Prova azul.

Gabarito de matemática ENEM 2021.

136.E

Resposta em vídeo.

137.E

Resposta em vídeo.

138.

Questão anulada.

139.A

Calculando a média por franquia de cara um dos tipos

Lanche I:

$$\frac{415 + 415 + 415}{3} = \frac{3 \cdot 415}{3} = 415$$

Lanche II:

$$\frac{395 + 445 + 390}{3} = \frac{1230}{3} = 410$$

Lanche III:

$$\frac{425 + 370 + 425}{3} = \frac{1220}{3} \approx 406,7$$

Lanche IV:

$$\frac{430 + 370 + 433}{3} = \frac{1233}{3} = 411$$

Lanche V:

$$\frac{435 + 425 + 420}{3} = \frac{1280}{3} \approx 426.7$$

Portanto, o tipo que apresentou a maior média foi o tipo V

Resposta em vídeo.

140.B

Em primeiro lugar, vamos calcular a **média mensal (M)** de faturamento deste supermercado utilizando o segundo quadro do enunciado como referência.

Lembre-se, a média mensal M é dada pelo somatório de faturamentos mensais dividido pelo número de meses.

$$M = 3.5 \times 3 + 2.5 \times 2 + 5 \times 2 + 3 \times 4 + 7.5 \times 1$$

$$3 + 2 + 2 + 4 + 1$$

141.A

Podemos observar pela tabela que na viagem II, ao diminuir 1 calça e 1 sapato, a quantidade de

camisetas aumentou em 6 ficando com 18 camisetas, 3 calcas e 2 sapatos.

Coma queremos

levar 2 calcas e 1 sapato, em relação a viagem II também estamos diminuindo o número de

calças e sapatos em 1, aumentando em 6 o número de camisetas Logo serão 18 camisetas + 6 = 24 camisetas.

Assim, essa pessoa irá levar 24 camisetas, 2 calças e 1 sapato.

Resposta em vídeo.

142.B

Jogando zi dardos, a probabilidade de acertar o alvo pelo menos uma vez.

$$1 - \left(\frac{1}{2}\right)^n \ge \frac{9}{10} \Rightarrow -\left(\frac{1}{2}\right)^n \ge \frac{9}{10} - 1 \Rightarrow \left(\frac{1}{2}\right)^n \le \frac{1}{10} \Rightarrow \frac{1}{2^n} \le \frac{1}{10} \Rightarrow 2^n \ge 10$$

Como
$$2^1 = 2$$
, $2^2 = 4$, $2^3 = 8$ e $2^4 = 16$, temos que $n = 4$.

Resposta em vídeo.

143.D

Calculando o volume de água em cada reservatório, o maior deles será o que tem maior volume de água:

Reservatório I: 20% de $105 = 0.2 \bullet 105 = 21$ bilhões de litros Reservatório I: 30% de $100 = 0.3 \bullet 100 = 30$ bilhões de litros Reservatório III: 50% de 20 = 0.5 + 20 = 10 bilhões de litros

Reservatório IV: 40% de 80 = 0,4 •80 = 32 bilhões de litros

Reservatório V: 60% de 40 = 0,6 + 40 = 24 bilhões de litros

Podemos observar que o reservatório IV tem maior volume de água.

144.D

Calculando a média ponderada:

$$M = \frac{9 \cdot 6 + 18 \cdot 12 + 27 \cdot 9}{6 + 9 + 12} = \frac{54 + 216 + 243}{27} = \frac{513}{27} = 19$$

Logo, a média é igual 19

Resposta em vídeo.

145.A

Resposta em vídeo.

