Building Features from Nominal Data

IMPLEMENTING APPROACHES TO WORKING WITH CATEGORICAL DATA

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Categorical data vs. continuous data

Nominal vs. ordinal data

Represent categorical data using label encoding and one-hot encoding

Compare and contrast label encoding vs. one-hot encoding

Implementing categorical feature representations

Prerequisites and Course Outline

Prerequisites

Basic Python programming

Understanding of simple regression

Basic understanding of ML, features and targets

Prerequisite Courses

Understanding Machine Learning with Python

Building Your First scikit-learn Solution

Building Regression Models with scikitlearn

Course Outline

Working with categorical data

Dummy coding and one-hot coding

Contrast coding techniques

Discretizing data using bin counting and feature hashing

Whales: Fish or Mammals?

Mammals

Members of the infraorder *Cetacea*

Fish

Look like fish, swim like fish, move with fish

Whales: Fish or Mammals?

ML-based Binary Classifier

ML-based Binary Classifier

ML-based Binary Classifier

x Variables

The attributes that the ML algorithm focuses on are called features

Each data point is a list - or vector - of such features

Thus, the input into an ML algorithm is a feature vector

Feature vectors are usually called the x variables

y Variables

The attributes that the ML algorithm tries to predict are called labels

Labels are usually called the y variables

Types of labels

- categorical (classification)
- continuous (regression)

Types of Data

Categorical

Male/Female, Month of year

Numeric (Continuous)

Weight in lbs, Temperature in F

All other forms of data, such as text and image data, must be converted to one of these forms

Numeric (Continuous) vs. Categorical Data

Numeric (Continuous)

E.g. height or weight of individuals

Can take any value

Predicted using regression models

Always can be sorted on magnitude

Categorical

E.g. day of week, month of year, gender, letter grade

Finite set of permissible values

Predicted using classification models

Categories may or may not be sortable

Use regression to predict numeric (continuous) y-variables

Use classification to predict categorical (discrete) y-variables

Understanding Data Types is Important

Preprocessing of variables is different for numeric and categorical data

Certain statistical measurements may not apply for certain data types

Visualizations to convey information will be different in exploratory data analysis

Numeric Data

Numerical Data

Discrete

Cannot be measured but can be counted

Continuous

Cannot be counted but can be measured

Numerical Data

Discrete

Cannot be measured but can be counted

Continuous

Cannot be counted but can be measured

Number of visitors in an hour, number of heads when a coin is flipped 100 times

Numerical Data

Discrete

Cannot be measured but can be

Continuous

Cannot be counted but can be measured

Height of an individual, home prices, stock prices

"Usual" numeric data, expressed as ratio to 1 e.g. 7 == 7:1

All arithmetic operations apply: addition, subtraction, multiplication and division

E.g. weight of 20 lbs is twice as much as a weight of 10 lbs

Ratio scale data has a meaningful zero point (the only type of data in this chart that does)

Weight of 0 lbs is equivalent to "no weight"

Ordered units that have the same difference i.e. the interval

Data still numeric, but now multiplication and division no longer make sense, and zero point no longer meaningful

Difference between 90 Fahrenheit and 30 Fahrenheit is equal to 60 Fahrenheit

But temperature of 90 Fahrenheit is not thrice temperature of 30 Fahrenheit

O Fahrenheit is not equivalent to "no temperature"

Numeric data can draw from an unrestricted range of continuous values

Can calculate mean, standard deviation, correlation etc.

Visualizing Continuous Data

Histograms for univariate data

Box plots for statistical distributions

Scatter plots for relationships

Numeric Features

Can represent any kind of information

The range of each feature will be different

The average and dispersion of features will also be different

Comparing different features is hard

Machine learning algorithms typically do not work well with numeric data with different scales

Feature Scaling

Scaling

Standardization

Feature Scaling

Scaling

Standardization

Numeric values are shifted and rescaled so all features have the same scale i.e. within the same minimum and maximum values

Feature Scaling

Scaling

Standardization

Centers data round the mean and divides each value by the variance so all features have 0 mean and unit variance

Categorical data can only draw from a specific, restricted set of values

Not meaningful to calculate mean, standard deviation, correlation

Fine to tabulate categorical data using count frequencies and percentages

Ordinal data is categorical, but can still be ordered

E.g. month of the year, ratings on a scale of 1 to 5

Order exists, but differences are not necessarily meaningful

E.g. Differences in quality between three, two, one, and no Michelin stars for a restaurant are not uniform

Even less in common with numeric data - cannot even be ordered

Ordinal data can at least be <u>ord</u>ered; <u>nominal data are simply names</u>

Visualizing Categorical Data

Pie chart for proportions

Bar chart for frequency counts in categories

Categorical data has to be numerically encoded before it can be used in ML models

Representing Categorical Data

['New York', 'London', 'Paris', 'Bangalore']

