Práctica No. 4

• Sección de Memoria (Prueba de memoria RAM)

Objetivo: El alumno diseñará e implementará un decodificador para la memoria de la práctica 3 y hará uso de los procedimientos de la práctica 3 para probar la memoria.

Material: - Memoria RAM y Latch para T-Juino.

Equipo: - Computadora Personal

Tarjeta T-Juino.

Protoboard

- Compuertas lógica (según diseño).

- Una Memoria RAM (2K u 8K)

Teoría: * * * Decodificadores a Memoria * * *

Figura 1. Esquema de Memoria de T-Juino.

Desarrollo:

- Diseñe e implemente un decodificador de memoria para que una memoria RAM sea vista por el procesador en un determinado rango de memoria (el rango se define durante la sesión de Laboratorio).
- 2) Realice los cambios necesarios al programa de la práctica 3 para realizar la prueba de la nueva memoria.
 - a) Probar el rango correspondiente de la RAM. ¿Qué es lo que resulta de la prueba?
 - b) Probar un rango no correspondiente. ¿Qué es lo que resulta de la prueba?

Conclusiones y Comentarios.

Bibliografía

uC ATmega1280 Memoria BIOS 4K (Interna) Ducto de Datos Ducto de Datos Ducto de Direcciones Ducto de control Ducto de control Decodificador WR OE CS

Práctica No. 4. Continuación

El enfoque de este texto es solo para el análisis y diseño del decodificador. El decodificador solo estará compuesto por compuertas lógicas.

Les recomiendo que revisen el siguiente esquemático <u>TJuino_sch.pdf</u>. El conector de interés es *XIO_HL*, ahí podrán encontrar las terminales de A0-A15, ALE, /RD y /WR; de las cuales varias serán las entradas del decodificador.

Y solo para recapitular, el rango de direcciones queda asignadas de la siguiente forma en la virtualización actual del 8088 sobre el TJuino:

Para esta práctica, se supondrá que la memoria externa que se conectara al decodificador es de **2KB** (en caso de que la memoria que consigan sea de mayor capacidad, se tendrán que aterrizar las terminales de A11 en adelante de la **memoria**, para que funja como una de 2KB). Y también esta memoria tendrá un **rango de direcciones espejo** (de las cuales la longitud también será de 2KB).

Cada alumno es asignado un cierto rango de direcciones (al igual que las direcciones espejo) y son las siguientes:

Dirección Inicial	Dirección Inicial Espejo	Alumno (Jueves/Viernes)
0x3800	0x7800	Adame / Astorga
0x5000	0xD000	Alvarez / Castro
0x5800	0x7800	Baez / Chavez
0x6000	0x4000	Briseño / Cortes
0x6800	0xE800	Camacho / Gonzalez
0x7000	0x5000	Castrejon / Hernandez
0x7800	0xF800	Chacon / Inzunza
0x9000	0xB000	Frias / Martinez
0x9800	0xB800	Gutierrez / Mendias
0xA000	0x8000	Martinez / Nieblas
0xA800	0x2800	Najera / Osuna
0xB000	0x3000	Palacios / Parra
0xB800	0xA800	Palafox / Perez
0xC000	0x4000	Patiño / Reyes Ra.
0xD000	0x9000	Silva / Reyes Ro.
0xD800	0x5800	Torres R. / Rodriguez
0xE000	0x6000	Rubio
0xE800	0xC800	Sanchez
0x4800	0xC800	Torres A.
0xA800	0xA000	Trinidad

Esto quiere decir que van a existir dos zonas de memorias vistas por el procesador, como una sola región de 2KB en la memoria física. Como lo muestra el siguiente diagrama:

Mapa de Memoria del Procesador

