Programmazione in Python

Intro sistema operativo e interfaccia utente

Dario Pescini - Mirko Cesarini

Cos'è un computer

- elaboratore elettronico digitale
- macchina che immagazzina e trasforma dati
- è composto da componenti elettronici
- sfrutta segnali digitali $\{0,1\}$

Hardware e Software

Hardware componenti fisici del calcolatore e dei sistemi informatici

case, tastiera, monitor, processore, etc.

Software componenti astratte del calcolatore necessarie a trasformare l'informazione

programmi: sistema operativo, videogioco, etc.

Architettura di un calcolatore

Un calcolatore è un sistema.

Sistema

Ente costituito da componenti indipendenti che interagiscono in maniera integrata.

Architettura

- insieme dei singoli elementi del sistema
- principi generali di funzionamento di ciascun elemento
- comprensione delle interazioni tra i singoli elementi

Componenti di un calcolatore

É possibile distinguerli in

Hardware

Componenti fisici: elettronici ed elettromeccanici

Software

Insieme dei programmi che gestiscono il comportamento della componente hardware

- software di base (sistema operativo, ...)
- software applicativo ("Programmi")

Componenti di un calcolatore: strati

Un modo efficace di combinare i componenti è quello di sfruttare una gerarchia o "stratificazione".

Ogni strato sfrutta i servizi offerti da quello inferiore.

- L'utente interagisce sfruttando i servizi esportati dallo strato SW applicativo (browser web, word, ...)
- le applicazioni manipolano l'informazione sfruttando i servizi del SW di base
- il SW di base gestisce la manipolazione delle informazioni sfruttando lo strato HW

L'architettura di un calcolatore: Von Neumann

Astrazione di un calcolatore che è la base dei calcolatori moderni.

Macchina di Von Neumann

Ha quattro tipologie di componenti

- Central Processing Unit (CPU)
- Memoria centrale
- interfacce di ingresso e uscita
- bus

Macchina di Von Neumann

CPU

- esegue le istruzioni per l'elaborazione dei dati
- svolge funzione di controllo

Memoria centrale

memorizza e fornisce l'accesso ai dati e ai programmi

Interfacce di I/O

componenti di collegamento alle periferiche del calcolatore

Bus

si occupa del trasferimento dei dati e dei segnali di controllo tra le componenti del calcolatore

Macchina di Von Neumann - vista funzionale

Macchina di Von Neumann

Macchina di Von Neumann

Innovazioni:

- Il codice del programma viene immagazzinato nella stessa memoria dei dati
- è la CPU che interpreta l'informazione e stabilisce se sia un dato o un'istruzione

applicativo

Insieme di programmi dedicati a compiti specifici.

- fogli di calcolo
- database
- CAD
- videogiochi
 - ...

di sistema

Insieme di programmi dedicati a svolgere compiti comuni a tutti i sistemi di elaborazione.

- interazione con le periferiche
- accesso ai dati
- comunicazione
- ...

software di utilità

Insieme dei programmi di sistema dedicati all'esecuzione delle attività fondamentali di gestione dell'elaboratore.

- formattazione supporti
- copia dei file
- stampa di file
- sincronizzazione orologio

...

sistema operativo

Insieme di programmi necessari alle attività base dell'elaboratore.

software di utilità

Insieme dei programmi di sistema dedicati all'esecuzione delle attività fondamentali di gestione dell'elaboratore.

- formattazione supporti
- copia dei file
- stampa di file
- sincronizzazione orologio

٠.

software di sistema non incluso nel sistema operativo

sistema operativo

Insieme di programmi necessari alle attività base dell'elaboratore.

Sistema operativo

Sistema operativo

Programma che controlla l'esecuzione di programmi applicativi e agisce come interfaccia tra le applicazioni e l'hardware del calcolatore.

Obiettivi:

- indipendenza dall'hardware
- uso efficiente delle risorse del calcolatore
- semplificazione dell'uso dell'hardware di un calcolatore

Sistema operativo

Sistema operativo: componenti

interfaccia utente

Parte del sistema operativo dedicata all'interazione con l'utente.

Elemento necessario perché l'utente possa richiedere lo svolgimento di specifiche attività.

kerne

Nocciolo del sistema operativo.

Insieme di programmi preposti a svolgere le operazioni base per il funzionamento dell'elaboratore.

Sistema operativo: interfaccia utente

Paradigmi a confronto: GUI vs CLI

- GUI (Graphic User Interface).
 - Interazione basata su Finestre, Pulsanti, ...
 - Più recente (inventata negli anni 1980 nei laboratori PARC della Xerox)
- CLI (Command Line Interface).
 - Interazione basata su comandi digitati a tastiera (comandi singoli, script complessi)
 - Output attraverso: schermo, file, stampante
 - Utile per svolgere operazioni complesse e ripetitive

Sistema operativo: interfaccia utente

 shell la comunicazione utente-kernel avviene per mezzo di messaggi testuali sia in input che output, sfruttando tastiera, mouse e monitor.

