Regularization and Optimization

Fei-Fei Li, Yunzhu Li, Ruohan Gao 2023

Recall from last time: Linear Classifier

$$f(x,W) = Wx + b$$

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

Q: Suppose that we found a W such that L = 0. Is this W unique?

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1)$

Q: Suppose that we found a W such that L = 0. Is this W unique?

Q: What will happen to scores if we change W to 2W?

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

			11/1/19/1
cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1) = \max(0, -2.6) + \max(0, -1.9) = 0 + 0$$

= 0

With W = 2W:

$$= \max(0, 2.6 - 9.8 + 1) + \max(0, 4.0 - 9.8 + 1) - \max(0, -6.2) + \max(0, -6.2)$$

$$= \max(0, -6.2) + \max(0, -4.8)$$

$$= 0 + 0$$

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

Q: Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0!

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0! How do we choose between W and 2W?

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)}_{}$$

Data loss: Model predictions should match training data

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Regularization intuition: toy example training data

Regularization intuition: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data too well so we don't fit noise in the data

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Occam's Razor: Among multiple competing hypotheses, the simplest is the best, William of Ockham 1285-1347

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$

L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$

Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization:
$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$

Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Why regularize?

- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

$$w_1^Tx=w_2^Tx=1$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

Which of w1 or w2 will the L2 regularizer prefer?

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = \left[0.25, 0.25, 0.25, 0.25\right]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

Which of w1 or w2 will the L2 regularizer prefer?

L2 regularization likes to "spread out" the weights

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = \left[0.25, 0.25, 0.25, 0.25\right]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

Which of w1 or w2 will the L2 regularizer prefer?

L2 regularization likes to "spread out" the weights

Which one would L1 regularization prefer?

Recap

- We have some dataset of (x,y)
- We have a **score function**: $s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

Recap

How do we find the best W?

- We have some dataset of (x,y)
- We have a score function: s = f(x; W) = Wx
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

Optimization

Strategy #1: A first very bad idea solution: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution</pre>
   bestloss = loss
   bestW = W
  print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Lets see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad! (SOTA is ~99.7%)

Strategy #2: Follow the slope

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

current W:

[0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

gradient dW:

W + h (first dim): current W: [0.34 + 0.0001,[0.34,-1.11, -1.11, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, [0.33,...][0.33,...]loss 1.25347 loss 1.25322

gradient dW:

?,...]

current W:

W + h (first dim):

[0.34 + 0.0001,

gradient dW:

[0.34,

[-2.5,
?,
?,
(1.25322 - 1.25347)/0.0001
= -2.5
$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
?,

current W: W + h (second dim): [0.34,[0.34,-1.11, -1.11 + 0.00010.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...] [0.33,...]

loss 1.25347

loss 1.25353

gradient dW:

[-2.5, ?,...]

current W: W + h (second dim): [0.34, [0.34,-1.11 + 0.0001-1.11, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, [0.33,...][0.33,...]

loss 1.25347

loss 1.25353

gradient dW:

current W: W + h (third dim): [0.34,[0.34,-1.11, -1.11, 0.78 + 0.00010.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, [0.33,...][0.33,...]loss 1.25347 loss 1.25347

gradient dW:

[-2.5, 0.6, ?,...]

current W: W + h (third dim): [0.34,[0.34,-1.11, -1.11, 0.78, 0.78 + 0.00010.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, [0.33,...][0.33,...]

loss 1.25347

loss 1.25347

gradient dW:

[-2.5,
0.6,
0,
?,
(1.25347 - 1.25347)/0.0001
= 0
$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
?,...]

[0.34,[0.34,-1.11, -1.11, 0.78 + 0.00010.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...] 0.33,...loss 1.25347 loss 1.25347

W + h (third dim):

current W:

gradient dW:

```
[-2.5, 0.6, 0, ?,
```

Numeric Gradient

- Slow! Need to loop over all dimensions
 - Approximate

?,...]

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \end{aligned}$$

$$s = f(x; W) = Wx$$

want $\nabla_W L$

Use calculus to compute an analytic gradient

This image is in the public domain

current W:

[0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, [0.33,...]loss 1.25347

gradient dW:

[-2.5, dW = ...0.6, (some function 0, data and W) 0.2, 0.7, -0.5, 1.1, 1.3, -2.1,...]

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


negative gradient direction

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
```

while True:

```
data_batch = sample_training_data(data, 256) # sample 256 examples
weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
weights += - step_size * weights_grad # perform parameter update
```

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Aside: Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

Step-by-step illustration of gradient descent algorithm.

What if the loss function has a local minima or saddle point?

gets stuck

Dauphin et al, "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization", NIPS 2014

saddle point in two dimension

$$f(x,y) = x^2 - y^2$$

$$rac{\partial}{\partial x}(x^2-y^2)=2x
ightarrow 2(0)=0$$

$$rac{\partial}{\partial oldsymbol{y}}(x^2-oldsymbol{y}^2)=-2y
ightarrow -2({\color{red}0})=0$$

Image source: https://en.wikipedia.org/wiki/Saddle_point

Our gradients come from minibatches so they can be noisy!

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W)$$

SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise

Momentum descent with decay_rate = 1.0

SGD: the simple two line update code

SGD

