```
In [63]:
           1 import numpy as np
           2 import pandas as pd
           3 import matplotlib.pyplot as plt
          4 import seaborn as sns
           6 X=np.array([6,7,8,9,10,11,4])
          7 Y=np.array([4,5,6,7,8,9,10])
          8
          9 X_mean= np.mean(X)
          10 Y_mean= np.mean(Y)
          11
          12
          13
             a= sum((X-X_mean)*(Y-Y_mean))
          14
             b=sum((X-X_mean)**2)
          15
          16
             # now calculate the value of B1 slope...
          17
          18
          19
             B1= a/b
          20
          21
             print("The slope of the linear regession line is:", B1)
          22
          23
             B0= Y_mean-B1*X_mean
          24
          25
             print("The intercept of the linear regession line is:" ,B0)
          26
          27
          28 y_pred= B0+B1*X
          29
             print("The predicted value is:")
          30 print(y_pred)
          31
          32 plt.scatter(X,Y, color="blue", label=" Data points")
          33 | plt.plot(X,y_pred, color="red", label="Linear regession line")
          34 plt.xlabel("X-axis")
          35 plt.ylabel("Y-axis")
          36 plt.title("Linear regession")
          37 plt.legend()
          38 plt.show()
```

```
In [ ]: 1
```

same code using function

```
In [65]:
           1
              import numpy as np
           2
              import matplotlib.pyplot as plt
           5
           6 \mid X = np.array([6, 7, 8, 9, 10, 11, 4])
           7 \mid Y = \text{np.array}([4, 5, 6, 7, 8, 9, 10])
           8
           9
          10 def linear_regression(X, Y):
                  X mean = np.mean(X)
          11
          12
                  Y_{mean} = np.mean(Y)
          13
                  a = sum((X - X_mean) * (Y - Y_mean))
          14
          15
                  b = sum((X - X_mean) ** 2)
          16
                  B1 = a / b
          17
          18
                  print("The slope of the linear regression line is:",B1)
          19
          20
                  B0 = Y_mean - B1 * X_mean
                  print("The intercept of the linear regression line is:",B0)
          21
          22
          23
                  y pred = B0 + B1 * X
          24
                  print("The predicted values are:",y_pred)
          25
          26
          27
                  # Plot the results
                  plt.scatter(X, Y, color="blue", label="Data points")
          28
                  plt.plot(X, y_pred, color="red", label="Linear regression line")
          29
          30
                  plt.xlabel("X-axis")
                  plt.ylabel("Y-axis")
          31
                  plt.title("Linear Regression")
          32
          33
                  plt.legend()
                  plt.show()
          34
          35
          36
          37
              linear_regression(X,Y)
          38
          39
          40
          41
```

```
The slope of the linear regression line is: 0.11475409836065578
The intercept of the linear regression line is: 6.098360655737705
The predicted values are: [6.78688525 6.90163934 7.01639344 7.13114754 7.245 90164 7.36065574
6.55737705]
```

Linear Regression

linear regression using "iris dataset"

Out[66]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

In [68]: 1 data.count()

```
Out[68]: sepal_length 150
sepal_width 150
petal_length 150
petal_width 150
species 150
dtype: int64
```

```
In [69]:
              print(data.isnull().sum())
         sepal_length
                          0
         sepal_width
                          0
         petal_length
                          0
         petal_width
                          0
         species
                          0
         dtype: int64
In [70]:
              print(data.duplicated().sum())
         1
In [71]:
              data=data.drop_duplicates()
In [72]:
              data
Out[72]:
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

149 rows × 5 columns

In [73]: 1 da

1 data.describe()

Out[73]:

	sepal_length	sepal_width	petal_length	petal_width
count	149.000000	149.000000	149.000000	149.000000
mean	5.843624	3.059732	3.748993	1.194631
std	0.830851	0.436342	1.767791	0.762622
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.300000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [74]:
              # just use sepal_lenght and sepal_widht as a data
           3 X=data["sepal_length"]
             Y=data["sepal_width"]
           4
           5
           6
           7
              def linear_regression(X, Y):
           8
           9
                  X_{mean} = np.mean(X)
                  Y_{mean} = np.mean(Y)
          10
          11
                  a = sum((X - X_mean) * (Y - Y_mean))
          12
                  b = sum((X - X_mean) ** 2)
          13
          14
          15
                  B1 = a / b
          16
                  print("The slope of the linear regression line is:",B1)
          17
          18
                  B0 = Y mean - B1 * X mean
          19
                  print("The intercept of the linear regression line is:",B0)
          20
          21
                  y_pred = B0 + B1 * X
          22
                  print("The predicted values are:",y_pred)
          23
          24
                  # Plot the results
          25
          26
                  plt.figure(figsize=(10,6))
                  plt.scatter(X, Y, color="blue", label="Data points")
          27
                  plt.plot(X,y_pred, color="red", label="Linear regression line")
          28
          29
                  plt.xlabel("X-axis")
                  plt.ylabel("Y-axis")
          30
                  plt.title("Linear Regression")
          31
          32
                  plt.legend()
          33
                  plt.show()
          34
          35
          36
              linear_regression(X,Y)
          37
          38
          39
```

```
The slope of the linear regression line is: -0.06203852116561995
The intercept of the linear regression line is: 3.4222613448248675
The predicted values are: 0
                                 3.105865
1
       3.118273
2
       3.130680
3
       3.136884
4
      3.112069
145
      3.006603
146
      3.031419
147
      3.019011
148
      3.037623
149
       3.056234
Name: sepal_length, Length: 149, dtype: float64
```


In []: 1