

Randomness in Computing

LECTURE 2

Last time

- Verifying polynomial identities
- Probability amplification
- Probability review

Discussions

- Law of Total Probability
- Bayes'law

Today

- More probability amplification
- Verifying matrix multiplication

Review question

Toss a fair coin three times.

Let E_i be the event that the *i*-th toss is HEADS.

Let
$$E = E_1 \cap E_2 \cap E_3$$
.

What is the probability of E?

- A. $Pr(E_1) \cdot Pr(E_2|E_1) \cdot Pr(E_3|E_1 \cap E_2)$
- B. $Pr(E_1) \cdot Pr(E_2) \cdot Pr(E_3)$
- C. Both A and B are correct.
- D. Neither A nor B is correct.

Review question

Toss a coin that is biased with heads probability p three times.

Let E_i be the event that the *i*-th toss is HEADS.

Let
$$E = E_1 \cap E_2 \cap E_3$$
.

What is the probability of E?

- A. $Pr(E_1) \cdot Pr(E_2|E_1) \cdot Pr(E_3|E_1 \cap E_2)$
- **B**. $Pr(E_1) \cdot Pr(E_2) \cdot Pr(E_3)$
- C. Both A and B are correct.
- D. Neither A nor B is correct.

Probability Amplification

• Our algorithm for verifying polynomial identities accepts incorrectly with probability $\leq \frac{d}{100d} = \frac{1}{100}$

Idea: Repeat the algorithm and accept if all iterations accept.

Pr[error in all *k* iterations]

$$\leq \left(\frac{1}{100}\right)^k$$

Sampling without replacement

• Let E_i be the event that we choose a root in iteration i

$$\Pr[\text{error in all } k \text{ iterations}]$$

$$= \Pr[E_1 \cap \cdots \cap E_k]$$

$$= \Pr[E_1] \cdot \Pr[E_2 | E_1] \cdot \dots \cdot \Pr[E_k | E_1 \cap \cdots \cap E_{k-1}]$$

- It is 0 if k > d.
- If $k \le d$, then $\Pr[E_j | E_1 \cap \dots \cap E_{j-1}] = \frac{d (j-1)}{100d (j-1)}$

$$\Pr[\text{error in all } k \text{ iterations}] \le \left(\frac{1}{100}\right)^k$$

§1.3 (MU) Verifying Matrix Multiplication

Task: Given three $n \times n$ matrices A, B, C, verify if $A \cdot B = C$.

Matrix multiplication algorithms:

• Naïve $O(n^3)$ time

• Strassen $O(n^{\log_2 7}) \approx O(n^{2.81})$ time

• World record $O(n^{2.373...})$ time

[Coppersmith-Winograd `87, Vassilevska Williams `13, LeGall `14]

Verification:

- Fastest known deterministic algorithm is as above.
- Randomized algorithm [Freivalds `79] $O(n^2)$ time

§1.3 (MU) Verifying Matrix Multiplication

Task: Given three $n \times n$ matrices A, B, C, verify if $A \cdot B = C$.

Idea: Pick a random vector \overline{r} and check if $A \cdot B \cdot \overline{r} = C \cdot \overline{r}$.

Algorithm Basic Frievalds (input: $n \times n$ matrices A, B, C)

- 1. Choose a random n-bit vector \bar{r} by making each bit r_i independently 0 or 1 with probability 1/2 each.
- 2. Accept if $A \cdot (B \cdot \overline{r}) = C \cdot \overline{r}$; o. w. reject.

$\mathit{O}(n^2)$ multiplications for each matrix-vector product

Running time: Three matrix-vector multiplications: $O(n^2)$ time.

Correctness: If $A \cdot B = C$, the algorithm always accepts.

Theorem

If $A \cdot B \neq C$, Basic-Frievalds accepts with probability $\leq 1/2$.

Probability Amplification: With k repetitions, error probability $\leq 2^{-k}$

Law of Total Probability

For any two events A and E,

$$Pr(A) = Pr(A \cap E) + Pr(A \cap E)$$
$$= Pr(A|E) \cdot Pr(E) + Pr(A|\overline{E}) \cdot Pr(\overline{E})$$

Let A be an event and let $E_1, ..., E_n$ be mutually disjoint events whose union is Ω .

$$Pr(A) = \sum_{i \in [n]} Pr(A \cap E_i) = \sum_{i \in [n]} Pr(A \mid E_i) \cdot Pr(E_i).$$