- 5	+.00498 +	00015 7	00374 8	+.00000 6
-7	+.00003 ()	'00000 2	00003 6	
Sum	+.60898	·1700	+.0002	- ⋅0866

125. Characteristic $ke'^2\alpha$.

Values of K+L.

2i.		2 i + g	; + 2m.		2	- 2 m.	$2i+\mathrm{g}.$					
9				-1	+.00000	3			+.00000	1		
7	00001	6			+.00007	3			+.00009	3		
5	00094	7			+.00212	8	+.00001	2	+.00520	9	00000	1
3	-:03544	6	+.00001	7	+'02615	5	+.00103	4	+18452	3	+.00004	4
I	28833	7	+ 01564	3	+.50018	6	+ .06701	3	-10637	3	+.02244	8
— I	+.14026	4	+.06545	3	55085	6	00171	I	09188	9	+.00184	8
-3	+'11342	9	00751	3	+.06191	8	+ .00002	3	16626	7	+.00094	4
-5	+.00284	1	00005	6	+.00239	3	00000	I	 00906	2	+.00001	1
- 7	00000	3			+ .00004	8			00019	9		
- 9	e constitution of the cons							1	00000	4		
Sum	- ∙06791	5	+:07357	4	+.08110	8	+.06637	0	—·18396	8	+:02529	4

Values of

2 <i>i</i> .	$(\lambda \eta^2 a)_i$	a landary s	$(k\eta'^2a)_i$		$(k'\eta\eta'\alpha)_{i.}$	
7			+.00000	ı	+.00000	2
5	00002	6	+.00006	5	+:00014	9
3	00215	4	+.00501	2	+ .01184	9
I	 .07106	2	+.11048	3	02612	x
— I	18423	6	+.18843	7	+ .07789	9
-3	+ .05465	0	+.02052	8 ,	06604	4
-5	+.00026	7	+.00014	3	- .00069	8
- 7		į	+.00000	2	00000	6
Sum	-'20256	I	+:32170	ı	-:00294	0

126. Characteristic k³a.

Values of K+L.

2i.		2i + 3g				2i + g.	(5.5	
9	y - Lighter of the second of t	A			+ .00000	OI		
7	00000	OI			+ .00000	88		
5	+.00000	65			+ '00077	2 1	00000	•
3	+ '00040		+.00000	05	+ .05639	87	00008	
τ .	+.01996		+.00002	98	+2.48539	91	- .01048	67
-1	+ '74206		+.00810	84	+1.66872	82	01733	51
-3	- 18534		00058	52	+ '12295	52	00038	94
-5	+.00228		00003	09	+ '00276	64	00000	23
— ₇	+.00010		00000	02	+ *00004	10		
-9	+.00000				+ ,00000	07		
Sum	+ '57978	40	+:00755	24	+4.33707	03	- .°02859	89

Values of

2i.	$(\hbar^3lpha)_i.$	$(k^2k'\alpha)_i$.
7		+ .00000 05
5	+.00000 01	+ '00002 57
3	+.00001 17	+ '00424 96
1	+ '00132 75	+ '77503 01
-1	+19243 08	−1.41930 03
-3	+.16488 20	+ .01500 68
—5	+ 00249 91	+ '00022 04
-7	+.00001 51	+ *00000 14
Sum	+ 36116 33	— ·59767 61

127. Characteristic $ke\alpha^2$.

Values of K+L.

			-								-
i.			2i+g-c.					2i - g-e.			
4	+.00000	ī			-0	+:00002					
3	+.00013				1	+.00102	5 4		+.00001	ď	
2	+ .00267		+ '00007	6		+ '03302	6		+'00152		
1	+:14568	3	+.00810	0		+.27137	4		-:03529	•	
0	-:03785	2	+.00671	5		04866	7		02091	6	
1	+:20850	9	02037	7		07390	1		00240	4	
-2	-:03552	0	+.co131	5		00479	0		00026	5	
-3	00131	5	00001	8		—·ooo14	0		00000	3	
-4	- '00002	9				00000	4				
Sum	+.58258	7	00151	9		+117797	7		- ° ∘ 5734	1	

Values of

7						
	i.	$(\lambda \epsilon \alpha^2)_i$.			$(k\epsilon'\alpha^2)i$.	
i -			-			
	3	+.00000	2		+ .00003	2
	2	+.00019	0		+ .00238	4
	1	+:00954	3	•	+.08233	9
	0	00952	I		+ .05848	6
- P	— 1	-16281	9	-	02730	I
	2	01633	8	-	00036	7
mental o	-3	00011	7	-	00000	4
3		-				
;	Sum 	 —·17909	0		+.11226	9

128. Characteristic ke'a2.

Values of K+L.

i.		2i + g	+ m.			2i + e	- m.	
4	00000	I			+.00001	3		
	00008	4			+:00053	9	+.00000	4
3	'01155		+.00002	4	+.01512	I	+.00048	8
ı	-·8 ₄ 1 ₃ 8		+.01252	8	+.04220	3	+.05264	0
0	00439		+.03115	9	00709	1	+.01238	3
-I	+ .02933		+:05394	8	02860	8	00535	1
-2	+ .00112		00267		+ 03479	3	+.00000	I
-3		2	00002	0	+.00028	0		
-4	00001	2			+.00000	5		·
Sum	82722	4	+:09499	3	+:05755	5	+.06316	5

Values of

i.	$(k\eta a^2)_j$.	$(\hbar\eta'\alpha^2)_i$.
3	—·ooooo 2	+.00001 2
2	- ·00049 6	+.00066 0
I	-·o9352 2	+.01108 4
0	+12870	06371
— I	— ·17592 4	+.18289
-2	- .00054 0	+.00476 3
-3	00001 6	+.00003 8
Sum	—·1418o	+.13963

Haverford College, Pa., U.S.A.: 1900 May 14.

(To be continued.)

Theory of the Motion of the Moon; containing a New Calculation of the Expressions for the Coordinates of the Moon in terms of the Time. By Ernest W. Brown, M.A., Sc.D., F.R.S.

[Received 1905 January 21; read 1905 March 10.]

PART IV. CHAPTERS VII.-IX.

The previous parts of this memoir have been published in the *Memoirs of the Royal Astronomical Society* under the same title in 1897, 1899, 1900. The solution of the problem undertaken—the motion of the Moon as disturbed by the Sun supposed to move in a fixed elliptic orbit—is completed in the present part.

It was stated in the introduction to Part I. that the main object in view was a new and accurate calculation of every coefficient in longitude, latitude, and parallax which is as great as one-hundredth of a second of arc, the result not to be in error by more than this amount. So far as I am able to see this plan has been carried out. A careful examination of the magnitude of the coefficients which would arise with characteristics higher than those calculated here, and a comparison with the results of Delaunay and Hansen, seem to show that no characteristics which would give coefficients so great as o''.o1 have been omitted. There are possibly four or five terms whose characteristics are of the sixth order, which approach o''.o1 quite closely. These omissions are, however, quite unimportant from a practical point of view. In a comparison between theory and observation a few such terms produce nothing sensible in the differences; it is only when the number of them is great that any effect is shown.

The coefficients in longitude and latitude in every characteristic calculated have actually been found to 0"·001, and in parallax to 0"·0001. In the former case a large number of coefficients between 0"·01 and 0"·001 are included; and, in fact, it is not difficult to see that there are comparatively few coefficients lying between 0"·002 and 0"·01 which are not included in the tables at the end of Chapter IX. Thus the theory, for purposes of comparison with observation, is considerably more accurate than was contemplated in the original plan. Moreover, a similar remark applies to the coefficients in parallax lying between 0"·0002 and 0"·001; thus the parallax of

ROYAL ASTRON. Soc., Vol. LVII.

the Moon can certainly be found theoretically from the new table within o"o1, so far as the solar perturbations are concerned.

To complete the whole problem of the lunar motion, inequalities arising from other sources have still to be considered. These consist of the very minute terms arising from the parts of the solar disturbing function which are noted in Chap. I. § 4, the terms arising from the figure of the Earth, and perhaps from that of the Moon, the indirect planetary inequalities and the direct planetary inequalities. The last is the only set which presents serious difficulties at the present time, and an investigation of them has already been started. Hill's work * on the inequalities produced by the figure of the Earth probably needs but little supplementing, while a new method † for investigating indirect planetary inequalities should render the task of calculating their coefficients comparatively easy.

An important question which cannot be left aside is that of the accuracy of the computations by which the results have been obtained. It appears unlikely that the problem will be again completely solved in the near future, and some assurance is needed that the new coefficients, especially where they differ from those of Hansen or Delaunay, are the correct ones. Fortunately the three theories are so entirely independent in their methods that agreement between them all amounts to practical certainty. The differences between Hansen and Delaunay have given rise to much discussion in the past. In general my theory confirms the results of Delaunay in these cases; the coefficients in which all three theories differ are those which are difficult to determine owing to the presence of very small divisors. methods, which approximate along powers of m, are theoretically less likely to be correct than a method which approximates along powers of the other parameters where the convergence is quite rapid. This, however, is a rather different question than that of the actual accuracy of the numerical work. For the latter very numerous tests have been used, covering almost every detail, as well as large masses of calculations. These tests are discussed below in Chap. VII. Sect. (iv), as well as in other papers to which reference will there be found.

To return to the special part of the work now published. For the terms of the fifth order in u the homogeneous equations were used for the first time. In spite of the fact that this was a change of method involving much extra work the computations were thus kept within reasonable bounds; the expansion of $\kappa u/r^3$ would have The non-homogeneous equation was still used nearly doubled the actual work done. for z, as most of the multiplications had been obtained in calculating the fourth order terms. But for the sixth order in both u, z the non-homogeneous equations were used, and the work was much less than had been expected.

The final steps consisted in the transformation to polar coordinates, the change of

^{*} Washington Astronomical Papers, vol. iii. pt. 2, 1891.

[†] E. W. Brown, Trans. Amer. Math. Soc., vol. vi. (1905).

the arbitrary constants to the Delaunay system, and the insertion of their numerical values to reduce the results to seconds of arc. For the first of these the formulæ were found to permit of such arrangements that much previous work could be usefully utilised. In the final reduction to numbers, values for the constants were used which were neither those of Hansen nor those of Delaunay. A selection was made from modern determinations which I believe will be found to be very close to the more accurate values to be found when a thorough comparison of the completed theory with the observations has been undertaken.

Owing mainly to the complicated character of the work which is embodied in the results below I have been obliged to do much more actual calculation myself than heretofore. All computations which could with advantage be turned over to a computer have again been done by Mr. IRA I. STERNER, A.M.* His speed and accuracy have been fully maintained, and have contributed in no small degree to an earlier conclusion of the work than I had hoped. He has in all spent some three thousand hours on these calculations, extended over seven and a half years; my own share I estimate at five or six thousand hours since the work was begun on a complete plan in 1895.

The following is the table of contents for the whole memoir:

Chapter I.—General Development of the Theory.

Section (i). An investigation of the disturbing function used, with the necessary corrections.

Section (ii). The two forms of the equations of motion.

Section (iii). Development of the disturbing function according to powers of 1/a', z, e'.

Section (iv). The form of the solution. The general system of notation adopted to represent the coefficients, arguments, &c.

Section (v). Method of solution. Preparation of the equations of motion.

Section (vi). Exact definitions of the arbitrary constants used in the theory.

Section (vii). Methods used for the solution of the equations of condition satisfied by the coefficients. The long and short period terms which give rise to small divisors. Manner of obtaining the higher parts of the motions of the perigee and node.

Section (viii). Details concerning the numerical calculations and the methods used to verify them.

Section (ix). Transformation to polar coordinates.

Chapter II.—Terms of zero order. Numerical results.

Chapter III.—Numerical results for terms of the first order.

Chapter IV.—Numerical results for terms of the second order.

Chapter V.—Terms of the third order.

^{*} The expense has been met by grants from the Government Grant Committee of the Royal Society.

Section (i). A brief outline of the application of the general method to terms of the third order in the calculation of the series A.

Section (ii). New method for solving the linear equations when the series A have been obtained.

Section (iii). Modification of the method in order to avoid, as far as possible, the loss of accuracy arising with long-period terms.

Section (iv). The method of calculating the new parts of the motions of the perigee and node, and the coefficients arising therewith. Numerical values of certain quantities.

Section (v). The final numerical results for the series A and for the coefficients of all terms of the third order in u, z.

Chapter VI.—Terms of the fourth order.

Section (i). Formulæ and methods of procedure.

Section (ii). Values of \mathfrak{A} , $u_{\lambda} \zeta^{-1}/a\lambda$; Λ , $\iota z_{\lambda}/a\lambda$.

Chapter VII.—Terms of the fifth order.

Section (i). Preparation of the equations for u, s.

Section (ii). The new parts of c. Terms with small divisors.

Section (iii). The equation for z.

Section (iv). Nature of the computations. Tests for accuracy.

Section (v). Values of A, B, $u_{\lambda}\zeta^{-1}/a\lambda$; A, $\iota z_{\lambda}/a\lambda$.

Chapter VIII.—Terms of the sixth order.

Section (i). Formulæ and methods of procedure for u.

Section (ii). The homogeneous equation for z.

Section (iii). Values of A, B, $u_{\lambda} \zeta^{-1}/a\lambda$; $\iota z/a\lambda$.

Chapter IX.—Results in polar coordinates.

Section (i). Formulæ for transformation.

Section (ii). Change of the arbitrary constants.

Section (iii). Numerical values of the constants.

Section (iv). Numerical values of the parts of the arguments and coefficients arising from the various characteristics.

Section (v). The final values of the coefficients in longitude, latitude, and parallax. *Errata* will be found at the ends of Chapters V., IX.

CHAPTER VII.

TERMS OF THE FIFTH ORDER.

Section (i). Preparation of the Equations for u, s.

129. The Homogeneous Equations for u, s. As stated above, it was found necessary, in order to keep the calculations within reasonable limits, to change the method from the non-homogeneous to the homogeneous form of the equations, as far as u_5 , s_5 were concerned.

Equations (6), (7) of Chap. I. are those to be used. They may be written— $D = \Phi \equiv f + \frac{9}{4} \text{m}^2 \text{L}' + \delta f$ $\equiv D^2(us + z^2) - Du \cdot Ds - (Dz)^2 - 2\text{m}(uDs - sDu) + \frac{9}{4} \text{m}^2(u+s)^2 - 3\text{m}^2 z^2 + 3\omega_2 + 4\omega_3 - D^{-1}(D'\omega_2 + D'\omega_3) \quad \text{(1)}$ $D = \Psi \equiv f' + \frac{9}{2} \text{m}^2 D^{-1} \Lambda' + D^{-1} \delta(Df')$ $\equiv uDs - sDu - 2\text{m}us + D^{-1} \left(\frac{9}{2} \text{m}^2(u^2 - s^2) - s \frac{\partial \omega_2}{\partial s} - s \frac{\partial \omega_3}{\partial s} + u \frac{\partial \omega_2}{\partial u} + u \frac{\partial \omega_3}{\partial u} \right) \quad \dots \quad \dots \quad \dots \quad \text{(2)}$

where the constants of integration are omitted, since they contain only characteristics of even order, and q takes only the values 2, 3, since characteristics containing a^2 are neglected. The new symbols must be defined; in all cases, unless stated otherwise, suffixes represent the orders of the characteristics present in the functions to which they are attached.

The majority of the indices of ζ contain c, g. Now, to the order considered here, $c = c_0 + c_2 + c_4$, $g = g_0 + g_2 + g_4$,

and therefore the operations D, D^2 , D^{-1} introduce parts of e, g other than c_0 , g_0 ; these parts must be separated. Put

$$\begin{split} \mathbf{f} &\equiv D^2(us+z^2) - Du \cdot Ds - (Dz)^2 - 2\mathbf{m}(uDs - sDu) + \frac{9}{4}\mathbf{m}^2(u+s)^2 - 3\mathbf{m}^2z^2, \\ \mathbf{f}' &\equiv uDs - sDu - 2\mathbf{m}us + \frac{9}{2}\mathbf{m}^2D^{-1}(u^2 - s^2), \\ \mathbf{L}' &\equiv \frac{4}{9\mathbf{m}^2} \{ 3\omega_2 + 4\omega_3 - D^{-1}(D'\omega_2 + D'\omega_3) \}, \\ \Lambda' &\equiv \frac{2}{3\mathbf{m}^2} \left\{ u\frac{\partial \omega_2}{\partial u} + u\frac{\partial \omega_3}{\partial u} - s\frac{\partial \omega_2}{\partial s} - s\frac{\partial \omega_3}{\partial s} \right\}, \end{split}$$

where c_0 , g_0 are substituted for c, g in the coefficients when the operations D, D^2 , D^{-1} are performed. Hence

δf, δ(Df') are respectively the parts due to
$$\mathbf{c} - \mathbf{c}_0$$
, $\mathbf{g} - \mathbf{g}_0$ in $D^2(us + z^2) - Du$. $Ds - (Dz)^2 - z\mathbf{m}(uDs - sDu) - D^{-1}(D'\omega_2 + D'\omega_3)$, $D(uDs - sDu - z\mathbf{m}us)$.

Denote the unknown coefficients of $\zeta^{\pm(2i+\tau)}$ in $u_5\zeta^{-1}/a$ by λ_i , λ'_{-i} . The equations $\phi=0$, $\Psi=0$ are linear with respect to all these coefficients, since terms of order higher

than 5 are neglected and those of lower order have been found. It is necessary to put the equations into forms convenient for calculation; the method is implicitly contained in § 33. It will be seen from that section that if we equate to zero the coefficients of \mathcal{C}^{2i+7} in

$$\frac{1}{D^2 - 1 - 2m + \frac{1}{2}m^2} \left[\Phi + (1 + 2m)\Psi \right] = 0, \quad \frac{1}{D} \left[\Psi + \frac{2(1+m)}{D^2 - 1 - 2m + \frac{1}{2}m^2} \left\{ \Phi + (1 + 2m)\Psi \right\} \right] = 0, \quad \dots \quad (3)$$

the terms of principal importance, involving the unknowns in the left-hand members, are $a(\lambda_i + \lambda'_{-i})$, $-a(\lambda_i - \lambda'_{-i})$, respectively. This fact serves as a guide for the arrangement of the equations which now follows.

130. Let

$$\Im u \equiv D(u\zeta^{-1}) = \zeta^{-1}(Du - u), \ \Im s \equiv D(s\zeta) = \zeta(Ds + s),$$

$$F = D^2 - 1 - 2m + \frac{1}{2}m^2,$$

so that $9u_0$, $9s_0$ are divisible by m^2 and

$$\mathbf{F}^{-1\zeta^{2i+\tau}} = \frac{\zeta^{2i+\tau}}{(2i+\tau)^2 - 1 - 2\mathbf{m} + \frac{1}{2}\mathbf{m}^{2i}}$$

then it will be found that

$$\Phi + (\mathbf{1} + 2\mathbf{m})\Psi \equiv \mathbf{F}(us + z^2) - 9u \cdot 9s - (Dz)^2 + (\mathbf{1} + 2\mathbf{m} - \frac{7}{2}\mathbf{m}^2)z^2 + \delta\mathbf{f} + \frac{9}{4}\mathbf{m}^2(u^2 + s^2 + \mathbf{L}') + \frac{3}{2}\mathbf{m}^2(\mathbf{1} + 2\mathbf{m})D^{-1}\left\{u^2 - s^2 + \Lambda' + \frac{2}{3\mathbf{m}^2}\delta(D\mathbf{f}')\right\} \quad \dots$$

$$(4)$$

$$\Psi \equiv u \vartheta_s - s \vartheta u - 2(\mathbf{1} + \mathbf{m}) u s + \frac{3\mathbf{m}^2}{2} D^{-1} \left\{ u^2 - s^2 + \Lambda' + \frac{2}{3\mathbf{m}^2} \delta(D\mathbf{f}') \right\} \qquad \dots \qquad (5)$$

It is to be noticed that all terms except those in ω_3 are homogeneous products of the second order with respect to u, s, and their derivatives.

There are terms whose characteristics are of orders 0, 1, 2, 3, 4, 5 in u, s, z. Let

$$u_a$$
, s_a , z_a ($a = 5$, 4, 3) and u_b , s_b , z_b ($b = 5-a$)

distinguish the orders, it being noted that $z_0=0$ and therefore that z_0 is not present. Then

$$u\vartheta_s - s\vartheta u = \sum_{a=3}^{a=5} \left[2(u_a \vartheta s_b - s_a \vartheta u_b) - D(u_a s_b - s_a u_b) \right]$$
 (b = 5-a),

and we easily obtain from equation (5),

$$D^{-1}\Psi = -\sum_{a=3}^{a=5} (u_a s_b - u_b s_a) + D^{-1} \left[2 \sum_{a=3}^{a=5} (u_a \Im s_b - s_a \Im u_b) - 2(\mathbf{1} + \mathbf{m}) u s + \frac{3}{2} \mathbf{m}^2 D^{-1} \left\{ u^2 - s^2 + \Lambda' + \frac{2}{3 \mathbf{m}^2} \delta(D \mathbf{f}') \right\} \right]$$
(6)

Equations (3) are immediately derivable from (4), (6).

131. Forms for Computation.—In the following formulæ the bar over any expression, as usual, means that $1/\zeta$ has been put for ζ . The sign Σ , denoting summation for values of a, is omitted for the sake of brevity when no misunderstanding of the meaning can arise.

Put

$$G = u_a u_b + \overline{u_a u_b} + \frac{1}{2} L'$$
 (7)

$$\mathbf{A} = -\vartheta u_a \cdot \vartheta s_b - \overline{\vartheta u_a \cdot \vartheta s_b} - 2Dz_a \cdot Dz_b + 2z_a z_b + (2\mathbf{m} - \frac{7}{2}\mathbf{m}^2)2z_a z_b + \delta \mathbf{f} + \frac{9}{2}\mathbf{m}^2 \mathbf{G} + 3\mathbf{m}^2 (\mathbf{r} + 2\mathbf{m})D^{-1}\mathbf{H}$$
 (9)

$$B = u_a \Im s_b + \overline{u_a \Im s_b} + 2(1+m)\frac{1}{2}F^{-1}A + 2z_a z_b + m \cdot 2z_a z_b + 3m^2(1+2m)D^{-1}H \div 2(1+2m) \qquad \dots$$
 (10)

Then the values of λ_i , λ'_{-i} are obtained by equating to zero the coefficients of $\zeta^{2i+\tau}$ in the equations

$$\overline{u_a s_b} + D^{-1} B + z_a z_b + \frac{1}{2} F^{-1} A = 0 \dots$$
 (12)

It will then be found that the principal coefficients of λ_i , λ'_{-i} derived from the left-hand member of (11) are respectively a, o, and from (12) o, a, while all the other unknowns have coefficients small compared with a.

132. Method for Approximation.—Denote the difference between the *i*th and (i-1)th approximation to any function Q by $Q^{(i)}$. The first approximations to G, H, A, B are obtained by neglecting all the unknowns in these four functions. For G, H have m^2 as a factor, while u_5 , $9u_5$ occur elsewhere in A, B only when multiplied by $9s_0$, which also has m^2 as a factor. In (11), (12) all the unknowns except those we are considering are multiplied by terms which also contain the same factor. Hence $G^{(1)}$, $H^{(1)}$, $A^{(1)}$, $B^{(1)}$, $\lambda_i^{(1)}$, λ'_{-i} are obtained from the known terms in the equations of \S 131.

The second approximation is obtained by substituting $u_5^{(1)}$ for u_5 in the various formulæ. Then $u_5^{(2)}$ is determined from

$$\begin{split} \mathbf{G}^{(2)} &= u_5{}^{(1)}u_0 + \overline{u_5{}^{(1)}u_0}, \quad \mathbf{H}^{(2)} = u_5{}^{(1)}u_0 - \overline{u_5{}^{(1)}u_0}, \\ \mathbf{A}^{(2)} &= -\Im u_5{}^{(1)} \cdot \Im u_0 - \Im u_5{}^{(1)} \cdot \Im u_0 + \frac{9}{2}\mathbf{m}^2\mathbf{G}^{(2)} + 3\mathbf{m}^2(\mathbf{1} + 2\mathbf{m})D^{-1}\mathbf{H}^{(2)}, \\ \mathbf{B}^{(2)} &= u_5{}^{(1)}\Im s_0 + \overline{u_5{}^{(1)}\Im s_0} + 2(\mathbf{1} + \mathbf{m})\frac{1}{2}\mathbf{F}^{-1}\mathbf{A}^{(2)} + 3\mathbf{m}^2(\mathbf{1} + 2\mathbf{m})D^{-1}\mathbf{H}^{(2)} \div 2(\mathbf{1} + 2\mathbf{m}), \\ u_5{}^{(2)} \cdot \mathbf{a}\zeta^{-1} + u_5{}^{(1)}(s_0 - \mathbf{a}\zeta^{-1}) - D^{-1}\mathbf{B}^{(2)} + \frac{1}{2}\mathbf{F}^{-1}\mathbf{A}^{(2)} = \mathbf{o}, \\ \overline{u_5{}^{(2)}} \cdot \mathbf{a}\zeta^{-1} + \overline{u_5{}^{(1)}(s_0 - \mathbf{a}\zeta^{-1})} + D^{-1}\mathbf{B}^{(2)} + \frac{1}{2}\mathbf{F}^{-1}\mathbf{A}^{(2)} = \mathbf{o}. \end{split}$$

The further approximations proceed in a similar manner.

Exceptions to this method will only occur when the divisors introduced by F^{-1} , D^{-1} are such as to render it useless, or very tedious, owing to the number of approximations required. For such cases a special method is devised in § 138, below.

133. Development of L', Λ' .—These functions depend solely on the terms in ω_2 , ω_3 , where (§ 8)

$$\begin{split} \omega_2 &= \frac{3}{4} \mathrm{m}^2 (u^2 \mathfrak{a}_2 + s^2 \tilde{\mathfrak{a}}_2) + \frac{1}{2} \mathrm{m}^2 u s \mathfrak{b}_2 - \mathrm{m}^2 z^2 \mathfrak{b}_2, \\ a' \omega_3 &= \frac{5}{8} \mathrm{m}^2 (u^3 \mathfrak{a}_3 + s^3 \tilde{\mathfrak{a}}_3) + \frac{3}{8} \mathrm{m}^2 (u^2 s \mathfrak{c}_3 + u s^2 \tilde{\mathfrak{c}}_3) - \frac{3}{2} \mathrm{m}^2 z^2 (u \mathfrak{c}_3 + s \tilde{\mathfrak{c}}_3). \end{split}$$

Hence

$$\begin{split} \mathbf{L}' &= u^2 \mathfrak{a}_2 + s^2 \tilde{\mathfrak{a}}_2 + \tfrac{2}{3} u s \mathfrak{b}_2 - \tfrac{4}{3} z^2 \tilde{\mathfrak{b}}_2 + D^{-1} \left\{ -\tfrac{1}{3} (u^2 D \mathfrak{a}_2 + s^2 D \tilde{\mathfrak{a}}_2) - \tfrac{2}{3} u s D \mathfrak{b}_2 + \tfrac{4}{9} z^2 D \mathfrak{b}_2 \right\} \\ &+ \tfrac{1}{a'} \left\{ \tfrac{1.0}{3} (u^3 \mathfrak{a}_3 + s^3 \tilde{\mathfrak{a}}_3) + \tfrac{2}{3} (u^2 s \mathfrak{c}_3 + u s^2 \tilde{\mathfrak{c}}_3) - \tfrac{8}{3} z^2 (u \mathfrak{c}_3 + s \tilde{\mathfrak{c}}_3) \right\} - \frac{1}{a'} D^{-1} \left\{ \tfrac{5}{18} (u^3 D \mathfrak{a}_3 + s^3 D \tilde{\mathfrak{a}}_3) + \tfrac{4}{9} (u^2 s D \mathfrak{c}_3 + u s^2 D \tilde{\mathfrak{c}}_3) - \tfrac{2}{3} z^2 (u D \mathfrak{c}_3 + s D \tilde{\mathfrak{c}}_3) \right\} \end{split}$$

$$\Lambda' = u^2 \mathfrak{a}_2 - s^2 \bar{\mathfrak{a}}_2' + \frac{1}{a'} \left\{ \frac{5}{4} (u^3 \mathfrak{a}_3 - s^3 \bar{\mathfrak{a}}_3) + \frac{1}{4} (u^2 s \mathfrak{c}_3 - s^2 u \bar{\mathfrak{c}}_3) - z^2 (u \mathfrak{c}_3 - s \bar{\mathfrak{c}}_3) \right\}.$$

The terms in these expressions are all known, for the German letters having suffix 2 contain e' as a factor, and those having the suffix 3 have α as a factor. These are expanded (§ 9) in powers of e', while $u^2 = (u^2)_4 + (u^2)_3 + (u^2)_2 + (u^2)_1 + (u^2)_0$, &c. The terms whose characteristics are of order 5 are chosen out to obtain L', Λ' .

134. Development of δf , $\delta(Df')$.—The calculation of these functions is troublesome and a more detailed exposition is advisable. We have $(\S 129)$

$$\delta \mathbf{f} = \mathbf{c}_2 \frac{\partial \mathbf{f}_3}{\partial \mathbf{c}} + \mathbf{g}_2 \frac{\partial \mathbf{f}_3}{\partial \mathbf{g}} + \frac{1}{2} \mathbf{c}_2^2 \frac{\partial^2 \mathbf{f}_1}{\partial \mathbf{c}^2} + \mathbf{c}_4 \frac{\partial \mathbf{f}_1}{\partial \mathbf{c}},$$

where the partial derivatives refer only to the *coefficients* in f, and c_0 , g_0 are put for c, g. The terms containing c_2g_2 , g_2^2 , g_4 are absent, since f_1 does not contain g. The new parts of c contained in c_4 are as yet unknown; they will be determined in Section (ii), and meanwhile it may be noted that they are only present in the coefficients of $\zeta^{2i\pm c}$.

The expression for of arises (§ 129) from

$$\delta \mathbf{f} = \delta \left\{ D^2(us) - \vartheta u \cdot \vartheta s - (\mathbf{1} + 2\mathbf{m})(u\vartheta s - s\vartheta u) + \mathbf{Q} \right\},$$

where

To find $\partial f_3/\partial c$ put

$$u_a \zeta^{-1} = \sum \mu_q \zeta^q, \quad u_b \zeta^{-1} = \sum \mu_{q_a} \zeta^{q_a},$$

where

$$a = 3$$
, 2; $b = 3-a$; $q-q_1 = 2i+\tau = p$;

and where the summation signs refer to all the terms present. Then

$$\begin{split} \frac{\partial \mathbf{f}_{3}}{\partial \mathbf{c}} &= \Sigma_{*}^{p} \frac{\partial}{\partial \mathbf{c}} \left[\left\{ p^{2} + qq_{1} + (\mathbf{1} + 2\mathbf{m})(q + q_{1}) \right\} \mu_{q} \mu_{q_{1}} + \left\{ p^{2} + qq_{1} - (\mathbf{1} + 2\mathbf{m})(q + q_{1}) \right\} \mu_{-q} \mu_{-q_{1}} \right] + \frac{\partial \mathbf{Q}_{3}}{\partial \mathbf{c}} \\ &= \Sigma \zeta^{p} \left[\left(2p \frac{\partial p}{\partial c} + q \frac{\partial q_{1}}{\partial \mathbf{c}} + q_{1} \frac{\partial q}{\partial \mathbf{c}} \right) \left(\mu_{q} \mu_{q_{1}} + \mu_{-q} \mu_{-q_{1}} \right) + (\mathbf{1} + 2\mathbf{m}) \left(\frac{\partial q}{\partial \mathbf{c}} + \frac{\partial q_{1}}{\partial \mathbf{c}} \right) \left(\mu_{q} \mu_{q_{1}} - \mu_{-q} \mu_{-q_{1}} \right) \right] + \frac{\partial \mathbf{Q}_{3}}{\partial \mathbf{c}}, \end{split}$$

the summation sign referring to all possible values of p, q, q_1 .

Since $p = q - q_1$, the first factor may be written

$$p\frac{\partial p}{\partial \mathbf{c}} - p\frac{\partial q_1}{\partial \mathbf{c}} + q\left(\frac{\partial q}{\partial \mathbf{c}} + \frac{\partial q_1}{\partial \mathbf{c}}\right)$$

Also

$$\Sigma \zeta^{p} q(\mu_{q} \mu_{q_{1}} + \mu_{-q} \mu_{-q_{1}}) = \Sigma (s_{b} \Im u_{a} + u_{b} \Im s_{a}),$$

$$\Sigma \zeta^{p} (\mu_{q} \mu_{q_{1}} + \mu_{-q} \mu_{q_{1}}) = \Sigma (s_{b} u_{a} + u_{b} \Im s_{a}).$$

$$\{ a = 3, 2 : b = 3 - a$$

Omitting the summation sign for the two values of a, as in § 131, and putting

$$\mathbf{E}_{\mathbf{E}'} = u_a s_b \pm \overline{u_a s_b}, \qquad \mathbf{F}_{\mathbf{F}'} = s_b \vartheta u_a \pm \overline{s_b \vartheta u_a},$$

the results can be symbolically expressed in the form

$$\frac{\partial \mathbf{f}_{s}}{\partial \mathbf{c}} = \Sigma' \left[\left(\frac{\partial p}{\partial \mathbf{c}} - \frac{\partial q_{1}}{\partial \mathbf{c}} \right) D \mathbf{E} + (\mathbf{r} + 2\mathbf{m}) \left(\frac{\partial q}{\partial \mathbf{c}} + \frac{\partial q_{1}}{\partial \mathbf{c}} \right) \mathbf{E}' + \left(\frac{\partial q}{\partial \mathbf{c}} + \frac{\partial q_{1}}{\partial \mathbf{c}} \right) \mathbf{F}' \right] + \frac{\partial \mathbf{Q}_{3}}{\partial \mathbf{c}},$$

in which the sign Σ' denotes that in the formation of E the proper coefficient arising from $\partial p/\partial c = \partial q_1/\partial c$ is to be attached to the corresponding term in E, and similarly for

the other two terms. The above algebraical expression appears more complicated than it is in actual calculation, for the derivatives of p, q, q_1 are integers less than 4.

By a quite similar investigation and with the same notation we obtain

$$\frac{\partial}{\partial c}(D\mathbf{f}_3') = -2\Sigma' \left[(\mathbf{I} + \mathbf{m}) \frac{\partial p}{\partial c} \mathbf{E} + \frac{\partial q}{\partial c} \mathbf{I} D\mathbf{E}' + \frac{\partial p}{\partial c} \mathbf{F} \right].$$

The derivatives with respect to g are obtained in replacing $\partial/\partial c$ by $\partial/\partial g$ in the above formulæ.

The same formulæ serve for $\partial f_1/\partial c$, $\partial (Df_1')/\partial c$, but they simplify. We have $Q_1 = 0$, a = 1, b = 0, $q = p = 2i \pm c$, $q_1 = 0$; the only terms present are those of characteristic e.

Finally, in a similar manner, we obtain

$$\frac{\partial^2 \mathbf{f}_1}{\partial \mathbf{c}^2} = 2(u_{\mathbf{c}} s_{\mathbf{o}} + s_{\mathbf{e}} u_{\mathbf{o}}), \frac{\partial^2 (D \mathbf{f}_1')}{\partial \mathbf{c}^2} = -2(u_{\mathbf{e}} s_{\mathbf{o}} - s_{\mathbf{e}} u_{\mathbf{o}}).$$

135. Development of $\partial Q_3/\partial c$, $\partial Q_3/\partial g$.—Differentiating (13) in the previous δ , we obtain from the only possible combination of a, b,

$$\begin{split} \frac{\partial \mathbf{Q}_3}{\partial \mathbf{c}} &= 2 \frac{\partial}{\partial \mathbf{c}} \left[D^2(z_{\mathrm{ke}} z_{\mathrm{k}}) - D(z_{\mathrm{ke}} D z_{\mathrm{k}}) + z_{\mathrm{ke}} D^2 z_{\mathrm{k}} \right] - \frac{\partial}{\partial \mathbf{c}} D^{-1} (D' \omega_2 + D' \omega_3) \\ &= \Sigma' \frac{\partial p}{\partial \mathbf{c}} \left[4 D(z_{\mathrm{ke}} z_{\mathrm{k}}) - 2 z_{\mathrm{ke}} D z_{\mathrm{k}} + D^{-2} (D' \omega_2 + D' \omega_3) \right], \end{split}$$

which, in connection with § 133, gives the required formula.

For the derivative with respect to g of the first two terms of Q we have

$$z \frac{\partial}{\partial \mathbf{g}} \left[D^2(z_1 z_2) - Dz_1 \cdot Dz_2 \right] = 4 \Sigma' \frac{\partial p}{\partial \mathbf{g}} D(z_1 z_2) - 2 Dz_2 \frac{\partial}{\partial \mathbf{g}} Dz_1 - 2 Dz_1 \frac{\partial}{\partial \mathbf{g}} Dz_2.$$

Now z only contains ζ in the combination $\zeta^{2i+\tau} - \zeta^{-2i-\tau}$. Let z' denote the value of z when this expression is replaced by $\zeta^{2i+\tau} + \zeta^{-2i-\tau}$. Then, since only the first multiple of g occurs in z_2 , z_1 ,

$$\frac{\partial}{\partial g}(Dz_2) = z_2', \ \frac{\partial}{\partial g}(Dz_1) = z_1', \ z_1'Dz_2 + z_2'Dz_1 = z_1'Dz_2 - z_1Dz_2' + D(z_1z_2').$$

Hence

$$\frac{\partial \mathbf{Q}_3}{\partial \mathbf{g}} = z \left[z \Sigma' \frac{\partial p}{\partial \mathbf{g}} D(z_1 z_2) - z_1' D z_2 + z_1 D z_2' - D(z_1 z_2') \right] + \Sigma' \frac{\partial p}{\partial \mathbf{g}} D^{-2} (D' w_2 + D' w_3).$$

Section (ii). The New Parts of c. Terms with Small Divisors.

136. Determination of c_4 .—In those terms of the fifth order containing $\zeta^{2i\pm c}$ a new part, c_4 , of c arises for determination, and one of the unknown coefficients is indeterminate; the definition of the latter (δ 25) is such that the coefficients of $\zeta^{\pm c}$ in $u_5\zeta^{-1}$ are to be equal. One of the unknowns is thus replaced by c_4 , but the linear character of the equations is retained. The formulæ for finding c_4 and the coefficient of ζ^c must,

ROYAL ASTRON. Soc., Vol. LVII.

however, be quite differently formed from those for the other unknowns. The main reason for this is that in the case of $\zeta^{\pm \circ}$ we have

$$F^{-1}\zeta^{\pm c} = \zeta^{\pm c} \div (c_0^2 - 1 - 2m + \frac{1}{2}m^2),$$

since c_0 is put for c after the operation F^{-1} (§ 130); the divisor is therefore very small. If all powers of m had been included in F the divisor would have been zero and approximation impossible. Hence the formulæ must be so arranged that F^{-1} is not present.

Equations (10), (11), (12) of § 131 may be written

$$B = B' + (1 + m)F^{-1}A, \quad B = \frac{1}{2}D\Sigma(u_a s_b - s_a u_b), \quad A = -F(us + z^2),$$

giving

$$A - \frac{I}{2 + 2m} FD\Sigma(u_a s_b - s_a u_b) + \frac{FB'}{I + m} = 0 \quad \dots \quad \dots \quad (14)$$

$$-us - z^2 + \frac{B'}{1+m} - \frac{1}{2+2m} D\Sigma(u_a s_b - s_a u_b) = 0 \qquad ... \qquad ... \qquad (15)$$

equations which are free from the operator F⁻¹, since A, B' do not contain it. These two quantities contain e₄. To isolate it put (see equations (9), (10))

$$\begin{split} \mathbf{A} &= \mathbf{A}' + \mathbf{c}_4 \left\{ \frac{\partial \mathbf{f}_1}{\partial \mathbf{c}} + (\mathbf{1} + 2\mathbf{m}) D^{-1} \frac{\partial}{\partial \mathbf{c}} (D \mathbf{f}_1') \right\}, \\ \mathbf{B}' &= \mathbf{B}'' + \frac{1}{2} \mathbf{c}_4 D^{-1} \frac{\partial}{\partial \mathbf{c}} (D \mathbf{f}_1'). \end{split}$$

Substituting in (14), (15) we obtain

$$c_4 \left\lceil \frac{\partial \mathbf{f}_1}{\partial \mathbf{c}} + \left\{ \mathbf{1} + 2\mathbf{m} + \frac{\mathbf{F}}{2 + 2\mathbf{m}} \right\} D^{-1} \frac{\partial}{\partial \mathbf{c}} (D\mathbf{f}_1') \right] = -\mathbf{A}' + \frac{\mathbf{F}}{1 + \mathbf{m}} \left\{ \frac{1}{2} D\Sigma (u_a s_b - s_a u_b) - \mathbf{B}'' \right\} \quad \dots \quad (16)$$

$$0 = -us - c^{2} + \frac{1}{1+m} \left[B'' - \frac{1}{2}D\Sigma(u_{a}s_{b} - s_{a}u_{b}) + \frac{1}{2}c_{4}D^{-1}\frac{\partial}{\partial c}(Df_{1}') \right] \qquad \dots \qquad \dots \quad (17)$$

137. These are well adapted for solution by continued approximation. Equating the coefficients of ζ^c to zero in each of them, it is to be noticed that the unknowns in A', B'', $\Sigma(u_as_b-s_au_b)$ have the factor m^2 at least (§ 132). If such terms be neglected in the first approximation, (16) is a simple equation to find c_4 . When c_4 has been obtained $\lambda_0 + \lambda_0'$, $= 2\lambda_0$, is found from (17), since $-a(\lambda_0 + \lambda_0')$ is the cofficient of ζ^c , while the other unknowns have the factor m^2 . When c_4 , λ_0 have been obtained the remaining λ_i , λ'_{-i} are found by the ordinary method given in § 132. The first approximation completed, the resulting values are used for u_5 , s_5 to obtain a second approximation to c_4 from (16) and to λ_0 from (17), and then to the other unknowns from § 132, and so on.

There is less disturbance of the computation sheets than would appear. The first approximation to A is found, exactly as in § 132, by omitting all unknowns. In that

to B we omit all unknowns and the term $2(1+m)\frac{1}{2}F^{-1}A$ in the coefficient of ζ^c , and then all the quantities for (16), (17) are to hand. A difference occurs in the second approximation, due to the fact that

$$\frac{\mathbf{c_4}^{(1)}}{\mathbf{3m^2}} \frac{\partial}{\partial \mathbf{c}} (D\mathbf{f_1}'), \quad \mathbf{c_4}^{(1)} \frac{\partial \mathbf{f_1}}{\partial \mathbf{c}}$$

must be respectively included in $H^{(2)}$, $A^{(2)}$ (§ 131) for the unknowns other than λ_0 , c_4 .

138. Small Divisors.—The operators D^{-1} , F^{-1} introduce small divisors in the cases of long-period and monthly terms, respectively; each set of terms whose arguments differ by 2i involves one of the former or two of the latter. As the basis of the continued approximation was the ability to neglect terms having m^2 as a factor, approximation may become impossible, or is at least very slow, when the small divisor is of order m^2 . The method used for this case is the same as that of § 29.

Taking the case of a long-period term, suppose that the corresponding coefficients are λ_0 , λ_0' . The first approximation to the other λ_i , λ'_{-i} is first obtained with λ_0 , λ_0' considered as unknowns, so that they are expressed as linear functions of λ_0 , λ_0' and a known part. The *first* approximation to λ_0 , λ_0' is then obtained by using these values of λ_i , λ'_{-i} in u_5 , $9u_5$, &c., instead of neglecting them. The process thus leads to two new simultaneous linear equations for λ_0 , λ_0' . When these are solved a substitution gives the first approximation to the other unknowns. In the application of this rule it was found sufficient to determine $\lambda_{\pm 1}$, $\lambda'_{\mp 1}$, in terms of λ_0 , λ_0' , a second approximation giving the required accuracy, and the other coefficients being determined by the ordinary method.

For the two monthly terms, corresponding to coefficients λ_0 , λ_0' , λ_{-1} , λ_1' , the same process was followed with respect to that pair of them, say λ_0 , λ_0' , which had a divisor containing m^2 as a factor; the divisor of the other pair has then only m as a factor.

139. The non-homogeneous form was retained for z, since the greater part of the series-multiplications and many of the additions had already been obtained in computing the terms of lower orders. The method for z is, therefore, the same as in previous chapters.

The known part of the expansion of $\kappa z/r^3$ (equations (16), (18), § 20) is expressed in the form

$$\frac{\kappa z}{r^3} = \kappa_1'' B_4 + \kappa_2'' B_3 + \kappa_3'' B_2 + \kappa_4'' B_1, \text{ with } \kappa_i'' = -\frac{3}{2} \frac{\kappa}{\rho_0^3} z_i.$$

Then, using the notation,

$$f\left(\frac{u}{u_0}, \frac{s}{s_0}, \frac{z}{\rho_0}\right) = f(u, s, z) \div (u_0, s_0, \rho_0),$$

for brevity of expression, we have

$$\begin{split} B_1 &= [u_1 + s_1] \div (u_0, s_0), \\ B_2 &= [u_2 + s_2 - \frac{5}{4}(u_1^2 + s_1^2) - \frac{3}{2}u_1s_1 + z_1^2] \div (u_0, s_0, \rho_0), \\ B_3 &= [u_3 + s_3 - \frac{5}{2}(u_1u_2 + s_1s_2) - \frac{3}{2}(u_1s_2 + u_2s_1) + 2z_1z_2 + \frac{3}{2}\frac{5}{4}(u_1^3 + s_1^3) + \frac{15}{8}(u_1^2s_1 + u_1s_1^2) - \frac{5}{2}z_1^2(u_1 + s_1)] \\ &\quad \div (u_0, s_0, \rho_0), \\ B_4 &= [u_4 + s_4 - \frac{5}{4}(2u_1u_3 + u_2^2 + 2s_1s_3 + s_2^2) - \frac{3}{2}(u_1s_3 + u_3s_1 + u_2s_2) + 2z_1z_3 + z_2^2 \\ &\quad + \frac{3}{8}(u_1^2u_2 + s_1^2s_2) + \frac{15}{8}(u_1^2s_2 + u_2s_1^2 + 2u_1s_1u_2 + 2u_1s_1s_2) - \frac{5}{2}z_1^2(u_2 + s_2) - 5z_1z_2(u_1 + s_1) \\ &\quad - \frac{10}{64}(u_1^4 + s_1^4) - \frac{3}{16}(u_1^3s_1 + u_1s_1^3) - \frac{7}{3}\frac{5}{2}u_1^2s_1^2 + \frac{3}{8}z_1^2(u_1^2 + s_1^2) + \frac{25}{4}z_1^2 \cdot u_1s_1 + \frac{5}{4}z_1^4] \div (u_0, s_0, \rho_0). \end{split}$$

The terms due to Ω_1 are given by (§ 8)

$$-\frac{1}{2}\frac{\partial\Omega_1}{\partial z} = \mathrm{m}^2 z \{b_2 + \frac{3}{2}\frac{\mathrm{i}}{a'}(uc_3 + s\vec{c}_3)\},\,$$

in which b_2 , c_3 , \bar{c}_3 are expanded in powers of e' and respectively multiplied by those terms in z, uz, sz which give characteristics of the fifth order.

Finally, the part of $-D^2\Sigma z_{\mu}$ which depends on $c-c_0$, $g-g_0$ is

$$-2\Sigma'\left(c_2\frac{\partial p}{\partial c}+g_2\frac{\partial p}{\partial g}\right)Dz_3-g_2^2z_1-2g_4Dz_1',$$

with the notation for Σ' given in \S 134, and for z' given in \S 135. All the terms are known with the exception of g_4 ; this quantity is determined as in $\S\S$ 31, 73.

Section (iv). Nature of the Computations. Tests for Accuracy.

140. The Computations for u_{λ} , s_{λ} .—The equations, prepared for computation, have been given in § 131. The principal part of the labour is the formation of the products

$$u_a u_b, u_a s_b, \exists u_a \cdot \exists s_b, u_a \exists s_b, Dz_a \cdot Dz_b, z_a z_b, (a = 4, 3; b = 5-a)$$

in which $s_b = \overline{u}_b$, $\Im s_b = -\overline{\Im u}_b$.

For calculating L', Λ' (§ 133) we require the products

where $a+b\leq 4$ in the first three and $a+b+c\leq 4$ in the last two. Most of these, however, are deducible by briefer multiplications from the results obtained in calculating the fourth order terms for which the functions $\sum u_a u_b/u_0^2$, $\sum u_a s_b/u_0 s_0$, &c., were obtained; the multiplications of these by u_0^2 , $u_0 s_0$, &c., are easy on account of the rapid convergence of all functions of u_0 , s_0 .

For computing δf , $\delta(Df')$ (§ 134) we require

$$u_a s_b, s_b \vartheta u_a, z_2 z_1, z_1 Dz_2, u_1 s_0, s_0 \vartheta u_1; (a=3, 2; b=3-a)$$

the first, third, and fifth of these had been previously obtained. The products in \S 135 which contain an accented z are deducible by mere changes of sign from those formed without an accent.

Of the remaining calculations which do not consist of additions or subtractions there are multiplications of series by constant factors (e.g. G by $\frac{9}{2}$ m² in A). The operation D consists in multiplying each coefficient by the corresponding index of ζ ,

while the operations D^{-1} , D^{-2} , F^{-1} consist of similar divisions. In many cases the factors are small and the divisors greater than unity, while the number of significant figures is small, so that these operations can frequently be done without the use of logarithms. It is, in fact, much easier to divide mentally by a number of, say, three figures than to multiply by such a number. Crelle's or Tamborrel's tables might have been used for both operations. As a matter of fact these aids were not employed. I believe that where the numbers to be multiplied consist of only three significant figures, and do not run at all consecutively, it takes less time to use a four-place table of logarithms (which can be mounted on a single card) than to be obliged to turn over the pages of a bulky volume of multiplication tables.

141. The Computations for z.—The processes were the same as those of previous chapters. Of the κ''_i , B_i all but κ''_4 , B_4 had been previously found; κ''_4 is obtained from the brief series multiplications of z_4 by $-3\kappa/2\rho_0^3$, while all the products and most of the sums in B_4 had been obtained in computing u_4 . The only multiplications remaining were the $\kappa''_i B_{5-i}$ (i=1, 2, 3, 4), and the uz in $\partial \Omega_1/\partial z$, most of which latter products were at hand. The long-period terms do not produce small divisions, and the initial number of places of decimals adopted was such that special methods for the monthly terms were not required. The approximations also were sufficiently rapid.

142. Tests.—All multiplications and additions were tested by the addition test explained in Chap. I., Sect. viii. Practically every operation comes under one of these heads. The apparent exceptions are the operations D, D^{-1} , F^{-1} . For D we have

$$D\Sigma \mu_i \zeta^{2i+\tau} = (\Sigma_2 i \mu_i + \tau \Sigma \mu_i) \zeta^{2i+\tau}.$$

If we put $\zeta = 1$ we obtain a test easy to compute, since i is a small integer. The same process performed on the result tests for D^{-1} and a slight extension enables us to test similarly for F^{-1} .

This method works well for the *details* of the calculations. The calculations en masse can be verified by going back to the differential equations and using the above method for the operator D with $\zeta = 1$. This was not used very extensively on the fifth-order terms, for reasons which will appear in the rest of this section. Such a test is very laborious and it seemed hardly necessary to make it.

characteristic. Each such set is u, s, and every other set in z has one (long-period) or two (monthly) terms whose coefficients possess small divisors, and the process of division by these is practically the last step in the determination of the coefficients. Now, in the fifth-order terms the chief danger of error arises not in the details of the calculations, which can be tested by the method just described, but in the possible omission of a whole set of terms, or in the use of a wrong set, owing to the very large number of sets to be dealt with. It is just such errors that would be detected, for even though they might not be very large the numbers which go to make up the long-period or monthly terms are always formed of the differences of numbers large in

eomparison with their algebraical sum, so that an error, after the process of division by a small divisor, may eause a coefficient to appear several times its actual value; a rough comparison with Delaunay's or Hansen's results would reveal the error at once. It must be remembered that such errors would practically run through the whole series of calculations, but would be mainly revealed by a few terms. Thus one of the chief eauses of the extent of the ealeulations furnishes the most valuable test of their Even if Delaunay's results were not available the test would often still work, owing to the fact that negative powers of m cannot be present, and therefore that the maximum order of magnitude of any coefficient can be roughly stated in advance.*

144. A Special Set of Tests.—In a paper † published in 1896 I gave some extensions of Adams's theorems which connected the mean motions of the perigee and node, not only with the constant term of the parallax but with one another. In fact, equations were obtained relating the parts of e, characteristics k2, c2k2, k4, e'2k2 respectively, with those of g, characteristics e², e⁴, c²k², e²e'². The former set is determined in connection with u from the equations for u, s (§ 136), the latter set from the non-homogeneous There were thus four separate tests from these relations. Further, the equation for z. eoefficients of certain characteristics in the constant term in the expression for the parallax are related by separate equations to parts of the motions of the perigee and node; these characteristics in the parallax are e2, k2, c4, e2e'2, k2e'2, k4, e2k2, furnishing seven other tests which, however, with the exception of the first two, are not very searching, owing to the small number of places of decimals used in the results for the fourth-order characteristics of the parallax.

The relations in question are included in the equations

$$\beta_{2} \frac{\partial \pi_{1}}{\partial \mathbf{e}^{2}} + \beta_{3} \frac{\partial \theta_{1}}{\partial \mathbf{e}^{2}} = \frac{a}{2} \frac{\partial}{\partial \mathbf{e}^{2}} \left(\frac{E + M}{r} \right)^{0} \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (18)$$

$$\beta_{2} \frac{\partial \pi_{1}}{\partial \mathbf{k}^{2}} + \beta_{3} \frac{\partial \theta_{1}}{\partial \mathbf{k}^{2}} = \frac{a}{2} \frac{\partial}{\partial \mathbf{k}^{2}} \left(\frac{E + M}{r} \right)^{0} \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (19)$$

$$\beta_2 \frac{\partial \pi_1}{\partial \mathbf{k}^2} + \beta_3 \frac{\partial \theta_1}{\partial \mathbf{k}^2} = \frac{3}{2} \frac{\partial}{\partial \mathbf{k}^2} \left(\frac{E + M}{r} \right)^0 \qquad \dots \qquad \dots \qquad \dots \qquad \dots$$
 (19)

where β_1 , β_2 , β_3 (c_1 , c_2 , c_3 in my previous papers) is the set of eanonical constants eomplementary to the constants giving the position of the mean Moon, its perigee and its node at time t=0; π_1 , θ_1 are the mean motions of the perigee and node; and $(Q)^0$ represents the mean value of a function Q.

145. I have already developed \updownarrow a method for the calculation of β_2 , β_3 solely from the coefficients in u, s, z. The following are the results:

$$\frac{\beta_2}{na^2} = -.11844444e^2 - .02324e^4 - .26363e^2k^2 - .00110e^2e'^2,$$

$$\frac{\beta_3}{na^2} = -2.002059k^2 - 1.96376k^4 - .28546e^2k^2 - .00568e'^2k^2.$$

^{*} An error, the use of $u_4\zeta^{-1}$ instead of u_4/u_0 in B_4 , was actually first revealed in this way, although the difference between these two series is divisible by m².

^{† &}quot;On Certain Properties of the Mean Motions," &c., Proc. Lond. Math. Soc. vol. 28.

^{# &}quot;On the Formation of the Derivatives of the Lunar Coordinates with Respect to the Elements," Trans. Amer. Math. Soc. vol. 4 (1903), pp. 234-248.

Also

$$\pi_1 = n \left(\mathbf{I} - \frac{\mathbf{c}}{\mathbf{I} + \mathbf{m}} \right), \ \theta_1 = n \left(\mathbf{I} - \frac{\mathbf{g}}{\mathbf{I} + \mathbf{m}} \right).$$

The values of c_0 , g_0 are given in Chapter III., those of c_2 , g_2 in Chapter V., those of c_4 , g_4 in the following Section. They are

$$c = +1.07158 \ 32774 + 00268 \ 5716^2 - 03465 \ 60e'^2 + 05385 \ 595k^2 - 02212 \ 6a^2 \\ + 00023e^4 + 01816^2e'^2 + 00145e^2k^2 + 1770e'^2k^2 + 07657k^4, \\ g = +1.08517 \ 14266 + 00318 \ 6183e^2 + 00564 \ 6535e'^2 - 00806 \ 6255k^2 + 01110 \ 58a^2 \\ + 00027e^4 + 0104e^2e'^2 + 00875e^2k^2 - 0090e'^2k^2 - 00883k^4.$$

146. Differentiate (18) with respect to k^2 , and (19) with respect to e^2 ; the two left-hand members should then be equal. Calculate the terms with characteristics 1, e^2 , k^2 , e'^2 in these members; the results, which should be the same, give the following differences:

here $(\beta_2)_{e^2}$ denotes the coefficient of e^2 in β_2/na^2 , &c.

These differences should properly be divided by 2, because $(\beta_3)_{k^2}$, which is accurately determined, is very nearly equal to 2.

The first result tests certain terms of the third order; the other three results test terms of the fifth order. The latter involve a large proportion of the forms for computation of the fifth-order terms and of the results for the terms of the fourth and lower orders.

147. Next, if we equate to zero the coefficients of 1, e^2 , k^2 , e'^2 in (18), (19), the coefficients of 1, e'^2 in the constant term of 1/r should be zero, and, since $E + M = n^2 a^3$,

$$\frac{1}{3}(\beta_{2})_{e^{3}}C_{e^{2}} = -(1+m)na^{3}\left(\frac{1}{r}\right)^{0}_{e^{4}}, \frac{1}{3}(\beta_{3})_{k^{2}}g_{k^{2}} = -(1+m)na^{3}\left(\frac{1}{r}\right)^{0}_{k^{4}}$$

$$\frac{2}{3}(\beta_{2})_{e^{3}}C_{k^{2}} = \frac{2}{3}(\beta_{3})_{k^{2}}g_{e^{2}} = -(1+m)na^{3}\left(\frac{1}{r}\right)^{0}_{e^{2}k^{2}}$$
... (20)

From the results of the transformation to polars (Chapter IX.) I find

It will be noticed that the differences from zero of the coefficients of e^2 , k^2 , $e^2\ell^2$, ℓ'^2k^2 do not exceed one unit in the last places calculated. A corresponding agreement will be found for the coefficients of e^4 , e^2k^2 , k^4 , when calculated from (20). This degree of accuracy should be expected, since the number of places of decimals used in trans-

forming to parallax is smaller than that actually obtained in u, z. These tests apply to the results for the fourth and lower orders.*

Section (v). Values of A, B, $u_{\lambda}\zeta^{-1}/a\lambda$; A, $\iota z_{\lambda}/a\lambda$.

148. The following tables show the characteristics and arguments of the terms of the fifth order which have been calculated, together with the §§ in which the results are given. I have not set forth the types of coefficients, since these are sufficiently evident from the arguments and characteristics according to the scheme adopted in Section (iv), Chapter I., and illustrated in the later chapters.

§ .	λ	Arguments.
149	e ⁵	2i±5c, 2i±3c, 2i±c
150	e^4e'	$2i\pm4c\pm m$, $2i\pm2c\pm m$, $2i\pm m$
151	$e^3e'^2$	2i±3c±2m, 2i±3c, 2i±c±2m, 2i±c
152	e ² e' ³	$2i \pm 2c \pm 3m$, $2i \pm 2c \pm m$, $2i \pm 3m$, $2i \pm m$
153	$\mathbf{e^{3}k^{2}}$	2 <i>i</i> ±3c±2g, 2 <i>i</i> ±3e, 2 <i>i</i> ±c±2g, 2 <i>i</i> ±c
154	$e^2e'k^2$	$2i\pm_{2}$ c $\pm_{m}\pm_{2}$ g, $2i\pm_{2}$ e \pm_{m} , $2i\pm_{m}\pm_{2}$ g, $2i\pm_{m}$
155	$\mathrm{e}e'^2\mathrm{k}^2$	$2i\pm c\pm 2m\pm 2g$, $2i\pm c\pm 2m$, $2i\pm c\pm 2g$, $2i\pm c$
156	$e^{\prime 3}\mathrm{k}^2$	$2i\pm3m\pm2g$, $2i\pm3m$, $2i\pm m\pm2g$, $2i\pm m$
157	ek ⁴	2i±c±4g, 2i±c±2g, 2i±e
158	$e'\mathbf{k}^4$	$_2i\pm_{\mathrm{m}}\pm_{4\mathrm{g}}$, $_2i\pm_{\mathrm{m}}\pm_{2\mathrm{g}}$, $_2i\pm_{\mathrm{m}}$
159	e ⁴ a	$2i_1\pm 4e$, $2i_1\pm 2c$, $2i_1$
160	$e^3e'a$	$2i_1\pm 3c\pm m$, $2i_1\pm c\pm m$
161	$\mathrm{e}^2\mathrm{k}^2lpha$	$2i_1\pm 20\pm 2g$, $2i_1\pm 20$, $2i_1\pm 2g$, $2i_1$
162	$ee'k^2a$	$_{2i_{1}\pm c\pm m\pm 2g,\ 2i_{1}\pm c\pm m}$
163	$k^4 \alpha$	$2i_1 \pm 4g$, $2i_1 \pm 2g$, $2i_1$
164	\mathbf{k}^{5}	$2i\pm5g$, $2i\pm3g$, $2i\pm g$
165	$ m k^3e^2$	$2i \pm 3g \pm 2c$, $2i \pm 3g$, $2i \pm g \pm 2c$, $2i \pm g$
166	$\mathbf{k}^3\mathbf{e}e'$	$2i\pm3g\pm c\pm m$, $2i\pm g\pm c\pm m$
167	$\mathbf{k}^3e'^2$	$2i\pm3g\pm2m$, $2i\pm3g$, $2i\pm g\pm2m$, $2i\pm g$
168	ke ⁴	$_2i\pm$ g \pm 4c, $_2i\pm$ g \pm 2c, $_2i\pm$ g
169	ke^3e'	2 <i>i</i> ±g±3c±m, 2 <i>i</i> ±g±c±m
170	$\mathrm{ke}^2e'^2$	$2i\pm g\pm 2c\pm 2m$, $2i\pm g\pm 2c$, $2i\pm g\pm 2m$, $2i\pm g$
171	kee'^3	2 <i>i</i> ±g±c±3m, 2 <i>i</i> ±g±c±m
172	k^3ea	$_2i_1\pm_3\mathbf{g}\pm\mathbf{c},\ _2i_1\pm\mathbf{g}\pm\mathbf{c}$
173	$k^3e'a$	$2i_1\pm 3g\pm m$, $2i_1\pm g\pm m$
174	ke³a	$2i_1\pm g\pm 3c$, $2i_1\pm g\pm c$
175	ke²e′a	$2i_1\pm g\pm 2e\pm m$, $2i_1\pm g\pm m$

^{*} On the subject of this section see two papers by the writer: "On the Degree of Accuracy of the New Lunar Theory," &c., Monthly Notices, April 1904; "On the Completion of the Solution of the Main Problem in the New Lunar Theory," ib., December 1904.

The terms with the following arguments and characteristics required the method of § 138 to obtain the approximations with sufficient rapidity:—

Arguments.	Characteristics.
$\pm (2-c+2m),$	$e^3e'^2$, ee'^2k^2
$\pm (c-2g),$	$e^{3}k^{2}$, $ee'^{2}k^{2}$, ek^{4}
$\pm (2+c+2m-2g),$	ee'^2k^2
$\pm (2-c+2m-2g),$	$\mathrm{e}e'^2\mathrm{k}^2$
±1,	e^4a , e^2k^2a , k^4a
\pm (1-c+m),	$e^3e'a$, $ee'k^2a$
$\pm (1 + 2c - 2g),$	$\mathrm{e}^2\mathrm{k}^2a$
$\pm (1+c+m-2g),$	$ee'k^2a$.

For other terms where the approximations were slow it was found to be sufficient to calculate the third approximation, since a regular law of decrease then appeared which permitted the remainders to be written down from inspection.

The results for $A/a^2\lambda$, $B/a^2\lambda$, $u_\lambda\zeta^{-1}/a\lambda$ are given in the following section under the columns headed A, B, $u_\lambda\zeta^{-1}/a\lambda$. The last is a change of plan from previous chapters, intended to increase the clearness of the reading, since the results are always referred to their arguments and not to the special notations adopted for the coefficients. The choice of subsidiary results for publication at the present time was less easy with the homogeneous equations than with the non-homogeneous. It may be stated, in this connection, that long-period small divisors do not appear in A or B except in terms which have the explicit factor m^2 , while the monthly small divisors occur in B but not in A. Thus certain coefficients in the B-tables are not accurate to the last figure set down, but it is better to retain the same number of places for every coefficient under a given characteristic up to the final results. The work easily shows the extent to which the latter are correct, and in the tables for $u_\lambda \zeta^{-1}/a\lambda$ none are given beyond this point.

It is to be noted that $\overline{A}=A$, $\overline{B}=-B$, so that, given the coefficients in these functions for $\zeta^{2i+\tau}$, it is not necessary to write down those for $\zeta^{2i-\tau}$.

The coefficients of ζ^c in B are enclosed in square brackets, to signify that they are those parts of B denoted by B" in § 136.

In Chap. VI. the A-tables for the z-equation were given in two parts (see § 98); here the parts are not separated, since the L_{λ} are generally quite small and easy to compute, and, further, they were not separated on the computation sheets.

All the other arrangements of the tables are the same as those of Chap. VI.

