

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Chemistry (WCH14)

Paper 01: Rates, Equilibria and Further Organic Chemistry

Section A (multiple choice)

Question	Correct Answer	Mark
Number		
1	The only correct answer is D (SO ₂)	1
	A is incorrect as although it has four atoms, it has ten electrons	
	B is incorrect as it has two atoms and two electrons	
	C is incorrect as it has two atoms and only fourteen electrons	

Question Number	Correct Answer	Mark
2	The only correct answer is A (– 198.8)	1
	B is incorrect as number of moles of NH $_3$ and H $_2$ have not been considered	
	${\it C}$ is incorrect as number of moles of NH $_3$ and H $_2$ have not been considered and the expression to find the standard entropy of the system is the wrong way round	
	D is incorrect as expression to find the standard entropy of the system is the wrong way round	

Question Number	Correct Answer	Mark
3	The only correct answer is C (enthalpy change of formation of Na ₂ SO ₄)	1
	A is incorrect as lattice energy is used to find the enthalpy change of solution	
	B is incorrect as enthalpy change of hydration is used to find the enthalpy change of solution	
	D is incorrect as enthalpy change of hydration is used to find the enthalpy change of solution	

Question	Correct Answer	Mark
Number		
4 (a)	The only correct answer is C (0.1 mol dm ⁻³ HCl)	1
	A is incorrect as final pH would be greater than 2 (weak acid)	
	B is incorrect as final pH would be greater than 2 (weak acid)	
	D is incorrect as final pH would be less than 1 (strong acid)	

Question Number	Correct Answer	Mark
4 (b)	The only correct answer is A (NH ₃)	1
	B is incorrect as strong base so vertical section would begin at a higher pH / curve has a buffer region	
	C is incorrect as strong base so vertical section would begin at a higher pH / curve has a buffer region	
	D is incorrect as strong base so vertical section would begin at a higher pH / curve has a buffer region	

Question Number	Correct Answer	Mark
4 (c)	The only correct answer is C (3)	1
	A is incorrect as only methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve'	
	B is incorrect as only methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve'	
	D is incorrect as methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve'	

Question Number	Correct Answer	Mark
5	The only correct answer is \mathbf{D} (S _N 1; Two steps in mechanism)	1
	A is incorrect as the halogenoalkane is tertiary so mechanism would be S_N1 which has two steps	
	${\it \textbf{B}}$ is incorrect as although the mechanism has two steps the halogenoalkane is tertiary so mechanism would be $S_N 1$	
	\boldsymbol{C} is incorrect as although the mechanism is S_N1 , it would have two steps	

Question Number	Correct Answer	Mark
6	The only correct answer is D (Step 2 is the rate determining step, the overall order is 3)	1
	A is incorrect as Step 3 is fast	
	B is incorrect as Step 3 is fast	
	C is incorrect as the overall order is 3	

Question Number	Correct Answer	Mark
7	The only correct answer is C (– gradient x R)	1
	A is incorrect the Arrhenius equation has been rearranged incorrectly	
	B is incorrect as the gradient of the graph is negative, so this expression would give a negative value for an activation energy	
	D is incorrect as the gradient of the graph is negative, so this expression would give a negative value for an activation energy	

Question Number	Correct Answer	Mark
8 (a)	The only correct answer is C (3)	1
	ОН	
	A is incorrect as menthol has 3 chiral carbon atoms	
	B is incorrect as menthol has 3 chiral carbon atoms	
	D is incorrect as menthol has 3 chiral carbon atoms	

Question Number	Correct Answer	Mark
8 (b)	The only correct answer is B (Q)	1
	A is incorrect as this carbon would produce a peak between 0 and 60 ppm	
	C is incorrect as this carbon would produce a peak between 0 and 60 ppm	
	D is incorrect as this carbon would produce a peak between 0 and 60 ppm	

Question Number	Correct Answer	Mark
8 (c)	The only correct answer is B (Two)	1
	A is incorrect as the oxidation product is a ketone, so would not react with PCI $_5$	
	C is incorrect as the oxidation product is a ketone, so would not react with Fehling's solution	
	D is incorrect as the oxidation product is a ketone, so would not react with PCI₅ but would react with 2,4-dinitrophenylhydrazine	

