LOAN DEFAULT PREDICTION & EXPECTED LOSS ESTIMATION

October 2025

PROJECT OVERVIEW

• Key insights and recommendations

Data used for prediction

Models applied and results

• Expected loss calculation

Key insights and recommendations

• Strategic recommendations for risk management

BUSINESS OVERVIEW

- Personal loan defaults have risen above expectations.
- Predicting defaults helps banks allocate sufficient capital reserves.
- Objective: Build a model to estimate Probability of Default (PD) and Expected Loss (EL).

OUR APPROACH

- Started by understanding the business objective: estimate Probability of Default (PD).
- Explored borrower data to identify key financial indicators affecting default risk.
- Selected two models for testing: Logistic Regression and Random Forest.
- Compared model results using Accuracy and ROC-AUC metrics.
- Integrated Probability of Default with Expected Loss calculation.

MODEL PERFORMANCE

Model	Accuracy	ROC-AUC
Logistic Regression	0.9955	0.99557
Random Forest	0.9945	0.99969

Both models show excellent performance, with Logistic Regression slightly ahead in interpretability and consistency.

Example:

```
Borrower details → Income: ₹60,000; Loan:

₹20,000; FICO: 620

Predicted PD = 99.7%

Recovery Rate = 10%

Expected Loss = 0.997 × (1 – 0.10) × 20,000 =

₹17,954
```

EXPECTED LOSS CALCULATION

Formula:

Expected Loss (EL) = PD \times (1 – Recovery Rate) \times Loan Amount

High debt and low FICO lead to higher default risk.

INSIGHTS & RECOMMENDATIONS

- FICO score and total debt are the strongest predictors of default.
- Integrate this model into JP Morgan's risk assessment framework.
- Use Expected Loss output to guide capital allocation and pricing.
- Regularly retrain models with new borrower data for accuracy.
- Consider adding macroeconomic variables for long-term improvement.

THANK YOU!