Diploma Thesis: Communication Modeling and Placement of Parallel Applications

Supervisors: Nektarios Kozyris (CSLab/ECE/NTUA), Georgios Goumas $(\mathsf{CSLAB}/\mathsf{ECE}/\mathsf{NTUA})$

Georgios Christodoulis

ECE-NTUA

gchristodoulis@gmail.com

Parallel Architectures

Shared Memory

- 1. Processors share the same physical memory
- 2. Local cache memory hierarchy
- 3. Connection via memory bus

Distributed Memory

- 1. Every processor has its own memory hierarcy
- 2. Processor communication via interconnection network

Hybrid Architectures

Dominant architecture for modern supercomputers.

Parallel Programming Models

OpenMP - Shared Memory Model

- 1. Compiler directives based tools
- 2. Suitable for shared memory architectures
- Popular Schemas: Fork/Join, SPMD, parallel for, Master/Workers

MPI - Distributed Memory Model

- 1. Message Passing Library
- 2. SPMD Every process runs the same program
- Collective vs P2P
- 4. Blocking vs non-Blocking

OpenMP/MPI-Hybrid Model

- 1. Best fit for Hybrid architectures
- 2. OpenMP intranode communication
- 3. MPI communication through the interconnection network

Our System

Architecture

- Hybrid Architecture
- Clovertown Architecture: Intel Xeon 2 GHz,
 32Kb L1 Cache/Core, 6MB L2 cache/package
- ▶ 4 Cores/package, 2 packages/node

Programming Model MPI- Message Passing Interface

CGs Communication Pattern

Benchmarks - osu suite

P₂P

- osu_latency ping-pong message exchange, blocking
- OSu_multi_lat many pairs run simultaneously osu_latency
- OSU_bw Sender sends back to back messages and waits for ack, non blocking
- OSu_bibw Similar with osu_bw, both nodes send messages

Collective

OSU_allreduce the benchmark when run from N processes, measures the min, max and average latency of the MPI_Allreduce operation

Figure: Systems instance for contention on switch testing

$$C_2^1(s) = egin{cases} 50 \mu sec & ext{, if size } s < 64 \text{ Bytes} \\ 1.7378 ext{ } ext{ } s^{0.6} \mu sec & ext{, if size } s \geq 64 \text{ Bytes} \end{cases}$$

$$C_2^1(s) = \begin{cases} 50\mu sec & \text{, if size } s < 256 \text{ Bytes} \\ 0.7387 \times s^{0.6724}\mu sec & \text{, if size } s \geq 256 \text{ Bytes} \end{cases}$$

$$C_4^1(s) = egin{cases} 50\mu sec & ext{, if size } s < 256 ext{ Bytes} \\ 1.1341 ext{ } ext{ } s^{0.6358}\mu sec & ext{, if size } s \geq 256 ext{ Bytes} \end{cases}$$

$$C_8^1(s) = egin{cases} 50\mu sec & ext{, if size } s < 256 \text{ Bytes} \\ 0.4563 imes s^{0.71}\mu sec & ext{, if size } s \geq 256 \text{ Bytes} \end{cases}$$

Figure: Complete indipendancy on switch access.

Figure: Instance of system for contention testing

$$C_2^1(s) = egin{cases} 50\mu sec & ext{, if size } s < 256 ext{ Bytes} \\ 0.7484 ext{ } ext{ } ext{ } s^{0.6704}\mu sec & ext{, if size } s \geq 256 ext{ Bytes} \end{cases}$$

$$C_2^2(s) = egin{cases} 50\mu sec & ext{, if size } s < 64 \text{ Bytes} \\ 0.8132 ext{ } ext{ } s^{0.6876}\mu sec & ext{, if size } s \geq 64 \text{ Bytes} \end{cases}$$

$$C_2^4(s) = egin{cases} 50\mu sec & ext{, if size } s < 64 \text{ Bytes} \\ 0.6725 ext{ } ext{ } s^{0.7298}\mu sec & ext{, if size } s \geq 64 \text{ Bytes} \end{cases}$$

$$C_2^8(s) = egin{cases} 50\mu sec & ext{, if size } s < 64 \text{ Bytes} \\ 0.4092 ext{ x} s^{0.81}\mu sec & ext{, if size } s \geq 64 \text{ Bytes} \end{cases}$$

Figure: Appearance of Contention on NIC

Intranode Effect

Figure: Communication Overview

Useful Metrics

- Maximum Send Latency
- ► Maximum Receive Latency
- Sum of Send Latencies
- Sum of Receive Latencies
- ► S+R

Results - Gathering Session

Table: Prediction Results for Gathering Session

Matrix	S+R	Actual Gathering Time	Relative Deviation
af_5_k101	0.49985	0.49822	0.0032
af_shell10	0.35531	0.29756	0.1940
af_shell9	0.47806	0.40173	0.1900
apache2	0.42745	0.35508	0.20381
bmw3_2	0.34752	0.34752	0 (HIT)
bmwcra_1	0.93015	0.93015	0 (HIT)
bone010	0.49285	0.49285	0 (HIT)
boneS10	0.42705	0.42705	0 (HIT)
crankseg_2	0.45069	0.45069	0 (HIT)
F1	0.38515	0.38515	0 (HIT)

