ML 2023/24 Project Type A

Team Aldra - 14/02/2024

Aru Giacomo 597700 g.aru@studenti.unipi.it

Marzeddu Simone 597134 s.marzeddu@studenti.unipi.it

Raffi Jacopo 598092 j.raffi@studenti.unipi.it

Master Degree in Computer Science (Artificial Intelligence) - University of Pisa

Objectives

Research aims:

- Explore different neural network topologies;
- Study different activation functions;
- Exploit Adamax optimizer.

Technical design details:

- Single and multi-layer Neural Networks;
- Standard Backpropagation training algorithm;
- Ridge Regression and Early Stopping;
- Adamax optimizer;
- Ensembling techniques (Bagging).

Software Architecture

Main Libraries:

Numpy, Pandas.

Main Classes:

- InputNeuron, HiddenNeuron and OutputNeuron, implement units as objects linked by succession relations;
- NeuralNetwork, manages the high-level network of units. Implements training algorithms;
- ModelSelection, performs multi-process cross validation and k-folding with backup management.

Implementation Features (1)

- Data Preprocessing: Random Shuffling and Standardisation;
- Model Selection: K-Fold Cross-Validation;
- **Topologies and Architectures:** Feed Forward NN:
 - Units: 9-24-32-40 Units:
 - # Layers: 1-2-3.
- Activation Functions: Sigmoid (Slope = 1), ReLU, Tanh (Slope = 1), Identity;
- Weights Initialisation: Random Uniform Initialisation:
 - o Range: 0.75, + 0.75;
 - Fan-In for Hidden Units.

Implementation Features (2)

- Training Algorithm: Standard Backpropagation;
- Regularization Techniques: Ridge Regression, Early Stopping;
- Learning Rate Improvements: Momentum, Nesterov Momentum, Linear Decay,
 Adamax;
- Training Data Consumption: Stochastic Mode (Online, Mini-batch), Batch Mode;
- Ensemble Learning Techniques: Bagging.

- Design of a flexible modular framework which allows topological combinations (different activation functions for different neurons, different connections between levels, etc.);
- Learning Rate Decay between epochs or mini-batches (weight update steps);
- Adamax, an algorithm for first-order gradient-based optimization based on the infinity norm [1].

Task	Hyperparameters*	MSE (TR/TS)	Accuracy (TR/TS) %
MONK1	4 - 0.6 - 0 - 0.6 - 4 - 50 - 150	0.0025 / 0.0052	100% / 100%
MONK2	4 - 0.65 - 0 - 0.9 - 4 - 50 - 150	0.00035 / 0.0022	100% / 100%
MONK3	4 - 0.3 - 0 - 0.3 - 4 - 50 - 600	0.024 / 0.054	98.4% / 92,6%
MONK3 (reg.)	4 - 0.3 - 0.001 - 0.5 - 8 - 50 - 600	0.108 / 0.094	93.4 % / 97.2 %

Hyperparameters*: #Hidden Units, Learning Rate (Internally divided by the batch size), Tikhonov Lambda, Momentum, Batch Size, Min #Epochs, Max #Epochs.

NOTE: All models presented are Feed Forward NNs with a single 4-units Hidden Layer.

Results: MONK1, MONK2

Fig. 1: MONK1, TR and TS MSE (SX) and Accuracies (DX).

Fig. 2: MONK2, TR and TS MSE (SX) and Accuracies (DX).

Results: MONK3, MONK3 (reg.)

Fig. 3: MONK3, TR and TS MSE (SX) and Accuracies (DX).

Fig. 4: MONK3 (reg.), TR and TS MSE (SX) and Accuracies (DX).

ML Cup: Data Splitting

- Preprocessing: Random Shuffling and Standardization;
- Validation Schema:

- Retraining on TR + VL;
- Model Assessment on TS;
- Final Retraining on TR + VL + TS.

ML Cup: Our Project Path (1)

- 1. General tests on our implementation and its functionalities:
 - a. A priori exclusion of particular connection structures of units (exclusive use of networks with fully connected layers).
- 2. Study of different topologies (number of units and activation functions, layers and data consumption modes (batch, mini-batch and online)) focused on models' stability and approximation capabilities:
 - a. we excluded networks with more then 3 layers and/or 40 units;
 - b. we excluded topologies combining multiple activation functions for hidden layers;
 - c. we excluded Batch Mode and Nesterov Momentum;
 - d. we excluded SoftPlus as ReLU performances were generally superior.
- 3. First coarse-grain 3-Fold CV on a 2 layered (12 Units per layer) ReLU NN, 1 layered Sigmoid NN with 32 Units and a 1 layered Tanh NN with 32 Units, all with both Adamax and standard optimization algorithms.

