Neural Networks

Возвратимся к модели регрессии

Linear Regression * : Дано { x_i }, предсказать y:

$$y = w_0 + w_1 x_1 + \dots + w_q x_q$$

^{*} В основном предполагая, что выход зависит только от взаимодействий входов в первой степени.

Возвратимся к модели регрессии

Linear Regression*: Дано { x}, предсказать y: $y = f(w_0 + w_1x_1 + ... + w_qx_q)$

$$f(x) = x$$

где *f* линейная функция:

^{*} Линейная функция активации

Возвратимся к модели регрессии

Logistic Regression*: Дано $\{x_i\}$, предсказать y, где $y \in \{0,1\}$ $y = f(w_0 + w_1x_1 + ... + w_qx_q)$ где f logistic function:

$$f(x) = sigmoid(x) = \frac{1}{1 + e^{-x}}$$

^{*} Нелинейная функция активации/бинарный классификатор

Perceptron (Rosenblatt, 1957)

Perceptron*: Given { x}, predict y where $y \in \{-1, \pm 1\}$

$$y = f(w_0 + w_1 x_1 + \dots + w_q x_q)$$

where f is the step function:

$$f(x) = \begin{cases} +1, & \text{if } x \ge 0 \\ -1, & \text{if } x < 0 \end{cases}$$

^{*} Non-linear activation function / binary classifier

Теорема Колмогорова

Трина́дцатая пробле́ма Ги́льберта — одна из 23 задач, которые Давид Гильберт предложил 8 августа 1900 года на II Международном конгрессе математиков. Она была мотивирована применением методов номографии к вычислению корней уравнений высоких степеней, и касалась представимости функций нескольких переменных, в частности, решения уравнения седьмой степени как функции от коэффициентов, в виде суперпозиции нескольких непрерывных функций двух переменных.

Проблема была решена В.И. Арнольдом совместно с **А.Н. Колмогоровым**, доказавшими, что любая непрерывная функция любого количества переменных представляется в виде суперпозиции *непрерывных* функций одной и двух переменных:

$$f(x_1,\ldots,x_n) = \sum_{q=0}^{2n} \Phi_q \left(\sum_{p=1}^n \psi_{q,p}(x_p)
ight)$$

где функции Φ и ψ - непрерывные.

Нейронные сети могут с любой точностью имитировать любой непрерывный автомат. Для нейронных сетей полученные результаты означают, что от функции активации нейрона требуется только нелинейность

Искусственный нейрон (Artificial Neuron)

Artificial Neuron*: Given { y_i predict : y $y = f(w_0 + w_1x_1 + ... + w_qx_q)$ where f is a nonlinear activation

function (sigmoid, tanh, ReLU, ...)

^{*} Similar to how neurons in the brain function

Artificial Neuron

Artificial Neuron: Улавливает в основном линейные взаимодействия в данных.

Вопрос: Можем ли мы использовать аналогичный подход для обнаружения нелинейных взаимосвязей в данных?

Artificial Neuron: Улавливает в основном линейные взаимодействия в данных.

Вопрос: Можем ли мы использовать аналогичный подход для обнаружения нелинейных взаимосвязей в данных?

Artificial Neuron: Улавливает в основном линейные взаимодействия в данных.

Вопрос: Можем ли мы использовать аналогичный подход для обнаружения нелинейных взаимосвязей в данных?

Neural Network/Multilayer Perceptron (MLP): используйте больше искусственных нейронов, объединяете их в слой!

- Нейронная сеть, состоящая из входного, скрытого и выходного слоев
- Каждый слой связан со следующим слоем
- Функция активации применяется к каждому скрытому слою (и выходному слою)

- Нейронная сеть, состоящая из входного, скрытого и выходного слоев
- Каждый слой связан со следующим слоем
- Функция активации применяется к каждому скрытому слою (и выходному слою)

Neural Networks

MultiLayer Network: Two layers (one hidden layer, output layer), with five hidden neurons in the hidden layer, and one output neuron.

MultiLayer Network: Two layers (one hidden layer, output layer), with five hidden neurons in the hidden layer, and three output neurons.

MultiLayer Network: Four layers (three hidden layer, output layer), with five-three-two hidden neurons in the hidden layers, and two output neurons.

Создание и обучение нейронной сети (Build and Train a Neural Network)

Построим нейронную сеть для задачи бинарной классификации:

- (без смещения (bias) для простоты)
- 2 inputs: x_1 = 0.5 and x_2 0.1
- 1 hidden layer with 2 neurons
- 1 output neuron in the output layer

Activation Functions

• "Как перейти от ввода линейно взвешенной суммы к нелинейному

выводу?"

