Recall: If f(x) = K[x] with distinct roots &1,..., &n in some splitting field over K. Then the discriminant of f $\Delta f = \prod_{i \in I} (\alpha_i - \alpha_i) Df = \Delta f$ If F is the splitting field and $\sigma \in Aut(F/K)$ $\sigma(\Delta) = (-1)^{sgn(\sigma)}\Delta$ where sgn is as a permutation of 217 ... , an. Proof: Let z = (io, jo) & Sn, consider the action on $\Delta = \prod_{i \in i} (\alpha_i - \alpha_i).$ Terms aj-ai with ijii3 nijii3 = \$ Suppose (1i,j3 n 1io,jo3 = 1. WLOG, io < jo. If i < io < jo z swaps (xio - aio) and (xio - i). If j > jo > io, (dj-djo) swapped with (dj-dio). If io < i < jo $Z(\alpha_{i0} - \alpha_{i}) = \alpha_{i0} - \alpha_{i} = -(\alpha_{i} - \alpha_{i0})$ Z(ai-dio) = di - djo = - (djo-di) So (ajo-a;)(di-a;) fixed by z. The only term left is $a_{i0}-a_{i0} \xrightarrow{\mathcal{T}} -(a_{j0}-a_{i0}) = \mathcal{T}(\Delta) = -\Delta = \mathcal{T}(\Delta) = (-1)$ So $\sigma(A) = \Delta$ if and only if $\sigma \in A_n \cap Aut(F/K)$ =) K(A) is the fixed field of Ann GalCF/K). Example: Let char (K) = 2 or 3, f(x) = K[x] an irreducible cubic, and F is a splitting field, then $Gal(F/k) \cong S_3$ or Gal(F/K) ~ Az. But Gal(F/K) ~ Az if and only if $\sigma(\Delta) = \Delta$ for all $\sigma \in Gal(F/K)$ if and only if $\Delta \in K$ if

and only if Of is a square in K. For $f(x) = x^3 + Ax + B$. Then $D = -4A^3 - 27B^2$ Since char(K) $\neq 3$, if $f(x) = x^3 + ax^2 + bx + c$, $f(x-\frac{9}{3}) = x^3 + Ax + B$ Now, if $x^3 + Ax + B = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$, then $\alpha_1 + \alpha_2 + \alpha_3 = 0$, so $A = \alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_2 \alpha_3$ and $-B = d_1 a_2 a_3$, $D = (a_3 - d_1)^2 (a_3 - a_2)^2 (a_2 - a_1)^2$ Example: If $f(x) = x^3 - B$ for $B \in \mathbb{Q}$, then $D = -27B^2 \notin \mathbb{Q}$, So Galois group is S3, because the splitting field is Q(3/B,w) with $\omega^3 = 1$, $\omega \neq 1$. Then $\mathbb{Q}(\Delta) = \mathbb{Q}(\sqrt{-27B^2}) = \mathbb{Q}(\sqrt{-3}) = \mathbb{Q}(\omega)$ Example: $x^3 + 3x + 1$ D = 81 = 92 $\in \mathbb{Q}$, so Galois group is A_3 Degree Four Polynomials Proposition: Let K be a field of characteristic not 2 or 3, Let fix) be an irreducible quartic polynomial, F splitting field, Gal(F/K) -> Sy. Let V \le Sy generated by (12)(34), (13)(24) $V = \{ id, (12)(34), (13)(24), (14)(23) \} \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$ If $f(x) = (x - u_1)(x - u_2)(x - u_3)(x - u_4)$, the following are fixed by V $\alpha = U_1 u_2 + u_3 u_4$, $\beta = u_1 u_3 + u_2 u_4$, $\gamma = u_1 u_4 + u_2 u_3$ In fact, $(x-\alpha)(x-\beta)(x-\gamma)$ is fixed by S4. This is

called the resolvent cubic. If

$$f(x) = x^4 + bx^3 + cx^2 + dx + e$$

then
$$f(x) = x^3 - cx^2 + (bd - 4e)x - b^2e + 4ce - d^2$$

where
$$(x-a)(x-\beta)(x-r)$$
 is the resolvent cubic. Then

	Gal(F/K)	_ P D4 => f(x) irreducible over
6	Sy	
		Κ(α,β,γ).
3	Ay	
2	Dy or Zy	J
	•	
ſ	l v	

Example: $x^4 - 2$ in $\mathbb{Q}[x]$. The splitting field is then $\mathbb{Q}(2^{\frac{1}{4}}, i2^{\frac{1}{4}}, -2^{\frac{1}{4}}, -i2^{\frac{1}{4}}) = \mathbb{Q}(2^{\frac{1}{4}}, i)$

$$\sigma(i) = \pm i \qquad \sigma(a^{\frac{1}{4}}) = i^{k} a^{\frac{1}{4}}$$

Resolvent Cubic: $x^3 + 8x = x(x^2 + 8)$

 $K(\alpha_1\beta_1\gamma)=\mathbb{O}(\sqrt{-2})$ so m=2. Note x^4-2 not reducible over $\mathbb{O}(\sqrt{-2})$

Example: $x^4 + 2x + 2$ over O[x]. The resolvent cubic is $x^3 - 8x^2 - 4$ irreducible, so m = 3 or 6. $D = 1616 = 2^4.61$

 $\not\in \mathbb{Q}^2$, so m = 6, Galois group of $x^4 + 2x + 2$ is Sy.

Theorem: Let p be a prime, $f(x) \in K[x]$ be irreducible of degree p, suppose f(x) has exactly two nonreal roots.

Then f has Galois group Sp.

Example: $x^5 - 4x + 2$ has Galois group S5. Indeed, it is irreducible, has exactly 3 roots. (use calculus).

Proof: View the Galois group as a subgroup of S_p , S_{ince} f(x) is irreducible, $f(\alpha) = 0$, so $EO(\alpha): O(1) = p$, S_p $p \mid EF: O(1) = |Gal(F/O(1))| = |Gal(F/O(1))|$

On the other hand, $z \to \overline{z}$ gives an element of Gal(F/a)

This element is a transposition in Sp. WLOG, the transp.

is (12). Some power of the p-cycle is (12...). WLOG

the p-cycle (12...p)

$$\Rightarrow (23) = (12...p)(12)(12...p)^{-1}$$

$$(k,k+1) = (12...p)(k-1k)(12...p)^{-1}$$

$$(13) = (12)(23)(12)$$

;

(|k|) = (|k-1|)(k-1|k)(|k-1|)=) (mk) = (1m)(1k)(1m) so all transpositions are in <(12), (12...,p1), so this subgroup is Sp Symmetric Polynomials The generic quintic has Galois group S5. There are specific polynomials (quintic) over Q with Galois group of S5