Outline 3

February 20, 2019

0.1 Step1:

I was confused about the dimensions of the following equation. I just wanted to add the subscript i in the equation and specify the equation for each subject.

To calculate the max purity function, first, fit the linear mixed model for the outcome y_i and time X_i , with baseline covariates x_i :

$$oldsymbol{y}_i = oldsymbol{X}_i(oldsymbol{eta} + oldsymbol{b}_i + oldsymbol{\Gamma}(oldsymbol{lpha}'oldsymbol{x}_i)) + oldsymbol{\epsilon}_i.$$

where,

- y_i is the vector of outcome for the *i*th subject, i.e., the dimension of y_i is $(n_i, 1)$. n_i is the number of observations for subject *i*.
- X_i is the covariance matrix for the *i*th subject. The dimension is n_i, p . P is the number of covariates. Here in our example p = 3, which is for $(1, t, t^2)$.
- $\boldsymbol{\beta}$ is the coefficient vector for the fixed effects of \boldsymbol{X}_i . The dimension is (p,1).
- \boldsymbol{x}_i is the vector of the baseline covariates for the subject. The dimension is (q, 1).
- \boldsymbol{b}_i is the vector of random effects. The dimension is (p,1).
- Γ is the vector of fixed effects of the baseline covariates. Dimension is (p,1).

• $w_i = \alpha' x_i$ is the combination of the input baseline covariates. w_i is a scalar.

We can define the covariance matrix of X_i as z_i . The z_i contains both fixed effects and random effects.

$$z_i = \beta + b_i + \Gamma w_i$$

We can also write the above equation in the matrix version:

$$Y_{i} = \begin{bmatrix} 1 & t_{1} & t_{1}^{2} \\ 1 & t_{2} & t_{2}^{2} \\ \dots & \dots & \dots \\ 1 & t_{n_{i}} & t_{n_{i}}^{2} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \end{pmatrix} + \begin{pmatrix} b_{0} \\ b_{1} \\ b_{2} \end{pmatrix} + \begin{pmatrix} \gamma_{0} \\ \gamma_{1} \\ \gamma_{2} \end{pmatrix} w_{i} \end{bmatrix} + \boldsymbol{\epsilon}_{i}$$

For different subjects, they have the same β vector and the same Γ vector. Their random effect vector b_i can be different.

Sorry I am still a little confused here. How could we combine the Y_i , X_i and the matrix of coefficients of each subject together to get an overall equation, like Y = X times some matrix?

0.2 Step 2:

Estimate the distribution of z_i for drug group and placebo, separately.

$$egin{aligned} f(oldsymbol{z}_i) &= \int_{w_i} f(oldsymbol{z}_i, w_i) dw_i \ &= \int_{w_i} f(oldsymbol{z}_i|w_i) g(w_i) dw_i \end{aligned}$$

where,

- the conditional distribution $f(z_i|w_i) \sim MVN(\beta + \Gamma w_i, \mathbf{D})$
- $g(w_i)$ is the distribution of the covariates combination $\alpha' x_i$. For example, if the covariates combination only contains "sex", which is binary, then the integral becomes summation.
- D_i is the covariance matrix of random effects b_i .

We could then estimate the $f(\cdot)$ for drug group and placebo group separately, i.e. $f_1(z_i)$ and $f_2(z_i)$.

0.3 Step 3:

The purity should be a function of w_i . The integral of z_i should be calculated first. Then we can define the purity as,

$$P_{w_i} = \int_{z_i} \frac{[f_1(z_i|w_i) - f_2(z_i|w_i)]^2}{[f_1(z_i|w_i) + f_2(z_i|w_i)]^2} (f_1(z_i|w_i) + f_2(z_i|w_i)) dz_i$$

$$= \int_{z_i} \frac{[f_1(z_i|w_i) - f_2(z_i|w_i)]^2}{f_1(z_i|w_i) + f_2(z_i|w_i)} dz_i$$

where

- the integral of with high dimension, which is equals to the dimension of z_i .
- the $f_1(z_i|w_i)$ and $f_2(z_i|w_i)$ are pdf of multivariate normal distributions.

•
$$f_1(\boldsymbol{z}_i|w_i) = (2\pi)^{-\frac{p}{2}}|\boldsymbol{D}|^{-1/2}\exp(-\frac{1}{2}(\boldsymbol{z}_i-\hat{\boldsymbol{\beta}}_1-\hat{\boldsymbol{\Gamma}}_1w_i)^TD^{-1}(\boldsymbol{z}_i-\hat{\boldsymbol{\beta}}_1-\hat{\boldsymbol{\Gamma}}_1w_i))$$

•
$$f_2(\boldsymbol{z}_i|w_i) = (2\pi)^{-\frac{p}{2}}|\boldsymbol{D}|^{-1/2}\exp(-\frac{1}{2}(\boldsymbol{z}_i-\hat{\boldsymbol{\beta}}_1-\hat{\boldsymbol{\Gamma}}_1w_i)^TD^{-1}(\boldsymbol{z}_i-\hat{\boldsymbol{\beta}}_1-\hat{\boldsymbol{\Gamma}}_1w_i))$$

It can be also approximated as the summation form:

$$\sum_{i=1}^{n} \left[\frac{f_1(z_i|w_i) - f_2(z_i|w_i)}{f_1(z_i|w_i) + f_2(z_i|w_i)} \right]^2$$

The summation is also high dimensional, with the same dimension as z_i . This is one purity value based on one combination of baseline covariates for subject i.

Then we can get the subject purity, i.e., the purity for subject w_i . We need to calculate the integral or summation of w_i next to get an overall purity for the data.

We would like to find the \boldsymbol{w} or $\boldsymbol{\alpha}$ that max the $\boldsymbol{P}_{\boldsymbol{\alpha}'\boldsymbol{x}},$ i.e.,

$$\hat{\boldsymbol{\alpha}} = \arg \max_{\boldsymbol{\alpha}} P_{\boldsymbol{\alpha}}
= \arg \max_{\boldsymbol{\alpha}} \int_{\boldsymbol{\alpha}' \boldsymbol{x}} P_{\boldsymbol{\alpha}' \boldsymbol{x}} d\boldsymbol{\alpha}' \boldsymbol{x}
= \arg \max_{\boldsymbol{\alpha}} \int_{\boldsymbol{\alpha}' \boldsymbol{x}} \frac{(f_1(\boldsymbol{z}|\boldsymbol{\alpha}' \boldsymbol{x}) - f_2(\boldsymbol{z}|\boldsymbol{\alpha}' \boldsymbol{x}))^2}{1f_1(\boldsymbol{z}|\boldsymbol{\alpha}' \boldsymbol{x}) + f_2(\boldsymbol{z}|\boldsymbol{\alpha}' \boldsymbol{x})} d\boldsymbol{\alpha}' \boldsymbol{x}$$