

Radio Interferometric Studies of Cool Evolved Stellar Winds

Eamon O'Gorman

Trinity College Dublin November 15, 2013

Supervisor: Prof. Graham Harper

Overview

- Stellar Winds Across the HR Diagram
- Stellar Radio Emission
- 1) Winds of Red Supergiants (CSE and inner wind)
- 2) Winds of Red Giants (inner wind)
- Summary

Stellar Winds Across the H-R Diagram

Image Credit: S. R. Cranmer

	Red Giants	Red Supergiants	
Mass (M₀)	~ 0.4 → ~ 8	~8 → ~ 40	
Radius (R₀)	~ 50	~ 500	
Lifetime (yr)	~ 10 ⁹	~ 5x10 ⁵	
dM/dt (M₀ yr ⁻¹)	~ 10 ⁻¹⁰	~ 10 ⁻⁵	

	Red Giants	Red Supergiants	
Mass (M₀)	~ 0.4 → ~ 8	~8 → ~ 40	
Radius (R₀)	~ 50	~ 500	
Lifetime (yr)	~ 10 ⁹	~ 5x10 ⁵	
dM/dt (M₀ yr ⁻¹)	~ 10 ⁻¹⁰	~ 10 ⁻⁵	

$$_{\rm P}/{\rm R}_{_{\star}} \sim 10^{-2}$$

$$V_{\infty} < V_{\text{escape}}(R_{\star})$$

$$T_{\text{wind}} < 10^4 \text{ K}$$

- No coronae
- Radiation field peaks in the IR
- Small pulsation amplitudes and little dust
- Unknown mass-loss mechanism

Image Credit: L. Decin

- No coronae
- Radiation field peaks in the IR
- Small pulsation amplitudes and little dust
- Unknown mass-loss mechanism
- Poor knowledge of outflow conditions r, v(r), T(r)
 - Disk averaged observations
 - No wind emission features at UV or optical λ.

Image Credit: L. Decin

- No coronae
- Radiation field peaks in the IR
- Small pulsation amplitudes and little dust
- Unknown mass-loss mechanism
- Poor knowledge of outflow conditions r, v(r), T(r)
 - Disk averaged observations
 - No wind emission features at UV or optical λ.

Image Credit: L. Decin

Thesis Goal: Improve understanding of outflow conditions to gain insight into mass-loss mechanism. → Radio

- No need to measure all the incoming rays at one time.
- Break aperture into N sub-apertures: N(N-1)/2 pairs

- \blacksquare FT of each measurement is a sinusoid with spacing λ/B between successive peaks.
- Build up image of sky by summing many such sinusoids.

1) Field of View: λ/D (D = antenna diameter)

- 1) Field of View: λ/D (D = antenna diameter)
- 2) Resolution: λ/B_{max} (B_{max} = longest projected baseline)

- 1) Field of View: λ/D (D = antenna diameter)
- 2) Resolution: λ/B_{max} (B_{max} = longest projected baseline)
- 3) Resolving out scale: λ/B_{min} (B_{min} = shortest projected baseline)

Stellar Radio Emission

Radio Sky at 4.85 GHz (300ft Green Bank)

$$(P_{radio}/P_{optical})_{o} \sim 10^{-15}$$

 $\textbf{S}_{\upsilon=4.6~GHz} \sim 40~\mu \text{Jy}$ at α Cen (not detectable with 'old' VLA!)

Credit: NRAO/AUI

Stellar Radio Emission

Radio Sky at 4.85 GHz (300ft Green Bank)

Credit: NRAO/AUI

$$(P_{radio}/P_{optical})_{o} \sim 10^{-15}$$

 $S_{_{\upsilon=4.6~GHz}} \sim 40~\mu\text{Jy}$ at α Cen (not detectable with 'old' VLA!)

Winds of Red Supergiants

Betelgeuse (M2 lab)

Log(L/L _☉)	5	
Distance	197 ± 45 parsec	
Photospheric Radius	22.5 mas (950 R_{\odot})	
Mass	~15 M _o	
Mass loss rate	$3 \times 10^{-6} M_{\odot} \text{ yr}^{-1}$	
Photospheric Temperature	3,600 K (cool star)	
Origin	O-type main sequence	
¹² C/ ¹³ C	6 ± 1	

(Decin et al., 2013)

Betelgeuse: Circumstellar Environment

- At least two recent mass loss phases
- Two distinct shells spectrally resolved at 4.6 μm:
 - S2, moving at 17 km s⁻¹
 - S1, moving at 10 km s⁻¹
 - Spatial extent not directly determined

Betelgeuse: Circumstellar Environment

- At least two recent mass loss phases
- Two distinct shells spectrally resolved at 4.6 μm:
 - S2, moving at 17 km s⁻¹
 - S1, moving at 10 km s⁻¹
 - Spatial extent not directly determined
- Plez & Lambert (2002) appear to detect S2 out to 50"
- IRAM 30 m (θ_{HPBW} ~12") fails to resolve S2 shell at 1.3 mm
- Single dish ¹²C¹⁶O mm-observations reveal only high velocity S2 shell.

