

FILS: Self-Supervised Video Feature Prediction In Semantic Language Space SURREY

Mona Ahmadian Frank Guerin Andrew Gilbert

Contributions

Motivation behind FILS is to bridge vision and language, leveraging text descriptions to guide video representation, enabling a more semantic comprehension of action and context in video data.

- Feature prediction strategy on masked video and patch-wise contrastive learning within potential action
- ActCLIP is a technique used within FILS that applies CLIP-based contrastive learning specifically to patches in video action areas, aligning motion regions with their corresponding text descriptions
- Demonstrating the effectiveness of using mutual information to prioritize patches that convey semantic and action-rich details, enhancing learned representations for various tasks

Visualization of the similarity between text (action label) and video features

Method

Qualitative Results

FILS represents the potential semantic region in the video and

take knife

Results

Superior performance across all metrics on the action recognition datasets

Epic-Kitchens						
Method	Backbone	p-data	L	Verb Top-1	Noun Top-1	Action Top-1
SlowFast [13]	ResNet101	K400	×	65.6	50.0	38.5
TSM [28]	ResNet50	IN-1K	×	67.9	49.0	38.3
Mformer [33]	ViT-L	IN-21K+K400	×	67.1	57.6	44.1
Video Swin [31]	Swin-B	K400	×	67.8	57.0	46.1
ViViT FE [2]	ViT-L	IN-21k+K400	×	66.4	56.8	44.0
IPL [51]	I3D	K400	✓	68.6	51.2	41.0
Omnivore [15]	Swin-B	IN+K400+SUN	×	69.5	61.7	49.9
MeMViT [53]	ViT-B	K600	×	71.4	60.3	48.4
MTV [55]	MTV-B	WTS-60M	\times	69.9	63.9	50.5
LaViLa [63]	TSF-B	WIT+Ego4D	✓	69.0	58.4	46.9
AVION [62]	ViT-B	WIT+Ego4D	\checkmark	70.0	59.8	49.1
VideoMAE* [46]	ViT-B	EK100	\checkmark	-	-	48.5
FILS(ours)	ViT-B	EK100	\checkmark	72.2	61.7	51.0

	Method	Backbone	p-data	L	Top-1
_	SlowFast [13]	ResNet101	K400	×	63.1
	TSM [28]	ResNet50	K400	×	63.4
	TimeSformer [6]	ViT-L	IN-21K	×	62.4
	Mformer [33]	ViT-L	IN-21K+K400	\times	68.1
	Video Swin [31]	Swin-B	K400	\times	69.6
	ViViT FE [2]	ViT-L	IN-21k+K400	\times	65.9
	VIMPAC [45]	ViT-L	HowTo100M	\checkmark	68.1
	BEVT [50]	Swin-B	IN-1K + K400	\times	70.6
	VideoMAE [46]	ViT-B	SSV2	\times	70.8
	OmniMAE [16]	ViT-B	IN-1K + SSv2	\times	69.5
	Omnivore [15]	Swin-B	IN-21k+K400	\times	71.4
	VideoMAE V2 [47]	ViT-B	UnlabeledHybrid	\times	71.2
	FILS(ours)	ViT-B	SSV2	\checkmark	72.1
_					

Something-Something V2

Charades-Ego				
Method	Backbone	p-data	L	mAP
ActorObserverNet [17]	ResNet-152	Charades	×	20
SSDA [4]	I3D	Charades-Ego	×	25.8
Ego-Exo [10]	SlowFast-R101	Kinetics-400	×	30.1
EgoVLP [12]	TSF-B	Ego4D	1	32.1
HierVL-Avg [1]	ViT-Base	Ego4D	1	32.6
HierVL-SA [1]	ViT-Base	Ego4D	1	33.8
EgoVLPv2 [14]	TSF-B	EgoClip	1	34.1
LaViLA [24]	TSF-B	WIT+Ego4D	1	33.7
FILS(ours)	ViT-Base	EK100	1	34.4
FILS(ours)	ViT-Base	SSV2	1	34.2

Method	Backbone	p-data	L	Top-1 Acc.	Mean Acc
Li et al. [11]	I3D	K400	X	2	53.30
LSTA [19]	ConvLSTM	IN-1k	×	61.86	53.00
IPL [21]	I3D	K400	1	-	60.15
MTCN [9]	Slow Fast	K400+VGG-S	1	73.59	65.87
LaViLA [24]	TSF-B	WIT+Ego4D	1	77.45	70.12
FILS(ours)	ViT-Base	EK100	1	78.48	71.20
FILS(ours)	ViT-Base	SSV2	1	78.57	71.31

Ablation Studies

(a) ActCLIP strategies					
Method	strategy	number of iteration	Action Top-1 Acc.		
FILS	patch	10	38.0		
FILS	patch	30	43.5		
FILS	patch	50	46.3		
FILS	patch-average	1	51.0		

