Phase Transition of the 3-Majority Dynamics with Uniform Communication Noise

Francesco d'Amore COATI team

Based on joint work with I. Ziccardi

Bologna 16 June 2022

Table of contents

- 1. The agreement task in distributed computing
- 2. Opinion dynamics with uniform communication noise
- 3. 3-Majority dynamics
- 4. Discussion and techniques

Table of contents

- 1. The agreement task in distributed computing
- 2. Opinion dynamics with uniform communication noise
- 3. 3-MAJORITY dynamics
- 4. Discussion and techniques

System of agents supporting different opinions

Reaching agreement: fundamental task in distributed computing [Becchetti et al., 2020]

System of agents supporting different opinions

Reaching agreement: fundamental task in distributed computing [Becchetti et al., 2020]

- social networks [Acemoglu et al., Math. Oper. Res. 2013]
- swarm robotics [Bayindir, Neurocomputing 2016]
- communication networks [Ruan et Mostofi, CDC 2008]
- distributed databases [Dietzfelbinger et al., ICALP 2010]
- biological systems [Feinerman et al., Dis. Comput. 2017]

In biological systems

Often, systems of interacting agents performing collective tasks (swarm-like)

• Reaching agreement: molecules [Carrol, Nature Immunology 2004], bacteria [Bassler, Cell 2002], social insects [Franks et al., 2002] (e.g. bees [Reina et al., Physical Review E 2017])

honey bees

"Queen bee 1" by quisnovu, CC BY-NC 2.0.

The consensus problem

Input: system of n agents supporting opinions, with a communication network

Task: designing a protocol which **brings the system** in finite time to a configuration such that

- 1. all agents support the same opinion (AGREEMENT)
- 2. the final opinion is among the initial ones (VALIDITY)
- 3. the agreement keeps on unless external events occur (STABILITY)

The consensus problem

Input: system of n agents supporting opinions, with a communication network

Task: designing a protocol which **brings the system** in finite time to a configuration such that

- 1. all agents support the same opinion (AGREEMENT)
- 2. the final opinion is among the initial ones (VALIDITY)
- 3. the agreement keeps on unless external events occur (STABILITY)

The majority consensus problem

- AGREEMENT
 VALIDITY
 AGREEMENT
 MAJORITY
 STABILITY
- 2. MAJORITY property: the final opinion is the initial majority one

Table of contents

- 1. The agreement task in distributed computing
- 2. Opinion dynamics with uniform communication noise
- 3. 3-MAJORITY dynamics
- 4. Discussion and techniques

Opinion dynamics for the consensus problem

Opinion dynamics: class of simple, lightweight parallel protocols for the consensus problems

Very simple update-rules

Many have been investigated, including:

- Voter Model [Hassin and Peleg, Inf. Comput. 2001]
- Averaging dynamics [Becchetti et al., SODA 2017]
- 3-Majority [Becchetti et al., SODA 2016]
- 2-Choices [Berenbrink et al., PODC 2017]
- Undecided-State [Becchetti et al., SODA 2015]

linear dynamics

non-linear dynamics

Opinion dynamics for the consensus problem

Opinion dynamics: class of simple, lightweight parallel protocols for the consensus problems

Very simple update-rules

Many have been investigated, including:

- Voter Model [Hassin and Peleg, Inf. Comput. 2001]
- Averaging dynamics [Becchetti et al., SODA 2017]
- 3-Majority [Becchetti et al., SODA 2016]
- 2-Choices [Berenbrink et al., PODC 2017]
- Undecided-State [Becchetti et al., SODA 2015]

linear dynamics

non-linear dynamics

Majority update-rules and the undecided state dynamics have biological inspirations [Reina et al., Physical Review 2017] [Condon et al., Nat. Computing 2020] [Chaouiya et al., PLOS ONE 2013]

