Оглавление

1	Век	сторные пространства	2
	1.1	Продолжение изоморфизма	4
	1.2	Действия над линейными отображениями	ļ

Глава 1

Векторные пространства

1.1 Продолжение изоморфизма

Следствие. Отношение изоморфизма симметрично и транзитивно **Свойство.** $f:U\to V$ – линейное отображение. Тогда 1. f – инъекция \iff ker $f = \{0\}$ Доказательство. $\left. \begin{array}{l} f(0) = 0 \\ f - \text{инъекция} \end{array} \right\} \implies \forall u \neq 0 \quad f(u) \neq 0 \implies \forall u \neq 0 \quad u \notin \ker f$ Пусть $f(u_1) = f(u_2) \implies f(u_1 - u_2) = f(u_1) - f(u_2) = 0 \implies u_1 - u_2 \in \ker f = set0 \implies$ $u_1 - u_2 = 0 \implies u_1 = u_2$ 2. $\ker f = \{0\} \implies f$ – изоморфизм из U в $\operatorname{Im} f$ **Доказательство.** f – инъекция (по предыдущему пункту) f – сюръекция (по определению $\operatorname{Im} f$) Значит, f – биекция f линейно Значит, f – изоморфизм П **Свойство.** Пусть $f: U \to V$ – изоморфизм. Тогда 1. $e_1, ..., e_k$ ЛНЗ $\iff f(e_1), ..., f(e_k)$ ЛНЗ **Доказательство.** f^{-1} – изоморфизм \implies достаточно доказать \Longleftarrow , то есть, если $e_1,...,e_k$ ЛЗ, то $f(e_1), ..., f(e_k)$ ЛЗ Пусть $a_1e_1 + ... + a_ke_k = 0$, не все a_i равны 0Тогда $a_1 f(e_1) + ... + a_k f(e_k) = f(0) = 0 \implies f(e_i)$ ЛЗ 2. $e_1,...,e_k$ – базис $U \implies f(e_1),...,f(e_k)$ – базис VДоказательство. Базис – максимальный ЛНЗ. Применим предыдущий пункт 3. $\dim U = \dim V$ Доказательство. Следует из предыдущего пункта **Лемма 1** (выделение ядра прямым сложением). Пусть U, V – конечномерны, $f: U \to V$ линейно Тогда $\exists W$ – подпространство U, такое что:

1.
$$W\cong \operatorname{Im} f, \qquad f\bigg|_{W} \to \operatorname{Im} f$$
 — изоморфизм

2. $\ker f \oplus W = U$

Доказательство. Пусть $g_1,...,g_k \in V, \quad g_1,...,g_k$ – базис ${\rm Im}\, f$

$$g_i \in \operatorname{Im} f \implies \exists e_i : f(e_i) = g_i, \quad e_i \in U$$

Положим $W = \langle e_1, ..., e_k \rangle$

Докажем, что W подходит:

- 1. Пусть $f_1:W \to \operatorname{Im} f, \quad f_1=figg|_W$. Докажем, что f_1 изоморфизм:
 - Проверим сюръективность: Пусть $v \in \text{Im } f \implies \exists a_i : v = a_1g_1 + ... + a_kg_k \implies v = a_1f(e_1) + ... + a_kf(e_k) = f_1(a_1e_1 + ... + a_ke_k)$
 - Проверим инъективность: Достаточно проверить, что в 0 переходит только 0 Пусть $w \in W$, $f_1(w) = 0$

$$w = a_1 e_1 + \dots + a_k e_k$$

$$f_1(w) = a_1 f(e_1) + ... + a_k f(e_k) = a_1 g_1 + ... + a_k g_k \xrightarrow[g_i \text{ JIH3}]{} \forall i \quad a_i = 0 \implies w = 0 \cdot e_1 + ... + 0 \cdot e_k = 0$$

2. Проверим, что $\ker f + W = U$:

Пусть $u \in U$

Пусть $f(u) = v \in \text{Im } f$

Пусть $x \in W: f(x) = v$ (такой x существует, так как $f\Big|_{W}$ — изоморфизм)

Положим y = u - x

Тогда $f(y) = f(u) - f(x) = v - v = 0 \implies y \in \ker f$

3. Докажем, что $U = \ker f \oplus W$:

Достаточно доказать, что $x+y=0 \implies x=y=0$ $x \in \ker f$ $y \in W$

$$x \in \ker f \implies f(y) = f(-x) = -f(x) = 0$$

$$\left. egin{aligned} f \middle|_W & - & \text{инъекция} \\ W & f(y) = 0 \end{aligned}
ight. \implies y = 0 \implies x = 0$$

Теорема 1 (размерность ядра и образа). Пусть U конечномерно, $f:U\to V$ линейно Тогда $\dim\ker f+\dim\operatorname{Im} f=\dim U$

Доказательство. Положим $W:W\cong {\rm Im}\, f,\quad U=\ker f\oplus W$ По свойству прямой суммы, $\dim U=\dim\ker f+\dim W\implies \dim U=\dim\ker f+\dim\operatorname{Im} f$

Теорема 2 (каноническая форма матрицы линейного отображения). Пусть U,V конечномерны, $f:U\to V$ линейно

Тогда существуют базисы u, v, в которых матрица f имеет вид

$$\begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Доказательство. $U=\ker f\oplus W, \qquad figg|_W$ — изоморфизм из W в $\operatorname{Im} f$

Пусть $e_1,...,e_k$ – базис $W, \qquad e_{k+1},...,\stackrel{\scriptscriptstyle W}{e_n}$ – базис $\ker f$