```
x_{t+1} = x_t - \alpha \nabla f(x_t)
```

```
while True:
    dx = compute_gradient(x)
    x -= learning_rate * dx
```

SGD + Momentum:

continue moving in the general direction as the previous iterations SGD+Momentum

```
x_{t+1} = x_t - \alpha \nabla f(x_t) while True:  dx = \text{compute\_gradient(x)}   x = \text{learning\_rate * } dx
```

 $v_{t+1} = \rho v_t + \nabla f(x_t)$ $x_{t+1} = x_t - \alpha v_{t+1}$

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

SGD + Momentum:

continue moving in the general direction as the previous iterations SGD+Momentum

```
x_{t+1} = x_t - \alpha \nabla f(x_t) while True: 
 dx = compute_gradient(x) 
 x -= learning_rate * dx
```

```
v_{t+1} = \rho v_t + \nabla f(x_t)x_{t+1} = x_t - \alpha v_{t+1}
```

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x -= learning_rate * vx
```

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

SGD + Momentum:

alternative equivalent formulation

SGD+Momentum

```
v_{t+1} = \rho v_t - \alpha \nabla f(x_t)x_{t+1} = x_t + v_{t+1}
```

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx - learning_rate * dx
    x += vx
```

SGD+Momentum

```
v_{t+1} = \rho v_t + \nabla f(x_t)x_{t+1} = x_t - \alpha v_{t+1}
```

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x -= learning_rate * vx
```

You may see SGD+Momentum formulated different ways, but they are equivalent - give same sequence of x

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

SGD+Momentum

Momentum update:

Combine gradient at current point with velocity to get step used to update weights

Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", 1983 Nesterov, "Introductory lectures on convex optimization: a basic course", 2004 Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

Nesterov Momentum

Momentum update:

Combine gradient at current point with velocity to get step used to update weights

Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", 1983 Nesterov, "Introductory lectures on convex optimization: a basic course", 2004 Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

Nesterov Momentum

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Momentum (magenta) vs. Gradient Descent (cyan) on a surface with a global minimum (the left well) and local minimum (the right well)

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

"Per-parameter learning rates" or "adaptive learning rates"

AdaGrad

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
  grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Q: What happens with AdaGrad?

Progress along "steep" directions is damped; progress along "flat" directions is accelerated

AdaGrad

```
grad_squared = 0
while True:
 dx = compute\_gradient(x)
  grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Q2: What happens to the step size over long time? Decays to zero

RMSProp: "Leaky AdaGrad"

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


RMSProp

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Tieleman and Hinton, 2012

RMSProp (green) vs AdaGrad (white). The first run just shows the balls. the second run also shows the sum of gradient squared represented by the squares.

Adam (almost)

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

Adam (almost)

```
first moment = 0
second moment = 0
while True:
  dx = compute\_gradient(x)
                                                                        Momentum
 first_moment = beta1 * first_moment + (1 - beta1) * dx
 second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
  x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Adam (full form)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
    x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
```

Momentum

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 = 0.9, beta2 = 0.999, and learning_rate = 1e-3 or 5e-4 is a great starting point for many models!

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Gradient descent (cyan),
Momentum (magenta),
AdaGrad (white),
RMSProp (green),
Adam (blue).
Right well is a local minimum,
Left well is the global minimum.

Learning rate schedules

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update

Learning rate
```

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

Q: Which one of these learning rates is best to use?

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

Q: Which one of these learning rates is best to use?

A: In reality, all of these are good learning rates.

Learning rate decays over time

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Loshchilov and Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al, "Generating Long Sequences with Sparse Transformers", arXiv 2019

 $lpha_0$: Initial learning rate

 $lpha_t$: Learning rate at epoch t

T: Total number of epochs

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Loshchilov and Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al, "Generating Long Sequences with Sparse Transformers", arXiv 2019

 $lpha_0$: Initial learning rate

 $lpha_t$: Learning rate at epoch t

T: Total number of epochs

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear:
$$\alpha_t = \alpha_0(1 - t/T)$$

 $lpha_0$: Initial learning rate

 $lpha_t$: Learning rate at epoch t

T: Total number of epochs

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2018

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear:
$$\alpha_t = \alpha_0(1 - t/T)$$

Inverse sqrt:
$$\alpha_t = \alpha_0/\sqrt{t}$$

 $lpha_0$: Initial learning rate

 $lpha_t$: Learning rate at epoch t

T: Total number of epochs

Vaswani et al, "Attention is all you need", NIPS 2017

Learning Rate Decay: Linear Warmup

High initial learning rates can make loss explode; linearly increasing learning rate from 0 over the first ~5,000 iterations can prevent this.

Empirical rule of thumb: If you increase the batch size by N, also scale the initial learning rate by N

Goyal et al, "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour", arXiv 2017

First-Order Optimization

First-Order Optimization

Second-Order Optimization

- (1) Use gradient and Hessian to form quadratic approximation
- (2) Step to the **minima** of the approximation

In practice:

- Adam is a good default choice in many cases; it often works ok even with constant learning rate
- **SGD+Momentum** can outperform Adam but may require more tuning of LR and schedule
- If you can afford to do full batch updates then try out **L-BFGS** (and don't forget to disable all sources of noise)