1801BMx

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии (https://ru.wikipedia.org/w/index.php? title=1801BMx&stable=1), проверенной 17 марта 2014; проверки требуют 6 правок (https://ru.wikipedia.org/w/index.php? title=1801BMx&oldid=61973315&diff=cur&diffonly=0).

1801BMx — серия советских 16-разрядных однокристальных микропроцессоров. Первоначально разрабатывалась^[1] как однокристальная ЭВМ (микроконтроллер) **1801BE1** (с собственной архитектурой «Электроника НЦ»), который в свою очередь был развитием микропроцессорного комплекта серии К587^[2] с добавленной на кристалле периферией (ОЗУ/ПЗУ/таймер).

Позднее по требованию Министерства Электронной промышленности от этой архитектуры отказались^[3] в пользу архитектуры PDP-11. Таким образом, система команд серии в целом повторяла систему команд PDP-11. Прямого зарубежного аналога нет. Наиболее близкий аналог — однокристальный процессор DEC T-11, но полной совместимости нет; у T-11 имеется прямой клон K1807BM1. Другой близкий аналог — LSI-11/03 (Электроника-60), но в отличие от неё, процессоры K1801 имеют однокристальное исполнение.

Процессоры производились на заводах «Ангстрем», г. Зеленоград и «Экситон», г. Павловский Посад. Позднее, для выпуска полной номенклатуры комплектующих УКНЦ было освоено производство КМ1801ВМ2 на Солнечногорском электромеханическом заводе (СЭМ3) в г. Солнечногорске.

Содержание

- 1 Микросхемы серии
 - 1.1 K1801BM1
 - 1.2 K1801BM2
 - 1.3 KM1801BM3
 - 1.4 KA1801BM4, KH1801BM4
 - 1.5 1806BM2, H1806BM2
 - 1.6 T36BM1-2 (KA1013BM1)
 - 1.7 KP1801BП1
- 2 Использование
- 3 Примечания
- 4 Литература и публикации
- 5 Ссылки

Микросхемы серии

К1801ВМ1

- Количество команд 64, базовый набор PDP-11 и некоторые команды расширенного набора EIS: XOR, SOB (дополнительно MUL для 1801ВМ1Г). Также имеется две дополнительные команды для организации пультового режима: START (000012₈) и STEP (000016₈).
- Выполнен по п-канальной МДП технологии
- Кристалл содержит около 50 тыс. интегральных элементов, размер 5 × 5 мм.
- Системная магистраль: типа МПИ, с совмещённой шиной передачи адреса и данных
- Тактовая частота: 100 кГц 5 МГц
- Быстродействие: до 500 тыс. оп/с для операций типа сложения над регистрами
- Напряжение питания +5В
- Потребляемая мощность: до 1,2 Вт
- Корпус 42-выводный, планарный, металлокерамический типа 429.42-5 или пластиковый для исполнения КР1801BM1

Микропроцессор имеет некоторые рудименты микро-ЭВМ К1801ВЕ1, в частности, программируемый таймер (177706-177712 $_8$)^[4] и регистры межпроцессорной связи (177700-177704 $_8$)^{[5][6]}.

Микропроцессор поддерживает работу в многопроцессорной (до 4-х процессоров) конфигурации. Номер процессора задаётся входами PA0 и PA1 (выводы $27 \text{ и } 26)^{[7]}$.

При производстве, после тестирования процессор маркировался:

- А (либо одна точка) частота до 5 Мгц
- Б до 4 Мгц
- В до 3 Мгц
- Г (или две точки) до 5Мгц и блок умножения для операции мul

См. также К1801ВМ1

К1801ВМ2

Разработан в 1982 году в НИИТТ, выпускался на заводах Ангстрем и СЭМЗ. Главный конструктор — В. Л. Дшхунян.