Question Number	Correct Answer	Mark
9 (a)	The only correct answer is B	1
	A is incorrect as the repeat unit has an extra oxygen	
	C is incorrect as there is an extra carbon at the left-hand end of the repeat unit	
	D is incorrect as the repeat unit has an extra oxygen and the structure is incorrect	

Question Number	Correct Answer	Mark
9 (b)	The only correct answer is B (hydrolysis)	1
	A is incorrect as condensation is the reaction when the polymer forms	
	C is incorrect as hydration is the addition of water to a C=C bond	
	D is incorrect as hydrogen has not been added in a reduction reaction	

Question Number	Correct Answer	Mark
10	The only correct answer is D (CH ₃ COCl)	1
	A is incorrect as the reaction with ketone would NOT form an N-substituted amide	
	B is incorrect as any reaction with the carboxylic acid would be too slow at RT	
	C is incorrect as any reaction with the ester would be too slow at RT	

Question Number	Correct Answer	Mark
11(a)	The only correct answer is B (68 mm)	1
	A is incorrect as it is a factor of 10 to large	
	C is incorrect as it is the distance moved by the amino acids	
	D is incorrect as it is the expression for R_f has been inverted	

Question Number	Correct Answer	Mark
11 (b)	The only correct answer is A (argon)	1
	B is incorrect as the carrier gas must be inert	
	C is incorrect as the carrier gas must be inert	
	D is incorrect as the carrier gas must be inert	

Question Number	Correct Answer	Mark
12	The only correct answer is C	1
	$\begin{array}{c c} & & & \\ &$	
	A is incorrect as the molar mass to 4 dp is 44.0265	
	B is incorrect as the molar mass to 4 dp is 44.0265	
	D is incorrect as the molar mass to 4 dp is 43.9898	

Question Number	Correct Answer	Mark
13	The only correct answer is D (8)	1
	A is incorrect as the number of optical isomers = 2^n , where $n = n$ umber of chiral centres	
	B is incorrect as the number of optical isomers = 2^n , where $n = number$ of chiral centres	
	C is incorrect as the number of optical isomers = 2^n , where $n = n$ umber of chiral centres	

Question Number	Correct Answer	Mark
14	The only correct answer is D (Structure D)	1
	A is incorrect as it is identical to B and C	
	B is incorrect as it is identical to A and C	
	C is incorrect as it is identical to A and B	

(Total for Section A = 20 marks)

Section B

Question Number	Acceptable Answers		Additional Guidance	Mark
15 (a)			Example of calculation	2
	 correct expression for ΔS_{surroundings} 	(1)	– ΔH ÷ T = – 25.7 ÷ 298	
	• correct evaluation and correct units and correct sign	(1)	– 0.086242 kJ K ⁻¹ mol ⁻¹ / – 86.242 J K ⁻¹ mol ⁻¹	
			Ignore SF except 1 SF Correct answer with no working scores (2)	
			Allow TE in M2 for use of $\Delta H \div T$	
			Comment	
			Mark value first – if correct, with units and sign award 2 marks For units allow kJ K ⁻ mol ⁻ /J K ⁻ mol ⁻	

Question Number	Acceptable Answers		Additional Guidance	Mark
15(b)	An explanation that makes reference to:		3	
	 ΔS_{system} must be positive 	(1)	Allow 'ΔS _{system} is more positive'	
	• $\Delta S_{\text{system}} > 86.24 \text{J mol}^{-1}$ / answer to (a) (1) Allow $T\Delta S_{\text{system}}$ is greater in magnitude / more negative than ΔH			
	• (as compound does dissolve) ΔS_{total} is > 0 / positive	(1)	ΔG is negative	
			If answer to (a) is positive , then M1 and M2 will be	
			 ΔS_{system} could be positive or negative 	
			• ΔS_{system} smaller in magnitude than answer to (a) / $T\Delta S_{\text{system}}$ is greater than ΔH	

(Total for Question 15 = 5 marks)

Question Number		Acceptable Answers		Additional Guidance	Mark
16(a)(i)	•	rate against concentration graph with axes labelled, inc. units	(1)	Do not award M1 if axes are the other way around Allow [BrO ₃ -] / mol dm ⁻³ Ignore 'initial'	3
	•	suitable scale chosen including the origin	(1)	Points cover at least half available space in both directions	
	•	all points plotted correctly and straight line of best fit.	(1)	Allow ±½ a square	
		25×10 ⁷		Allow if line does not extend to the origin Do not award M3 if	
		20×10 ⁷		scale is non-linear	
		\$ 15 ×10 ⁻⁷			
		2 10×10-7			

