Colles, semaine 14 $(15/01 \rightarrow 19/01)$

${\small egin{array}{c} Calcul \ matriciel \ parties \ 1 \ et \ 2 \ \end{array} }$

Dans la partie 1 du cours, on définit les combinaisons linéaires de matrices de $M_{n,p}(\mathbb{K})$. Le produit matriciel de deux matrices rectangulaires a été ensuite défini, ainsi que la transposée.

La partie 2 du cours a été consacrée à l'anneau $M_n(\mathbb{K})$. Nous avons donné quelques exemples de puissances de matrices et examiné quelques parties remarquables de $M_n(\mathbb{K})$, notamment l'ensemble des triangulaires supérieures, ainsi que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$. Et enfin, bien sûr, défini le groupe des inversibles de cet anneau : le groupe linéaire $GL_n(\mathbb{K})$.

La notion de matrice inversible est donc au programme de la colle. On a un critère d'inversibilité pour les matrices diagonales, ainsi que pour les matrices de taille 2

Mais attention! le lien avec les systèmes linéaires ne sera fait qu'en début de semaine prochaine, et il faudra attendre pour la méthode d'inversion des matrices inversibles par le pivot.

Questions de cours.

- Associativité du produit matriciel.
- Transposée d'un produit.
- L'ensemble des matrices triangulaires supérieures est stable par produit.
- Exercice : Toute matrice de $M_n(\mathbb{K})$ s'écrit de manière unique comme somme d'une matrice de $S_n(\mathbb{K})$ et d'une matrice de $A_n(\mathbb{K})$.
- Si $A \in GL_n(\mathbb{K})$ alors $A^T \in GL_n(\mathbb{K})$ et $(A^T)^{-1} = (A^{-1})^T$.
- Inversibilité et inverse d'une matrice de taille 2 (avec le polynôme annulateur).

Savoir-faire importants.

- Le produit matriciel : en pratique, en théorie.
- Montrer qu'une certaine partie de $M_n(\mathbb{K})$ est **stable** par combinaison linéaire, ou stable par produit.
- Calcul des **puissances** d'une matrice : en faisant une conjecture sur les premières puissances, ou en utilisant le binôme. Attention à la puissance 0!
- Connaître les propriétés de la transposition.
- Savoir multiplier à gauche, à droite par une matrice diagonale.
- Savoir prouver qu'une matrice est **inversible** en proposant un candidat pour l'inverse, notamment en exploitant un polynôme annulateur comme dans la dernière question de cours.

À venir en semaine 15 : Matrices, suite et fin. Début des polynômes.