Control of Permanent Magnet Synchronous Motors

BLDC PM, PMSM

Prof. Ashwin M Khambadkonne

email:eleamk@nus.edu.sg

Dept. of ECE, National University of Singapore

Control of PM SM

Ashwin M Khambadkone Department of Electrical and Computer Engineering, NUS

Taxonomy of Synchronous Machines

Brushless DC Magnetic Circuit: 2 pole

- Stator has distributed windings
- Surface mounted magnets on the rotor
- Flux links stator windings

Brushless DC Motor Magnetic Field

Flux linkage changes linearly as rotor moves

- as rotor moves
- flux linkage with coil changes linearly
- area under $B_m x_s, t$ curve between the coil span is flux

Brushless DC Motor Magnetic Field

- Flux density is (square-wave shape)
- Flux-linkage changes linearly as
- rotor moves with constant velocity
- (see area under $B_m(x_s,t)$)
- $V_c = \frac{d\psi_c}{dt}$
- Induces a square wave voltage

Brushless DC motor induced Voltage appears trapezoidal

Trapezoidal induced voltage due winding placement

- coil voltages seen phase displaced
- the phase depends on coil poisition
- Coils in series adds voltage
- produces a stepped trapezoidal waveform

Brushless DC motor induced Voltage appears trapezoidal

- Coils placed near by on stator
- Coil voltage phase depends on coil position
- Coils connected in series
- Total voltage adds-up
- produces a trapezoidal wave

Induced voltage in coil is appear as back-emf. It will seen at stator windings even when no electrical energy is supplied to stator. It is caused due to permanent magnet excitation

Control of BLDC motor based on hall-effect sensor

Control of BLDC motor

Control of BLDC motor based

Hall-effect sensors are place so that they generate the correct switching sequence

Rotor Flux and stator Flux based on Hall-effect sensor switching i

Case 1: Hall effect output (u,v,w)=(1,0,0) Since the u sensor is place perpendicular to the U phase axis, we can say that the rotor flux is perpendicular to U phase axis. We have defined $\alpha-\beta$ axis along the U Phase axis (α along U Phase). Hence we can write the rotor flux vector as

$$\vec{\psi}_u = 0 - j\psi_{u\beta}$$

Using the Hall=effect sensor data, a current space vector is injected into the stator of the machine along U axis for (1,0,0)

$$\begin{aligned} \vec{i}_s &= i_{DC} \left(S_U + \vec{a} S_V + \vec{a}^2 S_W \right) \\ \vec{i}_s &= i_{DC} \\ \vec{i}_s &= i_{s\alpha} = i_{DC} \end{aligned}$$

Rotor Flux and stator Flux based on Hall-effect sensor switching ii

Thus the switching sequence based on the Hall-effect sensor is

	Hall sensor	Switching state
states	u, v, w	S_U, S_V, S_w
1	1,0,0	1,0,0
2	0,1,0	0,1,0
3	0,0,1	0,0,1
0	Any	0,0,0

Equivalent Circuit of BLDC operation

Converter is necessary

In order to operate the BLDC a 3-phase converter is necessary

Circuit equations for the windings

Using phase variables

$$\begin{bmatrix} v_{U,N} \\ v_{V,N} \\ v_{W,N} \end{bmatrix} = \begin{bmatrix} r_U & 0 & 0 \\ 0 & r_V & 0 \\ 0 & 0 & r_W \end{bmatrix} \begin{bmatrix} i_U \\ i_V \\ i_W \end{bmatrix} + \begin{bmatrix} l_U & l_m & l_m \\ l_m & l_V & l_m \\ l_m & l_m & l_W \end{bmatrix} \begin{bmatrix} \frac{di_U}{dt} \\ \frac{di_V}{dt} \\ \frac{di_W}{dt} \end{bmatrix} + \begin{bmatrix} e_{U,N} \\ e_{V,N} \\ e_{W,N} \end{bmatrix}$$

