Notions fondamentales en Analyse

Paul MINCHELLA, Stéphane CHRÉTIEN paul.minchella@lyon.unicancer.fr

- Introduction des notions algébriques
- 2 Les fonctions
- Les suites numériques
- Continuité d'une fonction
- Dérivée d'une fonction
- O Primitive et intégrale
- Application à l'optimisation
- Dérivées multidimensionnelles et optimisation à plusieurs variables

Ensembles de nombres

- Nombres naturels : $\mathbb{N} = \{0, 1, 2, 3, \dots\}$, entiers positifs ou nuls.
- Nombres entiers relatifs : $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$, tous les entiers positifs, négatifs, et 0.
- Nombres rationnels : $\mathbb{Q}=\left\{\frac{p}{q}:\ p\in\mathbb{Z},\ q\in\mathbb{Z}^*,\ q\neq 0\right\}$, quotients d'entiers.
- Nombres réels : $\mathbb R$ est la *complétion* de $\mathbb Q$, corps totalement ordonné et complet.
- Nombres complexes : $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}, i^2 = -1\}$, extension algébrique de \mathbb{R} .

Hiérarchie

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

Ensembles de nombres

- \bullet Nombres naturels : $\mathbb{N} = \{0,1,2,3,\dots\}$, entiers positifs ou nuls.
- Nombres entiers relatifs : $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$, tous les entiers positifs, négatifs, et 0.
- Nombres rationnels : $\mathbb{Q}=\left\{\frac{p}{q}:\ p\in\mathbb{Z},\ q\in\mathbb{Z}^*,\ q\neq 0\right\}$, quotients d'entiers.
- Nombres réels : $\mathbb R$ est la *complétion* de $\mathbb Q$, corps totalement ordonné et complet.
- Nombres complexes : $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}, i^2 = -1\}$, extension algébrique de \mathbb{R} .

Hiérarchie

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

Définition importante

Pour $a, b \in \mathbb{R}$ avec a < b, les intervalles de \mathbb{R} ayant a et b comme extrémités sont notés :

Loi de composition interne

Soit E un ensemble. Une loi de composition interne sur E est une application

$$\star: E \times E \to E, \qquad (x, y) \mapsto x \star y.$$

Exemples : + et \times sur \mathbb{Z} .

Groupe

Un groupe est un couple (G,\star) où \star est une loi de composition interne vérifiant :

- Associativité : $(x \star y) \star z = x \star (y \star z)$.
- **Élément neutre :** il existe $e \in G$ tel que $x \star e = e \star x = x$.
- Inverse : tout $x \in G$ admet x^{-1} avec $x \star x^{-1} = e$.

Si $x \star y = y \star x$ pour tous x, y, le groupe est abélien.

Citez des exemples connus!

Structures algébriques fondamentales II

Exemple

 $(\mathbb{Z},+)$ est un groupe abélien. (\mathbb{Z},\times) n'est pas un groupe : tout entier n'a pas d'inverse multiplicatif dans \mathbb{Z} .

Anneau

Un anneau $(A,+,\times)$ est un ensemble muni de deux lois :

- \bullet (A, +) est un groupe abélien.
- ullet x est associative avec un élément neutre 1.
- × est distributive par rapport à +.

Corps

Un *corps* est un anneau $(K, +, \times)$ où tout élément non nul est inversible pour \times .

Exemples

 $\mathbb{Q},\ \mathbb{R},\ \mathbb{C}$ sont des corps. \mathbb{Z} est un anneau mais pas un corps.

Exercice : Loi de composition non standard sur $\ensuremath{\mathbb{Z}}$

Énoncé

On définit, pour $a, b \in \mathbb{Z}$, la loi

$$a \star b = a + b + 1.$$

- **1** Montrer que \star est une loi de composition *interne* sur \mathbb{Z} .
- ② Vérifier l'associativité et la commutativité de ★.
- Déterminer l'élément neutre e pour ★.
- **9** Pour $a \in \mathbb{Z}$, déterminer l'inverse de a pour \star .
- **5** Conclure : (\mathbb{Z}, \star) est-il un groupe ? Abélien ?

Solution ?

- Introduction des notions algébriques
- 2 Les fonctions
- Les suites numérique
- Continuité d'une fonction
- Dérivée d'une fonction
- O Primitive et intégrale
- Application à l'optimisation
- Dérivées multidimensionnelles et optimisation à plusieurs variables

Fonction

Soient deux ensembles X et Y. Une fonction f de X vers Y associe à tout élément $x \in X$ un unique élément $y \in Y$, noté f(x).

$$f: X \longrightarrow Y$$

 $x \longmapsto f(x).$

Domaine et image

• **Domaine** : $Dom(f) = \{x \in X : f(x) \text{ est définie}\}.$

• Image : $Im(f) = \{f(x) \mid x \in Dom(f)\}.$

Définition formelle

Fonction

Soient deux ensembles X et Y. Une fonction f de X vers Y associe à tout élément $x \in X$ un unique élément $y \in Y$, noté f(x).

$$f: X \longrightarrow Y$$

 $x \longmapsto f(x).$

Domaine et image

- **Domaine** : $Dom(f) = \{x \in X : f(x) \text{ est définie}\}.$
- Image : $\operatorname{Im}(f) = \{f(x) \mid x \in \operatorname{Dom}(f)\}.$

Exercice 1

Soit
$$f(x) = 3x + 7$$
.

- **①** Déterminer Dom(f).
- **2** Déterminer Im(f).

Exercice 2

Soit
$$f(x) = \sqrt{x-1}$$
.

- Déterminer Dom(f).
- ② Déterminer Im(f).

Solutions?

Notions de borne supérieure et inférieure

Majorant et minorant

Soit $A \subset \mathbb{R}$ non vide.

- M est un **majorant** de A si $\forall x \in A, x \leq M$.
- m est un **minorant** de A si $\forall x \in A, x \geq m$.

Majorant et minorant

Soit $A \subset \mathbb{R}$ non vide.

- M est un **majorant** de A si $\forall x \in A, x \leq M$.
- m est un **minorant** de A si $\forall x \in A, x \geq m$.

Borne supérieure et inférieure

ullet La borne supérieure (ou supremum) de A, notée $\sup A$, est le plus petit des majorants. Formellement :

$$\sup A = M \iff \begin{cases} \forall x \in A, \ x \leq M, \\ \forall \varepsilon > 0, \ \exists x \in A \text{ tel que } x > M - \varepsilon. \end{cases}$$

• La **borne inférieure** (ou **infimum**) de A, notée $\inf A$, est le plus grand des minorants.

Paul MINCHELLA, Stéphane CHRÉTIEN

Majorant et minorant

Soit $A \subset \mathbb{R}$ non vide.

- M est un **majorant** de A si $\forall x \in A, x \leq M$.
- m est un **minorant** de A si $\forall x \in A, x \geq m$.

Borne supérieure et inférieure

ullet La borne supérieure (ou supremum) de A, notée $\sup A$, est le plus petit des majorants. Formellement :

$$\sup A = M \iff \begin{cases} \forall x \in A, \ x \leq M, \\ \forall \varepsilon > 0, \ \exists x \in A \text{ tel que } x > M - \varepsilon. \end{cases}$$

• La borne inférieure (ou infimum) de A, notée $\inf A$, est le plus grand des minorants.

