

1. ER Modeling

Figure 1: ER Diagram - Exercise 1

2. Banking System

```
\begin{aligned} & & & \{ [\underline{number}, provider, contract] \} \\ & & & \\ & & & \{ [\underline{number} \rightarrow phone, SSN \rightarrow customer] \} \\ & & & \\ & & & \{ [\underline{SSN}, name, address] \} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\
```

3. Relational Algebra

1.

 $\pi_{species,zooID}(animals)$

species	zooID
giraffe	1
giraffe	2
giraffe	3
ape	1
ape	2
owl	2
owl	1

 $\sigma_{country='Germany'}(zoos)$

zooID	name	city	country
1	Zoo Frankfurt	Frankfurt	Germany

 $\pi_{zooID}(\sigma_{country='Germany'}(zoos))$

 $(\pi_{species,zooID}(animals)) \div (\pi_{zooID}(\sigma_{country='Germany'}(zoos)))$

species
giraffe
ape
owl

2.

 $(\rho_{T1}(animals)) \bowtie_{T1.zooID=T2.zooID} (\rho_{T2}(animals))$

T1.animalID	T1.nickname	T1.species	T1.gender	T1.zooID	T1.father	T1.mother	T2.animalII
1	Tally	giraffe	female	1	3	2	1
1	Tally	giraffe	female	1	3	2	4
1	Tally	giraffe	female	1	3	2	7
1	Tally	giraffe	female	1	3	2	8
1	Tally	giraffe	female	1	3	2	10
1	Tally	giraffe	female	1	3	2	11
2	Kathy	giraffe	female	2	-	-	5
2	Kathy	giraffe	female	2	-	-	6
	•	•	•	•	•	•	•

Was too big. Going straight to result:

 $\pi_{T1.nickname}(\sigma_{T1.animalID=T2.father} \lor T1.animalID=T2.mother}((\rho_{T1}(animals)) \bowtie_{T1.zooID=T2.zooID} (\rho_{T2}(animals))))$

T1.Nickname
Wohoo
Huhuu
Eule

4. Relational Calculus

1.

$$\pi_{sname}((Suppliers) \bowtie ((\sigma_{color='red'}(Parts)) \bowtie (Catalog)))$$

 $\{ \langle s.sname \rangle | s \in Suppliers \land \exists c (c \in Catalog \land c.sid = s.sid \land \exists p (p \in Parts \land p.pid = c.pid \land p.color = 'red')) \}$

 $\{<sname>|<sid,sname,_>\in Suppliers \land < sid,pid,_>\in Catalog \land < pid,_, \\ \textit{red}'>\in Parts\}$

2.

$$\pi_{sid}((\sigma_{color='red' \vee color='green'}(Parts)) \bowtie (Catalog))$$

 $\{ \langle c.sid \rangle | c \in Catalog \land \exists p (p \in Parts \land p.pid = c.pid \land (p.color = 'red' \lor p.color = 'green')) \}$

$$\{\langle sid \rangle \mid \langle sid, pid, _ \rangle \in Catalog \land (\langle pid, _, 'red' \rangle \in Parts \lor \langle pid, _, 'green' \rangle \in Parts)\}$$

3.

 $\pi_{sid}((Catalog) \bowtie ((\rho_{T1}(\sigma_{color='red'}(Parts))) \bowtie_{T1.pid=T2.pid} (\rho_{T2}(\sigma_{color='green'}(Parts)))))$ $\{< c.sid > | c \in Catalog \land \exists p1(p1 \in Parts \land p1.color =' red' \land c.pid = p1.pid \land \exists c1(c1 \in Catalog \land c1.sid = c.sid \land \exists p2(p2 \in Parts \land p2.pid = c1.pid \land p2.color =' green')))\}$

 $\boxed{ = } \{ < sid > | < sid, pid, _ > \in Catalog \land (< pid, _, 'red' > \in Parts \land < sid, pid', _ > \in Catalog \land < pid', _, 'green' > \in Catalog \land < pid', _, `green' > \in Catalog \land < pid', _, _, `green' > \in Catalog \land < pid', _, _, `green' > \in Catalog \land < pid', _, _, `green' > \in Catalog \land < pid', _, _, `green' > \in Catalog \land < pid', _, _, `green' > \in Catalog \land < pid', _, _, `green' > \in Catalog \land < pid', _, _, `green' > \in Catalog \land < pid', _, _, `green' > \in Catalog \land < pid', _, _, `green' > \in Catalog \land < pid', _, _, `green' > \in Catalog \land < pid', _, _, `green' > \in Catalog \land < pid', _, _, `green' >$

4.

 $\pi_{T1.sid,T2.sid}(\sigma_{T1.cost>T2.cost}((\rho_{T1}(Catalog)) \bowtie_{T1.pid=T2.pid} (\rho_{T2}(Catalog))))$

 $\{< sid1, sid2 > | < sid1, pid, cost1 > \in Catalog \land < sid2, pid, cost2 > \in Catalog \land cost1 > cost2\}$

.

$$\pi_{T1.pid}((\rho_{T1}(Catalog)) \bowtie_{T1.pid=T2.pid \land T1.sid \neq T2.sid} (\rho_{T2}(Catalog)))$$

$$\{ \langle c.pid \rangle | c \in Catalog \land \exists c2(c2 \in Catalog \land c.pid = c2.pid \land c.sid \neq c2.sid) \}$$

5. Functional dependencies

FD	OK or violated?
$A \to C$	violated: tuples 3,4
$B \to A$	OK
$C \to A$	violated: tuples 1,3
$A \rightarrow B$	violated: tuples 1,2
$B \to C$	violated: tuples 3,4
$BC \to A$	OK
$AC \rightarrow B$	OK