Outline of Selected Formulae

Instructions:

- (1) Not all formulae that are used in the examination are listed here. Some easy-to-remember formulae are not listed.
- (2) Also not all formulae listed here are used in the examination. Some may not be used at all, but still listed here in order to make the list complete.
- (3) The formulae are only outlined without any relevant details.
- Different forms of interpolating polynomial are
 - (1) $p_n(x) = \sum_{k=0}^n f(x_k) l_k(x)$, where $l_k(x)$ are appropriately defined polynomials.

(2)
$$p_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k] \prod_{i=0}^{k-1} (x - x_i)$$
 where $f[x_0, x_1, \dots, x_k]$ are given by

$$f[x_0, x_1, \cdots, x_k] = \frac{f[x_1, x_2, \cdots, x_k] - f[x_0, x_1, \cdots, x_{k-1}]}{x_k - x_0}$$

or

$$f[x_0, x_1, \cdots, x_k] = \int \cdots \int f^{(k)}(t_0 x_0 + t_1 x_1 + \cdots + t_k x_k) dt_1 \cdots dt_k$$

where $\tau_k \subset \mathbb{R}^k$ is an appropriately defined set and t_0 is given in terms of t_j , $j = 1, 2, \dots, k$.

The mathematical error is

$$ME_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i).$$

• Formulae for some quadrature rules and their mathematical errors:

Formula	Mathematical Error
$I_R(f) := (b - a)f(a)$	$\frac{f'(\eta)(b-a)^2}{2}$
$I_T(f) := (b-a)\left(\frac{f(a)+f(b)}{2}\right)$	$-\frac{f''(\eta)(b-a)^3}{12}$
$I_S(f) := \frac{b-a}{6} \left\{ f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right\}$	$-\frac{f^{(4)}(\eta)(b-a)^5}{2880}$

- Some ODE Methods are as follows:
 - (1) $y_{j+1} = y_{j-1} + 2hf(x_j, y_j)$
 - (2) $y_{j+1} = y_j + \frac{h}{2}(f(x_j, y_j) + f(x_{j+1}, y_{j+1}))$
 - (3) $y_{i+1} = y_i + hf(x_i, y_i)$
 - (4) $y_{j-1} = y_j hf(x_j, y_j)$
 - (5) $y_{j+1} = y_j + \frac{h}{2}f(x_j, y_j) + \frac{h}{2}[f(x_{j+1}, y_j + hf(x_j, y_j))]$
 - (6) $y_{j+1} = y_j + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ where $k_1 = hf(x_j, y_j)$, $k_2 = hf(x_j + \frac{h}{2}, y_j + \frac{k_1}{2})$, $k_3 = hf(x_j + \frac{h}{2}, y_j + \frac{k_2}{2})$, and $k_4 = hf(x_j + h, y_j + k_3)$.
- Infinite norm definition: $||f||_{\infty,I} = \max_{x \in I} |f(x)|$.