인공지능 과제 보고서

2012003909 김승현

과제목표

이번 과제의 목표는 수업에서 배운 여러가지 경로를 찾는 알고리즘을 이용하여 각 층마다 최선의 알고리즘과 그를 구현하는 것입니다. 수업에서 배운 경로를 찾는 알고리즘은 다음과 같습니다

- Depth First Search (DFS)
- Breath First Search (BFS)
- Uniform Cost Search
- Iterative Deepening Search (IDS)
- Greedy Best First Search
- A* Search
- Local Search

들이 있습니다. 저는 여기서 미로같은 형식에서 구현하기 까다로운 Local Search와, 가중치가 1인 곳에서는 BFS와 똑같이 작동하는 Uniform Cost Search 제외하고 구현하고 테스트 해보았습니다.

Breath First Search, Iterative Deepening Search, A* Search는 **Optimality**가 확실하게 보장되는 반면,

Depth First Search (DFS) 와 Greedy Best First Search는 **Optimality**가 확실하게 보장되지 않습니다.

저는 따라서 BFS, IDS, A* Search의 결과를 이용해 최단경로의 길이와 그 여부를 알아내고, 위의 5가지 알고리즘의 시간을 비교하기로 하였습니다.

소스 코드 설명

소스 코드에는 Maze 클래스와 필요한 메서드들이 선언 되어 있습니다.

```
def first_floor():execute('first', lambda mz : mz.gbs())# 여기서 first는 층 ( 이를 이용해 input과 output파일을 가져옵니다 )# 뒤의 lambda 함수는 사용할 알고리즘을 정의합니다. mz는 Maze 인스턴스 입니다.
```

코드의 재사용성과 추후의 수정을 고려하여 모든 층의 로직은 execute 함수로 동작하도록 설계하였습니다.

一部五百万

```
def execute(floor : str, algorithm : Callable[[Maze], tuple]):
    mz = Maze(floor+"_floor_input.txt")
    time, length = algorithm(mz)
    fi = io.open(floor+'_floor_output.txt','w')
    mz.print(fi)
    fi.write('---\n')
    fi.write('length=' + str(length) + '\n')
    fi.write('time=' + str(time) + '\n')
    fi.close()
```

execute 함수는 첫번째 인자에 맞춰 input과 을 읽어 Maze 인스턴스를 만든 후,두번째 인자의 함수를 실행시켜 결과를 얻어 output 파일에 출력하는 함수 입니다. Maze 클래스에는 A*, BFS, IDS, Greedy Best First Search, DFS 알고리즘이 구현되어 있습니다.

다음은 Maze 클래스 변수별 설명입니다.

Variable	type	Description
start	tuple	미로의 시작지점 위치를 나타냅니다
key	tuple	열쇠가 있는 지점을 나타냅니다
map	tuple	미로 배열입니다.
height	int	미로의 높이를 나타냅니다
width	int	미로의 너비를 나타냅니다

다음은 Maze 클래스 메서드별 설명입니다.

Method	Description
сору	미로 인스턴스를 복제하여 반환합니다
checkPos	지정좌표 y,x 가 막힌 길인지 체크합니다
move	지정한 좌표 y,x에서 지정 방향으로 움직일 수 있는지 여부를 체크합니다
createPathTrack	경로를 역추적하기 위한 배열을 생성합니다
applyPath	역추적하기 위해 기록한 배열을 이용해 경로를 추적합니다
dfs_sub	step만큼 DFS를 사용해 경로를 탐색합니다
ids_sub	IDS를 이용해 경로를 탐색합니다
ids	ids_sub를 이용해 키를 찾고 도착지점까지 경로를 탐색합니다
pr_bfs_sub	Priority Queue를 사용한 BFS 알고리즘으로 경로를 탐색합니다

Method	Description
astar	a* 알고리즘으로 키를 찾고 도착지점까지 경로를 탐색합니다 pr_bfs_sub를 이용
bfs	BFS 알고리즘으로 키를 찾고 도착지점까지 경로를 탐색합니다 pr_bfs_sub의 priority 함 수를 0으로 지정해 사용합니다
print	미로를 출력합니다
gbs	Greedy Best First Search 알고리즘으로 키를 찾고 도착점까지 경로를 탐색합니다. pr_bfs_sub를 사용했습니다
dfs	DFS 알고리즘으로 키를 찾고 도착지점까지 경로를 탐색합니다. dfs_sub에서 step을 엄청 크게 넣어 이용합니다

