CS4104 Applied Machine Learning

Clustering: Un Supervised Learning

Clustering

- The organization of unlabeled data into similarity groups called clusters.
- A cluster is a collection of data items which are "similar" between them, and "dissimilar" to data items in other clusters.

History

- John Snow (London Physician) plotted the location of cholera deaths on a map during an outbreak in 1850s.
- The location indicated that the cases were clustered around certain intersections where there were polluted wells that leaded to the solution.

Clustering measure

- Proximity measure
- $similarity(p_1, p_2)$ is large if p_1 and p_2 are similar
- $distance(p_1, p_2)$ is larger if the points are different

Good cluster

Bad cluster

Distance Measure

• Euclidean Distance $d(p,q) = \sqrt{\sum_{i=1}^{d} (p_i - q_i)^2}$

•
$$d(x,y) = \sqrt{(x_i - y_i)^2 + (x_j - y_j)^2}$$
 if 2D

• Manhattan (City Block) Distance $d(p,q) = \sum_{i=1}^{d} |(p_i - q_i)|$

• Minkowski Distance $dist(p,q) = \left(\sum_{i=1}^{d} |(p_i - q_i)|^d\right)^{\frac{1}{d}}$

Cluster evaluation

- Intra-cluster cohesion (compactness)
 - Cohesion measures how near the data points in a cluster are to the cluster centroid.
 - Sum of squared error (SSE) is a commonly used measure.
- Inter-cluster separation (isolation)
 - Separation means that different cluster centroids should be far away from one another.
- In most applications, expert judgments are still the key

Number of clusters?

Number of Clusters?

- Fix number of clusters
- Vitiate number of clusters
- Best number of clusters

Clustering techniques

Clustering techniques

K-Means clustering

- K-means (MacQueen, 1967) is a partitional clustering algorithm
- Let the set of data points $D = \{p_1, p_2, ..., p_n\}$, where $x_i = (x_{i1}, x_{i2}, ..., x_{ir})$ is a vector in r dimensional space. r is the number of dimensions.
- The *k*-means algorithm partitions the given data into *k* clusters:
 - Each cluster has a cluster center, called centroid.
 - $centeroid = Average(p_{1i}, p_{2i}, ..., p_{mi})$
 - *k* is specified by the user

K-means Clustering

- Given k, the k-means algorithm works as follows:
 - 1. Choose k (random) data points (seeds) to be the initial centroids, cluster centers
 - 2. Assign each data point to the closest centroid
 - 3. Re-compute the centroids using the current cluster memberships
 - 4. If a convergence criterion is not met, repeat steps 2 and 3

K-means convergence (stopping) criterion

- no (or minimum) re-assignments of data points to different clusters, or
- no (or minimum) change of centroids, or
- · minimum decrease in the sum of squared error (SSE),

•
$$SSE = \sum_{j=1}^{k} \left(\sum_{x \in C_j} d(X, m_j)^2 \right)$$

- C_i is the jth cluster,
- m_i is the centroid of cluster C_i (the mean vector of all the data points in C_i),
- $d(x, m_j)$ is the (Euclidian) distance between data point **x** and centroid m_j

Randomly initialize the cluster centers (synaptic weights)

Determine cluster membership for each input ("winner-takes-all" inhibitory circuit)

Re-estimate cluster centers (adapt synaptic weights)

Result of first iteration

Result of second iteration

K-Means Analysis

Strengths

- Simple: easy to understand and to implement
- Efficient: Time complexity: O(tkn),
 - where n is the number of data points,
 - k is the number of clusters, and
 - t is the number of iterations.
- Since both *k* and *t* are small. *k*-means is considered a linear algorithm.
- K-means is the most popular clustering algorithm.
- Note that: it terminates at a local optimum if SSE is used.
- The global optimum is hard to find due to complexity

Weaknesses

- The algorithm is only applicable if the mean is defined.
 - For categorical data, *k*-mode the centroid is represented by most frequent values.
- The user needs to specify k.
- The algorithm is sensitive to **outliers**
 - Outliers are data points that are very far away from other data points.
 - Outliers could be errors in the data recording or some special data points with very different values.
- No clear evidence that any other clustering algorithm performs better in general

(A): Undesirable clusters

(B): Ideal clusters

Outliers: Handling

- Remove some data points that are much further away from the centroids than other data points
 - To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.
- Perform random sampling: by choosing a small subset of the data points, the chance of selecting an outlier is much smaller
- Assign the rest of the data points to the clusters by distance or similarity comparison, or classification

Sensitivity to initial seeds

zeshan.khan@nu.edu.pk

Sensitivity to initial seeds

Sensitivity to initial seeds

Two Clusters

K-Mean Clusters

CS4104 Applied Machine Learning

Density Based Clustering

Density-based Approaches

- Why Density-Based Clustering methods?
 - Discover clusters of arbitrary shape.
 - Clusters Dense regions of objects separated by regions of low density
 - DBSCAN the first density based clustering
 - OPTICS density based cluster-ordering
 - DENCLUE a general density-based description of cluster and clustering

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Proposed by Ester, Kriegel, Sander, and Xu (KDD96)
- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points.
- Discovers clusters of arbitrary shape in spatial databases with noise

Density-Based Clustering

• Basic Idea:

Clusters are dense regions in the data space, separated by regions of lower object density

Why Density-Based Clustering?

