

Instituto Superior Técnico

Transmissão de Calor

Docente: Viriato Semião

Condução de Calor: Arrefecimento de um sólido por convecção forçada

- Relatório de Projeto -

Autores

Diogo Faustino, 95782 Francisco Alves, 95787 Pedro Farinha, 95838 Rodrigo Sequeira, 96480

30 de outubro de 2022

Índice

1 Introdução													
2	Desc	Descrição do problema em estudo											
	2.1	Geom	etria do sólido e características do material	4									
	2.2	Métod	lo da Capacitância Global	5									
	2.3	Soluçã	ão Analítica	6									
	2.4	Soluçã	ão Numérica: TEACH-C	8									
	2.5	Escoll	na do ponto monitor	9									
3	Resi	ultados		11									
	3.1	Núme	ro de Biot e Método da Capacitância Global	11									
	3.2	Estudo	o de independência da malha	11									
	3.3	T(t) p	para o centro geométrico	13									
	3.4	T(t) p	para os centros das faces laterais	14									
	3.5	Anális	se do número de termos utilizados na solução analítica	16									
	3.6	Verific	cação da aproximação a um problema 2D	17									
	3.7	Discus	ssão	18									
		3.7.1	Diferença entre método da Capacitância Global e solução analítica	18									
		3.7.2	Diferença entre método numérico e solução analítica	19									
		3.7.3	Distribuição espacial de temperaturas	19									
4	Con	clusão		20									
Re	eferên	icias		21									
Aŗ	oêndi	ce		22									
Ar	nexo			27									
	Ane	xo-1 .		27									
	A 10 0	wa 2		55									

Resumo

O presente relatório foi realizado no contexto do projeto da unidade curricular Transmissão de Calor, com foco num problema de lingotamento contínuo de um tarugo de latão por convecção forçada. O objetivo foi a comparação de resultados entre diferentes métodos: Método da Capacitância Global, método analítico a duas e três dimensões, e método numérico com recurso a um programa de elementos finitos em MATLAB, TEACH-C. O primeiro método foi usado fora da sua região de validade, pelo que o resultado é analisado para avaliar a sua precisão no problema em estudo. O método analítico é baseado na formulação de Yener e Kakac [2], em que se avaliam os resultados em função da quantidade de termos ξ_n , soluções da equação transcendental, usados na série que define a solução. Por fim, desenvolve-se uma solução numérica, com condições iniciais e de fronteira adaptadas ao problema, bem como uma malha cuja independência nos resultados é estudada. Este tipo de problema é de extrema importância no dimensionamento de centrais metalúrgicas, pois a rapidez da convecção dita tanto a velocidade da extração como as dimensões da zona de arrefecimento. Constataram-se diferenças nos resultados obtidos pelo Método da Capacitância Global em relação aos restantes, que entre si revelaram resultados semelhantes, pelo que se conclui que a hipótese de temperatura constante em todo o corpo não é fiável para o número de Biot obtido. Os resultados confirmaram que a aproximação 2D do problema se revela satisfatória. A solução numérica foi obtida com independência da malha, e foi assegurado um compromisso entre a qualidade dos resultados e o tempo de computação. Como conclusão global, constata-se que o tempo de estabilização da temperatura do sólido é aproximadamente comum a todos os métodos, pelo que, para os efeitos práticos acima descritos, todas as soluções poderão ser utilizadas com relativa validade.

Contribuições dos Autores

Os alunos Pedro Farinha, Francisco Alves, Diogo Faustino e Rodrigo Sequeira realizaram em conjunto a análise e discussão dos resultados. A contextualização do problema e o estabelecimento de bases teóricas esteve a cargo dos alunos Diogo Faustino e Rodrigo Sequeira, o desenvolvimento da análise analítica teve como responsável o aluno Francisco Alves, e o aluno Pedro Farinha esteve mais focado na realização do método numérico e no estudo da independência da malha. Contudo, é necessário realçar que ao longo do trabalho houve diversos debates sobre o que se devia fazer e como fazer, e também houve um processo de entre-ajuda, garantindo que todos os elementos estivessem presentes em todas as componentes do trabalho.

1 Introdução

Este projeto tem como objetivo o estudo da transmissão de calor em regime transiente através da simulação do arrefecimento de uma barra de metal proveniente do processo de lingotamento contínuo, usado em várias indústrias metalúrgicas. Este processo é utilizado para produzir tarugos ou barras, com diferentes secções transversais, a altas temperaturas. Estas barras são depois sujeitas a um arrefecimento, natural ou forçado, por convecção com o ar atmosférico, quer suspensas no ar ou em contacto direto com o chão, que neste projeto se considerou adiabático. O seu interesse científico reside na comparação feita entre três métodos diferentes de análise da distribuição da temperatura na barra.

O caso em estudo (enunciado K) é o de uma barra de latão com secção quadrada que, após o processo de lingotamento contínuo, é arrefecida por convecção forçada, estando a sua base assente no chão. Note-se que, dadas as dimensões da secção transversal da barra H em comparação com o seu comprimento L, L >> H, o problema pode ser encarado como bidimensional.

Com a informação apresentada na secção 2, desenvolve-se um estudo da evolução térmica do corpo através de vários métodos. Primeiramente, é determinado o número de Biot para o caso em estudo, de modo a aplicar o Método da Capacitância Global para a determinação da evolução temporal da temperatura do sólido na secção 3.1. No uso deste método, que é limitado a uma gama de número de Biot Bi < 0.1, é assumida a sua validade, independentemente do valor obtido. De seguida, usando o coeficiente de convecção h fornecido, determina-se a solução analítica da distribuição espacial e temporal de temperatura. Em conjunto com o método numérico utilizado, todas as soluções são comparadas ao longo das secções 3.3, 3.4 e 3.6. Por último, o código TEACH-C, um programa computacional de elementos finitos fornecido pelo corpo docente, é ajustado ao caso em estudo de acordo com as secções 2.4 e 2.5, quer em termos de propriedades, condições iniciais e de fronteira, e características da malha, com o objetivo de obter uma solução numérica para o plano central vertical, com especial foco na evolução temporal da temperatura no centro geométrico do sólido e nos centros das faces de maiores dimensões. Para obter as evoluções de temperatura nos pontos acima referidos, incorporou-se código adicional para permitir a extração dos resultados a ser usados. Para além disto, realizou-se na secção 3.2 uma análise que garante que os resultados obtidos são independentes da malha escolhida.

Após a análise do problema através dos três métodos descritos, são apresentados alguns gráficos das diferenças entre as soluções requeridas na secção 3.7, com o objetivo de comparar os resultados obtidos, analisar as diferenças entre eles e concluir acerca da validade de cada um, bem como destacar qual dos métodos é o mais indicado para as condições descritas.

2 Descrição do problema em estudo

O objeto em estudo é, então, um lingote de latão sólido, cuja temperatura inicial corresponde a uma distribuição uniforme a 1150 °C. O metal encontra-se pousado no chão, sendo arrefecido por convecção forçada com o ar atmosférico, a 20 °C. Como referido, o chão é considerado como uma superfície adiabática. O coeficiente de convecção fornecido para a configuração em estudo foi de 250 W/m²K. Assim, deseja obter-se a distribuição temporal de temperatura ao longo do sólido, recorrendo ao Método da Capacitância Global, a uma abordagem analítica e a uma solução numérica.

Nesta secção apresenta-se uma breve descrição das soluções encontradas, dos modelos matemáticos e respetivas condições de fronteira, tal como as condições iniciais que foram definidas no enunciado do problema. Também se discutirá o modelo numérico explorado, o seu domínio computacional e a discretização do mesmo - as malhas utilizadas para a simulação.

Para estabelecer uma solução analítica é necessário definir as condições iniciais e as condições de fronteira do problema. No enunciado é dito que o corpo está a uma temperatura uniforme num instante inicial, logo $T(x,0)=T_i=1150^{\circ}\mathrm{C}$ e $\theta^*(x,0)=1$. Para além disto, espera-se que $\lim_{t\longrightarrow\infty}T(x,t)=T_{\infty}=20^{\circ}\mathrm{C}$. Por se tratar duma dissipação de calor puramente convectiva, é possível afirmar que a condução de calor à superficie do material é igual à convecção de calor na mesma direção. Uma vez que a fronteira não pode armazenar energia, o fluxo de calor a entrar na superficie por condução deve ser retirado por convecção, ou seja, $-k\frac{\partial T(L,T)}{\partial x}=h[T_{\infty}-T(L,T)]$ [1]. Por último, a fronteira com o solo é considerada adiabática e isso constitui a condição $\frac{\partial T(0,t)}{\partial y}=0$

2.1 Geometria do sólido e características do material

O sólido estudado foi o sólido **K** de latão, um paralelepípedo quadrangular com dimensões H=24 cm e L=300 cm, tal como indicado na figura em baixo (figura 2). A área do corpo através da qual se deu a convecção corresponde a todas as superfícies à exceção da inferior, pois está em contacto com o solo. Este valor corresponde a $A_s=2.2752$ m². Já o volume do corpo é V=0.1728 m³.

Apresenta-se, de seguida, o referencial que foi considerado ao longo de todo este projeto.

Figura 1: Referencial

2022/2023 4

Figura 2: Esquema do sólido de metal em estudo

As propriedades do latão encontram-se listadas de seguida.

	Latão
Massa Volúmica [kg/m ³]	7930
Calor específico [J/KgK]	385
Condutividade Térmica [W/mK]	121
Difusividade Térmica [m ² /s]	$39.6 \cdot 10^{-6}$

O calor específico, c, traduz a energia necessária para aumentar a temperatura de 1 kg de latão em 1 K.

A condutividade térmica, k, indica a capacidade de conduzir calor que o material tem.

A difusividade térmica, α , é definida pelo quociente $\alpha = \frac{k}{\rho c}$, e traduz-se numa proporção entre a capacidade do material conduzir e acumular energia térmica.

2.2 Método da Capacitância Global

O método da capacitância global é um método tipicamente utilizado na resolução de problemas na transmissão de calor transiente. Assenta na suposição de uma distribuição uniforme de temperaturas no corpo, desprezando a influência de um perfil de temperaturas no desenrolar da transmissão de calor. Pela lei de Fourier, a condução de calor na ausência de um gradiente de temperatura implica uma condutividade térmica infinita, que é fisicamente impossível. Posto isto, é fiável assumir esta condição se a resistência do sólido à condução for baixa em comparação com a sua resistência à convecção. O número de Biot, $Bi = \frac{hL}{k}$, em que h é o coeficiente de convecção, L é uma dimensão característica do corpo e k é a condutividade térmica do sólido, consiste num parâmetro adimensional que surge do balanço energético, e pode ser interpretado como um rácio entre a resistência térmica do material à condução e à convecção. Assim, o seu valor será o critério de aplicabilidade deste método de análise do problema: Bi < 0.1. Ao fornecer a razão entre o coeficiente de convecção de calor na superfície do sólido e a condutância específica do sólido, um número de Biot reduzido implica que a condução de calor dentro do corpo é muito mais rápida que a convecção de calor a partir da sua superfície: é aceitável, então, negligenciar os gradientes de temperatura no interior do corpo.

Assim, apesar do número de Biot obtido para este trabalho não se situar na região de validade desta aproximação (como discutido na secção 3), desenvolveu-se a solução através deste método para

2022/2023 5

mais tarde se poder efetuar a comparação com outras alternativas.

No sistema de equações em baixo, a primeira equação trata-se do balanço energético do problema, $\dot{E}_{st} = -\dot{E}_{out}$, enquanto que a segunda é uma condição inicial que impõe a temperatura no instante inicial do arrefecimento como sendo igual à temperatura inicial do sólido, a qual é conhecida. O segundo sistema contém estas mesmas equações na sua forma adimensionalizada [1].

$$\begin{cases} \rho V c \frac{dT}{dt} = -A_s h(T - T_{\infty}) \\ T(0) = T_i \end{cases}$$
 (2.1)

$$\begin{cases} \frac{d\theta^*}{dFo} = -Bi\theta^* \\ \theta^*(0) = 1 \end{cases} \implies \theta^* = \exp(-Bi \cdot Fo) = \exp\left(-\frac{hA_s}{\rho Vc}t\right), \tag{2.2}$$

onde $\theta^* = \frac{T - T_\infty}{T_i - T_\infty}$, $Fo = \frac{\alpha t}{L_c^2}$ e $L_c = \frac{V}{A_s}$. c representa o calor específico do material, α a difusividade térmica, T_i, T_∞ a temperatura inicial do sólido e do ar, respetivamente, L_c o comprimento característico, V o volume do corpo e A_s a área da superfície. Note-se que o número de Fourier é um tempo adimensionalizado, e que $\frac{\rho Vc}{hA_s}$ é uma constante de tempo térmica que reflete a velocidade do processo de arrefecimento.

Assim, a solução obtida,

$$\theta^* = \exp(-Bi \cdot Fo) = \exp\left(-\frac{hA_s}{\rho Vc}t\right),$$
(2.3)

permite obter a evolução temporal de temperatura de uma forma relativamente simples, em comparação com as soluções discutidas em diante, estando, contudo, assente na referida hipótese de dominância da resistência convectiva no problema.

2.3 Solução Analítica

Seja a parede plana com espessura 2L. Se a espessura for pequena quando comparada à largura e altura da parede, supõe-se que a condução ocorre exclusivamente na direção \mathbf{x} . Se a parede se encontrar a uma temperatura inicial uniforme $T(x,0)=T_i$ e for subitamente imersa num fluido com temperatura $T_{\infty} \neq T_i$, as temperaturas resultantes são descritas pela seguinte equação, simétrica relativamente ao plano central da parede $(x^*=0)$ já que as condições convectivas em ambos os lados são as mesmas [1].

$$\theta^* = \sum_{n=1}^{\infty} C_n \exp(-\xi_n^2 F_0) \cos(\xi_n x^*)$$
 (2.4)

Onde $x^* = \frac{x}{L}$, L representando a metade da espessura da barra, e o coeficiente C_n é descrito pela seguinte relação:

$$C_n = \frac{4\sin\xi_n}{2\xi_n + \sin(2\xi_n)}$$
 (2.5)

Já os valores discretos de ξ_n são raízes positivas da equação transcendental apresentada em baixo.

$$\xi_n \tan \xi_n = Bi \tag{2.6}$$

Apesar de existirem tabelas com algumas das primeiras raízes desta equação, rapidamente se sentiu a necessidade de incluir mais destes termos na solução posta em prática durante a resolução deste trabalho. Assim, desenvolveu-se um algoritmo para o cálculo destes coeficientes, o que auxiliou de forma palpável a precisão do método empregue, algo que será abordado mais à frente neste relatório.

Visto que o problema matemático é precisamente o mesmo, os resultados anteriores também podem ser utilizados para uma parede plana, com espessura L, que é isolada num dos seus lados $(x^*=0)$ e haja transporte convectivo no outro $(x^*=+1)$. Essa equivalência é uma consequência do facto de que, indiferentemente de haver uma exigência de simetria ou de condição adiabática estabelecida em $x^*=0$, a condição de contorno tem a forma $\frac{\partial \theta^*}{\partial x^*}=0$.

Esta correspondência é usada no trabalho para modelar a face adiabática que resulta do corpo estar pousado no chão. Assim, na direção vertical do corpo, o modelo matemático irá utilizar como comprimento característico do corpo toda a sua espessura, e não apenas metade. Desta forma simula-se uma barra com o dobro da altura com a face de baixo exposta ao ar a temperatura atmosférica como discutido anteriormente.

Até agora, toda a dedução teórica foi realizada para o caso duma parede plana. No entanto, o problema em mãos exige uma abordagem multidimensional, que será construída a partir da formulação de **Yener e Kakac** [2]. Assim, um problema transiente bi ou tridimensional pode ser resolvido com uma sobreposição multiplicativa das soluções unidimensionais obtidas até agora. Visto que o problema obedece aos seguintes critérios:

- O problema tem que consistir numa equação de calor homogénea com condições de fronteira igualmente homogéneas;
- A distribuição de temperatura inicial tem que ser uniforme.

pode-se construir tanto a solução bidimensional como a tridimensional da seguinte maneira:

$$\theta^*(x, y, t) = \theta^*(x, t) \cdot \theta^*(y, t) \tag{2.7}$$

$$\theta^*(x, y, z, t) = \theta^*(x, t) \cdot \theta^*(y, t) \cdot \theta^*(z, t) \tag{2.8}$$

Desta maneira, a distribuição de temperatura adimensional na barra é o produto das distribuições de temperatura adimensionais das paredes planas cuja interseção forma o sólido em estudo, tal como a figura 3 ilustra (caso bidimensional).

2022/2023 7

Figura 3: A interseção de duas paredes planas, que forma a secção transversal do sólido em estudo

Neste caso, as dimensões indicadas na figura serão então $a=12~{\rm cm}$ e $b=24~{\rm cm}$, e para o caso tridimensional a dimensão utilizada seria $c=150~{\rm cm}$.

2.4 Solução Numérica: TEACH-C

A solução numérica do problema foi obtida com recurso ao programa de elementos finitos *TEACH-C*, em MATLAB. Este programa permite simular problemas unidimensionais e bidimensionais de condução de calor, permitindo a especificação do problema através da variação das coordenadas (cartesianas ou cilíndricas), do tipo de regime (estacionário ou transiente) e da condutividade térmica, que neste caso permanece constante ao longo da simulação.

Para além disto, o programa permite definir quatro tipos de condição de fronteira. Não só existe a possibilidade de fixar uma temperatura imposta num certo ponto, como se pode ainda estabelecer um determinado fluxo de calor ou a condição de convecção na fronteira do corpo, especificando o coeficiente de convecção e a temperatura do fluido exterior. Por último, pode especificar-se a condição de "simetria" numa fronteira adiabática de forma a modelar a não transmissão de calor (equivalente a impôr a condição de fluxo de calor nulo mas computacionalmente mais simples).

No código, começou-se pelo ajuste das dimensões do sólido - a sua largura (W) e altura (H), ambas de 24 cm, como documentado no código do programa TEACH-C.m no Anexo-1, onde se apresentam também todas as alterações efetuadas ao PROMOD.m, que define e introduz as condições de fronteira. De salientar que estes dois ficheiros foram os únicos que sofreram alterações, de acordo com as indicações do corpo docente. De seguida, definiram-se as propriedades do material do sólido em causa: condutividade térmica, TCON = 121 W/mK, calor específico, CV = 385 J/KgK, e densidade, $DENSIT = 7930 \text{ kg/m}^3$. Definiu-se também a temperatura inicial do sólido $TINIC = 1150^\circ$ C.

As variáveis TBOT e TTOP foram definidas como iguais a 1150°C e 20°C , respetivamente. Já as variáveis TLEFT e TRIGHT foram definidas com valor nulo. Uma vez que o sólido em estudo não tem nenhuma temperatura imposta nas fronteiras, os valores de TTOP, TBOT, TLEFT e TRIGHT não irão afetar os valores de temperatura obtidos. No entanto, os valores de TTOP e TBOT irão afetar a variável SNORM. Esta variável é o valor absoluto majorado do resíduo normalizado ajudando a reduzir o número de iterações espaciais e, assim, o programa irá convergir mais

2022/2023 8

rapidamente, diminuindo o tempo de computação. Uma vez que SNORM é calculada a partir dos valores de TTOP e TBOT, introduziu-se nestas duas variáveis valores coerentes com o enunciado.

A definição do tipo de condição de fronteira foi essencial para a correta modelação do problema. Dito isto, definiu-se uma condição de convecção para as fronteiras Norte, Oeste e Este, pois nestas faces existe convecção com o ar; para a fronteira Sul, definiu-se uma condição de simetria.

Tanto para a fronteira Norte, como para a Oeste e a Este, estipulou-se um coeficiente de convecção $HCONV=250~{
m W/m^2K}$, que é o valor correspondente ao do ar, e uma temperatura do fluido (ar) $TF=20^{\circ}~{
m C}$

A especificação da condição de simetria na fronteira Sul, em termos físicos, é equivalente a impor um fluxo de calor nulo nesta fronteira; em termos computacionais, evita a realização de quaisquer cálculos por parte do programa, otimizando o tempo de computação. O funcionamento desta condição consiste em atribuir a temperatura inicial definida aos elementos da malha localizados na fronteira em questão (Sul).

2.5 Escolha do ponto monitor

De forma a garantir que os resultados obtidos com recurso ao *TEACH-C* convirjam, é necessário escolher um ponto monitor correto. Este ponto tem que corresponder a coordenadas do sólido onde os gradientes de temperatura no tempo e no espaço são os mais elevados, uma vez que os valores de temperatura nesses pontos serão mais afetados pelo refinamento da malha do que em qualquer outro ponto do sólido. Contudo, convém realçar que para a verificação da convergência das iterações espaciais, analisaram-se também os dados obtidos para a *SOURCE*, apresentados no *RESULTS.txt* a par das temperaturas no ponto monitor. Em Anexo-2, apresentam-se os resultados obtidos a partir do *TEACH-C* e retirados do *RESULTS.txt*, para os dois primeiros instantes temporais bem como para o último. Verifica-se que, em cada instante, a última iteração espacial apresenta um valor de *SOURCE* menor que o valor *SORMAX* = 0,001, indicando a convergência do resultado.

Uma vez que o sólido em estudo é um paralelepípedo quadrangular, as zonas de maior transferência de calor nos instantes iniciais serão junto às superfícies onde ocorre convecção. Assim, pontos perto dos cantos do sólido são potenciais candidatos a pontos monitores. Ao escolher um ponto perto dos cantos que fazem interseção entre a fronteira norte e oeste ou norte e este, este irá encontrar-se perto de duas superfícies onde há convecção com o exterior. Enquanto que, ao escolher um ponto perto dos cantos que fazem interseção entre a fronteira sul e oeste ou sul e este, este irá encontrar-se perto de apenas uma superfície que realiza convecção com o exterior, devido à condição de fronteira adiabática imposta na superfície sul.

Para confirmar que o ponto monitor apropriado se deve encontrar perto de um dos cantos junto à fronteira norte, utilizou-se uma malha com 22x22 nós e pontos e registou-se a variação da temperatura no espaço e no tempo para os pontos (2,2), que se encontra perto do canto que interseta a fronteira sul e oeste, e (2,21), que se encontra perto do canto que interseta a fronteira norte e oeste. Para simplificação do estudo e uma vez que o sólido em questão é simétrico, não foram realizados estudos perto da fronteira este.

Assim, na figura 4 abaixo estão apresentados os valores de temperatura para as primeiras dez

iterações no espaço para TIME = 20 s, para os pontos (2,2) e (2,21). Em anexo são apresentados mais dados para diferentes valores de TIME.

NITER	SOURCE	T (2,2)	TIME(s)	DT(s)	NSTEP	NITER	SOURCE	T (2,21)	TIME(s)	DT(s)	NSTEP
1	2.6E+00	1.127E+03	20	20	1	1	2.6E+00	1.113E+03	20	20	1
2	2.1E+00	1.118E+03	20	20	1	2	2.1E+00	1.095E+03	20	20	1
3	1.7E+00	1.113E+03	20	20	1	3	1.7E+00	1.084E+03	20	20	1
4	1.4E+00	1.110E+03	20	20	1	4	1.4E+00	1.077E+03	20	20	1
5	1.2E+00	1.107E+03	20	20	1	5	1.2E+00	1.071E+03	20	20	1
6	9.7E-01	1.106E+03	20	20	1	6	9.7E-01	1.067E+03	20	20	1
7	8.0E-01	1.104E+03	20	20	1	7	8.0E-01	1.064E+03	20	20	1
8	6.7E-01	1.103E+03	20	20	1	8	6.7E-01	1.062E+03	20	20	1
9	5.6E-01	1.103E+03	20	20	1	9	5.6E-01	1.060E+03	20	20	1
10	4.6E-01	1.102E+03	20	20	1	10	4.6E-01	1.058E+03	20	20	1
(a)	Iterações r	no espaço pa	ıra tempo	igual a	(b)	Iterações	no espaço pa	ra tempo	igual a 2	20	

segundos no ponto (2,2)

(a) Valores de temperatura e ΔT para o ponto (2,2)

(b) Valores de temperatura e ΔT para o ponto (2,21)

Figura 4: Iterações no espaço para TIME = 20s

Verifica-se que para o ponto (2,2), para TIME = 20 s, a diferença de temperatura ao fim de dez iterações espaciais é igual a $\Delta T_{(2,2)}=25^{\circ}C$ e que para o ponto (2,21) esta diferença de temperatura é consideravelmente maior, $\Delta T_{(2,21)}=55^{\circ}C.$ Já por observação das figuras 17, 18 e 19 apresentadas no Anexo-1, verifica-se que as diferenças de temperatura são muito semelhantes para ambos os pontos.

