

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 22 janvier 2004 (22.01.2004)

PCT

T COLUMN SINITED I A COLUMN TIAN CONTROL CONTROL SI NA CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL

WO 2004/007432 A1

(10) Numéro de publication internationale

- (51) Classification internationale des brevets⁷:
 C07C 253/10, C07F 9/145,
 9/58, 9/655, 9/141, 9/24, 9/6571, 9/6574
- (21) Numéro de la demande internationale : PCT/FR2003/002192
- (22) Date de dépôt international: 11 juillet 2003 (11.07.2003)
- (25) Langue de dépôt :

français

(26) Langue de publication:

français

- (30) Données relatives à la priorité : 02/08899 15 juillet 2002 (15.07.2002) FF
- (71) Déposant (pour tous les États désignés sauf US): RHODIA POLYAMIDE INTERMEDIATES [FR/FR]; Avenue Ramboz BP 33, F-69192 Saint-Fons (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): GAL-LAND, Jean-Christophe [FR/FR]; 145, cours du Docteur Long, F-69003 Lyon (FR). DIDILLON, Blaise [FR/FR]; 11, impasse des Glycines, F-69340 Francheville (FR). MARION, Philippe [FR/FR]; 140, route du Buye, F-69390 Vernaison (FR). BOURGEOIS, Damien [FR/FR]; 63, rue de la Part Dieu, F-69003 Lyon (FR).

- (74) Mandataire : ESSON, Jean-Pierre; Centre de Recherches de Lyon, Direction de la Propriété Industrielles, 85, rue des Frères Perret, F-69190 Saint Fons (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: MAKING NITRILE COMPOUNDS FROM ETHYLENICALLY UNSATURATED COMPOUNDS
- (54) Titre: FABRICATION DE NITRILES A PARTIR DE COMPOSES A INSATURATION ETHYLENIQUE
- (57) Abstract: The invention concerns a method for hydrocyanation of ethylenically unsaturated organic compounds into compounds comprising at least one nitrile function. It concerns particularly hydrocyanation of diolefins such as butadiene or substituted olefins such as alkenenitriles like pentenenitriles. The method is characterized in that the reaction is carried out in the presence of a metal complex catalyst comprising a transition metal such as nickel and an organic ligand.
- (57) Abrégé: La présente invention concerne un procédé d'hydrocyanation de composés organiques à insaturation éthylénique en composés comprenant au moins une fonction nitrile. Elle se rapporte plus particulièrement à l'hydrocyanation de dioléfines telles que le butadiène ou d'oléfines substituées telles que des alcènesnitriles comme les pentènenitriles. Selon le procédé de l'invention la réaction est mise en oeuvre en présence d'un catalyseur complexe métallique comprenant un métal de transition comme le nickel et un ligand organique.

WO 2004/007432

5

10

15

20

25

30

35

FABRICATION DE NITRILES A PARTIR DE COMPOSES A INSATURATION ETHYLENIQUE

La présente invention concerne un procédé d'hydrocyanation de composés organiques à insaturation éthylénique en composés comprenant au moins une fonction nitrile.

Elle se rapporte plus particulièrement à l'hydrocyanation de dioléfines telles que le butadiène ou d'oléfines substituées telles que des alcènesnitriles comme les pentènenitriles. L'hydrocyanation du butadiène en pentènenitriles est une réaction importante qui est mise en œuvre industriellement depuis de nombreuses années, notamment dans le procédé de synthèse de l'adiponitrile, un grand intermédiaire chimique permettant notamment d'accéder aux monomères de nombreux polymères, dont principalement les polyamides.

Le brevet français n° 1 599 761 décrit un procédé de préparation de nitriles par addition d'acide cyanhydrique sur des composés organiques ayant au moins une double liaison éthylénique, en présence d'un catalyseur au nickel et d'une phosphite de triaryle. Cette réaction peut être conduite en présence ou non d'un solvant.

Lorsqu'un solvant est utilisé dans ce procédé de l'art antérieur, il s'agit de préférence d'un hydrocarbure, tel que le benzène ou les xylènes ou d'un nitrile tel que l'acétonitrile.

Le catalyseur mis en œuvre est un complexe organométallique de nickel, contenant des ligands tels que les phosphines, les arsines, les stibines, les antimonites, les arsénites, les phosphinites ou phosphonites.

Les procédés d'hydrocyanation de diènes comprennent généralement deux étapes : une première hydrocyanation conduisant à des mononitriles insaturés ramifiés et linéaires et une seconde étape permettant d'obtenir les dinitriles. Souvent seuls les nitriles linéaires présentent un intérêt pour la synthèse de nouveaux produits comme par exemple l'adiponitrile. Ces procédés comprennent donc également une étape intermédiaire appelée étape d'isomérisation, consistant à traiter les mononitriles insaturés ramifiés pour les transformer en mononitriles insaturés linéaires.

La présence d'un promoteur pour activer le catalyseur, tel qu'un composé du bore ou un sel métallique, généralement un acide de Lewis, est également préconisée pour réaliser la seconde étape.

Le brevet FR-A-2 338 253 a proposé de réaliser l'hydrocyanation des composés ayant au moins une insaturation éthylénique, en présence d'une solution aqueuse d'un composé d'un métal de transition, notamment le nickel, le palladium ou le fer, et d'une phosphine sulfonée.

Les phosphines sulfonées décrites dans ce brevet sont des triarylphosphines sulfonées et plus particulièrement des triphénylphosphines sulfonées.

Ce procédé permet une hydrocyanation correcte, notamment du butadiène et des pentènenitriles, une séparation aisée de la solution catalytique par simple décantation et par

5

10

15

20

25

30

conséquent évite au maximum le rejet d'effluents ou de déchets contenant les métaux utilisés comme catalyseur.

Toutefois, des recherches sont conduites pour trouver de nouveaux systèmes catalytiques plus performants tant en activité catalytique qu'en sélectivité et stabilité.

Un des buts de la présente invention est de proposer une nouvelle famille de ligands qui permet d'obtenir avec les métaux de transition des systèmes catalytiques présentant notamment une sélectivité améliorée en nitriles linéaires par rapport aux systèmes connus.

