Kawasaki Quantum Summer Camp 2025

分子の シミュレーション

Jul 31, 2025

沼田祈史 Kifumi Numata IBM Quantum

シミュレーションで予測できるのは?

(1) (2) バスケットボールの軌跡 スペースシャトルの耐久性

新薬のための化学実験

シミュレーションで予測できるのは?

シミュレーションとは・・ 法則を表す方程式(モデル)を解き、再現や予測をすること。

(1) (2) バスケットボールの軌跡 スペースシャトルの耐久性

新薬のための化学実験

シミュレーションで予測できるのは?

シミュレーションとは・・ 法則を表す方程式(モデル)を解き、再現や予測をすること。

(1) (2) バスケットボールの軌跡 スペースシャトルの耐久性

新薬のための化学実験

運動方程式 も運動を表すモデル

分子シミュレーションで何ができるのか?

→物質の反応を予測したり、性質を調査できる

例えば、分子や原子のエネルギーがわかると・・・

化学反応が予測できる

活性化エネルギーと反応エネルギーを計算
→ 観察できない反応の過程を予測できる

物質の色が予測できる

エネルギーごとに吸収する色が違う
→ 反射する色 (=目に見える色) が予測できる

分子シミュレーションで何ができるのか?

→物質の反応を予測したり、性質を調査できる

例えば、分子や原子のエネルギーがわかると・・・

薬の反応が予測できる

分子間距離を変えた時のエネルギーの変化 ↑ 0.4 ↑ 0.6 ↑ 1.0 ↑ 0.5

タンパク質と薬のドッキングシミュレーションで効果の予測ができる

今日取り組むのは、窒素分子の基底エネルギーを求める

窒素は、原子番号7 (電子は7個)

周期\族	1	2	3		12	13	14	15	16	17	18
1	1 <mark>H</mark> 水素										2 He ヘリウム
	小糸 Hydrogen										Helium
	1.00798		~	_		-					4.0026
2	3 Li	4 Be		_		5 B	6 C	7 N	8 0	9 F	10 Ne
	リチウム	ベリリウム				硼(ホウ)素	炭素	窒素	酸素	弗(フッ)素	ネオン
	Lithium	Beryllium				Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
	6.968	9.01218		_		10.814	12.0106	14.0069	15.9994	18.9984	20.1797
3	11 Na	12 Mg				13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
	ナトリウム	マグネシウム				アルミニウム	珪(ケイ)素	燐(リン)	硫黄	塩素	アルゴン
	Sodium	Magnesium				Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
	22.9898	24.306				26.9815	28.085	30.9738	32.068	35.452	39.948

出典: https://ja.wikipedia.org/wiki/周期表

原子・分子のエネルギーが最も低く、 安定する時の値

窒素のシミュレーションは難しい

基底エネルギーを求めるには?

→ シュレディンガー方程式(原子や分子を表す式)を解く!

シュレディンガー方程式: $H|\psi\rangle = E|\psi\rangle$

行列・ベクトル = 値・ベクトル

- **波動関数** $|\pmb{\psi}\rangle$:粒子の位置情報が保存されている関数。固有ベクトルとも呼ぶ。
- ハミルトニアン H:波動関数の様々な情報から、エネルギーを取り出す演算子。
 分子によって変わる。
- **エネルギー固有値** E: 波動関数に固有のエネルギー。

シュレディンガー方程式を「解く」=

シュレディンガー方程式を満たす波動関数 $|\psi\rangle$ を発見すること

基底エネルギーを求めるには?

→ シュレディンガー方程式(原子や分子を表す式)を解く!

シュレディンガー方程式: $H|\psi\rangle = E|\psi\rangle$

行列・ベクトル = 値・ベクトル

とても簡単な行列の例:

 $H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ の固有ベクトル $|\psi\rangle$ と固有値Eは

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = -1 \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \quad \text{より} \quad |\psi\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}, \quad E = -1$$

ところが、分子のハミルトニアンH はとても大きいです!

例: $2^{32} \times 2^{32}$

どうやって解く?

シュレディンガー方程式を解くには?

シュレディンガー方程式: $_{\nearrow}H|\psi\rangle=E|\psi\rangle$

一般にはとても大きい行列

計算メモリーが足りない

シュレディンガー方程式を解くには?