De seguida, apresentam-se os valores de temperatura da última iteração espacial para dez instantes de tempo diferentes. Também se apresenta a diferença de temperatura entre um instante de tempo e o imediatamente a seguir.

Tabela 1: Iterações no tempo para os pontos (2,2) e (2,21)

` /	1	1 1 () /	· /		1 1 () /
DT (s)	T(2,2) (°C)	$\Delta T = T(i+1)-T(i) (^{\circ}C)$	DT (s)	T(2,21) (°C)	$\Delta T = T(i+1)-T(i) (^{\circ}C)$
20	1099,744	29,20922	20	1052,609	54,71745
40	1070,535	21,85103	40	997,8919	39,45218
60	1048,684	18,37954	60	958,4397	31,73801
80	1030,304	16,53309	80	926,7017	27,07113
100	1013,771	15,52086	100	899,6306	23,94881
120	998,2502	14,97431	120	875,6818	21,71788
140	983,2759	14,69179	140	853,9639	20,04341
160	968,5841	14,55461	160	833,9205	18,73526
180	954,0295	14,48971	180	815,1852	17,67687
200	939,5398		200	797,5084	

A partir da análise das tabelas apresentadas acima, verifica-se que para o ponto (2,21) as variações de temperatura entre cada instante de tempo são muito mais elevadas do que para o ponto (2,2). Concluindo, o ponto mais indicado para ponto monitor é o ponto (2,21). Assim, ao realizar o estudo da malha independente que irá ser apresentado de seguida, foi sempre escolhido um ponto monitor perto do canto que interseta a fronteira norte e oeste, de forma a garantir que os valores convirjam.

⁽b) Iterações no espaço para tempo igual a 20 segundos no ponto (2,21)

3 Resultados

3.1 Número de Biot e Método da Capacitância Global

Para a primeira abordagem ao problema, utilizando o Método da Capacitância Global, foi necessário definir um comprimento característico do corpo: a razão entre o volume e a área de convecção. O uso da área da convecção e não da área da superfície tem como objetivo simular a existência da parede inferior do paralelepípedo pousada no chão (parede adiabática).

$$V = HWL = 0.1728 \text{ m}^3$$
 $A_c = 2HW + 3HL = 2.2752 \text{ m}^2$

Com estes valores, calculou-se de seguida $L_c = \frac{V}{A_c} = 0.0759$ m e o parâmetro adimensional Bi, que tal como se pode verificar é superior a 0.1:

$$Bi = \frac{hL_c}{k} = 0.1569$$

No gráfico da figura 5, apresenta-se a variação da temperatura adimensional em função de um valor arbitrado pelos autores do trabalho ($Fo = \frac{\alpha t}{(\frac{H}{2})^2}$), que será o Fo considerado para todos os gráficos apresentados neste projeto.

Figura 5: Evolução adimensional de temperaturas com o Método da Capacitância Global

Por simples observação conclui-se que $\theta^* \to 0$, isto é, atinge-se o equilíbrio entre a temperatura do sólido e a temperatura do ar, sendo que a partir de $Fo \approx 15$ o comportamento da distribuição de temperaturas já se encontra visualmente estabilizado. Este número de Fourier traduz-se num tempo $t \approx 5450 \text{s} \approx 91 \text{min}$, ou seja, este é o tempo aproximado que a barra metálica demora a atingir equilíbrio térmico com o meio exterior. Ainda assim, por se estar a aplicar este método fora da sua zona de validade, a sua precisão não é ideal, o que será discutido na secção 3.7.

3.2 Estudo de independência da malha

De forma a garantir que os resultados obtidos pelo método numérico, com recurso ao *TEACH-C*, apresentem o menor erro possível é necessário realizar um estudo para escolher uma malha que

garanta que os resultados obtidos não são afetados pela mesma. Porém, ao refinar cada vez mais a malha, o tempo de computação também irá aumentar e este é também um fator a ter em conta. Assim, foi definido que se iria analisar a temperatura de nove pontos diferentes para oito instantes de tempo, para cinco malhas diferentes: 12x12, 22x22, 42x42, 62x62 e 82x82. De seguida, foram calculados os valores do erro quadrático médio para cada par ponto-malha. Como valores de referência, foram utilizados os resultados obtidos a partir da análise analítica bidimensional.

Em primeiro lugar, foram definidas as coordenadas dos pontos a avaliar tendo sido escolhidos os seguintes: (0,0120;0,2280), (0,0120;0,1080), (0,0120;0,0120), (0,060;0,2280), (0,060;0,1080), (0,060;0,0120), (0,1080;0,2280), (0,1080;0,1080) e (0,1080;0,0120). De seguida, foram registados os valores da temperatura para oito tempos diferentes: 60 s, 120 s, 500 s, 1000 s, 2000 s, 3000 s, 4000 s e 5000 s.

Por fim, foram calculados os valores dos erros quadráticos médios em função do instante de tempo. Tal como referido anteriormente, os valores de referência utilizados foram obtidos a partir da análise analítica bidimensional para os pontos e instantes escolhidos. Para o cálculo dos erros quadráticos médios foi utilizada a seguinte equação:

$$EQM = \frac{1}{n} \sum_{i=1}^{n} (T_i - \hat{T}_i)^2$$
(3.1)

onde n é o número de pontos.

Apresenta-se a título de exemplo a formula do cálculo do erro quadrático médio para o instante TIME = 60 s com uma malha com 12x12 pontos e nós.

$$EQM_{60,12\times12} = \frac{1}{9} ((T_{(0,0120;0,2280)} - \hat{T}_{(0,0120;0,2280)})^2 + (T_{(0,0120;0,1080)} - \hat{T}_{(0,0120;0,1080)})^2 + (3.2)$$

$$+ (T_{(0,0120;0,0120)} - \hat{T}_{(0,0120;0,0120)})^2 + (T_{(0,060;0,2280)} - \hat{T}_{(0,060;0,2280)}) + (T_{(0,060;0,1080)} - \hat{T}_{(0,060;0,1080)})^2 +$$

$$+ (T_{(0,060;0,0120)} - \hat{T}_{(0,060;0,0120)})^2 + (T_{(0,1080;0,2280)} - \hat{T}_{(0,1080;0,2280)})^2 + (T_{(0,1080;0,1080)} - \hat{T}_{(0,1080;0,1080)})^2 +$$

$$+ (T_{(0,1080;0,0120)} - \hat{T}_{(0,1080;0,0120)})^2)$$

Para os restantes instantes e malhas o processo é análogo. Assim, foram criados gráficos, para cada instante de tempo, com os valores dos erros quadráticos médios em função da malha utilizada como os apresentados abaixo. Os restantes gráficos são apresentados em Apêndice (figuras 20, 21, 22).

- (a) Erros quadráticos médios para as diferentes malhas para o instante de tempo igual a 60 s
- (b) Erros quadráticos médios para as diferentes malhas para o instante de tempo igual a 2000 s

Figura 6: Erros quadráticos médios para instantes de tempo iguais a 60 s e 2000 s

Analisando os gráficos apresentados na figura 6, verifica-se, até ser utilizada uma malha com sessenta e dois nós segundo **x** e **y**, uma diferença significativa nos valores dos erros quadráticos médios. Porém, ao utilizar uma malha com oitenta e dois nós em **x** e **y**, a diferença do resultado obtido em relação à malha com sessenta e dois nós não justifica o aumento muito significativo do tempo de computação. Assim, considerou-se que a malha mais correta a utilizar é a que tem sessenta e dois nós em **x** e **y**. Porém, de forma a ser possível escolher exatamente o ponto central do sólido geométrico bem como os pontos centrais das superfícies, foi decidido utilizar uma malha com sessenta e três nós e pontos em **x** e **y** que garante também a independência dos resultados em relação à malha. Todos os resultados apresentados doravante utilizam uma malha com sessenta e três nós e pontos em **x** e **y**.

3.3 T(t) para o centro geométrico

Encontram-se então reunidas as condições para comparar a precisão dos 4 métodos diferentes, sobrepondo os resultados no mesmo gráfico para números de Fourier equivalentes, de modo a poder comparar os diferentes métodos. Cada solução analítica é apresentada individualmente no apêndice (figuras 23 b) e 25 b), 2D e 3D, respetivamente) e a solução numérica apresenta-se no Anexo-2 na figura 30. Na figura 7 apresenta-se a solução obtida com o Método da Capacitância Global (LCM), a solução analítica 2D e a solução numérica (*TEACH-C*), e decidiu omitir-se a solução analítica tridimensional, uma vez que se sobrepunha à solução bidimensional, e como se vai observar na subsecção 3.6, a aproximação a um problema 3D é válida desde o plano central vertical (z*=0) até quase z*=0.9.

Figura 7: Evolução adimensional de temperaturas para o centro geométrico

Observa-se que a evolução temporal da temperatura neste ponto do sólido apresenta resultados aproximadamente iguais para o método analítico 2D e para o método numérico (*TEACH-C*), enquanto que o Método da Capacitância Global traduz diferentes resultados dos restantes.

3.4 T(t) para os centros das faces laterais

Nesta subsecção, apresentam-se os gráficos de T(t) para os centros das faces laterais, para os diversos métodos em análise. Em apêndice são apresentados separadamente os gráficos para a solução analítica (figuras 23 a) e 24 para o caso bidimensional e 25 a) e 26 para a análise tridimensional) e em Anexo-2 apresenta-se a solução numérica (figuras 29, 31 e 32). A solução analítica 3D, mais uma vez, é negligenciada, uma vez que é muito semelhante à solução 2D.

O gráfico da figura 8, apresenta a evolução da temperatura para o centro da face do topo do objeto em estudo.

Figura 8: Evolução adimensional de temperaturas para o centro da face superior do corpo

O seguinte gráfico, por simetria, representa a evolução de temperatura de ambas as faces laterais.

Figura 9: Evolução adimensional de temperaturas para o centro das faces laterais do corpo

O último gráfico é representativo da evolução de temperatura na face inferior do sólido e apresenta a maior discrepância entre o Método da Capacitância Global e os modelos analítico e numérico, que será abordada na secção 3.7.

Figura 10: Evolução adimensional de temperaturas para o centro da face inferior do corpo

No geral, a discrepância elevada entre o Método da Capacitância Global e os restantes está associada ao uso do método fora do limite Bi < 0.1.

A proximidade entre os métodos analíticos bidimensionais e tridimensionais será analisada na secção 3.6. É importante realçar que na análise realizada com recurso ao *TEACH-C*, os pontos analisados não correspondem exatamente às coordenadas da superfície mas sim aos pontos mais próximos destas. Assim, para o centro da superfície superior do corpo, cuja coordenada real seria (0.1200;0,2400), a coordenada analisada foi (0,1200;0,2380). Para o centro da face lateral a coordenada analisada foi (0,0020;0,1200) e para o centro da face inferior foi (0,1200;0,0020). Porém, uma vez que os pontos analisados se encontram muito próximo das coordenadas reais, é aceitável utilizar estes valores de temperatura.

3.5 Análise do número de termos utilizados na solução analítica

Especificando a solução exata analítica que se determinou para este problema, e que permite obter os valores da variação da temperatura em função do tempo, em qualquer ponto do objeto, esta assume a seguinte forma:

$$\theta^*(x^*, y^*, z^*, Fo) = \left(\sum_{n=1}^{20} C_{x,n} e^{-\xi_{x,n}^2 Fo} \cos(\xi_{x,n} x^*)\right) \left(\sum_{n=1}^{20} C_{y,n} e^{-\xi_{y,n}^2 Fo} \cos(\xi_{y,n} y^*)\right) \left(\sum_{n=1}^{20} C_{z,n} e^{-\xi_{z,n}^2 Fo} \cos(\xi_{z,n} z^*)\right)$$

$$(3.3)$$

A solução para o problema bidimensional consiste unicamente na multiplicação dos dois primeiros somatórios, com os mesmos coeficientes.

Uma aproximação popular para este problema consiste em utilizar apenas o primeiro termo destes somatórios, que é válida para um número de Fourier ($Fo = \frac{\alpha t}{L^2}$) superior a 0.2. Ora, um número de Fourier superior a 0.2 implica, na dimensão longitudinal da barra, aguardar cerca de 72 segundos para que o arrefecimento real da barra seja semelhante àquele descrito pelo modelo. Assim, e apesar de existirem tabelas em anexo do Incropera [1] com as quatro primeiras raízes ξ_n da equação transcendental já apresentada, decidiu-se calcular as 20 primeiras raízes através da função "fzero" do MATLAB, que permite determinar as raízes de equações não lineares.

O uso de um número mais elevado de termos surtiu um efeito palpável na suavidade dos gráficos obtidos. Ainda assim, apesar de se conseguir determinar um número arbitrariamente elevado de termos, optou-se pela inclusão de apenas 20 por não existir uma melhoria significativa de resultados com a inclusão de termos de ordem superior e de forma a não comprometer a rapidez dos cálculos.

Os coeficientes presentes na equação estão, assim, apresentados em anexo na tabela 2.

O seguinte gráfico traduz, para a solução analítica 2D, a influência do número de termos usados na construção de θ^* , no qual se observa que os instantes iniciais são os mais influenciados pelo número de termos usados, enquanto que, após estes instantes, todas as soluções são semelhantes.

Figura 11: Comparação do número de termos utilizados na solução analítica

No gráfico apresentado na figura 12, é feito um *zoom* dos instantes iniciais acima referidos, observandose que o uso de um termo não acompanha o comportamento das soluções construídas com 5, 10 e

20 termos, enquanto que estas revelam resultados semelhantes. As soluções convergem a partir de $Fo \approx 0.3$.

Figura 12: Comparação do número de termos utilizados na solução analítica (zoom)

3.6 Verificação da aproximação a um problema 2D

Uma das suposições iniciais importantes para este problema foi que poderia ser aproximado a um problema 2D, tanto que o método de elementos finitos foi realizado para a simulação do plano vertical central do corpo. Nesta secção serão apresentados os resultados do método analítico, que apoiam esta aproximação, como se pode observar na figura 13.

Figura 13: Variação da temperatura em função de z para diferentes valores de tempo

Para os restantes pares de pontos (x^*,y^*) em apêndice (figuras 27 e 28), continua a verificar-se que a temperatura se mantém constante em aproximadamente 90% da extensão do corpo em z. De notar que o ponto de dissociação do valor constante se afasta da superfície $z^* = 1$ com o passar do tempo. Assim, esta suposição vai perdendo validade à medida que o arrefecimento toma lugar.

3.7 Discussão

Um dos focos do presente trabalho é comparar a precisão dos diferentes métodos utilizados, algo que foi apresentado visualmente na figura 7 para o centro geométrico do corpo e nas figuras 8, 9 e 10 para as diferentes faces do corpo.

As condições de fronteira deste arrefecimento implicam que todas as soluções convirjam necessariamente para t=0 $(T(x,y,z,0)=T_i)$ e $t\to\infty$ $(T(x,y,z,\infty)=T_{ar})$. A evolução entre estas duas temperaturas assume um caráter aproximadamente exponencial em qualquer ponto do corpo em estudo, como se pôde comprovar nos diferentes gráficos apresentados.

Este comportamento era esperado pois surge diretamente da equação de calor, que dita que a taxa à qual o material num certo ponto muda de temperatura é proporcional à diferença de temperaturas para com o material circundante, um indicador inconfundível duma evolução exponencial.

Assim, tendo em conta que se está a lidar com uma situação de convecção forçada, é vantajoso discutir a eficácia deste método relativamente a uma convecção natural aproximando o arrefecimento observado a um modelo simplificado de decaimento exponencial $t=-\frac{ln2}{k}=-\frac{ln2\rho VC}{hA_s}\propto \frac{1}{h}$, como apresentado na secção 2.2 para o método de capacitância global.

Uma vez que o coeficiente de convecção utilizado foi 250 W/m²K e os coeficientes de convecção natural se situam habitualmente entre 5 e 25 W/m²K [3], pode-se esperar que o tempo de meia vida, ou seja, o intervalo de tempo para que a temperatura do corpo passasse para metade da inicial, fosse 10 a 50 vezes superior caso se estivesse a lidar com um problema de convecção natural.

Assim, apesar das malhas mais refinadas demorarem vários minutos a ser simuladas, o facto de se trabalhar com convecção forçada ajudou a não sobrecarregar ainda mais o "runtime" do projeto, pois atingiu-se o estado de equilíbrio térmico mais rapidamente.

3.7.1 Diferença entre método da Capacitância Global e solução analítica

Como abordado anteriormente, espera-se que todas as soluções coincidam para t=0 e $t\to\infty$. Uma vez que o Método da Capacitância Global considera que o corpo tem uma distribuição de temperaturas uniforme em todos os momentos e que existe uma condução de calor instantânea dentro do sólido, seria de esperar que os pontos mais longínquos das superfícies de convecção fossem afetados mais negativamente. Desta forma, compreende-se que os valores de erro absoluto sejam superiores no centro geométrico quando comparados com o centro da face lateral, como se observa na figura 14. Foi também observado anteriormente que o centro da face inferior do corpo foi o mais afetado por este efeito por ser o mais longínquo, em média, da dissipação convectiva.

(a) Erro absoluto entre o método da Capacitância Global e a solução Analítica no centro geométrico

(b) Erro absoluto entre o método da Capacitância Global e a solução Analítica no centro da face lateral

Figura 14

3.7.2 Diferença entre método numérico e solução analítica

Como se comprova por análise dos gráficos apresentados de seguida, a diferença entre estes métodos não ultrapassa o limiar do 0.01 e por isso é relativamente reduzida quando comparada à anterior diferença entre métodos. Assim, pode-se afirmar que, apesar do método de sobreposição utilizado só ser utilizado em certos casos especiais como abordado na descrição do problema em estudo, este rendeu resultados satisfatórios e muito semelhantes à simulação numérica. O maior fator para o surgimento destes erros será o facto da simulação não ter em conta a dimensão longitudinal da barra. Ainda assim, e sobretudo para os pontos apresentados (no plano vertical central), a influência deste efeito é reduzida.

(a) Erro absoluto entre o método Numérico e a solução Analítica no centro geométrico

(b) Erro absoluto entre o método Numérico e a solução Analítica no centro da face lateral

Figura 15

3.7.3 Distribuição espacial de temperaturas

Na seguinte figura apresenta-se a distribuição de temperatura numa fase final do arrefecimento, como se pode comprovar pelo reduzido gradiente de temperaturas e pela proximidade do corpo à temperatura do ar. Salienta-se que a temperatura das extremidades nordeste e noroeste do corpo foram sempre as mais reduzidas ao longo da simulação e, de forma análoga, as temperaturas mais elevadas

se verificaram sempre para o centro da face inferior do corpo, como seria de esperar segundo o que já se discutiu anteriormente.

Figura 16: Gráfico 2D das Temperaturas obtido através do TEACH-C

4 Conclusão

Em seguida, apresentam-se as mais importantes conclusões retiradas ao longo da realização deste projeto.

A aplicação do Método da Capacitância Global foi feita apesar do número de Biot obtido se localizar ligeiramente fora da zona de validade do método. Isto comprometeu a sua precisão e observou-se que foi o único método cujas previsões não se assemelharam proximamente aos restantes. Assim, a aproximação de temperatura constante em todo o corpo não se revelou satisfatória.

Relativamente aos restantes métodos, foi possível, então, constatar uma boa correlação entre dados numéricos e analíticos. Realizou-se um estudo de independência da malha para garantir que esta fonte de erro não afetava significativamente os resultados finais. Também foi feita uma análise ao número de termos utilizados para os somatórios da solução analítica, de forma a garantir que estes não eram insuficientes. Para além disto, foi necessário comparar a solução analítica bidimensional e a tridimensional de forma a validar uma das suposições iniciais do trabalho, de que este problema se poderia aproximar a um caso bidimensional.

Um aspeto importante que foi possível de observar e que se esperava replicar no projeto foi o facto das extremidades do sólido apresentarem os maiores gradientes de temperatura, por constituírem superfícies de convecção. De modo análogo, a superfície inferior, considerada adiabática, foi a que mostrou uma evolução mais lenta.

Apesar das diferenças apontadas entre métodos, pode-se verificar que na sua generalidade, todos têm semelhantes tempos de meia vida (intervalo de tempo para a temperatura do corpo passar para a metade) e de estabilização.