Extension aux fonctions

Soit $f: D \to \mathbb{R}$.

$$\sup_{x \in D} f(x) = \sup \{ f(x) : x \in D \}, \quad \inf_{x \in D} f(x) = \inf \{ f(x) : x \in D \}.$$

Graphe d'une fonction

Le graphe de f est l'ensemble

$$G(f) = \{(x, f(x)) \in \mathbb{R}^2 : x \in \text{Dom}(f)\}.$$

Géométriquement, c'est la courbe représentative de f dans le plan cartésien.

Graphe d'une fonction

Le graphe de f est l'ensemble

$$G(f) = \{(x, f(x)) \in \mathbb{R}^2 : x \in \text{Dom}(f)\}.$$

Géométriquement, c'est la courbe représentative de *f* dans le plan cartésien.

Fonctions croissantes et décroissantes

Soit $f: I \to \mathbb{R}$ sur un intervalle I.

- f croissante (resp. strictement croissante) : $x < y \implies f(x) \le f(y)$ (resp.) $x < y \implies f(x) < f(y)$.
- f décroissante (resp. strictement décroissante) : $x < y \implies f(x) \ge f(y)$ (resp.) $x < y \implies f(x) > f(y)$.
- Une fonction qui est uniquement croissante ou décroissante est dite monotone.

Paul MINCHELLA, Stéphane CHRÉTIEN

Opérations algébriques sur les fonctions et loi de composition

Combinaison linéaire, produit, quotient

Étant donné deux fonctions f,g définies sur un même domaine et deux constantes $a,b\in\mathbb{R}$, on définit :

$$(\mathit{af}+\mathit{bg})(x)=\mathit{af}(x)+\mathit{bg}(x),\quad (\mathit{fg})(x)=\mathit{f}(x)\cdot \mathit{g}(x),\quad \left(\tfrac{\mathit{f}}{\mathit{g}}\right)(x)=\tfrac{\mathit{f}(x)}{\mathit{g}(x)} \ \, (\mathsf{si}\;\mathit{g}(x)\neq 0).$$

Paul MINCHELLA, Stéphane CHRÉTIEN

Opérations algébriques sur les fonctions et loi de composition

Combinaison linéaire, produit, quotient

Étant donné deux fonctions f,g définies sur un même domaine et deux constantes $a,b\in\mathbb{R}$, on définit :

$$(\mathit{af}+\mathit{bg})(x)=\mathit{af}(x)+\mathit{bg}(x),\quad (\mathit{fg})(x)=\mathit{f}(x)\cdot\mathit{g}(x),\quad \left(\tfrac{\mathit{f}}{\mathit{g}}\right)(x)=\tfrac{\mathit{f}(x)}{\mathit{g}(x)} \ \, (\mathsf{si}\ \mathit{g}(x)\neq 0).$$

Composition

Soient $f: X \to Y$ et $g: Y \to Z$. La fonction composée $f \circ g: X \to Z$ est définie par

$$(f \circ g)(x) = f(g(x)), \quad \forall x \in X.$$

De même, $g \circ f$ est définie par $(g \circ f)(x) = g(f(x))$ lorsque cela a un sens.

Remarque

Attention : la composition de fonctions n'est en général pas commutative.

Exemple: Fonction composée

Application concrète

Soit t le temps écoulé après l'an 2000.

• La population (en millions) est donnée par

$$p(t) = 50 + e^{0.01t}.$$

• Le revenu en fonction de la population se modélise via

$$R(p) = 2.1 + \ln(1 + 3p).$$

Quelle application fournit le revenu en fonction du temps t (en années) ? Comment varie-t-elle ?

Solution ?

Paul MINCHELLA, Stéphane CHRÉTIEN

Ensemble réciproque

Soit $f: E \to F$ et $B \subset F$. L'ensemble réciproque de B par f est

$$f^{-1}(B) = \{x \in E \mid f(x) \in B\}.$$

En particulier, pour $y \in F$:

$$f^{-1}(\{y\}) = \{x \in E \mid f(x) = y\}.$$

Injectivité, surjectivité, bijectivité

Soient $f: E \to E$

- Injective : $f(x) = f(y) \Rightarrow x = y$. (Deux éléments distincts de E ont des images distinctes.)
- **Surjective** : $\forall y \in F$, $\exists x \in E$ tel que f(x) = y. (L'image est exactement F.)
- **Bijective**: f est injective et surjective. Dans ce cas, f admet une unique fonction réciproque $f^{-1}: F \to E$ telle que

$$f^{-1} \circ f = \mathrm{id}_E$$
, $f \circ f^{-1} = \mathrm{id}_F$.

Paul MINCHELLA, Stéphane CHRÉTIEN

Analyse

Exemple : Fonction et sa réciproque

Fonction et sa réciproque

Soit
$$f(x) = \sqrt{\frac{x}{1-x}}$$
.

- Quel est le domaine de définition de f? Que vaut son image?
- La fonction est-elle injective ? Surjective ? Bijective ?
- Déterminer f^{-1} . Pour ce faire, résoudre f(y) = x en cherchant à exprimer y en fonction de x.

Solution?

Paul MINCHELLA, Stéphane CHRÉTIEN

Analyse

Fonction de Lambert $W \operatorname{sur} [0, +\infty)$

On appelle fonction de Lambert toute application (possiblement multivaluée) W vérifiant

$$W(y) e^{W(y)} = y.$$

Sur la droite réelle, on sait qu'il existe des **branches** de W définies sur certains intervalles (par exemple W_0 et W_{-1} sur $[-e^{-1},0)$). Dans cet exercice, on se limite à l'intervalle $[0,+\infty)$ et l'on étudie l'équation $w\,e^w=y$ à l'aide de la fonction suivante. On considère $f\colon [0,+\infty)\to [0,+\infty)$ définie par

$$f(x) = x e^x$$
.

- **1** Montrer que f est continue, strictement croissante et qu'elle réalise une bijection de $[0, +\infty)$ sur $[0, +\infty)$.
- **②** En déduire que, pour tout $y \in [0, +\infty)$, l'équation $we^w = y$ admet une **unique** solution réelle $w \in [0, +\infty)$. On note alors $W_0(y)$ cette solution, et on vérifie que $W_0 = f^{-1}$.

Solution?

- Introduction des notions algébriques
- 2 Les fonctions
- Les suites numériques
- Continuité d'une fonction
- Dérivée d'une fonction
- O Primitive et intégrale
- Application à l'optimisation
- Dérivées multidimensionnelles et optimisation à plusieurs variables

Suite numérique

Une suite numérique est une suite de réels u_0,u_1,u_2,\ldots , notée $(u_n)_{n\in\mathbb{N}}$. Formellement, c'est une fonction

$$u: \mathbb{N} \longrightarrow \mathbb{R},$$
 $n \longmapsto u_n.$

Suites croissantes, décroissantes, bornées

Soit $(u_n)_{n\in\mathbb{N}}$.

• Croissante : $\forall n \in \mathbb{N}, u_{n+1} \geq u_n$.

• Décroissante : $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$.

• Constante : $\forall n \in \mathbb{N}, u_{n+1} = u_n$.

• Monotone : croissante ou décroissante.

• Majorée : $\exists M, u_n \leq M$ pour tout n.

• Minorée : $\exists m, u_n \geq m$ pour tout n.

• Bornée : à la fois majorée et minorée (i.e. $(|u_n|)_{n\in\mathbb{N}}$ est majorée).

