Generated on 2015-01-08 17:53:13 by gEcon version 0.8.3 (2015-01-08) Model name: rbc_cu

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, L_t^s} U_t = \beta E_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\ \mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} \tag{1.1}$$

s.t.:

$$C_t = \pi_t + L_t^{\mathrm{s}} W_t \quad (\lambda_t^{\mathrm{c}}) \tag{1.2}$$

1.2 First order conditions

$$\beta - \lambda_t^{\mathcal{U}} = 0 \quad (U_t) \tag{1.3}$$

$$-\lambda_t^{c} + \mu C_t^{-1+\mu} (1 - L_t^{s})^{1-\mu} \left(C_t^{\mu} (1 - L_t^{s})^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
(1.4)

$$\lambda_t^{c} W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^{s})^{-\mu} \left(C_t^{\mu} (1 - L_t^{s})^{1 - \mu} \right)^{-\eta} = 0 \quad (L_t^{s})$$
(1.5)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t, L_t^{\rm d}, Y_t, I_t, \pi_t, CapUt_t} \Pi_t = \pi_t + \lambda_t^{\rm c-1} E_t \left[\lambda_{t+1}^{\rm U} \lambda_{t+1}^{\rm c} \Pi_{t+1} \right]$$
(2.1)

s.t.:

$$Y_t = L_t^{\mathrm{d}^{1-\alpha}} Z_t^{1-\alpha} (K_{t-1} C q U t_t)^{\alpha} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right)$$

$$(2.2)$$

$$K_{t} = I_{t} + K_{t-1} \left(1 - \delta CqU t_{t}^{\omega} \right) \quad \left(\lambda_{t}^{\text{FIRM}^{2}} \right)$$

$$(2.3)$$

$$\pi_t = -I_t - L_t^{\mathrm{d}} W_t + P_t Y_t \quad \left(\lambda_t^{\mathrm{FIRM}^3}\right) \tag{2.4}$$

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^{\text{c}}^{-1} \lambda_t^{\text{U}} \lambda_t^{\text{c}} = 0 \quad (\Pi_t)$$

$$(2.5)$$

$$-\lambda_{t}^{\mathrm{FIRM}^{2}} + \mathrm{E}_{t} \left[\lambda_{t+1}^{\mathrm{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\mathrm{FIRM}^{2}} \left(1 - \delta C q \mathcal{U} t_{t+1}^{\omega} \right) + \alpha \lambda_{t+1}^{\mathrm{FIRM}^{1}} C q \mathcal{U} t_{t+1} L_{t+1}^{\mathrm{d}}^{1-\alpha} Z_{t+1}^{1-\alpha} \left(K_{t} C q \mathcal{U} t_{t+1} \right)^{-1+\alpha} \right) \right] = 0 \quad (K_{t})$$

$$(2.6)$$

$$-\lambda_t^{\text{FIRM}^3} W_t + \lambda_t^{\text{FIRM}^1} (1 - \alpha) L_t^{\text{d}^{-\alpha}} Z_t^{1-\alpha} (K_{t-1} C q U t_t)^{\alpha} = 0 \quad (L_t^{\text{d}})$$

$$(2.7)$$

$$-\lambda_t^{\text{FIRM}^1} + \lambda_t^{\text{FIRM}^3} P_t = 0 \quad (Y_t)$$
 (2.8)

$$\lambda_t^{\text{FIRM}^2} - \lambda_t^{\text{FIRM}^3} = 0 \quad (I_t)$$
 (2.9)

$$1 - \lambda_t^{\text{FIRM}^3} = 0 \quad (\pi_t) \tag{2.10}$$

$$-\delta\omega K_{t-1}\lambda_t^{\mathrm{FIRM}^2} C_q \mathcal{U} t_t^{-1+\omega} + \alpha K_{t-1}\lambda_t^{\mathrm{FIRM}^1} L_t^{\mathrm{d}^{1-\alpha}} Z_t^{1-\alpha} (K_{t-1} C_q \mathcal{U} t_t)^{-1+\alpha} = 0 \quad (C_q \mathcal{U} t_t)$$

