Unidad Didáctica 8

GEOMETRÍA PLANA

4° ES0

En esta unidad vas a:

- 1. Identificar los elementos de un vector.
- 2. Realizar operaciones con vectores.
- 3. Expresar las rectas mediante sus diferentes ecuaciones.
- 4. Saber obtener el vector director, la pendiente y la ordenada en el origen de una recta cualquiera.
- 5. Estudiar las posiciones relativas de dos rectas.
- 6. Resolver problemas mediante vectores o rectas.

SUMARIO

- 8.00. Lectura Comprensiva
- 8.01.- Introducción
- 8.02.- Vectores
- 8.03. Operaciones con vectores
 - 8.03.1. Suma y Resta de vectores
 - 8.03.2. Producto por un escalar
 - 8.03.3. Vector de posición de un punto
- 8.04. Simétrico de un punto respecto de otro punto
- 8.05. Ecuaciones de la Recta
 - 8.05.1. Ecuación Vectorial
 - 8.05.2. Ecuaciones paramétricas
 - 8.05.3. Ecuación Continua
 - 8.05.4. Ecuación Punto Pendiente
 - 8.05.5. Ecuación Explícita
 - 8.05.6. Ecuación General
- 8.06. Posiciones relativas de dos rectas en el plano
- 8.07. Resolución de Problemas
- 8.08. Autoevaluación

8.00.- Lectura Comprensiva

Destino: el futuro

El agudo silbido despertó al monstruo, que comenzó a moverse lentamente entre chirridos metálicos y nubes de vapor. Apenas la locomotora hubo iniciado la marcha, dos jóvenes, Sonia y Fedia, abandonaron el compartimento donde estaban sus padres y su hermana mayor, y atravesando algunos vagones llegaron al furgón de cola, desde donde vieron alejarse su ciudad, Palibino.

Para Fedia, el único hijo varón, el viaje a San Petersburgo era una auténtica aventura; a sus doce años le habían contado tantas maravillas del lugar, que quería conocerlo de pé a pá.

La cara de Sonia, una adolescente de quince años, también reflejaba felicidad, pero sus motivos eran diferentes a los de su hermano; para ella, San Petersburgo representaba la posibilidad de continuar profundizando en sus estudios, y años más tarde, ya convertida en la señora Kovalevskaya, todavía recordaba este momento.

Al tiempo que los dos hermanos iban sumergiéndose cada uno en sus

propios pensamientos, la ciudad se convertía en un pequeño punto, desde donde nacían los rectos raíles que los llevaban al futuro.

Los raíles del tren se pueden considerar como dos rectas paralelas. ¿En cuántos puntos se cortan? ¿Y si no fueran paralelas?

Dos rectas paralelas no se cortan en ningún punto. Si las rectas no fueran paralelas, se pueden cortar en un punto cuando son secantes, o en todos los puntos cuando son coincidentes.

Lee nuevamente el texto anterior y responde a las cuestiones:

- 1.- ¿Quién es el monstruo?
- 2.- ¿De qué cuidad se alejaban Sonia y Fedia?
- 3.- ¿Qué parentesco tenían ambos?

7.01.- Introducción.

Geometría (del griego geo, "tierra"; metrein, "medir"), rama de las matemáticas que se ocupa de las propiedades del espacio. En su forma más elemental, la geometría se preocupa de problemas métricos como el cálculo del área y perímetro de figuras planas y de la superficie o volumen de cuerpos sólidos.

El origen del término geometría es una descripción precisa del trabajo de los primeros geómetras, que se interesaban en problemas como la medida del tamaño de los campos o el trazado de ángulos rectos para las esquinas de los edificios. Este tipo de geometría empírica, que floreció en el Antiguo Egipto, Sumeria y Babilonia, fue refinada y sistematizada por los griegos. En el siglo VI a.C. el matemático **Pitágoras** colocó la piedra angular de la geometría científica al demostrar que las diversas leyes arbitrarias e inconexas de la geometría empírica se podían deducir como conclusiones lógicas de un número limitado de axiomas, o postulados.

