PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 95/09859 (11) International Publication Number: A1 C07F 5/02, A61K 31/69, C07K 5/062, C07D 207/16, C07F 9/572, A61K 38/05 13 April 1995 (13.04.95) (43) International Publication Date: (81) Designated States: AU, CA, JP, NZ, European patent (AT, BE, PCT/US94/11049 (21) International Application Number: CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, 6 October 1994 (06.10.94) (22) International Filing Date: **Published** (30) Priority Data: US With international search report. 7 October 1993 (07.10.93) 08/133,250 20 October 1993 (20.10.93) US 08/139,443 (71) Applicant: THE DU PONT MERCK PHARMACEUTICAL COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US). (72) Inventors: PACOFSKY, Gregory, James; 510 Polk Street, Raleigh, NC 27604 (US). PRUITT, James, Russell; 38A Skycrest Drive, Landenberg, PA 19350 (US). WEBER, Patricia, Carol; 107 Marshall Bridge Road, Kennett Square, PA 19348-2705 (US). (74) Agents: REINERT, Norbert, F. et al.; The Du Pont Merck Pharmacentical Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(54) Title: BOROPEPTIDE INHIBITORS OF THROMBIN WHICH CONTAIN A SUBSTITUTED PYRROLIDINE RING

(57) Abstract

This invention relates to the discovery of novel and useful α -amino acid analogs, and the pharmaceutically acceptable salus and prodrugs thereof, containing a disubstituted pytrolidine ring conjugated to an α -amino acid, useful as inhibitors of thrombin.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria		GB	United Kingdom	MR	Mauritania
UA	Australia		GE	Georgia	MW	Malawi
BB	Barbados		GN	Guinea	NE	Niger
BE	Beighm		GR	Greece	NL	Netherlands
BP	Burkina Faco		EUU	Hungary	NO	Norway
BG	Bulgaria		IH	Ireland	NZ	New Zealand
BJ	Benin		II	Italy	PL	Poland
BR	Brazil		JP	Japan	PT	Portugal
BY	Beiang		KE	Kenya	RO	Romania
CA	Canada		EG	Kyrgystan	RU	Russian Federation
CF	Central African Republic		KP	Democratic People's Republic	SD	Stiden
CG	Congo			of Korea	SE	Sweden
CB	Switzerland		KR	Republic of Kores	SI	Slovenia
CI	Côte d'Ivoire		KZ	Kazakhuan	SK	Slovalda
CM	Cameroon		1.1	Lichtenstein	SN	Scaegal
CN	China	•	ŁK	Sri Lanka	TD	Chad
CS	Czechoslovakia		LU	Lattenbourg	TG	Togo
CZ	Czech Republic		LY	Latvia	ŢĴ	Tejikisten
DE	Germany		MC	Метьсо	TI	Trinidad and Tobago
DK	Denmark		MD	Republic of Moldova	ŪA	Vitrains
ES	Spain		MG	Madagascar	US	United States of America
FI	Finland		MIL	Mab	UZ	Uzbekistan
FR	Prenoc		MN	Mongolia	VN	Vict Nam
GA	Gabon					
						•

Title

Boropeptide Inhibitors of Thrombin which Contain a Substituted Pyrrolidine Ring

5

Ţ

Field of the Invention

This invention relates to the discovery of novel and useful α-amino acid analogs, and the

10 pharmaceutically acceptable salts or prodrugs thereof, as inhibitors of thrombin. These compounds contain a disubstituted- pyrrolidine ring conjugated to an α-amino acid functionalized with an electrophilic group such as boronic acids and their esters, α-perhaloketones and aldehydes.

Background of the Invention

Thrombin plays several critical roles in hemostasis, the normal physiological process by which 20 bleeding from an injured blood vessel is arrested. Thrombin cleaves soluble fibrinogen to form insoluble fibrin in the last proteolytic step of both the extrinsic and intrinsic pathways of the coagulation cascade. Fibrin may be further insolubilized through crosslinking by the thrombin-activated enzyme, factor XIIIa. In addition, thrombin-induced activation of platelets leads to their aggregation and the secretion of additional factors that further accelerate creation of a hemostatic plug. Thrombin also potentiates its own 30 production by the activation of factors V and VIII. Recent reviews of the roles of thrombin in coagulation have been reported by Fenton in Ann. N. Y. Acad. Sci. 485, 5-15 (1986); and Fenton et al. in Blood Coagulation and Fibrinolysis 2, 69-75 (1991). 35

Owing to its multiple roles in clot formation, inhibition of thrombin offers a therapeutic opportunity for development of anticoagulants useful in the treatment of thrombosis. Specific thrombin inhibitors are anticipated to exhibit few of the adverse side effects, such as bleeding and interpatient variability, caused by anticoagulants currently in clinical use (B. Furie and B. C. Furie, The New England Journal of Medicine 326, 800-806 (1992)).

A number of naturally occurring thrombin inhibitors 10 have been isolated. These include the marine sponge natural products Theonella sp. nazumamide A, a linear tetrapeptide reported by Fusetani et al., Tetrahedron Lett. 32, 7073-4 (1991); Theonella sp. cyclotheonamides A and B reported by Fusenati et al., J. Am. Chem. Soc. 112, 7053-4 (1990); and Toxadocia cylindrica toxadocial A, a sulfated C47 aldehyde reported by Nakao et al., Tetrahedron Lett. 34, 1511-4 (1993). Hirudin, a 65 amino acid polypeptide, is responsible for the anticoagulant activity of the medicinal leech, Hirudo 20 medicinalis. Recombinant versions of hirudin disclosed by Brauer et al. in AU-A-45977/85 and compounds incorporating hirudin fragments that have been disclosed by Maraganore et al. in PCT application WO91/02750; DiMaio et al., J. Med. Chem. 35, 3331-3341 (1992); DiMaio and Konishi, PCT application WO91/19734; Witting et al., Biochem. J. 283, 737-743 (1992); Krstenansky in European Patent Application EP 372 503 A2; may be clinically useful anticoagulants as suggested by Fareed et al., Blood Coagulation and Fibrinolysis 2, 135-147 30 (1991).

Peptide analogs of thrombin substrates and reaction intermediates also inhibit thrombin. Examples of these include the tripeptide aldehyde (D)-Phe-Pro-Arg-H, disclosed by Bajusz et al., Int. J. Peptide Protein Res. 12, 217-221 (1978); a chloromethyl ketone analog (Ac-

(D)-Phe-Pro-ArgCH2Cl, disclosed by Kettner and Shaw, Thromb. Res. 14, 969-73 (1979); polyfluorinated analogs such as (D)-Phe-Pro-Arg-CF2-CF3 disclosed by Kolb et al., AU-B-52881/86; Neises and Ganzhorn, European Patent Application EP 503 203 Al; Neises et al., European Patent Application EP 504 064 Al); and boronic acid analogs (Ac-(D)-Phe-Pro-boroArg, Kettner and Shenvi, European Patent Application EP 0 293 881 A2; Kettner et al., J. Biol. Chem. 265, 18289-97 (1990). Borolysine, boroornithine and boroarginine 10 inhibitors that contain various amino acid replacements have also been synthesized and shown to inhibit thrombin. Representative examples of these compounds include t-butyloxycarbonyl-(D)-trimethylsilylalanine-ProboroArg-pinanediol, disclosed in Metternich, European 15 Patent Application EP 471 651 A2; Ac-(D)- β napthylalanine-Pro-boroArg pinanediol ester, disclosed in Kakkar et al., PCT Application WO 92/07869; N-(tbutyloxycarbonyl) - (D) -phenylglycyl- (L) -prolyl- (L) arginine aldehyde, disclosed in Gesellchen and Shuman, 20 European Patent Application EP 0 479 489 A2 and J. Med. Chem. 36, 314-319 (1993); and (HOOC-CH₂)₂-(L)- β cyclohexylalanine-Pro-Arg-CH2-O-CH2-CF3, disclosed by Atrash et al., European Patent Application EP 530 167 Al.

Numerous synthetic thrombin inhibitors, many of which incorporate an arginine or arginine mimic, have also been disclosed. These include arylsulfonylarginine amides such as $(2R,4R)-1-[N^2-(3-\text{ethyl-1},2,3,4-$ 30 tetrahydro-8-quinolinesulfonyl)-(L)-arginyl]-4-methyl-2-piperidinecarboxylate, disclosed by Okamoto et al., U.S. Patent No. 4,258,192; Okamoto et al., Biochem. Biophys. Res. Commun. 101, 440-446 (1981); Kikumoto et al., Biochemistry 23, 85-90 (1984); amidinophenylalanine derivatives such as (2-naphthylsulfonylglycyl)-4-amidino-phenylalanyl piperidine disclosed in Stüber and

Dickneite, European Patent Application EP 508 220; amino

phenylalanine derivatives, disclosed in Okamoto et al.,
U.S. Patent No. 4,895,842; 1-[2-[5 (dimethylamino)naphth-1-ylsulfonamido)-3-(2
iminohexahydropyrimidin-5-yl)propanoyl]-4methylpiperidine dihydrochloride, disclosed in Ishikawa
et al., JP 88/227572 and JP 88/227573); and (R)-N-[(RS)1-amidino-3-piperidinylmethyl]-α-(o-nitrobenzenesulfonamido)indole-3-propionamide, disclosed in
Ackermann et al., European Patent Application EP 468
231). Isoquinolinyl guanidino benzoate derivatives,
disclosed by Takeshita et al., European Patent
Application EP 435 235 Al; and 2-[3-(4amidinophenyl)]propionic acid derivatives, disclosed by

Mack et al., PCT Application WO 93/01208 also act as

thrombin inhibitors.

20

25

30

35

Many natural and synthetic thrombin inhibitors contain a 5-membered pyrrolidine ring. In most cases, the pyrrolidine ring is incorporated into the inhibitor as an integral component of the amino acid proline, a 2-substituted pyrrolidine, which in turn is bonded to the remaining atoms of the inhibitor via amide linkages.

None of the cited references describe or suggest the new thrombin-inhibiting compounds of the present invention.

The novel compounds described in the present invention are substituted at the 4-position of the pyrrolidine ring. Although Winter et al., in European Patent Application WO 91/04247, have disclosed that 4-substituted-(L)-proline can mimic a dipeptide within a larger peptide or protein, and variably substituted prolines have been incorporated into compounds including bradykinin antagonists disclosed by Kyle et al., J. Med. Chem. 34, 2649-2653 (1991); as well as vasopressin analogs Buku et al., J. Med. Chem. 30, 1509-1512 (1987), no thrombin inhibitors containing a 5-membered

pyrrolidine ring substituted in the manner described here have been disclosed.

Despite considerable research in the area, more efficacious and specific thrombin inhibitors are needed as potentially valuable therapeutic agents for the treatment of thrombosis.

Summary of the Invention

10

5

[1] The present invention provides novel compounds of formula (I):

15

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

Rl is

20

a)
$$-(C_1-C_{12} \text{ alkyl})-X$$
, or
b) $-(C_2-C_{12} \text{ alkenyl})-X$, or

c)

25 X is

```
a) halogen,
               b) -CN,
               c) -NO_2,
               d) -CF<sub>3</sub>,
   5 .
               e) -S(O)_pR^2,
               f) -NHR<sup>2</sup>,
               g) -NHS(0)_pR^2,
               h) -NHC (=NH) H,
               i) -NHC (=NH) NHOH,
 10
               j) -NHC (=NH) NHCN,
               k) -NHC (=NH) NHR^2,
               1) -NHC (=NH) NHC (=0) \mathbb{R}^2,
               m) -C (=NH) H,
               n) -C (=NH) NHR^2,
              o) -C (=NH) NHC (=O) R^2,
 15
               p) -C (=0) NHR<sup>2</sup>,
               q) -C (=0) NHC (=0) R^2,
              r) - C (=0) OR^2,
              s) -OR^2,
20
              t) -00 (=0) R^2,
              u) -OC (=0) OR^2,
              v) -OC (=0) NHR<sup>2</sup>,
              w) -OC (=0) NHC (=0) R^2,
              x) -SC (=NH) NHR<sup>2</sup>;
25
      \mathbb{R}^2 is
              al hydrogen,
              b) -CF_3
              c) C<sub>1</sub>-C<sub>4</sub> alkyl,
30
              d) -(CH<sub>2</sub>)<sub>q</sub>-aryl;
      {\ensuremath{\mathsf{R}}}^3 and {\ensuremath{\mathsf{R}}}^{10} are independently selected at each occurrence
             from the group consisting of:
             a) hydrogen,
35
             b) halogen,
             c) -(CR^6R^7)_tW(CR^8R^9)_u-R^9,
```

d) $-(CR^6R^7)_tW(CR^8R^9)_u$ -aryl,

e) $-(CR^6R^7)_tW(CR^8R^9)_u$ -heteroaryl,

f) $-(CR^6R^7)_tW(CR^8R^9)_u$ -heterocycle,

g) $-(CR^6R^7)_tW(CR^8R^9)_u$ -adamantyl,

5 h) $-(CR^6R^7)_tW(CR^8R^9)_u(C_5-C_7)$ cycloalkyl,

i)

j)

10

15

m)

1)

5

The second secon

n)

R⁶

p)

d)

r

s)

5 R^3 and R^{10} when taken together form a ring such as:

- a) $-(CR^6R^7)_t(CR^8R^9)_u-W-(CR^8R^9)_u(CR^6R^7)_t$;
- b) $-(CR^6R^7)_tW(CR^8R^9)_u-aryl-(CR^6R^9)_uW(CR^6R^7)_t-;$
- c) $-(CR^6R^7)_tW(CR^8R^9)_u$ -heteroaryl- $(CR^8R^9)_uW(CR^6R^7)_t$ -;
- d) $-(CR^6R^7)_tW(CR^8R^9)_u$ -heterocycle- $(CR^8R^9)_uW(CR^6R^7)_t$ -;
- 10 e) $-(CR^6R^7)_t W(CR^8R^9)_u W (CR^8R^9)_u W (CR^6R^7)_t ;$

R4 and R5 are independently selected at each occurrence from the group consisting of:

- a) hydrogen,
- 15
- b) C_1-C_4 alkyl,
- c) C_1-C_4 alkoxy,
- d) C5-C7 cycloalkyl,
- e) phenyl,
- f) benzyl;

20

 R^6 , R^7 , R^8 and R^9 are independently selected at each occurrence from the group consisting of:

- a) hydrogen,
- b) C₁-C₆ alkyl,
- c) C_1-C_6 alkoxy,
 - d) C_3-C_8 cycloalkyl,
 - e) aryl,
 - f) heterocycle,
 - g) heteroaryl,
- 30
- h) -W-aryl,
- i) $-(CH_2)_wC(=0)OR^4$,

```
j) R^6 or R^7 can alternatively be taken
                 together with R6 or R7 on an adjacent
                 carbon atom to form a direct bond,
                 thereby to form a double or triple bond
                 between said carbons, or
           k) R<sup>8</sup> or R<sup>9</sup> can alternatively be taken
                 together with R<sup>8</sup> or R<sup>9</sup> on an adjacent
                 carbon atom to form a direct bond,
                 thereby to form a double or triple bond
                 between said carbons;
R^{11} is
     a) hydrogen,
```

5

10

- b) C_1-C_4 alkyl,
- c) C₁-C₄ thioalkyl,
- d) $-(CR^6R^7)_tW(CR^8R^9)_u$ -aryl, 15
 - e) $-(CR^6R^7)_tW(CR^8R^9)_u$ -heteroaryl,
 - f) $-(CR^6R^7)_tW(CR^8R^9)_u$ -heterocycle;
 - g) $-(CR^6R^7)_tW(CR^8R^9)_u-R^9;$
- R¹¹ and V, when taken together, can also be:
 - a) keto,
 - b) $=NR^{10}$,
 - c) = $C[(CR^6R^7)_tW(CR^8R^2)_uR^9]_2;$
 - d) $-(CR^6R^7)_tW(CR^8R^9)_uW-(CR^6R^7)_tW(CR^8R^9)_u-$
- A is 25
- $a) -BY^1Y^2$
- b) $-C (=0) CF_3$,
- c) $-C (=0) CF_2 CF_3$,
- d) $-PO_3H_2$.
- d) -C(=0)H, 30
 - e) -C(=0)-1-piperdinyl,
 - f) $-C (=0) CH_2OCH_2CF_3$,
 - g) CH₂Cl
 - , b) SO₂F;

35

 Y^1 and Y^2 are

```
a) -OH,
          b) -F,
          c) -NR^4R^5 -,
          d) -C_1-C_8 alkoxy, or;
    when taken together Y1 and Y2 form:
          e) a cyclic boron ester where said chain or ring
               contains from 2 to 20 carbon atoms and,
               optionally, 1-3 heteroatoms which can be N, S,
               or O,
          f) a cyclic boron amide where said chain or ring
10
               contains from 2 to 20 carbon atoms and,
               optionally, 1-3 heteroatoms which can be N, S,
               or O,
          g) a cyclic boron amide-ester where said chain or
               ring contains from 2 to 20 carbon atoms and,
15
               optionally, 1-3 heteroatoms which can be N, S,
               or O;
    W can be independently selected at each occurence from
          the group consisting of:
20
               a) -(CH_2)_{x}^{-},
               b) -C (=0),-,
               c) -C(=0)0-,
               d) -C (=0) NR^{4}-,
25
               e) -0-,
               f) -OC(=0)-,
               g) -OC(=0)0-,
               h) -0c (=0) NR^{4}-,
                i) -NR4-,
                j) - NR^{4}C (=0) -,
3C
               k) -NR^{4}C(=0)D-,
```

1) $-NR^{4}C(=0)NR^{5}-$,

m) $-NR^4S(0)_{p}$

 $n) -S(0)_{p}^{-},$

35

o) -s'(0)_p0-,

p) $-s(0)_pNR^4-$,

q)
$$-s(0)_pNR^4C(=0)-$$
,
r) $-s(0)_pNR^4C(=0)NR^5-$;

V is selected from the group consisting of:

5 a)
$$-(CH_2)_x^-$$
,

b)
$$-(CH_2)_xC(=0)-$$
,

c)
$$-(CH_2)_xC(=0)_{0-}$$

d)
$$-C (=0) (CH_2)_{x}^{-}$$
,

e)
$$-0-(CH_2)_{x}-$$
,

10 f)
$$-O(CH_2)_{x}C(=0)$$
-,

g)
$$-0(CH_2)_{x}C(=0)0-$$
,

h)
$$-0(CH_2)_{\kappa}C(=0)NR^4-$$
,

i)
$$-0(CH_2)_xS(0)_p-$$
,

$$j) - (CH_2)_x S(0)_p -,$$

15 k)
$$-(CH_2)_xS(O)_pG-$$

1) -
$$(CH_2)_{x}S(O)_{p}NR^{4}-$$
,

m) -
$$(CH_2)_x S(O)_p NR^4 C(=O)$$
-,

n) -
$$(CH_2)_{x}S(O)_{p}NR^4C(=O)NR^5-$$
,

o)
$$-(CH_2)_xNR^{4-}$$
,

20 p)
$$-(CH_2)_{x}NR^{4}C(=0)-$$

$$q) - (CH2) × NR4C (=0) O-,$$

r)
$$-(CH_2)_{x}NR^{4}C(=0)NR^{5}-$$
,

s)
$$-(CH_2)_{2}NR^4S(0)_{p}^{-};$$

25 Z is selected from the group consisiting of:

a)
$$-(CH_2)_{x}^{-}$$
,

b)
$$-(CH_2)_{x}C(=0)_{-}$$

c)
$$-C (=0) (CH2)x-,$$

d)
$$-(CH_2)_xC(=0)_{0-}$$

e) -
$$(CH_2)_{x}C (=0) NR^4$$
-,

$$f) - (CH_2)_x NR^4 - ,$$

g)
$$-(CH_2)_xNR^4C(=0)-$$
,

h)
$$-(CH_2)_xNR^4C(=0)O-,$$

i)
$$-(CH_2)_{R}NR^{4}C(=0)NR^{5}-,$$

$$j) - (CH_2)_x NR^4 S(O)_p -,$$

k)
$$-(CH_2)_xS(O)_p^-,$$

1) $-(CH_2)_xS(O)_pNR^4-,$

m can be 0 to 4;

5

n can be 0 to 4;

p can be 0 to 2

10 q can be 0 to 4;

r, s, t, u, and v are independently selected at each occurrence from 0 to 6,

15 w and x are independently selected at each occurence from 0 to 4;

with the following provisos:

- 20 (a) when V is $(CH_2)_{x}$, x cannot be 0 when \mathbb{R}^3 is hydrogen;
 - (b) when 2 is $-(CH_2)_xC(=0)$ and $-C(=0)(CH_2)_x$ and x is 0, R^{10} cannot be halogen.

- [2] Preferred compounds of formula (I) are those compounds wherein:
- 30 R^1 is (C₃-C₄ alkyl);
 - X is selected from the group consisting of:
 -NHC(=NH)H, -NHC(=NH)NHR², -NH₂ or -SC(=NH)NHR²;
- 35 R^2 is hydrogen or C_1-C_4 alkyl.

5

[3] More preferred compounds of formula (I) are compounds of formula (Ia):

R³——V H O N CH B Y²
R¹⁰—Z H R¹

(Ia)

or a pharmaceutically acceptable salts or prodrugs thereof, wherein:

 R^1 is (C₃-C₄ alkyl);

X is selected from the group consisting of: -NHC(=NH)H, -NHC(=NH)NHR², -NH₂ or -SC(=NH)NHR²;

R² is hydrogen or C₁-C₄ alkyl;

R³ and R¹⁰ are independently selected at each occurrence from the group consisting of:

- a) hydrogen,
- b) halogen,
- c) $-(CR^6R^7)_tW(CR^8R^9)_u-R^9$
- d) $-(CR^6R^7)_tW(CR^8R^9)_u$ -aryl
- e) $-(CR^6R^7)_tW(CR^8R^9)_u$ -heteroaryl;

 ${\bf R}^4$ and ${\bf R}^5$ are independently selected at each occurrence from the group consisting of:

- a) hydrogen,
- 30 b) C_1-C_4 alkyl,

- c) C_1-C_4 alkoxy,
- d) phenyl,
- e) benzyl;
- 5 R⁶, R⁷, R⁸, R⁹ are independently selected at each occurrence from the group consisting of:
 - a) hydrogen
 - b) C_1-C_6 alkyl,
 - c) aryl,
- 10 d) $-(CH_2)_wC(=0)OR^4$, or;

Y¹ and Y² are

- a) -OH,
- b) -F,
- 15 c) $-NR^4R^5-$,

20

25

30

d) $-C_1-C_8$ alkoxy, or;

when taken together Y^1 and Y^2 form:

- e) a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O,
- f) a cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O,
- g) a cyclic boron amide-ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O;

W can be independently selected at each occurrence from the group consisting of:

- a) $-(CH_2)_{x}^{-}$,
- b) -0-,
- 35 c) $-S(0)_{p}$,
 - $d) NR^{4}$
 - e) $-NR^{4}C(=0)-$,

```
f) -NR^4C (=0)0-,
```

V is selected from the group consisting of:

- a) $-(CH_2)_{x}-$,
- 5 b) $-0(CH_2)_{x}$ -,
 - c) $-0(CH_2)_x(C=0)_{-r}$
 - d) $-(CH_2)_xS(O)_p-$,
 - e) $-(CH_2)_{x}NR^{4}-$
 - f) $-(CH_2)_xNR^4C(=0)-,$
- 10 g) $-(CH_2)_xNR^4C (=0) O-;$

Z is selected from the group consisiting of:

- a) $-(CH_2)_xC(=0)_{-}$
- b) $-C (=0) (CH_2)_{x^-}$
- 15 c) $-(CH_2)_{x}C(=0)_{0-}$

p can be 0 or 2;

- r can be independently selected at each occurrence from 0 to 3;
 - s can be independently selected at each occurrence from 0 to 3;
- - u can be independently selected at each occurrence from 0 to 2;

- x can be independently selected at each occurrence from 0 to 3; with the following provisos:

(a) when V is $(CH_2)_x$, x cannot be 0 when R^3 is hydrogen;

- (b) when Z is $-(CH_2)_xC(=0)$ and $-C(=0)(CH_2)_x$ and x is 0, R^{10} cannot be halogen.
 - [4] Most preferred compounds of formula (I) are those compounds of formula (Ia)

10

5

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

15

R1 is (C3-C4 alkyl);

X is from the group consisting of -NHC (=NH) H, -NHC (=NH) NHR², -NH₂ or -SC (=NH) NHR²;

- R² is hydrogen or C₁-C₄ alkyl;
- \mathbb{R}^3 is independently selected from the group consisting of:
- benzyl, phenyl, phenethyl, (3-phenyl)prop-1-yl, (2-methyl-1-phenyl)prop-2-yl, (2-methyl-2-phenyl)prop-1-yl, 1,1-diphenylmethyl, phenoxymethyl, phenylsulfonylmethyl, 2-(m-fluorophenyl)ethyl, 2-(3-pyridyl)ethyl, (m-aminophenyl)methyl, (m-

methylphenyl) methyl, (p-methylphenyl) methyl, 1-naphthylmethyl;

of:

methyl, t-butoxy, benzyloxy, phenethyl, benzyl,
phenoxymethyl, isopropyl, isoamyl, N-methyl-N-tbutoxycarbonylaminomethyl, N-methylaminomethyl, (mmethyl) phenethyl, (m-fluoro) phenoxymethyl, (mmethyl) phenoxymethyl, (3-pyridyl) ethyl

R¹¹ is hydrogen;

 Y^1 and Y^2 are

15 a) -OH,

b) -F,

c) $-NR^4R^5$ -,

d) $-C_1-C_8$ alkoxy, or;

when taken together Y^1 and Y^2 form:

- e) a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O,
- f) a cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O,
- g) a cyclic boron amide-ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O;

V is independently selected from the group consisting of:

35 O, -OC(=O)-, S, -NH-;

2 is -C (=0)-.

[5] Specifically preferred compounds of formula (I) are those compounds of formula (Ib):

5

selected from the list consisting of:

10

the compound of formula (Ib) wherein \mathbb{R}^3 is phenyl and \mathbb{R}^{10} is methyl;

the compound of formula (Ib) wherein \mathbb{R}^3 is phenylmethyl and \mathbb{R}^{10} is methyl;

the compound of formula (Ib) wherein \mathbb{R}^3 is phenethyl and \mathbb{R}^{10} is methyl;

the compound of formula (Ib) wherein R³ is 3-phenylprop-1-yl and R¹⁰ is methyl;

the compound of formula (Ib) wherein \mathbb{R}^3 is 1,1-dimethyl-2-phenylethyl and \mathbb{R}^{10} is methyl;

25

the compound of formula (Ib) wherein \mathbb{R}^3 is 2,2-dimethyl-2-phenylethyl and \mathbb{R}^{10} is methyl;

5

the compound of formula (Ib) wherein \mathbb{R}^3 is diphenylmethyl and \mathbb{R}^{10} is methyl;

the compound of formula (Ib) wherein R^3 is phenoxymethyl and R^{10} is methyl;

the compound of formula (Ib) wherein \mathbb{R}^3 is phenylsulfonylmethyl and \mathbb{R}^{10} is methyl;

the compound of formula (Ib) wherein R^3 is $(m-1)^2$ fluorophenyl) ethyl and R^{10} is methyl;

the compound of formula (Ib) wherein \mathbb{R}^3 is (3-pyridylethyl) and \mathbb{R}^{10} is methyl;

the compound of formula (Ib) wherein \mathbb{R}^3 is phenylethyl and \mathbb{R}^{10} is phenethyl.

[6] Also specifically preferred compounds of formula(I) are those compounds of formula (Ic):

25

selected from the list consisting of:

the compound of formula (Ic) wherein V is sulfur, R^3 is phenyl and R^{10} is phenmethyl;

	the compound of formula (Ic) wherein V is oxygen, R^3 is phenylmethyl and R^{10} is phenethyl;
5	the compound of formula (Ic) wherein V is oxygen, R ³ is phenylmethyl and R ¹⁰ is 3-phenylpropyl;
10	the compound of formula (Ic) wherein V is oxygen, $(m-methyl)$ phenoxymethyl and R^{10} is 3-phenylpropyl;
	the compound of formula (Ic) wherein V is oxygen, $(m\text{-fluoro})$ phenoxymethyl and R^{10} is 3-phenylpropyl;
15	the compound of formula (Ic) wherein V is oxygen, R ³ is phenylmethyl and R ¹⁰ is (m-methylphenyl)ethyl;
20	the compound of formula (Ic) wherein V is oxygen, R ³ is phenylmethyl and R ¹⁰ is (m-fluoro)phenethyl;
	the compound of formula (Ic) wherein V is oxygen, R3 is phenylmethyl and R10 is phenoxymethyl;
25	the compound of formula (Ic) wherein V is oxygen, R^3 is $(m-fluorophenyl)$ methyl and R^{10} is phenethyl;
	the compound of formula (Ic) wherein V is amino, R^3 is phenylmethyl and R^{10} is phenethyl;
30	the compound of formula (Ic) wherein V is oxygen, R^3 is phenylmethyl and R^{10} is methyl;
	the compound of formula (Ic) wherein V is oxygen, R^3 is phenylmethyl and R^{10} is 2-propyl;
35	·

the compound of formula (Ic) wherein V is oxygen, R^3 is phenylmethyl and R^{10} is isoamyl;

the compound of formula (Ic) wherein V is oxygen, R³ is (m-methylphenyl) methyl and R¹⁰ is methyl;

the compound of formula (Ic) wherein v is oxygen, R^3 is (p-methylphenyl)methyl and R^{10} is methyl;

the compound of formula (Ic) wherein V is oxygen,

R³ is (1-naphthyl)methyl and R¹⁰ is methyl;

the compound of formula (Ic) wherein V is oxygen, R³ is phenylmethyl and R¹⁰ is N-methyl-N-t-butoxycarbonylaminomethyl;

the compound of formula (Ic) wherein V is oxygen, R^3 is phenylmethyl and R^{10} is N-methylaminomethyl.

