APS Function Library V1.2 Build Date 2011.12.28

Support Products: PCI-8253/56, PCI-8392(H), DPAC-1000, DPAC-3000, PCI-7856, MNET-4XMO-(C), MNET-1XMO, HSL-DIO, PCI-8144, HSL-4XMO, PCI-8154/58/02

Contents

	AΡ	'S Function Library V1.2	1
	Bu	ild Date 2011.12.28	1
	Su	pport Products: PCI-8253/56, PCI-8392(H), DPAC-1000,	
	DP	AC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-DIO,	
	PC	I-8144, HSL-4XMO, PCI-8154/58/02	1
Intr	odu	uction	6
1.	Pro	ogramming Library	9
2.	List	t of all functions	10
	1.	All functions List	10
	2.	List of functions for DPAC-1000	18
	3.	List of functions for DPAC-3000	19
	4.	List of functions for PCI-8392(H)	21
	5.	List of all functions for PCI-8253/56	25
	6.	List of all functions for PCI-8144	30
	7.	List of all functions for PCI-7856	31
	8.	List of all functions for MNET-4XMO	33
	9.	List of all functions for MNET-4XMO-C	35
	10.	List of all functions for MNET-1XMO	39
	11.	List of all functions for HSL-4XMO	41
	12.	List of all functions for HSL-DIO	43
	13.	List of all functions for PCI-8154/58/02	43
3.	Sys	stem and Initialization	46
4.	SSC	CNET function	71
5.	Mc	otion IO and motion status	97
6.	Sin	gle axis motion	109
7.	Jo	g move	129
8.	Int	erpolation	135
9.	Int	errupt	157
10.	Sa	mpling	190
11.	DIC	O & AIOOIA &	199
12.	Ро	int table motion	208
13.	Fie	eld bus functions	264
14.	Ga	antry functions	298

15.	Со	mpare trigger	. 309
16.	Ма	nual Pulse Geneator functions	. 330
17.	DP	AC System functions	332
18.	No	n-Volatile RAM	338
19.	Fiel	d bus compare trigger	. 343
		O/PWM functions (Laser function)	
		ultaneous move functions	
22.	Воа	ard Parameter Table	401
	1.	DPAC-1000 board parameter table	. 401
	2.	DPAC-3000 board parameter table	. 403
	3.	PCI-8392(H) board parameter table	. 405
	4.	PCI-8253/56 Board parameter table	. 406
	5.	PCI-7856 board parameter table	. 408
23.	Axi	s Parameter Table	. 409
	1.	PCI-8392(H) Axis parameter table	. 409
	2.	PCI-8253/56 Axis parameter table	. 412
	3.	PCI-8144 Axis parameter table	. 419
	4.	MNET-4XMO-© Axis parameter table	. 421
	5.	MNET-1XMO Axis parameter table	. 426
	6.	HSL-4XMO Axis parameter table	. 430
	7.	PCI-8154/58/02 Axis parameter table	. 435
24.	Sar	mpling parameters table	441
	1.	Sampling parameter table for PCI-8392(H) and PCI-8253/56	
	MN	IET-4XMO	441
	2.	Sampling source table for PCI-8392(H)	. 441
	3.	PCI-8253/56 sampling source table	. 442
	4.	MNET-4XMO sampling source table	. 444
25.	Мо	tion IO status and motion status definitions	. 445
	1.	PCI-8392(H) motion IO status table	. 445
	2.	PCI-8253/56 motion IO status table	. 445
	3.	MNET-4XMO-©/1XMO, HSL-4XMO, PCI-8154/58/02 motion IC)
	sta	tus table	445
	4.	PCI-8144 motion IO status table	. 446
	5.	Motion IO status description table	. 446
	6.	PCI-8392(H), 8253/56 Motion status definition table	448
	7.	MNET-4XMO-©, HSL-4XMO, PCI-8154/58/02 Motion status	
	def	inition table	. 448
	8.		

	9.	PCI-8144 Motion status definition table	. 449
	10.	Motion Status Description Table	. 449
26.	Inte	errupt factor table	. 451
	1.	PCI-8392(H) Interrupt Item Definition Table	. 451
		PCI-8392(H) Axes interrupt factors definition of Item 0~15	. 451
		PCI-8392(H) Axes interrupt factors description table	. 451
		PCI-8392(H) System interrupt factors definition of item 16	. 452
		PCI-8392(H) System interrupt factors description table	. 453
	2.	PCI-8253/56 Interrupt Item Definition Table	. 454
		PCI-8253/56 Axes interrupt factors definition of Item 0~5	. 454
		PCI-8253/56 Axes interrupt factors description table	. 454
	3.	Interrupt factor Item definition table for DPAC-1000	. 456
		DPAC-1000 Interrupt factor Item definition table	. 456
		DPAC-1000 CPLD Interrupt factor definition of Item 0	. 456
	4.	Interrupt factor Item definition table for DPAC-3000	. 456
		DPAC-3000 Interrupt factor Item definition table	. 456
		DPAC-3000 CPLD Interrupt factor definition of Item 0	. 457
		DPAC-3000 HSL Interrupt factor definition of Item 1	. 457
	5.	PCI-7856 Interrupt Item Definition Table	. 457
		PCI-7856 Interrupt factor Item definition table	. 457
		PCI-7856 CPLD Interrupt factor definition of Item 0	. 458
	6.	PCI-8144 Interrupt Item Definition Table	. 458
		PCI-8144 Interrupt factor Item definition table	. 458
		PCI-8144 Axes interrupt factors definition of Item 0~3	. 458
		PCI-8144 Axes interrupt factors description table	. 459
		PCI-8144 Digital interrupt factors definition of item 4	. 459
		PCI-8144 Digital interrupt factors item 4 description table	. 459
		PCI-8144 Digital interrupt factors definition of item 5	. 459
		PCI-8144 Digital interrupt factors item 5 description table	. 459
	7.	MotionNet Interrupt Item Definition Table	. 459
		MotionNet Axis Motion Interrupt factor definition(4XMO(-C))	459
		MotionNet Axes motion interrupt factors description table	. 460
		MotionNet Axis Motion Interrupt factor definition(1XMO)	. 461
		MotionNet Axes motion interrupt factors description table	. 461
		MotionNet Axis Error Interrupt factor definition(4XMO(-C))	. 462
		MotionNet Axes error interrupt factors description table	
		MotionNet Axis Error Interrupt factor definition(1XMO)	
		MotionNet Axes error interrupt factors description table	

	8.	PCI-8154/58/02 Interrupt Item Definition Table 46	4
		PCI-8154 Interrupt factor Item definition table 46	4
		PCI-8158 Interrupt factor Item definition table 46	5
		PCI-8102 Interrupt factor Item definition table 46	5
		PCI-8154/58/02 Axes motion interrupt factors definition of Items	3
		46	6
		PCI-8154/58/02 Axes motion interrupt factors description table	
		46	6
		PCI-8154/58/02 Axes error interrupt definition of Items: (Return	
		Code)	7
		PCI-8102 GPIO interrupt factors definition of Items 46	8
		PCI-8102 GPIO interrupt factors description table 46	8
27.	Fiel	d bus parameter table46	9
28.	Ga	ntry parameters table47	0
29.	Trig	ger parameter table47	1
30.	Dev	vice information table48	3
31.	Fiel	d bus slave parameter table48	6
32.	DPA	AC displayIndex table48	7
33.	DPA	AC Push button status table48	9
34.	SSC	NET servo monitor source table49	0
35.	VA	O parameter table49	1
AP.	SFur	octions Return Code 49	3

Introduction

APS means "Automation Product Software". APS library provides users a uniform interface to access all of ADLINK products which support it. It can cover many automation fields especially in machine automation. The most important component in machine automation is motion control. APS library was first born with motion control which co-working components such as system platform management, field bus communication function, general digital input/output, general analog input/output and various counter/timer supports are all built-in components in APS. The APS library will be an all-in-one solution in automation field of ADLINK products.

The benefits of using this library are

- a) Hardware independent
- b) OS independent
- c) Programming style consistent

The first benefit is hardware independent. In the past, each product has its own software function set. Every time users want to add or remove different kinds of product even for the same purpose, they must re-program their software to fit it. Most of time, they must re-study new function usage. That's a big effort to users in development and maintenance. It's also not easy to achieve on time development. Now, if users use APS library, they can take APS library as their middle layer of software. It is easy to re-use their own software component which is interfacing with APS without taking care different kinds of same purpose product. That's the meaning of hardware independent.

The second benefit is OS independent. We will continuously research and develop new operating system supports. The standard package of APS supports Microsoft Windows series like Windows XP/2000/Vista and coming new Windows OS. No matter it is 32-bit or 64-bit and no matter platform is single core or multi-cores (SMP), it guarantees all functions running in every OS identically so users don't need to worry about it. It saves much time for users to focus on their machine design. For non-Windows OS, APS also has plan to support it. It will support not only general OS like Linux, and DOS but also real-time OS like RTX, VxWorks and so on. This benefit can help users on product positioning from low-end to high-end machine.

The third benefit is programming style consistant. APS library makes different type of applications like motion control, I/O control and communication to have the same programming style. No matter the motor is stepper or servo, no matter it is distributed or centralized topology, APS library has the same style in programming and also in parameters definitions. APS library also provides various programming language interface and examples for users like ANSI C/C++, Microsoft Visual C/C++, Visual Basic, C#, Visual Basic.NET and Borland Delphi, C/C++ builder and so on. It satisfies different users and purposes on machine development. APS library also provides a visual user interface under Windows system to test all functions of product. This software is based on APS library. In other words, any product supports APS library, the utility also supports them. The utility is called "MotionCreatorPro2" or newer version. It is good to software programmer and system setup people because users don't even need to write any code before verifying the control results and hardware function. It is a good way from product testing to system development and debug.

APS library is not only a library. It is a total package ADLINK wants to provide. It includes various kinds of OS device drivers, dynamic or static link library, many kinds of programming language interface, visualization utility, version control information, rich document, long time support and one-step installation software. It supports most of ADLINK automation products especially in machine control field. By using this library, users can reduce development time and no worry about PC's CPU and operating system changes.

The following diagram is about APS library's position.

1. Programming Library

APS supports many kinds of programming language. The header file of APS library contents function declarations, type definitions and constant variable definitions. The following is the example of C/C++ library. Others please refer to installed header file of corresponding languages.

The function prototype and some common data type are declared in **APS168.h**. We suggest you to use these data types in your application programs for compatibility. The following table shows the data type's name and the numeric range.

Type Name	C/C++ Data types	Description	Range
U8	unsigned char	8-bit ASCII character	0 to 255
I16	Short	16-bit signed integer	-32768 to 32767
U16	unsigned short	16-bit unsigned integer	0 to 65535
I32	long	32-bit signed long integer -2147483648 to 21474	
U32	unsigned long	32-bit unsigned long integer 0 to 42949672	
F32	Float	32-bit single-precision floating-point -3.402823E38 to 3.402	
F64	double	64-bit double-precision	-1.797683134862315E308 to
1.04		floating-point	1.797683134862315E309
Boolean Char Boolean logic value		TRUE, FALSE	

The naming rule of APS library is full-name of purpose.

In a 'C' programming environment:

APS_{purpose_name}.

e.g. APS_initial(), APS_get_position(), APS_relative_move()

2. List of all functions

1. All functions List

Sec.	Function name	Descriptions	Page
	System & Initialization		
	APS_initial	Device initialization	
	APS_close	Device close	
	APS_version	Get the version of the library	
	APS_device_driver_version	Get the driver's version of devices	
	APS_get_axis_info	Get the information of the specified axis	
	APS_set_board_param	Set board parameter	
	APS_get_board_param	Get board parameter	
	APS_set_axis_param	Set axis parameter	
	APS_get_axis_param	Get axis parameter	
3	APS_get_system_timer	Get system timer counter	
	APS_get_device_info	Get device information	
	APS_save_parameter_to_flash	Save system & axes parameters to flash	
	APS_load_parameter_from_flash	Load system & axes parameters from flash	
	APS_load_parameter_from_default	Load system & axes parameters by default value.	
	APS_set_security_key	Set security password	
	APS_check_security_key	Varify security password	
	APS_reset_security_key	Reset security password	
	APS_save_param_to_file	Save parameters to file	
	APS_load_param_from_file	Load parameters from file	
4	SSCNE	ET function	
	APS_start_sscnet	Start the network of SSCNET	
	APS_stop_sscnet	Stop the network of SSCNET	
	APS_get_sscnet_servo_param	Read current servo parameter value	
	APS_set_sscnet_servo_param	Set servo parameter	
	APS_get_sscnet_servo_alarm	Get current servo alarm information	
	APS_reset_sscnet_servo_alarm	Servo alarm reset	
	APS_save_sscnet_servo_param	Save servo parameter to flash	

			ROM	
	APS_get_sscnet_servo_abs_position		Get absolute reference position from servo driver	
	APS_save_sscnet_servo_abs_position		Save absolute reference position to flash ROM	
	APS_load_sscnet_servo_abs_positio	n	Load absolute reference position from flash ROM	
	APS_get_sscnet_link_status		Get SSCNET link status	
	APS_set_sscnet_servo_monitor_src		Set servo monitor data source	
	APS_get_sscnet_servo_monitor_src		Get servo monitor data source	
	APS_get_sscnet_servo_monitor_data	a	Get servo monitor data	
	Motion IO and	d mo	otion status	
	APS_motion_status	Re	turn motion status	
	APS_motion_io_status	Re	turn motion IO status	
	APS_set_servo_on	Set	servo ON/OFF	
	APS_get_position	Ge	t feedback position	
5	APS_set_position	Set feedback position		
5	APS_get_command	Get command position		
	APS_set_command	Set command position		
	APS_get_command_velocity	Get command velocity		
	APS_get_feedback_velocity	Get feedback velocity		
	APS_get_error_position G		t error position	
	APS_get_target_position Get target position		t target position	
	Single a	xis r	<u>notion</u>	
	APS_relative_move Be		gin a relative distance move	
	APS_absolute_move	Begin a absolute position move		
	APS_velocity_move	Beg	gin a velocity move	
	APS_home_move	Be	gin a home move	
6	APS_stop_move	Sto	p move	
	APS_emg_stop	Em	ergency stop	
	APS_relative_move2		gin a relative distance move with eed profile	
	APS_absolute_move2		gin a absolute position move with eed profile	
	APS_home_move2	Be	gin a home move with speed profile	
7	<u>Jog</u>	mov	<u>/e</u>	
	APS_set_jog_param	Set	Jog parameters	
	APS_get_jog_param	Get Jog parameters		
	APS_jog_mode_switch	Ena	able / Disable jog move	

	APS_jog_start	Start / stop jog move
	Interp	<u>polation</u>
	APS_absolute_linear_move	Begin an absolute position linear interpolation
	APS_relative_linear_move	Begin a relative distance linear interpolation
	APS_absolute_arc_move	Begin an absolute position circular interpolation
	APS_relative_arc_move	Begin a relative distance circular interpolation
8	APS_absolute_arc_move_3pe	Begin a absolute position circular interpolation by pass and end point method
	APS_relative_arc_move_3pe	Begin a relative distance circular interpolation by pass and end point method
	APS_absolute_helix_move	Begin a absolute position helical interpolation
	APS_relative_helix_move	Begin a relative distance helical intepolation
9	Inte	<u>errupt</u>
	APS_int_enable	Interrupt main switch
	APS_set_int_factor	Enable/Disable interrupt factor and get interrupt handle.
	APS_get_int_factor	Get interrupt factor enable or disable
	APS_wait_single_int	Wait single interrupt event
	APS_wait_multiple_int	Wait multiple interrupt events
	APS_wait_error_int	Wait error interrupts(Non-mask)
	APS_reset_int	Reset interrupt event to non-signaled state.
	APS_set_int	Set interrupt event to signaled state.
	APS_set_int_factorH	Enable/Disable interrupt factor and get interrupt handle.(Win32)
	APS_int_no_to_handle	Convert interrupt event number to interrupt handle.(Win32)
	APS_set_field_bus_int_factor_moti on	Enable/Disable motion interrupt factor and get interrupt handle for MotionNet series.
	APS_get_field_bus_int_factor_moti on	Get motion interrupt factor enable or disable for MotionNet series.
	APS_set_field_bus_int_factor_error	Enable/Disable error interrupt factor and get interrupt handle for MotionNet series.
	APS_get_field_bus_int_factor_error	Get error interrupt factor status for MotionNet series.
	APS_reset_field_bus_int_motion	Reset interrupt status of axes for

APS_wait_field_bus_error_int_motion APS_set_field_bus_int_factor_di APS_set_field_bus_int_factor_di APS_set_field_bus_int_factor_di APS_get_field_bus_int_factor_di APS_get_field_bus_int_factor_di APS_get_field_bus_int_factor_di APS_get_field_bus_int_factor_di Get DI interrupt bits and get interrupt handle for HSL series. APS_get_field_bus_int_factor_di Get DI interrupt bits assigned for HSL series. Sampling			MotionNet series.
APS_get_field_bus_int_factor_di Sampling APS_get_sampling_param APS_set_sampling_param APS_set_sampling_param APS_wait_trigger_sampling APS_wait_trigger_sampling_async APS_get_sampling_count APS_wait_sampling_count APS_wait_sampling Billow AIO APS_wait_sampling APS_wait_sampling Billow AIO APS_read_d_output Read digital output value APS_read_a_input_value Read back analog input value by volt APS_read_a_input_value APS_wait_a_output_value Set analog output value by volt APS_write_a_output_data Set analog output value by raw data IP int table motion APS_set_point_table APS_get_point_table Get point table move parameters APS_get_point_table APS_get_point_table Get point table move parameters APS_get_running_point_index Get turrent point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_ex_pause APS_set_table_move_ex_pause APS_set_table_move_ex_rollback APS_set_table_move_ex_rollback APS_set_table_move_ex_resume Re-start point table move and keep I/O status Set point table move repeat			÷
Sampling APS_set_sampling_param APS_get_sampling_param APS_wait_trigger_sampling APS_wait_trigger_sampling APS_wait_trigger_sampling APS_set_sampling_async APS_set_sampling_count APS_set_sampling_count APS_stop_wait_sampling Force stop wait sampling DIO & AIO APS_write_d_output APS_read_d_output APS_read_d_input APS_read_a_input_value APS_read_a_input_value APS_read_a_input_data Read back analog input value by volt APS_write_a_output_data Set analog output value by raw data APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table APS_get_point_table APS_get_running_point_index APS_get_start_point_index APS_get_start_point_index APS_set_table_move_ex_pause APS_set_table_move_ex_resume Restampling parameter. Set sampling parameter. Waiting for sample data. Waiting for sample data asynchronously Red digital output value by volt Red digital output value APS_set_bale anout value by raw data dest and set and se		APS_set_field_bus_int_factor_di	
APS_set_sampling_param Get sampling parameter. APS_get_sampling_param Get sampling parameter. APS_wait_trigger_sampling Waiting for sample data. APS_wait_trigger_sampling_async Waiting for sample data asynchronously APS_get_sampling_count Get sampled data count. APS_stop_wait_sampling Force stop wait sampling DIO & AIO APS_write_d_output Set digital output value APS_read_d_output Read digital output value APS_read_d_input Read digital input value APS_read_a_input_value Read back analog input value by volt APS_write_a_output_value Set analog output value by volt APS_write_a_output_data Read back analog input raw data APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table Set point table move parameters APS_get_point_table Get point table move parameters APS_get_running_point_index Get tourrent point move index when axis is perform a point move APS_get_end_point_index Get the first point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_ex_resume Re-start point table move repeat		APS_get_field_bus_int_factor_di	
APS_get_sampling_param Get sampling parameter. APS_wait_trigger_sampling Waiting for sample data. APS_wait_trigger_sampling_async APS_get_sampling_count Get sampled data count. APS_stop_wait_sampling Force stop wait sampling DIO & AIO APS_write_d_output Set digital output value APS_read_d_output Read digital output value APS_read_a_input_value Read digital input value by volt APS_read_a_input_data Read back analog input raw data APS_write_a_output_value Set analog output value by volt APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table Get point table move parameters APS_point_table_move Start a point table move APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_end_point_index Get the first point move index when axis is perform a point move APS_set_table_move_ex_pause Pause point table move APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		San	npling
APS_wait_trigger_sampling Waiting for sample data. APS_wait_trigger_sampling_async Waiting for sample data asynchronously APS_get_sampling_count Get sampled data count. APS_stop_wait_sampling Force stop wait sampling DIO & AIO APS_write_d_output Set digital output value APS_read_d_output Read digital output value APS_read_d_input Read digital input value APS_read_a_input_value Read back analog input raw data APS_write_a_output_value Set analog output value by volt APS_write_a_output_value Set analog output value by volt APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table Get point table move parameters APS_get_point_table Get point table move parameters APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_resume Re-start point table move repeat		APS_set_sampling_param	Set sampling parameter.
APS_wait_trigger_sampling_async APS_get_sampling_count APS_stop_wait_sampling BIO & AIO APS_write_d_output APS_read_d_output APS_read_d_output APS_read_d_input APS_read_a_input_value APS_read_a_input_value APS_read_a_input_value APS_write_a_output_value APS_read_a_input_value APS_read_a_output APS_read_a_output APS_read_a_input_value APS_read_a_input_value APS_read_a_output_value APS_write_a_output_value APS_write_a_output_value APS_write_a_output_data Set analog output value by row data 12 Point table motion APS_set_point_table APS_get_point_table Get point table move parameters APS_point_table APS_get_running_point_index APS_get_running_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_resume Re-start point table move repeat		APS_get_sampling_param	Get sampling parameter.
APS_wait_trigger_sampling_async APS_get_sampling_count APS_stop_wait_sampling DIO & AIO APS_write_d_output APS_read_d_output APS_read_d_input APS_read_a_input_value APS_write_a_output_value APS_write_a_output_value APS_read_a_input_value APS_write_a_output_value APS_write_a_output_value APS_write_a_output_value APS_write_a_output_value APS_write_a_output_value APS_write_a_output_value APS_write_a_output_tata Set analog output value by volt APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table Get point table move parameters APS_get_point_table Get point table move parameters APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_end_point_index Get the first point move index when axis is perform a point move APS_set_table_move_pause APS_set_table_move_pause APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_resume Re-start point table move repeat	10	APS_wait_trigger_sampling	Waiting for sample data.
APS_stop_wait_sampling DIO & AIO APS_write_d_output APS_read_d_output APS_read_d_input APS_read_a_input_value APS_read_a_input_value APS_read_a_input_value APS_write_a_output_value APS_write_a_output_data APS_write_a_output_data APS_set_point_table APS_get_running_point_index APS_get_start_point_index APS_get_end_point_index APS_get_and_point_index APS_set_table_move_ex_resume APS_set_table_move_ex_resume APS_set_table_move and keep I/O status APS_set_table_move_repeat APS_set_table move are depicted APS_set_table move_repeat APS_set_table move_repeat APS_set_table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_wait_trigger_sampling_async	
APS_write_d_output Set digital output value APS_read_d_output Read digital output value APS_read_d_input Read digital input value APS_read_a_input_value Read back analog input value by volt APS_read_a_input_data Read back analog input value by volt APS_write_a_output_value Set analog output value by row data APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table Set point table move parameters APS_get_point_table Get point table move parameters APS_get_running_point_index Start a point table move APS_get_start_point_index Get current point move index when axis is perform a point move APS_get_end_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_get_sampling_count	Get sampled data count.
APS_write_d_output Read digital output value APS_read_d_output Read digital output value APS_read_d_input Read digital input value APS_read_a_input_value Read back analog input value by volt APS_read_a_input_data Read back analog input raw data APS_write_a_output_value Set analog output value by rown data APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table Set point table move parameters APS_get_point_table Get point table move parameters APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_start_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_stop_wait_sampling	Force stop wait sampling
APS_read_d_output Read digital output value APS_read_d_input Read digital input value APS_read_a_input_value Read back analog input value by volt APS_read_a_input_data Read back analog input raw data APS_write_a_output_value Set analog output value by volt APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table Set point table move parameters APS_get_point_table Get point table move parameters APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_start_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		DIO	& AIO
APS_read_d_input Read digital input value APS_read_a_input_value Read back analog input value by volt APS_read_a_input_data Read back analog input raw data APS_write_a_output_value Set analog output value by volt APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table Set point table move parameters APS_get_point_table Get point table move parameters APS_point_table_move Start a point table move APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_start_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_write_d_output	Set digital output value
APS_read_a_input_value Read back analog input value by volt APS_read_a_input_data Read back analog input raw data APS_write_a_output_value Set analog output value by volt APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table Set point table move parameters APS_get_point_table Get point table move parameters APS_point_table_move Start a point table move APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_end_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_read_d_output	Read digital output value
APS_read_a_input_value Read back analog input value by volt APS_read_a_input_data Read back analog input raw data APS_write_a_output_value Set analog output value by volt APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table Set point table move parameters APS_get_point_table Get point table move parameters APS_point_table_move Start a point table move APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_start_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat	44	APS_read_d_input	Read digital input value
APS_write_a_output_value Set analog output value by volt APS_write_a_output_data Set analog output value by raw data 12 Point table motion APS_set_point_table Set point table move parameters APS_get_point_table Get point table move parameters APS_point_table_move Start a point table move APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_start_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat	''	APS_read_a_input_value	Read back analog input value by volt
APS_write_a_output_data Point table motion APS_set_point_table APS_get_point_table APS_get_point_table APS_point_table APS_point_table APS_point_table APS_get_running_point_index APS_get_running_point_index APS_get_start_point_index APS_get_start_point_index APS_get_end_point_index APS_get_end_point_index APS_set_table_move_pause APS_set_table_move_ex_pause APS_set_table_move_ex_rollback APS_set_table_move_ex_resume APS_set_table_move_ex_resume Re-start point table move repeat APS_set_table_move_repeat Set point table move repeat		APS_read_a_input_data	Read back analog input raw data
APS_set_point_table Set point table move parameters APS_get_point_table Get point table move parameters APS_point_table_move Start a point table move APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_start_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_write_a_output_value	Set analog output value by volt
APS_set_point_table APS_get_point_table APS_point_table APS_point_table_move APS_point_table_move APS_get_running_point_index APS_get_running_point_index APS_get_start_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause APS_set_table_move_ex_pause APS_set_table_move_ex_rollback APS_set_table_move_ex_rollback APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_write_a_output_data	Set analog output value by raw data
APS_get_point_table Get point table move parameters APS_point_table_move Start a point table move APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_start_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat	12	Point ta	ble motion
APS_point_table_move APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_start_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause APS_set_table_move_ex_pause APS_set_table_move_ex_pause APS_set_table_move_ex_rollback APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_set_point_table	Set point table move parameters
APS_get_running_point_index Get current point move index when axis is perform a point move APS_get_start_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_get_point_table	Get point table move parameters
axis is perform a point move APS_get_start_point_index Get the first point move index when axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_point_table_move	Start a point table move
axis is perform a point move APS_get_end_point_index Get the last point move index when axis is perform a point move APS_set_table_move_pause APS_set_table_move_ex_pause APS_set_table_move_ex_rollback APS_set_table_move_ex_rollback Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_get_running_point_index	
axis is perform a point move APS_set_table_move_pause Pause point table move APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_get_start_point_index	
APS_set_table_move_ex_pause Decelerate to stop move and control I/O APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_get_end_point_index	
APS_set_table_move_ex_rollback Rollback to starting position of current point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_set_table_move_pause	Pause point table move
point index APS_set_table_move_ex_resume Re-start point table move and keep I/O status APS_set_table_move_repeat Set point table move repeat		APS_set_table_move_ex_pause	Decelerate to stop move and control I/O
APS_set_table_move_repeat Set point table move repeat		APS_set_table_move_ex_rollback	
		APS_set_table_move_ex_resume	
APS_set_point_table_mode2 Set point table mode		APS_set_table_move_repeat	Set point table move repeat
		APS_set_point_table_mode2	Set point table mode

	APS_set_point_table2	Set point table
	APS_point_table_continuous_move 2	Start a point table continuous move
-	APS_point_table_single_move2	Start a point table single move
	APS_get_running_point_index2	Get current point move index when axis is perform a point move
	APS_point_table_status2	Get point table stauts
•	APS_set_point_table3	Set point table
•	APS_point_table_move3	Start a point table single move
•	APS_set_point_table_param3	Set speed parameter
•	APS_set_feeder_group	Set axes into a feeder group
	APS_get_feeder_group	Return the configuration in one feeder group
	APS_free_feeder_group	Free a feeder group and it's resources
	APS_reset_feeder_buffer	Reset the feeder's point buffer
	APS_set_feeder_point_2D	Add a point into feeder's buffer
	APS_start_feeder_move	Start point table move and feed points.
	APS_get_feeder_running_index	Get which point is in operation.
	APS_get_feeder_feed_index	Get which point is set into point table.
	APS_set_feeder_ex_pause	Motion paused(stopped) and feeder paused
	APS_set_feeder_ex_rollback	Move back to the starting position of paused index
	APS_set_feeder_ex_resume	Resume the point-table move.
13	<u>Field bu</u>	s functions
•	APS_set_field_bus_param	Set field bus related parameters
•	APS_get_field_bus_param	Get field bus related parameters
-	APS_start_field_bus	Start the network of specified field bus
-	APS_stop_field_bus	Stop the network of specified field bus
•	APS_field_bus_d_set_output	Set field bus digital output
	APS_field_bus_d_get_output	Get field bus digital output
	APS_field_bus_d_get_input	Get field bus digital input
	APS_set_field_bus_slave_param	Set parameter to field bus slave module
	APS_get_field_bus_slave_param	Get parameter from field bus slave module
	APS_set_field_bus_a_output	Set field bus analog output
	APS_get_field_bus_a_output	Get field bus analog output
	APS_get_field_bus_a_input	Get field bus analog input

APS_get_slave_connect_quality Get the connected quality of slave APS_get_slave_online_status Get the online status of slave APS_get_field_bus_last_scan_info Get fieldbus info after system scanning.	
APS_get_field_bus_last_scan_info	
APS_get_field_bus_master_type Get master type of the fieldbus	
APS_get_field_bus_slave_type Get slave type on the fieldbus	
APS_get_field_bus_slave_name Get slave name on the fieldbus	
APS_get_field_bus_slave_first_axis Get first axis of the slave module no	
APS_get_field_bus_device_info Get device information on a specified field bus	
Gantry functions	
APS_set_gantry_param Set gantry function related parameter	
APS_get_gantry_param Get gantry function related parameter	
APS_set_gantry_axis Set two axes in a gantry group	
APS_get_gantry_axis Get which axes in a gantry group	
APS_get_gantry_error Get gantry axes deviation error	
Compare trigger	
APS_set_trigger_param Set compare trigger related parameter	
APS_get_trigger_param Get compare trigger related parameter	
APS_set_trigger_linear Set linear comparing function	
APS_set_trigger_table Set table comparing function	
APS_set_trigger_manual Manual output trigger	
APS_set_trigger_manual_s	
APS_get_trigger_table_cmp Get current table comparing value	
15 APS_get_trigger_linear_cmp Get current linear comparing value	
APS_get_trigger_count Get triggered count.	
APS_reset_trigger_count Reset triggered count.	
APS_set_trigger_encoder_counter Set trigger encoder counter	
APS_get_trigger_encoder_counter Get trigger encoder counter	
APS_enable_trigger_fifo_cmp Enable trigger fifo comparator	
APS_get_trigger_fifo_cmp Get trigger fifo comparator	
APS_get_trigger_fifo_status Get trigger fifo status	
APS_set_trigger_fifo_data Set trigger fifo status	
APS_start_timer Start timer	
Manual Pulse Geneator functions	
16 APS_get_pulser_counter Get pluse input counter	
APS_set_pulser_counter Set pluse input counter	

	DPAC Sys	stem Functions
	APS_rescan_CF	Reset DPAC Slave CF slot
47	APS_get_battery_status	Get DPAC SRAM Battery status
17	APS_get_display_data	Get 7-Segment Data
	APS_set_display_data	Set 7-Segment Data
	APS_get_button_status	Get the Push Button Input Status
	NV RAM	// funciton
	APS_set_nv_ram	Set RAM data
18	APS_get_nv_ram	Get RAM data
	APS_clear_nv_ram	Clear RAM data
	Field bus Co	ompare trigger
	APS_set_field_bus_trigger_param	Set compare trigger related parameter
	APS_get_field_bus_trigger_param	Get compare trigger related
		parameter
	APS_set_field_bus_trigger_linear	Set linear comparing function
	APS_set_field_bus_trigger_table	Set table comparing function
	APS_set_field_bus_trigger_manual	Manual output trigger
	APS_set_field_bus_trigger_manual _s	Manual output trigger synchronously
19	APS_get_field_bus_trigger_table_c mp	Get current table comparing value
	APS_get_field_bus_trigger_linear_c mp	Get current linear comparing value
	APS_get_field_bus_trigger_count	Get triggered count.
	APS_reset_field_bus_trigger_count	Reset triggered count.
	APS_get_field_bus_linear_cmp_re	Get remaining counter of linear
	main_count	comparator
	APS_get_field_bus_table_cmp_rem ain_count	Get remaining counter of table
	am_count	comparator
	APS_get_field_bus_encoder	Get encoder counter
	APS_set_field_bus_encoder	Set encoder counter
20	VAO/PWM function	ns(Laser function)
	APS_set_vao_param	Set parameter to VAO table
	APS_get_vao_param	Get parameter of VAO table
	APS_set_vao_table	Set VAO table
	APS_switch_vao_table	Switch to specified VAO table
	APS_start_vao	Enable VAO output channel
	APS_get_vao_status	Get VAO status

	APS_check_vao_param	Check parameters setting of specified	
		VAO table	
	APS_set_vao_param_ex	Set table parameters via VAO structure.	
	APS_get_vao_param_ex	Get table parameters via VAO structure.	
	APS_set_pwm_on	Start to output PWM signal	
	APS_set_pwm_width	Set pulse width to a PWM channel	
	APS_set_pwm_frequency	Set pulse frequency to a PWM channel	
	APS_get_pwm_width	Get pulse width from a PWM channel	
	APS_get_pwm_frequency	Get pulse frequency from a PWM channel	
	Simultaneous	move functions	
	APS_set_relative_simultaneous_m ove	Setup a relative simultaneous move	
21	APS_set_absolute_simultaneous_ move	Setup a absolute simultaneous move	
	APS_start_simultaneous_move	Begin a simultaneous move	
	APS_stop_simultaneous_move	Stop a simultaneous move	
	<u>Table o</u>	<u>lefinition</u>	
	Board parameters definition table		
	Axis parameters definition table		
	Sampling parameters definition table		
	Sampling source definition table		
	The bit definition of motion IO status		
	Motion status definition table		
	Interrupt factor table		
	Field bus parameter definition		
	Gantry parameters definition table		
	Trigger parameter table		
	Device information table		
	Field bus slave parameter table		
	DPAC displayIndex table		
	DPAC Buttonstatus table		
	SSCNET servo monitor source table		
	VAO parameter table		
	Function Return Code		

2. List of functions for DPAC-1000

Sec.	Function name	Descriptions	Page
	System 8	<u> Initialization</u>	
	APS_initial	Device initialization	
	APS_close	Device close	
	APS_version	Get the version of the library	
3	APS_device_driver_version	Get the driver's version of devices	
	APS_set_board_param	Set board parameter	
	APS_get_board_param	Get board parameter	
	APS_get_device_info	Get device information	
	APS_load_param_from_file	Load parameters from file	
	Inte	errupt	
	APS_int_enable	Interrupt main switch	
	APS_set_int_factor	Enable/Disable interrupt factor and get interrupt handle.	
	APS_get_int_factor	Get interrupt factor enable or disable	
9	APS_wait_single_int	Wait single interrupt event	
	APS_wait_multiple_int	Wait multiple interrupt events	
	APS_reset_int	Reset interrupt event to non-signaled state.	
	APS_set_int	Set interrupt event to signaled state.	
	APS_set_int_factorH	Enable/Disable interrupt factor and get interrupt handle.(Win32)	
	DIO	& AIO	
44	APS_write_d_output	Set digital output value	
11	APS_read_d_output	Read digital output value	
	APS_read_d_input	Read digital input value	
	Manual Pulse	Geneator Input	
16	APS_get_pulser_counter	Get pluse input counter	
	APS_set_pulser_counter	Set pluse input counter	
	DPAC Sy	stem Function	
	APS_rescan_CF	Rescan DPAC Slave CF slot	
4-7	APS_get_battery_status	Get DPAC SRAM Battery status	
17	APS_get_display_data	Get 7-Segment LED Data	
	APS_set_display_data	Set 7-Segment LED Data	
	APS_get_button_status	Get the Push Button Input Status	
18	Non-Volatile	RAM funciton	

APS_set_nv_ram	Set RAM data	
APS_get_nv_ram	Get RAM data	
APS_clear_nv_ram	Clear RAM data	
<u>Table d</u>	<u>efinition</u>	
Board parameters definition table		
Interrupt factor table		
Device information table		
DPAC displayIndex table		
DPAC Buttonstatus table		
Function Return Code		

3. List of functions for DPAC-3000

Sec.	Function name		Descriptions	Page
	System & Initialization			
	APS_initial		Device initialization	
	APS_close		Device close	
	APS_version		Get the version of the library	
	APS_device_driver_version		Get the driver's version of devices	
3	APS_get_axis_info		Get the information of the specified axis	
	APS_set_board_param		Set board parameter	
	APS_get_board_param		Get board parameter	
	APS_get_device_info		Get device information	
	APS_load_param_from_file		Load parameters from file	
	<u>Interrupt</u>			
	APS_int_enable	Inte	errupt main switch	
	APS_set_int_factor		able/Disable interrupt factor and tinterrupt handle.	
	APS_get_int_factor	Ge	t interrupt factor enable or disable	
9	APS_wait_single_int	Wa	ait single interrupt event	
	APS_wait_multiple_int	Wa	ait multiple interrupt events	
	APS_reset_int	Re sta	set interrupt event to non-signaled te.	
	APS_set_int	Se	t interrupt event to signaled state.	
	APS_set_int_factorH		able/Disable interrupt factor and tinterrupt handle.(Win32)	
11	DIO	& A	10	

	APS_write_d_output	Set digital output value
	APS_read_d_output	Read digital output value
	APS_read_d_input	Read digital input value
	-	us functions
	APS_set_field_bus_param	Set field bus related parameters
	APS_get_field_bus_param	Get field bus related parameters
	APS_start_field_bus	Start the network of specified field bus
	APS_stop_field_bus	Stop the network of specified field bus
	APS_field_bus_d_set_output	Set field bus digital output
	APS_field_bus_d_get_output	Get field bus digital output
	APS_field_bus_d_get_input	Get field bus digital input
	APS_set_field_bus_slave_param	Set parameter to field bus slave module
	APS_get_field_bus_slave_param	Get parameter from field bus slave module
13	APS_set_field_bus_a_output	Set field bus analog output
	APS_get_field_bus_a_output	Get field bus analog output
	APS_get_field_bus_a_input	Get field bus analog input
	APS_get_slave_connect_quality	Get the connected quality of slave
	APS_get_slave_online_status	Get the online status of slave
	APS_get_field_bus_last_scan_info	Get fieldbus info after system scanning.
	APS_get_field_bus_master_type	Get master type of the fieldbus
	APS_get_field_bus_slave_type	Get slave type on the fieldbus
	APS_get_field_bus_slave_name	Get slave name on the fieldbus
	APS_get_field_bus_slave_first_axis no	Get first axis of the slave module
	APS_get_field_bus_device_info	Get device information on a specified field bus
	Manual Pulse	Geneator Input
16	APS_get_pulser_counter	Get pluse input counter
	APS_set_pulser_counter	Set pluse input counter
	DPAC Sy	rstem Function
	APS_rescan_CF	Rescan DPAC Slave CF slot
17	APS_get_battery_status	Get DPAC SRAM Battery status
''	APS_get_display_data	Get 7-Segment LED Data
	APS_set_display_data	Set 7-Segment LED Data
	APS_get_button_status	Get the Push Button Input Status
18	Non-Volatile	RAM funciton

APS_set_nv_ram	Set RAM data	
APS_get_nv_ram	Get RAM data	
APS_clear_nv_ram	Clear RAM data	
<u>Table d</u>	<u>efinition</u>	
Board parameters definition table		
Field bus parameter definition		
Interrupt factor table		
Device information table		
DPAC displayIndex table		
DPAC Buttonstatus table		
Function Return Code		

4. List of functions for PCI-8392(H)

	Function name	Descriptions	Page
	System & Initialization		
	APS_initial	Device initialization	
	APS_close	Device close	
	APS_version	Get the version of the library	
	APS_device_driver_version	Get the driver's version of devices	
	APS_get_axis_info	Get the information of the specified axis	
	APS_set_board_param	Set board parameter	
	APS_get_board_param	Get board parameter	
3	APS_set_axis_param	Set axis parameter	
	APS_get_axis_param	Get axis parameter	
	APS_get_system_timer	Get system timer counter	
	APS_get_device_info	Get device information	
	APS_save_parameter_to_flash	Save system & axes parameters to flash	
	APS_load_parameter_from_flash	Load system & axes parameters from flash	
	APS_load_parameter_from_default	Load system & axes parameters by default value.	
	APS_load_param_from_file	Load parameters from file	
4	SSCNE	ET function	
	APS_start_sscnet	Start the network of SSCNET	
	APS_stop_sscnet	Stop the network of SSCNET	

	APS_get_sscnet_servo_param	Read current servo parameter value
_	APS_set_sscnet_servo_param	Set servo parameter
_	APS_get_sscnet_servo_alarm	Get current servo alarm
	7.1	information
	APS_reset_sscnet_servo_alarm	Servo alarm reset
	APS_save_sscnet_servo_param	Save servo parameter to flash ROM
	APS_get_sscnet_servo_abs_position	Get absolute reference position from servo driver
	APS_save_sscnet_servo_abs_position	n Save absolute reference position to flash ROM
	APS_load_sscnet_servo_abs_position	Load absolute reference position from flash ROM
	APS_get_sscnet_link_status	Get SSCNET link status
	APS_set_sscnet_servo_monitor_src	Set servo monitor data source
	APS_get_sscnet_servo_monitor_src	Get servo monitor data source
	APS_get_sscnet_servo_monitor_data	Get servo monitor data
	Motion IO and	I motion status
	APS_motion_status	Return motion status
	APS_motion_io_status	Return motion IO status
	APS_set_servo_on	Set servo ON/OFF
	APS_get_position	Get feedback position
_	APS_set_position	Set feedback position
5	APS_get_command	Get command position
	APS_set_command	Set command position
	APS_get_command_velocity	Get command velocity
	APS_get_feedback_velocity	Get feedback velocity
	APS_get_error_position	Get error position
	APS_get_target_position	Get target position
6	Single a	kis motion
	APS_relative_move	Begin a relative distance move
	APS_absolute_move	Begin a absolute position move
	APS_velocity_move	Begin a velocity move
	APS_home_move	Begin a home move
	APS_stop_move	Stop move
	APS_emg_stop	Emergency stop
	APS_relative_move2	Begin a relative distance move with speed profile
	APS_absolute_move2	Begin a absolute position move with

		speed profile
	APS_home_move2	Begin a home move with speed profile
	Jog	move
	APS_set_jog_param	Set Jog parameters
7	APS_get_jog_param	Get Jog parameters
	APS_jog_mode_switch	Enable / Disable jog move
	APS_jog_start	Start / stop jog move
	Interp	polation
	APS_absolute_linear_move	Begin an absolute position linear interpolation
8	APS_relative_linear_move	Begin a relative distance linear interpolation
	APS_absolute_arc_move	Begin an absolute position circular interpolation
	APS_relative_arc_move	Begin a relative distance circular interpolation
	Inte	errupt
	APS_int_enable	Interrupt main switch
	APS_set_int_factor	Enable/Disable interrupt factor and get interrupt handle.
	APS_get_int_factor	Get interrupt factor enable or disable
9	APS_wait_single_int	Wait single interrupt event
	APS_wait_multiple_int	Wait multiple interrupt events
	APS_reset_int	Reset interrupt event to non-signaled state.
	APS_set_int	Set interrupt event to signaled state.
	APS_set_int_factorH	Enable/Disable interrupt factor and get interrupt handle.(Win32)
	San	npling
	APS_set_sampling_param	Set sampling parameter.
	APS_get_sampling_param	Get sampling parameter.
10	APS_wait_trigger_sampling	Waiting for sample data.
	APS_wait_trigger_sampling_async	Waiting for sample data asynchronously
	APS_get_sampling_count	Get sampled data count.
	APS_stop_wait_sampling	Force stop wait sampling
12	Point ta	ble motion
	APS_set_point_table	Set point table move parameters
	APS_get_point_table	Get point table move parameters
	APS_point_table_move	Start a point table move
	APS_get_running_point_index	Get current point move index when

		axis is perform a point move
	APS_get_start_point_index	Get the first point move index when axis is perform a point move
	APS_get_end_point_index	Get the last point move index when axis is perform a point move
	APS_set_table_move_pause	Pause point table move
	APS_set_table_move_repeat	Set point table move repeat
	<u>Field bu</u>	s functions
	APS_set_field_bus_param	Set field bus related parameters
	APS_get_field_bus_param	Get field bus related parameters
	APS_start_field_bus	Start the network of specified field bus
	APS_stop_field_bus	Stop the network of specified field bus
13	APS_field_bus_d_set_output	Set field bus digital output
	APS_field_bus_d_get_output	Get field bus digital output
	APS_field_bus_d_get_input	Get field bus digital input
	APS_set_field_bus_slave_param	Set parameter to field bus slave module
	APS_get_field_bus_slave_param	Get parameter from field bus slave module
	APS_set_field_bus_a_output	Set field bus analog output
	APS_get_field_bus_a_output	Get field bus analog output
	APS_get_field_bus_a_input	Get field bus analog input
	APS_get_slave_connect_quality	Get the connected quality of slave
	APS_get_slave_online_status	Get the online status of slave
	APS_get_field_bus_last_scan_info	Get fieldbus info after system scanning.
	APS_get_field_bus_master_type	Get master type of the fieldbus
	APS_get_field_bus_slave_type	Get slave type on the fieldbus
	APS_get_field_bus_slave_name	Get slave name on the fieldbus
	APS_get_field_bus_slave_first_axis no	Get first axis of the slave module
	APS_get_field_bus_device_info	Get device information on a specified field bus
	Gantry	functions
	APS_set_gantry_param	Set gantry function related parameter
14	APS_get_gantry_param	Get gantry function related parameter
14	APS_set_gantry_axis	Set two axes in a gantry group
	APS_get_gantry_axis	Get which axes in a gantry group
	APS_get_gantry_error	Get gantry axes deviation error
	<u>Table d</u>	<u>lefinition</u>
		

Board parameters definition table	
Axis parameters definition table	
Sampling parameters definition table	
Sampling source definition table	
The bit definition of motion IO status	
Motion status definition table	
Interrupt factor table	
Field bus parameter definition	
Gantry parameters definition table	
Device information table	
Field bus slave parameter table	
SSCNET servo monitor source table	
Function Return Code	

5. List of all functions for PCI-8253/56

Sec.	Function name	Descriptions	Page
	System 8	Initialization	
	APS_initial	Device initialization	
	APS_close	Device close	
	APS_version	Get the version of the library	
	APS_device_driver_version	Get the driver's version of devices	
	APS_get_axis_info	Get the information of the specified axis	
	APS_set_board_param	Set board parameter	
	APS_get_board_param	Get board parameter	
3	APS_set_axis_param	Set axis parameter	
	APS_get_axis_param	Get axis parameter	
	APS_get_system_timer	Get system timer counter	
	APS_get_device_info	Get device information	
	APS_save_parameter_to_flash	Save system & axes parameters to flash	
	APS_load_parameter_from_flash	Load system & axes parameters from flash	
	APS_load_parameter_from_default	Load system & axes parameters by default value.	
	APS_load_param_from_file	Load parameters from file	
5	Motion IO and	d motion status	

	Т	T
	APS_motion_status	Return motion status
	APS_motion_io_status	Return motion IO status
	APS_set_servo_on	Set servo ON/OFF
	APS_get_position	Get feedback position
	APS_set_position	Set feedback position
	APS_get_command	Get command position
	APS_set_command	Set command position
	APS_get_command_velocity	Get command velocity
	APS_get_feedback_velocity	Get feedback velocity
	APS_get_error_position	Get error position
	APS_get_target_position	Get target position
	Single a	xis motion
	APS_relative_move	Begin a relative distance move
	APS_absolute_move	Begin a absolute position move
	APS_velocity_move	Begin a velocity move
	APS_home_move	Begin a home move
6	APS_stop_move	Stop move
	APS_emg_stop	Emergency stop
	APS_relative_move2	Begin a relative distance move with speed profile
	APS_absolute_move2	Begin a absolute position move with speed profile
	APS_home_move2	Begin a home move with speed profile
	Jog	move
	APS_set_jog_param	Set Jog parameters
7	APS_get_jog_param	Get Jog parameters
	APS_jog_mode_switch	Enable / Disable jog move
	APS_jog_start	Start / stop jog move
8	Interp	polation
	APS_absolute_linear_move	Begin an absolute position linear interpolation
	APS_relative_linear_move	Begin a relative distance linear interpolation
	APS_absolute_arc_move	Begin an absolute position circular interpolation
	APS_relative_arc_move	Begin a relative distance circular interpolation
	APS_absolute_arc_move_3pe	Begin a absolute position circular interpolation by pass and end point method

	APS_relative_arc_move_3pe	Begin a relative distance circular interpolation by pass and end point method
	APS_absolute_helix_move	Begin a absolute position helical interpolation
	APS_relative_helix_move	Begin a relative distance helical intepolation
	Inte	errupt
	APS_int_enable	Interrupt main switch
	APS_set_int_factor	Enable/Disable interrupt factor and get interrupt handle.
	APS_get_int_factor	Get interrupt factor enable or disable
9	APS_wait_single_int	Wait single interrupt event
	APS_wait_multiple_int	Wait multiple interrupt events
	APS_reset_int	Reset interrupt event to non-signaled state.
	APS_set_int	Set interrupt event to signaled state.
	APS_set_int_factorH	Enable/Disable interrupt factor and get interrupt handle.(Win32)
	Sar	npling
	APS_set_sampling_param	Set sampling parameter.
	APS_get_sampling_param	Get sampling parameter.
10	APS_wait_trigger_sampling	Waiting for sample data.
	APS_wait_trigger_sampling_async	Waiting for sample data asynchronously
	APS_get_sampling_count	Get sampled data count.
	APS_stop_wait_sampling	Force stop wait sampling
	DIO	& AIO
	APS_write_d_output	Set digital output value
	APS_read_d_output	Read digital output value
11	APS_read_d_input	Read digital input value
	APS_read_a_input_value	Read back analog input value by volt
	APS_read_a_input_data	Read back analog input raw data
	APS_write_a_output_value	Set analog output value by volt
	APS_write_a_output_data	Set analog output value by raw data
12	Point ta	ble motion
	APS_set_point_table	Set point table move parameters
	APS_get_point_table	Get point table move parameters
	APS_point_table_move	Start a point table move
	APS_get_running_point_index	Get current point move index when axis is perform a point move

	APS_get_start_point_index	Get the first point move index when axis is perform a point move
	APS_get_end_point_index	Get the last point move index when axis is perform a point move
	APS_set_table_move_pause	Pause point table move
	APS_set_table_move_ex_pause	Decelerate to stop move and control I/O
	APS_set_table_move_ex_rollback	Rollback to starting position of current point index
	APS_set_table_move_ex_resume	Re-start point table move and keep I/O status
	APS_set_table_move_repeat	Set point table move repeat
	<u>Gantry</u>	functions
	APS_set_gantry_param	Set gantry function related parameter
	APS_get_gantry_param	Get gantry function related parameter
	APS_set_gantry_axis	Set two axes in a gantry group
	APS_get_gantry_axis	Get which axes in a gantry group
14	APS_get_gantry_error	Get gantry axes deviation error
	APS_get_encoder	Get encoder(Be used for compensation of gantry home return)
	APS_ get_latch_event	Get latch event by axis(Be used for compensation of gantry home return)
	APS_get_latch_counter	Get latch counter by axis(Be used for compensation of gantry home return)
	Compa	re trigger
	APS_set_trigger_param	Set compare trigger related parameter
	APS_get_trigger_param	Get compare trigger related parameter
	APS_set_trigger_linear	Set linear comparing function
	APS_set_trigger_table	Set table comparing function
15	APS_set_trigger_manual	Manual output trigger
	APS_set_trigger_manual_s	Manual output trigger synchronously
	APS_get_trigger_table_cmp	Get current table comparing value
	APS_get_trigger_linear_cmp	Get current linear comparing value
	APS_get_trigger_count	Get triggered count.
	APS_reset_trigger_count	Reset triggered count.
4.0	Manual Pulse G	eneator functions
16	APS_get_pulser_counter	Get pluse input counter
20	VAO/PWM function	ons(Laser function)
	APS_set_vao_param	Set parameter to VAO table
	APS_get_vao_param	Get parameter of VAO table

APS_set_vao_table	Set VAO table	
APS_switch_vao_table	Switch to specified VAO table	
APS_start_vao	Enable VAO output channel	
APS_get_vao_status	Get VAO status	
APS_check_vao_param	Check parameters setting of specified	
	VAO table	
APS_set_vao_param_ex	Set table parameters via VAO structure	
APS_get_vao_param_ex	Get table parameters via VAO structure	
APS_set_pwm_on	Start to output PWM signal	
APS_set_pwm_width	Set pulse width to a PWM channel	
APS_set_pwm_frequency	Set pulse frequency to a PWM channel	
APS_get_pwm_width	Get pulse width from a PWM channel	
APS_get_pwm_frequency	Get pulse frequency from a PWM channel	
<u>Table d</u>	<u>lefinition</u>	
Board parameters definition table		
Axis parameters definition table		
Sampling parameters definition table		
Sampling source definition table		
The bit definition of motion IO status		
Motion status definition table		
Interrupt factor table		
Gantry parameters definition table		
Trigger parameter table		
Device information table		
VAO parameter table		
Function Return Code		

6. List of all functions for PCI-8144

Sec.	Function name		Descriptions	
	System & Initialization			
	APS_initial		Device initialization	
	APS_close		Device close	
	APS_version		Get the version of the library	
	APS_device_driver_version		Get the driver's version of devices	
	APS_get_axis_info		Get the information of the specified axis	
3	APS_set_axis_param		Set axis parameter	
	APS_get_axis_param		Get axis parameter	
	APS_get_device_info		Get device information	
İ	APS_set_security_key		Set security password	
İ	APS_check_security_key		Varify security password	
	APS_reset_security_key		Reset security password	
	APS_load_param_from_file		Load parameters from file	
	Motion IO a	nd m	notion status	
	APS_motion_status	Return motion status		
5	APS_motion_io_status	Return motion IO status		
5	APS_get_command	G	et command position	
	APS_set_command	Se	et command position	
	APS_get_command_velocity	G	et command velocity	
	Single axis motion			
	APS_relative_move Begin a relative distance move			
6	APS_velocity_move	В	egin a velocity move	
O	APS_home_move	В	egin a home move	
	APS_stop_move	St	op move	
	APS_emg_stop	Eı	mergency stop	
9	<u>Ir</u>	nterru	ı <u>pt</u>	
	APS_int_enable	In	terrupt main switch	
	APS_set_int_factor		nable/Disable interrupt factor and et interrupt handle.	
	APS_get_int_factor	G	et interrupt factor enable or disable	
	APS_wait_single_int	W	ait single interrupt event	
	APS_wait_multiple_int	W	ait multiple interrupt events	
	APS_reset_int		eset interrupt event to non-signaled ate.	

	APS_set_int	Set interrupt event to signaled state.		
	APS_set_int_factorH	Enable/Disable interrupt factor and get interrupt handle.(Win32)		
	DIO & AIO			
11	APS_write_d_output	Set digital output value		
11	APS_read_d_output	Read digital output value		
	APS_read_d_input	Read digital input value		
	Non-Volatile RAM funciton			
18	APS_set_nv_ram	Set RAM data		
10	APS_get_nv_ram	Get RAM data		
	APS_clear_nv_ram	Clear RAM data		
	<u>Table c</u>	lefinition		
	Axis parameters definition table			
	The bit definition of motion IO status			
	Device information table			
	Function Return Code			

7. List of all functions for PCI-7856

Sec.	Function name	Descriptions	Page
	System & Initialization		
	APS_initial	Device initialization	
	APS_close	Device close	
	APS_version	Get the version of the library	
	APS_device_driver_version	Get the driver's version of devices	
3	APS_get_axis_info	Get the information of the specified axis	
	APS_set_board_param	Set board parameter	
	APS_get_board_param	Get board parameter	
	APS_get_device_info	Get device information	
	APS_save_param_to_file	Save parameters to file	
	APS_load_param_from_file	Load parameters from file	
9	<u>Interrupt</u>		
	APS_int_enable	Interrupt main switch	
	APS_set_int_factor	Enable/Disable interrupt factor and get interrupt handle.	

	APS_get_int_factor	Get interrupt factor enable or disable	
	APS_wait_single_int	Wait single interrupt event	
	APS_wait_multiple_int	Wait multiple interrupt events	
	APS_reset_int	Reset interrupt event to non-signaled state.	
	APS_set_int	Set interrupt event to signaled state.	
	APS_set_int_factorH	Enable/Disable interrupt factor and get interrupt handle.(Win32)	
	<u>Field bu</u>	s functions	
	APS_set_field_bus_param	Set field bus related parameters	
	APS_get_field_bus_param	Get field bus related parameters	
	APS_start_field_bus	Start the network of specified field bus	
	APS_stop_field_bus	Stop the network of specified field bus	
	APS_field_bus_d_set_output	Set field bus digital output	
	APS_field_bus_d_get_output	Get field bus digital output	
	APS_field_bus_d_get_input	Get field bus digital input	
	APS_set_field_bus_slave_param	Set parameter to field bus slave module	
	APS_get_field_bus_slave_param	Get parameter from field bus slave module	
13	APS_set_field_bus_a_output	Set field bus analog output	
	APS_get_field_bus_a_output	Get field bus analog output	
	APS_get_field_bus_a_input	Get field bus analog input	
	APS_get_slave_connect_quality	Get the connected quality of slave	
	APS_get_slave_online_status	Get the online status of slave	
	APS_get_field_bus_last_scan_info	Get fieldbus info after system scanning.	
	APS_get_field_bus_master_type	Get master type of the fieldbus	
	APS_get_field_bus_slave_type	Get slave type on the fieldbus	
	APS_get_field_bus_slave_name	Get slave name on the fieldbus	
	APS_get_field_bus_slave_first_axis no	Get first axis of the slave module	
	APS_get_field_bus_device_info	Get device information on a specified field bus	
	Non-Volatile	RAM funciton	
18	APS_set_nv_ram	Set RAM data	
	APS_get_nv_ram	Get RAM data	
	APS_clear_nv_ram	Clear RAM data	
	<u>Table d</u>	<u>lefinition</u>	

	Board parameters definition table	
	Field bus parameter definition	
	Interrupt factor table	
	Device information table	
	Function Return Code	

8. List of all functions for MNET-4XMO

Sec.	Function name		Descriptions	Page
	System & Initialization			
	APS_get_axis_info		Get the information of the specified axis	
3	APS_set_axis_param		Set axis parameter	
	APS_get_axis_param		Get axis parameter	
	APS_save_param_to_file		Save parameters to file	
	APS_load_param_from_file		Load parameters from file	
	Motion IO and	d mo	otion status	
	APS_motion_status	Re	turn motion status	
	APS_motion_io_status	Re	turn motion IO status	
	APS_set_servo_on	Se	t servo ON/OFF	
	APS_get_position	Ge	et feedback position	
5	APS_set_position	Se	t feedback position	
	APS_get_command	Ge	et command position	
	APS_set_command	Se	t command position	
	APS_get_command_velocity	Ge	et command velocity	
	APS_get_error_position	Get error position		
	APS_get_target_position		et target position	
	Single a	xis ı	<u>motion</u>	
	APS_relative_move	Ве	gin a relative distance move	
	APS_absolute_move	Ве	gin a absolute position move	
6	APS_velocity_move	Ве	gin a velocity move	
	APS_home_move	Ве	gin a home move	
	APS_stop_move	Sto	p move	
	APS_emg_stop	Em	nergency stop	
8	<u>Interp</u>	ola	<u>tion</u>	
	APS_absolute_linear_move		gin an absolute position linear erpolation	

	APS_relative_linear_move	Begin a relative distance linear interpolation
	APS_absolute_arc_move	Begin an absolute position circular interpolation
	APS_relative_arc_move	Begin a relative distance circular interpolation
	Inte	errupt
	APS_int_enable	Interrupt main switch
	APS_reset_field_bus_int_motion	Reset interrupt status of axes for MotionNet series.
	APS_set_field_bus_int_factor_moti on	Enable/Disable motion interrupt factor and get interrupt handle for MotionNet series.
	APS_get_field_bus_int_factor_moti on	Get motion interrupt factor enable or disable for MotionNet series.
	APS_set_field_bus_int_factor_error	Enable/Disable error interrupt factor and get interrupt handle for MotionNet series.
9	APS_get_field_bus_int_factor_error	Get error interrupt factor status for MotionNet series.
	APS_wait_single_int	Wait single interrupt event
	APS_wait_multiple_int	Wait multiple interrupt events
	APS_reset_int	Reset interrupt event to non-signaled state.
	APS_set_int	Set interrupt event to signaled state.
	APS_int_no_to_handle	Convert interrupt event number to interrupt handle.(Win32)
	APS_wait_field_bus_error_int_moti on	Wait error interrupt event for MotionNet series.
	San	npling
	APS_set_sampling_param	Set sampling parameter.
	APS_get_sampling_param	Get sampling parameter.
10	APS_wait_trigger_sampling	Waiting for sample data.
	APS_wait_trigger_sampling_async	Waiting for sample data asynchronously
	APS_get_sampling_count	Get sampled data count.
	APS_stop_wait_sampling	Force stop wait sampling
13	<u>Field bu</u>	s functions
	APS_set_field_bus_param	Set field bus related parameters
	APS_get_field_bus_param	Get field bus related parameters
	APS_start_field_bus	Start the network of specified field bus
	APS_stop_field_bus	Stop the network of specified field bus
	APS_field_bus_d_set_output	Set field bus digital output

	APS_field_bus_d_get_output	Get field bus digital output	
	APS_field_bus_d_get_input	Get field bus digital input	
	APS_get_slave_online_status	Get the online status of slave	
	APS_get_field_bus_last_scan_info	Get fieldbus info after system scanning.	
	APS_get_field_bus_master_type	Get master type of the fieldbus	
	APS_get_field_bus_slave_type	Get slave type on the fieldbus	
	APS_get_field_bus_slave_name	Get slave name on the fieldbus	
	APS_get_field_bus_slave_first_axis no	Get first axis of the slave module	
	APS_get_field_bus_device_info	Get device information on a specified field bus	
	Simultaneous move functions		
	APS_set_relative_simultaneous_m ove	Setup a relative simultaneous move	
21	APS_set_absolute_simultaneous_ move	Setup a absolute simultaneous move	
	APS_start_simultaneous_move	Begin a simultaneous move	
	APS_stop_simultaneous_move	Stop a simultaneous move	
	<u>Table</u> d	lefinition	
	Axis parameters definition table		
The bit definition of motion IO status			
	Motion status definition table		
	Interrupt factor table		
	Field bus parameter definition		
	Device information table		
	Function Return Code		
	·		

9. List of all functions for MNET-4XMO-C

Sec.	Function name	Descriptions	Page
3	System & Initialization		
	APS_get_axis_info	Get the information of the specified axis	
	APS_set_axis_param	Set axis parameter	
	APS_get_axis_param	Get axis parameter	
	APS_save_param_to_file	Save parameters to file	
	APS_load_param_from_file	Load parameters from file	
5	Motion IO and motion status		

	I	T	
	APS_motion_status	Return motion status	
	APS_motion_io_status	Return motion IO status	
	APS_set_servo_on	Set servo ON/OFF	
	APS_get_position	Get feedback position	
	APS_set_position	Set feedback position	
	APS_get_command	Get command position	
	APS_set_command	Set command position	
	APS_get_command_velocity	Get command velocity	
	APS_get_error_position	Get error position	
	APS_get_target_position	Get target position	
	Single axis motion		
6	APS_relative_move	Begin a relative distance move	
	APS_absolute_move	Begin a absolute position move	
	APS_velocity_move	Begin a velocity move	
	APS_home_move	Begin a home move	
	APS_stop_move	Stop move	
	APS_emg_stop	Emergency stop	
	<u>Interpolation</u>		
8	APS_absolute_linear_move	Begin an absolute position linear interpolation	
	APS_relative_linear_move	Begin a relative distance linear interpolation	
	APS_absolute_arc_move	Begin an absolute position circular interpolation	
	APS_relative_arc_move	Begin a relative distance circular interpolation	
9	Interrupt		
	APS_int_enable	Interrupt main switch	
	APS_reset_field_bus_int_motion	Reset interrupt status of axes for MotionNet series.	
	APS_set_field_bus_int_factor_moti on	Enable/Disable motion interrupt factor and get interrupt handle for MotionNet series.	
	APS_get_field_bus_int_factor_moti on	Get motion interrupt factor enable or disable for MotionNet series.	
	APS_set_field_bus_int_factor_error	Enable/Disable error interrupt factor and get interrupt handle for MotionNet series.	
	APS_get_field_bus_int_factor_error	Get error interrupt factor status for MotionNet series.	
	APS_wait_single_int	Wait single interrupt event	
	APS_wait_multiple_int	Wait multiple interrupt events	

	APS_reset_int	Reset interrupt event to non-signaled state.
	APS_set_int	Set interrupt event to signaled state.
	APS_int_no_to_handle	Convert interrupt event number to interrupt handle.(Win32)
	APS_wait_field_bus_error_int_motion	Wait error interrupt event for MotionNet series.
	San	npling
	APS_set_sampling_param	Set sampling parameter.
	APS_get_sampling_param	Get sampling parameter.
10	APS_wait_trigger_sampling	Waiting for sample data.
	APS_wait_trigger_sampling_async	Waiting for sample data asynchronously
	APS_get_sampling_count	Get sampled data count.
	APS_stop_wait_sampling	Force stop wait sampling
	Point ta	ble motion
	APS_set_point_table_mode2	Set point table mode
	APS_set_point_table2	Set point table
12	APS_point_table_continuous_move 2	Start a point table continuous move
	APS_point_table_single_move2	Start a point table single move
	APS_get_running_point_index2	Get current point move index when axis is perform a point move
	APS_point_table_status2	Get point table stauts
13	Field bu	s functions
	APS_set_field_bus_param	Set field bus related parameters
	APS_get_field_bus_param	Get field bus related parameters
	APS_start_field_bus	Start the network of specified field bus
	APS_stop_field_bus	Stop the network of specified field bus
	APS_field_bus_d_set_output	Set field bus digital output
	APS_field_bus_d_get_output	Get field bus digital output
	APS_field_bus_d_get_input	Get field bus digital input
	APS_get_slave_online_status	Get the online status of slave
	APS_get_field_bus_last_scan_info	Get fieldbus info after system scanning.
	APS_get_field_bus_master_type	Get master type of the fieldbus
	APS_get_field_bus_slave_type	Get slave type on the fieldbus
	APS_get_field_bus_slave_name	Get slave name on the fieldbus
	APS_get_field_bus_slave_first_axis no	Get first axis of the slave module

	APS_get_field_bus_device_info	Get device information on a specified field bus	
	Field bus Compare trigger		
	APS_set_field_bus_trigger_param	Set compare trigger related parameter	
	APS_get_field_bus_trigger_param	Get compare trigger related parameter	
	APS_set_field_bus_trigger_linear	Set linear comparing function	
	APS_set_field_bus_trigger_table	Set table comparing function	
	APS_set_field_bus_trigger_manual	Manual output trigger	
	APS_set_field_bus_trigger_manual _s	Manual output trigger synchronously	
19	APS_get_field_bus_trigger_table_c mp	Get current table comparing value	
	APS_get_field_bus_trigger_linear_c mp	Get current linear comparing value	
	APS_get_field_bus_trigger_count	Get triggered count.	
	APS_reset_field_bus_trigger_count	Reset triggered count.	
	APS_get_field_bus_linear_cmp_re main_count	Get remaining counter of linear comparator	
	APS_get_field_bus_table_cmp_rem ain_count	Get remaining counter of table comparator	
	APS_get_field_bus_encoder	Get encoder counter	
	APS_set_field_bus_encoder	Set encoder counter	
	Simultaneous	move functions	
	APS_set_relative_simultaneous_m ove	Setup a relative simultaneous move	
21	APS_set_absolute_simultaneous_ move	Setup a absolute simultaneous move	
	APS_start_simultaneous_move	Begin a simultaneous move	
	APS_stop_simultaneous_move	Stop a simultaneous move	
	Table definition		
	Axis parameters definition table		
	The bit definition of motion IO status		
	Motion status definition table		
	Interrupt factor table		
	Field bus parameter definition		
	Trigger parameter table		
	Device information table		
	Function Return Code		

10. List of all functions for MNET-1XMO

Sec.	Function name	Descriptions	Page	
	<u>System</u>	k Initialization		
	APS_get_axis_info	Get the information of the specified axis		
3	APS_set_axis_param	Set axis parameter		
	APS_get_axis_param	Get axis parameter		
	APS_save_param_to_file	Save parameters to file		
	APS_load_param_from_file	Load parameters from file		
	Motion IO an	d motion status		
	APS_motion_status	Return motion status		
	APS_motion_io_status	Return motion IO status		
	APS_set_servo_on	Set servo ON/OFF		
	APS_get_position	Get feedback position		
5	APS_set_position	Set feedback position		
	APS_get_command	Get command position		
	APS_set_command	Set command position		
	APS_get_command_velocity	Get command velocity		
	APS_get_error_position	Get error position		
	APS_get_target_position	Get target position		
	Single axis motion			
	APS_relative_move	Begin a relative distance move		
	APS_absolute_move	Begin a absolute position move		
	APS_velocity_move	Begin a velocity move		
	APS_home_move	Begin a home move		
	APS_stop_move	Stop move		
6	APS_emg_stop	Emergency stop		
	APS_speed_override	Change speed on the fly		
	APS_relative_move_ovrd	Begin a relative distance move or override it with new distance and speed		
	APS_absolute_move_ovrd	Begin an absolute position move of override it with new position and speed	or	
9	Int	errupt		
	APS_int_enable	Interrupt main switch		
	APS_reset_field_bus_int_motion	Reset interrupt status of axes for MotionNet series.		

