LEAD CASE STUDY

step1: Importing and Merging Data

```
In [1]:

# Suppressing Warnings
import warnings
warnings.filterwarnings('ignore')

In [2]:

# Importing Pandas and NumPy
import pandas as pd, numpy as np
```

```
In [3]:

# Importing all datasets
leads = pd.read_csv("C:/Users/Hari/Desktop/place/logistics asignment/Leads.csv")
leads.head()
```

Out[3]:

	Prospect ID	Lead Number	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit		Get updates on DM Content	Lead Profile	City	A: A
(7927b2df- 8bba-4d29- b9a2- b6e0beafe620	660737	API	Olark Chat	No	No	0	0.0	0	0.0	•••	No	Select	Select	
1	2a272436- 5132-4136- 86fa- dcc88c88f482	660728	API	Organic Search	No	No	0	5.0	674	2.5		No	Select	Select	
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	660727	Landing Page Submission	Direct Traffic	No	No	1	2.0	1532	2.0		No	Potential Lead	Mumbai	
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	660719	Landing Page Submission	Direct Traffic	No	No	0	1.0	305	1.0		No	Select	Mumbai	
4	3256f628- e534-4826- 9d63- 4a8b88782852	660681	Landing Page Submission	Google	No	No	1	2.0	1428	1.0	•••	No	Select	Mumbai	

5 rows × 37 columns

Step 2: Inspecting the Dataframe

```
In [4]:
```

```
leads.dtypes
Out[4]:
```

Prospect ID object
Lead Number int64
Lead Origin object
Lead Source object
Do Not Email object
Do Not Call object

Converted int64 TotalVisits float64 int64 Total Time Spent on Website Page Views Per Visit float64 Last Activity object Country object Specialization object How did you hear about X Education object What is your current occupation object What matters most to you in choosing a course object Search object Magazine object Newspaper Article object X Education Forums object Newspaper object Digital Advertisement object Through Recommendations object Receive More Updates About Our Courses object Tags object Lead Quality object Update me on Supply Chain Content object Get updates on DM Content object Lead Profile object City object Asymmetrique Activity Index object Asymmetrique Profile Index object Asymmetrique Activity Score float64 Asymmetrique Profile Score float64 I agree to pay the amount through cheque object A free copy of Mastering The Interview $\,$ object Last Notable Activity object dtype: object

In [5]:

leads.shape

Out[5]:

(9240, 37)

In [6]:

leads.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9240 entries, 0 to 9239
Data columns (total 37 columns):

Data	columns (total 37 columns):		
#	Column	Non-Null Count	Dtype
0	Prospect ID	9240 non-null	object
1	Lead Number	9240 non-null	int64
2	Lead Origin	9240 non-null	object
3	Lead Source	9204 non-null	object
4	Do Not Email	9240 non-null	object
5	Do Not Call	9240 non-null	object
6	Converted	9240 non-null	int64
7	TotalVisits	9103 non-null	float64
8	Total Time Spent on Website	9240 non-null	int64
9	Page Views Per Visit	9103 non-null	float64
10	Last Activity	9137 non-null	object
11	Country	6779 non-null	object
12	Specialization	7802 non-null	object
13	How did you hear about X Education	7033 non-null	object
14	What is your current occupation	6550 non-null	object
15	What matters most to you in choosing a course	6531 non-null	object
16	Search	9240 non-null	object
17	Magazine	9240 non-null	object
18	Newspaper Article	9240 non-null	object
19	X Education Forums	9240 non-null	object
20	Newspaper	9240 non-null	object
21	Digital Advertisement	9240 non-null	object
22	Through Recommendations	9240 non-null	object
23	Receive More Updates About Our Courses	9240 non-null	obiect

```
24 Tags
                                                    5887 non-null object
                                                    4473 non-null object
 25 Lead Quality
 26 Update me on Supply Chain Content
                                                     9240 non-null object
 27 Get updates on DM Content
                                                    9240 non-null
                                                                     object
 28 Lead Profile
                                                    6531 non-null object
 29 City
                                                    7820 non-null object
 30 Asymmetrique Activity Index
                                                    5022 non-null object
 31 Asymmetrique Profile Index
                                                    5022 non-null object
 32 Asymmetrique Activity Score
33 Asymmetrique Profile Score
                                                    5022 non-null float64
5022 non-null float64
 34 I agree to pay the amount through cheque
                                                   9240 non-null object
 35 A free copy of Mastering The Interview
                                                   9240 non-null object
 36 Last Notable Activity
                                                    9240 non-null object
dtypes: float64(4), int64(3), object(30)
memory usage: 2.6+ MB
```

In [7]:

```
leads.describe()
```

Out[7]:

	Lead Number	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Asymmetrique Activity Score	Asymmetrique Profile Score
count	9240.000000	9240.000000	9103.000000	9240.000000	9103.000000	5022.000000	5022.000000
mean	617188.435606	0.385390	3.445238	487.698268	2.362820	14.306252	16.344883
std	23405.995698	0.486714	4.854853	548.021466	2.161418	1.386694	1.811395
min	579533.000000	0.000000	0.000000	0.000000	0.000000	7.000000	11.000000
25%	596484.500000	0.000000	1.000000	12.000000	1.000000	14.000000	15.000000
50%	615479.000000	0.000000	3.000000	248.000000	2.000000	14.000000	16.000000
75%	637387.250000	1.000000	5.000000	936.000000	3.000000	15.000000	18.000000
max	660737.000000	1.000000	251.000000	2272.000000	55.000000	18.000000	20.000000

Step 3: Data Preparation

```
In [8]:
```

```
# removing duplicate rows
leads.drop_duplicates(subset='Lead Number')
leads.shape
```

Out[8]:

(9240, 37)

In [9]:

Out[9]:

	Total	Percentage
Lead Quality	4767	51.59
Asymmetrique Profile Score	4218	45.65
Asymmetrique Activity Score	4218	45.65
Asymmetrique Profile Index	4218	45.65

Asymmetrique Activity Index	4218 Total	45.65 Percentage
Tags	3353	36.29
What matters most to you in choosing a course	2709	29.32
Lead Profile	2709	29.32
What is your current occupation	2690	29.11
Country	2461	26.63
How did you hear about X Education	2207	23.89
Specialization	1438	15.56
City	1420	15.37
TotalVisits	137	1.48
Page Views Per Visit	137	1.48
Last Activity	103	1.11
Lead Source	36	0.39
Do Not Email	0	0.00
Do Not Call	0	0.00
Converted	0	0.00
Total Time Spent on Website	0	0.00
Lead Origin	0	0.00
Lead Number	0	0.00
Last Notable Activity	0	0.00
Newspaper Article	0	0.00
Search	0	0.00
Magazine	0	0.00
A free copy of Mastering The Interview	0	0.00
X Education Forums	0	0.00
Newspaper	0	0.00
Digital Advertisement	0	0.00
Through Recommendations	0	0.00
Receive More Updates About Our Courses	0	0.00
Update me on Supply Chain Content	0	0.00
Get updates on DM Content	0	0.00
I agree to pay the amount through cheque	0	0.00
Prospect ID	0	0.00

Visualizing occurence of Null values in the columns based on rows

In [10]:

```
import matplotlib.pyplot as plt, seaborn as sns
plt.figure(figsize=(10,10))
sns.heatmap(leads.isnull(), cbar=False)

plt.tight_layout()
plt.show()
```


Dropping Unnecessary Columns

```
In [11]:
```

```
# Identifying if any column exists with only null values
leads.isnull().all(axis=0).any()
```

Out[11]:

False

In [12]:

```
# Dropping all columns with only 0 values
leads.loc[:, (leads != 0).any(axis=0)]
leads.shape
```

Out[12]:

(9240, 37)

In [13]:

```
leads= leads.loc[:,leads.nunique()!=1]
leads.shape
```

Out[13]:

(9240, 32)

In [14]:

```
# Deleting the columns 'Asymmetrique Activity Score' & 'Asymmetrique Profile Score'
# as they will be represented by their corresponding index columns
leads = leads.drop('Asymmetrique Activity Score', axis=1)
leads = leads.drop('Asymmetrique Profile Score', axis=1)
leads.shape
```

Out[14]:

```
(9240, 30)
In [15]:
# Deleting the columns 'Prospect ID' as it will not have any effect in the predicting model
leads = leads.drop('Prospect ID', axis=1)
#leads = leads.drop('Lead Number', axis=1)
leads.shape
Out[15]:
(9240, 29)
In [16]:
#Deleting the columns 'What matters most to you in choosing a course' as it mostly has unique valu
es and some null values.
leads = leads.drop('What matters most to you in choosing a course', axis=1)
leads.shape
Out[16]:
(9240, 28)
In [17]:
# Deleting the columns 'How did you hear about X Education' as it mostly has null values or 'Selec
t' values
# that contribute to the 'Converted' percentage.
leads = leads.drop('How did you hear about X Education', axis=1)
leads.shape
Out[17]:
(9240, 27)
Imputing with Median values because the continuous variables have outliers
In [18]:
leads['TotalVisits'].replace(np.NaN, leads['TotalVisits'].median(), inplace =True)
leads['Page Views Per Visit'].replace(np.NaN, leads['Page Views Per Visit'].median(), inplace
=True)
In [20]:
leads['Country'].mode()
Out[20]:
0 India
dtype: object
In [21]:
leads.loc[pd.isnull(leads['Country']), ['Country']] = 'India'
In [22]:
leads['Country'] = leads['Country'].apply(lambda x: 'India' if x=='India' else 'Outside India')
leads['Country'].value counts()
Out[22]:
```

India 8953 Outside India Name: Country, dtype: int64

In [23]:

sns.barplot(y='Country', x='Converted', palette='husl', data=leads, estimator=np.sum)

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x2520b86ecd0>

visulaizations

In [24]:

import matplotlib.pyplot as plt, seaborn as sns

In [25]:

sns.pairplot(leads) plt.show()

In [26]:

```
sns.boxplot(leads['Page Views Per Visit'])
plt.show()
```


In [27]:

```
sns.boxplot(leads['Lead Number'])
plt.show()
```


5800005900006000000610000620000630000640000650000660000 Lead Number

In [28]

```
sns.boxplot(leads['Lead Quality'], leads['Lead Number'])
plt.show()
```


In [29]:

```
sns.barplot(x='Page Views Per Visit',y='TotalVisits',data=leads)
plt.show()
```


In [30]:

```
sns.barplot(x='Lead Quality',y='Lead Number',data=leads)
plt.show()
```


Creating a new category consisting on NULL/Select values for the field Asymmetrique Profile Index

In [31]:

```
leads['Lead Quality'].value_counts()
Out[31]:
```

Might be 1560
Not Sure 1092
High in Relevance 637
Worst 601
Low in Relevance 583
Name: Lead Quality, dtype: int64

In [32]:

```
leads['Lead Quality'].isnull().sum()
```

```
Out[32]:
4767
In [33]:
leads['Lead Quality'].fillna("Unknown", inplace = True)
leads['Lead Quality'].value_counts()
Out[33]:
                      4767
Unknown
                      1560
Might be
Not Sure
                     1092
High in Relevance
                      637
Worst
                       601
Low in Relevance
                       583
Name: Lead Quality, dtype: int64
In [34]:
sns.barplot(y='Lead Quality', x='Converted', palette='husl', data=leads, estimator=np.sum)
Out[34]:
<matplotlib.axes._subplots.AxesSubplot at 0x25216ba2760>
   Low in Relevance
        Unknown
ead Quality
        Might be
        Not Sure
          Worst
  High in Relevance
                     200
                                  600
                                               1000
                                                      1200
                           400
                                         800
                                 Converted
In [35]:
leads['Asymmetrique Profile Index'].value counts()
Out[35]:
02.Medium
             2788
01.High
             2203
03.Low
               31
Name: Asymmetrique Profile Index, dtype: int64
In [36]:
leads['Asymmetrique Profile Index'].isnull().sum()
Out[36]:
4218
In [37]:
leads['Asymmetrique Profile Index'].fillna("Unknown", inplace = True)
```

leads['Asymmetrique Profile Index'].value_counts()

Out [37]:

1010

```
UIIKHOWH 4210
02.Medium 2788
01.High 2203
03.Low 31
```

Name: Asymmetrique Profile Index, dtype: int64

In [38]:

 $\verb|sns.barplot(y='Asymmetrique Profile Index', x='Converted', palette='husl', data=leads, estimator=np.sum| \\$

Out[38]:

<matplotlib.axes. subplots.AxesSubplot at 0x25216a80bb0>

In [39]:

#for Asymmetrique Activity Index

In [40]:

```
leads['Asymmetrique Activity Index'].value_counts()
leads['Asymmetrique Activity Index'].isnull().sum()
leads['Asymmetrique Activity Index'].fillna("Unknown", inplace = True)
leads['Asymmetrique Activity Index'].value_counts()
```

Out[40]:

Unknown 4218 02.Medium 3839 01.High 821 03.Low 362

Name: Asymmetrique Activity Index, dtype: int64

In [41]:

 $\verb|sns.barplot(y='Asymmetrique Activity Index', x='Converted', palette='husl', data=leads, estimator=n p.sum)|$

Out[41]:

<matplotlib.axes. subplots.AxesSubplot at 0x252167f8520>


```
0 250 500 750 1000 1250 1500 1750
Converted
```

In [42]:

```
#for City
```

In [43]:

```
leads['City'].isnull().sum()
leads['City'].fillna("Unknown", inplace = True)
leads['City'].value_counts()
leads['City'].replace('Select', 'Unknown', inplace = True)
leads['City'].value_counts()
```

Out[43]:

Unknown	3669
Mumbai	3222
Thane & Outskirts	752
Other Cities	686
Other Cities of Maharashtra	457
Other Metro Cities	380
Tier II Cities	74
Name: City, dtype: int64	

In [44]:

```
sns.barplot(y='City', x='Converted', palette='husl', data=leads, estimator=np.sum)
```

Out[44]:

<matplotlib.axes._subplots.AxesSubplot at 0x252177c4eb0>

In [45]:

```
#for last activity
leads['Last Activity'].value_counts()
leads['Last Activity'].isnull().sum()
leads['Last Activity'].fillna("Unknown", inplace = True)
leads['Last Activity'].value_counts()
```

Out[45]:

Email Opened	3437
SMS Sent	2745
Olark Chat Conversation	973
Page Visited on Website	640
Converted to Lead	428
Email Bounced	326
Email Link Clicked	267
Form Submitted on Website	116
Unknown	103
Unreachable	93

```
Unsubscribed
                                   61
Had a Phone Conversation
                                   30
Approached upfront
                                    9
View in browser link Clicked
                                    6
Email Marked Spam
Email Received
                                    2
Resubscribed to emails
                                   1
Visited Booth in Tradeshow
Name: Last Activity, dtype: int64
```

In [46]:

```
sns.barplot(y='Last Activity', x='Converted', palette='husl', data=leads, estimator=np.sum)
```

Out[46]:

<matplotlib.axes._subplots.AxesSubplot at 0x25216be9a30>

In [47]:

```
leads['What is your current occupation'].value counts()
leads['What is your current occupation'].isnull().sum()
leads['What is your current occupation'].fillna("Unknown", inplace = True)
leads['What is your current occupation'].value counts()
```

Out[47]:

Unemployed	5600		
Unknown	2690		
Working Professional	706		
Student	210		
Other	16		
Housewife	10		
Businessman	8		

Name: What is your current occupation, dtype: int64

In [48]:

```
sns.barplot(y='What is your current occupation', x='Converted', palette='husl', data=leads)
```

Out[48]:

<matplotlib.axes._subplots.AxesSubplot at 0x25216ae2520>


```
0.0 0.2 0.4 0.6 0.8 1.0
```

