NATIONAL INSTITUTE OF TECHNOLOGY PATNA

END SEM EXAMINATION NIA 7 2024 COMPLEX ANALYSIS AND PDEs (MA27102& MA29101)

FULLMARKS:60

Time Mira

Answer the following questions

- Q 1 (a) Obtain the Partial Differential equation governing the equations $\psi(u, v) = 0$, u = xyz, v = x + y + z.
 - (b) Find the complete integrals of the pde $6yz 6pxy 3qy^2 + pq = 0$
- Q 2 (a) Solve $(4D^2 + 3DD' D'^2 D D')z = 3e^{\frac{\sqrt{14}y}{2}}$ (b) $(D^2 2DD' + D'^2)z = 2x\cos y$

(c)
$$xy^2p + y^3q = (zxy^2 - 4x^3)$$

- Q 3 (a) Solve the equation $\frac{\partial^2 u}{\partial x \partial t} = e^{-4}\cos x$ given that u=0 when t=0 and $\frac{\partial u}{\partial t} = 0$ when x=0
 - (b) Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions

$$u(x,o) = 3\sin n\pi x$$
, $u(0,t) = 0$, $u(1,t) = 0$ where $0 < x < 1$, $t > 0$

Q 4 (a) Evaluate the integral (i) $I = \oint \sin\left(\frac{1}{z}\right) dz$, C: |z| = 1

(ii)
$$I = \oint \frac{z CoShn\tau}{z^4 + 5\pi^2 + 1} dz$$
, $C: |z| = 4$

- (b) (i) $\int_{-\infty}^{\infty} \frac{dx}{x^2 + 9}$
 - (ii) Under the transformation $u = \frac{1}{z}$. Find the image of |z 2t| = 2
- Q 5 (a) State and prove necessary condition of Cauchy Riemann theorem Cartesian form.
 - (b) Define Holomorfic function Residue Harmonic function And state Cauchy theorem, Cauchy integral formulae and Cauchy residue theorem.

NATIONAL INSTITUTE OF TECHNOLOGY PATNA

End Semester Examination, Department of HSS

B.Tech.- M.Tech.-DD- MA- MCT / DD- PH- MSE/ DD-CH- CT

UG Dual Degree Sem. II, Session Jan- June 2023-2024

Science, Society and Ethical Values (HS27101/ HS28101/29101)

M.M. 60

- Note: Attempt all question in 250- 300 words each.
- Each question carries equal marks.
- 1 Discuss the relevance of Science, Society and Ethical Values for a student of Engineering as a subject.
- 2 Differentiate between influence and inspiration with example.
- 3 Explain the meaning of morality, ethics and value with example.
- 4 What are the basic attributes of profession? Differentiate profession with occupation.
- 5 Discuss the role of communication and skill in making our life professional and happy.
 - नोट: सभी प्रश्न 250-300 शब्दों में लिखें। प्रत्येक प्रश्न के अंक समान हैं।
- 1 इंजीनियरिंग के एक छात्र के लिए एक विषय के रूप में विज्ञान, समाज और नैतिक मूल्यों की प्रासंगिकता पर चर्चा करें।
- 2 उदाहरण सहित प्रभाव और प्रेरणा में अंतर स्पष्ट करें।
- 3 नैतिकता, सदाचार एवं मूल्य का अर्थ उदाहरण सहित समझाइये।
- 4 पेशे के मूल गुण क्या हैं? पेशे को व्यवसाय से अलग करें।
- 5 हमारे जीवन को पेशेवर और खुशहाल बनाने में संचार और कौशल की भूमिका पर चर्चा करें।

National Institute of Technology Patna Department of Electrical Engineering Elements of Electrical Engineering (EE27101, EE28101, EE29101) End Semester Exam, Date: 09 May 2024

Timing: 02:00 PM to 05:00 PM

Jan-June 2024

Max mark: 60

- A circuit consists of two coils in series connected to a 200 V a.c. supply. The first coil has a resistance of 5Ω and inductive reactance of 10Ω . The second coil has a resistance of 6Ω and inductive reactance of 8Ω . calculate
 - (a) the total impedance of the circuit, the current, the circuit phase angle, the voltage drop in each coil
- 2. Write down the frequency, the r.m.s. and peak values of a voltage wave expressed as $v = 14.1\sin 1000\pi t$. Write down the expressions for the current flowing when this voltage is applied across:
 - (a) a 5Ω resistor, a 1 mH inductor of negligible resistance and a $150\mu F$ capacitor. Sketch the waveforms of these currents showing clearly,
 - (b) the phase relationship of each current to the applied volatge, the peak value of

 (13)
- 3. In the network shown in Figure 1 determine
 - (a) the value of the load resistance to give maximum power transfer and
 - (b) the power delivered to the load (10)

Figure 1: Electrical Network

- 4. Write short note on
 - (a) PMMC
 - (b) CT

(10)

(12)

- 5. Do the following for DC Generator
 - (a) Discuss basic structure of electric machines.
 - (b) Describe in detail construction of DC Generator.
 - (c) Discuss the types of DC machines based on the connection of the field winding with the armature.

