Functions

Fractals

October 8, 2021

Contents

1	Introduction	1
	1.1 Defintions	1
	1.2 Existence of a Function	1
2	Combinations of Functions	2
	2.1 Domain and Range of a Composite Function	2
3		2
	3.1 Piecewise-Defined Function	2
4	Properties of Functions	3
	4.1 Odd and Even Functions	3
	4.2 Periodic Functions	3
5	Inverse Functions 5.1 Existence of an Inverse Function	3
	5.1 Existence of an Inverse Function	3

1 Introduction

1.1 Defintions

Defintion 1.1. A function f from a set X to a set Y is a relation that assigns to each element in set X exactly one element in set Y.

Defintion 1.2. The domain is the set of X (a.k.a. the input).

Defintion 1.3. The range is a subset of Y (a.k.a. the output).

1.2 Existence of a Function

Theorem 1 (Vertical Line Test). if you can draw a Vertical line that passes through more than one point of a relation on a grap, it's not a function, if you cannot, it's a function.

Example 1.1. what the domain and range of the function $f(x) = \sqrt{16 - x^2}$?

sloution Note that if a < 0, then \sqrt{a} is undefined for reals, Thus, $16 - x^2 \ge 0 \Rightarrow \boxed{-4 \le x \le 4}$ since $x^2 \ge 0$, we have that $0 \le 16 - x^2 \le 16$, so the range is $\boxed{0 \le y \le 4}$

2 Combinations of Functions

Theorem 2 (common function Combinations). The following are some common combinations of functions:

- Sum (f+g)(x) = f(x) + g(x)
- **Differnce** (f g)(x) = f(x) g(x)
- **Product** (fg)(x) = f(x)g(x)
- Quotient $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$ where $g(x) \neq 0$
- Compostion $(f \circ g)(x) = f(g(x))$

Example 2.1. if f(x) = 2x + 3 and g(x) = 2x - 3, then what is fg(4)?

sloution
$$(fg)(x) = (2x+3)(2x-3)$$
 Thus $(fg)(4) = 55$.

2.1 Domain and Range of a Composite Function

The domain of a composite function is the intersection of domains of the starting and final function.

The range of a composite function is the range of the final function restricted by the starting function.

Example 2.2. let $f(x) = \frac{1}{x+2}$ and $\frac{x}{x-3}$. Then g(x) is the starting function and f(g(x)) is the final function. Find the domain and range of f(g(x)).

sloution
$$f(g(x)) = \frac{1}{\frac{x}{x-3}+2}$$
 so $x \neq 3$, impleing the domain is $x \neq 2,3$.

Example 2.3. If $f(x) = \sqrt{x}$ and g(x) = x - 1, what is the domain and range of $(g \circ f)(x)$?

sloution $(g \circ f)(x) = \sqrt{x} - 1$ it's obivious that $x \ge 0$, and all other values work, so the domain is $0 \le x < \infty$. Since $\sqrt{x} \ge 0$ we have $(g \circ f)(x) \ge -1$, with no other restrictions, so the range is $[-1,\infty]$.

3 Types of Functions

3.1 Piecewise-Defined Function

A piecewise function is a function that is defined by two or more equations over a specified domain.

Example 3.1. let f(x) = |x| Then

$$f(x) = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Example 3.2. What are the domain and range of the piecewise function as follows?

$$f(x) = \begin{cases} x^2 + 1 & x < 0 \\ x - 1 & x \ge 0 \end{cases}$$

sloution. The domain includes x < 0 and $x \ge 0$, which is all values, so the domain is $(-\infty, \infty)$. for $x \ge 0$, we have f(x) = x - 1, so the range is $y \ge -1$. For x < 0 we have $f(x) = x^2 + 1$, so the range is y > 1. Thus the range together is $(-1, \infty)$

- 4 Properties of Functions
- 4.1 Odd and Even Functions
- 4.2 Periodic Functions
- 5 Inverse Functions
- 5.1 Existence of an Inverse Function