УДК 621.039.6

УМЕНЬШЕНИЕ МГД-СОПРОТИВЛЕНИЯ ПУТЕМ ФОРМИРОВАНИЯ ЭЛЕКТРОИЗОЛИРУЮЩИХ ПОКРЫТИЙ В КОНТУРАХ С ЖИДКИМИ МЕТАЛЛАМИ ПРИМЕНИТЕЛЬНО К РЕАКТОРУ ТОКАМАК

<u>А.В. Безносов*, С.С. Пинаев*, М.А. Камнев*, А.В. Назаров*,</u> П.В. Романов**

- * Нижегородский государственный технический университет, г. Н.Новгород,
- * * Министерство по атомной энергии РФ, г. Москва

Статья содержит обзор экспериментальных данных, полученных в работах с тяжелыми жидкометаллическими теплоносителями по уменьшению МГД-сопротивления путем формирования оксидных электроизолирующих покрытий на внутренних поверхностях трубопроводов бланкета и дивертора токамака.

Применение жидких металлов как щелочных, так и тяжелых в качестве теплоносителей имеет ряд преимуществ по сравнению с водой, являющейся в настоящее время основным теплоносителем мировой ядерной энергетики.

Тяжелые жидкометаллические теплоносители, такие как свинец, галлий, эвтектики свинец-висмут и свинец-литий, по сравнению с щелочными металлами обладают большей пожаробезопасностью, а также позволяют формировать оксидные электроизолирующие покрытия на внутренних поверхностях конструкционных материалов каналов циркуляции теплоносителя.

Последнее актуально для термоядерных установок с магнитным удержанием плазмы. Магнитные поля, перпендикулярные каналам теплоотвода бланкета и дивертора термоядерного реактора, создают значительное магнитогидродинамическое сопротивление течению щелочного жидкометаллического теплоносителя (1 - 3 МПа [1,2]). В связи с этим было предложено использовать теплоносители на основе свинца для охлаждения бланкета [3] и галлий для охлаждения дивертора термоядерного реактора [4]. Использование тяжелых жидких металлов в качестве теплоносителей бланкета и дивертора термоядерного реактора позволяет существенно уменьшить МГД-сопротивление потока теплоносителя за счет формирования оксидного покрытия на поверхности конструкционного материала, контактирующего с жидким металлом. Наличие такого покрытия существенно снижает величину токов, индуцированных в ядре потока жидкого металла, и тем самым уменьшает возникающую тормозящую объемную силу.

[©] А.В. Безносов, С.С. Пинаев, М.А. Камнев, А.В. Назаров, П.В. Романов, 2002

Условия проведения экспериментов

Таблица 1

Теплоноситель	Экспериментальный участок		Re	Ha²/Re	t. °C
	диаметр, мм	длина, мм	Re	па /ке	i, C
Pb-Bi	10	500	$(50 - 350) \times 10^3$	0 – 0,20	250 – 450
Pb	6	500	$(45 - 200) \times 10^3$	0 – 0,09	400 – 500
Ga	6	500	$(8-70)\times10^3$	0 – 1,2	100 – 300

Рис. 1. Уменьшение МГД-сопротивления при формировании оксидных электроизолирующих покрытий: а) в свинец-висмутовом теплоносителе; б) в свинцовом теплоносителе; в) в галлиевом теплоносителе; ——— внутренняя поверхность канала в состоянии поставки; - - - внутренняя поверхность канала со сформированными оксидными покрытиями.

На кафедре «Атомные и тепловые станции» НГТУ в течение 10 лет проводятся работы по обоснованию возможности создания электроизолирующих покрытий на поверхностях конструкционных материалов, контактирующих с жидкометаллическими теплоносителями. Эффективность действия сформированных покрытий подтверждена экспериментами по определению МГД-сопротивления. Эксперименты проводились как на статических [5], так и на циркуляционных стендах с галлиевым [6], свинцовым [7, 8] и свинцово-висмутовым теплоносителями.

