Fizyka

Bartosz Świst

2025-02-12

Spis treści

1.	Kinematyka	2
2.	Dynamika	6
3.	Praca, moc, energia	8
4.	Hydrostatyka	10
5.	Bryła sztywna	12
6.	Grawitacja	15
7.	Ruch drgający	18
8.	Termodynamika	20
9.	Elektrostatyka	2 5
10.	Prąd elektryczny	2 9
11.	Magnetyzm	33

Kinematyka

1.1 Wektory

1.1.1 Iloczyn skalarny

$$c = \vec{a} \cdot \vec{b} \tag{1.1}$$

$$c = |\vec{a}| \cdot |\vec{b}| \cdot \cos \angle (\vec{a}, \vec{b}) \tag{1.2}$$

1.1.2 Iloczyn wektorowy

$$\vec{c} = \vec{a} \times \vec{b} \tag{1.3}$$

$$\vec{c} = |\vec{a}| \cdot |\vec{b}| \cdot \sin \angle (\vec{a}, \vec{b}) \tag{1.4}$$

1.2 Opis ruchu

$$v_{\acute{s}r} = \frac{s}{t} \left[\frac{\mathrm{m}}{\mathrm{s}} \right] \tag{1.5}$$

$$\vec{v}_{\acute{s}r} = \frac{\Delta \vec{x}}{\Delta t} \left[\frac{\mathrm{m}}{\mathrm{s}} \right] \tag{1.6}$$

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t} \left[\frac{\mathbf{m}}{\mathbf{s}^2} \right] \tag{1.7}$$

1.3 Ruch jednostajny prostoliniowy

$$v = \text{const.}$$
 (1.8)

$$s = vt (1.9)$$

$$\operatorname{tg} \alpha = \frac{s}{t} = v \tag{1.10}$$

$$x(t) = x_0 \pm vt \tag{1.11}$$

1.4 Ruch jednostajnie przyśpieszony

$$a = \frac{\Delta v}{\Delta t} \left[\frac{\mathbf{m}}{\mathbf{s}^2} \right] \tag{1.12}$$

$$a = \text{const.} \tag{1.13}$$

jeżeli $v_0 = 0$:

$$v = at (1.14)$$

$$s = \frac{at^2}{2} \tag{1.15}$$

jeżeli $v_0 \neq 0$:

$$v_k = v_0 + at (1.16)$$

$$s = v_0 t + \frac{at^2}{2} \tag{1.17}$$

$$s_1: s_2: s_3: s_4: s_5: \dots = 1: 3: 5: 7: 9: \dots$$
 (1.18)

1.5 Ruch jednostajnie opóźniony

jeżeli $v_k = 0$:

$$v_0 = at (1.19)$$

$$s = \frac{1}{2}v_0t (1.20)$$

jeżeli $v_k \neq 0$:

$$v_k = v_0 - at \tag{1.21}$$

$$s = v_0 t - \frac{at^2}{2} = v_0 t - \frac{1}{2} \Delta v t \tag{1.22}$$

1.6 Rzut pionowy

1.6.1 Wznoszenie się

$$h = v_0 t - \frac{gt^2}{2} \tag{1.23}$$

$$v = v_0 - gt \tag{1.24}$$

1.6.2Opadanie

$$h = v_0 t + \frac{gt^2}{2} \tag{1.25}$$

$$v = v_0 + gt \tag{1.26}$$

jeżeli $v_0 = 0$:

$$v = gt (1.27)$$

1.7 Rzut poziomy

$$h = \frac{gt^2}{2} \tag{1.28}$$

$$x = v_0 t = v_0 \sqrt{\frac{2h}{g}} \tag{1.29}$$

$$v = \sqrt{v_0^2 + v_y^2} = \sqrt{v_0^2 + (gt)^2}$$
 (1.30)

Rzut ukośny 1.8

$$v_{0_x} = v_0 \cos \alpha \tag{1.31}$$

$$v_{0_y} = v_0 \sin \alpha \tag{1.32}$$

$$y(x) = x \operatorname{tg} \alpha - x^2 \cdot \frac{g}{2v_0^2 \cos^2 \alpha}$$
 (1.33)

$$t_c = \frac{2v_0 \sin \alpha}{g} \tag{1.34}$$

$$t_c = \frac{2v_0 \sin \alpha}{g}$$

$$h_{max} = \frac{v_0^2 \sin^2 \alpha}{2g}$$
(1.34)

$$z = \frac{v_0^2 \sin 2\alpha}{g} \tag{1.36}$$

dla $\alpha = 45^{\circ}, \ z = z_{max}$:

$$z_{max} = \frac{v_0^2}{2g} {(1.37)}$$

Ruch jednostajny po okręgu 1.9

$$\alpha = \frac{L}{r} \text{ [rad]} \tag{1.38}$$

$$f = \frac{n}{t} \text{ [Hz]} \tag{1.39}$$

$$\omega = \frac{\Delta \alpha}{\Delta t} \left[\frac{\text{rad}}{\text{s}} \right] \tag{1.40}$$

