

Biosciences Working Group Final Update for PRAGMA 25

Wilfred W. Li, Ph.D., UCSD, USA Habibah Wahab, Ph.D., USM, Malaysia

Hosted by CNIC, CAS Beijing, China Oct 16-18, 2013

Breakout Sessions

- Presentations (Day 1, 2:40 4:15 pm, Rm 514)
 - Active Folder
 - Daeyoung Heo, Kookmin University
 - PRAGMA workshop activities from Konkuk University
 - Jaebum Kim, Konkuk University
 - IDigBio: Integrated Digitized Biocollections
 - Andrea Matsunaga, U Florida
- Planning (Day 2, 11:10 am 12:30 pm)
 - UCSD Research Cyberinfrastructure Program
 - Wilfred Li, UCSD
- Join Sessions (Day 2, 3:50 4:30 pm, Cyber Learning)
 - Group discussion

Breakout Session 1

- Introduction
- Registration
 - https://groups.google.com/forum/#!forum/
 pragma-biosciences-working-group
 - Search for "PRAGMA Biosciences Working Group" at groups.google.com
 - 36 members
- Other participants
 - Ngai Shing Mok, University of Hong Kong
 - Dong Hwan Lee, Kookmin University
 - Gyu Yeun Choi, Kookmin Univeristy

Active Folder: Integrating All Activities of Simulation on File System

- Active Folder good for case comparative study
 - Tasks
 - Described as regular folders and files
 - Product
 - Input or output of simulation
 - Can be handled like regular file by using legacy software
 - Contains provenance information (meta data, task info, etc)
 - Can be reproduced by the task which is extracted from the provenance information

Resource

- Computing server(Local, Grid, Cloud, what ever, ...) is registered as regular folders and files
- To submit a Job(task), just Drag & Drop the task folder to the folder which represents computing server

Active Folder: Integrating All Activities of Simulation on File System

○Active Folder on DropBox+EC2

Cost & PerformanceProblem with verylarge files

- Active Folder on NAS
- NAS(Network Attached Storage)
 - Large Volume Storage
 - Network File System (NFS, SMB/CIFS, AF P ...)
 - Most vendors support Cloud solution like DropBox

Update from Konkuk University

- Prepared a proposal for a government grant
 - Development of novel technologies for studying metagenomics based on cloud computing (Institutes: CBRU and BDRC at Konkuk University, SDSC and Calit2 at UCSD)
- Workshop proposal for PRAGMA26
 - Theme: NGS, Metagenomics, HPC, Clouds and Collaboration, CFP out early next year.

Update from Konkuk University

- Plan for an international consortium
 - Time: Jan. 2014 (tentative)
 - Place: Konkuk University, Korea
 - Topic: Environment- and toxicity-related microorganism and bioinformatics
 - Institutes: UW-METC (Dr. Yu), Konkuk University, and more (tentative)
 - More information will be out soon
 - If you are interested let us know. We can invite you (jbkim@konkuk.ac.kr)

A Computationaland Storage-Cloud for Integration of Biodiversity Collections

Andréa Matsunaga,

Alex Thompson,
Renato Figueiredo,
Charlotte Germain-Aubrey,
Matthew Collins,
Reed Beaman,
Bruce MacFadden,
Greg Riccardi,
Pamela Soltis,
Lawrence Page,
José A.B. Fortes
Supported by NSF Award EF-1115210

PRAGMA 25 Beijing, China 16-18, October, 2013

Integrated Digitized Biocollections (iDigBio)

 10-year effort to digitize and mobilize the scientific information associated with vouchered specimens held in U.S. neontological and paleontological research collections

iDigBio Cyberinfrastructure

- Flexible to meet the diverse needs of TCNs
- Horizontally scalable to meet future demands to access the data
- Agile in taking advantage of and integrating proven open-source technologies, thus minimizing system development and maintenance risk
- Resilient to certain types of failures
- Based on standards where they exist to enable interoperability and reuse of tools, libraries, and services

Breakout Session 2

 Developing Sustainable Data Services in Cyberinfrastructure for Higher Education

How do You Handle Data Storage/Backup?

