

Názov cvičenia:

Meranie VA charakteristík bipolárneho tranzistora (BJT)

Ciel': naučiť žiakov vyhľadať z katalógu potrebné parametre BJT, odmerať a zakresliť vstupné, výstupné a prevodové charakteristiky BJT, vypočítať statické "h" parametre BJT a skontrolovať s parametrami podľa katalógu a nakresliť náhradnú schému BJT

Úlohy:

- 1. Zistite katalógové údaje predloženého tranzistora BJT
- 2. Odmerajte na BJT:
 - \triangleright výstupné charakteristiky $I_C = f(U_{CE})$ pri $I_B = konšt$,
 - \triangleright prevodové charakteristiky $I_C = f(I_B)$ pri $U_{CE} = konšt$
 - \triangleright vstupné charakteristiky $I_B = f(U_{BE})$ pri $U_{CE} = konšt$
- 3. Znázornite graficky odmerané charakteristiky
- 4. Vypočítajte z odmeraných VA charakteristík statické "h" parametre BJT
- Nakreslite náhradnú schému BJT

Teoretický úvod: vlastné, nevlastné polovodiče, polovodičové súčiastky a ich schematické značky, tranzistorový jav, napájanie pre polovodiče, výhody a nevýhody bipolárnych tranzistorov (čas zotavenia)

Pre Vlastné polovodiče sú základné materiály prvky zo IV. Skupiny periodickej sústavy prvkov. Sú to polovodiče **BEZ PRÍMESÍ!** Každý **atóm** má 4 valenčné elektróny, ktoré tvoria 4 dvojice elektrónov. Môžu sa uvoľniť len po prijatí určitej **energie** vo forme tepla, alebo žiarenia. Elektrón následne prechádza z valenčného do vodivostného pásma (prekoná zakázané p.) a na ich mieste uvoľnenia zostáva diera (kladný náboj), doplnená ďalším elektrónom = **REKOMBINÁCIA**. **Nevlastné polovodiče** vznikajú, keď do vl. polovodiča pridáme prímesy a vzniká tak: 5 mocný prvok (fosfor, arzén,...) – polovodiče typu N (väčšinové nosiče = elektróny). 1 elektrón má naviac a daruje ho (DONOR = darca). 3 mocný prvok (bór, hliník,...) – polovodiče typu P (väčšinové nosiče = diery). 1 elektrón atómu chýba a voľné miesto (diera) sa správa ako pohyblivý kladný náboj (AKCEPTOR = prijimatel). Spojením polovodičov P a N vzniká PN priechod. Polovodičové súčiastky (diódy, LED dióda, fotodióda, tranzistory, fototranzistor, optrón, tyristor, diak, triak, fotorezistor). BJT je polovodičová, 3-vrstvová súčiastka s 2 PN prechodmi (PNP, NPN). Na svoju činnosť využíva elektróny aj diery. Má 3 vývody (emitor, báza, kolektor). Krajné oblasti majú rovnaký typ vodivosti a báza ho má opačný. Využíva tzv. **Tranzistorový jav** – veľkosť prúdu, ktorý prechádza záverne polarizovaným prechodom (výstup) je výrazne ovplyvnený prúdom prechádzajúcim priepustne polarizovaným prechodom (vstup). Máme 3 typy zapojení SE, SC, SB. Máme 2 typy pripojenia vonkajšieho napätia na PN prechod (Priepustný smer – PN prechod je otvorený, **Záverný smer** - PN prechod je zatvorený).

Prúdom I_B pri konštantnom napätí U_{CE} ovládame prúd I_C tečúci tranzistorom. Čo i len malá zmena vyvolá **lavínový efekt** (tranzistor sa úplne otvorí). **Nesmieme** prekročiť parametre tranzistora (max. prúd bázy, kolektora, max. výkon). **BJT** sú **pomalšie**, čiže nie sú vhodné ako spínacie prvky, ale hlavne ako **ZOSILOVAČE**.