dla jednego obrotu:

$$f = \frac{1}{T} \tag{1.41}$$

$$\omega = \frac{2\pi}{T} \tag{1.42}$$

$$v = \frac{2\pi r}{T} = 2\pi r f = \omega r \tag{1.43}$$

$$a_r = \frac{v^2}{r} \tag{1.44}$$

$$\vec{v} = \vec{\omega} \times \vec{r} \tag{1.45}$$

$$v = \omega r \sin \angle (\vec{\omega}, \vec{r}) \tag{1.46}$$

dla $\vec{\omega} \perp \vec{r}$:

$$v = \omega r \tag{1.47}$$

przyśpieszenie w ruchu po okręgu 1.10

$$\vec{a}_s = \frac{\Delta \vec{v}}{\Delta t}$$

$$a_w = \sqrt{a_r^2 + a_s^2}$$

$$(1.48)$$

$$(1.49)$$

$$a_w = \sqrt{a_r^2 + a_s^2} (1.49)$$

Dynamika

2.1 Zasady dynamiki Newtona

2.1.1 Pierwsza zasada

$$\vec{F}_w = 0 \Rightarrow \vec{v} = 0 \lor \vec{v} = \text{const.}$$
 (2.1)

2.1.2 Druga zasada

$$F_w \neq 0 \Rightarrow a = \text{const.}$$
 (2.2)

$$\vec{a} = \frac{\vec{F}_w}{m} \Rightarrow \vec{F}_w = m\vec{a} \text{ [N]}$$
 (2.3)

2.1.3 Trzecia zasada

$$\vec{F}_{AB} = -\vec{F}_{BA} \tag{2.4}$$

$$F_{AB} = F_{BA} \tag{2.5}$$

2.2 Ruch na równi pochyłej

$$\frac{\vec{F}_Z}{\vec{F}_g} = \sin \alpha \Rightarrow \vec{F}_Z = \vec{F}_g \sin \alpha = mg \sin \alpha \tag{2.6}$$

$$\frac{\vec{F}_N}{\vec{F}_g} = \cos \alpha \Rightarrow \vec{F}_N = \vec{F}_g \cos \alpha = mg \cos \alpha \tag{2.7}$$

2.3 tbd

2.4 Pęd ciała

$$\vec{p} = m\vec{v} \left[\frac{\text{kg} \cdot \text{m}}{\text{s}} \right] \tag{2.8}$$

$$\Delta p = F \Delta t \tag{2.9}$$

2.4.1 Zasada zachowania pędu

$$\Delta \vec{p} = 0 \Leftrightarrow \vec{p} = \text{const.}$$
 (2.10)

2.5 Środek masy

$$x_c = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n} = \frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^n m_i}$$
(2.11)

2.6 Tarcie

$$T_s = \mu_s F_N \text{ [N]} \tag{2.12}$$

$$T_k \leqslant \mu_k F_N \text{ [N]} \tag{2.13}$$

2.7 Siła dośrodkowa

$$F_{do} = \frac{mv^2}{r} [N] \tag{2.14}$$

2.8 Siła bezwładności

$$\vec{F}_b = -m\vec{a} \, \left[\mathbf{N} \right] \tag{2.15}$$

Praca, moc, energia

3.1 Praca

$$W = \vec{F} \Delta \vec{r} \, [J] \tag{3.1}$$

$$W = F\Delta r \cos \angle (\vec{F}, \Delta \vec{r}) \tag{3.2}$$

dla $\alpha = 0^{\circ}$:

$$W = F\Delta r = Fs \tag{3.3}$$

dla $\alpha = 90^{\circ}$:

$$W = 0 (3.4)$$

3.2 Moc

$$P = \frac{W}{t} \text{ [W]} \tag{3.5}$$

dla v = const.:

$$P = Fs \tag{3.6}$$

3.3 Energia mechaniczna

3.3.1 Energia kinetyczna

$$E_k = \frac{mv^2}{2} [J] \tag{3.7}$$

$$\Delta E_k = W \tag{3.8}$$

Energia potencjalna 3.3.2

$$E_p = mgh [J] (3.9)$$

$$E_p = mgh [J]$$

$$\Delta E_p = W$$
(3.9)