Since

$$i_U + i_V + i_W = 0$$

and the motor is symmetrical in 3 windings, We get,

$$\begin{bmatrix} v_{U,N} \\ v_{V,N} \\ v_{W,N} \end{bmatrix} = \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix} \begin{bmatrix} i_U \\ i_V \\ i_W \end{bmatrix} + \begin{bmatrix} l - l_m & 0 & 0 \\ 0 & l - l_m & 0 \\ 0 & 0 & l - l_m \end{bmatrix} \begin{bmatrix} \frac{di_U}{dt} \\ \frac{di_V}{dt} \\ \frac{di_W}{dt} \\ \frac{di_W}{dt} \end{bmatrix} + \begin{bmatrix} e_{U,N} \\ e_{V,N} \\ e_{W,N} \end{bmatrix}$$

In state space form

$$\begin{split} \frac{di_U}{dt} &= -\frac{r}{l - l_m} i_U + \frac{v_{U,N} - e_{U,N}}{l - l_m} \\ \frac{di_V}{dt} &= -\frac{r}{l - l_m} i_V + \frac{v_{V,N} - e_{V,N}}{l - l_m} \\ \frac{di_W}{dt} &= -\frac{r}{l - l_m} i_W + \frac{v_{W,N} - e_{W,N}}{l - l_m} \end{split}$$

using
$$l - l_m = l_s$$
, we can write

$$\begin{split} \frac{di_U}{dt} &= -\frac{r}{l_s}i_U + \frac{v_{U,N} - e_{U,N}}{l_s} \\ \frac{di_V}{dt} &= -\frac{r}{l_s}i_V + \frac{v_{V,N} - e_{V,N}}{l_s} \\ \frac{di_W}{dt} &= -\frac{r}{l_s}i_W + \frac{v_{W,N} - e_{W,N}}{l_s} \end{split}$$

120 deg. block operation ideal condition

• In practice, it is not possible to get a sharp rise and fall in current (di/dt) has to be finite)

At any given tie only 2 phases are conducting

$$p_g = e_{U,N}i_U + e_{V,N}i_V + e_{W,N}i_w$$

Control of BLDC motor with 120 deg block operation

Control of BLDC motor with 120 deg. block operation

Power and Torque in the BLDC

The torque can be calculated from the air-gap power

$$P_g = e_U i_U + e_V i_V + e_W i_W$$

where $e_U,...,i_U,...$, are the phase quantities and the electromagnetic torque is

$$m_e = \frac{P_g}{\omega}$$

$$m_e = \frac{e_U i_U + e_V i_V + e_W i_W}{\omega}$$

where ω is the angular velocity of the equivalent 2 pole machine.

If the machine has p poles than the angular velocity of the rotor will be

$$\omega_m = \frac{p}{2}\omega$$

Hence the shaft torque can be also written as

$$m_m = \frac{P_g - P_{w,loss}}{\omega_m}$$

Feeding BLDC with square wave currents - see current and back-emf are constant

- constant current is fed for same duration as
- when induced voltage is constant
- Torque is produced
- $m_e = \frac{e_{U,N}i_U + e_{V,N}i_V + e_{W,N}i_W}{\omega}$

Practical Block currents will cause torque ripple

- actual current has finite rise-time and fall-time
- Effective current is constant for less than 120 degree
- Produces torque ripple
- Torque is produced

$$m_e = \underbrace{\frac{e_{U,N}i_U + e_{V,N}i_V + e_{W,N}i_W}{\omega} }_{ \omega}$$

Practical Block currents are active for more than 120 deg

- actual current has finite rise-time and fall-time
- Effective current is now constant for more than 120 degree
- reduces torque ripple
- Torque is produced
 - $m_e = \frac{e_{U,N}i_U + e_{V,N}i_V + e_{W,N}i_W}{\omega}$

We need current control to inject the square wave currents

- Hysteresis control can be used
- square wave current reference
- compared with actual current

```
input : ei[k] = i^*[k] - i[k]
output: vs[k]
if |ei[k]| < eilim then
   vs[k] = vs[k-1];
   if (ei[i] >= eilim) then
       vs[k] = -1.0;
   else if (ei/k) <= -eilim)
       vs[k] = 1.0
   end
end
```

Torque with current control

- Torque at $\omega_s = 0.5$
- torque ripple at 6 times fundamental frequency
- Not good for high performance servos