Limite finie

Soit (u_n) une suite et $u^* \in \mathbb{R}$. On dit que $u_n \to u^*$ lorsque

$$\forall \varepsilon > 0, \ \exists k \in \mathbb{N}, \ \forall n \geq k, \quad |u_n - u^*| \leq \varepsilon.$$

On note $\lim_{n\to+\infty}u_n=u^*$.

Limite infinie

- $u_n \to +\infty \iff \forall M \in \mathbb{R}, \ \exists k, \ \forall n \geq k, \ u_n \geq M.$
- $u_n \to -\infty \iff \forall M \in \mathbb{R}, \ \exists k, \ \forall n \geq k, \ u_n \leq M.$

Règles de calcul sur les limites

Si (u_n) et (v_n) admettent des limites (réelles ou infinies), alors :

$$\lim(u_n+v_n)=\lim u_n+\lim v_n, \qquad \lim(u_nv_n)=\lim u_n\cdot\lim v_n,$$

$$\lim \frac{u_n}{v_n}=\frac{\lim u_n}{\lim v_n}, \quad \text{si } \lim v_n\neq 0.$$

Suite récurrente

Une suite $(x_n)_{n\in\mathbb{N}}$ est dite **récurrente** s'il existe une fonction $f:\mathbb{R}\to\mathbb{R}$ telle que $\left\{\begin{array}{l} x_0 \text{ fixé}, \\ x_{n+1}=f(x_n), \quad \forall n\geq 0. \end{array}\right.$ Autrement dit, chaque terme est défini à partir du précédent par une relation de récurrence.

Principe de récurrence

Pour démontrer qu'une propriété P(n) est vraie pour tout $n\in\mathbb{N}$, il suffit de vérifier :

- Initialisation : P(0) (ou P(1)) est vraie.
- Hérédité : $\forall n \geq 0, \ P(n) \Rightarrow P(n+1).$

Alors P(n) est vraie pour tout $n \in \mathbb{N}$.

Suites récurrentes et principe de récurrence

Suite récurrente

Une suite $(x_n)_{n\in\mathbb{N}}$ est dite **récurrente** s'il existe une fonction $f:\mathbb{R}\to\mathbb{R}$ telle que $\left\{\begin{array}{l} x_0 \text{ fixé,} \\ x_{n+1}=f(x_n), & \forall n\geq 0. \end{array}\right.$ Autrement dit, chaque terme est défini à partir du précédent par une relation de récurrence.

Principe de récurrence

Pour démontrer qu'une propriété P(n) est vraie pour tout $n \in \mathbb{N}$, il suffit de vérifier :

- Initialisation : P(0) (ou P(1)) est vraie.
- Hérédité : $\forall n \geq 0, \ P(n) \Rightarrow P(n+1)$.

Alors P(n) est vraie pour tout $n \in \mathbb{N}$.

Exercice

Démontrer par récurrence que

$$P(n): \quad 1+2+3+\cdots+n=\frac{n(n+1)}{2}, \quad \forall n \geq 1.$$

Théorème de la limite monotone

Soit $(u_n)_{n\geq 0}$ une suite réelle **croissante** (*resp.* **décroissante**).

• Si (u_n) est bornée supérieurement (resp. inférieurement), alors (u_n) converge et

$$\lim_{n\to\infty}u_n=\sup\{u_n:n\in\mathbb{N}\}\quad \big(\textit{resp.}\ \lim_{n\to\infty}u_n=\inf\{u_n:n\in\mathbb{N}\}\big).$$

• Si (u_n) n'est pas bornée, alors

$$\lim_{n\to\infty}u_n=+\infty\quad \big(\textit{resp.}\ \lim_{n\to\infty}u_n=-\infty\big).$$

Preuve?

Exercices sur les suites

Exercice 1 : Suites géométriques et somme partielle

Soit la suite géométrique $x_n = c q^n$ avec $c \neq 0$ et $q \neq 0, 1$.

- **1** Étudier la limite de (x_n) selon les valeurs de q et le signe de c.
- $oldsymbol{0}$ Montrer que la somme des n+1 premiers termes est

$$\sum_{k=0}^{n} x_k = \sum_{k=0}^{n} c q^k = c \frac{q^{n+1} - 1}{q - 1}.$$

Exercices sur les suites

Exercice 1 : Suites géométriques et somme partielle

Soit la suite géométrique $x_n = c q^n$ avec $c \neq 0$ et $q \neq 0, 1$.

- ① Étudier la limite de (x_n) selon les valeurs de q et le signe de c.
- **②** Montrer que la somme des n+1 premiers termes est

$$\sum_{k=0}^{n} x_k = \sum_{k=0}^{n} c q^k = c \frac{q^{n+1} - 1}{q - 1}.$$

Exercice 2 : Étude d'une suite récurrente

On considère la suite $(u_n)_{n\geq 0}$ définie par

$$\begin{cases} u_0 = 0, \\ u_{n+1} = \sqrt{u_n + 1}, \quad \forall n \ge 0. \end{cases}$$

- **1** Montrer que (u_n) est croissante. En déduire que la suite est bien définie pour tout n.
- **2** Montrer que (u_n) est majorée.
- **3** Conclure que (u_n) admet une limite,notée ℓ , et montrer que $\ell = \frac{1+\sqrt{5}}{2}$.

- Introduction des notions algébriques
- Les fonctions
- Les suites numériques
- Continuité d'une fonction
- Dérivée d'une fonction
- O Primitive et intégrale
- Application à l'optimisation
- Dérivées multidimensionnelles et optimisation à plusieurs variables

Points intérieurs, adhérents et frontière

Intuition géométrique : On considère un ensemble $A \subset \mathbb{R}^n$ (dans la droite, le plan, ou l'espace).

- Un point intérieur de A est un point qui possède un petit voisinage entièrement contenu dans A.
- Un point adhérent est un point autour duquel tout voisinage contient au moins un point de A (donc A "touche" le point).
- Un **point de frontière** est un point dont tout voisinage rencontre à la fois A et le complémentaire $\mathbb{R}^n \setminus A$.

Intuition géométrique : On considère un ensemble $A \subset \mathbb{R}^n$ (dans la droite, le plan, ou l'espace).

- Un point intérieur de A est un point qui possède un petit voisinage entièrement contenu dans A.
- Un point adhérent est un point autour duquel tout voisinage contient au moins un point de A (donc A "touche" le point).
- Un **point de frontière** est un point dont tout voisinage rencontre à la fois A et le complémentaire $\mathbb{R}^n \setminus A$.

Définitions formelles

Soit $A \subset \mathbb{R}^n$ et $x \in \mathbb{R}^n$.

- x est intérieur à A si $\exists r > 0$ tel que $B(x, r) \subset A$.
- x est adhérent à A si $\forall r > 0$, $B(x, r) \cap A \neq \emptyset$.
- x est **de frontière** de A si $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$ et $B(x,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Intuition géométrique : On considère un ensemble $A \subset \mathbb{R}^n$ (dans la droite, le plan, ou l'espace).

- Un point intérieur de A est un point qui possède un petit voisinage entièrement contenu dans A.
- Un point adhérent est un point autour duquel tout voisinage contient au moins un point de A (donc A "touche" le point).
- Un **point de frontière** est un point dont tout voisinage rencontre à la fois A et le complémentaire $\mathbb{R}^n \setminus A$.

