

期望DP

皇家赌场2

请同学简述题意 突出核心要点

简化问题找灵感

$$a=1,b=1$$

$$ans=0.5$$

$$a=0, b=2$$

$$a=2,b=0$$

$$a=1,b=2$$

$$ans=1/3$$

$$a=2,b=1$$

$$ans=2/3$$

请同学提出猜想

动态规划概率

定义 状态

自然定义法,也叫抄原题大法

题目问什么,状态含义就是什么

问题答案

p[a]代表我现有a元,最终获胜概率

p[i]代表我现有i元,最终获胜概率

动态规划概率

p[i]代表我现有i元,最终获胜概率

$$i=0$$
 $p[0]=0$ $i=n=a+b$ $p[n]=1$ $0 < i < a+b$ $p[i]=(p[i-1]+p[i+1])/2$

解方程

p[]是个等差数列!

看边界条件

$$p[i]=i/(a+b)$$

请将上一页推导过程 写在编程软件中 给老师检查

DP小结

状态定义

基于概率

自然状态

转移 方程 走一步看看

one-step analysis

当前状态依赖 走一步之后的状态

经典结论

p[i]=i/n结论 用于其他难题

等差 数列

另一种理解

因为每一轮的收益期望为**0** 所以游戏结束时总收益期望也为**0**

游戏有两种结束状态

你赢 b元 概率q 你输 a元 概率1-q

WWW.ed

$$q*b + (1-q)*(-a) = 0$$

$$q=a/(a+b)$$

请将上一页推导过程 写在编程软件中 给老师检查

结论拓展

起点在a,终点0或a+b

最终到a+b概率: q=a/(a+b)

0

最终到0概率: q=b/(a+b)

1

固定a,让b增加到无限大

推论: 无限长一维数轴随机游走(random walk),取任意点为目标,"一定"会到达,无限多次

二维也有类似结论, 但三维及以上没有这个结论

"醉汉回家"问题

醉汉回家

有个醉汉走在回家路上,由于酒醉未醒,分不清家往哪边走。假如家在东面n的位置,酒吧在西边0位置处,醉汉处在m(m<n)位置。醉汉每一个时间单位走一步,向东(家的方向)或者向西(酒吧的方向)的概率皆为1/2。

- (1) 如果醉汉到达酒吧,则在酒吧(停留)过夜。求醉汉回家的概率?
- (2) 如果酒吧不收留醉汉,他只能继续游走,求醉汉回家的概率?

皇家赌场3

请同学简述题意 突出核心要点

简化问题找灵感

$$a=1,b=1$$

$$a=1,b=2$$

$$a=1,b=3$$

$$a=2, b=2$$

$$a=2, b=3$$

请同学提出猜想

定义 状态

自然定义法,也叫抄原题大法

题目问什么,状态含义就是什么

问题答案

f[a]代表我现有a元,到结束次数期望

f[i]代表我现有i元,到结束次数期望

用纸和笔写出边界条件+转移方程

f[i]代表我现有i元,到结束次数期望

猜f[i]为i的 二次函数

i=0	f[0]=0	i=n=a+b	f[n]=0			
0 <i<a+b< th=""><td colspan="5">f[i]=(f[i-1]+f[i+1])/2+1</td></i<a+b<>	f[i]=(f[i-1]+f[i+1])/2+1					
解方程	f[i+1]-f[i] = f[i]-f[i-1] - 2					
	用差分d[i]=f[i]-f[i-1]化简 注意					
差分d[]线性	d[i+1]=	d[1]=f[1]				
所以f[]二次	-	- d[n]=-f[n-1]				
/// ! []—1/\	d[n]=d[1]	f[n-1]=f[1]				
	-f[n-1]=f[L'Aiger. VIII				
		1600				

f[1]=n-1

f[i]代表我现有i元,到结束次数期望

猜f[i]为i的 二次函数

i=0	f[0]=0	i=n=a+b	f[n]=0		
0 <i<a+b< th=""><th colspan="4">f[i]=(f[i-1]+f[i+1])/2+1</th></i<a+b<>	f[i]=(f[i-1]+f[i+1])/2+1				
解方程	f[i+1]-f[i] = f[i]-f[i-1] - 2				
	f[n]-f[n-1] = f[n-1]-f[n-2] - 2 = f[n-2]-f[n-3] - 4				
注意 f[n-1]=f[1]	 = f[1]-f[0] - 2(n-1)				
	f[1]=n-1				

f[i]代表我现有i元,到结束次数期望

猜f[i]为i的 二次函数

i=0	f[0]=0	i=n=a+b	f[n]=0		
0 <i<a+b< th=""><th colspan="4">f[i]=(f[i-1]+f[i+1])/2+1</th></i<a+b<>	f[i]=(f[i-1]+f[i+1])/2+1				
0 1 1 1 1 0	'[+]-('[+ +]''[+'+]//				
解方程	f[i+1]-f[i] = f[i]-f[i-1] - 2				
f[1]=n-1	f[i]-f[i-1]=f[1]-f[0]-2(i-1)=n+1-2i				
	f[i]=f[i]-f[i-1]+f[i-1]-f[i-2]				
	++f[1]-f[0]				
	=(n+1)i-(i+1)i=(n-i)i				
	f[a]=(n-a)a=ab				

请将以上推导过程 写在编程软件中 给老师检查

DP小结

状态定义

基于期望

自然状态

转移 方程 走一步看看

one-step analysis

当前状态依赖 走一步之后的状态 差分思想

经典结论

E[T]=a*b结论 用于其他难题 二次关系

1543.盲盒3

连中k个相同

定义 状态 f[i]代表已经i次相同 还需次数的期望

问题答案

f[0]代表已经0次相同 还需次数的期望

纸和笔推导转移方程

连中k个相同

f[i]代表已经i次相同,还需次数的期望

$$f[0]-f[1]=1$$
 $f[1]-f[2]=m$
 $f[2]-f[3]=m^2$

$$f[k-1]-f[k]=m^{k-1}$$

请将以上推导过程 写在编程软件中 给老师检查

1550.飞行棋

飞行棋

每轮走{1,2,3,4,5,6}格,概率1/6. 有m条飞行航线:能从xi号瞬移到yi号, 0<xi<yi<=n. 从0号要走到或超过n号格子,求期望投骰子的次数.

定义 状态

f[i]代表从i号到结束的期望轮次

问题答案

f[0]代表从0号到结束的期望轮次

纸和笔推导转移方程

飞行棋

f[i]代表从i号到结束的期望轮次

$$i=n,n+1,n+2,n+3,n+4,n+5$$

处理航线: x_k->y_k

$$f[x_k] = f[y_k]$$

因为0<xi<yi<=n,所以依赖关系DAG有单向性,可以递推

思考题: 若允许xi>yi,如何处理

```
11 cin>>n>>m;
12 for(int i=1;i<=m;i++){
    int x,y;
14    cin>>x>>y;
15    p[x]=y;
16 }
```

```
for(int i=n-1;i>=0;i--){
18 |
             if(p[i]){
                  f[i]=
19
20
                  continue;
21
22
             f[i]=1;
             for(int k=1;k<=6;k++)</pre>
23
                  f[i]+=
24
25
```

大文编程 etiger.viP

太戈编程

1527

1528

1543

1550

拓展题

1544,1548,1549