146.F

Tomando a caixa d'agua i de profundidade H e raio R, obtemos que o volume será

 $\mathcal{V}_I = \pi R^2 \cdot H$ Calculando os volumes II, III, IV e V em função de I, achamos

Modelo II) terá o dobro da profundidade e metade da área

$$V_H = 2H \cdot \frac{\pi R^2}{2} = \pi R^2 \cdot H = V_I$$

$$V_H = 2H \cdot \frac{\pi R^2}{2} = \pi R^2 \cdot H = V_I$$
 Modelo III) terà dobro da profundidade e metade do raio da base
$$V_{HI} = 2H \cdot \pi \cdot \left(\frac{R}{2}\right)^2 = 2H \cdot \pi \cdot \frac{R^2}{4} = \frac{\pi R^2 \cdot H}{2} = \frac{V_I}{2}$$
 Modelo IV) metade da profundidade e o dobro da área da base

$$V_{IV} = \frac{H}{2} \cdot 2 \cdot \pi R^2 = \pi R^2 \cdot H = V_I$$

Modelo V) metade da profundidade e dobro do raio da base

$$V_{t'} = \frac{H}{2} \cdot \pi \cdot (2R)^2 = \frac{H}{2} \cdot \pi \cdot 4R^2 = 2 \cdot \pi R^2 \cdot H = 2 \cdot V_t$$

Logo, quem possui a maior capacidade é o modelo V, portanto será o escolhido.

Resposta em vídeo.

147.C

As letras com maior frequência são A, E, O e S que codificadas ficam D, H, R e V.

Resposta em vídeo.

148.C

Temos 3 hectares dos quais 0,9 ha serão usados para construção de ruas, então sobra 3 – 0,9 = 2.1 ha para os terrenos.

Foi dado que 1 ha = $10\,000\,\text{m}^2$, então 2,1 ha = $21000\,\text{m}^2$

Desses 21 000 m², iremos dividir em terrenos de 300 m? de área, logo a quantidade de terrenos

será iqual a: 21000/300= 70 terrenos

Édito no texto que os 20 primeiros terrenos serão vendidos por R\$ 20 000,00 cada, então o

valor que será obtido com a venda desses 20 terrenos é igual a 20 - 20000 = R\$ 400 000.00

Como são 70 terrenos e 20 já foram vendidos, então sobram 50 terrenos e eles serão vendidos

por R\$ 30 000,00, então o valor que será obtido com a venda desses 50 terrenos é igual a 50 - 30000 = R\$ 1 500 000.00

Portanto, o valor total, em real, obtido pelo fazendeiro com a venda de todos os terrenos será

igual a

400 000,00 - 1 500 000.00 - 1 900 000.00

Resposta em vídeo.

149.B

O lucro é calculado por lucro = receita – custo

Analisando o gráfico, podemos observar que o maior lucro foi em fevereiro

lucro de fevereiro = 20 - 10 = 10

Portanto, o lucro mensal para os próximos meses deve ser maior ou igual mês de Fevereiro.

Resposta em vídeo.

150.C

No período de 2005 à 2009 o aumento foi de

519.2 - 236 = 283.2

Para calcular o aumento percentual, podemos fazer uma regra de três simples:

$$236x = 28320 \implies x = \frac{28320}{236} = 120$$

Logo, o aumento foi de 120 %

Resposta em vídeo.

151.C

Cada retângulo tem base 100. Somando as alturas dos retângulos, temos um total de 105. Logo,

a área total dos retângulos é 100 – 105 = 10500. A metade desse valor é 5.250.

Quando tomamos p = 600, temos que a área dos retângulos até a marca de 600 é:

100 + 5 + 100 • 10 + 100 -5 − 2.000. Ou seja, não nos serve, pois 2.000 < 5.250.

Quando tomamos p – 700, temos que a área dos retângulos até a marca de 700 é:

100 − 5 + 100 • 10 + 100 − 5 + 15 • 100 − 3.500. Ou seja, não nos serve, pois 3.500 < 5.250.

Tomando p = 800, temos que as áreas dos retângulos seria 100 - 5 + 100 - 10 + 100 - 5 + 15

100 + 20 - 100 = 5.500. Esse valor é suficiente, pois 5.500 > 5.250

Resposta em vídeo.