Définitions formelles

Soit $A \subset \mathbb{R}^n$ et $x \in \mathbb{R}^n$.

- x est intérieur à A si $\exists r > 0$ tel que $B(x, r) \subset A$.
- x est adhérent à A si $\forall r > 0$, $B(x, r) \cap A \neq \emptyset$.
- x est **de frontière** de A si $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$ et $B(x,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Remarques:

- L'ensemble des points intérieurs de A est noté $\overset{\circ}{A}$.
- L'ensemble des points adhérents est la **fermeture** \overline{A} .
- La frontière est $\partial A = \overline{A} \setminus \overset{\circ}{A}$.

A (ouvert)

Tout point de \overline{A} (intérieur ou frontière) est adhérent. Ici, $y \in \partial A$ est adhérent, x aussi.

Idée générale: La notion de limite, qui mène à la continuité et à la dérivée, est fondamentale en analyse. Intuitivement, une limite décrit la valeur à laquelle f(x) s'approche lorsque x tend vers un point donné.

Limite en un point

Soit $f: A \subset \mathbb{R} \to \mathbb{R}$ et a un point d'adhérence de A. On dit que $f(x) \to \ell$ lorsque $x \to a$ si

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in A, \ 0 < |x - a| < \eta \implies |f(x) - \ell| < \varepsilon.$$

On note $\lim_{x \to a} f(x) = \ell$.

Idée générale: La notion de limite, qui mène à la continuité et à la dérivée, est fondamentale en analyse. Intuitivement, une limite décrit la valeur à laquelle f(x) s'approche lorsque x tend vers un point donné.

Limite en un point

Soit $f:A\subset\mathbb{R}\to\mathbb{R}$ et a un point d'adhérence de A. On dit que $f(x)\to\ell$ lorsque $x\to a$ si

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall \mathbf{x} \in \mathbf{A}, \ 0 < |\mathbf{x} - \mathbf{a}| < \eta \implies |\mathbf{f}(\mathbf{x}) - \ell| < \varepsilon.$$

On note $\lim_{x \to a} f(x) = \ell$.

Définition séquentielle équivalente

 $f(x) \to \ell$ lorsque $x \to x^*$ si, pour toute suite (x_n) de A telle que $x_n \to x^*$, on a

$$f(x_n) \to \ell$$
.

Paul MINCHELLA, Stéphane CHRÉTIEN

Idée générale: La notion de limite, qui mène à la continuité et à la dérivée, est fondamentale en analyse. Intuitivement, une limite décrit la valeur à laquelle f(x) s'approche lorsque x tend vers un point donné.

Limite en un point

Soit $f: A \subset \mathbb{R} \to \mathbb{R}$ et a un point d'adhérence de A. On dit que $f(x) \to \ell$ lorsque $x \to a$ si

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in A, \ 0 < |x - a| < \eta \implies |f(x) - \ell| < \varepsilon.$$

On note $\lim_{x \to a} f(x) = \ell$.

Définition séquentielle équivalente

 $f(x) \to \ell$ lorsque $x \to x^*$ si, pour toute suite (x_n) de A telle que $x_n \to x^*$, on a

$$f(x_n) \to \ell$$
.

Unicité de la limite

La limite, lorsqu'elle existe, est unique.

Propriétés sur les limites

Compatibilité des limites avec les opérations

Soient f,g définies au voisinage de x^* . Si $\lim_{x\to x^*} f(x) = \kappa$ et $\lim_{x\to x^*} g(x) = \ell$, alors :

- $\lim(af(x) + bg(x)) = a\kappa + b\ell$, pour $a, b \in \mathbb{R}$.
- $\lim (f(x))^{\alpha} = \kappa^{\alpha}$, pour $\alpha \in \mathbb{R}$ (sous réserve de cohérence).
- $\lim(f(x)g(x)) = \kappa \ell$.
- $\lim \frac{f(x)}{g(x)} = \frac{\kappa}{\ell}$, si $\ell \neq 0$.
- $\lim (f \circ g)(x) = \lim_{y \to \ell} f(y)$.

Exemple

Supposons

$$\lim_{x \to 2} f(x) = 4, \quad \lim_{x \to -2} f(x) = 6, \quad \lim_{x \to 2} g(x) = -2.$$

Alors:

- $\lim_{x\to 2} \frac{f(x)}{g(x)} = \frac{4}{-2} = -2$.
- $\lim_{x\to 2} (f(x))^3 = 4^3 = 64.$
- $\bullet \lim_{x\to 2} (f \circ g)(x) = \lim_{z\to -2} f(z) = 6.$

ldée

La valeur d'une limite peut dépendre de la direction par laquelle on approche un point : à gauche $(x \to a^-)$ ou à droite $(x \to a^+)$.

Idée

La valeur d'une limite peut dépendre de la direction par laquelle on approche un point : à gauche $(x \to a^-)$ ou à droite $(x \to a^+)$.

Considérons la fonction f représentée ci-dessous :

Exemple

- $\bullet \ \ell^- := \lim_{\mathbf{x} \to 0^-} \mathit{f}(\mathbf{x}) = 0 \ (\mathsf{par} \ \mathsf{la} \ \mathsf{gauche}).$
- ullet $\ell^+:=\lim_{x o 0^+}f(x)=1$ (par la droite).

Continuité en un point

Soit $f: I \to \mathbb{R}$, I intervalle ouvert, et $x^* \in I$. f est continue en x^* si :

- ② $\lim_{x\to x^*} f(x)$ existe,

Sinon, f est **discontinue** en x^* .

Stabilité de la continuité

- Les polynômes sont continus partout.
- Les combinaisons de fonctions continues par $+, \times, \div, \sqrt{}$, puissances, etc. restent continues (sur le domaine défini).

Continuité sur un intervalle

f est continue sur I si elle est continue en tout $x^* \in I$. On note alors $f \in C^0(I)$, l'ensemble des fonctions continues sur I.

Exercices : Continuité de fonctions par morceaux

Exercice 1

 $\label{lem:verifier si la fonction suivante est continue (et préciser l'intervalle):$

$$f(x) = \begin{cases} \sqrt{3+x}, & x > 1, \\ x^2 + 1, & x \le 1. \end{cases}$$

Exercices : Continuité de fonctions par morceaux

Exercice 1

 $\label{lem:verifier si la fonction suivante est continue (et préciser l'intervalle):$

$$f(x) = \begin{cases} \sqrt{3+x}, & x > 1, \\ x^2 + 1, & x \le 1. \end{cases}$$

Exercice 2

Pour quelles valeurs des paramètres a et b la fonction suivante est-elle continue ?

$$f(x) = \begin{cases} ax^3 - 2bx^2 - x, & x > 1, \\ ax - bx^2, & x \le 1. \end{cases}$$

Paul MINCHELLA, Stéphane CHRÉTIEN

Théorème de la limite monotone (fonctions)

Soit $f: [a, +\infty[\to \mathbb{R} \text{ croissante (resp. décroissante)}].$

- Si f est bornée sup. (resp. inf.), alors $\lim_{x\to +\infty} f(x)$ existe et vaut $\sup f$ (resp. $\inf f$).
- Sinon, $\lim_{x\to+\infty} f(x) = +\infty$ (resp. $-\infty$).

