

Impact of climate change on photovoltaic performance

EUPVSEC 2023

18/09/2023

<u>Alexandre MATHIEU</u>, Martin THEBAULT, Samy KRAIEM, Gilles FRAISSE, Simon THEBAULT, Simon BODDAERT, Leon GAILLARD

Agenda

Introduction
Research Question
Methodology
Results
Conclusion

Yearly average temperature projections according to RCP8.5 at Bordeaux

Introduction
Research question
Methodology
Results
Conclusion

Introduction

Due to climate change, environmental variables are inevitably going to change...

Yearly average temperature projections according to RCP8.5 at Bordeaux

Introduction

Due to climate change, environmental variables are inevitably going to change...

... and will result in different PV operating conditions such as, for instance, more temperature losses

Research question

How do climate projections translate to PV performance losses?

Agenda

Introduction
Research Question
Methodology
Results
Conclusion

PV installation

 $- Tilt = 30^{\circ}$

Introduction Research question Methodology Results Conclusion

Methodology

Climate data

processing

15 climate models

Reference ERA5

dataset (1981 – 2019)

PR Comparison:

1990-2020 vs 2020-2050 vs 2050-2080

Introduction Research question Methodology Results Conclusion

(Faiman, 2008)

Reference ERA5 15 climate models dataset (1981 – 2019) Eurocordex

Climate data - Bias correction method (Panofsky, 1968) processing

- Hourly interpolation (Hyman, 1983)

Methodology

Mainly supported by pylib.

W. F. Holmgren, C. W. Hansen, and M. A. Mikofski, 'pvlib python: a python package for modeling solar energy systems', J. Open Source Softw., vol. 3, no. 29, p. 884, 2018, doi: 10.21105/joss.00884. PR Comparison:

 P_{dc_aged}

Methodology, natural ageing

Introduction
Research question
Methodology
Results
Conclusion

Kaaya's model*

$$\eta_{ageing}(y) = 1 - \exp\left(-\left(\frac{\Gamma}{k(y) \cdot (y - y_0)}\right)^{\mu}\right)$$

with:

- y_0 the installation year
- (Γ, μ) empirical constants
- k(y) the total degradation rate

Methodology, natural ageing

Kaaya's model*

$$\eta_{ageing}(y) = 1 - \exp\left(-\left(\frac{\Gamma}{k(y) \cdot (y - y_0)}\right)^{\mu}\right)$$

with:

- y_0 the installation year
- (Γ, μ) empirical constants
- k(y) the total degradation rate

Actually, **k(y)** depends on environmental variables

$$k(y) = f(k_H(y), k_P(y), k_{Tm}(y))$$

Hydrolysis-driven degradation

•
$$k_H(y) = A_H \cdot RH(y)^n \cdot exp\left(-\frac{E_{ah}}{k_B \cdot T_{mod}(y)}\right)$$

Photo-degradation

$$\bullet k_P(y) = A_p \cdot UV(y)^x \cdot (1 + RH(y)^n) \cdot exp\left(-\frac{E_{ap}}{k_B \cdot T_{mod}(y)}\right)$$

Thermo-mechanical degradation

$$\bullet k_{T_m}(y) = A_t \cdot C_N \cdot (273 + \Delta T(y))^{\theta} \cdot exp\left(-\frac{E_{at}}{k_B \cdot T_{max}(y)}\right)$$

^{*} Ismail, Kaaya & Köhl, Michael & Mehilli, Amantin - Panos & Sidrach-de-Cardona, M. & Weiss, Karl. (2019). Modeling Outdoor Service Lifetime Prediction of PV Modules: Effects of Combined Climatic Stressors on PV Module Power Degradation. IEEE Journal of Photovoltaics. PP. 1-8. 10.1109/JPHOTOV.2019.2916197.

^{**} Pictures: Cécile Miquel et al. Dysfonctionnement électriques des installations photovoltaï ques: points de vigilance. PTVIGI1801. AQC - HESPUL, Oct. 1, 2018 et Marc Köntges et al. Review of Failures of Photovoltaic Modules. IEA-PVPS T13-01:2014. IEA PVPS T13, 2014.

Methodology, natural ageing

Kaaya's model*

$$\eta_{ageing}(y) = 1 - \exp\left(-\left(\frac{\Gamma}{k(y) \cdot (y - y_0)}\right)^{\mu}\right)$$

with:

- y_0 the installation year
- (Γ, μ) empirical constants
- k(y) the total degradation rate

Actually, **k(y)** depends on environmental variables

$$k(y) = f(k_H(y), k_P(y), k_{Tm}(y))$$

Parameters extracted from Kaaya's study 2019*, on an open rack installation, mc-Si, with polymer backsheet and aluminium frame

Hydrolysis-driven degradation

•
$$k_H(y) = \mathbf{A}_H \cdot RH(y)^{\mathbf{N}} \cdot exp\left(-\frac{\mathbf{E}_{ah}}{k_B \cdot T_{mod}(y)}\right)$$

Photo-degradation

•
$$k_P(y) = \mathbf{A_p} \cdot UV(y)^{\mathbf{x}} \cdot (1 + RH(y)^{\mathbf{y}}) \cdot exp\left(-\frac{\mathbf{E_{ap}}}{k_B \cdot T_{mod}(y)}\right)$$

