МЕТОДИЧЕСКАЯ РАЗРАБОТКА

к лабораторным работам по курсу ИИ

(34 часа, из них 4 часа УСР)

Автор: доцент кафедры информационных систем управления факультета прикладной математики и информатики БГУ Образцов В.А.

График и характер проведения лабораторных работ

Тематика	№ лабораторной	Смысл работы	№ занятия	Характер работы	Ссылка на описание работы			
	-	Ознакомление с задачей, постановка	1.	УСР	Стр.2			
		Прямой вывод в БЗ	2.	Работа над	Стр. 3-4			
ДС	1	продукционного	3.	заданием				
3bIBC		типа	4.	Отчет				
Z Z		Табличный вывод в	5.	Работа над	Стр. 5-7			
Логический вывод	2	БЗ продукционного	6.	заданием				
		типа	7.	Отчет				
		Обратный вывод в	8.	Работа над	Стр. 8			
	3	БЗ продукционного	9.	заданием				
		типа	10.	Отчет				
OB	-	Ознакомление с задачей, постановка	11.	УСР	Стр. 9-11			
Распознавание образов		Решение задачи	12.	Работа над	Стр. 12-13			
	4	распознавания	13.	заданием				
		образов без обучения	14.	Отчет				
		Решение задачи	15.	Работа над	Стр. 14-17			
	5	распознавания	16.	заданием				
ļ <u>ფ</u>		образов с обучением	17.	Отчет				

ПРИМЕР БАЗЫ ЗНАНИЙ (БЗ) "ПРОДУКЦИОННОГО" ТИПА

(см. статью: Работа с Микроэкспертом, в сб. Вычислительная техника и ее применение, N^0 10, 1990 г., Стр. 33-45)

1	Если	<u>класс</u> - голосеменные и <u>структура листа</u> – чешуеобразная								
	To	семейство - кипарисовые								
2	Если	класс - голосеменные и структура листа - иглоподобная и								
		конфигурация - хаотическая								
	To	семейство - сосновые								
3	Если	<u>класс</u> - голосеменные и <u>структура листа</u> – иглоподобная и								
		<u>конфигурация</u> - 2 ровных ряда								
	To	<u>семейство</u> - еловые								
4	Если	<u>класс</u> - голосеменные и <u>структура листа</u> - иглоподобная и								
		конфигурация - 2 ровных ряда и <u>серебристая полоса</u> - нет								
	To	<u>семейство</u> - болотный кипарис								
5	Если	<u>тип</u> - деревья и <u>форма листа</u> - широкая и плоская								
	To	<u>класс</u> - покрытосеменные								
6	Если	<u>тип</u> - деревья и <u>форма листа</u> – не (широкая и плоская)								
	To	<u>класс</u> - голосеменные								
7	Если	стебель - зеленый								
	To	<u>тип</u> - травянистые								
8	Если	<u>стебель</u> - древесный и <u>положение</u> - стелющееся								
	To	<u>тип</u> - лианы								
9	Если	стебель - древесный и положение - прямостоящее и один основной								
		ствол - да								
	To	<u>тип</u> - деревья								
10	Если	стебель - древесный и положение - прямостоящее и один основной								
		ствол - нет								
	To	<u>тип</u> - кустарниковые								
11	Если	<u>голова</u> - болит и <u>кости</u> - ломит и <u>глаза</u> - слезятся								
	To	заболевание - грипп								

Структура правил: Если (<u>название признака</u> — значение признака и ... *признаков может быть несколько*), **То** (<u>название признака</u> — значение признака). Признаки (точнее их названия), которые перечислены после **Если** будем называть **посылочными**. Признаки после **То** будем называть **заключительными**.

Требования к практической задаче:

- 1. Число правил должно быть не менее 10.
- 2. Между посылочными и заключительными признаками должна быть транзитивная зависимость по крайней мере 1 заключительный признак должен быть посылочным в другом правиле.

АЛГОРИТМ ДЕДУКТИВНОГО ВЫВОДА ДЛЯ БЗ "ПРОДУКЦИОННОГО" ТИПА

Приведенный алгоритм реализует т.н. **прямой** вывод. Смысл: для произвольного заключительного признака (по заданному названию) требуется определить его значение в результате определения значений посылочных признаков, полученных в диалоге с пользователем на базе имеющихся логических зависимостей.

ПРИМЕР РАБОТЫ АЛГОРИТМА (при выводе значения признака семейство)

Шаг	правило		Ответ на	Стек целей:		Контекстн	ый стек:	П Приним	№ отбрасыв		
	Νō	значение	вопрос	признак		признак	значени е	аемого правила	аемого правила		
1				семейство							
2	1	неизвестно		класс							
3	5	неизвестно		тип	5						
4	7	неизвестно		стебель	7						
5	нет		древес ный			стебель	древесн ый				
6	7	ложь							7		
7	8	неизвестно		положение	8						
8	нет		прямо стоящ ее			положен.	прямост оящее				
9	8	ложь							8		
10	9	неизвестно		1основной ствол	9						
11	нет		да			1осн.ств.	да				
12	9	истина				тип	деревья	9			
13	5	неизвестно		форма листа							
14	нет](шир +пл)			форма листа](ш+пл)				
15	5	ложь							5		
16	6	истина				класс	голосем енные	6			
17	1	неизвестно		структура листа	1						
18	нет	истина	чешуе образн ая			структура листа	чешуео бразная	1			
13	1	истина	<u> </u>			Семейство	кипарис	1			

Требования к программному продукту:

- 1. Любой язык программирования, кроме **PROLOG** и **LISP**\$
- 2. Графический интерфейс обязателен;
- 3. Вывод на экран по запросу log-файла, содержащего протокол вывода (пример см. на стр. 4. Можно попроще).

