Natural Language Processing Report

P.L.S.Sreedhar 201501029

1. Implement unigram, bigram and trigram language models. Implementation of the language models has been done in the code, Steps require:

```
corpus=tokenise(file)
unigrams,unigrams_prob=get_unigrams(corpus)
bigrams,bigrams_prob = get_bigrams(corpus,unigrams)
trigrams,trigrams_prob = get_trigrams(corpus,bigrams)
```

 $\ensuremath{\text{2.Plot}}$ log-log curve and zipf curve for the above:

Using

```
plot(sort_dict(unigrams_prob))
plot_log_log1(sort_dict(unigrams_prob))
```

Different plots we got:

normal_bigram_log_anime

normal_bigram_log_movies

normal_bigram_zipf_anime

normal_bigram_zipf_movies

normal_bigram_zipf_news

normal_trigram_log_movies

normal_trigrams_log_anime

normal_trigrams_log_news

normal_trigrams_zipf_anime

normal_trigrams_zipf_movies

normal_trigrams_zipf_news

normal_unigram_log_anime

normal_unigram_log_movies

normal_unigram_log_news

normal_unigram_zipf_anime

normal_unigram_zipf_movies

normal_unigram_zipf_news

3.Implement laplace smoothing. Compare the effect of smoothing on different values for V (200, 2000, current size of vocabulary, 10*size of vocabulary). Plot these to compare.

```
Laplace_unigrams_prob = get_laplace_unigrams(unigrams, 200)
Laplace_unigrams_prob2 = get_laplace_unigrams(unigrams, 2000)
Laplace_unigrams_prob3 = get_laplace_unigrams(unigrams, len(unigrams))

Laplace_bigrams_prob1 = get_laplace_bigrams(unigrams, bigrams, 200)
Laplace_bigrams_prob2 = get_laplace_bigrams(unigrams, bigrams, 2000)
Laplace_bigrams_prob3 = get_laplace_bigrams(unigrams, bigrams, len(unigrams))
Laplace_bigrams_prob4 = get_laplace_bigrams(unigrams, bigrams, 10*len(unigrams))

Laplace_trigrams_prob1 = get_laplace_trigrams(unigrams, bigrams, trigrams, 200)
Laplace_trigrams_prob2 = get_laplace_trigrams(unigrams, bigrams, trigrams, 2000)
Laplace_trigrams_prob3 = get_laplace_trigrams(unigrams, bigrams, trigrams, len(unigrams))
Laplace_trigrams_prob4 = get_laplace_trigrams(unigrams, bigrams, trigrams, 10*len(unigrams))
```


This functions could be called as shown below:

wittenbell_bigrams_prob = get_wittenbell_bigrams(unigrams, bigrams, unigrams_prob, wittenbell_unigrams_prob)
wittenbell_trigrams_prob = get_wittenbell_trigrams(unigrams, trigrams, trigrams_prob, wittenbell_bigrams_prob)

4. Implement Kneser-Ney smoothing.

Kneser-Ney smoothing is implemented which could be called using below functions

```
kn_unigrams_prob = get_kn_unigrams(unigrams,200)
kn_bigrams_prob = get_kn_bigrams(unigrams,bigrams)
kn_trigrams_prob = get_kn_trigrams(unigrams,bigrams,trigrams)
```

5. Compare the three smoothing techniques:

Zipf Bigram News

Zipf trigram News

Zipf Unigram News

7. In Kneser-Ney, what happens if we use the estimates from laplace and wittenbell in the absolute discounting step?

8. Using KN-estimates from the three sources, generate text with unigram, bigram and trigram probabilities.

Generated Texts:

For trigram:

['team', 'is', 'back', 'it', 'was', 'a', 'little', 'too', 'much', 'and'] ['man', 'am', 'i', 'the', 'only', 'one', 'of', 'my', 'favorite', 'anime']

For Bigrams:

['planet', 'but', 'i', 'm', 'not']

['im', 'thoroughly', 'enjoying', 'seeing', 'misaki', 's', 'real', 'personality', 'as', 'well']

Naive Bayes

Plot the zipf's curves of all the three sources on one graph. Where do they match? Where don't they match?

To Clearly view the meeting point I have Zoomed the pictures leading to pictures as below

