A survey of malware detection using deep learning

Operating System: MacOS, Windows, iOS, Android, and Linux.

Dataset: standard benchmark dataset.

Methods: Explainable Machine Learning (XAI) or Interpretable Machine Learning (IML)

Comparative performance summary of Transfer Learning models for malware image classification:

Model	Files	Accuracy	Dataset
CapsNet	PE	98.63%	Malimg
RCNF	PE	98.72%	Malimg
ResNeXt	PE	98.32%	Malimg
Inception V3	PE	99.24%	Malimg
VGG16	PE	99.97%	Malimg
DenseNet	PE	98.23%	Malimg
DenseNet	PE	98.46%	BIG 2015
Xception	PE	99.03%	Malimg
Xception	PE	99.17%	BIG 2015

Fine-tuned pre-trained models applied on different malware image datasets:

Setting					
Pre-trained model	Samples	Resize image	Epoch		
EffNet B0	30,000	224	200		
EffNet B1	30,000	240	200		
EffNet B2	20,000	260	200		
EffNet B3	15,000	300	400		
EffNet B4	20,000	380	400		
EffNet B5	25,000	456	400		
EffNet B6	40,000	528	400		
EffNet B7	30,000	600	1000		
Inception V4	20,000	229	300		
Xception	20,000	229	200		
CapsNet	3000	256	100		

Average accu	racy		Our dataset Accuracy
Malimg	Microsoft challenge	Drebin	
92.72%	90.45%	87.23%	94.59%
95.64%	93.65%	88.91%	95.89%
93.84%	91.78%	86.82%	94.12%
90.32%	94.19%	89.35%	95.73%
95.63%	96.68%	90.59%	97.98%
80.19%	87.54%	84.23%	94.68%
85.67%	83.82%	85.43%	93.54%
82.76%	80.76%	90.57%	88.45%
95.98%	93.21%	88.93%	96.39%
89.50%	90.84%	84.39%	93.53%
88.64%	72.69%	78.68%	92.65%

State-of-the-art deep learning models:

Deep learning approach	os	Features	Accuracy
MAPAS	Android	API call graphs	91.27%
MaMaDroid	Android	API calls	84.99%
Deep Generative Model	Android	Dalvik code, API call, Malware images, developers' signature	97.47%
DeepWare	Windows/ Linux	HPC	96.8%
Multi-Modal Deep Learning	Windows	Grayscale image, Byte/Entropy Histogram	97.01%
Deep multi-task learning	Windows Android Linux MacOS	Grayscale color image	99.97%