Different density-based approaches exist (see Textbook & Papers) Here we discuss the ideas underlying the DBSCAN algorithm

Density Based Clustering: Basic Concept

- Intuition for the formalization of the basic idea
 - For any point in a cluster, the local point density around that point has to exceed some threshold
 - The set of points from one cluster is spatially connected
- Local point density at a point p defined by two parameters
 - ε radius for the neighborhood of point p: $N_{\varepsilon}(p) := \{q \text{ in data set } D \mid dist(p, q) \leq \varepsilon\}$
 - MinPts minimum number of points in the given neighbourhood N(p)

ε-Neighborhood

• ε -Neighborhood – Objects within a radius of ε from an object.

$$N_{\varepsilon}(p): \{q \mid d(p,q) \leq \varepsilon\}$$

• "High density" - ε-Neighborhood of an object contains at least *MinPts* of objects.

 ϵ -Neighborhood of p ϵ -Neighborhood of qDensity of p is "high" (MinPts = 4)

Density of q is "low" (MinPts = 4)

Core, Border & Outlier

 $\varepsilon = 1$ unit, MinPts = 5

Given ε and *MinPts*, categorize the objects into three exclusive groups.

A point is a core point if it has more than a specified number of points (MinPts) within Eps These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

Example

• M, P, O, and R are core objects since each is in an Eps neighborhood containing at least 3 points

Minpts = 3

Eps=radius of the circles

Density-Reachability

- **■** Directly density-reachable
 - An object q is directly density-reachable from object p if p is a core object and q is in p's \(\varepsilon\)-neighborhood.

- q is directly density-reachable from p
- p is not directly density- reachable from q?
- Density-reachability is asymmetric.

MinPts = 4

Density-reachability

- Density-Reachable (directly and indirectly):
 - A point p is directly density-reachable from p2;
 - p2 is directly density-reachable from p1;
 - p1 is directly density-reachable from q;
 - $p \square p 2 \square p 1 \square q$ form a chain.

Density-Connectivity

- **■** Density-reachable is not symmetric
 - not good enough to describe clusters
- Density-Connected
 - A pair of points p and q are density-connected if they are commonly density-reachable from a point o.

Density-connectivity is symmetric

Formal Description of Cluster

- Given a data set D, parameter ε and threshold MinPts.
- A cluster C is a subset of objects satisfying two criteria:
 - *Connected*: $p,q \square C$: p and q are density-connected.
 - *Maximal*: p,q: if p \Box C and q is <u>density-reachable from p</u>, then q \Box C. (avoid redundancy)

P is a core object.

Review of Concepts

DBSCAN Algorithm

```
Input: The data set D

Parameter: ɛ, MinPts

For each object p in D

if p is a core object and not processed then

C = retrieve all objects density-reachable from p

mark all objects in C as processed

report C as a cluster

else mark p as outlier

end if

End For
```

DBScan Algorithm

DBSCAN: The Algorithm

- Arbitrary select a point *p*
- Retrieve all points density-reachable from *p* wrt *Eps* and *MinPts*.
- If p is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

DBSCAN Algorithm: Example

- Parameter
 - $\varepsilon = 2$ cm
 - MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

DBSCAN Algorithm: Example

- Parameter
 - $\varepsilon = 2$ cm
 - MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

DBSCAN Algorithm: Example

- Parameter
 - $\varepsilon = 2$ cm
 - MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```


- Check the ε-neighborhood of p;
- 2. If p has less than MinPts neighbors then mark p as outlier and continue with the next object
- 3. Otherwise mark p as processed and put all the neighbors in cluster C

- 1. Check the unprocessed objects in C
- 2. If no core object, return C
- 3. Otherwise, randomly pick up one core object p₁, mark p₁ as processed, and put all unprocessed neighbors of p₁ in cluster C

Example

Original Points

Point types: core, border and outliers

 $\varepsilon = 10$, MinPts = 4

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Cannot handle Varying densities
- sensitive to parameters