Estos postulados fueron considerados por Pitágoras y sus discípulos como verdades evidentes; sin embargo, en el pensamiento matemático moderno se consideran como un conjunto de supuestos útiles pero arbitrarios. Un ejemplo típico de los postulados desarrollados y aceptados por los matemáticos griegos es la siguiente afirmación: "una línea recta es la distancia más corta entre dos puntos".

Un conjunto de teoremas sobre las propiedades de puntos, líneas, ángulos y planos se puede deducir lógicamente a partir de estos axiomas. Entre estos teoremas se encuentran: "la suma de los ángulos de cualquier triángulo es igual a la suma de dos ángulos rectos", y "el cuadrado de la hipotenusa de un triángulo rectángulo es igual a la suma de los cuadrados de los otros dos lados".

La geometría demostrativa de los griegos, que se ocupaba de polígonos y círculos y de sus correspondientes figuras tridimensionales, fue mostrada rigurosamente por el matemático griego Euclides, en su libro Los elementos. El texto de Euclides, a pesar de sus imperfecciones, ha servido como libro de texto básico de geometría hasta casi nuestros días.

Los griegos introdujeron los problemas de construcción, en los que cierta línea o figura debe ser construida utilizando sólo una regla de borde recto y un compás. Ejemplos sencillos son la construcción de una línea recta dos veces más larga que una recta dada, o de una recta que divide un ángulo dado en dos ángulos iguales. Tres famosos problemas de construcción que datan de la época griega se resistieron al esfuerzo de muchas generaciones de matemáticos que intentaron resolverlos: la duplicación del cubo (construir un cubo de volumen doble al de un determinado cubo), la cuadratura del círculo (construir un cuadrado con área igual a un círculo determinado) y la trisección del ángulo (dividir un ángulo dado en tres partes iguales).

Ninguna de estas construcciones es posible con la regla y el compás, y la imposibilidad de la cuadratura del círculo no fue finalmente demostrada hasta 1882. Los griegos, y en particular Apolonio de Perga, estudiaron la familia de curvas conocidas como cónicas y descubrieron muchas de sus propiedades fundamentales. Las cónicas son importantes en muchos campos de las ciencias físicas; por ejemplo, las órbitas de los planetas alrededor del Sol.

Arquímedes, uno de los grandes científicos griegos, hizo un considerable número de aportaciones a la geometría. Inventó formas de medir el área de ciertas figuras curvas así como la superficie y el volumen de sólidos limitados por superficies curvas, como paraboloides y cilindros. También elaboró un método para calcular una aproximación del valor de pi (π) , la proporción entre el diámetro y la circunferencia de un círculo y estableció que este número estaba entre 3 10/70 y 3 10/71.

La geometría avanzó muy poco desde el final de la era griega hasta la edad media. El siguiente paso importante en esta ciencia lo dió el filósofo y matemático francés René Descartes, cuyo tratado El Discurso del Método, publicado en 1637, hizo época. Este trabajo fraguó una conexión entre la geometría y el álgebra al demostrar cómo aplicar los métodos de una disciplina en la otra. Éste es un fundamento de la geometría analítica, en la que las figuras se representan mediante expresiones algebraicas.

Otro desarrollo importante del siglo XVII fue la investigación de las propiedades de las figuras geométricas que no varían cuando las figuras son proyectadas de un plano a otro.

La geometría sufrió un cambio radical de dirección en el siglo XIX. Los matemáticos Carl Friedrich Gauss, Nikolái Lobachevski, y János Bolyai, trabajando por separado, desarrollaron sistemas coherentes de geometría no euclídea. Estos sistemas aparecieron a partir de los trabajos sobre el llamado "postulado paralelo" de Euclides, al proponer alternativas que generan modelos extraños y no intuitivos de espacio, aunque, eso sí, coherentes. Casi al mismo tiempo, el matemático británico Arthur Cayley desarrolló la geometría para espacios con más de tres dimensiones.