A cet effet, la présente invention propose un procédé d'hydrocyanation d'un composé hydrocarboné comprenant au moins une insaturation éthylénique par réaction en milieu liquide avec le cyanure d'hydrogène en présence d'un catalyseur comprenant un élément métallique choisi parmi les métaux de transition et un ligand organique caractérisé en ce que le ligand organique correspond à la formule générale I suivante :

$$R_{1}$$
 U_{1} U_{2} R_{2} U_{3} U_{4} U_{4} U_{5} U_{6} U_{6} U_{1}

Dans laquelle :

 $\mathsf{T},\,\mathsf{T}_1$ identiques ou différents représentent un atome de phosphore, d'arsenic ou d'antimoine

 U_1 , U_2 , U_3 , U_4 , U_5 , U_6 identiques ou différents représentent un atome d'oxygène ou un radical NR, R représentant un radical alkyle, aryle, sulfonyle ou carbonylé,

 R_1 , R_2 , R_3 , R_4 identiques ou différents représentent un radical aromatique, aliphatique ou cycloaliphatique substitué ou non comprenant un ou plusieurs cycles sous forme condensée ou non et pouvant comprendre un ou plusieurs hétéroatomes, les radicaux R_1 et R_2 d'une part, R_3 , R_4 et d'autre part peuvent être reliés entre eux par une liaison covalente, une chaîne hydrocarbonée ou un hétéroatome, et quand l'un des radicaux U_1 , U_2 , U_3 , U_4 comprend un atome N, le radical R_1 , R_2 , R_3 , R_4 associé peut former un cycle incluant l'élément N dudit radical,

m et n sont des nombres entiers identiques ou différents compris entre 0 et 6 avec m + n qui doit être égale ou supérieure à 1

 ${\bf Q_{1,Q_{2}}}$ identiques ou différents représentent un groupe correspondant aux formules générales II, III ou IV suivantes :

$$\begin{array}{c|c}
\hline
R_5 \\
\hline
C \\
R_6 \\
\hline
R_8
\end{array}$$

$$\begin{array}{c|c}
R_7 \\
\hline
I \\
R_8
\end{array}$$

$$\begin{array}{c|c}
(IV)
\end{array}$$

dans lesquelles R_5 , R_6 , R_7 , R_8 identiques ou différents représentent des radicaux hydrocarbonés aliphatiques, cycloaliphatiques ou aromatiques comprenant de 1 à 12 atomes de carbone, R_5 , R_6 représentant également l'atome d'hydrogène et

t, u représentent des nombres entiers compris entre 0 et 6 avec une somme u + t supérieure ou égale à 1

Z représentant un radical divalent choisi dans le groupe comprenant les radicaux aromatiques ou cycloaliphatiques comprenant un ou plusieurs cycles sous forme condensée ou non, et pouvant être substitués et comprendre des hétéroatomes.

Comme substituants convenables pour Z on peut citer les groupes alkyle, halogène, aryle, alkoxy, aryloxy, nitro, thioalkyle, amine secondaire, nitrile

Comme ligands préférés de l'invention on peut citer ceux dont la structure suivante de la formule (I):

15

5

10

$$U_5$$
 Q_1 Q_2 M

5

10

est choisie dans le groupe comprenant les structures suivantes :

$$\bigcap_{\mathsf{R}_9} \bigcap_{\mathsf{N} \subset \mathsf{R}_9} \bigcap_{\mathsf{R}_9} \bigcap_$$

dans lesquelles R_9 représentent un radical alkyle, aryle, halogène, alkoxy, thiol, cyano, nitro, aryloxy, alkoxycarbonyle, acyle, formyle.

Comme exemples de ligands convenables pour l'invention, on peut citer les composés suivants listés dans le tableau I ci-dessous :

Ph: OMe Ph Ph Ρh Ρ'n .Me^{Ph} `NO₂ SМе tBu[.] `tBu tBuŧΒu ṫΒu tBu tBu NO₂

Ph-

Ph

ŅTs

NTs

O P NTs

NTs TsN

Dans lesquelles:

Ts représente le radical tolyle tBu représente le groupe tertiobutyle Me représente le groupe méthyle Ph représente le groupe phényle

Selon l'invention, le catalyseur correspond, avantageusement, à la formule générale (V): $M \ [L_f]_v \qquad \qquad (V)$

Dans laquelle:

5

10

15

20

25

M est un métal de transition

L_f représente le ligand organique de formule (I)

v représente un nombre compris entre 1 et 4 (bornes incluses)

Les métaux qui peuvent être complexés par les ligands organiques de l'invention sont de manière générale tous les métaux de transition des groupes 1b, 2b, 3b, 4b, 5b, 6b, 7b et 8 de la classification périodique des éléments, telle que publiée dans "Handbook of Chemistry and Physics, 51st Edition (1970-1971)" de The Chemical Rubber Company.

Parmi ces métaux, on peut citer plus particulièrement les métaux on peut mentionner à titre d'exemples non limitatifs, le nickel, le cobalt, le fer, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium, le platine, le cuivre, l'argent, l'or, le zinc, le cadmium, le mercure.

La préparation des complexes organométalliques comprenant les ligands organiques de l'invention peut être effectuée en mettant en contact une solution d'un composé du métal choisi avec une solution du ligand organique de l'invention.

Le composé du métal peut être dissous dans un solvant.

10

15

20

25

30

35

Le métal peut se trouver dans le composé mis en œuvre, soit au degré d'oxydation qu'il aura dans le complexe organométallique, soit à un degré d'oxydation supérieur.

A titre d'exemple, on peut indiquer que dans les complexes organométalliques de l'invention, le rhodium est au degré d'oxydation (I), le ruthénium au degré d'oxydation (II), le platine au degré d'oxydation (0), l'osmium au degré d'oxydation (II), l'iridium au degré d'oxydation (I), le cobalt au degré d'oxydation (I), le nickel au degré d'oxydation (0).

Si lors de la préparation du complexe organométallique, le métal est mis en œuvre à un degré d'oxydation plus élevé, il pourra être réduit in situ.

Les complexes organométalliques comprenant les ligands organiques de l'invention peuvent être utilisés comme catalyseurs dans les réactions d'hydrocyanation d'oléfines.

Comme métal de transition, les composés des métaux de transition, plus particulièrement les composés du nickel, du palladium, du cobalt, du fer ou du cuivre sont de préférence utilisés.

Parmi les composés précités, les composés les plus préférés sont ceux du nickel.

