SPHERICAL COORDINATE SYSTEM

Our motivation for spherical coord. system is mostly for expressing comera position in world space.
is mostly for expressing comera position
in world space.
To express P(x, y, z) in terms of P(r, 0, 0)
To express P(x, y, z) in terms of P(r, o, o) from fig 1:
$r^{2} = n^{2} + y^{2} + 2^{2}; r = \sqrt{n^{2} + y^{2} + 2^{2}}$ $tan\theta = \frac{Z}{x}; \theta = tan^{2}(\frac{Z}{x})$ $Cos\phi = \frac{y}{\sqrt{n^{2} + y^{2} + 2^{2}}}; \phi = Cos^{-1}(\frac{y}{\sqrt{n^{2} + y^{2} + 2^{2}}})$
$tan\theta = Z/x i \theta = tan (Z/x)$
$\cos \phi = \psi \qquad ; \phi = \cos^{-1} \phi$
$\sqrt{x^2 + y^2 + z^2}$ $\sqrt{x^2 + y^2 + z^2}$
To express $P(x, \theta, \phi)$ in terms of $P(x, y, z)$ from Fig 1: $y = x \log \phi$
, from tig 1°
y = 8 los 0
0P' = 8 Sin Ø
mal (m - v (o d C:) A
n= op! (os 0 = rSind Sin 0
$n = OP' \left(OU \Theta = rSind Sin \Theta \right)$ $y = OP' Sin \Theta = rSind Sin \Theta$
$n = OP' \left(o $
x = op! Gove = rSind Sind $y = op! Sind = rSind Sind$