Testresults from Thomas Bentler, DAFT March 2020 Berlin

Statistics

The statistics challenge consists of completing the `Data Science Math Skills` course in Coursera, offered by Duke University.

Though data science is in the name, the course teaches the core math upon which both data science and data analytics are built. You'll learn about set theory, math notation, probability theory, etc. The expected duration of the course is 15 hours and you can enroll in it for free.

The completion of this course is essential for you to be ready for the statistical module of Ironhack's bootcamp.

That is the reason why you are asked to submit all the 'Practice Exercises' and 'Quizes' you will find in the 'Data Science Math Skills' course.

Watch the lesson videos, read the recommended articles and when you feel ready, complete the practice exercises and quizes for each week. When you are done, take screenshots of all the solved exercises and save them for later submission.

Here's the complete list of exercises you need to deliver:

- **WEEK 1**
- * Building Blocks for Problem Solving Practice quiz on Sets (3 questions)

Practice quiz on Sets

GESAMTPUNKTZAHL 3

1. Let $A=\{1,3,5\}.$ Is the following statement: 3 \in A. True or false?

1 / 1 Punkten

- True
- O False

Correct

The symbol $\$ in stands for "is an element of" and it is true that 3 is an element of A. The other two elements of A are 1 and 5.

2. Let $E=\{-1,-2,-3\}$. Compute the cardinality |E| of E:

- $\bigcirc E$
- \bigcirc -3
- \bigcirc 0
- 3

✓ Correct

Recall that the cardinality of a set is the number of elements in it. Since ${\cal E}$ has three elements (which are –1, –2, –3), the cardinality of E is $\left|E\right|=3$.

3. Let $A=\{1,3,5\}$ and $B=\{3,5,10,11,14\}$.

Which of the following sets is equal to the intersection A \cap B?

- \bigcirc {3}
- \bigcirc {3,5}
- \bigcirc {1, 3, 5}
- \bigcirc {3, 5, 10}

The intersection of two sets consists precisely of the elements they share in common. The elements ${\bf 3}$ and ${\bf 5}$ are in both ${\bf A}$ and ${\bf B}$.

* The infinite World of Real Numbers - Practice quiz on the Number Line, including Inequalities (8 questions)

* That Jagged S Symbol - Practice quiz on Simplification Rules and Sigma Notation (6 questions) ✓ Herzlichen Glückwunsch! Sie haben bestanden! Lernen Sie weiter Practice quiz on Simplification Rules and Sigma Notation 1 / 1 Punkten O 30 ① 14 \bigcirc 1 O 9 We compute {\large \displaystyle{\Sigma_{i=1}^3 i^2} = 1^2 + 2^3 + 3^2 = 14} 2. Suppose that A ={\large \displaystyle{\Ggma_{k=1}^{100} k^4}} and B = {\large \displaystyle{\Ggma_{i=1}^{100} j^4}} 1/1 Punkten Which of the following statements is true? A = B $\bigcirc B > A$ There is not enough information to do the problem \checkmark Correct ${\rm A=B.\ Both\ summations\ evaluate\ to\ the\ same\ number,\ since}\ k\ {\rm and\ }j\ {\rm are\ just}$ dummy indices. 1 / 1 Punkten 3. Which of the numbers below is equal to the summation {\large 70 \bigcirc 7

1/1 Punkten

1/1 Punkten

1 / 1 Punkten

○ 55
○ 0

7
 2X + 5Y
 3375
 X + Y

493

 $\bigcirc \sum_{i=1}^{5} x_i$

 \checkmark correct According to one of our Sigma notation simplification rules, this summation is just equal to 10 copies of the number 7 all added together, and so we get $10\times 7=70$.

Which of the following expressions is equal to the summation {\large \Sigma_{i=1}^5 (2i^3 +

To get here, you apply two of our Sigma notation simplification rules (Varge \Sigma_(i=1)^5 2/3) + (Varge 5/4 = 2 \Veft(\Sigma_(i=1)^5 i^3\right)) + {\Varge 5 \Veft(\Sigma_(i=1)^5 i^3\right)} = 2X + 5Y.

correct To get the mean of a set of numbers, you need to perform two steps: first add them all up (in this case getting -2+4+7=9), and then divide by the number of elements in the set (in this case that number is 3).

So you should obtain $\mu_Z = \beta_{3} = 3\$ align}, which you did!

To obtain the mean of a set of numbers, you first add them all up (which is expressed here by the sigma operation inside the square brackets) and then you divide by the number of numbers in the set (which is expressed here by the \begin \langle align)\frac{1}{1} send \langle align) outside the square brackets).

6. Suppose the set X has five numbers in it: $X=\{x_1,x_2,x_3,x_4,x_5\}$. Which of the following expression represents the mean of the set X?

\testimate \text{\tinx}\text{\tinx}\text{\texitext{\texi\text{\text{\text{\text{\text{\text{\text{\text{\texitex{\text{\

5. Which of the following numbers is the mean μ_Z of the set $Z = \{-2, 4, 7\}$?

O \begin {align} \frac{13}{3}\end {align}

4. Suppose that $X = {\langle x_i = 1 \rangle 5 }$ and $Y = {\langle x_i = 1 \rangle 5 }$

* That Jagged S Symbol - Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation (13 questions)

Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation

NEUESTE EINREICHUNGSBEWERTUNG	
100%	

1. Let $B=\{3,5,10,11,14\}.$ Is the following statement true or false: $3 \pmod B$

1 / 1 Punkten

False

○ True

Correct

The symbol \setminus notin stands for "is not an element of." Since 3 is in an element of the set B, the given statement is not true.

