Principal Components Regression

$$y_i = \beta_0 + \sum \beta_j x_{ij} + \epsilon_i$$

Usual least squares may be inappropriate if

- x is high dimensional, especially in comparison to sample size
- x is highly correlated
- main focus is on future prediction

In these cases, we would like to find some way to reduce the amount of covariate informaion

- Variable selection procedures (unstable)
- Principle components regression

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Principal Components Regression

$$y_i = \beta_0 + \sum \beta_j x_{ij} + \epsilon_i$$

Instead, represent

$$\mathbf{x}_i = \sum_{j=1}^p \alpha_{ij} \xi_j$$

for ξ_j the principle components of \mathbf{x} .

Then model

$$y_i = \beta_0' + \sum_{i=1}^{p'} \beta_j' \alpha_{ij} + \epsilon_i$$

for some p' < p.

◆ロ > ◆母 > ◆ き > ◆き > き の < で </p>

Principal Components Regression

$$y_i = \beta_0' + \sum_{i=1}^{p'} \beta_j' \alpha_{ij} + \epsilon_i$$

Advantages:

- \bullet α_{ii} are uncorrelated stability of estimates
- dimension reduction
- stable variable selection

Choosing p'

- Use enough PCs to caputure 90% of variation
- Maximize adjusted R²
- Do variable selection (ie, not necessarily leading PCs)

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Principal Components Regression

$$y_i = \beta_0' + \sum_{j=1}^{p'} \beta_j' \alpha_{ij} + \epsilon_i$$

This is a bet that most variation in y is in direction of large variation in x.

Bias: variation in *y* due to PCs not included in the model

If n > p, we can consider all pPrinciple Components. Otherwise, we can't escape this bet.

Models for "Miss Congeniality"

Predict rating from ratings of other movies.

	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6
Independence Day	-0.249	0.266	-0.103		-0.106	-0.113
Patriot	-0.259		0.308	0.484	-0.186	0.272
Day After Tomorrow	-0.317	0.135	0.119	-0.658	-0.343	0.201
Pirates Caribbean	-0.149		-0.242		-0.338	0.553
Pretty Woman	-0.232	-0.427	-0.303			-0.363
Forrest Gump	-0.113			0.286	-0.299	-0.170
The Green Mile	-0.162			0.303	-0.277	
Con Air	-0.301	0.318	-0.223		0.441	0.105
Twister	-0.302	0.138	-0.165	-0.192	-0.265	-0.489
Sweet Home Alabama	-0.295	-0.599	-0.181	-0.172	0.234	0.350
Pearl Harbor	-0.366	-0.131	0.743		0.258	-0.113
Armageddon	-0.333	0.215			0.195	
The Rock	-0.244	0.307	-0.221	0.192	0.295	
What Women Want	-0.286	-0.297	-0.111	0.183	-0.202	-0.101

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3.418e-17	8.105e-03	4.22e-15	1.000000	
netpca2\$scoresComp.1	-2.484e-01	4.413e-03	-56.277	< 2e-16	**
netpca2\$scoresComp.2	-1.914e-01	8.580e-03	-22.310	< 2e-16	**
netpca2\$scoresComp.3	-1.169e-01	9.183e-03	-12.734	< 2e-16	**
netpca2\$scoresComp.4	-5.635e-02	9.314e-03	-6.050	1.50e-09	**
netpca2\$scoresComp.5	2.117e-02	1.017e-02	2.081	0.037426	*
netpca2\$scoresComp.6	2.050e-02	1.042e-02	1.967	0.049198	*
netpca2\$scoresComp.7	-2.494e-02	1.062e-02	-2.348	0.018906	*
netpca2\$scoresComp.8	-6.175e-02	1.102e-02	-5.601	2.19e-08	**
netpca2\$scoresComp.9	5.444e-03	1.131e-02	0.481	0.630175	
netpca2\$scoresComp.10	-2.448e-02	1.154e-02	-2.121	0.033928	*
netpca2\$scoresComp.11	2.787e-03	1.176e-02	0.237	0.812658	
netpca2\$scoresComp.12	2.826e-02	1.285e-02	2.200	0.027825	*
netpca2\$scoresComp.13	5.054e-02	1.315e-02	3.844	0.000122	**
netpca2\$scoresComp.14	-6.644e-02	1.336e-02	-4.972	6.74e-07	**

Functional PCR

For functional data analysis, we can also employ principal components regression.

$$x_i(t) = \sum f_{ij}\xi_j(t)$$

And we can model

$$y_i = \beta_0 + \sum \beta_j f_{ij} + \epsilon_i$$

or

$$\mathbf{y} = F\beta + \epsilon$$

- reduces to a standard linear regression problem on orthogonal covariates
- avoids the need for cross-validation (assuming number of PCs is fixed)

By far the most theoretically studied method.