Adversarial failures vs. noise

Often, settings with adversarial Byzantine failures are investigated

Not realistic in biological scenarios; rather, uniform noise [Feinerman et al., PODC 2014]

Uniform communication noise

Inspired by [Feinerman et al., PODC 2014], [Freignaud and Natale, PODC 2016]

 Σ set of k opinions, $p \in [0, 1]$ constant

When u looks at v's opinion x

- a) with probability 1-p, u sees x
- b) with probability p, u sees y where y is chosen u.a.r. in Σ

Uniform communication noise

Inspired by [Feinerman et al., PODC 2014], [Freignaud and Natale, PODC 2016]

 Σ set of k opinions, $p \in [0,1]$ constant

When u looks at v's opinion x

- a) with probability 1-p, u sees x
- b) with probability $p, u \operatorname{sees} y$ where y is chosen u.a.r. in Σ

Example: k = 3

Table of contents

- 1. The agreement task in distributed computing
- 2. Opinion dynamics with uniform communication noise
- 3. 3-MAJORITY dynamics
- 4. Discussion and techniques

3-Majority dynamics: each node u

- 1. samples 3 neighbors u.a.r.
- 2. pulls their opinions
- 3. updates its opinion to the majority one, if any

3-Majority dynamics: each node u

- 1. samples 3 neighbors u.a.r.
- 2. pulls their opinions
- 3. updates its opinion to the majority one, if any

3-Majority dynamics: each node u

- 1. samples 3 neighbors u.a.r.
- 2. pulls their opinions
- 3. updates its opinion to the majority one, if any

In parallel: every agent at each round

3-Majority dynamics: each node u

- 1. samples 3 neighbors u.a.r.
- 2. pulls their opinions
- 3. updates its opinion to the majority one, if any

In parallel: every agent at each round

Markov chain with k absorbing states

Previous results

Overview of results in noiseless settings [Becchetti et al., SIGACT News 2020]

Binary case: (with high probability)

- ullet in time $\mathcal{O}(\log n)$ the system reaches consensus
- if the initial bias is $\Omega(\sqrt{n \log n})$, we have majority consensus
- robust against adversaries with power o(initial bias)

Previous results

Overview of results in noiseless settings [Becchetti et al., SIGACT News 2020]

Binary case: (with high probability)

- ullet in time $\mathcal{O}(\log n)$ the system reaches consensus
- if the initial bias is $\Omega(\sqrt{n \log n})$, we have majority consensus
- robust against adversaries with power o(initial bias)

Bias: difference between majority community size and minority one

Previous results

Overview of results in noiseless settings [Becchetti et al., SIGACT News 2020]

Binary case: (with high probability)

- ullet in time $\mathcal{O}(\log n)$ the system reaches consensus
- if the initial bias is $\Omega(\sqrt{n \log n})$, we have majority consensus
- robust against adversaries with power o(initial bias)

Bias: difference between majority community size and minority one

Example:

[d'Amore et Ziccardi, SIROCCO 2022]

 $3\text{-}\mathrm{Majority}$ dynamics with k=2 opinions in the presence of uniform noise in the compelete graph

Question: is there any form of metastable consensus?

[d'Amore et Ziccardi, SIROCCO 2022]

 $3\text{-}\mathrm{Majority}$ dynamics with k=2 opinions in the presence of uniform noise in the compelete graph

Question: is there any form of metastable consensus?

W.h.p.: an event E depending on a parameter n holds with high probability in n if $\mathbb{P}\left(E\right)\geq 1-n^{-\gamma}$ for any constant $\gamma>0$

[d'Amore et Ziccardi, SIROCCO 2022]

3-MAJORITY dynamics with k=2 opinions in the presence of uniform noise in the compelete graph

Question: is there any form of metastable consensus?