Zasada zachowania energii 3.3.3

$$E_c = E_k + E_p \tag{3.11}$$

$$E_c = \text{const.} \Rightarrow \Delta E_c = 0$$
 (3.12)

$$\Delta E_c = \Delta E_p + \Delta E_k \tag{3.13}$$

3.4 Sprawność

$$\eta = \frac{E_{u\dot{z}yt.}}{E_{pob.}} (\cdot 100\%) = \frac{W_{u\dot{z}yt.}}{E_{pob.}} (\cdot 100\%)$$
 (3.14)

$$\eta_{u\dot{z}yt.} = \prod_{i=1}^{n} \eta_i \tag{3.15}$$

Hydrostatyka

4.1 Ciśnienie i parcie

4.1.1 Ciśnienie

$$p = \frac{F_N}{S} \text{ [Pa]} \tag{4.1}$$

dla $F_N = mg$:

$$p = \frac{mg}{S} \tag{4.2}$$

4.1.2 Parcie

$$P = pS [N] (4.3)$$

4.1.3 Ciśnienie hydrostatyczne

$$p_h = \frac{P}{S} = \varrho_c g h \text{ [Pa]} \tag{4.4}$$

4.1.4 Paradoks hydrostatyczny

4.2 Prawo Pascala

$$p_1 = p_2 \Rightarrow \frac{F_1}{S_1} = \frac{F_2}{S_2} \tag{4.5}$$

4.2.1 Naczynia połączone

$$p_1 = p_2 \Rightarrow \varrho_1 h_1 = \varrho_2 h_2 \tag{4.6}$$

4.3 Prawo Archimedesa

$$F_W = P_2 - P_1 = \varrho_c g V_z \text{ [N]}$$

$$\tag{4.7}$$

4.3.1 Warunki wypływania

 $F_W > F_g \Rightarrow$ ciało wypływa

 $F_W = F_g \Rightarrow$ ciało pływa

 $F_W < F_g \Rightarrow$ ciało tonie

Bryła sztywna

5.1 Ruch obrotowy

5.1.1 Prędkość kątowa

$$\omega = \frac{\Delta \alpha}{\Delta t} \left[\frac{\text{rad}}{\text{s}}, \frac{1}{\text{s}} \right]$$
 (5.1)

5.1.2 przyśpieszenie kątowe

$$\varepsilon = \frac{\Delta\omega}{\Delta t} \left[\frac{\mathrm{rad}}{\mathrm{s}^2}, \, \frac{1}{\mathrm{s}^2} \right] \tag{5.2}$$

5.1.3 Prędkość liniowa (styczna)

$$\vec{v} = \vec{\omega} \times \vec{r} \ \left[\frac{\mathbf{m}}{\mathbf{s}} \right] \tag{5.3}$$

$$v = \omega r \sin \angle (\vec{\omega}, \vec{r}) \tag{5.4}$$

dla $\vec{\omega} \perp \vec{r}$:

$$v = \omega r \tag{5.5}$$

5.1.4 przyśpieszenie liniowe

$$a_r = \varepsilon r \left[\frac{\mathrm{m}}{\mathrm{s}^2} \right] \tag{5.6}$$

Równania obrotu 5.2

$$\omega = \omega_0 \pm \varepsilon t \tag{5.7}$$

$$\alpha = \omega_0 t \pm \frac{\varepsilon t^2}{2} \tag{5.8}$$

(5.9)

dla $\omega_0 = 0$:

$$\alpha = \frac{1}{2}\omega t \tag{5.10}$$

Moment bezwładności 5.3

$$I = \sum_{i=1}^{n} m_i r_i^2 \left[\text{kg} \cdot \text{m}^2 \right]$$
 (5.11)

Momenty bezwładności wybranych brył

kula: $I_0=\frac{2}{5}mr^2$ walec: $I_0=\frac{1}{2}mr^2$ pręt: $I_0=\frac{1}{12}ml^2$ rura grubościenna: $I_0=\frac{1}{2}m(r_1^2+r_2^2)$

Twierdzenie Steinera 5.3.2

$$I = I_0 + mx^2 (5.12)$$

Energia kinetyczna **5.4**

$$E_{k_o} = \sum_{i=1}^{n} \frac{m_i v_i}{2} \ [J]$$
 (5.13)

$$E_{k_o} = \frac{I\omega^2}{2} \tag{5.14}$$

5.5 Moment sily

$$\vec{M} = \vec{r} \times \vec{F} \text{ [N · m]} \tag{5.15}$$

$$M = rF \sin \angle (\vec{r}, \vec{F}) \tag{5.16}$$

dla
$$\vec{r} \perp \vec{F}$$
:

$$M = rF (5.17)$$

dla $\vec{r} \parallel \vec{F}$:

$$M = 0 (5.18)$$

5.5.1 Wypadkowy moment siły

$$M_w = \sum_{i=1}^{n} M_i (5.19)$$

$$M_w = \varepsilon I \tag{5.20}$$

5.5.2 Równowaga bryły sztywnej

$$F_w = 0 (5.21)$$

$$M_w = 0 (5.22)$$

5.6 Moment pędu

$$\vec{L} = \vec{r} \times \vec{p} \left[\frac{\text{kg} \cdot \text{m}^2}{\text{s}} \right]$$
 (5.23)

