CAPSTONE PRESENTATION

Rafah Asadi, Brett Bejcek, Peter Jacobs, Kyle Voytovich

APRIL 18, 2017

DATA ANALYTICS MAJOR

OVERVIEW

SCOPE -----

- RECAP OF COURSE OBJECTIVE
- PROBLEM DEFINITION

APPROACH, TECHNIQUES, AND FINDINGS ------

- INITIAL STRATEGY
- LOGISTIC REGRESSION, DECISION TREES, LINEAR REGRESSION
- VISUALIZATIONS

RECOMMENDATIONS -----

- KEEPING THE GOOD
- IMPROVING THE BAD

CONCLUSION ------

- REFLECTION ON EXPERIENCE

COMPUTER SCIENCE

STATISTICS

DEMONSTRATE AN ABILITY TO APPLY COMPUTER SCIENCE PRINCIPLES RELATING TO DATA REPRESENTATION, RETRIEVAL, PROGRAMMING, AND ANALYSIS. DEMONSTRATE AN ABILITY TO APPLY STATISTICAL MODELS AND CONCEPTS TO ANALYZE DATA AND DRAW CONCLUSIONS BASED ON DATA.

LEARNING OBJECTIVES

CRITICAL THINKING

COMMUNICATION

DEMONSTRATE CRITICAL THINKING SKILLS ASSOCIATED WITH PROBLEM IDENTIFICATION, DECISION MAKING, AND SYNTHESIS OF INFORMATION. DEMONSTRATE AN ABILITY TO COMMUNICATE FINDINGS TO INDIVIDUALS WITH VARYING LEVELS OF TECHNICAL KNOWLEDGE.

CSE 4193: DATA ANALYTICS CAPSTONE

UNDFRSTAND WHAT SEGMENTS OF THE CUSTOMERS INSURED HAVE GOOD LOSS RATIOS AND WHAT SEGMENTS OF CUSTOMERS INSURED HAVE POOR LOSS RATIOS.

SCOPE OF PROBLEM

SCHEMA DEFINITION

DATABASE CREATION

TABLE AGGREGATION

FIRST LOOKS

EDA TOOL CREATION

INTERACTION DISCOVERY

d	PolicyID	DriverID	VehicleID	LocationID	Premium	ClaimsAmount	id:1	Fname	Lname	Violations	Accidents	MaritalStatus
35566	1014425	1041	9	316	134	0	1041	Shalon	Manalo	0	0	S
35567	1015462	1146	82	110	351	7470	1146	Odette	Truby	5	0	5
35563	1002901	1274	73	82	366	0	1274	Latesha	Besong	4	1	5
35564	1009972	1328	63	369	178	6400	1328	Lakesha	Schuh	0	0	м
35565	1014384	1446	28	207	152	0	1446	Bennie	Altomari	1	0	5
11	1000001	3001	34	229	374	0	3001	Josefa	Turnbill	6	2	s
22644	1000002	3002	61	401	403	0	3002	Deidre	Whilden	6	2	s
20253	1000003	3003	61	576	228	0	3003	Fernande	Lashbrook	2	0	s
7801	1000004	3004	42	405	224	0	3004	Arica	Relihan	3	1	M
21658	1000005	3005	84	259	341	0	3005	Kimberli	Dumont	1	0	s
27517	1000006	3006	68	211	233	0	3006	Isaac	Eget	0	0	D
23458	1000007	3007	48	144	212	0	3007	Nada	Schueler	3	0	5
29257	1000008	3008	82	188	271	0	3008	Cortez	Sammer	3	0	5
11754	1000009	3009	49	522	284	0	3009	Adan	Meyer	1	0	м

GENERAL APPROACH

SCHEMA DEFINITION

DATABASE CREATION

TABLE AGGREGATION

FIRST LOOKS

EDA TOOL CREATION

INTERACTION DISCOVERY

Violations

Loss.Ratio	Premiums	Losses	Violations	
1.537815	1297718	1995650	0	
2.421346	1298587	3144328	1	
1.619126	1392465	2254577	2	
1.633902	1817335	2969347	3	
1.206827	1047767	1264474	4	
1.598664	890721	1423964	5	
1.404820	903930	1269859	6	

GENERAL APPROACH

PART 1: Use modeling techniques to help identify profitable and non-profitable population segments

PART 2: Visualize these population segments to ensure model output is sensible

PART 3: Derive insights from model output and visualizations.

