

Bus Systems

Exercise 3

Prof. Dr. Reinhard Gotzhein, Dr. Thomas Kuhn

Exercise 3

Scheduling analysis

Calculate worst case response times using exact scheduling analysis

Message	ID	Period	Deadline	Number of data bytes
Α	00000100001	50	5	3
В	00000100000	5	5	2
С	00000100010	10	10	1
D	00000100100	50	20	1
Е	00000100011	50	20	5
F	00000100101	100	100	6
G	00000100110	1000	1000	1

- The following is given:
 - All times are given in milliseconds.
 - The dominant bit is 0
 - Standard CAN Version 2A bus with 11 bit identifier and 47 control bits is used
 - The bus speed is 50 Kbits/s.
 - The queuing jitter for all messages is zero.
 - Calculate response times for messages A, B, and G only.

Exercise 3

Scheduling analysis

- What is the critical instantant for a frame type?
- Which effects can delay the transmission of a frame in CAN bus and how are these effects covered by the scheduling analysis