APS_get_field_bus_int_factor_moti and get interrupt handle for MotionNet series. APS_get_field_bus_int_factor_moti on det interrupt handle for MotionNet series. APS_get_field_bus_int_factor_error				
APS_set_field_bus_int_factor_error APS_get_field_bus_int_factor_error APS_get_field_bus_int_factor_error APS_wait_single_int APS_wait_single_int APS_wait_multiple_int APS_reset_int APS_reset_int APS_set_int APS_set_int APS_wait_field_bus_error_int_motion APS_wait_field_bus_error_int_motion APS_wait_field_bus_param APS_set_field_bus_param APS_set_field_bus APS_set_field_bus APS_start_field_bus APS_start_field_bus APS_set_field_bus APS_get_field_bus APS_get_field_bus APS_get_field_bus APS_get_field_bus_anst_scan_info Get fieldbus info after system scanning. APS_get_field_bus_anst_type APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_first_axis Get first axis of the slave module no Table definition Axis parameters definition table Interrupt factor table Field bus parameter definition			and get interrupt handle for MotionNet	
APS_get_field_bus_int_factor_error APS_wait_single_int APS_wait_single_int APS_wait_single_int APS_wait_multiple_int APS_reset_int APS_reset_int APS_set_int APS_set_int APS_set_int APS_wait_field_bus_error_int_moti on the fieldbus aps_aper_field_bus_slave_first_axis no APS_set_field_bus_last_sca APS_set_field_bus_last_sca APS_set_field_bus_last_sca APS_set_field_bus_last_sca APS_set_field_bus_last_sca APS_get_field_bus_last_sca APS_get_field_bus_slave_first_axis Ret interrupt factor table Field bus parameter definition Axis parameters definition Axis parameter definition Field bus parameter definition Account interrupt event to non-signaled state. APS_wait_field_bus_error_int_moti or signaled state. APS_set interrupt event to signaled state. APS_ment interrupt event to non-signaled state. APS_ment interrupt event non-signaled state. APS_ment interrupt event non-sig		_		
APS_wait_single_int Wait single interrupt event APS_wait_multiple_int Wait multiple interrupt events APS_reset_int Reset interrupt event to non-signaled state. APS_set_int Set interrupt event to signaled state. APS_set_int Set interrupt event to signaled state. APS_int_no_to_handle Convert interrupt event number to interrupt handle.(Win32) APS_wait_field_bus_error_int_moti Wait error interrupt event for MotionNet series. APS_set_field_bus_param Set field bus related parameters APS_get_field_bus_param Get field bus related parameters APS_start_field_bus Start the network of specified field bus APS_stop_field_bus Stop the network of specified field bus APS_field_bus_d_set_output Get field bus digital output APS_field_bus_d_set_output Get field bus digital output APS_get_field_bus_last_scan_info Get fieldbus differ system scanning. APS_get_field_bus_master_type Get master type of the fieldbus APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_first_axis no Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Field bus parameter definition		APS_set_field_bus_int_factor_error		
APS_wait_multiple_int APS_reset_int Reset interrupt event to non-signaled state. APS_set_int Set interrupt event to signaled state. APS_int_no_to_handle Convert interrupt event number to interrupt handle.(Win32) APS_wait_field_bus_error_int_moti on Wait error interrupt event for MotionNet series. Field bus functions APS_set_field_bus_param APS_get_field_bus_param APS_get_field_bus APS_start_field_bus APS_start_field_bus APS_stop_field_bus APS_field_bus APS_field_bus APS_field_bus_d_set_output APS_field_bus_d_get_output APS_get_field_bus_last_scan_info APS_get_field_bus_last_scan_info Get fieldbus info after system scanning. APS_get_field_bus_slave_type APS_get_field_bus_slave_type Get master type of the fieldbus APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_first_axis Get first axis of the slave module Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition		APS_get_field_bus_int_factor_error		
APS_reset_int APS_set_int APS_set_int Set interrupt event to signaled state. APS_int_no_to_handle Convert interrupt event number to interrupt handle.(Win32) APS_wait_field_bus_error_int_motion APS_wait_field_bus_error_int_motion Field bus functions APS_set_field_bus_param APS_get_field_bus_param APS_get_field_bus APS_start_field_bus APS_start_field_bus APS_stop_field_bus APS_stop_field_bus APS_field_bus_d_set_output APS_field_bus_d_get_output APS_get_field_bus_last_scan_info APS_get_field_bus_last_scan_info Get field bus info after system scanning. APS_get_field_bus_slave_type APS_get_field_bus_slave_type APS_get_field_bus_slave_name APS_get_field_bus_slave_name APS_get_field_bus_slave_first_axis no Table definition Axis parameters definition table Interrupt factor table Field bus parameter definition		APS_wait_single_int	Wait single interrupt event	
state. APS_set_int APS_int_no_to_handle Convert interrupt event number to interrupt handle.(Win32) APS_wait_field_bus_error_int_moti on Field bus functions APS_set_field_bus_param APS_get_field_bus_param APS_get_field_bus_param APS_start_field_bus APS_start_field_bus APS_start_field_bus APS_stop_field_bus APS_field_bus APS_field_bus APS_get_field_bus _get_output APS_get_field_bus_last_scan_info Get field bus info after system scanning. APS_get_field_bus_master_type APS_get_field_bus_slave_type APS_get_field_bus_slave_type Get slave type of the fieldbus APS_get_field_bus_slave_first_axis Get first axis of the slave module no Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition		APS_wait_multiple_int	Wait multiple interrupt events	
APS_int_no_to_handle APS_wait_field_bus_error_int_moti interrupt event for MotionNet series. Field bus functions APS_set_field_bus_param APS_get_field_bus_param APS_get_field_bus APS_start_field_bus APS_stop_field_bus APS_stop_field_bus APS_field_bus_d_set_output APS_get_slave_online_status APS_get_field_bus_master_type APS_get_field_bus_slave_name APS_get_field_bus_slave_first_axis no Table definition Axis parameters definition table Interrupt factor table Field bus functions Wait error interrupt event for MotionNet series. Wait error interrupt event number to interrupt event for MotionNet series. Wait error interrupt event for MotionNet series. Wait error interrupt event for MotionNet series. Wait error interrupt event for MotionNet series. Wait error interrupt event for MotionNet series. Wait error interrupt event for MotionNet series. Wait error interrupt event for MotionNet series. Wait error interrupt event for MotionNet series. Wait error interrupt event for MotionNet series. Wait error interrupt event for MotionNet series. Wait error interrupt event for MotionNet series. Set field bus related parameters APS_get_field bus parameter of Motion Indept. Field bus parameter definition		APS_reset_int	· · · · · · · · · · · · · · · · · · ·	
APS_wait_field_bus_error_int_moti on Wait error interrupt event for MotionNet series. Field bus functions		APS_set_int	Set interrupt event to signaled state.	
Tield bus functions APS_set_field_bus_param APS_get_field_bus_param APS_get_field_bus_param APS_start_field_bus APS_start_field_bus APS_stop_field_bus APS_stop_field_bus APS_field_bus_d_set_output APS_field_bus_d_get_output APS_get_slave_online_status APS_get_field_bus_last_scan_info APS_get_field_bus_slave_type APS_get_field_bus_slave_type APS_get_field_bus_slave_first_axis AXIS parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition		APS_int_no_to_handle		
APS_set_field_bus_param				
APS_get_field_bus_param Get field bus related parameters APS_start_field_bus Start the network of specified field bus APS_stop_field_bus Stop the network of specified field bus APS_field_bus_d_set_output Set field bus digital output APS_field_bus_d_get_output Get field bus digital output APS_get_slave_online_status Get the online status of slave APS_get_field_bus_last_scan_info Get fieldbus info after system scanning. APS_get_field_bus_master_type Get master type of the fieldbus APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_name Get slave name on the fieldbus APS_get_field_bus_slave_first_axis Get first axis of the slave module Table definition Axis parameters definition table Interrupt factor table Field bus parameter definition		<u>Field bu</u>	s functions	
APS_start_field_bus Start the network of specified field bus APS_stop_field_bus Stop the network of specified field bus APS_field_bus_d_set_output Set field bus digital output APS_field_bus_d_get_output Get field bus digital output APS_get_slave_online_status Get the online status of slave APS_get_field_bus_last_scan_info Get fieldbus info after system scanning. APS_get_field_bus_master_type Get master type of the fieldbus APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_name Get slave name on the fieldbus APS_get_field_bus_slave_first_axis Get first axis of the slave module no Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Field bus parameter definition		APS_set_field_bus_param	Set field bus related parameters	
APS_stop_field_bus		APS_get_field_bus_param	Get field bus related parameters	
APS_field_bus_d_set_output Get field bus digital output APS_field_bus_d_get_output Get field bus digital output APS_get_slave_online_status Get the online status of slave APS_get_field_bus_last_scan_info Get fieldbus info after system scanning. APS_get_field_bus_master_type Get master type of the fieldbus APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_name Get slave name on the fieldbus APS_get_field_bus_slave_first_axis Get first axis of the slave module Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition		APS_start_field_bus	Start the network of specified field bus	
APS_field_bus_d_get_output Get field bus digital output APS_get_slave_online_status Get the online status of slave APS_get_field_bus_last_scan_info Get fieldbus info after system scanning. APS_get_field_bus_master_type Get master type of the fieldbus APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_name Get slave name on the fieldbus APS_get_field_bus_slave_first_axis Get first axis of the slave module no Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition		APS_stop_field_bus	Stop the network of specified field bus	
APS_get_slave_online_status Get the online status of slave APS_get_field_bus_last_scan_info Get fieldbus info after system scanning. APS_get_field_bus_master_type Get master type of the fieldbus APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_name Get slave name on the fieldbus APS_get_field_bus_slave_first_axis Get first axis of the slave module no Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition		APS_field_bus_d_set_output	Set field bus digital output	
APS_get_field_bus_last_scan_info APS_get_field_bus_last_scan_info Get fieldbus info after system scanning. APS_get_field_bus_master_type Get master type of the fieldbus APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_name Get slave name on the fieldbus APS_get_field_bus_slave_first_axis no Get first axis of the slave module Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition	12	APS_field_bus_d_get_output	Get field bus digital output	
scanning. APS_get_field_bus_master_type Get master type of the fieldbus APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_name Get slave name on the fieldbus APS_get_field_bus_slave_first_axis Get first axis of the slave module Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition	13	APS_get_slave_online_status	Get the online status of slave	
APS_get_field_bus_slave_type Get slave type on the fieldbus APS_get_field_bus_slave_name Get slave name on the fieldbus APS_get_field_bus_slave_first_axis Get first axis of the slave module Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition		APS_get_field_bus_last_scan_info	I	
APS_get_field_bus_slave_name Get slave name on the fieldbus APS_get_field_bus_slave_first_axis Get first axis of the slave module Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition		APS_get_field_bus_master_type	Get master type of the fieldbus	
APS_get_field_bus_slave_first_axis		APS_get_field_bus_slave_type	Get slave type on the fieldbus	
Table definition Axis parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition		APS_get_field_bus_slave_name	Get slave name on the fieldbus	
Axis parameters definition table The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition			Get first axis of the slave module	
The bit definition of motion IO status Motion status definition table Interrupt factor table Field bus parameter definition		Table definition		
Motion status definition table Interrupt factor table Field bus parameter definition		Axis parameters definition table		
Interrupt factor table Field bus parameter definition		The bit definition of motion IO status		
Field bus parameter definition		Motion status definition table		
		Interrupt factor table		
Function Return Code		Field bus parameter definition		
		Function Return Code		

11. List of all functions for HSL-4XMO

System & Initialization	
specified axis APS_set_axis_param Set axis parameter APS_get_axis_param Get axis parameter APS_load_param_from_file Motion IO and motion status APS_motion_status APS_motion_io_status Return motion IO status APS_set_servo_on Set servo ON/OFF APS_get_position Get feedback position APS_set_command APS_set_command APS_set_command Set command position APS_get_command_velocity Get command velocity APS_get_error_position Get target position Single axis motion APS_absolute_move Begin a relative distance move APS_home_move Begin a home move	
APS_set_axis_param APS_get_axis_param APS_load_param_from_file Motion IO and motion status APS_motion_status APS_motion_io_status APS_motion_io_status APS_set_servo_on APS_get_position APS_get_command APS_get_command APS_get_command APS_get_command APS_get_command APS_get_error_position APS_get_error_position APS_get_target_position Single axis motion APS_absolute_move APS_home_move Begin a relative move Begin a home move	
APS_load_param_from_file Motion IO and motion status	
Motion IO and motion status APS_motion_status Return motion IO status APS_motion_io_status Return motion IO status APS_set_servo_on Set servo ON/OFF APS_get_position Get feedback position APS_set_command Get command position APS_set_command Set command position APS_get_command_velocity Get command velocity APS_get_error_position Get error position APS_get_target_position Get target position Single axis motion APS_relative_move Begin a relative distance move APS_absolute_move Begin a absolute position move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
APS_motion_status Return motion status APS_motion_io_status Return motion IO status APS_set_servo_on Set servo ON/OFF APS_get_position Get feedback position APS_set_position Set feedback position APS_get_command Get command position APS_set_command Set command position APS_get_command_velocity Get command velocity APS_get_error_position Get error position APS_get_target_position Get target position Single axis motion APS_relative_move Begin a relative distance move APS_absolute_move Begin a velocity move APS_home_move Begin a home move	
APS_motion_io_status APS_set_servo_on APS_get_position APS_get_position APS_get_command APS_get_command APS_set_command APS_get_command APS_get_command APS_get_command APS_get_command APS_get_command APS_get_error_position APS_get_error_position APS_get_target_position Get target position APS_relative_move APS_absolute_move Begin a absolute position move APS_home_move Begin a home move	
APS_set_servo_on APS_get_position Get feedback position APS_get_command APS_get_command APS_set_command APS_get_command APS_get_command APS_get_command APS_get_command APS_get_error_position APS_get_error_position Get error position APS_get_target_position Get target position Single axis motion APS_relative_move APS_absolute_move Begin a relative distance move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
APS_get_position APS_set_position APS_set_position APS_get_command APS_get_command APS_set_command APS_get_command APS_get_command APS_get_command_velocity APS_get_error_position APS_get_error_position APS_get_target_position Get target position Single axis motion APS_relative_move APS_absolute_move Begin a relative distance move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
APS_set_position APS_get_command APS_get_command APS_set_command APS_set_command APS_get_command_velocity APS_get_command_velocity Get command velocity APS_get_error_position Get error position APS_get_target_position Get target position Single axis motion APS_relative_move Begin a relative distance move APS_absolute_move Begin a absolute position move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
APS_get_command Get command position APS_set_command Set command position APS_get_command_velocity Get command velocity APS_get_error_position Get error position APS_get_target_position Get target position Single axis motion APS_relative_move Begin a relative distance move APS_absolute_move Begin a absolute position move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
APS_set_command APS_get_command_velocity APS_get_error_position APS_get_error_position Get error position APS_get_target_position Get target position Single axis motion APS_relative_move Begin a relative distance move APS_absolute_move Begin a absolute position move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
APS_get_command_velocity APS_get_error_position APS_get_target_position Get target position Single axis motion APS_relative_move Begin a relative distance move APS_absolute_move Begin a absolute position move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
APS_get_error_position APS_get_target_position Get target position Single axis motion APS_relative_move Begin a relative distance move APS_absolute_move Begin a absolute position move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
APS_get_target_position Single axis motion APS_relative_move APS_absolute_move Begin a relative distance move Begin a absolute position move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
Single axis motion APS_relative_move Begin a relative distance move APS_absolute_move Begin a absolute position move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
APS_relative_move APS_absolute_move Begin a relative distance move Begin a absolute position move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
APS_absolute_move Begin a absolute position move APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
6 APS_velocity_move Begin a velocity move APS_home_move Begin a home move	
APS_home_move Begin a home move	
APS_stop_move Stop move	
į į	
APS_emg_stop Emergency stop	
Interpolation	
APS_absolute_linear_move Begin an absolute position linear interpolation	
APS_relative_linear_move Begin a relative distance linear interpolation	
APS_absolute_arc_move Begin an absolute position circular interpolation	
APS_relative_arc_move Begin a relative distance circular interpolation	
12 <u>Point table motion</u>	
APS_set_point_table3 Set point table	
APS_point_table_move3 Start a point table single move	

	APS_set_point_table_param3	Set speed parameter	
	Field bu	s functions	
	APS_set_field_bus_param	Set field bus related parameters	
	APS_get_field_bus_param	Get field bus related parameters	
	APS_start_field_bus	Start the network of specified field bus	
	APS_stop_field_bus	Stop the network of specified field bus	
	APS_field_bus_d_set_output	Set field bus digital output	
	APS_field_bus_d_get_output	Get field bus digital output	
	APS_field_bus_d_get_input	Get field bus digital input	
13	APS_get_slave_online_status	Get the online status of slave	
	APS_get_field_bus_last_scan_info	Get fieldbus info after system scanning.	
	APS_get_field_bus_master_type	Get master type of the fieldbus	
	APS_get_field_bus_slave_type	Get slave type on the fieldbus	
	APS_get_field_bus_slave_name	Get slave name on the fieldbus	
	APS_get_field_bus_slave_first_axis no	Get first axis of the slave module	
	APS_get_field_bus_device_info	Get device information on a specified field bus	
	<u>Field bus Compare trigger</u>		
	APS_set_field_bus_trigger_param	Set compare trigger related parameter	
	APS_get_field_bus_trigger_param	Get compare trigger related parameter	
19	APS_set_field_bus_trigger_linear	Set linear comparing function	
	APS_set_field_bus_trigger_table	Set table comparing function	
	APS_get_field_bus_trigger_table_c mp	Get current table comparing value	
	APS_get_field_bus_trigger_linear_c mp	Get current linear comparing value	
	<u>Table d</u>	<u>lefinition</u>	
	Axis parameters definition table The bit definition of motion IO status Motion status definition table		
	Field bus parameter definition		
	Trigger parameter table		
Device information table			
	Function Return Code		

12. List of all functions for HSL-DIO

Sec.	Function name	Descriptions	Page
	<u>Interrupt</u>		
	APS_int_enable	Interrupt main switch	
	APS_set_field_bus_int_factor_di	Assign DI interrupt bits and get interrupt handle for HSL series.	
9	APS_get_field_bus_int_factor_di	Get DI interrupt bits assigned	
9	APS_wait_single_int	Wait single interrupt event	
	APS_wait_multiple_int	Wait multiple interrupt events	
	APS_reset_int	Reset interrupt event to non-signaled state.	
	APS_set_int	Set interrupt event to signaled state.	
	<u>Field bu</u>	s functions	
	APS_set_field_bus_param	Set field bus related parameters	
	APS_get_field_bus_param	Get field bus related parameters	
	APS_start_field_bus	Start the network of specified field bus	
	APS_stop_field_bus	Stop the network of specified field bus	
	APS_field_bus_d_set_output	Set field bus digital output	
13	APS_field_bus_d_get_output	Get field bus digital output	
	APS_field_bus_d_get_input	Get field bus digital input	
	APS_get_slave_online_status	Get the online status of slave	
	APS_get_field_bus_last_scan_info	Get fieldbus info after system scanning.	
	APS_get_field_bus_master_type	Get master type of the fieldbus	
	APS_get_field_bus_slave_type	Get slave type on the fieldbus	
	APS_get_field_bus_slave_name	Get slave name on the fieldbus	
	<u>Table d</u>	efinition	
	Field bus parameter definition		
	Function Return Code		

$13. \ List\ of\ all\ functions\ for\ PCI-8154/58/02$

Sec.	Function name	Descriptions	Page
3	System & Initialization		
	APS_initial	Device initialization	
	APS_close	Device close	

	APS version	Get the version of the library
	APS_device_driver_version	Get the driver's version of devices
	APS_get_axis_info	Get the information of the specified axis
	APS_set_axis_param	Set axis parameter
	APS_get_axis_param	Get axis parameter
	APS_get_device_info	Get device information
	APS_load_param_from_file	Load parameters from file
	Motion IO an	d motion status
	APS_motion_status	Return motion status
	APS_motion_io_status	Return motion IO status
	APS_set_servo_on	Set servo ON/OFF
	APS_get_position	Get feedback position
5	APS_set_position	Set feedback position
	APS_get_command	Get command position
	APS_set_command	Set command position
	APS_get_command_velocity	Get command velocity
	APS_get_error_position	Get error position
	APS_get_target_position	Get target position
	Single axis motion	
	APS_relative_move	Begin a relative distance move
	APS_absolute_move	Begin a absolute position move
6	APS_velocity_move	Begin a velocity move
	APS_home_move	Begin a home move
	APS_stop_move	Stop move
	APS_emg_stop	Emergency stop
	Interp	<u>polation</u>
	APS_absolute_linear_move	Begin an absolute position linear interpolation
8	APS_relative_linear_move	Begin a relative distance linear interpolation
	APS_absolute_arc_move	Begin an absolute position circular interpolation
	APS_relative_arc_move	Begin a relative distance circular interpolation
9	Inte	errupt
	APS_int_enable	Interrupt main switch
	APS_set_int_factor	Enable/Disable interrupt factor and get interrupt handle.

	APS_get_int_factor	Get interrupt factor enable or disable
	APS_wait_single_int	Wait single interrupt event
	APS_wait_multiple_int	Wait multiple interrupt events
	APS_wait_error_int	Wait error interrupts(Non-mask)
	APS_reset_int	Reset interrupt event to non-signaled state.
	APS_set_int	Set interrupt event to signaled state.
	APS_set_int_factorH	Enable/Disable interrupt factor and get interrupt handle.(Win32)
	DIO	& AIO
11	APS_write_d_output	Set digital output value
11	APS_read_d_output	Read digital output value
	APS_read_d_input	Read digital input value
	Compa	re trigger
	APS_set_trigger_param	Set trigger parameters
	APS_set_trigger_encoder_counter	Set trigger encoder counter
	APS_get_trigger_encoder_counter	Get trigger encoder counter
	APS_reset_trigger_count	Reset trigger counter
	APS_get_trigger_count	Get trigger counter
	APS_enable_trigger_fifo_cmp	Enable trigger fifo comparator
15	APS_get_trigger_fifo_cmp	Get trigger fifo comparator
	APS_get_trigger_fifo_status	Get trigger fifo status
	APS_set_trigger_fifo_data	Set trigger fifo data
	APS_get_trigger_param	Get trigger parameters
	APS_set_trigger_linear	Set trigger linear comparator
	APS_get_trigger_linear_cmp	Get trigger linear comparator
	APS_set_trigger_manual	Set trigger manual
	APS_start_timer	Start timer
	Table definition	
	Axis parameters definition table The bit definition of motion IO status Motion status definition table	
	Interrupt factor table	
	Device information table	
	Function Return Code	
	Trigger parameter table	

3. System and Initialization

1	APS_initial	Device initialization
---	-------------	-----------------------

Support Products: PCI-8253/56, PCI-8392 (H), DPAC-1000, DPAC-3000, PCI-8144, PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to initialize all products on local controller supported by APS function library. It allocates system hardware resources for each board including I/O address, memory address, IRQ and DMA if needed. It retrieves a board ID for each board which is assigned by on-board switch or operating system. The board ID is a unique number for the board in the system. It is used for any other APS functions to access corresponding hardware.

If users choose on-board switch (Mode = manual ID) initial mode and there are some boards don't support this feature in the system, the board ID of these boards will be arranged after the boards having on-board switch automatically. The card ID (dip-switch) cannot be set the same when you used "manual-ID" or the function will return error.

Syntax:

C/C++:

132 APS_initial(I32 *BoardID_InBits, I32 Mode);

Visual Basic:

APS_initial (BoardID_InBits As Long, ByVal Mode As Long) As Long

Parameters:

132 * BoardID_InBits: Card ID information in bit format.

Example: If the value of BoardID_InBits is 0x11 which means that there are 2 cards in your system and those card's ID are 0 and 4.

132 Mode:

Bit 0	Enable the On board dip switch (SW1) to decide the Card ID. [0:By system assigned, 1:By
	dip switch]
Bit 1	Parallel type axis indexing mode
	0 : auto mode (default)
	1 : fixed mode
Bit 2	Serial type axis indexing mode

	0: auto mode (default)	
	1: fixed mode	
Bit 4	Option of load system & axes parameters method. (PCI-8253/6 and PCI-8392(H))	
Bit 5	only	
	(00B) 0: load according to boot mode setting in each board parameter.	
	(01B) 1: load from default for all boards	
	(02B) 2: load from flash for all boards	
Bit 6	Option to select system mode. (PCI-7856 Only)	
	(0) – Polling mode. (Not support motion interrupt)	
	(1) – Interrupt mode. (Support motion interrupt)	
Others	Reserved	

Return Values:

132 Error code: Please refer to error code table.

Example:

```
132 ret; // return value
  132 BoardID_InBits;
  132 Mode = 0; //By system assigned
  ret = APS_initial( &BoardID_InBits, Mode);
  ...// Do something
  ret = APS_close(); //Close all cards in the system
See also:
  APS_close(), APS_get_axis_info();
```

2	APS_close	Devices close
---	-----------	---------------

Support Products: PCI-8253/56, PCI-8392 (H), DPAC-1000, DPAC-3000, PCI-8144, PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to close all resources allocated by APS library. The resources include system hardware resource like I/O address, memory address, IRQ and DMA. It also deletes some objects, handles or memory allocated by APS library.

Syntax:

C/C++:

132 APS_close()

Visual Basic:

APS_close() As Long

Parameters:

No parameter.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 ret; // return value
I32 BoardID_InBits;
I32 Mode = 0; //By system assigned
ret = APS_initial( &BoardID_InBits, Mode);
...// Do something
ret = APS_close(); //Close all cards in the system
```

See also:

APS_initial();

APS_version Get the version of the library

Support Products: PCI-8253/56, PCI-8392 (H), DPAC-1000, DPAC-3000, PCI-8144,

PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to get APS library (DLL) version information.

Syntax:

C/C++:

I32 APS_version();

Visual Basic:

APS_version() As Long

Parameters:

No Parameters

Return Values:

Return library (DLL) version.

Example:

132 version;

version = APS_version();

See also:

APS_device_driver_version Get the driver's version of devices

Support Products: PCI-8253/56, PCI-8392 (H), DPAC-1000, DPAC-3000, PCI-8144,

PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to get device driver version information of one board. The version information is the same for one type of board in system.

Syntax:

C/C++

132 APS_device_driver_version(132 Board_ID)

Visual Basic:

APS_device_driver_version(ByVal Board_ID As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

Return Values:

Positive value: The device driver version number,

Negative value: Error code: Please refer to error code table.

Example:

See also:

APS_get_axis_info	Get the information of the specified axis
-------------------	---

Support Products: PCI-8253/56, PCI-8392 (H), DPAC-3000, PCI-8144, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to get information of one axis. The information includes attached board ID, serial port ID, serial module ID and module type. There are two categories for axis ID index: parallel and serial types. PCI-8392 SSCNET 3 is parallel type axis.

MNET-4XMO-© and HSL-4XMO are serial type axis.

The parallel type axis ID indexing rule is according to the board ID. The formula is:

Axis ID = Board ID x Maximum number of axis within one board + Axis No

The Axis No parameter is the axis number within the board. The Maximum number of axis within one board parameter is an inside system variable of APS library. If APS system is running under auto mode, the value depends on board type. If APS system is running under fixed mode, the default value is 16. If the system has some boards without axes, it still counts the formula when indexing under fixed mode. Fixed mode is useful for users to remove/add some boards from system without rearranging axis index.

For example, a user has two boards: PCI-8392 and PCI-8253.

	PCI-8392 (ID=0), 8-axis	PCI-8253 (ID=1), 3-axis
Auto Mode	Axis ID ranges 0~7	Axis ID ranges 8~10
Fixed Mode	Axis ID ranges 0~15	Axis ID ranges 16~31

If the board ID is not continuous,

	PCI-8392 (ID=0), 8-axis	PCI-8253 (ID=2), 3-axis
Auto Mode	Axis ID ranges 0~7	Axis ID ranges 8~10
Fixed Mode	Axis ID ranges 0~15	Axis ID ranges 32~47

The serial type axis ID indexing rule is according to the module ID and assigned with a starting axis ID first. The formula of serial port axis would be:

Axis ID = Module ID x Maximum number of axis within one module + Starting Axis ID of port + Axis No

The <u>Axis No</u> parameter is the axis number within the module. The <u>Maximum number of axis within this module</u> parameter is an inside port variable of APS library. If APS field bus system is running under auto mode, the value depends on module type. If APS field bus system is running under fixed mode, the default value is 4. <u>Starting Axis ID of port parameter</u> is the starting axis ID of one port assigned by users when field bus starts.

The default value is 0. In fixed mode, if the port has some modules without axis, it still counts the formula when indexing. Fixed mode is useful for users to remove/add some modules from system without rearranging axis index of other modules

For example, a user has 2 MNET modules on PCI-7856 with board ID=0

	MNET-J3 (ID=0)	MNET-4XMO (ID=1), 4-axis
Auto Mode	Axis ID ranges 0 only	Axis ID ranges 1~4
Fixed Mode	Axis ID ranges 0~3	Axis ID ranges 4~7

If the module ID is not continuous,

	MNET-J3 (ID=0)	MNET-4XMO (ID=2), 4-axis
Auto Mode	Axis ID ranges 0 only	Axis ID ranges 1~4
Fixed Mode	Axis ID ranges 0~3	Axis ID ranges 8~11

Syntax:

C/C++

I32 APS_get_axis_info(I32 Axis_ID, I32 *Board_ID, I32 *Axis_No, I32 *Port_ID, I32 *Module_ID);

Visual Basic:

APS_get_axis_info(ByVal Axis_ID As Long, Board_ID As Long, Axis_No As Long, Port_ID As Long, Module_ID As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535

132 *Board_ID: The returned board ID for the Axis ID. Range is from 0 to 31.

I32 *Axis_No: The axis number within the board. Range is from 0 to maximum number of axis within this module.

132 *Port_ID: The returned field bus port ID of board for the axis. Range is from 0 to 15.

*Port_ID=-1 means no serial port exists.

For PCI-7856, HSL field bus is Port ID 0 and MNET field bus is Port ID 1.

132 *Module_ID: The returned module ID of port for the axis. Range is from 0~65535.

*Module_ID=-1 means no serial port exists.

For High Speed Link(HSL) type field bus, the range of module number is 1 to 63.

Note: In HSL, the Module_ID is the first id occupied by the module.

For MNET field bus, Range is from 0~63.

Return Values:

132 Error code: Please refer to error code table.

Example:

See also:

APS_start_field_bus(), APS_initial()

APS_set_board_param	Set board parameter
---------------------	---------------------

Support Products: PCI-8253/56, PCI-8392 (H), DPAC-1000, DPAC-3000, PCI-7856

Descriptions:

This function is used to set all kinds of parameter which has relationship with a board. Please refer to the board parameter table for the definition and detail descriptions.

Syntax:

C/C++

132 APS_set_board_param(132 Board_ID, 132 BOD_Param_No, 132 BOD_Param);

Visual Basic:

APS_set_board_param (ByVal Board_ID As Long, ByVal BOD_Param_No As Long, ByVal BOD_Param As Long) As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

I32 BOD_Param_No: Board parameter number. Please refer the board parameter table for definition.

I32 BOD_Param: Board parameter value. Refer to the board parameter table for detail.

Return Values:

132 Error code: Please refer to error code table.

Example:

See also:

APS_get_board_param()

PS_get_board_param	Get board parameter
--------------------	---------------------

Support Products: PCI-8253/56, PCI-8392 (H), DPAC-1000, DPAC-3000, PCI-7856

Descriptions:

This function is used to get all kinds of parameter which has relationship with a board. Please refer to the board parameter table for the definition and detail descriptions.

Syntax:

C/C++:

I32 APS_get_board_param(I32 Board_ID, I32 BOD_Param_No, I32 *BOD_Param); Visual Basic:

APS_get_board_param (ByVal Board_ID As Long, ByVal BOD_Param_No As Long, BOD_Param As Long) As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

I32 BOD_Param_No: Board parameter number. Please refer the board parameter table for definition.

132 *BOD_Param: The returned board parameter value. Refer to board parameter table.

Return Values:

132 Error code: Please refer to error code table.

Example:

See also:

APS_set_board_param()

APS_set_axis_param	Set axis parameter
--------------------	--------------------

Support Products: PCI-8253/56, PCI-8392 (H), PCI-8144, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to set all kinds of parameter of one axis. The parameters include run mode, acceleration rate, deceleration rate, Jerk, motion I/O logic and so on. Please refer to the axis parameter table for the definition and detail descriptions.

Syntax:

C/C++

I32 APS_set_axis_param(I32 Axis_ID, I32 AXS_Param_No, I32 AXS_Param);

Visual Basic:

APS_set_axis_param(ByVal Axis_ID As Long, ByVal AXS_Param_No As Long, ByVal AXS_Param As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

I32 AXS_Param_No: Axis parameter number from 0 to 65535. Each parameter is defined by a unique symbol in 3~6 characters .Refer to axis parameter table.

132 AXS_Param: Axis parameter value. Refer to axis parameter table

Return Values:

132 Error code: Please refer to error code table.

Example:

See also:

APS_get_axis_param()

APS_get_axis_param	Get axis parameter
--------------------	--------------------

Support Products: PCI-8253/56, PCI-8392 (H) , PCI-8144, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to set all kinds of parameter of one axis. The parameters include run mode, acceleration rate, deceleration rate, Jerk, motion I/O logic and so on. Please refer to the axis parameter table for the definition and detail descriptions.

Syntax:

C/C++:

I32 APS_get_axis_param(I32 Axis_ID, I32 AXS_Param_No, I32 *AXS_Param);

Visual Basic:

APS_get_axis_param (ByVal Axis_ID As Long, ByVal AXS_Param_No As Long, AXS_Param As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 AXS_Param_No: Axis parameter number from 0 to 65535. Each parameter is defined by a unique symbol in 3~6 characters .Refer to axis parameter table.

132 *AXS_Param: Axis parameter value. Refer to axis parameter table

Return Values:

132 Error code: Please refer to error code table.

Example:

See also:

APS_set_axis_param();

APS_get_system_timer	Get system timer counter
----------------------	--------------------------

Support Products: PCI-8253/56, PCI-8392 (H)

Descriptions:

This function is used to get system timer counter. The counter will count up every cycle time after system is ready. Users can use this function to check if the system is under control or not.

Syntax:

C/C++:

132 APS_get_system_timer(132 Board_ID, 132 *Timer);

Visual Basic:

APS_get_system_timer(ByVal Board_ID As Long, Timer As Long) As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

132 *Timer: return system timer.

Return Values:

132 Error code: Please refer to error code table.

Example:

See also:

APS_get_device_info

Get device information

Support Products: PCI-8253/56, PCI-8392 (H), DPAC-1000, DPAC-3000, PCI-8144, PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to get specified device (board) information. The information includes driver version, firmware version, PCB version and so on. Refer to devices information table.

Refer to <u>device iformation table</u>.

Syntax:

```
C/C++
```

I32 APS_get_device_info(I32 Board_ID, I32 Info_No, I32 *Info);

Visual Basic

APS_get_device_info(ByVal Board_ID As Long, ByVal Info_No As Long, Info As Long)
As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

132 Info_No: Reference to devices information table.

132 *Info: Reference to devices information table.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 ret;
I32 Info;
ret = APS_get_device_info(0, 1, &Info);
if(ret != ERR_NoError)
{
    //Show device information.
}
```

See also:

APS_save_parameter_to_flash	Save system parameters & axes parameters to flash
-----------------------------	---

Support Products: PCI-8253/56, PCI-8392 (H)

Descriptions:

This function is used to save system parameters and axes parameters to flash.

Syntax:

C/C++:

132 APS_save_parameter_to_flash(132 Board_ID);

Visual Basic:

APS_save_parameter_to_flash(ByVal Board_ID As Long)As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

Return Values:

132 Error code: Please refer to error code table.

Example:

I32 ret;

```
ret = APS_save_parameter_to_flash (0);
if(ret == ERR_NoError)
    // Load parameters success.
```

See also:

APS_load_parameter_from_flash; APS_load_parameter_from_default

APS_load_parameter_from_flash	Load system parameters & axes parameters from flash
-------------------------------	---

Support Products: PCI-8253/56, PCI-8392 (H)

Descriptions:

Load system parameters and axes parameters from flash.

Syntax:

C/C++:

132 APS_load_parameter_from_flash(132 Board_ID);

Visual Basic:

APS_load_parameter_from_flash(ByVal Board_ID As Long) As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

Return Values:

132 Error code: Please refer to error code table.

Example:

I32 ret;

```
ret = APS_load_parameter_from_flash (0);
if(ret == ERR_NoError)
    // Load parameters success.
```

See also:

APS_save_parameter_to_flash; APS_load_parameter_from_default

LAPS 1080 barameter from default	Load system parameters & axes parameters by default value.
----------------------------------	--

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

Load default setting to system parameters & axes parameters.

Syntax:

C/C++:

132 APS_load_parameter_from_default(132 Board_ID);

Visual Basic:

APS_load_parameter_from_default(ByVal Board_ID As Long) As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

Return Values:

132 Error code: Please refer to error code table.

Example:

I32 ret;

```
ret = APS_load_parameter_from_default(0);
if(ret == ERR_NoError)
    // Load parameters success.
```

See also:

APS_save_parameter_to_flash; APS_load_parameter_from_flash;

APS	set	security	kev
$\Delta \Gamma \mathcal{O}$	301	Security	VCA

Set security password

Support Products: PCI-8144

Descriptions:

This function is used to set a security code (16 bits) to EEPROM on controller. Therefore, the security code will never be clear when power is turned off.

Do not use this function frequently. EEPROM ganrentee access 1,000,000 times

Syntax:

C/C++:

132 APS_set_security_key(132 Board_ID, 132 OldPassword, 132 NewPassword);

Visual Basic:

APS_set_security_key(ByVal Board_ID As Long, ByVal OldPassword As Long, ByVal NewPassword As Long)As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

132 OldPassword: Current (Old) password stored in EEPROM. (16 bits)

132 NewPassword: New password to replace old password. (16 bits)

Return Values:

132 Error code: Please refer to error code table.

Example:

I32 Ret:

I32 OldPassword = 0x1234;

132 NewPassword = 0x5678:

Ret = APS_set_security_key(0, OldPassword, NewPassword);

// Check Ret...

See also:

APS_check_security_key(); APS_reset_security_key()

APS_check_security_key	Varify security password
------------------------	--------------------------

Support Products: PCI-8144

Descriptions:

This function is used to verify the security code which users stored in EEPROM by "APS_set_security_key()".

Syntax:

```
C/C++:
```

132 APS_check_security_key(132 Board_ID, 132 Password);

Visual Basic:

APS_check_security_key(ByVal Board_ID As Long, ByVal Password As Long) As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

132 Password: 16 bits password.

Return Values:

132 Error code: Please refer to error code table.

Example:

See also:

APS_set_security_key(); APS_reset_security_key()

APS_reset_security_key

Reset security password

Support Products: PCI-8144

Descriptions:

This function is used to reset the security code which stored in EEPROM to default value. The default security code is 0x0000.

Syntax:

C/C++:

132 APS_reset_security_key(I32 Board_ID);

Visual Basic:

APS_reset_security_key(ByVal Board_ID As Long) As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

Return Values:

132 Error code: Please refer to error code table.

Example:

132 Ret;

Ret = APS_reset_security_key(0);

If(Ret == ERR_NoError) // Security key reset success.

See also:

APS_set_security_key(); APS_check_security_key()

APS	load	param	from	file

Load parameters from file

Support Products: All products.

Descriptions:

This function is used to load all parameters which are recoded in the input file (XML file).

You can use Motion creator pro utility to create or modify a XML files.

This function will process the XML file with following functions.

```
APS_set_axis_param()
APS_set_board_param()
```

When it process an unrecognized parameter or a wrong parameter, the load process will be stopped immediately and return an error. So that the other parameters which after the unrecognized parameter will not be set into the devices. Therefore you must check the file validly before you load into your system.

Syntax:

C/C++:

132 APS_load_param_from_file(const char *pXMLFile);

Visual Basic:

APS_load_param_from_file(pXMLFile As String) As Long

Parameters:

const char *pXMLFile: Specified a XML file which created by MCPro2.exe.

Return Values:

132 error code. Refer to error code table.

Example:

132 Ret:

132 BoardID_InBits;

132 Mode = 0; //By system assigned

APS_initial(&BoardID_InBits, Mode);

```
Ret =
APS_load_param_from_file( "C:\\WINDOWS\\system32\\ApsParameters.xml" );
If( Ret != ERR_NoError )
{ //Error load parameters from file.}
```

See also:

APS_set_axis_param(); APS_set_board_param()

APS_save_param_to_file	Save parameters to file
------------------------	-------------------------

Support Products: PCI-7856, MNET-4XMO-©, MNET-1XMO.

Descriptions:

This function is used to save axis parameters and board parameters to XML file. When user specifies an existing XML file, those parameters overwrite the specified file. When user inputs a NULL file, the system automatically creates a new XML file and save those parameters to it.

For fieldbus motion series, all axes parameters of different slaves on this fieldbus are saved to xml file. If the quality of communication is unstable, it returns ERR_TimeOut.

Note: Another dynamic dll named "ApsXmlParser.dll" is called when using this function. The dll will be installed into system document after installing SDK.

Note: If user inputs a NULL file, the default name of created XML file is "MotionNetParam.xml" for MotionNet series.

Note: User can also use Motion creator pro utility to create or modify a XML files.

Syntax:

C/C++:

132 APS_save_param_to_file(132 Board_ID, const char *pXMLFile);

Visual Basic:

APS_save_param_to_file(ByVal Board_ID As Long, pXMLFile As String) As Long

Parameters:

const char *pXMLFile: Specified an existing XML file which created by MCPro2.exe. Otherwise, input a null file to create automatically a new XML file.

Return Values:

132 error code. Refer to error code table.

Example:

132 Ret:

132 BoardID_InBits;

132 Mode = 0; //By system assigned

I32 BoardID = 0;

```
APS_initial( &BoardID_InBits, Mode);

//Input an existing file, then overwrite it.

Ret = APS_save_param_to_file( BoardID ,

"C:\\WINDOWS\\system32\\ApsParameters.xml" );

//Otherwise, Input a NULL file to create a new XML file.

Ret = APS_save_param_to_file( BoardID, NULL );

If( Ret != ERR_NoError )

{ //Error - save parameters to file.}
```

See also:

APS_get_axis_param(); APS_get_board_param()

4. SSCNET function

APS_start_sscnet Start the network of SSCNET

Support Products: PCI-8392(H)

Descriptions:

This function is used to start SSCNET networking. Once it is started, the SSCNET will start to search the servo drivers connected to the network. It returns axis connecting status inside the bit of the 32-bit value. This function will hold until SSCNET communication established when users issue the function.

Some SSCNET parameter should be set before start the network such as SSCNET cycle time and so on. Please refer to the SSCNET parameter table for the detail description.

Syntax:

C/C++:

I32 APS_start_sscnet(I32 Board_ID, I32 *AxisFound_InBits);

Visual Basic:

APS_start_sscnet (ByVal Board_ID As Long, AxisFound_InBits As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 *AxisFound_InBits: The returned connected axis in bit.

Eg. AxisFound_InBits = 0x111 means Axis switch index: 0, 4 and 8 are connected on line.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
#include "APS168.h"
```

132 AxisFound_InBits;

I32 ret:

// Set SSCNET relative parameter befor start sscnet.

// Start sscnet.

```
Ret = APS_start_sscnet(0, &AxisFound_InBits);
if(ret == ERR_NoError)
{
    // Servo control...
}

// Stop sscnet.
Ret = APS_stop_sscnet(0);
```

See also:

 $APS_stop_sscnet\ (); APS_set_board_param(); APS_get_board_param()$

APS_stop_sscnet	Stop the network of SSCNET
7 11 O_010P_0001101	otop the hether of occitati

Support Products: PCI-8392(H)

Descriptions:

This function is used to stop SSCNET networking. Once it is stopped, the SSCNET will stop communicating the servo drivers and all servo drivers will be free running after that.

Syntax:

```
C/C++:
I32 APS_stop_sscnet( I32 Board_ID );
Visual Basic:
APS_stop_sscnet (ByVal Board_ID As Long) As Long
```

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

Return Values:

132 Error code: Please refer to error code table.

Example:

```
#include "AP$168.h"

I32 AxisFound_InBits;
I32 ret;

// Set SSCNET relative parameter befor start sscnet.

// Start sscnet.

Ret = AP$_start_sscnet(0, &AxisFound_InBits);

if(ret == ERR_NoError)

{
    // Servo control...
}

// Stop sscnet.

Ret = AP$_stop_sscnet(0);
```

APS_start_sscnet()

APS_get_sscnet_servo_param

Read current servo parameter value

Support Products: PCI-8392(H)

Descriptions:

This function is used to get servo parameters from servo driver. User can read two servo parameters at once. It also can read only one parameter using Para_No1. If users set Para_No2 = 0, Para_dat2 can be set to null.

This function is valid only after SSCNET network is started.

Never try to change parameters which is manufacturer setting.

The definition of servo parameter, please refer to Mitsubishi J3B manual.

Syntax:

C/C++:

I32 APS_get_sscnet_servo_param(I32 Axis_ID, I32 Para_No1, I32 *Para_Dat1, I32 Para_No2, I32 *Para_Dat2);

Visual Basic:

APS_get_sscnet_servo_param(ByVal Axis_ID As Long, ByVal Para_No1 As Long, Para_Dat1 As Long, ByVal Para_No2 As Long, Para_Dat2 As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

I32 Para_No1: Servo parameter Number. The parameter meaning, please refer to the manual of servo driver.

Format : 0 x 0 <u>N</u> <u>XX</u>

N: PA: 0, PB: 1, PC: 2, PD: 3

XX: parameter number.

Eg. 0x0107: PB07, 0x000A: PA10, 0x020F

I32 *Para_Dat1:

I32 Para_No2: Servo parameter Number. The parameter meaning, please refer to the manual of servo driver.

Format : 0 x 0 <u>N</u> <u>XX</u>

N: PA: 0, PB: 1, PC: 2, PD: 3

XX: parameter number.

Eg. 0x0107: PB07, 0x000A: PA10, 0x020F

I32 *Para_Dat2: Pointer of I32 variable. When Para_No2 is set to 0, The Para_Dat2 could be set to null (0).

Return Values:

132 Error code: Please refer to error code table.

Example:

```
#include "APS168.h"
132 AxisFound_InBits;
132 ret;
132 Para_Dat1, Para_Dat2;

// Set SSCNET relative parameter befor start sscnet.

// Start sscnet.

Ret = APS_start_sscnet(0, &AxisFound_InBits);
if(ret == ERR_NoError)

{
    // This function is used only when network is established.
    Ret = APS_get_sscnet_servo_param(0, 0x0107, &Para_Dat1, 0x0108, &Para_Dat2);
}
...
```

See also:

APS_set_sscnet_servo_param();

APS_set_sscnet_servo_param

Set servo parameter

Support Products: PCI-8392(H)

Descriptions:

This function is used to set servo parameters to servo driver. User can write two servo parameters at once. It also can write only one parameter using Para_No1. If users set Para_No2 = 0, Para_dat2 is meaningless.

This function is valid only after SSCNET network is started.

Some servo parameters change is not allowed after network is started. User should restart the network to make it active.

The definition of servo parameter, please refer to Mitsubishi J3B manual.

Syntax:

C/C++:

I32 APS_set_sscnet_servo_param(I32 Axis_ID, I32 Para_No1, I32 Para_Dat1, I32 Para_No2, I32 Para_Dat2);

Visual Basic:

APS_set_sscnet_servo_param(ByVal Axis_ID As Long, ByVal Para_No1 As Long, ByVal Para_Dat1 As Long, ByVal Para_No2 As Long, ByVal Para_Dat2 As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

I32 Para_No1: Servo parameter Number. The parameter meaning, please refer to the manual of servo driver.

Format: 0 x 0 N XX

<u>N</u>: PA: 0, PB: 1, PC: 2, PD: 3

XX: parameter number.

Eq. 0x0107: PB07, 0x000A: PA10, 0x020F

132 Para_Dat1:

I32 Para_No2: Servo parameter Number. The parameter meaning, please refer to the manual of servo driver.

Format : 0 x 0 <u>N</u> <u>XX</u>

N: PA: 0, PB: 1, PC: 2, PD: 3

XX: parameter number.

Eq. 0x0107: PB07, 0x000A: PA10, 0x020F

I32 Para_Dat2: Servo parameter data. When Para_No2 is set to 0, The Para_Dat2 could be set to null (0).

Return Values:

132 Error code: Please refer to error code table.

Example:

```
#include "APS168.h"
I32 AxisFound_InBits;
I32 ret;

// Set SSCNET relative parameter befor start sscnet.

// Start sscnet.

Ret = APS_start_sscnet(0, &AxisFound_InBits);
if(ret == ERR_NoError)
{
    // This function is used only when network is established.
    Ret = APS_set_sscnet_servo_param(0, 0x0009, 13, 0, 0);
    // Check ret for function return success...
}
```

See also:

APS_get_sscnet_servo_param();

APS_get_sscnet_	_servo_ala	ırm
-----------------	------------	-----

Get current servo alarm information

Support Products: PCI-8392(H)

Descriptions:

This function is used to get alarm number when servo alarm occurs. The alarm information includes alarm number and alarm detail. Please refer to servo driver manual for the detail description.

When servo alarm occurred, user should use this function before reset alarm otherwise the alarm information will be reset.

Syntax:

C/C++:

I32 APS_get_sscnet_servo_alarm(I32 Axis_ID, I32 *Alarm_No, I32 *Alarm_Detail);

Visual Basic:

APS_get_sscnet_servo_alarm(ByVal Axis_ID As Long, Alarm_No As Long, Alarm_Detail As Long) As Long

Parameters:

132 Axis ID: The Axis ID from 0 to 65535.

132 *Alarm_No: Alarm number. Please refer to servo driver manual.

132 *Alarm_Detail: Alarm detail. Please refer to servo driver manual.

Return Values:

132 Error code: Please refer to error code table.

Example:

I32 Alarm_No;

I32 Alarm_Detail;

...//Alarm occurred!

APS_get_sscnet_servo_alarm(Axis_ID, &Alarm_No, &Alarm_Detail); //Get alarm peration i

...//Remove the alarm cause

APS_reset_sscnet_servo_alarm(Axis_ID); //Reset servo alarm

APS_reset_sscnet_servo_alarm();

APS_reset_sscnet_servo_alarm

Servo alarm reset

Support Products: PCI-8392(H)

Descriptions:

When servo alarm occurs, servo motor will stop moving. After the alarm condition passed, this function can help to clear alarm and reset servo.

Syntax:

C/C++:

132 APS_reset_sscnet_servo_alarm(132 Axis_ID);

Visual Basic:

APS_reset_sscnet_servo_alarm(ByVal Axis_ID As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

Return Values:

132 Error code: Please refer to error code table.

Example:

I32 Alarm_No;

I32 Alarm_Detail;

...//Alarm occurred!

APS_get_sscnet_servo_alarm(Axis_ID, &Alarm_No, &Alarm_Detail); //Get alarm peration i

.../Remove the alarm cause

APS_reset_sscnet_servo_alarm(Axis_ID); //Reset servo alarm...

See also:

APS_get_sscnet_servo_alarm();

Save servo parameter to flash

Support Products: PCI-8392(H)

Descriptions:

This function is used to save servo parameters from SDRAM to flash memory on the controller card.

When system (Controller) is power on, it copies servo parameters from flash or from default table to SDRAM. The servo parameters will be transferred to servo drivers when SSCNET network is established. Users can choose the other mode from axis parameters which servo drivers remain its settings when network is established. The parameter is remained default if the Axis is null (The axis ID doesn't be used).

Servo parameters of all axes (16 axes) will be saved at once when you issue this function. You cannot save every servo driver's parameter separately.

Syntax:

C/C++:

132 APS_save_sscnet_servo_param(132 Board_ID);

Visual Basic:

APS_save_sscnet_servo_param(ByVal Board_ID as Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

Return Values:

132 Error code: Please refer to error code table.

Example:

// Config servo parameter

// APS_set_sscnet_servo_param ...

APS_save_sscnet_servo_param(Board_ID); //Save servo parameter to flash.

See also:

APS_set_sscnet_servo_param, APS_get_sscnet_servo_param,

Support Products: PCI-8392(H)

Descriptions:

This function is used to get absolute position from SSCNET servo driver. This function can be issued only when SSCNET network is started. Normally, in order to establish ABS position system, users must perform a home return operation first then users must issue this function to get absolute position from servo driver. In the meantime, controller will copy the absolute position of servo drive to axis parameters. Finally, users can use APS_save_sscnet_servo_abs_position() to save all axes' ABS information on flash memory for next time use.

Axis parameter define
PRA_SSC_SERVO_ABS_CYC_CNT
PRA SSC SERVO ABS RES CNT

The details of axis parameter please refer to axis parameter table.

Syntax:

C/C++:

I32 APS_get_sscnet_servo_abs_position(I32 Axis_ID, I32 *Cyc_Cnt, I32 *Res_Cnt);

APS_get_sscnet_servo_abs_position(ByVal Axis_ID As Long, Cyc_Cnt As Long, Res_Cnt As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 *Cyc_Cnt: Cycle counter of servo driver

132 *Res_Cnt: Resolution counter of servo driver.

Return Values:

132 Error code: Please refer to error code table.

Example:

//1. Initial card and start SSCNET network

//2. Perform a home return operation

Ret = APS_get_sscnet_servo_abs_position(Axis_ID, Cyc_Cnt, Res_Cnt);

// Record the abs. position data for next homing operation.

See also:

 $\label{local_servo_abs_position} APS_save_sscnet_servo_abs_position(), \ APS_set_axis_param(), \ APS_get_axis_param()$

Support Products: PCI-8392(H)

Descriptions:

This function is used to save absolute position from axis parameter to flash memory. Normally, in order to establish absolute position system, users must do home procedure first. Then use "APS_get_sscnet_servo_abs_position" function to get the absolute position from driver. Finally, users must call this function to save all absolute position of axes to flash memory for next time use.

Notice that servo parameters of all axes (16 axes) will be saved at once when users issue this function. You cannot save each servo driver separately.

Axis parameter define
PRA_SSC_SERVO_ABS_CYC_CNT
PRA_SSC_SERVO_ABS_RES_CNT

Syntax:

C/C++:

132 APS_save_sscnet_servo_abs_position(132 Board_ID);

Visual Basic:

APS_save_sscnet_servo_abs_position(ByVal Board_ID As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

Return Values:

132 Error code: Please refer to error code table.

Example:

```
//1. Initial card and start SSCNET network
//2. Perform home return operations.
//3. Get abs position for servo drivers.
For(Axis_ID = 0; Axis_ID < 16; Axis_ID ++ )
{
     Ret = APS_get_sscnet_servo_abs_position( Axis_ID, Cyc_Cnt, Res_Cnt );
}
Ret = APS_save_sscnet_servo_abs_position( Board_ID ); //Save all abs. position to flash memory.</pre>
```

. . .

See also:

 $\label{local_approx} $$APS_get_sscnet_servo_abs_position(), APS_load_sscnet_servo_abs_position(), APS_set_axis_param(), APS_get_axis_param()$

Support Products: PCI-8392(H)

Descriptions:

This function is used to load servo absolute position from flash memory to axis parameter. If user has never saved servo absolute position, calling this function will return error.

User can load all ABS position at once by specified function perameter "Option" for convenient purpose. Refer to parameter description.

Normally, if users want to use ABS position system, they will use this function to load ABS information from flash to axis parameters before SSCNET network is established. Also need to set ABS position system enable in axis parameter before SSCNET network is established.

Syntax:

C/C++:

I32 APS_load_sscnet_servo_abs_position(I32 Axis_ID, I32 Option, I32 *Cyc_Cnt, I32 *Res_Cnt);

Visual Basic:

APS_load_sscnet_servo_abs_position(ByVal Axis_ID As Long, ByVal Option As Long, Cyc_Cnt As Long, Res_Cnt As Long) As Long

Parameters:

132 Axis ID: The Axis ID from 0 to 65535

132 Option: Load option.

0: Load one axis' ABS position to axis parameter

1: Load all axes' ABS positions to axes parameters.

132 *Cyc_Cnt: Get cycle counter from flash memory. Set this parameter 0 to ignore.

132 *Res_Cnt: Get resolution counter from flash memory. Set this parameter 0 to ingnor.

Return Values:

132 Error code: Please refer to error code table.

Example:

//1. Initial card

//2. load abs. position from flash memory.

Ret = APS_load_sscnet_servo_abs_position(Axis_ID, 1, 0, 0); //Option = 1 load all axes APS_set_axis_param(Axis_ID, PRA_SSC_SERVO_ABS_POS_OPT, 1); //Enable abs. position system.

APS_start_sscnet(Board_ID, &AxisFound_InBits); //Start SSCNET network. // Go to home position by absolute move function.

See also:

APS_get_sscnet_servo_abs_position(), APS_save_sscnet_servo_abs_position(), APS_set_axis_param(), APS_get_axis_param()

APS	aet	sscnet	link	status
\neg	ucı	3361161	III IIN	Sidius

Get SSCNET link status

Support Products: PCI-8392(H)

Descriptions:

This function is used to get SSCNET link staus. You can easily use this function to check SSCNET connection is linked or not.

Syntax:

```
C/C++:
```

132 APS_get_sscnet_link_status(132 Board_ID, 132 *Link_Status);

Visual Basic:

APS_get_sscnet_link_status(ByVal Board_ID As Long, Link_Status As Long) As Long

Parameters:

132 Board_ID: Board ID, zero base parameter.

132 *Link_Status: Link status.

Return 1: SSCNET is linked

Return 0: SSCNET is not linked.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
#include "APS168.h"
#include "ErrorCodeDef.h"

I32 link; //Get SSCNET link status.

I32 err;
// Start SSCNET.
//Check SSCNET link status.

Do{
    err = APS_get_sscnet_link_status(0, &link);
    if(link == 0)
    {
        // Connection is broken.
        Break;
    }
}while(err == ERR_NoError)
```

Support Products: PCI-8392(H)

Descriptions:

This function is used to set the source of each servo monitor channel.

In SSCNETIII controller, each axis has 4 channels which can be used to monitor SSCNET servo driver status. You could change monitor source by this function. The monitor sources please refer SSCNET servo monitor source table. In addition, you can get monitor data by "APS_get_sscnet_servo_monitor_data()".

This function is valid when SSCNET communication is connected.

Syntax:

C/C++:

132 APS_set_sscnet_servo_monitor_src(| 132 Axis_ID, | 132 Mon_No, | 132 Mon_Src);

Visual Basic:

APS_set_sscnet_servo_monitor_src(ByVal Axis_ID As Long, ByVal Mon_No As Long, ByVal Mon_Src As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Mon_No: Monitor channel number. 0~3 refer to channel 0 ~ channel 3.

132 Mon_Src: Monitor source number. Please refer to <u>SSCNET servo monitor source</u>

table.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
ret = APS_set_sscnet_servo_monitor_src( Axis_ID, 0, 1); //Set channel 0, source = 1.
    //Check ret.
    Ret = APS_set_sscnet_servo_monitor_src( Axis_ID, 1, 2); //Set channel 1, source = 2.
    //Check ret.
}
```

See also:

APS_get_sscnet_servo_monitor_src(); APS_get_sscnet_servo_monitor_data(();

APS_get_sscnet_servo_monitor_src

Get servo monitor data source

Support Products: PCI-8392(H)

Descriptions:

This function is used to get the source of each servo monitor channel.

In SSCNETIII controller, each axis has 4 channels which can be used to monitor SSCNET servo driver status. You could get monitor source by this function. The monitor sources please refer <u>SSCNET servo monitor source table</u>.

This function is valid when SSCNET communication is connected.

Syntax:

C/C++:

I32 APS_get_sscnet_servo_monitor_src(I32 Axis_ID, I32 Mon_No, I32 *Mon_Src);

Visual Basic:

APS_get_sscnet_servo_monitor_src(ByVal Axis_ID As Long, Mon_No As Long, ByVal Mon_Src As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Mon_No: Monitor channel number. 0~3 refer to channel 0 ~ channel 3.

I32 *Mon_Src: Return monitor source number. Please refer to <u>SSCNET servo monitor</u> source table.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
ret = APS_get_sscnet_servo_monitor_src( Axis_ID, 0, &Mon_Src );
//Check ret.
Ret = APS_get_sscnet_servo_monitor_src( Axis_ID, 1, &Mon_Src );
//Check ret.
}
```

See also:

APS_set_sscnet_servo_monitor_src(); APS_get_sscnet_servo_monitor_data()

APS_get_sscnet_servo_monitor_data

Get servo monitor data

Support Products: PCI-8392(H)

Descriptions:

This function is used to get sscnet servo monitor data. This function can be used only when SSCNET is connected.

In SSCNETIII controller, each axis has 4 channels which can be used to monitor SSCNET servo driver status. You can use this function to get all (4 channels) monitor data at once. In addition, you could change monitor source by the function " APS_set_sscnet_servo_monitor_src()". Monitor sources please refer <u>SSCNET servo</u> monitor source table.

Syntax:

C/C++:

I32 APS_get_sscnet_servo_monitor_data(I32 Axis_ID, I32 Arr_Size, I32 *Data_Arr);

Visual Basic:

APS_get_sscnet_servo_monitor_data(ByVal Axis_ID As Long, ByVal Arr_Size As Long, Data_Arr As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Arr_Size: Specifiy data array size. Min:1 ~ Max:4.

132 *Data_Arr: Get monitor data array. The array size is according to "Arr_Size".

Return Values:

132 Error code: Please refer to error code table.

Example:

```
#include "APS168.h"
#include "ErrorCodeDef.h"
// Initial APSLibrary and start SSCNET first.
{
     132 Axis_ID = 0; //Axis ID
     I32 Data_Arr[4]; //Total 4 channels
     132 ret: //Return code.
```

```
// Get SSCNET monitor data.
Ret = APS_get_sscnet_servo_monitor_data(Axis_ID, 4, Data_Arr );
if(ret == ERR_NoError )
{         //Show Data_Arr[];
}

See also:
APS_set_sscnet_servo_monitor_src();
APS_get_sscnet_servo_monitor_src();
```

5. Motion IO and motion status

APS_motion_status Return motion status

Support Products: PCI-8253/56, PCI-8392(H), PCI-8144, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to get one axis' motion status. The status includes running, normal stop, abnormal stop by reasons, in waiting other axis, follow status, in some modes, in accelerating or decelerating and so on. Status can be more than two such like mode and running. Users need to use this function to check whether the 'Fire-and-forget' function is done in polling system. In even driven system, users can use interrupt event functions.

Please refer to the motion status table for detail description.

Syntax:

C/C++:

132 APS_motion_status(I32 Axis_ID);

Visual Basic:

APS_motion_status (ByVal Axis_ID As Long) As Long

Parameters:

132 Axis_ID:The Axis ID from 0 to 65535

Return Values:

Positive value:

The value of motion status. Please refer to motion status bit number definition table for the value meaning

Negative value:

Error Code: Please refer to error code table.

Example:

132 MotionStatus;

MotionStatus = APS_motion_status(Axis_ID); //Get Motion status

. . .

APS_motion_io_status();

APS_motion_io_status

Return motion IO status

Support Products: PCI-8253/56, PCI-8392(H), PCI-8144, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to get one axis' motion I/O information like ORG, PEL, MEL, SVON, INP and so on. These statuses are connected to external switched or servo drivers. Please refer to the motion IO status table for detail description.

Syntax:

C/C++:

132 APS_motion_io_status(132 Axis_ID);

Visual Basic:

APS_motion_io_status (ByVal Axis_ID As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535

Return Values:

Positive value:

The value of motion IO status, please refer to motion IO status bit number definition table for the value meaning

Negative value:

Error Code: Please refers to error code table.

Example:

I32 MotionIO;

MotionIO = APS_motion_io_status(Axis_ID); //Get Motion IO status

. . .

See also:

APS_motion_status ();

APS_set_servo_on	Set servo ON/OFF
------------------	------------------

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to command servo driver of specified axis to starts controlling its servomotor. Then motion function could be applied on this axis.

Syntax:

C/C++:

132 APS_set_servo_on(132 Axis_ID, 132 Servo_on);

Visual Basic:

APS_set_servo_on (ByVal Axis_ID As Long, ByVal ServoOn As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535

132 Servo_on:

0: Servo OFF, 1: Servo ON

Return Values:

132 Error code: Please refer to error code table.

Example:

```
...//Initialization
```

APS_set_servo_on(Axis_ID, 1); // Set servo ON

... //Motion action

APS_set_servo_on(Axis_ID, 0); //Set servo OFF

...//Release

APS_get_position

Get feedback position

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to get the position counter of one axis. The counter is in unit of pulse.

Syntax:

C/C++:

132 APS_get_position(132 Axis_ID, 132 *Position);

Visual Basic:

APS_get_position (ByVal Axis_ID As Long, Position As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 *Position: Feedback position. Unit in pulse

Return Values:

132 Error code: Please refer to error code table.

Example:

132 Position;

APS_get_position(Axis_ID, &Position); //Get feedback position

. . .

See also:

APS_get_command(); APS_set_position(); APS_set_command()

APS_set_position Set feedback position

Support Products: PCI-8253/56, PCI-8392(H) , MNET-4XMO- $^{\odot}$, MNET-1XMO, HSL-4XMO,

PCI-8154/58/02

Descriptions:

This function is used to set the position counter of one axis. The counter is in unit of pulse. It assigns a new position at instance but the motor will not move due to this function.

Syntax:

C/C++:

132 APS_set_position(I32 Axis_ID, I32 Position);

Visual Basic:

APS_set_position (ByVal Axis_ID As Long, ByVal Position As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Position: Set feedback position. Unit in pulse.

Return Values:

132 Error code: Please refer to error code table.

Example:

. . .

APS_set_position(Axis_ID, 0); // Set feedback position to zero

See also:

APS_get_position(); APS_get_command(); APS_set_command()

APS_get_command

Get command position

Support Products: PCI-8253/56, PCI-8392(H), PCI-8144, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to get the command counter of one axis. The counter is in unit of pulse.

Syntax:

C/C++:

132 APS_get_command(I32 Axis_ID, I32 *Command);

Visual Basic:

APS_get_command (ByVal Axis_ID As Long, Command As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 *Command: Command position. Unit in pulse.

Return Values:

132 Error code: Please refer to error code table.

Example:

132 Command;

APS_get_command(Axis_ID, &Command); //Get command position.

...//

See also:

APS_get_position(); APS_set_position(); APS_set_command()

APS_set_command

Set command position

Support Products: PCI-8253/56, PCI-8392(H) , PCI-8144, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to set the command counter of one axis. The counter is in unit of pulse. It assigns a new command counter at instance but the motor will not move due to this function.

Syntax:

C/C++:

132 APS_set_command(I32 Axis_ID, I32 Command);

Visual Basic:

APS_set_command (ByVal Axis_ID As Long, ByVal Command As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Command: Position command. Unit in pulse.

Return Values:

132 Error code: Please refer to error code table.

Example:

...//

APS_set_command(Axis_ID, 0); //Set command position to zero.

See also:

APS_get_position(); APS_get_command(); APS_set_position();

APS_get_command_velocity

Get command velocity

Support Products: PCI-8253/56, PCI-8392(H) , PCI-8144, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to get command velocity. The minimum value depends on speed calculation resolution of system.

Syntax:

```
C/C++:
```

I32 APS_get_command_velocity(I32 Axis_ID, I32 *Velocity);

Visual Basic:

APS_get_command_velocity(ByVal Axis_ID As Long, Velocity As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 *Velocity: Return command velocity. Unit: pps

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 ret;
I32 Axis_ID = 0;
I32 Velocity;
ret = APS_get_command_velocity ( Axis_ID, &Velocity);
if(ret == ERR_NoError )
{
    //Velocity
}
```

See also:

APS_get_position(); APS_get_command(); APS_get_feedback_velocity()

APS_get_feedback_velocity	Get feedback velocity
---------------------------	-----------------------

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to get feedback velocity. The minimum value depends on speed calculation resolution of system.

Syntax:

```
C/C++:
```

I32 APS_get_feedback_velocity(I32 Axis_ID, I32 *Velocity);

Visual Basic:

APS_get_feedback_velocity(ByVal Axis_ID As Long, Velocity As Long) As Long

Parameters:

```
132 Axis_ID: The Axis ID from 0 to 65535.
```

132 *Velocity: Return feedback velocity. Unit: pps

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 ret;
I32 Axis_ID = 0;
I32 Velocity;
ret = APS_get_feedback_velocity( Axis_ID, &Velocity);
if(ret == ERR_NoError)
{
    //Velocity
}
```

See also:

APS_get_position(); APS_get_command(); APS_get_command_velocity ();

APS_get_error_position G

Get error position

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to get error position value. This value is defined as command minus feedback position

Syntax:

C/C++:

132 APS_get_error_position(132 Axis_ID, 132 *Err_Pos);

Visual Basic:

APS_get_error_position(ByVal Axis_ID As Long, Err_Pos As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 *Err_Pos: Return error position.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
132 ret;
```

 $I32 Axis_ID = 0$;

I32 Err_Pos;

ret = APS_get_error_position(Axis_ID, &Err_Pos);

if(ret == ERR_NoError)

//Show error position.

```
APS_get_position(); APS_get_command(); APS_get_command_velocity (); APS_get_feedback_velocity()
```

APS_get_target_position	Get target position
-------------------------	---------------------

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to get target position record. In linear positioning mode, the value is target position. In circular positioning mode, the value is the same as command. In velocity and jog mode, the value is the same as command.

Syntax:

C/C++:

132 APS_get_target_position(I32 Axis_ID, I32 *Targ_Pos);

Visual Basic:

APS_get_target_position(ByVal Axis_ID As Long, Targ_Pos As Long) As Long

Parameters:

I32 Axis_ID: The Axis ID from 0 to 65535.I32 *Targ_Pos: Return target position.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 ret;
I32 Axis_ID = 0;
I32 Targ_Pos;
ret = APS_get_target_position(Axis_ID, &Targ_Pos);
if(ret == ERR_NoError)
    //Show target position.
```

```
APS_get_position(); APS_get_command(); APS_get_command_velocity (); APS_get_feedback_velocity()
```

6. Single axis motion

APS_relative_move Begin a relative distance move

Support Products: PCI-8253/56, PCI-8392(H), PCI-8144, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to start a single axis relative motion. Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. The speed profile's acceleration and deceleration rate and curve are set by axis parameter function.

This function is 'fire-and-forget' type. That means user's program or procedure will not be pended during axis traveling. Users must use motion status checking function or interrupt event waiting function to wait it done.

During the axis traveling, users can start a new move command including stop command to override the previous one. The axis will be switched to new command immediately according to new setting of target position, new speed.

This command can't be overridden by other motion modes like Jog, home, manual pulse generation, contour motion. Users must stop axis motion before switching to those modes mentioned above.

Syntax:

C/C++

132 APS_relative_move(132 Axis_ID, 132 Distance, 132 Max_Speed);

Visual Basic:

APS_relative_move (ByVal Axis_ID As Long, ByVal Distance As Long, ByVal Max_Speed As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Distance: Relative distance. Unit is pulse.

132 Max_Speed: The maximum speed of this move profile. Unit: pulse/sec.

Return Values:

132 Error code: Please refer to error code table.

Example:

See also:

APS_relative_move(); APS_absolute_move(); APS_velocity_move(); APS_home_move(); APS_stop_move(); APS_emg_stop();

APS_absolute_move

Begin a absolute position move

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to start a single axis absolute positioning motion. Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. The speed profile's acceleration and deceleration rate and curve are set by axis parameter function.

This function is 'fire-and-forget' type. That means user's program or procedure will not be pended during axis traveling. Users must use motion status checking function or interrupt event waiting function to wait it done.

During the axis traveling, users can start a new move command including stop command to override the previous one. The axis will be switched to new command immediately according to new setting of target position, new speed.

This command can't be overridden by other motion modes like Jog, home, manual pulse generation, contour motion. Users must stop axis motion before switching to those modes mentioned above.

Syntax:

C/C++:

132 APS_absolute_move(132 Axis_ID, 132 Position, 132 Max_Speed);

Visual Basic:

APS_absolute_move (ByVal Axis_ID As Long, ByVal Position As Long, ByVal Max_Speed As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Position: Absolute command position. Unit is pulse.

132 Max_Speed: The maximum speed of this move profile. Unit: pulse/sec

Return Values:

132 Error code: Please refer to error code table.

Example:

See also:

APS_velocity_move

Begin a velocity move

Support Products: PCI-8253/56, PCI-8392(H), PCI-8144, MNET-4XMO-©, MNET-1XMO,

HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to start a velocity move. The axis will stop when users issue stop

move command. The speed profile's acceleration and deceleration rate and curve

are set by axis parameter function.

This function is 'fire-and-forget' type. That means user's program or procedure will not

be pended during axis traveling. Users must use motion status checking function or

interrupt event waiting function to wait it done after axis is stopped by command or

abnormal situation.

During the axis traveling, users can start a new move command including stop

command to override the previous one. The axis will be switched to new command

immediately according to new setting of target position, new speed

This command can't be overridden by other motion modes like Jog, home, manual

pulse generation, contour motion. Users must stop axis motion before switching to

those modes mentioned above.

The velocity move is one kind of positioning control. The controller will try to make

feedback position to catch up command position. That means if the axis is stopped,

the controller will control axis's position to command because it is in position closed

loop mode.

Syntax:

C/C++:

132 APS_velocity_move(132 Axis_ID, 132 Max_Speed);

Visual Basic:

APS_velocity_move (ByVal Axis_ID As Long, ByVal Max_Speed As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Max_Speed: The maximum speed of this move profile. Unit: pulse/sec

Return Values:

132 Error code: Please refer to error code table.

Example:

APS_set_axis_param(Axis_ID, PRA_ACC, 1000000); //Set acceleration rate

113

APS_set_axis_param(Axis_ID, PRA_DEC, 1000000); //Set deceleration rate APS_velocity_move(Axis_ID, Max_Speed); //Start velocity move

. . .

APS_stop_move(Axis_ID); //Stop velocity move

See also:

APS_home_move

Begin a home move

Support Products: PCI-8253/56, PCI-8392(H), PCI-8144, MNET-4XMO-©, MNET-1XMO,

HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to start a HOME (ORG or DOG) position of the axis. There are several modes which can be selected by axis parameter setting functions. After it is

done, the position of the axis will be renew base on the physical location of HOME.