1층

• 사용한 알고리즘 : Greedy Best First Search

탐색한 노드 개수 (time): 5843탐색 경로의 길이 (length): 3850

최단 경로의 길이 : 3850최단 경로 여부 : True

```
def first_floor():
# first_floor_input.txt를 읽어 Maze 인스턴스를 생성합니다
# 두번째 인자인 lambda 함수로 알고리즘을 실행합니다
# 결과를 first_floor_output.txt에 저장합니다
execute('first', lambda mz : mz.gbs())
```

모든 층은 execute 함수를 이용합니다. execute함수에서는 경로 찾는 알고리즘을 수행하는 함수를 따로 정의하여 인자로 전달합니다

Maze 클래스의 gbs 함수는 Greedy Best First Search 를 구현한 함수입니다. 함수의 내부는 다음과 같습니다

```
def gbs(self) -> tuple:
    # Greedy best first search

    h = lambda a,b,c : abs(a[0]-b[0])+abs(a[1]-b[1])
    r1 = self.pr_bfs_sub(self.start, self.key, h)
    r2 = self.pr_bfs_sub(self.key, self.goal, h)
    return (r1[0] + r2[0], r1[1]+r2[1])
```

Maze 클래스에서 선언한 pr_bfs_sub 함수를 이용하여 구현하였습니다. pr_bfs_sub는 priority queue를 사용한 BFS함수로써 Greedy Best First Search는 priority를 heuristic 함수로만 정의하여 동작하도록 했습니다.

```
q.put(Maze.AStarNode( 0, (start, 0 , start )))
while not q.empty():
   node = q.get()
   prior, item = node.priority, node.item
   pos, length, previous = item
   # PATH 추적을 위해 전 단계를 저장
   path[pos[0]][pos[1]] = previous
   mz.map[pos[0]][pos[1]] = 1
   if pos == goal:
       self.applyPath(path, goal)
       return (time, length)
   # getDirectionOrder 함수로 도착지점을 찾기 위한 방향을 우선순위별로 얻음
   order = getDirectionOrder(pos, goal)
   for dr in order:
       mv = mz.move(pos,dr)
       if mv is not None:
           # 함수인자로 전달받은 fc함수를 이용해 Priority Queue의 우선순위를 결정합니다
           q.put(Maze.AStarNode(fc(pos, goal, length+1), (mv, length+1, pos)))
   time = time + 1
return (0,0)
```

1층은 101*101으로써 상대적으로 갈 경로가 많은 미로입니다. 따라서 저는 아마도 Greedy 와 DFS는 시간은 덜들을 지라도 최적경로를 찾지 못할 것이고, Optimality를 보장하는 BFS, IDS, A* 중에서도 특히 A* 알고리즘이 제일 빠를 것이라 예상했습니다.

하지만 측정값은 제 예상과는 다르게 나왔습니다.

```
===first floor===
A*; time=6611 length=3850
BFS; time=6712 length=3850
Greedy; time=5840 length=3850
DFS; Recursion Overflow
```

측정 값에서 알 수 있듯이, IDS,DFS는 Recursion 오류가 떠버렸고, A* 알고리즘이 확실히 BFS보다 빠르다는 것을 알 수 있었지만, 예상과는 다르게 Greedy Best First Search가 최단 경로를 찾고 탐색 경로 역시 다른 알고리즘에 비해 많이 빨랐습니다. 저는 그래서 **Greedy Best First Search**를 사용해 1층 미로를 통과했습니다.

2층

사용한 알고리즘 : Greedy Best First Search

탐색한 노드 개수 (time): 1013탐색 경로의 길이 (length): 758

• 최단 경로의 길이 : 758

• 최단 경로 여부 : **True**

```
def second_floor():
    # second_floor_input.txt를 읽어 Maze 인스턴스를 생성합니다
    # 두번째 인자인 lambda 함수로 알고리즘을 실행합니다
    # 결과를 second_floor_output.txt에 저장합니다
    execute('second', lambda mz : mz.gbs())
```

2층 역시 1층과 마찬가지로 Greedy Best First Search를 이용 했기 때문에 입력/출력 파일을 제외하고 모든 로직은 같습니다.

2층은 51x51으로써 1층 보다 작은 미로이지만 여전히 A* 알고리즘이 Optimality를 보장하는 다른 두 알고리즘에 비해 빠를 것이라 생각했습니다.

또한 Greedy Best First Search와 DFS는 빠를지는 몰라도 최단 경로를 찾지 못할 확률이 높다고 생각했습니다.

```
===second floor===

A*; time=1618 length=758

BFS; time=1680 length=758

Greedy; time=1013 length=758

DFS; time=866 length=760

IDS; time=308413 length=758
```

하지만 측정한 결과, A* 알고리즘은 여전히 BFS, IDS비해 빠르게 나왔지만, 제 예상과는 다르게 Greedy Best First Search가 최단 경로가 나옴과 동시에 탐색한 노드 역시 DFS를 제외한 알고리즘들과 비교하여 빨랐습니다.

DFS가 최소의 탐색 경로 길이(length)를 가지고 있지만, Optimal 하지 않아서 저는 2층을 Greedy Best First Search로 결정 하였습니다.

3층

사용한 알고리즘: Greedy Best First Search

탐색한 노드 개수 (time): 663탐색 경로의 길이 (length): 554

최단 경로의 길이 : 554최단 경로 여부 : True

```
def third_floor():
  # third_floor_input.txt를 읽어 Maze 인스턴스를 생성합니다
  # 두번째 인자인 lambda 함수로 알고리즘을 실행합니다
  # 결과를 third_floor_output.txt에 저장합니다
  execute('third', lambda mz : mz.gbs())
```

3층 역시 1층과 마찬가지로 Greedy Best First Search를 이용 했기 때문에 입력/출력 파일을 제외하고 모든 로직은 같습니다.

3층은 41x41 으로써 미로의 열린 길은 다음과 같습니다

길을 살펴보면 다른 경로로 가는 갈림길이 많은 것을 알 수 있습니다. 이런 경우 IDS, BFS 탐색 했을 때는 더 많은 시간이 소요될 것이라 생각했습니다.

또한 Greedy Best First Search나 DFS는 Optimal하지 않은 결과를 낼 확률이 높을 것이라 예상했습니다.

```
===third floor===

A*; time=832 length=554

BFS; time=999 length=554

Greedy; time=662 length=554

DFS; time=628 length=556

IDS; time=144584 length=554
```

측정한 결과 역시 IDS나 BFS가 A*에 비하여 상대적으로 느리다는 것을 알 수 있습니다

하지만 제 예상과는 다르게 Greedy Best First Search는 최단 경로를 찾았고 다른 알고리즘들에 비하여 빠른 속도를 보여주었습니다. DFS는 탐색한 노드는 제일 작지만 최단 경로를 찾아내지는 못했습니다. 따라서 저는 3층역시 Greedy Best First Search로 결정하였습니다.

4층

• 사용한 알고리즘 : Greedy Best First Search

탐색한 노드 개수 (time): 454최단 경로의 길이 (length): 334

• 최단 경로 여부 : **True**

```
def fourth_floor():
  # fourth_floor_input.txt를 읽어 Maze 인스턴스를 생성합니다
  # 두번째 인자인 lambda 함수로 알고리즘을 실행합니다
  # 결과를 fourth_floor_output.txt에 저장합니다
  execute('fourth', lambda mz : mz.gbs())
```

4층 역시 1층과 마찬가지로 Greedy Best First Search를 이용 했기 때문에 입력/출력 파일을 제외하고 모든 로직은 같습니다.

4층은 31x31 으로써 미로의 열린 길은 다음과 같습니다

46는 31X31 으로써 미모의 글린 글은 다듬의 끝입니다
1 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 3 1 2 2 2 1 2 2 2 1
121111121 11111111 111111111111111
1 2 1 2 2 2 1 2 1 2 1 3 2 2 1 2 1 2 2 2 1 1 1 2 2 2 2
121 1 1 2 1 2 1 2 1 2 1 1 1 1 2 1 1 1 1
1 2 1 2 1 2 2 2 1 2 1 2 1 2 2 2 2 2 2 2
121:1111:12121:1111111111111111
1 2 1 2 2 2 1 2 2 2 1 2 1 2 1 2 2 2 2 2
1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 1 2 1 2 2 2 2 2 2 2 2 1 2 1 2 1
1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 2 1 6 1 2 2 2 1 2 1 2 1 1 1 2 2 2 2 1 1 2 2 1 1 1 2 2 2 1 1 1
1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1
1 2 1 2 2 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2
1 2 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1 1 1 2 1 2 1 3 1 1 1 1
1 2 1 2 2 2 1 2 2 1 1 2 1 1 1 2 2 2 1 2 1 1 1 2 2 2 2 2 1 2 1
1 2 1 2 1 2 1 1 1 1 1 1 2 1 2 1 2 1
1 2 1 2 1 2 2 2 2 2 2 3 1 2 2 2 1 2 2 2 2
1212111111111
1 2 1 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 2 2 2 1 2 1 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2
1 2 2 1 1 1 1 2 2 1 2 2 1 2 1 2 1 2 2 2 1 1 1 1 1 1 2 2 1 1
111112121111212111212111121
1 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 1 2 1 2
1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 2
1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2
11111111111111111111111111111

길을 살펴보면 다른 경로로 가는 갈림길이 그렇게 많지 않은 것을 알 수 있습니다. 이런 경우 BFS로 탐색했을 때 A*와 별 차이가 없거나 더 빠를 수 있다고 생각했습니다.

