De Rham Cohomology and Characteristic Classes Notes

Simon Xiang

February 15, 2021

I'm excited to say that I'm participating in the Directed Reading Program (DRP) this semester, mentored by Arun Debray! (Read more here: web.ma.utexas.edu/users/drp). This semester, I'm following a book called From Calculus to Cohomology: De Rham cohomology and characteristics classes by Madsen and Tornehave.

These are the full version of the notes, taken to help me learn the material. I plan on summarizing my results in a sort of exposition style to put on the DRP website, as well as a beamer presentation for the symposium. I plan on having all three files hosted on my website somewhere, probably around here: https://git.simonxiang.xyz/math_notes/files.html

PREREQUISITES

The reader should be familiar with multivariable calculus and linear algebra at the minimum.

Contents

L	Preliminary Material	2
	1.1 Calculus	5

1 Preliminary Material 2

Lecture 1

Preliminary Material

1.1 Calculus

Question. Let $f: U \to \mathbb{R}^2$ be a smooth function, where $U \subseteq \mathbb{R}^2$ is open. Is there a smooth function $F: U \to \mathbb{R}$ such that $\partial_{x_1} F = f_1$, $\partial_{x_2} F = f_2$, where $f = (f_1, f_2)$? Note that this implies $\partial_{x_2} f_1 = \partial_{x_1} f_2$. Is this a sufficient condition to show the existence of F?

Example 1.1. Consider $f: \mathbb{R}^2 \to \mathbb{R}^2$, where

$$f(x_1, x_2) = \left(\frac{-x_2}{x_1^2 + x_2^2}, \frac{x_1}{x_1^2 + x_2^2}\right)$$

Now

$$\begin{split} \partial_{x_2} f_1 &= \frac{-(x_1^2 + x_2^2) + 2x_2^2}{(x_1^2 + x_2^2)^2} = \frac{x_2^2 - x_1^2}{(x_1^2 + x_2^2)^2}, \\ \partial_{x_1} f_2 &= \frac{(x_1^2 + x_2^2) - 2x_1^2}{(x_1^2 + x_2^2)^2} = \frac{x_2^2 - x_1^2}{(x_1^2 + x_2^2)^2}. \end{split}$$

So f satisfies $\partial_{x_2} f_1 = \partial_{x_1} f_2$. However, we have no $F: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$: assume there was such an F, then

$$\int_0^{2\pi} \frac{d}{d\theta} F(\cos\theta, \sin\theta) d\theta = F(1,0) - F(1,0) = 0.$$

But

$$\frac{d}{d\theta}F(\cos\theta,\sin\theta) = \frac{dF}{dx}(-\sin\theta) + \frac{\partial F}{\partial y}\cos\theta = -f_1(\cos\theta,\sin\theta)\sin\theta + f_2(\cos\theta,\sin\theta)\cos\theta = 1$$

by the chain rule, a contradiction. So we have procured a counterexample.

Definition 1.1 (Star-shaped). A subset $X \subseteq \mathbb{R}^n$ is **star-shaped** with respect to $x_0 \in X$ if the line segment $\{tx_0 + (1-t)x \mid t \in [0,1]\}$ is contained in X for all $x \in X$.

Theorem 1.1. Let $U \subseteq \mathbb{R}^2$ be open and star-shaped. Then any smooth function (f_1, f_2) : $U \to \mathbb{R}^2$ satisfying $\partial_{x_2} f_1 = \partial_{x_1} f_2$, there exists a smooth function $F: U \to \mathbb{R}$ such that $\partial_{x_1} F = f_1$, $\partial_{x_2} F = f_2$.

Say $U \subseteq R^2$ is open, then let $C^{\infty}(U,\mathbb{R}^k)$ be the vector space of smooth functions $\phi: U \to \mathbb{R}^k$. Define the **gradient** and **curl** functions¹ grad: $C^{\infty}(U,\mathbb{R}) \to C^{\infty}(U,\mathbb{R}^2)$, curl: $C^{\infty}(U,\mathbb{R}^2) \to C^{\infty}(U,\mathbb{R})$ by

$$\operatorname{grad}(\phi) = \left(\frac{\partial \phi}{\partial x_1}, \frac{\partial \phi}{\partial x_2}\right), \quad \operatorname{curl}(\phi_1, \phi_2) = \frac{\partial \phi_1}{\partial x_2} - \frac{\partial \phi_2}{\partial x_1}.$$

Note that the curl of the gradient is zero, or $\operatorname{curl} \circ \operatorname{grad} = 0$. So the kernel of the curl contains the image of the gradient, since mapping $\operatorname{im}(\operatorname{grad})$ by curl gives zero. Since curl and grad are linear, both $\operatorname{ker}(\operatorname{curl})$ and $\operatorname{im}(\operatorname{grad})$ are (infinite-dimensional) vector spaces, furthermore, $\operatorname{im}(\operatorname{grad})$ is a subspace of $\operatorname{ker}(\operatorname{curl})$. So we can consider the quotient space

¹The book uses *rotation* instead of curl, but I think this is the standard notation.