This function is 'fire-and-forget' type. That means user's program or procedure will not be pended during axis traveling. Users must use motion status checking function or

interrupt event waiting function to wait it done.

Users needn't to write a home sequence to accomplish homing. All the sequences are

controlled inside the board without CPU resource.

Note:

1. Home parameters are depended on the type of procucts; please refer to "Axis

Parameter Table" below.

2. Some products haven't "Home ACC", "Home VS" and "Home Curve" parameters;

they are decided by "PRA_ACC", "PRA_VS" and "PRA_CURVE" respectively.

Please refer to "Axis Parameter Table" below.

Syntax:

C/C++:

132 APS_home_move(| 132 Axis_ID);

Visual Basic:

APS_home_move (ByVal Axis_ID As Long) As Long

Parameters:

132 Axis ID: The Axis ID from 0 to 65535.

Return Values:

132 Error code: Please refer to error code table.

Example1:

Below example is for PCI-8253/6

//Set homing parameters

APS_set_axis_param(Axis_ID, PRA_HOME_MODE, 0); //Set home mode

115

APS_set_axis_param(Axis_ID, PRA_HOME_DIR, 1); //Set home direction APS_set_axis_param(Axis_ID, PRA_HOME_CURVE, 0); //Set acceleration paten (T-curve)

APS_set_axis_param(Axis_ID, PRA_HOME_ACC, 1000000); //Set homing acceleration rate

APS_set_axis_param(Axis_ID, PRA_HOME_VS, 0); //Set homing start velocity APS_set_axis_param(Axis_ID, PRA_HOME_VM, 2000000); //Set homing maximum velocity.

APS_set_axis_param(Axis_ID, PRA_HOME_VO, 200000); //Set homing

APS_home_move(Axis_ID); //Start homing ...//Check homing done(Motion done)

Example2:

Below example is for MNET-4XMO, MNET-4XMO-C and PCI-8154/8 //Set homing parameters

APS_set_axis_param(Axis_ID, PRA_HOME_MODE, 0); //Set home mode

APS_set_axis_param(Axis_ID, PRA_HOME_DIR, 1); //Set home direction

APS_set_axis_param(Axis_ID, PRA_CURVE, 0);// Set acceleration paten (T-curve)

APS_set_axis_param(Axis_ID, PRA_ACC, 1000000); //Set homing acceleration rate

APS_set_axis_param(Axis_ID, PRA_VS , 0);//Set homing start velocity. *1

APS_set_axis_param(Axis_ID, PRA_HOME_VM, 2000000); //Set homing maximum velocity.

APS_set_axis_param(Axis_ID, PRA_HOME_VO, 200000); //Set homing FA velocity. *1

APS_home_move(Axis_ID); //Start homing ...//Check homing done(Motion done)

See also:

APS_set_axis_param(); APS_get_axis_param(); APS_stop_move(); APS_emq_stop();

*1: This value must be smaller than PRA_HOME_VM

APS_stop_move	Stop move
---------------	-----------

Support Products: PCI-8253/56, PCI-8392(H) , PCI-8144, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to stop single or multiple axes motion at once. It can stop single axis homing, positioning and speed moving. It also can stop multiple axes interpolation motion when users place one of axis ID which is relative to interpolation moving. The deceleration profile is set by axis parameter function which is different from normal deceleration setting. The deceleration parameter is different from normal move profile. It can be set individually.

The stop function can't be overridden by other functions.

Syntax:

C/C++:

132 APS_stop_move(I32 Axis_ID);

Visual Basic:

APS_stop_move (ByVal Axis_ID As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

Return Values:

132 Error code: Refer to error code table.

Example:

```
// APS_absolute_move(Axis_ID, Position, Max_Speed );
// APS_home_move(Axis_ID ); //Home move
...
APS_stop_move(Axis_ID); //Stop move
```

See also:

APS_emg_stop();

APS_emg_stop Emergency stop

Support Products: PCI-8253/56, PCI-8392(H), PCI-8144, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to stop single or multiple axes motion immediately. It can stop single axis homing, positioning and speed moving. It also can stop multiple axes interpolation motion when users place one of axis ID which is relative to interpolation moving. Because the stop function will stop axis accidentally, it will generate an abnormal stop interrupt event rather than normal stop event if interrupt factor is set. The motion status will also be set to an abnormal stop status. The abnormal stop status or event will be clear by next motion command. This function has no deceleration profile.

Syntax:

C/C++:

132 APS_emg_stop(I32 Axis_ID);

Visual Basic:

APS_emg_stop (ByVal Axis_ID As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

Return Values:

132 Error code: Refer to error code table.

Example:

```
// APS_absolute_move(Axis_ID, Position, Max_Speed );
// APS_home_move(Axis_ID ); //Home move
...
APS_emg_stop (Axis_ID); //EMG stop
```

See also:

APS_stop_move()

APS_speed_override	Change speed on the fly

Support Products: MNET-1XMO, MNET-4XMO, MNET-4XMO-C

Descriptions:

During the axis traveling, users can change a new move speed to override the previous motion. The axis will be switched to new speed immediately.

Note: If original distant is not enough to override to new speed, it will return ERR_DistantNotEnough.

Note: If new speed is the same as current moving speed, it will return ERR_ParametersInvalid.

Syntax:

C/C++:

132 APS_speed_override(I32 Axis_ID, I32 Max_Speed);

Visual Basic:

APS_speed_override (ByVal Axis_ID As Long, ByVal Max_Speed As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Max_Speed: The maximum speed to override previous motion.

Return Values:

132 Error code: Please refer to error code table.

Example:

132 Distance;

132 Max_Speed;

132 New_Speed;

I32 ret;

APS_relative_move(Axis_ID, Distance, Max_Speed); //Start relative move //Speed override

ret = APS_speed_override(Axis_ID, New_Speed); //Change to new speed

See also:

APS_relative_move_ovrd	Begin a relative distance move. Or override it with
	new distance and speed.

Support Products: MNET-1XMO, MNET-4XMO, MNET-4XMO-C

Descriptions:

Begin a relative distance:

This function is used to start a single axis relative motion. Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. The speed profile's acceleration and deceleration rate and curve are set by axis parameter function.

Override during the axis traveling:

During the axis traveling, users can start a new move command to override the previous one. The axis will be switched to new command immediately according to new setting of new distance, new speed.

Notice that if new distance is not enough to override to new speed, it will return ERR_DistantNotEnough.

Notice that, new distance was reference to command counter when overriding regardless of the setting of the axis parameter PRA_FEEDBACK_SRC.

Syntax:

C/C++:

132 APS_relative_move_ovrd (132 Axis_ID, 132 Distance, 132 Max_Speed);

Visual Basic:

APS_ relative_move_ovrd (ByVal Axis_ID As Long, ByVal Distance As Long, ByVal Max_Speed As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Distance: Relative distance. Unit is pulse.

132 Max_Speed: The maximum speed of this move profile. Unit: pulse/sec.

Return Values:

132 Error code: Please refer to error code table.

Example:

132 Distance;

```
I32 Max_Speed;
I32 New_Distance:
I32 New_Speed;
I32 ret;

// Begin a relative distance

Ret = APS_relative_move_ovrd(Axis_ID, Distance, Max_Speed);

// Override during the axis traveling

ret = APS_relative_move_ovrd(Axis_ID, New_Distance, New_Speed);
...
```

See also:

APS_absolute_move_ovrd	Begin an absolute position move. Or override it with
	new position and speed.

Support Products: MNET-1XMO, MNET-4XMO, MNET-4XMO-C

Descriptions:

Begin an absolute position move:

This function is used to start a single axis absolute positioning motion. Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. The speed profile's acceleration and deceleration rate and curve are set by axis parameter function.

Override during the axis traveling:

During the axis traveling, users can start a new move command to override the previous one. The axis will be switched to new command immediately according to new setting of absolute position, new speed. Notice that if new position is not enough to override to new speed, it will return ERR_DistantNotEnough.

Notice that, new position was reference to command counter when overriding regardless of the setting of the axis parameter PRA_FEEDBACK_SRC.

Syntax:

C/C++:

132 APS_absolute_move_ovrd (132 Axis_ID, 132 Position, 132 Max_Speed);

Visual Basic:

APS_absolute_move_ovrd (ByVal Axis_ID As Long, ByVal Position As Long, ByVal Max_Speed As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Position: Absolute position. Unit is pulse.

132 Max_Speed: The maximum speed of this move profile. Unit: pulse/sec.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 Position;
I32 Max_Speed;
I32 New_Position:
I32 New_Speed;
I32 ret;

// Begin an absolute position move
Ret = APS_absolute_move_ovrd (Axis_ID, Position, Max_Speed);
// Override during the axis traveling
ret = APS_absolute_move_ovrd (Axis_ID, New_Position, New_Speed);
...
```

See also:

Begin a relative distance move with speed profile

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to start a relative distance move. The ability of this function is similar with "APS_relative_move()" function. The different between these two functions is that this function is issued with speed profile within one system cycle. The system cycle means on handshage time with controller from Host PC.

Syntax:

C/C++:

I32 APS_relative_move2(I32 Axis_ID, I32 Distance, I32 Start_Speed, I32 Max_Speed, I32 End_Speed, I32 Acc_Rate, I32 Dec_Rate);

Visual Basic:

APS_relative_move2(ByVal Axis_ID As Long, ByVal Distance As Long, ByVal Start_Speed As Long, ByVal Max_Speed As Long, ByVal End_Speed As Long, ByVal Acc_Rate As Long, ByVal Dec_Rate As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Distance: Relative distance. Unit is pulse.

132 Start_Speed: The starting speed of this move profile. Unit: pulse/sec

132 Max_Speed: The maximum speed of this move profile. Unit: pulse/sec.

132 End_Speed: The end speed of this move profile. Unit: pulse/sec

I32 Acc_Rate: Acceleration rate. Pulse/(sec²)

132 Dec_Rate: Deceleration rate. Pulse/(sec2)

Return Values:

132 Error code: Refer to error code table.

Example:

See also:

APS_relative_move()

Begin a absolute position move with speed profile

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to start an absolute position move. The ability of this function is similar with "APS_absolute_move()" function. The different between these two functions is that this function is called with speed profile parameters and this function only take one system cycle to pass parameters. The system cycle means on handshage time with controller from Host PC.

Syntax:

C/C++:

I32 APS_absolute_move2(I32 Axis_ID, I32 Position, I32 Start_Speed, I32 Max_Speed, I32 End_Speed, I32 Acc_Rate, I32 Dec_Rate);

Visual Basic:

APS_absolute_move2(ByVal Axis_ID As Long, ByVal Position As Long, ByVal Start_Speed As Long, ByVal Max_Speed As Long, ByVal End_Speed As Long, ByVal Acc_Rate As Long, I32 Dec_Rate As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Position: The absolute position. Unit: pulse

132 Start_Speed: The starting speed of this move profile. Unit: pulse/sec

132 Max_Speed: The maximum speed of this move profile. Unit: pulse/sec.

132 End_Speed: The end speed of this move profile. Unit: pulse/sec

I32 Acc_Rate: Acceleration rate. Unit: pulse/sec²I32 Dec_Rate: Deceleration rate. Unit: pulse/sec²

Return Values:

132 Error code: Refer to error code table.

Example:

See also:

APS_absolute_move()

Begin a home move with speed profile

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to start a home move operation. The ability of this function is similar with "APS_home_move()" function. The different between these two functions is that this function is called with speed profile parameters and this function only take one system cycle to pass parameters.

The system cycle means on handshage time with controller from Host PC.

Syntax:

C/C++:

I32 APS_home_move2(I32 Axis_ID, I32 Dir, I32 Acc, I32 Start_Speed, I32 Max_Speed, I32 ORG_Speed);

Visual Basic:

APS_home_move2(ByVal Axis_ID As Long, ByVal Dir As Long, ByVal Acc As Long, ByVal Start_Speed As Long, ByVal Max_Speed As Long, ByVal ORG_Speed As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Dir: Homing direction.

0: positive direction (default)

1: negative direction

132 Acc: Home move acceleration/Deceleration rate. Unit: pulse/sec²

132 Start_Speed: Homing start velocity. Unit pulse/sec

132 Max_Speed: Homing maximum velocity. Unit: pulse/sec.

132 ORG_Speed: Homing leave home velocity. Unit: pulse/sec.

Return Values:

132 Error code: Refer to error code table.

Example:

See also:

APS_home_move()

7. Jog move

APS_set_jog_param	Set Jog parameters
-------------------	--------------------

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to set jog move relative parameters. The parameters are also available in axis parameter table.

```
Syntax:
```

```
C/C++:
132 APS_set_jog_param(132 Axis_ID, JOG_DATA *pStr_Jog, I32 Mask);
Visual Basic:
APS_set_jog_param( ByVal Axis_ID As Long, pStr_Jog As JOG_DATA, ByVal Mask As
Long ) As Long
Parameters:
132 Axis_ID: The Axis ID from 0 to 65535.
JOG_DATA *pStr_Jog: Structure of jog move parameters. Define in "type_def.h"
  typedef struct
  {
     116 i16_jogMode; // Jog mode. 0:Free running mode, 1:Step mode
    116 i16_dir;
                        // Jog direction. 0:positive, 1:negative direction
     116 i16_accType; // Acceleration and Deceleration pattern 0: T-curve, 1:
  S-curve
    132 i32_acc; // Acceleration rate (pulse / sec<sup>2</sup>)
     132 i32_dec; // Deceleration rate (pulse / sec<sup>2</sup>)
    132 i32_maxSpeed; // A Positive value, maximum velocity. (pulse / s)
                     // A Positive value, step offset. For step jog mode. (pulse)
     132 i32_offset;
    132 i32_delayTime; // Delay time, For step jog mode. (range: 0 ~ 65535 millisecond,
  align by cycle time)
  } JOG_DATA;
```

132 Mask: Mask parameter setting. Bit format, set 0 will be masked.

Mask item	Mask bit
	number
Acceleration rate (i32_acc)	0

Deceleration rate(i32_dec)	1
Maximum velocity (i32_maxSpeed)	2
Step offset (i32_offset)	3
Delay time (i32_delayTime)	4
Jog mode (i16_jog mode)	5
Jog direction (i16_direction)	6
Jog acceleration/deceleration	7
pattern	

Return Values:

132 Error code: Refer to error code table.

Example:

```
#include "type_def.h"
#include "APS168.h"
// Initial cards first...

I32 ret;

JOG_DATA jog;

jog.i16_jogMode = 1; //Mask = 0x20
jog.i16_dir = 0; //Mask = 0x40

ret = APS_set_jog_param(Axis_ID, &jog, 0x20 | 0x40);
if(ret!=0) //Error
```

See also:

APS_set_axis_param(),APS_get_axis_param(),APS_get_jog_param()

APS_get_jog_param	Get Jog parameters
-------------------	--------------------

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to get jog move relative parameters.

```
Syntax: C/C++:
```

```
I32 APS_get_jog_param(I32 Axis_ID, JOG_DATA *pStr_Jog);
Visual Basic:
APS_get_jog_param(ByVal Axis_ID As Long, pStr_Jog As JOG_DATA) As Long
Parameters:
132 Axis_ID: The Axis ID from 0 to 65535.
JOG_DATA *pStr_Jog: Structure of jog move parameters. Define in "type_def.h"
  typedef struct
  {
     116 i16_jogMode; // Jog mode. 0:Free running mode, 1:Step mode
                        // Jog direction. 0:positive, 1:negative direction
    116 i16_dir;
    I16 i16_accType; // Acceleration and Deceleration pattern 0: T-curve, 1:
  S-curve
    132 i32_acc; // Acceleration rate (pulse / sec<sup>2</sup>)
     132 i32_dec; // Deceleration rate (pulse / sec<sup>2</sup>)
    132 i32_maxSpeed; // A Positive value, maximum velocity. (pulse / s)
                     // A Positive value, step offset. For step jog mode. (pulse)
```

132 i32_delayTime; // Delay time, For step jog mode. (range: 0 ~ 65535 millisecond,

Return Values:

} JOG_DATA;

132 Error code: Refer to error code table.

Example:

```
#include "type_def.h"
#include "APS168.h"
// Initial cards first...
```

align by cycle time)

```
I32 ret;
JOG_DATA jog;
ret = APS_get_jog_param( Axis_ID, &jog );
```

See also:

if(ret != 0) //Error

APS_set_axis_param(),APS_get_axis_param(),APS_set_jog_param()

APS_jog_mode_switch	Enable / Disable jog move
---------------------	---------------------------

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to switch specified axis to jog mode. When the axis is in jog mode, it cannot accept other move command except stop command.

Users must enable jog move mode before perform jog move.

Syntax:

C/C++:

132 APS_jog_mode_switch(132 Axis_ID, 132 Turn_No);

Visual Basic:

APS_jog_mode_switch(ByVal Axis_ID As Long, ByVal Turn_No As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Turn_No: 0:Disable jog mode, 1:Enable jog mode.

Return Values:

132 Error code: Refer to error code table.

Example:

// Configure jog move parameter.

```
Ret = APS_jog_mode_switch(Axis_ID, 1); //Turn on jog move mode.
// perform jog move ...(APS_jog_start)
...
ret = APS_jog_mode_switch(Axis_ID, 0); //Turn off jog move mode.
// perform other move commands
```

See also:

APS_set_jog_param(); APS_get_jog_param(); APS_jog_start()

APS_jog_start	Start / stop jog move
---------------	-----------------------

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to start / stop a jog move. Before start a jog move, you must enable the axis to jog mode.

Syntax:

C/C++:

132 APS_jog_start(| 132 Axis_ID, | 132 STA_On);

Visual Basic:

APS_jog_start(ByVal Axis_ID As Long, ByVal STA_On As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 STA_On: 1:STA signal on, 0:STA signal off.

Return Values:

132 Error code: Refer to error code table.

Example:

// Configure jog move parameter.

Ret = APS_jog_mode_switch(Axis_ID, 1); //Turn on jog move mode.

// perform jog move ...(APS_jog_start)

APS_jog_start(Axis_ID,1); //STA signal ON

. . .

APS_jog_start(Axis_ID, 0); //STA signal OFF

ret = APS_jog_mode_switch(Axis_ID, 0); //Turn off jog move mode.

// perform other move commands

See also:

APS_set_jog_param(); APS_get_jog_param(); APS_jog_mode_switch();

8. Interpolation

APS_absolute_linear_move Begin a absolute position linear interpolation

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO-©, HSL-4XMO,

PCI-8154/58/02

Descriptions:

This function is used to start an absolute linear interpolation positioning motion. Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. The speed profile's acceleration and deceleration rate and curve are set by axis parameter function. Because the speed parameter is in vector direction, this function will take the master axis's acceleration and deceleration time constant to calculate. The master axis is the minimum axis number that user perform an interpolation.

This function is 'fire-and-forget' type. That means user's program or procedure will not be pended during axis traveling. Users must use motion status checking function or interrupt event waiting function to wait it done.

During the axis traveling, users can start a new move command including stop command to override the previous one. The axis will be switched to new command immediately according to new setting of target position, new speed.

The overridden command must have the same dimension and axis ID of previous one. These two commands can't be overridden by other motion modes like home operation. Users must stop axis motion before switching to those modes mentioned above.

Note: The axes specified in Axis_ID_Array must be of the same card.

Syntax:

C/C++:

132 APS_absolute_linear_move(I32 Dimension, I32 *Axis_ID_Array, I32 *Position_Array, I32 Max_Linear_Speed);

Visual Basic:

APS_absolute_linear_move(ByVal Dimension As Long, Axis_ID_Array As Long, Position_Array As Long, ByVal Max_Linear_Speed As Long) As Long

Parameters:

132 Dimension: The dimension of interpolation axes. (2~4 axes)

132 *Axis_ID_Array: The axis ID array from 0 to 65535.

132 *Position_Array: Absolute position array. (unit: pulse)

132 Max_Linear_Speed: Maximum linear interpolation speed (unit: pulse/sec)

Return Values:

132 Error code: Refer to error code table.

Example:

```
//...Initial card
```

132 Dimension = 4;

132 Master_Axis_ID = 1; //Master axis

I32 Axis_ID_Array[4] = { 1, 2, 3, 4}; //Axis ID 1 is master axis.

I32 Position_Array [4] = {10000, 20000, 30000, 40000 };

132 Max_Linear_Speed = 10000;

I32 Ret:

APS_set_axis_param(Master_Axis_ID, PRA_CURVE, 0); //Set T-curve

APS_set_axis_param(Master_Axis_ID, PRA_ACC, 100000); //Set acceleration

APS_set_axis_param(Master_Axis_ID, PRA_DEC, 100000); //Set deceleration

Ret = APS_absolute_linear_move (Dimension, Axis_ID_Array, Position_Array, Max_Linear_Speed);

See also:

APS_relative_linear_move

Begin a relative distance linear interpolation

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO-©, HSL-4XMO, PCI-8154/58/02

Descriptions:

This function is used to start a relative linear interpolation positioning motion. Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. The speed profile's acceleration and deceleration rate and curve are set by axis parameter function. Because the speed parameter is in vector direction, this function will take the master axis's acceleration and deceleration time constant to calculate. The master axis is the minimum axis number that user perform an interpolation.

This function is 'fire-and-forget' type. That means user's program or procedure will not be pended during axis traveling. Users must use motion status checking function or interrupt event waiting function to wait it done.

During the axis traveling, users can start a new move command including stop command to override the previous one. The axis will be switched to new command immediately according to new setting of target position, new speed.

The overridden command must have the same dimension and axis ID of previous one. These two commands can't be overridden by other motion modes like home operation. Users must stop axis motion before switching to those modes mentioned above.

Note: The axes specified in Axis_ID_Array must be of the same card.

Syntax:

C/C++:

I32 APS_relative_linear_move(I32 Dimension, I32 *Axis_ID_Array, I32 *Distance_Array, I32 Max_Linear_Speed);

Visual Basic:

APS_relative_linear_move(ByVal Dimension As Long, Axis_ID_Array As Long, Distance_Array As Long, ByVal Max_Linear_Speed As Long) As Long

Parameters:

- 132 Dimension: The dimension of interpolation axes. (2~4 axes)
- 132 *Axis_ID_Array: The Axis ID array from 0 to 65535.
- 132 *Distance_Array: Relative distance array. (unit: pulse)
- 132 Max_Linear_Speed: Maximum linear interpolation speed (unit: pulse/sec)

Return Values:

132 Error code: Refer to error code table.

Example:

```
//...Initial card
I32 Dimension = 4;
I32 Master_Axis_ID = 0;
I32 Axis_ID_Array[4] = {0, 1, 2, 3}; //Axis ID 0 is master axis.
I32 Distance_Array[4] = {10000, 20000, 30000, 40000 };
I32 Max_Linear_Speed = 10000;
I32 Ret;
APS_set_axis_param( Master_Axis_ID, PRA_CURVE, 1 ); //Set S-curve
APS_set_axis_param( Master_Axis_ID, PRA_ACC, 100000 ); //Set acceleration
APS_set_axis_param( Master_Axis_ID, PRA_DEC, 100000 ); //Set deceleration
Ret = APS_relative_linear_move( Dimension, Axis_ID_Array, Distance_Array, Max_Linear_Speed );
```

See also:

APS_relative_linear_move(), APS_set_axis_param(),

Begin an absolute position circular interpolation

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO-©, HSL-4XMO,

PCI-8154/58/02

Descriptions:

This function is used to start an absolute circular interpolation positioning motion. User must specify absolute center position and traveling angle for circular interpolation. The speed profile's acceleration and deceleration rate are set by axis parameter function. The following axis parameter should be setting before you calling this function.

PRA_CURVE

PRA_ACC

PRA_DEC

PRA_VS

PRA_VE

The details of parameters please refer the axis parameter table.

Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. Because the speed parameter is in vector direction (Tangent to the circular), this function will take the master axis's acceleration and deceleration time constant to calculate. The master axis is the minimum axis number that user perform an interpolation. For example, Axis ID 2 and 3 are performing a circular interpolation. The Axis ID 2 is the master axis.

This function is 'fire-and-forget' type. That means user's program or procedure will not be pended during axis traveling. Users must use motion status checking function or interrupt event waiting function to wait it done. The motion status "circular interpolation signal (CIP)" of each axis performing a circular interpolation will be turn on when command is started and will be turned off at command is finished. If circular interpolation is stop normally, the normal stop signal (NSTP) will be turned on. On the contrary, if circular interpolation is stopped abnormally (such as ALM, EMG, SEMG and so on is turned on), abnormal stop signal (ASTP) will be turned on.

During the axis traveling, users can start a new move command including stop command to override the previous one (The dimension

and Axis_ID_Array must be the same). The axis will be switched to new command immediately according to new setting of target center position, new speed profile.

This command can't be overridden by other motion modes like home operation. Users must stop axis motion before switching to those modes mentioned above.

Note: The 2 axes specified in Axis_ID_Array must be of the same card.

Syntax:

C/C++:

I32 APS_absolute_arc_move(I32 Dimension, I32 *Axis_ID_Array, I32 *Center_Pos_Array, I32 Max_Arc_Speed, I32 Angle);

Visual Basic:

APS_absolute_arc_move(ByVal Dimension As Long, Axis_ID_Array As Long, Center_Pos_Array As Long, ByVal Max_Arc_Speed As Long, ByVal Angle As Long) As Long

Parameters:

132 Dimension: The dimension of interpolation axes. (The maximum dimensions refer to product specification)

132 *Axis_ID_Array: The Axis ID array from 0 to 65535.

132 *Center_Pos_Array: Absolute circular center position. Unit: pulse.

I32 Max_Arc_Speed: Maximum circular interpolation speed (Circular tangent speed). Unit: pulse/sec

132 Angle: Travel angle. Value range: -360 ~360 degree. Positive for counterclockwise.

Return Values:

132 Error code: Refer to error code table.

Example:

132 Dimension = 2;

 $I32 \text{ Axis_ID_Array}[2] = \{ 2, 4 \}; //\text{Axis_ID } 2 \text{ is the master axis.}$

I32 Master_Axis_ID = 2; //Axis_ID 2 is the master axis.

I32 Center_Pos_Array[2] = {100000, 0};

I32 Max_Arc_Speed = 10000; // pulse/sec

132 Angle = -180; // clockwise 180 degree.

132 Ret; //Return code.

//...

APS_set_axis_param(Master_Axis_ID, PRA_CURVE, 1); //Set S-curve

APS_set_axis_param(Master_Axis_ID, PRA_ACC, 100000); //Set acceleration

APS_set_axis_param(Master_Axis_ID, PRA_DEC, 100000); //Set deceleration

Ret = APS_absolute_arc_move(Dimension, Axis_ID_Array, Center_Pos_Array, Max_Arc_Speed, Angle); //Perform a circular interpolation

See also:

APS_relative_arc_move(),APS_set_axis_param (),APS_get_axis_param (), APS_motion_status(), APS_stop_move(), APS_emg_stop().

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO-©, HSL-4XMO,

PCI-8154/58/02

Descriptions:

This function is used to start an relative circular interpolation positioning motion. User must specified a center position relative current commend position and traveling angle for circular interpolation. The speed profile's acceleration and deceleration rate and curve are set by axis parameter function. The following axis parameter should be setting before you calling this function.

PRA_CURVE

PRA_ACC

PRA_DEC

PRA_VS

PRA_VE

The details of parameters please refer the axis parameter table.

Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. Because the speed parameter is in vector direction(tangent to the circular), this function will take the master axis's acceleration and deceleration time constant to calculate. The master axis is the minimum axis number that user perform an interpolation. For example, Axis ID 2 and 3 are performing a circular interpolation. Therefore, the Axis ID 2 is the master axis.

This function is 'fire-and-forget' type. That means user's program or procedure will not be pended during axis traveling. Users must use motion status checking function or interrupt event waiting function to wait it done. Motion status: in circular interpolation signal (CIP) will be turn on when it start and will be turn off at command is finished. If circular interpolation is stop normally, the normal stop signal (NSTP) will be turn on. On the contrary, circular interpolation is stopped abnormally (ALM, EMG, SEMG, and so on), abnormal stop signal (ASTP) will be turn on.

During the axis traveling, users can start a new move command including stop command to override the previous one (The dimension

and Axis_ID_Array must be the same). The axis will be switched to new command immediately according to new setting of target center position, new speed profile.

This command can't be overridden by other motion modes like home operation. Users must stop axis motion before switching to those modes mentioned above.

Note: The 2 axes specified in Axis_ID_Array must be of the same card. Syntax:

C/C++:

I32 APS_relative_arc_move(I32 Dimension, I32 *Axis_ID_Array, I32 *Center_Offset_Array, I32 Max_Arc_Speed, I32 Angle);

Visual Basic:

APS_relative_arc_move(ByVal Dimension As Long, Axis_ID_Array As Long, Center_Offset_Array As Long, ByVal Max_Arc_Speed As Long, ByVal Angle As Long)
As Long

Parameters:

132 Dimension: The dimension of interpolation axes. (The maximum dimensions refer to product specification)

132 *Axis_ID_Array: The Axis ID array from 0 to 65535.

I32 *Center_Offset_Array: circular center position relative to current command position. Unit: pulse

I32 Max_Arc_Speed: Maximum circular interpolation speed (Circular tangent speed). Unit: pulse/sec

132 Angle: Travel angle. Value range: -360 ~360 degree. Positive for counterclockwise.

Return Values:

132 Error code: Refer to error code table.

Example:

132 Dimension = 2;

132 Axis_ID_Array[2] = { 1, 3}; //Axis_ID 1 is the master axis.

I32 Master_Axis_ID = 1; //Axis_ID 1 is the master axis.

132 Center_Offset_Array [2] = {300000, 0};

132 Max_Arc_Speed = 20000; // pulse/sec

132 Angle = 90; // counterclockwise 90 degree.

132 Ret; //Return code.

//...

APS_set_axis_param(Master_Axis_ID, PRA_CURVE, 1); //Set S-curve

APS_set_axis_param(Master_Axis_ID, PRA_ACC, 100000); //Set acceleration

APS_set_axis_param(Master_Axis_ID, PRA_DEC, 100000); //Set deceleration

Ret = APS_relative_arc_move(Dimension, Axis_ID_Array, Center_Offset_Array, Max_Arc_Speed, Angle); //Perform a circular interpolation

See also:

APS_absolute_arc_move (), APS_set_axis_param (), APS_get_axis_param (), APS_motion_status(), APS_stop_move(), APS_emg_stop().

APS_absolute_arc_move_3pe	Begin an absolute position circular interpolation by pass
	and end point mode

Support Products: PCI-8253/56

Descriptions:

This function is used to start an absolute circular interpolation positioning motion. User must specify absolute pass position and end position for circular interpolation. The speed profile's acceleration and deceleration rate are set by axis parameter function. The following axis parameter should be setting before you calling this function.

PRA CURVE

PRA_ACC

PRA_DEC

PRA VS

PRA VE

The details of parameters please refer the axis parameter table.

Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. Because the speed parameter is in vector direction (Tangent to the circular), this function will take the master axis's acceleration and deceleration time constant to calculate. The master axis is the minimum axis number that user perform an interpolation. For example, Axis ID 2 and 3 are performing a circular interpolation. The Axis ID 2 is the master axis.

This function is 'fire-and-forget' type. That means user's program or procedure will not be pended during axis traveling. Users must use motion status checking function or interrupt event waiting function to wait it done. The motion status "circular interpolation signal (CIP)" of

each axis performing a circular interpolation will be turn on when command is started and will be turned off at command is finished. If circular interpolation is stop normally, the normal stop signal (NSTP) will be turned on. On the contrary, if circular interpolation is stopped abnormally (such as ALM, EMG, SEMG and so on is turned on), abnormal stop signal (ASTP) will be turned on.

During the axis traveling, users can start a new move command including stop command to override the previous one (The dimension and Axis_ID_Array must be the same). The axis will be switched to new command immediately according to new setting of target center position, new speed profile.

This command can't be overridden by other motion modes like home operation. Users must stop axis motion before switching to those modes mentioned above.

Note:

- 1. This mode support 2D and 3D circular interpolation motion.
- 2. The 2 or 3 axes specified in Axis_ID_Array must be of the same card.
- 3. Circular interpolation by pass and end point mode do not support full circle.

Syntax:

C/C++:

I32 APS_absolute_arc_move_3pe(I32 Dimension, I32 *Axis_ID_Array, I32

*Pass_Pos_Array, I32 *End_Pos_Array, I32 Max_Arc_Speed);

Visual Basic:

APS_absolute_arc_move_3pe(ByVal Dimension As Long, Axis_ID_Array As Long, Pass_Pos_Array As Long, End_Pos_Array As Long, ByVal Max_Arc_Speed As Long) As Long

Parameters:

132 Dimension: The dimension of interpolation axes. (The maximum dimension is support to 3D)

132 *Axis_ID_Array: The Axis ID array from 0 to 65535.

132 *Pass_Pos_Array: Absolute pass position. Unit: pulse.

132 *End_Pos_Array: Absolute end position. Unit: pulse.

I32 Max_Arc_Speed: Maximum circular interpolation speed (Circular tangent speed). Unit: pulse/sec

Return Values:

132 Error code: Refer to error code table.

Example:

```
132 Dimension = 3;
```

132 Axis_ID_Array[3] = { 2, 3, 4 }; //Axis_ID 2 is the master axis.

132 Master_Axis_ID = 2; //Axis_ID 2 is the master axis.

 $132 \text{ Pass_Pos_Array}[3] = \{50000, 50000, 50000\};$

 $132 \text{ End_Pos_Array}[3] = \{100000, 100000, 0\}$

132 Max_Arc_Speed = 400000; // pulse/sec

132 Ret; //Return code.

//...

APS_set_axis_param(Master_Axis_ID, PRA_CURVE, 1); //Set S-curve

APS_set_axis_param(Master_Axis_ID, PRA_ACC, 1000000); //Set acceleration

APS_set_axis_param(Master_Axis_ID, PRA_DEC, 1000000); //Set deceleration

Ret = APS_absolute_arc_move_3pe(Dimension, Axis_ID_Array, Pass_Pos_Array,

End_Pos_Array, Max_Arc_Speed); //Perform a circular interpolation

See also:

APS_absolute_arc_move, APS_relative_arc_move(), APS_relative_arc_move_3pe(), APS_set_axis_param (), APS_get_axis_param (), APS_motion_status(), APS_stop_move(), APS_emg_stop().

APS_relative_arc_move_3pe	Begin a relative distance circular interpolation by pass and
	end mode

Support Products: PCI-8253/56

Descriptions:

This function is used to start a relative circular interpolation positioning motion. User must specify pass position and end position relative current commend position for circular interpolation. The speed profile's acceleration and deceleration rate and curve are set by axis parameter function. The following axis parameter should be setting before you calling this function.

PRA_CURVE

PRA ACC

PRA DEC

PRA VS

PRA VE

The details of parameters please refer the axis parameter table.

Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. Because the speed parameter is in vector direction (tangent to the circular), this function will take the master axis's acceleration and deceleration time constant to calculate. The master axis is the minimum axis number that user perform an interpolation. For example, Axis ID 2 and 3 are performing a circular interpolation. Therefore, the Axis ID 2 is the master axis.

This function is 'fire-and-forget' type. That means user's program or procedure will not be pended during axis traveling. Users must use motion status checking function or interrupt event waiting function to wait it done. Motion status: in circular interpolation signal (CIP) will be turn on when it start and will be turn off at command is finished. If circular interpolation is stop normally, the normal stop signal (NSTP) will be turn on. On the contrary, circular interpolation is stopped abnormally (ALM, EMG, SEMG, and so on), abnormal stop signal (ASTP) will be turn on.

During the axis traveling, users can start a new move command including stop command to override the previous one (The dimension

and Axis_ID_Array must be the same). The axis will be switched to new command immediately according to new setting of target center position, new speed profile.

This command can't be overridden by other motion modes like home operation. Users must stop axis motion before switching to those modes mentioned above.

Note:

- 1. This mode support 2D and 3D circular interpolation motion.
- 2. The 2 or 3 axes specified in Axis_ID_Array must be of the same card.
- 3. Circular interpolation by pass and end point mode do not support full circle.

Syntax:

C/C++:

I32 APS_relative_arc_move_3pe(I32 Dimension, I32 *Axis_ID_Array, I32

*Pass_PosOffset_Array, I32 *End_PosOffset_Array, I32 Max_Arc_Speed);

Visual Basic:

APS_relative_arc_move_3pe(ByVal Dimension As Long, Axis_ID_Array As Long, Pass_PosOffset_Array As Long, End_PosOffset_Array As Long, ByVal Max_Arc_Speed As Long) As Long

Parameters:

132 Dimension: The dimension of interpolation axes. (The maximum dimension is support to 3D).

132 *Axis_ID_Array: The Axis ID array from 0 to 65535.

I32 *Pass_PosOffset_Array: circular pass position relative to current command position. Unit: pulse

132 *End_PosOffset_Array: circular end position relative to current command position.

Unit: pulse

132 Max_Arc_Speed: Maximum circular interpolation speed (Circular tangent speed).

Unit: pulse/sec

Return Values:

132 Error code: Refer to error code table.

Example:

132 Dimension = 3;

```
I32 Axis_ID_Array[3] = { 0, 1, 2}; //Axis_ID 0 is the master axis.
```

I32 Master_Axis_ID = 0; //Axis_ID 0 is the master axis.

132 Pass_PosOffset_Array [3] = {50000, 50000, 50000};

132 End_PosOffset_Array[3] = {50000, 50000, -50000};

132 Max_Arc_Speed = 200000; // pulse/sec

132 Ret; //Return code.

//...

APS_set_axis_param(Master_Axis_ID, PRA_CURVE, 1); //Set S-curve

APS_set_axis_param(Master_Axis_ID, PRA_ACC, 1000000); //Set acceleration

APS_set_axis_param(Master_Axis_ID, PRA_DEC, 1000000); //Set deceleration

Ret = APS_relative_arc_move_3pe(Dimension, Axis_ID_Array, Pass_PosOffset_Array, End_PosOffset_Array, Max_Arc_Speed); //Perform a circular interpolation

See also:

APS_relative_arc_move (), APS_absolute_arc_move (), APS_absolute_arc_move_3pe(), APS_set_axis_param (), APS_get_axis_param (), APS_motion_status(), APS_stop_move(), APS_emg_stop().

APS_absolute_helix_move

Begin an absolute position helical interpolation

Support Products: PCI-8253/56

Descriptions:

This function is used to start an absolute helical interpolation positioning motion. User must specify absolute circle center position (2D), pitch length, total screw height, and move direction for helical interpolation. The speed profile's acceleration and deceleration rate are set by axis parameter function. The following axis parameter should be setting before you calling this function.

PRA_CURVE

PRA_ACC

PRA_DEC

PRA VS

PRA_VE

The details of parameters please refer the axis parameter table.

Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. Because the speed parameter is in vector direction (Tangent to the circular), this function will take the master axis's acceleration and deceleration time constant to calculate. The master axis is the minimum axis number that user perform an interpolation. For example, Axis ID 2 and 3 are performing a circular interpolation and synchronized linear travel in axis ID 4. The Axis ID 2 is the master axis.

151

This function is 'fire-and-forget' type. That means user's program or procedure will not be pended during axis traveling. Users must use motion status checking function or interrupt event waiting function to wait it done. The motion status "Helical interpolation signal (HIP)" of each axis performing a helical interpolation will be turn on when command is started and will be turned off at command is finished. If helical interpolation is stop normally, the normal stop signal (NSTP) will be turned on. On the contrary, if helical interpolation is stopped abnormally (such as ALM, EMG, SEMG and so on is turned on), abnormal stop signal (ASTP) will be turned on.

During the axis traveling, users can start a new move command including stop command to override the previous one (The dimension and Axis_ID_Array must be the same). The axis will be switched to new command immediately according to new setting of target center position, new speed profile.

This command can't be overridden by other motion modes like home operation. Users must stop axis motion before switching to those modes mentioned above.

Note:

- 1. Helical interpolation just supports 3D coordinate space.
- 2. The last axis number in Axis ID array must be linear axis.
- 3. Circle center position just support 2D

Syntax:

C/C++:

I32 APS_absolute_helix_move(I32 Dimension, I32 *Axis_ID_Array, I32 *Center_Pos_Array, I32 Max_Arc_Speed, I32 Pitch, I32 TotalHeight, I32 CwOrCcw);

Visual Basic:

APS_absolute_helix_move(ByVal Dimension As Long, Axis_ID_Array As Long, Center_Pos_Array As Long, ByVal Max_Arc_Speed As Long, ByVal Pitch As Long, ByVal TotalHeight As Long, ByVal CwOrCcw As Long) As Long

Parameters:

132 Dimension: The dimension of interpolation axes. (Just support 3D)

132 *Axis_ID_Array: The Axis ID array from 0 to 65535.

132 *Center_Pos_Array: Absolute pass position. Unit: pulse.

```
132 Max_Arc_Speed: Maximum circular interpolation speed (Circular tangent speed).
```

Unit: pulse/sec

132 Pitch: The pitch of helix. Unit: pulse

132 TotalHeight: The depth of helix. Unit: pulse

132 CwOrCcw: Move direction

CwOrCcw = 0 ---→ Clockwise

CwOrCcw = 1----→ Counterclockwise

Return Values:

132 Error code: Refer to error code table.

Example:

```
132 Dimension = 3;
```

132 Axis_ID_Array[3] = { 2, 3, 4 }; //Axis_ID 2 is the master axis.

I32 Master_Axis_ID = 2; //Axis_ID 2 is the master axis.

132 Center_Pos_Array[2] = {50000, 0};

132 Max_Arc_Speed = 400000; // pulse/sec

132 Pitch = 2500;

132 TotalHeight = 5000;

132 CwOrCcw = 1; // Counterclockwise

132 Ret; //Return code.

//...

APS_set_axis_param(Master_Axis_ID, PRA_CURVE, 1); //Set S-curve

APS_set_axis_param(Master_Axis_ID, PRA_ACC, 1000000); //Set acceleration

APS_set_axis_param(Master_Axis_ID, PRA_DEC, 1000000); //Set deceleration

Ret = APS_absolute_helix_move (Dimension, Axis_ID_Array, Center_Pos_Array,

Max_Arc_Speed , Pitch, TotalHeight, CwOrCcw); //Perform a helical interpolation

See also:

APS_relative_helix_move(),APS_set_axis_param (),APS_get_axis_param (), APS_motion_status(), APS_stop_move(), APS_emg_stop().

Support Products: PCI-8253/56

Descriptions:

This function is used to start a relative helical interpolation positioning motion. User must specify circle center position (2D) relative current command position, pitch length, total screw height, and move direction for helical interpolation. The speed profile's acceleration and deceleration rate and curve are set by axis parameter function. The following axis parameter should be setting before you calling this function.

PRA_CURVE

PRA_ACC

PRA_DEC

PRA_VS

PRA_VE

The details of parameters please refer the axis parameter table.

Although there is maximum speed setting in function parameter, the traveling distance and accelerating rate may not be enough due to user's setting to reach the maximum speed. Because the speed parameter is in vector direction (Tangent to the circular), this function will take the master axis's acceleration and deceleration time constant to calculate. The master axis is the minimum axis number that user perform an interpolation. For example, Axis ID 2 and 3 are performing a circular interpolation and synchronized linear travel in axis ID 4. The Axis ID 2 is the master axis.

This function is 'fire-and-forget' type. That means user's program or procedure will not be pended during axis traveling. Users must use motion status checking function or interrupt event waiting function to wait it done. The motion status "Helical interpolation signal (HIP)" of each axis performing a circular interpolation will be turn on when command is started and will be turned off at command is finished. If helical interpolation is stop normally, the normal stop signal (NSTP) will be turned on. On the contrary, if helical interpolation is stopped abnormally (such as ALM, EMG, SEMG and so on is turned on), abnormal stop signal (ASTP) will be turned on.

During the axis traveling, users can start a new move command including stop command to override the previous one (The dimension and Axis_ID_Array must be the same). The axis will be switched to new command immediately according to new setting of target center position, new speed profile.

This command can't be overridden by other motion modes like home operation. Users must stop axis motion before switching to those modes mentioned above.

Note:

- 1. Helical interpolation just supports 3D coordinate space.
- 2. The last axis number in Axis ID array must be linear axis.
- 3. Circle center position just support 2D

Syntax:

C/C++:

I32 APS_relative_helix_move(I32 Dimension, I32 *Axis_ID_Array, I32 *Center_PosOffset_Array, I32 Max_Arc_Speed, I32 Pitch, I32 TotalHeight, I32 CwOrCcw);

Visual Basic:

APS_relative_helix_move(ByVal Dimension As Long, Axis_ID_Array As Long, Center_PosOffset_Array As Long, ByVal Max_Arc_Speed As Long, ByVal Pitch As Long, ByVal TotalHeight As Long, ByVal CwOrCcw As Long) As Long

Parameters:

132 Dimension: The dimension of interpolation axes. (Just support 3D)

132 *Axis_ID_Array: The Axis ID array from 0 to 65535.

I32 *Center_PosOffset_Array: Circular center position relative to current command position. Unit:pulse

132 Max_Arc_Speed: Maximum circular interpolation speed (Circular tangent speed).

Unit: pulse/sec

132 Pitch: The pitch of helix. Unit: pulse

132 TotalHeight: The depth of helix. Unit: pulse

132 CwOrCcw: Move direction

CwOrCcw = 0 --- → Clockwise

CwOrCcw = 1----→ Counterclockwise

Return Values:

132 Error code: Refer to error code table.

Example:

```
I32 Dimension = 3;
I32 Axis_ID_Array[3] = { 2, 3, 4 }; //Axis_ID 2 is the master axis.
I32 Master_Axis_ID = 2; //Axis_ID 2 is the master axis.
I32 Center_PosOffset_Array[2] = {50000, 0};
I32 Max_Arc_Speed = 400000; // pulse/sec
I32 Pitch = 2500;
I32 TotalHeight = 5000;
I32 CwOrCcw = 1; // Counterclockwise
I32 Ret; //Return code.
//...
APS_set_axis_param( Master_Axis_ID, PRA_CURVE, 1 ); //Set S-curve
```

APS_set_axis_param(Master_Axis_ID, PRA_CURVE, 1); //Set S-curve

APS_set_axis_param(Master_Axis_ID, PRA_ACC, 1000000); //Set acceleration

APS_set_axis_param(Master_Axis_ID, PRA_DEC, 1000000); //Set deceleration

Ret = APS_absolute_helix_move (Dimension, Axis_ID_Array, Center_PosOffset_Array, Max_Arc_Speed , Pitch, TotalHeight, CwOrCcw); //Perform a helical interpolation

See also:

APS_absolute_helix_move(),APS_set_axis_param (),APS_get_axis_param (), APS_motion_status(), APS_stop_move(), APS_emg_stop().

9. Interrupt

APS_int_enable	Interrupt main switch
----------------	-----------------------

Support Products: PCI-8253/56, PCI-8392(H), DPAC-1000, DPAC-3000, PCI-8144,

PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to enable/disable interrupt of one board to host computer. It is a hardware main switch of this board. Once it is disabled, host computer will not received any hardware interrupt even the interrupt factor is enabled. Users must enable this function before using any interrupt relative functions and disable this function when users do not use interrupt anymore.

Syntax:

C/C++:

132 APS_int_enable(I32 Board_ID, I32 Enable);

Visual Basic:

APS_int_enable (ByVal Board_ID As Long, ByVal Enable As Long) As Long

Parameters:

I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial(). I32 Enable: Enable/Disable interrupt.

0: Disable. 1: Enable

Return Values:

132 Error code: Refer to error code table.

Example:

132 Int_No; //Interrupt number

132 returnCode; // function return code

Int_No = APS_set_int_factor(Board_ID, Item_No, Factor_No, 1); //Enable the interrupt factor

APS_int_enable(Board_ID, 1); //Enable the interrupt main switch returnCode = APS_wait_single_int(Int_No, Time_Out); //Wait interrupt if(returnCode == ERR_NoError)

```
{//Interrupt occurred
     APS_reset_int(Int_No);
     ....//Do something
}

APS_set_int_factor(Board_ID, Item_No, Factor_No, 0); //Disable the interrupt factor
APS_int_enable(Board_ID, 0); //Disable the interrupt main switch

See also:
APS_set_int_factor();
APS_get_int_factor();APS_wait_single_int();APS_wait_multiple_int();
APS_reset_int(); APS_set_int();
```

APS_set_int_factor

Enable/Disable interrupt factor and get interrupt handle.

Support Products: PCI-8253/56, PCI-8392(H), DPAC-1000, DPAC-3000, PCI-8144,

PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to turn on/off the interrupt factor bit. If it is turned on, the function will return a notification event for this bit and return an I32 type event number. Users can wait this event by assigning corresponding event number into a wait function. The event number is unique in one system but it is not a event handler. It is just a virtual number of event APS converts.

The interrupt factor definition, please refer to the interrupt factor table.

Syntax:

C/C++:

I32 APS_set_int_factor(I32 Board_ID, I32 Item_No, I32 Factor_No, I32 Enable);

Visual Basic:

APS_set_int_factor (ByVal Board_ID As Long, ByVal Item_No As Long, ByVal Factor_No As Long, ByVal Enable As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Item_No: Interrupt factor table item number. Refer to interrupt factor table.

132 Factor_No: Factor number of one item. Refer to interrupt factor table.

132 Enable: Enable interrupt factor. 0: Disable; 1:Enable

Return Values:

When:

[Enable = 1] : Enable the interrupt factor

Return positive value: 132 Interrupt event number.

Return negative value: 132 error code. Refer to error code table.

[Enable = 0] : Disable the interrupt factor

Return 132 error code. Refer to error code table.

Example:

<Set axis 2 NSTP interrupt of PCI-8392 or PCI-8253/56>

132 Int_No; //Interrupt number

132 returnCode: // function return code

See also:

APS_int_enable(); APS_get_int_factor(); APS_wait_single_int(); APS_wait_multiple_int(); APS_reset_int(); APS_set_int();

APS	get	int	_factor

Get interrupt factor enable or disable

Support Products: PCI-8253/56, PCI-8392(H), DPAC-1000, DPAC-3000, PCI-8144,

PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to get the setting of interrupt factor.

Syntax:

C/C++:

132 APS_get_int_factor(132 Board_ID, 132 Item_No, 132 Factor_No, 132 *Enable);

Visual Basic:

APS_get_int_factor (ByVal Board_ID As Long, ByVal Item_No As Long, ByVal Factor_No As Long, Enable As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Item_No: Interrupt factor table item number. Refer to interrupt factor table.

132 Factor_No: Factor number of one item. Refer to interrupt factor table.

132 *Enable: Return enable or disable. 0: Disable, 1:Enable.

Return Values:

132 error code. Refer to error code table.

Example:

132 ReturnCode:

132 Enable;

ReturnCode = APS_get_int_factor(Board_ID, Item_No, Factor_No, &Enable);

. . .

See also:

```
APS_int_enable(); APS_set_int_factor(); APS_wait_single_int(); APS_wait_multiple_int(); APS_reset_int(); APS_set_int();
```

APS_wait_single_int

Wait single interrupt event

Support Products: PCI-8253/56, PCI-8392(H), DPAC-1000, DPAC-3000, PCI-8144,

PCI-7856, PCI-8154/58/02

Descriptions:

When the user enabled the interrupt function for specified factors by

"APS_set_int_factor", it could use this function to wait a specific interrupt. When this function was running, the process would never stop until the event was be triggered or the function was time out. This function returns when one of the following occurs:

- 1. The specified interrupt factor is in the signaled state.
- 2. The time-out interval elapses.

This function checks the current state of the specified interrupt factor. If the state is non-signaled, the calling thread enters the wait state. It uses no processor time while waiting for the INT state to become signaled or the time-out interval to elapse. When the interrupt is occurred and the wait function is return. User should use APS_reset_int () to reset the interrupt by themselves. If user does not reset the interrupt, the wait function will pass immediately next time.

Syntax:

C/C++:

132 APS_wait_single_int(| 132 Int_No, | 132 Time_Out);

Visual Basic:

APS_wait_single_int (ByVal Int_No As Long, ByVal Time_Out As Long) As Long

Parameters:

132 Int_No: Interrupt event number. Get from APS_set_int_factor() function.

I32 Time_Out: Wait timeout time. Unit is milli-second. If value is set -1, the function's time-out interval never elapses (infinite). If *Time_Out* is zero, the function tests the interrupt's state and returns immediately.

Return Values:

ERR_NoError(0): The event is wait success.

132 error code. Refer to error code table.

Example:

132 Int_No; //Interrupt number

132 returnCode: // function return code

See also:

APS_int_enable(); APS_set_int_factor(); APS_get_int_factor(); APS_wait_multiple_int(); APS_reset_int(); APS_set_int();

APS_int_enable(Board_ID, 0); //Disable the interrupt main switch

Wait multiple interrupt events

Support Products: PCI-8253/56, PCI-8392(H), DPAC-1000, DPAC-3000, PCI-8144, PCI-7856, PCI-8154/58/02

Descriptions:

When the user enabled the interrupt function for specified factors by

- "APS_set_int_factor()", users could use this function to wait specific interrupts. When this function was running, the process would never stop until the event was be triggered or the function was time out. This function returns when one of the following occurs:
 - 1. Either any one or all of the interrupt factors are in the signaled state.
 - 2. The time-out interval elapses.

This function checks the current state of the specified interrupt factor. If the state is non-signaled, the calling thread enters the wait state. It uses no processor time while waiting for the INT state to become signaled or the time-out interval to elapse. Users must use APS_reset_int() to reset the events themselves before wait the events next time.

Syntax:

C/C++:

I32 APS_wait_multiple_int(I32 Int_Count, I32 *Int_No_Array, I32 Wait_All, I32 Time_Out); Visual Basic:

APS_wait_multiple_int (ByVal Int_Count As Long, Int_No_Array As Long, ByVal Wait_All As Long, ByVal Time_Out As Long) As Long

Parameters:

I32 Int_Count: Specifies the number of Interrupt. The maximum number of factors is 64. I32 *Int_No_Array: Interrupt event number array. Get from APS_set_int_factor() function.

132 Wait_All: Wait option.

FALSE: (0) The function returns when the state of any one of the events in the array is signaled.

TRUE: (1) The function returns when the state of all events in the array is signaled. I32 Time_Out: Wait timeout time. Unit is milli-second. If value is set -1, the function's time-out interval never elapses (infinite).

Return Values:

Postive value: (Int_Count - 1): The events are wait success.

If Wait_All is FALSE (0), the return value indicates that the state of all specified objects is signaled.

If WaitAll is FALSE(0), the return value indicates the array index of the object that satisfied the wait. If more than one event became peratio during the call, this is the array index of the peratio object with the smallest index value of all the peratio objects.

Negative value: 132 error code: Refer to error code table.

Example:

```
I32 Int_No[2]; //Interrupt number
132 returnCode; // function return code
Int_No[0] = APS_set_int_factor(Board_ID, Item_No1, Factor_No1, 1); //Enable the
interrupt factor
Int_No[1] = APS_set_int_factor(Board_ID, Item_No2, Factor_No2, 1); //Enable the
interrupt factor
APS_int_enable(Board_ID, 1); //Enable the interrupt main switch
returnCode = APS_wait_multiple_int(2, Int_No, 1, I32 Time_Out); //Wait multiple
interrupts, (wait all)
if( returnCode == ERR_NoError )
{ //Interrupts occurred
     APS_reset_int(Int_No[0]);
     APS_reset_int(Int_No[1]);
     ...//Do something
```

APS_set_int_factor(Board_ID, Item_No1, Factor_No1, 0); //Disable the interrupt factor APS_set_int_factor(Board_ID, Item_No2, Factor_No2, 0); //Disable the interrupt factor APS_int_enable(Board_ID, 0); //Disable the interrupt main switch

See also:

}

```
APS_int_enable(); APS_set_int_factor(); APS_get_int_factor(); APS_wait_single_int();
APS_reset_int(); APS_set_int();
```

APS_wait_error_int Wait error interrupts (non-mask)

Support Products: PCI-8154/58/02

Descriptions:

Users could use this function to wait error interrupts. When this function was running, the process would never stop until the event was be triggered or the function was time out. This function returns when one of the following occurs:

- 1. Either any one or all of the error interrupts are in the signaled state.
- 2. The time-out interval elapses.

This function checks the current state of the error interrupts. If the state is non-signaled, the calling thread enters the wait state. It uses no processor time while waiting for the INT state to become signaled or the time-out interval to elapse.

When the error interrupt is occurred and the wait function is return.

Syntax:

I32 APS_wait_error_int(I32 Board_ID, I32 Item_No, I32 Time_Out);

APS_wait_single_int (ByVal Board_ID As Long, ByVal Item_No As Long, ByVal Time_Out As Long) As Long

Parameters:

I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial(). I32 Item_No: Interrupt factor table item number. Refer to interrupt factor table. I32 Time_Out: Wait timeout time. Unit in mini-second. If value is set -1, the function's time-out interval never elapses (infinite). If *Time_Out* is zero, the function tests the interrupt's state and returns immediately.

Return Values:

When:

[Enable = 1] : Enable the interrupt

Return positive value: 132 Error interrupt event number or Time_Out.

Return negative value: 132 error code. Refer to error code table.

[Enable = 0] : Disable the interrupt

Return 132 error code. Refer to error code table.

Example:

132 returnCode; // function return code

```
APS_int_enable( Board_ID, 1 ); //Enable the interrupt main switch
returnCode = APS_wait_ error_int(Board_ID , Item_No, Time_Out ); //Wait error interrupt
if( returnCode >= 0 )
{
      //Interrupts occurred or Time_Out
      //Do something
}
APS_int_enable( Board_ID, 0 ); //Disable the interrupt main switch
```

See also:

```
APS_int_enable(); APS_set_int_factor(); APS_get_int_factor(); APS_wait_single_int(); APS_wait_multiple_int(); APS_reset_int(); APS_set_int();
```

APS_reset_int

Reset interrupt event to non-signaled state.

Support Products: PCI-8253/56, PCI-8392(H), DPAC-1000, DPAC-3000, PCI-8144, PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to reset singled event to non-singled state.

Syntax:

```
C/C++:
I32 APS_reset_int(I32 Int_No);
Visual Basic:
APS_reset_int (ByVal Int_No As Long) As Long
```

Parameters:

132 Int_No: Interrupt event number. Get from APS_set_int_factor() function.

Return Values:

132 error code. Refer to error code table.

Example:

APS_set_int_factor(Board_ID, Item_No, Factor_No, 0); //Disable the interrupt factor APS_int_enable(Board_ID, 0); //Disable the interrupt main switch

See also:

APS_int_enable(); APS_set_int_factor(); APS_get_int_factor(); APS_wait_single_int(); APS_wait_multiple_int(); APS_set_int();

APS_set_int

Set interrupt event to signaled state.

Support Products: PCI-8253/56, PCI-8392(H), DPAC-1000, DPAC-3000, PCI-8144, PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to signal the specified event interrupt. The wait function will return (pass) when this function is set.

Syntax:

```
C/C++:
I32 APS_set_int(I32 Int_No);
Visual Basic:
APS_set_int (ByVal Int_No As Long) As Long
```

Parameters:

132 Int_No: Interrupt event number. Get from APS_set_int_factor() function.

Return Values:

132 error code. Refer to error code table.

Example:

APS_set_int_factor(Board_ID, Item_No, Factor_No, 0); //Disable the interrupt factor

APS_int_enable(Board_ID, 0); //Disable the interrupt main switch

See also:

APS_int_enable(); APS_set_int_factor(); APS_get_int_factor(); APS_wait_single_int(); APS_wait_multiple_int(); APS_reset_int();

APS_set_int_factorH	Enable/Disable	interrupt	factor	and	get	interrupt
	handle.(Win32)					

Support Products: PCI-8253/56, PCI-8392(H), DPAC-1000, DPAC-3000, PCI-8144,

PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to turn on/off the interrupt factor bit. If it is turned on, the function will return a notification event for this bit and return a HANDLE type (define in windows.h) event handle. Users can use this handle directly with win32 API functions. The event number is unique in one system.

The interrupt factor definition, please refer to the interrupt factor table.

Syntax:

C/C++:

HANDLE APS_set_int_factorH(I32 Board_ID, I32 Item_No, I32 Factor_No, I32 Enable);

Visual Basic:

APS_set_int_factorH (ByVal Board_ID As Long, ByVal Item_No As Long, ByVal Factor_No As Long, ByVal Enable As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Item_No: Interrupt factor table item number. Refer to interrupt factor table.

132 Factor_No: Factor number of one item. Refer to interrupt factor table.

132 Enable: Enable interrupt factor. 0: Disable; 1:Enable

Return Values:

When:

[Enable = 1]: Enable the interrupt factor

Return win32 event handle if function success, or return null(0) for failed.

[Enable = 0] : Disable the interrupt factor

Return null(0).

Example:

#include <windows.h>

HANDLE hint; //interrupt handle

DWORD returnCode; // function return code

APS_int_no_to_handle	Convert	interrupt	event	number	to	interrupt
	handle.(W	'in32)				

Support Products: PCI-8253/56, PCI-8392(H), DPAC-1000, DPAC-3000, PCI-8144,

PCI-7856, PCI-8154/58/02

Descriptions:

This function is used to convert interrupt number to a HANDLE type (define in windows.h) event handle. User could get an I32 type event number by APS_set_factor(), then convert this number to a HANDLE.

Syntax:

C/C++:

HANDLE APS_int_no_to_handle(I32 Int_No);

Visual Basic:

APS_int_no_to_handle(ByValInt_No As Long) As Long

Parameters:

132 Int_No: Interrupt event number. Get from APS_set_int_factor() function.

Return Values:

Return win32 event handle.

Example:

#include <windows.h>

HANDLE hInt; //Interrupt handle

I32 Int_No;

DWORD returnCode; // function return code

Int_No = APS_set_int_factor(Board_ID, Item_No, Factor_No, 1); //Enable the interrupt factor

hInt = APS_int_no_to_handle(Int_No); //Convert to a handle.

APS_int_enable(Board_ID, 1); //Enable the interrupt main switch

returnCode = WaitForSingleObject(hlnt, 1000);

if(returnCode == WAIT_OBJECT_0)

{ //Interrupt occurred

ResetEvent (hInt); //Win32 SDK function

```
...//Do something
}

APS_set_int_factor(Board_ID, Item_No, Factor_No, 0); //Disable the interrupt factor
APS_int_enable(Board_ID, 0); //Disable the interrupt main switch
```

See also:

APS_int_enable(); APS_set_int_factor(); APS_set_field_bus_int_factor_motion ();

APS_set_field_bus_int_factor_moti	Enable/Disable motion interrupt factor and get interrupt
on	handle for MotionNet series on PCI-7856.

Support Products: PCI-7856, MNET-4XMO-(C), MNET-1XMO

Descriptions:

This function is used to turn on/off the interrupt factor bit on MNET products. If it is turned on, the function will return a notification event for this bit and return an I32 type event number. Users can wait this event by assigning corresponding event number into a wait function. The event number is unique in one system but it is not an event handler. It is just a virtual number of event APS converts.

The MotionNet motion interrupt factor definition, please refer to the interrupt factor table.

Note that be sure to set to interrupt mode, bit 6 set to 1, by calling APS_initial().

Note that you should call this function after starting field bus. Be sure all axes of the MENT field bus were built by calling APS_start_field_bus(). Then, user can set interrupt factor to specialized axis by using this function. Otherwise, error code returns.

Syntax:

C/C++:

132 APS_set_field_bus_int_factor_motion(132 Axis_ID, 132 Factor_No, 132 Enable);

Visual Basic:

APS_set_field_bus_int_factor_motion (ByVal Axis_ID As Long, ByVal Factor_No As Long, ByVal Enable As Long) As Long

Parameters:

132 Axis_ID: Specialized axis of MNET system.

132 Factor_No: Factor number of axes. Refer to interrupt factor table.

132 Enable: Enable interrupt factor. 0: Disable; 1:Enable

Return Values:

When:

[Enable = 1]: Enable the interrupt factor

Return positive value: 132 Interrupt event number.

Return negative value: 132 error code. Refer to error code table.

```
[Enable = 0]: Disable the interrupt factor

Return I32 error code. Refer to error code table.
```

Example:

```
<Set axis 1000 INSTP (BIT 0) interrupt ON MotionNet field bus on PCI-7856 >
132 Axis_ID = 1000; //MNET's axis
132 returnCode; // function return code
//Enable the interrupt factor
Int_No = APS_set_field_bus_int_factor_motion ( Board_ID, Axis_ID, Factor_No=0, 1 );
APS_int_enable(Board_ID, 1); //Enable the interrupt main switch
//Reset interrupt status of the axis
APS_reset_field_bus_int_motion (Axis_ID);
returnCode = APS_wait_single_int(Int_No, Time_Out); //Wait interrupt
if( returnCode == ERR_NoError )
{ //Interrupt occurred
          APS_reset_int(Int_No);
     ...//Do something
}
APS_set_field_bus_int_factor_motion (Axis_ID, Factor_No, 0); //Disable the interrupt
factor
APS_int_enable(Board_ID, 0); //Disable the interrupt main switch
```

See also:

```
APS_int_enable();APS_get_field_bus_int_factor_motion (); APS_wait_single_int(); APS_wait_multiple_int(); APS_reset_int(); APS_set_int();
```

APS_get_field_bus_int_factor_moti	Get motion interrupt factor enable or disable for
on	MotionNet series on PCI-7856

Support Products: PCI-7856, MNET-4XMO-(C), MNET-1XMO

Descriptions:

This function is used to get the setting of interrupt factor.

Note that you should call this function after starting field bus. Be sure all axes of the port were built by calling APS_start_field_bus(). Then, user can get interrupt factor from specialized axis by using this function. Otherwise, error code returns.

Syntax:

C/C++:

132 APS_get_field_bus_int_factor_motion(132 Axis_ID, 132 Factor_No, 132 *Enable);

Visual Basic:

APS_get_field_bus_int_factor_motion (ByVal Axis_ID As Long, ByVal Factor_No As Long, Enable As Long) As Long

Parameters:

132 Axis_ID: Specialized axis of MNET system.

132 Factor_No: Factor number of axes. Refer to interrupt factor table.

132 *Enable: Return enable or disable. 0: Disable, 1:Enable.

Return Values:

132 error code. Refer to error code table.

Example:

132 ReturnCode:

132 Enable:

ReturnCode = APS_get_field_bus_int_factor_motion (Axis_ID, Factor_No, &Enable);

. . .

See also:

```
APS_int_enable(); APS_set_field_bus_int_factor_motion (); APS_wait_single_int(); APS_wait_multiple_int(); APS_reset_int(); APS_set_int();
```

APS_set_field_bus_int_factor_error	Enable/Disable error interrupt factor and get error interrupt		
	handle for MotionNet series on PCI-7856.		

Support Products: PCI-7856, MNET-4XMO-(C), MNET-1XMO

Descriptions:

This function is used to turn on/off the error interrupt factor bit on MNET products. If it is turned on, the function will return a notification event for this bit and return an I32 type event number. Users can wait this event by assigning corresponding event number into a wait function. The event number is unique in one system but it is not an event handler. It is just a virtual number of event APS converts.

The MotionNet error interrupt factor definition, please refer to the interrupt factor table.

Note that all default error factors are turned on.

Note that be sure to set to interrupt mode, bit 6 set to 1, by calling APS_initial().

Note that you should call this function after starting field bus. Be sure all axes of the MENT field bus were built by calling APS_start_field_bus(). Then, user can set interrupt factor to specialized axis by using this function. Otherwise, error code returns.

Syntax:

C/C++:

132 APS_set_field_bus_int_factor_error(132 Axis_ID, 132 Factor_No, 132 Enable);

Visual Basic:

APS_set_field_bus_int_factor_error(ByVal Axis_ID As Long, ByVal Factor_No As Long, ByVal Enable As Long) As Long

Parameters:

132 Axis_ID: Specialized axis of MNET system.

132 Factor_No: Factor number of axes. Refer to error interrupt factor table.

132 Enable: Enable interrupt factor. 0: Disable; 1:Enable

Return Values:

When:

[Enable = 1]: Enable the error interrupt factor

Return positive value: 132 Interrupt event number.

