

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
4. April 2002 (04.04.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/26772 A1

(51) Internationale Patentklassifikation²: C07K 1/107, 1/13 (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(21) Internationales Aktenzeichen: PCT/EP01/11035

(22) Internationales Anmeldedatum:
25. September 2001 (25.09.2001)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
100 47 857.3 27. September 2000 (27.09.2000) DE

(71) Anmelder (nur für DE): ROCHE DIAGNOSTICS GMBH [DE/DE]; Sandhofer Strasse 116, 68305 Mannheim (DE).

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von DE, US): F.HOFFMANN-LA ROCHE AG [CH/CH]; Grenzacherstrasse 124, CH-4070 Basel (CH).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BORDUSA, Frank [DE/DE]; Karl-Marx-Platz 2, 06242 Rossbach (DE). JAKUBKE, Hans-Dieter [DE/DE]; Albert-Richter-Strasse 12, * 01465 Dresden-Langebrueck (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SL, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Erklärungen gemäß Regel 4.17:

— hinsichtlich der Berechtigung des Anmelders, die Priorität einer früheren Anmeldung zu beanspruchen (Regel 4.17 Ziffer iii) für die folgenden Bestimmungsstaaten AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

— Erfindererklärung (Regel 4.17 Ziffer iv) nur für US
— Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

Veröffentlicht:

— mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

WO 02/26772 A1

(54) Title: METHOD FOR THE SELECTIVE MODIFICATION OF PEPTIDES AND PROTEINS

(54) Bezeichnung: VERFAHREN ZUR SELEKTIVEN MODIFIZIERUNG VON PEPTIDEN UND PROTEINEN

(57) Abstract: The invention relates to a method for the area-specific modification of peptides and proteins, using probes and reporter molecules with the help of peptidases coupled with a non-amino acid type or non-peptide type substrate mimetic.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur regiospezifischen Modifizierung von Peptiden und Proteinen mit Sonden und Reportermolekülen unter der Verwendung von Peptidasen in Verbindung mit einem nichtaminoäure- oder nichtpeptidartigen Substratmimetikum.

Verfahren zur selektiven Modifizierung von Peptiden und Proteinen

Die Erfindung betrifft ein Verfahren zur regiospezifischen Modifizierung von Peptiden und Proteinen mit Sonden und Reportermolekülen unter der Verwendung von Biokatalysatoren.

Durch die Sequenzierung der Genome des Menschen und anderer Organismen resultiert eine enorme Flut von Proteinsequenzen, deren biochemische Funktion sehr häufig nur unzureichend oder überhaupt nicht aufgeklärt ist. Die Proteine sind funktionelle Genprodukte und daher für alle Aktivitäten der biologischen Welt verantwortlich. Aus diesem Grunde ist das Verstehen der Proteinstruktur und -funktion eine Notwendigkeit moderner biologischer Forschung (vgl. T.E. Creighton, *Proteins. Structure and Molecular Properties*, W.H. Freeman & Co. New York, 1993). Zur Aufklärung sind gezielte, schonende Markierungen mit speziellen Sonden und Reportergruppen essentiell, um die molekularen Prozesse in vitro und in vivo verfolgen zu können. Im Mittelpunkt stehen u.a. die Fluoreszenzmarkierung (vgl. R.P. Haugland, *Handbook of Fluorescent Probes and Research Chemicals*, Molecular Probes, Inc., 1996), die Einführung von Spinlabel (W.L. Hubbel, C. Allenbach, *Investigations of Structure and Dynamics in Membrane Proteins Using Site-directed Spin Labeling*, Curr. Opin. Struct. Biol. 4 (1994) 566-573), Photoaffinitätsmarkierung (D.I. Schuster, W.C. Probst, G.K. Ehrling, G. Singh, *Photoaffinity Labeling*, Photochemistry and Photobiology 49 (1988) 785-804) sowie die "Biotin-Technik" (M. Wilchek, E.A. Bayer, *Avidin-Biotin Technology* in Meth. Enzymol. V. 184, Academic Press, 1990).

Zur Modifizierung von Peptiden und Proteinen spielten – und spielen noch immer – chemische Verfahren (vgl. T. Imoto, H. Yamada, *Chemical Modification, in Protein Function. A Practical Approach* (T.E. Creighton, ed.) pp. 247-277, IRL Press, 1989; G.E. Means, R.E. Feeney, *Chemical Modification of Proteins*, Holden-Day, 1971) eine bedeutende Rolle in der Proteinforschung. So ist trotz des schnellen Fortschritts der NMR-Technik, die im letzten Jahrzehnt eine vollständige Signalzuordnung und somit eine Aufklärung der 3D-Strukturen von Proteinen bis zu 150 – 200 Aminosäurebausteinen ermöglichte, die chemische Modifizierung weiterhin auch ein

Werkzeug zur Raumstrukturbestimmung in Lösung, da große Proteine der NMR-Strukturanalyse nicht zugänglich sind und die Röntgenstrukturanalyse Proteinkristalle erfordert, die in sehr vielen Fällen nicht erhalten werden können..

Da N-terminale α -Aminogruppen bevorzugte Ziele von selektiven Modifizierungen sind, erlauben die ϵ -Aminogruppen ubiquitär in Proteinen und Peptiden vorkommender Lysinreste keine gezielte Einführung von Marker- und Reportergruppen aber auch andere Derivatisierungen, wie z.B. Pegylierung, an den N-Terminus. Chemische Acylierungsreaktionen werden mit Anhydriden oder vorrangig mit aktiven Estern, wie z.B. *N*-Hydroxysuccinimid- oder 4-Nitrophenylestern durchgeführt, womit aber auch andere Seitenkettenfunktionen proteinogener Aminosäurereste reagieren können und damit eine selektive N^{α} -Modifikation ausschließen. Lediglich der Phenylacetyl-Rest wurde spezifitätsdeterminiert durch die Penicillin-Acylase in Umkehrung der nativen Wirkung als Schutzgruppe für Aminosäuren im Rahmen von Peptidsynthesen enzymatisch eingeführt (R. Didziapetris, B. Drabnig, V. Schellenberger, H.-D. Jakubke, V. Svedas, *FEBS Lett.* 287 (1991) 31-33) und durch das gleiche Enzym wieder abgespalten (vgl. Review: A. Reidel, H. Waldmann, *J. prakt. Chem.* 335 (1993) 109-127). Abgesehen von dieser direkten Schutzgruppeneinführung wurden nur solche Methoden beschrieben, die auf einer Übertragung bereits N-terminal markierter Aminosäure- oder Peptidderivate mit peptidasespezifischen Aminosäureresten in der P₁-Position unter der Katalyse von Peptidasen beruhen und zwangsläufig keine Irreversibilität aufweisen. Das für CN-Ligationen von Peptid- und Proteinsegmenten entwickelte Substratmimetika-Konzept (F. Bordusa, D. Ullmann, C. Elsner, H.-D. Jakubke, *Angew. Chem.* 109 (1997) 2583-25-85; Review: F. Bordusa, *Braz. J. Med. Biol. Res.* 72 (2000) 469-485) hat dagegen den Vorteil der Irreversibilität.

Aufgabe der Erfindung ist die regiospezifische biokatalytische Modifizierung von Peptiden und Proteinen am N-Terminus unter möglichst vollständigem Ausschluß von Nebenreaktionen.

Diese Aufgabe wird gelöst mit einem Verfahren zur selektiven biokatalytischen Modifizierung von Peptiden und/oder Proteinen, wobei als Biokatalysator eine Peptidase

in Verbindung mit einem nicht-aminoäure- oder nicht-peptidartigen Substratmimetikum eingesetzt wird. Der Begriff „Substratmimetikum“ wurde von Bordusa et al., *Angew. Chem.* 109 (1997), 2583-2585 und Bordusa et al., *Angewandte Chemie International Edition in Englisch*, 36 (1997), 2473-2475 geprägt. Der Begriff der Abgangsgruppe ist dem Fachmann bekannt und wird bei F. Bordusa, *Braz. J. Med. Biol. Res.* (siehe oben) erklärt (insbesondere in der Figur 1).

Gemäß der vorliegenden Erfindung erfolgt die N-terminale biokatalytische Modifizierung eines Peptids oder Proteins entgegen der vorherrschenden Meinung der Fachwelt mit Peptidasen, wobei durch eine gezielte Manipulation die einzuführende nichtaminoäureartige bzw. nichtpeptidartige Gruppierung in Form eines Esterderivates eine Abgangsgruppe trägt, die die native Spezifität des eingesetzten Enzyms ausschaltet, und dadurch die Katalyse einer irreversiblen N^{α} -Acylierung ermöglicht. Die theoretischen Grundlagen, der postulierte Reaktionsmechanismus sowie die Herstellung von Substratmimetika für verschiedene Proteasen und Peptidasen, wird in dem Übersichtsartikel von F. Bordusa, *Brazilian Journal of Medical and Biological Research* 33 (2000), 469-485 beschrieben. Im Gegensatz zu chemischen Acylierungsreaktionen werden aufgrund der Regiospezifität von Peptidasen reaktionsfähige Seitenkettenfunktionen von trifunktionellen Aminoäurebausteinen in den zu modifizierenden Peptiden und Proteinen nicht acyliert, wodurch eine absolut selektive Einführung von Marker- und Reportergruppen an die N^{α} -Aminogruppe des entsprechenden Peptids oder Proteins garantiert wird. Weiterhin muß die für die Modifizierung vorgesehene Gruppierung nicht bereits an einem enzymatisch anzuknüpfenden Aminoäure- oder Peptid-Rest gebunden sein, wie es bei einigen literaturbekannten Verfahren eine notwendige Voraussetzung ist und die Gefahr einer reversiblen Spaltung in sich birgt.

Da nach der auf dem erfindungsgemäßen Wege erfolgten biokatalytischen Einführung der Marker- oder Reportergruppe die eingesetzte Peptidase eine derartig substituierte Amidbindung nicht mehr als Substrat erkennt und somit eine reversible enzymatische Abspaltung ausgeschlossen wird, sind die erfindungsgemäßen Ergebnisse sehr überraschend. Als Marker- oder Reportergruppe können alle möglichen Marker- oder

Reportergruppen Verwendung finden, beispielsweise Aminobenzyl-, Phloreethyl-, Biotinyl-Gruppen. Insbesondere können Markergruppen verwendet werden, die bei der diagnostischen Verwendung der Peptide oder Proteine benötigt werden, wie Haptene (Biotin, Digoxin, Digoxigenin, Digitoxin etc.) oder Label (Farbstoffe, radioaktiv markierte Verbindungen, Fluoreszenzgruppen, Elektrochemilumineszenz-Label (Elecsys), Luminophore, etc.). Als Marker- oder Reportergruppe können auch Substanzen gewählt werden, die die Eigenschaften von Proteinen, wie Löslichkeit etc., verändern oder verbessern. Insbesondere können Substanzen, wie Polyethylenglycol (PEG) sowie Derivate hiervon, Verwendung finden, um die Eigenschaften von Proteinen oder Peptiden, wie beispielsweise Erythropoietin, Insulin, monoklonale Antikörper oder andere therapeutisch wirksame Proteine und Peptide, zu optimieren. Beispiele für solche therapeutischen Proteine und Peptide sowie Substanzen zur Optimierung der therapeutischen Wirksamkeit sind dem Fachmann bekannt.

Vorzugsweise werden für die erfindungsgemäßen biokatalytischen N^{α} -Acylierungen als Reagenzien organisch-chemische Esterderivate verwendet, deren Acylreste den einzuführenden Marker- oder Reportergruppen entsprechen und deren Abgangsgruppen Spezifitätsdeterminanten ausgewählter Serin- oder Cysteinpeptidasen tragen. Die Begriffe Abgangsgruppe sowie Spezifitätsdeterminanten sind dem Fachmann bekannt (siehe beispielsweise F. Bordusa, Braz. J. Med. Biol. Res. (siehe oben)). Wie bei F. Bordusa beschrieben, bindet die Abgangsgruppe eines Substratmimetikums an Stelle der Spezifität-vermittelnden Aminosäureseitenkette des normalen Substrates (Thormann et al., *Biochemistry* 38 (1999), 6056-6062). Eine wichtige Eigenschaft der Substratmimetika ist daher die hohe Affinität der Abgangsgruppe zur primären Substratspezifität des jeweiligen Enzyms, z.B. zur starken Glu-Präferenz der V8-Protease an der S_i-Stelle des katalytischen Zentrums. Das Auffinden, Austesten und Optimieren solcher Abgangsgruppen für Substratmimetika wird bei F. Bordusa, Braz. J. Med. Biol. Res. (siehe oben) beschrieben.

Die praktizierte Verfahrensweise, d.h. die Auswahl und Synthese der für die enzymatische N^{α} -Acylierung eingesetzten Substrate in Form von Carbonsäureestern,

die Wahl des Puffersystems, der Reaktionszeit u.a. ist verhältnismäßig unkritisch und kann vom Fachmann für enzymatische Transformationen einfach ermittelt werden.

Erfnungsgemäß werden N^α-selektive Modifikationen von Peptiden und Proteinen bevorzugt erreicht durch Verwendung eines Carbonsäurederivates, dessen in Reaktion tretende Carboxylfunktion als Ester mit einer Spezifitätsdeterminante in der Abgangsgruppe vorliegt, die der eingesetzten Peptidase entspricht, und einem zu markierenden Peptid oder Protein, bei dem die in Reaktion tretende α-Aminofunktion unblockiert ist, in Gegenwart der entsprechenden Peptidase, in Lösung bei Raumtemperatur, oder auch im gefrorenen Zustand bzw. bei tiefen Temperaturen. Als Peptidasen kommen beispielsweise Trypsin, Chymotrypsin, V8 Protease, Gluspezifische Endopeptidase aus *Bacillus licheniformis*, Subtilisin, Mutanten dieser Enzyme wie beispielsweise die Trypsinmutante Trypsin D189K + K60E (Herstellung siehe Beispiel 9) oder Enzyme mit ähnlichen Spezifitätsdeterminanten in Frage. In der vorliegenden Beschreibung wurde der nonemklaturgerechte Terminus Peptidase anstelle von Proteasen verwendet.

Befinden sich in dem zu modifizierenden Peptid oder Protein Peptidbindungen, die der Spezifität der für die Einführung eingesetzten Serin- oder Cysteinpeptidase entsprechen, dann wird entweder eine andere Peptidase mit der entsprechenden Spezifitätsdeterminante in der Abgangsgruppe des nichtpeptidischen Acyldonors eingesetzt, von der keine sensitiven Peptidbindungen in der Zielsequenz gespalten werden können, oder man führt die biokatalytische Modifizierung im gefrorenen Zustand durch (vgl. Review: M. Hänsler, H.-D. Jakubke, *J. Peptide Sci.* 2 (1996) 279-289), wobei neben hohen Umsatzraten unerwünschte proteolytische Spaltungen ausgeschlossen werden.

Die modifizierten Peptide und Proteine können mit üblichen Methoden der Proteinchemie separiert und gereinigt werden.

Die vorliegende Erfindung wird im folgenden anhand von Beispielen näher ausgeführt.

Beispiel 1 – V8-Protease-katalysierte N-terminale Einführung von 2-Aminobenzoësäure in Peptide

Für die Modellreaktion wurde als Carboxykomponente 2-Aminobenzoësäure-carboxymethylthioester, im folgenden mit 2-ABz-SCm bezeichnet, und als Aminokomponente das Decapeptid Leu-Ala-Leu-Ala-Ser-Ala-Ser-Ala-Phe-Gly verwendet. 2-ABz-SCm und Aminokomponente wurden in einem Verhältnis von 2 : 1 in einer Konzentration von 4 mM bzw. 2 mM eingesetzt. Als Lösungsmittel diente ein wässriges Puffersystem mit einem geringen Anteil an organischem Lösungsmittel. Die Reaktion wurde durch Zugabe des Enzyms gestartet und nach praktisch vollständigem Umsatz von 2-ABz-SCm durch eine Inaktivierung des Enzyms beendet. Die Analyse und Quantifizierung der Reaktion erfolgte durch chromatographische Methoden. Die Enzymkatalyse führte zu einer 99%igen Umwandlung von Leu-Ala-Leu-Ala-Ser-Ala-Ser-Ala-Phe-Gly in das entsprechend N-terminal 2-ABz-modifizierte Analoga. Die Identität des Syntheseproduktes wurde durch die üblichen Methoden der Organischen Chemie überprüft.

Beispiel 2 – V8-Protease-katalysierte N-terminale Einführung der Phloretyl-Gruppe in Peptide

Für die Modellreaktion wurde als Carboxykomponente Phloretyl-carboxymethylthioester, im folgenden mit Phloretyl-SCm bezeichnet, und als Aminokomponente das Decapeptid Leu-Ala-Leu-Ala-Lys-Ala-Asp-Ala-Phe-Gly verwendet. Phloretyl-SCm und Aminokomponente wurden in einem Verhältnis von 2 : 1 in einer Konzentration von 4 mM bzw. 2 mM eingesetzt. Als Lösungsmittel diente ein wässriges Puffersystem mit einem geringen Anteil an organischem Lösungsmittel. Die Reaktion wurde durch Zugabe des Enzyms gestartet und nach praktisch vollständigem Umsatz von Phloretyl-SCm durch eine Inaktivierung des Enzyms beendet. Die Analyse und Quantifizierung der Reaktion erfolgte durch chromatographische Methoden. Die Enzymkatalyse führte zu einer 99.7%igen Umwandlung von Leu-Ala-Leu-Ala-Lys-Ala-Asp-Ala-Phe-Gly in das entsprechend N-terminal Phloretyl-modifizierte Analoga. Die Identität des Syntheseproduktes wurde durch die üblichen Methoden der Organischen Chemie

überprüft. Die Reaktion führte weder zu einer N^ε-Modifizierung des in der Aminokomponente befindlichen Lysins, noch zu einer detektierbaren proteolytischen Spaltung nach Asparaginsäure.

Beispiel 3 – α-Chymotrypsin-katalysierte N-terminale Einführung von 2-Aminobenzoësäure in Peptide

Für die Modellreaktion wurde als Carboxykomponente 2-Aminobenzoësäure-4-guanidinophenylester, im folgenden mit 2-ABz-OGp bezeichnet, und als Aminokomponente das Oligopeptid Arg-Ile-Val-Asp-Ala-Val-Ile-Glu-Gln-Val-Lys-Ala-Ala-Gly-Ala-Tyr verwendet. 2-ABz-OGp und Aminokomponente wurden in einem Verhältnis von 2 : 1 in einer Konzentration von 4 mM bzw. 2 mM eingesetzt. Als Lösungsmittel diente ein wässriges Puffersystem mit einem geringen Anteil an organischem Lösungsmittel. Die Reaktion wurde durch Zugabe des Enzyms gestartet und nach praktisch vollständigem Umsatz von 2-ABz-OGp durch eine Inaktivierung des Enzyms beendet. Die Analyse und Quantifizierung der Reaktion erfolgte durch chromatographische Methoden. Die Enzymkatalyse führte zu einer 98,8%igen Umwandlung von Arg-Ile-Val-Asp-Ala-Val-Ile-Glu-Gln-Val-Lys-Ala-Ala-Gly-Ala-Tyr in das entsprechend N-terminal 2-ABz-modifizierte Analoga. Die Identität des Syntheseproduktes wurde durch die üblichen Methoden der Organischen Chemie überprüft. Die Reaktion führte weder zu einer Modifizierung trifunktioneller Seitenketten, noch zu einer detektierbaren proteolytischen Spaltung.

Beispiel 4 – α-Chymotrypsin-katalysierte N-terminale Einführung der Phloretyl-Gruppe in Peptide

Für die Modellreaktion wurde als Carboxykomponente Phloretyl-4-guanidinophenylester, im folgenden mit Phloretyl-OGp bezeichnet, und als Aminokomponente das Oligopeptid Arg-Ile-Val-Asp-Ala-Val-Ile-Glu-Gln-Val-Lys-Ala-Ala-Gly-Ala-Tyr verwendet. Phloretyl-OGp und Aminokomponente wurden in einem Verhältnis von 2 : 1 in einer Konzentration von 4 mM bzw. 2 mM eingesetzt. Als Lösungsmittel diente ein wässriges Puffersystem mit einem geringen Anteil an

organischem Lösungsmittel. Die Reaktion wurde durch Zugabe des Enzyms gestartet und nach praktisch vollständigem Umsatz von Phloretyl-OGp durch eine Inaktivierung des Enzyms beendet. Die Analyse und Quantifizierung der Reaktion erfolgte durch chromatographische Methoden. Die Enzymkatalyse führte zu einer 99,3%igen Umwandlung von Leu-Ala-Leu-Ala-Lys-Ala-Asp-Ala-Phe-Gly in das entsprechend N-terminal Phloretyl-modifizierte Analoga. Die Identität des Syntheseproduktes wurde durch die üblichen Methoden der Organischen Chemie überprüft. Die Reaktion führte weder zu einer Modifizierung trifunktioneller Seitenketten, noch zu einer detektierbaren proteolytischen Spaltung.

Beispiel 5 – Trypsin-katalysierte N-terminale Einführung von 2-Aminobenzoesäure in Peptide

Für die Modellreaktion wurde als Carboxykomponente 2-Aminobenzoesäure-4-guanidinophenylester, im folgenden mit 2-ABz-OGp bezeichnet, und als Aminokomponente das Decapeptid Leu-Ala-Leu-Ala-Ser-Ala-Ser-Ala-Phe-Gly verwendet. 2-ABz-OGp und Aminokomponente wurden in einem Verhältnis von 2 : 1 in einer Konzentration von 4 mM bzw. 2 mM eingesetzt. Als Lösungsmittel diente ein wässriges Puffersystem mit einem geringen Anteil an organischem Lösungsmittel. Die Reaktion wurde durch Zugabe des Enzyms gestartet und nach praktisch vollständigem Umsatz von 2-ABz-OGp durch eine Inaktivierung des Enzyms beendet. Die Analyse und Quantifizierung der Reaktion erfolgte durch chromatographische Methoden. Die Enzymkatalyse führte zu einer 94,4%igen Umwandlung von Leu-Ala-Leu-Ala-Ser-Ala-Ser-Ala-Phe-Gly in das entsprechend N-terminal 2-ABz-modifizierte Analoga. Die Identität des Syntheseproduktes wurde durch die üblichen Methoden der Organischen Chemie überprüft.

Beispiel 6 – Trypsin-katalysierte N-terminale Einführung der Phloretyl-Gruppe in Peptide

Für die Modellreaktion wurde als Carboxykomponente Phloretyl-4-guanidinophenylester, im folgenden mit Phloretyl-OGp bezeichnet, und als Aminokomponente das Decapeptid Leu-Ala-Leu-Ala-Ser-Ala-Ser-Ala-Phe-Gly

verwendet. Phloretyl-OGp und Aminokomponente wurden in einem Verhältnis von 2 : 1 in einer Konzentration von 4 mM bzw. 2 mM eingesetzt. Als Lösungsmittel diente ein wässriges Puffersystem mit einem geringen Anteil an organischem Lösungsmittel. Die Reaktion wurde durch Zugabe des Enzyms gestartet und nach praktisch vollständigem Umsatz von Phloretyl-OGp durch eine Inaktivierung des Enzyms beendet. Die Analyse und Quantifizierung der Reaktion erfolgte durch chromatographische Methoden. Die Enzymkatalyse führte zu einer quantitativen Umwandlung von Leu-Ala-Leu-Ala-Lys-Ala-Asp-Ala-Phe-Gly in das entsprechend N-terminal Phloretyl-modifizierte Analoga. Die Identität des Syntheseproduktes wurde durch die üblichen Methoden der Organischen Chemie überprüft.

Beispiel 7 – Biotinylierung von *E. coli* Parvulin 10

Für die Modellreaktion wurde als Carboxylkomponente Biotinyl-4-Guanidinophenylester, im folgenden mit Biotinyl-OGp bezeichnet und als Aminokomponente das Protein *E. coli* Parvulin 10 verwendet. Biotinyl-OGp und Parvulin wurden in einem Verhältnis von 1:4 in einer Konzentration von 2mM bzw. 8mM eingesetzt. Als Lösungsmittel diente ein wässriges Puffersystem mit einem geringen Anteil eines organischen Lösungsmittels. Konkret wurde 0,1 M HEPES (N_2 -[2-Hydroxyethyl]Piperazin-N'-[2-Ethansulfonsäure]) Puffer pH 8,0, 0,1 M NaCl, 0,01 M CaCl₂ und 8 % (v/v) DMF (Dimethylformamid) verwendet. Die Reaktion wurde durch Zugabe des Enzyms Trypsin D189K + K60E (Trypsinmutante, bei der die Aminosäure D an Position 189 durch K bzw. K an Position 60 durch E ersetzt ist; Herstellung siehe Beispiel 9) gestartet und nach 2 Stunden Reaktionszeit beendet. Das Enzym wurde in einer Konzentration von $6,5 \times 10^{-6}$ M eingesetzt. Die Analyse und Quantifizierung der Reaktion erfolgte durch MALDI-MS Spektroskopie (Figur 1). Die Enzymkatalyse führte zu einer Umwandlung von *E. coli* Parvulin 10 in das N-terminal biotinierte Biotinyl-(*E. coli* Parvulin 10).

Die Primärsequenz von *E. coli* Parvulin 10 ist bekannt und entspricht der folgenden Aminosäure-Sequenz.

AKTAAALHIL VKEEKLALDL LEQIKNGADF GKLAKKHSIC
PSGKRGGDLG EFRQGQMVP AFDKVVFSCPV LEPTGPLHTQ
FGYHIIKVLY RN

Beispiel 8 – Biotinylierung von RNase T1

Für die Modellreaktion wurde als Carboxylkomponente Biotinyl-OGp und als Aminokomponente das Protein RNase T1 verwendet. Für die Biotinylierung von RNase T1 wurde eine Variante mit zusätzlichem Arg(R)-Gly(G)-Rest am N-Terminus des Proteins eingesetzt. Durch unterschiedliche *in vivo* Prozessierung des Vorläuferproteins wurde jedoch neben der gewünschten RNase T1-Variante (RG-RNase T1) auch die um eine Aminosäure verkürzte Spezies (G-RNase T1) als auch der Wildtyp (RNase T1) erhalten. Dieses Gemisch wurde ohne Auf trennung der einzelnen Varianten für die Enzym-katalysierte Biotinylierung eingesetzt. Biotinyl-OGp und RNase T1-Gemisch wurden in einem Verhältnis von 1:4 in einer Konzentration von 2 mM bzw. 8 mM eingesetzt. Als Lösungsmittel diente ein wässriges Puffersystem wie in Beispiel 7 beschrieben. Die Reaktion wurde durch Zusatz des Enzyms Trypsin D189K + K60E ($6,5 \times 10^{-6}$ M) gestartet. Die Reaktionszeit betrug 2 Stunden. Die Analyse und Quantifizierung der Reaktion erfolgte durch chromatographische Methoden. Das Elektropherogramm der durchgeführten Kapillarelektrophorese ist in Figur 2 dargestellt. Es ist deutlich zu erkennen, dass die RG-RNase T1 nahezu quantitativ in die Biotinyl-RG-RNase T1 überführt wurde.

Beispiel 9 – Herstellung der Trypsinmutante D189K+K60E

Plasmide

Zur Durchführung der ortsgerichteten Mutagenesen kam der *E. coli* Vector pST zum Einsatz. Dieser enthält einen Teil des Bluescript-Vectors sowie das Gen für anionisches Rattentryptsin, das mit einem α -factor-leader sowie einem ADH/GAPDH-Promotor fusioniert ist.

Die Proteinexpression erfolgte mit Hilfe des pYT-Plasmides, einem pBS24-Abkömmling, das Selektions-Marker für Uracil- und Leucin-defizientes Medium trägt.

Sowohl das pST- als auch das pYT- Plasmid verfügt über ein Ampicillinresistenz- Gen. Die Karten beider Vektoren, d.h. der Plasmide pST (5,4 kb)- und pYT (14 kb), mit den entsprechenden Schnittstellen sind in Figur 3 dargestellt.

Mutagenese

Die ortsgerichteten Mutagenesen wurden unter Verwendung des Quik change® -Kit (STRATAGENE) im *E. coli* Plasmid pST durchgeführt.

Das verwendete Verfahren ähnelt einer PCR, wobei ausgehend von zwei synthetischen Oligonukleotidprimern, welche die gewünschte Mutation enthalten, beide Plasmidstränge des pST-Vectors von PFU-Polymerase repliziert werden. Wildtyp pST diente als Template zur Erzeugung von einzelnen Mutationen. Diese Einzelmutanten waren wiederum Ausgangspunkt für die Konstruktion der Doppel-Mutante.

Zum Einsatz kamen folgende Oligonukleotid-Primer, wobei die fettgedruckten Buchstaben die Mutationen angeben:

- | | | |
|-------|----|---|
| D189K | a) | 5' - GGA G GC AAG AAC GAT TCC TGC - 3' |
| | b) | 5' - GCA GGA ATC G TT CTT GCC TCC - 3' |
| K60E | a) | 5' - CAC TGC TAT G AG TCC CGC ATC - 3' |
| | b) | 5' - GAT GCG GGA CTC ATA GCA GTG - 3' |

Das erhaltene PCR-Produkt wurde in ultrakompetente *E. coli* XL II blue Zellen (STRATAGENE) transformiert. Die anschließende Selektion erfolgte auf Ampicillin-haltigen Nähragarplatten (LB-amp). Die gepickten Kolonien wurden in ein Ampicillin-haltiges Flüssigmedium (LB-amp) überführt wobei nach eintägiger Kultivierung die Isolierung des Plasmides unter Verwendung des SNAP-Kit (INVITROGENE) durchgeführt wurde. Die Kontrolle der isolierten DNA erfolgte mittels Elektrophorese mit einem 1%-

igen Agarose-Gel. Durch Sequenzierung des kompletten Gens konnte sichergestellt werden, dass nur die gewünschten Mutationen enthalten waren.

