QUI022 - Química Orgânica: Teste 1 (Módulo 2)			Pontuação ↓
Data limite: 02/09/2024	Questões: 2	Pontos totais: 5	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	2	
2	3	
Total:	5	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.
- 1. (2 pontos) Suponha que você foi encarregado de comprar um reagente para um teste químico que identifica compostos a partir de sua reação com carbocátions. Tal reação é bem sensível a carbocátions e pode-se considerar que todos são reativos nesse caso. Sendo assim, você foi informado que o requisito principal é garantir que o reagente seja o mais estável possível.

As opções preliminares que você encontrou incluem os seguintes compostos:

Qual reagente você escolheria comprar, considerando as especificidades mencionadas?

Resposta:

O reagente mais indicado é o **tetrafluoroborato de trifenilmetílio**, também chamado de tetrafluoroborato de **tritil**.

O dicianometílio seria o primeiro a ser desconsiderado pela carga positiva estar adjacente a dois grupos retiradores por indução e conjugação. Comparando o **trifenilmetílio** e o **2-metilpropílio**, percebe-se que o primeiro é estabilizado pela conjugação- π ,p (ressonância) da carga positiva com o anel aromático e o segundo, pela conjugação- σ ,p (hiperconjugação).

Quando se compara a estabilização que ambos oferecem ao sistema, a conjugação- π ,p diminui mais a energia do sistema, tornando o cátion trifenilmetílio mais estável e mais adequado aos fins pretendidos.

2. (3 pontos) Carbânions são compostos comumente usados em reações com compostos carbonílicos, esses caracterizados pela sua ligação C=O. Em reações desse tipo, o carbono carregado negativamente interage com a porção mais positiva do composto carbonílico. Além disso, os carbânions geralmente são gerados *in situ* e então reagem com os compostos carbonílico. Um exemplo geral, com a propan-2-ona (acetona) é mostrado a seguir.

$$M^{+}$$
 N^{-} N^{-

- (a) Indique a hibridação dos átomos da propan-2-ona e as cargas parciais positivas (δ^+) e negativas (δ^-) da molécula.
- (b) Ao tentar reproduzir essa reação em laboratório, você verificou que há a possibilidade de sintetizar dois carbânions diferentes, que são mostrados abaixo. Determine qual dos dois é mais estável e qual será, portanto, sintetizado mais facilmente.

Resposta:

Em (a), a hibridação dos grupos metila é sp^3 e a dos átomos da ligação C=O é sp^2 . A ordem de eletronegatividade é $\chi_{\rm O} > \chi_{\rm C} > \chi_{\rm H}$. Logo, a ligação C=H terá δ^+ no H e δ^- no C. A ligação C=O terá δ^+ no C e δ^- no O. Como $\chi_{\rm O} - \chi_{\rm C} > \chi_{\rm C} - \chi_{\rm H}$, a ligação C=O é mais polar que a C-H. Sendo assim, o δ^+ mais intenso será no carbono da C=O e o δ^- , no oxigênio.

Em (b), o composto mais estável é o ${\bf B}$. Enquanto ${\bf A}$ possui uma conjugação- sp^3,π^* do carbânion com a carbonila, que deslocaliza a carga negativa e estabiliza o sistema, ${\bf B}$ possui duas conjugações desse tipo. Dado o efeito cumulativo de conjugações, ${\bf B}$ possui energia mais baixa que ${\bf A}$ e, logo, é mais estável.