(15)

National Institute of Technology Patna Department of Electrical Engineering Elements of Electrical Engineering (EE27101, EE28101, EE29101) Mid Term, Date: 14 March, 2024

Timing: 02:00 PM to 04:00 PM

Jan-June 2024

Max mark: 20

- 1. A battery having an e.m.f. of 105 V and an internal resistance of 1Ω is connected in parallel with a D.C. generator of e.m.f. 110 V and an internal resistance of 0.5Ω to supply a load having a resistance of 8Ω . Calculate
 - (a) The currents in the battery, the generator and the load;

Figure 1: Network for Q1 (a)

- (b) the potential difference across the load.
- 2. Four resistance AB, BC, AD and DC are connected together to form a closed square ABCD. The known resistance value are; AD = 12Ω AB = 35Ω and DC = 12Ω. A D.C. supply of 120 V is connected to A and C so that the current enters the Combination at A and leaves at C. A high-resistance voltmeter is connected between B and D, and whilst carrying negligible current, registers a voltage drop of 10 V.

Figure 2: Network for Q2

(a) Calculate the value of resistance BC, and the total current taken from the supply.

(5)

- (b) Calculate the value of BC, such that the potential difference between B and D is in the reverse direction, i.e. from D to B (C& G).
- 3. (a) Find the resistance between the terminals a-b of the bridge circuit shown in Figure 3 by using delta-star transformation. (5)

(5)

Figure 3: Network for Q2 (a)

(b) State Superpostion Theorem. Determine the current I in the network shown in Figure 4 by the principle of superposition. (5)

Figure 4: Network for Q3 (b)

NATIONAL INSTITUTE OF TECHNOLOGY, PATNA END-SEMESTER EXAMINATION, JAN - JUN 2024

Program: B.Tech; Semester: 2nd

Course Code: CH27101, CH28101, CH29101

Full Marks: 60

Department: MCT, MSE & CT Course Name: Engineering Chemistry Duration of Examination: 3 hours

All questions are compulsory & in accordance to NEP 2020

	All questions are compulsory & in accordance to TVD 2001	4+4	CO1
	The percentage composition of a sample of bituminous coal was found to be as under: C = 75.4%; H = 5.3%; O = 12.6%; N = 3.2%; S = 1.3% and Ash = rest. Calculate the minimum weight of air necessary for complete combustion of 1 kg coal and percentage composition of dry products of combustion by weight. What is a flue gas? Explain the principle of analysis of flue gas with	= 8	
Q2 a)	Orsat's apparatus.	4+4 = 8	CO2
Q3 Write each	e the rules of VSEPR. Arrange in ascending order the bond angles in case and explain the same using VSEPR theory. (i) NH ₃ , H ₂ O; (H-N-H vs H-O-H) (ii) OPF ₃ , OPCl ₃ , OPBr ₃ (F-P-F vs Cl-P-Cl vs Br-P-Br)	04	CO
Q4 Predi forma	ct the reagents in both the cases "A" and "B". Explain the product ation with the help of reaction mechanism in each case. OH A B OH	04	CO ⁴
Q5 Define	e proximate and ultimate analysis of coal. Describe the ultimate sis of coal with mathematical expression in each case.	06	СО
			1/2

96	Derive the expression for transport numbers of strong electrolytes. Draw the conductometric titration curve when NaOH is added to a mixture of two acids, HNO3 and CH3COOH. Explain each part of the graph and how do you calculate the strength of the two acids.	06	CO2
Q7	Explain pictorially the molecular orbital energy level diagrams of C ₂ and NO. Why the experimental bond dissociation energy of NO ⁺ is higher than NO?	06	CO3
Q8	Describe the bonding, antibonding and non-bonding molecular orbital. Draw the molecular orbitals for the following overlap: - (i) two 1s orbitals; (ii) two 2p orbitals head-on; (iii) two 2p orbitals sideways.	06	CO3
Q9	What are the two possible Friedel-Crafts Reaction? Show mechanism for both kinds of Friedel-Crafts reactions. List out the drawbacks in both cases.	06	CO4
Q10	Predict the possible elimination product(s) and rationalize the major product of the substrate CH ₃ CH ₂ CH(Y)CH ₃ on treatment with NaOEt, when:- (i) Y = Br; (ii) Y = N ⁺ Me ₃	06	CO4