149. Characteristic e⁵. Values of

A						
i.	2i + 5c.	2 <i>i</i> + 3c.	2i+c.			
4			+:00003			
3		+:00007	+.00094			
2	+.00007	+.00246	+.01913			
r	+.00256	+ 05054	00113			
0	+.05446	00888	+.00019			
— I	02304	00029	+.00021			
-2	+.00038	00007	+`00124			
-3	'00003	+:00047	+:00371			
-4	+.00004	+.00039	+.00019			
Sum	+.03444	+:04469	+ '02451			

0.500			
i.	2i + 5c.	2i + 3e.	2i+c.
4			
3		00001	00014
2	- ·00001	00035	00486
I	00036	'01208	+:00015
0	-01258	+.01396	[+.01312]
— τ	+ .00824	00093	+ .00443
-2	 00089	+.00021	00222
-3	+.00001	00024	00102
-4	00001	ooo11	- °00003
Sum	- •00563	+:00045	+ .00946

В

 $u_{\mathrm{e}}\zeta^{-1}$ \div ae⁵

<i>i</i> .	2i + 5c.	2i-5c.	2i+3c.	2 <i>i</i> − 3c.	2i+c.	2 <i>i</i> -c.
4		, — . 		+.0001		
3				+.0003	+.0001	+.0008
2			+ .0004	0002	+.0041	0004
r	+ .0004	0004	+.0101		0054	'0020
0	+.0103	+.0002	0124	+.0010	0042	0042
I	0096	v	+.0030	+.0002	+.0036	+.0006
-2	+.0018		+.0001		+ .0003	+.0002
-3	ĺ				10001	
- 4						
	+.0020	+.0001	+.0015	+.0019	0012	

 $c_{e^*} = + .00023.$

150. Characteristic e⁴e'. Values of

i.	20 1 40 1 m	0 1 3 4 a . m			
٠.	2i+4c+m,	2i+4c-m.	2i + 2c + m.	2i + 2c - m.	2i + m.
4	et et e			+.00001	00004
3		+ '00002	'00018	+.00001	'00179
2	00018	+.00099	00591	+ 02674	02614
1	- '00734	+ 02727	- 08748	+ '23138	 ·03696
0	 10854	+12325	07559	+.00218	02908
I	 °04499	02582	+:00422	02991	+ 01844
-2	- 00227	+.00166	+.00869	00282	+ 10569
-3	+.00130	+:00025	+.01943	00340	+ .00957
-4	+:00134	00016	+.00121	00025	+.00029
Sum	— ·16068	+.12746	13531	+ 22484	+:03998

В

i.	2i + 4c + m.	2i + 4c - m.	2i + 2c + m.	2i + 2c – m.	$2i+\mathrm{m}$.
4				1	
3			+.00001	00007	+ '00027
2	+.00003	00009	+ 000091	00433	+ .00829
I	+ '00112	- 00420	+.02694	- ⋅08567	+ .00043
o,	+ '03275	- 04343	+ 00945	+ '02907	+:00054
-ı	+.01128	+ .01442	- 00563	+.00022	+ .02974
-2	-00225	00012	00336	+ 00121	04085
-3	00119	+.00032	00766	+.00130	00158
-4	00050	+.00008	- 00027	+.00003	00003
Sum	+ 04124	— -03305	+.02039	 05791	00289

$u_{\operatorname{e}^4e'}\zeta^{-1} \div \operatorname{ae}^4e'$

i.,	2i+4c+m.	2i-4e-m.	2i + 4c - m.	2i-4c+m.
4		+ .0004		'0001
3		+.0019		+:0003
2		+ .0007	+ 0001	+ .0006
1	0010	0016	+:0032	0009
0	0258	0019	+.0322	+.0021
-1	0287	0001	—:0216	+:0002
-2	+.0103		+.0013	
-3	+:0003		+.0001	*
-4				
Sum	-:0449	0006	+ 0153	+ .0022

 $u_{e^*e'}\zeta^{-1}$: ae^4e' (continued)

i.	2i+2c+m.	2i-2c-m.	2i + 2c - m.	2i-2c+m.	2i + m.	2 <i>i</i> – m.
4		+ 0002		0001		+.0001
3		+.0060	+.0001	0010	0003	+.0014
2	0000	+ .0045	+ .0036	0014	0072	+ 0307
ī	0224	- 0005	+.0626	0245	-0207	- 0062
0	-·0472	0021	0138	+.0008	+ .0402	0298
-1	+ 0193	0014	+ 0294	+ '0044	+ .0084	0060
-2	+ '0024		0005	+.0001	+ 0022	0002
-3	+ 0005		0001		+,0001	
-4						
Sum	0483	+ '0037	+:0813	- 0217	+ '0230	0103

151. Characteristic e³e'². Values of

Δ

i.	2i + 3c + 2m.	2i + 3c - 2m.	2 <i>i</i> + 3 <i>c</i> .	2i+e+2m.	2i+c-2m.	2i + c.
4					+,0001	
3	•	+.0001	4.14		+ .0055	0019
2	+.0002	+.0068	0027	0025	+'1347	0514
I	+.0030	+.1312	- 0631	1787	+.2806	- 2882
0	0484	+1823	-1234	0179	0163	+.0170
-1	- 0537	0035	- 0079	0638	0038	+ .0235
-2	0271	+ .0048	-'0041	+ .2655	0637	-:0939
-3	+'0345	0063	0078	+ .0407	0013	-0130
-4	+ .0038	0001	- '0012	+.0014		'0004
Sum	0877	+:3156	-'2102	+ '0447	+.6358	4083

B

i.	2i+3e+2m.	2i + 3e - 2m.	2i + 3c.	2i+c+2m.	2i+e-2m.	2 <i>i</i> + c.
4						
3					0005	+ .0003
2		- '0007	+ '0002	0016	- 0181	+ 0074
- I	- '0012	- 0205	+.0100	- '0337	0616	+.0859
0	-'0210	0282	+.0540	+ .0028	0887	[+1595]
— 1	- 0031	0235	+ 0361	0189	- 0424	0473
-2	+.0120	- 0039	+.0026	—·o599	0123	+ .0308
-3	-'0090	'0014	+ .0033	0053	- ⁺0005	+ 0017
-4	0004	0001		0002		
Sum	-:0227	0783	+.1063	1138	- 12241	+ 2382

 $u_{\mathrm{e}^3e'^2}\zeta^{-1}$ \div $\mathrm{ae}^3e'^2$

i.	2i+3c+2m.	2i-3c-2m.	2i + 3c - 2m.	2i-3c+2m.	2i + 3c.	2i-3c.
3		+.019	**************************************	'oo2.		- '004
2		+ •33	+.001	—·021		+ 014
İ		013	+.019	+ 015	007	-'020
0	012	002	+ 075	+ .008	-'042	- '003
—ı	113		+ 078	+.001	- . 0 46	
-2	+*029		004		010	
-3	+'002					
Sum	 ∙094	+*034	+.199	+.001	102	—·o13

i.	2i+c+2m.	2i - c - 2m.	2i+c-2m.	2i-c+2m.	2i + c.	2i – c.
3		+.006	+'001	*		—·oo2
2	001	+.118	+.018	020		—·o38
Ì	'05 I	+ 042	+:235	041	—·101	068
0	063	- ·035	+ '027	+.091	100	100
-1	+ .072	007	094	+ 028	+.080	010
-2	+.014		003	+.001	'004	-,001
-3	, ,		, , , , ,		1., 1., 3,	, ,
Sum	'029	+124	+ 184	+:059	132	—.51 0

 $c_{e^2e^{\prime 2}} = + \circ 181.$

152. Characteristic e²e'3. Values of

À

i.	2i + 2c + 3m.	2i + 2c - 3m.	2i + 2c + m.	2i + 2c - m.	2i + 3m.	2i + m.
4						
3		+ '0008		0003		+.0001
2		+*0289	+.0012	-0148	+ '0064	0193
I	+.0010	+'4412	+ 0039	- 2390	+ .0396	+ 0623
0	0588	+1698	'4221	+.2731	+ 10994	+:3992
— I	+.6702	0565	1867	+ 4332	+ '7555	- 4246
-2	+.2282	+ 0134	- 0876	 0586	+ '4173	- 1979
-3	+ 0813	+ .0014	0330	- '0057	+ '0192	0088
- 4	+.0031		0013		+ *0005	-'0002
Sum	+'9250	+:5990	'7252	+ '3879	+1.3379	1892

В

i.	2i+2c+3m.	2i + 2c - 3m.	2i+2c+m.	2i+2c-m.	2i + 3m.	2i+m.
4						
3						0001
2		0017	0004	+.0013	+.0004	0030
1	0004	+ .0242	-∙ 0069	+.0096	+ .0046	+.0148
0	0291	+ .0075	-:1145	+.1379	+ .0278	0457
— I	+ .0431	+ 0086	0126	0348	+.1362	0423
- 2	+.1104	+.0038	- ∙0287	0223	0023	+ '0072
- 3	0011	+'0002	+.0010	0010	0011	+.0006
- 4	0002		+,0001			
Sum	+.1227	+ :0426	 1620	+:0907	+:1659	- ∙0655

 $u_{\mathrm{e}^2\mathrm{e}'^3} \ \zeta^{-1} \div \mathrm{ae}^2\mathrm{e}'^3$

i						
i.	2i+2c+3m.	2i - 2c - 3m.	2i + 2c - 3m.	2i - 2c + 3m.	$2i \div 2c + m$.	2i-2c-m.
3	*	+ '012				002
2	\$	+.260	+ 003	+.007		091
ı	ļ	+.138	+.059	017		+.064
0	'021	- •005	+.143	+ .045	 165	- 045
— I	— '537		+ .071	+ '004	+.029	
-2	+ .062				030	
-3	1					
Sum	- '493	+ '405	+:276	+039	163	 :∘77

i.	2i + 2c - m.	2i-2c+m.	2i + 3m.	2i-3m.	2i + m.	2i-m.
3		'OOI	***************************************	+ '002		001
2	001	022	+.001	+.058	'002	026
1	- ∙028	+:323	+.021	+.678	+ '021	•269
0	+.132	+.071	- °224	+.512	- 1.045	+.782
 1	610	001	+.220	+.003	— · 060	+.023
2	003		+:003		ooı	
-3						
Sum	'507	+:370	+ '021	+ •956	—1. 084	+:509

153. Characteristic e³k². Values of

i.	2i + 3e + 2g.	2i + 3e - 2g.	2 <i>i</i> + 3c.	2i + c + 2g.	2i + c - 2g.	2 <i>i</i> + e.
4				7	0000į	00001
3		00001	-'00002	+ .00004	00022	00015
2	+ '00002	00110	00007	+ 00024	- 01654	- 00488
Í	+.00099	- 05196	+ '00177	-01714	+ '00407	+ 04333
0	+ 00943	+ .00377	+ 42905	-83981	+ '00270	00006
- I	09563	'00030	00666	+ .02984	- 28820	+ 00854
-2	+ .00264	02607	+ 00274	+ .00175	—·oo762	- 02586
- 3	00015	- '00078	00387	00096	00002	00207
-4	+.00011	+.00001	- 00021	+ 00006	+.00001	—·oooo3
Sum	- 08259	- •07644	+:42273	82598	—·3°583	+.01881

	<u>B</u>										
i.	2i+3e+2g.	2i + 3c - 2g.	2 <i>i</i> + 3e.	2 <i>i</i> +e+2g.	2i+c-2g.	2 <i>i</i> + c.					
4					00001						
3		00001		- 00002	- '00041	00010					
2	- '00005	—·ooo86	'00014	- 00185	01289	00579					
I	- '00297	- 02605	00869	- 07990	+ '02099	-11843					
0	-12689	- 01865	— ·24098	+*04525	02231	[+:24621]					
— I	+ .06349	01101	+ 04258	+ .01289	+ 01792	+ 02627					
-2	00665	+ 00234	00183	00009	01684	- 02208					
-3	00011	- 00121	00176	- '00220	00039	- '00131					
-4	00012	10000'—	-,00011	00006							
Sum	07330	− ·°5636	51093	02298	- 01394	+ :12477					

i.	2i+3c+2g.	2i-3e-2g.	2i + 3c - 2g.	2i - 3e + 2g.	2i+3c.	2i-3e.
4		+ .0001				0001
3		+.0003	- 1	- '0002		-'0020
2		+ .0001	0002	0096		0064
r		-0212	-0164	+ 0204	+.0001	+ .0003
0	+.0002	+ 0414	-'0332	+ 0478	+ .0815	+ 0652
- 1	—·0292	+,0008	+ .0034	- 0010	0035	+:0030
-2	+ 0104	15	+ .0006		+.0001	
-3	0003		+ 0004	, A4	+.0001	
-4				1 1		
um	-·o186	+.0212	— ·0454	+:0574	+ .0780	+ 0600

 $u_{\mathrm{e}^{3}\mathrm{k}^{2}}$ ζ^{-1} \div $\mathrm{ae}^{3}\mathrm{k}^{2}$ (continued)

i.	2i+c+2g.	2i-c-2g.	2i + c - 2g.	2i - c + 2g.	2i + c.	2 <i>i</i> – e.
3		0003	0001	Market Control of the		0002
2		- .0029	- ·∘∘57	0017	-·0011	—·o151
ı	'0041	+.0040	0061	- ·∘939	0118	 0280
0	- '2427	0010	+ .0615	+ '2074	 •0946	- ∙0946
- 1	+ 1319	+.0253	0025	009 8	+.0570	+ .0224
-2	0053	+ .0002	+ .0025	0002	+.0019	+.0014
-3	30	·	+.0001		+.0003	
Sum	1202	+ 0247	+.0221	+.1012	- ·0483	-:1141

 $c_{e^2k^2} = + \cdot 00145.$

154. Characteristic e²e'k². Values of

 \mathbf{A}

i.	2i + 2c + m + 2g.	2i + 2c + m - 2g.	2i + 2e - m + 2g.	2i + 2c - m - 2g
				+.00001
3	ı	- '00002	+.00001	00005
2	'00003	+.00092	+.00012	01023
I	- .00069	+.05303	+.00339	16200
0	+ '01234	+:38403	+ .02137	-:54035
— I	'22251	- ·25505	00741	+.01092
— 2	06377	- ∙03567	+ 00224	+ .00288
-3	+.00236	00032	00138	+.00006
-4	+ .00022	+.00003	00016	
Sum	27175	+ • 14695	+:01821	69903

i.	2i + 2c + m.	2 <i>i</i> + 2e – m.	2 <i>i</i> + m + 2g.	2i+m-2g.	2i + m.
4				00003	+ .00005
3	+.00003	00001	00002	00056	+.00030
2	+.00061	-:00238	+.00019	+ .00092	+ '01034
1	+ .02468	02687	+ .03053	+.12664	10064
0	+.42785	47278	-:01030	—·14557	38055
— I	+.10576	- ·44694	81041	-14192	-19920
-2	07460	02770	03083	 00061	06463
-3	01376	+.00113	00003	+.00007	00203
-4	- '00034	+.00003	+.00007		00007
Sum	+ '47023	—·9755 ²	82080	13106	73649

R

i.	2i+2c+m+2g.	2i + 2c + m - 2g.	2i + 2e - m + 2g.	2i+2c-m-2g
4			*	
3		+,00003		-:00016
. 2	+ '00005	+ 00234	100037	- 00707
1	+ 00285	+ 05964	-:01526	— .11226
•	+ .06392	+.00682	-07843	+ 02514
— r	+ 04286	+ .05958	02791	+ 03346
-2	'00288	- 03142	+.00113	+ 00389
-3	00221	00108	+ .00048	+.00012
-4	- 00029		+.00004	
Sum	. + 10103	+ • 09594	—·1 2002	 ·05685

i.	2i + 2e + m.	2i + 2c - m.	2i+m+2g.	2i + m - 2g.	2i + m.
4			ng paming mandag kilomid sang dan 1951 at 196 1 a <u>ng 1961 at 196</u>		
3	+,00001	-,00001	+,00001	+ 00078	+ '00039
2	+ .00096	- 00282	+ 00132	+ 01530	+ 01883
I	+.02111	-12626	+ 03039	+.00096	-01694
0	+'31953	31454	10006	+ 16933	+ 02876
r	- '01784	+ 01876	+ 04470	-16277	20480
-2	06593	00962	-·06061	00835	05815
-3	- 00757	+.00186	00299	00016	- '00128
-4	'00015	+ '00002	00006	1	
Sum	+ 28012	— :43261	08730	+.01509	-'23319

 $u_{\mathrm{e}^2e'\mathbf{k}^2}\zeta^{-1}$ \div $\mathrm{ae}^2\mathrm{e'}\mathbf{k}^2$

i.	2i + 2c + m + 2g.	2i-2c-m-2g.	2i + 2c + m - 2g.	2i - 2c - m + 2g.	2i + 2c - m + 2g.	2i-2c+m-2g
4		+,0001		ere terrerisionet kantilikon erroradora kiriki 27 ilikili samana area 1860		
3		+ '0035		0001		0012
2		+ '0043	+.0001	0055		0001
1		- 0840	+ 0258	-1856	+ '0002	0077
0	+.0001	- 0489	+ 1474	- '2308	+.0011	+ 0676
<u>-1</u>	0816	0013	0327	0014	- 0008	+ *0057
-2	+.0200		+ 0229	0003	- 0049	+.0001
-3	+ '0007		+ 0005		0003	
-4	+.0001					
Sum	-:0307	1263	+.1640	- '4237	- '0047	+ 0641

ROYAL ASTRON. Soc., Vol. LVII.

 $u_{e^2e'k^2} \zeta^{-1} \div ae^2e'k^2$ (continued)

i.	2i+2e-m-2g.	2i - 2c + m + 2g.	2i + 2c + m.	2i-2c-m.	2i + 2e - m.	2i - 2c + m
4					X X X	11/10
3				'0027		+ '0002
2	0015	+.0007	+.0001	- 0851	- 0004	-0126
T	-1024	+ .0154	+.0060	0627	-0114	3298
0	-1113	+ 2490	+.2517	0455	-3504	+ .0044
<u>-1</u>	+ '0015	0190	-0154	-0102	+.6405	+ '2216
-2	0027	+ .0002	+.0068	- 0002	- 0052	+.0002
-3	0001		+ '0022		0005	
-4	* *		+.0001		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31
ım	2165	+ • 2466	+ '2515	— ·2064	+ .2726	3157

i.	2i + m + 2g.	2i-m-2g.	2i + m - 2g.	2i - m + 2g.	2i + m.	2 <i>i</i> – m.
4						
3			0001		1000.+	0003
2	+ .0001	0240	- 0018	-'0003	+ 0019	- '0127
1	+ .0032	0536	0170	0174	0014	2568
o	+ 0312	0490	'0137	-1218	+ 7122	2019
∸1	+ 4615	- 0236	+.1196	0690	+ 1027	0550
-2	0093	- '0006	+ 0034	+.0008	+ '0142	0044
-3	+.0003			0001	+ '0003	-·0001
-4					4	
um	+.4870	—·1508	+ .0904	—·2078	+.8300	8312

155. Characteristic ee'2k2. Values of

A

6.	2i + e + 2m + 2g.	2i + c + 2m - 2g.	2i + e - 2m + 2g.	2i+c-2m-2g
3			+ .0001	+.0002
2	0001	- 0008	+.0002	0179
r	 0002	+ :0033	+ 0105	+ 1473
0	+.0390	0123	+.0582	1332
-1	- 3226	2290	+.0110	0001
-2	- •0546	- '0024	+.0030	0009
-3	+ '0144	+ .0003	0001	
Sum	-:3241	-:2 409	+ .0832	— '0043

i.	2i+c+2m.	21+c-2m.	2i+c+2g.	2i+c-2g.	2i+c.
3		'0003		0004	+ 0002
2	0007	0181	'0004	- 0046	+ .0078
, I	- 0202	- 73772	+ .0003	-0352	+ 2580
0	+ 0625	+ 3606	+.0137	+ 0671	+ 1464
-t -!	+ 2677	0326	+ 0364	+.0867	+.1292
-2	—·2448	+ 0080	+.0312	+ 0018	+ 0505
-3		'0002	:0080		+*0021
Sum	+ .0567	– •0598	+'0732	+:1154	+:5942

E

i.		2i + c + 2m + 2g.	2i + c + 2m - 2g.	2i + c - 2m + 2g.	2i + c - 2m - 2g.
3		1.1			0007
2			0009	— ,0010	- 0204
I		0004	0817	0272	- 6451
0		0165	- 0493	+ '1033	—·2671
-1		-:3784	+ 0744	+1.3216	0042
-2	15	 ⁺0444	 0089	+ '0107	'0002
-3		- '0052	0001	0003	
Sum		—·444 9	—·o665	+1.4011	- '9377

, i.	2i+c+2m.	2i+c-2m.	2i+e+2g.	$2\mathbf{i}+\mathbf{c}-\mathbf{2g}.$	2 <i>i</i> + <i>c</i> .
3				+ '0002	
2	-0002	- '0137	12	+ 0125	+ '0077
I	+ 0172	— :4509	+.0081	+ .3700	+ 2878
0	+ 2883	-1.5136	-0228	+1.4800	[-'0705]
- I	- 9542	- 8189	0058	_************************************	- 4794
-2	- .1820	+ .0023	+.0070	+ '0020	+ .0924
-3	0039	0001	+ 0029		+ 0019
Sum	- ⋅8 ₃₇ 8	-2.4919	0106	+1.8363	1601

 $u_{e^{r/2}\mathbf{k}^2}\zeta^{-1}$ \div $aee'^2\mathbf{k}^2$

i.	2i + c + 2m + 2g.	2i - c - 2m - 2g.	2i + c + 2m - 2g.	2i - c - 2m + 2g.	2i + c - 2m + 2g.	2i - c + 2m - 2g
3		+ '002	gy () - Sp Myser () - Mys	gariy ayamasının karasının karasının de de sayamanın de de sayamanın de sayamanın de sayamanın de sayamanın de		
2	†	+∙059		001		+.014
I		'242	- .∘57	030	+.001	-:32
0		037	—·031	+ .036	+:004	+.087
<u>— 1</u>	'240		+ '333	+.038	+:27	+ .022
2	+.157		+,010		090	
-3	+.003					
Sum	-·081	518	+ .525	+.043	+.182	- 197

	i.	2i + c - m 2g	2i-c+m+2g.	2i+e+2m.	2i-c-2m.	2i + c - 2m.	2i - c + 2m.
	3				001		
	2	002			- :043	- '002	+ '003
	I	361	 001	001	- .776	073	+ *341
	0	+ .040	049	+ .191	212	 898	+1.433
	— r	098	+1.549	+1.000	010	- .892	+ .119
	2	'00 I	+ '007	+ '072		- '008	+ .003
	-3			+ ,001			
S	um	392	+1:206	+1.539	-1.345	-r·873	+1.896

			×			
i.	2i+c+2g.	2i - c - 2g.	2i+c-2g.	2i-c+2g.	2i+c.	2i-c.
3		'002				
2		- ∙061	— ,001		+ .001	+ .008
τ		+.098	+ .164	+.000	+ .038	164
, 0		+.006	-1.580	+:421	+ .199	+.199
- 1	+.086	'007	- '060	827	+1.038	-·o71
-2	- ∙038		'002	'004	030	-·001
	001				- ,001	,
Sum	+:047	+.034	-1.146	401	+1.542	- ·029

156. Characteristic e'ak2. Values of

A

i.	2i + 3m + 2g.	2i + 3m - 2g.	2i + 3m.	2i + m + 2g.	2i + m - 2g.	2i + m.
3					+ .0004	*000I
2		+.0018	+ '0002	+.0002	+ '0025	- '0027
1	+.0004	+ '0349	- 0080	+.0017	- 0436	0190
0	+1256	+.1221	- '2031	+ 0174	+ 0292	+.1769
-r	+.3169	+.0186	- '9697	-1714	.0000	+.6411
-2	+.0920	+.0011	- '0504	- .0820	'0004	+ .0253
-3	+:0047	+,0001	0011	0029		+.0002
Sum	+:5396	+.1819	-1.5351		-:0119	+.8220

В

i.	2i + 3m + 2g.	2i + 3m - 2g.	2i + 3m.	2i+m+2g.	2i + m - 2g.	2i + m.
3						
2		—·002 I	0001	+.0001	0037	0013
I	0002	-0187	- '0184	0003	+ 0201	0116
0	- 0698	+.1267	+ '1648	1380	+ 1626	1038
I	2423	+:0103	-1.5943	+1286	0057	+ .8841
-2	0216	0006	0320	+ .0319	20.1	+ '0210
-3	- 0008		- '0004	+.0008		+.0003
Sum	- '3347	+1456	-1.4804	+:0231	+1733	+ '7886

 $u_{e'^2\mathbf{k}^2}\zeta^{-1}$ $\div \mathbf{a}e'^3\mathbf{k}^2$

loke i i i i i i i i i i i i i i i i i i i						5.4
i.	2i + 3m + 2g.	2i-3m-2g.	2i + 3m - 2g.	2i-3m+2g.	2 <i>i</i> + 3m.	2i-3m.
3	·	+,001				* ×
2		+ .021				006
1		+.258	+ 036	+.001		203
0	+ 002	+ .027	117	+.000	+ '204	388
— I	637		+ .054	019	+1.589	+.003
-2	+ 034		+.001	+ .002	+ .010	
-3						
Sum	601	+ '307	—·o26	- 007	+1.203	- '594

 $u_{e^{\prime 3}\mathbf{k}^{3}}\zeta^{-1} \div ae^{\prime 3}\mathbf{k}^{2}$ (continued)

i.	2i + m + 2g.	2i-m-2g.	2i + m - 2g.	2i - m + 2g.	2i + m.	2i-m.
3						
2		019				+.003
1 ;		- .380	016		- '002	+ .097
0		+.110	120	001	+.091	+.014
_ 1 _ <u>1</u>	+.586		 ∘018	+ .027	- .688	+.003
-2	031			+.003	006	
-3						
Sum	+.555	586	- ·184	+ .029	— ·605	+.112

157. Characteristic ek4. Values of

A

i.	2i + c + 4g.	2i + c - 4g.	2i + c + 2g.	2i + c - 2g.	2i + c.
3		00008	+.00001	'00003	'00002
2		+.00093	+ .00002	+.00131	+.00007
1	+.00002	+.02617	+.00443	02682	01225
0 ;	00024	04835	+ :03463	—·2 6771	+ • 5994
— I	+ .00379	- 00499	00095	+.01416	+ .02155
-2	+.00061	00007	+.00313	00033	+.00218
-3	00013		- •00075	'00002	+.00013
Sum	+*00405	- •02639	+ .04055	*27 944	+.07160

В

				The state of the s	
i.	2i + c + 4g.	2i + c - 4g.	2i + c + 2g.	2i + c - 2g.	2i + c.
3		00010			00001
2		+.00177	00001	000II	 00028
1	00004	+:09268	00427	+ .18190	04036
0	00213	+.00898	80476	-3 ·15694	[-1.04043]
— I	+ .04491	'00200	+.36829	- 16987	+ .50027
-2	00218	- '00002	+ 00192	00136	00736
- 3	'00017		00036	— .ooooı	'00008
Sum	+:03739	+.10131	43919	—3 ·14669	- ·798 8 5

 $u_{\rm ek}$ ζ^{-1} \div ack 4

i.	2i+c+4g.	2 <i>i</i> - c - 4g.	2 <i>i</i> + c - 4g.	2i-c+4g.
3		+ 0002	op de se de la lación de la lación de desta en la como en la como de la como de la como de la como de la como d	
2	1 1 1 1 1	+.0009	0028	
* T -		0604	+ '0207	0001
0		+:0014	- 4579	0027
1	0.00		-'0024	+ 109.59
-2	+.0082			0077
-3	- 0002			
Sum	+ •0080	- 0579	— ·4424	+ .0854

-						
i.	2i+c+2g.	2i-c-2g.	2i+c-2g.	2i-c+2g.	2 <i>i</i> + c.	2 <i>i</i> – c.
3		0002		`	+	*
2		0074	0011			+ .0004
1		0034	- '2171	- '0074	+ 0004	0805
0	+.0013	+.4813	+4.5387	-1.9841	+.3342	+ 3342
-r	+ .0032	+ 0002	– •0484	+ '7232	+.1008	0109
-2	0089		- '0008'	0014	0008	0001
-3	+.0001					
Sum	0043	+.4705	+4.2713	— I ·2700	+ .4346	+ '2431

 $c_{k'} = +.07657.$

158. Characteristic e'k4. Values of

Δ

Alle market signals and the				The state of the s	*
i.	2i + m + 4g.	2i+m-4g.	2i + m + 2g.	2i+m-2g.	$2i+\mathrm{m}$.
3		00015	-,00001	+ .00006	- '00002
2		+ .00730	+.00006	+.00526	00076
ı. I	+ 00002	-01212	+.00133	04200	00520
0	00025	+ 00155	+.03301	+.00136	05614
-I	+ .04376	+ .00002	+102084	- '00414	05545
2	- ·00811		-01413	00012	+.00265
-3	+.00034		00039		+.00003
Sum	+ •03576	00337	+ 04071	 :03961	—·11489

В

i.	2i + m + 4g.	2i + m - 4g.	2i + m + 2g.	2i + m - 2g.	2 <i>i</i> + m.
3		+.00019		+ '00002	00001
2		00464	4,00008	+.00319	00139
1		+ 05167	+ .00822	+.00122	09713
0	—·00157	+.00266	+:45195	— ·50959	—·o3209
— I	09909	00002	+.08329	—·o3351	+ 22527
-2	+ .00821		- '01241	00034	+ '00230
-3	00042		'00013	00001	+.00001
Sum	—·09287	+ '04983	+.23103	-:53872	+ .09696

 $u_{e'\mathbf{k}}.\zeta^{-1} \div ae'\mathbf{k}^4$

i.	2i+m+4g.	2i-m-4g.	2i + m - 4g.	2i-m+4g.
3		+ '0002	- '0001	
2		+.0030	+ '0013	
I		1301	+.0771	
0		+ .0020	+.0026	
— I	+ .0007		+.0001	0006
-2	+.0198			—·o154
-3	+.0003			'0002
Sum	+ 0208	—·1249	+.0810	-:0162

i.	2i + m + 2g.	2i-m-2g.	2i + m - 2g.	2i-m+2g.	2i + m.	2i – m.
3	Annual Control of the	0001				
2		0040	+.0016		,0001	+ 0003
1		1026	+.1112	- '0002	'0044	+.0036
0	+.0011	+.1848	1833	0024	1034	+ '0735
-ı	+ '0472	+ '0022	0068	– ∙0650	+.1338	- ∙0387
-2	+ .0133		0001	0064	+'0002	
-3	+.0001					
Sum	+ .0617	+.0803	—·077 I	0740	+ '0258	+.0387

159. Characteristic e⁴a. Values of

X	× 1, 1	Д.	
2i.	2i + 4c.	2i + 2c.	2i.
7	* * * * * * * * * * * * * * * * * * *	+.0001	+ .0001
5	+.0001	+.0013	0314
3	+ '0022	0794	1120
1	0670	0931	+ '0027
-1	+.1412	+.0109	
-3	+.0041	+.0098	_ * * * *
-5	+ '0025	0320	× ,
-7	-'0029	0024	* 1 * 2
Sum	+ '0805	1881	-:1436

			Acceptance of the control of the con
2 <i>i</i> .	2i+4c.	2i + 2c.	2i.
7	W 2		+.0001
5		+,0001	+ .0042
3	+ 0002	+.0138	0001
I	+ 0152	0110	+ 0238
<u>-1</u>	0277	0171	
-3	+.0008	+.0003	
-5	- '0012	+ 0004	
-7	+.0001	+.0004	
Sum	0136	-,0133	+ .0283

$u_{e^4a}\zeta^{-1} \div ae^4a$

2i.	2i + 4c.	2i-4c.	2i + 2c.	2i-2c.	2i.
7	1	001	×	001	
5		- '004	*- 1	-013	002
3		+ '002	013	013	'041
I	'012	+ '003	- 023	+ 036	+ .050
I	+.021		+ .087	002	095
-3	+.008		008	001	006
-5	003		003		
-7					
Sum	+.044	1000	+'041	+.003	-:127

160. Characteristic e³e'a. Values of

	*	A	 X	
2 <i>i</i> .	2i + 3c + m.	2i + 3c - m.	2i + c + m.	2i + c - m.
7	×		\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ '0009
-5	0001	+ .0012	+ .0110	+ .0170
3	+.0191	+ '0275	+ '5502	- '4322
ı	+.7904	- 1771	+2.2540	- '1684
— I	-·0381	- 1·3735	+ '5578	+1'2147
-3	5103	- '5492	- 2981	+ '3211
-5	0708	- 0196	- '1847	+ .1121
—7	0196	+ .0083	+ '0034	+ .0029
Sum	+.4586	-2.0821	+3.1936	+1:0711

ROYAL ASTRON. Soc., Vol. LVII.

В

21.	2i + 3c + m.	2i + 3c - m.	2i + c + m.	2 <i>i</i> + c - m.
7			—·003I	+ '0029
5			· ·	•
3	 0059	+ .0034	 :1368	+:0341
I	2621	+.0198	+.8794	0464
— I	+.1203	— :3479	0729	-1214
-3	-:0134	+ .0400	'0230	+.1003
- 5	0220	0180	+:0124	0288
<i>−</i> 7	+.0013	0022	+.0006	-:0007
Sum	1818	3049	+.6566	 .0601

 $u_{\mathrm{e}^{3}c'a}\zeta^{-1}\div\mathrm{a}\mathrm{e}^{3}e'a$

2i.	2i + 3c + m.	2i - 3c - m.	2i + 3c - m.	2i - 3c + m.	2i+c+m.	2i-e-m.	2i + c - m.	2i-c+m.
		 004		+:002		001		+ .001
5		065		-·o11	+ .003	032	- '002	+ .027
3	+ .002	– ∙056	'001	119	+ .130	-:238	- .○73	+ '179
I	+ 183	+.003	039	190	+1.064	109	— '171	+1.95
- I	055	+.013	668	004	5 86	+:374	-2.41	030
-3	+'150		+ '457	'001	- '072	+.009	+ .033	004
-5	014		004		- '002		+ .005	001
-7	001							
Sum	+.568	109	-··255	-:320	+ .837	+.006	-2.621	+2.155

161. Characteristic e²k²a. Values of

A

			A		
2i.	2i + 2c + 2g.	2i + 2c - 2g.	2i + 2c.	2i + 2g.	2i.
7				- All Articles	+.0001
5		 0043		0007	+.0026
3	0001	0272	+ '0271	-:0243	+.2215
I	+.0304	+ .0033	+1.0340	+.4413	1873
— I	+ 3747	+ .0179	- '1647	+.0612	
-3	+:0540	+.1228	- '1047	0183	
-5	+.0111	002 8	+ .0813	0200	
-7	0040	0002	0006	0011	
Sum	+ .4661	+:1395	+ .8724	+:4384	+:3369

В

2i.	2i + 2c + 2g.	2i + 2c - 2g.	2 <i>i</i> + 2c.	2i+2g.	2i.
7			F		+.0001
5		+ 0002		+ .0003	+ .0067
3 1	+ '0013	+ '0212	+.0138	+ 0435	+ .2328
1	+ 0956	+ 0894	+ 4010	—·1 350	+ 7293
-1	+ '0410	- 0715	- 5640	+ 2047	
-3	+ 0415	0320	+.1863	+ 1826	
-5	+ .0049	+ '0049	+ .0339	+ 0079	
-7	+.0006	0001	+ .0002		
Sum	+ 1849	+ 0121	+ '0715	+ 3040	+ .9689

 $u_{e^2\mathbf{k}^2\mathbf{a}}\zeta^{-1} \div ae^2\mathbf{k}^2a$

2i.	2i + 2c + 2g.	2i-2e-2g.	2i + 2c - 2g.	2i - 2c + 2g.	2i + 2e.	2i-2c.	2i + 2g.	2i-2g.	2 <i>i</i> .
7	-8114	'002							
5		'014	8 1-1			+ '027		011	+ .003
3	-	+ 027	'O2 I	+.033	+ '007	+.269	+'002	+ .066	+ .189
1	+'002	+.062	069	053	+ *335	+.201	+.121	166	+ '948
— I	+.111	- 030	+.165	-150	-1.251	-'021	+.010	061	-1.693
-3	+.020		— 048	005	054	'003	- 362	- 016	- '026
-5	024	10.5	-'002		- '007		003		001
-7	001								
Sum	+.138	+ '043	+ '022	— *175	- '9 70	+.773	202	—·188	— ·580

162. Characteristic ec'k²a. Values of

A

2i.	2i+c+m+2g.	2i+c+m-2g.	2i + c - m + 2g.	2i + c - m - 2g.	2i + c + m.	2i + c - m.
7			-	0003		0001
5	+ 0002	+ .0040	+.0001	- 0333	0010	0019
3	+.0062	+ '0457	+ .0022	- 0382	- '1374	+ .0678
1	+ 0766	-2.3608	+ 1939	+ .1489	-5.9398	+1.3612
-r	0163	2389	7781	-1.7625	- 2096	-4.0717
-3	3091	0729	+*0376	+ .0011	+1.2745	-1.4012
-5	1008	- '0020	+*0530	+ '0014	- 0282	0388
-7	- 0028		+ .0009	+ .0001	- '0009	- 10002
um	- 3457	-2.6219	 *4871	-1.6828	-5'0424	-4.0849

В

2 i.	2i + c + m + 2g.	2i + c + m - 2g.	2i + c - m + 2g.	2i + c - m - 2g.	2i + c + m.	2 <i>i</i> + e - m.
7				'000I		
		0031		+ '0009	0010	+.0010
5 3 .	0083	-1471	+ '0045	+ '1262	- '0943	+ .0747
3 I	- :5658	1100	+ '0279	+ .0681	-2.9362	+ •9469
I	+ .4864	:3057	- 1.2007	+1.8829	- 1327	3019
-3	+ .0646	+ 0295	1013	1163	+1.1756	8338
-5	0059	+.0011	0178	- '0017	+ .0249	0238
-7	+ .0002	•	0003		+ .0004	'0001
Sum	- ∙0285	— 5443	- 1·5877	+1.9600	-1.9633	-:1370

 $u_{ee'\mathbf{k}^2\mathbf{a}}\overset{\mathbf{y}}{\leftarrow}^{-1} \div aee'\mathbf{k}^2a$

2 <i>i</i> .	$2i + c + m + 2\tau$.	2i-c-m-2g.	$2i + e + m \sim 2z$.	2i-c-m+2g.	2i + c - m + 2g.	2i-c+m-2g.
7 -		001	A C O C C C C C C C C C C C C C C C C C			+ .001
5		 •088	+ '002			+ '037
3		320	+ .074	+ '002		+ .515
1	+:004	142	· 2 I	+ .014	+.002	+1.024
- I	012	+:392	+.268	+1.33	303	029
-3	+.622	+ .004	047	+ .056	193	001
-5	—·051		100'-	+ .001	+.019	
-7	001					
Sum	+:562	-:155	+.086	+1.403	— '475	+1.274

100				- Laborator de constituto de constituto de la constitución de la const		
2i.	2i + c - m - 2g.	2i-c+m+2g.	2 <i>i</i> + c + m.	2i-e-m.	2i+c-m.	2i-c+m.
7						
5	'005		- '001	+ .013	+ .001	009
3 '	- '211	005	048	+ .911	+ .034	− ·857
1	-1.040	− .687	-3.090	+1.249	+ .850	-5.45
-1	-1.312	+1.137	 ·698	- '482	+7.75	- '32 6
-3	+ .084	- '249	- '536	+ '027	+ .002	- '014
-5	+ .001	001	002	A	+ .004	
-7						
Sum	- 2.486	+ '195	-4.378	+1.718	+8.647	-6.656

163. Characteristic k4a. Values of

2i.	2i + 4g.	2i + 2g.	2 <i>i</i> .
7	+		**************************************
5		+.0003	'0003
3		+ .0064	0497
I _	+ '0029	+.0228	+.2695
-I	+ .0658	2685	
-3	+ .0425	0693	
-5	+ .0022	0001	
-7	- '0002		
Sum	+.1132	-:3085	+ 2195

В

2i.	2i + 4g.	2i + 2g.	2i.
7			
5		+ ,0001	- '0003
3		+ '0025	0021
1	+.0013	+ 2066	-4.7553
— r	0176	-2.6677	
-3	+ .0765	+ '2237	
-5	+ .0043	+ .0009	
-7		0001	
Sum	+ .0645	- 2.2343	-4.7607

u - 5-1 - ak4

2i.	2i + 4g.	2i-4g.	2i + 2g.	2i-2g.	2 <i>i</i> .
7			The state of the s		
5	,	002		+ '002	
3		+ .049		+ '139	- '022
T		+.190	'006	+ .728	-2.371
-1	+ .003	+.001	921	+ '715	+5.931
-3	002		066	+ '004	- '015
-5	010		004		
7	* * *	, X +	+ ×,		
Sum	013	+:235	- •997	+1.288	+3.23

164. Characteristic k⁵. Values of

	4	4	B
i.	2i + 5g.	2i + 3g.	2 <i>i</i> + g.
3	— :00004	+.00004	+ '00002
2	+ .00005	00003	+.00027
I	°00000	00056	01230
0	+.00030	+.00672	01946
-1	+ .00345	—·o1322	00932
— 2	+ .00221	+ .00029	+ '00224
-3	+.00001	—·00001	+.00003
Sum	+.00601	00677	 ••3846

				$\sqrt{-1}z_{\mathbf{k}}$		_
÷	i.		2i + 5g.	2i + 3g.	2i + g.	1
	3	1				-1
	2				+.00001	4 8 8
1	I			00002	00147	!
	0		+.00001	+.00067	0	$g_{k'} =00883$
	 I		+ .00033	-03317	+.02556	
	- 2	1	+.00258	+.00051	+ .00032	
i	-3		- 00005			
	Sum .		+ .00287	- ∵03231	+ '02445	1

165. Characteristic k³e². Values of

1			$\boldsymbol{arLambda}$		THE RESIDENCE OF THE PERSON OF	B
<i>i</i> .	2i + 3g + 2e.	2i+3g-2e.	2i + 3g.	2i+g+2c.	2i+g-2c.	2i+g.
4		'00002	THE RESIDENCE AND ADMINISTRATION OF PROPERTY AND ADMINISTRATION OF PERSONS ASSESSMENT ASSESSMENT ASSESSMENT AS	New James Color of the Color of	00013	0000I
3		00038	- '00001	- '00002	00554	- ·00098
2	+ '00002	01872	00126	- '00102	10446	02841
I	+ '00132	- .61256	 09289	+ .00081	+.00261	23460
0	+ .02515	+ .00677	-3.34807	+1.66897	+:03331	+.01907
— I	— :45559	 ∙00667	+ '04340	00162	+.16980	00656
-2	+.00526	+ .00524	00258	- *00123	+ .00455	+ .03469
-3	00002	+.00007	+ .00064	+ .00041	+ 00012	+ '00074
-4	00006		- '00002	00004		+.00003
Sum	-'42392	- .62627	-3'40109	+1.66621	+ 10326	21603

$\sqrt{-1}z_{\mathbf{k}^3\mathbf{e}^2}$ $\div \mathbf{a}\mathbf{k}^3\mathbf{e}^2$

<i>i</i> .	2i + 3g + 2c.	2i+3g-2c.	2i + 3g.	2i+g+2c.	2i+g-2c.	2i+g.	
4			×				
3 -		00001			- 00025	00002	2
2		00079	00003	- '00002	- ·01397	—·00117	
1	+.00003	-07184	 00 3 68	+ 00012	+.00619	-02814	
0	+ .00088	+.1018	35528	+.18022	5728	0	$g_{k^2e^2} = +.0087$
-1	04391	+ 01382	+ .09779	+ 00192	+.01989	+'02079	
-2	+.00602	+ .00076	+.00223	+ .00204	+.00019	+ '00478	,
-3	00006		+,00011	+ 00007		+ .00004	-
-4	00001						
Sum	03702	+ '0437	25886	+ 18468	'5607	-'00372	* >

166. Characteristic k³ee'. Values of

 \boldsymbol{A}

i.	2i+3g+c+m	No.	2i + 3g - c - m.		2i + 3g + c - m.	2i + 3g - c + m.
4	* _ ×			4.00		
3			+.0004	.4	201 37 37 47 77 5	1 1
2	1.e. ×	J . 4	0038		+.0001	+ 0004
I	0001		-1546		+.0028	+.0232
0	+.0100		+ 2873		+.0360	- 4097
— I	- ·6399		+1250	· ·	+.1364	- 3864
-2	0138		0023		- '0023	+ .0074
-3	'0015		+:0003		+.0003	- '0002
- 4	+:0003					
Sum	63 60		+ '2523	J *	+1763	7653

i.	2i+g+c+m.	2 <i>i</i> + g - c - m.	2i+g+c-m.	2i+g-c+m.
4		—·0002		- *
3	+ '0002	0020	- '0004	0002
2	+ 0026	1081	0099	+ 0096
1	+ .0793	5617	- 1619	- 3477
0	+1.3350	+ 4505	-1 6058	7741
-1	- '1471	- ∙ • 756 · · · ·	- 4687	+ 3263
-2	+ '0033	0013	+ '0173	+.0129
-3	- '0012	+.0001	+ .0011	+ 0002
-4	0007			
um	+1'2714	3013	-2.2283	-7730

 $\sqrt{-1}z_{\mathbf{k}^{3}\mathbf{e}e'}\div\mathbf{a}\mathbf{k}^{3}\mathbf{e}e'$

i.	-	2i + 3g + c + m.	2i + 3g - c - m.	2i + 3g + c - m.	2i + 3g - c + m.
3					
2	Ì		0001		
1			0098	+ .0005	+.0013
0		4.0009	÷.0880	+ '0022	-1026
t		-:1385	1080	+.0353	+:3498
-2	·	+:0153	0012	+.0017	+ °0064
-3		0010		+.0003	
Sum		1233	0314	+:0396	+ °2549

i.	2i+g+c+m.	2i + g - c - m.	2i+g+c-m.	2i+g-c+m.
3		0005		ALO 11 (ALO 11 (ALO 11 ALO 11
2	10001+	0078	0003	+.0002
1	+ .0020	5512	'0109	- 1057
o ;	+:3491	3813	2112	+.6618
- r	+.1272	0260	+.4053	+1364
-2	+ .0022	,0001	+.0088	+.0010
-3	000 t		+.0001	
Sum	+.4838	- ⋅6369	1085	+ .6940

167. Characteristic k³e'². Values of

			А			B
i.	2i + 3g + 2m.	2i + 3g - 2m.	2i+3g.	2i+g+2m.	$2i+\mathrm{g}-2\mathrm{m}$.	2i+g.
3		*0002	ng ta-mangan selandi 12 mpanananan a selah dan selah 12 mendaman	and the second state of the second se	0002	+.0003
2	'0004	+.0003	'0001	0001	0242	+.0001
1	+:0002	+.0082	+.0004	0023	3466	+ '1547
0	+ .0244	+:0374	+ .0085	+ .0646	+ .0539	0195
- I	2550	+ '0022	+ .0993	0734	.0000	+.0083
-2	+ .0279	-:0014	0180	0109	+.0008	+.0066
-3	0011	0002	4.0008			+.0004
um	'2040	+:0463	+ .0906	-·023T	'3166	+.1299

V	$-1z_{k^3e'^2}$ $\div ak^3e'^2$
000000	LANGS OF TOOLS

2i+3g+2m.	2i + 3g - 2m.	2 <i>i</i> + 3g.	2i+g+2m.	2i+g-2m.	2i + g.	
				0011	+ '0004	
-	+.0003			- 0473	+ 0186	
+.0020	+ '0047	+ 0012	+:175	 168	o .	$=\frac{g_{k}}{-}$
-'3075	+113	+.520	+:117	+.11	026	
0286	0006	+ '024	-:0015	+ '0003	+ 00009	
- '0003		+ '0002				
-:3344	+:13	+ '275	+*290	11	006	
	+ '0020 - '3075 - '0286 - '0003	+'0003 +'0047 -'3075 +'13 -'0286 -'0006 -'0003	+ '0003 + '0020 + '0047 + '0012 - '3075 + '13 + '250 - '0286 - '0006 + '024 - '0003 + '0002	+ '0003 + '0020 + '0047 + '0012 + '175 - '3075 + '13 + '250 + '117 - '0286 - '0006 + '024 - '0015 - '0003 + '0002	-'0011 +'0003 -'0473 +'0020 +'0047 +'0012 +'175 -'168 -'3075 +'13 +'250 +'117 +'11 -'0286 -'0006 +'024 -'0015 +'0003 -'0003 +'0002	-'0011 +'0004 +'0003 -'0473 +'0186 +'0020 +'0047 +'0012 +'175 -'168 0 -'3075 +'13 +'250 +'117 +'11 -'026 -'0286 -'0006 +'024 -'0015 +'0003 +'0009 -'0003 +'0002

168. Characteristic ke4. Values of

			A		В
i.	2 <i>i</i> + g + 4c.	2i+g-4c.	2i + g + 2c.	2i+g-2c.	2 <i>i</i> + g.
4		+ .00086	1	+.00089	+.00018
3	+.00001	+:00139	+ 00066	+ .01631	+ 00642
2	+:00084	00018	+ 02200	+.00715	+.12224
1	+ 02860	+ 00114	+ 42113	- 00042	- 00718
0	+.55401	07830	- ∙06698	+ 00067	+.00061
-1	-14499	− ·01869	00019	03848	+ 00043
-2	+.00098	 00088	+ 00010	-:01347	- '00719
-3	+ .00003	00003	00083	00065	00376
-4	00006		00045	00002	00018
Sum	+:43942	 •094 6 9	+:37544	02802	+'11157

$\sqrt{-1}z_{\mathrm{ke}^4}$ \div ake⁴

i.	2i + g + 4c.	2i+g-4c.	2i+g+2c.	2i+g-2c.	2i+g.	
4		+:00004		+.00002	-	
3		+ '00021	+ 000001	+.00070	+.00013	1 T
2	+.00001	+.00024	+ .00044	+.00096	+ .00492	
I	+ .00054	+.00389	+.01910	+ .00193	00085	
0	+.02001	00863	00723	0151	0	=+ 'oo
-r	-01421	00073	00085	00473		- , 0
-2	+ .00114	00002	00012	00055	00099	
-3	00005	74. Year	00013	- 00001	00016	
-4	-,00001		00002			
Sum	+ '00743	00200	+ '00817	0138	+.00181	

ROYAL ASTRON. Soc., Vol. LVII.

169. Characteristic ke3e'. Values of

A

i.	2i+g+3c+m.	2i+g-3c-m.	2i + g + 3c - m.	2i + g - 3c + m.
4		+ '0027		0002
3		+ .0418	+ '0002	'0057
2	0018	+'0191	+ '0074	+ 0059
1	— ·0464	0314	+ 1638	0061
0	6708	+.0736	+ 8067	0580
— I	'2353	+ .0479	— :0775	− ·0865
-2	+ .0002	+ .0023	+ .0025	'007 I
-3	- 0014		0000	- '0002
-4	0015		+ .0003	
Sum	9567	+.1260	+ .9034	-:1579

i.	2i+g+c+m.	2i+g-c-m.	2i+g+e-m.	2i+g-c+m.
4		+.0011	+ .0002	0002
3	0010	+ 0338	+ '0052	-:0057
2	0285	+ 4429	+ .1331	−. 0866
.1	4227	+ .0554	+1.3679	0704
0	2906	-:0390	+ :0476	0055
-1	+.0183	+.0263	- '0529	0633
-2	0111	+ '0275	+ - 0025	0729
-3	—·o187	+ .0011	+ '0054	—·0051
-4	0010		+ .0001	
Sum	— :7554	+ '5491	+ 1.2091	-3097

 $\sqrt{-1}z_{\mathrm{ke}^3e'}$ \div ake³e'

		AQ 6		
i.	2i+g+3c+m.	2i+g-3e-m.	2i + g + 3c - m.	2i + g - 3c + m.
4		+.0001		
3		+ '0032		0004
2		+.0096	+:0001	+'0023
I	· :0012	+ 0274	1 ~0044	+'0054
0	'0373	+'0200	+ 0485	-0192
— I	-0525	+ 0029	0205	0057
-2	+ 0002	+.0001	0019	0002
-3				
-4	0001			
Sum	0919	+ .0633	+:0306	- •0178

 $\sqrt{-1}z_{ke^3e'}$ ÷ake³e' (continued)

i.	2i+g+c+m.	2i+g-e-m.	2i+g+c-m.	2i+g-c+m.
4				
3		+.0010	+.0001	-'0002
2	0008	+:0310	+.0038	- .0026
1	-:0253	+ '0220	+ .0886	-'0219
0	—·o76o	+ '0329	+ '0157	+ 0052
-r	-0152	+ .0086	+ '0450	- 0258
-2	0059	+.0018	+ 0012	- 0052
-3	0012		+:0004	0002
-4				
Sum	-:1247	+.0973	+1548	-·o537

170. Characteristic ke²c'². Values of

A

í.	2i + g + 2c + 2m.	2i+g-2e-2m.	2i + g + 2c - 2m.	2i + g - 2c + 2m.
4 .		+ '0026		
3		+.0576	+ '0007	0039
2	+ 0007	+ 5520	+ '0296	1331
I	+ 0020	- 0432	+ 4848	0045
0	- 2683	+.0063	+ .7659	+ 0171
-I	– ·1694	+ .0093	— ·oo82	'2014
-2	+ 0240	0005	0057	—*0288
-3	0304		+ .0036	0014
-4	- 0024			
Sum	— •4438	+:5841	+1.5707	3560

			A		В
i.	2i+g+2c.	2i + g - 2c.	2i+g+2m.	2i+g-2m.	2i+g.
4	4 2 4 4 4	0008		+ .0003	0002
3	- '0003	— ·0157		+ '0172	0057
2	0109	1408	0191	+ .3588	1183
I	— ·1984	0073	-7306	+2.1857	7709
0	2647	0081	-0518	— .0337	+ .0233
-I	0103	+ 1564	+ 0428	0030	0118
-2	+.0010	+.0163	-1725	+ .0166	+1020
-3	+.0139	+.0006	-0174	+ .0002	+.0081
-4	+.0009		 0006		4
Sum	— •4687	+.0006	—·9492	+ 2.5457	— '7735

	$\sqrt{-1}z_{\mathrm{k}\mathrm{e}^{2}e^{2}}$ ÷ $\mathrm{a}\mathrm{k}\mathrm{e}^{2}e^{\prime2}$				
i.	2i + g + 2c + 2m.	2i+g-2c-2m.	2i + g + 2c - 2m.	2i + g - 2c + 2m.	
4		+.0001			
3		+ .0027		—·0002	
2		+ .0844	+.0006	— :0159	
I	+ .0001	+ .0735	+.0198	13	
0	- ∙0264	+ '024	+:0934	040	
r	-:2254	+.0011	+:17	0280	
- 2	—·o25 2		+.011	0013	
-3	0054		+.0002		
-4	ooo1				
Sum	2824	+.186	+:30	- '22	

i.	2i + g + 2c.	2i + g - 2c.	2i + g + 2m.	2i+g-2m.	2i+g.	
4						
3		0007		+ .0004	,0001	
2	0003	0188	00008	+.0122	0048	
I	 :0 0 76	+ '020	0782	+ . 2968	0925	g _{e³e′*}
0	0287	+.13	-:142	+.089	0	=+:0104
I	'032	+.0193	067	+.10	+.036	
-2	00 I	+:0007	-·0271	+:0027	+.0140	
-3	+ '0021		0008		+.0004	
-4						
Sum	—·o67	+.12	316	+.20	047	

171. Characteristic kee'3. Values of

A					
i.	2i+g+c+3m.	2i + g - c - 3m.	2i + g + c - 3m.	2i+g-c+3m.	
4 1		+ '0004			
3		+ '0242	+ '0024	+ .0003	
2		+ '4352	+ .0403	+.0057	
ī	- '0012	+1.4451	+ .8945	0021	
0	— ·1516	- ·1946	+ .3422	+.3416	
<u>-1</u>	+1.3342	0141	0203	2245	
-2	- '1292	000 6	– .0141	 0671	
-3	0256		0002	0039	
- 4	– .0014				
Sum	+1'0252	+1.6956	+1.5745	+ .0469	

i.	2i+g+c+m.	2i+g-c-m.	2i+g+c-m.	2i+g-c+m.
4		0001		······································
3		- '0102	0013	
2	+ '0020	- '1742	0316	0191
ı	- *0075	-6600	3931	+ 4424
0	− •6609	- '7527	+ '7341	+ 8012
-1	- 4825	+ .0000	+:3980	+ 2141
-2	+ '1155	- '0035	+ 0141	+ '0480
-3	+ '0152	- '0002	+ 0007	+ '0022
-4	+ .0006		0001	
Sum	—1 .0176	-i·5949	+.7208	+ 1,4888

$\sqrt{-1}z_{\text{ke}e'^3}$ ÷ake e'^3

i.	2i+g+c+3m.	2i+g-c-3m.	2i+g+c-3m.	2i+g-c+3m.
3		+.0008		
2		+ '0341	+'0021	+ 0003
I	- ,0001	+'7392	+ .0634	0023
0	- .0367	+ 1646	+.1380	- 3056
— I	-1.3081	'0031	+ 0159	-1227
-2	– '1053		- '0044	0054
-3	- '0023			0001
Sum	-1'4 525	+ '9356	+.5120	4358

i.	2i+g+c+m.	2i+g-c-m.	2i+g+c-m.	2i+g-c+m.
3		0003		
2	+,0001	-'0124	0009	0011
1.	0006	2550	-·o253	+1352
0	1712	+.6440	+ 2329	- 6877
-I	+'4315	+.0046	 *3420	+ 0838
-2	+ .0628	-:0002	+ '0039	+ 0035
-3	+ '0012		+.0001	+,0001
Sum	+:3238	+.3807	1313	- 4662

172. Characteristic kiea. Values of

A

Ži.	2i+3g+c.	2i+3g-c.	2i+g+c.	2i+g−c.
				+ '0008
	+ '0002	- '000I	+ 0026	+ '0364
3	+ '0015	4 '0149	+ 1586	+1:1788
1	4 999	+ '9812	+46117	- 1487
_i	+ 1°5291	+ 0369	- 2077	- 0321
-3	+ '0723	4 '0151	+ '0578	+ '1668
-5	– 'oo63	+ 10080	+ :0422	+ '0068
-7	+ '0021	+ .0003	+ '0017	+ 2002
Sum	+1.6480	+1.0563	+4.6669	+1 2090

√-1z. -ak³ed

2i.	2i+3g+c.	2i+3g-c,	2 i +g+c.	2i+g-č.
5			+ :0001	4 .0010
3		+ 20006	+ '0065	+ :1507
1	+,0019	+1098	+ '5230	+ :966
-1	+ '1548	+171	-1264	+ 1095
-3	+:128	~******	- '090	+ '0217
-5	+ 0065	4 0011	+ '0059	+ '0003
-7	+ '0004		+ '0001	
Sum	+'292	+/250	- 818	41 ′235

173. Characteristic k³e'a. Values of

A

2i.	2i+3g+m,	2i+3g∸m.	2i+g+m.	2 i +g−m,
,			<u> </u>	+ '0001
5	+'0003	- '0003	'0088	+ .0078
3	+ 0020	+ '0032	- 4256	+ '3012
	+ 0645	4 '0619	-13'0974	+ 1'5617
-1	+'5923	~1*7294	+ '9515	-11'1432
-3	- 7884	+ :3505	+ 5034	- '1149
-5	+*0212	- 0150	十 '0257	'0047
-7	+ *0014	- *0007	+ .0000	10001
Sum	1067	-1.3298	-12'0509	- 9.3921

 $\sqrt{-1}z_{\mathbf{k}^{3}e^{\prime}a}$ ÷a $\mathbf{k}^{3}e^{\prime}a$

2 <i>i</i> .	2i + 3g + m.	2i + 3g - m.	2i+g+m.	2i+g-m.
7				
5			- '0003	+ *0002
3	+.0001	+.0001	- 0292	+ .0500
1	+.0038	+ 0034	-3.7306	+ 5923
-1	+ 1406	— ·4881	- .7886	+ 9:4528
-3	+.7385	-3000	+ :2256	+ .0019
-5	+.0192	— ·0088	+ '0021	- *0002
-7	+.000i	- :0001		
Sum	+ 9023		-4.3210	+ 10.0676

174. Characteristic ke3a. Values of

A

2 <i>i</i> .	2 <i>i</i> + g + 3c.	2i + g - 3c.	2i+g+c.	2i+g-c.
9		0001		
7		0089	0003	0031
5	-,0001	0 611	-0122	1020
3	-0141	+ 0071	- 3990	— *4204
I	-5143	—·0045 <i>*</i> *	- ∙4881	+ 0113
-i	+ .6224	+ .0981	+:0182	0063
-3	+ 0150	+.0219	0102	+ 0946
-5	0028	+.0006	+ 0304	+'0159
-7	十 0029	59	+ .0039	+ .0003
- 9	+ '0004		+•000i	
Sum	+ 1094	+ '0531	 -8575	- 4098

 $\sqrt{-1}z_{\mathrm{ke}^3a}$ \div ake 3a

2i.	2i + g + 3c.	2i+g-3c.	2i+g+c.	2i+g-c.
7	1	— ' 0004		0001
5		0087	-:0003	0043
3	0003	-015	0124	0533
I	0191	047	- 0554	- 073
-1	+ '0641	+ 0113	+.111	+ '034
-3	+ .031	+ .0009	+ .020	+ '0123
-5	+ '004		+ .0044	+.0007
-7	+.0002		+ '0002	
Sum	+ .080	- ⁺059	+.064	084

Mr. Ernest W. Brown, Theory of the

175. Characteristic ke²e'a. Values of

A

	1					
2 <i>i</i> .	2i+g+2c+m.	2i+g-2c-m.	2i+g+2e-m.	2i+g-2c+m.	2i+g+m.	2i+g-m.
9		- '0002		+ ,0001		
7		- '0074		+ :0076	+ .0018	- '0010
5	+ '0047	- '2310	- '0004	+ .1880	+ '0784	- '0432
3	+ .1891	- '5328	0392	- '4235	+2.0144	-1.0514
I	+4.7223	+ .2560	- 6154	-3.1861	+4.5725	+ '1211
-1	- '1328	- '3295	-2.7916	+ .2076	0402	+5.5200
-3	- '4499	- 1708	2700	+ .1003	+ 2134	- :2235
— 5	+ '0531	 0058	0183	+ '0035	+ .0769	- 0745
-7	+ '0137	0001	0080		+ '0021	- '0024
-9	+ .0003		- '0002			
Sum	+4.4005	-1.0516	-3.7431	-3.1052	+6.9190	+4'2451

 $\sqrt{-1}z_{\mathbf{k}\mathbf{e}^2e'a}\mathbf{\div}\mathbf{a}\mathbf{k}\mathbf{e}^2e'a$

2i.	2i+g+2c+m.	2i+g-2e-m.	2i + g + 2c - m.	2i+g-2c+m.	2i+g+m.	2i+g-m.
7		—·0002		+ '0002		
5	+.0001	0170	1.	+ '0124	+ .0022	- '0013
3	+ .0050	- '2344	0011	- '1335	+ 1255	0708
1	+ 2715	- '2173	— :0391	+2.7063	+1.3050	+ .0216
— r	0299	- 0979	8122	+ .0885	+ .0100	-4:6849
-3	+ 4155	-0108	+ '2425	+ .0070	+ '0978	- 1008
- 5	+ '0347	- '0002	- ·oo68	+ .0001	+ .0028	- 005
- 7	+.0011		0006		+ .0001	- '000
um	+.6980	5778	6173	+2.6810	+1.5533	-4.841

CHAPTER VIII.

TERMS OF THE SIXTH ORDER.

Section (i). Formulæ and Methods of Procedure for u.

176. Terms in only two characteristics, e^4k^2 , e^2k^4 , have been calculated; for those in e^6 , in which very small divisors do not occur, the elliptic values can be substituted; those in k^6 are insensible. No terms with arguments 2i are calculated, as no small divisors are present; the constant C' enters only with these terms, and it may therefore be neglected.

The method is that of Chapter VII., with $\Omega_1 = L' = \Lambda' = 0$. Also a takes the values 6, 5, 4, 3, and b = 6-a. For $u_3 u_3$, $s_3 s_8$, $z_3 z_3$, $Dz_3 Dz_3$, $u_3 s_3 + s_3 u_3 = 2u_3 s_3$, &c., we must substitute the halves of these functions when dealing with the general formulæ.

177. The main difference arises in the development of δf , $\delta(Df')$. Here

$$\delta f = c_2 \frac{\partial f_4}{\partial c} + g_2 \frac{\partial f_4}{\partial g} + \tfrac{1}{2} c_2 \tfrac{\partial^2 f_2}{\partial c^2} + \tfrac{1}{2} g_2 \tfrac{\partial^2 f_2}{\partial g^2} + c_4 \tfrac{\partial f_2}{\partial c} + g_4 \tfrac{\partial f_2}{\partial g} \,,$$

with a similar expression for $\delta(Df')$; $\partial^2 f_2/\partial c \partial g$, $\partial^2 (Df'_2)/\partial c \partial g$ are zero.

For the first two and last two terms the formulæ of § 134 are available with a = 4, 3, 2 and b = 4-a, a=2, 1 and b=2-a; when a = b the remark at the close of § 176 must be noted.

For the other two terms I find, for the coefficients of $\zeta^{\pm(2i+2c)}$ only,

$$\begin{split} \frac{\partial^2 \mathbf{f}_2}{\partial \mathbf{c}^2} &= 6 u_{\rm e} s_{\rm e} + 8 (u_{\rm e} s_0 + s_{\rm e} u_0) \,, \ \, \frac{\partial^2}{\partial \mathbf{c}^2} (D \mathbf{f'}_2 / = -8 (u_{\rm e} s_0 - s_{\rm e} u_0) \,; \\ \frac{\partial^2 \mathbf{f}_2}{\partial \mathbf{g}^2} &= (8 u_{\rm k} s_0 + s_{\rm k} u_0) \, \, , \ \, \frac{\partial^2}{\partial \mathbf{g}^2} (D \mathbf{f'}_2) = -(8 u_{\rm k} s_0 - s_{\rm k} u_0) \,. \end{split}$$

No general formulæ for the derivatives of Q were obtained, owing to the difficulty of expressing them in convenient forms. The cases are

$$a, b = 3, 1$$
, characteristics ke², k; k³, k;
 $a, b = 2, 2$, , ke, ke;
 $a, b = 1, 1$, , k, k.