In [49]:

```
# for lead profile
leads['Lead Profile'].value_counts()
leads['Lead Profile'].isnull().sum()
leads['Lead Profile'].fillna("Unknown", inplace = True)
leads['Lead Profile'].value_counts()
```

Out[49]:

Select	4146
Unknown	2709
Potential Lead	1613
Other Leads	487
Student of SomeSchool	241
Lateral Student	24
Dual Specialization Student	20
Name: Lead Profile, dtype: inte	54

In [50]:

```
leads['Lead Profile'].replace('Select', 'Unknown', inplace =True)
leads['Lead Profile'].value_counts()
```

Out[50]:

Unknown	6855
Potential Lead	1613
Other Leads	487
Student of SomeSchool	241
Lateral Student	24
Dual Specialization Student	20
Name: Lead Profile, dtype: into	54

In [51]:

```
sns.barplot(y='Lead Profile', x='Converted', palette='husl', data=leads, estimator=np.sum)
```

Out[51]:

<matplotlib.axes._subplots.AxesSubplot at 0x252185ea820>

In [52]:

```
# for tags
leads['Tags'].value_counts()
leads['Tags'].isnull().sum()
leads['Tags'].fillna("Unknown", inplace = True)
leads['Tags'].value_counts()
```

Out[52]:

Unknown	3353
Will revert after reading the email	2072
Ringing	1203
Interested in other courses	513
Already a student	465
Closed by Horizzon	358
switched off	240
Busy	186
Lost to EINS	175
Not doing further education	145
Interested in full time MBA	117
Graduation in progress	111
invalid number	83
Diploma holder (Not Eligible)	63
wrong number given	47
opp hangup	33
number not provided	27
in touch with EINS	12
Lost to Others	7
Still Thinking	6
Want to take admission but has financial problems	6
In confusion whether part time or DLP	5
Interested in Next batch	5
Lateral student	3
Shall take in the next coming month	2
University not recognized	2
Recognition issue (DEC approval)	1
Name: Tags, dtype: int64	

In [53]:

```
sns.barplot(y='Tags', x='Converted', palette='husl', data=leads)
```

Out[53]:

 $\verb|\matplotlib.axes._subplots.AxesSubplot| at 0x25216b8f5e0>$

In [54]:

```
leads['Specialization'].value_counts()
leads['Specialization'].isnull().sum()
leads['Specialization'].fillna("Unknown", inplace = True)
leads['Specialization'].value_counts()
```

Out[54]:

1942
1438
976
848
838
503
403
366
349
338

```
Travel and Tourism
                                       203
Media and Advertising
                                       203
                                       178
International Business
Healthcare Management
                                       159
                                       114
Hospitality Management
E-COMMERCE
                                       112
Retail Management
                                       100
Rural and Agribusiness
                                       73
E-Business
                                       57
                                        40
Services Excellence
Name: Specialization, dtype: int64
```

In [55]:

```
sns.barplot(y='Specialization', x='Converted', palette='husl', data=leads, estimator=np.sum)
```

Out[55]:

<matplotlib.axes. subplots.AxesSubplot at 0x252170b30a0>

In [56]:

```
leads['Lead Quality'].value_counts()
leads['Lead Quality'].isnull().sum()
leads['Lead Quality'].fillna("Unknown", inplace = True)
leads['Lead Quality'].value_counts()
```

Out[56]:

Unknown 4767
Might be 1560
Not Sure 1092
High in Relevance 637
Worst 601
Low in Relevance 583

Name: Lead Quality, dtype: int64

In [57]:

```
sns.barplot(y='Lead Quality', x='Converted', palette='husl', data=leads, estimator=np.sum)
```

Out[57]:

<matplotlib.axes._subplots.AxesSubplot at 0x25216bc6520>

Reinspecting Null Values

In [58]:

Out[58]:

	Total	Percentage
Lead Source	36	0.39
Last Notable Activity	0	0.00
What is your current occupation	0	0.00
Lead Origin	0	0.00
Do Not Email	0	0.00

Checking for Outliers

In [59]:

```
# Checking outliers at 25%,50%,75%,90%,95% and 99% leads.describe(percentiles=[.25,.5,.75,.90,.95,.99]).T
```

Out[59]:

	count	mean	std	min	25%	50%	75%	90%	95%	99%	max
Lead Number	9240.0	617188.435606	23405.995698	579533.0	596484.5	615479.0	637387.25	650506.1	655404.05	659592.98	660737.0
Converted	9240.0	0.385390	0.486714	0.0	0.0	0.0	1.00	1.0	1.00	1.00	1.0
TotalVisits	9240.0	3.438636	4.819024	0.0	1.0	3.0	5.00	7.0	10.00	17.00	251.0
Total Time Spent on Website	9240.0	487.698268	548.021466	0.0	12.0	248.0	936.00	1380.0	1562.00	1840.61	2272.0
Page Views Per Visit	9240.0	2.357440	2.145781	0.0	1.0	2.0	3.00	5.0	6.00	9.00	55.0

In [60]:

```
numeric_variables = ['TotalVisits','Total Time Spent on Website','Page Views Per Visit']
print(numeric_variables)
```

['TotalVisits', 'Total Time Spent on Website', 'Page Views Per Visit']

In [61]:

```
numeric_variables = ['TotalVisits','Total Time Spent on Website','Page Views Per Visit']
def boxplot(var_list):
   plt.figure(figsize=(12,8))
   for var in var_list:
      plt.subplot(2,5,var_list.index(var)+1)
      #plt.boxplot(country[var])
      sns.boxplot(y=var,palette='cubehelix', data=leads)
```

```
# Automatically adjust subplot params so that the subplotS fits in to the figure area.
plt.tight_layout()
# display the plot
plt.show()

boxplot(numeric_variables)
```


In [62]:

```
fig, ax = plt.subplots(figsize=(8,6))
ax.scatter(leads['TotalVisits'], leads['Total Time Spent on Website'])
ax.set_xlabel('Proportion of non-retail business acres per town')
ax.set_ylabel('Full-value property-tax rate per $10,000')
plt.show()
```


In [63]:

```
sns.jointplot(leads['Page Views Per Visit'],leads['Total Time Spent on Website'], color="b")
plt.show()
```


In [64]:

```
sns.jointplot(leads['Page Views Per Visit'],leads['TotalVisits'], color="b")
plt.show()
```


Removing outlier values based on the Interquartile distance

In [65]:

```
Q1 = leads['TotalVisits'].quantile(0.25)
Q3 = leads['TotalVisits'].quantile(0.75)
IQR = Q3 - Q1
leads=leads.loc[(leads['TotalVisits'] >= Q1 - 1.5*IQR) & (leads['TotalVisits'] <= Q3 + 1.4*IQR)]
Q1 = leads['Page Views Per Visit'].quantile(0.25)
Q3 = leads['Page Views Per Visit'].quantile(0.75)
IQR = Q3 - Q1
leads=leads.loc[(leads['Page Views Per Visit'] >= Q1 - 1.5*IQR) & (leads['Page Views Per Visit'] <= Q3 + 1.5*IQR)]
leads.shape
```

Out[65]:

(8611, 27)

In [66]:

```
def boxplot(var_list):
   plt.figure(figsize=(15,10))
   for var in var_list:
      plt.subplot(2,5,var_list.index(var)+1)
```

```
#pit.Doxplot(country[var])
    sns.boxplot(y=var,palette='BuGn_r', data=leads)

# Automatically adjust subplot params so that the subplotS fits in to the figure area.
plt.tight_layout()
    # display the plot
plt.show()
boxplot(numeric_variables)
```


In [67]:

```
leads.shape
```

Out[67]:

(8611, 27)

Converting some binary variables (Yes/No) to 0/1

In [68]:

Out[68]:

	Lead Number	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Last Activity	 Digital Advertisement	Throug Recommendation
0	660737	API	Olark Chat	0	0	0	0.0	0	0.0	Page Visited on Website	 0	
1	660728	API	Organic Search	0	0	0	5.0	674	2.5	Email Opened	 0	
2	660727	Landing Page	Direct	0	0	1	2.0	1532	2.0	Email	 0	

3	Lead Number	Submission Landing Usage Submission	Lead Soliment Traffic	Do Not Emaû		Converted 0	TotalVisits 1.0	Total Time Spent 305 Website	Page Views Per Visit	Last Unreachable	 Digital Advertisement	Throug Recommendation
4	660681	Landing Page Submission	Google	0	0	1	2.0	1428	1.0	Converted to Lead	 0	

5 rows × 27 columns

4

For categorical variables with multiple levels, creating dummy features

```
In [69]:
```

```
# Creating a dummy variable for some of the categorical variables and dropping the first one.
dummy1 = pd.get_dummies(leads[['Country', 'Lead Source','Lead Origin','Last Notable Activity']],
drop_first=True)

# Adding the results to the master dataframe
leads = pd.concat([leads, dummy1], axis=1)
leads.shape
```

Out[69]:

(8611, 67)

In [70]:

```
# Creating dummy variables for the remaining categorical variables and
# dropping the level called 'Unknown' which represents null/select values.
# Creating dummy variables for the variable 'Lead Quality'
ml = pd.get dummies(leads['Lead Quality'], prefix='Lead Quality')
# Dropping the level called 'Unknown' which represents null/select values
ml1 = ml.drop(['Lead Quality Unknown'], 1)
#Adding the results to the master dataframe
leads = pd.concat([leads,ml1], axis=1)
# Creating dummy variables for the variable 'Asymmetrique Profile Index'
ml = pd.get dummies(leads['Asymmetrique Profile Index'), prefix='Asymmetrique Profile Index')
# Dropping the level called 'Unknown' which represents null/select values
ml1 = ml.drop(['Asymmetrique Profile Index Unknown'], 1)
#Adding the results to the master dataframe
leads = pd.concat([leads,ml1], axis=1)
# Creating dummy variables for the variable 'Asymmetrique Activity Index'
ml = pd.get dummies(leads['Asymmetrique Activity Index'], prefix='Asymmetrique Activity Index')
# Dropping the level called 'Unknown' which represents null/select values
ml1 = ml.drop(['Asymmetrique Activity Index Unknown'], 1)
#Adding the results to the master dataframe
leads = pd.concat([leads,ml1], axis=1)
# Creating dummy variables for the variable 'Tags'
ml = pd.get_dummies(leads['Tags'], prefix='Tags')
# Dropping the level called 'Unknown' which represents null/select values
ml1 = ml.drop(['Tags Unknown'], 1)
#Adding the results to the master dataframe
leads = pd.concat([leads,ml1], axis=1)
# Creating dummy variables for the variable 'Lead Profile'
ml = pd.get dummies(leads['Lead Profile'], prefix='Lead Profile')
# Dropping the level called 'Unknown' which represents null/select values
ml1 = ml.drop(['Lead Profile Unknown'], 1)
#Adding the results to the master dataframe
leads = pd.concat([leads,ml1], axis=1)
# Creating dummy variables for the variable 'What is your current occupation'
ml = pd.get_dummies(leads['What is your current occupation'], prefix='What is your current
# Dropping the level called 'Unknown' which represents null/select values
ml1 = ml.drop(['What is your current occupation Unknown'], 1)
#Adding the results to the master dataframe
```

```
| leads = pd.concat([leads,mll], ax1s=1)
# Creating dummy variables for the variable 'Specialization'
ml = pd.get_dummies(leads['Specialization'], prefix='Specialization')
# Dropping the level called 'Unknown' which represents null/select values
ml1 = ml.drop(['Specialization Unknown'], 1)
#Adding the results to the master dataframe
leads = pd.concat([leads,ml1], axis=1)
# Creating dummy variables for the variable 'City'
ml = pd.get dummies(leads['City'], prefix='City')
# Dropping the level called 'Unknown' which represents null/select values
ml1 = ml.drop(['City_Unknown'], 1)
#Adding the results to the master dataframe
leads = pd.concat([leads,ml1], axis=1)
# Creating dummy variables for the variable 'Last Activity'
ml = pd.get_dummies(leads['Last Activity'], prefix='Last Activity')
# Dropping the level called 'Unknown' which represents null/select values
ml1 = ml.drop(['Last Activity_Unknown'], 1)
#Adding the results to the master dataframe
leads = pd.concat([leads,ml1], axis=1)
leads.shape
Out[70]:
```

(8611, 157)

Dropping the repeated variables

```
In [71]:
```

```
leads = leads.drop(['Lead Quality','Asymmetrique Profile Index','Asymmetrique Activity Index','Tag
s','Lead Profile',
                    'Lead Origin','What is your current occupation', 'Specialization', 'City','Last
Activity', 'Country',
                     'Lead Source','Last Notable Activity'], 1)
leads.shape
4
Out[71]:
(8611, 144)
```

In [72]:

```
leads.head()
```

Out[72]:

	Lead Number	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Search	Newspaper Article	X Education Forums	 Last Activity_Form Submitted on Website	Last Activity_Had a Phone Conversation	Acti [,] Cor
0	660737	0	0	0	0.0	0	0.0	0	0	0	 0	0	
1	660728	0	0	0	5.0	674	2.5	0	0	0	 0	0	
2	660727	0	0	1	2.0	1532	2.0	0	0	0	 0	0	
3	660719	0	0	0	1.0	305	1.0	0	0	0	 0	0	
4	660681	0	0	1	2.0	1428	1.0	0	0	0	 0	0	

5 rows × 144 columns

4 In [73]:

```
# Ensuring there are no categorical columns left in the dataframe
cols = leads.columns
num cols = leads. get numeric data().columns
list(set(cols) - set(num cols))
```

```
Out[73]:
[]
In [74]:
# Creating a copy of this origial variable in case if needed later on
original leads = leads.copy()
print(original leads.shape)
print(leads.shape)
(8611, 144)
(8611, 144)
Step 4: Test-Train Split
In [75]:
from sklearn.model_selection import train_test_split
In [76]:
\# Putting feature variable to X
X = leads.drop(['Converted','Lead Number'], axis=1)
X.head()
Out[76]:
                          Total
                                Page
                                                                                                  Last
                                                                                                              Las
     Do Do
                          Time
                                                                                 Digital
                                                                                          Activity_Form
                                Views
                                             Newspaper
                                                      Education Newspaper Advertisement ...
              TotalVisits
     Not Not
                          Spent
                                      Search
                                  Per
                                                 Article
                                                                                           Submitted on
                                                                                                           a Phon
   Email Call
                            on
                                                         Forums
                                                                                                       Conversatio
                                                                                               Website
                                 Visit
                        Website
 0
      0
           0
                    0.0
                             0
                                  0.0
                                          0
                                                    0
                                                              0
                                                                        0
                                                                                     0 ...
                                                                                                    0
                                                                                     0 ...
 1
       0
           0
                    5.0
                           674
                                  2.5
                                          0
                                                    0
                                                              0
                                                                        0
                                                                                                    0
           0
                    2.0
                                                    0
                                                              0
                                                                        0
                                                                                     0 ...
                                                                                                    0
       0
                          1532
                                  20
                           305
                                                                                                    0
                          1428
       0
                    2.0
                                  1.0
                                                                                     0 ...
5 rows × 142 columns
4
In [77]:
# Putting response variable to y
y = leads['Converted']
y.head()
Out[77]:
      0
      0
1
```

```
Name: Converted, dtype: int64
```

1

In [78]:

```
# Splitting the data into train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3,
random_state=100)
```

Step 5: Feature Scaling

```
In [79]:
```

```
from sklearn.preprocessing import StandardScaler
```

```
In [80]:
```

```
scaler = StandardScaler()

X_train[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']] =
scaler.fit_transform(X_train[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']]
)

X_train.head()
```