- Количество команд 72
- Выполнен по п-канальной МОП-технологии
- Кристалл содержит около 120 тысяч элементов, размер 5,3 × 5,45 мм
- Тактовая частота: до 10 МГц
- Быстродействие на частоте 10 МГц: около 1000 тыс. оп/с для операций типа сложения над регистрами, 100 тыс. оп/с для операции умножения,

- около 83,3 тыс. оп/с для операции деления
- Напряжение питания +5В
- Потребляемая мощность: до 1,7 Вт
- Корпус 40-выводный, металлокерамический типа 2123.40-6 (CERDIP) для КМ1801ВМ2 или пластиковый (PDIP) для KP1801BM2

В отличие от K1801BM1, BM2 имеет полноценный «пультовый» режим (HALT-режим) $^{[8]}$. В пультовом режиме при формировании адреса на магистрали устанавливается сигнал SEL, что позволяет использовать в этом режиме отдельное адресное пространство — таким образом, общее доступное процессору поле памяти увеличивалось до 128 КБ. Так, например, на ДВК в пультовом режиме включалось специальное «теневое» системное ПЗУ (К1801РЕ2-055 или подобное, содержащее монитор и подпрограмы загрузки с внешних устройств). При переходе в пользовательский режим работы оно отключалось.

По сравнению с К1801ВМ1, добавлены команды расширенной арифметики (MUL, DIV, ASH, ASHC — часть набора инструкций EIS), а также операции с плавающей запятой (FIS-команды). Команды FIS (FADD, FSUB, FMUL, FDIV) реализованы полупрограммно — при выполнении этих команд происходит особый вид прерывания и исполняется программный обработчик в памяти пультового режима.

Убрана поддержка многопроцессорной конфигурации.

KM1801BM3

Отличается большим объёмом адресуемой памяти (до 4 МБ), более высоким быстродействием (сложение регистр/регистр — 1,5 млн оп/с, умножение — 100 тыс. оп/с, деление — 50 тыс. оп/с), а также возможностью подключения сопроцессора арифметики с плавающей запятой. Менеджер памяти не полностью совместим с аналогом от DEC. В случае использования лишь 18-разрядной адресной шины (до 256 кБ) совместимость диспетчера памяти была достаточна для использования программного обеспечения без переделок, но при использовании полной, 22-разрядной адресной шины (4 МБ) требовалась адаптация программного кода.

Имеется один набор из шести регистров общего назначения R0—R5, два регистра-указателя стека R6 (режима пользователя и режима системы) и регистр счетчика команд PC (R7). Ещё один дополнительный регистр стека R6 используется в режиме останова. Регистр состояния PSW процессора также доступен программно по адресу 17777776.

В настоящее время, заводом Ангстрем выпускается его КМОП-версия под обозначением Н1836ВМЗ с тактовой частотой 16 МГц. Корпус металлокерамический Н18.64-1В

- Выполнен по п-канальной МДП технологии
- Кристалл содержит около 200 тыс. интегральных элементов, размер $6,65 \times 8$ мм.
- Тактовая частота 6,5,4 МГц (А,Б,В)
- Корпус 2136.64-2 (64-пиновый CERDIP)

KA1801BM4, KH1801BM4

Математические сопроцессоры для КМ1801ВМ3 и КН1801ВМ3. 32/64 разряда, первоначально 6 МГц, после 1991 года — до 8 МГц. Полностью советская разработка. Повышал производительность при работе с числами с плавающей точкой почти на два порядка. В настоящее время заводом Ангстрем выпускается его КМОП-версия под обозначением H1836BM4, с тактовой частотой 16 МГц. Корпус — такой же как и у КН1801BM4 (H18.64-1B).

- Выполнен по п-канальной МДП технологии, норма проектирования 3 мкм, 1 слой металлизании.
- Кристалл содержит около 50 тыс. транзисторов, размер $6,65 \times 8.4$ мм.
- Тактовая частота 8, 6, 4 МГц (А,Б,В)
- Напряжение питания +5В
- Потребляемая мощность: до 2 Вт
- Корпус Н18.64-1В (у КН1801ВМ4)
- Число команд 46, исполняет все инструкции DEC PDP-11 FP11 кроме LDUB, LDSC, STA0, STB0 и STQ0.

1806BM2, H1806BM2

Этот микропроцессор функционально соответствуют К1801ВМ2, но выполнен по КМОП технологии.

