Problem Set 6 Differential Topology

Bennett Rennier bennett@brennier.com

October 19, 2018

Chapter 1, Section 5

Ex 5 More generally, let $f: X \to Y$ be a map transversal to a submanifold Z in Y. Then $W = f^{-1}(Z)$ is a submanifold of X. Prove that $T_x(W)$ is the preimage of $T_{f(x)}(Z)$ under the linear map $df_x: T_x(X) \to T_{f(x)}(Y)$.

Proof. Let the manifolds be X^n , Y^m , W^ℓ , and Z^k . We have a map $\phi: Y^m \to \mathbb{R}^m$ where locally points $z \in Z$ look like $\phi(z) = \phi(0, \dots, 0, z_1, \dots, k)$ where there are m-k zeros. Thus, we can consider the projection $\pi: \mathbb{R}^m \to \mathbb{R}^{m-k}$ and see that $\ker(\pi \circ \phi) = Z$. Taking the differentials of these maps we get that

$$T_x(X^n) \xrightarrow{df_x} T_{f(x)}(Y^m) \xrightarrow{d\phi_{f(x)}} \mathbb{R}^m \xrightarrow{d\pi_{\phi(f(x))}} \mathbb{R}^{m-k}.$$

Since $f \cap W$ implies that $\operatorname{Im}(df_x) + T_{f_x(Z)} = T_{f(x)}(Y)$ for $x \in W$, we have that $d\phi$ and $d\pi \circ d\phi$ are onto for x in W. This means that the differential of our composition $d(\pi \circ \phi \circ f) = d\pi \circ d\phi \circ df$ is surjective for any $x \in W$. Thus, 0 is a regular value of $\pi \circ \phi \circ f$ and that $W = (\pi \circ \phi \circ f)^{-1}(0)$. This gives us

$$T_x(W) = d(\pi \circ \phi \circ f)_x^{-1}(0) = df_x^{-1} \circ d(\pi \circ \phi)_{f(x)}^{-1}(0) = df_x^{-1}(\ker(d(\pi \circ \phi)_{f(x)})) = df_x^{-1}(T_{f(x)}(Z))$$
 as desired.

Ex 6 Suppose that X and Z do not intersect transversally in Y. May $X \cap Z$ still be a manifold? If so, must its codimension still be codim $X + \operatorname{codim} Z$. Answer with drawings.

Proof. Yes, consider the following drawings. In both, the manifolds intersect at a single point, which is a 0-dimensional manifold. In the first instance, taking place in \mathbb{R}^2 , we have that codim $X + \operatorname{codim} Z = 1 + 1 = 2$, which is indeed the codimension of a 0-dimensional manifold in \mathbb{R}^2 . In the second example, taking place in \mathbb{R}^3 , we have that $\operatorname{codim} X + \operatorname{codim} Z = 1 + 1 = 2$, which is not the the codimension of a 0-dimensional manifold in \mathbb{R}^3 .

Ex 7 Let $X \to^f Y \to^g \to Z$ be a sequence of smooth maps of manifolds, and assume that g is transversal to a submanifold W of Z. Show $f \pitchfork g^{-1}(W)$ if and only if $g \circ f \pitchfork W$.

Proof. (Incomplete. I spent way too much time on the Whitney's Immersion Theorem question.) \Box

Ex 8 For which values of a does the hyperboloid defined by $x^2 + y^2 - z^2 = 1$ intersect the sphere $x^2 + y^2 + z^2 = a$ transversally? What does the intersection look like for different values of a?

