

Contrôle de dynamique du solide

Hayon électrique

Le PCS (Power Closure System), conçu par Valéo, est un système d'ouverture et de fermeture automatique de hayon de coffre automobile

L'étude propose de déterminer l'expression l'effort à développer par le vérin {2 + 3}

Extrait du cahier des charges :

Angle d'ouverture du hayon : $\theta \in [0; \theta_M = 70^\circ]$

Temps d'ouverture ou de fermeture : 4 s au total dont 0,5 s pour l'accélération et 0,5 s pour la décélération

$$\overrightarrow{AB} = -a.\overrightarrow{x_0} + b.\overrightarrow{y_0}$$

$$\overrightarrow{AC} = \lambda . \overrightarrow{x_2}$$

$$AC = \lambda . \overline{x_2}$$

$$\overrightarrow{BC} = c.\overrightarrow{x_1}$$

$$\overrightarrow{BG} = d.\overrightarrow{x_1}$$

$$\overrightarrow{BD} = L.\overrightarrow{x_1}$$

$$x_0$$
, $x_1 = \theta$

$$x_0, x_2 - u$$

 $\begin{array}{l}
\overrightarrow{x_0}, \overrightarrow{x_1} = \theta \\
\overrightarrow{x_0}, \overrightarrow{x_2} = \alpha \\
\theta \in [0; \theta_M = 70^\circ]
\end{array}$

0: Partie fixe

1: Hayon

2 : Tige de vérin

3 : Corps de vérin

Données numériques : a = 0,55 m; b = 0,14 m; c = 0,14 m; d = 0,6 m; L = 1 m Masse de (1): M = 15 kg; Moment d'inertie en B autour de Oz: $I_{Bz} = 5.5 \text{ kg.m}^2$

Le repère R_0 ($O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$) est lié à la partie fixe et correspond à la position "rentrée" du hayon (1)

Le repère R_1 (O, $\overrightarrow{x_1}$, $\overrightarrow{y_1}$, $\overrightarrow{z_1}$) est lié à la barre (1)

Le repère R_2 ($O, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2}$) est lié corps de vérin (3)

Le repère R (O, \vec{x} , \vec{y} , \vec{z}) est lié à la partie fixe

Hypothèses d'étude

- Le poids des pièces (2) et (3) est négligé
- Les liaisons sont parfaites
- Le système admet un plan de symétrie (géométrie et répartition des efforts) et sera donc considéré comme plan
- On néglige les frottements

L'action de la liaison pivot en B sera modélisée par le torseur $\{T_{0 \to 1}\} = \left\{\begin{matrix} X_B \cdot \overrightarrow{x_1} + Y_B \cdot \overrightarrow{y_1} \\ \overrightarrow{O} \end{matrix}\right\}_B$

L'action de la liaison rotule en C sera modélisée par le torseur $\{T_{2\rightarrow 1}\}=\left\{\begin{matrix}F_C.X_2\\\overline{O}\end{matrix}\right\}_C$

L'action de la pesanteur de (1) en G sera modélisée par le torseur $\{T_{g\to 1}\} = \left\{ \begin{matrix} -M.g.\vec{y} \\ \overrightarrow{O} \end{matrix} \right\}_c$

La longueur du vérin λ en fonction de l'angle d'ouverture du coffre θ est donnée par l'expression :

$$\lambda = \sqrt{(c.\cos\theta - a)^2 + (c.\sin\theta + b)^2}$$

Questions

- 1) Calculer $\vec{\Omega}$ (R/R_0) , $\vec{\Omega}$ (R_1/R_0) , $\vec{\Omega}$ (R_2/R_0) et $\vec{\Omega}$ (R_2/R_1)
- 2) Calculer la vitesse \vec{V}_{G/R_0} et l'accélération $\vec{\Gamma}_{G/R_0}$ de G par rapport à R_0 . On exprimera le résultat dans R_1 ($O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}$)
- 3) Ecrire les composantes du torseur cinétique de (1) en B et en G . On exprimera le résultat dans R_1 ($O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}$)
- 4) Ecrire les composantes du torseur dynamique de (1) en B et en G . On exprimera le résultat dans R_1 ($O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}$)
- 5) Faire le bilan des actions appliquées à (1) en B
- 6) Appliquer le principe fondamental de la dynamique en B

Ecrire les équations qui en résultent en projection dans le repère R_1 ($O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0}$)

7) Déterminer l'expression de la norme de $\overrightarrow{F_C}$ en fonction de I_{Bz} , M, g, d, c, α , , θ_0 , θ et ses dérivées