

>Title:	WO0241992A2: METHOD FOR BIOCHEMICAL ANALYSIS AND CORRESPONDING ARRANGEMENT [German] [French]		
Derwent Title:	Method for biochemical analysis, e.g. in pharmaceutical industry, uses microreaction array with at least two wells for substances which react with each other which are connected by feed volume which can be shut off in one or both directions [Derwent Record]		
Country:	WO World Intellectual Property Organization (WIPO) A2 Publ.of the Int.Appl. without Int.search REP. 1 (See also: WO0241992A3)		
Kind:			
Inventor:	MUND, Konrad; Langenbrucker Weg 10, 91080 Uttenreuth, Germany GUMBRECHT, Walter; In der Röte 1, 91074 Herzogenaurach, Germany STANZEL, Manfred; Taunusstr. 100, 91056 Erlangen, Germany HINTSCHE, Rainer; Gravensteinerstr.61 C, 13127 Berlin, Germany		
Assignee:	SIEMENS AKTIENGESELLSCHAFT , Wittelsbacherplatz 2, 80333 München, Germany News , Profiles , Stocks and More about this company		
Published / Filed:	2002-05-30 / 2001-11-26		
Application Number:	WO2001DE0004437		
IPC Code:	Advanced: B01J 19/00 ; B01L 3/00 ; Core: more... IPC-7: B01L 3/00 ;		
ECLA Code:	B01J19/00C ; B01J19/00R; B01L3/00C2D4; B01L3/00C6;		
Priority Number:	2000-11-24 DE2000010058394		
Abstract:	The invention relates to a method for biochemical analysis using a micro-reaction array with at least two reaction chambers for materials which react together chemically or biochemically. According to the invention, the reaction chambers are smaller than 1 μ l, said reaction chambers are filled together by throughflow, the chemical or biochemical reactions of the substances retained therein then occurs in the individual isolated reaction chambers, thus preventing an interference between the reactions in the individual reaction chambers and the reaction products remain enclosed in the relevant		

High
Resolution

Low
Resolution

21 pages

THIS PAGE BLANK (USPTO)

reaction chambers. According to the invention, in said arrangement the planar array has at least two reaction chambers for substances, whereby means are provided for closing the reaction chambers with the goal of preventing an exchange of substances.
[German] [French]

§ Attorney, Agent
or Firm:

SIEMENS AKTIENGESELLSCHAFT ; Postfach 22
16 34, 80506 München Germany

§ INPADOC
Legal Status:

Show legal status actions Get Now: Family
Legal Status Report

§ Designated
Country:

CA JP US, European patent: AT BE CH CY DE DK
ES FI FR GB GR IE IT LU MC NL PT SE TR

§ Family:

Show 7 known family members

§ First Claim:
Show all claims

Patentansprüche

§ Description
Expand description

+ Beschreibung
Verfahren für die biochemische Analytik und
zugehörige Anordnung

§ Other Abstract
Info:

DERABS C2002-454910

THIS PAGE BLANK (USPTO)

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
30. Mai 2002 (30.05.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/41992 A2

(51) Internationale Patentklassifikation⁷: **B01L 3/00**

(21) Internationales Aktenzeichen: **PCT/DE01/04437**

(22) Internationales Anmeldedatum: 26. November 2001 (26.11.2001)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
100 58 394.6 24. November 2000 (24.11.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **SIEMENS AKTIENGESELLSCHAFT** [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): **MUND, Konrad** [DE/DE]; Langenbrucker Weg 10, 91080 Uttenreuth (DE). **GUMBRECHT, Walter** [DE/DE]; In der Röte 1, 91074 Herzogenaurach (DE). **STANZEL, Manfred** [DE/DE]; Taunusstr. 100, 91056 Erlangen (DE). **HINTSCHE, Rainer** [DE/DE]; Gravensteinerstr.61 C, 13127 Berlin (DE).

(74) Gemeinsamer Vertreter: **SIEMENS AKTIENGESELLSCHAFT**; Postfach 22 16 34, 80506 München (DE).

(81) Bestimmungsstaaten (national): CA, JP, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR BIOCHEMICAL ANALYSIS AND CORRESPONDING ARRANGEMENT

(54) Bezeichnung: VERFAHREN FÜR DIE BIOCHEMISCHE ANALYTIK UND ZUGEHÖRIGE ANORDNUNG

(57) Abstract: The invention relates to a method for biochemical analysis using a micro-reaction array with at least two reaction chambers for materials which react together chemically or biochemically. According to the invention, the reaction chambers are smaller than 1 μ l, said reaction chambers are filled together by throughflow, the chemical or biochemical reactions of the substances retained therein then occurs in the individual isolated reaction chambers, thus preventing an interference between the reactions in the individual reaction chambers and the reaction products remain enclosed in the relevant reaction chambers. According to the invention, in said arrangement the planar array has at least two reaction chambers for substances, whereby means are provided for closing the reaction chambers with the goal of preventing an exchange of substances.

