The Data Analyse of The New York City Airbnb Open Data

Yilin Wang

Introduction:

This dataset is a collection of listing activity and metrics of the Airbnb in NYC, NY in 2019. With the development of economics, more and more people choose to use Airbnb as a traveling experience. Personally, Airbnb is one of the main aspects of my traveling because it is the best experienced from near the local culture, and it brings us sweet feeling like home. It all provide a more convenient, comfortable and economical method of travel. The data file from public Kaggle Datasets shows all needed information to find out more about hosts, geographical availability, necessary metrics to make predictions and draw conclusions.

Overall goal is to answer the following questions

Note: since the neighborhood contains too much information and it is easy to confuse readers so that I decide to use neighbourhood_group which is the exact location for analysis.

- 1. Which are the top 10 neighbourhood_groups and neighbourhoods contians most airbnb?
- 2. What is the relationship between the location/area (neighbourhood_group/neighbourhood) and the Pageviews (overall reviews/ monthly reviews)?
- 3. What is the relationship between the room style and price base on each location (neighbourhood_group)?

Since Airbnb is one of the main aspects of my traveling, the price and location are the most important elements that I considered as I search the Airbnb so that I am very interested in using my analyzing to answer this question based on the topic.

Data Description:

- id: listing ID
- · name: name of the Aribnb listing
- host_id: ID of the host
- host name: name of the host
- neighbourhood_group: location
- neighbourhood: area
- latitude: latitude coordinates
- longitude: longitude coordinates
- room_type: listing space type of the aribnb
- price: price in dollars
- minimum nights: amount of nights minimum
- number_of_reviews: how many reviews of the airbnb
- last review: latest review
- reviews_per_month: number of reviews per month
- calculated_host_listings_count: amount of listing per host
- availability_365: number of days when listing is available for booking

Note that:

Since this dataset "AB_NYC_2019" is a summary information and metrics for listings in New York City in 2019 so that it contain with the limitations of integrality because it only contain all information that post online during that time period (August, 12th, 2019).

```
In [6]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sbn

   sbn.set(font_scale = 1.5)
   sbn.set_style('white')

%matplotlib inline

from scipy.stats import linregress, ttest_ind
```

```
In [7]: data = pd.read_csv('AB_NYC_2019.csv')
   data.head()
```

Out[7]:

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitude
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851

```
In [82]: # count the properties value of neighborhood on the list
    list_neighborhood = data.neighbourhood.value_counts()
    print(num_neighborhood)

# obtain the top ten neighborhood
    top_10_neighborhoods = data.neighbourhood.value_counts().head(10)
    print(top_10_neighborhoods)
    #plotting the top ten neighborhoods
    plt.figure(figsize=(8,5))
    top_10_neighborhoods.plot.bar()
    plt.xlabel('Neighborhoods')
    plt.ylabel('Listed Property Count')
    plt.title('Count of properties in a neighborhood')
    plt.show() #optional
```

```
Williamsburg
                                3920
Bedford-Stuyvesant
                                3714
Harlem
                                2658
Bushwick
                                2465
Upper West Side
                                1971
Hell's Kitchen
                                1958
East Village
                                1853
Upper East Side
                                1798
Crown Heights
                                1564
Midtown
                                1545
East Harlem
                                1117
```

Greenpoint Chelsea Lower East Side Astoria Washington Heights West Village Financial District	1115 1113 911 900 899 768 744
Flatbush Clinton Hill Long Island City Prospect-Lefferts Gardens Park Slope East Flatbush Fort Greene Murray Hill Kips Bay Flushing Ridgewood Greenwich Village	621 572 537 535 506 500 489 485 470 426 423 392
Oakwood Little Neck	 5 5
New Brighton Emerson Hill Holliswood Todt Hill	5 5 4 4
Olinville Mill Basin Castleton Corners	4 4 4
Spuyten Duyvil Prince's Bay Arden Heights Graniteville	4 4 4 3
Eltingville Neponsit Breezy Point Huguenot	3 3 3 3
Lighthouse Hill Silver Lake West Farms Westerleigh	2 2 2 2
Bay Terrace, Staten Island Howland Hook Co-op City Willowbrook Rossville	2 2 2 1 1
Richmondtown Woodrow New Dorp Fort Wadsworth	1 1 1

> Name: neighbourhood, Length: 221, dtype: int64 Williamsburg 3920 Bedford-Stuyvesant 3714 Harlem 2658 Bushwick 2465 Upper West Side 1971 Hell's Kitchen 1958 East Village 1853 Upper East Side 1798 Crown Heights 1564 1545 Midtown

Name: neighbourhood, dtype: int64

What is the most popular Neighborhoods(contains more airbnb)?

