Lecture 14+: Functional ANOVA

Hao Helen Zhang

Function ANOVA Decomposition

Similar to classical ANOVA, any multivariate function f is decomposed as

$$f(\mathbf{x}) = \beta_0 + \sum_{j=1}^{p} f_j(x_j) + \sum_{j < k} f_{jk}(x_j, x_k) + \dots + f_{1 \dots p}(x_1, \dots, x_p)$$

 Side conditions guarantee uniqueness of decomposition (Wahba 1990, Gu 2002)

Projection on Linear Space

Definition: Assume \mathcal{F} is a linear space. A is a *projection* if it is a linear map: $\mathcal{F} \to \mathcal{F}$ such that

$$A^2 = A$$
.

Any projection is associated with a direct sum decomposition.

Fact 1: Let \mathcal{F} be a linear space, A is a projection, then

$$\mathcal{F} = \mathsf{range}(A) \oplus \mathsf{kernel}(A),$$

- range(A) = { $f : f \in \mathcal{F}, f = Ag$ for some $g \in \mathcal{F}$ } is the range of A
- $kernel(A) = \{f : Af = 0, f \in \mathcal{F}\}$ is the kernel of A
- \oplus is the direct sum, which means range(A) \cap kernel(A) = $\{0\}$

Fact 2: f = Af + (I - A)f is the unique decomposition.

Product Domain

Consider a multivariate function $f(\mathbf{x}) = f(x_1, \dots, x_p) \in \mathcal{F}$

- Let \mathcal{X}_j be the domain for x_j , i.e., $x_j \in \mathcal{X}_j$
- $\mathcal{X} = \prod_{i=1}^p \mathcal{X}_j$ is the product domain for $\mathbf{x} = (x_1, \dots, x_p)$
- ullet ${\cal F}$ is a vector (or linear) space

Examples:

- continuous: $\mathcal{X}_j = [0,1]$, and $\mathcal{X} = [0,1]^p$, and \mathcal{F} is a space of continuous functions
- discrete: $\mathcal{X}_j = \{1, 2, \cdots, K\}$ for any $j = 1, \dots, p$.

Averaging Operator: A_j

 A_j is a linear map: $\mathcal{F} o \mathcal{F}$ that averages out x_j from the active argument list

• A_j satisfies $A_j^2 = A_j$ (it is a projection)

Examples: p = 2.

- Example 1: $\mathcal{X}_1 = \mathcal{X}_2 = [0, 1], \mathcal{X} = [0, 1]^2$
 - $A_1 f = \int_0^1 f(x_1, x_2) dx_1$
 - $A_2 f = \int_0^1 f(x_1, x_2) dx_2$
- Example 2. $\mathcal{X}_1 = \{1, \dots, K_1\}$ and $\mathcal{X}_2 = \{1, \dots, K_2\}$
 - $A_1 f = \sum_{x_1=1}^{K_1} f(x_1, x_2) / K_1$
 - $A_2 f = \sum_{x_2=1}^{K_2} f(x_1, x_2) / K_2$

Additional Examples

Examples: p = 2.

- Example 3: $\mathcal{X}_1 = \mathcal{X}_2 = [0, 1], \mathcal{X} = [0, 1]^2$
 - $A_1 = f(0, x_2)$
 - $A_2 = f(x_1, 0)$.
- Example 4. $\mathcal{X}_1 = \{1, \dots, K_1\}$ and $\mathcal{X}_2 = \{1, \dots, K_2\}$
 - $A_1 = f(1, x_2)$
 - $A_2 = f(x_1, 1)$. for j = 1, 2

Multiway ANOVA Decomposition

Assume $f \in \mathcal{F}$ is a linear space, A_j 's are averaging operators on \mathcal{F} . Then

$$f(\mathbf{x}) = \{ \prod_{j=1}^{p} (I - A_j + A_j) \} f = \sum_{\mathcal{S}} \{ \prod_{j \in \mathcal{S}} (I - A_j) \prod_{j \notin \mathcal{S}} A_j \} f$$

$$= \sum_{\mathcal{S}} f_{\mathcal{S}}$$

$$= \beta_0 + \sum_{j=1}^{p} f_j(x_j) + \sum_{j < k} f_{jk}(x_j, x_k) + \dots + f_{1 \dots p}(x_1, \dots, x_p)$$

where

- $oldsymbol{\circ} \mathcal{S} \in \{1,\ldots,p\}$ enlists the active arguments in $f_{\mathcal{S}}$
- the summation is over all of the 2^p subsets of $\{1, \ldots, p\}$.

