1

AI1103: Assignment 5

Raja Ravi Kiran Reddy - CS20BTECH11009

Download all python codes from

https://github.com/BokkaRajaRaviKiranReddy/AI1103/tree/main/Assignment5/codes

and latex codes from

https://github.com/BokkaRajaRaviKiranReddy/ AI1103/blob/main/Assignment5/Assignment5. tex

GATE 2021 ME-set1-Q18

Activities A,B,C,D from the critical path for a project with a PERT network. The means an variances of the activity duration for each activity are given below. All activity duration follow the Gaussian (normal) distribution and are independent of each other.

Activity	A	В	C	D
Mean	6	11	8	15
variance	4	9	4	9

The probability that the project will be completed within 40 days is

(round off to two decimal places)

(Note: Probability is a number between 0 and 1)

SOLUTION

Activity	A	В	С	D
μ	6	11	8	15
σ	4	9	4	9

E=A+B+C+D

The sum of Gaussian distributions will also give Gaussian distribution.

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$
 (0.0.1)

$$f_E(x) = \frac{1}{5.1\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu_E}{\sigma_E}\right)^2}$$
 (0.0.2)

For a Gaussian Distribution where X is a random variable with mean μ and variance σ^2 , $Y = \frac{X-\mu}{\sigma}$

$$Pr(X > x) = Pr(Y > y) = Q(y)$$
 (0.0.3)

$$Q(y) = \frac{1}{\sqrt{2\pi}} \int_{y}^{\infty} e^{-\frac{u^2}{2}} du$$
 (0.0.4)

where,

$$y = \frac{x - \mu}{\sigma}$$

For a Gaussian Distribution,

$$Pr(X > \mu) = Pr(Y > 0) = Q(0) = \frac{1}{2}$$
 (0.0.5)

$$\Pr(X \le \mu) = 1 - Q(0) = \frac{1}{2} \tag{0.0.6}$$

mean of $E=\mu_E$,

$$\mu_E = \mu_A + \mu_B + \mu_C + \mu_D \tag{0.0.7}$$

$$=40$$
 (0.0.8)

Standard deviation of $E=\sigma_E$,

$$\sigma_E^2 = \sigma_A^2 + \sigma_B^2 + \sigma_C^2 + \sigma_D^2 \qquad (0.0.9)$$

$$\sigma_E = 5.1 \tag{0.0.10}$$

$$f_E(x) = \frac{1}{5.1\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-40}{5.1}\right)^2}$$
 (0.0.11)

here we want $Pr(X \le 40)$,

$$Pr(X \le 40) = 1 - Pr(X > 40) \tag{0.0.12}$$

For activity E , $\mu_E = 40$ and from eq (0.0.5) and (0.0.6).

$$Pr(X > 40) = 0.5 \tag{0.0.13}$$

$$\implies \Pr(x \le 40) = 0.50$$
 (0.0.14)