Unix: Bourne shell, C shell, Korn shell Windows: shell DOS cmd.exe, power shell

 GUI (graphical user interface) Evoluzione della shell, permette l'interazione con il kernel tramite rappresentazioni grafiche (icone) degli oggetti da manipolare.

Unix: KDE, gnome, Aqua

Windows: Windows

Una componente fondamentale è il window manager.

Unix: X11, XQuartz

Windows: Desktop Window Manager

Sistema operativo: Kernel

memory manager Ha il compito di gestire e coordinare l'impiego della memoria principale del computer.

process manager Ha il compito di coordinare l'esecuzione dei processi.

file manager Ha il compito di coordinare l'uso e le funzionalità delle memorie di massa

driver periferiche Programmi preposti all'interazione con i dispositivi collegati all'elaboratore

Sistema operativo: Kernel

memory manager

- tenere traccia delle parti di memoria assegnate ai processi
- decidere quali processi caricare quando la memoria è disponibile
- allocare e deallocare lo spazio di memoria quando necessario

In ambiente multi-processo deve garantire che ogni processo abbia accesso solo alle risorse a lui competenti. Deve gestire i casi in cui la richiesta di risorse ecceda la RAM (paginazione).

Sistema operativo: Kernel

process manager

- creazione e terminazione dei processi
- sospensione e riattivazione dei processi
- gestione dei deadlock
- sincronizzazione tra processi

Deve garantire la distribuzione del tempo di calcolo a tutti i processi in esecuzione.

Deve garantire che ogni processo abbia tutte le risorse necessarie, e che ad ogni ripresa dell'elaborazione si trovi nel contesto coretto (context switch).

File system

Per l'utente il file system è composto da:

- file unità logiche di memorizzazione
 - entità atomica gestione memoria secondaria
 - collezione di informazioni correlate
 - rappresentazione logica uniforme informazioni correlate
- directory insieme di informazioni per organizzare e fornire informazioni sui file

File

Attributi di un file in un filesystem:

- Nome
- Tipo necessario (SO) per decodificare le informazioni contenute nel file
- Posizione e dimensione
- Data e ora informazioni relative a creazione e ultima modifica
- Propietà utente, gruppo, etc.
- Protezione informazioni per politiche di accesso ed uso del file

Cenni sul File System

L'insieme dei file e directory è organizzato ad albero:

File

Cenni sul File System

Anche dal punto di vista dell'utente un file sytem è strutturato come un albero:

File system, terminologia

Dato il file L01.pdf nel file system a dx,

- L01.pdf è il nome del file (base name, o file/dir name)
- pdf è l'estensione del file
- /home/cesarini/lex/ è la directory che contiene il file
- /home/cesarini/lex/L01.pdf è il percorso completo (fully qualified name o full path)
- percorso relativo
 - Supponiamo che /home/cesarini sia la directory di lavoro corrente
 - lex/L01.pdf è il percorso
 relativo di L01 pdf rispetto alla

- Nella slide precedente abbiamo introdotto i concetti di nome e percorso (relativo e assoluto) per un file
- In maniera analoga è possibile parlare di nome e percorso (...) per una directory
- Dato il percorso /home/cesarini/lex/L01.pdf
 - / è la root, la directory che contiene tutte le altre directory e gli altri file di un system. E' l'inizio di ogni percorso
 - i rimanenti / sono dei separatori, si tratta di un espediente per separare i nomi di file e directory tra loro
 - il simbolo / è chiamato slash

File Systems in Unix e Windows

Vediamo come la terminologia sui file system appena introdotta è declinata in due famiglie di sistemi operativi

os	Root Directory	Directory Separator	Examples
Unix	/	/	/home/user/docs/Letter.txt
Win	[drive letter:]\	١	C:\User\MrX\Letter.txt
			\User\MrX\Letter.txt
			MrX\Letter.txt

- / è chiamato slash
- \ è chiamato back-slash
- Le [] attorno a drive letter: significano che l'indicazione del drive (disco) in Windows è opzionale
- Unix comprende Linux, Mac OS, ...
- Sia in Win sia in Unix sono definiti i percorsi sia assoluti sia relativi

Windows, Dischi multipli e Foreste di Alberi

- I file system di Windows in realtà è una foresta di alberi
- Ogni drive (disco) è la radice di un albero separato dagli altri

Unix e dischi multipli

- Nel file system Unix apparentemente non c'è traccia dei diversi dischi
- In realtà i dischi sono montati sull'unico albero di directory
- Ciò rende possibile spostare gruppi di directory da un disco all'altro senza che l'utente se ne accorga

File, Directory e Meta dati

Ad un file, oltre al contenuto, sono associate delle informazioni (chiamate meta dati)

- Data e orario di creazione o ultima modifica
- Il proprietario e/o il creatore del file
- Permessi di accesso al file

Le stesse informazioni possono essere associate anche alle directory

Ecco un esempio di meta dati di un file system Unix

dir	User Perm.	Group Perm.	Others Perm.	Owner Name	Group Name	Size	Last Modified	Name
-	rw-	r-	r-	cesarini	gmc	1.6M	Dec 11 14:50	L06.pdf
	rw-	r-	r-	cesarini	gmc	28K	Dec 11 14:50	L06.tex
d	rwx	r-x	r-x	cesarini	staff	170B	Dec 10 17:59	img

