

Universidade do Minho Mestrado Integrado em Engenharia Informática 3ºano - 2º Semestre

Modelos Estocásticos de Investigação Operacional Trabalho Prático

Grupo 34

a83732 – Gonçalo Rodrigues Pinto a84197 – João Pedro Araújo Parente a84829 – José Nuno Martins da Costa a85059 – Diogo Paulo Lopes de Vasconcelos

11 de Maio de 2020

Conteúdo

1	Introdução	3
2	Parte 1	3
	2.1 Formulação do problema	4
	2.2 Esboço da rede de Programação Dinâmica	6
	2.3 Descrição do programa criado	7
	2.4 Interpretação e análise dos resultados obtidos	9
3	Parte 2	10
	3.1 Resumo do Artigo	10
4	Conclusão	13
5	Anexos	14

Lista	de	Figura	S

1 Esboço parcial da rede de Programação Dinâmica. 6

1 Introdução

No 2º semestre do 3º ano do Curso de Engenharia Informática da Universidade do Minho, existe uma unidade curricular denominada por Modelos Estocásticos de Investigação Operacional, que tem como objectivo ajudar os estudantes a conhecer técnicas e métodos de Investigação Operacional apresentados, de forma a que os alunos sejam capazes de aplicar estes métodos na resolução de instâncias de problemas de pequena dimensão, como também tem como objectivo ajudar os estudantes a desenvolver a capacidade de resolução de problemas (modelos estocásticos), com ênfase em problemas de engenharia de sistemas e a desenvolver a capacidade de analisar sistemas complexos, de criar modelos para os descrever, de obter soluções para esses modelos utilizando programas computacionais adequados, de validar os modelos obtidos, de interpretar as soluções obtidas, e de elaborar recomendações para o sistema em análise e por fim também auxilia os alunos a compreender a importância da avaliação das soluções, de forma a que sejam capazes de realizar análises de sensibilidade

O presente trabalho é composto por duas partes, sendo que na primeira parte deste, foi nos requerido determinar a política óptima de transferência diária de automóveis entre duas filiais, para atingir esse fim, foi necessário formular e resolver o problema com um modelo de Programação Dinâmica Estocástica. Na segunda parte do trabalho foi nos solicitado efectuar uma pesquisa em revistas científicas e seleccionar um artigo que esteja relacionado com a aplicação de Processos Markovianos e ou Programação Dinâmica Estocástica no estudo de problemas reais.

2 Parte 1

De forma a determinar a política óptima de transferência diária de automóveis entre duas filiais, implementou-se um programa na **linguagem C**, para implementar o método de iteração de valor e obter assim a solução pretendida

2.1 Formulação do problema

Em termos gerais, um processo estocástico é um fenómeno que varia em algum grau, de forma imprevisível, à medida que o tempo passa. Os processos estocásticos são caracterizados por um sistema, estados, uma matriz transição que representa a transição de um estado para outro, etc.

Nos problemas estocásticos, o nodo no estágio seguinte não é completamente determinado pela acção seleccionada; para cada acção, existem valores (positivos) de probabilidade de ocorrerem transições para determinados estados.

Como foi dito anteriormente foi utilizado Programação Dinâmica Estocástica para resolver o problema dado que para cada horizonte, n, pode obter-se uma política óptima. Essa política irá eventualmente variar com n, assim sendo encontramos num problema com número infinito de estágios, com alternativas.

De seguida iremos caracterizar os diferentes parâmetros que foram considerados para resolver o problema:

- Sistema: transferência diária de automóveis entre duas filiais;
- Estados: cada estado é um par de números do stock da filial 1 e da filial 2, resultando assim no total de 169 estados possíveis pois cada filial pode ter um stock a variar de 0 até 12 carros (13*13=169);
- Estágios: o início de cada dia antes de efectuar qualquer pedido, entrega ou transferência;
- Decisões Alternativas: transferir 0, 1, 2, 3 carros da filial 1 para 2, ou vice-versa. Resultando em 7 decisões possíveis:
 - Decisão 1: transferir três carros da Filial 1 para a Filial 2;
 - Decisão 2: transferir dois carros da Filial 1 para a Filial 2;
 - Decisão 3: transferir um carro da Filial 1 para a Filial 2;
 - Decisão 4: não transferir carros.
 - Decisão 5: transferir um carro da Filial 2 para a Filial 1;
 - Decisão 6: transferir dois carros da Filial 2 para a Filial 1;
 - Decisão 7: transferir três carros da Filial 2 para a Filial 1;

A matriz de transição é a matriz de probabilidades de mudança a partir de um estado para qualquer outro estado, num determinado passo do processo.

A matriz de contribuição de estado é a matriz que nos dá o lucro da mudança a partir de um estado para qualquer outro estado, num determinado passo do processo.

Para ajudar-nos nos cálculos desta matriz a criou-se uma função que representa a transição de um stock em uma filial para outro, que apresentamos abaixo.

stock anterior + número de carros devolvidos - número de carros alugados + transferência de carros = **novo stock**

(função 1)

Além dessa função criou-se também uma função para cálculo do lucro da transição de um estado para outro. Interpretando o enunciado o lucro é proveniente apenas de alugueres sendo que a este lucro temos de descontar os possíveis custos adicionais que podem ser provenientes do envio de carros entre filiais ou a taxa extra a pagar devido ao stock numa filial exceder os 8 carros, ou seja:

lucro = 30 * (número de carros alugados na filial 1 + número de carros alugados na filial 2) - 10 * (se stock filial 1 exceder 8 carros) - 10 * (se stock filial 2 exceder 8 carros) - 7 * (número de carros transferidos entre filiais)

(função 2)

2.2 Esboço da rede de Programação Dinâmica

Nesta secção apresentamos um esboço parcial da rede de Programação Dinâmica que é representada à esquerda pelos diferentes estados possíveis como foi referido anteriormente os 169 estados possíveis (na figura apenas apresentamos alguns dos estados), estados esses que são caracterizados pelo stock que existe na Filial 1 e 2, respectivamente. Como também foi referido previamente este problema é um problema com número infinito de estágios, com alternativas, ou seja, como não sabemos em que horizonte n o processo iterativo converge daí o surgimento na rede. Por fim, as setas nesta rede representam a transição de um estado para um outro estado ao fim de um estágio, neste caso o inicio de cada dia antes de efectuar qualquer pedido esta transição é caracterizado por uma probabilidade representada por p e um custo/lucro associado. Por uma questão de simplicidade apenas se representou algumas transições possíveis.

Figura 1: Esboço parcial da rede de Programação Dinâmica.

Nota: Partindo da função 1, apresentada anteriormente, é relevante realçar que a transição de um estado para outro pode ocorrer com pares de números de carros alugados e devolvidos diferentes o que causa com que hajam lucros diferentes na transição de um estado para outro, pois o lucro varia com o número de carros alugados. Por isso, a probabilidade 2 neste exemplo será a soma das probabilidades das combinações de pedidos e entregas da filial 1, que utilizando a função 1 permita efectuar a transição de um stock de 0 unidades para um stock de 0 unidades e como são acontecimentos independentes é necessário efectuar a multiplicação pela soma das probabilidades das combinações de pedidos e entregas da filial 2, neste caso, que transita de 0 unidades em stock para 1 unidade em stock.

2.3 Descrição do programa criado

Devido ao número considerável de estados e decisões, como foi referido anteriormente optou-se por recorrer a recursos computacionais para nos auxiliar a resolver este problema.

Como foi previamente apresentado foi utilizado Programação Dinâmica Estocástica para resolver esta problema de forma a seleccionar a política (sucessão de acções, k) que optimiza a esperança do total da contribuição. Um problema baseado nesta descrição é formulado, de maneira geral, como uma tabela que contém nas diferentes columas as seguintes matrizes:

- n, o estágio actual;
- k, a sucessão de acções;
- $\bullet\,$ Matriz de Transição, P_n^k ;
- Matriz de Contribuições, R_n^k ;
- Matriz de Esperanças, Q_n^k ;
- Seguindo uma política óptima a partir do estágio seguinte n-1, temos que para qualquer acção k no estágio n: $V_n^k = Q_n^k + P_n^k * F_{n-1}$;
- Calculando V_n^k para todas as acções k obtemos o vector F_n a partir da escolha do valor óptimo em cada linha(estado) de V_n^k ;

Tanto a matriz de transição, P_n^k , como a matriz de contribuições, R_n^k , representou-se como variáveis globais na forma matricial de 169 linhas por 169 linhas, colocando-as separadamente em listas de 7 posições onde o índice representa o número da decisão, as quais de chamamos respectivamente $matriz_transicao$ e $matriz_qanho$.

Posteriormente, efectuou-se um ciclo entre todas as decisões possíveis de forma a preencher as variáveis acima referidas recorrendo para isso às fórmulas apresentadas na secção 2.1 e às diferentes combinações que permitem atingir a esse estado.

De seguida, começou-se a fazer o processo iterativo de construção da tabela e respectiva análise de forma a obter a determinar a política óptima. Para isso, criou-se diferentes funções para o cálculo das diferentes matrizes onde em cada decisão possível efectuamos as seguintes funções:

- Função funQn que efectua soma da multiplicação da linhas respectivas das matrizes P_n^k e R_n^k gerando a matriz Q_n^k ;
- Função $funPkFn_1$ que efectua a multiplicação das matrizes P_n^k e F_{n-1} ;
- Função $funQk_PKfn_1$ que adiciona a matriz Q_n^k calculada anteriormente com a multiplicação das matrizes P_n^k e F_{n-1} gerando no vector V_n^k ;

Desta forma, é possível calcular F_n através da função também criada funFn que efectua a escolha do valor óptimo de cada linha(estado) das diferentes matrizes calculadas anteriormente de cada decisão possível como também armazena-se numa outra matriz de onde provém determinada decisão. Por fim, efectuamos a diferença do F_n com F_{n-1} obtendo um vector denominado $Delta_n$ com diferenças desses dois vectores e actualizamos o actual vector de F_n . Efectuamos este processo iterativo até que o vector das diferenças convirja, isto é, que todos os valores desse vector sejam muitos próximos uns dos outros. Obtendo assim uma política óptima de transferência mediante o stock das filiais com o respectivo lucro.

2.4 Interpretação e análise dos resultados obtidos

Após termos apresentado o nosso programa, bem como explicitado a formulação do problema, descrevendo os diferentes estados possíveis e as funções utilizadas na construção e obtenção dos dados, passamos à apresentação dos resultados a partir da análise dos outputs obtidos no final do programa, presentes no Anexo A4.

Para determinar a política óptima de transferência diária de automóveis entre duas filiais considerou-se que os valores do vector $Delta_n$ tenham no máximo uma diferença entre si de 1 décima. Utilizou-se este valor pois é suficientemente pequeno o que permite que as diferentes iterações desenvolvidas levem a convergência o que é um objectivo neste projecto, para isso o programa construído necessitou de executar 10 vezes.

Desta forma podemos concluir que a política óptima vai depender do stock que se tenha inicialmente não existindo um consenso a nível geral. Contudo para cada stock que se tenha nas duas filiais chegou-se a uma decisão óptima de forma a maximizar o lucro. Por exemplo, no estado 0 que corresponde a ter-se na filial 1 um stock de 0 carros (o índice do estado a dividir 13) e um stock na filial 2 de 0 carros (o índice do estado é dado pelo resto da divisão por 13) seguindo a política óptima o gestor da empresa deve enviar 1 unidade da filial 1 para a filial 2 (decisão associado ao número 3) com um lucro esperado de 10.814880.

De seguida, apresentamos uma tabela de qual a decisão mais provável de ser tomada no modo geral.

$Decis\~ao$	Total	Probabilidade
Transferir três carros da Filial 1 para a Filial 2	8	4.7337 %
Transferir dois carros da Filial 1 para a Filial 2	0	0 %
Transferir um carro da Filial 1 para a Filial 2	0	0 %
Não transferir carros	87	51.4793 %
Transferir um carro da Filial 2 para a Filial 1	53	31.3609 %
Transferir dois carros da Filial 2 para a Filial 1	20	11.8343 %
Transferir três carros da Filial 2 para a Filial 1	1	0.5917 %

Analisando a tabela acima apresentada pode-se concluir que a decisão que mais vezes deve ser tomada de forma a maximizar o lucro é não transferir carros.