ROYAL ASTRON. Soc., Vol. LVII.

For these cases we have, using the notation of § 134 for Σ' and of § 135 for z',

$$a = ke^{2} \text{ or } k^{3}, \begin{cases} \frac{\partial Q}{\partial c} = 4\Sigma' \frac{\partial p}{\partial c} D(z_{a}z_{k}) - 2\Sigma' \frac{\partial p}{\partial c} z_{a} Dz_{k}, \\ \frac{\partial Q}{\partial g} = \Sigma' D \left\{ 4 \frac{\partial p}{\partial g} z_{a}z_{k} - 2z_{a}z'_{k} \right\} + 4z_{a} Dz'_{k} - 2\Sigma' \frac{\partial p}{\partial g} z_{a} Dz_{k}; \\ a = b = ke, \end{cases} \begin{cases} \frac{\partial Q}{\partial c} = 2\Sigma' \frac{\partial p}{\partial c} D(z^{2}_{ke}) - 2Dz_{ke}. (z'_{ke})_{g+c} + 2Dz_{ke}. (z'_{ke})_{g+c}, \\ \frac{\partial Q}{\partial g} = 2\Sigma' \frac{\partial p}{\partial g} D(z^{2}_{ke}) - 2z'_{ke} Dz_{ke}; \end{cases}$$
$$a = b = k, \end{cases} \begin{cases} \frac{\partial Q}{\partial c} = 0, \frac{\partial Q}{\partial g} = 2\Sigma' \frac{\partial p}{\partial g} D(z^{2}_{k}) - 2z'_{k} Dz_{k}, \\ \frac{\partial Q}{\partial c} = 0, \frac{\partial Q}{\partial g} = 2\Sigma' \frac{\partial p}{\partial g} D(z^{2}_{k}) - 2z'_{k} Dz_{k}, \\ \frac{\partial^{2}Q}{\partial c^{2}} = 0, \frac{\partial^{2}Q}{\partial g^{2}} = 2\Sigma' \left(\frac{\partial p}{\partial g}\right)^{2} z^{2}_{k} - 2z'_{k}^{2}, \frac{\partial^{2}Q}{\partial c\partial g} = 0, \end{cases}$$

where $(z'_{ke})_{g+c}$ denotes that the terms whose arguments are $\pm (2i+g+c)$ only are to be

used, and similarly for $(z'_{ke})_{g-c}$.

178. The calculations were made on the plan outlined in Section (iv.) of Chapter VII., with certain abbreviations. As in most cases only three significant figures were necessary, it was found possible, in forming the products of series, for the computer to add each pair of logarithms from the slips and look out the number corresponding to their sum from a four-place table (printed on a card) without writing anything down (see § 140). Only this last number was actually written down, and thus the sheets on which the various series were added together could be entered straight from the multiplication slips. The great majority of the products consisted of numbers with one or two significant figures, and long practice has made us so familiar with the logarithms of numbers from 1 to 99 that a glance at the table was rarely necessary for these.

Nearly all the other operations were so arranged that the use of logarithms was not necessary and the computation sheets were much abbreviated. In the few cases where logarithms had to be used they were written down on a spare corner of the

sheet, so as not to disturb the general plan.

Only those sets of coefficients corresponding to the arguments $2i\pm(2c-2g)$ required the special method of § 138.

Section (ii). The Homogeneous Equation for z.

179. As the calculation of B_5 (see § 139) would have been long, the homogeneous equation (8) of § 7 was used. The terms calculated were those with characteristics k^5e , k^3e^3 , ke^5 , so that we have $\Omega_1=0$. The equation is then

$$D(uDz-zDu)-2mzDu-m^2uz-\frac{3}{2}m^2z(u+s)=0.$$

Put $u'=u\zeta^{-1}$, $s'=s\zeta$, and divide by ζ . The equation may be written

$$\mathbf{f}'' + \delta \mathbf{f}'' \equiv (D^2 - \mathbf{1} - 2\mathbf{m} - \frac{5}{2}\mathbf{m}^2)zu' - 2(D + \mathbf{1} + \mathbf{m})zDu' - \frac{3}{2}\mathbf{m}^2zs'\zeta^{-2} = 0, \qquad \dots$$
 (1)

or

$$(D^{2}-g_{0}^{2})zu'-2(D+g_{0})zDu'+(g_{0}^{2}-1-2m-\frac{5}{2}m^{2})zu'+2(g_{0}-1-m)zDu'-\frac{3}{2}m^{2}zs'\zeta^{-2}=0.$$
 (2)

The constant coefficients in the last three terms of this equation are small. In fact,

$$g_0^2 - 1 - 2m - \frac{5}{2}m^2 = -00044, \quad g_0 - 1 - m = +00432, \quad \frac{3}{2}m^2 = +009805.$$
 (3)

Also, since Du_0' has the factor m^2 , the term of principal importance in the determination of z_6 is the first. If then the operation $(D^2-g_0^2)^{-1}$ be performed on the equation, the first approximation to z_6 is given by

$$az_6 = -zu' + \left(\frac{2}{D - g_0} - \frac{2(g_0 - 1 - m)}{D^2 - g_0^2}\right) zDu' + \frac{1 + 2m + \frac{5}{2}m^2 - g_0^2}{D^2 - g_0^2} zu' + \frac{1}{D^2 - g_0^2} \frac{3}{2}m^2 zs' \zeta^{-2} = 0, \dots (4)$$

where we neglect z_6 on the right. For the second approximation we substitute $-z_6^{(1)}$ $(u_0'-a)$ $(\S 132)$ for the first term on the right and $z_6^{(1)}$, Du_0' for z, Du' in the other terms; and so on.

180. As in Chapter VII., c_0 , g_0 are to be used for c, g in performing operations involving D. Let $\delta f''$ denote the parts of (1) due to $c-c_0$, $g-g_0$. Then

$$\delta f'' \!=\! c_2 \! \frac{\partial f_4{''}}{\partial c} \! + \! g_2 \! \frac{\partial f_4{''}}{\partial g} \! + \! c_4 \! \frac{\partial f_2{''}}{\partial c} \! + \! g_4 \! \frac{\partial f_2{''}}{\partial g} ;$$

the terms involving second order derivatives are found to be negligible, owing to the smallness of c_2^2 , c_2g_2 , g_2^2 .

Let q denote an index of ζ in u'. Then, using the notations of $\delta \delta$ 134, 135,

$$\frac{\partial \mathbf{f}''}{\partial c} = \Sigma' \frac{\partial p}{\partial c} \left\{ 2D(zu') - 2zDu' \right\} - 2(D + \mathbf{i} + \mathbf{m})z\Sigma' \frac{\partial q}{\partial c}u'.$$

Since $1+m-g_0$ is small enough to be neglected when multiplied by $c-c_0$, $g-g_0$ (there are no small divisors), this may be written:

$$\frac{\partial \mathbf{f}''}{\partial \mathbf{c}} = 2\Sigma' \frac{\partial p}{\partial \mathbf{c}} u' D z - 2(D + \mathbf{g}_0) z \Sigma' \frac{\partial q}{\partial \mathbf{c}} u',$$

with a similar expression for $\partial f''/\partial g$.

Hence, after putting $c = c_0$, $g = g_0$ in the coefficients of ζ in (4), we must add

$$-\frac{1}{D^2-\mathbf{g_0}^2}\delta\mathbf{f}^{\prime\prime}$$

to its right-hand member; this expression separates into two parts, involving the operators $(D^2-g_0^2)^{-1}$ and $(D-g_0)^{-1}$ respectively.

181. The actual computations are comparatively short. The products

$$z_a u'_b$$
, $z_a D u'_b$, with $a, b = 5, 1; 4, 2; 3, 3; 3, 1; 2, 2; 1, 1,$

are obtained according to the plan explained in § 140, and the other remarks there made apply here also. Moreover, as there are no monthly terms, small divisors are not

present. In most cases the terms multiplied by (3) can be altogether neglected; when they are not quite insensible a simple inspection shows what additions arise from them. It was also found that a second approximation to the value of z_6 was not necessary.

Section (iii). Values of $A_{\lambda}/a^{2}\lambda$, $B_{\lambda}/a^{2}\lambda$, $u_{\lambda}\zeta^{-1}/a\lambda$, $u_{\lambda}/a^{2}\lambda$.

182. The tables giving the characteristics and arguments calculated are (see § 148):—

§.	λ.		Ar	guments.		
183	e ⁴ k ²	2 <i>i</i> ±4c±2 g ,	2i±4c,	2i±2c±2g,	2 <i>i</i> ±2c,	2 <i>i</i> ±2g
184	e^2k^4	2i±2e±4g,	2i±2c±2g,	2i±4g,	2i±2c,	2i±2g

§•	λ.		Argume	euts.	
185	k ⁵ e	2 <i>i</i> ±5g±c,	2 <i>i</i> ±3g±c,	2 <i>i</i> ±g±c	
186	$ m k^3e^3$	2 <i>i</i> ±3g±3c,	$2i\pm 3g\pm c$,	$2i\pm g\pm 3c$,	2 <i>i</i> ±g±e
187	$ m ke^5$	2 <i>i</i> ±g±5c,	2 <i>i</i> ±g±3c,	2 <i>i</i> ±g±c	

The terms for which the method of \S 138 was necessary, owing to small divisors, were

Arguments. Characteristics. $\pm (2c-2g)$, e^4k^2 , e^2k^4 .

In §§ 183, 184 the arrangement of §§ 149–163 is followed exactly. In §§ 185–187 the final results for $iz_{\lambda}/a\lambda$ are alone given, as there was no definite stopping place in the computations, and the first approximations are the final results.

183. Characteristic e4k2. Values of

A

i	2i + 4c + 2g.	2i+4c-2g.	2i + 4c.	2i + 2c + 2g.	2i + 2c - 2g.	2i + 2c.	2i + 2g.
3				*	0009		
2	,	002	001	+ '002	0233		'014
I	+ 002	 °045	+.007	-021	0157	+.101	- 371
0	+.002	036	+ 354	707	-1346	+ .025	+ .059
— r	079	+ 008	052	+.133	+.0089	019	012
-2	+.010	ooi	004	+.001	0674	003	-'004
-3	++,	006	14,44	002	0022	008	002
Sum	—·062	082	+.304	- '594	-··2355	+.153	350

В

i.	2i + 4c + 2g.	2i+4c-2g	2 <i>i</i> + 4c.	2i + 2c + 2g.	2i + 2c - 2g.	2 <i>i</i> + 2c	2i + 2g.
3	HI S S				+'0002		
2					+ '0072	+ '001	'004
I		+'012	001	'020	0493	066	+ .084
0	031	- '073	-179	+'142	- 0054	+.104	-134
-r	+.027	*000	+ .043	058	0037	—·010	+.003
-2	007	+.003	+.003	+.003	+.0196	+.004	008
-3			+.001	- '002	'0005	+ 004	+ '002
Sum	— •011	- ∙058	134	+ .062	0319	+ '037	057

 $u_{\mathrm{e}^4\mathrm{k}^2}\zeta^{-1}$ \div $\mathrm{ae}^4\mathrm{k}^2$

i.	2i + 4c + 2g.	2i-4c-2g.	2i+4c-2g.	2i-4c+2g.	2i + 4c.	2i-4c.
3				001	*	-,001
2		+.002		+ 003		-·o1
1 -		006	003	—·o1	+.001	001
- 0	+.010	+.011	044	+.031	+.059	+ 027
-r	028	+.001	+ 02	007	026	001
-2	+.010		- '004	× *	+.01	
-3	.00				'002	
Sura	—·o1	+.008	'03	+ 02	+ 04	+ '01

 $u_{e^*k^2}\zeta^{-1}$ — ae^4k^2 (continued)

i.	2i + 2c + 2g.	2i-2c-2g.	2i + 2c - 2g.	2i - 2c + 2g.	2i + 2c.	2i-2c.	2i + 2g.	2i – 2g
3	-	:oo1		1-1-2-11-0		— '003		+.001
2	+.001	01	—·002	-'015	001	- '004		006
, I .	+.006	+ 024	- 025	+ 032	+ '022	+.01	078	- 06
, 0	-'145	-'022	+.64	58	- '056	+.105	+:086	+ .064
— I	+ 083	+.007	+ .003	,+ .017	•00	+.001	+:03	016
2	.00	+ .001	'004	- 004	- '002		+ 004	+.003
-3	1.0		+.001		004		002	1 200
Sum	 •06	•00	+.61	 *55	—·04	+ ·11	+ '04	'01

184. Characteristic e2k4. Values of

A

<i>i</i> .	2i+2c+4g.	2i + 2c - 4g.	2i + 2c + 2g.	2i + 2e - 2g.	2i+4g.	2i + 2c.	2i+2g.
3			, , , , ,	+ '0001			1
2		+.003		- '0051	+.001	- '001	003
1		+ 178	+*002	- '3548	'004	+ .010	- :058
. 0		+ 810	+ '039	-5.1477	063	+1.696	-5.129
-ı	- '002	+ .003	138	- '5573	+ 299	+ 506	-1:219
-2	+ 017	002	+ 010	- '0056	+ 027	- 010	- :039
-3			'002	0001	001	- '001	
Sum	+.012	+ '992	-: 089	-6.0705	+'259	+2.500	-6.478

-

i.	2i+2c+4g.	2i+2c-4g.	2i + 2c + 2g.	2i + 2e - 2g.	2i + 4g.	2i + 2c.	2i + 2g.
3	:	***************************************	· ·				4 45
2		+.006		0028	*	001	- '003
1.		+ 002	008	-1373	+ 004	- '014	- 215
0	001	+.369	665	+ 0896	+ 267	—1 661	1802
—1	+ 056	+.058	+^268	0743	+*013	- 148	+ 062
2	010	+.001	'001	-0148	'001	+ '027	- 1004
-3	i -			0003		- *002	- '002
Sum	+ '045	+.436	 406	-:1399	+ 283	-1.799	- 964

u = -1 - ae²k⁴

•	2i + 2c + 4g.	2i-2c-4g.	2i+2c-4g.	2i-2c+4g.	2i+2c+2g.	2i-2c-2g.
3	1 1 2 2 1 1 1	•00				- ·00 i
2		+.002	+.001			•00
I		-042	02	+ '002	+.001	029
0		+.001	030	+:334	+.003	+ 272
-1			073	08	036	+*002
-2	+.010		001	oo.	- ·oı	
-3	100	-1	1		+'002	s
Sum	+.01	- •04	'I 2	+:25	- '04	+:24

i.	2i+2c-2g,	2i-2c+2g.	2i + 4g.	2i-4g.	2i + 2c.	2i-2c.	2i + 2g.	2i-2g.
3								001
2	- '002	- '002		•00		001		029
I	- '182	- '210	001	+ .062	+.001	+ .08	- :015	-16
0	98	+2.55	-'002	- 353	+ '443	+1.725	-1.818	- 226
-1	- '117	058	+'144	- 005	19	- '009	+ '78	002
-2	013	003	-:02		- '006		- '021	001
-3					+.001		+ ,001	
Sum	-1.29	+2.58	+12	29	+ :25	+1.79	— I'07	42

Mr. Ernest W. Brown, Theory of the

185. Characteristic k⁵e. Value of $\sqrt{-1}z_{k^5e} \div ak^5e$.

i.	2i+5g+c.	2i + 5g - c.	2i + 3g + c.	2i+3g-c.	2i+g+c.	2i+g-c.
2			**************************************	***		***************************************
1	1 N. 1			- ·oɪ		- '11
0		—·o1		-2.45	+.82	-9.81
-r		+ •08	07	+ .e1	+'14	+ '24
-2	+.01	+.01	—·o1			- ·oi
Sum	+ '01	+.08	- •o8	-1.85	+.96	-9 .69

186. Characteristic k^3e^3 . Value of $\sqrt{-1}z_{k^3e^3}$ ÷ ak^3e^3 .

i.	2i + 3g + 3c.	2i + 3g - 3c.	2i + 3g + c.	2i + 3g - c.	2i + g + 3c.	2i + g - 3e.	2i+g+c.	2i+g-c.
3						oI		•
2		-·o1				'03		100
r		+.01		10		+ '09	5 H 50	- 02
. 0		+.06	25	+•09	+'12	16	03	19
— 1	- ∙03	+.01	+.10	+.03	03	+.02	+.01	- '04
-2			+'02				+ 01	
-3								
Sum	03	+ .07	:13	+ '02	+.09	09	—·01	—·25

187. Characteristic ke⁵. Value of $\sqrt{-1}z_{ke^5}$ ÷ ake⁵.

i.	2i+g+5c.	2i+g-5c.	2i+g+3e.	2i+g-3c.	2i+g+c.	2i+g-c.
3	××××* , *		***	+.001	× ×	+.001
2			+:001	001	+ '004	.000
1		+ '002	+.010	+.003	'002	*000
0	+.010	*004	- 007	002	001	005
— r	009	'001	+.001	'004	+ '002	001
-2	+ .002		+ '004		-·001	-:001
-3					x * - x	
Sum	+:003	- 003	+.009	003	+ '002	— ·006

CHAPTER IX.

RESULTS IN POLAR COORDINATES.

Section (i). Formulæ for Transformation.

188. Longitude.—The formulæ are given in § 41. The value of V_0 is obtained by special values from equation (48) and the other V_{μ} from equation (47) in that section. By development, using the notation of § 139, we obtain

$$2i\nabla_{1} = (u_{1} - s_{1}) \div (u_{0}, s_{0}),$$

$$2i\nabla_{2} = (u_{2} - s_{2} - \frac{1}{2}u_{1}^{2} + \frac{1}{2}s_{1}^{2}) \div (u_{0}, s_{0}),$$

$$2i\nabla_{3} = (u_{3} - s_{3} - u_{1}u_{2} + s_{1}s_{2} + \frac{1}{3}u_{1}^{3} - \frac{1}{3}s_{1}^{3}) \div (u_{0}, s_{0}),$$

$$2i\nabla_{4} = (M - \overline{M}) \div (u_{0}, s_{0}),$$

$$2i\nabla_{5} = (u_{5} - s_{5} - u_{2}u_{3} + s_{2}s_{3} - u_{1}M' + s_{1}\overline{M}') \div (u_{0}, s_{0}),$$

$$2i\nabla_{6} = \{u_{6} - s_{6} - (u_{1}u_{5} + u_{2}u_{4} + \frac{1}{2}u_{3}^{2}) + (s_{1}s_{5} + s_{2}s_{4} + \frac{1}{3}s_{3}^{2}) + u_{1}^{2}M' - s_{1}^{2}\overline{M}' + u_{2}N - s_{2}\overline{N}\} \div (u_{0}, s_{0}),$$
where
$$M \div (u_{0}) = \frac{u_{4}}{u_{0}} - \frac{1}{2} \frac{2u_{1}u_{3} + u_{2}^{2}}{u_{0}^{2}} + \frac{u_{1}^{2}u_{2}}{u_{0}^{3}} - \frac{1}{4}\frac{u_{1}^{4}}{u_{0}^{4}},$$

$$M' \div (u_{0}) = M \div (u_{0}) - \frac{1}{2}\frac{u_{2}^{2}}{u_{0}^{2}} + \frac{1}{2}\frac{u_{1}^{4}}{u_{0}^{4}}, \qquad N \div (u_{0}) = \frac{u_{2}^{2} + 6u_{1}u_{3}}{3u_{0}^{2}} - \frac{u_{1}^{2}u_{2}}{2u_{0}^{3}}.$$

All the products and most of the sums in V_1 , V_2 , V_3 , V_4 , M, M', N, were at hand. For V_5 the product u_2 u_3 was available; the only products to be formed were, therefore, u_2 u_3 by $1/u_0^2$ and $M' \div (u_0)$ by u_1/u_0 . In V_6 the known factor u_1 $u_5 + u_2$ $u_4 + \frac{1}{2}u_3^2$ was multiplied by $1/u_0^2$, u_1^2/u_0^2 by $M' \div (u_0)$, and u_2/u_0 by $N \div (u_0)$. In all cases the corresponding functions of s were obtained by putting $1/\zeta$ for ζ in u.

189. Parallax.—For convenience in obtaining the latitude, equation (49), § 42, for the parallax was computed in the form

$$\frac{\rho_0}{r} = 1 + \left(\frac{\rho_0}{r}\right)_1 + \left(\frac{\rho_0}{r}\right)_2 + \left(\frac{\rho_0}{r}\right)_3 + \left(\frac{\rho_0}{r}\right)_4$$

for orders up to the fourth inclusive. Here

$$\begin{split} \left(\frac{\rho_0}{r}\right)_1 &= -\frac{1}{2}(u_1 + s_1) \div (u_0, s_0), \\ \left(\frac{\rho_0}{r}\right)_2 &= \{-\frac{1}{2}(u_2 + s_2) + \frac{3}{8}(u_1^2 + s_1^2) + \frac{1}{4}u_1s_1 - \frac{1}{2}z_1^2\} \div (u_0, s_0, \rho_0), \\ \left(\frac{\rho_0}{r}\right)_2 &= \{-\frac{1}{2}(u_3 + s_3) + \frac{3}{4}(u_1u_2 + s_1s_2) + \frac{1}{4}(u_1s_2 + s_1u_2) - z_1z_2 - \frac{5}{16}(u_1^3 + s_1^3) - \frac{3}{16}(u_1^2s_1 + s_1^2u_1) + \frac{3}{4}z_1^2(u_1 + s_1)\} \\ &\quad \div (u_0, s_0, \rho_0), \\ \left(\frac{\rho_0}{r}\right)_4 &= \{-\frac{1}{2}(u_4 + s_4) + \frac{3}{4}(u_1u_3 + s_1s_3) + \frac{3}{8}(u_2^2 + s_2^2) + \frac{1}{4}(u_1s_3 + s_1u_3 + u_2s_2) - z_1z_3 - \frac{1}{2}z_2^2 - \frac{15}{16}(u_1^2u_2 + s_1^2s_2) \\ &\quad - \frac{3}{16}(2u_1u_2s_1 + 2s_1s_2u_1 + u_1^2s_2 + s_1^2u_2) + \frac{3}{4}z_1^2(u_2 + s_2) + \frac{3}{2}z_1z_2(u_1 + s_1) + \frac{3}{12}\frac{5}{8}(u_1^4 + s_1^4) \\ &\quad + \frac{5}{32}(u_1^3s_1 + s_1^3u_1) + \frac{9}{64}u_1^2s_1^2 - \frac{1}{16}z_1^2(u_1^2 + s_1^2) - \frac{9}{3}z_1^2u_1s_1 + \frac{3}{3}z_1^4\} \div (u_0, s_0, \rho_0). \end{split}$$

All the products and, by suitable rearrangements which differed with different characteristics, many of the sums were at hand.

ROYAL ASTRON. Soc., Vol. LVII.

For the terms of the fifth order, in which the characteristics e^5 , e^3k^2 , ek^4 were alone needed, it was shorter to use the Jacobian integral, equation (5), § 7. Here Ω_1 =0 and C' is not present in odd order terms, so that

$$2 \left(\frac{\kappa}{r}\right)_5 = \left[-Du \cdot Ds - (Dz)^2 - \frac{3}{4} m^2 (u+s)^2 + m^2 z^2\right]_5.$$

All the products had been obtained in finding u_5 . An examination of the errors produced by using c_0 , g_0 for c, g showed that they were insensible. The terms factored by m^2 are also insensible in most cases.

The order of accuracy for the parallax is found by dividing the characteristics required in the latitude by k.

190. Latitude.—To the sixth order inclusive this is given by (§ 43)

$$\begin{split} \phi &= \frac{z}{\rho} - \frac{1}{3} \frac{z^3}{\rho^3} + \frac{1}{5} \frac{z^5}{\rho^5} = \frac{z}{r} + \frac{1}{6} \frac{z^3}{\rho^3} - \frac{7}{40} \frac{z^5}{\rho^5} \\ &= \sum_{j=1}^{j=6} \Big(\sum_{i=1}^{1=6} \frac{z_i}{\rho_0} \; \mathbf{R}_{j-i} \Big), \end{split}$$

where

$$\begin{split} \mathbf{R}_{1} &= \left(\frac{\rho_{0}}{r}\right)_{1}, \ \mathbf{R}_{2} = \left(\frac{\rho_{0}}{r}\right)_{2} + \frac{1}{6}\frac{z_{1}^{2}}{\rho_{0}^{2}}, \ \mathbf{R}_{3} = \left(\frac{\rho_{0}}{r}\right)_{3} + \left(\frac{1}{3}z_{1}z_{2} - \frac{1}{4}z_{1}^{2}(u_{1} + s_{1})\right) \div (u_{0}, s_{0}, \rho_{0}), \\ \mathbf{R}_{4} &= \left(\frac{\rho_{0}}{r}\right)_{4} + \left[\frac{1}{3}z_{1}z_{3} + \frac{1}{6}z_{2}^{2} - \frac{1}{2}z_{1}z_{2}(u_{1} + s_{1}) + z_{1}^{2}\left\{ -\frac{1}{4}(u_{2} + s_{2}) + \frac{5}{16}(u_{1}^{2} + s_{1}^{2}) + \frac{3}{8}u_{1}s_{1}\right\} - \frac{7}{40}z_{1}^{4}\right] \div (u_{0}, s_{0}, \rho_{0}), \\ \frac{\mathbf{R}_{5}}{\rho_{0}} &= \left(\frac{1}{r}\right)_{5} + \frac{1}{6}\left(\frac{z^{2}}{r^{3}}\right)_{5} + \frac{3}{40}\left(\frac{z^{4}}{\rho^{5}}\right)_{5} \\ &= \left(\frac{1}{r}\right)_{5} + \frac{1}{12\kappa}\left\{D^{2}(z^{2}) - (Dz)^{2}\right\}_{5} + \frac{1}{\rho_{0}} \cdot \frac{z_{1}^{2}}{\rho_{0}^{2}}\left\{\frac{3}{10}\frac{z_{1}z_{2}}{\rho_{0}^{2}} - \frac{3}{16}\frac{z_{1}^{2}}{\rho_{0}^{2}}\left(\frac{u_{1}}{u_{0}} + \frac{s_{1}}{s_{0}}\right)\right\}, \end{split}$$

The expression for $(z^2/r^3)_5$ in R_5/ρ_0 is obtained by multiplying equation (4), § 6, by z, putting $\Omega_1 = 0$ and neglecting the terms factored by m^2 ; we can also put $c = c_0$, $g = g_0$ in this expression.

All the products in the R_{j-i} were known except those in the last term of R_5/ρ_0 . When the R_{j-i} have been obtained the multiplications by z_i/ρ_0 were straightforward.

Section (ii). Change of the Arbitrary Constants.

191. The usual constants e, γ , a used in the lunar theory are so defined that the coefficient of the principal elliptic term in longitude is

$$2e - \frac{1}{4}e^3 + \frac{5}{96}e^5$$
;

that of the principal term in latitude,

$$2\gamma - 2\gamma e^2 - \frac{1}{4}\gamma^5 + \frac{7}{32}\gamma e^4$$
;

and a is defined by the equation

$$a^3n^2 = E + M$$
.

The results of the transformation to polar coordinates furnish the following coefficients for these two terms:—

+ 99972 871 e+
$$\circ$$
1457 76 e³ - \circ 2435 ee² + $1\circ$ 0499 9 ek² - \circ 171 ea² + \circ 021 e⁵ - \circ 46 e³e² + 3714 e³k² + 23 ee²k² + $1\cdot$ 552 ek⁴,

and

192. Equating these, I find

$$e = +2.00054 \ 273 \ e - .36681 \ 52 \ e^{3} + .04873 \ ee'^{2} - 2.01160 \ 2 \ e\gamma^{2} + .0342 \ e\left(\frac{a}{a'}\right)^{2}$$

$$+ .049 \ e^{5} + .35 \ e^{3}e'^{2} - .246 \ e^{3}\gamma^{2} - .56 \ ee'^{2}\gamma^{2} + .911 \ e\gamma^{4},$$

$$k = +1.00012 \ 765 \ \gamma - .49609 \ 1 \ \gamma^{3} - .49924 \ 3\gamma e^{2} - .00037 \ \gamma e'^{2} + .0049 \ \gamma \left(\frac{a}{a'}\right)^{2}$$

$$- .128 \ \gamma^{5} + 1.07 \ \gamma^{3}e^{2} + .0 \ \gamma^{3}e'^{2} - .095 \ \gamma e^{4} + .12 \ \gamma e^{2}e'^{2},$$

$$a = +.99909 \ 314 \ a, \qquad \frac{1}{a} = +1.00090 \ 768 \ \frac{1}{a}.$$

Section (iii). Numerical Values of the Constants.

193. The following are the values of the constants used in reducing the results to seconds of arc:—

$$n = 173 \ 25594'' \cdot 06$$
, $n' = 12 \ 95977'' \cdot 415$, $m = \cdot 08084 \ 89338$, $e = \cdot 05490 \ 056$, $e' = \cdot 01677 \ 191$, $\gamma = \cdot 04488 \ 716$, $\frac{1}{a} = 3419'' \cdot 596$, $\frac{1}{a'} = 8'' \cdot 7800$, $\frac{E}{M} = 81 \cdot 500$,

giving

$$a_1 = \frac{a}{a'}$$
. $\frac{E-M}{E+M} = .00250 532$.

The value of e corresponds to a coefficient $22639''\cdot580$ of the principal elliptic term in longitude; that of γ to a coefficient $18461''\cdot480$ of the principal term in latitude; that of a to the value $3422''\cdot700$ for the constant term in the sine of the equatorial horizontal parallax of the Moon.

Section (iv). Numerical Values of the Parts of the Arguments and Coefficients arising from the Various Characteristics.

194. The coefficient of each periodic term in longitude and latitude is of the form $\lambda P(e^2, e'^2, \gamma^2, \alpha_1^2)$, where λ is the characteristic of the principal part and the factor of λ is a quadruple power series proceeding according to powers of e^2 , e'^2 , γ^2 , α_1^2 , with numerical coefficients; in the sine of the parallax each coefficient is of the same form with the additional factor 1/a. In the longitude and parallax only even powers, and in the latitude only odd powers, of γ are present. In this section will be given the coefficients of all those periodic terms for which P is not limited by the calculations to a single term. The part due to each characteristic in a coefficient of a given periodic term is separately shown. Those periodic terms which have had the parts due to the principal characteristics alone calculated are not set down in this section, since these parts are the final values for these coefficients given in the next section.

The characteristics in all cases are composed of the new constants e, e', γ , α_1 , that

is to say, they are the same as those of Delaunay, with the exception a_1 for a. A direct comparison of each part with the corresponding part given by Delaunay is thus possible, when allowance has been made for the slight difference in the numerical values for the constants used by Delaunay and myself, and for the change from a to a_1 .

195. The following table gives the various parts of the annual mean motions of the perigee and node * due to the separate characteristics set down in the first column.

Annual Mean Motions.

Char.	Perigee.	Node.
1	+148524*92	-69287.90
e^2	- 519.31	- 616.09
e'2	+ 156.27	- 25.46
γ^2	- 1739.85	+ 260.59
a12	+ 2.24	→ 1.11
e^4	+ '04	+ .07
$e^{2}e'^{2}$	- '99	- '57
$e^2\gamma^2$	+ 6.72	- 1.70
$e'^2\gamma^2$	- 1.Q1	+ .08
γ^4	- 1'51	+ :05
um	+ 146426'92	-69672.04

196. In §§ 197-262 are given the coefficients of those periodic terms in longitude, latitude, and parallax which contain more than one characteristic. The arrangement is primarily according to the orders of the principal characteristics, each principal characteristic being attached to a definite set of arguments which differ only by multiples of 2D and in the signs of the multiples of l, l', F.

The notation for the arguments is that of Delaunay (§ 10).

In the first column of each Table is placed the characteristic, and in the succeeding columns the coefficients corresponding to the multiple (i) of 2D placed in the first row of each Table.

In the last row is given the sum for each column, and therefore the final value for the coefficient of each argument.

The coefficients in longitude are given in §§ 197-225, in units of o"'001.

The coefficients in latitude are given in §§ 226-248, in units of o"cor.

The coefficients in parallax are given in §§ 249-262, in units of o"·0001.

All coefficients have been calculated so as to be correct to the last figure given, with the exception of those depending on e^6 , for which the elliptic values have been substituted. This remark applies also to the Tables in section (v).

^{*} I have obtained the complete theoretical values of these two quantities and compared them with their observational values in the first of the two papers referred to in § 147.

197. Arg. 2iD.

	3	2	1
×	+ 49	+ 8740	+2106246
+1	+ 67	+ 5217	+ 298973
		- 30	- 1993
	– 3	- 309	- 31435
		+ 2	+ 37
	+ 17	+ 433	— 343
		– 16	- 191
			0
	– 3	— 136	- 1311
			+ 35
		+ 1	- 121
			+ 4
×			_ 2
+ 1	+127	+13902	+2369899
	+1	3 + 49 + 67 - 3 + 17 - 3	3 2 + 49 + 8740 + 1 + 67 + 5217 - 30 - 3 - 309 + 2 + 17 + 433 - 16 - 3 - 136 + 1

198. Arg. l + 2iD.

i.	3	2	I	. О	- I	-2	-3	-4
e	+12	+1446	+ 174865	+ 22648107	-4608089	-35221	— 291	-2
e^3	+10	+ 574	+ 20813	- 8533	+ 1231	- 4143	-114	— 2
ee'2		- 6	- 238	0	+ 1586	+ 77	+ 2	
$e\gamma^2$	– 1	– 58	- 3314	o	+ 18897	+ 811	+ 13	
ea_1^2			+ 4	0	_ 50			
e^5	+ 2	+ 42	- 44	+ 5	+ 4	+ 4	- 8	
$e^3e'^2$		- 2	— 2I	0	+ 13	+ 8	+ 1	
$e^3\gamma^2$		 17	- 115	0	– 19 ×	+ 38	+ 4	
$ee'^2\gamma^2$			+ 6	0	+ 15	- 2		
ey4			_ 2	0	- 26			
Sum	+23	+ 1979	+191954	+22639579	-4586438	-38428	-393	-4

199. Arg. l' + 2iD.

i.	3	2	I	0	-1	-2	-3
e'	-r	- 180	-21595	-659271	— 152090	-1255	-10
e^2e'	2	-113	- 3476	- 15490	- 15125	- 6 36	-13
e'3			+ 1	– 5	+ 118	+ 3	
$e'\gamma^2$		+ 10	+ 651	+ 5702	+ 1651	+ 38	+ 1
e'a12			- 7				
e^4e'	1	- 10	– 26	+ 27	+ 3	- 44	- 3
$e^2e'^3$			+ 1	_ 22	+ 8	+ 1	
$e^2e'\gamma^2$		+ 4	_ 2	+ 120	+ 82	+ 14	+ 1
$e'^3\gamma^2$					_ 2		
$e'\gamma^4$			+ 2	- 5	+ 4		
Sum	-4	-289	-24451	-668944	-165351	-1879	-24

200. Arg. 2i₁D.

2i ₁ .	5	3	1	
α_1	+8	+735	-125394	
e^2a_1	-3	-383	- 2433	
$e'^2\alpha_1$		+ 7	— 2I	
$\gamma^2 a_1$		+ 42	+ 3040	
a ₁ ³			- I	
e^4a_1	— I	- 9	+ 5	
$e^2\gamma^2a_1$		+ 10	+ 36	
$\gamma^4 a_1$			- 17.	
Sum	+4	+402	-124785	

201. Arg. 2l+2iD.

				ALCO TO A CONTRACT OF THE PARTY				
i.	3	2	r	. 0	I	-2	-3	-4
e^2	+2	+169	+13241	+771167	-212622	-31054	-531	-7
e4	+2	+ 56	+ 1478	- 1038	+ 92	– 31	- 59	-2
$e^{2}e'^{2}$		– 1	— 25	– 59	– 69	+ 36	+ 3	
$e^2\gamma^2$		_ 8	- 299	- 1037	+ 950	+ 279	+ 16	
$e^2a_1^2$				- · I	_ 2	_ 2		
e^6				+ r				
$e^4\gamma^2$		- 3	· – 9	+ 3	_ 2		+ 1	
$e^2\gamma^4$			+ 1	15	- 5	_ T		
Sum	+4	+213	+14387	+769021	-211658	—30773	-570	-9

202. Arg. l+l'+2iD.

i.	2	ľ	0	-1	-2	-3	-4
ee'	-37	-2662	-110214	-206896	- 4088		r
e^3e'	-16	— 356	– 660	- 149 :	- 393	-19	
ee'3			- 84	+ 87	+ 6		
$ee'\gamma^2$	+ 2	+ 94	+ 1154	+ 740	+ 79	+ 2	
ee'a12		— I		t			
Sum	-51	- 2925	-109804	-206219	— 4396	—72	I

203. Arg. l-l'+2iD.

i	3	2	ı			-2	-3
ee'	+3	+216	+13634	+ 149260	+ 27878	+578	+ 8
e^3e'	+2	+ 74	+ 1177	+ 61	+ 302	+ 74	+ 3
· ee'3			- 13	+ 104	- 54	+ 1	
$ee'\gamma^2$	1	— 7	- 203	- 1549	+ 385	- 16	
ee'a ₁ ²				+ 2			
Sum	+5	+283	+14595	+ 147878	+28511	+637	+11

204. Arg. 2l' + 2iD.

i.	2	Ĭ	0	— I	-2	-3
e'2	+1	— I 2·	-7313	-7602	-107	— I
$e^2e'^2$	- 4	-182	— 260	— 586	- 48	— 1
e' ⁴			+ 2	+ 6		
$e'^2\gamma^2$		+ 5	+ 66	+ 66	+ 4	
Sum	-3	-189	-75°5	-8116	-151	2

205. Arg. $_2F + _2iD$.

i.	3	2	I	0	– I	-2	-3
γ^2		-39	-4193	-409912	<u> </u>	—53	
$e^2\gamma^2$	— I	-42	- 1614	- 849	+ 754	+68	+ 1
$e'^2\gamma^2$			+ 4	+ 1	+ 57		
γ^4		+ 1	+ 54	- 834	+ 48	+ 9	
$\gamma^2a_1{}^2$					– 3		
$e^4\gamma^2$		- 6	+ 4	+ 11	+ 4		
$e^2\gamma^4$		+ I	+ 4	- 31	+ 6	+ I	
Sum	— I	-85	-5741	-411614	-55174	+25	+1

206. Arg. $l + 2i_1 D$.

2i ₁ .	5	3	r	I	-3	-5
ea_1	+1	+29	-8546	+18757	+3180	+ 5
e^3a_1	— I	-3 8	— 127	+ 214	+ 108	+11
ee'^2a_1			+ 6	+ 8	— 13	— I
$e\gamma^2\alpha_1$		+ 7	+ 226	- 425	– 69	— I
Sum		— 2	-8441	+18554	+3206	+ 14

207. Arg. $l' + 2i_1D$.

2 <i>i</i> ₁ ,	5	3	I	I	-3	-5
$e'a_1$	+ 1	+112	+ 17654	+593	- 90	— I
$e^2e'a_1$	+ r	+ 43	+ 599	+ I .	+27	
$e^{\prime 3}a_1$			- 3	+ 3		
$e'\gamma^2\alpha_1$		— 5	- 258	- 3 8	- 3	
Sum	+2	+150	+17992	+ 559	66	

208. Arg. 3l + 2i D.

i.	2	I	0	- I	-2	-3	-4
e^3	+17	+ 983	+36339	-13273	— 1197	—2 96	-8
e^5	+ 5	+ 106	- 95	+ 13	+ 1	— 2	(
$e^{3}e'^{2}$		- 3	8	– 5	_ 2	+ 1	
$e^3\gamma^2$	- I	- 26	— I12	+ 72	+ 11	+ 4	
Sum	+21	+1060	+36124	-13193	— I 187	-293	- 9

209. Arg. 2l+l'+2iD.

i.	2	1	0	r	-2	-3	-4
e^2e'	— 5	— 2 68	-7700	-8664	-2762	-85	2
e^4e'	-2	- 33	- 45		- 6	- 8	— ī
$e^{2}e^{\prime 3}$			- 6		+ 2		
$e^2e'\gamma^2$		+ 11	+ 92	+ 26	+ 23	+ 2	
Sum	—7	-290	- 7659	-8638	-2743	. — 91	- 3

210. Arg. 2l - l' + 2iD.

i.	2	ī	0	- I	-2	-3
e^2e'	+26	+1112	+9833	—2601	+352	+12
e^4e'	+ 8	+ 92	- 13	+ 30	+ 3	+ 2
$e^2e'^3$	**	_ I	+ 6	- II	+ 1	
$e^2e'\gamma^2$	— I	- 21, ,	– 111	+ 85	+ 4	
Sum	+33	+1182	+9715	+ 2497	+360	+14

211. Arg. l+2l'+2iD.

<i>i.</i>	1	o	-1	-2	-3
ee'2	– I	-1170	—7445	-293	6
$e^3e'^2$ $ee'^2\gamma^2$	13	– 9	— 10	- 24	—2
$ee'^2\gamma^2$		+ 10	+ 24	+ 5	
Sum	-14	-1169	-7431	-312	-8

212. Arg. l-2l'+2iD.

i.	2	7	0	-1	-2
ee'2	+19	+719	+2615	+2552	+18
$e^{3}e^{'2}$	+ 6	+ 49	+ 3	+ 4	+ 5
ee'2y2	- 1	– 9	- 32	- 17	- r
Sum	+24	+759	+ 2586	+2539	+22

ROYAL ASTRON. Soc., Vol. LVII.

213. Arg. 3l' + 2iD.

i.	0	-1	-2
e' ³	– 98	-326	- 7
$e^2e'^3$	- 6	— 21	- 3
$e^{\prime 3}\gamma^2$	+ I	+ 2	
Sum	- 103	— 345	-10

214. Arg. l + 2F + 2iD.

i.	2	1,71,3	0	-1	-2	-3
$e\gamma^2$	-11	-809	- 45068	-242	-309	-1
$e^3\gamma^2$	- 7	– 196	+ 59	+ 63	+ 4	+1
$ee'^2\gamma^2$		+ 1	+ I		+ 2	
$e\gamma^4$		+ 12	- 92		+ 2	
Sum	-18	-992	-45100	- 179	—301	

215. Arg. l-2F+2iD.

i.	3	2 .	1	O	-1	-2	-3
$e\gamma^2$	I	- 55	— 6331	+39316	+9367	+ 165	+2
$e^3\gamma^2$		 11	+ 10	— 239	+ 24	+ 40	+1
$ee'^2\gamma^2$			+ 10	- 22	- 4		
$e\gamma^4$	1 3	- r	— 71	+ 477	— 2I	- 3	
Sum	— r	 67	-6382	+39532	+9366	+202	+3

216. Arg. l' + 2F + 2iD.

i.	2	1	O	-1	-2
$e'\gamma^2$	- - I	+47	+392	-2195	-15
$e^2e'\gamma^2$	ŀΙ	+20	+ 31	+ 36	+ 7
$e'^3\gamma^2$				+ 2	
$e'\gamma^4$		— i	- 7	+ 2	+ 1
Sum	+2	+66	+416	-2155	- 7

217. Arg. l' - 2F + 2iD.

i.	. × I	0	-1	-2
$e'\gamma^2$	-1449	+59	+304	+ 6
$e^2e'\gamma^2$	+ 4	+24	+ 83	+ 5
$e^{\prime 3}\gamma^2$				
$e'\gamma^4$	+ 3	- 7	- 3	
Sum	-1442	+76	+384	+11

218. Arg. $2l + 2i_1D$.

2i ₁ .	3	** I	-1	-3	-5	-7
$e^2\alpha_1$	- 2	-595	+1773	+1228	+57	+1
e^4a_1	-3	- 6	+ 10	+ 3	+ 3	
$e^2 \gamma^2 a_1$	+1	+ 17	- 38	<u> </u>	— r	
Sum	-4	-584	+1745	+1221	+59	+1

219. Arg. $l+l'+2i_1D$.

2i ₁ .	3	1	-1	-3	-5
ee'a1	+19	+1244	+143	+230	1.4
$e^3e'a_1$	+ 5	+ 41	— 2	+ 7	+1
$ee'\gamma^2a_1$	– 1	— 20	- 4	- 4	
Sum	+23	+1265	+137	+233	+1

220. Arg. $l-l'+2i_1D$.

2i ₁ .	3	1 × +	— I	-3 .	-5
ee'a1	_ + 6	—122	-1062	-274	-4
$e^3e'a_1$	-3	- 5	— 51	7	-1
$ee'\gamma^2\alpha_1$		+ 5	+ 26	+ 5	+2
Sum	+3	-122	-1087	-276	-3

221. Arg. ${}_{2}F + 2i_{1}D$.

$2i_1$.	3	I	– I	-3	5
$\gamma^2 \alpha_1$	+1	+ 254	+ 584	+ 258	+1
$=e^2\gamma^2a_1$	+3	+ 6		- 4	
$\gamma^4 a_1$		– 6	 2	— 1	
Sum	+4	+254	+ 582	+253	+ 1

222. Arg. 4l + 2iD.

i.	2	I	0	- I	-2	-3	-4
e^4	+ 2	+72	+1953	- 957	+1	-14	-4
e^6			- 5				
$e^4\gamma^2$		— 2	- 10	+ 5	+2		
Sum	+2	+70	+ 1938	-952	+3	-14	-4

223. Arg. 2l + 2F + 2iD.

i.	2	I	0	– I	-2	-3
$e^2\gamma^2$	-2	-105	- 4005	+558	6	-3
$e^4\gamma^2$	 1	- 20	+ 15	+ I	+ r	
$e^2\gamma^4$		+ 2	- 6	- 2		
Sum	-3	-123	-3996	+557	- 5	-3

224. Arg. 2l-2F+2iD.

i.	2	I	0	-1	-2	-3
$e^2\gamma^2$	10	-45 °	-1352	+537	+171	+4
$e^4\gamma^2$	- 1	- 4	+ 80	- 3	+ 3	+ 1
$e^2\gamma^4$		— 5	— 26	+ 4	— т	
Sum	I I	-459	-1298	+538	+173	+5

225. Arg. 4F + 2iD.

i.	I	O	···· I
γ^4	+ 8	+407	+77
$e^2\gamma^4$	+ 6	+ 11	- 3
Sum	+14	+418	÷74

226. Arg. F+2iD.

i.	3	2 -	I	0	 I	-2	-3
γ	+ 5	+ 633	+ 94476	+18517283	-618446	-2897	. - 19
γ^3		- 13	– 876	, 0	- 950	+ 3	
γe^2	+ 8.	+ 527	+ 24010	- 55812	- 4857	– 793	-16
$\gamma e'^2$		- 2	- 92	, °	+ 588	+ 11	
γa_1^2			+ 3	0	- 9		
γ^5			I	- 9	+ 4		
$\gamma^3 e^2$		- 9	— 121	0	2	+ 7	
$\gamma^3 e'^2$			+ 1	0			
γe⁴	+ 2	+ 58	— 122	. + 18	+ 11	- 8	— 2
$\gamma e^3 e'^2$		- 2	– 16	0	+ 3	+ 2	
Sum	+15	+1192	-117262	+18461480	-623658	-3675	—37

227. Arg. F + l + 2iD.

i.	3	2	I	Ö	-1	- 2	-3 -4	4
γe	+1	+140	+13019	+1014212	-167571	-6536	-8o -1	r
$\gamma^3 e$		· - 3	- 137	- 26	+ 590	, + . 5		,
γe^3	+1	+ 72	+ 2285	- 4001	+ 357	– 66	-r5	
$\gamma ee'^2$		— I	- 19	- 6	+ 49	+ ,16		
yea12	10.00		+ 1	99 M 9	— 1			
γe^5		+ 6	- 14	+ 4	+ 1	1		
$\gamma^3 e^3$		— т	- 13	- 6	— 2	+ 1		
$\gamma^5 e$		4.		. + 3				
Sum	+2	+213	+15122	+1010180	-166577	-6580	-95 -r	[

228. Arg. F - l + 2iD.

i.	3	2			I		0	_	- I		-2	-3
γe	+28	+260	00	+20	01433	 9	97081	-3	3111		-401	-4
$\gamma^3 e$	- I	- 4	ļI	-	997	-	3755	+	213		+ 4	
γe^3	+14	+ 45	52	Ψ.	884	+	1129	-	504		- 79	-2
yee'2		_	5		73	+	7	+	4.4		+ 1	
yea ₁ ²				+	2				I	1		
γe^5	+ 1	-	2	+	1	+	2	+	2		_ r	
γ^3e^3	£		4:	:-+	3	4	22	 	5	1	+ 1	. 10.
$\gamma^5 e$).	4.		_	19	+	3			3-
Sum	+42	+300	00	+19	9485	- 9	99695	- 3.	3359		— 475	6

229. A	m Arg.	F_{+}	l' +	2iD.
--------	--------	---------	------	------

i	2	I	0	– 1	-2	-3
$\gamma e'$	-13	— 1002	-6125	-29443	-341	- 4
$\gamma^3 e'$		+ 19	+ 177	– 16		
$\gamma e^2 e'$	-11	– 285	— 550	- 253	- 77	-2
$\gamma e'^3$			+ 6	+ 23		
$\gamma e' a_1^2$		— І				
Sum	-24	—1 269	-6492	— 29689	-418	— 6

230. Arg. F - l' + 2iD.

i.	3	2	I	0	I	-2	-3
γe'	+1	+ 91	+6844	+4794	+12073	+ 89	+1
$\gamma^3 e'$		— 2	— 52	— 158	+ 18	– 1	
$\gamma e^2 e'$	+1	+ 65	+1215	+ 232	+ 49	+ 25	+1
$\gamma e'^3$			- 6	5			
γe'α ₁ ²							
Sum	+2	+154	+8001	+4863	+12140	+113	+2

231. Arg. F 2i₁D.

$2i_1$.	3	1	– 1	-3	-5
$\gamma \alpha_1$	+ 5	-5418	+4810	+320	+1
$\gamma^3 a_1$	+ 2	+ 136	 89	+ 6	
$\gamma e^2 a_1$	-37	- 74	+ 73	+ 26	+2
$\gamma e'^2 a_1$	+ 1	– 1	+ 1	2	
Sum	-29	-5357	+4795	+350	+3

232. Arg. $_3F + 2iD$.

i.	2	I	o	- I	-2	-3
γ^3	— I	— 92	-5978	-2277	-65	I
γ ⁵		+ 1	- 10	+ 2		
$\gamma^3 e^2$	-2	— 52	— 311	+ 87	† 2	
$\gamma^3 e'^2$				+ 3		
Sum	-3	-143	-6299	-2185	-63	I

233. Arg. F + 2l + 2iD.

i.	2	1	0	-1	-2	-3	-4
γe^2	+20	+1341	+62261	— 15682	-63 8	-81	-2
$\gamma^3 e^2$		- 15	- 24	+ 65	+ 3	+ 1	
γe⁴	+ 8	+ 200	- 319	+ 54		- I	
$\gamma e^2 e'^2$		- 3	– ₅	— 2			
Sum	+ 28	+1523	+61913	— 15565	-635	-81	-2

234. Arg. F-2l+2iD.

i.	4	3	2	ı	0	- 1	-2 -3
γe^2	+1	+53	+2451	– 1630	-31504	-2136	-42 -I
$\gamma^3 e^2$		- I	— 25	_ 2	- 314	+ 30	+ 1
ye4		+ 8	- 10	+ 6	+ 46	— 44	- 7
$\gamma e^2 e'^2$			- 3	+ = 2	+ 9	+ 4	
Sum	+1	+60	+2413	-1624	-31763	-2146	-48 - 1

235. Arg. F + l + l' + 2iD.

	100	0	- r	-2	-3
-4	-203	-534 0	— 7502	-593	-13
	+ 4	+ 61	+ 22		
-2	- 40	- 49	+ 14	7	— 2
		- 3	+ 3		
- 6	-239	-5331	-7463	— 600	-15
	-4 -2 -6	+ 4 -2 - 40	+ 4 + 61 -2 - 40 - 49 - 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

236. Arg. F-l-l'+2iD.

i.	3	2	I	•	-1	-2
γee'	+5	+303	+8975	+5118	+821	+14
$\gamma^3 ee'$		- 5	– 41	- 27	4	
$\gamma e^3 e'$	+2	+ 43	- 28	+ 1	+ 9	+ 3
γee' ³			- 4	+ 4		
Sum	+7	+341	+8902	+5096	+826	+17

237. Arg.	F+	l-l'	+ 2	iD.
-----------	----	------	-----	-----

i.	2	I	0	I	-2	-3
yee'	+21	+1022	+6848	+769	+170	+3
$\gamma^3 ee'$		- 9	- 80	+ 17		
$\gamma e^3 e'$	+ 9	+ 129	- 16	+ 11	+ 1	
yee'3	-	<u> —</u> п	+ 4	- 2		
Sum	+30	+1141	+6756	+795	+171	+3

238. Arg. F-l+l'+2iD.

i.	3	2	I	o	– 1	-2	-3
yee'	— I	- 44	-1302	-5707	— 1762	-50	—ı
$\gamma^3 ee'$		+ 1	<u> </u>	+ 42	+ 17	+ 1	
$\gamma e^3 e'$		 8	— 11	+ 15	– 29	- 9	
yee'3			+ 2	- 5	+ 1		
Sum	— I	-51	-1323	- 5655	— 1773	-58	- 1

239. Arg. F + 2l' + 2iD.

i.	1	0	– 1	-2
γe' 2	— I	-4 9	-1085	-25
$\gamma^3 e'^2$		+ 3	— I	
$\gamma e^2 e'^2$	-15	-10	<u> </u>	- 4
Sum	-16	- 56	- 1096	-29

240. Arg. F-2l'+2iD.

i.	2	I	o	– I	-2
$\gamma e'^2$	+ 8	+343	+16	+126	
$\gamma^3 e^{'2}$		– 3	— I	+ 1	
$\gamma e^2 e'^2$	+ 5	+ 47	+ 4	+ 9	+1
um	+13	+387	+19	+136	+1

241. Arg. $F + l + 2i_1D$.

2i ₁ ,	3	· · · · ·	– I	-3	-5
yea ₁	-3	-678	+439	+306	+10
$\gamma^3 e a_1$	+1	+ 19	- 18	— 2	+ 1
γe³a ₁	-5	7	+ 8	+ 2	+ 1
Sum	-7	—666	+429	+306	+12

242. Arg. $F-l+2i_1D$.

2i ₁ .	5	3	1,	-1	-3
yea ₁	 1	-204	+ 136	+ 587	+33
$\gamma^3 e a_1$		+ 4	+ 6	+ 1	12 1 19 19
$\gamma e^3 a_1$	— I	- 8	- 3	+ 3	+ 2
Sum	-2	-208	+139	+591	- +35

243. Arg. $F + l' + 2i_1D$.

2i ₁ .	3	1	- I	-3	
ye'a	+ 9	+795	+14	+23	×- ×- ;
$\gamma^3 e' a_1$		- 12	- I	+ 1	
$\gamma e^2 e' u_1$	+ 5	+ 21	*	+ 2	
Sum	+14	+804	+13	+26	+ E,

244. Arg. $F-l'+2i_1D$.

2 <i>i</i> ₁ ,	3	*	* 1*	-2	-3	
$\gamma e' \alpha_1$	+2	÷. +	-20	-788	-32	***
$\gamma^3 e' a_1$			+ 2	+ 10		
$\gamma e^2 e' a_1$	-2			- 28	- 2	
Sum	11 11 11 11	880	-18	-806	-34	

Mr. Ernest W. Brown, Theory of the

245. Arg. 3F + l + 2iD.

i,	I	0	I	-2	-3
$\gamma^3 e$	-23	- 992	-343	+6	- 1
$\gamma^5 e$		_ 2	+ I		
γ^3e^3	– 8	— 27	+ 13	+ 1	
Sum	-31	-1021	-329	+7	<u>-1</u>

246. Arg. 3F-l+2iD.

i.	2	1	0	— I	2
$\gamma^3 e$	-5	-234	-2808	+290	+5
$\gamma^5 e$	·	+ 1	- 39	+ 3	
$\gamma^3 e^3$	-2	— 11	+ 33	— I	
Sum	-7	- 244	-2814	+ 292	+5

247. Arg. F + 3l + 2iD.

i.	2	I	О .	– 1	-2	3	- 4
γe^3	+ 2	+124	+4015	-1528	+8	-7	— т
$\gamma^3 e^3$		— 2	- 4	+ 6			
γe^5	+1	+ 17	- 27	+ 6	+ 1		
Sum	+3	+139	+3984	-1516	+9	-7	I

248. Arg. F - 3l + 2iD.

i	4	3	2	τ	0	- I	-2
γe^3	+1	+32	+22	+ 253	-1570	-146	-4
$\gamma^3 e^3$		I	I	+ 2	- 19	+ 3	
γe^5					+ 4	- 4	
Sum	+1	+31	+21	+255	-1585	-I47	4

249. Arg. 2iD.

<i>i.</i>	3	2	I	0
I	+11	+1568	+245748	+34226987
e^2	+ 16	+ 985	+ 37988	0
e'2	-	— 5	- 232	+ 11
k^2		<u> </u>	- 924	0
a ₁ ²			+ 4	
e^4	+ 5	+ 86	- 40	+ 1
$e^2e'^2$		- 5	- 25	Q
$e^2\gamma^2$		- 10	— 187	+ 3
$e'^2\gamma^2$				Ó
γ^4			+ 1	- <u> </u>
Sum	+32	+ 2607	+282333	+ 34227001

250. Arg. l+2iD.

i.	3	2	1	ò	· -1	-2	3	-4
e	+3	+305	+27534	+1866057	+345043	+5396	+61	+1
e^3	+3	+126	+ 3493	– 681	- 128	+ 678	+25	+1
ee'2		_ 2	- 39	<u> </u>	118	- 11		
$e\gamma^2$		- 3	- 104	+ 32	— 1687	- 47	- 2	
ea_1^2			+ 1		+ 4		- **	
e^5	+ 1	+ 10	- 6			- · I	+ 2	
$e^3\gamma^2$	7	- 3	- 18	<u> </u>		- 7		
$e\gamma^4$				+ 13	+ 3			
Sum	+7	+433	+ 30861	+ 1865398	+343117	+6008	+86	+2

251. Arg. l' + 2iD.

i.	2	I	. 0	-I	-2	-3
e'	-33	-2569	-3924	+17415	+223	+2
e^2e'	20	— 451	— 127	+ 1874	+120	+4
e'^3	\$1.7		+ 2	- 14	- 2	14
$e'\gamma^2$		+ 17	+ 47	— 73	- ,2	
$e'a_1^2$		·- I				
Sum	—53	-3004	-4002	+ 19202	+339	+6.

126

252. Arg. 2i₁D.

2i,.	5	3	I
 a_1	+ r	+81	-9800
e^2a_1		-62	- 192
e'^2a_1		+ 1	- 2
$\gamma^2 a_1$	1	+ 3	+ 242
 Sum	+1	+23	-9752

253. Arg. 2l + 2iD.

i.	3	2	I	0	I	-2	-3	-4
e^2		+41	+2546	+101788	-3052	+3760	+ 98	+1
e^4	+ 1	+13	+ 299	- 125	+ 1	+ 4	+ 11	+1
$e^{2}e'^{2}$			- 3	— 9		- 5		
$e^{2\gamma^{2}}$			– 9	+ 3	+ 12	– 37		
Sum	+ 1	+ 54	+2833	+101657	-3039	+3722	+109	+2

254. Arg. l+l'+2iD.

i.	2	I	0	- I	- 2	-3
ee'	- 8	- 426	-9536	+14515	+619	+11
e^3e'	- 4	– 61	– 56	+ 7	+ 63	+ 4
ee'3			– 7	- 5	— 2	
ee'γ²		+ 2	+ 97	- 62	– 6 ,	
Sum	— I 2	- 485	- 9502	+ 14455	+674	+15

255. Arg. l-l'+2iD.

i.	3	2	I	0	I	· 2	3
ee'	+ I	+45	+2122	+11654	-2214	- 90	-3
e^3e'		+15	+ 195	+ 5	 24	— I2	2
ee'^3			- 4	+ 7	+ 4		
$ee'\gamma^2$			- 8	- 124	26		
Sum	+1	+60	+2305	+11542	- 2260	-102	-5

256. Arg. 2l' + 2iD.

i.	r	0	- I	-2
e'2	– 2	-84	+853	+19
$e^{2}e'^{2}$	- 26	- 4	+ 71	+ 9
$e^2\gamma^2$		+ 2	- 4	
Sum	-28	86	+920	+28

257. Arg. 2F+2iD.

i.	1	o	I	-2	-3
γ²	+ 9	+667	-1071	+41	+ 1
$e^2\gamma^2$	-17	- 788	+ 16	– 9	
$e'^2\gamma^2$			+ 2		
γ^4	- I	- 3	+ 1	– 1	
Sum	- 9	— 124	 1052	+31	. + r

258. Arg. $l + 2i_1D$.

2i ₁ .	3	1	-r	-3	-5
ea ₁	+2	-1103	+ 120	-378	— ī
$e^3\alpha_1$	-7	– 16	+ 2	— 15	-2
$e\gamma^2a_1$	+2	+ 29	- 4	+ 8	
Sum	-3	-1090	+118	-385	-3

259. Arg. $l' + 2i_1D$.

2i.	3	1	r	-3
$e'a_1$	+ 20	+1464	-40	+10
$e^2e'a_1$	+ 7	+ 50		- 3
$e'\gamma^2a_1$		22	+ 3	
Sum	+27	+1492	-37	+ 7

260. Arg. 3l + 2iD.

i.	2	I	o	I	2	-3	-4
e^3	+5	+219	+6231	-1192	+76	+47	+2
f e ⁵	+2	+ 24	- 15	+ 1		+ 1	
$e^3\gamma^2$			– I	+ 4	- 2	— 2	
Sum	+7	+243	+6215	-1187	+74	+46	+ 2

261. Arg. l + 2F + 2iD.

i.	I	0	- I	-2	-3
$e\gamma^2$	+ r	+63	-847	+15	+ 2
$e^3\gamma^2$		—73	+ 11	· — 1	
$e\gamma^4$			+ 3		
Sum	+1	-10	-833	+14	+2

262. Arg. l-2F+2iD.

<i>i</i> .	2	ī	0	- I	-2
$e\gamma^2$	-2	-476	- 7063	- 88	— I
$e^3\gamma^2$	- 3	— I	+ 29	— 24	
$e\gamma^4$		- 4	- 102		
Sum	-5	-4 81	-7136	-112	I

Section (v). The Final Values of the Coefficients in Longitude, Latitude, and Parallax.

263. The following tables, giving the final values of the coefficients, are arranged, first, according to the order and composition of the principal characteristics; second, according to the signs of the multiples of l, l', F; and third, according to multiples of l in descending order.

In the first column, headed "P. C.," is given the principal characteristic. In the second, third, fourth, and fifth columns, headed "l," "l," "F," "D," are given the multiples of those arguments (Delaunay's notation) to which the coefficients in the last column correspond. The characteristic is understood to belong to all coefficients down to the next printed characteristic; a similar remark applies to the multiples of l, l, F.

As stated earlier, the system of axes used is the same as that in which Delaunay expressed his final results.

These coefficients are all definitive for the corresponding arguments, with the following exceptions:—

- (a) Small changes due to possible changes in the values of the arbitrary constants.
- (β) Small additions due to the terms arising from the perturbations noted in (a), (b), (c) of § 4, Chap. I. These are very minute and are easily obtained. They are, however, more simply treated by the method of the variation of arbitrary constants, and will therefore be given with the treatment of the planetary inequalities.

The results have been discussed, and a comparison has been made with those of Hansen elsewhere.*

^{*} E. W. Brown, "The Final Values of the Coefficients in the New Lunar Theory," Monthly Notices, January 1905.

264. Longitude. Coefficients of Sines.

P. C.	l.	l'.	F.	D.	-		Coeff.
I	0	0	0	8		+	0,001
				6		+	127
				4	1	+	13.902
				2	1	+	2369.899
e	I	0	0	6		+	.023
				4	1	+	1.979
				2	- 11	+	191'954
				0	1	+2	2639.580
				2	İ		4586.438
				-4	-	_	38 428
				- 6		_	. 393
10				- 8			·004
e'	0	I	0	6		_	·004
				4		_	.289
				2		_	24.45 I
				0		_	668.944
				-2		_	165.351
				-4		-	1.879
				- 6			' 024
a_1	0	0	0	5		+	' 004
				3		+	.402
				I			124.785
e^2	2	0	0	6		+	.004
				4		+	.513
	1			2	-	+	14.387
				0		+	769.021
				— 2		_	211.658
				-4			30.773
				-6			.570
				— 8			.000
ee'	I	I	0			_	.021
				2	i		2.022
				0			109.804
	İ			-2			206.519
	Ĭ			-4			4.396
				- 6			.072
				-8	ĺ	_	,001

. C.	l.	ľ.	F.	D.	Coeff.
e'	ı -	– I	0	6	+ 0.002
				4	+ .583
				2	+ 14.595
				0	+ 147.878
				-2	+ 28.511
				-4	+ '637
				- 6	+ ,011
2	0	2	0	4	003
				2	189
				0	- 7.505
				-2	- 8.119
				-4	121
				- 6	- '002
2	0	0	2	6	001
				4	082
				2	— 5.741
				0	-411.614
				-2	- 55.174
				-4	+ '025
				- 6	+ .001
a_1	I	0	0	3	- '002
				1	- 8.441
				— I	+ 18.554
				-3	+ 3,506
				-5	+ '014
α_1	0	I	0	5	+ '002
				3	+ .120
				1	+ 17.992
				 1	+ '559
				-3	-· ·o66
				- 5	001

Longitude. Coefficients of Sines (continued).

