10月28日上机实习安排

使用MS软件CASTEP模块完成:

Graphene的第一性原理(DFT)计算

- 1. 建模→
- 2. 结构优化→
- 3. 电荷密度计算(高精度单点能) →
- 4. 能带结构计算(FBZ高对称K点) \rightarrow
- 5. 态密度计算(DOS & PDOS)

Graphene DFT计算的结果可靠性测试

1. 截断能(cutoff energy)

截断能与总能量的关系

截断能与计算时间的关系

Graphene DFT计算的结果可靠性测试

2. K points

K点设置与总能量的关系

K点设置与计算时间的关系

Graphene DFT计算的参考文献

- 1. A. G. Marinopoulos et al. Ab Initio Study of the Optical Absorption and Wave-Vector-Dependent Dielectric Response of Graphite. *Phys. Rev. B* **2004**, 69, 245419.
- 2. N. Ooi, A. Rairkar, and J. B. Adams. Density Functional Study of Graphite Bulk and Surface Properties. *Carbon* **2006**, 44, 231-242.

1. Slab Model Building

- (1) Import crystal structure of graphite in MS
- (2) Make "P1" to delete a layer graphene
- (3) "Rebuild Crystal" to change the lattice parameter *c* into 20 Å

Top View

$$a = b = 2.460 \text{ Å}$$
 $c = 20.0 \text{ Å}$
 $\alpha = \beta = 90.0^{\circ}$
 $\gamma = 120.0^{\circ}$

Before

$$a = b = 2.460 \text{ Å}$$
 $c = 20.0 \text{ Å}$
 $\alpha = \beta = 90.0^{\circ}$
 $\gamma = 120.0^{\circ}$

After

$$a = b = 2.460 \text{ Å}$$

 $c = 20.0 \text{ Å}$
 $\alpha = \beta = 90.0^{\circ}$
 $\gamma = 120.0^{\circ}$

CASTEP Calculation

Setup

2. Geometry Optimization CASTEP Geometry Optimization

CASTEP Calculation

Setup → More... for Minimizer

优化结束的判据:

- ▶ 能量判据: 相继两次结构对 应能量差足够小
- ▶ 力判据:单个原子受力小于 设定的最大值
- ▶ 应力判据:保证结构模型单元中的应力足够小
- ▶ 位移判据: 相继两次结构变 化引起的原子位移足够小

X

Help

2. Geometry Optimization ASTEP Geometry Optimization

CASTEP Calculation

Setup → More... for **Options**

CASTEP Calculation

Setup → More... for Stress (默认设置没有更改)

CASTEP Calculation

Electronic

超软赝势

CASTEP Calculation

CASTEP Calculation

Electronic

→ More... for **SCI**CF tolerance:

自洽收敛标准: 两次波函数更新能量差

2019/10/28

医亚明学院 陈爽

2. Geometry Optimization CASTEP Electronic Options

CASTEP Calculation

Electronic → More... for k-pointsoma point only

Official in a point only				
C Quality:	Coarse	¥		
C Separation:	0.05	1/Å		
© Custom grid parameters				
Monkhorst-Pack grid				
	a	Ь	С	
Grid parameters:	4 :	4		1
Actual spacing:	0.11735	0.11735	0.05	1/Å
Origin shift:	0	0	0	
Display points				

Basis SCF k-points Potentials DFT-D

CASTEP Calculation

Properties

不要勾选任何相关的性质计算!

CASTEP Calculation

Job Control

CASTEP Calculation

After submitting this job:

3. Charge Density

(1) Setting for higher-computational-accuracy single-point calculations (CASTEP Calculation):

1 Task: Energy

② K-point set: $8 \times 8 \times 1$

3 SCF tolerance: 10e-6 eV/atom

Taking the optimal structure (*.xsd)

for the following property calculations field

18 Help

Import

density to file

TOTAL CASTEP Analysis

Save

- (2) Visualize charge density (CASTEP Analysis):
 - 1 Select "Electron density"
 - 2 Import

3. Charge Density

(3) Change "Display Style"

4. Band Structure

(1) Setting:

- ① Setup → Task: Properties
- ② Properties → Mark "Band structure"

4. Band Structure

(1) Setting:

③ Set high-symmetry K points: "Tools → Brillouin Zone Path"

高对称点信息的获取:

借助网站<u>http://cryst.ehu.es/</u>

- **→** Space-group symmetry
- → KVEC for k vectors
- \rightarrow Choose space group (P6/mm)^{M: 0.500 0.000 0.000}
- → Comparative listing of k-vector types

4. Band Structure

CASTEP Analysis

- (2) Visualize band structure (Analysis):
 - window
 - Select "Band structure"
 - View

X

23

2019/10/28

5. Density of States (DOS & PDOS)

(1) Setting (Calculation):

- 1 Task: Properties
- 2 Properties: Mark "Density of states"
- More... for k-point set

Setup | Electronic | Properties | Job Control | Band structure Core level spectroscopy Density of states Electron density difference Electron localization function Electronic excitations Density of states Empty bands: k-point set: Customized Calculate PDOS More... Files... Run Help

5. Density of States (DOS & PDOS)

- (2) Visualize DOS (Analysis):
 - ① Open file "DOS_DOS.castep"
 - ② Select "Density of states"
 - (3) Select "Full DOS" or "Partial"
 - 4 View

5. Density of States (DOS & PDOS)