(57) Zusammenfassung: Bei einem Verfahren für die biochemische Analytik wird ein Mikroreaktionsarray mit mindestens zwei Reaktionsräumen zur Aufnahme von Stoffen, die miteinander chemisch bzw. biochemisch reagieren, verwendet. Gemäß der Erfindung sind die Reaktionsräume kleiner als 1 μ m, werden die Reaktionsräume gemeinsam im Durchfluss befüllt, erfolgen anschließend in den einzelnen voneinander getrennten Reaktionsräumen die chemischen bzw. biochemischen Reaktionen der dort eingeschlossenen Substanzen, wobei ein Übersprechen von Reaktionen zwischen den einzelnen Reaktionsräumen ausgeschlossen ist, und bleiben die Reaktionsprodukte in den jeweiligen Reaktionskammern eingeschlossen. Bei der zugehörigen Anordnung hat das planare Array wenigstens zwei Reaktionsräume zur Aufnahme von Stoffen, wobei Mittel zum Schließen der Reaktionsräume zum Zwecke des Verhindern eines Stoffaustausches vorhanden sind.

WO 02/41992 A2

BNSDOCID: <WO_____0241992A2_I_>

Erklärungen gemäß Regel 4.17:

- *hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten CA, JP, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR)*
- *Erfindererklärung (Regel 4.17 Ziffer iv) nur für US*

Veröffentlicht:

- *ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts*

Zur Erklärung der Zweisilbigen-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung

Verfahren für die biochemische Analytik und zugehörige Anordnung

5

Die Erfindung bezieht sich auf ein Verfahren für die biochemische Analytik, unter Verwendung eines Mikroreaktionsarrays mit mindestens zwei Reaktionsräumen zur Aufnahme von Stoffen, die mit anderen Substanzen chemisch bzw. biochemisch reagieren. Daneben bezieht sich die Erfindung auch auf eine Anordnung zur Durchführung des Verfahrens.

Zur Entwicklung neuer Wirkstoffe in der Life Science Industrie (Pharmaka), Lebensmittel-Technologie, Agrar-Technik (Pflanzenschutz), in der medizinischen Diagnostik, aber auch zur Lösung von verschiedenen Aufgaben in der allgemeinen Biotechnologie, werden heute in zunehmendem Maße Methoden der kombinatorischen Analyse bzw. Synthese angewandt. Dazu werden z.B. sog. Mikro-Titerplatten-Techniken mit Reaktionswannen in Arraystruktur verwendet, die zur gleichzeitigen Reaktion auf einer Arrayfläche von beispielsweise ca. $12 \times 8 \text{ cm}^2$ entweder 96 oder sogar 384 Wannen einsetzen. Die Dichte dieser Arrays wird in Zukunft weiter steigen, was bedeutet, dass verschiedenartige chemische Reaktionen in immer dichter angeordneten Reaktionsräumen stattfinden müssen.

Extrem ist die Situation z.B. bei einem Array von verschiedenen DNA-Fänger molekülen, die in einem Abstand von nur einigen zehn Mikrometern und einer Dichte von z.B. einigen hundert Positionen pro wenigen mm^2 auf einem ebenen Substrat angeordnet sind, dem sog. DNA-Chip. Sind beim analytischen Nachweis von z.B. unbekannter DNA frei bewegliche Moleküle beteiligt, kommt es bei solch dichten Arrays zu chemischem Übersprechen.

35

Aus einer Reihe von Gründen, z.B. wegen der hohen Spezifität und der niedrigen Nachweisgrenze, bedient man sich bei der

biochemischen Analytik häufig enzymgekoppelter Nachweisverfahren. Weit verbreitet sind z.B. in der medizinischen Diagnostik und im Forschungsbereich sog. ELISA(Enzym-Linked ImmunoSorbent Assay)-Tests. (Literatur s.h. B. Alberts et al. 5 (eds.), Molekularbiologie der Zelle (1997), 3. Aufl., Seite 216, VCH Weinheim) Auch für Anwendungen auf dem Gebiet des DNA-Chips werden Verfahren mit Enzymmarkern bei einer bekannten Methode des Redox-(Re)cyclings eingesetzt (A.v.d.Berg, P. Bergveld (eds.) Proceedings of the μ TAS '94 Workshop 10 (1994), Seiten 249 bis 254, Kluwer Academic Publishers Dordrecht).

In allen in der Fachliteratur erwähnten Fällen liegt das Enzym nicht frei in der flüssigen Phase der als sog. Assays 15 bezeichneten Anordnung vor, sondern ist gebunden und markiert so als „Enzym-Label“ die primär nachzuweisende Substanz. Dabei erfolgt die „Bindung“ der Enzymmoleküle an die nachzuweisende Substanz stets stöchiometrisch. Zur Amplifikation, d.h. Verstärkung, kommt es, indem das Enzym zugesetzte Substrat- 20 moleküle mit hoher Geschwindigkeit umsetzt. Dieser Umsatz wird, je nach verwendetem Substrat bzw. entstehendem Produkt, beispielsweise optisch oder elektrochemisch quantifiziert. Hierfür wird – unabhängig vom eingesetzten Verfahren – insbesondere die Konzentrationszunahme des Produktes P, d.h. die 25 zeitabhängige Funktion $dc(P)/dt$, verfolgt.

Werden solche Assays in einem Array, wie beim Stand der Technik im Einzelnen beschriebenen ist, durchgeführt, können vom Enzym gebildete, frei bewegliche Reaktionsprodukte auch benachbarte enzymfreie Arraypositionen erreichen und dort die 30 Gegenwart der Enzym-Label vortäuschen. Man spricht vom Übersprechen, was zu Messfehlern führt und somit falsche Ergebnisse liefern kann.

