Atlas. An *n*-dimensional atlas of a set M is a collection $\mathcal{A} = \{\varphi_{\alpha} : U_{\alpha} \to V_{\alpha} | \alpha \in I\}$ of bijective maps from open sets $U_{\alpha} \subset \mathbb{R}^n$ into subsets $V_{\alpha} \subset M$ s.t.

- (i) $\bigcup_{\alpha} V_{\alpha} = M$
- (ii) For all $\alpha, \beta \in I$ with $W := V_{\alpha} \cap V_{\beta} \neq \emptyset$, the sets $\varphi_{\alpha}^{-1}(W)$ and $\varphi_{\beta}^{-1}(W)$ are open in \mathbb{R}^n .
- (iii) $\varphi_{\beta}^{-1} \circ \varphi_{\alpha} : \varphi_{\alpha}^{-1}(W) \to \varphi_{\beta}^{-1}(W)$ are diffeomorphisms.

Natural topology. If M is a set with an atlas \mathcal{A} , then there is a *natural topology* on M s.t. $V \subset M$ open : $\Leftrightarrow \varphi_{\alpha}^{-1}(V \cap V_{\alpha})$ open in \mathbb{R}^n for all $\alpha \in I$ (this is the topology s.t. all V_{α} are open and all φ_{α} are continuous).

Manifold. On the set of all at lases, there is the equivalence relation: $\mathcal{A} \sim \mathcal{A}' : \Leftrightarrow \mathcal{A} \cup \mathcal{A}'$ is an at las. A set M together with an equivalence class of n-dim. at lases is called an *n-dim*. (differentiable) manifold, if M equipped with the natural topology is a second countable Hausdorff space.

Smooth function on a manifold. $f: M \to \mathbb{R}$ is called *smooth*, if $f \circ \varphi_{\alpha} : U_{\alpha} \to \mathbb{R}$ is smooth for all $\alpha \in I$. The set of smooth functions on M is denoted by $\mathscr{F}(M)$.

Smooth function btw. manifolds. $f:M\to N$ is called smooth, if for all charts φ of M and ψ of N, the map $\psi^{-1}\circ f\circ \varphi$ is smooth.

Derivations, tangent space. A derivation at p is an \mathbb{R} -linear map $v : \mathscr{F}(M) \to \mathbb{R}$, that satisfies the Leibniz rule v(fg) = v(f)g(p) + f(p)v(g). $Der_p\mathscr{F}(M) \equiv T_pM$ is the \mathbb{R} -vector space of derivations at p, or simply the tangent space of M at p.

- (i) $\{\partial_1|_0,\ldots,\partial_n|_0\}$ forms a basis of $Der_0\mathscr{F}(\mathbb{R}^n)\cong\mathbb{R}^n$.
- (ii) If v is a derivation at p, v(f) depends on f only in an arbitrary small neighbourhood U of p, i.e. the differential $\iota_*:T_pU\to T_pM$ is an isomorphism.
- (iii) Let $\varphi: U \to V$ be a chart s.t. $\varphi(0) = p$. From (ii) follows $T_p V \cong T_p M$ and $T_0 U \cong T_0 \mathbb{R}^n$ and since $\varphi_*: T_0 U \to T_p V$ is also an isomorphism, the basis in (i) induces a basis in $T_p M$: $\{\partial_i | p, i = 1, \dots, n\}$, where $\partial_i |_p := \varphi_* \partial_i |_0$, i.e. $T_p M \ni v = v^i \partial_i |_p$.

Pull-back of a function. If $\varphi: M \to N$ is a smooth map, then the pullback of functions $f \in \mathscr{F}(N)$ to functions $\varphi^* f \in \mathscr{F}(M)$ is defined by $\varphi^* f := f \circ \varphi$.

Differential. The differential $T_p\varphi$ or push-forward φ_* w.r.t a smooth map $\varphi:M\to N$ is defined by

$$T_p \varphi = \varphi_* : T_p M \to T_{\varphi(p)} M, (\varphi_* v)(f) := v(f \circ \varphi)$$

Immersion, embedding. A smooth map $f: M \to N$ is called *immersion*, if $f_*: T_pM \to T_{f(p)}N$ is injective $\forall p \in M$. f is called *embedding*, if it is an immersion and $f: M \to f(M)$ is a diffeomorphism.

- (i) If f is an embedding, then f(M) is a submanifold of N.
- (ii) If $M \subset N$ is a submanifold, then $\iota : M \to N$ is an embedding
- (iii) Inverse function theorem: Given a smooth map $f: M \to N$, if the differential $f_* = T_p f: T_p M \to T_{f(p)} N$ is a linear isomorphism at a point $p \in M$, then there is a neighbourhood U of p s.t. $f: U \to f(U)$ is a diffeomorphism. Thus: An immersion is locally an embedding.

Vectorfield. A vectorfield $X \in \mathcal{X}(M)$ assigns to every point $p \in M$ a vector $X_p \in T_pM$, s.t. $X_p = X^i(p)\partial_i|_p$ with smooth functions $X^i : M \supset V \to \mathbb{R}$.

 \square A vector field $X \in \mathscr{X}(M)$ can be viewed as an \mathbb{R} -linear map $\mathscr{F}(M) \to \mathscr{F}(M)$, satisfying X(fg) = X(f)g + fX(g). Such maps are called *derivations on* M, thus $\mathscr{X}(M) = Der\mathscr{F}(M)$.

Push-forward/pull-back of vectorfields. For a diffeomorphism $\varphi: M \to N$ the *push-forward* $\varphi_*: \mathscr{X}(M) \to \mathscr{X}(N)$ is given by $(\varphi_*X)_{\varphi(p)}(f) := X_p(f \circ \varphi) \ \forall p \in M$. The *pull-back* φ^* is then defined by $\varphi^* := (\varphi^{-1})_*$.

Tangent vector. A curve $\gamma:(a,b)\to M$ for each t has a tangent vector $\dot{\gamma}(t)\in T_{\gamma(t)}M$ defined by $\dot{\gamma}(t):=\gamma_*\frac{\partial}{\partial t}$.