Subklonierung

Für alle Mutanten die im pST-Plasmid erzeugt wurden, war eine Subklonierung im pYT-Expressions-Vektor notwendig. Diese erfolgte durch Restriktionsverdau mit Bam HI und Sal I und Ligation in das korrespondierende pYT-Vektorfragment. Alle Vektorfragmente wurden im entsprechenden Restriktionsmix auf ein niedrig schmelzendes Agarose-Gel (0,8%) aufgetragen und nach ausreichender Auftrennung ausgeschnitten. Die Gelstücke wurden bei 55 °C geschmolzen und nach gewünschter Kombination vereinigt und bei 16 °C über Nacht mit T4 DNA-Ligase ligiert. Die abermals notwendige Transformation und Plasmidisolierung erfolgte wie oben beschrieben.

Eine erfolgreiche Subklonierung ließ sich durch ein charakteristisches Restriktionsmuster nach Doppelverdau mit Eco RI und Bam HI im Agarose-Gel nachweisen.

Durch Sequenzierung des kompletten Trypsinogen-Gens konnte sichergestellt werden, dass nur die gewünschten Mutationen enthalten waren.

Hefetransformation und Selektion

Der verwendete Hefezellstamm trägt die Bezeichnung *Saccharomyces cerevisiae DLM 101a* [Mat a, leu 2-3,-112 his 2, 3-11,-15 can 1, ura 3Δ, pep4Δ, [cir⁰], DM 23]. Für die Herstellung kompetenter Hefezellen und die Transformation der pYT-Plasmide kam der EZ-Hefetransformationskit (ZYMO-RESEARCH) zum Einsatz. Die Selektion erfolgte auf Uracil-defizienten SC-Platten durch Bebrütung bei 30 °C für 3 bis 4 Tage. Einzelkolonien wurden weiterüberimpft auf Leucin-defizierte SC-Platten und ebenfalls 3 bis 4 Tage bei 30 °C inkubiert, wodurch die Kopienanzahl des Plasmides in den Zellen zunahm. Einzelkolonien dieser Platten wurden zum Animpfen der Vorkulturen des Leucin-defizienten SC-Flüssigmediums mit 8% Glukose herangezogen. Die Inkubation

erfolgte unter schütteln bei 30 °C und 120 rpm für 3 Tage. Als Inokulum zum Animpfen der 1 Liter Hauptkulturen mit YPD- Medium (1% Glucose, 1% Bactopepton, 0,5% Hefeextrakt) wurden 20 ml Vorkultur eingesetzt. Die Inkubationsparameter entsprachen denen der Vorkultur, wobei nach 4 Tagen geerntet wurde.

Isolierung und Reinigung der Trypsinvarianten

Durch Zentrifugation für 20 min bei 4000 rpm wurden zunächst die Zellen separiert und der auf pH 4,0 eingestellte Überstand erneut bei 12.000 rpm zentrifugiert. Der praktisch partikelfreie Trypsinogen-haltige Überstand wurde auf eine mit 2 mM Natriumacetat/100 mM Essigsäure (pH 4,5) equilierte Toyopearl 650 M (SUPELCO) Kationenaustauschersäule aufgetragen. Eluiert wurde mittels eines linearen pH-Gradienten beginnend von 2 mM Natriumacetat/ 100 mM Essigsäure (pH 4,5) bis 200 mM Tris/HCl (pH 8,0).

Durch SDS-Polyacrylamid-Gelelektrophorese unter Verwendung eines 15%-igen Polyacrylamid-Geles konnten die Trypsinogen enthaltenden Fraktionen ermittelt und zusammengefasst werden. Das Volumen der Proteinlösungen wurde mit Hilfe von Centriprep-Konzentratoren (AMICON) auf etwa 10 bis 15 ml eingeengt.

Die Aktivierung der Trypsinogen-Variante zum entsprechenden Trypsin D189K+K60E erfolgte mittels hochaufgereinigter Enterokinase (BIOZYME) bei pH 6,5 und wurde durch SDS-Gelelkrophorese kontrolliert.

Unter Verwendung eines Biocad Sprint Perfusionschrommatographie-Systems (PERSEPTIVE BIOSYSTEMS) wurde die Aufreinigung des aktivierte Enzyms durchgeführt. Die Auftrennung der Proteinproben erfolgte auf einer mit 5%-igen Bis-/Tris-Propan pH 6,0 equilibrierten POROS 20 HQ – Anionenaustauscher-Säule (4 x 100 mm, PERSEPTIVE BIOSYSTEMS) und nachfolgender Gradientenelution bis 95% 3M NaCl-Lösung. Die Trypsin-enthaltenden Fraktionen wurden mit Hilfe eines SDS-Geles auf Reinheit überprüft und zusammengefasst. Abschließend erfolgte die Dialyse gegen 1

mM HCl bei 4°C und Einengung der Proben mit Centriprep-Konzentratoren auf 2 bis 4 ml.