35 Davon ausgehend ist es Aufgabe der Erfindung, Verfahren und zugehörige Anordnungen anzugeben, mit denen gegenüber dem Stand der Technik eine erhöhte Verlässlichkeit durch Vermei-

dung von Übersprechen und damit Ausschluss von „falsch positiven“ Resultaten sichergestellt ist. Mit einer erhöhte Genauigkeit sollen Verbesserungen insbesondere in der Effektivität der Messungen erreicht werden.

5

Die Aufgabe ist erfindungsgemäß bei einem Verfahren der ein-gangs genannten Art durch die Maßnahmen des Patentanspruches 1 gelöst. Weiterbildungen sind in den abhängigen Verfahrens-ansprüchen angegeben. Eine zugehörige Anordnung ist Gegen-10 stand des Patentanspruches 14. Diesbezügliche Weiterbildungen sind in den abhängigen Sachansprüchen angegeben.

Beim erfindungsgemäßen Verfahren werden lokal abgegrenzte Reaktionsräume als erstes Volumen verwendet, wobei die Reak-15 tionsräume über ein zweites Volumen, dem sog. Versorgungsvolumen, miteinander verbunden werden können und in den einzelnen Reaktionsräumen quantitativ und/oder spezies-differen-te chemische bzw. biochemische Reaktionen ablaufen. Unter spezies-differente Reaktionen werden qualitativ unterschied-20 liche bzw. qualitativ differente Prozesse verstanden. Dabei wird gleichermaßen der Stoffaustausch zwischen Reaktions-räumen und dem Versorgungsvolumen je nach Bedarf in einer oder beiden Richtungen zugelassen oder verhindert.

25 Wesentlicher Vorteil der Erfindung ist, dass trotz der eng benachbarten Reaktionsräume nunmehr ein störendes Überspre-chen, das die Messergebnisse verfälschen kann, unmöglich gemacht wird und somit die Selektivität verbessert wird. Außerdem wird durch die Erfindung auch die Nachweisempfind-30 lichkeit erhöht, d.h. die Nachweisgrenze wird zu geringeren Mengen verschoben.

Zur praktischen Realisierung der Nachweisempfindlichkeits-35 Erhöhung ist es sinnvoll, die zeitliche Änderung der Sub-strat/Produktkonzentration möglichst zu steigern. Dies wird beim erfindungsgemäßen Verfahren durch eine gezielte Ver-ringerung des Reaktionsvolumens auf deutlich kleiner 1 μm ,

insbesondere im Bereich von einem Nanoliter(1nl), und einer damit verbundenen Steigerung der Substrat-Produktkonzentrations-Änderungen erreicht.

5 Bei den erfindungsgemäßen Anordnungen handelt es sich jeweils um Arrays von mehr als zwei, typisch aber mit einigen hundert Positionen auf wenigen Quadratmillimetern, vorzugsweise 1 bis ca. 10 mm², die auf einem planaren Substrat angeordnet sind. Das jeweilige Array ist als Reaktionsräume- bzw. Reaktions-
10 kammer-Array ausgeführt und ist vorteilhafterweise Bestandteil eines Behältnisses mit einem für die Reaktionsräume gemeinsam zugänglichen Versorgungsvolumen. Ein solches Versorgungsvolumen kann z.B. durch Einbettung des Reaktionskammer-Arrays in einer Durchflusszelle, über die das gesamte Fluid-
15 handling der für die Nachweis- oder Synthese-Reaktion notwendigen chemischen/biochemischen Stoffe abgewickelt werden kann, realisiert werden.

20 Mittels einer in der Durchflusszelle dem planaren Substrat gegenüberliegenden elastischen Membran oder Schicht, die z.B. aus Silikongummi bestehen kann, werden bei einer ersten vorzugsweisen Ausführungsform der Erfindung durch Anpressen einer mechanischen Vorrichtung an das Substrat die durch die einzelnen Arraypositionen gebildeten Reaktionsräume voneinander getrennt, so dass ein Übersprechen wirksam verhindert wird. Eine solche Vorrichtung kann z.B. in Form eines Deckels, eines Stempels oder einer dichtenden Membran ausgebildet sein, mit denen die von den Reaktionsräumen gebildeten Kavitäten verschlossen werden. Mit dem Verschließen der 25 Kavitäten findet auch eine Volumenverringerung der Flüssigkeitsräume über den einzelnen Arraypositionen statt, so dass die durch die chemischen/biochemischen Reaktionen ausgelöste Konzentrationsänderung von Substrat/Produkt erhöht wird. Damit wird also vorteilhafterweise ebenfalls die Nachweis-
30 empfindlichkeit gesteigert.
35

Gleiches kann durch Überschichtung mit einer Sperrflüssigkeit bei einer anderen vorzugsweisen Ausführungsform der Erfindung erreicht werden. Sobald eine geeignete Sperrflüssigkeit, die nicht mischbar mit der Flüssigkeit in den Reaktionskavitäten 5 ist, den Durchflusskanal erfüllt, führt dies zu den gleichen Effekten wie das Verschließen der Arraykavitäten mittels eines Silikonstempels. Die Sperrflüssigkeit ist dabei z.B. Silikonöl. In einer vorteilhaften Variante dieser Ausführungsform werden die Reaktionsräume mit Hydrogel gefüllt, um 10 so den wasserhaltigen Reaktionsräumen mechanische Stabilität zu verleihen, wenn die Sperrflüssigkeit in den Durchflusskanal eintritt. Als Hydrogel kann z.B. Polyacrylamid verwendet werden, das gegenüber Silikonöl die geforderten Eigenschaften aufweist.