Referências

- [1] F.P. Incropera, D.P. de Witt, T.L Bergman e A.S. Lavine, Fundamentals of Heat and Mass Transfer 8^a Edição, (capítulos 5 e 6) John Wiley & Sons, Hoboken, 2018
- [2] Y. Yener e S. Kakac, Heat Conduction 4ª edição, (capítulo 6) CRC Press, Boca Raton, 2008
- [3] https://help.solidworks.com/2011/portuguese-brazilian/SolidWorks/cworks/LegacyHelp/Simulation/AnalysisBackground/ThermalAnalysis/Convection_Topics/Convection_Heat_Coefficient.htm (acedido a 28/10/2022)

2022/2023 21

Apêndice

NITER	SOURCE	T (2,2)	TIME(s)	DT(s)	NSTEP	NITER	SOURCE	T (2,21)	TIME(s)	DT(s)	NSTEP
1	3.9E-01	2.048E+02	2000	20	100	1	3.9E-01	1.689E+02	2000	20	100
2	3.4E-01	2.044E+02	2000	20	100	2	3.4E-01	1.685E+02	2000	20	100
3	2.8E-01	2.040E+02	2000	20	100	3	2.8E-01	1.682E+02	2000	20	100
4	2.4E-01	2.037E+02	2000	20	100	4	2.4E-01	1.680E+02	2000	20	100
5	2.0E-01	2.035E+02	2000	20	100	5	2.0E-01	1.678E+02	2000	20	100
6	1.7E-01	2.032E+02	2000	20	100	6	1.7E-01	1.676E+02	2000	20	100
7	1.4E-01	2.030E+02	2000	20	100	7	1.4E-01	1.674E+02	2000	20	100
8	1.2E-01	2.029E+02	2000	20	100	8	1.2E-01	1.673E+02	2000	20	100
9	9.8E-02	2.027E+02	2000	20	100	9	9.8E-02	1.672E+02	2000	20	100
10	8.2E-02	2.026E+02	2000	20	100	10	8.2E-02	1.671E+02	2000	20	100

⁽a) Iterações no espaço para tempo igual a 2000 segundos no ponto (2,2)

Figura 17

NITER	SOURCE	T (2,2)	TIME(s)	DT(s)	NSTEP	NITER	SOURCE	T (2,21)	TIME(s)	DT(s)	NSTEP
1	6.4E-02	5.011E+01	4000	20	200	1	6.4E-02	4.425E+01	4000	20	200
2	5.5E-02	5.003E+01	4000	20	200	2	5.5E-02	4.419E+01	4000	20	200
3	4.6E-02	4.997E+01	4000	20	200	3	4.6E-02	4.414E+01	4000	20	200
4	3.9E-02	4.992E+01	4000	20	200	4	3.9E-02	4.410E+01	4000	20	200
5	3.2E-02	4.988E+01	4000	20	200	5	3.2E-02	4.406E+01	4000	20	200
6	2.7E-02	4.984E+01	4000	20	200	6	2.7E-02	4.403E+01	4000	20	200
7	2.3E-02	4.981E+01	4000	20	200	7	2.3E-02	4.401E+01	4000	20	200
8	1.9E-02	4.979E+01	4000	20	200	8	1.9E-02	4.399E+01	4000	20	200
9	1.6E-02	4.976E+01	4000	20	200	9	1.6E-02	4.397E+01	4000	20	200
10	1.3E-02	4.974E+01	4000	20	200	10	1.3E-02	4.396E+01	4000	20	200

⁽a) Iterações no espaço para tempo igual a 4000 segundos no ponto (2,2)

Figura 18

						NITTED	COURCE	T (2.24)	TTME (-)	DT(-)	NCTED
NITER	SOURCE	T (2,2)	TIME(s)	DT(s)	NSTEP	NITER	SOURCE	T (2,21)	TIME(s)	DT(s)	NSTEP
1	1.1E-02	2.515E+01	6000	20	300	1	1.1E-02	2.415E+01	6000	20	300
2	9.3E-03	2.514E+01	6000	20	300	2	9.3E-03	2.414E+01	6000	20	300
3	7.8E-03	2.513E+01	6000	20	300	3	7.8E-03	2.413E+01	6000	20	300
4	6.6E-03	2.512E+01	6000	20	300	4	6.6E-03	2.413E+01	6000	20	300
5	5.5E-03	2.512E+01	6000	20	300	5	5.5E-03	2.412E+01	6000	20	300
6	4.6E-03	2.511E+01	6000	20	300	6	4.6E-03	2.412E+01	6000	20	300
7	3.9E-03	2.510E+01	6000	20	300	7	3.9E-03	2.411E+01	6000	20	300
8	3.3E-03	2.510E+01	6000	20	300	8	3.3E-03	2.411E+01	6000	20	300
9	2.7E-03	2.510E+01	6000	20	300	9	2.7E-03	2.410E+01	6000	20	300
10	2.3E-03	2.509E+01	6000	20	300	10	2.3E-03	2.410E+01	6000	20	300

⁽a) Iterações no espaço para tempo igual a 6000 segundos no ponto (2,2)

(b) Iterações no espaço para tempo igual a 6000 segundos no ponto (2,21)

Figura 19

⁽b) Iterações no espaço para tempo igual a 2000 segundos no ponto (2,21)

⁽b) Iterações no espaço para tempo igual a 4000 segundos no ponto (2,21)

- (a) Erros quadráticos médios para as diferentes malhas para o instante de tempo igual a 120 s
- (b) Erros quadráticos médios para as diferentes malhas para o instante de tempo igual a 500 s

Figura 20: Erros quadráticos médios para instantes de tempo iguais a 120 s e 500 s

- (a) Erros quadráticos médios para as diferentes malhas para o instante de tempo igual a 1000 s
- (b) Erros quadráticos médios para as diferentes malhas para o instante de tempo igual a 3000 s

Figura 21: Erros quadráticos médios para instantes de tempo iguais a 1000 s e 3000 s

- (a) Erros quadráticos médios para as diferentes malhas para o instante de tempo igual a 4000 s
- (b) Erros quadráticos médios para as diferentes malhas para o instante de tempo igual a 5000 s

Figura 22: Erros quadráticos médios para instantes de tempo iguais a 4000 s e 5000 s

Relatório do Projeto

 $C_{z,n}$ $C_{x,n}$ $C_{y,n}$ $\xi_{x,n}$ $\xi_{y,n}$ $\xi_{z,n}$ 0.4783 1.038 0.6510 1.070 1.2011 1.213 1 2 3.2911 $-8.666 \cdot 10^{-2}$ 3.8228 -0.2921 3.2185 -0.04662 $\overline{2.414 \cdot 10^{-2}}$ 6.7156 3 6.3224 0.01232 6.3610 0.1181 $-1.097 \cdot 10^{-2}$ $-6.055 \cdot 10^{-2}$ 4 9.4510 $-5.534 \cdot 10^{-3}$ 9.4771 9.7330 $3.125 \cdot 10^{-3}$ $6.217 \cdot 10^{-3}$ $3.610 \cdot 10^{-2}$ 5 12.5861 12.6057 12.8039 $-2.003 \cdot 10^{-3}$ $-3.993 \cdot 10^{-3}$ $-2.378 \cdot 10^{-2}$ 15.7237 15.7395 15.9005 6 $1.679 \cdot 10^{-2}$ 7 $1.393 \cdot 10^{-3}$ $2.779 \cdot 10^{-3}$ 18.8627 18.8758 19.0112 $-1.246 \cdot 10^{-2}$ $-2.044 \cdot 10^{-3}$ 22.0024 $-1.024 \cdot 10^{-3}$ 22.0137 22.1303 8 $9.600 \cdot 10^{-3}$ 9 25.1426 $7.841 \cdot 10^{-4}$ 25.1525 $1.566 \cdot 10^{-3}$ 25.2548 $-1.238 \cdot 10^{-3}$ $-7.620 \cdot 10^{-3}$ 10 28.2831 $-6.197 \cdot 10^{-4}$ 28.2919 28.3831 $5.020 \cdot 10^{-4}$ $1.003 \cdot 10^{-3}$ $6.192 \cdot 10^{-3}$ 11 31.4238 31.4317 31.5140 12 34.5647 $-4.150 \cdot 10^{-4}$ 34.5719 $-8.293 \cdot 10^{-4}$ 34.6467 $-5.130 \cdot 10^{-3}$ $6.970 \cdot 10^{-4}$ $4.319 \cdot 10^{-3}$ 13 37.7057 $3.487 \cdot 10^{-4}$ 37.7123 37.7810 $-3.685 \cdot 10^{-3}$ $-2.972 \cdot 10^{-4}$ 40.8528 $-5.940 \cdot 10^{-4}$ 40.9163 14 40.8468 $2.562 \cdot 10^{-4}$ $5.122 \cdot 10^{-4}$ 44.0525 $3.181 \cdot 10^{-3}$ 15 43.9879 43.9936 $-2.232 \cdot 10^{-4}$ $-4.463 \cdot 10^{-4}$ 47.1895 $-2.774 \cdot 10^{-3}$ 16 47.1292 47.1344 $2.440 \cdot 10^{-3}$ $1.962 \cdot 10^{-4}$ 50.2753 $3.923 \cdot 10^{-4}$ 50.3270 17 50.2704 53.4117 $-1.738 \cdot 10^{-4}$ 53.4164 $-3.475 \cdot 10^{-4}$ 53.4650 $-2.162 \cdot 10^{-3}$ 18 19 56.5531 $1.550 \cdot 10^{-4}$ 56.5574 $3.100 \cdot 10^{-4}$ 56.6034 $1.930 \cdot 10^{-3}$ 59.6944 59.6986 $-2.782 \cdot 10^{-4}$ 59.7421 $-1.733 \cdot 10^{-3}$ 20 $-1.391 \cdot 10^{-4}$

Tabela 2: Coeficientes utilizados para o cálculo da solução exata tridimensional

Figura 23: Evolução adimensional de temperaturas - solução analítica 2D

(a) Evolução adimensional de temperaturas para o centro (b) Evolução adimensional de temperaturas para o centro da das faces laterais do corpo face do topo

Figura 24: Evolução adimensional de temperaturas - solução analítica 2D

Figura 25: Evolução adimensional de temperaturas - solução analítica 3D

geométrico

face inferior do corpo

2022/2023 25

(a) Evolução adimensional de temperaturas para o centro (b) Evolução adimensional de temperaturas para o centro da das faces laterais do corpo face do topo

Figura 26: Evolução adimensional de temperaturas - solução analítica 3D

Figura 27: Variação da temperatura em função de z para diferentes valores de tempo

Figura 28: Variação da temperatura em função de z para diferentes valores de tempo