20

15

5

- [7] Also specifically preferred compounds of formula
- (I) are those compounds of formula (Id):

25

selected from the list consisting of:

the compound of formula (Id) wherein V is oxygen, \mathbb{R}^3 is phenylmethyl and \mathbb{R}^{10} is phenethyl;

the compound of formula (Id) wherein V is oxygen, R^3 is (m-fluorophenyl) methyl and R^{10} is phenethyl.

the compound of formula (Id) wherein V is oxygen,

R³ is phenylmethyl and R¹⁰ (m-methyl) phenethyl;

5

10

Detailed Description of the Invention

The "(D)" prefix for the foregoing abbreviations indicates the amino acid is in the (D)-configuration. "D, L" indicates the amino acid is present as a mixture of the (D)- and the (L)-configuration. The prefix "borc" 15 indicates amino acid residues where the carboxyl is replaced by a boronic acid or a boronic acid ester. For example, if R1 is isopropyl and Y1 and Y2 are OH, the Cterminal residue is abbreviated "boroVal-OH" or "boroValine" where "-OH" indicates the boronic acid is 20 in the form of the free acid. The pinanediol boronic acid ester and the pinacol boronic acid ester are abbreviated "-C10H16" and "-C6H12", respectively. Examples of other useful diols for esterification with the boronic acids are 1,2-ethanediol, 1,3-propanediol, 25 1,2-propanediol, 2,3-butanediol, 1,2diisopropylethanediol, 5,6-decanediol, and 1,2dicyclohexylethanediol. Some common abbreviations used herein are: CBZ or Z, benzyloxycarbonyl; BSA, benzenesulfonic acid; THF, tetrahydrofuran; Boc-, t-36 butoxycarbonyl-; Ac-, acetyl; pNA, p-nitroaniline; DMAP, 4-dimethylaminopyridine; HOBT, 1-hydroxybenzotriazole and hydrate thereof; DCC, 1,3-dicyclohexylcarbodimide; Tris, Tris(hydroxymethyl)aminomethane: MS, mass spectrometry; FAB/MS, fast atom bombardment mass 35 spectrometry. LRMS and HRMS are low and high resolution

mass spectrometry, respectively, using ammonia (NH $_3$ -CI) or methane (CH $_4$ -CI) as an ion source.

It is understood that many of the compounds of the present invention contain one or more chiral centers and that these stereoisomers may possess distinct physical and biological properties. The present invention comprises all of the stereoisomers or mixtures thereof. If the pure enantiomers or diasteromers are desired, they may be prepared using starting materials with the appropriate stereochemistry, or may be separated from mixtures of undesired stereoisomers by standard techniques, including chiral chromatography and recrystallization of diastereomeric salts.

When any variable (for example, R¹ through R¹⁰, m, 15 n, W, Z, etc.) occurs more than one time in any constituent or in formula (I), or any other formula herein, its definition on each occurrence is independent of its definition at every other occurrence.

In the instance that a subscript of a group is 0,

it is intended to mean that the previous group is bonded directly with the next group in the sequence. For example, when:

 R^3 is $\div (CR^6R^7)_t - W - (CR^8R^9)_u - aryl, and <math display="inline">u$ is 0 it is the same as:

 $-(CR^6R^7)_t-W-aryl.$

As described broadly above for R^6 and R^7 , in the case "where R^6 (R^8) or R^7 (R^9) can alternatively be taken together with R^6 (R^8) or R^7 (R^9) on an adjacent carbon atom to form a direct bond", this can only occur when t (u) is greater than 1. The structure that would result from:

 R^3 is $-(CR^6R^7)_t-W-(CR^8R^9)_u$ -aryl, t=2, u=2, R^6 and R^7 are taken to for a double bond, and R^8 and R^9 taken to be a triple bond

35 would be:

30

-CR6=CR7-W-C=C-aryl.

The term "amine-blocking group" or "amineprotecting group" as used herein, refers to various acyl, thioacyl, alkyl, sulfonyl, phosphoryl; and phosphinyl groups comprised of 1 to 20 carbon atoms. Substituents on these groups may include either alkyl, aryl and alkaryl which may contain the heteroatoms, O, S, and N as a substituent or as an inchain component. A number of amine-blocking groups are recognized by those skilled in the art of organic synthesis. Examples of suitable groups include formyl, acetyl, benzoyl, trifluoroacetyl, and methoxysuccinyl; aromatic urethane protecting groups, such as benzyloxycarbonyl; and aliphatic urethane protecting groups, such as tbutoxycarbonyl (also referred to as t-butyloxycarbonyl) or adamantyloxycarbonyl. Gross and Meienhofer, eds., The Peptides, Vol 3; 3-88 (1981), Academic Press, New York, and Greene and Wuts Protective Groups in Organic Synthesis, 315-405 (1991), J. Wiley and Sons, Inc., New York describe numerous suitable amine protecting groups and they are incorporated herein by reference for that purpose.

10

15

20

.30

35

"Amino acid residues" as used herein, refers to natural or unnatural amino acid of either (D)- or (L)-configuration. Natural amino acids residues are Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val. Roberts and Vellaccio, The Peptides, Vol 5; 341-449 (1983), Academic Press, New York, describe numerous suitable unnatural amino acids for use in this application and is incorporated herein by reference for that purpose.

"Amino acid residue" also refers to various amino acids where sidechain functional groups are coupled with appropriate protecting groups known to those skilled in the art. "The Peptides", Vol 3, 3-88 (1981) describes numerous suitable protecting groups and is incorporated herein by reference for that purpose.

As used herein, "alkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms: "alkoxy" represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge; "cycloalkyl" is intended to include saturated ring groups, including mono-,bi- and polycyclic ring systems, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl and cyclooctyl, and so forth. "Alkenyl" is intended to include hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl, and the like. "Halo" or "halogen" as used herein refers to fluoro, chloro, bromo, and iodo.

5

15

The term "aryl" is defined as phenyl, fluorenyl, biphenyl and naphthyl, which may be unsubstituted or include optional substitution with one to three substituents.

The term "heteroaryl" is meant to include 5-, 6- or 20 10-membered mono- or bicyclic aromatic rings which can optionally contain from 1 to 3 heteroatoms selected from the group consisting of O, N, and S; said ring(s) may be unsubstituted or include optional substitution with one to three substituents. 25 Included in the definition of the group heteroaryl, but not limited to, are the following: 2-, or 3-, or 4-pyridyl; 2-or 3-furyl; 2- or 3-benzofuranyl; 2-, or 3-thiophenyl; 2- or 3benzo[b]thiophenyl; 2-, or 3-, or 4-quinolinyl; 1-, or 3-, or 4-isoquinolinyl; 2- or 3-pyrrolyl; 1- or 2- or 3-30 indolyl; 2-, or 4-, or 5-oxazolyl; 2-benzoxazolyl; 2or 4- or 5-imidazolyl; 1- or 2- benzimidazolyl; 2- or 4or 5-thiazolyl; 2-benzothiazolyl; 3- or 4- or 5isoxazolyl; 3- or 4- or 5-pyrazolyl; 3- or 4- or 5isothiazolyl; 3- or 4-pyridazinyl; 2- or 4- or 5-35 pyrimidinyl; 2-pyrazinyl; 2-triazinyl; 3- or 4-

cinnolinyl; 1-phthalazinyl; 2- or 4-quinazolinyl; or 2-quinoxalinyl ring. Particularly preferred are 2-, 3-, or 4-pyridyl; 2-, or 3-furyl; 2-, or 3-thiophenyl; 2-, 3-, or 4-quinolinyl; or 1-, 3-, or 4-isoquinolinyl.

The term "heterocycle" is meant to include 5-, 6or 10-membered mono- or bicyclic rings which can
optionally contain from 1 to 3 heteroatoms selected from
the group consisting of 0, N, and S; said ring(s) may be
unsubstituted or include optional substitution with one
to three substituents. Included in the definition of
the group heterocycle, but not limited to, 2- or 3pyrrolidinyl, a 2-, 3-, or 4-piperidinyl, or a 1-, 3-,
or 4-tetrahdroisoquinolinyl, 1-, 2-, or 4-

tetrahydroquinolinyl, 2- or 3-tetrahydrofuranyl, 2- or 3-tetrahydrothiophene, 1-, 2-, 3-, or 4-piperazinyl, and 1-, 2-, 3-, or 4-morpholino. Particularly preferred are 1-, 3-, or 4-tetrahdroisoquinolinyl, 2- or 3-pyrrolidinyl, and 2-, 3- or 4-piperidinyl.

The substituents that may be attached to the aryl, heteroaryl or heterocycle ring(s) may be independently selected at each occurrence from the group consisting of:

```
-(CH_{2})_{r}N[(CH_{2})_{s}R^{4}][C(=0)(CH_{2})_{s}R^{5}],
-(CH_{2})_{r}N[(CH_{2})_{s}R^{4}][C(=0)O(CH_{2})_{s}R^{5}],
-(CH_{2})_{r}N[(CH_{2})_{s}R^{4}]CON[(CH_{2})_{s}R^{4}][(CH_{2})_{s}R^{5}],
-(CH_{2})_{r}N[(CH_{2})_{s}R^{4}]C(=0)-N[(CH_{2})_{s}R^{4}][C(=0)(CH_{2})_{s}R^{5}],
-(CH_{2})_{r}N[(CH_{2})_{s}R^{4}][S(0)_{p}(CH_{2})_{s}R^{5}].
```

By "stable compound" or "stable structure" is meant herein a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture and formulation into an efficacious therapeutic agent.

10

15

20

3C

35

As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound of formula (I) is modified by making acid or base salts of the compound of formula (I). Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids and the like.

Pharmaceutically acceptable salts of the compounds of the invention can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, methanol, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

"Prodrugs" are considered to be any covalently bonded carriers which release the active parent drug according to formula (I) in vivo when such prodrug is administered to a mammalian subject. Prodrugs of the

compounds of formula (I) are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds.

5 Prodrugs include compounds of formula (I) wherein hydroxy, amine, or sulfhydryl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, or sulfhydryl group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of formula (I).

Synthesis Discussion

25

15 Compounds of formula (I) can be prepared using the synthetic sequences that follow. The solvents employed are compatible with the reagents selected and the transformations being performed. It will be understood by those skilled in the art of organic synthesis that the order of the transformations proposed will be consistent with functionality present in the molecules and may require judgements during the selection of a procedure for preparation of a compound of the invention.

The general synthesis of N-acyl-4-(acyloxy) proline intermediates can be prepared by sequential acylations of the amine and hydroxyl functionalities and is shown in Scheme 1.

30 Scheme 1

PhCH₂O O
$$A^{10}$$
 C A^{10} A^{1

Thus, as an example, (L)-4-hydroxyproline benzyl ester hydrochloride, which is commercially available, or any other suitably protected hydroxyproline, can be treated with a trialkylamine base, typically 4-methylmorpholine, and an acid chloride (R10COCl) to afford acylation product (II) selectively. The hydroxyl group can be converted to a corresponding ester by treatment with a second acid chloride (R^3COCl) in the presence of a 10 trialkylamine or heterocyclic amine base, such as pyridine, and a suitable catalyst, such as but not limited to DMAP to generate (III). The carboxylic acid of the proline moiety can be liberated by hydrogenation using conditions reported by Hartney and Simonoff, Org. 15 React. VII, 263 (1953) wherein an alcohol solution of the compound (III) may be affected under an atmosphere of hydrogen gas using a suitable catalyst, preferably platinum or palladium on carbon catalyst, to provide 20 (IV).

One may vary the transformations indicated above depending upon the nature of the groups to be appended. One may employ alternative methods such as a mixed anhydride coupling, as reported by Anderson, et al. J. Am. Chem. Soc. 89, 5012 (1967); or the DCC/HOBT protocol

described by König, and Geiger, Chem. Ber. 103, 788 (1970) to form the requisite amide bond. Also, the DCC/DMAP esterification procedure, reported by Hassner, and Alexanian, Tetrahedron Lett. 19, 4475 (1978) has proved useful for performing the second acylation reaction. Finally, one may choose an ester other than benzyl which might be removed hydrolytically or photilytically, such as photlytic deprotection. For example, with a methyl ester of (II), treatment of an alcoholic solution of the compound with a solution of sodium hydroxide so as to deliver 1 equivalent amount of NaOH followed by acidification should provide the carboxylic acid.

The N-acyl-4-(alkoxy) proline intermediates can prepared as shown in Scheme 2.

Scheme 2

20

10

The hydroxyl function of an N-protected 4-hydroxyproline (V) can be alkylated according to the method of Smith et al., J. Med. Chem. 31, 875 (1988), by treatment with an alkali metal hydride, such as but not limited to sodium hydride and an alkyl halide (R³X) to give (VI). Removal

(VII)

of the N-protecting group by an appropriate method know to one of skill in the art can provide (VII): the t-butyl carbamate can be cleaved upon treating with acid under anhydrous conditions; for example, trifluoroacetic acid in dichloromethane solution removes the t-butyl urethane of derivatives of (TV) at ambient temperature as reported by Bryan et. al., J. Am. Chem. Soc. 99, 2353 (1977); alternatively anhydrous hydrogen chloride in dioxane may be used to prepare the HCl salt. Other methods for protection of the amine are delineated in Greene and Wuts (1991). The use of benzyl urethane is also viable where hydrogenation over palladium catalyst deliveres the free amine (VIII). Acydlation by one of the methods discussed previously can provide (VIII).

10

The 4-amino and 4-mercaptoproline intermediates 15 useful for the synthesis of compounds of the formula (I), wherein V is S, NH or derivatives thereof, can be prepared according to Scheme 3. The hydroxyproline ester (IX), wherein the amine is protected as the BOC or 2° CBZ, can be reacted with carbon tetrachloride/ triphenylphosphine according to the method of Webb and Eigenbrot, J. Org. Chem., 56, 3009 (1991), to provide the chloride (X) with inversion of stereochemistry. chloride can be displaced by a sulfur nucleophile, again with inversion of sterochemistry in a manner similar to 25 that reported by Smith et al. (1988) to provide the displacement product (XIIb), sulfur-containing prolines. Similarly, the chloride can be displaced by sodium azide, which is reduced to the primary amine and converted by reductive amination to provide the 30 displacement products (XIIa), nitrogen-containing prolines. The R^3 group in (XII) used in the displacement reaction need not be the ultimate R3 of formula (I); methods for their removal are well known to those skilled in the art of organic synthesis. Methods 35 for the attachment of preferred R3 are described herein.

Scheme 3

P is a protecting group (ie., CBZ, Boc)

5

These disubstituted prolines (XIIa,b) can be used in an analogous manner to that of (IV) or (VIII) described hereafter.

The construction of thrombin inhibitors of the

present invention requires the coupling of either of the
aforementioned intermediates, (IV), (VIII), or (XII)
with a boron-containing fragment followed by
manipulation of the pendant functionalities, as shown in
Scheme 4.

1.5

Scheme 4

The synthesis of borolysine-containing thrombin inhibitors (XVII) begins with the coupling of amine hydrochloride (XIII), disclosed by Kettner and Shenvi U.S. Patent No. 5.187.147, to provide amide (XIV). In practice, one may choose from several well-known methods to prepare (XIV) in suitably pure form, as purification of this intermediate is oftentimes impractical. One method calls for the combination of (XIII) and the acid chloride derived from (IV), (VIII) or (XII) in the presence of an amine base, such as but not limited to pyridine. Alternatively, one may employ either the mixed anhydride method, which involves mixing the acid to be coupled with an alkylchloroformate and an tertiary amine base, such as, but not limited to, i-butyl chloroformate and 4-methylmorpholine, followed by

10

addition of the amine discussed previously, to prepare (XIV) from (IV), (VIII) or (XII); additionally the DCC/HOBT method may be used to access amines XIV and/or XII

Conversion of the bromide to the X group in R1 of formula (I) can be accomplished by first reaction of bromide (X) with an inorganic azide, such as sodium or potassium azide, in an anhydrous polar aprotic solvent, such as acetone, N, N-dimethylformamide or methyl sulfoxide at temperatures ranging from ambient to 130°C; 10 typically reaction with sodium azide in N, Ndimethylformamide at 65-70 °C for several hours provides Subsequent reduction of the azide function to the amine (XVI) is effected by catalytic hydrogenation of the azide in a solvent, such as an alcohol or ethyl 15 acetate using a suitable transition metal catalyst under an atmosphere of hydrogen gas. Reduction of the azide (XX) in the presence of sulfur-containing prolines (XV, where V is S) can be done according to the method of Knowles et al., Tetrahedron Lett., p. 3663 (1978) to 20 provide the amines (XXI). A variety of alternative methods can be found in the monograph by Hudlicky, Reductions In Organic Synthesis, John Wiley and Sons, pp. 134 (1984). The amine (XVI) can be isolated as the free base or a salt, typically, but not exclusively 25 hydrochloride or benzenesulfonate; other salts which impart improved physical properties may be preferred.

The method described by Matteson et al., J. Am. Chem. Soc. 102, 7590 (1980) discloses a procedure for removing the pinanediol ester, however, the method employs reagents which may decompose the desired product. The preferred method for preparation of the free boronic acid (XVII) involves transesterification in the presence of excess phenylboric acid.

3C

Starting from intermediate bromide (XIX), the X group in formula (I) can be introduced directly by displacement of the halide using thiourea as the nucleophilic species thereby providing boronic ester (XXVIII). As described previously, transesterification using phenylboric acid yields (XXIX).

Examples

10

Example 78

 $N^{1}-[(4R)-N-Acetyl-4-(3-phenylpropionyl)oxy-(L)-prolyl]-R-borolysine, (+)-pinanediol ester$

To a solution of (4R)-4-hydroxy-(L)-proline Part A: benzyl ester hydrochloride (2.67 g, 1.04 mol) in 15 dichloromethane (CH2Cl2, 50 mL) at 0 °C was added 4methylmorpholine (2.50 mL, 2.28 mmol) followed by acetyl chloride (0.72 mL, 1.09 mmol). The reaction mixture was warmed to room temperature over 12 hours and ethyl acetate (EtOAc, ca. 200 mL) was added. The organic 20 layer was washed with saturated aqueous sodium bicarbonate (NaHCO₃, 1 x 30 mL), water (H_2O , 1 x 30 mL), saturated aqueous sodium chloride (NaCl, 1 x 30 mL), dried over sodium sulfate (Na2SO4) and concentrated under reduced pressure. The resulting oil (1.94 g, 71) 25 yield) solidified on standing at room temperature. A sample of (4R)-N-acetyl-4-hydroxy-(L)-proline benzyl ester was recrystallized from hexanes: EtOAc to give white plates, mp 99-102 °C (orthorhombic, P2₁2₁2₁, a = 9.216, b = 9.315, c 15.420 Å). ¹H NMR (300 MHz, CDCl₃) δ 3C 7.35 (comp, 5H), 5.17 (s, 2H), 4.63 (m, 1H), 3.79 (dd, J=10.6,4.6 Hz, 1H), 3.50 (d, J=10.6 Hz, 1H), 2.29 (d, J=4.4 Hz, 1H), 2.24 (m, 1H), 2.11 (m, 1H), 2.09 (s,

3H); LRMS 264 (M+H, base), 281 (M+NH₄); Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.84; H, 6.41; N, 5.38.

To a solution of the product from Part A (370 Part B: mg, 1.41 mmol) and pyridine (0.17 mL, 2.10 mmol) in CH2Cl2 (14 mL) at 0 °C was added 3-phenylpropionyl chloride (0.23 mL, 1.55 mmol). The reaction mixture was warmed to room temperature over 3 hours and added to EtOAc (ca. 75 mL). The organic layer was washed with sat. aq. NaHCO3 (1 x 25 mL), half-saturated aqueous copper (II) sulfate (1 x 25 mL), sat. ag. NaCl (1 x 25 mL), dried (Na2SO4) and was concentrated under reduced 10 pressure. The residue was purified by flash chromatography, elution with 2:1 EtOAc-hexanes to give (4R)-N-acetyl-4-(3-phenylpropionyl)oxy-(L)-proline benzyl ester (340 mg) as an oil in 61% yield. 1H NMR (300 MHz, CDCl₃) δ 7.37 (comp, 5H), 7.28 (m, 2H), 7.19 (m, 3H), 15 5.30 (m, 1H), 5.18 (m, 2H), 4.51 (dd, J=8.4, 8.0 Hz, 1H), 3.84 (dd, J=11.7, 4.7 Hz, 1H), 3.46 (d, J=11.7Hz, 1H), 2.93 (t, J=7.5 Hz, 2H), 2.64 (t, J=7.5 Hz, 2H) 2.28 (m, 1H), 2.13 (m, 1H), 2.03 (s, 3H); LRMS.396 20 (M+H, base).

Part C: A solution of the product from Part B (340 mg, 0.86 mmol) together with palladium on charcoal (50 mg) in methanol (MeOP, 9 mL) was stirred under hydrogen (1 atm) for 2 hours. The reaction mixture was filtered through a pad of Celite with additional MeOH (ca. 10 mL) and the filtrate was concentrated under reduced pressure to give (4R)-N-acetyl-4-(3-phenylpropionyl)oxy-(L)-proline (245 mg) as a foam in 93% yield. 1H NMR (300 MHz, CDCl₃) & 7.27 (comp, 5H), 5.28 (m, 1H), 4.57 (t, J=7.7 Hz, 1H), 4.38 (br s, 1H), 3.76 (dd, J=11.9, 4.5 Hz, 1H), 3.49 (s, 1H), 2.95 (t, J=7.3 Hz, 2H), 2.66 (t, J=7.3 Hz, 2H), 2.56 (m, 1H), 2.26 (m, 1H), 2.07 (s, 3H); LRMS 306 (M+H), 173 (base).

35

1:1 Et₂O-hexanes gave (4S)-N-BOC-4-chloro-(L)-proline methyl ester (17.03 g) as an oil in 84½ yield. ¹H NMR (300 MHz, CDCl₃) δ 4.37 (m, 2H), 3.95 (m, 1H), 3.75 (s, 3H), 3.63 (m, 1H), 2.63 (m, 1H), 2.38 (m, 1H), 1.45 (s, 9H).

5

10

Part B: A solution of the product from Part A (17.03 g, 64.5 mmol) in trifluoroacetic acid (20 mL) and CH_2Cl_2 (20 mL) was stirred 18 hours. The reaction mixture was concentrated under reduced pressure to give (45)-4-chloro-(L)-proline methyl ester (18.05 g) as an oil in quanitative yield. ¹H NMR (300 MHz, CDCl₃) δ 4.75 (comp, 2H), 3.87 (comp, 2H), 3.94 (s, 3H), 2.99 (m, 1H), 2.77 (m, 1H).

Part C: A solution of the product from Part B (30.28 g, 109 mmol) in CH₂Cl₂ (50 mL) was cooled to 0 °C and Et₃N (45.6 mL, 327 mmol) followed by hydrocinnamoyl chloride (17.8 mL, 120 mmol) were added slowly in order to maintain an internal temperature less than 10 °C. After stirring six hours, H₂O (50 mL) was added to the reaction mixture. The resulting solution was extracted with CH₂Cl₂ (3 x 50 mL). The organics were washed with H₂O (25 mL), dried with MgSO₄ and concentrated under reduced pressure to give (4S)-N-(3-phenylpropionyl)-4-chloro-(L)-proline methyl ester (17.44 g) as a waxy solid in 54% yield. LRMS 296.1 (base, M+H).

Part D: EtOH (50 mL) was cooled to 0 °C and sodium (0.78 g, 33.8 mmol) was added. After the hydrogen evolution ceased, thiophenol (3.72 g, 33.8 mmol) was added and the reaction mixture stirred for 15 minutes at 30 0 °C, and the product from Part C (5 g, 16.9 mmol) was added. The stirring was continued for an additional 16 hours at room temperature. The mixture was concentrated under reduced pressure, diluted with water (20 mL) and acidified with 1N HCl to pH 4. The aqueous solution was

extracted with EtOAc (3 x 30 mL), the organics dried with Na₂SO₄ and concentrated under reduced pressure. The residue was further purified by flash chromatography, elution with chromatographed with 1:3 EtOAc-hexanes gave 2.06 g of (4R)-N-(3-phenylpropionyl)-4-(phenyl)thio-(L)-proline in 25% yield. LRMS 356.1 (M+H, base).

Part E: Using the method described above for the preparation of Example 78, Part D, (1R)-5-bromo-[(4R)-N-10 (3-phenylpropionyl)-4-(phenyl)thio-(L)-prolyl)aminopentane-1-boronic acid, (+)-pinanediol ester was isolated (2.43 g) as an oil in 85% yield. LRMS 681.2 683.2 (M+H, base).

Part F: Using the method described above for Example 78, Part E, the intermediate (1R)-5-azido-(4R)-N-(3-phenylpropionyl)-4-(phenyl)thio-(L)-prolyl)aminopentane-1-boronic acid, (+)-pinanediol ester was isolated (2.42 g) as an oil in quantitative yield.

,--*i*

A solution of the product from Part F (2.42 g, Part G: 3.76 mmol) in 1,3-propanedithiol (1.62 g, 15 mmol), 20 triethylamine (1.52 g, 15 mmol) and methanol (20 mL) was stirred at 50 °C for 24 hours. The reaction mixture was concentrated under reduce pressure and purified by flash chromatography through florosil, eluting with 1:9 MeOH-CH2Cl2. The concentrated residue was dissolved in 25 diethyl ether (10 mL), acidified with 1 equivalent of 1N HCl in Et₂O and concentrated to give the title compound (0.73 g) as a solid in 31% yield. LRMS 617.3 (M+H, base). HRMS Cacld for C35H48BN3O4S: 617.34583. Found: 617.34580. 3C

Example 303

 N^{1} -[(4R)-N-(3-Phenylpropionyl)-4-(benzyl)oxy-(L)-prolyl]-R-borolysine, (+)-pinanediol ester

A solution of the commercially available Part A: starting material, $(4R)-N-BOC-4-\{benzyl\}$ oxy-(L)-proline, previously reported by Smith et al., J. Med. Chem. 31, 875 (1988); (2.11 g, 6.57 mmol), in CH_2Cl_2 (27 mL) was treated with anhydrous hydrogen chloride in dioxanes (4 M, 6.60 mL). The reaction mixture was stirred for 18 hours, during which time a white precipitate formed. The 10 reaction was diluted with diethyl ether (Et20, ca. 100 mL) and the solid material was collected by suction filtration to afford (4R)-4-(benzyl)oxy-(1)-prolinehydrochloride (1.60 g) as a white powder in 95% yield. ¹H NMR (300 MHz, DMSO-d₆) δ 10.2 (br s, 1H), 7.36 (comp, 15 5H), 4.52 (s, 2H), 4.37 (dd, J=10.8,7.5 Hz, 1H), 4.31 (m, 1H), 3.43 (dd, J=12.5, 4.4 Hz, 1H), 3.33 (d, J=12.5Hz, 1H), 2.48 (m, 1H), 2.11 (m, 1H); LRMS 222 (M+H, base).

20

A suspension of the product from Part A (1.50 g, 5.83 mmol) in CH_2Cl_2 (58 mL) at 0 °C was treated with 3-phenylpropionyl chloride (0.95 ml, 6.41 mmol) followed by 4-methylmorpholine (1.92 mL, 17.5 mmol). The reaction mixture was warmed to room temperature over 20 25 hours, treated with 2M aqueous hydrochloric acid (HCl) until pH = 2, and added to EtOAc (ca. 200 mL). The organic layer was washed with $\rm H_2O$ (3 x 50 mL), sat: aq. NaCl (1 x 50 mL), dried (MgSO₄) and concentrated under reduced pressure. The resulting solid was 36 recrystallized from hexanes-EtOAc and gave a first crop (1.33 g, mp 127-129 °C) and a second crop (0.37 g, mp 122-125 °C) of (4R)-N-(3-phenylpropionyl)-4-(benzyl)oxy-(L)-proline as colorless plates in a total of 82% yield. (monoclinic, P2₁, a = 6.196, b = 9.101, c = 16.477Å, $\beta =$ 35 98.98 °) 1 H NMR (300 MHz, CDC1₃) δ 7.29 (comp, 10H),

4.95 (br s, 1H), 4.69 (dd, J=8.1,6.2 Hz, 1H), 4.50 $(ABq, \Delta \alpha_{AB} = 32.5 \text{ Hz}, J_{AB} = 11.7 \text{ Hz}, 2H), 4.20 (quin, J=$ 4.8 Hz, 1H), 3.46 (d, J=4.8 Hz, 2H), 2.98 (t, J=7.7Hz, 2H), 2.59 (t, J=7.4 Hz, 2H), 2.50 (m, 1H), 2.23 (ddd, J= 13.5, 8.4, 5.0 Hz, 1H); LRMS 354 (M+H, base); Anal. Calcd for $C_{21}H_{23}NO_4$: %C, 71.37; %H, 6.56; %N, 3.96. Found: %C, 71.39; %H, 6.57; %N, 3.92.

