Utility Theory

Ref: Chapter 16.1-3

Rational Decisions

- We have looked at a number of ways for agents to make rational decisions.
 - logic
 - probabilistic reasoning
 - statistical reasoning
- We can generalize decision making to the process of applying an Agent's preferences.
- We can generalize the notion of preferences to a utility function over all states
 - U(s) assigns a number to each state, indicating the desirability of the state.

Expected Utility

- Each action A will have some set of possible outcomes.
 - the Agent has some estimate of the probability of each outcome.
- The agent can compute the expected utility of each action:

$$EU(A|E) = \sum_{i} P(Result_{i}(A)|Do(A), E) U(Result_{i}(A))$$

- *E* is everything the Agent knows (evidence).
- $Result_i$ is a state resulting from an action Do(A)

Maximum Expected Utility

- The general strategy of a rational agent is to pick the action that will maximize the expected utility of the resulting state.
 - our prior studies have shown the difficulty in making accurate predictions of expected utility.
- We have distilled decision making to the simple act of picking actions based on the utility (a simple number) assigned to the outcome.
 - and the probability of each outcome.

So What?

- In many cases we can't simplify things so that we have just a simple function that returns a number (the utility function).
 - so why does thinking about this help?
- It turns out that any agent that is acting rationally can be represented by a utility function.
 - our goal is not to find the function, but to study the implications of the existence of such a function.

Notation

```
A \succ B   A preferred to B   A \sim B   indifference between A and B   A \stackrel{}{\sim} B   B not preferred to A
```

- If actions are deterministic, A and B are specific outcome states.
- nondeterministic actions: A and B are lotteries.
 - probability distribution over set of possible outcomes states.

Lottery

• A Lottery L with outcomes C_1 , ... C_n that can occur with probabilites p_1 , ... p_n :

$$L = [p_1, C_1; p_2, C_2; ... p_n, C_n]$$

• Each outcome C_i can be a state or another lottery.

Simple Lottery (2 outcome)

$$L=[p,A;(1-p),B]$$

Axioms of Utility Theory

- There are some commonsense constraints on the preferences and lotteries.
- These constraints represent (or attempt to represent) what we typically mean by "rational behavior".
- The idea here is to try to define what "rational behavior" is, and then immediately see how hard this can be.

Transitivity

- Given any three states A,B and C, if the agent prefers A over B, and B over C, it must also prefer A over C.
- The following system is not transitive:

```
If B \succ C, then an agent who has C would pay (say) 1 cent to get B

If A \succ B, then an agent who has B would pay (say) 1 cent to get A

If C \succ A, then an agent who has A would pay (say) 1 cent to get C
```


Axioms

 Orderability: There is some ordering to outcomes.

$$(A \succ B) \lor (B \succ A) \lor (A \sim B)$$

 Continuity: In some state B between A and C in preference, there is some lottery over A and C that has the same preference as B

$$A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$$

More Axioms

Substitutability

$$A \sim B \implies [p, A; 1-p, C] \sim [p, B; 1-p, C]$$

Monotonicity

$$A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1-p, B] \succsim [q, A; 1-q, B])$$

Decomposability

 compound lotteries can always be combined into simpler ones.

$$L_1 = [p, A; (1-p), [q, B; 1-q, C]]$$

Rational vs. Irrational

 An agent that violates any of the Axioms is not acting rationally.

- Important Note: The axioms do not mention the utility function!
 - They define rationality by placing constraints on preferences.
 - The assumption is that all agents have some mechanism for computing/acting on preferences.

Utility principle

 If an agent's preferences follow the Axioms, there exists a real valued function U that operates on states (a utility function):

$$U(A) \ge U(B) \Leftrightarrow A \gtrsim B$$

This means that regardless of how the agent operates (whether it explicitly uses a utility function or not), it's behavior can be represented by a utility function.

Maximum Expected Utility principle

 The utility of a lottery is the sum of the probability of each outcome times the utility of the outcome:

$$U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)$$

So What? (again!)

- Knowing that any rational agent can be described by a utility function doesn't necessarily help design an agent.
- There are some situations where it does help.
- Consider an agent in a deterministic environment that does use an explicit utility function:
 - it doesn't matter what the scale of the function is.
 - we can apply any monotonic transformation and see the same behavior.

Money and utility

 Suppose you are faced with the following situation:

You spend 3 days/nights waiting in line to buy a PS3.

A: I will give you \$3000 for the PS3 right now.

B: Or, you can sell your PS3 on ebay:

- with probability 80% you will get \$4000 for it.
- with probability 20% you will get \$0.

What Should You Do?

Another Scenario

I will give you one of two lottery tickets:

A: 20% chance of winning \$4000

B: 25% chance of winning \$3000

Expected Payoffs

(Expected Monetary Value)

• PS3:

A: \$3000

B: (0.2 * \$0) + (0.8 * \$4000) = \$3200

Lottery ticket

A: (0.8 * \$0) + (0.2*\$4000) = \$800

B: (0.75 * \$0) + (0.25 * \$3000) = \$750

If we assume \$ = Utility, do humans act rationally?

A Clearer Example

- You can have \$1,000,000 or we can flip a coin: heads you get \$3,000,000, tails you get nothing.
- What would you choose?
- What would Donald Trump choose?

$$EU(gamble) = \frac{1}{2}U(S_k) + \frac{1}{2}U(S_k + \$3,000,000)$$
$$EU(takethemoney) = U(S_k + \$1,000,000)$$

Money is Funny

- Economists (who created utility theory) have come up with the following:
 - The utility of money is proportional to the log of the amount of money!
- The issue seems to be:

risk-seeking vs. risk-adverse

 This all comes back to the Exploration/Exploitation issue...

Utility Scale

- The actual scale of a utility function is irrelevant.
- Any linear transformation will not change the agent's behavior:

$$U'(S) = k_1 + k_2 U(S)$$

- If actions are deterministic, any monotonic transformation will leave the behavior unchanged.
 - all that matters is the ordering of outcomes.

Utility Scales

- Normalized Utilities:
 - utility of 0 is "worst possible catastrophe"
 - utility of 1 is "best possible outcome"

- Medical and safety analysis
 - Micromort: one in a million chance of death.
 - QALY: Quality Adjusted Life Year