Thermo-mechanical degradation

•
$$k_{T_m}(y) = \mathbf{A_t} \cdot C_N \cdot (273 + \Delta T(y))^{\mathbf{0}} \cdot exp\left(-\frac{\mathbf{E_{at}}}{k_B \cdot T_{max}(y)}\right)$$

^{*} Ismail, Kaaya & Köhl, Michael & Mehilli, Amantin - Panos & Sidrach-de-Cardona, M. & Weiss, Karl. (2019). Modeling Outdoor Service Lifetime Prediction of PV Modules: Effects of Combined Climatic Stressors on PV Module Power Degradation. IEEE Journal of Photovoltaics. PP. 1-8. 10.1109/JPHOTOV.2019.2916197.

^{**} Pictures: Cécile Miquel et al. Dysfonctionnement électriques des installations photovolta iques: points de vigilance. PTVIGI1801. AQC - HESPUL, Oct. 1, 2018 et Marc Köntges et al. Review of Failures of Photovoltaic Modules. IEA-PVPS T13-01:2014. IEA PVPS T13. 2014.

Methodology, PR

$$PR(y) = \eta_{power}(y) \cdot n_{ageing}(y)$$

Methodology, PR

$$PR(y) = \eta_{power}(y) \cdot n_{ageing}(y)$$

$$\eta_{power}(y) = \frac{\int_{y} P_{out}(t) dt / \int_{y} G_{POA}(t) dt}{P_{0} / G_{ref}}$$

 $P_{out}(t)$ computed with PVWatts Model*

$$\eta_{ageing}(y) = 1 - \exp\left(-\left(\frac{\Gamma}{k(y)\cdot(y-y_0)}\right)^{\mu}\right)$$

Kaaya's Model**

Agenda

Introduction
Research Question
Methodology
Results
Conclusion

Results, Bordeaux case study

Introduction
Research question
Methodology
Results
Conclusion

$$PR(y) = \eta_{power}(y) \cdot \eta_{ageing}(y)$$

 η_{power} over time of 15 climate projections on 2020-2050 and 2050-2080 at Bordeaux

η_{power} trend over time:

- Overall decrease
- More volatile

Results, Bordeaux case study

Introduction
Research question
Methodology
Results
Conclusion

$$PR(y) = \eta_{power}(y) \cdot \eta_{ageing}(y)$$

 $\eta_{ageing,hist}(y)$ calculated with $k_{hist} = 0.34$ year⁻¹

Slight decrease of performance on η_{ageing}

Average decrease over all projections after 30 years compared to $\eta_{ageing,hist}$

2020-2050	-0.4%	
2050-2080	-0.6%	

Results, other French cities

Results, other French cities

PR on 15 climate projections for different cities for a 30-year lifetime installation

Introduction
Research question
Methodology
Results
Conclusion

Results, other French cities

 Δ_{PR} on 15 climate projections on different cities for different climate periods compared to 1990-2020 for a 30-year lifetime installation

Introduction
Research question
Methodology
Results
Conclusion

Very similar trends are observed for all cities with a PR median decreasing by:

- 0.5-1% on 2020-2050 vs 1990-2020
- 1.5-2% on 2050-2080 vs 1990-2020

In this study, a modeling chain quantifies the impact of climate change.

In this study, a modeling chain quantifies the impact of climate change.

The impact on PV goes through **two** factors:

- Decrease in instantaneous power
- Accelerated aging

In this study, a modeling chain quantifies the impact of climate change.

The impact on PV goes through **two** factors:

- Decrease in instantaneous power
- Accelerated aging

In the case studies, the impact of the RCP8.5 future projections has repercussions under 3% on the Performance Ratio.

Questions / Comments

Backup slides

Results, Bordeaux study case

Environmental variables

2050-2080 vs 1990-2020 (during daytime)

- <u>Irradiation</u>: Slight increase with +76 MWh/m2/year on average at most for all projections
- Relative humidity: Slight decrease with -2.2% on average at most for all projections

The cumulative distribution function of the hourly irradiance [W/m²] during daytime

The cumulative distribution function of the hourly relative humidity [%] during daytime

Results, Bordeaux study case

Environmental variables

2050-2080 vs 1990-2020 (during daytime)

- <u>Irradiation</u>: Slight increase with +28 kWh/m2/year on average at most for all projections
- Relative humidity: Slight decrease with -2.2% on average at most for all projections
- Module Temperature:
 - Quantile 5%: 1.5°C
 - Average: +2°C
 - Quantile 95%: +3.5°C

The cumulative distribution function of the hourly module temperature [°C] during daytime

Results, Bordeaux study case

$$PR(y) = \eta_{power}(y) \cdot \eta_{ageing}(y)$$

 η_{power} over time of 15 climate projections on 2020-2050 and 2050-2080 at Bordeaux

Historical $\eta_{power,hist}$ (1990-2020) = 97.1 %

 η_{power} tendencies over time:

- Overall decrease
- More volatile

Standard deviation		
1990-2020 (ERA5 dataset)	0.43 %	
2020-2050	0.49% (median) [0.37%, 60%]	
2050-2080	0.59% (median) [0.41%, 0.67%]	