There are 66 decision variables

- 60 (10 x 6) are for variable cost...how much it cost to send from warehouse to distribution center (how much should we send from each warehouse to each distribution center?)
- 6 are binary decision variables (should this location be used for a warehouse?)

Distribution Centers

		Alb	Boise	Dall	Denv	Hous	Okla	Phoe	Salt	SanA	Wich
	Warehouses										
Y ₁	Albuquerque	X 1,1	X 1,2	X 1,3	X 1,4	X 1,5	X 1,6	X 1,7	X 1,8	X 1,9	X 1,10
Y ₂	Dallas	X 2,1	X 2,2	X 2,3	X 2,4	X 2,5	X 2,6	X 2,7	X 2,8	X 2,9	X 2,10
Y_3	Denver	•			•					•	
Y_4	Houston	•			•					•	
Y ₅	Pheonix	•			•					•	
Y_6	San Antonio	X 6,1	X 6,2	X 6,3	X 6,	4 X 6,5	X 6,6	X 6,7	X 6,8	X 6,9	X 6,10

Variable cost....depends on quantity being shipped from warehouse to distribution center (6x10)=60

Distribution Centers

Wareho	ouses
--------	-------

Y_1	Albuquerque
-------	-------------

Y₂ Dallas

Y₃ Denver

Y₄ Houston

Y₅ Pheonix

Y₆ San Antonio

X 1,2	X 1,3	X 1,4	X 1,5	X 1,6	X 1,7	X 1,8	X 1,9	X 1,10
X 2,2	X 2,3	X 2,4	X 2,5	X 2,6	X 2,7	X 2,8	X 2,9	X 2,10
		•				•		
		•				•		
X 6,2	X 6,3	X 6,4	X 6,5	X 6,6	X 6,7	X 6,8	X 6,9	X 6,10
	X 2,2	X2,2 X2,3	X2,2 X2,3 X2,4 • •	X2,2 X2,3 X2,4 X2,5 • • •	X2,2 X2,3 X2,4 X2,5 X2,6 • • •	X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 • • • •	X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8	X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8 X2,9

Alb Boise Dall Denv Hous Okla Phoe Salt SanA Wich

Fixed cost (binary variables)...only incur cost if make into warehouse

Distribution Centers

		Alb	Boise	Dall	Denv	Hous	Okla	Phoe	Salt	SanA	Wich
	Warehouses										
Y ₁	Albuquerque	X 1,1	X 1,2	X 1,3	X 1,4	X 1,5	X 1,6	X 1,7	X 1,8	X 1,9	X 1,10
Y_2	Dallas	X 2,1	X 2,2	X 2,3	X 2,4	X 2,5	X 2,6	X 2,7	X 2,8	X 2,9	X 2,10
Y_3	Denver	•			•				•		
Y_4	Houston	•			•				•		
Y_5	Pheonix	•			•				•		
Y_6	San Antonio	X 6,1	X 6,2	X 6,3	X 6,4	X 6,5	X 6,6	X 6,7	X 6,8	X 6,9	X 6,10

Objective Function

• Minimize Cost: Variable cost + Fixed Cost

Objective function

Minimize cost (variable cost and fixed cost)

Location	Alb	Boise	Dall	Denv	Hous	Okla	Phoe	Salt	SanA	Wich
Albuquerque	0	47	32	22	42.5	27	23	30	36.5	29.5
Dallas	32	79.5	0	39	12.5	10.5	50	63	13.5	17
Denver	21	42	39	0	51.5	31.5	40.5	24	47.5	26
Houston	42.5	91	12.5	51.5	0	23	58	72	10	31
Pheonix	23	49	50	40.5	58	49	0	32.5	50	52
San Antonio	36.5	83.5	13.5	47.5	10	24	50	66.5	0	32

Objective function

Minimize cost (variable cost and fixed cost)

COST = 0*x[1,1] + 47*x[1,2] + 32*x[1,3] + 22*x[1,4] + 42.5*x[1,5] + 27*x[1,6] + 23*x[1,7] + 30*x[1,8] + 36.5*x[1,9] + 29.5*x[1,10] +0*x[6,9] + 32*x[6,10]