15

In einer eigenerfinderischen Weiterbildung des beanspruchten Verfahrens kann auch ein unterschiedliches chemisches Löslichkeitsverhalten der beteiligten Stoffe und Substanzen ausgenutzt werden. Auch bei dieser Ausführungsform der erfindungsgemäßen Anordnung werden die Reaktionsräume vorteilhaft 20 mit einem Hydrogel gefüllt. Ein unterschiedliches Löslichkeitsverhalten zwischen Hydrogel-Reaktionsraum und einer geeigneten flüssigen Phase im Durchflusskanal des Versorgungsvolumens sorgt dann dafür, dass Reaktions-Edukte aus der 25 flüssigen Phase in die Hydrogelphase eintreten, Reaktionsprodukte die Hydrogelphase jedoch nicht mehr verlassen können. Ein solches Reaktions-Edukt ist z.B. das Enzymsubstrat.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich 30 aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den Patentansprüchen. Es zeigen jeweils in schematischer Darstellung

Figur 1 einen Messaufbau nach dem Stand der Technik, aus der 35 das Messverfahren einerseits und das störende Übersprechen andererseits ersichtlich ist,

Figur 2 in drei Teilschritten eine beispielhafte Anordnung zum mechanischen Verschließen von Kavitäten,

Figur 3 in drei Teilschritten eine entsprechende Anordnung zum Verschließen der Kavitäten mittels Sperrmedien
5 und

Figur 4 in drei Teilschritten eine dritte Anordnung, bei der das Verschließen der Kavitäten durch unterschiedliches Löslichkeitsverhalten der beteiligten Medien erreicht wird.

10

In den Figuren haben gleiche bzw. gleichwirkende Teile gleiche bzw. sich entsprechende Bezugszeichen. Die Figuren werden nachfolgend teilweise gemeinsam beschrieben.

15 In Figur 1 ist mit 1 ein Substrat mit planarer Oberfläche bezeichnet, das beispielsweise durch die kristallographische Oberfläche eines Silizium-Chips gebildet ist. Auf dem Substrat 1 ist ein Array von optischen/elektrischen Detektoren 2, 2', ... auf Arraypositionen 8, 8', ... realisiert, mit
20 denen bioanalytische Untersuchungen mit sog. enzymgekoppelten Reaktionen vorgenommen werden, wozu Fängermoleküle einerseits und Analytmoleküle andererseits verwendet werden. Auf den Arraypositionen 8, 8', ... befinden sich unterschiedliche Fängermoleküle 110, 120, ..., so dass auf jeder spezifischen
25 Arrayposition unterschiedliche Analytmoleküle nachgewiesen werden können.

Im Einzelnen ist in Figur 1 bei einem Verfahren für bioanalytischen Untersuchungen ein erstes Fänger-Molekül mit 110 auf der Arrayposition 8 und ein zweites Fänger-Molekül 120 auf der Arrayposition 8', ein Analyt-Molekül mit 200 und ein sog. Enzym-Label mit 300 bezeichnet. Dabei reagiert beispielsweise das Fänger-Molekül 110 spezifisch mit einem komplementären Analyt-Molekül 200 und immobilisiert so im Array positions-
35 spezifisch einen Enzym-Label 300. Ein anschließend als Edukt zugegebenes Enzym-Substrat 400 wird durch die katalytische Wirkung des Enzym-Labels 300 in ein Produkt 500 überführt.

Das Analyt-Molekül 200 kann in Figur 1 also nur mit dem Fänger-Molekül 110, nicht aber mit dem Fänger-Molekül 120 reagieren. Auf jeder Arrayposition 8, 8', ... des Wafers 1 5 kann mit Hilfe des dort lokalisierten optischen oder elektrischen Detektors 2, 2', ... die Abnahme/Zunahme von Substrat/Produkt gemessen werden. Speziell elektrische Detektoren haben Vorteile der Messtechnik.

10 Entsprechend dem Stand der Technik ist man bemüht, die Arraypositionen 8, 8', ... und deren Abstände möglichst klein auszubilden. Problematisch ist beim Stand der Technik, dass ein sog. chemisches Übersprechen zwischen den einzelnen Positionen 8, 8', ... auftreten kann. Dies bedeutet, dass 15 entweder Enzym-Substrat 400, das vorstehend als Edukt definiert wurde, oder das Reaktionsprodukt 500 von einer ersten Arrayposition 8 auf eine zweite Arrayposition 8' gelangen kann. Falls eine Nachbarposition erreicht ist, wird ein falsches Signal erzeugt, das ein positives Ergebnis vor- 20 täuscht. In der Praxis spricht man auch von einem „falsch positiven“ Signal.

In den Figuren 2 bis 4 sind für unterschiedliche Alternativen einzelne Reaktionsräume 10, 10', ... mit einem Einzelvolumen 25 von jeweils kleiner 1µl in einer Arraykonfiguration angeordnet. Die Reaktionsräume 10, 10', ... sind dabei betriebsmäßig voneinander getrennt.

In Figur 2 ist in drei Teilschritten das Betätigen einer 30 Anordnung verdeutlicht, bei der Reaktionsräume 10, 10', ... durch Wände 11, 11', ... getrennt sind. Die Wände 11, 11' können in einer besonderen geometrischen Ausführungsform durch photostrukturierte, kreisförmige Polymerringe von z.B. 150 µm innerem Durchmesser, 180 µm äußerem Durchmesser sowie 35 50 µm Höhe realisiert werden. Die Reaktionsräume 10, 10', ... sind beispielsweise mit in einem Elektrolyten 7 gelösten Reaktions-Edukt, z.B. einem Enzym-Substrat, befüllt, wobei

der Elektrolyt 2 über ein Versorgungsvolumen 4 den einzelnen Reaktionsräumen zugeführt wird.

