Indice

1	Insiemi	1
	1.1 Concetti di base sugli insiemi	1
	1.2 Insieme delle parti e prodotto cartesiano	
	1.3 Insiemi numerici fondamentali	
	Funzioni	5
	2.1 Il concetto di funzione	5
	Insiemi in $\mathbb R$	7
	3.1 Intervalli	7

Capitolo 1

Insiemi

1.1 Concetti di base sugli insiemi

Un *insieme* è un raggruppamento di oggetti detti *elementi*, che possono essere di natura qualsiasi, Si dice che gli elementi di un insieme *appartengono* all'insieme.

Simboli

Per indicare gli insiemi si usano solitamente lettere maiuscole, come

$$A, B, C \dots$$

Per indicare gli elementi di un insieme si usano solitamente lettere minuscole (a, b, c...) e per indicare che un elemento x appartiene all'insieme A scriviamo

$$x \in A$$
 oppure $A \ni x$

Rappresentazione

È possibile rappresentare un insieme elencando i suoi elementi, in caso questo sia finito. Ad esempio

$$A = \{1, 2, 5\}$$

significa che l'insieme A ha come elementi i numeri 1,2,5. In questo caso si dice che l'abbiamo definito per tabulazione.

Oppure è possibile rappresentare un insieme descrivendolo mediante una proprietà che lo caratterizzi univocamente. Ad esempio

$$X = \{n : n \text{ intero pari}\}\$$

Un insieme privo di elementi viene detto insieme vuoto e viene indicato con il simbolo \emptyset .

Relazioni tra insiemi: inclusione

Definizione 1.1. Si dice che un insieme X è un sottoinsieme di un insieme Y se ogni elemento di X appartiene ad Y. Si utilizza il simbolo di inclusione (larga) $X \subseteq Y$. Se X non coincide con Y, si usa il simbolo di inclusione stretta $X \subset Y$.

Relazioni tra insiemi: uguaglianza

Due insiemi sono uguali quando possiedono gli stessi elementi. Siano X e Y due insiemi. Allora X = Y se e solo se $X \subseteq Y$ e $Y \subseteq X$.

Operazioni insiemistiche

• Unione. L'unione di due insiemi X e Y è definita da:

$$X \cup Y = \{x : x \in X \text{ o } x \in Y\}$$

È l'insieme degli elementi che appartengono sia al primo sia al secondo insieme.

• Intersezione. L'intersezione di due insiemi X e Y è definita da:

$$X \cap Y = \{x : x \in X \in x \in Y\}$$

È l'insieme degli elementi che appartengono al primo e al secondo insieme, intendendo la "o" in modo non esclusivo.

• Unione. La differenza tra due insiemi X e Y è definita da:

$$X \setminus Y = \{x : x \in X \in x \notin Y\}$$

È l'insieme degli elementi che appartengono al primo ma non al secondo insieme.

• Complementare. È un tipo particolare di differenza. Siano X e Y insiemi con $X \subseteq Y$. Si definisce insieme complementare di X in Y l'insieme $Y \setminus X$. Si indica con il simbolo X^C .

Proprietà delle operazioni insiemistiche

• Proprietà dell'unione.

commutativa:
$$X \cup Y = Y \cup X$$

associativa:
$$/(X \cup Y) \cup Z = X \cup (Y \cup Z)$$

idempotenza:
$$X \cup X = X$$

• Proprietà dell'intersezione.

commutativa:
$$X \cap Y = Y \cap X$$

associativa:
$$/(X \cap Y) \cap Z = X \cap (Y \cap Z)$$

idempotenza:
$$X \cap X = X$$

• Proprietà distributive.

