Introducció a la Investigació Operativa

Tema 4. Models lineals d'optimització: plantejaments alternatius

Catalina Bolancé Dept. Econometria, Estadística i Economia Espanyola

> Javier Heredia Dept. Estadística i Investigació Operativa

- Programació entera
 - Objectius de la programació entera
 - Plantejament d'un problema de Programació Lineal Entera
- Algorismes de PLE
 - Algorisme de Branch&Bound
- Exemples amb variables binàries
 - Exemple de restriccions inclusives
 - Altres exemples

Objectius específics de la Programació Lineal Entera (I)

For	Formulació, resolució numèrica i optimització:				
1.	Conèixer i entendre la formulació d'alguns exemples de problemes de pro-				
	gramació lineal entera.				
2.	Davant d'un problema de Presa de Decisions (PPD) associat a un proble-				
	ma de (PLE), ser capaç de formular un model consistent d'optimització				
	(paràmetres, variables, funció objectiu i restriccions), de forma eficient,				
	matemàticament correcta, clara i parametritzada.				
3.	Davant d'un PPD associat a un problema de (PLE), trobar-ne la seva solució				
	numèrica amb l'ajut d'Excel i SAS/OR.				
4.	Conèixer el concepte de <i>relaxació lineal</i> d'un problema de (PLE) i la relació				
	entre les solucions òptimes dels dos problemes.				
5.	Comprendre els conceptes de relaxació lineal, separació i eliminació, i la				
	seva aplicació a la resolució de problemes de (PLE) mitjançant <i>l'algorisme</i>				
	Branch&Bound (B&B)				
6.	Saber resoldre problemes de (PLE) de 2 variables amb l'algorisme de B&B.				
7.	Plantejament d'alguns problemes amb variables binàries.				

Definició d'un problema de PLE

- Quan una o diverses variables d'un problema de PL només pot adoptar valors enters, es té un problema de Programació Lineal Entera (PLE).
- Els problemes de PLE són habituals quan les solucions fraccionals no tenen sentit:
 - Planificació de plantilles laborals
 - Fabricació d'avions, cotxes,...
- Les variables enteres també ens ajuden a construir models més acurats per a un gran nombre de problemes de presa de decisions.

Exemple "Blue Ridge Hot Tubs"

$$\begin{array}{lll} \max z = & 350x_1 + 300x_2 & \text{Benefici} \\ \text{s.a.:} & x_1 + x_2 \leq 200 & \text{Bombes} \\ & 9x_1 + 6x_2 \leq 1566 & \text{Mà d'obra} \\ & 12x_1 + 16x_2 \leq 2880 & \text{Canonades} \\ & x_1, \ x_2 \geq 0 & \text{No-negativitat} \\ & x_1, \ x_2 \text{ enteres} & \textbf{Condició d'integritat} \end{array}$$

Les **condicions d'integritat** són fàcils de definir, però compliquen molt la resolució del problema.

Relaxació lineal

PLE original:

$$\begin{cases} \max z_{PLE} = & 2x_1 + 3x_2 \\ \text{s.a.:} & x_1 + 3x_2 \le 8.25 \\ & 2.5x_1 + x_2 \le 8.75 \\ & x_1, x_2 \ge 0 \\ & x_1, x_2 \text{ enteres} \end{cases}$$

Relaxació lineal (RL):

$$\begin{cases} \max z_{RL} = 2x_1 + 3x_2 \\ \text{s.a.:} \quad x_1 + 3x_2 \le 8.25 \\ 2.5x_1 + x_2 \le 8.75 \\ x_1, x_2 \ge 0 \end{cases}$$

Relació entre les regions factibles del PLE i RL

Relació entre les funcions objectius del PLE i RL

- $K_{PLE} \subseteq K_{RL} \Longrightarrow$ La solució òptima de la relaxació lineal (z_{RL}^*) proporciona una fita del valor òptim de la funció objectiu del problema de PLE (z_{PLE}^*) .
 - Per a problemes de maximització, el valor òptim de la relaxació lineal és una fita superior del valor òptim de la funció objectiu del problema de PLE:

$$\max z_{PLE} \leq \max z_{RL}$$

Per a problemes de *minimització*, el valor òptim de la relaxació lineal és una **fita inferior** del valor òptim de la funció objectiu del problema de PLE:

$$\min z_{RL} \leq \min z_{PLE}$$

Relació entre les funcions objectius del PLE i RL

- Quan es resol la relaxació lineal d'un problema de PLE, a vegades s'obté una solució òptima entera.
- Aquest era el cas del problema "Blue Ridge hot Tubs" que hem estat usant.
- Però, què passaria si la quantitat de mà d'obra es reduís a 1520 hores i la quantitat de canonades a 2650 peus?