P. C.	l.	ľ.	F.	D.	Coeff.
e^3	3	0	0	4	+ 0.051
				2	+ 1.060
				0	+36.154
				-2	-13.193
				- 4	- 1.184
ř				- 6	293
				- 8	000
e^2e'	2	I	0	4	- '007
				2	- '290
				0	- 7.65 9
				-2	- 8.638
				- 4	- 2.743
				- 6	091
				—8	- '003
	2 -	- I	0	4	+ •033
				2	+ 1.182
				0	+ 9.715
				2	– 2 °497
				- 4	+ '360
				- 6	+ '014
ee'2	I	2	0	2	- '014
				0	- 1.169
				_2	- 7.431
				-4	- '312
				<u>-6</u>	- 008
	1 -	-2	0	4	+ '024
- 1				2	+ '759
				0	+ 2.586
				-2	+ 2.539
				-4	+ *022
e'3	۰	3	0	0	- '103
		3		- 2	- '345
				-4	- ,010
			Total Land	4	010

P. C.	l.	l	'. F.	D.	Coeff.
eγ ²	1	,0	, 2	4	- o.o18
				2	- 1992
				0.	-45'100
				-2	- '179
				- 4	- ·301
	1	0	-2	6	001
				4	- '067
				2	- 6.382
				0	+39.532
				-2	+ 9.366
				- 4	+ '202
	,	1		- 6	+ '003
γ2	0	1	2	4	+ *002
				2	+ .066
	,,			0	+ '416
			,	- 2	- 2.155
			· .	- 4	- '007
	0	I	 2	2	- 1'442
				0	+ .076
				— 2	+ '384
				-4	+ ,011
a_1	2	0	0	3	- '004
				I	- '584
				_ r	+ 1'745
				-3	+ 1.551
				-5	+ '059
				-7	+ ,001
'a ₁	1	1	ю	3	+ '023
				I	+ 1.265
				- i	+ '137
				-3	+ '233
				- 5	+ .001

Longitude. Coefficients of Sines (continued).

P. C.	l.	l'.	F.	D,	Coeff.
$ee'a_1$	1	— I	0	3	+0.003
				r	- '122
				I	-1.084
				-3	- '276
				- 5	003
$^{\prime 2}a_{1}$	0	2	0	3	- '002
				1	039
				 1	- '042
				-3	009
$\gamma^2 a_1$	0	0	2	3	+ '004
				I	+ '254
				- 1	+ '582
				-3	+ '253
				- 5	+ ,001
e^4	4	0	0	4	+ '002
				2	+ '070
				0	+1.938
				2	- '952
				- 4	+ .003
				-6	- '014
				-8	- '004
e^3e'	3	1	0	2	- '025
				0	225
				2	- '483
				- 4	100
				- 6	039
				-8	001
	3	– I	0	4	+ .003
				2	+ .088
				0	+ '682
				- 2	183
				-4	- '029
				-6	+ .002

P. C.	l.	ľ.	F.	D.	Coeff.
$e^2e^{\prime2}$	2	2	0	0	-o"o67
				- 2	- '298
				-4	191
				— 6	008
	2 -	- 2	0	4	+ .003
				2	+ .065
				0	+ '197
			•	2	+ '255
				-4	+ .036
				- 6	+ .001
ee'3	I	3	0	0	018
1				-2	- '250
				-4	019
	1 .	- 3	0	4	+ .001
				2	+ '032
i				0	+ .021
				-2	+ .003
e'^4	0	4	0	0	001
				- 2	013
$3^2\gamma^2$	2	0	2	4	003
i i				2	- 123
				0	-3.996
į				-2	+ '557
				-4	002
1				- 6	003
	2	0	2	4	011
				2	- '459
				0	-1.398
				2	+ '538
				-4	+ '173
				-6	+ .002

Longitude. Coefficients of Sines (continued).

P. C.	l.	l '.	F.	D.	Coeff.
ee' y ²	1	1	2	2.	+0.012
				0	+ '263
				—2	+ .050
110		. 33		- 4	- '024
.13				-6	- '001
2. 1	1	1 -	-2	4	+ '002
	£ .			2	+ .083
	100			0	083
***				-2	+ '427
				-4	+ .010
. *	ı	— I	2	4	002
		. %	2	2	064
2 7 -				0	- '304
				-2	+ '002
.= 4				-4	+ '018
t	ı	-r	- 2	4	- '00'
				2	- '372
*			45,	0	+ '083
				— 2	- '065
47.4				- 4	- '002
3'2 y2	0	2	2	0	+ .007
				-2	066
74 , m				-4	002
	0	2 -	-2	2	025
*				. 0	- '002
4.7			*	-2	+ '016
γ^4	0	0	4	2	+ .017
-			-	- 0	+ .418
				-2	+ '074
e^3a_1	3	0	0	Ι,	- '042
	3	-		— I	+ .130
4			· ·	-3	+ '04
]				-5	+ '010
				3	+ .001

P C.	l.	<i>l</i> .	F.	D.	Coeff.
e²e′a ₁	2	1	0	3	+0.003
				1	+ '092
				- I	+ .006
500				-3	+ '084
				- 5	+ .006
	2 .	I	0	1	— '014
				-ı	- '352
1	1			-3	+ '042
****	- 1			- 5	003
e^{2a_1}	ı	2	0	İ	008
. 5.4				-r	- '002
	- 83	100		-3	J. '012
	1 -	-2	0	- r	+ .003
	0.7			3	+ .001
$e^{/3}a_1$	0	3	0	1	001
				r	- '002
$2\gamma^2 a_1$	1	0	2	1	+ '045
				I	+ '024
				-3	+ '030
				-5	+ :002
	I	0 -	- 2	3	010
				1	- ·04I
				<u> 1</u>	016
		-1		-3	011
$e'\gamma^2a_1$	0	1	2	3	001
				1	- '035
				-ı	+ :013
	* *			-3	+ '020
	0	1	-2	3	+ .000
	***			1	+ :001
				-1	- '002

Longitude. Coefficients of Sines (continued).

P. C.	l.	ľ.	F.	D.	Coeff.
e^5	5	0	0	2	+0.002
				0	+ .113
				-2	- .069
				-4	+ '004
e^4e'	4	1	0	2	- '002
ì				0	040
				-2	030
				-4	.000
				- 6	— ·oo2
				- 8	001
	4 ·	— 1	0	2	+ '007
				0	+ .048
				-2	010
				-4	ooı
$e^3e'^2$	3	2	0	0	003
				-2	019
				-4	006
				- 6	003
	3 .	-2	0	2	+ .002
				0	+ .019
				-2	+ .011
and the second				- 4	+ '004
				- 6	+ .001
$e^{2}e^{^{i}3}$	2	3	0	0	oot
				-2	010
				- 4	008
				- 6	- ,001
	2 -	-3	0	2	+ .003
				0	+ '004
				-2	+ .001
$e^3\gamma^2$	3	o	2	4	003
				2	011
				0	330
				-2	+ '092

P. C.	l.	l'.	F.	D.	Coeff.
$e^3\gamma^2$	3	0	<u>-2</u>	4	-0.001
				2	033
				0	022
				-2	- '005
			,	-4	+ .000
				- 6	+ .003
$^2e'\gamma^2$	2	r	2	2	+ '002
				0	+ '043
				-2	+ .028
	2	1	-2	2	+ .000
				0	+ .026
				- 2	+ '022
				-4	+ .019
				- 6	+ .001
	2	— r	2	2	— ·009
				0	— .o≥3
				-2	+ '004
	2	— r	2	4	001
				2	— '029
				0	- '024
				— 2	.000
				- 4	002
$e'^2\gamma^2$	I	2	2	0	+ .003
	man comment			-2	+ '004
				- 4	001
	ſ	2	-2	2	- '002
				0	.000
				-2	+ .012
				- 4	+ .001
	ı	<u>-2</u>	2	2	003
				0	002
				-2	+ '007
				- 4	001

Longitude. Coefficients of Sines (concluded).

P. C.	l,	V.	F.	D.	Coeff.
e'2y2	Ι.	, 2 ·	- 2	4	-0,001
				2	- '016
		2		0	*000
			,	-2	- '005
1372	0	3	2	-2	- '002
	0	3 .	-2	-2	+ '001
ey4	I	0	4	2	+ '003
				0	+ .000
				-2	+ .000
	1	0	-4	4	001
				2	+ .001
.,			18.0	0	- 080
				-2	010
'γ4	0	1	4	o	001
				-2	+ .003
	٥	ī	-4	2	+ .003
				. 0	*000
				- 2	- '001
⁴ a ₁	4	0	0	1	003
				I	+ .010
				-3	+ '002
				-5	+ .001
3e'a1	3	r	0	I	+ .004
1313				-1	001
* *				-3	+ .003
				-5	+ '002
20	3	<u> </u>	0	1	- '002
* * .				— r	- '023
***				-3	+ '007
$^{2}\gamma^{2}a_{1}$	2	0	2	1	+ .006
				—r	003

P. C.	l.	ľ.	F.	D.	Coeff.
$e^2\gamma^2a_1$	2	o.	-2	3	-0.001
				İ	- ,001
*				-1	+ .001
				-3	- '003
$ee'\gamma^2a_1$	1	Í	2	I	- '006
				— I	+ .001
				-3	+ '002
	İ	i ·	-2	1	- '002
				İ	.000
				-3	001
	I	— т	2	-3	- '001
	1	<u>-1</u>	-2	3	- '001
				1	- '004
				 1	*000
	,			-3	+ .001
$\gamma^4 a_1$	0	0	4	Ι,	- '001
				1	001
e^6	6	0	0	0	+ '007
$e^4\gamma^2$	4	0	2	2	001
				0	- '025
				-2	+ .010
				-4	001
	4	0	-2	2	001
				0	- '007
				-2 .	+ '002
$e^2\gamma^4$	2	0	4	2	+ *001
				0	+ .011
	2	0	-4	0	+ .001
				-2	003
				-4	- '001

265. Latitude. Coefficients of Sines.

P. C.	<i>l</i> .	ľ.	F.	D.		Coeff.
γ	0	0	I	6	+	0.012
				4	+	1.192
				2	+	117.262
				0	+1	8461,480
			-	-2	_	623.658
			-	- 4	-	3.675
				-6		.037
γe	. 1	0	1	6	+	.002
				4	+	.213
				2	+	15.122
				0	+	1010.180
				- 2	_	166.577
	1		-	-4		6.580
	1		-	-6		·095
			-	- 8	-	.001
	- I	0	I	6	+	° 042
				4	+	3.000
				2	+	199.485
				0	_	999.695
			•	- 2		33'3 59
			-	- 4	_	475
			-	– 6	_	.006
$\gamma e'$	0	I	I	4	-	.024
				2	_	1.569
				0	_	6.492
				-2	_	29.689
				- 4	_	·418
			-	-6		•006
	0	– 1	1	6	+	*002
				4	+	154
				2	+	8.001
				0	+	4.863
			-	-2	+	12'140
				-4	+	.113
	1			-6	+	'002

P. C.	l.	ľ.	F.	D.	Coeff.
$\gamma \alpha_1$	0	0	I	3	— o"o29
				1	- 5.357
			-	-т	+ 4.795
			-	-3	+ '350
			-	5	+ .003
γ^3	0	0	3	4	— ·oo3
				2	– '143
				0	– 6.599
			-	-2	– 2·185
			-	-4	− ·∘63
			-	-6	001
e^2	2	0	I	4	+ '028
				2	+ 1.23
				С	+61.913
			-	-2	-15.262
			-	-4	635
				-6	081
			-	-8	- '002
	-2	0	1	8	+ .001
				6	+ .090
				4	+ 2.413
				2	- 1.624
				0	-31.463
			-	-2	– 2·14 6
			-	-4	- '048
			-	-6	001
ee'	1	I	1	4	006
				2	539
				0	- 5.331
			-	-2	- 7.463
			-	-4	600
			-	-6	- '015

Latitude. Coefficients of Sines (continued).

yee!	-r -	1 I 6 4 2 0 -2 -4 1 I 4	+0°007 + °341 +8°902 +5°096 + °826 + °017 + °030
	ı	2 0 -2 -4 1 1 4	+8.902 +5.096 + .826 + .017
	ı	0 -2 -4 I I 4	+5.096 + .826 + .017
	ι -	-2 -4 I I 4	+ .826
	ı	-4 I I 4	+ '017
-	1 -	I I 4	
	1 -		+ '030
		. 2	
			+1.141
		0	+6.756
		-2	+ '795
		-4	+ '171
		-6	+ '003
	- r	ı 1 6	001
		4	- '051
		2	-1.323
		0	-5.655
		2	-1.773
	*	-4	— ·o58
		- 6	001
ye'2	0 :	2 I 2	016
		o	056
		-2	-1.096
		-4	029
	0 -2		+ .013
		2	+ '387
		. 0	+ .010
		2	+ 136
		-4	+ '001
γεα1.	1 0		007
		. 1	 666
		-ı	+ '429
		-3	+ '306
		— 5	+ .015

P. C.	l.	v.	F.	D.	Coeff.
$\gamma e a_1$	- I	0	r	5	-o"oos
				3	- '208
				1	+ 139
				-r	+ '591
				-3	+ .035
ye'a ₁	0	1	1	3	+ '014
				1	+ 804
				– 1	+ '013
				-3	+ '026
	0	<u></u> r	I	I	- '018
				<u></u> r	— ·8o6
				-3	034
$\gamma^3 e$	I	0	3	2	- '031
				0	-1'021
				-2	- 329
				- 4	+ '007
				-6	001
		ံဝ	3	4	007
				2	- '244
				0	-2.814
				-2	+ '292
				-4	+ '005
$\gamma^3 e'$	0	1	3	0	+ .011
				- 2	093
				- 4	006
	0	— I	3	2	- '007
L.				0	+ .001
				-2	+ .026
				-4	+ '003

Latitude. Coefficients of Sines (continued).

P. C.	l.	l'.	F.	D.	Coeff.
γe^3	3	0	I	4	+0.003
				2	+ '139
				0	+3.984
				— 2	-1.216
				-4	+ .009
				- 6	007
				-8	001
	-3	0	I	8	+ .001
				6	+ .031
				4	+ *021
				2	+ '255
				0	-1.285
				-2	- '147
				-4	- '004
e^2e'	2	1	I	2	- '027
				0	- ·644
				2	- ·657
				-4	053
				-6	011
	2	— 1	1	6	+ .000
				4	+ '217
				2	063
				0	+ '314
				2	+ .063
				- 4	+ .001
	2	I	1	4	+ .003
				2	+ '114
	And the state of t			0	+ .809
	A T BALLETON			2	084
	1			- 4	+ '002
				- 6	+ '002

P. C.	l.	l'.	F.	D.	Coeff.
e^2e'	-2	ı	I	6	-0,001
				4	029
				2	+ .056
				0	- '303
				2	- 129
				-4	002
ee'2	I	2	1	0	052
				-2	272
				-4	034
				 6	001
	— I	— 2	I	6	+ .001
				4	+ .023
				2	+ .319
				0	+ .065
				-2	+ .006
	I	-2	I	4	+ .003
				2	+ .054
				0	+ '117
				- 2	+ '107
				-4	+ .004
	— I	2	1	4	001
				2	- 115
A STATE OF THE STA				0	096
				-2	069
				-4	003
$\gamma e'^3$	0	3	I	-2	037
-				-4	001
	0	-3	1	2	+ '014
$\gamma^3 a_1$	0	0	3	1	+ .006
-				— I	+ .032
				-3	+ .010

Latitude. Coefficients of Sines (continued).

P. C.	l.	<i>l</i> '.	F.	D.	Coeff.
$\gamma e^2 a_1$	2	0	I	3	-0,001
				I	— ·o65
				I	+ '112
				-3	+ .039
				5	+ .002
	2	0	I	5	002
				3	049
				1	- '078
				- I	+ '036
				-3	+ '003
$\gamma ee'a_1$	I	I	1	3	+ '002
				1	+ .101
				I	011
				-3	+ '021
	}			- 5	+ .001
	- r	I	1	3	- '013
				1	+ .001
				I	- '034
				-3	- '004
	ı	- I	1	I	000
				I	006
		***		-3	- '013
				- 5	001
	— I	1	1	3	+ '022
				1	— ·o56
				- I	+ '020
				-3	+ '002
$\gamma e'^2 a_1$	0	2	ı	1	— ·002
		_	-	1	- '002
1.1				- 3	+ .001
	0	— 2	ī	3 I	+ '002
	J	~	•	_ i	+ '002

P. C.	l.	ľ.	F.	D.	Coeff.
γ^5	0	0	5	0	+0.002
				-2	+ '002
$\gamma^3 e^2$	2	0	3	2	- '004
				0	- '116
		+ 2+		-2	- '022
				- 4	+ '005
	-2	0	3	4	006
).			2	066
000	1			0	+ '130
				-2	+ .010
				-4	+ .001
$\gamma^3 ee'$	ı	1	3	0	+ '007
				- 2	011
	- r	- I	3	2	- '011
				0	+ '008
				- 2	- '005
	1	- I	3	2	- ,005
				0	006
	1			 2	+ .003
	I	1-	3	2	+ '002
	1			0	009
+ ×				-2	+ '017
$\gamma^3e^{\prime 2}$	0	2	3	-2	003
4.00				-4	001
	0	-2	3	-2	+ .001
ye4	4	0	I	2	+ .011
7-				0	+ '266
				-2	- 135
				-4	+ '007
	-4	0	1	. 6	+ .001
	**	-	•	4	*000
	1			2	+ '025
				0	001
				-2	010

Latitude. Coefficients of Sines (continued).

		14			
P. C.	l,	ľ.	F.	D.	Coeff.
γe ³ e'	3	I	1	2	-0.003
		1		0	063
				-2	026
				-4	+ .001
				_6	- ,001
	-3	_ r	1	6	+ '004
	3			4	+ '002
				2	+ .010
S 1 5					+ '024
3 7 27				-2	+ .002
	3	_1	1	2	+ ,011
***	J	*	*	0	+ '076
				+2	- '019
	-3	I	1	6	- '001
7				4	+ '002
				2	+ '002
				0	- '024
				-2	- ,010
$\gamma e^2 e'^2$	2	2	1	0	005
				-2	- '023
				- 4	- '003
	7 7			-6	001
	-2	2	1	6	+ ,001
	× ×	×		4	+ .013
				2	- '002
11.	+		1	0	+ .003
	2	-2	1	2	+ '007
V 2	* **			0	+ .019
				-2	+ .013
	*			-4	+ ,001
1 4	-2	2	1	4	- 003
3 4 1				1 2	
				2	- '006
				2	— .009 — .009

				+	
P. C.	l.	ľ.	F.	D	Coeff.
γee' ³	I	3	I	0	-0,001
				-2	- '010
				-4	001
	-ı -	-3	I	4	+ .001
	. ×			2	+ .011
				0	+ .001
	1 -	-3	1	2	+ '002
	-			, o ×	+ '002
	-r	3	1	. 0	- '002
				-2	- '002
$\gamma^3 e a_1$	I	0	3	1	+ '002
	*			-1	+ '004
				-3	+ '002
				-5	- '001
	-ı	0	3	3	+ .001
				1	+ .003
** *				-1 ×	001
				-3	- ,001
$\gamma^3 e' a_1$	0	1	3	1	001
				—I	.000
				-3	+ .001
	0 -	- I	3	-1	001
$\gamma e^3 a_1$	3	0	1	1	006
				_ I	+ .013
				-3	+ .003
	-3	0	1	5	- '002
	The state of the s			3	.000
				I	002
	×			-1	+ '002
$e^2e'a_1$. 2	1	1	1	+ .010
	*			-r	001
				-3	+ '003

Latitude. Coefficients of Sines (concluded).

P. C.	l.	ľ.	F.	D.	Coeff.
$\gamma e^2 e' a_1$	- 2	-1	I	3	-0.003
				1	- '002
- Andrews				I	- '003
	2	— I	1	I	- *002
				-1	019
				-3	+ .001
/	2	I	I	3	- '003
* *				1	+ '017
				- r	+ .001
γ ⁵ e	I	0	5	0	+ '002
	100			-2	+ .001
	<u></u> I	0	5	0	+ '003
** ***				-2	+ .001

P. C.	ı.	ľ.	F.	D.	Coeff.
$\gamma^3 e^3$	3	0	3	2	-o'oo1
				0	- '014
	-3	Ó	3	4	- '003
				2	+ '002
				0	+ .001
				-2	+ .001
γe^5	5	0	1	2	+ .001
				0	+ .018
				-2	- '012
				-4	+ .001
	-5	0	1	2	+ .003
				0	006
		18		-2	- '001

266. Parallax. Coefficients of Cosines.

P. C.	7.	ľ.	F.	D.	Coeff.
ı	0	0	0	6	+ 0.032
				-1	+ .2607
				2	+ 28.2333
				0	+3422.7000
e	I	0	0	6	+ '0007
				4	+ '0433
				2	+ 3.0861
				0	+ 186.5398
				<u> </u>	+ 34.3117
				-4	+ .6008
				- 6	+ .0086
				— 8	+ '0002
e'	0	1	0	4	0053
				2	- '3004
and the same				0	- '4002
				-2	+ 1.9202
İ				- 4	+ .0339
				 6	+ .0006
a_1	0	0	0	5	+ .0001
and the same of				3	+ .0023
				1	- '9752
e^2	2	0	0	6	+ .0001
				4	+ .0054
				2	+ '2833
				0	+ 10.1657
			-	-2	- '3039
			-	-4	+ '3722
			-	6	+ .0100
			-	-8	+ .0005

P. C.	l.	ľ.	F.	D.	Coeff.
ee'	1	I	0	4	-0.0013
				2	- 0485
	i			0	- '9502
				-2	+1.4455
				-4	+ .0674
				- 6	+ '0015
	I	- 1	0	6	+ .0001
				4	+ .0000
				2	+ '2305
				0	+1.1242
			-	-2	- '2260
			-	-4	- '0102
			-	- 6	- '0005
2	0	2	0	2	0028
				0	0086
			-	-2	+ '0920
			-	-4	+ '0028
2	0	0	2	2	0009
-				0	- '0124
1			-	-2	- 1052
			-	-4	+ .0031
			-	- 6	+ .0001
αι	τ	0	0	3	0003
,				1	1000
			_	- I	+ .0118
			-	-3	0385
į			-	-5	0003
1	0	1	0	3	+ '0027
				1	+ '1492
			-	- 1	0032
			-	-3	+ '0007

Parallax. Coefficients of Cosines (continued).

P. C.	Z.	ľ.	F.	D.	Coeff.
e^3	3	0	0	4	+0.0007
				2	+ '0243
				0	+ '6215
				2	- '1187
				-4	+ '0074
				-6	+ '0046
				-8	+ '0002
e^2e'	2	1	0	4	0001
				2	- '0051
				0	1039
				2	- '0192
				-4	+ '0324
				-6 .	+ '0017
	2	<u>- 1</u>	0	4	+ '0007
				2	+ '0213
	American Property American			0	+ '1270
				-2	- '0017
				-4	- '0043
				- 6	- '0002
ee'^2	I	2	0	2	+ .0001
	THE PERSON NAMED IN COLUMN			0	- '0106
				2	+ '0485
	The state of the s			-4	+ '0044
				-6	+ '0002
	ı	2	0	4	+ .0002
				2	+ '0112
				0	+ .0196
				-2	- '0213
				-4	- '0003
e' ³	0	3	0	0	- '0002
				-2	+ '0036
				- 4	+ '0002

P. C.	l.	ľ.	F.	D.	Coeff.
$e\gamma^2$	r	0	2	2	+0,0001
				. 0	0010
				-2	- '0833
				-4	+ '0014
	15			- 6	+ '0002
	ı	0	2	4	- '0005
				2	- '0481
				0	- '7136
				2	- '0112
				- 4	- ,0001
$e'\gamma^2$	0	1	2	0	+ .0013
	1			2	0066
				-4	+ '0005
	0	I	- 2	4	0001
				2	+ '0014
				0	+ '0017
				<u> </u>	+ .0001
$e^2\alpha_1$	2	0	0	1	- ,0100
				— I	+ '0155
				-3	0088
				- 5	- '.0008
ee'a ₁	1	1	0	3	+ .0003
				I	+ .0164
				I	.0000
				-3	- '0025
	1 .	— I	0	I	- '0014
				— I	.0000
			-	-3	+ .0036
e'^2a_1	0	2	0	I	0003
			-	I	+ .0003
•			-	-3	+ .0001
$\gamma^2\alpha_1$	0	0	2	I	+ .0001
			-	- I	+ '0071
	-		-	-3	- '0017

Parallax. Coefficients of Cosines (continued).

P. C.	l.	ľ.	F.	D.	Coeff.
e ¹	4	0	0	4	+0,0001
				2	+ .0018
				0	+ '0401
				-2	- '0130
				-4	+ .0001
.,,				-6	+ '0002
				-8	+ .0001
e^3e'	3	1	0	2	0006
				0	- '0097
				-2	- '0045
				-4	+ .0006
	***			- 6	+ .0002
				-8	+ .0001
	3 -	-ı	0	4	+ ,0001
				2	+ '0017
				0	+ '0115
				-2	- '0017
			1	- 4	+ .0005
				- 6	0001
$e^2e'^2$	2	2	0	0	0009
				-2	0009
				-4	+ '0020
				-6	+ .0001
	2 .~	-2	0	4	+ .0001
				2	+ '0013
				0	+ '0024
			*	-2	0001
			١.	-4	- '0005
ee'3	I	3	0	0	- '0002
			-	-2	+ '0014
				-4	+ '0002
	τ -	-3	0	2	+ '0004
				0	+ '0004
				-2	+ '0002

	P. C.	l. l'. F. D.	Coeff.
	$e^2\gamma^2$	2 0 2 2	-0.0001
		0	+ '0004
		-2	0000
	* *	-4	+ '0002
		2 0 -2 2	0023
		0	+ '0004
		2	- '0141
		-4	— '0004
	$ee'\gamma^2$	I I 2 0	+ .0001
		+ × -2.	- '0032
		-4	+ .0001
		I I —2 2	+ .0009
		0	+ '0024
		-2	- 0006
-		I —I 2 2	- '0001
		0	+ '0003
		-2	+ '0004
		1 -1 -2 4	0001
		2	- '0027
		0	0029
	$e'^2\gamma^2$	0 2 2 -2	- '0004
	γ^4	0 0 4	,0000
	$e^3\alpha_1$	3 0 0 1	0000
		— I	+ '0017
		-3	+ '0001
8		-5	- '0002
	$e^2e'a_1$	2 1 0 3	+ '0002
		I	+ '0015
1		—r	- '0002
\$		-3	0002
-	+ × +	-5	- '0002
	+	2 — I O I	- '0005
	* *	-1	0028
		-3	- 0005
1	*		+ '0002
			1 2 2

Parallax. Coefficients of Cosines (concluded).

P. C.	l. l'. F. D.	Coeff.
$e\gamma^2a_1$	I O 2 I	+0.0002
4	<u> 1</u>	+ .0010
	-3	+ '0002
	-5	- '0002
	I 0 -2 3	- '0002
	I	,0000
	 1	+ .0006
	3	+ '0004
$e'\gamma^2a_1$	o 1 2 — I	+ .0001
***	3	- ,000I
	o 1 —2 3	+ .0001
	I	- '0003

×					
P.C.	l.	ľ.	F.	D.	Coeff.
5	+ 15		10,5	+ 3 + 1	. "
e^5	5	0	0	2	+0.0003
	+ + -			0	+ .0026
	*			-2	- '0012
				-4	+ .0001
$e^3\gamma^2$	3	0	2	2	0001
				0	.0000
	,			-2	0009
				4	+ .0001
	3	0	-2	2	- '0005
				0	0003
				-2	+ .0001
				-4	- '0008
$e\gamma^4$	1	0.	-4	2	+ '0002
				0	- '0001

Haverford College: 1904 December 3.

Errata (additional to those given on p. 202 in Part II.)

Part I. (vol. liii.), p. 43, line 12, for "equal masses" read "masses equal to their actual masses."

" 46, " 18, for "parallactic inequality" read "the principal parallactic inequality in longitude."

,, ,, 83, ,, 2 (in some copies), for " $\nu_{\tau-\sigma}$, $_{-i-1}$ " read " $\nu_{\tau-\sigma}$, $_{j-i-1}$." Part II. (vol. liii.), p. 166, line 21, for the denominator " u_3 's $_3$ '" read " u_3 '."

Part III. (vol. liv.), p. 5, line 6 from bottom, for " K^{λ} " read " K_{λ} ."

,, ,, 19, ,, 6 ,, for "+'00001 0" read "-'00000 9."

,, ,, 4 ,, for "-'00019 2" read "-'00012 9."

,, last line, for "+19822" read "+19828."

Theory of the Motion of the Moon; containing a New Calculation of the Expressions for the Coordinates of the Moon in Terms of the Time. By Ernest W. Brown, M.A., Sc.D., F.R.S.

[Received April 13; read May 8, 1908.]

PART V. CHAPTERS X.-XV.

The previous parts of this Memoir have been published in the Memoirs of the Royal Astronomical Society under the same title in 1897, 1899, 1900, 1905. They contained the solution of what I have called the main problem—the motion of the Moon under the attraction of the Earth and the Sun, which are supposed to move round one another in a fixed elliptic orbit in the plane of reference, the three bodies being treated as spheres. This fifth and last part treats of the effects of all other gravitational causes—the direct and indirect attractions of the planets, the deviations of the masses of the Earth and Moon from mechanical sphericity, and various minor perturbations which had been specifically excluded.

The problem presented by these additional perturbing forces is a complicated one. In order to clear the ground, it was first assumed that each force contained a small factor whose square could be neglected, so that the perturbations could be separately considered; then the perturbations were supposed to be expressible by a series of secular and periodic terms, each of which, under the same assumption, could also be separately considered. Chap. X. therefore contains the method for finding the effect of a perturbation expressed by a periodic or secular term, and in Chaps XI., XII., XIII. this method is successively applied to direct and to indirect planetary action and to the action of the figures of the Earth and Moon. In Chap. XIV., in addition to minor perturbations, the effects of including the squares and higher powers of the small factor is considered: a few very small terms were found. In Chap. XV. the results from all these perturbations are gathered together, so that the final expressions for the coordinates of the Moon in terms of the time are obtained by adding the results in Chap. XV. to those previously given in Chap. IX.

ROYAL ASTRON. Soc., Vol. LIX.

The whole question of these perturbations, in spite of this division into parts, is still complex, and, in preparing the results for publication, the choice of the portions to be presented in detail was an embarrassing one. It was made more so by the conditions which rendered necessary a previous publication of the work for the direct planetary inequalities in separate form.* This work included a full investigation of the equations of variations which are needed for inequalities arising from all sources, and there was thus a choice between repeating this investigation and leaving the present Memoir incomplete. The same difficulty arose with the direct inequalities and with some other subjects which I have discussed in previous papers. I finally adopted the plan of inserting this previous work either when it was essential for clear presentation, or when it was sufficiently brief to occupy but little space, or when the proofs could be considerably improved. Thus, in Chap. X., the equations of variations, the idea of which is due to G. W. Hill, are rapidly put into the required form (A.P.E., Sect. I.); the formulæ for obtaining derivatives with respect to n from a theory in which the numerical value of n'/n has been substituted (Trans. Amer. Math. Soc., vol. iv.) are deduced in a few lines; the methods for dealing immediately with non-periodic terms (Proc. Lond. Math. Soc., vol. xxviii., and Trans. Amer. Math. Soc., vol. v.) are partly developed, but the results (ib., and Monthly Notices, vol. lvii.) are only quoted. In Chap. XI. the proof of the theorem on which the method for the direct inequalities is based (A.P.E., Sect. II.) is exhibited in a simple form, but the full algebraical results are merely quoted; for the rest of this part of the subject the methods are described in general terms and the final results alone given. In Chap. XII. a theorem for finding quickly the effects of long-period and secular inequalities in the Earth's motion is simply quoted (Trans. Amer. Math. Soc., vol. vi.); this theorem was also used several times in Chap. XIV.; but the brief derivation of the disturbing function for the motion of the ecliptic (Monthly Notices, vol. lxviii.) is given in full.

It was found to be impracticable to present within reasonable limits much of the work actually performed. Numerous rough computations were made to find out whether coefficients or classes of coefficients were sensible; when they were insensible, a simple note, often the result of days or weeks of work, is made to that effect, but the organised plan of procedure always used in such cases is generally described; this is the case with most of the results in Chap. XIV.

Owing to the indications furnished by observation of an inequality or inequalities with a coefficient or coefficients of the order of 10" of arc and of very long period, one of the chief objects in view has been an investigation of such terms, and the "sieves" used in Chaps. XI., XII., XIV. were devised for this purpose. No large coefficients beyond those already known have been found. Moreover, the search has led more and more to the conclusion that no such terms can possibly arise with the laws of motion and of gravitation on which this theoretical investigation is based. If these

^{*} Adams Prize Essay, Pitt Press, Cambridge, 1908. This will be referred to below by the letters A.P.E.

inequalities have a real existence, it would seem that the cause must be sought in some action not purely gravitational.

No part of the numerical work, except some of the multiplications of series which were necessary to find the derivatives with respect to n in Chap. X., Sect. (iii), has been turned over to computers. There are so many delicate points to consider, and so many terms and classes of terms have special peculiarities which permit the calculations to be much abbreviated, that to obtain the accuracy at which I have aimed by a general plan which could not permit these peculiarities to be used, would have involved an amount of computation out of all proportion to the final results. In fact, not more than one-third of the time occupied by these investigations has been spent on accurate numerical work. But all such work has been gone over at least twice, in many cases three times, and tested by comparisons and various methods, whenever possible.

This part concludes the theoretical investigation of the motion of the Moon under the attraction of gravitation. Its natural sequence—the formation of tables to facilitate the accurate computation of the position of the Moon at any time or for the purposes of an ephemeris—has already been arranged for, and will be undertaken at an early date. But here also it seems advisable not to set the computers at work until an extended examination of methods which will best serve the purpose, and of the properties of the final results, has been made, so that the highest possible accuracy may be obtained within the limits set by practical necessities.

The table of contents of Part V. follows.

Chapter X.—Methods for finding the remaining Lunar Perturbations.

Section (i). The equations of variations.

Section (ii). Reduction of the equations to numerical form.

Section (iii). Derivatives with respect to n.

Section (iv). The final form of the equations of variations.

Section (v). Numerical values of functions of the lunar coordinates.

Chapter XI.—The Direct Action of the Planets.

Section (i). The disturbing function.

Section (ii). The computation of the coefficients P_i .

Section (iii). The sieve.

Section (iv). Numerical values of the elements.

Section (v). The final results for the direct action.

Chapter XII.—The Indirect Action of the Planets.

Section (i). The disturbing function.

Section (ii). The computation of $\delta \rho'$, $\delta V'$.

Section (iii). Second method. Application to non-periodic changes.

Section (iv). The motion of the ecliptic.

Mr. Ernest W. Brown, Theory of the

Section (v). Numerical values of the Earth's perturbations.

Section (vi). A sieve for the rejection of insensible coefficients.

Section (vii). Computation of the lunar perturbations.

Section (viii). Final results for the indirect action.

Chapter XIII.—Action of the Figures of the Earth and Moon.

Section (i). The disturbing function for the figure of the Earth.

Section (ii). Numerical results.

Section (iii). The action of the figure of the Moon.

Chapter XIV.—The Remaining Perturbations.

Section (i). Corrections due to the masses of the Earth and Moon.

Section (ii). The terms of the second and higher orders.

Section (iii). Calculation of the terms.

Section (iv). Perturbations with unknown constants.

Chapter XV.—The Final Expressions for the Moon's Coordinates.

CHAPTER X.

METHODS FOR FINDING THE REMAINING LUNAR PERTURBATIONS.

Section (i). The Equations of Variations.

267. The Canonical Equations.—The problem solved in the preceding chapters may be stated as a solution in series of the equations

$$\frac{d\mathbf{x}_{i}}{dt} = \frac{d\mathbf{H}}{d\mathbf{y}_{i}}, \quad \frac{d\mathbf{y}_{i}}{dt} = -\frac{d\mathbf{H}}{d\mathbf{x}_{i}}, \quad H = \frac{1}{2}(\mathbf{y}_{1}^{2} + \mathbf{y}_{2}^{2} + \mathbf{y}_{3}^{2}) - F \quad . \tag{1},$$

where x_i (i = 1, 2, 3) are the coordinates of the Moon referred to fixed axes, and F is the force function under the hypotheses stated in Chap. I., Sect. (i).

Let w_1 , $w_1 - w_2$, $w_1 - w_3$ be the Moon's mean longitude, and the arguments of the principal elliptic term, and of the principal term in latitude, respectively, so that w_2 , w_3 are the "mean longitudes of the perigee and node" resulting from the solution of (1). Then Jacobi's method shows that, if a quantity R be added to F, and if it be expressed in terms of w_1 , w_2 , w_3 and c_1 , c_2 , c_3 , the other three arbitraries of the solution of (1), the latter three may be so chosen that the solution of the differential equations

will give variable values of the c_i , w_i , which, when substituted in the expressions for the Moon's coordinates and velocities instead of their former values, will give the Moon's position and motion under the force function F+R. Here b_1 , b_2 , b_3 are the coefficients of t in the angles w_1 , w_2 , w_3 . Hence, when R=o, $b_1=n$, the mean motion, and b_2 , b_3 are the mean motions of the perigee and node. They are functions of c_1 , c_2 , c_3 and the constants present in the differential equations; and $b_1dc_1+b_2dc_2+b_3dc_3$ is a perfect differential.

268. Transformation to the Variables n, c_2 , c_3 , w_i .— Change to the system n, c_2 , c_3 , retaining the w_i unchanged, so that c_1 is now a function of n, c_2 , c_3 . Then

$$b_1\!\!\left(\!\frac{dc_1}{dn}\!dn\!+\!\frac{dc_1}{dc_2}\!dc_2\!+\!\frac{dc_1}{dc_3}\!dc_3\!\right)\!+b_2\!dc_2\!+b_3\!dc_3$$

is a perfect differential, and therefore, since $b_1 = n$,

$$\frac{dc_1}{dc_2} = -\frac{db_2}{dn}, \quad \frac{dc_1}{dc_3} = -\frac{db_3}{dn}, \quad \frac{db_2}{dc_3} = \frac{db_3}{dc_2} \qquad . \qquad . \qquad . \qquad (2a).$$

The equations (2) then become

$$\frac{dn}{dt} = \frac{1}{a^2\beta} \left(-\frac{dR}{dw_1} - \frac{db_2}{dn} \frac{dR}{dw_2} - \frac{db_3}{dn} \frac{dR}{dw_3} \right), \quad \frac{dc_2}{dt} = \frac{dR}{dw_2}, \quad \frac{dc_3}{dt} = \frac{dR}{dw_3},$$

$$\frac{dw_1}{dt} = \frac{1}{a^2\beta} \frac{dR}{dn} + b_1, \quad \frac{dw_2}{dt} = -\frac{dR}{dc_2} + b_2 + \left(\frac{dw_1}{dt} - b_1\right) \frac{db_2}{dn}, \quad \frac{dw_3}{dt} = -\frac{dR}{dc_3} + b_3 + \left(\frac{dw_1}{dt} - b_1\right) \frac{db_3}{dn}$$

$$\text{where}$$

$$(3),$$

$$\frac{dc_1}{dn} = -a^2\beta ,$$

and all the functions are supposed to be expressed in terms of n, c_2 , c_3 , w_i . It is to be remembered throughout that, when using the variables w_i instead of the constant parts of those angles, the derivatives of w_i with respect to n, c_2 , c_3 (or any functions of them) are zero.

269. Solution of the Equations.—It is supposed that R contains a small factor whose square may be neglected, and consequently that we may substitute the undisturbed values of n, c_2 , c_3 , w_i in R, that is, the values furnished by the solution of the main problem. In all the cases to be considered under this method, R can then be expressed as the sum of non-periodic and periodic terms, and each of these terms may be separately treated. First, for periodic terms, put

$$R = A' \cos (qt + q') = A' \cos (i_1 w_1 + i_2 w_2 + i_3 w_3 + q''t + q'''),$$

where q'', q''' are constants independent of n, c_2 , c_3 , w_i , and A' is a function of n, c_2 , c_3 only. Substituting in the first three of equations (3) and integrating, we obtain

$$\delta n = -\frac{A'}{a^2\beta q} \frac{dq}{dn} \cos(qt + q') , \quad \delta c_2 = \frac{i_2 A'}{q} \cos(qt + q') , \quad \delta c_3 = \frac{i_3 A'}{q} \cos(qt + q') . \qquad (4)$$

where δn , δc_2 , δc_3 are the additions to n, c_2 , c_3 due to R. The arbitrary constants due to integration are given zero values.

If δb_1 , δb_2 , δb_3 are the corresponding changes in $b_1 = n$, b_2 , b_3 due to these changes in n, c_2 , c_3 , we have $\delta b_1 = \delta n$, and from (2a) and (4)

$$\begin{split} \delta b_2 &= \frac{db_2}{dn} \delta n + \frac{db_2}{dc_2} \delta c_2 + \frac{db_2}{dc_3} \delta c_3 = \bigg(-\frac{\mathbf{I}}{a^2 \beta} \, \frac{dq}{dn} \, \frac{db_2}{dn} + \frac{dq}{dc_2} \bigg) \frac{A'}{q} \, \cos \left(qt + q' \right) \,, \\ \delta b_3 &= \frac{db_3}{dn} \delta n + \frac{db_3}{dc_2} \delta c_2 + \frac{db_3}{dr_3} \delta c_3 = \bigg(-\frac{\mathbf{I}}{a^2 \beta} \, \frac{dq}{dn} \, \frac{db_3}{dn} + \frac{dq}{dc_3} \bigg) \frac{A'}{q} \, \cos \left(qt + q' \right) \,. \end{split}$$

Denoting by δw_i the additional part of w_i , substituting the value of R and these results in the second three of equations (3), and integrating, we obtain

$$\delta w_{1} = \frac{\mathbf{I}}{a^{2}\beta} \left(\frac{\mathbf{I}}{q} \frac{dA'}{dn} - \frac{A'}{q^{2}} \frac{dq}{dn} \right) \sin\left(qt + q'\right),$$

$$\delta w_{2} = \left\{ \left(\frac{\mathbf{I}}{a^{2}\beta} \frac{dA'}{dn} \frac{db_{2}}{dn} - \frac{dA'}{dc_{2}} \right) \frac{\mathbf{I}}{q} + \left(\frac{dq}{dc_{2}} - \frac{\mathbf{I}}{a^{2}\beta} \frac{dq}{dn} \frac{db_{2}}{dn} \right) \frac{A'}{q^{2}} \right\} \sin\left(qt + q'\right),$$

$$\delta w_{3} = \left\{ \left(\frac{\mathbf{I}}{a^{2}\beta} \frac{dA'}{dn} \frac{db_{3}}{dn} - \frac{dA'}{dc_{3}} \right) \frac{\mathbf{I}}{q} + \left(\frac{dq}{dc_{3}} - \frac{\mathbf{I}}{a^{2}\beta} \frac{dq}{dn} \frac{db_{3}}{dn} \right) \frac{A'}{q^{2}} \right\} \sin\left(qt + q'\right)$$

$$(5).$$

The equations (4), (5) constitute the theoretical solution of the problem. If λ be one of the Moon's coordinates, then the additional terms due to R are given by

$$\delta\lambda = \frac{d\lambda}{dn}\delta n + \frac{d\lambda}{dc_2}\delta c_2 + \frac{d\lambda}{dc_3}\delta c_3 + \frac{d\lambda}{dw_1}\delta w_1 + \frac{d\lambda}{dw_2}\delta w_2 + \frac{d\lambda}{dw_3}\delta w_3 .$$

270. The Constant Term of R.—Denoting it by R_0 , we have, instead of the equations (4), δn , δc_2 , δc_3 constant. These constants are at our disposal. Put $\delta n = \delta_0 n$, $\delta c_2 = 0$, $\delta c_3 = 0$. Then, instead of equations (5) we have

$$\delta w_1 = \left(\frac{\mathrm{I}}{a^2\beta}\frac{dR_0}{dn} + \delta_0 n\right)\!t\;, \quad \ \delta w_2 = \left(-\frac{dR_0}{dc_2}t + \frac{db_2}{dn}\delta w_1\right), \quad \ \delta w_3 = \left(-\frac{dR_0}{dc_3}t + \frac{db_3}{dn}\delta w_1\right),$$

where the additive constants are made zero.

Now, since the mean longitude is a quantity observed directly, we so choose $\delta_0 n$ that w_1 is still represented by $nt + \epsilon$, and therefore $\delta w_1 = 0$. Whence the changes in the angles w_2 , w_3 are obtained by adding to their motions the quantities

$$\delta b_2 = -\frac{dR_0}{dc_2}, \quad \delta b_3 = -\frac{dR_0}{dc_3}$$
 (6),

which include the change $\delta_0 n$.

Since $\delta w_1 = 0$, we have

$$\delta_0 n = -\frac{1}{a^2 \beta} \frac{dR_0}{dn} \qquad (7).$$

This change in n must be substituted only in the *coefficients* of the periodic terms representing the Moon's coordinates, amongst them, the principal elliptic term in longitude (2e with sufficient accuracy) and the principal term in latitude (2 γ). These, again, are quantities observed directly, and therefore, as we wish to retain the same expressions to denote these coefficients, it is necessary to add to e, γ in all other terms the amounts

respectively. It is true that these produce further changes in b_2 , b_3 , but they are quite insensible. Indeed, the changes (8) produce alterations less than o'' or in any coefficient.

The changes, as found from the methods of Sect. (ii) below, give

$$\delta_0 e = - \big[\overline{3}.7452 \big] \delta_0 n \; , \quad \ \delta_0 \gamma = - \big[\overline{3}.8812 \big] \delta_0 n \; .$$

If R contains a non-periodic term of the form $R_p t^p$, where R_p is independent of t, the corresponding changes in δn , δc_2 , δc_3 are zero, and

$$\delta w_1 = \frac{\mathrm{i}}{a^2\beta} \, \frac{dR_{\nu}}{dn} \, \frac{t^{\nu+1}}{p+\mathrm{i}} \, , \quad \delta w_2 = \, - \, \frac{dR_{\nu}}{dc_2} \, \frac{t^{\nu+1}}{p+\mathrm{i}} + \frac{db_2}{dn} \delta w_1 \, , \quad \, \delta w_3 = \, - \, \frac{dR_{\nu}}{dc_3} \, \frac{t^{\nu+1}}{p+\mathrm{i}} + \frac{db_3}{dn} \delta w_1 \, .$$

Section (ii). Reduction of the Equations to Numerical Form.

271. Computation of the c_i .—The coordinates x_i of the Moon have been expressed in terms of e, k instead of c_2 , c_3 ; we must find the relations between the two sets of constants.

Owing to the canonical forms of (1), (2), it is well known that $\sum_{i}(y_{i}dx_{i}+w_{i}dc_{i})=dS$, Hence if every quantity be expressed in terms of c_i , w_i , a perfect differential.

$$\frac{dS}{dw_i} = \sum_j y_j \frac{d\mathbf{x}_j}{dw_i}, \quad \frac{dS}{dc_i} = w_i + \sum_j y_j \frac{d\mathbf{x}_j}{dc_i} \quad (i, j = 1, 2, 3).$$

But since $y_i = dx_i/dt$, these equations show that dS/dw_i consists only of cosines and dS/dc_i-w_i of sines of the angles present in the solution of the main problem, and therefore that $S = \sum c_i w_i + \text{periodic terms}$. Denoting by $[Q]_0$ the constant term of the expansion of Q as a sum of periodic and non-periodic terms, and substituting the value of S in the first of the previous equations, we obtain

$$c_i = \left[\sum_j \frac{d\mathbf{x}_j}{dt} \frac{d\mathbf{x}_j}{dw_i} \right]_0 \qquad (9),$$

the equations for finding c_i .

The co-ordinates x_1 , x_2 , x_3 are here those referred to fixed axes. We therefore put

$$\mathbf{x}_1 + \mathbf{x}_2 \iota = u \text{ exp. } \iota(n't + \epsilon') \text{ , } \quad \mathbf{x}_1 - \mathbf{x}_2 \iota = s \text{ exp. } -\iota(n't + \epsilon') \text{ , } \quad \mathbf{x}_3 = z \text{ ,}$$

to reduce to our earlier notation.

Next, u, s have been expanded in positive and negative powers of ζ^1 , ζ^c , ζ^g , ζ^m , where

 $\zeta^{\rm I} = \exp.~\iota(w_1 - n't - \epsilon')~,~~\zeta^{\rm c} = \exp.~\iota(w_1 - w_2)~,~~\zeta^{\rm g} = \exp.~\iota(w_1 - w_3)~,~~\zeta^{\rm m} = \exp.~\iota(n't + \epsilon')~,$

and numerical values have not been substituted in the exponents. In line therefore with the former definition of D, I put

$$D_1 = \zeta^1 \frac{d}{d\zeta^1} \,, \qquad D_{\rm e} = \zeta^{\rm e} \frac{d}{d\zeta^{\rm e}} \,, \qquad D_{\rm g} = \zeta^{\rm g} \frac{d}{d\zeta^{\rm g}} \,, \qquad D_{\rm m} = \zeta^{\rm m} \frac{d}{d\zeta^{\rm m}} \,. \label{eq:D1}$$

so that

$$\frac{d}{dw_1}\!=\!\iota(D_1\!+\!D_\mathrm{e}\!+\!D_\mathrm{g})\;,\quad \frac{d}{dw_2}\!=-\iota D_e\;,\quad \frac{d}{dw_3}--\iota D_\mathrm{g}\;,$$

and

$$D = D_1 + eD_e + gD_g + mD_m .$$

Making these substitutions in the expressions for c_i , and remembering that, as we only need the constant term, f(u, s) + f(s, u) can be written 2f(u, s), we obtain

$$c_{1} = -(n - n')[(D + \mathbf{I} + \mathbf{m})u' \cdot (D_{1} + D_{c} + D_{g} - \mathbf{I})s' + Dz \cdot (D_{1} + D_{e} + D_{g})z]_{0},$$

$$\frac{c_{2}}{n - n'} = [(D + \mathbf{I} + \mathbf{m})u' \cdot D_{c}s' + Dz \cdot D_{c}z]_{0}, \quad \frac{c_{3}}{n - n'} = [(D + \mathbf{I} + \mathbf{m})u' \cdot D_{g}s' + Dz \cdot D_{g}z]_{0}$$
(9a),

where $u' = u\zeta^{-1}$, $s' = s\zeta$.

As a matter of fact, c_1 will not be needed. The values of c_2 , c_3 have been given in Chap. VII., \S 145 (there called β_2 , β_3). They are

$$\frac{c_2}{na^2} = -\frac{11844}{128} + \frac{44e^2 - 02324e^4 - 26363e^2k^2 - 00110e^2e^2}{1282},$$

$$\frac{c_3}{na^2} = -2.00205 + 9k^2 - 1.96376k^4 - 28546k^2e^2 - 00568k^2e^2$$
(10).

The forms of these expressions are important: c_2 is divisible by e^2 and c_3 by k^2 , and if we neglect powers of m, $c_2 = -\frac{1}{8}na^2e^2$, $c_3 = -2na^2k^2$. The numerical coefficients are to be considered as functions of n. It must be noticed, however, that in finding the derivative of c_2 with respect to n, the terms in m^2 , m^3 , . . . diminish the value obtained from the principal term by nearly one-half; the derivative of c_3 is not much altered by these higher terms.* It is in general true that quantities depending on e, e in any way are slowly convergent along powers of e, while those depending on e, e are rapidly convergent.

272. Derivatives with respect to c_2 , c_3 .—These may be obtained from the derivatives with respect to e, k by solving the equations

$$\mathrm{e}\frac{dQ}{d\mathrm{e}} = \frac{dQ}{dc_2} \cdot \mathrm{e}\frac{dc_2}{d\mathrm{e}} + \frac{dQ}{dc_3} \cdot \mathrm{e}\frac{dc_3}{d\mathrm{e}} \,, \quad \mathrm{k}\frac{dQ}{d\mathrm{k}} = \frac{dQ}{dc_2} \cdot \mathrm{k}\frac{dc_2}{d\mathrm{k}} + \frac{dQ}{dc_3} \cdot \mathrm{k}\frac{dc_3}{d\mathrm{k}} \,. \qquad . \qquad . \qquad . \qquad (11)$$

where Q is any function under consideration. Inserting the numerical values of e, k obtained from §§ 192, 193 of Chap. IX., I find

$$-na^2\frac{dQ}{dc_3} = +\left[2\cdot5423\right]e^{\frac{dQ}{d\mathbf{e}}} - \left[\overline{1}\cdot7731\right]k\frac{dQ}{d\mathbf{k}}, \quad -na^2\frac{dQ}{dc_3} = +\left[2\cdot0929\right]k\frac{dQ}{d\mathbf{k}} - \left[\overline{1}\cdot7386\right]e^{\frac{dQ}{d\mathbf{e}}} \quad . \tag{12}$$

In § 145, Chap. VII., will be found the materials to obtain b_2 , b_3 (there denoted by π_1 , θ_1). From them I obtain, with the help of equations (12),

$$a^2 \frac{db_2}{dc_2} = + \left[\overline{2} \cdot 3175 \right], \quad a^2 \frac{db_2}{dc_3} = + \left[\overline{2} \cdot 3960 \right] = a^2 \frac{db_3}{dc_2}, \quad a^2 \frac{db_3}{dc_3} = - \left[\overline{3} \cdot 5698 \right] \qquad . \tag{13}$$

273. Derivatives of b_2 , b_3 with respect to n.—These might have been obtained by finding c_1 from the first of equations (9a) and using the first and second of equations (2a). But it was found to be much more simple and sufficiently accurate to use the existing literal developments in combination with the numerical developments. The method for doing this I have given in a former paper.† It is as follows:—

Let

$$f(\mathbf{m}) = \mathbf{a}_0 + \mathbf{a}_1 \mathbf{m} + \mathbf{a}_2 \mathbf{m}^2 + \dots$$

and denote by $f_i(\mathbf{m})$ the sum of the first i terms of this series, and by an accent the derivative with respect to \mathbf{m} . Then

$$\mathbf{m}f'(\mathbf{m}) = \mathbf{m}f'_{i}(\mathbf{m}) + i\left[a_{i}\mathbf{m}^{i} + \frac{i+1}{i}a_{i+1}\mathbf{m}^{i+1} + \frac{i+2}{i}a_{i+2}\mathbf{m}^{i+2} + \dots\right].$$

If i be not too small, and the series not converging too slowly, the error committed by putting

$$\operatorname{m} f'(\mathbf{m}) = \operatorname{m} f_i'(\mathbf{m}) + i [f(\mathbf{m}) - f_i(\mathbf{m})]$$

will be small compared with the true value of mf'(m). When the series appears to be diminishing with fair regularity, the use of i + proper fraction instead of i in the last formula will probably give greater accuracy. As a matter of fact, I have only used this to find the greatest possible error which could have been committed, so as to avoid any sensible error in the result.

The derivatives of b_2 , b_3 are found from the literal \ddagger and numerical values of Hill

* A.P.E., p. 8. † Monthly Notices, vol. lvii. p. 346. ‡ Ann. of Math., vol. ix. p. 40.

ROYAL ASTRON. Soc., Vol. LIX.

for the part of b_2 depending on m only, and of Adams * for the corresponding part of b_3 ; and for the other portions from the literal values of Delaunay † after a test by a special method which I have given earlier, combined with my numerical values.

These latter portions are expressed in terms of e, γ . Since the derivatives of e/e, k/γ are insensible to the degree of accuracy required, we can make the change, after

differentiating Delaunay's series, by the formulæ of § 192, Chap. 1X.

The required derivatives with respect to n are obtained from equations (11) combined with

 $\frac{dQ}{dn} = \left(\frac{dQ}{dn}\right) - \frac{dQ}{dc_0}\left(\frac{dc_2}{dn}\right) - \frac{dQ}{dc_0}\left(\frac{dc_3}{dn}\right) \quad \cdot \quad \cdot \quad \cdot \quad \cdot$

where the brackets denote that the enclosed functions are expressed in terms of n, e, k. The derivatives of c_3 , c_3 are obtained from Newcomb's transformation \S of Delaunay's literal values for $G - I_1 = c_2$, $H - G = c_3$, combined with the numerical values of c_2 , c_3 given above. They are only needed to two significant figures.

The other derivatives with respect to n are found in the next section.

These apparently complicated processes are constructed to avoid the slow convergence which occurs with certain of the literal series arranged in powers of m, and I believe they have achieved the object in view.

274. The subsidiary results are

$$\left(\frac{dc_2}{dn} \right) = + \left[\bar{4} \cdot 4637 \right] a^2 \,, \quad \left(\frac{dc_3}{dn} \right) = + \left[\bar{3} \cdot 1313 \right] a^2 \,, \quad \left(\frac{db_2}{dn} \right) = - \left[\bar{2} \cdot 1709 \right] \,, \quad \left(\frac{db_3}{dn} \right) = + \left[\bar{3} \cdot 5736 \right] \,,$$

and the final results

$$\frac{db_2}{dn} = -\left[\overline{2}\cdot 1720\right], \quad \frac{db_3}{dn} = +\left[\overline{3}\cdot 5733\right] \qquad . \qquad . \qquad . \qquad (15).$$

Section (iii). Derivatives with respect to n.

275. The equations for finding n-derivatives with the system n, c2, c3, wi-The problem here is to find these derivatives from a theory in which the numerical value of n has been substituted. I shall show that these derivatives may all be made to depend on derivatives with respect to the other five elements, and therefore with respect to e, k, w_i .

Write

$$\sum_{i} \left(\frac{df}{dc_{i}} \frac{df'}{dw_{i}} - \frac{df}{dw_{i}} \frac{df'}{dc_{i}} \right) = \{ \vec{J}, f' \} \qquad (16).$$

Then, on changing equations (1) from the canonical set $\mathbf{x}_i,\ \mathbf{y}_i$ to the canonical set $c_i,\ w_i$ by a contact transformation, we have the relations

$$\{\mathbf{x}_i, \mathbf{y}_i\} = \mathbf{I}, \quad \{\mathbf{x}_i, \mathbf{y}_j\} = \{\mathbf{x}_i, \mathbf{x}_j\} = \{\mathbf{y}_i, \mathbf{y}_j\} = \mathbf{0}, \quad j \neq i, \quad .$$
 (17).

§ Amer. Eph. Papers, vol. v., pt. 4 (1894), pp. 201, 202.

 $\parallel A.P.E., p. 8.$

¶ E. W. Brown, Trans. Amer. Math. Soc., vol. iv. pp. 234-248.

^{*} Monthly Notices, vol. xxxviii. p. 48.

[†] C.R., vol. lxxiv. pp. 19 et seq.

[#] Monthly Notices, vol. lvii. p. 335.

Denote by brackets derivatives with respect to the system c_i , w_i . The formulæ for changing to n, c_2 , c_3 , w_i are

$$\frac{df}{dn} = \left(\frac{df}{dc_1}\right)\frac{dc_1}{dc_1}, \quad \frac{df}{dc_2} = \left(\frac{df}{dc_1}\right)\frac{dc_1}{dc_2} + \left(\frac{df}{dc_2}\right), \quad \frac{df}{dc_3} = \left(\frac{df}{dc_1}\right)\frac{dc_1}{dc_3} + \left(\frac{df}{dc_3}\right) \quad . \tag{18},$$

the other derivatives remaining unchanged.

Write (see § 268)

$$\frac{df}{dW_1} \equiv \left(\frac{df}{dw_1} - \frac{dc_1}{dc_2} \frac{df}{dw_2} - \frac{dc_1}{dc_3} \frac{df}{dw_3}\right) \div \frac{dc_1}{dn} = \left(\frac{df}{dw_1} + \frac{db_2}{dn} \frac{df}{dw_2} + \frac{db_3}{dn} \frac{df}{dw_3}\right) \div \frac{dc_1}{dn} \quad . \tag{19} \ ;$$

then $\{f, f'\}$ transforms into (f, f'), in which n replaces c_1 , and W_1 replaces w_1 .

It is convenient to change to our former axes by putting

$$\mathbf{x}_1 + \iota \mathbf{x}_2 = u \exp((n't + \epsilon')\iota)$$
, $\mathbf{x}_1 - \iota \mathbf{x}_2 = s \exp(-(n't + \epsilon')\iota)$, $\mathbf{x}_3 = z$, $u_1 = \frac{du}{dt}$, $s_1 = \frac{ds}{dt}$

and the transformed equations which we shall need are

$$(u_1, u) = 0, (u, s) = 0, (u, z) = 0$$
 (20).

Now

$$\frac{du_1}{d\boldsymbol{n}} = \frac{d}{d\boldsymbol{n}} \quad \frac{d\boldsymbol{u}}{dt} = \frac{d}{dt} \quad \frac{d\boldsymbol{u}}{d\boldsymbol{n}} + \sum_i \left(\frac{d\boldsymbol{u}}{d\boldsymbol{w}_i} \quad \frac{d\boldsymbol{b}_i}{d\boldsymbol{n}} \right) = \frac{d}{dt} \quad \frac{d\boldsymbol{u}}{d\boldsymbol{n}} + \frac{d\boldsymbol{u}}{d\boldsymbol{W}_1} \quad \frac{d\boldsymbol{c}_1}{d\boldsymbol{n}} \, .$$

If this be substituted in the first of equations (20), we obtain

$$\left\{ U \frac{d}{dt} \frac{du}{dn} - \frac{du}{dn} \frac{dU}{dt} + U^2 \right\} \div \frac{dc_1}{dn} + \frac{du}{dw_2} \frac{d}{dt} \frac{du}{dc_2} - \frac{du}{dc_2} \frac{d}{dt} \frac{du}{dw_2} + \frac{du}{dw_3} \frac{d}{dt} \frac{du}{dr_3} - \frac{du}{dc_3} \frac{d}{dt} \frac{du}{dw_3}, \quad (21)$$

where

$$U = \frac{du}{dw_1} + \frac{db_2}{dn} \frac{du}{dw_2} + \frac{db_3}{dn} \frac{du}{dw_3}.$$

Dividing by U^2 and integrating, we have the formula for du/dn:

$$\frac{du}{dn} = U \int \left(\frac{\beta a^2 Q}{U^2} - 1\right) dt + CU,$$

where $-\beta a^2 = \frac{dc_1}{dn}$, -Q = last four terms of (21), C = arbitrary constant.

As du/dn can contain no terms proportional to the time, the constant term of the function to be integrated must vanish, and therefore

$$-\mathbf{I} \div \frac{dc_1}{dn} = \frac{\mathbf{I}}{\beta a^2} = \left[\frac{Q}{U^2}\right]_0 \qquad (22),$$

which determines β . The arbitrary constant C is determined from the second of equations (20), and the values of db_2/dn , db_3/dn have been found in §273. The value of dz/dn is similarly determined from the third of equations (20) when du/dn is known. The process of finding the n-derivatives is therefore reduced to an integration.

276. Computation of the n-derivatives of u^2 , us, zu, and the products of these into $(a/r)^5$.—The process given in the preceding paragraph is neither simple in theory nor easy for computation. But, in the absence of any other method, it had to be

adopted. Various plans for abbreviating the work arose during the computations; I shall not go into these details, but shall only give the main outlines and formulæ which were used.

With the use of the notation defined in § 271, the definitions of U, Q will be slightly altered. It is convenient also to replace c_2 , c_3 by $-a^2ne_2^2$, $-a^2nk_2^2$, so that e_2/e and k_2/k are positive. We put, then,

The computation of U, ϕ is made in the following way. Let U_0 consist of the terms of characteristic unity in U, so that $U_0 = (D_1 + 1)u_0'$. Then

$$\frac{1}{U^2} = \frac{1}{U_0^2} - 2\frac{U_1}{U_0^3} + 3\frac{U_1^2}{U_0^4} - \dots$$

After finding $1/U_0^i$ by special values or otherwise from the results of § 44, Chap. II., and U_1^2 by multiplication of series, and then U_1^3 for the few terms needed, multiplication of series and additions quickly give $1/U^2$; the process is simple, since $1/U_0^i$ converges rapidly, and only three or four terms are needed. Next, Q is obtained by multiplication of series quite like those used in the earlier chapters, some of which could be made use of by means of the identity fDf' - f'Df = D(ff') - 2f'Df. To obtain the derivatives with respect to e_2 , k_2 from those for e_1 , k_2 , it was nearly always sufficient to multiply by e/e_2 , k/k_2 , respectively, as the formulæ (12) of § 272 show. Owing to the form of Q, it is necessary to use u' as far as terms with characteristics of one order higher in e_1 , e_2 than those needed in e_3 and e_4 but the results of previous chapters were far more than sufficient. Finally, Q/U^2 was obtained by multiplication of two series and thence e_3 , e_4 .

The value of β as found here and tested by two other methods * is '32962.

The second of equations (20) may be written

$$\frac{du}{dn}S - \frac{ds}{dn}U = \beta a^2 \left[\frac{du}{dc_2} \frac{ds}{dw_2} - \frac{ds}{dc_2} \frac{du}{dw_2} + \frac{du}{dc_3} \frac{ds}{dw_3} - \frac{ds}{dc_3} \frac{du}{dw_3} \right].$$

Denoting by a bar the change $-\iota$ for ι , so that $S = -\bar{U}$, and using the new definition of U, we find

$$\frac{1}{\beta}U\overline{U}(2C+\phi+\overline{\phi}) = \psi = \frac{1}{2}\frac{D_{c}u'}{e_{2}} \cdot \frac{ds'}{de_{2}} - \frac{1}{2}\frac{D_{c}s'}{e_{2}} \cdot \frac{du'}{de_{2}} + D_{g}u' \cdot \frac{ds'}{d\mathbf{k}_{2}^{2}} - D_{g}s' \cdot \frac{du'}{d\mathbf{k}_{2}^{2}} \qquad . \tag{24}$$

The multiplications of series for ψ were all at hand, and the computation of $U\overline{U}$ was simple; to determine C, only the constant terms on each side were needed.