$$L = rp\sin \angle(\vec{r}, \vec{p}) \tag{5.24}$$

$$L = mrv \sin \angle(\vec{r}, \vec{v}) \tag{5.25}$$

dla $\vec{p} \perp \vec{r}$:

$$L = rp = mrv (5.26)$$

$$L = \sum_{i=1}^{n} m_i r_i v_i \sin \angle (\vec{r}, \vec{v})$$
(5.27)

dla $\vec{r} \perp \vec{v}$:

$$L = \omega I \tag{5.28}$$

Grawitacja

- 6.1 Prawa Keplera
- 6.1.1 Pierwsze prawo
- 6.1.2 Drugie prawo

$$s_1 = s_2 \tag{6.1}$$

$$L_1 = L_2 \Rightarrow r_1 v_1 = r_2 v_2 \tag{6.2}$$

6.1.3 Trzecie prawo

$$\frac{T^2}{r^3} = \text{const.} \tag{6.3}$$

6.2 Prawo powszechnego ciążenia

$$F = G \frac{m_1 m_2}{r^2} \text{ [N]}$$
 (6.4)

gdzie:

$$G = 6,67 \cdot 10^{-11} \left[\frac{\text{N} \cdot \text{m}^2}{\text{kg}^2} \right]$$
 (6.5)

$$F = \frac{4}{3}\pi RGdm \tag{6.6}$$

$$F \sim dR \tag{6.7}$$

6.3 Natężenie pola grawitacyjnego

$$\vec{\gamma} = \frac{\vec{F}_g}{m} \left[\frac{N}{kg}, \frac{m}{s^2} \right] \tag{6.8}$$

dla pola centralnego:

$$\gamma = \frac{GM}{r^2} \tag{6.9}$$

6.4 Praca w polu grawitacyjnym

$$W = mgh (6.10)$$

$$\Delta E_p = W \tag{6.11}$$

$$W_{Z_{(A\to B)}} = GMm\left(\frac{1}{r_A} - \frac{1}{r_B}\right) \tag{6.12}$$

$$W_{g_{(A\to B)}} = -W_{Z_{(A\to B)}} \tag{6.13}$$

6.5 Energia w polu grawitacyjnym

$$E_p = -\frac{GMm}{r} \tag{6.14}$$

6.6 Potencjał pola grawitacyjnego

$$V = \frac{E_p}{m} \left[\frac{\mathbf{J}}{\mathbf{kg}} \right] \tag{6.15}$$

$$\Delta V = \frac{\Delta E_p}{m} \tag{6.16}$$

6.7 Prędkości kosmiczne

6.7.1 Pierwsza prędkość kosmiczna

$$v_{\rm I} = \sqrt{\frac{GM}{r}} \tag{6.17}$$

6.7.2 Satelita geostacjonarny

$$r = \sqrt[3]{\frac{GMT^2}{4\pi^4}} \tag{6.18}$$

6.7.3 Druga prędkość kosmiczna

$$v_{\rm II} = \sqrt{\frac{2GM}{r}} = v_{\rm I}\sqrt{2} \tag{6.19}$$

Ruch drgający

$$F_z = kx (7.1)$$

$$F_s = -kx (7.2)$$

$$k = \left| \frac{F_s}{x} \right| \left[\frac{N}{m} \right] \tag{7.3}$$

7.1 Ruch harmoniczny

$$x = r \sin \alpha \tag{7.4}$$

$$T = 2\pi \sqrt{\frac{m}{k}} \text{ [s]}$$
 (7.5)

7.1.1 Równania ruchu harmonicznego

$$x(t) = A\sin(\omega t + \varphi_0) \tag{7.6}$$

$$v(t) = \omega A \cos(\omega t + \varphi_0) \tag{7.7}$$

$$a(t) = -\omega^2 A \sin(\omega t + \varphi_0) \tag{7.8}$$

$$x_{max} = A \text{ dla } \sin 90^{\circ} = 1 \tag{7.9}$$

$$v_{max} = \omega A \text{ dla } \cos 0^{\circ} = 1 \tag{7.10}$$

$$a_{max} = -\omega^2 A \text{ dla } \sin 90^\circ = 1 \tag{7.11}$$

(7.12)

Łączenie sprężyn 7.1.2

$$F = \text{const.} \tag{7.13}$$

$$x = \sum_{i=1}^{n} x_i \tag{7.14}$$

$$\frac{1}{k} = \sum_{i=1}^{n} \frac{1}{k_i} \tag{7.15}$$

$$x = \text{const.} \tag{7.16}$$

$$F_c = \sum_{i=1}^{n} F_i (7.17)$$

$$k = \sum_{i=1}^{n} k_i \tag{7.18}$$

Energia w ruchu harmonicznym 7.2

$$W = \frac{1}{2}Fx \Rightarrow E_{p_s} = \frac{1}{2}kx^2 \tag{7.19}$$

$$E_c = E_{p_s} + E_k \tag{7.20}$$

$$E_c = E_{p_s} + E_k$$
 (7.20)
 $E_c = \frac{1}{2}kA^2$ (7.21)

