Machine Learning and Data Mining Naïve Bayes Classifier

Patricia Hoffman, PhD

Naïve Bayes Main Sources

- Slides from Tan, Steinbach, Kumar
 - http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap5 alternative classification.pdf
- Review of Probability
 - http://cs229.stanford.edu/section/cs229-prob.pdf
- R Package with Naïve Bayes
 - R Functions: NaiveBayes() & partimat()
 - http://cran.r-project.org/web/packages/klaR/klaR.pdf
- Project Bayesian Networks for Data Mining
 - https://online.ucsc-extension.edu/access/content/group/2a4f48bb-81ce-4236-b22b-758d12720b22/Project/Papers/Tutorial-BayesianNetworks.pdf

Naïve Bayes – Example Code

- NaiveBayesClassifier.R
 - Used to Classify the Iris Data
 - NaiveBayes()
 - partimat()

Review of Notation

Logical

- \forall for all
- ∃ there exists
- ! unique
- \wedge and: The statement $A \wedge B$ is true if A and B are both true
- or: The statementA V B is true if A or B(or both) are true

Set Theory

- Ø empty or null set
- ∪ union
- ∈ element of
- ∉ not an element of
- \ A\B means the set that contains all those elements of A that are not in B.

Axioms of Probabilities

- A Probability Measure P[] is a function that maps events in the Sample Space S to real numbers such that
- Axiom 1: For any event A, $P[A] \ge 0$
- Axiom 2: P[S] = 1
- Axiom 3: For any countable collection A1,A2, ... of mutually exclusive events $P[A1 \cup A2 \cup ...] = P[A1] + P[A2] + ...$

If $A \cap B = \emptyset = P[A \cup B] = P[A] + P[B]$

Theorems

• $P[\varnothing] = 0$

P[A^c] = 1 - P[A]
 where A^c is the compliment of A

• If $A \subset B \Rightarrow P[A] \leq P[B]$

Conditional Probability

P[A|B] = Conditional probability describes our knowledge of A when we know that B has occurred but we still don't know the precise outcome

Conditional Probability

only defined if P[B] ≠ 0

$$P[A|B] = P[A \cap B]/P[B]$$

$$1/2 = (1/9) / 2/9$$

Develop Intuition for Bayes Rule

```
Given P[B] \neq 0
   then
P[A|B] = P[A \cap B]/P[B]
  Multiply both sides by P[B]
P[A \cap B] = P[A|B]P[B]
But the same is true if P[A] \neq 0
 then
P[B|A] = P[A \cap B]/P[A]
           = P[A|B]P[B] /P[A]
```

Bayes Rule $(P[B] \neq 0)$

 $P[A \cap B] = P[A|B]P[B]$

 $1/9 = \frac{1}{2} \times \frac{2}{9}$

Bayes Rule

Given P[A] ≠ 0, then
P[B|A] = P[A|B]P[B] /P[A]

Example of Bayes Theorem

• Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- Prior probability of any patient having meningitis is 1/50,000
- Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

 Because the patient has a stiff neck, the probability that the patient has meningitis has gone up by a factor of 10

Lets Make a Deal

Three Doors A, B, C

- One Grand Prize ... Car

Contestant picks a door. Monet Hall opens one of the other doors ... it is a booby prize

Should Contestant stay with original door or switch?

Contestant picks door A

```
Monty opens door B;
  Should contestant switch to door C?
Solution: Compare Probabilities
  grand prize behind door A with
  grand prize behind door C
Preliminaries:
   Probability(Monty opens door B) = P(oB)
   Probability(Car behind door X) = P(X)
```

Answer: Switch ... Probability Car behind door C is greater

P(Monty opens door B) = P(oB)

$$= P(oB|A)P(A) + P(oB|B)P(B) + P(oB|C)P(C)$$

$$= (1/2)(1/3) + (0)(1/3) + (1)(1/3)$$

$$= 1/2$$

$$P(\text{car in A}|\text{open B}) = \frac{P(\text{oB}|A)P(A)}{P(\text{oB})} = \frac{(1/2)(1/3)}{1/2} = 1/3$$

$$P(\text{car in C}|\text{open B}) = \frac{P(oB|C)P(C)}{P(oB)} = \frac{(1)(1/3)}{1/2} = 2/3$$

Intuitive Solution

Think of it as two choices

Choice 1) Door A has a probability of 1/3 having the car behind it. (as each of the doors are equally likely)

Choice 2) Not Door A has a probability of 2/3. Monty puts the full 2/3 probability on the exact door to switch over to.

Bayesian Classifiers

 Consider each attribute and class label as random variables

- Given a record with attributes (A₁, A₂,...,A_n)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes $P(C \mid A_1, A_2,...,A_n)$

• Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$
- How to estimate P(A₁, A₂, ..., A_n | C)?

c Tan, Steinbach, Kumar Introduction to Data Mining

Conditional Independence

Consider three Random Variables: A, B, and C

A is conditionally independent of B, given C, if $P[A|B \cap C] = P[A|C]$

Example:

Reading ability may depend on arm length, however if age is fixed then reading ability is independent of reading ability

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_i) P(A_2 | C_i)... P(A_n | C_i)$
 - Can estimate $P(A_i | C_j)$ for all A_i and C_j .
 - New point is classified to C_i if $P(C_i) \prod P(A_i \mid C_i)$ is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(C) = N_c/N$$

$$-$$
 e.g., $P(No) = 7/10$, $P(Yes) = 3/10$

For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}|/N_c$$

- where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
- Examples:

How to Estimate Probabilities from Data?

For continuous attributes:

- Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
- Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
- Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(A_i|C)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \int_{120}^{120+\varepsilon} \frac{1}{\sqrt{2\pi}(54.54)} e^{-\frac{(x-110)^2}{2(2975)}} dx \approx 0.0072\varepsilon$$

The constant \mathcal{E} appears in each and as we are trying to find the maximum only 0.0072 is considered

Example of Naïve Bayes Classifier

Given a Test Record:

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
```

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
    P(X|Class=No) = P(Refund=No|Class=No)
    × P(Married| Class=No)
    × P(Income=120K| Class=No)
    = 4/7 × 4/7 × 0.0072 = 0.0024
```

P(X|Class=Yes) = P(Refund=No| Class=Yes)
 × P(Married| Class=Yes)
 × P(Income=120K| Class=Yes)
 = 1 × 0 × 1.2 × 10⁻⁹ = 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)Therefore P(No|X) > P(Yes|X)=> Class = No

Naïve Bayes Classifier

- If one of the conditional probability is zero,
 then the entire expression becomes zero
- Probability estimation:

Original:
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace :
$$P(A_i | C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate :
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

c: number of classes

p: prior probability

m: parameter

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals
$$P(A | M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) >P(A|N)P(N)

=> Mammals

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

Iris Data: 50 samples from each of three species Setosa, Versicolor, Virginica

5 columns of data: sepal length, sepal width, petal length, sepal width, species

Naïve Bayes – Example Code

- NaiveBayesClassifier.R
 - Used to Classify the Iris Data
 - NaiveBayes()
 - partimat()

Distributions for Petal Width

Partition Plot

Error Comparisons

```
Ridge Regression Multi-Class
(linear basis function)
Error 43/150 = 0.287
```

```
Much Better
NaiveBayes(Species ~ ., data = iris)
Error 0.04
```