Домашнее задание N5

Студент: Гусев М. В.

Вариант: 104

						(\hat{i}_1						
V/V	x1	x2	х3	x4	x5	х6	x7	x8	x9	x10	x11	x12	p_{i}
x1	0	1	0	0	0	1	1	0	1	0	1	1	6
x2	1	0	0	0	0	0	1	1	1	1	1	0	6
х3	0	0	0	1	1	0	0	1	1	1	0	0	5
x4	0	0	1	0	1	0	0	0	0	1	0	1	4
x5	0	0	1	1	0	1	0	1	1	0	1	0	6
х6	1	0	0	0	1	0	1	0	1	0	1	0	5
x7	1	1	0	0	0	1	0	0	0	1	0	1	5
x8	0	1	1	0	1	0	0	0	0	1	1	0	5
x9	1	1	1	0	1	1	0	0	0	0	1	0	6
x10	0	1	1	1	0	0	1	1	0	0	1	1	7
x11	1	1	0	0	1	1	0	0	1	1	0	1	7
x12	1	0	0	1	0	0	1	1	0	1	1	0	6

						(i_2						
V/V	у1	y2	у3	y4	у5	у6	у7	y8	у9	y10	y11	y12	$p_{\mathtt{i}}$
y1	0	1	1	1	1	0	1	1	1	0	0	0	7
y2	1	0	0	0	0	1	1	1	0	1	1	1	7
у3	1	0	0	1	1	0	1	1	0	0	0	1	6
y4	1	0	1	0	1	1	1	0	1	0	0	0	6
у5	1	0	1	1	0	0	0	0	1	0	0	1	5
у6	0	1	0	1	0	0	0	0	1	1	1	0	5
у7	1	1	1	1	0	0	0	0	0	1	0	1	6
y8	1	1	1	0	0	0	0	0	0	1	1	1	6
у9	1	0	0	1	1	1	0	0	0	1	1	0	6
y10	1	1	0	0	0	1	1	0	1	0	0	0	5
y11	0	1	0	0	0	1	0	1	1	0	0	0	4
y12	0	1	1	0	1	0	1	1	0	0	0	0	5

Для графа $G_1 \Sigma \rho(x) = 68$. $P(x) = \{6, 6, 5, 4, 6, 5, 5, 5, 6, 7, 7, 6\}$ Для графа $G_2 \Sigma \rho(x) = 68$. $P(x) = \{7, 7, 6, 6, 5, 5, 6, 6, 6, 5, 4, 5\}$

Разобьем вершины обоих графов на классы по их степеням:

	p(x) = p(y) = 7	p(x) = p(y) = 6	p(x) = p(y) = 5	p(x) = p(y) = 4
Χ	X ₁₀ , X ₁₁	X_1 , X_2 , X_5 , X_9 , X_{12}	X_3 , X_6 , X_7 , X_8	X_4
Υ	y ₁ , y ₂	y ₃ , y ₄ , y ₇ , y ₈ , y ₉	y ₁₀ , y ₁₂	y ₁₁

Из таблицы можно сразу заметить соответствие вершин графов:

Х	Υ
X ₄	y ₁₁

Для определения соответствия вершин с $\rho(x) = \rho(y) = 7$ попробуем связать вершины из классов с $\rho(x) = \rho(y) = 4$ с неустановленными вершинами:

Можем сделать вывод, что y_2 соответствует x_{10} , y_1 соответствует x_{11} .

Х	Υ
X ₄	y ₁₁
X ₁₀	y ₂
X ₁₁	y ₁

Для определения соответствия вершин с $\rho(x) = \rho(y) = 6$ попробуем связать вершины из классов с $\rho(x) = \rho(y) = 4$ и $\rho(x) = \rho(y) = 7$ с неустановленными вершинами:

Можем сделать вывод о соответствии: y_9 - x_5 , y_7 - x_2 , y_8 - x_{12} .

Х	Υ
X ₄	y ₁₁
X ₁₀	y ₂
X ₁₁	y_1
X ₅	y ₉
X_2	y ₇
X ₁₂	y ₈

Для определения соответствия оставшихся вершин с $\rho(x) = \rho(y) = 6$ попробуем связать вершины из классов с $\rho(x) = \rho(y) = 6$ с неустановленными вершинами:

Таким образом, можем сделать вывод о соответствии: y_3 - x_1 , y_4 - x_9 .

Χ	Υ
X_4	y ₁₁
X ₁₀	y ₂
X ₁₁	y_1
X ₅	y ₉
X_2	y ₇
X ₁₂	y ₈
X_1	y ₃
X ₉	y ₄

Для определения соответствия вершин с $\rho(x) = \rho(y) = 5$ попробуем связать вершины из классов с $\rho(x) = \rho(y) = 4$ и $\rho(x) = \rho(y) = 7$ с неустановленными вершинами:

Таким образом, можем сделать вывод о соответствии: y_6 - x_3 , y_5 - x_{11} , y_{10} - x_8 , y_{12} - x_7 .

Х	Υ
X_4	y ₁₁
X ₁₀	y ₂
X ₁₁	y_1
X ₅	y ₉
X_2	y ₇
X ₁₂	y ₈
X ₁	y ₃

X ₉	y ₄
X ₃	y ₆
X ₁₁	y ₅
X ₈	y ₁₀
X ₇	y ₁₂

Все вершины имеют связь. Значит, графы G_1 и G_2 изоморфны.