^{*} From the transformation of Delaunay's $L = c_1$ (§ 273), and from a theorem connecting it with the constant term of the parallax (E. W. Brown, *Trans. Amer. Math. Soc.*, vol. iv. p. 247).

To find the derivative of us = u's', the simplest form appeared to be

$$n\frac{d}{dn}(us) = s'\frac{du'}{dn} + u'\frac{ds'}{dn} = \frac{1}{2}(s'U + \overline{s'U})(\phi + \overline{\phi} + 2U) + \frac{1}{2}(s'U - \overline{s'U})(\phi - \overline{\phi}) . \tag{25},$$

since

$$s'U - s\overline{\,\,}U = \left\{\,D_1 + \left(\,\mathfrak{r} - \frac{db_2}{dn}\right)\!D_e + \left(\,\mathfrak{r} - \frac{db_3}{dn}\right)\!D_{\mathfrak{g}}\,\,\right\}u\mathfrak{s}\,,$$

and the product us was at hand, the constant disappearing, so that all the terms were small. For the purposes of verification

$$(s'U + \overline{s'U})(\phi + \overline{\phi} + 2U) = \left\{ \frac{u'}{U} + \left(\frac{u'}{U}\right) \right\} \psi \beta \qquad (26)$$

was computed: this gives the more important part of d(us)/dn.

The derivative of u'^2 is given by

$$n\frac{d}{dn}u'^{2} = 2u'U(\phi + U) = (\phi + U)\left(D_{1} + D_{c} + D_{g} + \mathbf{1} - \frac{\partial D_{2}}{\partial n}D_{e} - \frac{\partial D_{3}}{\partial n}D_{g}\right)u'^{2} \qquad (27),$$

for which the product u'^2 was available. A multiplication of series gives the required function.

The formula for dz/dn is obtained from the third of equations (20). It is transformed into

$$n\frac{dz}{dn} = Z(\phi + C) - \frac{\beta}{U}\chi, \quad Z = \left(D_1 + D_e + D_g - \frac{db_2}{dn}D_e - \frac{db_3}{dn}D_g\right)z,$$

$$\chi = \frac{1}{2}\frac{D_e z}{e_2} \cdot \frac{du'}{de_2} - \frac{1}{2}\frac{D_e u'}{e_2} \cdot \frac{dz}{de_2} + D_g z \cdot \frac{du'}{dk^2} - \frac{1}{2}\frac{D_g u'}{k} \cdot \frac{dz}{dk}$$
(28),

the multiplications of series for χ being at hand.

The derivative of u'z is therefore given by

$$n\frac{d}{dn}(u'z) = -\frac{\beta u'}{U}\chi + (\phi + C)\left(D_1 + D_c + D_g + \tau - \frac{db_2}{dn}D_c - \frac{db_3}{dn}D_g\right)u'z . \tag{29}$$

which is computed as before. Only the principal terms were required.

The derivative of z^2 is given by (28), if we replace z by z^2 in the formulæ.

The few terms for derivatives of third-degree products of u, s, z were computed from these results. The numerical values are given in Sect. (v).

277. To find the derivatives of the products of u^2 , us, uz, with $(a/r)^5$, we only further need the derivative of the last. For the only term which is sensible we can use Delaunay's results, combined with the numerical results of § 266, Chap. IX. This is because the constant term of a/r contains no portion depending on e^2 , γ^2 , and the portions depending on m converge very rapidly; the other terms in the products are of orders e^2 , γ^2 , m^4 , e^2m^2 , $m^2\gamma^2$, or of higher orders. The results from all but those of orders e^2 , γ^2 , are practically insensible.

Section (iv). The Final Form of the Equations of Variations.

278. Numerical values required.—I gather together the numerical results obtained in the preceding sections, so far as they are needed in the equations of variations. They are as follows: all numbers whose common logarithms are set down being enclosed in square brackets:—

$$e = + [\overline{z} \cdot 7396], \quad e = + [\overline{1} \cdot 0396], \quad \gamma = + [\overline{2} \cdot 6521], \quad k = + [\overline{2} \cdot 6511],$$

$$\beta = + [\overline{1} \cdot 51801], \quad m = \frac{n'}{n} = + [\overline{2} \cdot 87391], \quad m = \frac{n'}{n - n'} = + [\overline{2} \cdot 90768], \quad \frac{a^2}{a^2} = + [\overline{1} \cdot 99921]$$
(30);

$$\frac{db_2}{dn} = -\left[\overline{2}\cdot172\circ\right], \quad a^2\frac{db_2}{dc_2} = +\left[\overline{2}\cdot3175\right], \quad a^2\frac{db_2}{dc_3} = +\left[\overline{2}\cdot396\circ\right], \\ \frac{db_3}{dn} = +\left[\overline{3}\cdot5733\right], \quad a^2\frac{db_3}{dc_2} = +\left[\overline{2}\cdot396\circ\right], \quad a^2\frac{db_3}{dc_3} = -\left[\overline{3}\cdot5698\right]$$
 (31),

$$-na^2\frac{dA'}{dc_2} = +\left[2\cdot5423\right]e\frac{dA'}{de} - \left[\overline{1}\cdot773\right]k\frac{dA'}{dk}, \quad -na^2\frac{dA'}{dc_3} = +\left[2\cdot0929\right]k\frac{dA'}{dk} - \left[\overline{1}\cdot7386\right]e\frac{dA'}{de} \tag{32}.$$

279. The Equations of Variations.—The equations are now put into a form which is to admit of direct application to any term of the disturbing function. The coefficient of each cosine or sine which constitutes the variation of an element is to be expressed in seconds of arc. Put

$$R = \frac{1}{4} \frac{m''}{m} n'^2 a^2 A \cos{(i_1 w_1 + i_2 w_2 + i_3 w_3 + q'' t + q')} = \frac{1}{4} \frac{m''}{m'} n'^2 a^2 A \cos{(q t + q')} \quad . \tag{33} \ ;$$

s' = number of seconds of arc in the daily mean motion of the Sun = 3548"19,

$$s=$$
 ,, ,, argument $qt+q'$;

$$f = \frac{1}{4} \frac{m''}{m'} \frac{a^2}{a^2} \frac{s'^2}{\beta} 206265 = + \left[12 \cdot 29358\right] \frac{m''}{m'}, \quad f' = \frac{1}{4} \frac{m''}{m'} \frac{a^2}{a^2} \frac{ms'}{\beta} = + \left[7 \cdot 61748\right] \frac{m''}{m'} \quad . \tag{34};$$

$$C = \frac{fA}{s^2}$$
, $C_1 = \frac{f'A}{s}$, $j_1A = \frac{n}{a^2} \frac{d}{dn} (Aa^2)$, $j_2A = e \frac{dA}{de}$, $j_3A = k \frac{dA}{dk}$. (35);

$$\mu_{2} = -\left[\overline{2}\cdot1720\right]j_{1} + \left[2\cdot0603\right]j_{2} - \left[\overline{1}\cdot2911\right]j_{3}, \mu_{3} = +\left[\overline{3}\cdot5733\right]j_{1} - \left[\overline{1}\cdot2560\right]j_{2} + \left[1\cdot6109\right]j_{3}$$
 (37)

then the equations of variations are

$$\begin{split} \frac{\delta n}{n} &= \lambda_1 C_1 \cos \left(qt+q'\right) \,, & \delta w_1 &= \left(\lambda_1 C + j_1 C_1\right) \sin \left(qt+q'\right) \,, \\ \frac{\delta c_2}{n a^2} &= + \left[\overline{\mathbf{1}} \cdot \mathbf{5} \mathbf{1} \, 8 \, \mathrm{o} \mathbf{1}\right] i_2 C_1 \cos \left(qt+q'\right) \,, & \delta w_2 &= \left(\lambda_2 C + \mu_2 C_1\right) \sin \left(qt+q'\right) \,, \\ \frac{\delta c_3}{n a^2} &= + \left[\overline{\mathbf{1}} \cdot \mathbf{5} \mathbf{1} \, 8 \, \mathrm{o} \mathbf{1}\right] i_3 C_1 \cos \left(qt+q'\right) \,, & \delta w_3 &= \left(\lambda_3 C + \mu_3 C_1\right) \sin \left(qt+q'\right) \end{split} \end{split}$$

If it be desired to find δe , $\delta \gamma$, they can be obtained from

$$\delta e = -\left[1.2823\right] \frac{\delta c_2}{na^2} + \left[3.43\right] \frac{\delta c_3}{na^2} + \left[3.7452\right] \frac{\delta n}{n}, \quad \delta \gamma = -\left[.7460\right] \frac{\delta c_3}{na^2} - \left[\overline{1}.2232\right] \frac{\delta c_2}{na^2} + \left[\overline{3}.8812\right] \frac{\delta n}{n}$$
 (39)

These formulæ are not easily comparable with those of Hill,* Radau,† or Newcomb,‡ because I use derivatives with respect to n on the assumption that A' is expressed in terms of n, c_2 , c_3 , while they suppose that the coefficient is expressed in terms of n, c, γ . The chief gain here is the avoidance of the doubtful derivative dc_2/dn , which in my method is certain to the degree of accuracy required; and further, the method in Sect. (iii) of finding the n-derivatives is more simple with the system n, c_2 , c_3 than with the other system. The derivative on which nearly all coefficients depend is $\frac{dc_1}{dn} = -\beta a^2$, and this is found accurately. The comparison, however, can be made for all terms except those in δw_i involving C_1 : this has been partly done.§

the same for all the direct perturbations of a given planet; for all indirect perturbations; they have two values for terms dependent on the motion of the ecliptic; and three values for terms depending on the figure of the Earth. The numbers λ_1 , λ_2 , λ_3 , μ_2 , μ_3 are the same for a particular Moon argument in a given class of perturbations; the first and third terms of μ_2 and the first and second terms of μ_3 can nearly always be neglected. Only two numbers, C, C_1 , have to be computed for each coefficient required, and one of these is generally very small.

The most important particular cases are:-

- (a) $i_1 = i_2 = i_3 = 0$. Then $\delta n = \delta c_2 = \delta c_3 = 0$ and $\lambda_i C = 0$ in the δw_i .
- (b) Terms of long period in which $i_1 \neq 0$. The portions depending on C_1 are very small.
- (c) Terms of short period approximating to a month or less. The portions depending on C are usually small compared with those depending on C_1 , and it is rarely necessary to compute δc_2 , δc_3 , owing to the theorem in the next section; δn is very small.
- (d) Terms depending on w_2 or w_3 , but not on w_1 . These are much the most troublesome to compute, because δc_2 , δw_1 , δw_2 , or δc_3 , δw_1 , δw_3 , may produce terms of the same order in the Moon's coordinates. But even here δn is usually insensible, and the theorem given in the next paragraph is almost exactly satisfied, so that the computations reduce to finding δw_1 , δw_2 (and δc_2 as a test only), or δw_1 , δw_3 (and δc_3 as a test).
 - 281. Substitution of the elements in the coordinates.—We have, for the longitude,

$$\delta V = \delta w_1 + \left(\frac{dV}{dw_1} - 1\right) \delta w_1 + \frac{dV}{dw_2} \delta w_2 + \frac{dV}{dw_3} \delta w_3 + \frac{dV}{dn} \delta n + \frac{dV}{dc_2} \delta c_2 + \frac{dV}{dc_3} \delta c_3 \qquad . \tag{40}.$$

The terms arising from the first in this expression, δw_1 , are called *primary*; those from the others, that is, from the periodic terms, secondary. All terms in latitude are secondary, and there are scarcely any sensible terms in parallax.

^{*} Wosh. Astr. Papers, vol. iii., and Coll. Works, vol. ii. p. 336.

[†] Ann. Obs. Paris, vol. xxi. § A.P.E., p. 10; Monthly Notices, vol. lxviii. p. 167.

Carnegie Inst. Publ., No. 72. | A.P.E., p. 37.

Since δn is rarely sensible, it is sufficient to obtain dV/dn from Delaunay's * final results. The values of dV/dc_2 , dV/dc_3 are rarely required, except for the purposes of a test, owing to the following

282. Theorem.†—If δw_2 be confined to the term $\mu_2 C_1 \sin(qt+q')$ and a coordinate λ to the term $p \sin(i_2'w_2+\psi')$, where ψ' is independent of w_2 and i_2' has the same sign as i_2 , and $i_2' \neq 0$, $i_2 \neq 0$, then the variation of the coordinate λ due to δw_2 , δc_2 is

$$\frac{d\lambda}{dc_2}\delta c_2 + \frac{d\lambda}{dw_2}\delta w_2 = \mu_2 C_1 p i_2^{\ '} \sin\{qt+q'-i_2^{\ '}w_2-\psi'\} \ . \label{eq:constraint}$$

That this theorem is true when we neglect all but the lowest power of e present in the coefficients and when δn is negligible is immediately seen. For, in such cases, $j_2 = |i_2|$, δc_2 depends on dR/dw_2 , and δw_2 on dR/dc_2 . But it appears to hold even more accurately. An exactly similar theorem holds for δc_3 , δw_3 , and the terms depending on w_3 in a coordinate. In the case of the principal term in latitude due to the figure of the Earth it holds within one-tenth of one per cent. of the whole.

Section (v). Numerical Values of Functions of the Lunar Coordinates.

283. These functions are chiefly products of the second order in u, s, z. The computation of them by multiplications of series is quite like those necessary in previous chapters, and indeed the great majority of them had been obtained in the solution of the main problem. The formation of the derivatives with respect to n, e, k has been developed in previous sections. It is understood that the n derivatives are formed with

$$j_1C$$
. char. $=\frac{n}{a^2}\frac{d}{dn}(Ca^2 \cdot char.)$,

where C is any one of these coefficients (given a numerical value here) expressed as a function of n, c_2 , c_3 , except in the case of the figure of the Earth terms which are formed with j_1nC . char. $=d(Cn^2 \cdot \text{char.})/dn$, and the case of terms due to the motion of the ecliptic which are formed with $j_1a^2C \cdot \text{char.} = d(na^2C \cdot \text{char.})/dn$. The few coefficients where an exact computation of these latter forms was necessary are given; in general, these derivatives were not needed, or their values could be set down from the known principal term in the literal expansion of the coefficient.

The values of $(a/r)^3$, $(a/r)^5$ needed for the figure of the Earth terms are obtained directly from the numerical values of a/r in § 266, Chap. IX. These are simple to compute for the terms needed, owing to the rapid convergence of the parallax terms. The formation of the derivatives has been explained in § 277.

284. The values of V, U needed to find δV , δU are obtained directly from the results of Chap. IX., after division of the coefficients there given by 206265. The fact that δn is always small, combined with the theorem of § 282, and the expressions in § 279 of δe , $\delta \gamma$ in terms of δe_2 , δe_3 , make the computation of the derivatives of V

^{*} Mém. de l'Acad. d. Sc., vol. xxix. chap. 9.

with respect to e, γ unnecessary; they can, however, be found from the results of Sect. (v), Chap. IX.. if needed. The value of dV/dn so far as it is wanted is given by

 $n\frac{dV}{dn} = +\left[\overline{2}.0465\right] \sin l - \left[\overline{2}.4669\right] \sin (2D - l) - \left[\overline{2}.3965\right] \sin 2D. \qquad (41).$

285. The coefficients M_i .—These are defined by the following equations, in which θ is one of the angles and M_i the corresponding coefficient in the expansions of the functions set down. Summations for all such terms constitute the complete values of the functions.

According to the previous notation, V, V' are the ecliptic true longitudes of the Moon and Sun, $r^2 = us + z^2 = \rho^2 + z^2$, T = the mean longitude of the Sun, etc. Then

$$\begin{split} \frac{a'^2}{r'^2} \, \frac{r^2 - 3z^2}{a^2} &= 2 M_1 \cos \theta \,, \quad \frac{a'^2}{r'^2} \, \frac{\rho^2}{a^2} \, \cdot \frac{\cos}{\sin} \, 2 (V - V') = \frac{M_2 \cos}{M_3 \sin} \, \theta \,, \quad \frac{a'^2}{r'^2} \, \frac{z\rho}{a^2} \, \cdot \frac{\cos}{\sin} \, (V - h'') = -\frac{M_4 \sin}{M_4 \cos} \, \theta \,, \\ \frac{a'^3}{r'^3} \, \frac{\rho(r^2 - 5z^2)}{a^2} \, \cdot \, \frac{\cos}{\sin} \, (V - V') &= \frac{M_6 \cos}{M_7 \sin} \, \theta \,, \quad \frac{1}{3} \, \frac{a'^3}{r'^3} \, \frac{\rho^3}{a^3} \, \cdot \, \frac{\cos}{\sin} \, 3 (V - V') = \frac{M_8 \cos}{M_9 \sin} \, \theta \,, \\ \frac{a'^3}{r'^3} \, \frac{z(r^2 - \frac{5}{3}z^2)}{a^3} \, \cdot \, \frac{\cos}{\sin} (V - h'') &= -\frac{M_{10} \sin}{M_{10} \cos} \, \theta \,, \quad \frac{a'^3}{r'^3} \, \frac{z\rho^2}{a^3} \, \cdot \, \frac{\cos}{\sin} \left(2 \, V - V' - h'' \right) = -\frac{M_{12} \sin}{M_{12} \cos} \, \theta \,. \end{split}$$

For computation purposes these transform into

$$\begin{split} \frac{a'^2}{r^{72}} & \frac{us - 2z^2}{\mathbf{a}^2} = M_1(e^{\theta_1} + e^{-\theta_1}) \,, \quad \frac{a'^2}{r'^2} & \frac{u^2}{\mathbf{a}^2} e^{2(\mathbf{T} - V')\iota} = \frac{1}{2} (M_2 \pm M_3) e^{\pm \theta_1} \,, \quad \frac{a'^2}{r'^2} & \frac{z\iota \cdot u}{\mathbf{a}^2} e^{(\mathbf{T} - h'')\iota} = M_4 e^{\theta_1} \,, \\ & \frac{a'^3}{r'^3} & \frac{u(us - 4z^2)}{\mathbf{a}^2} e^{(\mathbf{T} - V')\iota} = \frac{1}{2} (M_6 \pm M_7) e^{\pm \theta_1} \,, \quad \frac{1}{3} & \frac{a'^3}{r'^3} & \frac{u^3}{\mathbf{a}^3} e^{3(\mathbf{T} - V')\iota} = \frac{1}{2} (M_8 \pm M_9) e^{\pm \theta_1} \,, \\ & \frac{a'^3}{r'^3} & \frac{\iota z \cdot (us - \frac{2}{3}z^2)}{\mathbf{a}^3} e^{(V' - h'')\iota} = M_{10} e^{\theta_1} \,, \quad \frac{a'^3}{r'^3} & \frac{uz \cdot u^2}{\mathbf{a}^3} e^{(2\mathbf{T} - V'' - h'')\iota} = M_{12} e^{\theta_1} \,. \end{split}$$

No values for M_{10} , M_{12} are given below, as there were no terms large enough to make their accurate computation necessary. The computations of these coefficients from the results given are quite simple. Besides the operations already mentioned, there are multiplications by a'^2/r'^2 , $(a'^2/r'^2)\cos 2V'$, etc., but the simplicity and brevity of these processes make further detail unnecessary.

286. The coefficients marked with a dagger (†) in the following tables include characteristics of two orders higher than the principal characteristic, and are therefore fully accurate to four significant figures. All other coefficients were sufficiently accurate with the part depending only on the principal characteristic.

287. Coefficient of $\zeta^{\theta+2i} \times characteristic = coef.$ of $\zeta^{-\theta-2i} \times char.$, in

			$\frac{us - 2z^2}{a^2}$		$\frac{n}{a^2}$	$\frac{d}{dn}(us - 2z^2)$	
Char.	θ	i = 0	$i = \mathbf{r}$	i = -1	i = 0	i=1	i=-1
r	0	+ '99262†	- '00701†	- '00701†	-1.32383‡	+ .02538+	+ .02538‡
e'	\mathbf{m}	+ '00787†	+.00410,	- :02992†	- 0240 †	- :0151 †	+ '1140 †
e'^2	2m	+ .0101 +	+ .0002 ‡	- '0878 †	- '022	.000	+ '354
e	e	- '49073†	- '00262†	085814	+ '5925	0008	+ '2220
ee'	c + m	+ 1455 †	+ '0016 †	- '2090 †	- '4112	0040	+ '5163
ee'	e - m	- ·1829 †	- *0088 †	+ .0338 +	+ .2610	+ '0348	+ .0231
ee'^2	c + 2m	+ '0984		- '4034	- '264	100.+	+ .001
ee'^2	c - 2m	- '1817	0282	+ .5000	+ .601	+.119	- ·756
ee'^3	c + 3m	+ .01		85			
ee'^{3}	c - 3m	+ .09	+:28	+ .04			
e^2	20	0918	- '0007	+ 0758	+ '0986	+ .0008	2228
e^2e'	2c + m	+ '0371	+. '0008	+ 1794	- ,100	003	- '440
e^2e'	2e - m	- '0460	0032	+ '0027	+ .131	+ '012	177
k^2	2g .	+ 2.9897	+ .0000	- '2062	- 2*9533	0310	+ '4638
k^2e'	2g + m	- ,1005	- '0057	5989	+ .018	810.+	+1.203
k^2e'	2g – m	+ .0982	+ '0409	+ '2296	+ .019	-145	- '526
			$-\frac{2z^2}{a^2}$			$\frac{n}{\mathbf{a}^2} \frac{d}{dn} (-2z^2)$	
1	0	00803	+ .00028	+ '00028	+ .00800	- *00064	- '00064
e'	m	- '00005	- '00033	+ .00083	+ .0001	+ '0007	- '0021
е	C	+ '00386	+ .00014	+ .00029	- '0034	:0030	0022
ee'	c + m	- '0014	- '0002	+ .0007	1		
ee'	e - m	+ *0012	+ '0004	.0000	κ		
k^2	2g	+ 1.9997	+.0000	- '1479	- 1.9888	0208	+ '3396
k^2e'	2g + m	- '0646	0038	- '4377	- '012	+,015	+1.119
k^2e'	2g-m	+ .0762	+ .0273	+ .1908	- '020	596	- '376
			$\frac{d}{de}\left(\frac{us-2z^2}{a^2}\right)$		${ m k} rac{d}{d{ m k}}$	$\left(\frac{us - 2z^2}{a^2}\right) = -$	$\frac{6z^2}{a^2}$
1	0	+ '00922	00057	00024	with sufficient		on for terms
α'	m	± '00782	1.1000.12	*00×##	not containing	argument 2g.	

For other arguments,

2 m

$$\mathrm{e}\frac{d}{d\mathrm{e}}\!\!\left(\!\frac{us-zz^2}{\mathrm{a}^2}\!\right)\!=\!\frac{us-zz^2}{\mathrm{a}^2}\!\times\!\mathrm{index}\ \mathrm{of}\ \mathrm{e}\ \mathrm{in}\ \mathrm{char.,}$$

with sufficient approximation.

not containing argument 2g.

$$k \frac{d}{dk} \left(\frac{us - 2z^2}{a^2} \right) = \frac{us - 2z^2}{a^2} \times \left(\text{index of } k \text{ in char.} \right)$$

for terms containing argument 2g.

288. Value of $\frac{1}{a^2}u^2\zeta^{-2}$. Coefficient of $\zeta^{\theta+2i} \times characteristic$.

**	0	i=2	<i>i</i> == 1	i = 0	i = -1	i = -2
Char.	θ	نيز مست)	+ '0043†	+ '9879†	- ·o140†	+.0001‡
1	0		- '0034†	- ·1860†	- 0612†	+ .0006
e'	m	L to 0.00 %	+ .01854	+ '1961†	+ '0056†	'0001†
e'	– m	+ '0002†	- '0026†	- '1039†	- '1817†	+ .0031+
e'^2	2 M			+ '1535†	- '0066†	. 5
$e^{\prime 2}$	– 2 m	+ '0013†	+ .02234	+ '4979†	- '2982†	+ '0024†
e	С	+ '0001 †	+ .0046‡		+ '0123†	1
e	– c	+.0010	+ 1072†	- 1.4933‡	_	+:0167
ee'	c + m		0039	- '2342	- '7475 - '0090	1 0107
ee'	– c – m	+ .0024	+ '3234	+ .1403		- ,0010
ee'	c-m	+ .0003	+ .0189	+ .3030	+ '0499	0019
ee'	-c+m	0009	0281	- 3106	+ '0576	1.10.5
ee'^2	c + 2m			11	- 1.53	+ '07
$\mathrm{e}e^{\prime2}$	-e-2m	+.03	+ .75	+ .13		
ee'^2	c - 2m		+ .0 6	+ '34	+ '57	
ee'^2	-c + 2m		50	- '35	+ '18	
e^2	20		+ .0033	+ '2507	- '2069	+ .0229
e^2	- 2C	+'0112	- :0519	+ '6234	- '0002	
e^2e'	2c + m			- ,19	- ' 45	+.13
e²c′	- 2c - m	+.06	12	- '24		
e^2e'	2c - m		+ '02	+ '25	ıı	01
e^2e'	- 2c + m	- °OI	+ .07	+ '37		
k^2	2g			+ .0030	1891	+ .0033
k^2	- 2g	+ '0005	+ 0896	+ 1.9743	- '0142	
k^2e'	2g + m				- '41	+ '02
k^2e'	- 2g - m		+ :23	+ '28	+ .01	
k^2e'	2g – m		- 16	- '34	- '06	
k^2e'	- 2g + m				+ '24	01
				Value of $\frac{\mathrm{k}}{\mathrm{a}^2} \frac{d}{d\mathrm{k}} (u^2 \zeta^{-2})$		
1	0		00002	- '00806	+ '00073	
e'	\mathbf{m}		+.0001	+ .0046	+ '0022	
e'	– m		- '0002	0050	- '0006	
e'2	2m			+ '002	+ .002	
$e^{'2}$	- 2 m		- '001	- .o o4		

For other arguments, multiply by power of k in characteristic.

Value of $\frac{n}{a^2} \frac{d}{dn} (u^2 \zeta^{-2})$. Coefficients of $\zeta^{\theta+2i} \times characteristic$.

Char.	θ	i = 2	i=1	i=0	i=-1	i = -2						
I	0	- °00014†	- ·01454 [†]	- 1.31548†	+ '05410†	- . 00040‡						
e'	\mathbf{m}	+.0002 †	+ .0104 +	+ 3552 †	+ `2420 †	0040 ‡						
$e^{'}$	- m	0014 †	0686 †	- ·3784 †	- ·0254 †	+ .0006 ‡						
e'^2	2 m			+ .119	+ .820	- '022						
e'^2	- 2m	- *002	- 194	- '234								
е	c	- '0002	0133	- '6255	+ .7981	'0122						
е	- C	0039	- '2956	+ 1.8414	0450	+.0001						
ee'	e + m	+.0004	+ .0164	+ '5468	+ 2.0105	- '0842						
ee'	- c - m	0304	- •9260	6502	+ .0366	- '0002						
$\mathrm{e}e'$	c - m	- *0014	0738	8300	+ '3428	+ .0028						
ee'	-c+m	+ .0030	+ .0148	+1.3722	- '2232							
ee'^2	c + 2m			+ .100	+ 4*344	- '364						
ee'^2	-c-2m	- 140	-2.292	919	+ '004							
ee'^2	c - 2m		272	- 1.064	- 2.092	+ .030						
ee'^2	-c + 2m	+.008	+ .784	+1.620	- '748							
e^2	2 C	- '0002	0119	2846	+ '5452	- 1028						
e^2	- 2c	-·o458	+ '1216	- '7044	+ .0009							
e^2e'	2c + m	i.	+ .019	+ '458	+1.130	- '540						
e^2e'	-2c-m	268	+ '348	+ '740								
e^2e'	2c - m	002	040	676	+ '976	- '022						
$e^{2}e'$	-2c+m	+ .008	- '270	- r.306	+ .009							
k^2	2 g		- '0002	0076	+ '3332	- '0112						
k^2	- 2g	- '0022	- '1502	- 1.9120	+ .0456	- '0002						
$\mathbf{k}^2 e'$	2g + m			+ .004	+ .726	- *070						
$\mathrm{k}^2 e'$	- 2g - m	014	- '374	- '484	- '020	+ .005						
k^2e'	2g - m			- '008	- *504	+ '022						
k^2e'	-2g+m	+ '004	+ '366	+ .680	+ .194	+ '002						
	Value of $rac{\mathrm{e}}{\mathrm{a}^2} rac{d}{d\mathrm{e}} (u^2 \zeta^{-2})$											
I	0	+ .00003	+ '00249	- '01584	+ '00612							
e'	m		- '0021	0000	+ '0176							
e'	- m	+ .00003	+ .0085	+ '0025	0028							
e'^2	2m		002	009	+ '040							
o'^2	- am	7.001	+ '020	+ '004	- '012							

For other arguments, multiply by power of e in characteristic.

289. Coefficient of $\zeta^{\theta} \times characteristic$ in

		$\frac{u\zeta^{-1} \cdot z\iota}{a^2} \frac{n}{a^2} \frac{d}{dn} (u\zeta^{-1} \cdot z\iota)$
Char.	θ	Coef.
k	g	+ .698 -1.1946
k	- g	- 1.0003
k^3	– g	+ 1.39 } + 1.1981‡
$\mathrm{ke^2}$	– g	203
k	g + 2	+ .00300108
k	-g-2	+ .00720246
k^3	-g-2	032
$ m ke^2$	-g-2	+ '063
k	g - 2	- '0457 + '1213
k	-g + 2	+ .03520854
$ m ke^2$	-g+2	+ .027
ke	g + c	+ .203
ke	– g – c	+ '496
ke	g - e	- 1 .487
ke	-g+c	÷ ·480
ke	g + c - 2	280
ke	-g-c+2	+ .036
ke	g - c + 2	+ .108
ke	-g+c-2	+ .088
ke	g - c - 2	+ .056
ke	-g+c+2	+ .012
ke'	g + m	- '1082 + '1439
ke'	g + m - 2	- '1430 + '6456
ke'	g - m	+ .11291222
$\mathrm{k}e'$	g - m - 2	+ .04191802
ke'	– g – m	- ·0835 + ·1745
ke'	-g-m+2	+ .10665852
ke'	-g + m	+ .01181384
ke'	-g+m+2	- '0433 + '1084
ke'	-g+m-2	+ .02991022
ke^{2}	-g - 2c - 2	- '0766
ke^2	g + 2c - 4	+ .0188

290.
$$Coef$$
. of $\zeta^{\theta} \times char$. in

$$\begin{pmatrix} a \\ \bar{r} \end{pmatrix}^{5}$$

Char. $\pm \theta$ Coef.

I 0 + I \cdot 0046

 e^{2} 0 + I \cdot 286

 k^{2} 0 \cdot 00

I 2 + \cdot 01794

 e^{2} 2 + \cdot 48 I

 k^{2} 2 \cdot 00

 e c + I \cdot 262

 e c + 2 + \cdot 0427

 e c - 2 + \cdot 2504

 e c - 4 + \cdot 08 I

 e^{2} 2c + I \cdot 244

 e^{2} 2c - 2 + \cdot 2208

 e^{2} 2c - 4 + \cdot 048

 k^{2} 2g \cdot 0000

 k^{2} 2g - 2 - \cdot 039

 $Coef$. of ζ^{θ} in

$$\frac{a^{5}(r^{2} - 3z^{2})}{r^{5}a^{2}}$$

0 + \cdot 994

2 + \cdot 0132

c + \cdot 0823

c - 2 + \cdot 0132

c + \cdot 0823

c - 2 + \cdot 0132

c + \cdot 0823

Coef. of $\zeta^{\phi} \times char$. in

$$\frac{u^{2}}{a^{2}} \begin{pmatrix} a \\ r \end{pmatrix}^{5}$$

Char. θ

I 2 + \cdot 9915

 e c - \cdot 0697

 e - c + 2 - \cdot 268

 e c + 2 + I \cdot 723

 e^{2} - 2c + 2 + \cdot 004

 k^2

-2g+2

+ 2.013

$$n^{2}Ck = Coef. \ of \ \zeta^{-g} \ in$$

$$\frac{n^{2} \cdot u\zeta^{-1} \cdot z\iota}{a^{2}} \left(\frac{a}{r}\right)^{5}$$

$$C = -1 \cdot 0062 \ \dagger$$

$$j_{1} = -2 \cdot 1566 \ \dagger$$

$$j_{2} = + \cdot 01217 \dagger$$

$$j_{3} = + \cdot 9920 \ \dagger$$

$$291. \ Coefficients \ of$$

$$\zeta^{\theta} \ in$$

$$\frac{2u\zeta^{-1} \cdot D(\iota z)}{ka^{2}(1+m)}$$

$$-\frac{(D+1+m)(u\zeta^{-1} \cdot \iota z)}{ka^{2}(1+m)}$$

$$\theta \quad Coef.$$

$$g + \cdot 003$$

$$-g + 2 \cdot 0052 \dagger$$

$$g+2 - \cdot 001$$

$$-g-2 + \cdot 006$$

$$g-2 + \cdot 0529$$

$$-g+2 + \cdot 0017$$
With factor $na^{2}k$
and argument $\theta = -g$

$$j_{1} - \cdot 170 \dagger$$

$$j_{2} + \cdot 00026$$

$$j_{3} + 1 \cdot 0000 \dagger$$

292. Values of M_i , j_1M_i , j_2M_i , j_3M_i .

To obtain the values, each coefficient is to be multiplied by its characteristic. M_1 , M_2 are unaltered, and M_3 changes sign when the angle changes sign. Coefficients followed by the mark \dagger have characteristics of two orders higher included.

Char.	Angle.	M_1	M_2	M_3	j_1M_1	$j_1 M_2$	$j_1 M_3$
I	0	+ '99276†	- '0280†	0	- 1.3240‡	+ .1080+	0
e'	l'	+ 1.00024	- '0835†	- '0107†	- 1·3478†	+ '3245†	+ .0209‡
e'^2	$_2l'$	+1.594	- '201†	040‡	- 1.401	+ .852	+ '302
e'^3	3 <i>l</i> ′	+ 1.65			- 2.51	+ 2 0	0.0
е	l	- '49080†	- '2862†	3108‡	+ '5926	+ '7523	+ .8423
$\mathrm{e}e^{\prime}$	l + l'	- '3542†	- '421	- . 477	+ .1813	+1'1117	+1.3082
$\mathrm{e}e'$	l-l'	- ·6736†	- ' 799	889	+1.1544	+ 2.5564	+ 2 9124
ee'^2	l + 2l'	- '370	- '73	83	+ .065	+ 2.121	+ 2.209
ee'^2	l-2l'	- '978	- 1.10	- 1.34	+1.904	+ 3.295	+ 4.643
e^2	2/	- '0618	2069	- '2065	+ .0986	+ '5453	+ '5441
e^2e'	2l + l'	- '0247	- '24	- '24	001	+ .286	+ '582
e^2e'	2l-l'	- 1078	- '73	- '73	+ '230	+2.614	+ 2.604
I	2 D	- '00701†	+ '9870†	+ '9868†	+ '0254†	- 1'3144†	- 1.3136‡
e'	$_{2}\mathbf{D}+l^{\prime}$	- '00291†	- 1:1735†	- 1.1739‡	+ '0103†	+ 1.6697†	+ 1.6709†
e'	$_{2}\mathrm{D}-l^{\prime}$	- '03693†	+ 3.1571	+3.12614	+ '1394†	- 4.3241†	- 4°3169†
e'^2	$_{2}\mathrm{D}+_{2}l^{\prime}$	- '0042†	+ .0826‡	+ .08184	+ '017	- '239	- '239
e'^2	2D - 2l'	- '1265†	+7.1584†	+7.1534†	+ .200	- 9.928	- 9.892
е	l - 2D	- '08582†	- 1·4897†	+1.4944‡	+ '2220	+1.8274	- 1.8518
$\mathbf{e}e'$	l - 2D + l'	- •2948†	-4.32 I	÷ 4.349	+7.383	+4.797	-4'941
$\mathbf{e}e'$	$l-2\mathbf{D}-l'$	- '0520†	+1.188	- 1.148	+ '2751	201	+ '440
ee'^2	l - 2D + 2l'	- '7197	911	+9.51	+1.785	+ 9.01	- 9.67
ee'^2	$l-2\mathrm{D}-2l'$	- '0716	03	+ '05	- '425	+ '24	31
e	l + 2D	- '0026	+ '4972	+ '4972	8000' -	- '6248	6246
ee'	l + 2D + l'	0010	- '732	- '732	- '0078	+1.1419	+1.1414
ee'	l + 2D - l'	- '0114	+1.492	+1.795	+ '0340	- 2.7040	- 2.7038
e^2	2l - 2D	+ '0758†	+ '6487†	- '5969†	- '2228	8064	+ .6010
e^2e'	2l - 2D + l'	+ '2552	+ 1.73	- 1.23	663	- 1.81	+ •93
e^2e'	2l - 2D - l'	+ .0785	18	+ '32	'400	- '93	+ '27
k^2	2F	+ 2.9901	- '2001	- 1717	- 2.9549	+ '3785	+ '2873
k^2e'	2F + l'	+ 2.8805	- '25	19	- 2.937	+ .209	+ '275
k^2e'	2F-l'	+3.0882	- '37	- '27	- 2.939	+ .645	+ '349
k^2	2F-2D	- '2062†	+ 1.9756†	- 1.9690‡	+ '4637	- 1.9243	+ 1.9019
k^2e'	$_2\mathrm{F}2\mathrm{D} + l'$	- '8051	+6.55	- 6.18	+ 1.967	- 6 ·2 82	+6.164
k^2e'	2F - 2D - l'	- '1653	- 2,31	+ 2.31	319	+ 2.583	- 2.605

Values of M_i , j_1M_i , j_2M_i , j_3M_i —continued.

Char.	Angle.	$j_2 M_1$	$j_2 M_2$	$j_2 M_3$	$j_3 M_1$	$j_3 M_2$	j_3M_3
ī	0	+ '00922	+ '01223	0	02412	+ '00146	0
e'	ℓ'	+ '01105	+ '02710	- '00403			
e'^2	$_2l'$	+ .0124	+ '0413	+ .0032			
I	$_2\mathrm{D}$	- '00057	- '01583	'01583	4 .0008	0081	0081
e'	$_2\mathrm{D}+l'$	- '00014	+ .0682	+ .0682			
e'	$_{2}\mathrm{D}-l^{\prime}$	- '00235	·• •• •• •• •• •• •• •• •• •• •• •• •• •	- '04490			
e'^2	2D + 2l'	+ .0010	+ '0004	+ .0004			
$e^{'2}$	2D - 2l'	- '0067	0918	0019			
е	1				+ .0110		

Char.	Angle.	M_1	M_2	M_3	M_6	M_{7}	M_8	M_{9}
a_1	D	+ '1132	+ '3501	+ ·3681	+ '972	+ 1.000	- '007	- '007
a_1e'	D + l'				+ .380	+ '435	- '194	192
a_1e'	D - l'				+ 2.202	+ 2.639	- '029	- '029
a_1 e	l - D	+ .00396	- '31363	+ '26736	- 1.464	+1.003	+ '0139	0088
$a_1 e e'$	$l-\mathrm{D}+l'$				-3.53	+ 2.35	+ '056	033
$a_1 \mathbf{k}^2$	3D - 2F	+ .0921	+ '977	+ '983	- 1 57	1.69	+ '980	+ '980
$a_1\mathbf{k}^2e'$	$3D - 2F + \overline{l}'$				+ '62	+ .62	- 3.48	- 3.48
$a_1 e^2$	D-2l	- '1387	+ '179	- '131				
$a_1 e^3$	3/-2D	+ .02080	- '01282	+ '06138				
$a_1 e^3$	4D - 3l	00226	02460	- '02394				
$a_1 \mathrm{ek}^2$	l-2F	- 3.497	+ '2952	- '6828				
$a_1 e k^2$	$_{4}{ m D} - l - {}_{2}{ m F}$	4 .01108	+ .01113	+ .01190				
$a_1 k^4$	4D - 4F	·00	0169	- '0165				

Char,	Angle.	M_4	$j_1 M_4$	Char.	$\mathbf{Angle}_{m{\cdot}}$	M_4
k	$2w_1-w_3-h^{\prime\prime}$	+ 1.004	- 1.162	ek	$w_1+w_2-w_3-h^{\prime\prime}$	- 1.49
ke'	$2w_1-w_3-h^{\prime\prime}+l^\prime$	+ .896	- I 'O2 I	ek	$w_1-w_2+w_3-h^{\prime\prime}$	+ '49
ke'	$2w_1-w_3-h^{\prime\prime}-l^\prime$	+1,118	- 1.340	k^3	$-2w_1 + 3w_3 - h''$	- '989
k	$oldsymbol{w}_3 - h^{\prime\prime}$	- 1.0040‡	+1.19814	e^3k w	$1 + 3w_2 - w_3 - h'' - 2$	T - '0154
ke'	$w_3 - h^{\prime\prime} + l^{\prime}$	- 1.087‡	+ 1.343 †			
ke'	$w_3 - h^{\prime\prime} - l^\prime$	- '932†	+1.030‡			
k	$2\mathrm{T}-\imath v_3-h^{\prime\prime}$	- '0457	+ 1213			
ke'	$2\mathbf{T}-w_3-h^{\prime\prime}+l^\prime$	- '1887	+ '7669			
ke'	$2\mathrm{T}-w_3-h^{\prime\prime}-l^\prime$	- '0041	- '0592			
k	$2D + w_3 - h^{\prime\prime}$	+ .0355	- '0857			
ke'	$2\mathrm{D} + w_3 - h^{\prime\prime} + l^\prime$	+ '1421	- '3682			
ke'	$2\dot{\mathrm{D}} + w_3 - h^{\prime\prime} - l^\prime$	0048	+ '0227			

CHAPTER XI.

THE DIRECT ACTION OF THE PLANETS.

Section (i). The Disturbing Function.

293. Axes and Notation.—The value of the disturbing function and the equations of variations are the same whatever axes be chosen. For the expansion of the former I take for plane of xy the ecliptic of 18500, and for axis of x a line parallel to that joining the Earth and Sun, that is, a line parallel to the Earth's true radius vector on the assumption that the Sun moves in an elliptic orbit. With these directions, x, y, z, r will now represent the coordinates and distance of the Moon, ξ , η , ζ , Δ those of the planet, the Earth being the origin.

For the elliptic coordinates of the Earth and planet with the Sun in the focus, I take r', r'' (the distances); V', V'' (the true longitudes); T', T'' (the mean longitudes); ϖ' , ϖ'' (the longitudes of the perihelia); o, h'' (the longitudes of the nodes); o, γ'' (the sines of half the inclinations; e', e'' (the eccentricities); 2a', 2a'' (the major axes). All these longitudes are measured in the usual way, that is, from a *fixed* line in the plane of xy to the node, and then along the plane of the orbit.

The perturbations of the planet's orbit, like those of the Earth, are neglected in this chapter. In order that the motion of the Earth round the centre of mass of the Earth and Moon may be taken into account, the terms depending on a/α' in the disturbing function must be multiplied by the ratio of the difference of the masses of the Earth and Moon to their sum (Chap. I., §4); we must therefore use a_1a/α instead of a/α' (Chap. IX., §193), or, with sufficient accuracy, a_1 instead of α .

The masses of a planet and of the Sun are denoted by m'', m', and the mean longitudes of the planets, measured like the other longitudes, as follows *: Mercury, Q; Venus, V; Earth, T; Mars, M; Jupiter, J; Saturn, S; the other planets and the asteroids will not be considered in this chapter.

294. The Disturbing Function R and its Transformation.—From Chap. I., Sect. (i), we obtain, on changing from the Sun to a planet as the disturbing body,

$$\frac{R}{m''} = \frac{1}{\{(\xi - x)^2 + (\eta - y)^2 + (\xi - z)^2\}^{\frac{1}{2}}} - \frac{x\xi + y\eta + z\zeta}{\Delta^3}, \quad \Delta^2 = \xi^2 + \eta^2 + \zeta^2 \quad . \tag{1}$$

^{*} Mean longitudes are denoted by roman capitals.

[†] A.P.E., sect. ii., where the full details of the transformation will be found.

If we denote by $\partial/\partial Q$ the operator,

$$\frac{\partial}{\partial Q} = w_{\partial \xi}^{\partial} + y \frac{\partial}{\partial \eta} + z \frac{\partial}{\partial \zeta},$$

the expansion of R may be put into the form

$$\frac{R}{m''} = \left(\frac{\mathbf{I}}{2!} \frac{\hat{c}^2}{\hat{c}Q^2} - \frac{\mathbf{I}}{3!} \frac{\hat{c}^3}{\hat{c}Q^3} + \ldots\right) \frac{\mathbf{I}}{\Delta} \tag{2}$$

or, since $1/\Delta$ is a solution of Laplace's equation, so that

$$\frac{\hat{c}^2}{\hat{c}\xi^2} \cdot \frac{\mathbf{I}}{\Delta} = -\left(\frac{\hat{c}^2}{\hat{c}\xi^2} + \frac{\hat{c}^2}{\hat{c}\eta^2}\right) \frac{\mathbf{I}}{\Delta} \qquad . \tag{3}$$

into the form

$$\frac{R}{m''} = \left[\frac{1}{4} (r^2 - 3z^2) \left(\frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2} \right) + \frac{1}{4} (x^2 - y^2) \left(\frac{\partial^2}{\partial \xi^2} - \frac{\partial^2}{\partial \eta^2} \right) + xy \frac{\partial^2}{\partial \xi \partial \eta} + \left(x \frac{\partial}{\partial \xi} + y \frac{\partial}{\partial \eta} \right) z \frac{\partial}{\partial \zeta} + \text{terms of higher degree} \right] \frac{\mathbf{I}}{\Delta}$$
(4),

Now, in polar coordinates, we have

$$\xi = -r' + (\mathbf{1} - \gamma''^{2})r'' \cos(V'' - V') + \gamma''^{2}r'' \cos(V'' + V' - 2h''),
\eta = (\mathbf{1} - \gamma''^{2})r'' \sin(V'' - V') - \gamma''^{2}r'' \sin(V'' + V' - 2h''),
\zeta = 2\gamma''(\mathbf{1} - \gamma''^{2})^{3}r'' \sin(V'' - h'')
\Delta^{2} = \xi^{2} + \eta^{2} + \zeta^{2} = r''^{2} - r'^{2} - 2r'\xi.$$
(5),

Hence $\partial/\partial \xi = -\partial/\partial r'$, and if f be any function of $\xi^2 + \eta^2$ and ζ ,

$$\begin{split} \frac{\hat{c}f}{\hat{c}V'} &= -r'\frac{\hat{c}f}{\hat{c}\eta} - \xi\frac{\hat{c}f}{\hat{c}\eta} + \eta\frac{\hat{c}f}{\hat{c}\xi} = -r'\frac{\hat{c}f}{\hat{c}\eta}, \\ \frac{\mathbf{1}}{r'}\frac{\hat{c}^2f}{\hat{c}V'^2} &= \left(r'\frac{\hat{c}}{\hat{c}\eta} + \xi\frac{\hat{c}}{\hat{c}\eta} - \eta\frac{\hat{c}}{\hat{c}\xi}\right)\frac{\hat{c}f}{\hat{c}\eta} = r'\frac{\hat{c}^2f}{\hat{c}\eta^2} + \frac{\hat{c}}{\hat{c}\eta}\left(\xi\frac{\hat{c}f}{\hat{c}\eta} - \eta\frac{\hat{c}f}{\hat{c}\xi}\right) + \frac{\hat{c}f}{\hat{c}\xi} = r'\frac{\hat{c}^2f}{\hat{c}\eta^2} - \frac{\hat{c}f}{\hat{c}\eta'}. \end{split}$$

Hence

$$\frac{\hat{\sigma}^2}{\hat{\sigma}\xi^2} = \frac{\hat{\sigma}^2}{\hat{c}r'^2}, \quad \frac{\hat{c}^2f}{\hat{c}\eta^2} = \frac{1}{r'^2} \frac{\hat{c}^2f}{\hat{c}V'^2} + \frac{1}{r'} \frac{\hat{c}f}{\hat{c}r'}, \quad \frac{\hat{c}^2f}{\hat{c}\xi\hat{c}\eta} = \frac{\hat{\sigma}}{\hat{c}r'} \left(\frac{1}{r'} \frac{\hat{\sigma}f}{\hat{\sigma}V'} \right) \quad . \tag{6}$$

Further, since $(\partial^2/\partial \xi^2 + \partial^2/\partial \eta^2) f$ is a function of $\xi^2 + \eta^2$, ζ , only,

$$\frac{\hat{c}}{\hat{c}_{R}} \left(\frac{\hat{c}^{2} f}{\hat{c} \hat{c}^{2}} + \frac{\hat{c}^{2} f}{\hat{c} n^{2}} \right) = -\frac{\mathbf{I}}{r'} \frac{\hat{c}}{\hat{c} \Gamma'} \left(\frac{\hat{c}^{2} f}{\hat{c} \Gamma'^{2}} + \frac{\mathbf{I}}{r'^{2}} \frac{\hat{c}^{2} f}{\hat{c} \Gamma'^{2}} + \frac{\mathbf{I}}{r'} \frac{\hat{c} f}{\hat{c} \Gamma'} \right) \qquad . \tag{7},$$

and since we may differentiate each of the equations (6) with respect to ξ , that is, to -r', we can find all the derivatives of the third order with respect to ξ , η in terms of derivatives with respect to r', V'; and so on.

Again, by expressing Δ in polar coordinates, I have constructed the formula *

$$\frac{\hat{c}}{\hat{c}\zeta}\frac{\mathbf{I}}{\Delta} = -\frac{\gamma''}{(\mathbf{I} - \gamma''^2)^{\frac{1}{2}}} \frac{e^{\iota(V' - h'')}}{r'} \left\{ \frac{\hat{c}}{\hat{c}V'} + \frac{\mathbf{I}}{2\gamma''^2} \frac{\hat{c}}{\hat{c}h''} + \iota(\mathbf{I} - \gamma''^2) \frac{\hat{c}}{\hat{c}\gamma''^2} \right\} \frac{\mathbf{I}}{\Delta} \qquad . \tag{8},$$

which may be combined with the previous equations, since the left member of (8) shows that the right-hand member is a function of $\xi^2 + \eta^2$, ζ , and that its imaginary part is zero.

and therefore if $1/\Delta$ be expanded in terms of the elliptic elements of the Earth and the planet, the functions needed are all expressed as derivatives of $1/\Delta$ with respect to the elements present in the development. It is true that these derivatives are to be multiplied by $1/r'^2$ and that the lunar coordinates have to be transformed so as to be referred to the true instead of the mean place of the Sun; but the work needed to perform these two operations is very small, especially when compared with the labour of making developments of several different planetary functions, such as

$$\frac{1}{\Delta^3} - \frac{3\zeta^2}{\Delta^5}$$
, $\frac{\xi^2 - \eta^2}{\Delta^5}$, $\frac{\xi\zeta}{\Delta^5}$, etc.

295. The transformed Disturbing Function.—I omit the algebraical details necessary to follow out this method, so as to present the results in a form convenient for numerical application. The result is a form for the disturbing function expressed as a sum of products: the first factor in each product is a function of the Moon's coordinates, u, s, z, multiplied by a certain function of r', V'; the second factor consists of derivatives of $1/\Delta$ with respect to α' , T, h'', γ''^2 .

The notation for the first factors has already been given in § 285 of the last chapter. If an angle θ is present in the first factor, then the corresponding term is $M_i \cos \theta + \iota M_i \sin \theta$, where such constant factors have been taken out that the M_i may be numerical quantities.

296. For the second factors, let a term with argument ϕ in $1/\Delta$ be

$$\frac{\mathbf{I}}{\Delta} = P \cos \phi.$$

If i, i' be the multiples of T, 2h'' present in ϕ , the operators $\partial/\partial V'$, $\partial/\partial h''$ give rise to the factors i, i', and the cosine is changed to a minus sine.

Also P is of degree -1 in length, and may be expanded in the form f(a)/a', where a = a'/a'', or in the form f(a)/a'', where a = a''/a', according as the orbit of the disturbing planet is outside or inside that of the Earth. If, then, we put I = ad/da for a derivative with respect to $\log a$ only in so far as a occurs explicitly in P after P has been expressed in one or other of these two forms, we have:

For outer planets,
$$r'\frac{d}{dr'} = a\frac{d}{da} = I$$
, $a = \frac{a'}{a'}$, $P = \frac{1}{a'}f(a)$;
For inner planets, $r'\frac{d}{dr'} = -a\frac{d}{da} - 1 = -I - 1$, $a = \frac{a''}{a'}$, $P = \frac{1}{a'}f(a)$ (11) .

When we combine the two factors, we obtain the product of two cosines or two sines multiplied by a constant factor; this product is expressed as the cosine of the sum or difference of the two angles θ , ϕ . The notation for the planet coefficients is as follows:—

Let J_+ , J_- denote the operators

$$(\mathbf{1} - \mathbf{\gamma}^{"2}) \frac{\partial}{\partial \mathbf{\gamma}^{"2}} \pm \left(i + \frac{i'}{\mathbf{\gamma}^{"2}}\right),$$

and let i, i' denote the multiples of T, 2h'' present in ϕ .

For outer planets put

$$P_1 = (I^2 - i^2)P, \quad P_2 = \frac{1}{2}P_1 - IP + i^2P, \quad P_3 = -i(I - 1)P, \quad P_4 \pm P_5 = -(I \pm i)J_{\pm}P \quad . \tag{12}$$

$$\begin{array}{ll} P_6 \pm P_7 = (I-2\mp i)P_1\,, & P_8 \pm P_0 = (I\mp 3i-6)P_1 + 4({\bf 1}\pm i)(2\pm i)(I\mp i)P\,, \\ P_{10} \pm P_{11} = J_{\pm}(-P_1 + 2IP\pm 2iP)\,, & P_{12} \pm P_{13} = -J_{\pm}\{P_1 + (\pm 2i-2)IP + (2i^2\mp 2i)P\} \end{array} \right\} \ . \tag{13}$$

all the upper or all the lower signs in any equation being taken together.

The product of the pairs of factors gives for any term of argument $\theta \pm \phi$ in R,

$$\begin{split} R &= \frac{m''}{4m'} n'^2 \mathbf{a}^2 \cdot \alpha \alpha'' \bigg[M_1 P_1 + M_2 P_2 \mp M_3 P_3 - \frac{2\gamma''}{(\mathbf{I} - \gamma''^2)^3} M_4 (P_4 \pm P_5) \\ &+ \frac{1}{4} a_1 (M_6 P_6 \mp M_7 P_7 + M_8 P_8 \mp M_9 P_9) - \frac{\gamma'' a_1}{2(\mathbf{I} - \gamma''^2)^3} \big\{ M_{10} (P_{10} \pm P_{11}) + M_{12} (P_{12} \pm P_{13}) \big\} \bigg] \cos{(\theta \pm \phi)} \quad . \quad (\mathbf{14}), \end{split}$$

all the upper or all the lower signs being taken according as it is convenient to use $\theta + \phi$ or $\theta - \phi$.

For inner planets, we replace aa'' by a' in this formula, and I by -I-1 in (12), (13).

It is to be noticed that P_ia'' for outer planets and P_ia' for inner planets are numerical coefficients when the value of a has been substituted.

297. Method of computation of the coefficients in R.—The terms in R with suffixes 1, 2, 3 give rise to nearly all the sensible perturbations of the Moon's orbit. In the great majority of cases $M_2P_2 \mp M_3P_3$ is small compared with either of the two terms, and this is due to the approximate numerical equality of M_2 and M_3 and of P_2 and P_3 . It is therefore better (and the computations were so made) to use these two terms in the form

$$\frac{1}{2}(M_{2}\mp M_{3})(P_{2}+P_{3})+\frac{1}{2}(M_{2}\pm M_{3})(P_{2}-P_{3})$$
 ;

and then again one of these two expressions was generally small compared with the other. Another advantage of this form arose from the fact that it was sufficient to have M_2 , M_3 to four significant figures and P_2 , P_3 to six, instead of both to six. And, moreover, the near equality of P_2 , P_3 can be foretold by the theory, when it exists. A similar circumstance holds with the pairs with suffixes 4, 5; 6, 7; 8, 9; 10, 11; 12, 13.

There is not a large number of terms depending on the terms in R with suffixes 4, 5, fewer still with 6, 7, 8, 9, and none sensible with 10, 11, 12, 13. It did not seem necessary to carry the computations to the next term of R, depending on a_1^2 ; this coefficient gives a factor 6×10^{-6} compared with the first terms of R, and it gives rise to no arguments which are not present in the first terms.

Section (ii). The Computation of the Coefficients P_i.**

298. Leverrier's Expansion of $1/\Delta$.†—Leverrier's literal expansion in powers of the eccentricities and mutual inclinations, with coefficients depending on α and arguments on T, ϖ' , ϖ'' , h'', was used. Here the Earth is supposed to move in the plane of reference, and the notation is slightly different. I have, therefore, put in the development—

For Leverrier's symbols,

$$au$$
, au' , au' , λ , ω , e , ω , η

the symbols

$$h''$$
, h'' , T, T', $\ddagger \varpi''$, e'' , a'' , γ''

for inner planets, and have then interchanged the accents of a, w, e, T for outer planets.

Leverner's development contains functions of α through certain coefficients $\beta_{s,p}^{(i)}$, which are defined as follows. Put

$$\Delta_{\tilde{n}}^{2} = \mathbf{1} + \alpha^{2} - 2\alpha \cos \left(\mathbf{T} - \mathbf{T}''\right),$$

$$\frac{\alpha^{\frac{s-1}{2}}}{\Delta_{\tilde{n}}^{N}} = \frac{1}{2}\alpha' \sum_{i=-\infty}^{\infty} \beta_{s}^{(i)} \cos i(\mathbf{T} - \mathbf{T}''), \qquad \beta_{s,p}^{(i)} = \frac{\mathbf{1}}{p!} \alpha^{p} \frac{d^{p}}{da^{p}} \beta_{s}^{(i)}$$

$$(15).$$

Instead of β_s , he uses the letters A, B, C, D, \mathcal{A} , \mathcal{A} , according as $s = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2}, \frac{11}{2}$. I adopted the same notation, as well as the following:

$$\begin{split} E^{(i)} &= \tfrac{1}{2} \big(B^{(i-1)} + B^{(i)+1)} \big) \,, & G^{(i)} &= \tfrac{3}{8} \big(C^{(i-2)} + 4 \, C^{(i)} + C^{(i+2)} \big) \,, \\ H^{(i)} &= \tfrac{5}{16} \big(D^{(i-3)} + 9 \, D^{(i-1)} + 9 \, D^{(i+1)} + D^{(i+3)} \big) \,, & L^{(i)} &= \tfrac{3}{4} \big(C^{(i-2)} + C^{(i)} \big) \,, \\ S^{(i)} &= \tfrac{1}{16} \big(D^{(i-3)} + 3 \, D^{(i-1)} + D^{(i+1)} \big) \,, & T^{(i)} &= \tfrac{1}{16} \big(D^{(i-5)} + D^{(i-1)} \big) \,, \end{split}$$

to which the suffix p may be attached according to the previous definition. But I dropped the brackets round the indexes to the letters, since powers of these functions do not arise; and the indexes themselves were also dropped whenever they were all the same, equal to i, in a given equation.

values in most cases up to i=10, but they are needed much further in many cases of the lunar problem. Hence, all of them were newly computed by the formulæ which are fully set forth in Section III. of my Adams Prize Essay. These formulæ are constructed for several purposes: first, for finding isolated coefficients for special values of i; second, for making tables of coefficients for many consecutive values of i; third, for the avoidance of those small coefficients which appear as the difference of two large numbers. The third point is a difficulty which arises chiefly in computing $(I^2-i^2)\beta_{i,p}^i$, the two parts of which are large compared with their difference, especially for large values of i; but the formulæ for these completely surmounted the difficulty.

^{*} A.P.E., sect. iii.

[†] Ann. Obs. Paris (Mém.), vol. i., where the expansion is given so as to include terms of the seventh order with respect to e', e'', \(\gamma''\). Boquet (ib., vol. xix) has computed the terms of the eighth order.

[†] Denoted P in A.P.E., by inadvertence the same letter as for the general coefficient.

[§] LEVERRIER does not need the last two.

It arises in a less troublesome form in P_2 , P_3 , but there the number of places of decimals computed was always sufficient for the degree of accuracy required.

300. Numerical values of A_p^i , B_p^i , . . .—These were computed to six significant figures in tables ** as follows:—

```
Venus: A_0^i, B_0^i to i = 43; A_p^i, B_p^i to p = 4, i = 30; C_p^i to p = 2, i = 30; D_0, D_1, \mathcal{H}_0 to i = 30; \{(I+1)^2 - i^2\}A_p^i to p = 3, i = 30; \{(I+1)^2 - (i+1)^2\}B_p^i to p = 2, from i = -30 to i = 30; \{(I+1)^2 - i^2\}C_p^i to p = 1, i = 30. Jupiter to i = 6 for A_p^i to p = 3, B_p^i to p = 3, C_p^i to p = 1, D_0^i. Mars: A_0^i, B_0^i to i = 30; and to i = 6 for A_1^i, A_2^i, B_1^i, B_2^i, C_0^i. Mercury to i = 8 for A_p^i, B_p^i, to p = 4, C_p^i to p = 2, D_0^i.
```

All other coefficients required with these planets, and those for Saturn, were separately computed as the needs for them arose.

Section (iii). The Sieve.**

301. The larger number of the terms in R which give rise to sensible coefficients in the coordinates have periods which are comparable with the month or the year. For such terms the obvious plan was to take the successive values of θ (the argument arising from the lunar factors) according to the magnitudes of the coefficients which accompanied this factor. The arguments o, i, i, i, i, were successively combined with all the possible arguments i until the terms became insensible and it was unnecessary to proceed further. In each case the argument i was divided into the series i(i - i), i(i - i), i(i - i), and so on, the magnitude of each series mainly depending on the power of i, i, i, which accompanied it; and again each of these series was computed with a sufficient number of values of i with each Moon argument. A little practice quickly enabled one to choose out the largest coefficient in each set, and a rough calculation was sufficient to show whether the term would be sensible. This rough calculation had to be made for both i, i, i, and sometimes i, for, with terms of short period, the secondary inequalities (i, i, i, and sometimes i, i, i, with terms of short period, the secondary inequalities (i, i, i, i, and sometimes i, i, i, with terms of short period, the secondary inequalities (i, i, i, i, and sometimes i, i, with terms of short period, the secondary inequalities (i, i, i, and sometimes i, i, with terms of short period, the secondary inequalities (i, i, i, i, and sometimes i, i, with terms of short period, the secondary inequalities (i, i, i, and sometimes i, i, when the primary might be neglected.

This method could not fail as long as the periods were short. These periods only arise in the equations of variations (§ 269) through the divisors s, s². But if any period was long, then s, s² would be comparatively small, and a large coefficient might result. Such cases as occurred during the progress of the calculations were naturally dealt with as they arose; the only matter which called for attention was the necessity for a larger number of significant figures in the coefficients M_i , P_i . If, in the general method, the numbers were not sufficiently accurate, the special coefficient was separately computed again with more places of decimals.

But the lunar terms contain multiples of four different arguments, w_1 —T, w_2 , w_3 , $T-\varpi'$, that is, combinations of four different periods, and the planet terms two periods, T'', T. Hence we may have combinations of five different periods, and there will be

^{*} A.P.E., sect. v., where the numerical values will be found.

^{*} A.P.E., sect. iv.

many long periods arising therefrom. It was therefore necessary to sift out those which would give sensible coefficients.

302. The Sieve.—The method was essentially the same as that for the short-period terms, but, as there were thousands of possible combinations, some plan had to be devised to find an upper limit to each coefficient so rapidly that every coefficient might be examined within a reasonable time.

The limitations were as follows. Only primary terms were examined. It was shown * that the secondary would not be greater than the primary unless $i_1 = 0$ (§ 279), s>60" or $i_1 = 1$, s>1000"; the very few of the former were separately examined, and the latter had been treated in the short-period terms. Periods greater than 3500 years (s<1") or coefficients <0"01 were to be excluded; neither could sensibly affect the motion of the Moon within historic times. But one or two longer periods with coefficients greater than 0"01 which appeared in the course of the work were retained.

The possible long periods were then constructed by finding all up to the largest values of i, j in i(T-T'')+jT, $\pm w_1+i(T-T'')+jT$,... It was soon seen that only a dozen or so in each set need be retained, and at the most three multiples of w_1 . Then a table was formed for the multiples of w_2 , w_3 , giving the periods, the lowest orders with reference to e, k which would accompany each multiple, and the multiple of T which would occur in the lunar argument with this lowest order. Thus, for a given multiple of w_2 , w_3 , the various long-period combinations with the former sets could be seen at a glance.

303. Next, very simple formulæ were constructed for the primary coefficient, depending only on the power of e, k present in the lunar factor, the multiple of T-T'' and the coefficient present in the expansion of $1/\Delta^3$ or of $1/\Delta^5$. These formulæ arose from transformations of the disturbing function somewhat similar to those of § 294, but depending on derivatives with respect to T only. The values of the coefficients in the expansions of Δ^{-3} , Δ^{-5} were obtained from Newcomb's table † of these coefficients in the case of Venus; partly from his incomplete table, ‡ and partly by extrapolation and by approximate computations, in the case of Mars; for the other planets, which presented little difficulty, a table for Δ_0^3 was roughly computed, and simple formulæ depending also on the order of the eccentricities and inclination were constructed.

The various coefficients were examined according as they arose from terms whose characteristics were of orders 0, 1, 2, ... With each order was associated a maximum value of s which could give sensible coefficients; after the first three or four orders the work went very rapidly, as these maximum values of s became small, and the great majority of the terms could be excluded without computation.

About 100 long-period terms were retained out of several thousand examined, and their coefficients were accurately computed. In no case did these coefficients exceed the preliminary estimates found by means of the sieve. No new terms of any great

^{*} A.P.E., p. 38. † Wash. Astr. Papers, vol. v., pp. 248-257. ‡ L.c., pp. 258-261.

importance were found, and the corrections to Radau's values* of those previously computed were small from the observational standpoint, as far as the long-period primaries were concerned.