Anexos

Anexo-1

TeachC.m

```
1 %-----%
2 %------%
3 %
                 Programa TEACH C (versão MATLAB)
4 %
                           CONTROL
5 %
      Este programa permite resolver problemas de condução de calor
6 %
 %
              bidimensional com as seguintes variantes:
8 %
9 %
     - Coordenadas cartesianas ou coordenadas cilíndricas ...
    (axissimétrico)
10 %
     - Regime estacionário ou transiente (não estacionário)
11 %
     - Condutividade térmica (k) uniforme ou variável
12 %
       (com a temperatura ou com o espaço)
     - Com a utilização dos três tipos de condições de fronteira ...
13 %
    existentes
14 %
15 %
          - Temperatura imposta
16 %
          - Fluxo imposto
17 %
          - Convecção na fronteira do corpo
18 %
19 %
                             FS
                          09/05/2011
 %-----%
22 %------%
24 % Apaga variáveis e limpa a consola
25 clear all
 close all
27 clc
29 % Utiliza o formato longo (15 dígitos) para maior precisão
 format long
32 % Cria ficheiro para escrever os resultados
33 fid=fopen ('RESULTS.txt', 'w');
```

```
------ Capitulo 0 - Preliminares -------%
38 % Define o número de nós da malha segundo x e y
39 %%%% Alterável %%%%%
40 IT=63;
 JT = 63;
43 % Define o número de pontos da malha segundo x e y
44 %%%% Alterável %%%%%
45 NI=63;
46 NJ=63;
48 % Constante
49 GREAT=1.0E30;
 54 % Define o tipo de coordenadas (cartesianas - 0 0;
55 % cilíndricas vertical 1 0; cilíndricas horizontais 0 1)
56 %%%% Alterável %%%%%
57 INCYLX=0;
INCYLY=0;
60 % Variável intermédia
61 NIM1=NI - 1;
62 NJM1=NJ-1;
64 % Dimensões totais do domínio de solução, largura e altura [m]
65 %%%%% Alterável %%%%%
66 \text{ W=} 0.24 ;
67 H=0.24;
70 % Cálculo as abcissas na direção xx
71 DX(1)=W/(NIM1-1);
^{72} X(1)=-0.5*DX(1);
73 for I = 2:NI
     DX(I)=DX(1);
     X(I)=X(I-1)+DX(I-1);
  end
76
77
```

```
79 % Calcula as abcissas na direção yy
80 DY(1)=H/(NJM1-1);
81 Y(1) = -0.5 *DY(1);
  for J=2:NJ
       DY(J)=DY(1);
       Y(J)=Y(J-1)+DY(J-1);
  end
  % Estabelece limites do Domínio
  for I=1:NI
       JS (I) = 2;
       JN (I) = NJ - 1;
  end
93 % Estabelece ponto monitor segundo x e y (IMON e JMON)
94 %%%% Alterável %%%%%
95 IMON=2;
  JMON=62;
  % Propriedades do material (Tcond=cond, CV=calor esp, DENSIT=dens),
  % Meio homogéneo
  % Aço %%%% Alterável %%%%
  for I=1:NI
       for J=1:NJ
102
           TCON (I, J) = 121;
           CV (I, J) = 385;
104
           DENSIT (I, J) = 7930;
105
            if I==1 && J==1
106
              BK=TCON(I,J);
107
108
           end
109
       end
110
  end
111
112
  % Temperatura inicial
114
  TINIC=1150;
115
116 % Parâmetros de controlo do programa
117 %%%% Alterável %%%%%
118 % Número máximo de iterações
119 MAXIT=400;
120 % Número máximo de interações no tempo
```

```
121 MAXSTP=300;
122 % O output deverá conter os valores de T em intervalos de
123 NITPRI=400;
124 % "NITPRI" para "NSTPRI" iterações no tempo
125 NSTPRI=1;
126
127 % Factor de sub relaxação, Máximo resíduo e intervalo de tempo (s)
128 %%%% Alterável %%%%%
129 URFT=1;
130 SORMAX=0.001;
DT=20;
132
133 % Selecciona o Regime---Estacionário->INTIME=0, Transiente->INTIME=1
134 %%%% Alterável %%%%%
135 INTIME=1;
136
  if INTIME==0
137
      MAXSTP=1;
138
 end
139
140
141 % Indica se as propriedades são constantes --- constantes->INPRO=0,
142 % variáveis ->INPRO=1
143 %%%% Alterável %%%%%
INPRO=0;
145
146
  148
  % Calcula dimensões da malha e anula vectores/matrizes
150 % Chama função INIT
  [RX,DXEP,DXPW,SEW,XU,RU,RY,DYPS,DYNP,SNS,YV,RV,AN,AS,AE,AW,SU,SP,GAMH, ...
     TOLD, T, X, Y = INIT (INCYLX, INCYLY, NI, NJ, NIM1, NJM1, X, Y, TINIC);
  TIME=0.0;
152
153
  % Impõe valores de fronteira e inicializa variável dependente
155
156 % Valores de fronteira
157 %%%% Alterável %%%%%
158 TTOP=20;
159 TBOT=1150;
160 TLEFT=0;
  TRIGHT=0;
162
```

```
164 % Uma vez que de acordo com o enunciado não há temperatura imposta ...
     em nenhuma das faces estes valores não irão ter importância nos ...
     resultados, estando apenas a adicionar tempo de computação
\% \text{ for } I = 2:NIM1
167 %
        T (I,1) = TBOT;
       T (I, NJ) = TTOP;
168 %
169 % end
170 %
_{171} % for J=2:NJM1
172 %
       T (1, J) = TLEFT;
173 %
       T (NI, J) = TRIGHT;
174 % end
175
176
177 % Inicializa variável dependente
178 % Inicializa campo de propriedades do material
179 % Chama função PROPS
  [GAMH]=PROPS(NI, NJ, TCON, GAMH);
181
182
183 % Cálculo do factor de normalização do resíduo
184 AK=BK;
 SNORM=AK*(TTOP-TBOT)*W/H;
  SNORM = abs(SNORM);
187
  % Escreve as especificações do problema
  fprintf(fid, 'CONDUCTION IN RECTANGULAR BAR WITH PRESCRIBED SURFACE ...
     fprintf(fid, 'HEIGHT, H [M]------ %10.3f ...
     191 fprintf(fid, 'WEIGHT, W [M]-----= %10.3f ...
     192 fprintf(fid, 'SPECIFIC HEAT, CV [J/KG.K]-----= %10.3f ...
     r \cdot r \cdot CV(1,1);
193 fprintf(fid, 'THERMAL CONDUCTIVITY, TCON [W/M.K]-----= %10.3f ...
     r \cdot n', TCON(1,1);
194 fprintf(fid, 'DENSIT, DENSIT [KG/M3] -----= %10.2f ...
     r \cdot n', DENSIT (1,1);
195 fprintf(fid, 'INITIAL TIME STEP, DT [S] ----- %10.1f ...
```

```
196 fprintf(fid, 'SOURCE NORMALIZATION FACTOR, SNORM -----= %8.3E \r ...
     n',SNORM);
197 fprintf(fid, 'NUMBER OF NODES IN X DIRECTION, NI -----= %10d \r ...
     n', NI;
198 fprintf(fid, 'NUMBER OF NODES IN Y DIRECTION, NJ -----= %10d \r ...
     n', NJ;
  fprintf(fid, '\r \n');
200
  % Chama a função PRINT para imprimir o campo de temperaturas inicial
  PRINT(1,1,NI,NJ,X,Y,T, fid)
203
204
  205
206
 % Indica os pontos de controlo
208 % Imprime o rótulo das informações das iterações no ponto monitor
  fprintf (fid, 'NITER
                              SOURCE
                                           T (\%d,\%d)
                                                         TIME(s)
     DT(s) NSTEP', IMON, JMON);
210 fprintf (fid, '\r \n');
211
Temperatura monitor = zeros (MAXSTP, 2);
Temperatura_centrogeo = zeros (MAXSTP, 2);
Temperatura_centrosurfN = zeros (MAXSTP, 2);
Temperatura_centrosurfO = zeros (MAXSTP, 2);
Temperatura_centrosurfS = zeros(MAXSTP, 2);
% Tmesh = zeros(8,2,9);
218 \% c = 1;
219
220 %Para malha de 82x82
\text{221} \ \% \ \text{Pts\_grid} = [5,78;6,77;5,38;6,37;5,6;6,5;21,78;22,77;21,38;22,37; \dots]
      21,6;22,5;37,78;38,77;37,38;38,37;37,6;38,5];
222
223 %Para malha de 62x62
\% Pts grid = [4,59;5,58;4,29;5,28;4,5;5,4;16,59;17,58;16,29;17,28;...]
      16,5;17,4;28,59;29,58;28,29;29,28;28,5;29,4];
226 %Para malha de 42x42
\text{227} \ \% \ \text{Pts\_grid} = [3,40;4,39;3,20;4,19;3,4;4,3;11,40;12,39;11,20;12,19; \dots]
      11,4;12,3;19,40;20,39;19,20;20,19;19,4;20,3];
229 %Para malha de 22x22
230 \% \text{ Pts\_grid} = [2,21;3,20;2,11;3,10;2,3;3,2;6,21;7,20;6,11;7,10;6,2; \dots]
      7,3;10,21;11,20;10,11;11,10;10,2;11,3];
```

```
232 %Para malha de 12x12
233 \text{ \%Pts\_grid} = [2, 11; 2, 6; 2, 2; 4, 11; 4, 6; 4, 2; 6, 11; 6, 6; 6, 2];
234
  % Iterações no tempo
235
   for NSTEP=1:MAXSTP
        TIME=TIME+DT;
237
        for I=1:NI
238
             for J=1:NJ
239
                 TOLD(I, J) = T(I, J);
240
             end
241
        end
242
243
       % Iterações no espaço
244
        for NITER=1:MAXIT
245
246
            % Chama a função CALCT para o cálculo das temperaturas
247
             [AN, AS, AE, AW, SU, SP, GAMH, CV, DENSIT, TOLD, T, RESORT]=CALCT(NI, NJ, ...
248
                NIM1, NJM1, RX, DXEP, SEW, RU, RY, DYNP, SNS, RV, AN, AS, AE, AW, SU, SP, ...
                GAMH, CV, DENSIT, TOLD, T, URFT, JS, JN, INTIME, DT, Y, X, XU, YV, GREAT);
249
            % Chama a função PROPS no caso de as propriedades variarem
250
             if INPRO==1
251
                  [GAMH]=PROPS(NI, NJ, TCON, GAMH);
252
            end
253
254
            % Actualização de condições de fronteira e fontes se necessário
255
256
            % Cálculo do resíduo normalizado
257
            SOURCE=(RESORT/SNORM);
258
259
            % Imprime a informação das iterações no ponto monitor
260
             fprintf (fid, '%5d', NITER);
261
             fprintf(fid, '%14.1E', SOURCE);
262
             fprintf(fid, '%14.3E',T(IMON,JMON));
263
             fprintf(fid, '%11d',TIME);
264
             fprintf(fid , '%10d',DT);
265
             fprintf(fid, '%9d', NSTEP);
266
             fprintf(fid, '\r \n');
267
268
269
            % Imprime Temperaturas em intervalos especificados por NITPRI
270
             if mod(NITER, NITPRI)==0
271
```

```
PRINT(1,1,NI,NJ,X,Y,T,fid)
272
273
                 if NSTEP≠MAXSTP || SOURCE>SORMAX
274
                    % Imprime o rótulo das informações das iterações no ...
275
                        ponto monitor
                     fprintf(fid, 'NITER
                                                  SOURCE
                                                                T (\%d,\%d)
276
                        TIME(s)
                                   DT(s)
                                               NSTEP', IMON, JMON);
                     fprintf(fid, '\r \n');
277
                 end
278
            end
279
280
281
            % Testa resíduo do processo iterativo
282
            if SOURCE<SORMAX
283
                 break
284
            end
285
286
            % Termina cáculos se a solução não converge (MAXIT e ...
287
                RESÍDUO<10)
            if NITER≥MAXIT && SOURCE≥10
288
                 error ('myApp:argChk', 'Não Convergiu segundo o critério ...
289
                     especificado \n')
            end
290
291
292
       % Termina ciclo no espaço
293
       end
294
295
^{297} %Para malha 82x82, 62x62, 42x42 e 22x22
298 %
          if NSTEP = 3 \mid \mid NSTEP = 6 \mid \mid NSTEP = 25 \mid \mid NSTEP = 50 \mid \mid \dots
      NSTEP = 100 \mid \mid NSTEP = 150 \mid \mid NSTEP = 200 \mid \mid NSTEP = 250
299 %
300 %
               Tmesh(c, 1, 1) = ...
       (T(Pts\_grid(1,1),Pts\_grid(1,2))+T(Pts\_grid(2,1),Pts\_grid(2,2)))/2;
               Tmesh(c, 2, 1) = TIME;
301 %
302 %
              Tmesh(c, 1, 2) = ...
       (T(Pts\_grid(3,1),Pts\_grid(3,2))+T(Pts\_grid(4,1),Pts\_grid(4,2)))/2;
303 %
               Tmesh(c,2,2) = TIME;
              Tmesh(c,1,3) = \dots
304 %
       (T(Pts\_grid(5,1),Pts\_grid(5,2))+T(Pts\_grid(6,1),Pts\_grid(6,2)))/2;
               Tmesh(c,2,3) = TIME;
305 %
```

```
Tmesh(c, 1, 4) = ...
306 %
      (T(Pts\_grid(7,1),Pts\_grid(7,2))+T(Pts\_grid(8,1),Pts\_grid(8,2)))/2;
307 %
              Tmesh(c, 2, 4) = TIME;
308 %
              Tmesh(c, 1, 5) = ...
      (T(Pts\_grid(9,1),Pts\_grid(9,2))+T(Pts\_grid(10,1),Pts\_grid(10,2)))/2;
309 %
              Tmesh(c,2,5) = TIME;
310 %
              Tmesh(c, 1, 6) = ...
      (T(Pts\_grid(11,1), Pts\_grid(11,2))+T(Pts\_grid(12,1), Pts\_grid(12,2)))/2;
311 %
              Tmesh(c, 2, 6) = TIME;
312 %
              Tmesh(c, 1, 7) = ...
      (T(Pts\_grid(13,1),Pts\_grid(13,2))+T(Pts\_grid(14,1),Pts\_grid(14,2)))/2;
313 %
              Tmesh(c,2,7) = TIME;
314 %
              Tmesh(c, 1, 8) = ...
      (T(Pts\_grid(15,1),Pts\_grid(15,2))+T(Pts\_grid(16,1),Pts\_grid(16,2)))/2;
315 %
              Tmesh(c,2,8) = TIME;
316 %
              Tmesh(c, 1, 9) = ...
      (T(Pts\_grid(17,1), Pts\_grid(17,2))+T(Pts\_grid(18,1), Pts\_grid(18,2)))/2;
317 %
              Tmesh(c, 2, 9) = TIME;
318 %
              c = c+1;
319 %
          end
321 %Para malha 12x12
322 %
          if NSTEP = 3 \mid \mid NSTEP = 6 \mid \mid NSTEP = 25 \mid \mid NSTEP = 50 \mid \mid \dots
      NSTEP = 100 \mid \mid NSTEP = 150 \mid \mid NSTEP = 200 \mid \mid NSTEP = 250
323 %
324 %
              Tmesh(c,1,1) = T(Pts\_grid(1,1),Pts\_grid(1,2));
325 %
              Tmesh(c, 2, 1) = TIME;
              Tmesh(c,1,2) = T(Pts\_grid(2,1), Pts\_grid(2,2));
326 %
327 %
              Tmesh(c,2,2) = TIME;
              Tmesh(c,1,3) = T(Pts\_grid(3,1),Pts\_grid(3,2));
328 %
329 %
              Tmesh(c,2,3) = TIME;
              Tmesh(c,1,4) = T(Pts\_grid(4,1),Pts\_grid(4,2));
330 %
331 %
              Tmesh(c, 2, 4) = TIME;
332 %
              Tmesh(c,1,5) = T(Pts\_grid(5,1),Pts\_grid(5,2));
333 %
              Tmesh(c, 2, 5) = TIME;
              Tmesh(c,1,6) = T(Pts\_grid(6,1),Pts\_grid(6,2));
334 %
335 %
              Tmesh(c, 2, 6) = TIME;
336 %
              Tmesh(c,1,7) = T(Pts\_grid(7,1),Pts\_grid(7,2));
337 %
              Tmesh(c, 2, 7) = TIME;
              Tmesh(c,1,8) = T(Pts\_grid(8,1), Pts\_grid(8,2));
338 %
              Tmesh(c, 2, 8) = TIME;
339 %
              Tmesh(c,1,9) = T(Pts\_grid(9,1),Pts\_grid(9,2));
340 %
341 %
              Tmesh(c,2,9) = TIME;
```

```
342 %
              c = c+1;
343 %
         end
344
       Temperatura\_monitor(NSTEP, 1) = T(IMON, JMON);
345
       Temperatura\_monitor(NSTEP, 2) = TIME;
       Temperatura_centrogeo (NSTEP, 1) = T(32,32);
347
       Temperatura_centrogeo(NSTEP, 2) = TIME;
       Temperatura_centrosurfN (NSTEP, 1) = T(32,62);
349
       Temperatura_centrosurfN(NSTEP,2) = TIME;
350
       Temperatura_centrosurfO(NSTEP,1) = T(2,32);
       Temperatura_centrosurfO(NSTEP,2) = TIME;
352
       Temperatura_centrosurfS (NSTEP, 1) = T(32, 2);
353
       Temperatura\_centrosurfS(NSTEP, 2) = TIME;
354
355
356
357
       fprintf (fid, '\r \n \r \n');
358
359
       % Imprime a solução convergida no intervalo especificado por NSTPRI
360
       if mod (NSTEP, NSTPRI) == 0 && mod (NITER, NITPRI) \neq 0
361
            PRINT (1,1,NI,NJ,X,Y,T,fid)
362
       end
363
364
       if NSTEP≠MAXSTP
365
          % Imprime o rótulo das informações das iterações no ponto ...
366
              monitor
           fprintf (fid, 'NITER
                                         SOURCE
                                                     T (\%d,\%d)
                                                                    TIME(s) ...
367
                            NSTEP', IMON, JMON);
                                                     NSTEP', IMON, JMON);
                  DT(s)
           fprintf (fid, '\r \n');
368
369
       end
370
371
372 % Termina ciclo no tempo
  end
374
\% for sheet = 1:9
376 %
       filename = 'Grid_independency.xlsx';
377 %
       Para malha 82x82
378 %
379 %
       writematrix (Tmesh(:,:,sheet), filename, 'Sheet', sheet, 'Range', ...
      'P4:Q11')
380 %
381 %
       Para malha 62x62
```

```
writematrix (Tmesh (:,:, sheet), filename, 'Sheet', sheet, 'Range', ...
382 %
       'M4: N11')
383 %
384 %
       Para malha 42x42
385 %
        writematrix (Tmesh (:,:, sheet), filename, 'Sheet', sheet, 'Range', ...
       'J4:K11')
386 %
       Para malha 22x22
387 %
388 %
       writematrix (Tmesh (:,:, sheet), filename, 'Sheet', sheet, 'Range', ...
       'G4:H11')
389 %
390 %
       Para malha 12x12
391 %
       writematrix (Tmesh (:,:, sheet), filename, 'Sheet', sheet, 'Range', ...
       'D4:E11')
392 %
393 % end
394
   fclose (fid);
395
396
  % Desenha gráfico 2D das Temperaturas-----
398
  % Troca os eixos
399
   for jj = 1:NI
400
        for ii = 1:NJ
401
            THI(jj, ii) = T(NI+1-jj, ii);
402
       end
403
  end
404
405
   for jj = 1:NI
406
        for ii = 1:NJ
407
            THI2(NJ+1-ii, NI+1-jj)=THI(jj, ii);
408
       end
409
410
  %% correcao H para W na orientacao x %%%
413
^{414} ZX=W/(NI-1);
  ZJ = (H/(NJ-1));
415
416
417 % Plot da Temperatura Final
   [X,Y] = meshgrid (0:ZX:W,H:-ZJ:0);
418
419
  THI2=THI2(2 : end -1, 2 : end -1);
```

```
^{421} X=X(2:end-1,2:end-1);
Y=Y(2:end-1,2:end-1);
423
424 figure (1)
425 % O número 10 remete para as cores utilizadas
426 contourf (X,Y,THI2,10);
427 colorbar;
428 xlabel('\bfx')
429 ylabel('\bfy')
  zlabel('\bfT')
431
432
433
434 %Cálculo do número de Fourier
^{435} L = ^{3};
alpha = TCON(1,1) / (DENSIT(1,1) *CV(1,1));
L c = 0.12;
Fourier = (alpha*Temperatura_monitor(:,2))/L_c^2;
440 %Plots
 theta\_star\_centrogeo = (Temperatura\_centrogeo(:,1) -20)/(TINIC-20);
443
444 figure();
445 plot (Fourier, theta_star_centrogeo)
446 title (['Temperatura adimensionalizada (\theta^*) em função do Número ...
      de Fourier para T(32,32)', 'FontSize',14);
447 xlabel('N{\''{u}}}mero de Fourier', 'Interpreter', 'latex', 'FontSize', 14)
 ylabel('$\theta^*$', 'Interpreter', 'latex', 'FontSize', 16)
449
450
  theta star centrosurfN = (Temperatura centrosurfN(:,1) -20)/(TINIC-20);
452
453 figure ();
454 plot (Fourier, theta_star_centrosurfN)
455 title (['Temperatura adimensionalizada (\theta^*) em função do Número ...
      de Fourier para T(32,62)', 'FontSize',14);
456 xlabel('N{\''{u}}}mero de Fourier', 'Interpreter', 'latex', 'FontSize', 14)
 ylabel('$\theta^*$', 'Interpreter', 'latex', 'FontSize', 16)
458
  theta_star_centrosurfO = (Temperatura_centrosurfO(:,1) -20)/(TINIC-20);
461
```

```
462 figure ();
463 plot (Fourier, theta_star_centrosurfO)
464 title (['Temperatura adimensionalizada (\theta^*) em função do Número ...
      de Fourier para T(2,32)', 'FontSize',14);
465 xlabel('N{\''{u}}}mero de Fourier', 'Interpreter', 'latex', 'FontSize', 14)
466 ylabel('$\theta^*$', 'Interpreter', 'latex', 'FontSize', 16)
467
theta star centrosurfS = (Temperatura centrosurfS(:,1) -20)/(TINIC-20);
470 figure();
471 plot (Fourier, theta_star_centrosurfS)
472 title (['Temperatura adimensionalizada (\theta^*) em função do Número ...
      de Fourier para T(32,2)'], 'FontSize',14);
473 xlabel('N{\''{u}}}mero de Fourier', 'Interpreter', 'latex', 'FontSize', 14)
474 ylabel('$\theta^*$', 'Interpreter', 'latex', 'FontSize', 16)
475
476 % Método analitico & comparação
_{477} H = 0.24;
^{478} W = 0.24;
L = 3.00;
h = 250; \%W/m^2K
481 T_{in} = 1150; \%^{\circ}C
_{482} T amb = 20;
483 ro = 7930;
c = 385;
485 \text{ k} = 121;
v = 39.6 * 10^{-6};
alpha = k/(ro*c);
L_x = 0.12;
L_y = 0.24;
490 L_z = 1.50;
^{491} Bi_x = h*L_x/k;
Bi_y = h*L_y/k;
^{493} Bi_z = h*L_z/k;
Bi = [Bi \times Bi \times Bi \times Bi];
496
497
498
  for l=1:3
       fun = @(csi)csi*tan(csi)-Bi(1);
500
501
       for i = 1:200
502
```

```
out = fzero(fun, i-1);
           if abs(fun(out))<0.05
504
                if j==1
                    csi(l,j)=out;
506
                    j = j+1;
                elseif out \neq csi(l,j-1) && out-csi(l,j-1)>0.5
508
                    csi(l,j) = out;
                    j = j + 1;
510
                end
511
           end
512
       end
513
514 end
515
516
  for i = 1:20
       ksi_x(i) = csi(1, i+1);
518
       ksi_y(i) = csi(2, i+1);
       ksi_z(i) = csi(3, i+1);
_{521} end
_{522} x = linspace(0, 1, 6);
y = linspace(0, 1, 20);
z = linspace(0, 1, 5);
theta_estrela_x = 0;
theta_estrela_y = 0;
theta_estrela_z = 0;
V_{corpo} = H*W*L;
_{530} A_corpo = H*W*2 + H*L*2 + W*L;
x = [0 \ 1];
y = [0 \ 0.5 \ 1];
theta_estrela_x = 0;
theta estrela y = 0;
theta_estrela_z = 0;
theta_estrela = 0;
z = [0 \ 1];
t = linspace(0, 6000, 301);
for k=1:length(z)
       for i=1:2
541
           for j=1:3
                for p=1:length(ksi_x)
542
                    C_x(p) = 4*sin(ksi_x(p))/(2*ksi_x(p) + ...
543
                       \sin(2*ksi_x(p));
```

```
C_y(p) = 4*sin(ksi_y(p))/(2*ksi_y(p) + ...
544
                        \sin(2*ksi_y(p));
                    C_z(p) = 4*sin(ksi_z(p))/(2*ksi_z(p) + ...
545
                        \sin(2*ksi_z(p));
                     theta_estrela_x = theta_estrela_x + ...
546
                        C_x(p) * exp(-ksi_x(p)^2 * alpha. * t/(H/2)^2) * ...
                        \cos(\mathrm{ksi}_{x}(p)*x(i));
                     theta_estrela_y = theta_estrela_y + ...
547
                        C_y(p) * exp(-ksi_y(p)^2 * alpha.*t/(W)^2)* ...
                        \cos(ksi_y(p)*y(j));
                     theta_estrela_z = theta_estrela_z + ...
                        C_z(p) * exp(-ksi_z(p)^2 * alpha. * t/(L/2)^2) * ...
                        \cos(ksi_z(p)*z(k));
                end
549
                theta_estrela_2D = theta_estrela_x.*theta_estrela_y;
551
                theta estrela 3D =
                theta_estrela_x.*theta_estrela_y.*theta_estrela_z;
553
                theta_star_lcm = \exp(-h*A\_corpo/(ro*V\_corpo*c).*t);
                erro_2D_3_D = abs(theta_estrela_3D - theta_estrela_2D);
555
                erro_LCM_3D = abs(theta_star_lcm - theta_estrela_3D);
556
                theta estrela x = 0;
                theta_estrela_y = 0;
558
                theta_estrela_z = 0;
559
                figure()
560
561
                if i==1 \&\& j==1 \&\& k==1
562
                     plot(t*alpha/(H/2)^2, theta_estrela_2D, 'r-', ...
563
                        t*alpha/(H/2)^2, theta_star_lcm, 'y-', ...
                        alpha*Temperatura\_monitor(:,2)/L\_c^2, ...
                        theta_star_centrosurfS, 'b--', 'LineWidth',1.5)
                     legend (sprintf ('x* = \%g, y* = \%g 2D', x(i), y(j)), ...
564
                        sprintf('LCM'), 'Teach C', 'Location', 'northeast', ...
                        'Orientation', 'vertical', 'FontSize', 15)
                     ylabel ("$\theta*$", 'Interpreter', ...
565
                        'latex', 'FontSize', 20)
566
                     xlabel ("Fo", 'FontSize', 20)
                elseif i==1 \&\& j==1 \&\& k==2
567
                     plot(t*alpha/(H/2)^2, theta_estrela_2D, 'r-', ...
568
                        t*alpha/(H/2)^2, theta_estrela_3D, 'm--', ...
                        t*alpha/(H/2)^2, theta_star_lcm, 'y-', ...
                        alpha*Temperatura\_monitor(:,2)/L\_c^2, ...
                        theta_star_centrosurfS, 'b--', 'LineWidth',1.5)
```

```
legend (sprintf ('x* = \%g, y* = \%g 2D', x(i), ...
                        y(j), sprintf('x* = \%g, y* = \%g, z* = \%g ...
                        3D', x(i), y(j), z(k), sprintf('LCM'), 'Teach ...
                        C', 'Location', 'northeast', 'Orientation', ...
                        'vertical', 'FontSize', 15)
                    ylabel("$\theta*$", 'Interpreter', ...
570
                        'latex', 'FontSize', 20)
                    xlabel ("Fo", 'FontSize', 20)
                elseif i==1 \&\& j==2 \&\& k==1
                     plot(t*alpha/(H/2)^2, theta_estrela_2D, 'r-', ...
573
                        t*alpha/(H/2)^2, theta_star_lcm, 'y-', ...
                        alpha*Temperatura\_monitor(:,2)/L\_c^2, ...
                        theta_star_centrogeo, 'b--', 'LineWidth', 1.5)
                     legend (sprintf ('x* = \%g, y* = \%g 2D', x(i), y(j)), ...
574
                        sprintf('LCM'), 'Teach C', 'Location', ...
                        'northeast', 'Orientation', 'vertical', 'FontSize', ...
                        15)
                    ylabel("$\theta*$", 'Interpreter', ...
575
                        'latex', 'FontSize', 20)
                    xlabel ("Fo", 'FontSize', 20)
576
                elseif i==1 \&\& j==2 \&\& k==2
                     plot(t*alpha/(H/2)^2, theta_estrela_2D, 'r-', ...
578
                        t*alpha/(H/2)^2, theta_estrela_3D, 'm--', ...
                        t*alpha/(H/2)^2, theta_star_lcm, 'y-', ...
                        alpha*Temperatura\_monitor(:,2)/L\_c^2, ...
                        theta_star_centrogeo, 'b--', 'LineWidth',1.5)
                     legend(sprintf('x* = \%g, y* = \%g 2D', x(i), ...)
                        y(j), sprintf('x* = \%g, y* = \%g, z* = \%g 3D', ...
                        x(i), y(j), z(k), sprintf('LCM'), 'Teach C', ...
                        'Location', 'northeast', 'Orientation', 'vertical', ...
                        'FontSize', 15)
                    ylabel("$\theta*$", 'Interpreter', 'latex', ...
580
                        'FontSize', 20)
                    xlabel ("Fo", 'FontSize', 20)
581
                elseif i==1 \&\& j==3 \&\& k==1
582
                     plot(t*alpha/(H/2)^2, theta_estrela_2D, 'r-', ...
583
                        t*alpha/(H/2)^2, theta_star_lcm, 'y-', ...
                        alpha*Temperatura\_monitor(:,2)/L\_c^2, ...
                        theta_star_centrosurfN, 'b--', 'LineWidth',1.5)
                     legend (sprintf ('x* = \%g, y* = \%g 2D', x(i), y(j)), ...
584
                        sprintf('LCM'), 'Teach C', 'Location', ...'
                        'northeast', 'Orientation', 'vertical', 'FontSize', ...
                        15)
```

```
ylabel("$\theta*$", 'Interpreter', 'latex', ...
                        'FontSize', 20)
                    xlabel ("Fo", 'FontSize', 20)
                elseif i==1 \&\& j==3 \&\& k==2
587
                    plot(t*alpha/(H/2)^2, theta_estrela_2D, ...
                        r-',t*alpha/(H/2)^2, theta_estrela_3D, m--', ...
                        t*alpha/(H/2)^2, theta_star_lcm, 'y-', ...
                        alpha*Temperatura\_monitor(:,2)/L\_c^2, ...
                        theta_star_centrosurfN, 'b--', 'LineWidth',1.5)
                    legend (sprintf ('x* = \%g, y* = \%g 2D', x(i), ...
                        y(j), sprintf('x* = \%g, y* = \%g, z* = \%g 3D', ...
                        x(i), y(j), z(k), sprintf('LCM'), 'Teach C', ...
                        'Location', 'northeast', 'Orientation', ...
                        'vertical', 'FontSize', 15)
                    ylabel("$\theta*$", ...
                        'Interpreter', 'latex', 'FontSize', 20)
                    xlabel ("Fo", 'FontSize', 20)
                elseif i==2 \&\& j==2 \&\& k==1
592
                    plot(t*alpha/(H/2)^2, theta_estrela_2D, 'r-', ...
593
                        t*alpha/(H/2)^2, theta_star_lcm, 'y-', ...
                        alpha*Temperatura\_monitor(:,2)/L\_c^2, ...
                        theta_star_centrosurfO, 'b--', 'LineWidth',1.5)
                    legend (sprintf ('x* = \%g, y* = \%g 2D', x(i), y(j)), ...
                        sprintf('LCM'), 'Teach C', 'Location', 'northeast', ...
                        'Orientation', 'vertical', 'FontSize', 15)
                    ylabel("$\theta*$", 'Interpreter', ...
595
                        'latex', 'FontSize', 20)
                    xlabel ("Fo", 'FontSize', 20)
596
                elseif i==2 \&\& j==2 \&\& k==2
                    plot(t*alpha/(H/2)^2, theta_estrela_2D, 'r-', ...
598
                        t*alpha/(H/2)^2, theta_estrela_3D, 'm--', ...
                        t*alpha/(H/2)^2, theta_star_lcm, 'y-', ...
                        alpha*Temperatura\_monitor(:,2)/L\_c^2, ...
                        theta_star_centrosurfO, 'b--', 'LineWidth', 1.5)
                    legend (sprintf('x* = \%g, y* = \%g 2D', x(i), y(j)), ...
                        sprintf('x* = \%g, y* = \%g, z* = \%g 3D', x(i), ...
                        y(j), z(k), sprintf('LCM'), 'Teach C', ...
                        'Location', 'northeast', 'Orientation', ...
                        'vertical', 'FontSize', 15)
                    ylabel("$\theta*$", 'Interpreter', ...
600
                        'latex', 'FontSize', 20)
                    xlabel ("Fo", 'FontSize', 20)
601
                else
602
```

```
plot(t*alpha/(H/2)^2, theta_estrela_2D, 'r-', ...
                        t*alpha/(H/2)^2, theta_estrela_3D, 'm--', ...
                        t*alpha/(H/2)^2, theta_star_lcm, 'y-', ...
                        'LineWidth', 1.5
                     legend (sprintf ('x* = \%g, y* = \%g 2D', x(i), ...
                        y(j), sprintf('x* = \%g, y* = \%g, z* = \%g 3D', ...
                        x(i), y(j), z(k), sprintf('LCM'), 'Location', ...
                        'northeast', 'Orientation', 'vertical', 'FontSize', ...
                        15)
                     ylabel("$\theta*$", 'Interpreter', ...
                        'latex', 'FontSize', 20)
                     xlabel ("Fo", 'FontSize', 20)
                end
            end
608
       end
610 end
611
613 % cálculo dos erros
_{614} x = linspace(0, 1, 6);
y = linspace(0, 1, 20);
z = linspace(0, 1, 5);
theta_estrela_x = 0;
theta_estrela_y = 0;
theta_estrela_z = 0;
A_{corpo} = H*W*2 + H*L*2 + W*L;
623 \quad x = \begin{bmatrix} 0 & 1 \end{bmatrix};
624 \quad y = \begin{bmatrix} 0 & 0.5 & 1 \end{bmatrix};
theta_estrela_x = 0;
theta estrela y = 0;
theta_estrela_z = 0;
theta estrela = 0;
629 z = 0;
t = linspace(20, 6000, 300);
631
632 for i = 1:2
633
       for j=1:3
            for p=1:length(ksi x)
634
                C_x(p) = 4*\sin(ksi_x(p))/(2*ksi_x(p) + \sin(2*ksi_x(p)));
635
                C_y(p) = 4*sin(ksi_y(p))/(2*ksi_y(p) + sin(2*ksi_y(p)));
636
                C_z(p) = 4*sin(ksi_z(p))/(2*ksi_z(p) + sin(2*ksi_z(p)));
637
```

```
theta_estrela_x = theta_estrela_x + ...
                   C_x(p) * exp(-ksi_x(p)^2 * alpha. * t/(H/2)^2) ...
                    *\cos(ksi_x(p)*x(i));
                theta_estrela_y = theta_estrela_y + ...
639
                   C_y(p) * exp(-ksi_y(p)^2 * alpha. * t/(W)^2) ...
                   *\cos(ksi_y(p)*y(j));
                theta_estrela_z = theta_estrela_z + ...
                   C_z(p)*exp(-ksi_z(p)^2*alpha.*t/(L/2)^2) ...
                   *\cos(ksi_z(p)*z);
            end
641
642
            theta_estrela_2D = theta_estrela_x.*theta_estrela_y;
643
            theta_estrela_3D = theta_estrela_x. ...
               *theta_estrela_y.*theta_estrela_z;
            theta_estrela_2D_t = theta_estrela_2D.';
            theta_estrela_3D = theta_estrela_3D.';
646
            theta_star_lcm = \exp(-h*A\_corpo/(ro*V\_corpo*c).*t);
           erro_2D_3_D = abs(theta_estrela_3D - theta_estrela_2D);
648
           erro_LCM_3D = abs(theta_star_lcm - theta_estrela_2D);
            theta_estrela_x = 0;
650
            theta_estrela_y = 0;
651
            theta_estrela_z = 0;
652
653
            if i==1 \&\& j==1
654
                erro_teachC = abs(theta_star_centrosurfS - ...
655
                   theta_estrela_2D_t);
                figure()
                plot(t*alpha/(H/2)^2, erro_teachC, 'LineWidth',1.5)
657
                title ('Erro absoluto (solução numérica vs solução ...
658
                    Analítica)', 'FontSize', 20)
                legend (sprintf ('x* = \%g, y* = \%g', x(i), ...
659
                   y(j)), 'Location', 'northeast', 'Orientation', ...
                   'vertical', 'FontSize', 10)
                ylabel ("erro absoluto", 'Interpreter', ...
660
                   'latex', 'FontSize', 20)
                xlabel ("Fo", 'FontSize', 20)
661
662
                figure()
663
                plot(t*alpha/(H/2)^2, erro\_LCM\_3D, 'LineWidth', 1.5)
664
                title ('Erro absoluto (método da Capacitância Global vs ...
665
                   Solução Analítica)', 'FontSize', 20)
                legend (sprintf ('x* = \%g, y* = \%g', x(i), ...
666
                   y(j)), 'Location', 'northeast', 'Orientation', ...
```

```
'vertical', 'FontSize', 10)
                ylabel ("erro absoluto", 'Interpreter', 'latex', ...
667
                    'FontSize', 20)
                xlabel ("Fo", 'FontSize', 20)
            elseif i==1 \&\& j==2
                erro_teachC = abs(theta_star_centrogeo-theta_estrela_2D_t);
                figure ()
                plot(t*alpha/(H/2)^2, erro_teachC, 'LineWidth', 1.5)
672
                title ('Erro absoluto (solução numérica vs solução ...
673
                    Analítica)', 'FontSize', 20)
                legend (sprintf ('x* = \%g, y* = \%g', x(i), ...
674
                   y(j)), 'Location', 'northeast', 'Orientation', ...
                   'vertical', 'FontSize', 10)
                ylabel ("erro absoluto", 'Interpreter', ...
675
                   'latex', 'FontSize', 20)
                xlabel ("Fo", 'FontSize', 20)
676
                figure()
678
                plot(t*alpha/(H/2)^2, erro\_LCM\_3D, 'LineWidth', 1.5)
                title ('Erro absoluto (método da Capacitância Global vs ...
680
                   Solução Analítica)', 'FontSize', 20)
                legend (sprintf ('x* = \%g, y* = \%g', x(i), ...
681
                   y(j)), 'Location', 'northeast', 'Orientation', ...
                    'vertical', 'FontSize', 10)
                ylabel ("erro absoluto", 'Interpreter', ...
682
                    'latex', 'FontSize', 20)
                xlabel ("Fo", 'FontSize', 20)
            elseif i==1 \&\& j==3
684
                erro_teachC = abs(theta_star_centrosurfN - ...
685
                   theta_estrela_2D_t);
                figure ()
                plot(t*alpha/(H/2)^2, erro_teachC, 'LineWidth', 1.5)
687
                title ('Erro absoluto (solução numérica vs solução ...
                    Analítica)', 'FontSize', 20)
                legend (sprintf ('x* = \%g, y* = \%g', x(i), ...
689
                   y(j)), 'Location', 'northeast', 'Orientation', ...
                   'vertical', 'FontSize', 10)
                ylabel ("erro absoluto", 'Interpreter', ...
690
                   'latex', 'FontSize', 20)
                xlabel ("Fo", 'FontSize', 20)
691
692
                figure()
693
                plot (t*alpha/(H/2)^2, erro LCM 3D, 'LineWidth', 1.5)
```

```
title ('Erro absoluto (método da Capacitância Global vs ...
695
                   Solução Analítica)', 'FontSize', 20)
                legend (sprintf ('x* = \%g, y* = \%g', x(i), ...
                   y(j)), 'Location', 'northeast', 'Orientation', ...
                    'vertical', 'FontSize', 10)
                ylabel ("erro absoluto", 'Interpreter', ...
697
                   'latex', 'FontSize', 20)
                xlabel ("Fo", 'FontSize', 20)
            elseif i==2 \&\& j==2
                erro_teachC = abs(theta_star_centrosurfO - ...
700
                   theta_estrela_2D_t);
                figure ()
                plot(t*alpha/(H/2)^2, erro_teachC, 'LineWidth', 1.5)
                title ('Erro absoluto (solução numérica vs Solução ...
703
                   Analítica)', 'FontSize', 20)
                legend (sprintf ('x* = \%g, y* = \%g', x(i), ...
704
                   y(j)), 'Location', 'northeast', 'Orientation', ...
                    'vertical', 'FontSize', 10)
                ylabel ("erro absoluto", 'Interpreter', ...
                    'latex', 'FontSize', 20)
                xlabel ("Fo", 'FontSize', 20)
                figure()
                plot(t*alpha/(H/2)^2, erro\_LCM\_3D, 'LineWidth', 1.5)
709
                title ('Erro absoluto (método da Capacitância Global vs ...
710
                   Solução Analítica)', 'FontSize', 20)
                legend (sprintf ('x* = \%g, y* = \%g', x(i), ...
711
                   y(j), 'Location', 'northeast', 'Orientation', ...
                   'vertical', 'FontSize', 10)
                ylabel ("erro absoluto", 'Interpreter', ...
712
                    'latex', 'FontSize', 20)
                xlabel ("Fo", 'FontSize', 20)
713
           end
714
       end
715
716 end
```