2. Let $A = \{1, 3, 5\}$ and $B = \{3, 5, 10, 11, 14\}$. Which of the following sets is equal to the union A \cup B?

1 / 1 Punkten

 \bigcirc {1, 10, 18}

 \bigcirc {3, 5, 10, 11, 14}

 \bigcirc $\{1, 3, 5, 10, 11, 14\}$

 \bigcirc {1, 3, 5, 3, 5, 10, 11, 14}

The union of two sets consists precisely of the elements that are in at least one of the two sets. That is precisely what is listed here.

3. How many real numbers are there between the integers 1 and 4?

1 / 1 Punkten

O None

Infinitely many

O 4

 \bigcirc 2

✓ Correct

There are in fact infinitely many real numbers between any pair of distinct integers, or indeed any pair of distinct real numbers!

4. Suppose I tell you that x and y are two real numbers which make the statement $x \ge y$ true. Which pair of numbers \underline{cannot} be values for x and y?

1 / 1 Punkten

 $\bigcirc \ x=2$ and y=1

 $\bigcirc x = 10$ and y = 10

 \bigcirc x=-1 and y=0

 $\bigcirc x = 5$ and y = 3.3

Recall that the statement $x \geq y$ means that x is either equal to y or x is to the right of y on the real number line. Since -1 is actually to the left of 0, these cannot be values for x and u

5. Suppose that z and w are two positive numbers with $z < w$. Which of the following inequalities is false?	1/1 Punkten
$\bigcirc -z > -w$	
$\bigcirc z+3 < w+3$	
$\bigcirc w - 7 > z - 7$	
\checkmark Correct If we start with $z < w$ and multiply both sides by –5, we need to flip the less-than sign, which would give –5z > –5w. For an example, try $z=1$ and $y=2$ and see what happens!	
6. Find the set of all $m{x}$ which solve the inequality $-2x+5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1/1 Punkten
\bigcirc $x \ge -1$	
$\bigcirc \ x \leq -1$	
$\bigcirc x = -1$	
$\bigcirc \ x \geq -6$	
✓ correct Subtracting 5 from both sides of the given inequality gives $-2x \le 2$. Then we divide both sides by -2 , remembering to flip the inequality sign, and we obtain this answer	
Which of the following real numbers is not in the closed interval $\left[2,3\right]$	1 / 1 Punkten
0 1	
O 2.1	
\bigcirc 2	
○ 3	
\checkmark Correct Recall that the closed interval $[2,3]$ consists of all real numbers x which satisfy	
$2 \leq x \leq 3$. Since $2 \leq 1$ is false, 1\notin [2,3]	
Which of the following intervals represents the set of all solutions to:	1 / 1 Punkten
$-5 \le x + 2 < 10$?	
◎ [-7,8)	
○ [-7,8]	
○ [-5,10)	
○ (7,8)	
✓ correct Subtracting 2 from all sides of the inequalities gives $-7 \le x < 8$, and the set of all real numbers x which make that true is exactly the half-open interval $[-7, 8]$.	
Which of the numbers below is equal to the following summation: {\large \displaystyle{\Sigma_{k=2}^5 2k}}?	1/1 Punkten
○ 10	
O 14	
○ 4	
② 28	
✓ Correct We compute Clarge Idigalayethla Cigraa (k=21A5, 2k1) = 4 + 5 + 9 + 40 = 29	
We compute ${\langle s 4+6+8+10=28.} $	

nur	pose we already know that ${\arge \displaystyle{Sigma_{k=1}^{20} k = 210}}$. Which of the inbers below is equal to ${\arge \displaystyle{Sigma_{k=1}^{20} 2k}}$?	1/1 Punkten
	2 40 210	
	Correct By applying one of our Sigma notation simplification rules, we can rewrite the summation in question as {\large 2\left(\Sigma_{k=1}^{20} k\right)} = 2 \times 210 = 420.	
\dis	70	1/1 Punkten
0	7 48	
	\checkmark correct $\label{eq:correct} According to one of our Sigma notation simplification rules, this summation is just equal to 9 copies of the number 7 all added together, and so we get 9\cdot 7=63.$	
12. Wh	ich of the following numbers is the variance of the set $Z=\{-2,4,7\}$?	1/1 Punkten
	$\sqrt{14}$	
•	14	
0	42	
	 Correct To get the variance of a set of numbers, you need to perform four steps: 	
	First compute the mean (which is 3)	
	Then calculate all the squared differences between the numbers in the set and this mean (here you get $25,1,16$)	
	Then add all these up (here you get 42)	
	Then divide by the number of elements in the set (which is 3).	
	Therefore, the variance of ${\it Z}$	
	= \begin {align}\frac13[(-2-3)^2 + (4-3)^2 + (7-3)^2]\end {align}	
	= \begin {align} \frac13[25+1+16] = \frac{42}{3} = 14 \end {align}	
	ich of the following sets does <i>not</i> have zero variance? (hint: don't do any calculation here, think!)	1/1 Punkten
	$\{2, 5, 9, 13\}$	
	{0,0,0,0,0,0,0}	
	{1,1,1,1}	
	{5,5,5,5,5,5,5,5,5,5,5,5,5}	
	Correct Intuitively, the numbers in this set are spread out.	

