Reading & Loading Data

- a. EDA process
- b. Intro. Numpy, Pandas, Matplotlib, and Seaborn
- C. Extract meaningful information from the data
- d. Correlation analysis and feature importance
- e. Statistical analysis and summary
- <u>f.</u> Skewness

EDA Process (Exploratory Data Analysis)

- Once we have loaded the data, we need to perform Exploratory Data Analysis (EDA) to gain insights into the data.
- EDA involves visualizing and analyzing the data to understand its properties and relationships.

Introduction to Numpy, Pandas, Matplotlib

- **Numpy** is a Python library for performing numerical computations on arrays and matrices.
- Pandas is a Python library for data manipulation and analysis.
- Matplotlib is a Python library for creating visualizations.

Let's practice with some CODE

Extract Meaningful Information from the Data

- EDA helps us extract meaningful information from the data by visualizing and analyzing its properties and relationships.
- We can identify trends, patterns, and correlations in the data that can inform our Data Preparation process.

Correlation Analysis

- Correlation analysis helps us understand the relationships between variables and other variables.
- Correlation analysis helps us understand the relationships between variables and the target feature.

Statistical Analysis and Summary

 Statistical analysis and summary help us understand the central tendency, and distribution of the data.

Skewness

- Skewness is a measure of the asymmetry of the distribution of a variable.
- Skewed data can impact the accuracy of our analysis, and we may need to transform the data to reduce skewness.

Skewness

- Positive Skewness (Skewed to the Right)
- Negative Skewness (Skewed to the Left)
- Normal Distribution
- $_$ > 1 \rightarrow Highly Skewed (Positive Skew)
- $_$ < -1 \rightarrow Highly Skewed (Negative Skew)
- $0.5 < _ < 1 \rightarrow Moderately skewed$
- $-1 < _ < -0.5 \rightarrow Moderately skewed$
- -0.5 < __ < 0.5 → Fairly Symmetrical

Let's practice with some CODE