Die Reaktionsräume 10, 10', ... können in Figur 2 durch ein
5 Gehäuseoberteil 5 mittels eines mechanischen Stempels 6
abgeschlossen werden. Im offenen Zustand befindet sich über
den Kavitäten ein Versorgungsvolumen 4 mit einem flüssigen
10 Elektrolyten. In Figur 2 werden zuerst die Reaktionsräume 10,
10', ... als bei entferntem Gehäuseoberteil 5 offene Kammern
10 im Durchfluss mit dem Elektrolyten/Edukt 7 befüllt, wobei das
Reservoir für den Elektrolyten 7 hier nicht im Einzelnen
dargestellt ist. Nach Befüllung der Reaktionskavitäten 10,
15 10', ... mit Elektrolyt/Edukt 7 wird mittels des Stempels 6
das Gehäuseoberteil 5, das z.B. aus einer Silikonmembran be-
steht, auf die Wandungen 11, 11', ..., die wie bereits
erwähnt aus Polyimid bestehen, aufgesetzt. Damit werden die
Reaktionsräume 10, 10', ... abgeschlossen, so dass anschlie-
ßend ein Stoffaustausch verhindert wird.

20 In Figur 3 ist der untere Bereich ähnlich Figur 2 aufgebaut.
Die Wände 11, 11', ... können in einer besonderen Ausfüh-
rungsform, was in der zeichnerischen Wiedergabe der Figur 3
nicht ersichtlich ist, speziell durch photostrukturierte,
25 kreisförmige Polymerringe mit innerem Durchmesser d (d=2r)
von z.B. d=150 μm , äußerem Durchmesser D von z.B. D=180 μm
einer Höhe h von z.B. sowie h=5 μm realisiert sein. Die aus
solchen Abmessungen resultierenden Reaktionskavitäten mit
einem Füllvolumen von etwa 0,1 nl ($r^2\pi h = (75 \mu\text{m})^2 \cdot 3.14 \cdot 5 \mu\text{m}$)
werden in dieser besonderen Ausführungsform mit einem Hydro-
30 gel 3 hoher Wasseraufnahmefähigkeit, z.B. Polyacrylamid, ge-
füllt. Im Hydrogel 3 kann dann eine Fänger-DNA für einen
spezifischen DNA-Nachweis immobilisiert eingebracht werden.

Zur Realisierung des Assays werden die Reaktionsräume 10,
35 10', ... wiederum über das gemeinsame Versorgungsvolumen 4
mit Puffer, Reagenzien und schließlich Enzymsubstrat ver-
sorgt. Nachdem das Hydrogel 3 eines jeden Reaktionsraumes 10,

10' mit Enzym-substrathaltigem Puffer ins Gleichgewicht gebracht wurde und der enzymatische Umsatz begonnen hat, wird das Versorgungsvolumen 4 mit einer Sperrflüssigkeit, z.B. Silikonöl, geflutet. Dies bewirkt, dass die Flüssigkeit über 5 den Reaktionsräumen durch Silikonöl verdrängt wird. Die Hydrogelstruktur sorgt für die mechanische Stabilität der Reaktionsräume. Aufgrund der Unlöslichkeit von Enzymprodukt in Silikonöl wird Diffusion desselben aus dem Hydrogel heraus, hin zu Nachbarreaktionsräumen verhindert. Das Reaktions- 10 produkt kann sich so in den Reaktionsräumen stark anreichern ohne die Nachbarreaktionsräume zu erreichen. Es ist also eine gleichermaßen hohe Empfindlichkeit und hohe Selektivität vorhanden.

15 Wesentlich ist bei beiden Ausführungsbeispielen gemäß Figur 2 und 3, dass die einzelnen Reaktionskavitäten 10, 10', ... zuerst mit dem Elektrolyten 7 im Durchlauf aus dem Versorgungsvolumen 4 befüllt werden und dann ein Material, beispielsweise ein Silikonöl 9, das mit dem Elektrolyten 7 Phasengrenzen bildet, aufgebracht wird. Durch die Phasengrenze 20 wird erreicht, dass nunmehr ein Stoffaustausch nicht mehr möglich ist und störende Verfälschungen ausgeschlossen werden.

25 In der spezifischen Variante der Ausführungsform gemäß Figur 3 werden die Reaktionsräume 10, 10', ... mit Hydrogel 3, z.B. Polyacrylamid, gefüllt, um so den wasserhaltigen Reaktionsräumen 10, 10', ... mechanische Stabilität zu verleihen, wenn 30 die Sperrflüssigkeit 9, z.B. Silikonöl, in den Durchflusskanal eintritt.

Figur 4 entspricht vom Aufbau wiederum im Wesentlichen Figur 2. Die Reaktionsräume 10, 10', ... werden entsprechend Figur 2 und Figur 3 im Durchlauf aus dem Versorgungsvolumen 4 befüllt. In diesem Fall haben aber die Reaktions-Edukte, die hier mit E bezeichnet sind, das Vermögen, durch ihr spezifisches Löslichkeitsverhalten in den nach Befüllung in den 35

10

Reaktionsräumen 10, 10', ... befindlichen Elektrolyten 7 einzudringen.