Categorical Data

Classes often represented in string format

Categories as Nominal Data

Label encoding

Numeric id for each category; single column suffices

One-hot encoding

Separate column with 1 or 0 for presence/absence of each category

Categories as Nominal Data

Label encoding

Numeric id for each category; single column suffices

One-hot encoding

Separate column with 1 or 0 for presence/absence of each category

Represent each category using some numeric encoding

Represent each category using some numeric encoding

Represent each category using some numeric encoding

```
32

wo

New York', 'London', 'Paris', 'Bangalore']
```

Represent Each Category as a Number

Represent Each Category as a Number

```
1056

| W3
| | |
| (New York', 'London', 'Paris', 'Bangalore')
```

Represent Each Category as a Number

Categories as Nominal Data

Label encoding

Numeric id for each category; single column suffices

One-hot encoding

Separate column with 1 or 0 for presence/absence of each category

['New York', 'London', 'Paris', 'Bangalore']

Categorical Data

Classes often represented in string format

 $x_i = 0 \text{ or } 1$

One-hot Encoding of 1 Category

Represent each category with a binary variable

 $x_i = 0 \text{ or } 1$

One-hot Encoding of 1 Category

Need as many columns as categories in the data

One-hot Encoded Cities

New York	London	Paris	Bangalore

Category	New York	London	Paris	Bangalore
New York				
London				
Paris				
Bangalore				

Category	New York	London	Paris	Bangalore
New York	1	0	0	0
London				
Paris				
Bangalore				

Category	New York	London	Paris	Bangalore
New York	1	0	0	0
London	0	1	O	O
Paris				
Bangalore				

Category	New York	London	Paris	Bangalore
New York	1	0	O	0
London	O	1	0	0
Paris	O	0	1	0
Bangalore				

Category	New York	London	Paris	Bangalore
New York	1	0	O	0
London	O	1	0	0
Paris	O	0	1	0
Bangalore	0	0	0	1

Category	New York	London	Paris	Bangalore
New York	1	0	0	0
London	O	1	O	0
Paris	O	0	1	0
Bangalore	0	0	0	1

Label Encoding vs. One-hot Encoding

Words as Nominal Data

Label encoding

Numeric id for each word; single column suffices

One-hot encoding

Separate column with 1 or 0 for presence/absence of each word

Label Encoding vs. One-hot Encoding

Label Encoding

Single column to represent categories

Each category takes numeric value

More concise

One-hot Encoding

Need as many columns as categories in the data

Each category is a row with single 1 rest Os

Verbose - especially as number of categories grows

Label Encoding vs. One-hot Encoding

Label Encoding

Numeric ids present illusion of sortability

Ideally should use only for ordinal categorical data

One-hot Encoding

One-hot encoded vectors are clearly not sortable

Can use for both nominal and ordinal categorical data

ML-based Binary Classifier

ML-based Binary Classifier

ML-based Binary Classifier

Label Encoding vs. One-hot Encoding

Label Encoding

Often used for labels, even with nominal data

Usually for y-variables (labels)

Prevent classification from becoming multi-label problem

One-hot Encoding

Usually used for features, not labels

Usually for x-variables

Would lead to overly complex multi-label problem if used for y-variables

Type of Classification

Types of Classification Tasks

Binary

"Yes/No", "True/False", "Up/Down"

Output is binary categorical variable

Multi-label

("True", "Female"), ("False", "Female")

Output is tuple of multiple binary variables (not disjoint)

Multi-class

Digit classification

Output variable takes 1 of N (>2) values

Multi-output

("Sunday", "January")

Multiclass + multilabel

Multi-class Classification

Many classification algorithms are inherently binary

- Logistic regression
- Support Vector Machines

Inherently binary classifiers can be generalized for multi-class classification

Multi-class Classification

Some other algorithms are inherently multi-class

- Naive Bayes

Multi-class Digit Classification

One-versus-all: Train 10 binary classifiers

- O or not O
- 1 or not 1
- 2 or not 2
- Predicted label = output of detector with highest score

Multi-class Digit Classification

One-versus-one: Train 45 binary classifiers

One detector for each pair of digits

- 0 vs 1, 0 vs 2, 0 vs 3 and so on
- 1 vs 2, 1 vs 3 and so on

For N labels, need N(N-1)/2 classifiers

 Predicted label = output of digit that wins most duels

If you would like to one-hot encode your labels in scikit-learn - use LabelBinarizer, not OneHotEncoder

Binarizer

Converts continuous variable into a binary categorical variable based on a threshold specified by user

Binarizer

Continuous input

Binary categorical output

Label Binarizer

Binarize labels in one-vs-all fashion; convert multi-class labels to binary labels

Label Binarizer

E.g. to binarize days of week

- Create seven binary variables
- Variable 1: Is it Sunday? Yes or no
- Variable 2: Is it Monday? Yes or no

- ...

Inter-operates with all regression and binary classification algorithms

Converting categorical data to numeric data using one-hot-encoding

Converting categorical data to ordinal data using label encoding

Using the label binarizer to binarize labels

Using the multi-label binarizer to represent multiple categories

Summary

Categorical data vs. continuous data

Nominal vs. ordinal data

Represent categorical data using label encoding and one-hot encoding

Compare and contrast label encoding vs. one-hot encoding

Implementing categorical feature representations