

Characterizing the Fibre Optics

Jason Rock jason.rock@mail.utoronto.ca

Miriam Diamond mdiamond@physics.utoronto.ca

January 19, 2022

The Project

- Create an experimental setup to measure the attenuation property of the Kuraray Y-11(200)J (1.5mm) WLS fibre
- Attenuation is assumed to be due to photon absorptions in the fibre:

$$I(x) = I_0 e^{-x/b}$$

- The attenuation length (mean free path of a photon) is simply $\lambda = 1/b$
- An LED was used to mimic scintillation light

Experimental Setup

- 300 cm helical track housed the fibre
- Holes located every 5 cm for LED
- SiPM must be off course of the track

LED pulser:

- 405 nm ± 5 nm LED
- LED pulse width: <10 ns
- 50 kHz pulse repetition

FNAL Scintillator (1% PPO + 0.03% POPOP) https://lss.fnal.gov/archive/2003/conf/fermilab-conf-03-318-e.pdf

Experimental Setup

Experimental Setup (finer details)

- SiPM type: AFBR-S4N44C013
- SiPM board: AFBR-S4E001
- SiPM HV: 30.5 V
- SiPM amplification: no external amplification
 - We could not conveniently acquire a working amplifier for the SiPM

- Due to no external amplification, SiPM dark noise bands were not resolvable
 - Therefor, the exact photon count was unknown

LED Pulser

Circuit schematic: https://physicsopenlab.org/2018/12/02/fast-led-light-pulser-sipm/

Interpreting SiPM Signal

 Mean position and sigma of the Gaussian is tracked for every LED position Bench Vue application used to operate oscilloscope and acquire data

Expectation of Attenuation Parameter

See http://kuraraypsf.jp/psf/ws.html

- Kuraray expects mean free path $\lambda = 399$ cm for a 1.0 mm fibre
- Mean free path $\lambda = 1/b$

Results

- $\lambda = 559.09 \text{ cm} \pm 221.15 \text{ cm}$
- Two attenuation modes (near and far)
- Note the difference in λ between the 1.0 mm and 1.5 mm fibre

 To decrease uncertainty on λ, take more position data and decrease LED PE spread

Next Steps

- Increasing SiPM gain 10x more
- Inverting Gain = R5 / R6
 - \circ => For 10x more gain, R5 = 2k

Schematic found on Steven Robertson's presentation (April 6 2021)

Extras

RE: Led Pulser

- Circuit capacitor heavily influences pulse width and amplitude of the LED
- Note that the after pulses for 20 pF may be large enough to trigger the LED
- Adding a 100 330 Ohm resistor to the LED can precisely adjust the pulse amplitude as well

These resistors were added between the LED and pulser board to adjust LED intensity