```
[Enable = 0] : Disable the error interrupt factor
          Return 132 error code. Refer to error code table.
Example:
<Set axis 1000 EPEL (BIT 5) error interrupt ON MotionNet field bus on PCI-7856 >
132 Axis_ID = 1000; //MNET's axis
132 returnCode; // function return code
//Enable the interrupt factor
Int_No = APS_set_field_bus_int_factor_error ( Board_ID, Axis_ID, Factor_No=5, 1 );
APS_int_enable(Board_ID, 1); //Enable the interrupt main switch
//Reset interrupt status of the axis
APS_reset_field_bus_int_motion (Axis_ID);
returnCode = APS_wait_single_int(Int_No, Time_Out); //Wait interrupt
if( returnCode == ERR_NoError )
{ //Interrupt occurred
          APS_reset_int(Int_No);
     ...//Do something
}
APS_set_field_bus_int_factor_error (Axis_ID, Factor_No, 0); //Disable the error interrupt
factor
APS_int_enable(Board_ID, 0); //Disable the interrupt main switch
See also:
APS_int_enable(); APS_set_field_bus_int_factor_motion ();
APS_get_field_bus_int_factor_motion(); APS_wait_single_int(); APS_wait_multiple_int();
APS_reset_int(); APS_set_int(); APS_get_field_bus_int_factor_error();
```

APS_wait_field_bus_error_int_motion()

Return negative value: 132 error code. Refer to error code table.

APS_get_field_bus_int_factor_error	Get error interrupt factor status for MotionNet series on
	PCI-7856

Support Products: PCI-7856, MNET-4XMO-(C), MNET-1XMO

Descriptions:

This function is used to get the setting of error interrupt factor.

Note that all default error factors are turned on.

Note that you should call this function after starting field bus. Be sure all axes of the port were built by calling APS_start_field_bus(). Then, user can get error interrupt factor from specialized axis by using this function. Otherwise, error code returns.

Syntax:

C/C++:

132 APS_get_field_bus_int_factor_error (132 Axis_ID, 132 Factor_No, 132 *Enable);

Visual Basic:

APS_get_field_bus_int_factor_error (ByVal Axis_ID As Long, ByVal Factor_No As Long, Enable As Long) As Long

Parameters:

132 Axis_ID: Specialized axis of MNET system.

132 Factor_No: Factor number of axes. Refer to error interrupt factor table.

132 *Enable: Return enable or disable. 0: Disable, 1:Enable.

Return Values:

132 error code. Refer to error code table.

Example:

132 ReturnCode;

132 Enable;

ReturnCode = APS_get_field_bus_int_factor_error (Axis_ID, Factor_No, &Enable);

. . .

See also:

APS_int_enable();APS_set_field_bus_int_factor_motion ();APS_get_field_bus_int_factor_motion (); APS_wait_single_int();

APS_wait_multiple_int(); APS_reset_int(); APS_set_int(); APS_get_field_bus_int_factor_error (); APS_wait_field_bus_error_int_motion()

	APS_reset_field_bus_int_motion	Reset interrupt status of axes for MotionNet series on PCI-7856.
--	--------------------------------	--

Support Products: PCI-7856, MNET-4XMO-(C), MNET-1XMO

Descriptions:

This function is used to reset interrupt status of axes.

After the user enabled the interrupt function by "APS_int_enable()", users should use this function to reset interrupt status which remain in slave modules.

Residual interrupt status in slave modules will cause unexpected procedure such as breaking the interrupt mechanism. Be sure to reset those interrupt status of axes after user enabled the interrupt function.

Syntax:

C/C++:

132 APS_reset_field_bus_int_motion (132 Axis_ID);

Visual Basic:

APS_reset_field_bus_int_motion (ByVal Axis_ID As Long) As Long

Parameters:

132 Axis_ID: Specialized axis of MNET system.

I32 Time_Out: Wait timeout time. Unit is milli-second. If value is set -1, the function's time-out interval never elapses (infinite).

Return Values:

Postive value: (Int_Count – 1): The events are wait success.

The return value indicates the index of the error events that satisfied the wait. If more than one event became peratio during the call, this is the array index of the signaled events with the smallest index value of all the signaled events.

Negative value: 132 error code: Refer to error code table.

Example:

.. set factor by axis

APS_int_enable(Board_ID, 1); //Enable the interrupt main switch //Reset interrupt status of the axis

APS_reset_field_bus_int_motion (Axis_ID);

.. Wait event

See also:

APS_int_enable();APS_set_field_bus_int_factor_motion();APS_get_field_bus_int_factor_motion()

APS_wait_field_bus_error_int_moti	Wait error interrupt event for MotionNet series of	n
on	PCI-7856.	

Support Products: PCI-7856, MNET-4XMO-(C), MNET-1XMO

Descriptions:

This function is used to wait error interrupt event.

When the user enabled the interrupt function by "APS_int_enable()", users could use this function to wait error interrupts. When this function was running, the process would never stop until the event was be triggered or the function was time out. This function returns when one of the following occurs:

- 1. Any one of the error interrupt factors is in the signaled state.
- 2. The time-out interval elapses.

This function checks the current state of the error interrupt factors. If the state is non-signaled, the calling thread enters the wait state. It uses no processor time while waiting for the INT state to become signaled or the time-out interval to elapse.

If any one of the error interrupts is triggered, the event will be automatically reset by system.

The MotionNet error interrupt factor definition, please refer to the interrupt factor table.

Note that all default error factors are turned on. Note that "APS_set_field_bus_int_factor_error()" could turn off the error interrupt factor bit.

Syntax:

C/C++:

132 APS_wait_field_bus_error_int_motion(132 Axis_ID, 132 Time_Out);

Visual Basic:

APS_wait_field_bus_error_int_motion (ByVal Axis_ID As Long, ByVal Time_Out As Long)
As Long

Parameters:

132 Axis_ID: Specialized axis of MNET system.

I32 Time_Out: Wait timeout time. Unit is milli-second. If value is set -1, the function's time-out interval never elapses (infinite).

Return Values:

Postive value: The events are wait success.

The return value indicates the index of the error events that satisfied the wait. If more than one event became peratio during the call, this is the array index of the signaled events with the smallest index value of all the signaled events.

Negative value: I32 error code: Refer to error code table.

Example:

```
I32 ReturnCode;
I32 Time_Out = 1000;(means 1000 ms)

ReturnCode = APS_wait_field_bus_error_int_motion ( Axis_ID, Time_Out );
...
```

See also:

```
APS_int_enable(); APS_set_field_bus_int_factor_error (); APS_get_field_bus_int_factor_error (); APS_reset_field_bus_int_motion()
```

Support Products: PCI-7856

Descriptions:

This function is used to assign the HSL DI interrupt bits and return an I32 type event number for a HSL DI module. When the states of bits assigned are changed (no matter 1 to 0, or 0 to 1), you can wait the interrupt event via the event number. The event number is unique in one system but it is not an event handler. It is just a virtual number of event APS converts.

Please note that one DIO module has only one event number.

Syntax:

C/C++:

APS_set_field_bus_int_factor_di (132 Board_ID, 132 BUS_No, 132 MOD_No, 132 bitsOfCheck);

Visual Basic:

APS_set_field_bus_int_factor_di (ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByVal bitsOfCheck As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. Value: 0~1, In PCI-7856, this value must be 0.

132 MOD_No: The first id occupied by HSL slave module. It can't be 0.

132 bitsOfCheck: This parameter is used with bit-formated. This peration assigns the bits which can cause di-interrupt in a slave module. If slave module has more than 16 bits input, the high word is for bit16~31 and low word is for bit0~15.

Please note that the next bitsOfCheck override the previous bitsOfCheck.

Return Values:

Return positive value: 132 Interrupt event number.

Return negative value: 132 error code. Refer to error code table.

Negative value: 132 error code: Refer to error code table.

Example:

In following case, thedi interrupt occurs when any of bits on the DI32 slave module are changed. The module occupies id 1.

132 Module_No = 1;

```
I32 BUS_No = 0;
132 IntNo; //int number
132 returnCode; // function return code
132 bitsOfCheck = 0xffffffff;
//1. Enable int
APS_int_enable(Board_ID, Enable);
//2. Interrupt factor setting
IntNo = APS_set_field_bus_int_factor_di (Board_ID, BUS_No, MOD_No, bitsOfCheck);
//3. Wait int
returnCode = APS_wait_single_int( IntNo, 10000 ); //Wait for 10 sec.
If( ret == 0 ) //receive interrupt
{
     ....// do something
}
//clear int
APS_reset_int(IntNo);
See also:
APS_int_enable();APS_get_field_bus_int_factor_di(); APS_wait_single_int();
APS_wait_multiple_int(); APS_reset_int(); APS_set_int();
```

APS_get_field_bus_int_factor_di	APS	aet	field	bus	int	factor	di
---------------------------------	-----	-----	-------	-----	-----	--------	----

Get DI interrupt bits assigned

Support Products: PCI-7856

Descriptions:

This function is used to get the setting of DI interrupt bits.

Syntax:

C/C++:

I32 FNTYPE APS_get_field_bus_int_factor_di(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 *bitsOfCheck);

Visual Basic:

APS_get_field_bus_int_factor_di (ByVal Board_ID As Long, ByVal BUS_No, ByVal MOD_No As Long, ByRef bitsOfCheck As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. Value: 0~1, In PCI-7856, this value must be 0.

132 MOD_No: The first id occupied by HSL slave module. It can't be 0.

132 *bitsOfCheck: Return di interrupt bits.

Return Values:

132 error code. Refer to error code table.

Example:

132 ReturnCode;

132 bitsOfCheck;

ReturnCode = APS_get_field_bus_int_factor_di (Board_ID, BUS_No, MOD_No, &bitsOfCheck);

...

See also:

```
APS_int_enable();APS_set_field_bus_int_factor_di ();APS_wait_single_int();
APS_wait_multiple_int(); APS_reset_int(); APS_set_int();
```

10. Sampling

APS_set_sampling_param	Set sampling parameter.
------------------------	-------------------------

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO

Descriptions:

This function is used to set sampling parameters such as sampling rate, sampling channel source and so on. Please refer to the sampling parameters table for the definition and detail descriptions.

On PCI-8253/56 and PCI-8392(H), sampling function is only for the boards have DSP or CPU inside. It is for real-time issue. The sampling functions garantees each sampled point are record under hard realtime environment.

On MNET-4XMO, sampling function is based on the system timer. So, the system state would affect the accuracy of sampling data. According to our test, the higher sampling rate you set the worse accuracy you get.

Syntax:

C/C++:

I32 APS_set_sampling_param(I32 Board_ID, I32 Param_No, I32 Param_Dat);

Visual Basic:

APS_set_sampling_param(ByVal Board_ID As Long, ByVal ParaNum As Long, ByVal ParaDat As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

I32 Param_No: Specified sampling parameter number, refer to sampling parameter table for definition.

I32 Param_Dat: The corresponding parameter value of sampling number. Refer to the sampling table.

Return Values:

132 error code. Refer to error code table.

Example:

//... initial card.

I32 Ret = APS_set_sampling_param(Board_ID, SAMP_PA_RATE, 2); //Set sampling rate

. . .

See also:

APS_get_sampling_param();APS_wait_trigger_sampling()

APS_get_sam	plina	param
-------------	-------	-------

Get sampling parameter.

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO

Descriptions:

This function is used to get sampling parameters such as sampling rate, sampling channel source and so on. Please refer to the sampling parameters table for the definition and detail descriptions.

Syntax:

C/C++:

132 APS_get_sampling_param(132 Board_ID, 132 ParaNum, 132 *ParaDat);

Visual Basic:

APS_get_sampling_param(ByVal Board_ID As Long, ByVal ParaNum As Long, ParaDat As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 ParaNum: Sampling parameter number. Refer to the sampling parameter table.

132 *ParaDat: Return sampling parameter value. Refer to the sampling parameter table.

Return Values:

132 error code. Refer to error code table.

Example:

132 ParaDat:

Ret = APS_set_sampling_param(Board_ID, SAMP_PA_EDGE, & ParaDat); //Get trigger edge

. . .

See also:

APS_set_sampling_param();APS_wait_trigger_sampling()

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO

Descriptions:

This function is used to sample data from controller. When the function is issued, the program stating to sample the information and put the data to the internal buffer. Until the trigger signal is turned on, program fetched a mass of data which size is pre-trigger length from internal buffer to the user's data buffer and continuous sample the data until reach the length that users designated. In other hand, if the timeout time is reached and the trigger signal does not raised, this function will be timeout and return an error message.

Use **APS_stop_wait_sampling** to forced stop the wait sampling

.

Caution:

<u>APS_wait_trigger_sampling</u> and <u>APS_wait_trigger_sampling_async</u> functions cannot be used at the same time.

Syntax:

C/C++:

I32 APS_wait_trigger_sampling(I32 Board_ID, I32 Length, I32 PreTrgLen, I32 TimeOutMs, STR_SAMP_DATA_4CH *DataArr);

Visual Basic:

APS_wait_trigger_sampling(ByValBoard_ID As Long, ByVal Length As Long, ByVal PreTrgLen As Long, ByVal TimeOutMs As Long, DataArr As STR_SAMP_DATA_4CH) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Length: The number of sampling data. (array size)

132 PreTrgLen: Pre-trigger length.

132 TimeOutMs: Timeout time. Unit is millisecond.

STR_SAMP_DATA_4CH *DataArr: Get sampling data structure array. Array size must be larger than the parameter "Length".

Return Values:

132 error code. Refer to error code table.

Example:

```
//... initial card.
APS_set_sampling_param(Board_ID, SAMP_PA_RATE, 2); //Set sampling rate
APS_set_sampling_param(Board_ID, SAMP_PA_EDGE, 0); //Set trigger edge (rising
edge)
APS_set_sampling_param( Board_ID, SAMP_PA_LEVEL, 1 ); //Set trigger level (1)
APS_set_sampling_param(Board_ID, SAMP_PA_TRIGCH, 0); //Set trigger channel
(channel 0)
APS_set_sampling_param(Board_ID, SAMP_PA_SRC_CH0, SAMP_CMD_VEL); //Set
channel_0 sampling source.
APS_set_sampling_param(Board_ID, SAMP_PA_SRC_CH1, SAMP_MIO_INP ); //Set
channel_1 sampling source.
132 Length = 1024; //Total sampling data array size.
132 PreTrgLen = 100; //The number of pre-trigger points
STR_SAMP_DATA_4CH DataArr[1024];
I32 TimeOutMs = 10000; //10 second timeout
Ret = APS_wait_trigger_sampling(Board_ID, Length, PreTrgLen, TimeOutMs, DataArr);
If( Ret == ERR_NoError )
{ //Sampling successed
    // DataArr are ready to used.
}
```

See also:

APS_set_sampling_param; APS_get_sampling_param; APS_stop_wait_sampling;

Waiting for sample data asynchronously

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO

Descriptions:

This function is used to sample data from controller. This function will return immediately. And create a background thread to sampling the data.

Use <u>APS_get_sampling_count</u> function to get the count of data be sampled. When the sampled count reachs data **length**, it means sampling finish. If sample count = -1, it means wait failed.

Use <u>APS_stop_wait_sampling</u> to forced stop the asynchronous wait sampling. The sampling count than will become -1.

Caution:

<u>APS_wait_trigger_sampling</u> and <u>APS_wait_trigger_sampling_async</u> functions cannot be used at the same time.

Syntax:

C/C++:

I32 APS_wait_trigger_sampling_async(I32 Board_ID, I32 Length, I32 PreTrgLen, I32 TimeOutMs, STR_SAMP_DATA_4CH *DataArr);

Visual Basic:

APS_wait_trigger_sampling_async(ByVal Board_ID As Long, ByVal Length As Long, ByVal PreTrgLen As Long, ByVal TimeOutMs As Long, DataArr As STR_SAMP_DATA_4CH)As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Length: The number of sampling data. (array size)

132 PreTrgLen: Pre-trigger length.

132 TimeOutMs: Timeout time. Unit is millisecond.

STR_SAMP_DATA_4CH *DataArr: Get sampling data structure array. Array size must be larger than the parameter "Length".

Return Values:

132 error code. Refer to error code table.

Example:

```
//... initial card.
```

```
APS_set_sampling_param( Board_ID, SAMP_PA_RATE, 2 ); //Set sampling rate
APS_set_sampling_param( Board_ID, SAMP_PA_EDGE, 0 ); //Set trigger edge (rising edge)
APS_set_sampling_param( Board_ID, SAMP_PA_LEVEL, 1 ); //Set trigger level ( 1)
APS set sampling param( Board ID, SAMP PA TRIGCH, 0 ); //Set trigger channel
(channel 0)
APS set sampling param( Board ID, SAMP PA SRC CH0, SAMP CMD VEL ); //Set channel 0
sampling source.
APS_set_sampling_param( Board_ID, SAMP_PA_SRC_CH1, SAMP_MIO_INP ); //Set
channel_1 sampling source.
//Start a asynchronous wait sampling.
I32 Length = 1024; //Total sampling data array size.
I32 PreTrgLen = 100; //The number of pre-trigger points
STR SAMP DATA 4CH DataArr[1024];
I32 TimeOutMs = 10000; //10 second timeout
I32 Ret:
Ret =APS_wait_trigger_sampling_async( Board_ID, Length, PreTrgLen, TimeOutMs,
DataArr);
if( Ret != ERR_NoError )
     //Show error message
}else
     while( count < Length )
          APS_get_sampling_count( Board_ID, &count );
          If (count == -1)
          {
               //Sampling failed,
               // Break program.;
          }
          If(ForceStop)
          {
               APS_stop_wait_sampling(Board_ID);
          }
     If( count == Length )
     { //Sampling successed
          // DataArr are ready to used.
     }
}
```

See also:

APS_get_sampling_count; APS_wait_trigger_sampling; APS_stop_wait_sampling

APS_get_sampling_count	Get sampled data count.
------------------------	-------------------------

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO

Descriptions:

This function is used to get asynchronous wait sampling dat count.

Use <u>APS_wait_trigger_sampling_async</u> to start a sampling operation, you need to get sampling count to check the operation is finish success or failed.

Syntax:

C/C++:

132 APS_get_sampling_count(132 Board_ID, 132 *SampCnt);

Visual Basic:

APS_get_sampling_count(ByVal Board_ID As Long, SampCnt As Long) As Long

Parameters:

I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial(). I32 *SampCnt: Return sampled data count. If return -1 mean sampling failed.

Return Values:

132 error code. Refer to error code table.

Example:

Refer to **APS_wait_trigger_sampling_async** example.

See also:

APS_set_sampling_param; APS_get_sampling_param; APS_stop_wait_sampling; APS_wait_trigger_sampling; APS_wait_trigger_sampling_async

APS_stop_wait_sampling

Force stop wait sampling

Support Products: PCI-8253/56, PCI-8392(H), MNET-4XMO

Descriptions:

This function is used to forced stop **APS_wait_trigger_sampling** and

APS wait trigger sampling asnyc function.

Syntax:

C/C++:

I32 APS_stop_wait_sampling(I32 Board_ID);

Visual Basic:

APS_stop_wait_sampling(ByVal Board_ID As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

Return Values:

132 error code. Refer to error code table.

Example:

Refer to **APS_wait_trigger_sampling_asnyc** example

See also:

APS_wait_trigger_sampling; APS_wait_trigger_sampling_async

11. DIO & AIO

APS_write_d_output	Set digital output value
--------------------	--------------------------

Support Products: PCI-8253/56, DPAC-1000, DPAC-3000, PCI-8144, PCI-8154/58/02

Descriptions:

This function is use to access on board general purpose digital output. If the channels are more than 32, users must assign a group number to access more I/O. The PCI-8256 has 8 (PCI-8253 has 4, **DPAC-1000**, **DPAC-3000** has 4, PCI-8154 has 4, PCI-8158 has 8, PCI-8102 has 2) output channels, user can assign group number to be constant 0. The PCI-8102 has 16 output channels, user can assign group number to be constant 1.

Syntax:

C/C++:

132 APS_write_d_output(I32 Board_ID, I32 DO_Group, I32 DO_Data);

Visual Basic:

APS_write_d_output (ByVal Board_ID As Long, ByVal DO_Grout As Long, ByVal DO_Data as Long) As Long;

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 DO_Group: The digit output group number.

132 DO_Data: The digit output data (Data type is bit type).

Return Values:

132 error code. Refer to error code table.

Example:

```
132 DO_Group = 0;  // If DO channel less than 32
132 DO_Data = 0x000F;  // Assign bit 0,1,2,3 output.
132 returnCode;  // Function return code

returnCode = APS_write_d_output(Board_ID, DO_Group, DO_Data);
if(returnCode != 0)
    return MessageBox("Set digit output function failed");
```

See also:

APS_read_d_output	Read digital output value
-------------------	---------------------------

Support Products: PCI-8253/56, DPAC-1000, DPAC-3000, PCI-8144, PCI-8154/58/02

Descriptions:

This function is use to get on board general purpose digital output. If the channels are more than 32, users must assign a group number to access more I/O. The PCI-8256 has 8 (PCI-8253 has 4, DPAC-1000, DPAC-3000 has 4, PCI-8154 has 4, PCI-8158 has 8, PCI-8102 has 2) output channels, user can assign group number to be constant 0. The PCI-8102 has 16 output channels, user can assign group number to be constant 1.

Syntax:

C/C++:

I32 APS_read_d_output(I32 Board_ID, I32 DO_Group, I32 *DO_Data);

Visual Basic:

APS_read_d_output (ByVal Board_ID As Long, ByVal DO_Grout As Long, DO_Data as Long) As Long;

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 DO_Group: The digit output group number.

132 *DO_Data: The digit output data (Data type is bit type).

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_write_d_output()

APS_read_d_input Read digital input value

Support Products: PCI-8253/56, DPAC-1000, DPAC-3000, PCI-8144, PCI-8154/58/02

Descriptions:

This function is use to get on board general purpose digital input. If the channels are more than 32, users must assign a group number to access more I/O. The PCI-8256 has 8 (PCI-8253 has 4, **DPAC-1000**, **DPAC-3000** has 4, PCI-8154 has 4, PCI-8158 has 8, PCI-8102 has 4) input channels, user can assign group number to be constant 0. The PCI-8102 has 16 input channels, user can assign group number to be constant 1.

Syntax:

C/C++:

I32 APS_read_d_input(I32 Board_ID, I32 DI_Group, I32 *DI_Data);

Visual Basic:

APS_read_d_input (ByVal Board_ID As Long, ByVal DI_Grout As Long, DI_Data as Long) As Long;

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 DI_Group: The digit input group number.

132 *DI_Data: The returned digit input data

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_write_d_output()

APS_read_a_input_value

Read back analog input value by volt

Support Products: PCI-8253/56

Descriptions:

There are two kinds of function for analog input. One is converted data. It could be

voltage or current value. The other is raw data. It is relative to bit resolution of

hardware design. This function is used to get on board general purpose analog input

value of one axis, and the analog input value unit is volt. The conversion is one inside

APS library according to hardware specifications and settings.

Syntax:

C/C++:

132 APS_read_a_input_value(132 Board_ID, 132 Channel_No, F64 *Convert_Data);

Visual Basic:

APS_read_a_input_value (ByVal Board_ID As Long, ByVal Channel_No As Long,

Convert_Data as Double) As Long;

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Channel_No: The channel number. Range is from 0 to 65535.

F64 *Convert_Data: The returned converted analog data. Unit is volt and range is -10V

to 10V.

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_read_a_input_data()

202

APS_read_a_input_data

Read back analog input raw data

Support Products: PCI-8253/56

Descriptions:

There are two kinds of function for analog input. One is converted data. It could be voltage or current value. The other is raw data. It is relative to bit resolution of hardware design. This function is used to get on board general purpose analog input raw data of one axis.

Syntax:

C/C++:

I32 APS_read_a_input_data(I32 Board_ID, I32 Channel_No, I32 *Raw_Data);

Visual Basic:

APS_read_a_input_data (ByVal Board_ID As Long, ByVal Channel_No As Long, Raw_Data as Long) As Long;

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Channel_No: The channel number. Range is from 0 to 65535.

132 *Raw_Data: The returned raw data of analog channel. Raw data definition:

*Raw_Data = -32768 => its mean -10V

*Raw_Data = 0 => its mean 0V

*Raw_Data = 32767 => its mean 10V

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_read_a_input_value()

APS_write_a_output_value

Set analog output value by volt

Support Products: PCI-8253/56

Descriptions:

There are two kinds of function for analog output. One is converted data. It could be voltage or current value. The other is raw data. It is relative to bit resolution of hardware design. This function is used to access on board general purpose analog output raw data of one axis and the analog output value unit is volt. Please make sure axis **servo on signal is turn off** relative to channel number before use analog output function.

Syntax:

C/C++:

I32 APS_write_a_output_value(I32 Board_ID, I32 Channel_No, F64 Convert_Data);

Visual Basic:

APS_write_a_output_value (ByVal Board_ID As Long, ByVal Channel_No As Long, ByVal Convert_Data as Double) As Long;

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Channel_No: The channel number. Range is from 0 to 65535.

F64 Convert_Data: The converted analog data to be output. Unit is volt and range is -10V to 10V

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 Channel_No = 1;  // Assign channel 1 to be output channel F32 Convert_Data;
I32 returnCode;  // Function return code
While( 1 )
{
    // From -10 ...... +10 step 0.1
    Convert_Data = -10.0;
    do
```

APS_write_a_output_data

Set analog output value by raw data

Support Products: PCI-8253/56

Descriptions:

There are two kinds of function for analog output. One is converted data. It could be voltage or current value. The other is raw data. It is relative to bit resolution of hardware design. This function is used to access on board general purpose analog output raw data of one axis. Please make sure axis **servo on signal is turn off** relative to

channel number before use analog output function.

Syntax:

C/C++:

132 APS_write_a_output_data(132 Board_ID, 132 Channel_No, 132 Raw_Data);

Visual Basic:

APS_write_a_output_data (ByVal Board_ID As Long, ByVal Channel_No As Long, ByVal

Raw_Data as Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Channel_No: The channel number. Range is from 0 to 65535.

132 Raw_Data: The raw analog data to be output. Raw data definition as below

Raw_Data = -32768 => its mean -10V

Raw_Data = 0 => its mean 0V

Raw_Data = 32767 => its mean 10V

Return Values:

132 error code. Refer to error code table.

Example:

I32 Channel_No = 2; // Assign channel 1 to be output channel

I32 Raw Data:

l32 returnCode; // Function return code

While(1)

206

```
{
    // From -10 ...... +10 step 1 bit
    Raw_Data = -32768;
    do
    {
        APS_write_a_output_Raw_Data( Board_ID, Channel_No, Raw_Data );
        Sleep(10);
        Raw_Data += 1;
    } while(Raw_Data < 0x7FFF)
}
See also:
APS_write_a_output_value()</pre>
```

12. Point table motion

APS_set_point_table	Set point table move parameters
---------------------	---------------------------------

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to set a set of point table parameters to specified axis. The point table defined in APS is not only a point table but also an instruction table. Users can link a move sequence by using this point table. The sequence can be used to different speed parameters and curve parameters. It can be assigned ending peratio for next movement.

The maximum point can be downloaded to on board memory once refers to product specifications. By setting repeat movement, users can make dynamic loading regardless point quatity limitations.

Syntax:

```
C/C++:
I32 APS_set_point_table( I32 Axis_ID, I32 Index, POINT_DATA *Point );
Visual Basic:
APS_set_point_table( ByVal Axis_ID As Long, ByVal Index As Long, Point As POINT_DATA ) As Long
```

Parameters:

```
132 Axis_ID: The Axis ID from 0 to 65535.
132 Index: Specified point index to be set. Range
POINT_DATA *Point: Structure of point table parameters. Define in "type_def.h"
  typedef struct
     132 i32_pos;
                         //(Center)Position data (could be relative or absolute value)
  (pulse)
     116 i16_accType;
                              //Acceleration pattern 0: T curve, 1:S curve
     116 i16_decType;
                              // Deceleration pattern 0: T curve, 1:S curve
     132 i32_acc;
                         //Acceleration rate (pulse / sec2)
     132 i32_dec;
                         //Deceleration rate (pulse / sec<sup>2</sup>)
     132 i32_initSpeed;
                        //Start velocity (pulse / s)
     132 i32_maxSpeed; //Maximum velocity (pulse / s)
     132 i32_endSpeed; //End velocity ( pulse / s )
```

132 i32_angle; //Arc move angle (degree, -360 ~ 360)

U32 u32_dwell; //dwell times (unit: ms) *Divided by system cycle time.

I32 i32_opt; //Point move option. (*)

} POINT_DATA;

(*) Point move option: i32_opt

7	6	5	4	3	2	1	Bit : 0
-	1	Last point	Finish condition	Table_Ctrl	Linear/Arc	1	Absolute/Relative
15	14	13	12	11	10	9	Bit : 8
Table_No	Table_No	Table_No	Do_Ch	Do_Ch	Do_Ch	Do_OnOff	Do_En

Bit 0: 1:Relative move, 0:Absolute move

Bit 2: 1:Arc move, 0:Linear move

Bit 3: 1: Enable VAO table switching control (when it is enabled, the setting table is effective of bit13 to bit 15), 0: Disable

Bit 4: 1:INP ON(In position signal), 0:CSTP ON(command stop signal)

Bit 5: 1: Last point index. 0: Not Last point index. (if this bit is turned on, point table move will stop after this point.)

Bit 8: 1: Enable Do, 0: Disable Do

Bit 9: 1: Set Do on(set to 1), 0: Set Do off(set to 0)

Bit 10~12: Select a Do channel (0 ~ 7)

Bit 13~15: Select a table number from 0 to 7. It is effective when bit 3 is enabled. When point table is running on this point, it will automatically switch to specified VAO table.

Return Values:

132 error code. Refer to error code table.

Example:

#include "type_def.h"

#include "APS_define.h"

#include "APS168.h"

#include "ErrorCodeDef.h"

132 ret;

POINT_DATA Point;

Point.i32_pos = 10000; //(Center)Position data (could be relative or absolute value)

(pulse)

Point.i16_accType = 1; //Acceleration pattern 0: T curve, 1:S curve

```
//Set point data to card memory.

Ret = APS_set_point_table(Axis_ID, 0, &Point);

if(ret!= ERR_NoError)

{ //Error ©

}

See also:

APS_get_point_table();

APS_point_table_move();

APS_get_next_point_index();

APS_get_start_point_index();

APS_get_end_point_index();
```

APS_get_point_table	Get point table move parameters
---------------------	---------------------------------

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to get a set of point table parameters to specified axis.

Syntax:

```
C/C++:
I32 APS_get_point_table( I32 Axis_ID, I32 Index, POINT_DATA *Point );
Visual Basic:
APS_get_point_table( ByVal Axis_ID As Long, ByVal Index As Long, Point As POINT_DATA ) As Long
```

Parameters:

```
132 Axis_ID: The Axis ID from 0 to 65535.
132 Index: Specified point index to be set. Range
POINT_DATA *Point: Structure of point table parameters. Define in "type_def.h"
  typedef struct
     132 i32_pos;
                         //(Center)Position data (could be relative or absolute value)
  (pulse)
     116 i16_accType;
                              //Acceleration pattern 0: T curve, 1:S curve
    116 i16_decType;
                              // Deceleration pattern 0: T curve, 1:S curve
    132 i32_acc;
                         //Acceleration rate (pulse / sec2)
    132 i32_dec;
                         //Deceleration rate (pulse / sec<sup>2</sup>)
     132 i32_initSpeed;
                        //Start velocity (pulse / s)
     132 i32_maxSpeed; //Maximum velocity (pulse / s)
     132 i32_endSpeed; //End velocity ( pulse / s )
     132 i32_angle;
                         //Arc move angle (degree, -360 ~ 360)
     U32 u32_dwell;
                        //dwell times (unit: ms) * Divided by system cycle time.
     132 i32_opt;
                              //Point move option. (*)
  } POINT_DATA;
```

(*) Point move option: i32_opt

7	6	5	4	3	2	1	Bit : 0
ı	1	Last point	Finish condition	1	Linear/Arc	-	Absolute/Relative
15	14	13	12	11	10	9	Bit : 8

Do_Ch Do_Ch Do_Ch Do_OnOff Do_	En
--------------------------------	----

```
Bit 0: 1:Relative move, 0:Absolute move
```

Bit 2: 1:Arc move, 0:Linear move

Bit 4: 1:INP ON(In position signal), 0:CSTP ON(command stop signal)

Bit 5: 1: Last point index. 0: Not Last point index. (if this bit is turned on, point table move will stop after this point.)

```
Bit 8: 1: Enable Do, 0: Disable Do
```

Bit 9: 1: Set Do on(set to 1), 0: Set Do off(set to 0)

Bit 10~12: Do channel(0 ~ 7)

Return Values:

132 error code. Refer to error code table.

Example:

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

//... initial card.
l32 ret;
POINT_DATA Point;
ret =APS_get_point_table(Axis_ID, 0, &Point);
if(ret!=ERR_NoError)
{
    //Error.
}
```

See also:

```
APS_set_point_table();
APS_point_table_move();
APS_get_next_point_index();
APS_get_start_point_index();
APS_get_end_point_index();
```

APS_point_table_move	Start a point table move
----------------------	--------------------------

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to start a point table move. When point table move is started, the system will take the point parameters one by one from "StartIndex" to "EndIndex".

Therefore user must specified the point parameters to point table before perform point table move.

When the axis is in point table moving, user cannot perform others move until point table move is finish.

User could use stop_move, emg_stop, function to forced stop point table move.

Relative motion status description						
PMV	Point table move state	(Control axis) ON: in point table move state				
PDW	Point table Dwell state	(Control axis) ON: in point table dwell state				
PPS	Point table pause state	(Control axis) ON: in point table pause state				
SLV	Slave axis move state	(Slave axis) ON: in slave axis move state				

Reference axis: The first axis in axis array. User can specify it.

Control axis: The minimum axis ID will be the control axis.

Slave axis: Other axes except control axis.

For example:

```
Ex1.
```

```
132 \text{ AxisArray}[4] = \{3, 1, 2, 4\};
```

Control axis is ID= 1.

Reference axis is ID = 3.

Slave axes are ID = 2, 3, 4

Ex2.

 $[32 \ AxisArray[3] = \{ 1, 2, 4 \};$

Control axis is ID= 1.

Reference axis is ID = 1.

Slave axes are ID = 2, 4

Syntax:

```
C/C++:
132 APS_point_table_move(132 Dimension, 132 *Axis_ID_Array, 132 StartIndex, 132
EndIndex);
Visual Basic:
APS_point_table_move(ByVal Dimension As Long, Axis_ID_Array As Long, ByVal
StartIndex As Long, ByVal EndIndex As Long) As Long
Parameters:
132 Dimension: Dimension of axis array. (Linear move :1 ~ 4), (Arc move: 2)
132 *Axis_ID_Array: Axis ID array.
132 StartIndex: The first running point index.
132 EndIndex: The end of point index. .
<Ex>
     StartIndex = 3, EndIndex = 5.
     The running sequence will be 3 -> 4 -> 5
Return Values:
132 error code. Refer to error code table.
Example:
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"
132 ret;
POINT_DATA Point;
I32 Axis_ID_Array;
Point.i32_pos = 10000; //(Center)Position data (could be relative or absolute value)
(pulse)
Point.i16_accType = 1; //Acceleration pattern 0: T curve, 1:S curve
//Set point data to card memory.
Ret = APS_set_point_table(Axis_ID, 0, &Point);
```

if(ret != ERR_NoError)

```
{//Error ©
}

// Start a point table move.

Axis_ID_Array = Axis_ID;

ret = APS_point_table_move( 1, &Axis_ID_Array, 0, 3);
...

See also:

APS_set_point_table();

APS_get_point_table();

APS_get_next_point_index();

APS_get_start_point_index();

APS_get_end_point_index();
```

APS_get_running_point_index	Get current point move index when axis is perform a point	
	move	

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to get the running point index when the axis is performing a point table move. For example, if the system is running index 3, this function will return index = 3.

If the operation is running at the last point, this function will return the "end point index".

Note: When system's state is at beginning, the default value is -1.

Syntax:

C/C++:

132 APS_get_running_point_index(| 132 Axis_ID, | 132 *Index);

Visual Basic:

APS_get_running_point_index(ByVal Axis_ID As Long, Index As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 *Index: return running point index.

Return Values:

132 error code. Refer to error code table.

Example:

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

//... initial card.
//...start network

I32 Index;
I32 ret = APS_get_running_point_index (Axis_ID, &Index);
If(ret != ERR_NoError)
{    //Error ©
```

```
}
```

```
APS_set_point_table();
APS_get_point_table();
APS_point_table_move();
APS_get_start_point_index();
APS_get_end_point_index();
```

APS_get_start_point_index	Get the first point move index when axis is perform a point			
	move			

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to get the first point index when the axis is performing a point table move.

Syntax:

```
C/C++:
```

132 APS_get_start_point_index(I32 Axis_ID, I32 *Index);

Visual Basic:

APS_get_start_point_index(ByVal Axis_ID As Long, Index As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 *Index: return the first running point index.

Return Values:

132 error code. Refer to error code table.

Example:

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

//... initial card.
//...start network

I32 Index;
I32 ret = APS_get_start_point_index (Axis_ID, &Index);
If( ret != ERR_NoError )
{ //Error ©
}
```

See also:

APS_set_point_table();

APS_get_point_table();

APS_point_table_move();

APS_get_next_point_index();

APS_get_end_point_index();

APS_get_end_point_index	Get the end of point move index when axis is perform a
	point move

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to get the end of point index when the axis is performing a point table move.

Syntax:

C/C++:

132 APS_get_end_point_index(132 Axis_ID, 132 *Index);

Visual Basic:

APS_get_end_point_index(ByVal Axis_ID As Long, Index As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 *Index: return the end of running point index.

Return Values:

132 error code. Refer to error code table.

Example:

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

//... initial card.
//...start network

I32 Index;
I32 ret = APS_get_end_point_index(Axis_ID, &Index);
If(ret!= ERR_NoError)
{ //Error ©
}
```

APS_set_point_table();

APS_get_point_table();

APS_point_table_move();

APS_get_next_point_index();

APS_get_start_point_index();

APS_set_table_move_pause Pause point table move

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to pauses the point table move. When pause command is issued, it will not stop current point but stop at next point index starting position.

Syntax:

```
C/C++:
```

132 APS_set_table_move_pause(132 Axis_ID, 132 Pause_en);

Visual Basic:

APS_set_table_move_pause(ByVal Axis_ID As Long, ByVal Pause_en As Long) As Long

Parameters:

```
132 Axis_ID: The Axis ID from 0 to 65535.
```

132 Pause_en:

1: Pause. 0: Not pause.

Return Values:

132 error code. Refer to error code table.

Example:

```
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

//... initial card.
//...start network

I32 Index;
I32 ret = APS_set_table_move_pause (Axis_ID, 1); //Pause point table move If(ret!= ERR_NoError)
{ //Error ©
}
```

APS_set_table_move_ex_pause	Decelerate to stop move and control I/O.
-----------------------------	--

Support Products: PCI-8253/56

Descriptions:

This function is used to pauses move when running point table. When pause command is issued, it will decelerate to stop and control I/O. Other parameters included deceleration rate and I/O setting, could be configured by APS_set_axis_para().

Differences between APS_set_table_move_ex_pause() and APS_set_table_move_pause():

Function	APS_set_table_move_ex_pause()	APS_set_table_move_pause()	
descriptions			
Motion status	NSTP(CSTP, INP)	PPS	
Descriptions	Deceleration to stop & control	Stop at next point index starting	
	1/0	position.	
Rollback	APS_set_table_move_ex_rollbac	N/A	
	k()		
Resume	APS_set_table_move_ex_resume	APS_set_table_move_pause()	
	0		

I/O could be controlled, such as disabling laser, while poiont table is pausing or normally stopping. Turning on/off specified I/O is configured in axis parameter table via APS_set_axis_para().

I/O setting in axis parameter table:

NO.	Define	Description	Value	Default
32h(50)	PRA_PT_STP_DO_E N	Enable Do when point table stoping/pausing	0: Disable 1: Enable	0
33h(51)	PRA_PT_STP_DO	Set Do value when Point table normally stopping/pausing	0: Set to 0 1: Set to 1	0

Syntax:

C/C++:

132 APS_set_table_move_ex_pause(132 Axis_ID);

Visual Basic:

APS_set_table_move_ex_pause(ByVal Axis_ID As Long, ByVal Pause_en As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

Return Values:

132 error code. Refer to error code table.

Example:

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"
//... initial card.
// Pre-Configure parameters
// Enable Do when point table stoping/pausing
132 ret = APS_set_axis_para( Axis_ID, 0x32, 1 );
// Set Do value to 1 (such as turning on laser) when Point table normally stopping/pausing
132 ret = APS_set_axis_para( Axis_ID, 0x33, 1 );
//... move point table
132 ret = APS_set_table_move_ex_pause( Axis_ID );
       //Stop point table move and control I/O.
If( ret != ERR_NoError )
{ //Error ©
}
```

See also:

APS_set_table_move_ex_rollback(),APS_set_table_move_ex_resume(),APS_set_axis_p ara()

Support Products: PCI-8253/56

Descriptions:

This function is used to rollback motion when point table paused. This function is used to rollback to starting position of the current index. Other parameters included start velocity, acceleration rate and deceleration rate could be configured by APS_set_axis_para().

Notice that this function will be used after APS_set_table_move_ex_pause() was called. Otherwise, it is possible to move to unexpected position.

Syntax:

C/C++:

132 APS_set_table_move_ex_rollback(I32 Axis_ID, I32 Max_Speed);

Visual Basic:

APS_set_table_move_ex_rollback(ByVal Axis_ID As Long, ByVal Max_Speed As Long)
As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 Max_Speed: Maximum linear/circular interpolation speed. Unit: pulse/sec.

Return Values:

132 error code. Refer to error code table.

```
#include "type_def.h"

#include "APS_define.h"

#include "APS168.h"

#include "ErrorCodeDef.h"

//... initial card.

//... move point table, and pause it
```

```
I32 ret = APS_set_table_move_ex_rollback ( Axis_ID, Max_Speed );
    // Rollback move.
```

```
If( ret != ERR_NoError )
{ //Error ©
}
```

See also: APS_set_table_move_ex_pause(),APS_set_table_move_ex_resume()

APS_set_table_move_ex_resume	Re-start point table move and keep I/O status.
------------------------------	--

Support Products: PCI-8253/56

Descriptions:

This function is used to resume move from current index to end index when point table paused. When resume command is issued, it will re-start point table move. When passing through the pause position, it will keep I/O status.

Notice that this function will be used after APS_set_table_move_ex_rollback() was called. Otherwise, it is possible to move to unexpected position.

Difference between APS_set_table_move_ex_resume() and

APS_set_table_move_pause():

Function	APS_set_table_move_ex_resume	APS_set_table_move_pause()
descriptions	0	(when resuming move)
Motion status	PMV, SLV	PMV, SLV
Descriptions	Resume move from current index	Resume move from next index
	to end index.	to end index.
Pause	APS_set_table_move_ex_pause()	APS_set_table_move_pause()
		(when pausing move)

Syntax:

C/C++:

132 APS_set_table_move_ex_resume(| 132 Axis_ID);

Visual Basic:

APS_set_table_move_ex_resume(ByVal Axis_ID As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

Return Values:

132 error code. Refer to error code table.

Example:

#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"

#include "ErrorCodeDef.h"

APS_set_table_move_repeat	Set point table move repeat
---------------------------	-----------------------------

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to set point table move repeat. When repeat function is enabled, it will repeat the point move until repeat function is disabled or stop function is issued.

Syntax:

```
C/C++:
```

132 APS_set_table_move_repeat (I32 Axis_ID, I32 Repeat_en);

Visual Basic:

APS_set_table_move_repeat (ByVal Axis_ID As Long, ByVal Repeat_en As Long) As Long

Parameters:

```
132 Axis_ID: The Axis ID from 0 to 65535.
```

132 Repeat_en:

1: Repeat. 0: Not repeat.

Return Values:

132 error code. Refer to error code table.

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

//... initial card.
//...start network

I32 Index;
I32 ret = APS_set_table_move_repeat (Axis_ID, 1); // Repeat point table move
If(ret!= ERR_NoError)
{ //Error ©
```

See also:

APS_set_point_table_mode2	Set point table mode
---------------------------	----------------------

Support Products: MNET-4XMO-C

Descriptions:

This function is used to select a point table mode. There are two modes for point table: Single (Fast Index move) mode and Continuous (Path move) mode. Only one mode can be selected on a specified slave module at the same time. User should call this function to choose mode before using other point table functions.

For Single Mode - Fast Index Move (mode = 0):

It provides a fast way to start a move. Because MNET is using communication way to send/receive command and data, the access time depends on the network speed and the amount of data. It provides a fast way to let users to preset known data on SRAM. It can save much time on communication only by a point index command.

For Continuous Mode - Path Move (mode = 1):

It not only can make path locus running continuously without host PC's control but also can make path speed continuously by auto calculating from our software.

Users only need to give maximum speed and target position data and don't need to take care of starting speed for intercommand speed's continuity. This is so called auto speed profile feature.

A dwell move can be a part of path move. Dwell move means a certain time of axis still.

There is only one limitation for these piecewise point data: The distance for each segment must be long enough to support the time from current speed to be accelerated or decelerated to target maximum speed. Or it will return

ERR_DistantEnough.

Syntax:

C/C++

132 APS_set_point_table_mode2 (132 Axis_ID, 132 Mode);

Visual Basic:

APS_set_point_table_mode2 (ByVal Axis_ID As Long, ByVal Mode As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

For MENT-4XMO-C: Axis_ID on the specified slave module.

132 Mode: Specified point table mode. (Default is 0)

0: Single Mode (Fast Index Move)

1: Continuous Mode (Path Move)

Return Values:

132 error code. Refer to error code table.

Example:

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

I32 ret;
I32 Axis_ID = 1000;

ret = APS_set_point_table_mode2 (Axis_ID, 1); //Set to continuous mode
//... Set other point table functions
```

Support Products: MNET-4XMO-C

Descriptions:

This function is used to set a set of point table parameters. The point table defined in APS is not only a point table but also an instruction table. Users can implement a move according to this point table. The table content can be used to different speed parameters.

For Single Mode - Fast Index Move (mode = 0):

When point table is running on single mode, the maximum number of points is 1024. It supports absolute and relative move for 1-axis motion. Notice that it only supports relative move for linear and arc muti-interpolation motion. It also supports dwell move. The point 0 to point N are not necessary in the same dimension and axis.

For Continuous Mode - Path Move (mode = 1):

When point table is running on continuous mode, the maximum number of points is 1,048,560. The SRAM buffer can preset 2048 points for 1-axis path single motion. If users need interpolation, 1024 points for 2-axis or 682 points for 3-axis or 512 points for 4-axis are possible includes circular motion. The circular motion is only for 2-axis setting. Notice that point 0 to point N are necessary in the same dimension and axis.

The starting speed, acceleration and deceleration rate are fixed from the beginning setting for whole path move. Please pre-set those value before path move.

Note: When point table is running on continuous mode, be sure to set each Point from index 0 to N in order.

Note: It will cause point table to re-initialize when setting Point to index 0,

Syntax:

C/C++:

I32 APS_set_point_table2 (I32 Dimension, I32 *Axis_ID_Array, I32 Index, POINT_DATA2 *Point);

Visual Basic:

APS_set_point_table2 (ByVal Dimension As Long, Axis_ID_Array As Long, ByVal Index As Long, Point As POINT_DATA2) As Long

Parameters:

132 Dimension: Dimension of axis array. (Linear & Dwell move :1 ~ 4), (Arc move: 2)

```
132 *Axis_ID_Array: Axis ID array on specified slave module
```

132 Index: Specified point index to be set.

```
POINT_DATA2 *Point: Structure of point table parameters. Define in "type_def.h" typedef struct
```

```
I32 i32_pos[16]; //(Center)Position data (could be relative or absolute value) (pulse)
```

132 i32_initSpeed; //Start velocity (Only available for single mode) (pulse / s)

132 i32_maxSpeed; //Maximum velocity (pulse / s)

U32 u32_dwell; //dwell times (unit: ms)

} POINT_DATA2;

(*) Point move option: i32_opt

7	6	5	4	3	2	1	Bit : 0
		Last	Finish		Lincom/Ana		Absolute/Relative
_	_	point	condition	-	Linear/Arc	-	Absolute/Relative

Bit 0: 1:Relative move, 0:Absolute move

Bit 2: 1:Arc move, 0:Linear move

Bit 4: 1:INP ON(In position signal), 0:CSTP ON(command stop signal)

Bit 5: 1: Last point index. 0: Not Last point index. (if this bit is turned on, point table move will stop after this point.) It is only available for continuous mode.

Return Values:

132 error code. Refer to error code table.

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

I32 ret;
I32 Dimension = 2; // Interpolation for 2-axes.
I32 Axis_ID_Array[2] = { 1000, 1001 };
POINT_DATA2 Point;
```

...pre-set starting speed, acceleration and deceleration rate...

```
Point.i32_pos[0] = 10000; //(Center)Position data (could be relative or absolute value) (pulse)

Point.i32_pos[1] = 20000; //(Center)Position data (could be relative or absolute value) (pulse)

Point.i32_maxSpeed = 10000; //Maximum velocity (pulse / s)

Point.i32_opt = 0; // Absolute, Linear, CSTP ON, Not Last point index

//Set point data to On-board SRAM.

Ret = APS_set_point_table2 (Dimension, Axis_ID_Array, 0, &Point); //Index 0

//... set index in order.

If( ret != ERR_NoError )

{ //Error ©
}
```

APS_point_table_continuous_move	Start a point table continuous move
2	

Support Products: MNET-4XMO-C

Descriptions:

User must set point table to continuous mode with APS_set_point_table_mode2() before using this function. This function is used to start a point table continuous move. When point table move is started, the system will take the point parameters one by one from "0" to "LastPoint". Therefore user must specify the point parameters to point table before perform point table move.

User could use stop_move, emg_stop, function to forced stop point table move.

Syntax:

C/C++:

I32 FNTYPE APS_point_table_continuous_move2(I32 Dimension, I32 *Axis_ID_Array);

Visual Basic:

APS_point_table_continuous_move2(ByVal Dimension As Long, Axis_ID_Array As Long)
As Long

Parameters:

132 Dimension: Dimension of axis array. (Linear & Dwell move :1 ~ 4), (Arc move: 2) 132 *Axis_ID_Array: Axis ID array on specified slave module

Return Values:

132 error code. Refer to error code table.

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

I32 ret;
I32 Dimension = 2; // Interpolation for 2-axes.
I32 Axis_ID_Array[2] = { 1000, 1001 };
I32 Index = 0;
POINT_DATA2 Point;
```

132 PointTableStatus;

```
...pre-set starting speed, acceleration and deceleration rate...
Point.i32_pos[0] = 10000; //(Center)Position data (could be relative or absolute value)
(pulse)
Point.i32_pos[1] = 20000; //(Center)Position data (could be relative or absolute value)
(pulse)
Point.i32_maxSpeed = 10000; //Maximum velocity (pulse / s)
Point.i32_opt = 0; // Absolute, Linear, CSTP ON, Not Last point index
//Set point data to on-board SRAM.
Ret = APS_set_point_table2 (Dimension, Axis_ID_Array, 0, &Point ); //Index 0
Index++;
//...Preset Point(index) in order.
If( ret != ERR_NoError )
{ //Error ©
}
ret = APS_set_point_table_mode2 (Axis_ID, 1); //Set to continuous mode
// Start a point table continuous move.
Ret = APS_point_table_continuous_move2 (Dimension, Axis_ID_Array);
//Check point table status & Re-load Point(index) in order
ret = APS_point_table_status2( Axis_ID_Array[0], &PointTableStatus );
if(PointTableStatus == 1) //SRAM is not full
{
     // Reload Point
     ret = APS_set_point_table2 (Dimension, Axis_ID_Array, 0, &Point ); //Index 0
     Index++;
}else
{
     //Cant Reload Point
}
```

Support Products: MNET-4XMO-C

Descriptions:

User must set point table to single mode with APS_set_point_table_mode2() before using this function. This function is used to start a point table single move. When point table move is started, the system will perform a single move according to specified index. Therefore user must specify the point parameters to point table before perform point table move.

User could use stop_move, emg_stop, function to forced stop point table move.

Syntax:

C/C++:

132 FNTYPE APS_point_table_single_move2 (132 Axis_ID, 132 Index);

Visual Basic:

APS_point_table_single_move2 (ByVal Axis_ID As Long, ByVal Index As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

For MENT-4XMO-C: Axis_ID on the specified slave module.

132 Index: Specify point index to move.

Return Values:

132 error code. Refer to error code table.

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

I32 ret;
I32 Dimension = 2; // Interpolation for 2-axes.
I32 Axis_ID_Array[2] = { 1000, 1001 };
POINT_DATA2 Point;
```

...pre-set acceleration and deceleration rate..

```
Point.i32_pos[0] = 10000; //(Center)Position data (could be relative or absolute value) (pulse)

Point.i32_pos[1] = 20000; //(Center)Position data (could be relative or absolute value) (pulse)

Point.i32_pos[1] = 20000; //(Center)Position data (could be relative or absolute value) (pulse)

Point.i32_initSpeed = 0; //Start velocity (Only available for single mode) (pulse / s)

Point.i32_maxSpeed = 10000; //Maximum velocity (pulse / s)

Point.i32_opt = 1; // Relative, Linear, CSTP ON, Not Last point index

ret = APS_set_point_table_mode2 (Axis_ID, 0); //Set to single mode

//Set point data to on-board SRAM.

Ret = APS_set_point_table2 (Dimension, Axis_ID_Array, 0, &Point); //Set index 0

if(ret!= ERR_NoError)

{ //Error ©
}

// Start a point table single move.

Ret = APS_point_table_single_move2 (Axis_ID_Array[0], 0); //Move index 0

...
```

APS_get_running_point_index2	Get current point move index when point table move is
	running

Support Products: MNET-4XMO-C

Descriptions:

This function is used to get the running point index when performing a point table move. For example, if the system is running index 3, this function will return index = 3. If the operation is running at the last point, this function will return the "last point index".

Syntax:

C/C++:

132 APS_get_running_point_index(I32 Axis_ID, I32 *Index);

Visual Basic:

APS_get_running_point_index(ByVal Axis_ID As Long, Index As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

For MENT-4XMO-C: Axis_ID on the specified slave module.

132 *Index: return running point index.

Return Values:

132 error code. Refer to error code table.

Example:

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

//... initial card.
//...start network

132 Index;
132 ret = APS_get_running_point_index2 (Axis_ID, &Index);
If( ret != ERR_NoError )
{ //Error ©
}
```

Get point table status when point table move is running

Support Products: MNET-4XMO-C

Descriptions:

MNET-4XMO-C provides one dedicated on-board SRAM to store point data and makes continuous path move standalone possible. This function is used to get SRAM status when performing a point table continuous move. User can reload point table when SRAM is not full.

Syntax:

C/C++:

132 FNTYPE APS_point_table_status2(132 Axis_ID, 132 *Status);

Visual Basic:

APS_point_table_status2(ByVal Axis_ID As Long, Status As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

For MENT-4XMO-C: Axis_ID on the specified slave module.

132 *Status: get SRAM status for point table.

0: SRAM is full.

1: SRAM is not full.

Return Values:

132 error code. Refer to error code table.

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

//... initial card.
//...start network

I32 Status;
I32 ret = APS_point_table_status2 (Axis_ID, &Status);
If(ret != ERR_NoError)
{    //Error ©
```

}

Support Products: HSL-4XMO

Descriptions:

This function is used to set a set of point table parameters. The point table defined in APS is not only a point table but also an instruction table. Users can implement a move according to this point table. The table content can be used to different speed parameters.

The point table can store totally 2000 points (from 0 to 1999). Users can use the structure variable POINT_DATA3 provided by us to set data for each point. The POINT_DATA3 structure variable includes five components: position, max speed, end position, direction, and command function. It has to be noticed that the number of axis and the axes in axis array on each point must be equal under one movement. Move types are decided by command function and it must meet the number of axis ateach point set by user.

The starting speed, acceleration and deceleration rate are fixed from the beginning setting for whole path move. Please pre-set those value before path move via APS_set_point_table_param3 function..

Note: There are some notes in setting point table listed below:

- 1. Starting velocity must be smaller than max velocity.
- 2. The table has two points at least.
- 3. When previous point is arc move, the max velocity in next point must bigger the previous point.
 - 4. Final point can 't be a arc move.
 - 5. The axis must be unique in axis array.
 - 6. The axis in axis array must be in the same module.
 - 7. The number of axis and axes number in axis array at each point must be equal under one movement.

Syntax:

C/C++:

132 APS_set_point_table3(132 Dimension, 132 *Axis_ID_Array, 132 Index, POINT_DATA3 *Point);

Visual Basic:

APS_set_point_table3 (ByVal Dimension As Long, Axis_ID_Array As Long, ByVal Index As Long, Point As POINT_DATA2) As Long

Parameters:

```
I32 Dimension: Dimension of axis array. (Line move: 1 ~ 4), (Arc move: 2)
I32 *Axis_ID_Array: Axis ID array on specified slave module
I32 Index: Specified point index to be set.
POINT_DATA3 *Point: Structure of point table parameters. Define in "type_def.h"
typedef struct
{
    I32 i32_pos[4]; //(Center)Position data (could be relative or absolute value)
    (pulse)
    I32 i32_maxSpeed; //Maximum velocity ( pulse / s )
    I32 i32_endPos[2] //For arc move
    I32 i32_dir; //For arc move
    I32 i32_opt; //Point move option. (*)
} POINT_DATA3;
```

(*) Point move option: i32_opt

Value	Move Type	Value	Move Type	Value	Move Type
0	start_tr_move	7	start_sa_line2	14	start_sr_line3
1	start_ta_move-	8	start_tr_arc2	15	start_sa_line3
2	start_sr_move	9	start_ta_arc2	16	start_sa_line3
3	start_sa_move	10	start_sr_arc2	17	start_ta_line4
4	start_tr_line2	11	start_sa_arc2	18	start_sr_line4
5	start_ta_line2	12	start_tr_line3	19	start_sa_line4
6	start_sr_line2	13	start_ta_line3		

Return Values:

132 error code. Refer to error code table.

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

I32 ret;
I32 Dimension = 2; // Interpolation for 2-axes.
I32 Axis_ID_Array[2] = { 0, 1};
```

POINT_DATA3 Point;

...pre-set starting speed, acceleration and deceleration rate..

Point.i32_pos[0] = 10000; //(Center)Position data (could be relative or absolute value) (pulse)

Point.i32_pos[1] = 20000; //(Center)Position data (could be relative or absolute value) (pulse)

Point.i32_maxSpeed = 10000; //Maximum velocity (pulse / s)

Point.i32_opt = 0; // Absolute, Linear, Not Last point index

See also: APS_point_table_move3, APS_set_point_table_param3

Start a point table move

Support Products: HSL-4XMO

Descriptions:

This function is used to start a point table move. When point table move is started, the system will take the point parameters one by one from "StartIndex" to "EndIndex". Therefore user must specify the point parameters to point table before perform point table move.

When the axis is in point table moving, user cannot perform others move until point table move is finish.

User could uses stop_move, emg_stop, function to forced stop point table move.

Syntax:

C/C++:

I32 FNTYPE APS_point_table_move3 (I32 Dimension, I32 *Axis_ID_Array, I32 StartIndex, I32 EndIndex)

Visual Basic:

APS_point_table_move3 (ByVal Dimension As Long, Axis_ID_Array As Long, StartIndex As Long, EndIndex As Long) As Long

Parameters:

132 Dimension: Dimension of axis array. (Linear & Dwell move: $1 \sim 4$), (Arc move: 2) 132 *Axis_ID_Array: Axis ID array on specified slave module

Note:

- 1. The number of axis and axes number in axis array must be equal the axis array in the point.
 - 2. The axis in axis array must be in the same module.

Return Values:

132 error code. Refer to error code table.

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
```

```
#include "ErrorCodeDef.h"
132 ret;
132 index;
132 Dimension = 2; // Interpolation for 2-axes.
132 \text{ Axis\_ID\_Array}[2] = \{ 0, 1 \};
132 StartIndex = 0;
132 EndIndex = 1;
POINT DATA3 Point:
...pre-set starting speed, acceleration and deceleration rate...
Point.i32_pos[0] = 10000; //(Center)Position data (could be relative or absolute value)
(pulse)
Point.i32_pos[1] = 20000; //(Center)Position data (could be relative or absolute value)
(pulse)
Point.i32_maxSpeed = 10000; //Maximum velocity (pulse / s)
Point.i32_opt = 4; // start_tr_line2
Index = 0;
ret = APS_set_point_table3 (Dimension, Axis_ID_Array, index, &Point); //Index 0
Point.i32_pos[0] = 20000; //(Center)Position data (could be relative or absolute value)
(pulse)
Point.i32_pos[1] = 10000; //(Center)Position data (could be relative or absolute value)
(pulse)
Point.i32_maxSpeed = 10000; //Maximum velocity (pulse / s)
Point.i32_opt = 6; // start_sr_line2
Index = 1;
ret = APS_set_point_table3 (Dimension, Axis_ID_Array, index, &Point); //Index 1
ret = APS_point_table_move3( Dimension, Axis_ID_Array, 0, 1 )
See also: APS_set_point_table3, APS_set_point_table_param3
```

Support Products: HSL-4XMO

Descriptions:

This function is used to set the speed parameter for point table move including start velocity, acceleration, deceleration, scrve acceleration, and scrve deceleration. The numbers of each parameter are the same with axis parameter used by APS_set_axis_param. Users can refre to axis parameter table to set the speed parameter.

Syntax:

C/C++:

132 FNTYPE APS_set_point_table_param3 (132 FirstAxid, 132 ParaNum, 132 ParaDat);

Visual Basic:

APS_set_point_table_param3 (ByVal FirstAxid As Long, ParaNum As Long, ParaDat As Long) As Long;

Parameters:

132 FirstAxid: The first axis in axis array set by APS_set_point_table3 function.

132 ParaNum: The axis parameter please refer to axis table.

Return Values:

132 error code. Refer to error code table.

```
#include "type_def.h"
#include "APS_define.h"
#include "APS168.h"
#include "ErrorCodeDef.h"

l32 ret;
l32 index;
l32 Dimension = 2; // Interpolation for 2-axes.
l32 Axis_ID_Array[2] = { 0, 1};
l32 StartIndex = 0;
l32 EndIndex = 1;
POINT_DATA3 Point;
```

...pre-set starting speed, acceleration and deceleration rate...

```
Point.i32_pos[0] = 10000; //(Center)Position data (could be relative or absolute value)
(pulse)
Point.i32_pos[1] = 20000; //(Center)Position data (could be relative or absolute value)
(pulse)
Point.i32_maxSpeed = 10000; //Maximum velocity (pulse / s)
Point.i32_opt = 4; // start_tr_line2
Index = 0;
ret = APS_set_point_table3 (Dimension, Axis_ID_Array, index, &Point); //Index 0
Point.i32_pos[0] = 20000; //(Center)Position data (could be relative or absolute value)
(pulse)
Point.i32_pos[1] = 10000; //(Center)Position data (could be relative or absolute value)
(pulse)
Point.i32_maxSpeed = 10000; //Maximum velocity (pulse / s)
Point.i32_opt = 6; // start_sr_line2
Index = 1;
ret = APS_set_point_table3 (Dimension, Axis_ID_Array, index, &Point); //Index 1
ret = APS_set_point_table_param3 (0, PRA_ACC, 50000); //Set acceleration for
point table move
ret = APS_set_point_table_param3 (0, PRA_DEC, 50000); //Set deceleration for point
table move
ret = APS_set_point_table_param3 (0, PRA_VS, 100); //Set start velocity for point
table move.
Ret = APS_set_point_table_param3 (0, PRA_SACC, 5000); //Set scurve acceleration
for point table move
ret = APS_set_point_table_param3 (0, PRA_SDEC, 50000); //Set scurve deceleration for
point table
ret = APS point table move3( Dimension, Axis ID Array, 0, 1)
```

See also: APS_set_point_table3, APS_point_table_move3

APS_set_feeder_group	Set axes into a feeder group
----------------------	------------------------------

Support Products: PCI-8253/6 PCI-8392(H)

Descriptions:

This function is used to set axes into a feeder group. Before you used any other feeder function, you should assign some axes to a feeder group. When you no longer use the feeder, you should free the group by *APS_free_feeder_group()* function.

Note:

The current feeder only support two dimension axis ID group.

Syntax:

C/C++:

I32 APS_set_feeder_group(I32 GroupId, I32 Dimension, I32 *Axis_ID_Array);

Visual Basic:

APS_set_feeder_group(ByVal GroupId As Long, ByVal Dimension As Long,

Axis_ID_Array As Long) As Long

Parameters:

132 GroupId: Group ID. Value range: 0~1.

132 Dimension: The dimension of the axis ID array. Value range: 1~4

I32 *Axis_ID_Array: The Axis ID array from 0 to 65535. The array size must match the axis dimension. The axis-ID in Axis_ID_Array[0] represent as the control axis which must the minimum ID number in the array.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
#include "APS168.h"
#include "ErrorCodeDef.h"
```

132 ret; // Return code

I32 groupId = 0; // Feeder group ID [0,1]I32 runldx; // Which index of data is in operation

132 fedldx; // How much data is loaded into feeder module.

I32 msts; // Motion status
 I32 dim = 2; // Group dimension
 I32 ax[2] = { 0, 1,}; // Axes ID array

PNT_DATA_2D* pPnt = NULL; // Pointer of PNT_DATA_2D

```
ret = APS_set_feeder_group( groupId, dim, ax );
if( ret != ERR_NoError ){ //Exception handling }
ret = APS_reset_feeder_buffer(groupId );
ret = APS_set_feeder_point_2D(groupId, pPnt, cnt, 1);
if(ret != ERR_NoError) { //Exception handling }
// Start feeder and point table move
ret = APS_start_feeder_move( groupId );
if(ret != ERR_NoError) { //Exception handling }
// Check whether the end of the point table move procedure
     ret = APS_get_feeder_running_index(groupId, &runldx);
     if(ret != ERR_NoError) break;
     ret = APS_get_feeder_feed_index(groupId, &fedIdx);
     if( ret != ERR_NoError ) break;
     msts = APS_motion_status( ax [0] );
     // Check motion status.
}while(runldx != (fedIdx -1));
ret = APS_free_feeder_group(groupId);
if(ret != ERR_NoError) { //Exception handling }
See also:
132 APS_get_feeder_group( 132 GroupId, 132 *Dimension, 132 *Axis_ID_Array );
132 APS_free_feeder_group( 132 GroupId );
132 APS_reset_feeder_buffer( I32 GroupId );
I32 APS_set_feeder_point_2D (I32 GroupId, POINT_DATA_2D* PtArray, I32 Size, I32
LastFlag);
I32 APS_start_feeder_move( I32 GroupId );
132 APS_get_feeder_running_index( | 132 GroupId, | 132 *Index );
132 APS_get_feeder_feed_index( | 132 GroutId, | 132 *Index );
```

Return the configuration in one feeder group

Support Products: PCI-8253/6 PCI-8392(H)

Descriptions:

This function is used to get the configuration of a specified feeder. The configuration include group dimension and which axis IDs in group.

Syntax:

C/C++:

132 APS_get_feeder_group(132 GroupId, 132 *Dimension, 132 *Axis_ID_Array);

Visual Basic:

APS_get_feeder_group (ByVal GroupId As Long, Dimension As Long, Axis_ID_Array As Long) As Long

Parameters:

132 GroupId: Group ID. Value range: 0~1.

132 *Dimension: Return group axes dimension. Possible return value [0~4].

I32 *Axis_ID_Array: Return the Axis ID from 0 to 65535. Please give a array of **constant size 4**.

Return Values:

132 Error code: Please refer to error code table.

Example:

Refer to the example of APS_set_feeder_group()

See also:

```
132 APS_set_feeder_group(132 GroupId, 132 Dimension, 132 *Axis_ID_Array);
```

132 APS_free_feeder_group(132 GroupId);

132 APS_reset_feeder_buffer(| 132 GroupId);

I32 APS_set_feeder_point_2D(I32 GroupId, POINT_DATA_2D* PtArray, I32 Size, I32 LastFlag);

132 APS_start_feeder_move(| 132 GroupId);

132 APS_get_feeder_running_index(| 132 GroupId, | 132 *Index);

132 APS_get_feeder_feed_index(| 132 GroutId, | 132 *Index);

Free a feeder group and it's resources

Support Products: PCI-8253/6 PCI-8392(H)

Descriptions:

This function is used to free the axes from the feeder and free its resources. When you no long to use the feeder, you must use this function to release the resources or it will keep the resources until the process be terminated.

Syntax:

C/C++:

132 APS_free_feeder_group(132 GroupId);

Visual Basic:

APS_free_feeder_group(ByVal GroupId As Long) As Long

Parameters:

132 GroupId: Group ID. Value range: 0~1.

Return Values:

132 Error code: Please refer to error code table.

Example:

Refer to the example of APS_set_feeder_group()

See also:

```
132 APS_set_feeder_group( 132 GroupId, 132 Dimension, 132 *Axis_ID_Array );
```

132 APS_get_feeder_group(132 GroupId, 132 *Dimension, 132 *Axis_ID_Array);

132 APS_reset_feeder_buffer(| 132 GroupId);

I32 APS_set_feeder_point_2D(I32 GroupId, POINT_DATA_2D* PtArray, I32 Size, I32 LastFlag);

132 APS_start_feeder_move(| 132 GroupId);

132 APS_get_feeder_running_index(| 132 GroupId, | 132 *Index);

132 APS_get_feeder_feed_index(132 GroutId, 132 *Index);

APS_reset_feeder_buffer Reset the	feeder's point buffer
-----------------------------------	-----------------------

Support Products: PCI-8253/6 PCI-8392(H)

Descriptions:

This function is used to reset the 2D point table data buffer of a feeder.

Note:

- 1. When feeder is loading the data to controller, you cannot use this function to reset the feeder buffer.
- 2. When issue the *APS_set_feeder_point_[n]D(*) and the LastFlag is set. Use this function to reset the buffer and clear LastFlag.

Syntax:

C/C++:

132 APS_reset_feeder_buffer(| 132 GroupId);

Visual Basic:

APS_reset_feeder_buffer (ByVal GroupId As Long) As Long

Parameters:

132 GroupId: Group ID. Value range: 0~1.

Return Values:

132 Error code: Please refer to error code table.

Example:

Refer to the example of APS_set_feeder_group()

See also:

```
132 APS_set_feeder_group(132 GroupId, 132 Dimension, 132 *Axis_ID_Array);
```

132 APS_get_feeder_group(132 GroupId, 132 *Dimension, 132 *Axis_ID_Array);

132 APS_free_feeder_group(132 GroupId);

I32 APS_set_feeder_point_2D(I32 GroupId, POINT_DATA_2D* PtArray, I32 Size, I32 LastFlag);

132 APS_start_feeder_move(I32 GroupId);

132 APS_get_feeder_running_index(| 132 GroupId, | 132 *Index);

132 APS_get_feeder_feed_index(132 GroutId, 132 *Index);

Add a point into feeder's buffer

Support Products: PCI-8253/6 PCI-8392(H)

Descriptions:

This function is used to set two dimension trajectory data into the buffer of a feeder. The parameter "LastFlag" must be set when the last piece of trajectory data is set. After "LastFlag" is be set, the function "APS_start_feeder_move()" can be execute. When "LastFlag" is set, the trajectory data cannot be set into buffer until APS_reset_feeder_buffer() is called.

Syntax:

C/C++:

I32 APS_set_feeder_point_2D(I32 GroupId, PNT_DATA_2D * PtArray, I32 Size, I32 LastFlag);

Visual Basic:

APS_set_feeder_point_2D (ByVal GroupId As Long, PtArray As PNT_DATA_2D, ByVal Size As Long, ByVal LastFlag As Long) As Long

Parameters:

132 GroupId: Group ID. Value range: 0~1.

PNT_DATA_2D* PtArray: Two dimension trajectory information array.

132 Size: PNT_DATA_2D array size. Value must large than 0. (Size > 0)

132 LastFlag: Last point data flag. To notice the feeder the point array is the last one for feeder.

0: Not the last one

1: Last one.

Return Values:

132 Error code: Please refer to error code table.

Example:

Refer to the example of APS_set_feeder_group()

See also:

132 APS_set_feeder_group(I32 GroupId, I32 Dimension, I32 *Axis_ID_Array);

132 APS_get_feeder_group(132 GroupId, 132 *Dimension, 132 *Axis_ID_Array);

132 APS_free_feeder_group(I32 GroupId);

```
132 APS_reset_feeder_buffer( 132 GroupId );
```

- 132 APS_start_feeder_move(| 132 GroupId);
- 132 APS_get_feeder_running_index(| 132 GroupId, | 132 *Index);
- I32 APS_get_feeder_feed_index(I32 GroutId, I32 *Index);

Start point table move and feed points.

Support Products: PCI-8253/6 PCI-8392(H)

Descriptions:

The following items will be executed when this function is issued.

- 1. Load points into controller (Point table).
- 2. Start point table move.

This function will fail when the parameter "LastFlag" of function APS_set_feeder_point_[n]D() does not be set.

Syntax:

C/C++:

132 APS_start_feeder_move(I32 GroupId);

Visual Basic:

APS_start_feeder_move (ByVal GroupId As Long) As Long

Parameters:

132 GroupId: Group ID. Value range: 0~1.

Return Values:

132 Error code: Please refer to error code table.

Example:

Refer to the example of APS_set_feeder_group()

See also:

```
132 APS_set_feeder_group( I32 GroupId, I32 Dimension, I32 *Axis_ID_Array );
```

132 APS_get_feeder_group(132 GroupId, 132 *Dimension, 132 *Axis_ID_Array);

132 APS_free_feeder_group(I32 GroupId);

132 APS_reset_feeder_buffer(| 132 GroupId);

I32 APS_set_feeder_point_2D (I32 GroupId, PNT_DATA_2D * PtArray, I32 Size, I32 LastFlag);

132 APS_get_feeder_running_index(| 132 GroupId, | 132 *Index);

132 APS_get_feeder_feed_index(132 GroutId, 132 *Index);

Support Products: PCI-8253/6 PCI-8392(H)

Descriptions:

This function is used to observe which buffer index currently the controller being processed. The index of the buffer is the array index you feed to buffer.

This function is similar with APS_get_running_point_index(), but the different is the order of the index. APS_get_running_point_index() return point table index which order by point table itself in peration 's ram; APS_get_feeder_running_index() return buffer index which order by feeder 's buffer in host 's ram.

Syntax:

C/C++:

132 APS_get_feeder_running_index(| 132 GroupId, | 132 *Index);

Visual Basic:

APS_get_feeder_running_index (ByVal GroupId As Long, Index As Long) As Long

Parameters:

132 GroupId: Group ID. Value range: 0~1.

132 *Index: Return which point is in operation.

Return Values:

132 Error code: Please refer to error code table.

Example:

Refer to the example of APS_set_feeder_group()

See also:

```
132 APS_set_feeder_group( 132 GroupId, 132 Dimension, 132 *Axis_ID_Array );
```

132 APS_get_feeder_group(132 GroupId, 132 *Dimension, 132 *Axis_ID_Array);

132 APS_free_feeder_group(132 GroupId);

132 APS_reset_feeder_buffer(| 132 GroupId);

I32 APS_set_feeder_point_2D (I32 GroupId, PNT_DATA_2D * PtArray, I32 Size, I32 LastFlag);

132 APS_start_feeder_move(I32 GroupId);

132 APS_get_feeder_feed_index(I32 GroutId, I32 *Index);

Get which point is set into point table.

Support Products: PCI-8253/6 PCI-8392(H)

Descriptions:

This function will return which the latest buffer index in feeder is loaded into controller.

Syntax:

C/C++:

132 APS_get_feeder_feed_index(| 132 GroutId, | 132 *Index);

Visual Basic:

APS_get_feeder_feed_index (ByVal GroupId As Long, Index As Long) As Long

Parameters:

132 GroupId: Group ID. Value range: 0~1.

132 *Index: Return which buffer index is load into controller.

Return Values:

132 Error code: Please refer to error code table.

Example:

Refer to the example of APS_set_feeder_group()

See also:

```
132 APS_set_feeder_group(132 GroupId, 132 Dimension, 132 *Axis_ID_Array);
```

132 APS_get_feeder_group(132 GroupId, 132 *Dimension, 132 *Axis_ID_Array);

132 APS_free_feeder_group(132 GroupId);

132 APS_reset_feeder_buffer(| 132 GroupId);

I32 APS_set_feeder_point_2D(I32 GroupId, PNT_DATA_2D * PtArray, I32 Size, I32 LastFlag);

132 APS_start_feeder_move(| 132 GroupId);

132 APS_get_feeder_running_index(132 GroupId, 132 *Index);

Support Products: PCI-8253/6

Descriptions:

This function is used to pauses move when running point table. When pause command is issued, it will decelerate to stop and turn off I/O. The feeder also will be paused at the same time.

Syntax:

```
C/C++:
```

132 APS_set_feeder_ex_pause(132 GroupId);

Visual Basic:

APS_set_feeder_ex_pause (ByVal GroupId As Long) As Long

Parameters:

132 GroupId: Group ID. Value range: 0~1.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
#include "APS168.h"
#include "ErrorCodeDef.h"

//When push pause button on user interface.
I32 ret;
I32 groupId = 0;
ret = APS_set_feeder_ex_pause( groupId );
if( ret != ERR_NoError ) {//Exception handling }
// Check the motion status has stopped.
```

See also:

```
I32 APS_set_feeder_ex_pause( I32 GroupId );
I32 APS_set_feeder_ex_rollback( I32 GroupId, I32 Max_Speed );
I32 APS_set_feeder_ex_resume( I32 GroupId );
```

APS_set_feeder_ex_rollback

Move back to the starting position of paused index

Support Products: PCI-8253/6

Descriptions:

This function is used to let the group of axes back to the last point position which is paused by APS_set_feeder_ex_pause().

This function can **ONLY** be called after *APS_set_feeder_ex_pause()*. The behavior is not defined when this function is be used in other situation.

Syntax:

C/C++:

132 APS_set_feeder_ex_rollback(132 GroupId, 132 Max_Speed);

Visual Basic:

APS_set_feeder_ex_rollback(ByVal GroupId As Long, ByVal Max_Speed As Long) As Long

Parameters:

132 GroupId: Group ID. Value range: 0~1.

132 Max_Speed: Maximum linear interpolation speed. Value > 0, Unit: pulse/sec.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
#include "APS168.h"
#include "ErrorCodeDef.h"
//When push "Go back" button on user interface.
132 ret:
132 \text{ groupld} = 0;
132 max_speed = 5000; // Pulse/sec
ret = APS_set_feeder_ex_rollback( groupId, max_speed );
if( ret != ERR_NoError ) {//Exception handling }
// Check the motion status has done.
```

See also:

132 APS_set_feeder_ex_pause(132 GroupId);

132 APS_set_feeder_ex_resume(132 GroupId);

APS	set	feeder	ex	resume
------------	-----	--------	----	--------

Resume the point-table move.

Support Products: PCI-8253/6

Descriptions:

This function is used to resume move from paused feeder running index. When passing through the pause position, it will keep I/O status.

This function can **ONLY** be called after *APS_set_table_move_ex_rollback()*. The behavior is not defined when this function is be used in other situation.

Syntax:

```
C/C++:
```

132 APS_set_feeder_ex_resume (I32 GroupId);

Visual Basic:

APS_set_feeder_ex_resume (ByVal GroupId As Long) As Long

Parameters:

132 GroupId: Group ID. Value range: 0~1.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
#include "APS168.h"
#include "ErrorCodeDef.h"

//When push "Resume" button on user interface.

I32 ret;

I32 groupId = 0;

ret = APS_set_feeder_ex_resume ( groupId );

if( ret != ERR_NoError ) {//Exception handling }

// Check the motion status has started.
...
```

See also:

```
I32 APS_set_feeder_ex_pause( I32 GroupId );
I32 APS_set_feeder_ex_rollback( I32 GroupId, I32 Max_Speed );
```

13. Field bus functions

APS_set_field_bus_param	Set field bus related parameters
-------------------------	----------------------------------

Support Products: PCI-8392H, DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, HSL-DIO

Descriptions:

This function is used to set field bus system parameters. Users must use this function before starting field bus communication. Otherwise, the field bus will be started by default. For parameter details, you can refer to field bus parameter table.

The field bus is a kind of serial network bus using in industrial field. The most popular one is CAN bus.

Syntax:

C/C++:

I32 APS_set_field_bus_param(I32 Board_ID, I32 BUS_No, I32 BUS_Param_No, I32 BUS_Param_N;

Visual Basic:

APS_set_field_bus_param(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal BUS_Param_No As Long, ByVal BUS_Param As Long)As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 BUS_Param_No: Field bus parameter number, Refer to table peration

132 BUS_Param: Field bus parameter data. Refer to table definition.

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_get_field_bus_param();APS_start_field_bus()

APS_get_field_bus_param

Get field bus related parameters

Support Products: PCI-8392H, DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, HSL-DIO

Descriptions:

This function is used to get field bus system parameters. Please refer to field bus parameter table.

Syntax:

C/C++:

I32 APS_get_field_bus_param(I32 Board_ID, I32 BUS_No, I32 BUS_Param_No, I32 *BUS_Param);

Visual Basic:

APS_get_field_bus_param(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal BUS_Param_No As Long, BUS_Param As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 BUS_Param_No: Field bus parameter number, Refer to table peration

132 *BUS_Param: Return field bus parameter data. Refer to table definition.

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_set_field_bus_param

Support Products: PCI-8392H, DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, HSL-DIO

Descriptions:

This function is used to start field bus communication. Once it is started, it will search all modules connected to the port. Because there could be motion slaves on the port, users should assign a starting axis ID when using this function. All axes of the port will start axis ID arrangement from the starting axis ID.

You should call this function before using field bus even you have only I/O slaves on the port.

Notice that because the slaves are automatically searched, some slaves may be lost due to communication quality. Users must check all the slaves are found and types are correct before field bus opertation.

APS_stop_field_bus() must be called at the end of filed bus operation.

Syntax:

C/C++:

132 APS_start_field_bus(132 Board_ID, 132 BUS_No, 132 Starting_Axis_ID); Visual Basic:

APS_start_field_bus(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal Starting_Axis_ID As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial(). 132 BUS_No: Field bus number. (Port number) value: 0~1

For PCI-7856, HSL field bus is Bus_No 0 and MNET field bus is Bus_No 1.

132 Starting_Axis_ID: Starting axis ID number of this field bus number.

Return Values:

132 error code. Refer to error code table.

Example:

132 ret; //Return error code.

132 boardId = 0;

```
I32 busNum = 0; //Bus number.
```

132 startingAxisId = 1000; //Startin axis ID of the filed bus.

```
Ret = APS_start_field_bus( perati, busNum, startingAxisId );
// Field bus operation...
```

APS_stop_field_bus(perati, busNum); //Stop field bus.

See also:

APS_stop_field_bus();

APS_stop_field_bus

Stop the network of specified field bus

Support Products: PCI-8392H, DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, HSL-DIO

Descriptions:

This function is used to stop field bus communication and release its resource.

This function must be called at end of process, if user ever used APS_start_field_bus() to start network.

Syntax:

C/C++:

132 APS_stop_field_bus(132 Board_ID, 132 BUS_No);

Visual Basic:

APS_stop_field_bus(ByVal Board_ID As Long, ByVal BUS_No As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

For PCI-7856, HSL field bus is Bus_No 0 and MNET field bus is Bus_No 1

Return Values:

132 error code. Refer to error code table.

Example:

132 ret; //Return error code.

132 boardId = 0:

132 busNum = 0; //Bus number.

132 startingAxisId = 1000; //Startin axis ID of the filed bus.

Ret = APS_start_field_bus(perati, busNum, startingAxisId);

// Field bus operation...

APS_stop_field_bus(perati, busNum); //Stop field bus.

See also:

APS_start_field_bus();

APS_field_bus_d_set_output	Set field bus digital output
----------------------------	------------------------------

Support Products: PCI-8392H, DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, HSL-DIO

Descriptions:

This function is used to set field bus digital output on slave modules. The maximum data length of one module ID is 32-bit. If the module ID has fewer channels than 32, the higher bit must be remained zero when outputting. The read back data of higher bit will be zero

Syntax:

C/C++:

I32 APS_field_bus_d_set_output(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 DO_Value);

Visual Basic:

APS_field_bus_d_set_output(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByVal DO_Value As Long)As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For High Speed Link(HSL) type field bus, the range of module number is 1 to 63.

Note: In HSL, the MOD_No is the first id occupied by the module.

For MNET type field bus, the range of module number is 0 to 63.

I32 DO_Value: Digital output value. In bit format. Bit 0 corresponding to digital output channel 0 and the rest may be deduced by analogy.

For MNET-4XMO the definitions of DO bits are as follows. The default value is 0xff.

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IOIF4.Do2	IOIF3.Do2	IOIF2.Do2	IOIF1.Do2	IOIF4.Do1	IOIF3.Do1	IOIF2.Do1	IOIF1.Do1

For MNET-4XMO-C and HSL-4XMO, the definitions of DO bits are as follows. The default value is 0xf.

Bit3	Bit2	Bit1	Bit0
IOIF4.Do1	IOIF3.Do1	IOIF2.Do1	IOIF1.Do1

For MNET-1XMO the definitions of DO bits are as follows. The default value is 0x0.

Bit3	Bit2	Bit1	Bit0
N/A	SZST	STL	AlmReset

0(Low)	0(Low)	0(Low)
1(High)	1(High)	1(High)

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret; //return error code.
I32 boardId = 0;
I32 busNum = 0;
I32 moduleNum = 0;
I32 DO_Value = 0;

//Start Field bus first.

// ret = APS_start_field_bus( perati, busNum, startingAxisId);
DO_Value = 0xF;
ret = APS_field_bus_d_set_output( perati, busNum,, moduleNum, DO_Value);
```

See also:

APS_field_bus_d_get_output();

APS_field_bus_d_get_output	Get field bus digital output
----------------------------	------------------------------

Support Products: PCI-8392H, DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO,

HSL-4XMO, HSL-DIO

Descriptions:

This function is used to get field bus digital output on slave modules. Some module ID can't be read back the output information. Please check each module's hardware specification. The maximum data length of one module ID is 32-bit. If the module ID has fewer channels than 32, the higher bit must be remained zero when outputting. The read back data of higher bit will be zero.

Syntax:

C/C++:

I32 APS_field_bus_d_get_output(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 *DO_Value);

Visual Basic:

APS_field_bus_d_get_output(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, DO_Value As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For High Speed Link(HSL) type field bus, the range of module number is 1 to 63.

Note: In HSL, the Module_No is the first id occupied by the module.

For MNET type field bus, the range of module number is 0 to 63.

132 *DO_Value: Return digital output value. Bit 0 corresponding to digital output channel 0 and the rest may be deduced by analogy.

For MNET-4XMO, the definitions of DO bits are as follows. The default value is 0xff.

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IOIF4.Do2	IOIF3.Do2	IOIF2.Do2	IOIF1.Do2	IOIF4.Do1	IOIF3.Do1	IOIF2.Do1	IOIF1.Do1

For MNET-4XMO-C and HSL-4XMO, the definitions of DO bits are as follows. The default value is 0xf.

Bit3	Bit2	Bit1	Bit0
IOIF4.Do1	IOIF3.Do1	IOIF2.Do1	IOIF1.Do1

For MNET-1XMO the definitions of DO bits are as follows. The default value is 0x0.

Bit3	Bit2	Bit1	Bit0
N/A	SZST	STL	AlmReset
	0(Low)	0(Low)	0(Low)
	1(High)	1(High)	1(High)

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret; //return error code.
I32 boardId = 0;
I32 busNum = 0;
I32 moduleNum = 0;
I32 DO_Value = 0;

//Start Field bus first.

// ret = APS_start_field_bus( perati, busNum, startingAxisId);

ret = APS_field_bus_d_get_output( perati, busNum, moduleNum, &DO_Value);
```

See also:

APS_field_bus_d_set_output();

APS_field_bus_d_get_input	Get field bus digital input
---------------------------	-----------------------------

Support Products: PCI-8392H, DPAC-3000, PCI-7856, MNET-4XMO-©, HSL-4XMO,

HSL-DIO

Descriptions:

This function is used to get input data from field bus digital input on slave modules. The maximum data length of one module ID is 32-bit. If the module ID has fewer channels than 32, the higher bit must be remained zero.

Syntax:

C/C++:

I32 APS_field_bus_d_get_input(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 *DI_Value); Visual Basic:

APS_field_bus_d_get_input(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, DI_Value As Long) As Long

Parameters:

I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For High Speed Link(HSL) type field bus, the range of module number is 1 to 63.

Note: In HSL, the Module_No is the first id occupied by the module.

For MNET type field bus, the range of module number is 0 to 63.

132 *DI_Value: Return digital input value.

For MNET-4XMO, the definitions of DI bits are as follows.

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IOIF4.Di2	IOIF3.Di2	IOIF2.Di2	IOIF1.Di2	IOIF4.Di1	IOIF3.Di1	IOIF2.Di1	IOIF1.Di1

For MNET-4XMO-C and 4XMO, the definitions of DI bits are as follows.

Bit3	Bit2	Bit1	Bit0
IOIF4.Di1	IOIF3.Di1	IOIF2.Di1	IOIF1.Di1

For MNET-1XMO the definitions of DI bits are as follows.

Bit3	Bit2	Bit1	Bit0
N/A	N/A	N/A	STLOV

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret; //return error code.
I32 boardId = 0;
I32 busNum = 0;
I32 moduleNum = 0;
I32 DI_Value = 0;

//Start Field bus first.

// ret = APS_start_field_bus( perati, busNum, startingAxisId);

ret = APS_field_bus_d_get_input( perati, busNum,, moduleNum, &DI_Value);
```

See also:

APS_field_bus_d_set_output();APS_field_bus_d_get_output()

Support Products: PCI-8392H, DPAC-3000, PCI-7856

Descriptions:

This function is used to set field bus slave parameter.

Some parameters are for slave module itself and some are for channels of slave. It is depend on input-parameter "I32 Ch_no". When you set -1 to Ch_no, it means you set parameter to specified module (module layer parameter). Otherwise you set channel number to CH_no to set parameter to specified channel

The detail of field bus slave parameters, please refer to slave parameter table.

Syntax:

C/C++:

I32 APS_set_field_bus_slave_param(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 Ch_No, I32 ParaNum, I32 ParaDat);

Visual Basic:

APS_set_field_bus_slave_param(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByVal Ch_No As Long, ByVal ParaNum As Long, ByVal ParaDat As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Slave Module number.

For HSL slave module, depend on slave ID : 1 \sim 63. Note: In HSL, the Module_No is the first id occupied by the module.

132 Ch_No: Channel number. If set this parameter to -1 mean set slave parameter.

-1: Set parameter to specified slave module number.

 $0 \sim$: Set parameter to specified channel number (AIO channel , DIO channel etc.)

132 ParaNum: Slave / Channel parameter number.

Refer to fieldbus slave parameter definition table.

132 ParaDat: Slave / Channel parameter data.

Refer to fieldbus slave parameter definition table.

Return Values:

132 error code. Refer to error code table.

Exa	m	nl	۵.
Еха	111	μ	E.

See also:

APS_get_field_bus_slave_param()

Support Products: PCI-8392H, DPAC-3000, PCI-7856

Descriptions:

This function is used to get field bus slave parameter.

Some parameters are for slave module itself and some are for channels of slave. It is depend on input-parameter "I32 Ch_no". When you set -1 to Ch_no, it means you set parameter to specified module. Otherwise you set channel number to CH_no to set parameter to specified channel.

The detail of field bus slave parameters, please refer to slave parameter table.

Syntax:

C/C++:

I32 APS_get_field_bus_slave_param(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 Ch_No, I32 ParaNum, I32 *ParaDat);

Visual Basic:

APS_get_field_bus_slave_param(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 Ch_No, I32 ParaNum, I32 *ParaDat);

Parameters:

I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Slave Module number.

For HSL slave module, depend on slave ID : 1 \sim 63. Note: In HSL, the Module_No is the first id occupied by the module.

132 Ch_No: Channel number. If set this parameter to -1 mean set slave parameter.

- -1 : Set parameter to specified slave module number.
- 0 \sim : Set parameter to specified channel number (AIO channel , DIO channel etc.)

132 ParaNum: Slave / Channel parameter number.

Refer to fieldbus slave parameter definition table.

132 *ParaDat: Return Slave / Channel parameter data.

Refer to fieldbus slave parameter definition table.

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_set_field_bus_slave_param();

Set field bus analog output

Support Products: PCI-8392(H), DPAC-3000, PCI-7856

Descriptions:

This function is used to set analog type of field bus salve analog output value. The conversion from digital value to floating point value is according to hardware specifications and built-in in APS.

Syntax:

C/C++:

I32 APS_set_field_bus_a_output(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 Ch_No, F64 AO_Value);

Visual Basic:

APS_set_field_bus_a_output(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByVal Ch_No As Long, ByVal AO_Value As Double) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Slave Module number.

For HSL slave module, depend on slave ID : 1 \sim 63. Note: In HSL, the Module_No is the first id occupied by the module.

I32 Ch_No: Channel number. Value range 0 ~ n (n = max. channel number - 1)
F64 AO_Value: Analog output. Unit of value is depended on slave type. [V] for voltage
/ [A] for current.

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_get_field_bus_a_output(); APS_get_field_bus_a_input();

Get field bus analog output

Support Products: PCI-8392(H), DPAC-3000, PCI-7856

Descriptions:

This function is used to get analog output of analog type field bus salve. The conversion from digital value to floating point value is according to hardware specifications and built-in in APS.

Syntax:

C/C++:

I32 APS_get_field_bus_a_output(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 Ch_No, F64 *AO_Value);

Visual Basic:

APS_get_field_bus_a_output(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByVal Ch_No As Long, AO_Value As Double) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Slave Module number.

For HSL slave module, depend on slave ID : 1 \sim 63. Note: In HSL, the Module_No is the first id occupied by the module.

I32 Ch_No: Channel number. Value range $0 \sim n$ (n = max. channel number – 1) F64 *AO_Value: Return analog output. Unit of value is depended on slave type. [V] for voltage / [A] for current.

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_set_field_bus_a_output(); APS_get_field_bus_a_input();

Get field bus analog input

Support Products: PCI-8392(H), DPAC-3000, PCI-7856

Descriptions:

This function is used to get analog input of analog type field bus salve. The conversion from digital value to floating point value is according to hardware specifications and built-in in APS.

Syntax:

C/C++:

I32 APS_get_field_bus_a_input(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 Ch_No, F64 *Al_Value);

Visual Basic:

APS_get_field_bus_a_input(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByVal Ch_No As Long, Al_Value As Double) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Slave Module number.

For HSL slave module, depend on slave ID : 1 \sim 63. Note: In HSL, the Module_No is the first id occupied by the module.

I32 Ch_No: Channel number. Value range $0 \sim n$ (n = max. channel number – 1) F64 *Al_Value: Return analog input. Unit of value is depended on slave type. [V] for voltage / [A] for current.

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_set_field_bus_a_output(); APS_get_field_bus_a_output();

APS_get_slave_connect_quality

Get the connected quality of slave

Support Products: PCI-8392(H), DPAC-3000, PCI-7856

Descriptions:

This function is used to get the connected quality of slave.

After starting to scan slave module, this function can be used to check if any error of communication occurred. This result only shows the status at the moment when executing, not showing the status in the history. User can set the checking degree by PRF_CHKERRCNT_LAYER parameter. The range of return value is according to the number of id occupied by the module.

It must be remained again that this function just shows the quality of connection at this moment.

Note: This function supports HSL bus.

Note: This function doesn't support MotionNet bus.

Syntax:

C/C++:

132 APS_get_slave_connect_quality(132 Board_ID, 132 BUS_No, 132 MOD_No, 132

*Sts_data);

Visual Basic:

APS_get_slave_connect_quality (ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByRef Sts_data As Long);

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1. This function only supports HSL bus now.

132 MOD_No: Slave Module number.

For HSL slave module, depend on slave ID: 1 ~ 63. Note: In HSL, the Module_No is the first id occupied by the module.

132 *Sts_data: Return status value. The return value is bit form. Each bit decriebes the communication status for each id respectively. Zero is normal, one is abnormal. For example:

HSL module may occupy id more than one. You can recognize the state of each id via the retun value. However, if the return value is bigger than zero, it means that the communication isn't stable in the module.

0x00(0): All id is normal.

0x01(1): The first id is abnormal.

0x05(5): The first and the third ids are abnormal.

0x0f(15): All ids are abnormal

Return Values:

132 error code. Refer to error code table.

Example for HSL bus:

```
//If the module occupies 4 ids.

I32 ret; //return error code.

I32 boardId = 0;

I32 busNum = 0;

I32 moduleNum = 1;

I32 Sts_data = 0;

I32 bus_param = 5;

I32 startingAxisId = 0;

//Start Field bus first.

Ret = APS_start_field_bus( perati, busNum, startingAxisId);

ret = APS_set_field_bus_param ( perati, busNum, PRF_CHKERRCNT_LAYER, bus_param);

ret = APS_get_slave_connect_quality( perati, busNum, moduleNum, &Sts_data);

//if Sts_data is 5, it means that first and third ids are abnormal.

See also:
```

APS_get_slave_online_status();

APS_get_slave_online_status

Get the connected quality of slave

Support Products: PCI-8392(H), DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, HSL-DIO

Descriptions:

This function is used to get the status of online.

After starting to scan slave module, this function can be used to check if the slave module is online or offline.

It must be noted that this function just shows the status of communication at this moment.

Note: This function supports both HSL & MotionNet bus.

Note: For the HSL bus, the range of return value is according to the number of bit occupied by the module.

Syntax:

C/C++:

I32 APS_get_slave_online_status (I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 * Live); Visual Basic:

APS_get_slave_online_status (ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByRef Live);

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Slave Module number.

For HSL slave module, depend on slave ID: 1 ~ 63.

Note: In HSL, the Module_No is the first id occupied by the module.

For MNET slave module, depend on slave ID: 0 ~ 63

132 * Live: Return status value. The return value is bit form. Each bit decriebes the status for each id respectively. 0 is offline, 1 is online

Example for HSL bus:

HSL module may occupy id more than one. You can recognize the state of each id via the retun value.

0x00(0): All ids are offline

0x01(1): The first id is online

0x05(5): The first and the third ids are online

0x0f(15): All ids are online

Example for Mnet bus:

User could identify communication error for specific Slaveld by invoking this function at this moment. If a communication error occurs for a specific Slaveld on three consecutive communication cycles, it will issue a communication error.

```
0x00(0): This id is offline. That is, this id issues a communication error.
```

0x01(1): This id is online. That is, the communication of this id is good.

Return Values:

132 error code. Refer to error code table.

```
Example for HSL bus:
```

```
//If the module occupies 4 ids.
132 ret; //return error code.
132 \text{ boardId} = 0;
132 busNum = 0; //HSL bus number
132 moduleNum = 1;
132 \text{ on_line} = 0;
132 bus_param = 5;
132 startingAxisId = 0;
//Start Field bus first.
Ret = APS_start_field_bus( perati, busNum, startingAxisId );
ret = APS_get_slave_online_status ( perati, busNum, moduleNum, & on_line );
//if on_line is 5, it means that first and third ids are online.
Example for MotionNet bus:
132 ret; //return error code.
132 \text{ boardId} = 0;
132 busNum = 1; //MotionNet Bus number
I32 moduleNo = 10;
132 on_line = 0;
//Start Field bus..
//Check if communication has error for specific Moduleld at this moment.
Ret = APS_get_slave_online_status ( perati, busNum, moduleNo, & on_line);
```

See also:

APS_get_slave_connect_quality;

Support Products: PCI-8392(H) , DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, HSL-DIO

Descriptions:

This function is used to get the fieldbus info after system scanning. Please refer to the **fieldbus Info table**.

Syntax:

C/C++:

I32 APS_get_field_bus_last_scan_info (I32 Board_ID, I32 BUS_No, I32 * Info_Array, I32 Array_Size, I32 *Info_Count);

Visual Basic:

APS_get_field_bus_last_scan_info (ByVal Board_ID As Long, ByVal BUS_No As Long, ByRef Info_Array As Long, ByVal Array_Size As Long, ByRef Info_Count As Long);

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 * Info_Array: return scanning info. Refer to **fieldbus Info table**.

132 Array_Size: The array size which user want to get.

132 * Info_Count: return the actual size.

For MNET fieldbus info table

Array Index	Return scanning fieldbus Info
0	Total numbers of Slaves after scanning.
1	Total numbers of axes after scanning.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret;
```

I32 Info_Array[2];

I32 Info_Count;

ret = APS_get_field_bus_last_scan_info (0, 1, & Info_Array, 2, & Info_Count);
if(ret != ERR_NoError)

```
{
    //Get fieldbus info
}
```

See also:

APS_get_field_bus_master_type

Get master type of the fieldbus

Support Products: PCI-8392(H) , DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, HSL-DIO

Descriptions:

This function is used to get the master type of the fieldbus.

Syntax:

```
C/C++:
```

132 APS_get_field_bus_master_type(132 Board_ID, 132 BUS_No, 132 *BUS_Type);

Visual Basic:

APS_get_field_bus_master_type(ByVal Board_ID As Long, ByVal BUS_No As Long, ByRef BUS_Type As Long);

Parameters:

```
I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().I32 BUS_No: Field bus number. (Port number) value: 0~1I32 * BUS_Type: Return .
```

0 : Reserved 1 : HSL 2 : MNET

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret;
I32 BUS_Type;
ret = APS_get_field_bus_master_type ( 0, 1, & BUS_Type );
if(ret != ERR_NoError )
{
      // get the master type of the fieldbus
}
```

See also:

APS_get_field_bus_slave_type

Get slave type on the fieldbus

Support Products: PCI-8392(H) , DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-4XMO, HSL-DIO

Descriptions:

This function is used to get the slave type on the fieldbus.

Syntax:

```
C/C++:
```

I32 APS_get_field_bus_slave_type(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 *MOD_Type);

Visual Basic:

APS_get_field_bus_slave_type(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByRef MOD_Type As Long);

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Slave Module number.

For HSL slave module, depend on slave ID : 1 \sim 63. In HSL, the

Module_No is the first id occupied by the module.

For MNET slave module, depend on slave ID : 0 \sim 63

132 * MOD_Type: Return.

0: Reserved

1 : HSL

2: MNET

Return Values:

132 error code. Refer to error code table.

// get the slave type on the fieldbus

Example:

```
I32 ret;
I32 MOD_Type;
ret = APS_get_field_bus_slave_type ( 0, 1, 10, & MOD_Type );
if(ret != ERR_NoError )
{
```

}

See also:

APS_get_field_bus_slave_name

Get slave name on the fieldbus

Support Products: PCI-8392(H), DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO,

HSL-4XMO, HSL-DIO

Descriptions:

This function is used to get the slave name on the fieldbus.

Syntax:

C/C++:

I32 APS_get_field_bus_slave_name(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 *MOD_Name);

Visual Basic:

APS_get_field_bus_slave_name (ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByRef MOD_Type As Long);

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Slave Module number.

For HSL slave module, depend on slave ID: 1 ~ 63. In HSL, the

Module_No is the first id occupied by the module.

For MNET slave module, depend on slave ID: 0 ~ 63

132 * MOD_ Name: Return .

0x000: UNKNOWN

0x100: HSL_DI32

0x101: HSL_DO32

0x102: HSL_DI16DO16

0x103: HSL_AO4

0x104: HSL_AI16AO2VV

0x105: HSL_AI16AO2_AV

0x106: HSL_DI16UL

0x107: HSL_DI16RO8

0x108: HSL 4XMO

0x200: MNET_1XMO

0x201: MENT-4XMO

0x202: MENT-4XMO-C

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret;
I32 MOD_ Name;
ret = APS_get_field_bus_slave_type ( 0, 1, 10, & MOD_ Name );
if(ret != ERR_NoError )
{
     // get the slave name on the fieldbus
}
```

See also:

APS_get_field_bus_slave_first_axis	Get first axis of the slave module
no	

Support Products: PCI-8392(H), DPAC-3000, PCI-7856, MNET-4XMO-©, MNET-1XMO, HSL-4XMO

Descriptions:

This function is used to get first axis of the slave module. After starting to scan slave module, this function can be used to get what axisID is allocated to the slave module.

Syntax:

C/C++:

I32 APS_get_field_bus_slave_first_axisno (I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 *AxisNo, I32 *Totalaxes);

Visual Basic:

APS_get_field_bus_slave_first_axisno (ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByRef AxisNo As Long, ByRef TotalAxes As Long);

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Slave Module number.

For HSL slave module, depend on slave ID : 1 \sim 63. In HSL, the Module_No is the first id occupied by the module. For MNET slave module, depend on slave ID : 0 \sim 63

132 *AxisNo: return first axis of the slave module.

132 *TotalAxes: return total axes of this module

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret;
I32 AxisID;
I32 Totalaxes;
ret = APS_get_field_bus_slave_first_axisno ( 0, 1, 10, & AxisID,& Totalaxes );
if( ret != ERR_NoError )
{
    // get first axis of the slave module
```

}

See also:

Get device(slave) information on a specified field bus

Support Products: PCI-8392(H), DPAC-3000, PCI-7856, MNET-4XMO-©, HSL-4XMO

Descriptions:

This function is used to get specified device (Slave) information. The information includes firmware version, PCB version and so on. Refer to <u>devices information table</u>.

Syntax:

```
C/C++
```

I32 APS_get_field_bus_device_info(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 Info_No, I32 *Info);

Visual Basic:

APS_get_field_bus_device_info (ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByVal Info_No As Long, Info As Long) As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Slave Module number.

For HSL slave module, depend on slave ID : 1 \sim 63. In HSL, the

Module_No is the first id occupied by the module.

For MNET slave module, depend on slave ID : 0 \sim 63

132 Info_No: Reference to devices information table.

132 *Info: Reference to devices information table.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 Board_ID = 0;
I32 BUS_No = 1;
I32 MOD_No = 0;
I32 ret;
I32 Info;
ret = APS_get_field_bus_device_info (Board_ID, BUS_No, MOD_No , 0x20, &Info );
if( ret != ERR_NoError )
{
```

```
//Show device information.
```

See also:

14. Gantry functions

APS_set_gantry_param	Set gantry function related parameter
----------------------	---------------------------------------

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to set parameters to a specified gantry group. The parameter number and the corresponding parameter data, please refer to the **Gantry parameters definition table**.

Syntax:

C/C++:

I32 APS_set_gantry_param(I32 Board_ID, I32 GroupNum, I32 ParaNum, I32 ParaDat);

Visual Basic:

APS_set_gantry_param(ByVal Board_ID As Long, ByVal GroupNum As Long, ByVal ParaNum As Long, I32 ParaDat As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 GroupNum: Specified a gantry group number.

132 ParaNum: Parameter number. Please refer to Gantry parameters definition table.

132 ParaDat: Parameter data. Please refer to **Gantry parameters definition table**.

Return Values:

132 error code. Refer to error code table.

Example:

132 ret; //return error code.

132 boardId = 0;

See also:

APS_get_gantry_param();APS_set_gantry_axis();APS_get_gantry_axis();

Get gantry function related parameter

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to get parameters from a specified gantry group. The parameter number and the corresponding parameter data, please refer to the Gantry parameters definition table.

Syntax:

C/C++:

I32 APS_get_gantry_param(I32 Board_ID, I32 GroupNum, I32 ParaNum, I32 *ParaDat); Visual Basic:

APS_get_gantry_param(ByVal Board_ID As Long, ByVal GroupNum As Long, ByVal ParaNum As Long, ParaDat As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 GroupNum: Specified a gantry group number.

132 ParaNum: Specified a parameter number. Please refer to **Gantry parameters** definition table.

132 *ParaDat: Return a parameter data. Please refer to **Gantry parameters definition** table.

Return Values:

132 error code. Refer to error code table.

Example:

132 ret; //return error code.

132 boardId = 0;

See also:

APS_set_gantry_param(); APS_set_gantry_axis(); APS_get_gantry_axis();

Set two axes in a gantry group

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to specify any two axes into a gantry group. Once the gantry mode of this group is enabled, those two axes will have gantry behavior. You can't change gantry axis setting when gantry mode is enabled.

Syntax:

C/C++:

I32 APS_set_gantry_axis(I32 Board_ID, I32 GroupNum, I32 Master_Axis_ID, I32 Slave_Axis_ID);

Visual Basic:

APS_set_gantry_axis(ByValBoard_ID As Long, ByVal GroupNum As Long, ByVal Master_Axis_ID As Long, ByVal Slave_Axis_ID As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

I32 GroupNum: Specified a gantry group number. The maximum group number refers to specification.

132 Master_Axis_ID: Specified an axis ID as a gantry master axis.

132 Slave_Axis_ID: Specified an axis ID as a gantry slave axis.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret; //return error code.

I32 boardId = 0;

I32 GroupNum = 0;

I32 Master_Axis_ID = 0, Slave_Axis_ID = 1;

//Gantry mode muse be disable before you set the gantry axes.

Ret = APS_set_gantry_axis(Board_ID, GroupNum, Master_Axis_ID, Slave_Axis_ID);

if(ret != ERR_NoError)

//...check error code.
```

```
Ret = APS_get_gantry_axis(Board_ID, GroupNum, &Master_Axis_ID, &Slave_Axis_ID); if(ret != ERR_NoError)

//...check error code.
```

See also:

APS_get_gantry_axis(); APS_set_gantry_param(); APS_get_gantry_param();

APS_c	et c	antry	/ axis

Get which axes in a gantry group

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to get gantry master axis ID and slave axis ID in a specify gantry group.

Syntax:

```
C/C++:
```

I32 APS_get_gantry_axis(I32 Board_ID, I32 GroupNum, I32 *Master_Axis_ID, I32 *Slave_Axis_ID);

Visual Basic:

APS_get_gantry_axis(ByVal Board_ID As Long, ByVal GroupNum As Long,

Master_Axis_ID As Long, Slave_Axis_ID As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 GroupNum: Specified a gantry group number.

132 *Master_Axis_ID: Return the master axis ID in a specify gantry group.

132 *Slave_Axis_ID: Return the slave axis ID in a specify gantry group.

Return Values:

132 error code. Refer to error code table.

Example:

//...check error code.

See also:

APS_set_gantry_axis(); APS_set_gantry_param(); APS_get_gantry_param()

APS	aet	_gantry_	error
, o_	_9	_94,	_00.

Get gantry axes deviation error

Support Products: PCI-8253/56, PCI-8392(H)

Descriptions:

This function is used to get gantry axes deviation error.

Deviation error = Master axis feedback position - Slave axis feedback position

Syntax:

C/C++:

132 APS_get_gantry_error(132 Board_ID, 132 GroupNum, 132 *GentryError);

Visual Basic:

APS_get_gantry_error (ByVal Board_ID As Long, ByVal GroupNum As Long, GentryError As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 GroupNum: Specified a gantry group number.

132 *GentryError: Return gantry axes deviation error.

Return Values:

132 error code. Refer to error code table.

Example:

```
132 ret: //return error code.
```

132 boardId = 0;

I32 GroupNum = 0;

I32 GentryError;

```
ret = APS_get_gantry_error( perati, GroupNum, &GentryError);
if(ret == ERR_NoError)
```

// Display GantryError

See also:

APS_set_gantry_axis(); APS_set_gantry_param(); APS_get_gantry_param()

APS_get_encoder Get encoder

Support Products: PCI-8253/56

Descriptions:

This function is used to get encoder counter of one axis. The counter is in unit of pulse. Generally speaking, it is used for compensation of gantry home return.

Syntax:

C/C++:

132 APS_get_encoder(132 Axis_ID, 132 *Encoder);

Visual Basic:

APS_get_encoder(ByVal Axis_ID As Long, Encoder As Long) As Long

Parameters:

132 Axis_ID: The Axis ID from 0 to 65535.

132 *Encoder: Encoder counter. Unit in pulse.

Return Values:

132 Error code: Please refer to error code table.

Example:

132 Encoder;

APS_get_encoder(Axis_ID, &Encoder); //Get encoder counter.

...//

See also:

APS_get_latch_event; APS_get_latch_counter

APS_ get_latch_event

Get latch event by axis

Support Products: PCI-8253/56

Descriptions:

This function is used to get latch event. There are two sources including Ez and Org signal latch. If a latch is occurring, the event turns on. User could clear the latch event by invoking APS_get_latch_counter().

Generally speaking, it is used for compensation of gantry home return.

Syntax:

```
C/C++:
```

132 APS_get_latch_event(| 132 Axis_ID, | 132 Src, | 132 *Event);

Visual Basic:

APS_get_latch_event(ByVal Axis_ID As Long, ByVal Src As Long, Event As Long) As Long

Parameters:

```
132 Axis_ID: The Axis ID from 0 to 65535.
```

132 Src: Specify a latch source.

0: Ez latch, 1: Org latch.

132 *Event: latch event.

0: No any latch occurred. 1: A latch occurred.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 Event, latchCounter;
I32 SrcOrg = 1; //Specify Org

APS_get_latch_event(Axis_ID, SrcOrg, &Event); //Get ORG latch event
If(Event == 1) //ORG is latched
{      //Reset latch event & Read latch counter
      APS_get_latch_counter(Axis_ID, SrcOrg, &latchCounter);
}
```

See also:

```
APS_get_latch_counter(); APS_get_encoder
```

Get latch counter by axis

Support Products: PCI-8253/56

Descriptions:

This function is used to get latch counter. There are two sources including Ez and Org signal latch. If a latch is occurring, the event turns on and the encoder counter is latched. User could get latch counter and reset (turn off) the event by invoking this function.

Generally speaking, it is used for compensation of gantry home return.

Syntax:

```
C/C++:
```

132 APS_get_latch_counter(132 Axis_ID, 132 Src, 132 *Counter);

Visual Basic:

APS_get_latch_counter(ByVal Axis_ID As Long, ByVal Src As Long, Counter As Long) As Long

Parameters:

```
I32 Axis_ID: The Axis ID from 0 to 65535.
I32 Src: Specify a latch source.
0: Ez latch, 1: Org latch.
I32 *Counter: Latch counter.
```

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 Event, latchCounter;
I32 SrcOrg = 1; //Specify Org

APS_get_latch_event(Axis_ID, SrcOrg, &Event ); //Get ORG latch event
If( Event == 1 ) //ORG is latched
{
    //Reset latch event & Read latch counter
    APS_get_latch_counter(Axis_ID, SrcOrg, &latchCounter);
}
```

See also:

APS_set_latch_event(); APS_get_encoder

15. Compare trigger

APS_set_trigger_param	Set compare trigger related parameter
-----------------------	---------------------------------------

Support Products: PCI-8253/56 PCI-8154/58

Descriptions:

This function is used to set comparing trigger related parameters. All definitions of trigger parameters are described in trigger parameter table.

You can also get parameter setting using "APS_get_trigger_param()" function.

Syntax:

C/C++:

132 APS_set_trigger_param(132 Board_ID, 132 Param_No, 132 Param_Val);

Visual Basic:

APS_set_trigger_param(ByVal Board_ID As Long, ByVal Param_No As Long, ByVal Param_Val As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Param_No: Parameter number. Refer to trigger parameter table.

132 Param_Val: Parameter value. Refer to trigger parameter table.

Return Values:

132 error code. Refer to error code table.

Example:

Refer to example of "APS_set_trigger_linear", "APS_set_trigger_table"

See also:

APS_get_trigger_param();

Get compare trigger related parameter

Support Products: PCI-8253/56 PCI-8154/58

Descriptions:

This function is used to get comparing trigger related parameters. All definitions of trigger parameters are described in trigger parameter table.

You can also set parameter using "APS_set_trigger_param()" function.

Syntax:

C/C++:

132 APS_get_trigger_param(132 Board_ID, 132 Param_No, 132 *Param_Val);

Visual Basic:

APS_get_trigger_param(ByVal Board_ID As Long, ByVal Param_No As Long, Param_Val As Long) As Long

Parameters:

- 132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().
- 132 Param_No: Parameter number. Refer to trigger parameter table.
- 132 Param_Val: Return parameter value. Refer to trigger parameter table.

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_set_trigger_param();

Set linear comparing function

Support Products: PCI-8253/56 PCI-8154/58

Descriptions:

This function is used to set linear comparing function.

When the linear trigger operation is completed, the total compared point will be:

Total compared point number = RepeatTimes. (StartPoint as first trigger point)

Syntax:

C/C++:

I32 APS_set_trigger_linear(I32 Board_ID, I32 LCmpCh, I32 StartPoint, I32 RepeatTimes, I32 Interval);

Visual Basic:

APS_set_trigger_linear(ByVal Board_ID As Long, ByVal LCmpCh As Long, ByVal StartPoint As Long, ByVal RepeatTimes As Long, ByVal Interval As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 LCmpCh: Linear compare set channel. Zero base.

132 StartPoint: Start linear trigger point.

132 RepeatTimes: Trigger repeat times.

132 Interval: Trigger interval.

For PCI-8253/56, Interval: 24bit unsigned value.

Return Values:

132 error code. Refer to error code table.

Example:

132 BoardId = 0;

APS_set_trigger_param(BoardId, 0x0, 0); //Set linear compare source
APS_set_trigger_param(BoardId, 0x10, 0); //Set LCMP0 as TRG0's source
APS_set_trigger_linear(BoardId, 0, 100, 49999, 10); //Set LCMP0 linear compare algorithm.

// Start point = 100, RepeatTimes = 49999, Interval = 10.

APS_set_trigger_param(BoardId, 0x04, 1); //Enable LCMP0

// Trigger operation.

APS_set_trigger_param(0, 0x04, 0); //Disable LCMP0

See also:

APS_set_trigger_table;

Set table comparing function

Support Products: PCI-8253/56

Descriptions:

This function is used to configure the specified comparing table.

Syntax:

C/C++:

I32 APS_set_trigger_table(I32 Board_ID, I32 TCmpCh, I32 *DataArr, I32 ArraySize);

Visual Basic:

APS_set_trigger_table(ByVal Board_ID As Long, ByVal TCmpCh As Long, DataArr As Long, ByVal ArraySize As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 TCmpCh: Specified comparing table number. Zero base.

For PCI-8253/56, there two comparing table.

132 *DataArr: Comparing data array.

132 ArraySize The size of comparing data array. Please refer to product's specification.

Return Values:

132 error code. Refer to error code table.

Example:

APS_set_trigger_param(BoardId, 0x2, 0); //Set encoder counter 0 as TCMP0's source.

APS_set_trigger_param(BoardId, 0x10, 4); //Set TCMP0 as TRG0's source

ret = APS_set_trigger_table(0, 0, data, POINTS);

APS_set_trigger_param(BoardId, 0x06, 1); //Enable TCMP0

// Trigger operation...

//When finish the trigger operation.

APS_set_trigger_param(BoardId, 0x06, 0); //Enable TCMP0

See also:

APS_set_trigger_linear;

APS	set	trigger	_manual

Manual output trigger

Support Products: PCI-8253/56 PCI-8154/58

Descriptions:

This function is used to forced output a trigger at specified trigger output channel.

Syntax:

C/C++:

132 APS_set_trigger_manual(132 Board_ID, 132 TrgCh);

Visual Basic:

APS_set_trigger_manual(ByVal Board_ID As Long, ByVal TrgCh As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 TrgCh: Trigger output channel (TRG) number. Zero based.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 Board_ID = 0;
```

132 ret:

ret = APS_set_trigger_manual(Board_ID, 1); //TRG1

See also:

APS_set_trigger_manual_s

Manual output trigger synchronously

Support Products: PCI-8253/56

Descriptions:

This function is used to forced to output a trigger pulse. It is designed to output one or more channels of trigger synchronously and manually.

Syntax:

C/C++:

132 APS_set_trigger_manual_s(I32 Board_ID, I32 TrgChlnBit);

Visual Basic:

APS_set_trigger_manual_s(ByValBoard_ID As Long, ByValTrgChlnBit As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

Return Values:

132 error code. Refer to error code table.

Example:

132 ret;

ret = APS_set_trigger_manual_s(0, 0xF); //4 channels output trigger simultaneously.

Ret = APS_set_trigger_manual_s(0,0x2); //TRG1 outputs trigger.

Ret = APS_set_trigger_manual_s(0, 0x3); //TRG0 and TRG1 output trigger simultaneously.

//...

See also:

APS_set_trigger_manual

Get current table comparing value

Support Products: PCI-8253/56

Descriptions:

This function is used to get current comparing value in the specified table comparator.

Syntax:

```
C/C++:
```

132 APS_get_trigger_table_cmp(I32 Board_ID, I32 TCmpCh, I32 *CmpVal);

Visual Basic:

APS_get_trigger_table_cmp(ByVal Board_ID As Long, ByVal TCmpCh As Long, CmpVal As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 TCmpCh: Specified the table comparator channel number. Zero base.

132 *CmpVal: Return the current comparing value in the comparator.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret;
I32 CmpVal;
ret = APS_get_trigger_table_cmp (0, 0, &CmpVal);
If(ret != ERR_NoError)
{ // Error, show message.
}
```

See also:

APS_get_trigger_linear_cmp;

Get current linear comparing value

Support Products: PCI-8253/56 PCI-8154/58

Descriptions:

This function is used to get current comparing value in the specified linear comparator.

Syntax:

```
C/C++:
```

132 APS_get_trigger_linear_cmp(I32 Board_ID, I32 LCmpCh, I32 *CmpVal);

Visual Basic:

APS_get_trigger_linear_cmp(ByVal Board_ID As Long, ByVal LCmpCh As Long,

CmpVal As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 LCmpCh: Specified the linear comparator channel number. Zero base.

132 *CmpVal: Return the current comparing value in the comparator.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret;
I32 CmpVal;
ret = APS_get_trigger_linear_cmp(0, 0, &CmpVal);
If(ret != ERR_NoError)
{ // Error, show message.
}
```

See also:

APS_get_trigger_table_cmp;

APS_get_trigger_count	Get triggered count.
-----------------------	----------------------

Support Products: PCI-8253/56 PCI-8154/58

Descriptions:

This function is used to get the triggered counter value. This value means total triggered pulses from last counter reset. It is useful to check compared times.

Syntax:

```
C/C++:
```

132 APS_get_trigger_count(| 132 Board_ID, | 132 TrgCh, | 132 *TrgCnt);

Visual Basic:

APS_get_trigger_count(ByVal Board_ID As Long, ByVal TrgCh As Long, TrgCnt As Long)
As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 TrgCh: Specified trigger output counter channel number. Zero base.

I32 *TrgCnt: Return trigger counter value.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 Ret;
I32 TrgCnt;
Ret = APS_get_trigger_count( 0, 0, &TrgCnt );
If( ret != ERR_NoError )
{ // Error, show message.
}
```

See also:

APS_reset_trigger_count()

APS_reset_trigger_count Reset triggered count.

Support Products: PCI-8253/56 PCI-8154/58

Descriptions:

This function is used to reset the triggered counter to zero.

Syntax:

C/C++:

132 APS_reset_trigger_count(| 132 Board_ID, | 132 TrgCh);

Visual Basic:

APS_reset_trigger_count(ByVal Board_ID As Long, ByVal TrgCh As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 TrgCh: Trigger counter channel number. Zero based.

Return Values:

132 error code. Refer to error code table.

Example:

```
132 ret;
```

```
ret = APS_reset_trigger_count(0, 0);
ret = APS_reset_trigger_count(0, 1);
ret = APS_reset_trigger_count(0, 2);
ret = APS_reset_trigger_count(0, 3);
```

See also:

APS_get_trigger_count;

APS_set_trigger_encoder_counter

Set trigger encoder counter

Support Products: PCI-8154/58

Descriptions:

This function is used to set the encoder(counter) value directly.

Syntax:

C/C++:

132 FNTYPE APS_set_trigger_encoder_counter(132 Board_ID, 132 TrgCh, 132 TrgCnt);

Visual Basic:

APS_set_trigger_encoder_counter (ByVal Board_ID As Long, ByVal TrgCh As Long,

ByVal TrgCnt As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 TrgCh: The specified channel number. (0 - 1)

132 TrgCnt: The encoder (counter) value. (- 2147483647~ 2147483647)

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 Board_ID = 0;
```

I32 TrgCh = 0;

132 TrgCnt = 1000;

132 ret = 0;

ret = APS_set_trigger_encoder_counter(Board_ID, TrgCh, TrgCnt);

See also:

APS_get_trigger_encoder_counter()

Get trigger encoder counter

Support Products: PCI-8154/58

Descriptions:

This function is used to get the encoder(counter) value directly.

Syntax:

C/C++:

I32 FNTYPE APS_get_trigger_encoder_counter(I32 Board_ID, I32 TrgCh, I32 *TrgCnt);

Visual Basic:

APS_get_trigger_encoder_counter (ByVal Board_ID As Long, ByVal TrgCh As Long,

TrgCnt As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 TrgCh: The specified channel number. (0 - 1)

I32 *TrgCnt: The encoder (counter) value.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 Board_ID = 0;
```

I32 TrgCh = 0;

I32 *TrgCnt;

132 ret = 0;

ret = APS_get_trigger_encoder_counter(Board_ID, TrgCh, &TrgCnt);

See also:

APS_set_trigger_encoder_counter()

Enable trigger fifo comparator

Support Products: PCI-8154/58

Descriptions:

This function is used to enable/disable fifo comparator. When user disable the fifo comparator, the fifo data will be reset.

Syntax:

C/C++:

132 FNTYPE APS_enable_trigger_fifo_cmp(132 Board_ID, 132 FCmpCh, 132 Enable);

Visual Basic:

APS_enable_trigger_fifo_cmp (ByVal Board_ID As Long, ByVal FCmpCh As Long, ByVal Enable As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 FCmpCh: The specified channel number. (Only support channel 0 in DB-8150)

132 Enable: Enable/Disable fifo comparator.

0: Disable fifo comparator

1: Enable fifo comparator

Note: Before start FIFO comparing, user must enable fifo comparator first.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 Board_ID = 0;
```

I32 FCmpCh = 0;

132 Enable = 1 // Enable fifo comparator.

132 ret = 0;

I32 DataArr[3]={1000,2000,3000};

I32 ArraySize=3;

132 ShiftFlag = 1; //Auto shift one data to FIFO comparator

```
ret = APS_set_trigger_fifo_data(Board_ID, FCmpCh, DataArr, ArraySize, ShiftFlag);
```

ret = APS_enable_trigger_fifo_cmp(Board_ID, FCmpCh, Enable);

See also:

Get trigger fifo comparator data

Support Products: PCI-8154/58

Descriptions:

This function is used to get the current comparing data from FIFO comparator.

Syntax:

C/C++:

I32 FNTYPE APS_get_trigger_fifo_cmp(I32 Board_ID, I32 FCmpCh, I32 *CmpVal);

Visual Basic:

APS_get_trigger_fifo_cmp (ByVal Board_ID As Long, ByVal FCmpCh As Long, *CmpVal As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 FCmpCh: The specified channel number. (Only support channel 0 in DB-8150)

132 *CmpVal: The current comparing data in comparator.

Return Values:

132 error code. Refer to error code table.

Example:

```
132 Board_ID = 0;
```

I32 FCmpCh = 0;

I32 CmpVal = 0

132 ret = 0;

ret = APS_get_trigger_fifo_cmp(Board_ID, FCmpCh, &CmpVal);

See also:

APS_get_trigger_fifo_status

Get fifo status

Support Products: PCI-8154/58

Descriptions:

Get the current status of fifo data.

Syntax:

C/C++:

I32 FNTYPE APS_get_trigger_fifo_status(I32 Board_ID, I32 FCmpCh, I32 *FifoSts);

Visual Basic:

APS_get_trigger_fifo_status (ByVal Board_ID As Long, ByVal FCmpCh As Long, FifoSts As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 FCmpCh: The specified channel number. (Only support channel 0 in DB-8150)

132 * FifoSts: The current status of fifo data.

Bit0=0: not empty, Bit0=1: empty

Bit1=0: not full, Bit1=1; full

Bit8=0: equal or greater than the preset level,

Bit8=1: below the preset level

Other bits be reserved

Return Values:

132 error code. Refer to error code table.

Example:

```
132 Board_ID = 0;
```

I32 FCmpCh = 0;

132 FifoSts = 0

132 ret = 0;

ret = APS_get_trigger_fifo_status(Board_ID, FCmpCh, & FifoSts);

See also:

APS_set_trigger_fifo_data	Set trigger fifo data
---------------------------	-----------------------

Support Products: PCI-8154/58

Descriptions:

This function is used to set comparing data array to the FIFO. The capacity of FIFO is 2097151.

When the status of FIFO is full, the data cannot be set into FIFO. This function won't check the FIFO status. When using this function, you should also enable fifo comparator by "APS_enable_trigger_fifo_cmp" function.

Syntax:

C/C++:

I32 FNTYPE APS_set_trigger_fifo_data(I32 Board_ID, I32 FCmpCh, I32 *DataArr, I32 ArraySize, I32 ShiftFlag);

Visual Basic:

APS_set_trigger_fifo_data (ByVal Board_ID As Long, ByVal FCmpCh As Long, DataArr As Long, ByVal ArraySize As Long, ByVal ShiftFlag As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 FCmpCh: The specified channel number. (Only support channel 0 in DB-8150)

132 *DataArr: The index pointer of FIFO's data array.

132 ArraySize: The size of FIFO data array. (1 – 2097151)

132 ShiftFlag: Auto shift one FIFO data to comparator.

0: Disable auto shift one FIFO data to comparator.

1: Enable auto shift one FIFO data to comparator.

Note: Before start FIFO comparing, user must enable auto shift one FIFO data to comparator first.

Return Values:

132 error code. Refer to error code table.

Example:

 $I32 Board_ID = 0;$

I32 FCmpCh = 0;

I32 DataArr ={1000,2000,3000}

```
I32 ArraySize = 3;
I32 Enable = 1;  // Start FIFO comparing
I32 ret = 0;
I32 ShiftFlag = 1;  // Enable auto shift one data to FIFO comparator

ret = APS_set_trigger_fifo_data(Board_ID, FCmpCh, DataArr, ArraySize, ShiftFlag);
ret = APS_enable_trigger_fifo_cmp(Board_ID, FCmpCh, Enable);
```

APS	start	timer

Start / Stop timer

Support Products: PCI-8154/58

Descriptions:

Start / stop timer

Syntax:

C/C++:

32 FNTYPE APS_start_timer(I32 Board_ID, I32 TrgCh, I32 Start);

Visual Basic:

APS_start_timer (ByVal Board_ID As Long, ByVal TrgCh As Long, ByVal Start As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 TrgCh: The specified channel number. (0~1)

132 Start: start/stop timer

0: stop timer1: start timer

Return Values:

132 error code. Refer to error code table.

Example:

```
132 Board_ID = 0;
```

I32 TrgCh = 0;

132 Start = 1 // start timer

132 ret = 0;

ret = APS_start_timer(Board_ID, TrgCh, Start);

See also:

16. Manual Pulse Geneator functions

APS_get_pulser_counter	Get pulser counter
------------------------	--------------------

Support Products: PCI-8253/56, DPAC-1000, DPAC-3000

Descriptions:

This function is used to get the counter value of pulser. Pulser is a short term of manual pulse generator. It is a device for manually generating industrial counter pulses. The device sometime calls "hand wheel".

Syntax:

C/C++:

132 APS_get_pulser_counter(132 Board_ID, 132 *Counter);

Visual Basic:

APS_get_pulser_counter(ByVal Board_ID As Long, Counter As Long) As Long

Parameters:

I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial(). I32 *Counter: Return the value of pulser counter.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret;
```

132 Counter;

```
ret = APS_get_pulser_counter(0, &Counter);
if( ret == ERR_NoError )
    //Show counter value.
```

APS	set	pulser	_counter

Set DPAC pluse input counter

Support Products: DPAC-1000, DPAC-3000

Descriptions:

For DPAC, This function is used to set input pulses counter's numbers.

Syntax:

C/C++:

132 APS_set_pulser_counter (132 Board_ID, 132 Counter);

Visual Basic:

APS_set_pulser_counter (ByVal Board_ID As Long, ByVal Counter As Long) As Long

Parameters:

I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().I32 Counter: Input pulses counter's numbers.

Return Values:

132 error code. Refer to error code table.

Example:

132 ret;

132 Counter:

```
Counter = 0; //Set Input pulses counter=0
ret = APS_set_pulser_counter (0, Counter);
if(ret == ERR_NoError)
//Show counter value.
```

See also:

APS_get_pls_iptcounter

17. DPAC System functions

APS_rescan_CF Rescan DPAC Slave CF slot

Support Products: DPAC-1000, DPAC-3000

Descriptions:

This function is used to rescan DPAC external slave CF slot. When system is started into Windows, the right-down corner has an icon to manage removable devices like USB flash. If users remove DPAC's external CF which is an USB device from the management icon, there is not possible to re-scan it by un-plug and plug CF card from external CF slot. Users must call this function to activate the re-scan.

Syntax:

```
C/C++:
I32 APS_rescan_CF (I32 Board_ID);
Visual Basic:
APS_rescan_CF (ByVal Board_ID As Long) As Long
```

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 ret;
ret = APS_rescan_CF (0);
if(ret != ERR_NoError)
{
    // Error, show message.
}
```

See also:

Support Products: DPAC-1000, DPAC-3000

Descriptions:

This function is used to get DPAC SRAM battery status. There is a SRAM on DPAC which is for users to store in a very fast way. The SRAM can be a non-volatile storage if the battery is installed on DPAC. Users can use this function to know the status of the battery. Notice that if there is no battery installed on DPAC, this function will return you battery high status but actually SRAM has no function for non-volatile storage. Please check the bettery exists first.

Syntax:

```
C/C++:
```

132 APS_get_battery_status(132 Board_ID, 132 *Battery_status);

Visual Basic:

APS_get_battery_status(ByVal Board_ID As Long, Battery_status As Long) As Long

Parameters:

```
I32 Board_ID: The Board's ID from 0 to 31. I32 *Battery_status: 1: Normal, 0: Low.
```

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 ret;
I32 Battery_status;
ret = APS_get_battery_status ( 0, &Battery_status );
if(ret == ERR_NoError )
{
     //Show Battery status.
}
```

See also:

APS_get_display_data	Get 7-Segment LED Data
----------------------	------------------------

Support Products: DPAC-1000, DPAC-3000

Descriptions:

This function is used to get 7-Segment LED's data. There are five digits on DPAC LED. Each digit can display one character. If the character is a number, it can display one character and an additional dot sign too.

Syntax:

```
C/C++:
I32 APS_get_display_data(I32 Board_ID, I32 displayDigit, I32 *displayIndex);
Visual Basic:
APS_get_display_data (ByVal Board_ID As Long, ByVal displayDigit As Long, displayIndex As Long) As Long
```

Parameters:

```
I32 Board_ID: The Board's ID from 0 to 31.I32 displayDigit: 7-Segment No. (1~5)I32 * displayIndex: Reference to DPAC display index table.
```

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 ret;
I32 displayNum;
ret = APS_get_display_data(0, 1, &displayNum);
if(ret == ERR_NoError)
{
    // The displayNum variable shows digit one's display number
}
```

See also:

APS_set_display_data, DPAC diplay index table

APS_set_display_da	ata
--------------------	-----

Set 7-Segment LED Data

Support Products: DPAC-1000, DPAC-3000

Descriptions:

This function is used to set 7-Segment LED's data and display. There are five digits on DPAC LED. Each digit can display one character. If the character is a number, it can display one character and an additional dot sign too.

Syntax:

C/C++:

132 APS_set_display_data(132 Board_ID, 132 displayDigit, 132 displayIndex);

Visual Basic:

APS_set_display_data (ByVal Board_ID As Long, ByVal displayDigit As Long, ByVal displayIndex As Long) As Long

Parameters:

```
132 Board_ID: The Board's ID from 0 to 31.
```

132 displayDigit: 7-Segment No. (1~5)

132 displayIndex: Reference to displayIndex table.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 ret;
```

132 displayNum;

```
displayNum=0x01;
```

```
ret = APS_set_display_data (0, 1, displayNum); // It will display '1' on first digit of LEDs
if( ret != ERR_NoError )
{
     // Error, show message.
```

See also:

}

APS_get_display_data

Get the Push Button Input Status

Support Products: DPAC-1000, DPAC-3000

Descriptions:

This function is used to get push button Istatus of DPAC. There are 4 buttons on DPAC. Each button is click type. That means when you release the pushing, the button will be back to its original position.

Syntax:

```
C/C++:
```

132 APS_get_button_status (132 Board_ID, 132 *buttonstatus);

Visual Basic:

APS_get_button_status (ByVal Board_ID As Long, buttonstatus As Long) As Long

Parameters:

132 Board_ID: The Board's ID from 0 to 31.

132 *buttonstatus: Reference to buttonstatus table.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
I32 ret;
I32 buttonstatus;
ret = APS_get_button_status ( 0, &buttonstatus );
if( ret == ERR_NoError )
{
      //Show button status.
}
Else
{
      "check B3 ON/OFF"
```

- 1) Read button status
- 2) To get a new button status by 'NOT' button status
- 3) Maps B3 to Bit# by "Bit#=(4 B#)". We get Bit1.

- 4) Use Bit1 (0010b) to 'AND' new button status
- 5) If the result is zero, it means B3 is not pushed.
- 6) If the result is non-zero, it means B3 is pushed.

DPAC push button status table

18. Non-Volatile RAM

APS_set_nv_ram Set NVRAM data	APS_set_nv_ram	Set NVRAM data
-------------------------------	----------------	----------------

Support Products: DPAC-1000, DPAC-3000, PCI-8144, PCI-7856

Descriptions:

This function is used to write a value to NVRAM. NVRAM means non-volatile memory. It can store user's data permanently even system power is off.

PCI-8144 uses EEPROM as NVRAM. It ganrentee 1,000,000 times write access.

Syntax:

C/C++:

I32 APS_set_nv_ram(I32 Board_ID, I32 RamNo, I32 DataWidth, I32 Offset, I32 Data); Visual Basic:

APS_set_nv_ram (ByVal Board_ID As Long, ByVal RamNo As Long, ByVal DataWidth As Long, ByVal Offset As Long, ByVal Data As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

I32 RamNo: RamNo=0(DPAC,PCI-7856)

132 DataWidth: 0: RW_WIDTH_8; 1: RW_WIDTH_16; 2: RW_WIDTH_32(PCI-7856 Only)

I32 Offset: The Offset from 0x0000 to 0x75FF(DPAC).; The Offset from 0x0000 to 0x7FFF(PCI-7856)

132 Data: DataWidth: 0 The Data from -128 to 127.; (DPAC,PCI-7856)

DataWidth: 1 The Data from -32768 to 32767.; (DPAC,PCI-7856)

DataWidth: 2 The Data from -2147483648 to 2147483647.; (PCI-7856 Only)

Return Values:

132 error code. Refer to error code table.

Example:

I32 ret;

I16 Data;

Data=0x5168;

ret = APS_set_nv_ram (0, 0, 1, 0x1000, Data);

```
//Write RAM (offset =0x1000) value=0x5168. DataWidth: 1
if( ret != ERR_NoError )
{
    // Error, show message.
}
```

APS_get_nv_ram

APS_get_nv_ram	Get NVRAM data
----------------	----------------

Support Products: DPAC-1000, DPAC-3000, PCI-8144, PCI-7856

Descriptions:

This function is used to read a value from NVRAM. NVRAM means non-volatile memory. It can store user's data permanently. It means even system power is off, the data is still in the memory. Next time when system is recovered, users can get the data by this function.

Syntax:

C/C++:

I32 APS_get_nv_ram(I32 Board_ID, I32 RamNo, I32 DataWidth, I32 Offset, I32 *Data); Visual Basic:

APS_get_nv_ram (ByVal Board_ID As Long, ByVal RamNo As Long, ByVal DataWidth As Long, ByVal Offset As Long, Data As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

I32 RamNo: RamNo=0(DPAC,PCI-7856)

I32 DataWidth: 0: RW_WIDTH_8; 1: RW_WIDTH_16; 2: RW_WIDTH_32(PCI-7856 Only)

132 Offset: The Offset from 0x0000 to 0x75FF(DPAC).; The Offset from 0x0000 to

0x7FFF(PCI-7856)

132 *Data: DataWidth: 0 The Data from -128 to 127.; (DPAC,PCI-7856)

DataWidth: 1 The Data from -32768 to 32767.; (DPAC,PCI-7856)

DataWidth: 2 The Data from -2147483648 to 2147483647.; (PCI-7856 Only)

Return Values:

132 error code. Refer to error code table.

Example:

132 ret;

132 Data:

```
ret = APS_get_nv_ram (0, 0, 1, 0x1000,&Data);
if(ret == ERR_NoError)
//Show RAM (offset =0x1000) DataWidth: 1 value.
```

APS_set_nv_ram

APS_clear_nv_ram	Clear NVRAM data
------------------	------------------

Support Products: DPAC-1000, DPAC-3000, PCI-8144, PCI-7856

Descriptions:

This function is used to clear all values on NVRAM. NVRAM means non-volatile memory. It can store user's data permanently even system power is off. Once this function is issued, all data stored in this memory will be clear.

PCI-8144 uses EEPROM as NVRAM. It ganrentee 1,000,000 times write access.

Syntax:

```
C/C++:
```

I32 APS_clear_nv_ram(I32 Board_ID, I32 RamNo);

Visual Basic:

APS_clear_nv_ram (ByVal Board_ID As Long, ByVal RamNo As Long) As Long

Parameters:

I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial(). I32 RamNo: RamNo=0(DPAC,PCI-7856)

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret;
ret = APS_clear_nv_ram ( 0, 0 ); //Clear RamNo=0 data
if( ret != ERR_NoError )
{
      // Error, show message.
}
```

See also:

APS_set_nv_ram(), APS_get_nv_ram(), APS_clear_nv_ram()

19. Field bus compare trigger

APS_set_field_bus_trigger_param Set compare trigger related parameter

Support Products: MNET-4XMO-C, HSL-4XMO

Descriptions:

This function is used to set comparing trigger related parameters. All definitions of trigger parameters are described in trigger parameter table.

You can also get parameter setting using "APS_get_field_bus_trigger_param ()" function.

Syntax:

C/C++:

I32 APS_set_field_bus_trigger_param(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 Param_No, I32 Param_Val);

Visual Basic:

APS_set_field_bus_trigger_param (ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByVal Param_No As Long, ByVal Param_Val As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For HSL field bus, the range fo module number is 1 to 63. In HSL, the Module_No is the first id occupied by the module.

For MNET field bus, the range of module number is 0 to 63.

132 Param_No: Parameter number. Refer to trigger parameter table.

132 Param_Val: Parameter value. Refer to trigger parameter table.

Return Values:

132 error code. Refer to error code table.

Example:

Refer to example of "APS_set_field_bus_trigger_linear", "APS_set_field_bus_trigger_table"

APS_get_field_bus_trigger_param();

Get compare trigger related parameter

Support Products: MNET-4XMO-C, HSL-4XMO

Descriptions:

This function is used to get comparing trigger related parameters. All definitions of trigger parameters are described in trigger parameter table.

You can also set parameter using "APS_set_field_bus_trigger_param()" function.

Syntax:

C/C++:

I32 APS_get_field_bus_trigger_param(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 Param_No, I32 *Param_Val);

Visual Basic:

APS_get_field_bus_trigger_param(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByVal Param_No As Long, Param_Val As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For HSL field bus, the range of module number is 1 to 63. In HSL, the Module_No is the first id occupied by the module.

For MNET field bus, the range of module number is 0 to 63.

132 Param_No: Parameter number. Refer to trigger parameter table.

132 Param_Val: Return parameter value. Refer to trigger parameter table.

Return Values:

132 error code. Refer to error code table.

Example:

See also:

APS_set_field_bus_trigger_param();

APS_set_field_bus_trigger_linear

Set linear comparing function

Support Products: MNET-4XMO-C, HSL-4XMO

Descriptions:

This function is used to set linear comparing function.

When the linear trigger operation is completed, the total compared point will be:

For MNET-4XMO-C, Total compared point number = RepeatTimes.

Syntax:

C/C++:

I32 APS_set_field_bus_trigger_linear(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 LCmpCh, I32 StartPoint, I32 RepeatTimes, I32 Interval);

Visual Basic:

APS_set_field_bus_trigger_linear(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No As Long, ByVal LCmpCh As Long, ByVal StartPoint As Long, ByVal RepeatTimes As Long, ByVal Interval As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For HSL field bus, the range of module number is 1 to 63. In HSL, the Module_No is the first id occupied by the module.

For MNET field bus, the range of module number is 0 to 63.

132 LCmpCh: Linear compare set channel.

For MNET-4XMO-C, the range of LCmpCh is 0 to 4. (LCmpCh 0~3 is used for general comparator, and LCmpCh 4 is used for high speed comparator.)

132 StartPoint: Start linear trigger point.

132 RepeatTimes: Trigger repeat times.

For MNET_4XMO-C, Interval: 31bit unsigned value. (Value: 1 ~ 0x7fffffff)

132 Interval: Trigger interval.

Return Values:

132 error code. Refer to error code table.

Example:

132 BoardId = 0;

 $I32 Bus_No = 1;$

132 Mod_No = 0;

APS_set_field_bus_trigger_param(BoardId, Bus_No, Mod_No, 0x0, 1); //Set CMP0 as linear type

APS_set_field_bus_trigger_param(BoardId, Bus_No, Mod_No, 0x10, 1); //Set CMP0 as TRG0's source

APS_set_field_bus_trigger_linear(BoardId, Bus_No, Mod_No, 0, 1000, 100000, 100); //Set CMP0 linear compare algorithm.

// Start point = 1000, RepeatTimes = 100000, Interval = 100.

APS_set_field_bus_trigger_param(BoardId, Bus_No, Mod_No, 0x04, 1); //Enable CMP0 // Trigger operation...

//When finish the trigger operation.

APS_set_field_bus_trigger_param(BoardId, Bus_No, Mod_No, 0x04, 0); //Disable CMP0 See also:

APS_set_field_bus_trigger_table;

APS_set_field_bus_trigger_table

Set table comparing function

Support Products: MNET-4XMO-C, HSL-4XMO

Descriptions:

This function is used to configure the specified comparing table.

Syntax:

C/C++:

I32 APS_set_field_bus_trigger_table(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 TCmpCh, I32 *DataArr, I32 ArraySize);

Visual Basic:

APS_set_field_bus_trigger_table(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No, ByVal TCmpCh As Long, DataArr As Long, ByVal ArraySize As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For HSL field bus, the range of module number is 1 to 63. In HSL, the Module_No is the first id occupied by the module.

For MNET field bus, the range of module number is 0 to 63.

132 TCmpCh: Specified comparing table number.

For MNET-4XMO-C, the range of TCmpCh is 0 to 3. (TCmpCh 0~3 is used for general comparator.)

132 *DataArr: Comparing data array.

132 ArraySize: Size of comparing data array.

For MNET-4XMO-C, the maximum size of each channel = 8192.

Return Values:

132 error code. Refer to error code table.

Example:

#define POINTS 5000

I32 BoardId = 0;

 $I32 Bus_No = 1;$

132 Mod No = 0:

132 ret:

```
I32 data[POINTS];
I32 i;
for( i = 0; i < POINTS; i++ )
data[i] = 10 + © * 10;
```

APS_set_field_bus_trigger_param(BoardId, Bus_No, Mod_No, 0x0, 0); //Set CMP0 as table type

APS_set_field_bus_trigger_param(BoardId, Bus_No, Mod_No, 0x10, 1); //Set CMP0 as TRG0's source

ret = APS_set_field_bus_trigger_table(BoardId, Bus_No, Mod_No, 0, data, POINTS);
APS_set_field_bus_trigger_param(BoardId, Bus_No, Mod_No, 0x04, 1); //Enable CMP0
// Trigger operation...

//When finish the trigger operation.

APS_set_field_bus_trigger_param(BoardId, Bus_No, Mod_No, 0x04, 0); //Disable CMP0

See also:

APS_set_field_bus_trigger_linear;

APS_set_field_bus_trigger_manual

Manual output trigger

Support Products: MNET-4XMO-C

Descriptions:

This function is used to forced output a trigger at specified trigger output channel.

Syntax:

C/C++:

I32 APS_set_field_bus_trigger_manual(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 TrgCh);

Visual Basic:

APS_set_field_bus_trigger_manual(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No, ByVal TrgCh As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For MNET field bus, the range of module number is 0 to 63.

132 TrgCh: Trigger output channel (TRG) number. Zero based.

For MNET-4XMO-C, the range of TrgCh is 0 to 3.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 BoardId = 0;
```

 $132 Bus_No = 1;$

 $I32 Mod_No = 0;$

132 ret;

ret = APS_set_field_bus_trigger_manual(BoardId, Bus_No, Mod_No, 0); //TRG0

See also:

APS_set_field_bus_trigger_manual_s

APS_set_field_bus_trigger_manual	
S	ı

Manual output trigger synchronously

Support Products: MNET-4XMO-C

Descriptions:

This function is used to forced output a trigger.

By this function, all output channels output trigger synchronously is possible.

Syntax:

C/C++:

I32 APS_set_field_bus_trigger_manual_s(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 TrgChlnBit);

Visual Basic:

APS_set_field_bus_trigger_manual_s(ByValBoard_ID As Long, ByVal BUS_No As Long, ByVal MOD_No, ByValTrgChlnBit As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For MNET field bus, the range of module number is 0 to 63.