Out[80]:

	Do Not Email	Do Not Call	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Search	Newspaper Article	X Education Forums	Newspaper	Digital Advertisement	 Last Activity_Form Submitted on Website	
532	0	0	0.106035	0.442813	0.569927	0	0	0	0	0	 0	
7273	0	0	1.834432	2.375255	0.407388	0	0	0	0	0	 0	
4998	0	0	-1.190262	0.870128	1.262538	0	0	0	0	0	 0	
6668	0	0	0.106035	0.247575	0.569927	0	0	0	0	0	 0	
2917	0	0	-1.190262	0.870128	1.262538	0	0	0	0	0	 0	

5 rows × 142 columns

1

In [81]:

```
X_train.describe()
```

Out[81]:

	Do Not Email	Do Not Call	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Search	Newspaper Article	X Education Forums	Newspaper	Advertis
count	6027.000000	6027.000000	6.027000e+03	6.027000e+03	6.027000e+03	6027.000000	6027.0	6027.0	6027.0	6027.0
mean	0.081467	0.000166	-6.719916e- 17	-1.532613e- 17	-4.244158e- 17	0.000996	0.0	0.0	0.0	0.0
std	0.273573	0.012881	1.000083e+00	1.000083e+00	1.000083e+00	0.031539	0.0	0.0	0.0	0.0
min	0.000000	0.000000	1.190262e+00	-8.701282e- 01	1.262538e+00	0.000000	0.0	0.0	0.0	0.0
25%	0.000000	0.000000	1.190262e+00	-8.701282e- 01	1.262538e+00	0.000000	0.0	0.0	0.0	0.0
50%	0.000000	0.000000	1.060353e-01	-4.372877e- 01	-4.089475e- 02	0.000000	0.0	0.0	0.0	0.0
75%	0.000000	0.000000	5.381345e-01	7.654565e-01	5.699270e-01	0.000000	0.0	0.0	0.0	0.0
max	1.000000	1.000000	3.130729e+00	3.279615e+00	2.402392e+00	1.000000	0.0	0.0	0.0	1.0

8 rows × 142 columns

Checking the Lead Conversion Rate

```
### Checking the Lead Conversion Rate
converted = (sum(leads['Converted'])/len(leads['Converted'].index))*100
converted
```

Out[82]:

38.2185576588085

We have almost 38% lead conversion rate

Step 6: Model Building

Running Your First Training Model

In [83]:

```
import statsmodels.api as sm
```

In [84]:

```
# Logistic regression model
logm1 = sm.GLM(y_train, (sm.add_constant(X_train)), family = sm.families.Binomial())
logm1.fit().summary()
```

Out[84]:

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	6027
Model:	GLM	Df Residuals:	5897
Model Family:	Binomial	Df Model:	129
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	nan
Date:	Tue, 12 May 2020	Deviance:	nan
Time:	14:09:10	Pearson chi2:	2.76e+18
No. Iterations:	100		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	1.156e+15	3.61e+07	3.2e+07	0.000	1.16e+15	1.16e+15
Do Not Email	-6.185e+14	4.68e+06	-1.32e+08	0.000	-6.18e+14	-6.18e+14
Do Not Call	1.557e+15	6.81e+07	2.29e+07	0.000	1.56e+15	1.56e+15
TotalVisits	7.196e+13	1.5e+06	4.79e+07	0.000	7.2e+13	7.2e+13
Total Time Spent on Website	3.989e+14	1.07e+06	3.74e+08	0.000	3.99e+14	3.99e+14
Page Views Per Visit	-1.283e+14	1.63e+06	-7.88e+07	0.000	-1.28e+14	-1.28e+14
Search	2.424e+14	2.86e+07	8.48e+06	0.000	2.42e+14	2.42e+14
Newspaper Article	-5.9463	4.05e-07	-1.47e+07	0.000	-5.946	-5.946
X Education Forums	-15.4848	5.73e-07	-2.7e+07	0.000	-15.485	-15.485
Newspaper	8.8602	6.58e-07	1.35e+07	0.000	8.860	8.860
Digital Advertisement	2.29e+14	4.84e+07	4.73e+06	0.000	2.29e+14	2.29e+14
Through Recommendations	6.835e+14	4.02e+07	1.7e+07	0.000	6.83e+14	6.83e+14
A free copy of Mastering The Interview	-1.25e+14	2.93e+06	-4.27e+07	0.000	-1.25e+14	-1.25e+14
Country_Outside India	1.204e+14	5.19e+06	2.32e+07	0.000	1.2e+14	1.2e+14
Lead Source_Direct Traffic	-9.692e+14	3.71e+07	-2.61e+07	0.000	-9.69e+14	-9.69e+14
Lead Source_Facebook	-3.394e+15	5.27e+07	-6.45e+07	0.000	-3.39e+15	-3.39e+15
Lead Source Goodle	-9 231e+14	3 71e+07	-2 49e+07	0 000	-9 23e+14	-9 23e+14

	0.2010-11	J., 10·J.	2.100.01	0.000	0.200 - 1 1	0.200 - 1 1
Lead Source_Live Chat	3.227e+15	4.94e+07	6.53e+07	0.000	3.23e+15	3.23e+15
Lead Source_NC_EDM	1.969e+15	7.69e+07	2.56e+07	0.000	1.97e+15	1.97e+15
Lead Source_Olark Chat	-6.961e+14	3.7e+07	-1.88e+07	0.000	-6.96e+14	-6.96e+14
Lead Source_Organic Search	-8.926e+14	3.72e+07	-2.4e+07	0.000	-8.93e+14	-8.93e+14
Lead Source_Pay per Click Ads	-2.463e+15	7.69e+07	-3.2e+07	0.000	-2.46e+15	-2.46e+15
Lead Source_Press_Release	-1.222e+15	7.75e+07	-1.58e+07	0.000	-1.22e+15	-1.22e+15
Lead Source_Reference	-6.647e+14	1.39e+07	-4.8e+07	0.000	-6.65e+14	-6.65e+14
Lead Source_Referral Sites	-1.011e+15	3.79e+07	-2.67e+07	0.000	-1.01e+15	-1.01e+15
Lead Source_Social Media	-6.075e+14	7.92e+07	-7.67e+06	0.000	-6.08e+14	-6.08e+14
Lead Source_WeLearn	-27.7316	2.52e-07	-1.1e+08	0.000	-27.732	-27.732
Lead Source_Welingak Website	4.169e+15	1.5e+07	2.79e+08	0.000	4.17e+15	4.17e+15
Lead Source bing	-3.701e+14	4.62e+07	-8e+06	0.000	-3.7e+14	-3.7e+14
Lead Source_blog	9.1873	3.99e-07	2.3e+07	0.000	9.187	9.187
Lead Source google	-4.405e+15	6.08e+07	-7.24e+07	0.000	-4.4e+15	-4.4e+15
Lead Source testone	-4.097e+15	7.73e+07	-5.3e+07	0.000	-4.1e+15	-4.1e+15
Lead Source welearnblog Home	12.1421	3.07e-07	3.95e+07	0.000	12.142	12.142
Lead Source_wereambiog_nome Lead Source_youtubechannel	-5.185e+15	7.8e+07	-6.64e+07	0.000	-5.19e+15	-5.19e+15
_	-1.048e+14		-0.04e+07	0.000	-1.05e+14	-1.05e+14
Lead Origin_Landing Page Submission			-2.47e+07	0.000	-4.4e+14	
Lead Origin_Lead Add Form		3.67e+07				-4.4e+14
Lead Origin_Lead Import	2.027e+15	5.24e+07	3.86e+07	0.000	2.03e+15	2.03e+15
Lead Origin_Quick Add Form		7.77e+07	4.34e+07	0.000	3.38e+15	3.38e+15
Last Notable Activity_Email Bounced	-2.794e+14	1.42e+07	-1.96e+07	0.000	-2.79e+14	-2.79e+14
Last Notable Activity_Email Link Clicked	-9.328e+14	1.34e+07	-6.98e+07	0.000	-9.33e+14	-9.33e+14
Last Notable Activity_Email Marked Spam		2.38e+07	7.23e+07	0.000	1.72e+15	1.72e+15
Last Notable Activity_Email Opened	-6.302e+14	1.01e+07	-6.24e+07	0.000	-6.3e+14	-6.3e+14
Last Notable Activity_Email Received	-1.334e+15	8.8e+07	-1.52e+07	0.000	-1.33e+15	-1.33e+15
Last Notable Activity_Form Submitted on Website	3.3288	2e-07	1.66e+07	0.000	3.329	3.329
Last Notable Activity_Had a Phone Conversation	5.612e+15	3.54e+07	1.59e+08	0.000	5.61e+15	5.61e+15
Last Notable Activity_Modified	-9.107e+14	9.5e+06	-9.59e+07	0.000	-9.11e+14	-9.11e+14
Last Notable Activity_Olark Chat Conversation	-1.272e+15	1.13e+07	-1.12e+08	0.000	-1.27e+15	-1.27e+15
Last Notable Activity_Page Visited on Website	-7.5e+14	1.16e+07	-6.46e+07	0.000	-7.5e+14	-7.5e+14
Last Notable Activity_Resubscribed to emails	1.137e+15	3.3e+07	3.44e+07	0.000	1.14e+15	1.14e+15
Last Notable Activity_SMS Sent	1.219e+14	1.02e+07	1.2e+07	0.000	1.22e+14	1.22e+14
Last Notable Activity_Unreachable	-8.203e+14	1.88e+07	-4.37e+07	0.000	-8.2e+14	-8.2e+14
Last Notable Activity_Unsubscribed	-5.052e+14	2.49e+07	-2.03e+07	0.000	-5.05e+14	-5.05e+14
Last Notable Activity_View in browser link Clicked	0.1942	2.08e-07	9.35e+05	0.000	0.194	0.194
Lead Quality_High in Relevance	1.245e+12	5.53e+06	2.25e+05	0.000	1.24e+12	1.24e+12
Lead Quality_Low in Relevance	-5.385e+13	5.38e+06	-1e+07	0.000	-5.38e+13	-5.38e+13
Lead Quality_Might be	-1.548e+14	4.01e+06	-3.86e+07	0.000	-1.55e+14	-1.55e+14
Lead Quality_Not Sure	3.556e+14	3.69e+06	9.65e+07	0.000	3.56e+14	3.56e+14
Lead Quality_Worst	-3.588e+14	5.65e+06	-6.35e+07	0.000	-3.59e+14	-3.59e+14
Asymmetrique Profile Index_01.High	-1.077e+14	3.85e+06	-2.8e+07	0.000	-1.08e+14	-1.08e+14
Asymmetrique Profile Index_02.Medium	-9.874e+13	3.32e+06	-2.97e+07	0.000	-9.87e+13	-9.87e+13
Asymmetrique Profile Index_03.Low	-7.681e+13	1.44e+07	-5.34e+06	0.000	-7.68e+13	-7.68e+13
Asymmetrique Activity Index_01.High	-1.104e+13	4.13e+06	-2.67e+06	0.000	-1.1e+13	-1.1e+13
Asymmetrique Activity Index_02.Medium	1.253e+14	3.33e+06	3.77e+07	0.000	1.25e+14	1.25e+14
Asymmetrique Activity Index_03.Low	-3.976e+14	5e+06	-7.95e+07	0.000	-3.98e+14	-3.98e+14
Tags_Already a student	-6.267e+13	6.54e+06	-9.58e+06	0.000	-6.27e+13	-6.27e+13
Tags_Busy	1.605e+15	7.4e+06	2.17e+08	0.000	1.6e+15	1.6e+15
Tags_Closed by Horizzon	1.606e+15	6.85e+06	2.34e+08	0.000	1.61e+15	1.61e+15
= = •						

