Técnicas de Inferencia Estadística II

Tema 7. Contrastes para múltiples muestras

M. Concepción Ausín Universidad Carlos III de Madrid

Grado en Estadística y Empresa Curso 2014/15

Contenidos

1. Introducción

2. Contrastes paramétricos ANOVA

3. Contraste no paramétrico de Kruskall-Wallis

Introducción: Contrastes para múltiples muestras

En este tema vamos a abordar el problema de homogeneidad a partir de k muestras independientes:

Muestra de
$$Y_1:\{y_{11},\ldots,y_{1n_1}\}$$

Muestra de $Y_2:\{y_{21},\ldots,y_{2n_2}\}$
 \ldots
Muestra de $Y_k:\{y_{k1},\ldots,y_{kn_k}\}$

Como se trata de k muestras independientes, los tamaños de cada muestra , n_1 , n_2 ,..., n_k , pueden ser diferentes.

Introducción: Contrastes para múltiples muestras

Ejemplo 7.1.

Se toman medidas del peso de un tipo de estorninos en 4 regiones para examinar si existen diferencias entre las variedades de cada región:

	Peso									
Loc. 1	78,	88,	87,	88,	83,	82,	81,	80,	80,	89
Loc. 2	78,	78,	83,	81,	78,	81,	82,	76,	76	
Loc. 3	79,	73,	79,	75,	77,	78,	80,	78,	83,	84
Loc. 4	77,	69,	75,	70,	74,	83,	80			

Suponemos que las k variables son normales con la misma varianza:

$$\begin{aligned} Y_1 &\sim \textit{N}\left(\mu_1, \sigma^2\right) \\ Y_2 &\sim \textit{N}\left(\mu_2, \sigma^2\right) \\ &\cdots \\ Y_k &\sim \textit{N}\left(\mu_k, \sigma^2\right) \end{aligned}$$

Queremos resolver el siguiente contraste:

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_k$$

 $H_1:$ Alguna media es diferente

De este modo, se puede expresar que cada observacón es:

$$y_{ij} = \mu_i + \epsilon_{ij}$$

donde:

- y_{ij} representa la observación j-ésima del grupo i.
- μ_i es la media del grupo i.
- ϵ_{ij} es el error de la la observación j-ésima del grupo i.

Se asume que los errores son normales, independientes con la misma varianza:

$$\epsilon_{ii} \sim N(0, \sigma^2)$$

- El Análisis de la Varianza (ANOVA) decide si los grupos son iguales comparando la distancia entre las medias en función de varianza de los grupos.
- Grupos con la misma diferencia de medias serán probablemente distintos si sus datos tienen menos variabilidad.

Ejemplo 7.2.

Pintar un gráfico que presente los boxplots de los pesos de cada región.

Calculamos la media de cada grupo y la media total:

Muestra de
$$Y_1: \{y_{11}, \dots y_{1n_1}\} \to \bar{y}_1. = \frac{\sum_{j=1}^{n_1} y_{1j}}{n_1}$$

Muestra de $Y_2: \{y_{21}, \dots y_{2n_2}\} \to \bar{y}_2. = \frac{\sum_{j=1}^{n_2} y_{2j}}{n_2}$

...

Muestra de $Y_k: \{y_{k1}, \dots y_{kn_k}\} \to \bar{y}_k. = \frac{\sum_{j=1}^{n_k} y_{kj}}{n_k}$

Toda la muestra : $\{y_{11}, \dots, y_{kn_k}\} \to \bar{y} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}}{n_1 + \dots + n_k}$

Vemos que cada observación es:

$$y_{ij} - \overline{\overline{y}} = (y_{ij} - \overline{y}_{i.}) + (\overline{y}_{i.} - \overline{\overline{y}})$$

Luego, elevando al cuadrado y sumando para todas las observaciones:

$$\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \overline{\overline{y}})^{2} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \overline{y}_{i \cdot})^{2} + \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (\overline{y}_{i \cdot} - \overline{\overline{y}})^{2} + 2 \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \overline{y}_{i \cdot}) (\overline{y}_{i \cdot} - \overline{\overline{y}})$$

El primer término se llamavariación total o suma de cuadrados total (TSS):

$$TSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \left(y_{ij} - \overline{\overline{y}} \right)^2$$

El segundo término se llama variación explicada o suma de cuadrados explicado (ESS):

$$ESS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$

y el último término se llama variación no explicada o suma de cuadrados residual (RSS):

$$RSS = \sum_{i=1}^{k} \sum_{i=1}^{n_i} (\bar{y}_{i \cdot} - \overline{\bar{y}})^2$$

De modo que:

$$TSS = ESS + RSS$$

El estadístico de contraste es:

$$\frac{\frac{\textit{ESS}}{k-1}}{\frac{\textit{RSS}}{n-k}} \sim_{\textit{H}_0} \textit{F}_{k-1,n-k}$$

Toda la información se resume en la tabla ANOVA:

Fuentes	S. Cuadrados	gos Lib.	Varianzas	F
Explicada	$ESS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$	k – 1	$\hat{s}_e^2 = \frac{ESS}{k-1}$	$\frac{\hat{s}_e^2}{\hat{s}_R^2}$
Residual	$RSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{y}_{i\cdot} - \overline{\bar{y}})^2$	n – k	$\hat{s}_R^2 = \frac{RSS}{n-k}$	
Total	$TSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{\overline{y}})^2$	n-1	\hat{s}_y^2	

Ejemplo 7.3.

Contrastar la hipótesis de que haya diferencias entre las medias del peso de los estorninos en las distintas localidades.

Contraste no paramétrico de Kruskall-Wallis

Suponemos k variables, no necesariamente normales,

$$Y_1 \sim F_1$$

 $Y_2 \sim F_2$
 \cdots
 $Y_k \sim F_k$

Queremos resolver el siguiente contraste:

$$H_0: F_1(y) = F_2(y) = \ldots = F_k(y)$$

 $H_1:$ Alguna distribución es diferente

Contraste no paramétrico de Kruskall-Wallis

El estadístico de contraste es:

$$\mathcal{K} = (n-1) rac{\displaystyle\sum_{i=1}^{k} \displaystyle\sum_{j=1}^{n_{i}} (ar{r}_{i}. - ar{r})^{2}}{\displaystyle\sum_{i=1}^{k} \displaystyle\sum_{j=1}^{n_{i}} (r_{ij} - ar{r})^{2}}
ightarrow \chi_{k-1}^{2}$$

donde r_{ij} es el rango de la observación j-ésima del grupo i, \bar{r}_i . es la media de los rangos de las observaciones del grupo i y \bar{r} es la media de todos los rangos.

El test de Kruskall-Wallis se puede ver como una extensión del contraste de Mann-Whitney-Wilcoxon al caso de múltiples muestras.

Contraste no paramétrico de Kruskall-Wallis

Ejemplo 7.4.

Contrastar la hipótesis de que haya diferencias entre las distribuciones del peso de los estorninos en las disitintas localidades.