Preparing Eigenstate of a Hamiltonian

Problem:

Suppose we have a Hamiltonian 'H' fulfilling the following properties:

- 1. H has a dimension 2n-1 and ||H||=1
- 2. All it's eigenvalues are symmetric around 0 i.e., $\lambda_i = -\lambda_{2n-i}$ for $i \in$ $\{1, 2, \dots, 2n - 1\}$, implying $\lambda_n = 0$.

Let, $|v_i\rangle$ be the eigenstates of the Hamiltonian H with eigenvalues λ_i . The

0-eigenvalue λ_n is separated from the rest by a gap Δ . Starting from some initial state $|\psi_0\rangle = \sum_{l=1}^{2n-1} c_l |v_l\rangle$, prepare a state $|G\rangle$ such that $||G| - |v_n|| \le \varepsilon$.

Solution using QSP:

Suppose we have a $(\alpha, m, 0)$ block encoding U_H of the Hamiltonian H. Let P_{λ_n} be the projector into the λ_n -eigenspace of H, i.e. the null-space.

Now, we have to concoct such a projector. For this, suppose we have a polynomial P such that P(0) = 1 and |P(x)| = 0 for $x \in D_{\Delta/2\alpha}$, where $D_{1/\kappa} = [-1, -1/\kappa] \cup [1/\kappa, 1]$. Then

$$P\left(\left(H - \lambda_n I\right)/2\alpha\right) \approx P_{\lambda_n}.\tag{1}$$

Now, for this problem we will use the following 2ℓ degree polynomial.

$$\mathbf{R}_{\ell}(x;\Delta) = \frac{\mathbf{T}_{\ell}\left(-1 + 2\frac{x^2 - \Delta^2}{1 - \Delta^2}\right)}{\mathbf{T}_{\ell}\left(-1 + 2\frac{-\Delta^2}{1 - \Delta^2}\right)}$$
(2)

Now, R is an even polynomial. Now we can apply the polynomial to $H - \lambda_n I$ using the techniques of Quantum Signal Processing and get rid of the unwanted components. Let's define

$$\widetilde{H} = \frac{H - \lambda_n I}{\alpha + |\lambda_n|} \tag{3}$$

For our problem, $\lambda_n = 0$, so the operator becomes

$$\widetilde{H} = \frac{H}{\alpha} \tag{4}$$

and we also define

$$\widetilde{\Delta} = \frac{\Delta}{2\alpha} \tag{5}$$

Now, as we know

$$|R_{\ell}(x;\Delta)| \le 2e^{-\sqrt{2}\ell\Delta} \tag{6}$$

for $x \in D_{\Delta}$.

Therefore, we have

$$||R(\widetilde{H}; \widetilde{\Delta}) - P_{\lambda_n}|| \le 2e^{-\sqrt{2}\ell\widetilde{\Delta}}$$
 (7)

Now we can create $(\alpha, m+1, \varepsilon)$ block encoding of $R\left(\widetilde{H}; \widetilde{\Delta}\right)$ and let it be $U_{\widetilde{H}}$. Now we can apply this block encoding to the given state $|\psi_0\rangle$ and the probability of getting all 0's while measuring the ancilla qubits is at least c_n^2 . So we need to run the block encoding $O\left(1/c_n^2\right)$ times and can cut it down to $O\left(1/c_n\right)$ using amplitude amplification for the desired eigenstate, in our case $|v_n\rangle$.

Cost and Complexity Analysis of the Solution using QSP:

Number of qubits : If the Hamiltonian H works on n qubits and has a $(\alpha, m, 0)$ block encoding, then using the minmax polynomial of equation 2, we need only 1 more ancilla qubit for the Quantum Signal Processing method. So, the total number of qubits needed is n + m + 1. If we use amplitude amplification we will need one extra ancilla qubit pushing the qubit count to

n + m + 2.

Complexity of the algorithm: Suppose, the cost of implementing the unitary $U_{\widetilde{H}}$ once is T. Assuming that we are using amplitude amplification, we need to run the block encoding $O(1/c_n)$ times. So, the cost is $O(T/c_n)$.

Now, if U_H is the $(\alpha, m, 0)$ block encoding of H, then we can obtain a $(1, m + 1, \epsilon)$ block encoding of $U_{\widetilde{H}}$ using $O((\alpha/\Delta) \log (1/\epsilon))$ applications of controlled- U_H and it's conjugate and $O((m\alpha/\Delta) \log (1/\epsilon))$ other primitive gates.

Therefore, neglecting the cost of using other primitive gates, the overall complexity of filtering the desired state, given the block encoding U_H is $O((T\alpha/c_n\Delta)\log(1/\epsilon))$.

Solution using QPE:

We are given the state $|\psi_0\rangle$ that is a superposition in the eigenbasis of the Hamiltonian H. Now, suppose we have access to the controlled unitary U and

$$U = e^{-\iota H} \tag{8}$$

Now, if we want to find the eigenstate of H having eigenvalue 0 we need to look for the eigenstate of U, that has an eigenvalue of 1. So, we need to do Quantum Phase Estimation using U and look for the eigenvalue 1.

Below we have the circuit for Quantum Phase Estimation:

Now, as we don't have any particular eigenstate we will use the given superposition of eigenstates $|\psi_0\rangle$ as the target state and apply the operators U. As

$$|\psi_0\rangle = \sum_{l=1}^{2n-1} c_l |v_l\rangle \tag{9}$$

Therefore, after applying the QPE circuit, with a rough probability of $O(1/c_n^2)$, we will obtain an eigenstate close to 1, if all other parameters are properly taken into account. So, if we measure for the eigenvalue 1 in the control register, we will get the corresponding eigenstate $|v_n\rangle$ in the target register, which is our desired eigenstate.

Cost and Complexity Analysis of the Solution using QPE:

Number of qubits : For simplicity, let's assume we are given an eigenstate $|\psi\rangle$ of the operator U and it's corresponding eigenvalue is ω . Suppose after applying the QPE sub-routine we obtain an estimate $\widetilde{\omega}$ of the eigenvalue ω . Assume we obtain $\widetilde{\omega}$ with a probability at least $1 - \frac{1}{2^m}$ where the error term is $\frac{1}{2^m}$ and also $|\widetilde{\omega} - \omega| \leq \frac{1}{2^r}$, i.e. the spectral gap measurable is bounded by $\frac{1}{2^r}$.

To meet the above conditions, it suffices to use a total of m + r + 1 controlqubits.

Now for our problem, we need to filter out the state $|v_n\rangle$ with an error upper-bounded by ϵ and spectral gap lower-bounded by Δ . Therefore, the number of control-qubits need is $t = \log(1/\Delta\epsilon) + 1$.

Therefore, assuming that U acts on n qubits, the total number of qubits need is $log(1/\Delta\epsilon) + n + 1$.

Complexity of the algorithm: Let's assume, we can apply each unitary U in time T(U). As we have t number of control-qubits, we need to apply U, $O(2^t)$ times. So, the complexity of applying the U's is

$$O\left(2^{t}T\left(U\right)\right) = O\left(\widehat{T}\right) \tag{10}$$

Now, as we obtain our desired state with a probability $O(1/c_n^2)$, we need to run the QSP sub-routine $O(1/c_n^2)$ times to obtain our desired eigenstate

with a constant probability.

Therefore, the overall complexity of this algorithm to filter the desired state of the Hamiltonian H, neglecting the cost of applying the Hadamard and QFT gates, is $O\left(\widehat{T}/c_n^2\right)$.