ANOVA Interpretation

- $\beta_0 = \prod_{i=1}^p A_i(f)$ is a constant (overall mean).
- $f_j = f_{\{j\}} = (I A_j) \sum_{k \neq j} A_k(f)$ is the x_j main effect.
- $f_{jk} = f_{\{j,k\}} = (I A_j)(I A_k) \sum_{l \neq k,j} A_l(f)$ is $x_j x_k$ interaction

Side conditions:

$$A_j f_{\mathcal{S}} = 0, \quad \forall j \in \mathcal{S}.$$

Special cas

Assume p = 2, then

$$\beta_0 = A_1 A_2 f,
f_1 = (I - A_1) A_2 f = A_2 f - A_1 A_2 f = A_2 f - \beta_0,
f_2 = (I - A_2) A_1 f = A_1 f - A_1 A_2 f = A_1 f - \beta_0,
f_{12} = (I - A_1) (I - A_2) f
= f(x_1, x_2) - f_1(x_1) - f_2(x_2) + \beta_0.$$

And this decomposition is unique,

$$f(x_1, x_2) = \beta_0 + f_1(x_1) + f_2(x_2) + f_{12}(x_1, x_2)$$

Continuous Domain Example: p = 2

Domain
$$\mathcal{X}_1 = \mathcal{X}_2 = [0,1]$$
. $A_j = \int_0^1 f(x_1, x_2) dx_j$ for $j = 1, \dots, 2$

•
$$\beta_0 = A_1 A_2 f = \int_0^1 \int_0^1 f(x_1, x_2) dx_1 x_2$$

•
$$f_1 = (I - A_1)A_2f = \int_0^1 f(x_1, x_2)dx_2 - \beta_0$$

•
$$f_2 = (I - A_2)A_1f = \int_0^1 f(x_1, x_2)dx_1 - \beta_0$$

•
$$f_{12} = (I - A_1)(I - A_2)f$$

= $f(x_1, x_2) - \int_0^1 f dx_1 - \int_0^1 f dx_2 + \int_0^1 \int_0^1 f(x_1, x_2) dx_1 x_2$

Continuous Domain Example: p = 2

Domain
$$\mathcal{X}_1 = \mathcal{X}_2 = [0,1]$$
.

- Example: $A_1 = f(0, x_2)$ and $A_2 = f(x_1, 0)$.
 - $\beta_0 = A_1 A_2 f = f(0,0)$
 - $f_1 = (I A_1)A_2f = f(x_1, 0) f(0, 0)$
 - $f_2 = (I A_2)A_1f = f(0, x_2) f(0, 0)$
 - $f_{12} = (I A_1)(I A_2)f = f(x_1, x_2) f(x_1, 0) f(0, x_2) + f(0, 0)$

Discrete Domain Example: p = 2

Domain $\mathcal{X}_1 = \{1, \dots, K_1\}$ and $\mathcal{X}_2 = \{1, \dots, K_2\}$.

- Example: $A_j = \sum_{x_j=1}^{K_j} f(x_1, x_2) / K_j$ for j = 1, ..., 2
 - $\beta_0 = A_1 A_2 f = f$..
 - $f_1 = (I A_1)A_2f = f_{x_1} f_{x_2}$
 - $f_2 = (I A_2)A_1f = f_{.x_2} f_{..}$
 - $f_{12} = (I A_1)(I A_2)f = f(x_1, x_2) f_{x_1} f_{x_2} + f_{..}$

 $f_{\cdot\cdot\cdot}$ is the overall mean, $f_{x_1\cdot\cdot}=\sum_{x_2=1}^{K_2}f(x_1,x_2)/K_2$ is the marginal average over x_2 , $f_{\cdot x_2}=\sum_{x_1=1}^{K_1}f(x_1,x_2)/K_1$ is the marginal average over x_1 .

- Example: $A_1 = f(1, x_2)$ and $A_2 = f(x_1, 1)$.
 - $\beta_0 = A_1 A_2 f = f(1,1)$
 - $f_1 = (I A_1)A_2f = f(x_1, 1) f(1, 1)$
 - $f_2 = (I A_2)A_1f = f(1, x_2) f(1, 1)$
 - $f_{12} = (I A_1)(I A_2)f = f(x_1, x_2) f(x_1, 1) f(1, x_2) + f(1, 1)$

Truncated Models

Additive models

$$f(\mathbf{x}) = \beta_0 + \sum_{j=1}^p f_j(x_j),$$

Claim X_i as unimportant if the function $f_i = 0$

Two-way interaction model

$$f(\mathbf{x}) = \beta_0 + \sum_{j=1}^{p} f_j(x_j) + \sum_{j < k} f_{jk}(x_j, x_k).$$

The interaction effect between X_j and X_k is unimportant if $f_{jk} = 0$.

