Презентация

Замечания по проекту

Выборка фичей для пользователя производится по времени buy_time т.е. не берутся данные пользователя (features) старше времени подключение услуги (target) . T.e features.csv.buy_time должна быть меньше или одного времени data_test.csv.buy_time

В полученом датасете для некоторых пользователей обучающей выборки отсутствуют фичи

В датасете features есть дублируюущиеся user id. Думаю что это один и тот же пользователь но с обновленной информацией о себе.

В обычающей выборке были данные пользователя фичи которого будут описаны в будущем(после подключения услуги). Такие данные тоже будут отброшены.

Формирование DataFrame происходит через класс DataManager. В нем есть возможность как загрузить данные из csv так и загрузить ранее сформированный DataFrame.

Подбор параметров на RandomizedSearchCV был долгим и рассчитаны один раз, по необходимости

Некоторые библиотеки я переиспользовал из своих прошлых наработок, так что код может быть кое где избыточен.

Информация о модели, ее параметрах, особенностях и основных результатах.

Модель выбрал RandomForestClassifier с параметрами:

```
n_estimators = 900,
min_samples_split = 28,
min_samples_leaf = 2,
max_features = 'sqrt',
max_depth = 14,
bootstrap = False,
```

Основные характеристики модели следующие

Немного странная ROC кривая, на небольших данных, с выборкой в 6000 записей, графики были более привычны и предсказуемы. Думаю проблемы будут в данных, возможно существуют выбросы или аномалии которые следует обработать.

Обоснование выбора модели и ее сравнение с альтернативами.

Модель выбрал RandomForestClassifier т.к. удалось достичь наибольшего параметра f1-score (macro) Treshhold выбрал 0.5 т.к. на этом уровне есть граница баланса(f1) Precision и Recall.

Name model	Threshold	F-Score	Precision	Recall	Roc-AUC	f1-score(macro)
Baseline	0.5	0.155	0.088	0.633	0.496	0.331
LogReg feat_proc os	0.5	0.501	0.362	0.814	0.856	0.708
LogReg feat_proc us	0.5	0.501	0.362	0.813	0.855	0.708
${\tt GradientBoostingClassifier}$	0.5	0.502	0.363	0.812	0.859	0.709
RandomForestClassifier	0.5	0.503	0.368	0.798	0.852	0.71

В принципе можно взять и логическую регрессию если критична скорость обучения, значения не очень сильно отличаются

Интересный график Precision-Recall curve. Максимизируя полноту (Recall) после ~0.82 начинаем получать сильное падение точности (Precision)

Принцип составления индивидуальных предложений для выбранных абонентов.

Этот вопрос я не совсем понял. Если необходимо сделать предсказание vas_id, то его я не делал(не успел). Думаю для решения этой задачи обратиться к технологии рекомендательных систем и предсказывать подключаемую услугу по похожести пользователей (user-user).