

DNN PPP Feature

Filterbank Coefficients

Insights into End-to-End Learning Scheme for Language Identification

Weicheng Cai¹, Zexin Cai¹, Wenbo Liu³, Xiaoqi Wang⁴ and Ming Li^{1,2}

- 1. School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
 - 2. Data Science Research Center, Duke Kunshan University, Kunshan, China
- 3. Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA
 - 4. Jiangsu Jinling Science and Technology Group Limited, Nanjing, China ml442@duke.edu

UNIVERSITY

Introduction

♦ Since anywhere outside the receptive field of a unit does not affect

receptive field, to ensure that it covers the entire relevant input

the value of that unit, it is necessary to carefully control the

Four main steps in the conventional processing pipeline

The GMM i-vector based approaches are comprised of a series hand-crafted or ad-hoc algorithmic components, and they show strong generalization ability and robustness when data and computational resource are limited.

General Encoding Layer

The encoding layer plays a role in extracting a fixed-dimensional utterance level representation from a variable-length input sequence.

- > Temporal average pooling (TAP) layer
- > Recurrent encoding layer
- > Learnable dictionary encoding (LDE)layer

End-to-End Learning Scheme

Input data sequence Convolution Convolution Convolution Convolution Learned representation

Experimental Results and Discussion

Performance on the 2007 NIST LRE closed-set task System Description GMM i-vector 20.46/17.71 3.02/2.27 **DNN** i-vector 2.601.29 14.64/12.04 2.20/1.43 **DNN PPP Feature** 8.00/6.90 0.61/0.32 **DNN Tandem Feature** 0.97/0.51 9.85/7.96 DNN Phonotactic [22] 18.59/12.79 1.34/0.79 3.28/3.25 RNN D&C[22] 22.67/15.57 -/14.72 LSTM-Attention[21] 1.73/3.96 **CNN-TAP** 9.98/11.28 **CNN-GRU** 11.31/10.74 10.17/9.80 **CNN-LSTM CNN-LDE** 1.13/0.96 8.25/7.75

- > For ID2 to ID5, additional speech data with transcription and an extra DNN phoneme decoder is required, while our end-to-end systems only rely on the acoustic level feature of LID data.
- \triangleright For each training step, an integer L within [200,1000] interval is randomly generated, and each data in the mini-batch is cropped or extended to Lframes. In testing stage, all the 3s, 10s, and 30s duration data is tested on the same model. Because the duration length is arbitrary, we feed the testing speech utterance to the trained neural network one by one.
- > It's very interesting that although recurrent layer introduces much more parameters comparing with TAP, it results in a slightly degraded performance. Specially, when the full 30s duration utterance is fed into our CNN-GRU/CNN-LSTM neural network trained within 1000 frames (10s), it suffers from "the curse of sentence length". The performance drops sharply and almost equals to random guess.
- Although recurrent layer can deal with variable-length inputs theoretically, it might be not suitable for the testing task with wide duration range and particularly with duration that are much longer than those used for training.
- The success of TAP and LDE layer inspires us that it might be more necessary to get utterance level representation describing the context-independent feature distribution rather than the temporal structure.