Using the method described above for the Part C: preparation of Example 78, Part D, (1R)-5-bromo-[(4R)-N-10 (3-phenylpropionyl)-4-(benzyl)oxy-(L)prolyl)aminopentane-1-boronic acid (+)-pinanediol ester was isolated (2.80 g) as an oil in 90% yield. LRMS 679, 681 (M+H, base).

15

Using the method described above for Example 78, Part E, (1R)-5-azido-(4R)-N-(3-phenylpropionyl)-4-(benzyl)oxy-(L)-prolyl]aminopentane-1-boronic acid (+)pinanediol ester was isolated (2.31 g) as an oil in 94%

20 yield. LRMS 642 (M+H, base).

A solution of product from Part D (2.24 g, Part E: 3.50 mmol) in MeOH (35 mL) together with palladium on charcoal (225 mg) was stirred under hydrogen (1 atm) for l hour. The reaction mixture was filtered through a pad of Celite with additional MeOH (ca. 30 ml) and the filtrate was concentrated under reduced pressure to give a foam which contained a small amount of unreacted azide. This material was resubjected to the hydrogenation conditions described above to afford the 30 title compound (2.00 g) as a white foam in 93% yield. LRMS 616 (M+H, base).

35

Example 303a

 N^{I} -[(4R)-N-(3-Phenylpropionyl)-4-(benzyl)oxy-(L)-prolyl}-R-borolysine, (+)-pinanediol ester, benzenesulfonate

A solution of Example 303 (2.00 g, 3.25 mmol) in methanol (25 mL) was treated with a solution of benzenesulfonic acid (0.514 g, 3.25 mmol) in methanol (8 mL). The mixture was allowed to stand at room temperature for 15 minutes and concentrated under reduced pressure to give a foam. The residue was washed with Et₂O (2 x 25 mL), which was decanted, then dissolved in EtOAc (ca. 20 mL) and triturated with Et₂O (ca. 75 mL) to afford an oily material which was washed with Et₂O (2 x 25 mL). The excess solvent was removed in vacuo to give the title compound (2.00 g) as a powder in 79% yield. LRMS 616 (M+H, base); HRMS Calcd for C₃₆H₅₁BN₃O₅: 616.3922. Found: 616.3921.

Example 375

N1-[(4R)-N-(3-Phenylpropionyl)-4-(benzyl)amino-(L)-prolyl]-R-borolysine, (+)-pinanediol ester, hydrochloride

Part A: A mixture of the product from Example 302, Part C (3.00g, 10.1 mmol) and NaN3 (3.30 g, 50.7 mmol) in DMF (15 mL) was heated to 75 °C for 18 hours. The reaction mixture was dissolved in H₂O (25 mL). The aqueous solution was extracted with Et₂O (3 x 25 mL), dried with MgSO₄ and concentrated to give (4R)-N-(3-phenylpropionyl)-4-azido-(L)-proline methyl ester (2.13 g) as an oil in 83% yield. ¹H NMR (300 MHz, CDCl₃) & 7.25 (comp, 5H), 4.56 (m, 1H), 4.26 (m, 1H), 3.77 (s, 3H), 3.75 (m, 1H), 3.40 (dd, J = 8, 2 Hz, 1H), 2.97 (m, 2H), 2,60 (m, 2H), 2.32 (comp, 2H). LRMS 303.1 (M+H, base).

Part B: Using the method described above for the preparation of Example 78, Part F, (4R)-N-(3-phenylpropionyl)-4-amino-(L)-proline methyl ester was isolated (2.43 g) as an oil in 85% yield. ¹H NMR (300 MHz, CDCl₃) & 7.24 (comp, 5H), 4.58 (m, 1H), 3.74 (m, 2H), 3.73 (s, 3H), 3.01 (m, 3H), 2.60 (m, 2H), 2.12 (m, 1H), 1.94 (m, 1H). LRMS 277.1 (M+H, base).

A_mixture of the product from Part B (1.51 g, Part C: 5.46 mmol), benzaldehyde (0.58 g, 5.46 mmol), potassium acetate (0.54 g, 5.46 mmol) and 5% palladium on charcoal 10 (0.21 g) was stirred in MeOH (25 mL) under hydrogen (3 atm) for 5 hours. The reaction mixture was filtered through a pad of Celite with additional MeOH (ca. 10 mL) and the filtrate concentrated under reduced pressure to give (4R)-N-(3-phenylpropionyl)-4-(benzyl)amino-(L)proline methyl ester (2.00 g) as an oil in quantitative 1H NMR (300 MHz, CDCl₃) δ 7.27 (comp, 10H), 4.58 (m, 1H), 3.73 (comp, 4H), 3.50 (m, 1H), 3.44 (s, 3H), 3.15 (m, 1H), 2.96 (t, J = 7 Hz, 2H), 2.55 (m, 2H), 2.09IRMS 367.2 (M+H, base). (m, 2H). 2C

Part D: A solution of the product from Part C (2.00 g, 5.46 mmol) methanol (15 mL) and lN sodium hydroxide (9 mL) was stirred for 24 hours. The pH of the solution was adjusted to 6 with lN HCl and a white precipitate formed. The solid material was collected by suction filtration to give (4R)-N-(3-phenylpropionyl)-4-(benzyl)amino-(L)-proline (1.31 g) as a white powder in 68½ yield. LRMS 353.2 (M+H, base).

25

Part E: Using the method described above for the
preparation of Example 78, Part D, (1R)-5-bromo-[(4R)-N-(3-phenylpropionyl)-4-(benzyl)amino-(L)prolyl)aminopentane-1-boronic acid, (+)-pinanediol ester was isolated (0.71 g) as an oil in 49% yield. LRMS
678.3 680.3 (M+H, base).

WO 95/09859

Table 1

$$NH_2$$

Ex.No	RA	R6	R ⁷	R8	R ⁹	R ¹⁰	W	Z	ı	u	Data
1	Н	-	_	444		СН3	_	СО	0	0	
2	н	_	-	-	-	СH ₃	СH ₂	CO	0	0	
3	H	H	H	-	••	CH ₃	CH ₂	СО	1	0	
4	H	H	H	H	- н	CH ₃	СH ₂	CO	1	3	
5	H	·CH ₃	CH ₃	***		CH ₃	CH_2	CO	1	0	
6	Н	_	_	CH ₃	CH ₃	CH ₃	CH ₂	CO	0	1	
7	Н	-	-	Ph	H	CH ₃		CO	O	3	
8	H	H	H	-	***	CH ₃	0	CO	1	0	
9	H	" С Н ₃	CH ₃	-	_	CH ₃	0	CO	1	0	
10	H	H	H	_	***	CH ₃	so_2	CO	1	0	
11	2-CH ₃	H	H	***		CH ₃	CH_2	CO	1	0	
12	3-CH ₃	H	H	-	_	CH ₃	CH_2	CO	1	0	
13	2, 3-diCH ₃	H	Н	400	-	CH ₃	CH ₂	CO	i	0	
14	2-F	H	H	-		CH ₃	CH ₂	CO	1	0	
15	3-F	H	H	-	_	СН3	CH_2	CO	1	0	
16	4-F	H	H	No.de-	_	CH ₃	CH ₂	CO	1	0	
17	2-NH ₂	H	H	HERN	-	CH ₃	CH ₂	CO	1	0	
18	3-NH ₂	Н	H	_	-	CH ₃	CH ₂	CO	i	0	
19	2-NO ₂	Н	Н			CH ₃	CH ₂	CO	1	0	
20	$3-NO_2$	H.	H	-	allipes	CH ₃ .	CH ₂	CO	1	0	
21	2-N	H	H	_	***	CH ₃	CH_2	CO	1	()	

22	3-N	H	Н	•••	***	CH ₃	CH_2	CO	1	0
23	4-N	H	H	_	•••	CH ₃	CH ₂	CO	1	0
24	н	H	Н	-		(CH ₂) ₂ Ph	0	CO	1	0
25	H	CH ₃	CH ₃	-		$(CH_2)_2$ Ph	0	CO	0	1
26	H	H	H	~		$(CH_2)_2$ Ph	so_2	CO	1	0
27	H	H	H		-	$(CH_2)_2Ph$	CH ₂	CO	1	0
28	Н	CH ₃	CH ₃	-	-	(CH ₂) ₂ Ph	CH ₂	CO	1	0
29	H	_	•••	CH ₃	CH ₃	(CH ₂) ₂ Ph	CH ₂	CO	0	1
30	2-CH ₃	H	H	-		(CH ₂) ₂ Ph	CH ₂	ĊO	1	0
31	3-CH ₃	H	H	_	_	$(CH_2)_2$ Ph	CH ₂	CO	1	0
32	2, 3-diCH ₃	H	H	_	-	(CH ₂) ₂ Ph	CH ₂	CO	1	0
33	2-F	Н	Н	-		(CH ₂) ₂ Ph	CH_2	CO	1	0
34	3-F	H	H	<u> </u>	-	$(CH_2)_2$ Ph	CH ₂	СО	1	0
35	4-F	Н	Н	_	4.0	(CH ₂) ₂ Ph	CH_2	CO	1	0
36	2-NH ₂	Н	Н	~	_	$(CH_2)_2Ph$	CH ₂	CO	ī	0
37	3-NH2	H	H	jup.		(CH ₂) ₂ Ph	CH_2	CO	1	0
38	2-NO ₂	H	H	_	-	(CH ₂) ₂ Ph	CH_2	CO	1	0
39	3-NO ₂	Н	H	-	-	$(CH_2)_2Ph$	CH ₂	CO	1	D
40	2-N	H	H			(CH ₂) ₂ Ph	CH ₂	CO	1	0
41	3-N	H	H		™ •	$(CH_2)_2Ph$	CH ₂	CO	1	0
42	4-N	H	H .	-	-	(CH ₂) ₂ Ph	CH ₂	CO	1	0
43	H	H	H	***	-	CH ₂ Ph	CH ₂	C(O)O	1	0
44	H	CH ₃	CH ₃		-	CH ₂ Ph	CH ₂	C(O)O	1	0
45	H.	***	-	CH ₃	CH ₃	CH ₂ Ph	CH_2	C(O)O	0	I
46	2-CH ₃	H	H	_		CH ₂ Ph	CH_2	C(O)O	1	0
47	3-CH ₃	H	H	thesp	***	CH ₂ Ph	CH ₂	C(O)O	1	0
48	2. 3-diCH ₃	H	H	. –	-	CH ₂ Ph	CH ₂	C(O)O	1	Ü
49	2-F	H	Н	-	 .	CH ₂ Ph	CH ₂	C(O) O	1	0
50	3-F	H	H	-	-	CH ₂ Ph	CH ₂	C(O)O	1	0
51	4-F	H	H	-	-	CH ₂ Ph	CH ₂	C(O)O	1	0 .
52	2-NH ₂	H	H	-	••	CH ₂ Ph	CH ₂	C(O)O	1	0
53	3-NH ₂	H	H	-		CH ₂ Ph	CH ₂	C(O)O	1	0
54	2-NO ₂	H	H		_	CH ₂ Ph	CH ₂	C(O)O	1	0
55	3-NO ₂	H,	H		_	CH ₂ Ph	CH ₂	C(O)O	1	0
56	2-N	H	H	_		CH ₂ Ph	CH ₂	C(O)O	1	0

57	3-N	H	Н	-	-	CH ₂ Ph	CH ₂	C(U)O	1	0
58	4-N	H	H	_	-	CH ₂ Ph	CH ₂	C(O)O	1	0
59	Н	Н	H	_	-	CH ₂ Ph	CH_2	C(O)NH	I	0
60	Н	CH ₃	CH ₃	-	_	CH ₂ Ph	CH_2	C(O)NH	ı	0
61	H	-		CH ₃	CH ₃	CH ₂ Ph	CH ₂	C(O)NH	0	1
62	2-CH ₃	H	H	_	•	CH ₂ Ph	CH ₂	C(O)NH	1	0
63	3-CH ₃	H	H	-	_	CH ₂ Ph	CH ₂	C(O)NH	1	0
64	2, 3-diCH ₃	H	H	~		CH ₂ Ph	CH ₂	C(O)NH	1	0
65	2-F	H	H	-	-	CH ₂ Ph	CH ₂	C(O)NH]	0
66	3-F	H	H	with.	_	CH ₂ Ph	CH ₂	C(O)NH	1	0
67	4-F	H	H	***	-	CH ₂ Ph	CH ₂	C(O)NH	1	0
68	2-NH ₂	H	H	-		CH ₂ Ph	CH_2	C(O)NH	1	0
69	3-NH ₂	H	H	_	-	CH ₂ Ph	CH ₂	C(O)NH	ì	O
70	2-NO ₂	H	H		_	CH ₂ Ph	CH ₂	C(O)NH	ì	O
71	3-NO ₂	H	H	-	-	CH ₂ Ph	CH ₂	C(O)NH	1	0
72	2-N	H	H			CH ₂ Ph	CH ₂	C(O)NH	1	0
73	3-N	H	Н		-	CH ₂ Ph	CH ₂	C(O)NH	1	0
74	4-N	H	H	- '	, and	CH ₂ Ph	CH_2	C(O)NH	1	0
75	H	H	H	_	_	CH ₂ OPh	CH ₂	CO	3	0

Table 2

$$NH_{2}$$

$$0$$

$$NH CH_{3}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{3}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{3}$$

$$N-Z-R^{10}$$

$$NH_{3}$$

$$N-Z-R^{10}$$

$$NH_{4}$$

$$NH_{5}$$

$$NH_{$$

Ex.No	· RA	R6	R ⁷	R8	R ⁹	R10	w	Z	· L	ט	Data
76	н	_	-	***	_	СН3	h -	CO	0	0	Α
77	Н	-	_	-	_	CH ₃	CH ₂	СО	0	0	В
78	H	H	H	•	**	CH ₃	CH ₂	CO	1	0	C
79	H	H	Н	H	H	CH ₃	CH ₂	CO	1	1	D
80	H	CH ₃	CH ₃		<u>-</u>	CH ₃	СH ₂	CO	1	0	E
81	Н	-	•••	CH ₃	CH ₃	CH ₃	CH_2	CO	0	1	F
85	н	-		Ph	Н	CH ₃	_	CO	0	1	G
83	H	H	Н	-		CH ₃	O	СО	1	0	Н
84	H	CH ₃	CH ₃	-	_	CH ₃	O	CO	1	O	
85	H	H	H	VIII		CH ₃	so_2	CO	1	O	}
86	2-CH3	H	H	_		CH ₃	CH ₂	CO	1	O	
87	3-CH ₃	Н	H	_	-	CH ₃	CH ₂	CO	1	0	
88	2, 3-diCH ₃	H	H	-	_	CH ₃	CH ₂	CO	1	0	
89	2-F	H	H	***		CH ₃	CH ₂	CO	}	0	
90	3-F	H	H	_	•	CH ₃	CH ₂	CO	į	0	j
91	4-F	H	H	-	_	CH ₃	CH_2	CO	1	0	
92	2-NH ₂	В	Н	prop-		CH ₃	CH ₂	CO	1	0	
93	3-NH ₂	H	Н	-	***	CH ₃	CH ₂	CO	1	0	
94	2-NO ₂	H	H	•		сн3	CH ₂	CO	1	0	
95	3-NO ₂	н,	H	-		CH ₃	CH ₂	CO	1	0	
96	2-N	H	H	_	-	CH ₃	CH ₂	CO	1	0	

97	3-N	H	Н	-	-	CH ₃	CH ₂	CO	1	0	K	
98	4-N	H	H	-	_	CH ₃	CH ₂	CO	1	0		
99	H	H	H	-	-	(CH ₂) ₂ Ph	0	CO	1	0		
100	Н	CH ₃	CH ₃	*-	-	(CH ₂) ₂ Ph	0	CO	0	1		•
101	H	H	H		-	(CH ₂) ₂ Ph	so_2	CO	i	0		
102	H	H	H	_	-	(CH ₂) ₂ Ph	CH ₂	CO	i	0	L	•
103	H	CH ₃	CH ₃		-	(CH ₂) ₂ Ph	CH ₂	CO	1	0		
114	H	~	-	CH ₃	CH ₃	(CH ₂) ₂ Ph	CH ₂	CO	0	1		
105	2-CH ₃	H	H	•	-	(CH ₂) ₂ Ph	CH ₂	CO	1	D		
106	3-CH ₃	H	Н		-	(CH ₂) ₂ Pb	CH_2	CO	1	0		
107	2, 3-diCH ₃	H	Н	182-	_	$(CH_2)_2Ph$	CH_2	CO	1	0		
108	2-F	H	Н	-	-	$(CH_2)_2Ph$	CH ₂	CO	1	0		
109	3-F	H	H	~		(CH ₂) ₂ Ph	CH ₂	CO	1	0		
110	4-F	H	Ħ	_	_	(CH ₂) ₂ Ph	CH ₂	CO	1	0		
111	2-NH ₂	Ħ	Н		-	$(CH_2)_2Ph$	CH ₂	CO	1	0		
112	3-NH ₂	Н	H	****		$(CH_2)_2Ph$	CH_2	co	1	0		
113	2-NO ₂	H	H	-	<u>.</u>	$(CH_2)_2Ph$	CH_2	CO	ì	0		
114	3-NO ₂	н	H	-	_	$(CH_2)_2$ Ph	CH_2	CO	ì	0		
115	2-N	H.	H	_	_	(CH ₂) ₂ Ph	CH ₂	CO	1	0		
116	3-N	H	H	-		(CH ₂) ₂ Ph	CH ₂	CO	1	0		
117	4-N	H	H	_	_	(CH ₂) ₂ Ph	CH ₂	CO	1	0		
118	H	. H	H	bagap	***	CH ₂ Ph	СH ₂	C(O)O	1	0		
119	H	CH ₃	CH ₃	· **	-	CH ₂ Ph	CH_2	C(O)O	1	Ü		
120	Н	~	-	CH ₃	CH ₃	CH ₂ Ph	CH_2	C(O)O	0	l		
121	2-CH ₃	H	H	••	_	СН ₂ Рh	CH ₂	C(O)O	1	0		
122	3-CH ₃	Н	H	-	PP-	CH ₂ Ph	CH ₂	C(O)O	1	0		
123	2, 3-diCH ₃	H	H	-	_	CH ₂ Ph	CH ₂	C(O)O	1	0		
124	2-F	H	H	***		CH ₂ Ph	CH ₂	C(O)O	1	0		
125	3-F	H	H	•	-	CH ₂ Ph	CH ₂	C(O)O	1	0		
126	4-F	H	H	•	_	CH ₂ Ph	CH ₂	C(O)O	1	0		•
127	2-NH ₂	H	H	-		CH ₂ Ph	CH ₂	C(O)O	1	0		
128	3-NH ₂	H	H		410-	CH ₂ Ph	CH ₂	C(O)O	3	0		
129	2-NO ₂	H	H	-	Mark	CH ₂ Ph	CH ₂	C(O)O	1	0		
130	3-NO ₂	H,	H	-	-	CH ₂ Ph	CH ₂	C(O)O	1	O		
131	2-N	H	H	•••	-	CH ₂ Ph	CH_2	C(O)O	1	0		•

132	3-N	H	H		***	CH ₂ Ph	CH ₂	C(0)0	j	0
133	4-N	Н	Н	-	-	CH ₂ Ph	CH ₂	C(0)0	1	0
134	H	H	H	-		CH ₂ Ph	CH ₂	C(O)NH	3	0
135	Н	CH ₃	CH ₃	_	-	CH ₂ Ph	CH ₂	C(O)NH	1	0
136	H	-	8-4	CH ₃	CH ₃	CH ₂ Ph	CH ₂	C(O)NH	0	1
137	2-CH ₃	H	H	-	_	CH ₂ Ph	CH ₂	C(O)NH	1	0
138	3-CH ₃	H	H	-	→	CH ₂ Ph	CH ₂	C(O)NH	ı	0
139	2, 3-diCH ₃	H	H	h-	-	CH ₂ Ph	CH ₂	C(O)NH	1	0
140	2-F	H	H	_	-	CH ₂ Ph	CH ₂	C(O)NH	}	0
141	3- F	H	H	-	***	CH ₂ Ph	CH ₂	C(O)NH	1	0
142	4-F	H	H		_	CH ₂ Ph	CH ₂	C(O)NH	1	O
143	2-NH2	H	Н	•••	-	CH ₂ Ph	CH ₂	C(O)NH	1	0
144	3-NH ₂	H	Н	~		CH ₂ Ph	CH ₂	C(O)NH	1	O
145	2-NO ₂	Н	Н		_	· CH ₂ Ph	СH ₂	C(O)NH	1	0
146	3-NO ₂	н	Н	***		CH ₂ Ph	CH_2	C(O)NH)	0
147	2-N	H	H	_	~	CH ₂ Ph	CH_2	C(O)NH	I	0
148	3-N	Н	H	-		CH ₂ Ph	CH ₂	C(O)NH	1	0
149	4-N	Н	H	-	-	CH ₂ Ph	CH_2	C(O)NH	1	0
150	н	Н	H		_	CH ₂ OPh	CH ₂	CO	1	a

WO 95/09859

Table 3

Ex.No	RA	RB	R6	R ⁷	Z.	٧	w	U	Data
151	Н	Н	Н	н	C(0)0	0	_	}	
152	H	H	. н	H	CO	0	CH ₂	0	
153	H	H	CH ₃	CH ₃	CO	S	CH ₂	0	
154	. H	H	Н -	H	CO	0	CH ₂	1	BSA
155	H	2- CH ₃	н	Н	CO	0	CH ₂	3	salt,M
156	H	3'-CH ₃	H	Н	CO	0	CH_2	3	N
157	Н	2', 3'-diCH ₃	H	H	CO	0	CH ₂	1	
158	н	2'-F	H	H	CO	0	CH ₂	1	
159	H	3'-F	H	H	CO	0	CH_2	1	
160	Н	2'-N	H	H	CO	0	CH_2	1	
161	н	3'-N'	Н	Н	CO	O	CH ₂	1	
162	3-CH ₃	H	H	H	CO	0	CH ₂	i	
163	3-CH ₃	2'-CH ₃	H	H	CO	0	CH ₂	ì	
164	3-CH ₃	3'-CH ₃	H	H	CO	0	CH ₂	1	
165	3-CH ₃	2', 3'-diCH ₃	H	H	co	0	CH ₂	}	
166	3-CH ₃	2'-F	H	H	CO	O	CH_2	1	
167	3-CH ₃	3'-F	H	H	CO	O	CH ₂	}	
168	3-CH ₃	2'-N	H	H	CO	O	CH ₂	1	
169	3-CH ₃	3'-N	Н	H	CO	0	CH ₂	1	
170	2-F	Н	Н	н	CO	0	CH ₂	1	
171	2-F	2'-CH ₃	Н	H	CO	0	CH ₂	1	

172	2-F	3'-CH ₃	H	Н	CO	0	CH ₂	1	
173	2-F	2', 3'-diCH ₃	Н	н	CO	0	СH ₂	1	
174	2-F	2'-F	Н	Н	CO	O	CH ₂	1	
175	2-F	3'-F	H	Н	CO	O	CH ₂	1	
176	2-F	2'-N	Н	H	CO	O	CH ₂	1	
177	2-F	3'-N	H	Н	CO	0	CH_2	1	
178	3-F	н	H	Н	CO	0	CH ₂	ì	0
179	3-F	2'-CH ₃	H	н	CO	0	CH ₂	1	
170	3-F	3'-CH ₃	Н	н	CO	0	CH ₂	1	
181	3-F	2', 3'-diCH ₃	H	H	CO	0	CH ₂	1	
182	3-F	2'-F	H	Н	CO	0	CH ₂	ì	
183	3-F	3'-F	H	Н	CO	O,	CH ₂	1	
184	3-F	2-N	H	H	CO	O	CH ₂	}	
185	3-F	3'-N	H	H	CO	0	CH ₂	1	
186	3-NH2	H	H	H	CO	0	CH_2	1	
187	3-NH ₂	2'-CH3	H	H	CO	O	CH ₂	1	•
188	3-NH ₂	3'-CH ₃	Н	Н	CO	O	СH ₂	1	
189	3-NH ₂	2', 3'-diCH ₃	Н	H	CO	0	CH ₂	1	
190	3-NH ₂	2'-F	H	H	CO	. 0	CH ₂	1	
191	3-NH ₂	3'-F	H	H	CO	O	CH ₂	3	
192	3-NH ₂	2'-N	Н	H	CO	0	CH ₂	1	
193	3-NH ₂	3'-N	H	H ·	. co	O	CH_2	3	
194	3-NO ₂	H	H	Н	CO	O	CH ₂	1	•
195	3-NO ₂	2'-CH ₃	. H	Н	CO	0	CH_2	3	
196	3-NO ₂	3'-CH ₃	H	Н	CO	0	CH ₂	J	
197	$3-NO_2$	2', 3'-diCH ₃	H	H	CO	0	CH ₂	3	
198	3-NO ₂	2'-F	Н	H	CO	0	CH ₂	}	
199	$3-NO_2$	3'-F	Н	H	CO	0	CH ₂	1	
200	3-NO ₂	2'-N	H	H	CO	0	CH ₂	1	
201	3-NO ₂	3'-N'	H	H	CO	0	CH ₂	1	
202	2-N	H	Н	H	CO	0	CH ₂	1	
203	2-N	2'-CH3	H	H	CO	0	CH ₂	1	
204	2-N .	3'-CH ₃	Н	H	CO	0	CH ₂	1	
205	2-N	2', 3'-diCH ₃	H	H	CO	O	CH ₂	1	
206	2-N	2'-F	H	H	CO	0	CH_2	1	

207	2-N	3'-F	H	Н	CO	0	CH ₂	1
.208	2-N	2-N	H	Н	CO	0	CH ₂	1
209	2-N	3'-N	H	Н	co	O	CH ₂	3
210	3-N	Н	H	H	CO	0	CH ₂	3
211	3-N	2'-CH ₃	H	н	CO	0	CH ₂	1
212	3-N	3'-CH ₃	H	H	CO	٥	CH ₂	1
213	3-N	2', 3'-diCH ₃	H	H	CO	O	CH ₂	Ī
214	3-N	2'-F	H	H	CO	0	CH_2	1
215	3-N	3'-F	H	H	co	O	CH ₂	1
216	3-N	2'-N	H	Н	CO	O	CH ₂	1
217	3-N	3'-N	Н	Н	CO	0	CH ₂	1
218	4-N	H	Н	Н	CO	0	CH ₂	3
219	4-N	2'-CH ₃	Н	Н	CO	0	CH ₂	1
220	4-N	3'-CH3	H	H	CO	0	CH ₂	1
221	4-N	2', 3'-diCH ₃	H	H	CO	0	CH ₂	1
222	4-N	2'-F	Н	H	co	0	CH ₂	1
223	4-N	3'-F	H	Н	CO	0	CH ₂	}
224	4-N	2'-N	H	H	CO	0	CH_2	1
225	4-N	3'-N	Н	H	CO	0	CH ₂	1
226	Н	н	H	H	CO	O	0	0
227	H	Н	CH ₃	CH ₃	co	S	O	0
228	H	H	H	H	CO	0	0	1
229	H	2- CH ₃	H	H	CO	O	o ·	1
230	Н	3'-CH ₃	Н	H	CO	0	0	1
231	Н	2', 3'-diCH ₃	Н	H	CO	O	O	1
232	H	2'-F	H	H	CO	0	0	1
233	н.	3'-F	H	Н	CO	0	0	1
234	H	2'-N	Н	H	CO	0	0	1
235	H	3'-N	H	H	co	O	0	1
236	3-CH ₃	Н	H	H	CO	0	0	1
237	3-CH ₃	2'-CH ₃	H	Н	CO	0	0	1
238	3-CH ₃	3'-CH ₃	Н	H	CO	0	0	i
239	3-CH ₃	2°, 3'-diCH ₃	Н	H	CO	0	0	1
240	3-CH ₃	2'-F	H .	H	CO	0	O	1
241	3-CH ₃	3'-F	H	Н	CO	O	0	F

