Extreme value Theory Theorie des valeurs extrêmes
* Étudies les évenements extrêmes (nouves et noudire des
quantiles gremple: - estimen la proba d'une imondertion qui surviient tous les 200 ans - en finance, estimen la VAR et sa probe de survience. (VaR = inf(x \in 12. F(x) \in 2) }
(Var = inf(x =12) = a) }
Il existe trois approaches d'études des valeurs extrêmes
I L'appoche par blocs (Block messima)
- (Xi)i=1,, m des var iid.
- Mm - max (X1,, Xm)
- $M_m = max(x_1,, x_m)$ - $M_m = max(x_1,, x_m)$ le $M_m = M_m = M$
Theriene cli & Theriène cli & Theriè
to sit existe dam >0, m>13 et 6 6m EIR, m>13
a _m) m-sto
alons, $H(x) = \exp\left\{-\left(1+\frac{x-y}{\sigma}\right)^{-1/\epsilon}\right\}, 4+\frac{x-y}{\sigma}$
$= \exp\left(-\frac{\chi-\mu}{\sigma}\right)^{2}, \ \xi=0, \ \chi\in\mathbb{R}$
* l'est le param de porition (valeur type de (Xi)) * E est la param de forme (agit sur la variance a la position) * oest le param d'eshelle (agit sur la variana)
=> X suit donc une GEV (p.o. E) (Generalised Extrem value)

Pour determiner les constantes qui assure la limite vous une GEV (si elle existe), on fait appelle aux conditions de von Kises que necessite invitia lement des connaissemes our la lor de X-
was une 650 (Stell exist), on fait applie aux
de connacionemis our la los de X-
En pratique, on sijuste directement le modèle par maximum de vraisemblance, methode des moments ou vraisemblance profilé.
maximum de viai de moments
-su water puffer.
Conditions the von Misco. This nation: $(Cx) = (1-F(a))/f(x)$ $f(x) = f'(x-\frac{1}{m})$, $f(x) = f(bm)$, $f(x) = f(a)$
1/ Pouvode du retour et milieur de restain
If faut iterespont d'estimer un quantile d'une Gev (p,σ,ε) pour determinen la volun à pout de laquelle X dépasse cette volun over proba p. $(F(y_p) = 1-P)$ ($\Rightarrow p = 1-F(y_p)$)
d'une Ger (p,0,E) pour determinen la voileur à peut
The laquelle X departs cette reality area proba p.
$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)$
7p= 12-0-1-4-log(1-p) y-E
miveau de netres tole 1/p prediction
associal of un periods 1/p. prediction)
(en finance, ypert la Var)
Interprétation
le 1/p blocs (sousonalité) Pans un bloc, la proba que yp soit
dépassé est 1/p.
2/ Verification de la qualité du modèle
* QQ-FBd- empiriq
ha) hisraria
mode)
$ \sqrt{+1} $

4. Reparamitrisation
GEV (yo, or, E). Pe fait,
ψ: y _p + σ <u>-l-d-log(1-p)y</u> -ε
-> Cela permet d'aurir un IC pour le quantile -s change la valeur typique poix par la distribution.
?? Interêt
II- L'approche pour excès de seuil (peak ouver threshold - Threshold exceedances)
Un étudie deux ce cas les valeurs qui excédent un certain secuil.
Theorimede D-
Fix converge vers une GEV, alors
P(X>um(4+2)/X>um(2)3 -3-1-H(x)
ance united = amout for nether.
H(x) = \ - (4+62/c) , (+0
(1 - exp (-7/2), E=0
où Test le nouveau paramital d'echelle C= + E(u-y)
On dit que H(·) est une GPD(Z,E), beneralized Pareto Distribution.

1. Le shoir du seuit u. pout utiliser des mêthestes permettant d'avoir une idée sur le u (optimet).

(!! Dittution ou compromis bruis (u bas), vaience (u'élevé) Sat X-41 X>40 2GDD(I,E), along 4 m>40 X-41 X>4 ~ GPD(Z,E), == T+E(U-U0) Chrisque U est fien selectionné, longuion augmente le seul, la loi conditionnelle suit toujours une GPD avec une modification de paramitre d'échelle. 9/ approche MRL Si X-Molx> no ~GPD(TE), E 41, atom & u > mo, fonction lineaine de M. T(us) + EU est une 1 ~ Et de Wald (bynitrique) of trace une droite u Comportement normal quand u grand vobs. b) approche "Ponameters statisty" & X-UD/X>40 or GPO(C,E), atom Juzuo, X-41 X>4 NGPD(-,4), == 5+E(4-4.) => Ty(u) = T-EM = T+E(u-up)-EY = T-EMO.
les paramètres E et e des vent être constants poser
les seuis u voclèdes.

