Feedback Techniques and Op-amps

Concept of feedback

Valve example

- As the water nears the specified level, the valve is closed.
- Negative feedback is most commonly used to control systems.

Types of feedback

What is feedback?

 Feedback is a technique where a proportion of the output of a system (amplifier) is fed back and recombined with input.

- There are two types of feedback amplifier.
 - OPositive feedback
 - ONegative feedback

Types of feedback...

1.Positive Feedback

 Positive feedback is the process when the output is added to the input, amplified again, and this process continues.

 <u>Example</u>: In a PA system, you get feedback when you put the microphone in front of a speaker and the sound gets uncontrollably loud (you have probably heard this unpleasant effect).

Types of feedback...

2. Negative Feedback

 Negative feedback is when the output is subtracted from the input.

- Example: Speed control. If the car starts to speed up above the desired set-point speed, negative feedback causes the throttle to close, thereby reducing speed; similarly, if the car slows, negative feedback acts to open the throttle.
- The use of negative feedback reduces the gain. Part of the output signal is taken back to the input with a negative sign.

Types of feedback...

Negative Feedback Gain

The gain with feedback (or closed-loop gain) A_f as follows:

$$X_o = A.X_i$$
 $X_i = X_s - X_f$ $X_f = \beta.X_o$

$$A_f = \frac{X_o}{X_s} = \frac{A}{1 + \beta A}$$

The quantity βA is called the loop gain, % A and the quantity (1+ βA) is called the amount of feedback.

Advantages of Negative Feedback

1. Stabilization of gain

 make the gain less sensitive to changes in circuit components e.g. due to changes in temperature.

2. Reduce non-linear distortion

 make the output proportional to the input, keeping the gain constant, independent of signal level.

3. Reduce the effect of noise

 minimize the contribution to the output of unwanted signals generated in circuit components or extraneous interference.

Advantages of Negative Feedback....

- 4. Extend the bandwidth of the amplifier
 - O Reduce the gain and increase the bandwidth

5. Modification the input and output impedances

 raise or lower the input and output impedances by selection of the appropriate feedback topology.

Disadvantages of Negative Feedback

- 1. Circuit gain Reduce
- 2. Stability Tend to be oscillate

Feedback Amplifier Topologies Vi Vi yanger Havi Gurrent Basic Gurrent Basic Gurrent G

Feedback Topologies

Feedback relationship

	Gain	Input resistance	Output resistance
Without feedback	A	R _i	R _o
Series-shunt	$A_f = \frac{A}{1 + \beta A}$	$R_{if} = R_i (1 + \beta A)$	$R_{of} = \frac{R_o}{1 + \beta A}$
Series-series	$A_f = \frac{A}{1 + \beta A}$	$R_{if} = R_i (1 + \beta A)$	$R_{of} = R_o (1 + \beta A)$
Shunt-shunt	$A_f = \frac{A}{1 + \beta A}$	$R_{if} = \frac{R_i}{1 + \beta A}$	$R_{of} = \frac{R_o}{1 + \beta A}$
Shunt-series	$A_f = \frac{A}{1 + \beta A}$	$R_{if} = \frac{R_i}{1 + \beta A}$	$R_{of} = R_o (1 + \beta A)$

10