$$E_k = \frac{1}{2}k(A^2 - x^2) \tag{7.22}$$

7.3 Wahadło matematyczne

$$F = F_g \sin \alpha \tag{7.23}$$

dla małych kątów $\sin \alpha \approx \alpha$:

$$F = mg\alpha \tag{7.24}$$

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{7.25}$$

Termodynamika

8.1 Zerowa zasada dynamiki

$$p = \frac{2}{3} \cdot \frac{NE_{k_{sr.}}}{V} \text{ [Pa]}$$
 (8.1)

gdzie N - liczba cząstek gazu

$$E_{k_{\acute{s}r.}} = \frac{1}{2} m v_{\acute{s}r.}^2 \text{ [J]}$$
 (8.2)

8.2 Równanie gazu doskonałego

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \Rightarrow \frac{pV}{T} = \text{const.}$$
 (8.3)

8.2.1 Równanie Clapeyrona

$$pV = nRT = NkT (8.4)$$

gdzie:

$$R = 8,31 \left[\frac{J}{\text{mol} \cdot K} \right] \tag{8.5}$$

$$k = \frac{R}{N_A} = 1,38 \cdot 10^{-23} \left[\frac{J}{K} \right]$$
 (8.6)

8.3 Przemiany gazu doskonałego

8.3.1 Przemiana izotermiczna

$$T = \text{const.}$$
 (8.7)

$$\frac{p_1 V_1}{T} = \frac{p_2 V_2}{T} \Rightarrow p_1 V_1 = p_2 V_2 \tag{8.8}$$

$$pV = \text{const.} \Rightarrow p = \frac{const.}{V}$$
 (8.9)

8.3.2 Przemiana izochoryczna

$$V = \text{const.} \tag{8.11}$$

$$\frac{p_1 V}{T_1} = \frac{p_2 V}{T_2} \Rightarrow \frac{p_1}{T_1} = \frac{p_2}{T_2} \tag{8.12}$$

$$\frac{p}{T} = \text{const.} \Rightarrow p = T \cdot const.$$
 (8.13)

8.3.3 Przemiana izobaryczna

$$p = \text{const.} \tag{8.15}$$

$$\frac{pV_1}{T_1} = \frac{pV_2}{T_2} \Rightarrow \frac{V_1}{T_1} = \frac{V_2}{T_2} \tag{8.16}$$

$$\frac{V}{T} = \text{const.} \Rightarrow V = T \cdot const.$$
 (8.17)

8.4 Pierwsza zasada termodynamiki

$$\Delta U = Q + W_z \text{ [J]} \tag{8.19}$$

dla Q>0 ciepło zostało pobrane dla Q<0 ciepło zostało oddane

$$W_z = F_z \Delta x \cos \angle (\vec{F}_z, \Delta \vec{x}) \tag{8.20}$$

$$W_z = -W_{qazu} \tag{8.21}$$

dla
$$W_z > 0$$
:

$$W_z = F_z \Delta x \tag{8.22}$$

dla $W_z < 0$:

$$W_z = -F_z \Delta x \tag{8.23}$$

$$|W| = p|\Delta V| \tag{8.24}$$

8.5 Energia wewnętrzna gazu doskonałego

$$U = N \cdot \frac{i}{2}kT \tag{8.25}$$

$$\Delta U = N \cdot \frac{i}{2} k \Delta T \tag{8.26}$$

gdzie i - stopnie swobody cząstek

8.5.1 Przemiana izotermiczna

$$T = \text{const.} \Leftrightarrow U = const.$$
 (8.27)

$$\Delta U = 0 \Rightarrow Q + W = 0 \tag{8.28}$$

8.5.2 Przemiana izochoryczna

$$V = \text{const.} \Rightarrow \Delta V = 0$$
 (8.29)

$$W = 0 \Rightarrow \Delta U = Q \tag{8.30}$$

8.5.3 Przemiana adiabatyczna

$$Q = 0 \Rightarrow \Delta U = W \tag{8.31}$$

$$pV^{\kappa} = \text{const.}$$
 (8.32)

gdzie:

$$\kappa = \frac{C_p}{C_V} \tag{8.33}$$

8.6 Ciepło molowe i właściwe

8.6.1 Ciepło właściwe

$$C_w = \frac{Q}{m\Delta T} \left[\frac{\mathbf{J}}{\mathrm{kg \cdot K}} \right] \tag{8.34}$$

$$Q = mC_w \Delta T \tag{8.35}$$

8.6.2 Ciepło molowe

$$C = \frac{Q}{n\Delta T} \left[\frac{\mathbf{J}}{\text{mol} \cdot \mathbf{K}} \right] \tag{8.36}$$