Por fim, pode-se concluir ainda que o ganho é assim limitado por 11.392136 $\leq g_{10} \approx g^* \leq 11.982712$.

3 Parte 2

Após termos efetuado uma pesquisa em revistas científicas, o artigo que o nosso grupo selecionou acerca com a aplicação de Processos Markovianos e ou Programação Dinâmica Estocástica, foi o seguinte:

Leung K, Wu J.T., Leung G.M. and Liu D. (2020). First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. The Lancet, 395(10233), 1382-1393. doi: https://doi.org/10.1016/S0140-6736(20)30746-7

Este artigo foi encontrado no site da The Lancet que é uma revista científica sobre medicina publicada semanalmente e com revisão por pares. É uma das mais antigas e conhecidas revistas médicas do mundo e descrita como uma das mais prestigiada logo a nossa escolha partiu de uma fonte segura e creditada.

De seguida, apresentamos como nos foi indicado o resumo do artigo.

3.1 Resumo do Artigo

Vivemos e trabalhamos em circunstâncias sem precedentes, inimagináveis no início deste ano. O nosso dia-a-dia no trabalho mudou radicalmente, enfrentamos medidas de confinamento e as economias ressentem-se de forma dramática. A nossa forma de vida, os nossos hábitos e rotinas mudaram de forma repentina desta forma efetuou-se uma pesquisa e selecionou-se o artigo em causa que esteja relacionado com a aplicação de Processos Markovianos no estudo da situação em que nos encontramos atualmente. Assim sendo, escolheu-se o presente artigo onde iremos de forma resumida abordar os aspetos nele referidos, como por exemplo, a problemática, o tipo, principais características, condições de aplicação, questões concretas a que dá resposta, etc.

Como sabemos a cidade de Wuhan na província de Hubei, China, foi o epicentro desta pandemia de COVID-19, sendo que a partir de 23 de Janeiro de 2020 a cidade de Wuhan e outras 16 cidades vizinhas desta mesma província estão em confinamento total, sendo que todos os cidadãos foram obrigados a ficar em suas casas e os poucos que poderiam sair à rua seriam obrigados a usar máscara facial e manter uma distância mínima de outras pessoas. O presente artigo aborda uma avaliação da transmissibilidade e gravidade da primeira vaga de COVID-19 nas maiores cidades fora de Hubei onde se estimou o número de reprodução, R, que mede o número médio de infeções

geradas por cada pessoa infetada, este valor é importante pois permite identificar se a infeção encontra-se a aumentar ou a diminuir, permitindo fazer previsões para fundamentar decisões de defesa como também se estimou a taxa de letalidade, cCFR, que é a proporção entre o número de mortes por uma doença e o número total de doentes que sofrem dessa doença, ao longo de um determinado período de tempo. Desta forma, simulou-se as potenciais consequências de as restrições impostas serem levantadas na antecipação de uma intensidade maior dos sintomas da doença, em seguida a um período de atenuação de infeções.

Como foi referido anteriormente este artigo aborda um método designado: Rt que representa nº médio de casos secundários gerados por um caso primário com início dos sintomas no dia t. Se Rt ¿ 1 a epidemia encontra-se em expansão no momento t, por outro lado se Rt ¡ 1 indica que o contágio da epidemia se encontra a diminuir no momento t. Portanto, os autores do artigo em causa, para estimar o Rt das dez províncias com o maior número de casos confirmados e cCFR's entre os casos oficialmente confirmados para todas as províncias, obteve-se o número diário de casos confirmados e óbitos relatados em todas as 31 províncias desde 22 de janeiro de 2020.

Para atingir esse fim, assumiu-se uma função de densidade cumulativa entre o início e o relato e outra entre o início e o óbito, ambas sendo distribuições gama, da família das distribuições contínuas de probabilidade de dois parâmetros. Estas distribuições foram estimadas utilizando uma abordagem bayesiana com uma distribuição de probabilidade a priori onde se seguiu o princípio da indiferença, que atribui probabilidades iguais a todas as possibilidades utilizando como técnica o método Monte Carlo da cadeia de Markov que permite obter uma amostra da distribuição desejada registando os estados da cadeia. Quanto mais etapas forem incluídas, mais próxima a distribuição da amostra corresponde à distribuição desejada real daí a sua utilização e dado ter sido utilizado uma abordagem bayesiana este método é recomendável dado que exigem integração de muitos parâmetros desconhecidos.

Com a função de densidade de probabilidade cumulativa entre o início e o relato, calculou-se o número de novos casos entre o início dos sintomas e o relato destes, com este valor, conseguiu-se estimar Rt de cada curva epidémica entre meados de janeiro e 19 de fevereiro.

Para estimar a taxa de letalidade, cCFR, os autores do artigo estimaram como sendo a razão entre as mortes confirmadas em laboratório e casos oficialmente confirmados em províncias fora de Hubei, ajustando o tempo entre o início e a morte. Para determinar as mortes confirmadas recorreram à função de densidade cumulativa entre o início e o óbito, neste caso.

Após estimados os parâmetros acima referidos efetuou-se uma simulação

das potenciais consequências de as restrições impostas serem levantadas, sendo que se as restrições fossem levantadas de repente a epidemia entraria em expansão e caso as restrições fossem levantadas gradualmente a epidemia continuaria em diminuição.

Tomados em conjunto, estes resultados sugeriram que permitindo o Rt subir acima de 1 quando o tamanho da epidemia ainda é pequeno (ou seja, sem imunidade de grupo) resulta sempre num problema de saúde pública e numa potencial contração económica, mesmo que sejam aplicadas rápidas e drásticas intervenções que levem ao estado antes das medidas terem sido tomadas.

Depois de analisados os dados concluiu-se que as intervenções feitas pelo governo Chinês, em impor o distanciamento social e em alterar o comportamento das pessoas, resultou numa diminuição substancial da transmissibilidade da COVID-19 pelo país. No entanto devido à propagação do vírus para o resto do mundo, existe uma possibilidade de haver uma segunda vaga na China, de casos importados do estrangeiro.

Em suma, o modelo de Markov neste estudo foi importante pois prestou apoio na decisão das restrições impostas serem levantadas envolvendo incertezas num período contínuo, neste caso, no primeiro trimestre de 2020. A maior disponibilidade e o maior acesso no poder de processamento por meio de computadores permitem que estes modelos possam ser utilizados para representar estados clínicos. Nesta área os modelos de Markov consideram os pacientes num estado discreto de saúde, e os eventos representam a transição de um estado para outro. A possibilidade de modelar eventos repetitivos e a dependência temporal das probabilidades e utilidades associadas permitem uma representação mais precisa do estado clínico avaliado. Neste artigo ao basear-se na utilização destes modelos foi possível avaliar os custos e impacto das consequências de as restrições impostas serem levantadas na antecipação de uma intensidade maior dos sintomas da doença, em seguida a um período de atenuação de infeção baseado em dados reais e atualizados.

(993 palavras)

4 Conclusão

O presente relatório descreveu, de forma sucinta, a resolução da política óptima de transferência diária de automóveis entre duas filiais e um artigo científico relacionado com Processos Markovianos.

Após a realização deste trabalho, ficamos conscientes das potencialidades que o modelo de Programação Dinâmica Estocástica possui na resolução de problemas.

Consideramos que os principais objectivos foram cumpridos.

Sentimos que a realização deste projecto consolidou os nossos conhecimentos de resolução de problemas usando Programação Dinâmica Estocástica e desenvolvemos também a capacidade de analisar problemas complexos utilizando para isso ferramentas computacionais para descrevê-los como também-se desenvolveu o sentido crítico e de análise ao resumir o artigo científico.

Em suma, esperamos que o trabalho realizado seja essencial e fulcral para as nossas futuras carreiras.

5 Anexos

(A1) Dados fornecidos pelo docente

Filial 1													
Número de clientes:	0	1	2	3	4	5	6	7	8	9	10	11	12
Probabilidade (pedidos):	0.0456	0.1340	0.2128	0.2156	0.1756	0.1140	0.0640	0.0216	0.0112	0.0036	0.0016	0.0004	0.0000
Probabilidade (entregas):	0.0484	0.0792	0.1200	0.1360	0.1380	0.1060	0.0884	0.0820	0.0720	0.0572	0.0444	0.0212	0.0072
Filial 2													
Número de clientes:	0	1	2	3	4	5	6	7	8	9	10	11	12
Probabilidade (pedidos):	0.0520	0.1092	0.1308	0.1272	0.1244	0.1096	0.0864	0.0824	0.0672	0.0504	0.0328	0.0196	0.0080
Probabilidade (entregas):	0.0124	0.0532	0.1224	0.1888	0.1968	0.1756	0.1156	0.0720	0.0372	0.0148	0.0068	0.0020	0.0024

(A2) Matriz de transição relativas a cada uma das filiais e a cada uma das decisões alternativas

Decisão 1 : Filial 1 envia 3 unidades para a Filial 2;

Filial 1:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.048400	0.079200	0.120000	0.136000	0.138000	0.106000	0.088400	0.082000	0.072000	0.057200	0.044400	0.021200	0.007200
Stock 1	0.046193	0.077796	0.118140	0.135270	0.137909	0.107459	0.089203	0.082292	0.072456	0.057875	0.044984	0.022258	0.008167
Stock 2	0.039707	0.071461	0.111268	0.131266	0.136911	0.111656	0.093020	0.083952	0.074088	0.060314	0.047374	0.025950	0.013032
Stock 3	0.029408	0.058421	0.096251	0.120989	0.132481	0.117468	0.100962	0.089132	0.077876	0.065095	0.052537	0.033277	0.026101
Stock 4	0.018973	0.041481	0.074415	0.102523	0.121773	0.119937	0.110569	0.098453	0.085212	0.072074	0.060078	0.043442	0.051068
Stock 5	0.010474	0.025638	0.050311	0.077877	0.102956	0.114849	0.116128	0.109184	0.096289	0.082009	0.069304	0.055057	0.089923
Stock 6	0.004956	0.013628	0.029816	0.051949	0.078082	0.099679	0.113046	0.115473	0.108160	0.094774	0.080698	0.066929	0.142810
Stock 7	0.001859	0.006139	0.015194	0.030430	0.052026	0.076853	0.099004	0.112801	0.115089	0.107592	0.094282	0.079807	0.208924
Stock 8	0.000813	0.002376	0.006824	0.015463	0.030464	0.051488	0.076558	0.098896	0.112633	0.114840	0.107376	0.093893	0.288375
Stock 9	0.000271	0.000986	0.002604	0.006914	0.015474	0.030285	0.051390	0.076522	0.098840	0.112550	0.114769	0.107247	0.382149
Stock 10	0.000097	0.000333	0.001067	0.002636	0.006918	0.015410	0.030249	0.051377	0.076502	0.098810	0.112524	0.114722	0.489353
Stock 11	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.076496	0.098805	0.112515	0.604067
Stock 12	0.000000	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.076496	0.098805	0.716582

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.000000	0.012400	0.053200	0.122400	0.188800	0.196800	0.175600	0.115600	0.072000	0.037200	0.026000
Stock 1	0.000000	0.000000	0.000000	0.011755	0.051078	0.118802	0.185347	0.196384	0.176702	0.118720	0.074267	0.039010	0.027934
Stock 2	0.000000	0.000000	0.000000	0.010401	0.045978	0.109123	0.174498	0.192058	0.178601	0.126374	0.082148	0.045077	0.035741
Stock 3	0.000000	0.000000	0.000000	0.008779	0.039288	0.094972	0.156135	0.180162	0.177048	0.136121	0.095506	0.057510	0.054480
Stock 4	0.000000	0.000000	0.000000	0.007202	0.032476	0.079479	0.133537	0.160781	0.167849	0.142200	0.110799	0.075294	0.090384
Stock 5	0.000000	0.000000	0.000000	0.005659	0.025823	0.064059	0.109784	0.137188	0.151105	0.140465	0.122301	0.094916	0.148700
Stock 6	0.000000	0.000000	0.000000	0.004300	0.019809	0.049822	0.087086	0.112558	0.129836	0.130297	0.125344	0.110232	0.230715
Stock 7	0.000000	0.000000	0.000000	0.003229	0.014925	0.037828	0.067112	0.089169	0.107038	0.114212	0.118944	0.116283	0.331260
Stock 8	0.000000	0.000000	0.000000	0.002207	0.010491	0.027242	0.049648	0.068536	0.085396	0.096358	0.106451	0.112749	0.440921
Stock 9	0.000000	0.000000	0.000000	0.001374	0.006728	0.018159	0.034599	0.050534	0.066187	0.078748	0.091527	0.102595	0.549549
Stock 10	0.000000	0.000000	0.000000	0.000749	0.003838	0.010908	0.022169	0.035083	0.049254	0.062563	0.076114	0.089425	0.649897
Stock 11	0.000000	0.000000	0.000000	0.000342	0.001875	0.005748	0.012740	0.022390	0.034497	0.047598	0.061360	0.075154	0.738295
Stock 12	0.000000	0.000000	0.000000	0.000099	0.000669	0.002429	0.006279	0.012804	0.022220	0.034017	0.047249	0.061081	0.813152