Proof. We see that if the two surfaces intersect then we can substitute $x^2+y^2=1+z^2$ from the first equation into $x^2+y^2+z^2=a$, to get that $2z^2+1=a$, i.e. $z=\pm\sqrt{\frac{a-1}{2}}$. Plugging this back into the first equation, we see that $x^2+y^2=1+\frac{a-1}{2}=\frac{a+1}{2}$. We see that these equations only make sense for $a\geq 1$; otherwise z would be an imaginary number. Thus, the two surfaces only intersect for $a\geq 1$. At a=1, we have that they intersect when z=0 and when $x^2+y^2=1$, that is, the unit circle in the xy-plane. For a>1, then $\sqrt{\frac{a-1}{2}}$ and $-\sqrt{\frac{a-1}{2}}$ are distinct possibilities for z, that means the surfaces intersect along two different circles, both parallel to the xy-plane.

By homework 4, exercise 8, we proved that the tangent plane to $x^2 + y^2 - z^2 = 1$ at (1,0,0) is simply the vector space $\{(0,\alpha,\beta): \alpha,\beta\in\mathbb{R}\}$. Since this is the same for the sphere when a=1, we have that the two surfaces are not transverse when a=1. The following picture shows that when a>1, the surfaces are in fact transverse.

Ex 9 Let V be a vector space and let Δ be the diagonal of $V \times V$. For the linear map $A : V \to V$, consider the graph $W = \{(v, Av) : v \in V\}$. Show that $W \pitchfork \Delta$ if and only if +1 is not an eigenvalue of A.

Proof. We note that Δ , W, and $V \times V$ are all vector spaces of dimension n, n, and 2n respectively. This means that their tangent spaces at any point are simply themselves, so the question becomes

when does $\Delta + W = V \times V$ hold. Consider the set

$$\Delta \cap W = \{(v, v) : v \in V\} \cap \{(v, Av) : v \in V\} = \{(v, v) : Av = v\}.$$

If A does not have +1 as an eigenvalue, then this set is simply $\{0\}$. Thus, $\Delta + W$ is actually a direct sum, meaning

$$\dim(\Delta + W) = \dim(\Delta \oplus W) = \dim(\Delta) + \dim(W) = 2n = \dim(V \times V).$$

This proves that $V \times V = \Delta + W$. Now if A does have +1 as an eigenvalue, then we have that

$$\dim(\Delta + W) = \dim(\Delta) + \dim(W) - \dim(\Delta \cap W) = 2n - \dim(\Delta \cap W) < 2n = \dim(V \times V).$$

This proves that $\Delta + W$ does not span all of $V \times V$, proving that Δ and W are not transverse. \square

Ex 10 Let $f: X \to X$ be a map with fixed point x; that is f(x) = x. If +1 is not an eigenvalue of $df_x: T_x(X) \to T_x(X)$, then x is called a *Lefschetz fixed point of* f. f is called a *Lefschetz map* if all its fixed points are Lefschetz. Prove that if X is compact and f is Lefschetz, then f has only finitely many fixed points.

Proof. Let X be n-dimensional. Let Γ be the graph of f and let Δ be the diagonal of $X \times X$. Let $x \in \Gamma \cap \Delta$. By a previous homework, the tangent space of Δ at x is the diagonal of the vector space $T_x(X) \times T_x(X)$ and and the tangent space of Γ at x is the vector space $\{(v, df_x(v)) : v \in T_x(X)\}$. Since f is Lefschetz, df_x has +1 as an eigenvalue. By the Ex 9, we have that these two vector spaces are transverse, which implies that their sum is all of \mathbb{R}^{2n} . This further implies that $\Gamma \cap \Delta$.

We see then that $\Gamma \cap \Delta$ is a submanifold of $X \times X$. Since Γ and Δ both have the same dimension as X, we have that

$$\operatorname{codim}(\Gamma \cap \Delta) = \operatorname{codim}(\Gamma) + \operatorname{codim}(\Delta) = 2n = \dim(X \times X)$$

This proves that $\Gamma \cap \Delta$ is zero-dimensional submanifold of $X \times X$, i.e. a collection of points. Since X is compact so is $X \times X$. As Γ and Δ are both closed in $X \times X$ (this is a standard point-set proof), we have that the submanifold $\Gamma \cap \Delta$ is compact. This proves that $\Gamma \cap \Delta$ must actually be a finite number of points.

