Theo1

Nick Daiber

October 17, 2024

1 16.10

```
A \times B = \{(a,b) | a \in A, b \in B\}(A \times B) \times C = A \times (B \times C)\mathbb{N} = \mathbb{N} \cup \{0\}2^A = P(A)
```

Nichttriviale Teilmenge: $A \subset B \land A \neq B \land A \neg \emptyset$

2 Formale Sprachen (17.10)

- Alphabet Σ
- Σ^* alle Wörter
- ε leeres wort
- Σ^k Wörter der Länge k (als n-Tupel)
- \bullet |w| die Länge des Wortes
- $w^n = w \cdot w \cdot \ldots \cdot w$

Monoid ist eine Menge mit einer assoziativen Verknüpfung und einem Neutralen Element Hier: Verknüpfung = Konkatenation

 Σ^* ist abzählbar unendlich, die Menge aller Sprachen ist $P(\Sigma^*)$ und ebenfalls abzählbar unendlich

2.1 Grammatiken

- $G = (V, \Sigma, P, S)$
- \bullet V Nichtterminale
- Σ Terminale
- ullet Produktionsregeln

- Typ 0: Beliebig
- Typ 1: |u| < |v|, Wort wird Länger
- Typ 2: (u, v) mit $u \in V$
- Typ 3: $(u,v), v=(\Sigma,v_2\in V)$ oder $v\in \Sigma,$ (max 1 nichtterminal)