Туре	%	Primary purpose	
Network attached storage (NAS) devices	73	Standard performance network filesystem	
USB Drives	70	Storage and backup	
Local server hard disk drives	65	Storage and backup	
Dropbox	33	Data sharing	
SDSC Project Storage	13	Standard performance network filesystem	
XSEDE Lustre Filesystem	10	Parallel filesystem	
Google Drive	10	Storage and sharing	
Amazon S3	8	Storage and sharing	
SDSC Cloud Storage	8	Storage and sharing	
Tape library	5	Storage and backup	
Small Area Network Storage Array	3	Databases	
CD/DVD	3	Storage and backup	
Hadoop Filesystem	3	Replication and Map Reduce	
iRODS	3	Metadata driven storag	

- Storage Devices
 - Network accessible storage (NAS), USB and server local drives dominate
 - Use of Dropbox for sharing
 - Others use Google Drive, Hadoop, XSEDE, SDSC colocation
 - Email attachment
- Backup modes
 - Replicated copies in two NAS
 - A copy in the NAS,
 - A copy in local hard drive (laptop/workstation),
 - And a copy in a USB drive
 - Maybe a copy in email/Dropbox
- Problems:
 - Out of sync
 - Lost track of its location
 - Lost version control
 - High cost of recovery
 - No metadata

Numbers reflect percentages of PIs surveyed that utilize each solution; • Individual PIs use multiple solutions, so %'s add up to >100%.

Type	pe % Comments		Category	
Better CI with inimal direct cost	91	Least burden on research budget	Cost	
Network Attached Storage	73	Shared POSIX compliant filesystem	Sharing	
Data replication as backup	66	Keep a second copy somewhere safe	Recovery	
Dropbox- or Google Drive-like service	43	Ease of access and worry free backup	Ease of use	
10G network connection	38	High speed network bandwidth	Network bandwidth	
Minimal cost beyond hardware cost	24	Little operating cost	Cost	
Shared technical expertise	20	Infrastructure, software and application consulting	Expertise	
Distributed multisite replication	18	Geographical safety	Recovery	
Desktop backup	18	Routine research data safety	Backup	
Compliant and secure storage for sensitive data	16	Personal and clinical data safety	Security	
Tiered storage plans	16	Data retention and automatic removal	Cost	

Top 10 Requirements for Campus Cyberinfrastructure

- Cost effectiveness tops the list
- Ease of use follows
- "Cost is King, Ease of Use Follows"
- Reliable, NFS/CIFS storage most common platform
- Many responses relate to data durability – backups/copies/ tiered storage
- High-speed networking enhances quality of service
- "Compliant" environment (storage/computing)
- Tiered storage options is desirable

SDSC Data Services

Cloud Storage (OpenStack Swift)

- Purpose: Storage of Digital Data for Ubiquitous Access and High-Durability
- Access Mechanisms: S3/Rackspace API, Web Cloud Explorer, Clients, CLI

Traditional File Server Storage (NFS/CIFS)

- Purpose: Typical Project / User Storage Needs
- Access Mechanisms: NFS/CIFS

High Performance Computing Storage (Lustre)

- Purpose: Transient Storage to Support HPC
- Access Mechanisms: Lustre on HPC Systems, NFS/CIFS for data migrations

New \$12 million dollar award to SDSC, online in 2015

Planned Activities

- Interested in using the virtual clusters in PRAGMA cloud for NGS and metagenomics analysis
 - Dr. Jaebum Kim, Konkuk University
- Using Globus Online for data transfer to virtual cluster and compute/storage resources
 - Dr. Jaebum Kim, Dr. Wilfred Li
- Using Active Folder for data synchronization and job execution
 - Dr. Daeyoung Heo, Dr. Wilfred Li
- Using PRAGMA virtual cluster comprising multiple sites using ViNE for Map Reduce Blast analysis
 - Dr. Andrea Matsunaga

Globus Online, Dropbox for Science

researcher

Globus Online enables you to move, sync, and share your data using just a web browser. We take care of time consuming, error prone IT tasks so you can focus on your research.

🖍 sign up now

You've got BIG data.

provider

Globus Online helps you deliver robust data management solutions to your researchers. We provide a secure, reliable, high performance service backed by great support.

> learn more

Joint Session

- Evaluate the Cyber Learning group resources and Data Synchronization for Research
 - Dr. Ruth, Dr. Daeyoung Heo
- Planning for next Cyber Learning workshop at next PRAGMA
 - Dr. Ruth Lee
- Share information on MOOC development in education and learning
 - Dr. Putchong Uthayopas, Dr. Wilfred Li

