407. Пусть y = f(x). Сформулировать с помощью неравенств, что значит:

a)
$$y \rightarrow b - 0$$
 при $x \rightarrow a$;

6)
$$y \to b - 0$$
 при $x \to a - 0$;

B)
$$y \rightarrow b = 0$$
 при $x \rightarrow a + 0$;

r)
$$y \rightarrow b + 0$$
 при $x \rightarrow a$;

д)
$$y \rightarrow b + 0$$
 при $x \rightarrow a - 0$;

e)
$$y \rightarrow b + 0$$
 при $x \rightarrow a + 0$;

ж)
$$y \rightarrow b - 0$$
 при $x \rightarrow \infty$;

s)
$$y \rightarrow b - 0$$
 при $x \rightarrow -\infty$;

и)
$$y \rightarrow b - 0$$
 при $x \rightarrow + \infty$;

$$k) y \rightarrow b + 0 \text{ при } x \rightarrow \infty$$
;

л)
$$y \rightarrow b + 0$$
 при $x \rightarrow -\infty$;

M)
$$y \rightarrow b + 0$$
 при $x \rightarrow + \infty$.

Привести соответствующие примеры.

408. Пусть

$$P(x) = a_0x^n + a_1x^{n-1} + \ldots + a_{n}$$

где $a_i \ (i=0, 1, ..., n; n > 1, a_0 \neq 0)$ — вещественные числа.

Доказать, что
$$\lim_{x\to\infty} |P(x)| = +\infty$$
.
409. Пусть $R(x) = \frac{a_0x^n + a_1x^{n-1} + \ldots + a_n}{b_0x^m + b_1x^{m-1} + \ldots + b_m}$, где

 $a_0 \neq 0$ μ $b_0 \neq 0$. Доказать, что

$$\lim_{x\to\infty} R(x) = \begin{cases} \infty, & \text{если } n > m; \\ \frac{a_0}{b_0}, & \text{если } n = m; \\ 0, & \text{если } n < m. \end{cases}$$

410. Пусть
$$R(x) = \frac{P(x)}{Q(x)}$$
,

гле P(x) и Q(x) — многочлены от x и

$$P(a) = Q(a) = 0.$$

Какие возможные значения имеет выражение $\lim_{x \to \infty} \frac{P(x)}{2}$