242	3-CH ₃	2'-N	H	H	CO	0	0	3
243	3-CH ₃	3'-N	H	н	CO	0	0	1
244	2-F	H	H	H	CO	0	٠O	1
245	2-F	2'-CH ₃	H	H	CO	0	0	1
246	2-F	3'-CH ₃	H	H	CO	0	0	1
247	2-F	2', 3'-diCH ₃	H	H	CO	0	O	1
248	2-F	2'-F	H	H	CO	0	0	1
249	2-F	3'-F	H	H	CO	0	0	1
250	2-F	2'-N	H	H	CO	0	0	1
251	2-F	3'-N	H	H	CO	O	0	1
252	3-F	H	H	Н	CO	O	0	1
253	3-F	2'-CH3	Н	н	CO	0	0	1
254	3-F	3'-CH ₃	H	H	CO	O	0	1
255	3 - F	2', 3'-diCH ₃	Н	Н	CO	0	O	l
256	3-F	2'-F	Н	H	CO	0	0	1
257	3-F	3'-F	H	H	CO	0	0	1
258	3-F	2'-N	H.	H	CO	0	0	1
259	3-F	3'-N	H	H	CO	O	0	1
260	3-NH ₂	H	H	H	CO	0	0	1
261	3-NH ₂	2'-CH ₃	H	H	CO	0	0	1
262	3-NH2	3'-CH ₃	H	н	CO	0	0	1
263	3-NH ₂	2', 3'-diCH ₃	H	Н	CO	0	O	1
264	3-NH ₂	2'-F	Н	Н	CO	0	O	1
265	3-NH ₂	3'-F	H	Н	CO	0	0	1
266	3-NH ₂	2'-N	H	Н	CO	0	0	1
267	3-NH ₂	3'-N	Н	H	CO	0	O	}
268	3-NO ₂	Н	Н	Н	CO	0	0	1
269	3-NO ₂	2'-CH ₃	H	H	CO	0	0	1
270	3-NO ₂	3'-CH ₃	H	H	·CO	0	0	1
271	3-NO ₂	2', 3'-diCH ₃	H	H	CO	0	O	1
272	3-NO ₂	2'-F	H	H	CO	O	0	1
273	3-NO ₂	3'-F	H	H	CO	0	0	1
274	3-NO ₂	2'-N	H	H	CO	0	O	1
275	3-NO ₂	'3'-N'	H	H	CO	0	O	1
276	2-N	H	Н	H	CO	0	0	1

277	2-N	2'-CH ₃	H	Н	CO	0.	0	1
278	2-N	3'-CH ₃	Н	H	CO	0	0	ì
279	2-N	2', 3'-diCH ₃	H	H	CO	0	0	1
280	2-N	2'-F	H	H	CO	O	0	ì
281	2-N	3'-F	H	Н	CO	0	0	1
282	2-N	2'-N	H	H	CO	0	0	1
283	2-N	3'-N	H	H	CO	0	0	1
284	3-N	H	H	H	CO	O	0	1
285	3-N	2'-CH ₃	H	H	CO	0	0	.]
286	3-N	3'-CH ₃	H	H	"CO	0	0	1
287	3-N	2', 3'-diCH ₃	H	Н	CO	0	O	1
288	3-N	2'-F	Н	H	CO	0	0	1
289	3-N	3'-F	H	H	CO	0	0	1
290	3-1%	2'-N	H	H	co	0	0	3
291	3-N	3'-N	H	H	CO	0	0	ì
292	4-N	н	H	Н	CO	O	0	1
293	4-N	2'-CH ₃	H	H	CO	0	0	1
294	4-N	3'-CH ₃	Н	H	CO	0	0	1
295	4-N	2', 3'-diCH ₃	H	Н	CO	0	0	1
296	4-N	2'-F	H	Н	CO	0	0	1
297	4-N	3'-F	Н	H	CO	0	O	1
298	4-N	2'-N	Н	H	CO	O	0	1
299	4-N	3'-N	H	H	CO	0	0	1

Table 4

300 H H H H H CO O CH ₂ 0 301 H H H H H CO O CH ₂ 0 302 H H H H H CO S CH ₂ 0 303 H H H H H CO O CH ₂ 1 303a H H H H CO O CH ₂ 1 303a H H H H CO O CH ₂ 1 305 H 3'-CH ₃ H H CO O CH ₂ 1 306 H 2', 3'-diCH ₃ H H CO O CH ₂ 1 307 H 2'-F H H CO O CH ₂ 1 308 H 3'-F H H CO O CH ₂ 1 309 H 2'-N H H CO O CH ₂ 1 309 H 2'-N H H CO O CH ₂ 1 310 H 3'-N H H CO O CH ₂ 1 311 3-CH ₃ H H CO O CH ₂ 1 312 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 313 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 316 3-CH ₃ 2'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-F H H CO O CH ₂ 1 318 3-CH ₃ 2'-F H H CO O CH ₂ 1 319 3-CH ₃ 2'-F H H CO O CH ₂ 1 310 3-CH ₃ 2'-F H H CO O CH ₂ 1 311 3-CH ₃ 2'-F H H CO O CH ₂ 1	Ex.No	RA	RB	R6	R ⁷	Z	V	W	u	Data
302 H H H H H CO S CH ₂ 0 303 H H H H H CO O CH ₂ 1 303a H H H H H CO O CH ₂ 1 303a H H H H H CO O CH ₂ 1 304 H 2'- CH ₃ H H CO O CH ₂ 1 305 H 3'-CH ₃ H H CO O CH ₂ 1 306 H 2', 3'-diCH ₃ H H CO O CH ₂ 1 307 H 2'-F H H CO O CH ₂ 1 308 H 3'-F H H CO O CH ₂ 1 309 H 2'-N H H CO O CH ₂ 1 310 H 3'-N H H CO O CH ₂ 1 311 3-CH ₃ H H CO O CH ₂ 1 312 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 313 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 3'-F H H CO O CH ₂ 1	300	Н	Н	H	H	C(O)O	0	-	1	
303 H H H H H CO O CH2 1 303a H H H H H CO O CH2 1 303a H H H H H CO O CH2 1 304 H 2'- CH3 H H CO O CH2 1 305 H 3'- CH3 H H CO O CH2 1 306 H 2', 3'- diCH3 H H CO O CH2 1 307 H 2'-F H H CO O CH2 1 308 H 3'-F H H CO O CH2 1 309 H 2'-N H H CO O CH2 1 310 H 3'-N H H CO O CH2 1 311 3- CH3 H H CO O CH2 1 312 3- CH3 2'- CH3 H H CO O CH2 1 313 3- CH3 3'- CH3 H H CO O CH2 1 314 3- CH3 2', 3'- diCH3 H H CO O CH2 1 315 3- CH3 2'-F H H CO O CH2 1 316 3- CH3 3'-F H H CO O CH2 1 317 3- CH3 3'-F H H CO O CH2 1	301	H	H	Н	H	CO	0	CH ₂	0	
303a H H H H CO O CH2 1 304 H 2'- CH3 H H CO O CH2 1 305 H 3'- CH3 H H CO O CH2 1 306 H 2'- 3'- diCH3 H H CO O CH2 1 307 H 2'- F H H CO O CH2 1 308 H 3'- F H H CO O CH2 1 309 H 2'- N H H CO O CH2 1 310 H 3'- N H H CO O CH2 1 311 3- CH3 H H CO O CH2 1 312 3- CH3 1'- CH3 H H CO O CH2 1 313 3- CH3 2'- CH3 H H CO O CH2 1 314 3- CH3 2'- SH3 H H CO O CH2 1 315 3- CH3 2'- SH3 H H CO O CH2 1 316 3- CH3 2'- F H H CO O CH2 1 317 3- CH3 2'- N H H CO O CH2 1	302	H	H	Н	H	CO	S	CH ₂	0	P
304 H 2'- CH ₃ H H CO O CH ₂ 1 305 H 3'-CH ₃ H H CO O CH ₂ 1 306 H 2', 3'-diCH ₃ H H CO O CH ₂ 1 307 H 2'-F H H CO O CH ₂ 1 308 H 3'-F H H CO O CH ₂ 1 309 H 2'-N H H CO O CH ₂ 1 310 H 3'-N H H CO O CH ₂ 1 311 3-CH ₃ H H CO O CH ₂ 1 312 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 313 3-CH ₃ 3'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	303	н	H	Н	H	CO	O	CH_2	1	Q
305 H 3'-CH ₃ H H CO O CH ₂ 1 306 H 2', 3'-diCH ₃ H H CO O CH ₂ 1 307 H 2'-F H H CO O CH ₂ 1 308 H 3'-F H H CO O CH ₂ 1 309 H 2'-N H H CO O CH ₂ 1 310 H 3'-N H H CO O CH ₂ 1 311 3-CH ₃ H H CO O CH ₂ 1 312 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 313 3-CH ₃ 3'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	303a	н	Н	H,	Н	co	0	CH ₂	1	BSA
305 H 3'-CH ₃ H H CO O CH ₂ 1 306 H 2', 3'-diCH ₃ H H CO O CH ₂ 1 307 H 2'-F H H CO O CH ₂ 1 308 H 3'-F H H CO O CH ₂ 1 309 H 2'-N H H CO O CH ₂ 1 310 H 3'-N H H CO O CH ₂ 1 311 3-CH ₃ H H CO O CH ₂ 1 312 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 313 3-CH ₃ 3'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1				•						salt
306 H 2', 3'-diCH ₃ H H CO O CH ₂ 1 307 H 2'-F H H CO O CH ₂ 1 308 H 3'-F H H CO O CH ₂ 1 309 H 2'-N H H CO O CH ₂ 1 310 H 3'-N H H CO O CH ₂ 1 311 3-CH ₃ H H CO O CH ₂ 1 312 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 313 3-CH ₃ 3'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	304	Н	2'- CH ₃	H	H	CO	O	CH ₂	3	
307 H 2'-F H H CO O CH ₂ 1 308 H 3'-F H H CO O CH ₂ 1 309 H 2'-N H H CO O CH ₂ 1 310 H 3'-N H H CO O CH ₂ 1 311 3-CH ₃ H H CO O CH ₂ 1 312 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 313 3-CH ₃ 3'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	305	н	3'-CH ₃	Н	Н	CO	0	CH ₂	1	R
308 H 3'-F H H CO O CH ₂ 1 309 H 2'-N H H CO O CH ₂ 1 310 H 3'-N H H CO O CH ₂ 1 311 3-CH ₃ H H H CO O CH ₂ 1 312 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 313 3-CH ₃ 3'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	306	н	2', 3'-diCH ₃	H	H	co	0	CH_2	1	•
309 H 2'-N H H CO O CH2 1 310 H 3'-N H H CO O CH2 1 311 3-CH3 H H CO O CH2 1 312 3-CH3 2'-CH3 H H CO O CH2 1 313 3-CH3 3'-CH3 H H CO O CH2 1 314 3-CH3 2', 3'-diCH3 H H CO O CH2 1 315 3-CH3 2'-F H H CO O CH2 1 316 3-CH3 3'-F H H CO O CH2 1 317 3-CH3 2'-N H H CO O CH2 1	307	н	2'-F	H	H	CO	0	CH_2	1	
310 H 3'-N H H CO O CH ₂ 1 311 3-CH ₃ H H H CO O CH ₂ 1 312 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 313 3-CH ₃ 3'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	308	н	3'-F	. н	H	CO	O	CH ₂	1	
311 3-CH ₃ H H H CO O CH ₂ 1 312 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 313 3-CH ₃ 3'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	309	н	2'-N	H	н	CO	0	CH ₂	1	
312 3-CH ₃ 2'-CH ₃ H H CO O CH ₂ 1 313 3-CH ₃ 3'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	310	Н	3'-N	H	H	co .	O	CH_2	1	5
313 3-CH ₃ 3'-CH ₃ H H CO O CH ₂ 1 314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	311	3-CH ₃	H	Н	H	CO	O	CH ₂	3	
314 3-CH ₃ 2', 3'-diCH ₃ H H CO O CH ₂ 1 315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	312	3-CH ₃	2'-CH3	Н	H	CO	O	CH ₂	1	
315 3-CH ₃ 2'-F H H CO O CH ₂ 1 316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	313	3-CH ₃	3'-CH ₃	Н	H	CO	O	CH ₂	1	
316 3-CH ₃ 3'-F H H CO O CH ₂ 1 317 3-CH ₃ 2'-N H H CO O CH ₂ 1	314	3-CH ₃	2', 3'-diCH ₃	H	Н	CO	O	CH_2	1	
317 3-CH ₃ 2'-N H H CO O CH ₂ 1	315	3-CH ₃	2'-F	н	H	CO	0	CH ₂	1	
	316	3-CH ₃	3'-F	H	H	CO	0	CH ₂	1	
	317	3-CH ₃	2'-N	Н	H	CO	O	CH_2	1	
318 3-CH ₃ -3-N H H CO O CH ₂ 1	318	3-CH ₃	·3'-N	Н	H	co	O	CH ₂	1	
319 2-F H H H CO O CH ₂ 1	319	2-F	Н	Н	Н	CO	0	CH ₂	}	

320	2-F	2'-CH3	H	Н	CO	0	CH ₂	1	
321	2-F	3'-CH ₃	Н	н	CO	0	CH ₂	1	
322	2-F	2', 3'-diCH ₃	Н	Н	CO	0	CH ₂	I	
323	2-F	2'-F	н	Н	CO	0	CH ₂	1	
324	2-F	3'-F	H	Н	∞	0	CH ₂	1	
325	2-F	2'-N	H	H	CO	0	CH ₂	1	
326	2-F	3'-N	Н	H	CO	O	СH ₂)	
327	3-F	H	H	Н	CO	0	CH ₂	1	T
328	3-F	2'-CH ₃	H	H	CO	0	CH ₂	1	
329	3-F	3'-CH ₃	H	H	CO	0	CH ₂	1	
330	3-F	2', 3'-diCH ₃	Ħ	Н	CO	0	CH ₂	1	
331	3-F	2'-F	Н	н	CO	0	CH ₂	i	
332	3-F	3'-F	Н	Н	co	0	CH ₂	ì	
333	3-F	2'-N'	Н	H	CO	O	CH ₂	ì	•
334	3-F	3'-N	Н	Н	CO	O	CH ₂	1	
335	3-NH ₂	H	Н	Н	CO	O	CH ₂	1	U
336	3-NH ₂	2'-CH ₃	H	Н	CO	O	CH ₂	1	
337	3-NH ₂	3'-CH ₃	H	Н	co	0	CH ₂	1	
338	3-NH ₂	2', 3'-diCH ₃	H	H	CO	0	CH_2	1	
339	3-NH ₂	2'-F	H	H	CO	0	CH ₂	1	
340	3-NH ₂	3'-F	Н	H	CO	0	CH_2	1	
341	3-NH ₂	2'-N	H	H	CO	Ο	CH_2	1	
342	3-NH ₂	3'-N'	H	Н	CO	0	CH_2	i	
343	3-NO ₂	H	H	H	CO	O	CH_2	1	
344	3-NO ₂	2'-CH ₃	H	H	CO	0	CH ₂	1	
345	3-NO ₂	3'-CH ₃	H	H	CO	0	CH ₂	ì	
346	3-NO ₂	2', 3'-diCH ₃	H	H	CO	0	CH ₂	1	
347	3-NO ₂	2'-F	H	H	CO	0	CH ₂	1	
348	3-NO ₂	3'-F	H	H	CO	0	.CH ₂	1	
349	3-NO ₂	2'-N	H	H	CO	0	CH ₂	1	
350	3-NO ₂	3'-N	H	H	CO	O	CH ₂	ì	
351	2-N	H	H	H	CO	0	CH ₂	1	
352	2-N	2'-CH ₃	H	H	CO	0	CH ₂	1	
353	2-N	34CH3	H	H	co	0	CH ₂	}	
354	2-N	2', 3'-diCH ₃	H	H	CO	O	CH ₂	ı	

355	2-N	2'-F	Н	H	CO	0	CH ₂	l	
356	2-N	3'-F	Н	H	CO	0	CH ₂	1	
357	2-N	2-N	H	H	CO	0	CH ₂	1	
358	2-N	3'-N	H	Н	CO	0	CH ₂	1	
359	3-N	н	H	H	CO	0	CH ₂	1	
360	3-N	2'-CH ₃	H	H	CO	O	CH ₂	1	
361	3-N	3'-CH ₃	H	H	CO	0	CH ₂	J	
362	3-N	2', 3'-diCH ₃	H	H	CO	0	CH ₂	1	
363	3-N	2'-F	H	н	CO	0	CH ₂	1	
364	3-N	3'-F	H	H	CO	O	CH ₂	1	
365	3-N	2'-N	H	H	CO	0	CH ₂	1	
366	3-N	3'-N	H	H	CO	0	CH ₂	1	
367	4-N	Н	н	H	CO	0	CH ₂	1	
368	4-N	2'-CH ₃	H	Н	CO	O	CH ₂	1	
369	4-N	3'-CH ₃	Н	Н	CO	0	CH_2	1	J
370	4-N	2', 3'-diCH ₃	Н	H	CO	0	CH_2	1	•
371	4-N	2'-F	Н	Н	CO	0	CH ₂	1	
372	4-N	3'-F	н .	Н	CO	0	CH ₂	1	
373	4-N	2-N	H	H	CO	0	CH ₂	1	
374	4-N	3'-N	H	H	CO	O	CH ₂	1	
375	H	H	H	H	CO	NH	CH ₂	1	Y
. 376	н	Ħ	H ·	Н	CO	0	(CH ₂	1	K
		•					CH ₂)		
377	H	H	. Н	Н	CO	O.	0	1	W
378	H	2'- CH ₃	Н	H	CO	O	0	1	
379	H	3'-CH ₃	H	H	CO	0	0	1	X
380	H	2', 3'-diCH ₃	H	Н	CO	0	O	1	
381	, H	2'-F	H	H	CO	0	0	1	
382	H	3'-F	H	H	CO	0	0	1	WW
383	H	2'-N	Н	H	CO	0	0	1.	
384	H	3'-N	H	H	CO	0	0	ŧ	
385	3-CH ₃	H	H	H	CO	0	0	1	
386	3-CH ₃	2'-CH ₃	Н	Н	CO	O	O	1	
387	3-CH ₃	3'-CH ₃	H	Н	CO	0	0	1	
.398	3-CH ₃	2', 3'-diCH ₃	H	Н	CO	0	O	1	

399	3-CH ₃	2'-F	н	н	CO	•	_	_
390	3-CH ₃	3'-F	Н	Н	CO	0	0	1
391	3-CH ₃	2'-N	H		CO	0	0	1
392	3-CH ₃	2-14 3'-N		H	CO	0	0	1
	2-F)-i4	H	H	CO	0	0	1
393		2'-CH ₃	H	H	CO	0	0	1
394	2-F	2-CH ₃	H	H	CO	O	0	1
395	2-F	2', 3'-diCH ₃	H	H	CO	0	0	1
396	2-F		H	H	CO	0	0	1
397	2-F	2'-F	H	H	CO	0	О	1
398	2-F	3'.F	Н	H	CO	O	0	1
399	2-F	2-N	H	Н	CO	O	0	ì
400	2-F	3'-N'	H	Н	CO	0	0	1
401	3-F	H	H	H	CO	0	0	1
402	3-F	2'-CH ₃	Н	H	CO	0	O	1
403	3-F	3'-CH ₃	H	H	CO	0	0	1
404	3-F	2', 3'-diCH ₃	H	Н	CO	0	0	1
405	3-F	2'-F	Н	Н	CO	O	O	1
406	3-F	3'-F	Н	H	CO	0	O	1
407	3-F	2'-N	H	Н	CO	0	0	1
408	3-F	3'-N	H	H	CO	0	0	}
409	3-NH ₂	H	Н	Н	CO	0	0	1
410	3-NH ₂	2'-CH ₃	Н	H	CO	0	0	1
411	3-NH ₂	3'-CH ₃	H	Н	CO	0	0	1
412	3-NH ₂	2', 3'-diCH ₃	H	H	CO	0	O	1
413	3-NH ₂	2-F	H	Н	CO	0	O	ì
414	3-NH ₂	3'-F	H	H	CO	0	0	1
415	3-NH ₂	2'-N	H	H	CO	0	O	1
416	3-NH ₂	3'-N	H	H	CO	O	O	1
417	3-NO ₂	H	Н	H	CO	0	0	1
418	3-NO ₂	2-CH ₃	H	H	CO	0	0	1
419	3-NO ₂	3'-CH ₃	H	Н	CO	0	0	1
420	$3-NO_2$	2', 3'-diCH ₃	H	н	CO	0	0	1
421	3-NO ₂	2'-F	H	Н	CO	0	0	1
422	3-NO ₂	`3'-F	н	Н	CO	0	0	1
423	$3-NO_2$	2'-N	H	Н	CO	0	0	3
						-	~	•

424	3-NO ₂	3'-N	H	Н	CO	0	0	1
425	2-N	н	Н	Н	CO	0	0	1
426	2-N	2'-CH3	H	Н	CO	O	0	1
427	2-N	3'-CH ₃	Н	н	CO	0	0	1
428	2-N	2', 3'-diCH ₃	H	H	CO	0	0	1
429	2-N	2'-F	H	H	CO	O	O	1
430	2-N	3'-F	H	H	CO	0	0	1
431	2-N	2'-N	H	H	CO	0	0	1
432	2-N	N-'E	H	H	CO	0	0	1
433	3-N	H	H	H	CO	0	0)
434	3-N	2'-ÇH ₃	H	H	CO	0	0	•]
435	3-N	3'-CH ₃	H	Н	CO	0	0	1
436	3-N	2°, 3°-diCH ₃	H	H	CO	0	0	1
437	3-N	2'-F	H	H	CO	0	0	1
438	3-N	3'-F	Н	Н	CO	0	0	i
439	3-N	2'-N	H	H	CO	O	0	1
440	3-N	3'-N	H	H	CO	0	O	1
441	4-N	H	H	Н	CO	O	0	1
442	4-N	2'-CH ₃	H	H	CO	0	O	1
443	4-N	3'-CH ₃	H	H	CO	0	0	1
444	4-N	. 2', 3'-diCH ₃	H	H	CO	O	0	1
445	4-N	. 2'-F	H	H	CO	0	O	1
446	4-N	3'-F	Н	H	CO	O	0	1
447	4-N	2'-N	· H	Н	CO	.0	0	1
448	4-N	3'-N	Н	Н	CO	0	0	1

Table 5

WO 95/09859

Ex.No	RA	R6	R ⁷	R ⁸	R ⁹	R10	W	Z	ŧ	บ	RX	Data
449	Н	H	H	_	_	CH ₃	CH ₂	CO	1	0	Н	
450	H	CH ₃	CH ₃	-	_	CH ₃	CH ₂	CO	1	0	Н	
451	Н		_	CH ₃	СН3	CH ₃	CH ₂	CO	O	1	н	
452	H	H	H	~	-	CH ₃	0	CO	3	0	Н	
453	H	CH ₃	CH ₃	_	•	СН3	0	CO	1	0	H	
454	H	H	H	# *	-	CH ₃	so_2	CO	1	0	H	
455	3-CH ₃	H	H	•••	M.	сн3	CH ₂	CO	1	0	H	
456	3-F	H	H	-		CH ₃	CH ₂	CO	1	0	H	
457	3-NH ₂	H	H	-		CH ₃	CH ₂	CO	I	0	Н	
458	2-N	H	H	-		CH ₃	CH_2	CO	1	0	Н	
459	3-CH ₃	H	H	-	-	$(CH_2)_2$ Ph	CH ₂	CO	1	0	Н	
460	3-F	H	H	-	_	(CH ₂) ₂ Ph	CH ₂	CO	ŀ	0	Н	
-461	3-NH ₂	H	H	***	-	(CH ₂) ₂ Ph	CH ₂	CO	1	0	H	
462	2-N	H	H	-	معين	$(CH_2)_2$ Ph	CH ₂	CO	1	0	H	
463	3-CH ₃	H	H	_	_	CH ₂ Ph	CH ₂	C(O)O	1	0	Н	
464	3-F	H	H	-	_	CH ₂ Ph	CH_2	C(O)O	1	0	Н	
465	3-NH ₂	H	H		-	CH ₂ Ph	CH ₂	C(O)O	1	0	H	
466	2-N	Н	H		~~	CH ₂ Ph	CH ₂	C(O)U	3	0	Н	
467	3-CH ₃	H	Н	-		CH ₂ Ph	CH ₂	C(O)NH	1	0	Н	
468	3-F	H	Н	-	••	CH ₂ Ph	CH ₂	C(O)NH	3	0	Н	
469	3-NH ₂	H	Н	_	_	CH ₂ Ph	CH ₂	C(O)NH	1	0	Н	
470	2-N	Н	. н		-	CH ₂ Ph	CH ₂	C(O)NH	}	0	H	
471	H	H	H	-	•••	CH ₃	CH ₂	CO	1	0	H ₂ N	

472	H	CH ₃	CH ₃	-		CH ₃	CH ₂	CO	1	0	H ₂ N
473	Η		-	СН3	CH ₃	CH ₃	CH ₂	CO	0	1	H ₂ N
474	H	H	Н	-		CH ₃	0	CO ·	1	Ð	H ₂ N
475	H	СН3	CH ₃	-	***	CH ₃	0	CO	I	0	H ₂ N
476	H	H	H	-	-	CH ₃	so_2	CO	1	0	H ₂ N
477	3-CH ₃	H	H	-	-	CH ₃	CH_2	CO	1.	0	H ₂ N
478	3- F	H	H	-		CH ₃	CH ₂	CO	1	0	H ₂ N
479	3-NH ₂	H	H		_	CH ₃	CH_2	CO	1	0	H ₂ N
480	2-N	H	H	_	-	CH ₃	CH_2	CO	1	0	H ₂ N
481	3-CH ₃	Н	H		•	(CH ₂) ₂ Ph	CH ₂	CO	1	0	H ₂ N
482	3-F	Н	H	-	_	$(CH_2)_2Ph$	CH_2	CO	1	0	H ₂ N
483	3-NH2	H	H	_	-	(CH ₂) ₂ Ph	CH ₂	CO	1	0	H ₂ N
484	2-N	H	H	*****	****	(CH ₂) ₂ Ph	CH ₂	CO	1	0	H ₂ N
485	3-CH ₃	H	H	•	-	CH ₂ Ph	CH ₂	C(O)O	1	0	H_2N
486	3- F	н	H	~		CH ₂ Ph	CH ₂	C(O)O	1	0	H ₂ N
487	3-NH ₂	H	H	-	***	CH ₂ Ph	CH ₂	C(O)O	1	0	H ₂ N
488	2-N	H	H	•	-	CH ₂ Ph	CH ₂	C(O)O	1	0	H ₂ N
489	3-CH ₃	33	H	-	-	CH ₂ Ph	CH ₂	C(O)NH	1	0	H ₂ N
490	3-F	H	H	-	-	CH ₂ Ph	CH ₂	C(O)NH	1	0	H ₂ N
491	3-NH ₂	H	H	-	<u></u>	CH ₂ Ph	CH ₂	C(O)NH	1	0	H ₂ N
492	2-N	H	H	<u>.</u>	-	CH ₂ Ph	CH ₂	C(O)NH	1	0	H ₂ N
493	Н	H	H	_	~	CH ₃	CH ₂	ĊO	1	0	CH3NH
494	H	CH ₃	CH ₃	-	-	CH ₃	CH ₂	CO	1	0	CH ₃ NH
495	H	-	_	CH ₃	CH ₃	CH ₃	CH ₂	CO	O.	1	CH ₃ NH
496	н	H	H	_	-	CH ₃	0	CO	3	0	CH ₃ NH
497	H	CH ₃	CH ₃	WP **	-	CH ₃	0	CO	3	0	CH ₃ NH
498	H	H	H	-	-	CH ₃	so_2	CO	1	0	CH ₃ NH
499	3-CH ₃	H	Н	_	194	CH ₃	CH ₂	CO	1	0	CH ₃ NH
500	3-F	H	H	444	-	CH ₃	CH ₂	CO	1	0	CH ₃ NH
501	3-NH ₂	H	H	-		CH ₃	CH ₂	CO	1	0	CH ₃ NH
502	2-N	H	H	-	B179	CH ₃	CH ₂	CO	1	0	CH ₃ NH
503	3-CH ₃	Н	H		_	(CH ₂) ₂ Ph	CH ₂	CO	1	0	CH ₃ NH
504	3-F	H	H	-	-	(CH ₂) ₂ Ph	CH ₂	CO	1	0	CH ₃ NH
505	3-NH ₂	Н	, н	_	-	(CH ₂) ₂ Ph	CH ₂	CO	1	0	CH ₃ NH
506	2-N	H	H	_	-	$(CH_2)_2Ph$	CH ₂	CO	1	0	CH ₃ NH

	_										
507	3-CH ₃	Н	H			CH ₂ Ph	CH ₂	C(O)O	1	0	CH ₃ NH
508	3-F	H	Н	-	-	CH ₂ Ph	CH ₂	C(O)O	1	0	CH ₃ NH
509	3-NH ₂	H	H	_	-	CH ₂ Ph	CH ₂	C(O)O	1	0	CH ₃ NH
510	2-N	H	H	-		CH ₂ Ph	CH ₂	C(O)O	1	0	CH ₃ NH
511	3-CH ₃	H	H	***		CH ₂ Ph	CH ₂	C(O)NH	1	Ð	CH ₃ NH
512	3-F	H	H	-		CH ₂ Ph		C(O)NH	1	0	CH ₃ NH
513	3-NH ₂	H	Н	_	_	CH ₂ Ph	CH ₂	C(O)NH	1	0	CH ₃ NH
514	2-N	H	H	_	-	CH ₂ Ph	CH ₂	C(O)NH	1	0	CH ₃ NH

Table 6

5

_R⁷ Ex.No R¹⁰ R^{X} Z Data 515 H H H CH₃ CH_2 CO H CH₃ CH₃ 516 H CH₃ CH_2 CO 1 0 H 517 H CH₃ CH₃ CH₃ CH₂ CO 0 1 H 518 H H H CH₃ 0 CO 1 0 H CH₃ CH₃ 519 H CH₃ 0 CO) 0 H 520 H H H CH₃ SO_2 CO H 3-CH₃ 521 H H CH₃ CH₂ CO H 3-F 522 H H CH₃ CH₂ CO 1 0 H 3-NH₂ 523 H CH₃ CH₂ CO H 2-N 524 H H CH₃ CH₂ CO H 3-CH₃ 525 H $(CH_2)_2Ph$ CH_2 H CO 1 0 H