El vso de conceptos con más de tres dimensiones tiene un importante número de aplicaciones en la física, en particular en el desarrollo de teorías de la relatividad. Esta geometría se conoce como geometría estructural. Un ejemplo sencillo de este enfoque de la geometría es la definición de la figura geométrica más sencilla que se

puede dibujar en espacios con cero, una, dos, tres, cuatro o más dimensiones. En los cuatro primeros casos, las figuras son los bienconocidos punto, línea, triángulo y tetraedro respectivamente.

Otro concepto dimensional, el de dimensiones fraccionarias, apareció en el siglo XIX. En la década de 1970 el concepto se desarrolló como la geometría fractal.

8.02.- Vectores

Existen magnitudes, como la temperatura o la masa, que quedan perfectamente determinadas completamente dando un valor, o un escalar. Decimos que este tipo de magnitudes son magnitudes escalares. Sin embargo, existen otras muchas magnitudes, como la fuerza, que para determinarlas completamente ha de indicarse su módulo, su sentido y su dirección. Estas magnitudes se llaman magnitudes vectoriales. Las magnitudes vectoriales se representan mediante vectores, como por ejemplo:

Fuerza: F

Velocidad: \overrightarrow{V}

Aceleración: a

Posición: r

 \clubsuit Un vector es un segmento orientado en el plano \mathbb{R}^2 , determinado por dos puntos, un **origen** A, de coordenadas (x_1,y_1) , y un **extremo** B de coordenadas (x_2,y_2) .

El vector que une los puntos A y B se denomina vector $\overline{A}\overline{B}$ y sus coordenadas o componentes vienen determinadas por la diferencia entre las coordenadas del extremo menos las del origen.

$$\overrightarrow{AB} = B - A = (x_2 - x_1, y_2 - y_1)$$

iemplo

1.- Calcula las coordenadas del vector cuyo origen es el punto (-1,-2) y cuyo extremo es el punto (3,1) y represéntalo.

Si el Origen es el punto A (-1,-2) y el extremo el punto B (3,1) para calcular el vector \overrightarrow{AB} haremos la diferencia entre B y A:

$$\overrightarrow{AB} = B - A = (b_x - a_x, b_y - a_y) = (3 - (-1), 1 - (-2)) = (3 + 1, 1 + 2) = (4,3)$$

Así pues, todo vector viene caracterizado por un módulo, una dirección y un sentido.

Módulo: es la longitud del segmento AB, y coincide con la distancia entre los puntos A y B y se representa por AB y se calcula:

$$\left\| \overrightarrow{AB} \right\| = \sqrt{\left(b_{x} - a_{x} \right)^{2} + \left(b_{y} - a_{y} \right)^{2}}$$

Dirección: es la recta sobre la que está situada el vector. Una recta y todas sus paralelas determinan la misma dirección.

Sentido: es la forma de recorrer el segmento AB, es decir de fijar el origen y el extremo. (queda determinado por la punta de la flecha)

Piensa y practica

1.- Calcula las coordenadas de los vectores de los que sabemos su origen A y su extremo B y represéntalos:

 $A(1,4) \ y \ B(3,-2)$

b) A(9,-1) y B(5,7)

c) A(2,3) y B(1,6)

d) A(-3,-5) y B(0,0)

2.- Representa un triángulo de vértices A(1,1), B(3,3) y C(6,0), indica las coordenadas de los vectores que unen los tres vértices.

3.- Dado el vector (5,3) indica dos posibles orígenes y extremos.

elamplo

2.- Calcula el módulo del vector cuyo origen es el punto (1,0) y cuyo extremo es el punto (4,4).

Si su origen es el punto A (1,0) y su extremo el B (4,4) para calcular el módulo del vector \overrightarrow{AB} antes hemos de calcular el vector haciendo la diferencia entre B y A:

$$\overrightarrow{AB} = B - A = (b_x - a_x, b_y - a_y) = (4 - 1, 4 - 0) = (3, 4)$$

y su módulo viene dado por:

$$\|\overrightarrow{AB}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

Por tanto, el vector $\|\overrightarrow{AB}\| = 5$

Es evidente que si el módulo de un vector es la distancia entre su origen y su extremo, ocurre que: $\|\overrightarrow{AB}\| = \|\overrightarrow{BA}\|$

Piensa y practica

4.- Calcula el perímetro del rectángulo de vértices A(1,1), B(7,3), C(6,6) y D(0,4) y comprueba que para calcular el módulo de un vector nos da igual quien sea el origen y quien el extremo.

