We consider a contention-aware counter consisting of K registers $\{a_i\}_{i=1}^{i=K}$. inc(delta) operation choses a random register and atomically increments it by a non-negative delta. get operation summarizes values of the registers in order from a_1 to a_K .

We use the following notation for histories: $H = \{ev_i\}$, $ev_i = \left\{ egin{align*} start. \ op_i \\ end. \ op_i \end{array} \right.$, $op_i = \left\{ egin{align*} get_i : result \\ inc_i(delta) \end{array} \right.$

The counter is not linearizable.

Proof. Consider an example with K=2 and the following concurrent history. Lines written with regular text are atomic steps made by the operations, they are not part of the history.

```
egin{align*} \mathbf{start.inc_1(1)} \\ \mathbf{start.inc_2(2)} \\ \mathbf{start.get_3} \\ \mathbf{start.get_4} \\ get_3 \ reads \ a_1 \rightarrow 0 \\ inc_2 \ increments \ a_1 \ by \ 2 \\ get_4 \ reads \ a_1 \rightarrow 2 \\ get_4 \ reads \ a_2 \rightarrow 0 \\ inc_1 \ increments \ a_2 \ by \ 1 \\ get_3 \ reads \ a_2 \rightarrow 1 \\ \mathbf{end.inc_1} \\ \mathbf{end.inc_2} \\ \mathbf{end.get_3:1} \\ \mathbf{end.get_4:2} \end{aligned}
```

This history consists of four concurrent operations: $inc_1(1), inc_2(2), get_3: 1, get_4: 2$. Imagine these inc operations being performed sequentially. Then expected values of the counter would be either $0 \to 1 \to 3$, or $0 \to 2 \to 3$. So the history in which gets yield 1 and 2 cannot be linearized.

Moreover, this history is neither sequentially consistent, nor quiescent consistent.

Let $<_H$ be a an order induced by the history H on operations:

 $op_1 <_H op_2$ iff $end. op_1$ precedes $start. op_2$ in H.

Let I be a set of all inc operations. For operation $get_i : result$ let $L_i = \{inc_j \in I | inc_j <_H get_i\}$, $J_i = \{inc_j \in I | get_i <_H inc_j\}$, $C_i = \{inc_j \in I | get_i|_H inc_j\} = I \setminus (L_i \cup J_i)$.

For a set $U \subset I$ let $sum(U) = \sum_{inc_i:delta_i \in U} delta_i$. For example, $sum(L_i)$ is the sum of all increments completed before the start of get_i .

For any concurrent history H and a $get_i: res_i$ operation in it $sum(L_i) \leq res_i \leq sum(L_i) + sum(C_i)$.

Proof. We rephrase lemma 1.1 and lemma 1.2 from PROOF.pdf.

Lemma 1.1. For any operation $get_i: result\ result\ \geq sum(L_i)$. **Proof.** Fetch-and-adds performed by operations in L_i happens-before reads performed by get_i . As registers are never decremented, the reads return at least those values which are written by the last FAA to the corresponding register performed by an operation from L_i . Sum of these values is equal to $sum(L_i)$.

Lemma 1.2. For any operation $get_i: result\ result \le sum(I) - sum(J_i) = sum(L_i) + sum(C_i).$ **Proof.** Reads performed by get_i happens-before fetch-and-adds performed by operations in J_i . As registers are never decremented, the reads return at most those values which are read by the first FAA from the corresponding register performed by an operation from J_i . Sum of these values is equal to $sum(I \setminus J_i)$.