Bei der Anordnung gemäß Figur 4 läuft die Reaktion in den 5 Reaktionskammern dann wie bereits vorstehend beschrieben ab. Durch das spezifische Löslichkeitsverhalten des entstehenden Reaktionsproduktes, das hier mit P bezeichnet ist, ist bei der Reaktion allerdings ein Stoffaustritt von P nicht möglich. Es wird also somit ebenfalls das störende Übersprechen 10 verhindert. Auch in dieser Ausführungsform werden entsprechend Figur 3 die Reaktionsräume vorteilhaft mit einem Hydrogel 3 gefüllt.

Das beschriebene Verfahren und die zugehörigen Anordnungen 15 können insbesondere erfolgreich in der medizinischen Diagnostik und der Biotechnologie eingesetzt werden. Durch den nunmehr erreichten Ausschluss des Übersprechens als wesentliche Fehlerquelle lassen sich damit genauere Ergebnisse als bisher erzielen.

Patentansprüche

1. Verfahren für die biochemische Analytik, unter Verwendung eines Mikroreaktionsarrays mit mindestens zwei Reaktions-

5 räumen zur Aufnahme von Stoffen, die miteinander chemisch bzw. biochemisch reagieren, mit folgenden Maßnahmen:

- es werden lokal abgegrenzte Reaktionsräume als erstes Volumen verwendet,

- die Reaktionsräume sind über ein zweites Volumen, dem sog. 10 Versorgungsvolumen, miteinander verbunden,

- in den einzelnen Reaktionsräumen laufen quantitativ und/ oder spezies-differente chemische bzw. biochemische Reaktionen ab,

- der Stoffaustausch zwischen Reaktionsräumen und dem Versorgungsvolumen wird je nach Bedarf in einer oder beiden 15 Richtungen zugelassen oder verhindert.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zu einem ersten Zeitpunkt (t_1) ein

20 definierter Stoffaustausch zwischen den Reaktionsräumen und dem Versorgungsvolumen erfolgt und zu einem zweiten Zeitpunkt (t_2) der Stoffaustausch zwischen den Reaktionsräumen weitestgehend unterdrückt oder verhindert wird. (FIG 2, 3)

25 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch unterschiedliches Löslich-

keitsverhalten von chemischen Substanzen in verschiedenen Flüssigkeiten in den Reaktionsräumen und dem Versorgungs- 30 volumen der Stoffaustausch in einer Richtung selektiv ver-

hindert wird. (FIG 4)

4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zum Zweck des definierten Stoffaus-

tauschs die Reaktionsräume mechanisch geöffnet und ver- 35 schlossen werden. (FIG 2)

12

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Verschließen der Reaktionsräume durch Verdrängen des Versorgungsvolumens realisiert wird.

5 6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zum Zweck des zeitlich definierten Stoffaustausches die Phasengrenzen zwischen den in den Reaktionsräumen und dem Versorgungsvolumen befindlichen Stoffen zeitweise durchlässig gemacht werden. (FIG 3)

10

7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Verschließen der Phasengrenzen durch Verdrängen des Versorgungsvolumens durch ein Sperr-Medium realisiert wird.

15

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Flüssigkeit im Versorgungsvolumen durch ein Gas, beispielsweise Luft, oder durch eine nicht mischbare Flüssigkeit, beispielsweise Silikonöl, verdrängt wird.

25 9. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass aufgrund von unterschiedlichem Lösungsverhalten der Reaktionspartner die Phasengrenzen zwischen den in den Reaktionsräumen und dem Versorgungsvolumen befindlichen Stoffen undurchlässig werden.

10. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass Edukte einer chemischen Reaktion, die in einer Hydrogelschicht abläuft, aus dem Versorgungsvolumen in die Hydrogelschicht eindiffundieren, aber mindestens ein Produkt der chemischen Reaktion nicht aus der Hydrogelschicht herausdiffundiert.

35 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in den einzelnen, von-

13

einander getrennten Reaktionsräumen eine kombinatorische Analyse und/oder Synthese der Substanzen erfolgt.

12. Verfahren nach einem der vorhergehenden Ansprüche,
5 gekennzeichnet durch die Anwendung beim Redoxrecycling.

13. Verfahren nach einem der vorhergehenden Ansprüche,
10 gekennzeichnet durch die Anwendung bei enzym-
gekoppelten Reaktionen.

14. Anordnung zur Durchführung des Verfahrens nach Anspruch 1 oder einem der Ansprüche 2 bis 13, unter Verwendung eines planaren Arrays, dadurch gekennzeichnet, dass das planare Array (8, 8', ...) wenigstens zwei Reaktionsräume (10, 10', ...) zur Aufnahme von Stoffen aus einem Versorgungsvolumen (4) aufweist, wobei Mittel zum Schließen der Reaktionsräume (10, 10', ...) vorhanden sind.

20 15. Anordnung nach Anspruch 14, dadurch gekennzeichnet, dass die Reaktionsräume (10, 10', ...) jeweils ein Volumen von weniger als 1 µl aufweisen.

25 16. Anordnung nach Anspruch 14, dadurch gekennzeichnet, dass das planare Array (8, 8', ...) auf einem Silizium-Substrat (1) aufgebracht ist.

30 17. Anordnung nach Anspruch 16, dadurch gekennzeichnet, dass die Reaktionsräume (10, 10', ...) durch eine auf Silizium aufgebrachte Polymerschicht (11) voneinander getrennt sind.