On peut citer à titre d'exemples non limitatifs :

- les composés dans lesquels le nickel est au degré d'oxydation zéro comme le tétracyanonickelate de potassium K₄ [Ni(CN)₄], le bis (acrylonitrile) nickel zéro, le bis (cyclooctadiène-1,5) nickel zéro (appelé également Ni(cod)₂) et les dérivés contenant des ligands comme le tétrakis (triphénylphosphine) nickel zéro.
- les composés du nickel comme les carboxylates (notamment l'acétate), carbonate, bicarbonate, borate, bromure, chlorure, citrate, thiocyanate, cyanure, formiate, hydroxyde, hydrophosphite, phosphite, phosphate et dérivés, iodure, nitrate, sulfate, sulfite, aryl- et alkyl-sulfonates.

Quand le composé du nickel utilisé correspond à un état d'oxydation du nickel supérieur à 0, on ajoute au milieu réactionnel un réducteur du nickel réagissant préférentiellement avec celui-ci dans les conditions de la réaction. Ce réducteur peut être organique ou minéral. On peut citer comme exemples non limitatifs les borohydrures comme le BH₄Na, le BH₄K, la poudre de Zn, le magnésium ou l'hydrogène.

Quand le composé du nickel utilisé correspond à l'état d'oxydation 0 du nickel, on peut également ajouter un réducteur du type de ceux précités, mais cet ajout n'est pas impératif.

Quand on utilise un composé du fer, les mêmes réducteurs conviennent.

Dans le cas du palladium, les réducteurs peuvent être, en outre, des éléments du milieu réactionnel (phosphine, solvant, oléfine).

Les composés organiques comportant au moins une double liaison éthylénique plus particulièrement mis en œuvre dans le présent procédé sont les dioléfines comme le butadiène, l'isoprène, l'hexadiène-1,5, le cyclooctadiène-1,5, les nitriles aliphatiques à insaturation éthylénique, particulièrement les pentènenitriles linéaires comme le pentène-3-nitrile, le pentène-

15

20

25

30

35

4-nitrile, les monooléfines comme le styrène, le méthylstyrène, le vinylnaphtalène, le cyclohexène, le méthylcyclohexène ainsi que les mélanges de plusieurs de ces composés.

37

Les pentènenitriles notamment peuvent contenir des quantités, généralement minoritaires, d'autres composés, comme le méthyl-2-butène-3-nitrile, le méthyl-2-butène-2-nitrile, le pentène-2-nitrile, le valéronitrile, l'adiponitrile, le méthyl-2-glutaronitrile, l'éthyl-2-succinonitrile ou le butadiène, provenant par exemple de la réaction antérieure d'hydrocyanation du butadiène en nitriles insaturés.

En effet, lors de l'hydrocyanation du butadiène, il se forme avec les pentènenitriles linéaires des quantités non négligeables de méthyl-2-butène-3-nitrile et de méthyl-2-butène-2-nitrile.

Le système catalytique utilisé pour l'hydrocyanation selon le procédé de l'invention peut être préparé avant son introduction dans la zone de réaction, par exemple par addition à du ligand conforme à l'invention seul ou dissout dans un solvant, la quantité appropriée de composé du métal de transition choisi et éventuellement du réducteur. Il est également possible de préparer le système catalytique "in situ" par simple addition du ligand et du composé du métal de transition dans le milieu réactionnel d'hydrocyanation avant ou après l'addition du composé à hydrocyaner.

La quantité de composé du nickel ou d'un autre métal de transition utilisée est choisie pour obtenir une concentration en mole de métal de transition par mole de composés organiques à hydrocyaner ou isomériser comprise entre 10⁻⁴ et 1, et de préférence entre 0,005 et 0,5 mole de nickel ou de l'autre métal de transition mis en œuvre.

La quantité de ligands organiques de l'invention utilisée pour former le catalyseur est choisie de telle sorte que le nombre de moles de ce composé rapporté à 1 mole de métal de transition soit de 0,5 à 50 et de préférence de 2 à 10.

Bien que la réaction soit conduite généralement sans solvant, il peut être avantageux de rajouter un solvant organique inerte. Le solvant peut être un solvant du catalyseur qui est miscible à la phase comprenant le composé à hydrocyaner à la température d'hydrocyanation. A titre d'exemples de tels solvants, on peut citer les hydrocarbures aromatiques, aliphatiques ou cycloaliphatiques.

Ce solvant peut également être partiellement miscible avec les composés à hydrocyaner, notamment quand le milieu réactionnel est à une température inférieure à la température de réaction. Ainsi, on peut, à de telles températures, obtenir un système biphasique. Dans le cas où le système catalytique est soluble dans ledit solvant, son extraction du milieu réactionnel en est facilitée. De tels solvants partiellement miscibles ou non miscibles peuvent être l'eau ou des sels organiques fondus à caractère ionique. De tels solvants sont utilisés notamment quand le ligand organique comprend des radicaux anioniques le rendant soluble dans les milieux ioniques. Ces radicaux sont par exemple des groupements sulfonates, carbonates, carboxylates, phosphates, ammonium, guanidinium, imidazolium, substituant les radicaux aromatiques du ligand.

WO 2004/007432

5

10

15

20

25

30

35

La réaction d'hydrocyanation est généralement réalisée à une température de 10°C à 200°C et de préférence de 30°C à 120°C. Elle est avantageusement réalisée en milieu monophasique, à la température de réaction.

Le procédé de l'invention peut être mis en œuvre de manière continue ou discontinue.

Le cyanure d'hydrogène mis en œuvre peut être préparé à partir des cyanures métalliques, notamment le cyanure de sodium, ou des cyanhydrines, comme la cyanhydrine de l'acétone ou par tout autre procédé de synthèse connu.

Le cyanure d'hydrogène est introduit dans le réacteur sous forme gazeuse, de mélange de gaz ou sous forme liquide. Il peut également être préalablement dissous dans un solvant organique.

Dans le cadre d'une mise en œuvre discontinue, on peut en pratique charger dans un réacteur, préalablement purgé à l'aide d'un gaz inerte (tel qu'azote, argon), soit une solution contenant la totalité ou une partie des divers constituants tels que le ligand organique de l'invention, le composé de métal de transition, les éventuels réducteurs et solvants, soit séparément lesdits constituants. Généralement le réacteur est alors porté à la température choisie, puis le composé à hydrocyaner est introduit. Le cyanure d'hydrogène est alors lui-même introduit, de préférence de manière continue et régulière.

Quand la réaction (dont on peut suivre l'évolution par dosage de prélèvements) est terminée, le mélange réactionnel est soutiré après refroidissement et les produits de la réaction sont isolés, par exemple, par distillation.

