Øving 8

TEP4100 Fluidmekanikk, Vår 2012

Oppgave 5-77 Vannivået i en tank er 20 m over bakken. En slange er festet til bunnen av tanken, slangen går til en pumpe som øker trykket på vannet for så å gå gjennom et munnstykke som peker oppover. Tanken er på havnivå, og vannoverflaten er åpen til atmosfæren. Hvis vannstrålen stiger til 27 m over bakken, bestem trykkøkningen som pumpen tilfører vannet.

Oppgave 5-80 Vann strømmer med en volumstrøm på $20\,\mathrm{L/s}$ gjennom et horisontalt rør med en konstant diameter på $3\,\mathrm{cm}$. Trykkfallet over en ventil i røret måles til $2\,\mathrm{kPa}$, som vist i figuren under. Bestem den irreversible tapshøyden i ventilen, og pumpeeffekten som kreves for å kompensere for trykktapet. Løsning: $0.204\,\mathrm{m}$, $40\,\mathrm{W}$

Oppgave 5-86 Vann i en delvis fyllt stor tank skal leveres til toppen av et tak som er 8 m over vannivået i tanken, gjennom et rør med indre diameter 2.5 cm ved å opprettholde et konstant lufttrykk på 300 kPa (overtrykk) i tanken. Hvis tapshøyden i rørsystemet er 2 m av vann, bestem volumstrømmen som leveres til toppen av taket.

Oppgave 5-91 En brannbåt skal slukke branner i kystområder ved å pumpe sjøvann med en tetthet på $1030\,\mathrm{kg/m^3}$ gjennom et $20\,\mathrm{cm}$ diameters rør med en volumstrøm på $0.1\,\mathrm{m^3/s}$ og spyle det ut gjennom en dyse med utløpsdiameter 5 cm. Den totale irreversible tapshøyden i systemet er 3 m, og posisjonen til munnstykket er 3 m over havnivået. Hvis pumpens virkningsgrad er 70 prosent, bestem den nødvendige effekten pumpen må forsynes med og vannets utløpshastighet. Løsning: $199\,\mathrm{kW}$, $50.9\,\mathrm{m/s}$

Oppgave 5-103 En 3 m høy tank er fyllt med vann. Overflaten til vannet i tanken er åpen mot atmosfæren, og en skarpkantet åpning med diameter $10 \,\mathrm{cm}$ ved bunnen av tanken drenerer vannet ut til atmosfæren gjennom et horisontalt $80 \,\mathrm{m}$ langt rør. Hvis den totale irreversible tapshøyden til systemet er $1.5 \,\mathrm{m}$, bestem den initielle hastigheten av vannet som strømmer ut av tanken. Se bort fra effekten fra korreksjonsfaktoren for kinetisk energi. $Løsning: 5.42 \,m/s$