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

Determining the Parameters ε and MinPts

- Cluster: Point density higher than specified by ε and MinPts
- Idea: use the point density of the least dense cluster in the data set as parameters but how to determine this?
- Heuristic: look at the distances to the *k*-nearest neighbors

- Function k-distance(p): distance from p to the its k-nearest neighbor
- *k-distance plot*: *k*-distances of all objects, sorted in decreasing order

Determining the Parameters ε and MinPts

• Example *k*-distance plot

- Heuristic method:
 - Fix a value for *MinPts* (default: $2 \times d 1$)
 - User selects "border object" o from the MinPts-distance plot; ɛ is set to MinPts-distance(o)

Determining the Parameters ε and MinPts

• Problematic example

Density Based Clustering: Discussion

Advantages

- Clusters can have arbitrary shape and size
- Number of clusters is determined automatically
- Can separate clusters from surrounding noise
- Can be supported by spatial index structures

Disadvantages

- Input parameters may be difficult to determine
- In some situations very sensitive to input parameter setting

OPTICS: Ordering Points To Identify the Clustering Structure

- DBSCAN
 - Input parameter hard to determine.
 - Algorithm very sensitive to input parameters.
- OPTICS Ankerst, Breunig, Kriegel, and Sander (SIGMOD'99)
 - Based on DBSCAN.
 - Does not produce clusters explicitly.
 - Rather generate an ordering of data objects representing density-based clustering structure.

OPTICS con't

- Produces a special order of the database wrt its density-based clustering structure
- This cluster-ordering contains info equiv to the density-based clusterings corresponding to a broad range of parameter settings
- Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
- Can be represented graphically or using visualization techniques

Density-Based Hierarchical Clustering

• Observation: Dense clusters are completely contained by less dense clusters

• *Idea*: Process objects in the "right" order and keep track of point density in their neighborhood

Core- and Reachability Distance

- Parameters: "generating" distance ε , fixed value *MinPts*
- core- $distance_{\varepsilon, MinPts}(o)$

"smallest distance such that o is a core object" (if that distance is $\leq \varepsilon$; "?" otherwise)

• reachability-distance $_{\varepsilon,MinPts}(p, o)$

"smallest distance such that p is directly density-reachable from o" (if that distance is $\leq \varepsilon$; "?" otherwise)

OPTICS: Extension of DBSCAN

• Order points by shortest *reachability distance* to guarantee that clusters w.r.t. higher density are finished first. (for a constant MinPts, higher

density requires lower ε)

The Algorithm OPTICS

- Basic data structure: controlList
 - Memorize shortest reachability distances seen so far ("distance of a jump to that point")
- Visit each point
 - Make always a shortest jump
- Output:
 - order of points
 - core-distance of points
 - reachability-distance of points

The Algorithm OPTICS

• *ControlList* ordered by reachability-distance.

```
foreach o \in Database
 // initially, o.processed = false for all objects o
 if o.processed = false;
   insert (o, "?") into ControlList;
 while ControlList is not empty
                                                                              database
     select first element (o, r-dist) from ControlList;
     retrieve N_{\varepsilon}(o) and determine c\_dist=core\_distance(o);
     set o.processed = true;
     write (o, r \ dist, c \ dist) to file;
     if o is a core object at any distance \leq \varepsilon
       foreach p \in N_{\epsilon}(o) not yet processed;
           determine r_dist_p = reachability-distance(p, o);
           if (p, ) \notin ControlList
              insert (p, r_dist_n) in ControlList;
           else if (p, old\_r\_dist) \in ControlList and r\_dist_p < old\_r\_dist
              update (p, r\_dist_p) in ControlList;
```

cluster-ordered

file

ControlList

OPTICS: Properties

- "Flat" density-based clusters wrt. $\varepsilon^* \le \varepsilon$ and *MinPts* afterwards:
 - Starts with an object o where $c\text{-}dist(o) \le \varepsilon^*$ and $r\text{-}dist(o) > \varepsilon^*$
 - Continues while r-dist $\leq \varepsilon^*$

- · Performance: appre Countinistanes CAI Reachability-distance
 - O(n * runtime(ε -neighborhood-query))
 - without spatial index support (worst case): O(n^2)
 - e.g. tree-based spatial index support: O(n * log(n))

OPTICS: The Reachability Plot

- •represents the density-based clustering structure
- easy to analyze
- independent of the dimension of the data

OPTICS: Parameter Sensitivity

- Relatively insensitive to parameter settings
- Good result if parameters are just "large enough"

$$MinPts = 10, \varepsilon = 10$$

$$MinPts = 10, \epsilon = 5$$

$$MinPts = 2$$
, $\varepsilon = 10$

An Example of OPTICS

neighboring objects stay close to each other in a linear sequence.