+140000*Y1 +150000*Y2 + 100000*Y3 + 110000*Y4 +125000*Y5 + 120000*Y6 (fixed cost)

Center / Warehouse	Volume	Capacity	Cost
Albuquerque (W)	3,200	16,000	\$140,000
Boise	2,500		
Dallas (W)	6,800	20,000	\$150,000
Denver (W)	4,000	10,000	\$100,000
Houston (W)	9,600	10,000	\$110,000
Oklahoma City	3,500		
Phoenix (W)	5,000	12,000	\$125,000
Salt Lake City	1,800		
San Antonio (W)	7,400	10,000	\$120,000
Wichita	2,700		

Subscript i will denote warehouses and subscript j will denote distribution centers

Now for formula....

- Cost matrix denoted by C_{i,j} corresponds to decision variable x_{i,j}
- Warehouse Cost denoted by WC_i corresponds to decision variable y_i (notice that subscripts match…very important!!)

Now for formula....

- Cost matrix denoted by Ci,j corresponds to decision variable xi,j
- Warehouse Cost denoted by WC_i corresponds to decision variable yi (notice that subscripts match...very important!!)

OBJECTIVE FUNCTION:

$$\Sigma_{i}\Sigma_{j}C_{i,j}^{*}x_{i,j} + \Sigma_{i}WC_{i}^{*}Y_{i}$$

First constraint:

WAREHOUSE CAPACITY:

• Warehouse 1: $x_{1,1}+x_{1,2}+x_{1,3}+x_{1,4}+x_{1,5}+x_{1,6}+x_{1,7}+x_{1,8}+x_{1,9}+x_{1,10}$

First constraint:

WAREHOUSE CAPACITY:

- Warehouse 1: $x_{1,1}+x_{1,2}+x_{1,3}+x_{1,4}+x_{1,5}+x_{1,6}+x_{1,7}+x_{1,8}+x_{1,9}+x_{1,10}$
- $\Sigma_j x_{1,j} \ll Capacity_1$

Capacity₁ is from the Capacity vector

First constraint:

For i 1..6: $\Sigma_j x_{i,j} \ll \text{Capacity}_i$

Second constraint:

VOLUME FOR DISTRIBUTION CENTER

• Distribution center 1: $x_{1,1} + x_{2,1} + x_{3,1} + x_{4,1} + x_{5,1} + x_{6,1}$ (remember, distribution centers are the 'j' 's

Second constraint:

VOLUME FOR DISTRIBUTION CENTER

• For j 1..10: $\Sigma_i x_{i,j} = Demand_j$

(Demand_i is from the Demand vector)

LINKING CONSTRAINT:

- Formula from earlier x<=Max(x)*y</p>
- In this situation, x is the amount from that warehouse, so from warehouse 1:

$$x_{1,1}+x_{1,2}+x_{1,3}+x_{1,4}+x_{1,5}+x_{1,6}+x_{1,7}+x_{1,8}+x_{1,9}+x_{1,10} \le 16000^*Y_1$$

LINKING CONSTAINT:

- Formula from earlier x<=Max(x)*y</p>
- In this situation, x is the amount from that warehouse, so from warehouse 1:

 $x1,1+x1,2+x1,3+x1,4+x1,5+x1,6+x1,7+x1,8+x1,9+x1,10 <= Capacity_1*Y_1$

Formula: $\Sigma_j x_{1,j} \leftarrow \text{Capacity}_1 Y_1$

LINKING CONSTRAINT:

For i 1..6: $\Sigma_j x_{i,j} \le \text{Capacity}_i^* Y_i$

Putting everything together

- Objective function: Minimize $\Sigma_i \Sigma_j C_{i,j} * x_{i,j} + \Sigma_{iW} C_i * Y_i$
- Subject to:

```
For i 1..6: \Sigma_i x_{i,j} \ll \text{Capacity}_i
```

For j 1..10: $\Sigma_i x_{i,i} = Demand_i$

For i 1..6: $\Sigma_j x_{i,j} \le \text{Capacity}_i Y_i$

If you wrote out each statement individually, you would have a total of 6 + 10 + 6 = 22 statements