Тогда $e_1, ..., e_n$ – базис U (по свойству прямой суммы)

 $f(e_1),...,f(e_k)$ – базис Im f (по свойству изоморфизма)

 $f(e_1), ..., f(e_k)$ ЛНЗ

Положим $g_1 = f(e_1), ..., g_k = f(e_k)$

Дополним $g_1,...,g_k$ до базиса V

Пусть $g_1, ..., g_m$ – базис V

Докажем, что базисы $e_1,...,e_n$ и $g_1,...,g_m$ подходят

• Пусть $i \leq k$

$$f(e_1) = g_i = 0 \cdot g_1 + \dots + 1 \cdot g_i + \dots + 0 \cdot g_k + \dots$$

• Пусть i > k

$$e_i \in \ker f \implies f(e_i) = 0 = 0 \cdot q_1 + \dots + 0 \cdot q_m$$

Следствие. Пусть A – матрица $n \times n$ с коэффициентами из поля K Тогда $\exists C, D$ – обратимые матрицы $n \times n$, такие, что

(F

$$c^{-1}AD = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

Доказательство. Пусть $U=K^n, \quad e_1,...,e_n$ – базис $U, \quad f:A$ – матрица f в $e_1,...,e_n$ Пусть $e_1',...,e_n', \quad e_1'',...,e_n''$ – базисы U, в которых f имеет матрицу

$$\begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} \implies C^{-1}AD = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

где C, D — матрицы перехода

Теорема 3 (линейное отображение и ранг матрицы). Пусть U,V конечномерны, $f:U\to V$ линейно, A — матрица f в некоторых базисах

Тогда $\dim \operatorname{Im} f = \operatorname{rk} A$

Доказательство. Пусть $e_1, ..., e_n$ – базис $U, g_1, ..., g_m$ – базис V

Пусть $w_i = f(e_i)$

Тогда Іт $f = \langle w_1, ..., w_n \rangle$, т. к.

$$\forall v \in \text{Im } f \ \exists \ u \in U : f(u) = v \\ \exists \ a_i : u = a_1 e_1 + \dots + a_k e_k$$
 $\Longrightarrow \ v = a_1 f(e_1) + \dots + a_k f(e_k) = a_1 w_1 + \dots + a_k w_k$

Тогда $w_j = a_{1j}g_1 + ... + a_{mj}g_m$

$$\operatorname{rk} A = \dim \langle X_1, ..., X_n \rangle, \qquad \dim f = \dim \langle w_1, ..., w_n \rangle$$

Из любой порождающей системы можно выбрать базис $\implies \dim \langle w_1,...,w_n \rangle$ равна максимальному количеству ЛНЗ векторов из $w_1,...,w_n$

```
Аналогично для X_1,...,X_n Пусть v=c_1w_1+...+c_nw_n, X – столбец координат базиса Тогда X=c_1X_1+...+c_nX_n v=c_1w_1+...+c_nw_n=c_1(a_{11}g_1+...+a_{i1}g_1+...+a_{m1}g_m)+...+c_n(a_{1n}g_1+...+a_{in}g_i+...+a_{mn}g_m)=\\ =(c_1a_{11}+...+c_na_{1n}g_1+...+(c_1a_{i1}+...+c_na_{1n})g_i+... v=0\iff x=0 c_1w_1=...+c_nw_n=0\iff c_1x_1+...+c_nx_n=0
```

1.2 Действия над линейными отображениями

Определение 1. Пусть $f,g:U\to V,\quad k$ — скаляр Отображением f+g называется такое отображение, что (f+g)(u)=f(u)+g(u) Отображением kf называется такое отображение, что $(kf)(u)=k\cdot f(u)$

Замечание. f+g, kf линейны

Определение 2. Произведением $f:V\to W$ и $g:U\to V$ называется $fg=f\circ g:U\to V$ В частности, $f^n=\underbrace{f\circ f\circ ...\circ f}_n:U\to U$

Замечание. fg, f^n линейны

Лемма 2 (действия над отображением и матрицей).

1. Пусть U,V конечномерны, e_i,e_i' – их базисы, $f,g:U\to V$ линейны, A,B – матрицы f и $g,\,a,b$ – скаляры

Тогда aA + bB — матрица af + bg

Доказательство. Пусть $u \in U$, X – столбец координат u в e_i , Y_1, Y_2 – столбцы координат f(u), g(u) в $e_i \implies Y_1 = AX$, $Y_2 = BX \implies aY_1 + bY_2 = aAX + bBX = (aA + bB)X$ $(af + bg)(u) = af(u) + bg(u) \implies \text{столбец координат } (af + bg)(u) = aY_1 + bY_2 = (aA + bB)X$

2. Пусть U,V,W конечномерны, e_i,e_i',e_i'' – их базисы, $f:V\to W,g:U\to V$ линейны, A,B – матрицы f,g

Тогда AB — матрица fg

Доказательство. $u\in U,w\in W:(fg)(u)=w$ X,Z – столбцы координат Пусть $v=g(u),\quad Y$ – толбец координат $V\implies Y=BX,\ Z=AY\implies Z=A(BX)=(AB)X$

Теорема 4 (пространство линейных отображений). U, V – векторные пространства над полем K. Тогда:

- 1. Множество линейных отображений образует векторное пространство над K
- 2. Если $\dim U=m,\ \dim V=n,$ то пространство линейных отображений изоморфна пространству матриц размера $m\times n,$ его размерность равна mn