ciepło molowe przy stałym ciśnieniu: C_p ciepło molowe przy stałej objętości: C_V

$$Q_p = Q_V + p\Delta V \tag{8.37}$$

$$C_p = C_V + R \tag{8.38}$$

8.7 Energia wewnętrzna jako funkcja stanu

$$\Delta U = Q_V = nC_V \Delta T \tag{8.39}$$

8.8 Silnik cieplny

$$\eta = \frac{|Q_1| - |Q_2|}{Q_1} = \frac{T_1 - T_2}{T_1} \tag{8.40}$$

8.9 Przejścia fazowe

$$Q = mC_w \Delta T \tag{8.41}$$

woda - lód: $T_T = T_K = 0^{\circ} C$ woda - para wodna: $T_W = T_S = 100^{\circ} C$

$$Q = mL (8.42)$$

$$Q = mR (8.43)$$

8.10 Rozszerzalność temperaturowa ciał

8.10.1 Rozszerzalność obiętościowa

$$\Delta V = V_0 \alpha \Delta T \tag{8.44}$$

8.10.2 Rozszerzalność liniowa

$$\Delta l = l_0 \lambda \Delta T \tag{8.45}$$

Elektrostatyka

9.1 Ładunek elektryczny

$$|e| = 1, 6 \cdot 10^{-19} \text{ [C]}$$

 $q = ne \text{ [C]}$

Zasada zachowania ładunku: W izolowanym układzie całkowity ładunek elektryczny nie ulega zmianie.

$$\sum_{i=1}^{n} q_i = \text{const.} \tag{9.1}$$

9.2 Prawo Coulomba

Prawo Coulomba: Siła wzajemnego oddziaływania dwóch ładunków jest wprost proporcjonalna do iloczynu tych ładunków i odwrotnie proporcjonalna do kwadratu odległości między nimi.

$$F = k \frac{Qq}{r^2} \text{ [N]}$$

$$(9.2)$$

gdzie:

k – współczynnik proporcjonalności (stała eletrostatyczna)

 ε_0 – stała przenikalności elektrycznej próżni

$$k = \frac{1}{4\pi\varepsilon_0} \approx 8,99 \cdot 10^9 \left[\frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \right]$$
$$\varepsilon_0 = 8,85 \cdot 10^{-12} \left[\frac{\text{C}^2}{\text{N} \cdot \text{m}^2} \right]$$

9.3 Natężenie pola elektrostatycznego

Definicja. Natężenie pola elektrostatycznego to stosunek siły elektrostatycznej działającej na dodatni ładunek próbny q w danym punkcie pola do wartości tego ładunku.

$$\vec{E} = \frac{\vec{F}}{q} \left[\frac{N}{C} \right] \tag{9.3a}$$

Wstawiając równanie 9.2 do równania 9.3a otrzymujemy:

$$E = \frac{kQ}{r^2}$$
 (9.3b)

9.4 Rozmieszczenie ładunku na przewodniku

Po namagnesowaniu ciała cały dostarczony ładunek rozmieszcza się na jego zewnętrznej powierzchni. Pole elektromagnetyczne wewnątrz zanika.

Rozmieszczenie ładunku na powierzchni zależy od jego kształu. Rozkład ładunku opisuje gęstość powierzchniowa ładunku — iloraz ładunku i pole tej powierzchni.

$$\sigma = \frac{Q}{S} \, \left[\frac{\mathbf{C}}{\mathbf{m}^2} \right]$$

9.5 Praca w polu centralnym

$$W_{A\to B} = -kQq\left(\frac{1}{r_A} - \frac{1}{r_B}\right) [J]$$
(9.4)

9.6 Energia w polu centralnym

$$E_p = \frac{kQq}{r} \text{ [J]} \tag{9.5}$$

9.7 Potencjał w polu centralnym

Definicja. Potencjał pola elektrostatycznego to stosunek energii potencjalnej punktowego ciała do wartości ładunku próbnego umieszczonego w tym polu.

$$V = \frac{E_p}{q} \text{ [V]} \tag{9.6a}$$

Podstawiajac równanie 9.5 do równania 9.6a otrzymujemy:

$$V = \frac{kQ}{r^2} \tag{9.6b}$$

$$W = \Delta E_p = q\Delta V = qU$$

9.8 Pojemność elektryczna przewodnika

Definicja. *Pojemność elektryczna przewodnika* to stosunek ilości ładunku zgromadzonego na przewodniku do uzyskanego potencjału.

$$C = \frac{Q}{V} \text{ [F]} \tag{9.7}$$

9.9 Kondensator

Definicja. *Kondensator* to element elektroniczny służący do gromadzenia ładunku elektrycznego.

$$C = \frac{Q}{U}$$

9.9.1 Łączenie kondensatorów

$$U = \text{const.}$$
 $Q = \text{const.}$
$$Q = \sum_{i=1}^{n} Q_{i}$$

$$U = \sum_{i=1}^{n} U_{i}$$

$$C_{z} = \sum_{i=1}^{n} C_{i}$$

$$\frac{1}{C_{z}} = \sum_{i=1}^{n} \frac{1}{C_{i}}$$

9.9.2 Kondensator płaski

Definicja. Kondensator płaski składa się z dwóch równoległych, metalowych okładek, między którymi znajduje się dielektryk.