- Система команд по ОСТ 11 305.909-82
- Число команд 77
- Тактовая частота 0 5,0 МГц

Напряжение питания — 5,4 — 5,5 В

1806ВМ2 поставлялся в 42-выводном керамическом корпусе с планарными выводами 4138.42-10.01, H1806ВМ2 в 64-выводном керамическом кристаллоносителе H18.64-1B (CQFP).

T36BM1-2 (KA1013BM1)

Использовался в микрокалькуляторе Электроника МК-85. Разработан на основе ядра 1806BM2 и ячеек БМК 1515XM1, уже на которых реализованы контроллеры: клавиатуры, последовательного интерфейса, параллельного интерфейса, памяти, программируемого тактового генератора, дежурной схемы управления питанием. По системе команд соответствует 1806BM2.

КР1801ВП1

Микросхема КР1801ВП1 представляла собой базовый матричный кристалл (БМК) на основе которого можно было выпускать разнообразные цифровые устройства. Микросхема содержит примерно 5000 транзисторов (около 600 вентилей). Технологические нормы — 3 микрона по n-МДП технологии, размер кристалла 4,2 × 4,2 мм. Последний слой выполнялся по спецификации заказчика и обозначался цифровым индексом после наименования: КР1801ВП1-(номер прошивки). Выпускались на заводах «Ангстрем» и позднее (для компьютера БК) на заводе «Экситон».

- К1801ВП1-001 Формирователь входных сигналов
- К1801ВП1-002 Схема обработки сигналов
- К1801ВП1-003 Схема обработки сигналов
- К1801ВП1-004 Узел управления
- К1801ВП1-005 Схема обработки сигналов
- К1801ВП1-006 Схема обработки сигналов
- К1801ВП1-007 Схема управления с двумя счетчиками и делителями частоты
- К1801ВП1-008 Схема управления
- К1801ВП1-009 Схема управления ВКО с четырьмя счетчиками
- К1801ВП1-010 Схема обработки сигналов
- К1801ВП1-011 Три независимых схемы управления
- К1801ВП1-012 Схема обработки сигналов
- К1801ВП1-013 Контроллер динамического ОЗУ 64К^[9] на микросхемах 565РУ6 или 565РУ3 с поддержкой пультового режима для 1801ВМ2 (системная память по адресам 0160000..0177777, сигнал выбора системного ПЗУ 0140000..0157777)
- К1801ВП1-014 Контроллер клавиатуры БК $^{[10]}$
- К1801ВП1-015 Устройство связи с фотоимпульсными датчиками положения
- К1801ВП1-016 Устройство хранения и передачи управляющих сигналов на электроавтоматику оборудования
- К1801ВП1-025 Блок контроля
- К1801ВП1-026 Двунаправленный приёмопередатчик на 16 каналов
- К1801ВП1-027 Устройство приёма из магистрали команд и организации совместно с 1801ВП1-032 циклов работы с ЦМД ЗУ
- К1801ВП1-028 Схема коррекции ошибок по коду Хэмминга
- K1801BП1-030 Контроллер динамического ОЗУ 64К на микросхемах 565РУ6 или 565РУ3 с поддержкой пультового режима для 1801ВМ1 (системная память по адресам 0177600..0177677, сигнал выбора системного ПЗУ 0160000..0173777, реализация битов 02 и 03 системного регистра SEL1 (0177716) процессора)^[11]
- К1801ВП1-031 Контроллер прерываний
- К1801ВП1-032 Устройство распределения импульсов и формирования временной диаграммы ЦМД ЗУ
- К1801ВП1-033 Многофункциональный контроллер внешних устройств
- К1801ВП1-034 Многофункциональный контроллер внешних устройств (генератор вектора прерывания, буферный регистр, коммутатор шин)
- К1801ВП1-035 Последовательный интерфейс со скоростью до 57 Кбод (DEC KL11)
- К1801ВП1-037 Контроллер бытового ТВ приёмника БК^[12]
- К1801ВП1-038 Программируемый таймер
- K1801BП1-054 Адаптер магистралей Q-BUS и U-BUS
- К1801ВП1-055 Двунаправленный буферный регистр для межшинного моста Q16↔Q16, развязка по ёмкостной нагрузке в КТЛК и компьютере УКНЦ
- К1801ВП1-065 Последовательный интерфейс со скоростью до 57 Кбод (DEC DL11W)
- К1801ВП1-095 Интерфейс контроллера НГМД
- К1801ВП1-096 Интерфейс контроллера НГМД
- К1801ВП1-097 Интерфейс НГМД (МҮ:)
- К1801ВП1-105 Схема коррелятора
- К1801ВП1-106 Схема коррелятора
- К1801ВП1-114 Схема канала связи УЧПУ
- К1801ВП1-116 Схема управления памятью
- К1801ВП1-119 Контроллер динамического ОЗУ (до 4Мб) для 1801ВМ3
- К1801ВП1-120 Параллельный асинхронный порт межшинной связи (связь каналов ЦП и ПП в компьютере УКНЦ)
- К1801ВП1-124 Экспериментальная схема помехоустойчивого Фибоначчи-процессора для специальных применений
- К1801ВП1-128 Контроллер НГМД типа «Электроника 6022» (тип записи МФМ, применялся в контроллерах МУ:, МZ: и некоторых для БК^[13]; при дополнительной программной поддержке способен работать с дискетами формата IBM PC)

