Theorem 0.1. For D > 0, let $\{u_j\}_{j \in \mathbb{Z}} \subset \mathcal{S}'(\mathbb{R}^n)$ be a sequence of tempered distributions such that

$$\operatorname{supp}(\widehat{u_j}) \subset B(0, D \, 2^j) \quad \forall j \in \mathbb{Z}.$$

If $w \in A_{\infty}$, then the following holds:

(i) Let $0 , <math>0 < q \le \infty$ and $s > \tau_{p,q}(w)$. If $\|\{2^{js}u_j\}_{j\in\mathbb{Z}}\|_{L^p(w)(\ell^q)} < \infty$, then the series $\sum_{j\in\mathbb{Z}} u_j$ converges in $\dot{F}^s_{p,q}(w)$ (in $\mathcal{S}'_0(\mathbb{R}^n)$ if $q = \infty$) and

$$\left\| \sum_{j \in \mathbb{Z}} u_j \right\|_{\dot{F}^s_{p,q}(w)} \lesssim \left\| \{ 2^{js} u_j \}_{j \in \mathbb{Z}} \right\|_{L^p(w)(\ell^q)},$$

where the implicit constant depends only on n, D, s, p and q. An analogous statement, with $j \in \mathbb{N}_0$, holds true for $F_{p,q}^s(w)$ (when $q = \infty$, the convergence is in $\mathcal{S}'(\mathbb{R}^n)$).

(ii) Let $0 < p, q \leq \infty$ and $s > \tau_p(w)$. If $\|\{2^{js}u_j\}_{j\in\mathbb{Z}}\|_{\ell^q(L^p(w))} < \infty$, then the series $\sum_{j\in\mathbb{Z}} u_j$ converges in $\dot{B}^s_{p,q}(w)$ (in $\mathcal{S}'_0(\mathbb{R}^n)$ if $q = \infty$) and

$$\left\| \sum_{j \in \mathbb{Z}} u_j \right\|_{\dot{B}^{s}_{p,q}(w)} \lesssim \left\| \{ 2^{js} u_j \}_{j \in \mathbb{Z}} \right\|_{\ell^q(L^p(w))},$$

where the implicit constant depends only on n, D, s, p and q. An analogous statement, with $j \in \mathbb{N}_0$, holds true for $B_{p,q}^s(w)$ (when $q = \infty$, the convergence is in $\mathcal{S}'(\mathbb{R}^n)$).

For Part (i)