Petriho sítě

PES 2007/2008

Prof. RNDr. Milan Češka, CSc.

ceska@fit.vutbr.cz

Doc. Ing. Tomáš Vojnar, Ph.D.

vojnar@fit.vutbr.cz

Sazba: Ing. Petr Novosad, Doc. Ing. Tomáš Vojnar, Ph.D.

(verze 27.2.2008)

FIT, VUT v Brně, Božetěchova 2, CZ-612 66 Brno

Vlastnosti C/E systémů

5. Fakta (facts)

S využitím podmínek C/E systému je možno konstruovat formule výrokové logiky (Co je výroková logika?). Tyto formule budou pravdivé, či nepravdivé v závislosti na tom, ve kterém případu se systém nachází. Zvláštní zájem zaslouží "tautologie" (kontradikce), které popisují invariantní vlastnosti systému. Ukážeme, jak lze reprezentaci a vyhodnocení těchto formulí začlenit do "síťového kalkulu".

Uvažujme C/E systém Σ_1 z příkladu 7. Přidejme navíc požadavek, aby podmínky b_1 a b_2 nikdy neplatily současně. Toho lze dosáhnout konstrukcí systému Σ_2 v témže příkladě. Tato nová vlastnost systému může být vyjádřena zavedením nového přechodu t takového, že

$$^{\bullet}t = \{b_1, b_2\}, \quad t^{\bullet} = \emptyset$$

který není proveditelný v žádném případu systému Σ_2 .

Nejprve budeme studovat vztahy mezi formulemi obsahujícími podmínky (například $\neg(b_1 \land b_2)$) a prováděním událostí. K tomu účelu uvažujme b jako prvotní (atomickou) formuli, která je pravdivá v daném případu c, právě když b patří do c. Pak můžeme konstruovat formule výrokové logiky a vyhodnocovat jejich pravdivostní hodnoty.

- **Definice 5.1**: Nechť Σ je C/E systém.
 - 1. Množina A_{Σ} formulí (výrokové logiky) nad B_{Σ} je nejmenší množina, pro kterou
 - (a) $B_{\Sigma} \subseteq A_{\Sigma}$
 - (b) $a_1, a_2 \in A_{\Sigma} \Rightarrow (a_1 \land a_2) \in A_{\Sigma}, (a_1 \lor a_2) \in A_{\Sigma}, (a_1 \to a_2) \in A_{\Sigma}, (\neg a_1) \in A_{\Sigma}$
 - 2. V každém $c \in C_{\Sigma}$ přísluší každé formuli $a \in A_{\Sigma}$ hodnota $\hat{c}(a)$ definovaná valuací $\hat{c}: A_{\Sigma} \to \{0,1\}$:
 - $b \longmapsto 1$, jestliže $b \in c$
 - $b \longmapsto 0$, jestliže $b \notin c$
 - $(a_1 \wedge a_2) \longmapsto \min(\hat{c}(a_1), \hat{c}(a_2))$
 - $(a_1 \lor a_2) \longmapsto \max(\hat{c}(a_1), \hat{c}(a_2))$
 - $(a_1 \to a_2) \longmapsto \hat{c}((\neg a_1) \lor a_2)$
 - $(\neg a_1) \longmapsto 1 \hat{c}(a_1)$
 - 3. Dvě formule $a_1, a_2 \in A_{\Sigma}$ jsou *ekvivalentní* v Σ , jestliže pro všechny $c \in C_{\Sigma}$: $\hat{c}(a_1) = \hat{c}(a_2)$

Nyní ke každé události $e \in E_{\Sigma}$ přiřadíme formuli a(e) tak, že pro všechny případy c platí: a(e) platí, právě když e není c-proveditelná.

Definice 5.2: Nechť Σ je konečný C/E systém a nechť $e \in E_{\Sigma}$. Nechť

$$^{\bullet}e = \{b_1, b_2, \dots, b_n\}, e^{\bullet} = \{b'_1, b'_2, \dots, b'_m\}.$$
 Pak

$$a(e): (b_1 \wedge b_2 \wedge \ldots \wedge b_n) \rightarrow (b'_1 \vee b'_2 \vee \ldots \vee b'_m)$$

Je-li $^{\bullet}e = \emptyset$, pak $a(e): (b'_1 \vee \ldots \vee b'_m)$, je-li $e^{\bullet} = \emptyset$, pak $a(e): \neg (b_1 \wedge b_2 \wedge \ldots \wedge b_n)$.

Lemma 5.1: Nechť Σ je konečný C/E systém a nechť $e \in E_{\Sigma}$. Pak pro každé $c \in C_{\Sigma}$, a(e) platí v c, právě když e není c-proveditelná.

Důkaz: $\hat{c}(a(e)) = 1 \Leftrightarrow \exists b \in {}^{\bullet}e$, kde $\hat{c}(b) = 0$ nebo $\exists b' \in e^{\bullet} : c(b') = 1 \Leftrightarrow \exists b \in {}^{\bullet}e$ a $b \notin c$ nebo $\exists b' \in e^{\bullet}$ a $b' \in c \Leftrightarrow e$ není c-proveditelná.

Ukázali jsme, jak spojovat formule s událostmi systému. Teď uvažujme, jak reprezentovat libovolnou pravdivostní formuli sestavenou z podmínek systému.

K tomu účelu obohatíme C/E systém o nové přechody, které nejsou proveditelné v žádném případu systému ("dead" přechody). Proto neovlivní chování systému. S každým novým přechodem spojíme formuli a(t), stejně jako pro události. a(t) pak platí v systému Σ (platí pro každý jeho případ). Takto je možné reprezentovat všechny platné formule pro Σ určitým počtem "mrtvých" přechodů. Tyto přechody nazýváme fakta.

- **Definice 5.3**: Nechť Σ je C/E systém.
 - 1. Formule $a \in A_{\Sigma}$ se nazývá *platnou* v Σ , jestliže $\forall c \in C_{\Sigma} : \hat{c}(a) = 1$
 - 2. Pro $B_1, B_2 \subseteq B_{\Sigma}$ nechť $t = (B_1, B_2)$ je nový přechod: ${}^{\bullet}t = B_1$ a $t^{\bullet} = B_2$. Přechod t se nazývá *faktem* systému Σ , jestliže t není proveditelný pro žádné $c \in C_{\Sigma}$.

V grafické reprezentaci je fakt t označen přechodem

Pro t je a(t) definována jako pro e: například jestliže ${}^{\bullet}t = \{b_1, \ldots, b_n\}, \ t^{\bullet} = \{b'_1, \ldots, b'm\},$ pak $a(t) = (b_1 \wedge b_2 \wedge \ldots \wedge b_n) \rightarrow (b'_1 \vee b'_2 \vee \ldots \vee b'_m)$

Theorem 5.2: Nechť Σ je konečný C/E systém a nechť $a \in A_{\Sigma}$. Formule a je platná v Σ , právě když existují fakta t_1, t_2, \ldots, t_k taková, že a je logicky ekvivalentní formuli $a(t_1) \wedge a(t_2) \wedge \ldots \wedge a(t_n)$

Důkaz. (s využitím KNF)

Problém: Jak reprezentovat formule, které platí jen pro některé případy systému. Pro $c \in C_{\Sigma}$ nechť c' označuje konjunkci všech podmínek tvořících c. Pak a platící pro případy c_1, \ldots, c_k lze popsat formulí $(c'_1 \wedge c'_2 \wedge \ldots \wedge c'_k) \to a$.

\clubsuit **Příklad 10**: Rozšíření systému z příkladu 2 (kapitola C/E sítě) o dvě fakta t_1 a t_2