Использование

На основе микропроцессоров данной серии были построены:

- Компьютеры семейства ДВК Одноплатные микро-ЭВМ МС1201, МС1201.01, МС1201.02, МС1201.03, МС1201.04 (К1801ВМ1, КМ1801ВМ2, КМ1801ВМ3)
- БК-0010, БК-0011М 1985 (КМ1801ВМ1А)
- Пишущая машинка «Ромашка» ПЭЛП-305-02 или ПЭЛП-У1-01 (КМ1801ВМ2)
- Союз-Неон ПК-11/16 (Н1806ВМ2)
- Микрокалькулятор Электроника МК-85
- Система ЧПУ «Электроника НЦ-31»
- Система ЧПУ «2М43»-(Одноплатные микро-ЭВМ,МС1201.02)

К1801ВП1-014 в планарном керамическом корпусе, производства завода «Экситон»

- Система ЧПУ «2С42-65»
- Электроника МС 0511 «УКНЦ» 1987 (КМ1801ВМ2)
- Шахматный компьютер Электроника ИМ-01, ИМ-01Т (КР1801ВМ1)
- Шахматный компьютер Электроника ИМ-05 (КМ1801ВМ2)
- Графопостроитель MC6501-01 (КМ1801ВМ2)
- Телефон с AOH Phone MASTER (1993 г, Т36ВМ1)[14]
- Автоматизированное всеволновое радиоприемное устройство (РПУ) «Бригантина»^[15] (разработка ОНИИП 1986-1988 гг.^[16]).
- ЦЭВМ для вертолетных гидроакустических станций Киевского НИИ гидроприборов (1801ВМ1Г)^[17]