АЛГОРИТМ ТАБЛИЧНОГО ВЫВОДА ДЛЯ БЗ "ПРОДУКЦИОННОГО" ТИПА

Предварительные обозначения.

Пусть заданы п признаков, которые имеют наименования A_1, \ldots, A_n . Каждому такому признаку A_i можно поставить в соответствие набор значений $(a_{i1}, \ldots, a_{ik_i})$.

<u>Пример (по Б3 на стр. 2)</u>:

 A_1 =семейство, $(a_{11}=$ кипарисовые, $a_{12}=$ сосновые, $a_{13}=$ еловые, $a_{14}=$ болотный кипарис); A_2 =класс, $(a_{21}=$ голосеменные);

 A_3 =структура листа, (a_{31} = чешуеобразная, a_{32} = иглоподобная).

В общем случае правило продукции с помощью признаков A_i и их значений (a_{i1},\ldots,a_{ik_i}) может быть представлено с использованием пар $(A_i,a_{ij}),j\in\{1,2,\ldots,k_i\}$ в следующем виде:

$$P = (A_u, a_{uk}) \wedge ... \wedge (A_v, a_{vl}) \Rightarrow (A_s, a_{sm})_{l}$$

 $u,v,s\in\{1,2,\ldots,n\},k\in\{1,2,\ldots,k_u\},l\in\{1,2,\ldots,k_l\},m\in\{1,2,\ldots,k_m\}.$ После приведения к КНФ получим:

$$P = \neg (A_u, a_{uk}) \lor \dots \lor \neg (A_v, a_{vl}) \lor (A_s, a_{sm}),$$

Пример:

$$P_1 = (A_2, a_{21}) \land (A_3, a_{31}) \Rightarrow (A_1, a_{11}) \Leftrightarrow P_1 = \neg (A_2, a_{21}) \lor \neg (A_3, a_{31}) \lor (A_1, a_{11})$$

Предположим теперь, что Б3 содержит t правил P_1, \ldots, P_t ($t \in \mathbb{N}$). Приведем их все к КНФ и построим **таблицу правил**:

		Посылочные признаки											Заключительные признаки								
	A_1			A_2		:	A_n			A_1			A_2			:	A_n				
	a_{11}		a_{1k_1}	a_{21}		a_{2k_2}		a_{n1}		a_{nk_n}	a_{11}		a_{1k_1}	a_{21}		a_{2k_2}		a_{n1}		a_{nk_n}	
P_1	b		b	b		b		b		b	b		b	b		b		b		b	
P_t	b		b	b		b		b		b	b		b	b		b		b		b	

Таблица заполняется в соответствии со следующим правилом:

Символы **b** в ячейке с индексом (*i,j*) принимают значения из множества $\{ \sqcup, +, - \}$ в соответствии со следующими правилами. Фиксируем P_u и в клетки соответствующей строки заносим:

b=□ (ничего не ставится, пробел) если признак A_i (как среди посылочных, так и заключительных) со значением a_{ij} не используется в правиле;

b=-, если признак A_i является посылочным и его значение a_{ij} используется в

b=+, если признак A_i является заключительным и его значение a_{ij} используется в правиле.

АЛГОРИТМ.

Шаг О. Модифицируем таблицу правил, оставив в ней только те посылочные и заключительные признаки, которые имеют значащие значения $(\{+,-\})$ хотя бы для одного правила из набора P_1, \ldots, P_t . Обозначим полученную таблицу (матрицу) через $T_{\rm np}$. В результате получим **два набора признаков** – $A_{\rm noc}$ (посылочные) и $A_{\rm закл}$ (заключительные). Сформируем также **стек целей** St_{target} и **список полученных результатов** L_{res} , которые будут применяться в процессе вывода. Состоять они будут: - St_{target} из последовательности признаков $A_u \in A_{\text{закл}}$;

- L_{res} из последовательности установленных фактов в виде $(A_u, a_{uj}): A_u \in A_{\text{пос}} \lor A_{\text{закл}}$, $j \in \{1, 2, \dots, k_n\}.$

Задаем пользователю вопрос — какой из признаков из набора $A_{
m sakn}$ он желает вывести. Предположим, что ответ был такой — признак $A_i \in A_{\mathtt{закл}}$.

Заносим признак A_i в стек St_{target} .

Шаг 1. Формируем таблицу T_{goals} , которую по определению полагаем пустой (т.е. шапка и нет строк).

Шаг 1.1. Для текущего признака $A_{current} \in St_{target}$ заносим в таблицу T_{goals} строки, соответствующие правилам, у которых заключительный признак $A_{current}$ для одного из значений помечен знаком '+'. Соответствующий набор правил обозначим $P_{current}$. Если $P_{current} = \emptyset$ то переходим на шаг 1.2. В противном случае $(P_{current} \neq \emptyset,)$ — на шаг 2.

