

R-HW ASSIGNMENT

Shazman Khan MSBA-4

NOVEMBER 25, 2019

R-COURSE Prof. Thomas Kurnicki

#Chapter 3.4: Exercises: 7 and 8

#Create a user defined function named studentfunction that transposes a numeric matrix (columns become rows) and subsets the matrix in a way so that only the first 5 rows remain in the dataset.

```
studentfunction<-function(mat){
 mat<-t(mat)
 if(nrow(mat) > 5){
  mat<- mat[1:5,]
 }
 return(mat)
}
#a) Use the studentfunction function to transform the matrix created in Exercise 7 from chapter 2.
sz_matrix<-matrix(c(10,11,9,15,19, 52, 19, 7, 10, 22, 28, 40, 6, 99, 33, 35, 26, 5, 87, 91, 0, 12, 16,
81,200),byrow=TRUE,nrow=5)
sz_matrix
studentfunction(sz matrix)
Output:
sz_matrix<-matrix(c(10,11,9,15,19, 52, 19, 7, 10, 22, 28, 40, 6, 99, 33, 35, 26, 5, 87, 91, 0, 12, 16, 81,200),byrow=TRUE,nrow=5)
> sz_matrix
       [,1] [,2]
10 11
                      [,3]
9
                             [,4]
15
                                     [,5]
19
                  19
                                        22
                                 10
                  40
                          6
                                 99
                                        33
                  26
                           5
                                 87
                                        91
                  12
                         16
                                 81
                                      200
  studentfunction(sz
[,1] [,2] [,3]
1,] 10 52 28
                               _matrix)
                                4]
35
                                     [,5]
0
          11
                  19
                         40
                                 26
                                        12
          9
15
                                 5
87
                   7
                          6
                                        16
                         99
                  10
                                        81
                         33
                                 91
                                      200
```

#b) Use the studentfunction function to transform the matrix that was given as an example in chapter 2.1

```
xf <- matrix(1:9, byrow = TRUE, nrow = 3)
xf
studentfunction(xf)</pre>
```

Output:

#8.Create a user defined function named transformmatrix that takes the diagonal of a matrix and calculates a vector with two elements. Element one is the mean of the diagonal and element two is the median.

```
transformmatrix<-function(trans_matrix){
  v1<-c(mean(diag(trans_matrix)),median(diag(trans_matrix)))
  return(v1)
}</pre>
```

#a) Use the transformmatrix function to transform the matrix created in Exercise 7 from chapter 2.

```
sz_matrix<-matrix(c(10,11,9,15,19, 52, 19, 7, 10, 22, 28, 40, 6, 99, 33, 35, 26, 5, 87, 91, 0, 12, 16, 81,200),byrow=TRUE,nrow=5)
```

transformmatrix(sz matrix)

Output:

```
 \begin{array}{l} sz\_matrix < -matrix(c(10,11,9,15,19,\ 52,\ 19,\ 7,\ 10,\ 22,\ 28,\ 40,\ 6,\ 99,\ 33,\ 35, \\ 26,\ 5,\ 87,\ 91,\ 0,\ 12,\ 16,\ 81,200), byrow=TRUE, nrow=5) \\ > transformmatrix(sz\_matrix) \\ \end{array}
```

#b) Use the transformmatrix function to transform the matrix that was given as an example in chapter 2.1

```
xf<- matrix(1:9, byrow = TRUE, nrow = 3)
transformmatrix(xf)</pre>
```

Output:

```
xf<- matrix(1:9, byrow = TRUE, nrow = 3)
> transformmatrix(xf)
[1] 5 5
```

#9. For the iris dataset (no need to call a function, iris is part of the base R) create for loop that does the following to each observation:

#a) changes the Species column from a character type to numeric. Assign 1 for setosa, 2 for virginica, and 3 for versicolor,

```
n_iris<-iris
for (i in 1:nrow(n_iris)){
    if (n_iris$Species[i]=="setosa"){n_iris$Species<-gsub("setosa","1",n_iris$Species)}
    else if(n_iris$Species[i]=="verginica"){n_iris$Species<-gsub("verginica","2",n_iris$Species)}
    else {n_iris$Species<-gsub("versicolor","3",n_iris$Species)}
}
n_iris$Species<-as.numeric(n_iris$Species)</pre>
```

Output:

```
> n_iris
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species 5.1 3.5 1.4 0.2 1
                  4.9
4.7
                                  3.0
                                                                    0.2
                                                                                  1
1
2
3
4
                                                                    0.2
                                                    1.3
                                  3.2
                                  3.1
                                                    1.5
                                                                                 1
1
1
                  4.6
                  5.0
                                  3.6
                                                                    0.2
5
6
7
                                                                    0.4
0.3
0.2
                  5.4
                                  3.9
                                                    1.7
                  4.6
.
8
9
                                                                                 1
                                                    1.5
                  5.0
                                                                                 1
1
                                  2.9
                                                    1.4
                                                                    0.2
10
                  4.9
                                  3.1
                                                    1.5
                                                                    0.1
11
12
                                                                    0.2
                                                                                 1
1
1
                  5.4
                                  3.7
                                                    1.5
                  4.8
                                                    1.6
13
                                                                    0.1
                                  3.0
                  4.8
                                                    1.4
14
                  4.3
                                                                    0.1
                                                                                 1
                                  3.0
                                                    1.1
15
                  5.8
                                  4.0
                                                    1.2
                                                                    0.2
                                                                                 1
```

