United International University (UIU)

7

Dept. of Computer Science and Engineering (CSE)
Final Examination Trimester: Summer 2022
Course: CSE 2215 Data Structure and Algorithms-I
Total Marks: 40, Time: 2 hours

(Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules)

There are FOUR questions. Answer all of them. Figures in the right-hand margin indicate full marks.

ļ.	 a) Draw a binary tree using the data given below, where x, y, z, p, r, t, u and v are nodes of the tree. 	[1]
	y p z x r t u v	
	Here, x=last two digits of your student id+5, $y=x+3$, $z=x+y$, $p=y+z$, $r=x+2$, $t=p+r$, $u=600$, $v=700$	
	b) Traverse the binary tree of Ques. I(a) using the preorder, inorder, and postorder techniques.	141
	Level each of the nodes of the tree. Also find the height of the tree using level.	[4]
	c) Draw a binary tree from the following Preorder and Inorder sequences	tal
	Preorder: x y p r z t v u	[2]
	Inorder: pyrxtvzu	
	Here, $x=!$ ast two digits of your student id+5, $y=x+3$, $z=x+y$, $p=y+z$, $r=x+2$, $t=p+r$, $u=600$, $v=700$	
	d) Write an algorithm for the level order. Show the simulation for the tree in Ques. 1(a).	[3]
2.	following operations, where both OUFLIEs are implemented by	[3]
	Enqueue and Dequeue mean insert and delete respectively, and x=last two digits of your student id+5, y=x+3, z=x+y and p=y+z.	
	Enqueue(z), Enqueue(p), Dequeue(), Enqueue(y), Enqueue(z), Dequeue()	
	b) Draw a complete binary tree and then build the min-heap tree from the following data, where x= last two digits of your student id+150, y=x+130, and z=x+y. Finally, sort the data in descending order using the heapsort algorithm. 10 x 20 z y 8	[5]
	c) Two disjoint sets {y, p, z, x} and {r, t} are given, where maximum one of a set is the representative of that set. Determine UNION(Find(x), Find(t)). How can you check x and y are in the same set using Find operation? Here, x=last two digits of your student id+9, y=x+3, z=x+y, p=y+z, r=x+2, t=700.	[2]
3.	a) Draw a directed acyclic graph using the vertices y, p, z, x, r and u, where x=last two digits of your student id+5, y=x+3, z=x+y, p=y+z, r=x+2, u=p+r	[1]
	b) Construct an Adjacency Marix and an Adjacency List for the graph in Ques. 3(a).	[21
		[3]
	c) Write an algorithm for Topological Sorting. Show the simulation of your algorithm using the graph in Ques. 3(a).	[4]
	d) Draw a sparse and a dense graph using the vertices y, p, z, x, and r, where x=last two digits of your student id+5, $y=x+3$, $z=x+y$, $p=y+z$, $r=x+2$	[2]

- 4. a) Draw an undirected graph using the vertices y, p, z, x and r, where x=last two digits of your student id+5, y=x+3, z=x+y, p=y+z, r=x+2. Also find the Depth First Search (DFS) sequence from the graph considering x is the starting vertex.
 - t) Construct a binary search tree (BST) using the nodes y, p, z, x, r and t, where x=last two digits of your student id+5, y=x+3, z=x+y, p=y+z, r=x+2, t=900. Show the insertion and deletion of p+r and z, respectively in/from the BST.
- c) Write an algorithm to display all the elements stored in a QUEUE implemented by an array. [2]
- d) Which Data Structures are appropriate to implement the following and why?
- i) Different areas of Dhaka City with distances
- ii) Line in front of a Lift
- iii) Binary Tree Construction

[3]