Шаг 1.2.

Сообщаем пользователю:

Ответ не может быть получен т.к. отсутствуют правила, соответствующие признаку $A_{current}$.

переходим на шаг 6.

Шаг 2. В таблице T_{goals} находим строку (пусть для определенности это будет строка, соответствующая правилу $P_u \in P_{current}$), у которой число признаков, помеченных знаком '-' минимально.

Если это число больше 0, то переходим к шагу 3.

В противном случае (равно 0) — заносим $A_{current}$ и соответствующее ему значение в правиле P_u в L_{res} (обозначим полученный результат для определенности через (A_v, a_{vs})) и в случае $|St_{target}| = 1$ переходим к шагу 5. В противном случае ($|St_{target}| > 1$ – к шагу 4.

Шаг 3. Выбираем первый признак в правиле P_{u} , помеченный знаком '-'. Пусть это будет признак A_{v} . Если $A_{v} \notin A_{{}_{3{}_{3}{}_{K}\!\!\!\!/}}$, то:

Задаем пользователю вопрос — какое значение имеет признак A_v . Предположим, что ответ был такой — a_{vs} .

Заносим полученный ответ (A_v, a_{vs}) в L_{res} и переходим к шагу 4.

В противном случае ($A_v \in A_{\text{закл}}$) заносим A_v в St_{target} делая его $A_{current}$ и переходим на шаг 1.1.

Шаг 4.

Применяем к матрице T_{aoals} следующие преобразования.

Шаг 4.1. Последовательно фиксируем все строки (правила P_u) из T_{goals} . Если просмотрены все строки, то переходим к шагу 4.2.

Шаг 4.1. Если $A_v \in A_{\text{пос}}$ в правиле P_u , то переходим к шагу 4.1.1 Если $A_u \in A_{\text{закл}}$ в правиле P_u , то переходим к шагу 4.1.2.

Шаг 4.1.1.

- Если признак A_v является значащим (помечен знаком ' '), причем в позиции, которая не совпадает с номером s, то правило P_u исключаем из T_{goals} . Переходим к шагу 4.1;
- Если A_v является значащим (помечен знаком ' ') и пара (A_v, a_{vs}) также помечена знаком ' ', то правило P_u исключаем из T_{goals} . Переходим к шагу 4.1;
- Если A_v является значащим (помечен знаком ' '), причем в позиции, которая совпадает с номером s, то знак ' ' заменяется на ' \sqcup '. Переходим к шагу 4.1;

Шаг 4.1.2.

- Если A_v является помечен знаком '+ в позиции, которая не совпадает с номером s, то соответствующее ему значение a_{us} в виде $-(A_u,a_{us})$ заносим в L_{res} , а правило P_u исключаем из T_{goals} . Переходим к шагу 4.1;
- Если A_v является помечен знаком '+ в позиции, которая совпадает с номером s, то правило P_u исключаем из T_{goals} . Переходим к шагу 4.1;
- **Шаг 4.2**. Обновляем таблицу T_{goals} (помечаем удаленные правила P_u , чтобы не просматривать их в дальнейших шагах алгоритма) и переходим к шагу 3.0.
- **Шаг 4.3**. Обнуляем список L_{res} , исключая из него все пары (A_v, a_{vs}) . Если значение $A_{current}$ установлено, то исключаем из St_{target} признак $A_{current}$. Меняем значение $P_{current}$ (т.к. в стеке будет новое значение $A_{current}$) и переходим к шагу 2.

Шаг 5. Сообщаем пользователю ответ:

Признак A_v имеет значение a_{vs} . (здесь пара (A_v,a_{vs}) — последняя из занесенных в L_{res}).

Шаг 6. Конец работы алгоритма.

Требования к программному продукту аналогичны изложенным на стр. 4. Кроме того, необходимо в программе вывести на экран последовательность T_{goals}

АЛГОРИТМ ОБРАТНОГО ВЫВОДА ДЛЯ БЗ "ПРОДУКЦИОННОГО" ТИПА

Обратная цепочка рассуждений применяется в задачах, соответствующих процессу проверки гипотез при решении проблем человеком — для заданной ситуации необходимо определить условия к ней приводящие.

Алгоритм обратного вывода обычно основан на *стратегии поиска в глубину*. Этот процесс предусматривает следующие шаги:

- **Шаг 1**. Определить цель для обратного вывода и занести ее в стек целей. (Цель == признак и его значение).
- **Шаг 2.** Сделать последнюю цель в стеке текущей. В списке правил найти первоеправило, у которого заключительный признак соответствует текущей цели. Если правило найдено, то перейти к шагу 3. Если правило не найдено и число целей в стеке равно 1, сообщить пользователю, что ответ найти невозможно и перейти к шагу 7. Во всех остальных случаях занести признак, найденный на шаге 3, вместе с его значением в контекстный стек и вернутся на шаг 3.1
- **Шаг 3.** Рассмотреть условную часть найденного правила последовательно выбирая все посылочные признаки.
 - **Шаг 3.1.** Если выбранный посылочный признак является выводимым (принадлежит к числу заключительных), то занести данный признак и его значение в стек целей и перейти к шагу 2. В противном случае занести признак вместе с его значением в контекстный стек.
 - **Шаг 3.2.** После исчерпания всех посылочных признаков для текущей цели, делаем проверку. Если число целей в стеке равно 1, то переходим к шагу 4. В противном случае удаляем последнюю текущую цель из стека целей и возвращаемся шагу 3, назначив новой текущей целью последнюю в стеке.
- **Шаг 4.** Показать пользователю ответ, что цель для обратного вывода может быть достигнута при следующих условиях: *показать контекстный стек*.
- **Шаг 5.** Алгоритм заканчивает работу.