Topology	2 Hidden Layers ReLU 12-12 Units
Batch size	10, 20, 30, 50
Min #Epochs	100
Max #Epochs	800
Learning Rate	0.01, 0.03, 0.05, 0.1
Momentum α	0.5, 0.75, 0.9
Tikhonov λ	1e-6

ES Tolerance %	0.0001 %
Patience	5
LR Decay T	125, 175
Adamax	Yes, No
Adamax LR	0.002, 0.02, 0.008, 0.1
Exp. Decay Rate 1	0.9
Exp. Decay Rate 2	0.99

Topology	1 Hidden Layer Tanh 32 Units
Batch size	10, 20
Min #Epochs	100
Max #Epochs	800
Learning Rate	0.01, 0.05, 0.1
Momentum α	0.75, 0.9
Tikhonov λ	1e-7, 1e-6

ES Tolerance %	0.0001 %
Patience	5
LR Decay T	100, 137.5, 175
Adamax	Yes, No
Adamax LR	0.05, 0.1, 0.2
Exp. Decay Rate 1	0.9, 0.8
Exp. Decay Rate 2	0.999, 0.9

Topology	1 Hidden Layer Sigmoid 32 Units
Batch size	10, 20
Min #Epochs	100
Max #Epochs	800
Learning Rate	0.005, 0.01, 0.05, 0.1
Momentum α	0.75, 0.9
Tikhonov λ	1e-7, 1e-6

ES Tolerance %	0.0001 %
Patience	5
LR Decay T	100, 137.5, 175
Adamax	Yes, No
Adamax LR	0.005, 0.02, 0.1
Exp. Decay Rate 1	0.9
Exp. Decay Rate 2	0.999

ML Cup: Coarse-grain CV Configurations

Topology	MEE (Standardised)	MSE (Standardised)	MEE Variance	MSE Variance	Appendix Refs.
32 Sigmoid	0.103085	0.015038	3.5e-5	2e-6	slide 30
32 Sigmoid (Adamax)	0.223192	0.065483	7.73e-4	1.78e-4	slide 30
32 Tanh	0.118104	0.019526	7.4e-5	8e-6	slide 29
32 Tanh (Adamax)	0.148201	0.030771	3.70e-4	4.6e-5	slide 29
12-12 ReLU	0.304497	0.122745	3.891e-3	2.549e-3	slide 31
12-12 ReLU (Adamax)	0.343800	0.151048	7.58e-4	7.35e-5	slide 31

ML Cup: Our Project Path (2)

- **4.** We selected the hyperparameter configuration that produced the lowest validation MEE:
 - a. we excluded Adamax optimization algorithm;
 - b. we excluded ReLU and Tanh as Hidden Units' activation functions.
- Tests on different topologies with fixed hyperparameters of the best model found (1 layered Sigmoid NN with 32 Units);
- **6.** Attempt to smooth learning curves by balancing LR, LR Decay and Momentum to mitigate the initial learning instability:
 - a. we decided to not persevere with this approach as the choice of hyperparameters would have fallen close to the best 3-Fold CV model.

ML Cup: Our Project Path (3)

- 7. Fine-grained 3-Fold CV setting the best topology of the previous iteration (NN with a single 32-unit hidden layer, Sigmoid activation function):
 - a. we selected the hyperparameter configuration with lowest validation MEE.
- **8.** Application of an ensemble learning technique (**Bagging**) to control the variance of the best model resulting from the last grid search:
 - a. 32 models, all with the same hyperparameters configuration, were trained on random samplings with replacement from the training set;
 - b. the resulting model uses as output the arithmetic mean of the internal models' predictions.
- **9.** The test set (TS) obtained from the initial 20% Hold-out has now been exploited to assess the final ensemble model generalisation capabilities;
- **10.** Final Retraining on TR + VL + TS.

ML Cup: Fine-grain CV Configurations

Topology	1 Hidden Layer Sigmoid 32 Units
Batch size	6, 8, 10, 11, 20
Min #Epochs	100, 150
Max #Epochs	500, 800
Learning Rate	0.005, 0.01, 0.05, 0.07, 0.09, 0.1, 0.11, 0.13
Momentum α	0.75, 0.85, 0.9, 0.92, 0.95
Tikhonov λ	1e-9, 1e-8, 1e-7, 1e-6

ES Tolerance %	0.0001 %,
Patience	5
LR Decay T	100, 137.5, 145, 165, 175, 185, 200
Adamax	No

Color Legend:

- Original Coarse-grain 3-Fold CV;
- Fine-grain 3-Fold CV.

ML Cup: Final Model - Hyperparameters

Selecting the configuration with the lowest validation MEE after the 3-fold CV resulted in the following final model:

- Topology: 1 Hidden Layer with 32 Hidden Units (Sigmoid Activation Function);
- MEE Validation: 2.43;
- MEE Validation Variance: 0.018.

Batch size	Min #Epochs	Max #Epochs	Patience	ES Tolerance %	Tikhonov λ	Momentum α	LR Decay T	LR
8	150	500	5	0.0001 %	1e-9	0.85	200	0.11

# Internal Models	Ensembling Function	MEE Training (TR + VL)	MEE Test (TS)
32	Arithmetic Mean	1.3334	1.3324

MEE Learning Curves Ensembling And Sub-models

ML Cup: Discussion (1)

Proposed techniques results:

- Learning Rate: The learning rate and associated hyperparameters were found to be the lynchpin of our model selection. Small variations in these values can radically change the resulting model;
- Momentum: High momentum values were definitely favoured by model selection, but we found that values above 0.9 were characterised by high instability;
- Tikhonov Regularization: Low values of λ always allowed good regularization of the models;
- **Batch Size:** Large mini-batch sizes showed lower convergence speed but higher learning curve stability, while small mini-batch sizes performed better but were more unstable.

