SATHI Project: System Architecture and Workflow

1. System Architecture Overview

The **SATHI Project** is built around a **Retrieval-Augmented Generation (RAG)** system. Its main goal is to let users ask questions through a chat interface and get accurate answers based on **private PDF documents**.

The system runs in two main phases:

Phase 1: Data Ingestion and Indexing

This is a **batch process** that prepares all the documents for efficient search and retrieval later on.

1. Document Loading:

The system scans the /data directory and finds all PDF files.

2. Text Extraction & Chunking:

Each PDF is processed using pdf processor.py, which extracts the text.

The text is then split into smaller, slightly overlapping chunks which helps capture semantic meaning more effectively during embedding.

3. Vectorization (Embedding Generation):

Each chunk is converted into a **numerical vector** using the nomic-embed-text model (through ollama client.py).

These vectors represent the meaning of each chunk in high-dimensional space.

4. Indexing in Qdrant:

The vectors (and their corresponding text chunks) are stored in a **Qdrant vector database** using qdrant_manager.py.

Qdrant indexes the data so we can quickly find semantically similar text chunks later on.

Phase 2: Query Processing and Generation (RAG Pipeline)

This phase runs in **real time** whenever a user interacts with the chat interface.

1. User Query:

The user enters a question in the Streamlit web app (app.py).

2. FAQ Cache Check:

The system first checks if the query matches any preloaded FAQs (via faq_loader.py). If it finds a match, it instantly returns the cached answer — skipping the more complex retrieval process.

3. Query Vectorization:

If no FAQ match is found, the system generates an **embedding vector** for the user's query using the same model as before (nomic-embed-text).

4. Semantic Search (Retrieval):

That vector is compared with the document embeddings stored in Qdrant to find the top k most relevant text chunks.

5. Prompt Augmentation:

The system combines these retrieved text chunks (the context) with the user's original question to create a single, well-structured prompt.

6. Answer Generation:

This augmented prompt is sent to the local **LLM** (llama3.2:1b) via ollama_client.py. The model generates a response, streamed token-by-token to the Streamlit interface to simulate a "typing" effect.

2. Operational Workflows

Workflow 1: Data Ingestion

This process loads and indexes all the PDF data into Qdrant.

Trigger:

Run manually using:

python ingest.py

Steps:

- 1. ingest.py scans the ./data folder for all .pdf files.
- 2. Each file is processed with pdf_processor.extract_text_from_pdf() to extract text.
- 3. The text is chunked using pdf_processor.simple_text_splitter() based on the CHUNK SIZE and CHUNK OVERLAP settings.
- 4. A sample embedding is created via ollama_client.get_ollama_embedding() to determine the vector dimension.
- 5. A connection is established to Qdrant using qdrant_manager.get_qdrant_client().
- 6. The Qdrant collection (from config.py) is recreated, this clears all old data to ensure a clean index.
- 7. qdrant_manager.upsert_chunks() runs with a ThreadPoolExecutor to parallelize embedding generation and upsertion in batches.

Outcome:

The Qdrant database is now fully populated with embeddings of all document chunks and ready for semantic queries.

Workflow 2: Application Execution (Query Pipeline)

This describes what happens when the user interacts with the live app.

Trigger:

Run using:

streamlit run app.py

Steps:

- The Streamlit app starts and initializes a Qdrant connection.
 If the target collection doesn't exist, it shows an error asking you to run ingest.py first.
- 2. FAQs are loaded from faqs.txt via faq_loader.load_faqs().
- 3. When the user submits a question (st.chat input()):
 - Path 1 (FAQ): If the question matches an FAQ, the cached answer is returned immediately.
 - o Path 2 (RAG Pipeline):
 - Generate an embedding for the query (get_ollama_embedding()).
 - 2. Retrieve top *k* similar chunks from Qdrant (search_qdrant()).
 - 3. Construct an augmented prompt with the retrieved context.
 - 4. Stream a generated answer from llama3.2:1b using query_llama3().
 - 5. As tokens stream in, the app updates the chat display live.
- 4. The full conversation (query + answer) is stored in st.session_state.messages for the session.

3. Module and Component Overview

Group 1: Application & Documentation

app.py – The main frontend app built with Streamlit.
 Handles chat state, user input, the RAG logic, and streaming responses.

• **README.md** – Developer documentation covering setup, dependencies, and commands for both ingestion and app execution.

Group 2: Data Ingestion

• **ingest.py** – Orchestrates the ETL pipeline:

Extract: Read and parse PDFs.

o **Transform:** Generate embeddings.

Load: Store embeddings in Qdrant.

Group 3: Core Services (API Clients)

- **ollama_client.py** Communicates with the local Ollama API.
 - o get_ollama_embedding() Calls /api/embeddings to generate embeddings.
 - o query_llama3() Calls /api/generate (with streaming) to get LLM responses.
- qdrant_manager.py Handles all database operations with Qdrant.
 - o get qdrant client() Returns a configured client.
 - upsert_chunks() Handles parallel embedding and batch uploads.
 - search_qdrant() Performs semantic search and returns matching text chunks.

Group 4: Data Processing & Utilities

- pdf_processor.py Handles PDF reading and text chunking.
 - extract text from pdf() uses pypdf to read and combine text from pages.
 - simple_text_splitter() splits text into overlapping chunks for semantic continuity.
- faq_loader.py Loads FAQs from a formatted text file (faqs.txt) into a dictionary for quick lookup.
- **config.py** Stores key configurations such as service URLs, model names, and collection identifiers.
- **requirements.txt** Lists project dependencies (streamlit, pypdf, qdrant-client, requests, etc.) to ensure consistent environments.