526	3-F	H	H	***	_	(CH ₂) ₂ Ph	CH ₂	CO	1	0	Н
527	3-NH ₂	H	H	-	-	(CH ₂) ₂ Ph	CH ₂	ĊO	ì	0	Н
528	2-N	H	H		_	(CH ₂) ₂ Ph	CH ₂	CO.	1	Ð	Н
529	3-CH ₃	H	H	_	_	CH ₂ Ph	CH ₂	C(O)O	1	0	н
530	3-F	H	Ή	•••	-	CH ₂ Ph	CH ₂	C(O)O	1	0	н
531	3-NH2	H	H	-		CH ₂ Ph	CH ₂	C(O)O	1	0	H
532	2-N	H	H		_	CH ₂ Ph	CH ₂	C(O)O	1	0	Н
533	3-CH ₃	H	H	_	~	CH ₂ Ph	CH ₂	C(O)NH	1	0	H
534	3-F	Н	H		-	CH ₂ Ph	CH ₂	C(O)NH	1	0	Н
535	3-NH ₂	H	H	₩	-	CH ₂ Ph	CH ₂	C(O)NH	1	0	Н
536	2-N	Н	Н		gant.	CH ₂ Ph	CH ₂	C(O)NH	1	0	н
537	н	Н	H	_		CH ₃	CH ₂	CO	1	0	H ₂ N
538	Н	CH ₃	CH ₃	Salve		CH ₃	CH ₂	CO	3	O	H_2N
539	Н	•••	_	CH ₃	CH ₃	CH ₃	CH ₂	. CO	0	1	H ₂ N
540	Н	H	H	-	-	CH ₃	0	CO	1	0	H_2N
541	Н	CH ₃	CH ₃	₩.	_	CH ₃	0	CO	1	0	H ₂ N
542	Н	H	H	_		CH ₃	502	CO	1	0	H ₂ N
543	3-CH ₃	Н	H	•	-	CH ₃	CH ₂	CO	1	0	H ₂ N
544	3-F	Н	н			CH ₃	CH_2	CO	1	Ò	H ₂ N
545	3-NH ₂	Н	Н		_	CH ₃	CH_2	CO	1	0	H ₂ N
546	2-N	H	H	44	-	CH ₃	CH ₂	CO	3	0	H ₂ N
547	3-CH ₃	Н	H	₩	-	$(CH_2)_2$ Ph	CH ₂	CO	1	0	H ₂ N
548	3-F	H	Н		_	(CH ₂) ₂ Ph	CH_2	CO	1	0	H ₂ N
549	3-NH ₂	Н	Н	· ,	~	(CH ₂) ₂ Ph	CH ₂	CO	1	0	H ₂ N
550	2-N	Н	H	4100-	-	(CH ₂) ₂ Ph	CH ₂	CO	1	0	H ₂ N
551	3-CH ₃	H	H	-	-	CH ₂ Ph	CH_2	C(O)O	1	0	H ₂ N
552	3-F	H	H	_	-	CH ₂ Ph	CH_2	C(0)0	1	0	H ₂ N
553	3-NH2	H	H		-	CH ₂ Ph	CH_2	C(O)O	3	0	H ₂ N
554	2-N	H	H	PHID:	-	CH ₂ Ph	CH ₂	C(O)O	3	0	H ₂ N
555	3-CH ₃	·H	H	7		CH ₂ Ph	CH ₂	C(O)NH	1	0	H ₂ N
556	3-F	Н	H	_	***	CH ₂ Ph	CH ₂	C(O)NH	3	0	H_2N
557	3-NH ₂	H	н	-	-	CH ₂ Ph	CH ₂	C(O)NH	3	0	H_2N
558	2-N	H	, н	_	_	CH ₂ Ph	CH ₂	C(O)NH	3	0	H_2N
559	H	Н	· H	-	~	CH ₃	CH ₂	CO	1	0	CH ₃ NH
560	Н	СН3	CH ₃	•	94 P	CH ₃	CH ₂	CO	7	0	CH ₃ NH

561	H	-	-	CH ₃	CH ₃	CH ₃	CH ₂	CO	0	1	CH ₃ NH
562	H	Н	H	-	-	CH ₃	0	CO	1	0	CH ₃ NH
563	Н	CH ₃	CH ₃	-	-	CH ₃	0	co	1	0	CH ₃ NH
564	H	H	H	_	Mar-	CH ₃	so_2	CO	1	0	CH ₃ NH
565	3-CH ₃	H	H	-	_	CH ₃	CH ₂	СО	1	0	CH ₃ NH
566	3-F	H	H	year.	-	CH ₃	CH ₂	CO	}	0	CH ₃ NH
567	3-NH ₂	H	H	-	_	CH ₃	CH ₂	CO	1	0	CH ₃ NH
568	2-N	Н	H	_	-	CH ₃	CH_2	CO	1	0	CH ₃ NH
569	3-CH ₃	H	H	-	-	(CH ₂) ₂ Ph	CH ₂	CO	1	0	CH ₃ NH
570	3-F	H	H	-	-	$(CH_2)_2$ Ph	CH ₂	CO	1	0	CH ₃ NH
571	3-NH ₂	H	H	***	-	(CH ₂) ₂ Ph	CH ₂	CO	1	0	CH ₃ NH
572	2-N	H	H	_	•	$(CH_2)_2$ Ph	CH ₂	CO	ì	0	CH ₃ NH
<i>5</i> 73	3-CH ₃	H	H	_	-	CH ₂ Ph	CH ₂	C(O)O	3	0	CH ₃ NH
574	3- F	H	Н	_		CH ₂ Ph	CH ₂	C(O)O	1	0	CH ₃ NH
575	3-NH2	H	H	•••	4000	CH ₂ Ph	CH ₂	C(O)O	1	0	CH ₃ NH
576	2-N	H	H		-	CH ₂ Ph	CH ₂	C(O)O	1	0	CH ₃ NH
577	3-CH ₃	H	H	-	-	CH ₂ Ph	CH ₂	C(O)NH	ì	0	CH ₃ NH
578	3-F	H	H	~	÷	CH ₂ Ph	CH ₂	C(O)NH	1	0	CH ₃ NH
579	3-NH ₂	H	H	_	-	CH ₂ Ph	CH ₂	C(O)NH	1	0	CH ₃ NH
580	2-N	H	H	-		CH ₂ Ph	CH_2	C(O)NH	i	0	CH ₃ NH

Table 7

$$H_2N$$

$$OH$$

$$OH$$

$$NH$$

$$N-Z-R^{10}$$

$$4$$

$$5. 6$$

Ex No.	RA	R10	Z	ν	บ	Data
581	н	CH ₃	CO	0	0	
582	3-CH ₃	CH ₃	CO	0	0	
583	4-CH ₃	CH ₃	CO	0	0	
584	2-F	CH ₃	CO	0	0	
585	3-F	CH ₃	CO	0	0	
586	4-F	CH ₃	CO	0	0	
587	3-NH ₂	CH ₃	co	0	0	
588	4-NH2	CH ₃	CO	0	0	
589	3-NO2	CH ₃	CO	0	0	
590	4-NO2	CH ₃	CO	O	0	
59 1	3-N	СН3	CO	0	0	
592	4-N	CH ₃	co	0	0	
593	H	СН3	CO	S	0	
594	3-CH ₃	CH ₃	CO	S	0	
595	4-CH ₃	CH ₃	CO	\$	0	
596	2-F	CH ₃	CO	S	0	
597	3-F	CH ₃	CO	S	0	
598	4-F	CH ₃	CO	S	0	
599	3-NH2	CH ₃	CO	S	0	
600	4-NH2	CH ₃	CO	S	0	
601	3-NO ₂	сн ₃	CO	S	0	•
602	4-NO ₂	сн3	CO	S	0	
603	3-N	Сӊ3	CO	S	0	•
604	4-N	CH ₃	CO	S	0	
605	H	CH(CH ₃) ₂	CO	0	0	
606	3-CH ₃	CH(CH ₃) ₂	CO	0	0	
607	4-CH ₃	CH(CH ₃) ₂	CO	O	0	
608	2-F	CH(CH ₃) ₂	CO	O	0	
609	3-F	CH(CH ₃) ₂	CO	0	0	
610	4-F	CH(CH ₃) ₂	CO	O	0	
611	3-NH ₂	CH(CH ₃) ₂	CO	0	0	
612	4-NH ₂	CH(CH ₃) ₂	CO	0	0	
613	3-NO ₂	CH(CH ₃) ₂	CO	0	0	
614	4-NO ₂	CH(CH ₃) ₂	CO	O	0	

615	3-N	CH(CH ₃) ₂	CO	0	0
616	4-N	CH(CH ₃) ₂	CO	0	0
617	Н	CH(CH ₃) ₂	CO	S	0
618	3-CH ₃	CH(CH ₃) ₂	CO	S	0
619	4-CH ₃	CH(CH ₃) ₂	CO	S	0
620	2-F	CH(CH ₃) ₂	CO	S	0
621	3-F	CH(CH ₃) ₂	CO	S	0
622	4-F	CH(CH ₃) ₂	CO	S	0
623	3-NH ₂	CH(CH ₃) ₂	CO	S	0
624	4-NH ₂	CH(CH ₃) ₂	CO	S	0
625	3-NO ₂	CH(CH ₃) ₂	CO	S	D
626	4-NO ₂	CH(CH ₃) ₂	ÇO	S	0
627	3-N	CH(CH ₃) ₂	CO	S	0
628	4-N	CH(CH ₃) ₂	CO	S	0
629	н	CH2CH2CH(CH3)2	CO	O	0
6 30	3-CH ₃	CH2CH2CH(CH3)2	CO	0	O
631	4-CH ₃	CH2CH2CH(CH3)2	CO	O	0
632	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
633	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	0
634	4-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
635	3-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
636	4-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	co	0	0
637	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
638	$4-NO_2$	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
639	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
640	4-N	$CH_2CH_2CH(CH_3)_2$	co	0	0
641	H	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
642	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
643	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
644	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
645	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
646	4-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
647	3-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
648	4-NH2	$CH_2CH_2CH(CH_3)_2$	CO	S	0
649	$3-NO_2$	CH2CH2CH(CH3)2	CO	S	0

650	4-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
651	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	co	S	0
652	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
653	H	CH ₃	CO	0	1
654	3-CH ₃	CH ₃	CO	0	1
655	4-CH ₃	CH ₃	CO	0	1
656	2-F	СН3	CO	0	1
657	3-F	CH ₃	CO	0	1
658	4-F	CH ₃	CO	0	1
659	3-NH ₂	CH ₃	CO	0	1
660	4-NH ₂	CH ₃	CO	0	1
661	3-NO ₂	CH ₃	CO	0	,
662	4-NO ₂	CH ₃	CO	0	1
663	3-19	CH ₃	CO	0	1.
664	4-N	CH ₃	CO	0	1
665	H	СН3	CO	S	7
666	3-CH ₃	СH ₃	CO	S	1
667	4-CH ₃	. СН3 .	CO	S	1
668	2-F	CH ₃	CO	S	1
669	3-F	CH ₃	CO	\$	I
670	4-F	СH ₃	CO	S	1
671	3-NH ₂	СН3	CO	S	1
672	4-NH ₂ -	СH ₃	CO	S	3
673	3-NO ₂	CH ₃	CO	S	1
674	4-NO ₂	CH ₃	CO	S	1
675	3-N	CH ₃	CO	S	1
676	4-N	CH ₃	CO	S	1
677	H	CH ₃	CO	NH	1
678	3-CH ₃	сн3	CO	NH	1
679	4-CH ₃	CH ₃	CO	NH	. 1
680	2-F	CH ₃	CO	ИН	1
681	3-F	CH ₃	CO	NH	1
682	4-F	CH ₃	co	NH	1
683	3-NH ₂	. СН3	co	NH	-1
684	4-NH ₂	СH ₃	CO	NH	1

685	3-NO ₂	CH ₃	CO	NH	1
686	4-NO ₂	CH ₃	CO	NH	1
687	3-N	CH ₃	CO	NH	3
688	4-N	CH ₃	CO	NH	1
689	H	CH(CH ₃) ₂	CO	0	3
690	3-CH ₃	CH(CH ₃) ₂	CO	O	1
691	4-CH ₃	CH(CH ₃) ₂	CO	O	1
692	2-F	CH(CH ₃) ₂	CO	0	1
693	3.F	CH(CH ₃) ₂	CO	0	1
694	4-F	CH(CH ₃) ₂	CO	O	1
695	3-NH ₂	CH(CH ₃) ₂	СО	O	ì
696	4-NH ₂	CH(CH ₃) ₂	co -	0	1
697	3-NO ₂	CH(CH ₃) ₂	CO	O	1
698	4-NO ₂	СH(СH ₃) ₂	CO	O	1
699	3-N	CH(CH ₃) ₂	CO	0	1
700	4-N	CH(CH ₃) ₂	CO	0	1
701	Н	CH(CH ₃) ₂	CO	S	1
70 2	3-CH ₃	CH(CH ₃) ₂ -	CO	s	1
703	4-CH ₃	CH(CH ₃) ₂	co	\$	3
704	2-F	CH(CH ₃) ₂	CO	S	1
705	3-F	CH(CH ₃) ₂	CO	S	1
706	4-F	CH(CH ₃) ₂	CO	S	1
707	3-NH ₂	CH(CH ₃) ₂	CO	S	1
708	4-NH ₂	CH(CH ₃) ₂	CO	S	i
709	3-NO ₂	CH(CH ₃) ₂	CO	S	i
710	4-NO ₂	CH(CH ₃) ₂	CO	S	1
711	3-N	CH(CH ₃) ₂	co	S	1
712	4-N	CH(CH ₃) ₂	CO	S	1
713	Н	CH(CH ₃) ₂	CO	NH	1
714	3-CH ₃	CH(CH ₃) ₂	CO	NH	1
715	4-CH ₃	CH(CH ₃) ₂	CO	NH	. 1
716	2-F	CH(CH ₃) ₂	CO	NH	1
717	3-F	CH(CH ₃) ₂	CO	NH	1
718	4-F	$CH(CH_3)_2$	CO	NH	1
719	3-NH ₂	CH(CH ₃) ₂	CO	NH	1

720	4-NH ₂	CH(CH ₃) ₂	CO	NH	1
721	3-NO ₂	CH(CH ₃) ₂	CO	NH	2
722	4-NO ₂	CH(CH ₃) ₂	CO	NH	. 1
723	3-N	CH(CH ₃) ₂	CO	NH	1
724	4-N	CH(CH ₃) ₂	CO	NH	3
725	н	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1
726	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	1
727	4-CH ₃	CH2CH2CH(CH3)2	CO	O	1
728	2-F	CH2CH2CH(CH3)2	CO	0	1
729	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1
730	4-F	CH2CH2CH(CH3)2	CO	O	1
731	3-NH ₂	CH2CH2CH(CH3)2	CO	0	1
732	4-NH ₂	CH2CH2CH(CH3)2	CO	0	1
733	3-NO ₂	CH2CH2CH(CH3)2	CO	0	1
734	4-NO ₂	CH2CH2CH(CH3)2	CO	0	1
735	3.N	CH2CH2CH(CH3)2	CO	0	3
736	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	1
737	Н	CH2CH2CH(CH3)2	CO	S	1
738	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1
739	4-CH ₃	CH2CH2CH(CH3)2	CO	S	1
740	2-F	$CH_2CH_2CH(CH_3)_2$	CO	S	1
741	3-F	CH2CH2CH(CH3)2	CO	\$	1
742	4-F	$CH_2CH_2CH(CH_3)_2$	CO	S	1
743	3-NH2	CH2CH2CH(CH3)2	CO	S	1
744	4-NH ₂	$CH_2CH_2CH(CH_3)_2$	CO	Š	1
745	3-NO ₂	$CH_2CH_2CH(CH_3)_2$	CO	S	1
746	4-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	ì
747	3-N	$CH_2CH_2CH(CH_3)_2$	CO	S	1
748	4-N	$CH_2CH_2CH(CH_3)_2$	CO	S	}
749	Н	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
750	3-CH3	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
751	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
752	2-F	$CH_2CH_2CH(CH_3)_2$	CO	NH	1
753	3-F	$CH_2CH_2CH(CH_3)_2$	CO	NH	1
754	4-F	CH2CH2CH(CH3)2	CO	NH	1

755	3-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
756	4-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	i
757	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
758	4-NO ₂	$CH_2CH_2CH(CH_3)_2$	CO	NH	1
759	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
760	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
761	H	CH ₂ NH(CH ₃)	CO	O	1
762	H	CH ₂ N(CH ₃)CO ₂ C(CH ₃) ₃	CO	O	1

Table 8

5

Ex. No.	RA	R10	Z	ν	ับ	Data
763	H	сн3	CO	0	0	
764	3-CH ₃	CH ₃	CO	0	0	
765	4-CH ₃	CH ₃	CO	0	0	
766	2-F	CH ₃	CO	0	0	
767	3-F	CH ₃	CO	O	0	
768	4-F	CH ₃	CO	0	0	
769	3-NH ₂	CH ₃	CO	0	0	
770	4-NH ₂	CH ₃	co	0	O	
771	3-NO ₂ '	CH ₃	CO	0	0	
772	4-NO2	CH ₃	co	0	0	
					•	

773	3-N	СНЗ	CO	0	0
774	4-N	CH ₃	CO	O	0
775	н	CH ₃	CO	S	0
776	3-CH ₃	CH ₃	CO	S	0
777	4-CH ₃	CH ₃	CO	S	0
778	2-F	CH ₃	CO	S	0
779	3-F	CH ₃	CO	S	0
780	4-F	CH ₃	CO	S	0
781	3-NH ₂	CH ₃	CO	S	0
782	4-NH ₂	CH ₃	CO	S	0
783	3-NO ₂	CH ₃	CO	S	0
784	4-NO ₂	CH ₃	CO	S	0
785	3-N	CH ₃	CO	S	0
786	4-N	CH ₃	CO	S	0
787	H	CH(CH ₃) ₂	CO	0	0
788	3-CH ₃	CH(CH ₃) ₂	co	0	0
789	4-CH ₃	CH(CH ₃) ₂	CO	0	0
790	2-F	CH(CH ₃) ₂ -	CO	. 0	0
791	3-F	CH(CH ₃) ₂	CO	O	0
792	4-F	CH(CH ₃) ₂	CO	0	0
793	3-NH ₂	CH(CH ₃) ₂	CO	0	0
794	4-NH ₂	CH(CH ₃) ₂	CO .	0	0
795	3-NO ₂	CH(CH ₃) ₂	CO	0	0
796	4-NO ₂	CH(CH ₃) ₂	CO	0	0
797	3-N	CH(CH ₃) ₂	CO	0	0
798	4-N	CH(CH ₃) ₂	CO	0	0
799	Н	CH(CH ₃) ₂	CO	S	0
800	3-CH ₃	CH(CH ₃) ₂	CO	S	O
803	4-CH ₃	CH(CH ₃) ₂	CO	S	0
802	2-F	CH(CH ₃) ₂	CO	S	0
803	3-F	CH(CH ₃) ₂	CO	S	0
804	4-F	CH(CH ₃) ₂	CO	S	0
805	3-NH ₂	CH(CH ₃) ₂	CO	S	0
806	4-NH ₂	CH(CH ₃) ₂	CO	S	0
807	3-NO ₂	CH(CH ₃) ₂	CO	S	0

808	4-NO2	CH(CH ₃) ₂	СО	S	0	
809	3-N	CH(CH ₃) ₂	CO	S	0	
810	4-N	CH(CH ₃) ₂	CO	S	0	
811	H	$CH_2CH_2CH(CH_3)_2$	CO	0	0	
812	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	co	0	0	
813	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0	
814	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0	
815	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0	
816	4-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0	
817	3-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0	
818	4-NH ₂	$CH_2CH_2CH(CH_3)_2$	CO	0	0	
819	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	0	
820	4-NO2	CH2CH2CH(CH3)2	CO	0	O	
821	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0	
822	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0	
823	. H	$CH_2CH_2CH(CH_3)_2$	CO	S	0	
824	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0	
825	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	co	S	0	
826	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0	
827	3.F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0	
828	4-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0	
829	3-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0	
830	4-NH ₂	$CH_2CH_2CH(CH_3)_2$	CO	S	0	
831	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0	
832	4-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	O	
833	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	\$	0	
834	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	\$	0	
835	H	CH ₃	CO	0	1	Z
836	3-CH ₃	CH ₃	CO	0	1	AA
837	4-CH ₃	CH ₃	CO	0	1	BB
838	2-F	CH ₃	CO	0	1	
839	3-F	CH ₃	CO	O	1	
840	4-F	CH ₃	CO	O	1	
841	3-NH ₂	. СН3	CO	0	ļ	
842	4-NH ₂	CH ₃	CO	0	1	

843	3-NO ₂	CH ₃	CO	0	1	
844	4-NO ₂	CH ₃	CO	O	1	
845	3-N	CH ₃	CO	0	ì	
846	4-N	CH ₃	CO	0	1	
847	Н	CH ₃	co	S	1	
848	3-CH ₃	CH ₃	CO	s	1	
849	4-CH ₃	CH ₃	CO	s	1	
850	2-F	CH ₃	CO	S	1	
851	3-F	СН3	CO	\$	1	
852	4-F	CH ₃	CO	S	1	
853	3-NH2	СН3	CO	S	1	
854	4-NH2	CH ₃	CO	S	1	
855	3-NO2	CH ₃	CO	S	1	
856	4-NO ₂	СН3	CO	S	1	
857	3-N	CH ₃	CO	S	1	
858	4-N	CH ₃	co	S	1	
859	Н	CH ₃	co .	NH	1	
860	3-CH ₃	СН3	CO	NH	1	
861	4-CH ₃	CH ₃	CO	NH	1	
862	2-F	CH ₃	CO	NH	1	
863	3-F	CH ₃	CO	NH	1	
864	4-F	сн ₃	co	NH	1	
865	3-NH2	CH ₃	CO	NH	I	
866	4-NH ₂	ĊH ³	CO	NH	1	
867	3-NO ₂	CH ₃	CO	NH	1	
868	4-NO ₂	CH ₃	CO .	NH	1	
869	3-N	СН3	CO	NH	3	
870	4-N	CH ₃	CO	NH	1	
871	H	CH(CH ₃) ₂	CO	O	1	CC
872	3-CH ₃	CH(CH ₃) ₂	CO	O	1	
873	4-CH ₃	CH(CH ₃) ₂	CO	0	1	
874	2-F	CH(CH ₃) ₂	CO	0	1	
875	3-F	$CH(CH_3)_2$	CO	0	1	
876	4-F	CH(CH_3) ₂	CO	0	1	
877	3-NH ₂	CH(CH ₃) ₂	CO	- O	1	

878	4-NH ₂	CH(CH ₃) ₂	CO	0	1	
879	3-NO ₂	CH(CH ₃) ₂	CO	0	1	
880	4-NO ₂	CH(CH ₃) ₂	СО	0	1	
881	3-N	CH(CH ₃) ₂	CO	0	1	
882	4-N	CH(CH ₃) ₂	co	0	1	
883	H	CH(CH ₃) ₂	CO	S	1	
884	3-CH ₃	CH(CH ₃) ₂	CO	S	1	
885	4-CH ₃	CH(CH ₃) ₂	CO	S	1	
886	2-F	CH(CH ₃) ₂	CO	S	1	
887	3-F	CH(CH ₃) ₂	CO	S	1	
888	4-F	CH(CH ₃) ₂	co	S	1	
889	3-NH ₂	CH(CH ₃) ₂	CO	S	3	
890	4-NH ₂	CH(CH ₃) ₂	CO	S	1	
891	3-NO ₂	CH(CH ₃) ₂	CO	S	ì	
892	4-NO2	CH(CH ₃) ₂	CO	S	1	
893	3-N	CH(CH ₃) ₂	CO	S	1	
894	4-N	СH(CH ₃) ₂	CO	S	1	
895	H	CH(CH ₃) ₂	CO	NH	1	
896	3-CH ₃	CH(CH ₃) ₂	CO	NH	1	
897	4-CH ₃	CH(CH ₃) ₂	CO	NH	1	
898	2-F	CH(CH ₃) ₂	CO	NH	1	
899	3-F	СH(СH ₃) ₂	CO	NH	1	
900	4-F	CH(CH ₃) ₂	CO	NH	1	
901	3-NH ₂	$CH(CH_3)_2$	co	NH	1	
902	4-NH ₂	CH(CH ₃) ₂	CO	NH	ŧ	
903	3-NO ₂	CH(CH ₃) ₂	CO	NH	ì	
904	4-NO ₂	CH(CH ₃) ₂	CO	NH	1	
905	3-N	CH(CH ₃) ₂	CO	NH	1	
906	4-N	CH(CH ₃) ₂	CO	NH	1	
907	H	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	3	DD
908	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1	
909	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1	
910	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	I	
911	3-F	СH ₂ СH ₂ СH(СH ₃) ₂	CO	O	i	
912	4-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	ì	

913	$3-NH_2$	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	1	
914	4-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	1	
915	3-NO ₂	$CH_2CH_2CH(CH_3)_2$	CO	O	1	
916	4-NO2	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1	
917	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1	
918	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	co	0	1	
919	H	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1	
920	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1	
921	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S.	1	
922	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1	
923	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1	
924	4-F	CH2CH2CH(CH3)2	CO	S	1	
925	3-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1	
926	4-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1	
927	3-NO2	CH2CH2CH(CH3)2	CO	S	1	
928	4-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	\$	1	
929	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1	
930	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1	•
931	Н	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	3	
932	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1	
933	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1	
934	2-F	CH2CH2CH(CH3)2	CO	NH	3	
935	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1	
936	4-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1	,
937	3-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1	
9.38	4-NH2	$CH_2CH_2CH(CH_3)_2$	CO	NH	1	
939	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1	
940	4-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH ·	1	
941	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1	
942	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1	
943	Ħ	CH ₂ NH(CH ₃)	co	0	1	EE
944	H	CH2N(CH3)CO2C(CH3)3	CO	0	1	FF

Table 9

$$H_2N$$
 OH
 $N+C-R^{10}$
 R^3-O

Ex No.	R ³	R10	Data
945	сн3	CH ₃	
946	(H ₃ C) ₃ C	CH ₃	
94 7	C H ₂	СН ₃	
948	CH	CH ₃	
949	сн ₃	CH ₂ CH ₂ Ph	
950	(H ₃ C) ₃ C	CH ₂ CH ₂ Ph	
951	CH	CH ₂ CH ₂ Ph	
952	CH,	CH ₂ CH ₂ Ph	

Table 10

$$H_2N$$
 O
 NH
 $C-R^{10}$
 R^3-O^{N+1}

5

960

			•
Ex No.	R ³	R10	Data
953	CH ₃	CH ₃	
954	(H ₃ C) ₃ C	CH ₃	GG
955	CH	· CH ₃	Ш
956	СН	СН3	
957	Сн ₃	CH ₂ CH ₂ Ph	
958	(H ₃ C) ₃ C	CH ₂ CH ₂ Ph	П
959	CH.	CH ₂ CH ₂ Ph	IJ

 $\mathrm{CH}_2\mathrm{CH}_2\mathrm{Ph}$

WO 95/09859

5

Table 11

$$R^{A}$$
 R^{A}
 R^{A}
 R^{A}
 R^{A}
 R^{A}
 R^{B}
 R^{A}
 R^{B}
 R^{A}
 R^{B}
 R^{A}
 R^{B}
 R^{A}
 R^{B}
 R^{A}
 R^{B}
 R^{A}
 R^{B}

 $R^{x} = H_{2}N$

ExNo.	RA	RB	R6	R ⁷	Z	ν	W	U	Data
961	Н	Н	Н	Н	C(O)O	O		1	
962	H	Н	Н	H	CO	0	CH ₂	0	
963	Н	н	Н	H	CO	S	CH ₂	0	
964	Н	Н	H	H	CO	0	CH ₂	ı	
965	H	2'- CH ₃	Н	H	CO	0	CH ₂	ŧ	
966	H ·	3'-CH ₃	H	Н	CO	О	CH ₂	ı	
967	Н	_2', 3'-diCH ₃	H	H	CO	O	CH_2	1	
968	H	2'-F	н	H	CO	0	СН ₂	3	
969	H	3'-F	H	Н	CO	O	CH ₂	1	
970	H	2-N	Н	Н	CO	O	CH ₂	1	
971	H	3'-N	H	Н	CO	0	CH ₂	1	
972	3-CH ₃	H	H	H	CO	0	CH_2	1	
973	3-CH ₃	2'-CH3	H	H	CO	O	CH ₂	1	
974	3-CH ₃	3'-CH ₃	Н	H	CO	O	CH ₂	}	
975	3-CH ₃	2', 3'-diCH ₃	Н	H	CO	O	CH ₂	1	
976	3-CH ₃	2'-F	Н	H	CO	0	CH ₂	3	
977	3-CH ₃	3'-F	н	Н	co	O	. CH ₂	ì	
978	3-CH ₃	2'-N	Н	Н	CO	O	CH ₂	}	
979	3-CH ₃	3'-N'	Н	H	CO	0	CH ₂	}	
980	2-F	Н	Н	н	CO	O	CH ₂	1	