Solució del problema modificat

NOM DELS PRODUCTES Aqua-Spas Hydro-Luxes		
NOM DELS PRODUCTES Aqua-Spas Hydro-Luxes		
1 1 7	TUBS	
1 1 7		
5 Nombre d'unitats (Producció) 116.9444444 77.91666667 Be		
	enefici total	
6 Benefici unitari \$350 \$300	\$64,306	
7		
8 Renstriccions Ut	tilitzat	Disponible
9 Bombes 1 1 1	94.8611111	210
Mà d'obra 9 6	1520	1520
11 Canonades 12 16	2650	2650
12		

Arrodoniment

- Podríem estar temptats a resoldre els problemes de PLE arrodonint la solució fraccional de la relaxació lineal a la solució entera més propera.
- En general, aquest mètode no funciona:
 - La solució per arrodoniment pot ser infactible.
 - La solució per arrodoniment pot ser sub-òptima.

Solucions per arrodoniments infactibles o sub-òptimes

Algorismes de PLE

- Algorismes exactes:
 - Assegurem l'obtenció de la solució òptima (amb paciència!!).
 - Cost computacional molt elevat (exponencial).
 - ► Plans secants (PM -LCTE-), Branch&Bound (APL, PM -LCTE-),...
- Algorismes d'aproximació:
 - Solució subòptima amb estimació de la seva qualitat.
 - Cost computacional raonable (polinòmic).
 - ► Relaxació Lagrangiana (PM -LCTE-), . . .
- Heurístiques:
 - Solució subòptima sense estimació de la seva qualitat.
 - Els més ràpids.
 - ▶ Mètodes de cerca local (PM -LCTE-), algorismes genètics,...

Algorisme del Branch & Bound

- L'algorisme del *Branch & Bound* (ramifica i poda) és un dels mètodes que resolen problemes de PLE.
- Es basa en la identificació de x_{PLE}* després de visitar un conjunt reduït de solucions enteres del problema de PLE.
- Sovint necessita gran quantitat de càlcul computacional (≡ temps d'execució).

Criteri d'aturada

- Degut a que l'algorisme B&B és tan lent, molts paquets de PLE permeten especificar un factor de tolerància de sub-òptim, que permet aturar el procés quan la millor solució entera coneguda està a menys d'un cert % de la solució òptima.
- Cal conèixer una fita de la solució òptima del PLE (z_{PLE}^*) . Per exemple, suposem que estem maximitzant i que:
 - La relaxació lineal té z^{*}_{RL} = 64306€.
 - ► $z_{TOL} = 0.95 \times z_{RI}^* = 0.95 \times 64306 = 61090 \in$.
 - ▶ Així, qualsevol solució entera amb $z \ge z_{TOL} = 61090 \in$ segur que està a menys d'un 5% de z_{PLF}^* , perquè:

$$z_{TOL} \le z \le z_{PLE}^* \le z_{RL}^*$$

• Hi ha altres mètodes per a trobar millors fites (relaxació Lagrangiana, s'estudia a Programació Matemàtica, LCTE).

Solució de problemes de PLE amb "Solver" (I)

Es defineixen les condicions d'integritat al menú Add Constraints.

Solució de problemes de PLE amb "Solver" (II) Canvi del factor de tolerància sub-òptim.

1	A	В	С	D	E		
1							
2	BLUE RIDGE HOT TUBS						
3							
4	NOM DELS PRODUCTES	Aqua-Spas	Hydro-Luxes				
5	Nombre d'unitats (Producció)	118	76	Benefici total			
6	Benefici unitari	\$350	\$300	\$64,100			
7							
8	Renstriccions			Utilitzat	Disponible		
9	Bombes	1	1	194	210		
10	Mà d'obra	9	6	1518	1520		
11	Canonades	12	16	2632	2650		
12							

