Racecar 101

James Wright

September 8, 2022

Outline

- What makes a car fast?
- Vehicle Basics
- Anatomy of a Corner
- 4 Three Tenants of Racecar Design

2/29

Table of Contents

- What makes a car fast?
- Vehicle Basics
- Anatomy of a Corner
- 4 Three Tenants of Racecar Design

Note

This first part is a very simplified breakdown

- It's not the most accurate
- It's not to insult anyone's intelligence

It's simply to not distract from the things that can be easily forgotten or muddied.

$$Time = \frac{Distance}{Velocity}$$

5/29

¹Assuming distance is constant

$$Time = \frac{Distance}{Velocity}$$

• To lower time, we need to increase velocity¹

James Wright Racecar 101 September 8, 2022

5/29

¹Assuming distance is constant

$$Time = \frac{Distance}{Velocity}$$

- To lower time, we need to increase velocity¹
- All motorsports have velocity changes during a race
 - Excluding top-speed records of course

¹Assuming distance is constant

$$Time = \frac{Distance}{Velocity}$$

- To lower time, we need to increase velocity¹
- All motorsports have velocity changes during a race
 - Excluding top-speed records of course
- Change in velocity is...

$$Time = \frac{Distance}{Velocity}$$

- To lower time, we need to increase velocity¹
- All motorsports have velocity changes during a race
 - Excluding top-speed records of course
- Change in velocity is... Acceleration

$$Time = \frac{Distance}{Velocity}$$

- To lower time, we need to increase velocity¹
- All motorsports have velocity changes during a race
 - Excluding top-speed records of course
- Change in velocity is... Acceleration
- To maximize velocity, you must maximize acceleration
 - ie. Whatever changes in velocity you make, do them as quickly as possible

¹Assuming distance is constant

$$Time = \frac{Distance}{Velocity}$$

- To lower time, we need to increase velocity¹
- All motorsports have velocity changes during a race
 - Excluding top-speed records of course
- Change in velocity is... Acceleration
- To maximize velocity, you must maximize acceleration
 - ie. Whatever changes in velocity you make, do them as quickly as possible

To make a car faster, you must make the car accelerate more

¹Assuming distance is constant

What famous equation involves acceleration?

What famous equation involves acceleration?

Newton's 2nd law!

$$F=ma$$

What famous equation involves acceleration?

Newton's 2nd law!

$$F = ma$$

We care about acceleration, so rearange:

$$a = \frac{F}{m}$$

6/29

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

Increase Force

7 / 29

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

Increase Force

• Increase the force the tires can apply to the ground

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

Increase Force

- Increase the force the tires can apply to the ground
- Increase power output

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

Increase Force

- Increase the force the tires can apply to the ground
- Increase power output
- Increase braking torque

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

Increase Force

- Increase the force the tires can apply to the ground
- Increase power output
- Increase braking torque

The latter two hold only if the tires can transfer the torque

Sometimes \uparrow mass $+ \uparrow$ force $= \uparrow$ acceleration

Sometimes \uparrow mass $+ \uparrow$ force $= \uparrow$ acceleration

Bigger Engine

Increases the total vehicle mass, but increases power output Depending on the ratio, can lead to better acceleration.

Sometimes \uparrow mass $+ \uparrow$ force $= \uparrow$ acceleration

Bigger Engine

Increases the total vehicle mass, but increases power output Depending on the ratio, can lead to better acceleration.

Sometimes \downarrow mass $+ \downarrow$ force $= \uparrow$ acceleration

Sometimes \uparrow mass $+ \uparrow$ force $= \uparrow$ acceleration

Bigger Engine

Increases the total vehicle mass, but increases power output Depending on the ratio, can lead to better acceleration.

Sometimes \downarrow mass $+ \downarrow$ force $= \uparrow$ acceleration

Smaller/Narrower Tires

Decreases total vehicle mass, but decreases total acceleration potential

Also reduces unsprung mass (improves vehicle handling and response)

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Divided into 2 components:

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration. Divided into 2 components:

Braking (negative)

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Divided into 2 components:

Braking (negative)

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Divided into 2 components:

Braking (negative)

- This is as much for safety as it is performance
- Ensure that car is capable of absolute maximum braking acceleration

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Divided into 2 components:

Braking (negative)

- This is as much for safety as it is performance
- Ensure that car is capable of absolute maximum braking acceleration
- Power (positive)

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Divided into 2 components:

Braking (negative)

- This is as much for safety as it is performance
- Ensure that car is capable of absolute maximum braking acceleration
- Power (positive)
 - Almost always limited by the power unit (ICE, electric motor, rubber band windup, etc.)