Section (iv). Numerical Values of the Elements.

304. Most of the observed quantities required are known with more than sufficient accuracy. The most doubtful is the mass of Mercury, which may be in error by as much as 50 per cent.; but the largest coefficient with the adopted value is less than 0".08, and the term has a period of 39 years. The mass of Venus may be in error by 1 or 2 per cent., giving a maximum possible error in the largest coefficient (period 273 years) of 0".3 from this cause.

The values of the elements used are shown in the following tables:-

4	Daily motions	Epoch	Longitudes at Epoch.				
Arg.	of arguments.	1850'0.	Perigee.	Node.			
v_1	47434.891	Mercury	75° 07′ 19″	46° 33′ 12″			
w_2	400'923	Venus	129° 27′ 34″	75° 19′ 47″			
w_3	- 190.772	Earth	100° 21′ 40″				
Q	14732*420	Mars	333° 17′ 55″	48° 24′ 01″			
V	5767.670	Jupiter	11° 54′ 27″	98° 55′ 58″			
${f T}$	3548*193	Saturn	90° 06′ 40″	112° 20′ 51″			
M	1886.218	The state of the s					
J	299.129						
\mathbf{s}	120'455						

	Eccentricity.	Inclination.	Sine half inclin.	$\log \frac{a''}{a'}$.	$rac{m'}{m''}$.
Moon e =	10955		k='044780	$\log a_1 = \overline{3} \cdot 3988$	
,, e =	.054906		γ= . 044887		
Earth	. 016772		VANDA		
Mercury	205604	7° 00′ 07″	.061066	ī·5878216	6000000
Venus	·00 6 8446	3° 23′ 35″ 3	0296063	7.8593374	40800 0
Mars	·09 32 61	1° 51′ 02″	.016149	1828960	3093500
Jupiter	.048254	1° 18′ 42″	·011466	7162374	1047 35
Saturn	·056061	2° 29′ 39″	.022	'9794957	3501.6

^{*} L.c. (§ 279), p. 113.

Section (v). The Final Results.

305. The detailed results arising from each term of the disturbing function are fully set forth in A.P.E., Section vi., and they will not be reprinted. Many of the resulting terms in the Moon's coordinates, especially those arising from the short-period terms in R, have the same arguments, and must be combined. The final results only

will be given here.

There are two methods of expressing the perturbations. The first is to add them to the true longitude, latitude, and parallax of the Moon; the second is to leave them as additions to the elements w_1 , w_2 , w_3 , a, e, γ which would be tabulated with these additions. This latter method is only of special advantage for tabular purposes when the variations of a, e, γ may be neglected, and this happens only with terms of long period in which w_1 is present. If w_1 is absent from the primary, and the period of the term is not very long compared with the periods of the Moon's node or perigee, the variation of e produces an effect of the same order as the variation of w_2 , and that of γ as w_3 ; in fact, the statement in § 282 has to be remembered. In these cases the variations of a (or a) are insensible, and it may be convenient to retain the variations of w_1 , w_2) as elemental inequalities, adding the parts due to the other elements to the coordinates. No periodic variations of e have been retained as elemental inequalities.

For certain other cases in which w_3 is present, with δe , δa insensible, it is best to retain δw_1 , δw_2 , δw_3 as elemental terms, and account for those arising from $\delta \gamma$ by multiplying the final value of the latitude by the variable factor $1 + \delta \gamma/\gamma$, and the terms in longitude containing the argument 2F by $1 + 2\delta \gamma/\gamma$. But in setting forth the results such terms are left as perturbations of γ . Hence the terms are placed in two classes, those added to the coordinates, and, in addition, those added to the elements.

The original limit set was 0"'01, but all short-period terms and most of the long-period terms have been computed to 0"'001, and they are so retained here. A star replaces the last figure in the cases where the computations were only made to 0"'01.

306. The tables are arranged according to the lunar arguments so that θ remains the same until a new value is set down, and then according to the multiple j of T(or j'') of T'', which again remains the same until a new value is set down, and finally, according to multiples of T-T''. The coefficients are set down in units of O''001, the angle α being so chosen ($< 360^{\circ}$) that they are all positive.

The value of the angle a is also not generally repeated when it is the same for a long series of terms.

307. $\delta V = + o'' \cdot 001 C \sin\{\theta + jT + i(T - V) + a^{\circ}\}, Venus.$

	$\theta = 0$		heta :	θ = 2D			heta = 2 D			
j	i	α	C	j i	α	C	Ĵ	i	α	C
0	1	0,0	48 o	0 - 15	0	I	– 1	- 5	84	7
	2		200	- 14		2		- 4	78	7
	3		92	- 13		2		- 3		4
	4		60	- I 2		2		- 2		4
	5		38	- I I		3		- I		3
	6		25	- 10		5		1		I
	7		17	- 9		6	- 2	- 6	162	6
	8		I 2	- 8		8		15	151	4
	9		8	- 7		8		18	151	IO
	10		6	- 6		11				
	11		4	- 5		ΙΙ			$\theta = l$	
	I 2		I	- 4		10	0	- 8	180. 0	2
	2 I		3	- 3	180	36		- 7		4
I	- 3	92.2	I	- 2	0	26		- 6		5
	- 2		4	– 1		15		- 5		6
	I		8	I		15		- 4		9
	I		47	2		8		- 3		16
	2	272.2	76	3		4		- 2		29
	3		2 I	4		4		- I		68
	4		I 2	5		4		1	0.0	91
	5		7	6		3		2		64
	6		6	7		3		3	180.0	127
	7		4	8		3		4		7
	8		I	9		2		5		I
2	- 18	209	50	10		I		22		2
	- 4	27	I	18		3	I	I	92	8
	- 3		2	I 20	273	3		2	272	13
	- 2		2	-1 -15	78	I		3		6
	- I		3	- 14		r		4		8
	I		6	13		2		5	92	4
	2		8	- 12		2		6		2
	3		37	- 11		3		23	272	6
	4	207	8	- 10		4	- I	- 5	268	I
	5		3	- 9		4		- 4		2
	6		4	8		4		- 3		5
	7		I	- 7		5		- 2		13
3	5	I I 2	7	- 6		5		- I	88	8

 $\delta V = +o'' \cdot ooiC \sin\{\theta + jT + i(T - V) + a^{\circ}\}, Venus.$

	$\theta = l$				θ=	= 2D - l		1	$\theta = 2l - 2D$		
j	i	α	C	j	i	а	C	j	i	α	C
- 1	3	280	7	, - :	r – 6	269	8	1	4	92	4
2	– 18	209	3		- 5		25	2	6	17.5	65
	2	27	I		- 4	89	33	The same same			
	3		6		- 3		10		$\theta =$	2 <i>l</i> – 4D	
	4	207	I		- 2		5	0		0	8
	6	198	16		- I		3	2	6	18	2
- 2	- 4	333	I		17	253	3				
	- 3	153	6	- :	2 - 7	340	3		$\theta =$	= -4D	
	- 2		I		- 6	162.2	83	0	3	0	7
					- 5	165	4	Action according			
	$\theta =$	2D – l			15	151	25	WATER CONTROL OF THE	$\theta =$	3l - 2D	
0	- 13	180.0	1					0	3	180	3
	- I 2		2		θ =	$= 2 \mathbf{D} + l$		2	6	18	2
	- 11		2	,	o - 9	0	1				
	- 10		3	1	- 8		2		$\theta = 2$	2F – 2D	
	- 9		6	1	- 7		2	0	3	180	2
	- 8		8	i	- 6		2	1			
	- 7		13	1	- 5		3		ϵ	$\theta = D$	
	- 6		22	1	- 4		1	0	20	0	2
	- 5		39		- 3		4	I	3	273	5
	- 4		87	1	- 2		4	– 1	- 3	87	27
	- 3		716		- I		3				
	- 2	0.0	152		1		I		$\theta =$	=l-D	
	- I		74	6			*	I	3	93	40
	1		13	ř		$\theta = 2l$					
	2		10		- 3	180	1		$\theta =$	=l+D	
	3		7	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 2		2	- I	- 3	87	2
	4		5	1	- I		5				
	5		3		1	0	5		θ	$=w_3$	
	6		2	1	2		2	- 2	- 5	255	3
	18		11	į.	3	180	9	1	- 4		9
	19		2	6 6				1	- 3	75	16
1	- I	310	2		$\theta =$	2l-2D		·	- 2		5
- 1	- 10	269	I		1 0	180.0	4				
	- 9		2		2		11		$\theta = 0$	$w_3 + 2F$	
	- 8		3		3		76	- 2	- 3	75	3
	- 7		5	}	4	0	3				

308. $\delta V = +0$ ":002 $\sin (2D + T - 3Q + 105)$, Mercury.

309. $\delta V = + \circ'' \cdot \circ \circ \circ \circ C \sin \{\theta + j''M + i(M - T) + a^{\circ}\}, Mars.$

	ϵ) = o			θ =	= 2D	1		$\theta =$	2D - l	
j''	i	α	C	j"	i	α	C	$j^{\prime\prime}$	i	α	C
0	1	0	19	- 1	- 5	149	3	0	- 5	180	3
	2		8	- 2	- 6	297	2		-4		17
	3		3	1					- 3	0	5
	4		2		($\theta = l$			- 2		2
	5		I	0	- I	180	2	I	- 7	149	I
1	0	212.7	5		1	0	2		- 6		3
	1		60	1	4	180	3		- 5		38
	2	33	10	ı	1	2 I 2	7		- 4	329	3
	3		4		2	32	I		- 3		1
	4		2		5	2 I 2	8	- 2	- 6	297	30
	5		1	- I	- 2	147	1				
2	1	243	2	1	– 1	327	7		$\theta =$	2l - 2D	
	2		I 2	2	2	243	1	0	4	180	2
	3	63	5	1	6	63	6	1	5	2 I I	15
	4		2	- 2	- 2	297	I	2	6	243	19
	5		I								
3	3	276	2		$\theta =$	$_{2}\mathrm{D}-l$			$\theta =$	3l - 2D	
	4	96	I	. 0	- 6	180	I	2	6	243	1

310. $\delta V = + \circ" \circ \circ \circ \circ C \sin\{\theta + j"J + i(J - T) + \alpha^{\circ}\}, Jupiter.$

	6) = o			θ :	= 2D		·		$\theta = l$	
j"	i	α	C	$j^{\prime\prime}$	i	α	C	j''	i	α	C
0	1	0.0	69	0	- 2	180.0	45	0	1	180.0	8
	2	180	13		- I	0	2		2		171
1	0	173.8	209		2	180	2	And the state of t	3	15	2
	1	354	ΙΙ	I	0	174	2	I	0	173	2 I
	2		8	- I	- 2	7	20		I	353'3	2
2	0	162	9		0		2		2		58
									3	173	1
	θ =	= 2D			ϵ	$\theta = l$		– 1	- 1	186	2
0	- 5	0	1	0	- 3	0	1		٥	6	2 I
	-4		2		- 2		4		3	286	8
	- 3		3		- I		8	2	2	342	2

$\delta V = + o'' \cdot ool C \sin\{\theta + j''J + i(J - T) + a^{\circ}\}, Jupiter.$

311. $\delta V = + o'' \cdot ool C \sin\{\theta + j''S + i(S - T) + a^\circ\}$, Saturn.

	θ	= 0				$\theta = l$	1		$\theta =$	= 2D - l	
j''	i	α	C	j"	i	α	Ĉ	j''	i	α	C
1	0	90		0	2	180	3	0	- 2	180	14
				1	0	90	3	- I	- 2	270	4
			3	- I	0	90	3				

312. $\delta V = +0$ " ooi $C \sin \psi$, all planets.

313. $\delta U = + o'' \cdot \cos i \sin \{\theta + j \mathbf{T} + i (\mathbf{T} - \mathbf{V}) + a^{\circ} \}$, Venus.

	θ =	= ± F		1		$\theta =$	$\pm F + l$			θ	$=w_1$	
j	i	α	C	ļ	j	i	α	C	j	\vec{i}	α	C
0	r	0	5	Í	0	1	0	2	0	- 7	285	2
	2		3			2		I		- 6		3
	3		1			3	180	6		- 5		5
I	5	90	2						į	- 4		6
2	- 18	209	2			$\theta = \mathbf{F}$	l+l-2D			- 3		9
					0	1	180	2		- 2		14
	$\theta =$	F + 2D				2		6		- I		27
0	- 4	0	2			3	0	34		1	105	15
	- 3	180	I			4		4		2		6
	- 2	0	3			5		2		3		3
	- I		3		1	5	90	4	- 2	- 8	² 55	2
	0	T . T			2	6	18	4		- 7		3
		- F + 2D								- 6		5
0	- 8	180	2				F + l - 2D			- <u>5</u>		9
	- 7		3		0	1	1 So	2		- 4		25
	- 6		5			2		6		- 3	75.3	72
	- 5		9			3	0	32	1	- 2		18
	- 4		23			4		4	1	- I		10
	- 3	0.0	45			5		2		I		6
	- 2		14		2	6	18	4	İ	2		4
	- I		9							3		3
- I	- 6	90	2				-l-2D					Ü
	- 5	270.0	68		0	3	· 180	2	3 10 10 10 10 10 10 10 10 10 10 10 10 10	$\theta = u$	$v_1 - 2D$	
	- 4	90	2		Ι	5	270	4	- 2	- 3	² 55	2
	$\theta =$	$\pm \mathrm{F} - l$				$\theta = \pm F$	+ 2l - 2D			$\theta =$	$v_1 \pm l$	
0	1	0	2		0	3	180	3	- 2	- 3	75	± 4
	2		1		2	6	18	3				

314. $\delta U = + o'' \cdot oo_1 C \sin \psi$, Jupiter and Mars.

ψ	C	1	ψ	C	Ψ	C
$\pm F + J + 348^{\circ}$	2	10	$\pm F + l - 2D + 2J - 2T$	36	$w_1 + J + 69^{\circ}$	5
$F - 2D + 2J - 2T + 180^{\circ}$	23		$\pm F + l - 2D + 3J - 2T + 173^{\circ}$	14	F+2D	2
F - 2D + 3J - 3T	5		$\pm F + 2l - 2D + 2J - 2T + 180^{\circ}$	8	- F + 2D	5
-F - 2D + 2J - 2T	3		$\pm F + 2l - 2D + 3J - 2T + 173^{\circ}$	9	$w_1 - 2T + 75^{\circ}$	8
$\pm F + l + 2J - 2T + 180^{\circ}$	7		$w_1 + 2M - T + 345^{\circ}$	10		
$\pm F + l + 3J - 2T + 353^{\circ}$	3		$w_1 + \mathrm{T} - \mathrm{J} + 8\mathrm{i}^{\circ}$	2		

$$\psi$$
 C
 $l - 2D + 3T - 3V$ 6
 $l - 2D + 2J - 2T$ 7
 $l - 2D + 3J - 2T + 173^{\circ}$ 3

316. Terms added to the elements.

$$\delta w_1 = + o'' \cdot ooi C \sin \psi.$$

Ψ	C	$\dot{\psi}$	C
13T-8V+321°	3	$F + 24T - 23V + 285^{\circ}$	3
$l + 3T - 10V + 33^{\circ}$	35*	$D - l + F + 20(T - V) + 166^{\circ}$	2
l+16T-18V+151° ∘o	1455*	$D + l - F + 17T - 18V + 75^{\circ}$	8
l+29T-26V+112°0	108	$3D - 3l + F + 25T - 22V + 134^{\circ}$	2*
l+2I (T-V)	30		
$2D - l + 21T - 20V + 273^{\circ}$.	126	$2D - l + 5T - 4Q + 113^{\circ}$	3
$2D - l + 8T - 12V + 303^{\circ}$	33	$_{2}D-l+T{3}Q+_{105}^{\circ}$	75
$_{2}F{2}D + _{6}T{5}V + _{27}\circ$ °	54	$_{2}\mathrm{F}-l+_{3}\mathrm{T}{4}\mathrm{Q}+_{6}7^{\circ}$	3
3l - 2D + 24(T - V)	ro	$3D - F - l + 2T - 3Q + 47^{\circ}$	2
l + 2F - 4D - 15(T - V)	2		
$D + 12T - 15V + 262^{\circ}$	13	$4D - 3l + 25M - 23T + 67^{\circ}$	4*
$D + 25T - 23V + 190^{\circ}$	13	$D - F + 2M + 165^{\circ}$	17
3D-2F+19T-18V+272°	2	w_3 + 110 $^{\circ}$	7

$$\delta w_2 = + \, 2^{\prime\prime} \cdot 69 \text{ (No. of years from 1850.0)} \\ + \, 9^{\prime\prime} \cdot 118 \, \sin \, \left(l + 16 \mathrm{T} - 18 \mathrm{V} + 331^\circ \cdot 9 \right)$$

$$\delta w_3 = -1'''\cdot 42$$
 (No. of years from 1850.0)
+ 1'''\cdot 86 sin $(w_3 + 290^\circ\cdot 1) + 0''\cdot 172$ sin $(l + 16\text{T} - 18\text{V} + 151^\circ\cdot 0)$

$$\delta \gamma = + \circ^{\prime\prime} \cdot \circ 83 \, \cos \, \left(w_3 + 110^{\circ} \cdot 1 \right)$$

CHAPTER XII.

THE INDIRECT ACTION OF THE PLANETS.

Section (i). The Disturbing Function.

317. Transformation to coordinates used in the direct action.—The disturbing function for the action of the Sun on the Moon is (Chap. I., § 3)

$$\frac{m'}{r'^3} \left\{ \begin{array}{l} r^2 - 3z^2 + \frac{3}{4}\rho^2 \cos z(V - V') + \frac{5}{8} \frac{\dot{\rho}^3}{r'} \cos 3(V - V') + \frac{3}{8} \frac{(r^2 - 5z^2)}{r'} \rho \cos (V - V') \end{array} \right\} . \tag{1},$$

to a sufficient approximation. Let $\delta r'$, $\delta V'$ be the perturbations of r', V' from elliptic motion, the plane of reference being the same as before. Put $\delta r'/r' = \delta \rho'$ and neglect powers of $\delta \rho'$, $\delta V'$ beyond the first. Then the disturbing function due to $\delta \rho'$, $\delta V'$ is

$$R = \frac{3m'}{4r'^3} \left[-\delta\rho' \left\{ r^2 - 3z^2 + 3\rho^2 \cos z(V - V') \right\} + \delta V' \left\{ 2\rho^2 \sin z(V - V') \right\} \right] + \frac{3m'}{2r'^4} \left[-\delta\rho' \left\{ \frac{5}{3}\rho^3 \cos 3(V - V') + (r^2 - 5z^2)\rho \cos (V - V') \right\} + \delta V' \left\{ \frac{5}{4}\rho^3 \sin 3(V - V') + \frac{1}{4}(r^2 - 5z^2)\rho \sin (V - V') \right\} \right] (2)$$

Replace the functions of the coordinates of the Moon and Sun by the expressions given in Chap. X., § 285, so that R will now denote that part of the disturbing function which depends on the lunar angle θ . We obtain

$$R = \frac{3m'}{2} \frac{a^2}{a'^3} \frac{a'}{a'} \left[-\delta \rho' (M_1 + \frac{3}{2}M_2) \cos \theta + \delta V' M_3 \sin \theta - \delta \rho' \frac{a}{a'} (M_6 + 5M_8) \cos \theta + \delta V' \frac{a}{a'} (\frac{1}{4}M_7 + \frac{15}{4}M_9) \right]$$
(3).

We can therefore obtain the required lunar functions directly from the results given in § 292 if we multiply all the series there tabulated by a'/r'.

318. Final form of the disturbing function.—Denote the coefficients of these functions by accented letters when the multiplication a'/r' has been made, so that θ is now an angle in the products of the series of § 292 by a'/r'. Let an angle in $\delta\rho'$, $\delta V'$ be ϕ , so that we have

$$\delta \rho' = \rho_c \cos \phi$$
, $\delta V' = v_s \sin \phi$, $m' = n'^2 a'^3$.

Putting a_1 for a/a' (§ 293), we obtain

$$R = \frac{1}{4}n'^{2}a^{2}(-3)[(M_{1}' + \frac{3}{2}M_{2}')\rho_{c} \pm M_{3}'v_{s} + a_{1}(M_{6}' + 5M_{8}')\rho_{c} \pm a_{1}(\frac{1}{4}M_{7}' + \frac{15}{4}M_{9}')v_{s}]\cos(\theta \pm \phi) . \tag{4}$$

which is in the required form (§ 279).

For terms $\rho_s \sin \phi$ in $\delta \rho'$, $v_c \cos \phi$ in $\delta V'$, replace ρ_c by $\pm \rho_s$, $\pm v_s$ by v_c , $\cos (\theta \pm \phi)$ by $\sin (\theta \pm \phi)$.

The values of $\delta\rho'$, $\delta V'$ will be taken from Newcomb's tables of the Sun* (with some corrections). He tabulates $10^9 \log_{10} (1 + \delta\rho') = 10^9 \log_{10} e \cdot \delta\rho'$. If ρ_c , ρ_s denote his numbers, the parts in R which depend on these quantities must be multiplied by $10^{-9} \log_e 10$. The coefficients v_c , v_s are expressed in seconds of arc; I shall consider them as expressed in units of 0":001, so that the parts of R which depend on v_c , v_s must be multiplied by $10^{-3}/206265$. The formulæ of § 279, Chap. X., will then be available if we put $m''/m' = -3.10^{-9} \log_e 10 = -[9.83934]$, so that

$$f = -[4^{1}3292], \quad f' = -[\overline{1}45682]$$
 (5),

and multiply v_c , v_s by the factor

$$10^{-3}/206265 \div 10^{-9} \log_e 10 = [32335]$$
 (6).

Then A is the portion of (4) within square brackets, after v_s has been multiplied by this last factor.

Section (ii). The Computation of $\delta \rho'$, $\delta V'$.

319. Forms of expression.—In this chapter perturbations of the first order relative to the masses of the disturbing bodies are alone retained. If we had used the method of the variation of arbitrary constants to find $\delta \rho'$, $\delta V'$, the variations of the six elements of the solar orbit would have been obtained in the form

$$at + \beta + \sum k \cos(\lambda t + \mu)$$
,

where α , β , k, λ , μ are constants; in the coordinates we have a similar form, with the exception that in the elliptic terms k is of the form k't+k'' and $\alpha=0$ in $\delta\rho'$. Further, we can put $\alpha=\beta=0$ in $\delta V'$. All the periodic terms, except those which are independent of the argument of the disturbing planet, have therefore constant coefficients and are taken care of by the preceding method. Hence we have to consider only the terms

$$\delta \rho' = \delta \alpha' + \Sigma (\rho_i + t \rho_i') \cos (i l' + \alpha_i),$$

$$\delta V' = \Sigma (r_i + t v_i') \sin (i l' + \alpha_i),$$
(i = 1, 2, ...) (7).

320. The non-periodic changes of the solar elements.—Now the solar eccentricity is an observational quantity, and we can therefore choose our arbitraries such that $v_1 = 0$. The other v_i and ρ_2 , ρ_3 are then so small that they may be neglected, and all the portions of the coefficients which depend on t may be expressed by a term e'_1t additional to e'. We have therefore only to add to the previous values of $\delta \rho'$ the term $\rho_1 \cos(l' + a_1)$, which is treated in exactly the same way; $\delta a'$, which gives a constant term to R, and which is treated as in § 270 of Chap. X.; and, finally, the effect of a variation of e'. The mean motion of the solar perigee is not quite zero, and therefore dl'/dt is

* Amer. Eph. Papers, vol. vi., pt. 1.

not quite equal to dT/dt; the only term sensibly affected in the Moon's motion is that with argument l', for which the divisor n' instead of $n' - d\varpi'/dt$ has been used.

The treatment of the variations of e', ϖ' require special methods; that of e' produces the well-known secular variations of w_1 , w_2 , w_3 ; these have been many times computed, and their theoretical values are not in doubt so far as the lunar equations are concerned. It also produces terms of the form at + b in the coefficients of the periodic terms. These might be computed by means of the equations of variations, but I shall, in the next section, give another method which is much more simple for computation.

321. Corrections to Newcomb's values.—The values used in the solar tables (§ 318) are taken from his memoir * giving the computations. There are two sets of values in the memoir, obtained by independent computations, and the values of Leverrier are also given for comparison. These four sets of values were compared, and those in which the results agreed within the limits of accuracy required were accepted. But certain of the coefficients (1) in which Newcomb and Leverrier did not agree, (2) in which Newcomb's two sets of computations differed, and Leverrier's results were not given, (3) in which the degree of accuracy was not sufficiently high, or (4) in which the coefficients had not been obtained, have been recomputed. For this purpose the ordinary direct method was used—a method so well known † that it is unnecessary to do more than give the results; these are included in the tables of Sect. (v) below. Nearly every one of the few errors found was typographical and easily detected.

Newcomb has expressed doubts as to the sufficient accuracy of $\delta a'$ and the coefficients independent of the planetary arguments, and he has recomputed these portions. † I have thought it worth while also to recompute these parts by a modification of the direct method, shown in the following section, which gives the required formulæ rapidly, instead of following the method of the variation of constants adopted by Newcomb.

322. Computation of $\delta \rho'$ for the portion independent of the planetary arguments.—We shall only need terms of the second order with respect to the planetary eccentricities and inclination in the constant term, and terms of the first order in the coefficient of the principal elliptic term. In order to get the former, we do not need the second elliptic term, since it can only produce a non-periodic term in combination with a term of the same argument and therefore one of the fourth order.

Dropping accents temporarily, we have for δr ,

$$\frac{d^2}{dt^2}(r\delta r) + n^2 \frac{a^3}{r^3} r\delta r = a \frac{dR}{da} + 2n \int \frac{dR}{dw_1} dt = (A + B \cos l + C \sin l)n^2 a^2 . \qquad (8),$$

where R is the disturbing function of the Earth's motion due to a planet, and l is the Earth's mean anomaly. All the letters except t are supposed to be accented, and A, B, C are quantities whose squares may be neglected.

^{*} Amer. Eph. Papers, vol. iii.

[†] See, e.g., Cheyne's Planetary Theory, chap. vii.

Putting $a^3/r^3 = 1 + \frac{3}{2}e^2 + 3e \cos l$, we obtain by continued approximation for the particular integral corresponding to the terms on the right,

$$\frac{r\delta r}{a^2} = A(1 - \frac{3}{2}e^2) + \frac{3}{4}eCt + \frac{1}{2}t(B - 3Ae)\sin l - \frac{1}{2}tC\cos l \qquad (9).$$

No arbitraries are necessary, since they will disappear in connection with corresponding arbitraries in δV .

323. The equation for the longitude is

$$na^2 \sqrt{1 - e^2} \delta V - 2 \frac{d}{dt} (r \delta r) + \frac{dr}{dt} \delta r = -2a \int \frac{dR}{da} dt - 3n \int \int \frac{dR}{dw_1} dt^2 = (D \sin l + E \cos l + Ft) na^2 \quad . \tag{10},$$

suppose. Substituting for δr , we obtain, amongst others, terms of the form $at \cos l$, $\beta t \sin l$. These terms can be eliminated by supposing that ϖ , e receive increments $\delta \varpi$, δe proportional to the time; as we are not computing these increments they may now be neglected. The constant term only adds to the observed value of the mean longitude for t=0; it may therefore be dropped. Let δn , δe , δl_0 be the changes necessary in n, e, l for t=0, in order that the mean motion and the principal elliptic term may have same form as in undisturbed motion.

Then

$$(\mathbf{1} - \frac{1}{2}e^2)\delta V = t(F - \frac{1}{4}Be + \frac{3}{4}Ae^2 + \delta n - \frac{1}{2}e^2\delta n) + \cos l(E - C + 2e\delta l_0) + \sin l(D + B - 4Ae + 2\delta e) \; .$$

The coefficients of t, cos l, sin l, equated to zero, give δn , δe , δl_0 . Finally, substituting in

$$\left(\mathbf{1} + e^2 + 2e\cos l\right)\frac{r\delta r}{a^2} + \frac{\delta a}{a} - \delta e\cos l + e\delta l_0\sin l + \frac{1}{2}e\delta e,$$

which is the total addition to $\log r$ (that is, the required $\delta \rho'$), we find the terms

$$A(1+e^2) + \frac{2}{3}F(1+\frac{1}{2}e^2) - \frac{5}{12}Be - \frac{1}{4}De + \frac{1}{2}(B+D)\cos l + \frac{1}{2}(C-E)\sin l , . . . (11).$$

Let

$$R = R_0 + R_c \cos l + R_s \sin l = R_0 + R_1$$
,

and denote by I the operator ad/da. Then

$$\begin{split} n^2 a^2 (A + B \cos l + C \sin l) &= a \frac{dR}{da} + 2 \int \!\! \frac{dR}{dw_1} dt = I R_0 + (I + 2) R_1 \,, \\ n^2 a^2 (F + D \cos l - E \sin l) &= -2 a \frac{dR}{da} - 3 \int \!\! \frac{dR}{dw_1} dt = -2 I R_0 - (2I + 3) R_1 \,. \end{split}$$

The expression (11) becomes on substitution of these values

$$n^2a^2\left[-\frac{1}{3}(1-e^2)IR_0+\frac{1}{12}e(I-1)R_c-\frac{1}{2}(I+1)R_e\cos l-\frac{1}{2}(I+1)R_s\sin l\right]. \qquad . \tag{12}$$

a simple form which it is easy to compute.

324. Let us now restore the accents and return to the usual notation. Then R

becomes the m''/Δ of § 294. The terms required may be taken directly from Leverrier's expression (§ 298). We have, for outer planets,

$$\begin{split} R_0/\lambda a a'' &= \tfrac{1}{2} A_0^{\ 0} + \tfrac{1}{4} (e'^2 + e''^2) (A_1^{\ 0} + A_2^{\ 0}) - \tfrac{1}{2} \gamma''^2 B_0^{\ 1} - \tfrac{1}{2} e'' e' (A_1^{\ 1} + A_2^{\ 1} - A_0^{\ 1}) \cos \left(\varpi' - \varpi''\right) \\ &= \tfrac{1}{2} A_0^{\ 0} + \tfrac{1}{8} B_0^{\ 1} (e'^2 + e''^2) - \tfrac{1}{2} \gamma''^2 B_0^{\ 1} - \tfrac{1}{4} B_0^{\ 2} e'' e' \cos \left(\varpi' - \varpi''\right) \,, \\ R_c/\lambda a a'' &= -\tfrac{1}{2} e' A_1^{\ 0} + \tfrac{1}{2} e'' (A_1^{\ 1} - A_0^{\ 1}) \cos \left(\varpi' - \varpi''\right) \,, \end{split}$$

where I use the notation of Sect. (ii), Chap. XI., and certain relations* to reduce the expression for R_0 ; also $\lambda = m''/m'$. The required formula for $\delta \rho'$ becomes, on making use of the relation $I\phi_p = (p+1)\phi_{p+1} + p\phi_p$, satisfied by $\phi = A$, $\phi = B$, for outer planets, †

$$\begin{split} \delta \rho' &= \tfrac{1}{3} \frac{m''}{m'} \alpha a'' \, \left\{ \begin{array}{l} -\tfrac{1}{2} A_1{}^0 + \frac{e'^2}{4} \left(2 A_1{}^0 - A_2{}^0 \right) - \frac{e'^2 + e''^2}{B} B_1{}^1 + \tfrac{1}{2} \gamma''^2 B_1{}^1 + \frac{e'e''}{4} \left(B_1{}^2 + A_2{}^1 - \tfrac{1}{2} A_1{}^1 + \tfrac{1}{2} A_0{}^1 \right) \cos \left(\varpi' - \varpi'' \right) \\ &+ \frac{m''}{m'} \alpha a'' \, \left\{ \begin{array}{l} \frac{e'}{2} \left(A_2{}^0 + A_1{}^0 \right) - \frac{e''}{2} \left(A_2{}^1 + \tfrac{1}{2} A_1{}^1 - \tfrac{1}{2} A_0{}^1 \right) \cos \left(\varpi' - \varpi'' \right) \right\} \cos l' \\ &+ \frac{m''}{m'} \alpha a'' \, \left\{ \begin{array}{l} \frac{e''}{2} \left(A_2{}^1 + \tfrac{1}{2} A_1{}^1 - \tfrac{1}{2} A_0{}^1 \right) \sin \left(\varpi' - \varpi'' \right) \right\} \sin l' \, . \end{split}$$

For inner planets, R_0 only requires the change a' for aa'', but R_c , R_s are given by

$$R_{c}/\lambda a' = \frac{e'}{2}(A_{1}^{0} + A_{0}^{0}) - \frac{e''}{2}(2A_{0}^{1} + A_{1}^{1})\cos\left(\overline{\omega}' - \overline{\omega}''\right), \qquad R_{s}/\lambda a' = \frac{e''}{2}(2A_{0}^{1} + A_{1}^{1})\sin\left(\overline{\omega}' - \overline{\omega}''\right),$$

while in the expression (12) for $\delta \rho'$ we put -I-1 for I.

The values of $a''A_p^i$, $a''B_p^i$, $a'A_p^i$, $a'B_p^i$ are given in the auxiliary tables for the direct action. † Those of the other quantities are found in Sect. (iv), Chap. XI. The final results are included with the other terms in $\delta \rho'$, $\delta V'$.

Section (iii). Second Method. Application to Non-periodic Changes.

325. Statement and Solution. \(\)—The method may be regarded as a particular case of the general problem of four bodies, or of three bodies, or as a general method for treating any motion which is transmitted through one body to another, according to the view we wish to adopt. The last view will be that most convenient for our immediate purposes.

Suppose that we have been able to solve, in terms of t and arbitrary constants, a dynamical problem which has a force function F. This function, expressed initially in terms of the coordinates, may also contain t explicitly and given constants. I shall suppose that it contains t explicitly only through certain functions of the given constants, u_h , some of which may therefore be constant and some variable. Now suppose that, owing to some external agency, the u_h are not the complete values of these

^{*} A.P.E., sect. iii.

[†] The formulæ do not quite agree with those of Newcomb given in Astr. Jour., No. 590, but the numerical results agree with his as given in his paper, Carn. Inst. Publ., No. 72, p. 90.

[‡] A.P.E., sect. v.

[§] I have given the method in a paper in the Trans. Amer. Math. Soc., vol. vi. pp. 332-343.

given functions, but require certain additions, δu_h , whose values in terms of the time are given. The ordinary method of treatment consists in substituting these new values in F and obtaining a disturbing function * $\Sigma_h(\delta u_h dF/du_h)$; this is accounted for by finding what variable values must be given to the arbitraries, so that when these values are substituted instead of the constant values in the expressions for the coordinates and velocities, we shall have the complete solution of the problem. In this method no account is taken of the fact that F retains the same form with respect to the u_h whatever values may be given to these functions.

In the memoir referred to, an attempt was made to utilise the absence of change in the form of F by considering the problem in the following way:—To find the variations of the arbitrary constants when not only their variations, but also those of the u_h , are substituted in the expressions for the coordinates and velocities. I proved that if this plan were followed, the solution was equivalent to adding a disturbing function

$$R = \Sigma_h U_h \left(\frac{d}{dt} \delta u_h - \delta \frac{du_h}{dt} \right), \qquad . \qquad . \qquad . \qquad . \qquad . \qquad .$$

where the U_h are defined by the differential equations

$$\frac{dU_h}{dt} = -\frac{\partial F}{\partial u_h} - \Sigma_k U_k \frac{\partial}{\partial u_h} \frac{du_k}{dt} - \frac{\partial B}{\partial u_h}, \qquad (14),$$

it being supposed that F is expressed in terms of the coordinates and the u_h , that du_h/dt is expressible in terms of the u_h , and that B is expressed as a function of the constants and of those u_h which are independent of t.

326. Application to the secular changes of e', ϖ' .—We have initially e', ϖ' constant. Let $\delta e' = e_1'e't$, $\delta \varpi' = \varpi_1't$. The u_h are n', $n't + \epsilon'$, ϖ' , e', and therefore ϖ' , e' are independent of the other u_h and of du_h/dt . Also (loc. cit.) $U_{e'}$, $U_{\varpi'}$ contain no non-periodic terms. Hence

in which the non-periodic term arising from $\partial F/\partial e'$ must be dropped.

If we substitute this value of R in the equations of Chap. X., as we have no non-periodic part of R, $\delta c_i = 0$, $\delta w_i = 0$, and therefore the secular accelerations are obtained by putting $e'(\mathbf{1} + e_1't)$ for e' in the values of c_1 , c_2 , c_3 expressed as functions of n, e, γ , e', n', and finding the values of n, e, γ which result.† The motion of $\boldsymbol{\varpi}'$ produces nothing in this connection, since it is not present in the c_i .

I have shown \ddagger that if we neglect a_1^2 , a quantity which is quite insensible, the variations of n, e, γ can also be obtained from the equations

$$c_2\delta \frac{db_2}{da_i} + c_3\delta \frac{db_3}{da_i} = \frac{3}{2}\delta \frac{d}{da_i} \left(\frac{\mu}{r}\right)_0, \quad a_i = n, e, \gamma \quad . \tag{16},$$

^{*} For simplicity, only variations of the first order are retained, but the methods are applicable when we take in higher powers.

[†] This is Newcomb's theorem, Amer. Eph. Papers, vol. v., pt. 3, p. 191.

[‡] Proc. Lond. Math. Soc., vol. xxviii. p. 154.

where $(\mu/r)_0$ denotes the non-periodic of μ/r , the functions being expressed in terms of n, c, γ , e', n', the first four only receiving variations, that of e' being given.

327. There remain the periodic terms of R. Since e', ϖ' occur in R only through r', V', we have only to put the periodic terms

$$\delta\rho' = -e_1' \cdot e' \frac{d\rho'}{de'} - \varpi_1' \frac{d\rho'}{d\overline{\omega}'}, \quad \delta V' = -e_1' e' \frac{dV'}{de'} - \varpi_1' \frac{dV'}{d\overline{\omega}'}, \qquad . \tag{17}$$

in the formulæ of §317, and, after rejecting all non-periodic terms, integrate; the resulting disturbing function consists only of periodic terms.

The variations of the elements are then substituted in the coordinates. In accordance with the principle of the method, we must also put $e'(1 + e_1't)$, $\varpi' + \varpi_1't$ for e', ϖ' , in order to obtain the true values of the coordinates.

No other secular terms can be produced from the secular variations of the solar elements. It will be shown in Sect. (iv) that those of the inclination and node only produce periodic variations.

The method of this section might have been used for all the indirect perturbations.

Section (iv). The Motion of the Ecliptic.

328. Choice of the Mean Ecliptic.—Owing to the action of the planets on the Earth, the plane of the Earth's orbit is not fixed, but has a motion which can be expressed as secular and periodic variations of the inclination and longitude of the node with reference to some fixed plane. I choose as fixed plane the ecliptic at the date 1850.0, and refer the motion of the Moon to the mean ecliptic at time t.* The periodic perturbations are then included in the terms of the Sun's disturbing function which depend on z', portions which have been previously neglected (Chap. I., § 3). To be included in this mean ecliptic are one or two minute inequalities of very long period which then give rise to no terms in the Moon's motion, but which would do so if included in z'.

329. The disturbing function for the moving ccliptic.—This is most easily found in a general manner. Let x, y, z, u, v, w be the coordinates and velocities of a particle of mass m, referred to rectangular axes which have velocities θ_1 , θ_2 , θ_3 about themselves, and let the force function be denoted by mF. The equations of motion of m are then given by

$$\begin{split} \frac{du}{dt} &= -\frac{\partial H}{\partial x} \,, \quad \frac{dv}{dt} &= -\frac{\partial H}{\partial y} \,, \quad \frac{dw}{dt} &= -\frac{\partial H}{\partial z} \,, \\ \frac{dx}{dt} &= \frac{\partial H}{\partial u} \,, \quad \frac{dy}{dt} &= \frac{\partial H}{\partial v} \,, \quad \frac{dz}{dt} &= \frac{\partial H}{\partial w} \,, \end{split}$$

where

$$\begin{split} H = \tfrac{1}{2}(u^2+v^2+w^2) - F - R \ , \\ R = vx\theta_3 - wx\theta_2 + wy\theta_1 - uy\theta_3 + uz\theta_2 - vz\theta_1 \, , \end{split}$$

if we assume that θ_1 , θ_2 , θ_3 are independent of x, y, z, u, v, w.

^{*} I have discussed this point in vol. lxviii. pp. 450-455, of the Monthly Notices, and have also given there the substance of this section.

When R=0, the equations become the same as those referred to fixed axes, and therefore R is the disturbing function for the motion of the axes.

Let i' be the inclination of the moving ecliptic (xy plane) to that of 18500, τ the longitude of the node on the fixed ecliptic, and for the origin of longitudes on the moving ecliptic take the "departure point" whose distance from the node on the moving ecliptic is the same as the distance from the node of the origin of reckoning on the fixed ecliptic. Then by EULER's equations

$$\theta_1 = \frac{di'}{dt}\cos\tau - \frac{d\tau}{dt}\sin i'\sin\tau, \quad \theta_2 = \frac{di'}{dt}\sin\tau + \frac{d\tau}{dt}\sin i'\cos\tau, \quad \theta_3 = \frac{d\tau}{dt}(\cos i' - 1) \quad . \tag{18}$$

The values of i', di'/dt, $d\tau/dt$ are small quantities of the first order, so that their squares and products may be neglected. On substituting the values, so limited, in R, we find the factor di'/dt common to all the terms, and therefore, since u, v, w differ from dx/dt, dy/dt, dz/dt by quantities of the same order,

$$R = \frac{d\vec{i}}{dt}Q, \quad Q = \left(y\frac{dz}{dt} - z\frac{dy}{dt}\right)\cos\tau - \left(x\frac{dz}{dt} - z\frac{dx}{dt}\right)\sin\tau \quad . \tag{19}$$

This disturbing function is available for any moving ecliptic so long as we may neglect the squares of its perturbations, but under the assumptions of $\S 328$ we substitute for i' only its secular part. The resulting disturbing function I denote by R_1 .

330. The disturbing function for perturbations of the Earth out of the plane of reference is, if we neglect squares of z' and the terms dependent on a,

$$R = \frac{m'}{2^{1/3}} \cdot \frac{3(xx' + yy')zz'}{2^{1/3}}$$
 (20),

by § 3, Chap. I. With the notation and limitations of the previous section,

Since this expression has the small factor i', we consider τ as a constant. In the paper referred to in § 328, I have shown that the expression (20) for R can be transformed into

$$R = i' \left\{ \left(z \frac{d^2 y}{dt^2} - y \frac{d^2 z}{dt^2} \right) \cos \tau - \left(z \frac{d^2 x}{dt^2} - x \frac{d^2 z}{dt^2} \right) \sin \tau \right\} = -i' \frac{dQ}{dt} \qquad (22),$$

which again is a perfectly general expression for the disturbing function when we can neglect squares of the perturbations. The value of Q is that given in the previous paragraph, and therefore the computation of one function serves for both disturbances. Under the assumptions of § 328 we substitute for i' in (22) only its periodic part, neglecting the minute perturbations of i' which are of long period relatively to that of the Moon's node. The disturbing function thus limited will be denoted by R_2 .

331. Computation of Q.—We have

$$\begin{split} Q &= \frac{dz}{dt} \rho \sin \left(V - \tau \right) - z \, \frac{d}{dt} \left\{ \rho \sin \left(V - \tau \right) \right\} \\ &= \text{real part of } \left(n - n' \right) \left[Dz \cdot u \zeta^{-1} e^{w_1 \iota} - z D (u \zeta^{-1} e^{w_1 \iota}) \right] e^{-\tau \iota} \\ &= \qquad , \qquad \frac{n a^2}{\iota} \mathbf{k} \left[\frac{2 u \zeta^{-1} \cdot D(\iota z) - (D + \mathbf{I} + \mathbf{m}) (\iota z \cdot u \zeta^{-1})}{\mathbf{k} (\mathbf{I} + \mathbf{m}) a^2} \right] e^{(w_1 - \tau) \iota} \,. \end{split}$$

The expansion of the portion in square brackets has been given in § 291, Chap. X. Let $M \exp \theta_1 \iota$ be one of the terms of this expansion. Then one of the terms of Q is given by

 $Q = n\mathbf{a}^2\mathbf{k}\,\boldsymbol{M}\,\sin\,\left(\theta_1 + w_1 - \tau\right) = n\mathbf{a}^2\mathbf{k}\,\boldsymbol{M}\,\cos\left(\theta_1 + w_1 - \tau - \frac{\pi}{2}\right).$

332. Computation of R_1 .—Let di'/dt = p. Then

$$R_1\!=\!\frac{4\mathcal{P}}{n'}\cdot\frac{\mathbf{k}}{m}\!\left[\tfrac{1}{4}n'^2\!\mathbf{a}^2\!\,M\cos\left(\theta_1+w_1-\tau-\frac{\pi}{2}\right)\right],$$

and therefore if we put m''/m' for the factor outside the square brackets the equations of § 279, Chap. X., can be immediately applied; here A = M.

The value of p is * 0".4710 per annum, n' = 3548":2 per diem, and therefore

$$\frac{m''}{m'} = \frac{4(4710)k}{(365.25)(3548.2)m} = [7.9397],$$

giving

$$f = [6.2333], \quad f' = [1.5572].$$

In finding derivatives with respect to n, we must use $d(nka^2A)/dn$.

333. Computation of R_2 .—Let $P \cos \phi$ be any term of i' reckoned in units of 0"001, and s_1 the number of seconds in the daily motion of the angle $\theta_1 + w_1 - \tau = \theta$. Then, using the first form for Q, we have

$$R_2 \!=\! \frac{m^{\prime\prime}}{m^{\prime}} \, \frac{1}{4} n^{\prime 2} \mathrm{a}^2 A \, \cos \left(\theta \pm \phi \right) \, ,$$

where

$$A = -\frac{1}{2} s_1 MP$$
, $\frac{m''}{m'} = \frac{4}{1000} \frac{1}{206265} \frac{1}{3548 \cdot 2} \frac{k}{m} = + [\overline{12} \cdot 5149]$.

The computation of derivatives with respect to n must be made with s_1Ma^2 . The last fact makes the computation easier with formulas (20), (21). We have

$$\begin{split} R_2 &= \tfrac{3}{2} n'^2 i' \! \left(\! \frac{a'}{r'} \! \right)^3 \! \rho z \big\{ \sin \left(V - \tau \right) - \sin \left(V - 2 \, V' + \tau \right) \big\} \\ &= \tfrac{1}{4} n'^2 \! a^2 \! \frac{m''}{m'} \big\{ - M_4' P \cos \left(\theta \pm \phi \right) \; \text{with } h'' = \tau \; , \\ &+ \tfrac{1}{4} n'^2 \! a^2 \! \frac{m''}{m'} \big\{ M_4'' P \cos \left(\theta \pm \phi \right) \big\} \; \text{with } h'' = 2 \, V' - \tau \; , \end{split}$$

using the third formula of § 285, Chap. X., after multiplication by α'/r' . For these * Leverrier, Ann. Obs. Paris, vol. iv. p. 50, after correction for the adopted masses of the planets.

terms it is sufficiently accurate to neglect the solar eccentricity in finding the Moon factors; this gives $M'_4 = M''_4 = M_4$, V' = T. The value of m''/m' is

$$\frac{m''}{m'} = \frac{3}{1000} \cdot \frac{1}{206265} = [8.1627].$$

The terms, arising from these disturbing functions, in the results at the end of this chapter, are those in longitude which contain the argument w_3 explicitly, and those in latitude which contain the argument w_1 explicitly. The most important are two of the latter with arguments $w_1 \pm (5T - 3V)$ and having coefficients 0".077 and 0".030 respectively.

Section (v). Numerical Values of the Earth's Perturbations.

- 334. Sources.—The general values for $\delta \rho'$, $\delta V'$ are taken from Newcomb's tables of the Sun (§ 318), with some corrections and additions (§ 321); the secular variations of e', ϖ' are from the same source. The terms independent of the planet's arguments are found in § 324. The values of i', τ are from Leverrier,* after correction for the masses of the planets adopted here; the coefficient of $2J 2\tau$ in i' was recomputed.
- 335. Notation.—The values of $\delta \rho'$, $\delta V'$ are given by Newcomb as cosines and sines of the mean anomalies; it was convenient to retain them in this form. Leverrier gives the values of i' in terms of literal arguments; these were combined and expressed in terms of the mean longitudes, which is the final form for all the inequalities due to planetary action (Chap. XV.). Hence, I put

$$\frac{\delta \rho'}{\delta \, V'} = \frac{\rho_c}{v_c} \cos \left\{ j'(\mathbf{T} - \overline{\omega}') + j''(\mathbf{T}'' - \overline{\omega}'') \right\} + \frac{\rho_s}{v_s} \sin \left\{ j'(\mathbf{T} - \overline{\omega}') + j''(\mathbf{T}'' - \overline{\omega}'') \right\} \,, \quad i' = i_c \cos \left(j'' \mathbf{T} + j''' \mathbf{T}'' + \alpha^\circ \right) \,.$$

Also, v_s , v_s are expressed in units of 0"001, while ρ_s , ρ_s are expressed in absolute units multiplied by 10° $\log_{10} e$, that is, they are the coefficients in 10° $\log_{10} (1 + \delta \rho)$.

For the secular terms, $de'/dt = e_1'e'$, $d\varpi'/dt = \varpi_1'$.

^{*} Ann. Obs. Paris, vol. iv. p. 50.

336. Venus, T'' = V.

j'	$j^{\prime\prime}$	$ ho_c$	$ ho_{\scriptscriptstyle S}$	v_s	v_c	$oldsymbol{i}_c$	α
0	0	+ 627					
1		+ 14	- 7				
2		* * *	•••		• • •	24	209
0	- I	- 85	- 39	- 67	+ 33		
I		- 2062	- 1146	-4228	+ 2353	24	180
2		+ 68	- I4	- 34	- 65		
3		+ 14	- 8	- 8	- 3	30	209
0	- 2	0	+ 4	$+$ \mathbf{r}	- 3		
1		± 84	+ 136	+ 60	- 99		
2		÷ 3593	+ 5822	+ 2903	-4702		
3		- 596	- 632	- 1737	+ 1795		
4		+ 40	+ 33	- 33	+ 30	43	209
2	- 3	0	+ 21	+ 1	- 13		
3		+ 44	+ 1044	+ 27	- 666		
4		- 381	- 1448	- 397	+ 1508		
5		+ 126	+ 148	- 684	+ 763	201	209'4
6		+ 14	+ 13	- I 2	+ 12		
3	- 4	0	+ 6	······ I	- 3		
4		- 166	+ 337	- 93	- 188		
5		- 5 I	+ 189	- 38	- 139		
6		- 25	- 91	- 42	+ 146	39	29
7		+ 3	+ 5	- 4	+ 5		
5	- 5	- 134	+ 93	- 69	- 47		
6		- 39	+ 43	- 25	- 28		
7		- 37	+ 136	- 33	- 119		
8		. + 0.3	- 27.9	I	+ 154	20	299
6	- 6	- 80	+ 8	- 38	- 4		
7		- 24	+ 7	- 13	- 4		
8		10	+ 10	- 7	- 6		
9		+ 3	- I2	+ 3	+ 14		
7	- 7	- 38	— 1 7	- 18	+ 8		
8	- 8	- 14	- 19	- 7	+ 9		
I 2		- 43'2	+ 8.1	- 41	- 8		
13		+ 9.00	- 7·7 I	+ 1416	+ 1251		
14		- 25.2	+ 22.3	+ 24	+ 2 I		
16	- 18	see § 350.	~				*

337. Mars, T' = M.

i'	$j^{\prime\prime}$	$ ho_c$	$ ho_s$	$v_{\mathfrak{s}}$	v_c	i_c	a
0	0	- 13					
I		+ 5	- 3				
- 2	I	- 5	+ 6	- 4	- 5		
- I		- 92	+ 119	- 167	- 216		
0		+ 27	- 6	- 47	- 8		
- 3	2	- r3	- 50	- 10	+ 40		
- 2		- 573	- 1976	- 567	+ 1963		
- I		+ 64	- 137	- 617	- 1659		
0		- 18	- 25	+ 15	- 24		
- 3	3	- 154	- 67	- 118	+ 53		
- 2		- 77	- 201	- r ₅₃	+ 396		
- 4	4	+ 46	- 17	+ 32	+ 11		
- 3		+ 461	+ 125	+ 483	- 131		
- 2		+ 43	+ 96	- 256	+ 526	6	263
I		+ 6	+ 8	- 5	+ 7		-
- 4	5	+ 87	- 62	+ 69	+ 49		
- 3	-	+ 87	+ 17	+ 200	- 38		
- 5	6	- 3	+ 30	- 2	- 20		
- 4		- 102	+ 94	- 113	- 104		
- 3		- 27	- 4	+ 100	- II		
- 5	7	+ 4	+ 60	+ 3	- 49		
- 4		- 26	+ 28	- 72	- 78		
- 6	8	- I 2	- 9	- 8 [∞]	+ 6		
- 5	,	- 8	- 44	- 10	+ 51		
- 4		+ 5	- 6	- 12	- 17		
- 6	9	- 30	- 16	- 25	+ 13		
- 5		- 4	- 17	- 15	+ 60		
- 7	10	+ 7	- 3	+ 5	+ 2		
- 6		+ 14	+ 6	+ 18	- 7		
- 7	11	+ 17	- * 10	+ 15	+ 9		
- 6		+ 8	+ 3	+ 42	- I2		
- 8	13	– I	+ 15	- I	- 13		
- 7		- 4	+ 3	- 33	- 30		
- 9	15	- 17	- 14	– 16	+ 13		
- 8 .		- o .90	- 5.92	- 3*	+ 20*		
- 9	17	- 1.3	- 0.6	+ 24	- 10		

^{*} The last figure was not computed, and is not needed.

338. Jupiter, T'' = J.

4	<i>j</i> /-	$ ho_c$	$ ho_s$	v_s	v_c	$oldsymbol{i}_c$	a
o	o	- 513					
1		+ 39	+ 22				
- 3	1	- 2	+ 5	- 1	- 3		
- 2 *		- 78	+ 193	- 52	- 155		4
- 1		+ 56	+ 7067	+ 59	- 7208		
O		+ 227	- 89	- 258 ₂	- 307	6	354
I		+ 79	+ 0	- 73	+ 8		001
- 3	2	+ 102	- 17	+ 68	+ 11		1. Table
- 2		+4021	- 203	+ 2728	+ 136	13.3	180
- 1		+ 1376	+ 486	+1518	- 537	0.0	
0		- I	- 8	- 70	- 22	152	162
- 3	3	+ 43	+ 278	+ 27	- 162		
- 2		+ 796	- 104	+ 551	+ 71		
- 1		+ 172	+ 26	+ 208	- 31		
0						18	150
- 4	4	- 29	+ 5	- · · 16	- 3		
- 3	A comme	+ 13	+ 73	+ 9	- 43		
- 2		+ 110	- 24	+ 78	+ 17		
- t		+ 17	+ 1	+ 23	- 1		
	100		110	Ĭ			

339. Saturn, T"=S.

888 Sec. 4	- C					
0	0	- 24				
2	r	+ 15	+3	+ 11	-	3
1		+ 422	+ 79	+ 412		77
О		+ 7.89	- 0.53	- 320	-	3
1		+ 8	0	- 8		0
- 2	2	- 152	- 57	- 101	+	38
- I		- 103	- 44	- 103	+	45
0		+ 0.31	- 0.26	- 17	. +	2
- 2	3	- 30	- TI	- 20	+	7
- I		- 16	- 6	- 16	+	6

340. Mercury, T'' = Q.

341. All planets. Secular terms.

$$\begin{split} \delta w_1' &= 0 \\ \varpi_1' &= + \left[\overline{6} \cdot 9537 \right] n' \\ \delta n' &= 0 \\ e_1' &= - \left[\overline{6} \cdot 5968 \right] n' \\ \tau &= 173^\circ \cdot 46 \\ i' &= + \left[\overline{7} \cdot 5604 \right] n' t \end{split}$$

Section (vi). A Sieve for the Rejection of Insensible Coefficients.

342. Terms to be considered.—Just as with the direct inequalities (Sect. (iii), Chap. XI.), we only need to consider the possible terms of long period. Also, as before, I consider separately those that do or do not contain w_1 in their arguments. The latter can be at once dealt with; the number of possible terms in the lunar factors is practically limited to those with arguments 2D - 2l, 2D - 2F, 2F - 2l, D - l, and in any case it is a brief matter to consider the possible combinations with the planetary arguments of all but 2D - 2l, 2D - 2F, which are computed in the regular course with the short-period terms.

Those that contain w_1 in their arguments can only produce sensible terms in combination with planetary factors having nearly the same period, that is, a month. Hence we have only to consider the values of coefficients in $\partial \rho'$, $\partial V'$ belonging to terms which have periods of about a month or less.

343. Construction of the Sieve for terms containing w_1 .—The equation for $\delta r'$ is (§ 322)

$$\frac{d^2}{dt^2}(r'\delta r') + \frac{n'^2\alpha'^3}{r'^3}r'\delta r' = \alpha'\frac{dR}{d\alpha'} + 2n'\int \frac{dR}{dT}dt \qquad (23),$$

where $R' = m''/\Delta$; the other portion of R' gives coefficients which are quite insensible in the class of terms considered here. Let q be the mean motion of a short-period argument in R', and therefore in $\delta r'$; for the periods approximating to a month in $\delta r'$ we have n' | q = m approximately.

As far as the effect of the periods is concerned, the four terms of (23) are of relative orders q^2 , n'^2 , n'^2 , 2n'q. And further, the largest terms in R' with periods approximating to a month must have high multiples of T-T' in their arguments, and in this case the two derivatives of R' are of the same order of magnitude. Hence the order of $\delta\rho'$ for such terms is given by

The equation for $\partial V'$ may be written

$$n'a'^2 \sqrt{1 - e'^2} \frac{d}{dt} (\delta V') = -2 \frac{n'^2 a'^3}{r'^3} (r' \delta r') - \frac{d}{dt} \left(\delta r' \frac{dr'}{dt} \right) + n' \int \frac{dR'}{dT} dt \quad . \tag{25}.$$

Similar reasoning shows that the order of the right-hand member is the order of its last term, so that, on integration, $\delta V'$ is seen to be of the same order of magnitude as $\delta \rho'$.

Now $\Delta^2 = r'^2 + r''^2 - 2r'r''\sigma$, where σ is the cosine of the angle between r', r''. Hence

$$a''\frac{dR'}{da'}r' = \frac{dR'}{dr'} = m''\left(-\frac{r'^2 - r'^{2}}{2\Delta^3} - \frac{1}{2\Delta}\right) = \text{order of } \frac{m''}{3} \cdot \frac{a'^2}{\Delta^3} \qquad (26),$$

for the worst case, that of Venus. Hence $3\delta\rho'$ is of order $(m''/m')(\alpha'^3/\Delta^3)m^2$.

Take first the inequalities depending mainly on $\delta\rho'$. A comparison of the disturbing functions in §§ 294, 317 shows that the order for the indirect terms is to that for the direct terms as $3\delta\rho'$: $(m''/m')(a'^3/\Delta^3)$, that is, m^2 : I, since we may take $3\zeta^2/\Delta^5$ as having the same order at the worst as $1/\Delta^3$. Hence any term which is shown by calculation to have a coefficient less than 1" due to direct action will not be sensible in the indirect action. There is only one term left, that with argument l+16T-18V, coefficient 14''.55; the order of the coefficient for the indirect action is this number multiplied by m^2 , that is, the order o" o9 (the computed coefficient found below is 0" o6).

The terms due to $\delta V'$ are treated in exactly the same way and give similar results. The direct inequalities are all small, and there are no sensible ones arising from the indirect action.

Hence, there are no sensible terms of long period containing the argument w_1 and arising from indirect action in the plane of reference, except a small term having the argument of the great Venus inequality.

344. Terms arising from i'.—The principal argument in the Moon factors is w_3 , and the combinations of this with the comparatively few terms in i' which are sensible are first studied; then the terms of one order higher with respect to the lunar eccentricity and inclination, and so on. It soon becomes quite obvious that the only terms beyond those of lowest order in the Moon factors must be of long period relatively to that of the Moon's node. As the terms in $1/\Delta$ to be considered must have the factor γ''^2 , their number is very limited.

The methodical search for long-period terms was simple. The tables formed for the periods in the sieve for the direct terms were available.* As w_3 is itself of long period, it was only necessary to combine w_3 with terms in that table which contained multiples of $w_2 - w_3$, w_3 which were either both even or both odd, that is, terms for which the multiples of w_3 or F were even. The combinations of these with w_3 were those required. Only two survived, apart from those with the sole lunar argument w_3 , namely, the arguments

$$\begin{split} & zw_2 + w_3 - z \mathbf{J} = z \mathbf{D} - z l - w_3 - z \mathbf{J} + z \mathbf{T}, \quad \text{period 277 years} \; ; \\ & w_2 - w_3 - z \mathbf{J} = z \mathbf{F} - \mathbf{D} - l + w_3 - z \mathbf{J} - \mathbf{T}, \quad \text{period 540 years}. \end{split}$$

The latter is quite small compared with the former, on account of the lunar characteristic k^3a_1e as compared with e^2k , and the planetary factor is also much smaller; the period is twice as long, but this only multiplies the relative coefficient by 4.

In a note at the end of a paper lately published,† I gave a value for the coefficient of the former term as o"·21. Since the paper was published the term has been recomputed with the disturbing function (20); this revealed an error in the former computation, and the coefficient appears to be o"·003. It is therefore not retained in the final results.

^{*} A.P.E., sect. v.

Section (vii). Computation of the Lunar Perturbations.

345. The disturbing functions are given in § 318, 324, 327, 332, 333, the values of the planetary factors in the last section, and those of the lunar factors in Sect. (v) of Chap. X. The method of arrangement was to take one lunar argument with all multiples of $T - \varpi'$ and form the products for all the planetary arguments. The equations of variations have been so arranged that the process of finding the values of δw_i , δn , δc_2 , δc_3 from the disturbing functions is very brief and simple, inasmuch as it was rarely necessary to compute more than two of these six variations. In fact, in the few cases where more than two were needed, a simple ratio, the same for all terms, generally sufficed; such a ratio was also sufficient in the majority of cases to find all the other variations after the principal one had been obtained.

The experience gained in computing the direct inequalities suggested that the work could be much abbreviated by considering the peculiarities of each lunar argument, and these peculiarities are set forth in the following paragraphs.

346. The primaries independent of the lunar angles.—Here $\delta n = \delta c_2 = \delta c_3 = 0$, and δw_1 is first computed, and then $-e\delta w_2$, so that the secondary arising from the substitution of δw_2 in the principal elliptic term, $-2e\cos l \cdot \delta w_2$, is obtained directly. For δw_3 , it was sufficiently accurate to treat $\delta w_3/\delta w_2$ as a constant which is the same for all terms, and indeed for the small terms, $\delta w_2 : \delta w_3 : \delta w_1$ are constant ratios with sufficient accuracy.

When these primaries and secondaries have been found, the remaining secondaries can be written down almost by inspection. I therefore only give the coefficients of the primaries arguments ψ , and of the secondaries arguments $\psi \pm l$.

The primaries of very long period arising from terms of very long period in $\delta \rho'$, $\delta V'$ are treated in § 352 below.

347. Primaries containing w_1 and independent of w_2 , w_3 .—Here the periods of all the terms are very nearly the same, δw_2 is nearly equal to δw_1 , and δw_3 is about $\frac{1}{6}\delta w_2$. Hence the secondaries are all very small, the largest being less than o"colo. All of them greater than o"colo were computed, and will be included in the final results, but it is unnecessary to print in detail any but the primaries. The principal variation is again δw_1 .

348. Primaries containing w_1 , w_2 or w_2 only.—These are the terms in which the secondaries are generally much more important than the primaries, and in which the theorem of § 282, Chap. X., has its full force, the principal variations being δw_2 , δc_2 . If the primary contain w_2 in the form $il + \phi$ (i positive), the principal secondary is that with argument $(i-1)l + \phi$, and this was first computed in all cases; then the value of δw_1 ; δw_3 was insensible, or only produced very small terms. The terms divide into two classes according as their periods approximate to a month and less, or are much longer.

The first class includes the lunar arguments

for which the principal terms, those in longitude, have the lunar arguments

respectively.

The second class contains only one argument, 2D-2l, for which the principal term in longitude has the argument 2D-l.

I give δw_1 , that is, the primary, and the coefficients of the principal set of terms in longitude only; from these all others can be obtained immediately.

349. Primaries containing w_1 , w_3 or w_3 only.—The principal variations being δw_3 , δc_3 , the largest term is always the principal secondary in latitude, and the statements of the previous section can be repeated. But only two lunar arguments have to be considered: ${}_2F$, which belongs to the first class, and ${}_2F - {}_2D$, which belongs to the second class. The principal terms in latitude contain the lunar arguments F, $F - {}_2D$, and the coefficients of these four terms are alone set down.

350. Special terms.—Beyond the inequalities mentioned above, there are two with arguments

D - l - 4T + 3V, l + 16T - 18V,

and with periods of 94 years and 273 years. The former is computed in the same manner as the other terms. For the latter we require to find $\delta \rho'$, $\delta V'$ for the argument 16T - 18V or $16(T - \varpi') - 18(V - \varpi'')$. It was known (§ 343) that the final coefficient was of the order of $0'' \cdot 1$. It was therefore sufficient to find the terms with multiples 16, 17, 18 of $T - \varpi'$ combined with $18(V - \varpi'')$, so that they might be combined with the lunar arguments l, $l - (T - \varpi')$, $l - 2(T - \varpi')$ in order to give the required argument. The direct method of computation gave (in absolute units), with sufficient accuracy,

$$\frac{\delta \rho'}{\delta V'} = \frac{- \cdot 0000059 \cos}{- \cdot 0000046 \sin} \left\{ 16(T - \varpi') - 18(V - \varpi'') + 129^{\circ} \right\} \cdot \frac{m''}{m'} \qquad . \qquad . \qquad (27)$$

Thence arises the only sensible term,

$$\delta w_1 = -\circ^{\prime\prime} \! \cdot \! \circ 6 \sin \left(l + {\scriptscriptstyle 16}\mathrm{T} - {\scriptscriptstyle 18}\mathrm{V} + {\scriptscriptstyle 15}\mathrm{\circ}^{\circ}\right) \, . \label{eq:deltaward}$$

351. Omitted terms.—The portions of the disturbing function independent of the planet's mean motion are the constant term and those with argument l'. The former chiefly produce small changes in the mean motions of the perigee and node, and also slight changes in n, e, γ which affect the coefficients of the evection and variation, but the latter are quite insensible. The variation of e' produces the secular accelerations.