Solució de problemes de PLE amb "SAS/OR" (I)

```
ExempleT3_integer
  libname t3 '.';
 ∃ data t3.exemBRHT;
   input row $9. Aqua Hydro type $ rhs;
       datalines:
  benefici
           350 300 MAX
  bombes 1 1 LE 200
  treball 9 6 LE 1520
  canonades 12 16 LE 2650
  limsup 1000 1000 UPPERBD
  enteras 1 2 INTEGER .
  run;
 Dproc lp data=t3.exemBRHT;
  run:
```

Solució de problemes de PLE amb "SAS/OR" (I)

Output - (Sin título)

The LP Procedure

Resumen de la variable Nombre de la Coste Col variable Estado Tino Precio Actividad reducida 350 1 Agua INTEGER 118 350 INTEGER 300 76 2 Hvdro 300 3 bombes BASIC SLACK Ó 4 treball RASIC SLACK 5 canonades BASIC SLACK

Output - (Sintítulo) Sistema SAS 19:43 Friday, April 13, 2012 The LP Procedure Resumen de restricciones Nombre de Col Actividad Fila restricción Tipo S/8 Rhs Actividad dua 1 OBJECTVE 64100 1 benefici 3 0 2 hombes 1 F 200 194 3 treball 1 F 1518 0 1520 4 canonades I F 2650 2632 0

Algorisme de Branch&Bound

- Es resol la relaxació lineal de PLE.
- Pot passar:
 - Que RL sigui infactible:

PLE infactible
$$\longrightarrow$$
 STOP

• Que la solució x_{RL}^* sigui entera:

$$x_{RL}^* \equiv x_{PLE}^* \longrightarrow STOP$$

• Que la solució x_{RL}^* no sigui entera: \longrightarrow ?

Algorisme de *Branch&Bound*: Considerem el problema de PLE

PLE1 max
$$z = 2x_1 + 3x_2$$

s.a.: $x_1 + 3x_2 \le 8.25$
 $2.5x_1 + x_2 \le 8.75$
 $x_1, x_2 \ge 0$ i enteres

Algorisme de Branch&Bound: Cas x_{RI1}^* no entera

Cas x_{RL1}^* no entera: Separació de PLE1 (I)

Cas x_{RL1}^* no entera: Separació de PLE1 (II)

PLE1 max
$$z = 2x_1 + 3x_2$$

s.a.: $x_1 + 3x_2 \le 8.25$
 $2.5x_1 + x_2 \le 8.75$
 $x_1, x_2 \ge 0$ i enteres

 \downarrow

$$x_{PLE1}^* \equiv x_{PLE2}^*$$
 o \Longrightarrow Es pot resoldre PLE1, resolent PLE2 i PLE3 $x_{PLE1}^* \equiv x_{PLE3}^*$

- 4日ト4回ト4差ト4差ト 差 90Qで

Cas x_{RL1}^* no entera: Tractament de PLE2 (I)

Cas x_{RL1}^* no entera: Tractament de PLE2 (II)

Cas x_{RL1}^* no entera: Separació de PLE2

PLE2
$$\max z = 2x_1 + 3x_2$$

s.a.: $x_1 + 3x_2 \le 8.25$
 $2.5x_1 + x_2 \le 8.75$
 $x_1 \le 2$
 $x_1, x_2 \ge 0$ i enteres
PLE4 $\max z = 2x_1 + 3x_2$
s.a.: $x_1 + 3x_2 \le 8.25$
 $2.5x_1 + x_2 \le 8.75$
 $x_1 \le 2$
 $x_1 \le 2$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$ i enteres

PLE5 $\max z = 2x_1 + 3x_2$
s.a.: $x_1 + 3x_2 \le 8.25$
 $2.5x_1 + x_2 \le 8.75$
 $x_1 \le 2$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$ i enteres

PLE5 $\max z = 2x_1 + 3x_2$
 $x_1 + 3x_2 \le 8.25$
 $2.5x_1 + x_2 \le 8.75$
 $x_1 \le 2$
 $x_2 \ge 3$
 $x_1, x_2 \ge 0$ i enteres