152.D

Queremos saber a soma das duas maiores soluções da equação (a \(^b\))*(b \(^a\)) = 0

Achando
$$a^{\Delta}b = a^2 + ab - b^2 e b^{\Delta}a = b^2 + ab - a^2$$

Então,
$$(a \triangle b)*(b \triangle a) = 0 \rightarrow (a \triangle b)(b \triangle a)+a \triangle b$$

$$(a^2 + ab - b^2)(b^2 + ab - a^2) + a^2 + ab - b^2$$

Como b = 1, substituindo

$$(a^2 + a - 1)(1 + a - a^2) + (a^2 + a - 1) = 0$$

$$(a^2 + a - 1)(1 + a - a^2 + 1) = 0$$
 -> $(a^2 + a - 1)(a - a^2 + 2) = 0$

Para esse produto ser igual a zero, então $(a^2 + a - 1) = 0$

Teremos que

$$a = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2} = \frac{-1 \pm \sqrt{5}}{2}$$

$$a = \frac{-1+3}{-2} = \frac{2}{-2} = -1$$

 $a = \frac{-1+3}{-2} = \frac{2}{-2} = -1$ Separando na soma e na subtração: $a = \frac{-1-3}{-2} = \frac{-4}{-2} = 2$

Podemos observar que as duas maiores raízes são 2 e

$$2 + \frac{-1 + \sqrt{5}}{2} = \frac{4 - 1 + \sqrt{5}}{2} = \frac{3 + \sqrt{5}}{2}$$

Resposta em vídeo.

153.C

A escala é a razão entre a distância na representação e na realidade, em centímetros. Como 38,4m = 3840. Dessa forma,

$$E = \frac{160 \ cm}{3840 \ cm} = \frac{1}{24}$$

A escala 1:24 é a mostrada em C.

Resposta em vídeo.

154.D

De 1 990 para 2 000, o aumento no número de médicos é 292 000 – 219 000 = 73 000.

De 2 000 para 2 010, o aumento no número de médicos

é 365 000 - 292 000 = 73 000.

Assim, de 2 010 para 2 020, o aumento será

 $\frac{73\ 000 + 73\ 000}{2} = 73\ 000$. Assim, o número de médicos

em 2 020 será 365 000 + 73 000 = 438 000.

Para a população brasileira, de 1 990 para 2 000, o aumento é $170\ 000 - 147\ 000 = 23\ 000\ (milhar)$.

De 2 000 para 2 010, o aumento será de:

 $191\,000 - 170\,000 = 21\,000$ (milhar).

Logo, o aumento de 2 010 para 2 020 será

$$\frac{23\ 000 + 21\ 000}{2} = 22\ 000 \ .$$

Assim, em 2 020 teremos $191\ 000 + 22\ 000 = 213\ 000$ (em milhar). Desse modo, o número de médicos por mil

habitantes (em 2 020) será
$$\frac{438\ 000}{213\ 000} \cong 2,06$$

Resposta em vídeo.

155.C

50% no preço do quilograma de batata-doce: 5 + 2,50 = R\$7,50.

7,50 -> 1000

x -> 600

x = 4,50

R\$4,50 de Batata doce mais R\$2,00 de hortaliça = R\$6,50

Sobrando R\$3,50 para o frango.

Resposta em vídeo.

156.A

O período da função é $\frac{3\pi}{2} - \frac{\pi}{2} = \frac{2\pi}{2} = \pi$. Logo, metade de 2π . Isso implica em dizer que $\frac{2\pi}{T} = \pi$ - > T = 2.

O ponto (0, -3) pertence à função. Isso implica em dizer que, sendo a função do tipo cossenóide, temos que $A\cos(2.0) = -3 -> A \cdot 1 = -3 -> A = -3$.

Assim, a função é P(t) = -3cos (2t).