Torque ripple for high performance applications such as servos in CNC machines and Robotics has to be low

$$\frac{\Delta m}{m_N} = \frac{1}{100} = 0.01[p.u.$$

120 deg. Conduction method with current commutation

- \bullet $e_U = -e_V$
- $\bullet \ i_U = -i_V = i$
- $\bullet \ \frac{di_U}{dt} = -\frac{di_V}{dt} = \frac{di}{dt}$

Equivalent model for 120 deg conduction - $i=i_U-i_V$

Based on the circuit, we can write the following KVL for each phase

$$v_{U,O} = \frac{1}{2}V_{DC} = r_U i_U + l_U \frac{di_U}{dt} + e_{U,N} + v_{N,O}$$

$$v_{V,O} = \frac{1}{2}V_{DC} = r_V i_V + l_V \frac{di_V}{dt} + e_{V,N} + v_{N,O}$$

$$v_{W,O} = e_{U,N} + v_{N,O}$$

 $v_{N,O} = \frac{1}{2}(-e_{U,N} - e_{V,N})$

$$v_{U,N} = \frac{1}{2}V_{DC} - v_{N,O} = r_U i_U + l_U \frac{di_U}{dt} + e_{U,N}$$

$$v_{V,O} = \frac{1}{2}V_{DC} - v_{N,O} = r_V i_V + l_V \frac{di_V}{dt} + e_{V,n}$$

 $v_{W,N} = e_{W,N}$

As
$$i_U + i_V + i_W = 0$$
, we get

and
$$e_U=-e_V=e$$
 and Torque will be

will be
$$m = \frac{e_U i_U + e_V i_V}{m} = \frac{2ei}{m}$$

 $i = i_{II} = -i_{V}$

)

(4)

(1)

(2)

(3)

(5)

(6)(7)

29

Phase V stops conduction and Phase W to start

 S_6 is turned on and S_5 is turned off, however due to inductance, i_V continues to flow in same direction. Hence, diode D_2 turns on. Now i_V will start to decrease and i_W will start to increase. so at node N, we get

$$i_U = -(i_V + i_W)$$

Commutation interval between i_V to i_W

We can write the KVL for the phases as

$$v_{U,O} = \frac{1}{2} V_{DC} = r_U i_U + l_U \frac{di_U}{dt} + e_{U,N} + v_{N,O}$$
 (8)

$$v_{V,O} = \frac{1}{2}V_{DC} = r_V i_V + l_V \frac{di_V}{dt} + e_{V,N} + v_{N,O}$$
(9)

$$v_{W,O} = -\frac{1}{2}V_{DC} = r_W i_W + l_V \frac{di_W}{dt} + e_{W,N} + v_{N,O}$$
 (10)

$$v_{N,O} = \frac{1}{3} \left(\frac{V_{dc}}{2} - (e_U + e_V + e_W) \right) \tag{11}$$

and can be written as

$$v_{U,N} = \frac{1}{2}V_{DC} - v_{N,O} = r_U i_U + l_U \frac{di_U}{dt} + e_{U,N}$$
(12)

$$v_{V,O} = \frac{1}{2}V_{DC} - v_{N,O} = r_V i_V + l_V \frac{di_V}{dt} + e_{V,N}$$
(13)

$$v_{W,O} = -\frac{1}{2}V_{DC} - v_{N,O} = r_W i_W + l_V \frac{di_W}{dt} + e_{W,N}$$
(14)

$$v_{N,O} = \frac{1}{3} \left(\frac{V_{dc}}{2} - (e_U + e_V + e_W) \right) \tag{15}$$

Commutation ripple i

we had $i_V < 0$ and due to the voltage in phase V, we get

$$\frac{di_V}{dt} > 0$$

Hence, $i_v \to 0$. Similarly, $i_W=0$ at the beginning of the commutation and now due to the voltage in phase W, we get

$$\frac{di_W}{dt} < 0$$

, hence $i_W \rightarrow -i$. So that

$$i_U = -(i_V + i_W) = i$$

Commutation ripple ii

Commutation ripple iii

If time duration for i_V to reach zero is t_1 and the time duration for i_w to reach -i is t_2 , we can have 3 conditions

- $oldsymbol{0}$ $t_{wr} > t_{vf}$: i_U decreases till t_{vf} and then increase between $t_{vf} t_{wr}$
- **2** $t_{wr} = t_{vf}$: i_U us constant over $t_{wr} = t_{vf}$
- 3 $t_{wr} < t_{vf}$: i_U increase until t_{wr} and decreases between $t_{vf} t_{wr}$