Betelgeuse: Circumstellar Environment

- At least two recent mass loss phases
- Two distinct shells spectrally resolved at 4.6 μm:
 - S2, moving at 17 km s⁻¹
 - S1, moving at 10 km s⁻¹
 - Spatial extent not directly determined
- Plez & Lambert (2002) appear to detect S2 out to 50"
- IRAM 30 m (θ_{HPRW} ~12") fails to resolve S2 shell at 1.3 mm
- Single dish ¹²C¹⁶O mm-observations reveal only high velocity S2 shell.

Goal: Measure both the spatial scales and the velocities of Betelgeuse's outflow region using $^{12}C^{16}O$ J = 2-1 line as a tracer to sort out puzzling evidence.

CARMA

- Combined Array for Research in Millimeter-wave Astronomy
- Cedar Flat, eastern California (~ 2,200 m)
- 15 element interferometer (9 x 6.1 m + 6 x 10.4 m antennas)
- Merger of two independent arrays: BIMA + OVRO (2007)
- 105 baselines (n(n-1)/2) with 5 configurations
- Three bands: 7 mm, 3 mm and 1.3 mm

Credit: John Carlstrom

Radio Interferometric Studies of Cool Evolved Stellar Winds

mm Observations

Date	Config	Time (hr)	Resolution (")	Max Scale (")
Jun 07	D	8.4	2.1	15
Jul 09	Е	3.2	4.4	19
Nov 09	С	8.4	0.9	6

Individual Configurations

Spherically Symmetric Shell

Spherically Symmetric Shell

Combined Configuration

Combined Configurations

S2 Flow

S2 flow not present at low absolute velocities.

S1 Flow

Conclusions

- High spatial resolution configuration resolves out S2 emission providing S1 profile.
- Multiple CARMA configurations provide the high spatial resolution needed to study the inner S1 flow, while ensuring the extended S2 flow is not resolved out.

	S1	S2
Outflow Velocities (km s ⁻¹)	9.8	14.3
Maximum Spatial Extent (")	4 → 6	17
Age (yr)	400 → 600	1100

- Previous line profiles not horned shaped because:
 - S1 emission is also present
 - S2 emission weak at low absolute velocities

Betelgeuse's Wind Acceleration Region

Betelgeuse's Wind Acceleration Region

(Credit: MERLIN/VLBI national facility)

(Credit: MERLIN/VLBI national facility)

Two unresolved hot spots:

 $T_{e} > 3800 \text{ K}$

 $T_{g} > 5400 \text{ K}$

Where is the photosphere?

Astrometric solution of Harper et al., (2008)

- Hottest source at 4 R_{*}.
- \blacksquare At least ~3 times the predicted T_e .

Astrometric solution of Harper et al., (2008)

- Hottest source at 4 R_{*}.
- At least ~3 times the predicted T_a.

Spherically symmetric semi-empirical model of Harper et al., (2001)

Astrometric solution of Harper et al., (2008)

- Hottest source at 4 R_{*}.
- At least ~3 times the predicted T_a.

Goal: Analyse high resolution archival cm data to search for signatures of hotspots.

Spherically symmetric semi-empirical model of Harper et al., (2001)

VLA

Pie Town Antenna

e-MERLIN

w/l (cm)	Resolution (")
5.2	80 x 60

VLA + Pie Town

w/l (cm)	Resolution (")
0.7	40 x 25
1.3	80 x 40
2.0	120 x 90
3.5	200 x 130
6.2	380 x 270

Variability 1998-2004

w/l (cm)	Variability	
0.7	23%	
1.3	27%	
2.0	32%	
3.5	21%	
6.2	35%	

Thermal Profile

Variability 1998-2004

w/l (cm)	Variability
0.7	23%
1.3	27%
2.0	32%
3.5	21%
6.2	35%

Thermal Profile

Q band (0.7 cm)

Variability 1998-2004

w/l (cm)	Variability	
0.7	23%	
1.3	27%	
2.0	32%	
3.5	21%	
6.2	35%	

Thermal Profile

Q band (0.7 cm)

- No clear signature of hot spots any in any maps.
 - Time dependence?
 - Opacity? $\frac{ au_{5.2\,\mathrm{cm}}}{ au_{1.3\,\mathrm{cm}}} \simeq 20$

Conclusions

- e-MERLIN has revealed two unresolved hotspots separated by 4 R.
- One may be at the position of photosphere
- VLA + Pie Town data in good agreement with Lim et al. (1998)
- Flux and structure variability present in data
- No clear signature of e-MERLIN hotspots in any of the VLA + Pie Town data

Winds of Red Giants

- Atmospheres cannot be spatially resolved at radio wavelengths.
- Wind properties generally traditionally determined by analysing strong UV and optical resonance lines.
- At cm/mm the thermal continuum Planck function depends linearly on T, unlike the UV.