^{*} Descartes Was Really Smart - Practice quiz on the Cartesian Plane (5 questions)

* Input-Output Machines - Practice quiz on Types of Functions (6 questions)

* Input-Output Machines - Graded quiz on Cartesian Plane and Types of Function (13 questions)

Graded quiz on Cartesian Plane and Types of Function

NEUESTE	EINREICHUNGSBEWERTUNG

100%

1. Which of the following points in the Cartesian Plane have positive x-coordinate and negative y-coordinate?

1 / 1 Punkten

- O (5,7)
- (0,0)
- $\bigcirc (-4,5)$
- \bigcirc (7,-1)

/ Correc

The x-coordinate, 7, is positive, and the y-coordinate, -1, is negative.

2. Which of the following points is in the first quadrant of the Cartesian Plane?

◎ (7,11)

- \bigcirc (-5,1)
- \bigcirc (-4, -7)
- \bigcirc (5, -1)

✓ Correct

The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both positive.

3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$

1 / 1 Punkten

1 / 1 Punkten

Suppose that the distances from A to B,C,D are 5.3,2.1, and 11.75, respectively.

Which of the following points is the nearest neighbor to the point ${\cal A}$ in the set ${\cal S}$?

- C
- Ов
- O D
- O A

✓ Correc

The distance from A to C is 2.1 and that is smaller than the distance from A to any other element of S.

4. Find the distance between the points A=(2,2) and B=(-1,-2).

1 / 1 Punkten

- O 25
- O -25
- 5
- O 1

✓ Correc

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$

In this case we have:

$$\sqrt{(-1-2)^2+(-2-2)^2}=\sqrt{(-3)^2+(-4)^2}=\sqrt{25}=5$$

9. How many lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?	1/1 Punkten
○ 2	
infinitely many	
○ None	
⊚ 1	
\checkmark Correct The line with equation $y=x$ is the one and only line that meets the stated	
requirements.	
10. Suppose that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many different functions F: A \to Z are possible?	1 / 1 Punkten
There are infinitely many	
0 1	
4	
There are none	
✓ Correct	
A function $F: A \setminus to Z$ is a rule which assigns an element $F(a) \setminus t Z$ to each element a $\setminus t A$.	
The second of th	
There are two elements in A ; namely, a and b . For each of these elements, there are two assignment choices we could make: x and y .	
Here are the four possible functions:	
F(a)=x, F(b)=y, OR	
F(a)=y, F(b)=x, or	
E() E(I) on	
F(a)=x, F(b)=x, or	
F(a) = y, F(b) = y.	
11. How many graphs contain both the point $A=\left(0,0\right)$ and the point $B=\left(1,1\right)$	1 / 1 Punkten
O 1	
○ None	
O 2	
Infinitely many	
✓ Correct	
The graphs of $f(x)=x, g(x)=x^2, h(x)=x^3, s(x)=x^4, \ldots$ all contain both A and B	
12. Suppose that g: \mathbb{R} \to \mathbb{R} is a continuous function whose graph intersects	1/1 Punkten
the x -axis more than once. Which of the following statements is true?	· · · · · · · · · · · · · · · · · · ·
All of the above.	
$\bigcirc \ g$ is strictly decreasing.	
$\bigcirc \ g$ is strictly increasing.	
$\ igotimes g$ is neither strictly increasing nor strictly decreasing.	
✓ Correct	
The function g fails the horizontal line test, so it can neither be strictly increasing nor	
strictly decreasing.	
13. Find the slope of the line segment between the points $A=(1,1)$ and $B=(5,3)$.	1 / 1 Punkten
\bigcirc 0	
O 2	
\begin {align}\frac12\end {align} 4	
\bigcirc 4 \bigcirc $\sqrt{20}$	
∪ v 20	
✓ Correct	
The slope of this line segment is \begin \{align\\frac{3-1}{5-1} = \frac12\end \{align\}, where $3-1$ is the rise and $5-1$ is the run.	

- * This is about that derivative stuff Practice quiz on Tangent Lines to Functions (2 questions)

Herzlichen Glückwunsch! Sie haben bestanden!

ZUM BESTEHEN 75 % oder höher

Lernen Sie weiter

BEWERTUNG 100%

Practice quiz on Tangent Lines to Functions

GESAMTPUNKTZAHL 2

1. Suppose that f: \mathbb{R} \to \mathbb{R} is a function. Which of the following expressions corresponds to f'(2), the slope of the tangent line to the graph of f(x) at x=2?

1 / 1 Punkten

- f'(2) = mx + b
- {\large f'(2) =\lim_{h \to 0} \frac{f(2+h) f(2)}{h}}
- f'(2) = 2

This expression can be obtained from the first screen of our video by plugging in $2\ {\rm for}\ a.$

2. Suppose that h: $\mathbb{R} \to \mathbb{R}$ is a function whose graph is shown as the blue curve in the figure. For how many values of a is h'(a) = 0?

- 3
- O Never
- O Always
- 2

 $h^{\prime}(a)$ gives the slope of the tangent line to the graph of h at the point x=a.

When $h^{\prime}(a)=0$, this means that the tangent line is horizontal.

There are two places (one on each side of the $\emph{y}\text{-axis}$) where this tangent line is horizontal, so this answer is correct.