Decisão 2 : Filial 1 envia 2 unidades para a Filial 2;

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.048400	0.079200	0.120000	0.136000	0.138000	0.106000	0.088400	0.082000	0.072000	0.057200	0.044400	0.021200	0.007200
Stock 1	0.046193	0.077796	0.118140	0.135270	0.137909	0.107459	0.089203	0.082292	0.072456	0.057875	0.044984	0.022258	0.008167
Stock 2	0.039707	0.071461	0.111268	0.131266	0.136911	0.111656	0.093020	0.083952	0.074088	0.060314	0.047374	0.025950	0.013032
Stock 3	0.029408	0.058421	0.096251	0.120989	0.132481	0.117468	0.100962	0.089132	0.077876	0.065095	0.052537	0.033277	0.026101
Stock 4	0.018973	0.041481	0.074415	0.102523	0.121773	0.119937	0.110569	0.098453	0.085212	0.072074	0.060078	0.043442	0.051068
Stock 5	0.010474	0.025638	0.050311	0.077877	0.102956	0.114849	0.116128	0.109184	0.096289	0.082009	0.069304	0.055057	0.089923
Stock 6	0.004956	0.013628	0.029816	0.051949	0.078082	0.099679	0.113046	0.115473	0.108160	0.094774	0.080698	0.066929	0.142810
Stock 7	0.001859	0.006139	0.015194	0.030430	0.052026	0.076853	0.099004	0.112801	0.115089	0.107592	0.094282	0.079807	0.208924
Stock 8	0.000813	0.002376	0.006824	0.015463	0.030464	0.051488	0.076558	0.098896	0.112633	0.114840	0.107376	0.093893	0.288375
Stock 9	0.000271	0.000986	0.002604	0.006914	0.015474	0.030285	0.051390	0.076522	0.098840	0.112550	0.114769	0.107247	0.382149
Stock 10	0.000097	0.000333	0.001067	0.002636	0.006918	0.015410	0.030249	0.051377	0.076502	0.098810	0.112524	0.114722	0.489353
Stock 11	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.076496	0.098805	0.112515	0.604067
Stock 12	0.000000	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.076496	0.098805	0.716582

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.012400	0.053200	0.122400	0.188800	0.196800	0.175600	0.115600	0.072000	0.037200	0.014800	0.011200
Stock 1	0.000000	0.000000	0.011755	0.051078	0.118802	0.185347	0.196384	0.176702	0.118720	0.074267	0.039010	0.015965	0.011970
Stock 2	0.000000	0.000000	0.010401	0.045978	0.109123	0.174498	0.192058	0.178601	0.126374	0.082148	0.045077	0.020220	0.015520
Stock 3	0.000000	0.000000	0.008779	0.039288	0.094972	0.156135	0.180162	0.177048	0.136121	0.095506	0.057510	0.029218	0.025262
Stock 4	0.000000	0.000000	0.007202	0.032476	0.079479	0.133537	0.160781	0.167849	0.142200	0.110799	0.075294	0.044500	0.045884
Stock 5	0.000000	0.000000	0.005659	0.025823	0.064059	0.109784	0.137188	0.151105	0.140465	0.122301	0.094916	0.065070	0.083629
Stock 6	0.000000	0.000000	0.004300	0.019809	0.049822	0.087086	0.112558	0.129836	0.130297	0.125344	0.110232	0.087148	0.143567
Stock 7	0.000000	0.000000	0.003229	0.014925	0.037828	0.067112	0.089169	0.107038	0.114212	0.118944	0.116283	0.104399	0.226861
Stock 8	0.000000	0.000000	0.002207	0.010491	0.027242	0.049648	0.068536	0.085396	0.096358	0.106451	0.112749	0.112295	0.328626
Stock 9	0.000000	0.000000	0.001374	0.006728	0.018159	0.034599	0.050534	0.066187	0.078748	0.091527	0.102595	0.110268	0.439281
Stock 10	0.000000	0.000000	0.000749	0.003838	0.010908	0.022169	0.035083	0.049254	0.062563	0.076114	0.089425	0.101242	0.548655
Stock 11	0.000000	0.000000	0.000342	0.001875	0.005748	0.012740	0.022390	0.034497	0.047598	0.061360	0.075154	0.088807	0.649489
Stock 12	0.000000	0.000000	0.000099	0.000669	0.002429	0.006279	0.012804	0.022220	0.034017	0.047249	0.061081	0.074975	0.738177

Decisão 3 : Filial 1 envia 1 unidades para a Filial 2; Filial 1:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.048400	0.079200	0.120000	0.136000	0.138000	0.106000	0.088400	0.082000	0.072000	0.057200	0.044400	0.021200	0.007200
Stock 1	0.046193	0.077796	0.118140	0.135270	0.137909	0.107459	0.089203	0.082292	0.072456	0.057875	0.044984	0.022258	0.008167
Stock 2	0.039707	0.071461	0.111268	0.131266	0.136911	0.111656	0.093020	0.083952	0.074088	0.060314	0.047374	0.025950	0.013032
Stock 3	0.029408	0.058421	0.096251	0.120989	0.132481	0.117468	0.100962	0.089132	0.077876	0.065095	0.052537	0.033277	0.026101
Stock 4	0.018973	0.041481	0.074415	0.102523	0.121773	0.119937	0.110569	0.098453	0.085212	0.072074	0.060078	0.043442	0.051068
Stock 5	0.010474	0.025638	0.050311	0.077877	0.102956	0.114849	0.116128	0.109184	0.096289	0.082009	0.069304	0.055057	0.089923
Stock 6	0.004956	0.013628	0.029816	0.051949	0.078082	0.099679	0.113046	0.115473	0.108160	0.094774	0.080698	0.066929	0.142810
Stock 7	0.001859	0.006139	0.015194	0.030430	0.052026	0.076853	0.099004	0.112801	0.115089	0.107592	0.094282	0.079807	0.208924
Stock 8	0.000813	0.002376	0.006824	0.015463	0.030464	0.051488	0.076558	0.098896	0.112633	0.114840	0.107376	0.093893	0.288375
Stock 9	0.000271	0.000986	0.002604	0.006914	0.015474	0.030285	0.051390	0.076522	0.098840	0.112550	0.114769	0.107247	0.382149
Stock 10	0.000097	0.000333	0.001067	0.002636	0.006918	0.015410	0.030249	0.051377	0.076502	0.098810	0.112524	0.114722	0.489353
Stock 11	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.076496	0.098805	0.112515	0.604067
Stock 12	0.000000	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.076496	0.098805	0.716582

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.012400	0.053200	0.122400	0.188800	0.196800	0.175600	0.115600	0.072000	0.037200	0.014800	0.006800	0.004400
Stock 1	0.000000	0.011755	0.051078	0.118802	0.185347	0.196384	0.176702	0.118720	0.074267	0.039010	0.015965	0.007216	0.004754
Stock 2	0.000000	0.010401	0.045978	0.109123	0.174498	0.192058	0.178601	0.126374	0.082148	0.045077	0.020220	0.009254	0.006266
Stock 3	0.000000	0.008779	0.039288	0.094972	0.156135	0.180162	0.177048	0.136121	0.095506	0.057510	0.029218	0.014556	0.010706
Stock 4	0.000000	0.007202	0.032476	0.079479	0.133537	0.160781	0.167849	0.142200	0.110799	0.075294	0.044500	0.024571	0.021313
Stock 5	0.000000	0.005659	0.025823	0.064059	0.109784	0.137188	0.151105	0.140465	0.122301	0.094916	0.065070	0.040849	0.042781
Stock 6	0.000000	0.004300	0.019809	0.049822	0.087086	0.112558	0.129836	0.130297	0.125344	0.110232	0.087148	0.062296	0.081271
Stock 7	0.000000	0.003229	0.014925	0.037828	0.067112	0.089169	0.107038	0.114212	0.118944	0.116283	0.104399	0.085064	0.141796
Stock 8	0.000000	0.002207	0.010491	0.027242	0.049648	0.068536	0.085396	0.096358	0.106451	0.112749	0.112295	0.102975	0.225650
Stock 9	0.000000	0.001374	0.006728	0.018159	0.034599	0.050534	0.066187	0.078748	0.091527	0.102595	0.110268	0.111409	0.327872
Stock 10	0.000000	0.000749	0.003838	0.010908	0.022169	0.035083	0.049254	0.062563	0.076114	0.089425	0.101242	0.109784	0.438870
Stock 11	0.000000	0.000342	0.001875	0.005748	0.012740	0.022390	0.034497	0.047598	0.061360	0.075154	0.088807	0.101022	0.548467
Stock 12	0.000000	0.000099	0.000669	0.002429	0.006279	0.012804	0.022220	0.034017	0.047249	0.061081	0.074975	0.088743	0.649434

Decisão 4 : Não existe transferência de carros.

Filial 1:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.048400	0.079200	0.120000	0.136000	0.138000	0.106000	0.088400	0.082000	0.072000	0.057200	0.044400	0.021200	0.007200
Stock 1	0.046193	0.077796	0.118140	0.135270	0.137909	0.107459	0.089203	0.082292	0.072456	0.057875	0.044984	0.022258	0.008167
Stock 2	0.039707	0.071461	0.111268	0.131266	0.136911	0.111656	0.093020	0.083952	0.074088	0.060314	0.047374	0.025950	0.013032
Stock 3	0.029408	0.058421	0.096251	0.120989	0.132481	0.117468	0.100962	0.089132	0.077876	0.065095	0.052537	0.033277	0.026101
Stock 4	0.018973	0.041481	0.074415	0.102523	0.121773	0.119937	0.110569	0.098453	0.085212	0.072074	0.060078	0.043442	0.051068
Stock 5	0.010474	0.025638	0.050311	0.077877	0.102956	0.114849	0.116128	0.109184	0.096289	0.082009	0.069304	0.055057	0.089923
Stock 6	0.004956	0.013628	0.029816	0.051949	0.078082	0.099679	0.113046	0.115473	0.108160	0.094774	0.080698	0.066929	0.142810
Stock 7	0.001859	0.006139	0.015194	0.030430	0.052026	0.076853	0.099004	0.112801	0.115089	0.107592	0.094282	0.079807	0.208924
Stock 8	0.000813	0.002376	0.006824	0.015463	0.030464	0.051488	0.076558	0.098896	0.112633	0.114840	0.107376	0.093893	0.288375
Stock 9	0.000271	0.000986	0.002604	0.006914	0.015474	0.030285	0.051390	0.076522	0.098840	0.112550	0.114769	0.107247	0.382149
Stock 10	0.000097	0.000333	0.001067	0.002636	0.006918	0.015410	0.030249	0.051377	0.076502	0.098810	0.112524	0.114722	0.489353
Stock 11	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.076496	0.098805	0.112515	0.604067
Stock 12	0.000000	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.076496	0.098805	0.716582