Un perfectionnement au procédé d'hydrocyanation de composés à insaturation éthylénique selon la présente invention concerne notamment l'hydrocyanation desdits composés nitriles à insaturation éthylénique, par réaction avec le cyanure d'hydrogène et consiste à utiliser un système catalytique conforme à la présente invention avec un cocatalyseur consistant en au moins un acide de Lewis.

Les composés à insaturation éthylénique qui peuvent être mis en œuvre dans ce perfectionnement sont de manière générale ceux qui ont été cités pour le procédé de base. Cependant il est plus particulièrement avantageux de l'appliquer à la réaction d'hydrocyanation en dinitriles des mononitriles aliphatiques à insaturation éthylénique, notamment aux pentènenitriles linéaires comme le pentène-3-nitrile, le pentène-4-nitrile et leurs mélanges.

Ces pentènenitriles peuvent contenir des quantités, généralement minoritaires, d'autres composés, comme le méthyl-2-butène-3-nitrile, le méthyl-2-butène-2-nitrile, le pentène-2-nitrile, le valéronitrile, l'adiponitrile, le méthyl-2-glutaronitrile, l'éthyl-2-succinonitrile ou le butadiène, provenant de la réaction antérieure d'hydrocyanation du butadiène et/ou de l'isomérisation du méthyl-2-butène-3-nitrile en pentènenitriles.

L'acide de Lewis utilisé comme cocatalyseur permet notamment, dans le cas de l'hydrocyanation des nitriles aliphatiques à insaturation éthylénique, d'améliorer la linéarité des

10

15

20

25

30

35

dinitriles obtenus, c'est-à-dire le pourcentage de dinitriles linéaires par rapport à la totalité des dinitriles formés, et/ou d'augmenter l'activité et la durée de vie du catalyseur.

Par acide de Lewis, on entend dans le présent texte, selon la définition usuelle, des composés accepteurs de doublets électroniques.

On peut mettre en œuvre notamment les acides de Lewis cités dans l'ouvrage édité par G.A. OLAH "Friedel-Crafts and related Reactions", tome I, pages 191 à 197 (1963).

Les acides de Lewis qui peuvent être mis en œuvre comme cocatalyseurs dans le présent procédé sont choisis parmi les composés des éléments des groupes lb, Ilb, Illa, IIIb, IVa, IVb, Va, Vb, VIb, VIIb et VIII de la classification périodique des éléments. Ces composés sont le plus souvent des sels, notamment des halogénures, comme chlorures ou bromures, sulfates, sulfonates, halogénoalkylsulfonates, perhalogénoalkylsulfonates, notamment fluoroalkylsulfonates ou perfluoroalkylsulfonates, les halogénoalkylacétates, les perhalogénoalkylacétates, notamment fluoroalkylacétates ou perfluoroalkylacétates, les carboxylates et phosphates.

A titre d'exemples non limitatifs de tels acides de Lewis, on peut citer le chlorure de zinc, le bromure de zinc, l'iodure de zinc, le chlorure de manganèse, le bromure de manganèse, le chlorure de cadmium, le bromure de cadmium, le chlorure stanneux, le bromure stanneux, le sulfate stanneux, le tartrate stanneux, le trifluorométhylsulfonate d'indium, le trifluoroacétate d'indium, le trifluoroacétate de zinc, les chlorures ou bromures des éléments des terres rares comme le lanthane, le cérium, le praséodyme, le néodyme, le samarium, l'europium, le gadolinium, le terbium, le dysprosium, l'hafnium, l'erbium, le thallium, l'ytterbium et le lutétium, le chlorure de cobalt, le chlorure ferreux, le chlorure d'yttrium.

On peut également utiliser comme acide de Lewis des composés organométalliques comme le triphénylborane, l'isopropylate de titane.

On peut bien entendu mettre en œuvre des mélanges de plusieurs acides de Lewis.

Parmi les acides de Lewis, on préfère tout particulièrement le chlorure de zinc, le bromure de zinc, le chlorure stanneux, le bromure stanneux le triphénylborane et les mélanges chlorure de zinc/chlorure stanneux, le trifluorométhylsulfonate d'indium, le trifluoroacétate d'indium, le trifluoroacétate de zinc.

Le cocatalyseur acide de Lewis mis en œuvre représente généralement de 0,01 à 50 moles par mole de composé de métal de transition, plus particulièrement de composé du nickel, et de préférence de 0,5 à 10 mole par mole.

Comme pour la mise en œuvre du procédé de base de l'invention, la solution catalytique utilisée pour l'hydrocyanation en présence d'acide de Lewis peut être préparée avant son introduction dans la zone de réaction, par exemple par addition au milieu réactionnel du ligand de formule (I), de la quantité appropriée de composé du métal de transition choisi, de l'acide de Lewis et éventuellement du réducteur. Il est également possible de préparer la solution catalytique "in situ" par simple mélange de ces divers constituants.

10

15

20

25

30

35

Il est également possible dans les conditions du procédé d'hydrocyanation de la présente invention, et notamment en opérant en présence du catalyseur décrit précédemment comportant au moins un ligand de formule (I) et au moins un composé d'un métal de transition, de réaliser, en absence de cyanure d'hydrogène, l'isomérisation du méthyl-2-butène-3-nitrile en pentènenitriles, et plus généralement des nitriles insaturés ramifiés en nitriles insaturés linéaires.

Le méthyl-2-butène-3-nitrile soumis à l'isomérisation selon l'invention peut être mis en œuvre seul ou en mélange avec d'autres composés.

Ainsi on peut engager du méthyl-2-butène-3-nitrile en mélange avec du méthyl-2-butène-2 nitrile, du pentène-4-nitrile, du pentène-3-nitrile, du pentène-2-nitrile, du butadiène, de l'adiponitrile, du méthyl-2-glutaronitrile, de l'éthyl-2-succinonitrile ou du valéronitrile.

il est particulièrement intéressant de traiter le mélange réactionnel provenant de l'hydrocyanation du butadiène par HCN en présence d'au moins un ligand de formule (I) et d'au moins un composé d'un métal de transition, plus préférentiellement d'un composé du nickel au degré d'oxydation 0, tel que défini précédemment.

Dans le cadre de cette variante préférée, le système catalytique étant déjà présent pour la réaction d'hydrocyanation du butadiène, il suffit d'arrêter toute introduction de cyanure d'hydrogène, pour laisser se produire la réaction d'isomérisation.

On peut, le cas échéant, dans cette variante faire un léger balayage du réacteur à l'aide d'un gaz inerte comme l'azote ou l'argon par exemple, afin de chasser l'acide cyanhydrique qui pourrait être encore présent.