Lateral Acceleration

Turning causes Lateral Acceleration, which is not a change in speed, but of direction:

$$a_{\text{lat}} = \frac{V^2}{r}$$

where V is velocity, and r is the turning radius.

Lateral Acceleration

Turning causes Lateral Acceleration, which is not a change in speed, but of direction:

$$a_{\text{lat}} = \frac{V^2}{r}$$

where V is velocity, and r is the turning radius.

Plugging back into momentum balance yields:

$$F = m\frac{V^2}{r} \implies V = \sqrt{\frac{Fr}{m}}$$

Lateral Acceleration

Turning causes Lateral Acceleration, which is not a change in speed, but of direction:

$$a_{\text{lat}} = \frac{V^2}{r}$$

where V is velocity, and r is the turning radius.

Plugging back into momentum balance yields:

$$F = m\frac{V^2}{r} \implies V = \sqrt{\frac{Fr}{m}}$$

Therefore given:

- \bullet a force, F (tire traction)
- \bullet a mass, m (the car)
- \bullet and a radius, r (the track/racing line)

there is a limit to the maximum velocity

10 / 29

Lateral Acceleration cont.

How do we maximize the velocity? $V=\sqrt{\frac{Fr}{m}}$

11 / 29

How do we maximize the velocity? $V=\sqrt{\frac{Fr}{m}}$

lacktriangle Decrease mass m

- lacktriangle Decrease mass m
 - Add lightness
 - Has compounding affect due to load transfer (discussed later)

- $lue{1}$ Decrease mass m
 - Add lightness
 - Has compounding affect due to load transfer (discussed later)
- $oldsymbol{0}$ Increase force F

- lacktriangle Decrease mass m
 - Add lightness
 - Has compounding affect due to load transfer (discussed later)
- $oldsymbol{0}$ Increase force F
 - Increase the maximum force the tires can exert

- lacktriangle Decrease mass m
 - Add lightness
 - Has compounding affect due to load transfer (discussed later)
- $oldsymbol{o}$ Increase force F
 - Increase the maximum force the tires can exert
 - How?

- lacktriangle Decrease mass m
 - Add lightness
 - Has compounding affect due to load transfer (discussed later)
- $oldsymbol{o}$ Increase force F
 - Increase the maximum force the tires can exert
 - How?
 - Aero downforce
 - Different tires
 - Suspension design, etc....

Quick Review

Higher Acceleration = Faster Car

	Limited by	How to make better?
Longitudinal	Force (Braking and Power)	Bigger Engine/Brakes
Acceleration	Mass	Reduce it
Lateral	Force (Tire Traction)	Increase Grip
Acceleration	Mass	Reduce it

Table of Contents

- What makes a car fast?
- Vehicle Basics
- Anatomy of a Corner
- 4 Three Tenants of Racecar Design

What about lateral and longitudinal acceleration at the same time?

What about lateral and longitudinal acceleration at the same time? Answer: look at a G-G curve for the car

Figure 2

What about lateral and longitudinal acceleration at the same time? Answer: look at a G-G curve for the car

G-G Curve (or Traction Circle)

 Plots maximum steady-state acceleration that a vehicle can have in any direction

Figure 2

What about lateral and longitudinal acceleration at the same time? Answer: look at a G-G curve for the car

G-G Curve (or Traction Circle)

- Plots maximum steady-state acceleration that a vehicle can have in any direction
- Outside circle = lost traction, locked wheels, etc

Figure 2

What about lateral and longitudinal acceleration at the same time? Answer: look at a G-G curve for the car

G-G Curve (or Traction Circle)

- Plots maximum steady-state acceleration that a vehicle can have in any direction
- Outside circle = lost traction, locked wheels, etc
- Inside circle = within limits of the vehicle

Figure 2

What about lateral and longitudinal acceleration at the same time? Answer: look at a G-G curve for the car

G-G Curve (or Traction Circle)

- Plots maximum steady-state acceleration that a vehicle can have in any direction
- Outside circle = lost traction, locked wheels, etc
- Inside circle = within limits of the vehicle
- On the circle = driving at the edge

Figure 2

Circles

Figure 2

- Circles
 - Shape of the curve is circular, due to tires

Figure 2

- Circles
 - Shape of the curve is circular, due to tires
 - Tires can be assumed to have a maximum force vector which can be applied in any direction

Figure 2

- Circles
 - Shape of the curve is circular, due to tires
 - Tires can be assumed to have a maximum force vector which can be applied in any direction
- Positive Acceleration shape

Figure 2

- Circles
 - Shape of the curve is circular, due to tires
 - Tires can be assumed to have a maximum force vector which can be applied in any direction
- Positive Acceleration shape
 - Top part of curve isn't quite circular

Figure 2

Circles

- Shape of the curve is circular, due to tires
- Tires can be assumed to have a maximum force vector which can be applied in any direction
- Positive Acceleration shape
 - Top part of curve isn't quite circular
 - Positive acceleration is nearly always limited by the power unit, not the tires
 - For (nearly) all cars, the power unit is the most severe acceleration limitation

Figure 2

How do tires generate force?

How do tires generate force?

Via friction with the ground

Tires and Friction

Newton's Law of Friction

$$F = N\mu$$

where F is the max static friction force, N is the normal force, and μ is the static friction coefficient

Tires and Friction

Newton's Law of Friction

$$F = N\mu$$

where F is the max static friction force, N is the normal force, and μ is the static friction coefficient

- Tires create force via **static friction**
 - A tire is in kinetic friction if it's locked up or doing a burnout

Tires and Friction

Newton's Law of Friction

$$F = N\mu$$

where F is the max static friction force, N is the normal force, and μ is the static friction coefficient

- Tires create force via static friction
 - A tire is in kinetic friction if it's locked up or doing a burnout
- ullet μ is generally assumed to be constant
 - ullet So F is linearly dependent on N

• Tires **do not** have a constant μ :

$$F=N\mu(N)$$

• Tires **do not** have a constant μ :

$$F = N\mu(N)$$

• This phenomena is known as Load Sensitivity

• Tires **do not** have a constant μ :

$$F = N\mu(N)$$

- This phenomena is known as Load Sensitivity
- \bullet Generally, μ and N are inversely proportional
 - As $\uparrow N$, $\downarrow \mu$

• Tires **do not** have a constant μ :

$$F = N\mu(N)$$

- This phenomena is known as Load Sensitivity
- \bullet Generally, μ and N are inversely proportional
 - As $\uparrow N$, $\downarrow \mu$

Load Sensitivity is the singular most impactful thing in racecar design

It alters practically every single decision

Load Transfer

19 / 29

Load Transfer

• Weight of vehicle shifting due to acceleration

Load Transfer

- Weight of vehicle shifting due to acceleration
- Caused by torque of tires against CG, not by body roll

Load Transfer

- Weight of vehicle shifting due to acceleration
- Caused by torque of tires against CG, not by body roll
- Reduces global vehicle grip due to load sensitivity

Load Transfer Example

No load transfer vs 50% load transfer

Assume 4.5kN of static vertical load on each tire.

 James Wright
 Racecar 101
 September 8, 2022
 20 / 29

Load Transfer Example

No load transfer vs 50% load transfer

Assume 4.5kN of static vertical load on each tire. Static traction:

$$F(4.5 \text{kN}) = 5.55 \text{kN} \implies F_{\text{tot}}^{\text{static}} = 5.55 \cdot 4 = 22.2 \text{kN}$$

Load Transfer Example

No load transfer vs 50% load transfer

Assume 4.5kN of static vertical load on each tire. Static traction:

$$F(4.5\text{kN}) = 5.55\text{kN} \implies F_{\text{tot}}^{\text{static}} = 5.55 \cdot 4 = 22.2\text{kN}$$

With load transfer:

$$F(0.5 \cdot 4.5 \text{kN} = 2.25 \text{kN}) = 2.7 \text{kN}$$

$$F(1.5 \cdot 4.5 \text{kN} = 6.75 \text{kN}) = 7.5 \text{kN}$$

Load Transfer Example

No load transfer vs 50% load transfer

Assume 4.5kN of static vertical load on each tire. Static traction:

$$F(4.5\text{kN}) = 5.55\text{kN} \implies F_{\text{tot}}^{\text{static}} = 5.55 \cdot 4 = 22.2\text{kN}$$

With load transfer:

$$F(0.5 \cdot 4.5 \text{kN} = 2.25 \text{kN}) = 2.7 \text{kN}$$

 $F(1.5 \cdot 4.5 \text{kN} = 6.75 \text{kN}) = 7.5 \text{kN}$

:.
$$F_{\text{tot}}^{\text{transfer}} = 2(2.7\text{kN} + 7.5\text{kN}) = 20.4\text{kN}$$

Load Transfer Example

No load transfer vs 50% load transfer

Assume 4.5kN of static vertical load on each tire. Static traction:

$$F(4.5\text{kN}) = 5.55\text{kN} \ \Rightarrow \ F_{\text{tot}}^{\text{static}} = 5.55 \cdot 4 = 22.2\text{kN}$$

With load transfer:

$$F(0.5 \cdot 4.5 \text{kN} = 2.25 \text{kN}) = 2.7 \text{kN}$$

$$F(1.5 \cdot 4.5 \text{kN} = 6.75 \text{kN}) = 7.5 \text{kN}$$

:.
$$F_{\text{tot}}^{\text{transfer}} = 2(2.7\text{kN} + 7.5\text{kN}) = 20.4\text{kN}$$

8% Drop in total traction!

Table of Contents

- What makes a car fast?
- Vehicle Basics
- 3 Anatomy of a Corner
- 4 Three Tenants of Racecar Design

22 / 29

The car uses the tires to generate a lateral force to redirect the car and a torque to rotate the car

The car uses the tires to generate a **lateral force to redirect the car** and a **torque to rotate the car**

Corners represent a change in two different things:

The car uses the tires to generate a **lateral force to redirect the car** and a **torque to rotate the car**

Corners represent a change in two different things:

Change in translation

The car uses the tires to generate a lateral force to redirect the car and a torque to rotate the car

Corners represent a change in two different things:

- Change in translation
- Change in orientation

Vehicle Balance

Why do Formula 1 and Indy cars have larger tires at the rear than the front?

Vehicle Balance - Formula 1 Car

Balance the moments of the car $M = F \times r$

Vehicle Balance - Delta Wing

Balance the moments of the car $M = F \times r$

$$M = F \times r$$

James Wright Racecar 101 September 8, 2022 25 / 29

Neutral Steer

Moments balance out

Neutral Steer

Moments balance out

Under Steer

Unbalance moments cause under-rotation

Neutral Steer

Moments balance out

Under Steer

Unbalance moments cause under-rotation

Over Steer

Unbalance moments cause over-rotation

Neutral Steer

Moments balance out

Under Steer

Unbalance moments cause under-rotation

Over Steer

Unbalance moments cause over-rotation

• A car can dynamically change between all three states

Neutral Steer

Moments balance out

Under Steer

Unbalance moments cause under-rotation

Over Steer

Unbalance moments cause over-rotation

- A car can dynamically change between all three states
- Changes occur due to differences in load transfer, suspension magic, and through dynamic movement

Table of Contents

- What makes a car fast?
- Vehicle Basics
- Anatomy of a Corner
- 4 Three Tenants of Racecar Design

In order of importance:

- Make it Lighter
 - Improves acceleration, load transfer, responsiveness, etc.

In order of importance:

- Make it Lighter
 - Improves acceleration, load transfer, responsiveness, etc.
- Make it Lower
 - Lowering a component lowers CG ⇒ reduces load transfer

In order of importance:

- Make it Lighter
 - Improves acceleration, load transfer, responsiveness, etc.
- Make it Lower
 - Lowering a component lowers $CG \Rightarrow reduces load transfer$
- Make it more Central
 - When turning, car has to physically rotate:

$$T = I\alpha$$

where T is torque, I is rotational inertia, and α is angular acceleration

• Reducing inertia is similar to reducing mass

In order of importance:

- Make it Lighter
 - Improves acceleration, load transfer, responsiveness, etc.
- Make it Lower
 - Lowering a component lowers $CG \Rightarrow reduces load transfer$
- Make it more Central
 - When turning, car has to physically rotate:

$$T = I\alpha$$

where T is torque, I is rotational inertia, and α is angular acceleration

Reducing inertia is similar to reducing mass

The car that is lighter, has a lower CG, or has a lower inertia will be faster

Questions