2.3 First order conditions after reduction

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^{\text{c}}^{-1} \lambda_t^{\text{U}} \lambda_t^{\text{c}} = 0 \quad (\Pi_t)$$

$$(2.12)$$

$$-1 + E_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(1 - \delta C q U t_{t+1}^{\omega} + \alpha \lambda_{t+1}^{\text{FIRM}^{1}} C q U t_{t+1} L_{t+1}^{d^{-1-\alpha}} Z_{t+1}^{1-\alpha} \left(K_{t} C q U t_{t+1} \right)^{-1+\alpha} \right) \right] = 0 \quad (K_{t})$$

$$(2.13)$$

$$-W_t + \lambda_t^{\text{FIRM}^1} (1 - \alpha) L_t^{\text{d}-\alpha} Z_t^{1-\alpha} (K_{t-1} C q \mathcal{U} t_t)^{\alpha} = 0 \quad (L_t^{\text{d}})$$

$$(2.14)$$

$$-\lambda_t^{\text{FIRM}^1} + P_t = 0 \quad (Y_t) \tag{2.15}$$

$$-\delta\omega K_{t-1}CqUt_t^{-1+\omega} + \alpha K_{t-1}\lambda_t^{\text{FIRM}^1}L_t^{\text{d}^{1-\alpha}}Z_t^{1-\alpha}(K_{t-1}CqUt_t)^{-1+\alpha} = 0 \quad (CqUt_t)$$

$$(2.16)$$

3 EQUILIBRIUM

3.1 Identities

2

$$P_t = 1 (3.1)$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{3.2}$$

4 EXOG

4.1 Identities

$$Z_t = e^{\epsilon_t^Z + \phi \log Z_{t-1}} \tag{4.1}$$

5 Equilibrium relationships (after reduction)

$$-1 + \beta C_t^{1-\mu} (1 - L_t^s)^{-1+\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{\eta} \mathcal{E}_t \left[\left(1 - \delta CqU t_{t+1}^{\omega} + \alpha CqU t_{t+1} L_{t+1}^{s-1-\alpha} Z_{t+1}^{1-\alpha} \left(K_t CqU t_{t+1} \right)^{-1+\alpha} \right) C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^s \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^s \right)^{1-\mu} \right)^{-\eta} \right] = 0$$

$$(5.1)$$

$$-W_t + (1 - \alpha) L_t^{s - \alpha} Z_t^{1 - \alpha} (K_{t-1} CqU t_t)^{\alpha} = 0$$
(5.2)

$$-Y_t + L_t^{s^{1-\alpha}} Z_t^{1-\alpha} (K_{t-1} C q U t_t)^{\alpha} = 0$$
(5.3)

$$Z_t - e^{\epsilon_t^Z + \phi \log Z_{t-1}} = 0 \tag{5.4}$$

$$-\delta\omega K_{t-1} Cqt Ut_t^{-1+\omega} + \alpha K_{t-1} L_t^{s1-\alpha} Z_t^{1-\alpha} (K_{t-1} Cqt Ut_t)^{-1+\alpha} = 0$$
(5.5)

$$(-1+\mu)C_t^{\mu}(1-L_t^{\rm s})^{-\mu}\left(C_t^{\mu}(1-L_t^{\rm s})^{1-\mu}\right)^{-\eta} + \mu W_t C_t^{-1+\mu}(1-L_t^{\rm s})^{1-\mu}\left(C_t^{\mu}(1-L_t^{\rm s})^{1-\mu}\right)^{-\eta} = 0$$

$$(5.6)$$

$$I_t - K_t + K_{t-1} \left(1 - \delta C q U t_t^{\omega} \right) = 0 \tag{5.7}$$

$$U_t - \beta \mathcal{E}_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^{s})^{1-\mu} \right)^{1-\eta} = 0$$
 (5.8)

$$-C_t + \Pi_t + L_t^s W_t - \beta \left(C_t^{-1+\mu} \right)^{-1} \left(\left(1 - L_t^s \right)^{1-\mu} \right)^{-1} \left(\left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} \right)^{-1} E_t \left[\Pi_{t+1} C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^s \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^s \right)^{1-\mu} \right)^{-\eta} \right] = 0$$
 (5.9)

$$-I_{t} - \Pi_{t} + Y_{t} - L_{t}^{s}W_{t} + \beta \left(C_{t}^{-1+\mu}\right)^{-1} \left(\left(1 - L_{t}^{s}\right)^{1-\mu}\right)^{-1} \left(\left(C_{t}^{\mu}\left(1 - L_{t}^{s}\right)^{1-\mu}\right)^{-\eta}\right)^{-1} E_{t} \left[\Pi_{t+1}C_{t+1}^{-1+\mu}\left(1 - L_{t+1}^{s}\right)^{1-\mu}\left(C_{t+1}^{\mu}\left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right] = 0$$
 (5.10)