그리고 Greedy Best First Search나 DFS가 빠르고 최단 경로를 찾을 확률이 높을 것이라고 예상했습니다.

```
===fourth floor===
A*; time=566 length=334
BFS; time=593 length=334
Greedy; time=455 length=334
DFS; time=465 length=336
IDS; time=55452 length=334
```

측정한 결과 제 예상과는 비슷하게 Greedy < DFS < A* < BFS < IDS 순서로 노드를 탐색하였고, A*, BFS, Greedy Best First Search, IDS 는 최단 경로로 나왔지만, DFS는 최단 경로보다는 조금 긴 경로로 결과를 얻었습니다. 저는 따라서 최단경로이면서 탐색한 노드가 적은 Greedy Best First Search를 4층의 알고리즘으로 결정하였습니다.

5층

• 사용한 알고리즘 : Greedy Best First Search

탐색한 노드 개수 (time): 121최단 경로의 길이 (length): 106

• 최단 경로 여부 : True

```
def fifth_floor():
    # fifth_floor_input.txt를 읽어 Maze 인스턴스를 생성합니다
    # 두번째 인자인 lambda 함수로 알고리즘을 실행합니다
    # 결과를 fifth_floor_output.txt에 저장합니다
    execute('fifth', lambda mz : mz.gbs())
```

5층 역시 1층과 마찬가지로 Greedy Best First Search를 이용 했기 때문에 입력/출력 파일을 제외하고 모든 로직은 같습니다.

5층은 21x21 으로써 미로의 열린 길은 다음과 같습니다

1311111111111111111
12122211222112211111111111111111
1 2 1 2 2 2 2 2 1 2 2 2 2 1 2 2 1 2 1 1 1 1 1 1 1 2 1
1
1 7 2 2 2 2 1 2 2 2 1 2 1 2 1 2 2 2 1 2 1
1 2 2 2 2 2 1 2 2 2 1 2 1 2 1 2 2 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1
1
1 2 2 2 2 1 1 2 2 2 1 1 1 2 1 2 2 2 1
1 2 1 2 1 2 2 2 1 2 2 2 6 1 2 1 2 2 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 2 2
1 2 1 2 1 2 1 1 1 1 1 2 1 2 1 2 1 1 1 2 1 1 2 1 2
1 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 1 1 1 2 1 1 2 1 2
12121212111112121
1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 2 2
11111111111111111141

길을 살펴보면 미로의 크기도 적고 다른 경로로 가는 갈림길이 그렇게 많지 않다고 생각하여 BFS로 탐색했을 때 A*와 별 차이가 없거나 더 빠를 수 있다고 생각했습니다.

```
===fifth floor===

A*; time=160 length=106

BFS; time=202 length=106

Greedy; time=121 length=106

DFS; time=161 length=108

IDS; time=5171 length=106

------
```

측정한 결과 제 예상과는 비슷하게 Greedy < A* < DFS < BFS < IDS 순서로 노드를 탐색하였고, A*, BFS, Greedy Best First Search, IDS 는 최단 경로로 나왔지만, DFS는 최단 경로보다는 조금 긴 경로로 결과를 얻었습니다. 저는 따라서 최단경로이면서 탐색한 노드가 적은 Greedy Best First Search를 5층의 알고리즘으로 결정하였습니다.

결론

우연이었는지는 몰라도 5층 모두 Greedy Best First Search가 최단 경로를 찾아내고 상상외의 성능을 보여주었습니다. DFS 역시 좋은 성능을 보어주였지만 최단 경로를 찾지는 못했습니다. 하지만 A* Search 역시 좋은 성능을 보여주며 확실하게 최단 경로를 찾아준다는 점에서 뛰어난 알고리즘이라고 생각했습니다. 과제의 미로들에는 5층 모두 Greedy Best First Search를 적용 시켰지만, 갈림길이 많고, 미로의 크기가 큰 경우에는 좋고 안전한 A* Search를 이용하는 것이 더 효율적일 것이라고 생각이 들었습니다.