La réaction d'isomérisation est généralement réalisée à une température de 10°C à 200°C et de préférence de 60°C à 160°C.

Dans le cas préféré d'une isomérisation suivant immédiatement la réaction d'hydrocyanation du butadiène, il sera avantageux d'opérer à la température à laquelle l'hydrocyanation a été conduite.

Comme pour le procédé d'hydrocyanation de composés à insaturation éthylénique, le système catalytique utilisé pour l'isomérisation peut être préparé avant son introduction dans la zone de réaction, par exemple par addition dans un solvant du ligand de formule (I), de la quantité appropriée de composé du métal de transition choisi et éventuellement du réducteur. Il est également possible de préparer le système catalytique "in situ" par simple addition de ces divers constituants dans le milieu réactionnel. La quantité de composé du métal de transition et plus particulièrement du nickel utilisée, ainsi que la quantité de ligand de formule (I) sont les mêmes que pour la réaction d'hydrocyanation.

Bien que la réaction d'isomérisation soit conduite généralement sans solvant, il peut être avantageux de rajouter un solvant organique inerte qui pourra être celui de l'extraction ultérieure. C'est notamment le cas lorsqu'un tel solvant a été mis en œuvre dans la réaction d'hydrocyanation

10

15

du butadiène ayant servi à préparer le milieu soumis à la réaction d'isomérisation. De tels solvants peuvent être choisis parmi ceux qui ont été cités précédemment pour l'hydrocyanation.

La préparation de composés dinitriles par hydrocyanation d'une oléfine comme le butadiène peut être réalisée en utilisant un système catalytique conforme à l'invention pour les étapes de formation des mononitriles insaturés et l'étape d'isomérisation ci-dessus, la réaction d'hydrocyanation des mononitriles insaturés en dinitriles pouvant être mis en œuvre avec un système catalytique conforme à l'invention ou tout autre système catalytique déjà connu pour cette réaction.

De même, la réaction d'hydrocyanation de l'oléfine en mononitriles insaturés et l'isomérisation de ceux-ci peuvent être réalisées avec un système catalytique différent de celui de l'invention, l'étape d'hydrocyanation des mononitriles insaturés en dinitriles étant mis en œuvre avec un système catalytique conforme à l'invention.

L'invention a également pour objet des composés organophosphorés répondant à la formule générale (I) ci-dessus.

Elle a également pour objet les composés organophosphorés correspondant aux formules générales listées dans le tableau l ci-dessus.

Les exemples qui suivent illustrent l'invention.

Dans les exemples les abréviations utilisées ont les significations indiquées ci-dessous.

20 cod: 1,5-cyclooctadiène.

eq : équivalent.

3PN: 3-pentènenitrile.

4PN: 4-pentènenitrile.

3+4PN: 3PN + 4PN.

25 TT (Y) : taux de transformation du produit à hydrocyaner Y correspondant au rapport du nombre de moles transformées de Y sur le nombre de moles initiales de Y.

Linéarité (L): rapport du nombre de moles d'adiponitrile (AdN) formées au nombre demoles de dinitriles formées (somme des moles de AdN, éthylsuccinonitrile (ESN) et méthylglutaronitrile (MGN)).

30 CPG: chromatographie phase gazeuse.

ml: millilitre.

mol: mole.

mmol: millimole.

Les différents produits conformes à l'invention peuvent être préparés selon l'un des deux modes opératoires suivants :

Mode opératoire I:

5

10

On utilise un phosphochloridite préparé à partir d'un dérivé du phénol ou du biphénol et de PCl₃ selon un mode opératoire classique (voir par exemple la méthode décrite par G. Buisman et Al. dans Tetrahedron, Asymmetry, vol 4, (7), pp 1625-1634 (1993)), et un diol disponible commercialement. La procédure générale suivante est représentative :

Sous argon, dans un réacteur de 100 ml sont dissous 6 mmol de phosphorochloridite dans 20 ml de toluène anhydre. La solution est agitée à -10°C. Une solution de 3 mmol de diol et de 10 mmol de triéthylamine dans 20 ml de toluène anhydre est introduite goutte à goutte dans le milieu réactionnel maintenu à -10°C: un précipité blanc se forme. La suspension est maintenue sous agitation vigoureuse pendant 18 h à 25°C, puis filtrée sous argon sur un lit d'alumine basique. Après rinçage au toluène, le filtrat est concentré sous pression réduite pour conduire au produit désiré, utilisé sans autre purification.

Les ligands suivants ont été préparés selon le mode opératoire décrit ci-dessus :

Exemple	Ligand	Structure	Phosphochloridit	Diol
			e	
1	A		O-P-CI	НО ОН
2	В	Jorgo Pol	O-P-CI	НО ОН
3	С	So Po Po	O-P-CI	НО ОН

Mode opératoire II:

15

20

On utilise un phosphoramidite préparé à partir de Cl₂PNEt₂ (disponible commercialement) et d'un phénol substitué ou non selon le mode opératoire suivant :

A un mélange de Cl₂PNEt₂ (0.20 mol) et de triéthylamine (0.44 mol) dans du toluène (800 ml) à 0°C, on ajoute lentement sous forte agitation une solution du phénol (0.40 mol) dans du toluène (100 ml). On observe la formation d'un précipité blanc. On laisse remonter à température ambiante et on agite toujours vigoureusement pendant 2 h. Le mélange est ensuite filtré sur un lit de silice et concentré sous vide pour donner le phosphoramidite (ArO)₂PNEt₂ avec une pureté supérieure à 95%.

On utilise par ailleurs un diol disponible commercialement. La procédure générale suivante est représentative :

Sous argon, dans un réacteur de 100 ml sont introduit 6 mmol de phosphoramidite dans 20 ml de toluène anhydre. La solution est agitée à 0°C, et on y ajoute 7.5 ml d'une solution 2M d'acide chlorhydrique dans l'éther en 30 min. On observe la formation d'un précipité blanc, et on agite 1 h à température ambiante. Une solution de 3 mmol de diol et de 10 mmol de triéthylamine dans 20 ml de toluène anhydre est ensuite introduite goutte à goutte dans le milieu réactionnel refroidi à -10°C. La suspension est maintenue sous agitation vigoureuse pendant 18 h à 25°C, puis filtrée sous argon sur un lit d'alumine basique. Après rinçage au toluène, le filtrat est concentré sous pression réduite pour conduire au produit désiré, utilisé sans autre purification.