Bez dielektryka:

$$C = \frac{\varepsilon_0 S}{d}$$

Uwzględniając dielektryk:

$$C = \frac{\varepsilon_0 \varepsilon_r S}{d}$$

Natężenie pola elektrycznego kondensatora:

$$E = \frac{U}{d}$$

gdzie:

d – odległość między okładkami

 ${\cal S}$ – pole powierzchni okładek

 ε_r – stała przenikalność dielektryka

9.9.3 Energia naładowaniego kondensatora

Definicja. energia naładowaniego kondensatora to praca potrzebna do jego naładowania.

$$E = \frac{1}{2}QU = \frac{1}{2}CU^2 = \frac{Q^2}{2C}$$
 [eV, J]
(1eV = 1, 6 · 10⁻¹⁹ J)

9.10 Ruch ładunków w polu elektrostatycznym

Na naładowane cząstki w polu elektrostatycznym centralnym działa siła elektrostatyczna, przez którą cząstka zaczyna przyspieszać.

$$F = qE$$

jeżeli $F = F_w$, to:

$$a = \frac{qE}{m} = \frac{qU}{md} \left[\frac{\mathbf{m}}{\mathbf{s}^2} \right]$$

Prąd elektryczny

Definicja. *Prąd elektryczny* to uporządkowany ruch ładunków elektrycznych, których nośnikami w metalach są **elektrony**.

Definicja. *Napięcie elektryczne* to różnica potencjałów między dwoma punktami obwodu elektrycznego powodująca przepływ ładunków.

$$U = \Delta V \ [V] \tag{10.1}$$

Definicja. *Natężenie prądu elektrycznego* to stosunek ilości ładunków przepływających przez przekrój poprzeczny przewodu do czasu, w którym ten ładunek przepłynął.

$$I = \frac{\Delta Q}{\Delta t} \text{ [A]} \tag{10.2}$$

10.1 Prawo Ohma

Prawo Ohma: Natężenie prądu płynącego przez przewodnik jest wprost proporcjonalne do napiecia pomiedzy końcami tego przewodnika.

$$R = \frac{U}{I} \ [\Omega] \tag{10.3}$$

10.1.1 Łączenie rezystorów

$$I = \text{const.}$$
 $U = \text{const.}$
$$U = \sum_{i=1}^{n} U_{i}$$

$$I = \sum_{i=1}^{n} I_{i}$$

$$R_{z} = \sum_{i=1}^{n} R_{i}$$

$$\frac{1}{R_{z}} = \sum_{i=1}^{n} \frac{1}{R_{i}}$$

10.1.2 Opór elektryczny przewodnika

Definicja. *Opór elektryczny* to zdolność ciała do przeciwstawiania się przepływowi prądu elektrycznego.

$$R = \frac{\varrho l}{S} [\Omega]$$

gdzie:

 ϱ – opór właściwy materiału przewodnika

l – długość przewodu

S – pole przekroju przewodnika

10.2 Praca i moc prądu elektrycznego

Przepływ prądu elektrycznego wiąże się z wykonywaniem przez elektrony pracy.

$$W = UIt = \frac{U^2}{R}t = I^2Rt$$
(10.4)

10.2.1 Emisja ciepła (ciepło Joule'a)

$$Q = W = I^2 Rt$$

10.2.2 Energia elektryczna

$$E_{el} = W = UIt \text{ [kWh]}$$

(1kWh = 3,6MJ)

10.2.3 Moc prądu elektrycznego

Definicja. *Moc prądu elektrycznego* to stosunek pracy wykonanej przez przepływające elektrony do czasu, w którym tą pracę wykonywały.

$$P = \frac{W}{t} \text{ [W]} \tag{10.5a}$$

Wstawiając równanie 10.4 do równania 10.5a otrzymujemy:

$$P = UI = I^2 R = \frac{U^2}{R}$$
 (10.5b)

10.3 Ogniwo galwaniczne

Definicja. *Ogniwo galwaniczne* to elektrolit kwasu, soli lub zasady, w którym zanurzono dwie elektrody wykonane np. z miedzi albo cynku. Na skutek dysocjacji elektrolitycznej między biegunami ogniwa powstaje różnica potencjałów, którą nazywamy siłą elektromotoryczną (SEM).

