

Diplomski studij

Informacijska i komunikacijska tehnologija Telekomunikacije i informatika

Računarstvo Računarska znanost Programsko inženjerstvo i informacijski sustavi

Raspodijeljeni sustavi

Pitanja za provjeru znanja 2. blok predavanja

Ak.g. 2010./2011.

Napomena: Preporučena literatura su bilješke s predavanja.

- **Zadatak 1** Objasnite za koje je od sljedeća tri svojstva raspodijeljenih sustava značajna komunikacijska složenost algoritama: a) replikacijska transparentnost b) skalabilnost c) otvorenost.
- Zadatak 2 Objasnite model komunikacijskog kanala koji se temelji na uzročnoj slijednosti.

Zadatak 3 Objasnite zašto za sljedeći primjer vrijedi CO ili vrijedi non-CO?

Prikažite i objasnite korake algoritma Berkeley za usklađivanje satnih mehanizama tri računala u raspodijeljenoj okolini. Računala imaju sljedeće vrijednosti satova T(p)=03:02:00, T(q)=03:08:00 i T(c)=03:12:00. Upravitelj je treće računalo. Pretpostavite da prijenos poruke između 2 računala traje 1 minutu.

С	 ۰
р	
q	 -

Zadatak 5 Opišite postupak međusobnog isključivanja dvaju procesa (p i q) primjenom središnjeg upravljača s repom čekanja tako da nacrtate redoslijed operacija i objasnite ih. Nakon zauzimanja dijeljenog spremnika, proces provodi jednu operaciju čitanja ili pisanja nad dijeljenim spremnikom.

Zadatak 6 Za slijed razmjene poruka između tri računala prikazan na slici uspostavite globalni tijek vremena primjenom skalarnih oznaka logičkog vremena. Navedite i opišite trenutke u kojima se ostvaruje korekcija lokalnih satnih mehanizama.

Pet procesa postavljenih na različita računala u raspodijeljenoj okolini ostvaruje međusobno isključivanje primjenom prstena. Vrijeme prijenosa poruke zahtjeva i odgovora pri pristupu dijeljenom sredstvu jednako je 3 ms, vrijeme obrade poruke zahtjeva na sredstvu je 5 ms, vrijeme prijenosa tokena između dva susjedna procesa u prstenu je 2 ms. Kada primi token, proces može maksimalno jednom ostvariti pristup dijeljenom sredstvu prije nego što proslijedi token idućem susjedu. Prikažite naznačite navedena vremena na dijagramu. Koje je minimalno, a koje maksimalno vrijeme čekanja bilo kojeg procesa u prstenu za pristup dijeljenom sredstvu.

Zadatak 8 Objasnite što je replika podatka, a što je nekonzistentnost replike podatka.

Zadatak 9 Navedite i opišite značajke tri osnovna razreda replika podataka u raspodijeljenim sustavima.

Zadatak 10 Objasnite što je stroga konzistentnost operacija u raspodijeljenim sustavima? Na primjeru procesa p i q prikažite slijed operacija čitanja i pisanja koji je a) u skladu i b) nije u skladu s načelima stroge konzistentnosti.

Zadatak 11 Objasnite što je povezana konzistentnost operacija u raspodijeljenim sustavima? Na primjeru procesa p, q i r prikažite slijed operacija čitanja i pisanja koji je a) u skladu i b) nije u skladu s načelima povezane konzistentnosti.

Raspodijeljeni sustav uključuje tri računala (R_0, R_1, R_2) s lokalnim spremnicima. U lokalnom spremniku računala R_1 nalazi se trajna replika dokumenta, dok se u lokalnom spremniku računala R_2 nalazi obična replika dokumenta. Korisnik putem računala R_3 provodi operaciju pisanja nad dokumentom primjenom postupka lokalnog obnavljanja stanja replike. Skicirajte i objasnite korake postupka.

- U sustavu replika koji se sastoji od glavnog poslužitelja i n=4 podjednako opterećena Zadatak 13 pomoćna poslužitelja, odredite metodu održavanja konzistentnosti replika za koju će prosječno mrežno (prometno) opterećenje poslužitelja L biti najmanje. Pri tome pretpostavite da korisnike isključivo poslužuju pomoćni poslužitelji, da je prosječna frekvencija upita fu=5 upita/s, prosječna frekvencija promjena fp=1 promjena/min te da su prosječne veličine upita/odgovora, operacija za promjenu sadržaja i replika lp=1kb, lo=50 kb i lr=100 kb. Usporedite dobivena opterećenja s centraliziranim
- Zadatak 14 Objasnite razliku između ispada sustava i neispravnosti u sustavu.

slučajem kada korisnike poslužuje glavni poslužitelj.

- Zadatak 15 Pretpostavite da grupa procesa treba postići sporazum. U slučaju da su dva procesa grupe u stanju bizantskog ispada, koji je minimalni ukupni broj procesa u grupi za postizanje sporazuma?
- Zadatak 16 U grupi od 4 procesa (p₁, p₂, p₃ i p₄) proces p₁ je neispravan (pretpostavite bizantski ispad). Grupa procesa želi postići sporazum o identifikatorima ostalih procesa grupe. U koracima 1 i 3 procesi međusobno razmjenjuju podatke, a u koracima 2 i 4 prikupljaju i analiziraju primljene podatke. Nacrtajte na slici podatke koje procesi razmjenjuju u koracima 1 i 3, a za korake 2 i 4 navedite podatke koje pojedini proces ima na raspolaganju radi donošenja odluke o sporazumu.

Ρ ₁	·····
p ₂	-
D ₃	_
y3	
p ₄	·····

- Pretpostavite da se u grupi procesa s ispadima poštuje načelo virtualne sinkronosti. Zadatak 17 Proces p šalje poruku m grupi procesa G. Tijekom isporuke poruke m dogodi se ispad procesa p. Što se događa isporukom poruke m?
- Pretpostavite da procesi P1 i P2 šalju poruke koje se isporučuju procesima P3 i P4 Zadatak 18 prema tablici. Navedite koju vrstu pouzdane komunikacije podržava grupa procesa P1, P2, P3 i P4?

Proces P1	Proces P2	Proces P3	Proces P4
šalje m11	šalje m21	prima m11	prima m11
šalje m12	šalje m22	prima m21	prima m12
šalje m13		prima m22	prima m21
		prima m12	prima m13
		prima m13	prima m22

Navedite obilježja pouzdane komunikacije grupe procesa pod nazivom atomic Zadatak 19 multicast.

Objasnite razliku protokola *three-phase commit* u odnosu na *two-phase commit*. Zadatak 20