□ If $v \in T_pM$ is tangent to γ at t = 0, i.e. $v = \frac{d}{dt}\Big|_0 \gamma(t)$, then the push-forward of v w.r.t a map $\phi : M \to N$ is given by $\phi_*v = \frac{d}{dt}\Big|_0 \phi(\gamma(t))$.

Integral curve. A curve $\gamma:(a,b)\to M$ is an integral curve of $X\in \mathcal{X}(M)$, if $\dot{\gamma}(t)=X(\gamma(t))\ \forall t\in(a,b)$.

□ Suppose $X \in \mathscr{X}(M)$ has compact support, then $\forall p \in M$ there is a unique integral curve $\gamma : \mathbb{R} \to M$ of X with $\gamma(0) = p$.

Flow. A flow on a manifold M is a smooth map φ : $\mathbb{R} \times M \to M$, s.t. $\varphi_0 = id$ and $\varphi_{s+t} = \varphi_s \circ \varphi_t$.

- (i) $\varphi_t: M \to M$ is a diffeomorphism $\forall t$.
- (ii) φ defines a vectorfield by

$$p \mapsto X_p := \left. \frac{d}{dt} \right|_0 \varphi_t(p) := \left(\varphi(p)_* \frac{\partial}{\partial t} \right)_p$$

(iii) For any $X \in \mathscr{X}(M)$ with compact support there is a unique flow φ s.t. $X_{\varphi_t(p)} = \frac{d}{dt}\varphi_t(p)$. For v.f. with noncompact support, there is at least a local flow.

Lie derivative. Let $X,Y\in \mathscr{X}(M)$. The *Lie derivative* of Y in direction X at $p\in M$ is defined by

$$(\mathcal{L}_X Y)_p := \frac{d}{dt} \Big|_0 (\varphi_t)^* Y$$

where φ is the local flow of X in a neighbourhood of p.

- (i) For vector fields X,Y with flows φ,ψ , we have the equivalence: $\mathcal{L}_XY=0 \Leftrightarrow \psi_s \circ \varphi_t=\varphi_t \circ \psi_s \ \forall s,t.$
- (ii) X, Y, φ, ψ as in (i), then $\mathcal{L}_X Y = \frac{\partial^2}{\partial s \partial t} \Big|_{0} \varphi_{-t} \circ \psi_s \circ \varphi_t$.
- (iii) $\mathcal{L}_X Y(f) = X(Y(f)) Y(X(f)) \equiv [X, Y](f).$

Lie bracket. The *Lie bracket* of two vectorfields X, Y is the vector field def. by [X, Y](f) := X(Y(f)) - Y(X(f)).

- (i) [X, Y] is \mathbb{R} -bilinear in X and Y.
- (ii) [Y, X] = -[X, Y].
- (iii) [X, [Y, Z]] + [Z, [X, Y] + [Y, [Z, X]] = 0.
- (iv) [X, fY] = f[X, Y] + X(f)Y.
- (v) $\varphi_*[X,Y] = [\varphi_*X, \varphi_*Y].$
- (vi) $[X,Y] = (X^j \partial_j Y^i Y^j \partial_j X^i) \partial_i = DY \cdot X DX \cdot Y.$

Lie group. It is a manifold that is also a group G, s.t. the maps $(g,h) \mapsto gh$ and $g \mapsto g^{-1}$ are smooth.

- (i) The left-multiplication $\mathcal{L}_g h := gh$ (also the right-mult.) is a diffeomorphism with inverse $\mathcal{L}_{q^{-1}}$.
- There are vectorfields X on a Lie group G that are *left*invariant, i.e. $\mathcal{L}_g^*X = X \ \forall g \in G$.
- (iii) The map $\mathscr{X}(G) \to T_eG, X \mapsto X_e$ defines a 1-1-correspondence btw. left-invariant vector fields on G and T_eG . The inverse map is given by $T_eG \supset \xi \mapsto \underline{\xi}$, where $\underline{\xi}_g := \mathcal{L}_{g*}\xi$.
- (iv) If X, Y are left-inv. then [X, Y] is left-inv., too.

Lie algebra. A vector space that is endowed with a pairing [·,·] satisfying the properties (i)-(iii) of the Lie bracket is called *Lie algebra*. The tangent space T_eG of a Lie group G, endowed with $[\xi, \eta] := [\xi, \eta]_e$ is called Lie algebra of G and denoted \mathfrak{g} .

- (i) Let $\xi \in T_e G$, then ξ has a (global) flow φ_t^{ξ} .
- (ii) The result (i) allows us to define $\exp: \mathfrak{g} \to G, \xi \mapsto \varphi_t^{\xi}(e)$.

Relations with antisymmetric combinations. The antisymmetrization of a k-linear map $t \in (V \times \cdots \times V)^*$ is defined by $(\pi^A t)(v,\ldots,w) := \frac{1}{k!} \sum_{\sigma} \operatorname{sgn}(\sigma) t(\sigma(v,\ldots,w))$ with component notation $(\pi^A t)_{a...b} := t_{[a...b]}$. Then using the totally antisymmetric Levi-Civita-Symbol $\epsilon_{a...b}$ in ndimensions, we get

- (i) $\epsilon^{a...b}\epsilon_{a...b} = n!$
- (ii) Any antisymmetric quantity with n indizes has just one degree of freedom: $\omega_{a...b} = \omega_{1...n} \epsilon_{a...b}$. (iii) $\omega_{1...n} = \frac{1}{n!} \omega_{a...b} \epsilon^{a...b}$
- (iv) det $A = \epsilon_{a...b} A_1^a \dots A_n^b = \frac{1}{n!} \epsilon_{a...b} \epsilon^{c...d} A_c^a \dots A_d^b$. (v) $\epsilon_{a...b} \epsilon^{c...d} = n! \delta_{[b}^a \dots \delta_{d]}^c =: n! \delta_{c...d}^{a...b}$
- (vi) For any antisymmetric quantity α carrying k indices: $\alpha_{c...d} = \delta^a_{[c} \cdots \delta^b_{d]} \alpha_{a...b} \equiv \delta^{a...b}_{c...d} \alpha_{a...b}$.