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Principal Components of Market Data

> HiFi.pca\$varprop

[1] 9.275017e-01 6.184101e-02 9.802453e-03 5.535989e-04 2.{

> pcamod = lm(y~HiFi.pca\$scores[,1:5])

> summary(pcamod)

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.35925 0.01110 32.365 1.46e-14 *** HiFi.pca\$scores[, 1:5]1 0.25340 0.04328 5.854 4.19e-05 *** HiFi.pca\$scores[, 1:5]2 -0.74783 0.16763 -4.461 0.000538 *** HiFi.pca\$scores[, 1:5]3 0.93695 0.42103 2.225 0.043003 * HiFi.pca\$scores[, 1:5]4 -4.20080 1.77167 -2.371 0.032624 * HiFi.pca\$scores[, 1:5]5 3.17800 2.45745 1.293 0.216870

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 0.04964 on 14 degrees of freedom Multiple R-squared: 0.8259, Adjusted R-squared: 0.7638 F-statistic: 13.28 on 5 and 14 DF, p-value: 6.733e-05

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Functional Regression Interpretation

$$y_i = \beta_0 + \sum \beta_j f_{ij} + \epsilon_i$$

Recall that $f_{ij} = \int x_i(t)\xi_i(t)dt$ so that

$$y_i = \beta_0 + \sum \int \beta_j \xi_j(t) x_i(t) dt + \epsilon_i$$

So we can interpret

$$\beta(t) = \sum \beta_j \xi_j(t)$$

and use the model

$$y_i = \beta_0 + \int \beta(t) x_i(t) dt + \epsilon_i$$

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

HiFi Data

pcabeta = pcamod\$coef[2]*HiFi.pca\$harmonics[1]+ pcamod\$coef[3]*HiFi.pca\$harmonics[2]+ pcamod\$coef[4]*HiFi.pca\$harmonics[3]+ pcamod\$coef[5]*HiFi.pca\$harmonics[4]+ pcamod\$coef[6]*HiFi.pca\$harmonics[5]

plot(pcabeta)

4□ > 4□ > 4□ > 4□ > 4□ > 90

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Confidence Intervals

$$\hat{eta}(t) = \sum \hat{eta}_j \xi_j(t)$$

SO

$$\mathsf{Var}\left[\hat{eta}(t)
ight] = \left[\xi_1(t) \ \cdots \ \xi_k(t)
ight] \mathsf{Var}\left[\hat{eta}
ight] \left[egin{array}{c} \xi_1(t) \ dots \ \xi_k(t) \end{array}
ight]$$

and recall that

$$\mathsf{Var}\left[\beta\right] = \sigma^2 \left(F^\mathsf{T} F\right)^{-1}$$

When the PCs are not smoothed, F^TF is diagonal and

$$\mathsf{Var}\left[\hat{eta}(t)
ight] = \sum \mathsf{mbox} \mathsf{Var}\left[\hat{eta}_j
ight] \xi_i^2(t)$$

When smoothed PCs are used, F^TF may no longer be orthogonal.

Confidence Intervals for HiFis

```
pcacoefvar = summary(pcamod)$coefficients[,2]^2
pcabetavar = pcacoefvar[2]*HiFi.pca$harmonics[1]^2+
    pcacoefvar[3]*HiFi.pca$harmonics[2]^2+
    pcacoefvar[4]*HiFi.pca$harmonics[3]^2+
    pcacoefvar[5]*HiFi.pca$harmonics[4]^2+
    pcacoefvar[6]*HiFi.pca$harmonics[5]^2
```


lines(pcabeta+2*sqrt(pcabetavar))
lines(pcabeta-2*sqrt(pcabetavar))

Summary

- Principal components regression = dimension reduction technique
- functional Principal components regression works exactly the same way
- \blacksquare re-interpretation as a basis expansion for $\beta(t)$
- standard errors for $\beta(t)$ calculated from linear regression covariance
- Selecting number of PCs = choice of basis
- Alternative is smoothing; performance depends on how well truth matches your assumptions.