Tags_Diploma holder (Not Eligible)	-1.792e+15	1.08e+07	-1.66e+08	0.000	-1.79e+15	-1.79e+15
Tags_Graduation in progress	6.651e+14	9.32e+06	7.13e+07	0.000	6.65e+14	6.65e+14
Tags_In confusion whether part time or DLP	-3.731e+15	3.39e+07	-1.1e+08	0.000	-3.73e+15	-3.73e+15
Tags_Interested in full time MBA	4.243e+13	8.88e+06	4.78e+06	0.000	4.24e+13	4.24e+13
Tags_Interested in Next batch	3.904e+15	3.41e+07	1.14e+08	0.000	3.9e+15	3.9e+15
Tags_Interested in other courses	6.568e+13	5.12e+06	1.28e+07	0.000	6.57e+13	6.57e+13
Tags_Lateral student	5.082e+15	4.78e+07	1.06e+08	0.000	5.08e+15	5.08e+15
Tags_Lost to EINS	1.773e+15	7.03e+06	2.52e+08	0.000	1.77e+15	1.77e+15
Tags_Lost to Others	-1.353e+15	2.62e+07	-5.16e+07	0.000	-1.35e+15	-1.35e+15
Tags_Not doing further education	2.747e+14	8.11e+06	3.39e+07	0.000	2.75e+14	2.75e+14
Tags_Recognition issue (DEC approval)	-4.164e+15	6.91e+07	-6.03e+07	0.000	-4.16e+15	-4.16e+15
Tags_Ringing	-7.029e+14	4.31e+06	-1.63e+08	0.000	-7.03e+14	-7.03e+14
Tags_Shall take in the next coming month	-1.386e+15	4.78e+07	-2.9e+07	0.000	-1.39e+15	-1.39e+15
Tags_Still Thinking	-3.871e+15	4.84e+07	-8e+07	0.000	-3.87e+15	-3.87e+15
Tags_University not recognized	8.864e+14	6.8e+07	1.3e+07	0.000	8.86e+14	8.86e+14
Tags_Want to take admission but has financial problems	8.449e+14	3.96e+07	2.14e+07	0.000	8.45e+14	8.45e+14
Tags_Will revert after reading the email	1.025e+15	4.95e+06	2.07e+08	0.000	1.03e+15	1.03e+15
Tags_in touch with EINS	1.194e+15	2.28e+07	5.24e+07	0.000	1.19e+15	1.19e+15
Tags_invalid number	-3.392e+15	1.07e+07	-3.18e+08	0.000	-3.39e+15	-3.39e+15
Tags_number not provided	-2.815e+15	1.78e+07	-1.58e+08	0.000	-2.82e+15	-2.82e+15
Tags_opp hangup	-4.173e+14	1.5e+07	-2.79e+07	0.000	-4.17e+14	-4.17e+14
Tags_switched off	-6.546e+14	6.57e+06	-9.97e+07	0.000	-6.55e+14	-6.55e+14
Tags_wrong number given	-2.368e+15	1.31e+07	-1.81e+08	0.000	-2.37e+15	-2.37e+15
Lead Profile_Dual Specialization Student	2.013e+15	1.98e+07	1.02e+08	0.000	2.01e+15	2.01e+15
Lead Profile_Lateral Student	1.7e+15	1.85e+07	9.19e+07	0.000	1.7e+15	1.7e+15
Lead Profile_Other Leads	3.806e+14	4.72e+06	8.06e+07	0.000	3.81e+14	3.81e+14
Lead Profile_Potential Lead	2.747e+14	3.31e+06	8.31e+07	0.000	2.75e+14	2.75e+14
Lead Profile_Student of SomeSchool	-1.712e+14	8.49e+06	-2.02e+07	0.000	-1.71e+14	-1.71e+14
What is your current occupation_Businessman	-1.879e+15	3.94e+07	-4.77e+07	0.000	-1.88e+15	-1.88e+15
What is your current occupation_Housewife	3.39e+15	2.81e+07	1.21e+08	0.000	3.39e+15	3.39e+15
What is your current occupation_Other	-1.775e+14	2.2e+07	-8.07e+06	0.000	-1.77e+14	-1.77e+14
What is your current occupation_Student	-5.603e+14	7.31e+06	-7.67e+07	0.000	-5.6e+14	-5.6e+14
What is your current occupation_Unemployed	-6.18e+14	4.2e+06	-1.47e+08	0.000	-6.18e+14	-6.18e+14
What is your current occupation_Working Professional	-5.58e+14	5.63e+06	-9.91e+07	0.000	-5.58e+14	-5.58e+14
Specialization_Banking, Investment And Insurance	3.793e+14	6.85e+06	5.54e+07	0.000	3.79e+14	3.79e+14
Specialization_Business Administration	3.388e+14	6.61e+06	5.13e+07	0.000	3.39e+14	3.39e+14
Specialization_E-Business	3.985e+14	1.28e+07	3.11e+07	0.000	3.98e+14	3.98e+14
Specialization_E-COMMERCE	6.38e+14	9.59e+06	6.65e+07	0.000	6.38e+14	6.38e+14
Specialization_Finance Management	1.588e+14	5.77e+06	2.75e+07	0.000	1.59e+14	1.59e+14
Specialization_Healthcare Management	2.622e+14	9.07e+06	2.89e+07	0.000	2.62e+14	2.62e+14
Specialization_Hospitality Management	1.8e+14	9.34e+06	1.93e+07	0.000	1.8e+14	1.8e+14
Specialization_Human Resource Management	2.464e+14	5.8e+06	4.25e+07	0.000	2.46e+14	2.46e+14
Specialization_IT Projects Management	3.386e+14	6.86e+06	4.94e+07	0.000	3.39e+14	3.39e+14
Specialization_International Business	3.924e+13	8.13e+06	4.83e+06	0.000	3.92e+13	3.92e+13
Specialization_Marketing Management	3.104e+14	5.67e+06	5.47e+07	0.000	3.1e+14	3.1e+14
Specialization_Media and Advertising	-9.269e+13	8.04e+06	-1.15e+07	0.000	-9.27e+13	-9.27e+13
Specialization_Operations Management	2.929e+14	6.26e+06	4.68e+07	0.000	2.93e+14	2.93e+14
Specialization_Retail Management	1.539e+14	1.03e+07	1.5e+07	0.000	1.54e+14	1.54e+14
Specialization_Rural and Agribusiness	5.052e+13	1.16e+07	4.36e+06	0.000	5.05e+13	5.05e+13
Specialization Select	1.247e+14	4.15e+06	3e+07	0.000	1.25e+14	1.25e+14

```
Specialization Services Excellence 7.193e+14 1.52e+07 4.72e+07 0.000 7.19e+14 7.19e+14
Specialization_Supply Chain Management -6.971e+13 6.9e+06 -1.01e+07 0.000 -6.97e+13 -6.97e+13
      Specialization_Travel and Tourism
                                     1.102e+14 8.34e+06 1.32e+07 0.000
                                                                          1.1e+14
                        City_Mumbai -1.493e+14 4.68e+06 -3.19e+07 0.000 -1.49e+14 -1.49e+14
                     City_Other Cities -3.896e+13 5.49e+06 -7.1e+06 0.000
                                                                         -3.9e+13 -3.9e+13
        City_Other Cities of Maharashtra
                                      -9.99e+13 6.07e+06 -1.65e+07 0.000 -9.99e+13 -9.99e+13
               City_Other Metro Cities
                                      -8.16e+13 6.28e+06 -1.3e+07 0.000 -8.16e+13 -8.16e+13
                City_Thane & Outskirts -1.486e+14 5.28e+06 -2.81e+07 0.000 -1.49e+14 -1.49e+14
                     City_Tier II Cities -3.927e+13 1.05e+07 -3.75e+06 0.000 -3.93e+13 -3.93e+13
       Last Activity Approached upfront
                                     1.845e+15 2.91e+07 6.34e+07 0.000 1.85e+15 1.85e+15
        Last Activity_Converted to Lead -6.011e+13 1.03e+07 -5.83e+06 0.000 -6.01e+13 -6.01e+13
           Last Activity_Email Bounced
                                     2.651e+14 1.14e+07 2.33e+07 0.000 2.65e+14 2.65e+14
        Last Activity_Email Link Clicked 3.035e+14 1.21e+07 2.5e+07 0.000 3.03e+14 3.03e+14
       Last Activity_Email Marked Spam
                                      1.72e+15 2.38e+07 7.23e+07 0.000 1.72e+15 1.72e+15
            Last Activity_Email Opened
                                     1.705e+14 9.68e+06 1.76e+07 0.000 1.71e+14 1.71e+14
           Last Activity Email Received 4.438e+15 6.8e+07 6.53e+07 0.000 4.44e+15 4.44e+15
Last Activity Form Submitted on Website
                                     1.6e+14
                                                                                     1.6e+14
 Last Activity_Had a Phone Conversation -9.268e+14 2.31e+07 -4.01e+07 0.000 -9.27e+14 -9.27e+14
   Last Activity_Olark Chat Conversation
                                     1.663e+13  9.84e+06  1.69e+06  0.000  1.66e+13  1.66e+13
   Last Activity_Page Visited on Website
                                     1.353e+14 1.04e+07
                                                         1.3e+07 0.000 1.35e+14 1.35e+14
    Last Activity_Resubscribed to emails 1.137e+15 3.3e+07 3.44e+07 0.000 1.14e+15 1.14e+15
               Last Activity_SMS Sent 5.358e+14 9.72e+06 5.51e+07 0.000 5.36e+14 5.36e+14
             Last Activity_Unreachable 3.613e+14 1.39e+07 2.6e+07 0.000 3.61e+14 3.61e+14
            Last Activity_Unsubscribed 7.594e+14 2.36e+07 3.22e+07 0.000 7.59e+14 7.59e+14
Last Activity_View in browser link Clicked -4.255e+14 4.86e+07 -8.75e+06 0.000 -4.26e+14 -4.26e+14
Last Activity_Visited Booth in Tradeshow
                                           0
                                                    0
                                                                     nan
                                                                                0
                                                              nan
```

Step 7: Feature Selection Using RFE

```
In [85]:

from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()

In [86]:

from sklearn.feature_selection import RFE

rfe = RFE(logreg, 20)  # running RFE with 20 variables as output

rfe = rfe.fit(X_train, y_train)

In [87]:

rfe.support_
Out[87]:
array([False, False, False, False, False, False, False, False, False, False,
```

False, True, True, False, True, False, True, False, True, False, True, False, F

```
False, Fa
```

In [88]:

```
list(zip(X_train.columns, rfe.support_, rfe.ranking_))
```

Out[88]:

```
[('Do Not Email', False, 5),
('Do Not Call', False, 75),
 ('TotalVisits', False, 58),
 ('Total Time Spent on Website', False, 9),
 ('Page Views Per Visit', False, 55),
 ('Search', False, 22),
 ('Newspaper Article', False, 117),
('X Education Forums', False, 116),
 ('Newspaper', False, 122),
 ('Digital Advertisement', False, 91),
 ('Through Recommendations', False, 98),
 ('A free copy of Mastering The Interview', False, 62),
 ('Country Outside India', False, 84),
 ('Lead Source Direct Traffic', False, 41),
 ('Lead Source_Facebook', False, 25),
 ('Lead Source_Google', False, 44),
 ('Lead Source Live Chat', False, 110),
 ('Lead Source NC EDM', False, 19),
 ('Lead Source Olark Chat', False, 8),
 ('Lead Source_Organic Search', False, 42),
 ('Lead Source_Pay per Click Ads', False, 111),
 ('Lead Source Press Release', False, 114),
 ('Lead Source Reference', False, 17),
 ('Lead Source Referral Sites', False, 43),
 ('Lead Source Social Media', False, 109),
 ('Lead Source_WeLearn', False, 115),
 ('Lead Source_Welingak Website', True, 1),
 ('Lead Source bing', False, 90),
 ('Lead Source_blog', False, 118),
('Lead Source google', False, 70),
 ('Lead Source_testone', False, 105),
 ('Lead Source_welearnblog_Home', False, 119),
 ('Lead Source_youtubechannel', False, 81),
 ('Lead Origin Landing Page Submission', False, 101),
 ('Lead Origin Lead Add Form', False, 7),
 ('Lead Origin_Lead Import', False, 50),
 ('Lead Origin_Quick Add Form', False, 53),
 ('Last Notable Activity_Email Bounced', False, 47),
 ('Last Notable Activity_Email Link Clicked', False, 26),
 ('Last Notable Activity_Email Marked Spam', False, 80),
 ('Last Notable Activity Email Opened', False, 103),
 ('Last Notable Activity_Email Received', False, 107),
 ('Last Notable Activity_Form Submitted on Website', False, 120),
 ('Last Notable Activity_Had a Phone Conversation', False, 27),
 ('Last Notable Activity Modified', False, 2),
 ('Last Notable Activity_Olark Chat Conversation', False, 4),
 ('Last Notable Activity Page Visited on Website', False, 79),
 ('Last Notable Activity_Resubscribed to emails', False, 93),
 ('Last Notable Activity_SMS Sent', False, 21),
 ('Last Notable Activity_Unreachable', False, 71),
 ('Last Notable Activity_Unsubscribed', False, 46),
 ('Last Notable Activity View in browser link Clicked', False, 121),
 ('Lead Quality_High in Relevance', False, 52),
 ('Lead Quality_Low in Relevance', False, 85),
 ('Lead Quality Might be', False, 18),
 ('Lead Quality Not Sure', False, 106),
 ('Lead Quality Worst', True, 1),
 ('Asymmetrique Profile Index 01. High', False, 76),
 ('Asymmetrique Profile Index_02.Medium', False, 89),
 ('Asymmetrique Profile Index 03.Low', False, 88),
 ('Asymmetrique Activity Index 01. High', False, 59),
 ('Asymmetrique Activity Index 02.Medium', False, 72),
 ('Asymmetrique Activity Index 03.Low', True, 1),
 ('Tags_Already a student', True, 1),
```

```
('Tags Busy', False, 34),
('Tags Closed by Horizzon', True, 1),
('Tags_Diploma holder (Not Eligible)', True, 1),
('Tags_Graduation in progress', False, 11),
('Tags_In confusion whether part time or DLP', False, 10),
('Tags Interested in full time MBA', True, 1),
('Tags Interested in Next batch', False, 49),
('Tags Interested in other courses', True, 1),
('Tags Lateral student', False, 45),
('Tags Lost to EINS', True, 1),
('Tags Lost to Others', False, 33),
('Tags Not doing further education', True, 1),
('Tags Recognition issue (DEC approval)', False, 32),
('Tags Ringing', True, 1),
('Tags Shall take in the next coming month', False, 113),
('Tags Still Thinking', False, 36),
('Tags University not recognized', False, 82),
('Tags_Want to take admission but has financial problems', False, 48),
('Tags Will revert after reading the email', True, 1),
('Tags in touch with EINS', False, 104),
('Tags invalid number', True, 1),
('Tags number not provided', True, 1),
('Tags_opp hangup', True, 1),
('Tags switched off', True, 1),
('Tags wrong number given', True, 1),
('Lead Profile_Dual Specialization Student', False, 40),
('Lead Profile Lateral Student', False, 15),
('Lead Profile Other Leads', False, 37),
('Lead Profile_Potential Lead', False, 23),
('Lead Profile_Student of SomeSchool', False, 60),
('What is your current occupation Businessman', False, 35),
('What is your current occupation Housewife', False, 16),
('What is your current occupation Other', False, 12),
('What is your current occupation_Student', False, 3),
('What is your current occupation_Unemployed', True, 1),
('What is your current occupation_Working Professional', True, 1),
('Specialization_Banking, Investment And Insurance', False, 54),
('Specialization Business Administration', False, 63),
('Specialization_E-Business', False, 67),
('Specialization_E-COMMERCE', False, 29),
('Specialization Finance Management', False, 78),
('Specialization Healthcare Management', False, 87),
('Specialization Hospitality Management', False, 68),
('Specialization Human Resource Management', False, 61),
('Specialization_IT Projects Management', False, 56),
('Specialization International Business', False, 31),
('Specialization Marketing Management', False, 66),
('Specialization Media and Advertising', False, 20),
('Specialization Operations Management', False, 69),
('Specialization Retail Management', False, 65),
('Specialization_Rural and Agribusiness', False, 112),
('Specialization Select', False, 24),
('Specialization Services Excellence', False, 64),
('Specialization Supply Chain Management', False, 14),
('Specialization Travel and Tourism', False, 97),
('City_Mumbai', False, 86),
('City Other Cities', False, 77),
('City Other Cities of Maharashtra', False, 102),
('City_Other Metro Cities', False, 108),
('City Thane & Outskirts', False, 83),
('City Tier II Cities', False, 96),
('Last Activity_Approached upfront', False, 73),
('Last Activity Converted to Lead', False, 30),
('Last Activity_Email Bounced', False, 38),
('Last Activity_Email Link Clicked', False, 39),
('Last Activity Email Marked Spam', False, 74),
('Last Activity_Email Opened', False, 95),
('Last Activity_Email Received', False, 100),
('Last Activity_Form Submitted on Website', False, 94),
('Last Activity_Had a Phone Conversation', False, 6),
('Last Activity Olark Chat Conversation', False, 28),
('Last Activity_Page Visited on Website', False, 57),
('Last Activity_Resubscribed to emails', False, 92),
('Last Activity SMS Sent', True, 1),
('Last Activity Unreachable', False, 51),
('Last Activity Unsubscribed', False, 13),
('Last Activity_View in browser link Clicked', False, 99),
```

```
('Last Activity Visited Booth in Tradeshow', False, 123)]
In [89]:
col = X train.columns[rfe.support ]
col
Out[89]:
Index(['Lead Source Welingak Website', 'Lead Quality Worst',
        'Asymmetrique Activity Index_03.Low', 'Tags_Already a student',
        'Tags_Closed by Horizzon', 'Tags_Diploma holder (Not Eligible)',
        'Tags Interested in full time MBA', 'Tags Interested in other courses',
        'Tags_Lost to EINS', 'Tags_Not doing further education', 'Tags_Ringing',
        'Tags Will revert after reading the email', 'Tags invalid number',
        'Tags_number not provided', 'Tags_opp hangup', 'Tags_switched off', 'Tags_wrong number given', 'What is your current occupation_Unemployed',
        'What is your current occupation Working Professional',
        'Last Activity SMS Sent'],
      dtype='object')
In [90]:
X_train.columns[~rfe.support_]
Out[90]:
Index(['Do Not Email', 'Do Not Call', 'TotalVisits',
        'Total Time Spent on Website', 'Page Views Per Visit', 'Search',
        'Newspaper Article', 'X Education Forums', 'Newspaper',
        'Digital Advertisement',
        'Last Activity_Email Received',
        'Last Activity Form Submitted on Website',
        'Last Activity Had a Phone Conversation',
        'Last Activity_Olark Chat Conversation',
        'Last Activity_Page Visited on Website',
        'Last Activity_Resubscribed to emails', 'Last Activity Unreachable',
        'Last Activity_Unsubscribed',
        'Last Activity_View in browser link Clicked',
        'Last Activity_Visited Booth in Tradeshow'],
      dtype='object', length=122)
In [91]:
X train sm = sm.add constant(X train[col])
logm2 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm2.fit()
res.summary()
Out[91]:
Generalized Linear Model Regression Results
   Dep. Variable:
                     Converted No. Observations:
                                                6027
         Model:
                                 Df Residuals:
                                                6006
                         GLM
   Model Family:
                                                  20
                      Binomial
                                     Df Model:
   Link Function:
                                               1 0000
                         logit
                                       Scale:
                         IRLS
        Method:
                                Log-Likelihood:
                                              -1191.8
                   Tue, 12 May
          Date:
                                    Deviance:
                                               2383.6
                         2020
          Time:
                      14:10:26
                                 Pearson chi2: 8.66e+03
   No. Iterations:
                          24
 Covariance Type:
                     nonrobust
```

