Instituto Tecnológico de Buenos Aires

22.85 - Sistemas de Control

Trabajo de Laboratorio $N^{\circ}4$: Control de Carrito mediante controlador PID

Grupo 1

Máspero, Martina	57120
Mestanza, Joaquín Matías	58288
Nowik, Ariel Santiago	58309
Panaggio Venerandi, Guido Martin	56214
Parra, Rocío	57669
Regueira, Marcelo Daniel	58300

 $\begin{array}{c} Profesor \\ {\rm Nasini,\ V\'ictor\ Gustavo} \end{array}$

Presentado: 13/11/2019

Índice

1. PID: Introducción teórica

Los controladores PID (proporcional, integrador y derivativo) proveen un control de lazo empleando feedback que es utilizado en la industria del control. Un controlador PID calcula el error e(t) como la diferencia entre el setpoint(deseada) y una variable medida del proceso (la salida de la planta).

Figura 1: Controlador PID: Esquema

Como se puede observar en la figura ?? en los controladores PID se dispone de 3 constantes.

- $lackbox{ } K_p$: constante que acompaña al error
- lacktriangle K_i : constante que acompaña a la integral del error
- lacktriangle K_d : constante que acompaña a la derivada del error

2. Práctica

Se ajustaron las constantes mediante el siguiente método:

- Primero establecer $K_i = 0$ y $K_d = 0$.
- \blacksquare Incrementar la K_p hasta que la salida oscile
- \blacksquare Establecer K_p a aproximadamente la mitad del valor configurado previamente
- Incrementar K_i hasta que el proceso se ajuste en el tiempo requerido (precaución: subir mucho I puede causar inestabilidad)
- Finalmente, incrementar D si se necesita hasta que el lazo sea lo suficientemente rápido para alcanzar su referencia tras una variación brusca de la carga.

3. Resultados