Измерения МГД-сопротивления проводились на вертикальных экспериментальных участках, изготовленных из стали 08Х18Н10Т, ванадиевого сплава ВТХ-1 и молибденового стекла диаметром 6,0 - 12,0 мм. Индукция магнитного поля в районе экспериментального участка варьировалась от 0 до 0,8 Тл. В ходе экспериментов отрабатывалась методика формирования оксидных покрытий при подаче газообразного кислорода на свободную поверхность теплоносителя непосредственно в поток жидкого металла через эжектор, а также путем растворения образовавшихся оксидов теплоносителя. В табл. 1 представлены характеристики некоторых серий экспериментов.

На рис. 1 приведены графические зависимости величины относительного коэффициента сопротивления потока жидкометаллического теплоносителя от параметра Ha^2/Re в трубе из стали 08X18H10T при наличии и при отсутствии оксидного покрытия.

Из графиков видно, что наилучший эффект от электроизоляции материала стенки был достигнут на свинцово-висмутовом теплоносителе (рис. 1а): МГД-сопротивление снизилось (уменьшился тангенс угла наклона прямой) в 19 раз (с 78,2 до 4,1). В случае применения свинец-висмутого теплоносителя наилучший эффект дала методика ввода газообразного кислорода на свободную поверхность.

При экспериментах с галлиевым теплоносителем (рис. 1в) после формирования оксидного покрытия на стенке канала МГД-сопротивление снизилось (уменьшился тангенс угла наклона прямой) в 10 раз (с 0,10 до 0,01). В этом случае наиболее эффективна была методика формирования покрытия путем введения кислорода в состав оксидов галлия.

На свинцовом теплоносителе (рис. 16) МГД-сопротивление снизилось (уменьшился тангенс угла наклона прямой) в 1,6 раза (с 5,19 до 3,20). В этих экспериментах кислород вводился через эжектор.

Проведенные эксперименты показали, что на всех исследуемых конструкционных материалах возможно создание оксидных электроизолирующих покрытий, уменьшающих МГД-сопротивление, что позволяет рассматривать свинец, галлий, эвтектики свинец-висмут и свинец-литий в качестве теплоносителей бланкета и дивертора токамаков повышенной безопасности.

Литература

- 1. Gordon J.D., Garnet J.K., Hoffman N.J. Application of lead and lilhium-lead in Fusion reactor blankets//Liquid metal engineering and technology. London: BNES, 1984. V. 1. P. 329-336.
- 2. Tokamak concept innovations: Report of a specialists' meeting Atomic Energy Agency and held in Vienna, 13-17 January 1986, IAEA TECDOC-373. Vienna: IAEA, 1986.
- 3. *Орлов В.В., Муравьев Е.В., Хрипунов В.И., Громов Б.Ф., Орлов Ю.И., Безносов А.В., Лыков С.В.* Тяжелые теплоносители на основе свинца в системе охлаждения и преобразования энергии термоядерного реактора с магнитным удержанием плазмы//Атомная энергия. 1990. Т. 71. №12. С. 506 511.
- 4. *Муравьев Е.В., Клищенко А.В., Петров В.С., Романов П.В., Хрипунов В.И., Шпанский Ю.С.* Диверторная кассета реактора ИТЭР с галлиевым охлаждением//Вопросы атомной науки и техники. Серия «Термоядерный синтез». 1997. Вып. 1-2. С. 22 33.
- 5. Романов П.В., Безносов А.В., Кузьминых С.А., Бутов А.А., Парфенова Л.А. Экспериментальное исследование МГД-сопротивления и характеристик электроизолирующих покрытий на конструкционных материалах систем охлаждения токамака жидкометаллическими теплоносителями// Вопросы атомной науки и техники. Серия «Термоядерный синтез». 1998. Вып. 1-2.
- 6. Бутов А.А. Экспериментальное и расчетное обоснование применения галлиевого теплоносителя в системе охлаждения дивертора токамака: Диссертация на соискание ученой степени кандидата технических наук. Н. Новгород, 2000.
- 7. Захватов В.Н. Экспериментальное и расчетное обоснование применения свинцового теплоносителя в системе охлаждения бланкета токамака: Диссертация на соискание ученой степени кандидата технических наук. Н. Новгород, 2001.
- 8. Besnosov A.V., Pinaev S.S., Zakhvatov V.N., Semyonov A.V., Bokova T.A., Romanov P.V. Experimental research of magnetohydrodynamic resistance to a flow of lead, gallium, lead-bismuth and lead-lithium eutectics in a transverse magnetic field: 5th World Conf. On Experimental Heat Transfer, Fluid Mechanics And Thermodynamics. Thessaloniki, Greece, 2001. V. II. P. 1515-1518.

