BBM 205 Discrete Mathematics Hacettepe University

Lecture 11a: Maximum Matchings Lale Özkahya

Resources:

Kenneth Rosen, "Discrete Mathematics and App." http://www.cs.cmu.edu/./15251/schedule.html

matching machines and jobs

Job I

Job 2

:

Job n

matching professors and courses

15-112 15-122 15-150 15-251

15-110

:

matching rooms and courses

GHC 4401	15-110
DH 2210	15-112
GHC 5222	15-122
WEH 7500	15-150
DH 2315	15-251
:	:

matching students and internships

matching kidney donors and patients

How do you solve a problem like this?

I. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

Remember the CS life lesson

If your problem has a graph, great. If not, try to make it have a graph!

First step: Formulate the problem

Purpose:

- Get rid of all the distractions
- Identify the crux of the problem
- Get a clean mathematical model that is easy to reason about.

Bipartite Graphs

G = (V, E) is bipartite if:

- there exists a bipartition of V into X and Y
- each edge connects a vertex in \boldsymbol{X} to a vertex in \boldsymbol{Y}

Given a graph G=(V,E), we could ask, is it bipartite?

Bipartite Graphs

Given a graph G = (V, E), we could ask, is it bipartite?

Poll

Is this graph bipartite?

- Yes
- No
- Beats me

Poll Answer

Is this graph bipartite?

bipartite = 2-colorable

Color the vertices with 2 colors so that no edge's endpoints get the same color.

Important Characterization

An obstruction for being bipartite:

Contains a cycle of odd length.

Is this the only type of obstruction?

Theorem:

A graph G=(V,E) is bipartite <u>if and only if</u> it contains no cycles of odd length.

Bipartite Graphs

Often we write the bipartition explicitly:

$$G = (X, Y, E)$$

Bipartite Graphs

Great at modeling relations between two classes of objects.

Examples:

$$X = \text{machines}, Y = \text{jobs}$$

An edge $\{x,y\}$ means x is capable of doing y.

$$X = professors, Y = courses$$

An edge $\{x,y\}$ means x can teach y.

```
X = students, Y = internship jobs
```

An edge $\{x,y\}$ means x and y are interested in each other.

:

Often, we are interested in finding a matching in a bipartite graph

A matching:

A subset of the edges that do not share an endpoint.

Often, we are interested in finding a matching in a bipartite graph

A matching:

A subset of the edges that do not share an endpoint.

Often, we are interested in finding a matching in a bipartite graph

A matching:

A subset of the edges that do not share an endpoint.

Often, we are interested in finding a matching in a bipartite graph

A matching:

A <u>subset of the edges</u> that do not share an endpoint.

Often, we are interested in finding a matching in a bipartite graph

Maximum matching: a matching with largest number of edges (among all possible matchings).

Often, we are interested in finding a matching in a bipartite graph

Maximal matching: a matching which cannot contain any more edges.

Often, we are interested in finding a matching in a bipartite graph

Perfect matching: a matching that covers all vertices.

Poll

How many different perfect matchings does the graph have (in terms of n)?

$$|X| = |Y| = n$$

Important Note

We can define matchings for non-bipartite graphs as well.

Important Note

We can define matchings for non-bipartite graphs as well.

Maximum matching problem

The problem we want to solve is:

Maximum matching problem

Input: A graph G = (V, E).

Output: A maximum matching in *G*.

Actually, we want to solve the following restriction:

Bipartite maximum matching problem

Input: A <u>bipartite</u> graph G = (X, Y, E).

Output: A maximum matching in G.

How do you solve a problem like this?

I. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

Bipartite maximum matching problem

Input: A bipartite graph G = (X, Y, E).

Output: A maximum matching in G.

Is there a (trivial) algorithm to solve this problem?

- Try all possible subsets of the edges.

Running time: $\Omega(2^m)$

How do you solve a problem like this?

I. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

A good first attempt:

A good first attempt:

A good first attempt:

A good first attempt:

What if we picked edges "greedily"?

Is there a way to get out of this local optimum?

What is interesting about the path 4 - 8 - 2 - 5 - 1 - 7?

A good first attempt:

A good first attempt:

Let M be some matching.

An *alternating path* with respect to **M** is a path in **G** such that:

 the edges in the path alternate between being in M and not being in M

An *augmenting path* with respect to M is an alternating path such that:

- the first and last vertices are **not** matched by **M**

augmenting path \implies can obtain a bigger matching.

augmenting path \implies can obtain a bigger matching.

matching = red edges

Augmenting path:

4-8

An augmenting path need **not** contain any of the edges of the matching.

augmenting path \implies can obtain a bigger matching.

augmenting path \implies can obtain a bigger matching.

In fact, it turns out:

no augmenting path \implies maximum matching.

Theorem:

A matching M is maximum if and only if there is no augmenting path with respect to M.

Proof:

If there is an augmenting path with respect to M, we saw that M is not maximum.

Want to show:

If M not maximum, there is an augmenting path w.r.t. M.

Let M^* be a maximum matching. $|M^*| > |M|$.

Let **S** be the set of edges contained in **M*** or **M** but not both.

$$S = (M^* \cup M) - (M \cap M^*)$$

 $S = (M^* \cup M) - (M \cap M^*)$

Proof (continued):

(will find an augmenting path in S)

What does S look like?

Each vertex has degree I or 2. (why?)

So **S** is a collection of disjoint cycles and paths.

(exercise)

The edges alternate red and blue.

Proof (continued):

So **S** is a collection of disjoint cycles and paths.

The edges alternate red and blue.

 $S = (M^* \cup M) - (M \cap M^*)$

So \exists a path with # red > # blue.

This is an augmenting path with respect to M.

Theorem:

A matching M is maximum if and only if there is no augmenting path with respect to M.

Summary of proof:

 \Longrightarrow

If there is an augmenting path, not a max matching.

 \leftarrow

If the matching M is not maximum, $\exists M^*$ s.t. $|M^*| > |M|$.

Can find an augmenting path w.r.t. M in the "symmetric difference" of M* and M.

Next time:

- Algorithm to find a maximum matching in bipartite graphs.

- Stable matchings.