קורס: 20425 ״הסתברות לתלמידי מדעי המחשב״

(3ב/93 מועד 2008 - מועד 25.8.2008 - מועד 25.8.2008 תאריך הבחינה:

חומר העזר המותר לשימוש בבחינה: מחשבון מדעי בלבד.

ספר הקורס, מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש במהלך הבחינה!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפים: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית ודף נוסחאות הכולל 2 עמודים.

שאלה 1 (25 נקודות)

מחלבת ייתנובהיי עורכת מבצע.

על צידו הפנימי של המכסה של כל מעדן חלב מתוצרתה מוטבעת באקראי אחת מאותיות השם ״תנובה״. כלומר, ההסתברות של כל אחת מ-5 האותיות להופיע על כל אחד מן המכסים היא 0.2. אין תלות בין האותיות המוטבעות על מכסי המעדנים.

- (9 נקי) א. מה תוחלת מספר המעדנים שיש לקנות עד לקבלת כל חמש האותיות בשם ייתנובהיי?
 - ב. אדם קנה 15 מעדני חלב מתוצרת "תנובה".

יהי X מספר האותיות השונות שהתקבלו ב-15 מעדנים אלו.

- X של X ו. חשב את התוחלת של (8 נקי)
- X חשב את השונות של 2. מקי) .2

שאלה 2 (25 נקודות)

 $f_X(x) = ae^{-x/3}$, x>0 נתונה על-ידי:

- .a א. מצא את (6 נקי)
- $P\{X < 4 \mid X > 2\}$ ב. חשב את ב. (7 נקי)
- . $Y = X^2$: על-ידי Y על-ידי את המשתנה המקרי
 - . Y חשב את התוחלת של 1. מקי)

התפלגות X והעזר בתוחלתה ושונותה של ההתפלגות שזיהית.

Y מצא את פונקציית הצפיפות של 2. מצא את פונקציית הצפיפות של 6.

שאלה 3 (25 נקודות)

 $P\{X=i\}=0.01$, i=1,2,...,100 : ידוע כי בהגרלה, וידוע משתתפים משתתפים X

בהגרלה זו מוצעים למכירה 100 כרטיסים, בעלות של 15 ש״ח לכרטיס, ובדיוק אחד מ-100 הכרטיסים מזכה את קונהו בפרס של 500 ש״ח.

כל אדם שמשתתף בהגרלה קונה כרטיס אחד בלבד, ואם מספר המשתתפים קטן מ-100, ייתכן שאף אחד ממשתתפי ההגרלה לא יזכה בפרס. במקרה כזה, שבו אף משתתף לא זוכה בפרס – הפרס נתרם לצדקה. בחירת הכרטיסים על-ידי משתתפי ההגרלה אקראית.

- (8 נקי) א. מהי ההסתברות שאף אחד ממשתתפי ההגרלה לא יזכה בפרס!
 - (9 נקי) ב. מהן תוחלת ושונות הרווח הנקי של מארגני ההגרלה!
 - (8 נקי) ג. יוסי משתתף בהגרלה.

האם המאורעות: "ייוסי זוכה בפרס" בפרס" ו- $\{X=i\}$ ו- $\{X=i\}$, בלתי-תלויים המאורעות: "ייוסי זוכה בפרס" בפרס" ו- $\{X=i\}$ ו- זה בזה?

נמק את תשובתך.

שאלה 4 (25 נקודות)

. Y = aX + b ייהי ; ויהי ששונותו מקרי כלשהו מקרי מקרי מקרי א. יהי א. יהי 10)

$$. \, \rho(X,Y) = \begin{cases} +1 & , & a>0 \\ -1 & , & a<0 \end{cases}$$
הראה כי:

תוחלת עם תוחלת מקרי נורמלי עם תוחלת 10 ושונות 1, ויהי א משתנה מקרי נורמלי עם תוחלת 15) ב. יהי א משתנה מקרי נורמלי עם תוחלת 15 ושונות 4; ונניח כי א ו- Y בלתי-תלויים זה בזה.

. W = 2X - Y : על-ידי W על-ידי

- M חשב את הפונקציה יוצרת המומנטים של המשתנה המקרי M
 - $P\{W \ge -2.5\}$ חשב את .2

(החישוב צריך להיות מדויק עד כמה שאפשר).