Použité meracie prístroje a pomôcky:

js. zdroj typ –

V – voltmeter - *AXIOMET AX585B*

A – ampérmeter - AXIOMET AX585B

Odporová dekáda – VOLTCRAFT Resistance Decade Box

Prípojné vodiče

Meraný objekt – BJT:

Označenie podľa katalógu: BD135

Katalógové údaje výrobcu:

$$U_{BE} = 5$$
 V $I_{B} = 0.5$ A $h_{21E} = 250$ $U_{CE} = 45$ V $I_{C} = 1.5$ A $P_{max} = 12.5$ W

$$I_B = 0.5$$
 A

$$h_{2IE} = 250$$

$$U_{CE} = 45 V$$

$$I_C = 1.5$$

$$P_{max} = 12,5 \quad W$$

$$R_0 = \frac{U_{1max}}{I_{pmax}} = \frac{5}{0.5} = 10 \Omega$$

$$R_0 = \frac{U_{1max}}{I_{Bmax}} = \frac{5}{0.5} = 10 \ \Omega$$
 $I_K = \frac{U_1}{R_B} = \frac{0.648}{10} = 64.8 \ \textit{mA}$

Rating	Symbol	Value	Vdc Vdc	
Collector-Emitter Voltage BD135G BD137G BD139G	V _{CEO}	45 60 80		
Collector-Base Voltage BD135G BD137G BD139G	V _{CBO}	45 60 100		
Emitter-Base Voltage	V _{EBO}	5.0	Vdc	
Collector Current	Ic	1.5	Adc	
Base Current	IB	0.5	Adc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	1.25 10	Watts mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	12.5 100	Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C	

Characteristic	Symbol	Min	Max	Unit
Collector-Emitter Sustaining Voltage* (I _C = 0.03 Adc, I _B = 0) BD135G BD137G BD139G	BV _{CEO} *	45 60 80	-	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0) (V _{CB} = 30 Vdc, I _E = 0, T _C = 125°C)	I _{CBO}	5 6	0.1 10	μAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)	I _{EBO}	1	10	μAdc
DC Current Gain (I _C = 0.005 A, V _{CE} = 2 V) (I _C = 0.15 A, V _{CE} = 2 V) (I _C = 0.5 A V _{CE} = 2 V)	h _{FE} *	25 40 25	250	2
Collector-Emitter Saturation Voltage* (I _C = 0.5 Adc, I _B = 0.05 Adc)	V _{CE(sat)} *	-	0.5	Vdc
Base-Emitter On Voltage* (I _C = 0.5 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)} *	-	1	Vdc

Tabuľky nameraných hodnôt:

- výstupné charakteristiky $I_C = f(U_{CE})$ pri $I_B = konšt$.

U_{CE}	$I_B = 20 \ \mu A$	$I_B = 20 \ \mu A$ $I_B = 30 \ \mu A$		$I_B = 70 \ \mu A$	$I_B = 90 \ \mu A$	
(V)	I_{C}	I_C	I_C	I_C	I_C	
	(mA)	(mA)	(mA)	(mA)	(mA)	
1	3,2	4,77	8	11,4	14,7	
3	3,16	4,8	8,13	11,5	14,9	
5	3,2	4,8	8,2	11,7	15,2	
8						

- prevodové charakteristiky $I_C = f(I_B)$ pri $U_{CE} = konšt$.
- vstupné charakteristiky $I_B = f(U_{BE})$ pri $U_{CE} = konšt$.

	$U_{CE} = 1 V$		$U_{CE} = 3 V$		$U_{CE} = 5 V$		$U_{CE} = 8 V$		$U_{CE} = 10V$	
I_B (μ A)	I_C (mA)	U_{BE} (V)	I_C (mA)	U_{BE} (V)	I_C (mA)	<i>U_{BE}</i> (V)	I_C (mA)	U_{BE} (V)	I_C (mA)	<i>U_{BE}</i> (V)
20	3,2	0,62	3,16	0,62	3,2	0,62	(IIIA)	(•)	(IIIA)	(*)
30	4,77	0,64	4,8	0,63	4,8	0,63				
50	8	0,65	8,13	0,65	8,2	0,64				
70	11,4	0,66	11,5	0,65	11,7	0,65				
90	14,7	0,67	14,9	0,66	15,2	0,66				