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.012400	0.053200	0.122400	0.188800	0.196800	0.175600	0.115600	0.072000	0.037200	0.014800	0.006800	0.002000	0.002400
Stock 1	0.011755	0.051078	0.118802	0.185347	0.196384	0.176702	0.118720	0.074267	0.039010	0.015965	0.007216	0.002250	0.002504
Stock 2	0.010401	0.045978	0.109123	0.174498	0.192058	0.178601	0.126374	0.082148	0.045077	0.020220	0.009254	0.003190	0.003076
Stock 3	0.008779	0.039288	0.094972	0.156135	0.180162	0.177048	0.136121	0.095506	0.057510	0.029218	0.014556	0.005856	0.004850
Stock 4	0.007202	0.032476	0.079479	0.133537	0.160781	0.167849	0.142200	0.110799	0.075294	0.044500	0.024571	0.011769	0.009544
Stock 5	0.005659	0.025823	0.064059	0.109784	0.137188	0.151105	0.140465	0.122301	0.094916	0.065070	0.040849	0.022381	0.020400
Stock 6	0.004300	0.019809	0.049822	0.087086	0.112558	0.129836	0.130297	0.125344	0.110232	0.087148	0.062296	0.039184	0.042087
Stock 7	0.003229	0.014925	0.037828	0.067112	0.089169	0.107038	0.114212	0.118944	0.116283	0.104399	0.085064	0.061046	0.080750
Stock 8	0.002207	0.010491	0.027242	0.049648	0.068536	0.085396	0.096358	0.106451	0.112749	0.112295	0.102975	0.084210	0.141440
Stock 9	0.001374	0.006728	0.018159	0.034599	0.050534	0.066187	0.078748	0.091527	0.102595	0.110268	0.111409	0.102444	0.225429
Stock 10	0.000749	0.003838	0.010908	0.022169	0.035083	0.049254	0.062563	0.076114	0.089425	0.101242	0.109784	0.111119	0.327751
Stock 11	0.000342	0.001875	0.005748	0.012740	0.022390	0.034497	0.047598	0.061360	0.075154	0.088807	0.101022	0.109652	0.438815
Stock 12	0.000099	0.000669	0.002429	0.006279	0.012804	0.022220	0.034017	0.047249	0.061081	0.074975	0.088743	0.100983	0.548451

Decisão 5 : Filial 2 envia 1 unidades para a Filial 1; Filial 1:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.048400	0.079200	0.120000	0.136000	0.138000	0.106000	0.088400	0.082000	0.072000	0.057200	0.044400	0.028400
Stock 1	0.0000000	0.046193	0.077796	0.118140	0.135270	0.137909	0.107459	0.089203	0.082292	0.072456	0.057875	0.044984	0.030425
Stock 2	0.0000000	0.039707	0.071461	0.111268	0.131266	0.136911	0.111656	0.093020	0.083952	0.074088	0.060314	0.047374	0.038983
Stock 3	0.000000	0.029408	0.058421	0.096251	0.120989	0.132481	0.117468	0.100962	0.089132	0.077876	0.065095	0.052537	0.059379
Stock 4	0.000000	0.018973	0.041481	0.074415	0.102523	0.121773	0.119937	0.110569	0.098453	0.085212	0.072074	0.060078	0.094511
Stock 5	0.0000000	0.010474	0.025638	0.050311	0.077877	0.102956	0.114849	0.116128	0.109184	0.096289	0.082009	0.069304	0.144980
Stock 6	0.0000000	0.004956	0.013628	0.029816	0.051949	0.078082	0.099679	0.113046	0.115473	0.108160	0.094774	0.080698	0.209738
Stock 7	0.0000000	0.001859	0.006139	0.015194	0.030430	0.052026	0.076853	0.099004	0.112801	0.115089	0.107592	0.094282	0.288732
Stock 8	0.0000000	0.000813	0.002376	0.006824	0.015463	0.030464	0.051488	0.076558	0.098896	0.112633	0.114840	0.107376	0.382268
Stock 9	0.000000	0.000271	0.000986	0.002604	0.006914	0.015474	0.030285	0.051390	0.076522	0.098840	0.112550	0.114769	0.489396
Stock 10	0.0000000	0.000097	0.000333	0.001067	0.002636	0.006918	0.015410	0.030249	0.051377	0.076502	0.098810	0.112524	0.604076
Stock 11	0.0000000	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.076496	0.098805	0.716582
Stock 12	0.000000	0.000000	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.076496	0.815388

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.012400	0.053200	0.122400	0.188800	0.196800	0.175600	0.115600	0.072000	0.037200	0.014800	0.006800	0.002000	0.002400
Stock 1	0.011755	0.051078	0.118802	0.185347	0.196384	0.176702	0.118720	0.074267	0.039010	0.015965	0.007216	0.002250	0.002504
Stock 2	0.010401	0.045978	0.109123	0.174498	0.192058	0.178601	0.126374	0.082148	0.045077	0.020220	0.009254	0.003190	0.003076
Stock 3	0.008779	0.039288	0.094972	0.156135	0.180162	0.177048	0.136121	0.095506	0.057510	0.029218	0.014556	0.005856	0.004850
Stock 4	0.007202	0.032476	0.079479	0.133537	0.160781	0.167849	0.142200	0.110799	0.075294	0.044500	0.024571	0.011769	0.009544
Stock 5	0.005659	0.025823	0.064059	0.109784	0.137188	0.151105	0.140465	0.122301	0.094916	0.065070	0.040849	0.022381	0.020400
Stock 6	0.004300	0.019809	0.049822	0.087086	0.112558	0.129836	0.130297	0.125344	0.110232	0.087148	0.062296	0.039184	0.042087
Stock 7	0.003229	0.014925	0.037828	0.067112	0.089169	0.107038	0.114212	0.118944	0.116283	0.104399	0.085064	0.061046	0.080750
Stock 8	0.002207	0.010491	0.027242	0.049648	0.068536	0.085396	0.096358	0.106451	0.112749	0.112295	0.102975	0.084210	0.141440
Stock 9	0.001374	0.006728	0.018159	0.034599	0.050534	0.066187	0.078748	0.091527	0.102595	0.110268	0.111409	0.102444	0.225429
Stock 10	0.000749	0.003838	0.010908	0.022169	0.035083	0.049254	0.062563	0.076114	0.089425	0.101242	0.109784	0.111119	0.327751
Stock 11	0.000342	0.001875	0.005748	0.012740	0.022390	0.034497	0.047598	0.061360	0.075154	0.088807	0.101022	0.109652	0.438815
Stock 12	0.000099	0.000669	0.002429	0.006279	0.012804	0.022220	0.034017	0.047249	0.061081	0.074975	0.088743	0.100983	0.548451

Decisão 6 : Filial 2 envia 2 unidades para a Filial 1; Filial 1:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.048400	0.079200	0.120000	0.136000	0.138000	0.106000	0.088400	0.082000	0.072000	0.057200	0.072800
Stock 1	0.0000000	0.000000	0.046193	0.077796	0.118140	0.135270	0.137909	0.107459	0.089203	0.082292	0.072456	0.057875	0.075408
Stock 2	0.0000000	0.000000	0.039707	0.071461	0.111268	0.131266	0.136911	0.111656	0.093020	0.083952	0.074088	0.060314	0.086356
Stock 3	0.000000	0.000000	0.029408	0.058421	0.096251	0.120989	0.132481	0.117468	0.100962	0.089132	0.077876	0.065095	0.111916
Stock 4	0.000000	0.000000	0.018973	0.041481	0.074415	0.102523	0.121773	0.119937	0.110569	0.098453	0.085212	0.072074	0.154589
Stock 5	0.000000	0.000000	0.010474	0.025638	0.050311	0.077877	0.102956	0.114849	0.116128	0.109184	0.096289	0.082009	0.214285
Stock 6	0.0000000	0.000000	0.004956	0.013628	0.029816	0.051949	0.078082	0.099679	0.113046	0.115473	0.108160	0.094774	0.290437
Stock 7	0.0000000	0.000000	0.001859	0.006139	0.015194	0.030430	0.052026	0.076853	0.099004	0.112801	0.115089	0.107592	0.383014
Stock 8	0.000000	0.000000	0.000813	0.002376	0.006824	0.015463	0.030464	0.051488	0.076558	0.098896	0.112633	0.114840	0.489644
Stock 9	0.0000000	0.000000	0.000271	0.000986	0.002604	0.006914	0.015474	0.030285	0.051390	0.076522	0.098840	0.112550	0.604165
Stock 10	0.000000	0.000000	0.000097	0.000333	0.001067	0.002636	0.006918	0.015410	0.030249	0.051377	0.076502	0.098810	0.716600
Stock 11	0.0000000	0.000000	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.076496	0.815388
Stock 12	0.000000	0.000000	0.000000	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.891884

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.012400	0.053200	0.122400	0.188800	0.196800	0.175600	0.115600	0.072000	0.037200	0.014800	0.006800	0.002000	0.002400
Stock 1	0.011755	0.051078	0.118802	0.185347	0.196384	0.176702	0.118720	0.074267	0.039010	0.015965	0.007216	0.002250	0.002504
Stock 2	0.010401	0.045978	0.109123	0.174498	0.192058	0.178601	0.126374	0.082148	0.045077	0.020220	0.009254	0.003190	0.003076
Stock 3	0.008779	0.039288	0.094972	0.156135	0.180162	0.177048	0.136121	0.095506	0.057510	0.029218	0.014556	0.005856	0.004850
Stock 4	0.007202	0.032476	0.079479	0.133537	0.160781	0.167849	0.142200	0.110799	0.075294	0.044500	0.024571	0.011769	0.009544
Stock 5	0.005659	0.025823	0.064059	0.109784	0.137188	0.151105	0.140465	0.122301	0.094916	0.065070	0.040849	0.022381	0.020400
Stock 6	0.004300	0.019809	0.049822	0.087086	0.112558	0.129836	0.130297	0.125344	0.110232	0.087148	0.062296	0.039184	0.042087
Stock 7	0.003229	0.014925	0.037828	0.067112	0.089169	0.107038	0.114212	0.118944	0.116283	0.104399	0.085064	0.061046	0.080750
Stock 8	0.002207	0.010491	0.027242	0.049648	0.068536	0.085396	0.096358	0.106451	0.112749	0.112295	0.102975	0.084210	0.141440
Stock 9	0.001374	0.006728	0.018159	0.034599	0.050534	0.066187	0.078748	0.091527	0.102595	0.110268	0.111409	0.102444	0.225429
Stock 10	0.000749	0.003838	0.010908	0.022169	0.035083	0.049254	0.062563	0.076114	0.089425	0.101242	0.109784	0.111119	0.327751
Stock 11	0.000342	0.001875	0.005748	0.012740	0.022390	0.034497	0.047598	0.061360	0.075154	0.088807	0.101022	0.109652	0.438815
Stock 12	0.000099	0.000669	0.002429	0.006279	0.012804	0.022220	0.034017	0.047249	0.061081	0.074975	0.088743	0.100983	0.548451

Decisão 7 : Filial 2 envia 3 unidades para a Filial 1; Filial 1:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.000000	0.048400	0.079200	0.120000	0.136000	0.138000	0.106000	0.088400	0.082000	0.072000	0.130000
Stock 1	0.000000	0.000000	0.000000	0.046193	0.077796	0.118140	0.135270	0.137909	0.107459	0.089203	0.082292	0.072456	0.133283
Stock 2	0.0000000	0.000000	0.000000	0.039707	0.071461	0.111268	0.131266	0.136911	0.111656	0.093020	0.083952	0.074088	0.146670
Stock 3	0.0000000	0.000000	0.000000	0.029408	0.058421	0.096251	0.120989	0.132481	0.117468	0.100962	0.089132	0.077876	0.177011
Stock 4	0.0000000	0.000000	0.000000	0.018973	0.041481	0.074415	0.102523	0.121773	0.119937	0.110569	0.098453	0.085212	0.226663
Stock 5	0.0000000	0.000000	0.000000	0.010474	0.025638	0.050311	0.077877	0.102956	0.114849	0.116128	0.109184	0.096289	0.296294
Stock 6	0.0000000	0.000000	0.000000	0.004956	0.013628	0.029816	0.051949	0.078082	0.099679	0.113046	0.115473	0.108160	0.385210
Stock 7	0.000000	0.000000	0.000000	0.001859	0.006139	0.015194	0.030430	0.052026	0.076853	0.099004	0.112801	0.115089	0.490605
Stock 8	0.0000000	0.000000	0.000000	0.000813	0.002376	0.006824	0.015463	0.030464	0.051488	0.076558	0.098896	0.112633	0.604485
Stock 9	0.0000000	0.000000	0.000000	0.000271	0.000986	0.002604	0.006914	0.015474	0.030285	0.051390	0.076522	0.098840	0.716714
Stock 10	0.0000000	0.000000	0.000000	0.000097	0.000333	0.001067	0.002636	0.006918	0.015410	0.030249	0.051377	0.076502	0.815410
Stock 11	0.0000000	0.000000	0.000000	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.051373	0.891884
Stock 12	0.000000	0.000000	0.000000	0.000000	0.000019	0.000109	0.000349	0.001074	0.002637	0.006905	0.015403	0.030247	0.943256

