1 Review

- General constructions of martingales
- Can define $\mathcal{F}_{\infty} = \sigma(\cup_n \mathcal{F}_n) \subset \mathcal{F}$
- Usually **not** given a RV X_{∞}
- When we consider X_T for a stopping time T, care about $\{T = \infty\}$

Definition 1.1. A *filtration* (\mathcal{F}_n , $0 \le n < \infty$) on (Ω , \mathcal{F} , P) is a nested sequence of σ -fields, $F_i \subset F_{i+1}$.

Random variable $(X_n, 0 \le n < \infty \text{ adapted to filtration } \mathcal{F}_n \text{ means } X_n \in \mathcal{F}_n, 0 \le < \infty.$

Example 1.2. Consider any X with $E|X| < \infty$. Then $X_n = E(X \mid \mathcal{F}_n)$, $0 \le n < \infty$ is a martingale.

$$E[X_n \mid \mathcal{F}_{n-1}] = E[E[X_n \mid \mathcal{F}_n] \mid \mathcal{F}_{n-1}]$$
 (1.1)

$$\mathcal{F}_{n-1} \subset \mathcal{F}_n \Longrightarrow_{\text{tower}} = E[X_n \mid \mathcal{F}_n]$$
 (1.2)

Similarly, for any event A, $Y_n = P(A \mid \mathcal{F}_n)$ is a martingale.

2 Doob Decomposition

Definition 2.1. For any $X=(X_n)$, define $\Delta_n^X=X_n-X_{n-1}$, $n\geq 1$. Then Δ_n^X is a (sub-)martingale $\iff \Delta_n^X\in \mathcal{F}_n, n\geq 1$

$$E[\Delta_n^X \mid \mathcal{F}_{n-1}) = 0 \ (\geq 0 \ \text{ for sub-martingale a.s. } n \geq 1$$

 $X_0 \in \mathcal{F}_n$, $E|X| \leq \infty$. Call $(\Delta_n^X, n \geq 1)$ a martingale difference sequence.

Consider any $(X_n, n \ge 0)$ adapted to (\mathcal{F}_n) and $E|X_n| < \infty \ \forall n$. Define (Y_n) by $Y_0 = X_0$, $\Delta_n^Y = \Delta_n^X - E[\Delta_n^X \mid \mathcal{F}_{n-1}]$ (shocks, martingale part). Define (Z_n) by $Z_0 = 0$, $\Delta_n^Z = E[\Delta_n^X \mid \mathcal{F}_{n-1}]$ (drift, predictable part). Then

- 1. $X_n = Y_n + Z_n$ a.s.
- 2. (Y_n) is a martingale
- 3. $Z_n \in \mathcal{F}_{n-1}$, $n \ge 1$ (Z_n is **predictable**) and $Z_0 = 0$ and $E|Z_n| < \infty$

This is the unique decomposition with these properties, called the **Doob decomposition**. Uniqueness:

$$E[\Delta_n^X \mid \mathcal{F}_{n-1}) = E[\Delta_n^Y \mid \mathcal{F}_{n-1}) + E[\Delta_n^Z \mid \mathcal{F}_{n-1})$$
(2.1)

$$=0^{(martingale)} + \Delta_n^Z \tag{2.2}$$

3 Convexity Theorem

If (X_n) is a martingale then $(X_n - X_0, n \ge 0)$ is a martingale. Often say "WLOG assume $X_0 = 0$."

Theorem 3.1 (Convexity Theorem). (X_n) adapted to (\mathcal{F}_n) , ϕ convex function, $E[\phi(X_n)] < \infty$

- 1. If (X_n) is a martingale then $(\phi(X_n))$ is a sub-martingale
- 2. If (X_n) is a sub-martingale and if ϕ is increasing, then $(\phi(X_n))$ is a sub-martingale.

Proof.

$$E[\phi(X_{n+1}) \mid \mathcal{F}_n) \ge \phi(\underbrace{E[X_{n+1} \mid \mathcal{F}_n]}_{\ge X_n, \text{ sub-martingale}})$$
 by conditional Jensen's inequality. (3.1)

$$\geq \phi(X_n)$$
 because ϕ is increasing (3.2)

This checks $\phi(X_n)$ is a sub-martingale.