0 0-63 0-06 0-09 0-12 0-15

concentration of Brogions/moldm3

Question Number	·			
16(a)(ii)	justification of first order	(First order with respect to BrO₃⁻) as straight line (through origin / 0,0)	1	
		Allow line with constant gradient		
		Allow rate is (directly) proportional to concentration		
		Allow use of data from graph to justify order		
		Do not award 'constant half life'		

Question Number	Acceptable Answers		Additional Guidance	Mark
16(b)(i)	• deduce order wrt Br ⁻ ions	(1)	1 st order	2
	deduce order wrt H ⁺ ions	(1)	2 nd order	

Question Number	Acceptable Answers	Additional Guidance	Mark
16(b)(ii)	rate equation shown	rate = $k[BrO_3^-][Br^-][H^+]^2$	1
		Allow TE from (b)(i)	

Question Number	Acceptable Answers	Additional Guidance	Mark
16(b)(iii)	rearrangement of rate equation	(1) Example of calculation $k = \text{rate/[BrO}_3^-][Br^-][H^+]^2 / k = 1.52 \times 10^{-5} \div (0.062 \times 0.21 \times 0.4^2)$	з
	• evaluation of <i>k</i>	7.2965 x 10 ⁻³ ignore SF except 1SF M1 can be subsumed within award of I	М2
	• units for <i>k</i>	dm ⁹ mol ⁻³ s ⁻¹ allow in any order Correct answer with no working scores	(3)
		TE on (b)(ii)	
		Allow use of data from Run 2 or Run 3	

Question Number	Acceptable Answers		Additional Guidance	Mark
16(c)	An answer that makes reference to:		Allow bromate ((V)) ions for reactants	3
	• reactants a d sorb onto palladium/catalyst surface	(1)	Allow 'bond/bind onto catalyst surface' Do not award a b sorb	
	this weakens bonds in reactants	(1)	Ignore comments related to orientation	
	products then desorb (from catalyst surface)	(1)	Allow 'products de-adsorb' / products released (from catalyst surface)	
			If no other mark is awarded allow one for: reaction follows an alternative pathway / route / mechanism of lower activation energy	

(Total for Question 16 = 13 marks)

Question Number	Ac	ceptable Answers		Additional Guidance				Mark
17(a)	•	calculation of moles of C, H and O (1)			element	moles	ratio	2
					С	66.7÷12	5.56÷1.3875	
						=5.56	= 4	
					Н	11.1÷1	11.1÷1.3875	
						= 11.1	= 8	
					0	22.2÷16	1.3875÷1.3875	
						=1.3875	= 1	
	•	calculation of ratio and identify that ratio matches molecular formula	(1)	Rat	io C ₄ H ₈ O n	natches C ₈	H ₁₆ O ₂	
	OR							
	•	calculate molar mass of Y	(1)	Мо	lar mass =	144 (g mo	l ⁻¹)	
	•	calculate % of each element	(1)	C=9	96÷144x10	0 = 66.7%		
				H=1	16÷144x10	0 = 11.1%		
				O=3	32÷144x10	0 = 22.2%		

Question Number	Acceptable Answers		Additional Guidance	Mark
17(b)(i)	2,2-dimethylpropyl propanoate	(2)	Any name with '-propyl propanoate' scores 1	2
			propyl-2,2-dimethyl propanoate	
			scores 1	
			2,2-dimethyl propanoate scores 1	
			2,2-dimethylpropyl ethanoate	
O	A constable Assurance		scores 1	Maula
Question	Acceptable Answers		Additional Guidance	Mark
Number				_
17(b)(ii)	H_3C C C C C C C C C C		Allow structures of propanoyl chloride / propanoic anhydride	1
	OR HO HO		Allow any combination of correct skeletal, structural or displayed formulae.	
			Ignore names even if incorrect Do not award connectivity to hydroxyl group via H atom	

Question Number	Acceptable Answers	Additional Guidance	Mark
17(c)(i)	$\begin{array}{c c} & & & & \\ & &$	Labels B C and D can be used interchangeably as long as the three proton environments are identified correctly. Allow 3 methyl groups to be circled individually but with a single label / labels pointing to all 3	1

