TOPIC MODELING: DEEP DIVE INTO TEXT ANALYTICS

SANIL MHATRE

LEAD DATA SCIENTIST, WORD WIDE TECHNOLOGY

SANIL MHATRE

LEAD DATA SCIENTIST WORLD WIDE TECHNOLOGY

- in /SanilMhatre
- @sqlsuperguru

- Data Scientist with extensive background in Data Engineering,
 Business Intelligence, Database Administration and Enterprise
 Architecture
- Azure, AWS, GCP
- SQL Sever, Oracle, Snowflake, PostgreSQL, MongoDB
- Agile Coach, Mentor, Speaker, Blogger, Volunteer

https://www.red-gate.com/simple-talk/author/sanil-mhatre/

AGENDA

- Topic Modeling
- Data Prep
- Model Training & Evaluation
- Topic Inference

NATURAL LANGUAGE PROCESSING

Machine Learning driven process of deciphering human language text data using software

TOPIC MODELING

- Unsupervised Machine Learning technique
- Represents text document as collection of topics
- Finds relationships amongst data in text documents
- Latent Dirichlet Allocation (LDA) probabilistic modeling
 - Text document as distribution of Topics
 - Topics as collection of words

LATENT DIRICHLET ALLOCATION

WHY USE TOPIC MODELING?

- Need for meaning and actionable insights
- Limits of Text summarization, Aspect mining and key word/phrase frequency techniques
- Topic modeling is relatively easy, reliable and popular technique
- Discover valuable business insights with topic modeling
 - Top 5 customer complaints from on chat text/call transcripts
 - Top 3 suggestions for improvements from survey text

TOPIC MODELING PROCESS

DEMO USE CASE

- Quarterly Survey of 9 IT Teams
- One open ended question: How do you feel about your team's health in this Quarter?
- 9 Teams, 3 Managers, 4 Quarters
- 300 Responses
- Raw Data in Excel

DEMO ENVIRONMENT

- Anaconda, Jupyter Notebook, Python
- spaCy Lemmatization
- NLTK Stopwords
- Gensim Topic Modeling
- pyLDAvis interactive web-based visualization
- Additional Libraries/Packages
 - Pandas, NumPy, Matplotlib, Wordcloud

DEMO: WORD CLOUD

- Load data from Excel file
- Simple data cleaning steps
- Generate Word Cloud
- Interpret Word Cloud

DEMO: TOKENIZATION & STOP WORDS

- Tokenization is the process of separating a body of text into smaller units called "tokens", to apply NLP techniques
 - Tokens can be words, phrases (n-grams) or characters
- Stop Words don't add much value to a sentence and can be ignored without compromising it's meaning
 - Stop words are filtered out before further processing
 - Pre-defined stop list for most languages built into popular packages
 - Popular packages allows customization/extension of stop list

DEMO: N-GRAMS & LEMMATIZATION

N-Grams

- Bigrams sentence/phrase composed of two words
- Trigrams sentence/phrase composed of three words
- Examples: "pretty good", "lack of"

Lemmatization

- Process of converting words to their roots
- Uses contextual vocabulary and morphological analysis
- More effective than stemming
- Example: "Walk" is the lemma (root) of "walking" & "walks"

DEMO: DICTIONARY & CORPUS

- LDA topic model needs "dictionary" and "corpus" as inputs
- Dictionary
 - Collection of lemmatized words from the text
 - Unique id assigned to each word

Corpus

- Latin for "body", refers to a collection of texts
- Term document frequency corpus
- Uses "unique id" from dictionary

DEMO: BUILD LDA TOPIC MODEL

- Gensim library module: Gensim.models.ldamodel
- Key Inputs
 - "corpus" & "dictionary" created previously
 - "num_topics" (iterate 2 to n)
- Output
 - Topic id
 - key words for each Topic
 - Importance Score for each keyword

DEMO: MODEL PERFORMANCE METRICS

Perplexity

- Measure of how "surprised" a model with new data
- Normalized log-likelihood of a held-out test set
- Lower value is better

Topic Coherence

- Set of facts/statements are "coherent" if they support each other
- Topic coherence measure semantic similarity between words of same topic
- Higher value is better

DEMO: INTERTOPIC DISTANCE MAP

- Optimizing for Perplexity & Topic Coherence may not always lead to human interpretable topics
- pyLDAvis package Intertopic Distance map
 - Interactive web-based visualization
 - Each bubble represents a topic
 - Size of bubble represents its prevalence
 - Large, non-overlapping & scattered bubbles are optimal

DEMO: OPTIMAL NUMBER OF TOPICS

Num_topics	Model perplexity	Topic Coherence	Intertopic Distance Map
2	-6.089	0.221	Two large bubbles well-spaced across chart
			quadrants
3	-6.174	0.245	Three large bubbles well-spaced across chart
			quadrants
4	-6.253	0.274	Three large bubbles and one small. Bubbles for
			topics 1 and 2 are overlapping

DEMO: INFER TOPIC LABELS

DEMO: COMPARE AGAINST WORD CLOUD

WORD CLOUD

- visual indicates "together" is the most frequent key word in this text, followed by "works", "fun", "well" and "team"
- While these words have positive connotations, it's difficult to gain deeper insights from this word cloud

TOPIC MOELING

Topic	Percentage Composition	Topic Label
Number	of Tokens	
1	43.3 %	Overall Team health is good/positive
2	36.9 %	Great work, lot of fun and supportive team
3	19.8 %	Some room for improvement

Combined with business context, subject matter expertise and organizational knowledge, the following might be a good a summary readout to potential business stakeholder group of IT leadership.

- The prevalent consensus (43.3 %) amongst survey respondents indicates that overall Team health is good/positive
- Over a third (36.9 %) of survey responses indicate teams are supportive of their members, they have lot of fun and work is great (positive environment for teamwork)
- Around one fifth (19.8 %) of survey responses hint at some room for improvement

AUTOMATION

- Program a Loop
 - Write a loop to iterate the num_topics from "2" to "30"
 - Plot model performance metrics
 - Plot pyLDAvis chart for each iteration and review the Intertopic
 Distance Maps to find the optimal number of human readable topics
- LDA Mallet Model
 - Mallet is an open-source toolkit for NLP with a package for LDA based topic modeling
 - Gensim provides a wrapper to facilitate Mallet's LDA topic model estimation and inference of topic distribution

CONCLUSION

- Introduce NLP technique of Topic Modeling
- Setup of Anaconda Jupyter notebook environment for performing topic modeling
- Data cleaning and preparation steps needed for topic modeling with LDA
- Iterative process of training topic models and identifying an optimal solution
- Interpreting human readable insights from topic model output charts
- Comparing these deeper insights with outcomes from the easier technique of word cloud
- Business value of topic modeling as a popular and practical Natural Language processing technique

REFERENCES

- Topic modeling https://en.wikipedia.org/wiki/Topic model
- Latent Dirichlet allocation https://en.wikipedia.org/wiki/Latent Dirichlet allocation
- LDA paper from Journal of Machine Learning Research https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
- TF-IDF https://en.wikipedia.org/wiki/Tf%E2%80%93idf
- Lemmatization and stemming https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-
 1.html
- spaCy https://spacy.io/
- tokenization https://aclanthology.org/C92-4173.pdf
- n-grams https://en.wikipedia.org/wiki/N-gram
- Evaluate topic models using perplexity and coherence scores https://towardsdatascience.com/evaluate-topic-model-in-python-latent-dirichlet-allocation-lda-7d57484bb5d0
- pyLDAvis https://pyldavis.readthedocs.io/en/latest/readme.html