Exterior form. An exterior form of degree k (or k-form) on a vectorspace V is a map $V \times \cdots \times V \to \mathbb{R}$, that is alternating and multilinear, i.e. the set of k-forms $\Lambda^k V^*$ on V is the totally antisymmetric subspace of the dual space $(V \times \cdots \times V)^*$.

Wedge product of 1-forms. Using 1-forms $\varphi^1, \ldots, \varphi^k$, we get a k-form by $\varphi^1 \wedge \cdots \wedge \varphi^k(v_1, \dots, v_k) := \det(\varphi^i(v_j))$.

- (i) We obtain: $\varphi^1 \wedge \cdots \wedge \varphi^k(v_1, \dots, v_k) = \det(\varphi^l(v_m)) = \epsilon_{i...j}\varphi^i(v_1) \cdots \varphi^j(v_k) = \epsilon_{i...j}\epsilon^{i...j}\varphi^{[1}(v_1) \cdots \varphi^{k]}(v_k)$, i.e. $\varphi^1 \wedge \cdots \wedge \varphi^k = k! \varphi^{[1} \otimes \cdots \otimes \varphi^k]$.
- (ii) Any k-form can be written as $\alpha = \alpha_{a...b} e^a \otimes \cdots \otimes e^b = \alpha_{a...b} e^{[a} \otimes \cdots \otimes e^{b]} = \frac{1}{k!} \alpha_{a...b} e^a \wedge \cdots \wedge e^b$.
- (iii) From (ii): $\alpha = \sum_{a < \dots < b} \alpha_{a \dots b} e^a \wedge \dots \wedge e^b$. Therefore, the set $\{e^{i_1} \wedge \cdots \wedge e^{i_k} | i_1 < \cdots < i_k, i_j = 1, \dots n\}$ forms a basis of $\Lambda^k V^*$.

Wedge product for k-forms. For $\alpha \in \Lambda^k V^*$, $\beta \in \Lambda^p V^*$ let $\alpha \wedge \beta = \sum_{a < \dots b, c < \dots d} \alpha_{a \dots b} \beta_{c \dots d} e^a \wedge \dots \wedge e^b \wedge e^c \wedge \dots \wedge e^d$.

- (i) $(\alpha \wedge \beta) \wedge \omega = \alpha \wedge (\beta \wedge \omega)$.
- (ii) $\alpha \wedge \beta = (-1)^{k \cdot p} \beta \wedge \alpha$.
- (iii) $\alpha \wedge (\beta + \omega) = \alpha \wedge \beta + \alpha \wedge \omega$.

Exterior k-form on a manifold. An exterior k-form ω on a manifold is a choice for each $p \in M$ of an element $\omega_p \in \Lambda^k(T_pM)^*$.

- (i) If $f: M \to N$ is differentiable, then the pull-back of an exterior k-form ω on N is def. by the action of ω on the
- pushed vectors: $(f^*\omega)_p(v,\ldots) = \omega_{f(p)}(f_*v,\ldots)$. (ii) Let $\varphi_\alpha: U_\alpha \to V_\alpha$ be a chart, then the representation ω_{α} of ω is defined by $\omega_{\alpha} := \varphi_{\alpha}^* \omega$, i.e. it represents ω as an exterior k-form in $U_{\alpha} \subset \mathbb{R}^n$, so if $\{\varphi_{\alpha}\}_{{\alpha} \in I}$ is a given atlas of M, the set $\{\omega_{\alpha}\}_{{\alpha}\in I}$ represents ω in \mathbb{R}^n .

Differential forms. The dual basis of $\{\partial_i\}$ in $T_x\mathbb{R}^n$ is denoted by $\{dx^i\}$. Thus an exterior k-form ω on \mathbb{R}^n can be decomposed in each point $x \in \mathbb{R}^n$ as

$$\omega_x = \sum_{i < \dots < j} (\omega_x)_{i \dots j} \, dx^i \wedge \dots \wedge dx^j$$

Now, if the coefficients in this decomposition happen to be smooth functions of x, $(\omega_x)_{i...j} =: \omega_{i...j}(x)$, then ω is called differential k-form on \mathbb{R}^n . An exterior k-form on a manifold is called differentiable k-form, if all its representations $\{\omega_{\alpha}\}$ in a given atlas $\{\varphi_{\alpha}\}$ are differentiable k-forms on \mathbb{R}^n . Then in $p \in M$, a differentiable k-form can be written as

$$\omega_p = (\varphi_{\alpha*}\omega_{\alpha})_p
= \sum_{i < \dots < j} \omega_{i\dots j}(\varphi_{\alpha}^{-1}(p)) \varphi_{\alpha*} (dx^i \wedge \dots \wedge dx^j)|_p
=: \sum_{i < \dots < j} \omega_{i\dots j}(p)(dx^i \wedge \dots \wedge dx^j)_p$$

Thus a differentiable k-form on a manifold has smooth coefficients $\omega_{i...j}$ with respect to the pushed-forward basis k-forms $\{dx^i \wedge \cdots \wedge dx^j\}_{i < \cdots < j}$. The set of differentiable k-forms is denoted by $\Omega^k(M)$.

Exterior derivative. The exterior derivative of a function $f \in \mathcal{F}(M)$ is the 1-form $df := \partial_i f dx^i$. For $\omega \in$ $\Omega^k(M)$ we def. $d\omega = \sum_{i < \cdots < j} d\omega_{i \cdots j} \wedge dx^i \wedge \cdots dx^j$. For $\alpha \in \Omega^k(M), \beta \in \Omega^p(M)$:

- (i) $d(\alpha + \beta) = d\alpha + d\beta$.
- (ii) $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \omega \wedge d\beta$.
- (iii) $d^2 = 0$.

Interior derivative. For a given vectorfield $Z \in \mathcal{X}(M)$, the interior derivative $\iota_Z: \Omega^k(M) \to \Omega^{k-1}(M)$, is def. by $\iota_Z \omega := \omega(Z, \cdots)$. For $\alpha \in \Omega^k(M)$, $\beta \in \Omega^p(M)$:

- (i) $\iota_Z(\alpha \wedge \beta) = \iota_Z \alpha \wedge \beta + (-1)^k \alpha \wedge \iota_Z \beta$. (ii) $\iota_Z^2 = 0$.
- $(\mathrm{iii})^{'} \ \iota_{[X,Y]}^{\omega} \omega = X \circ \iota_Y \omega Y \circ \iota_X \omega.$

Pull-back of forms. For a smooth map $\varphi: M \to N$, the pull-back of a differentiable k-form $\omega \in \Omega^k(N)$ is defined by $\varphi^*\omega(Z,\ldots) = \omega(\varphi_*Z,\ldots)$, i.e. $\varphi^*\omega \in \Omega^k(M)$.