DBSCAN VS OPTICS

	DBSCAN	OPTICS
Density	Boolean value (high/low)	Numerical value (core distance)
Density-con nected	Boolean value (yes/no)	Numerical value (reachability distance)
Searching strategy	random	greedy

When OPTICS Works Well

Cluster-order of the objects

When OPTICS Does NOT Work Well

DENCLUE: using density functions

- DENsity-based CLUstEring by Hinneburg & Keim (KDD'98)
- Major features
 - Solid mathematical foundation
 - Good for data sets with large amounts of noise
 - Allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets
 - Significantly faster than existing algorithm (faster than DBSCAN by a factor of up to 45)
 - But needs a large number of parameters

Denclue: Technical Essence

- Model density by the notion of influence
- Each data object exert influence on its neighborhood.
- The influence decreases with distance
- Example:
 - Consider each object is a radio, the closer you are to the object, the louder the noise
- Key: Influence is represented by mathematical function

Denclue: Technical Essence

• Influence functions: (influence of y on x, σ is a user given constant)

• Square :
$$f_{square}^{y}(x) = 0$$
, if dist(x,y) > σ ,
1, otherwise

• Guassian:

$$f_{Gaussian}^{y}(x) = e^{-\frac{d(x,y)^2}{2\sigma^2}}$$

Density Function

• Density Definition is defined as the sum of the influence functions of all data points.

$$f_{Gaussian}^{D}(x) = \sum_{i=1}^{N} e^{-\frac{d(x,x_i)^2}{2\sigma^2}}$$

Gradient: The steepness of a slope

• Example

$$f_{Gaussian}(x,y) = e^{-\frac{d(x,y)^2}{2\sigma^2}}$$

$$f_{Gaussian}^{D}(x) = \sum_{i=1}^{N} e^{-\frac{d(x,x_i)^2}{2\sigma^2}}$$

$$\nabla f_{Gaussian}^{D}(x, x_{i}) = \sum_{i=1}^{N} (x_{i} - x) \cdot e^{-\frac{d(x, x_{i})^{2}}{2\sigma^{2}}}$$

Denclue: Technical Essence

- Clusters can be determined mathematically by identifying density attractors.
- Density attractors are local maximum of the overall density function.

Density Attractor

(a) Data Set

Cluster Definition

- Center-defined cluster
 - A subset of objects attracted by an attractor x
 - density(x) $\geq \xi$
- Arbitrary-shape cluster
 - A group of center-defined clusters which are connected by a path P
 - For each object x on P, density(x) $\geq \xi$.

Center-Defined and Arbitrary

DENCLUE: How to find the clusters

- Divide the space into grids, with size 2σ
- Consider only grids that are highly populated
- For each object, calculate its density attractor using hill climbing technique
 - Tricks can be applied to avoid calculating density attractor of all points
- Density attractors form basis of all clusters

Features of DENCLUE

- Major features
 - Solid mathematical foundation
 - Compact definition for density and cluster
 - Flexible for both center-defined clusters and arbitrary-shape clusters
 - But needs a large number of parameters
 - σ : parameter to calculate density
 - ξ: density threshold
 - δ : parameter to calculate attractor

CS4104 Applied Machine Learning

Hierarical Clustering

Clustering techniques

Flat vs Hierarchical Clustering

Types of hierarchical clustering

Divisive (top down) clustering

- Starts with all data points in one cluster, the root, then
 - Splits the root into a set of child clusters. Each child cluster is recursively divided further
 - stops when only singleton clusters of individual data points remain, i.e., each cluster with only a single point

Agglomerative (bottom up) clustering

- The dendrogram is built from the bottom level by
 - merging the most similar (or nearest) pair of clusters
 - stopping when all the data points are merged into a single cluster (i.e., the root cluster)

Divisive hierarchical clustering

Agglomerative/Bottom-Up

Agglomerative/Bottom-Up

- Single Link or Nearest neighbor
- Complete Link or Farthest neighbor
- Average Link or Centeroid distance

Single Link

Complete Link

Average Link

zeshan.khan@nu.edu.pk

Divisive vs. Agglomerative

Divisive

Divisive

when taking the first step (split), have access to all the data; can find the best possible split in 2 parts

Agglomerative

Faster

when taking the first step merging, do not consider the global structure of the data, only look at pairwise structure

Assignment

Element	X1	X2
1	1	2
2	5	2
3	3	5
4	2	4
5	8	3
6	5	7
7	2	1
8	6	7
9	2	6
10	4	3
11	4	5
12	5	4

- Apply k-means clustering for k=3 on the provided data the first three points as a seed elements are:
- seed1=Your_RollNumber%5
- seed2=(Your_RollNumber%5)+2
- seed3=(Your_RollNumber%5)+5