Mathematical Preparation of Fourier Transform

- Fourier Transform in time domain

A time signal f(t) can be expressed as a series of frequency components $F(\omega)$:

$$f(\vec{r},t) = \int_{-\infty}^{\infty} F(\vec{r},\omega) \exp(-i\omega t) d\omega$$
$$F(\vec{r},\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\vec{r},t) \exp(+i\omega t) dt$$

The functions f(t) and $F(\omega)$ are referred to as Fourier Transform pairs.

- Fourier Transform in spatial domain

A spatially varying signal f(x, y) can be expressed as a series of spatial-frequency components $F(k_x, k_y)$:

$$f(x,y) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(k_x, k_y) \exp(ik_x x) \exp(ik_y y) dk_x dk_y$$

$$F(k_x, k_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \exp(-ik_x x) \exp(-ik_y y) dxdy$$

Accordingly, the functions f(x, y) and $F(k_x, k_y)$ are referred to as spatial-Fourier Transform pairs.

- A few famous functions
 - Rectangle function

$$rect(x) \equiv \begin{cases} 1, & |x| < \frac{1}{2} \\ \frac{1}{2}, & |x| = \frac{1}{2} \\ 0, & |x| > \frac{1}{2} \end{cases}$$

o Sinc function

$$sinc(x) = \frac{\sin(\pi x)}{\pi x}$$

2.71/2.710 Introduction to Optics -Nick Fang

o Triangle Function

$$\Lambda(x) \equiv \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & |x| \ge 1 \end{cases}$$

o Step function

$$H(x) \equiv \begin{cases} 1, & x > 0 \\ \frac{1}{2}, & x = 0 \\ 0, & x < 0 \end{cases}$$

o Comb function

$$comb(x) = \sum_{n=-\infty}^{\infty} \delta(x-n)$$

2.71/2.710 Introduction to Optics -Nick Fang

- Interesting properties of Fourier Transform:
 - \circ Scale theorem f(ax)

o Shift theorem f(x - a),

(e.g. double slit)

$$t(x) = rect[(x+a)/w] + rect[(x-a)/w]$$

- o Complex Conjugate $f^*(x)$
- o Derivative $\frac{d}{dx}f(x)$

2.71/2.710 Introduction to Optics -Nick Fang

 $\circ \quad \text{Modulation } f(x) \cos(\frac{2\pi}{L}x)$

- Practice problem: can you apply these theorems in (x, y) plane?

Accordingly, the following functions f(x, y) and $F(k_x, k_y)$ are referred to as spatial-Fourier Transform pairs.

Functions	Fourier Transform Pairs
$rect\left(\frac{x}{a}\right)$	$ a sinc\left(\frac{ak_x}{2\pi}\right)$
$sinc\left(\frac{x}{a}\right)$	$ a rect\left(\frac{ak_x}{2\pi}\right)$
$\Lambda\left(\frac{x}{a}\right)$	$ a ^2 sinc^2 \left(\frac{ak_x}{2\pi}\right)$
$\operatorname{comb}\left(\frac{x}{a}\right)$	$ a comb\left(\frac{ak_x}{2\pi}\right)$
Gaussian $exp\left(-\frac{x^2}{a^2}\right)$	$exp\left(-\frac{a^2}{4\pi}k_x^2\right)$
Step function $H(x)$	$\frac{1}{ik_x} + \frac{1}{2} \left(\delta(k_x) \right)$
$circ\left(\frac{\sqrt{x^2+y^2}}{a}\right)$	$ a ^{2} \frac{2\pi J_{1}\left(a\sqrt{k_{x}^{2}+k_{y}^{2}}\right)}{a\sqrt{k_{x}^{2}+k_{y}^{2}}}$

MIT OpenCourseWare http://ocw.mit.edu

CHË FÁDÁCHË F€ÁU] cã&• Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.