Relações e Operações Binárias um resumo

Guilherme Philippi

15 de fevereiro de 2021

Apresenta-se nesse texto um compilado de definições e resultados envolvendo os conceitos de relações entre conjuntos e operações binárias. Tudo que aqui se apresenta fora extraído de [1, 2, 3], principalmente de [1].

1 Produto Cartesiano e Relações

Definição 1.1 (Produto cartesiano). Sejam A e B conjuntos. O conjunto

$$A \times B = \{(a,b) \mid a \in A \in b \in B\}$$

é o produto cartesiano de A e B.

Exemplo 1.1. Se $A = \{1, 2, 3\}$ e B = 3, 4, então

$$A \times B = \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)\}.$$

Definição 1.2 (Relação). Uma relação entre dois conjuntos A e B é um subconjunto $\mathcal{R} \subset A \times B$. Lê-se $(a,b) \in \mathcal{R}$ como "a está relacionado com b" e escreve-se $a\mathcal{R}b$.

Exemplo 1.2 (Relação de igualdade). A realação =, chamada *relação de igualdade*, é definida sobre um conjunto S por

= é o subconjunto
$$\{(x,x) \mid x \in S\} \subset S \times S$$
.

Observação 1.1. Sempre que uma relação for definida entre um conjunto S e ele mesmo, como no exemplo 1.2, diremos que esta é uma relação sobre S.

Definição 1.3 (Função). Uma $função \varphi$ que mapeia X em Y é uma relação entre X e Y com a propriedade de que cada $x \in X$ só irá aparecer uma única vez, e exatamente uma, em um par ordenado $(x,y) \in \varphi$. Também chamamos φ de mapa ou mapeamento de X em Y. Escrevemos $\varphi: X \longrightarrow Y$ e expressaremos $(x,y) \in \varphi$ por $\varphi(x) = y$. O domínio de φ é o conjunto X e o conjunto Y é dito contradomínio de φ . Chama-se de contradomínio de contradomínio

Definição 1.4 (Função injetiva e sobrejetiva). Uma função $\varphi: X \longrightarrow Y$ é injetiva se $\varphi(x_1) = \varphi(x_2) \iff x_1 = x_2$. Também, φ é dita sobrejetiva se o alcance de φ é Y. Se uma função é injetiva e sobrejetiva, então dizemos que a função é bijetiva.

Definição 1.5. Sejam S um conjunto \mathcal{R} uma relação sobre S. Dizemos que \mathcal{R} é uma relação

- 1. (reflexiva). se $a\mathcal{R}a$, para todo $a \in S$;
- 2. (simétrica). se para todo $a, b \in S$ $a\mathcal{R}b \iff b\mathcal{R}a$;
- 3. (antissimétrica). se $a\mathcal{R}b$ e $b\mathcal{R}a \implies a = b$, para todo $a, b \in S$;
- 4. (transitiva). se $a\mathcal{R}b$ e $b\mathcal{R}c \implies a\mathcal{R}c$, $\forall a, b, c \in S$.

2 Relações de Equivalência e Partições

Definição 2.1 (Partições). Seja S um conjunto. Uma particão P de S é uma subdivisão de S em subconjuntos não vazios e não sobrepostos, isto é, uma união de conjuntos disjuntos.

Exemplo 2.1. Pode-se particionar o conjunto dos números inteiros \mathbb{Z} na união de disjuntos $P \cup I$, onde $P = \{z \in \mathbb{Z} \mid z \text{ é par}\}$ e $I = \{z \in \mathbb{Z} \mid z \text{ é impar}\}$.

Definição 2.2 (Relação de equivalência). Uma relação de equivalência \sim sobre um conjunto S é uma relação que precisa ser, para todo $a, b, c \in S$,

- 1. (Transitiva). Se $a \sim b$ e $b \sim c$, então $a \sim c$;
- 2. (Simétrica). Se $a \sim b$, então $b \sim a$;
- 3. (Reflexiva). $a \sim a$.

Observação 2.1. A noção de partição em S e a relação de equivalência em S são lógicamente equivalentes: Dada uma partição P sobre S, pode-se definir uma relação de equivalência R tal que, se a e b estão no mesmo subconjunto partição, então $a \sim b$ e, dada uma relação de equivalência R, podemos definir uma partição P tal que o subconjunto que contêm a é o conjunto de todos os elementos b onde $a \sim b$. Esse subconjunto é chamado de classe de equivalência de a

$$C_a = \{b \in S \mid a \sim b\}$$

e S é particionado em classes de equivalência.

Proposição 2.1. Sejam C_a e C_b duas classes de equivalência do conjunto S. Se existe d tal que $d \in C_a$ e $d \in C_b$, então $C_a = C_b$.

