

TEORIA - AULA A1 Física I

Competências que você irá desenvolver nesta aula

- Identificar as forças nos sistemas mecânicos
- Representar as forças num diagrama simplificado

Determinar as forças nos sistemas mecânicos é fundamental para o estudo da Estática e da Dinâmica dos corpos.

Podemos definir força como o agente físico capaz de mudar o estado de movimento de um corpo

Sistema e Vizinhança

- Identificar o corpo ou sistema de corpos que interessa estudar.
- 2) Reconhecer a vizinhança e as interações com ela.
 - 3) Vínculo é a conexão entre dois corpos.

Roda dianteira da bicicleta

1) Sistema – Roda dianteira.

2) Vizinhança:

Chão,

Suporte do eixo,

Sapatas do freio,

Planeta (Campo gravitacional).

Corpo sendo içado

1) Sistema – Corpo sendo içado.

2) Vizinhança:

Cabos,

Planeta (Campo gravitacional).

Haste de uma plataforma elevatória

1) Sistema – Haste.

2) Vizinhança:

Pinos,

Planeta (Campo gravitacional)

Suporte eixo girante.

3ª lei de Newton

Ação e reação

Corpos e vizinhança interagem segundo a 3ª lei de Newton

- Têm mesma direção, sobre a mesma reta suporte
- Têm sentidos opostos
- Têm o mesmo módulo
- Agem, sempre, em corpos distintos

3ª lei de Newton

A toda ação, uma força, corresponde uma reação, também uma força, de igual intensidade, mesma direção e sentido contrário, na mesma reta suporte, agindo no corpo responsável pela ação e provocada por aquele que sofre a ação.

Diagrama do corpo livre - DCL

É o esquema de representação das forças, num diagrama simplificado, do corpo estudado.

Todas as forças que agem no corpo devem ser representadas, relativamente, no ponto de aplicação

No DCL, faz-se uma representação do corpo, livre dos vínculos, mas com a representação das forças que esses vínculos são capazes de executar.

Diagrama do corpo livre - DCL

É a representação das forças 1) Sistema – Roda dianteira. num diagrama simplificado do corpo estudado. 2) Vizinhança: Chão, Suporte do eixo, Sapatas do freio, Planeta (Campo gravitacional). 3) DCL

Fat

Principais vínculos

Física I EFB205

Força Peso

Ação no corpo que circunda a Terra e reação está na própria Terra.

Força de campo.

Representação da força P no DCL homem

DCL corpo

Força Normal

Força normal

- Força de contato
- Age no ponto de apoio entre o corpo e a superfície
- Tem origem no plano de apoio
- Pode ter valor igual à força peso mas n\u00e3o necessariamente

 Pode estar na vertical mas não necessariamente

Força Normal

Representação da força normal no DCL de três casos

Força Normal

Representação da força normal no DCL de um corpo que gira vinculado à parede do tambor de uma máquina de lavar roupas

Apoio sobre superfície lisa

Suportes deslizantes

Vínculo	Representação no DCL
	N N

Exemplos Práticos de Suportes Deslizantes

Esteira Transportadora

Roletes

Escorredor de Garrafas

Ponte Móvel

Roletes no apoio

EXERCÍCIO 1 – Roda subindo degrau

EXERCÍCIO 1 – Roda subindo degrau

Forças de tração em cabos, corda, fios, correntes

A intensidade da força é a mesma em dois pontos do cabo.

Os sentidos são opostos.

Forças de tração em cabos, corda, fios, correntes

MAUÁ

Forças de tração em cabos, corda, fios, correntes

Forças de tração em cabos, corda, fios, correntes

EXERCÍCIO 2 - Forças de tração em cabos, corda, fios, correntes

EXERCÍCIO 2 - Forças de tração em cabos, corda, fios, correntes

Força de atrito

Sentido oposto ao movimento, ou tentativa de movimento do corpo, relativo à superfície em que está em contato.

$$F_{at} = \mu N$$

Força de atrito

Justificativa

Superfície Lisa e Rugosa

Superfície Rugosa

Rolo de pintura, aplicação de textura em parede

www.auladearte.com.br

Força de atrito

Força de atrito

EXERCÍCIO 3 - Força de atrito

Espelho encostado em parede lisa

EXERCÍCIO 3 - Força de atrito

Espelho encostado em parede lisa

DCL de espelho encostado em parede lisa

Comentário - EXERCÍCIO 3 – Força de atrito

Espelho
encostado em
parede lisa
E se a parede
fosse rugosa??

DCL de espelho encostado em parede lisa

Reação em articulação

Duas situações

- Pino fixo Com torque na articulação
- Pino livre Sem torque na articulação

Suporte fixo, pino fixo e engaste

Exemplo Prático de Engaste e Suporte fixo

Figura 2 - Vigas e pilares.

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672007000200014

www.habitissimo.com.br

Haste articulada em A, com pino livre

Representação da reação na articulação

DCL da haste sem torque na articulação

Exemplo de articulação de pino livre

Haste articulada em A, com pino fixo

Representação da reação na articulação

DCL da haste com torque na articulação

OBSERVAÇÃO - O
CÁLCULO DE TORQUE
SERÁ ABORDADO NO
FINAL DO BIMESTRE

DCL do ante-braço da menina

EXERCÍCIO 6 – Haste articulada a) pino livre e, b) com pino fixo

Haste articulada em A

EXERCÍCIO 6 – Haste articulada a) pino livre e, b) com pino fixo

Haste articulada em A

a) DCL da haste sem torque na articulação

b) DCL da haste com torque na articulação

Referências

MERIAN, J. L.; KRAIGE, L. G. ESTÁTICA. 4. ed. Rio de Janeiro: LTC, 1999. 368 p.

WICKERT, J. Introdução à Engenharia Mecânica. São Paulo: Thompson Learning, 2007. 357 p.

YOUNG, H. D. e FREEDMAN, R. A. FÍSICA I. 12^a ed., v.1, São Paulo: Adison Wesley, 2003.

Faça o DCL dos blocos.

Exercícios

Faça o DCL dos blocos A e W e do nó. Há atrito entre o bloco A e a superfície que o apóia.

Faça o DCL dos blocos A e B. Há atrito entre todas as superfícies em contato.

Faça o DCL da viga em I uniforme e da carga.

Faça o DCL para a caixa homogênea de massa m. Há atrito entre os pontos B e C.

Faça o DCL para o poste. Há atrito entre os pontos de contato A e B.