Hemos dicho con anterioridad que la dirección de un vector es la recta que lo contiene y todas sus paralelas, por tanto:

Oos vectores son paralelos cuando tienen la misma dirección (misma recta o rectas paralelas). Para comprobar si dos vectores $\vec{v} = (v_1, v_2)$ y $\vec{v} = (v_1, v_2)$ son paralelos basta con comprobar si sus coordenadas son proporcionales:

$$\frac{\upsilon_2}{\upsilon_1} = \frac{\mathsf{v}_2}{\mathsf{v}_1} \qquad \delta \qquad \frac{\upsilon_2}{\mathsf{v}_2} = \frac{\upsilon_1}{\mathsf{v}_1}$$

Una forma sencilla de encontrar un vector paralelo a $\vec{v} = (v_1, v_2)$, es multiplicar sus componentes por un mismo número k:

$$\vec{v} = (v_1, v_2)$$
 es paralelo al vector $\vec{kv} = (kv_1, kv_2)$

iemplo

3.- Comprueba si los vectores $\vec{v} = (1,3)$ y $\vec{v} = (4,12)$ son paralelos.

Este caso es bastante sencillo de comprobar puesto que vemos que $\vec{v} = 4 \cdot \vec{v}$, por tanto son paralelos. Aunque de todas maneras vamos a comprobarlo de la otra forma:

$$\frac{\upsilon_2}{\upsilon_2} = \frac{\upsilon_1}{\upsilon_1} \quad \rightarrow \quad \frac{\upsilon_2}{\upsilon_2} = \frac{1}{4} \quad y \quad \frac{\upsilon_1}{\upsilon_1} = \frac{3}{12} = \frac{1}{4} \quad \rightarrow \quad \vec{\upsilon} \ y \ \vec{v} \ \text{son vectores paralelos}$$

Dos vectores son perpendiculares cuando sus direcciones se cortan formando un ángulo recto. Para saber si dos vectores $\vec{v} = (v_1, v_2)$ y $\vec{v} = (v_1, v_2)$ son perpendiculares, tiene que ocurrir que:

$$v_1 \cdot v_1 + v_2 \cdot v_2 = 0$$

iemplo

4.- Comprueba si los vectores $\vec{v} = (4,2)$ y $\vec{v} = (-1,2)$ son perpendiculares.

Para ver si dos vectores son perpendiculares, multiplicamos la componente x del primero por la del segundo y le sumamos el producto de las componentes y del primero por la del segundo, y si el resultado es nulo, los vectores son perpendiculares:

$$\vec{\upsilon} \perp \vec{v} \quad \longleftrightarrow \quad \upsilon_x \cdot v_x + \upsilon_y \cdot v_y = 0 \quad \to \quad 4 \cdot (-1) + 2 \cdot 2 = -4 + 4 = 0 \quad \to \quad \vec{\upsilon} \ y \ \vec{v} \ \text{son perpendiculares}$$

Piensa y practica

5.- Decide si los siguientes pares de vectores son paralelos o perpendiculares

a)
$$\vec{v} = (1,3)$$
 y $\vec{v} = (-1,-3)$ b) $\vec{v} = (3,2)$ y $\vec{v} = (-6,-4)$

c)
$$\vec{v} = (2,4)$$
 y $\vec{v} = (2,-1)$

En general, dado un vector $\vec{v} = (v_1, v_2)$, podemos encontrar otro vector \vec{v} que sea:

- ✓ Paralelo a \vec{v} , multiplicando por un número distinto de cero: $\vec{v} = (\lambda \cdot v_1, \lambda \cdot v_2)$
- Perpendicular a \vec{v} , invirtiendo sus coordenadas y cambiando el signo de una de ellas: $\vec{v} = (-v_2, v_1)$

Piensa y practica

6.- Dado el vector \vec{v} =(5,-2) da tres vectores que sean paralelos y otros tres que sean perpendiculares a él.

