COMPUTER ORGANIZATION AND ARCHITECTURE COA LAB ASSIGNMENT – 4

Name: Mohan Sai Naguru Roll No: 21CS01021

<u>Plot of IPC vs Configurations:</u>

I have calculated the values of IPC using the benchmarks of Rodinia CUDA gpgpusim for the following configurations:

- SM2_GTX480
- SM3_KEPLER_TITAN
- SM6_TitanX
- SM7_QV100
- SM7_TITANV
- SM75_RTX2060

I have calculated the IPC for the following Warp Schedulers:

- GTO Greedy-then-oldest
- LRR Loose Round Robin
- TL Two Level

PLOT:

SM2-GTX480:

SM7-QV100:

SM7-TITANV:

SM75-RTX2060:

Q2: Plot of L1D Miss Rates:

SM2-GTX480:

SM7-QV100:

SM7-TITANV:

SM75-RTX2060:

Q2 – b: L2 Miss Rates PLOT:

SM2-GTX480:

		SM2_GTX480					
		IPS	CPS	IPC	RUN_TIME	L1D MR	L2 MR
	GTO	140474	2397	58.60408844	219	0.8225	0.1651
DEC	LRR	212164	3712	57.15625	145	0.823	0.2493
BFS	TWO_LEVEL_ACTIVE	146494	2549	57.47116516	210	0.8209	0.2537
	GTO	1031370	2205	467.7414966	61	0.5671	0.7951
athFinder	LRR	1398080	2584	541.0526316	45	0.567	0.7946
amrinuei	TWO_LEVEL_ACTIVE	911791	1870	487.5887701	69	0.567	0.7956
	GTO	600526	1811	331.5991165	2	0.6009	0.3304
NINI	LRR	600526	2059	291.6590578	2	0.6	0.3309
NN	TWO_LEVEL_ACTIVE	600526	1911	314.2469911	2		0.3255
	GTO	58284	9428	6.182011031	107	0.7509	0.3192
NW	LRR	62364	10083	6.185063969	100	0.7509	0.3207
INVV	TWO_LEVEL_ACTIVE	43009	6966	6.174131496	145	0.7509	0.3205

SM7-QV100:

ipporting data						
	SM7	_QV100				
IPS	CPS	IPC	RUN_TIME	L1 MR	L2 MR	
136123	803	169.5180573	226	0.4894	0	
175793	1039	169.1944177	175	0.4881	0	
112688	666	169.2012012	273	0.4895	0	
547074	699	782.6523605	115	1	0.0123	
796374	1024	777.7089844	79	1	0.0123	
452615	585	773.7008547	139	1	0.0123	
300263	1513	198.4553866	4	0.6	0.3334	
300263	1524	197.0229659	4	0.6	0.3334	
200175	1017	196.8289086	6	0.6	0.3334	
18024	2502	7.20383693	346	0.8661	0	
19013	2639	7.204622963	328	0.8661	0	
13074	1817	7.195376995	477	0.8661	0	

SM7-TITANV:

pporting ua						
	SM7	_TITANV				
IPS	CPS	IPC	RUN_TIME	L1 MR	L2 MR	
133755	444	301.25	230	0.4931	0.0317	
221322	735	301.1183673	139	0.4936	0.0301	
116972	388	301.4742268	263	0.493	0.031	
367915	368	999.7690217	171	1	0.282	
911791	924	986.7867965	69	1	0.282	
487702	493	989.2535497	129	1	0.282	
400350	529	756.805293	3	0.6	0.3334	
400350	518	772.8764479	3	0.6	0.3334	
300263	403	745.0694789	4	0.6	0.3334	
30721	2720	11.29448529	203	0.8661	0	
32146	2846	11.29515109	194	0.8661	0	
21140	1876	11.26865672	295	0.8661	0	

SM75-RTX2060:

	SM7	5_RTX2060				
IPS	CPS	IPC	RUN_TIME	L1 MR	L2 MR	
201070	1650	121.8606061	153	0.5869	0	
287512	2388	120.39866	107	0.5865	0	
184214	1506	122.3200531	167	0.5875	0	
786420	1196	657.541806	80	1	0.824	
1143883	1791	638.6839754	55	1	0.824	
706894	1100	642.6309091	89	1	0.824	
400350	3003	133.3166833	3	0.6	0.3334	
400350	3074	130.2374756	3	0.6	0.3334	
300263	2252	133.3317052	4	0.6	0.3334	
43308	6089	7.112497947	144	0.8661	0	
44866	6308	7.112555485	139	0.8661	0	
31338	4393	7.133621671	199	0.8661	0	

Q3 – L1D Cache size increase from 32KB to 8MB DATA for 32KB

	SM2_GTX480				
		L1D MR	L2 MR		
BFS	GTO	0.8225	0.1651		
NN	GTO	0.6009	0.3304		
NW	GTO	0.7509	0.3192		

DATA for 8MB

	SM2_GTX480				
	L1D MR L2 MR				
BFS	GTO	0.3257	0.4795		
NN	GTO	0.6	0.3309		
NW	GTO	0.7481	0.3214		

Changes observed in L1D miss rate when cache size is increased by 256 times

Miss rate = Number of misses / Number of accesses

Decrease in L1D miss rate

On increasing the size of L1D Cache, We can observe that L1D miss rate has decreased. This is because with increase in size, we can store greater amount of memory in the L1D cache and hence there are less number of misses.

Increase in L2 miss rate

Increasing the size of L1D Cache definitely has an impact on L2 Cache miss rate. But whether it is increases or decrease depends on various factors. Here as we can see, the L2 Cache miss rate has increased. Both L2 misses and acceses decreases. This could be because the decrease in number of L2 accesses with increasing in the size of L1D is dominant.

$Q4-Power\ Consumption\ of\ different\ applications\ DATA$ for 32KB

		Power	Total Average Power
	RFP	7.15	
BFS	DRAMP	0.0948	62.6126
DF3	L1P	3.8962	02.0120
	L2P	0.923	
	RFP	9.312	
NINI	DRAMP	0.0579366	70.2562
NN	L1P	5.1959	79.2563
	L2P	10.0307	

DATA for 8MB

		Power	Total Average Power
	RFP	7.15057	
BFS	DRAMP	0.094	94.2833
DF3	L1P	3.895	94.2033
	L2P	0.923	
	RFP	9.31267	
NINI	DRAMP	0.0579366	70.2720
NN	L1P	5.1959	79.2728
	L2P	10.0307	

- Here we can observe that the percentage of power consumption of each component in the total power is decreasing by increasing the size of L1D.
- Increase in size of L1D cache helps in caching more data which in turn decreases the latency and hence decreasing the power consumption.