* Fast Growth, Slow Growth - Practice quiz on Exponents and Logarithms (12 questions)

Practice quiz on Types of Functions

SAMIPUNATZAHL 6	
Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do not define a function $\mathbb R$ A to B?	1 / 1 Punkten
$\bigcirc \ f(a)=4a$, for each a \in A	
f(1) = 4, f(2) = 4, and f(10) = 4.	
f(1) = 5, $f(2) = 8$, and $f(10) = 40$.	
f(1) = 4, f(2) = 40, and f(10) = 8.	
✓ Cerrect A function $f: A \setminus to B$ is a rule which assigns an element $f(a) \setminus to B$ to each $a \setminus t A$. In this case, unfortunately, $f(1) = S \setminus t$ in B .	
Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$	1 / 1 Punkten
Suppose that T: A \tan Y is the function which gives $T(a)=+$ if person a tests positive and $T(a)=-$ if they test negative.	
Suppose that D: A \to Z is the function which gives $D(a)=H$ does not actually have VBS and $D(a)=S$ if the person actually has VBS.	
Which of the following must be true of person a if we have a false positive?	
$\bigcap T(a) = + \text{ and } D(a) = S$	
T(a) = - and $D(a) = H$	
\odot $T(a) = +$ and $D(a) = H$	
$T(a) = -\operatorname{and} D(a) = S$	
(1/a) = - and D(a) = D	
\checkmark correct Recall that a false positive is a positive test result (so $T(a)=+)$ which is misleading because the person actually does not have the disease $(D(a)=H)$	
Consider the function $g: \mathbb{R} \setminus \mathbb{R} \setminus \mathbb{R}$ to $\mathbb{R} \setminus \mathbb{R}$ defined by $g(x) = x^2 - 1$. Which of the following points are not on the graph of g ?	1/1 Punkten
(0, -1)	
(-1,0)	
O (1,0)	
⊚ (2, −1)	
✓ Correct	
Recall that the graph of g consists of all points (x,y) such that $y=g(x)$. Here $g(2)=3\neq -1$, so the point $(2,-1)$ is \emph{(act)} on the graph of g .	
Let the point $A=(2,4)$. Which of the following graphs does $\operatorname{\it not}$ contain the point A ?	1 / 1 Punkten
\bigcirc The graph of $s(x)=x^2$	
\bigcirc The graph of $f(x)=2x$	
$\ \odot$ The graph of $h(x)=x-1$	
\bigcirc The graph of $g(x)=x+2$	
\checkmark Correct The graph of h consists of all points (x,y) such that $y=h(x).$ Here $h(2)=1\neq 4,$ so the point $(2,4)$ is not on the graph of $h.$	
Suppose that $h(x)=-3x+4$. Which of the following statements is true?	1 / 1 Punkten
$\bigcirc \ h$ is neither a strictly increasing function nor a strictly decreasing function.	
All statements are correct	
$\bigcirc \ h$ is a strictly increasing function	
$\ \ $ $\ \ $ $\ \ $ $\ \ $ $\ \ $ $\ \ $ $\ \ $ $\ \ $ $\ \ $ $\ \ $ $\ \ $ $\ \ $ $\ $ $\ \ $ $\ $ $\ \ $ $\ $ $\ \ $ $\ $ $\ $ $\ \ $ $\ $	
\checkmark correct A function \hbar is called strictly decreasing if whenever $a < b$, then $\hbar(a) > \hbar(b)$	
Since the graph of \hbar is a line with negative slope, this is in fact true!	
Suppose that $f: \mathbb{R} \in \mathbb{R} \times \mathbb{R} $ to $\mathbb{R} \in \mathbb{R} \times \mathbb{R} = 15$	1/1 Punkten
Which of the following is a possible value for $f(3.7)$?	
○ -3	
○ 3	
● 17	
O 14.7	
\checkmark correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$.	
Since $f(3)=15$ is given and $3<3.7$, it must be that $15< f(3.7)\!$, and this answer satisfies that.	

* Fast Growth, Slow Growth - Graded quiz on Tangent Lines to Functions, Exponents and Logarithms (13 questions)

100%	
. Which of the following points in the Cartesian Plane have positive x -coordinate and negative y -coordinate? (5,7) (0,0) (-4,5) (7,-1) cerrect The x -coordinate, 7, is positive, and the y -coordinate, -1, is negative.	1/1 Punksen
Which of the following points is in the first quadrant of the Cartesian Plane? (a) (7,11) (b) (-5,1) (c) (-4,-7) (c) (5,-1) ✓ Correct The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both positive.	1/1 Punkisn
Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$ Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively. Which of the following points is the nearest neighbor to the point A in the set S ? © C B D A	1/1 Punkten
Correct The distance from A to C is 2.1 and that is smaller than the distance from A to any other element of S . Find the distance between the points $A=(2,2)$ and $B=(-1,-2)$. 25 -25 0 5 1	(1/1 Punkton)
Cerrect Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$ In this case we have: $\sqrt{(-1-2)^2+(-2-2)^2}=\sqrt{(-3)^2+(-4)^2}=\sqrt{25}=5$ i. Find the slope of the line segment between the points $A=(0,1)$ and $B=(1,0)$.	1/1 Punktee
$ \begin{tabular}{ll} \hline 0 \\ \hline \hline & \checkmark & {\sf Cerrect} \\ \hline & {\sf The slope of this line segment is \begin {\sf align} \land {\sf frac(0-1)(1-0) = -1} \land {\sf nd (align)} \\ \hline \\ \hline & \vdots $	(1/1 Funkton)
$\begin{array}{l} \bigcirc (5,4) \\ \bigcirc y-4=2(x-5) \\ \circledcirc y-4=-2(x-5) \\ \\ \hline \checkmark \text{ Correct} \\ \hline \text{ The point-slope form for the equation of a line with slope } m \text{ that goes through the point } (x_0,y_0) \text{ is } y-y_0=m(x-x_0). \\ \end{array}$	

In this case, the slope m=-2 is given and the point (5,4) on the line is given.

y = 5x + 2 $y = -3x - 8$ $y = 8x - 3$ $y = 5x$	
✓ Correct The slope-intercept formula for a line is $y=mx+b$, where m is the slope and b is the y -coordinate of the point where the line hits the y -axis. This line has slope $m=-3$ which is the same slope as the given line.	5
This line has stupe $m=-3$ which is the same stupe as the given line.	
8. Which of the following equations is for a line with the same y -intercept as $y=-3x+2$?	1/1 Punkten
$\bigcirc y = 5x$	
y = 8x - 3	
y = 5x + 2 $ y = -3x - 8$	
y = -3x = 0	
✓ correct The the slope-intercept formula for a line is $y=mx+b$, where m is the slope and b is the y -coordinate of the point where the line hits the y -axis. This line has a y -intercept of 2 which is the same as the given line.	1
9. How many lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?	1/1 Punkten
2 infinitely many	
○ None	
① 1	
\checkmark Correct $\label{eq:correct} \mbox{The line with equation } y=x \mbox{ is the one and only line that meets the stated requirements.}$	
10. Suppose that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many different function A \to Z are possible?	ns F: 1/1 Punkten
There are infinitely many	
01	
There are none	
- Mercarchane	
$\label{eq:correct} \begin{picture}(20,0) \put(0,0){$<$} Correct \\ A function F: A \to Z is a rule which assigns an element F(a) \times Z to each element A and A.$	
There are two elements in A ; namely, a and b . For each of these elements, there are two assignment choices we could make: x and y .	re
Here are the four possible functions:	
F(a)=x, F(b)=y, OR	
$F(a)=y, F(b)=x, \operatorname{OR}$	
F(a)=x, F(b)=x , OR	
F(a) = y, F(b) = y.	
11. How many graphs contain both the point $A=\left(0,0\right)$ and the point $B=\left(1,1\right)$	1/1 Punkten
O 1	
○ None	
O 2	
Infinitely many	
\checkmark correct The graphs of $f(x)=x, g(x)=x^2, h(x)=x^3, s(x)=x^4, \ldots$ all contain both A and B	1

7. Which of the following equations is for a line with the same slope as y=-3x+2?

1/1 Punkten

12. Suppose that g: $\mathbb{R} \to \mathbb{R} $ is a continuous function whose graph intersects the x -axis more than once. Which of the following statements is true?	1/1 Punkten
All of the above.	
$\bigcirc \ g$ is strictly decreasing.	
$\bigcirc \ g$ is strictly increasing.	
ullet g is neither strictly increasing nor strictly decreasing.	
Correct The function g fails the horizontal line test, so it can neither be strictly increasing nor strictly decreasing.	
13. Find the slope of the line segment between the points $A=\left(1,1\right)$ and $B=\left(5,3\right)$.	1/1 Punkten
13. Find the slope of the line segment between the points $A=(1,1)$ and $B=(5,3)$. $\bigcirc \ 2$	1/1 Punkten
	1/1 Punkten
O 2	1/1 Punkten
2 \begin \{align\\\frac12\end \{align\}	1 / 1 Punkten
2\login \{\align\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 / 1 Punkten

^{**}WEEK 4**

^{*} Basic Probability Definitions - Practice quiz on Probability Concepts (9 questions)

Practice quiz on Probability Concepts

GESAMTPUNKTZAHL 9			
 If x = "It is raining," what is \sim(\sim x)? "It is never raining" "It is not raining" "It is raining" "It is always raining" ✓ Correct The second negation cancels out the first one. Similarly \sim(\sim(\sim x))=\sim x 	1/1 Punkten		
 If the statement "I am 25 years old" is assigned probability 0, what probability the statement "I am not 25 years old"? Unknown −1 0 1 ✓ correct It is always the case that p(x) + p(\sim x) = 1. 	ty is assigned to 1/1 Punkten		
3. If I assign to the statement \mathbf{x} = "it will rain today" a probability of $p(x)=0$. If I assign to the statement "it will not rain today?" 5. .35 .65 0 \mathbf{x} \mathbf{y}	35, what		
 4. Is the following collection of statements a probability distribution? 1. I own a Toyota pickup truck 2. I do not own a Toyota pickup truck 3. I own a non-Toyota pickup truck 4. I do not own a non-Toyota pickup truck Yes No ✓ Correct The statements are not exclusive:1 and 4 could both be true, 2 and 4 could both be true, and even (1) and (3) could both be truer truck and one pickup truck). 			
5. I don't know what it means to be "ingenuous." What probability would I assistatement, "I am ingenuous OR I am not ingenuous"? 5. -1 0 1 Correct It is always the case, regardless of the content of the statement x, the			

6.	A friend of mine circumscribes a circle inside a square, so that the diameter of the circle and the edge of the square are the same length. He asks me to close my eyes and pick a point at random inside the square. He says the probability that my point will also be inside the circle is $\frac{\pi}{4}$ Is this correct?	1/1 Punkten
	Yes No	
	$\label{eq:correct} \begin{picture}(20,0) \put(0,0){\line(0,0){0.05cm}} \put(0,0){\line(0$	
	Note that the correct probability does not depend on the length r of the circle's radius. For a circle with any radius r to be circumscribed inside a square, the square must have sides each of length $2r$. The area of the circle is Pi^*r^2 and the area of the square is $(2r)^2 = 4^*r^2 = 7$ The probability of landing in a circle of area Pi^*r^2 when it is known that one is in the area of the square is equal to the ratio of the area of the circle to the area of the square in which it is circumscribed, or $Pi^*r^2/4^*r^2$, which equals $Pi/4$.	
7.	The probability of drawing a straight flush (including a Royal Flush) in a five-card poker hand is $0.0000153908 $	1/1 Punkten
	What is the probability of not drawing a straight flush? .9999846092 .9996582672 .9999745688 .9967253809 	
	✓ Correct p(\sim x)=1 - p(x)	
8.	What is the probability that a fair, six-sided die will come up with a prime number? (Recall that prime numbers are positive integers other than 1 that are divisible only by themselves and 1) \[\text{\left\text{begin {align}\frac{1}{6}\end {align}}} \] \[\text{\left\text{begin {align} \frac{1}{2}\end {align}}} \] \[\text{\left\text{begin {align} \frac{1}{2}\end {align}}} \] \[\text{\left\text{begin {align} \frac{1}{3}\end {align}}} \]	1/1 Punkten
	✓ Correct The faces with 2, 3 and 5 satisfy the condition – which makes 3 relevant outcomes out of the "universe" of 6 outcomes = \begin {align}\frac{3}{6} = \frac{1}{2}\end {align}	
9.	The joint probability p (the die will come up 5 , the next card will be a heart) is equal to the joint probability: $p $	1/1 Punkten
	Correct In joint probabilities, the order does not change the probability: $p(A,B) = p(B,A) \label{eq:probability}$	

* Problem Solving Methods - Practice quiz on Problem Solving (9 questions)			

Practice quiz on Problem Solving

GESAMTPUNKTZAHL 9

. I am given the following 3 joint probabilities:	1/1 Punkte	n
$p({\sf I}\ {\sf am}\ {\sf leaving}\ {\sf work}\ {\sf early},$ there is a football game that ${\sf I}\ {\sf want}\ {\sf to}\ {\sf want}$	watch this afternoon) = .1	
$p({\rm I}$ am leaving work early, there is not a football game that I want $.05$: to watch this afternoon) =	
p(I am not leaving work early, there is not a football game that I w = .65	want to watch this afternoon)	
What is the probability that there is a football game that I want to	o watch this afternoon?	
3		
O .2		
○ .35 ○ .1		
O .1		
Correct Getting the answer is a two-step process. First, recall that: for a probability distribution must sum to 1. 5o the "missir		
p(I am not leaving work early, there is a football game I wa afternoon) must be $1-(0.1\pm0.05\pm0.65)=0.2$	ant to watch this	
By the sum rule, the marginal probability p(there is a foot watch this afternoon) = the sum of the joint probabilities	ball game that I want to	
P(I am leaving work early, there is a football game that I was afternoon) + P(I am not leaving work early, there is a footb this afternoon) = $.1+.2=.3$		
. The Joint probability of my summiting Mt. Baker in the next two y selling book in the next two years is .05. If the probability of my p in the next two years is 10% , and the probability of my summiting years is 30% , are these two events dependent or independent?	oublishing a best-selling book	n
○ Independent		
Dependent		
$\begin{tabular}{ll} \checkmark & \textbf{Correct} \\ We know this because the joint distribution of 5% does not distribution of (0.1) \times (0.3) = 3\%. If I summit Mt. Baker, publish a best-selling book, and vice versa.$		
. The Joint probability of my summiting Mt. Baker in the next two years AND book in the next two years is .05.	O my publishing a best-selling 1/1 Punkter	n
If the probability of my publishing a best-selling book in the next two years my summiting Mt. Baker in the next two years is 30%, what is the probabil years I will neither summit Mt. Baker nor publish a best-selling book?		
.95		
.65.9		
.25		
Correct Set A = I will summit Mt. Baker in the next two years		
Set B = I will publish a best-selling book in the next two year	ears.	
Since $p(A)=0.3$ and $p(A,B)=0.05$, by the SUM RULE $=(0.3\cdot0.05)$ =0.25	E we know that p(A,\sim B)	
Since $p(B)=0.1$,p(\sim B)=0.9		
Since p(\sim B)=0.9 and p(A,\sim B)=0.25 and again by the B)=0.9 -0.25 = .65	:SUM RULE, p(\sim A,\sim	

4. I have two coins. One is fair, and has a probability of coming up heads of .5. The second is bent, and has a probability of coming up heads of .75. If I toss each coin once, what is the probability that at least one of the coins will come up heads?	1/1 Punkten
probability triat at reast one of the coins will come up neads.	
○ .375	
.875	
○ 1.0	
O .625	
✓ Correct We apply the rule p(A or B or both)	
$= 1 - (p(\sim A)p(\sim B))$	
= 1 - ((15)(175))	
= 1125	
=.875	
5. What is \begin {align} \frac{11!}{9!}\end {align}?	1/1 Punkten
O 554, 400	
○ 110,000	
① 110	
○ 4,435,200	
✓ Correct	
\begin {align} \frac{11}{9!} = 11\times 10 = 110\end {align}	
6. Mika isaha mahalifi sahari isaha masa fadirahan mili basa da ada ada ada ada ada ada ada ada a	A / A Dunkary
6. What is the probability that, in six throws of a die, there will be exactly one each of "1" "2" "3" "4" "5" and "6"?	1 / 1 Punkten
.01543210	
0.01432110	
.01176210	
0.00187220	
✓ Correct	
There are $6! = 720$ permutations where each face occurs exactly once.	
There are $6\times6\times6\times6\times6\times6=46656$ total permutations of 6 throws.	
The probability is therefore \begin {align} \frac{720}{46656} = 0.01543210 \end {align}	
7 0 1	
7. On 1 day in 1000 , there is a fire and the fire alarm rings.	1/1 Punkten
On 1 day in 100 , there is no fire and the fire alarm rings (false alarm)	
On $1\ \mbox{day}$ in $10,000$, there is a fire and the fire alarm does not ring (defective alarm).	
On $9,889$ days out of $10,000,$ there is no fire and the fire alarm does not ring.	
If the fire alarm rings, what is the (conditional) probability that there is a fire?	
Written $p(there\;is\;a\;fire\; \;fire\;alarm\;rings)$	
90.9%	
⊚ 9.09%	
O 1.12%	
○ 1.1%	
✓ Correct	
10 days out of every $10,000$ there is fire and the fire alarm rings.	
$100\ \mbox{days}$ out of every $10,000$ there is no fire and the fire alarm rings.	
$110\mathrm{days}$ out of every $10,000\mathrm{the}$ fire alarm rings.	
The probability that there is a fire, given that the fire alarm rings, is \begin	
{align}\frac{10}{110} = 9.09\%\end {align}	