PROMOD.m

```
1 %------%
       3 %
                   script: PROMOD (versão MATLAB)
4 %
              Define e introduz as Condições de Fronteira
5 %
                 -Temperatura Imposta
6 %
                 -Fluxo Imposto
7 %
                 - Convecção
8 %
                 -Simetria
9 %
                          FS
10 %
                        09/05/2011
        -----%
        -----
 function [AN, AS, AE, AW, SU, SP, T]=PROMOD(NI, NJ, NIM1, NJM1, IL, RV, YV, Y, SNS, ...
   SEW, X, XU, AN, AS, AE, AW, SU, SP, GAMH, T, RY)
15
16
17 %----- Capitulo 0 - Preliminares ...
    -----%
20 %----- Capitulo 1 - Condição de Fronteira ...
    -----%
22 % Utilizador define o tipo de condição de fronteira (1-Temperatura,
23 %2-Fluxo, 3-Convecção e 4-simetria para a fronteira Norte, Sul, Este e
24 %Oeste (CFN, CFS, CFW, CFE)
25 %%%% Alterável %%%%%
26 CFN=3;
^{27} CFS=4;
28 CFW=3;
29 CFE=3;
31 %Identifica o tipo de condição de fronteira
32 I=IL;
34 %FRONTEIRA ...
   NORTE-----
35 %Temperatura imposta
 if CFN==1
```

```
37
      RDYN=RV(NJ)/(YV(NJ)-Y(NJM1));
38
      AN(NJM1) = 0;
39
      DN=GAMH(IL, NJM1) *SEW(IL) *RDYN;
40
      SU(NJM1)=SU(NJM1)+DN*T(IL,NJ);
      SP(NJM1)=SP(NJM1) -DN;
42
43
  %Fluxo imposto
  elseif CFN==2
47
      QN=20;
                         %%%%% alterável %%%%%
48
      AN(NJM1) = 0;
49
      DN=QN*SEW(IL)*RV(NJ);
50
      SU(NJM1)=SU(NJM1)+DN;
51
      SP(NJM1)=SP(NJM1);
52
53
  %Convecção
  elseif CFN==3
      HCONV = 250;
                       %%%%% alterável %%%%%
      TF=20;
                        %%%%% alterável %%%%%
      RDYN=YV(NJ) - Y(NJM1);
60
      AN(NJM1) = 0;
      DN1=RDYN/GAMH(IL,NJM1)+1/HCONV;
62
      DN=SEW(IL)*RV(NJ)/DN1;
      SU(NJM1)=SU(NJM1)+DN*TF;
      SP(NJM1)=SP(NJM1) -DN;
66
  %simetria
  elseif CFN==4
      AN(NJM1) = 0;
71
      T(IL, NJ) = T(IL, NJM1);
72
73
  %Caso o utilizador tenha introduzido incorrectamente a condição de
  %fronteira o programa termina
  else
       error ('myApp: argChk', 'Condição de fronteira mal introduzida, o ...
          programa vai encerrar')
```

```
80
  end
  %%%-----
  %%FRONTEIRA ...
     SUL-----
 %Temperatura imposta
  if CFS==1
87
      RDYS=RV(2)/(Y(2)-YV(2));
      AS(2) = 0;
89
      DS=GAMH(IL, 2)*SEW(IL)*RDYS;
      SU(2)=SU(2)+DS*T(IL,1);
      SP(2)=SP(2) - DS;
93
  %Fluxo imposto
  elseif CFS==2
97
      QS=0;
                     %%%%% alterável %%%%%
      AS(2) = 0;
      DS=QS*SEW(IL)*RV(2);
100
      SU(2)=SU(2)+DS;
101
      SP(2)=SP(2);
102
103
  elseif CFS==3
104
105
      HCONV=12.5;
                      %%%%% alterável %%%%%
106
                      %%%%% alterável %%%%%%
      TF=80;
107
      RDYS=Y(2)-YV(2);
108
      AS(2) = 0;
109
      DS1=RDYS/GAMH(IL, 2) +1/HCONV;
110
      DS=SEW(IL)*RV(2)/DS1;
111
      SU(2)=SU(2)+DS*TF;
112
      SP(2)=SP(2) - DS;
113
114
115
116 %simetria
  elseif CFS==4
118
      AS(2) = 0;
119
      T(IL, 2) = T(IL, 2);
120
```

```
121
122
  %Caso o utilizador tenha introduzido incorrectamente a condição de
124 %fronteira o programa termina
  else
125
126
       error ('myApp: argChk', 'Condição de fronteira mal introduzida, o ...
127
          programa vai encerrar')
128
129
  end
130
  %%%-----
132
  %%FRONTEIRA ...
      OESTE-----
134 %Temperatura imposta
  if CFW==1
135
136
       if IL==2
137
          DXW=X(2)-XU(2);
138
           for J=2:NJM1
139
              AW(J) = 0;
140
              DW=GAMH(IL, J)*SNS(J)*RY(J)/DXW;
141
               SU(J)=SU(J)+DW*T(1,J);
142
               SP(J)=SP(J)-DW;
143
           end
144
      end
145
146
147
  %Fluxo imposto
   elseif CFW==2
149
150
       if IL==2
151
          QW = 20:
                            %%%%% alterável %%%%%
152
           for J=2:NJM1
153
              AW(J) = 0;
154
155
              DW=QW*SNS(J)*RY(J);
               SU(J)=SU(J)+DW;
156
157
               SP(J)=SP(J);
158
159
           end
      end
160
161
```

```
163 %Convecção
  elseif CFW==3
165
        if IL==2
166
          HCONV = 250;
                         %%%%% alterável %%%%%
          TF=20;
                          %%%% alterável %%%%%
          DXW=X(2)-XU(2);
169
           for J=2:NJM1
170
              AW(J) = 0;
171
              DW1=DXW/GAMH(IL, J)+1/HCONV;
172
              DW=SNS(J)*RY(J)/DW1;
173
              SU(J)=SU(J)+DW*TF;
174
              SP(J)=SP(J)-DW;
175
          end
176
       end
177
178
179
  elseif CFW==4
181
       if IL==2
182
183
           for J=2:NJM1
184
          AW(J) = 0;
185
          T(1,J)=T(2,J);
186
          end
187
188
       end
189
190
191
  %Caso o utilizador tenha introduzido incorrectamente a condição de
  %fronteira o programa termina
  else
194
195
       error ('myApp: argChk', 'Condição de fronteira mal introduzida, o ...
196
         programa vai encerrar')
197
198
  end
  %%%-----
201
  %%FRONTEIRA ...
     ESTE-----
```

```
%Temperatura imposta
   if CFE==1
205
        if IL==NIM1
206
            DXE=XU(NI)-X(NIM1);
207
             for J=2:NJM1
208
                 AE(J) = 0;
209
                 DE=GAMH(IL, J)*SNS(J)*RY(J)/DXE;
210
                 SU(J)=SU(J)+DE*T(NI,J);
211
                 SP(J)=SP(J)-DE;
212
213
             end
214
        end
215
216
217
   %Fluxo imposto
   elseif CFE==2
219
220
         if IL=NIM1
221
                                 %%%%% alterável %%%%%
            QE=0;
222
             for J=2:NJM1
223
                 AE(J) = 0;
224
                 DE=QE*SNS(J)*RY(J);
225
                 SU(J)=SU(J)+DE;
226
                 SP(J)=SP(J);
227
228
            end
229
         end
230
231
232
  %Convecção
   elseif CFE==3
235
        if IL==NIM1
236
            HCONV = 250;
                              %%%%% alterável %%%%%
237
            TF=20;
                               %%%%% alterável %%%%%
238
239
            DXE=XU(NI)-X(NIM1);
             for J=2:NJM1
240
                 AE(J) = 0;
241
                 DE1=DXE/GAMH(IL, J)+1/HCONV;
242
                 DE=SNS(J)*RY(J)/DE1;
243
                 SU(J)=SU(J)+DE*TF;
244
                 SP(J)=SP(J)-DE;
245
```

```
end
246
        end
247
248
249
  %simetria
   elseif CFE==4
252
         if IL=NIM1
253
254
             for J=2:NJM1
255
            AE(J) = 0;
256
            T(NI,J)=T(NIM1,J);
257
            end
258
259
         end
260
261
262
  %Caso o utilizador tenha introduzido incorrectamente a condição de
  %fronteira o programa termina
   else
265
266
        error ('myApp:argChk', 'Condição de fronteira mal introduzida, o ...
267
           programa vai encerrar')
268
269
  end
272
274 %Termina PROMOD
275 end
```

Anexo-2

Figura 29: Solução numérica do centro da face inferior

Figura 30: Solução numérica do centro geométrico

Figura 31: Solução numérica do centro da face do topo

Figura 32: Solução numérica do centro da face lateral

Figura 33: Evolução adimensional de temperaturas

Figura 34: Evolução adimensional de temperaturas

Figura 35: Evolução adimensional de temperaturas

Figura 36: Evolução adimensional de temperaturas

Figura 37: Evolução adimensional de temperaturas

Figura 38: Evolução adimensional de temperaturas

Figura 39: Evolução adimensional de temperaturas

Figura 40: Evolução adimensional de temperaturas

Figura 41: Evolução adimensional de temperaturas

Figura 42: Evolução adimensional de temperaturas

Figura 43: Evolução adimensional de temperaturas

Figura 44: Evolução adimensional de temperaturas

Figura 45: Erro absoluto entre o método Numérico e a solução Analítica

Figura 46: Erro absoluto entre o método da Capacitância Global e a solução Analítica

Figura 47: Erro absoluto entre o método Numérico e a solução Analítica

Figura 48: Erro absoluto entre o método da Capacitância Global e a solução Analítica

Figura 49: Erro absoluto entre o método Numérico e a solução Analítica

Figura 50: Erro absoluto entre o método da Capacitância Global e a solução Analítica

Figura 51: Erro absoluto entre o método Numérico e a solução Analítica

Figura 52: Erro absoluto entre o método da Capacitância Global e a solução Analítica

RESULTS.txt

1	NITER	SOURCE	T (2,62)	TIME(s)	DT(s)	NSTEP
2						
3	1	2.9E + 00	1.136E + 03	20	20	1
4	2	2.8E+00	1.127E + 03	20	20	1
5	2	2.8E+00	1.127 E +03	20	20	1
7	3	2.8E + 00	1.121E + 03	20	20	1
8						
9	4	2.7E + 00	1.116E + 03	20	20	1
10	F	9 CE +00	1 119E + 02	20	20	1
11	5	2.6E + 00	1.112E + 03	20	20	1
13	6	2.6E + 00	1.108E + 03	20	20	1
14						
15	7	2.5E + 00	1.105E+03	20	20	1
16	0	0.75.00	1 1005 : 00	20	20	4
17	8	2.5E + 00	1.102E + 03	20	20	1
18						

	19	9	2.4E + 00	1.099E + 03	20	20	1
	20	1.0	0.25.100	1 007E + 02	0.0	0.0	1
	21	10	2.3E+00	1.097E + 03	20	20	1
	22	11	2.3E+00	1.094E + 03	20	20	1
	24	11	2.02 00	1.0012 00	-0	20	
	25	12	2.2E + 00	1.092E + 03	20	20	1
	26						
	27	13	2.2E + 00	1.090E + 03	20	20	1
	28	1.4	0.15.400	1 000 0 1 00	20	20	1
	29	14	2.1E+00	1.088E + 03	20	20	1
	30	15	2.1E+00	1.086E + 03	20	20	1
	32						
	33	16	2.1E + 00	1.084E + 03	20	20	1
	34						
	35	17	2.0E + 00	1.083E + 03	20	20	1
	36	18	2.0E+00	1.081E+03	20	20	1
	37 38	10	2.0E+00	1.00112+03	20	20	1
	39	19	1.9E+00	1.080E + 03	20	20	1
	40						
	41	20	1.9E + 00	1.078E + 03	20	20	1
	42	0.4				2.0	
	43	21	1.8E + 00	1.077E + 03	20	20	1
	44 45	22	1.8E+00	1.076E + 03	20	20	1
	46			, , ,		-	
	47	23	1.8E + 00	1.074E + 03	20	20	1
	48						
	49	24	1.7E + 00	1.073E + 03	20	20	1
	50	25	1.7E+00	1.072E + 03	20	20	1
	51 52	20	1.75+00	1.072E+03	20	20	1
	53	26	1.7E + 00	1.071E + 03	20	20	1
	54						
	55	27	1.6E + 00	1.070E + 03	20	20	1
	56						
	57	28	1.6E + 00	1.069E + 03	20	20	1
	58 59	29	1.6E+00	1.068E+03	20	20	1
	60	<i>a o</i>	1.01 00	1.0001100	20	2 0	1
	61	30	1.5E + 00	1.067E + 03	20	20	1
- 1							l l

1							
62	31	1.5E + 00	$1.066\mathrm{E}\!+\!03$	20	20	1	
64	-		,	_ •	_ 0	_	
65	32	1.5E + 00	1.065E+03	20	20	1	
66	33	$1.4E\!+\!00$	$1.065\mathrm{E}\!+\!03$	20	20	1	
68							
69	34	1.4E + 00	1.064E + 03	20	20	1	
70	35	1.4E + 00	1.063E + 03	20	20	1	
72	2.0	1.05.00	1 0005 00	20	2.0	_	
73 74	36	1.3E + 00	1.062E + 03	20	20	1	
75	37	1.3E + 00	1.062E + 03	20	20	1	
76	38	1.3E + 00	1.061E + 03	20	20	1	
77 78	30	$1.3 \pm \pm 00$	$1.001 \mathrm{E} \pm 05$	20	20	1	
79	39	1.3E + 00	$1.060 E\!+\!03$	20	20	1	
80	40	1.2E + 00	1.060E + 03	20	20	1	
82							
83 84	41	1.2E + 00	1.059E + 03	20	20	1	
85	42	1.2E + 00	1.058E + 03	20	20	1	
86	4.0	1.05 + 00	1 0505 + 09	20	20	1	
87 88	43	1.2E + 00	1.058E + 03	20	20	1	
89	44	1.1E + 00	1.057E + 03	20	20	1	
90 91	45	1.1E+00	1.057E + 03	20	20	1	
92	10	1.12 00	1.0012 00	20	20	1	
93	46	1.1E + 00	1.056E + 03	20	20	1	
94 95	47	1.1E + 00	$1.056\mathrm{E}\!+\!03$	20	20	1	
96							
97 98	48	1.0E + 00	1.055E + 03	20	20	1	
98	49	1.0E + 00	1.055E+03	20	20	1	
100	EO	1 OE+00	1 054E+09	20	20	1	
101	50	1.0E + 00	1.054E + 03	20	20	1	
103	51	9.9E-01	1.054E + 03	20	20	1	
104							

105	52	9.7E-01	1.053E+03	20	20	1
106 107	53	9.5E-01	1.053E + 03	20	20	1
108 109	54	9.3E-01	1.053E+03	20	20	1
110 111	55	9.1E-01	1.052E + 03	20	20	1
112	56	8.9E-01	1.052E + 03	20	20	1
114	57	8.7E-01	1.052E + 03	20	20	1
116	58	8.5E -01	1.051E+03	20	20	1
117						
119	59	8.4E-01	1.051E + 03	20	20	1
121 122	60	8.2E-01	1.050E + 03	20	20	1
123 124	61	8.0E-01	1.050E + 03	20	20	1
125 126	62	7.9E-01	1.050E+03	20	20	1
127 128	63	7.7E-01	1.050E + 03	20	20	1
129	64	7.5E-01	1.049E + 03	20	20	1
130	65	7.4E-01	1.049E + 03	20	20	1
132	66	7.2E-01	1.049E + 03	20	20	1
134 135	67	7.1E-01	1.048E+03	20	20	1
136 137	68	6.9E-01	1.048E+03	20	20	1
138 139	69	6.8E-01	1.048E+03	20	20	1
140 141	70	6.7E-01	1.048E+03	20	20	1
142 143	71	6.5E-01	1.047E+03	20	20	1
144						
145	72	6.4E-01	1.047E+03	20	20	1
147	73	6.3E - 01	1.047E + 03	20	20	1

148							
149	74	6.1E-01	1.047E + 03	20	20	1	
150		0.07.04	1 0 1 0 7 0 0		2.0		
151	75	6.0E-01	1.046E + 03	20	20	1	
152 153	76	5.9E-01	$1.046\mathrm{E}\!+\!03$	20	20	1	
154	70	0.91	1.04011+03	20	20	1	
155	77	5.8E-01	1.046E + 03	20	20	1	
156							
157	78	$5.7\mathrm{E}$ - 01	1.046E + 03	20	20	1	
158							
159	79	$5.5\mathrm{E}$ - 01	1.046E + 03	20	20	1	
160							
161	80	$5.4\mathrm{E}$ - 01	1.045E + 03	20	20	1	
162	81	5.3E-01	$1.045\mathrm{E}\!+\!03$	20	20	1	
163 164	01	5.5E-01	1.04515+05	20	20	1	
165	82	$5.2\mathrm{E}$ - 01	1.045E + 03	20	20	1	
166			·				
167	83	$5.1\mathrm{E}$ - 01	1.045E + 03	20	20	1	
168							
169	84	$5.0\mathrm{E}$ - 01	1.045E + 03	20	20	1	
170	a =	4.07.04			2.0		
171	85	4.9E-01	1.045E + 03	20	20	1	
172 173	86	4.8E-01	1.044E + 03	20	20	1	
174	00	4.02 01	1.04411	20	20	1	
175	87	$4.7\mathrm{E}$ - 01	1.044E + 03	20	20	1	
176							
177	88	4.6E - 01	1.044E + 03	20	20	1	
178							
179	89	4.5E - 01	1.044E + 03	20	20	1	
180	90	4.4E-01	$1.044\mathrm{E}\!+\!03$	20	20	1	
181 182	90	4.4E-01	1.044上十03	20	20	1	
183	91	4.3E-01	1.044E + 03	20	20	1	
184	-			- -	-		
185	92	4.3E-01	1.044E+03	20	20	1	
186							
187	93	4.2E - 01	1.043E + 03	20	20	1	
188							
189	94	4.1E-01	1.043E + 03	20	20	1	
190							

191	95	4.0E-01	1.043E + 03	20	20	1
192 193	96	3.9E-01	1.043E + 03	20	20	1
194 195	97	3.8E-01	1.043E+03	20	20	1
195	91	3.02-01	1.04012+00	20	20	1
197	98	3.8E-01	1.043E + 03	20	20	1
198 199	99	3.7E-01	1.043E+03	20	20	1
200	100	2 CF 01	1 042E + 02	20	20	1
201	100	3.6E-01	1.043E + 03	20	20	1
203	101	$3.5\mathrm{E}$ - 01	1.042E + 03	20	20	1
204	102	3.5E-01	1.042E + 03	20	20	1
206						
207	103	$3.4\mathrm{E}$ - 01	1.042E + 03	20	20	1
209	104	3.3E-01	1.042E + 03	20	20	1
210	105	3.3E-01	1.042E + 03	20	20	1
212						
213	106	$3.2\mathrm{E}$ - 01	1.042E + 03	20	20	1
215	107	3.1E-01	1.042E + 03	20	20	1
216 217	108	3.1E-01	1.042E + 03	20	20	1
218	100	0.12 01	1.0121 00		20	1
219	109	3.0E-01	1.042E + 03	20	20	1
220	110	3.0E-01	1.042E + 03	20	20	1
222	111	2.9E-01	1.041E + 03	20	20	1
223 224	111	2.915-01	1.04112+03	20	20	1
225	112	2.8E-01	1.041E + 03	20	20	1
226 227	113	2.8E-01	1.041E+03	20	20	1
228	4 4 4	0.77.01	1.0415	2.2	0.0	_
229	114	2.7E-01	1.041E + 03	20	20	1
231	115	$2.7\mathrm{E}$ - 01	1.041E + 03	20	20	1
232	116	2.6E-01	1.041E+03	20	20	1
I						