981	2-F	2'-CH ₃	H	H	CO	0	CH_2	1	
982	2-F	3'-CH ₃	H	H	CO	O	CH ₂	1	
983	2-F	2', 3'-diCH ₃	Н	H	CO	0	CH ₂	1	
984	2-F	2'-F	H	H	CO	0	CH ₂	Ì	
985	2-F	3'-F	H	H	CO	0	CH ₂	1	
986	2-F	2'-N	H	H	CO	0	CH ₂	1	
987	2-F	3'-N	H	H	CO	0	CH ₂	1	
988	3- F	H	H	H	CO	O	CH ₂	1	KK
989	3- F	2'-CH3	H	H	CO	0	CH ₂	1	
990	3- F	3'-CH ₃	H	H	CO	. 0	CH ₂	1	
991	3-F	2', 3'-diCH3	H	Н	CO	0	CH ₂	1	
992	3-F	2'-F	H	H	CO	O	CH_2	1	
993	3-F	3'-F	H	H	CO	O	CH ₂	1	
994	3-F	2'-N	Н	H	CO	O	CH ₂	1	
995	3-F	3'-N'	H	H	CO	0	CH ₂	1	
996	3-NH ₂	H	H	H	CO	O	CH ₂	3	
997	3-NH ₂	2'-CH ₃	H	H	CO	O	CH ₂	1	
998	3-NH ₂	3'-CH ₃	H .	H	CO	0	CH ₂	1	
999	3-NH ₂	2', 3'-diCH ₃	Н	H	CO	0	CH ₂	1	
1000	3-NH ₂	2'-F	Н	H	co	0	CH ₂	1	
1001	3-NH ₂	3'-F	H	H	CO	0	CH ₂	ì	
1002	3-NH ₂	2'-N	H	Н.	- CO	0	CH ₂	1	
1003	3-NH ₂	3-N	H	H	CO	0	CH ₂	1	
1004	3-NO ₂	H	H	H	CO	0	CH ₂	1	
1005	3-NO ₂	2'-CH ₃	H	Н	CO	0	CH ₂	1	
1006	3-NO ₂	3'-CH ₃	H	H	CO	0	CH ₂	1	
1007	3-NO ₂	2', 3'-diCH ₃	Н	H	CO	0	CH ₂	1	
1008	3-NO ₂	2'-F	H	Н	CO	0	CH ₂	1	
1009	3-NO ₂	3'-F	H	Н	CO	0	CH ₂	1	
1010	3-NO ₂	2'-N	Н	Н	CO	O	CH ₂	ì	
1011	3-NO ₂	3'-N	Н	H	CO	0	CH ₂	1	
1012	2-N	H	H	H	CO	O	CH ₂	1	
1013	2-N	2'-CH ₃	Н	H	CO	O	CH ₂	ì	
1014	2-N	3',-CH ₃	H	H	CO	0	CH ₂	3	
1015	2-N	2', 3'-diCH ₃	Н	H	CO	0	CH ₂	1	

1016	2-N	2'-F	Н	Н	CO	0	CH ₂	1
1017	2-N	3'-F	H	Н	CO	0	CH_2	1
1018	2-N	2'-N	H	H	co	O	CH ₂]
1019	2-N	3'-N	Н	H	CO	0	CH ₂	1
1020	3-N	Н	H	Н	CO	0	CH ₂	1
1021	3-N	2'-CH ₃	H	H	CO	0	CH ₂	ŀ
1022	3-N	3'-CH ₃	H	H	CO	0	CH ₂	1
1023	3-N	2', 3'-diCH ₃	H	H	CO	0	CH ₂	ì
1024	3-N	2'-F	H	Н	CO	0	CH ₂	1
1025	3-N	3'-F	Н	Н	CO	0	CH ₂	1
1026	- 3-N	2'-N	Н	Н	co	0	CH ₂	3
1027	3-N	3'-N	H	Н	CO	0	CH ₂	1
1028	4-N	н	H	Н	co	0	CH ₂	1
1029	4-N	2'-CH ₃	н	H	CO	0	CH ₂	1
1030	4-N	3'-CH ₃	H	H	CO	0	CH_2	1
1031	4-N	2', 3'-diCH ₃	H	н	CO	0	CH_2	1
1032	4-N	2'-F	H	Н	CO	0	CH_2	1
1033	4-N	3'-F	H	. н	CO	0	CH ₂	1
1034	4-N	2'-N	H	H	CO	O	CH ₂	}
1035	4-N	3'-N'	H	H	CO	0	CH ₂	1
1036	H	Н	Н	H	co	O	O	0
1037	H	H	CH ₃	CH ₃	CO	S	0	O
1038	H	H	H	H	CO	0	0	1
1039	H	2-CH ₃	Н	Н	co	O	O	3
1040	H	3'-CH ₃	H	Н	CO	O.	0	1
1041	н	2', 3'-diCH ₃	H	Н	co	O	0	1
1042	H	2'-F	H	Н	CO	0	0	1
1043	H	3'-F	H	H	CO	0	0	1
1044	H	2'-N	H	Н	CO	0	0	1
1045	H	3'-N'	H	H	CO	0	0	1
1046	3-CH ₃	H	Н	H	CO	0	0	1
1047	3-CH ₃	2'-CH ₃	H	Н	CO	0	0	1
1048	3-CH ₃	3'-CH ₃	Н	H	CO	0	O	3
1049	3-CH ₃	2', 3', diCH ₃	H	Н	СО	0	. O	1
1050	3-CH ₃	2'-F	H	H	CO	0	O	ì

1051	3-CH ₃	3'-F	H	Н	CO	0	0	1
1052	3-CH ₃	2'-N	Н	H	CO	0	0	}
1053	3-CH ₃	3'-N	H	H	CO	0	Ö	1
1054	2-F	H	H	Н	CO	0	0	1
1055	2-F	2'-CH ₃	H	H	CO	O	0	1
1056	2-F	3'-CH ₃	н	H	CO	0	O	1
1057	2-F	2', 3'-diCH ₃	H	Н	CO	O	0	j
1058	2-F	2-F	H	H	CO	0	0	1
1059	2-F	3'-F	H	H	CO	0	0	1
1060	2-F	2'-N	H	H	CO	0	0	1
1061	2-F	3'-N	H	Н	CO	0	0	1
1062	3-F	H	H	Н	CO	0	0	1
1063	3-F	2'-CH3	Н	H	CO	O	0	1
1064	3-F	3'-CH ₃	Н	H	co	O	O	j
1065	3-F	2', 3'-diCH ₃	H	H	CO	O	0	1
1066	3-F	2'-F	H	Н	CO	0	O	1
1067	3-F	3'-F	H	H	CO	O	0	1
1068	3-F	2'-N	Н	H	CO	0	0	3
1069	3-F	3'-N	H	H	CO	0	0	1
1070	3-NH ₂	H	H	H	CO	0	O	1
1071	3-NH ₂	2'-CH ₃	H	H	CO	0	0	1
1072	3-NH ₂	3'-CH ₃	H	Н	CO	0	0	1
1073	3-NH ₂	2', 3'-diCH ₃	H	H	CO	0	0	ì
1074	3-NH ₂	2'-F	H	H	CO	0	0	I
1075	3-NH ₂	3'-F	Н	H	CO	0	0	i
1076	3-NH ₂	2'-N	H	H	CO	О	0	1
1077	3-NH ₂	3'-N	H	H	CO	0	0	1
1078	$3-NO_2$	H	H	H ·	CO	O	0	1
1079	3-NO ₂	2'-CH ₃	H	H	CO	0	0	1
1080	3-NO ₂	3'-CH ₃	H	H	CO	0	O	1
1801	3-NO ₂	2', 3'-diCH ₃	H	H	CO	0	O	1
1082	3-NO ₂	2'-F	H	H	CO	0	0	1
1083	1-NO ₂	3'-F	H	H	CO	0	0	1
1084	3-NO ₂	2'-N	H	H	CO	0	0	1
1085	3-NO ₂	3'-N	H.	H	CO	0	0	1

1086	2-N	Н	Н	H	CO	0	0	1
1087	2-N	2'-CH ₃	Н	H	CO	0	0	ı
1088	2-N	3'-CH ₃	H	H	CO	0	Ò	1
1089	2-N	2', 3'-diCH ₃	H	Н	CO	0	0	1
1090	2-N	2'-F	H	H	CO	0	0	3
1091	2-N	3'-F	H	Н	CO	0	0	1
1092	2-N	2'-N	H	H	CO	O	0	1
.1093	2-N	3'-N	H	H	CO	0	0	1
1094	3-N	H	H	H	CO	0	0	1
1095	3-N	2'-CH ₃	H	H	CO	O	O	1
1095	3-N	3'-ÇH ₃	H	H	CO	O	O	1
1097	3-N	2', 3'-diCH ₃	H	Н	CO	0	0	1
1098	3-N	2'-F	н	Н	CO	O	0	}
1099	3-N	3'-F	Н	Н	CO	O	0	1
1100	3-N	2'-N	H	Н	CO	0	0	1
1101	3-N	3-N	Н	H	CO	0	0	1
1102	4-N	Н	H	H	CO	0	0	1
1103	4-N	2-CH ₃	Н	. н	CO	0	0	1
1104	4-N	3'-CH ₃	H	Н	CO	0	0	1
1105	4-N	2, 3'-diCH ₃	H	H	CO	O	0	1
1106	4-N	2'-F	H	H	CO	0	O	1
1107	4-N	3'-F	H	H	CO	0	0	1
1108	4-N	2'-N	H	Н	CO	0	0	1
1109	4-N	3'-N	H	Н	CO	0	0	1

Table 12

 $R^{x} = H_2N$

ExNo.	RA	RB	R ⁶	R ⁷	Z	V	W	u	Data
1110	н	H	Н	Н	C(O)O	0	_	1	
1111	H	H	Н	Н	CO	O	CH ₂	0	•
1112	Н	H	H	H	CO	S	CH ₂	0	
1113	н	н	H	. н	CO	ο.	CH ₂	1	Ц.
1114	H	2'- CH ₃	H	H	CO	O	CH ₂	1	
1115	H	3'-CH3	H	H	CO	0	CH_2	1	
1116	H	2', 3'-diCH ₃	Н	Н	CO	0	CH ₂	1	
1117	Н	2'-F	H	H	CO .	0	CH ₂	1	-
1118	H	. 3'-F	Н	H	CO	O	CH_2	1	
1119	H	2'-N	\mathbf{H}^{\perp}	H	CO	O	CH ₂	1	•
1120	H	3'-N	. Н	H	со	O	CH_2	1	
1121	3-CH ₃	H	H	H	CO	O	CH_2	1	
1122	3-CH ₃	2'-CH ₃	H	H	CO	O	CH ₂	1	
1123	3-CH ₃	3'-CH ₃	H	H	CO	O	CH ₂	. 3	
1124	3-CH ₃	2', 3'-diCH ₃	Н	H	CO	O	CH_2	ì	
1125	3-CH ₃	2'-F	Н	H	CO	0	CH ₂	3	
1126	3-CH ₃	3'-F	H	Н	CO	0	CH ₂	1	
1127	3-CH ₃	2'-N	Н	Н	CO	0	CH ₂	3	
1128	3-CH ₃	3'-N	н	н	CO	0	CH ₂	1	
1129	2-F	H	H	H	CO	0	CH ₂	1	
1130	2-F	2'-CH3	H	Н	co	0	CH ₂	1	
1131	2-F	3'-CH ₃	H	Н	CO	0	CH ₂	1	

1132	2-F	2', 3'-diCH ₃	Н	Н	CO	O	CH ₂	1	
1133	2-F	2'-F	H	Н	CO	O	CH ₂	1	
1134	2-F	3'-F	H	н	CO	O	CH ₂	1	
1135	2-F	2'-N	В	H	CO	٥	CH_2	1	
1136	2-F	3'-N	H	H	CO.	0	CH ₂	1	
1137	3-F	H	H	H	CO	0	CH ₂	1	MM
1138	3-F	2'-CH ₃	H	H	CO	0	CH ₂	1	
1139	3-F	3'-CH ₃	H	H	CO	0	CH ₂	1	
1140	3-F	2', 3'-diCH ₃	H	H	CO	O	CH ₂	1	
1141	3-F	2'-F	H.	Н	·CO	0	CH ₂	1	
1142	3-F	3'-F	H	H	CO	0	CH ₂	1	
1143	3-F	2'-N	H	Н	CO	0	CH_2	1	
1144	3-F	3'-N	Н	1-3	CO	O	CH ₂	1	
1145	3-NH ₂	H	H	H	CO	0	CH_2	1	
1146	3-NH ₂	2'-CH ₃	Н	H	CO	0	CH ₂	ı	
1147	3-NH ₂	3'-CH ₃	H	H	CO	O	CH ₂	ì	
1148	3 NH ₂	2', 3'-diCH ₃	H	H	CO	0	CH ₂	· 1	
1149	3-NH ₂	2'-F	- H -	H	CO	O	CH ₂	1	
1150	3-NH ₂	3'-F	H	Н	CO	0	CH ₂	1	
1151	3-NH ₂	2'-N	H	H	CO	0	CH ₂	1	
1152	3-NH ₂	3'-N	Н	H	CO	0	СH ₂	1	
1153	3-NO ₂	H	H	H	CO	0	CH ₂	1	
1154	3-NO ₂	2'-CH ₃	H	H	CO	0	CH ₂	1	
1155	3-NO ₂	2', 3'-diCH ₃	H	H	CO	0	CH ₂	1	
1156	3-NO ₂	2'-F	Н	H	CO	0	CH ₂	1	
1157	3-NO ₂	3'-F	Н	H	CO	O	CH ₂	1	
1158	3-NO ₂	2'-N	Н	Н	CO	O	CH ₂	1	
1159	3-NO ₂	3'-N	H	H	CO	0	CH ₂	1	
1160	2-N	H	H	H	CO	0	CH ₂	1	
1161	2-N	2'-CH ₃	H	H	CO	O		j	
1162	2-N	3'-CH ₃	H .	. Н	CO	0	CH ₂	1	
1163	2-N	2', 3'-diCH ₃	H	H	CO	O	CH ₂	1	
1164	2-N	2'-F	Н	H	CO	0	CH ₂	1	
1165	2-N	3'-F	H	H	CO	0	CH ₂	1	

1166	2-N	2'-N	H	H	CO	O	CH ₂	1
1167	2-N	3-N	Н	Н	CO	0	CH ₂	1
							•	
1168	3-N	н	H	Н	CO	0	CH ₂	1
1169	3-N	2'-CH ₃	H	Н	CO	0	CH ₂	1
1170	3-N	3'-CH ₃	H	H	CO	0	CH ₂	1
1171	3-N	2', 3'-diCH ₃	H	H	CO	0	CH ₂	ł
1172	3-N	2'-F	H	H	CO	0	CH ₂	1
1173	3-N	3'-F	H	H	CO	0	CH ₂	1
1174	3-N	2'-N	H	H	CO	0	CH ₂	1
1175	3-N	3'-N	H	H	CO	0	CH ₂	1
1176	4-N	Н	Н	H	CO	O	CH ₂	1
1177	4-N	2'-CH ₃	H	Н	CO	0	CH ₂	1
1178	4-N	3'-CH ₃	H	н	СО	O	CH ₂)
1179	4-N	2', 3'-diCH ₃	H	Н	CO	O	CH_2	1
1180	4-N	2'-F	H	H	CO	O	CH_2	1
1181	4-N	3'-F	H	H	CO	0	CH ₂	1
1182	4-N	2'-N	Н	Н	CO	0	CH ₂	ì
1183	4-N	3'-N	H	H	CO	0	CH ₂	1
1184	H	Н	H	Ħ	CO	0	O	0
1185	H	Н	CH ₃	CH ₃	CO	S	0	0
1186	Ħ	H	H	Н	CO	0	O	1
1187	H	2'- CH ₃	H	H	CO	0	O	1
1188	H	3'-CH ₃	Н	Н	CO	O	0	1
1189	H,	2', 3'-diCH ₃	Н	H	CO	O	0	1
1190	H	2'-F	Н	H	CO	0	0	1
1191	H	3'-F	Н	H	CO	0	O	1
1192	H	2'-N	H	H	CO	0	0	}
1193	Н	3'-N	H	H	CO	Q	O	1
1194	3-CH ₃	H	H	H	CO	0	O	3
1195	3-CH ₃	2'-CH ₃	H	H	CO	O	0	1
1196	3-CH ₃	3'-CH ₃	H	H	CO	0	O	1
1197	3-CH ₃	2', 3'-diCH ₃	H	H	CO	0	O	1
1198	3-CH ₃	2'-F	H	. H	CO	O	0	1

1199	3-CH ₃	3'-F	H	н	CO	0	0	1
1200	3-CH ₃	2'-N	Н	H	co	O	0	1
1201	3-CH ₃	3'-N	H	Н	CO	O	0	1
1202	2-F	н	н	H	CO	O	O	1
1203	2-F	2'-CH ₃	H	Н	CO	0	0	1
1204	2-F	3'-CH ₃	H	Н	co	0	0	1
1205	2- F	2', 3'-diCH ₃	H	H	CO	0	O	1
1206	2-F	2'-F	Н	н	CO	0	O	I
1207	2-F	3'-F	H	H	CO	0	0	1
1208	2-F	2'-N	Н	H	CO	0	O	1
1209	2-F	3'-N	H	H.	CO	O	Q	1
1210	3-F	H	H	H	co	0	0	1
1211	3-F	2'-CH ₃	H	H	CO	Q	0	1
1212	3-F	3'-CH ₃	Н	H	CO	0	0	1
1213	3- F	2', 3'-diCH ₃	H	Н	CO	0	0	1
1214	3-F	2'-F	Н	H	CO	O	0	1
1215	3-F	3'-F	Н	H	CO	O	0	1
1216	3-F	2'-N	н .	H	CO	O	0	1
1217	3-F	3'-N'	H	Н	CO	0	O	1
1218	3-NH ₂	H	H	Н	CO	0	O	1
1219	3-NH ₂	2'-CH ₃	H	н	CO	O	0	1
1220	3-NH ₂	3'-CH ₃	H	н	CO	0	0	1
1221	3-NH ₂	'2', 3'-diCH ₃	H	Н	CO	O	0	1
1222	3-NH ₂	2'-F	H	H	CO	0	0	1
1223	3-NH ₂	3 -F	H	H	CO	O	0	1
1224	3-NH ₂	2'-N	Н	H	CO	0	O	1
1225	3-NH ₂	3'-N	H	H	CO	0	0	1
1226	3-NO ₂	Н	Н	H	CO	0	0	I
1227	3-NO ₂	2'-CH ₃	H	H	CO	0	0	1
1228	3-NO ₂	3'-CH ₃	H	H	CO	0	0	1
1229	3-NO ₂	2', 3'-diCH ₃	Н	H	CO	0	0	1
1230	3-NO ₂	2'-F	H	Н	CO	O	0	1
1231	3-NO ₂	3'-F	H	Н	CO	0	0	1
1232	3-NO ₂	,2°-N	H	Н	CO	0	O	1
1233	3-NO ₂	3'-N'	Н	H	CO	0	0	1

1234	2-N	H	н	H	CO	0	0	1
1235	2-N	2'-CH ₃	H	H	CO	О	0	1
1236	2-N	3'-CH ₃	H	H	CO	O	0	1
1237	2-N	2', 3'-diCH ₃	H	H	CO	0	0	1
1238	2-N	2'-F	H	H	CO	0	0	1
1239	2-N	3'-F	H	H	CO	O	0	1
1240	2-N	2-N	H	H	CO	O	0	1
1241	2-N	3'-N	H	H	CO	O	0	1
1242	3-N	H	H	H	CO	0	0	1
1243	3-N	2'-CH ₃	H	H	CO	O	0	1
1244	3-N	3'-CH ₃	H	Н	CO	O	0	1
1245	3-N	2', 3'-diCH3	H	H	CO	O	. 0	1
1246	3-N	2'-F	H	H	CO	O	O	1
1247	3-N	3'-F	· H	H	CO	0	0	1
1248	3-N	2'-N	H	H	CO	0	0	1
1249	3-N	3'-N	H	Н	CO	0	0	ì
1250	4-N	H	Н	Н	CO	0	0	1
1251	4-N	2'-CH ₃	H	Н	CO	O	0	1
1252	4-N	3'-СН ₃	· H	Н	CO	0	0	i
1253	4-N	2', 3'-diCH ₃	H	H	CO	0	0	1
1254	4-N	2'-F	H	H	CO	O	0	1
1255	4-N	3'-F	H	H	CO	O	0	}
1256	4-N	2'-N ·	H	H	CO	O	O	1
1257	4-N	3'-N	H	H	CO	0	O	1

Table 13

WO 95/09859

 $R^{x} = H_2N$

F., M.	_R A	R ¹⁰				
Ex No.			Z		<u>u</u>	Data
1258	H	CH ₃	CO	O	0	
1259	3-CH ₃	CH ₃	CO	O	0	
1260	4-CH ₃	CH ₃	CO	O	0	
1261	2-F	СH ₃ .	CO	O	0	
1262	3-F	СН3	CO	O	0	
1263	4-F	CH ₃	CO	0	0	
1264	3-NH ₂	CH ₃	CO	0	0	•
1265	4-NH ₂	CH ₃	CO	0	0	
1266	3-NO ₂ -	CH ₃	CO	0	0	
1267	4-NO ₂	CH ₃	CO	O	0	
1268	3-N	CH ₃	CO	0	0	•
1269	4-N	CH ₃	CO	0	O	
1270	н	CH ₃	CO	\$.0	
1271	3-CH ₃	CH ₃	CO	S	0	
1272	4-CH ₃	CH ₃	CO	S	0	
1273	2-F	CH ₃	CO	S	O	
1274	3-F	CH ₃	CO	S	0	
1275	4-F	CH ₃	CO	S .	0 -	
1276	3-NH ₂	CH ₃	CO	S	0	
1277	4-NH ₂	. CH ₃	co	S	0	
	3·NO ₂	CH ₃	•			
1278	3-11-0 <u>7</u>	زالم	CO	S	0	

1279	4-NO ₂	CH ₃	CO	S	D
1280	3-N	CH ₃	CO	S	. 0
1281	4-N	CH ₃	CO	S	0
1282	H	CH(CH ₃) ₂	CO	0	0
1283	3-CH ₃	CH(CH ₃) ₂	CO	0	0
1284	4-CH ₃	CH(CH ₃) ₂	CO	O	0
1285	2-F	CH(CH ₃) ₂	CO	0	0
1286	3-F	CH(CH ₃) ₂	CO	O	0
1287	4-F	CH(CH ₃) ₂	CO	0	0
1288	3-NH ₂	CH(CH ₃) ₂	CO	0	0
1289	4-NH ₂	CH(CH ₃) ₂	CO	0	0
1290	3-NO ₂	$CH(CH_3)_2$	CO	0	0
1291	4-NO ₂	CH(CH ₃) ₂	CO	0	0
1292	3-N	$CH(CH_3)_2$	CO	0	0
1293	4-N	CH(CH ₃) ₂	CO ·	0	0
1294	H	CH(CH ₃) ₂	CO	S	0
1295	3-CH ₃	CH(CH ₃) ₂	CO	S	0
1296	4-CH ₃	CH(CH ₃) ₂ ·	CO	S	0
1297	2-F	CH(CH ₃) ₂	CO	S	0
1298	3-F	CH(CH ₃) ₂	CO	S	0
1299	4-F	CH(CH ₃) ₂	CO	S	0
1300	3-NH ₂	CH(CH ₃) ₂	. CO	\$	0
1301	4-NH ₂	CH(CH ₃) ₂	CO	S	0
1302	3-NO ₂	CH(CH ₃) ₂	CO	5	0
1303	4-NO ₂	CH(CH ₃) ₂	CO	S	0
1304	3-N	CH(CH ₃) ₂ .	CO	S	0
1305	4-N	CH(CH ₃) ₂	CO	S	0
1306	H	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
1307	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	0
1308	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	0
1309	. 2 - F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
1310	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
1311	4-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
1312	3-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
1313	4-NH ₂	$CH_2CH_2CH(CH_3)_2$	CO	0	0

1314	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
1315	4-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
1316	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
1317	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	O
1318	Н	CH ₂ CH ₂ CH(CH ₃) ₂	co	S	0
1319	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
1320	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
. 1321	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
1322	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
1323	4.F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
1324	3-NH ₂	$CH_2CH_2CH(CH_3)_2$	co	S	Ō
1325	4-NH2	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
1326	3-NO2	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
1327	4-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	O
1328	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	\$	0
1329	4-N	CH2CH2CH(CH3)2	CO	S	0
1330	H	CH ₃	CO	O	1
1331	3-CH ₃	CH ₃	CO	0	1
1332	4-CH ₃	CH ₃	CO	0	1
1333	2-F	СН ₃	CO	0	1
1334	3-F	CH ₃	CO	0	1
1335	4-F	CH ₃	CO	0	ł
1336	3-NH ₂	CH ₃	CO	0	1
1337	4-NH ₂	CH ₃	CO	0	1
1338	3-NO ₂	CH ₃	CO	O	}
1339	4-NO ₂	СН3	CO	0	1
1340	3-N	CH ₃	CO	0	1
1341	4-N	CH ₃	CO	O	1
1342	H	CH ₃	CO	S	1
1343	3-CH ₃	CH ₃	CO	S	1
1344	4-CH ₃	CH ₃	co	S	J
1345	2-F	CH ₃	CO	S	1
1346	3-F	CH ₃	CO	S	1
1347	4-F .	CH ₃	CO	S	1
1348	3-NH ₂	CH ₃	CO	S	ì

4-NH ₂	CH ₃	CO	S	1
3-NO ₂	CH ₃	CO.	S	1
4-NO ₂	CH ₃	CO	S	1
3-N	CH ₃	CO	S	1
4-N	CH ₃	CO	S	1
H	СНЗ	CO	NH	1
3-CH ₃	CH ₃	CO	NH	1
4-CH ₃	CH ₃	CO	NH	1
2-F	CH ₃	CO	NH	1
3-F	CH ₃	CO	NH	1
4-F	CH ₃	CO	NH	ı
3-NH ₂	CH ₃	CO	NH	1
4-NH ₂	CH ₃	CO	NH	1
3-NO ₂	CH ₃	CO	NH	1
4-NO ₂	CH ₃	CO	NH	3
3-N	CH ₃	CO	NH	1
4-N	CH ₃	CO	NH	1
H	CH(CH ₃) ₂ .	CO	0	1
3-CH ₃	CH(CH ₃) ₂	CO	0	1
4-CH ₃	CH(CH ₃) ₂	CO	0	1
2-F	CH(CH ₃) ₂	co	0	1
3-F	CH(CH ₃) ₂ ·	CO	0	1
4-F	 ·	CO	0	1
	•	CO	O	1
·	4	CO	0	1
		CO	0	1
4-NO ₂		CO	0	Ļ
3-N		CO	O	1
4-N		CO	0	1
H		CO	S	1
		CO	S	1
4-CH ₃		CO	S	1
2-F	CH(CH ₃) ₂	CO	S	1
3-F		CO	\$	1
4-F	CH(CH ₃) ₂	CO	S	İ
	3-NO ₂ 4-NO ₂ 3-N	3-NO ₂ CH ₃ 4-NO ₂ CH ₃ 4-NO ₂ CH ₃ 3-N CH ₃ 4-N CH ₃ 4-N CH ₃ 3-CH ₃ CH ₃ 3-CH ₃ CH ₃ 4-CH ₃ CH ₃ 3-F CH ₃ 3-F CH ₃ 3-NO ₂ CH ₃ 4-NO ₂ CH ₃ 3-N CH ₃ 4-N CH ₃ 3-N CH ₃ 4-N CH ₃ 4-N CH ₃ 2-F CH(CH ₃) ₂ 3-CH ₃ CH(CH ₃) ₂ 3-F CH(CH ₃) ₂ 3-F CH(CH ₃) ₂ 3-F CH(CH ₃) ₂ 4-F CH(CH ₃) ₂ 3-N CH(CH ₃) ₂ 4-P CH(CH ₃) ₂ 3-NO ₂ CH(CH ₃) ₂ 3-N CH(CH ₃) ₂ 3-CH ₃ CH(CH ₃) ₂ 3-F CH(CH ₃) ₂	3-NO ₂ CH ₃ CO 4-NO ₂ CH ₃ CO 3-N CH ₃ CO 4-N CH ₃ CO 4-N CH ₃ CO H CH ₃ CO 3-CH ₃ CH ₃ CO 4-CH ₃ CH ₃ CO 4-CH ₃ CH ₃ CO 3-CH ₃ CH ₃ CO 4-CH ₃ CH ₃ CO 3-F CH ₃ CO 4-F CH ₃ CO 4-NH ₂ CH ₃ CO 3-NO ₂ CH ₃ CO 4-NO ₂ CH ₃ CO 4-N CH ₃ CO 4-CH ₃ CH(CH ₃) ₂ CO 4-CH ₃ CH(CH ₃) ₂ CO 4-CH ₃ CH(CH ₃) ₂ CO 4-NC ₂ CH(CH ₃) ₂ CO 4-NC ₃ CH(CH ₃) ₂ CO 4-NC ₄ CH(CH ₃) ₂ CO 4-CH ₃ CH(CH ₃) ₂ CO	3-NO ₂ CH ₃ CO S 4-NO ₂ CH ₃ CO S 3-N CH ₃ CO S 4-N CH ₃ CO NH 3-CH ₃ CO NH 3-CH ₃ CO NH 4-CH ₃ CO NH 2-F CH ₃ CO NH 3-F CH ₃ CO NH 4-F CH ₃ CO NH 3-NH ₂ CH ₃ CO NH 3-NO ₂ CH ₃ CO NH 4-NO ₂ CH ₃ CO NH 4-NO ₂ CH ₃ CO NH 4-N CH ₃ CO NH 4-CH ₃ CH(CH ₃) ₂ CO O 3-CH ₃ CH(CH ₃) ₂ CO O 4-CH ₃ CH(CH ₃) ₂ CO O 4-CH ₃ CH(CH ₃) ₂ CO O 3-NH ₂ CH(CH ₃) ₂ CO O 4-F CH(CH ₃) ₂ CO O 3-NH ₂ CH(CH ₃) ₂ CO O 4-NO ₂ CH(CH ₃) ₂ CO O 3-NO ₂ CH(CH ₃) ₂ CO O 4-NO ₂ CH(CH ₃) ₂ CO O 3-NO ₂ CH(CH ₃) ₂ CO O 4-NO ₂ CH(CH ₃) ₂ CO O 3-NO ₂ CH(CH ₃) ₂ CO O 4-NO ₂ CH(CH ₃) ₂ CO O 3-NO ₂ CH(CH ₃) ₂ CO O 4-NO ₂ CH(CH ₃) ₂ CO O 5-CH ₃ CH(CH ₃) ₂ CO S 3-CH ₃ CH(CH ₃) ₂ CO S 3-F CH(CH ₃) ₂ CO S 3-F CH(CH ₃) ₂ CO S