Théorème de Weierstrass

Toute fonction continue sur [a, b] est bornée et atteint ses bornes :

$$\exists x_{\min}, x_{\max} \in [a, b], \ f(x_{\min}) = \min f, \ f(x_{\max}) = \max f.$$

Figure: Illustration du théorème de Weierstrass. Ici, $M = \max f$ et $m = \min f$

Valeurs intermédiaires (TVI)

Si $f: [a, b] \to \mathbb{R}$ est continue, alors f([a, b]) est un intervalle. En particulier, pour tout y entre f(a) et f(b), $\exists c \in [a, b]$ tel que f(c) = y.

Théorème de la bijection

Si $f\colon I\to\mathbb{R}$ est continue et strictement monotone, alors $f\colon I\to J:=f(I)$ est une bijection, et $f^{-1}:J\to I$ est continue et strictement monotone.

Application des théorèmes fondamentaux

On considère la fonction

$$f: [0,2] \to \mathbb{R}, \qquad f(x) = x^3 - 3x - 1.$$

- (Weierstrass) f admet-elle des valeurs extrêmes ? Pourquoi ?
- **② (TVI)** Montrer qu'il existe un $c \in (0,2)$ tel que f(c) = 0.

Application de ces théorèmes

Application des théorèmes fondamentaux

On considère la fonction

$$f: [0,2] \to \mathbb{R}, \qquad f(x) = x^3 - 3x - 1.$$

- (Weierstrass) f admet-elle des valeurs extrêmes ? Pourquoi ?
- **② (TVI)** Montrer qu'il existe un $c \in (0,2)$ tel que f(c) = 0.

Existence et unicité d'une solution via TVI et bijection

Montrer que l'équation

$$e^x = 3x$$

admet une solution unique dans l'intervalle (0,1).

- Introduction des notions algébriques
- 2 Les fonctions
- Les suites numérique
- Continuité d'une fonction
- Dérivée d'une fonction
- O Primitive et intégrale
- Application à l'optimisation
- Dérivées multidimensionnelles et optimisation à plusieurs variables

Motivation

La vitesse moyenne d'un mobile entre deux instants t et t+h est

$$\tilde{v}(t) = \frac{d(t+h) - d(t)}{h}.$$

Lorsque $h \rightarrow 0$, ce quotient tend vers la **vitesse** instantanée :

$$v(t) = \lim_{h \to 0} \frac{d(t+h) - d(t)}{h}.$$

De façon générale, ce passage de la vitesse moyenne au taux de variation instantané motive la notion de dérivée.

Paul MINCHELLA, Stéphane CHRÉTIEN

Définition : dérivée en un point

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle ouvert I et $x^* \in I$. On dit que f est **dérivable en** x^* si

$$\lim_{h\to 0}\frac{f(x^*+h)-f(x^*)}{h}$$

existe et est finie.

• Cette limite est notée $f'(x^*)$ ou $\frac{\mathrm{d}f}{\mathrm{d}x}(x^*)$.

Définition : dérivée en un point

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle ouvert I et $x^* \in I$. On dit que f est **dérivable en** x^* si

$$\lim_{h\to 0}\frac{f(x^*+h)-f(x^*)}{h}$$

existe et est finie.

- $\bullet \ \, \text{Cette limite est notée} \, f'(\mathbf{x}^*) \, \, \text{ou} \, \, \frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}(\mathbf{x}^*).$
- Si f est dérivable en tout point de I, on définit la **fonction dérivée** $f': I \to \mathbb{R}$.

Paul MINCHELLA, Stéphane CHRÉTIEN

Définition : dérivée en un point

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle ouvert I et $x^* \in I$. On dit que f est **dérivable en** x^* si

$$\lim_{h\to 0}\frac{f(x^*+h)-f(x^*)}{h}$$

existe et est finie.

- Cette limite est notée $f'(x^*)$ ou $\frac{\mathrm{d}f}{\mathrm{d}x}(x^*)$.
- Si f est dérivable en tout point de I, on définit la **fonction dérivée** $f': I \to \mathbb{R}$.

Définition : dérivées d'ordre supérieur

Si f' est dérivable sur I, on dit que f est deux fois dérivable et on définit

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} (f'(x)).$$

De manière analogue, on définit la n-ième dérivée $f^{(n)}$, obtenue par dérivations successives.

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊・夕○

Exemples

Exercices d'application

Pour chaque fonction ci-dessous, déterminer f'(x) en utilisant la limite du taux d'accroissement :

- **1** Fonction affine : f(x) = kx + b.
- **②** Fonction quadratique : $f(x) = ax^2 + bx + c$.
- Fonction rationnelle simple : $f(x) = \frac{1}{11 x}$, $x \neq 11$.

Exemples

Exercices d'application

Pour chaque fonction ci-dessous, déterminer f'(x) en utilisant la limite du taux d'accroissement :

- **1** Fonction affine : f(x) = kx + b.
- **②** Fonction quadratique : $f(x) = ax^2 + bx + c$.
- $\label{eq:force} \mbox{\bf Sonction rationnelle simple}: \textit{f(x)} = \frac{1}{11-x}, \ x \neq 11.$

La valeur absolue

Soit
$$f(x) = |x|$$
.

On calcule les limites latérales en 0 :

$$\lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1,$$

$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1.$$

Les deux limites diffèrent, donc f'(0) n'existe pas.

Ainsi, une fonction peut être continue en un point sans y être dérivable.

Propriété

Si une fonction f est dérivable en x, alors elle est continue en x. En effet :

$$\lim_{h \to 0} (f(x+h) - f(x)) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot h = f'(x) \cdot 0 = 0,$$

donc $\lim_{h\to 0} f(x+h) = f(x)$.

Remarque

La réciproque est fausse : par exemple f(x) = |x| est continue en 0, mais non dérivable en 0.

Paul MINCHELLA, Stéphane CHRÉTIEN

Propriété

Si une fonction f est dérivable en x, alors elle est continue en x. En effet :

$$\lim_{h \to 0} (f(x+h) - f(x)) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot h = f'(x) \cdot 0 = 0,$$

donc $\lim_{h\to 0} f(x+h) = f(x)$.

Remarque

La réciproque est fausse : par exemple f(x) = |x| est continue en 0, mais non dérivable en 0.

Exercice

Considérons

$$f(x) = \begin{cases} 2x+1, & x < 1, \\ x^2 + 2, & x \ge 1. \end{cases}$$

- Vérifier que f est continue en tout point de \mathbb{R} , en particulier en x = 1.
- ② Étudier la dérivabilité en x = 1 en calculant la limite du taux d'accroissement à gauche et à droite.

Intuition

La tangente en un point $(x_0, f(x_0))$ est la droite qui

- passe par le point $(x_0, f(x_0))$,
- a pour pente le taux de variation instantané, c'est-à-dire $f'(x_0)$.

Formule

L'équation de la tangente à la courbe de f en x_0 est

$$y = f'(x_0)(x - x_0) + f(x_0),$$

soit encore

$$y = \underbrace{f'(x_0)}_{k} x + \underbrace{\left(f(x_0) - x_0 f'(x_0)\right)}_{b}.$$

Propriétés fondamentales

- Linéarité : $(\alpha f + \beta g)' = \alpha f' + \beta g'$.
- Puissance : $(x^n)' = nx^{n-1}$, $(f(x)^n)' = nf(x)^{n-1} \cdot f'(x)$.
- **Produit** : (fg)' = f'g + fg'.
- Quotient : $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.
- Chaîne : $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$.