Question Number	Acceptable Answ	ers		Additional Guidance	Mark
17(c)(ii)	Hydrogen environment	Splitting pattern of peak	Relative peak area	1 mark for each row. But If two or more rows are	3
	(A)	(triplet)	(3)	incorrect then award whichever of these alternatives is higher	
	В	quartet	2	Allow 2 marks for 3 correct	
	С	singlet	2	splitting patterns. OR	
	D	singlet	9	Allow 1 mark for 3 correct	
	Note : allow 'quadru 'sing	uplet' as alternativ le' as alternative f	•	peak areas. OR Allow 1 mark for correct row	
	Do not award 'quad	rat'		marked consequentially on the labelling in 17(c)(i)	

(Total for Question 17 = 9 marks

Question Number	Acceptable Answers		Additional Guidance	Mark
18	This question assesses the studen and logically structured answer wireasoning. Marks are awarded for indicative dis structured and shows lines of retained the following table shows how the indicative content.	th linkages and fully sustained content and for how the answer easoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with four indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3	6
	Number of indicative marking points seen in answer	Number of marks awarded for indicative marking points	marks (3 marks for indicative content and zero marks for linkages).	
	6	4		
	5-4	3		
	3-2	2		
	1	1		
	0	0		
	The following table shows how the structure and lines of reasoning	Number of marks awarded for structure of answer and sustained lines of reasoning		
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2		
	Answer is partially structured with some linkages and lines of reasoning	1		
	Answer has no linkages between points and is unstructured	0		
	Indicative Points			

IP1 Bonding in sodium chloride is (almost) 100% ionic bonds and as the theoretical and Born-Haber values are (very) similar	If neither IP1 or IP2 scored can get 1IP for Bonding in sodium chloride is (almost) 100% ionic bonds and bonding in magnesium iodide has some covalent character
IP2 Bonding in magnesium iodide has some covalent character and as theoretical and Born-Haber values are (significantly) different	
IP3 Anion is (more) polarised in magnesium iodide (than sodium chloride)	
IP4 Magnesium ion has a greater charge density (than sodium ion), so greater polarising power	ALLOW Magnesium ion has a greater charge/smaller than sodium ion, so greater polarising power
IP5 lodide ion is larger (than chloride ion), so is more easily polarised	polarisation must be mentioned at least once in IP3, IP4 and IP5 Penalise use of 'atoms' instead of ions once only in IP3 IP4 and IP5 Penalise lack of comparative language once only in
IP6 Magnesium iodide has stronger bonding than sodium chloride because the charge on the magnesium ion is twice as large (as the charge on the sodium ion)	IP4, IP5 and IP6 Allow magnesium iodide has stronger bonding (than expected) due to polarisation / covalent character Allow both compounds have strong bonds as large amounts of energy needed to break up lattice / released when lattice forms / needed to break many strong bonds

(Total for Question 18 = 6 marks)

Question Number	Acceptable Answers		Additional Guidance	Mark
19(a)(i)	 arrow from lone pair on carbon of cyanide ion to carbonyl carb 	on (1)		4
	 dipoles on carbon and oxygen in carbonyl bond and arrow from 	m		
	carbonyl bond to oxygen or just beyond	(1)		
	structure of intermediate, including charge	(1)	Penalise absence of lone pair only once in M1, M3 and M4	
	arrow from lone pair of oxygen in intermediate to hydrogen io in HCN	n / H (1)	If HCN used to protonate in step 2, dipole on HCN and curly arrow to break HCN bond are not required Ignore product	

$$H_3C$$
 O_{δ}^+
 H_3C
 $O_{\delta}^ H_3C$
 $O_{\delta}^ O_{\delta}^ O_{$

Question Number	Acceptable Answers	Additional Guidance	Mark
19(a)(ii)	The prediction is incorrect because		3
	ethanal is planar around the carbonyl carbon atom / planar around the CHO (1)	Accept planar at the site of the nucleophilic attack / planar about C=O	
		Do not award planar molecule / cation / intermediate	
	• (so in Step 1) the (carbonyl) carbon can be attacked from above or below (1)	Allow attack from any direction / either side	
	 hence both stereoisomers (of intermediate / product) will form in equal amounts or 		
	so product mixture is racemic / rotates the plane of plane- polarised light equally in both directions (1)	Ignore 'has no effect on the plane of plane-polarised light'	
		Ignore comments related to SN1 or SN2	
		If no other mark scored allow 1 mark for idea that product will rotate plane of plane polarised light as it has a chiral centre / carbon	