PART 4: Use these insights to make recommendations about where to change/(not change) premium pricing

ANALYTICAL STRATEGY

LOGISTIC REGRESSION

Model Claim/No Claim

- 35,712 total covered drivers
- 1,236 drivers with a claim

The Model

- Let Y_i be whether driver i had a claim
- Y_i ~ Bernoulli(p_i)
- Logit(p_i) = $X_i^T \beta$

The Predictors (X)

- Approximately 15 predictors appropriate for the model (premium, violations, etc.)
- Search the model space (including single variables and two-way interactions)

LOGISTIC REGRESSION

Purpose of Model

- Significant predictors can be indicators for risk groups that are more/less likely to make a claim (feed into the visualization team)
- Does <u>not</u> take into account claim severity

Results

- Little significant when premium is already in the model
- Predictors have a weak relationship with claim frequency

Next steps

- Different approaches to learn the connection between the descriptors and claim frequency/severity
- Look into Decision Trees

DECISION TREES

Step 1:

Use decision trees to discover interactions between variables that influence

- Whether or not someone has a claim (which segments of the population are more likely to have claims than others?)
- Severity of the claim (conditional on having a claim, which segments of the population have more severe claims?)

Step 2:

Feed insights about interactions to the visualization team to further explore these interactions

TREE ON WHETHER OR NOT SOMEONE HAS A CLAIM

INVESTIGATING DRIVER FACTORS

- Dependent Variable: Whether or not someone had a claim.

Independent Variables Used
Age
of Violations
of Accidents
Gender
Miles to Work
Primary Vehicle Usage
Marital Status

INVESTIGATING DRIVER FACTORS AND ADDITIONAL ATTRIBUTES

- Dependent Variable: Whether or not someone has claim

Driver Factors

Age

Number of Violations

Gender

Miles to Work

Primary Vehicle Usage

Marital Status

Additional Attributes

Expected age of population risk lives in

Size of population risk lives in

Average price of car risk drives

CLAIM SEVERITY

- By filtering the out outliers, we have a better chance of capturing general trends in the data. There are about 25 points (defined as those points with Claim Amount - Premium above the 98th percentile).

INVESTIGATING DRIVER FACTORS AND ADDITIONAL ATTRIBUTES (BY SEVERITY)

- Dependent Variable: Claim Amount - Premium

	Driver F	actors
--	----------	--------

Age

Number of Violations

Gender

Miles to Work

Primary Vehicle Usage

Marital Status

Additional Attributes

Expected age of population risk lives in

Size of population risk lives in

Average price of car risk drives

GENERATING HYPOTHESES

EXAMPLE HYPOTHESIS (FROM TREE #3)

- People with higher priced cars tend to have higher losses than people with lower priced cars
- Conditional on people having higher priced cars, those who are younger tend to have higher losses

DECISION TREE INSIGHT OVERVIEW

CLAIM FREQUENCY INSIGHTS

- Individuals with more accidents tend to be more likely to have a claim
 - <u>Conditional on an individual having many accidents</u>, being divorced or single seems particularly strongly associated with an individual having a claim
 - <u>Conditional on an individual having fewer accidents</u>, the higher the price of the vehicle, the more likely an individual will have a claim [Does not hold for higher accidents]
- Divorced and Single individuals in general tend to be more likely to have a claim than married individuals
- Individuals with more expensive vehicles tend to have more claims

CLAIM SEVERITY INSIGHTS

- Individuals with higher priced cars tend to have more severe claims
 - Conditional on the car being higher priced, young people tend to have more claims than old people

LINEAR REGRESSION

WHY LINEAR REGRESSION?

- The goal is to identify predictor variables and interactions between variables that influence the the response (LossRatio, Profit)

WHY ANALYSIS BY ZIPCODE?

- To explore how the features of an area impact the response variable in that area,
- Because population and age_group percentages data are by Zipcode
- There are 600 Zipcodes vs. (39 counties, 20 agency, 7 companies)

THE METHOD

 Given all variables, let Lasso (a variable selection and shrinkage method) find the linear regression model (of main effects and two-way interaction) with the smallest MSE.

LINEAR REGRESSION

The Covariates (X)

- 23 covariates
- Grouped by zipcode as sums or percentages.
- "ClaimsFreq", "Violations", "Accidents", "MilesToWork", "Population", "Percent0to15", "Percent15to25", "Percent25to40", "Percent50", "PercentFemale", "PercentMale", "PercentSingle", "PercentMarried", "PercentDivorced", "PercentPriVehUsage_Work", "PercentPriVehUsage_Leisure", "AvgPrice_grp1", "AvgPrice_grp2", "AvgPrice_grp3", "AvgPrice_grp4", "NumUW_Agency", "NumAgents", "numberDriversOnPolicy"
- CarAvgPrice based on quantile of the variable

grp	1 grp	02	grp3	grp4	
0%	25%	50%	75%	100%	
11000	28000	35	000	47000	166000

MODEL.1 - LOGLOSSRATIO

Why LogLossRatio?