- (i) $\varphi^*(\alpha + \beta) = \varphi^*\alpha + \varphi^*\beta$.
- (ii) For any $f \in \mathcal{F}(M)$: $\varphi^*(f\alpha) = \varphi^* f \varphi^* \alpha \equiv (f \circ \varphi) \varphi^* \alpha$. (iii) $\varphi^*(\alpha \wedge \beta) = \varphi^* \alpha \wedge \varphi^* \beta$.
- (iv) $(\varphi \circ \psi)^* = \psi^* \varphi^*$
- (v) $d\varphi^*\omega = \varphi^*d\omega$.

Lie derivative of forms. For a given $X \in \mathcal{X}(M)$, we define the $Lie\ derivative$ of a k-form in direction Z by

$$(\mathcal{L}_X\omega)_p:=\frac{d}{dt}\bigg|_0(\varphi_t)^*\,\omega$$
 where φ is the local flow of X in a neighbourhood of p .

- (i) $\mathcal{L}_Y(\omega(X_1,\ldots,X_p)) = (\mathcal{L}_Y\omega)(\ldots) + \sum_i \omega(\ldots,\mathcal{L}_YX_i,\ldots)$
- (ii) $\mathcal{L}_X \omega = (d \iota_X + \iota_X d) \omega$

Orientation. If $\{\tilde{e}_a\}$ is a basis of a vector space V, then by a basis transformation $e_a = A_{ab}\tilde{e}_b$, $A \in GL(n,\mathbb{R})$, any other basis $\{e_a\}$ can be constructed. If \tilde{e}_a is the standard basis in \mathbb{R}^n , then $\{e_a\}$ is called *right handed*, if det A>0 and *left handed*, if det A<0. If $\{\partial_i|_0\}$ is a right handed basis of \mathbb{R}^n and φ a chart around $p \in M$, then the basis elements $\partial_i|_p := \varphi_*\partial_i|_0$ form a positively oriented basis of T_pM if det $\varphi_*>0$ and a negatively oriented basis, if det $\varphi_*<0$.

Oriented atlas, orientability. An atlas of a manifold is called *oriented*, if the change of coordinates on any nonempty overlap of coordinate patches preserves orientation, i.e. if it has positive Jacobian determinant. If a manifold admits an oriented atlas, it is called *orientable*.

Partition of unity. On any manifold M, there exists a partition of unity, i.e. a set $\{\varphi_{\alpha}: M \to [0,1]\}$ with $\sup \varphi_{\alpha} \subset V_{\alpha}$ and $\sum_{\alpha} \varphi_{\alpha} = 1$ (for compact manifolds, there are finitely many φ_i s.t. $\sup \varphi_i \subset V_{\alpha}$, $\sum_i \varphi_i = 1$).

Manifolds with boundary. Let \mathbb{H}^n be the half space $\{x \in \mathbb{R}^n | x^1 \leq 0\}$ equipped with the subspace topology. A manifold with boundary is defined by replacing \mathbb{R}^n by \mathbb{H}^n in the definition of a manifold. The boundary ∂M consists of those points $p \in M$ with $p = \varphi(0, x^2, \dots, x^n)$ for some chart of M

- The def. of a point on the boundary is indep. of the chosen chart, i.e. it holds either for all charts or for none.
- (ii) The boundary ∂M of an n-dim. manifold is an (n-1)-dim. manifold.
- (iii) An orientation on M induces one on ∂M .

Integration of forms. Let ω be a form of *top degree*, i.e. $\omega \in \Omega^n(M)$. 1st case: If $\operatorname{supp} \omega \subset f_\alpha(U_\alpha)$ for some α of an atlas $\{f_\alpha\}$ of M, then

$$\int_{M} \omega := \int_{U_{\alpha}} \omega_{\alpha} = \int_{U_{\alpha}} \omega_{\alpha}(x) dx^{1} \wedge \dots \wedge dx^{n}$$
$$:= \int_{U} \omega_{\alpha}(x) dx^{1} \dots dx^{n}$$

 $2nd\ case$: If $\sup \omega$ is not contained in any $f_{\alpha}(U_{\alpha})$, but if M is compact, there is a partition of unity $\{\varphi_i\}_{i=1,\ldots,m}$ s.t. $\forall i=1,\ldots,m$: $\sup \varphi_i \subset f_{\alpha}(U_{\alpha})$ for some α . Then $\forall i=1,\ldots,m$: $\sup \varphi_i\omega \subset f_{\alpha_i}(U_{\alpha_i})$ for some α_i . By setting

$$\int_{M} \omega := \sum_{i=1}^{m} \int_{M} (\varphi_{i} \omega)_{\alpha_{i}}$$

the integral reduces to the 1st case.

Stokes theorem. Let M be a compact oriented manifold with boundary and $\omega \in \Omega^{n-1}(M)$, $\iota : \partial M \to M$ the inclusion map, then $\int_{\partial M} \iota^* \omega = \int_M d\omega$.

Exact and closed forms. A k-form $\omega \in \Omega^k(M)$ is called exact, if $\exists \beta \in \Omega^{k-1}(M)$ s.t. $\omega = d\beta$. ω is called closed, if $d\omega = 0$. Thus an exact form is in the image of d and a closed form in the kernel of d.

Poincaré Lemma. If the manifold M is contractible and ω a closed k-form on M, then it is exact.

Cocycle and coboundary group. The set of closed k-forms, i.e. the kernel of d, is called k-th cocycle group $Z^k(M,\mathbb{R})$ and the set of exact k-forms, the image set of d, is called k-th coboundary group $B^k(M,\mathbb{R})$. They are subgroups (w.r.t addition) of the abelian group $\Omega^k(M,\mathbb{R})$ of linear combinations of k-forms with real coefficients.