Поступила в редакцию 15.08.2002

УДК 621.039.586

Analysis of Failure of a Fast Reactor Runaway in Approach of Zero Lifetime of Prompt Neutrons \N.M. Kadjuri; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 5 pages, 2 illustrations. – References, 2 titles.

The estimations of the limit introducing of reactivity ρ_m conducting to destruction of fuel in approach of zero lifetime of prompt neutrons are carried out.

УДК 536.24:621.039.553.34

Influence of Geometrical Parameters of Surface Spheriodical Elements and the Scheme of Their Arrangement on Heat Efficiency of Heat-Exchange Plate Surface \ V.T. Buglaev, A.A.Anisin; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 11 pages, 5 illustrations. – References, 11 titles.

The research results of heat-aerodynamic characteristics of heat-exchange profile plate surface experimental patterns with different geometrical parameters of flow sections of adjustable passages are given and their heat efficiency is estimated.

УДК 621.039.6

Magnetohydrodynamic Resistance Reduction by Forming Oxide Electroinsulated Coatings on Channels with Heavy Liquid Metal Coolants of TOKAMAK Reactor\A.V. Beznosov, S.S. Pinaev, M.A. Kamnev, A.V. Nazarov, P.V.Romanov; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) — Obninsk, 2002. — 3 pages, 1 table, 1 illustration. — References, 8 titles.

The article includes experimental data received in investigations of magnetohydrodynamic resistance reduction by forming oxide electroinsulated coatings on internal surfaces of channels of tokamak blanket and divertor.

УДК 556.555.8

⁹⁰Sr Contamination of Water Ecosystems in Bryansk Regions Damaged after Chernobyl Accident \M.N. Katkova, Ya.I. Gaziev, G.I. Petrenko, A.M. Polukhina; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 6 pages, 3 tables, 2 illustrations.

In 1997-1999 the monitoring of water ecosystems in Bryansk regions contaminated after Chernobyl fallout have been conducted. In the framework of these investigations the present ⁹⁰Sr level in water bodies was evaluated. Taking into accounts the obtained result the basic conclusions and recommendations for their future use were done.

УДК 631.42

Distribution of ¹³⁷Cs on ""grain-size" fractions in soils at the 30 km restricted zone around Chernobyl NPP\S.M. Rudaya, O.V. Chistik, I.I. Matveenko; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 8 pages, 2 tables, 2 illustrations. – References, 8 titles.

The results of investigation of ¹³⁷Cs distribution on "grain-size" fractions in soils contaminated by Chernobyl catastrophe products are presented. The mathematical description of radiocaesium distribution on fractions >0,01 mm, 0,01-0,001 mm, <0,001 mm is given. Is shown that "grain-size" and mineralogy composition of researched soils substantially determines a sorption of a radionuclide on soil particles and influences vertical migration.

УДК 574:621.039.542.4

Ecological Aspects of Mass Production of Motor Fuels from Brown Coals and Heavy Petroleum Residuals by Hydrogenation with the Use of Nuclear Technologies \ G.I. Sidorov, V.M. Poplavsky, A.A. Kritchko, A.S. Maloletnev; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 10 pages, 5 tables. – References, 28 titles.