You could also combine constraint 1 and constraint 3 (the linking constraint also constrains the maximum amount at each warehouse...this would give 16 statements....both ways are correct

```
m = Model("Levinson Foods Company")
# Warehouse demand in thousands of units
demand = [3200, 2500, 6800, 4000, 9600, 3500, 5000, 1800, 7400, 2700]
# Plant capacity in thousands of units
capacity = [16000, 20000, 10000, 10000, 12000, 10000]
# Fixed costs for each plantfixed
Costs = [140000, 150000, 100000, 110000, 125000, 120000]
# Transportation costs per thousand units
transCosts = [[0, 47, 32, 22, 42.5, 27, 23, 30, 36.5, 29.5],
             [32, 79.5, 0, 39, 12.5, 10.5, 50, 63, 13.5, 17],
             [21, 42, 39, 0, 51.5, 31.5, 40.5, 24, 47.5, 26],
             [42.5, 91, 12.5, 51.5, 0, 23, 58, 72, 10, 31],
             [23, 49, 50, 40.5, 58, 49, 0, 32.5, 50, 52],
             [36.5, 83.5, 13.5, 47.5, 10, 24, 50, 66.5, 0, 32]]
# Range of plants and warehouses
plants = len(demand) #should be 10
warehouses = len(capacity) #should be 6
# Add Variables (66 total)
x = {} #transportation amounts (continuous)
```

y = {} #warehouse binary

```
#binary for if a warehouse is open (1-6)
for i in range(warehouses):
 y[i] = m.addVar(vtype=GRB.BINARY, name='y%d' % i)
#variable for every warehouse/plant transportation amount (1-60)
for i in range(warehouses):
 for j in range(plants):
  x[(i,j)] = m.addVar(vtype=GRB.CONTINUOUS, lb=0, name='t%d,%d' % (i,j))
# Add Constraints
for i in range(warehouses):
 m.addConstr(quicksum(x[(i,j)] for j in range(plants)) - y[i]*capacity[i] <= 0)
#Plant with binding constraint for demand (10 constraints)
for j in range(plants):
 m.addConstr(quicksum(x[(i,j)] for i in range(warehouses)) == demand[j])
m.setObjective(quicksum(y[i]*fixedCosts[i] + quicksum(x[(i,j)]*transCosts[i][j]
for j in range(plants)) for i in range(warehouses)), GRB.MINIMIZE)
# Optimize
m.optimize()
```

y0: 0 ## y1: 1 ## y2: 1 ## y3: 1 ## y4: 1 ## y5: 0

Albuquerque	Dallas	Denver	Houston	Pheonix	San Antonio
## t0,0: 0	## t1,0: 0	## t2,0: 1700	## t3,0: 0	## t4,0: 1500	## t5,0: 0
## t0,1: 0	## t1,1: 0	## t2,1: 2500	## t3,1: 0	## t4,1: 0	## t5,1: 0
## t0,2: 0	## t1,2: 6800	## t2,2: 0	## t3,2: 0	## t4,2: 0	## t5,2: 0
## t0,3: 0	## t1,3: 0	## t2,3: 4000	## t3,3: 0	## t4,3: 0	## t5,3: 0
## t0,4: 0	## t1,4: 0	## t2,4: 0	## t3,4: 9600	## t4,4: 0	## t5,4: 0
## t0,5: 0	## t1,5: 3500	## t2,5: 0	## t3,5: 0	## t4,5: 0	## t5,5: 0
## t0,6: 0	## t1,6: 0	## t2,6: 0	## t3,6: 0	## t4,6: 5000	## t5,6: 0
## t0,7: 0	## t1,7: 0	## t2,7: 1800	## t3,7: 0	## t4,7: 0	## t5,7: 0
## t0,8: 0	## t1,8: 7000	## t2,8: 0	## t3,8: 400	## t4,8: 0	## t5,8: 0
## t0,9: 0	## t1,9: 2700	## t2,9: 0	## t3,9: 0	## t4,9: 0	## t5,9: 0