The terms due to the motion of the ecliptic and the latitude of the Sun do not combine with any others due to $\delta \rho'$, $\delta V'$.

The detailed results given in the next section do not contain these terms, nor the terms in the two following paragraphs: they will all be given in the final results due to indirect action contained in the last section of this chapter.

352. Terms left as perturbations of the elements.—A few of the primaries which have very long periods and which are independent of the lunar angles are

giving

so left, and their values are to be found with the collected results at the end of this chapter. The principal inequality due to the motion of the mean ecliptic is also treated in this way.

But there are short-period primaries due to long-period terms in $\delta \rho'$, $\delta V'$ which are sensible. I shall show that these may be accounted for by the substitution of $w_1' + \text{long-period}$ terms in $\delta V'$ for w_1' in the final expressions for the coordinates of the Moon.

Consider how such terms would be treated by the second method in Sect. (iii). The chief perturbations of the solar coordinates arise from $\delta n'$ and $\delta w_1' = \int \delta n' dt + \delta \epsilon'$. Hence we should have $\delta u_1 = \delta n'$, $\delta u_2 = \delta w_1'$, so that

$$\frac{d}{dt}\delta u_1 - \delta \frac{du_1}{dt} = \frac{d}{dt}\delta u', \quad \frac{d}{dt}\delta w_1' - \delta \frac{dw_1'}{dt} = \frac{d}{dt}\delta \epsilon'.$$

Now $\delta n'$, $\delta \epsilon'$ only contain the first power of the period as a large multiplier, and therefore the disturbing function does not contain it at all.* Hence all the terms produced by the use of this disturbing function are quite insensible.

We therefore proceed as with the secular accelerations, obtaining the variations of n, e, γ by solving the equations $\delta c_i = 0$ considered as functions of n, e, γ , n' in which $\delta n'$ is known. Then $\delta w_1 = \int \delta n dt$, etc. But this simply gives the primaries independent of the lunar angles, together with the secondaries arising from them, and these we have already obtained. The method therefore proves that for all other terms arising from long-period terms in $\delta V'$, $\delta \rho'$ we are to simply substitute the disturbed values of n', w_1' in the final expressions for the Moon's coordinates. The substitution of $\delta n'$ gives nothing sensible. Hence the statement.

353. Computation of the secular variations.—The values of δn , δb_2 , δb_3 have been obtained in an earlier memoir.[†] With the adopted value of $\delta e'$, namely, $e_1' = -[\bar{6}.5968]n'$, I find

$$\begin{split} \delta n = & + \left[\overline{\text{11}} \cdot \text{0294} \right] nn't \;, \quad \delta b_2 = & - \left[\overline{\text{11}} \cdot \text{8476} \right] nn't \;, \quad \delta b_3 = & + \left[\overline{\text{11}} \cdot \text{0746} \right] nn't \;, \\ \delta w_1 = & + 5'' \cdot \text{82} t_c^2 \;, \quad \delta w_2 = & - 38'' \cdot 3 t_c^2 \;, \quad \delta w_3 = & + 6'' \cdot 46 t_c^2 \;, \end{split}$$

where t_e is the number of centuries from 1850.0.

To obtain the values of δe , $\delta \gamma$, we have

$$\circ = \delta c_2 \! = \! \frac{dc_2}{dn} \, \delta n + \frac{dc_2}{de} \, \delta e + \frac{dc_2}{d\gamma} \, \delta \gamma + \frac{dc_2}{de'} \delta e' \; ,$$

with a similar equation for c_3 . As δn is known, the values of δe , $\delta \gamma$ can be found from the formulæ (39) of Chap. X., by putting for δc_2 , δc_3 the expressions

$$-\,e'\frac{dc_2}{de'}e_1't\;,\quad \, -\,e'\frac{dc_3}{de'}e_1't\;.$$

We find that $\delta e/e$, $\delta \gamma/\gamma$ are less than 10⁻⁸ t_c , and therefore quite insensible.

^{*} This is true in general. See Trans. Amer. Math. Soc., vol. vi. p. 341.

[†] Monthly Notices, vol. lvii. pp. 342-349.

354. Description of the tables.—The portions of the detailed results selected for printing have been described in the preceding paragraphs; it is understood that all portions greater than o":001 have been computed and included in the collected results given in Section (viii) below.

The heading to each page sufficiently describes the contents in general. It will be noticed that $\psi + a^{\circ}$ always denotes the argument of the primary, $\psi \pm l + a^{\circ}$ being the argument of the principal secondary in longitude, and $\psi \pm F + a^{\circ}$ that in latitude. The angle ϖ'' is the longitude of perihelion of the particular planet considered, and l' the mean anomaly of the Earth's orbit.

The angle α is the same for all values of C in a given line until a new value is set down.

355. $\delta V = +o'' \cdot ool C \sin\{i'l' + i''(V - \varpi'') + \theta + a^\circ\} = +o'' \cdot ool \sin(\psi + a^\circ), Venus.$

			$\theta = 0$				D	$\theta = -2D$		
		ψ		ψ±	7	ψ		Ψ		
i'	i"	а	C	α	C	α	C	а	C	
0	- 1	334	8	332	2	152	10	1		
1		330'9	354	330.0	72	150.0	III	150.9	50	
2		48	I 2	90	3	319	2	175	4	
3		28	I		3					
1	- 2	122	13	I 2 2	5	302	17			
2		121.6	511	121.2	104	301.2	179	302	II	
3		315.4	275	324	39	133.7	54	134	30	
4		323	5					136	3	
2	- 3	91	1			272	2			
3		92'0	50	91	10	272	23	91	1	
4		284.8	158	285	32	104.7	46	104	8	
5		314.5	129	322	22	132	14	131	20	
6		315	2					133	2	
4	- 4	64	14	64	3 _	244	9			
5		74	13	73	3	255	5			
6		287	17	288	3	106	4	106	I	
5	~ 5	35	5			215	4			
6		48	3			226	2			
7		74	Ι2	74	3	253	4	- Mail		
8		271	19	274	4	90	3	90	2	
6	- 6	6	2			186	2			
9		256	2			***************************************				
7	- 7					156	1			

 $\delta \mathit{V} = + o'' \cdot \mathsf{ool} \, \mathit{C} \sin \left\{ \mathit{i'l'} + \mathit{i''} (\mathsf{V} - \varpi'') + \theta + a^\circ \right\} = + o'' \cdot \mathsf{ool} \, \mathit{C} \sin \left(\psi + a^\circ \right).$

			$\theta = l$			To have	$\theta = -$	l	
		ψ			$\psi - l$	ψ		,	$\psi + l$
i'	i"	α	C	α	C	α	C	α	C
0	- r	332	I		4				
1		330.9	13		47	331	4		8
2		296			I	5			1
1	- 2	122	2		7				
2		121.2	24		92	302	3		2 I
3		335	5	À	18	314	2	-5	7
4				for q		317		$\text{for } \psi$	I
3	- 3	91	3	as f	13	273		as fc	4
4		285	6	е 9	21	103			3
5		309	2	Same	5	312	2	Same	7
4	- 4	64	I	71	5	244		0.2	1
5		73			3				
6		287			2				
5	- 5	35			2	THE COLUMN TWO IS NOT THE COLUMN TWO IS NOT			
7		74			2	Service Constraints			
8		271			I				
						•			

			$\theta = 2D + l$		$\theta = -2D - l$		$\theta = 4D - l$		$\theta = -4D + l$
			Ψ	$\psi - l$	ψ	$\psi + l$	ψ	$\psi + l$	$\psi - l$
i'	i''	α	C	C	C	C	C	C	c
0	- I	152		2					
I		151	4	20	2	10	2	5	2
1	- 2	302		3				I	
2		301	6	32		2	2	7	
3		¹ 33	2	10	1	6		2	I
3	- 3	271		4					
4		105	2	8		I		2	
5		133		3		4			
4	- 4	244		2					

$\delta V = + o'' \cdot oo_1 C \sin\{i'l' + i''(V - \varpi'') + \theta + a^\circ\} = + o'' \cdot oo_1 C \sin(\psi + a^\circ)$	$\delta V = + o'' \cdot ooi C \sin \theta$	$(i'l'+i''(V-\varpi''))$	$+\theta+\alpha^{\circ}=$	$+o''$ ·ooi $C\sin$	$(\psi + \alpha^{\circ}).$
---	--	--------------------------	---------------------------	---------------------	----------------------------

			$\theta = 2D - l$		θ	= -2D + l	
			ψ	$\psi + l$		ψ	$\psi - l$
i'	i''	а	C	C	α	C	C
0	– 1	332	4	19			
I		330.9	41	214	330.0	16	91
2		300		2	358	2	9
1	- 2	121	7	32			
2		121.4	72	359	122	5	13
3		313,3	19	100	313.3	9	55
4					316	1	6
2	- 3	92		5			
3		91,0	10	47	272		3
4		284.7	19	91	284	2	13
5		312	5	26	311	7	37
6					313		3
4	- 4	64	4	20	244		2
5		74	2	10			
6		286	1	7	286		2
5	- 5	35	2	9	es esconde		
6		52		4	m and and and and and and and and and and		
7		74	2	8			
8		27 I	I	5	271		4
6	- 6	6	I	5			
7		18		1			
7	-7	336		3			
8	- 8	307		2			

 $\delta V, \ \delta U = + \circ'' \cdot \circ \circ \circ C \sin \left\{ i'l' + i''(\mathbf{V} - \boldsymbol{\varpi}'') + \theta + \alpha^{\circ} \right\} = + \circ'' \cdot \circ \circ \circ C \sin \left(\boldsymbol{\psi} + \boldsymbol{\alpha}^{\circ} \right).$

			$\theta = 2l - 2D$		=	-2l+2D	
			ψ	$\psi - \ell$		ψ	$\psi + l$
i'	i''	α	C	C	α	C	C
0	eren I	159		4	332		5
1		330.9	3	77	330.9	4	87
2		2		3	108		I
1	- 2	I 2 2		3	122		6
2		301	6	IO	121.2	6	I I 2
3		314	2	36	314	2	48
4		317		2			
3	- 3	92.2	- 3	59	91		I 2
4		284		11	285	2	33
5		311		19	312		16
6		313		I			
4	- 4	64		4	64		4
5		254		3	74		3
6		286		2	286		3
5	- 5	36		I	35		ī
6		45		r			
7				1	74		2
8		270		2	270		3
8	- 6	236		4			-

			$\theta = 2F - 2D$		The state of the s	$\theta = -2F + 2D$	
			ψ	$\psi - F$	Line section in the s	ψ	$\psi + \mathbf{F}$
i'	i''	а	C	C	α	C	C
I	- I	331	I	11	331	I	11
2	- 2	122	I	6	121	2	14
3		314		5	313		7
3	- 3				91		1
4		284		2	285		4
5		311		3	313		2

356. $\delta V = + \circ'' \cdot \circ \circ \circ C \sin \{i'l' + i''(M - \varpi'') + \theta + \alpha^{\circ}\} = + \circ'' \cdot \circ \circ \circ C \sin (\psi + \alpha^{\circ}), Mars.$

			$\theta = 0$)		$\theta = 2$	D	$\theta = -2D$	
		ψ		ψ =	Ŀ l	Ψ		ψ	
i'	i''	α	C	α	C	α	C	α	C
- I	1	53	30	53	7	232	7	232	3
0		9	5					196	1
- 3	2	285	4	285	I	106	6		
- 2		286·I	206	286°I	42	107.3	6τ	105	10
- I		72.8	27 I	81.4	7 I	251	29	249	32
0		299	3			The department of the second o		265	3
- 3	3	335	11	335	3	151	5		
- 2		2 91.6	50	2 92	II	111	10	111	5
- 4	4	194	3	194	I	5	2		
- 3		164.8	51	165	II	347	15	342	3
- 2		297.3	82	297	18	117	9	115	11
– I		303	I						
- 4	5	215	7	215	I	31	3		
- 3		170	25	170	5	349	5	349	2
- 5	6					254	r		
- 4		42	16	42	3	223	. 4		
- 3		176	14	176	3	356	I	350	2
- 5	7	93	5	93	1	270	2		
- 4		48	13	48	3	226	2	228	I
- 5	8	280	6			101	I		
- 6	9	332	3		3	150	I		

			$\theta = l$		- Company	$\theta = -l$	
			ψ	$\psi - l$	-	ψ	$\psi + l$
i'	i''	α	C	C	α	C	C
- I	I	52		3	The state of the s		
- 3	2	285		2			
- 2		287	8	29	104		5
- 1		67	2	8	69	3	II
- 3	3	332		2			
- 2		292	1	4			
- 3	4	166	2	7	340		1
- 2		293		2	296	I	4
- 4	5	213		2			
- 3		170		2			
- 4	6	43		2			

 $\delta \mathit{V} = + \circ'' \cdot \circ \circ \, \mathit{I} \, \mathit{C} \sin \left\{ i'l' + i''(\mathbf{M} - \varpi'') + \theta + a^{\circ} \right\} \\ = + \circ'' \cdot \circ \circ \, \mathit{I} \, \mathit{C} \sin \left(\psi + a^{\circ} \right).$

		θ =	= 2D - l		$\theta =$	- 2D+	l
			ψ	$\psi + l$		ψ	$\psi - l$
i'	i''	a,	C	C	a	C	C
- 2	I	53		I			
- 1		52	2	12	52		5
0					15		2
- 3	2	286	2	IC			
- 2		287.0	23	117	285	3	15
- I		70.4	10	52	68.8	ΙI	57
0					86		5
- 3	3	331	2	10			
- 2		291	3	18	291	1	8
- 4	4	186		4			
- 3		166	5	27	164		4
- 2		297	3	15	295	4	20
- I					299		2
-4	5	212	I	6	a common		
- 3		169	2	9	169		4
- 5	6	74		2			
-4		43	2	8	42		1
- 3		175		2	172		4
- 5	7	90		3			
- 4		47		4	48		2
- 5	8	282		3			
- 6	9	329		2			

		$\hat{\theta}$	$\theta = 2D + l$			2D - l	$\theta = 4D - l$	$\theta = -4D + l$
			ψ	$\psi - l$	ψ	ψ+ <i>l</i>	$\psi + I$	ψ-
i'	$\imath^{\prime\prime}$	α	C	C	; C	C	C	C
1 -	I	232		1				
- 3	2	105		1				
- 2		106	2	II		2	2	
- 1		105	I	5	I	5	I	I
- 2	3	111		2				
- 3	4	347		3				
- 2		117		2		2		

 $\delta \mathit{V},\; \delta \mathit{U} = + \circ'' \cdot \circ \circ \circ \mathit{C} \sin \; \{\mathit{i'l'} + \mathit{i''}(\mathsf{M} - \varpi'') + \theta + a^\circ\} = + \circ'' \cdot \circ \circ \circ \mathit{C} \sin \; (\psi + a^\circ).$

			$\theta = 2l - 2$	D	į.	$\theta = -2$	7 4 2	D
			ψ	$\psi - l$	į		ψ	$\psi + l$
i'	i''	α	C	C		α	C	C
- I	1	52		3	5	2		6
0		14		1				
- 3	2	287		2	28	6		2
- 2		286		I 2	28	6*9	3	42
- I		69	1	32	7	0	2	29
0		90		2				
- 3	3				33	2		3
- 2		291		6	29			9
- 4	4	197		3	180			ī
- 3		165		3	160	5		10
- 2		295		11	290	5		9
- 4	5				21:	2		2
- 3		169		3	160)		4
- 5	6	74	- 2	5				
- 4		42		1	43	3		3
- 3		173		2	174	ļ		1
- 5	7				91			1
- 4		48		2	47	,		2
- 6	8	135	– I	3				
- 5					281			1

		$\theta = 2 \mathrm{F}$	- 2D	$\theta = -2$	$\Gamma + 2D$	$\theta = 2$	$\theta = 2l$		
		$\psi - F$		$\psi + F$		$\psi - l$			
i'	$i^{\prime\prime}$	α	C	a	C	α	C		
- 2	2	286	3	286	6	106	2		
- 1		67	4	70	4				
- 3	4			166	1				
- 2		295	1	297	r	,			

357. $\delta V = + \circ'' \cdot \circ \circ \circ \circ C \sin \{i'l' + i''(\mathbf{J} - \boldsymbol{\varpi}'') + \theta + a^{\circ}\} = + \circ'' \cdot \circ \circ \circ \circ C \sin (\psi + a^{\circ}).$ Jupiter.

			$\theta = 0$)		1	θ	= 2I)	$\theta = -$	2 [)
		ψ		$\psi\pm$	l	1		Ψ	ψ	
i*	i''	а	C	α	C		α	C	α	C
- 2	1	77	ι 7	82	6	Ī	265	19		
- I		90.4	724	90.4	153		269.7	2 I I	2 7 I	34
0		348.4	262	312.6	65		182	39	190.2	46
ı		2	8	359	2				182	5
	2	186	7	185	2		5	10	l.	
- 3 - 2	2	182.7	208	182.2	45		2.5	104	183	2
- I		161.6	173	163.0	39	1	339 9	44	340	9
0		358	14	348	6		183	2		
3	3	102	9	105	2		290	7		
- 2	V	187.0	43	186	9	1	7	2 I		
- L		173	23	174	5		351	5	352	1
3	4	101	3				287	2		
2	,	191	7	191	2		13	3		
- I		177	3							

			$\theta = l$				$\theta = -l$	
			ψ	$\psi - /$			Ψ	$\psi + l$
i'	$i^{\prime\prime}$	α	C	C		α	C	C'
- 2	1	83	2	8				
I		90.0	27	102		272		1.4
0		17	4	13		8	5	16
1					Ť	0		2
- 3	2	185	1	4				
- 2		182.4	14	56		3	2	14
- 1		162	6	23		344		3
- 3	3	107	1	+		281		1
- 2		187	3	Υl		7		3
1		173		3				
3	4	101		1				
- 2		191		1				

 $\delta V = + o'' \cdot \operatorname{ool} C \sin \left\{ i'l' + i'' (\mathbf{J} - \boldsymbol{\varpi}'') + \theta + a'' \right\} = + o'' \cdot \operatorname{ool} C \sin \left(\psi + a^{\circ} \right).$

= +0	0010	Similar	+ (() -	w)+0+	a , = +0	0010	ып (ψ -
			$\theta = 2D - i$,	$\theta =$	= - 2D+	1
			ψ	$\psi + l$		ψ	$\psi - l$
i'	$i^{\prime\prime}$	α	$\stackrel{\cdot}{C}$	C	α	C	C
- 2	1	84	7	37			
- I		89.8	82	417	90.9	10	58
0		4.5	14	75	10,1	16	87
- 3	2	185	4	19	i		
- 2		182.3	44	214	3.5	I	6
- I		160.3	17	89	160	3	15
0		8		3	44		3
- 3	3	109	3	15	276		I
- 2		187.2	9	42	6		I
- I		171	2	11	179		2
4	4	18		2	1		
- 3		106		4			
- 2		192	1	6	•		
- I		177		1			
		θ	= 2D + l		$\theta =$	= -2D-	
			ψ	$\psi - l$		ψ	$\psi + l$
i'	$i^{\prime\prime}$	α	C	C	α	C	C
- 2	1	265		4	i z		
- I		270	7	39	272	1	7
0		181	1	7	191	2	9
- 3	2	5		2	1		
- 2		2	4	19	1		
- I		340	I	8	340		2
- 3	3	291		I	1		
- 2		7		4			
- 1		351		1			
		$\theta = 4D$	- /		$\theta =$	= -4D + 1	I
.4	,,,,		ψ	$\psi + l$		ψ	$\psi - l$
i'	i"	α	Ċ	C	α	C	C
- 2	I	267	_	I	272		1
- I		269 -8-	3	9	193		2
0		181		2	- 73		-
- 2	2	2	1	4			

 $\delta \mathit{V} = + \circ'' \cdot \circ \circ \, \mathit{I} \, \mathit{C} \, \sin \big\{ \mathit{i'l'} + \mathit{i''} (\mathbf{J} - \mathbf{\varpi}'') + \theta + a^\circ \big\} = + \circ'' \cdot \circ \circ \, \mathit{I} \, \mathit{C} \, \sin \big(\psi + a^\circ \big).$

			$\theta = 2l - 2D$		$\theta = -2l + 2D$			
			ψ	$\psi - l$	1		ψ	$\psi + l$
i'	i''	α	c	C	1	а	C	C
- 2	1	72		9		84		8
- I		90.6		47		89.9	8	150
0		8.9	2	46		6.5	2	44
I		I		3				
- 3	2	187		I	5	185		3
- 2		182.8	53	338	Ù	182.4	3	53
- 1		158		I 2		191	2	33
0		33		1		15		1
- 3	3	100		2	ļ	108		3
- 2		5.9	94	130	İ	187		11
- 1		170		2		172		4
- 2	4	11	I	4		192		2

			heta=2l	•	$\theta = -2l$			
			ψ	$\psi - l$		Ψ	$\psi + l$	
i'	$i^{\prime\prime}$	а	C	C	α	C	C	
- I	1	270		6				
0		187		I	187		I	
- 2	2	3		3				
- I		341		1	Accessor			

			$\theta = 2 \mathrm{F} - 2 \mathrm{D}$	$\theta = -2$			2F + 2D	
			ψ	$\psi - F$		ψ	$\psi + F$	
i'	i''	α	C	C	а	C	C	
- 2	I				84		I	
(- I		91	1	10	90	2	19	
0		11		6	2		6	
- 2	2				182		7	
- I		161		2	160		4	
··· 2	3				187		I	

358. $\delta V = + \circ'' \cdot \circ \circ \circ \circ C \sin \{i'l' + i''(S - \varpi'') + \theta + \alpha^{\circ}\} = + \circ'' \cdot \circ \circ \circ \circ C \sin (\psi + \alpha^{\circ}),$ Suturn.

			θ =					
		ψ		ψ∃	=1		$\theta = 2D$	$\theta = -2D$
i^{\prime}	$i^{\prime\prime}$	a,	C	α	C	α	C	C
- 1	1	169'4	42	169	8	350	I 2	2
0		35 ⁶ .5	45	354	16	180	5	5
- 2	2	339	8	339	I	159	4	
- I		337	11	337	3	156	3	
0		117	3					
2	3	340	2					
- I		341	2					

			θ	= l	$\theta = -1$	$\theta = 2D - \ell$			θ :	= -2])	$-2\overline{1})+l$		
			Ψ	$\psi - \angle$	$\psi + l$	ψ	$\psi + l$			ψ	$\psi - l$		
i'	i''	α	C	C	C	C	C		α	C	C		
- 2	I	169				1	2						
- I		169	2	6	I	5	2.4	1	169		3		
0		0		2	2	2	IO		8	2	10		
- 2	2	339		2		2	9	1					
- 1		337		2		1	6	1					
- 2	3	340				U	2						

			$\theta = 2D + l$ $\psi - l$	$\theta = -2D + l$ $\psi - l$	*	$\theta = 2l - \psi -$		$\theta = -2l + 2D$ $\psi + l$
i'	i"	α	c	C		a	C	C
- r	I	349	2			169	2	II
0		180	1	I	1	0	6	6
- 2	2					341	5	2
- I					1	337		2
- 2	3					334	1	

359. $\delta V = +0$ ":006 $\sin(l' + 347)$, all planets.

Section (viii). Final Results for the Indirect Action.

360. Tests.—No general method of testing the work appeared to be available, but various peculiarities of the solution very much aided in the avoidance of the kind of error which is most likely to occur—one running through a whole series of terms.

In order to try and abbreviate the work, the two terms with the same argument of the form $a \sin \psi + b \cos \psi$ in the disturbing function were combined into a single argument of the form $A \cos (\psi + a)$ as early as possible. This might have become very disadvantageous in the final process, where terms with different values of A, a had to be added together. It was, however, obvious that for nearly all terms with the same ψ , the angle a should be nearly the same; and the cases where this was not to be expected were evident. This approximate equality of the angles therefore served as a test.

Again, let us consider the terms with arguments independent of the lunar angles. They are formed of the primaries with arguments ϕ and the secondaries with arguments $(\phi+l)-l$, $(\phi-l)+l$, $(\phi+2D-l)-2D+l$, etc. When the final addition was made, it was found that the sum of the secondaries was always small compared with the primary, unless the primary was a term of very long period—an exception of rare occurrence and easily noticed. Consideration of the peculiarities of the method of variation of the constants showed that this must necessarily be the case.* This fact furnished a full test of the principal terms whose primaries have the arguments $\phi \pm l$, since these secondaries are the largest terms arising from those arguments; it was also a partial test of the terms with arguments $\phi \pm (2D-l)$ in the disturbing function.

The final terms containing $\phi + 2D$ arise chiefly from the primaries with arguments $\phi + 2D$ and the secondaries with arguments $(\phi + 2D - l) + l$. In general, the latter are very nearly half the former; this can also be shown to be a consequence of the theory. This tests the terms with arguments 2D, 2D - l in the disturbing function.

The only important terms not tested by these methods are those with arguments $\phi \pm (2l - 2D)$, all of which have periods much longer than the month. The resulting terms in the longitude which have the largest coefficients are those with arguments $\phi \pm (l - 2D)$.

The existence of these tests raises a doubt as to whether the variation of arbitrary constants is the best method for treating the numerous short-period terms. Possibly a direct method might be more simple. It would certainly have the advantage of finding the changes in the coordinates directly, and of avoiding the formation of derivatives with respect to n. It might be advisable to use a direct method for most of the terms, and to use the variation of the elements only for those of long period.

361. Arrangement.—The various terms with the same period which arise from the substitution of the elements in the Moon's coordinates have been collected into one term; in some cases there were as many as eight such terms.

^{*} See Monthly Notices, vol. lxviii. p. 166.

As with the direct inequalities, the terms are divided into classes, those added to the coordinates and those added to the elements. The selection is somewhat arbitrary, and it largely depends on convenience for the formation of the tables of the Moon's motion which will be a natural sequence of this work. There are no terms which seem to require the other class used with the direct terms—those partly added to the coordinates and partly to the elements. In other respects the arrangement is quite the same.

The angles in the preceding section were the mean anomalies of the planets; they are changed here to mean longitudes to facilitate addition with the direct terms.

The terms given are those equal to or greater than o"coo, with the exception of a few (e.g. in the latitude due to Mars) for which there are no portions due to other causes. But all terms greater than o"coo are included, except one or two of very long period, noted above.

In the terms added to the elements, t_e represents the number of centuries reckoned from 1850.0.

The two terms added to $n't + \epsilon'$ are to be included in the arguments $D = nt + \epsilon - n't - \epsilon'$, and $l' = n't + \epsilon' - \varpi'$; and the secular part of ϖ' is to be included in the latter argument.

All terms given at the end of Chap. IX. which contain the arguments $\pm il'$ (*i* positive) are to receive the factor $1 + i'\delta e'/e' = 1 - 00248i't_e$.

362. $\delta V = + o'' \cdot oo_1 C \sin \{\theta + jT + i(T - V) + a^{\circ}\}, Venus.$

Stratus (ask of as	heta=0			ŀ	$\theta = 2D$					$\theta = 7$			
j	i	α	C	j	i	α	C	1	j	i	α	C	
0	I	0.0	344	I	3	271	37		- I	- I	151	3	
Const d Addition	2	179.8	507		4	89	5			I	102	3	
and the	3	179.6	50		5	103	2	İ		2	282	7	
7	4	180	14	r	6	92	I		2	3	209	20	
	5		5	- 1	- 3	26 9	6	1		4	204	3	
z	6		1		- 2		23			5	19	3	
î	- 2	259	14		1	254	5		- 2	- 5	161	3	
	- 1	77	8		I	101	8			4	336	3	
	1	323	10	1	2	281	13			- 3	33 ^I	2 I	
1	2	273.3	272		3		3		3	5	115	3	
***************************************	3	271.8	155	2	3	199	11	1	- 3	- 5	65	3	
a dille de una	4	90	14		4	202	3						
400 A CO	5	93	3	1	5	20	4						
2	I	216	1	- 2	- 4	338	Ι			ť	$\theta = 2D - l$		
water and the second	2	180	5		- 3	342	15						
00000	3	201.1	129	İ	- 2	7	3		0	- 5	0.0	I	
X	4	203	18	3	5	116	2	1		- 4		4	
3000	5	19	I 2	- 3	- 5	64	2			- 3		58	
3	3	9 2	2	i	- 3	91	1	+		- 2	180.0	15	
000000	5	115	19							- I		87	
×800.600	6	120	2							I	0.0	120	
ofisous				1		$\theta = l$		1		2	179.6	167	
2000								1		3	178	2 I	
construction of the state of th		$\theta = 2D$		0	- 4	0.0	3 8			4	180	8	
0	4	τ80			- 3			1		5 6		3	
0	- 4	0	2	§ r	- 2	-0-1-	90 61	*			240	I	
Storoco	- 3 - 2	0	2		- I	0.0 180.0	61	1	1	- 2 - I	259	3	
(downsk)	~ j	180	38		I 2	180.0	112	Ť		I	252	4	
Sassassi	ı	0.0	38 84			1000				2	37 271.4	1 65	
FORMANDA	2	179'6		. T	4	258	4	1					
evenesco.	3	178	144		- 2 - I	79	4 1			3 4	90 90	49 5	
W(1970)	4	180	8		ī	27	3	- 1	- 1	- 5	90	3 I	
- Children College	5		5	, s com	2	27 I	33		•	- 4	270	3	
Randomida	6		3	900, 4 6	3	272	34	i		- 3	269	10	
market from	7		2	3	3 4	91	3			- 2	268.1	43	
D COVE ASSOCIA	8		2	- I	- 4	89	3			- I	251	5	
I	ŧ	232	3		- 3	26 8	27			I	101	9	
Security Sec	2	271	40		- 2	269	33			2	281	13	
- E							_						

$\delta V = + o'' \cdot oo$	$C\sin \frac{1}{2}$	$\theta + jT + i(T)$	$-V) + \alpha^{\circ}$	\ . Venus.
-----------------------------	---------------------	----------------------	------------------------	------------

10,	θ	= 2D - l				$\theta = zD + l$	$\theta = 2l$				
j	i	α	C	$\cdot j$	i	α	C	j	i	α	
2	. 3	200	. 19	1	3	271	4	I	2	273	
	4	202	4	- I	- 2	269	3	4 - 6 -	3	272	:
	. 5	, 19	4		1	101	I	- I	- 3	268	2
- 2	- 6	340	4		2	281	2	11 5 2	- 2	267	
7.44	-4	338	2	2	3	199	2	2	3	202	
1.	- 3	340	24	- 2	3	341	2	- 2	- 3	238	. 1
	- 2	6	3								
3	5 5	114	. 4			$\theta = 4D - l$		ho i			
- 3	- 5	66	.2,	f 1 -							
	- 3	91	I	. 0	I,	180	6		θ	=2l-2D	
					2	0	7				· ·
33		15.00		I	2	92	I		-2	0	9
4.14	θ=	= 2D+l		s (a)	3		I		- I	180	5
									1	0	2
0	- I	180	4			$\theta = 2l$		7 - 45.	2		۷ ا
	J	· o `	10						3		3
	2	180	15	ó	- 2	•	7	1	2	272	2
	3		3		- I	180	5	- 1	-3	268	3
	. 4		I		1	0	5		- 2		- 3
Ι,	2	271	- 5		2	180	8	2	6	200	3
·			and the same of								

$$\delta V = + o'' \circ o \circ C \sin(\theta + \phi).$$

$$\begin{aligned} \phi &= 4 \mathrm{T} - 3 \, \mathbb{V} + 272 \,^{\circ} \cdot \mathbf{i} \\ \theta & C \\ l &= \mathrm{D} \\ -\mathrm{D} & 5 \, \mathbf{i} \\ -\mathrm{D} & 32 \\ 2 l &= \mathrm{D} \\ -\mathrm{I} + 180 \,^{\circ} & 7 \\ -l &= \mathrm{D} \end{aligned} \qquad \begin{aligned} \phi &= 5 \mathrm{T} - 3 \, \mathbb{V} + 216 \,^{\circ} \\ \theta & C \\ w_{3} & 19 \\ w_{3} &\pm l & 3 \\ w_{3} &\pm l & 3 \\ w_{3} &+ 2 \mathrm{F} \\ -w_{3} &- 2 \mathrm{F} \end{aligned}$$

363. $\delta V = +0'' \cos i C \sin \{\theta + j''M + i(M-T) + a^{\circ}\}, Mars.$

θ =0			(1. Z.)		$\theta = 0$		$\theta = 0$				
$j^{\prime\prime}$.	-i	. ά	C	$j^{\prime\prime}$	i	, α	C	j"	i	α	· · · · · · · · · ·
o.	Ι,	180	30	ı	0	.: 36	5	2	0	183	. 2
↑ JY.	2	180.3	203		1	227.8	269		2	245.0	- 81
	3	356	11		2	212.5	48		3		25
	4	342	3		3		. 52		4	244	16
. I	-3	260	6		4	320	9 -	h ·	5	62	5
		The second second second									

 $\delta V = + \circ^{\prime\prime} \cdot \circ \circ \circ \circ C \sin \left\{\theta + j^{\prime\prime} \mathbf{M} + i (\mathbf{M} - \mathbf{T}) + \alpha^{\circ} \right\}, \, Mars.$

		$\theta = 0$	1			$\theta = 2D$			θ	= 2D - l	
gir	i	α	C	$j^{\prime\prime}$	i	α	c	j''	i	α	$\boldsymbol{\mathcal{C}}$
	I	150	1	- 3	- 3	264	2	0	- I	0	3
ં	3	277	14		- I	34	2		1	180	8
	4	276	14						2	181.0	61
	5	275	6						3	353	5
	6	94	3			$\theta = l$		{	4	329	1
	Ü	24		0	- 3	180	3	ı	- 3	259	2
				O	- 3 - 2	0	3 38		I	220	31
					- z - 1	O	6		2	212	11
		$\theta = 2D$				180			3	214	14
	,	V — 2D			I	180	7		4	27	3
o	- 2	0	5		2	_	43	- I	- 5	164	5
	- I		2		3	o 261	3 1		- 3	327	2
	1	180	4	Ι	- 3		66		- 2	328	6
	2	181	44		I	224.2			- I	320	35
	3	0	5		2	212	11		0	139	I
	4	328	2		3	213	13		3	280	4
1	1	224	23		4	30	I	2	2	244	11
	2	2 I 2	6		5	196	I	1	3	• •	6
	3	214	8	- 1	- 4	150	1		4	245	5
	4	37	3		- 3	330	9		5	60	I
	5	16	I		- 2	327	9	- 2	6	309	3
- T	-3	327	1		- I	304.5	67		-4	296	I
	- 2	328	3		3	279	I		- 3	-90	3
	- I	317	23	2	2	246	16		- 2	297	14
	0	139	ı		3	245	5	3	3	275	I
	2	280	1		4	244	3	3	3 4	-13	2
	3		3		5		1		5	276	I
2	2	244	5	- 2	- 5	296	1	- 3	- 4	264	2
	3		4		- 4		3	3	- 3	266	2
	4	246	4		3	295	5		3	200	-
	5	59	1		- 2	294	17				
- 2	- 4	296	ı	3	3	277	3				
-	- 3	290	2		4	276	3			0 10 1	
	- 2	297	8	- 3	- 4	264	3		•	$\theta = 2D + l$	
	0	40	2		- 3	263	2	0	2	180	6
2			I						- 2	0	I
3	3	²⁷⁵						ı	I	, 82	3
	4	276	2 2		θ	= 2D - l		And the state of t	2	2 I 2	I
	5 6	277		0	-4	195	3	1	3	214	. 2
. :		90 264	I	J	- 4 - 2	195	3 11	- I	- I	93	3
- 3	-4 Doz.	264	r Sog 7	Vot T		Ü	**			10	
	LOYA	AL ASTRO	N. 150C.,	v OLi. I.i.	LAX.		,				

 $\delta V = + o'' \cdot ooi C \sin \{\theta + j''M + i(M - T) + a^{\circ}\}, Mars.$

$\theta = 2D + l$	- The state of the	$\theta = 2l$		formation in	θ	=2l-2D	
j'' i a C	j'' i	а	\mathcal{C}	j''-	i	a	C
2 2 245 I	0 -2	0	3	. 0	- 2	0	4
-2 -2 297 I	2	180	3	, I	1	87	1
A TD 7	1 1	232	- 3	-	5	196	2
$\theta = 4D - l$	- I - I	308	3	_ I	- I	- 98	2
0 2 0 2	- * * * * *			2	6-	51	1

364. $\delta V = + o'' \cdot ooi C \sin \{\theta + j''J + i(J - T) + \alpha^{\circ}\}$, Jupiter.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C 72 6 2 7 5 2 2 5 7 2
2 359.6 200	5 72 6 2 7 5 2 2 5 7
2 359.6 200	6 2 7 5 2 2 5 7
3 7 10 0 184 35 2 -1 250 1 -3 257 6 2 273 9 0 326 -2 274 18 3 102 6 1 238 0 336·3 259 2 0 351 1 2 344 1 238·0 170 1 236 5 -2 -2 196 2 35² 44 2 345 3 -1 302	2 7 5 2 2 5 7
1 -3 257 6 2 273 9 0 326 -2 274 18 3 102 6 1 238 0 336'3 259 2 0 351 1 2 344 1 238'0 170 1 236 5 -2 -2 196 2 352 44 2 345 3 -1 302	7 5 2 2 5 7
-2 274 18 3 102 6 1 238 0 336·3 259 2 0 351 1 2 344 1 238·0 170 1 236 5 -2 -2 196 2 35² 44 2 345 3 -1 302	5 2 2 5 7
0 336'3 259 2 0 351 1 2 344 1 238'0 170 1 236 5 -2 -2 196 2 352 44 2 345 3 -1 302	2 2 5 7
1 238.0 170 1 236 5 -2 -2 196 2 352 44 2 345 3 -1 302	2 5 7
² 35 ² 44 ² 345 3 -1 302	- 5 7
2 255 4	7
2 - I 250 IO 0 200 3 I 290	
O 334 14 I 110 6	
1 238 25 3 1 230 I	
$\theta = 2D - l$	
3 1 230 3	
$\theta = l$	2
0 -3 173 2 -1	
$\theta = 2D$	44
0 = 2	1 1 1 1 1 1 1
-2 180 25	
3 14	6
1 188.	I · .
2 2502 80	. 9
3.	
4 12	46
352-	20
351 30 -1 -2 91	130
2 250 75	13
2 258	60
3 358 2 -1 301 36 2 273	16

$\delta\,V\!=\,+\,\mathrm{o}''\!\cdot\!\mathrm{oo}\,\mathrm{i}\,C\sin\,\left\{\theta\,+\,j''\mathrm{J}+i(\mathrm{J}-\mathrm{T})+a^\circ\right\}$, Jupiter.

	$\theta =$	2D - l			2D+l		$\theta = 2l - 2D$				
j''	i	α	\boldsymbol{C}	$j^{\prime\prime}$	i	α	$\boldsymbol{\mathcal{C}}$	$j^{\prime\prime}$	i	α	C
- I	3	102	7	- I	2	273	3	0	- 2	180	5
2	0	351	I		3	102	I		- I	2	11
	1	237	6						I	0	3
	2	344	3		$\theta =$	4D - l			2	179.7	53
- 2	- 2	196	4	0	I	358	9	1	2	170'9	94
	- I	305	2		2	1 7 9	5	- I	- I	302	2
	0	171	I	1	0	172	1		0	186	2
	ı	291	3		1	57	I	2	2	164	ı
				- I	0	2	I	1		·	
						_				$\theta = 2l - 4D$	
	$\theta =$	= 2D + l		-	4	J = 2/		I	2	•	
				TO THE PROPERTY OF THE PROPERT				1	2	171	I
0	- I	I	5	0	- 2	180	3				
1	1	178	21		- I	2	11	serve sarings on		$\theta = 2F - 2D$	
	2	359	8		1	178	12	0	- I	0	2
	3	14	I		2	0	3	90	τ	т80	I
I	0	35 3	4	· I	0	293	5	1			
	1	237	5		1	239	3	i			
	2	352	3		2	171	I	1		$\theta = w_3$	
- I	- I	303	I	- I	– 1	301	3	I	0	0	3
	0	182	4		0	247	5	2	0	168	6

365. $\delta V = + o'' \cdot oo_1 C \sin \{\theta + j''S + i(S - T) + a^{\circ}\}$, Saturn.

			$\theta = 0$		1		$\theta = 2D$		$\theta = 2D - l$				
j	<i>!!</i>	i	α	C	j"	i	α	C	j"	i	α	C	
	0 :	Ι	179 6	42	1	I	257	3	0	- 2	180	5	
	2	2	0	8		2	270	2	i i	- I	0	2	
	1 (2	266.6	45	- I	0	255	4		1	180	14	
:	1	Ι	257	13		2	280	2		2	0	4	
	2	2	270	2					I	0	271	6	
1	2 (2	297	3			$\theta = l$			2	257	-3	
	1	Į	171	2	0	- 2	180	I	- I	- 2	277	I	
:						- I	0	6		0	267	6	
			$\theta = 2D$			I	180	10					
: () — I	Į.	6	1	ı	0	265	15			A 70 . I		
1	1	г	180	10		I		2			$\theta = 2D + l$		
							² 57		0	1	180	2	
	2	2	0	5	- 1	- I	283	3					
* 1	I C)	270	4		0	275	15					

366. All planets.

$$\delta V = -0'' \cdot 0.24 \sin(l' - 5^{\circ}) - 0'' \cdot 0.04 \sin(l' \pm l - 5^{\circ}) - 0'' \cdot 0.02 \sin(l' + l - 2D - 5^{\circ}).$$

Latitude.

367.
$$\delta U = + o'' \cdot ool C \sin\{\theta + j T + i (T - V) + a^\circ\} = + o'' \cdot ool C \sin \psi$$
, Venus.

	($\theta = \pm F$			$\theta =$	= F + 2D		$\theta = F + 2D + l$				
j	i	α	C	j	i	α	C	j	i	a	C	
0	1	0	4	0	- 1	180	2	0	I	0	I	
	2	180	7		I	0	5		2	180	2	
1	2	273	6		2	180	9					
	3	272	2		3		1					
2	3	201	2	I	2	27 I	2		$\theta =$	$\pm F + 2D - l$		
					3	272	2	0	- 3	0	3	
				- I	- 2	268	I		- r		3	
	θ	-F+2D			I	101	I		1		6	
	0	- F 7 21)	4		2	280	I		2	180	8	
0	- 2	0	7	2	3	199	1	I	2	2 7 I	3	
	- 1	180	14	- 2	- 3	341	2		3	•	2	
	I	0	16					- I	- 2	269	2	
	2	180	23		$\theta =$	$\pm \mathbf{F} \pm l$	1	2	3	199	I	
	3		2				1					
I	2	27 I	9	0	I	0	2		ψ		C	
	3	272	6		2	180	4	$w_1 +$,	+215°6	77	
- 1	- 3	268	2	I	2	27 т	1		-5T + 3V		30	
	- 2	269	6	2	3	272	1			$-3V + 36^{\circ}$	3	
	I	101	1	2	3	199	I			3V + 216°	4	
	2	280	I							3V + 36°	4	
2	3	199	3		$\theta = -1$	F + 2D + l			·8T - 5V		3	
- 2	- 3	341	5	0	2	0	I		8T + 5V		7	

368. $\delta U = + o'' \cdot oor C \sin \{\theta + j''M + i(M - T) + a'\}$, Mars.

369. $\delta U = + o'' \cdot o \circ \iota C \sin\{\theta + j'' \mathbf{J} + i(\mathbf{J} - \mathbf{T}) + a^\circ\} = + o'' \cdot o \circ \iota C \sin \psi$, Jupiter.

$\theta = \pm F$				$\theta = F + 2D$				$\theta = \pm \mathrm{F} + l - 2\mathrm{D}$			
j''	i	α	C	j''	i	а	c	$j^{\prime\prime}$	i	а	\boldsymbol{C}
0	ī	180	9	0	1	180	8	0	- 2	180	4
1	0	48	8		2	0	3		- I	0	11
1	Ü	•		I	0	350	I		I	180	2
	Λ	- F + 2D			I	237	2		2	0	15
	0=				2	352	2	1	0	357	2
0	- 2	0	3	- I	0	0	2		2	171	6
	- I		6	l l	2	273	2	- I	- I	302	2
	I	180	29		3	102	I		0	1 86	2
	2	0	I 2		3	102	-				
1	0	350	7						$\theta = +$	F + 2l - 2D	
	1	237	6		$\theta =$	$\pm \mathbf{F} + l$		0	2	357	2
	2	352	2	0	- 2	0	2	ı	2	354	4
- 1	- I	303	2		- I		6		-	334	
	0	181	4		I	180	8		ψ		C
	2	273	3		2		I	w_1	+J		5
	3	102	1	I	0	301	4	w_1	+2J+168	3°	35
out of the control of					I	239	2	w_1	$-2J + 24^{\circ}$		18
$\theta = F + 2D$			1	2 350		1	$w_1 + 3J + 156^{\circ}$			2	
0	- 2	0	4	- I	- I	301	2	iv_1	+l+2J+	168°	2
0.000	- I	180	3	1	0	240	4	iv_1	-l+2J+	348°	2

370. Terms added to the Elements.

	$\delta w_1 = + o^{\prime\prime} \cdot oo_1 C \sin \psi$	+5".82t2	$\delta(w_1 - w_2) = + 16''t_c + 44'' \cdot 1t_c^2$			
	ψ	\boldsymbol{c}	$+ 1''' \cdot 129 \sin(w_3 + 276^{\circ} \cdot 2)$			
	$13T - 8V + 313^{\circ}.8$	234	\$			
	$l + 16T - 18V + 331^{\circ}$	6*	$\delta w_3 = +5'' t_c + 6'' \cdot 46 t_c^2 + 15'' \cdot 59 \sin(w_3 + 276^\circ \cdot 2)$			
	$Q-4T+239^{\circ}$	3	$+ 15 \cdot 59 \sin (w_3 + 270 \cdot 2)$			
	$8M - 4T + 310^{\circ}$	3	$\delta y = + o'' \cdot 698 \cos(w_3 + 96^{\circ} \cdot 2)$			
	$9M - 5T + 305^{\circ}$	8				
10M - 6T + 306°		2	$\delta(n't + \epsilon') = + 1'' \cdot 89 \sin(\mathbf{13T} - 8\mathbf{V} + 134^{\circ})$			
	$11M - 6T + 335^{\circ}$	6	$+ o'' \cdot 20 \sin (15M - 8T + 216^{\circ})$			
	$13M - 7T + 19^{\circ}$	6				
	$15M - 8T + 43^{\circ}$	26	$\delta \varpi' = + \circ ^{\circ} \cdot 32t_c$			
	$17M - 9T + 63^{\circ}$	4	$\delta e' = - \cdot 00248 e' t_c$			
	$w_3 + 276^{\circ} \cdot 2$	289				

CHAPTER XIII.

ACTION OF THE FIGURES OF THE EARTH AND MOON.

Section (i). The Disturbing Function for the Figure of the Earth.

371. Let A, B, C, I be the moments of inertia of the Earth's mass about its three principal axes at the centre of mass and about the line joining its centre of mass with that of the Moon; E, M the masses of the Earth and Moon. Then it is well known that the disturbing function R is given, with sufficient approximation, by

$$R = (E + M)^{\frac{A + B + C - 3I}{2r^3E}} \qquad . \qquad . \qquad . \qquad . \qquad . \qquad . \qquad (1),$$

since the next term of R will have an additional factor of the order 60^{-2} , this being the approximate ratio of the square of the radius of the Earth to the distance of the Moon. It is true that there is a term with a factor of the order 60^{-1} , but this term is exceedingly minute, owing to the approximate symmetry of the Earth about its principal axes.

Let V, U, α , δ be the longitude on the ecliptic, the latitude, the right ascension reckoned from the A-axis, and the declination of the Moon; ψ the precession, ϵ_1 the obliquity of the ecliptic. If P be the pole of the ecliptic, Q that of the Earth's equator, the parts of the spherical triangle PQM are:

$$PE = \epsilon_1$$
, $QM = 90^{\circ} - \delta$, $MP = 90^{\circ} - U$, $QPM = 90^{\circ} - V - \psi$,

and therefore

$$\sin \delta = \cos \epsilon_1 \sin U + \sin \epsilon_1 \cos U \sin (V + \psi)$$
 (2).

Also

 $I = A \cos^2 \alpha \cos^2 \delta + B \sin^2 \alpha \cos^2 \delta + C \sin^2 \delta$,

so that

$$A + B + C - 3I = 3\left(C - \frac{A + B}{2}\right) \left(\frac{1}{3} - \sin^2 \delta\right) - \frac{3}{2}(A - B)\cos 2\alpha \cos^2 \delta. \qquad (3).$$

The second term of this is quite negligible: its principal arguments have daily mean motions of the order 3.10⁶ seconds, and A - B is known to be very small compared with $C - \frac{1}{2}(A + B)$. Hence

$$R = (E + M) \frac{a^2 \mu}{r^3} (\frac{1}{3} - \sin^2 \delta), \quad \text{where } a^2 \mu = \frac{3}{2E} \left(C - \frac{A + B}{2} \right) . \tag{4}$$

372. Transformation.—Since

$$\rho \cos (V-T) \pm \iota \rho \sin (V-T) = u, s, \quad r \sin U = z, \quad r \cos U = \rho$$

equation (2) gives

$$r \sin \delta = z \cos \epsilon_1 + \frac{1}{2\iota} \sin \epsilon_1 (ue^{(T+\psi)\iota} - se^{-(T+\psi)\iota}),$$

$$\frac{1}{3}r^2 - r^2\sin^2\delta = (\frac{1}{3}r^2 - z^2)(1 - \frac{3}{2}\sin^2\epsilon_1) + \frac{1}{4}\sin^2\epsilon_1(u^2e^{2(T+\psi)\iota} + s^2e^{-2(T+\psi)\iota}) - \frac{z}{2\iota}\sin^2\epsilon_1(ue^{(T+\psi)\iota} - se^{-(T+\psi)\iota}).$$

The last two terms are the real parts of $\frac{1}{2}\sin^2\epsilon_1$. $u^2e^{2(T+\psi)i}$, zi. $\sin 2\epsilon_1$. $ue^{(T+\psi)i}$. Hence R is equal to the real part of

$$\frac{1}{4}n'^{2}a^{2}\left[\mu_{1}\left\{\left(\frac{a}{r}\right)^{3}\frac{a^{2}}{a^{2}}-3\left(\frac{a}{r}\right)^{5}\frac{z^{2}}{a^{2}}\right\}\right.\\ \left.+\mu_{3}\left(\frac{a}{r}\right)^{5}\frac{u^{2}}{a^{2}}e^{2(T+\psi)\iota}\right)+\mu_{2}\left(\frac{a}{r}\right)^{5}\frac{u\cdot zi}{a^{2}}e^{(T+\psi)\iota}\right]\quad . \tag{5}$$

where

$$\mu_1 = \frac{4}{3} \frac{\mu}{m^2} (1 - \frac{3}{2} \sin^2 \epsilon_1), \quad \mu_3 = \frac{2\mu}{m^2} \sin^2 \epsilon_1, \quad \mu_2 = \frac{4\mu}{m^2} \sin 2\epsilon_1 \quad . \quad (6),$$

 μ being given in (4).

The values of the Moon functions have been given in Sect. (v), Chap. X. All the terms have the factor μ , which is treated as a small quantity of the first order, and we should properly put $\epsilon_1 = \text{const.}$ and $\psi = 0$. But it is convenient to retain the mean motion of ψ , as this motion affects the arguments to a slight degree, and is retained without any increase of labour. The μ_i are then constants which take the place of m''/m' in the equations of variations. In forming j_1 , it is to be remembered that μ_i contains n^2 .

Section (ii). Numerical Results.

373. Adopted values of the constants.—I take

$$\epsilon_1 = 23^{\circ} \ 27' \ 32''$$
, daily motion of $\psi = +0'' \cdot 14$, $\mu = +[7 \cdot 6658]$. . . (7),

giving

$$\mu_1 = +[\overline{5}.9251], \quad \mu_2 = +[\overline{4}.3836], \quad \mu_3 = +[\overline{5}.4191] \quad . \tag{8}.$$

The only one of these constants of which the value is doubtful, within the limits of accuracy required here, is μ . It will ultimately be determined by the coefficient of the argument $w_1 + \psi$ in latitude, the principal term arising from the figure of the Earth. I adopt a value here to correspond with that marked (β) in my paper "On the Degree of Accuracy, etc."*; this is obtained by comparing Hansen's observational value with Hill's theoretical values (which closely agree with those obtained by me) for the coefficient in question.

374. Final results.—I omit terms whose coefficients are less than o":003, and obtain, for the terms in longitude,

$$\delta V = + \circ'' \cdot \circ 2 \circ \sin(2D - l) + \circ'' \cdot \circ \circ 4 \sin(2F - l) - \circ'' \cdot \circ 38 \sin(2w_1 + 2\psi - 2F);$$

^{*} Monthly Notices, vol. lxiv. p. 531.

in latitude,

$$\begin{split} \delta U &= + \text{o"} \cdot \text{o83} \sin \left(2w_1 + 2\psi - \text{F} \right) - \text{o"} \cdot \text{o03} \sin \left(2w_1 + 2\psi - \text{F} - 2\text{D} \right) \\ &\pm \text{o"} \cdot \text{o05} \sin \left(2w_1 + 2\psi - \text{F} \pm l \right) - \text{o"} \cdot \text{o17} \sin \left(w_1 + \psi \right) - \text{o"} \cdot \text{o07} \sin \left(w_1 + \psi - 2\text{D} \right); \end{split}$$

and, added to the elements,

$$\begin{split} \delta w_1 &= +7^{''} \cdot 317 \sin \left(w_3 + \psi \right), \quad \delta w_2 &= +641^{''} t_c - 2^{''} \cdot 092 \sin \left(w_3 + \psi \right), \quad \delta w_3 &= -600^{''} t_c + 96^{''} \cdot 69 \sin \left(w_3 + \psi \right), \\ \delta n &= -0^{''} \cdot 009 \cos \left(w_3 + \psi \right), \quad \delta e &= +0^{''} \cdot 002 \cos \left(w_3 + \psi \right), \quad \delta \gamma &= -4^{''} \cdot 351 \cos \left(w_3 + \psi \right), \end{split}$$

of which δn , δe may be neglected.

The principal term in latitude which results from these values is $-8'''\cdot 355 \sin(w_1 + \psi)$.

Section (iii). The Action of the Figure of the Moon.

375. The Disturbing Function is of the same form as that for the figure of the Earth. Let α' denote the longitude from the A'-axis on the Moon's equator of the projection of r on this plane, and δ' the inclination of r to the same plane. Then if A', B', C', I' be the moments of inertia, the C'-axis being that perpendicular to the Moon's equator, and I' the moment of inertia about r, we have, as in § 371,

$$A' + B' + C' - 3I' = 3\left(C' - \frac{A' + B'}{2}\right)(\frac{1}{5} - \sin^2 \delta') + \frac{3}{2}(B' - A')\cos 2\alpha'\cos^2 \delta'. \qquad (9).$$

376. Transformation.—Now the Moon always turns the same face to the Earth, and, if we neglect the small real (not apparent) librations, its angular velocity about the C'-axis is therefore constant and equal to n. Moreover, it is well known that its equator and the ecliptic intersect in a line whose longitude is w_3 ; call this point on the celestial sphere Ω . The mean angular distance of the A'-axis from Ω is therefore $w_1 - w_3$. Hence, from the right-angled spherical triangles having each a side, one on the ecliptic and the other on the equator, and a common hypotenuse ΩM ,

$$\cos \delta' \cos (\alpha' + w_1 - w_3) = \cos U \cos (V - w_3)$$

If we neglect δ' , U', this gives $\alpha' = V - w_1$. Put $\alpha' = V - w_1 + \delta \alpha'$; then $\delta \alpha'$ depends on squares of δ' , U, and $\cos 2\alpha' = \cos 2(V - w_1) - 2\delta \alpha' \sin (V - w_1)$. As we shall neglect quantities of an order higher than the second with respect to the eccentricities and inclination, and also the inclination multiplied by m^2 , we can neglect the second term of this last expression. Also if $\gamma = \sin \frac{1}{2}i$, and if $-i_1$ be the inclination of the lunar equator to the ecliptic (it being well known that the ecliptic lies between the mean lunar orbit and the lunar equator), we have with sufficient accuracy

$$\sin \delta' = \sin (i + i_1) \sin (V - w_3) = \sin (i + i_1) \sin (w_1 - w_3)$$
.

Substituting, we have, for the disturbing function

$$R = (E + M) \frac{\alpha^2 \mu'}{r^3} \left[\frac{1}{3} - \sin^2(i + i_1) \sin^2(w_1 - w_3) + (\mu''/\mu') \cos 2(V - w_1) \{ 1 - \sin^2(i + i_1) \sin^2(w_1 - w_2) \} \right],$$

where

$$a^2 \mu' = \frac{3}{2 M} \left(C' - \frac{A' + B'}{2} \right), \quad a^2 \mu'' = \frac{3}{4 M} (B' - A').$$

377. Form for computation.—The principal periodic terms have all short periods, and we need only consider the constant parts which give small constant additions to b_2 , b_3 . Now, if we retain quantities of the orders previously noted, that is, those parts which are of the second order with respect to e, γ , the portions depending on e^2 will alone affect b_2 , and those depending on γ^2 will alone affect b_3 . Hence for the former we can put

$$R = (E + M) \frac{a^2}{\rho^3} \left[\frac{1}{3} \mu' + \mu'' \cos 2(V - w_1) \right];$$

and for the latter,

$$R = (E + M) \frac{a^2}{r^3} \left[-\frac{1}{2}\mu' - \frac{1}{2}\mu'' \right] \sin^2(i + i_1),$$

in which terms of the order $\gamma^2 m^2$ have been neglected.

Let ρ_e be the coefficient of e^2 in a^3/ρ^3 , ρ_e that in $a^3\rho^{-3}\cos^2(V-w_1)$, or in $a^3\rho^{-5}u^2\zeta^{-2}$. Then, referring to the disturbing function for the figure of the Earth, and remembering the formulæ for obtaining δb_2 , δb_3 (§ 270, Chap. X.), we see that the values of δb_2 , δb_3 for the figures of the Moon and Earth are respectively in the ratios

$$\mu'\rho_e + 3\mu''\rho_e : \mu(\mathfrak{I} - \tfrac{3}{2}\sin^2\epsilon_1)\rho, \quad \text{and} \quad (\mu' + \mu'')\frac{d}{di}\sin^2\left(i + i_1\right) : \mu(\mathfrak{I} - \tfrac{3}{2}\sin^2\epsilon_1)\frac{d}{di}\sin^2i.$$

378. Numerical results.—From the results in Sect. (v), Chap. X., and in the first section of this chapter we have

$$\rho_{\rm e} = + .386 \,, \quad \rho_{\rm e} = - .678 \,, \quad \mu = + \left[7.6658 \right] \,, \quad {\rm i} \, - \frac{3}{2} \sin^2 \epsilon_{\rm i} = + .7623 \,, \quad \delta b_2 = + 6''.4 \,{\rm i} \,\,, \quad \delta b_3 = - 6''.00 \,, \quad \delta b_3 = - 6''.00 \,, \quad \delta b_4 = + 6''.4 \,{\rm i} \,\,, \quad \delta b_5 = - 6''.00 \,, \quad \delta b$$

the last two being the values for the figure of the Earth. Hence, for the figure of the Moon, the annual mean motions in seconds of arc are

$$\delta b_2 = 8'' \cdot 4 \pi \frac{\mu'}{\mu} - 44'' \cdot 3 \frac{\mu''}{\mu}, \quad \delta b_3 = -7'' \cdot 87 \frac{\mu' + \mu''}{\mu} \frac{\sin 2(i + i_1)}{\sin 2i}.$$

I shall now assume that the Earth and Moon are of similar constitution, so that $C'_{1}M:C/E$ in that ratio of the squares of their diameters, that is, as $(273)^{2}:I$. I also take

$$1 - \frac{A + B}{2C} = .00328$$
, $i = 5^{\circ} \cdot 1$, $i_1 = 1^{\circ} \cdot 5 (\$ 379)$.

Hence

$$\delta h_2 = 191'' \left(1 - \frac{A' + B'}{2^{C'}}\right) - 503'' \left(\frac{B' - A'}{C'}\right), \qquad \delta h_0 = -230'' \left(1 - \frac{A'}{C'}\right).$$

379. Adopted values for the mechanical ellipticities.—The results of Dr. F. HAYN.* for the lunar librations, give

$$i_1 = 1.732'$$
, $B' - A' = +.000157C'$, $C' - A' = +.000629C'$.

If we accept these values, we obtain for the annual mean motions

$$\delta b_2 = + \circ'' \cdot \circ \mathfrak{z}$$
, $\delta b_3 = - \circ'' \cdot \tau \mathfrak{4}$.

In order to obtain these quantities accurately to o"o1, it is necessary to know the two mechanical ellipticities within 5 per cent. of their true values.

* Abh. der Math.-Phys. Kl. der K.-Sächs. Gess. der Wiss., vol. xxx. (1907) p. 69.

CHAPTER XIV.

THE REMAINING PERTURBATIONS.

Section (i). Corrections due to the Masses of the Earth and Moon.

380. Correction due to the substitution of m' instead of m'+E+M for $n'^2a'^3$. This is noted in § 4 (a), Chap. I. It amounts to diminishing the disturbing function due to the Sun by the factor 1-(E+M)/m'. The method of Sect. (iii), Chap. XII., might be used, but it turns out to be troublesome. It is more simple to use the ordinary method for the indirect inequalities by putting $\delta \rho' = (E+M)/3m'$, $\delta V' = 0$ for periodic terms, and $R_0 = -(E+M)F_0/m'$ for the constant term, where F_0 is the constant part of the disturbing function due to the Sun.

381. Results.—I find, as in an earlier paper,* for the annual mean motions,

$$\delta b_2 = -\circ 69, \quad \delta b_3 = +\circ 69,$$

the constant changes of n, e, γ being insensible in the coefficients of the periodic terms.

The periodic changes are:

$$\delta \mathit{V} = - \circ \text{``oo7} \sin \, 2\mathrm{D} - \circ \text{''oo2} \sin \, (2\mathrm{D} - \mathit{l}) + \circ \text{``oo3} \sin \, \mathit{l'} + \circ \text{``oo1} \sin \, (\mathit{l} + \mathit{l'} - 2\mathrm{D}) \,.$$

382. Corrections noted in § 2, § 4 (c) of Chap. I.—The former gives $\delta b_2 = -0'' \cdot 01$, and the latter $\delta b_2 = +0'' \cdot 02$, $\delta b_3 = -0'' \cdot 01$.

Section (ii). The Terms of the Second and Higher Orders.

383. Sources of the terms.—In the four last chapters we have computed the perturbations due to various causes, on the assumption that certain factors which multiplied the disturbing functions were so small that their squares could be neglected. It remains to examine with some care to what extent this assumption is justifiable, and to correct the expressions in the cases where it is not true.

Let R(r', V', z') be the disturbing function due to solar action, R_P that due to a planet, R_E that due to the figures of the Earth and Moon, and R_e that due to the motion of the ecliptic. Then if $\delta^2 r'$, $\delta^2 V'$, $\delta z'$ be the terms of the second

^{*} Monthly Notices, vol. lvii. p. 567.

order in the motion of the Sun, the complete disturbing function for actions from all sources, except that in the main problem, is

$$\delta R = R(r' + \delta r' + \delta^2 r', \quad V' + \delta V + \delta^2 V', \quad z' + \delta z') - R(r', \quad V, \quad \circ) + \Sigma R_P + R_E + R_e \quad . \tag{1}$$

We have previously neglected quantities of the order $(\delta R)^2$, and have used elliptic expansions for the coordinates of the Sun and planets in the last three terms.

- $_3$ 84. It is convenient to divide the perturbations of the second order into classes according to their nature or the sources from which they arise. I denote by δ a perturbation of the first order, and by δ^2 one of the second order. The several portions of $\delta^2 R$ to be considered are as follows:—
 - (A) Terms due to the substitution of $c_i + \delta c_i$, $w_i + \delta w_i$ instead of c_i , w_i in the right-hand members of the equations of variations.

(B)
$$\delta^{2}v'.\frac{\partial R}{\partial v'} + \delta^{2}V'.\frac{\partial R}{\partial V'} + \delta z'.\frac{\partial R}{\partial z'}.$$

(C)
$$\frac{1}{2} \left(\delta r' \cdot \frac{\hat{c}}{\hat{c}r'} + \delta V' \cdot \frac{\hat{c}}{\hat{c}V'} + z' \cdot \frac{\hat{c}}{\hat{c}z'} \right)^2 R.$$

- (D) Additions due to periodic perturbations of the solar and planetary coordinates in ΣR_P .
- (E) Changes in δR due to secular or quasi-secular variations of quantities which have been treated as constants.
- (F) Changes due to the secular variations of the solar and planetary arguments.
- (G) Third-order terms due to large second-order terms in the solar and planetary coordinates.
- (H) Secular variations of the second order in general.

