

Reference Stratification Subtraction (RSS) in the Community Atmosphere Model (CAM) Spectral Dynamical Core

Haiyang Yu, Minghua Zhang

Motivation

(e.g. hydrostatic balance)

Reference Stratification Subtraction (RSS) can reduce the model numerical errors, especially the errors in calculating the pressure gradient force over steep slopes in terrain-following coordinate (Zeng, 1963). The RSS method with different versions has been implemented in many weather forecasting and climate models (e.g. ECMWF IFS, FGOLAS, BCC-CSM, IAP-AGCM, AREM).

Dynamical core Perturbation atmosphere Reference atmosphere

 $\nabla_p^2 \Phi = \nabla_\sigma \cdot (\nabla_\sigma \Phi + RT_v \nabla_\sigma \ln p_s)$ subtraction between two large terms

 $\nabla_p^2 \Phi = \nabla_\sigma \cdot (\nabla_\sigma \Phi^r + RT^r \nabla_\sigma \ln p_s)$

Numerical Test Cases

- 1) Impact of orography on a non-rotating steady-state (DCMIP 2012: 2-0-x)
- Evaluate the accuracy of pressure gradient calculation after introducing RSS
- Hydrostatic scale, oscillated terrain, without Earth's rotation (omega=0)
- 2) Propagation of gravity waves (DCMIP 2008: 6-0-0)
 - Evaluate the simulation of the propagation of pure internal gravity waves
 - No terrain, without Earth's rotation (omega=0)
- 3) Held-Suarez forcing experiments (Held and Suarez, 1994)
- Evaluate model stability and convergence over a long-term time integration
- No terrain, idealized symmetric heating and linear friction
- 4) Aqua-planet experiments (Neale and Hoskins, 2001)
 - Comprehensive evaluation of model dynamics and physics coupling
 - Full physics, no terrain, no land; fixed zenith angle, CO2, O3; "control" SST distribution

Implementation of RSS in CAM3.0 Eulerian Spectral Dynamical Core

$\frac{1}{a}\frac{\partial (T^{p}V)}{\partial \mu} + T^{p}\delta - \dot{\eta}\frac{\partial p}{\partial \eta}\frac{\partial T^{p}}{\partial p}$ RSS $\int_{(p_t)}^{p_{(1)}} \vec{V} \cdot \nabla_{\eta} [\ln(p_s^r) + (\ln p_s)^p] d\left(\frac{\partial p}{\partial p_s}\right) - \frac{1}{p_s} \int_{p(\eta_t)}^{p(1)} \delta dp$ Where, $n_v^p = -(\zeta + f)U - \dot{\eta} \frac{\partial p}{\partial \eta} \frac{\partial V}{\partial p} - \frac{RT_v^p}{a} \frac{p_s}{p} \frac{\partial p}{\partial p_s} (1 - \mu^2) \left[\frac{\partial \ln p_s^r}{\partial \mu} + \frac{\partial (\ln p_s)^p}{\partial \mu} \right]$ $\omega = \frac{\partial p}{\partial p_s} p_s (\vec{V} \cdot \nabla_{\eta} [\ln p_s^r + (\ln p_s)^p]) - p_s \int_{(\eta_t)}^{(\eta)} \vec{V} \cdot \nabla_{\eta} [\ln p_s^r + (\ln p_s)^p] d\left(\frac{\partial p}{\partial p_s}\right) - \int_{p(\eta_t)}^{p(\eta)} \delta dp$ Diagnostic equations: $\dot{\eta} \frac{\partial p}{\partial \eta} = \frac{\partial p}{\partial p_s} \left[p_s \int_{(\eta_t)}^{(1)} \vec{V} \cdot \nabla_{\eta} [\ln p_s^r + (\ln p_s)^p] d\left(\frac{\partial p}{\partial p_s}\right) + \int_{p(\eta_t)}^{p(1)} \delta dp \right]$ $- \left[p_s \int_{(\eta_t)}^{(\eta)} \vec{V} \cdot \nabla_{\eta} [\ln p_s^r + (\ln p_s)^p] d\left(\frac{\partial p}{\partial p_s}\right) + \int_{p(\eta_t)}^{p(\eta)} \delta dp \right]$

Numerical Results

1) Steady flow over oscillated terrain

at day 6, with the orography being masked with black color.

RSS_adiabatic scheme is numerically stable, but the RSS_Wu08 is unstable for this test case;

Fixing the bugs in CAM3.0 helps little, but the RSS can reduce the numerical errors effectively.

2) Propagation of pure internal gravity waves

The RSS scheme produces a sharper pattern of leading gravity waves (wave dispersion); CAM3.0 simulates a slightly downward propagation of gravity waves, while introducing the RSS scheme causes the wave propagation to be more parallel with the ground.

3) Held-Suares forcing

Figure 8. Differences between RSS Wu08 and CAM3.0 on zonal mean zonal wind (m s^{-1}), vertical velocity (Pa s^{-1}), tempera-ture (K), and relative humidity (%).

Figure 7. The same as Figure 6, but for meridional heat ($K \text{ m s}^{-1}$) and momentum ($M^2 \text{ s}^{-2}$) transport; vertical heat (KPa s⁻¹) and moment (m Pa s⁻²) transport.

4) Aqua-Planet Experiments (APEs)

ture (K), and vertical velocity (Pa s⁻¹).

Figure 6. Differences between RSS_Wu08 and CAM3.0

on zonal mean zonal and meridional wind (m s⁻¹), tempera-

Figure 9. The same as Figure 8, but for meridional heat ($K \text{ m s}^{-1}$) and moisture ($kg kg^{-1} \text{ m s}^{-1}$) transport; vertical heat (K Pa s⁻¹) and moisture (kg kg⁻¹ Pa s⁻¹) transport.

Main References

Chen, J., A. Simmons, 1989: Sensitivity of Medium-Range weather forecasts to the use of reference atmosphere. Adv. Atmos. Sci., 7, 275–293. Collins, W., et al., 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Technical Note NCAR/TN-464+STR. Wu, G., H. Liu, Y. Zhao, and W. Li, 1996: A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13, 1–18. Wu, T., R. Yu, F. Zhang, 2008: A Modified Dynamical Framework for the Atmospheric Spectral Model and Its Application. J. Atmos. Sci., 65, 2235–2253.

Zeng, Q., 1963: Characteristic parameter and dynamical equation of atmospheric motions (in Chinese). Acta Meteor. Sin., 33, 472–483. Zhang, H., M. Zhang, Q. Zeng, 2013: Sensitivity of Simulated Climate to Two Atmospheric Models: Interpretation of Differences between Dry Models and Moist Models. Mon. Wea. Rev., 141, 1558–1576.

Dry dynamical core

- RSS causes stronger baroclinicity and mid-latitude jets (consistent with Zhang et al., 2013);
- The above changes are corresponding with weaker poleward eddy heat transport and stronger poleward eddy momentum transport, respectively.

Physics coupled dynamical core

- RSS causes weaker subtropical jets and equatorial shifts (consistent with Wu et al., 2008);
- RSS causes dryer atmosphere at middle/low level over tropics/subtropics;
- Being associated with weaker poleward eddy heat, momentum, and moisture transport.