Behavioral Economics Exercise 5 Behavioral Game Theory

経済学研究科 23A18014 Reio TANJI 丹治伶峰

Question 1 (a) Every type of seller chooses to disclose her own type i=L,M,H, and $p=v_i$. If the seller disclosed her type, the buyer purchases iff $v_i \geq p$, otherwise purchase iff $\epsilon \geq p$.

When the type is concealed, rational buyer evaluates lemon by its expected value:

$$E(v) = v_L \cdot \hat{q}_L + v_M \cdot \hat{q}_M + (1 - \hat{q}_L - \hat{q}_M) > v_H = 1$$

where \hat{q}_i denotes her belief about each q_i , and buy only if $E(v) \geq p$.

Then, type-H seller raise her profit by disclosing and set p=1, and the buyer revises her belief: If the seller did not disclose her type, then $\hat{q}_H=0$, and so

$$E(v) = v_L \cdot \hat{q}_L + v_M \cdot \hat{q}_M > v_M$$

Again, there is an incentive for type-M seller to disclose and set $p=v_M$, and finally, the buyer predicts $\hat{q}_L=1$, and the expected value $E(v)=v_L=\epsilon$, which makes type-L seller to disclose and set $p=\epsilon$.

(b) When the buyer is fully cursed, she predicts the expected value if the private information was hidden is : $\hat{q}_i = q_i$ for each $i \in L, M, H$

$$E(v) = v_L \cdot q_L + v_M \cdot q_M + (1 - q_L - q_M) \equiv E$$

and purchase iff E(v) > p.

Note that when the type was disclosed, the buyer purchase iff $v_i > p$.

In Stage 1, then,

- Type-H seller : $v_H = 1 > E$ She discloses her type and set p = 1.
- Type-L seller : v_L = ε < E
 She conceal her private information and set p = E.
- Type-M seller : $v_M \in (\epsilon, 1)$ Her strategy is conditional on the value of v_M . If $v_M \geq E$, then she disclose her type and set $p = v_M$. Otherwise, $v_M < E$, she conceal and set p = E.

(c) By the assumption, in this question, χ -cursed buyer's belief is:

$$\begin{cases} \hat{q}_L = 1 & \text{if "rational"} \\ \hat{q}_i = q_i & \text{if "cursed"} \end{cases}$$

Note that if $p>v_L=\epsilon$, then "rational" buyer revises her belief same as "cursed." Suppose the seller is type-L. Then, there are some possible strategies as follows:

• disclose, and set $p = \epsilon$ The seller's expected payoff is:

$$(1 - \chi)\epsilon + \chi\epsilon = \epsilon$$

• conceal, and $p = \epsilon$

$$(1 - \chi)\epsilon + \chi\epsilon = \epsilon$$

• conceal, and $p = E = v_L \cdot q_L + v_M \cdot q_M + (1 - q_L - q_M)$ The "rational" buyer behave as if she is "cursed," since p = E is off-path. Then ,the seller's expected payoff is :

$$(1-\chi)E + \chi E = E$$

which yields the best response for the seller. This strategy, however, cannot be a perfect Bayesian Nash equilibrium, since the buyer's bilief is not consistent.

Thus, there is no equilibrium strategies.

(d)