Tutoring of Mathematical Analysis I TEST SIMULATION - 2

- 1. The domain of the function $f(x) = \log \frac{(x^2+1)(4-x^2)}{(x^2-2x+1)}$ is:
 - (a) (-2,2)
 - (b) $(-2,1) \cup (1,2)$
 - (c) $(-\infty, -2) \cup (2, +\infty)$
 - (d) $[-2,1) \cup (1,2]$
 - (e) $\mathbb{R} \setminus \{1\}$
- 2. The function $f: \mathbb{R} \to \mathbb{R}: f(x) = \sqrt{|x+1| 2x}$
 - (a) is surjective
 - (b) is not invertible
 - (c) has domain $(-\infty, 1)$
 - (d) $im f = (-1, +\infty)$
 - (e) is injective
- 3. Given the equation with complex variable $\left| \overline{z} \frac{9}{z} \right| (z^3 8i) = 0$, which of the following statements is correct?
 - (a) The equation admits only 3 complex solutions
 - (b) z = -2i is the only imaginary solution of the equation
 - (c) Among the infinite solutions of the equation, only 2 solutions are real
 - (d) The solutions, represented in the Gauss plane, are the points with distance 3 from the origin
 - (e) the complex numbers $z_{1,2} = \sqrt{3} \pm i$ are solutions of the equation
- 4. $\lim_{x \to 0^+} \frac{\sqrt{x^4 + x^6} x^2}{x^4}$ equals
 - (a) $+\infty$
 - (b) 0
 - (c) 1
 - (d) 2
 - (e) $\frac{1}{2}$
- 5. If f = o(g) e $g = o(x^5)$, for $x \to 0$, then, for $x \to 0$, we can conclude that
 - (a) $f(x)g(x) = o(x^{11})$
 - (b) $f(x)g(x) \sim x^{10}$
 - (c) $f(x) + x^5 = o(g(x))$
 - (d) $\frac{f(x)}{g(x)} \to 0$
 - (e) none of the previous answers
- 6. The function $f(x) = \log\left(3 + \frac{4}{x^2}\right) + 2x$ has the following left oblique asymptote:
 - (a) $y = 3x + \log 3$
 - (b) $y = 2x + \log 4$
 - (c) $y = 5x + \log 4$
 - (d) y = 2x
 - (e) $y = 2x + \log 3$

- 7. $\lim_{n \to +\infty} \frac{\log n^{10} + \sin n}{\sqrt{n} 3} =$
 - (a) 10
 - (b) ∄
 - (c) $+\infty$
 - (d) 0
 - (e) 1
- 8. Given the function $f(x) = log |\sin 2x|$, its first derivative equals
 - (a) $f'(x) = \frac{\cos 2x}{\sin 2x}$
 - (b) $f'(x) = 2\frac{\cos x}{\sin x}$
 - (c) $f'(x) = \frac{1}{|\sin 2x|}$
 - (d) $f'(x) = 2\frac{\cos 2x}{\sin 2x}$
 - (e) $f'(x) = \frac{2}{\sin 2x}$
- 9. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 1, f(4) = e, f'(0) = 2. Consider the function $h(x) = \log f(x)$; only one sentence is correct:
 - (a) There exists at least one point $c \in (0,4)$ such that $h'(c) = \frac{e-1}{4}$
 - (b) h'(0) = 2
 - (c) There exists at least one point $c \in (0,4)$ such that $h'(c) = -\frac{1}{4}$
 - (d) There exists at least one point $c \in (0,4)$ such that h(c) = 2
 - (e) There exists at least one point $c \in (0,4)$ such that $h'(c) = \frac{4}{e-1}$
- 10. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 0, f(3) = 2. Consider $g(x) = e^{-f(x)}$, then there exists a point $c \in (0,3)$ such that
 - (a) $g'(c) = \frac{1 e^{-2}}{3}$
 - (b) $g'(c) = \frac{2}{3}$
 - (c) $g'(c) = \frac{1 e^2}{3}$
 - (d) $g'(c) = \frac{e^2 1}{3e^2}$
 - (e) $g'(c) = \frac{e^{-2} 1}{3}$
- 11. The Mac Laurin expansion of order 4 of the function $f(x) = \sin^2(x x^2) x^2 + 2x^3$ is
 - (a) $x^4 + o(x^4)$
 - (b) $\frac{2}{3}x^4$
 - (c) $\frac{2}{3}x^4 + o(x^4)$
 - (d) $4x^3 + \frac{2}{3}x^4 + o(x^4)$
 - (e) none of the previous answers