Требования к программному продукту аналогичны изложенным на стр. 4. Кроме того, необходимо в программе вывести на экран последовательность T_{qoals}

Подборка датасетов для задачи распознавания образов:

- <u>Биткойн, исторические данные</u> данные биткойнов с интервалом в 1 минуту с избранных бирж, январь 2012 г. март 2019 г.
- <u>FIFA 19 полный набор данных игроков</u> 18k + FIFA 19 игроков, \sim 90 атрибутов, извлеченных из последней базы данных FIFA.
- Статистика видео YouTube ежедневная статистика трендовых видео на YouTube.
- <u>Huge Stock Market Dataset</u> исторические дневные цены и объемы всех американских акций и ETF.
- Индикаторы мирового развития показатели развития стран со всего мира.
- Kaggle Machine Learning & Data Science Survey 2017 Большое представление о
- Рентгенография грудной клетки (пневмония) 5,863 изображения, 2 категории.
- <u>Распознавание пола по голосу</u> эта база данных была создана, чтобы идентифицировать голос как мужской или женский, основываясь на акустических свойствах голоса и речи. Набор данных состоит из 3168 записанных голосовых сэмплов, собранных от мужчин и женщин.
- <u>Студенческое потребление алкоголя</u> данные были получены в ходе опроса учащихся по математике и португальскому языку на курсах в средней школе. Он содержит много интересной социальной, гендерной и учебной информации о студентах.
- Набор данных о клетках малярии сотовые изображения для выявления малярии.
- <u>Опросы молодых людей</u> данные о предпочтениях, интересах, привычках, мнениях и страхах молодых людей.
- Мировые рейтинги университетов —лучшие университеты мира.
- Обнаружение мошенничества с кредитными картами датасет по анонимным транзакциям кредитных карт, помеченные как мошеннические или подлинные.
- <u>Датасет болезней сердца</u> эта база данных содержит 76 атрибутов, таких как возраст, пол, тип боли в груди, артериальное давление в покое и другие.
- <u>Европейская футбольная база</u> 25 000+ матчей, атрибуты игроков и команд для европейского профессионального футбола.
- <u>Винные обзоры</u> 130k винных обзоров с разнообразием, местоположением, винодельней, ценой и описанием.
- <u>Baidu Apolloscapes</u>. Большой датасет для распознавания 26 семантически разных объектов вроде машин, велосипедов, пешеходов, зданий, уличных фонарей и т. д.
- <u>Comma.ai</u>. Более семи часов езды по шоссе. Датасет включает информацию о скорости машины, ускорении, угле поворота руля и GPS-координатах.
- <u>Распознавание цветов</u> этот набор данных содержит 4242 изображения цветов. Сбор данных основан на данных flicr, изображениях Google, изображениях Яндекса.
- <u>Ежедневная рыночная цена каждой криптовалюты</u> исторические цены на криптовалюту для всех токенов.
- Шоколадный рейтинг Экспертный рейтинг более 1700 шоколадных батончиков.
- <u>Рынок медицинского страхования</u> данные о планах в области здравоохранения и стоматологии на рынке медицинского страхования США.
- Звуки сердцебиения классификация аномалий сердцебиения по стетоскопу.
- <u>База данных аниме рекомендаций</u> рекомендации от 76 000 пользователей на myanimelist.net
- Изображения клеток крови 12 500 изображений: 4 разных типа клеток.
- Рентгенография грудной клетки более 112 000 рентгенограмм грудной клетки от более чем 30 000 уникальных пациентов.

- <u>База данных подержанных автомобилей</u> более 370000 подержанных автомобилей. Содержание данных на немецком языке, поэтому нужно сначала перевести их, если вы не говорите на немецком.
- <u>Дом открытых данных правительства США</u> данные, инструменты и ресурсы для проведения исследований, разработки веб-приложений и мобильных приложений, разработки визуализаций данных.
- <u>Национальный центр</u> профилактики хронических заболеваний и укрепления здоровья (NCCDPHP). Центр работает над снижением факторов риска хронических заболеваний.
- <u>Крупнейший</u> в Великобритании сборник социальных, экономических и демографических ресурсов.
- <u>EconData</u> несколько тысяч экономических временных рядов, подготовленных рядом правительственных учреждений США и распространенных в различных форматах и СМИ.
- <u>Центр исследования побережья</u> интересные данные о море и его биологическом составе. Здесь можно найти датасеты начиная с анализа данных модели Красного моря до исследования температуры и течений над узким южным калифорнийским шельфом.
- Набор данных цифр языка жестов Турция, Анкара, Айранджи, Анадолу. Набор данных о языке жестов средней школы.
- <u>Качество красного вина</u> простой и понятный практический набор данных для регрессионного или классификационного моделирования.
- Таблицы английской футбольной премьер-лиги (1968-2019).
- <u>HotspotQA Dataset</u> датасет с вопросами-ответами, позволяющий создавать системы для ответов на вопросы более понятным способом.
- <u>xView</u> один из самых больших общедоступных наборов воздушных снимков земли. Он содержит изображения различных сцен со всего мира, аннотированных с помощью ограничительных рамок.
- Labelme Большой датасет аннотированных изображений.
- <u>ImageNet</u> Датасет изображений для новых алгоритмов, организованный в соответствии с иерархией WordNet, в которой сотни и тысячи изображений представляют каждый узел иерархии.
- <u>LSUN.</u> датасет изображений, разбитых по сценам и категориям с частичной разметкой данных.
- MS COCO крупномасштабный датасет для обнаружения и сегментации объектов.
- <u>COIL100</u> 100 разных объектов, изображённых под каждым углом в круговом обороте.
- <u>Visual Genome</u> датасет с ~100 тыс. подробно аннотированных изображений.
- <u>Google's Open Images.</u> коллекция из 9 миллионов URL-адресов к изображениям, «которые были помечены метками, охватывающими более 6000 категорий» под лицензией Creative Commons.
- <u>Labelled Faces</u> in the Wild набор из 13 000 размеченных изображений лиц людей для использования приложений, которые предполагают использование технологии распознавания лиц.
- <u>Stanford Dogs Dataset</u> содержит 20 580 изображений из 120 пород собак.
- <u>Indoor Scene Recognition.</u> датасет для распознавания интерьера зданий. Содержит 15 620 изображений и 67 категорий.
- Oxford's Robotic Car более 100 повторений одного маршрута по Оксфорду, заснятого в течение года. В датасет попали разные комбинации погодных условий,

- трафика и пешеходов, а также более длительные изменения вроде дорожных работ.
- <u>Cityscape Dataset</u> большой датасет, содержащий записи ста уличных сцен в 50 городах.
- <u>KUL Belgium Traffic Sign Dataset</u> более 10 000 аннотаций тысяч разных светофоров в Бельгии.
- <u>LISA Laboratory for Intelligent & Safe Automobiles</u> датасет с дорожными знаками, светофорами, распознанными средствами передвижения и траекториями движения.
- <u>WPI datasets</u> датасет для распознавания светофоров, пешеходов и дорожной разметки.
- <u>Berkeley DeepDrive</u> огромный датасет для автопилотов. Он содержит более 100 000 видео с более чем 1100 часами записей вождения в разное время дня и в различных погодных условиях.
- <u>MIMIC-III</u> датасет с обезличенными данными о состоянии здоровья ~40 000 пациентов, находящихся на интенсивной терапии (демографическими данными, показатели жизнедеятельности, лабораторными анализами и лекарствами).
- <u>Amazon Reviews</u> Содержит около 35 млн отзывов с Amazon за 18 лет. Данные включают информацию о продукте и пользователе, оценки и сам текст отзыва.

Полезные ссылки по поиску датасетов:

- <u>Kagqle</u> место встречи всех любителей соревнований по машинному обучению.
- <u>Google Dataset Search</u> поиск датасетов по всей сети интернет. Также, при необходимости можно добавить <u>свои наборы данных</u>.
- <u>Machine Learning Repository</u> набор баз данных, теорий предметной области и генераторов данных, которые используются сообществом машинного обучения для эмпирического анализа алгоритмов машинного обучения.
- <u>VisualData</u> поиск датасетов для машинного зрения, с удобной классификацией по категориям.
- <u>DATA USA</u> полный набор по общедоступным данным США с визуализацией, описанием и инфографикой.

В итоге выбранная для лабораторных работ 4 и 5 задача (обозначим ее для краткости через $\mathbf{T_0}$ (ask)) должна удовлетворять следующей постановке:

ЗАДАНЫ:

- некоторое множество объектов X, разбитое на подмножества (классы) $X_1, ..., X_l$ (/ \in \mathbb{N}). Причем, классы не пересекаются $X_i \cap X_j = \emptyset \ \forall i \neq j \ (i,j \in \{1,...,l\}).$
- выборка объектов $X^0 \subset X$, которая удовлетворяет условиям: $|X^0| < +\infty$ и $X^0 \cap X_i \neq \emptyset$ ($\forall i \in \{1, ..., l\}$). Кроме того, для каждого объекта $x \in X^0$ известна (определена) информация о принадлежности к классам $X_1, ..., X_l$. Эта информация задается в виде **информационного вектора** $P(x) = (P_1(x), ..., P_l(x))$, компоненты которого определяются следующим образом

$$P_i(x) = \begin{cases} 1, \text{если } x \in X_i, \\ 0, \text{иначе.} \end{cases}$$

ЗАДАЧА РАСПОЗНАВАНИЯ БЕЗ ОБУЧЕНИЯ

В этой задаче (обозначим ее через $\mathbf{T_1}$) требуется некоторое множество объектов X^0 разбить на конечное число подмножеств (классов, таксонов, кластеров). В идеальном случае полученные классы при разбиении X^0 должны соответствовать разбиению множества X на классы.

Задана задача **T₀** (см. стр. 11). Для данной задачи информационный вектор в процессе решения задачи не участвует, хотя для задачи **T₀** он известен. Для задачи **T₀** известно также число классов l.

Опишем простейший алгоритм, известный как алгоритм **иерархической кластеризации**. Он может использоваться для решения задачи T_1 .

Шаг 0 (предварительный).

Формируем первоначальный набор классов. Для этого каждый объект из X^0 отождествляем с некоторым классом X_i' . Всего таких классов на предварительном шаге может быть сформировано по числу объектов, входящих в выборку $|X^0| = k$. Обозначим полученный набор классов через $X' = (X_1', ..., X_k')$.

Далее алгоритм реализуется как последовательность шагов 1-4.

Шаг 1. Для каждого класса из $X_i' \in X'$ определяем точку x_i по формуле

$$x_i = (\sum_{x_u \in X_i'} x_u) \times (|X_i'|)^{-1}$$

Шаг 2. С помощью следующей функции попарного сравнения объектов из X

$$s: X \times X \to \mathbb{R}$$

для множества классов из X' по соответствующим точкам x_i находим близость между классами, выбираем ближайшие X_s' и X_t' . Объединяем их в новый класс X_{st}' .

В качестве s можно использовать любую метрику, включая описанные ниже метрики Евклида, Минковского или Хэмминга

Шаг 3. После этого модифицируем набор классов X' исключая из него X'_s , X'_t и добавляя X'_{st} .

Шаг 4. Если |X'|=l, то алгоритм заканчивает работу. В противном случае переходим к шагу 1.

Полученные результаты.

При решении задачи $\mathbf{T_1}$ мы получим набор классов $X' = (X'_1, ..., X'_l)$. При этом каждый объект из X^0 будет занесен в один из классов набора X'. Можно этому результату сопоставить матрицу из **кластеризационных векторов** $C(x) = (C_1(x), ..., C_l(x))$, компоненты которого могут быть определены следующим образом:

$$C_i(x) = \begin{cases} 1, \text{если } x \in X_i', \\ 0, \text{иначе.} \end{cases}$$

Далее, имея кластеризационную матрицу и матрицу, состоящую из информационных векторов, можно определить **меру несоответствия** информации для задач T_0 и T_1 .

Эти задачи сравнимы, т.к. в них совпадает число классов. Для вычисления данной меры можно воспользоваться, к примеру, следующим алгоритмом.

Шаг 0 (предварительный).

Каждому объекту $x \in X^0$ сопоставляем пару $(a_0(x), a_1(x))$, где $a_0(x), a_1(x)$ — номера классов для объекта x по информационному и кластеризационному векторам соответственно. Далее составляем l наборов из таких пар таким образом, чтобы в каждом из этих наборов первые компоненты пар совпадали. Обозначим эти наборы через $A_1 \dots, A_l$. Для определенности будем считать, что в A_i входят все пары, соответствующие классу с первым индексом равным i.

Шаг 1. Для каждого A_i по второму индексу $a_1(x)$ вычисляем максимальное число вхождений числа из $L = \{1, 2, ..., l\}$. Обозначим полученные максимумы через $b_1, ..., b_l$, а соответствующие им номера классов через $c_1, ..., c_l$.

Введем следующие множества: $A=\{A_1\dots,A_l\},\ B=\{b_1,\dots,b_l\},\ C=\{c_1,\dots,c_l\},\ B_0=\emptyset,$ $C_0=\emptyset.$

Шаг 2. Находим максимальный элемент в $B \setminus B_0$. Пусть это будет b_u , а соответствующий номер класса c_u . Если $c_u \in C_0$, то переходим на шаг 2.1. В противном случае на шаг 2.2.

Шаг 2.1. Для набора A_u находим новый максимум b_u по номерам классов, не содержащихся в C_0 . Если максимум не может быть найден (отсутствуют среди $a_1(x)$ номера, не принадлежащие C_0), то меняем в векторах $b_1, ..., b_l$ и $c_1, ..., c_l$ соответствующие компоненты b_u и c_u на 0, $A_0 \stackrel{\text{def}}{=} A_0 \cup A_u$ и возвращаемся на шаг 2. В противном случае меняем b_u и c_u на новые значения и возвращаемся на шаг 2.

Шаг 2.2. $B_0 \stackrel{\text{def}}{=} B_0 \cup b_u$, $C_0 \stackrel{\text{def}}{=} C_0 \cup c_u$, $A_0 \stackrel{\text{def}}{=} A_0 \cup A_u$. Если $|A_0| = l$ то алгоритм заканчивает работу (переходим на шаг 3). В противном случае возвращаемся на шаг 2.

Шаг 3. Фиксируем последовательность номеров классов в A_0 . Пусть это будет такая последовательность $A'_{1,\dots,}A'_l$. Перенумеруем также номера классов X^0 через X'_1,\dots,X'_l и соответствующие им максимумы через b'_1,\dots,b'_l . Подсчитываем **меру несоответствия** информации для задач **T₀** и **T₁** следующим образом:

$$\mu(T_0, T_1) = (\sum_{i=1}^{l} (|X_i'| - b_i')) \times |X^0|^{-1}$$

Требования к программному продукту:

- 1. Любой язык программирования
- 2. Графический интерфейс обязателен;
- 3. Вывод на экран по запросу всей информации, которая описывает полученное решение. В данной задаче это разбиение $X'=(X_1',\dots,X_l')$ и **мера несоответствия** $\mu(T_0,T_1)$.