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

• Formule di De Morgan. Siano $A, B \subseteq X$ e denotiamo con A^C e B^C i loro insiemi complementari in X.

$$(A \cup B)^C = A^C \cap B^C$$

$$(A\cap B)^C=A^C\cup B^C$$

1.2 Insieme delle parti e prodotto cartesiano

Insieme delle parti

Dato un insieme X, si dice *insieme delle parti* di X l'insieme di tutti i sottoinsiemi di X. Si indica con \mathcal{P}^X o con 2^X . Ad esempio, si consideri l'insieme $X = \{1, 4, 5\}$:

$$\mathcal{P}(X) = \{\emptyset, \{1\}, \{4\}, \{5\}, \{1,4\}, \{1,5\}, \{4,5\}, \{1,4,5\}\}\$$

Se X è un insieme finito con n elementi, allora $\mathcal{P}(X)$ è un insieme finito con 2^n elementi. Se X è un insieme infinito, allora anche $\mathcal{P}(X)$ è un insieme infinito.

Prodotto cartesiano

Si dice coppia un insieme ordinato di due elementi. Ad esempio:

$$\{3,7\} = \{7,3\}$$
: insieme non ordinato $\{3,7\} \neq \{7,3\}$: insieme ordinato (coppia)

Dati due insiemi X e Y, il prodotto cartesiano di X e Y è l'insieme delle coppie (x,y) in cui $x \in X$ e $y \in Y$.

$$X \times Y = \{(x, y) : x \in X \in Y \in Y\}$$

L'insieme dei numeri reali è indicato con \mathbb{R} , e il prodotto cartesiano $\mathbb{R} \times \mathbb{R}$ viene indicato con \mathbb{R}^2 .

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) : x, y \in \mathbb{R}\}$$

1.3 Insiemi numerici fondamentali

N insieme dei numeri naturali (interi positivi, zero compreso)

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, \dots\}$$

 \mathbb{Z} insieme dei numeri interi

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \dots\}$$

O insieme dei numeri razionali (sono frazioni di numeri interi)

$$\mathbb{Q} = \{ \frac{a}{b} : a \in \mathbb{Z} \in b \in \mathbb{Z} \setminus 0 \}$$

 \mathbb{R} insieme dei numeri reali

 \mathbb{I} insieme dei numeri irrazionali ($\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$)

Capitolo 2

Funzioni

2.1 Il concetto di funzione

Definizione 2.1. Siano $X, Y \neq \emptyset$. Si dice funzione da X in Y una legge che fa corrispondere ad ogni elemento di X uno ed un solo elemento di Y. L'insieme X viene detto dominio della funzione mentre l'insieme Y viene detto codominio della funzione.

Viene utilizzata la seguente notazione:

$$f: X \to Y$$
 (f definita da X a Y) $f: x \mapsto f(x)$ (f associa $f(x)$ ad x)

Per ogni $x \in X$, l'elemento di Y che la funzione f fa corrispondere a x viene detto immagine di x mediante f e si indica con f(x). La proprietà caratteristica di f, affinchè la si possa chiamare funzione, è l'univocità della corrispondenza: assegnato l'elemento in "ingresso" $a \in A$, l'elemento in "uscita" b = f(a) dev'essere univocamente determinato.

Definizione 2.2. Siano $X, Y \neq \emptyset$ e sia $f: X \rightarrow Y$. Si dice grafico di F l'insieme

$$G(f) = \{(x, y) \in X \times Y : x \in X \text{ e } y = f(x)\}\$$

Ossia, il grafico di una funzione f è l'insieme dei punti del piano di coordinate (x, y) con y = f(x) e x variabile nel dominio D.

Definizione 2.3. Siano $X, Y \neq \emptyset$ e sia $f: X \rightarrow Y$. Siano rispettivamente $A \subseteq X$ e $B \subseteq Y$. Si dice immagine di A il sottoinsieme di Y costruito dalle imagini dei singoli elementi di A. Tale insieme viene denotato con f(A). In altre parole si ha

$$f(A) = \{ f(x) \in Y : x \in A \} \subset Y$$

Si dice immagine inversa di B o controimmagine di B il sottoinsieme di X costituito da quegli elementi di X la cui immagine appartiene a B. Tale insieme viene denotato con $f^{-1}(B)$. In altre parole si ha

$$f^{-1}(B) = \{x \in X : f(x) \in B\} \subseteq X$$

Definizione 2.4. Siano $X,Y \neq \emptyset$ e sia $f: X \rightarrow Y$. Sia inoltre $A \subseteq X$ insieme non vuoto. Si dice restrizione di f all'insieme A la funzione

$$f_{|A}:A\to Y$$

Teorema 2.1. Siano $X,Y \neq \emptyset$ e sia $f:X \rightarrow Y$. Siano inoltre $A,B \subseteq X$ e $C,D \subseteq Y$. Valgono le seguenti conclusioni:

