DSI_06- HW9 pg 550

Julia Gallucci

2023-03-13

- 9. Consider the USArrests data. We will now perform hierarchical clustering on the states.
- (a) Using hierarchical clustering with complete linkage and Euclidean distance, cluster the states.

```
#install.packages("ISLR2") Install package if you haven't already
library(ISLR2) #load library
attach(USArrests) #attach dataset
head(USArrests)
```

```
Murder Assault UrbanPop Rape
## Alabama
              13.2
                       236
                                58 21.2
## Alaska
              10.0
                       263
                                48 44.5
## Arizona
               8.1
                       294
                                80 31.0
## Arkansas
              8.8
                      190
                                50 19.5
## California
               9.0
                       276
                                91 40.6
## Colorado
               7.9
                                78 38.7
                       204
```

US.cluster = hclust(dist(USArrests), method="complete") #fit a hierarchical cluster using complete link plot(US.cluster) #plot clustering

Cluster Dendrogram

dist(USArrests)
hclust (*, "complete")

(b

Cut the dendrogram at a height that results in three distinct clusters. Which states belong to which clusters? plot(US.cluster) + abline(h=150, col = "red") #visualize 3 clusters

Cluster Dendrogram

dist(USArrests)
hclust (*, "complete")

```
## integer(0)
US.clusters_3 <- cutree(US.cluster, k = 3)
print(US.clusters_3)</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California	
##	1	1	1	2	1	
##	Colorado	Connecticut	Delaware	Florida	Georgia	
##	2	3	1	1	2	
##	Hawaii	Idaho	Illinois	Indiana	Iowa	
##	3	3	1	3	3	
##	Kansas	Kentucky	Louisiana	Maine	Maryland	
##	3	3	1	3	1	
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri	
##	2	1	3	1	2	
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey	
##	3	3	1	3	2	
##	New Mexico	New York	North Carolina	North Dakota	Ohio	
##	1	1	1	3	3	
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina	
##	2	2	3	2	1	
##	South Dakota	Tennessee	Texas	Utah	Vermont	
##	3	2	2	3	3	
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming	
##	2	2	3	3	2	

print(table(US.clusters_3))

```
## US.clusters_3
## 1 2 3
## 16 14 20
```

(c) Hierarchically cluster the states using complete linkage and Euclidean distance, after scaling the variables to have standard deviation one.

```
USArrests_scaled <- as.data.frame(scale(USArrests)) #scale all variables in USArrests dataframe sd(USArrests_scaled$Murder) #confirm scaling worked!
```

```
## [1] 1
```

US.cluster_scaled = hclust(dist(USArrests_scaled), method="complete") #fit a hierarchical cluster using plot(US.cluster_scaled) #plot clustering

Cluster Dendrogram

dist(USArrests_scaled) hclust (*, "complete")

(d

What effect does scaling the variables have on the hierarchical clustering obtained? In your opinion, should the variables be scaled before the inter-observation dissimilarities are computed? Provide a justification for your answer.

US.clusters_3_scaled <- cutree(US.cluster_scaled, k = 3)
print(US.clusters_3_scaled)</pre>

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	1	2	3	2
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	3	3	2	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	3	3	2	3	3
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	3	3	1	3	2
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	3	2	3	1	3
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	3	3	2	3	3
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	2	2	1	3	3
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	3	3	3	3	1
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	3	1	2	3	3
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	3	3	3	3	3

```
print(table(US.clusters_3_scaled))
## US.clusters_3_scaled
##
   1 2 3
   8 11 31
table(US.clusters_3, US.clusters_3_scaled)
                US.clusters_3_scaled
## US.clusters_3 1 2 3
##
                  6 9 1
               1
               2
                  2 2 10
##
                  0 0 20
##
same_membership \leftarrow (6 + 2 + 20) / 50
```

Scaling of the variables does indeed change the cluster membership of certain states! It appears as though only 56% of states were assigned to the same membership when comparing scaled and non-scaled data. Scaling maybe useful for this dataset, given UrbanPop is recorded as a different unit (Percent), compared to Murder, Assault and Rape which are reported as per 100,000. (hint: use ?USArrests)