TEORIA KATEGORII

SERIA 4: KATEGORIE KARTEZJAŃSKO-DOMKNIĘTE

Problem 1. Niech $\mathbb C$ będzie kategorią CCC. Pokazać, że $\tilde f=f^A\circ\eta,$ gdzie dla $f:Z\times A\to B$ strzałka $\tilde f:Z\to B^A$ oznaca transpozycję, $f^A:(Z\times A)^A\to B^A$ oraz $\eta:Z\to (Z\times A)^A$ są zdefiniowane jak na

Problem 2. Pokazać, że w dowolnej kategorii, która jest CCC zachodzi:

- $(A \times B)^C \cong A^C \times B^C$, $(A^B)^C \cong A^{B \times C}$.

Problem 3. Czy kategoria Mon jest CCC?

Problem 4. Pokazać, że kategoria ω CPO jest CCC, natomiast kategoria ω CPO $_{\perp}$ nie jest CCC.

Problem 5. Pokazać, że kategoria wszystkich małych kategorii i funktorów Cat jest CCC, gdzie C^D Fun(C, D).

Problem 6. Udowodnić (dokończając dowód z Wykładu 10), że dla każdego $f: X \times A \to Y \times A$ i $g: Y \times A \to Y$ $Z\times A$ zachodzi

$$\widetilde{g \circ f} = (\varepsilon_{Z \times A})^A \circ (\widetilde{g} \times id_A)^A \circ \widetilde{f}$$

Problem 7. Niech State_A będzie złożeniem funktorów $(-) \times A$ i $(-)^A$ (czyli $\mathsf{State}_A(X) = (X \times A)^A$ oraz $\mathsf{State}_A(X \xrightarrow{f} Y) = (f \times \mathsf{id}_A) \circ \varepsilon_{X \times A}$). Dla dwóch strzałek $f : X \to \mathsf{State}_A Y$ i $g : Y \to \mathsf{State}_A Z$ definiujemy:

$$g \cdot f = (\varepsilon_{X \times A})^A \circ \mathsf{State}_A(g) \circ f.$$

Pokazać, że tak zdefiniowane działanie jest łączne oraz, że $\eta_Y \cdot f = f \cdot \eta_X = f$ dla $\eta_X : X \to \mathsf{State}_A X$ zadanego przez $\eta_X = id_{X \times A}$ (Podpowiedź: skorzystać z poprzedniego zadania).

²³ grudnia 2020 ¹Poset (P, \leqslant) nazywamy ωCPO jeśli każdy przeliczalny łańcuch $x_1 \leqslant x_2 \leqslant \ldots$ ma supremum. Przekształcenie $f: P \to Q$, które zachowuje porządek między dwoma posetami (P, \leqslant) i (Q, \leqslant) , które dodatkowo są ωCPO nazywamy ciągłym, jeśli zachowuje suprema przeliczalnych łańchuchów, tj. $f(\bigvee_{i \in \mathbb{N}} x_i) = \bigvee_i f(x_i)$ dla każdego $x_1 \leqslant x_2 \leqslant \ldots$ Posety, które spełniają własność ωCPO wraz z ciągłymi przekształceniami jako morfizmami tworzą kategorię oznaczaną przez ω CPO. Poset (P, \leqslant) , który jest ωCPO nazywamy punktowym, jeśli istnieje w nim element najmniejszy $\bot \in P$. Punktowe ωCPO tworzą kategorię w której strzałkami są wszystkie ciągłe przekształcenia dodatkowo zachowujące element najmniejszy, tj. $h(\bot)$

^{) =} \perp . Tę kategorię oznaczamy przez $\omega \mathsf{CPO}_{\perp}$.