Observação 2.2 (Representante). Seja um conjunto S. Suponha que exista uma relação de equivalência ou uma partição sobre S. Então, pode-se construir um novo conjunto \bar{S} formado pelas classes de equivalência ou os subconjuntos partições de S. Essa construção induz uma notação muito útil: para $a \in S$, a classe de equivalência de a ou o subconjunto partição que contém a serão denotados como o elemento $\bar{a} \in \bar{S}$. Desta forma, a notação $\bar{a} = \bar{b}$ significa que $a \sim b$ e chamamos $a, b \in S$ de representantes das respectivas classes de equivalência $\bar{a}, \bar{b} \in \bar{S}$.

Definição 2.3. Seja um mapeamento $\varphi: S \longrightarrow T$. Chama-se de relação de equivalência determinada por φ a relação dada por $\varphi(a) = \varphi(b) \Rightarrow a \sim b$. Além disso, para um elemento $t \in T$, o subconjunto de $\varphi^{-1}(t) = \{s \in S \mid \varphi(s) = t\}$ é dito imagem inversa de t por φ .

Proposição 2.2. Seja um mapeamento $\varphi: S \longrightarrow T$ e $t \in T$ um elemento qualquer de T. Se a imagem inversa $\varphi^{-1}(t)$ é não vazia, então $t \in \text{im } \varphi$ e $\varphi^{-1}(t)$ forma uma classe de equivalência $\bar{\varphi} \in \bar{S}$ através da relação determinada por φ .

3 Operações binárias

Definição 3.1 (Operação binária). Uma operação binária sobre um conjunto S é uma função $*: S \times S \longrightarrow S$.

Observação 3.1 (Notação de operação). Usaremos a notação *(a,b) = a * b, para simplificar a escrita de propriedades. Também, quando não houver ambiguidade, suprimiremos o simbolo da operação, fazendo a * b = ab.

Definição 3.2. Para $a, b, c \in S$, uma operação binária * é dita

- Associativa, se (a * b) * c = a * (b * c);
- Comutativa, se a * b = b * a.

Proposição 3.1. Seja uma operação associativa dada sobre o conjunto S. Há uma única forma de definir, para todo inteiro n, um produto de n elementos $a_1, \ldots, a_n \in S$ (diremos $[a_1 \cdots a_n]$) com as seguintes propriedades:

- 1. o produto [a₁] de um elemento é o próprio elemento;
- 2. o produto $[a_1a_2]$ de dois elementos é dado pela operação binária;
- 3. para todo inteiro $1 \le i \le n$, $[a_1 \cdots a_n] = [a_1 \cdots a_i][a_{i+1} \cdots a_n]$.

Demonstração. A demonstração dessa proposição é feita por indução em n.

Definição 3.3. Dizemos que $e \in S$ é *identidade* para uma operação binária se ea = ae = a para todo $a \in S$.

Proposição 3.2. O elemento identidade é único.

Demonstração. Se e, e' são identidades, já que e é identidade, então ee' = e' e, como e' é uma identidade, ee' = e. Logo e = e', isto é, a identidade é única.

Observação 3.2. Usaremos $\vec{1}$ para representar a identidade multiplicativa e $\vec{0}$ para denotar a aditiva.

Definição 3.4 (Elemento inverso). Seja uma operação binária que possua uma identidade. Um elemento $a \in S$ é chamado *invertível* se há um outro elemento $b \in S$ tal que ab = ba = 1. Desde que b exista, ela é única e a denotaremos por a^{-1} e a chamaremos *inversa de a*.

Proposição 3.3. Se $a, b \in S$ possuem inversa, então a composição $(ab)^{-1} = b^{-1}a^{-1}$.

Observação 3.3 (Potências). Usaremos as seguintes notações:

- $a^n = a^{n-1}a$ é a composição de $a \cdots a$ n vezes;
- a^{-n} é a inversa de a^n ;
- $a^0 = \vec{1}$.

Com isso, tem-se que $a^{r+s} = a^r a^s$ e $(a^r)^s = a^{rs}$. (Isso não induz uma notação de fração $\frac{b}{a}$ a menos que seja uma operação comutativa, visto que ba^{-1} pode ser diferente de $a^{-1}b$). Para falar de uma operação aditiva, usaremos -a no lugar de a^{-1} e na no lugar de a^n .

Referências

- [1] John B Fraleigh. A First Course in Abstract Algebra. Pearson, 2014.
- [2] Michael Artin. Algebra. A Simon and Schuster Company, 1991.
- [3] Rudolf R. Maier. Algebra I (texto de aula). UFSC, 2005.