2.3.1. EDOs de variáveis separáveis

Uma das equações básicas usadas em circuitos elétricos é

$$L\frac{dI}{dt} + RI = E(t)$$

(lei de Kirchhoff) onde L e R são constantes (representando a indutância e a resistência, respetivamente), I(t) a intensidade da corrente (no tempo t) e E(t) a voltagem. Resolva o PVI com condição inicial I(0) = 1 considerando $E(t) = E_0$ (constante).

Também podemos resolver o PVI usando transformada de Laplace.

E se
$$E(t) = E_0 e^{kt}$$
 ou $E(t) = E_0 \sin(\omega t)$?

Um dos tipos de equações diferenciais mais importantes são as chamadas equações lineares, as quais se podem escrever na forma

$$a_0(x)y' + a_1(x)y = b(x)$$

onde a_0 , a_1 , b são funções definidas num certo intervalo I, com $a_0(x) \neq 0$ para todo $x \in I$. Quando b é a função nula (em I), a equação diz-se incompleta ou homogénea. Dividindo ambos os membros por $a_0(x)$, podemos também escrever a equação linear na forma

$$y' + p(x)y = q(x).$$

A ideia é multiplicar ambos os membros da equação por uma função μ adequada por forma a que

$$\mu(x) [y' + p(x)y] = [\mu(x)y]'.$$

Se for possível encontrar uma tal função μ , a equação converte-se na equação

$$(\mu(x)y)' = \mu(x)q(x)$$

que se resolve por primitivação direta do lado direito.

Importa então saber como determinar uma tal função μ (dita *fator integrante*).

Mostre que $\mu = Ce^{P(x)}, \ C \in \mathbb{R}$ onde P é uma primitiva da função p.

Em geral, podemos tomar C = 1 e escolher o fator integrante

$$\mu(x)=e^{P(x)}.$$

Para resolver a equação diferencial

$$y'+p(x)y=q(x).$$

basta determinar uma primitiva P da função p, multiplicar ambos os membros pelo fator integrante $\mu(x) = e^{P(x)}$ e integrar de seguida em ordem a x.

Exemplo: $y' - y = -e^x$.

Teorema [existência e unicidade de solução global]

Se p e q são funções contínuas num intervalo I, então o problema de Cauchy

$$\begin{cases} y' + p(x)y = q(x) \\ y(x_0) = y_0 \end{cases}$$

tem nesse intervalo uma e uma só solução.

Exemplo: Voltando ao PVI...

$$\begin{cases} L\frac{dl}{dt} + RI = E(t) \\ I(0) = 1 \end{cases}$$

Resolver o exercício 11.

2.3.2. EDOs homogéneas

Não confundir com o conceito de equação linear homogénea anteriormente tratado; aqui a designação "homogénea" tem um significado diferente.

Uma equação diferencial da forma y' = f(x, y) diz-se homogénea se

$$f(\lambda x, \lambda y) = f(x, y)$$

para todos $(x, y) \in D$ e $\lambda \in \mathbb{R}$, tais que $(\lambda x, \lambda y) \in D$.

Esta equação pode ser reduzida a uma equação de variáveis separáveis através de uma mudança de variável y = zx, a equação fica na forma

$$z + xz' = g(z)$$

Exemplo: $x^{2}dy = (x^{2} + xy + y^{2})dx$.

Resolver os exercício 8 e 9 da folha 2.

2.3.4 Equações de Bernoulli

Uma equação diferencial de Bernoulli é uma equação diferencial da forma

$$y' + a(x)y = b(x)y^{\alpha}$$

em que $\alpha \in \mathbb{R}$. A equação é linear se $\alpha=0$ ou $\alpha=1$. Para outros valores de α a equação não é linear (nem de variáveis separáveis, em geral). Nestes casos, uma mudança de variável (dependente) adequada transforma a equação de Bernoulli numa equação linear. Para $y \neq 0$ quando $\alpha>0$ temos

$$y^{-\alpha}y' + a(x)y^{1-\alpha} = b(x)$$

Com a substituição $z = y^{1-\alpha}$ temos

$$z' + (1 - \alpha)a(x)z = (1 - \alpha)b(x)$$

que é uma EDO linear de primeira ordem nas variáveis z e x.

Exemplo: $y' + y = xy^2$

Resolver os exercícios 10 e 12 da folha 2.

Informações/Avisos

De acordo com as regras estabelecidas, os alunos têm até 4.ª-feira, dia 2 de março, para se manifestarem junto ao professor de cada turma no caso de pretenderem optar por exame final (e no caso de não o terem já feito anteriormente através do PACO).

Aproveito para vos pedir, para preencherem um questionário na zona de elearning da nossa u.c. que, tal como lá é referido, faz parte de um estudo no âmbito da Linha Temática MATEAS do CIDMA.