Diskrete Mathematik

Zahlenmengen

natürliche Zahlen natürliche Zahlen mit 0

ganze Zahlen

rationale Zahlen

 \mathbb{R} reelle Zahlen

komplexe Zahlen

Aussagenlogik

Aussage Ein Satz, der entweder wahr (w) oder falsch (f) ist. Prädikat Eine Aussage mit Variablen. nstellige Prädikate.

Grundidee

Aus gegebenen Prädikaten/Aussagen lassen sich durch Junktoren neue Aussagen bilden. (z. B. Kombinationen mit $\land, \lor, \neg, \Rightarrow, \Leftrightarrow$).

Definitionen

- Negation: $\neg A$ ist genau dann wahr, wenn Afalsch ist. (Doppelte Negation: $A \Leftrightarrow \neg \neg A$.)
- Konjunktion: $A \wedge B$ ist wahr genau dann, wenn A und B wahr sind. (assoziativ, kommutativ, idempotent)
- **Disjunktion:** $A \vee B$ ist wahr, wenn mindestens eine der Aussagen wahr ist. (assoziativ, kommutativ, idempotent)
- Implikation: $A \Rightarrow B$ ist äquivalent zu $\neg A \lor B$. (Kontraposition: $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$.)
- Äquivalenz: $A \Leftrightarrow B$ genau dann, wenn $A \Rightarrow B \land B \Rightarrow A$.

Wichtige Regeln

- De Morgan: $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B \neg (A \lor B) \Leftrightarrow \neg A \land \neg B$
- Distributivität: $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ $A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C)$
- Syntaktische Bindung: ¬ bindet stärker als \land, \lor ; diese binden stärker als $\Rightarrow, \Leftrightarrow$.
- Modus Ponens: Aus $A \wedge (A \Rightarrow B)$ folgt B.
- Transitivität: Aus $(A \Rightarrow B) \land (B \Rightarrow C)$ folgt $A \Rightarrow C$

Hinweis zur Redundanz

Jeder Ausdruck mit den Junktoren \neg , \wedge , \vee , \Rightarrow lässt sich ausschliesslich mit \neg und \lor darstellen. z.B.

$$A \wedge B \Leftrightarrow \neg (\neg A \vee \neg B)$$

Quantoren

Quantoren dienen zur Formalisierung von Aussagen

- $\forall x \, A(x)$: Für alle x gilt A(x)
- $\exists x \, A(x)$: Es existiert ein x mit A(x)

Mehrere gleichartige Quantoren:

 $\forall x, y \, A(x, y)$ statt $\forall x \, \forall y \, A(x, y)$

Eingeschränkte Quantoren

 $\forall x \in M \ A(x) : \text{Für alle } x \in M \ \text{gilt } A(x)$ $\exists x \in M \ A(x) : \text{Es gibt } x \in M \ \text{mit } A(x)$ Auch möglich mit Relationen:

 $\forall x < y A(x) \quad \text{oder} \quad \exists x \le y A(x)$

Als Junktoren

Für endliche Mengen $M = \{x_1, \ldots, x_n\}$ gilt: $\forall x \in M A(x) \Leftrightarrow A(x_1) \land \cdots \land A(x_n)$ $\exists x \in M \ A(x) \Leftrightarrow A(x_1) \lor \cdots \lor A(x_n)$

Als Makros

$$\exists x \in M \ A(x) \Leftrightarrow \exists x \ (x \in M \land A(x))$$
$$\forall x \in M \ A(x) \Leftrightarrow \forall x \ (x \in M \Rightarrow A(x))$$

Zusammenhang mit Junktoren

$$\neg \forall x \, A(x) \Leftrightarrow \exists x \, \neg A(x) \quad \text{und} \quad \neg \exists x \, A(x) \Leftrightarrow \forall x \, \neg A(x)$$
$$\forall x \, (A(x) \land B(x)) \Leftrightarrow (\forall x \, A(x)) \land (\forall x \, B(x))$$
$$\exists x \, (A(x) \lor B(x)) \Leftrightarrow (\exists x \, A(x)) \lor (\exists x \, B(x))$$

