Congratulations! You passed!

 $\leftarrow \mathsf{Back}$

∠[∧] Expand

⊘ Correct

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1.	With a relatively small set of hyperparameters, it is OK to use a grid search. True/False?	1 / 1 point
	TrueFalse	
	✓ Expand O Correct	
2.	Correct. When the set of hyperparameters is small like a range for $n_l=1,2,3$ grid search works fine. If it is only possible to tune two parameters from the following due to limited computational resources. Which two would you choose? α	1/1 point
	 Correct Correct. This might be the hyperparameter that most impacts the results of a model. ϵ in Adam. β₁, β₂ in Adam. 	
	 The β parameter of the momentum in gradient descent. Correct Correct. This hyperparameter can increase the speed of convergence of the training, thus is worth tuning. 	
	∠ [¬] Expand ⊙ Correct	
3.	Great, you got all the right answers. Using the "Panda" strategy, it is possible to create several models. True/False?	1/1 point
	False	

Correct: Following the "Panda" analogy it is possible to babysit a model until a certain point and then start again to produce a different one

4.	Knowing that the hyperparameter α should be in the range of 0.00001 and 1.0 , which of the following is the recommended way to sample a value for α ?	1/1 point
	r = np.random.rand() alpha = 10**r r = -5*np.random.rand() alpha = 10**r r = -4*np.random.rand() alpha = 10**r r = np.random.rand() alpha = 0.00001 + r*0.99999	
	\odot Correct Yes. This will generate a random value between 10^{-5} and 10^0 chosen randomly in a logarithmic scale.	
5.	Finding good hyperparameter values is very time-consuming. So typically you should do it once at the start of the project, and try to find very good hyperparameters so that you don't ever have to tune them again. True or false? False True	1/1 point
	∠ ⁿ Expand	
	✓ Correct	
6.	In batch normalization as presented in the videos, if you apply it on the l th layer of your neural network, what are you normalizing? $ \begin{array}{c} & & & \\ & & & $	1 / 1 point
	∠ [¬] Expand	
7.	When using normalization: $z_{norm}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^2 + \varepsilon}}$ In case σ is too small, the normalization of $z^{(i)}$ may fail since division by 0 may be produced due to rounding errors. True/False?	1 / 1 point

← True

correction of the figure and analogy, the possible to subject a model until a contain point und union state again to produce a unionencone.

⊘ Correct

Correct. The normalization formula uses a smoothing parameter ϵ so in $z_{
m norm}^{(i)}=rac{z^{(i)}-\mu}{\sqrt{\sigma^2+\epsilon}}$ use of the ϵ parameter prevents that the denominator be 0.

8. Which of the following is true about batch normalization?

1/1 point

- The optimal values to use for γ and β are $\gamma=\sqrt{\sigma^2+\epsilon}$ and $\beta=\mu$.
- $\sum_{norm}^{(i)} = rac{z^{(i)} \mu}{\sqrt{\sigma^2}}$.
- The parameters $\gamma^{[l]}$ and $\beta^{[l]}$ can be learned only using plain gradient descent.
- $igcolon \$ The parameters $\gamma^{[l]}$ and $eta^{[l]}$ set the variance and mean of $ilde{z}^{[l]}.$

∠⁷ Expand

Correct. When applying the linear transformation $ilde{z}^{(l)}=eta^{[l]}z^{(l)}_{norm}+\gamma^{[l]}$ we set the variance and mean of $ilde{z}^{[l]}$.

9. A neural network is trained with Batch Norm. At test time, to evaluate the neural network we turn off the Batch Norm to avoid random predictions from the network. True/False?

1/1 point

- True
- False

∠⁷ Expand

Correct. During the test, the parameters μ and σ^2 are estimated using an exponentially weighted average across mini-batches used during training.

10. Which of the following are some recommended criteria to choose a deep learning framework?

1/1 point

- It must be implemented in C to be faster.
- It must run exclusively on cloud services, to ensure its robustness.
- It must use Python as the primary language.
- Running speed.

∠⁷ Expand

Correc

Correct. The running speed is a major factor, especially when working with large datasets.