שאלה 5 (25 נקודות)

בכד 16 גולות צבעוניות, שכולן שונות זו מזו.

לגולות 8 צבעים שונים, ומכל צבע יש 2 גולות.

בכיס אותן ביס מוציא עוד 2 גולות ושם אותן בכיס ימין, ואחר-כך מוציא עוד 2 גולות ושם אותן בכיס שמאל. שמאל.

אין תלות בין צבעי הגולות שיותם מוציא בימים שונים.

A : יותם שם לפחות באחד מכיסיו באולות מאותו הצבע; ונדיר את המאורעות:

. בסך-הכל בשני מ-2 צבעים בסך-הכל 4 = B

(סדר 4 הגולות בכיסים אינו משנה, העיקר שארבעתן הן מ-2 צבעים בלבד)

- . יתרחש בפעם השלישית. $A \cap B$ יתרחש שיעברו עד שהמאורע מספר הימים השלישית.
 - (6 נקי) ב. מהי שונות מספר הפעמים בחודש (של 30 ימים), שבהן המאורע B מתרחש?
 - ו- B בלתי-תלויים זה בזה? B נקי) ג. האם המאורעות A ו- B
- המשתנה המקרי את על-ידי יימספר הכיסים שיש בהם איש בהם פון על יום מקרי לשהו ונגדיר את המשתנה המקרי את מקרי מספר הכיסים שיש בהם 2 גולות מאותו הצבעיי.

X חשב את התוחלת של

בהצלחה!

 $\Phi(x)$, ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \, dy$$

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9995	0.9995
3.3	0.9995	0.9995	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9993
3.4	0.9993	0.9993	0.9993	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
J. 4	0.9337	ひ.ラブブ /	0.777/	0.777/	0.777/	0.222/	0.777/	0.777/	0.777/	0.2220

$\Phi(x)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
x	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(x)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
x	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

4

20425 / 93 - 12008

דף נוסחאות לבחינה

הסתברות לתלמידי מדעי המחשב - 20425

ההתפלגות	פונקציית ההסתברות / פונקציית הצפיפות	התוחלת	השונות	הפונקציה יוצרת המומנטים
בינומית	$\binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} , i = 0, 1,, n$	np	np(1-p)	$(pe^t + 1 - p)^n$
גיאומטרית	$(1-p)^{i-1} \cdot p$, $i = 1, 2,$	1/ <i>p</i>	$(1-p)/p^2$	$\frac{pe^t/(1-(1-p)e^t)}{t<-\ln(1-p)}$
פואסונית	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	λ	λ	$\exp\{\lambda(e^t-1)\}$
בינומית שלילית	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i=r,r+1,$	r/p	$(1-p)r/p^2$	$\frac{\left(pe^{t}/(1-(1-p)e^{t})\right)^{r}}{t<-\ln(1-p)}$
היפרגיאומטרית	$ \begin{pmatrix} m \\ i \end{pmatrix} \begin{pmatrix} N-m \\ n-i \end{pmatrix} / \begin{pmatrix} N \\ n \end{pmatrix} , i = 0,1,,m $	nm/N	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	
אחידה בדידה	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	m + (1+n)/2	$(n^2-1)/12$	
אחידה	$1/(b-a)$, $a \le x \le b$	(a+b)/2	$(b-a)^2/12$	$(e^{bt}-e^{at})/(tb-ta), t\neq 0$
נורמלית	$(1/\sqrt{2\pi}\sigma)\cdot e^{-(x-\mu)^2/(2\sigma^2)}$, $-\infty < x < \infty$	μ	σ^2	$\exp\{\mu t + \sigma^2 t^2/2\}$
מעריכית	$\lambda e^{-\lambda x}$, $x > 0$	1/λ	$1/\lambda^2$	$\lambda/(\lambda-t)$, $t<\lambda$
מולטינומית	$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$			