Propriétés fondamentales

- Linéarité : $(\alpha f + \beta g)' = \alpha f' + \beta g'$.
- Puissance : $(x^n)' = nx^{n-1}$, $(f(x)^n)' = nf(x)^{n-1} \cdot f'(x)$.
- **Produit** : (fg)' = f'g + fg'.
- Quotient : $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.
- Chaîne : $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$.

Exercices d'application [Préciser les domaines de dérivabilité]

- Soit $f(x) = e^{-x} + x^4$. Déterminer f'.
- Soit $f(x) = e^{2-x+x^2}$. Déterminer f'(x).
- Soit $f(x) = (\ln(x^2 1))^5$. Déterminer f'(x).
- Soit $f(x) = \frac{2x^3}{3 \ln |x|}$. Déterminer f'(x).
- **5** Soient $f(x) = \frac{2}{3}x^3$ et $g(x) = \ln |x|$. Calculer (fg)'.

Théorème de Rolle

Soit $f\colon [a,b]\to\mathbb{R}$ continue sur [a,b], dérivable sur (a,b), et telle que f(a)=f(b). Alors il existe au moins un $c\in(a,b)$ tel que

$$f'(c) = 0.$$

Intuition : si une courbe démarre et termine au même niveau sans faire de saut brusque, il existe au moins un point intérieur où la tangente est horizontale.

Paul MINCHELLA, Stéphane CHRÉTIEN

Théorème des accroissements finis (TAF / MVT)

Soit $f \colon [a,b] \to \mathbb{R}$ continue sur [a,b] et dérivable sur (a,b). Alors il existe au moins un $c \in (a,b)$ tel que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Autrement dit : la pente d'une tangente à la courbe en un point c est égale à la pente de la sécante reliant (a, f(a)) et (b, f(b)).

Paul MINCHELLA, Stéphane CHRÉTIEN

Analyse

Sans calculatrice

- **1)** (Rolle). Soit $f: [0, 2\pi] \to \mathbb{R}$ définie par $f(x) = \cos x + \frac{1}{3}\cos(3x) + 0.2\sin(2x)$.
 - Vérifier les hypothèses de Rolle sur $[0, 2\pi]$.
 - ② En déduire qu'il existe $c \in (0, 2\pi)$ tel que f'(c) = 0.
 - 3 Bonus : proposer une méthode pour approcher numériquement un tel c.
- **2)** (TAF / MVT). Soit $g:[0,2] \to \mathbb{R}$ définie par $g(x) = \ln(1+x^2)$.
 - lacktriangle Vérifier les hypothèses du TAF sur [0,2].
 - $\textbf{②} \ \, \mathsf{Trouver} \,\, c \in (0,2) \,\, \mathsf{tel} \,\, \mathsf{que} \,\,$

$$g'(c) = \frac{g(2) - g(0)}{2 - 0}.$$

Paul MINCHELLA, Stéphane CHRÉTIEN

Analyse

Lien entre dérivée et sens de variation

Propriété

Soit f une fonction dérivable sur un intervalle I. Alors :

- Si f'(x) > 0 pour tout $x \in I$, alors f est **strictement croissante** sur I (on écrit $f \nearrow$).
- Si f'(x) < 0 pour tout $x \in I$, alors f est **strictement décroissante** sur I (on écrit $f \searrow$).
- Si f'(x) = 0 pour tout $x \in I$, alors f est constante sur I.

Cette propriété fournit un premier critère de classification des points critiques (définis plus tard).

- Introduction des notions algébriques
- Les fonctions
- Les suites numériques
- Continuité d'une fonction
- Dérivée d'une fonction
- O Primitive et intégrale
- Application à l'optimisation
- Dérivées multidimensionnelles et optimisation à plusieurs variables

Idée clé

L'intégrale d'une fonction f sur [a,b] mesure l'aire sous son graphe. On approxime cette aire en découpant [a,b] en n sous-intervalles de longueur $\Delta x = \frac{b-a}{n}$, puis en sommant les aires de rectangles :

$$A(R) \approx \sum_{i=1}^{n} f(x_i^*) \Delta x.$$

$$A(R) = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \, \Delta x$$

Pourquoi chercher une primitive ?

L'aire sous la courbe de f entre a et b peut être approchée par des sommes de rectangles

$$A(R) \approx \sum_{i=1}^{n} f(x_i^*) \Delta x.$$

Lorsque $n \to \infty$, on obtient une limite qui définit l'intégrale. Or, il existe une relation profonde : cette aire peut être exprimée à l'aide d'une fonction F dont la dérivée est précisément f.

Autrement dit : calculer une aire revient à retrouver une fonction dont la pente en chaque point est donnée par f. C'est pourquoi l'intégrale est intimement liée aux primitives.

Definition

Soit $I \subset \mathbb{R}$ un intervalle et $f \colon I \to \mathbb{R}$ une fonction. On dit que $F \colon I \to \mathbb{R}$ est une **primitive** de f sur I si

$$F'(x) = f(x), \quad \forall x \in I.$$

Paul MINCHELLA, Stéphane CHRÉTIEN

Analyse

Propriétés fondamentales

Soit f une fonction continue sur un intervalle I.

lacktriangle Si F est une primitive de f sur I, alors **toutes** les primitives de f sur I sont de la forme

$$F(x) + C, \qquad C \in \mathbb{R}.$$

Formules usuelles de primitives :

$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C \quad (n \neq -1),$$

$$\int e^{kx} dx = \frac{1}{k}e^{kx} + C \quad (k \neq 0),$$

$$\int \frac{1}{x} dx = \ln|x| + C,$$

$$\int (af(x) + bg(x)) dx = a \int f(x) dx + b \int g(x) dx.$$

Intégration par parties

Soient f, g deux fonctions de classe C^1 sur un intervalle [a, b]. Alors :

$$\int_{a}^{b} f(x)g'(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x) dx,$$

οù

$$[f(x)g(x)]_a^b := f(b)g(b) - f(a)g(a).$$

Exemple

Calculer $\int xe^x dx$.

Définition

Soit $I \subset \mathbb{R}$ un intervalle et $f: I \to \mathbb{R}$ continue. Si f'(x) = f(x), alors pour $a, b \in I$:

$$\int_{a}^{b} f(x) dx := F(b) - F(a).$$

Propriétés de base

Pour toute fonction continue f et $a, b, c \in I$:

- $\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$,
- $\bullet \ \int_{\mathsf{a}}^{\mathsf{b}} (\alpha f + \beta g)(x) \, \mathrm{d}x = \alpha \int_{\mathsf{a}}^{\mathsf{b}} f(x) \, \mathrm{d}x + \beta \int_{\mathsf{a}}^{\mathsf{b}} g(x) \, \mathrm{d}x \quad \text{[Linéarité]}.$

Théorème de l'aire

Si $f: [a, b] \to \mathbb{R}$ est continue et $f \ge 0$, alors l'aire A de la région comprise entre la courbe représentative de y = f(x) et l'axe des abscisses sur [a, b] est donnée par :

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

Théorème fondamental de l'analyse

Soit $f: [a, b] \to \mathbb{R}$ continue. Pour $x \in [a, b]$, posons

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t.$$

Alors F est continue sur [a, b], dérivable sur (a, b), et l'on a

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\int_a^x f(t) \, \mathrm{d}t \right) = f(x), \quad \text{pour tout } x \in (a, b).$$