Es pot resoldre PLE2, resolent PLE3 i PLE4

- **◆ロト ◆御 ▶ ◆** き ▶ ◆ き → りへで

Cas x_{RI1}^* no entera: Arbre d'exploració

Cas x_{RI1}^* no entera: Tractament de PLE4

Cas x_{RI1}^* no entera: Arbre d'exploració

Cas x_{RI1}^* no entera: Tractament de PLE5

Cas x_{RI1}^* no entera: Arbre d'exploració

32 / 44

Bolancé Investigació Operativa I

Cas x_{RI1}^* no entera: Tractament de PLE3

Cas x_{RI1}^* no entera: Arbre d'exploració final

Solució de problemes de PLE amb "SAS/OR" (I)

```
ExempleT3_integer *
  libname t3 '.';
 ∃data t3.exem int;
   input row $7. x1 x2 type $ rhs;
       datalines:
         2 3 MAX
  Obj
  res1 1 3 LE 8.25
  res2 2.5 1 LE
                         8.75
  limsup 1000 1000 UPPERBD
  enteras 1
               INTEGER
  run:
 ∃proc lp data=t3.exem int;
  run:
```

Solució de problemes de PLE amb "SAS/OR" (I)

Algorisme del B&B

- **0.** Inicialització: $L = \{PLE1\}$; $z^* = -\infty$
- 1. Si $L = \varnothing : x_{PIF1}^* \equiv x^*; z_{PIF1}^* \equiv z^* \Longrightarrow FI!$
- **2.** Se selecciona un problema PLE_j , $j \in L$
- 3. Relaxació: es resol la relaxació lineal RL_j
- **4.** Eliminació: si $k_{RL_j} = \emptyset$ o $z_{RL_j}^* \le z^*$ o $x_{RL_j}^* \equiv x_{PLE_j}^*$
 - **4.1** Eliminació de PLE_j de $L: L \leftarrow L | \{PLE_j\}$
 - **4.2** Si $x_{RL_j}^* \equiv x_{PLE_j}^*$ i $z_{RL_j}^* > z^*$: $x^* \leftarrow x_{RL_j}^*$; $z^* \leftarrow z_{RL_j}^*$
 - **4.3** Anada a *1.*
- 5. Separació de PLE_j en PLE_{j+1} i PLE_{j+2}
 - 5.1 $L \leftarrow L | \{PLE_j\} \cup \{PLE_{j+1}\} \cup \{PLE_{j+2}\} \longrightarrow Anada a 1.$

4□ > 4□ > 4 = > 4 = > = 90

- Inclusió de costos fixos en un problema de producció.
- Capacitat de producció variable.
- Costos variables decreixents
- Restriccions inclusives.
- ..

$$\begin{array}{lll} \max z = & 350x_1 + 300x_2 & \text{Benefici} \\ \text{s.a.:} & x_1 + x_2 \leq 200 + M_1(1 - y_1) & \text{Bombes} \\ & 9x_1 + 6x_2 \leq 1566 + M_2(1 - y_2) & \text{Mà d'obra} \\ & 12x_1 + 16x_2 \leq 2880 & \text{Canonades} \\ & x_1, \ x_2 \geq 0 & \text{No-negativitat} \\ & x_1, \ x_2 \text{ enteres} & \text{Condició d'integritat} \\ & y_1, \ y_2 \in 0, 1 & \end{array}$$

4	A	В	С	D	E	F	G
1							
2		BLUE	E RIDGE HO	T TUBS			
3							
4	NOM DELS PRODUCTES	Aqua-Spas	Hydro-Luxes				
5	Nombre d'unitats (Producció)	200	0	Benefici total			
6	Benefici unitari	\$350	\$300	\$70,000			
7							
8	Renstriccions			Utilitzat	Disponible	Resultat	Inicial
9	Bombes	1	1	500	500	200	200
10	Mà d'obra	9	6	1800	2566	2566	1566
11	Canonades	12	16	2400	2880	2880	2880
12				1	1		
13		y1	y2				
14	Binàries	1	0				
1.5	Mi	300	1000				

```
ExempleT3 BINARY *
  libname t3 '.':
 ∃ data t3.exemBRHT:
  input row $9. Aqua Hydro y1 y2 type $ rhs;
      datalines:
  benefici 350 300 0
                       0 MAX
  bombes 1 1 300 0 LE 500
  treball 9 6 0 1000 LE 2566
  canonades 12 16 0 0 LE 2880
  un 0 0 1 1 EQ
  linsup 1000 1000 . . UPPERBD
  senceres 1 2 . INTEGER
                         BINARY
  binaries . .
  run:
 Dproc print data=t3.exemBRHT;
  run:
 Eproc lp data=t3.exemBRHT :
  run;
```


Altres exemples

CONSULTAR MATERIAL AMB EXEMPLES AMB BINÀRIES EN L'ARXIU BIN.PDF.