8.	On 1 day in 1000 , there is a fire and the fire alarm rings. $1/1$ Punkten
	On $1\mathrm{day}$ in 100 , there is no fire and the fire alarm rings (false alarm)
	On $1\mathrm{day}$ in $10,000$, there is a fire and the fire alarm does not ring (defective alarm).
	On $9,889$ days out of $10,000$, there is no fire and the fire alarm does not ring.
	If the fire alarm does not ring, what is the (conditional) probability that there is a fire?
	p(there is a fire fire alarm does not ring)
	0.01011%1.0001%
	○ .10011%
	○ .01000%
	\checkmark Correct $\mbox{On } (1+9,889) = 9,890 \mbox{ days out of every } 10,000 \mbox{ the fire alarm does not ring.}$
	On 1 of those $10,000$ days there is a fire.
	\begin {align} \frac{1}{9890} = 0.01011\%\end {align}
9.	A group of 45 civil servants at the State Department are newly qualified to serve as Ambassadors to foreign governments. There are 22 countries that currently need Ambassadors. How many distinct groups of 22 people can the President promote to fill these
	jobs?
	(a) \$\$4.1167 \times (10^12)
	(=1.06*(10^35)
	8.2334 \times (10^12) =2.429*(10^-13)
	<u>-2.429 (1013)</u>
	\checkmark Correct $\binom{45}{22}$
	=45!/(23!)(22!)
	\begin {align}=\frac {45!}{23! \times 22!}\end {align}

* Applying Bayes Theorem and the Binomial Theorem - Practice quiz on Bayes Theorem and the Binomial Theorem (9 questions)

Practice quiz on Bayes Theorem and the Binomial Theorem

GESAMTPUNKTZAHL 9

1.	A jewelry store that serves just one customer at a time is concerned about the safety of its
	isolated sustamers

1 / 1 Punkten

The store does some research and learns that:

- 10% of the times that a jewelry store is robbed, a customer is in the store.
- A jewelry store has a customer on average 20% of each 24-hour day.
- The probability that a jewelry store is being robbed (anywhere in the world) is 1 in 2 million.

What is the probability	that a robber	u will occur while :	a customer is in	the store?

- \begin \align\\frac{1}{2000000}\end \align}
- $\textcircled{$ \textbf{0}$ \textbf{0} $$ \mathbf{align}\frac{1}{4000000}\end{align} }$

✓ Correct

What is known is:

A: "a customer is in the store," $P(A)=0.2\,$

B: "a robbery is occurring," $P(B)=\frac{1}{2,000,000}$

 $P(\text{text}\{a \text{ customer is in the store} \}) = P(A \} B)$

 $P(A \setminus B) = 10\%$

What is wanted:

 $P(\text{$\tt P(\text{$\tt A$}) = P(B \setminus A)$}) = P(B \setminus A)$

By the product rule:

 $\label{eq:posterior} $$ \left(A \right) = \frac{P(A,B)}{P(A)} \ A = \frac{P(A,B)$

and $P(A,B) = P(A \mid B)P(B)$

Therefore:

If I flip a fair coin, with heads and tails, ten times in a row, what is the probability that I will get exactly six heads?