35 18. Anordnung nach Anspruch 16, dadurch gekennzeichnet, dass die Reaktionsräume (10, 10', ...) in das Silizium-Substrat durch Mikrostrukturtechnik eingebbracht sind.

19. Anordnung nach Anspruch 4, dadurch gekennzeichnet, dass die Reaktionsräume (10, 10', ...) flüssigkeitsgefüllte Hohlräume sind, die zum Zwecke des Stoffaustausches offen sind, so dass sie in Kontakt mit einem Versorgungsvolumen (4) stehen und somit gleichzeitig füllbar sind.

5

20. Anordnung nach Anspruch 14, dadurch gekennzeichnet, dass der Stoffaustausch der flüssigkeitsgefüllten Reaktionshohlräume (10, 10', ...) mit dem Versorgungsvolumen (4) durch Verschließen unterbunden wird, wobei kein weiteres Medium, wie etwa Luft, an die Hohlräume (10, 10', ...) gelangen kann.

10

15 21. Anordnung nach Anspruch 14, dadurch gekennzeichnet, dass für das Verschließen der Reaktionsräume (10, 10', ...) eine Verschlusschicht vorhanden ist.

20 22. Anordnung nach Anspruch 21, dadurch gekennzeichnet, dass der Verschluss durch eine planare, partiell elastische Polymerschicht (5), wie z.B. Silicongummi, realisiert ist.

25 23. Anordnung nach Anspruch 22, dadurch gekennzeichnet, dass das Verschließen der Öffnung der Reaktionsräume (10, 10', ...) durch Verdrängen des Versorgungsvolumens (4) erfolgt.

30 24. Anordnung nach Anspruch 23, dadurch gekennzeichnet, dass zum Verdrängen des Versorgungsvolumens (4) Gas, beispielsweise Luft, oder eine nicht mischbare Flüssigkeit (9) vorhanden ist.

35 25. Anordnung nach einem der Ansprüche 14 bis 24, dadurch gekennzeichnet, dass die Reaktionsräume (10, 10', ...) durch gel gefüllte Hohlräume (3),

15

die zum Zwecke des Stoffaustausches eine Phasengrenze Gel/
Versorgungsvolumen besitzen, realisiert sind.

26. Anordnung nach Anspruch 25, d a d u r c h g e -
5 k e n n z e i c h n e t , dass durch Verschließen der
Phasengrenze der Stoffaustausch der gelgeföllten Reaktions-
räume (10, 10', ...) unterbindbar ist.

1/4

FIG 1

2/4

FIG 2

3/4

FIG 3

4/4

FIG 4

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
30. Mai 2002 (30.05.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/041992 A3

(51) Internationale Patentklassifikation⁷: **B01L 3/00, B01J 19/00** (30) Angaben zur Priorität:
100 58 394.6 24. November 2000 (24.11.2000) DE

(21) Internationales Aktenzeichen: **PCT/DE01/04437**

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **SIEMENS AKTIENGESELLSCHAFT [DE/DE]**; Wittelsbacherplatz 2, 80333 München (DE).

(22) Internationales Anmeldedatum:
26. November 2001 (26.11.2001)

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): **MUND, Konrad [DE/DE]**; Langenbrucker Weg 10, 91080 Uttenreuth (DE). **GUMBRECHT, Walter [DE/DE]**; In der Röte 1, 91074 Herzogenaurach (DE). **STANZEL, Manfred [DE/DE]**;

(25) Einreichungssprache: **Deutsch**

(26) Veröffentlichungssprache: **Deutsch**

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR BIOCHEMICAL ANALYSIS AND CORRESPONDING ARRANGEMENT

(54) Bezeichnung: VERFAHREN FÜR DIE BIOCHEMISCHE ANALYTIK UND ZUGEHÖRIGE ANORDNUNG

(57) Abstract: The invention relates to a method for biochemical analysis using a micro-reaction array with at least two reaction chambers for materials which react together chemically or biochemically. According to the invention, the reaction chambers are smaller than 1 μ l, said reaction chambers are filled together by throughflow, the chemical or biochemical reactions of the substances retained therein then occurs in the individual isolated reaction chambers, thus preventing an interference between the reactions in the individual reaction chambers and the reaction products remain enclosed in the relevant reaction chambers. According to the invention, in said arrangement the planar array has at least two reaction chambers for substances, whereby means are provided for closing the reaction chambers with the goal of preventing an exchange of substances.

(57) Zusammenfassung: Bei einem Verfahren für die biochemische Analytik wird ein Mikroreaktionsarray mit mindestens zwei Reaktionsräumen zur Aufnahme von Stoffen, die miteinander chemisch bzw. biochemisch reagieren, verwendet. Gemäß der Erfindung sind die Reaktionsräume kleiner als 1 μ m, werden die Reaktionsräume gemeinsam im Durchfluss gefüllt, erfolgen anschließend in den einzelnen voneinander getrennten Reaktionsräumen die chemischen bzw. biochemischen Reaktionen der dort eingeschlossenen Substanzen, wobei ein Übersprechen von Reaktionen zwischen

[Fortsetzung auf der nächsten Seite]

WO 02/041992 A3

Taunusstr. 100, 91056 Erlangen (DE). **HINTSCHE, Rainer** [DE/DE]; Gravensteinerstr.61 C, 13127 Berlin (DE).

(74) **Gemeinsamer Vertreter:** **SIEMENS AKTIENGESELLSCHAFT**; Postfach 22 16 34, 80506 München (DE).