#b) creates a new column that groups the Petal.Length into 3 groups: group#1 for Petal.Length from 0 to 2, group #2 from 2.01 to 4.5, and group #3 from 4.51 to 7.

```
n_iris$new_col <- c()
for (i in 1:nrow(n_iris)){
   if (n_iris$Petal.Length[i]<=2){n_iris$new_col[i]<-"group#1"}
   else if (n_iris$Petal.Length[i]>2.01 && n_iris$Petal.Length[i]<=4.5){n_iris$new_col[i]<-"group#2"}
   else{n_iris$new_col[i]<-"group#3"}
}
n_iris</pre>
```

Output:

```
> n_iris
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species new_col
1
               5.1
                             3.5
                                            1.4
                                                                        group#1
               4.9
4.7
2
3
4
                             3.0
                                            1.4
                                                          0.2
                                                                      1 group#1
                             3.2
                                            1.3
                                                          0.2
                                                                      1 group#1
                                                          0.2
               4.6
                             3.1
                                            1.5
                                                                      1 group#1
               5.0
                             3.6
                                                          0.2
5
6
7
                                            1.4
                                                                      1 group#1
               5.4
                             3.9
                                            1.7
                                                          0.4
                                                                      1 group#1
               4.6
                                            1.4
                                                          0.3
                                                                        group#1
8
                                                          0.2
                             3.4
                                            1.5
               5.0
                                                                      1 group#1
9
               4.4
                             2.9
                                            1.4
                                                          0.2
                                                                      1 group#1
10
               4.9
                             3.1
                                            1.5
                                                          0.1
                                                                      1 group#1
                                                          0.2
11
               5.4
                             3.7
                                            1.5
                                                                      1 group#1
12
               4.8
                                            1.6
                                                                      1 group#1
13
                                                          0.1
               4.8
                             3.0
                                                                      1 group#1
                                            1.4
14
               4.3
                                                          0.1
                             3.0
                                            1.1
                                                                      1 group#1
15
               5.8
                             4.0
                                            1.2
                                                          0.2
                                                                      1 group#1
16
               5.7
                             4.4
                                                          0.4
                                                                      1
                                                                        group#1
17
               5.4
                             3.9
                                                          0.4
                                                                      1
                                                                        group#1
18
               5.1
                             3.5
                                            1.4
                                                          0.3
                                                                      1 group#1
19
               5.7
                             3.8
                                            1.7
                                                          0.3
                                                                      1 group#1
20
               5.1
                             3.8
                                                          0.3
                                                                      1 gro.....
```

#3.Using the iris dataset:

#a) combine the Setosa and Versicolor into group "0" and label the Virginica to "1". Create a new variable called iris\$Group with the 0 or 1 labels,

```
sziris<-iris
mziris$iris_Group<-c()
for (i in 1:nrow(sziris)){
if (sziris$Species[i]=="setosa" ||sziris$Species[i]=="versicolor"){sziris$iris_Group[i]<-"0"}
 else{sziris$iris_Group[i]<-"1"}
}
sziris
Output:
sziris
     Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                                          Species
                                3.5
1
2
3
                 5.1
                                                 1.4
                                                                 0.2
                                                                           setosa
                                3.0
                 4.9
                                                 1.4
                                                                 0.2
                                                                           setosa
                 4.7
                                3.2
                                                 1.3
                                                                 0.2
                                                                           setosa
4
5
                                                                 0.2
                 4.6
                                3.1
                                                 1.5
                                                                           setosa
                 5.0
                                3.6
                                                                 0.2
                                                                           setosa
```

6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
14	4.3	3.0	1.1		

 $\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1112 \\ 1111 \\ 1$

#b) build a logistic regression model using any available data that will predict the observation being Virginica (value of 1 in Group variable), sziris\$iris Group<-as.numeric(sziris\$iris Group) virginica pred<-glm(iris Group~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,data=sziris,family = "binomial") summary(virginica pred) Output: call: glm(formula = iris_Group ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.width, family = "binomial", data = sziris) Deviance Residuals: Median 3Q 0.00048 -2.01105 $-0.0006\overline{5}$ 0.00000 1.78065 Coefficients: Estimate Std. Error z value Pr(>|z|)25.708 -1.659 0.0972 (Intercept) -42.638 2.394 Sepal.Length -2.465 -1.0300.3032 Sepal.Width -6.681 4.480 -1.4910.1359 Petal.Length 9.429 4.737 1.990 0.0465 * Petal.Width 18.286 9.743 1.877 0.0605 . Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 190.954 on 149 degrees of freedom Residual deviance: 11.899 on 145 degrees of freedom AIC: 21.899 Number of Fisher Scoring iterations: 12 #only use the significant variables which are Petal.Length and Petal.Wodth

```
#Sepal.Width =5 Petal.Length =10 Petal.Width =7 Sepal.Length=9

np<- data.frame(Sepal.Length=9, Sepal.Width=5,Petal.Length=10,Petal.Width=7)

np_pr <- predict(virginica_pred, new_plant, type='response')
```

#c) calculate the probability of a new plant being a Virginica for the following parameters:

```
np_pr
Output:

np_pr <- predict(virginica_pred, np, type='response')
> np_pr
1
1
```