Alcuni meta dati di un sistema windows

Informazioni ottenibili a riga di comando

Last	dir	size	name
Modified			
10/12/2016 17.59	<dir></dir>		img
11/12/2016 15.20		1.657.585	L06.pdf
11/12/2016 15.22		29.410	L06.tex

- Nei sistemi Windows l'estensione del file (es. .pdf, .tex) da informazioni su qual applicazione può aprire il file
- Cambiando l'estensione, si modifica l'applicazione associata al file
- Se sul vostro PC windows non vedete le estensioni ...il vostro sistema operativo le sta mascherando (è l'impostazione di default)

Informazioni ottenibili tramite GUI

Shell CLI e File System

- Perché studiare le shell CLI in un'epoca di interfacce visuali?
- Nei sistemi operativi moderni, la shell è tuttora presente
- E' utile per svolgere attività ripetitive o complesse
- Es. per cancellare tutti i file che terminano con .txt (100 file, sparsi tra altri)
 - GUI: devo trascinare nel cestino 100 file
 - CLI: basta un comando (ora non ve lo spiego)
- La gestione di grossi dataset può essere effettuata su macchine (server) molto grandi, alle quali ci si connette via shell in remoto
- I linguaggi di programmazione
 - Il processo di compilazione può essere svolto tramite comandi dati a Shell
 - In questo corso vedremo l'interpretazione ed esecuzione del codice python, sia tramite CLI, sia tramite GUI

Shell CLI e File System

Questi sono due esempi di shell (Win e Unix)

- Directory corrente (concetto molto importante): la directory nella quale si sta lavorando, in un certo istante
 - Qualsiasi riferimento a file (senza aggiunta di percorso) fa riferimento a file della directory corrente
 - Se voglio utilizzare un file in una posizione diversa dalla directory corrente, dobbiamo fornire il percorso
 - I percorsi relativi, sono sempre calcolati a partire dalla directory corrente

Alcuni comandi di shell

Descrizione	Comando Win	Comando Unix	Note
Visualizza la di- rectory corrente	cd	pwd	In win, cd senza parametri visualizza la directory cor- rente
Cambia direc- tory corrente	cd percorso	cd percorso	Il nome del comando è lo stesso in entrambi i SO
Scelta del disco su cui lavorare	C:		al posto di c, potete far riferi- mento ad un qualsiasi disco del computer. Non si ap- plica ai sistemi Unix
Per eseguire uno script python	python scl.py	python scl.py	il file sc1.py si deve trovare nella directory corrente
Per copiare un file	copy origine destinazione	cp origine desti- nazione	origine e destinazione sono i percorsi dei file corrispon- denti
Per cancellare un file	del nomefile	rm nomefile	State attenti!!!

Eseguire un comando da shell

- Il prompt della shell attende un comando.
- Al prompt è possibile digitare il comando seguito da eventuali parametri. Premendo invio (il tasto return) il comando viene eseguito.
- Il prompt di Win e Unix sarà rappresentato rispettivamente da > e \$ qua di seguito

Win	Unix	Nota
> python es1.py	\$ python es1.py	Esecuzione di un file nella directory locale
> python scripts\leggi.py	\$ python scripts/leggi.py	parametro con percorso rel- ativo
> python C:\users\es3.py	\$ python /home/es3.py	percorso assoluto

- Un comando ha questo pattern:
 - comando [parametro_1] [parametro_2]... [parametro_N]
- tutto ciò che è compreso tra [e] è opzionale

Eseguire uno script python da shell

- Con un editor di testi, salvate il file primo.py in una directory di vostra scelta. Nel file scrivete il testo print("Hello Word")
- eseguite i comandi seguenti (> e \$ non vanno digitati)

Win	Unix	Note
Menù avvio/e- segui/cmd	Applications/Utility/Terminal	Aprite la shell
> c: ← > cd \users\cesarini ←	\$ cd /home/cesarini/ ←	←: punto in cui premere return
> python primo.py ←	$$$ python primo.py \hookleftarrow	Osservate il risultato
> copy primo.py sec- ondo.py ←	\$ cp primo.py secondo.py	creo nella directory corrente il file secondo.py, copia di
> del secondo.py ←	$\$$ rm secondo.py \leftarrow	Cancello il file appena cre- ato

 Al posto di \users\cesarini o /home/cesarini digitate il percorso della directory in cui avete salvato il file

Alcuni trucchi

- Nell'usare la shell, occorre spesso ripetere l'esecuzione dei comandi
 - Utilizzate i tasti freccia, ↑ e ↓, per recuperare i comandi dati in precedenza
 - Questa funzionalità si chiama history
- Scrivere i percorsi dei file può essere noioso, soprattutto se i percorsi sono molto lunghi, come nell'esempio seguente:

/Users/cesarini/didattica/corsi laurea/informatica/info16/

- Non appena avete scritto le prime lettere del nome di una directory provate a premere (il tasto) tab, anche diverse volte e state a vedere cosa succede.
- Questa funzionalità si chiama auto completamento