Question Number	Acceptable Answers		Additional Guidance	Mark
19(a)(iii)	• hydrolysis	(1)		4
	• (dilute) hydrochloric acid / HCl((aq))	(1)	Allow any strong acid by name or formula Allow sodium hydroxide followed by any (strong) acid	
	• heat (under reflux) / reflux	(1)	Ignore conc / concentrated Allow 'boil' for heat Ignore 'warm'	
	• $CH_3CH(OH)CN + 2H_2O + H^+ \rightarrow CH_3CH(OH)COOH + NH_4OR$ $CH_3CH(OH)CN + 2H_2O \rightarrow CH_3CH(OH)COOH + NH_3OR$ $CH_3CH(OH)CN + 2H_2O + HCI \rightarrow CH_3CH(OH)COOH + NH_3OR$			
	OR $CH_3CH(OH)CN + H_2O + OH^- \rightarrow CH_3CH(OH)COO^- + NH$ and $CH_3CH(OH)COO^- + H^{+-} \rightarrow CH_3CH(OH)COOH$	3	Allow NaOH for OH ⁻ Allow HCl for H ⁺ Ignore state symbols even if incorrect	

Question Number	Acceptable Answers	Additional Guidance	Mark
19(b)	• CH ₃ CH(OH)COOH + NaHCO ₃ \rightarrow CH ₃ CH(OH)COO $^-$ Na $^+$ + H ₂ O + CO ₂ OR H $^+$ + HCO ₃ $^ \rightarrow$ H ₂ O + CO ₂	Allow CH ₃ CH(OH)COONa Allow H ₂ CO ₃ Ignore state symbols even if incorrect Do not award if covalent bond shown between O and Na	1

Question Number	Acceptable Answers	Additional Guidance	Mark
19(c)(i)	• (large concentration of) HCO ₃ ⁻ react with (extra) H ⁺ ions (1)	Allow ratio of [HCO ₃ -] to [H ₂ CO ₃] remains constant / ratio of [salt] to [acid] remains constant	3
	 equilibrium 1 moves to the RHS to keep concentration of H⁺ 		
	ions constant / H ₂ CO ₃ forms to keep concentration of H ⁺ ions	Allow H ₃ O ⁺ for H ⁺	
	constant (1)	Allow equilibrium 1 moves to the RHS to remove excess H ⁺ ions / H ₂ CO ₃ forms to remove excess H ⁺ ions	
	 equilibrium 2 moves to RHS to form CO₂ (which can be excreted from the body) / H₂CO₃ then forms CO₂ (and water) 		
	(·)	If no reference to H ⁺ and CO ₂ in M2 and M3 but direction of movement of equilibria are correct in both cases, allow 1 mark	

Question Number	Acceptable Answers	Additional Guidance	Mark
19(c)(ii)	• calculation of [H ⁺] / [H ₃ O ⁺] (1)	$[H^+] = 10^{-7.41} / = 3.8905 \times 10^{-8}$	3
	• K _a expression (1)	$K_a = [HCO_3^-][H^+]$ Allow $[H_3O^+]$ in K_a $[H_2CO_3]$	
		Do not award [H₂O] in K₂ expression	
	 rearrangement of K_a expression and calculation of [HCO₃⁻]: [H₂CO₃] (1) 	[HCO ₃ ⁻]: [H ₂ CO ₃] = $4.5 \times 10^{-7} \div 3.8905 \times 10^{-8} = 11.567 : 1 = 11.6$ (: 1) Ignore SF except 1 Allow correct rounding of [H ⁺] to 3.9×10^{-8} Allow 1: 0.086444 if it's clear that 1 relates to [HCO ₃ ⁻]	
	OR calculation of pK _a (1)	$pK_a = -\log 4.5 \times 10^{-7} = 6.3468$	
	Henderson Hasselbach expression (1)	pH = p K_a + log([HCO ₃ ⁻] ÷ [H ₂ CO ₃])	
	 rearrangement of K_a expression and calculation of [HCO₃-]: [H₂CO₃] (1) 	7.41 - 6.3468 = $log([HCO_3^-] \div [H_2CO_3])$ $[HCO_3^-] : [H_2CO_3] = 11.567 (: 1)$ Correct answer with no working scores (3) If final answer close, check for and allow correct rounding	