Les ligands suivants ont été préparés selon le mode opératoire décrit ci-dessus :

Exemple	Ligand	Structure	Phosphoramidit	Diol
	İ		е	
4	D		O-P-NEt ₂	НО ОН
5	E	OMe MeO	OMe OPNEt ₂	НО ОН
6	F		O-P-NEt ₂	НО ОН
7	G		O-P-NEt ₂	НО ОН

5 Exemples d'hydrocyanation du 3-pentènenitrile (3PN) en adiponitrile (AdN).

Le mode opératoire général utilisé est le suivant :

Sous atmosphère d'argon, dans un tube en verre type Shott de 60 ml équipé d'un bouchonseptum, sont chargés successivement

- le ligand (2,5 eq),

10

- 1.21 g (15 mmol; 30 eq) de 3PN anhydre,
- 138 mg (0,5 mmol; 1 eq) de Ni(cod)₂ et
- L'acide de Lewis (0,5 mmol; 1 eq).

Le mélange est porté, sous agitation, à 70°C. La cyanhydrine de l'acétone est injectée dans le milieu réactionnel par un pousse-seringue à un débit de 0,45 ml par heure. Après 3 heures

d'injection, le pousse-seringue est stoppé. Le mélange est refroidi à température ambiante, dilué à l'acétone et analysé par chromatographie en phase gazeuse.

Les résultats sont regroupés dans le tableau suivant :

Exemple	Ligand	Acide de Lewis	TT (3PN)	Linéarité
8	A	ZnCl ₂	64%	70%
9	В	ZnCl ₂	14%	71%
10	С	ZnCl ₂	20%	73%
11	D	ZnCl ₂	44%	76%
12	E	ZnCl ₂	11%	72%
13	E	CoCl ₂	32%	74%
14	F	ZnCl ₂	16%	67%
15	G	ZnCl ₂	48%	80%
16	G	YCl ₃	64%	88%

REVENDICATIONS

1. Procédé d'hydrocyanation d'un composé hydrocarboné comprenant au moins une insaturation éthylénique par réaction en milieu liquide avec le cyanure d'hydrogène en présence d'un catalyseur comprenant un élément métallique choisi parmi les métaux de transition et un ligand organique caractérisé en ce que le ligand organique correspond à la formule générale I suivante :

15

20

25

dans laquelle:

 $\mathsf{T},\,\mathsf{T}_1$ identiques ou différents représentent un atome de phosphore, d'arsenic ou d'antimoine

 U_1 , U_2 , U_3 , U_4 , U_5 , U_6 identiques ou différents représentent un atome d'oxygène ou un radical NR, R représentant un radical alkyle, aryle, sulfonyle ou carbonylé,

 R_1 , R_2 , R_3 , R_4 identiques ou différents représentent un radical aromatique, aliphatique ou cycloaliphatique substitué ou non comprenant un ou plusieurs cycles sous forme condensée ou non et pouvant comprendre un ou plusieurs hétéroatomes, les radicaux R_1 et R_2 d'une part, R_3 , R_4 et d'autre part peuvent être reliés entre eux par une liaison covalente, une chaîne hydrocarbonée ou un hétéroatome, et quand l'un des radicaux U_1 , U_2 , U_3 , U_4 comprend un atome N, le radical R_1 , R_2 , R_3 , R_4 associé peut former un cycle incluant l'élément N dudit radical,

m et n sont des nombres entiers identiques ou différents compris entre 0 et 6 avec m + n qui doit être égale ou supérieure à 1

 Q_{1},Q_{2} identiques ou différents représentent un groupe correspondant aux formules générales II, III ou IV suivantes :

WO 2004/007432

47

$$\begin{array}{c} R_5 \\ I^5 \\ -C - \\ R_6 \end{array} \hspace{0.5cm} \text{(II)}$$

$$R_7$$
 $-$ Si $-$ (III)
 R_8

dans lesquelles R_5 , R_6 , R_7 , R_8 identiques ou différents représentent des radicaux hydrocarbonés aliphatiques, cycloaliphatiques ou aromatiques comprenant de 1 à 12 atomes de carbone, R_5 , R_6 représentant également l'atome d'hydrogène et

t, u représentent des nombres entiers compris entre 0 et 6 avec une somme u + t supérieure ou égale à 1

Z représentant un radical divalent choisi dans le groupe comprenant les radicaux aromatiques ou cycloaliphatiques comprenant un ou plusieurs cycles sous forme condensée ou non, et pouvant être substitués et comprendre des hétéroatomes.

2. Procédé selon la revendication 1, caractérisé en ce que le ligand de formule 1 comprend une structure de formule suivante :

15

5

10

choisie dans le groupe comprenant les structures suivantes :

dans lesquelles R_9 représente un atome d'halogène, les groupes alkyle, halogène, aryle, alkoxy, aryloxy, nitro, thioalkyle, amine secondaire, nitrile

3. Procédé selon la revendication 1ou 2, caractérisé en ce que le ligand organique est choisi dans le groupe comprenant les composés de formule suivante

NO₂

- 4. Procédé selon l'une des revendications 1 à 3 caractérisé en ce que l'élément métallique est choisi dans le groupe comprenant le nickel, le cobalt, le fer, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium, le platine, le cuivre, l'argent, l'or, le zinc, le cadmium, le mercure.
- 5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la réaction est effectuée en milieu monophasique.
- 6. Procédé selon l'une des revendications précédentes caractérisé en ce que le catalyseur correspond à la formule générale (V):

 $M[L_f]_v$ (V)

Dans laquelle:

5

20

M est un métal de transition.

- L_f représente le ligand organique de formule (I)
 v représente un nombre compris entre 1 et 4 (bornes incluses)
 - 7. Procédé selon l'une des revendications précédentes, caractérisé en ce que le milieu réactionnel comprend un solvant du catalyseur miscible à la phase comprenant le composé à hydrocyaner à la température d'hydrocyanation.

8. Procédé selon l'une des revendications précédentes, caractérisé en ce que les composés des métaux de transition sont ceux du nickel et sont choisis dans le groupe comprenant :

les composés dans lesquels le nickel est au degré d'oxydation zéro comme le tétracyanonickelate de potassium K₄ [(Ni(CN)₄], le bis(acrylonitrile) nickel zéro, le bis(cyclooctadiène-1,5) nickel zéro et les dérivés contenant des ligands comme le tétrakis(triphényl-phosphine) nickel zéro ;

les composés du nickel comme les carboxylates, carbonate, bicarbonate, borate, bromure, chlorure, citrate, thiocyanate, cyanure, formiate, hydroxyde, hydrophosphite, phosphite, phosphate et dérivés, iodure, nitrate, sulfate, sulfite, aryl- et alkyl-sulfonates.