157.E

Para essa questão, devemos somar os valores em cada coluna e o maior valor será a região selecionada, pois em $^{[a_{ij}]}$, o j (coluna) representa o número das regiões.

$$A = \begin{bmatrix} 0 & 4 & 2 & 2 & 5 \\ 0 & 0 & 6 & 2 & 3 \\ 2 & 2 & 0 & 3 & 0 \\ 1 & 0 & 2 & 0 & 4 \\ 1 & 2 & 0 & 4 & 0 \end{bmatrix}$$

Coluna 1: 0+0+20+10+10=40 Coluna 2: 40+0+20+1+20=80 Coluna 3: 20+60+0+20=100 Coluna 4: 20+20+30+40=100 Coluna 5: 50+30+0+40+0=120

Portanto, como na coluna 5 a soma deu 120, então ela é a região escolhida, pois foi a região que foi o destino do maior fluxo de famílias.

Resposta em vídeo.

158.B

O avião A leva 200 passageiros e seu consumo é de 0,02 litros por passageiro por quilômetro. Assim, consome-se 2000 . 200 . 0,02 = 8.000 L.

O avião B leva 200 . 1,1 = 220 passageiros e seu consumo é de 0,02 . 0,9 = 0,018 litros por passageiro por quilômetro. Assim, consome-se 2000 . 220 . 0,018 = 7.920 L.

Tomando 8.000 L como 100%, temos que

$$\frac{8.000}{100} = \frac{7.920}{x} \Rightarrow x = \frac{792.000}{8.000} = 99$$

7.920 é 99% de 8.000. Ou seja, houve redução de 1%.

159.A

Montando a regra de 3

$$4 - - 3$$

como o tempo é inversamente proporcional ao número de pessoas trabalhando, temos que multiplicar reto

$$2x = 4 \cdot 3 -> 2x = 12 -> x = 6 \text{ seg}$$

Logo, com um dos grupos reduzidos o tempo gasto é igual a 6 seg.

Resposta em vídeo.

160.D

Para calcular o gasto com cada suplemento, é necessário considerar a quantidade de sachês necessários para suprir a falta de minerais e os preços dos sachês. Dessa forma, temos:

	Mineral A (800g)	Mineral B (1000g)	Mineral C (1200g)	Quantidade mínima de sachés × preço do saché	Gasto total
Suplemento 1	800 50 = 16	$\frac{1000}{100} = 10$	$\frac{1200}{200} = 6$	16 × 8\$ 2,00	R\$ 32,00
Suplemento II	$\frac{800}{800} = 1$	$\frac{1000}{250} = 4$	$\frac{1200}{200} = 6$	6 × £5 3,00	R\$ 18.00
Suplementa III	$\frac{800}{250} = 3.2$	$\frac{1000}{1000} = 1$	$\frac{1200}{300} = 4$	4 × 85 5,00	RS 20,00
Suplemento IV	$\frac{800}{600} = 1.33$	$\frac{1000}{500} = 2$	$\frac{1200}{1000} = 1,2$	2 × R\$ 6,00	RS 12,00
Suplemento V	$\frac{800}{400} = 2$	1000 800 = 1,25	$\frac{1200}{1200} = 1$	2 × R\$ 8,00	R\$ 16,00

Para economizar, o cliente deve comprar o suplemento IV.

Resposta em vídeo.

161.E

Como a cada redução de 1 real do valor unitário do ingresso aumenta o público em 40 pessoas, temos que a arrecadação R varia com o valor do ingresso conforme a seguinte relação:

$$R(x) = \underbrace{(200 + 40x)}_{público} \cdot \underbrace{(20 - x)}_{preço}$$
do
ingresso

Logo, realizando o produto, temos que $R(x) = -x^2 + 600x + 4000$. O gráfico dessa função é uma parábola (pois é uma função do segundo grau), sua concavidade é para baixo (já que o coeficiente a é negativo) e a função passa no eixo y na altura de c = 4000.