Name	Plot	Function	Description
Logistic (sigmoid)	0 x	$f(x) = \frac{1}{1 + e^{-x}}$	Самая распространенная функция активации. Выход находится в диапазоне $(0,1)$.
Hyperbolic tangent (tanh)	0 x	$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	Выход находится в диапазоне (-1, 1).
Выпрямленный линейный блок (ReLU)	0 x	$f(x) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$	Популярная функция активации. Все, что меньше 0 , приводит к нулевой активации.

Также важны производные этих функций (т. Колмогорова и для реализации градиентного спуска).

Output Activations/Functions • "Как вывести / спрогнозировать результат"

Problem	Description	Name	Function
Binary classification	• Вероятность выхода для каждого класса в (0,1)	Sigmoid	$f(x) = \frac{1}{1 + e^{-x}}$
Multi-class classification	 Вероятность выхода для каждого класса в (0,1) Сумма выходных данных должна быть 1 (распределение вероятностей) Обучение способствует повышению значений целевого класса, снижению других 	Softmax	$f(x_i) = \frac{\exp(x_i)}{\sum_i \exp(x_i)}$
Regression		Linear/ ReLU	$f(x) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$

Создание и обучение нейронной сети (Build and Train a Neural Network)

Мы строим нейронную сеть для задачи бинарной классификации с:

- (без смещения (bias) для простоты)
- 2 inputs: x = 0.5 and $x_2 = 0.1$
- 1 hidden layer with 2 neurons
- 1 output neuron in the output layer
- Все нейроны имеют sigmoid activation function: $f(x) = \frac{1}{1 + e^{-x}}$

$$\sigma'(x)=(1+\sigma(x))\cdot(1-\sigma(x))$$
 — для гиперболического тангенса h $x=rac{\sh x}{\ch x}=rac{e^x-e^{-x}}{e^x+e^{-x}}=rac{e^{2x}-1}{e^{2x}+1}$ $\sigma'(x)=\sigma(x)\cdot(1-\sigma(x))$ — для логистической функции

Прямое распространение (Forward Pass)

$$w_1 = 0.15, w_2 = 0.25, w_3 = 0.2, w_4 = 0.3,$$

 $w_5 = 0.4, w_6 = 0.45$:

$$h_1^{(in)} = w_1 * x_1 + w_2 * x_2$$

= 0.15 * 0.5 + 0.25 * 0.1 = 0.1

$$h_1^{(out)} = \frac{1}{1 + e^{-h_1^{(in)}}} = \frac{1}{1 + e^{-0.1}} = 0.52$$

По аналогии,

$$h_2^{(in)} = 0.13, h_2^{(out)} = 0.53$$

Прямое распространение (Forward Pass)

$$w_1 = 0.15, w_2 = 0.25, w_3 = 0.2, w_4 = 0.3,$$

 $w_5 = 0.4, w_6 = 0.45$:

$$o^{(in)} = w_4 * h_1^{(out)} + w_5 * h_2^{(out)}$$
$$= 0.4 * 0.52 + 0.45 * 0.53 = 0.44$$

$$o^{(out)} = \frac{1}{1 + e^{-o^{(in)}}} = \frac{1}{1 + e^{-0.44}} = 0.61$$

Для двоичной классификации мы бы классифицировали эту точку входных данных (0,5,0,1) как класс 1 (как 0,61>0,5).

Cost Functions

• "How to compare the outputs with the truth?"

Problem	Name	Function	Notes	
Binary classification	Cross entropy for logistic	$C = -\frac{1}{n} \sum_{examples} y \ln(p) + (1 - y) \ln(1 - p)$	Обозначения для классификации • n = training examples • i = classes • p = prediction (probability)	
Multi-class classification	Cross entropy for Softmax	$C = -\frac{1}{n} \sum_{examples} \sum_{classes} y_i \ln(p_i)$	• y = true class (1/yes, 0/no)	
Regression	Mean Squared Error	$C = \frac{1}{n} \sum_{examples} (y - p)^2$	Обозначения for Regression • n = training examples • p = prediction (numeric,) \hat{y} • y = true value	

Обучение нейронных сетей – метод обратного распространения ошибки (Backpropagation)

- Функция стоимости (Cost) выбирается в зависимости от задачи: двоичная, мультиклассовая классификация или регрессия.
- Обновите веса сети, применив метод градиентного спуска и обратное распространение ошибки.

• Формула обновления веса:

$$w_{new} = w_{old} - learning_rate * iggledown_{\overline{\partial w}} iggreap C$$
: Cost Gradient no w

Обучение (Training)

Чтобы «обучить» модель, нам нужно оптимизировать функцию стоимости C(w).