10

15

5

- 9. Procédé selon l'une des revendications précédentes, caractérisé en ce que les composés organiques comportant au moins une double liaison éthylénique sont choisis parmi les dioléfines comme le butadiène, l'isoprène, l'hexadiène-1,5, le cyclooctadiène-1,5, les nitriles aliphatiques à insaturation éthylénique, particulièrement les pentènenitriles linéaires comme le pentène-3-nitrile, le pentène-4-nitrile, les monooléfines comme le styrène, le méthylstyrène, le vinylnaphtalène, le cyclohexène, le méthylcyclohexène ainsi que les mélanges de plusieurs de ces composés.
- 10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la quantité de composé du nickel ou d'un autre métal de transition utilisée est choisie de telle sorte qu'il y ait par mole de composé organique à hydrocyaner ou isomériser entre 10⁻⁴ et 1 mole de nickel ou de l'autre métal de transition mis en œuvre et en ce que la quantité de ligand organique de formule (V) utilisée est choisie de telle sorte que le nombre de moles de ce composé rapporté à 1 mole de métal de transition soit de 0,5 à 50.
- 25
- 11. Procédé selon l'une des revendications précédentes, caractérisé en ce que la réaction d'hydrocyanation est réalisée à une température de 10°C à 200°C.
- 30

35

12. Procédé selon l'une des revendications précédentes d'hydrocyanation en dinitriles de composés nitriles à insaturation éthylénique, par réaction avec le cyanure d'hydrogène, caractérisé en ce que l'on opère en présence d'un système catalytique comprenant au moins un composé d'un métal de transition, au moins un composé organique de formule (I) ou (V) et un cocatalyseur consistant en au moins un acide de Lewis.

10

- 13. Procédé selon la revendication 12, caractérisé en ce les composés nitriles à insaturation éthylénique sont choisis parmi les nitriles aliphatiques à insaturation éthylénique comprenant les pentènenitriles linéaires comme le pentène-3-nitrile, le pentène-4-nitrile et leurs mélanges.
- 14. Procédé selon la revendication 13, caractérisé en ce que les pentènenitriles linéaires contiennent des quantités d'autres composés choisis dans le groupe comprenant le méthyl-2-butène-3-nitrile, le méthyl-2-butène-2-nitrile, le pentène-2-nitrile, le valéronitrile, l'adiponitrile, le méthyl-2-glutaronitrile, l'éthyl-2-succinonitrile ou le butadiène.
- 15. Procédé selon l'une des revendications 12 à 14, caractérisé en ce que l'acide de Lewis mis en œuvre comme cocatalyseur est choisi parmi les composés des éléments des groupes lb, llb, llla, lllb, lVa, lVb, Va, Vb, Vlb, VIIb et VIII de la Classification périodique des éléments.
- 16. Procédé selon l'une des revendications 12 à 15, caractérisé en ce que l'acide de Lewis est choisi parmi les sels choisi dans le groupe des halogénures, sulfates, sulfonates, halogenoalkylsulfonates, perhalogénoalkylsulfonates, halogénoalkylacétates, perhalogénoalkylacétates, carboxylates et phosphates.
- 17. Procédé selon l'une des revendications 12 à 16, caractérisé en ce que l'acide de Lewis est choisi parmi le chlorure de zinc, le bromure de zinc, l'iodure de zinc, le chlorure de manganèse, le bromure de manganèse, le chlorure de cadmium, le bromure de cadmium, le chlorure stanneux, le bromure stanneux, le sulfate stanneux, le tartrate stanneux, le trifluorométhylsulfonate d'indium, le trifluoroacétate d'indium, le trifluoroacétate de zinc, les chlorures ou bromures des éléments des terres rares comme le lanthane, le cérium, le praséodyme, le néodyme, le samarium, l'europium, le gadolinium, le terbium, le dysprosium, l'hafnium, l'erbium, le thallium, l'ytterbium et le lutétium, le chlorure de cobalt, le chlorure ferreux, le chlorure d'yttrium et leurs mélanges.
- 18. Procédé selon l'une des revendications 12 à 17, caractérisé en ce que l'acide de Lewis mis en œuvre représente de 0,01 à 50 moles par mole de composé de métal de transition.
- 19. Procédé selon l'une des revendications 1 à 18, caractérisé en ce que l'on réalise en absence de cyanure d'hydrogène l'isomérisation en pentènenitriles, du méthyl-2-butène-3-nitrile présent dans le mélange réactionnel provenant de l'hydrocyanation du butadiène, en opérant en présence d'un catalyseur comportant au moins un ligand organique de formule générale (I) ou (V) et au moins un composé d'un métal de transition.

10

15

20

25

30

- 20. Procédé selon la revendication 19, caractérisé en ce que le méthyl-2-butène-3-nitrile soumis à l'isomérisation est mis en œuvre seul ou en mélange avec du méthyl-2-butène-2-nitrile, du pentène-4-nitrile, du pentène-3-nitrile, du pentène-2-nitrile, du butadiène, de l'adiponitrile, du méthyl-2-glutaroronitrile, de l'éthyl-2-succinonitrile ou du valéronitrile.
- 21. Procédé selon l'une des revendications 19 ou 20, caractérisé en ce que la réaction d'isomérisation est réalisée à une température de 10°C à 200°C.
- 22. Procédé selon l'une des revendications 19 à 21, caractérisé en ce que l'isomérisation en pentènenitriles du méthyl-2-butène-3-nitrile est réalisée en présence d'au moins un composé d'un métal de transition, d'au moins un ligand organique phosphoré de formule (I) et un cocatalyseur consistant en au moins un acide de Lewis.
- 23. Composés organophosphorés répondant à la formule générale (I) suivante :

$$R_{1}$$
 U_{1} U_{2} R_{2} R_{3} U_{3} T_{1} U_{4} U_{6} U_{1} U_{6} U_{1} U_{1} U_{2} U_{2} U_{3} U_{4} U_{6} U_{1}

dans laquelle:

 $\mathsf{T},\,\mathsf{T}_1$ identiques ou différents représentent un atome de phosphore, d'arsenic ou d'antimoine