シュレディンガー方程式: $_{\nearrow}H|\psi\rangle=E|\psi\rangle$

一般にはとても大きい行列

シュレディンガー方程式を解くには?

シュレディンガー方程式: $H|\psi\rangle = E|\psi\rangle$

スーパーコンピューターと量子コンピューターを統合して使う

今年6月に稼働開始!

IBM Quantum System Two 133量子ビット Heron プロセッサー

場所:理研神戸

今日学ぶ量子化学のアルゴリズムは スパコン+量子コンピューターの日本発の事例!

新川崎のIBM Quantum System Oneと東大のスパコンMiyabiも統合予定!

新川崎にあるIBM Quantum System One

東京大学のスパコンMiyabi

量子+古典のハイブリッドアルゴリズムで 分子の基底エネルギーを求める「サンプルベースの量子対角化」

目的:窒素分子のシュレディンガー方程式 $H|\psi\rangle=E|\psi\rangle$ を解く

<u>@</u>1@1@1@1@1@1@1<mark>@-@</mark>1@1@1@1@1@

量子コンピューター 量子状態(アンサッツ) |ψ〉

を近似的に作って、測定結果を得る。

古典コンピューター:

- 1. 測定結果を化学のルールに従って修正。
- 2. 結果から部分的にサンプルとしていくつか選択。
- 3. サンプルをもとにハミルトニアン**H**のサイズを小さくする。
- 4. 小さなハミルトニアンでエネルギーを求める(繰り返す)。

窒素分子の状態を量子回路にモデル化する

窒素分子の最外殻にある電子のみ考える。

→ 10個の電子(10量子ビット)

計算する空間を考える → 今回は32量子ビットを使う。

窒素分子のハミルトニアンをもとに量子回路を作成。 (Qiskitが作ってくれるが、今回は事前に計算されたものを使う)

化学のルールに基づいた修正

エラーのあるビット列を電子の数を保存するようにビット反転して修正。

この状態が出たら電子1つを この状態が出たら電子1つを削追加するようにビット反転 除するようにビット反転

データをサンプリングする

10万ショットのビット列の中から、50個を5バッチ分、選択する。

バッチにしているのは大きな問題の場合に、スパコンなどで並列計算できるようにするため。

バッチ1: 50ショット分のビット列

バッチ2: 50ショット分のビット列

バッチ3: 50ショット分のビット列

バッチ4: 50ショット分のビット列

バッチ5: 50ショット分のビット列

ハミルトニアンのサイズを小さくして、基底エネルギーを求める

計算が楽になる!

シュレディンガー方程式: $H|\psi\rangle = E|\psi\rangle$

複数回、サンプリングを行い、 最も小さいエネルギーが 基底エネルギー(近似解)

量子+古典のハイブリッドアルゴリズムで 分子の基底エネルギーを求める「サンプルベースの量子対角化」

目的:窒素分子のシュレディンガー方程式 $H|\psi\rangle=E|\psi\rangle$ を解く

量子コンピューター

量子状態(アンサッツ) $|\psi\rangle$ を近似的に作って、測定結果を得る。

古典コンピューター:

- 1. 測定結果を化学のルールに従って修正。
- 2. 結果から部分的にサンプルとしていくつか選択。
- 3. サンプルをもとにハミルトニアン**H**のサイズを小さくする。
- 4. 小さなハミルトニアンでエネルギーを求める(繰り返す)。

JupyterHubでの実行

(1) Webブラウザー(Edge、Safari、Chrome、Firefoxなど)で https://54.178.57.208/(にログイン。

(2) ユーザ名とパスワード(メールで配布)を 入力して、「Sign in」をクリック。

Kawasaki Campが終わった後、Qiskitを実行する場合

(1) Google Colabratory (https://colab.research.google.com/) を使う。 毎回、以下のコマンドを最初に実行する必要があります。

!pip install qiskit qiskit[visualization] qiskit-ibm-runtime qiskit-aer

!pip install qiskit-algorithms qiskit-nature scikit-learn

!pip install --prefer-binary pyscf

参照: https://quantum-tokyo.github.io/introduction/get_started/colab.html

(2) qBraid (https://www.qbraid.com) を使う。

参照: https://quantum-tokyo.github.io/introduction/get_started/qbraid.html