ЗАДАЧА РАСПОЗНАВАНИЯ С ОБУЧЕНИЕМ

Шаг 0 (предварительный)

На входе имеем две задачи $\mathbf{T_0}$ и $\mathbf{T_1}$. В каждой из этих задач имеется своя выборка объектов X^0 , разбитая на l классов и соответствующие им информационные вектора. К каждой из этих выборок применяем одинаковую схему решения, описанную ниже.

Разбиение выборки X^0 на две части

Шаг может повторяться некоторое число раз. Каждый раз выборка X^0 разбивается на две части $X^0_{\text{обуч}}$ и $X^0_{\text{контр}}$ (называются соответственно **обучающей** и **контрольной** выборками). Выборки должны удовлетворять следующим условиям:

$$\begin{array}{c} X_{i\,(\mathrm{o})}^{0} \stackrel{\mathrm{def}}{=} X_{\mathrm{o}\mathrm{6yq}}^{0} \cap X_{i}^{0} \neq \emptyset \ \, \forall i \in \{1, \ldots, l\}, \ \, \bigcup_{i=1}^{l} X_{i\,(\mathrm{o})}^{0} = X_{\mathrm{o}\mathrm{6yq}}^{0}; \\ X_{i\,(\mathrm{K})}^{0} \stackrel{\mathrm{def}}{=} X_{\mathrm{KOHTp}}^{0} \cap X_{i}^{0} \neq \emptyset \ \, \forall i \in \{1, \ldots, l\}, \ \, \bigcup_{i=1}^{l} X_{i\,(\mathrm{K})}^{0} = X_{\mathrm{KOHTp}}^{0}. \end{array}$$

Обозначим: $\left|X_{i\,(\mathrm{o})}^{0}\right|=m_{i}, \left|X_{i\,(\mathrm{K})}^{0}\right|=t_{i}, \sum_{i=1}^{l}m_{i}=\left|X_{\mathrm{obyq}}^{0}\right|=m, \sum_{i=1}^{l}t_{i}=\left|X_{\mathrm{контр}}^{0}\right|=t.$

В результате шага 0 может быть получено два разбиения, которые мы обозначим через

$$\{X_{\text{обуч}}^{0}, X_{\text{контр}}^{0}\}^{1}$$
, $\{X_{\text{обуч}}^{0}, X_{\text{контр}}^{0}\}^{2}$.

При этом первое разбиение сопоставляется задаче T_0 , а второе — задаче T_1 .

Ограничение:

Все выборки $\{X_{\text{обуч}}^0, X_{\text{контр}}^0\}^j$ должны удовлетворять следующему дополнительному условию: $t_i \ / \ m_i \geq 0.2$. После построения всех выборок $\{X_{\text{обуч}}^0, X_{\text{контр}}^0\}^j$, они фиксируются для последующего применения на каждой из них всего набора алгоритмов A

Далее алгоритм A реализуется как последовательность шагов 1-3.

Шаг 1. Определение функции попарного сравнения объектов из X:

$$s: X \times X \to \mathbb{R} \tag{1}$$

Каждый объект $x \in X$ можно сравнить с объектами из выборки $X_{\text{обуч}}^0$. В результате объекту x можно сопоставить вектор $(s(x,x_1),...,s(x,x_m))$ m_1 первых компонент являются результатом сравнения x с объектами из $X_{1(0)}^0$, m_2 следующих являются результатом сравнения x с объектами из $X_{2(0)}^0$ и т.д.

Шаг 2. Определение функции сравнения объектов из $x \in X$ с объектами из обучающей выборки $X_{i(o)}^0$:

$$f_i: \mathbb{R}^m \to \mathbb{R}, \ i \in \{1, \dots, l\}$$
 (2)

С помощью функций (2) каждому вектору $(s(x,x_1),...,s(x,x_m)) \in \mathbb{R}^m$ можно сопоставить вектор $(f_1(x),...,f_l(x)) \in \mathbb{R}^l$.

Шаг 3. Определение решающего правила P^A в виде:

$$P^A: \mathbb{R}^l \to \mathbb{B}_2^l, \ \mathbb{B}_2 = \{0,1\}$$

Вектор $P^A(x) = (P_1^A(x), ..., P_l^A(x))$ в отличие от вектора P(x) называют обычно **классификационным**, тк его значения интерпретируются следующим образом. Считается, что объект $x \in X$ заносится (или не заносится) алгоритмом A в класс X_i , если $P_i^A(x) = 1$ (= 0).

Шаг 4. Тестирование определенного на шагах 1-3 алгоритма распознавания A на фиксированной выборке $\{X^0_{\text{обуч}}, X^0_{\text{контр}}\}^j, j=1,2,...,k$.

Инициализация: полагаем $t^0(X_{\text{контр}}^0)=0$.

