Logistics: - HW5 is due Thursday => last chance on HW3? Last time: - Numerical Streamfunction ψ = ψ. - Sqydx + Sqxdy located in corners cumsum Choose ref. point & order of integration (ref. point affects the constant) Today: - Correlated raudom fields > genoate heterogeneous fields => multiple realizations -> uncestainty

Lecture 15: Correlated Random Fields

=> discrete events X; discrete prob. P;
· continuous random variables P(A)
continuous random variables P(0) "spinner" can land 1- on any location 277 8
=> Continuous probability density function
Parameters describing aquifest are continuous.
Properties of random variables
1) Expected value (mean)
discrehe: $E(X) = \sum_{i=1}^{N} X_i P_i = \mu$
x; = ith out come
$P_i = probability of ith outcomes continuous: E(x) = \int x P(x) dx = \mu$
2, Variance
squared deviation from mean

Discrebe:
$$Var(X) = \sum_{i=1}^{n} (X_i - \mu)^2 p_i$$

Typical probability density functions

Normal distribution:

$$D(X) = \frac{1}{(x-\mu)^2} \exp\left(-\frac{(x-\mu)^2}{(x-\mu)^2}\right)$$

P(x)

Exponential distribution

$$P(x) = \lambda e^{-\lambda x} \quad x \ge 6$$

$$E(x) = \mu = \frac{1}{\lambda} \quad Vac(x) = \frac{1}{\lambda^2}$$

Covariance & Correlation If two random variables X and Y are not independent, i.e., they are jointly distributed (Pij, P(X,Y)) we can compute their covariance

Discrebe:
$$Cov(X,Y) = \sum_{i=1}^{N} \sum_{j=1}^{N} (X_i - \mu_X)(y_j - \mu_Y) p_{ij}$$

Continuous:
$$Cov(X,Y) = \int \int (x-\mu_X)(Y-\mu_Y) P(X,Y) dXdY$$

$$Cov(X,X) = Var(X) = 5^2$$

Correlation:
$$S_{x,y} = \frac{\text{Cov}(x,y)}{\delta_x \delta_y}$$

Random Fields/Functions So for no spatial extent? Randon field: Z = {Z(x): x E R } where Z(x) is a scalar random variable at location x. If the field is stationary, i.e. statistics (E, Var) do not depend on x then we can define covariance C(h) = Cov(Z(x), Z(x+h)) $h \in \mathbb{R}^d$ where k = x - x is the lag vector (141 is distance) For an isotopie field the covariance is only · Punction of distance h=141 Correlation function: $g(h) = \frac{C(h)}{6^2}$

Commonly used isotropic correlation functions: 4) Power exponential: $p(h) = \exp\left(-\left(\frac{h}{k}\right)^{\nu}\right)$, KYO, BEV 52 V=2 ⇒ gaussien/normal 2) Rational quadratic (Cauchy)) K 70, V >0 $\rho(h) = \frac{1}{\left(1 + \left(\frac{h}{\kappa}\right)^2\right)^2}$ 3) Matérn $\rho(h) = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(\frac{2\sqrt{\nu}h}{\kappa}\right)^{\nu} K_{\nu} \left(\frac{2\sqrt{\nu}h}{\kappa}\right)^{\nu} \nu > 0$ Kr mod. Bessel function Gamme function Matern covariance fields are a parameterized family of fields that contain the most commonly used functions as limiting corses. v= { exponential correlation function y > 10 Gra Normal correlation function

limits the size of fleddo that can be generaled.

I many ways of getting around this in Geostatistics

Relation between Matérn correlation functions and Stochastic PDE

The real benefit of Materia covarionces is that they have been linked explicitly to solutions of SPDE. (Lindgren et. al. 2011)

$$\left(-\nabla^2 + \kappa^2\right)^{\alpha/2} m = s$$

where s = white noise Gaussan

random field with unit variance

x = 2 + 2

d= dimension

m = nuhuowu pasamet field

Our Matérn parameterization dio 20 a= (-r \(\nabla^2 + 8\) m = s mod. Helmholtz egu two parameters y & S We can show: $p \sim 2\sqrt{\frac{r}{8}}$ $\sigma^2 \sim \frac{1}{78}$ Discretizations (-TD*G+6I) m = s solve with all Neumann BC's