Distribution of Loss Ratio

MODEL.1 - LOGLOSSRATIO

```
lm(formula = LogLossRatio ~ ClaimsFreq + Population + PercentFemale +
    PercentMarried + PercentPriVehUsage_Work + AvgPrice_grp4 +
   ClaimsFreq:Population + ClaimsFreq:PercentFemale + ClaimsFreq:PercentMarried +
   ClaimsFreq:PercentPriVehUsage Work + ClaimsFreq:AvgPrice grp4.
    data = ZipCodeSet)
Residuals:
              10 Median
    Min
                               30
                                       Max
-2.27656 -0.53896 -0.06002 0.51598 2.35473
Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                 -8.737e-01 1.124e+00 -0.777 0.4374
ClaimsFred
                                  5.789e+00 2.200e+01 0.263 0.7926
                                  9.098e-07 5.926e-06 0.154 0.8780
Population
                                 -9.156e-01 1.172e+00 -0.781 0.4351
PercentFemale
PercentMarried
                                 5.549e-01 1.233e+00 0.450 0.6530
PercentPriVehUsage_Work
                                  7.982e-01 1.268e+00 0.629 0.5294
AvgPrice grp4
                                 -2.941e-02 1.449e-02 -2.030 0.0429 *
ClaimsFreq:Population
                                 3.939e-05 1.315e-04 0.299 0.7647
ClaimsFreq:PercentFemale
                                 3.310e+01 2.423e+01 1.366 0.1725
ClaimsFreq:PercentMarried
                                 4.122e+00 2.492e+01
                                                        0.165 0.8687
ClaimsFreq:PercentPriVehUsage_Work -8.137e+00 2.470e+01 -0.329 0.7419
ClaimsFreq:AvgPrice_grp4
                                  6.405e-01 3.309e-01 1.936
                                                                0.0534 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.8229 on 514 degrees of freedom
Multiple R-squared: 0.4179, Adjusted R-squared: 0.4055
F-statistic: 33.55 on 11 and 514 DF, p-value: < 2.2e-16
```

MODEL.1 - LOGLOSSRATIO

Summary of Model.1

- Adg.R_squared = 0.46, relatively speaking a good model.
- Significant predictors
 - <u>AvgPrice grp4</u>: there is a positive linear relationship between the group of customers owning very expensive cars (\$47K-\$166K) and LossRatio
 - Interpretation: For every additional individual in the zipcode who owns a car >47K, there is a 0.97 increase in the loss ratio.
 - Interaction between ClaimsFrequncy and AvgPrice_grp4
 - The effect of ClaimsFrequncy on the logLossRatio is different for different values of AvgPrice_grp4
- Non-significant predictors
 - Population, Percent Female, Percent Married,
 Percent Pri Veh Usage Work
 - Importance in terms of interaction with ClaimsFrequncy.

MODEL.11 - LOGLOSSRATIO

Model.11: One standard error from MSE of Model.1

Call:

```
lm(formula = LogLossRatio ~ ClaimsFreq + PercentFemale + ClaimsFreq:PercentFemale,
    data = ZipCodeSet)
```

Residuals:

```
Min 1Q Median 3Q Max
-2.23531 -0.54384 -0.06329 0.50073 2.39174
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.5817	0.4244	-1.371	0.171
ClaimsFreq	12.9488	8.5971	1.506	0.133
PercentFemale	-1.2124	1.1556	-1.049	0.295
ClaimsFreq:PercentFemale	38.4231	23.7815	1.616	0.107

```
Residual standard error: 0.8232 on 522 degrees of freedom
Multiple R-squared: 0.4084, Adjusted R-squared: 0.405
F-statistic: 120.1 on 3 and 522 DF, p-value: < 2.2e-16
```

MODEL.2 - LOGLOSSRATIO