10.3.1 Prawo Ohma dla obwodu

$$\mathcal{E} = U + U_w = U + IR_w \text{ [V]}$$
$$I = \frac{\mathcal{E}}{R_z} = \frac{\mathcal{E}}{R + R_w} \text{ [A]}$$

gdzie:

 \mathcal{E} – siła elektromotoryczna

 R_w – opór wewnętrzny ogniwa

10.4 Prawa Kirchoffa

Pierwsze prawo Kirchoffa: Suma natężeń wpływających do węzła obwodu elektrycznego jest równa sumie natężeń wypływających z węzła.

$$\sum_{i=1}^{n} I_i = 0 \tag{10.6}$$

Drugie Prawo Kirchoffa: Suma sił elektromotorycznych i spadków napięć w obwodzie zamkniętym (oczku) jest równa zero.

$$\sum_{i=1}^{n} \mathcal{E}_i + \sum_{i=1}^{n} I_i R_i = 0$$
 (10.7)

10.5 Przewodnictwo ciał stałych

Wyróżnia się trzy grupy ciał stałych ze względu na właściwości elektryczne:

- przewodniki
- izolatory
- półprzewodniki

Przewodnikami są przede wszystkim metale takie jak miedź i żelazo. Dobre przewodzą prąd, bo posiadają wolne elektrony. Wraz ze wzrostem temperatury opór elektryczny przewodników wzrasta wskutek drgań sieci krystalicznej, w której poruszają się elektrony.

Izolatory nie przewodzą prądu elektrycznego lub robią to bardzo słabo z powodu braku wolnych elektronów.

Półprzewodniki to materiały które mogą wykazywać właściwości zarówno izolatorów, jak i przewodników. Wraz ze wzrostem temperatury ich opór elektryczny maleje, gdyż część elektronów przeskakuje z poziomu podstawowego do poziomu przewodnictwa, stając się nośnikami prądu elektrycznego. Poprzez domieszkowanie półprzewodnika pierwiastkami z grupy 13 bądź 15 układu okresowego uzyskuje się odpowienio półprzewodnik dziurowy (typ "p") oraz półprzewodnk elektronowy (typ "n").

10.6 Dioda półprzewodnikowa

Dioda półprzewodnikowa jest złożona z dwóch złączonych półprzewodników — jeden typu "p", a drugi typu "n" — tworzących złączę p-n/n-p. Dioda półprzewodnikowa przepuszcza prąd tylko w jednym kierunku.

Magnetyzm

11.1 Pole magnetyczne

Definicja. Pole magnetyczne to przestrzeń, w której na umieszczone w niej naładowane cząstki oraz ciała o właściwościach magnetycznych działają siły magnetyczne. Ciała wykazujące właściwości magnetyczne posiadają **domeny magnetyczne** — obszary o stałym namagnesowaniu. Źródłem pola magnetycznego może być np. magnes trwały lub przewodnik z prądem (doświadczenie Ørsteda)

Definicja. Indukcja pola magnetycznego to wielkość wektorowa wyrażająca natężenie pola magnetycznego w danym punkcie przestrzeni.

$$B = \frac{F}{qv} \text{ [T]} \tag{11.1}$$

11.1.1 Pole magnetyczne prostoliniowego przewodnika

$$B = \frac{\mu_0 I}{2\pi r}$$

gdzie:

 μ_0 – stała przenikalności magnetycznej próżni

$$\mu_0 = 4\pi \cdot 10^{-7} \left[\frac{\text{Tm}}{\text{A}}, \frac{\text{N}}{\text{A}^2} \right]$$

11.1.2 Pole magnetyczne gestej zwojnicy

$$B = \frac{\mu_0 nI}{l}$$

gdzie:

n – ilość nawiniętych zwojów

l – długość zwojnicy

11.1.3 Pole magnetyczne pętli (pojedynczego zwoju)

$$B = \frac{\mu_0 I}{2r}$$

11.2 Siła elektrodynamiczna

Definicja. Siła elektrodynamiczna to siła działająca na umieszczony w polu magnetycznym przewodnik, przez który przepływa prąd elektryczny, powodując jego ruch.

$$\vec{F} = I\Delta \vec{l} \times \vec{B} \ [\text{N}]$$

$$F = I\Delta l \cdot B \sin \angle (\Delta \vec{l}, \vec{B})$$

jeżeli $\Delta \vec{l} \perp \vec{B}$, to:

$$F = BI\Delta l \tag{11.2}$$

11.3 Siła Lorenza

Definicja. Siła Lorenza to siła działająca na naładowane cząstki poruszające się w polu magnetycznym powodująca odchylenie toru ruchu tych cząstek.

$$\vec{F}_L = q\vec{v} \times \vec{B} \text{ [N]}$$

$$F_L = qvB \sin \angle (\vec{v}, \vec{B})$$

jeżeli $\vec{v} \perp \vec{B}$, to:

$$F_L = qvB \tag{11.3}$$

11.4 Cyklotron

Cyklotron służy do przyspieszania cząstek obdarzonych ładunkiem. Składa się z dwóch duantów w kształcie puszki.