W.h.p.: an event E depending on a parameter n holds with high probability in n if $\mathbb{P}\left(E\right) \geq 1 - n^{-\gamma}$ for any constant $\gamma > 0$

For the 3-MAJORITY dynamics: phase-transition

- p < 1/3: a value $\bar{s} = \Theta(n)$ exists such that the bias of the system reaches the interval $I_{\varepsilon} = [(1-\varepsilon)\bar{s}, (1+\varepsilon)\bar{s}]$ in time $\mathcal{O}(\log n)$ w.h.p., and keeps in I_{ε} for time poly(n) w.h.p. \longrightarrow almost-consensus
 - if the initial bias is $\Omega(\sqrt{n \log n})$, we have almost-majority consensus

[d'Amore et Ziccardi, SIROCCO 2022]

 $3\text{-}\mathrm{Majority}$ dynamics with k=2 opinions in the presence of uniform noise in the compelete graph

Question: is there any form of metastable consensus?

W.h.p.: an event E depending on a parameter n holds with high probability in n if $\mathbb{P}(E) \geq 1 - n^{-\gamma}$ for any constant $\gamma > 0$

For the 3-MAJORITY dynamics: phase-transition

- a value $\bar{s} = \Theta(n)$ exists such that the bias of the system reaches the interval $I_{\varepsilon} = [(1-\varepsilon)\bar{s}, (1+\varepsilon)\bar{s}]$ in time $\mathcal{O}(\log n)$ w.h.p., and keeps in I_{ε} for time poly(n) w.h.p. almost-consensus
 - ullet if the initial bias is $\Omega(\sqrt{n\log n})$, we have almost-majority consensus
- p>1/3: in time $\mathcal{O}(\log n)$ the bias becomes bounded by $\mathcal{O}(\sqrt{n\log n})$ and keeps bounded for time poly(n) wh.p. victory of noise
 - ullet there is constant probability to switch majority within time $\mathcal{O}(\log n)$

Examples

Almost-consensus

Examples

Almost-consensus

Victory of noise

Table of contents

- 1. The agreement task in distributed computing
- 2. Opinion dynamics with uniform communication noise
- 3. 3-MAJORITY dynamics
- 4. Discussion and techniques

Comparison with previous results

[d'Amore et al., SIROCCO 2020]

UNDECIDED-STATE dynamics with k=2 opinions in the presence of uniform noise in the compelete graph

Comparison with previous results

[d'Amore et al., SIROCCO 2020]

UNDECIDED-STATE dynamics with k=2 opinions in the presence of uniform noise in the compelete graph

Undecided-State dynamics: each node u

- 1. samples a neighbor v u.a.r.
- 2. pulls v's opinion
- 3. updates its opinion according to the following table

$u \backslash v$	opinion i	opinion j	undecided
opinion i	i	undecided	i
opinion j	undecided	j	j
undecided	i	j	undecided

Comparison with previous results

[d'Amore et al., SIROCCO 2020]

UNDECIDED-STATE dynamics with k=2 opinions in the presence of uniform noise in the compelete graph

Undecided-State dynamics: each node u

- 1. samples a neighbor v u.a.r.
- 2. pulls v's opinion
- 3. updates its opinion according to the following table

$u \backslash v$	opinion i	opinion j	undecided
opinion i	i	undecided	i
opinion j	undecided	j	j
undecided	i	j	undecided

- phase-transition at p=1/2, more resilient to noise
- less characterized
 - no precise equilibrium shown
 - no switch of majority shown