Cohomology group. The k-th (de Rham) cohomology group $H^k(M, \mathbb{R})$ is the quotient $Z^k(M, \mathbb{R})/B^k(M, \mathbb{R})$.

- (i) If M is contractible, then $H^k(M, \mathbb{R}) = 0$.
- (ii) If $M = T^2$, then $H^0(T^2, \mathbb{R}) = \mathbb{R}$, $H^2(T^2, \mathbb{R}) = \mathbb{R}$.
- (iii) Since for a smooth map $f:M\to N,$ $f^*d=df^*,$ we have $f^*:H^k(M,\mathbb{R})\to H^k(N,\mathbb{R}).$

Cohomology ring. Let $H^* := \bigoplus_k H^k(M, \mathbb{R})$. Then the wedge product $\wedge : H^* \times H^* \to H^*$ gives H^* a ring structure.

De Rham complex. The set $\Omega^* := \bigoplus_k \Omega^k (M, \mathbb{R})$ together with the sequence

$$\cdots \xrightarrow{d} \Omega^{k+1}(M) \xrightarrow{d} \Omega^{k}(M) \xrightarrow{d} \Omega^{k-1}(M) \xrightarrow{d} \cdots$$

Riemannian metric. It assigns to every point $p \in M$ an inner product, i.e. a bilinear, symmetric, positive definite map $\langle \ , \ \rangle : T_pM \times T_pM \to \mathbb{R}$, s.t. $g_{ij}(p) := \langle \partial_i|_p, \partial_j|_p \rangle_p$ depends smoothly on p.

- (i) Every manifold carries a Riemannian metric.
- (ii) Under a change of coordinates: $g'_{ij} = \partial'_i x^k \partial'_j x^l g_{kl}$
- (iii) A diffeomorphism/immersion/embedding $f: M \to N$ is called isometry/isometric immersion/isometric embedding, if $\langle f_*v, f_*w \rangle_{f(n)} = \langle v, w \rangle_n$.
- ding, if $\langle f_*v, f_*w \rangle_{f(p)} = \langle v, w \rangle_p$. (iv) An immersion $f: M \to N$ where N is a Riem. manif. induces a metric on M by $\langle v, w \rangle_p := \langle f_*v, f_*w \rangle_{f(p)}$. This is called the pull-back-metric $f^*\langle \ , \ \rangle_p$.

Length of a curve. The length of a curve $\gamma:[a,b]\to M$ is defined by $L(\gamma):=\int_a^b \langle \dot{\gamma}(t),\dot{\gamma}(t)\rangle_{\gamma(t)}^{1/2}dt=:\int_a^b |\dot{\gamma}|dt.$

- (i) If $\psi:[a',b']\to [a,b]$ is a diffeomorphic reparametrization, then $L(\gamma\circ\psi)=L(\gamma)$
- (ii) γ with $\dot{\gamma}(t) \neq 0 \ \forall t$ can be reparametrized by $arc\ length,$ i.e. $|\dot{\gamma}(t)| \equiv 1.$

Volume form. Let M be an oriented n-dim. Riemannian manifold, then the canonical *volume form* is a form of top degree, $vol \in \Omega^n(M)$, s.t. it is nowhere zero and $\forall p \in M$: $vol_p(e_1, \ldots, e_n) = 1$, for a positively oriented ONB $\{e_i\}$ of T_pM , i.e. $vol_p = e^1 \wedge \cdots \wedge e^n$.

- (i) If $e^i = b_{ij}\tilde{e}^j$, then $vol = (\det b)\tilde{e}^1 \wedge \cdots \wedge \tilde{e}^n$.
- (ii) For any local coordinate basis $\{\partial_i\}$ of T_pM , there is a transformation matrix (a_{ij}) s.t. $\partial_i = a_{ij}e_j$, where e_j is a positively oriented ONB. Then $dx^i = (a^{-1})_{ij}^T e^j$. Furthermore $g_{ij} = \langle \partial_i, \partial_j \rangle = a_{ik}a_{jk}$, and therefore $\det g = (\det a)^2$. Thus $vol = \sqrt{|\det g|} dx^1 \wedge \cdots \wedge dx^n$.
- (iii) The quantity $vol(M) := \int_M vol$ is called $total\ volume$ of a manifold.

Affine connection. It is an R-bilinear map

$$\nabla: \mathscr{X}(M) \times \mathscr{X}(M) \to \mathscr{X}(M), (X,Y) \mapsto \nabla_X Y$$

s.t. it is $\mathcal{F}(M)$ -linear in the first argument and a derivation in the second: $\nabla_X(fY) = f\nabla_X Y + X(f)Y$.

- (i) The $\mathscr{F}(M)$ -Linearity of the map $X \mapsto \nabla_X Y$ (fixed Y) is equiv. to the fact, that $(\nabla_X Y)_p$ depends only on X_p .
- (ii) $(\nabla_X Y)_p$ depends on Y only in a neighbourhood of p.
- (iii) In local coordinates, ∇ is represented by the *Christoffel* $\begin{array}{l} symbols \text{ def. by } \nabla_{\partial_i}\partial_j =: \Gamma_{ij}^{\hat{k}}\partial_k.\\ \text{(iv) } \nabla_X Y \text{ has the coord. rep. } (\nabla_X Y)^k = X(Y^k) + X^i Y^j \Gamma_{ij}^k. \end{array}$
- The space of affine connections is an affine space, i.e. $\sum_{i} \alpha_{i} \nabla^{i}$ is an affine connection if the ∇^{i} are affine connections and $\sum_{i} \alpha_{i} = 1$.
- (vi) On each (differentiable) manifold there exists an affine connection (proof by part. of unity and affinity).

Covariant derivative. Given an affine connection ∇ and a curve γ on M, the covariant derivative of V along γ is def. as $\frac{DV}{dt} := \nabla_{\dot{\gamma}} V$.

- $\begin{array}{ll} \text{(i)} & \frac{D}{dt}(fV) = \frac{df}{dt}V + f\frac{DV}{dt} \text{ for all smooth } f:I \to \mathbb{R}.\\ \text{(ii)} & \text{In local coordinates: } \frac{DV}{dt}(t) = (\dot{V}^k + \dot{x}^iV^j\varGamma^k_{ij})\partial_k, \text{ where} \end{array}$ $V(t) := V(\gamma(t)).$

Parallel vector field along a curve. A vectorfield V is called parallel along γ if $\frac{DV}{dt} \equiv 0$. Given ∇ , a curve γ and a vector $v_0 \in T_{\gamma(t_0)}M$, there is a unique parallel vectorfield V along γ with $V(\gamma(t_0)) = v_0$.

Parallel transport. The parallel transport along γ w.r.t ∇ is the linear map $T_pM \to T_qM, v_0 = V(t_0) \mapsto V(t_1)$.

Remark. One can recover ∇ from parallel transport: Let $X,Y\in$ $\mathscr{X}(M), p \in M$. Pick $\gamma : (-\varepsilon, \varepsilon) \to M$ s.t. $\dot{\gamma}(0) = X_p$. Let $e_1(t), \ldots, e_n(t)$ be a basis of parallel vector fields along γ and $Y(\gamma(t)) =: V(t) = V^{i}(t)e_{i}(t)$. Then we can recover $(\nabla_{X}Y)_{p} =$ $\frac{DV}{dt}(0) = \dot{V}^i(0)e_i(0) + 0$, since the e^i are parallel.

Compatibility with the metric. On a Riemannian manifold, a connection ∇ is said to be *compatible with the* metric, if parallel transport along any curve is a linear isometry $T_pM \to T_qM$. This is equivalent to

- For all parallel vectorfields V, W along $\gamma: \langle (V(t), W(t)) \rangle_{\gamma(t)}$ is independent of t.
- (ii) \forall v.f. V, W along γ : $\frac{d}{dt}\langle V(t), W(t)\rangle = \langle \frac{DV}{dt}, W\rangle + \langle V, \frac{DW}{dt}\rangle$.
- (iii) \forall v.f. X, Y, Z: $X\langle Y, Z\rangle = \langle \nabla_X Y, Z\rangle + \langle Y, \nabla_X Z\rangle$.

Symmetric connection. We say, an affine connection ∇ is symmetric (or torsion-free), if $\nabla_X Y - \nabla_Y X = [X, Y]$, for all $X, Y \in \mathcal{X}(M)$. This is equivalent to say $\Gamma_{ij}^k = \Gamma_{ji}^k$. $\square \ \, \text{If } \nabla \text{ is symmetric, then for } \Gamma: \mathbb{R} \times \mathbb{R} \to M, \, \tfrac{D}{ds} \, \tfrac{\partial \Gamma}{\partial t} = \tfrac{D}{dt} \, \tfrac{\partial \Gamma}{\partial s}.$

Levi-Civita-Connection. On a Riemannian manifold, there exists a unique connection, which is symmetric and compatible with the metric, the Levi-Civita-Connection.

(i) The LC-connection is given by $\langle \nabla_X Y, Z \rangle = \frac{1}{2} (X \langle Y, Z \rangle + Y \langle X, Z \rangle - Z \langle X, Y \rangle - \langle X, [Y, Z] \rangle - \langle Y, [X, Z] \rangle + \langle Z, [X, Y] \rangle).$ In coordinates: $\Gamma_{ij}^m = \frac{1}{2} (\partial_i g_{jk} + \partial_j g_{ik} - \partial_k g_{ij}) g^{km}$.

(ii) If $\overline{\nabla}$ is the LC-connection on \overline{M} , then the LC-connection ∇ on a submanifold $M \subset \overline{M}$ is given by $\nabla_X Y(p) = \pi(\overline{\nabla}_{\overline{X}} \overline{Y}(p))$, where $\underline{\pi} : T_p \overline{M} \to T_p M$ is the orthogonal projection, \overline{X} and \overline{Y} are extensions of $X, Y \in \mathcal{X}(M)$, s.t. they are equal to X,Y on a small neighbourhood.

1st variation of length. Let M be a Riemannian manifold and ∇ the LC-connection. Let $\gamma:[a,b]\to M$ be a curve from p to $q,\, \varGamma: (-\varepsilon,\varepsilon)\times [a,b] \to M$ a smooth map with $\Gamma(0,t) = \gamma(t)$, $\Gamma(s,a) = p$, $\Gamma(s,b) = q$. The first variation of length at γ in direction $V(t) := \frac{\partial \hat{\Gamma}}{\partial s}(0,t)$ with fixed endpoints is defined by $dL(\gamma)V := \frac{d}{ds}L(\Gamma(s,\cdot))|_0$.

(i) Assuming $|\dot{\gamma}(t)| \equiv 1$, we obtain

$$dL(\gamma)V = -\int_{a}^{b} \langle V, \frac{D\dot{\gamma}}{dt} \rangle dt$$

(ii) $dL(\gamma)V=0 \; \forall V$ is a necessary condition for γ to minimize length. By (i), this is equivalent to $\frac{D\dot{\gamma}}{dt} \equiv 0$.

Geodesic. A curve γ is called *geodesic*, if $\frac{D\dot{\gamma}}{dt} \equiv 0$.

- (i) If γ is a geodesic, then $\frac{d}{dt}|\dot{\gamma}|^2=2\langle\frac{D\dot{\gamma}}{dt},\dot{\gamma}\rangle=0$. Thus $|\dot{\gamma}|$ is constant, so geodesics are parametrized proportional to arc length.
- (ii) In local coordinates, the equations that determine a geodesic read $\ddot{x}^k+\Gamma^k_{ij}\dot{x}^i\dot{x}^j=0.$
- (iii) $\forall p \in M$ and $v \in T_pM$, $\exists \varepsilon > 0$ and a unique geodesic $\gamma: (-\varepsilon, \varepsilon) \to M \text{ with } \gamma(0) = p, \dot{\gamma}(0) = v.$
- (iv) $\forall p \in M, \exists \varepsilon > 0$ s.t. $\forall v \in T_p M$ with $|v| \leqslant \varepsilon \exists$ unique geodesic $\gamma_v: (-2,2) \to M$ with $\gamma_v(0) = p, \dot{\gamma}_v(0) = v$.
- For a > 0 and γ_v as above, the curve $t \mapsto \gamma_v(at)$ is a geodesic with initial position p and initial velocity av for $t \in (-2/a, 2/a).$

Exponential map. The exponential map at $p \in M$ is the map $\exp_p: T_pM \supset B_{\varepsilon}(0) \to M, v \mapsto \gamma_v(1)$.

- (i) For $\exp_{p*} = T_0 \exp_p : T_0(T_pM) \to T_pM$ we get $\exp_{p*} v = \exp_{p*} \frac{d}{dt} \Big|_0 tv = \frac{d}{dt} \Big|_0 \exp_p(tv) = \frac{d}{dt} \Big|_0 \gamma_{tv}(1) = \frac{d}{dt} \Big|_0 \gamma_v(t) = v$, i.e. $T_0 \exp_p = id : T_pM \to T_pM$.
- (ii) $\forall p \in M \; \exists \varepsilon > 0 \text{ and } V \ni p \text{ open s.t. } \exp_p : B_{\varepsilon}(0) \to V \text{ is a}$ diffeomorphism (by (i) and the inverse function theorem, since id is an isomorphism).
- (iii) Gauss lemma: Let $p \in M$, $v \in B_{\varepsilon}(0) \subset T_pM$ ($\varepsilon > 0$ as in (iv) above), $w \in T_v(T_pM)$, then

$$\langle T_v \exp_p(v), T_v \exp_p(w) \rangle_{\exp_p(v)} = \langle v, w \rangle_p$$

Geodesic normal ball/sphere. By $B_r(p)$, we denote the image of $B_r(0)$ under \exp_p , where r is chosen so small such that $\exp_p: B_r(0) \to B_r(p)$ is a diffeomorphism. The boundary of the geodesic normal ball $B_r(p)$ is denoted by $S_r(p) := \partial B_r(p)$ and is called geodesic normal sphere.

- (i) Let $\gamma:[0,1]\to B_{\varepsilon}(p)$ be a geodesic with $\gamma(0)=p,$ $\gamma(1) = q \neq p$. Then $L(\gamma) \leqslant L(c)$ for any other curve c from p to q and equality if c is a monotone repar. of γ .
- (ii) For a curve $\gamma:[a,b]\to M$ being a geodesic is equivalent to say that γ is locally length minimizing ($\exists \varepsilon > 0$ s.t. $\forall t \in [a, b - \varepsilon] \ \gamma|_{[t, t + \varepsilon]}$ minimizes length among all curves with the same endpoints).

Geodesic normal coordinates. Let $p \in M$, $B_{\varepsilon}(p)$ a geodesic normal ball and $\{e_i\}$ a ONB of T_pM . The coordinates $(x_1, \ldots x_n)$ of $v \in B_{\varepsilon}(0)$ with respect to $\{e_i\}$ can be used for the point $\exp_p(v) \in B_{\varepsilon}(p)$, since \exp_p is a diffeomorphism btw. $B_{\varepsilon}(0)$ and $B_{\varepsilon}(p)$. These coordinates are called (geodesic) normal coordinates.

- (i) In normal coordinates: $g_{ij}(0) = \delta_{ij}$.
- (ii) $x^i(t) := tv^i$ is a geodesic $\forall v \in T_pM$. Then $0 = \ddot{x}^k + \Gamma_{ij}^k(0)\dot{x}^i\dot{x}^j$, i.e. $\Gamma_{ij}v^iv^j = 0$. Since Γ_{ij}^k is symmetric in (i,j), it follows $\Gamma_{ij}^k(0) = 0$.
- (iii) $g_{ij}(x) = \delta_{ij} + \mathcal{O}(|x|^2)$.

Curvature tensor. The curvature tensor of M is the $\operatorname{map} R: \mathscr{X}(M) \times \mathscr{X}(M) \times \mathscr{X}(M) \to \mathscr{X}(M), R(X,Y)Z :=$ $\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$. In local coordinates, we can define coefficients R_{ijk}^l by $R(\partial_i, \partial_j)\partial_k =: R_{ijk}^l\partial_l$.

- (i) R is $\mathscr{F}(M)$ -linear in each variable X,Y,Z, so $[R(X,Y)Z]_p$ depends only on X(p), Y(p), Z(p)
- (ii) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0, the 1st Bianchi identity.
- (iii) R(X,Y)Z = -R(Y,X)Z.
- (iv) $\langle R(X,Y)Z,T\rangle = -\langle R(X,Y)T,Z\rangle$.
- (v) $\langle R(X,Y)Z,T\rangle = \langle R(Z,T)X,Y\rangle$.
- (vi) By $\mathscr{F}(M)$ -linearity: $R(X,Y)Z = X^iY^jZ^kR^l_{ijk}\partial_l$.
- (vii) $R_{ijk}^m = \partial_i \Gamma_{jk}^m \partial_j \Gamma_{ik}^m + \Gamma_{jk}^l \Gamma_{il}^m \Gamma_{ik}^l \Gamma_{jl}^m$. (viii) Notation: $R(X,Y,Z,T) := \langle R(X,Y)Z,T \rangle$. Then in local coordinates $R(\partial_i, \partial_j, \partial_k, \partial_m) =: R_{ijkm} = R_{ijk}^l g_{lm}$. Then the symmetries read $R_{ijkl} + R_{jkil} + R_{kijl} = 0$, $R_{ijkl} =$ $-R_{jikl}, R_{ijkl} = -R_{ijlk}, R_{ijkl} = R_{klij}.$
- (ix) Cartan's theorem: A Riemannian manifold M is locally isometric to Euclidean space (i.e. near each $p \in M \exists local$ coordinates in which $g_{ij}(x) \equiv \delta_{ij}$, i.e. $R \equiv 0$)

Sectional curvature. Let M be a Riemannian manifold, $p \in M$, $X, Y \in T_pM$ linearly independent, then the area of the parallelogram spanned by the vectors X, Y is defined by $|X \wedge Y| := \sqrt{|X|^2 |Y|^2 - \langle X, Y \rangle^2}$. The quantity $K(\sigma) := K(X,Y) := R(X,Y,Y,X)/|X \wedge Y|^2$ only depends on the plane $\sigma := span\{X,Y\} \subset T_pM$ and is called sectional curvature of the plane σ .