- Также называется целевой функцией или функцией потерь.
- w относится к весам / параметрам / коэффициентам модели
- Обратное распространение ищет веса, которые минимизируют функцию стоимости.

Градиентный спуск (Gradient descent):

- Метод оптимизации, используемый для обучения нейронных сетей
- Итеративное движение в направлении наискорейшего спуска
- При каждом обновлении веса:

$$w_{new} := w_{old} - \Delta w$$
, where $\Delta w = \text{learning_rate} * \frac{\partial C}{\partial w_{old}}$

Gradient πο w_{old}

Gradient Descent

Learning Rate

Обновление веса ∆w - это произведение скорости обучения *η* и отрицательного градиента функции стоимости

Метод обратного распространения ошибки (англ. backpropagation) — метод вычисления градиента, который используется при обновлении весов многослойного перцептрона. Впервые метод был описан в 1974 г. А.И. Галушкиным, а также независимо и одновременно Полом Дж. Вербосом. Далее существенно развит в 1986 г. Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно С.И. Барцевым и В.А. Охониным. Это итеративный градиентный алгоритм, который используется с целью минимизации ошибки работы многослойного перцептрона и получения желаемого выхода.

Основная идея этого метода состоит в распространении сигналов ошибки от выходов сети к её входам, в направлении обратном прямому распространению сигналов в обычном режиме работы. Для возможности применения метода обратного распространения ошибки функция активации нейронов должна быть дифференцируема. Метод является изменением классического метода градиентного спуска.

Обозначим через $w_{i,j}$ вес, стоящий на ребре, соединяющем i-й и j-й узлы, а через o_i выход i-го узла. Если нам известен обучающий пример (правильные ответы сети t_k), то функция ошибки, полученная по методу наименьших квадратов, выглядит так: $E(\{w_{i,j}\}) = \frac{1}{2} \sum_{k \in \mathrm{Outputs}} (t_k - o_k)^2$

Как модифицировать веса? Мы будем реализовывать стохастический градиентный спуск, то есть будем подправлять веса после каждого обучающего примера и, таким образом, «двигаться» в многомерном пространстве весов. Чтобы «добраться» до минимума ошибки, нам нужно «двигаться» в сторону, противоположную градиенту, то есть, на основании каждой группы правильных ответов, добавлять к каждому весу

$$\Delta w_{i,j} = -\eta rac{\partial E}{\partial w_{i,j}},$$

где $0 < \eta < 1$ — множитель, задающий скорость «движения».

Производная считается следующим образом. Пусть сначала $j \in \mathrm{Outputs}$, то есть интересующий нас вес входит в нейрон последнего уровня. Сначала отметим, что $w_{i,j}$ влияет на выход сети только как часть суммы $S_j = \sum_i w_{i,j} x_i$, где сумма берётся по входам j-го узла. Поэтому

$$rac{\partial E}{\partial w_{i,j}} = rac{\partial E}{\partial S_j} \, rac{\partial S_j}{\partial w_{i,j}} = x_i rac{\partial E}{\partial S_j}$$

Аналогично, S_j влияет на общую ошибку только в рамках выхода j-го узла o_j (напоминаем, что это выход всей сети). Поэтому

$$egin{aligned} rac{\partial E}{\partial S_j} &= rac{\partial E}{\partial o_j} \, rac{\partial o_j}{\partial S_j} = \Bigg(rac{\partial}{\partial o_j} \, rac{1}{2} \sum_{k \in ext{Outputs}} (t_k - o_k)^2 \Bigg) \Bigg(rac{\partial \operatorname{f}(S)}{\partial S}|_{S = S_j}\Bigg) = \ &= \Bigg(rac{1}{2} \, rac{\partial}{\partial o_j} (t_j - o_j)^2 \Bigg) \, (o_j (1 - o_j)) 2lpha = -2lpha o_j (1 - o_j) (t_j - o_j). \end{aligned}$$

Если же j-й узел — не на последнем уровне, то у него есть выходы; обозначим их через Children(j). В этом случае

$$rac{\partial E}{\partial S_j} = \sum_{k \in \mathrm{Children}(j)} rac{\partial E}{\partial S_k} \; rac{\partial S_k}{\partial S_j},$$

И

$$rac{\partial S_k}{\partial S_j} = rac{\partial S_k}{\partial o_j} \; rac{\partial o_j}{\partial S_j} = w_{j,k} rac{\partial o_j}{\partial S_j} = 2 lpha w_{j,k} o_j (1-o_j).$$

 α — коэффициент инерциальности для сглаживания резких скачков при перемещении по поверхности целевой функции (в функции активации - константа).