1						
234	117	2.6E-01	1.041E+03	20	20	1
236						
237	118	2.5E-01	1.041E + 03	20	20	1
239	119	2.5E-01	1.041E+03	20	20	1
240	120	2.4E-01	1.041E+02	20	20	1
241	120	2.4C-U1	1.041E + 03	20	20	1
243	121	$2.4\mathrm{E}$ - 01	1.041E + 03	20	20	1
244	122	2.3E-01	1.041E+03	20	20	1
246						
247 248	123	2.3E-01	1.041E + 03	20	20	1
249	124	2.2E-01	1.041E + 03	20	20	1
250	125	2.2E-01	1.040E + 03	20	20	1
251 252	120	2.215-01	1.040E+03	20	20	1
253	126	2.1E-01	1.040E + 03	20	20	1
254 255	127	2.1E-01	$1.040\mathrm{E}{+03}$	20	20	1
256						
257 258	128	2.0E-01	1.040 E + 03	20	20	1
259	129	2.0E-01	1.040E + 03	20	20	1
260 261	130	2.0E-01	1.040E + 03	20	20	1
262	100	2.02 01	110102 00	20	20	-
263	131	1.9E-01	1.040E + 03	20	20	1
264 265	132	1.9E-01	1.040E + 03	20	20	1
266	100	1 OF 01	1.0405 + 02	20	20	1
267 268	133	1.9E-01	$1.040\mathrm{E}\!+\!03$	20	20	1
269	134	1.8E-01	1.040E + 03	20	20	1
270 271	135	1.8E-01	1.040E + 03	20	20	1
272				-	-	
273 274	136	1.7E-01	1.040E + 03	20	20	1
274	137	1.7E-01	1.040E+03	20	20	1
276						

277	138	$1.7\mathrm{E}$ - 01	1.040E + 03	20	20	1
278						
279	139	1.6E - 01	1.040E + 03	20	20	1
280						
281	140	1.6E-01	1.040E + 03	20	20	1
282						
283	141	1.6E-01	$1.040 \mathrm{E}{+03}$	20	20	1
284		1.02 01	1.0102 00	-0	20	
	142	1.5E-01	1.040E + 03	20	20	1
285	142	1.512-01	1.04012 +05	20	20	1
286	1.40	1 70 01	1 0405 : 00	2.0	20	1
287	143	1.5E-01	1.040E + 03	20	20	1
288						
289	144	1.5E-01	1.040E + 03	20	20	1
290						
291	145	1.5E - 01	1.040E + 03	20	20	1
292						
293	146	1.4E - 01	1.040E + 03	20	20	1
294						
295	147	1.4E - 01	1.039E + 03	20	20	1
296						
297	148	1.4E-01	1.039E + 03	20	20	1
298	110	1.12 01	1.0001	-0	20	
	149	1.3E-01	1.039E + 03	20	20	1
299	149	1.312-01	1.059E ∓05	20	20	1
300	150	1.00.01	1 000 00	2.0	20	1
301	150	1.3E-01	1.039E + 03	20	20	1
302						
303	151	1.3E-01	1.039E + 03	20	20	1
304						
305	152	1.3E - 01	1.039E + 03	20	20	1
306						
307	153	1.2E - 01	1.039E + 03	20	20	1
308						
309	154	1.2E - 01	1.039E + 03	20	20	1
310						
311	155	1.2E-01	1.039E + 03	20	20	1
312		-		_		
313	156	1.2E-01	1.039E + 03	20	20	1
	100	1.21 - U I	1.00011 00	20	40	-
314	1 E 7	1 1E 01	1 020E + 02	20	20	1
315	157	1.1E-01	1.039E + 03	20	20	1
316	1 50	1.15 01	1 0000 : 00	20	20	
317	158	1.1E-01	1.039E + 03	20	20	1
318						
319	159	1.1E - 01	1.039E + 03	20	20	1

1							
320	160	1.1E-01	1.039E + 03	20	20	1	
321 322	100	1.1E-01	1.039E+03	20	20	1	
323	161	$1.1\mathrm{E}$ - 01	1.039E + 03	20	20	1	
324							
325	162	$1.0\mathrm{E}$ - 01	1.039E + 03	20	20	1	
326 327	163	1.0E-01	1.039E + 03	20	20	1	
328							
329	164	$9.9\mathrm{E}$ - 02	1.039E + 03	20	20	1	
330	165	$9.7\mathrm{E}$ - 02	1.039E + 03	20	20	1	
332	100	0.12 02	1.0001		20	1	
333	166	$9.5\mathrm{E}$ - 02	1.039E + 03	20	20	1	
334	167	9.3E-02	$1.039 \mathrm{E}{+03}$	20	20	1	
335 336	107	9.3E-02	1.039E+03	20	20	1	
337	168	$9.1\mathrm{E}$ - 02	1.039E + 03	20	20	1	
338	1.00	0.05.00	1 000 5 100	20	20	4	
339 340	169	9.0E-02	1.039E + 03	20	20	1	
341	170	$8.8\mathrm{E}$ - 02	1.039E + 03	20	20	1	
342							
343 344	171	$8.6\mathrm{E}$ - 02	1.039E + 03	20	20	1	
345	172	$8.4\mathrm{E}$ - 02	1.039E + 03	20	20	1	
346							
347 348	173	$8.3\mathrm{E}$ - 02	1.039E + 03	20	20	1	
349	174	8.1E-02	1.039E + 03	20	20	1	
350							
351	175	$7.9\mathrm{E}$ - 02	1.039E + 03	20	20	1	
352 353	176	$7.8\mathrm{E}$ - 02	1.039E + 03	20	20	1	
354							
355	177	$7.6\mathrm{E}$ - 02	1.039E + 03	20	20	1	
356 357	178	$7.5\mathrm{E}$ - 02	$1.039 \mathrm{E}{+03}$	20	20	1	
358			- , 55	- -	-		
359	179	$7.3\mathrm{E}$ - 02	1.039E + 03	20	20	1	
360 361	180	7.2E-02	$1.039 \mathrm{E}{+03}$	20	20	1	
362	-00	0_		-~	-~	-	

363	181	7.0E-02	1.039E + 03	20	20	1
364 365	182	6.9E-02	1.039E + 03	20	20	1
366		V.V.	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
367	183	6.8E-02	1.039E + 03	20	20	1
368 369	184	6.6E-02	1.039E+03	20	20	1
370						
371	185	$6.5\mathrm{E}$ - 02	1.039E+03	20	20	1
372 373	186	6.4E-02	1.039E+03	20	20	1
374						
375	187	$6.2\mathrm{E}$ - 02	1.039E + 03	20	20	1
376 377	188	6.1E-02	1.039E + 03	20	20	1
378						
379	189	6.0E-02	1.039E + 03	20	20	1
380 381	190	5.9E-02	1.039E + 03	20	20	1
382						
383	191	$5.7\mathrm{E}$ - 02	1.039E + 03	20	20	1
385	192	$5.6\mathrm{E}$ - 02	1.039E+03	20	20	1
386	100	* *T 00	1.0007.00	2.0	20	
387 388	193	$5.5\mathrm{E}$ - 02	1.038E + 03	20	20	1
389	194	$5.4\mathrm{E}$ - 02	1.038E + 03	20	20	1
390	105	# 9E 09	1 0205 + 02	0.0	0.0	1
391 392	195	5.3E-02	1.038E+03	20	20	1
393	196	$5.2\mathrm{E}$ - 02	1.038E+03	20	20	1
394	197	5.1E-02	1.038E + 03	20	20	1
395 396	191	5.1E-02	1.030E+03	20	20	1
397	198	$5.0\mathrm{E}$ - 02	1.038E+03	20	20	1
398	199	4.9E-02	1.038E + 03	20	20	1
399 400	100	T.ULI -UZ	1.00011709	20	20	1
401	200	4.8E-02	1.038E+03	20	20	1
402	201	4.7E-02	1.038E+03	20	20	1
404	201	., 02	1.0002 00			
405	202	$4.6\mathrm{E}$ - 02	1.038E + 03	20	20	1

406						
406	203	4.5E-02	1.038E+03	20	20	1
408						
409	204	4.4E-02	1.038E+03	20	20	1
410	205	4.00.00	1.0000.00	20	20	-
411	205	4.3E-02	1.038E+03	20	20	1
413	206	4.3E-02	1.038E+03	20	20	1
414						
415	207	4.2E-02	1.038E+03	20	20	1
416	200	4.15.00	1.0000.00	0.0	20	1
417	208	4.1E-02	1.038E+03	20	20	1
419	209	4.0E-02	1.038E+03	20	20	1
420						
421	210	3.9E - 02	1.038E+03	20	20	1
422	211	3.8E-02	1.038E+03	20	20	1
423 424	211	3.6E-02	1.036E+03	20	20	1
425	212	3.8E-02	1.038E+03	20	20	1
426						
427	213	3.7E-02	1.038E+03	20	20	1
428	214	3.6E-02	1.038E+03	20	20	1
430	211	0.01 02	1.0001	20	20	1
431	215	$3.5\mathrm{E}$ - 02	1.038E+03	20	20	1
432	21.0	0.40.00	4.0007	2.0	2.0	_
433	216	$3.5\mathrm{E}$ - 02	1.038E+03	20	20	1
434	217	3.4E-02	1.038E+03	20	20	1
436						
437	218	3.3E-02	1.038E+03	20	20	1
438	210	2 2	1 020E + 02	20	20	1
439	219	3.3E-02	1.038E + 03	20	20	1
441	220	3.2E-02	1.038E+03	20	20	1
442						
443	221	3.1E-02	1.038E + 03	20	20	1
444	222	3.1E-02	1.038E+03	20	20	1
445	<i></i>	0.1LI-UZ	1.090₽ ⊤00	20	20	1
447	223	3.0E-02	1.038E + 03	20	20	1
448						

449	224	3.0E-02	1.038E+03	20	20	1
450 451	225	2.9E-02	1.038E + 03	20	20	1
452	226	2.8E-02	1.038E+03	20	20	1
453 454	220	2.815-02	1.030E+03	20	20	1
455	227	2.8E-02	1.038E + 03	20	20	1
456 457	228	2.7E-02	1.038E+03	20	20	1
458 459	229	2.7E-02	1.038E + 03	20	20	1
460						
461 462	230	2.6E - 02	1.038E+03	20	20	1
463	231	2.6E-02	1.038E+03	20	20	1
464 465	232	2.5E-02	1.038E+03	20	20	1
466	233	2.5E-02	1.038E+03	20	20	1
467 468	233	2.515-02	1.030E+03	20	20	1
469 470	234	2.4E-02	1.038E+03	20	20	1
471	235	2.4E-02	1.038E + 03	20	20	1
472 473	236	2.3E-02	1.038E + 03	20	20	1
474	0.07	0.85.00	1.0000	2.0	2.0	1
475 476	237	2.3E-02	1.038E + 03	20	20	1
477	238	2.2E-02	1.038E + 03	20	20	1
478 479	239	2.2E-02	1.038E+03	20	20	1
480 481	240	2.1E-02	1.038E + 03	20	20	1
482						
483 484	241	2.1E-02	1.038E+03	20	20	1
485	242	2.1E-02	1.038E+03	20	20	1
486 487	243	2.0E-02	1.038E + 03	20	20	1
488	244	2 OF 02	1 028E + 02	20	20	1
489	244	2.0E-02	1.038E + 03	20	20	1
491	245	$1.9\mathrm{E}$ - 02	1.038E + 03	20	20	1

492 493	246	1.9E-02	1.038E+03	20	20	1
494						
495	247	1.9E-02	1.038E + 03	20	20	1
496	248	1.8E-02	1.038E+03	20	20	1
497 498	240	1.011-02	1.030L+03	20	20	1
499	249	1.8E-02	1.038E + 03	20	20	1
500	2 7 0	1.00.00	1.0007.00	2.0	20	
501	250	1.8E - 02	1.038E + 03	20	20	1
503	251	$1.7\mathrm{E}$ - 02	1.038E + 03	20	20	1
504						
505	252	$1.7\mathrm{E}$ - 02	1.038E + 03	20	20	1
506	253	$1.7\mathrm{E}$ - 02	1.038E + 03	20	20	1
508						
509	254	$1.6\mathrm{E}$ - 02	1.038E + 03	20	20	1
510 511	255	1.6E-02	1.038E+03	20	20	1
512						
513	256	$1.6\mathrm{E}$ - 02	1.038E+03	20	20	1
514	257	1.5E-02	1.038E+03	20	20	1
516			_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_
517	258	$1.5\mathrm{E}$ - 02	1.038E+03	20	20	1
518	259	1.5E-02	1.038E+03	20	20	1
520	200	1.02 02	1.0001 00	20	20	1
521	260	$1.4\mathrm{E}$ - 02	1.038E+03	20	20	1
522	261	1.4E-02	1.038E + 03	20	20	1
523 524	201	1.415-02	1.0382+03	20	20	1
525	262	$1.4\mathrm{E}$ - 02	1.038E + 03	20	20	1
526	0.69	1 45 00	1 0000 + 00	20	20	1
527 528	263	1.4E-02	1.038E+03	20	20	1
529	264	1.3E-02	1.038E+03	20	20	1
530	0.07	4.05.00	1.0007	2.0		
531	265	1.3E-02	1.038E + 03	20	20	1
533	266	1.3E-02	1.038E+03	20	20	1
534						

535	267	1.2E-02	1.038E + 03	20	20	1
536	268	1.2E-02	1.038E + 03	20	20	1
538						
539	269	1.2E-02	1.038E + 03	20	20	1
540 541	270	1.2E-02	1.038E + 03	20	20	1
542						
543	271	1.2E-02	1.038E + 03	20	20	1
544 545	272	1.1E-02	1.038E + 03	20	20	1
546						
547	273	1.1E-02	1.038E + 03	20	20	1
548 549	274	1.1E-02	1.038E + 03	20	20	1
550						
551	275	1.1E-02	1.038E + 03	20	20	1
552 553	276	1.0E-02	1.038E + 03	20	20	1
554						
555	277	1.0E-02	1.038E + 03	20	20	1
556 557	278	1.0E-02	1.038E+03	20	20	1
558						
559	279	9.8E-03	1.038E + 03	20	20	1
560 561	280	9.6E-03	1.038E + 03	20	20	1
562						
563 564	281	9.4E-03	1.038E + 03	20	20	1
565	282	9.3E-03	1.038E+03	20	20	1
566						
567 568	283	9.1E-03	1.038E + 03	20	20	1
569	284	8.9E-03	1.038E + 03	20	20	1
570						
571 572	285	8.7E-03	1.038E + 03	20	20	1
573	286	8.5E-03	1.038E + 03	20	20	1
574						
575 576	287	8.4E-03	1.038E + 03	20	20	1
577	288	8.2E-03	1.038E + 03	20	20	1

578						
579	289	8.0E-03	1.038E+03	20	20	1
580						
581	290	7.9E-03	1.038E+03	20	20	1
582	201		4.0007	2.0	2.0	
583	291	7.7E-03	1.038E+03	20	20	1
584 585	292	7.6E-03	1.038E+03	20	20	1
586						
587	293	$7.4\mathrm{E}$ - 03	1.038E+03	20	20	1
588	0.0.4	7 25 02	1 0205 + 02	20	00	1
589 590	294	7.3E-03	1.038E + 03	20	20	1
591	295	7.1E-03	1.038E+03	20	20	1
592						
593	296	7.0E-03	1.038E+03	20	20	1
594 595	297	6.9E-03	1.038E+03	20	20	1
596	201	0.01 00	1.0001 00	20	20	1
597	298	$6.7\mathrm{E}$ - 03	1.038E + 03	20	20	1
598						
599	299	6.6E-03	1.038E+03	20	20	1
600	300	6.5E-03	1.038E+03	20	20	1
602						
603	301	6.3E-03	1.038E+03	20	20	1
604	302	6.2E-03	1 020E + 02	20	20	1
605	302	0.2E-U3	1.038E + 03	20	20	1
607	303	6.1E-03	1.038E+03	20	20	1
608						
609	304	6.0E-03	1.038E+03	20	20	1
610	305	5.8E-03	1.038E+03	20	20	1
612	300	0.02 00	1.0001 00			1
613	306	$5.7\mathrm{E}$ - 03	1.038E+03	20	20	1
614						
615	307	5.6E-03	1.038E+03	20	20	1
616	308	5.5E-03	1.038E+03	20	20	1
618						
619	309	$5.4\mathrm{E}$ - 03	1.038E + 03	20	20	1
620						

621	310	5.3E-03	1.038E+03	20	20	1
622 623	311	5.2E-03	$1.038\mathrm{E}\!+\!03$	20	20	1
624						
625 626	312	5.1E-03	1.038E + 03	20	20	1
627	313	5.0E-03	1.038E + 03	20	20	1
628 629	314	4.9E-03	1.038E+03	20	20	1
630	014	4.911-00	1.03012+03	20	20	1
631	315	4.8E-03	1.038E + 03	20	20	1
632	316	4.7E-03	1.038E+03	20	20	1
634						
635	317	4.6E-03	1.038E + 03	20	20	1
636 637	318	4.5E-03	1.038E + 03	20	20	1
638						
639 640	319	4.4E-03	1.038E + 03	20	20	1
641	320	4.3E-03	1.038E + 03	20	20	1
642	321	4.2E-03	1.038E+03	20	20	1
644	021	4.2L 00	1.0001 00	20	20	1
645	322	4.2E-03	1.038E + 03	20	20	1
646 647	323	4.1E-03	1.038E + 03	20	20	1
648						
649 650	324	4.0E-03	1.038E + 03	20	20	1
651	325	3.9E-03	1.038E + 03	20	20	1
652	326	3.8E-03	1.038E+03	20	20	1
653 654	320	3.0E-U3	1.036E+03	20	20	1
655	327	3.8E-03	1.038E + 03	20	20	1
656 657	328	3.7E-03	1.038E+03	20	20	1
658	<u> </u>		100	- ~	- ~	
659	329	3.6E-03	1.038E + 03	20	20	1
660	330	3.5E-03	1.038E + 03	20	20	1
662			–			
663	331	$3.5\mathrm{E}$ - 03	1.038E + 03	20	20	1

664						
665	332	3.4E-03	1.038E + 03	20	20	1
666						
667	333	3.3E-03	1.038E + 03	20	20	1
668						
669	334	3.3E-03	1.038E + 03	20	20	1
670						
671	335	3.2E-03	1.038E + 03	20	20	1
672	226	9 1E 09	1 020E + 02	20	20	1
673 674	336	3.1E-03	1.038E + 03	20	20	1
675	337	3.1E-03	1.038E+03	20	20	1
676		0.1_			_ ~	
677	338	3.0E-03	1.038E + 03	20	20	1
678						
679	339	$3.0\mathrm{E}$ - 03	1.038E + 03	20	20	1
680						
681	340	2.9E-03	1.038E + 03	20	20	1
682	341	2.8E-03	1.038E+03	20	20	1
683 684	041	2.8E-03	1.03612 +03	20	20	1
685	342	2.8E-03	1.038E+03	20	20	1
686						
687	343	$2.7\mathrm{E}$ - 03	1.038E + 03	20	20	1
688						
689	344	$2.7\mathrm{E}$ - 03	1.038E + 03	20	20	1
690	0.45	0 CF 00	1 020E + 02	20	20	1
691	345	2.6E-03	1.038E + 03	20	20	1
692 693	346	2.6E-03	1.038E+03	20	20	1
694	010	2.02 00	1.0001 00	20	20	1
695	347	$2.5\mathrm{E}$ - 03	1.038E + 03	20	20	1
696						
697	348	$2.5\mathrm{E}$ - 03	1.038E + 03	20	20	1
698						
699	349	2.4E-03	1.038E + 03	20	20	1
700	250	9.4E 02	1 020E + 02	20	20	1
701 702	350	2.4E-03	1.038E + 03	20	20	1
702	351	2.3E-03	1.038E+03	20	20	1
704			100	-	-	
705	352	2.3E-03	1.038E + 03	20	20	1
706						

707	353	2.2E-03	1.038E+03	20	20	1	
708 709	354	2.2E-03	1.038E+03	20	20	1	
710 711	355	2.1E-03	1.038E+03	20	20	1	
712		0	_,,,,,	_ 0	_ 0	_	
713	356	$2.1\mathrm{E}$ - 03	1.038E+03	20	20	1	
714	357	2.1E-03	1.038E+03	20	20	1	
716 717	358	2.0E-03	1.038E+03	20	20	1	
718 719	359	2.0E-03	1.038E+03	20	20	1	
720	000	2.02 00	1.0001 00	20	20	1	
721	360	1.9E-03	1.038E+03	20	20	1	
722 723	361	1.9E-03	1.038E+03	20	20	1	
724 725	362	1.9E-03	1.038E+03	20	20	1	
726	0.00	1 00 00	1 000 5 : 00	0.0	20	4	
727 728	363	1.8E-03	1.038E+03	20	20	1	
729 730	364	1.8E-03	1.038E+03	20	20	1	
731	365	1.8E-03	1.038E+03	20	20	1	
732 733	366	1.7E-03	1.038E+03	20	20	1	
734 735	367	$1.7\mathrm{E}$ - 03	1.038E+03	20	20	1	
736							
737 738	368	$1.7\mathrm{E}$ - 03	1.038E+03	20	20	1	
739	369	1.6E-03	1.038E+03	20	20	1	
740 741	370	1.6E-03	1.038E+03	20	20	1	
742							
743 744	371	1.6E-03	1.038E+03	20	20	1	
745	372	1.5E-03	1.038E+03	20	20	1	
746 747	373	$1.5\mathrm{E}$ - 03	1.038E+03	20	20	1	
748 749	374	1.5E-03	1.038E+03	20	20	1	

1						1
750 751	375	1.4E-03	1.038E+03	20	20	1
752	010	1.12 00	1.0002 00		-0	
753	376	$1.4\mathrm{E}$ - 03	1.038E + 03	20	20	1
754 755	377	1.4E-03	1.038E+03	20	20	1
756				_ 0	_ 0	
757	378	$1.4\mathrm{E}$ - 03	1.038E + 03	20	20	1
758 759	379	1.3E-03	1.038E+03	20	20	1
760				_ 0	_ 0	
761	380	1.3E-03	1.038E + 03	20	20	1
762 763	381	1.3E-03	1.038E+03	20	20	1
764						
765	382	1.2E-03	1.038E + 03	20	20	1
766 767	383	1.2E-03	1.038E + 03	20	20	1
768						
769 770	384	1.2E-03	1.038E + 03	20	20	1
771	385	1.2E-03	1.038E + 03	20	20	1
772	222	1.07.00				
773 774	386	1.2E-03	1.038E + 03	20	20	1
775	387	1.1E-03	1.038E + 03	20	20	1
776	200	1 15 00	1.0000 + 00	20	20	
777	388	1.1E-03	$1.038 ext{E} + 03$	20	20	1
779	389	1.1E-03	1.038E + 03	20	20	1
780	200	1 117 02	1 029E + 02	20	20	1
781 782	390	1.1E-03	1.038E + 03	20	20	1
783	391	1.0E-03	1.038E + 03	20	20	1
784	392	1.0E-03	1.038E+03	20	20	1
785 786	3 94	1.UE-U3	60+43060.1	4 0	4 0	1
787	393	1.0E-03	1.038E + 03	20	20	1
788	394	9.8E-04	1.038E+03	20	20	1
789	UJ4	J.OD-04	1.00011700	<u> 20</u>	20	1

NITER SOURCE T $(2,62)$ TIME (s) DT (s) NSTEP

I							
3	1	2.7E + 00	1.036E + 03	40	20	2	
5	2	2.7E + 00	1.034E+03	40	20	2	
6 7	3	2.6E + 00	1.032E + 03	40	20	2	
8	4	2.6E + 00	1.031E + 03	40	20	2	
10	5	2.5E+00	1.029E + 03	40	20	2	
12 13	6	2.5E + 00	1.028E+03	40	20	2	
14 15	7	2.4E + 00	1.026E + 03	40	20	2	
16 17	8	2.4E + 00	$1.025 E\!+\!03$	40	20	2	
18 19	9	2.3E + 00	1.024E+03	40	20	2	
20	10	2.3E + 00	1.022E + 03	40	20	2	
22 23	11	2.2E + 00	1.021E + 03	40	20	2	
24	12	2.2E + 00	1.020E+03	40	20	2	
26 27	13	2.1E+00	1.019E + 03	40	20	2	
28	14	2.1E+00	1.018E+03	40	20	2	
30	15	2.1E+00	1.017E+03	40	20	2	
32	16	2.0E+00	1.016E+03	40	20	2	
34	17	2.0E+00	1.015E+03	40	20	2	
35 36	18	1.9E+00	1.014E+03	40	20	2	
37				40	20	2	
39 40	19	1.9E+00	1.013E+03				
41 42	20	1.9E+00	1.012E+03	40	20	2	
43	21	1.8E + 00	1.012E + 03	40	20	2	