It is obvious, in the first place, that the only possibilities we have to consider are secular terms in w_1 , w_2 , w_3 , and terms whose primaries are of very long period. In the second place, it is to be remembered that the variations of the elements contain terms of two kinds—those multiplied by the period of the primary, and those multiplied by the square of the period; and that the latter, for terms of very long period, are large compared with the former. Hence, except in the cases of arguments independent of the w_i (in which case the latter terms will be shown to disappear), it is sufficient to discuss only these latter terms. Finally, the greatest effect of these terms on the coordinates occurs through the change in w_1 , so that it is generally sufficient to discuss $\delta^2 w_1$.

The various classes are considered in the following paragraphs.

385. (A) The canonical equations of Sect. (i), Chap. X., will be used and developed in a general manner for the second-order terms. The chief results obtained under this heading, namely, a proof that such terms are insensible, practically consists in showing that a given argument arises in two ways, and that, whenever the two

parts might be separately sensible, they are opposite in sign and nearly equal in magnitude.

Let $\delta^2 c_i$, $\delta^2 w_i$ be the additions to c_i , w_i due to the substitution of $c_i + \delta c_i$, $w_i + \delta w_i$ instead of c_i , w_i in the right-hand members. Then the equations for the determination of these additions are

$$\frac{d}{dt}\delta^2 c_i = \delta \frac{\partial R}{\partial w_i}, \quad \frac{d}{dt}\delta^2 w_i = -\delta \frac{\partial R}{\partial c_i} + \sum_k \left(\frac{db_i}{dc_k}\delta^2 c_k\right) + \frac{1}{2} \left(\sum_k \delta c_k \frac{d}{dc_k}\right)^2 b_i \qquad . \tag{2}.$$

Let the first-order variations δc_i , δw_i be due to a term * in R

$$\lambda$$
 cos $\phi=\lambda$ cos $(pt+a)=\lambda$ cos $(j_1w_1+j_2w_2+j_3w_3+\psi)$,

where ψ is independent of the w_i . Then

$$\delta c_i = j \frac{\lambda}{p} \cos \phi , \quad \delta w_i = \left(\frac{\lambda}{p^2} \frac{dp}{dc_i} - \frac{1}{p} \frac{d\lambda}{dc_i} \right) \sin \phi . \tag{3}$$

Let any other term of R be

$$\lambda'\,\cos\,\phi' = \lambda'\,\cos\,\left(p't+a'\right) = \lambda'\,\cos\,\left(j_1{'}w_1 + j_2{'}w_2 + j_3{'}w_3 + \psi'\right),$$

where ψ' is independent of the w_i . Let us consider these two terms alone; then the terms in $\delta^2 c_i$, $\delta^2 w_i$ will have the arguments $\phi \pm \phi'$.

Put

$$j_1 \frac{\partial}{\partial c_1} + j_2 \frac{\partial}{\partial c_2} + j_3 \frac{\partial}{\partial c_3} = \frac{\partial}{\partial c} , \quad j_1' \frac{\partial}{\partial c_1} + j_2' \frac{\partial}{\partial c_2} + j_3' \frac{\partial}{\partial c_3} = \frac{\partial}{\partial c'} \quad . \tag{4}$$

Then

$$\begin{split} \delta \frac{\partial R}{\partial w_i} &= \mathbf{\Sigma}_k \! \left(\! \frac{\partial^2 R}{\partial w_i} \! \frac{\partial c_k}{\partial c_k} \! + \! \frac{\hat{c}^2 R}{\partial w_i} \! \frac{\partial w_k}{\partial w_k} \! \right) \\ &= - j_i' \! \frac{\lambda}{p} \cdot \frac{d \lambda'}{dc} \sin \phi' \cos \phi - j_i' \! \left(\! \frac{\lambda \lambda'}{p^2} \cdot \frac{dp}{dc'} \! - \! \frac{\lambda'}{p} \cdot \frac{d\lambda}{dc'} \! \right) \cos \phi' \sin \phi. \end{split}$$

To this must be added the term arising by making δw_i , δc_i depend on ϕ' , and the derivatives of R on ϕ , that is, by changing the accents.

We thus get

$$\frac{d}{dt}\delta^2 c_i \!=\! \left[\lambda \frac{d\lambda'}{dc}\!\!\left(\frac{j_i}{p'}\!\!-\!\frac{j_i'}{p}\right)\!-\!j_i\frac{\lambda\lambda'}{p'^2}\!\cdot\!\frac{dp'}{dc}\right]\sin\,\phi'\cos\,\phi + \left\{ \begin{array}{l} \mathrm{similar\ term\ with} \\ \mathrm{accents\ changed} \end{array} \right\},$$

and therefore, since $db_i/dc_k = db_k/dc_i$,

$$\frac{d}{dt} \sum\nolimits_k \frac{db_i}{dc_k} \delta^2 c_k = \frac{1}{2} \left[\left(\lambda' \frac{d\lambda}{dc'} \mp \lambda \frac{d\lambda'}{dc} \right) \left(\frac{1}{p} \cdot \frac{dp'}{dc_i} - \frac{1}{p'} \cdot \frac{dp}{dc_i} \right) - \lambda \lambda' \left(\frac{1}{p^2} \cdot \frac{dp}{dc'} \cdot \frac{dp'}{dc_i} \pm \frac{1}{p'^2} \cdot \frac{dp'}{dc} \cdot \frac{dp'}{dc_i} \right) \right] \sin \left(\phi \pm \phi' \right).$$

Denote the right-hand member of this equation by $F_i \sin(\phi + \phi') + F_i' \sin(\phi - \phi')$.

^{*} The symbols j_1 , j_2 , j_3 are the same as the i_1 , i_2 , i_3 of Chap. X.; the j_1 , j_2 , j_3 of that chapter are not needed here.

Again,

$$\begin{split} \delta \frac{\partial R}{\partial c_i} &= \sum\nolimits_k \left(\frac{\partial^2 R}{\partial c_i \hat{c} c_k} \delta c_k + \frac{\partial^2 R}{\partial c_i \hat{c} w_k} \delta w_k \right) \\ &= \frac{d^2 \lambda'}{dc dc_i} \frac{\lambda}{p} \cos \phi \cos \phi' - \frac{d \lambda'}{dc_i} \left(\frac{\lambda}{p^2} \cdot \frac{dp}{dc'} - \frac{\mathbf{I}}{p} \cdot \frac{d \lambda}{dc'} \right) \sin \phi \sin \phi' + \text{two similar terms} \\ &= \frac{1}{2} \left[\frac{\lambda}{p} \cdot \frac{d^2 \lambda'}{dc dc_i} + \frac{\lambda'}{p'} \cdot \frac{d^2 \lambda}{dc' dc_i} \pm \left\{ \frac{d \lambda'}{dc_i} \left(\frac{\lambda}{p^2} \cdot \frac{dp}{dc'} - \frac{\mathbf{I}}{p} \cdot \frac{d \lambda}{dc'} \right) + \frac{\sinilar}{\text{term}} \right\} \right] \cos \left(\phi \pm \phi' \right), \end{split}$$

which is denoted by $G_i \cos (\phi + \phi') + G_i' \cos (\phi - \phi')$.

Finally,

$$\label{eq:delta_eq} \tfrac{1}{2} \bigg(\sum\nolimits_k \delta c_k \frac{d}{dc_k} \bigg)^2 b_i = \frac{\lambda \lambda'}{pp'} \bigg(\sum\nolimits_k j_k' \frac{d}{dc_k} \bigg) \bigg(\sum\nolimits_k j_k \frac{d}{dc_k} \bigg) b_i = \frac{\lambda \lambda'}{pp'} \frac{d^2p'}{dcdc_i} \cos \phi \cos \phi' = H_i \cos \left(\phi \pm \phi' \right).$$

Substituting these results in the second three of equations (2), we obtain

$$\begin{split} \delta^2 w_i &= \int (H_i - G_i) \cos \left(\phi + \phi'\right) dt + \int \int F_i \sin \left(\phi + \phi'\right) dt + \text{two similar terms} \\ &= \left(\frac{H_i - G_i}{p + p'} - \frac{F_i}{(p + p')^2}\right) \sin \left(\phi + \phi'\right) + \left(\frac{H_i - G_i'}{p - p'} - \frac{F_i'}{(p - p')^2}\right) \sin \left(\phi - \phi'\right) \quad . \end{split} \tag{5}.$$

Since we have only to search for terms of very long period, the most important terms are those which acquire the squares of the small divisors $p \pm p'$, and therefore the coefficients F, F' are of chief importance.

386. (a) If p, p' are independent of the w_i , we have $\delta^2 c_i = 0$, $\delta^2 w_i = 0$.

387. (β) If $j_i = j_i'$ and p = p', the argument $\phi - \phi'$ is of long period. In this case we have

$$\frac{dp'}{dc_i} = \frac{dp}{dc_i}, \quad \frac{dp}{dc} = \frac{dp'}{dc} = \frac{dp}{dc'} = \frac{dp'}{dc}.$$

Hence F' contains the factor p-p', and $\delta^2 w_i$ only acquires the first power of the small divisor p-p'.

In no case, therefore, can the small divisor appear in its second power for terms independent of the lunar angles.

388. (7) If $j_i = j_i'$ and p = -p', the argument $\phi + \phi'$ is of long period. Then the possible combinations from the first-order terms show that one of two things must happen: either p, p' are not small, in which case λ , λ' are so minute that there is no possibility of a sensible coefficient; or p, p' are themselves small. In the latter case, the second term of F_i is the principal one, and it gives for the coefficient, since p = -p',

$$-\frac{1}{2}\frac{\lambda\lambda'}{(p+p')^2}\left(\frac{1}{p^2}+\frac{1}{p'^2}\right)\left(\frac{dp}{dr}\right)\frac{dp}{dc_i} \doteq -\left(\frac{\lambda}{p^2}\cdot\frac{dp}{dc}\right)\left(\frac{\lambda'}{p'^2}\cdot\frac{dp'}{dc_i}\right)\frac{p^2}{(p+p')^2}.$$

This is of the order δw_i . $\delta' w_i$. $p^2/(p+p')^2$, where δw_i , $\delta' w_i$ are the first-order terms with the arguments ϕ , ϕ' . If C, C' are the coefficients of δw_i , $\delta w_i'$ expressed in seconds of arc, the order of the new coefficient, also expressed in seconds of arc, is

$$\frac{CC'}{206265} \left(\frac{p}{p+p'}\right)^2.$$

389. (8) If $j_1 = j_1'$ and p = p', the terms in F_1' which have the divisor $(p - p')^2$ have also as a factor one of the derivatives of b_2 or b_3 to c_2 or c_3 , that is, the factor m^2 . If p = -p', the argument in (γ) still holds for the principal parts of $\delta^2 w_1$, the most important variation.

390. (e) If
$$j_i'=0$$
, and $p \doteq p'$, then $-F_i'/(p-p')^2$ becomes
$$\frac{\lambda}{p'} \cdot \frac{d\lambda'}{dc} \cdot \frac{dp}{dc_i} \cdot \frac{1}{(p-p')^2} = (j_1 \delta' w_1 + j_2 \delta' w_2 + j_3 \delta' w_3) \left(-\frac{\lambda}{p^2} \cdot \frac{dp}{dc_i}\right) \left(\frac{p}{p-p'}\right)^2,$$

$$H_i = 0, \text{ and}$$

$$-\frac{G_i'}{p-p'} = -\frac{1}{2} \left[\frac{\lambda}{p} \cdot \frac{d^2 \lambda'}{dc dc_i} + \frac{d\lambda}{dc_i} \cdot \frac{1}{p'} \cdot \frac{d\lambda'}{dc}\right] \frac{1}{p-p'} \doteq -\frac{1}{2} \frac{p}{p-p'} \cdot \frac{d}{dc_i} \left(\frac{\lambda}{p'^2} \cdot \frac{d\lambda'}{dc}\right).$$

The principal term is the former of these two.

Other cases are treated in like manner. The net result is that terms independent of the lunar arguments only acquire the small divisor p-p', while those containing the lunar arguments are at most of order $(\delta w_i)(\delta'w_i)p^2/(p-p'^2)$. A somewhat closer examination is only necessary when the latter class of terms cannot be neglected at this first test. No sensible terms have been found.

391. (ζ) For secular terms, we have $\delta c_i = 0$, $\partial R/\partial w_i = 0$, and therefore $\delta^2 c_i = 0$, $\delta^2 w_i = 0$. However, certain changes have been made in the arbitrary constants giving changes $\delta_0 c_i$. But these only produce constant changes in the $d\delta^2 w_i/dt$, and therefore further changes in the arbitraries; the latter are insensible.

But secular terms may arise from the combination of two terms of the first order of the form $(a+bt)\sin\phi$, $(a'+b't)\sin\phi'$, where ϕ , ϕ' are either equal or where their periods differ by so small an amount that $\phi-\phi'$ may be treated as secular, and a, a', b, b' are constants. Owing to the minuteness of b, b', such terms are entirely insensible.

392. (B) These terms are treated in exactly the same way as the indirect terms of the first order. They are computed in § 402 below. There are no sensible portions depending on $\delta z'$.

393. (C) These terms are of the order of the indirect disturbing function of Chap. XII. multiplied by $3\delta\rho'$ or $\delta V'$. If p be the mean motion of a term obtained in that chapter, and p' that of a term in $\delta\rho'$ or $\delta V'$, the worst case is easily seen to be of the order

$$\frac{3.10}{206265} \cdot \frac{p}{p-p'} = \frac{1}{7000} \cdot \frac{p}{p-p'} \text{ seconds of arc} ,$$

for terms independent of the lunar angles, since the largest term in $\delta \rho'$ or $\delta V'$ is less than 10", and there is no term due to indirect action having a coefficient so great as 2".

For terms dependent on the lunar angles we obtain the order

$$\frac{1}{7000} \left(\frac{p}{p-p'}\right)^2$$
 seconds,

and a brief examination is necessary. It is easy to see that, if w_1 is present, $\delta \rho'$, $\delta V'$ must have periods comparable with the month, and must, therefore, have coefficients

too minute to produce sensible effects. When w_1 is not present, there are only one or two terms to consider (the most probable of which arise from the action of Jupiter); these were examined and were found to be quite insensible.

394. (D) These inequalities cause additions

$$\delta^2 R = \left[\delta \rho'(-3 - I) + \delta \rho'' \cdot I + \delta (V' - V'') \left(\frac{d}{d\epsilon'} + \frac{d}{d\varpi'} \right) \right] \Sigma R_P \quad \text{for inner planets} , \qquad . \tag{6}$$

$$\delta^2 R = \left[\delta \rho \cdot I + \delta \rho''(-3 - I) + \delta (V' - V'') \left(\frac{d}{d\epsilon'} + \frac{d}{d\overline{\omega}'} \right) \right] \Sigma R_P \quad \text{for outer planets} , \qquad . \tag{7}$$

where $\delta \rho''$, $\delta V''$ refer, in any term, to the same planet as that to which the R_P for that term belongs; R_P is confined to that part independent of α/α' , and I is defined in \S 296, Chap. XI.

To obtain the order of magnitude of the coefficient it will be sufficient to consider terms for which I or the derivatives with respect to ϵ' , ϖ' produce a factor not greater than 20. Also, since $\delta\rho'$, $\delta\rho''$ are of the same or of higher order of small quantities than $\delta V'$, $\delta V''$, we use the latter. Proceeding as in case (C), we obtain for the maximum order of $\delta^2 w_1$

$$20 \frac{\delta V \cdot \delta(V' - V'')}{206265} \left(\frac{p}{p - p'}\right)^2 \doteq \frac{\delta V \cdot \delta(V' - V'')}{10000} \left(\frac{p}{p - p'}\right)^2,$$

in which every term, as well as the result, is expressed in seconds of arc.

For inequalities independent of the Moon angles, the factor p/(p-p') only occurs in its first power, and we use $\delta \rho'$ or $\delta \rho''$ in the place of $\delta(V'-V'')$.

This method provides for terms which arise with a sensible first-order term, that is, with a term in δV already obtained. But there may be other combinations due to terms in δV previously neglected. Since $\delta(V'-V'')$ must be very minute for terms of short period relative to the year, we need only consider terms of long period in δV relative to the month, and from such terms those containing multiples of w_1 higher than the first can be certainly excluded. A detailed consideration (which will be omitted) of the manner in which the various quantities enter into δV gives a maximum value for $\delta^2 w_1$, in the case of Venus, of about $20\delta(V'-V'')/s^2$, where s is the number of seconds in the daily motion of the angles $\phi \pm \phi'$, and $\delta V'$, $\delta V''$ express the number of seconds of arc in the coefficients of the terms in V', V'' under consideration.

395. First let us exclude from $\delta V''$ all perturbations but those produced by the Earth. Then the maximum value of $\delta(V'-V'')$ is 10", and if we neglect coefficients in $\delta^2 w_1$ less than 0"·1, we obtain a maximum value for s of 44". Similar considerations for all the planets give numbers exhibited in the following table, which shows the maximum value of s for different combinations of $\delta V'$ with R_P or R_E . In the principal diagonal, where the suffixes are the same, $\delta(V'-V'')$ must be understood; the suffixes denote the sources of the terms. Values of s less than 1" are put down as zeros. The last row refers to the ellipticity terms; R_e is too small to give anything sensible.

Maxima	of s	for	α	Coefficient	in	δV	of	о″·т.
--------	------	-----	----------	-------------	----	------------	----	-------

	$\delta V_{ m J}^{'}$	$\delta V_{ m v}^{'}$	$\delta V_{_{ m M}}{'}$	δVs	$\delta V_{ m Q}'$
$R_{\rm J}$	44	44	24	24	2
$R_{ m V}$	44	60	24	24	2
$R_{ m M}$	7	7	7	4	0
$R_{ m s}$	14	14	7	7	0
$R_{ m Q}$	7	7	4	4	2
R_{E}	44	44	7	14	7

Since the coefficient in $\delta^2 V$ varies inversely as the square of s, this table shows that for a coefficient of I'' in $\delta^2 V$ the value of s must be less than 6", or the period greater than 600 years.

The numbers in this table are only rough approximations; but even if they ought to have been twice as great, it would simply have meant that the corresponding coefficient in $\delta^2 V$ should be taken as 0"4 instead of 0"1. It will in any case retain any sensible coefficients. In fact, for periods of over 100 years or so, the minimum sensible coefficient will certainly be less than 0"1t_c, where t_c is the number of centuries in the period.

The various combinations have been considered in the same manner as that employed in Sect. (iii), Chap. XI. There appeared to be only one which might give a sensible coefficient, namely, the combination

$$(l + 16T - 18V) - (13T - 8V) = l + 3T - 10V$$
,

which has a period of 1900 years. This is therefore a second approximation to a term due to direct action and given in Chap. XI.

There are no sensible combinations of terms independent of the lunar angles.

396. In the above, all terms in $\delta V''$, $\delta \rho''$ which arise from planets other than the Earth have been omitted, but for these omitted terms the mutual perturbations in the lunar disturbing function cancel one another very nearly. For example, the great inequalities in Jupiter and Saturn with argument 5S-2J appear in both R_8 and R_J . Now, Leverrier has shown * that the effect of such terms on the motion of the Earth may be neglected provided we take J, S to represent the mean longitude, as affected by the great inequality instead of the mean longitude alone. But, for such terms, the lunar disturbing function for the direct action only differs from the Earth's disturbing function by certain constant factors and by certain operators $k_0 + k_1 a' d/da' + k_2 (a' d/da')^2$, k_0 , k_1 , k_2 , ... being certain constants independent of the disturbing functions (Sect. (ii), Chap. XI.). The terms produced by k_0 nearly cancel one another, while Jupiter and Saturn are so far away that the other terms are very small. A rough calculation shows that terms from this source are quite insensible.

^{*} Ann. Obs. Paris, vol. ii.

Hence, the terms of this nature are sufficiently accounted for by adding the planetary perturbations to the mean motions of the arguments of the planets.

397. (E) For these secular terms, the investigation of Sect. (iii), Chap. XII., shows that it is sufficient to insert the disturbed values in the final results. The only term which can be affected is the great inequality due to Venus. This depends chiefly on γ'''^2 and $\delta\gamma''/\gamma'' = t_c/3400$, where t_c is the number of centuries from 1850. The maximum change is therefore less than 0"01 per century and is quite inappreciable.

398. (F) These motions should properly be inserted in the arguments before division by s or s², and this is sufficient to account for them. There are only two terms which can be sensibly affected, those with arguments l+16T-18V, and l+3T-10V. The term with argument $2\psi+2\varpi'$, period 10,000 years, due to the figure of the Earth, has a coefficient less than 0"01 (according to Dr Hill,* 0"0025).

399. (G) There are a few second-order terms in the motions of the planets which, when inserted in the disturbing function for the direct action, might produce sensible third-order terms in the Moon's motion. A list of these was made and the possible combinations considered, but nothing sensible was found.

400. (H) Secular variations.—It is a fact well known in the planetary theory that the secular variations of the planetary elements do not produce secular variations in the function which is the inverse distance between the planets. But the disturbing function which has been used for the direct action depends mainly on derivatives of the planetary disturbing function with respect to the Earth's distance and mean longitude. Hence the secular motions of the planetary perihelia and nodes can produce no secular changes in the Moon's motions through the direct action. In the same way the part arising through $\delta \alpha'$ in the indirect action is insensible.

We have then the ellipticity terms to consider. Here we have taken ϵ_1 , the inclination of the ecliptic (which was considered as fixed) to the equator, to be constant. When the motion is referred to the moving plane of reference, it might be thought that this would introduce a secular term of the second order. But the principal part of the motion of the ecliptic only produces a periodic term of period equal to that of the Moon's node, and the principal perturbation produced by the figure of the Earth is also a periodic term whose period is that of the Moon's node plus the precession. The term of the second order which might be sensible is therefore one having a period which is the difference between these periods, that is, a term independent of the lunar angles and of period equal to that of the precession; it is therefore quasi-secular. But it is easier to treat it by the method of § 385, and then the theorem that the first power of its period will be the only multiplier tending to make the coefficient large comes into play. If we expand the term in the form $a + bt_c + ct_c^2 + \ldots$, the portion $a + bt_c$ is only a slight alteration to the mean longitude (an observed quantity), and the secular part ct_e^2 will therefore have the first power of the period as a divisor, and consequently may be expected to be very small.

The period is somewhat altered owing to the motion of τ , but the argument is unaffected, since τ is only present with w_3 .

I have computed this term in the following section, and have found o"15 for the coefficient of the periodic term, and consequently, for the secular acceleration during historic times, o" $0001t_c^2$, a quantity quite insensible.

The theorem that periodic terms of the first and second orders independent of the lunar angles can never receive multipliers higher than the first power of the long period practically enables one to reject any possibilities of secular or quasi-secular terms arising from perturbations of the second order, whatever may be the source.

401. Summary.—We have to find:

Case (B). The indirect effect of the solar terms whose arguments are 4M - 7T + 3V, 3J - 8M + 4T. In longitude these are, according to Newcomb,*

$$\delta^2 V' = + o'' \cdot 266 \sin(332^{\circ} \cdot 3 + 119^{\circ} \cdot 0t_c) + 6'' \cdot 40 \sin(221^{\circ} \cdot 1 + 20^{\circ} \cdot 2t_c),$$

where t_o is the number of centuries from 1850.0.

Case (D). The term of argument l+3T-10V due to substitution of the periodic variations of the coordinates of the Earth and Venus of period 13T-8V in the disturbing function for the direct action.

Case (F). The insertion of the motions of the perihelia and nodes in the arguments l+16T-18V, l+3T-10V, with the resulting changes in the divisors s^2 and the coefficients of the terms.

Section (iii). Calculation of the Terms.

402. Case (B). We require $\delta^2 \rho'$, and we only know $\delta^2 V'$. Now, $\delta^2 \rho'$ depends mainly on $\delta^2 a'/a'$, and for terms of very long period we have

 $\delta^2 \, V' = \delta^2 \mathrm{T} = -rac{3}{2}\!\!\int\!\!rac{\delta^2 a'}{a'} n' dt$,

so that, approximately,

$$\delta^2 \rho' = \frac{\delta^2 \alpha'}{\alpha'} = -\frac{2}{3} \frac{1}{n'} \frac{d}{dt} (\delta^2 V')$$
.

But the methods of Sect. (i), Chap. X., and of Sect. (i), Chap. XII., give

$$\begin{split} \delta^2 \mathbf{T} &= \frac{\mathbf{I}}{a^2 \beta} \int \! \frac{d}{dn} \delta^2 R dt = - \tfrac{3}{4} \tfrac{n'^2}{a^2 \beta} \! \int \! \delta^2 \rho' \frac{d}{dn} \{ (M_1 + \tfrac{3}{2} M_2)_0 \mathbf{a}^2 \} dt \\ &= \tfrac{1}{2} \tfrac{n'}{n} \cdot \tfrac{\mathbf{I}}{\beta a^2} \cdot n \frac{d}{dn} \{ (M_1 + \tfrac{3}{2} M_2)_0 \mathbf{a}^2 \} \delta^2 V' = - \left[\overline{\mathbf{I}} \cdot \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{J} \mathbf{J} \right] \delta^2 V' \,, \end{split}$$

approximately; here the suffix o denotes the values of M_1 , M_2 from Sect. (v), Chap. X., corresponding to $\theta = 0$.

This formula, similar to that obtained for first-order terms by Radau, \dagger who, however, neglects M_2 , gives for the two terms mentioned in the previous section

$$\delta^2 w_1 = + \circ "\cdot \circ_4 \sin (152^\circ + 119^\circ \cdot \circ_t) + \circ "\cdot 84 \sin (41^\circ \cdot 1 + 20^\circ \cdot 2t_e).$$
* Tables of the Sun, p. 19. † L.e., § 279, p. 39.

403. Case (D). The term of argument $l+16T-18V+151^{\circ}$ $\circ = \phi$ arises from a term of this argument in R_P . The term of argument $l+3T-10V+\alpha^{\circ}=\phi-\phi'$ arises chiefly from a term in $\delta^2 R$,

 $\left(\frac{dRv}{ds'} + \frac{dRv}{d\tau s'}\right)\delta(T - V)$,

where δT is the term of argument ϕ' in the Earth's mean longitude, and δV a term of the same argument in the mean longitude of Venus.

From Newcomb's computations * $\delta V = -(1.92/1.44)\delta T$, so that

$$\delta T - \delta V = + \frac{3.36}{1.44} i''.89 \sin(i3T - 8V + i34^\circ) = + 4''.4i \sin(i3T - 8V + i34^\circ).$$

To deduce the new term from that with argument ϕ which has a coefficient in δV of 14"5, we must multiply by -16 to account for $\partial/\partial\epsilon' + \partial/\partial\varpi'$, by $(13 \cdot 01/1 \cdot 85)^2$ for the change in the value of s^2 , by $\delta T - \delta V$, by $\frac{1}{2}$ for the change of the product of two sines into the cosine of the difference of ϕ , ϕ' , and divide by 206265 for the reduction to seconds. This gives

$$\begin{split} \delta^2 \mathrm{V} = & \quad (-16) (14.5) \left(\frac{13.01}{1.85} \right)^2 (\frac{1}{2}) (4.41) \frac{1}{206265} \sin \left(l + 3\mathrm{T} - 10\mathrm{V} + 17^{\circ} \right) \\ = & \quad -0^{\prime\prime} \cdot 12 \sin \left(l + 3\mathrm{T} - 10\mathrm{V} + 17^{\circ} \right). \end{split}$$

This reduces the term of this period (see § 316) to $+o''\cdot 23\sin(l+3T-10V+21^\circ)$.

404. Case (F). The principal part of the term with argument $l+16T-18V+151^\circ\cdot 0$ is obtained from l+16T-18V+2h'', where h'' is the longitude of the node of Venus. This node has a daily motion of $-o''\cdot 05$, so that the daily motion of the argument is $-13''\cdot 11$ instead of $-13''\cdot 01$. The coefficient (14''\cdot 49) must therefore be diminished in the ratio of the squares of these two numbers, that is, by $o''\cdot 22$. This is the only sensible effect that terms of the second order have on the great Venus inequality.

The coefficient of the other term depends chiefly on $l + 3T - 10V + \varpi' + 6h''$. The daily motion of the two latter terms of this argument, which were the parts previously neglected, is $-0''\cdot 26$, and of the former three, $+1''\cdot 85$. Hence the coefficient must be increased in the ratio $(1\cdot 85/1\cdot 59)^2$. It was found in case (D) to be $0''\cdot 23$; its final value is therefore $+0''\cdot 31$.

The motion of τ in the argument $w_3 - \tau$ due to the motion of the ecliptic was neglected. It has a daily mean motion of +0".09, so that the coefficients must be diminished by about 1/1800 of their value.

405. A special term in the secular acceleration due to the motion of the ecliptic and the figure of the Earth.—The arguments of the principal terms due to the motion of the ecliptic and the figure of the Earth are respectively $\phi = w_8 + 96^{\circ} \cdot 2 - 0'' \cdot 09t$, $\phi = w_8 + 0'' \cdot 14t$, where the coefficients of t are the daily motions of τ and of the precession respectively. The argument $\phi - \phi'$ is therefore $-0'' \cdot 23t + 96^{\circ} \cdot 2$. This is quasi-secular, but it is more easily treated as periodic by the formulæ of case (A) of the

^{*} Am. Eph. Papers, vol. iii. pp. 476, 488.

previous section. It is independent of the w_i , and therefore only receives the first power of the period as a large multiplier.

We have $j_1 = j_2 = j_1' = j_2' = 0$, $j_3 = j_3' = 1$, $p = b_3 - 0'' \cdot 09$, $p' = b_3 + 0'' \cdot 14$. Since b_3 has a daily motion of $-190'' \cdot 8$, we can put $p = p' = b_3$, except when they occur in the combination p - p'.

Substituting in the formulæ of § 385, and remembering that we only need $\delta^2 w_1$,

$$\frac{-\,F_{\,1}^{\,\,\prime}}{(p-p^{\prime})^2} = \tfrac{1}{2} \, \cdot \frac{1}{p-p^{\prime}} \! \left(\lambda^{\prime} \frac{d\lambda}{dc_3} + \lambda \frac{d\lambda^{\prime}}{dc_3} \right) \! \frac{1}{b_3^2} \frac{db_3}{dc_1} - \frac{\lambda \lambda^{\prime}}{p-p^{\prime}} \cdot \frac{1}{b_3^{\,\,2}} \cdot \frac{db_3}{dc_1} \cdot \frac{db_3}{dc_3} \cdot \frac{db_3}{dc_3} + \frac{1}{b_3^2} \cdot \frac{db_3}{dc_3} \cdot \frac{db_3}{dc_3} \cdot \frac{db_3}{dc_3} + \frac{1}{b_3^2} \cdot \frac{db_3}{dc_3} \cdot \frac{db_3}{dc_3} \cdot \frac{db_3}{dc_3} + \frac{1}{b_3^2} \cdot \frac{db_3}{dc_3} \cdot \frac{db_3}{dc_3} \cdot \frac{db_3}{dc_3} + \frac{1}{b_3^2} \cdot \frac{db_3}{dc_3} \cdot \frac{db_3}{dc_3} \cdot \frac{db_3}{dc_3} + \frac{1}{b_3^2} \cdot \frac{db_3}{dc_3} \cdot \frac{db_3}$$

Now λ , λ' contain the factor k, and $c_3 = -2k^2na^2$ approximately. Hence

$$\frac{-F_{1}^{\ \prime}}{(p-p^{\prime})^{2}}\!=\!\frac{\lambda\lambda^{\prime}}{2b_{3}^{\ 2}(p-p^{\prime})}\frac{1}{c_{3}}\frac{db_{3}}{dc_{1}}\!\!\left[1-\frac{2c_{3}}{b_{3}}\!\cdot\!\frac{db_{3}}{dc_{3}}\right]\cdot$$

The second term in the square bracket is of order k² compared with the first, and may therefore be neglected.

Treating G_1' in the same manner, and neglecting the terms factored by db_3/dc_3 , which are of order k^2 compared with the others, we find, after some reductions,

$$\frac{{G_1^{'}}'}{p-p^{'}} = \tfrac{1}{2} \cdot \frac{1}{c_3b_3(p-p^{'})} \left(\lambda \frac{d\lambda^{\prime}}{dc_1} + \lambda^{\prime} \frac{d\lambda}{dc_1}\right) = \tfrac{1}{2} \cdot \frac{1}{c_3b_3(p-p^{\prime})} \cdot \frac{d}{dc_1}(\lambda\lambda^{\prime})$$

Also, H_1 is of order k^2 compared with these terms. Hence

$$\delta^2 w_1 = \frac{1}{2(p-p')} \cdot \frac{1}{b_3 c_3} \left[\frac{\lambda \lambda'}{b_3} \cdot \frac{db_3}{dc_1} + \frac{d}{dc_1} (\lambda \lambda') \right] \sin \left(\phi - \phi' \right).$$

Now, by Sect. (ii), Chap. X., approximately,

$$\frac{d}{dc_1} = -\frac{1}{a^2\beta} \frac{d}{dn}, \quad \beta = 33, \quad \frac{db_3}{dn} = + \cos 37, \quad b_3 = - \cos 40.$$

Also, $\lambda = k\alpha^2 n\mu$, $\lambda' = kn^2\mu'$, where μ , μ' are independent of the c_i for the terms of lowest order, so that $\lambda\lambda' = k^2\alpha^2n^3\mu\mu' \doteq c_3n^2\mu''$, where μ'' is defined like μ , μ' . Hence

$$\delta^2 w_1 = \tfrac{1}{2} \cdot \frac{p}{p-p'} \, \frac{\lambda \lambda'}{b_3{}^2 c_3 n a^2} [3-6] \sin \left(\phi - \phi'\right) \, .$$

But, approximately,

$$-4na^2\gamma\delta\gamma = \delta c_3 = \frac{\lambda}{b_2}\cos\phi , \quad -4na^2\gamma\delta'\gamma = \frac{\lambda'}{b_2}\cos\phi' ;$$

and $\delta \gamma = +0^{\prime\prime}.70\cos\phi$ (§ 370), $\delta \gamma = -4^{\prime\prime}.35\cos\phi^{\prime}$ (§ 374), $p = b_3 = -190^{\prime\prime}.8$, $p - p^{\prime} = -0^{\prime\prime}.23$, $\phi - \phi^{\prime} = 96^{\circ}.2 - 0^{\prime\prime}.23t$. Hence

$$\delta^2 w_1 = -12 \cdot \frac{190.8}{-23} \cdot \frac{(.70)(4''\cdot35)}{206265} \sin(96^{\circ}\cdot2 - 0''\cdot23t) = 0''\cdot15 \sin(96^{\circ}\cdot2 - 2^{\circ}\cdot3t_c),$$

which is equivalent to a modern secular acceleration of o" \circ 0001 t_c^2 , and therefore entirely insensible.

406. It might still be thought that terms of the second order in the disturbing function of Sect. (iv), Chap. XII., will give rise to sensible secular terms. But θ_3 is of the third order, and therefore any terms which arise will either depend on the w_i or will be constants. It is also to be remembered that arguments in x, y containing odd

multiples of w_3 , and arguments in z containing even multiples of w_3 , only arise through the disturbing functions δR , $\delta^2 R$, and much the largest of the combinations with a long period and of the second order is that just computed.

Section (iv). Perturbations with Unknown Constants.

407. The attractions of the minor planets.—No one of these is large enough to produce any sensible effect on the motion of the Moon, but their aggregate mass may possibly be comparable with the mass of the Earth. The chief force would be that of a ring of matter of diameter between two and three times that of the Earth's orbit, and the principal effect would be constant additions to the mean motions of the perigee and node of the Moon's orbit. But on any supposition which would fit in with the small differences between theory and observation for the motions of the planets, these constant additions cannot exceed two or three hundredths of a second of arc in the annual mean motions of the Moon's node and perigee.

Periodic effects would be smaller, and the chief of them would have a period of one year, with a coefficient less than one-thousandth of a second of arc.

408. Other matter in the solar system.—There is undoubtedly a large number of meteoric bodies distributed through the solar system and revolving mainly round the Sun. The most reasonable supposition is that this matter may be considered as arranged in rings of varying density round the Sun as centre, so that the effect would be that of a thin plate with its centre at the Sun, and of density increasing towards the centre. If this density varied as the qth power of the distance from the Sun, where q is some negative number, the effect would again be to add to the apparent mass of the Sun, to add something to the mean motions of the perigee and node, and to produce additions to the known periodic terms. The effect on the Earth would be of a similar nature. No secular terms arise. Professor Newcomb has discussed such hypotheses.* In any case, the effect on the Moon can be neglected.

409. The action of the tides.—First, neglecting friction, the action of the lunar tide chiefly produces a standing wave with reference to the line joining the Earth and Moon. Its effect is therefore similar to that of the figure of the Moon, and there can be little doubt that it is quite negligible. The action of the solar tide must chiefly produce a term depending on the difference of longitudes of the Sun and Moon, and is similarly too small to be considered. The reaction of tidal friction produces a real secular retardation of the Moon's motion, as well as the apparent acceleration due to the slowing down of the Earth's rotation. The former is nearly equal to the latter, and the real retardation would be between two and three times the observed acceleration. There being no data on which to base any exact numerical estimates of either of these quantities, the secular acceleration will be considered as an observed quantity, the magnitude of the apparent value being not very different from that (5"8) found from the attractions of the planets.

^{*} Astronomical Constants, chap. vi.

CHAPTER XV.

THE FINAL EXPRESSION FOR THE MOON'S COORDINATES.

410. In this concluding chapter I gather together all the perturbations which have been found in detail in Chaps. X.-XIV., so that the expressions for the coordinates of the Moon in terms of the time are obtained by adding the results given below to those at the end of Chap. IX.

411. The values of the mean motions of the perigee and node are collected in the following scheme with the references.

Annual mean motion of the	Perigee.	Nodc.		
Principal solar action (§ 195)	+ 146426.92	- 69672 ["] ·04		
Mass of the Earth (§§ 381, 382)	68	+ ,10		
Direct planetary action (§ 316)	+ 2.69	- 1.42		
Indirect ,, ,, (§ 370)	19	+ '05		
Figure of the Earth (§ 374)	+ 6.41	- 6.00		
" " Moon (§ 379)	+ °03	- '14		
Final values (epoch 1850.0)	+146435.21	- 69679:36		

[The small differences from the values given in 1904* are chiefly due to the somewhat doubtful parts depending on the figure of the Moon; these were neglected in the earlier paper. The value of the ellipticity of the Earth adopted here is that corresponding to the result marked (β) in the paper.]

412. Notation.—I now use w_1 , w_2 , w_3 to represent the mean longitude and the mean longitudes of the perigee and node with the motions just given; $\boldsymbol{\varpi}'$, the mean longitude of the perihelion of the Earth's orbit at epoch; Q, V, T, M, J, S, the mean longitudes of the planets. These will receive additions in § 413 below, denoted by the symbol δ . Thus

$$\mathbf{D} = w_1 + \delta w_1 - \mathbf{T} - \delta \mathbf{T} \;, \quad l = w_1 + \delta w_1 - w_2 - \delta w_2 \;, \quad \mathbf{F} = w_1 + \delta w_1 - w_3 - \delta w_3 \;, \quad l' = \mathbf{T} + \delta \mathbf{T} - \varpi' - \delta \varpi'.$$

The constants γ , e' also receive additions $\delta \gamma$, $\delta e'$, given below. The changes in the Moon's coordinates are accounted for if we multiply the terms containing the arguments iF, il' by the variable factors

$$\mathbf{1} + i \frac{\delta \gamma}{\gamma} \cdot \frac{\mathbf{1}}{206265}, \quad \mathbf{1} + i \frac{\delta e'}{e'},$$

^{*} Monthly Notices, vol. lxiv. p. 532.

respectively. All other variations of the constants present in the coefficients are either insensible or have been included in the expressions for the coordinates.

The number of centuries from 1850 o is represented by t_c .

The arrangement of the tables is the same as that of Chaps. XI., XII.

All final coefficients below o":003 have been dropped.

A star instead of a number in the last place denotes that the last figure has not been computed.

413. Terms added to the Arguments and to the Constants.

$$\delta w_1 = + 5^{"} \cdot 8t_c^2 + \Sigma o" \cdot \circ \circ \mathbf{I} C \sin \psi ;$$

ψ	C	Ψ	C
13T - 8V + 313° · 9	237	2D-l+21T-20V+273°°	126
$Q-4T+239^{\circ}$	3	$2D - l + 8T - 12V + 303^{\circ}$	33
$8M - 4T + 310^{\circ}$	3	$_{2}F{2}D + _{6}T{5}V + _{270}^{\circ}$	54
$9M - 5T + 305^{\circ}$	8	3l - 210 + 24(T - V)	10
$11M - 6T + 335^{\circ}$	6	$D + 12T - 15V + 262^{\circ}$	13
$13M - 7T + 19^{\circ}$	6	D+25T-23V+190°	13
$15M - 8T + 43^{\circ}$	26	$F + 24T - 23V + 285^{\circ}$	3
$17M - 9T + 63^{\circ}$	4	$D + l - F + 17T - 18V + 75^{\circ}$	8
119°·0t, +152°	4*	$2D - l + 5T - 4Q + 113^{\circ}$	3
20°.2t _c +41°.1	84*	$2D-l+T-3Q+105^{\circ}$	75
$l+3T-1\circ V-2^{\circ}\cdot 6t_c+33^{\circ}$	31*	$2F - l + 3T - 4Q + 67^{\circ}$	3
$l + 16T - 18V - 1^{\circ} \cdot ot_{r} + 151^{\circ} \cdot o$	1427*	$4D - 3l + 25M - 23T + 67^{\circ}$	4*
l+29T-26V+112° • ○	108	$D - F + 2M + 165^{\circ}$	17
l+2I(T-V)	30	w ₃ + 276° • o	282
		$v_3 + 1^{\circ} \cdot 4t_c$	7317

$$\begin{split} \delta w_2 &= -38'' \cdot 3t_c^2 - \circ'' \cdot 118 \sin{(l+16\text{T} - 18\text{V} + 15\text{I}^{\circ} \cdot \circ)} \\ &+ \circ'' \cdot 84 \circ \sin{(w_3 + 276^{\circ} \cdot 2)} - 2'' \cdot \circ 92 \sin{(w_3 + 1^{\circ} \cdot 4t_c)} \\ &+ \text{the ten periodic terms in } \delta w_1 \text{ whose angles are independent of } w_1, w_2, w_3; \\ \delta w_3 &= + 6'' \cdot 5t_c^2 + \circ'' \cdot 172 \sin{(l+16\text{T} - 18\text{V} + 15\text{I}^{\circ} \cdot \circ)} + 1'' \cdot 86 \sin{(w_3 + 290^{\circ} \cdot 1)} \\ &+ 15'' \cdot 58 \sin{(w_3 - \circ^{\circ} \cdot 9t_c + 276^{\circ} \cdot 2)} + 96'' \cdot 69 \sin{(w_3 + 1^{\circ} \cdot 4t_c)}; \\ \delta \text{T} &= + 1'' \cdot 89 \sin{(13\text{T} - 8\text{V} + 134^{\circ})} + \circ''' 2\circ \sin{(15\text{M} - 8\text{T} + 216^{\circ})} \end{split}$$

$$-6'' \cdot 40 \sin (20^{\circ} \cdot 2t_c + 41^{\circ}) - 0'' \cdot 27 \sin (119^{\circ} \cdot 0t_c + 152^{\circ});$$

$$\delta \overline{\omega}' = 0^{\circ} \cdot 323t_c,$$

$$\delta J = + \circ^{\circ} \cdot 33 \sin(38^{\circ} \cdot 5t_{c} + 115^{\circ}), \quad \delta S = - \circ^{\circ} \cdot 83 \sin(38^{\circ} \cdot 5t_{c} + 115^{\circ});$$

$$\begin{split} \delta \gamma &= - \circ^{\prime\prime} \cdot \circ 83 \, \cos \left(w_3 + 29 \circ^{\circ} \cdot \mathbf{1} \right) - \circ^{\prime\prime} \cdot 698 \, \cos \left(w_3 - \circ^{\circ} \cdot 9t_c + 276^{\circ} \cdot \mathbf{2} \right) \\ &- 4^{\prime\prime\prime} \cdot 351 \, \cos \left(w_3 + 1 \circ^{\circ} \cdot 4t_c \right); \end{split}$$

$$\delta e' = -.00248e't_e$$
.

414. True $longitude = \Sigma 0'' \cdot \infty 1 C \sin \{\theta + j T + i (T - V) + \alpha^{\circ} \}$.

	θ = 0			$\theta =$	= 2 D				θ	=- l	
	α	C	j	i	α	C		j i		α	C
r	0.0	822	0	~ 6	0	II		c	7	180	4
2	179.8	307	ļ	- 5	0	II		an- no	6	180	5
3	359'3	42		- 4	0	8		_	5	180	6
4	0	46		- 3	180	34		n-sen-	4	180	6
5	0	33		- 2	0	36		No.	3	180	8
6	0	24		- I	180	23			2	0,0	6 r
7	0	17		I	0.0	99		****	I	180.0	129
8	х О	12		2	179.5	136			1	0.0	152
. 9	0	8		3	178	13			2	180.0	48
10	0	6		4	180	4			3	180.0	127
ΣI	0	4		18	0	3			4	180	11
21	0	3	I	1	232	3		1 -	2	258	4
- 2	254	10		2	271.0	40			I	75	8
T	84	16		3	271.2	37			2	27 I	46
1	82	42		4	89	5			3	272	40
2	272.9	348	1	20	273	3			4	272	5
3	271'7	176	- I	- II	78	3			5	92	4
5	271	4	1	- 10	78	4			23	272	6
6	272	6	!	- 9	78	4	-	Ι	3	268	32
7	272	4	ľ	- 8	78	4			2	264	46
- 18	209	50	1	- 7	78	5			1	104	9
- 1	27	3	[- 6	78	5			1	102	3
t	- 25	5		- 5	84	7			2	282	7
2	33 .	3		- 4	78	7	i		3	280	7
3	199.0	92		- 2	271	19		2 -	18	209	3
3 4 5 6	204	26		1	98	9			3	210	14
.5	17	9		2	281	13			4	205	4
646746	207	4		3	281	3			5	19	3
5	114	26	2	3	199	11	1		6	198	16
	× .			4	202	3		2 -	5	161	3
	$\theta = 21$			5	20	4		****	4	336	4
-11	0	3	- 2	- 6	162	6	ļ		3	331	15
- 10	٥	5		- 3	342	15	1 3	3	5	115	4
- 9	0	6		- 2	7	3	- 3	3 -	5	65	4
÷ 8	0	8		15	151	4	1				
7	0	8		18	151	10					

 $True\ longitude = \Sigma o'' \cdot \infty + C \sin\left\{\theta + j\mathbf{T} + i(\mathbf{T} - \mathbf{V}) + a^{\circ}\right\}.$

	$\theta = 2$	2D – /			$\theta =$	= 2D - l			$\theta =$	2l - 2D	
j	i	α	C	j	i,	α	C	j	i	α	C
0	- 10	180	3	- 2	- 3	340	24	0	4	0	3
	- 9	180	6	1	- 2	6	3	1	4	92	4
	- 8	180	8		15	151	25	- I	- 3	268	3
	- 7	180	13	; 3		114	4		- 2	268	3
	- 6	180	22					2	6	17.4	62
	- 5	180	38		$\theta =$	= 2D + l					
	- 4	180.0	83		- 5		3		$\theta =$	2l - 4D	
	- 3	180.0	658		- <u>3</u>	0	4	0	3	0	8
	- 2	0.0	137	*	- 2	0	4				
	- I	180	13		I	0	11		$\theta =$	3/-2D	
	I	0.0	133	1	2	180	15	0	3	180	3
	2	179.6	157		3	180	3				
	3	178	14	I	2	271	5		$\theta =$	- 4D	
	4	180	3		3	271	4	0	3	0	7
	τ8	0	11	- I			3				į
1	- 2	259	3						θ =	= - D	
	- I	270	3	ļ	$\theta =$	=4D - l		1	3	273	5
	2	271.4	65	0		180	6				· verage
	3	271.9	49				1		$\theta =$	= l - D	20000-0-1
	4	90	5	3 I	2	0	7	I	3	273	11
- 1	- 8	269	3	¥	6	$\theta = 2l$					0000000
	- 7	269	5						6	$=w_{0}$	00000
	- 6	269	8	0		0	5	2	3	216	19
	- 5	269	24		- I	180	10	- 2	- 5	255 *	3
	- 4	89	30		1	- 0	10		- 4	² 55	9
	- 2	268	38	1	2	180	6		- 3	75	16
	1	101	9		3	18c	9		- 2	75	5
	2	281	13	I	2	273	3				
	17	² 53	3	- T	- 2	267	3			$w_3 + 2F$	2000
2	3	200	19	1	0	7		2	3	216	4 3
	4	202	4	1		2l - 2D		- 2	- 3	40	4 8
	5	19	4	0	- 2	0	7				5 4 4 4
- 2	- 7	340	3		- I	180	5			$= w_3 \pm l$	
	- 6	162°6	79	A company	2	180	3	2	3	216	3
	- 5	165	4		3	180.0	73				

415. True $longitude = \Sigma o'' \cdot coi C \sin \{\theta + j''M + i(M - T) + a^{\circ}\}.$

		$\theta = 0$				$\theta = l$		1		θ	= 2D - l	
40	i	α	C	j"	i	α	C	į	j'''	ί	α	C
0:	I	180	11	0	- 3	180	3		I	I	220	31
	2	180.3	195	during the second	- 2	0	38			2	2 I 2	11
	3	357	14	Constant	I	0	4			3	214	14
	4	349	5		1	180	5			4	27	3
1	- 3	260	6	Section of the sectio	2	т80	43		- r	- 6	149	3
	τ	224*4	327		3	0	3	Y		- 5	151	43
	2	212.4	38		4	180	3	1		- 4	329	3
	3	212.2	48	T	1	223.3	73	1		- 3	327	3
	4	331	10		2	2 I 2	10	9		- 2	328	6
2	2	244.8	93		3	213	13	1		- I	320	35
	3	245	20	-	5	210	9			3	280	4
	4	244	14	- I	- 3	330	9		2	2	244	ΙΙ
	5	62	6		- 2	327	8			3	244	6
3	3	277	16		- I	306.3	74			4	245	5
	4	276	13	2	2	245	17	1	- 2	- 6	298	33
	5	275	6		3	245	5			- 3	296	3
	6	94	3		4	244	3			- 2	297	14
		$\theta = 2D$			6	63	6					
o	- 2	0	5	- 2	- 4	296	3			θ	= 2D + l	
	I	180	4		- 3	295	5		0	2	180	6
	2	181	44		- 2	295	18		I	T	82	3
	3	0	5	3	3	277	3	3	- T	- I	93	3
1	1	224	23		4	276	3					
	2	2 I 2	6	- 3	- 4	264	3	3			$\theta = 2l$	
	3	214	8	Ï	4				0	- 2	0	3
	4	37	3		θ	= 2D - l				2	180	3
1	- 5	149	3	0	- 5	180	3		I	1	232	3
	- 2	328	3		- 4	182	20		- 1	- I	308	3
	- 1	317	23	1	- 3	0	5				J	3
	3	280	3		- 2	0	13			0	7 . 10	
2	2	244	5	1	- I	0	3				=2l-2D	
	3	244	4	1	1	180	8		0	- 2	0	4
	4	246	4	i	2	181.0	61		r	5	209	17
-2	- 2	297	8	1 1	3	353	5	1	2	6	244	18

416. True $longitude = \Sigma o'' \cdot oo t C \sin \{\theta + j''J + i(J - T) + a^{\circ}\}.$

		$\theta = 0$		4		$\theta = 7$				$\theta = 2D - l$	
j	\vec{i}	α	C	j''	i	α	C	j''	i	α	\overline{C}
0	1	178.8	643	0	- 2	180	36	- I	- T	296	18
	2	359.6	187		- 1	1,0	144		0	174'2	60
	3	7	10		1	179.0	158	1	2	273	16
1	- 3	257	6		2	180.0	190		3	102	7
	- 2	274	18		3	2 T	5	2	ſ	237	6
	0	289*9	87	I	- 2	274	6		2	344	3
	1	241.2	. 165		0	282'3	62	- 2	2	19	5
	2	352.0	52		1	242	39	1	I	291	3
	3	355	4		2	352.2	96				
2	- [250	10	- 1	- 2	188	7	1	6	0 = 210 + l	
	0	324	5		- 1	298	35		- 2	180	3
	1	238	25		0	257.2	63	1	- I	I	5
	2	344	6		2	273	6	I	1	178	21
3	1	230	3		3	286	8		2	359	7
				2	0	326	7	I	0	353	4
		$\theta = 2D$			1	238	5	ı	I	237	5
0	- 3	0	4		2	343	4		2	352	3
	- 2	180,0	70	- 2	- 1	302	5	- I	0	182	4
	- I	1	33		0	214	7		2	273	7 4 5 3 4 3 7 9 5 3
	1	178.5	167								
	2	359'2	85		θ =	= 2D - l			θ	=410-1	
	3	13	7	0	- 4	180	4	. 0	- 2	180	7
1	0	349	27		- 3	182	22	9 4	I	358	9
	I	237	35		- 2	180.3	1137	1	2	179	5
	2	352	15		- 1	1	51	- 1	- 2	7	3
~ I	2	8	30		I	178.4	211				
	- I	303	6		2	359'2	89			$\theta = 2l$	
	0	184	33		3	14	6	0	- 2	180	3
	2	273	9	1	- 3	261	5		- I	2	11
	3	102	6		- 2	310	13	1	I	178	I 2
2	I	236	5		0	5.2	56		2	180	10
	2	345	3		I	237.0	46	1	0	293	5
- 2	0	200	3		2	352	20		I	239	3
	I	110	6	- I	- 3 -	187	6	— I	- I	301	3
			į.		- 2	7.5	436		0	247	5

$True\ longitude = \Sigma \texttt{o''} \cdot \texttt{ooi}\ C\ \sin\ \{\theta + j'' \texttt{J} + i(\texttt{J} - \texttt{T}) + a^\circ\}.$

$\theta =$	2l - 2D	-		$\theta =$	2l - 4D		1	θ	$=w_3$	
i	α	σ	$j^{\prime\prime}$	i	α	C	j"	i	α	C
- 2	180	5	0	2	0	9	I	0	45	5
- 1	2	11	ĭ	2	173	7	2	0	168	6
ı	0	3								
2	179.9	240		$\theta =$	31 - 2D					
2	172.2	284	0	2	180	7				
2	163	3	I	2	172	5				

417. True $longitude = \Sigma o'' \cdot \infty 1 C \sin \{\theta + j''S + i(S - T) + \alpha^{\circ}\}.$

		$\theta = 0$				$\theta = l$		$\theta = 2D - l$					
97		а	C	j"	i	α	C	$j^{\prime\prime}$	i	а	C		
ò	ī	179.6	42	0	- I	0	6	0	- 2	180	19		
	2	0	8	1	1	180	10	-	1	180	14		
1	c	273	21	1	2	180	3		2	0	4		
	T	257	13	I	0	263	12	I	0	27 I	6		
2	o	297	3	i I	I	257	3	-	1	257	3		
				- I	- 1	283	3	- I	- 2	271	5		
		$\theta = 2 D$		1 t t t t t t t t t t t t t t t t t t t	0	277	I 2	İ	0	267	6 -		
7	i	α	C										
ò	1	180	10	The second of th			1						
	2	0	5					1					
1	o	270	4										
	1	257	3					Į.					
ī	o	255	4										

418. True $longitude = \Sigma o'' \cdot oo I C \sin \theta$.

θ	C	θ	+ C
2D	10	2l' + 228°	4
2D-l	39	l+l'+180°	6
2F-l	4	l-l'+180°	6
l' + 180°	35	$2w_3 + 2^{\circ}.8t_c + 180^{\circ}$	38

419. $Latitude = \Sigma o'' \cdot \cos C \sin \left\{\theta + jT + i(T - V) + a^{\circ}\right\}$.

	$\theta = \pm F$					$\theta = 1$	F+2D-1		1	$\theta = m$			
j	i	α	C	ŀ	j	i	α	C	<i>j</i>	i	α	C	
0	1	0	9	1	0	- 4	180	4	0	- 6	285	3	
	2	180	4	1		- 3	180	29	1	- 5	235	5	
1	2	273	6	100		- 2	0	6	1	1	285	6	
						I	0	5		- 3	285	9	
	Λ	= F + 2D				Ī	0	6		- 2	285	1.1	
	0 =	≅Γ + 2.D		i		2	180	8		- I	285	37	
0	- 2	0	3	į	I	2	27 I	3	a and a second	I	105	15	
	I	0	5	1	- 2	- 6	162	4	5 1	2	105	6	
	2	180	9	1						3	105	3	
				1					2	3	2156	in eq.	
	$\theta =$	- F + 2D				$\theta = -$	F + 2D - l		- 3	- 7	255	3	
		180		1	0	- 4	180	4		- 6	² 5 5	5	
0	- 7 - 6	180	3		·	- 3	180	31		5	255	9	
		180	5	1		2	0	6		- 4	255	25	
	- 5 - 4	180	9	Í		- I	0	5		- 3	51.6	74	
	-		23	1		ı	0	5 6		- 2	75	18	
	- 3	0	45			2	180	8		- 1	75	10	
	- 2 - 1	180	21	1	I	2	271	3		I	75	6	
	- ı	0	5 16		- 2	- 6	162	3 4		2	75	4	
	2	180	23			O	102	4	1	3	75	3	
I	2	271	23 9						3	5	125	30	
1		271	6			A T	1 10 . 7		3	- 5	67	7	
- I	3	270.0	68			$\theta = 1$	r - 2D + l						
1	- 5 - 2	269	6		1	5	90	4		$\theta =$	$w_1 - 2\mathbf{D}$		
2	3	199	3						2	3	36	4	
- 2	- 3	341	5 5								Ü		
4	3	341	3			$\theta = F$	- 2D - l			θ :	$=w_1+l$		
	A ==	± F + l		1	I	5	270	4	2	3	216	4	
				1					- 2	- 3	75	4	
0	- 2	0	3										
	I	180	4			$\theta = + F$	F + 2l - 2D			θ =	$= w_1 - l$		
	I	0	4	-								2	
	2	180	3		0	3	180	3	2	3	36	3	
	3	180	6		2	6	18	3	- 2	- 3	255	4	

420. $Latitude = \Sigma o'' \cdot \text{ool } C \sin \{\theta + j''M + i(M - T) + a^{\circ}\}.$

$ heta=\pm\mathrm{F}$	heta=1	7-2D	1	$\theta=\pm$	F+1-2D	
i a C	$j^{\prime\prime}$ i	α		$j^{\prime\prime}=i$	α	c
o 2 180 3	0 -2	10 %	8	0 472	. 0	3
	2			7.7		
	1 1		5		$w_1 = w_1$	
	-1 -1	316	5			
	Barrer St.			1 1	345	10

421. $Latitude = \Sigma o'' \cdot oot C \sin \{\theta + j''J + i(J - T) + \alpha^{\circ}\}.$

	$\theta =$	± F			$\theta =$	F+2D		4.	$\theta = \pm$	F+1-2D	
$j^{\prime\prime}$	i	α	C	j".	i	a.	· · · · · · ·	j"	i	α	C*
0	1	180	9		- 1	180	3	0	- 2 🕠	180	• 4
1	O	37	9		1	180	8		- I	0	11
					2	0	3	90	. 2	0	51
	$\theta = -1$	F+2D				100		1	2	172	20
o	- 3	180	5			and the second	196	- 4	A=+	F + 2l - 2D	
	- 2	0	26			1 TO 1 I				180	6
	- 1	o	6		σ=	$\pm \mathbf{F} + \mathbf{l}$		0	2		
	T	180	29	. 0	– 1	Ö	. 6	I I	2	172	5
	2	o	12		1	180	- 8	4			
1	0	350	7		2	180	8		e	$\theta = w_1$	
	1	237	6	Ī	0	301	» 4	I	o	34	7
- 1	0	181	4		2	353	4	2	0	168	35
	2	273	3	- i	0	240	4	2	o	24	18

422. Latitude = $\Sigma o'' \cdot 001C \sin \psi$.

		0.00	C+ > ()	1.30	30.00		538	100		100	300	955	255	1.40	7.70	1.75	10.00	780	1.0	25	CH.		300		-85	N36.		100	- 600	1.50		386	027.		111	177		17.75	100	A	61.60	100			1.6	360	2288	553	100		11.60
æ	100		90.00					200		12	20.	100		200	2.3		300	250			-																						3.49								
		4	35.33			Sec. 21	100		100	100		100	. 50	. 5	5.5					300	130	100	Y	11		20	150.0	2.7	4.44		4600	200		200	1	45	111	cen.		0.000		100					33.6	100	600	C	160
	100	35.35	100	-200		1. 1	170	177	12. 1	100											11	200	90			300				200					2.33				36.											·	
	1. 2	22.5	2000	12.		22.3			17.72		100	534	122			4 4	300		110	200			20		200	100	Di.			100	200				2.2	22.2		250		100	24.50			25.50		12.2				7.	
×		0.35		100		27.00	20.00		A355	A 2		85.0	1000		000		2.0		100	786			100				3315	179	400		1.00					13.5	200					4.00			1.0	300	100	1258		100	600
	100	10.00					2000	200	200					- 20			100		200				100			40.0	. 100				1.72															20.22					
	20,33	100	-12				10.0	2 50		1		20	5.50	4	2.7	200					1.50		200			20.00	11.			236		25		100	2.4	10		4.0		16.75						2000	1000		100	100	
	12	22.	1.0	80.00	1.70		- X		200	200		1.60	37	33		6,9		200	940.	**	10	- 22	100				V.			200	# FF	100	4.12	13	100	1.0	100		100	200	100						200			Sec. 27.	200
	March.	-	400	Ť,	14:02	20.4	335.	Gr.		100		0.0	699	100	Mary 1	9. 13						100			1.00		0.00	5.00			w	NB:	242	120	110	200	92	Z.,	9.0	7 U.	1.66	500			7.5			200		33	100
Ø,	500	213		200						30-30		0.55	500	25		25	300	146	ALIS:	25.5	2.7		3				44	22.				100				0.00				3t	127	97.83	1620			200				2.42	
æ,	100		222	0.540			90.3			10	20	.77	200		er.	25%	26.5									100	H.		100		277		200								100					1964					
165	200	223	200	22 6	200	2000	9		12.7		40.00	12.52	65.5	600	20	500		22	100	200		102	100				47	12.2	120		27.2	100			アナス	200		250		1000					400	1768	45.00	220	16.60	20.00	
ж		200	12000	100	90.6	100	diam'r.		200	30.3	95CG	1000		100	11	2	4 16	100	-32	100-	13	2011	263	6.00	100	430	03.3		-00		2.5	2.7		950		80.5		80.0	Γ						- 75	1.35		200	0.00		1113
	2.23	400	1.0		-		200	10		6400		200	26.7	200	300	1900		200	500	300	200	* /	100	20.	100	4.85	de.	200	700	100	211	10° .		- 12	44.	100	200	n .	100	100	200	100				- 22	400	150	229	1983	0.00
	100	FF7.	20		20	4.676	200	100	400			48 (2)				2 3	460	25		F 9.		ť,	1.0		120	200	110	100			w	100		1.0	110		16.		10.74	2.75				1260	4 4 4					111	
	w.	4.4.3	100	۲		307 h		100			ion.	200	4.5	10		16	100		No.	240	2.23	100	22		2.5		443	1.0	20	44	22.5	120			0.0	150		62.8	0.00	266	27			20	20					100	999
		6. 1	22		5.0	27		4. 1	6 83	0.00	2.	20	. 75	3.7	6.7			200			100	20	A.5.	77.3	19		410		100		100				16.00	100	100			16.77	30 X	200		150			5555	160	めなわ		5.5
		40.00	V 14.										200	D.		. 2.5										300	\mathbf{u}																					807 W			
	00.8		200			100			100			400	die			330			400	100		1	100								100		7.5			77.7		l			100							14 2			
	300		. 200	35 day	100	2.00	4.10	100		1900	0.804		60.0						A 160	0.0	2.50	1	Z.,	1.92				40.0	300		0.19	94.5	-14	132	32.	1	255	100													
	7 7	60 m	900	4. 2	100	3.0			9.5	S	22	œ.	JO 59	1	4.56		200	231	200	950	100		Υ.	300			160				w	300	2.7	-35	70	Obs:	100	200			200	7.7		966	1.0	3.2	200		368	0.0	000
	110	40	40.	160	7.5	Albert .	3.60			100	200		Sec.	100	400		26		2.3	2.6	S	1	333	200			dillo					4	1.0	575		200						644					250	1		72	
ы		10.0	200		200		3116				400				100		800	107	- 0	16.3	0.0			ons:		100	0611	50				20.1					0.00	100	799	100			90.00		002	S. 198		200			222
9		0.00	0600	2 12	Sec.	100	21.23		1.0			200		25	100	22		100		250		1.00			30.2	100	22			× 18		200								2.42		1.11		1122		42.66	200	1282	11.5	100	
-	060	900			100	12.3		1.00		- 66			B			190	95.0		200		40.0	400					40	4.0		- 30			100			100	220	200	27.6											100	400
	100	440		120	64.				100			100	Alian.	29.0	200		26.0		1.50	9.00				16	22		100	27		22	13.54		0.00	100	20.	100	-0.1	100	100	100	1.17		1000		121	2000			9.7		499
	7	777:	20			400	20.00		631	300	48	8 6	200	200				120	450	100		200	7			0.50	28.3				w	4	20.16	2.5	40		-50	200	100	1.5	8c	150							100	200	
		~	1	2 15	1720	100	10.13	22.	200	100	1125	150	742	200		100	sa.	12	101		741	V 34	1.0	26		993	1			100	-5	200	20	300	2.73	100				116		800			200		2000		110	20	150

423. $Parallax = \Sigma o'' \circ o \circ C \cos \psi$.

	ψ	C
2D-l-3	(T - V) + 180)° 5
	(J – T) + 180°	
2D -1 - 2.		

Finis.