Atenção: o gráfico deveria ser pontilhado, uma vez que o valor do ingresso é um valor inteiro (não abrindo margem para valores "quebrados").

Respostas em vídeo.

162.A

Baseado no quadro dado, temos que o imposto (I) está em função do preço (R)

$$I(R) = \begin{cases} 0, & se \ R \le 5\,000 \\ 10\% \ de \ (R - 5000), & se \ 5\,000 \le R \le 10\,000 \\ 500 + 30\% \ de \ (R - 10\,000), & se \ 10\,000 \le R \le 15\,000 \end{cases}$$

$$I(R) = \begin{cases} 0, & se \ R \le 5\,000 \\ 0,1R - 500, & se \ 5\,000 \le R \le 10\,000 \\ 0,3R - 2500, & se \ 10\,000 \le R \le 15\,000 \end{cases}$$

O gráfico que representa a função dada é o gráfico da alternativa A

Respostas em vídeo.

163.A

Temos que o módulo volumétrico é diretamente proporcional ao quadrado da velocidade do som e à densidade.

Sendo a velocidade do som dada por $\frac{m}{s}$. O quadrado da velocidade será dado por $\frac{m^2}{s^2}$.

A densidade é dada por $\frac{kg}{m^3}$.

Logo o módulo volumétrico será dado por: $\frac{m^2}{s^2} \cdot \frac{kg}{m^3} = m^2 \cdot s^{-2} \cdot kg \cdot m^{-3} = kg \cdot m^{-1} \cdot s^{-2}$

164.B

Podemos observar pela tabela que na viagem II, ao diminuir 1 calça e 1 sapato, a quantidade de camisetas aumentou em 6 ficando com 18 camisetas, 3 calças e 2 sapatos. Como queremos levar 2 calças e 1 sapato, em relação a viagem II também estamos diminuindo o número de calças e sapatos em 1, aumentando em 6 o número de camisetas.

Logo, serão 18 camisetas = 6 = 24 camisetas.

Assim, essa pessoa irá levar 24 camisetas, 2 calças e 1 sapato.

Respostas em vídeo.

165.D

Montando uma regra de três simples temos:

$$16 \ km - 1 \ L$$

 $20 \ km - x \ L$ $16x = 20 \Rightarrow x = 1,25$

Então para percorrer 20km, o motor inicial gasta 1,25 litros

Para andar os 20km com o novo motor será: 1,25 – 0,1 = 1,15 litros

O desempenho D2 do novo motor será

$$D = 20/1,15 = 17,4 \text{ km/L}$$

Respostas em vídeo.

166.B

No projeto inicial o contêiner era dado da seguinte forma:

Dessa forma, a pintura do chão seria dada pela área da base:

$$A_{b1} = x \cdot y = xy$$

E a pintura da área interna e externa de cada uma das quatro paredes, seria dada pelo dobro da área lateral:

$$A_{L1} = 2 \cdot x \cdot z + 2 \cdot y \cdot z = 2(xz + yz)$$

 \Rightarrow O dobro (pintura interna e externa) $\Rightarrow 2A_{L1} = 4(xz + yz)$

Ao mudar o projeto, a largura e o comprimento foram dobrados e a altura permaneceu:

Nessa nova configuração, a área da base passou a ser:

$$A_{b2} = 2x \cdot 2y = 4xy$$

E a área lateral passou a ser:

$$A_{L2} = 2 \cdot 2x \cdot z + 2 \cdot 2y \cdot z = 4(xz + yz)$$

 \Rightarrow O dobro (pintura interna e externa) \Rightarrow $2A_{L2} = 8(xz + yz)$

Analisando agora as áreas originais e as áreas após a alteração temos:

 $A_{b1} \rightarrow A_{b2}$: a área quadriplicou

 $A_{L1} \rightarrow A_{L2}$: a área dobrou

Logo o fornecedor II prestou as informações adequadas.

Respostas em vídeo.