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Comparisons

Adjusted R^2 :

Pointwise	PCA	Smooth
0.7575	0.7368	0.7705

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Problems of Inference

Focus so far on exploratory data analysis

- Estimates of relationships or smooths
- Pointwise confidence intervals

Alternative way of assessing meaning:

What would the estimate look like if there were no relationship? especially because we are using non-parametric methods

This is exactly a hypothesis test

$$\mathsf{H}_0:\beta(t)=0$$

Permutation Tests

$$H_0: \beta(t) = 0$$

Problem: smoothing, integrals, basis expansions are not accounted for by traditional tests.

Problem: I don't want to think too hard to create a test

Solution: permutation tests.

More Formally

We need

- **1** Data $\{y_i, x_i\}_{i=1}^n$
- 2 A test statistic T(y,x) measuring the strength of the relationship between y_i and x_i .

Do *i* in 1, ..., *B*:

- 1 Create new y' by randomly permuting the values in y.
- **2** Record $T_i = T(y', x)$.

If $T_{obs} = T(y, x)$ is greater than 1 - p% of the T_i , reject H_0 .

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Permutation Tests

Given data $\{y_i, x_i\}_{i=1}^n$ we want a non-parametric test of

 H_0 : y is independent of x

Idea: if H_0 is true, the pairing becomes important.

So: try randomly pairing y_i with x_k and see what your model is like

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Examples

Functional Linear Regression and Permutation F-Tests

We have data $\{y_i, x_i(t)\}$ with a model

$$y_i = \alpha + \int \beta(t) x_i(t) dt + \epsilon_i$$

and $\hat{\beta}(t)$ estimated by penalized least squares

Choose a the usual F statistic as a measure of association:

$$F = \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

Note that scaling doesn't matter.

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Significance of HiFi Penetration Prediction

> Fpermres = Fperm.fd(y,xfdlist,betalist)

Functional Responses

Are the following populations of functions different?

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Permutation t-Tests

$$t(x_1, x_2) = rac{ar{x}_1 - ar{x}_2}{\sqrt{rac{1}{n_1} {\sf Var}(x_1) + rac{1}{n_2} {\sf Var}(x_2)}}$$

gives relative difference between two groups of observations.

Functional equivalent is a point-wise statistic

$$t(x_1(t),x_2(t)) = rac{ar{x}_1(t) - ar{x}_2(t)}{\sqrt{rac{1}{n_1} \mathsf{Var}(x_1(t)) + rac{1}{n_2} \mathsf{Var}(x_2(t))}}$$

Interpretable in its own right.

Example

Is there a difference between the heights of boys and girls?

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Problems

Usual critical value = 1.98 does not account for

- multiple testing
- correlation between tests

Additionally, making assumptions about distributions of *curves* is difficult.

 \Rightarrow need permutation tests, but what statistic?

Max t

Take $T(x_1(t), x_2(t)) = \max t(x_1(t), x_2(t))$.

- provides a single number to test
- can run a permutation test based on $T(x_1(t), x_2(t))$
- powerful against local violations of the null
- may not be so powerful against consistent, small differences between groups of curves
- Other statistics such as $\int t(x_1(t), x_2(t))$ could also be used
- We can also look at the pointwise critical values of the permutation test.

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Boys v Girls

> res = tperm.fd(hgtffd,hgtmfd)

What about Rates of Growth?

BTRY 6150: Applied Functional Data Analysis: Functional Principal Components Regression

Summary

- Permutation tests avoid need for parametric assumptions
- Requires null assumption of independence of *y* and covariates (cannot test aspects of distribution, eg mean or variance)
- lacktriangle Application in functional linear regression: permutation F tests
- Functional *t*-tests for differences between groups
 - functional t-statistic pointwise interpretability between groups
 - \blacksquare base permutation tests on maximum, mean, pointwise values of t(t)

