Math 109 HW 7

Ray Tsai

11/9/2022

1.

Proposition 1. P(n) is true for all $n \ge 1$.

Proof. We will show by strong induction on n that for all $n \ge 1$, we have P(n) is true.

Base Case: If n = 1, then we have P(1), which is true.

Induction Step: Let $k \ge 1$, $k \in \mathbb{Z}$. Suppose that for all $m \in \mathbb{Z}$, $1 \le m \le k$, we have P(m) is true. We will show that P(k+1) is also true.

We know that if P(k) is true, then P(k+1) is true. By the induction hypothesis, we know that P(k) is true, and thus P(k+1) is true. Hence, if $P(1), P(2), \ldots, P(k)$ are all true, then P(k+1) is true.

Therefore, for all $n \geq 1$, we have P(n) is true.

2.

Proposition 2. Q(n) is true for all $n \ge 1$.

Proof. Let Q(n) be the statement " $P(1), P(2), \ldots, P(n)$ are all true." We will show induction on n that for all $n \geq 1$, we have Q(n) is true, which shows that P(n) is true.

Suppose that Q(1) is true and for all $k \ge 1$, if Q(k) is true, then Q(k+1) is also true.

Base Case: If n = 1, we have Q(1) is true.

Induction Step: Assume that Q(k) is true for some $k \in \mathbb{N}$. By the Induction Hypothesis, Q(k+1) is true, as Q(k) is true. Since Q(k+1) is true, $P(1), P(2), \ldots, P(n+1)$ are all true, which shows that P(n+1) is true. Thus, if Q(k) is true for some k, P(n+1) is true.

Therefore, for all $n \geq 1$, P(n) is true.

3.

Proposition 3. $gcd(115, 29) = 1 = -1 \cdot 115 + 4 \cdot 29$.

Proof. Let gcd(115,29) = 29m + 115n, for some $m, n \in \mathbb{Z}$.

$$115 = 29 \cdot 3 + 28 \tag{1}$$

$$29 = 28 \cdot 1 + 1 \tag{2}$$

$$28 = 1 \cdot 28 + 0 \tag{3}$$

(4)

Therefore, gcd(115, 29) = 1.

We then have

$$1 = 29 - 1 \cdot 28 \tag{5}$$

$$= 29 - 1 \cdot (115 - 3 \cdot 29) \tag{6}$$

$$= 29 - 115 + 3 \cdot 29 \tag{7}$$

$$= -1 \cdot 115 + 4 \cdot 29 \tag{8}$$

Therefore, m = 4, n = -1.

4.

Proposition 4. $gcd(1001, 182) = 91 = -5 \cdot 182 + 1 \cdot 1001$.

Proof. Let gcd(1001, 182) = 182m + 1001n, for some $m, n \in \mathbb{Z}$.

$$1001 = 182 \cdot 5 + 91 \tag{9}$$

$$182 = 91 \cdot 2 + 0 \tag{10}$$

Therefore, gcd(1001, 182) = 91.

We then have

$$91 = 1001 - 182 \cdot 5 \tag{11}$$

$$= -5 \cdot 182 + 1 \cdot 1001 \tag{12}$$

Therefore, m = -5, n = 1.

5. (a)

Proposition 5. \sim is reflexive and symmetric but not transitive.

Proof. Define $R \subseteq \mathbb{R}^2$ by

$$(x,y) \in R \text{ if } |x-y| \le 2.$$
 (13)

Reflexive: Let $x \in \mathbb{R}$. We have $|x - x| = 0 \le 2$. Thus, for all $x \in \mathbb{R}$, $(x, x) \in R$, and so \sim is reflexive.

Symmetric: Let $(x, y) \in R$. We have $|y - x| = |x - y| \le 2$. Thus, for all $(x, y) \in R$, $(y, x) \in R$, and so \sim is symmetric.