coef

const -2.7110

std err

Lead Source_Welingak Website 24.4713 1.82e+04 0.001 0.999 -3.57e+04 3.57e+04

[0.025

z P>|z|

0.096 -28.118 0.000

0.9751

- -						
Lead Quality_Worst	-2.5401	0.781	-3.254	0.001	-4.070	-1.010
Asymmetrique Activity Index_03.Low	-2.1743	0.364	-5.969	0.000	-2.888	-1.460
Tags_Already a student	-3.8715	0.729	-5.312	0.000	-5.300	-2.443
Tags_Closed by Horizzon	5.3108	0.723	7.343	0.000	3.893	6.728
Tags_Diploma holder (Not Eligible)	-24.4842	2.88e+04	-0.001	0.999	-5.64e+04	5.64e+04
Tags_Interested in full time MBA	-3.7801	1.031	-3.667	0.000	-5.801	-1.760
Tags_Interested in other courses	-3.0495	0.346	-8.818	0.000	-3.727	-2.372
Tags_Lost to EINS	6.5069	0.810	8.035	0.000	4.920	8.094
Tags_Not doing further education	-3.7519	1.034	-3.627	0.000	-5.779	-1.725
Tags_Ringing	-4.6608	0.279	-16.682	0.000	-5.208	-4.113
Tags_Will revert after reading the email	3.6081	0.192	18.807	0.000	3.232	3.984
Tags_invalid number	-25.6820	2.91e+04	-0.001	0.999	-5.7e+04	5.69e+04
Tags_number not provided	-26.2965	4.89e+04	-0.001	1.000	-9.58e+04	9.58e+04
Tags_opp hangup	-3.5660	1.064	-3.352	0.001	-5.651	-1.481
Tags_switched off	-4.9004	0.600	-8.171	0.000	-6.076	-3.725
Tags_wrong number given	-26.2116	3.61e+04	-0.001	0.999	-7.08e+04	7.07e+04
What is your current occupation_Unemployed	2.2356	0.121	18.461	0.000	1.998	2.473
What is your current occupation_Working Professional	2.0585	0.343	5.994	0.000	1.385	2.732
Last Activity_SMS Sent	2.2508	0.118	19.100	0.000	2.020	2.482

In [92]:

```
# Getting the predicted values on the train set
y_train_pred = res.predict(X_train_sm)
y_train_pred[:10]
```

Out[92]:

```
532
      0.000526
     0.218047
7273
4998
      0.062329
6668
      0.005846
     0.021581
2917
     0.005846
1668
8738 0.066012
     0.005846
1474
4583
      0.386943
      0.855130
1786
dtype: float64
```

In [93]:

```
# reshaping the numpy array containing predicted values
y_train_pred = y_train_pred.values.reshape(-1)
y_train_pred[:10]
```

Out[93]:

```
array([5.25830490e-04, 2.18047166e-01, 6.23292574e-02, 5.84604584e-03, 2.15805406e-02, 5.84604584e-03, 6.60121891e-02, 5.84604584e-03, 3.86943418e-01, 8.55130457e-01])
```

Creating a dataframe with the actual churn flag and the predicted probabilities

In [94]:

```
y_train_pred_final = pd.DataFrame({'Converted':y_train.values, 'Conversion_Prob':y_train_pred})
y_train_pred_final['LeadID'] = y_train.index
y_train_pred_final.head()
```

	Converted	Conversion_Prob	LeadID
0	0	0.000526	532
1	1	0.218047	7273
2	0	0.062329	4998
3	0	0.005846	6668
4	0	0.021581	2917

Creating new column 'predicted' with 1 if Churn_Prob > 0.5 else 0

```
In [95]:
```

```
y_train_pred_final['predicted'] = y_train_pred_final.Conversion_Prob.map(lambda x: 1 if x > 0.5 els
e 0)
# Let's see the head
y_train_pred_final.head()
```

Out[95]:

	Converted	Conversion_Prob	LeadID	predicted
0	0	0.000526	532	0
1	1	0.218047	7273	0
2	0	0.062329	4998	0
3	0	0.005846	6668	0
4	0	0.021581	2917	0

```
In [96]:
```

```
from sklearn import metrics
```

Creating Confusion Metrics

```
In [97]:
```

```
# Confusion matrix
confusion = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final.predicted )
print(confusion)

[[3659 85]
[ 379 1904]]
```

In [98]:

```
# Let's check the overall accuracy.
print(metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.predicted))
```

0.9230131076820972

Checking VIFs

```
In [99]:
```

```
# Check for the VIF values of the feature variables.

from statsmodels.stats.outliers_influence import variance_inflation_factor
```

```
In [100]:
```

```
vif = pd.DataFrame()
```

```
vif['Features'] = X_train[col].columns
vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col].shape[1
])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[100]:

	Features	VIF
9	Tags_Not doing further education	1.30
4	Tags_Closed by Horizzon	1.28
15	Tags_switched off	1.19
6	Tags_Interested in full time MBA	1.11
0	Lead Source_Welingak Website	1.09
5	Tags_Diploma holder (Not Eligible)	1.09
2	Asymmetrique Activity Index_03.Low	1.07
8	Tags_Lost to EINS	1.07
12	Tags_invalid number	1.07
16	Tags_wrong number given	1.04
14	Tags_opp hangup	1.03
13	Tags_number not provided	1.02
18	What is your current occupation_Working Profes	0.76
10	Tags_Ringing	0.62
1	Lead Quality_Worst	0.62
7	Tags_Interested in other courses	0.35
3	Tags_Already a student	0.27
11	Tags_Will revert after reading the email	0.13
17	What is your current occupation_Unemployed	0.05
19	Last Activity_SMS Sent	0.01

Clearly there is not much multicollinearity present in our model among the selected features as per their VIF values.

In [101]:

```
# Slightly alter the figure size to make it more horizontal.
plt.figure(figsize=(20,15), dpi=80, facecolor='w', edgecolor='k', frameon='True')

cor = X_train[col].corr()
sns.heatmap(cor, annot=True, cmap="YlGnBu")

plt.tight_layout()
plt.show()
```


0.8

0.6

Dropping the Variable and Updating the Model

In [102]:

```
col = col.drop('Tags_number not provided', 1)
col
```

Out[102]:

In [103]:

```
X_train_sm = sm.add_constant(X_train[col])
logm3 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm3.fit()
res.summary()
```

Out[103]:

Generalized Linear Model Regression Results

Dep. Variable:ConvertedNo. Observations:6027Model:GLMDf Residuals:6007Model Family:BinomialDf Model:19Link Function:logitScale:1.0000Method:IRLSLog-Likelihood:-1207.1Date:Tue, 12 May 2020Deviance:2414.1Time:14:10:49Pearson chi2:8.41e+03No. Iterations:24Covariance Type:nonrobust				
Model Family: Binomial Df Model: 19 Link Function: logit Scale: 1.0000 Method: IRLS Log-Likelihood: -1207.1 Date: Tue, 12 May 2020 Deviance: 2414.1 Time: 14:10:49 Pearson chi2: 8.41e+03 No. Iterations: 24	6027	No. Observations:	Converted	Dep. Variable:
Link Function: logit Scale: 1.0000 Method: IRLS Log-Likelihood: -1207.1 Date: Tue, 12 May 2020 Deviance: 2414.1 Time: 14:10:49 Pearson chi2: 8.41e+03 No. Iterations: 24	6007	Df Residuals:	GLM	Model:
Method: IRLS Log-Likelihood: -1207.1 Date: Tue, 12 May 2020 Deviance: 2414.1 Time: 14:10:49 Pearson chi2: 8.41e+03 No. Iterations: 24	19	Df Model:	Binomial	Model Family:
Date: Tue, 12 May 2020 Deviance: 2414.1 Time: 14:10:49 Pearson chi2: 8.41e+03 No. Iterations: 24	1.0000	Scale:	logit	Link Function:
Date: 2020 Deviance: 2414.1 Time: 14:10:49 Pearson chi2: 8.41e+03 No. Iterations: 24	-1207.1	Log-Likelihood:	IRLS	Method:
No. Iterations: 24	2414.1	Deviance:		Date:
	8.41e+03	Pearson chi2:	14:10:49	Time:
Covariance Type: nonrobust			24	No. Iterations:
			nonrobust	Covariance Type:

	coef	std err	z	P> z	[0.025	0.975]
const	-2.6970	0.096	-28.194	0.000	-2.884	-2.510
l ead Source Welingak Website	24 5357	1 820+04	0 001	n gaa	-3 560+04	3 57△+04

```
0.363
                                                                   -5.918 0.000
                                                                                  -2.862
                Asymmetrique Activity Index_03.Low
                                                 -2.1501
                                                                                           -1.438
                                                           0.728
                                                                  -5 224 0 000
                                                                                  -5 233
                                                                                           -2 378
                          Tags_Already a student
                                                 -3 8057
                         Tags_Closed by Horizzon
                                                 5.3495
                                                            0.723
                                                                   7.402 0.000
                                                                                   3.933
                                                                                            6.766
                 Tags_Diploma holder (Not Eligible) -24.4179 2.88e+04
                                                                   -0.001 0.999 -5.65e+04 5.65e+04
                   Tags_Interested in full time MBA
                                                 -3.7095
                                                            1.030
                                                                   -3.602 0.000
                                                                                  -5.728
                                                                                           -1.691
                   Tags_Interested in other courses
                                                 -2.9795
                                                            0.345
                                                                   -8.637 0.000
                                                                                  -3.656
                                                                                           -2.303
                               Tags_Lost to EINS
                                                 6 4945
                                                           0.808
                                                                   8 037 0 000
                                                                                   4 911
                                                                                            8 078
                  Tags_Not doing further education
                                                 -3.6806
                                                            1.033
                                                                   -3.562 0.000
                                                                                  -5.706
                                                                                           -1.655
                                                 -4.5710
                                                            0.278 -16.432 0.000
                                                                                   -5.116
                                                                                           -4.026
                                   Tags_Ringing
              Tags_Will revert after reading the email
                                                 3.6473
                                                            0.191
                                                                  19.098 0.000
                                                                                   3.273
                                                                                            4.022
                                                                                          5.7e+04
                             Tags_invalid number -25.6008 2.91e+04
                                                                   -0.001 0.999 -5.71e+04
                                                 -3.4805
                                                            1.063
                                                                   -3.276 0.001
                                                                                  -5.563
                                                                                           -1.398
                               Tags_opp hangup
                               Tags_switched off
                                                 -4.8088
                                                            0.599
                                                                   -8.027 0.000
                                                                                   -5.983
                                                                                            -3.635
                        Tags_wrong number given -26.1228 3.61e+04
                                                                   -0.001 0.999 -7.09e+04 7.08e+04
        What is your current occupation_Unemployed
                                                 2.1601
                                                            0.120
                                                                  18.073 0.000
                                                                                   1.926
                                                                                            2.394
           What is your current occupation Working
                                                 2.0128
                                                            0.343
                                                                   5.863 0.000
                                                                                            2.686
                                                                                   1.340
                                    Professional
                           Last Activity_SMS Sent
                                                 2.2159
                                                            0.116 19.029 0.000
                                                                                   1.988
                                                                                            2.444
In [104]:
# Getting the predicted values on the train set
y train pred = res.predict(X train sm)
y_train_pred[:10]
Out[104]:
         0.000555
532
         0.231508
7273
4998
         0.063150
6668
         0.006013
2917
         0.021590
1668
         0.006013
         0.063748
8738
1474
         0.006013
4583
         0.381987
1786
         0.842772
dtype: float64
In [105]:
y train pred = y train pred.values.reshape(-1)
y_train_pred[:10]
Out[105]:
array([5.55160193e-04, 2.31508255e-01, 6.31503774e-02, 6.01278867e-03,
        2.15896301e-02, 6.01278867e-03, 6.37483580e-02, 6.01278867e-03,
        3.81986714e-01, 8.42772091e-01])
In [106]:
y_train_pred_final = pd.DataFrame(('Converted':y_train.values, 'Conversion_Prob':y_train_pred))
y train pred final['LeadID'] = y train.index
y train pred final.head()
Out[106]:
```

Leau Gourde_Treinigan trepsite 27.0007 1.026107 0.001 0.000 -0.006107 0.076107

0.781

-3.217 0.001

-4 044

-0.982

-2.5132

Lead Quality Worst

Converted Conversion_Prob LeadID

0.000555

532

0

0

```
        1
        Converted
        Conversion_Prob
        LeadID

        2
        0
        0.063150
        4998

        3
        0
        0.006013
        6668

        4
        0
        0.021590
        2917
```

In [107]:

```
y_train_pred_final['predicted'] = y_train_pred_final.Conversion_Prob.map(lambda x: 1 if x > 0.5 els
e 0)

# Let's see the head
y_train_pred_final.head()
```

Out[107]:

Converted Conversion_Prob LeadID predicted

0	0	0.000555	532	0
1	1	0.231508	7273	0
2	0	0.063150	4998	0
3	0	0.006013	6668	0
4	0	0.021590	2917	0

In [108]:

```
from sklearn import metrics
```

In [109]:

```
# Confusion matrix
confusion = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final.predicted)
print(confusion)
```

```
[[3653 91]
[ 379 1904]]
```

In [110]:

```
# checking accuracy
print(metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.predicted))
```

0.922017587522814

In [111]:

```
#checking VIFS
```

In [112]:

```
# Check for the VIF values of the feature variables.

from statsmodels.stats.outliers_influence import variance_inflation_factor
```

In [113]:

```
# Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

In [114]:

```
vif = pd.DataFrame()
vif['Features'] = X_train[col].columns
vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col].shape[1])]
```

```
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
Out[114]:
```

	Features	VIF
9	Tags_Not doing further education	1.30
4	Tags_Closed by Horizzon	1.27
14	Tags_switched off	1.19
6	Tags_Interested in full time MBA	1.11
5	Tags_Diploma holder (Not Eligible)	1.09
0	Lead Source_Welingak Website	1.09
8	Tags_Lost to EINS	1.07
12	Tags_invalid number	1.07
2	Asymmetrique Activity Index_03.Low	1.07
15	Tags_wrong number given	1.04
13	Tags_opp hangup	1.03
17	What is your current occupation_Working Profes	0.76
1	Lead Quality_Worst	0.62
10	Tags_Ringing	0.62
7	Tags_Interested in other courses	0.35
3	Tags_Already a student	0.27
11	Tags_Will revert after reading the email	0.13
16	What is your current occupation_Unemployed	0.05
18	Last Activity_SMS Sent	0.01

Generalized Linear Model Regression Results

Dep. Variable:

Dropping the Variable and Updating the Model

Converted No. Observations:

```
In [115]:
col = col.drop('Tags_wrong number given', 1)
col
Out[115]:
Index(['Lead Source Welingak Website', 'Lead Quality Worst',
       'Asymmetrique Activity Index 03.Low', 'Tags Already a student',
       'Tags Closed by Horizzon', 'Tags Diploma holder (Not Eligible)',
       'Tags_Interested in full time MBA', 'Tags_Interested in other courses',
       'Tags_Lost to EINS', 'Tags_Not doing further education', 'Tags_Ringing',
       'Tags Will revert after reading the email', 'Tags invalid number',
       'Tags_opp hangup', 'Tags_switched off',
       'What is your current occupation_Unemployed',
       'What is your current occupation_Working Professional',
       'Last Activity_SMS Sent'],
      dtype='object')
In [116]:
X train sm = sm.add constant(X train[col])
logm4 = sm.GLM(y train, X train sm, family = sm.families.Binomial())
res = logm4.fit()
res.summary()
Out[116]:
```