Lorsque le seriel en est pon, lorsqu'on l'augment les resultats sont assez statles, de fait le graph. de return cevel est sensiblement le même.

21 Return period et return level

$$= 3 \quad P(X \land y_p) = 1-p$$

$$= 3 \quad P(X \land y_p) = P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land y_p \mid X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land u) P(X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land u) P(X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land u) P(X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land y_p) = 1 \quad P(X \land u) P(X \land u) P(X \land u) = p$$

$$= 3 \quad P(X \land u) P$$

Clorgail n'y a pos u, yp m'est qu'un excès

Interprétation: Jo cot une valeur qui est depassé une fois tous les 1/p observations (ala depand de le unité. jour, trimestre, ...). Il est possible de le mettre à une autre echelle. 1/p.my.

exemple: lorsque les obs. sont en jous, je est supposé etre depassé ume fois tous les 1/p jours. Opendant, on pour travaille sur une echelle annuelle. Il y a my= 365 jours dans une amnée donc y, est depassé une fois tous les 1/pxmy ennuées.

On peut strenpreter la periode de retorn commu: "dans une periode, yo est excédé avec proba y,"

* => les extrances araivent uniformèment dans le temps.

11 = interpretation obatistique.

Jans un PPP pri fravaille rous et le. Un ajurte ainsi un PPP ayant une mesure d'intonnité:

Pour travailler à l'echelle arnevelle,

 $\Lambda d(a_1b) \times (x,\infty) = \text{Nyear } (b-a) \times (1-\epsilon \frac{x-y}{\sigma})^{-1/\epsilon}$

=> le mombre d'excis (>x) dans une année on moyenne est:

E[Ng(0,1/myen) x(x,0)] = / (10, n) em) x (7,0) }
= (1+ & x-4)-1/6

Le niveau y qui est depassi avec proba 1/5

T(1+E 3p-1)-1/6=> yp= p+0 pt-1

/! \ Je est uniquement calculi sur x>u.

TV- Cas Non Action naice.

En Evt, on feit l'hypothèse que à xi à ; id. Cependant il se peut que l'hypothèse d'independance (i), ou celle de la destribution identique Lid ne soient pas respectés.

Dans le contexte de sevie non stertionmaire, i e ETXEJ # p (mon consternte), Nou(Xt) # 52 (mon constante) cov(Xt, Xth) = f(h) (mon conclation, depend que de h), I'hypothère id n'est pour pespecté () aisonalité, tindama)

Il existe donc trois approvehes -
1/ Stationarise la sèrce (organit de saisonalité, tendance a statilisation de la variance)
toot de nondationmaité: Différenciation, moyenne mobile
2/ Restreindre le prenimitar d'étude (soisons extrêmes etc.) _> reflection à la construction de blocs
31 Integrer une saisonalité aux paramètres GEV, GPD et PPP.
exemple put = Bo + p, t
et EU) (très difficile à estimer).
Selection de noclèles. P
il est possible de tester la nu lité des colfficients => Test du Wald, rapport de vroisem Hance (modile emboité)
20t de r.v. $W = -2 \log \left(\frac{7(0)}{7(0)} \right) \frac{x^2(p)}{x^{-3}}$ Contraction to the decomplet contractions.
Cnodèle complet contraintes.
Test de Wald $\sqrt{n} \left(\vec{\theta} - \vec{\theta}_0 \right) \frac{1}{n + n} \mathcal{N}(0, \sigma^2)$
bous Ho, on $\vec{\partial} - \vec{\partial}o \longrightarrow \mathcal{N}(0, 1)$
Attache aux donnies
$\frac{\lambda(G)}{\lambda(G)} + 2n$
1310 - 2 lloi) + logen) xp (plus parcimonieux
de relictionment un mauxais modele