1384	3-NH ₂	CH(CH ₃) ₂	CO	S	1
1385	4-NH ₂	CH(CH ₃) ₂	CO	S	1
1386	3-NO ₂	CH(CH ₃) ₂	CO	S	1
1387	4-NO ₂	CH(CH ₃) ₂	CO	S	1
1388	3-N	CH(CH ₃) ₂	CO	S	1
1389	4-N	CH(CH ₃) ₂	CO	S	1
1390	H	CH(CH ₃) ₂	CO	NH	1
1391	3-CH ₃	CH(CH ₃) ₂	CO	NH	1
1392	4-CH ₃	CH(CH ₃) ₂	CO	NH	1
1393	2-F	CH(CH ₃) ₂	СО	NH	1
1394	3-F	CH(CH ₃) ₂	CO	NH	1
1395	4-F	CH(CH ₃) ₂	CO	NH	1
,1396	3-NH ₂	CH(CH ₃) ₂	CO	NH	1
1397	4-NH ₂	CH(CH ₃) ₂	СО	NH:	3
1398	3-NO ₂	CH(CH ₃) ₂	co	МH	1
1399	4-NO ₂	CH(CH ₃) ₂	CO	NH	1
1400	3-N	CH(CH ₃) ₂	CO	NH	1
1401	4-N	CH(CH ₃) ₂ ·	CO	NH	1
1402	H	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1
1403	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	1
1404	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1
1405	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1
1406	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1
1407	4-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1
1408	3-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	1
1409	4-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1
1410	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	ı
1411	4-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1
1412	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1
1413	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1
1414	H	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1
1415	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1.
1416	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	\$. 1
1417	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	. 1
1418	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1

1419	4-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1
1420	3-NH ₂	$CH_2CH_2CH(CH_3)_2$	CO	\$	1
1421	4-NH ₂	CH2CH2CH(CH3)2	CO	S	1
1422	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1
1423	4-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1
1424	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1
1425	4-N	CH2CH2CH(CH3)2	CO	S .	1
1426	H	CH2CH2CH(CH3)2	CO	ИН	1
1427	3-CH ₃	CH2CH2CH(CH3)2	CO	NH	1
1428	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1429	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1430	3-F	CH2CH2CH(CH3)2	CO	NH	1
1431	4-F	CH2CH2CH(CH3)2	CO	NH	1
1432	3-NH2	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH-	1
1433	4-NH2	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1434	3-NO ₂	CH2CH2CH(CH3)2	co	NH	1
1435	4-NO2	CH ₂ CH ₂ CH(CH ₃) ₂	co	NH	1
1436	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1437	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1438	H	CH ₂ NH(CH ₃)	CO	0	}
1439	Н	CH2N(CH3)CO2C(CH3)3	CO	O	}

TABLE 14

$$\begin{array}{c|c}
R^{X} & NH \\
R^{X} & NH \\
O & NH \\
O & CH_{3}
\end{array}$$

$$\begin{array}{c|c}
H^{A} & O & CH_{3}
\end{array}$$

$$\begin{array}{c|c}
A & -2 & -2 & -2 & -2 \\
4 & -3 & -2 & -2 & -2 & -2 \\
5 & 6 & CH_{2})_{U} - V^{M}$$

5-

 $R^{x} = H_{2}N$

					•	•
Ex No.	RA	R10	Z	ν	U	Data
1440	H	CH ₃	CO	0	. 0	
1441	3-CH ₃	CH ₃	CO	0	0	
1442	4-CH ₃	CH ₃	CO	0	0	
1443	2-F	CH ₃	CO	o	0	
1444	3-F	CH ₃	CO	0	0	
1445	4-F	СН3	CO	0	0	
1446	3-NH ₂	CH ₃	CO	0	0	
1447	4-NH2	CH ₃	CO	O	0	
1448	3-NO ₂	CH ₃	CO	0	0	
1449	4-NO2	CH ₃	CO	0	0	
1450	3-N	CH ₃	CO	0	0	
1451	4-N	CH ₃	CO	0	0	•
1452	·H	CH ₃	ĊO	S	Ü	
1453	3-CH ₃	CH ₃	co	S	0	
1454	4-CH ₃	CH ₃ .	CO	S	0	
1455	2-F	CH ₃	CO	S	0	
1456	3-F	CH ₃	CO	S	0	
1457	4-F	CH ₃	co	S	0	
1458	3-NH2	CH ₃	CO	S	0	
1459	4-NH2 -	CH ₃	co	S	0	
1460	3-NO ₂	CH ₃	CO	S	0	
1461	4-NO ₂	СH ₃	CO	S	0	
1462	3-1	CH ₃	CO	S	O	
1463	4-N	CH ₃	CO	. S	0	•
1464	H	СH(CH ₃) ₂	CO	0	0	
1465	3-CH ₃	CH(CH ₃) ₂	CO	0	0	
1466	4-CH ₃	CH(CH ₃) ₂	CO	O	0	
1467	2-F	$CH(CH_3)_2$	CO	0	0	
1468	3-F	CH(CH ₃) ₂	CO	0	0	
1469	4-F	СH(СH ₃) ₂	CO	0	0	
1470	3-NH ₂	CH(CH ₃) ₂	co	0	0	
1471	4-NH ₂	CH(CH ₃) ₂	CO	O	0	

1472	3-NO ₂	CH(CH ₃) ₂	CO	0	0
1473	4-NO ₂	CH(CH ₃) ₂	co	0	0
1474	3-N	CH(CH ₃) ₂	CO	0	0
1475	4-N	CH(CH ₃) ₂	CO	0	0
1476	H	CH(CH ₃) ₂	CO	S	0
1477	3-CH ₃	CH(CH ₃) ₂	CO	S	0
1478	4-CH ₃	CH(CH ₃) ₂	CO	S .	0
1479	2-F	CH(CH ₃) ₂	CO	S	0
1480	3.F	CH(CH ₃) ₂	CO	S	0
1481	4-F	CH(CH ₃) ₂	CO	S	0
1482	3-NH ₂	CH(CH ₃) ₂	CO	S	0
1483	4-NH ₂	CH(CH ₃) ₂	CO	S	0
1484	3-NO ₂	СH(СH ₃) ₂	CO	s	0
1485	4-NO ₂	СH(СH ₃) ₂	co	S	0
1486	3-N	CH(CH ₃) ₂	CO	S	O
1487	4-N	CH(CH ₃) ₂	CO	S	0
1488	H	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
1489	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	O
1490	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
1491	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	0
1492	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	co	0	0
1493	4-F	$CH_2CH_2CH(CH_3)_2$	CO	0	O
1494	3-NH ₂	$CH_2CH_2CH(CH_3)_2$	CO	O	Ð
1495	4-NH2	$CH_2CH_2CH(CH_3)_2$	CO	O	U
1496	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	0
1497	4-NO2	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	0
1498	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	co	O	0
1499	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO-	0	0
1500	H	$CH_2CH_2CH(CH_3)_2$	CÓ	S	0
1501	3-CH ₃	СH ₂ CH ₂ CH(СH ₃) ₂	CO	S	0
1502	4-CH ₃	$CH_2CH_2CH(CH_3)_2$	CO	S	0
1503	2-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
1504	3-F	$CH_2CH_2CH(CH_3)_2$	CO	S	0
1505	4-F	CH2CH2CH(CH3)2	CO	S	0
1506	3-NH2	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0

		•			
1507	4-NH ₂	$CH_2CH_2CH(CH_3)_2$	CO	\$	0
1508	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
1509	4-NO ₂	$CH_2CH_2CH(CH_3)_2$	CO	S	. 0
1510	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	0
1511	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	\$	0
1512	H	СН3	CO	Ó	1
1513	3-CH ₃	CH ₃	CO	O _.	1
1514	4-CH ₃	CH ₃	CO	0	1
1515	2-F	CH ₃	CO	O	1
1516	3-F	. СH ₃	CO	0	1
1517	4-F	CH ₃	CO	O	1
1518	3-NH ₂	CH ₃	CO	0	1
1519	4-NH ₂	CH ₃	CO	0	1
1520	3-NO ₂	CH ₃	· co	0	1
1521	4-NO ₂	CH ₃	CO	0	1
1522	3-N	CH ₃	CO	0	1
1523	4-N	CH ₃	CO	0	1
1524	H	CH ₃	CO	S	1
1525	3-CH ₃	CH ₃	CO	S	1
1526	4-CH ₃	CH ₃	CO	S	1
1527	2-F	CH ₃	CO	S	1
1528	3-F	CH ₃	CO	S	1
1529	4-F	CH ₃	CO	S	1
1530	3-NH ₂	CH ₃	CO	\$	1
1531	4-NH ₂	CH ₃	CO	S	1
1532	$3-NO_2$	CH ₃	CO	S	1
1533	154-NO ₂	CH ₃	CO	S	i
1534	3-N	CH ₃	CO	S	1
1535	4-N	CH ₃	CO	S	1
1536	H	CH ₃	CO	NH	t
1537	3-CH ₃	CH ₃	CO.	NH	1
1538	4-CH ₃	CH ₃	CO	ИН	1
1539	2-F	CH ₃	CO	NH	1
1540	3-F .	CH ₃ .	CO	NH	1
1541	4-F .	CH ₃	ÇQ	NH	1

1542	3-NH ₂	CH ₃	CO	NH	1
1543	4-NH2	CH ₃	CO	NH	1
1544	3-NO ₂	CH ₃	CO	NH	. 1
1545	4-NO ₂	CH ₃	CO	NH	1
1546	3-N	CH ₃	CO	NH	3
1547	4-N	CH ₃	CO	NH (1
1548	н	CH(CH ₃) ₂	CO	O	1
1549	3-CH ₃	CH(CH ₃) ₂	CO	0	1
1550	4-CH ₃	$CH(CH_3)_2$	CO	O	1
1551	2-F	CH(CH ₃) ₂	CO	O	1
1552	3-F	CH(CH ₃) ₂	CO	O	1
1553	4-F	CH(CH ₃) ₂	CO	O	1
1554	3-NH ₂	CH(CH ₃) ₂	CO	O	1
1555	4-NH2	CH(CH ₃) ₂	CO	O	1
1556	3-NO ₂	CH(CH ₃) ₂	CO	O	i
1557	4-NO ₂	CH(CH ₃) ₂	CO	Ο	1
1558	3-N	$CH(CH_3)_2$	CO	0	1
1559	4-N	CH(CH ₃) ₂ ·	CO	O	1.
1560	H	CH(CH ₃) ₂	CO	S	1
1561	3-CH ₃	CH(CH ₃) ₂	CO	S	1
1562	4-CH3	CH(CH ₃) ₂	CO	S	1
1563	2-F	CH(CH ₃) ₂	CO	S	I
1564	3-F	CH(CH ₃) ₂	CO	S	ì
1565	4-F	CH(CH ₃) ₂	CO	S	1
1566	3-NH ₂	CH(CH ₃) ₂	CO	S	1
1567	4-NH ₂	CH(CH ₃) ₂	CO	S	1
1568	3-NO ₂	CH(CH ₃) ₂	CO	S	1
1569	4-NO ₂	CH(CH ₃) ₂	CO	S	1
1570	3-N	CH(CH ₃) ₂	CO	S	1
1571	4-N	CH(CH ₃) ₂	CO	S	1
1572	H	CH(CH ₃) ₂	CO	NH	1
1573	3-CH ₃	CH(CH ₃) ₂	CO	NH	1
1574	4-CH ₃	CH(CH ₃) ₂	CO	NH	3
1575	2-F		CO	NH	1
1576	3-F	CH(CH ₃) ₂	CO	NH	1

	1577	4-F	CH(CH ₃) ₂	c o .	NH	1					
	1578	$3-NH_2$	CH(CH ₃) ₂	CO	NH	1					
	1579	4-NH2	CH(CH ₃) ₂	CO	NH	1					
	1580	3-NO ₂	CH(CH ₃) ₂	co	NH	1					
	1581	4-NO ₂	CH(CH ₃) ₂	CO	NH		•			*	
	1582	3-N	CH(CH ₃) ₂	CO	NH	1					
	1583	4-N	CH(CH ₃) ₂	CO	NH	1				•	
	1584	H	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1					
	1585	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1					
	1586	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	co	O	1					
	1587	2-F	СH ₂ CH ₂ CH(CH ₃) ₂	CO	0	3					
	1588	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1					
	1589	4-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1					
•	1590	3-NH2	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1				,	
	1591	4-NH2	$CH_2CH_2CH(CH_3)_2$	CO	О	1				· (
	1592	3-NO2	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1	•				
	1593	4-NO2	CH2CH2CH(CH3)2	co	0	3				-	
	1594	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	0	1					
	1595	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	O	1					
	1596	H	CH ₂ CH ₂ CH(CH ₃) ₂	co	S	1				·	r
	1597	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	co	S	1					
	1598	4-CH ₃	$CH_2CH_2CH(CH_3)_2$	CO	S	1					
	1599	2-F	CH2CH2CH(CH3)2	CO	S	1					
	1600	3-F	$CH_2CH_2CH(CH_3)_2$	CO	S	1					
	1601	4-F	$CH_2CH_2CH(CH_3)_2$	CO	S	1					
	1602	3-NH ₂	$CH_2CH_2CH(CH_3)_2$	CO	S	1					
	1603	4-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1					
	1604	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1					
	1605	4-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1				(.	
	1606	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1		•			
	1607	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	S	1				•	
	1608	Н	CH ₂ CH ₂ CH(CH ₃) ₂	co	NH	1					
	1609	3-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1			•	•	
	1610	4-CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1					
	1611	2-F	CH2CH2CH(CH3)2	CO	NH	}		•			

•

1612	3-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	3
1613	4-F	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1614	3-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1615	4-NH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1616	3-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1617	4-NO ₂	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1618	3-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1619	4-N	CH ₂ CH ₂ CH(CH ₃) ₂	CO	NH	1
1620	Н	CH ₂ NH(CH ₃)	CO	O	1
1621	H	CH ₂ N(CH ₃)CO ₂ C(CH ₃) ₃	CO	O	1

Table 15

 $R^{x} = H_2N, Z=C(=0)$

Ex No.	R ³	_R 10	Data
1622	CH ₃	СН3	
1623	(H ₃ C) ₃ C	CH ₃	·
1624	C H2	CH ₃	

5

Table 16

 $R^{\times} = H_2N, Z=C (=0)$

Ex No.	R ³	R10	Data
1630	CH ₃	СН3	
1631	(H ₃ C) ₃ C	CH ₃	_

Table 17

$$H_2N$$
 S
 O
 NH
 NH
 $N+Z-R^{10}$
 R^3-O

5

RR

_	Ex No.	R ³	R11	R ¹⁰	Z	Data
	1638	H	Н	CH ₂ Ph	C(O)O	NN
	1639	PhCH ₂	Н	C(CH ₃) ₃	C(O)O	00
	1640	PhCH ₂	H	CH ₃	CO	PP
	1641	PhCH ₂	H	CH ₂ Ph	C(O)O	QQ

Table 18

 R^3 R¹¹ R¹⁰ Ex No. Z Data 1642 single bond CH_2CH_2Ph CO

TABLE 19

5

Ex No.	R ³	R ¹⁰	Z	Rx	Data
1643	CH ₂ Ph	CH ₂ CH ₂ Ph	co	NHCH ₃	SS
1644	CH ₂ Ph	CH ₂ CH ₂ Ph	CO	H	TT

Table 20

5

Ex No.	R ³	R10	Z	R×	Data	_
1645	CH ₂ Ph	CH ₂ CH ₂ Ph	CO	NHCH ₃	טט	
1646	CH ₂ Ph	CH ₂ CH ₂ Ph	CO	. H	W	

10 DATA

A HRMS Calcd for $C_{29}H_{42}BN_3O_6$: 540.3245. Found:

540.3248.

B HRMS Calcd for $C_{30}H_{44}BN_3O_6$: 554.3401. Found:

15 554.3404.

C HRMS Calcd for $C_{31}H_{47}BN_3O_6$: 568.3558. Found:

568,3558.

D HRMS Calcd for $C_{29}H_{42}BN_3O_6$: 540.3245. Found:

540.3248.

20 E HRMS Calcd for $C_{33}H_{51}BN_3O_6$: 596.3871. Found:

596.3870.

```
F HRMS Calcd for C33H51BN3O6: 596.3871. Found:
             596.3857.
      G HRMS Calcd for C_{36}H_{48}BN_3O_6: 630.3714. Found:
             630.3709.
      H HRMS Calcd for C<sub>30</sub>H<sub>44</sub>BN<sub>3</sub>O<sub>7</sub>: 570.3351. Found:
  5
            570.3353.
      I LRMS Calcd for C<sub>30</sub>H<sub>45</sub>BN<sub>3</sub>O<sub>8</sub>S: 618.3. Found: 618.4.
      J HRMS Calcd for C31H46BFN3O6: 586.3464. Found:
            586.3456.
    K HRMS Calcd for C_{30}H_{46}BN_4O_6: 569.3510. Found:
 10
            569.3501.
      L HRMS Calcd for C38H52BN3O6: 658.4027. Found:
            65B.4036.
     M HRMS Calcd for C28H39BN3O5 (ethylene glycol ester):
            508.2983. Found: 508.2999.
15
     N HRMS Calcd for C27H39BN3O5 (ethylene glycol ester):
            522.3139. Found: 522.3123.
     O LRMS Calcd for C26H36BFN3O5 (ethylene glycol ester):
            526. Found: 526.
20 P HRMS Calcd for C35H49BN3O4S: 618,3537. Found:
            618.3537.
     Q HRMS Calcd for C_{36}H_{51}BN_3O_5: 616.3922. Found:
            616.3910.
     R HRMS Calcd for C<sub>37</sub>H<sub>53</sub>BN<sub>3</sub>O<sub>5</sub>: 630.4078. Found:
25
            630.4060.
     S HRMS Calcd for C_{35}H_{50}BN_4O_5: 617.3874. Found:
           617.3876.
     T LRMS Calcd for C_{36}H_{50}BFN_3O_5: 634. Found: 634.5.
     U LRMS Calcd for C_{36}H_{52}BN_4O_5: 631. Found: 631.3.
    V HRMS Calcd for C<sub>37</sub>H<sub>53</sub>BN<sub>3</sub>O<sub>5</sub>: 630.4078. Found:
.30
           630.4071.
     W HRMS Calcd for C_{36}H_{48}BN_3O_6: 618.3714. Found:
           618.3713.
     X HRMS Calcd for C_{36}H_{51}BN_3O_6: 632.3871. Found:
```

35

632.3857.

Y LRMS Calcd for $C_{36}H_{51}BN_4O_4$: 615. Found: 615.5. Z HRMS Calcd for $C_{29}H_{44}BN_4O_5$: 526.3452. Found: 526.3460.

AA HRMS Calcd for $C_{30}H_{46}BN_3O_5$: 540.3609. Found:

5 540.3604.

- BB HRMS Calcd for $C_{30}H_{47}BN_3O_5$: 540.3609. Found: 540.3620.
- CC HRMS Calcd for $C_{31}H_{49}BN_3O_5$: 554.3765. Found: 554.3769.
- 10 DD HRMS Calcd for C₃₃H₅₃BN₄O₇: 582.4078. Found: 582.4071.
 - EE HRMS Calcd for $C_{30}H_{48}BN_4O_5$: 555.3718. Found: 555.3735.
 - FF HRMS Calcd for C35H56BN4O7: 655.4242. Found:

15 655.4234.

- GG HRMS Calcd for $C_{26}H_{47}BN_3O_5$: 492.3609. Found: 492.3600.
- HH HRMS Calcd for $C_{33}H_{47}BN_3O_5$: 576.3609. Found: 576.3593.
- 20 II HRMS Calcd for C₃₃H₅₃BN₃O₅: 582.4078. Found: 582.4092.
 - JJ HRMS Calcd for $C_{40}H_{53}BN_3O_5$: 666.4078. Found: 666.4089.
- KK LRMS Calcd for $C_{26}H_{36}BFN_5O_5$: 528.3. Found: 528.3.
- 25 LL HRMS Calcd for $C_{36}H_{51}BN_{5}O_{5}$: 644.3983. Found: 644.3977.
 - MM LRMS Calcd for $C_{36}H_{50}BFN_5O_5$: 662. Found: 662.
 - NN HRMS Calcd for $C_{28}H_{42}BN_4O_6S$: 573.2918. Found: 573.2919.
- 30 OO HRMS Calcd for $C_{32}H_{50}BN_4O_6S$: 629.3544. Found: 629.3524.
 - PP HRMS Calcd for $C_{29}H_{42}BN_3O_5S$: 571.3126. Found: 571.3138.
- QQ HRMS Calcd for $C_{35}H_{48}BN_4O_6S$: 663.3388. Found: 663.3374.

RR HRMS Calcd for $C_{29}H_{43}BN_3O_5$: 524,3300. Found: 524.3305.

SS LRMS Calcd for C37H53BN5O5: 653. Found: 658

FT LRMS Calcd for C36H50BN4O5: 629. Found: 629

UU LRMS Calcd for C27H39BN5O5: 524, Found: 524

VV LRMS Calcd for C26H36BN4O5: 495. Found: 495

WW HRMS Calcd for C₃₅H₄₈BFN₃O₆: 636.3620. Found: 636.3612.

Utility

•

10

15

20

25

30

35

The compounds of formula (I) are useful as inhibitors of serine proteases and notably human thrombin, plasma kallikrein and plasmin. Because of their inhibitory action, these compounds are indicated for use in the prevention or treatment of physiological reactions, blood coagulation and inflammation, catalyzed by the aforesaid class of enzymes.

Inhibition constants were determined by the method described by Kettner et al. in J. Biol. Chem. 265, 18289-18297 (1990); herein incorporated by reference. In these assays, thrombin-mediated hydrolysis of the chromogenic substrate S2238 (Helena Laboratories, Beaumont, TX)- was monitored spectrophotometrically. Addition of an inhibitor to the assay mixture results in decreased absorbance and is indicative of thrombin inhibition. Human thrombin (Enzyme Research Laboratories, Inc., South Bend, IN) at a concentration of 0.2 nM in 0.10 M sodium phosphate buffer, pH 7.5, 0.20 M NaCl, and 0.5% polyethylene glycol 6000, was incubated with various substrate concentrations ranging from 0.20 to 0.02 mM. After 25 to 30 minutes of incubation, thrombin activity was assayed by monitoring the rate of increase in absorbance at 405 nm which arises owing to substrate hydrolysis. Inhibition constants were derived from reciprocal plots of the

reaction velocity as a function of substrate concentration using the standard method of Lineweaver and Burk.

Using the methodology described above, representative compounds of this invention were evaluated and found to exhibit a K_i of less than 1 mM, thereby confirming the utility of the compounds of the invention as effective thrombin inhibitors.

Ţ

The ability of the compounds to inhibit coagulation

was assayed in normal rabbit plasma which was prepared
by diluting blood 1:10 with 3.2% aqueous citric acid
followed by centrifugation. Bovine thrombin was
obtained from Sigma and diluted to 24 NIH units/mL.

Plasma (0.2 mL) and buffer (0.05 mL, 0.10 M

Tris[hydroxymethyl]-aminomethane hydrochloride, pH 7.4,
0.9% (w/v) sodium chloride, and 2.5 mg/mL bovine serum
albumin) containing inhibitor were incubated 3 min at 37

C in a fibrameter. Reactions were initiated by adding
thrombin (0.05 mL) to achieve a final concentration of 4.

NIH units/mL. The effectiveness of compounds as anticoagulants is reported as the level of inhibitor required to prolong clotting to that observed for 2 NIH units/mL of thrombin in the absence of inhibitor. In this assay then, better inhibitors require lower concentrations to delay clot formation. Representative compounds of this invention were evaluated and found to

be active.

30

35

Since the compounds of formula (I) have antithrombogenic properties, they may be employed when an
anti-thrombogenic agent is indicated, such as for the
control of the coagulation of the fibrinolysis system
in mammals or they may be added to blood for the
purpose of preventing coagulation of the blood due to
contact with blood collecting or distribution
containers, tubing or apparatus.

Generally, these compounds may be administered orally, parenterally or intravenously to a host to obtain an anti-thrombogenic effect. The dosage of the active compound depends on the mammalian species, body weight, age, and mode of administration as determined by one skilled in the art. In the case of large mammals such as humans, the compounds may be administered alone or in combination with pharmaceutical carriers or diluents at a dose of from 0.02 to 15 mg/kg to obtain the anti-thrombogenic 10 effect, and may be given as a single dose or in divided doses or as a sustained release formulation. Pharmaceutical carriers or diluents are well known and include sugars, starches and water, which may be used to make tablets, capsules, injectable solutions or the like which can serve as suitable dosage forms for administration of the compounds of this invention. Remington's Pharmaceutical Sciences, A. Osol, is a standard reference text which discloses suitable pharmaceutical carriers and dosage forms. The 20 disclosure of this text is hereby incorporated by reference for a more complete teaching of suitable dosage forms for administration of the compounds of this invention.