Results - Gathering Session

Table: Prediction Results for Gathering Session

Matrix	S+R	Actual Gathering Time	Relative Deviation
G3_circuit	2.44527	2.44527	0 (HIT)
Ga41As41H72	0.22786	0.22786	0 (HIT)
helm2d03	0.26700	0.26700	0 (HIT)
hood	0.51297	0.39284	0.3057
inline_1	0.89312	0.89312	0 (HIT)
kkt_power	0.42427	0.41462	0.0232
ldoor	0.32107	0.32107	0 (HIT)
msdoor	0.88584	0.88584	0 (HIT)
nd12k	1.14328	1.14328	0 (HIT)

Results - Gathering Session

Table: Prediction Results for Gathering Session

Matrix	S + R	Actual Gathering Time	Relative Deviation
nd24k	0.72550	0.72550	0 (HIT)
nd6k	0.24027	0.22966	0.0461
parabolic_fem	0.23146	0.23146	0 (HIT)
pwtk	0.28839	0.24462	0.1789
s3dkq4m2	0.19154	0.19154	0 (HIT)
ship_001	2.13303	2.13303	0 (HIT)
Si41Ge41H72	2.48232	2.48232	0 (HIT)
Si87H76	0.23744	0.23744	0 (HIT)
thermal2	0.47869	0.47869	0 (HIT)
thread	0.31130	0.31130	0 (HIT)

Collective Communication

Table: Collective Communication Latency, Message size < 64B

Latency(μ sec), 2 Nodes				
2 Pairs 4 Pairs 8 Pairs				
84.79 121.48 171.23				

Table: Collective Communication Latency, Message size < 64B

Latency(μ sec), 4 Nodes				
2 Pairs 4 Pairs 8 Pairs 16 Pairs				
120.22 144.21 185.33 255.66				

Table: Collective Communication Latency, Message size < 64B

Latency(μ sec), 8 Nodes					
2 Pairs 4 Pairs 8 Pairs 16 Pairs 32 Pairs					
104.01 191.17 219.28 242.27 346.17					

Collective Communication Predictor

Table: Collective Communication Predictor for CG

	$Latency(\musec)$		
Processes Per Node	2 Nodes	4 Nodes	8 Nodes
4 PPN	242.96	370.66	484.54
8 PPN	342.46	511.32	692.34

Results - Entire Communication

Table: Prediction Results for CG

		Actual	
Matrix	S + R + A	Communication Time	Relative Deviation
af_5_k101	0.92685	0.92685	0 (HIT)
af_shell10	0.75131	0.72214	0.0011
af_shell9	0.87909	0.87909	0 (HIT)
apache2	0.81645	0.72729	0.1225
bmw3_2	0.77252	0.77252	0 (HIT)
bmwcra_1	1.34415	1.34415	0 (HIT)
bone010	0.90385	0.90385	0 (HIT)
boneS10	0.82305	0.82305	0 (HIT)
crankseg_2	0.84369	0.84369	0 (HIT)
F1	0.82350	0.78090	0.0545

Results - Entire Communication

Table: Prediction Results for CG

		Actual	
Matrix	S+R+A	Communication Time	Relative Deviation
G3_circuit	2.84727	2.84727	0 (HIT)
Ga41As41H72	0.61586	0.61586	0 (HIT)
helm2d03	0.66215	0.66215	0 (HIT)
hood	1.13997	0.79384	0.4360
inline_1	1.33412	1.33412	0 (HIT)
kkt_power	0.84827	0.77354	0.0966
ldoor	0.71707	0.69761	0.0278
msdoor	1.28484	1.28484	0 (HIT)
nd12k	1.55428	1.55428	0 (HIT)

Results - Entire Communication

Table: Prediction Results for CG

		Actual	
Matrix	S+R+A	Communication Time	Relative Deviation
nd24k	1.11750	1.01191	0.1043
nd6k	0.50727	0.50727	0 (HIT)
parabolic_fem	0.62846	0.62846	0 (HIT)
pwtk	0.67739	0.67739	0 (HIT)
s3dkq4m2	0.58054	0.58054	0 (HIT)
ship_001	2.52803	2.52803	0 (HIT)
Si41Ge41H72	2.87932	2.87932	0 (HIT)
Si87H76	0.65244	0.65244	0 (HIT)
thermal2	0.86769	0.86769	0 (HIT)
thread	0.72289	0.72289	0 (HIT)

Results

Accuracy on Gathering Session

$$\frac{hit}{miss} = \frac{21}{8}$$

 $Deviation_{S+R} = 4.05\%$

Accuracy on the entire communication pattern

$$\frac{hit}{miss} = \frac{22}{7}$$

$$\mathsf{Deviation}_{\mathcal{S}+\mathcal{R}+\mathcal{A}} = 2.91\%$$

Conclusions

- We attempted to predict the optimal placement for CG
- We performed a series of benchmarks in order to explore systems behavior
- We finally predicted the optimal placement for both the dominant session as well as the entire communication of CG, with satisfying accuracy and deviation.