English Title (日本語タイトル)

指導教員 ○○ ☆☆ 教授

令和3年2月10日提出

理工学研究科 数理電子情報系専攻 情報システム工学コース

0XYYXXX 氏名

埼玉大学 理工学研究科・工学部 ○○研究室 埼玉県さいたま市桜区下大久保255

Abstract

Here is abstract.

Acknowledgements

Here is acknowledgements.

Contents

\mathbf{A}	bstra	ct	i
\mathbf{A}	ckno	wledgements	ii
Li	${ m st}$ of	figures	iv
Li	${f st}$ of	tables	\mathbf{v}
1	Intr	roduction	1
	1.1	Background	1
	1.2	Purpose and Objective	1
	1.3	Construction	1
2	Hog	gehoge	2
3	Fug	afuga	3
	3.1	Foofoo	3
	3.2	Hyohyo	3
4	Hoo	оНоо	4
	4.1	Example of figures	4
	42	Example of tables	4

5	Con	clusion	7
	5.1	Summary	7
	5.2	Future Works	7
Pυ	ıblica	ations	8
$R\epsilon$	eferei	nces	9
Ap	pen	dix	10
\mathbf{A}	Hur	oku	11
В	Mat	aHuroku	12

List of Figures

4.1 The relationship among the parts of EnCal 6

List of Tables

4.1	The number	of elements	of $F_k(CML)$	and $FS_k(CML)$)	1
-----	------------	-------------	---------------	-----------------	---	---

Introduction

1.1 Background

Background

1.2 Purpose and Objective

Purpose and Objective

1.3 Construction

The rest of thesis organised as follows: Chapter 2 explains ... Chapter 4 gives conclusion and future works.

Hogehoge

hahahahah.

Fugafuga

3.1 Foofoo

hehehehe

3.2 Hyohyo

fufufufufufufu.

HooHoo

4.1 Example of figures

Figure 4.1 shows \dots

4.2 Example of tables

Table 4.1 shows ...

Table 4.1: The number of elements of $F_k(CML)$ and $FS_k(CML)$

degree	$F_k(CML)$	$FS_k(CML)$
	(a)	(b)
1	1.60×10^{1}	4.00×10^{0}
2	2.26×10^{3}	2.60×10^{2}
3	1.67×10^{8}	8.90×10^{6}
4	2.92×10^{19}	5.15×10^{17}
5	1.63×10^{45}	6.31×10^{42}
6	4.29×10^{103}	2.13×10^{100}
7	1.02×10^{235}	3.09×10^{230}
8	8.15×10^{527}	5.61×10^{521}

Figure 4.1: The relationship among the parts of EnCal

Conclusion

5.1 Summary

We have ...

5.2 Future Works

Future works are as follows: ...

Publications

Refereed papers

• Hogehoge:

Unrefereed papers

• Hogehoge:

References

- [1] Yusuke Nonaka, Jingde Cheng, and Kazuo Ushijima: A Tasking Deadlock Detector for Ada 95 Programs, Ada User Journal, Vol. 20, No. 1, pp. 79-92, April 1999.
- [2] Inkyu Sa, Zongyuan Ge, Feras Dayoub, Ben Upcroft, Tristan Perez, and Chris McCool: DeepFruits: A Fruit Detection System Using Deep Neural Networks, Sensors Vol. 16 No. 8, e1222, August 2016.
- [3] Qun Jin, Jie LI, Nan Zhang, Jingde Cheng, Clement Yu, and Shoichi Noguchi: Enabling Society with Information Technology, Springer-Verlag, November 2001.
- [4] Yuichi Goto, Daisuke Takahashi, and Jingde Cheng: Parallel Forward Deduction Algorithms of General-Purpose Entailment Calculus on Shared-Memory Parallel Computers, Proceedings of the ACIS 2nd International Conference on Software Engineering, Artificial Intelligence, Networking & Parallel/Distributed Computing, pp. 168-175, Nagoya, Japan, August 2001.
- [5] Jingde Cheng: Relevance Logic and Entailment Logic, in I. Nakada and M. Hagiya (Eds.), "Software Science and Engineering," pp. 189-211, World Scientific, November 1991.
- [6] Yusuke Nonaka, Jingde Cheng, and Kazuo Ushijima: A Supporting Tool for Development of Self-measurement Ada Programs, in H. B. Keller and E. Ploedereder (Eds.), "Reliable Software Technologies - Ada-Europe 2000, 5th International Conference on Reliable Software Technologies, Potsdam, Germany, June 2000, Proceedings," Lecture Notes in Computer Science, Vol. 1845, pp. 69-81, Springer-Verlag, June 2000.
- [7] Yuichi Goto: Automated Forward Deduction Based on Strong Relevant Logics and Its Applications, Doctoral Dissertation, Graduate School of Science and Engineering, Saitama University, March 2005.

[8] Common Criteria Project: CEM v3.1, http://www.commoncriteriaportal.org/thecc.html (accessed 2007-04-05).

Appendix A

Huroku

kokokokoo.

Appendix B

MataHuroku

kokokokoko.