167.D

O volume de cilindro é calculado por $V = \pi r^2$. h

Como o diâmetro do cilindro é igual a d = 5m, o raio será r = 2,5m e π = 3, substituindo obtemos V = 3 . $(2,5)^2$. h

A capacidade desse cilindro para atender à demanda de água da população por 7 dias, sabendo que são 100 habitantes e o consume médio diário é igual a 120L, será

Transformando litros em metros cúbicos 1L = 0,001m³

Então, 84000L = 84m³

Portanto, a altura será:

$$3 \cdot (2,5)^2 \cdot h = 84$$

$$18,75h = 84 \to h = \frac{84}{18,75} \to h = 4,48 \; m$$

168.E

Da planificação para a figura, poderemos ver que as faces 2 e 4 compartilham uma aresta assim como os pares 2-1 e 2-3. Analogicamente, podemos formas as faces 5, 6, e 8 sendo a 8 a face cinza. Desta forma, a face cinza só será oposta à face a. Segue as faces enumeradas na planificação e no octaedro:

Resposta em vídeo.

169.D

Em um triângulo equilátero, a relação entre a sua altura e seu lado é dada por $h = \frac{L\sqrt{3}}{2}$.

Se h=8, então temos que $8=\frac{L\sqrt{3}}{2} \Rightarrow 16=L\sqrt{3} \Rightarrow L=\frac{16}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{16\sqrt{3}}{3}$. O perímetro do triângulo é igual a $3L=16\sqrt{3}\cong 16\cdot 1,7=27,2$.

A alternativa mais próxima é a da letra D.

Respostas em vídeo.

170.C

O volume do tronco de um cone é dado pela seguinte relação:

$$V_{tronco} = \frac{\pi h}{3} \left(R^2 \, + \, R \, \cdot \, r \, + \, r^2 \right)$$

Em que r é o raio da base menor, R é o raio da base maior e h é a altura do tronco do cone. Substituindo as informações (e usando que $\pi=3$):

$$V_{tronco} = \frac{3 \cdot 12}{3} (5^2 + 5 \cdot 4 + 4^2)$$

$$V_{tranco} = 12 \cdot 61 = 732 \, cm^3 = 732 \, mL$$

171.E

Calculando o quanto gastaria com cada face, sabendo que ele está disposto a pagar no máximo R\$ 0,80 por cartão, temos

face: triângulo equilátero de lado 12 cm:

 $At = 12^2 \sqrt{3} / 4 = 61,2 \text{ cm}^2$

Preço: At . 0,01 = 61,2 . 0,01 = R\$0,612

Face: Quadrado de lado 8 cm

 $Aq = 8^2 = 64 \text{ cm}^2$

Preço = Aq . 0.01 = 64.0.01 = R\$0.64

Face: retângulo de lados 11 cm e 8 cm

 $Ar = 11.8 = 88cm^2$

Preço = Ar . 0,01 = 88 . 0,01 = R\$ 0,88

Face: hexágono de lado 6 cm

 $Ah = 6.6^{\circ} \sqrt{3} / 4 = R\91.8 cm°

Preço: Ah . 0,01 = 91,8 . 0,01 = R\$ 0,918

Face: círculo de diâmetro 10 cm:

 $Ac = \pi . 5^2 = 75 \text{ cm}^2$

Preço: Ac . $0.01 = \pi . 5^2 . 0.01 = R$ 0.75$

O que tem a maior área e custa menos que R\$0,80 é o que tem face de um círculo de diâmetro 10 cm.

Resposta.

172.D

Calcule a Fc máx = 220 - 61 = 159 bpm

A faixa aeróbica para o ganho de condicionamento físico é entre 65% e 85% da Fc máx, como sabemos que a Fc máx é igual 159 bpm,

65% de 159 = 0.65 . 159 = 103.35 bpm e 85% de 159 = 0.85 . 159 - 135.15 bpm.