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.012400	0.053200	0.122400	0.188800	0.196800	0.175600	0.115600	0.072000	0.037200	0.014800	0.006800	0.002000	0.002400
Stock 1	0.011755	0.051078	0.118802	0.185347	0.196384	0.176702	0.118720	0.074267	0.039010	0.015965	0.007216	0.002250	0.002504
Stock 2	0.010401	0.045978	0.109123	0.174498	0.192058	0.178601	0.126374	0.082148	0.045077	0.020220	0.009254	0.003190	0.003076
Stock 3	0.008779	0.039288	0.094972	0.156135	0.180162	0.177048	0.136121	0.095506	0.057510	0.029218	0.014556	0.005856	0.004850
Stock 4	0.007202	0.032476	0.079479	0.133537	0.160781	0.167849	0.142200	0.110799	0.075294	0.044500	0.024571	0.011769	0.009544
Stock 5	0.005659	0.025823	0.064059	0.109784	0.137188	0.151105	0.140465	0.122301	0.094916	0.065070	0.040849	0.022381	0.020400
Stock 6	0.004300	0.019809	0.049822	0.087086	0.112558	0.129836	0.130297	0.125344	0.110232	0.087148	0.062296	0.039184	0.042087
Stock 7	0.003229	0.014925	0.037828	0.067112	0.089169	0.107038	0.114212	0.118944	0.116283	0.104399	0.085064	0.061046	0.080750
Stock 8	0.002207	0.010491	0.027242	0.049648	0.068536	0.085396	0.096358	0.106451	0.112749	0.112295	0.102975	0.084210	0.141440
Stock 9	0.001374	0.006728	0.018159	0.034599	0.050534	0.066187	0.078748	0.091527	0.102595	0.110268	0.111409	0.102444	0.225429
Stock 10	0.000749	0.003838	0.010908	0.022169	0.035083	0.049254	0.062563	0.076114	0.089425	0.101242	0.109784	0.111119	0.327751
Stock 11	0.000342	0.001875	0.005748	0.012740	0.022390	0.034497	0.047598	0.061360	0.075154	0.088807	0.101022	0.109652	0.438815
Stock 12	0.000099	0.000669	0.002429	0.006279	0.012804	0.022220	0.034017	0.047249	0.061081	0.074975	0.088743	0.100983	0.548451

(A3) Matriz de Contribuição relativas a cada uma das filiais e a cada uma das decisões alternativas

Decisão 1 : Filial 1 envia 3 unidades para a Filial 2;

Filial 1:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.572000	-0.444000	-0.212000	-0.072000
Stock 1	1.046989	1.713254	2.595840	2.941952	2.985216	2.292992	1.912269	1.773824	1.557504	0.665350	0.516461	0.246598	0.083750
Stock 2	1.576059	2.579005	3.907584	4.428595	4.493721	3.451699	2.878587	2.670182	2.344550	1.290615	1.001806	0.478340	0.162455
Stock 3	1.518192	2.484314	3.764112	4.265994	4.328729	3.324966	2.772896	2.572144	2.258467	1.222227	0.948721	0.452993	0.153847
Stock 4	2.296619	2.124398	3.213166	3.612631	3.652126	2.773142	2.321397	2.162837	1.894882	0.920065	0.712321	0.315961	-0.062723
Stock 5	2.769700	3.226117	2.558506	2.827700	2.808439	2.061313	1.710130	1.623356	1.422817	0.504912	0.376255	0.097016	-0.668090
Stock 6	2.722287	3.845772	4.048906	2.193176	2.123794	1.482782	1.168457	1.114246	0.997608	0.114275	0.041542	-0.141148	-2.427854
Stock 7	2.215636	3.693629	4.738938	3.927380	1.698865	1.184950	0.851327	0.748213	0.672215	-0.188609	-0.218734	-0.335392	-7.045937
Stock 8	1.497554	2.932032	4.427092	4.776298	3.681397	1.160347	0.828674	0.622242	0.502317	-0.413258	-0.380310	-0.447855	-17.098509
Stock 9	0.844599	1.923530	3.394468	4.490856	4.666809	3.337990	0.981171	0.716895	0.500076	-0.580067	-0.511858	-0.503590	-35.608315
Stock 10	0.373416	1.039695	2.143553	3.435332	4.450114	4.498494	3.248605	0.935602	0.666212	-0.632804	-0.622566	-0.567216	-65.473991
Stock 11	0.185217	0.472729	1.154463	2.168791	3.418566	4.362190	4.451564	3.225881	0.912536	-0.508492	-0.652594	-0.649021	-109.264923
Stock 12	0.069483	0.223101	0.517270	1.165068	2.163106	3.383715	4.343405	4.442695	3.216341	-0.222576	-0.515806	-0.662532	-170.064941

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-1.156000	-0.720000	-0.372000	-0.260000
Stock 1	0.000000	0.000000	0.000000	0.352656	1.513008	3.481056	5.369472	5.596992	4.994064	2.100464	1.305008	0.667872	0.460096
Stock 2	0.000000	0.000000	0.000000	0.624067	2.718072	6.334430	9.902909	10.523060	9.482314	5.129438	3.180838	1.657304	1.158165
Stock 3	0.000000	0.000000	0.000000	0.790128	3.487219	8.257464	13.165215	14.422781	13.352228	8.027643	5.115279	2.739046	2.050828
Stock 4	0.000000	0.000000	0.000000	0.864230	3.849782	9.237141	15.017975	17.012434	16.374269	10.808122	7.256341	4.146503	3.514438
Stock 5	0.000000	0.000000	0.000000	0.848904	3.827179	9.315629	15.458783	18.150705	18.255667	13.266335	9.605051	6.018584	6.149345
Stock 6	0.000000	0.000000	0.000000	0.774058	3.524813	8.700414	14.734032	17.922453	18.874825	15.034198	11.898557	8.302470	10.632298
Stock 7	0.000000	0.000000	0.000000	0.678082	3.102034	7.724545	13.287620	16.646408	18.300552	15.823452	13.666575	10.648636	17.491112
Stock 8	0.000000	0.000000	0.000000	0.529728	2.487273	6.342346	11.214768	14.637572	16.791658	15.711479	14.655772	12.626345	26.954268
Stock 9	0.000000	0.000000	0.000000	0.370958	1.791518	4.734297	8.735626	12.081668	14.657516	14.792914	14.839705	13.892582	38.719032
Stock 10	0.000000	0.000000	0.000000	0.224688	1.132723	3.141821	6.159255	9.222691	12.054126	13.262871	14.238684	14.360612	52.074532
Stock 11	0.000000	0.000000	0.000000	0.112939	0.606562	1.807046	3.847939	6.388445	9.192552	11.177065	12.973513	13.990946	66.158920
Stock 12	0.000000	0.000000	0.000000	0.035712	0.233419	0.818626	2.027654	3.916291	6.374621	8.721722	11.082729	12.893353	80.060890

Decisão 2: Filial 1envia 2 unidades para a Filial 2;

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.0000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.572000	-0.444000	-0.212000	-0.072000
Stock 1	1.046989	1.713254	2.595840	2.941952	2.985216	2.292992	1.912269	1.773824	1.557504	0.665350	0.516461	0.246598	0.083750
Stock 2	1.576059	2.579005	3.907584	4.428595	4.493721	3.451699	2.878587	2.670182	2.344550	1.290615	1.001806	0.478340	0.162455
Stock 3	2.534592	3.058376	4.630158	5.228209	5.296007	4.046537	3.380460	3.142058	2.756083	1.606430	1.245513	0.576003	0.080245
Stock 4	3.072103	4.221188	4.850567	5.489871	5.549116	4.243373	3.520685	3.277185	2.881685	1.680521	1.293916	0.574521	-0.268452
Stock 5	2.985583	4.685570	6.003826	5.368606	5.493496	4.322074	3.553294	3.244561	2.874094	1.659095	1.266466	0.573388	-1.312994
Stock 6	2.400698	4.286828	6.167484	6.391606	5.262499	4.444944	3.709647	3.271426	2.870751	1.658693	1.287476	0.663255	-4.062395
Stock 7	1.594180	3.269612	5.297963	6.419513	6.286418	4.544247	4.017409	3.500357	3.005003	1.709646	1.396932	0.877028	-10.115805
Stock 8	0.889863	2.092992	3.864620	5.465528	6.379317	5.860994	4.320999	3.912218	3.363026	1.877785	1.569971	1.172317	-21.411957
Stock 9	0.391111	1.111623	2.361523	3.941900	5.447686	6.176609	5.752392	4.274060	3.851133	2.207485	1.814942	1.469014	-39.873199
Stock 10	0.192903	0.501938	1.247377	2.402387	3.934825	5.344420	6.121038	5.728864	4.245082	2.664619	2.177167	1.765729	-67.248970
Stock 11	0.072193	0.234436	0.553135	1.262535	2.399140	3.893952	5.322080	6.111362	5.716842	3.104985	2.652919	2.158402	-105.594963
Stock 12	0.028130	0.088419	0.254533	0.559074	1.261189	2.382703	3.884899	5.318130	6.106413	4.722656	3.100425	2.645649	-157.266129

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.0000000	0.0000000	0.0000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.720000	-0.372000	-0.148000	-0.112000
Stock 1	0.0000000	0.000000	0.352656	1.513008	3.481056	5.369472	5.596992	4.994064	3.287664	1.305008	0.667872	0.261264	0.198832
Stock 2	0.000000	0.000000	0.624067	2.718072	6.334430	9.902909	10.523060	9.482314	6.393183	3.180838	1.657304	0.664517	0.493648
Stock 3	0.0000000	0.000000	0.790128	3.487219	8.257464	13.165215	14.422781	13.352228	9.388858	5.115279	2.739046	1.178696	0.872133
Stock 4	0.0000000	0.000000	0.864230	3.849782	9.237141	15.017975	17.012434	16.374269	12.230124	7.256341	4.146503	1.956128	1.558310
Stock 5	0.000000	0.000000	0.848904	3.827179	9.315629	15.458783	18.150705	18.255667	14.670982	9.605051	6.018584	3.224576	2.924769
Stock 6	0.000000	0.000000	0.774058	3.524813	8.700414	14.734032	17.922453	18.874825	16.337168	11.898557	8.302470	5.084998	5.547300
Stock 7	0.000000	0.000000	0.678082	3.102034	7.724545	13.287620	16.646408	18.300552	16.965570	13.666575	10.648636	7.426485	10.064628
Stock 8	0.000000	0.000000	0.529728	2.487273	6.342346	11.214768	14.637572	16.791658	16.675058	14.655772	12.626345	9.930227	17.024040
Stock 9	0.000000	0.000000	0.370958	1.791518	4.734297	8.735626	12.081668	14.657516	15.580392	14.839705	13.892582	12.104697	26.614338
Stock 10	0.000000	0.000000	0.224688	1.132723	3.141821	6.159255	9.222691	12.054126	13.888502	14.238684	14.360612	13.567630	38.506905
Stock 11	0.000000	0.000000	0.112939	0.606562	1.807046	3.847939	6.388445	9.192552	11.653043	12.973513	13.990946	14.193577	51.965343
Stock 12	0.000000	0.000000	0.035712	0.233419	0.818626	2.027654	3.916291	6.374621	9.061895	11.082729	12.893353	13.937154	66.123726

Decisão 3 : Filial 1 envia 1 unidades para a Filial 2;

Filial 1:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000000	-0.572000	-0.444000	-0.212000	-0.072000
Stock 1	1.046989	1.713254	2.595840	2.941952	2.985216	2.292992	1.912269	1.773824	1.557504	0.665350	0.516461	0.246598	0.083750
Stock 2	2.253659	3.143237	4.760608	5.385703	5.460360	4.183485	3.491769	3.242139	2.845358	1.679542	1.302683	0.608755	0.146021
Stock 3	2.986726	4.581707	6.181188	7.062409	7.184137	5.576162	4.622981	4.274030	3.763690	2.397843	1.855845	0.882172	0.073500
Stock 4	3.010035	5.134533	7.366570	7.872903	8.182196	6.638277	5.501894	4.970222	4.395275	2.921644	2.272285	1.183306	-0.233665
Stock 5	2.458139	4.671194	7.279613	8.497227	8.462253	7.425436	6.334873	5.578420	4.879438	3.355170	2.676612	1.606002	-1.097839
Stock 6	1.646432	3.534582	6.058817	7.938043	8.764920	7.830966	7.125099	6.303294	5.441679	3.780109	3.133467	2.182475	-3.139702
Stock 7	0.913172	2.226529	4.280340	6.378510	8.029229	8.335917	7.620728	7.070347	6.193316	4.309691	3.631660	2.838607	-7.218862
Stock 8	0.401681	1.171893	2.561830	4.428449	6.424944	7.839121	8.243166	7.600447	7.025456	5.039354	4.245915	3.502123	-14.273470
Stock 9	0.197588	0.526236	1.332850	2.627552	4.442527	6.320079	7.785031	8.226763	7.573164	5.834185	5.004175	4.179165	-25.233452
Stock 10	0.074188	0.244598	0.587223	1.357989	2.633132	4.402620	6.299447	7.778817	8.216277	6.431701	5.820987	4.979022	-41.125046
Stock 11	0.028943	0.092078	0.267695	0.595879	1.358801	2.615960	4.393362	6.296070	7.773792	7.221043	6.425981	5.810737	-63.066952
Stock 12	0.006253	0.032701	0.096899	0.269292	0.595734	1.354728	2.613685	4.392413	6.294772	7.007092	7.219639	6.423666	-91.794113

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.372000	-0.148000	-0.068000	-0.044000
Stock 1	0.000000	0.352656	1.513008	3.481056	5.369472	5.596992	4.994064	3.287664	2.047680	0.667872	0.261264	0.121232	0.077600
Stock 2	0.000000	0.624067	2.718072	6.334430	9.902909	10.523060	9.482314	6.393183	4.002321	1.657304	0.664517	0.298171	0.195477
Stock 3	0.000000	0.790128	3.487219	8.257464	13.165215	14.422781	13.352228	9.388858	6.070333	2.739046	1.178696	0.525749	0.346384
Stock 4	0.000000	0.864230	3.849782	9.237141	15.017975	17.012434	16.374269	12.230124	8.364326	4.146503	1.956128	0.925467	0.632843
Stock 5	0.000000	0.848904	3.827179	9.315629	15.458783	18.150705	18.255667	14.670982	10.828062	6.018584	3.224576	1.647602	1.277168
Stock 6	0.000000	0.774058	3.524813	8.700414	14.734032	17.922453	18.874825	16.337168	13.151999	8.302470	5.084998	2.906907	2.640394
Stock 7	0.000000	0.678082	3.102034	7.724545	13.287620	16.646408	18.300552	16.965570	14.856014	10.648636	7.426485	4.783976	5.280652
Stock 8	0.000000	0.529728	2.487273	6.342346	11.214768	14.637572	16.791658	16.675058	15.720282	12.626345	9.930227	7.177997	9.846044
Stock 9	0.000000	0.370958	1.791518	4.734297	8.735626	12.081668	14.657516	15.580392	15.754975	13.892582	12.104697	9.748959	16.865377
Stock 10	0.000000	0.224688	1.132723	3.141821	6.159255	9.222691	12.054126	13.888502	14.999827	14.360612	13.567630	11.991388	26.515522
Stock 11	0.000000	0.112939	0.606562	1.807046	3.847939	6.388445	9.192552	11.653043	13.587111	13.990946	14.193577	13.509228	38.456120
Stock 12	0.000000	0.035712	0.233410	0.818626	2.027654	3 016201	6.374621	9.061895	11 555910	19.803353	13 037154	14 174729	51 9/1899/

Decisão 4 : Não existe transferência de carros.

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.0000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.572000	-0.444000	-0.212000	-0.072000
Stock 1	1.385789	2.267654	3.435840	3.893952	3.951216	3.034992	2.531069	2.347824	2.061504	1.059002	0.821424	0.384419	0.124483
Stock 2	2.382442	4.093108	6.225264	7.176865	7.339632	5.772503	4.777522	4.391737	3.873768	2.501912	1.941752	0.962533	0.338259
Stock 3	2.646705	4.948944	7.767874	9.287568	9.765240	8.105207	6.742233	6.038899	5.339592	3.725907	2.922371	1.623369	0.787977
Stock 4	2.276736	4.664722	7.799568	9.931714	10.981008	9.882839	8.523864	7.480762	6.532819	4.769375	3.846643	2.444131	1.831187
Stock 5	1.571064	3.590717	6.503256	9.097968	10.879545	10.838183	9.999697	8.890014	7.688506	5.699748	4.752928	3.432020	3.817416
Stock 6	0.892109	2.287454	4.586045	7.166808	9.552625	10.713658	10.839413	10.153296	8.957597	6.689156	5.652643	4.485460	6.967632
Stock 7	0.390298	1.196237	2.707704	4.853309	7.339608	9.453553	10.693844	10.889640	10.167120	7.845279	6.656747	5.525617	11.322993
Stock 8	0.195149	0.538877	1.400659	2.832696	4.929917	7.280136	9.436014	10.712593	10.890648	8.995330	7.824648	6.589480	16.781006
Stock 9	0.073181	0.249850	0.613872	1.445011	2.858568	4.904717	7.271333	9.441188	10.711249	9.754869	8.986303	7.798328	23.344387
Stock 10	0.029040	0.094565	0.279082	0.630672	1.454371	2.847648	4.900517	7.272797	9.440108	9.718585	9.750877	8.975512	31.132126
Stock 11	0.006389	0.033686	0.100901	0.282634	0.632568	1.451803	2.846597	4.900733	7.272460	8.674057	9.717632	9.748440	40.105267
Stock 12	0.000000	0.006389	0.033686	0.100901	0.282634	0.632568	1.451803	2.846597	4.900733	6.758732	8.674057	9.717632	49.853706

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.0000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.148000	-0.068000	-0.020000	-0.024000
Stock 1	0.352656	1.513008	3.481056	5.369472	5.596992	4.994064	3.287664	2.047680	1.057968	0.261264	0.121232	0.034384	0.043216
Stock 2	0.624067	2.718072	6.334430	9.902909	10.523060	9.482314	6.393183	4.002321	2.108074	0.664517	0.298171	0.091035	0.104442
Stock 3	0.790128	3.487219	8.257464	13.165215	14.422781	13.352228	9.388858	6.070333	3.314146	1.178696	0.525749	0.170731	0.175653
Stock 4	0.864230	3.849782	9.237141	15.017975	17.012434	16.374269	12.230124	8.364326	4.899442	1.956128	0.925467	0.337570	0.295274
Stock 5	0.848904	3.827179	9.315629	15.458783	18.150705	18.255667	14.670982	10.828062	6.967742	3.224576	1.647602	0.711872	0.565296
Stock 6	0.774058	3.524813	8.700414	14.734032	17.922453	18.874825	16.337168	13.151999	9.404794	5.084998	2.906907	1.435360	1.205034
Stock 7	0.678082	3.102034	7.724545	13.287620	16.646408	18.300552	16.965570	14.856014	11.811460	7.426485	4.783976	2.710044	2.570606
Stock 8	0.529728	2.487273	6.342346	11.214768	14.637572	16.791658	16.675058	15.720282	13.753838	9.930227	7.177997	4.623776	5.222267
Stock 9	0.370958	1.791518	4.734297	8.735626	12.081668	14.657516	15.580392	15.754975	14.918533	12.104697	9.748959	7.062321	9.803052
Stock 10	0.224688	1.132723	3.141821	6.159255	9.222691	12.054126	13.888502	14.999827	15.254862	13.567630	11.991388	9.677203	16.838318
Stock 11	0.112939	0.606562	1.807046	3.847939	6.388445	9.192552	11.653043	13.587111	14.742485	14.193577	13.509228	11.954625	26.501501
Stock 12	0.035712	0.233419	0.818626	2.027654	3.916291	6.374621	9.061895	11.555219	13.504167	13.937154	14.174729	13.497419	38.451576

Decisão 5: Filial 2 envia 1 unidades para a Filial 1;

Filial 1:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.720000	-0.572000	-0.444000	-0.284000
Stock 1	0.000000	1.385789	2.267654	3.435840	3.893952	3.951216	3.034992	2.531069	2.347824	1.336944	1.059002	0.821424	0.508902
Stock 2	0.000000	2.382442	4.093108	6.225264	7.176865	7.339632	5.772503	4.777522	4.391737	3.132889	2.501912	1.941752	1.300792
Stock 3	0.000000	2.646705	4.948944	7.767874	9.287568	9.765240	8.105207	6.742233	6.038899	4.560832	3.725907	2.922371	2.411347
Stock 4	0.000000	2.276736	4.664722	7.799568	9.931714	10.981008	9.882839	8.523864	7.480762	5.680705	4.769375	3.846643	4.275318
Stock 5	0.000000	1.571064	3.590717	6.503256	9.097968	10.879545	10.838183	9.999697	8.890014	6.725611	5.699748	4.752928	7.249437
Stock 6	0.000000	0.892109	2.287454	4.586045	7.166808	9.552625	10.713658	10.839413	10.153296	7.875998	6.689156	5.652643	11.453094
Stock 7	0.000000	0.390298	1.196237	2.707704	4.853309	7.339608	9.453553	10.693844	10.889640	9.016229	7.845279	6.656747	16.848610
Stock 8	0.000000	0.195149	0.538877	1.400659	2.832696	4.929917	7.280136	9.436014	10.712593	9.764322	8.995330	7.824648	23.370483
Stock 9	0.000000	0.073181	0.249850	0.613872	1.445011	2.858568	4.904717	7.271333	9.441188	9.722849	9.754869	8.986303	31.142717
Stock 10	0.000000	0.029040	0.094565	0.279082	0.630672	1.454371	2.847648	4.900517	7.272797	8.675088	9.718585	9.750877	40.107639
Stock 11	0.000000	0.006389	0.033686	0.100901	0.282634	0.632568	1.451803	2.846597	4.900733	6.758732	8.674057	9.717632	49.853706
Stock 12	0.000000	0.000000	0.006389	0.033686	0.100901	0.282634	0.632568	1.451803	2.846597	4.598264	6.758732	8.674057	59.571335

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.148000	-0.068000	-0.020000	-0.024000
Stock 1	0.265856	1.140608	2.624256	4.047872	4.219392	3.764864	2.478464	1.543680	0.797568	0.169312	0.077792	0.022880	0.027456
Stock 2	0.582403	2.141149	4.917272	7.570129	7.868614	7.010664	4.598462	2.861825	1.474142	0.423725	0.196710	0.055693	0.053355
Stock 3	0.814635	3.213823	6.692309	10.380857	10.903308	9.749309	6.472162	4.022688	2.090779	0.635090	0.286656	0.082503	0.049027
Stock 4	0.944731	3.875504	8.463421	12.290042	13.225375	12.057027	8.259489	5.239911	2.786448	0.888843	0.385697	0.111086	0.000080
Stock 5	0.983598	4.134576	9.314059	14.098831	14.611983	13.782980	9.963820	6.622884	3.738524	1.287006	0.573298	0.176347	-0.152095
Stock 6	0.938298	4.029947	9.312255	14.584496	15.963047	14.765218	11.467202	8.194494	5.064554	2.018831	0.952653	0.357691	-0.573441
Stock 7	0.840824	3.672601	8.672760	13.990206	16.065855	15.842486	12.516149	9.768253	6.729322	3.200739	1.700321	0.750348	-1.653738
Stock 8	0.721695	3.184677	7.634964	12.604722	15.061533	15.717394	13.624243	10.941483	8.440124	4.798276	2.910093	1.518618	-4.165958
Stock 9	0.555495	2.524384	6.222801	10.615695	13.315560	14.652841	13.842969	12.291547	9.879017	6.614280	4.564631	2.765584	-9.424508
Stock 10	0.383810	1.799560	4.614083	8.250397	11.034167	12.945546	13.256905	12.849965	11.504950	8.277923	6.446707	4.461932	-19.231247
Stock 11	0.229712	1.127412	3.044545	5.809532	8.461570	10.765993	12.057396	12.625085	12.352171	10.177872	8.174373	6.383735	-35.541965
Stock 12	0.113520	0.595926	1.736675	3.619667	5.885423	8.297178	10.294476	11.722622	12.363655	11.299726	10.122990	8.142275	-59.898533

Decisão 6: Filial 2envia 2 unidades para a Filial 1;

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.820000	-0.720000	-0.572000	-0.728000
Stock 1	0.000000	0.000000	1.385789	2.267654	3.435840	3.893952	3.951216	3.034992	2.531069	1.524906	1.336944	1.059002	1.330326
Stock 2	0.000000	0.000000	2.382442	4.093108	6.225264	7.176865	7.339632	5.772503	4.777522	3.552217	3.132889	2.501912	3.242544
Stock 3	0.000000	0.000000	2.646705	4.948944	7.767874	9.287568	9.765240	8.105207	6.742233	5.147584	4.560832	3.725907	5.333719
Stock 4	0.000000	0.000000	2.276736	4.664722	7.799568	9.931714	10.981008	9.882839	8.523864	6.496228	5.680705	4.769375	8.121960
Stock 5	0.0000000	0.000000	1.571064	3.590717	6.503256	9.097968	10.879545	10.838183	9.999697	7.798174	6.725611	5.699748	12.002367
Stock 6	0.000000	0.000000	0.892109	2.287454	4.586045	7.166808	9.552625	10.713658	10.839413	8.998565	7.875998	6.689156	17.105736
Stock 7	0.000000	0.000000	0.390298	1.196237	2.707704	4.853309	7.339608	9.453553	10.693844	9.761635	9.016229	7.845279	23.505354
Stock 8	0.000000	0.000000	0.195149	0.538877	1.400659	2.832696	4.929917	7.280136	9.436014	9.723632	9.764322	8.995330	31.195133
Stock 9	0.000000	0.000000	0.073181	0.249850	0.613872	1.445011	2.858568	4.904717	7.271333	8.675967	9.722849	9.754869	40.129017
Stock 10	0.000000	0.000000	0.029040	0.094565	0.279082	0.630672	1.454371	2.847648	4.900517	6.759028	8.675088	9.718585	49.858517
Stock 11	0.000000	0.000000	0.006389	0.033686	0.100901	0.282634	0.632568	1.451803	2.846597	4.598264	6.758732	8.674057	59.571335
Stock 12	0,000000	0.000000	0.000000	0.006389	0.033686	0.100901	0.282634	0.632568	1 451803	2 692563	4 598264	6.758732	68 245399

Filial 2:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.148000	-0.068000	-0.020000	-0.024000
Stock 1	0.265856	1.140608	2.624256	4.047872	4.219392	3.764864	2.478464	1.543680	0.797568	0.169312	0.077792	0.022880	0.027456
Stock 2	0.408803	1.753898	4.035284	6.224358	6.488102	5.789181	3.811101	2.373696	1.226410	0.339926	0.156182	0.045936	0.055123
Stock 3	0.690685	2.248164	5.154506	7.921375	8.212462	7.307157	4.776886	2.970688	1.525921	0.441211	0.205579	0.057410	0.039985
Stock 4	0.896431	3.242904	5.976496	9.202652	9.557226	8.475939	5.537101	3.411471	1.747166	0.475838	0.215490	0.056426	-0.027441
Stock 5	1.002644	3.848957	7.714950	9.942678	10.493402	9.392566	6.228716	3.848062	1.968680	0.483586	0.192621	0.035845	-0.194208
Stock 6	1.022578	4.074484	8.597485	11.955733	10.935720	10.053309	6.948110	4.414681	2.336448	0.521939	0.177045	0.002158	-0.615022
Stock 7	0.965449	3.965673	8.694480	12.762510	12.787535	10.393326	7.683154	5.199517	2.974636	0.738795	0.223571	-0.006530	-1.724225
Stock 8	0.854335	3.591906	8.119421	12.435517	13.364042	12.055981	8.198651	6.075280	3.894083	1.252918	0.464530	0.056746	-4.522818
Stock 9	0.724859	3.093781	7.146115	11.305960	12.834691	12.561424	9.905827	6.792090	4.947439	2.121790	1.014029	0.320666	-10.910352
Stock 10	0.552896	2.439794	5.823254	9.584723	11.543351	12.112321	10.746434	8.698100	5.919096	3.264475	1.935709	0.902816	-24.076778
Stock 11	0.379217	1.732760	4.321676	7.499563	9.709809	10.986545	10.770791	9.843666	8.039032	4.430326	3.134888	1.858727	-48.268948
Stock 12	0.225050	1.080541	2.851650	5.312317	7.546709	9.340683	10.135983	10.194097	9.420418	6.776551	4.352048	3.088703	-87.924126

Decisão 7 : Filial 2 envia 3 unidades para a Filial 1;

Filial 1:

	Stock 0	Stock 1	Stock 2	Stock 3	Stock 4	Stock 5	Stock 6	Stock 7	Stock 8	Stock 9	Stock 10	Stock 11	Stock 12
Stock 0	0.000000	0.000000	0.000000	0.0000000	0.000000	0.000000	0.0000000	0.000000	0.000000	-0.884000	-0.820000	-0.720000	-1.300000
Stock 1	0.000000	0.000000	0.000000	1.385789	2.267654	3.435840	3.893952	3.951216	3.034992	1.639043	1.524906	1.336944	2.389328
Stock 2	0.000000	0.000000	0.000000	2.382442	4.093108	6.225264	7.176865	7.339632	5.772503	3.847320	3.552217	3.132889	5.744456
Stock 3	0.000000	0.000000	0.000000	2.646705	4.948944	7.767874	9.287568	9.765240	8.105207	5.732612	5.147584	4.560832	9.059626
Stock 4	0.000000	0.000000	0.000000	2.276736	4.664722	7.799568	9.931714	10.981008	9.882839	7.418175	6.496228	5.680705	12.891337
Stock 5	0.000000	0.000000	0.000000	1.571064	3.590717	6.503256	9.097968	10.879545	10.838183	8.838410	7.798174	6.725611	17.702116
Stock 6	0.000000	0.000000	0.000000	0.892109	2.287454	4.586045	7.166808	9.552625	10.713658	9.708950	8.998565	7.875998	23.794889
Stock 7	0.0000000	0.000000	0.000000	0.390298	1.196237	2.707704	4.853309	7.339608	9.453553	9.703809	9.761635	9.016229	31.350634
Stock 8	0.000000	0.000000	0.000000	0.195149	0.538877	1.400659	2.832696	4.929917	7.280136	8.670435	9.723632	9.764322	40.190468
Stock 9	0.000000	0.000000	0.000000	0.073181	0.249850	0.613872	1.445011	2.858568	4.904717	6.757437	8.675967	9.722849	49.883884
Stock 10	0.000000	0.000000	0.000000	0.029040	0.094565	0.279082	0.630672	1.454371	2.847648	4.598022	6.759028	8.675088	59.577095
Stock 11	0.000000	0.000000	0.000000	0.006389	0.033686	0.100901	0.282634	0.632568	1.451803	2.692563	4.598264	6.758732	68.245399
Stock 12	0.000000	0.000000	0.000000	0.000000	0.006389	0.033686	0.100901	0.282634	0.632568	1.382752	2.692563	4.598264	75.004128

Filial 2:

```
0.000000 0.000000 0.000000 -0.148000
                                                               0.000000
                                                                                                                                           -0.068000
                                                                                                                                                         -0.020000
                                                                                                                                                                     -0.024000
 Stock 1
Stock 2
           0.265856 0.408803
                                                                            3.764864
5.789181
                        1.140608
                                    2.624256
                                                               4.219392
                                                                                        2.478464
                                                                                                      1.543680
                                                 6.224358
                                                                                         3.811101
                                                                                                                                           0.156182
                                                                                                                                                         0.045936
                        1.753898
                                    4.035284
                                                               6.488102
                                                                                                     2.373696
                                                                                                                 1.226410
                                                                                                                             0.339926
                                                                                                                                                                      0.055123
 Stock 3
Stock 4
           0.430285
0.690194
                                                              6.829039
6.829981
                                                                                                                              0.365566
0.328871
                                                                                                                                           0.167963
0.154797
                         1.846061
                                     4.247329
                                                 6.551436
                                                                             6.093390
                                                                                         4.011366
                                                                                                      2.498429
                                                                                                                  1.290855
                                                                                                                                                         0.049401
                                                                                                                                                                      0.059281
                        1.888508
                                     4.318048
                                                                             6.063287
                                                                                         3.941268
                                                                                                      2.447966
                                                                                                                  1.251380
                                                                                                                                                         0.041584
                                                                                                                                                                      0.005562
                                                 6.616468

        Stock 4
        0.990194

        Stock 5
        0.881536

        Stock 6
        0.980170

        Stock 7
        0.999316

        Stock 8
        0.939345

        Stock 9
        0.827397

                        2.857152
3.477524
                                    4.306255 \\ 6.172985
                                                 6.552259
                                                              6.676577
6.485613
                                                                            5.833311
5.589726
                                                                                         3.700635
3.448533
                                                                                                      2.238827
                                                                                                                  1.113482
                                                                                                                              0.201182
-0.017617
                                                                                                                                           0.091301
                                                                                                                                                         0.014754
                                                                                                                                                                       -0.122623
                                                 6.371366
                                                                                                      1.989451
                                                                                                                  0.909752
                                                                                                                                            -0.044538
                                                                                                                                                         -0.052361
                                                                                                                                                                      -0.404054
                                    7.266512 \\ 7.551023
                        3.747350
                                                 8 864937
                                                               6.271599
                                                                             5.442198
                                                                                         3.352133
                                                                                                      1.845066
                                                                                                                  0.747641
                                                                                                                              -0.317418
                                                                                                                                            -0.253340
                                                                                                                                                         -0.182069
                                                                                                                                                                      -1.089996
                        3.672915
                                                 10.129663
                                                               8.766802
                                                                             5.267266
                                                                                         3.402628
                                                                                                      1.895314
                                                                                                                  0.724952
                                                                                                                               -0.604804
                                                                                                                                            -0.534716
                                                                                                                                                                      -2.885318
                                                                                                                                            -0.793442
                        3.337673
                                     7.166815
                                                 10.264967
                                                               10.020267
                                                                             7.696669
                                                                                         3.504065
                                                                                                      2.147443
                                                                                                                 0.937499
                                                                                                                              -0.743182
                                                                                                                                                         -0.643380
                                                                                                                                                                     -7.399727
           0.699658
                        2.881185
                                     6.377264
                                                 9.575298
                                                               10.157652
                                                                             9.003754
                                                                                         5.922962
                                                                                                      2.477988
                                                                                                                  1.369657
                                                                                                                               -0.588552
                                                                                                                                            -0.897591
                                                                                                                                                         -0.881860
           0.532853
                                                                                                                                            -0.702779
Stock 11
                        2.280362
                                     5.251515
                                                 8.288148
                                                               9.494281
                                                                             9.324766
                                                                                         7.487273
                                                                                                      5.003365
                                                                                                                  1.906841
                                                                                                                               -0.106150
                                                                                                                                                         -0.962765
                                                                                                                                                                      -38.732418
Stock 12 | 0.364937
                        1.624400
                                    3.933651
                                                 6.601239
                                                               8.231710
                                                                             8.890363
                                                                                         8.194369
                                                                                                      6.781123
                                                                                                                  4.544054
                                                                                                                              0.571168
                                                                                                                                            -0.182243
                                                                                                                                                         -0.746040 -77.308510
```