Current ripple in $\emph{i}_{\emph{U}}$ durin commutation between phase V and W

major disadvantage in this machine cause due to commutation ripple. At high speeds the current does not dip, but creates a positive bump

Comparing PMSM (sinusoidal) with BLDC 120 degree i

The peak value of PMSM phase current is \hat{I}_{SM} and the peak value of BLDC (120 degrees block DC current is) \hat{I}_{BLDC} . We can get the RMS value as for sinewave as

$$I_{SM} = \frac{\hat{I}_{SM}}{\sqrt{2}}$$

and for a 120 degree conducting quasi-square which has a conduction ratio of $120/180 = 2/3\,$

$$I_{BLDC} = \sqrt{\frac{2}{3}} \hat{I}_{BLDC}$$

Assuming the losses in both machines are equal, we can write the loss using RMS values of currents

$$\underbrace{3 \cdot I_{SM}^2 R_s}_{\text{PMSM loss}} = \underbrace{3 \cdot I_{BLDC}^2 R_s}_{\text{BLDC loss}}$$

Hence the relation between the two peak current for same losses is

$$\hat{I}_{BLDC} = \frac{\sqrt{3}}{2}\hat{I}_{SM}$$

We can calulate the power ratio for the two machines as

$$\begin{split} \frac{\text{Power output BLDC}}{\text{Power output PMSM}} &= \frac{2\hat{E}_U\hat{I}_{BLDC}}{3\frac{\hat{E}_U}{\sqrt{2}}\frac{\hat{I}_{SM}}{\sqrt{2}}} \\ &= \frac{4\hat{I}_{BLDC}}{3\hat{I}_{SM}} \\ &= \frac{4\frac{\sqrt{3}}{2}\hat{I}_{SM}}{3\hat{I}_{SM}} \\ &= \frac{2}{\sqrt{3}} = 1.155 \end{split}$$

Comparing PMSM (sinusoidal) with BLDC 120 degree iii

BLDC has power density

For the same losses, the BLDC power output is 15% higher than that of PMSM. This is because the RMS value to peak value in BLDC is higher than sinusoidal PSMSM

Why we need the PM AC synchronous motor

Why use PMAC

- BLDC motor produces torque ripple due to current blocks and commutation
- Such torque ripple is not good for servo applications where a smooth torque is needed
- A sinusoidal flux-density based PM machine is an AC machine
- Produces rotating magnetic field and is fed with sinusoidal currents
- Torque ripple is minimized in PMAC
- However, as BLDC uses block currents, it can produce more torque for the same RMS current as the AC machine

Control of BLDC

Dynamic model of BLDC i

Due to 120 deg. conduction, at any given time 2 phases will be conducting. Suppose we have $i_u=-i_v$ Then we can describe the current dynamics as

$$V_{UV} = 2r_U i + 2l_U \frac{di}{dt} + 2e_U$$
$$V_{DC} = r_s i + l_s \frac{di}{dt} + k_e \omega$$

where V_{DC} is the DC link voltage, k_e back-emf coefficient. The torque produced will be given by

$$m_e = k_t i (16)$$

and the speed dynamics will be given as

$$T_j \frac{d\omega}{dt} = k_t i - m_L$$
$$sT_j \omega(s) = k_t i(s) - m_L(s)$$

Dynamic model of BLDC ii

and the current transfer function is

$$(1 + sT_s)i(s) = \frac{v(s)}{r_s} - \frac{k_e \omega(s)}{r_s}$$

$$i(s) = \frac{v(s)}{r_s(1 + sT_s)} - \frac{k_e}{r_s(1 + sT_s)}\omega(s)$$

$$i(s) = \frac{v(s)}{r_s(1 + sT_s)} - \frac{k_e}{r_s(1 + sT_s)} \left(\frac{k_t}{sT_j}i(s) - \frac{1}{sT_j}m_L(s)\right)$$

Homework Assigment

- Derive the transfer function for $\frac{i(s)}{v(s)}$, assume $k_e = k_t = 1$
- Derive the transfer function for $\frac{\omega(s)}{v(s)}$
- Compare it with the Separately excited DC machine and comment on it