132 TrgChlnBit: 1: Output trigger, 0: Don't output trigger

For MNET-4XMO-C: Bit0: TRG0, Bit1: TRG1, Bit2: TRG2, Bit3: TRG3

Return Values:

132 error code. Refer to error code table.

Example:

132 BoardId = 0;

 $I32 Bus_No = 1;$

 $132 \text{ Mod_No} = 0$;

I32 ret;

ret = APS_set_field_bus_trigger_manual_s(BoardId, Bus_No, Mod_No, 0xF); //4 channels output trigger simultaneously.

Ret = APS_set_field_bus_trigger_manual_s(BoardId, Bus_No, Mod_No, 0x2); //TRG1 outputs trigger.

Ret = APS_set_field_bus_trigger_manual_s(0,0x3); //TRG0 and TRG1 output trigger simultaneously.

//...

See also:

APS_set_field_bus_trigger_manual

APS_get_field_bus_trigger_table_c	Get current table comparing value
mp	

Support Products: MNET-4XMO-C, HSL-4XMO

Descriptions:

This function is used to get current comparing value in the specified table comparator.

Syntax:

C/C++:

I32 APS_get_field_bus_trigger_table_cmp(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 TCmpCh, I32 *CmpVal);

Visual Basic:

APS_get_field_bus_trigger_table_cmp(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No, ByVal TCmpCh As Long, CmpVal As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For HSL field bus, the range of module number is 1 to 63. In HSL, the Module_No is the first id occupied by the module.

For MNET field bus, the range of module number is 0 to 63.

132 TCmpCh: Specified the table comparator channel number. Zero base.

For MNET-4XMO-C, the range of TCmpCh is 0 to 3. (TCmpCh 0~3 is used for general comparator.)

132 *CmpVal: Return the current comparing value in the comparator.

Return Values:

132 error code. Refer to error code table.

Example:

```
132 BoardId = 0;
```

 $132 Bus_No = 1;$

 $132 \text{ Mod_No} = 0$;

I32 ret;

132 CmpVal;

ret = APS_get_field_bus_trigger_table_cmp (BoardId, Bus_No, Mod_No, 0, &CmpVal);
If(ret != ERR_NoError)

```
{ // Error, show message.
}
```

APS_get_field_bus_trigger_linear_cmp;

APS_get_field_bus_trigger_linear_c	Get current linear comparing value
mp	

Support Products: MNET-4XMO-C, HSL-4XMO

Descriptions:

This function is used to get current comparing value in the specified linear comparator.

Syntax:

C/C++:

I32 APS_get_field_bus_trigger_linear_cmp(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 LCmpCh, I32 *CmpVal);

Visual Basic:

APS_get_field_bus_trigger_linear_cmp(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No, ByVal LCmpCh As Long, CmpVal As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For HSL field bus, the range of module number is 1 to 63. In HSL, the Module_No is the first id occupied by the module.

For MNET field bus, the range of module number is 0 to 63.

132 LCmpCh: Specified the linear comparator channel number. Zero base.

For MNET-4XMO-C, the range of LCmpCh is 0 to 4. (LCmpCh 0~3 is used for general comparator, and LCmpCh 4 is used for high speed comparator.)

132 *CmpVal: Return the current comparing value in the comparator.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 BoardId = 0;
```

 $I32 Bus_No = 1;$

 $132 \text{ Mod_No} = 0;$

132 ret;

132 CmpVal;

ret = APS_get_field_bus_trigger_linear_cmp(BoardId, Bus_No, Mod_No, 0, &CmpVal);

```
If( ret != ERR_NoError )
{ // Error, show message.
}
```

APS_get_field_bus_trigger_table_cmp;

APS_get_field_bus_trigger_count

Get triggered count.

Support Products: MNET-4XMO-C

Descriptions:

This function is used to get the triggered counter.

You can use this function to check how many trigger pulse be output.

Using APS_reset_field_bus_trigger_count() to reset the counter to zero.

Syntax:

```
C/C++:
```

I32 APS_get_field_bus_trigger_count(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 TrgCh, I32 *TrgCnt);

Visual Basic:

APS_get_field_bus_trigger_count(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No, ByVal TrgCh As Long, TrgCnt As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For MNET field bus, the range of module number is 0 to 63.

132 TrgCh: Specified trigger output counter channel number. Zero base.

For MNET-4XMO-C, the range of TrgCh is 0 to 3.

132 *TrgCnt: Return trigger counter value.

Return Values:

132 error code. Refer to error code table.

Example:

```
132 BoardId = 0;
```

 $132 Bus_No = 1$;

 $132 \text{ Mod_No} = 0;$

132 Ret;

132 TrgCnt;

Ret = APS_get_field_bus_trigger_count(BoardId, Bus_No, Mod_No, 0, &TrgCnt);

If(ret != ERR_NoError)

{ // Error, show message.

```
}
```

APS_reset_field_bus_trigger_count

APS_reset_field_bus_trigger_count

Reset triggered count.

Support Products: MNET-4XMO-C

Descriptions:

This function is used to reset the triggered counter to zero.

Syntax:

```
C/C++:
```

I32 APS_reset_field_bus_trigger_count(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 TrgCh);

Visual Basic:

APS_reset_field_bus_trigger_count(ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No, ByVal TrgCh As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For MNET field bus, the range of module number is 0 to 63.

132 TrgCh: Trigger counter channel number. Zero based.

For MNET-4XMO-C, the range of TrgCh is 0 to 3.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 BoardId = 0;
```

 $132 Bus_No = 1;$

 $I32 Mod_No = 0;$

132 ret;

```
ret = APS_reset_field_bus_trigger_count(BoardId, Bus_No, Mod_No, 0);
```

ret = APS_reset_field_bus_trigger_count(BoardId, Bus_No, Mod_No, 1);

ret = APS_reset_field_bus_trigger_count(BoardId, Bus_No, Mod_No, 2);

ret = APS_reset_field_bus_trigger_count(BoardId, Bus_No, Mod_No, 3);

. . .

See also:

APS_get_field_bus_trigger_count;

APS_get_field_bus_linear_cmp_re	Get remaining counter of linear comparator
main_count	

Support Products: MNET-4XMO-C

Descriptions:

This function is used to get remaining counter of linear comparator.

Syntax:

C/C++:

I32 APS_get_field_bus_linear_cmp_remain_count(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 LCmpCh, I32 *Cnt);

Visual Basic:

APS_get_field_bus_linear_cmp_remain_count (ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No, ByVal LCmpCh As Long, Cnt As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For MNET field bus, the range of module number is 0 to 63.

132 LCmpCh: Specified the linear comparator channel number. Zero base.

For MNET-4XMO-C, the range of LCmpCh is 0 to 4. (LCmpCh 0~3 is used for general comparator, and LCmpCh 4 is used for high speed comparator.)

132 *Cnt: Remaining counter.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 BoardId = 0;
I32 Bus_No = 1;
I32 Mod_No = 0;
I32 ret;
I32 Cnt;
ret = APS_get_field_bus_linear_cmp_remain_count (BoardId, Bus_No, Mod_No, 0, &Cnt );
If(ret != ERR_NoError )
{ // Error, show message.
```

```
}
See also:
APS_get_field_bus_table_cmp_remain_count;
```

APS_get_field_bus_table_cmp_rem	Get remaining counter of table comparator
ain_count	

Support Products: MNET-4XMO-C

Descriptions:

This function is used to get remaining counter of table comparator.

Syntax:

C/C++:

I32 APS_get_field_bus_table_cmp_remain_count(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 TCmpCh, I32 *Cnt);

Visual Basic:

APS_get_field_bus_table_cmp_remain_count (ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No, ByVal TCmpCh As Long, Cnt As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For MNET field bus, the range of module number is 0 to 63.

132 TCmpCh: Specified the table comparator channel number. Zero base.

For MNET-4XMO-C, the range of TCmpCh is 0 to 3. (TCmpCh 0~3 is used for general comparator.)

132 *Cnt: Remaining counter.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 BoardId = 0;
I32 Bus_No = 1;
I32 Mod_No = 0;
I32 ret;
I32 Cnt;
ret = APS_get_field_bus_table_cmp_remain_count (BoardId, Bus_No, Mod_No, 0, &Cnt);
If( ret != ERR_NoError )
{ // Error, show message.
```

```
See also:
APS_get_field_bus_linear_cmp_remain_count;
```

APS_get_field_bus_encoder

Get encoder count.

Support Products: MNET-4XMO-C

Descriptions:

This function is used to get encoder count

Syntax:

C/C++:

I32 APS_get_field_bus_encoder(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 EncCh, I32 *EncCnt);

Visual Basic:

APS_get_field_bus_encoder (ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No, ByVal EncCh As Long, EncCnt As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For MNET field bus, the range of module number is 0 to 63.

132 EncCh: Specified the encoder channel number. Zero base.

For MNET-4XMO-C, the range of EncCh is 0 to 4. (EncCh 0~3 is used for general comparator, and LCmpCh 4 is used for high speed comparator.)

132 * EncCnt: Encoder count.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 BoardId = 0;
I32 Bus_No = 1;
I32 Mod_No = 0;
I32 ret;
I32 EncCnt;
ret = APS_get_field_bus_encoder (BoardId, Bus_No, Mod_No, 0, & EncCnt);
If( ret != ERR_NoError )
{ // Error, show message.
}
```

APS_set_field_bus_encoder;

APS_set_field_bus_encoder

Set encoder count.

Support Products: MNET-4XMO-C

Descriptions:

This function is used to set encoder count

Syntax:

```
C/C++:
```

I32 APS_set_field_bus_encoder(I32 Board_ID, I32 BUS_No, I32 MOD_No, I32 EncCh, I32 EncCnt);

Visual Basic:

APS_set_field_bus_encoder (ByVal Board_ID As Long, ByVal BUS_No As Long, ByVal MOD_No, ByVal EncCh As Long, ByVal EncCnt As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 BUS_No: Field bus number. (Port number) value: 0~1

132 MOD_No: Module number.

For MNET field bus, the range of module number is 0 to 63.

132 EncCh: Specified the encoder channel number. Zero base.

For MNET-4XMO-C, the range of EncCh is 0 to 4. (EncCh $0 \sim 3$ is used for general comparator, and LCmpCh 4 is used for high speed comparator.)

132 EncCnt: Encoder count.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 BoardId = 0;
I32 Bus_No = 1;
I32 Mod_No = 0;
I32 ret;

ret = APS_set_field_bus_encoder (BoardId, Bus_No, Mod_No, 0, 0);
If( ret != ERR_NoError )
{ // Error, show message.
}
```

APS_set_field_bus_encoder;

20. VAO/PWM functions (Laser function)

APS_set_vao_param Set parameter to VAO table

Support Products: PCI-8253/56

Descriptions:

The VAO module is a laser control application. It provides analog output and PWM signal according to corresponding linear speed.

This function is used to set VAO related parameters. All definitions of VAO parameters are described in VAO parameter table.

You can also get VAO parameter setting using "APS_get_vao_param ()" function.

Syntax:

C/C++:

132 APS_set_vao_param(132 Board_ID, 132 Param_No, 132 Param_Val);

Visual Basic:

APS_set_vao_param (ByVal Board_ID As Long, ByVal Param_No As Long, ByVal Param_Val As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Param_No: Parameter number. Refer to VAO parameter table.

132 Param_Val: Parameter value. Refer to VAO parameter table.

Return Values:

132 error code. Refer to error code table.

Example:

I32 ret;

//Set output type of voltage mode to VAO table 0 ret = APS_set_vao_param(Board_ID, 0x00, 0);

See also:

APS_get_vao_param();

Support Products: PCI-8253/56

Descriptions:

The VAO module is a laser control application. It provides analog output and PWM signal according to corresponding linear speed.

This function is used to get VAO related parameters. All definitions of VAO parameters are described in VAO parameter table.

You can also set VAO parameter using "APS_set_vao_param()" function.

Syntax:

C/C++:

132 APS_get_vao_param(132 Board_ID, 132 Param_No, 132 *Param_Val);

Visual Basic

APS_get_vao_param(ByVal Board_ID As Long, ByVal Param_No As Long, Param_Val As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Param_No: Parameter number. Refer to VAO parameter table.

132 Param_Val: Return parameter value. Refer to VAO parameter table.

Return Values:

132 error code. Refer to error code table.

Example:

I32 ret;

I32 Output_Type;

//Get output type of VAO table 0

ret = APS_set_vao_param(Board_ID, 0x00, &Output_Type);

See also:

APS_set_vao_param();

APS_set_vao_table	Set VAO table
-------------------	---------------

Support Products: PCI-8253/56

Descriptions:

This function is used to set a set of VAO table. Users can implement a VAO application according to this table. User configures related minimum velocity, velocity interval, total points, and mapping output value for laser application. Therefore, "Velocity to Power" mapping lookup table will be built.

Notice that the mapping output value will be checked according to VAO output type when executing APS_check_vao_param(). If the mapping output value is invalid, it returns "ERR_ParametersInvalid". For example, if output type was set to voltage mode, the mapping output voltage cant large than 10000 mV. The range of the mapping output value is described as below:

Output type (0~3)	Output Range(范围)
0: Voltage	0 ~ 10000 mv
	Unit: 1 mv
1: PWM mode	0 ~ 2000
	(0.0% ~ 100%)
	Unit: 0.05%
2: PWM frequency mode with	1 ~ 25M Hz
fixed width	Unit: 1 Hz
3: PWM frequency mode with	1 ~ 25M Hz
fixed duty cycle	Unit: 1 Hz

Syntax:

C/C++:

I32 FNTYPE APS_set_vao_table(I32 Board_ID, I32 Table_No, I32 MinVelocity, I32 VelInterval, I32 TotalPoints, I32 *MappingDataArray);

Visual Basic:

APS_set_vao_table (ByVal Board_ID As Long , ByVal Table_No As Long, ByVal MinVelocity As Long, ByVal VelInterval As Long, ByVal TotalPoints As Long, MappingDataArray As Long) As Long

Parameters:

- 132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().
- 132 Table_No: VAO table number. Range is 0 ~ 7.
- 132 MinVelocity: Minimum linear speed.
- 132 Vellnterval: Speed interval.
- 132 TotalPoints : Total points. Range is 1 ~ 32.
- 132 *MappingDataArray: Output data array.

Return Values:

132 error code. Refer to error code table.

Example:

```
I32 ret;
```

132 Minimum_Velocity;

132 Velocity_Interval;

132 TotalPoints = 32;

I32 OutputVoltageData[32];

//Configure linear speed

//1st speed: 10000, 2nd speed: 20000,, 32th speed: 320000

Minimum_Velocity = 10000;

Velocity_Interval = 10000;

TotalPoints = 32;

//Configure mapping output voltage

OutputVoltageData[0] = 500; // 1st voltage: 500 mv

OutputVoltageData[1] = 600; // 2nd voltage: 600 mv

.

OutputVoltageData[31] = 8600; // 32th voltage: 8600 mv

//Set mapping table of Vao table 0

Ret = APS_set_vao_table(Board_ID, 0, MinVelocity, VelInterval, TotalPoints,

OutputVoltageData);

See also:

```
APS_set_vao_param(); APS_get_vao_param(); APS_switch_vao_table(); APS_start_vao();
```

Set parameters via VAO structure

Support Products: PCI-8253/56

Descriptions:

This function is used to set parameters via VAO structure. This is a extension of APS_set_vao_param() and APS_set_vao_table(). By invoking APS_set_vao_param_ex(), user could set all parameters via VAO structure at once. By invoking APS_set_vao_param(), user could set a specified parameter one by one.

This function is also used to set mapping table to replace APS_set_vao_table(). User could configure related minimum velocity, velocity interval, total points, and mapping output value for laser application. Then, "Velocity to Power" mapping lookup table will be built.

Notice that both functions of APS_set_vao_param() and APS_set_vao_table() could be replaced by APS_set_vao_param_ex(). This is an option between them.

Syntax:

```
C/C++:
```

I32 APS_set_vao_param_ex(I32 Board_ID, I32 Table_No, VAO_DATA* VaoData);

Parameters:

```
I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial(). I32 Table_No: VAO table number. Range is 0 ~ 7.
```

VAO_DATA *VaoData: Vao structure for setting all parameters.

```
Typedef struct _VAO_DATA
{
    //Parameters peration ion
    132 outputType;
                        //Output type, [0, 3]
    I32 inputType;
                        //Input type, [0, 1]
                        //PWM configuration according to output type
    132 config;
    132 inputSrc;
                        //Input source by axis, [0, 0xf]
    //Mapping table peration ion
    132 minVel;
                        //Minimum linear speed, [positive]
    132 VelInterval:
                        //Speed interval, [positive]
    132 totalPoints;
                        //Total points, [1, 32]
```

```
I32 mappingDataArr[32]; //mapping data array
}
VAO_DATA, *PVAO_DATA;
```

VAO_DATA structure definition for setting VAO parameters

Varible name	Description	Value
outputType	Table output type	0: Voltage
	(*1)	1: PWM mode
		2: PWM frequency
		mode with fixed width
		3. PWM frequency
		mode with fixed duty
		cycle
inputType	Table input type	0: Feedback speed
		1: Command speed
config	Configure PWM	a. Mode 0 - Don't care
	according to output	b. Mode 1 – set a fixed
	type.	frequency
		(1 ~ 25M Hz)
		c. Mode 2 – set a fixed
		Pulse Width
		(40 ~ 335544340 ns)
		d. Mode 3 – set a fixed
		duty cycle:
		N * 0.05 %.
		(N: 1 ~ 2000)
inputSrc	Specify axisID for	Bit0: Axis 0 On
	VAO table.	Bit1: Axis 1 On
	(linear speed on	Bit2: Axis 2 On
	multi- axes)	Bit3: Axis 3 On
	(*2)	

^{(*1):} PCI-8253 don't support voltage mode.

VAO_DATA structure definition for setting VAO mapping table

Varible name	Description	Value
minVel	Minimum linear	positive
	speed	

^{(*2):} PCI-8253 supports 3 axes. Bit 0, bit 1 and bit 2 are available.

velInterval	Speed interval	positive
totalPoints	Total points	1 ~ 32
mappingData	mapping data array	Refer to following
Arr		chart

The mapping data of VAO_DATA structure will be checked according to VAO output type. If the mapping data is invalid, it returns "ERR_ParametersInvalid". For example, if output type was set to voltage mode, the mapping output voltage cant large than 10000 mV. The range of mapping data is described as below:

Output type (0~3)	Output Range of mapping data
0: Voltage	0 ~ 10000 mv
	Unit: 1 mv
1: PWM mode	0 ~ 2000
	(0.0% ~ 100%)
	Unit: 0.05%
2: PWM frequency mode with fixed	1 ~ 25M Hz
width	Unit: 1 Hz
3: PWM frequency mode with fixed	1 ~ 25M Hz
duty cycle	Unit: 1 Hz

Return Values:

132 error code. Refer to error code table.

Example:

I32 ret;

VAO_DATA VaoData;

VaoData. outputType = 1; // PWM mode

VaoData.inputType = 0; //Feedback speed

VaoData. Config = 1000; // set a fixed frequency of PWM mode, 1000hz

VaoData. inputSrc = 0x03; //axis 0 & axis 1

VaoData. minVel = 1000; // Minimum linear speed

VaoData. vellnterval = 100; //Speed interval

VaoData. totalPoints = 2; //Two points

//10% ~ 15% of PWM mode

VaoData. mappingDataArr[0] = 200;

```
VaoData. mappingDataArr[1] = 300;
```

```
//Set parameters to table 0
ret = APS_set_vao_param_ex(Board_ID, 0, &VaoData);
```

APS_get_vao_param_ex(); APS_switch_vao_table(); APS_start_vao();

APS_get_vao_param_ex

Get parameters via VAO structure

Support Products: PCI-8253/56

Descriptions:

This function is used to get parameters via VAO structure.

Refer to APS_set_vao_param_ex() for details.

Syntax:

```
C/C++:
```

132 APS_get_vao_param_ex(132 Board_ID, 132 Table_No, VAO_DATA* VaoData);

Parameters:

```
I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial(). I32 Table_No: VAO table number. Range is 0 ~ 7.
```

VAO_DATA *VaoData: Vao structure for setting all parameters. Refer to

APS_set_vao_param_ex() for more details.

```
Typedef struct _VAO_DATA {
```

```
//Parameters peration ion
```

```
I32 outputType; //Output type, [0, 3]I32 inputType; //Input type, [0, 1]
```

132 config; //PWM configuration according to output type

132 inputSrc; //Input source by axis, [0, 0xf]

```
//Mapping table peration ion
```

132 VelInterval; //Speed interval, [positive]

132 totalPoints; //Total points, [1, 32]

I32 *mappingDataArr; //mapping data array

}

VAO_DATA, *PVAO_DATA;

Return Values:

132 error code. Refer to error code table.

Example:

I32 ret;

VAO_DATA VaoData;

```
//Get VAO param structure of VAO table 0
ret = APS_get_vao_param_ex(Board_ID, 0, &VaoData);
```

See also:

APS_set_vao_param_ex(); APS_start_vao()

Support Products: PCI-8253/56

Descriptions:

The VAO module is a laser control application. It provides analog output and PWM signal according to corresponding linear speed.

This function is used to switch to specified VAO table as following figure. There are up to 8 tables to be configurated. User could switch to each table among them. Only one table is active at the same time.

Notice that if point table is running on this point, it will automatically switch to the specified table by setting "opt" variable. Refer to APS_set_point_table(). In the other way, user also could manually switch to specified table by APS_switch_vao_table().

Syntax:

C/C++:

132 APS_switch_vao_table(132 Board_ID, 132 Table_No);

Visual Basic:

APS_switch_vao_table(ByVal Board_ID As Long, ByVal Table_No As Long) As Long

Parameters:

I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial(). I32 Table_No: VAO table number.

0 ~ 7: Table number.

-1: Disable all tables.

Return Values:

132 error code. Refer to error code table.

Example:

I32 ret;

ret = APS_switch_vao_table(Board_ID, 0); //Swtich to table 0

See also:

APS_set_vao_param(); APS_get_vao_param(); APS_set_vao_table (); APS_start_vao()

Support Products: PCI-8253/56

Descriptions:

The VAO module is a laser control application. It provides analog output and PWM signal according to corresponding linear speed.

This function is used to enable VAO output channel as following figure. When VAO Output is enabling, analog voltage or PWM signal will output continuously according to corresponding linear speed.

User could also use APS_start_vao() to disable VAO output channel.

Syntax:

C/C++

132 APS_start_vao(132 Board_ID, 132 Output_Ch, 132 Enable);

Visual Basic:

APS_start_vao (ByVal Board_ID As Long, ByVal Output_Ch As Long, ByVal Enable As Long) As Long

Parameters:

I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial(). I32 Output_Ch: PWM or Analog channel. Range is 0 ~ 1.

0: PWM channel 0 or Aout 4

1: PWM channel 1 or Aout 5

132 Enable: Enable specified channel to output PWM/Voltage.

0: Disable. 1: Enable

Return Values:

132 error code. Refer to error code table.

Example:

I32 ret;

ret = APS_start_vao(Board_ID, 0, 1); // Enable PWM channel 0 to output

See also:

APS_set_vao_param(); APS_get_vao_param(); APS_set_vao_table (); APS_switch_vao_table()

Support Products: PCI-8253/56

Descriptions:

This function is used to get VAO status. User could monitor which table is active and which PWM is enabling as following figure.

Syntax:

C/C++:

I32 APS_get_vao_status(I32 Board_ID, I32 *Status);

Visual Basic:

APS_get_vao_status (ByVal Board_ID As Long, Status As Long) As Long

Parameters:

I32 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial(). I32 *Status: Get VAO status by bit.

Bit 0~7: Table 0~7 is active.

Bit 8~15: Reserved

Bit 16: PWM 0 or Analog 4 is enabling.

Bit 17: PWM 1 or Analog 5 is enabling.

Bit 18~: Reserved

Return Values:

132 error code. Refer to error code table.

Example:

I32 ret;

```
//Get VAO status.
Ret = APS_get_vao_status(Board_ID, &status);
.........
See also:
APS_start_vao(); APS_switch_vao_table(); APS_start_vao
```

Support Products: PCI-8253/56

Descriptions:

This function is used to check table parameters of specidied VAO table.

Syntax:

C/C++:

132 APS_check_vao_param(132 Board_ID, 132 Table_No, 132 *Status);

Visual Basic:

APS_check_vao_param (ByVal Board_ID As Long, ByVal Table_No As Long, Status As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 Table_No: VAO table number. Range is 0 ~ 7.

132 *Status: The checking status of parameters. Refer to VAO parameter table definition.

- 0: No any parameters error
- 1: Parameter of table input type is out of range. (VAO_TABLE_INPUT_TYPE)
- 2: Parameter of table output type is out of range. (VAO_TABLE_OUTPUT_TYPE)
- 3: Parameter of table input source is out of range. (VAO_TABLE_SRC)
- 4: Parameter of table pwm peration ion is out of range. (VAO_TABLE_PWM_CONFIG)
- 5: Mapping table data is out of range. (Refer to APS_set_vao_table())

Return Values:

132 error code. Refer to error code table.

Example:

I32 ret;

I32 Sts;

// Check parameters setting of specified VAO table
// Check parameters setting of VAO table 0
ret = APS_check_vao_param (Board_ID, 0, & Sts);

.

APS_set_vao_param(); APS_set_vao_table();

Start to output PWM signal

Support Products: PCI-8253/56

Descriptions:

This function is used to output PWM signal. It is applied to activate laser, trigger, etc. There are two PWM channels which are TRG1 and TRG2 on main connector.

Note that the PWM output (TRG) is used by two function APIs, that are APS_set_pwm_on() and APS_start_vao() . Don't mix using them at the same time. Be sure that only one of them is enabled, specified PWM channel could rightly work.

Syntax:

C/C++:

132 APS_set_pwm_on(I32 Board_ID, I32 PWM _Ch, I32 PWM_On);

Visual Basic:

APS_set_pwm_on(ByVal Board_ID As Long, ByVal PWM_Ch As Long, ByVal PWM_On As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 PWM_Ch: PWM output channel (TRG) number. Zero based. Range is from 0 to 1.

132 PWM_On: 0: PWM OFF, 1: PWM ON

Return Values:

132 error code. Refer to error code table.

Example:

```
132 ret;
```

132 PWM_Ch = 0; //TRG 0 is used

132 Width = 2000 ns; //Pulse width is 2 us.

132 Frequency = 10000 Hz;//pulse frequency is 10K Hz.

```
// Set pulse width to PWM channel 0
```

```
ret = APS_set_pwm_width( Board_ID, PWM_Ch, Width );
```

// Set pulse frequency to PWM channel 0

ret = APS_set_pwm_ frequency(Board_ID, PWM_Ch, Frequency);

// Output PWM signal to activate laser

```
ret = APS_set_pwm_on ( Board_ID, PWM_Ch, 1 );
.....
// Stop outputting PWM signal
Ret = APS_set_pwm_on ( Board_ID, PWM_Ch, 0 );
```

```
APS_set_pwm_width(); APS_set_pwm_frequency(); APS_get_pwm_width(); APS_get_pwm_frequency()
```

Set pulse width to a PWM channel

Support Products: PCI-8253/56

Descriptions:

This function is used to set pulse width to specialized PWM channel.

Note that the range of pulse width is form 40 to 335544340. The unit is nano-second. The resolution of pulse width is 20 ns.

Syntax:

C/C++:

132 APS_set_pwm_width(I32 Board_ID, I32 PWM _Ch, I32 Width);

Visual Basic:

I32 APS_set_pwm_width(ByVal Board_ID As Long , ByVal PWM_Ch As Long , ByVal Width As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 PWM_Ch: PWM output channel (TRG) number. Zero based. Range is from 0 to 1.

132 Width: Pulse width. Unit: ns. Range is from 40 to 335544340.

Return Values:

132 error code. Refer to error code table.

Example:

I32 ret;

 $132 \text{ PWM_Ch} = 0$; //TRG 0 is used.

132 Width = 2000 ns; //Pulse width is 2 us.

// Set pulse width to PWM channel 0

ret = APS_set_pwm_width(Board_ID, PWM_Ch, Width);

See also:

```
APS_set_pwm_on(); APS_set_pwm_frequency(); APS_get_pwm_width(); APS_get_pwm_frequency()
```

APS_set_pwm_frequency

Set pulse frequency to a PWM channel

Support Products: PCI-8253/56

Descriptions:

This function is used to set pulse frequency to specialized PWM channel.

Note that the range of pulse frequency is form 1 to 25000000. The unit is Hz. It may have slightly offset between actual output frequency and the frequency you

The actual frequency is according to following formula:

Frequency =
$$\frac{100,000,000}{2 \times N + 4}$$

N: 0 ~ 2147483647 (a positive 32 bit value)

For example, User could set the frequency = 10005 Hz to the card by this function. In side the function, It get the N = 4988 from the formula and send it to the controller, and the actual frequency output from the PWM will be 10000 Hz (According above formula).

Syntax:

C/C++:

132 APS_set_pwm_frequency(132 Board_ID, 132 PWM _Ch, 132 Frequency);

Visual Basic:

APS_set_pwm_frequency(ByValBoard_IDAsLong,ByValPWM_ChAsLong,ByValPwM_ChAsLong,ByValP Frequency As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 PWM_Ch: PWM output channel (TRG) number. Zero based. Range is from 0 to 1.

132 Frequency: Pulse frequency. Unit: Hz. Range is from 1 to 25000000.

Return Values:

132 error code. Refer to error code table.

Example:

I32 ret;

```
I32 PWM_Ch = 0; //TRG 0 is used.
I32 Frequency = 10000 Hz; //Pulse frequency is 10k Hz.
```

```
// Set pulse frequency to PWM channel 0
ret = APS_set_pwm_ frequency( Board_ID, PWM_Ch, Frequency);
```

APS_set_pwm_on(); APS_set_pwm_width(); APS_get_pwm_width(); APS_get_pwm_frequency()

Get pulse width from a PWM channel

Support Products: PCI-8253/56

Descriptions:

This function is used to get pulse width from specialized PWM channel.

Syntax:

C/C++:

132 APS_get_pwm_width(I32 Board_ID, I32 PWM _Ch, I32 *Width);

Visual Basic:

I32 APS_get_pwm_width(ByVal Board_ID As Long , ByVal PWM_Ch As Long , Width As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 PWM_Ch: PWM output channel (TRG) number. Zero based. Range is from 0 to 1.

132 Width: Pulse width. Unit: ns. Range is from 40 to 335544340.

Return Values:

132 error code. Refer to error code table.

Example:

132 ret;

 $132 \text{ PWM_Ch} = 0$; //TRG 0 is used.

132 Width:

// Get pulse width from PWM channel 0

ret = APS_get_pwm_width(Board_ID, PWM_Ch, &Width);

See also:

APS_set_pwm_on(); APS_set_pwm_width(); APS_set_pwm_frequency(); APS_get_pwm_frequency()

Get pulse frequency from a PWM channel

Support Products: PCI-8253/56

Descriptions:

This function is used to get pulse frequency from specialized PWM channel.

Syntax:

C/C++:

I32 APS_get_pwm_frequency(I32 Board_ID, I32 PWM _Ch, I32 *Frequency);

Visual Basic:

APS_get_pwm_frequency(ByVal Board_ID As Long, ByVal PWM_Ch As Long,

Frequency As Long) As Long

Parameters:

132 Board_ID: ID of the target controller. It's retrieved by successful call to APS_initial().

132 PWM_Ch: PWM output channel (TRG) number. Zero based. Range is from 0 to 1.

132 Frequency: Pulse frequency. Unit: Hz. Range is from 1 to 25000000.

Return Values:

132 error code. Refer to error code table.

Example:

132 ret;

 $132 \text{ PWM_Ch} = 0$; //TRG 0 is used.

132 Frequency;

// Get pulse frequency from PWM channel 0

ret = APS_get_pwm_ frequency(Board_ID, PWM_Ch, &Frequency);

See also:

```
APS_set_pwm_on(); APS_set_pwm_frequency(); APS_set_pwm_width(); APS_get_pwm_width()
```

21. Simultaneous move functions

APS_set_absolute_simultaneous_move

Setup a absolute simultaneous move

Support Products: MNET-4XMO-©

Descriptions:

The function is used to setup a absolute simultaneous move. User could setup specified axes to implement simultaneous move. The parameters of Distance_Array and Max_Speed_Array are applied to specified axes.

After that, user could invoke

"APS_start_simultaneous_move()/APS_stop_simultaneous_move()" to start/stop simultaneous operation for starting/stopping specified axes at the same time.

Note: The axes specified in Axis_ID_Array must be of the same card/module.

Syntax:

C/C++:

I32 FNTYPE APS_set_absolute_simultaneous_move(I32 Dimension, I32 *Axis_ID_Array, 132 *Position_Array, I32 *Max_Speed_Array);

Visual Basic:

APS_set_absolute_simultaneous_move (ByVal Dimension As Long, Axis_ID_Array As Long, Position_Array As Long, Max_Speed_Array As Long) As Long

Parameters:

132 Dimension: The dimension of simultaneous axes. (1~4 axes)

132 *Axis_ID_Array: The axis ID array from 0 to 65535.

132 Position_Array: Absolute position array. (unit: pulse)

132 Max_Speed_Array: Maximum speed array. (unit: pulse/sec)

Return Values:

132 Error code: Refer to error code table.

Example:

//...Initial card

132 Dimension = 4;

 $I32 Axis_ID_Array[4] = \{ 0, 1, 2, 3 \};$

I32 Position_Array = {10000, 10000, 10000, 10000};

```
I32 Max_Speed_Array = {10000, 10000, 10000, 10000};
I32 Ret;

// Setup a absolute simultaneous move

Ret = APS_set_absolute_simultaneous_move ( Dimension, Axis_ID_Array, Position_Array,

Max_Speed_Array );

// Start a simultaneous move

Ret = APS_start_simultaneous_move( Axis_ID_Array[0] );

...

// Stop a simultaneous move

Ret = APS_stop_simultaneous_move( Axis_ID_Array[0] );
```

APS_set_relative_simultaneous_move, APS_start_simultaneous_move, APS_stop_simultaneous_move

Support Products: MNET-4XMO-©

Descriptions:

The function is used to setup a relative simultaneous move. User could setup specified axes to implement simultaneous move. The parameters of Distance_Array and Max_Speed_Array are applied to specified axes.

After that, user could invoke

"APS_start_simultaneous_move()/APS_stop_simultaneous_move()" to start/stop a simultaneous operation for starting/stopping specified axes at the same time.

Note: The axes specified in Axis_ID_Array must be of the same card/module.

Syntax:

C/C++:

I32 FNTYPE APS_set_relative_simultaneous_move(I32 Dimension, I32 *Axis_ID_Array, I32 *Distance_Array, I32 *Max_Speed_Array);

Visual Basic:

APS_set_relative_simultaneous_move (ByVal Dimension As Long, Axis_ID_Array As Long, Distance_Array As Long, Max_Speed_Array As Long) As Long

Parameters:

132 Dimension: The dimension of simultaneous axes. (1~4 axes)

132 *Axis_ID_Array: The axis ID array from 0 to 65535.

132 Distance_Array: Relative distance array. (unit: pulse)

132 Max_Speed_Array: Maximum speed array. (unit: pulse/sec)

Return Values:

132 Error code: Refer to error code table.

Example:

//...Initial card

132 Dimension = 4;

 $I32 Axis_ID_Array[4] = \{ 0, 1, 2, 3 \};$

I32 Distance_Array = {10000, 10000, 10000, 10000};

132 Max_Speed_Array = {10000, 10000, 10000, 10000};

```
132 Ret;
```

```
// Setup a relative simultaneous move
Ret = APS_set_relative_simultaneous_move ( Dimension, Axis_ID_Array, Distance_Array,
Max_Speed_Array );
// Start a simultaneous move
Ret = APS_start_simultaneous_move( Axis_ID_Array[0] );
...
// Stop a simultaneous move
Ret = APS_stop_simultaneous_move( Axis_ID_Array[0] );
```

APS_set_absolute_simultaneous_move, APS_start_simultaneous_move, APS_stop_simultaneous_move

APS_start_simultaneous_move

Begin a simultaneous move

Support Products: MNET-4XMO-©

Descriptions:

The function is used to start a simultaneous operation for starting specified axes at the same time.

Syntax:

C/C++

132 APS_start_simultaneous_move (132 Axis_ID);

Visual Basic:

APS_start_simultaneous_move (ByVal Axis_ID As Long) As Long

Parameters:

132 Axis_ID: Specify first axis of simultaneous axes. The Axis ID is from 0 to 65535.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
//...Initial card
132 Dimension = 4;
132 Axis_ID_Array[4] = { 0, 1, 2, 3};
132 Distance_Array = {10000, 10000, 10000, 10000};
132 Max_Speed_Array = {10000, 10000, 10000, 10000};
132 Ret;

// Setup a relative simultaneous move
Ret = APS_set_relative_simultaneous_move ( Dimension, Axis_ID_Array, Distance_Array, Max_Speed_Array );

// Start a simultaneous move
Ret = APS_start_simultaneous_move( Axis_ID_Array[0] );
...

// Stop a simultaneous move
Ret = APS_stop_simultaneous_move( Axis_ID_Array[0] );
```

See also:

 $\label{lem:aps_set_absolute_simultaneous_move} APS_set_relative_simultaneous_move, \\ APS_stop_simultaneous_move$

APS_stop_simultaneous_move

Stop a simultaneous move

Support Products: MNET-4XMO-©

Descriptions:

The function is used to stop a simultaneous operation for stopping specified axes at the same time.

Syntax:

C/C++

132 APS_stop_simultaneous_move (I32 Axis_ID);

Visual Basic:

APS_stop_simultaneous_move (ByVal Axis_ID As Long) As Long

Parameters:

132 Axis_ID: Specify first axis of simultaneous axes. The Axis ID is from 0 to 65535.

Return Values:

132 Error code: Please refer to error code table.

Example:

```
//...Initial card
132 Dimension = 4;
132 Axis_ID_Array[4] = { 0, 1, 2, 3};
132 Distance_Array = {10000, 10000, 10000, 10000};
132 Max_Speed_Array = {10000, 10000, 10000, 10000};
132 Ret;

// Setup a relative simultaneous move
Ret = APS_set_relative_simultaneous_move ( Dimension, Axis_ID_Array, Distance_Array, Max_Speed_Array );

// Start a simultaneous move
Ret = APS_start_simultaneous_move( Axis_ID_Array[0] );
...