می

6 Steady state relationships (after reduction)

$$-1 + \beta \left(1 - \delta CqU t_{ss}^{\ \ \omega} + \alpha CqU t_{ss}^{\ \ \omega} + \alpha CqU t_{ss}^{\ \ 1-\alpha} Z_{ss}^{\ \ 1-\alpha} (CqU t_{ss}^{\ \ K_{ss}})^{-1+\alpha} \right) C_{ss}^{\ \ -1+\mu} C_{ss}^{\ \ 1-\mu} (1 - L_{ss}^{s})^{-1+\mu} (1 - L_{ss}^{s})^{1-\mu} = 0 \tag{6.1}$$

$$-W_{\rm ss} + (1 - \alpha) L_{\rm ss}^{\rm s - \alpha} Z_{\rm ss}^{1 - \alpha} \left(CqU t_{\rm ss} K_{\rm ss} \right)^{\alpha} = 0 \tag{6.2}$$

$$-Y_{ss} + L_{ss}^{s}^{1-\alpha} Z_{ss}^{1-\alpha} (CqUt_{ss} K_{ss})^{\alpha} = 0$$
(6.3)

$$Z_{\rm ss} - e^{\phi \log Z_{\rm ss}} = 0 \tag{6.4}$$

$$-\delta\omega K_{\rm ss} CqU t_{\rm ss}^{-1+\omega} + \alpha K_{\rm ss} L_{\rm ss}^{\rm s}^{1-\alpha} Z_{\rm ss}^{1-\alpha} \left(CqU t_{\rm ss} K_{\rm ss} \right)^{-1+\alpha} = 0 \tag{6.5}$$

$$(-1+\mu)C_{ss}^{\mu}(1-L_{ss}^{s})^{-\mu}\left(C_{ss}^{\mu}(1-L_{ss}^{s})^{1-\mu}\right)^{-\eta} + \mu W_{ss}C_{ss}^{-1+\mu}(1-L_{ss}^{s})^{1-\mu}\left(C_{ss}^{\mu}(1-L_{ss}^{s})^{1-\mu}\right)^{-\eta} = 0$$

$$(6.6)$$

$$I_{\rm ss} - K_{\rm ss} + K_{\rm ss} \left(1 - \delta C q \mathcal{U} t_{\rm ss}^{\ \omega}\right) = 0 \tag{6.7}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\ s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{6.8}$$

$$-C_{\rm ss} + \Pi_{\rm ss} + L_{\rm ss}^{\rm s} W_{\rm ss} - \beta \Pi_{\rm ss} 1 (1 - L_{\rm ss}^{\rm s})^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} = 0$$
(6.9)

$$-I_{ss} - \Pi_{ss} + Y_{ss} - L_{ss}^{s} W_{ss} + \beta \Pi_{ss} C_{ss}^{-1+\mu} C_{ss}^{1-\mu} (1 - L_{ss}^{s})^{-1+\mu} (1 - L_{ss}^{s})^{1-\mu} = 0$$

$$(6.10)$$

7 Parameter settings

$$\alpha = 0.36 \tag{7.1}$$

$$\beta = 0.99 \tag{7.2}$$

$$\delta = 0.025 \tag{7.3}$$

$$\eta = 2 \tag{7.4}$$

$$\mu = 0.3 \tag{7.5}$$

 $\omega = 1.45 \tag{7.6}$

 $\phi = 0.95 \tag{7.7}$

8 Steady-state values

	Steady-state values
C	0.7449
CapUt	0.9284
I	0.246
K	10.96
L^{s}	0.2673
П	11.0707
U	-135.8123
W	2.3722
Y	0.9909
Z	1

9 The solution of the perturbation

9.1 P

$$\begin{array}{ccc} K_{t-1} & Z_{t-1} \\ K & \begin{pmatrix} 0.9758 & 0.0705 \\ 0 & 0.95 \end{pmatrix} \end{array}$$

9.2 Q

$$\begin{array}{c}
\epsilon^{Z} \\
K \left(\begin{array}{c}
0.0742 \\
I
\end{array}\right)$$

9.3 R

$$\begin{array}{c} K_{t-1} & Z_{t-1} \\ C \\ \text{CapUt} \\ I \\ L^{\text{s}} & -0.74 & 1.0041 \\ -1.1491 & 4.5972 \\ -0.2604 & 0.7601 \\ \Pi & 0.9893 & 0.0146 \\ U & -0.0446 & -0.0408 \\ W & 0.1873 & 0.6958 \\ Y & -0.0731 & 1.456 \end{array}$$

9.4 S

$$\begin{array}{c} \epsilon^{Z} \\ C \\ C q U t \\ I \\ L^{s} \\ U \\ U \\ W \\ Y \end{array} \left(\begin{array}{c} 0.4405 \\ 1.057 \\ 4.8392 \\ 0.8001 \\ 0.0153 \\ -0.0429 \\ 0.7325 \\ 1.5326 \\ \end{array} \right)$$