Chapter 1, Section 7

Ex 5 Exhibit a smooth map $f: \mathbb{R} \to \mathbb{R}$ whose set of critical values is dense.

Proof. From the third homework in exercise 18, we can construct a smooth bump function $f: \mathbb{R} \to \mathbb{R}$ such that f'(0) = 0, f(x) = 1 for $|x| < \frac{1}{4}$, f(x) = 0 for $|x| > \frac{1}{3}$ and 0 < f(x) < 1 for $\frac{1}{4} < |x| < \frac{1}{3}$. Since \mathbb{Q} is countable, we can enumerate all the rationals as $\{q_i : i \in \mathbb{N}\}$. We then construct the function $f(x) = \sum_i q_i \cdot f(x+i)$. This sum is well-defined and smooth as the bump functions are spread far enough apart that only one bump function is nonzero for any particular point $x \in \mathbb{R}$ and there is an interval of length 1/3 inbetween each bump such that the sum is identically zero. Since for any $q_i \in \mathbb{Q}$, the point -i has the property that $f(-i) = q_i$ and f'(-i) = 0, we see that all of \mathbb{Q} are critical values of f. Since \mathbb{Q} is dense in \mathbb{R} , the set of all critical values of f is dense in \mathbb{R} . \square

Chapter 1, Section 8

Ex 10 Prove that every k-dimensional manifold X may be immersed in \mathbb{R}^{2k} .

Proof. Consider the maps

$$g(x, y, t) = t(f(x) - f(y))$$
 ; $h(x, v) = df_x(v)$,

as found in the proof of Whitney's Immersion Theorem. If we are mapping into \mathbb{R}^{2k+1} instead of \mathbb{R}^{2k+2} , we can no longer assume that there's an a not in the image of either of these maps; however, we can assume that there's an a not in the image of h. We then follow the rest of the proof of Whitney's Immersion theorem and embed X into \mathbb{R}^{2k} with potentially (i.e. most likely) self-intersections, which we fix after the fact. In particular, if one looks at the self-intersections that occur after the projection, by how we chose a, these self-intersections are transverse and locally they look like a k-dimensional manifold intersecting with a k-dimensional manifold. Since this is taking place in \mathbb{R}^{2k} , their intersection is a 0-dimensional manifold, meaning the intersections are just a collection of points. I suspect there's some way to "wiggle" (i.e. use homotopies) that makes the manifolds not intersect anymore; though, I'm not quite sure how to make this notion rigorous. After doing this, X will be immersed in \mathbb{R}^{2k} as we wanted.

Other Problems

Ex 4 Recall the stereographic projection maps from S^2 minus a pole to \mathbb{R}^2 ; they are $f_+: S^2 \setminus (0,0,1) \to \mathbb{R}^2$ and $f_-: S^2 - (0,0,-1) \to \mathbb{R}^2$ where

$$f_{+}(x_{1}, x_{2}, x_{3}) = \frac{1}{1 - x_{3}}(x_{1}, x_{2})$$
$$f_{-}(x_{1}, x_{2}, x_{3}) = \frac{1}{1 + x_{3}}(x_{1}, x_{2})$$

with respective inverses

$$f_{+}^{-1}(u_1, u_2) = \frac{1}{1 + |u|^2} (2u_1, 2u_2, -1 + |u|^2)$$
$$f_{-}^{-1}(u_1, u_2) = \frac{1}{1 + |u|^2} (2u_1, 2u_2, 1 - |u|^2),$$

where $|u|^2 = u_1^2 + u_2^2$.

- a) Thinking of \mathbb{R}^2 as \mathbb{C} , prove that $(f_+ \circ f_-^{-1})(z) = \frac{1}{z}$.
- b) Let $p(z) = \sum_{j=0}^{n} a_j z^j$ be a complex polynomial, thought of as a smooth map $\mathbb{C} \to \mathbb{C}$. Define $\tilde{p}: S^2 \setminus (0,0,1) \to S^2 \setminus (0,0,1)$ by

$$\tilde{p}(s) = (f_+^{-1} \circ p \circ f_+)(s).$$

Prove that \tilde{p} extends uniquely to a smooth map $S^2 \to S^2$.

c) Show that if p is not constant then $\tilde{p}(0,0,1) = (0,0,1)$ and if p has degree at least 2 then (0,0,1) is a critical point of \tilde{p} .

Proof.

a) We see that for z = x + iy

$$(f_{+} \circ f_{-}^{-1})(z) = f_{+}(f_{-}^{-1}(z)) = f_{+}\left(\frac{1}{1+|z|^{2}}(2x,2y,1-|z|^{2})\right) = f_{+}\left(\frac{2x}{1+|z|^{2}},\frac{2y}{1+|z|^{2}},\frac{1-|z|^{2}}{1+|z|^{2}}\right)$$

$$= \frac{1}{1-\frac{1-|z|^{2}}{1+|z|^{2}}}\left(\frac{2x}{1+|z|^{2}},\frac{2y}{1+|z|^{2}}\right) = \frac{1}{\frac{2|z|^{2}}{1+|z|^{2}}}\left(\frac{2x}{1+|z|^{2}},\frac{2y}{1+|z|^{2}}\right)$$

$$= \frac{1+|z|^{2}}{2|z|^{2}}\left(\frac{2x}{1+|z|^{2}},\frac{2y}{1+|z|^{2}}\right) = \frac{1}{|z|^{2}}(x,y) = \frac{z}{|z|^{2}} = \frac{z}{z\overline{z}} = \frac{1}{\overline{z}}.$$

b) If p is constant, then the map \tilde{p} is constant as well, so we can easily patch it at (0,0,1) by letting it be that constant. Now assume that p is not constant, that is that n > 0. Consider the map $f_- \circ \tilde{p} \circ f_-^{-1}$, we see that trying to extend \tilde{p} to (0,0,1) is equivalent to trying to extend $f_- \circ \tilde{p} \circ f_-^{-1}$ at 0. Since $\phi(z) = \frac{1}{z}$ is its own inverse, we can use part (a) to see that

$$f_{-} \circ \tilde{p} \circ f_{-}^{-1} = f_{-} \circ \left(f_{+}^{-1} \circ p \circ f_{+} \right) \circ f_{-}^{-1} = \left(f_{-} \circ f_{+}^{-1} \right) \circ p \left(\circ f_{+} \circ f_{-}^{-1} \right)$$

$$= \left(f_{-} \circ f_{+}^{-1} \right) \circ p \left(\circ f_{+} \circ f_{-}^{-1} \right) = \phi \circ p \circ \phi.$$

Since conjugation distributes over addition and multiplication and p is a polynomial, we can rewrite this function

$$(\phi \circ p \circ \phi)(z) = \frac{1}{p(\frac{1}{z})} = \frac{1}{p(\frac{1}{z})} = \frac{1}{\sum_{j=0}^{n} a_j z^{-j}} = \frac{z^n}{\sum_{j=0}^{n} a_j z^{n-j}}.$$

We see that at z=0, this function is $0/a_n$ which is well-defined to be 0 as the leading coefficient of a polynomial can be assumed to be non-zero. We also see that $\sum_{j=0}^{n} a_j z^{n-j}$ has only n roots, so there's some open ball around 0 such that this function is well-defined. Using this smooth function as a patch, we can extend $f_- \circ \tilde{p} \circ f_-^{-1}$ to be defined at 0, and thus, we can patch \tilde{p} to be (0,0,1) at the point (0,0,1).

c) The first part of this was proved in part (b). The rest of this is incomplete for now. \Box