Exponentially weighted averages

Temperature in London

The red line is the exponentially weighted average

Here you can think of V_t as averaging over the past 1/(1-beta) days' temperature.

High beta \rightarrow (eg: green line), the plot is smoother because it keeps track of a longer range of days' temperatures. Adapts slowly to newer temperatures

Very low beta → (eg: red line), very noisy yellow line since you are very susceptible to new temperatures.

Exponentially weighted averages

Intuition for EWAs

Exponentially weighted averages

Explanation of the graphs on the top right

Top graph: just the temperature measurements over time.

Bottom one: exponentially decaying function of weightage factor for each of the elements on top.

So v_100 = element wise product of those two graphs and sum them up