第十二次习题课题目

习题 1 (练习 7.3.8). 记实数域 \mathbb{R} 上的全体一元可导函数组成的集合为 $\mathscr{C}^1(\mathbb{R})$, 定义 $\mathscr{C}^1(\mathbb{R})$ 上的变换: $A(f(x)) = xf(x) \ \forall f(x) \in \mathscr{C}^1(\mathbb{R})$.

- (1) 证明 $A \in \mathcal{C}^1(\mathbb{R})$ 上的一个线性变换.
- (2) 设 D 是求导算子, 证明 DA AD = I.

习题 2 (练习 7.3.9). 令 \mathcal{V} 为全体实数数列组成的线性空间, 其中元素记为 (a_0, a_1, \cdots) . 定义其上变换

$$D((a_0,a_1,\cdots))=(0,a_0,a_1,\cdots), M((a_0,a_1,\cdots))=(a_1,2a_2,3a_3,\cdots)$$

- (1) 证明 D,M 都是线性变换.
- (2) 证明 MD-DM=I.
- (3) 对于任意 n 阶方阵 A,B, 证明 $AB-BA \neq I_n$.

习题 3 (练习 7.3.13). 设线性空间 \mathscr{V} 有直和分解: $\mathscr{V} = \mathscr{M}_1 \oplus \mathscr{M}_2$ (即 $\mathscr{V} = \mathscr{M}_1 + \mathscr{M}_2$ 且满足 $\mathscr{M}_1 \cap \mathscr{M}_2 = \{\mathbf{0}\}$),则任取 $\mathbf{a} \in \mathscr{V}$,都有唯一的分解式: $\mathbf{a} = \mathbf{a}_1 + \mathbf{a}_2$,其中 $\mathbf{a}_1 \in \mathscr{M}_1$, $\mathbf{a}_2 \in \mathscr{M}_2$. 定义 \mathscr{V} 上的变换:

$$P_{\mathcal{M}_1}(a) = a_1, \qquad P_{\mathcal{M}_2}(a) = a_2.$$

- (1) 证明, P_M , P_M , 都是 \mathcal{V} 上的线性变换.
- (2) 证明, $\ker(\mathbf{P}_{\mathcal{M}_1}) = \mathcal{M}_2, \operatorname{Im}(\mathbf{P}_{\mathcal{M}_1}) = \mathcal{M}_1.$
- (3) 证明, $P_{\mathcal{M}_1}^2 = P_{\mathcal{M}_1}$, $P_{\mathcal{M}_1} + P_{\mathcal{M}_2} = I$, $P_{\mathcal{M}_1} P_{\mathcal{M}_2} = O$.
- (4) 分别求 P_{M_1} , P_{M_2} 的特征值和特征向量.

习题 4. 考虑 xy 平面,设 T 为关于 x 轴的反射变换, S 为关于 y 轴的反射变换. 对于任意向量 $\mathbf{v} = (x,y)$,写出 $S(T(\mathbf{v}))$,并给出线性变换 ST 的更简单的描述.

习题 5 (练习 7.4.3). 考虑函数空间的子空间 $span(sin^2 x, cos^2 x)$.

- (1) 证明 $\sin^2 x, \cos^2 x$ 和 $1, \cos 2x$ 分别是子空间的一组基.
- (2) 分别求从 $\sin^2 x, \cos^2 x$ 到 $1, \cos 2x$, 和从 $1, \cos 2x$ 到 $\sin^2 x, \cos^2 x$ 的过渡矩阵.
- (3) 分别求 1 和 $\sin^2 x$ 在两组基下的坐标.

习题 6. 考虑线性空间 $P_2[x] := \{y(x)|y(x) = a + bx + cx^2, a, b, c \in \mathbb{R}\}$. 已知 $w_1(x), w_2(x), w_3(x) \in P_2[x]$ 且满足 $w_1(-1) = 1, w_1(0) = 0, w_1(1) = 0, \ w_2(-1) = 0, w_2(0) = 1, w_2(1) = 0, \ w_3(-1) = 0, w_3(0) = 0, w_3(1) = 1.$

- (1) 证明: $w_1(x), w_2(x), w_3(x)$ 构成 $P_2[x]$ 的一组基.
- (2) 取 $v_1(x) = 1, v_2(x) = x, v_3(x) = x^2$, 分别求从 v_1, v_2, v_3 到 w_1, w_2, w_3 的过渡矩阵和从 w_1, w_2, w_3 到 v_1, v_2, v_3 的过渡矩阵.

习题 7. 考虑二阶矩阵空间
$$M_2(\mathbb{R})$$
 上的线性变换 $T(M)=AMB$, 其中 $A=\begin{bmatrix}1&0\\0&0\end{bmatrix}$, $B=\begin{bmatrix}0&0\\0&1\end{bmatrix}$. 描述 $\ker(T)$ 及 ImT .

习题 8 (练习 7.4.9). 设 e_1, e_2, \dots, e_n 是线性空间 \mathcal{V} 的一组基.

- 1. 判断 $t_1 = e_1, t_2 = e_1 + e_2, \dots, t_n = e_1 + e_2 + \dots + e_n$ 是否也是 \mathcal{V} 的一组基.
- 2. 判断 $t_1 = e_1 + e_2, t_2 = e_2 + e_3, \dots, t_n = e_n + e_1$ 是否也是 \mathcal{V} 的一组基.

习题 9 (练习 7.4.10). 设 a_1, \dots, a_n 是 F 中两两不等的数, e_1, e_2, \dots, e_n 是线性空间 \mathcal{V} 的一组基, 令 $t_i = e_1 + a_i e_2 + \dots + a_i^{n-1} e_n, i = 1, \dots, n$. 证明 t_1, t_2, \dots, t_n 也是 \mathcal{V} 的一组基.

习题 10 (练习 7.4.11). 设 (I): $e_1, \dots, e_n(II)$: t_1, \dots, t_n 和 (III): s_1, \dots, s_n 是线性空间 \mathcal{V} 的三组 基, 如果从 (I) 到 (II) 的过渡矩阵是 P, 从 (II) 到 (III) 的过渡矩阵是 Q, 证明,

- 1. 从 (II) 到 (I) 的过渡矩阵是 P^{-1} .
- 2. 从 (I) 到 (III) 的过渡矩阵是 PQ.