Equilibrium:

$$\mathbb{E}\left[s_{t+1}|s_t\right] = \frac{s(1-p)}{2}\left(3 - \frac{s_t^2}{n^2}(1-p)^2\right) \Longrightarrow \bar{s} = \frac{n}{1-p} \cdot \sqrt{\frac{1-3p}{1-p}}$$

$$\mathbb{E}\left[s_{t+1}|s_t\right] = s_t$$

Equilibrium:

$$\mathbb{E}\left[s_{t+1}|s_{t}\right] = \frac{s(1-p)}{2} \left(3 - \frac{s_{t}^{2}}{n^{2}} (1-p)^{2}\right) \Longrightarrow \bar{s} = \frac{n}{1-p} \cdot \sqrt{\frac{1-3p}{1-p}}$$

$$\mathbb{E}\left[s_{t+1}|s_{t}\right] = s_{t}$$

ullet conditional on s_t , s_{t+1} sum of Rademacher random variables

W.h.p.: an event E depending on a parameter n holds with high probability in n if $\mathbb{P}(E) \geq 1 - n^{-\gamma}$ for any constant $\gamma > 0$

Equilibrium:

$$\mathbb{E}\left[s_{t+1}|s_{t}\right] = \frac{s(1-p)}{2} \left(3 - \frac{s_{t}^{2}}{n^{2}} (1-p)^{2}\right) \Longrightarrow \bar{s} = \frac{n}{1-p} \cdot \sqrt{\frac{1-3p}{1-p}}$$

$$\mathbb{E}\left[s_{t+1}|s_{t}\right] = s_{t}$$

ullet conditional on s_t , s_{t+1} sum of Rademacher random variables

W.h.p.: an event E depending on a parameter n holds with high probability in n if $\mathbb{P}(E) \geq 1 - n^{-\gamma}$ for any constant $\gamma > 0$

For **majority consesus**:

- initial bias $\Omega(\sqrt{n \log n})$
- $M_t = |s_t \bar{s}|$, \bar{s} equilibrium value for bias
- Chernoff-Hoeffding inequalities to show $M_{t+1} \leq (1-\delta)M_t$ w.h.p. when bias outside $I_{\varepsilon} = [(1-\varepsilon)\bar{s}, (1+\varepsilon)\bar{s}]$
- chain rule + union bound

For **victory of noise**:

- initial bias s=n
- super-martingale $N_t \sim s_t$ such that $\mathbb{E}\left[N_{t+1} \middle| \mathcal{F}_t\right] \leq (1-\delta)N_t$
- ullet concentration arguments [Lehre and Witt, ISAAC 2014] \Longrightarrow majority disappears in time $\mathcal{O}\left(\log(n)\right)$

For **victory of noise**:

- initial bias s=n
- ullet super-martingale $N_t \sim s_t$ such that $\mathbb{E}\left[N_{t+1} \middle| \mathcal{F}_t\right] \leq (1-\delta)N_t$
- ullet concentration arguments [Lehre and Witt, ISAAC 2014] \Longrightarrow majority disappears in time $\mathcal{O}\left(\log(n)\right)$

For **symmetry breaking**:

- initial bias $o(\sqrt{n \log n})$
- the bias has enough standard deviation to break symmetry (drift analysis results)
 - std roughly \sqrt{n}
 - $\mathcal{O}(\log n)$ trials suffices

Discussion

- 3-Majority dynamics with noise is not implemented by biological systems
 - despite the bio-inspiration, highly abstract model
 - aiming to capture fundamental phenomena that (very loosely) relates to many biological systems

Discussion

- 3-Majority dynamics with noise is not implemented by biological systems
 - despite the bio-inspiration, highly abstract model
 - aiming to capture fundamental phenomena that (very loosely) relates to many biological systems
- phase-transition: p = 1/3
 - p=1/3 (3-Maj) means 2 out of 3 pulled opinions are non-noisy on average

Discussion

- 3-Majority dynamics with noise is not implemented by biological systems
 - despite the bio-inspiration, highly abstract model
 - aiming to capture fundamental phenomena that (very loosely) relates to many biological systems
- phase-transition: p = 1/3
 - p=1/3 (3-Maj) means 2 out of 3 pulled opinions are non-noisy on average
- Are noise-thresholds independent of k (num. of opinions)?
- What about a generalized noise with different parameters for the two opinions?
- What about sparser topologies, e.g. expanders?

The End

Questions?