1 / 1 Punkten

0.021

0.187

0.2051

0.305

By Binomial Theorem, equals

3.	If a coin is bent so that it has a 40% probability of coming up heads, what is the probability of getting exactly 6 heads in 10 throws? $ 0.0974 $ $ 0.1045 $	1/1Punkten
	◎ 0.1115○ 0.1219✓ Correct	
	$\binom{10}{6} \times 0.4^6 \times 0.6^4 = 0.1115$	
4.	A bent coin has 40% probability of coming up heads on each independent toss. If I toss the coin ten times, what is the probability that I get at least 8 heads?	1/1 Punkten
	0.02130.01320.03120.0123	
	✓ Correct	
	The answer is the sum of three binomial probabilities: $\left(\binom{10}{8}\times(0.4^8)\times(.6^2)\right)+\left(\binom{10}{9}\times(0.4^9)\times(0.6^1)\right)+$	
	$\binom{\binom{10}{10}}{\binom{10}{10}} \times (0.4^{10}) \times (0.6^{0})$	
5.	Suppose I have a bent coin with a 60% probability of coming up heads. I throw the coin ten times and it comes up heads 8 times.	1/1 Punkten
	What is the value of the "likelihood" term in Bayes' Theorem – the conditional probability of the data given the parameter. 0.122885	
	© 0.120932	
	0.168835	
	0.043945	
	✓ Correct Bayesian "likelihood" the p(observed data parameter) is	
	p(8 of 10 heads coin has p = .6 of coming up heads)	
	${10 \choose 8} \times (0.6^8) \times (0.4^2) = 0.120932$	
6.	We have the following information about a new medical test for diagnosing cancer.	1/1 Punkten
	Before any data are observed, we know that 5% of the population to be tested actually have Cancer.	
	Of those tested who do have cancer, 90% of them get an accurate test result of "Positive" for cancer. The other 10% get a false test result of "Negative" for Cancer.	
	Of the people who do not have cancer, 90% of them get an accurate test result of "Negative" for cancer. The other 10% get a false test result of "Positive" for cancer.	
	What is the conditional probability that I have Cancer, if I get a "Positive" test result for Cancer? **Formulas in the feedback section are very long, and do not fit within the standard viewing window.	
	Therefore, the font is a bit smaller and the word "positive test" has been abbreviated as PT. 67.996	
	4.5%	
	$\odot~32.1\%$ probability that I have cancer	
	9.5%	
	\checkmark Correct I still have a more than $\frac{9}{3}$ probability of not having cancer	
	Posterior probability:	
	p(l actually have cancer receive a "positive" Test)	
	By Bayes Theorem: (change of absorption a PT if I have cancer/order probability of having cancer)	
	= (chance of observing a PT if I have cancer)(prior probability of having cancer) (marginal likelihood of the observation of a PT)	


```
S = 40
           N = 50
           P = .8 [for draws with replacement] because 40 blue of 50 total means p(blue) =
           40/50 = .8
           (\binom{50}{40})(0.8^{40})(0.2^{10})
           =13.98\%
           By Bayes' Theorem:
           p(draws with replacement | observed data) =
           \tfrac{13.98\%(.5)}{(13.98\%)(.5)+(1)(.5)}
           =\frac{0.1398}{1.1398}
           =12.27\%
9. According to Department of Customs Enforcement Research: 99\% of people crossing into the
                                                                                                            1 / 1 Punkten
    United States are not smugglers.
    The majority of all Smugglers at the border (65%) appear nervous and sweaty.
    Only 8\% of innocent people at the border appear nervous and sweaty.
    If someone at the border appears nervous and sweaty, what is the probability that they are a
    Smuggler?
    O 7.92%
    ○ 8.57%
    92.42%
    7.58%
       ✓ Correct
           By Bayes' Theorem, the answer is
```

* Applying Bayes Theorem and the Binomial Theorem - Probability (basic and Intermediate) Graded Quiz (12 questions)

 $\begin \{align\} \\ frac \{(.65)(.01)\} \\ \{(.65)(.01) + (.08)(.99))\} \\ begin \{align\} \\ frac \{(.65)(.01)\} \\ \{(.65)(.01) + (.08)(.99))\} \\ begin \{align\} \\ frac \{(.65)(.01)\} \\ \{(.65)(.01) + (.08)(.99))\} \\ begin \{align\} \\ frac \{(.65)(.01)\} \\ \{(.65)(.01) + (.08)(.99))\} \\ begin \{align\} \\ frac \{(.65)(.01)\} \\ \{(.65)(.01) + (.08)(.99))\} \\ begin \{align\} \\ frac \{(.65)(.01)\} \\ \{(.65)(.01) + (.08)(.99))\} \\ begin \{align\} \\ frac \{(.65)(.01)\} \\ \{(.65)(.01) + (.08)(.99))\} \\ begin \{align\} \\ frac \{(.65)(.01)\} \\ \{(.65)(.01) + (.08)(.99))\} \\ begin \{align\} \\ \{(.65)(.01) + (.08)(.99) + (.08)(.99) \\ \{(.65)(.01) + (.08)(.99) +$

=7.58%

Probability (basic and Intermediate) Graded Quiz

83.33% 1/1 Punkten 1. What additional statement, added to the three below, forms a probability distribution? (1) I missed only my first class today (2) I missed only my second class today (3) I missed both my first and second class today ✓ Correct 2. My friend takes 10 cards at random from a 52-card deck, and places them in a box. Then he 1/1 Punkten puts the other 42 cards in a second, identical box. He hands me one of the two boxes and asks me to draw out the top card. What is the probability that the first card I draw will be the ✓ Correct 3. I will go sailing today if it does not rain. Are the following two statements Independent or (1) "I will go sailing today" (2) "It will not rain today" ✓ Correct 0 / 1 Punkten 4. The probability that I will go sailing today AND the fair six-sided die will come up even on the If these events are independent, what is the probability that I will go sailing today? Coursera schlägt dieses Material vor BETA Permutations and Combinations 5. I have two coins. One is fair, and has a probability of coming up heads of.5.

The second is bent, and has a probability of coming up heads of.75. \text{begin {align}\text{lf | toss each coin once, what is the probability that at least one of the coins will come up tails?\text{lend {align}} 1/1 Punkten ✓ Correct 6. What is the probability, when drawing 5 cards from a fair 52-card deck, of drawing a "full house" (three of a kind and a pair) in the form AAABB? 1/1 Punkten 7. If it rains, I do not go sailing. It rains 10% of days; I go sailing 3% of days. 1/1 Punkten If it does not rain, what is the (conditional) probability that I go sailing? Written "p(I go sailing | it does not rain)"? ✓ Correct 8. I am at my office AND not working 2% of the time. I am at my office 10% of the time. What is 1/1 Punkten the conditional probability that I am not working, if I am at my office?

✓ Correct

