Studying the relationship between the VIX and SPX using financial analytics

Descriptive statistics

experiment.describe()

	SPX Index	VIX Index
count	1868.000000	1868.000000
mean	4180.975562	21.034545
std	751.603361	8.163890
min	2237.400000	11.540000
25%	3714.240000	15.390000
50%	4167.205000	19.275000
75%	4550.467500	24.640000
max	6021.630000	82.690000

Historical review

- Observe that when the SPX moves up, the VIX appears to move downwards
- Exhibits a negative correlation relationship

	SPX Index	VIX Index
SPX Index	1.000000	-0.703415
VIX Index	-0.703415	1.000000

Correlation analysis

Correlation analysis

```
import statsmodels.api as sm

log_returns.plot(
    figsize=(10,8),
    x="SPX Index",
    y="VIX Index",
    kind='scatter')

ols_fit = sm.OLS(log_returns['VIX Index'].values,
    log_returns['SPX Index'].values).fit()

plt.plot(log_returns['SPX Index'], ols_fit.fittedvalues, 'r')
```


Distribution of daily returns

- The distribution of daily returns suggests low volatility around the mean
- Key takeaway
 - Suggests that returns will tend to converge to their long-run average

Trading SPX and VIX using mean reversion

- Identify when SPX significantly deviates from its long-run moving average
 - Above index then short, long if below index
- When VIX spikes near \$30, it tends to revert towards its long-run average
 - Short VIX futures after VIX spikes to significance level

Trading SPX using mean reversion

Trading SPX using mean reversion

Trading SPX using mean reversion

- Number of buy signals:50
- Number of sell signals: 55
- Significance level: ±10% EMA

Trading VIX using mean reversion

```
df_sma = pd.DataFrame(index=experiment.index)

df_sma['short'] = experiment['VIX Index'].rolling(window=5, min_periods=5).mean()

df_sma['long'] = experiment['VIX Index'].rolling(window=200, min_periods=30).mean()

plt.figure(figsize=(12, 8))
plt.plot(df_sma.index, df_sma['short'], label='5-day SMA', color='green')
plt.plot(df_sma.index, df_sma['tong'], label='200-day SMA', color='orange')
plt.title("Short and Long-term SMAs for VIX Index")
plt.xlabel("Date")
plt.ylabel("Index Value")
plt.legend()
plt.show()
```


Trading VIX using mean reversion

- Number of buy signals:63
- Number of sell signals: 200
- Significance level: ±25% EMA

Summary

- Trading SPX and VIX using mean reversion
 - Short/long SPX when it significantly deviates (±10%) from its long-run average
 - Short VIX futures after VIX spikes 25% from its long-run average
 - Pair trading knowing SPX and VIX have a strong negative correlation