I	2.2	4 0 5 00	1 0115 00	4.0	2.0	2	1
45	22	1.8E + 00	1.011E + 03	40	20	2	
46	23	1.7E + 00	1.010E+03	40	20	2	
47	20	1.7E+00	1.01011+00	40	20	<u> </u>	
49	24	1.7E + 00	1.009E+03	40	20	2	
50							
51	25	1.7E + 00	1.009E+03	40	20	2	
52							
53	26	1.6E + 00	1.008E+03	40	20	2	
54	27	$1.6\mathrm{E}\!+\!00$	1.007E + 03	40	20	2	
55	21	1.0E+00	1.007E+03	40	20	2	
57	28	1.6E + 00	1.007E + 03	40	20	2	
58							
59	29	1.5E + 00	1.006E+03	40	20	2	
60							
61	30	1.5E + 00	1.005E+03	40	20	2	
62	31	1 FE + 00	1 005 E + 02	40	20	2	
63 64	31	1.5E + 00	1.005E+03	40	20	2	
65	32	1.4E + 00	1.004E+03	40	20	2	
66							
67	33	1.4E + 00	1.004E+03	40	20	2	
68							
69	34	1.4E + 00	1.003E+03	40	20	2	
70	25	1 4E + 00	1 002E + 02	40	20	0	
71 72	35	1.4E + 00	1.003E+03	40	20	2	
73	36	1.3E + 00	1.002E+03	40	20	2	
74							
75	37	1.3E + 00	1.002E+03	40	20	2	
76							
77	38	1.3E + 00	1.001E + 03	40	20	2	
78	20	1 2E +00	1 001E ± 02	40	20	0	
79 80	39	1.3E + 00	1.001E + 03	40	20	2	
81	40	1.2E + 00	1.000E+03	40	20	2	
82	-	,	, - 3	-	-		
83	41	1.2E + 00	9.998E + 02	40	20	2	
84							
85	42	1.2E + 00	9.993E+02	40	20	2	
86	40	1.00.00	0.0000	40	20	2	
87	43	1.2E + 00	9.989E + 02	40	20	2	

	88						
	89	44	1.1E + 00	9.985E + 02	40	20	2
	90	45	1 1E +00	0.001E+09	4.0	20	0
	91 92	45	1.1E + 00	9.981E + 02	40	20	2
	93	46	1.1E+00	9.978E + 02	40	20	2
	94						
	95	47	1.1E + 00	9.974E + 02	40	20	2
	96						
	97	48	1.0E + 00	9.970E + 02	40	20	2
	98	40	1 OF 100	0.067E + 09	40	20	2
	99	49	1.0E + 00	9.967E + 02	40	20	2
	101	50	1.0E + 00	9.963E + 02	40	20	2
	102						
	103	51	9.8E-01	9.960E + 02	40	20	2
	104						
	105	52	9.6E - 01	9.957E + 02	40	20	2
	106 107	53	9.4E-01	9.954E + 02	40	20	2
	108		0.12 01	0.0012 02	10	20	_
	109	54	9.2E-01	9.951E + 02	40	20	2
	110						
	111	55	9.0E-01	9.948E + 02	40	20	2
	112	56	8.8E-01	9.945E+02	40	20	2
	113 114	56	0.6E-01	9.945E+02	40	20	2
	115	57	8.7E-01	9.942E + 02	40	20	2
	116						
	117	58	$8.5\mathrm{E}$ - 01	9.939E + 02	40	20	2
	118	~ 0	0.07.04		4.0		0
	119	59	8.3E-01	9.936E + 02	40	20	2
	120 121	60	8.2E-01	9.934E + 02	40	20	2
	122		0.22 01	0.0012 02	10		_
	123	61	8.0E-01	9.931E + 02	40	20	2
	124						
	125	62	7.8E - 01	9.929E + 02	40	20	2
	126	C O	7 7 0 0 1	0.0060 : 00	40	0.0	0
	127	63	7.7E-01	9.926E + 02	40	20	2
	128 129	64	7.5E-01	9.924E+02	40	20	2
	130			, ~-	ŭ	Š	
-							

131	65	$7.4\mathrm{E}$ - 01	9.922E + 02	40	20	2	
132 133	66	7.2E-01	9.919E + 02	40	20	2	
134							
135 136	67	$7.1\mathrm{E}$ - 01	9.917E + 02	40	20	2	
137	68	6.9E-01	9.915E + 02	40	20	2	
138							
139 140	69	6.8E-01	9.913E + 02	40	20	2	
141	70	$6.7\mathrm{E}$ - 01	9.911E + 02	40	20	2	
142	_,						
143 144	71	$6.5\mathrm{E}$ - 01	9.909E + 02	40	20	2	
145	72	$6.4\mathrm{E}$ - 01	9.907E + 02	40	20	2	
146							
147 148	73	6.3E-01	9.905E + 02	40	20	2	
149	74	6.1E-01	9.904E+02	40	20	2	
150		6 OF 01	0.000 0.00	4.0	20	2	
151 152	75	6.0E-01	9.902E + 02	40	20	2	
153	76	$5.9\mathrm{E}$ - 01	9.900E + 02	40	20	2	
154	77	F 0F 01	0.000 - 00	4.0	0.0	0	
155 156	77	5.8E-01	9.898E + 02	40	20	2	
157	78	$5.7\mathrm{E}$ - 01	9.897E + 02	40	20	2	
158	79	5.5E-01	$9.895 ext{E} + 02$	40	20	2	
159 160	19	5.5E-01	9.090E+02	40	20	2	
161	80	$5.4\mathrm{E}$ - 01	9.894E + 02	40	20	2	
162	81	5.3E-01	9.892E + 02	40	20	2	
163 164	01	5.5E-01	9.092E+02	40	20	2	
165	82	$5.2\mathrm{E}$ - 01	9.891E + 02	40	20	2	
166 167	83	5.1E-01	$9.889 ext{E} + 02$	40	20	2	
168	00	0.11.701	0.000L 02	10	20	4	
169	84	$5.0\mathrm{E}$ - 01	9.888E + 02	40	20	2	
170 171	85	4.9E-01	$9.886 \mathrm{E} {+} 02$	40	20	2	
172		1.02 01	0.0001	10		-	
173	86	4.8E - 01	9.885E + 02	40	20	2	

1						
174	87	4.7E-01	9.884E + 02	40	20	2
175 176	01	4.715-01	9.884E+02	40	20	2
177	88	$4.6\mathrm{E}$ - 01	9.882E + 02	40	20	2
178			0.00	_0		
179	89	$4.5\mathrm{E}$ - 01	9.881E + 02	40	20	2
180						
181	90	4.4E - 01	9.880E + 02	40	20	2
182	0.1	4.05.01	0.0505.00	4.0	2.0	2
183	91	4.3E-01	9.879E + 02	40	20	2
184	92	4.3E-01	9.878E + 02	40	20	2
186	0 =	1.02 01	0.0102 02	10	_ ~	_
187	93	4.2E - 01	9.877E + 02	40	20	2
188						
189	94	4.1E-01	9.875 E + 02	40	20	2
190	0.5	4.05.01	0.0545.00	4.0	2.0	2
191	95	$4.0\mathrm{E}$ - 01	9.874E + 02	40	20	2
192 193	96	3.9E-01	9.873E + 02	40	20	2
194		0.02 01	0.0102 02	10	_ ~	_
195	97	3.8E-01	9.872E + 02	40	20	2
196						
197	98	3.8E - 01	9.871E + 02	40	20	2
198	0.0	9 T F 01	0.0505.00	40	20	0
199	99	3.7E-01	9.870E + 02	40	20	2
200	100	$3.6\mathrm{E}$ - 01	9.869E + 02	40	20	2
202	_ 0 0	0.02	0.000 — 0_	_0		
203	101	$3.5\mathrm{E}$ - 01	9.868E + 02	40	20	2
204						
205	102	$3.5\mathrm{E}$ - 01	9.868E + 02	40	20	2
206	109	2 4E 01	0.067E+00	40	20	0
207	103	$3.4\mathrm{E}$ - 01	9.867E + 02	40	20	2
208	104	3.3E-01	$9.866\mathrm{E}{+02}$	40	20	2
210	-				-	
211	105	$3.3\mathrm{E}$ - 01	$9.865 E\!+\!02$	40	20	2
212						
213	106	$3.2\mathrm{E}$ - 01	9.864E + 02	40	20	2
214	107	9 1 12 0 1	0.0625+02	40	0.0	0
215	107	3.1E-01	9.863E + 02	40	20	2
216						

1						
217	108	3.1E - 01	9.863E + 02	40	20	2
218						
219	109	3.0E-01	9.862E + 02	40	20	2
220						
221	110	3.0E-01	9.861E + 02	40	20	2
222	111	2 OF 01	0.960E+09	40	20	2
223	111	2.9E-01	9.860E + 02	40	20	2
224	112	2.8E-01	9.860E + 02	40	20	2
226	112	2.02 01	0.0002 02	10	20	
227	113	2.8E-01	9.859E + 02	40	20	2
228						
229	114	$2.7\mathrm{E}$ - 01	9.858E + 02	40	20	2
230						
231	115	$2.7\mathrm{E}$ - 01	9.858E + 02	40	20	2
232						
233	116	2.6E - 01	9.857E + 02	40	20	2
234						
235	117	2.6E-01	9.856E + 02	40	20	2
236	118	2.5E-01	9.856E+02	40	20	2
237	110	2.5E-01	9.830E+02	40	20	2
239	119	2.5E-01	9.855E + 02	40	20	2
240	110		0.0002 02	10	_0	_
241	120	2.4E-01	9.854E + 02	40	20	2
242						
243	121	$2.4\mathrm{E}$ - 01	9.854E + 02	40	20	2
244						
245	122	2.3E - 01	9.853E + 02	40	20	2
246						
247	123	2.3E-01	9.853E + 02	40	20	2
248	104	9.9E 01	0.050E+00	40	0.0	0
249	124	2.2E-01	9.852E + 02	40	20	2
250 251	125	2.2E-01	9.852E + 02	40	20	2
252	120	2.22 01	0.002E 02	10	20	-
253	126	2.1E-01	9.851E + 02	40	20	2
254						
255	127	2.1E-01	9.851E + 02	40	20	2
256						
257	128	$2.1\mathrm{E}$ - 01	9.850E + 02	40	20	2
258						
259	129	$2.0\mathrm{E}$ - 01	9.850E + 02	40	20	2

l						
260	130	2.0E-01	9.849E+02	40	20	2
261	100	2.012-01	9.049E+02	40	20	2
263	131	1.9E-01	9.849E + 02	40	20	2
264						
265	132	1.9E-01	9.848E + 02	40	20	2
266						
267	133	1.9E-01	9.848E + 02	40	20	2
268	104	1.00.01	0.0475+00	4.0	20	9
269	134	1.8E-01	9.847E + 02	40	20	2
270 271	135	1.8E-01	9.847E + 02	40	20	2
272	100	01	0.01.2 02	10	_0	_
273	136	$1.7\mathrm{E}$ - 01	9.847E + 02	40	20	2
274						
275	137	1.7E-01	9.846E + 02	40	20	2
276						
277	138	1.7E-01	9.846E + 02	40	20	2
278 279	139	1.6E-01	9.846E+02	40	20	2
280	100	1.02-01	9.040D+02	40	20	2
281	140	1.6E-01	9.845E + 02	40	20	2
282						
283	141	1.6E-01	9.845E + 02	40	20	2
284						
285	142	1.5E - 01	9.844E + 02	40	20	2
286	143	1.5E-01	9.844E+02	40	20	2
287	140	1.5E-01	9.04415+02	40	20	2
289	144	1.5E-01	9.844E + 02	40	20	2
290						
291	145	$1.5\mathrm{E}$ - 01	9.843E + 02	40	20	2
292						
293	146	1.4E - 01	9.843E + 02	40	20	2
294	1 47	1 4E 01	0.042E+00	4.0	0.0	0
295	147	1.4E-01	9.843E + 02	40	20	2
296 297	148	1.4E-01	9.842E + 02	40	20	2
298			· · -	- 0	- 0	_
299	149	1.3E-01	9.842E + 02	40	20	2
300						
301	150	1.3E-01	9.842E + 02	40	20	2
302						

	151	1 2E 01	0.040E+00	40	20	2
303 304	151	1.3E-01	9.842E + 02	40	20	2
305	152	1.3E-01	9.841E + 02	40	20	2
306			, , , , , , , , , , , , , , , , , , , ,		_ •	_
307	153	1.2E-01	9.841E + 02	40	20	2
308						
309	154	1.2E - 01	9.841E + 02	40	20	2
310						
311	155	1.2E-01	9.841E + 02	40	20	2
312	156	1 9E 01	0.040E+00	40	20	0
313	156	1.2E - 01	9.840E + 02	40	20	2
314	157	1.1E-01	9.840E + 02	40	20	2
316	101	1.12 01	0.0101010101	10	-0	
317	158	1.1E-01	9.840E + 02	40	20	2
318						
319	159	1.1E-01	9.840E + 02	40	20	2
320						
321	160	1.1E-01	9.839E + 02	40	20	2
322	1.01	1 1E 01	0.02017 + 00	4.0	0.0	0
323	161	1.1E-01	9.839E + 02	40	20	2
324 325	162	1.0E-01	9.839E+02	40	20	2
326	10 2	1102 01	0.000 = 102	10	_0	_
327	163	1.0E-01	9.839E + 02	40	20	2
328						
329	164	1.0E-01	9.838E + 02	40	20	2
330						
331	165	9.8E - 02	9.838E + 02	40	20	2
332	1.0.0	0.65.00	0.0205100	4.0	0.0	0
333	166	9.6E-02	9.838E + 02	40	20	2
334	167	9.4E-02	9.838E + 02	40	20	2
336	10.	0.12	0.0002 02	10	_0	_
337	168	9.2E-02	9.838E + 02	40	20	2
338						
339	169	$9.0\mathrm{E}$ - 02	9.837E + 02	40	20	2
340						
341	170	8.8E - 02	9.837E + 02	40	20	2
342	1 7 1	0.611.00	0.0270 : 00	40	0.0	
343	171	8.6E-02	9.837E + 02	40	20	2
344	172	8.5E-02	9.837E+02	40	20	2
345	114	0.01 -02	0.001L 02	10	20	-

1						
346						
347	173	$8.3\mathrm{E}$ - 02	9.837E + 02	40	20	2
348	1 77 4	9 1E 09	0.027E+09	40	20	0
349	174	$8.1\mathrm{E}$ - 02	9.837E + 02	40	20	2
350 351	175	8.0E - 02	9.836E + 02	40	20	2
352	110	0.02 02	0.0002 02	10	20	_
353	176	7.8E - 02	9.836E + 02	40	20	2
354						
355	177	$7.7\mathrm{E}$ - 02	9.836E + 02	40	20	2
356						
357	178	$7.5\mathrm{E}$ - 02	9.836E + 02	40	20	2
358		=				
359	179	$7.4\mathrm{E}$ - 02	9.836E + 02	40	20	2
360	180	$7.2\mathrm{E}$ - 02	9.836E + 02	40	20	2
361 362	100	7.2E-02	9.030E+02	40	20	Δ
363	181	7.1E-02	9.835E + 02	40	20	2
364	101	7.12 02	0.0002702	10	20	_
365	182	$6.9\mathrm{E}$ - 02	9.835E + 02	40	20	2
366						
367	183	$6.8\mathrm{E}$ - 02	9.835E + 02	40	20	2
368						
369	184	$6.7\mathrm{E}$ - 02	9.835E + 02	40	20	2
370	105	6 KE 00	0.0075.00	4.0	20	2
371	185	$6.5\mathrm{E}$ - 02	9.835E + 02	40	20	2
372 373	186	$6.4\mathrm{E}$ - 02	9.835E+02	40	20	2
374	100	0.4L -02	3.030L 02	10	20	<u> 4</u>
375	187	$6.3\mathrm{E}$ - 02	9.835E + 02	40	20	2
376						
377	188	$6.1\mathrm{E}$ - 02	9.834E + 02	40	20	2
378						
379	189	$6.0\mathrm{E}$ - 02	9.834E + 02	40	20	2
380						
381	190	$5.9\mathrm{E}$ - 02	9.834E + 02	40	20	2
382	101	# OF 02	0.924E+09	40	20	9
383	191	5.8E-02	9.834E + 02	40	20	2
384	192	$5.7\mathrm{E}$ - 02	9.834E + 02	40	20	2
386		0.,2 02	0.00111 02	10	20	-
387	193	$5.6\mathrm{E}$ - 02	9.834E + 02	40	20	2
388						
•						

389	194	$5.4\mathrm{E}$ - 02	9.834E + 02	40	20	2	
390 391	195	$5.3\mathrm{E}$ - 02	9.834E + 02	40	20	2	
392							
393	196	$5.2\mathrm{E}$ - 02	9.834E + 02	40	20	2	
394 395	197	5.1E-02	9.833E + 02	40	20	2	
396	100	* 0 D 00	0.000 - 00	4.0	2.0		
397 398	198	$5.0\mathrm{E}$ - 02	9.833E + 02	40	20	2	
399	199	4.9E-02	9.833E + 02	40	20	2	
400	200	4.8E-02	9.833E + 02	40	20	2	
401	200	4.815-02	$9.033E \pm 02$	40	20	2	
403	201	$4.7\mathrm{E}$ - 02	9.833E + 02	40	20	2	
404	202	4.6E-02	9.833E+02	40	20	2	
406							
407	203	$4.5\mathrm{E}$ - 02	9.833E + 02	40	20	2	
409	204	4.5E-02	9.833E + 02	40	20	2	
410	905	4 4E 00	0.0225 + 00	40	9.0	9	
411	205	4.4E-02	9.833E + 02	40	20	2	
413	206	4.3E-02	9.833E + 02	40	20	2	
414	207	4.2E-02	9.833E + 02	40	20	2	
416			0.000= 0=	- 0		_	
417	208	4.1E - 02	9.832E + 02	40	20	2	
418	209	4.0E-02	9.832E + 02	40	20	2	
420							
421	210	$3.9\mathrm{E}$ - 02	9.832E + 02	40	20	2	
423	211	$3.9\mathrm{E}$ - 02	9.832E + 02	40	20	2	
424	212	3.8E-02	9.832E + 02	40	20	2	
425 426	414	9.0E-UZ	ə.0 9 4±±04	40	20	<u> </u>	
427	213	$3.7\mathrm{E}$ - 02	9.832E + 02	40	20	2	
428 429	214	$3.6\mathrm{E}$ - 02	9.832E + 02	40	20	2	
430							
431	215	$3.6\mathrm{E}$ - 02	9.832E + 02	40	20	2	

1						
432	016	9 75 09	0.0000 + 00	4.0	20	9
433	216	$3.5\mathrm{E}$ - 02	9.832E + 02	40	20	2
435	217	$3.4\mathrm{E}$ - 02	9.832E + 02	40	20	2
436						
437	218	$3.4\mathrm{E}$ - 02	9.832E + 02	40	20	2
438	219	3.3E-02	9.832E + 02	40	20	2
439	219	3.3E-02	9.832E+02	40	20	2
441	220	$3.2\mathrm{E}$ - 02	9.832E + 02	40	20	2
442						
443	221	$3.2\mathrm{E}$ - 02	9.832E + 02	40	20	2
444	222	3.1E-02	9.832E+02	40	20	2
446	222	0.11. 02	J.002E 02	10	20	2
447	223	$3.0\mathrm{E}$ - 02	9.831E + 02	40	20	2
448	224	0.07.00	0.0047	4.0	2.0	
449	224	$3.0\mathrm{E}$ - 02	9.831E + 02	40	20	2
450 451	225	2.9E-02	9.831E + 02	40	20	2
452						
453	226	$2.9\mathrm{E}$ - 02	9.831E + 02	40	20	2
454 455	227	2.8E-02	9.831E + 02	40	20	2
456	221	2.0102	3.031E 02	40	20	2
457	228	2.8E-02	9.831E + 02	40	20	2
458	222	. - D	0.0047	4.0	2.0	
459 460	229	$2.7\mathrm{E}$ - 02	9.831E + 02	40	20	2
461	230	$2.6\mathrm{E}$ - 02	9.831E + 02	40	20	2
462						
463	231	$2.6\mathrm{E}$ - 02	9.831E + 02	40	20	2
464	232	2.5E-02	9.831E + 02	40	20	2
466	202	2.01 02	3.031E 02	10	20	2
467	233	$2.5\mathrm{E}$ - 02	9.831E + 02	40	20	2
468	0.5 :		0.0017			_
469 470	234	$2.4\mathrm{E}$ - 02	9.831E + 02	40	20	2
470	235	2.4E-02	9.831E+02	40	20	2
472						
473	236	2.3E-02	9.831E + 02	40	20	2
474						

475	237	2.3E-02	9.831E + 02	40	20	2
476 477	238	2.3E-02	9.831E+02	40	20	2
478						
479	239	2.2E-02	9.831E + 02	40	20	2
480 481	240	2.2E-02	9.831E+02	40	20	2
482						
483	241	2.1E-02	9.831E + 02	40	20	2
484	0.40	9.1E 09	0.021E+00	40	20	2
485 486	242	2.1E-02	9.831E + 02	40	20	2
487	243	2.0E-02	9.831E + 02	40	20	2
488						
489	244	2.0E-02	9.830E + 02	40	20	2
490 491	245	2.0E-02	9.830E+02	40	20	2
492						
493	246	1.9E-02	9.830E + 02	40	20	2
494 495	247	1.9E-02	9.830E+02	40	20	2
496	241	1.01 -02	3.030L 02	10	20	2
497	248	1.8E-02	9.830E + 02	40	20	2
498	2.40	4.07.00		4.0	2.0	
499 500	249	1.8E-02	9.830E + 02	40	20	2
501	250	1.8E-02	9.830E+02	40	20	2
502						
503	251	1.7E - 02	9.830E + 02	40	20	2
504	252	1.7E-02	9.830E+02	40	20	2
506	202	1.12 02	0.0001102	10	20	-
507	253	1.7E - 02	9.830E + 02	40	20	2
508						
509 510	254	1.6E - 02	9.830E + 02	40	20	2
511	255	1.6E-02	9.830E + 02	40	20	2
512						
513	256	1.6E-02	9.830E + 02	40	20	2
514 515	257	1.5E-02	9.830E+02	40	20	2
516		-	• -			
517	258	$1.5\mathrm{E}$ - 02	9.830E + 02	40	20	2