Example 3.2. If (X_n) is a martingale, then (provided integrable)

- (a) $|X_n|^p$ $(p \ge 1)$ is a sub-martingale, $x \to |x|^p$ is convex.
- (b) X_n^2 is a sub-martingale.
- (c) $\exp(\theta X_n)$ $(-\infty < \theta < \infty)$ is a sub-martingale.
- (d) $\max(X_n, c)$ is a sub-martingale.
- (e) $min(X_n, c)$ is a super-martingale.

4 Stopping times in martingales

Definition 4.1. A RV $T: \Omega \to \{0,1,2,\ldots\} \cup \{\infty\}$ is a *stopping time* if

$$\{T=n\} \in \mathcal{F}_n, 0 \le n < \infty \tag{4.1}$$

Equivalent condition:

$$\{T \le n\} \in \mathcal{F}_n, 0 \le n < \infty \tag{4.2}$$

Definition 4.2. For a stopping time T, define \mathcal{F}_T (the **pre-**T σ **-field**), as the collection of sets $A \in \mathcal{F}$ such that

(a)
$$A \cap \{T = n\} \in \mathcal{F}_n$$
, $0 \le n < \infty$

(b)
$$A \cap \{T \leq n\} \in \mathcal{F}_n, 0 \leq n < \infty$$

Many "obvious" properties:

(a) If (X_n) is adapted, T is a stopping time, $T < \infty$, then X_T is \mathcal{F}_T -measurable.

Proof. Need to show $\{X_T \in B\} \in \mathcal{F}_T$ for all B. Equivalently

$$\{X_t \in B\} \cap \{T = n\} \in \mathcal{F}_n \tag{4.3}$$

$$\underbrace{\{X_n \in B\}}_{\in \mathcal{F}_n, \text{ adapted}} \cap \underbrace{\{T = n\}}_{\in \mathcal{F}_n, \text{ stop time}} \in \mathcal{F}_n$$

$$\tag{4.4}$$

(b) If $T_1 \subset T_2$ are stopping times, $\mathcal{F}_{T_1} \subset \mathcal{F}_{T_2}$.

(c) If *S* and *T* are stopping times, then $\{S = T\} \in \mathcal{F}_S \cap \mathcal{F}_T \text{ and for } A \subset \{S = T\}, A \in \mathcal{F}_S \iff A \in \mathcal{F}_T.$

(d) Given an adapted process (X_n) and a stopping time T, the process $\hat{X}_n = X_{\min(n,T)}$ is adapted. Call \hat{X} the **stopped process**.

If want to sum $\sum_{n=1}^{T} X_n$, can use $\sum_{n=1}^{\infty} X_n 1_{T < n}$.

5 Story: stock market

You can buy a stock at end of any day n. X_n = the price of one share at the end of day n. H_n = the number of shares I hold during day n (bought day n - 1 or earlier) Y_n = my accumulated profit at the end of day n

Question: What is the relation between X_n , H_n , and Y_n ?

Answer: The relation is given by $\Delta_n^Y = H_n \Delta_n^X$, $Y_0 = 0$.

Definition 5.1. We write $Y = H \cdot X$ (martingale transform or discrete time stochastic integral)

Theorem 5.2 (2.7 Durett). *Suppose* (X_n) *is adapted and* (H_n) *is predictable. Consider* $Y = H \cdot X$ *(for simplicity assume* H_n *is bounded).*

- 1. If (X_n) is a MG, then (Y_n) is a MG.
- 2. If (X_n) is a sub-MG and $H_n \ge 0$, then (Y_n) is a sub-MG.

Proof. 2.

$$E(\Delta_n^Y \mid \mathcal{F}_{n-1}) = E[H_n \Delta_n^X \mid \mathcal{F}_{n-1}) \tag{5.1}$$

$$= \underbrace{H_n}_{\geq 0} \underbrace{E[\Delta_n^X \mid \mathcal{F}_{n-1})}_{\geq 0, \text{sub-MG}}$$
(5.2)

$$\geq 0 \tag{5.3}$$

Hence (Y_n) is a sub-MG.

Corollary 5.3. If (X_n) is a (sub)-MG, T a stopping time, then $\hat{X}_n = X_{\min(n,T)}$ is a (sub)-MG.

Proof. Buy 1 share at end of day 0. Sell at end of day T. $H_n = 1_{0 \le n \le T}$. (H_n) is predictable because $\{n \le T\} = \{T \le n-1\}^c \in \mathcal{F}_{n-1}$. The process $Y = H \cdot X$ is explicitly $Y_n = X_{\min(n,T)} - X_0$. Apply Theorem.