

partial isometry on Hilbert spaces

Canonical name PartialIsometryOnHilbertSpaces

Date of creation 2013-03-22 18:35:00 Last modified on 2013-03-22 18:35:00 Owner karstenb (16623) Last modified by karstenb (16623)

Numerical id 7

Author karstenb (16623)

Entry type Definition Classification msc 47C10 **Definition 1.** Let \mathscr{H} and \mathscr{K} be Hilbert spaces. An operator $W \in L(\mathscr{H}, \mathscr{K})$ is called a *partial isometry* if W is an isometry on $M = (\ker W)^{\perp}$. We then call $M = (\ker W)^{\perp}$ the *initial space* and N = WM final space of W.

We need to show that the above definition is compatible with the general definition of partial isometry on rings. Indeed we have the following:

Proposition 1. $W \in L(\mathcal{H}, \mathcal{K})$ is a partial isometry iff W^*W is a projection from \mathcal{H} to M.

Proof. We have:

W partial isometry with initial space M $\Leftrightarrow \langle Wf, Wg \rangle = \langle f, g \rangle \ \forall \ f, g \in M$ $\Leftrightarrow \langle W^*Wf, g \rangle = \langle f, g \rangle \ \forall \ f \in M, g \in \mathscr{H}$ $\Leftrightarrow W^*Wf = f, f \in M$ and $W^*Wf = 0, f \in M^{\perp} = \ker W$

Remark 1. If $W \in L(\mathcal{H}, \mathcal{K})$ is a partial isometry with initial space M and final space N we have:

$$W^*(Wf) = f \ \forall \ f \in M$$
$$\ker W^* = (\operatorname{ran} W)^{\perp} = N^{\perp}$$

Thus N is the initial space and M the final space of W^* .