Hierarchy of Automata from RE to TM

Automaton Type	Formal Definition	Recognized Languages	Grammar
Example Language			
Regular Expressions	$L = \{ w \in \Sigma^* \mid$	Regular Languages	Regular Grammar
(RE)	w matches a regular expression $\}$		
${a,b}^*$, the set of all			
strings over $\{a, b\}$			
Finite Automaton (FA)	$M = (Q, \Sigma, \delta, q_0, F)$	Regular Languages	Regular Grammar
$\{a^nb^n \mid n=1\}$, strings of			
the form $a^n b^n$			
Pushdown Automaton	$M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$	Context-Free Languages (CFL)	Context-Free Grammar (CFG)
(PDA)	(4, =, 1, 0, 40, =0, 1)	contont free Bangaages (ef B)	
$\{a^nb^n \mid n \ge 0\}$, balanced			
parentheses or			
palindromes			
Linear Bounded	$M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$	Context-Sensitive Languages	Context-Sensitive Grammar
Automaton (LBA)		(CSL)	(CSG)
$\{a^nb^nc^n\mid n\geq 1\}, \text{ equal}$			
numbers of $a, b,$ and c			
Turing Machine (TM)	$M = (Q, \Sigma, \Gamma, \delta, q_0, F)$	Recursively Enumerable Languages (REL)	Unrestricted Grammar
The halting problem: the set of TMs that halt on a given input			

Table 1: Comparison of Automata from RE to TM

Hierarchy Summary

Regular Expressions (RE) < Finite Automaton (FA) < Pushdown Automaton (PDA) < Linear Bounded Automaton (LBA) < Turing Machine (TM)

This hierarchy shows that each machine type can recognize all languages recognized by the machines below it and more. The Turing machine is the most powerful, capable of recognizing the broadest class of languages.