8.03.- Operaciones con vectores.

En el conjunto de vectores del plano \mathbb{R}^2 se definen las dos operaciones siguientes:

8.3.1.- Suma de Vectores

Llamamos suma de los vectores \vec{u} y \vec{v} y la representaremos por $\overrightarrow{u+v}$, al vector que se obtiene de dos formas:

Regla del triángulo

Regla del paralelogramo

Dados \vec{u} y \vec{v} , hacemos que el origen de \vec{v} , coincida con el extremo de \vec{u} , de forma que el vector suma es aquel cuyo origen es el de \vec{v} y cuyo extremo es el de \vec{u} .

Dados los vectores \vec{u} y \vec{v} de origen común, trazando líneas paralelas a ambos vectores desde sus extremos, la diagonal del paralelogramo será el vector suma.

- Asociativa: $(\vec{v} + \vec{v}) + \vec{\omega} = \vec{v} + (\vec{v} + \vec{\omega})$
- ullet Elemento neutro: es el vector nulo, que representaremos por \vec{O}

Propiedades de la suma de vectores:

$$\vec{v} + \vec{O} = \vec{O} + \vec{v} = \vec{v}$$

- Elemento Opuesto: $(-\vec{v}) + \vec{v} = \vec{v} + (-\vec{v}) = \vec{0}$
- Conmutativa: $\vec{v} + \vec{v} = \vec{v} + \vec{v}$

La existencia de un elemento opuesto para la suma de vectores, permite **restar vectores**. Así, dados los vectores \vec{u} y \vec{v} , para obtener $\overrightarrow{u-v}$ basta con sustituir el vector \vec{v} , por el vector $-\vec{v}$ y sumárselo al \vec{u} tal y como se indica en la figura de la derecha.

iemplo

5.- Dados los vectores $\vec{a} = (6,4)$ y $\vec{b} = (-3,1)$ calcula su suma de forma analítica y de forma gráfica.

Para sumar dos vectores, basta con sumar sus coordenadas:

$$\vec{a} + \vec{b} = (a_x + b_x, a_y + b_y) = (6 - 3, 4 + 1) = (3, 5)$$
 \rightarrow $\vec{a} + \vec{b} = (3, 5)$

De forma gráfica podemos resolverlo mediante la regla del triángulo:

Piensa y practica

7.- Determina de forma gráfica y analítica la suma de los vectores:

a)
$$\vec{v} = (-7,1)$$
 y $\vec{v} = (0,-4)$

b)
$$\vec{v} = (3,2)$$
 y $\vec{v} = (2,-5)$

c)
$$\vec{v} = (-4,3)$$
 y $\vec{v} = (1,-2)$

8.3.2.- Producto por un escalar

El producto de un escalar k, distinto de cero, por un vector \vec{u} es otro vector \vec{kv} con:

- Dirección: La misma que el vector \vec{u}
- Sentido: el mismo que \vec{u} si k>0 y su opuesto si k<0.
- **Módulo:** Proporcional al de \vec{u} . $||k \cdot \vec{v}|| = |k| \cdot ||\vec{v}||$

Propiedades del producto de un vector por un escalar:

$$\begin{cases} \bullet \ k \cdot (\vec{v} + \vec{v}) = k \cdot \vec{v} + k \cdot \vec{v} \\ \bullet (k_1 + k_2) \vec{v} = k_1 \cdot \vec{v} + k_2 \cdot \vec{v} \\ \bullet \ (k_1 \cdot k_2) \cdot \vec{v} = k_1 \cdot (k_2 \cdot \vec{v}) \\ \bullet \ 1 \cdot \vec{v} = \vec{v} \end{cases}$$

emplo

6.- Dado el vector $\vec{v} = (5,-4)$ calcula de forma analítica su producto por -1 y por 3.

