16/11/21 Last Class : BPP C P/Poly Thm: BPP S Zon To BPP is closed under complementation BPP = LOBPP =) it suffices to show that BPP C ZZP let L EBPP. need to show that LEZT L & BPP. I a det. TM M and a polynomial q() S-+. $\gamma \in L = P_{\gamma \in \{0,1\}}^{\gamma} \{(ixi)\} \left[M(x,y) = i \right] \ge \frac{2}{3}$ $\chi \notin L \Rightarrow P_{\chi} \left[M(x, Y) = 1 \right] \leq \frac{1}{3} \leq \frac{1}{2^{|M|}}$ define |x|=n, 9(|x|)=:m. Choose d=1. In other words, the error prob. is $\leq \frac{1}{2^n}$

$$x \in L \Rightarrow Pr_{x} [M(x, r) = 1] \ge 1 - \frac{1}{2^{n}}$$

$$x \notin L \Rightarrow Pr_{y} [M(x, r) = 1] \le \frac{1}{2^{n}}$$

$$Consider the space of random strings $fo_{i}f_{i}^{y}$

$$S_{x} := \begin{cases} r \in fo_{i}, i_{i}^{y} & M(x, r) = 1 \end{cases}$$

$$if x \in L \quad then \quad |S_{x}| \ge (1 - \frac{1}{2^{n}}) \cdot 2^{m}$$

$$if x \notin L \quad then \quad |S_{x}| \le 2^{m-n}$$

$$f x \notin L \quad then \quad |S_{x}| \le 2^{m-n}$$

$$S_{x} = S_{x} =$$$$

 P_{y_i} $\left[\begin{array}{c} Y_i \\ \end{array} \right] \leq \frac{2^m - |S_x|}{2^m} \leq \frac{2^m - n}{2^m}$ if 4i is chosen uniformly at random then r+4i is also a random vector in { o(1) m from, (*) (*) $\leq (2)^{k}$ Pruisin [By happens] < 2 $P_{S_{u_1, \dots, u_n}} \left[\bigcup_{i=1}^{n} S_x + u_i = \{o_1, i\}^m \right]$ = (- Pru,,,,up [] Sn+u; + {0,12m} Fryn, yw Br happens? > 1 - E Pruisique [Br happens]

for some i e {1,., k}
$ \begin{cases} \text{for Some } i \in \{1,, K\} \\ M(7, Y+u_i) \text{ accepts} \end{cases} $
BPP S P/Poly. BPP S NP?
BPP S P/Poly. BPP S NP? NP S BPP?
if NP & BPP. 21 NP & P/Poy =) PH collapses.
Interactive Proofs (IP)
Computationally x & L resource Bounded.
Prover Certificate. Verifier (poly-time)
Lot frustworthy)
accepts.
if X & L =) It proofs Verifier rejects.
This gave us the Class NP.

Composationally Unbounded. XŁL a sequence of messages. if x EL =) that makes Verifier accepts. if x &L => It sequence of messages Verifin sejects. With interaction, you Still get the class NP! Now Suppose the Verifier is

probabilistic. (toss random private coins)
i.e. Accept/reject with prob>3.

GI:= Graph non-isomorphism
= { (G1, G12) G1 is hon-isomorphic to G12}
to G_ 2
)
poly (les n) known
poly(legn) known 2 best algo for GI (Babai)