Portanto, para estar na faixa aeróbica ideal, os batimentos devem estar entre 103,35 bpm e 135,15 bpm. Analisando a tabela, podemos observar que isso aconteceu nos trechos do percurso forte no plano e subida moderada.

Resposta.

173.C

Para ter uma receita diária de, pelo menos, R\$300,00 e não ter prejuízo, devemos considerar apenas as lavagens completas (de R\$35,00) pois são as que custam mais. Logo, sendo n o número de lavagens, temos que:

 $n \cdot 35 \ge 300$

 $n \ge 300/35$

 $n \ge 8,57$

Como a quantidade de lavagens precisa ser um número inteiro, o gabarito é a letra c (9 lavagens)

Resposta em vídeo.

174.C

X, Y e Z na farmácia 1: 45+40+50 = 135

X e Y na farmácia 1 e Z na farmácia 3: 45 + 40 + 35 = 120

X e Y na farmácia 2, e Z na farmácia 3: (50 + 50) . 0,8 + 35 = 115

X na farmácia 2, e Y e Z na farmácia 3: 50+50+40 = 140

X, Y e Z na farmácia 3: (65 + 45 +35) . 0,8 = 116

Logo, a melhor opção é a apresentada em C.

Resposta.

175.A

A figura possui dois cubos, cada um, com 12 quadrados. Além disso, os vértices dos cubos estão ligados por um segmento de reta, formando trapézios isósceles. Assim, são 12 trapézios isósceles.

Resposta.

176.D

O ano de fundação da cidade é: MCDLXIX

temos que M = 1000, DC = 400, LX = 60 e IX = 9

Logo, o ano de fundação da cidade é 1469.

A questão quer saber quantos anos a cidade irá comemorar no ano de 2050, então vamos subtrair:

2050 - 1469 = 581.

Resposta.

177.D

De antemão, 9 + 12 = 21. Podemos encontrar a representação desse número por meio de divisão sucessivas por 2 com resto.

O número na representação binária é o resto das divisões e o quociente da último divisão. Ou seja, o número formado é 10101 na representação binária.

Resposta.

178.C

Temos 3 hectares dos quais 0,9 ha serão usados para construção de ruas, então sobra 3 - 0,9 = 2,1 ha para os terrenos.

Foi dados que 1 ha = $10~000~\text{m}^2$, então 2,1 ha = $21000~\text{m}^2$ Desses $21~000~\text{m}^2$, iremos dividir em terrenos de $300~\text{m}^2$ de área, logo a quantidade de terrenos será igual a:

```
21000
300 = 70 terrenos
```

É dito no texto que os 20 primeiros terrenos serão vendidos por R\$ 20 000,00 cada, então o valor que será obtido com a venda desses 20 terrenos é igual a

20 . 20 000 = R\$ 400 000,00

Como são 70 terrenos e 20 já foram vendidos, então sobram 50 terrenos e eles serão vendidos por R\$ 30 000,00, então o valor que será obtido com a venda desses 50 terrenos é igual a

Portanto, o valor total, em real, obtido pelo fazendeiro com a venda de todos os terrenos será igual a

400 000, 00 + 1 500 000, 00 = 1 900 000, 00

Resposta.

179.A

- Número de formas de escolher 2 tecidos dentre os 6 disponíveis: C₆² = 6/4/21
- Número de formas de escolher 5 pedra dentre as 15 disponíveis: C₁₅⁵ = ^{15/10}/_{10/10}

Pelo Princípio Multiplicativo, temos $\frac{6!}{4! \, 2!} \cdot \frac{15!}{18! \, 5!}$ formas diferentes de escolher os elementos que compõem a fantasia.

Resposta.

180.B

Custo por usuário no laboratório A: $\frac{180.000 + 60.000 \cdot 4}{100} = 4.200$

Custo por usuário no laboratório B: $\frac{120.000 + 16.000 \cdot 4}{80} = 2.300$

Fazendo a diferença: 4.200 - 2.300 = 1.900 = 1,90 mil reais.