WHAT IS CLAIMED IS:

1. A compound of formula (I):

5

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

10

 R^1 is

a)
$$-(C_1-C_{12} \text{ alkyl})-X$$
, or

b)
$$-(C_2-C_{12} \text{ alkenyl})-X$$
, or

c)

15

X is

b) -CN,

20 c) $-NO_2$,

d) -CF₃,

e) $-S(0)_{p}R^{2}$,

f} -NHR²,

g) $-NHS(0)_pR^2$,

25 h) -NHC (=NH) H,

```
i) -NHC (=NH) NHOH,
               j) -NHC (=NH) NHCN,
               k) -NHC (=NH) NHR<sup>2</sup>,
               1) -NHC (=NH) NHC (=O) R^2,
  5
              m) -C (=NH) H,
              n) - C (= NH) NHR<sup>2</sup>,
              o) -C (=NH) NHC (=O) R^2,
              p) -C (=0) NHR<sup>2</sup>,
              g) -C (=0) NHC (=0) R^2,
              r) -C (=0) OR^2,
 10
              s) - OR^2,
              t) -0C (=0) R^2,
              u) -OC (=0) OR^2,
              v) -OC (=0) NHR<sup>2</sup>,
              w) -OC (=0) NHC (=0) R^2,
 15
              x) -SC (=NH) NHR<sup>2</sup>;
       \mathbb{R}^2 is
              a) hydrogen,
20
             b) -CF.3
              c) C<sub>1</sub>-C<sub>4</sub> alkyl,
             d) -(CH_2)_q-aryl;
      \ensuremath{\mathbb{R}}^3 and \ensuremath{\mathbb{R}}^{10} are independently selected at each occurrence
25
              from the group consisting of:
              a) hydrogen,
             b) halogen,
              c) - (CR^6R^7)_tW(CR^8R^9)_u-R^9,
             d) -(CR^6R^7)_tW(CR^8R^9)_u-aryl,
             e) -(CR^6R^7)_tW(CR^8R^9)_u-heteroaryl,
30
             f) -(CR^6R^7)_tW(CR^8R^9)_u-heterocycle,
             g) -(CR^6R^7)_tW(CR^8R^9)_u-adamantyl,
             h) -(CR^6R^7)_tW(CR^8R^9)_u(C_5-C_7)cycloalkyl,
```

i}

n)

5 0)

p)

10

r)

g)

15

R3 and R10 when taken together form a ring such as:

```
a) -(CR^6R^7)_{\pm}(CR^8R^9)_{\mu}-W-(CR^8R^9)_{\mu}(CR^6R^7)_{\pm};
           b) -(CR^6R^7)_tW(CR^8R^9)_u-aryl-(CR^8R^9)_uW(CR^6R^7)_t-;
           c) -(CR^6R^7)_tW(CR^8R^9)_u-heteroaryl-(CR^8R^9)_uW(CR^6R^7)_t-;
           d) -(CR^6R^7)_tW(CR^8R^9)_u-heterocycle-(CR^8R^9)_uW(CR^6R^7)_t-;
 5
           e) -(CR^{6}R^{7})_{t}W(CR^{8}R^{9})_{u}-W-(CR^{8}R^{9})_{u}W(CR^{6}R^{7})_{t}-;
     R4 and R5 are independently selected at each occurrence
           from the group consisting of:
                  a) hydrogen,
10
                  b) C1-C4 alkyl,
                  c) C1-C4 alkoxy,
                  d) C5-C7 cycloalkyl,
                  e) phenyl,
                  f) benzyl;
15
     R^6, R^7, R^8 and R^9 are independently selected at each
           occurrence from the group consisting of:
                  a) hydrogen,
                  b) C1-C6 alkyl,
20
                  c) C<sub>1</sub>-C<sub>6</sub> alkoxy,
                  d) C3-C8 cycloalkyl,
                  e) aryl,
                  f) heterocycle,
                  q) heteroaryl,
                  h) -W-aryl,
                  i) -(CH_2)_{\omega}C(=0)OR^4,
                  j) R<sup>6</sup> or R<sup>7</sup> can alternatively be taken
                        together with R6 or R7 on an adjacent
                         carbon atom to form a direct bond,
30
                         thereby to form a double or triple bond
                         between said carbons, or
                  k) R<sup>B</sup> or R<sup>9</sup> can alternatively be taken
                       together with R8 or R9 on an adjacent
                         carbon atom to form a direct bond,
35
```

thereby to form a double or triple bond between said carbons;

```
R^{11} is
             a) hydrogen,
 5
             b) C_1-C_4 alkyl,
             c) C<sub>1</sub>-C<sub>4</sub> thioalkyl,
             d) - (CR^6R^7)_tW(CR^8R^9)_u-aryl,
             e) - (CR^6R^7)_tW(CR^6R^9)_u-heteroaryl,
             f) -(CR^6R^7)_tW(CR^8R^9)_u-heterocycle, or
10
             g) - (CR^6R^7)_tW(CR^8R^9)_u-R^9;
      R11 and V, when taken together, can also be:
             a) keto,
15
             b) = NR^{10},
             c) = C[(CR^6R^7)_tW(CR^8R^9)_uR^2]_2, or
             d) -(CR^{6}R^{7})_{t}W(CR^{8}R^{9})_{u}-W-(CR^{6}R^{7})_{t}W(CR^{8}R^{9})_{u}-
      A is
             a) -BY^1Y^2
20
             b) -C (=0) CF_3,
             c) -C (=0) CF_2 CF_3,
             d) -PO_3H_2
             d) -C (=0) H,
             e) -C(=O)-l-piperdinyl,
25
             f) -C (=0) CH_2OCH_2CF_3,
             g) CH<sub>2</sub>Cl
             h) SO<sub>2</sub>F;
    Y^1 and Y^2 are
30
             a) -OH,
            b) -F,
```

c) $-NR^4R^5$ -,

d) $-C_1-C_8$ alkoxy, or;

when taken together Y^1 and Y^2 form:

e) a cyclic boron ester where said chain or ring contains from Z to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O,

- f) a cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O,
- g) a cyclic boron amide-ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O;

W can be independently selected at each occurence from the group consisting of:

a)
$$-(CH_2)_x-$$
,

c)
$$-C (=0) 0-$$
,

d)
$$-C (=0) NR^{4}-$$
,

f)
$$-OC(=O)-,$$

h).
$$-0C (=0) NR^{4}$$
-,

$$i)$$
 -NR⁴-,

25.
$$j) -NR^4C (=0) -,$$

k)
$$-NR^4C(=0)0-$$
,

1)
$$-NR^4C (=0) NR^5-$$
,

m)
$$-NR^4S(0)_{p}$$

n)
$$-S(0)_{p}$$
-,

30 o)
$$-S(0)_{p}O-$$
,

ł

p)
$$-S(0)_{p}NR^{4-}$$
,

q)
$$-S(0)_pNR^4C(=0)-$$
,

r)
$$-S(O)_{p}NR^{4}C(=O)NR^{5}-;$$

35 V is selected from the group consisting of: a) $-(CH_2)_{x}$ -,

```
b) -(CH_2)_xC(=0)_-
                c) -(CH_2)_{H}C(=0)_{O-r}
                d) -C (=0) (CH<sub>2</sub>)_x^-,
                e) -0-(CH<sub>2</sub>)<sub>x</sub>-,
                f) -O(CH_2)_xC(=0)-,
                g) -0(CH_2)_{x}C(=0)O-,
                h) -0 (CH<sub>2</sub>) _{x}C (=0) NR<sup>4</sup>-,
                i) -0(CH<sub>2</sub>)<sub>x</sub>S(0)<sub>p</sub>-,
                j) - (CH_2)_x S(0)_p - 
                k) - (CH<sub>2</sub>)<sub>x</sub>S (O)<sub>p</sub>O-,
10
                1) -(CH_2)_xS(0)_pNR^4-,
                m) - (CH<sub>2</sub>)<sub>x</sub>S(O)<sub>p</sub>NR<sup>4</sup>C(=O)-,
                n) - (CH_2)_x S(O)_p NR^4C(=O) NR^5-,
               o) -(CH<sub>2</sub>)<sub>x</sub>NR<sup>4</sup>-,
               p) -(CH_2)_xNR^4C(=0)-,
15
                q) - (CH<sub>2</sub>)_xNR<sup>4</sup>C (=0) O-,
                r) -(CH_2)_{x}NR^{4}C(=0)NR^{5}-,
                s) -(CH_2)_xNR^4S(O)_p-;
       Z is selected from the group consisiting of:
20
               a) - (CH_2)_x -,
               b) -(CH_2)_xC(=0)_{-1}
               c) -C (=0) (CH<sub>2</sub>)<sub>x</sub>-,
               d) -(CH_2)_xC(=0)_{0-}
               e) -(CH_2)_{\chi}C(=0)NR^{4}-,
25
               f) - (CH_2)_{x}NR^{4}-,
               g) -(CH_2)_xNR^4C(=0)-,
               h) -(CH_2)_xNR^4C(=0)O-,
               i) -(CH_2)_xNR^4C (=0)NR^5-,
               j) - (CH_2)_x NR^4 S(O)_p - ,
30
               k) -(CH_2)_xS(O)_p^-,
               1) -(CH_2)_xS(O)_pNR^4-,
      m can be 0 to 4;
```

122

n can be 0 to 4;

p can be 0 to 2

5 q can be 0 to 4;

ţ

1

į

r, s, t, u, and v are independently selected at each occurrence from 0 to 6,

10 w and x are independently selected at each occurence from 0 to 4;

with the following provisos:

- 15 (a) when V is $(CH_2)_{\times}$, × cannot be 0 when R^3 is hydrogen;
 - (b) when Z is $-(CH_2)_xC(=0)$ and $-C(=0)(CH_2)_x$ and x is C, R^{10} cannot be halogen;

wherein aryl is defined as phenyl, fluorenyl, biphenyl and naphthyl, which may be unsubstituted or include optional substitution with one to three substituents;

- heteroaryl is 2-, or 3-, or 4-pyridyl; 2-or 3-furyl; 2or 3-benzofuranyl; 2-, or 3-thiophenyl; 2- or 3benzo[b]thiophenyl; 2-, or 3-, or 4-quinolinyl; 1-, or 3-, or 4-isoquinolinyl; 2- or 3-pyrrolyl; 1- or 2- or 3indolyl; 2-, or 4-, or 5-oxazolyl; 2-benzoxazolyl; 2-
- or 4- or 5-imidazolyl; 1- or 2- benzimidazolyl; 2- or 4or 5-thiazolyl; 2-benzothiazolyl; 3- or 4- or 5isoxazolyl; 3- or 4- or 5-pyrazolyl; 3- or 4- or 5isothiazolyl; 3- or 4-pyridazinyl; 2- or 4- or 5pyrimidinyl; 2-pyrazinyl; 2-triazinyl; 3- or 4-
- 35 cinnolinyl; 1-phthalazinyl; 2- or 4-quinazolinyl; or 2-quinoxalinyl ring; said ring(s) may be unsubstitued or

include optional substitution with one to three

```
substituents;
       heterocycle is 2- or 3-pyrrolidinyl, a 2-, 3-, or 4-
       piperidinyl, or a 1-, 3-, or 4-tetrahdroisoquinolinyl,
       1-, 2-, or 4-tetrahydroquinoliny1, 2- or 3-
       tetrahydrofuranyl, 2- or 3-tetrahydrothiophene, 1-, 2-,
       3-, or 4-piperazinyl, and 1-, 2-, 3-, or 4-morpholino;
       said ring(s) which may be unsubstituted or include
       optional substitution with one to three substituents;
 10
       cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl,
       cyclohexyl, cycloheptyl, adamantyl and cyclooctyl;
      the substituents which may be attached to the ring(s)
 15
      above may be independently selected at each occurrence
      from the group selected from;
             halogen, -CF_3, C_1-C_4 alkyl, nitro, phenyl, -(CH_2)_rR^4,
             -(CH_2)_rC(=0)(CH_2)_sR^q, -(CH_2)_rC(=0)O(CH_2)_sR^q,
             -(CH<sub>2</sub>)<sub>r</sub>C(=0)N[(CH<sub>2</sub>)<sub>s</sub>R<sup>4</sup>][(CH<sub>2</sub>)<sub>s</sub>R<sup>5</sup>], methylenedioxy,
20
            C_1-C_4 alkoxy, -CH_2) _{x}O(CH_2)_{s}R^4, -(CH_2)_{x}OC(=0) (CH_2)_{s}R^4,
            -(CH_2)_rOC(=0) O(CH_2)_sR^4,
            -(CH_2)_{s}OC(=0)N[(CH_2)_{s}R^4][(CH_2)_{s}R^5],
            -(CH_2)_rOC (=0) N[(CH_2)_sR^4][C (=0) (CH_2)_sR^5],
            -(CH_2)_rS(O)_p(CH_2)_sR^4, -(CH_2)_rS(O)_p(CH_2)_sC(=O)R^4,
25
            -(CH_2)_rS(O)_p(CH_2)_sC(=O)OR^4,
            -(CH_2)_sS(0)_pN[(CH_2)_sR^4][(CH_2)_sR^5],
            -(CH_2)_rS(O)_pN[(CH_2)_sR^4](C(=O)(CH_2)_sR^5],
            -(CH_2)_rN[(CH_2)_sR^4][(CH_2)_sR^5],
30
            -(CH_2)_rN[(CH_2)_sR^4][C(=0)(CH_2)_sR^5]
            -(CH<sub>2</sub>)<sub>x</sub>N((CH<sub>2</sub>)<sub>s</sub>R<sup>4</sup>)[C(=0)O(CH<sub>2</sub>)<sub>s</sub>R<sup>5</sup>],
            -(CH_2)_xN[(CH_2)_sR^4]CON[(CH_2)_sR^4][(CH_2)_sR^5],
            -(CH_2)_rN((CH_2)_sR^4]C(=0)-N((CH_2)_sR^4)(C(=0)(CH_2)_sR^5),
```

124

 $-(CH_2)_rN[(CH_2)_sR^4][S(0)_p(CH_2)_sR^5].$

2. A compound of claim 1 wherein:

 R^1 is (C₃-C₄ alkyl);

5 X is selected from the group consisting of: -NHC (=NH) H, -NHC (=NH) NHR², -NH₂ or -SC (=NH) NHR²;

 R^2 is hydrogen or C_1-C_4 alkyl.

10

ŗ

3. A compound of claim 2 having formula (Ia) wherein:

15

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

- 20 R^2 is (C₃-C₄ alkyl);
 - X is selected from the group consisting of:
 -NHC(=NH)H, -NHC(=NH)NHR², -NH₂ or -SC(=NH)NHR²;
- 25 R^2 is hydrogen or C_1-C_4 alkyl;
 - ${\bf R}^3$ and ${\bf R}^{10}$ are independently selected at each occurrence from the group consisting of:
 - a) hydrogen,
- 30 b) halogen,

```
c) -(CR^6R^7)_tW(CR^8R^9)_u-R^9
```

- d) $-(CR^6R^7)_tW(CR^8R^9)_u$ -aryl
- e) $-(CR^6R^7)_tW(CR^8R^9)_u$ -heteroaryl;
- 5 R4 and R5 are independently selected at each occurrence from the group consisting of:
 - a) hydrogen,
 - b) C₁-C₄ alkyl,
 - c) C1-C4 alkoxy,
- 10
- d) phenyl, or
- e) benzyl;
- R^6 , R^7 , R^8 , R^9 are independently selected at each occurrence from the group consisting of:
- 15
- a) hydrogen
- b) C₁-C₆ alkyl,
- c) aryl,
- d) $-(CH_2)_wC(=0)QR^4$, or;
- 20 Y^1 and Y^2 are
 - a) -OH,
 - b) -F,
 - c) $-NR^4R^5$ -,
 - d) $-C_1-C_8$ alkoxy, or;
- 25 when taken together Y¹ and Y² form:
 - e) a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O,
- f) a cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-3 heteroatoms which can be N, S, or O,
- g) a cyclic boron amide-ester where said chain or ring contains from 2 to 20 carbon atoms and,

```
optionally, 1-3 heteroatoms which can be N, S, or O;
```

W can be independently selected at each occurrence from the group consisting of:

- a) $-(CH_2)_{x}^{-}$,
- b) -0-,
- c) $-S(0)_{p}$,
 - $d) -NR^4-$
- 10 e) $-NR^{4}C(=0)-$,
 - $f) NR^4C (=0) O-,$

V is selected from the group consisting of:

- a) $-(CH_2)_{\pi}^{-}$,
- 15 b) $-O(CH_2)_{x}$ -,

Į

- c) $-0(CH_2)_{x}(C=0)_{-}$
- d) (CH₂) $_x$ S (O) $_p$ -,
- e) -(CH₂)_xNR⁴-
- f) (CH₂) NR⁴C (=0) -,
- 20 g) $-(CH_2)_{x}NR^{4}C(=0)O-;$

2 is selected from the group consisiting of:

- a) $-(CH_2)_xC(=0)-$,
- b) $-C (=0) (CH_2)_x^-,$
- 25 c) $-(CH_2)_{x}C(=0)O^{-}$,

p can be 0 or 2;

- r can be independently selected at each occurrence from 0 to 3;
 - s can be independently selected at each occurrence from 0 to 3;
- 35 t can be independently selected at each occurrence from
 0 to 2;

u can be independently selected at each occurrence from 0 to 2;

- 5 w can be independently selected at each occurrence from 0 to 2;
 - x can be independently selected at each occurrence from
 0 to 3;

10

with the following provisos:

(a) when V is $(CH_2)_x$, x can not be 0 when R^3 is hydrogen;

15

- (b) when Z is $-(CH_2)_xC(=0)$ and $-C(=0)(CH_2)_x$ and x is 0, R^{10} can not be halogen;
- wherein aryl is phenyl, fluorenyl, biphenyl and naphthyl, which may be unsubstituted or include optional substitution with one to three substituents;

heteroaryl is 2-, 3-, or 4-pyridyl; 2-, or 3-furyl; 2-, or 3-thiophenyl; 2-, 3-, or 4-quinolinyl; or 1-, 3-, or 4-isoquinolinyl, which may be unsubstitued or include optional substitution with one to three substituents;

heterocycle is 1-, 3-, or 4-tetrahdroisoquinolinyl, 2or 3-pyrrolidinyl, and 2-, 3- or 4-piperidinyl, which may be unsubstituted or include optional substitution with one to three substituents;

cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl and cyclooctyl;

```
the substituents which may be attached to the aryl,
      heteroaryl and heterocycle ring(s) may be independently
      selected at each occurrence from the group, selected
      from:
            halogen,-CF3, C1-C4 alkyl, nitro, phenyl, -(CH2) R4,
  5
             -(CH_2)_TC(=0)(CH_2)_SR^4, -(CH_2)_TC(=0)O(CH_2)_SR^4,
            -(CH<sub>2</sub>)<sub>r</sub>C(=0)N[(CH<sub>2</sub>)<sub>s</sub>R<sup>4</sup>][(CH<sub>2</sub>)<sub>s</sub>R<sup>5</sup>], methylenedioxy,
            C_1-C_4 alkoxy, -CH_2) _rO(CH_2)_sR^4, -(CH_2)_rOC(=0)(CH_2)_sR^4,
            -(CH<sub>2</sub>)_{r}OC(=O)O(CH<sub>2</sub>)_{s}R<sup>4</sup>,
            -(CH_2)_{r}OC(=0)N[(CH_2)_{s}R^4][(CH_2)_{s}R^5],
10
            -(CH_2)_{r}OC(=O)N[(CH_2)_{s}R^4][C(=O)(CH_2)_{s}R^5],
            -(CH_2)_rS(O)_p(CH_2)_sR^4, -(CH_2)_rS(O)_p(CH_2)_sC(=O)R^4,
            -(CH_2)_TS(O)_D(CH_2)_SC(=O)OR^4,
            -(CH_2)_rS(O)_pN[(CH_2)_sR^4][(CH_2)_sR^5],
            -(CH_2)_xS(O)_pN[(CH_2)_sR^4][C(=O)(CH_2)_sR^5],
15
            -(CH_2)_rN[(CH_2)_sR^4][(CH_2)_sR^5],
            -(CH_2)_rN[(CH_2)_sR^4][C(=0)(CH_2)_sR^5],
            -(CH_2)_rN[(CH_2)_sR^4][C(=0)O(CH_2)_sR^5],
            -(CH_2)_xN[(CH_2)_sR^4]CON[(CH_2)_sR^4][(CH_2)_sR^5],
            -(CH_2)_{r}N[(CH_2)_{s}R^{4}]C(=0)-N[(CH_2)_{s}R^{4}][C(=0)_{s}R^{5}],
20
            -(CH_2)_rN[(CH_2)_sR^4][S(O)_p(CH_2)_sR^5].
                   A compound of claim 3 wherein:
            4.
25
      R<sup>3</sup> is independently selected from the group consisting
            of:
            benzyl, phenyl, phenethyl, (3-phenyl)prop-1-yl, (2-
            methyl-1-phenyl)prop-2-yl, (2-methyl-2-phenyl)prop-
30
            1-yl, 1,1-diphenylmethyl, phenoxymethyl,
            phenylsulfonylmethyl, 2-(m-fluorophenyl)ethyl,, 2-
            (3-pyridyl) ethyl, (m-aminophenyl) methyl, (m-
```

129

methylphenyl) methyl, (p-methylphenyl) methyl, 1-

naphthylmethyl;

R10 is independently selected from the group consisting of:

methyl, t-butoxy, benzyloxy, phenethyl, benzyl, phenoxymethyl, isopropyl, isoamyl, N-methyl-N-t-butoxycarbonylaminomethyl, N-methylaminomethyl, (m-methyl) phenethyl, (m-fluoro) phenethyl, (m-methyl) phenoxymethyl, (3-pyridyl) ethyl;

R¹¹ is hydrogen;

10

5

V is independently selected from the group consisting of:

O, -OC(=0)-, S, -NH-;

15 2 is -C (=0) -.

5. A compound of claim 4 of the formula (Ib) selected from the group consisting of:

20

selected from the list consisting of:

25

the compound of formula (Ib) wherein \mathbb{R}^3 is phenyl and \mathbb{R}^{10} is methyl;

		the compound of formula (Ib) wherein R ³ is
		phenylmethyl and R ¹⁰ is methyl;
· .	5	the compound of formula (Ib) wherein R^3 is phenethyl and R^{10} is methyl;
Ļ		the compound of formula (Ib) wherein \mathbb{R}^3 is 3-phenylprop-1-yl and \mathbb{R}^{10} is methyl;
	10	the compound of formula (Ib) wherein R ³ is 1,1-dimethyl-2-phenylethyl and R ¹⁰ is methyl;
	15	the compound of formula (Ib) wherein \mathbb{R}^3 is 2,2-dimethyl-2-phenylethyl and \mathbb{R}^{10} is methyl;
		the compound of formula (Ib) wherein \mathbb{R}^3 is diphenylmethyl and \mathbb{R}^{10} is methyl;
	20	the compound of formula (Ib) wherein \mathbb{R}^3 is phenoxymethyl and \mathbb{R}^{10} is methyl;
		the compound of formula (Ib) wherein \mathbb{R}^3 is phenylsulfonylmethyl and \mathbb{R}^{10} is methyl;
•	25	the compound of formula (1b) wherein R^3 is $(m-1)^2$ fluorophenyl) ethyl and R^{10} is methyl;
		Tradiophenyr, ethyr and h rs methyr,
•	30	the compound of formula (Ib) wherein R^3 is (3-pyridyl)ethyl and R^{10} is methyl;
,		the compound of formula (Ib) wherein \mathbb{R}^3 is phenylethyl and \mathbb{R}^{10} is phenethyl.

6. A compound of claim 4 of the formula (Ic) selected from the group consisting of:

5 selected from the list consisting of:

the compound of formula (Ic) wherein V is sulfur, R^3 is phenyl and R^{10} is phenethyl;

the compound of formula (Ic) wherein V is oxygen,
R3 is phenylmethyl and R10 is phenethyl;

the compound of formula (Ic) wherein V is oxygen, \mathbb{R}^3 is phenylmethyl and \mathbb{R}^{10} is 3-phenylpropyl;

the compound of formula (Ic) wherein V is oxygen,

R³ is phenylmethyl and R¹⁰ is (m
methyl)phenoxymethyl;

the compound of formula (Ic) wherein V is oxygen,

R³ is phenylmethyl and R¹⁰ is (mfluoro)phenoxymethyl;

the compound of formula (Ic) wherein V is oxygen,

R³ is phenylmethyl and R¹⁰ is (mmethylphenyl)ethyl;

		R ³ is phenylmethyl and R ¹⁰ is (m-fluorophenyl)ethyl;
:	5	the compound of formula (Ic) wherein V is oxygen, R^3 is phenylmethyl and R^{10} is phenoxymethyl;
*	•	the compound of formula (Ic) wherein V is oxygen, R^3 is $(m\text{-fluorophenyl})$ methyl and R^{10} is phenethyl;
	10	the compound of formula (Ic) wherein V is amino, R3
	·	is phenylmethyl and R ¹⁰ is phenethyl;
	. 15	the compound of formula (Ic) wherein V is oxygen, \mathbb{R}^3 is phenylmethyl and \mathbb{R}^{10} is methyl;
		the compound of formula (Ic) wherein V is oxygen, \mathbb{R}^3 is phenylmethyl and \mathbb{R}^{10} is 2-propyl;
	20	the compound of formula (Ic) wherein V is oxygen, \mathbb{R}^3 is phenylmethyl and \mathbb{R}^{10} is isoamyl;
		the compound of formula (Ic) wherein V is oxygen, R ³ is (m-methylphenyl) methyl and R ¹⁰ is methyl;
	25	the compound of formula (Ic) wherein V is oxygen, R ³ is (p-methylphenyl) methyl and R ¹⁰ is methyl;
	30	the compound of formula (Ic) wherein V is oxygen, R^3 is (1-naphthyl) methyl and R^{10} is methyl;
		the compound of formula (Ic) wherein V is oxygen, R ³ is phenylmethyl and R ¹⁰ is N-methyl-N-t- butoxycarbonylaminomethyl;
	35	

the compound of formula (Ic) wherein V is oxygen, R^3 is phenylmethyl and R^{10} is N-methylaminomethyl.

7. A compound of claim 4 of the formula (Id) selected from the group consisting of:

10

selected from the list consisting of:

the compound of formula (Id) wherein V is oxygen, R^3 is phenylmethyl and R^{10} is phenethyl;

15

the compound of formula (Id) wherein V is oxygen, R^3 is (m-fluorophenyl)methyl and R^{10} is phenethyl.

the compound of formula (Id) wherein V is oxygen,

R³ is phenylmethyl and R¹⁰ is (m-methyl) phenethyl;

- 8. A pharmaceutical composition comprising a pharmaceutically suitable carrier and a therapeutically effective amount of a compound of claim 1.
 - 9. A pharmaceutical composition comprising a pharmaceutically suitable carrier and a therapeutically effective amount of a compound of claim 2.

10. A pharmaceutical composition comprising a pharmaceutically suitable carrier and a therapeutically effective amount of a compound of claim 3.

5

L

11. A pharmaceutical composition comprising a pharmaceutically suitable carrier and a therapeutically effective amount of a compound of claim 4.

10

12. A pharmaceutical composition comprising a pharmaceutically suitable carrier and a therapeutically effective amount of a compound of claim 5.

. 15

13. A pharmaceutical composition comprising a pharmaceutically suitable carrier and a therapeutically effective amount of a compound of claim 6.

20

14. A pharmaceutical composition comprising a pharmaceutically suitable carrier and a therapeutically effective amount of a compound of claim 7.

25

30

35

in a warm blooded animal catalyzed by serine protease enzymes comprising administering to an animal in need of such treatment an effective amount of a compound of claim 1.

į

in a warm blooded animal catalyzed by serine protease enzymes comprising administering to an animal in need of such treatment an effective amount of a compound of claim 2.

in a warm blooded animal catalyzed by serine protease enzymes comprising administering to an animal in need of such treatment an effective amount of a compound of claim 3.

- in a warm blooded animal catalyzed by serine protease enzymes comprising administering to an animal in need of such treatment an effective amount of a compound of claim 4.
- 19. A method of treating a physiological disorder in a warm blooded animal catalyzed by serine protease enzymes comprising administering to an animal in need of such treatment an effective amount of a compound of claim 5.
 - 20. A method of treating a physiological disorder in a warm blooded animal catalyzed by serine protease enzymes comprising administering to an animal in need of such treatment an effective amount of a compound of claim 6.

25

30

21. A method of treating a physiological disorder in a warm blooded animal catalyzed by serine protease enzymes comprising administering to an animal in need of such treatment an effective amount of a compound of claim 7.

INTERNATIONAL SEARCH REPORT

Intern. Jal Application No PCT/US 94/11049

A. CLASS IPC 6	SIFICATION OF SUBJECT MATTER C07F5/02 A61K31/69 C07K5 A61K38/05	/062 C07D207/16 C07F	9/572		
A-medity	to International Patent Classification (IPC) or to both national c	dassification and IPC			
a FIELD	S SEARCHED .				
Minimum (documentation searched (classification system followed by class	lication symbols)			
	ation searched other than minimum documentation to the extent		arched		
Electronic :	data bare consulted during the international search (name of dat	a bare and, where practical, scarch terms used)	•		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.		
Y	EP,A,O 293 881 (E.I. DU PONT D AND CO.) 7 December 1988 cited in the application see the whole document	E NEMOURS	1-21		
Υ	EP,A,O 504 064 (MERRELL DOW PHARMACEUTICALS INC.) 16 Septe see the whole document	1-21			
Y	EP.A.O 471 651 (SANDOZ LTD.) 1 1992 cited in the application see the whole document	.9 February	1-21		
Y	WO,A,92 07869 (THROMBOSIS RESE INSTITUTE) 14 May 1992 cited in the application see the whole document	EARCH	1-21		
Ft	orther documents are listed in the continuation of box C.	Patent family members are listed	in annex.		
* Special categories of cited documents: *A" document defining the general state of the art which is not considered to be of particular relevance *P" carrier document but published on or after the international filing date *L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		or priority date and not in connect we cited to understand the principle or invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the description of particular relevance; the cannot be considered to involve an invention of particular relevance; the	I' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone cannot be considered to involve an inventive step when the document is combined to involve an inventive step when the document is combined with one or more other such document.		
P docu	ument referring to an oral dischance, use, exhibition of er means ament published prior to the international filing date but	ment, such combination being obvious the art. As document member of the time patent	one to a betaon aggled		
	r than the priority date claimed the actual completion of the international scarch	Date of mailing of the international r			
D aw c.	16 December 1994	- 2. 01. 95			
Name an	nd mailing address of the ISA European Patent Office, P.H. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Authorized officer			
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Far: (+31-70) 340-3016	Beslier, L			

INTERNATIONAL SEARCH REPORT

beformation on patent family members

PCT/US 94/11049

			PCI/US 94/11049		
Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP-A-0293881	07-12-88	US-A- AU-B- AU-A- CA-A- CA-A- DE-A- JP-A- SU-A- US-A-	5187157 623592 1733288 1328332 1333208 3878991 1063583 1807988 5242904	16-02-93 21-05-92 08-12-88 05-04-94 22-11-94 15-04-93 09-03-89 07-04-93 07-09-93	
EP-A-0504064	16-09-92	US-A- EP-A- JP-A-	5250720 0503203 5112598	05-10-93 16-09-92 07-05-93	
EP-A-0471651	19-02-92	AU-B- AU-A- CA-A- JP-A- US-A-	643312 8179291 2048953 4330094 5288707	11-11-93 20-02-92 14-02-92 18-11-92 22-02-94	
WD-A-9207869	14-05-92	AU-B- AU-A- EP-A- JP-T- NZ-A-	636521 8900791 0509080 5504775 240477	29-04-93 26-05-92 21-10-92 22-07-93 26-10-94	

Form PCT/ISA/210 (patent family annex) (July 1992)