Lecture 8 Random Forests

GEOL 4397: Data analytics and machine learning for geoscientists

Jiajia Sun, Ph.D. Feb 26th, 2019

Agenda

Decision Trees: review

Random Forests: motivation

Random Forests: concepts

Random Forests: implementation

Iris data

Splitting data and growing trees

 You need to know what question to ask at each node.

 How to choose which feature and which threshold value to use?

CART algorithm

- Scikit-Learn uses Classification And Regression Tree (CART) to grow (or train) decision trees.
- The idea is simple: the algorithm splits the training set in two subsets using a single feature k and a threshold t_k (e.g., petal length <= 2.45 cm)
- It searches for the pair (k, t_k) that produces the <u>purest</u> subsets
- by minimizing a cost function ...

CART: cost function

$$J(k, t_k) = \frac{m_{left}}{m} g_{left} + \frac{m_{right}}{m} g_{right}$$

 g_{left} : the impurity of the left subset

 g_{right} : the impurity of the right subset

The tree stops growing once it reaches the maximum depth (max_depth), or if it cannot find a split that will reduce impurity.

Decision Trees

- Iteratively split the data by asking and answering a question
- Very intuitive
- Independent of scaling (no scaling needed)

Decision Trees

- Iteratively split the data by asking and answering a question
- Very intuitive
- Independent of scaling (no scaling needed)

- However, they tend to overfit the data (if the trees grow very deep) ----> high variance
- Very sensitive to small variations in the training data

overfitting

Decision boundary from a single decision tree

overfitting

Decision boundaries of a decision tree with max_depth = 5

Jake VanderPlas, 2016, Python Data Science Handbook, pp 424

Sensitivity to training set rotation

Sensitivity to training set rotation

Sensitivity to training set rotation

Decision boundary looks unnecessarily convoluted. Will not generalize well.

Aurelien Geron, 2017, Hands-on Machine Learning with Scikit-Learn & TensorFlow, pp 170

Sensitivity to small variations

Remove the widest Iris-Versicolor

Aurelien Geron, 2017, Hands-on Machine Learning with Scikit-Learn & TensorFlow, pp 170

University of Houston

Sensitivity to small variations

Sensitivity to small variations

Random Forests can limit the instability by averaging predictions over many trees.

Aurelien Geron, 2017, Hands-on Machine Learning with Scikit-Learn & TensorFlow, pp 178

University of Houston

Random Forests

- An ensemble of decision trees
- Trained on random subsets of the original dataset
- Use averaging (or aggregating) to improve the prediction accuracy and control overfitting

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Nomenclature

https://www.slideshare.net/SebastianRaschka/nextgen-talk-022015

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

- Randomly sampling features
- Randomly sampling instances

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

- Randomly sampling features
- Randomly sampling instances

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

- Randomly sampling features
- Randomly sampling instances

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

- Randomly sampling features
- Randomly sampling instances

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

- Randomly sampling features
- Randomly sampling instances

Bootstrap samples

random sampling with replacement

- Randomly sampling features
- Randomly sampling instances

Bootstrap samples

random sampling with replacement

Random Patches

Sampling both training instances and features

- Randomly sampling features
- Randomly sampling instances

Bootstrap samples

rando		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	1	5.1	3.5	1.4	0.2	setosa
Dandam	2	4.9	3.0	1.4	0.2	setosa
Random	3	4.7	3.2	1.3	0.2	setosa
Samp	4	4.6	3.1	1.5	0.2	setosa
	5	5.0	3.6	1.4	0.2	setosa
	6	5.4	3.9	1.7	0.4	setosa
	7	4.6	3.4	1.4	0.3	setosa
	8	5.0	3.4	1.5	0.2	setosa

- Randomly sampling features
- Randomly sampling instances

Bootstrap samples

• rando		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	1	5.1	3.5	1.4	0.2	setosa
Dandom	2	4.9	3.0	1.4	0.2	setosa
Random	3	4.7	3.2	1.3	0.2	setosa
Samp	4	4.6	3.1	1.5	0.2	setosa
	5	5.0	3.6	1.4	0.2	setosa
	6	5.4	3.9	1.7	0.4	setosa
	7	4.6	3.4	1.4	0.3	setosa
	8	5.0	3.4	1.5	0.2	setosa
Gero	n, A.	, 2017, Hands-	n Machine L	earning with S	ikit-Learn &	TensorFlow, pp188

- Randomly sampling features
- Randomly sampling instances

Bootstrap samples

- Randomly sampling features
- Randomly sampling instances

Bootstrap samples

random sampling with replacement

Random Patches

Sampling both training instances and features

Random Subspaces

Keeping all the training instances but sampling features

Random Sampling

- Randomly sampling features
- Randomly sampling instances

Bootstrap samples

• rando		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	1	5.1	3.5	1.4	0.2	setosa
<u>Random</u>	2	4.9	3.0	1.4	0.2	setosa
	3	4.7	3.2	1.3	0.2	setosa
Samp	4	4.6	3.1	1.5	0.2	setosa
	5	5.0	3.6	1.4	0.2	setosa
Random	6	5.4	3.9	1.7	0.4	setosa
	7	4.6	3.4	1.4	0.3	setosa
 Keepi. 	8	5.0	3.4	1.5	0.2	setosa es
	·U		.			.6

Geron, A., 2017, Hands-on Machine Learning with Scikit-Learn & TensorFlow, pp188

Select the number of decision trees, M

- Select the number of decision trees, M
- For each decision tree:
- create bootstrap samples of training instances

- Select the number of decision trees, M
- For each decision tree:
- create bootstrap samples of training instances
- grow a decision tree

- Select the number of decision trees, M
- For each decision tree:
- create bootstrap samples of training instances
- grow a decision tree

when splitting a node, instead of searching for the best feature among all features, just search for the best feature among a random subset of the features

- Select the number of decision trees, M
- For each decision tree:
- create bootstrap samples of training instances
- grow a decision tree
 - when splitting a node, instead of searching for the best feature among all features, just search for the best feature among a random subset of the features
- Average predictions from all M decision trees

- Select the number of decision trees, M
- For each decision tree:
- create bootstrap samples of training instances
- grow a decision tree
 - when splitting a node, instead of searching for the best feature among all features, just search for the best feature among a random subset of the features
- Average predictions from all M decision trees
- In Scikit-Learn, there is a RandomForestClassifier.

History

 The first algorithm for random forests was created by *Tin Kam Ho* using random subspace method (i.e., <u>using random samples of features instead of</u> the entire feature set)

https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_subspace_method

History

 The first algorithm for random forests was created by *Tin Kam Ho* using random subspace method (i.e., <u>using random samples of features instead of</u> the entire feature set)

 An extension developed by Leo Breiman and Adele Cutler using random patches (i.e., <u>using random</u> samples of training instances and features)

https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_subspace_method

Left: Decision boundary of a single Decision Tree with unlimited depths using the moons data set.

Right: Average decision boundary of an ensemble of 500 decision trees

Observation: Averaging over 500 decision trees results in a smaller variance, and better prediction accuracy on new data.

Aurelien Geron, 2017, Hands-on Machine Learning with Scikit-Learn & TensorFlow, pp 187

 For a random forest, at each node only a random subset of the features is considered for splitting

- For a random forest, at each node only a random subset of the features is considered for splitting
- Instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candidate feature and the best of these randomlygenerated thresholds is picked for splitting.

- For a random forest, at each node only a random subset of the features is considered for splitting
- Instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candidate feature and the best of these randomlygenerated thresholds is picked for splitting.
- Extra-Trees for short (ExtraTreeClassifier in Scikit-Learn)

- For a random forest, at each node only a random subset of the features is considered for splitting
- Instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candidate feature and the best of these randomlygenerated thresholds is picked for splitting.
- Extra-Trees for short (ExtraTreeClassifier in Scikit-Learn)
- It is hard to tell in advance whether a RandomForestClassifier will perform better or worse than an ExtraTreeClassifier.

 With Random Forests (or, Decision Trees), it is fairly straightforward to measure the relative importance of each feature.

- With Random Forests (or, Decision Trees), it is fairly straightforward to measure the relative importance of each feature.
- Scikit-Learn measures a feature's importance by looking at how much the tree nodes that use that feature reduces impurity on average.

- With Random Forests (or, Decision Trees), it is fairly straightforward to measure the relative importance of each feature.
- Scikit-Learn measures a feature's importance by looking at how much the tree nodes that use that feature reduces impurity on average.
- Scikit-Learn computes the feature importance automatically.
- You can access the result using the feature importances variable.

Example: Classifying seismic P-wave receiver functions

Example: Classifying seismic P-wave receiver functions

- Random Forests are very handy to get a quick understanding of what features are important
- Very useful for feature selection

Understanding Random Forests

- Forest: a collection of trees
- Random: trees are trained on random subsets of training instances and features

Understanding Random Forests

- Forest: a collection of trees
- Random: trees are trained on random subsets of training instances and features
- Therefore, a random forest refers to a collection (or, an ensemble) of decision trees trained on random subsets of the original data set.

Understanding Random Forests

- Forest: a collection of trees
- Random: trees are trained on random subsets of training instances and features
- Therefore, a random forest refers to a collection (or, an ensemble) of decision trees trained on random subsets of the original data set.
- Prediction is made by aggregating the votes from all the trees for a classification task (or averaging the predicted values for a regression task)

Implementation in Scikit-Learn

Implementation in Scikit-Learn

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=100, random_state=0)
model.fit(X,y)
```


Decision boundary learned from a random forest comprising 100 trees