Likelihood of Concern Satisfaction

Thanh H. Nguyen

New Mexico State University tnguyen@cs.nmsu.edu

December 2, 2019

Physical CPS System

Definition

A physical CPS system S is a tuple (C, A, F, R) where:

- C is a set of physical components.
- A is a finite set of actions that can be execute over CPS system.
- F is a finite set of fluent literals.
- R is a set of relations that map each physical component $c \in C$ with a set of physical component properties that are defined in CPS Ontology. For any $r \in R$, $r : C \longrightarrow 2^P$. P is set of all properties that are defined in CPS ontology. The predicate relation(c,p) $\in R$ denotes that component $c \in C$ is related with property $p \in P$ in system S.

Idea: Likelihood of Concerns Satisfaction

- A component was added to calculate the likelihood that concerns are satisfied. This was computed by:
 - Percentage of properties/requirements with positive impact that are satisfied the concerns vs the total number of properties/requirements with positive impact, and
 - Recursively aggregating the likelihood that its subconcerns are satisfied.

Representation the knowledge from Ontology

- **Step 1:** Representation of concerns, properties and their relations from CPS Ontology by predicates concern/1, property/1, subconcern/2, addressedBy/2, addressesConcern/2, etc.
- Step 2: Representation the polarity impacts of properties/requirements R from CPS Ontology by predicates addressesPolarity(R,P). In which, P=pos/neg denotes that properties/requirements R impacts positively/negatively respectively.
- **Step 3:** Representation the satisfaction of properties/requirements *R* from CPS Ontology by predicates body_satisfied(R,S) denotes that properties/requirements *R* is satisfied at step S of evolution.

Reasoning degree of satisfaction of the concern

- **Step 4:** Compute the degree of satisfaction of positively-impacting properties/requirements. $degree_impacted_pos(c, S)$ denotes the degree of satisfaction of concern c based on its positively-impacting properties/requirements at step S.
 - N_1 is the number of properties/requirements which (positively-impacting) \land (address the considered concern) \land (are satisfied)
 - N₂ is the number of properties/requirements which (positively-impacting) ∧ (address the considered concern)
 - degree_impacted_pos(c, S) = $\begin{cases} \frac{N_1}{N_2} * 100, & \text{if } N_2 \neq 0 \\ 100, & \text{if } N_2 = 0 \end{cases}$

Reasoning Likelihood of concern satisfaction

- Step 5: Compute Likelihood of considered concern satisfaction: Recursively aggregating the likelihood of a concern based on the likelihoods of its satisfied subconcerns.
 - Predicate lh_sat(c,S) is the likelihood value of the satisfaction of concern c at step S of evolution.
 - Predicate lh_sat_sub(c,S) is the likelihood value of the satisfaction of subconcern(s) of concern c at step S.
 - $lh_sat(c, S) = \frac{lh_sat_sub(c, S) * degree_impacted_pos(c, S)}{100}$

Reasoning Likelihood of concern satisfaction

- **Step 6:** Recursively compute likelihood of subconcerns satisfaction. $Ih_sat_sub(c,S) = \begin{cases} Ih_sat_sub_aux(c,S), & \text{if } c \text{ has sub-concerns} \\ 100, & \text{if } c \text{ has no any sub-concerns} \end{cases}$ In which, $Ih_sat_sub_aux(c,S) \text{ is the likelihood of satisfaction of biggest sibling concern among the subconcerns of concern } c.$
- Step 7: Compute $lh_sat_sub_aux(c, S)$

$$Ih_sat_sub_aux(c,S) = \begin{cases} Ih_sat_sub_aux(c,S), & \text{if } c \text{ has sub-concerns} \\ 100, & \text{if } c \text{ has no any sub-concerns} \end{cases}$$