

Project Title: PIG Detection Using Machine Leaning Using SVM and NN Classification Methods

因为 Brandon Gonzales, Undergrad

Department of Mechanical Engineering, Cullen College of Engineering

Problem Statement

- Pipeline Inspection Gauges (PIGs) are widely used for pipeline cleaning and inspection.
- Under various circumstances, the PIG can get stuck in pipelines, leading to larger issues.
- Percussion Based Machine Learning can offer a nondestructive method to detect a stuck PIG.

Brief Literature Review

- Wuhan University of Science created a CNN model to detect the volume of water in a pipe using MFCC features.
 - Achieved >90% accuracy for detecting various percentages of fluid volume.
 - Used Decision Tree, SVM, and CNN models.

Experimental Setup and Collection of Data

- The experiment consisted of a pipe, measuring stick, plastic striking rod, and a rubber pig on a string.
 - An iPhone was used to record audio files of the pipe being struck.
 - The pipe is divided into 22 3" sections.

- For data collection, the PIG will be moved from section 3-20 and the following steps will be repeated.
 - The location of the PIG will be struck 20 times.
 - The empty sections will be struck 5 times.

PIG5

- Once the data was collected it was named using the following conventions.
 A hit on the PIG used "PIG#", where "#" is the section, the PIG is
- An empty section used for example, "7L-4", where 7 is how many sections away the hit happened, "L" signifies that the hit happened to the left of the PIG, and 4 represents the section the PIG is in.
- PIG3 6R-19

○ 7L-3

Method(s)

located.

Results, Analysis and Discussion

SVM Classification

SVM Classification	
Number of Labels	Accuracy [%]
2	98.35
4	63.21
6	57.81

O	55.59
NN Classification	
Number of Labels	Number of
	Neurons
2	88
4	51
6	36

6-11 Away

12-17 Away

Conclusion

- For 2 and 4 Label Classification, Neural Network had higher accuracy than Support Vector Machine.
- For 6 Label Classification, Support Vector Machine had higher accuracy than Neural Network.
- The number of Neurons decreased for NN as the labels increased.
- The models struggled to predict hits that occurred 12 to 17 sections away from the PIG.

Future Work

• Record a larger sample size and experiment with different signal processes for finding features.

Acknowledgements

The financial support from Midstream Integrity Services (MIS) and technical support from Smart Materials & Structures Lab (SMSL) and Artificial Intelligence Lab for Monitoring & Inspection (AILMI) at UH.

References (brief)

- 1. Yang, Dan, Mengzhou Xiong, Tao Wang, and Guangtao Lu. "Percussion-Based Pipeline Ponding Detection Using a Convolutional Neural Network." *Applied Sciences* 12, no. 4 (February 18, 2022): 2127. https://doi.org/10.3390/app12042127.
- 2. UH MECE Machine Learning Lecture