Concursul de admitere iulie 2017 Domeniul de licență – *Informatică*

- I. Algebră. Fie matricea $A = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix} \in M_2(\mathbb{R}).$
 - (a) Să se calculeze A^2 și A^3 .
 - (b) Să se determine toate matricele $X \in M_2(\mathbb{R})$ pentru care AX = 2X.
 - (c) Să se determine valorile reale ale lui m pentru care există o matrice nenulă $B \in M_2(\mathbb{R})$ cu AB = mB.
 - (d) Fie $n, p \in \mathbb{N}^*$, $n \neq p$. Să se arate că nu există $\lambda \in \mathbb{R}$ astfel încât $A^n = \lambda A^p$.
- II. Analiză. Fie funcția $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = \arctan \frac{1}{x} \arctan \frac{1}{x}$.
 - (a) Studiați monotonia și convexitatea funcției f.
 - (b) Decideţi şi justificaţi dacă funcţia $g: \mathbb{R}^* \to \left(-\frac{3\pi}{2}, \frac{\pi}{2}\right), g(x) = f(x)$ este sau nu este bijectivă.
 - (c) Arătați că pentru orice $n \in \mathbb{N}^*$, ecuația $f(x) = \frac{1}{n}$ are o soluție reală unică, notată cu x_n . Demonstrați că șirul $(x_n)_{n \in \mathbb{N}^*}$ este convergent și determinați $\lim_{n \to \infty} x_n$.
 - (d) Să se calculeze aria suprafeței plane cuprinse între graficul funcției f, axa Ox și dreptele de ecuații $x=\frac{1}{\sqrt{3}}$ și $x=\sqrt{3}$.
- III. Geometrie. În sistemul de coordonate xOy se consideră punctul M(3,3) şi triunghiul ABC determinat de dreptele AB: x + 2y 4 = 0, BC: 3x + y 2 = 0 şi CA: x 3y 4 = 0.
 - (a) Să se calculeze aria triunghiului ABC.
 - (b) Fie P, Q şi R proiecțiile punctului M pe dreptele OA, OB şi respectiv AB. Să se demonstreze că punctele P, Q şi R sunt coliniare.
 - (c) Notăm cu m numărul punctelor din interiorul patrulaterului BCAM care au ambele coordonate numere întregi și cu n numărul punctelor de pe reuniunea laturilor patrulaterului BCAM care au ambele coordonate numere întregi. Să se verifice că aria patrulaterului BCAM este $m + \frac{1}{2}n 1$.

Subjectul de Informatică se găsește pe verso.

IV. Informatică.

Fie n un număr natural nenul. Fie v un vector cu n poziții numerotate de la 1 la n și elemente numere naturale diferite, de la 1 la n, într-o ordine oarecare. Pentru i și j numere naturale între 1 și n, numim FLIP(n, v, i, j) operația care inversează ordinea elementelor din v situate pe pozițiile de la i la j.

- a) Să se scrie în limbaj de programare o procedură (sau funcție) care implementează operația FLIP(n, v, i, j).
- b) Să se scrie un program care sortează crescător vectorul v, folosind pentru schimbarea ordinii elementelor în v doar operația FLIP(n, v, 1, k), cu k de la 2 la n.
- c) Considerăm că n este o putere a lui 2 $(n = 2^m, \text{ cu } m \text{ număr natural nenul})$ și vectorul v are proprietatea că pentru orice i de la 1 la m și orice j de la 1 la 2^{m-i} , există k de la 1 la 2^{m-i} , astfel încât pe pozițiile din v de la $2^i(j-1)+1$ la 2^ij se află numerele naturale de la $2^i(k-1)+1$ la 2^ik , într-o ordine oarecare. Să se scrie un program care sortează crescător vectorul v, folosind pentru schimbarea ordinii elementelor în v doar operația FLIP $(n, v, 2^i(j-1)+1, 2^ij)$, cu i de la 1 la m și j de la 1 la 2^{m-i} , printr-un algoritm mai eficient decât cel implementat la punctul b), care se bazează pe proprietatea vectorului v.

Exemple:

	Date de intrare	Date de ieșire
a)	FLIP(9, [3 2 6 8 5 9 1 7 4], 1, 6)	v = [9 5 8 6 2 3 1 7 4]
	FLIP(4, [2 1 4 3], 1, 4)	$v = [3 \ 4 \ 1 \ 2]$
	FLIP(16, [14 13 15 16 11 12 9 10 2 1 4 3 8 7 6 5], 5, 8)	v = [14 13 15 16 10 9 12 11 2 1 4 3 8 7 6 5]
b)	n = 9	v = [1 2 3 4 5 6 7 8 9]
	$v = [3\ 2\ 6\ 8\ 5\ 9\ 1\ 7\ 4]$	
c)	n = 4	$v = [1 \ 2 \ 3 \ 4]$
	$v = [2 \ 1 \ 4 \ 3]$	
	n = 16	v = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
	$v = [14 \ 13 \ 15 \ 16 \ 11 \ 12 \ 9 \ 10 \ 2 \ 1 \ 4 \ 3 \ 8 \ 7 \ 6 \ 5]$	

Note:

- 1. Programele vor fi scrise într-unul dintre limbajele de programare studiate în liceu (Pascal,C,C++). La fiecare subpunct a), b), c), se va preciza complexitatea timp, în funcție de n, a soluției implementate și se vor descrie informal detaliile algoritmului folosit și ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive, a instructiunilor conditionale.
- 2. Toate operațiile de tip FLIP se vor face în vectorul v, fără a se folosi alți vectori auxiliari.
- 3. La subpunctul a), datele se transmit ca parametri ai procedurii/funcției FLIP(n, v, i, j). La subpunctele b) și c), se citesc de la tastatură n și v, fiecare pe un rând separat și se afișează vectorul v sortat crescător, pe un singur rând. Se va considera că datele de intrare ale programelor sunt oricât de mari, dar fără a pune probleme de reprezentare în memorie cu ajutorul tipurilor de date standard.
- 4. Programele vor folosi doar instrucțiunile de bază ale limbajului de programare ales, inclusiv cele de intrare/ieșire, dar nu și alte funcții din biblioteci specializate.