(A4) Código do programa criado

```
#include <stdlib.h>
#include <stdio.h>

float matriz_transicao[7][169][169];
float matriz_ganho[7][169][169];
float matriz_qk_pkfn1[7][169];

int combinacao(int stock_final,int stock,int i,int j,int envio, int * alugadosvdd,int *enviosvdd)
{
   int stock_local=stock;
   int alugo_vdd=i;
   if ( i>=stock) {alugo_vdd=stock;}
```

```
stock_local -= alugo_vdd;
    int envio_vdd=envio;
    if ( enviosvdd!=NULL && -envio>=stock_local) {envio_vdd=-
        stock_local; *enviosvdd=envio_vdd;}
    stock_local -= envio_vdd;
    int recebo_vdd=j;
    if( stock -alugo_vdd +envio_vdd + j>12) recebo_vdd= 12-stock+
        alugo_vdd-envio_vdd;
    if( alugadosvdd!=NULL) *alugadosvdd=alugo_vdd;
    if (stock_final == stock -alugo_vdd+recebo_vdd +envio_vdd ) return
    return 0;
}
void transi(float result[169][169], int envio)
    //estado anterior i
    for (int i = 0; i < 169; i++)</pre>
        //estado seguinte j
        for (int j = 0; j < 169; j++)
        {
            int stock_inicial_f1 = i/13;
            int stock_inicial_f2 =i%13;
            int stock_final_f1= j/13;
            int stock_final_f2=j%13;
            float prob=0;
            for(int i=0;i<13;i++)</pre>
                for(int j=0;j<13 ; j++){</pre>
                 int envio_vd =envio;
                  if(combinacao(stock_final_f1,stock_inicial_f1,i,j,
                      envio,NULL,&envio_vd) == 1)
                     for( int i2=0;i2<13;i2++)</pre>
                         for(int j2=0; j2<13; j2++){</pre>
                             if (combinacao(stock_final_f2,
                                 stock_inicial_f2,i2,j2,-envio_vd,NULL,
                                 NULL))
                                  prob+=prob_filial1[0][i]*prob_filial1
                                      [1][j]*prob_filial2[0][i2]*
                                      prob_filial2[1][j2];
                         }
            result[i][j]=prob;
}
float funlucro(float pr1[2][13],float pr2[2][13],int stock_inicial_f1,
   int stock_inicial_f2, int stock_final_f1,int stock_final_f2,int
    envio){
    float lucro=0;
```

```
float lucro_base=0;
    if( stock_final_f1> 8 ) lucro_base -=10;
    if( stock_final_f2> 8 ) lucro_base-=10;
    int i=0;
    for(; i<13 ;i++) // o que sai
        for(int j=0;j<13;j++){ // o que entra</pre>
             int alugados_f1=i;
             int envio_vdd=envio;
             if(combinacao(stock_final_f1,stock_inicial_f1,i,j,envio,&
                 alugados_f1,&envio_vdd)) {
    for(int i2=0; i2<13 ;i2++){ // o que sai
                          int alugados_f2=i2;
                           for(int j2=0; j2<13; j2++) // o que entra</pre>
                              if(combinacao(stock_final_f2,
                                  stock_inicial_f2,i2,j2,envio_vdd,&
                                  alugados_f2,NULL)) {
                                  lucro+= pr1[0][i]*pr1[1][j]*pr2[0][i2
                                       ]*pr2[1][j2]*(lucro_base-7*(abs(
                                       envio_vdd)) + 30*(alugados_f1 +
                                       alugados_f2));
                                  }
                         }
                     }
             }
        }
    return lucro;
}
void ganho(float result[169][169], int envio)
    //estado anterior i
    for (int i = 0; i < 169; i++)</pre>
         //estado sequinte j
        for (int j = 0; j < 169; j++)
             int stock_inicial_f1 = i/13;
             int stock_inicial_f2 =i%13;
             int stock_final_f1= j/13;
             int stock_final_f2=j%13;
             float lucro=0;
             result[i][j]=funlucro(prob_filial1,prob_filial2,
                 \verb|stock_inicial_f1|, \verb|stock_inicial_f2|, \verb|stock_final_f1|,
                 stock_final_f2,envio);
    }
}
//decisao 0 -> -2 decisao 1 -> -1 decisao 2->0 , etc
void funQn(float tra[169][169],float r[169][169],float q[169]){
    //estado anterior i
    for (int i = 0; i < 169; i++){</pre>
        q[i]=0;
        //estado seguinte j
```

```
for (int j = 0; j < 169; j++)
            q[i]+= tra[i][j]*r[i][j];
    }
}
void funPkFn_1(float tra[169][169],float fn1[169],float pkfn1[169]){
    for(int i=0;i<169;i++){</pre>
           pkfn1[i]=0;
        for(int j=0;j<169;j++){</pre>
            pkfn1[i]+=tra[i][j]*fn1[j];
   }
}
for(int i=0;i<169;i++){</pre>
        resu[i]=0;
        resu[i]=qk[i]+pkfn_1[i];
    }
}
void funFn(float QkPkFn1[7][169],float resu[169],int from_decisao
    [169]){
    for(int i=0;i<169;i++){</pre>
        int from = 0;
        float r=QkPkFn1[0][i];
        for(int j=1; j <7; j++)</pre>
            if(QkPkFn1[j][i]>r) {r=QkPkFn1[j][i];from=j;}
        resu[i]=r;
        from_decisao[i]=from;
   }
}
// retorna a diferenca entre os fn
float funDeltaFn(float fn_inicial[169],float fn_final[169],float resu
        for(int i=0;i<169;i++){</pre>
            resu[i] = fn_final[i]-fn_inicial[i];
}
int CritParagem(float v[169],float x){
    int r=v[0];
    for(int i=1;i<169;i++)</pre>
       if (abs(r-v[i]) > x) return 1;
    return 0;
float copiafn(float fn_inicial[169],float fn_final[169]){
     for(int i=0;i<169;i++)
           fn_final[i]=fn_inicial[i];
```

```
|}
void imprimeResultado(int from[169],float deltafn[169],int i){
     for(int i=0;i<169;i++){</pre>
                      Estado %d Stock1 %d Stock2 %d | Decis o %d |
         printf("
              Lucro esperado % f \n",i,i/13,i%13,from[i],deltafn[i]);
     }
}
void imprime_matriz_transicao( int filial,int envio){
     if(filial==1){
                  float aux[13][13];
                  for(int l=0;1<13;1++)</pre>
                       for(int c=0;c<13;c++){</pre>
                           float prob=0;
                           int stock=1;
                           if ( stock<-envio) envio=-stock;</pre>
                       for(int i=0;i<13;i++)</pre>
                           for(int j=0;j<13;j++)
    if (combinacao(c,stock,i,j,envio,NULL,</pre>
                                     NULL) == 1)
                                prob+=prob_filial1[0][i]*prob_filial1[1][j
                                    ];
                                aux[1][c]=prob;
              for(int linhas=0;linhas<13;linhas++){</pre>
                  // float somatorio=0;
                  printf(" Stock %d & ",linhas);
                  for(int colunas=0; colunas<13; colunas++){</pre>
                  if (colunas==12)printf(" %f " , aux[linhas][colunas]);
                  else printf(" %f &" , aux[linhas][colunas]);
                   //somatorio+= aux[linhas][colunas];
                   // printf("somatorio %f\n", somatorio);
     else if(filial==2){
                  float aux[13][13];
                  for(int l=0;1<13;1++)</pre>
                       for(int c=0;c<13;c++){</pre>
                           float prob=0;
                           int stock=1;
                           if ( stock<-envio) envio=-stock;</pre>
                           for(int i=0;i<13;i++)</pre>
                                for(int j=0;j<13;j++)
    if (combinacao(c,stock,i,j,envio,NULL</pre>
                                          , NULL) == 1)
                                         prob+=prob_filial2[0][i]*
                                             prob_filial2[1][j];
                           aux[1][c]=prob;
                       }
              for(int linhas=0;linhas<13;linhas++){</pre>
                   //float somatorio=0;
```

```
printf(" Stock %d & ",linhas);
                 for(int colunas=0; colunas<13; colunas++){</pre>
                     if (colunas==12)printf(" %f " , aux[linhas][
                         colunas]);
                     else printf(" %f &" , aux[linhas][colunas]);
                    // somatorio+= aux[linhas][colunas];
                    printf(" \\\\ \n");
                    //printf("somatorio %f\n", somatorio);
            }
    }
}
void imprime_matriz_contribuicao( int filial,int envio){
    if(filial==1){
        float aux[13][13];
            for(int 1=0;1<13;1++)</pre>
                 for(int c=0;c<13;c++){</pre>
                         float lucro=0;
                         float lucro_base=0;
                         if( c> 8 ) lucro_base -=10;
                         int i=0;
                          for(; i<13 ;i++) // o que sai
                              for(int j=0;j<13;j++){ // o que entra
                                  int alugados_f1=i;
                                  int envio_vdd=envio;
                              if(combinacao(c,1,i,j,envio,&alugados_f1,&
                                  envio_vdd)) {
                                  if (envio_vdd<0) lucro_base-=-</pre>
                                      envio_vdd*7;
                                  lucro+= prob_filial1[0][i]*
                                      prob_filial1[1][j]*(lucro_base +
                                      30*alugados_f1);
                              }
                         }
                     aux[1][c]=lucro;
             for(int linhas=0;linhas<13;linhas++){</pre>
                 printf(" Stock %d & ",linhas);
                 for(int colunas=0; colunas<13; colunas++){</pre>
                     if (colunas==12)printf(" %f " , aux[linhas][
                         colunas]);
                     else printf(" %f &" , aux[linhas][colunas]);
                 printf(" \\\\ \n");
    else if(filial==2){
        float aux[13][13];
            for(int l=0;1<13;1++)</pre>
                 for(int c=0;c<13;c++){</pre>
                     float lucro=0;
                     float lucro_base=0;
                     if( c> 8 ) lucro_base -= 10;
```

```
int i=0;
                     for(; i<13 ;i++) // o que sai
    for(int j=0;j<13;j++){ // o que entra</pre>
                              int alugados_f2=i;
                              int envio_vdd=envio;
                              if(combinacao(c,1,i,j,envio,&alugados_f2,&
                                   envio_vdd)) {
                                   if (envio_vdd<0) lucro_base-=-</pre>
                                       envio_vdd*7;
                                   lucro+= prob_filial2[0][i]*
                                       prob_filial2[1][j]*(lucro_base +
                                       30*alugados_f2);
                              }
                     aux[1][c]=lucro;
             for(int linhas=0;linhas<13;linhas++){</pre>
                 printf(" Stock %d & ",linhas);
                 for(int colunas=0; colunas<13; colunas++){</pre>
                     if (colunas==12)printf(" %f " , aux[linhas][
                          colunas]);
                     else printf(" %f &" , aux[linhas][colunas]);
                 printf(" \\\\ \n");
            }
   }
int main()
    int j=0;
    for(int i=-3;i<=3 && j<7;i++){
        transi(matriz_transicao[j],i);
        ganho(matriz_ganho[j],i);
        j++;
    float deltaFn[169];
    float fn[169];
    int from[169];
    for(int i=0;i<169;i++){</pre>
          fn[i]=0;
          from[i] = -100;
          deltaFn[i] = -100;
    }
    deltaFn[0]=0;
    int iter=0;
    while(CritParagem(deltaFn,0.1)){
        for(int j=0;j<7;j++){</pre>
             float qn[169];
             float pkfn1[169];
             funQn(matriz_transicao[j],matriz_ganho[j],qn);
             funPkFn_1(matriz_transicao[j],fn,pkfn1);
             funQk_PKfn_1(qn,pkfn1,matriz_qk_pkfn1[j]);
```

```
float new_fn[169];
        funFn(matriz_qk_pkfn1,new_fn,from);
        funDeltaFn(fn,new_fn,deltaFn);
        copiafn(new_fn,fn);
        iter++;
    }
   /* Imprime from e o deltaFn e o numero iteracoes */
  imprimeResultado(from,deltaFn,iter);
   /* Imprimir Maior e o Menor Delta Final */
   float menor=deltaFn[0];
   float maior=deltaFn[0];
    for(int i=1;i<169;i++){</pre>
        if (deltaFn[i]>maior) maior= deltaFn[i];
        if (deltaFn[i] < menor) menor = deltaFn[i];</pre>
    printf(" Menor DeltaFn %f , Maior Delta %f\n",menor,maior);
    // Imprime matriz transicao por filila e envio
                        a filial , 2 argumento
    // 1 argumento
                                                    quanto recebe da
       outra filial
    // Exemplo Filial 1 , Filial 1 -> 2 unidades
    // imprime_matriz_transicao(1,-2);
    // Imprime matriz contribuicao por filial e envio
    // 1 argumento
                        a filial , 2 argumento
                                                   quanto recebe da
       outra filial
    // Exemplo Filial 1 , Filial 1 -> 2 unidades
    // imprime_matriz_contribuicao(1,-2);
}
```

(A5) Outputs do programa