Но $\dfrac{\partial E}{\partial S_k}$ — это в точности аналогичная поправка, но вычисленная для узла следующего уровня.

Поскольку мы научились вычислять поправку для узлов последнего уровня и выражать поправку для узла более низкого уровня через поправки более высокого, можно уже писать алгоритм. Именно из-за этой особенности вычисления поправок алгоритм называется алгоритмом обратного распространения ошибки (backpropagation):

• для узла последнего уровня

$$\delta_j = -2lpha o_j (1-o_j)(t_j-o_j)$$

• для внутреннего узла сети

• для всех узлов

$$\Delta w_{i,j} = -\eta \delta_j o_i$$
 ,

где o_i это тот же x_i в формуле для $\dfrac{\partial E}{\partial w_{i,j}}$

Алгоритм: *BackPropagation* $(\eta, \alpha, \{x_i^d, t^d\}_{i=1,d=1}^{n,m}, ext{steps})$

- 1. Инициализировать $\{w_{ij}\}_{i,j}$ маленькими случайными значениями, $\{\Delta w_{ij}\}_{i,j}=0$
- 2. Повторить NUMBER_OF_STEPS раз:

.Для всех d от 1 до m:

- 1. Подать $\{x_i^d\}$ на вход сети и подсчитать выходы o_i каждого узла.
- 2. Для всех $k \in Outputs$

$$\delta_k = -o_k(1-o_k)(t_k-o_k).$$

3. Для каждого уровня І, начиная с предпоследнего:

Для каждого узла ј уровня I вычислить

$$\delta_j = o_j (1 - o_j) \sum_{k \in Children(j)} \delta_k w_{j,k}.$$

4. Для каждого ребра сети {i, j}

$$egin{aligned} \Delta w_{i,j}(n) &= lpha \Delta w_{i,j}(n-1) + (1-lpha) \eta \delta_j o_i \,. \ w_{i,j}(n) &= w_{i,j}(n-1) - \Delta w_{i,j}(n). \end{aligned}$$

3. Выдать значения w_{ij} .

Резюме: жаргоны глубокого обучения

Model Design

- Architectures (# число слоев (layer), нейронов слое, взаимосвязи между слоями и нейронами и др.)
- Activation Function
 - Дифференцируемое «нелинейное отображение» (A differentiable "nonlinear mapping")
- Output Function
 - Предсказываемая функция "y" (A function to **predict**)
- Cost/Loss Function
 - Дифференцируемая функция для оптимизации модели (A differentiable function to optimize the model)
- Evaluation Function
 - Часто недифференцируемая функция для оценки модели (An often non-differentiable function to evaluate the model)

Dropout (исключение, прореживание)

- Техника регуляризации для предотвращения переобучения.
- Случайным образом удаляет некоторые узлы с фиксированной вероятностью во время обучения.

MLP with one hidden layer

Hidden layer after dropout

h₁

h₂

h₃

h₄

h₅

h₁

x₁

x₂

x₃

x₄

Hidden layer after dropout

Почему нейронные сети?

- Автоматически извлекайте полезные функции из входных неструктурированных данных: фото, видео, тексты и др.
- В последние годы глубокое обучение достигло самых современных результатов во многих областях машинного обучения.
- Три столпа глубокого обучения :
 - Data
 - Compute
 - Algorithms

Создание и обучение нейронных сетей (Build and Train Neural Networks)

- Как создавать и использовать эти модели? машинного обучения?
- Неужели все может быть так просто?

```
(nn.Dense(64 ,activation='relu'),  # Layer 1
nn.Dropout(.4),  # Apply random 40% dropout to
nn.Dense(128, activation='relu'),  # Layer 2
nn.Dropout(.3),  # Apply random 30% dropout to
nn.Dense(1, activation='sigmoid'))  # Output layer
```


AutoML

AutoML

AutoML помогает автоматизировать некоторые задачи, связанные с разработкой и обучением модели машинного обучения, например:

- Preprocessing and cleaning data
- Feature selection
- ML model selection
- Hyper-parameter optimization

Auto GLUO NAuto ML

- AutoML Toolkit (AMLT) с открытым исходным кодом, созданный Amazon AI.
- Простота использования встроенное приложение

Tabular Prediction

Image Classification

Object Detection

Text Classification

Auto CLUO AutoML

C AutoGluon современные результаты машинного обучения могут быть достигнуты с помощью нескольких строк кода Python.

```
>>> from autogluon import TabularPrediction as task
>>> predictor = task.fit(train_data=task.Dataset(file_path=TRAIN_DATA.csv), label=COLUMN_NAME)
>>> predictions = predictor.predict(task.Dataset(file_path=TEST_DATA.csv))
```


Спасибо