Postup pri meraní: Pred meraním si pre daný typ tranzistora zistíme z katalógu I_{Cmax} U_{CEmax} a P_{Cmax} . Maximálnu veľkosť prúdu I_B zvolíme tak, aby nedošlo k prekročeniu I_{Cmax} a P_{Cmax} a tým k **preť aženiu tranzistora**. Výhodné je použiť konštrukčný katalóg tranzistorov a hodnoty veličín zvoliť podľa charakteristík uvedených výrobcom. Pri meraní ktorejkoľvek charakteristiky postupujeme tak, že najprv nastavíme jedným zdrojom konštantnú hodnotu veličiny, ktorá má byť konštantná (napr. I_B) a potom postupne nastavujeme druhým zdrojom nezávisle premennú veličinu (napr. U_{CE}) a odčítame závisle premennú veličinu (napr. I_C). Ak je potrebné urýchliť meranie, je možné merať súčasne 2 charakteristiky (napr. v I. a IV. kvadrante alebo v II. a III. kvadrante). Rezistor v obvode bázy Ro je potrebný na stabilizáciu prúdu bázy a na jeho obmedzenie. Veľkosť jeho rezistancie zvolíme pomocou Ohmovho zákona $\mathbf{Ro} = \mathbf{U}_{1max}/\mathbf{R}_{Bmax}$. Krivka zobrazujúca maximálny kolektorový stratový výkon má súradnicovom systéme v I. kvadrante **tvar hyperboly** ($P_{Cmax} = U_{CE}$. $I_C = konšt.$) 7. Pre tranzistor PNP je potrebné zmeniť polarity oboch zdrojov, pri NPN nie je žiaden problém.

Použité vzťahy pre výpočet:

1. Vstupná charakteristika $I_B = f(U_{BE})$; ak $U_{CE} = \text{konšt}$.

$$h_{11} = \frac{U_{BE}}{I_B} = \frac{avg \ U_{BE} \ (avg \ I_B)}{avg \ I_B} =$$
16 349 (Ω) $pri \ U_{CE} = kon$ š. $statick$ ý $vstupn$ ý $odpor$

2. Výstupná charakteristika $I_C = f(U_{CE})$ ak $I_B = \text{konšt.}$

$$h_{22} = \frac{I_C}{U_{CE}} = \left(avg\frac{I_C}{U_{CE}}\right)avg\ I_B = 4,32 \quad (mS) \quad pri\ I_B = konšt \quad statická výstupná vodivosť$$

3. Napäťová prevodová charakteristika $U_{BE} = f(U_{CE})$ ak $I_B = \text{konšt}$.

$$h_{12} = \frac{U_{BE}}{U_{CE}} = \left(avg\frac{U_{BE}}{U_{CE}}\right)avg\ I_B = \mathbf{0},\mathbf{33}\ \ (-) \qquad \mathbf{pri}\ I_B = \mathbf{kon}\mathbf{št} \qquad \mathbf{spätn}\mathbf{\acute{y}}\ \mathbf{nap}\mathbf{\ddot{a}t'ov}\mathbf{\acute{y}}\ \mathbf{\acute{c}inite'}\mathbf{\acute{e}}$$

4. Prúdová prevodová charakteristika $I_C = f(I_B)$ ak $U_{CE} = konšt$.

$$h_{21} = \frac{I_C}{I_R} = \left(\frac{avg\ I_C}{avg\ I_R}\right) avg\ U_{CE} = \textbf{151,35} \quad (-) \quad \textbf{pri}\ U_{CE} = \textbf{kon} \\ \textbf{št} \qquad \qquad \textbf{pr} \\ \textbf{údov} \\ \textbf{ý}\ \textbf{zosil} \\ \textbf{ňovac} \\ \textbf{i}\ \textbf{činite} \\ \textbf{i}$$

Vyhodnotenie: na milimetrový papier nakreslite vstupné, výstupné a prevodové charakteristiky, určite pracovný bod a vypočítajte "h" parametre tranzistora a porovnajte s katalógom a do náhradnej schémy doplňte vypočítané parametre

Náčrt s odmeranými a vypočítanými hodnotami

