

Projeto de Redes Neurais Aplicadas ao Reconhecimento de Números escritos à Mão

Disciplina: IA 2

Alunos: Anderson M. Begossi

Guilherme Boschetti

Detalhamento da Rede Neural

- Arquitetura da rede neural:
 - 3 camadas de neurônios:
 - Camada de entrada: 16 neurônios;
 - Camada de saída: 10 neurônios;
 - Camada escondida (intermediária) 13 neurônios.
- Parâmetros de configuração:
 - Taxa de aprendizagem = 0.5;
 - Treinamento = 3000 iterações.

Descrição do Dataset

- Codificação: Dummy.
- Fase de treinamento com 3000 execuções (parametrizado).
- Fase de teste com uma execução (fixa), com dados diferentes dos dados utilizados no treinamento.

Matriz de Confusão

Tabela de validações

Classes	VP	FP	VN	FN
0	184	7	2110	179
1	189	9	2105	175
2	65	2	2229	307
3	324	121	1970	12
4	327	12	1967	37
5	66	0	2228	291
6	320	346	1974	16
7	346	220	1948	18
8	335	524	1959	1
9	138	5	2156	199

Acurácia

(0	1	2	3	4	5	6	7	8	9
Ş	92.5000	92.5747	88.1291	94.5200	97.9087	88.7427	86.3705	90.6003	81.3764	91.8335

Erro

0	1	2	3	4	5	6	7	8	9
0.0750	0.0743	0.1187	0.0548	0.0209	0.1126	0.1363	0.0940	0.1862	0.0817

Sensitividade

0

50.6887

Precisão

0	1	2	3	4	5	6	7	8	9
96.3351	95.4545	97.0149	72.8090	96.4602	100.0000	48.0480	61.1307	38.9988	96.5035

Especificidade

0	1	2	3	4	5	6	7	8	9
99.6693	99.5743	99.9104	94.2133	99.3936	100.0000	85.0862	89.8524	78.8965	99.7686

Fórmulas das Métricas

Sensitividade (Recall): porcentagem de amostras positivas classificadas corretamente sobre o total de amostras positivas

Sensitividade=
$$\frac{VP}{VP+FN}$$

Precisão: porcentagem de amostras positivas classificadas corretamente sobre o total de amostras classificadas como positivas

$$Precisão = \frac{VP}{VP + FP}$$

Especificidade: porcentagem de amostras negativas identificadas corretamente sobre o total de amostras negativas

Especificidade=
$$\frac{VN}{VN+FP}$$

Conclusões Finais

Conclusão

Pela acurácia, podemos concluir que o dígito **4** foi o mais corretamente classificado dentre os dados de teste, ao contrário do dígito **8**, sendo o pior classificado.

Pela sensitividade, conclui-se que o dígito 8 foi o mais corretamente classificado como positivo, sobre o total de amostras positivas, ao contrário do dígito 2, sendo o pior.

Pela precisão, conclui-se que o dígito **5** foi o mais classificado corretamente sobre o total de amostras que foram classificadas como positivas, sendo o dígito 8 o pior.

Os dígitos 1,2,4, 5 e 9 foram os melhores classificados como negativos sobre o total de amostras negativas, e o dígito 8 o pior.

Conclusões Finais

Aprendizagens destacadas e análise

A aprendizagem destacada foi a do dígito **4**, obtendo uma boa performance na maioria das métricas feitas, principalmente na precisão e sensitividade.

O dígito 8 se mostrou muito bem na métrica de sensitividade, porém decaiu em precisão.

Inversamente o dígito **5**, obtendo 100% em precisão, mas 18% em sensitividade, mostrando que todos dígitos **5** identificados estavam corretos, porém não suficientes se comparado ao total.