```
Call:
lm(formula = LogLossRatio ~ ClaimsFreq + PercentViolations +
   Population + PercentFemale + PercentMarried + PercentPriVehUsage_Work +
   AvgPrice grp4 + ClaimsFreg:PercentViolations + ClaimsFreg:Population +
   ClaimsFreq:PercentFemale + ClaimsFreq:PercentMarried + ClaimsFreq:PercentPriVehUsage Work +
   ClaimsFreq:AvgPrice_grp4, data = ZipCodeSet)
Residuals:
    Min
              10 Median 30
                                      Max
-2.22912 -0.54209 -0.06271 0.51552 2.32383
Coefficients:
                                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                -1.453e+00 1.352e+00 -1.075 0.2829
ClaimsFred
                                1.396e+01 2.704e+01 0.516 0.6060
PercentViolations
                                2.329e-01 2.938e-01 0.793 0.4284
Population
                                9.065e-07 5.947e-06 0.152 0.8789
                                -8.782e-01 1.175e+00 -0.748 0.4550
PercentFemale
                                5.453e-01 1.235e+00 0.442 0.6590
PercentMarried
PercentPriVehUsage Work
                                7.689e-01 1.274e+00 0.604 0.5464
AvgPrice grp4
                                -2.887e-02 1.453e-02 -1.988 0.0474 *
ClaimsFreq:PercentViolations
                                -3.216e+00 5.732e+00 -0.561 0.5750
ClaimsFreq:Population
                                4.340e-05 1.321e-04 0.329 0.7427
ClaimsFreq:PercentFemale
                                3.271e+01 2.429e+01 1.346 0.1788
ClaimsFreq:PercentMarried
                                4.299e+00 2.495e+01 0.172 0.8633
ClaimsFreq:PercentPriVehUsage_Work -8.181e+00 2.487e+01 -0.329 0.7423
ClaimsFreq:AvgPrice_grp4
                                6.323e-01 3.318e-01 1.906 0.0572 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.824 on 512 degrees of freedom
Multiple R-squared: 0.4187, Adjusted R-squared: 0.4039
F-statistic: 28.37 on 13 and 512 DF, p-value: < 2.2e-16
```

MODEL.3 - LOGLOSSRATIO

F-statistic: 33.01 on 11 and 514 DF, p-value: < 2.2e-16

```
Call:
lm(formula = LogLossRatio ~ ClaimsFreq + PercentViolations +
    Population + PercentFemale + PercentMarried + PercentPriVehUsage Work +
   ClaimsFreq:PercentViolations + ClaimsFreq:Population + ClaimsFreq:PercentFemale +
   ClaimsFreq:PercentMarried + ClaimsFreq:PercentPriVehUsage Work,
   data = ZipCodeSet)
Residuals:
    Min
              10 Median
                               30
                                      Max
-2.12544 -0.53675 -0.06628 0.52147 2.31240
Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                                                0.164
                                 -1.860e+00 1.336e+00 -1.392
ClaimsFreq
                                 2.145e+01 2.684e+01 0.799
                                                               0.425
PercentViolations
                                 2.514e-01 2.941e-01 0.855
                                                              0.393
Population
                                 -3.335e-06 5.581e-06 -0.598
                                                              0.550
                                 -1.141e+00 1.169e+00 -0.976 0.330
PercentFemale
PercentMarried
                                7.000e-01 1.235e+00 0.567 0.571
PercentPriVehUsage Work
                                7.492e-01 1.276e+00 0.587
                                                              0.557
ClaimsFreq:PercentViolations
                                 -3.293e+00 5.735e+00 -0.574
                                                              0.566
ClaimsFreq:Population
                                1.458e-04 1.200e-04 1.215
                                                              0.225
ClaimsFreq:PercentFemale
                                                              0.116
                                 3.806e+01 2.420e+01 1.573
ClaimsFreq:PercentMarried
                                                               0.953
                                 1.476e+00 2.497e+01 0.059
ClaimsFreq:PercentPriVehUsage Work -7.793e+00 2.492e+01 -0.313
                                                               0.755
Residual standard error: 0.8257 on 514 degrees of freedom
Multiple R-squared: 0.414, Adjusted R-squared: 0.4015
```

ANALYSIS OF PROFIT BY ZIP - MODEL.1

```
Call:
lm(formula = Profit ~ NumAgents + ClaimsFreq:Percent15to25 +
   PercentFemale + PercentDivorced + numberDriversOnPolicy +
   ClaimsFreq:PercentFemale + ClaimsFreq:PercentDivorced + NumAgents:numberDriversOnPolicy.
   data = ZipCodeSet)
Residuals:
   Min
            10 Median
                                  Max
                           30
-133250 -3564
                  6677
                        12019
                                47108
Coefficients: (2 not defined because of singularities)
                                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                           18401.9 -0.530 0.5964
                                 -9751.3
NumAgents
                                   397.4
                                           859.4 0.462 0.6440
                                 37290.4 22026.5 1.693 0.0911 .
PercentFemale
PercentDivorced
                                 4883.9 64638.4 0.076
                                                            0.9398
numberDriversOnPolicy
                                      NA
                                                NA
                                                        NA
                                                                 NA
ClaimsFreq:Percent15to25
                                -99543.7 284220.2 -0.350
                                                             0.7263
ClaimsFreq:PercentFemale
                             -1425476.7 361837.1 -3.940 9.28e-05 ***
ClaimsFreq:PercentDivorced
                                131945.2 1292135.6
                                                    0.102
                                                             0.9187
NumAgents:numberDriversOnPolicy
                                      NA
                                                NA
                                                        NA
                                                                 NA
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 23760 on 519 degrees of freedom
Multiple R-squared: 0.2586, Adjusted R-squared:
F-statistic: 30.17 on 6 and 519 DF, p-value: < 2.2e-16
```

ANALYSIS OF INV-PROFIT BY ZIP - MODEL.2

