Exercice II-1

Déterminer la composition (% massique de chaque élément) des deux substances suivantes :

Exercice II-2

Quelle est la formule brute d'un hydrocarbure de composition : C = 85,63 % et H = 14,37 %? A quelle classe d'hydrocarbures appartient-il ?

(CH₂)n alcènes ou cycloalcanes

Exercice II-3

L'analyse élémentaire d'un composé de masse molaire 129 a révélé qu'il contenait 83,7% de carbone, 5,4% d'hydrogène et 10,8% d'azote. Déterminer la formule brute de ce composé. Donner deux formules développées possibles.

Exercice II-4

Le point de fusion d'une solution déterminé par la dissolution de 0,512 g d'une substance A dans 8,03 g de naphtalène est égale à 75,2 °C. Quelle est la masse molaire de A?

Le point de fusion du naphtalène pur est égal à 80,6 °C et sa constante cryoscopique est de 6,8 °C.kg/mol.

M = 80.3 g/mole

Exercice II-5

L'analyse d'une substance organique **A** a donné les résultats suivants :

1. Une solution contenant 1,3 g de **A** dans 100 g de benzène congèle à 4,41 °C.

Température de congélation du benzène : 5,50 °C. Constante cryoscopique du benzène : 5,12 °C.kg/mol.

- 2. L'analyse élémentaire effectuée sur 0,535 g de **A** a donné :
 - masse de CO₂ : 0,772 g
 - masse d'eau : 0,552 g
 - volume de di-azote (N2) : 110 cm 3 (mesuré à 25 °C sous une pression de 1010 hPa. Tension de vapeur de l'eau : 22,9 hPa)

Déterminer la formule brute de A et proposer une formule développée sachant que ce composé est optiquement actif.

Exercice II-6

Un composé organique contient 64,86% de carbone et 13,51% d'hydrogène. Une solution de 25 g de benzène contenant 80 mg de ce composé congèle à 5,28°C.

Température de congélation du benzène pur : 5,50 °C.

Constante cryoscopique du benzène :5,12 °C.kg/mol.

- Donner la formule de ce composé
- Donner toutes les formules développées possibles en indiquant le nom de chaque composé.

 $C_4H_{10}O$

 CH_3 - CH_2 - CH_2 - CH_2 OH: butan-1-ol CH_3 - CH_2 -CHOH- CH_3 : butan-2-ol

 $(CH_3)_2CH-CH_2OH:$ 2 méthylpropan-1-ol $(CH_3)_3COH:$ 2 méthylpropan-2-ol

CH₃-CH₂-O-CH₂-CH₃: éthoxy éthane, oxyde de diéthyle, éther diéthylique

 CH_3 - CH_2 - CH_2 -O- CH_3 : 1-méthoxypropane $(CH_3)_2$ -CH-O- CH_3 : 2-méthoxypropane

Exercice II-7

L'analyse élémentaire des composés suivants a révélé leurs teneurs en carbone, hydrogène, oxygène et azote. Déterminer pour chacun d'eux la formule brute et proposer une (ou plusieurs) formule développée possible.

N° composé	masse molaire	% carbone	% hydrogène	% azote
1	44	54,5	9,1	
2*	95	75,8	9,5	14,7
3	108	66,7	7,4	25,9
4	129	83,7	5,4	10,8

^{*}Pour le composé 2, on se limitera aux formules symétriques.

Composé 1 : C₂H₄O

$$CH_3$$
— C
 H
 CH_2
 CH_2
 CH_2
 H

Composé 2 : C₆H₉N

Composé $3: C_6H_8N_2$ Composé $4: C_9H_7N$

$$\begin{array}{c|c} C = N \\ \hline C = N \\ \hline CH = CH_2 \\ \hline \end{array}$$

Exercice II-8

Indiquez les principales bandes que l'on peut observer dans le spectre IR du propanal . Bandes caractéristiques de la fonction aldéhyde : C=O à 1725 cm $^{-1}$ et C-H à 2800 cm $^{-1}$ et vibration des liaisons C-C et C-H de la chaîne carbonée

Exercice II-9

Attribuez les différentes bandes du spectre IR de l'acétate d'éthyle.

2900 cm⁻¹: liaisons C-H

 1750 cm^{-1} : liaison C=O 1250 cm^{-1} : liaison C-O

les autres bandes correspondent aux vibrations des liaisons C-C et C-H

Exercice II-10

Le butanoate d'éthyle a été synthétisé à partir de l'acide butanoïque et de l'éthanol. On a effectué le spectre IR de ces trois composés. Attribuez un spectre IR à chacun des composés en indiquant les bandes qui ont permis de faire les attributions.

