Project Development Phase Model Performance Test

Date	18 November 2022
Team ID	PNT2022TMID23787
Project Name	Project - Web phishing detection
Maximum Marks	10 Marks

S.no	Parameter	Values	Screenshot			
1.	Metrics	Classification Model				
		confusion Matrix confusion_matrix = metrics.confusion_matrix(y_train,y_train_xgb) cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, display_labels = [False, True]) cm_display.plot() plt.show()	False - 534 706 - 6000 - 5000 - 4000 - 3000 - 2000 - 1000 False True Predicted label			
		<pre>Accuracy Score acc_train_xgb = accuracy_score(y_train,y_train_xgb) acc_test_xgb = accuracy_score(y_test,y_test_xgb) print("XGBoost: Accuracy on training Data: {:.3f}".format(acc_train_xgb)) print("XGBoost: Accuracy on test Data: {:.3f}".format(acc_test_xgb))</pre>	XGBoost: Accuracy on training Data: 0.913 XGBoost: Accuracy on test Data: 0.905			

		Classification Report		precision	recall	f1-score	support
		classification_report=metrics.classificati on_report(y_train,y_train_xgb) print(classification_report)	-1 1 accuracy macro avg weighted avg	0.89 0.91 0.90 0.91	0.43 0.99 0.71 0.91	0.58 0.95 0.91 0.77 0.90	1240 7604 8844 8844 8844
2.	Tune the model	from xgboost import XGBClassifier from sklearn.model_selection import GridSearchCV estimator = XGBClassifier(objective= 'binary:logistic', nthread=4, seed=42) parameters = { 'max_depth': range (2, 10, 1), 'n_estimators': range(60, 220, 40), 'learning_rate': [0.1, 0.01, 0.05] } grid_search = GridSearchCV(estimator=estimator, param_grid=parameters, scoring = 'roc_auc', n_jobs = 10, cv = 10, verbose=True) grid_search.fit(X_train, y_train) grid_search.best_estimator_		, estimator=XGBC grid={'learning 'max_dept 'n_estima ng='roc_auc', ve	lassifier(nt rate': [0.1 h': range(2, htors': range rbose=True)	:hread=4, seed= , 0.01, 0.05], 10), :(60, 220, 40)}	-42), n_jobs=10,
		Validation method- k-Fold Cross Validation from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score kfold = KFold(n_splits=10, random_state=7,shuffle=True) results = cross_val_score(xgb, X_train, y_train, cv=kfold) print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))	Accura	acy: 90	ð.39%	(0.79	9%)