Wydział:	Imię i nazwisko: Rafał Grabiańsk		Rok:	Grupa:	Zespół:
WIEiT	Zbigniew Królikowski		II	7	7
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Ładunek właściwy elektronu $\frac{e}{m}$			Nr ćwiczenia: 45	
Data wykonania:	Data oddania:	Zwrot do poprawy:	Data oddania:	Data zaliczenia:	
					OCENA:
9.12.2014	16.12.2014				

1 Cel ćwiczenia

Celem ćwiczenia było wyznaczenie ładunku właściwego elektronu $\frac{e}{m}$ za pomocą zbadania ruchu wiązki elektronów w jednorodnym polu magnetycznym wytworzonym przez układ cewek Helmholtza.

2 Wyniki pomiarów

Dla każdej każdej wartości napięcia (175,200,225,250 [V]) lampy regulowaliśmy natężenie prądu tak aby wiązka trafiała w poszczególne szczebelki oddalone o (2,3,4,5[mm]) od źródła. Pomiary wykonywaliśmy trzy razy, za każdym razem uzyskując dokładnie te same wartości.

Wyniki pomiarów					
U[V]	175				
r[cm]	0.02	0.03	0.04	0.05	
I[A]	3.6	2.3	1.6	1.3	
U[V]	200				
r[cm]	0.02	0.03	0.04	0.05	
I[A]	3.8	2.4	1.8	1.4	
U[V]	225				
r[cm]	0.02	0.03	0.04	0.05	
I[A]	4	2.6	1.9	1.5	
U[V]	250				
r[cm]	0.02	0.03	0.04	0.05	
I[A]	4.1	2.7	2	1.6	

Tabela 1: Wyniki pomiaru natężenia prądu w cewce dla poszczególnych napięć przyspieszających elektrony w wiązce i odległości punktów przecięcia z podziałką od lampy

3 Opracowanie wyników

3.1 Obliczenie ładunku właściwego elektronu $\frac{e}{m}$ na podstawie wykonanych pomiarów

Wiedząc, że na cewce mieliśmy 14 warstw drutu i w ramach każdej warstwy 11 zwojów otrzymujemy że na każdej cewce znajdowało się 154 zwojów.

Ładunek właściwy elektronu dla każdego pomiaru wyliczamy ze wzoru:

$$\frac{e}{m} = 2.480 \cdot 10^{12} \cdot \frac{UR^2}{n^2 I^2 r^2} \tag{1}$$

Gdzie n to liczba zwojów w cewce, U - napięcie przyspieszające, R - promień cewek, I - natężenie płynącego w cewkach pradu, r - promień tworzonego przez pole magnetyczne okręgu z elektronów.

Otrzymujemy wyniki zaprezentowane w tabeli:

U [V]	$rac{e}{m} \left[rac{C}{kq} ight]$			
175	$1.41 \cdot 10^{11}$	$1.54 \cdot 10^{11}$	$1.79 \cdot 10^{11}$	$1.73 \cdot 10^{11}$
200	$1.45 \cdot 10^{11}$	$1.61 \cdot 10^{11}$	$1.61 \cdot 10^{11}$	$1.71 \cdot 10^{11}$
225	$1.47 \cdot 10^{11}$	$1.55 \cdot 10^{11}$	$1.63 \cdot 10^{11}$	$1.67 \cdot 10^{11}$
250	$1.56 \cdot 10^{11}$	$1.59 \cdot 10^{11}$	$1.63 \cdot 10^{11}$	$1.63 \cdot 10^{11}$

Tabela 2: Obliczone wartości ładunku właściwego elektronu

Znając masę elektronu można wyliczyć ładunek elektronu, bardziej elementarnej wartości.

U [V]	e [C]			
175	$1.29 \cdot 10^{-19}$	$1.40 \cdot 10^{-19}$	$1.63 \cdot 10^{-19}$	$1.58 \cdot 10^{-19}$
200	$1.32 \cdot 10^{-19}$	$1.47 \cdot 10^{-19}$	$1.47 \cdot 10^{-19}$	$1.56 \cdot 10^{-19}$
225	$1.34 \cdot 10^{-19}$	$1.41 \cdot 10^{-19}$	$1.48 \cdot 10^{-19}$	$1.52 \cdot 10^{-19}$
250	$1.42 \cdot 10^{-19}$	$1.45 \cdot 10^{-19}$	$1.49 \cdot 10^{-19}$	$1.49 \cdot 10^{-19}$

Tabela 3: Obliczone wartości ładunku elektronu przy skorzystaniu z tabelarycznej wartości masy elektronu m = $9.11 \cdot 10^{-31}$ [kg]

3.2 Obliczenie średniej wartości ładunku właściwego i ładunku elektronu

Wyliczamy średnią z obliczonych wartości:

- \bullet $\frac{e}{m} = -1.6 \cdot 10^{11} \frac{A \cdot s}{ka}$
- $e = -1.37 \cdot 10^{-19} A \cdot s$

Pozostaje nam obliczyć średni błąd kwadratowy wyników, a ten wynosi: $1.02 \cdot 10^{10} \frac{C}{kq}$

Nasz wynik niewiele odbiega od tabelarycznej wartości wynoszącej 1.76 · 10^{11} . Już przy przyjęciu za k = 1.51 wynik eksperymentu zawiera się w przedziale błędu: $(-1.91 \cdot 10^{11} \frac{C}{kg}, -1.60 \cdot 10^{11} \frac{C}{kg})$

4 Wnioski

Dzięki eksperymentowi otrzymaliśmy wynik $-1.37\cdot 10^{-19}[\frac{A\cdot s}{kg}]$ mieszczący się przy użyciu niepewności rozszerzonej w przedziałe $(-1.91\cdot 10^{11}\frac{C}{kg}, -1.60\cdot 10^{11}\frac{C}{kg})$.

Korzystając z tabelarycznej wartości masy spoczynkowej elektronu $m=9.11\cdot 10^{-31} [{\rm kg}]$ udało się także obliczyć e $=e=-1.37\cdot 10^{-19} A\cdot s$.

Warto zaznaczyć, że duża podziałka wewnątrz lapmy oraz amperomierz dający wyniki o tylko dwóch miejscach znaczących mocno wpłynął na niepewność pomiaru. Doświadczenie okazało się jednak efektywną (oraz efektowną) metodą wyznaczania ładunku właściwego elektronu i da się ją porównać z metodą Thomsona.