I						
518 519	259	1.5E-02	9.830E+02	40	20	2
520	209	1.5E-02	9.000E+02	40	20	2
521	260	1.4E-02	9.830E+02	40	20	2
522						
523	261	$1.4\mathrm{E}$ - 02	9.830E + 02	40	20	2
524						
525	262	1.4E-02	9.830E + 02	40	20	2
526 527	263	1.4E-02	9.830E+02	40	20	2
528	200	1.46-02	3.000E 02	10	20	4
529	264	1.3E-02	9.830E + 02	40	20	2
530						
531	265	1.3E-02	9.830E + 02	40	20	2
532	200	1 20 02	0.0000 + 00	40	20	9
533	266	1.3E-02	9.830E + 02	40	20	2
534	267	1.3E-02	9.830E+02	40	20	2
536						
537	268	$1.2\mathrm{E}$ - 02	9.830E + 02	40	20	2
538						
539	269	1.2E-02	9.830E + 02	40	20	2
540	270	1.2E-02	9.830E+02	40	20	2
541 542	210	1.2E-02	9.000E +02	40	20	2
543	271	1.2E-02	9.830E + 02	40	20	2
544						
545	272	$1.1\mathrm{E}$ - 02	9.830E + 02	40	20	2
546	252	1 15 00	0.0000	40	2.0	2
547	273	1.1E-02	9.830E + 02	40	20	2
548 549	274	1.1E-02	9.830E+02	40	20	2
550			0.0002 02	10	_ ~	_
551	275	$1.1\mathrm{E}$ - 02	9.830E + 02	40	20	2
552						
553	276	1.1E - 02	9.830E + 02	40	20	2
554	277	1 00 00	0.830E+02	40	20	2
555 556	277	1.0E-02	9.830E + 02	40	20	2
557	278	1.0E-02	9.830E + 02	40	20	2
558						
559	279	9.9E-03	9.830E + 02	40	20	2
560						

561	280	9.7E-03	9.830E + 02	40	20	2
562 563	281	9.5E-03	9.830E+02	40	20	2
564						
565	282	9.3E-03	9.830E + 02	40	20	2
566	283	9.1E-03	9.829E+02	40	20	2
567 568	200	9.1L-03	9.02911+02	40	20	2
569	284	9.0E-03	9.829E + 02	40	20	2
570						
571	285	8.8E-03	9.829E + 02	40	20	2
572 573	286	8.6E-03	9.829E + 02	40	20	2
574					-	
575	287	$8.4\mathrm{E}$ - 03	9.829E + 02	40	20	2
576						
577 578	288	8.3E-03	9.829E + 02	40	20	2
579	289	8.1E-03	9.829E + 02	40	20	2
580						
581	290	7.9E-03	9.829E + 02	40	20	2
582 583	291	7.8E-03	9.829E+02	40	20	2
584	231	7.01.00	9.02911+02	40	20	2
585	292	7.6E-03	9.829E + 02	40	20	2
586						
587	293	7.5E-03	9.829E + 02	40	20	2
588 589	294	7.3E-03	9.829E + 02	40	20	2
590						
591	295	7.2E-03	9.829E + 02	40	20	2
592						
593	296	7.0E-03	9.829E + 02	40	20	2
594 595	297	6.9E-03	9.829E+02	40	20	2
596		0.0_		- 0	_ `	
597	298	6.8E-03	9.829E + 02	40	20	2
598						
599	299	6.6E-03	9.829E + 02	40	20	2
600	300	6.5E-03	9.829E+02	40	20	2
602			•			
603	301	$6.4\mathrm{E}$ - 03	9.829E + 02	40	20	2

604						
604	302	6.2E-03	9.829E + 02	40	20	2
606						
607	303	6.1E-03	9.829E + 02	40	20	2
608						
609	304	6.0E-03	9.829E + 02	40	20	2
610	305	5.9E-03	9.829E+02	40	20	2
612	300	0.01	0.0202 02	10	20	-
613	306	$5.8\mathrm{E}$ - 03	9.829E + 02	40	20	2
614						
615	307	5.6E-03	9.829E + 02	40	20	2
616	308	5.5E-03	9.829E+02	40	20	2
618	300	0.02 00	0.0202 02		_ `	_
619	309	$5.4\mathrm{E}$ - 03	9.829E + 02	40	20	2
620						
621	310	5.3E-03	9.829E + 02	40	20	2
622 623	311	5.2E-03	9.829E+02	40	20	2
624						
625	312	$5.1\mathrm{E}$ - 03	9.829E + 02	40	20	2
626	0.1.0	F 0 D 00	0.000 .00	4.0	20	2
627 628	313	5.0E-03	9.829E + 02	40	20	2
629	314	4.9E-03	9.829E + 02	40	20	2
630						
631	315	4.8E-03	9.829E + 02	40	20	2
632	216	4 7E 02	0.000E+00	40	20	2
633	316	4.7E-03	9.829E + 02	40	20	2
635	317	4.6E-03	9.829E + 02	40	20	2
636						
637	318	4.5E-03	9.829E + 02	40	20	2
638	319	4.4E-03	9.829E+02	40	20	2
639 640	319	4.41.503	9.82911+02	40	20	<i>L</i>
641	320	4.4E-03	9.829E + 02	40	20	2
642						
643	321	4.3E-03	9.829E + 02	40	20	2
644	322	4.2E-03	9.829E+02	40	20	2
646	322	1.22 00	0.0201102	10	-0	-
1						

647	323	4.1E-03	9.829E + 02	40	20	2
648						
649	324	4.0E-03	9.829E + 02	40	20	2
650						
651	325	3.9E-03	9.829E + 02	40	20	2
652						
653	326	3.9E-03	9.829E + 02	40	20	2
654	207	2.05.02	0.000E+00	4.0	0.0	0
655	327	3.8E-03	9.829E + 02	40	20	2
656 657	328	3.7E-03	9.829E + 02	40	20	2
658	020	0.1L 00	0.0201102	10	20	
659	329	3.6E-03	9.829E + 02	40	20	2
660						
661	330	3.6E-03	9.829E + 02	40	20	2
662						
663	331	3.5E-03	9.829E + 02	40	20	2
664	222	0.47.00		4.0	2.0	
665	332	3.4E - 03	9.829E + 02	40	20	2
666	333	3.4E-03	9.829E+02	40	20	2
668	555	0.4L-00	3.023E 02	10	20	
669	334	3.3E-03	9.829E + 02	40	20	2
670						
671	335	3.2E-03	9.829E + 02	40	20	2
672						
673	336	3.2E-03	9.829E + 02	40	20	2
674	225	0.45		4.0	2.0	
675	337	3.1E - 03	9.829E + 02	40	20	2
676	338	3.0E-03	9.829E+02	40	20	2
677 678	330	3.0L-03	3.023E 02	10	20	
679	339	3.0E-03	9.829E + 02	40	20	2
680						
681	340	2.9E-03	9.829E + 02	40	20	2
682						
683	341	2.9E-03	9.829E + 02	40	20	2
684	- 1 -					
685	342	2.8E-03	9.829E + 02	40	20	2
686	343	2.7E-03	9.829E + 02	40	20	2
687 688	J4J	4.1E-Uə	₽.049±±+U4	40	4 U	۷
689	344	2.7E-03	9.829E + 02	40	20	2
1				. •	. •	

1						
690	2.45	2.45.02	0.000 7.00	4.0	2.0	2
691	345	$2.6\mathrm{E}$ - 03	9.829E + 02	40	20	2
692	346	$2.6\mathrm{E}$ - 03	9.829E + 02	40	20	2
693 694	340	2.015-03	9.829E+02	40	20	2
695	347	$2.5\mathrm{E}$ - 03	9.829E + 02	40	20	2
696			·			
697	348	$2.5\mathrm{E}$ - 03	9.829E + 02	40	20	2
698						
699	349	$2.4\mathrm{E}$ - 03	9.829E + 02	40	20	2
700						
701	350	$2.4\mathrm{E}$ - 03	9.829E + 02	40	20	2
702	351	2.3E-03	9.829E + 02	40	20	2
703 704	331	2.312-03	9.82911-02	40	20	2
705	352	2.3E-03	9.829E + 02	40	20	2
706						
707	353	$2.2\mathrm{E}$ - 03	9.829E + 02	40	20	2
708						
709	354	$2.2\mathrm{E}$ - 03	9.829E + 02	40	20	2
710		2.25.00		4.0	2.0	2
711	355	$2.2\mathrm{E}$ - 03	9.829E + 02	40	20	2
712 713	356	2.1E-03	9.829E + 02	40	20	2
714	990	2.12 00	0.0201 02	10	20	_
715	357	2.1E-03	9.829E + 02	40	20	2
716						
717	358	$2.0\mathrm{E}$ - 03	9.829E + 02	40	20	2
718						
719	359	$2.0\mathrm{E}$ - 03	9.829E + 02	40	20	2
720	360	2.0E-03	9.829E + 02	40	20	2
721 722	300	2.02-03	9.029E+02	40	20	2
723	361	1.9E-03	9.829E + 02	40	20	2
724						
725	362	1.9E-03	9.829E + 02	40	20	2
726						
727	363	1.8E-03	9.829E + 02	40	20	2
728	0.0.4	1 00 00	0.0000	4.0	00	0
729	364	$1.8\mathrm{E}$ - 03	9.829E + 02	40	20	2
730 731	365	1.8E-03	9.829E + 02	40	20	2
731	500	1.0100	0.02011-02	40	20	2
1,32						

733	366	1.7E-03	9.829E + 02	40	20	2	
734 735	367	$1.7\mathrm{E}$ - 03	9.829E + 02	40	20	2	
736							
737	368	$1.7\mathrm{E}$ - 03	9.829E + 02	40	20	2	
738 739	369	1.6E-03	9.829E+02	40	20	2	
740	a=a			4.0	2.0		
741 742	370	$1.6\mathrm{E}$ - 03	9.829E + 02	40	20	2	
743	371	$1.6\mathrm{E}$ - 03	9.829E + 02	40	20	2	
744	270	1 KE 02	0.000E+00	40	9.0	9	
745 746	372	$1.5\mathrm{E}$ - 03	9.829E + 02	40	20	2	
747	373	$1.5\mathrm{E}$ - 03	9.829E + 02	40	20	2	
748 749	374	1.5E - 03	9.829E+02	40	20	2	
750	914	1.52 -05	9.029E+02	40	20	2	
751	375	$1.4\mathrm{E}$ - 03	9.829E + 02	40	20	2	
752 753	376	$1.4\mathrm{E}$ - 03	9.829E+02	40	20	2	
754							
755	377	$1.4\mathrm{E}$ - 03	9.829E + 02	40	20	2	
756 757	378	$1.4\mathrm{E}$ - 03	9.829E+02	40	20	2	
758							
759	379	1.3E-03	9.829E + 02	40	20	2	
760 761	380	1.3E-03	9.829E+02	40	20	2	
762							
763 764	381	$1.3\mathrm{E}$ - 03	9.829E + 02	40	20	2	
765	382	1.3E-03	9.829E+02	40	20	2	
766	909	1 25 02	0.00000	40	9.0	0	
767 768	383	$1.2\mathrm{E}$ - 03	9.829E + 02	40	20	2	
769	384	1.2E-03	9.829E + 02	40	20	2	
770	385	1.2E-03	9.829E+02	40	20	2	
771 772	909	1.4E-U3	9.049E+U2	40	20	2	
773	386	$1.2\mathrm{E}$ - 03	9.829E + 02	40	20	2	
774 775	387	1.1E-03	9.829E+02	40	20	2	
1		00		- 9		-	

776 777	388	1.1E-03	9.829E+02	40	20	2
778 779 780	389	1.1E-03	9.829E + 02	40	20	2
781 782	390	1.1E-03	9.829E + 02	40	20	2
783 784	391	1.0E-03	9.829E + 02	40	20	2
785 786	392	1.0E -03	9.829E + 02	40	20	2
787 788	393	1.0E-03	9.829E+02	40	20	2
789	394	9.9E-04	9.829E + 02	40	20	2

	NITER	SOURCE	T (2,62)	TIME(s)	DT(s)	NSTEP
2	1111111	SOOTOE	1 (2,02)	TIMIT (2)	D1(9)	INDILL
3	1	$1.2\mathrm{E}$ - 02	2.414E+01	6000	20	300
4						
5	2	$1.2\mathrm{E}$ - 02	2.413E+01	6000	20	300
6	9	1 00 00	0.41217+01	6000	20	200
7 8	3	$1.2\mathrm{E}$ - 02	2.413E+01	6000	20	300
9	4	$1.1\mathrm{E}$ - 02	2.413E+01	6000	20	300
10						
11	5	$1.1\mathrm{E}$ - 02	2.413E+01	6000	20	300
12		1.15.00	0.4100.01	0000	20	200
13	6	$1.1\mathrm{E}$ - 02	2.413E+01	6000	20	300
14	7	1.1E-02	2.413E+01	6000	20	300
16						
17	8	$1.1\mathrm{E}$ - 02	2.413E+01	6000	20	300
18						
19	9	$1.0\mathrm{E}$ - 02	2.413E+01	6000	20	300
20	10	$1.0\mathrm{E}$ - 02	2.412E+01	6000	20	300
22		1.02 02	, 01	0000	-0	
23	11	$1.0\mathrm{E}$ - 02	2.412E+01	6000	20	300
24						
25	12	9.8E-03	2.412E+01	6000	20	300
26	13	$9.6\mathrm{E}$ - 03	2.412E+01	6000	20	300
27	1.9	9.UE-UƏ	2.412E+Ul	0000	20	300

28	14	$9.4\mathrm{E}$ - 03	2.412E+01	6000	20	300
30	11	0.1E 00	2.1121 01	0000	20	900
31	15	$9.2\mathrm{E}$ - 03	2.412E + 01	6000	20	300
32						
33	16	$9.0\mathrm{E}$ - 03	2.412E + 01	6000	20	300
34	17	8.9E - 03	2.412E+01	6000	20	300
36	11	0.52 00	2.1121 01	0000	20	900
37	18	$8.7\mathrm{E}$ - 03	$2.412 \!\pm\! +01$	6000	20	300
38						
39 40	19	$8.5\mathrm{E}$ - 03	2.411E+01	6000	20	300
41	20	8.3E-03	2.411E+01	6000	20	300
42						
43	21	$8.2\mathrm{E}$ - 03	2.411E+01	6000	20	300
44	22	8.0E-03	2.411E+01	6000	20	300
45 46	22	0.0E-03	2.41111 ± 01	0000	20	300
47	23	$7.9\mathrm{E}$ - 03	2.411E+01	6000	20	300
48						
49	24	$7.7\mathrm{E}$ - 03	2.411E+01	6000	20	300
50	25	$7.6\mathrm{E}$ - 03	2.411E + 01	6000	20	300
52						
53	26	$7.4\mathrm{E}$ - 03	2.411E+01	6000	20	300
54	27	7.3E-03	2.411E+01	6000	20	300
56	21	7.5E-05	2.41111 ± 01	0000	20	300
57	28	$7.1\mathrm{E}$ - 03	2.411E+01	6000	20	300
58						
59	29	$7.0\mathrm{E}$ - 03	2.410E + 01	6000	20	300
60	30	$6.8 \mathrm{E} - 03$	2.410E + 01	6000	20	300
62						
63	31	$6.7\mathrm{E}$ - 03	2.410E+01	6000	20	300
64	32	6.6E-03	2.410E+01	6000	20	300
65	ა∠	0.0E-U3	2.41UE+UI	0000	20	300
67	33	$6.4\mathrm{E}$ - 03	2.410E+01	6000	20	300
68						
69	34	$6.3\mathrm{E}$ - 03	2.410E+01	6000	20	300
70						

71	35	6.2E-03	2.410E+01	6000	20	300	
72	36	6.1E-03	2.410E+01	6000	20	300	
74 75	37	5.9E-03	2.410E + 01	6000	20	300	
76	38	5.8E-03	2.410E + 01	6000	20	300	
77	30	5.6E-05	2.41012+01	0000	20	300	
79 80	39	$5.7\mathrm{E}$ - 03	2.410E+01	6000	20	300	
81	40	$5.6\mathrm{E}$ - 03	2.410E+01	6000	20	300	
82 83	41	5.5E-03	2.410E+01	6000	20	300	
84	40	5 4E 02	9. 41.0E±01	6000	20	200	
85 86	42	$5.4\mathrm{E}$ - 03	2.410E + 01	6000	20	300	
87 88	43	$5.3\mathrm{E}$ - 03	2.409E+01	6000	20	300	
89	44	$5.2\mathrm{E}$ - 03	2.409E+01	6000	20	300	
90 91	45	5.1E-03	2.409E+01	6000	20	300	
92	46	5 OF 02	2 400E + 01	6000	20	200	
93 94	40	$5.0\mathrm{E}$ - 03	2.409E+01	6000	20	300	
95 96	47	$4.9\mathrm{E}$ - 03	2.409E+01	6000	20	300	
97	48	4.8E-03	2.409E+01	6000	20	300	
98 99	49	4.7E-03	$2.409E\!+\!01$	6000	20	300	
100	50	4.6E-03	2.409E+01	6000	20	300	
101	50	4.0E-03	2.409E+01	0000	20	300	
103 104	51	$4.5\mathrm{E}$ - 03	2.409E+01	6000	20	300	
105	52	$4.4\mathrm{E}$ - 03	2.409E+01	6000	20	300	
106	53	4.3E-03	2.409E+01	6000	20	300	
108	54	4.2E-03	2.409E+01	6000	20	300	
110							
111	55	4.1E-03	2.409E+01	6000	20	300	
113	56	4.1E-03	2.409E+01	6000	20	300	

1						
114	57	4.0E-03	2.409E+01	6000	20	300
116	•	1.02 00	2.1002 01	0000	20	000
117	58	$3.9\mathrm{E}$ - 03	2.409E+01	6000	20	300
118	F 0		0.4000.01	0000	2.0	200
119 120	59	3.8E-03	2.409E + 01	6000	20	300
121	60	$3.8\mathrm{E}$ - 03	2.409E+01	6000	20	300
122						
123	61	$3.7\mathrm{E}$ - 03	2.408E+01	6000	20	300
124	62	3.6E-03	2.408E + 01	6000	20	300
126	~ -	0.02 00	201002701	0000	_ ~	
127	63	$3.5\mathrm{E}$ - 03	2.408E + 01	6000	20	300
128	64	3.5E-03	2.408E+01	6000	20	300
129	04	3.5E-05	2.400E+01	0000	20	300
131	65	$3.4\mathrm{E}$ - 03	2.408E + 01	6000	20	300
132	2.2	2.25.02	0.4000.01	0000	2.0	200
133	66	3.3E-03	2.408E+01	6000	20	300
135	67	3.3E-03	2.408E+01	6000	20	300
136						
137	68	$3.2\mathrm{E}$ - 03	2.408E+01	6000	20	300
138	69	3.1E-03	2.408E + 01	6000	20	300
140						
141	70	$3.1\mathrm{E}$ - 03	2.408E+01	6000	20	300
142	71	3.0E-03	2.408E+01	6000	20	300
144	11	3.0E 03	2.4001 01	0000	20	900
145	72	$3.0\mathrm{E}$ - 03	2.408E+01	6000	20	300
146	79	2 OF 02	9 400E + 01	6000	20	200
147 148	73	2.9E-03	2.408E+01	6000	20	300
149	74	2.8E-03	2.408E+01	6000	20	300
150						
151 152	75	2.8E-03	2.408E+01	6000	20	300
152	76	2.7E-03	2.408E+01	6000	20	300
154						
155	77	$2.7\mathrm{E}$ - 03	2.408E+01	6000	20	300
156						

157	78	$2.6\mathrm{E}$ - 03	2.408E + 01	6000	20	300
158						
159	79	$2.6\mathrm{E}$ - 03	2.408E+01	6000	20	300
160						
161	80	$2.5\mathrm{E}$ - 03	2.408E+01	6000	20	300
162	0.1	0.50.00	0 400E + 01	6000	20	200
163	81	2.5E-03	2.408E+01	6000	20	300
164	82	2.4E-03	2.408E+01	6000	20	300
165	02	2.46-05	2.4001	0000	20	300
167	83	2.4E-03	2.408E+01	6000	20	300
168		2112 00	2,1002,101		_ 0	
169	84	2.3E-03	2.408E+01	6000	20	300
170						
171	85	$2.3\mathrm{E}$ - 03	2.408E + 01	6000	20	300
172						
173	86	$2.2\mathrm{E}$ - 03	2.408E + 01	6000	20	300
174						
175	87	2.2E-03	2.408E+01	6000	20	300
176	0.0	0.15.00	2 4005 : 01	2000	2.0	200
177	88	2.1E-03	2.408E+01	6000	20	300
178	89	2.1E-03	2.408E+01	6000	20	300
179	0.9	2.1103	2.4001	0000	20	300
181	90	2.1E-03	2.408E+01	6000	20	300
182						
183	91	2.0E-03	2.407E + 01	6000	20	300
184						
185	92	$2.0\mathrm{E}$ - 03	2.407E + 01	6000	20	300
186						
187	93	1.9E-03	2.407E + 01	6000	20	300
188						
189	94	1.9E-03	2.407E + 01	6000	20	300
190	0.5	1.00.00	0 407E + 01	6000	20	200
191	95	1.9E-03	2.407E+01	6000	20	300
192	96	1.8E-03	2.407E + 01	6000	20	300
193	<i>3</i> 0	1.01-00	2.40111 01	0000	20	
195	97	1.8E-03	2.407E + 01	6000	20	300
196					-	
197	98	1.8E-03	2.407E+01	6000	20	300
198						
199	99	1.7E-03	2.407E+01	6000	20	300

1						
200	100	1 7D 09	0 407E + 01	6000	20	200
201	100	1.7E-03	2.407E+01	6000	20	300
202	101	1.7E-03	2.407E + 01	6000	20	300
203	101	1.712-03	2.407E+01	0000	20	300
204	102	1.6E-03	2.407E + 01	6000	20	300
206	102	1.02 00	2.10,2,01		20	300
207	103	1.6E-03	2.407E + 01	6000	20	300
208						
209	104	1.6E-03	2.407E + 01	6000	20	300
210						
211	105	$1.5\mathrm{E}$ - 03	2.407E + 01	6000	20	300
212						
213	106	$1.5\mathrm{E}$ - 03	2.407E + 01	6000	20	300
214						
215	107	1.5E-03	2.407E + 01	6000	20	300
216	100	1 47 00	0.4050.01	2000	2.0	200
217	108	1.4E-03	2.407E+01	6000	20	300
218	109	1.4E-03	2.407E+01	6000	20	300
219	109	1.45-03	2.407E+01	0000	20	300
220	110	1.4E-03	2.407E+01	6000	20	300
222	110	1112 00	2,10,12,101		_0	
223	111	1.4E-03	2.407E + 01	6000	20	300
224						
225	112	$1.3\mathrm{E}$ - 03	2.407E + 01	6000	20	300
226						
227	113	1.3E-03	2.407E + 01	6000	20	300
228						
229	114	1.3E-03	2.407E + 01	6000	20	300
230	115	1 00 00	0.4075.01	2000	20	200
231	115	1.3E-03	2.407E+01	6000	20	300
232	116	1.2E-03	2.407E+01	6000	20	300
233	110	1.2E-03	2.40712701	0000	20	300
235	117	1.2E-03	2.407E + 01	6000	20	300
236	11,	1.22 00	2,10,12,101		_0	
237	118	1.2E-03	2.407E + 01	6000	20	300
238						
239	119	$1.2\mathrm{E}$ - 03	2.407E+01	6000	20	300
240						
241	120	$1.1\mathrm{E}$ - 03	2.407E + 01	6000	20	300
242						

243	121	1.1E-03	2.407E+01	6000	20	300	
244	122	1.1E-03	2.407E+01	6000	20	300	
246 247	123	1.1E-03	2.407E+01	6000	20	300	
248 249	124	1.0E-03	2.407E+01	6000	20	300	
250 251	125	1.0E -03	2.407E+01	6000	20	300	
252 253	126	1.0E-03	2.407E + 01	6000	20	300	
254 255	127	9.8E -04	2.407E+01	6000	20	300	
255	127	9.8E-04	2.407E+01	6000	20	300	