(Total for Question 19 = 18 marks) (Total for Section B = 51 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
20(a)(i)	When the pressure is increased	Marking points are independent	3
	• equilibrium moves to RHS and yield (of chlorine) increases (1)	Allow ' <mark>forward</mark> reaction favoured so yield (of chlorine) increases'	
	• as fewer gas molecules on the RHS (5:4) (1)	If numbers are given they must be correct Allow use of 4/5 ratio to justify decrease in quotient / greater increase in denominator as total pressure increases, (so eqm moves (to RHS) to restore Kp)	
	• K_p remains constant (1)	Allow 'change in pressure has no effect on value for K_p '	

Question Number	Acceptable Answers	Additional Guidance	Mark
20(a)(ii)	When the temperature increases	Marking points are independent	2
	 equilibrium moves to LHS as (forward) reaction is exothermi (1) 	Allow reaction moves in endothermic direction Allow increase in T reduces ΔS_{surr} and hence ΔS_{total} decreases	
	• K_p decreases and so yield (of chlorine) decreases	(1)	

Question Number	Acceptable Answers		Additional Guidance	Mark
20(a)(iii)	 When a catalyst is used rate of backward and forward reactions increases by same amount 	(1)		2
	• so K_p and yield (of chlorine) is unchanged	(1)		

Question Number	Acceptable An	swers			Additional Guidance	Mark
20(b)(i)						3
	Substance	Initial amount / mol	Equilibrium amount / mol	Mole fraction at equilibrium	For mole fractions allow	
	HCI	0.850	0.350	0.26415	e.g. 0.350 ÷ 1.325	
	O ₂	0.600	0.475	0.35849	allow correct rounding	
	H ₂ O	0	0.250	0.18868		
	Cl ₂	0	0.250	0.189		
	Total mo	oles at equilibriu	m = 1.325			
				-		
	All values corre	ct scores (3)				
	M1 1 correct eq	uilibrium amour	nt	(1)	Ignore SF except 1 SF	
	M2 other 2 cor	rect equilibrium	amounts	(1)		
	M3 Consequent	tial total moles a	nd mol fraction	(1)		

Question Number	Acceptable Answers	Additional Guidance	Mark
20(b)(ii)	$K_p = p(H_2O)^2 p(Cl_2)^2 \div p(HCl)^4 p(O_2)$	Ignore parentheses Do not award square brackets	1

Question Number	Acceptable Answers	Additional Guidance	Mark
20(b)(iii)		Example of calculation allow TE from 20b(i)	3
	mole fractions converted to partial pressure ((1) substance pp	
	· · ·	HCI 0.39623	
		O ₂ 0.53774	
		H ₂ O 0.28302	
		Cl ₂ 0.28302	
		Allow e.g. for pp(HCl); 0.26415 x 1.5	
	final value for K given to 2 or 255 (4)	$(0.28302)^2(0.28302)^2$	
	• final value for K_p given to 2 or 3SF (1)	(0.39623)4(0.53770)	
		= 0.48407 (Note = 0.48408 if no rounding)	
		= 0.48 / 0.484	
		No TE for M2 for incorrect expression	
		Check final answer if close, and allow if correct	
		rounding used in working	
		atm ⁻¹	
	• correct units given (1)	allow TE for M3 from incorrect expression in (b)(ii)	

Question Number	Acceptable Answers		Additional Guidance	Mark
20(b)(iv)	• recall of expression for ΔS_{total} • calculation of ΔS_{total}	(1) (1)	$\Delta S_{\text{total}} = R \ln K$ = 8.31 x - 0.726 = -6.033 (J K ⁻¹ mol ⁻¹) Allow TE / rounded value from	2
			(iii) No TE for M2 from incorrect expression	
			Ignore SF except 1 SF Ignore units even if incorrect NOTE $\Delta S_{\text{total}} = -6.0289$ if no rounding from (b)(iii) $\Delta S_{\text{total}} = -6.0993$ if 0.48 used from b(iii)	

Question Number	Acceptable Answers	Additional guidance	Mark
20(c)	general shape of increase from left to right ALLOW straight line (1)	Allow horizontal sections allowed between phase changes for M1	3
	• two vertical stages for melting and boiling (1)		
	 include the use of 273K for melting and 373K for boiling temperature either by labelling or position on x axis 	M3 is independent of M2, providing a line is drawn	
		Entropy 273 k 273 k Temperature / K	

(Total for Question 20 = 19 marks) (Total for Section C = 19 marks) Total for Paper = 90 marks