Model:	GLM	Df Residuals:	6008
Model Family:	Binomial	Df Model:	18
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-1231.5
Date:	Tue, 12 May 2020	Deviance:	2463.0
Time:	14:11:06	Pearson chi2:	8.27e+03
No. Iterations:	24		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	-2.6743	0.094	-28.305	0.000	-2.860	-2.489
Lead Source_Welingak Website	24.6354	1.81e+04	0.001	0.999	-3.55e+04	3.56e+04
Lead Quality_Worst	-2.7836	0.746	-3.731	0.000	-4.246	-1.321
Asymmetrique Activity Index_03.Low	-2.1120	0.363	-5.822	0.000	-2.823	-1.401
Tags_Already a student	-3.6755	0.726	-5.061	0.000	-5.099	-2.252
Tags_Closed by Horizzon	5.4132	0.722	7.499	0.000	3.998	6.828
Tags_Diploma holder (Not Eligible)	-24.2953	2.87e+04	-0.001	0.999	-5.64e+04	5.63e+04
Tags_Interested in full time MBA	-3.5914	1.029	-3.492	0.000	-5.607	-1.576
Tags_Interested in other courses	-2.8655	0.344	-8.340	0.000	-3.539	-2.192
Tags_Lost to EINS	6.5838	0.821	8.020	0.000	4.975	8.193
Tags_Not doing further education	-3.5410	1.032	-3.432	0.001	-5.563	-1.519
Tags_Ringing	-4.4302	0.276	-16.035	0.000	-4.972	-3.889
Tags_Will revert after reading the email	3.7114	0.190	19.555	0.000	3.339	4.083
Tags_invalid number	-25.4580	2.91e+04	-0.001	0.999	-5.7e+04	5.7e+04
Tags_opp hangup	-3.3387	1.061	-3.146	0.002	-5.418	-1.259
Tags_switched off	-4.6642	0.598	-7.799	0.000	-5.836	-3.492
What is your current occupation_Unemployed	2.0429	0.117	17.435	0.000	1.813	2.273
What is your current occupation_Working Professional	1.9381	0.343	5.648	0.000	1.266	2.611
Last Activity_SMS Sent	2.1585	0.114	18.900	0.000	1.935	2.382

In [117]:

```
# Getting the predicted values on the train set
y_train_pred = res.predict(X_train_sm)
y_train_pred[:10]
```

Out[117]:

In [118]:

```
y_train_pred = y_train_pred.values.reshape(-1)
y_train_pred[:10]
```

Out[118]:

```
array([6.06178975e-04, 2.54466917e-01, 6.45040056e-02, 6.29484356e-03,
```

```
1.59513246e-U2, 6.29484356e-U3, 6.04559//9e-U2, 6.29484356e-U3, 3.73826433e-O1, 8.21571534e-O1])
```

Creating a dataframe with the actual churn flag and the predicted probabilities

In [119]:

```
y_train_pred_final = pd.DataFrame({'Converted':y_train.values, 'Conversion_Prob':y_train_pred})
y_train_pred_final['LeadID'] = y_train.index
y_train_pred_final.head()
```

Out[119]:

	Converted	Conversion_Prob	LeadID
0	0	0.000606	532
1	1	0.254467	7273
2	0	0.064504	4998
3	0	0.006295	6668
4	0	0.015951	2917

In [120]:

```
y_train_pred_final['predicted'] = y_train_pred_final.Conversion_Prob.map(lambda x: 1 if x > 0.5 els
e 0)
# Let's see the head
y_train_pred_final.head()
```

Out[120]:

	Converted	Conversion_Prob	LeadID	predicted
0	0	0.000606	532	0
1	1	0.254467	7273	0
2	0	0.064504	4998	0
3	0	0.006295	6668	0
4	0	0.015951	2917	0

In [121]:

```
from sklearn import metrics
```

In [122]:

```
# Confusion matrix
confusion = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final.predicted)
print(confusion)
[[3643 101]
```

In [123]:

[379 1904]]

```
print(metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.predicted))
```

0.920358387257342

In [124]:

```
# checking VIFs
```

```
In [125]:
```

```
# Check for the VIF values of the feature variables.

from statsmodels.stats.outliers_influence import variance_inflation_factor
```

In [126]:

```
# Create a dataframe that will contain the names of all the feature variables and their respective
VIFs
vif = pd.DataFrame()
vif['Features'] = X_train[col].columns
vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col].shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[126]:

	Features	VIF
9	Tags_Not doing further education	1.29
4	Tags_Closed by Horizzon	1.27
14	Tags_switched off	1.18
6	Tags_Interested in full time MBA	1.10
5	Tags_Diploma holder (Not Eligible)	1.09
0	Lead Source_Welingak Website	1.09
8	Tags_Lost to EINS	1.07
2	Asymmetrique Activity Index_03.Low	1.07
12	Tags_invalid number	1.06
13	Tags_opp hangup	1.03
16	What is your current occupation_Working Profes	0.75
1	Lead Quality_Worst	0.62
10	Tags_Ringing	0.61
7	Tags_Interested in other courses	0.34
3	Tags_Already a student	0.27
11	Tags_Will revert after reading the email	0.13
15	What is your current occupation_Unemployed	0.05
17	Last Activity_SMS Sent	0.01

Dropping the Variable and Updating the Model

```
In [127]:
```

```
X_train_sm = sm.add_constant(X_train[col])
logm5 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm5.fit()
res.summary()
```

Out[128]:

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	6027
Model:	GLM	Df Residuals:	6009
Model Family:	Binomial	Df Model:	17
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-1242.1
Date:	Tue, 12 May 2020	Deviance:	2484.2
Time:	14:11:21	Pearson chi2:	8.44e+03
No. Iterations:	24		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	-2.6894	0.095	-28.372	0.000	-2.875	-2.504
Lead Source_Welingak Website	24.6893	1.8e+04	0.001	0.999	-3.53e+04	3.54e+04
Lead Quality_Worst	-2.9241	0.719	-4.066	0.000	-4.334	-1.515
Asymmetrique Activity Index_03.Low	-2.1621	0.358	-6.044	0.000	-2.863	-1.461
Tags_Already a student	-3.5997	0.726	-4.959	0.000	-5.022	-2.177
Tags_Closed by Horizzon	5.4708	0.721	7.583	0.000	4.057	6.885
Tags_Interested in full time MBA	-3.5260	1.029	-3.427	0.001	-5.543	-1.509
Tags_Interested in other courses	-2.8012	0.344	-8.153	0.000	-3.475	-2.128
Tags_Lost to EINS	6.6867	0.828	8.077	0.000	5.064	8.309
Tags_Not doing further education	-3.4678	1.032	-3.360	0.001	-5.491	-1.445
Tags_Ringing	-4.3795	0.276	-15.870	0.000	-4.920	-3.839
Tags_Will revert after reading the email	3.7670	0.189	19.900	0.000	3.396	4.138
Tags_invalid number	-25.3999	2.91e+04	-0.001	0.999	-5.7e+04	5.7e+04
Tags_opp hangup	-3.2823	1.062	-3.091	0.002	-5.364	-1.201
Tags_switched off	-4.6146	0.598	-7.717	0.000	-5.787	-3.443
What is your current occupation_Unemployed	1.9864	0.116	17.063	0.000	1.758	2.215
What is your current occupation_Working Professional	1.8979	0.343	5.539	0.000	1.226	2.569
Last Activity_SMS Sent	2.1844	0.114	19.196	0.000	1.961	2.407

In [129]:

```
y_train_pred = res.predict(X_train_sm)
y_train_pred[:10]
```

Out[129]:

532	0.000564
7273	0.252655
4998	0.063603
6668	0.006166
2917	0.014149
1668	0.006166
8738	0.053905
1474	0.006166
4583	0.376377
1786	0.814791
dtype:	float64

```
In [130]:
```

Creating a dataframe with the actual churn flag and the predicted probabilities

3.76377353e-01, 8.14791052e-01])

In [131]:

```
y_train_pred_final = pd.DataFrame({'Converted':y_train.values, 'Conversion_Prob':y_train_pred})
y_train_pred_final['LeadID'] = y_train.index
y_train_pred_final.head()
```

Out[131]:

	Converted	Conversion_Prob	LeadID
0	0	0.000564	532
1	1	0.252655	7273
2	0	0.063603	4998
3	0	0.006166	6668
4	0	0.014149	2917

In [132]:

```
y_train_pred_final['predicted'] = y_train_pred_final.Conversion_Prob.map(lambda x: 1 if x > 0.5 els
e 0)
# Let's see the head
y_train_pred_final.head()
```

Out[132]:

	Converted	Conversion_Prob	LeadID	predicted
0	0	0.000564	532	0
1	1	0.252655	7273	0
2	0	0.063603	4998	0
3	0	0.006166	6668	0
4	0	0.014149	2917	0

In [133]:

```
from sklearn import metrics
```

In [134]:

```
# Confusion matrix
confusion = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final.predicted)
print(confusion)

[[3642 102]
[ 379 1904]]
```

In [135]:

```
print(metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.predicted))
```

```
0.9201924672307947
```

```
In [136]:
```

```
# checking VIFs
```

In [137]:

from statsmodels.stats.outliers_influence import variance_inflation_factor

In [138]:

```
vif = pd.DataFrame()
vif['Features'] = X_train[col].columns
vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col].shape[1
])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[138]:

	Features	VIF
8	Tags_Not doing further education	1.27
4	Tags_Closed by Horizzon	1.26
13	Tags_switched off	1.17
5	Tags_Interested in full time MBA	1.10
0	Lead Source_Welingak Website	1.09
7	Tags_Lost to EINS	1.07
11	Tags_invalid number	1.06
2	Asymmetrique Activity Index_03.Low	1.06
12	Tags_opp hangup	1.03
15	What is your current occupation_Working Profes	0.74
1	Lead Quality_Worst	0.61
9	Tags_Ringing	0.59
6	Tags_Interested in other courses	0.34
3	Tags_Already a student	0.27
10	Tags_Will revert after reading the email	0.12
14	What is your current occupation_Unemployed	0.05
16	Last Activity_SMS Sent	0.01

Dropping the Variable and Updating the Model

In [139]:

```
col = col.drop('Tags_invalid number', 1)
col
```

Out[139]:

In [140]:

```
X_train_sm = sm.add_constant(X_train[col])
logm6 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm6.fit()
res.summary()
```

Out[140]:

Generalized Linear Model Regression Results

Dep. Variable:ConvertedNo. Observations:6027Model:GLMDf Residuals:6010Model Family:BinomialDf Model:16Link Function:logitScale:1.0000Method:IRLSLog-Likelihood:-1265.8Date:Tue, 12 May 2020Deviance:2531.7Time:14:11:33Pearson chi2:8.61e+03No. Iterations:24Covariance Type:nonrobust				
Model Family: Binomial Df Model: 16 Link Function: logit Scale: 1.0000 Method: IRLS Log-Likelihood: -1265.8 Date: Tue, 12 May 2020 Deviance: 2531.7 Time: 14:11:33 Pearson chi2: 8.61e+03 No. Iterations: 24	6027	No. Observations:	Converted	Dep. Variable:
Link Function: logit Scale: 1.0000 Method: IRLS Log-Likelihood: -1265.8 Date: Tue, 12 May 2020 Deviance: 2531.7 Time: 14:11:33 Pearson chi2: 8.61e+03 No. Iterations: 24	6010	Df Residuals:	GLM	Model:
Method: IRLS Log-Likelihood: -1265.8 Date: Tue, 12 May 2020 Deviance: 2531.7 Time: 14:11:33 Pearson chi2: 8.61e+03 No. Iterations: 24	16	Df Model:	Binomial	Model Family:
Date: Tue, 12 May 2020 Deviance: 2531.7 Time: 14:11:33 Pearson chi2: 8.61e+03 No. Iterations: 24	1.0000	Scale:	logit	Link Function:
2020 Deviance: 2531.7 Time: 14:11:33 Pearson chi2: 8.61e+03 No. Iterations: 24	-1265.8	Log-Likelihood:	IRLS	Method:
No. Iterations: 24	2531.7	Deviance:		Date:
	8.61e+03	Pearson chi2:	14:11:33	Time:
Covariance Type: nonrobust			24	No. Iterations:
			nonrobust	Covariance Type:

	coef	std err	z	P> z	[0.025	0.975]
const	-2.6909	0.094	-28.496	0.000	-2.876	-2.506
Lead Source_Welingak Website	24.7961	1.79e+04	0.001	0.999	-3.51e+04	3.51e+04
Lead Quality_Worst	-3.2138	0.684	-4.697	0.000	-4.555	-1.873
Asymmetrique Activity Index_03.Low	-2.0944	0.360	-5.812	0.000	-2.801	-1.388
Tags_Already a student	-3.4637	0.725	-4.776	0.000	-4.885	-2.042
Tags_Closed by Horizzon	5.5620	0.721	7.716	0.000	4.149	6.975
Tags_Interested in full time MBA	-3.4031	1.029	-3.308	0.001	-5.419	-1.387
Tags_Interested in other courses	-2.6811	0.343	-7.820	0.000	-3.353	-2.009
Tags_Lost to EINS	6.8217	0.844	8.078	0.000	5.167	8.477
Tags_Not doing further education	-3.3294	1.032	-3.226	0.001	-5.352	-1.307
Tags_Ringing	-4.2552	0.275	-15.492	0.000	-4.794	-3.717
Tags_Will revert after reading the email	3.8503	0.188	20.450	0.000	3.481	4.219
Tags_opp hangup	-3.1537	1.062	-2.970	0.003	-5.235	-1.072
Tags_switched off	-4.4896	0.597	-7.516	0.000	-5.660	-3.319
What is your current occupation_Unemployed	1.8699	0.114	16.332	0.000	1.645	2.094
What is your current occupation_Working Professional	1.8215	0.343	5.307	0.000	1.149	2.494
Last Activity_SMS Sent	2.1762	0.112	19.402	0.000	1.956	2.396

In [141]:

```
y_train_pred = res.predict(X_train_sm)
y_train_pred[:10]
```

Out[141]:

```
532 0.000608
7273 0.281919
4998 0.063514
6668 0.006205
2917 0.010564
1668 0.006205
8738 0.051400
1474 0.006205
4583 0.374088
1786 0.794975
dtype: float64
```

```
In [142]:
```

```
y_train_pred = y_train_pred.values.reshape(-1)
y_train_pred[:10]
```

Out[142]:

```
array([6.07886214e-04, 2.81918507e-01, 6.35140356e-02, 6.20488694e-03, 1.05638139e-02, 6.20488694e-03, 5.14002613e-02, 6.20488694e-03, 3.74087585e-01, 7.94974829e-01])
```

In [143]:

```
y_train_pred_final = pd.DataFrame(('Converted':y_train.values, 'Conversion_Prob':y_train_pred))
y_train_pred_final['LeadID'] = y_train.index
y_train_pred_final.head()
```

Out[143]:

	Converted	Conversion_Prob	LeadID
0	0	0.000608	532
1	1	0.281919	7273
2	0	0.063514	4998
3	0	0.006205	6668
4	0	0.010564	2917

In [144]:

```
y_train_pred_final['predicted'] = y_train_pred_final.Conversion_Prob.map(lambda x: 1 if x > 0.5 els
e 0)

# Let's see the head
y_train_pred_final.head()
```

Out[144]:

