

planetmath.org

Math for the people, by the people.

(path) connectness as a homotopy invariant

 ${\bf Canonical\ name \quad path Connectness As A Homotopy Invariant}$

Date of creation 2013-03-22 18:02:15 Last modified on 2013-03-22 18:02:15

Owner joking (16130) Last modified by joking (16130)

Numerical id 8

Author joking (16130) Entry type Theorem

Classification msc 55P10 Related topic Homotopy

Related topic homotopyequivalence

Related topic path

Related topic connected space

Theorem. Let X and Y be arbitrary topological spaces with Y (path) connected. If there are maps $f: X \to Y$ and $g: Y \to X$ such that $g \circ f: X \to X$ is homotopic to the identity map, then X is (path) connected.

Proof: Let $f: X \to Y$ and $g: Y \to X$ be maps satisfying theorem's assumption. Furthermore let $X = \bigcup X_i$ be a decomposition of X into (path) connected components. Since Y is (path) connected, then $g(Y) \subseteq X_i$ for some i. Thus $(g \circ f)(X) \subseteq X_i$. Now let $H: I \times X \to X$ be the homotopy from $g \circ f$ to the identity map. Let $\alpha_x: I \to X$ be a path defined by the formula: $\alpha_x(t) = H(t,x)$. Since for all $x \in X$ we have $\alpha_x(0) \in X_i$ and I is path connected, then $\alpha_x(I) \subseteq X_i$. Therefore $H(I \times X) \subseteq X_i$, but $H(\{1\} \times X) = X$ which implies that $X_i = X$, so X is (path) connected. \square

Straightforward application of this theorem is following:

Corollary. Let X and Y be homotopy equivalent spaces. Then X is (path) connected if and only if Y is (path) connected.