U₁, U₂, U₃, U₄, U₅, U₆ identiques ou différents représentent un atome d'oxygène ou un radical NR, R représentant un radical alkyle, aryle, sulfonyle ou carbonylé,

 R_1 , R_2 , R_3 , R_4 identiques ou différents représentent un radical aromatique, aliphatique ou cycloaliphatique substitué ou non comprenant un ou plusieurs cycles sous forme condensée ou non et pouvant comprendre un ou plusieurs hétéroatomes, les radicaux R_1 et R_2 d'une part, R_3 , R_4 et d'autre part peuvent être reliés entre eux par une liaison covalente, une chaîne hydrocarbonée ou un hétéroatome, et quand l'un des radicaux U_1 , U_2 , U_3 , U_4 comprend un atome N, le radical R_1 , R_2 , R_3 , R_4 associé peut former un cycle incluant l'élément N dudit radical,

m et n sont des nombres entiers identiques ou différents compris entre 0 et 6 avec m+n qui doit être égale ou supérieure à 1

 Q_1, Q_2 identiques ou différents représentent un groupe correspondant aux formules générales II, III ou IV suivantes :

10

$$R_5$$
 C
 R_6
(II)

dans lesquelles R₅, R₆, R₇, R₈ identiques ou différents représentent des radicaux hydrocarbonés aliphatiques, cycloaliphatiques ou aromatiques comprenant de 1 à 12 atomes de carbone, R₅, R₆ représentant également l'atome d'hydrogène et

t, u représentent des nombres entiers compris entre 0 et 6 avec une somme u + t supérieure ou égale à 1

Z représentant un radical divalent choisi dans le groupe comprenant les radicaux aromatiques ou cycloaliphatiques comprenant un ou plusieurs cycles sous forme condensée ou non, et pouvant être substitués et comprendre des hétéroatomes.

24. Composés organophosphorés répondant aux formules suivantes :

Intern Application No
PCT/FR 03/02192

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07C253/10 C07F9/145 C07F9/141 C07F9/655 C07F9/58 C07F9/6574 C07F9/24 C07F9/6571 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) CO7C CO7F IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data, EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° 1-22 US 6 300 515 B1 (MIKAEL RETBOLL) 9 October 2001 (2001-10-09) the whole document 23,24 * colonne 20, composé (P7) * X 1 - 24DE 196 02 301 A (MITSUBISHI CHEMICAL Υ CORP.) 25 July 1996 (1996-07-25) the whole document 1 - 24DE 100 52 462 A (BASF AG) Y 2 May 2002 (2002-05-02) claims 1,12,13 1 - 24WO 02 13964 A (BASF AG) Α 21 February 2002 (2002-02-21) the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. X "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the but and the principle or theory underlying the Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date involve an inventive step when the document is taken alone *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-O document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 16/12/2003 2 December 2003 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Beslier, L Fax: (+31-70) 340-3016

INTERNATION SEARCH REPORT

Info, aton on patent family members

Inter	Application No
PCT/FR	03/02192

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 6300515	B1	09-10-2001	JP	2000355572 A	26-12-2000
DE 19602301	A	25-07-1996	DE JP US US	19602301 A1 8259578 A 5663403 A 5728861 A	25-07-1996 08-10-1996 02-09-1997 17-03-1998
DE 10052462	A	02-05-2002	DE AU BR CA CN WO EP JP US	10052462 A1 3546101 A 0108254 A 2399431 A1 1398200 T 0158589 A1 1257361 A1 2003526638 T 2003055253 A1	20-08-2001 05-03-2003 16-08-2001 19-02-2003 16-08-2001 20-11-2002 09-09-2003
WO 0213964	A	21-02-2002	DE AU WO	10038037 A1 8201201 A 0213964 A2	25-02-2002

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 CO7C253/10 CO7F9/ C07F9/141 C07F9/655 C07F9/145 C07F9/58 C07F9/6574 C07F9/6571 Selon la classification internationale des brevets (CIB) ou à la fols selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée (système de classification sulvi des symboles de classement) CO7C CO7F CIB 7 Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) CHEM ABS Data, EPO-Internal C. DOCUMENTS CONSIDERES COMME PERTINENTS no. des revendications visées Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents Catégorie 1-22 US 6 300 515 B1 (MIKAEL RETBOLL) Α 9 octobre 2001 (2001-10-09) le document en entier 23,24 * colonne 20, composé (P7) * X 1-24 DE 196 02 301 A (MITSUBISHI CHEMICAL CORP.) 25 juillet 1996 (1996-07-25) le document en entier 1-24 DE 100 52 462 A (BASF AG) 2 mai 2002 (2002-05-02) revendications 1,12,13 1 - 24WO 02 13964 A (BASF AG) A 21 février 2002 (2002-02-21) le document en entier Les documents de familles de brevets sont indiqués en annexe Voir la suite du cadre C pour la fin de la liste des documents *T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention Catégories spéciales de documents cités: "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité "E" document antérieur, mais publié à la date de dépôt international ou après cette date inventive par rapport au document considéré isolément "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinalson étant évidente pour une personne du métier "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée "&" document qui fait partie de la même famille de brevets Date d'expédition du présent rapport de recherche internationale Date à laquelle la recherche internationale a été effectivement achevée 16/12/2003 2 décembre 2003 Nom et adresse postale de l'administration chargée de la recherche internationale Fonctionnaire autorisé

Beslier, L

Office Européen des Brevets, P.B. 5818 Patentiaan 2

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

RAPPORT DE RECH<u>ER</u>CHE INTERNATIONALE

Renselgnements relatifs aux

J	Dem	nernationale No
	PC	77R 03/02192

Document brevet cité au rapport de recherche	Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
US 6300515 B1	09-10-2001	JP	2000355572 A	26-12-2000
DE 19602301 A	25-07-1996	DE JP US US	19602301 A1 8259578 A 5663403 A 5728861 A	25-07-1996 08-10-1996 02-09-1997 17-03-1998
DE 10052462 A	02-05-2002	DE AU BR CA CN WO EP JP US	10052462 A1 3546101 A 0108254 A 2399431 A1 1398200 T 0158589 A1 1257361 A1 2003526638 T 2003055253 A1	02-05-2002 20-08-2001 05-03-2003 16-08-2001 19-02-2003 16-08-2001 20-11-2002 09-09-2003 20-03-2003
WO 0213964 A	21-02-2002	DE AU WO	10038037 A1 8201201 A 0213964 A2	18-04-2002 25-02-2002 21-02-2002