Übungsaufgaben zur Vorlesung

Lineare Algebra und Analytische Geometrie I*

Prof. Dr. J. Kramer

Abgabetermin: 20.11.2018 in der Vorlesung

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben.

JEDES Blatt mit Namen, Matrikelnummer, Übungsgruppennummer versehen.

Serie 5 (40 Punkte)

Aufgabe 1 (10 Punkte)

(a) Im K-Vektorraum $V=K^3$ betrachten wir die beiden Unterräume

$$U_1 := \left\{ \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} \in K^3 \mid \xi_1 + \xi_2 + \xi_3 = 0 \right\} \quad \text{und} \quad U_2 := \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle.$$

Zeigen Sie, dass für $K = \mathbb{R}$ die Gleichheit

$$U_1 + U_2 = V$$

ist. Gilt dies auch für $K = \mathbb{F}_3 := (\mathcal{R}_3, \oplus, \odot)$?

(b) Es sei $M = \{v_1, \dots, v_n\} \subseteq V$ eine endliche Teilmenge des K-Vektorraums V.

Zeigen Sie, dass die Menge $\langle v_1, \ldots, v_n \rangle$ aller Linearkombinationen von v_1, \ldots, v_n der kleinste Unterraum von V ist, der M enthält.

Aufgabe 2 (10 Punkte)

Es seien U_1 und U_2 zwei Unterräume des K-Vektorraums V.

(a) Zeigen Sie, dass der Durchschnitt $U_1 \cap U_2$ ebenfalls ein Unterraum von V ist. Es seien speziell

$$U_1 := \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 6 \\ 6 \end{pmatrix} \right\rangle \quad \text{und} \quad U_2 := \left\langle \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 9 \end{pmatrix} \right\rangle$$

zwei Unterräume des \mathbb{R} -Vektorraums \mathbb{R}^3 . Bestimmen Sie den Durchschnitt $U_1 \cap U_2$.

(b) Zeigen Sie, dass die Vereinigung $U_1 \cup U_2$ genau dann ein Unterraum von V ist, wenn $U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$ gilt.

Geben Sie ein Beispiel für zwei Unterräume U_1 und U_2 des \mathbb{F}_3 -Vektorraums \mathbb{F}_3^3 an, deren Vereinigung $U_1 \cup U_2$ kein Unterraum von \mathbb{F}_3^3 ist.

Aufgabe 3 (10 Punkte)

Es seien M und N zwei nicht-leere Teilmengen des K-Vektorraums V.

- (a) Zeigen Sie, dass aus $M\subseteq N$ die Beziehung $\langle M\rangle\subseteq\langle N\rangle$ folgt. Gilt auch die Umkehrung?
- (b) Zeigen Sie, dass $\langle M \cap N \rangle$ eine Teilmenge von $\langle M \rangle \cap \langle N \rangle$ ist. Gilt sogar die Gleichheit?

Aufgabe 4 (10 Punkte)

Wir betrachten die Vektoren

(a)
$$\begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} -2 \\ 2 \\ 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 2 \\ 0 \end{pmatrix}$ im \mathbb{R} -Vektorraum \mathbb{R}^4 ;

(b)
$$\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ im \mathbb{F}_3 -Vektorraum \mathbb{F}_3^3 ;

(c)
$$\binom{-(i+1)}{i-2}$$
, $\binom{-(i-1)}{2}$ im \mathbb{C} -Vektorraum \mathbb{C}^2 ;

(d)
$$\sin(X)$$
, $\sin(2X)$, $\cos(X)$, $\cos(2X)$ im \mathbb{R} -Vektorraum $V = \{f : \mathbb{R} \longrightarrow \mathbb{R} \mid f \text{ Funktion}\}.$

Stellen Sie in jedem Fall fest, ob diese Vektoren linear unabhängig sind und ob sie ein Erzeugendensystem des jeweiligen Vektorraums bilden.