Die Endausbeuten beliefen sich auf etwa 2 bis 5 mg Protein pro Liter Kulturmedium.

Konzentrationsbestimmung

Die Proteinkonzentration der Präparate wurde nach der Méthode von Bradford an einem Spektrophotometer bei einer Wellenlänge von 595 nm bestimmt. Die Aufnahme der Eichkurve erfolgte anhand einer Rindertrypsin-Verdünnungsreihe zwischen 50 µm/ml und 1 mg/ml.

Patentansprüche

1. Verfahren zur biokatalytischen Modifizierung von Peptiden und Proteinen dadurch gekennzeichnet, dass als Biokatalysator eine Peptidase in Verbindung mit einem nichtaminosäure- oder nichtpeptidartigen Substratmimetikum eingesetzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Acylierungskomponente ein Carbonsäureester verwendet wird, dessen Acylteil der Modifizierungsgruppe entspricht und dessen Abgangsgruppe die Spezifitätsdeterminante der für die Katalyse eingesetzten Peptidase enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Reaktion in einem wäßrigen Medium bei Raumtemperatur oder in einem gefrorenen wäßrigen System oder bei tiefen Temperaturen zwischen - 5 und - 20° C durchgeführt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Peptidasen Trypsin, Chymotrypsin, V8 Protease, Glu-spezifische Endopeptidase aus *Bacillus licheniformis*, Subtilisin u.a. bzw. Mutanten dieser Enzyme oder Enzyme mit ähnlichen Spezifitätsdeterminanten eingesetzt werden.
5. Verwendung von Peptidasen, dadurch gekennzeichnet, dass sie zum biokatalytischen Einführen von Marker- und Reportergruppen in Peptide und Proteine eingesetzt werden.

6. Verwendung von Peptidasen nach Anspruch 5, dadurch gekennzeichnet, dass sie zum biokatalytischen Einführen von Marker- und Reportergruppen in Peptide und Proteine unter Vermeiden derer reversiblen enzymatischen Abspaltung eingesetzt werden, indem die einzuführende Marker - oder Reportergruppe ein Esterderivat als Abgangsgruppe trägt, welche die native Spezifität des eingesetzten Enzyms ausschaltet.
7. Verwendung von Peptidasen nach Anspruch 5 und 6, dadurch gekennzeichnet, dass als Peptidasen Trypsin, Chymotrypsin, V8-Protease, Glu-spezifische Endopeptidase aus *Bacillus licheniformis*, Subtilisin oder Mutanten dieser Enzyme oder Enzyme mit ähnlichen Spezifitätsdeterminanten eingesetzt werden.

1/3

Fig. 1

2/3

Fig. 2

3/3

Fig. 3

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 01/11035

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07K1/107 C07K1/13

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	DE 198 34 308 A (UNIV LEIPZIG) 3 February 2000 (2000-02-03) the whole document	1-7
Y	WEHOFSKY N ET AL: "Programming of enzyme specificity by substrate mimetics: investigations on the Glu-specific V8 protease reveals a novel general principle of biocatalysis" FEBS LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 443, no. 2, 29 January 1999 (1999-01-29), pages 220-224, XP004259123 ISSN: 0014-5793 the whole document	1-7

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

14 February 2002

28/02/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentbaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. S1 651-epo nl
Fax (+31-70) 340-3018

Authorized officer

G. Willière

INTERNATIONAL SEARCH REPORT

b) International Application No

PCT/EP 01/11035

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WEHOFSKY N ET AL: "Engineering of substrate mimetics as novel-type substrates for glutamic acid-specific endopeptidases: design, synthesis, and application" BIOCHIMICA ET BIOPHYSICA ACTA. PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, ELSEVIER, AMSTERDAM,, NL, vol. 1479, no. 1-2, 15 June 2000 (2000-06-15), pages 114-122, XP004279032 ISSN: 0167-4838 the whole document	1-7

INTERNATIONAL SEARCH REPORT
Information on patent family members

International Application No
PCT/EP 01/11035

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 19834308	A 03-02-2000 DE	19834308 A1	03-02-2000

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 01/11035

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C07K1/107 C07K1/13

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBiete

Recherchierte Mindestprüfstoff, (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, BIOSIS, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	DE 198 34 308 A (UNIV LEIPZIG) 3. Februar 2000 (2000-02-03) das ganze Dokument	1-7
Y	WEHOFSKY N ET AL: "Programming of enzyme specificity by substrate mimetics: investigations on the Glu-specific V8 protease reveals a novel general principle of biocatalysis" FEBS LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 443, Nr. 2, 29. Januar 1999 (1999-01-29), Seiten 220-224, XP004259123 ISSN: 0014-5793 das ganze Dokument	1-7

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung,

eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"g" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

14. Februar 2002

28/02/2002

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

G. Willière

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

tr des Aktenzeichen

PCT/EP 01/11035

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 19834308	A 03-02-2000 DE	19834308 A1	03-02-2000