Para multiplicarlo por -1, multiplicaremos ambas coordenadas por -1:

$$-1\vec{v} = (-1v_x, -1v_y) = (-1.5, -1.(-4)) = (-5, 4) \rightarrow -1\vec{v} = (-5, 4)$$

Y para multiplicarlo por 2 procederemos de igual forma:

$$2 \cdot \vec{v} = (2 \cdot v_x, 2 \cdot v_y) = (2 \cdot 5, 2 \cdot (-4)) = (10, -8) \rightarrow 2 \cdot \vec{v} = (10, -8)$$

Piensa y practica

8.- Determina de forma gráfica y analítica el producto del vector \vec{v} = (2,-5) por los escalares -3 y 5.

8.04.- Simétrico de un punto respecto de otro punto

Para calcular el simétrico de un punto respecto de otro, necesitamos primero conocer el punto medio de un segmento.

8.4.1.- Punto medio de un segmento

Consideremos el segmento de extremos $A=(a_{x_1}, a_{y_2})$ y $B=(b_{x_2}, b_{y_2})$.

Si M tiene por coordenadas $(m_{x_i}m_{u})$ en su punto medio, se verifica:

 $\frac{y_A + y_B}{2}$ y_B x_B $x_A + x_B$

Y por tanto, si sustituimos las componentes de \overrightarrow{AB} y \overrightarrow{AM} obtenemos:

$$\mathcal{M} = \left(\frac{a_x + b_x}{2}, \frac{a_y + b_y}{2}\right)$$

Piensa y practica

- 9.- Dado el triángulo de vértices A(4,4), B(0,0) y C(0,4), calcula el punto medio del lado AB, y la longitud de la mediana de ese mismo lado (la mediana es el segmento que une el punto medio de un lado con el vértice opuesto). (2,2) y $2\sqrt{2}$
- 10.- El punto medio de A(-1, 3) y B(x, y) es M(2, 1). ¿Cuáles son las coordenadas del punto B?

(5,-1)

11.- Dado el paralelogramo de vértices A(1,1); B(5,1); C(7,3) y del que sabemos que M es el punto de corte de sus diagonales, calcula las coordenadas del vértice D utilizando la fórmula del punto medio.

8.4.2.- Simétrico de un punto, respecto de otro

Una aplicación del punto medio de un segmento, es el cálculo del punto simétrico de un punto con respecto de otro.

Si A' es el **simétrico** de M respecto de A, entonces M es el **punto medio** del **segmento** AA'. Por lo que se verificará igualdad:

$$\overrightarrow{AM} = \overrightarrow{MA}'$$

Entonces, para calcular las coordenadas del punto simétrico, utilizaremos la fórmula del punto medio de un segmento:

$$M = \frac{A + A'}{2}$$

De donde despejamos el punto incógnita A' y obtenemos la fórmula del punto simétrico respecto a otro punto:

$$A' = 2M - A$$

emplo

7.- Hallar el simétrico del punto P(7, 4) respecto del punto Q(3, -11).

Sea el punto simétrico P'(x,y), tenemos que:

$$(-4,-15) = (x-3,y+11) \qquad \Leftrightarrow \qquad \begin{cases} x-3 = -4 \\ y+11 = -15 \end{cases} \qquad \Leftrightarrow \qquad \begin{cases} x=-1 \\ y=-26 \end{cases}$$

Por tanto el simétrico de P, es el punto P' (-1,-26)

Piensa y practica

12.- Calcular las coordenadas del punto S, simétrico del punto A(2, 6) con respecto B(4, 5)

8.05.- Ecuaciones de la recta

Para determinar la ecvación de una recta en el plano son necesarios un punto y un vector.

Aunque si son dan dos puntos, rápidamente podemos calcular el vector que los une y con esto ya tendremos un punto y un vector.

8.5.1.- Ecuación Vectorial

Sea ${\bf r}$ una recta del plano determinada por un punto ${\bf P}$ (ρ_1,ρ_2) y un vector $\vec r$. Cualquier punto ${\bf X}$ (x,y) de la recta queda determinado por el vector \overrightarrow{OX} que se puede escribir como la suma del vector \overrightarrow{OP} más un vector proporcional a $\vec r$ de la siguiente manera:

$$\overrightarrow{OX} = \overrightarrow{OP} + k \cdot \overrightarrow{r}$$

donde $k \in \mathbb{R}$ es un parámetro que, al variar, va generando los distintos puntos de la recta.