Oontinuum flux measurements at cm/mm: opacity is proportional to $\sim \lambda^{2.1} \, n_e^{} n_{ion}^{}$.

Goal: Observe two 'standard' red giants at all possible cm wavelengths to test and improve existing models.

Red Giant Targets

	Arcturus (α Boo: K2 III)	Aldebaran (α Tau: K5 III)
Distance (pc)	11.3	20.4
Photospheric Radius (R _o)	25.4	44.2
Mass (${\rm M}_{\odot}$)	0.8	1.3
Mass loss rate (M _o yr ⁻¹)	2 x 10 ⁻¹⁰	1.6 x 10 ⁻¹¹
T _{eff} (K)	4290	3970

- Single, non-dusty and non-pulsating
- Nearby, with well known stellar parameters
- Semi-empirical 1-D chromospheric and wind models that can be directly tested

Karl G. Jansky Very Large Array

Credit: NRAO

- 27 25 m antennas, New Mexico. Max baseline ~ 36 km
- Full frequency coverage between 1.0 and 50 GHz
- Continuum sensitivity improvement over the VLA by factors of 5 to 20
- Spectral Capability: A minimum of 16,384 and a maximum of 4,194,304 channels

New Observations

Open Shared Risk Observing (OSRO)

- B config (128 MHz)
- \blacksquare α Boo: S \rightarrow Q band (13th 22nd Feb 2011)
- A unique dataset

Directors Discretionary Time (DDT)

- B config (2 GHz)
- **a** α Boo: S & L band (July 2012)

Red Giant Radio Maps

Example: Aldebaran X (3 cm), C (6 cm), and S (10 cm) band

Spectral Energy Distribution – α Boo

Spectral Energy Distribution – α Boo

Spectral Indices

- If, $n_e \propto r^{-p}$ $T_e \propto r^{-n}$ then, $\alpha = f(p,n)$
- α Tau: wind ~ wind optically thin
- α Boo:Assume constant velocity wind,

$$T_e \propto r^{-1.65}$$

Spectral Energy Distribution – α Boo

Spectral Energy Distribution – α Boo

Conclusions

- Most comprehensive set of multi-λ radio observations of two standard red giants.
- Tested theoretical and semi-empirical atmospheric models.
- Radio spectral indices allow flow properties to be investigated.
 - Optically thin wind for α Tau.
 - Rapidly cooling wind for α Boo.
- New analytical advection wind model for α Boo.

Summary

- Established spatial scales for the two flows in CSE of Betelgeuse
- Evidence for asymmetries in both S1 and S2 flows
- e-MERLIN results are surprising. Episodic mass-loss mechanism in RSGs?
- 1st multi-wavelength radio study of red giants
- Provide wind diagnostics and updated outflow models.
- Understanding of mass-loss is improving and radio interferometry will continue to play a major role in future developments.

Thermal Energy Balance

- Olose to photosphere: $v^2(r) \ll v^2_{esc}(r)$
- To escape star: $v^2(r) > v^2_{esc}(r)$
- Energy added in the form of either heat or momentum

Goal: Create a wind thermal energy balance to investigate possible heating mechanisms in Arcturus' inner outflow region.

Thermal Energy Balance

- Olose to photosphere: $v^2(r) << v^2_{esc}(r)$
- To escape star: $v^2(r) > v^2_{esc}(r)$
- Energy added in the form of either heat or momentum

Goal: Carry out a thermal energy balance to investigate possible heating mechanisms in Arcturus' inner outflow region.

Gas kinetic power law slope

Radio Emission Mechanisms

1) Molecular Emission lines

- Line profiles: flat-topped or horned shaped (optically thin)
- Line full widths typically between 20 and 50 km s⁻¹
- CO: Both O-rich and C-rich stars. Stable.
- Excitation processes for CO: H and H₂ collisions.
 Photo-excitation of vibrational levels by IR photons.

1) Thermal Bremsstrahlung Emission

 \blacksquare Opacity is proportional to $\sim \lambda^{2.1}$

$$F_{\nu} = \frac{\pi k \phi^2 T_b}{2\lambda^2}$$

Source or beam size