Примечания

- 1. ↑ Ангстрем. История 1980—1989 года (http://web.archive.org/web/20080623004304/http://www.angstrem.ru/about/history/80/) (рус.). ОАО «Ангстрем». Проверено 22 июня
- 2. ↑ Музей электронных раритетов Актив 587-я серия (http://www.155la3.ru/k587.htm)
- Зеленоградские микропроцессоры, мини- и микро-ЭВМ с архитектурой «Электроника HII» (http://www.computer-museum.ru/histussr/mini micro3.htm)
- ОПИСАНИЕ БК-11M (http://pdp-11.ru/mybk/textbk/FL11M.TXT)
- ↑ Тонкости и толстости ВМ1 Форум Электроника БК-0010/0011M (http://bk0010.org/forum/?id=3799)
- ↑ Ports bkbtl Порты (регистры) БК. BK Back to Life! BK0010 / BK0011 emulator Google Project Hosting (http://code.google.com/p/bkbtl/wiki/Ports)
- proj:bk:1801vm-series [vak.ru] (http://vak.ru/doku.php/proj/bk/1801vm-series)
 VM1vsVM2 bkbtl Различия между 1801BM1 и 1801BM2. BK Back to Life! BK0010 / BK0011 emulator Google Project Hosting (http://code.google.com/p/bkbtl/wiki/VM1vsVM2)
- ↑ Бытовой ретро-компьютер своими руками Просмотр темы Цифровая археология 1801: трискаидекафобия 013 (http://forum.pk-fpga.ru/viewtopic.php?f=43&t=5514)
- Бытовой ретро-компьютер своими руками Просмотр темы Цифровая археология 1801: одноклавишный 014 (http://forum.pk-fpga.ru/viewtopic.php?f=43&t=5550)
- ↑ Бытовой ретро-компьютер своими руками Просмотр темы Цифровая археология 1801: тайна кристалла 030 (http://forum.pk-fpga.ru/viewtopic.php?f=43&t=5451)
- Бытовой ретро-компьютер своими руками Просмотр темы Цифровая археология 1801: домашний 037 (http://forum.pk-fpga.ru/viewtopic.php?f=43&t=5506)
- Бытовой ретро-компьютер своими руками Просмотр темы Цифровая археология 1801: неудержимое диско 128 (http://forum.pk-fpga.ru/viewtopic.php?f=43&t=5482)
- "Компьютерра" №23 от 30 июня 2004 года (http://offline.computerra.ru/2004/547/34208/)
- Бригантина: Рейтинг (http://www.radioscanner.ru/rating/item/518/)
- История. 80-е годы (http://www.oniip.ru/predpriyatie/istoria/istoriya_80_e_gody.php)
- ↑ Малиновский Борис Николаевич. Нет ничего дороже. Кибернетическая техника (http://www.icfcst.kiev.ua/MUSEUM/DIFFERENT/KTbook21 r.html)

Литература и публикации

- Микропроцессоры и микропроцессорные комплекты интегральных микросхем. Том 2., под редакцией Шахнова В. А. М.: «Радио и связь», 1988. стр.
- Г.Г. Гришин, А.А. Мошков, О.В. Ольшанский, Ю.А. Овечкин Микропроцессоры: Справочное пособие для разработчиков судовой РЭА / под редакцией канд. техн. наук Ю.А. Овечкина. — Л.: Судостроение, 1988. — С. 122—180. — 520 с. — 33 500 экз. — ISBN 5-7355-0306-5. ■ В. Л. Дшхунян, Ю. И. Борщенко, В. Р. Науменков, А. А. Рыжов, Ю. В. Романец, И. А. Бурмистров, Е.М. Соловъёв. Однокристальные микропроцессоры
- комплекта БИС серии K1801 // Микропроцессорные средства и системы. 1984. № 4. С. 12—18. ISSN 0233-4844 (http://www.sigla.ru/table.jsp?f=8&t=3&v0=0233-
- 48444&f=1003&t=1&v1=&f=4&t=2&v2=&f=21&t=3&v3=&f=1016&t=3&v4=&f=1016&t=3&v5=&bf=4&b=&d=0&ys=&ye=&lng=&ft=&mt=&dt=&vol=&pt Р. И. Волков, В. П. Горский, В. Л. Дихунян, С. С. Коваленко, П. Р. Машевич. Однокристальный микропроцессор КМ1801BM3 // Микропроцессорные средства и системы. — 1986. — № 4. — С. 37—41. — ISSN 0233-4844 (http://www.sigla.ru/table.jsp?f=8&t=3&v0=0233-
- Отраслевой стандарт ОСТ11-348.918-83. Микросхемы интегральные серии К1801. Руководство по применению.
- Ссылки
 - Музей электронных раритетов 1801-я серия (http://www.155la3.ru/k1801.htm)
 - Музей цифровой археологии справочник по системе команд 1801BM1 (http://www.asvcorp.ru/darch/electronics/1801vm1/opcodes.html)
 - Сайт, посвященный радиоприёмнику Бригантина (http://www.brigantina-rpu.ru/)
 - Архив программ и документации для компьютеров УК-НЦ, ДВК и БК. (http://archive.pdp-11.org.ru/)

Источник — «https://ru.wikipedia.org/w/index.php?title=1801BMx&oldid=69104615»

- Последнее изменение этой страницы: 22:24, 8 марта 2015.
- Текст доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия. Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.