Relative Multi-View Geometry

Informal notes

Matthew Trager

This document sets up multi-view geometry from the perspective of point configurations.

Notation: We use bold font for vectors and matrices, and normal font for projective objects.

Point Configurations. We write \mathbb{P}_k^n for the space of configurations of k ordered points in \mathbb{P}^n . This means that we consider ordered sets of k points, and say that two k-tuples of points (p_1, \ldots, p_k) and (q_1, \ldots, q_k) in $(\mathbb{P}^n)^k$ are equivalent if there exits a projective transformation of \mathbb{P}^n that maps p_i to q_i for $i = 1, \ldots, k$. We write $\langle x_1, \ldots, x_k \rangle$ for the configuration in \mathbb{P}_k^n of the points x_1, \ldots, x_k in \mathbb{P}^n .

It will be convenient to parameterize elements in \mathbb{P}_k^n using $k \times (n+1)$ matrices, with each row corresponding to the projective coordinates of a point:

$$\begin{bmatrix} - & \boldsymbol{x}_1^T & - \\ & \vdots & \\ - & \boldsymbol{x}_k^T & - \end{bmatrix} \mapsto \langle x_1, \dots, x_k \rangle, \qquad \boldsymbol{x}_i \in \mathbb{R}^{n+1}. \tag{1}$$

We write $\langle \mathbf{M} \rangle$ for the configuration defined by the $k \times (n+1)$ matrix \mathbf{M} .

Lemma 1. Two $k \times (n+1)$ matrices M_1, M_2 give rise to equivalent configurations of points in \mathbb{P}^n_k if and only if there exists T in $GL_{n+1}(\mathbb{R})$ and a non-singular diagonal $k \times k$ matrix D such that $DM_1T = M_2$.

Here the diagonal matrix D is necessary to eliminate the dependence on the choices of homogeneous coordinates. Note that if k < n+2, then there is only one generic configuration. Assuming $k \ge n+2$, we can easily associate a generic configuration $\langle M \rangle$ in \mathbb{P}^n_k with n(k-n-2) invariant coefficients: it is sufficient to remove the projective ambiguity by assuming that the first n+2 rows of M are the reference points z_1, \ldots, z_{n+2} , and rescale the remaining rows so that (say) the last column is always one. The remaining free n(k-n-2) coefficients uniquely determine the point configuration. This can be seen as a generalization of the classical cross-ratio for four points in \mathbb{P}^1 .

Another formalism for expressing geometric properties of point configurations is based on the bracket algebra, developed in algebraic invariant theory [1]. The "brackets" of a configuration $\langle \boldsymbol{M} \rangle$ are the set of all $(n+1) \times (n+1)$ minors of \boldsymbol{M} . Any projectively invariant property of a set of points can be expressed as a (multihomogeneous) polynomial in brackets, so brackets can be viewed as a set of "coordinates" for the configuration. On the other hand, brackets are not algebraically independent, since they satisfy the quadratic Plücker-Grassmann relations. Furthermore, a configuration can be represented by many possible sets of brackets, corresponding to different choices of the matrix \boldsymbol{M} .

Cameras and Scenes. The action of a camera induces a map on configurations:

Lemma 2. Let $P: \mathbb{P}^3 \dashrightarrow \mathbb{P}^2$ be a camera with pinhole c in \mathbb{P}^3 . Given k points x_1, \ldots, x_k in \mathbb{P}^3 , the configuration of the projections $\langle u_1, \ldots, u_k \rangle$ in \mathbb{P}^2_k with $u_i = P(x_i)$ is uniquely determined by the configuration $\langle c, x_1, \ldots, x_k \rangle$ in \mathbb{P}^3_k . In fact, a valid set of brackets for $\langle u_1, \ldots, u_k \rangle$ is given by

$$|\boldsymbol{u}_i, \boldsymbol{u}_i, \boldsymbol{u}_k| = |\boldsymbol{c}, \boldsymbol{u}_i, \boldsymbol{u}_i, \boldsymbol{u}_k|.$$

Definition 3. A viewing configuration is a configuration

$$S_{n,k} = \langle c_1, \dots, c_n, x_1, \dots, x_k \rangle \in \mathbb{P}^3_{n+k}$$

of n + k points in \mathbb{P}^3 , where the first n points are viewed as "pinholes" and the remaining points are "scene points". The image configurations of a viewing configuration are

$$I_k^i = \langle u_1^i, \dots, u_k^i \rangle \in \mathbb{P}_k^2, \quad i = 1, \dots, n,$$

where u_{i1}, \ldots, u_{ik} are points obtained by projecting x_1, \ldots, x_k from c_i . According to Lemma 2, the images I_k^i (viewed as configurations) are all uniquely determined by S.

We sometimes us $\mathbb{P}^3_{n,k}$ instead of \mathbb{P}^3_{n+k} for the space of viewing configurations with n pinholes and k scene points. In this setting, the problem of relative multi-view reconstruction (from n views and k scene points) consists in using image configurations I_k^i,\ldots,I_k^i in \mathbb{P}^2_k to recover the unknown viewing configuration $S_{n,k}$ in $\mathbb{P}^3_{n,k}$ which generated them. In terms of brackets, given vector representatives $\mathbf{u}^i_1,\ldots,\mathbf{u}^i_k$ in \mathbb{R}^3 of projective points u^i_1,\ldots,u^i_k in \mathbb{P}^2 ($i=1,\ldots,n$), we wish to find vectors $\mathbf{c}_1,\ldots,\mathbf{c}_n,\mathbf{z}_1,\ldots,\mathbf{z}_k$ in \mathbb{R}^4 and scalars $\mu_1,\ldots,\mu_n,\lambda_1,\ldots,\lambda_k$ such that

$$|\lambda_r \mathbf{c}_r, \lambda_s \mathbf{x}_s, \lambda_t \mathbf{x}_t, \lambda_u \mathbf{x}_u| = |\mathbf{u}_s^r, \mathbf{u}_t^r, \mathbf{u}_u^r|, \qquad r = 1, \dots, n, \quad s, t, u \in \{1, \dots, k\}.$$

References

[1] B. Sturmfels: Algorithms in invariant theory. Springer Science & Business Media, 2008.