נוטחת הבינום
$$P(A) = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$
 נוטחת הבינום
$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$
 הסתברות מותנית
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 תוסחת הכפל
$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 \cap A_2) \cdot \ldots \cdot P(A_n \mid A_1 \cap A_2 \cap \ldots \cap A_{n-1})$$
 נוטחת ההסתברות השלמה
$$P(A) = \sum_{i=1}^n P(A \mid B_i) P(B_i) \quad , \quad S$$
 זרים ואיחודם הוא
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S$$
 נוטחת בייט
$$E[X] = \sum_x x p_X(x) = \int x f(x) dx$$
 תוחלת של פונקציה של מ"מ
$$E[g(X)] = \sum_x g(x) p_X(x) = \int g(x) f(x) dx$$
 שונות
$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן λ אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר

שונות

תוחלת ושונות של פונקציה לינארית

$$P\{X>s+t \, \big| \, X>t\}=P\{X>s\}$$
 , $s,t\geq 0$

E[aX + b] = aE[X] + b

 $Var(aX + b) = a^2 Var(X)$

$$E[X\mid Y=y] = \sum_x v_{X\mid Y}(x\mid y) = \int_x f_{X\mid Y}(x\mid y) dx$$
 נוסחת התוחלת המותנית
$$E[X] = E[E[X\mid Y]] = \sum_y E[X\mid Y=y] p_Y(y)$$
 נוסחת השונות המותנית
$$Var(X) = E[Var(X\mid Y)] + Var(E[X\mid Y])$$
 נוסחת השונות המותנית
$$E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i]$$
 נוסחת של טכום משתנים מקריים
$$E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i]$$
 שונות משותפת
$$Cov(X,Y) = E[(X-E[X])(Y-E[Y])] = E[XY] - E[X]E[Y]$$

$$Cov\left(\sum_{i=1}^n X_i, \sum_{j=1}^m Y_j\right) = \sum_{i=1}^n \sum_{j=1}^m Cov(X_i, Y_j)$$
 שונות של סכום משתנים מקריים
$$Var\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n Var(X_i) + 2\sum_{i \neq j} Cov(X_i, X_j)$$
 שונות של סכום משתנים מקריים
$$E\left[\sum_{i=1}^n X_i\right] = E[N]E[X]$$
 מקדם המתאם הלינארי
$$E\left[\sum_{i=1}^n X_i\right] = E[N]E[X]$$
 עורחלת ושונות של סכום מקרי
$$Var\left(\sum_{i=1}^n X_i\right) = E[N]Var(X) + (E[X])^2 Var(N)$$

$$M_X(t) = E[e^{tX}]$$
 משפט הגבול המקבי
$$X$$
 מ"מ ב"ת וש"מ אי-שוויון מיקוב
$$X$$
 מ"מ ב"ת וש"מ אי-שוויון צ'בישב
$$P\{|X-\mu| \geq a\} \leq \sigma^2/a^2 \qquad , \qquad a > 0 \qquad , \qquad \mu, \sigma^2 < \infty \qquad \qquad$$
 משפט הגבול המרכזי
$$X$$
 מ"מ ב"ת וש"מ , \quad \lambda \

- אם B ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי P(A)/[P(A)+P(B)] המאורע A יתרחש לפני המאורע
- . סכום של מיימ בינומיים (גיאומטריים) ביית עם אותו הפרמטר p הוא מיימ בינומי (בינומי-שלילי).
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.
- (p אותו עם אותו (בינומיים פואסוניים Y ו-Y מיימ פואסוניים (בינומיים עם אותו אותו X בהיעת היא בינומית (היפרגיאומטרית).

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \qquad ; \qquad \sum_{i=0}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} \qquad ; \qquad \sum_{i=0}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{i=0}^{\infty} \frac{x^{i}}{i!} = e^{x} \qquad ; \qquad \sum_{i=0}^{n} x^{i} = \frac{1-x^{n+1}}{1-x} \qquad ; \qquad \sum_{i=0}^{\infty} x^{i} = \frac{1}{1-x} \quad , \quad -1 < x < 1$$

$$\int (ax+b)^{n} dx = \frac{1}{a(n+1)}(ax+b)^{n+1} \quad , \quad n \neq -1 \qquad ; \qquad \int \frac{1}{ax+b} dx = \frac{1}{a}\ln(ax+b)$$

$$\int e^{ax} dx = \frac{1}{a}e^{ax} \qquad ; \qquad \int b^{ax} dx = \frac{1}{a\ln b}b^{ax}$$