Esta expresión vectorial recibe el nombre de ecuación vectorial de la recta r.

Ecvación, que, escrita en componentes quedaría de la siguiente forma:

$$(x,y) = (\rho_x, \rho_y) + k(r_x, r_y)$$

Al vector de la recta r, se le llama \mathbf{vector} director de \mathbf{r} : \vec{r}

iemplo

8.- Calcula la ecuación vectorial de la recta r, que pasa por los puntos A (-1, 2) y B(0, 5).

El vector de la recta r viene nado por: $\vec{r} = B - A = (1,3)$

Cualquier punto de la recta X(x,y) se puede escribir como: $(x,y)=(A_x,A_y)+k(r_x,r_y) \rightarrow (x,y)=(-1,2)+k(1,3)$

Por tanto, la ecuación vectorial es: $(x, y) = (-1, 2) + k \cdot (1, 3)$

7.10.- Autoevaluación

- O1.- Expresa en radianes los siguientes ángulos sexagesimales: a) 1200°; b) 750°; c) 2880°
- **02.** Expresa en grados sexagesimales los siguientes ángulos en radianes: a) 1 rad; b) 3π rad; c) $5\pi/3$
- 03.- Si cos α = 0,52 calcula las restantes razones trigonométricas.
- **04.** Si tg α =12/5 calcula las restantes razones trigonométricas.
- O5.- Los brazos de un compás, que miden 12 cm, forman un ángulo de 50°. ¿Cuál es el radio de la circunferencia que puede trazarse con esa abertura?
- **06.** En un triángulo rectángulo, un ángulo agudo mide 50°, y la hipotenusa, 16 cm. Resuelve el triángulo.
- 07.- En un triángulo isósceles, cada uno de los ángulos iguales mide 70° y su altura es de 12 cm. Halla la medida de los lados del triángulo.
- 08.- Comprueba las siguientes identidades:

a)
$$sen^2x - cos^2 y = sen^2 y - cos^2 x$$

b) $(1 + tan^2 \alpha) \cdot cos^2 \alpha = 1$

$$\frac{1-sen\alpha}{\cos\alpha} = \frac{\cos\alpha}{1+sen\alpha}$$

d)
$$\frac{\cos \alpha - \cos^3 \alpha}{\sin \alpha - \sin^3 \alpha} = tgx$$

e)
$$\cos \alpha + \frac{sen^2\alpha}{\cos \alpha} = \frac{1}{\cos \alpha}$$

O9.— Para calcular la altura del edificio, PQ, hemos medido los ángulos que aparecen en la figura y sabemos que hay un funicular para ir

- de S a Q, cuya longitud es de 250 m. Halla la altura del edificio PQ.
- 10.— Para localizar una emisora pirata, dos receptores, A y B, que distan entre sí 10 km, orientan sus antenas hacia el punto donde está la emisora. Estas direcciones forman con AB ángulos de 40° y 65°. ¿A qué distancia de A y B se encuentra dicha emisora?
- 11.- Halla el ángulo que forma la diagonal de un cubo de arista x con la diagonal de la base.
- 12.- En un triángulo rectángulo, uno de los catetos

mide el doble que el otro. ¿Cuánto valen las razones trigonométricas del ángulo menor?

- 13.- Dos fuerzas de 17 y 27 Newton dan una resultante de 12 N. Calcular el ángulo que forman entre sí y los que forman cada una de ellas con la resultante. (Idem con 46 y 25 N y resultante 58 N).
- 14.- Sean A y B dos puntos inaccesibles pero visibles ambos desde puntos accesibles C y D separados por 73,2 m. Suponiendo que los ángulos ACD=80° 12′ BCD=43° 31′ BDC=32° y ADC=23° 14′, determinar la distancia AB.
- 15.- Dos observadores A y B esperan a los concursantes de una carrera de regatas en los extremos de la línea de llegada que mide 100 m. En un momento ven dos embarcaciones con la siguiente posición CAB=80°, DAB=70°, ABC=80° y ABD=90°. ¿Cuál de ellas está más próxima de la meta?