	Converted	Conversion_Prob	LeadID	predicted
0	0	0.000608	532	0
1	1	0.281919	7273	0
2	0	0.063514	4998	0
3	0	0.006205	6668	0
4	0	0.010564	2917	0

In [145]:

```
from sklearn import metrics
```

In [146]:

```
confusion = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final.predicted)
print(confusion)
```

```
[[3636 108]
[ 379 1904]]
```

In [147]:

```
print(metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.predicted))
```

```
In [148]:
```

from statsmodels.stats.outliers_influence import variance_inflation_factor

In [149]:

```
vif = pd.DataFrame()
vif['Features'] = X_train[col].columns
vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col].shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[149]:

	Features	VIF
8	Tags_Not doing further education	1.26
4	Tags_Closed by Horizzon	1.25
12	Tags_switched off	1.17
5	Tags_Interested in full time MBA	1.09
0	Lead Source_Welingak Website	1.08
7	Tags_Lost to EINS	1.06
2	Asymmetrique Activity Index_03.Low	1.05
11	Tags_opp hangup	1.02
14	What is your current occupation_Working Profes	0.73
1	Lead Quality_Worst	0.61
9	Tags_Ringing	0.58
6	Tags_Interested in other courses	0.33
3	Tags_Already a student	0.26
10	Tags_Will revert after reading the email	0.12
13	What is your current occupation_Unemployed	0.05
15	Last Activity_SMS Sent	0.01

In [150]:

```
plt.figure(figsize=(15,8), dpi=80, facecolor='w', edgecolor='k', frameon='True')
cor = X_train[col].corr()
sns.heatmap(cor, annot=True)
plt.tight_layout()
plt.show()
```


Step 8: Calculating Metrics beyond Accuracy

```
In [151]:
TP = confusion[1,1]
TN = confusion[0,0]
FP = confusion[0,1]
FN = confusion[1,0]
In [152]:
TP / float(TP+FN)
Out[152]:
0.8339903635567236
In [153]:
TN / float(TN+FP)
Out[153]:
0.9711538461538461
In [154]:
print(FP/ float(TN+FP))
print (TP / float(TP+FP))
print (TN / float(TN+ FN))
0.028846153846153848
0.9463220675944334
0.9056039850560399
```

Tags_Alr Tags_Clos revert after rea

Step 9: Plotting the ROC Curve

It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will be accompanied by a decrease in specificity).

The closer the curve follows the left-hand border and then the top border of the ROC space, the more accurate the test.

The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the test.

```
In [155]:
```

```
plt.legend(loc="lower right")
plt.show()

return fpr,tpr, thresholds
```

In [156]:

```
fpr, tpr, thresholds = metrics.roc_curve( y_train_pred_final.Converted, y_train_pred_final.Conversi
on_Prob, drop_intermediate = False )
```

draw_roc(y_train_pred_final.Converted, y_train_pred_final.Conversion_Prob)

Calculating the area under the curve

```
In [157]:
```

```
def auc_val(fpr,tpr):
    AreaUnderCurve = 0.
    for i in range(len(fpr)-1):
        AreaUnderCurve += (fpr[i+1]-fpr[i]) * (tpr[i+1]+tpr[i])
    AreaUnderCurve *= 0.5
    return AreaUnderCurve
```

In [158]:

```
auc = auc_val(fpr,tpr)
auc
```

Out[158]:

0.9668445421566313

Step 10: Finding Optimal Cutoff Point

optimal cutoff meand the probability of sensitivity and specificity

```
In [159]:
```

```
numbers = [float(x)/10 for x in range(10)]
for i in numbers:
    y_train_pred_final[i] = y_train_pred_final.Conversion_Prob.map(lambda x: 1 if x > i else 0)
y_train_pred_final.head()
```

Out[159]:

	Converted	Conversion_Prob	LeadID	predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
0	0	0.000608	532	0	1	0	0	0	0	0	0	0	0	0
1	1	0.281919	7273	0	1	1	1	0	0	0	0	0	0	0
2	0	0.063514	4998	0	1	0	0	0	0	0	0	0	0	0
3	0	0.006205	6668	0	1	0	0	0	0	0	0	0	0	0
4	0	0.010564	2917	0	1	0	0	0	0	0	0	0	0	0

```
In [160]:
```

```
cutoff_df = pd.DataFrame( columns = ['prob', 'accuracy', 'sensi', 'speci'])
from sklearn.metrics import confusion_matrix
```

```
In [161]:
```

```
totall=sum(sum(cm1))
accuracy = (cm1[0,0]+cm1[1,1])/total1

speci = cm1[0,0]/(cm1[0,0]+cm1[0,1])
sensi = cm1[1,1]/(cm1[1,0]+cm1[1,1])
cutoff_df.loc[i] =[ i ,accuracy,sensi,speci]
print(cutoff_df)
```

```
prob accuracy
                           sensi
                                      speci
0.0 0.0 0.378795 1.000000 0.000000
     0.1 0.887340 0.959264 0.843483
0.1

    0.2
    0.890493
    0.958826
    0.848825

    0.3
    0.890825
    0.954008
    0.852297

0.2
0.3
     0.4 0.919031 0.833990 0.970887
0.4
0.5
      0.5 0.919197 0.833990 0.971154
     0.6 0.919197 0.833990 0.971154
0.6
      0.7 0.919031 0.833552 0.971154
0.8 0.887672 0.723609 0.987714
0.7
0.8
     0.9 0.887174 0.722295 0.987714
0.9
```

In [162]:

```
sns.set_style("whitegrid") # white/whitegrid/dark/ticks
sns.set_context("paper") # talk/poster
cutoff_df.plot.line(x='prob', y=['accuracy','sensi','speci'], figsize=(10,6))
# plot x axis limits
plt.xticks(np.arange(0, 1, step=0.05), size = 12)
plt.yticks(size = 12)
plt.show()
```


0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

In [163]:

```
y_train_pred_final.head()
```

... busin and similificant modification of busin and simil domination busin man/ tout of terms

Out[163]:

	Converted	Conversion_Prob	LeadID	predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
0	0	0.000608	532	0	1	0	0	0	0	0	0	0	0	0
1	1	0.281919	7273	0	1	1	1	0	0	0	0	0	0	0
2	0	0.063514	4998	0	1	0	0	0	0	0	0	0	0	0
3	0	0.006205	6668	0	1	0	0	0	0	0	0	0	0	0
4	0	0.010564	2917	0	1	0	0	0	0	0	0	0	0	0

In [164]:

```
y_train_pred_rinal['rinal_predicted'] = y_train_pred_rinal.Conversion_Frop.map( ramoda x: 1 ir x >
0.33 else 0)
y_train_pred_final.head()
Out[164]:
  Converted Conversion_Prob LeadID predicted 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 final_predicted
                 0.000608
1
         1
                 0.281919
                          7273
                                           1
                                              1
                                                  0
                                                     0
                                                         0
                                                            0
                                                                0
                                                                   0
                                                                       0
                                                                                  0
2
         0
                 0.063514
                          4998
                                           0 0 0 0
                                                        0
                                                            0
                                                                0 0
                                                                                  0
                                           0 0 0 0
                                                            0 0 0
3
         0
                 0.006205
                          6668
                                    0
                                       1
                                                        0
                                                                      0
                                                                                  0
         0
                 0.010564
                                    0
                          2917
In [165]:
# Let's check the overall accuracy.
metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.final_predicted)
Out[165]:
0.9080803052928489
In [166]:
confusion1 = metrics.confusion_matrix(y_train_pred_final.Converted,
y train pred final.final predicted)
confusion1
Out[166]:
array([[3433, 311],
       [ 243, 2040]], dtype=int64)
In [167]:
TP = confusion1[1,1]
TN = confusion1[0,0]
FP = confusion1[0,1]
FN = confusion1[1,0]
In [168]:
TP / float(TP+FN)
Out[168]:
0.8935611038107752
In [169]:
TP / float(TP+FN)
Out[169]:
0.8935611038107752
In [170]:
print(FP/ float(TN+FP))
0.08306623931623931
In [171]:
```

```
print (TP / float(TP+FP))
0.8677158655891111
In [172]:
print (TN / float(TN+ FN))
0.9338955386289445
Step 11: Precision and Recall
Precision TP / TP + FP
In [173]:
precision = confusion1[1,1]/(confusion1[0,1]+confusion1[1,1])
precision
Out[173]:
0.8677158655891111
Recall TP / TP + FN
In [174]:
recall = confusion1[1,1]/(confusion1[1,0]+confusion1[1,1])
Out[174]:
0.8935611038107752
In [175]:
from sklearn.metrics import precision score, recall score
In [176]:
precision_score(y_train_pred_final.Converted, y_train_pred_final.final_predicted)
Out[176]:
0.8677158655891111
In [177]:
recall_score(y_train_pred_final.Converted, y_train_pred_final.final_predicted)
Out[177]:
0.8935611038107752
Precision and recall tradeoff
```

```
In [178]:

from sklearn.metrics import precision_recall_curve
```

In [179]:

```
y train pred final. Converted, y train pred final. final predicted
Out[179]:
(0
 1
         Ω
         0
 4
         0
 6022
 6023
         0
 6024
         0
 6025
         0
 6026
         1
 Name: Converted, Length: 6027, dtype: int64,
 1
         0
         0
 3
         0
         0
 6022
        0
 6023
         0
 6024
 6025
         0
 6026
 Name: final_predicted, Length: 6027, dtype: int64)
In [180]:
p, r, thresholds = precision recall curve(y train pred final.Converted, y train pred final.Conversi
on Prob)
In [181]:
plt.figure(figsize=(8, 4), dpi=100, facecolor='w', edgecolor='k', frameon='True')
plt.plot(thresholds, p[:-1], "g-")
plt.plot(thresholds, r[:-1], "r-")
plt.xticks(np.arange(0, 1, step=0.05))
plt.show()
 0.8
 0.6
 0.4
```

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

From the precision-recall graph above, we get the optical threshold value as close to .37. However our business requirement here is to have Lead Conversion Rate around 80%

Calculating the F1 score

```
In [182]:
```

0.2

0.0

```
F1 = Z^(precision^recall)/(precision+recall)
F1
```

Out[182]:

0.8804488562796721

Step 12: Making predictions on the test set

In [183]:

```
X_test[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']] = scaler.transform(X_
test[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']])
X_test.head()
```

Out[183]:

	Do Not Email	Do Not Call	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Search	Newspaper Article	X Education Forums	Newspaper	Digital Advertisement	 Last Activity_Form Submitted on Website	Activ Conv
376	0	0	0.538134	0.184951	1.180749	0	0	0	0	0	 0	
8914	0	0	-0.326064	0.866444	0.040895	0	0	0	0	0	 0	
7331	0	0	0.106035	0.210737	0.569927	0	0	0	0	0	 0	
6344	0	0	-0.326064	1.124622	0.040895	0	0	0	0	0	 0	
3783	0	0	2.698630	0.126011	0.569927	0	0	0	0	0	 0	

5 rows × 142 columns

1

In [184]:

```
X_test = X_test[col]
X_test.head()
```

Out[184]:

	Lead Source_Welingak Website	Lead Quality_Worst	Asymmetrique Activity Index_03.Low	Tags_Already a student	Tags_Closed by Horizzon	Tags_Interested in full time MBA	Tags_Interested in other courses	Tags_Lost to EINS	Tags d fu educa
376	0	0	0	0	0	0	0	0	
8914	0	1	0	1	0	0	0	0	
7331	0	0	0	0	0	0	0	0	
6344	0	0	0	0	0	0	0	0	
3783	0	0	0	0	0	0	0	0	
4									Þ

In [185]:

```
X_test_sm = sm.add_constant(X_test)
```

In [186]:

```
y_test_pred = res.predict(X_test_sm)
```

In [187]:

```
y_test_pred[:10]
```

```
Out[187]:
376
      0.063514
8914 0.000554
7331 0.006205
6344
       0.063514
      0.305557
3783
4783
     0.006205
3789
     0.997529
      0.029253
185
4116 0.951703
8622 0.984185
dtype: float64
In [188]:
y_pred_1 = pd.DataFrame(y_test_pred)
y_pred_1.head()
Out[188]:
           0
 376 0.063514
8914 0.000554
7331 0.006205
6344 0.063514
3783 0.305557
In [189]:
y test df = pd.DataFrame(y test)
y_test_df['LeadID'] = y_test_df.index
y_pred_1.reset_index(drop=True, inplace=True)
y test df.reset index(drop=True, inplace=True)
y_pred_final = pd.concat([y_test_df, y_pred_1],axis=1)
y_pred_final.head()
Out[189]:
   Converted LeadID
0
         0
              376 0.063514
1
         0
             8914 0.000554
2
         0
             7331 0.006205
3
         1
             6344 0.063514
             3783 0.305557
In [190]:
y pred final= y pred final.rename(columns={ 0 : 'Conversion Prob'})
In [191]:
y_pred_final.head()
Out[191]:
   Converted LeadID Conversion_Prob
```

0.063514

0.000554 0.006205

0.063514

0

2

0

0

376 8914

7331 6344

4 Converted LeadID Conversion Prob

```
In [192]:
y_pred_final.shape
Out[192]:
(2584, 3)
In [193]:
y_pred_final['final_predicted'] = y_pred_final.Conversion_Prob.map(lambda x: 1 if x > 0.33 else 0)
In [194]:
y pred final.head()
Out[194]:
   Converted LeadID Conversion_Prob final_predicted
              376
                         0.063514
1
         0
             8914
                         0.000554
                                           0
2
         0
             7331
                         0.006205
                                           0
3
             6344
                         0.063514
                                           0
         0
             3783
                         0.305557
                                           0
In [195]:
acc_score=metrics.accuracy_score(y_pred_final.Converted, y_pred_final.final_predicted)
Out[195]:
0.8947368421052632
In [196]:
confusion_test = metrics.confusion_matrix(y_pred_final.Converted, y_pred_final.final_predicted )
print(confusion test)
[[1434 142]
[ 130 878]]
```

Confusion Matrix in Visuals

```
In [197]:
```

```
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
```

```
In [198]:
```

```
TP / float(TP+FN)
```

Out[198]:

0.8935611038107752

```
opcomon, ..., ...
In [199]:
TN / float(TN+FP)
Out[199]:
0.9169337606837606
False Postive Rate FP / TN + FP
In [200]:
print(FP/ float(TN+FP))
0.08306623931623931
Positive Predictive Value TP / TP + FP
In [201]:
print (TP / float(TP+FP))
0.8677158655891111
Negative Predictive Value TN / TN + FN
In [202]:
print (TN / float(TN+ FN))
0.9338955386289445
Precision TP / TP + FP
In [203]:
Precision = confusion_test[1,1]/(confusion_test[0,1]+confusion_test[1,1])
Precision
Out[203]:
0.8607843137254902
Recall TP / TP + FN
In [204]:
Recall = confusion_test[1,1]/(confusion_test[1,0]+confusion_test[1,1])
Recall
Out[204]:
0.871031746031746
In [205]:
F1 = 2*(Precision*Recall)/(Precision+Recall)
Out[205]:
0.8658777120315583
```

```
from sklearn.metrics import classification_report
print(classification_report(y_pred_final.Converted, y_pred_final.final_predicted))
```

	precision	recall	fl-score	support
0	0.92	0.91	0.91	1576
1	0.86	0.87	0.87	1008
accuracy			0.89	2584
macro avg	0.89	0.89	0.89	2584
weighted avg	0.89	0.89	0.89	2584

In [207]:

