Applied Stochastic Processes

Exercise sheet 7

Exercise 7.1 Cycles of operation and repair of a machine.

Let $(U_i, V_i)_{i \in \mathbb{N}}$ be a sequence of i.i.d. random vectors with $U_i \geq 0$, $V_i \geq 0$. Assume that $T_i = U_i + V_i$ is not almost surely equal to 0 and denote by F its distribution function. We interpret U_i and V_i as alternating periods when a given machine is operational or in repair. The period U_1 begins at time 0. For $t \geq 0$ we define $Y_t = 1$ if the machine is operational at time t and $Y_t = 0$ otherwise. Let $g(t) = P[Y_t = 1]$ denote the probability of the machine being operational at time $t \geq 0$, and g(t) = 0 for t < 0. We also define $h(t) = P[U_1 > t]$.

(a) Prove that for $t \geq 0$

$$g(t) = h(t) + \int_0^t g(t-s)dF(s),$$

i.e. that g is the solution of the (h, F)-renewal equation.

(b) Assume that $\mathrm{E}[U_1] < \infty$ and that F is non-arithmetic. Show that the function h is directly Riemann integrable and conclude that

$$\lim_{t\to\infty}g(t)=\frac{\mathrm{E}[U_1]}{\mathrm{E}[U_1]+\mathrm{E}[V_1]}.$$

Exercise 7.2 Let N be a renewal process with renewal times $(S_k)_{k\geq 0}$, where $S_0=0$, and interarrival distribution F having finite mean $\mu>0$. Denote by A the age process of N, i.e. $A_t=t-S_{N_t}$ for $t\geq 0$. For $x\geq 0$, set $\varphi_x(t)=\mathrm{P}[A_t\leq x]$ for $t\geq 0$, and $\varphi_x(t)=0$ for t<0.

(a) Show that φ_x satisfies the renewal equation

$$\varphi_x(t) = 1_{\{t \le x\}} (1 - F(t)) + \int_0^t \varphi_x(t - s) dF(s) \text{ for } t \ge 0.$$

(b) Assume that F is non-arithmetic. Compute $\lim_{t\to\infty} \varphi_x(t)$. Deduce that A_t converges in distribution to some random variable A_{∞} as $t\to\infty$.

Solution 7.1

(a) Let
$$S_k = T_1 + \ldots + T_k$$
. For $t \ge 0$,
$$g(t) = P[Y_t = 1]$$
$$= P[Y_t = 1, T_1 > t] + P[Y_t = 1, T_1 \le t]$$
$$= P[U_1 > t] + E\left[\sum_{k \ge 0} 1_{\{S_k \le t < S_k + U_{k+1}\}} 1_{\{T_1 \le t\}}\right]$$
$$= P[U_1 > t] + E\left[\sum_{k \ge 1} 1_{\{T_1 + S_k - S_1 \le t < T_1 + S_k - S_1 + U_{k+1}\}}\right],$$

where T_1 is independent of $S_k - S_1$ and of U_{k+1} , and $S_k - S_1 \stackrel{(d)}{=} S_{k-1}$ for $k \ge 1$. This implies that

$$g(t) = P[U_1 > t] + \int_0^t E\left[\sum_{k \ge 1} 1_{\{S_{k-1} \le t - s < S_{k-1} + U_{k+1}\}}\right] dF(s)$$
$$= h(t) + \int_0^t g(t - s) dF(s)$$

(b) Note that $h \ge 0$ and it is a non increasing function. Also

$$\int_0^\infty h(t)dt = \int_0^\infty P[U_1 > t]dt = E[U_1] < \infty,$$

which means that h is directly Riemann integrable. Since F is non-arithmetic and g is solution of the equation g = h + g * F, we know by Smith's key renewal theorem that

$$\lim_{t \to \infty} g(t) = \frac{1}{E[T_1]} E[U_1] = \frac{E[U_1]}{E[U_1] + E[V_1]}.$$

Solution 7.2

(a) Set $t \ge 0$ and $x \ge 0$. Note that

$$\begin{split} \varphi_x(t) &= \mathbf{P}[A_t \leq x] = \mathbf{P}[A_t \leq x, S_1 > t] + P[A_t \leq x, S_1 \leq t] \\ &= \mathbf{1}_{\{t \leq x\}} (1 - F(t) + \mathbf{P}[t - S_{N_t} \leq x, S_1 \leq t]. \end{split}$$

We know that $\{S_1 \leq t\} = \{N_t \geq 1\}$. Then

$$\begin{split} \mathbf{P}[t - S_{N_t} \leq x, S_1 \leq t] &= \sum_{n \geq 1} \mathbf{P}[t - S_n \leq x, N_t = n] \\ &= \sum_{n \geq 1} \mathbf{P}[t - x \leq S_n \leq t < S_{n+1}] \end{split}$$

We can write $S_n = S_n - S_1 + T_1$, where T_1 is independent of $S_n - S_1$ and $S_n - S_1 \stackrel{(d)}{=} S_{n-1}$. Therefore

$$P[t - S_{N_t} \le x, S_1 \le t] = \sum_{n \ge 1} \int_0^t P[t - x \le s + S_{n-1} \le t < s + S_n] dF(s)$$

$$= \sum_{n \ge 1} \int_0^t P[t - s - x \le S_{n-1} \le t - s < S_n] dF(s)$$

$$= \sum_{n \ge 1} \int_0^t P[A_{t-s} \le x, N_{t-s} = n - 1] dF(s)$$

$$= \int_0^t P[A_{t-s} \le x] dF(s) = \int_0^t \varphi_x(t - s) dF(s),$$

which is exactly what we wanted.

(b) Let us define $h(t) = 1_{\{t \le x\}} (1 - F(t))$ for $t \ge 0$. Note that $h \ge 0$, it is measurable, continuous a.e. and bounded by 1. Also it vanishes outside the compact interval [0, x]. This implies that h is directly Riemann integrable. Since F is non-arithmetic, by Smith's key renewal theorem it follows that

$$\lim_{t \to \infty} \varphi_x(t) = \frac{1}{\mathrm{E}[T_1]} \int_0^\infty h(t) dt = \frac{1}{\mu} \int_0^x (1 - F(t)) dt = G_*(x).$$

This means that A_t converges in distribution to a random variable with distribution G_* (recall that G_* is the distribution function which makes stationary the F-renewal with delay G_*).