```
Call:
lm(formula = InvProfit ~ NumAgents + ClaimsFreg + PercentFemale +
   PercentDivorced + +ClaimsFreq:PercentFemale + ClaimsFreq:PercentDivorced +
   NumAgents:numberDriversOnPolicy + ClaimsFreq:Percent15to25,
   data = ZipCodeSet)
Residuals:
      Min
                        Median
                                       30
                  10
                                                 Max
-0.0089501 -0.0000590 0.0000354 0.0001600 0.0043869
Coefficients: (1 not defined because of singularities)
                                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                              -1.129e-05 6.214e-04 -0.018 0.9855
NumAgents
                              -5.484e-06 2.610e-05 -0.210 0.8337
ClaimsFreq
                              -3.823e-03 8.365e-03 -0.457 0.6478
                              1.071e-03 1.015e-03 1.055 0.2917
PercentFemale
PercentDivorced
                              -4.515e-03 1.995e-03 -2.263 0.0241 *
ClaimsFreq:PercentFemale
                              -7.507e-03 2.094e-02 -0.359 0.7201
ClaimsFreq:PercentDivorced
                              6.310e-02 4.029e-02 1.566
                                                             0.1179
NumAgents:numberDriversOnPolicy
                                      NA
                                                NA
                                                        NΑ
                                                                 NA
ClaimsFreq:Percent15to25
                               4.414e-03 9.281e-03 0.476
                                                             0.6345
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.0007203 on 518 degrees of freedom
Multiple R-squared: 0.01761, Adjusted R-squared: 0.004334
F-statistic: 1.326 on 7 and 518 DF, p-value: 0.2354
```


CLAIM DESCRIPTION VS. AMOUNT

COUNTY VS. CLAIM DESCRIPTION

AGENCY VS. CLAIM DESCRIPTION

MILES TO WORK VS. VIOLATIONS

SPATIAL VISUALIZATION

GENDER VS. AGE

CLAIMS AMOUNT VS. GENDER

CLAIMS AMOUNT VS. GENDER

MARRIED VS. VEHICLE USAGE

VEHICLE USAGE VS. AGE

CONTINUE TO SEEK OUT:

- Females of 0-27 years
- Married people who work
- Zero violations of 0-27 years
- Males with no birthday
- Agencies "Auto AA Insurance" and "Clovis Insurance Agency"

RECOMMENDATIONS

BE WEARY OF:

- All (especially young) customers with expensive cars
- Divorced people
- Customers with one violation (especially those who drive further to work)
- Females aged 28-36
- Agency "Yugine C Sport Insurance"

RECOMMENDATIONS

HOW WE WOULD CHANGE OUR APPROACH

- We expected more obvious results
- Complex data allowed for a challenging problem but also a challenging analysis
- Distribution for the claim amount with low number of claims proved challenging for the techniques we know
- We would focus on more simple modelling techniques and more extensive exploratory analysis
- Focusing on interactions earlier on would be useful

REFLECTION ON EXPERIENCE

SUGGESTIONS FOR IMPROVING THIS EXPERIENCE

- Have a predictive element of the capstone
- More data about the claims
- Examples of previous or sample analysis
- Helping students avoid common mistakes (ex. summing loss ratios across individuals vs. looking at the loss ratio of a given group)
- Be able to give out the formula for how the insurance company is currently pricing without giving away any hints
- It is unlikely that an insurance company will not have birthday information

REFLECTION ON EXPERIENCE

DATA ANALYTICS MAJOR

THANK YOU FOR A GREAT EXPERIENCE

Hypothesis: Conditional on an individual having many accidents, being divorced or single seems particularly strongly associated with an individual having a claim

JUSTIFICATION FOR CLAIM 1 (SLIDE 18)

Hypothesis: Conditional on an individual having fewer accidents, the higher the price of the vehicle, the more likely an individual will have a claim [Does not hold for higher accidents]

JUSTIFICATION FOR CLAIM 2 (SLIDE 18)