S.1.
$$S = \begin{pmatrix} 3 & 7 & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4 \end{pmatrix} \begin{pmatrix} 4 & 2 & 2 \\ -3 & 24 \end{pmatrix}$$
 an eigenvector

S.1. $S = \begin{pmatrix} 3 & 7 & 9 \\ 24 & 4 & 4 \end{pmatrix} \begin{pmatrix} 4 & 2 & 2 \\ 24 & 24 \end{pmatrix}$ and eigenvector

S.1. $S = \begin{pmatrix} 3 & 7 & 9 \\ 24 & 4 & 4 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 24 & 4 \end{pmatrix}$ $\begin{pmatrix} 2 & 2 \\ 2$

5.3.15

Did Some places as above and got
$$P = \begin{bmatrix} -5 & -4 & -7 \\ 1 & 0 & -1 \end{bmatrix}$$
 $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

5.3.21-27

- 1. Given a linear transformation $T: V \to V$ of a vector space to itself, an **eigenvector** $\mathbf{v} \in V$ of T with eigenvalue $\lambda \in \mathbf{R}$ is one which satisfies $T(\mathbf{v}) = \lambda \mathbf{v}$. This generalizes the idea of an eigenvector-eigenvalue pair for a matrix, since any matrix defines a linear transformation.
 - (a) Let **P** denote the set of all polynomials with **R** coefficients (e.g., $p(x) = x^3 + \pi x \sqrt{2}$ is such an object), and let $T: \mathbf{P} \to \mathbf{P}$ be T(p) = p', where p'(x) = dp/dx. T is a linear transformation. Does it have any eigenvectors? Why or why not?
 - (b) Let $D(\mathbf{R})$ denote the set of all differentiable functions on \mathbf{R} . \mathbf{P} is a subset of $D(\mathbf{R})$, but—as you know- $D(\mathbf{R})$ contains much more than just polynomials (e.g., it contains $f(x) = \cos x$). If we consider $T:D(\mathbf{R})\to D(\mathbf{R})$ in the obvious way that T(f)=f', does it have eigenvectors? If so, what are the eigenvalues associated to the eigenvectors you found?

