Zadanie: SPO Spotkanie towarzyskie

Warsztaty ILO 2017-2018, grupa olimpijska, dzień 2. Dostępna pamięć: 128 MB.

14.09.2017

Przemek ma n znajomych, a wszyscy mieszkają w domach ponumerowanych kolejnymi liczbami naturalnymi $1, 2, \dots, n$. Przemek mieszka w domu z numerem 1. Dodatkowo, w mieście jest n-1 dwukierunkowych dróg, z których każda łączy dwa domy. Miasto ma więc strukturę drzewa.

Sieć telefoniczna w tym mieście składa się z m różnych linii telefonicznych. Każda linia jest opisana trzema liczbami a_i , b_i , c_i , oznaczającymi, że znajomi w domach leżących na najkrótszej ścieżce pomiędzy domami a_i oraz b_i (włącznie) mogą komunikować się ze sobą wewnątrz tej linii kosztem c_i . Innymi słowy, dowolna para znajomych należąca do tej linii może wykonać do siebie połączenie o koszcie c_i . Linie mogą się przecinać, tzn. niektóre domy mogą należeć do wielu linii telefonicznych.

Przemek chce zorganizować spotkanie towarzyskie. W tym celu chce zaprosić jak największą liczbę znajomych. Każdy, kto posiada zaproszenie (włącznie z samym Przemkiem), może wykonać dowolną liczbę połączeń telefonicznych do swoich znajomych i ich również zaprosić. Dodatkowo, chciałby przy tym zminimalizować sumaryczny koszt połączeń. Pomóż Przemkowi i napisz program, który obliczy, ile maksymalnie znajomych będzie zaproszonych i jaki będzie minimalny koszt zaproszenia tych osób.

Wejście

Pierwsza linia wejścia zawiera dwie liczby całkowite n i m ($1 \le n, m \le 200\,000$), oznaczające odpowiednio liczbę znajomych Przemka oraz liczbę linii telefonicznych w mieście, w którym mieszkają.

Każda z kolejnych n-1 linii zawiera dwie liczby całkowite $u, v \ (1 \le u, v \le n)$, oznaczające, że domy u i v połączone są krawędzią. Możesz założyć, że krawędzie na wejściu tworzą drzewo.

Każda z kolejnych m linii zawierają trzy liczby całkowite a_i , b_i , c_i ($1 \le a_i$, $b_i \le n$, $1 \le c_i \le 10^9$), opisujące kolejne linie telefoniczne. Mieszkańcy domów na ścieżce od a_i do b_i mogą wykonać do siebie połączenie o koszcie c_i .

Wyjście

Na wyjściu powinien pojawić się jeden wiersz, zawierający dwie liczby całkowite oddzielone spacją. Pierwsza z nich oznacza, ile osób (włącznie z Przemkiem) otrzyma zaproszenie na spotkanie towarzyskie, a druga oznacza minimalny koszt zaproszenia tylu osób.

4 10

Przykład

Dla danych wejściowych:

poprawnym wynikiem jest:

5 2

1 2

1 3

2 42 5

1 4 3

2 3 4

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n, m \le 1000$	40
2	brak dodatkowych założeń	60