Leere Quantoren

Wenn x in B nicht vorkommt:

$$\forall x \, B \Leftrightarrow B, \quad \exists x \, B \Leftrightarrow B$$

Mengen

- Menge / Element: Eine Menge fasst mathematische Objekte (Elemente) zu einem Ganzen zusammen. Für Menge X und Element ygilt $y \in X$ bzw. $y \notin X$.
- Aufzählende Schreibweise: $\{x_1, \ldots, x_n\}$ bezeichnet die Menge, die genau die genannten Elemente enthält. Die leere Menge heisst \emptyset .
- Extensionalitätsprinzip: Zwei Mengen sind genau dann gleich, wenn sie dieselben Elemente haben:

$$A = B \iff \forall x (x \in A \Leftrightarrow x \in B).$$

- Teilmenge: $A \subseteq B$ genau dann, wenn $\forall x (x \in A \Rightarrow x \in B)$. Ist $A \subseteq B$ und $A \neq B$, so ist A eine echte Teilmenge, geschrieben $A \subset B$.
- Folgerungen: Mengen sind ungeordnet; Mehrfachaufzählung desselben Elements ändert die Menge nicht. Für jede Menge A gilt $\varnothing \subseteq A$.

Eindeutigkeit der leeren Menge

Seien e_1, e_2 leere Mengen. Dann ist für alle x die Aussage $x \in e_1$ falsch, also ist die Implikation $x \in e_1 \Rightarrow x \in e_2$ wahr; somit $e_1 \subseteq e_2$. Analog $e_2 \subseteq e_1$. Nach Extensionalität folgt $e_1 = e_2$.

Aussonderungsprinzip

Ist A eine Menge und E(x) eine Eigenschaft, dann

 $\{x \in A \mid E(x)\} = \text{Menge aller } x \in A \text{ mit Eigenschaft } E(x).$ $a \in \{x \in A \mid E(x)\} \iff a \in A \land E(a)$

Beispiele:

- Gerade Zahlen: $\{x \in \mathbb{N} \mid \exists y \in \mathbb{N} (x = 2y)\}\$
- Zahlen > 17: $\{x \in \mathbb{N} \mid x > 17\}$
- Alle außer 22: $\{x \in \mathbb{N} \mid x \neq 22\}$

Ersetzungsprinzip

Ist A eine Menge und t(x) ein Ausdruck, so gilt:

$$\{t(x) \mid x \in A\}$$
 = Menge aller Werte von $t(x)$ mit $x \in A$.

$$a \in \{t(x) \mid x \in A\} \iff \exists x \in A(a = t(x))$$

Beispiele:

- Quadratzahlen: $\{x^2 \mid x \in \mathbb{N}\}$
- Ungerade Zahlen: $\{2x+1 \mid x \in \mathbb{N}\}$
- Rationale Zahlen: $\left\{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\right\}$
- Anfangsabschnitte von N: $\{ \{ x \in \mathbb{N} \mid x < y \} \mid y \in \mathbb{N} \}$

Vereinigung

Die Vereinigung von zwei Mengen beinhaltet genau die Elemente, die in mindestens einer der beiden Mengen enthalten sind:

$$A \cup B := \{ x \mid x \in A \lor x \in B \}.$$

Allgemein: $\bigcup A_i = \{x \mid \exists i \in I : x \in A_i\}.$

Schnitt

Die Schnittmenge von zwei Mengen beinhaltet genau die Elemente, die in beiden Mengen enthalten sind:

$$A \cap B := \{ x \mid x \in A \land x \in B \}.$$

Allgemein:
$$\bigcap_{i \in I} A_i = \{x \mid \forall i \in I : x \in A_i\}.$$

Differenz

Die Differenz von zwei Mengen beinhaltet genau die Elemente, die in der ersten Menge, aber nicht in der zweiten Menge enthalten sind:

$$A \setminus B := \{ x \in A \mid x \notin B \}.$$

Paarweise disjunkt

Mengen A_i sind paarweise disjunkt, falls für $i \neq j$ stets $A_i \cap A_i = \emptyset$.

Wichtige Eigenschaften

Für beliebige Mengen A, B, C gelten:

- Idempotenz: $A \cup A = A$, $A \cap A = A$.
- Kommutativität: $A \cup B = B \cup A$, $A \cap B = B \cap A$.
- Assoziativität: $A \cup (B \cup C) = (A \cup B) \cup C$ und analog für \cap .
- Teilmengen: $A \subseteq A \cup B$ und $A \cap B \subseteq A$.
- Distributivität:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

• De Morgansche Regeln:

$$C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B),$$

$$C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B).$$

Venn-Diagramm

Copyright © 2025 Justin Iven Müller github.com/JustinIven/zhaw-cheatsheets