OME: Tutorial, Lecture 4

Question 1

- Commodity 1: $d_1 = 3$
 - Net flow out of b is 3.
 - Net flow in to d is 3.
 - Net flow out of c is 0.
 - Net flow out of p is 0.
 - Flow conservation constrains have been preserved.
- Commodity 2: $d_2 = 7$
 - Net flow out of a is 7.
 - Net flow in to q is 7.
 - Net flow out of b is 0.
 - Net flow out of p is 0.
 - Flow conservation constrains have been preserved.
- Commodity 3: $d_3 = 4$
 - Net flow out of b is 4.
 - Net flow in to c is 4.
 - Net flow out of p is 0.
 - Net flow out of q is 0.
 - Flow conservation constrains have been preserved.

The maximum congestion is $166.\dot{6}\%$ along the edge (b,c).

Question 2

One unit of flow can be removed from the path $\langle b,c \rangle$ and applied to the path $\langle b,p,q,c \rangle$ (the maximum residual capacity along those edges). The edge (b,c) remains the most congested, but the congestion is reduced to (b,c) to 133.3%.

Question 3

The sum of edge capacities leaving the set of sources $\{a,b\}$ is 4+3+5=12, and the total demand in the system is 3+7+4=14. It is therefore impossible to achieve a maximum congestion lower than $14/12=7/6\approx 1.17$.

TODO: more detail may be added to this answer after it is covered in the lecture.