10 Statistics of the model

10.1 Moments

	Steady-state value	Std. dev.	Variance	Loglinear
C	0.7449	0.0408	0.0017	Y
CapUt	0.9284	0.1001	0.01	Y
I	0.246	0.4485	0.2011	Y
K	10.96	0.0245	0.0006	Y
L^{s}	0.2673	0.0744	0.0055	Y
П	11.0707	0.0242	0.0006	Y
U	-135.8123	0.004	0	Y
W	2.3722	0.0674	0.0045	Y
Y	0.9909	0.1414	0.02	Y
Z	1	0.0922	0.0085	Y

10.2 Correlation matrix

	C	CapUt	I	K	L^{s}	П	U	W	Y	Z
C	1	0.9387	0.973	0.3867	0.9675	0.1719	-0.9947	0.9948	0.9834	0.9856
CapUt	0.9387	1	0.9929	0.0452	0.9954	-0.1781	-0.8984	0.9689	0.9857	0.9835
I	0.973	0.9929	1	0.1636	0.9997	-0.0599	-0.9442	0.9915	0.9987	0.998
K	0.3867	0.0452	0.1636	1	0.1408	0.975	-0.4794	0.2908	0.2128	0.2251
L^{s}	0.9675	0.9954	0.9997	0.1408	1	-0.0829	-0.9364	0.9882	0.9973	0.9963
П	0.1719	-0.1781	-0.0599	0.975	-0.0829	1	-0.2722	0.0707	-0.0099	0.0028
U	-0.9947	-0.8984	-0.9442	-0.4794	-0.9364	-0.2722	1	-0.9791	-0.9595	-0.963
W	0.9948	0.9689	0.9915	0.2908	0.9882	0.0707	-0.9791	1	0.9967	0.9977
Y	0.9834	0.9857	0.9987	0.2128	0.9973	-0.0099	-0.9595	0.9967	1	0.9999
Z	0.9856	0.9835	0.998	0.2251	0.9963	0.0028	-0.963	0.9977	0.9999	1

10.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
C	0.7277	0.494	0.2979	0.137	0.0087
CapUt	0.7137	0.4719	0.272	0.1107	-0.0155
I	0.7115	0.4684	0.2679	0.1066	-0.0193
K	0.9603	0.8642	0.731	0.5765	0.4135
L^{s}	0.7114	0.4682	0.2676	0.1063	-0.0196
П	0.9636	0.8695	0.7371	0.5827	0.4193
U	0.7427	0.518	0.3259	0.1654	0.0349
W	0.7174	0.4777	0.2787	0.1176	-0.0092
Y	0.7128	0.4703	0.2701	0.1089	-0.0172
Z	0.7133	0.4711	0.2711	0.1098	-0.0163

11 Statistics of the model

11.1 Moments relative to moments of the reference variable

	Steady-state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
C	0.7517	0.2886	0.0833	Y
CapUt	0.9369	0.7079	0.5011	Y
I	0.2483	3.1723	10.0637	Y
K	11.0607	0.1733	0.03	Y
L^{s}	0.2698	0.5261	0.2768	Y
П	11.1724	0.1711	0.0293	Y
U	-137.0599	0.0286	0.0008	Y
W	2.394	0.4768	0.2274	Y
Y	1	1	1	Y
Z	1.0092	0.652	0.4251	Y

11.2 Correlations with the reference variable

	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
C	-0.1167	0.01	0.1782	0.3932	0.66	0.9834	0.7485	0.5426	0.3656	0.2168	0.0945
CapUt	0.0755	0.1973	0.3474	0.5279	0.7405	0.9857	0.6585	0.3894	0.1736	0.0056	-0.1203
I	0.0103	0.1355	0.2939	0.4889	0.7231	0.9987	0.6988	0.4477	0.2423	0.0785	-0.0479
K	-0.5404	-0.4988	-0.413	-0.273	-0.0682	0.2128	0.4076	0.5307	0.5952	0.6134	0.5959
L^{s}	0.0229	0.1476	0.3046	0.497	0.7273	0.9973	0.6917	0.4369	0.2292	0.0645	-0.062
П	-0.5491	-0.5352	-0.4842	-0.3865	-0.232	-0.0099	0.2549	0.436	0.5477	0.6029	0.6138
U	0.1712	0.046	-0.1236	-0.3437	-0.6205	-0.9595	-0.7577	-0.5754	-0.4142	-0.2746	-0.1563
W	-0.0614	0.0655	0.2305	0.438	0.6923	0.9967	0.7315	0.5043	0.3136	0.1572	0.0323
Y	-0.0172	0.1089	0.2701	0.4703	0.7128	1	0.7128	0.4703	0.2701	0.1089	-0.0172
Z	-0.0242	0.1021	0.264	0.4655	0.7099	0.9999	0.716	0.4759	0.2771	0.1165	-0.0095

12 Impulse response functions

12.1 Shock ϵ^{Z}

Figure 1: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock

Figure 2: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock