SC1015 Mini Project:

Cancer Data

Aanya, Adam, Maeko FCSH Group 5

TABLE OF CONTENTS

01

Our Motivation

Why did we choose this dataset?

02

Setting the stage

More about Cancer

03

Core Analysis

Our Analysis

04

Machine Learning Model

Fight Cancer with Data

05

Conclusion

About the future

About our DataSet --

Utilizing the Cancer Dataset sourced from Kaggle

- The dataset contains mean values of various visual attributes associated with the tumors
- Such as radius, texture, perimeter, area, smoothness, compactness, concavity, and concave points of the tumour
- Unique ID for each patient and classifies tumors as either Benign (B) or Malignant (M).

Problem Statement

Are we able to predict accurately whether a tumour is being classified:

- Benign (Good Tumor)
- Malignant (Bad Tumor)

based on the variables chosen.

O1 Our Motivation

10 MILLION

THE IMPORTANCE OF EARLY DETECTION

Diagnosed at the last stage

~50% of cancers are at an advanced stage when diagnosed.

Identifying visual characteristics would allow healthcare providers to develop screening protocols to detect cancer at earlier stages.

MORE EFFECTIVE TREATMENT

Severity

The survival rate of cancer is more than three times higher when the disease is diagnosed early.

02 Setting the stage

Cleaning the data

BENIGN (Good)

MALIGNANT (Bad)

Selecting a category to extract variables from	Subcategory division	Choosing the 3 variables
 Mean SE Worst 	 Between area, perimeter and radius. We choose area [similar definition] 	Explained on the next slide :)

The 3 Variables

BENIGN (Good)

Concavity_points

Concavity_worst

Area_worst

MALIGNANT (Bad)

symmetry_worst

concave_points_worst

03 Core Analysis

Data Visualisation of the 3 variables

Box Plot

We used a boxplot to clearly visualise the variables namely:

- The difference in parameter
- The greater the difference
 - The stronger the variables impact on predicting M or B

CONCAVITY

CONCAVE POINTS

AREA

Data Visualisation of the 3 variables

Strip Plot

Helped us visualise the <u>spread</u> of data.

Identify any large sets of anomalies

AREA

CONCAVE POINTS

CONCAVITY

O4 Machine Learning Model

What have we done?

Uni-Variate
Decision Tree

Multi-Variate Decision Tree

Random Forest Classifier (with Cross-Validation)

0-0-0-0-0

Our Goal:

- Higher Classification Accuracy
- Lower False Negative Rate (FNR)
- Higher TPR & TNR

Our Approach:

Made use of:

- Decision tree and confusion matrix
- To analyse the relationship of our variables with the diagnosis of either Benign or Malignant

Uni-Variate Decision Tree

-HHHH

Relationship with Concavity

- Worst prediction model
 - Lowest Classification Accuracy:0.895
 - Lowest TPR & TNR:
 - 0.885, 0.901
 - Relatively high FNR:0.115

: 0.8755868544600939

Test Dataset : 0.895104895104895

IPK	irain		0.88125	
TNID	T	_	0 07240045	

TNR Train : 0.8721804511278195

FPR Train: 0.12781954887218044

FNR Train : 0.11875

TPR Test: 0.8846153846153846 TNR Test: 0.9010989010989011

FPR Test: 0.0989010989010989 FNR Test: 0.11538461538461539

-HHHH

Relationship with Concave_points

- Highly accurate prediction model
 - Highest Classification Accuracy:0.937
 - Highest TPR & TNR:
 0.904, 0.956
 - Lowest FNR:0.096

0.09615384615384616

FNR Test:

Relationship with Area

- Fairly good prediction model
 - Classification Accuracy:0.923
 - TPR & TNR:
 - 0.780, 1.000
 - Highest FNR:0.220

Comparing all 3 variables (from Test Set)

	Concavity	Concave_Points	Area
Accuracy (highest)	0.895	0.937	0.923
TPR (highest)	0.884	0.903	0.78
TNR (highest)	0.901	0.956	1.0
FNR (lowest)	0.115	0.096	0.22

What if we include all 3 variables in a Decision Tree?

Multi-Variate Decision Tree

MultiVariate Comparison

- Better model compared to Uni-variate
 - Higher Classification Accuracy: 0.937
 - Similar TPR and TNR:0.911, 0.954
 - Lower FNR:0.089

Can we do it better?

Random Forest Classifier

(with Cross-Validation)

-1-1-1-1-1

Random Forest Classifier (with Cross-Validation)

- Gives the best classification accuracy:
 0.958 (the best one yet)
- A better TPR and TNR:
 0.929, 0.977
- A much better FNR: 0.071

O4Conclusion

How our data analysis addressed the problem statement?

 This would give patients and doctors the right steps to take if a tumour has been predicted to be bad, which might even save lives.

• Erdemtaha. (n.d.). Cancer Data. *Kaggle*.

https://www.kaggle.com/datasets/erdemtaha/cancer-data

• The Guardian. (2015, August 10). Cancer survival rates higher with early

diagnosis. The Guardian.

https://www.theguardian.com/society/2015/aug/10/cancer-survival-rates-hig

her-early-diagnosis

THANK YOU!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**