- (i) K(X,Y) is invariant under $(X,Y) \to (Y,X)$, $(X,Y) \to$ $(\lambda X, Y), (X, Y) \rightarrow (X + \lambda Y, Y).$
- (ii) Using (i), one can show: The sectional curvature K only depends on σ .

Isometric immersions. Let \overline{M} a Riemannian manifold. If $f: M \to \overline{M}$ is an immersion, then M is locally a submanifold of \overline{M} with the induced pull-back-metric $f^*\langle , \rangle_p$. $\forall p \in M$ we can decompose $T_{\underline{p}}\overline{M} = T_pM \oplus (T_pM)^{\perp}$. If $\overline{\nabla}$ is the LC-connection on \overline{M} , then using the orth. projection $\pi: T_p \overline{M} \to T_p \underline{M}$, the LC-connection on Mis defined by $\nabla_X Y(p) = \pi(\overline{\nabla}_{\overline{X}} \overline{Y}(p))$. We define a map $B(X,Y) := (\overline{\nabla}_{\overline{X}} \overline{Y})^{\perp} = \overline{\nabla}_{\overline{X}} \overline{Y} - \nabla_X Y$.

- (i) $B(X,Y) \in \mathcal{X}(M)^{\perp}$, i.e. it is a v.f. along M perp. to M.
- (ii) B is $\mathscr{F}(M)$ -bilinear and symmetric in X, Y.

Second fundamental form. For $N \in \mathcal{X}(M)^{\perp}$ define a sym. bilinear form $B_N(X,Y) := \langle B(X,Y), N \rangle$. Then $\Pi_N(X) := B_N(X,X)$ is called the second fundamental form of $M \subset \overline{M}$ at $p \in M$ in direction N. The associated operator $S_N: T_pM \to T_pM$ defined by $\langle S_NX, Y \rangle :=$ $B_N(X,Y)$ is self-adjoint.

- (i) $S_N X = -\pi (\overline{\nabla}_{\overline{X}} N)$.
- (ii) Gauss theorem: Let $f: M \to \overline{M}$ be an isometric immersion. Then the sectional curvatures K, \overline{K} of M, \overline{M} are related by $K(X,Y) - \overline{K}(X,Y) = \langle B(X,X), B(Y,Y) \rangle$ $|B(X,Y)|^2$ where $X,Y \in T_pM$ are orthonormal.

Gauss curvature. Let $M \subset \mathbb{R}^{n+1}$ be a hypersurface, i.e. dim M = n. The Gauss map $N : M \to S^n, p \mapsto N_p$ assigns each point p to the unit normal vector N_p of the hypersurface at p. The differential/push-forward of N at p is the map $T_pN: T_pM \to T_{N_p}S^n = T_pM$. The Gauss curvature of $M \subset \mathbb{R}^{n+1}$ at p is $K(p) := \det(-T_pN)$.

- (i) $T_p N(X) = \overline{\nabla}_X N$ (cov. deriv. on $\mathbb{R}^{n+1} = \text{ord. deriv.}$)
- (ii) From (i) of the par. on second fund. form: $S_N = -T_p N$.
- (iii) $K(p) = \det S_N = \det(B_N(e_i, e_j))$
- (iv) For a surface $M \in \mathbb{R}^3$ by the Gauss theorem and since $\overline{K} \equiv 0$: $K(X,Y) = \langle B(X,X), B(Y,Y) \rangle - |B(X,Y)|^2$. Thus K(X,Y) = K(p), i.e. the sectional curvature (intrinsic) of a surface in \mathbb{R}^3 equals the Gauss curvature
- (v) Let \overline{M} be a Riemannian manifold, $\sigma \subset T_p \overline{M}$ a plane and $\underline{M} = \exp_p(\sigma)$. Then for $X \in \sigma$, $\overline{\nabla}_{\overline{X}} \overline{X} = 0$, B(X, X) = $(\overline{\nabla}_{X}\overline{X})^{\perp} = 0$ and since B is symmetric B(X,Y) = 0 $\forall X, Y$. Then by Gauss theorem: $K(\sigma) - \overline{K}(\sigma) = 0$, i.e. $\overline{K}(\sigma) = K(\sigma) = \text{Gauss curv. of } M.$ Thus the sect. curvature of a plane $\sigma \subset T_pM$ equals the Gauss curvature at p of the surface $\exp_p(\sigma)$.

Ricci tensor. The *Ricci tensor* is def. by Ric(X,Y) := $tr(Z \mapsto R(X,Z)Y)$ i.e. $R_{ik} = R_{ijk}^{\jmath}$.

- (i) $Ric(e_n, e_n) = -\sum_{i=1}^{n-1} K(e_i, e_n).$
- (ii) $scal(p) := tr(Ric : T_pM \to T_pM) = R_{ijm}^j g^{mi}$
- (iii) In dim M = 2: scal = -2K.

Covariant derivative of tensors. The covariant derivative of 1-forms along a vector field X is the 1-form defined by $(\nabla_X \omega)(Y) := X(\omega(Y)) - \omega(\nabla_X Y)$. For a general tensor T, set $\nabla_X T(\omega_1, \ldots; X_1, \ldots) := X(T(\omega_1, \ldots; X_1, \ldots)) \sum_{i} T(\ldots, \nabla_{X}\omega_{i}, \ldots; X_{1}, \ldots) - \sum_{j} T(\omega_{1}, \ldots; \ldots \nabla_{X}X_{j}, \ldots).$

- (i) We can also view this as $\nabla T(\omega_1, \ldots; X_1, \ldots, Z) := \nabla_Z T(\ldots)$.
- $\nabla g(X,Y,Z) = Z\langle X,Y\rangle \langle \nabla_Z X,Y\rangle \langle X,\nabla_Z Y\rangle$, thus $\nabla g = 0 \Leftrightarrow \nabla$ is comp. with g.
- (iii) 2nd Bianchi identity: $(\nabla_X R)(Y, Z)W + (\nabla_Y R)(Z, X)W +$ $(\nabla_Z R)(X, Y)W = 0.$
- (iv) With $\operatorname{div} Ric(X) := tr(Z \mapsto (\nabla_Z Ric)(X))$ one can show dscal = 2 divRic.