Washington DC Housing Market Analysis

Objective

Goals of This Study

Housing characteristics

Macroeconomic factors

Predict DC condo price

Key Terminology

Feature Selection

Time Series Regression

In-Time and Out-of-Time Modeling

Data Source: Redfin.com

Objective Background > Model & Results > What's Next

Background

Understanding the Data

Data Source: Redfin.com

Objective

Background

Model & Results

What's Next

Background

Understanding the Data

Macroeconomic factors

Unemployment Rate in DMV. Labor Force Participation Rate in DC All Employees: Federal Government DC Washington Home Price Index nemployment Rate in DM Labor Force Participation Rate in DC All Employees: Leisure and Hospitality in DMV DC Washington Home Price Index Unemployment Rate in US All Employees: Federal Government All Employees: Total Nonfarm New Private Housing Units Authorized by Building Permits in DC

New Private Housing Units Authorized by Building Permits in DMV Unemployment Rate in DC Unemployment Rate in US All Employees: Leisure and Hospitality in DMV All Employees: Total Nonfarm in DMV Unemployment Rate in DO

Data Source: fred.stlouisfed.org/

Background

Model & Results

What's Next

<u>Model</u>

Variable Transformation

• Logarithmic Transform

• First Difference Transform

Data Source: Redfin.com

Objective Background Model & Results What's Next

Model Feature Selection

Forward/Backward Stepwise Regression

K-Best

Data Source: Redfin.com

Objective Background Model & Results What's Next

Model

Time Series Regression

$$y_t = \beta_0 + \beta_1 x_{t,1} + \beta_2 x_{t,2} + \cdots + \beta_k x_{t,k} + u_t, \quad t = 1, 2, \dots, T \text{ with error } u_t$$

Strong Markov Assumption

Weak Markov Assumption

Model

$$y_t = \beta_0 + \beta_1 x_{t,1} + \beta_2 x_{t,2} + \cdots + \beta_k x_{t,k} + u_t, \quad t = 1, 2, \dots, T \text{ with error } u_t$$

STRONG Gauss Markov Assumption:

- The explanatory variables $x_{.,j}$ are strictly exogenous with respect to the disturbance term. Hence, $E(U_t|\mathbf{X}) = 0$, $\forall t = 1, 2, ..., T$ where \mathbf{X} is the matrix including all K regressors and all T time periods.
- No regressor is constant or can be expressed as a linear function of other regressors. That is, there exists no sets $A = \{a_0, a_1, ..., a_k\}$ where $a_j \neq 0$, for some $j \ni a_0 + a_1x_{t,1} + a_2x_{t,2} + \cdots + a_kx_{t,k} = 0, \forall t = 1, 2, ..., T$. This implies X has full rank.
- Homoskedasticity: $var(U_t|\mathbf{X}) = \sigma^2, \forall t = 1, 2, ..., T$.
- No serial correlation: Conditional on X, the disturbance terms are uncorrelated. $Cov(U_t, U_{t-s}|X) = 0$, s = 1, 2, ..., T 1.
- Normality: The disturbance terms are normally distributed. $U_t \sim N(0, \sigma^2)$

Model

$$y_t = \beta_0 + \beta_1 x_{t,1} + \beta_2 x_{t,2} + \cdots + \beta_k x_{t,k} + u_t, \quad t = 1, 2, \dots, T \text{ with error } u_t$$

WEAK Gauss Markov Assumption:

- The variables of the model are stationary, ergodic and the explanatory variables $x_{.,j}$ are exogenous with respect to the disturbance term. Hence, $E(U_t|x_{t,1},x_{t,2},...,x_{t,k})=0$, $\forall t=1,2,...,T$.
- No regressor is constant or can be expressed as a linear function of other regressors. That is, there exists no sets $A = \{a_0, a_1, ..., a_k\}$ where $a_j \neq 0$, for some $j \ni a_0 + a_1x_{t,1} + a_2x_{t,2} + \cdots + a_kx_{t,k} = 0$, $\forall t = 1, 2, ..., T$.
- Homoskedasticity: $var(U_t|x_{t,1},x_{t,2},...,x_{t,k}) = \sigma^2, \forall t = 1,2,...,T$.
- No serial correlation: Conditional on X, the disturbance terms are uncorrelated. $Cov(U_t, U_{t-s}|x_{t,1}, x_{t,2}, ..., x_{t,k}) = 0, s = 1, 2, ..., T 1.$

ResultsStatistical Analysis

Objective Background

Model & Results

What's Next

Results Residual Analysis

	MAE	MAPE
In Time	\$10591.33	4.02 %
OOT Time	\$7882.99	2.61%

* . .

MAE: Mean Absolute Error

MAPE: Mean Absolute Percentage Error

What's Next

- Model Use -

We can use Washington DC housing market characteristics and macroeconomic factors to predict condo prices.

- Next Step -

We will enhance the predictive model by using Machine Learning techniques such as Random Forest, Support Vector Machines, and Natural Language Processing.

Objective Background Results What's Next

Thank You!

Appendix

- o <u>Data Source: Redfin.com</u>
- <u>Data Source: FRED(Federal Reserve Economic Data)</u>
- Results: Time Series Regression
- Results: Normality Check

Data Source

Data Source: https://www.redfin.com/blog/data-center/

Redfin:

- Redfin is a real estate brokerage that has direct access to data from multiple listing services, as well as insight from real estate agents across the country.
- Redfin provides housing market data for all metropolitan areas, cities, neighborhoods, and zip codes across the nation.
- Redfin's housing market data includes data for prices (median sale price, percentage of homes sold above list price, percentage of homes that had price drop, etc.), inventory (number of homes on market, new listings, months of supply, etc.), and sales (number of homes sold, median days on market, etc.).
- Redfin's housing market data can be filtered by area, property type, month-over-month change, year-over-year change, and the time period.

Data Source

Data Source: https://fred.stlouisfed.org/

FRED:

- FRED is a website providing Federal Reserve Economic Data across the country.
- FRED provides over 500,000 financial and economic data series from more than 85 public and proprietary sources.
- FRED's economic data includes home price index, unemployment rate and all employment for different activities.
- Data used for model inputs:

https://github.com/iuniorhsiung/mod4_project_DC_housing_price/blob/master/data/readme.md

Results

Statistical Analysis

Regression output

OLS Regression Results

Dep. Variable: Model: Method: Date:	Least	OLS Squares	R-squared: Adj. R-square F-statistic: Prob (F-stati		0. 11	337 309 .94 :-08	
Time:		22:24:53		Log-Likelihood:		-1039.7	
No. Observations:		99	AIC:		20	89.	
Df Residuals:		94	BIC:		21	02.	
Df Model:		4					
Covariance Type:	r	onrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	920.4555	1094.821	0.841	0.403	-1253.337	3094.248	
Days on Market_1dif:	f -592.2738	119.719	-4.947	0.000	-829.978	-354.570	
US_UR_1diff	1.727e+04	6483.813	2.664	0.009	4400.316	3.01e+04	
New Listings MoM_1d	iff -66.9649	25.346	-2.642	0.010	-117.289	-16.641	
WDXRSA_1diff	1184.0909	1054.197	1.123			3277.223	
Omnibus:	0	0.432 Durbin-Watson:			2.801		
Prob(Omnibus):	0.	806 Jarqu	ue-Bera (JB):		0.119		
Skew:	0.	038 Prob	(JB):		0.942		
Kurtosis:	3.	152 Cond	. No.		265.		
===============							

Results

Normality Check: Q-Q plot

Theoretical Quantities