(81) **Bestimmungsstaaten (national):** CA, JP, US.

(84) **Bestimmungsstaaten (regional):** europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Erklärungen gemäß Regel 4.17:

— *hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten CA, JP, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR)*

— *Erfindererklärung (Regel 4.17 Ziffer iv) nur für US*

Veröffentlicht:

— *mit internationalem Recherchenbericht*

(88) **Veröffentlichungsdatum des internationalen Recherchenberichts:**

29. August 2002

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

den einzelnen Reaktionsräumen ausgeschlossen ist, und bleiben die Reaktionsprodukte in den jeweiligen Reaktionskammern eingeschlossen. Bei der zugehörigen Anordnung hat das planare Array wenigstens zwei Reaktionsräume zur Aufnahme von Stoffen, wobei Mittel zum Schließen der Reaktionsräume zum Zwecke des Verhindern eines Stoffaustausches vorhanden sind.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 01/04437

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 B01L3/00 B01J19/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
 IPC 7 B01J B01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6 143 496 A (KALININA OLGA V ET AL) 7 November 2000 (2000-11-07) column 4, line 29 -column 30, line 38 figures 1-8 ---	1-26
X	PROUDNIKOV D ET AL: "IMMOBILIZATION OF DNA IN POLYACRYLAMIDE GEL FOR THE MANUFACTURE OF DNA AND DNA-OLIGONUCLEOTIDE MICROCHIPS" ANALYTICAL BIOCHEMISTRY, ACADEMIC PRESS, SAN DIEGO, CA, US, vol. 259, 1998, pages 34-41, XP002928888 ISSN: 0003-2697 page 34, column 1, line 1 -page 35, column 1, line 16 --- -/-	1, 3, 9, 10, 14, 25, 26

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

31 May 2002

Date of mailing of the international search report

11/06/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Tiede, R

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 01/04437

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>GUSCHIN D Y ET AL: "OLIGONUCLEOTIDE MICROCHIPS AS GENOSENSORS FOR DETERMINATIVE AND ENVIRONMENTAL STUDIES IN MICROBIOLOGY" APPLIED AND ENVIRONMENTAL MICROBIOLOGY, WASHINGTON, DC, US, vol. 63, no. 6, 1 June 1997 (1997-06-01), pages 2397-2402, XP002064989 ISSN: 0099-2240 page 2397</p> <p>---</p>	1, 3, 9, 10, 14, 25, 26
P, X	<p>WO 01 34842 A (STRIZHKOV BORIS N ;MIKHAILOVICH VLADIMIR (US); MIRZABEKOV ANDREI () 17 May 2001 (2001-05-17) abstract page 8, line 4 -page 8, line 21</p> <p>-----</p>	1-21, 23-26

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 01/04437

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 6143496	A 07-11-2000	AU 7128998 A WO 9847003 A1		11-11-1998 22-10-1998
WO 0134842	A 17-05-2001	AU 3072101 A WO 0134842 A2		06-06-2001 17-05-2001

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 01/04437

A. Klassifizierung des Anmeldungsgegenstandes
IPK 7 B01L3/00 B01J19/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 B01J B01L

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, MEDLINE

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 6 143 496 A (KALININA OLGA V ET AL) 7. November 2000 (2000-11-07) Spalte 4, Zeile 29 -Spalte 30, Zeile 38 Abbildungen 1-8 ---	1-26
X	PROUDNIKOV D ET AL: "IMMOBILIZATION OF DNA IN POLYACRYLAMIDE GEL FOR THE MANUFACTURE OF DNA AND DNA-OLIGONUCLEOTIDE MICROCHIPS" ANALYTICAL BIOCHEMISTRY, ACADEMIC PRESS, SAN DIEGO, CA, US, Bd. 259, 1998, Seiten 34-41, XP002928888 ISSN: 0003-2697 Seite 34, Spalte 1, Zeile 1 -Seite 35, Spalte 1, Zeile 16 ---	1, 3, 9, 10, 14, 25, 26

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

'A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

'E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

'L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

'O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

'P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

'T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

'X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

'Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

*'& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

31. Mai 2002

11/06/2002

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Tiede, R

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE 01/04437

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Belr. Anspruch Nr.
X	<p>GUSCHIN D Y ET AL: "OLIGONUCLEOTIDE MICROCHIPS AS GENOSENSORS FOR DETERMINATIVE AND ENVIRONMENTAL STUDIES IN MICROBIOLOGY" APPLIED AND ENVIRONMENTAL MICROBIOLOGY, WASHINGTON, DC, US, Bd. 63, Nr. 6, 1. Juni 1997 (1997-06-01), Seiten 2397-2402, XP002064989 ISSN: 0099-2240 Seite 2397</p> <p>---</p>	1, 3, 9, 10, 14, 25, 26
P, X	<p>WO 01 34842 A (STRIZHKOV BORIS N ; MIKHAILOVICH VLADIMIR (US); MIRZABEKOV ANDREI () 17. Mai 2001 (2001-05-17) Zusammenfassung Seite 8, Zeile 4 -Seite 8, Zeile 21</p> <p>-----</p>	1-21, 23-26

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/DE 01/04437

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 6143496	A	07-11-2000	AU WO	7128998 A 9847003 A1		11-11-1998 22-10-1998
WO 0134842	A	17-05-2001	AU WO	3072101 A 0134842 A2		06-06-2001 17-05-2001