Figure 1

Williamsburg is the most popular Neighborhood. The pgraph shows the pupulation of airbnb in the listing of the Neighborhoods.

```
In [136]: # count the properties value of neighbourhood_groups on the list
    list_neighbourhood_group = data.neighbourhood_group.value_counts()
    print(list_neighbourhood_group)

# since there are only five neighbourhood_groups on the list, just pri
    nt all groups
#plotting the neighbourhood_groups
plt.figure(figsize=(8,5))
    list_neighbourhood_group.plot.bar()
    plt.xlabel('Neighborhoods')
    plt.ylabel('Listed Property Count')
    plt.title('Count of properties in a neighborhood')
    plt.show() #optional
```

Manhattan	21661
Brooklyn	20104
Queens	5666
Bronx	1091
Staten Island	373

Name: neighbourhood_group, dtype: int64

What is the most popular Neighborhoods_group/area(contains more airbnb)?

Figure 2

Manhattan is the most popular Neighborhood group. The pgraph shows the pupulation of airbnb in the listing of the Neighborhoods group.

```
In [42]: # obtain the overall information of the reviews per month
          data.loc[:,'reviews per month'].describe()
Out[42]: count
                   38843.000000
                       1.373221
         mean
                       1.680442
         std
         min
                       0.010000
          25%
                       0.190000
          50%
                       0.720000
          75%
                       2.020000
                      58.500000
         max
         Name: reviews per month, dtype: float64
In [84]:
          pd.pivot table(data,
                          index = 'neighbourhood group',
                          values = 'reviews_per_month',
                          aggfunc = ['mean', 'std'])
Out[84]:
                                           std
                            mean
                            reviews_per_month reviews_per_month
          neighbourhood_group
```

Bronx	1.837831	1.673284
Brooklyn	1.283212	1.516259
Manhattan	1.272131	1.628252
Queens	1.941200	2.213108

1.872580

1.685495

Staten Island

Out[119]: <seaborn.axisgrid.FacetGrid at 0x1a222d7208>

Which Neighborhood group contains more reviews per month?

Figure 3

Queens contains more reviews per month. The pgraph shows reviews in each month in the listing of the Neighborhoods. Based on the figure, it shows Queens conatins the most reviews per month.

```
In [105]: # obtain the overall information of the number of reviews
          data.loc[:,'number of reviews'].describe()
Out[105]: count
                    48895.000000
          mean
                       23.274466
          std
                       44.550582
          min
                        0.000000
          25%
                        1.000000
          50%
                        5.000000
          75%
                       24.000000
                      629.000000
          max
          Name: number of reviews, dtype: float64
```


The neighbourhood contains most of reviews is 11759 Jamaica Name: neighbourhood, dtype: object.

The neighbourhood group contains most of reviews per month is 11759

Name: neighbourhood_group, dtype: object.

Out[135]: <seaborn.axisgrid.FacetGrid at 0x1a2dad1940>

Which room_style is more expensive, and where it locate (Neighborhood group)?

Figure 4

The entire home is the most expensive room style with the location in Manhattan The plot shows relationship between the the price and room style base on each neighbourhood_group. Based on the figure, it shows the entire home which is located in Manhattan is most expensive which is make sence because it is the most dwelling location in NY.

```
In [133]: # creat a catplot that shows the relationship between each elemnt in t
   he list base on
#---each neighbourhood_group
   sbn.pairplot(data, hue = 'neighbourhood_group')
```

/Users/Genie/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/kde.py:448: RuntimeWarning: invalid value encountered in greater

 $X = X[np.logical_and(X > clip[0], X < clip[1])] # won't work for t wo columns.$

/Users/Genie/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/kde.py:448: RuntimeWarning: invalid value encountered in less

 $X = X[np.logical_and(X > clip[0], X < clip[1])] # won't work for t wo columns.$

Out[133]: <seaborn.axisgrid.PairGrid at 0x1a24eaaeb8>

Figure 5

The plot shows the relations between each element based on neighbourhood_group so that the user can base on their unique requirement to find the figure for searching the information.

Tn [] •	
T11 i	