ML Cup: Discussion (2)

- Flexible and Modular Implementation: It allowed for several experimentation in terms of variety of case studies, but resulted also in high temporal costs for exhaustive researches. Despite that, it was educationally relevant;
- Learning Rate Decay: Finding the right trade-off for T allowed us to balance the convergence speed and the stability of the learning curve;
- Adamax: Despite not passing the model selection in terms of validation MEE, the Adamax models consistently showed great stability of the learning curves, at the expense of a slow convergence speed (graphs on slides 29, 30, 31);
- **Ensembling:** Following the 3-Fold CV, the MEE validation variance of the best model was still problematic. Taking advantage of ensemble techniques (Bagging) allowed us to obtain a final result with more reliable performance.

Conclusions

What we drew and what we learned:

- Practical Approach: Working on a practical Machine Learning project allowed us to delve deeper into the theory, and to resolve doubts about certain nuances that could arise from theoretical study alone;
- Working with Hyperparameters: Although we were confident in the theory behind Model Selection, approaching this technique on a practical level allowed us to really understand the influence of hyperparameters and their tuning;
- Working with long computations: The Machine Learning project required a lot of time and computational resources, more than any other project we had faced in the past. This practical test led us to organise a work plan for our equipment, studying the division and timing of the various processes.

Blind Test Results File: Aldra_ML-CUP23-TS.csv

Our Nickname: Aldra

Bibliography

1. Diederik P. Kingma e Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.6980 [cs.LG].

Appendix

The appendices provide additional data and graphs to support the arguments in this report:

- **Best Discarded Models** (<u>Slides 26, 27, 28, 29, 30</u>): Collection of graphs, configurations and performances of the best discarded models for each type of activation function, with and without the use of Adamax;
- Learning curve after the smoothing attempt (<u>Slides 31, 32</u>): Implementation details and demonstration graph concerning the attempt to smooth the learning curves starting from the best output of model selection;
- Learning curve after the final Retraining phase (<u>Slide 33</u>);
- Training Speed and Hardware Data (<u>Slide 34</u>).

ML Cup: Model Selection - Best Discarded Configurations (No Adamax)

Topology	Batch size	Min #Epochs	Max #Epochs	Patience	ES Tolerance %	Tikhonov λ	Momentum α	LR Decay	LR
32 Tanh	10	100	800	5	0.0001 %	1e-7	0.75	175	0.1
12-12 ReLU	10	100	800	5	0.0001 %	1e-6	0.5	175	0.01

ML Cup: Model Selection - Best Discarded Configurations (Adamax)

Topology	Batch size	Min #Epochs	Max #Epochs	Patience	ES Tolerance %	Tikhonov λ	Exp. Decay Rate 1	Exp Decay Rate 2	LR
32 Sigmoid	10	100	800	5	0.0001 %	1e-6	0.9	0.999	0.1
32 Tanh	10	100	800	5	0.0001 %	1e-7	0.9	0.999	0.1
12-12 ReLU	10	100	800	5	0.0001 %	1e-6	0.9	0.999	0.1

ML Cup: Model Selection - Best Discarded Configurations (Tanh)

Fig. 7Tanh no Adamax

Fig. 8Tanh with Adamax

ML Cup: Model Selection - Best Discarded Configurations (Sigmoid)

Fig. 9
Sigmoid no Adamax (Best Model, Not Discarded)

Fig. 10
Sigmoid with Adamax

ML Cup: Model Selection - Best Discarded Configurations (ReLU)

Fig. 11ReLU no Adamax

Fig. 12
ReLU with Adamax

Topology	1 Hidden Layer Sigmoid 32 Units	ES Tolerance %	0.0001 %			
Batch size	10	Patience	5			
Min #Epochs	100	LR Decay T	250, 300 - Increased to slow the decay			
Max #Epochs	400 - Reduced to limit execution time					
Learning Rate	0.0005, 0.002. 0.005, 0.01 - Balancing LR with Decay and Momentum					
α Momentum	0.75 - Lowered to reduce initial instability					
λ Tikhonov	0.000001					

ML Cup: Model Selection - Smoothing

Fig. 13
Smoothed graphs: worse approximation but better stability

ML Cup: Final Retraining Learning Curve

MEE Learning Curves Ensembling And Sub-models

Fig. 14
Learning Curve on TR + VL + TS
(Bagging of 32 Learners)

Training Speed and Hardware Data

	Machine 1	Machine 2	Machine 3
CPU	Intel(R) Core(TM) i7-8750H	Intel(R) Core(TM) i7-10750H	Intel(R) Core(TM) i5-1035G1
Cores	6	6	4
Base Speed	2.2 GHz	2.6 GHz	1.0 GHz
Logical Processes	12	12	8

Training Speed Estimation: around 1.00 Seconds for an Epoch of 533 data.