GLS UNIVERSITY

Faculty of Computer Applications & Information Technology

Integrated MCA Programme

Semester V

Introduction to Python

Unit 1: Introduction to Python

Introduction

- Python laid its foundation in the late 1980s.
- The implementation of Python was started in December 1989 by Guido Van Rossum at CWI in Netherland.
- In February 1991, Guido Van Rossum published the code (labeled version 0.9.0) to alt.sources.
- In 1994, Python 1.0 was released with new features like lambda, map, filter, and reduce.
- Python 2.0 added new features such as list comprehensions, garbage collection systems.
- On December 3, 2008, Python 3.0 (also called "Py3K") was released. It was designed to rectify the fundamental flaw of the language.
- ABC programming language is said to be the predecessor of Python language, which was capable of Exception Handling and interfacing with the Amoeba Operating System.

Features of Python

6. Open source & Cross-Platform 1. Easy To Learn 2. Interpreter Based 7. GUI Development 3. Interactive **Database Connectivity** Multi-Paradigm Extensible 5. Large Standard Library 10. Developer Community

Top
python
Frameworks
& Libraries
To Use

Python Programming Mode

<u>Interactive Mode:</u> Used when an user wants to run one single line or one block of code.

<u>Script Mode:</u> Used when an user wants to run multiple line of codes in a text file then save it with a .py extension.

Comments

- Comments can be used to explain Python code.
- Comments can be used to make the code more readable.
- Comments can be used to prevent execution when testing code.
- #

Variables

- Variables are containers for storing data values.
- Variable declaration: variable name=value
- Eg: x = 5 a1 = "IMCA"

• Variables do not need to be declared with any particular type, and can even change type after they have been set.

Variables

- A variable can have a short name (like a, b) or a more descriptive name (employee, student name, total marks).
- Rules for Python variables:
 - A variable name must start with a letter or the underscore character
 - A variable name cannot start with a number
 - A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and)
 - Variable names are case-sensitive (age, Age and AGE are three different variables)
 - A variable name cannot be any of the Python keywords.

Casting Datatype in Variables

- If you want to specify the data type of a variable, this can be done with casting.
 - x = str(5)
 - y = int(5)
 - z = float(5)
- You can get the data type of a variable with the type() function.
 - x = 5
 - y = "John"
 - print(type(x))
 - print(type(y))

Keywords

List of Python Keywords

as

class

else

from

is

or

try

assert

assert

Except

global

lambda

pass

while

await

del

finally

import

nonlocal

return

yield

async

assert

Flase

lf

none

raise

with

	-
┡	
6	
-	K
	d

	L
and	\
assert	
elif	
for	
in	4
not	
true	7

Constants

- A Constant is a variable whose value cannot be changed throughout the program.
- Rules for Python constants:
 - Python Constants and variable names should contain a combination of lowercase (a-z) or capital (A-Z) characters, numbers (0-9), or an underscore ().
 - When using a Constant name, always use UPPERCASE, For example,
 CONSTANT = 50.
 - The Constant names should not begin with digits.
 - Except for underscore(_), no additional special character (!, #, ∧, @, \$) is utilized when declaring a constant.

Literals

• The data which is being assigned to the variables are called as Literal.

Strings

- Strings in python are surrounded by either single quotation marks, or double quotation marks.
- Eg. 'imca' is the same as "imca"
- Individual characters in the strings can be accessed using their index.
- Eg. str="Gls University"

 print str[0] O/p: G

 print str[4] O/p: U

Strings	Method	Description
Methods	strip()	removes any whitespace from the beginning or the end
	lower()	Returns a string in lower case characters
	upper()	Returns a string in uppercase characters
	replace()	Replaces a string with another string
	split()	Splits the string into sub strings
	capitalize()	Capitalizes the first character in the string
	count()	Returns no. of occurrences in the string
	index()	Returns the index of the character
	find()	Gives the index value of the string specified
	isalpha()	Returns true if the string has only alphabets
	isalnum()	Returns true if the string has both alphabets and numbers
	isdigit()	Returns true if the string has only numbers
	islower()	Returns true if the string has only lower case characters
	isupper()	Returns true if the string has only uppercase characters

Math Functions

Function	Description	Example		
ceil(n)	It returns the smallest integer greater than or equal to n.	math.ceil(4.2) returns 5		
factorial(n)	It returns the factorial of value n	math.factorial(4) returns 24		
floor(n)	It returns the largest integer less than or equal to n	math.floor(4.2) returns 4		
fmod(x, y)	It returns the remainder when n is divided by y	math.fmod(10.5,2) returns 0.5		
exp(n)	It returns e**n	math.exp(1) return 2.718281828459045		
log2(n)	It returns the base-2 logarithm of n	math.log2(4) return 2.0		
log10(n)	It returns the base-10 logarithm of n	math.log10(4) returns 0.6020599913279624		
pow(n, y)	It returns n raised to the power y	math.pow(2,3) returns 8.0		
sqrt(n)	It returns the square root of n	math.sqrt(100) returns 10.0		
cos(n)	It returns the cosine of n	math.cos(100) returns 0.8623188722876839		
sin(n)	It returns the sine of n	math.sin(100) returns -0.5063656411097588		
tan(n)	It returns the tangent of n	math.tan(100) returns -0.5872139151569291		
pi	It is pi value (3.14159)	It is (3.14159)		
е	It is mathematical constant e (2.71828)	It is (2.71828)		