

Exercise. In how many ways can n married couples

Exercise. In how many ways can n married couples be seated around a table

Exercise. In how many ways can n married couples be seated around a table so that women and men alternate

Solution.

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 .

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

 A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 . A_2 : set of arrangements where M_1 sits to the right of W_1 .

. . .

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

. . .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

. . .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

. . .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

 A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

. . .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

Exercise. In how many ways can n married couples be Observations: seated around a table so that women and men alternate $A_1 \cap A_2 = \emptyset$ but no two members from the same couple are seated together.

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

 A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

. . .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

Exercise. In how many ways can n married couples be Observations: seated around a table so that women and men alternate $A_1 \cap A_2 = \emptyset$ (M_1 cannot sit both left and right) but no two members from the same couple are seated together.

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

 A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

 A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

. . .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

 A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

. . .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

 A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 . A_2 : set of arrangements where M_1 sits to the right of W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 . A_2 : set of arrangements where M_1 sits to the right of

 W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$.

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 . A_2 : set of arrangements where M_1 sits to the right of W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 . A_2 : set of arrangements where M_1 sits to the right of W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \le n$

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 . A_2 : set of arrangements where M_1 sits to the right of W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \le n$

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats $\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$ A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

$$A_1 \cap A_2 = \emptyset$$
 (M_1 cannot sit both left and right)

$$A_2 \cap A_3 = \emptyset$$
 (W_2 's left is taken up by M_1

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2:
$$k \le n$$

$$\omega(k) = \Sigma | A_{i_1} \cap \ldots \cap A_{i_k} |$$

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 . A_2 : set of arrangements where M_1 sits to the right of W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \le n$

 $\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$

Equivalent to:

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \le n$

 $\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$

Equivalent to:

There are two slots for each W_i ,

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of

 W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \le n$

 $\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$

Equivalent to:

There are two slots for each W_i , left or right

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of

 W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \le n$

 $\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

 A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \le n$

 $\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

 A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of

 W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \le n$

 $\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle so that non-adjacent

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

 A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of

 W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \le n$

 $\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle

so that non-adjacent

(even to be interpreted as left

Solution. The women, W_1, W_2, \ldots, W_n , sit in 2n! ways, leaving one seat between them

S: number of ways the men can sit in the vacant seats

 A_1 : set of arrangements where M_1 sits to the left of W_1 .

 A_2 : set of arrangements where M_1 sits to the right of

 W_1 .

 A_{2n-1} : set of arrangements where M_n sits to the left of W_n .

 A_{2n} : set of arrangements where M_n sits to the right of W_n .

To find: E_0

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \le n$

 $\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle

so that non-adjacent

Count the number of subsets with 1

Observations:

 $A_1 \cap A_2 = \emptyset$ (M_1 cannot sit both left and right)

 $A_2 \cap A_3 = \emptyset$ (W₂'s left is taken up by M_1)

. . .

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \leq n$

$$\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle so that non-adjacent

Count the number of subsets with 1 and consider 1 as first

Observations:

 $A_1 \cap A_2 = \emptyset$ (M_1 cannot sit both left and right)

 $A_2 \cap A_3 = \emptyset$ (W₂'s left is taken up by M_1)

. . .

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \leq n$

$$\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle so that non-adjacent

Count the number of subsets with 1 and consider 1 as first
1, 2n cannot belong to subsets

Observations:

 $A_1 \cap A_2 = \emptyset$ (M_1 cannot sit both left and right)

 $A_2 \cap A_3 = \emptyset$ (W₂'s left is taken up by M_1)

. . .

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \leq n$

$$\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle so that non-adjacent

Count the number of subsets with 1 and consider 1 as first 1, 2n cannot belong to subsets The rest of k-1 are chosen from 2n-3

Observations:

 $A_1 \cap A_2 = \emptyset$ (M_1 cannot sit both left and right)

 $A_2 \cap A_3 = \emptyset$ (W_2 's left is taken up by M_1)

. . .

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \leq n$

$$\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle so that non-adjacent

Observations:

$$A_1 \cap A_2 = \emptyset$$
 (M_1 cannot sit both left and right)

$$A_2 \cap A_3 = \emptyset$$
 (W_2 's left is taken up by M_1)

. . .

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2:
$$k \leq n$$

$$\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle so that non-adjacent

In bijective correspondence with k-1 distinct numbers

Observations:

 $A_1 \cap A_2 = \emptyset$ (M_1 cannot sit both left and right)

 $A_2 \cap A_3 = \emptyset$ (W_2 's left is taken up by M_1)

. . .

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \leq n$

$$\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle so that non-adjacent

In bijective correspondence with k-1 distinct numbers chosen from $\{1, 2, \dots, 2n-3-(k-1-1)\}$

Observations:

 $A_1 \cap A_2 = \emptyset$ (M_1 cannot sit both left and right)

 $A_2 \cap A_3 = \emptyset$ (W_2 's left is taken up by M_1)

. . .

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \leq n$

$$\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle so that non-adjacent

In bijective correspondence with k-1 distinct numbers chosen from $\{1, 2, \dots, 2n-3-(k-1-1)\}$ which is $\binom{2n-1-k}{k-1}$

Observations:

 $A_1 \cap A_2 = \emptyset$ (M_1 cannot sit both left and right)

 $A_2 \cap A_3 = \emptyset$ (W₂'s left is taken up by M_1)

. . .

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \leq n$

$$\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle so that non-adjacent

In bijective correspondence with k-1 distinct numbers chosen from $\{1, 2, \dots, 2n-3-(k-1-1)\}$ which is $\binom{2n-1-k}{k-1}$

Because

Observations:

 $A_1 \cap A_2 = \emptyset$ (M_1 cannot sit both left and right)

 $A_2 \cap A_3 = \emptyset$ (W_2 's left is taken up by M_1)

. . .

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \leq n$

$$\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle so that non-adjacent

In bijective correspondence with k-1 distinct numbers chosen from $\{1, 2, \dots, 2n-3-(k-1-1)\}$ which is $\binom{2n-1-k}{k-1}$

Because

$$\{a_1, a_2, \dots, a_{k-1}\}$$
 bijective to $\{a_1, a_2 - 1, a_3 - 2 \dots, a_{k-1} - (k-2)\}$

Observations:

 $A_1 \cap A_2 = \emptyset$ (M_1 cannot sit both left and right)

 $A_2 \cap A_3 = \emptyset$ (W_2 's left is taken up by M_1)

. . .

Case 1: k > n then $\omega(k) = 0$. By pigeonhole principle

Case 2: $k \le n$

$$\omega(k) = \Sigma |A_{i_1} \cap \ldots \cap A_{i_k}|$$

Equivalent to:

There are two slots for each W_i , left or right

Each arrangement corresponds to

A choice of k indices from $1, 2, \ldots, 2n$, around a cicle so that non-adjacent