Transitive: Consider the case $(4,2),(2,0) \in R$. $(4,0) \notin R$ because |4-0|=4>2, and so \sim is not transitive.

(b)

Proposition 6. \sim is reflexive and transitive but not symmetric.

Proof. Define $R \subseteq \mathbb{Z}^2$ by

$$(m,n) \in R \text{ if } m|n. \tag{14}$$

Reflexive: Let $m \in \mathbb{Z}$. We have m|m. Thus, for all $m \in \mathbb{R}$, $(m,m) \in R$, and so \sim is reflexive.

Symmetric: Consider the case $(1,3) \in R$. $(3,1) \notin R$ because $3 \nmid 1$, and so \sim is not symmetric.

Transitive: Let $(m,n), (n,k) \in R$. We have mq = n and np = k, $q, p \in \mathbb{Z}$. We then have k = (mq)p = (qp)m. Since qp is an integer, we have m|k. Thus, for all $(m,n), (n,k) \in R$, $(m,k) \in R$, and so \sim is transitive.

(c)

Proposition 7. \sim is reflexive, symmetric and transitive.

Proof. Define $R \subseteq \mathbb{R}^2 \times \mathbb{R}^2$ by

$$((x_1, y_1), (x_2, y_2)) \in R \text{ if } x_1 + 2y_1 = x_2 + 2y_2.$$
 (15)

Reflexive: Let $(x_1, y_1) \in \mathbb{R}^2$. We have $x_1 + 2y_1 = x_1 + 2y_1$. Thus, for all $(x_1, y_1) \in \mathbb{R}^2$, $((x_1, y_1), (x_1, y_1)) \in R$, and so \sim is reflexive.

Symmetric: Let $((x_1, y_1), (x_2, y_2)) \in R$. We have $x_2 + 2y_2 = x_1 + 2y_1$, . Thus, for all $((x_1, y_1), (x_2, y_2)) \in R$, $((x_2, y_2), (x_1, y_1)) \in R$, and so \sim is symmetric.

Transitive: Let $((x_1, y_1), (x_2, y_2)), ((x_2, y_2), (x_3, y_3)) \in R$. We have $x_1 + 2y_1 = x_2 + 2y_2 = x_3 + 2y_3$.

Thus, for all $((x_1, y_1), (x_2, y_2)), ((x_2, y_2), (x_3, y_3)) \in R, ((x_1, y_1), (x_3, y_3)) \in R$, and so \sim is transitive.

(d)

Proposition 8. \sim symmetric and transitive but not reflexive.

Proof. Define $R \subseteq \mathbb{R}^2$ by

$$(x,y) \in R \text{ if } \frac{x}{y} = 1. \tag{16}$$

Reflexive: Consider $0 \in \mathbb{R}$. We have $\frac{0}{0}$, which is undefined, and so \sim is not reflexive.

Symmetric: Let $(x,y) \in R$. Since $\frac{x}{y} = 1$, we know that x = y. We then have $\frac{y}{x} = 1$. Thus, for all $(x,y) \in R$, $(y,x) \in R$, and so \sim is symmetric.

Transitive: Let $(x, y), (y, z) \in R$. Since $\frac{x}{y} = \frac{y}{z} = 1$, we know that x = y and y = z, so x = z. We then have $\frac{x}{z} = 1$. Thus, for all $(x, y), (y, z) \in R$, $(x, z) \in R$, and so \sim is transitive.

- 6. (a) $x \sim y \text{ if } |x y| = 2, x, y \in \mathbb{R}.$
 - (b) $x \sim y \text{ if } x|y, x, y \in \mathbb{Z}.$
 - (c) $x \sim y$ if $\frac{x}{y}$, $x, y \in \mathbb{R}$.
- 7. The proof is assuming that for all $a \in S$, there exists $b \in S$ such that $a \sim b$. However, $a \in S$ does not imply there exists $b \in S$ such that $a \sim b$ because there could still be elements in S that does not have a relation with any other elements.