Primitives

Déterminer toutes les primitives des fonctions suivantes (sur un intervalle adapté) :

$$f_1(x) = 5x^3 - 3x + 7 \qquad f_2(x) = 2\cos(x) - 3\sin(x) \qquad f_3(x) = 10 - 3e^x + x$$

$$f_4(x) = \frac{5}{\sqrt{x}} + \frac{4}{x} + \frac{2}{x^2} + \frac{2}{x^3} \qquad f_5(x) = \frac{x+5}{x^2} \qquad \qquad f_6(x) = \frac{x^2}{5} + \frac{1}{6}$$

Intégration par parties

Calculer les intégrales suivantes :

$$I = \int_0^1 x e^x \, \mathrm{d}x$$

- Introduction des notions algébriques
- Les fonctions
- Les suites numérique
- Continuité d'une fonction
- Dérivée d'une fonction
- Primitive et intégrale
- Application à l'optimisation
- Dérivées multidimensionnelles et optimisation à plusieurs variables

Problème d'optimisation

Un des problèmes centraux du calcul différentiel est de déterminer la valeur maximale et la valeur minimale d'une fonction continue sur un intervalle.

Soit $I \subset \mathbb{R}$ et $f \colon I \to \mathbb{R}$, continue sur I. On appelle :

$$M = \max\{f(x) : x \in I\}, \qquad m = \min\{f(x) : x \in I\}.$$

- $M = f(x_M)$ est une valeur maximale, atteinte en $x_M \in I$.
- $m = f(x_m)$ est une **valeur minimale**, atteinte en $x_m \in I$.

Ces valeurs sont appelées extrema, et les points x_M , x_m sont les points d'extremum.

Problème : Les extrema de f existent-ils ? Comment les déterminer ?

Définition : Point critique

Un $c \in I$ est un **point critique (PC)** de f si :

- f'(c) existe et f'(c) = 0, ou
- f'(c) n'existe pas mais f(c) existe.

Propriété

Si f(c) est un extremum, alors c est un point critique.

Remarques

- Si c est un **bord** de l'intervalle, il faut considérer les dérivées unilatérales (ex. f(x) = x sur [0,1] a un minimum en 0 mais f'(0) = 1).
- Tout point critique n'est pas un extremum : ex. $f(x) = x^3$ sur [-1,1] a un point critique en 0 qui n'est ni max ni min.

Conséquence du théorème de Weierstrass

Soit I = [a, b] et $f \in C^0(I)$. Alors les extrema de f sur I existent. On les détermine ainsi :

- lacktriangle Calculer les **points critiques** de f dans I.
- Évaluer f aux points critiques et aux bornes a, b.
- \odot La plus petite valeur trouvée est le minimum m, la plus grande est le maximum M.

Conséquence du théorème de Weierstrass

Soit I = [a, b] et $f \in C^0(I)$. Alors les extrema de f sur I existent. On les détermine ainsi :

- lacktriangle Calculer les **points critiques** de f dans I.
- Évaluer f aux points critiques et aux bornes a, b.
- \bigcirc La plus petite valeur trouvée est le **minimum** m, la plus grande est le **maximum** M.

Exercice

Déterminer les extrema de $f(x) = x^2 - 2x + 3$ sur I = [0, 4].

Soit $c \in I$. On dit que c est un **minimum local** (resp. C un **maximum local**) si

$$f(c) \le f(x)$$
 (resp. $f(C) \ge f(x)$),

pour tout x dans un petit voisinage de c (resp. C).

Première classification des points critiques

Soit $c \in (a, b)$ un point critique de f. Alors :

- si f'(x) < 0 pour x < a < c et f'(x) > 0 pour c < x < b, alors c est un **minimum local**;
- si f'(x) > 0 pour x < a < c et f'(x) < 0 pour c < x < b, alors c est un maximum local.

Soit $c \in I$. On dit que c est un **minimum local** (resp. C un **maximum local**) si

$$f(c) \le f(x)$$
 (resp. $f(C) \ge f(x)$),

pour tout x dans un petit voisinage de c (resp. C).

Première classification des points critiques

Soit $c \in (a, b)$ un point critique de f. Alors :

- si f'(x) < 0 pour x < a < c et f'(x) > 0 pour c < x < b, alors c est un **minimum local**;
- si f'(x) > 0 pour x < a < c et f'(x) < 0 pour c < x < b, alors c est un maximum local.

Exercice

Déterminer le domaine et les points critiques de $f(x) = x \ln(x)$. Les classer.

Convexité et concavité

La convexité est centrale en analyse et optimisation (statistique, Machine Learning).

• Toute fonction convexe n'a pas de minimum local "piégé": tout minimum local est global: Cela rend l'optimisation convexe plus simple et robuste (ex. régression linéaire, descente de gradient).

Soit $f: I \to \mathbb{R}$ deux fois dérivable : f convexe sur I ssi $f''(x) \ge 0$ sur I; f concave sur I ssi $f''(x) \le 0$ sur I.

Convexité et concavité

La convexité est centrale en analyse et optimisation (statistique, Machine Learning).

• Toute fonction convexe n'a pas de minimum local "piégé": tout minimum local est global: Cela rend l'optimisation convexe plus simple et robuste (ex. régression linéaire, descente de gradient).

Soit $f: I \to \mathbb{R}$ deux fois dérivable : f convexe sur I ssi $f''(x) \ge 0$ sur I; f concave sur I ssi $f''(x) \le 0$ sur I.

Exercice 1

Trouvez et classifiez les points critiques (minimum, maximum, point d'inflexion, non dérivable) :

$$f_1(x) = \tfrac{x}{x^2+4}, \quad f_2(x) = \tfrac{\ln x}{x}, \quad f_3(x) = |x-7|, \quad f_4(x) = \tfrac{x}{x^2-1}, \quad f_5(x) = x^2 - |x-2|, \quad f_6(x) = x^3 - 9x^2 + 8x - 7.$$

Convexité et concavité

La convexité est centrale en analyse et optimisation (statistique, Machine Learning).

• Toute fonction convexe n'a pas de minimum local "piégé" : tout minimum local est global : Cela rend l'optimisation convexe plus simple et robuste (ex. régression linéaire, descente de gradient).

Soit $f\colon I\to\mathbb{R}$ deux fois dérivable : f convexe sur I ssi $f''(x)\geq 0$ sur I; f concave sur I ssi $f''(x)\leq 0$ sur I.

Exercice 1

Trouvez et classifiez les points critiques (minimum, maximum, point d'inflexion, non dérivable) :

$$f_1(x) = \frac{x}{x^2+4}, \quad f_2(x) = \frac{\ln x}{x}, \quad f_3(x) = |x-7|, \quad f_4(x) = \frac{x}{x^2-1}, \quad f_5(x) = x^2 - |x-2|, \quad f_6(x) = x^3 - 9x^2 + 8x - 7.$$

Exercice 2 - Application économique

La demande d'un produit est $p(x) = e^{-2x}$ (x: quantité, p(x): prix unitaire). Définir le revenu total R. Quel prix unitaire maximise le revenu total R.