// Stop a simultaneous move
Ret = APS_stop_simultaneous_move( Axis_ID_Array[0] );
```

See also:

 $\label{lem:aps_set_absolute_simultaneous_move} APS_set_relative_simultaneous_move, \\ APS_start_simultaneous_move$

22. Board Parameter Table

1. DPAC-1000 board parameter table

	DPAC-1000 board parameter table				
NO.	Define	Description	Parameter data meaning	Defaul t	
10h	PRB_WDT0_VALUE	WDT time out value.	0: Disable WDT N: 1~255 Start watch dog timer from N and down count. Down count period is WDT0_UNIT. When timer counter reaches zero (time out), WDT_ACTION will happen.	0	
11h	PRB_WDT0_COUNTER	Restart WDT counting or get current WDT counter value	Set any value to restart WDT counter from WDT0_VALUE Get command to get current WDT counter.	0	
12h	PRB_WDT0_UNIT	WDT counter down count period's unit	0: reserved 1:second 2: minute	0	
13h	PRB_WDT0 _ACTION	WDT time out action	0: system reboot	0	
20h	PRB_TMR0_BASE	Set TMR0 base unit clock	0~4095: TMR Value Timer period = (40 + (512 / 8.25) * TMR_value) us. Hardware interrupt will be genetated when each time out. To disable timer function, you must disable timer interrupt.	0	

21h	PRB_TMR0_VALUE	Get/Set timer0 value	32-bit unsign value. The counter increase one	0
2111	TRD_TWIRD_VALUE	Get/Set timero varue	everytime when timer	0
			interrupt happens	
		Get system	8-bit signed value.	
30h	PRB_SYS_TMP_MONITOR	temperature monitor	The unit is degree of C	0
		data		
		Get CPU temperature	8-bit signed value.	
31h	PRB_CPU_TMP_MONITOR	monitor data	The unit is degree of C	0
32h	PRB_AUX_TMP_MONITOR	Get AUX temperature	8-bit signed value.	0
5211	The_front_front_frontfront	monitor data	The unit is degree of C	Ů
			0: x1 mode.	
			If baud rate setting is	
		115200, the real baud rate is		
40h	PRB_UART_MULTIPLIER	Set UART Multiplier	115200.	0
4011	TRD_O/MCI_MCE/III EIER	Set Of Mer ividitipher	1: x8 mode	
			If baud rate setting is	
			115200, the real baud rate is	
			115200*8 = 921600.	
			0: OUT/DIR	
		Set manual pulser	1: CW/CCW	
90h	PRB_PSR_MODE	generator (MPG)	2: 1x AB phase	4
		input mode	3: 2x AB phase	
			4: 4x AB phase	
91h	PRB_PSR_EA_LOGIC	Set EA signal logic	0: EA is not inverted	0
7111	I ND_I SIN_EA_LOGIC	Det EA Signal logic	1: EA is inverted	U
			0: EB is not inverted	
92h	PRB_PSR_EB_LOGIC	Set EB signal logic	1: EB is inverted	0
	PRB_DPAC		0: User Define Mode	
10001h	_DISPLAY_MODE	DPAC Display mode	1: Demo Mode	1
10002h	PRB_DPAC_DI_MODE	Set DI pin modes	0 : GPIO mode	0
		r	1 : MPG input mode	-

2. DPAC-3000 board parameter table

DPAC-3000 board parameter table				
NO.	Define	Description	Parameter data meaning	Defaul t
10h	PRB_WDT0_VALUE	WDT time out value.	0: Disable WDT N: 1~255 Start watch dog timer from N and down count. Down	0
			count period is WDT0_UNIT. When timer counter reaches zero (time out), WDT_ACTION will happen.	
11h	PRB_WDT0_COUNTER	Restart WDT counting or get current WDT counter value	Set any value to restart WDT counter from WDT0_VALUE Get command to get current WDT counter.	0
12h	PRB_WDT0_UNIT	WDT counter down count period's unit	0: reserved 1:second 2: minute	0
13h	PRB_WDT0 _ACTION	WDT time out action	0: system reboot	0
20h	PRB_TMR0_BASE	Set TMR0 base unit clock	0~4095: TMR Value Timer period = (40 + (512 / 8.25) * TMR_value) us. Hardware interrupt will be genetated when each time out. To disable timer function, you must disable timer interrupt.	0
21h	PRB_TMR0_VALUE	Get/Set timer0 value	32-bit unsign value. The counter increase one everytime when timer interrupt happens	0

	T	T	T	1
		Get system	8-bit signed value.	
30h	PRB_SYS_TMP_MONITOR	temperature monitor	The unit is degree of C	0
		data		
		Get CPU temperature	8-bit signed value.	
31h	PRB_CPU_TMP_MONITOR	monitor data	The unit is degree of C	0
		Get AUX temperature	8-bit signed value.	
32h	PRB_AUX_TMP_MONITOR	monitor data	The unit is degree of C	0
			0: x1 mode.	
			If baud rate setting is	
			115200, the real baud rate is	
			115200.	
40h	PRB_UART_MULTIPLIER	Set UART Multiplier	1: x8 mode	0
			If baud rate setting is	
			115200, the real baud rate is	
			115200*8 = 921600.	
			0: OUT/DIR	
		Set manual pulser	1: CW/CCW	
90h	PRB_PSR_MODE	generator (MPG)	2: 1x AB phase	4
		input mode	3: 2x AB phase	
			4: 4x AB phase	
			0: EA is not inverted	_
91h	PRB_PSR_EA_LOGIC	Set EA signal logic	1: EA is inverted	0
			0: EB is not inverted	
92h	PRB_PSR_EB_LOGIC	Set EB signal logic	1: EB is inverted	0
10001h	PRB_DPAC	DPAC Display mode	0: User Define Mode	1
1000111	_DISPLAY_MODE	DI AC Display Illoue	1: Demo Mode	1
			0 : GPIO mode	
10002h	PRB_DPAC_DI_MODE	Set DI pin modes	1 : MPG input mode	0
	l	I	_	L

3. PCI-8392(H) board parameter table

	PCI-8392(H) Board parameter table				
NO.	Define	Description	Parameter data meaning	Default	
00h	PRB_EMG_LOGIC	EMG logic setting	0: Normal close	0	
			1: Normal open		
10h	PRB_WDT0_VALUE	WDT time out value.	0: Disable WDT	0	
		(*1)	N(1~2147483647) (31		
		Set 0 to disable watch	bits)		
		dog.			
		Set a positive value to			
		enable watch dog			
		function.			
		When watch dog timer			
		is enabled, wdt counter			
		will count down per			
		SSCNET cycle. Once			
		WDT counter reaches			
		zero (time out),			
		SSCNET network will			
		be stopped.			
11h	PRB_WDT0_COUNTER	Restart WDT counting	Set any value to	0	
		or get current WDT	restart WDT counter		
		counter value. (*1)	from WDT0_VALUE		
			Get command to get		
			current WDT counter.		
10000h	PRB_SSC_CYCLE_TIME	SSCNET 3	0: 0.888ms	0	
		communication cycle	1: 0.444ms		
		time setting	This value must be		
			decided before start		
			SSCNET		
			communication		

^(*1) This parameter will not be saved to non-volatile memory (flash) when issue

[&]quot;APS_save_parameter_to_flash"

4. PCI-8253/56 Board parameter table

PCI-8253/56 Board parameter table				
NO.	Define	Description	Parameter data meaning	Default
00h	PRB_EMG_LOGIC	EMG logic setting	0: Normal close	0
			1: Normal open	
10h	PRB_WDT0_VALUE	WDT time out value.	0: Disable WDT	0
		(*1)	N: 1~2147483647 (31 bits)	
		Set 0 to disable watch	Start watch dog timer from N	
		dog.	and down count. Down count	
		Set a positive value to	period is cycle time.	
		enable watch dog		
		function. When timer		
		counter reaches zero		
		(time out), servo		
		signal will be turned		
		off.		
11h	PRB_WDT0_COUNTER	Restart WDT	Set any value to restart WDT	0
		counting or get	counter from WDT0_VALUE	
		current WDT counter	Get command to get current	
		value.(*1)	WDT counter.	
80h	PRB_DENOMINATOR	Denominator	1~ 2147483647	10,000
			Floating point type	
			parameters will be divided	
			by this value as its real value.	
90h	PRB_PSR_MODE	Set manual pulser	0: OUT/DIR	4
		generator (MPG)	1: CW/CCW	
		input mode	2: 1x AB phase	
			3: 2x AB phase	
			4: 4x AB phase	
100h	PRB_BOOT_SETTING	The data source of	0: default table	0
		axis and system	1: Flash ROM	
		parameters when DSP		
		boots. DSP will reboot		
		when power on or		

		PCI bus reset.		
110h	PRB_PWM0_MAP_DO	Enable the mapping	-1: Disable mapping	-1
		between PWM0 & Do.	Positive number: Enable	
		Specify a Do channel	mapping	
		to map PWM0. Select	Bit0~7: Specify a Do channel.	
		its mapping logic	Bit8: Select logic. Set to 1:	
		between PWM0 & Do.	Turning on Do maps enabling	
			PWM0. Turning off Do maps	
			disabling PWM0. Set to 0:	
			Turning on Do maps disabling	
			PWM0. Turning off Do maps	
			enabling PWM0.	
111h	PRB_PWM1_MAP_DO	Enable the mapping	-1: Disable mapping	-1
		between PWM1 & Do.	Positive number: Enable	
		Specify a Do channel	mapping	
		to map PWM1. Select	Bit0~7: Specify a Do channel.	
		its mapping logic	Bit8: Select logic. Set to 1:	
		between PWM1 & Do.	Turning on Do maps enabling	
			PWM1. Turning off Do maps	
			disabling PWM1. Set to 0:	
			Turning on Do maps disabling	
			PWM1. Turning off Do maps	
			enabling PWM1.	
112h	PRB_PWM2_MAP_DO	Enable the mapping	-1: Disable mapping	-1
		between PWM2 & Do.	Positive number: Enable	
		Specify a Do channel	mapping	
		to map PWM2. Select	Bit0~7: Specify a Do channel.	
		its mapping logic	Bit8: Select logic. Set to 1:	
		between PWM2 & Do.	Turning on Do maps enabling	
			PWM2. Turning off Do maps	
			disabling PWM2. Set to 0:	
			Turning on Do maps disabling	
			PWM2. Turning off Do maps	
			enabling PWM2.	
113h	PRB_PWM3_MAP_DO	Enable the mapping	-1: Disable mapping	-1
		between PWM3 & Do.	Positive number: Enable	
		Specify a Do channel	mapping	
		to map PWM3. Select	Bit0~7: Specify a Do channel.	

	its mapping logic	Bit8: Select logic. Set to 1:	
	between PWM3 & Do.	Turning on Do maps enabling	
		PWM3. Turning off Do maps	
		disabling PWM3. Set to 0:	
		Turning on Do maps disabling	
		PWM3. Turning off Do maps	
		enabling PWM3.	

^(*1) This parameter will not be saved to non-volatile memory (flash) when issue

5. PCI-7856 board parameter table

	PCI-7856 board parameter table				
NO.	Define Description		Parameter data meaning	Defaul	
				t	
			0~127: TMR Value		
			Timer period =		
			((TMR_value + 2) * 0.1) ms.		
		Set TMR base unit	Hardware interrupt will be		
20h	PRB_TMR0_BASE	clock	genetated when each time	0	
		CIOCK	out.		
			To disable timer function,		
			you must disable timer		
			interrupt.		

[&]quot;APS_save_parameter_to_flash"

23. Axis Parameter Table

1. PCI-8392(H) Axis parameter table

	PCI-83	92(H) Axis parameter ta	able	
NO. (Dec.)	Define	Description	Value	Default
00h (0)	PRA_EL_LOGIC	PEL/MEL input logic	0:Not inverse 1:Inverse	0
01h (1)	PRA_ORG_LOGIC	ORG input logic	0:Not inverse 1:Inverse	0
02h (2)	PRA_EL_MODE	The mode of stop when end limit ON	0: Deceleration stop 1: Stop immediately	0
03h (3)	PRA_MDN_CONDI	Motion done condition (Affective with motion stats NSTP bit)	0: Control command done (default) 1: Command done with INP 2: Command done with ZSP 3: Command done with INP & ZSP 4: Command done with soft INP	0
04h (4)~ 06h(6)	Reserved	Reserved	Reserved	
07h(7)	PRA_STP_DEC	Stop deceleration rate for APS_stop();	Unit: pulse/sec ²	100,000, 000
08h(8)	PRA_SPEL_EN	Set Encorder event mode.	0: Disable 1: Encoder event 2: Soft-Limit (SPEL)	0
09h(9)	PRA_SMEL_EN	Set Encorder event mode.	0: Disable 1: Encoder event 2: Soft-Limit (SMEL)	0
0Ah(10)	PRA_EFB_POS0	SPEL / EFB position 0	Unit: pulse. (I32 value)	100,000
0Bh(11)	PRA_EFB_POS1	SMEL / EFB position 1	Unit: pulse. (I32 value)	-100,000
0Ch(12)	PRA_EFB_CONDI0	Encoder compare condition. Feedback position >= or <= EFB pos0	0: Great equal (>=) 1: Less equal (<=)	0
0Dh(13)	PRA_ EFB_CONDI1	Encoder compare condition. Feedback position >= or <= EFB pos1	0: Great equal (>=) 1: Less equal (<=)	1
0Eh(14)	PRA_EFB_SRC0	Encoder event pos0 comparing counter source.	0: Feedback position 1: Command position	0
0Fh(15)	PRA_EFB_SRC1	Encoder event pos0 comparing	0: Feedback	0

		counter source.	position	
		counter source.	1: Command	
			position	
10h (16)	PRA_HOME_MODE	Home mode setting	0: home mode 1	0
11h (17)	PRA_HOME_DIR	Homing direction	0: positive	0
			direction	
			1: negative	
			direction	
12h (18)	PRA_HOME_CURVE	Home move acceleration /	0: T-curve	0
		Deceleration speed pattern	1: S-curve	
13h (19)	PRA_HOME_ACC	Home move	Unit: pulse/sec ²	22,520,0
1.41. (20)	DDA LIOME VC	acceleration/Deceleration rate	TION OF THE PROPERTY.	00
14h (20)	PRA_HOME_VS PRA_HOME_VM	Homing start velocity	Unit: pulse/sec	0 225,200
15h (21) 16h (22)	Reserved (*1)	Homing maximum velocity	Unit: pulse/sec	225,200
17h (23)	Reserved (*1)			
18h (24)	PRA_HOME_EZC	Enable EZ signal alignment	0: Disable	0
1011 (24)	TRA_HOWE_EZC	Enable EZ signal angilinent	1: Enable	U
19h (25)	PRA_HOME_VO	Homing leave home velocity	Unit: pulse/sec	112,600
1Ah-1Fh	Reserved	Troning reave nome velocity	One. paise/see	112,000
20h (32)	PRA_CURVE	Acceleration / Deceleration	0: T-Curve	0
, (-)		speed pattern	1: S-Curve	
21h (33)	PRA_ACC	Acceleration rate	Unit: pulse/sec ²	10,000,0
, ,			•	00
22h (34)	PRA_DEC	Deceleration rate	Unit: pulse/sec ²	10,000,0
				00
23h (35)	PRA_VS	Start velocity	Unit: pulse/sec	0
24h (36)	Reserved			
25h (37)	PRA_VE	End velocity	Unit: pulse/sec	0
26h~2Fh	Reserved			
30h	Reserved			
31h	Reserved			
32h~3Fh	Reserved			
40h (64)	PRA_JG_MODE	Jog mode	0: Free mode 1: step mode	0
41h (65)	PRA_JG_DIR	Jog move direction	0: Positive	0
			direction	
			1:negative	
		_	direction	_
42h (66)	PRA_JG_CURVE	Jog speed pattern	0: T-curve	0
401 (67)	DDA IC ACC	A 1	1:S-curve	10,000,0
43h (67)	PRA_JG_ACC	Acceleration rate	Unit: pulse/sec ²	10,000,0 00
44h (68)	PRA_JG_DEC	Deceleration rate	Unit: pulse/sec ²	10,000,0
4411 (00)	I KA_JG_DEC	Deceleration rate	Offit. pulse/sec-	00
45h (69)	PRA_JG_VM	Max. velocity	Unit: pulse/sec	1,000,00
(0)			r also, see	0
46h (70)	PRA_JG_STEP	Step offset	Unit: pulse (For	1,000
			step mode)	
47h (71)	PRA_JG_DELAY	Delay time	Unit: ms (cycle	500
			time alignment)	
FOL (00)	DDA MONI DELAY	Matter Land 1	(For step mode)	0
50h(80)	PRA_MDN_DELAY	Motion done delay cycle	Unit: system cycle	0
		(Affective with motion stats NSTP bit)	time.	
		The motion status NSTP bit will		
	ı	The monon status Noti bit Will		l

Signature Sign			be turn on after specified delay		
Soft INP window setting (Affective with motion I/O status INP bit). The motion I/O status INP bit will turn on when position into soft INP range and over INP range define is as below INP range = (Target + window_setting) to (Target - window_setting). This function can be used by set PRA_MDM_CONDI parameter to command with soft INP. Soft INP window_setting Soft INP range and over INP range define is as below INP range = (Target + window_setting) to (Target - window_setting). This function can be used by set PRA_MDM_CONDI parameter to command with soft INP. Soft INP stable cycle. The INP range individual into the position into soft INP range into the vith motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. PRA_SINP_STBL			cycle, when motion done		
Affective with motion I/O status INP bit), The motion I/O status INP bit), The motion I/O status INP bit), The motion I/O status INP bit) will turn on when position into soft INP range and over INP stable cycle. The INP range define is as below INP range efficie with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. PRA_SINP_STBL Soft INP stable cycle (Affective with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. Max encoder count.	F11./01)	DD A CINID MOTO		TT. N I	200
status INP bit, The motion I/O status INP bit will turn on when position into soft INP range and over INP stable cycle. The INP range define is as below INP range = (Target + window_setting) to (Target - window_setting). This function can be used by set PRA_MDM_CONDI parameter to command with soft INP. 52h(82) PRA_SINP_STBL Soft INP stable cycle (Affective with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. Walue = 1 - 2147483647 Unit: system cycle time value = 1 - 2147483647 Unit: pulse 0 means rollover mode, other number means ring counter value and enable ring counter walue and enable ring counter mode. PRA_SSC_SERVO_PA RAM_SRC PRA_SSC_SERVO_AB SPOS_OPT 10002h PRA_SSC_SERVO_AB SPOS_OPT 10003h PRA_SSC_SERVO_AB SPOS_CYC CNT driver 10004h PRA_SSC_SERVO_AB SPOS_CYC CNT driver 10004h PRA_SSC_SERVO_AB SPOS_CYC CNT driver 10004h PRA_SSC_SERVO_AB SPOS_CYC CNT Servo driver driver local time to value limit value (0.1%) (*4) 10004h PRA_SSC_SERVO_AB PRA_SSC_SERVO_AB SPRS_CYC CNT Servo driver local time to value limit value (0.1%) (*4) 10004h PRA_SSC_SERVO_AB PRA_SSC_SERVO_AB SPRS_CYC CNT Servo driver local time to value limit value (0.1%) (*4)	51n(81)	PKA_SINP_WDW	0	1	200
position into soft INP range and over INP stable cycle. The INP range define is as below INP range = (Target + window_setting). This function can be used by set PRA_MDM_CONDI parameter to command with soft INP. 52h(82) PRA_SINP_STBL Soft INP stable cycle (Affective with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. Unit: system cycle dime Value = 1 ~ 2147483647 Unit: pulse 0 means rollover mode, other number means ring counter value and enable ring counter walue and enable ring counter mode. 10000h PRA_SSC_SERVO_PA RAM_SRC Absolute rosition system. 10002h PRA_SSC_SERVO_AB S_CYC_CNT 10003h PRA_SSC_SERVO_AB S_RES_CNT Positive roque limit value (0.1%) (*4)			,	Value = 1 ~	
over INP stable cycle. The INP range define is as below INP range = (Target + window_setting) to (Target - window_setting). This function can be used by set PRA_MDM_CONDI parameter to command with soft INP. 52h(82) PRA_SINP_STBL Soft INP stable cycle (Affective with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. PRA_MAX_E_LIMIT Max encoder count. 2				2147483647	
range define is as below INP range = (Target + window_setting) to (Target - window_setting). This function can be used by set PRA_MDM_CONDI parameter to command with soft INP. 52h(82) PRA_SINP_STBL Soft INP stable cycle (Affective with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. Wax encoder count. 2value = 1 ~ 2147483647 Unit: system cycle time. Value = 1 ~ 2147483647 Unit: pulse 0 means rollover mode, other number means ring counter value and enable ring counter walue and enable ring counter mode. 10000h PRA_SSC_SERVO_PA RAM_SRC when start SSCNET 0: Default value. 2: Flash memory 10001h PRA_SSC_SERVO_AB S_POS_OPT 10002h PRA_SSC_SERVO_AB S_CYC_CNT Ariver 10003h PRA_SSC_SERVO_AB RASOlute cycle counter of servo driver 10004h PRA_SSC_SERVO_B RASOLUTE resolution counter of servo driver 10004h PRA_SSC_SERVO_B RASOLUTE resolution counter of servo driver 10004h PRA_SSC_TORQUE_LIMIT_P Positive torque limit value 0-32767 3,000			•		
window_setting) to (Target - window_setting). This function can be used by set PRA_MDM_CONDI parameter to command with soft INP. 52h(82) PRA_SINP_STBL Soft INP stable cycle (Affective with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. PRA_MAX_E_LIMIT			_		
window_setting). This function can be used by set PRA_MDM_CONDI parameter to command with soft INP. 52h(82) PRA_SINP_STBL Soft INP stable cycle (Affective with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. Walue = 1 ~ 2147483647 Unit: system cycle time Value = 1 ~ 2147483647 Unit: pulse 0 0 means rollover mode, other number means ring counter value and enable ring counter walue and enable ring counter mode. 10000h PRA_SSC_SERVO_PA RAM_SRC Select servo parameter source when start SSCNET Color in Default value. 2: Flash memory 10001h PRA_SSC_SERVO_AB S_POS_OPT Select servo parameter source when start SSCNET Color is Enable absolute position system. PRA_SSC_SERVO_AB S_CYC_CNT driver 10003h PRA_SSC_SERVO_AB S_RES_CNT Servo driver 10004h PRA_SSC_SERVO_AB S_RES_CNT Servo driver 10004h PRA_SSC_TORQUE_ LIMIT_P Windows and state to use the use of the position counter of servo driver 10004h PRA_SSC_TORQUE_ Positive torque limit value (0.1%) (*4) O -32767 3,000			0 \ 0		
can be used by set PRA_MDM_CONDI parameter to command with soft INP. 52h(82) PRA_SINP_STBL Soft INP stable cycle (Affective with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. Back (130) PRA_MAX_E_LIMIT PRA_MAX_E_LIMIT PRA_SSC_SERVO_PA S_POS_OPT 10000h PRA_SSC_SERVO_AB S_CYC_CNT driver 10003h PRA_SSC_SERVO_BB S_RES_CNT PRA_SSC_TORQUE LIMIT_P Can be used by set PRA_MDM_CONDI parameter to command with soft INP range to count: Unit: system cycle with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. Unit: system cycle time Value = 1 ~ 2147483647 Unit: system cycle unitime Value = 1 ~ 2147483647 Unit: pulse 0 0 means rollover mode, other number means ring counter value and enable ring counter mode. 1000 means rollover mode, other number means ring counter walue and enable ring counter mode. 100 not update 1: Default value. 2: Flash memory 0: Do not update 1: Default value. 2: Flash memory 10003h PRA_SSC_SERVO_AB S_LOYC_CNT driver 10004h PRA_SSC_SERVO_BB S_RES_CNT driver 10004h PRA_SSC_TORQUE LIMIT_P Positive torque limit value (0-32767 3,000)			_		
to command with soft INP. Soft INP stable cycle (Affective with motion I/O status INP bit) The value decides how many cycles will turn on INP bit after position into soft INP range continuity. PRA_MAX_E_LIMIT			<u> </u>		
Soft INP stable cycle (Affective with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. PRA_MAX_E_LIMIT					
with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity. Value = 1 ~ 2147483647 214748647 214748647 214748647 214748647 21					
The value decides how many cycles will turn on INP bit after position into soft INP range continuity. Value = 1 ~ 2147483647 214748647 214748647 214748647 214748647 214748647 214748647 214748647 214748647 214748647 214748647 214748647 214748647 214748647 214748647 214748	52h(82)	PRA_SINP_STBL	, ·	Unit: system cycle	100
position into soft INP range continuity. PRA_MAX_E_LIMIT PRA_MAX_E_LIMIT PRA_SSC_SERVO_PA RAM_SRC PRA_SSC_SERVO_AB S_CYC_CNT PRA_SSC_SERVO_AB S_RSS_CNT PRA_SSC_SERVO_AB S_RSS_CNT PRA_SSC_SERVO_AB S_RSS_CNT PRA_SSC_SERVO_AB S_RSS_CNT PRA_SSC_SERVO_AB S_RSS_CNT PRA_SSC_SERVO_AB S_RSS_CNT PRA_SSC_SERVO_AB S_CYC_CNT PRA_SSC_SERVO_AB Absolute cycle counter of servo driver PRA_SSC_TORQUE_LIMIT_P Positive torque limit value [1.10			The value decides how many	time	
Sch(130) PRA_MAX_E_LIMIT Max encoder count. 2147483647 Unit: pulse 0 means rollover mode, other number means ring counter value and enable ring counter mode. PRA_SSC_SERVO_PA RAM_SRC PRA_SSC_SERVO_AB S_POS_OPT PRA_SSC_SERVO_AB S_CYC_CNT 10003h PRA_SSC_SERVO_AB S_RES_CNT PRA_SSC_SERVO_AB Absolute cycle counter of servo driver 10004h PRA_SSC_SERVO_AB S_RES_CNT PRA_SSC_SERVO_AB Absolute resolution counter of servo driver Positive torque limit value (0.1%) (*4) Unit: pulse 0 means rollover mode, other number means ring counter value and enable ring counter value 1: Default value. 1: Enable absolute position system 0 coordinate number means ring counter value 1: Default value. 1: Enable absolute position system 0 coordinate 1: Default value. 1: Enable absolute position system 0 coordinate 1: Default value. 1: Default value. 1: Default value. 1: Default value. 1: Default value. 1: Default value. 1: Default value. 2: Flash memory 0 coordinate 1: Default value. 1: Default value. 1: Default value. 2: Flash memory 0 coordinate 1: Default v			3	Value = 1 ~	
82h(130) PRA_MAX_E_LIMIT Max encoder count. 2value = encoder count limit(*5) 10000h PRA_SSC_SERVO_PA RAM_SRC PRA_SSC_SERVO_AB S_POS_OPT 10002h PRA_SSC_SERVO_AB S_CYC_CNT 10003h PRA_SSC_SERVO_AB S_RES_CNT PRA_SSC_TORQUE_ LIMIT_P Max encoder count. Max encoder count. Max encoder count. 10mit (*5) 0 means rollover mode, other number means ring counter value and enable ring counter mode. 0: Do not update 1: Default value. 2: Flash memory 0: Disable. 1: Enable absolute position system 0 ~ 65535 (16 bit) 0 o ~ 65535 (16				2147483647	
82h(130) PRA_MAX_E_LIMIT PRA_MAX_E_LIMIT Max encoder count. 2value = encoder count limit(*5) In mode, other number means ring counter value and enable ring counter mode. 10000h PRA_SSC_SERVO_PA RAM_SRC PRA_SSC_SERVO_AB S_POS_OPT 10002h PRA_SSC_SERVO_AB S_CYC_CNT 10003h PRA_SSC_SERVO_AB S_RES_CNT PRA_SSC_SERVO_AB S_RES_CNT PRA_SSC_SERVO_AB S_RES_CNT PRA_SSC_TORQUE LIMIT_P Max encoder count. Pra_encoder counter in number means ring counter value and enable ring counter of 1: Default value. 1: Default value. 1: Default value. 1: Enable absolute position system. 1: Default value.				Unit : pulse	0
S2h(130) PRA_MAX_E_LIMIT Max encoder count. 2value = encoder count limit(*5) number means ring counter value and enable ring counter mode.				0 means rollover	
PRA_MAX_E_LIMIT 2 value = encoder count limit(*5) 10000h PRA_SSC_SERVO_PA RAM_SRC PRA_SSC_SERVO_AB S_POS_OPT 10002h PRA_SSC_SERVO_AB S_CYC_CNT 10003h PRA_SSC_SERVO_AB S_RES_CNT PRA_SSC_TORQUE_LIMIT_P 2 value = encoder count limit(*5) 10mit (*5) 10mit (*1) 1			May an and an accumt	mode, other	
ring counter value and enable ring counter mode. 10000h PRA_SSC_SERVO_PA RAM_SRC PRA_SSC_SERVO_AB S_POS_OPT PRA_SSC_SERVO_AB S_CYC_CNT PRA_SSC_SERVO_AB PRA_SSC_SERVO_AB S_CYC_CNT PRA_SSC_SERVO_AB S_RES_CNT PRA_SSC_TORQUE LIMIT_P Practical print of servo and enable ring counter value and enable ring counter mode. 0: Do not update 1: Default value. 2: Flash memory 0: Disable. 1: Enable absolute position system. 1: Enable absolute position system 0 ~ 65535 (16 bit)	82h(130)	PRA_MAX_E_LIMIT		number means	
10000h PRA_SSC_SERVO_PA RAM_SRC SERVO_AB Select servo parameter source when start SSCNET 0: Do not update 1: Default value. 2: Flash memory 0: Do not update 1: Default value. 2: Flash memory 0: Disable. 1: Enable absolute position system. 0: Disable. 1: Enable absolute position system 0: Disable. 1: Enable absolute position system 0: Disable. 1: Enable absolute position system 0 ~ 65535 (16 bit) 0 PRA_SSC_SERVO_AB Absolute cycle counter of servo driver 0 ~ 65535 (16 bit) 0 PRA_SSC_SERVO_AB Absolute resolution counter of Servo driver 0 ~ 262143 (18bit) 0 PRA_SSC_TORQUE Positive torque limit value 0 ~ 32767 3,000 LIMIT_P (0.1%) (*4)			, ,	ring counter value	
10000h PRA_SSC_SERVO_PA RAM_SRC Select servo parameter source when start SSCNET Select servo parameter source when start SSCNET Select servo parameter source when start SSCNET Select servo parameter source when start SSCNET Select servo parameter source servo is parameter source when start SSCNET Select servo parameter source is parameter source in the start SSCNET Select servo de select sele				and enable ring	
RAM_SRC when start SSCNET 1: Default value. 2: Flash memory 10001h PRA_SSC_SERVO_AB				counter mode.	
10001h PRA_SSC_SERVO_AB S_POS_OPT Enable absolute position system. 10002h PRA_SSC_SERVO_AB Absolute cycle counter of servo driver 10003h PRA_SSC_SERVO_AB Absolute resolution counter of S_RES_CNT S_RES_CNT Servo driver 10004h PRA_SSC_TORQUE_ Positive torque limit value C-32767 3,000 C-32767 3,000	10000h	PRA_SSC_SERVO_PA	Select servo parameter source	0: Do not update	0
10001h PRA_SSC_SERVO_AB S_POS_OPT Enable absolute position system. 10002h PRA_SSC_SERVO_AB S_CYC_CNT Absolute cycle counter of servo driver 10003h PRA_SSC_SERVO_AB Absolute resolution counter of S_RES_CNT Servo driver 10004h PRA_SSC_TORQUE Positive torque limit value LIMIT_P (0.1%) (*4) 0. Disable 1: Enable absolute position system		RAM_SRC	when start SSCNET		
S_POS_OPT 1: Enable absolute position system 10002h PRA_SSC_SERVO_AB S_CYC_CNT 10003h PRA_SSC_SERVO_AB Absolute cycle counter of servo driver 10004h PRA_SSC_SERVO_AB S_RES_CNT PRA_SSC_TORQUE_LIMIT_P 1: Enable absolute position system 0 ~ 65535 (16 bit) 0 0~262143 (18bit) 0 ~ 32767 3,000				2: Flash memory	
position system 10002h PRA_SSC_SERVO_AB Absolute cycle counter of servo driver 10003h PRA_SSC_SERVO_AB Absolute resolution counter of S_RES_CNT Servo driver 10004h PRA_SSC_TORQUE_ Positive torque limit value LIMIT_P (0.1%) (*4) position system 0 ~ 65535 (16 bit) 0 0 ~ 65535 (16 bit) 0 0 ~ 65535 (16 bit) 0 0 ~ 262143 (18bit) 0 3,000	10001h	PRA_SSC_SERVO_AB	Enable absolute position system.		0
10002h PRA_SSC_SERVO_AB S_CYC_CNT Absolute cycle counter of servo driver 10003h PRA_SSC_SERVO_AB Absolute resolution counter of S_RES_CNT Servo driver 10004h PRA_SSC_TORQUE_ Positive torque limit value (0~32767 3,000 LIMIT_P (0.1%) (*4)		S_POS_OPT			
S_CYC_CNT driver 0 0~262143 (18bit) 0 S_RES_CNT servo driver 0 0~32767 3,000 LIMIT_P (0.1%) (*4)	10002h	PRA SSC SERVO AR	Absolute cycle counter of servo		0
S_RES_CNT servo driver 10004h PRA_SSC_TORQUE_ Positive torque limit value 0~32767 3,000 LIMIT_P (0.1%) (*4)	1000211		-	0 · 00000 (10 bit)	U
10004h PRA_SSC_TORQUE_ Positive torque limit value 0~32767 3,000 LIMIT_P (0.1%) (*4)	10003h			0~262143 (18bit)	0
LIMIT_P (0.1%) (*4)	10004b			0~32767	3.000
	1000411		_	0-32/0/	3,000
	10005h	PRA_SSC_TORQUE_	Negative torque limit value	0~32767	3,000
LIMIT_N (0.1%) (*4) 10006h PRA_SSC_TORQUE_ Torque control enable (*3) 0: Disable, (Control 0	10006h	_	` , ` ,	0: Disable. (Control	0
CTRL vith motor max.			1-1	· ·	
torque)					
1: Enable, (Control with torque limit					
value)				-	

10007h	PRA_SSC_RESOLUTI	E-gear factor	Value = 12~18	18
	ON	2 ^{Value} = resolution (*5)		(resoluti
				on =
				262144)
10008h	PRA SSC GMR	E-gear factor	Value = 1~1000000	1
		molecular(*6)		
10009h	PRA_SSC_GDR	E-gear factor	Value = 1~1000000	1
		denominator(*6)		

- (*1): Do not set any parameter data.
- (*2): Reset to default value when start network.
- (*3): Some SSCNET axis parameters will be rest to default value when you start SSCNET network.
- (*4) 0.1% Set 1000 mean 100%
- (*5): This parameter is valid after re-start SSCNET network.
- (*6): This parameter is valid when PRA_SSC_RESOLUTION ==18 and after re-start SSCNET network.

$$\frac{1}{10} < \frac{PRA_SSC_GMR}{PRA_SSC_GDR} < 2000$$

2. PCI-8253/56 Axis parameter table.

PCI-8253/56 axis parameter table.					
NO.	Define	Description	Value	Note:	
00h	PRA_EL_LOGIC	PEL/MEL input logic	0:Not inverse 1:Inverse	0	
01h	PRA_ORG_LOGIC	ORG input logic	0:Not inverse 1:Inverse	0	
02h	PRA_EL_MODE	The mode of stop when end limit ON	0: Deceleration stop 1: Stop immediately	1	
03h	PRA_MDM_CONDI	Motion done condition (Affective with motion stats NSTP bit)	0: Control command done 1: Command done with INP 2: Command done with ZSP 3: Command done with INP & ZSP 4: Command done with soft INP	0	
04h	PRA_ALM_LOGIC	Set ALM logic	0: Low active 1: High active	0	
05h	PRA_ZSP_LOGIC	Set ZSP logic	0: Low active	1	

			1: High active	
06h	DDA EZ LOCIC	Cat E7 logic	0: Low active	0
0011	PRA_EZ_LOGIC	Set EZ logic	1: High active	
07h	PRA_STP_DEC	Stop deceleration rate for APS_stop();	Unit: pulse/sec ²	100,000,000
08h	PRA_SPEL_EN	Set Encorder event mode.	0: Disable 1: Encoder event 2: Soft-Limit	0
09h(9)	PRA_SMEL_EN	Set Encorder event mode.	(SPEL) 0: Disable 1: Encoder event 2: Soft-Limit (SMEL)	0
0Ah(10)	PRA_EFB_POS0	SPEL / EFB position 0	Unit: pulse. (I32 value)	100,000
0Bh(11)	PRA_EFB_POS1	SMEL / EFB position 1	Unit: pulse. (I32 value)	-100,000
0Ch(12)	PRA_EFB_CONDI0	Encoder compare condition. Feedback position >= or <= EFB pos0	0: Great equal (>=) 1: Less equal (<=)	0
0Dh(13)	PRA_ EFB_CONDI1	Encoder compare condition. Feedback position >= or <= EFB pos1	0: Great equal (>=) 1: Less equal (<=)	1
0Eh(14)	PRA_EFB_SRC0	Encoder event pos0 comparing counter source.	0: Feedback position 1: Command position	0
0Fh(15)	PRA_EFB_SRC1	Encoder event pos0 comparing counter source.	0: Feedback position 1: Command position	0
10h (16)	PRA_HOME_MODE	Home mode setting	0: home mode 1 (ORG) 1: home mode 2 (EL) 2: home mode 3 (EZ)	0
11h (17)	PRA_HOME_DIR	Homing direction	0: positive direction 1: negative direction	0
12h (18)	PRA_HOME_CURVE	Home move acceleration / Deceleration speed pattern	0: T-curve 1: S-curve	0
13h (19)	PRA_HOME_ACC	Home move acceleration/Deceleration rate	Unit: pulse/sec ²	22,520,000
14h (20)	PRA_HOME_VS	Homing start velocity	Unit pulse/sec	0
15h (21)	PRA_HOME_VM	Homing maximum velocity	Unit: pulse/sec	225,200

16h (22)	Reserved	(*1)		
17h (23)	Reserved	(*1)		
18h (24)	PRA_HOME_EZA	EZ alignment enable	0: Not enable 1: Enable	0
19h (25)	PRA_HOME_VO	Homing leave home velocity	Unit: pulse/sec	112,600
1Ah-1Fh	Reserved	(*1)		
20h(32)	PRA_CURVE	Acceleration / Deceleration speed pattern	0: T-Curve 1: S-Curve	0
21h(33)	PRA_ACC	Acceleration rate	Unit: pulse/sec2	10,000,000
22h(34)	PRA_DEC	Deceleration rate	Unit: pulse/sec2	10,000,000
23h(35)	PRA_VS	Start velocity	Unit: pulse/sec	0
24h(36)	Reserved	(*1)		
25h(37)	PRA_VE	End velocity	Unit: pulse/sec	0
30h(48)	Reserved	(*1)		
31h(49)	Reserved	(*1)		
32h(50)	PRA_PT_STP_DO_E N	Enable Do when point table stopping/pausing	0: Disable 1: Enable	0
33h(51)	PRA_PT_STP_DO	Set Do value when Point table stopping	0: Set to 0 1: Set to 1	0
34h(52)	PRA_PWM_OFF	Disable the specified PWM output when ASTP input signal is active.	0: Disable. No action when ASTP is active. 1: PWM_CH0 output will be disabled when ASTP is active. 2: PWM_CH1 output will be disabled when ASTP is active.	0
35h(53)	PRA_DO_OFF	Set Do value when ASTP input signal is active.	0: Disable. No action when ASTP is active. Bit0~3: select DO channel. Bit8: Set Do output value when ASTP is active. (*5)	0
40h(64)	PRA_JG_MODE	Jog mode	0: Free mode 1: step mode	0
41h(65)	PRA_JG_DIR	Jog move direction	0: Positive	0

			direction 1:negative direction	
42h(66)	PRA_JG_CURVE	Jog speed pattern	0: T-curve 1:S-curve	0
43h(67)	PRA_JG_ACC	Acceleration rate	Unit: pulse/sec2	10,000,000
44h(68)	PRA_JG_DEC	Deceleration rate Unit: pulse/sec2		10,000,000
45h(69)	PRA_JG_VM	Max. velocity	Unit: pulse/sec	10,000
46h(70)	PRA_JG_STEP	Step offset	Unit: pulse (For step mode)	1,000
47h(71)	PRA_JG_DELAY	Delay time	Unit: ms (cycle time alignment) (For step mode)	800
50h(80)	PRA_MDN_DELAY	Motion done delay cycle (Affective with motion stats NSTP bit) The motion status NSTP bit will be	Unit: system cycle time.	0
		turn on after specified delay cycle, when motion done condition is met.		
51h(81)	PRA_SINP_WDW	Soft INP window setting (Affective with motion I/O status INP bit). The motion I/O status INP bit will turn on when position into soft INP range and over INP stable cycle. The INP range define is as below INP range = (Target + window_setting) to (Target – window_setting). This function can be used by set PRA_MDM_CONDI parameter to command with soft INP.	Unit: pulse Value = 1 ~ 2147483647	200
52h(82)	PRA_SINP_STBL	Soft INP stable cycle (Affective with motion I/O status INP bit). The value decides how many cycles will turn on INP bit after position into soft INP range continuity.	Unit: system cycle time Value = 1~ 2147483647	100
80h(128)	PRA_PLS_IPT_MOD E	Pulse input mode	0: OUT/DIR 1: CW/CCW 2: 1x AB phase 3: 2x AB phase 4: 4x AB phase(default)	4
81h(129)	Reserved	(*1)		
82h(130)	PRA_MAX_E_LIMIT	Max encoder count	Unit: pulse 0 means rollover	0

			mode, other	
			number means	
			ring counter value	
			and enable ring	
			counter mode	
			0 : Disable	0
			filter(Default)	
			1 : Enable	
83h(131)	PRA_ENC_FILTER	Encoder filter	filter(Neglect	
			signal that smaller	
			than 80ns)	
			Value = 1 ~ Motor	40,000
84h(132)	PRA_EGEAR	E-Gear factor = Motor Encoder	Encoder	
, ,		resolution(112h) / Value	resolution.	
90h(144)	PRA_KP_GAIN	PID controller Kp gain (*2, *3)	Floating number	500
91h(145)	PRA_KI_GAIN	PID controller Ki gain(*2, *3)	Floating number	0
92h(146)	PRA_KD_GAIN	PID controller Kd gain (*2, *3)	Floating number	0
93h(147)	PRA_KFF_GAIN	Feed forward Kff gain (*2, *3)	Floating number	0
94h(148)	PRA_KVGTY_GAIN	Gantry Kgty gain (*2, *3)	Floating number	0
95h(149)	PRA_KPGTY_GAIN	Gantry Kpgty gain (*2, *3)	Floating number	0
	PRA_IKP_GAIN	PID controller Kp gain in torque	Floating number	10
96h(150)		mode(*2, *3)		
07 (171)	PRA_IKI_GAIN	PID controller Ki gain in torque	Floating number	0
97h(151)		mode(*2, *3)		
001 (150)		PID controller Kd gain in torque	Floating number	0
98h(152)	PRA_IKD_GAIN	mod(*2, *3)		
00k/452\	DDA IVEE CARA	Feed forward Kff gain in torque	Floating number	0
99h(153)	PRA_IKFF_GAIN	mode (*2, *3)		
100h(256)	PRA_M_INTERFACE	Motion interface	0: Analog motion	0
1101 (272)	PRA_M_VOL_RANG	M. 1	Input value means	10
110h(272)	Е	Motor voltage input range (*3, *4)	±(Value) volt	
1111 (070)	PRA_M_MAX_SPEE	1/40 4/0	Unit: RPS or mm /	100 RPS
111h(273)	D	Motor maximum speed (*3, *4)	s	
1101 (271)	DDA M ENG DEG		Unit: Pulse / rev or	*40,000
112h(274)	PRA_M_ENC_RES	Motor encoder resolution (*3, *4)	Pulse / mm	Pulse / rev

121h(289)	PRA_DZ_LOW	Dead zone lower side (*2, *3)	Unit: volt	0
122h(290)	PRA_DZ_UP	Dead zone upper side (*2, *3)	Unit: volt	0
123h(291)	PRA_SAT_LIMIT	Voltage saturation output limit (*2, *3)	Unit: volt	100000
124h(292)	PRA_ERR_C_LEVEL	Error counter check level	If set to 0, it means do not check error. Other value means error check then stop level	90000
125h(293)	PRA_V_INVERSE	Voltage ouput inverse	0: Not inverse, 1: Inverse	0
126h(294)	PRA_DZ_VAL	Assign dead band output value(*2, *3)	Unit: volt	0
127h(295)	PRA_IW_MAX	Integral windup upper limit value	Unit: Pulse(Value must input positive value)	45000
128h(296)	PRA_IW_MIN	Intergral windup lower limit value	Unit: Pulse(Value must input positive value)	45000
129h(297)	PRA_BKL_DIST	Use this parameter to define backlash length. If set to zero then backlash compensate function will be closed.	Unit: Pulse	0
12Ah(298)	PRA_BKL_CNSP	This parameter will define backlash compensate consumption value. Because backlash compensate machine will consume pulse every cycle until backlash distance use up. And user must make sure initial state in motion direction before use backlash function (Direction initial state is negative, so user move positive will trigger backlash compensate machine ouput pulse).	Unit: Pulse	0
130h(304)	PRA_PSR_LINK	Connect pulser	0: Disable, 1: Enable	0
131h(305)	PRA_PSR_RATIO	Pulser ratio	Value = 1 ~	1

			2147483647	
140h(320)	PRA_DA_TYPE	DAC output type	0: Differential output 1: Single output	0
141h(321)	PRA_CONTROL_MO DE	Closed loop control mode (*3)	0: Velocity control loop 1: Torque control loop	0

^{*1:} Do not set any parameter data.

^{*5:} Parameter value detail description

7	6	5	4	3	2	1	Bit : 0
-	-	-	-	1~8 :DO_CH0~ DO_CH7			
15	14	13	12	11	10	9	Bit : 8
-	-	-	-	-	-	-	ON/OFF

^{*2:} Change unit by setting system parameter 80h, if user want to change unit in program, remember re-set parameter after set system parameter 80h.

^{*3:} Please give a correct value before use analog motion interface.

^{*4:} This parameter is used to calculate a ratio that speed unit change to voltage unit

3. PCI-8144 Axis parameter table.

PCI-8144 axis parameter table.					
NO.	Define	Description	Value	Default	
00h	PRA_EL_LOGIC	Limit input logic	0: positive logic 1: negative logic	1	
81h	PRA_PLS_OPT_MODE	Pulse output style (mode) selection. (logic)	0 = CW/CCW 1 = CW/CCW (logic inverse) 2 = OUT/DIR 3 = OUT/DIR (logic inverse)	0	
11h	PRA_HOME_DIR	Homing direction	0: positive direction 1: negative direction	0	
15h	PRA_HOME_VM	Homing maximum velocity	Unit: pulse/sec	1000	
1Ah	PRA_ORG_STP	Motion stop when ORG input is turned ON.	0: Disable 1: Enable	1	
20h	PRA_CURVE	Acceleration / Deceleration speed pattern Change this parameter will affect motion parameters include PRA_ACC	0: T-curve 1: S-curve	0	
21h	PRA_ACC	Acceleration rate / Deceleration rate. If ACC = 0, Axis feed as start velocity If ACC < 0, Axis feed as max velocity	Unit: pulse/s^2	99903	
22h	Reserved				
23h	PRA_VS	Strart velocity	Unit: pulse/s	10	
81h	PRA_PLS_OPT_MODE	Pulse output style (mode) selection. (logic)	0 = CW/CCW 1 = CW/CCW (logic inverse) 2 = OUT/DIR 3 = OUT/DIR (logic inverse)	0	
212h	PRA_SD_EN	Enable slow down when SD input	0: Disable	0	

		is turned ON.	1: Enable	
240h	PRA_SPD_LIMIT	Posibile Maximum axis peration speed. Change this parameter will affect other motion parameters include PRA_ACC, PRA_VS	Unit: pulse/sec	409550
10000h	PRA_CMD_CNT_EN	Enable soft command counter.	0: Disable 1: Enable	0
10001h	PRA_MIO_SEN	Motion I/O: ORG, EL, STP input sensitivity setting.	0: High sensitivity 1: Low sensitivity	0
10002h	PRA_START_STA	Start(Trigger) motion via external input pin STA.	0: Disable 1: Enable	0
10003h	PRA_SPEED_CHN	(Set only) Set change speed command.	1: Change speed to start velocity 0: Change speed to max. speed.	0

4. MNET-4XMO-© Axis parameter table.

	MNET-4XI	MO-© axis param	eter table.	
NO.	Define	Description	Value	Note:
00h (0)	PRA_EL_LOGIC	PEL/MEL input logic	0:Not inverse 1:Inverse	0
01h (1)	PRA_ORG_LOGIC	ORG input logic	0:Active low 1:Active high	0
02h (2)	PRA_EL_MODE	The mode of stop when end limit ON	0: Deceleration stop 1: Stop immediately	0
03h (3)	PRA_MDN_CONDI	Motion done condition (Affective with motion stats NSTP bit)	0: Control command done (default) 1: Command done with INP	0
04h (4)	PRA_ALM_LOGIC	Set ALM Logic	0: Active low 1: Active high	0
05h(5)	Reserved			
06h(6)	PRA_EZ_LOGIC	Set EZ Logic	0: Falling edge 1: Rising edge	0
07h(7)	Reserved			
08h	PRA_SPEL_EN	Set Encorder event mode. (*3,)	0: Disable 1: Reserved 2: Soft-Limit (SPEL) Note: mode 1 is reserved. If set, return error.	0
09h(9)	PRA_SMEL_EN	Set Encorder event mode. (*3,)	0: Disable 1: Reserved 2: Soft-Limit (SMEL) Note: mode 1 is reserved. If set, return error.	0
0Ah(10)	PRA_EFB_POS0	SPEL / EFB position 0 (*3,)	Unit: pulse. (I32 value) (28-bit signed)	100,000
0Bh(11)	PRA_EFB_POS1	SMEL / EFB position 1 (*3,)	Unit: pulse. (I32 value) (28-bit signed)	-100,000
0Ch(12)	Reserved			
0Dh(13)	Reserved			
0Eh(14)	Reserved			
0Fh(15)	Reserved			
10h (16)	PRA_HOME_MODE	Home mode setting	Home search – 0(1st mode) to 12(13th mode) Home move – 20(1st mode) to 32(13th mode) Note: Home search (6 to 8) is reserved. If set, return error.	0

11h (17)	PRA_HOME_DIR	Homing direction	0: positive direction 1: negative direction	0
12h (18)	Reserved		Ti Hogativo anconon	
13h (19)	Reserved			
14h (20)	Reserved			
15h (21)	PRA_HOME_VM	Homing maximum velocity	Unit: pulse/sec	10000
16h (22)	Reserved			
17h (23)	Reserved			
18h (24)	PRA_HOME_EZA	Specify the EZ count up value	0000(1st count) to 1111(16th count)	0
19h (25)	PRA_HOME_VO	Homing leave home velocity - Specify FA speed	Unit: pulse/sec	152
1Ah	PRA_HOME_OFFSET	Homing leave home distance - Specify ORG offset	Unit: pulse	100
1Bh-1Fh	Reserved			
20h (32)	PRA_CURVE	Acceleration / Deceleration speed pattern(*4)	0: T-Curve 1: S-Curve	0
21h (33)	PRA_ACC	Acceleration rate	Unit: pulse/sec ²	1000000
22h (34)	PRA_DEC	Deceleration rate	Unit: pulse/sec ²	1000000
23h (35)	PRA_VS	Start velocity	Unit: pulse/sec	152
24h~26h	Reserved			
28h	PRA_ACC_SR	S curve ratio in acceleration.(*4)	Unit: Milli %. Value = 1 ~ 100,000	100,000
29h	PRA_DEC_SR	S curve ratio in deceleration(*4)	Unit: Milli %. Value = 1 ~ 100,000	100,000
2Ah~50h	Reserved			
53h(83)	PRA_SERVO_LOGIC	SERVO output logic	0: Active low 1: Active high	0
80h(128)	PRA_PLS_IPT_MODE	Pulse input mode	0: A/B X1 1: A/B X2 2: A/B X4 3: CW/CCW	0
81h(129)	PRA_PLS_OPT_MODE	Pulse output mode	0: OUT/DIR (AL,H+) 1: OUT/DIR (AH,H+) 2: OUT/DIR (AL,L+) 3: OUT/DIR (AH,L+) 4: CW/CCW (AH) 5: CW/CCW (AL) 6: AB (Out Leading) 7: AB (Out Lagging)	0
84h(132)	PRA_EGEAR	E-Gear factor = Motor Encoder resolution(112h) / Value (*1,)	Value = 1 ~ Motor Encoder resolution.	40,000
112h(274)	PRA_M_ENC_RES	Motor encoder resolution (*1,)	Unit: Pulse / rev or Pulse / mm	40,000
200h(512	PRA_PLS_IPT_LOGIC	Pulse input logic	0: don not reverse	0
20011(312	1.1/1 LJ_11 1_LOGIC	i also imput logic	o. dominorieveise	· ·

Counting direction 1: reverse counting direction 1: reverse counting direction 1: reverse counting direction 1: reverse counting direction 0: Ext. Encoder mode Ext. Encoder counter & Absolute mode reference to Encoder counter 1: Stepper mode Ext. Command counter & Absolute mode reference to Command counter & Absolute mode reference to Command counter 2: ACServo mode Ext. Encoder counter & Absolute mode reference to Command counter & Absolute mode reference to Command counter 2: ACServo mode Ext. Encoder counter & Absolute mode reference to Command counter 2: ACServo mode Ext. Encoder counter & Absolute mode reference to Command counter 2: ACServo mode Ext. Encoder counter & Absolute mode reference to Command counter 2: ACServo mode Ext. Encoder counter & Absolute mode reference to Command counter 2: ACSERVO mode Ext. Encoder counter & Absolute mode reference to Command counter 2: ACSERVO mode 2: ACSERVO					
)			counting direction	
201h(513 PRA_FEEDBACK_SRC Select feedback Source Select feedback Source Select feedback Source Select feedback Source Select Source Select Source Select Select Select Select Select Select Select Source Select				_	
201h(513				direction	
201h(513 PRA_FEEDBACK_SRC Select feedback Source Select feedback Select feedback Select feedback Source Select feedback Select feedback Source Select feedback				0: Ext. Encoder mode	0
201h(513 PRA_FEEDBACK_SRC Select feedback Source Select feedback Select feedback Select feedback Source Select feedback Select feedback Source Select feedback				Ext. Encoder counter	
201h(513					
201h(513					
1: Stepper mode					
Description					
PRA_FEEDBACK_SRC Select feedback source Counter & Absolute mode reference to Command counter.				1: Stepper mode	
PRA_FEEDBACK_SRC Source Source Counter & Absolute mode reference to Command counter. 2: ACServo mode Ext. Encoder counter & Absolute mode reference to Command counter.	201h(513		Soloct foodback	Ext. Command	
Mode reference to Command counter. 2: ACServo mode Ext. Encoder counter & Absolute mode reference to Command counter. 2: ACServo mode Ext. Encoder counter & Absolute mode reference to Command counter. 2: Absolute mode reference to Command counter. 2: Siow down then stopp 1: Slow down then stopp 2: Slow down then stopp 2: Slow down then stopp 2: Active high 2: Active high 2: Enable 0: Active high 2: Enable 0: Disable 0: Enable 0: Disable 0: Enable 0: Active high 0: Only slow down on 1: Slow down and stop 0: Active low 0: Active latch function 0: Biable latch function 0: Active latch 0: Active high		PRA_FEEDBACK_SRC		counter & Absolute	
Command counter. 2: ACServo mode)		source	mode reference to	
2: ACServo mode				Command counter.	
Ext. Encoder counter					
Reserved Reserved					
Teference to Command counter. Teference to Command counter. Temperature Temper					
Command counter.					
210h(528 PRA_ALM_MODE ALM mode setting 0: Immediate stop 1: Slow down then stop 1: Slow down then stop 0 1: Slow down then stop 0: Active low 0 1: Active high 0: Disable tch 0: Disable 0: Disable latch 0: Disable latch 0: Disable latch 0: Disable 0: Disable latch 0: Disable la					
1: Slow down then stop				Command counter.	
1: Slow down then stop	2105/520		ALM mode setting	O Immodiate stars	0
Stop		PKA_ALM_MODE	ALIVI mode setting		U
211h(529 PRA_INP_LOGIC INP input logic 0: Active low 1: Active high 0)				
1: Active high 212h(530 PRA_SD_EN Enable SD. (*2) 0: Disable 1: Enable 0				'	
212h(530 PRA_SD_EN Enable SD. (*2) 0: Disable 1: Enable 0 2: Enable 0 2: Enable 0 2: Enable 0 0: Only slow down 0 0: Only slow down and stop 0: Only slow down and stop 0: Active low 0: Active high 0: Disable latch function 1: Active high 0: Disable latch function 0:	211h(529	PRA_INP_LOGIC	INP input logic	0: Active low	0
1: Enable)			1: Active high	<u> </u>
1: Enable	212h(530	PRA SD EN	Enable SD. (*2)	0: Disable	0
213h(531 PRA_SD_MODE SD mode setting 0: Only slow down 1: Slow down and stop 0 1: Active low 1: Active high 0: Disable latch function 1: Enable latch function 0: disable 3 1: output ERC when stopped by EL, ALM, or EMG input 2: output ERC when complete home return 3: both 1 and 2 2: 2: output ERC when complete home return 3: both 1 and 2 2: Active low 0: Disable latch function 0: disable 3 1: output ERC when stopped by EL, ALM, or EMG input 2: output ERC when complete home return 3: both 1 and 2 2: Active low 0: Active lo)				
1: Slow down and stop	213h(531	PRA SD MODE	SD mode setting		0
Stop			- 55 mode setting		
214h(532 PRA_SD_LOGIC SD input logic D: Active low 1: Active high D: Disable latch function 1: Enable latch functi	'				
1: Active high 215h(533 PRA_SD_LATCH Latch SD input 0: Disable latch function 1: Enable latch function 216h(534 PRA_ERC_MODE ERC mode setting 0: disable 1: output ERC when stopped by EL, ALM, or EMG input 2: output ERC when complete home return 3: both 1 and 2 0: disable 0: Active low 1: Active high 0: Disable 0: Active low 1: Active high 0: Disable 0: Dis	21.45/522	DDA CD LOCIC	CD input lacia	•	
215h(533 PRA_SD_LATCH Latch SD input 0: Disable latch function 1: Enable latch function 1: Enable latch function 216h(534 PRA_ERC_MODE ERC mode setting 0: disable 3 1: output ERC when stopped by EL, ALM, or EMG input 2: output ERC when complete home return 3: both 1 and 2 217h(535 PRA_ERC_LOGIC ERC output logic 0: Active low 1: Active high 218h(536 PRA_ERC_LEN Pulse width of ERC 3: 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537 Reserved) 21Ah(53 Reserved 3	2140(532	PKA_3D_LUGIC	ו חפ input logic		U
Section Function)				
1: Enable latch function 216h(534 PRA_ERC_MODE ERC mode setting 0: disable 1: output ERC when stopped by EL, ALM, or EMG input 2: output ERC when complete home return 3: both 1 and 2 217h(535 PRA_ERC_LOGIC ERC output logic 0: Active low 1: Active high 218h(536 PRA_ERC_LEN Pulse width of ERC setting 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537 Reserved) 21Ah(53 Reserved	215h(533	PRA_SD_LATCH	Latch SD input		0
Section Function Function Color Colo)			function	
216h(534 PRA_ERC_MODE				1: Enable latch	
216h(534 PRA_ERC_MODE				function	
1: output ERC when stopped by EL, ALM, or EMG input 2: output ERC when complete home return 3: both 1 and 2 217h(535 PRA_ERC_LOGIC ERC output logic 0: Active low 1: Active high 218h(536 PRA_ERC_LEN Pulse width of ERC setting 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537 Reserved PRESERVED PULSE PULSE	216h(534	PRA_ERC_MODE	ERC mode settina		3
Stopped by EL, ALM, or EMG input 2: output ERC when complete home return 3: both 1 and 2) (2.2.1	_			
or EMG input 2: output ERC when complete home return 3: both 1 and 2 217h(535 PRA_ERC_LOGIC ERC output logic 0: Active low 1: Active high Pulse width of ERC setting 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537 Reserved Reserved	'			I	
2: output ERC when complete home return 3: both 1 and 2 217h(535 PRA_ERC_LOGIC ERC output logic 0: Active low 1: Active high 218h(536 PRA_ERC_LEN Pulse width of ERC setting 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537 Reserved PRA_ERC_LEN Pulse width of ERC Setting 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 1: 102 us 1: 10					
Complete home return 3: both 1 and 2					
PRA_ERC_LOGIC ERC output logic 0: Active low 1: Active high					
217h(535 PRA_ERC_LOGIC ERC output logic 0: Active low 1: Active high 218h(536 PRA_ERC_LEN Pulse width of ERC setting 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537 Reserved 1) Reserved 121Ah(53 Reserved Reserved 151A ms 151A				'	
217h(535) PRA_ERC_LOGIC ERC output logic 0: Active low 1: Active high 218h(536) PRA_ERC_LEN Pulse width of ERC setting 0: 12 us 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537) Reserved 7: Level Output 21Ah(53) Reserved					
1: Active high 218h(536) PRA_ERC_LEN Pulse width of ERC setting 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537) Reserved 21Ah(53) Reserved				3: both 1 and 2	
1: Active high 218h(536) PRA_ERC_LEN Pulse width of ERC setting 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537) Reserved 21Ah(53) Reserved	217h(535	PRA_ERC_LOGIC	ERC output logic	0: Active low	0
218h(536 PRA_ERC_LEN Pulse width of ERC setting 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537 Reserved) Reserved 121Ah(53 Reserved 152 Reserved 153 Reserved 154 Reserved 155 Reserved 155 Reserved 156 Reserved 157 Reserved 157 Reserved 157 Reserved 158 R)			1: Active high	
) setting 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537 Reserved) 21Ah(53 Reserved	218h(536	PRA ERC LEN	Pulse width of FRC	•	3
2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537 Reserved) 21Ah(53 Reserved					*
3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output 219h(537 Reserved) 21Ah(53 Reserved	<i>'</i>				
4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output					
5: 52 ms 6: 104 ms 7: Level Output 219h(537 Reserved) 21Ah(53 Reserved					
6: 104 ms 7: Level Output					
7: Level Output 219h(537 Reserved) 21Ah(53 Reserved					
219h(537 Reserved) 21Ah(53 Reserved)					
) 21Ah(53 Reserved				7: Level Output	
	219h(537	Reserved			
)				
8)		Reserved			
	8)				

21B(539)	PRA_PLS_IPT_FLT	EA/EB Filter Enable	0: Disable 1: Enable	1
21C	Reserved		1. LIIdbie	
21D	PRA_LTC_LOGIC	LTC input logic	0: Falling edge 1: Rising edge	0
21E~220	Reserved			
221	PRA_	A backlash or slip	0 to 4095	0
	COMPENSATION _PULSE	correction amount		
222	PRA_	Backlash or slip mode	0: Disable	0
	COMPENSATION	setting	1: Backlash correction	
	_MODE		2: Slip correction	
223	PRA_LTC_SRC	Select latch source	0: LTC pin	0
			1: ORG pin	
			2: GCMP ON	
224	PRA_LTC_DEST	Select latch target	0: Command counter	0
			1: Position counter	
225	PRA_LTC_DATA	Get latch data	Pulse	0
		(Read only)	(28-bit signed)	
226	PRA_GCMP_EN	Genernal comparator	0: Disable	0
		enable & set method	Other: Enable	
			1:data = cmp counter	
			(regardless of	
			counting direction)	
			2: data=cmp counter	
			(while counting up)	
			3: data=cmp counter	
			(while counting	
			down)	
			4: data>cmp counter	
			5: data <cmp counter<="" td=""><td></td></cmp>	
227	PRA_GCMP_POS	General comparator	Pulse	0
		position	(28-bit signed)	
228	PRA_GCMP_SRC	Select general	0: Command counter	0
		comparator source	1: Position counter	
229	PRA_GCMP_ACTION	Select action when	0: Do nothing	0
		GCMP are met.	1: Immediate stop	
			2: Deceleration stop	
22A	PRA_GCMP_STS	Check if GCMP is met	0: Not meet	0

		(Read only)	1: meet	
22B	PRA_VIBSUP_RT	Supress vibration -	Unit: 1.067 us	0
		Reverse Time	(16-bit unsigned)	
22C	PRA_VIBSUP_FT	Supress vibration -	Unit: 1.067 us	0
		Forward Time	(16-bit unsigned)	
22D~22F	Reserved			
230	Reserved			
231	PRA_GPDI_SEL	Select gpio input - DI /	0: DI	0
		LTC / SD. (*2)	1: LTC	
			2: SD	
232	Reserved			
233(563)	PRA_RDY_LOGIC	RDY input logic	0: Active high 1: Active low	0
234h~	Reserved			
23Fh				
240h(576	PRA_SPD_LIMIT	Set Fixed Speed	Unit: pulse/sec	9999847
)				
241h(577	PRA_MAX_ACCDEC	Get max	Unit: pulse/sec ²	57220458
)		acceleration		9
		/deceleration which is		
		limited by fixed speed.		
		(Read only) (*5)		
242h(578	PRA_MIN_ACCDEC	Get minimum	Unit: pulse/sec ²	17462
)		acceleration/deceler		
		ation which is limited		
		by fixed speed. (Read		
		only) (*5)		
260h(608	PRA_SYNC_STOP_MO	Set stop mode when	0: Immediate stop	0
)	DE	stopping	1: Deceleration stop	
		simultaneous move		

^{*1:} This parameter is used to calculate a move ratio. It is only effective when PRA_FEEDBACK_SRC was set to 0 or 2.

^{*2:} When PRA_GPDI_SEL set to DI/LTC, PRA_SD_EN automatically set to disable. Before PRA_SD_EN set to enable, be sure that PRA_GPDI_SEL set to SD mode.

^{*3:} When positive or negative software limit is selected, command counter is used as the comparison counter. The comparison method is mentioned as follows:

(EFB position 0 < command counter) for positive software limit, (EFB position 1 > command counter) for negative software limit.

*4: If PRA_ACC_SR and PRA_DEC_SR are set to 100,000, it represents the curve profile is pure S curve. If PRA_ACC_SR or PRA_DEC_SR is not equal to 100,000, it represents the curve profile is S curve with linear range.

The formula is listed as below:

PRA_ACC_SR =

2Svacc / (MaxV - StrV) * 100,000 milli%

MaxVel VSacc VSdec

VSacc VSdec

StrVel Time (Second)

PRA_DEC_SR =

2Svacc / (MaxV - StrV) * 100,000 milli%

*5: According to (*4), when the curve profile is set to S curve with linear range, the PRA_MAX_ACCDEC and PRA_MIN_ACCDEC are always return 0. The PRA_MAX_ACCDEC and PRA_MIN_ACCDEC are only available in T and pure S curve mode.

5. MNET-1XMO Axis parameter table.

MNET-1XMO axis parameter table.				
NO.	Define	Description	Value	Note:
00h (0)	Reserved			
01h (1)	PRA_ORG_LOGIC	ORG input logic	0:Active low 1:Active high	0
02h (2)	PRA_EL_MODE	The mode of stop when end limit ON	0: Deceleration stop 1: Stop immediately	0
03h (3)	PRA_MDN_CONDI	Motion done condition (Affective with motion stats NSTP bit)	0: Control command done (default) 1: Command done with INP	0
04h (4)	PRA_ALM_LOGIC	Set ALM Logic	0: Active low 1: Active high	1
05h(5)	Reserved			
06h(6)	PRA_EZ_LOGIC	Set EZ Logic	0: Falling edge 1: Rising edge	0
07h(7)	Reserved			
08h	PRA_SPEL_EN	Set Encorder event mode. (*2,)	0: Disable 1: Reserved 2: Soft-Limit (SPEL)	0
09h(9)	PRA_SMEL_EN	Set Encorder event mode. (*2,)	0: Disable 1: Reserved 2: Soft-Limit (SMEL)	0
0Ah(10)	PRA_EFB_POS0	SPEL / EFB position 0 (*2,)	Unit: pulse. (I32 value) (28-bit signed)	100,000
0Bh(11)	PRA_EFB_POS1	SMEL / EFB position 1 (*2,)	Unit: pulse. (I32 value) (28-bit signed)	-100,000

0Ch(12)	Reserved			
0Dh(13)	Reserved			
0Eh(14)	Reserved			
0Fh(15)	Reserved			
10h (16)	PRA_HOME_MODE	Home mode setting	Home search – 0(1st mode) to 12(13th mode) Home move – 20(1st mode) to 32(13th mode) Note: Home search (6 to 8) is reserved. If set, return error.	0
11h (17)	PRA_HOME_DIR	Homing direction	0: positive direction 1: negative direction	0
12h (18)	Reserved			
13h (19)	Reserved			
14h (20)	Reserved			
15h (21)	PRA_HOME_VM	Homing maximum velocity	Unit: pulse/sec	10000
16h (22)	Reserved			
17h (23)	Reserved			
18h (24)	PRA_HOME_EZA	Specify the EZ count up value	0000(1 st count) to 1111(16 th count)	0
19h (25)	PRA_HOME_VO	Homing leave home velocity - Specify FA speed	Unit: pulse/sec	0
1Ah	PRA_HOME_OFFSET	Homing leave home distance – Specify ORG offset	Unit: pulse	100
1Bh-1Fh	Reserved			
20h (32)	PRA_CURVE	Acceleration / Deceleration speed pattern	0: T-Curve 1: S-Curve	0
21h (33)	PRA_ACC	Acceleration rate	Unit: pulse/sec ²	1000000
22h (34)	PRA_DEC	Deceleration rate	Unit: pulse/sec ²	1000000
23h (35) 24h	PRA_VS Reserved	Start velocity	Unit: pulse/sec	66
25h	PRA_SVACC	S-curve part of a bell curve in acceleration	Unit: pulse/sec	66
26h	PRA_SVDEC	S-curve part of a bell curve in deceleration	Unit: pulse/sec	66
27h~50h	Reserved			
53h(83)	PRA_SERVO_LOGIC	SERVO output logic	0: Active low 1: Active high	0
80h(128)	PRA_PLS_IPT_MODE	Pulse input mode	0: A/B X1 1: A/B X2 2: A/B X4 3: CW/CCW	0
81h(129)	PRA_PLS_OPT_MODE	Pulse output mode	0: OUT/DIR (AL,H+) 1: OUT/DIR (AH,H+) 2: OUT/DIR (AL,L+) 3: OUT/DIR (AH,L+) 4: CW/CCW (AH)	0

Г	T	1	T =	ı
			5: CW/CCW (AL)	
			6: AB (Out Leading)	
		E-Gear factor = Motor	7: AB (Out Lagging) Value = 1 ~ Motor	40,000
		Encoder	Encoder resolution.	
84h(132)	PRA_EGEAR			
		resolution(112h) / Value		
		(*1,)		
1101 (07.1)	DD 4 14 EVG DEG	Motor encoder	Unit: Pulse / rev or	40,000
112h(274)	PRA_M_ENC_RES	resolution (*1,)	Pulse / mm	
200h(512	PRA_PLS_IPT_LOGIC	Pulse input logic	0: don not reverse	0
)			EA/EB counting	
			1: reverse EA/EB	
			counting	0
			0: Ext. Encoder mode Ext. Encoder counter	0
			& Absolute mode	
			reference to Encoder	
			counter.	
			1: Stepper mode	
201h(513		Select feedback	Ext. Command	
)	PRA_FEEDBACK_SRC	source	counter & Absolute mode reference to	
			Command counter.	
			2: ACServo mode	
			Ext. Encoder counter	
			& Absolute mode	
			reference to	
			Command counter.	
210h(528	PRA_ALM_MODE	ALM mode setting	0: Immediate stop	0
)		, .eg	1: Slow down then	
,			stop	
211h(529	PRA_INP_LOGIC	INP input logic	0: Active low	0
)	22.4 22.51	05	1: Active high	
212h(530	PRA_SD_EN	Enable SD	0: Disable 1: Enable	0
213h(531	PRA_SD_MODE	SD mode setting	0: Only slow down	0
)		12 2.0 00 19	1: Slow down and	_
			stop	
214h(532	PRA_SD_LOGIC	SD input logic	0: Active low	0
)	DDA CD LATOU	Latab CD insuit	1: Active high	0
215h(533)	PRA_SD_LATCH	Latch SD input	0: Disable latch function	0
/			1: Enable latch	
			function	
216h(534	PRA_ERC_MODE	ERC mode setting	0: disable	3
)			1: output ERC when	
			stopped by EL, ALM,	
			or EMG input 2: output ERC when	
			complete home	
			return	
			3: both 1 and 2	
217h(535	PRA_ERC_LOGIC	ERC output logic	0: Active low	0

)			1: Active high	
218h(536	PRA_ERC_LEN	Pulse width of ERC	0: 12 us	3
)		setting	1: 102 us	
			2: 409 us	
			3: 1.6 ms	
			4: 13 ms	
			5: 52 ms 6: 104 ms	
			7: Level Output	
219h(537	Reserved		'	
)				
21Ah(53	Reserved			
8)				
21B(539)	PRA_PLS_IPT _FLT	EA/EB Filter Enable	0: Enable	1
			1: Disable	
21C	Reserved			
21D	PRA_LTC_LOGIC	LTC input logic	0: Falling edge	0
215 220	Deserved		1: Rising edge	
21E~220 221	Reserved PRA_COMPENSATION	A backlash correction	0 to 4095	0
221	_PULSE	amount	0 10 4073	
222	PRA_	Backlash mode setting	0: Disable	0
	COMPENSATION _MODE		1: Backlash correction	
223	PRA_LTC_SRC	Select latch source	0: LTC pin	0
			1: ORG pin	
			2: GCMP ON	
224	PRA_LTC_DEST	Select latch target	0: Command counter	0
			1: Position counter	
225	PRA_LTC_DATA	Get latch data	Pulse	0
		(Read only)	(28-bit signed)	
226	PRA_GCMP_EN	Genernal comparator	0: Disable	0
		enable & set method	Other: Enable	
			1:data = cmp counter	
			(regardless of	
			counting direction)	
			2: data=cmp counter	
			(while counting up)	
			3: data=cmp counter	
			(while counting	
			down)	
			4: data>cmp counter	
			5: data <cmp counter<="" td=""><td></td></cmp>	
227	PRA_GCMP_POS	General comparator	Pulse	0
		position	(28-bit signed)	
228	PRA_GCMP_SRC	Select general	0: Command counter	0
		comparator source	1: Position counter	
	I	l .	r doi:tidir dodifici	<u> </u>

229	PRA_GCMP_ACTION	Select action when GCMP are met.	0: Do nothing	0
			1: Immediate stop	
			2: Deceleration stop	
22A	PRA_GCMP_STS	Check if GCMP is met	0: Not meet	0
		(Read only)	1: meet	
22B	PRA_VIBSUP_RT	Supress vibration – Reverse Time	Unit: 1.6 us	0
			(16-bit unsigned)	
22C	PRA_VIBSUP_FT	Supress vibration – Forward Time	Unit: 1.6 us	0
		Torward fillic	(16-bit unsigned)	
22D~22F	Reserved			
230~23F	Reserved			
240h(576	PRA_SPD_LIMIT	Set Fixed Speed	Unit: pulse/sec	6666666
)				
241h(577	PRA_MAX_ACCDEC	Get max	Unit: pulse/sec ²	16666666
)		acceleration/deceler		6
		ation which is limited		
		by fixed speed. (Read		
		only)		
242h(578	PRA_MIN_ACCDEC	Get minimum	Unit: pulse/sec ²	5086
)		acceleration/deceler		
		ation which is limited		
		by fixed speed. (Read		
		only)		

^{*1:} This parameter is used to calculate a move ratio. It is only effective when PRA_FEEDBACK_SRC was set to 0 or 2.

(EFB position 0 < Command counter) for positive software limit, (EFB position 1 > command counter) for negative software limit.

6. HSL-4XMO Axis parameter table.

	HSL-4XMO axis parameter table.				
NO.	Define	Description	Value	Note:	
00h (0)	PRA_EL_LOGIC	PEL/MEL input logic	0:Not inverse 1:Inverse	0	
01h (1)	PRA_ORG_LOGIC	ORG input logic	0:Active low 1:Active high	0	
02h (2)	PRA_EL_MODE	The mode of stop when end limit ON	0: Deceleration stop 1: Stop immediately	0	
03h (3)	Reserved				

^{*2:} When positive or negative software limit is selected, command counter is used as the comparison counter. The comparison method is mentioned as follows:

04h (4)	DDA ALAA LOGIO			
\ '\	PRA_ALM_LOGIC	Set ALM Logic	0: Active low	0
			1: Active high	
05h(5)	Reserved			
06h(6)	PRA_EZ_LOGIC	Set EZ Logic	0: Falling edge	0
			1: Rising edge	
07h(7)	Reserved			
08h	PRA_SPEL_EN	Set Encorder event	0: Disable	0
		mode.	1: Reserved	
			2: Soft-Limit (SPEL)	
09h(9)	PRA_SMEL_EN	Set Encorder event	0: Disable	0
		mode.	1: Reserved	
			2: Soft-Limit (SMEL)	
0Ah(10)	PRA_EFB_POS0	SPEL /	Unit: pulse. (I32 value)	100,000
		EFB position 0	Range: -10^8 ~ 10^8	
0Bh(11)	PRA_EFB_POS1	SMEL /	Unit: pulse. (I32 value)	-100,000
		EFB position 1	Range: -10^8 ~ 10^8	
0Ch(12)	Reserved			
0Dh(13)	Reserved			
0Eh(14)	Reserved			
0Fh(15)	Reserved			
10h (16)	PRA_HOME_MODE	Home mode setting	Home search - 0(1st	0
			mode) to 12(13 th	
			mode)	
			Home move – 20(1st	
			mode) to 32(13 th	
			mode)	
			mode)	
			Note: Home search (6	
			to 8) is reserved. If set,	
11h (17)	Reserved		return error.	
1111 (17)	Reserved			
	Posoryod			
12h (18)	Reserved			
12h (18) 13h (19)	Reserved			
12h (18) 13h (19) 14h (20)	Reserved Reserved			10000
12h (18) 13h (19)	Reserved	Homing maximum	Unit: pulse/sec	10000
12h (18) 13h (19) 14h (20) 15h (21)	Reserved Reserved PRA_HOME_VM	Homing maximum velocity	Unit: pulse/sec	10000
12h (18) 13h (19) 14h (20) 15h (21) 16h (22)	Reserved Reserved PRA_HOME_VM Reserved	3 -	Unit: pulse/sec	10000
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23)	Reserved Reserved PRA_HOME_VM Reserved Reserved	velocity		
12h (18) 13h (19) 14h (20) 15h (21) 16h (22)	Reserved Reserved PRA_HOME_VM Reserved	velocity Specify the EZ count	0000(1st count) to	10000
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23)	Reserved Reserved PRA_HOME_VM Reserved Reserved	velocity		
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24)	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA	Specify the EZ count up value	0000(1st count) to 1111(16th count)	0
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23)	Reserved Reserved PRA_HOME_VM Reserved Reserved	velocity Specify the EZ count up value Homing leave home	0000(1st count) to	
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24)	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA	Specify the EZ count up value Homing leave home velocity – Specify FA	0000(1st count) to 1111(16th count)	0
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24)	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA	Specify the EZ count up value Homing leave home velocity – Specify FA speed	0000(1st count) to 1111(16th count)	0
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24)	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA	Specify the EZ count up value Homing leave home velocity – Specify FA	0000(1st count) to 1111(16th count)	0
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24)	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA PRA_HOME_EZA	Specify the EZ count up value Homing leave home velocity – Specify FA speed	0000(1st count) to 1111(16th count) Unit: pulse/sec	0 100
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24)	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA PRA_HOME_EZA	Specify the EZ count up value Homing leave home velocity – Specify FA speed Homing leave home	0000(1st count) to 1111(16th count) Unit: pulse/sec	0 100
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24)	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA PRA_HOME_EZA	Velocity Specify the EZ count up value Homing leave home velocity – Specify FA speed Homing leave home distance – Specify	0000(1st count) to 1111(16th count) Unit: pulse/sec	0 100
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24) 19h (25)	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA PRA_HOME_EZA PRA_HOME_VO PRA_HOME_OFFSET	Velocity Specify the EZ count up value Homing leave home velocity – Specify FA speed Homing leave home distance – Specify	0000(1st count) to 1111(16th count) Unit: pulse/sec	0 100
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24) 19h (25) 1Ah	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA PRA_HOME_EZA PRA_HOME_OFFSET Reserved	Velocity Specify the EZ count up value Homing leave home velocity - Specify FA speed Homing leave home distance - Specify ORG offset Acceleration /	0000(1st count) to 1111(16th count) Unit: pulse/sec Unit: pulse	100
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24) 19h (25) 1Ah	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA PRA_HOME_EZA PRA_HOME_OFFSET Reserved	Velocity Specify the EZ count up value Homing leave home velocity – Specify FA speed Homing leave home distance – Specify ORG offset	0000(1st count) to 1111(16th count) Unit: pulse/sec Unit: pulse	100
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24) 19h (25) 1Ah 1Bh-1Fh 20h (32)	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA PRA_HOME_VO PRA_HOME_OFFSET Reserved PRA_CURVE	velocity Specify the EZ count up value Homing leave home velocity – Specify FA speed Homing leave home distance – Specify ORG offset Acceleration / Deceleration speed pattern	Unit: pulse 0: T-Curve 1: S-Curve	0 100 100
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24) 19h (25) 1Ah 1Bh-1Fh 20h (32)	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA PRA_HOME_EZA PRA_HOME_OFFSET Reserved PRA_CURVE PRA_ACC	Velocity Specify the EZ count up value Homing leave home velocity - Specify FA speed Homing leave home distance - Specify ORG offset Acceleration / Deceleration speed pattern Acceleration rate	0000(1st count) to 1111(16th count) Unit: pulse/sec Unit: pulse 0: T-Curve 1: S-Curve Unit: pulse/sec²	0 100 100 0
12h (18) 13h (19) 14h (20) 15h (21) 16h (22) 17h (23) 18h (24) 19h (25) 1Ah 1Bh-1Fh 20h (32)	Reserved Reserved PRA_HOME_VM Reserved Reserved PRA_HOME_EZA PRA_HOME_VO PRA_HOME_OFFSET Reserved PRA_CURVE	velocity Specify the EZ count up value Homing leave home velocity – Specify FA speed Homing leave home distance – Specify ORG offset Acceleration / Deceleration speed pattern	Unit: pulse 0: T-Curve 1: S-Curve	0 100 100

53h(83)	PRA_SERVO_LOGIC	SERVO output logic	0: Active low	0
80h(128)	PRA_PLS_IPT_MODE	Pulse input mode	1: Active high 0: A/B X1 1: A/B X2 2: A/B X4	0
			3: CW/CCW	
81h(129)	PRA_PLS_OPT_MODE	Pulse output mode	0: OUT/DIR (AL,H+) 1: OUT/DIR (AH,H+) 2: OUT/DIR (AL,L+) 3: OUT/DIR (AH,L+) 4: CW/CCW (AH) 5: CW/CCW (AL)	0
		E-Gear factor = Motor	Value = 1 ~ Motor	40,000
		Encoder	Encoder resolution.	
84h(132)	PRA_EGEAR	resolution(112h) / Value		
		(*1,)		
112h(274)	PRA_M_ENC_RES	Motor encoder	Unit: Pulse / rev or	40,000
11211(2/4)	FRA_M_ENC_RES	resolution (*1,)	Pulse / mm	
200h(512)	PRA_PLS_IPT_LOGIC	Pulse input logic	0: don not reverse EA/EB counting 1: reverse EA/EB counting	0
201h(513)	PRA_FEEDBACK_SRC	Select feedback source	O: Encoder counter & Absolute mode reference to Encoder counter. 1: Command counter & Absolute mode reference to Command counter. 2: Encoder counter & Absolute mode reference to Command counter.	0
210h(528)	PRA_ALM_MODE	ALM mode setting	0: Immediate stop 1: Slow down then stop	0
211h(529)	PRA_INP_LOGIC	INP input logic	0: Active low 1: Active high	0
212h(530)	PRA_SD_EN	Enable SD. (*2)	0: Disable 1: Enable	0
213h(531)	PRA_SD_MODE	SD mode setting	0: Only slow down 1: Slow down and stop	0
214h(532)	PRA_SD_LOGIC	SD input logic	0: Active low 1: Active high	0
215h(533)	PRA_SD_LATCH	Latch SD input	0: Disable latch function 1: Enable latch function	0
216h(534)	PRA_ERC_MODE	ERC mode setting	0: disable 1: output ERC when stopped by EL, ALM, or EMG input	3

			2: output ERC when	
			complete home return	
			3: both 1 and 2	
217h(535)	PRA_ERC_LOGIC	ERC output logic	0: Active low 1: Active high	0
218h(536	PRA_ERC_LEN	Pulse width of ERC	0: 12 us	3
)		setting	1: 102 us 2: 409 us	
			3: 1.6 ms	
			4: 13 ms	
			5: 52 ms 6: 104 ms	
			7: Level Output	
219h(537)	Reserved			
21Ah(53 8)	Reserved			
21Bh(539	Reserved			
21Ch	Reserved			
21Dh	PRA_LTC_LOGIC	LTC input logic	0: Falling edge	0
			1: Rising edge	
21Eh~22	Reserved			
0h				
221h	PRA_	A backlash or slip	0 to 4095	0
	COMPENSATION	correction amount		
	_PULSE			
222h	PRA_	Backlash or slip mode	0: Disable	0
	COMPENSATION	setting	1: Backlash correction	
	_MODE		2: Slip correction	
223h	PRA_LTC_SRC	Select latch source	0: LTC pin	0
			1: ORG pin	
			2: GCMP ON	
224h	PRA_LTC_DEST	Select latch target	0: Command counter	0
			1: Position counter	
225h	PRA_LTC_DATA	Get latch data	Pulse	0
		(Read only)	(28-bit signed)	
226h	PRA_GCMP_EN	Genernal comparator	0: Disable	0
		enable & set method	Other: Enable	
			1:data = cmp counter	
			(regardless of	
			counting direction)	
			2: data=cmp counter	
			(while counting up)	

			2. data aman agumtar	
			3: data=cmp counter	
			(while counting	
			down)	
			4: data>cmp counter	
			5: data <cmp counter<="" td=""><td></td></cmp>	
227h	PRA_GCMP_POS	Set/Get general	Pulse	0
		comparator position	(28-bit signed)	
228h	PRA_GCMP_SRC	Select general	0: Command counter	0
		comparator source	1: Position counter	
229h	PRA_GCMP_ACTION	Select action when	0: Do nothing	0
		GCMP are met.	1: Immediate stop	
			2: Deceleration stop	
22Ah	PRA_GCMP_STS	Check if GCMP is met	0: Not meet	0
		(Read only)	1: meet	
22Bh	PRA_VIBSUP_RT	Supress vibration -	Unit: 1.067 us	0
		Reverse Time	(16-bit unsigned)	
22Ch	PRA_VIBSUP_FT	Supress vibration -	Unit: 1.067 us	0
		Forward Time	(16-bit unsigned)	
22Dh~22	Reserved			
Fh				
230h	Reserved			
231h	PRA_GPDI_SEL	Select gpio input – DI /	0: LTC	0
		LTC / SD. (*2)	1: SD	
232h	Reserved	. ,		
233h(563	PRA_RDY_LOGIC	RDY input logic	0: Active high	0
)	Reserved		1: Active low	
234h~ 23Fh	Reserved			
240h(576	PRA_SPD_LIMIT	Set Fixed Speed	Unit: pulse/sec	6553500
)	TIV (_3) D_EIIVIII	эст тиса эрсеа	oriit. paiser see	0333300
241h(577	PRA_MAX_ACCDEC	Get max	Unit: pulse/sec ²	24576000
24111(377	TRA_INIAX_ACCDEC	acceleration	Office pulser see	0
,		/deceleration which is		
		limited by fixed speed.		
2426/570		(Read only)	Unit, pulso/soo?	7500
242h(578	PRA_MIN_ACCDEC	Get minimum	Unit: pulse/sec ²	7500
)		acceleration/deceler		
		ation which is limited		
		by fixed speed. (Read		

- mls s)	
i oniv)	

^{*1:} This parameter is used to calculate a move ratio. It is only effective when PRA_FEEDBACK_SRC set to 0.

7. PCI-8154/58/02 Axis parameter table

PCI-8154/58/02 axis parameter table				
NO.	Define	Description	Value	Note:
00h (0)	PRA_EL_LOGIC	PEL/MEL input logic	0:Not inverse 1:Inverse	0
01h (1)	PRA_ORG_LOGIC	ORG input logic	0:Active low 1:Active high	0
02h (2)	PRA_EL_MODE	The mode of stop when end limit ON	0: Deceleration stop 1: Stop immediately	0
03h (3)	PRA_MDN_CONDI	Motion done condition (Affective with motion stats NSTP bit)	0: Control command done (default) 1: Command done with INP	0
04h (4)	PRA_ALM_LOGIC	Set ALM Logic	0: Active low 1: Active high	0
05h(5)	Reserved			
06h(6)	PRA_EZ_LOGIC	Set EZ Logic	0: Falling edge 1: Rising edge	0
07h(7)	Reserved			
08h	PRA_SPEL_EN	Set Encorder event mode. (*3,)	0: Disable 1: Reserved 2: Soft-Limit (SPEL) Note: mode 1 is reserved. If set, return error.	0
09h(9)	PRA_SMEL_EN	Set Encorder event mode. (*3,)	0: Disable 1: Reserved 2: Soft-Limit (SMEL) Note: mode 1 is reserved. If set, return error.	0
0Ah(10)	PRA_EFB_POS0	SPEL / EFB position 0 (*3,)	Unit: pulse. (I32 value) (28-bit signed)	100,000
0Bh(11)	PRA_EFB_POS1	SMEL / EFB position 1 (*3,)	Unit: pulse. (I32 value) (28-bit signed)	-100,000
0Ch(12)	Reserved			
0Dh(13)	Reserved			
0Eh(14)	Reserved			
0Fh(15)	Reserved			
10h (16)	PRA_HOME_MODE	Home mode setting	Home search - 0(1st	0 425

^{*2:} When PRA_GPDI_SEL set to DI/LTC, PRA_SD_EN automatically set to disable. Before PRA_SD_EN set to enable, be sure that PRA_GPDI_SEL set to SD mode.

			modo) to 12/12th	
			mode) to 12(13 th mode)	
			Home move – 20(1st	
			mode) to 32(13 th	
			mode)	
			Note: Home search (6	
			to 8) is reserved. If set,	
			return error.	
11h (17)	PRA_HOME_DIR	Homing direction	0: positive direction	0
1111 (17)	TIVA_HOWIL_DIR	Thorning direction	1: negative direction	O
12h (18)	Reserved		1. Hegative direction	
13h (19)	Reserved			
14h (20)	Reserved			
15h (21)	PRA_HOME_VM	Homing maximum	Unit: pulse/sec	10000
,		velocity		
16h (22)	Reserved	j		
17h (23)	Reserved			
18h (24)	PRA_HOME_EZA	Specify the EZ count	0000(1st count) to	0
	_	up value	1111(16 th count)	
			·	
19h (25)	PRA_HOME_VO	Homing leave home	Unit: pulse/sec	100
		velocity - Specify FA		
		speed		
1Ah	PRA_HOME_OFFSET	Homing leave home	Unit: pulse	100
		distance - Specify		
		ORG offset		
1Bh-1Fh	Reserved			
20h (32)	PRA_CURVE	Acceleration /	0: T-Curve	0
		Deceleration speed	1: S-Curve	
041 (00)	DDA 400	pattern		1000000
21h (33)	PRA_ACC	Acceleration rate	Unit: pulse/sec ²	1000000
22h (34)	PRA_DEC	Deceleration rate	Unit: pulse/sec ²	1000000
23h (35)	PRA_VS	Start velocity	Unit: pulse/sec	100
24h~50h	Reserved		O. A othus love	0
53h(83)	PRA_SERVO_LOGIC	SERVO output logic	0: Active low 1: Active high	0
			0: A/B X1	
			1: A/B X2	0
80h(128)	PRA_PLS_IPT_MODE	Pulse input mode	2: A/B X4	
			3: CW/CCW	
			0: OUT/DIR (AL,H+)	0
			1: OUT/DIR (AH,H+)	U
			2: OUT/DIR (AL,L+)	
			3: OUT/DIR (AL,L+)	
81h(129)	PRA_PLS_OPT_MODE	Pulse output mode	4: CW/CCW (AH)	
			5: CW/CCW (AL)	
			6: AB (Out Leading)	
			7: AB (Out Leading)	
		E-Gear factor = Motor	Value = 1 ~ Motor	40,000
				±0,000
Q/L/122\	DDA ECEAD	Encoder	Encoder resolution.	
84h(132)	PRA_EGEAR	resolution(112h) / Value		
		l '		
		(*1,)		
112h(274)	PRA_M_ENC_RES	Motor encoder	Unit: Pulse / rev or	40,000
	I	J	l	ı

		resolution (*1,)	Pulse / mm	
200h(512)	PRA_PLS_IPT_LOGIC	Pulse input logic	0: don not reverse counting direction 1: reverse counting direction	0
201h(513)	PRA_FEEDBACK_SRC	Select feedback source	0: Ext. Encoder mode Ext. Encoder counter & Absolute mode reference to Encoder counter. 1: Stepper mode Ext. Command counter & Absolute mode reference to Command counter. 2: ACServo mode Ext. Encoder counter & Absolute mode reference to Command counter.	0
210h(528)	PRA_ALM_MODE	ALM mode setting	0: Immediate stop 1: Slow down then stop	0
211h(529	PRA_INP_LOGIC	INP input logic	0: Active low 1: Active high	0
212h(530	PRA_SD_EN	Enable SD. (*2)	0: Disable 1: Enable	0
213h(531)	PRA_SD_MODE	SD mode setting	0: Only slow down 1: Slow down and stop	0
214h(532	PRA_SD_LOGIC	SD input logic	0: Active low 1: Active high	0
215h(533)	PRA_SD_LATCH	Latch SD input	0: Disable latch function 1: Enable latch function	0
216h(534)	PRA_ERC_MODE	ERC mode setting	0: disable 1: output ERC when stopped by EL, ALM, or EMG input 2: output ERC when complete home return 3: both 1 and 2	3
217h(535)	PRA_ERC_LOGIC	ERC output logic	0: Active low 1: Active high	0
218h(536)	PRA_ERC_LEN Reserved	Pulse width of ERC setting	0: 12 us 1: 102 us 2: 409 us 3: 1.6 ms 4: 13 ms 5: 52 ms 6: 104 ms 7: Level Output	3

)				
21Ah(53 8)	Reserved			
21B(539)	PRA_PLS_IPT_FLT	EA/EB Filter Enable	0: Disable 1: Enable	1
21C	Reserved			
21D	PRA_LTC_LOGIC	LTC input logic	0: Falling edge 1: Rising edge	0
21E~220	Reserved			
221	PRA_	A backlash or slip	0 to 4095	0
	COMPENSATION _PULSE	correction amount		
222	PRA_	Backlash or slip mode	0: Disable	0
	COMPENSATION	setting	1: Backlash correction	
	_MODE		2: Slip correction	
223	PRA_LTC_SRC	Select latch source	0: LTC pin	0
			1: ORG pin	
			2: GCMP ON	
224	PRA_LTC_DEST	Select latch target	0: Command counter	0
			1: Position counter	
225	PRA_LTC_DATA	Get latch data	Pulse	0
		(Read only)	(28-bit signed)	
226	PRA_GCMP_EN	Genernal comparator	0: Disable	0
		enable & set method	Other: Enable	
			1:data = cmp counter	
			(regardless of	
			counting direction)	
			2: data=cmp counter	
			(while counting up)	
			3: data=cmp counter	
			(while counting	
			down)	
			4: data>cmp counter	
			5: data <cmp counter<="" td=""><td></td></cmp>	
227	PRA_GCMP_POS	General comparator	Pulse	0
		position	(28-bit signed)	
228	PRA_GCMP_SRC	Select general	0: Command counter	0
		comparator source	1: Position counter	
229	PRA_GCMP_ACTION	Select action when	0: Do nothing	0
		GCMP are met.	1: Immediate stop	

			2: Deceleration stop	
22A	PRA_GCMP_STS	Check if GCMP is met	0: Not meet	0
		(Read only)	1: meet	
22B	PRA_VIBSUP_RT	Supress vibration –	Unit: 1.067 us	0
		Reverse Time	(16-bit unsigned)	
22C	PRA_VIBSUP_FT	Supress vibration -	Unit: 1.067 us	0
		Forward Time	(16-bit unsigned)	
22D~22F	Reserved			
230h(560	PRA_GPDO_SEL	Select DO/CMP	0: DO	0
)		Output mode	1: CMP	
(54/58				
Only)				
231(561)	PRA_GPDI_SEL	Select gpio input - DI /	0: DI (Active-Low)	0
(54/58		LTC / SD / PCS / CLR /	1: LTC	
Only)		EMG. (*2)	2: SD	
			3: PCS	
			4: CLR	
			5: EMG	
231(561)	PRA_GPDI_SEL	Select gpio input - CLR	0: CLR	0
(02 Only)		/ LTC / SD / PCS.	1: LTC	
			2: SD	
			3: PCS	
232h(562	PRA_GPDI_LOGIC	Select gpio input logic	0: Active-Low	0
)			1: Active-High	
233(563)	PRA_RDY_LOGIC	RDY input logic	0: Active high 1: Active low	0
234h~	Reserved		1.710110101011	
23Fh				
240h(576	PRA_SPD_LIMIT	Set Fixed Speed	Unit: pulse/sec	6553500
)				
241h(577	PRA_MAX_ACCDEC	Get max	Unit: pulse/sec ²	24576000
)		acceleration		0
		/deceleration which is		
		limited by fixed speed.		
		(Read only)		

242h(578	PRA_MIN_ACCDEC	Get	minimum	Unit: pulse/sec ²	7500
)		acceleration.	deceler/		
		ation which	is limited		
		by fixed spee	ed. (Read		
		only)			
250h	PRA_CONTI_MODE	Continuous M	lode	0:Disable	0
				1:Enable	
251h	PRA_CONTI_BUFF	Continuous	Buffer	0:Empty	0
		(Read only)		1:Full(8102)	
				1~3:Buffer(8154/58)	

^{*1:} This parameter is used to calculate a move ratio. It is only effective when PRA_FEEDBACK_SRC was set to 0 or 2.

- *2: When PRA_GPDI_SEL set to other mode such as DI/LTC, PRA_SD_EN automatically set to disable. Before PRA_SD_EN set to enable, be sure that PRA_GPDI_SEL set to SD mode.
- *3: When positive or negative software limit is selected, command counter is used as the comparison counter. The comparison method is mentioned as follows:

(EFB position 0 < command counter) for positive software limit, (EFB position 1 > command counter) for negative software limit.

24. Sampling parameters table

1. Sampling parameter table for PCI-8392(H) and PCI-8253/56

and MNET-4XMO

	Sampling parameter table					
Para NO.	Define	Description	Parameter data value.	Default		
00h	SAMP_PA_RATE	Sampling rate(cycle), (depended on cycle time) For 8392 and 8253/6	1~ 65535(times of cycle)	1		
		Sampling rate(ms), (depended on OS Timer) For MNET-4XMO	1~5	1		
02h	SAMP_PA_EDGE	Edge triggered	0:Rising edge, 1:faling edge	0		
03h	SAMP_PA_LEVEL	Triggered level	(I32) -2147483648 to 2147483647	0		
05h	SAMP_PA_TRIGCH	Trigger channel	0 ~ 3 (Ch0~Ch3)	0		
10h	SAMP_PA_SRC_CH0	Sampling source of Channel 0	Refer to sampling source table.(*1)	0		
11h	SAMP_PA_SRC_CH1	Sampling source of Channel 1	Refer to sampling source table.(*1)	0		
12h	SAMP_PA_SRC_CH2	Sampling source of Channel 2	Refer to sampling source table.(*1)	0		
13h	SAMP_PA_SRC_CH3	Sampling source of Channel 3	Refer to sampling source table.(*1)	0		

^{.*1.} This parameter must also involve the information of axis id. Four bytes data is needed for this parameter. The first two bytes is the information of axis id, and the low two bytes is the type of sampling source.

2. Sampling source table for PCI-8392(H)

PCI-8392(H) sampling source table				
Source	Symbol Define	Description	Value range	Note
00h	SAMP_COM_POS	Command position (pulse)	I32 value	
01h	SAMP_FBK_POS	Feedback position (pulse)	I32 value	
02h	SAMP_CMD_VEL	Command velocity (pps)	I32 value	
03h	SAMP_FBK_VEL	Feedback velocity (pps)	I32 value	
04h	SAMP_MIO	motion IO status (Same as Get motion IO function)	I32 value (bit format)	

05h	SAMP_MSTS	Motion status (Same as Get motion status function)	I32 value (bit format)	
06h	SAMP_MSTS_ACC	Motion status at acceleration (Command velocity)	0: Not at acceleration 1: At acceleration	
07h	SAMP_MSTS_MV	Motion status at max velocity (Command velocity)	0: Not at max. velocity 1: At max. velocity	
08h	SAMP_MSTS_DEC	Motion status at deceleration (Command velocity)	0: Not at deceleration 1: At deceleration	
09h	SAMP_MSTS_CSTP	Motion status command stop (CSTP)	0: CSTP status ON 1: CSTP status OFF	
0Ah	SAMP_MSTS_NSTP	Motion status normal stop (NSTP)	0: NSTP status ON 1: NSTP status OFF	
0Bh	SAMP_MIO_INP	Motion status in position (INP)	0: INP status ON 1: INP status OFF	
0Ch	SAMP_MIO_ZERO	Motion status zero (ZERO)	0: ZERO status ON 1: ZERO status OFF	
0Dh	SAMP_MIO_ORG	Motion status ORG status	0: OGR status ON 1: OGR status OFF	
10h	SAMP_SSC_MON_0	SSCNET servo monitor 0	I32 value	(*1)
11h	SAMP_SSC_MON_1	SSCNET servo monitor 1	I32 value	(*1)
12h	SAMP_SSC_MON_2	SSCNET servo monitor 2	I32 value	(*1)
13h	SAMP_SSC_MON_3	SSCNET servo monitor 3	I32 value	(*1)
20h	Reserved			
21h	SAMP_GTY_DEVIAT ION	Gantry deviation between master and slave encoder raw data	I32 value	
22h	Reserved			
23h	SAMP_ERROR_COU NTER	Error counter data	I32 value	

^(*1) Monitor data is according to monitor data source setting. Please refer to SSCNET servo monitor source table.

3. PCI-8253/56 sampling source table

	PCI-8253/56 sampling source table								
Source	Source Symbol Define Description Value range Note								
00h	00h SAMP_COM_POS Command position (pulse) I32 value								

01h	SAMP_FBK_POS	Feedback position (pulse)	I32 value
02h	SAMP_CMD_VEL	Command velocity (pps)	I32 value
03h	SAMP_FBK_VEL	Feedback velocity (pps)	I32 value
04h	SAMP_MIO	motion IO status (Same as Get motion IO function)	I32 value (bit format)
05h	SAMP_MSTS	Motion status (Same as Get motion status function)	I32 value (bit format)
06h	SAMP_MSTS_ACC	Motion status at acceleration (Command velocity)	0: Not at acceleration 1: At acceleration
07h	SAMP_MSTS_MV	Motion status at max velocity (Command velocity)	0: Not at max. velocity 1: At max. velocity
08h	SAMP_MSTS_DEC	Motion status at deceleration (Command velocity)	0: Not at deceleration 1: At deceleration
09h	SAMP_MSTS_CSTP	Motion status command stop (CSTP)	0: CSTP status ON 1: CSTP status OFF
0Ah	SAMP_MSTS_NSTP	Motion status normal stop (NSTP)	0: NSTP status ON 1: NSTP status OFF
0Bh	SAMP_MIO_INP	Motion status in position (INP)	0: INP status ON 1: INP status OFF
0Ch	SAMP_MIO_ZERO	Motion status zero (ZERO)	0: ZERO status ON 1: ZERO status OFF
0Dh	SAMP_MIO_ORG	Motion status ORG status	0: OGR status ON 1: OGR status OFF
20h	SAMP_CONTROL_VOL	Control voltage	I32 value
21h	SAMP_GTY_DEVIATION	Gantry deviation between master and slave encoder raw data	I32 value

22h	SAMP_ENCODER_RAW	Encoder raw data	I32 value	
23h	SAMP_ERROR_COUNTER	Error counter data	I32 value	

4. MNET-4XMO sampling source table

	MNET-4XMO sampling source table								
Source	e Symbol Define Description Value range								
00h	SAMP_COM_POS	Command position (pulse)	I32 value						
01h	SAMP_FBK_POS	Feedback position (pulse)	I32 value						
02h	SAMP_CMD_VEL	Command velocity (pps)	I32 value						

25. Motion IO status and motion status definitions

1. PCI-8392(H) motion IO status table.

	PCI-8392(H) motion IO status table										
Bit No	Bit No 7 6 5 4 3 2 1 0										
	SVON INP EZ EMG ORG MEL PEL ALM										
Bit No	Bit No 15 14 13 12 11 10 9 8										
		ABSL	TLC	SMEL	SPEL	ZSP	WARN	RDY			

2. PCI-8253/56 motion IO status table

	PCI-8253/56 motion IO status table										
Bit No	: No 7 6 5 4 3 2 1 0										
	SVON INP EZ EMG ORG MEL PEL ALM										
Bit No	Bit No 15 14 13 12 11 10 9 8										
				SMEL	SPEL	ZSP	WARN	RDY			

3. MNET-4XMO-©/1XMO, HSL-4XMO, PCI-8154/58/02

motion IO status table

MNET-4XMO-©/1MXO, HSL-4XMO motion IO status table										
Bit No	Bit No 7 6 5 4 3 2 1 0									
	SVON INP EZ EMG ORG MEL PEL ALM									
Bit No	15	14	13	12	11	10	9	8		

				RDY

4. PCI-8144 motion IO status table

	PCI-8144 motion IO status table										
Bit No	7	6	5	4	3	2	1	0			
	!			emg(stp)	ORG	MEL	PEL				
Bit No	15	14	13	12	11	10	9	8			
	ST										
	Α										
Bit No	23	22	21	20	19	18	17	16			
							MSD	PSD			

5. Motion IO status description table

		Motion IO status description table
Bit	Define	Description
0	ALM	Servo alarm
1	PEL	Positive end limit
2	MEL	Negative end limit
3	ORG	Original position sensor(home sensor)
4	EMG	EMG sensor
5	EZ	EZ passed
6	INP	In position
7	SVON	Servo ON
8	RDY	Ready
9	WARN	Warning
10	ZSP	Zero speed, The zero speed output range setting, please refer to the manual
		of servo driver.
11	SPEL	Software positive end limit
12	SMEL	Software negative end limit

13	TLC	Torque is limited by torque limit value. (When torque control is turned ON)
14	ABSL	Absolute position lost.
15		
16	PSD	Positive slow down signal input
17	MSD	Negative slow down signal input

6. PCI-8392(H), 8253/56 Motion status definition table

	Motion status definition table											
BitNo	7	6	5	4	3	2	1	0				
	SMV	HMV	NSTP	DIR	DEC	ACC	VM	CSTP				
BitNo	15	14	13	12	11	10	9	8				
	JOG	SLV	PPS	PDW	PMV	VS	CIP	LIP				
BitNo	23	22	21	20	19	18	17	16				
	ECES	MELS	PELS	WANS	ALMS	EMGS	SVONS	ASTP				
BitNo	31	30	29	28	27	26	25	24				
			PAPB	GTM	GDCES	STPOA	SMELS	SPELS				

7. MNET-4XMO-©, HSL-4XMO, PCI-8154/58/02 Motion

status definition table

7	6	5	4	3	2	1	0
SMV	HMV	NSTP		DEC	ACC	VM	CSTP
15	14	13	12	11	10	9	8
					VS	CIP	LIP
23	22	21	20	19	18	17	16
	MELS	PELS		ALMS	EMGS		ASTP
31	30	29	28	27	26	25	24
						SMELS	SPELS

8. 1XMO Motion status definition table

7	6	5	4	3	2	1	0
SMV	HMV	NSTP		DEC	ACC	VM	CSTP
15	14	13	12	11	10	9	8
					VS		
23	22	21	20	19	18	17	16
	MELS	PELS		ALMS	EMGS		ASTP
31	30	29	28	27	26	25	24
						SMELS	SPELS

9. PCI-8144 Motion status definition table

7	6	5	4	3	2	1	0
	HMV		DIR	DEC	ACC		CSTP
15	14	13	12	11	10	9	8
			-				
23	22	21	20	19	18	17	16
31	30	29	28	27	26	25	24

$10.\ Motion\ Status\ Description\ Table$

	Motion Status Description Table							
Bit	Define	Description						
0	CSTP	Command stopped						
1	VM	At maximum velocity						
2	ACC:	At acceleration						
3	DEC:	At deceleration						
4	DIR:	Move direction. 1:Positive direction, 0:Negative direction						
5	NSTP	Normal stop(Motion done)						
6	НМ	In homing						
7	SMV	Single axis move(relative, absolute, velocity move)						
8	LIP	Linear interpolation						
9	CIP	Circular interpolation						
10	VS	At start velocity						
11	PMV	Point table move						
12	PDW	Point table dwell move						
13	PPS	Point table pause state						
14	SLV	Slave axis move						
15	JOG	Jog move						
16	ASTP	Abnormal stop						
17	SVONS	Servo off stopped						

18	EMGS	EMG / SEMG stopped
19	ALMS	Alarm stop
20	WANS	Warn stopped
21	PELS	PEL stopped
22	MELS	MEL stopped
23	ECES	Error counter check level reaches and stopped
24	SPELS	SPEL stopped
25	SMELS	SMEL stopped
26	STPOA	Stop by others axes
27	GDCES	Gantry deviation error level reaches and stopped
28	GTM	Gantry mode
29	PAPB	Pulsar mode
30		Reserved

26. Interrupt factor table

1. PCI-8392(H) Interrupt Item Definition Table

	PCI-8392(H) Interrupt Item Definition Table						
Item	Description						
0	Axis 0 interrupt factors						
1	Axis 1 interrupt factors						
•••							
15	Axis 15 interrupt factors						
16	System interrupt factors						

PCI-8392(H) Axes interrupt factors definition of Item 0~15

	PCI-	8392(H) A:	xes inter	rupt facto	ors defir	nition of	Item 0	-15
BitNo	7	6	5	4	3	2	1	0
	IZERO	IWARN	IINP	IEZ	IORG	IMEL	IPEL	IALM
BitNo	15	14	13	12	11	10	9	8
	ISPEL	ITLC	IASTP	INSTP	IDEC	IACC	IVM	ICSTP
BitNo	23	22	21	20	19	18	17	16
	1						-1	ISMEL
BitNo	31	30	29	28	27	26	25	24
				-				

PCI-8392(H) Axes interrupt factors description table

	PCI-8392(H) Axes interrupt factors description							
NO.	NO. Define Interrupt condition description Note							
0	0 IALM Servo alarm signal turn ON							

1	IPEL	Positive end limit switch is turn ON	
2	IMEL	Minus (Negative) end limit switch turn	
		ON	
3	IORG	Home switch turn ON	
4	IEZ / IEZP	EZ passed signal turn ON	(1)
5	IINP	In position signal turn ON	
6	IWARN	Servo warning ON	
7	IZSP	Zero speed	
8	ICSTP	Command stop	(2)
9	IVM	In maximum velocity	
10	IACC	In acceleration	
11	IDEC	In deceleration	
12	INSTP	Normal stop(Motion done)	(2)
13	IASTP	Abnormal stop	
14	ITLC	Torque limit control is turn ON	
15	ISPEL	SPEL turn ON	
16	ISMEL	SMEL turn ON	
17~	Reserved		

- (1), In SSCNET system, When zero position signal(EZ) from servo driver is ON, EZP bit will ON even if EZ is turn OFF.
- (2), INSTP: Axis is stopped normally. If axis is stopped abnormally such as emergency stop and Limit switch on stop etc, this interrupt factor will not be triggered. All motion action including home move which can be waited motion done by this interrupt factor.

Users can set normal stop (motion done) condition by set axis parameter function.

CSTP: Motion command is stopped, but the axis could be still in motion.

PCI-8392(H) System interrupt factors definition of item 16

	PCI-8392(H) System interrupt factors definition of item 16									
BitNo	tNo 7 6 5 4 3 2 1 0									
								ILNK		
BitNo	15	14	13	12	11	10	9	8		
BitNo	23	22	21	20	19	18	17	16		

BitNo	31	30	29	28	27	26	25	24

PCI-8392(H) System interrupt factors description table

	PCI-8392(H) System interrupt factors description							
NO.	NO. Define Interrupt condition description Note							
0	0 ILNK When SSCNET Link status 1->0							

2. PCI-8253/56 Interrupt Item Definition Table

	PCI-8253/56 Interrupt Item Definition Table					
Item	Description					
0	Axis 0 interrupt factors					
1	Axis 1 interrupt factors					
•••						
5	Axis 5 interrupt factors					

PCI-8253/56 Axes interrupt factors definition of Item 0~5

	PCI-8253/56 Axes interrupt factors definition of Item 0~5							
BitNo	7	6	5	4	3	2	1	0
	IZERO	IWARN	IINP	IEZ	IORG	IMEL	IPEL	IALM
BitNo	15	14	13	12	11	10	9	8
	ISPEL	ITLC	IASTP	INSTP	IDEC	IACC	IVM	ICSTP
BitNo	23	22	21	20	19	18	17	16
								ISMEL
BitNo	31	30	29	28	27	26	25	24
				-				

PCI-8253/56 Axes interrupt factors description table

	PCI-8253/56 Axes interrupt factors description table					
NO.	Define	nterrupt condition description Note				
0	IALM	Servo alarm signal turn ON				
1	IPEL	Positive end limit switch is turn ON				
2	IMEL	Minus (Negative) end limit switch turn				
		ON				
3	IORG	Home switch turn ON				

4	IEZ	EZ signal turn ON	
5	IINP	In position signal turn ON	
6	IWARN	Servo warning ON	
7	IZSP	Zero speed	
8	ICSTP	Command stop	(1)
9	IVM	In maximum velocity	
10	IACC	In acceleration	
11	IDEC	In deceleration	
12	INSTP	Normal stop(Motion done)	(1)
13	IASTP	Abnormal stop	
14	ITLC	Torque limit control is turn ON	
15	ISPEL	SPEL turn ON	
16	ISMEL	SMEL turn ON	
17~	Reserved		

(1), INSTP: Axis is stopped normally. If axis is stopped abnormally such as emergency stop and Limit switch on stop etc, this interrupt factor will not be triggered. All motion action including home move which can be waited motion done by this interrupt factor.

Users can set normal stop (motion done) condition by set axis parameter function.

CSTP: Motion command is stopped, but the axis could be still in motion.

3. Interrupt factor Item definition table for DPAC-1000

DPAC-1000 Interrupt factor Item definition table

	Interrupt factor Item definition table	
Item	Description	
0	CPLD Interrupt	

DPAC-1000 CPLD Interrupt factor definition of Item 0

	DPAC-1000 CPLD Interrupt factor definition of Item 0							
BitNo	7	6	5	4	3	2	1	0
				-	-		-	Timer
BitNo	15	14	13	12	11	10	9	8
BitNo	23	22	21	20	19	18	17	16
				-1				
BitNo	31	30	29	28	27	26	25	24
				1	1		1	

4. Interrupt factor Item definition table for DPAC-3000

DPAC-3000 Interrupt factor Item definition table

	Interrupt factor Item definition table					
Item	Description					
0	CPLD Interrupt					
1	HSL Interrupt					

DPAC-3000 CPLD Interrupt factor definition of Item 0

	D	PAC-300	00 CPLD	Interrup	t factor d	lefinition	of Item ()
BitNo	7	6	5	4	3	2	1	0
				1			1	Timer
BitNo	15	14	13	12	11	10	9	8
BitNo	23	22	21	20	19	18	17	16
				-			-	
BitNo	31	30	29	28	27	26	25	24

DPAC-3000 HSL Interrupt factor definition of Item 1

	DPAC-3000 HSL Interrupt factor definition of Item 1							
BitNo	7	6	5	4	3	2	1	0
				-1		1		DI
BitNo	15	14	13	12	11	10	9	8
	23	22	21	20	19	18	17	16
	31	30	29	28	27	26	25	24

5. PCI-7856 Interrupt Item Definition Table

PCI-7856 Interrupt factor Item definition table

	Interrupt factor Item definition table					
Item	Description					
0	CPLD Interrupt					

PCI-7856 CPLD Interrupt factor definition of Item 0

	F	PCI-7856	CPLD I	nterrupt	factor de	finition o	of Item 0	
BitNo	7	6	5	4	3	2	1	0
								Timer
BitNo	15	14	13	12	11	10	9	8
				-1				
BitNo	23	22	21	20	19	18	17	16
	1		1	1		1	1	
BitNo	31	30	29	28	27	26	25	24

6. PCI-8144 Interrupt Item Definition Table

PCI-8144 Interrupt factor Item definition table

	Interrupt factor Item definition table					
Item	Description					
0	Axis0 Motion interrupt					
1	Axis1 Motion interrupt					
2	Axis2 Motion interrupt					
3	Axis3 Motion interrupt					
4	Digital input interrupt (Falling edge)					
5	Digital input interrupt (Rising edge)					

PCI-8144 Axes interrupt factors definition of Item 0~3

	PCI-8144 Axes interrupt factors definition of Item 0~5							
BitNo	7	6	5	4	3	2	1	0
								ICSTP

PCI-8144 Axes interrupt factors description table

	PCI-8253/56 Axes interrupt factors description table						
NO.	Define	Interrupt condition description	Note				
0	ICSTP	Motion command output stop interrupt C					

PCI-8144 Digital interrupt factors definition of item 4

PCI-8392(H) System interrupt factors definition of item 16								
BitNo	7	7 6 5 4 3 2 1 0						
	DI7_F	DI6_F	DI5_F	DI4_F	DI3_F	DI2_F	DI1_F	DI0_F

PCI-8144 Digital interrupt factors item 4 description table

	PCI-8392(H) System interrupt factors description					
NO.	Define	Interrupt condition description	Note			
0	Din_F	Digital input Channl NO.n falling edge				
		interrupt				

PCI-8144 Digital interrupt factors definition of item 5

PCI-8392(H) System interrupt factors definition of item 16								
BitNo	7	7 6 5 4 3 2 1 0						
	DI7_R	DI6_R	DI5_R	DI4_r	DI3_R	DI2_R	DI1_R	DI0_R

PCI-8144 Digital interrupt factors item 5 description table

	PCI-8392(H) System interrupt factors description						
NO.	Define	Interrupt condition description	Note				
0	Din_R	Digital input Channl NO.n Rising edge					
		interrupt					

7. MotionNet Interrupt Item Definition Table

MotionNet Axis Motion Interrupt factor definition(4XMO(-C))

(MNET-4XMO/MNET-4XMO-C)

4XMO© Axes motion interrupt factor definition

BitNo	7	6	5	4	3	2	1	0
	IDECE	IDECS	IACCE	IACCS	(*)	(*)	(*)	INSTP
BitNo	15	14	13	12	11	10	9	8
	IORGC	(*)	ICLRC	(*)	ICOMP4	(*)	ISMEL	ISPEL
BitNo	23	22	21	20	19	18	17	16
					(*)	(*)	(*)	ISD
BitNo	31	30	29	28	27	26	25	24
			1	1				

^{*:} Reserved.

MotionNet Axes motion interrupt factors description table

(MNET-4XMO/ MNET-4XMO-C)

	4XMO© Axes motion interrupt factors description table						
NO.	Define	Interrupt condition description	Note				
0	INSTP	Normal stop					
1	Reserved	Reserved					
2	Reserved	Reserved					
3	Reserved	Reserved					
4	IACCS	Acceleration Start					
5	IACCE	Acceleration End					
6	IDECS	Deceleration Start					
7	IDECE	Deceleration End					
8	ISPEL	+soft limit					
9	ISMEL	-soft limit					
10	Reserved	Reserved					
11	ICOMP4	General comparator is ON					
12	Reserved	Reserved					
13	ICLRC	Counter is reset by CLR input					
14	Reserved	Reserved					
15	IORGC	Counter is reset by ORG input					
16	ISD	SD input turns on					

17	Reserved	Reserved	
18	Reserved	Reserved	
19	Reserved	Reserved	
20~	Reserved	Reserved(Always set to 0)	

MotionNet Axis Motion Interrupt factor definition(1XMO)

(MNET-1XMO)

	1XMO Axes motion interrupt factor definition								
BitNo	7	6	5	4	3	2	1	0	
	ICOMP	ISMEL	ISPEL	IDECE	IDECS	IACCE	IACCS	INSTP	
BitNo	15	14	13	12	11	10	9	8	
			1	(*)	ISD	IORGC	(*)	ICLRC	
BitNo	23	22	21	20	19	18	17	16	
BitNo	31	30	29	28	27	26	25	24	
			1	-					

^{*:} Reserved.

MotionNet Axes motion interrupt factors description table

(MNET-1XMO)

	1XMO Axes motion interrupt factors description table						
NO.	Define	Interrupt condition description	Note				
0	INSTP	Normal stop					
1	IACCS	Acceleration Start					
2	IACCE	Acceleration End					
3	IDECS	Deceleration Start					
4	IDECE	Deceleration End					
5	ISPEL	+soft limit					
6	ISMEL	-soft limit					
7	ICOMP	General comparator is ON					

8	ICLRC	Counter is reset by CLR input
9	Reserved	Reserved
10	IORGC	Counter is reset by ORG input
11	ISD	SD input turns on
12	Reserved	Reserved
13~	Reserved	Reserved(Always set to 0)

MotionNet Axis Error Interrupt factor definition(4XMO(-C))

(MNET-4XMO/MNET-4XMO-C)

	4XMO© Axes error interrupt factor definition							
BitNo	7	6	5	4	3	2	1	0
	EALM	EMEL	EPEL	(*)	EGCM	(*)	ENSL	EPSL
BitNo	15	14	13	12	11	10	9	8
	EPCO	ЕРВО	ESIP	(*)	(*)	ESD	EEMG	(*)
BitNo	23	22	21	20	19	18	17	16
			1	1		1	EPAB	EEAB
BitNo	31	30	29	28	27	26	25	24

^{*:} Reserved.

MotionNet Axes error interrupt factors description table

(MNET-4XMO/MNET-4XMO-C)

Note that all default error factors are turned on.

	4XMO© Axes error interrupt factors description table					
NO.	Define	Interrupt condition description	Note			
0	EPSL	+Soft limit is ON and axis is stopped				
1	ENSL	-Soft limit is ON and axis is stopped				
2	Reserved					
3	EGCM	General comparator is ON and axis is				
		stopped				
4	Reserved					
5	EPEL	+End limit is on and axis is stopped				

6	EMEL	-End limit is on and axis is stopped
7	EALM	ALM is happened and axis is stopped
8	Reserved	
9	EEMG	EMG is on and axis is stopped
10	ESD	SD input is on and axis is slowed down
		to stop
11	Reserved	
12	Reserved	
13	ESIP	Axis is stopped from other axis's error
		stop
14	EPBO	Pulse input buffer overflow and stop
15	EPCO	Interpolation counter overflow
16	EEAB	Encoder input signal error but axis is
		not stopped
17	EPAB	Pulse input signal error but axis is not
		stopped
18~	Reserved	Reserved(Always set to 0)

MotionNet Axis Error Interrupt factor definition(1XMO)

(MNET-1XMO)

	1XMO Axes error interrupt factor definition							
BitNo	7	6	5	4	3	2	1	0
	EEMG	(*)	EALM	EMEL	EPEL	EGCM	ENSL	EPSL
BitNo	15	14	13	12	11	10	9	8
		EPAB	EEAB	ESOR	(*)	ESTN	ЕРВО	ESD
BitNo	23	22	21	20	19	18	17	16
				1	-1			
BitNo	31	30	29	28	27	26	25	24

^{*:} Reserved.

MotionNet Axes error interrupt factors description table

(MNET-1XMO)

Note that all default error factors are turned on.

	1XMO Axes interrupt factors description table						
NO.	Define	Interrupt condition description	Note				
0	EPSL	+Soft limit is ON and axis is stopped					
1	ENSL	-Soft limit is ON and axis is stopped					
2	EGCM	General comparator is ON and axis is					
		stopped					
3	EPEL	+End limit is on and axis is stopped					
4	EMEL	-End limit is on and axis is stopped					
5	EALM	ALM is happened and axis is stopped					
6	Reserved						
7	EEMG	EMG is on and axis is stopped					
8	ESD	SD input is on and axis is slowed down					
		to stop					
9	EPBO	Pulse input buffer overflow and stop					
10	ESTN	Stopped by a communication error					
11	Reserved	Reserved(Always set to 0)					
12	ESOR	Position override could not be executed					
13	EEAB	Encoder input signal error but axis is					
		not stopped					
14	EPAB	Pulse input signal error but axis is not					
		stopped					
15~	Reserved	Reserved(Always set to 0)					

8. PCI-8154/58/02 Interrupt Item Definition Table

PCI-8154 Interrupt factor Item definition table

	Interrupt factor Item definition table					
Item	Description					
0	Axis0 Error interrupt					
1	Axis0 Motion interrupt					
•••						
6	Axis3 Error interrupt					
7	Axis3 Motion interrupt					

••••		
9	DB-8150 interrupt	

PCI-8158 Interrupt factor Item definition table

	Interrupt factor Item definition table				
Item	Description				
0	Axis0 Error interrupt				
1	Axis0 Motion interrupt				
•••					
14	Axis7 Error interrupt				
15	Axis7 Motion interrupt				
•••					
17	DB-8150 interrupt				

PCI-8102 Interrupt factor Item definition table

	Interrupt factor Item definition table				
Item	Description				
0	Axis0 Error interrupt				
1	Axis0 Motion interrupt				
2	Axis1 Error interrupt				
3	Axis1 Motion interrupt				
4	GPIO interrupt factors	·			

DB-8150 interrupt factors definition of Items

7	6	5	4	3	2	1	0
EZ1	EZO	DI1	DI0	L1fin	L0fin	PWM1	PWM0
15	14	13	12	11	10	9	8
		-1	1		FIFO_full	FIFO_low	FIFO_empty
23	22	21	20	19	18	17	16
	-	-					
31	30	29	28	27	26	25	24

DB-8150 interrupt factors description table

	DB	-8150 interrupt factors description table	
NO.	Define	Interrupt condition description	Note

0	PWM0	PWM0 Trigger Out Event
1	PWM1	PWM1 Trigger Out Event
2	L0fin	LinearFunction0 Finish Event
3	L1fin	LinearFunction1 Finish Event
4	DI0	DI0 Edge Occur
5	DI1	DI1 Edge Occur
6	EZO	EZ0 Edge Occur
7	EZ1	EZ1 Edge Occur
8	FIFO_empty	FIFO Empty event
9	FIFO_low	FIFO Low event
10	FIFO_full	FIFO Full event
11~31	Reserved	Reserved

PCI-8154/58/02 Axes motion interrupt factors definition of Items

7	6	5	4	3	2	1	0
IDECE	IDECS	IACCE	IACCS	-	IRNM	IRNX	INSTP
15	14	13	12	11	10	9	8
IORGC		ICLRC		ICOMP4		ISMEL	ISPEL
23	22	21	20	19	18	17	16
	-	-	-	-	-	-	ISD
31	30	29	28	27	26	25	24

PCI-8154/58/02 Axes motion interrupt factors description table

PCI-8154/58/02 Axes motion interrupt factors description table					
NO.	Define	Interrupt condition description	Note		
0	INSTP	Normal stop			
1	Reserved	Reserved			
2	Reserved	Reserved			
3	Reserved	Reserved			
4	IACCS	Acceleration Start			
5	IACCE	Acceleration End			
6	IDECS	Deceleration Start			
7	IDECE	Deceleration End			
8	ISPEL	+soft limit			

9	ISMEL	-soft limit
10	Reserved	Reserved
11	ICOMP4	General comparator is ON
12	Reserved	Reserved
13	ICLRC	Counter is reset by CLR input
14	Reserved	Reserved
15	IORGC	Counter is reset by ORG input
16	ISD	SD input turns on
17	Reserved	Reserved
18	Reserved	Reserved
19	Reserved	Reserved
20~	Reserved	Reserved(Always set to 0)

PCI-8154/58/02 Axes error interrupt definition of Items: (Return Code)

The error interrupt sources are non-maskable but the error number of situation could be get from APS_wait_error_int()'s return code if it is not timeout.

Return	Interrupt condition description	Note
Code		
0	+Soft Limit is on and axis is stopped	
1	-Soft Limit is on and axis is stopped	
2	Reserved	
3	General Comparator is on and axis is stopped	
4	Reserved	
5	+End Limit is on and axis is stopped	
6	-End Limit is on and axis is stopped	
7	ALM is happened and axis is stop	
8	Reserved	
9	CEMG is on and axis is stopped	
10	SD input is on and axis is slowed down to stop	
11	Reserved	
12	Interpolation operation error and stop	
13	Axis is stopped from other axis's error stop	
14	Pulse input buffer overflow and stop	
15	Interpolation counter overflow	
16	Encoder input signal error but axis is not	

	stopped	
17	Pulse input signal error but axis is not stopped	
18~	Reserved	

PCI-8102 GPIO interrupt factors definition of Items

7	6	5	4	3	2	1	0
DI3	DI2	DI1	DIO	DI3	DI2	DI1	DIO
Raising	Raising	Raising	Raising	Falling	Falling	Falling	Falling
15	14	13	12	11	10	9	8
23	22	21	20	19	18	17	16
	-		-	-	-	-	
31	30	29	28	27	26	25	24

PCI-8102 GPIO interrupt factors description table

PCI-8102 GPIO interrupt factors description table					
NO.	Define	Interrupt condition description Note			
0	DIO Falling	DIO Falling Edge			
1	DI1 Falling	DI1 Falling Edge			
2	DI2 Falling	DI2 Falling Edge			
3	DI3 Falling	DI3 Falling Edge			
4	DIO Raising	DIO Raising Edge			
5	DI1 Raising	DI1 Raising Edge			
6	DI2 Raising	DI2 Raising Edge			
7	DI3 Raising	DI3 Raising Edge			
8~	Reserved	Reserved			

27. Field bus parameter table

	PCI-8392H HSL parameter table				
NO.	Define	Description	Value	Default	
00h	PRF_COMMUNICATION_TYP	FiledBus	0:Half duplex	1	
	E	Communication Type	1:Full duplex		
01h	PRF_TRANSFER_RATE	Network transfer	1: 3 Mbps	2	
		rate.	2: 6 Mbps		
			3: 12 Mbps		
02h	PRF_HUB_NUMBER	Total hub number.	0~7	0	
03h	PRF_INITIAL_TYPE	Reset digital output	0: Reset digital output	0	
		to zero or not when	to zero.		
		connect the slave	1: Depend on slave		
		modules.	state.		
04h	PRF_CHKERRCNT_LAYER	Set the degree of	1~7	7	
		checking error count			

	PCI-7856 MNET parameter table				
NO.	Define	Description	Value	Default	
00h	Reserved				
01h	PRF_TRANSFER_RATE	Network transfer rate.	0: 2.5Mbps 1: 5 Mbps 2: 10 Mbps 3: 20 Mbps	3	
02h~	Reserved				

	PCI-7856 HSL parameter table			
NO.	Define	Description	Value	Default
00h	PRF_COMMUNICATION_TYP	FiledBus	0:Half duplex	1
	E	Communication Type	1:Full duplex	
01h	PRF_TRANSFER_RATE	Network transfer	1: 3 Mbps	2
		rate.	2: 6 Mbps	
			3: 12 Mbps	
02h	PRF_HUB_NUMBER	Total hub number.	0~7	0
03h	PRF_INITIAL_TYPE	Reset digital output	0: Reset digital output	0
		to zero or not when	to zero.	
		connect the slave	1: Depend on slave	
		modules.	state.	
04h	PRF_CHKERRCNT_LAYER	Set the degree of	1~7	7
		checking error count		

	DPAC-3000 MNET parameter table			
NO.	Define	Description	Value	Default
00h	Reserved			
01h	PRF_TRANSFER_RATE	Network transfer rate.	0: 2.5Mbps 1: 5 Mbps 2: 10 Mbps 3: 20 Mbps	3
02h~	Reserved			

	DPAC-3000 HSL parameter table				
NO.	Define	Description	Value	Default	
00h	PRF_COMMUNICATION_TYP	FiledBus	0:Half duplex	1	
	E	Communication Type	1:Full duplex		
01h	PRF_TRANSFER_RATE	Network transfer	1: 3 Mbps	2	
		rate.	2: 6 Mbps		
			3: 12 Mbps		
02h	PRF_HUB_NUMBER	Total hub number.	0~7	0	
03h	PRF_INITIAL_TYPE	Reset digital output	0: Reset digital output	0	
		to zero or not when	to zero.		
		connect the slave	1: Depend on slave		
		modules.	state.		
04h	PRF_CHKERRCNT_LAYER	Set the degree of	1~7	7	
		checking error count			

28. Gantry parameters table

	PCI-8253/56 Gantry parameters definition table				
Para NO.	Define	Description	Parameter data value.	Default	
00h	GANTRY_MODE	Enable/Disable	0: Disable	0	
		gantry relation.	1: Enable		
01h	GENTRY_DEVIATION	Set deviation protection. If deviation is over this setting, axis will be servo off.	Positive I32 value.	8,000	
02h	GENTRY_DEVIATION_S TP	Set deviation protection. If deviation is over this setting, axis will be stopped.	Positive I32 value.	5,000	

	PCI-8392(H) Gantry parameters definition table				
Para NO.	Define	Description	Parameter data value.	Default	
00h	GANTRY_MODE	Enable/Disable	0: Disable	0	
		gantry relation.	1: Enable		
01h	GENTRY_DEVIATION	Set deviation	Positive I32 value.	8,000	
		protection. If			
		deviation is over this			
		setting, axis will be			
		servo off.			
02h	GENTRY_DEVIATION_S	Set deviation	Positive I32 value.	5,000	
	TP	protection. If			
		deviation is over this			
		setting, axis will be			
		stopped.			

29. Trigger parameter table

	PCI-82	253/56 Trigger parai	PCI-8253/56 Trigger parameter table				
NO	Define	Description	Value	Default:			
0x00	TG_LCMP0_SRC	Linear compare 0 (LCMP0)	0 ~ 5: Encoder counter 0~5	0			
		source					
0x01	TG_LCMP1_SRC	Linear compare 1 (LCMP1)	0 ~ 5: Encoder counter 0~5	2			
		source					
0x02	TG_TCMP0_SRC	Table compare 0 (TCMP0)	0 ~ 5: Encoder counter 0~5	1			
		source					
0x03	TG_TCMP1_SRC	Table compare 1 (TCMP1)	0 ~ 5: Encoder counter 0~5	4			
		source					
0x04	TG_LCMP0_EN	Linear compare 0 (LCMP0)	0: Disable, 1:Enable	0			
		enable					
0x05	TG_LCMP1_EN	Linear compare 1 (LCMP1)	0: Disable, 1:Enable	0			
		enable					
0x06	TG_TCMP0_EN	Table compare 0 (TCMP0)	0: Disable, 1:Enable	0			
		enable					
0x07	TG_TCMP1_EN	Table compare 1 (TCMP1)	0: Disable, 1:Enable	0			
		enable					
0x10	TG_TRG0_SRC	Trigger output 0 (TRG0)	0:None	1			
		source	1:LCMP0 (Default)				
			2:LCMP1				
			4:FCMP0				
			8:FCMP1				
			16: TMR				
0x11	TG_TRG1_SRC	Trigger output 1 (TRG1)	0:None	4			
		source	1:LCMP0				
			2:LCMP1				
			4:FCMP0 (Default)				
			8:FCMP1				
			16: TMR				
0x12	TG_TRG2_SRC	Trigger output 2 (TRG2)	0:None	2			
		source (*1)	1:LCMP0				
			2:LCMP1 (Default)				
			4:FCMP0				
			8:FCMP1				
			16: TMR				

0x13	TG_TRG3_SRC	Trigger output 3 (TRG3)	0:None	8
		source (*1)	1:LCMP0	
			2:LCMP1	
			4:FCMP0	
			8:FCMP1 (Default)	
			16: TMR	
0x14	TG_TRG0_PWD	TRG0 pulse width	Pulse Width = $(N+)$	0
			2) * 20 ns	(40
			24 bit value. 0~ 16777215	ns)
0x15	TG_TRG1_PWD	TRG1 pulse width	Pulse Width = $(N+)$	0
			2) * 20 ns	(40
			24 bit value. 0~ 16777215	ns)
0x16	TG_TRG2_PWD	TRG2 pulse width (*1)	Pulse Width = $(N+)$	0
			2) * 20 ns	(40
			24 bit value. 0~ 16777215	ns)
0x17	TG_TRG3_PWD	TRG3 pulse width (*1)	Pulse Width = $(N+)$	0
			2) * 20 ns	(40
			24 bit value. 0~ 16777215	ns)
0x18	TG_TRG0_CFG	TRG 0 configuration	Bit 0: Pulse logic inverse.	0
			Bit 1: pulse (0) / toggle (1)	
			Bit 2~31: Reserved (set 0)	
0x19	TG_TRG1_CFG	TRG 1 configuration	Bit 0: Pulse logic inverse.	0
			Bit 1: pulse (0) / toggle (1)	
			Bit 2~31: Reserved (set 0)	
0x1A	TG_TRG2_CFG	TRG 2 configuration (*1)	Bit 0: Pulse logic inverse.	0
			Bit 1: pulse (0) / toggle (1)	
			Bit 2~31: Reserved (set 0)	
0x1B	TG_TRG3_CFG	TRG 3 configuration (*1)	Bit 0: Pulse logic inverse.	0
			Bit 1: pulse (0) / toggle (1)	
			Bit 2~31: Reserved (set 0)	
0x20	TMR_ITV	Timer Interval	Timer Interval = (N+2) *	0
			20 ns 28 bit value. 0~	(40
			268435455	ns)
0x21	TMR_EN	Timer enable	0: Disable, 1:Enable	0

^{*1:} PCI-8256 only.

NO	Define	Description	Value	Default:
0x00	TG_CMP0_SRC	Compare 0 source	0: Command counter	0
			1: Position counter	
0x01	TG_CMP1_SRC	Compare 1 source	0: Command counter	0
			1: Position counter	
0x02	TG_CMP2_SRC	Compare 2 source	0: Command counter	0
			1: Position counter	
0x03	TG_CMP3_SRC	Compare 3 source	0: Comand counter	0
			1: Position counter	
0x04	TG_CMP0_EN	Compare 0 enable	0: Disable	0
			Other: Enable.	
			1:data = cmp counter	
			(regardless of counting	
			direction)	
			2: data = cmp counter	
			(while counting up)	
			3: data = cmp counter	
			(while counting down)	
			4: data > cmp counter	
			5: data < cmp counter	
0x05	TG_CMP1_EN	Compare 1 enable	0: Disable	0
			Other: Enable.	
			1:data = cmp counter	
			(regardless of counting	
			direction)	
			2: data = cmp counter	
			(while counting up)	
			3: data = cmp counter	
			(while counting down)	
			4: data > cmp counter	
			5: data < cmp counter	
0x06	TG_CMP2_EN	Compare 2 enable	0: Disable	0
			Other: Enable.	
			1:data = cmp counter	
			(regardless of counting	
			direction)	
			2: data = cmp counter	
			(while counting up)	

			3: data = cmp counter	
			(while counting down)	
			4: data > cmp counter	
			5: data < cmp counter	
0x07	TG_CMP3_EN	Compare 3 enable	0: Disable	0
			Other: Enable.	
			1:data = cmp counter	
			(regardless of counting	
			direction)	
			2: data = cmp counter	
			(while counting up)	
			3: data = cmp counter	
			(while counting down)	
			4: data > cmp counter	
			5: data < cmp counter	
0x08	TG_CMP0_TYPE	Compare 0 type	0: Table, 1: Linear	0
0x09	TG_CMP1_TYPE	Compare 1 type	0: Table, 1: Linear	0
0x0A	TG_CMP2_TYPE	Compare 2 type	0: Table, 1: Linear	0
0x0B	TG_CMP3_TYPE	Compare 3 type	0: Table, 1: Linear	0
0x0C	TG_CMPH_EN	Compare H enable	0: Disable, 1:Enable	0
0x0D	TG_CMPH_DIR_EN	Compare H direction enable	0: Disable, 1:Enable	0
0x0E	TG_CMPH_DIR	Compare H direction	0: Positive direction,	0
			1: Negative direction.	
0x10	TG_TRG0_SRC	Trigger output 0 (TRG0)	Bit 0:CMP 0	1
		source	Bit 1:CMP 1	
			Bit 2:CMP 2	
			Bit 3:CMP 3	
			Bit 4:CMP H	
			Value: 0x00 ~ 0x1f	
0x11	TG_TRG1_SRC	Trigger output 1 (TRG1)	Bit 0:CMP 0	2
		source	Bit 1:CMP 1	
			Bit 2:CMP 2	
			Bit 3:CMP 3	
			Bit 4:CMP H	
			Value: 0x00 ~ 0x1f	
<u> </u>	1	1	<u>l</u>	

0x12	TG_TRG2_SRC	Trigger output 2 (TRG2)	Bit 0:CMP 0	4
		source	Bit 1:CMP 1	
			Bit 2:CMP 2	
			Bit 3:CMP 3	
			Bit 4:CMP H	
			Value: 0x00 ~ 0x1f	
0x13	TG_TRG3_SRC	Trigger output 3 (TRG3)	Bit 0:CMP 0	8
		source	Bit 1:CMP 1	
			Bit 2:CMP 2	
			Bit 3:CMP 3	
			Bit 4:CMP H	
			Value: 0x00 ~ 0x1f	
0x14	TG_TRG0_PWD	TRG0 pulse width	Pulse Width = (N+	5
			5) * 10 ns	(100
			Value: 0x05 ~ 0x7fffffff	ns)
			The value smaller than	
			0x05 is treated as 0x05.	
0x15	TG_TRG1_PWD	TRG1 pulse width	Pulse Width = $(N+)$	5
			5) * 10 ns	(100
			Value: 0x05 ~ 0x7fffffff	ns)
			The value smaller than 0x05	
			is treated as 0x05.	
0x16	TG_TRG2_PWD	TRG2 pulse width	Pulse Width = $(N+)$	5
			5) * 10 ns	(100
			Value: 0x05 ~ 0x7fffffff	ns)
			The value smaller than 0x05	
			is treated as 0x05.	
0x17	TG_TRG3_PWD	TRG3 pulse width	Pulse Width = $(N+)$	5
			5) * 10 ns	(100
			Value: 0x05 ~ 0x7fffffff	ns)
			The value smaller than	
			0x05 is treated as 0x05.	
0x18	TG_TRG0_CFG	TRG 0 configuration	Bit 0: Pulse logic inverse.	0
			Not Inverse (0) / Inverse (1)	
			Bit 1~2: pulse (0) / toggle	
			(1) / ByPass (2) / Disable	
			(3)	
			Bit 3~31: Reserved (set 0)	

0x19	TG_TRG1_CFG	TRG 1 configuration	Bit 0: Pulse logic inverse.	0
			Not Inverse (0) / Inverse (1)	
			Bit 1~2: pulse (0) / toggle	
			(1) / ByPass (2) / Disable	
			(3)	
			Bit 3~31: Reserved (set 0)	
0x1A	TG_TRG2_CFG	TRG 2 configuration	Bit 0: Pulse logic inverse.	0
			Not Inverse (0) / Inverse (1)	
			Bit 1~2: pulse (0) / toggle	
			(1) / ByPass (2) / Disable	
			(3)	
			Bit 3~31: Reserved (set 0)	
0x1B	TG_TRG3_CFG	TRG 3 configuration	Bit 0: Pulse logic inverse.	0
			Not Inverse (0) / Inverse (1)	
			Bit 1~2: pulse (0) / toggle	
			(1) / ByPass (2) / Disable	
			(3)	
			Bit 3~31: Reserved (set 0)	
0x20	TG_ENCH_CFG	Encoder H configuration	Bit 0: Filter Enable. 1:	0
			Enable, 0: Disable.	
			Bit 1: Counter Direction	
			Inverse. 0: Not Inverse, 1:	
			Inverse.	
			Bit 2~4: Decoder mode.	
			0x00: OUT/DIR, 0x01:	
			CW/CCW, 0x02: 1XAB,	
			0x03: 2XAB, 0x04: 4XAB.	

	HSL-4XMO Trigger parameter table						
NO	Define	Description	Value	Default:			
0x00	TG_CMP0_SRC	Compare 0 source	0: Command counter	0			
			1: Position counter				
0x01	TG_CMP1_SRC	Compare 1 source	0: Command counter	0			
			1: Position counter				
0x02	TG_CMP2_SRC	Compare 2 source	0: Command counter	0			
			1: Position counter				
0x03	TG_CMP3_SRC	Compare 3 source	0: Comand counter	0			
			1: Position counter				

0x04	TG_CMP0_EN	Compare 0 enable	0: Disable	0
		·	Other: Enable.	
			1:data = cmp counter	
			(regardless of counting	
			direction)	
			2: data = cmp counter	
			(while counting up)	
			3: data = cmp counter	
			(while counting down)	
			4: data > cmp counter	
			5: data < cmp counter	
0x05	TG_CMP1_EN	Compare 1 enable	0: Disable	0
			Other: Enable.	
			1:data = cmp counter	
			(regardless of counting	
			direction)	
			2: data = cmp counter	
			(while counting up)	
			3: data = cmp counter	
			(while counting down)	
			4: data > cmp counter	
			5: data < cmp counter	
0x06	TG_CMP2_EN	Compare 2 enable	0: Disable	0
			Other: Enable.	
			1:data = cmp counter	
			(regardless of counting	
			direction)	
			2: data = cmp counter	
			(while counting up)	
			3: data = cmp counter	
			(while counting down)	
			4: data > cmp counter	
			5: data < cmp counter	
0x07	TG_CMP3_EN	Compare 3 enable	0: Disable	0
			Other: Enable.	
			1:data = cmp counter	
			(regardless of counting	
			direction)	

2: data = cmp counter (while counting up) 3: data = cmp counter (while counting down) 4: data > cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 5: data < cmp counter 6: data <				2: data - amp aggretar	
3: data = cmp counter (while counting down)				·	
While counting down					
0x08 Reserve 0x09 Reserve 0x0A Reserve 0x0B Reserve 0x0C Reserve 0x0D Reserve 0x0D Reserve 0x10 Reserve 0x11 Reserve 0x12 Reserve 0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration 0x19 TG_TRG1_CFG TRG 1 configuration Not Inverse (0) / Inverse (1) 0 0x1A TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x1B TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 1: Negative direction, 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Com				-	
0x08 Reserve 0x09 Reserve 0x0A Reserve 0x0B Reserve 0x0C Reserve 0x0D Reserve 0x0D Reserve 0x10 Reserve 0x11 Reserve 0x12 Reserve 0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration 0x19 TG_TRG1_CFG TRG 1 configuration Not Inverse (0) / Inverse (1) 0 0x18 TG_TRG3_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x12 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR Compare 3 direction					
0x08 Reserve 0x09 Reserve 0x0A Reserve 0x0B Reserve 0x0C Reserve 0x0D Reserve 0x0E Reserve 0x10 Reserve 0x11 Reserve 0x12 Reserve 0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration 0x19 TG_TRG1_CFG TRG 1 configuration 0x10 Not Inverse (0) / Inverse (1) 0 0x12 TG_TRG3_CFG TRG 2 configuration 0x10 Tompare 0 direction Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0					
0x09 Reserve 0x0A Reserve 0x0B Reserve 0x0C Reserve 0x0D Reserve 0x10 Reserve 0x11 Reserve 0x12 Reserve 0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration 0x19 TG_TRG1_CFG TRG 1 configuration 0x10 Not Inverse (0) / Inverse (1) 0 0x19 TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x19 TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x10 TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0				5: data < cmp counter	
0x0A Reserve	0x08	Reserve			
0x0B Reserve 0x0C Reserve 0x0D Reserve 0x0E Reserve 0x10 Reserve 0x11 Reserve 0x12 Reserve 0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration 0x19 TG_TRG1_CFG TRG 1 configuration Not Inverse (0) / Inverse (1) 0 0x1A TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x1B TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive directi	0x09	Reserve			
0x0C Reserve 0x0D Reserve 0x10 Reserve 0x11 Reserve 0x12 Reserve 0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration 0x19 TG_TRG1_CFG TRG 1 configuration 0x10 Not Inverse (0) / Inverse (1) 0 0x19 TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x10 TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x10 TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x10 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x21 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x22 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x23 TG_	0x0A	Reserve			
0x0D Reserve 0x0E Reserve 0x10 Reserve 0x11 Reserve 0x12 Reserve 0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration Not Inverse (0) / Inverse (1) 0 0x19 TG_TRG1_CFG TRG 1 configuration Not Inverse (0) / Inverse (1) 0 0x1A TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x1B TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0	0x0B	Reserve			
0x0E Reserve 0x10 Reserve 0x11 Reserve 0x12 Reserve 0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration Not Inverse (0) / Inverse (1) 0 0x19 TG_TRG1_CFG TRG 1 configuration Not Inverse (0) / Inverse (1) 0 0x1A TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x1B TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR <td< td=""><td>0x0C</td><td>Reserve</td><td></td><td></td><td></td></td<>	0x0C	Reserve			
0x10 Reserve 0x11 Reserve 0x12 Reserve 0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration 0x19 TG_TRG1_CFG TRG 1 configuration 0x10 Not Inverse (0) / Inverse (1) 0 0x14 TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x19 TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x18 TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x0D	Reserve			
0x11 Reserve 0x12 Reserve 0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration 0x19 TG_TRG1_CFG TRG 1 configuration Not Inverse (0) / Inverse (1) 0x1A TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x1B TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x0E	Reserve			
0x12 Reserve 0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration 0x19 TG_TRG1_CFG TRG 1 configuration 0x1A TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0x1B TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x10	Reserve			
0x13 Reserve 0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration Not Inverse (0) / Inverse (1) 0 0x19 TG_TRG1_CFG TRG 1 configuration Not Inverse (0) / Inverse (1) 0 0x1A TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x1B TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x11	Reserve			
0x14 Reserve 0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration Not Inverse (0) / Inverse (1) 0 0x19 TG_TRG1_CFG TRG 1 configuration Not Inverse (0) / Inverse (1) 0 0x1A TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x1B TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x12	Reserve			
0x15 Reserve 0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration Not Inverse (0) / Inverse (1) 0 0x19 TG_TRG1_CFG TRG 1 configuration Not Inverse (0) / Inverse (1) 0 0x1A TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x1B TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x13	Reserve			
0x16 Reserve 0x17 Reserve 0x18 TG_TRG0_CFG TRG 0 configuration Not Inverse (0) / Inverse (1) 0 0x19 TG_TRG1_CFG TRG 1 configuration Not Inverse (0) / Inverse (1) 0 0x1A TG_TRG2_CFG TRG 2 configuration Not Inverse (0) / Inverse (1) 0 0x1B TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x14	Reserve			
0x17Reserve0x18TG_TRG0_CFGTRG 0 configurationNot Inverse (0) / Inverse (1)00x19TG_TRG1_CFGTRG 1 configurationNot Inverse (0) / Inverse (1)00x1ATG_TRG2_CFGTRG 2 configurationNot Inverse (0) / Inverse (1)00x1BTG_TRG3_CFGTRG 3 configurationNot Inverse (0) / Inverse (1)00x21TG_CMP0_DIRCompare 0 direction0: Positive direction,00x22TG_CMP1_DIRCompare 1 direction0: Positive direction,00x23TG_CMP2_DIRCompare 2 direction0: Positive direction,00x24TG_CMP3_DIRCompare 3 direction0: Positive direction,0	0x15	Reserve			
0x18TG_TRG0_CFGTRG 0 configurationNot Inverse (0) / Inverse (1)00x19TG_TRG1_CFGTRG 1 configurationNot Inverse (0) / Inverse (1)00x1ATG_TRG2_CFGTRG 2 configurationNot Inverse (0) / Inverse (1)00x1BTG_TRG3_CFGTRG 3 configurationNot Inverse (0) / Inverse (1)00x21TG_CMP0_DIRCompare 0 direction0: Positive direction, 1: Negative direction,00x22TG_CMP1_DIRCompare 1 direction0: Positive direction, 1: Negative direction,00x23TG_CMP2_DIRCompare 2 direction0: Positive direction, 1: Negative direction,00x24TG_CMP3_DIRCompare 3 direction0: Positive direction, 0: Positive direction,0	0x16	Reserve			
0x19TG_TRG1_CFGTRG 1 configurationNot Inverse (0) / Inverse (1)00x1ATG_TRG2_CFGTRG 2 configurationNot Inverse (0) / Inverse (1)00x1BTG_TRG3_CFGTRG 3 configurationNot Inverse (0) / Inverse (1)00x21TG_CMP0_DIRCompare 0 direction0: Positive direction, 1: Negative direction.00x22TG_CMP1_DIRCompare 1 direction0: Positive direction, 1: Negative direction, 0: Positive direction, 1: Negative direction, 1: Negative direction.0x23TG_CMP2_DIRCompare 2 direction0: Positive direction, 1: Negative direction,00x24TG_CMP3_DIRCompare 3 direction0: Positive direction, 0: Positive direction,0	0x17	Reserve			
0x1ATG_TRG2_CFGTRG 2 configurationNot Inverse (0) / Inverse (1)00x1BTG_TRG3_CFGTRG 3 configurationNot Inverse (0) / Inverse (1)00x21TG_CMP0_DIRCompare 0 direction0: Positive direction, 1: Negative direction,00x22TG_CMP1_DIRCompare 1 direction0: Positive direction, 1: Negative direction,00x23TG_CMP2_DIRCompare 2 direction0: Positive direction, 1: Negative direction.00x24TG_CMP3_DIRCompare 3 direction0: Positive direction, 0: Positive direction,0	0x18	TG_TRG0_CFG	TRG 0 configuration	Not Inverse (0) / Inverse (1)	0
0x1B TG_TRG3_CFG TRG 3 configuration Not Inverse (0) / Inverse (1) 0 0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x19	TG_TRG1_CFG	TRG 1 configuration	Not Inverse (0) / Inverse (1)	0
0x21 TG_CMP0_DIR Compare 0 direction 0: Positive direction, 0 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x1A	TG_TRG2_CFG	TRG 2 configuration	Not Inverse (0) / Inverse (1)	0
1: Negative direction. 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 1: Negative direction. 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 1: Negative direction, 0 1: Negative direction. 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x1B	TG_TRG3_CFG	TRG 3 configuration	Not Inverse (0) / Inverse (1)	0
1: Negative direction. 0x22 TG_CMP1_DIR Compare 1 direction 0: Positive direction, 0 1: Negative direction. 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 1: Negative direction, 0 1: Negative direction. 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x21	TG_CMP0_DIR	Compare 0 direction	0: Positive direction,	0
1: Negative direction. 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 1: Negative direction. 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0					
1: Negative direction. 0x23 TG_CMP2_DIR Compare 2 direction 0: Positive direction, 0 1: Negative direction. 0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x22	TG_CMP1_DIR	Compare 1 direction	0: Positive direction,	0
0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0				1: Negative direction.	
0x24 TG_CMP3_DIR Compare 3 direction 0: Positive direction, 0	0x23	TG_CMP2_DIR	Compare 2 direction	0: Positive direction,	0
	0x24	TG_CMP3_DIR	Compare 3 direction	0: Positive direction,	0
				1: Negative direction.	

	DB-8150 Trigger parameter table					
NO	Define	Description	Value	Default:		
0x00	TG_PWM0_PULSE_ WIDTH	Set PWM pulse width (CH0)	1~65535 Note: Pulse Width(nsec) = Parameter * 100 + 85	0x3E7 (999) (100us ec)		
0x01	TG_PWM1_PULSE_ WIDTH	Set PWM pulse width (CH1)	1~65535 Note: Pulse Width(nsec) = Parameter * 100 + 85	0x3E7 (999) (100us ec)		
0x02	TG_PWM0_MODE	Select the pulse output or level switch output (CH0)	O: Pulse output 1: Level switch output (toggle output)	0		
0x03	TG_PWM1_MODE	Select the pulse output or level switch output (CH1)	O: Pulse output 1: Level switch output (toggle output)	0		
0x04	TG_TIMER0_INTER	Set Timer interval (CH0)	0~1073741823 Note: Timer cycle time(nsec) = (interval + 5) * 25	0 (125ns ec)		
0x05	TG_TIMER1_INTER	Set Timer interval (CH1)	0~1073741823 Note: Timer cycle time(nsec) = (interval + 5) * 25	0 (125ns ec)		
0x06	TG_ENC0_CNT_DI	Set Encoder count direction (CH0)	0: Not inverse 1: Inverse	0		
0x07	TG_ENC1_CNT_DI	Set Encoder count direction (CH1)	0: Not inverse 1: Inverse	0		
0x08	TG_IPT0_MODE	Set pulse input mode (CH0)	0: OUT/DIR 1: CW/CCW 2: 1x AB-Phase 3: 2x AB-Phase 4: 4x AB-Phase	0		

			O. OLIT/DID		
			0: OUT/DIR		
0,,00	TO IDTA MODE	Cat mulae immut as a de (CLIA)	1: CW/CCW		
0x09	TG_IPT1_MODE	Set pulse input mode (CH1)	2: 1x AB-Phase	0	
			3: 2x AB-Phase		
			4: 4x AB-Phase		
0x0A	TG_EZ0_CLEAR_E	Enable EZ clear (CH0)	0: Disable	0	
	N		1: Enable		
0x0B	TG_EZ1_CLEAR_E	Enable EZ clear (CH1)	0: Disable	0	
	N	,	1: Enable		
0x0C	TG_EZ0_CLEAR_L	Clear logic setting (CH0)	0: Falling edge	0	
	OGIC	3 3 ,	1: Rising edge		
0x0D	TG_EZ1_CLEAR_L	Clear logic setting (CH1)	0: Falling edge	0	
505	OGIC		1: Rising edge		
			0: Encoder0		
			(Carrier Board EA/B 0)		
			1: Encoder1		
	TG_CNT0_SOURCE	Set counter's source (CH0)	(Carrier Board EA/B 1)		
0x0E			2: Encoder2	0.42	
UXUE			(Daughter Board DEA/B 2)	0x2	
			3: Encoder3		
			(Daughter Board DEA/B 3)		
			4: Timer0		
			5: Timer1		
			0: Encoder0		
			(Carrier Board EA/B 0)		
			1: Encoder1		
			(Carrier Board EA/B 1)		
		_	2: Encoder2		
0x0F	TG_CNT1_SOURCE	Set counter's source (CH1)	(Daughter Board DEA/B 2)	0x3	
			3: Encoder3		
			(Daughter Board DEA/B 3)		
			4: Timer0		
			5: Timer1		
			0: Disable		
0x10	TG_FTR0_EN	Filter enable (CH0)	1: Enable	0	
			0: Disable		
0x11	TG_FTR1_EN	Filter enable (CH1)	1: Enable	0	
0x12	TG_DI_LATCH0_EN	Enable DI LATCH (CH0)	0: Disable	0	
				Ĭ	

			1: Enable		
			0: Disable	_	
0x13	TG_DI_LATCH1_EN	Enable DI LATCH (CH1)	1: Enable	0	
	TG_DI_LATCH0_ED	Set DI LATCH condition	0: DI falling edge to latch		
0x14	GE	(CH0)	1: DI Rising edge to latch	0	
0x15	TG_DI_LATCH1_ED	Set DI LATCH condition	0: DI falling edge to latch	0	
UXIS	GE	(CH1)	1: DI Rising edge to latch	U	
0x16	TG_DI_LATCH0_VA	Get DI Latch Value (CH0)			
0x17	TG_DI_LATCH1_VA	Get DI Latch Value (CH1)			
			0~65535		
0x18	TG_TRGOUT_MAP	Set Trigger Out Mapping	(Bit16~Bit31 reserved)	0x9	
			*Note(1)		
	TG TRGOUT LOGI		0~255		
0x19	TG_TRGOUT_LOGI	Set Trigger Out Logic	(Bit8~Bit31 reserved)	0	
	· ·		*Note(2)		
	TG_FIFO_LEVEL		0: level=0 (empty)		
			1: level=1/4		
0x1A		Set/Get FIFO size Level	2: level=1/2 (default)	0	
		00,00,1, 0 0.20 20,0.	3: level=3/4		
			Note:		
			Only Support CH0		
			Bit 0: Timer		
			0: Disable		
			1: Enable		
			Bit 1: Linear comparator		
			0: Disable	0x4	
	TG_PWM0_SOURC		1: Enable	(FIFO	
0x1B	E	Set PWM Source (CH0)	Bit 2: FIFO comparator	compar	
			0: Disable	ator)	
			1: Enable		
			Other bits reserved		
			Note:		
			FIFO comparator Only		
			Support CH0		
0x1C	TG_PWM1_SOURC	Set PWM Source (CH1)	Bit 0: Timer	0x4	
50	Е		0: Disable	(FIFO	

	1: Enable	compar
	Bit 1: Linear comparator	ator)
	0: Disable	
	1: Enable	
	Bit 2: FIFO comparator	
	0: Disable	
	1: Enable	
	Other bits reserved	
	Note:	
	FIFO comparator Only	
	Support CH0	

*Note(1)

Bit	7	6	5	4	3	2	1	0
Function	TRG3b	TRG3a	TRG2b	TRG2a	TRG1b	TRG1a	TRG0b	TRG0a
Bit	15	14	13	12	11	10	9	8
Function	TRG7b	TRG7a	TRG6b	TRG6a	TRG5b	TRG5a	TRG4b	TRG4a

The DB-8150 has 8 trigger output pins and 2 channel of PWM.

By this function, the trigger output pins can be mapped with 2 channel of PWM.

The symbol TRG0 ~ TRG7 representing pin0~pin7 of trigger output pins.

The "a" symbol represent PWM0.

The "b" symbol represent PWM1.

For example:

TRG0a=1 represent the PWM0 signal will be output by trigger output pin0.

TRG0a=0 represent the PWM0 signal will not be output by trigger output pin0.

if TRG0a and TRG0b are set to 1 at the same time, the pin0 will output signal by PWM0 and PWM1 making OR operator.

*Note(2)

Bit	7	6	5	4	3	2	1	0
Function	TRGInv7	TRGInv6	TRGInv5	TRGInv4	TRGInv3	TRGInv2	TRGInv1	TRGInv0

This parameter is used to set the logic of trigger output signal.

For example:

TRGInv0=1 represent the trigger output signal will be inversed by pin0.

TRGInv0=0 represent the trigger output signal will not be inversed by pin0.

30. Device information table

	PCI-8392 (H) Device information					
InfoNo	Information meaning	Format				
0x00	Reserved	-				
0x10	Driver version	Date				
0x20	CPLD version	16 Bits				
0x30	PCB version	PCB				
0x40	DSP version	Date				

PCI-8253/56 Device information						
InfoNo.	Info					
0x00	Reserved		0x01	Reserved		
0x10	Driver version	Date	0x11	Reserved		
0x20	CPLD version	16 Bits	0x21	FPGA version	16 Bits	
0x30	PCB version (Carrier)	PCB	0x31	PCB Ver.(DB)	PCB	
0x40	DSP version	Date	0x41	Reserved		

PCI-8144 Device information			
InfoNo	Information meaning	Format	
0x00	Reserved	-	
0x10	Driver version	Date format	
0x20	CPLD version	16 Bits	

DPAC-1000 Device information			
InfoNo	Information meaning	Format	
0x00	Reserved	-	
0x10	Driver version	Date	
0x20	CPLD version	16 Bits	
0x30	PCB version	PCB	

DPAC-3000 Device information			
InfoNo	Information meaning	Format	
0x00	Reserved	-	

0x10	Driver version	Date	
0x20	CPLD version	16 Bits	
0x30	PCB version	PCB	

PCI-7856 Device information				
InfoNo	Information meaning	Format		
0x00	Reserved	-		
0x10	Driver version	Date format		
0x20	CPLD version	16 Bits		
0x30	PCB version	PCB		

	MNET-4XMO Device information							
InfoNo.	No. Info Format InfoNo. Info							
0x00	Reserved	Reserved						
0x10	Reserved		0x11	Reserved				
0x20	CPLD version	16 Bits	0x21	Reserved				
0x30	PCB version (Button)	PCB	0x31	PCB Ver.(Top)	PCB			

MNET-4XMO-C Device information								
InfoNo.	Info Format InfoNo. Info							
0x00	Reserved	Reserved						
0x10	Reserved		0x11	Reserved				
0x20	Reserved		0x21	FPGA version	16 Bits			
0x30	PCB version (Button)	PCB	0x31	PCB Ver.(Top)	PCB			

	HSL-4XMO Device information							
InfoNo.	Info							
0x00	Reserved		0x01	Reserved				
0x10	Reserved		0x11	Reserved				
0x20	CPLD version	16 Bits	0x21	Reserved				
0x30	Reserved		0x31	Reserved				
0x40	DSP version	Date format						

PCI-8154/58/02 Device information					
InfoNo. Info Format InfoNo. Info					
0x00					

0x10	Driver version	Date	0x11	Reserved	
0x20	CPLD	16 Bits	0x21	FPGA/CPLD	16 Bits
ONLO	version(Carrier)			Ver.(DB)	
0x30	PCB version (Carrier)	PCB	0x31	PCB Ver.(DB)	PCB

Format description:

1. Date format: 32 bit value

Value = YYMMDD; Y:year, M:month, D:day Eg. Driver version = 80212. 2008/2/12 release.

2. PCB format: 4 bits value.

<u>00</u> <u>00</u>b = PCB A1 version

Dec.	Bin	Version	Dec.	Bin	Version
0	0000b	A1	8	1000b	C1
1	0001b	A2	9	1001b	C2
2	0010b	A3	10	1010b	C3
3	0011b	A4	11	1011b	C4
4	0100b	B1	12	1100b	D1
5	0101b	B2	13	1101b	D2
6	0110b	B3	14	1110b	D3
7	0111b	B4	15	1111b	D4

3. 16 Bits Format: 16 bit value (1 ~ 255)

31. Field bus slave parameter table

HSL-DI16	HSL-DI16-UL						
CH NO.	PA NO.	Description	Value	Default:			
-1	Enable / Disable stretch (latch) function for all channel 0x0000		0: Enable	1			
	0.0000	(Set only)	1: Disable				
-1	0x0001	Set stretch (latch) duration for all channels.		0			
	0x0001	(Set only)	0: No stretch.				
0 ~ 15	0*0000	Sat / Cat atwatch (latah) function for each channel	0: Enable	1			
	0x0000	0x0000 Set / Get stretch (latch) function for each channel.					
0 ~ 15	0x0001	Sat / Cat atwatch (latah) diwation for each channel	0 ~ 127 (ms)	0			
	0.0001	Set / Get stretch (latch) duration for each channel.	0: No stretch.				

HSL-Al16AO2					
CH NO.	PA NO.	Description	Value	Default:	
-1			0: +/- 10V	0	
	0x0000	Sat / Cat angles input ropes	1: +/- 5V		
	00000	Set / Get analog input range.	2: +/- 2.5V		
			3: +/- 1.25		
-1	0x0001	Set / Get last scan analog input channel	0 ~ 15	15	
-1	0. 0002	Enable / Disable analog input (AD converator)	0: Disable	0	
	0x0002	(Set only)	1: Enable		

HSL-AO4					
CH NO.	PA NO.	Description	Value	Default:	
-1		Set / Get keep mode. (Value format :Bit format)	Bit ON: Disable	0	
		Keep Enable means that ananlg output will be keeped	Bit OFF: Enable		
	0x0000	when communication is broken.	Bit 0~3: Ch 0 ~ Ch3		
		Set 0 enable all channels keep mode.			
		Set 0xF disable all channels keep mode.			

32. DPAC displayIndex table

APS_get_display_data() and APS_set_display_data() reference table. For alphabet type, users can use one of three values to disaply it. For example, for letter 'A', users can set 0x0A, 0x41 or 0x61 to display it.

7-Segment	* displayIndex	displayIndex	displayIndex
LED results	displayIndex		
'0'	0x00	0X30(ASCII'0')	
'1'	0x01	0X31(ASCII'1')	
'2'	0x02	0X32(ASCII'2')	
'3'	0x03	0X33(ASCII'3')	
'4'	0x04	0X34(ASCII'4')	
'5'	0x05	0X35(ASCII'5')	
'6'	0x06	0X36(ASCII'6')	
'7'	0x07	0X37(ASCII'7')	
'8'	0x08	0X38(ASCII'8')	
'9'	0x09	0X39(ASCII'9')	
'A'	0x0A	0X41(ASCII'A)	0X61(ASCII'a')
ʻb'	0x0B	0X42(ASCII'B')	0X62(ASCII'b')
,C,	0x0C	0X43(ASCII'C')	0X63(ASCII'c')
'd'	0x0D	0X44(ASCII'D')	0X64(ASCII'd')
'E'	0x0E	0X45(ASCII'E')	0X65(ASCII'e')
'F'	0x0F	0X46(ASCII'F')	0X66(ASCII'f')
'G'	0x10	0X47(ASCII'G')	0X67(ASCII'g')
'H'	0x11	0X48(ASCII'H')	0X68(ASCII'h')
ʻi'	0x12	0X49(ASCII'I')	0X69(ASCII'i')
ʻj'	0x13	0X4A(ASCII'J')	0X6A(ASCII'j')
'K'	0x14	0X4B(ASCII'K')	0X6B(ASCII'k')
'L'	0x15	0X4C(ASCII'L')	0X6C(ASCII'I')
'M'	0x16	0X4D(ASCII'M')	0X6D(ASCII'm')
'n'	0x17	0X4E(ASCII'N')	0X6E(ASCII'n')
ʻo'	0x18	0X4F(ASCII'O')	0X6F(ASCII'o')
ʻp'	0x19	0X50(ASCII'P')	0X70(ASCII'p')
ʻq'	0x1A	0X51(ASCII'Q')	0X71(ASCII'q')
ʻr'	0x1B	0X52(ASCII'R')	0X72(ASCII'r')

'S'	0x1C	0X53(ASCII'S')	0X73(ASCII's')
't'	0x1D	0X54(ASCII'T')	0X74(ASCII't')
'U'	0x1E	0X55(ASCII'U')	0X75(ASCII'u')
'V'	0x1F	0X56(ASCII'V')	0X76(ASCII'v')
'W'	0x21	0X57(ASCII'W')	0X77(ASCII'w')
'X'	0x22	0X58(ASCII'X')	0X78(ASCII'x')
'Υ'	0x23	0X59(ASCII'Y')	0X79(ASCII'y')
ʻZ'	0x24	0X5A(ASCII'Z')	0X7A(ASCII'z')
'0.'	0x25		
'1.'	0x26		
'2.'	0x27		
'3.'	0x28		
'4.'	0x29		
'5.'	0x2A		
'6.'	0x2B		
ʻ7.'	0x2C		
'8.'	0X2D		
'9.'	0X2E		
4 7	0X2F		
	0X20	0X20(ASCII' ')	

33. DPAC Push button status table

ON in the table means pushed.

Example Steps - check B3 ON/OFF

- 1) Read button status
- 2) To get a new button status by 'NOT' button status
- 3) Maps B3 to Bit# by "Bit#=(4 B#)". We get Bit1.
- 4) Use Bit1 (0010b) to 'AND' new button status
- 5) If the result is zero, it means B3 is not pushed.
- 6) If the result is non-zero, it means B3 is pushed.

	11011 2010	<u> </u>		
buttonstatus	B1	B2	В3	B4
	(Bit3)	(Bit2)	(Bit1)	(Bit0)
0x0F	OFF	OFF	OFF	OFF
0x0E	OFF	OFF	OFF	ON
0x0D	OFF	OFF	ON	OFF
0x0C	OFF	OFF	ON	ON
0x0B	OFF	ON	OFF	OFF
0x0A	OFF	ON	OFF	ON
0x09	OFF	ON	ON	OFF
80x0	OFF	ON	ON	ON
0x07	ON	OFF	OFF	OFF
0x06	ON	OFF	OFF	ON
0x05	ON	OFF	ON	OFF
0x04	ON	OFF	ON	ON
0x03	ON	ON	OFF	OFF
0x02	ON	ON	OFF	ON
0x01	ON	ON	ON	OFF
0x00	ON	ON	ON	ON

34. SSCNET servo monitor source table

Monitor Source NO.	Content	Units	Note (bytes)
0	Position feeback	Pulse	4
1	Position droop	Pulse	4
2	Speed feedback 0.01 r/min 4		4
3	Electrical current feedback	0.1%	2 Bytes
	(torque)		
4	Instataneous with-in one	Pulse	4 Bytes
	revolution position		
5	Origenal position with-in one	Pulse	4 Bytes
	revolution		
6	ZCT	Pulse	4 Bytes
7	Instataneous position encoder	rev	2 Bytes
	pulse/rev counter.		
8	Origenal position encoder	rev	2 Bytes
	pulse/rev counter.		
9	Bus voltage	V	2 Bytes
10	Regenerative load factor	%	2 Bytes
11	Effective load ratio	%	2 Bytes
12	Ratio of load inertia monemt	Times	2 Bytes
	to servo motor inertia moment		
13	Position loop gain	Rad/s	2 Bytes
14	Alarm/warning number		
15	Alarm details bit		
16	Parameter number		
17	Alarm status (AL10~AL1F)		
18	Alarm status (AL20~AL2F)		
19	Alarm status (AL30~AL3F)		
20	Alarm status (AL40~AL4F)		
21	Alarm status (AL50~AL5F)		
22	Alarm status (AL60~AL6F)		
23	Alarm status (AL70~AL7F)		
24	Alarm status (AL80~AL8F)		
25	Alarm status (AL90~AL9F)		
26	Alarm status (ALEO~ALEF)		

35. VAO parameter table

PCI-8253/56 VAO parameter table				
NO	Define	Description	Value	Default
				:
0x00 + (2 * N)	VAO_TABLE_	Table output type	0: Voltage	1
Note:	OUTPUT_TYPE	(*1)	1: PWM mode	
N is TableNo,			2: PWM frequency mode	
range is 0 ~ 7.			with fixed width	
(*3)			3. PWM frequency mode	
			with fixed duty cycle	
0x01 + (2 * N)	VAO_TABLE_	Table input type	0: Feedback speed	0
Note:	INPUT _TYPE		1: Command speed	
N is TableNo,				
range is 0 ~ 7.				
(*3)				
0x10 + N	VAO_TABLE_	Configure PWM	a. Mode 0 - Don't care	100
Note:	PWM_Config	according to output	b. Mode 1 - set a fixed	
N is TableNo,		type.	frequency	
range is 0 ~ 7.			(1 ~ 25M Hz)	
(*3)			c. Mode 2 - set a fixed	
			Pulse Width	
			(40 ~ 335544340 ns)	
			d. Mode 3 – set a fixed	
			duty cycle:	
			N * 0.05 %.	
			(N: 1 ~ 2000)	
0x20 + N	VAO_TABLE_	Specify axisID for VAO	Bit0: Axis 0 On	0x01
Note:	SRC	table.	Bit1: Axis 1 On	
N is TableNo,		(linear speed on multi-	Bit2: Axis 2 On	
range is 0 ~ 7.		axes)	Bit3: Axis 3 On	
(*3)		(*2)		
0x30	Reserved	Reserved	Reserved	
(*4)				
0x40~				

^{(*1):} PCI-8253 don't support voltage mode.

^{(*2):} PCI-8253 supports 3 axes. Bit 0, bit 1 and bit 2 are available.

- (*3): Vao supports 8 tables. Each table has own parameter setting. For example, user could use 0x00 to set table output type to table0 and use 0x02 to set output type to table1. For another example, user could use 0x20 to specify axis id for table 0 and use 0x21 to specify axis id for table 1.
- (*4): A parameter named VAO_TABLE_TARGET(0x30), used to set output channel, is taken off because of supporting multi-table design. By new design, user could set output channel by APS_start_vao(). Refer to APS_start_vao().

APS Functions Return Code

The following table provides a list of possible return value in APS library. If the return value is a negative value, it means there are some errors or warning occurred.

We provide C/C++ standard header file, "ErrorCodeDef.h", which define all errors return value.

Error Code Table

Code	Define	Error descriptions and items to check
0	ERR_NoError	Success, No error
-1	ERR_OSVersion	Operating system version error.
		The current operating system you used are not
		supported by this function.
-2	ERR_OpenDriverFailed	Open driver failed. Create driver interface
		failed.
		Check device driver is installed correctly.
		Check devices are installed correctly in your
		system.
-3	ERR_InsufficientMemory	System memory insufficiently.
		There is not enough memory in your system.
-4	ERR_DeviceNotInitial	The Device or the card is not be initialized.
		Check the card ID
		The device has been closed
		The device is not be initialized.
-5	ERR_NoDeviceFound	Devices not found
		Check device driver is installed correctly.
		Check devices are installed correctly in your
		system.
-6	ERR_CardIdDuplicate	Card ID duplicated.
		Check the card ID settings (SW jump)
		Check the parameter of initial function is
		correctly.
-7	ERR_DeviceAlreadyIntialed	The devices have already been initialed.
		1. Check the close card function is work
		correctly.
-8	ERR_InterruptNotEnable	Interrupt events not be enabled.
		1. Enable the hardware interrupt.
		2. Check the interrupt factor is set correctly.

-9	ERR_TimeOut	Function timeout.
-10	ERR_ParametersInvaild	The value of the parameters is incorrect.
		Check the setting range of parameters.
		Compare the setting value of parameters with
		user manual.
-11	ERR_SetEEPROM	Hardware memory write error.
-12	ERR_GetEEPROM	Hardware memory read error.
-13	ERR_FunctionNotAvailable	The function is not available in current stage.
		The device is not support this function.
		System is in error state.
		1. Check the function library.
		2. Check the hardware connection (servo drive
		connection)
		3. Reinitial(Reboot) the system.
-14	ERR_FirmwareError	Firmware process error.
		1. Check the firmware version.
-15	ERR_CommandInProcess	The previous command is in process.
-16	ERR_AxisIdDuplicate	Axes' ID is duplicated.
-17	ERR_ModuleNotFound	Slave module not found.
-18	ERR_InsufficientModuleNo	System ModuleNo insufficiently
-19	ERR_HandShakeFailed	HandSake with the DSP out of time.
-20	ERR_FILE_FORMAT	Config file format error.(cannot be parsed)
-21	ERR_ParametersReadOnly	Function parameters read only.
-22	ERR_DistantNotEnough	Distant is not enough for motion.
-1000	ERR_Win32Error	No such event number, or WIN32_API error,
		contact with ADLINK's FAE staff.