```
from sklearn.model_selection import cross_val_score

lr = LogisticRegression(solver = 'lbfgs')
scores = cross_val_score(lr, X, y, cv=10)
scores.sort()
accuracy = scores.mean()

print(scores)
print(accuracy)
```

```
[0.84320557 0.90940767 0.91521487 0.91637631 0.92450639 0.92682927 0.92799071 0.92799071 0.93271462 0.93379791] 0.9158034013220477
```

Plotting the ROC Curve for Test Dataset

In [208]:

In [209]:

```
fpr, tpr, thresholds = metrics.roc_curve( y_pred_final.Converted, y_pred_final.Conversion_Prob, dro
p_intermediate = False )
```

In [210]:

```
draw_roc(y_pred_final.Converted, y_pred_final.Conversion_Prob)
```



```
Out[210]:
(array([0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
         0.00000000e+00, 0.00000000e+00, 0.0000000e+00, 6.34517766e-04,
        1.26903553e-03, 1.26903553e-03, 1.26903553e-03, 1.26903553e-03,
        1.26903553e-03, 1.26903553e-03, 1.26903553e-03, 1.26903553e-03,
        3.17258883e-03, 3.17258883e-03, 3.17258883e-03, 3.17258883e-03,
        3.17258883e-03, 4.44162437e-03, 4.44162437e-03, 4.44162437e-03,
        4.44162437e-03, 1.14213198e-02, 1.26903553e-02, 1.26903553e-02,
        1.26903553e-02, 1.26903553e-02, 3.48984772e-02, 3.48984772e-02,
        3.48984772e-02, 3.55329949e-02, 9.01015228e-02, 9.32741117e-02,
        1.43401015e-01, 1.44670051e-01, 1.48477157e-01, 1.49746193e-01,
        1.52918782e-01, 1.54822335e-01, 1.55456853e-01, 1.56725888e-01,
        1.57360406e-01, 4.87944162e-01, 5.62182741e-01, 5.81852792e-01,
        5.82487310 {\text{e}}-01\text{, } 6.00253807 {\text{e}}-01\text{, } 6.57994924 {\text{e}}-01\text{, } 6.59898477 {\text{e}}-01\text{, }
         6.60532995e-01, 6.63071066e-01, 6.63705584e-01, 6.72588832e-01,
        6.77664975e-01, 6.78299492e-01, 6.89086294e-01, 7.16370558e-01,
        7.17005076e-01, 7.17639594e-01, 7.27791878e-01, 7.30964467e-01,
        8.54695431e-01, 8.55964467e-01, 8.56598985e-01, 8.79441624e-01,
        8.80710660e-01, 8.84517766e-01, 8.91497462e-01, 8.92766497e-01,
        8.95939086e-01, 8.96573604e-01, 8.97208122e-01, 8.98477157e-01, 9.10532995e-01, 9.11802030e-01, 9.17512690e-01, 9.18147208e-01,
        9.18781726e-01, 9.27030457e-01, 9.28934010e-01, 9.37182741e-01,
        9.37817259e-01, 9.70812183e-01, 9.71446701e-01, 9.72081218e-01,
        9.72715736e-01, 9.73350254e-01, 9.98096447e-01, 9.98730964e-01,
        1.00000000e+00]),
                   , 0.00198413, 0.00496032, 0.00595238, 0.00694444,
 array([0.
         0.00992063, 0.01289683, 0.02678571, 0.02678571, 0.04166667,
         0.04861111, 0.05257937, 0.05456349, 0.05555556, 0.07142857,
         0.07440476, 0.23710317, 0.33531746, 0.39186508, 0.41964286,
         \hbox{\tt 0.43253968, 0.43253968, 0.44047619, 0.44146825, 0.44246032, } 
         0.64781746, 0.71130952, 0.71428571, 0.7172619 , 0.71825397,
        0.79265873, 0.79464286, 0.80357143, 0.80555556, 0.87103175,
        0.87202381, 0.94444444, 0.94444444, 0.94543651, 0.94543651,
         0.94642857, 0.94642857, 0.94642857, 0.94642857, 0.94642857,
        0.98214286, 0.98710317, 0.98809524, 0.98809524, 0.98809524,
         0.9890873 \ , \ 0.9890873 \ , \ 0.9890873 \ , \ 0.9890873 \ , \ 0.9890873 \ , \\ 
        0.9890873 , 0.9890873 , 0.9890873 , 0.99007937, 0.99107143,
        0.99107143, 0.99107143, 0.99107143, 0.99206349, 1.
                   , 1.
                                , 1.
                                             , 1.
                                                           , 1.
        1.
                   , 1.
                                , 1.
                                              , 1.
        1.
                                                           , 1.
                   , 1.
                                , 1.
                                              , 1.
                                                           , 1.
        1.
                                              , 1.
        1.
                   , 1.
                                , 1.
                                                           , 1.
        1.
                   , 1.
                                , 1.
                                                1.
                                                           , 1.
        1.
                    . 1.
                                 . 1.
                                              1),
 array([2.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00,
        1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00,
        1.00000000e+00, 1.00000000e+00, 9.99719004e-01, 9.99010342e-01, 9.98961300e-01, 9.98179808e-01, 9.97529193e-01, 9.97406945e-01,
        9.94543382e-01, 9.94274254e-01, 9.91345706e-01, 9.90920303e-01,
        9.84184743e-01, 9.80283161e-01, 9.65628663e-01, 9.57347735e-01,
        9.55326467e-01, 9.53880451e-01, 9.51703160e-01, 9.46399659e-01,
        9.41967221e-01, 9.33803563e-01, 7.94974829e-01, 7.86971038e-01,
        7.61224263e-01, 7.18075047e-01, 3.74087585e-01, 3.23181172e-01, 3.05556643e-01, 2.95381286e-01, 2.09833944e-01, 1.42036002e-01,
        1.34866719e-01, 1.21934972e-01, 1.14265160e-01, 1.08273458e-01,
         6.85557694e-02, 6.35140356e-02, 5.21515492e-02, 5.14002613e-02,
        4.98095777e-02, 4.17106455e-02, 2.92531129e-02, 2.79091642e-02,
        1.88360902e-02, 1.84397507e-02, 1.79618660e-02, 1.73826077e-02,
        1.55138616e-02, 1.47915048e-02, 1.44280338e-02, 1.35911431e-02,
        1.29571336e-02, 1.05638139e-02, 8.28292349e-03, 6.73012293e-03,
        6.20488694e-03, 5.91337130e-03, 5.33158085e-03, 4.91495057e-03,
        4.85792696e-03, 4.62345903e-03, 3.69730101e-03, 2.25140418e-03,
        2.17376615e-03, 2.11929386e-03, 2.07124438e-03, 1.79955032e-03,
```

```
1.21008480e-03, 1.15296081e-03, 7.68299662e-04, 7.54719839e-04, 7.32015561e-04, 6.33156141e-04, 6.07886214e-04, 5.88218736e-04, 5.71687484e-04, 5.53648448e-04, 2.50959471e-04, 1.86712801e-04, 9.76465739e-05, 9.07127898e-05, 8.53789975e-05, 7.24753523e-05, 6.82138240e-05]))
```

In [211]:

```
def auc_val(fpr,tpr):
    AreaUnderCurve = 0.
    for i in range(len(fpr)-1):
        AreaUnderCurve += (fpr[i+1]-fpr[i]) * (tpr[i+1]+tpr[i])
    AreaUnderCurve *= 0.5
    return AreaUnderCurve
```

In [212]:

```
auc = auc_val(fpr,tpr)
auc
```

Out[212]:

0.957425935158327

Step 13: Calculating Lead score for the entire dataset

In [213]:

```
leads_test_pred = y_pred_final.copy()
leads_test_pred.head()
```

Out[213]:

Converted LeadID Conversion_Prob final_predicted

0	0	376	0.063514	0
1	0	8914	0.000554	0
2	0	7331	0.006205	0
3	1	6344	0.063514	0
4	0	3783	0.305557	0

In [214]:

```
leads_train_pred = y_train_pred_final.copy()
leads_train_pred.head()
```

Out[214]:

Converted Conversion_Prob LeadID predicted 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 final_predicted

0	0	0.000608	532	0	1	0	0	0	0	0	0	0	0	0	0
1	1	0.281919	7273	0	1	1	1	0	0	0	0	0	0	0	0
2	0	0.063514	4998	0	1	0	0	0	0	0	0	0	0	0	0
3	0	0.006205	6668	0	1	0	0	0	0	0	0	0	0	0	0
4	0	0.010564	2917	0	1	0	0	0	0	0	0	0	0	0	0

In [215]:

```
leads_train_pred = leads_train_pred[['LeadID','Converted','Conversion_Prob','final_predicted']]
leads_train_pred.head()
```

Out[215]:

```
LeadID Converted Conversion_Prob final_predicted
                              0.000608
0
      532
                   0
                                                    0
    7273
                              0.281919
                                                    0
1
                   1
     4998
                   0
                              0.063514
                                                    0
2
                   0
     6668
                              0.006205
                                                    0
     2917
                   0
                              0.010564
                                                    0
```

In [216]:

```
lead_full_pred = leads_train_pred.append(leads_test_pred)
lead_full_pred.head()
```

Out[216]:

	LeadID	Converted	Conversion_Prob	final_predicted
0	532	0	0.000608	0
1	7273	1	0.281919	0
2	4998	0	0.063514	0
3	6668	0	0.006205	0
4	2917	0	0.010564	0

In [217]:

```
print(leads_train_pred.shape)
print(leads_test_pred.shape)
print(lead_full_pred.shape)
```

(6027, 4)

(2584, 4)

(8611, 4)

In [218]:

```
len(lead_full_pred['LeadID'].unique().tolist())
```

Out[218]:

8611

In [219]:

```
lead_full_pred['Lead_Score'] = lead_full_pred['Conversion_Prob'].apply(lambda x : round(x*100))
lead_full_pred.head()
```

Out[219]:

LeadID Converted Conversion_Prob final_predicted Lead_Score

0	532	0	0.000608	0	0
1	7273	1	0.281919	0	28
2	4998	0	0.063514	0	6
3	6668	0	0.006205	0	1
4	2917	0	0.010564	0	1

In [220]:

```
lead_full_pred.LeadID.max()
```

Out[220]:

ردےر

In [221]:

```
lead_full_pred = lead_full_pred.set_index('LeadID').sort_index(axis = 0, ascending = True)
lead_full_pred.head()
```

Out[221]:

Converted Conversion_Prob final_predicted Lead_Score

LeadID				
0	0	0.029253	0	3
1	0	0.006205	0	1
2	1	0.761224	1	76
3	0	0.006205	0	1
4	1	0.953880	1	95

In [222]:

```
original_leads = original_leads[['Lead Number']]
original_leads.head()
```

Out[222]:

	Lead Number
0	660737
1	660728
2	660727
3	660719
4	660681

In [223]:

```
leads_with_score = pd.concat([original_leads, lead_full_pred], axis=1)
leads_with_score.head(10)
```

Out[223]:

	Lead Number	Converted	Conversion_Prob	final_predicted	Lead_Score
0	660737	0	0.029253	0	3
1	660728	0	0.006205	0	1
2	660727	1	0.761224	1	76
3	660719	0	0.006205	0	1
4	660681	1	0.953880	1	95
5	660680	0	0.063514	0	6
6	660673	1	0.953880	1	95
7	660664	0	0.063514	0	6
8	660624	0	0.063514	0	6
9	660616	0	0.063514	0	6

In [224]:

```
leads_with_score.shape
```

Out[224]:

```
(8611, 5)
```

```
In [225]:
```

Out[225]:

	Total	Percentage
Lead_Score	0	0.0
final_predicted	0	0.0
Conversion_Prob	0	0.0
Converted	0	0.0
Lead Number	0	0.0

Step 14: Determining Feature Importance

What is your current occupation Unemployed

What is your current occupation Working Professional

Selecting the coefficients of the selected features from our final model excluding the intercept

```
In [226]:
```

```
pd.options.display.float format = '{:.2f}'.format
new params = res.params[1:]
new params
Out[226]:
                                                        24.80
Lead Source Welingak Website
Lead Quality_Worst
                                                        -3.21
Asymmetrique Activity Index_03.Low
                                                       -2.09
Tags_Already a student
                                                       -3.46
Tags Closed by Horizzon
                                                        5.56
Tags_Interested in full time MBA
                                                       -3.40
                                                       -2.68
Tags_Interested in other courses
Tags Lost to EINS
                                                        6.82
                                                       -3.33
Tags Not doing further education
Tags Ringing
                                                       -4.26
Tags Will revert after reading the email
                                                        3.85
Tags opp hangup
                                                       -3.15
Tags switched off
                                                        -4.49
```

1.87

1.82

2.18

Getting a relative coefficient value for all the features wrt the feature with the highest coefficient

```
In [227]:
```

Last Activity SMS Sent

dtype: float64

```
#feature_importance = abs(new_params)
feature_importance = new_params
feature_importance = 100.0 * (feature_importance / feature_importance.max())
feature_importance
```

Out[227]:

```
Lead Source_Welingak Website 100.00
Lead Quality_Worst -12.96
Asymmetrique Activity Index_03.Low -8.45
Tags_Already a student -13.97
Tags_Closed by Horizzon 22.43
Tags_Interested in full time MBA -13.72
```

```
Tags Interested in other courses
                                                            -10.81
Tags_Lost to EINS
                                                             27.51
                                                            -13.43
Tags Not doing further education
Tags Ringing
                                                            -17.16
Tags_Will revert after reading the email
                                                             15.53
                                                            -12.72
Tags_opp hangup
Tags switched off
                                                            -18.11
\label{lem:condition} \mbox{What is your current occupation\_Unemployed} \\
                                                              7.54
What is your current occupation_Working Professional
                                                              7.35
Last Activity SMS Sent
                                                              8.78
dtype: float64
```

Sorting the feature variables based on their relative coefficient values

In [228]:

```
sorted_idx = np.argsort(feature_importance,kind='quicksort',order='list of str')
sorted_idx
##
```

Out[228]:

Lead Source_Welingak Website	12
Lead Quality_Worst	9
Asymmetrique Activity Index_03.Low	3
Tags_Already a student	5
Tags_Closed by Horizzon	8
Tags_Interested in full time MBA	1
Tags_Interested in other courses	11
Tags_Lost to EINS	6
Tags_Not doing further education	2
Tags_Ringing	14
Tags_Will revert after reading the email	13
Tags_opp hangup	15
Tags_switched off	10
What is your current occupation_Unemployed	4
What is your current occupation_Working Professional	7
Last Activity_SMS Sent	0
dtype: int64	

Plot showing the feature variables based on their relative coefficient values

In [229]:

```
pos = np.arange(sorted_idx.shape[0]) + .5

featfig = plt.figure(figsize=(10,6))
featax = featfig.add_subplot(1, 1, 1)
featax.barh(pos, feature_importance[sorted_idx], align='center', color = 'tab:red',alpha=0.8)
featax.set_yticks(pos)
featax.set_yticklabels(np.array(X_train[col].columns)[sorted_idx], fontsize=12)
featax.set_xlabel('Relative Feature Importance', fontsize=14)

plt.tight_layout()
plt.show()
```


Selecting Top 3 features which contribute most towards the probability of a lead getting converted

```
In [230]:
```

```
pd.DataFrame(feature_importance).reset_index().sort_values(by=0,ascending=False).head(3)
```

Out[230]:

	index	0
0	Lead Source_Welingak Website	100.00
7	Tags_Lost to EINS	27.51
4	Tags_Closed by Horizzon	22.43

Step 15: Conclusion

After trying several models, we finally chose a model with the following characteristics: 1All variables have p-value < 0.05. All the features have very low VIF values, meaning, there is hardly any muliticollinearity among the features. This is also evident from the heat map. The overall accuracy of 0.9056 at a probability threshold of 0.33 on the heat map.

In []: