Forecasting Footfalls for a National Park Based on weather

Business Forecasting project

Chinmayee Thakur

Riya Joy

Jash Shah

WHY?

- National park authorities must start preparing for season with high foot traffic
- Forest officials may have to start patrolling more often.
- Bus and other public transport services can start more buses on the route
- Also, tourism industries can use this to stock supplies in preparation

DATA

- The Dataset consists of temperature(in Fahrenheit) and footfalls of a national park in California.
- The Dataset holds data points from 2011 to 2013
- It is a weekly data each starting on a Monday.
- Our data is aggregated to weekly values as the original dataset was on an hourly basis.

Time Series Plots

Boxplot of Time Series

Accuracy

 We considered Mean Percentage Error (MPE) accuracy measure to predict the accuracy of our models in the project

Zero

The forecast is unbiased

Positive

Large positive value signifies that the forecast is underestimated

Negative

Large negative value signifies that the forecast is overestimated

Comparison of Accuracy for Different Models

Model Name	MPE	Point Forecast	
Mean Forecast	-2.057414	965	
Random Walk Forest	-1.163738	903	
Naïve Forecast	-1.163738	903	
Snaive Forecast	-0.2849747	827	
Moving Averages	0.04691367	802	
Holtswinter Forecast	-2.131463	834	
ARIMA	-1.43963	975	

Forecasts from Seasonal naive method 1400 1200 MPE 1000 -0.2849747 800 009 2011.5 2012.0 2012.5 2013.0 2013.5 **Point Forecast** Hi 80 <dbl> Hi 95 <dbl> Lo 80 <dbl> Lo 95 <dbl> <dbl> 2013.462 470.8208 827 594.1069 1059.893 1183.179 2013.481 828 595.1069 1060.893 471.8208 1184.179 2013.500 811 578.1069 1043.893 454.8208 1167.179

657.1069

1122.893

533.8208

1246.179

890

2013.519

ACF Plot for Snaive Forecasting

Series snaive_forecast\$residuals

snaive_forecast\$residuals **Residual Plot for Snaive** -400 **Histogram of snaive_forecast\$residuals** snaive_forecast\$fitted Frequency **Histogram of Residuals** for Snaive

-200

snaive forecast\$residuals

-400

Residual Plot

Moving Averages Graph

Graph of Time series graph with Moving avg plot with order 3,6,9

Graph of time series with moving average forecast with order 6

MPE= 0.04691367

2011.5	2012.0 Point Forecast	2012.5 Lo 80 <dbl></dbl>	2013.0 Hi 80 <dbl></dbl>	2013.5 Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
	808.2107	764.4580	851.9634	741.2968	875.1246
	828.9135	761.2653	896.5618	725.4545	932.3726
	833.4274	741.3805	925.4744	692.6537	974.2011
	2011.5	Point Forecast Adbl 801.2051 808.2107 828.9135	Point Forecast <dbl> Lo 80 <dbl> 801.2051 779.6269 808.2107 764.4580 828.9135 761.2653</dbl></dbl>	Point Forecast <dbl><dbl><dbl><dbl></dbl> 801.2051 779.6269 822.7833 808.2107 764.4580 851.9634 828.9135 761.2653 896.5618</dbl></dbl></dbl>	Point Forecast <dbl> Lo 80 <dbl> Hi 80 <dbl> Lo 95 <dbl> 801.2051 779.6269 822.7833 768.2041 808.2107 764.4580 851.9634 741.2968 828.9135 761.2653 896.5618 725.4545</dbl></dbl></dbl></dbl>

Linear Regression

Linear Regression Model

```
Call:
lm(formula = Final$footfalls ~ Final$air_temp)
Residuals:
   Min
            10 Median
                                  Max
-490.57 -37.65 6.39 49.56 239.37
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
              326.7243
                          57.6119
                                   5.671 1.03e-07 ***
                       0.9264 11.212 < 2e-16 ***
Final$air_temp 10.3867
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 100.2 on 118 degrees of freedom
Multiple R-squared: 0.5158, Adjusted R-squared: 0.5117
F-statistic: 125.7 on 1 and 118 DF, p-value: < 2.2e-16
```

<u>P value</u>=

<u>T value</u>=

```
(Intercept) 5.671
Final$air_temp 11.212
```

<u>Adjusted R2</u>= **0.5117**

Implementation for Forecasting

The formula for our model is,

```
Y= mx+C,
where y = average footfalls in a week,
m= slope or coefficient of x,
x= average air temperature in a given week,
C= intercept or the constant.
```

So for example in a given week the average temperature was 78F then the prediction of average footfalls for that week will be,

Y= 10.39(78)+326.72

which is 1137.14 which will be considered as 1137 or 1138 people.

Conclusions

- As the adjusted R2 value is 0.5117,51% variance in the footfalls can be attributed by the change in the temperature.
- We realise that the R2 value is very less for our model, but we do not discard the model as hiring of park labor does not happen on a weekly basis, so the forecast is good enough for them to be prepared.
- However, if we consider some more relevant variables in regards to the weather we can establish a better model with improved significance.
- Hence we also chose Moving averages order 6 and Snaive to be our best models as the accuracy helped us decide that the forecast is not biased and that should give the officials or authorities a fair chance to prepare for stocking or hiring in advance.