Шаг 4.1. Последовательно перебираем все объекты $x \in X^0_{\text{контр}}$ и для каждого из них вычисляем:

- а) вектор $(s(x, x_1), ..., s(x, x_m))$ для всех $x \in X^0_{\text{обуч}}$;
- b) вектор $(f_1(x), ..., f_l(x))$ для всех $i \in \{1, ..., l\}$;
- c) вектор $P^{A}(x) = (P_{1}^{A}(x), ..., P_{l}^{A}(x))$
- d) если $P^A(x) = P(x)$, то $t^0(X^0_{\text{контр}}) = t^0(X^0_{\text{контр}}) + 1$ и переходим к пункту е). В противном случае $t^0(X^0_{\text{контр}})$ не меняется и переходим к пункту е).
- е) если не все объекты $x \in X^0_{\text{контр}}$ исчерпаны, то выполняем шаг 4.1 для следующего объекта контрольной выборки. В противном случае переходим к шагу 4.2.

Шаг 4.2. Вычисляем

$$\Phi_A(X_{\text{контр}}^0) = \frac{t^0(X_{\text{контр}}^0)}{t}$$

величину **функционала качества** $\Phi_A(X^0_{\text{контр}}) \in [0,1]$ и заносим ее в таблицу:

Разбиение		
Алгоритм	$\{X_{\mathrm{oбyч}}^{0},X_{\mathrm{контр}}^{0}\}^{1}$	$\{X_{\mathrm{обуч}}^{0}, X_{\mathrm{контр}}^{0}\}^{2}$
A		

Если все выборки $\{X_{\text{обуч}}^0, X_{\text{контр}}^0\}^j$ исчерпаны, то задача решена в полном объеме. В противном случае выбираем новую выборку $\{X_{\text{обуч}}^0, X_{\text{контр}}^0\}^j$ и возвращаемся на шаг 4.

ВАРИАНТЫ ВЫБОРА ФУНКЦИЙ ДЛЯ ШАГОВ (1)-(3) СХЕМЫ АЛГОРИТМОВ

ВАРИАНТ I. (для пространства $X \subseteq \mathbb{R}^n$)

Выбор функции (1).

метрика Евклида

$$s(x_1, x_2) = \left(\sum_{i=1}^{n} (x_{1i} - x_{2i})^2\right)^{1/2}$$

– метрика Минковского ($p\!\in\!\mathbb{N}$)

$$s(x_1, x_2) = \left(\sum_{i=1}^{n} (x_{1i} - x_{2i})^p\right)^{1/p}$$

Выбор функции (2).

– среднее (м.б. взвешенное) расстояние до класса X_i

$$f_i(x) = (m_i)^{-1} \sum_{\substack{x_j \in X_{i(0)}^0}} s(x, x_j)$$

— k ближайших соседей пусть для класса X_i получен набор $s(X_{i(o)}^0) = \{s(x,x_1),...,s(x,x_{m_i})\};$ переупорядочим набор $s(X_{i(o)}^0)$ по **возрастанию** элементов и поставим ему в соответствие новый набор $\bar{X}_{i(o)}^0$, в котором содержится k первых элементов $x_j \in X_{i(o)}^0$ из полученного в результате переупорядочения набора; посчитаем среднее расстояние до класса по новому набору $\bar{X}_{i(o)}^0$

$$f_i(x) = (k)^{-1} \sum_{x_j \in \bar{X}_{i(0)}^0} s(x, x_j)$$

 $-\,$ по минимальному расстоянию до объектов класса X_i

$$f_i(x) = \min_{x_j \in X_{i(0)}^0} s(x, x_j)$$

Выбор решающего правила (3).

 $-\,$ по минимуму оценки до класса X_i

$$P_i^A(x) = egin{cases} 1, \ \mathrm{ec}$$
ли $f_i(x) = \min_{i \in \{1,\dots,l\}} \{f_1(x),\dots,f_l(x)\}; \ 0, \mathrm{в}$ противном случае

ВАРИАНТ II. (для пространства $X \subseteq \mathbb{B}^n$)

Выбор функции (1).

метрика Хэмминга

$$s(x_1, x_2) = \sum_{i=1}^{n} |x_{1i} - x_{2i}|$$

Выбор функции (2).

– среднее (м.б. взвешенное) расстояние до класса X_i

$$f_i(x) = (m_i)^{-1} \sum_{x_j \in X_{i(0)}^0} s(x, x_j)$$

– k ближайших соседей пусть для класса X_i получен набор $s(X_{i(o)}^0) = \{s(x,x_1),...,s(x,x_{m_i})\};$ переупорядочим набор $s(X_{i(o)}^0)$ по **возрастанию** элементов и поставим ему в соответствие новый набор $\bar{X}_{i(o)}^0$, в котором содержится k первых элементов $x_j \in X_{i(o)}^0$ из полученного в результате переупорядочения набора; посчитаем среднее расстояние до класса по новому набору $\bar{X}_{i(o)}^0$

$$f_i(x) = (k)^{-1} \sum_{x_j \in \bar{X}_i^0(0)} s(x, x_j)$$

 $-\,\,$ по минимальному расстоянию до объектов класса X_i

$$f_i(x) = \min_{x_j \in X_{i(o)}^0} s(x, x_j)$$

Выбор решающего правила (3).

- по минимуму оценки до класса X_i

$$P_i^A(x) = egin{cases} 1, ext{ если } f_i(x) = \min_{i \in \{1,\dots,l\}} \{f_1(x),\dots,f_l(x)\}; \ 0, ext{ в противном случае} \end{cases}$$

Требования к программному продукту:

- 1. Любой язык программирования
- 2. Графический интерфейс обязателен;
- 3. Вывод на экран по запросу всей информации, которая описывает полученное решение.