- 1. $f(A \cup B) = f(A) \cup f(B)$
- 2. $f(A \cap B) = f(A) \cap f(B)$
- 3. $f^{-1}(f(A)) \supset A$
- 4. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
- 5. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$
- 6. $f(f^{-1}(C)) \subseteq C$

Definizione 2.5. Siano X, Y, Z insiemi non vuoti. Siano $f: y \to Z$ e $g: X \to Y$. Viene detta composizione di f con g la funzione $f \circ g$ definita da

$$f \circ g: X \to Z$$

Definizione 2.6. Siano X e Y insiemi non vuoti e sia $f: X \to Y$. Si dice che f è iniettiva se elementi distinti del dominio X hanno immagini distinte:

$$x_1, x_2 \in X, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Definizione 2.7. Siano X e Y insiemi non vuoti e sia $f: X \to Y$. Si dice che f è suriettiva se ogni elemento del codominio Y è immagine di almeno un elemento del dominio X:

$$\forall y \in Y, \exists x \in X : f(x) = y$$

Definizione 2.8. Siano X e Y insiemi non vuoti e sia $f: X \to Y$. Si dice che f è biettiva (biiettiva o biunivoca) se è contemporaneamente iniettiva e suriettiva. In altre parole, si dice che f è biettiva se ogni elemento del codominio Y è immagine di esattamente un elemento del dominio X:

$$\forall y \in Y, \exists ! x \in X : f(x) = y$$

Dato un insieme X non vuoto, indicheremo con $Id_X: X \to X$ la funzione identità, cioè quella funzione che ad ogni $x \in X$ associa se stesso:

$$Id_X(x) = x \forall x \in X$$

Definizione 2.9. Siano X e Y insiemi non vuoti e sia $f: X \to Y$. Si dice che f è invertibile se esiste una funzione $g: Y \to X$ tale che $f \circ g = Id_Y$ e $g \circ f = Id_X$. In altre parole si ha che:

$$f(g(y)) = y \quad \forall y \in Y$$
 $g(f(x)) = x \quad \forall x \in X$

Se f è invertibile, una tale funzione g è unica e viene denominata funzione inversa di f. Si indica con il simbolo $f^{-1}: Y \to X$.

Teorema 2.2. Siano X e Y insiemi non vuoti e sia $f: X \to Y$. Allora f è invertibile se e solo se f è biettiva.

Definizione 2.10. Siano X e Y due insiemi non vuoti. Si dice che X e Y hanno la stessa cardinalità se esiste una funzione $f: X \to Y$ biettiva.

Non tutti gli insiemi infiniti hanno la stessa cardinalità. Gli insiemi con la stessa cardinalità di \mathbb{N} si dicono *numerabili*. Gli insiemi \mathbb{Z} e \mathbb{Q} sono numerabili ed hanno quindi la stessa cardinalità di \mathbb{N} , nonostante $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$. L'insieme \mathbb{R} dei numeri reali non è numerabile: ha una cardinalità di *ordine superiore* rispetto ad \mathbb{N} .

Capitolo 3

Insiemi in \mathbb{R}

3.1 Intervalli

Si dice intervallo un sottoinsieme di $\mathbb R$ tale per cui ogni numero reale compreso tra due elementi di questo sottoinsieme appartiene al sottoinsieme medesimo.

Dati $a, b \in \mathbb{R}$ con a < b, si definiscono i seguenti intervalli:

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$
 $(a,b) = \{x \in \mathbb{R} : a < x < b\}$

Definizione 3.1.