- 12. Let f be a function of class $C^{(3)}(\mathbb{R})$, such that $f(x) = -2 + 2x^2 3x^3 + o(x^3)$. It is true that
 - (a) f(1) = -3
 - (b) f(0) = -2 e f'(0) = 0
 - (c) f(0) = -2 e f''(0) = 2
 - (d) The point x = 0 is a relative maximum point
 - (e) f'''(0) = -3
- 13. The correct statement is:
 - (a) if f is defined on [a,b] and $f(a) \cdot f(b) < 0$, then f has at least one zero in (a,b)
 - (b) if f is continuous on [a, b] and $f(a) \cdot f(b) < 0$, then f has at least one zero in (a, b)
 - (c) if f is continuous on (a, b) and $f(a) \cdot f(b) < 0$, then f has at least one zero in (a, b)
 - (d) if f is continuous on [a, b] and $f(a) \cdot f(b) < 0$, then f has at most one zero in (a, b)
 - (e) if f is continuous on [a, b] and $f(a) \cdot f(b) < 0$, then $0 \in (a, b)$
- 14. Let f be a continuous function on the interval I. A primitive of f on I is a function F such that:
 - (a) $F(x) = \int_{-\infty}^{x} f(t) dt$, with $x_0, x \in I$
 - (b) F is defined on I and $F'(x) = f(x), \forall x \in I$
 - (c) F is differentiable on I and $F'(x) = f(x), \forall x \in I$
 - (d) $f'(x) = F(x), \forall x \in I$
 - (e) F is differentiable in $x_0 \in I$ and $F'(x_0) = f(x_0)$
- 15. Given the function $f(x) = 4\log(\cosh x) 2x^2 3x^3$, its principal part, for $x \to 0$, with respect to the infinitesimal test function u(x), is:
 - (a) $-3x^3$
 - (b) $-2x^2$
 - (c) $-3x^3 + o(x^3)$
 - (d) $-2x^2 3x^3$
 - (e) $-3x^3 \frac{x^4}{3}$
- 16. The definite integral $\int_2^4 \frac{1}{x(2-\log x)} dx$ takes value:
 - (a) $\log \frac{2 \log 2}{\ln 2 1} \log 2$

 - (b) $\log \frac{2 \log 2}{1 \ln 2}$ (c) $\log \frac{2 \log 2}{2 \ln 2 2}$
 - (d) $|\log(2 \log 2) \log 2|$
 - (e) $\log \frac{2 \log 2}{1 \ln 2} \log 2$

- 17. Which is the correct formulation of the Integral Average Value Theorem?
 - (a) Let f be an integrable function on [a,b]. The integral average value μ of f on [a,b], satisfies the property $\min_{x \in [a,b]} \{f(x)\} \le \mu = f(c) \le \max_{x \in [a,b]} \{f(x)\}, c \in [a,b]$
 - (b) Let f be an integrable function on [a,b]. The integral average value μ of f on [a,b] satisfies the property $\min_{x \in [a,b]} \{f(x)\} \le \mu \le \max_{x \in [a,b]} \{f(x)\}$
 - (c) Let f be an integrable function on [a,b]. The integral average value μ of f on [a,b] satisfies the property $\inf_{x\in[a,b]}\{f(x)\}\leq\mu\leq\sup_{x\in[a,b]}\{f(x)\}$
 - (d) Let f be a continuous function in [a,b] and integrable in at least one point in (a,b). Let μ be the integral average value of f on [a,b], then μ satisfies the property $\mu = \frac{1}{b-a} \int_a^b f'(x) \, \mathrm{d}x$
 - (e) Let f be a function differentiable in [a,b]. The integral average value μ of f on [a,b] satisfies the property $\min_{x \in [a,b]} \{f(x)\} \le \mu = f'(c) \le \max_{x \in [a,b]} \{f(x)\}, c \in [a,b]$
- 18. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function, and $F(x) = \int_x^0 f(t) dt$. If $f \ge 0 \ \forall x \in \mathbb{R}$, then:
 - (a) $F(x) \le 0, \forall x \in \mathbb{R}$
 - (b) $F(x) \ge 0, \forall x \in \mathbb{R}$
 - (c) F(x) is decreasing in \mathbb{R}
 - (d) $F(x) \ge 0, \forall x \in (0, +\infty)$
 - (e) F(x) is increasing $\forall x \in (-\infty, 0)$
- 19. Which of the following properties is satisfied by the function $f(x) = \frac{\sin x}{x\sqrt{x}}$?
 - (a) $\int_0^{+\infty} f(x) dx$ is convergent
 - (b) $\int_0^{\pi} f(x) dx$ is divergent
 - (c) $\int_{1}^{+\infty} f(x) dx$ is not absolutely convergent
 - (d) $\int_{-\pi}^{+\infty} |f(x)| dx$ is divergent
 - (e) $f(x) \sim \frac{1}{\sqrt{x}}$, if $x \to 0$; $f(x) \sim \frac{1}{\sqrt{x}}$, if $x \to +\infty$
- 20. The differential equation $x'(t) = (2-x)(1-\sin x)(\pi-t)\sqrt{x}$
 - (a) has not separable variables
 - (b) is linear
 - (c) admits the constant solution $t = \pi$
 - (d) admits the constant solutions x(t) = 2, x(t) = 0, $x(t) = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{N}, \forall t \in \mathbb{R}$
 - (e) admits the constant solutions $t = \pi$, x(t) = 2, x(t) = 0, $x(t) = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}, \forall t \in \mathbb{R}$

$\underline{\mathbf{A}}\underline{\mathbf{N}}\underline{\mathbf{S}}\underline{\mathbf{W}}\underline{\mathbf{E}}\underline{\mathbf{R}}\underline{\mathbf{S}}$

Item n.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Answer	b	e	c	e	d	e	d	d	b	е	c	b	b	С	a	e	c	c	a	d