- Introduction des notions algébrique
- 2 Les fonctions
- Les suites numérique
- Continuité d'une fonction
- Dérivée d'une fonction
- Primitive et intégrale
- Application à l'optimisation
- Dérivées multidimensionnelles et optimisation à plusieurs variables

Quelques définitions

Espaces \mathbb{R}^n

On considère d'abord $\mathbb{R} \times \mathbb{R}$, l'ensemble des couples de réels :

$$\mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}.$$

On note alors $(x, y) \in \mathbb{R}^2$. De façon analogue :

$$\mathbb{R}^3 = \{ (x, y, z) \mid x, y, z \in \mathbb{R} \}.$$

De manière générale, \mathbb{R}^n désigne l'ensemble des n-uplets de réels :

$$\mathbb{R}^n = \{(x_1, \ldots, x_n) \mid x_i \in \mathbb{R}\}.$$

Distance euclidienne dans \mathbb{R}^n

Soient $p=(x_1,\ldots,x_n)$ et $q=(y_1,\ldots,y_n)$ deux points de \mathbb{R}^n . La distance euclidienne entre p et q est

$$d(p,q) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \cdots + (x_n-y_n)^2} = \sqrt{\sum_{i=1}^n (x_i-y_i)^2}.$$

Une fonction de deux variables est une application

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x, y) \mapsto f(x, y).$$

On définit :

$$\operatorname{Dom}(f) = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) \text{ est défini}\}, \quad \operatorname{Im}(f) = \{f(x, y) \mid (x, y) \in \operatorname{Dom}(f)\}.$$

Graphe

Le graphe de f est l'ensemble

$$G(f) = \{(x, y, f(x, y)) \mid (x, y) \in Dom(f)\},\$$

c'est-à-dire une surface dans \mathbb{R}^3 .

Une fonction de deux variables est une application

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x, y) \mapsto f(x, y).$$

On définit :

$$\operatorname{Dom}(f) = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) \text{ est défini}\}, \quad \operatorname{Im}(f) = \{f(x, y) \mid (x, y) \in \operatorname{Dom}(f)\}.$$

Graphe

Le graphe de f est l'ensemble

$$G(f) = \{(x, y, f(x, y)) \mid (x, y) \in Dom(f)\},\$$

c'est-à-dire une surface dans \mathbb{R}^3 .

Exemple

Soit f(x,y)=x-y et $g:\mathbb{R}^2\to\mathbb{R}$ définie par $g(x,y)=\sqrt{y-x}$. Déterminer leur domaine et image.

Suites de points et convergence

Une suite $(p_n)_{n\in\mathbb{N}}$ dans \mathbb{R}^d s'écrit

$$p_n=(x_{1,n},\ldots,x_{d,n}).$$

On dit que $p_n o p^*$ si

$$d(p_n, p^*) \to 0 \quad (n \to \infty).$$

Continuité

Soit $f: D \subset \mathbb{R}^2 \to \mathbb{R}$. On dit que f est continue en $(x_0, y_0) \in D$ si

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$$

Si f est continue en tout point de D, on note $f \in C^0(D)$.

Propriété

Toute fonction de deux variables obtenue par des opérations usuelles (somme, produit, composition avec polynômes, fonctions trigonométriques, exponentielles, logarithmes) est continue sur son domaine.

Soit $f \in C^0(D)$ et $(x, y) \in D$.

$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}, \quad \frac{\partial f}{\partial y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}.$$

Ces limites définissent respectivement la dérivée partielle en x et la dérivée partielle en y.

Exercice

Déterminer $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ pour :

•
$$f(x, y) = ax + by + c$$
.

$$f(x,y) = ax^2 + bxy + d\frac{x+y}{x-y}.$$

Gradient

Soit $f \colon \mathbb{R}^2 \to \mathbb{R}$ différentiable en p = (x, y).

Le gradient de f en p est

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \end{bmatrix}.$$

Plan tangent

Pour z = f(x, y) et $p_0 = (x_0, y_0)$, si f admet des dérivées partielles en p_0 , alors le **plan tangent** au graphe de f en $(x_0, y_0, f(x_0, y_0))$ est

$$z = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) + f(x_0, y_0)$$
$$= \nabla f(x_0, y_0) \cdot \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix} + f(x_0, y_0).$$

Principe

Soit z = f(x, y) une fonction continue sur un domaine D borné et fermé. On cherche les extrema globaux :

$$m = \min\{f(x, y) \mid (x, y) \in D\}, \qquad M = \max\{f(x, y) \mid (x, y) \in D\}.$$

- m = minimum global de f dans D.
- M = maximum global de f dans D.

Théorème de Weierstrass

Si $D \subset \mathbb{R}^2$ est **borné et fermé**, et $f \in C^0(D)$, alors f admet un minimum global m et un maximum global M atteints dans D.

Points critiques

Un point $(x_0,y_0)\in D$ est **critique** pour f si

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 et $\frac{\partial f}{\partial y}(x_0, y_0) = 0$ \Leftrightarrow $\nabla f(x_0, y_0) = 0$

Extrema locaux et point selle

Soit $(x_0, y_0) \in D$:

- $f(x_0, y_0)$ est un **maximum local** si, dans un voisinage V, $f(x, y) \le f(x_0, y_0)$.
- $f(x_0, y_0)$ est un **minimum local** si $f(x_0, y_0) \le f(x, y)$ dans V.
- Tout maximum ou minimum local est un extremum local.
- (x_0, y_0) est un **point selle** si ce n'est ni un max local, ni un min local.

Matrice hessienne

La *Hessienne* de f en p = (x, y) est

$$\nabla^2 f(x,y) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial x \partial y}(x,y) \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{bmatrix}.$$

Elle est:

- définie positive si toutes ses valeurs propres sont > 0;
- **définie négative** si toutes ses valeurs propres sont < 0.

Propriété de classification

Soit $p^* = (x^*, y^*)$ un point critique de f:

- Hessienne définie positive $\Rightarrow p^*$ est un **minimum local**.
- Hessienne définie négative $\Rightarrow p^*$ est un maximum local.

Valeurs propres de la Hessienne

Soit $\nabla^2 f(p^*)$ la matrice hessienne en un point critique $p^* = (x^*, y^*)$. Ses valeurs propres réelles sont notées λ_1, λ_2 .

Classification via les signes de λ_1, λ_2

- Si $\lambda_1 > 0$ et $\lambda_2 > 0$, alors p^* est un **minimum local**.
- Si $\lambda_1 < 0$ et $\lambda_2 < 0$, alors p^* est un maximum local.
- Si λ_1 et λ_2 ont des signes opposés, alors p^* est un **point selle**.
- Si l'une des deux valeurs propres est nulle, le test est inconcluant.

Remarque pratique

En pratique, on n'a pas besoin de calculer explicitement λ_1, λ_2 :

$$\lambda_1 \lambda_2 = \det(\nabla^2 f(\mathbf{p}^*)), \qquad \lambda_1 + \lambda_2 = \operatorname{tr}(\nabla^2 f(\mathbf{p}^*)).$$

Ainsi, le signe du déterminant et de $\partial_{xx}^2 f(p^*)$ suffisent à conclure.

Exercice d'application

Soient x et y les demandes des produits P et Q, avec prix unitaires

$$p(x, y) = 100 - 3x - y,$$
 $q(x, y) = 180 - x - 4y.$

Le revenu total est

$$R(x,y) = x p(x,y) + y q(x,y) = 100x + 180y - 3x^{2} - 2xy - 4y^{2}.$$

Déterminer les valeurs de x, y qui maximisent R(x, y).