$\begin{array}{c} \text{Matching } \mu\text{-Logic:} \\ \text{Foundation of A Unifying Programming} \\ \text{Language Framework} \end{array}$

Xiaohong Chen
PhD Final Exam
University of Illinois Urbana-Champaign
Department of Computer Science

Overview

- Introduction to a Unifying Programming Language Framework
 - Motivating Example: The K Semantic Framework
 - Research Challenge: Proving the Correctness of K
- Main Contribution: Matching μ -Logic
 - Basic Definitions
 - Expressive Power
 - Proof System and Proof Checker
 - Automatic Theorem Prover
- Using Matching μ -Logic to Prove the Correctness of K
- Concluding Remarks

Programming Language Design & Implementation: State-of-the-Art

 $L \times T$ systems to develop and maintain

A Unifying Programming Language Framework

L + T systems to develop and maintain

K Semantic Framework https://kframework.org/

K has wide applications

Research Challenge: Proving the Correctness of K

- K has a large code base
 - >500k LOC in 4 programming languages
 - complex data structures, algorithms, and optimizations
- K is constantly evolving
 - latest release: 3 days ago

- It's not practical to thoroughly verify the entire K.
- Main Idea: Translation Validation

Main Idea: Translation Validation

K

Matching μ -Logic: Foundation of K

A PL definition

Ethereum VM

A logical theory Γ^{EVM}

Any PL task

program execution

Interpreter

A logical theorem proved by a proof system

- $\Gamma^{\text{EVM}} \vdash t_{\text{init}} \Rightarrow_{\text{exec}} t_{\text{final}}$
- $\Gamma^{\text{EVM}} \vdash \varphi_{\text{pre}} \rightsquigarrow \varphi_{\text{post}}$

formal verification

Program Verifier

Correctness of the task

Generating the proof and checking it using a 200-LOC proof checker

correctness of any task done by any tool of any PL in K

correctness of

1 task (proof checking)

done by

1 program (proof checker)

Why Matching μ -Logic?

We tried many logics/calculi/foundations

First-order logic; Second/higher-order logic; Least fixpoint logic; Modal logics; Temporal logics (LTL, CTL, CTL*, ...), λ -calculus; Type systems (parametric, dependent, inductive, ...); μ -calculus; Hoare logics; Separation logics; Dynamic logics; Rewriting logic; Reachability logic; Equational logic; Small-/big-step SOS; Evaluation contexts; Abstract machines (CC, CK, CEK, SECD, ...); Chemical abstract machine; Axiomatic; Continuations; Denotational; Initial Algebras; ...

... but each of the above had limitations

- Some only handle certain aspects of K (e.g., operational semantics)
- Some are "design patterns" (e.g., Hoare logics)
- Some are domain-specific (e.g., separation logic)
- Some require complex encodings/translations

• Matching μ -logic: Expressive and Small

- PLs defined as theories; PL tools specified by theorems
- Logics defined as theories; logical proof rules proved as theorems
- A 15-rule proof system and a 200-LOC proof checker: small trust base

Overview

- Introduction to a Unifying Programming Language Framework
 - Motivating Example: The K Semantic Framework
 - Research Challenge: Proving the Correctness of K
- Main Contribution: Matching μ -Logic
 - Basic Definitions
 - Expressive Power
 - Proof System and Proof Checker
 - Automatic Theorem Prover
- Using Matching μ -Logic to Prove the Correctness of K
- Concluding Remarks

Matching μ -Logic Syntax

Matching μ -logic formulas, called *patterns*:

$$\varphi ::= x \mid \sigma(\varphi_1, ..., \varphi_n) \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \exists x. \varphi \mid X \mid \mu X. \varphi$$

$$\text{structures} \qquad \text{logical constraints} \qquad \text{first-order quantification} \qquad \text{(in this talk)}$$

- *X* a *set variable*, ranging over sets
- $\mu X. \varphi$ the *least fixpoint* of φ , where X occurs positively in φ
- $\nu X. \varphi \equiv \neg \mu X. \neg \varphi [\neg X/X]$ the greatest fixpoint of φ

Matching μ -Logic Semantics

A matching μ -logic *model* has:

- a carrier set M
- a function $\sigma_M: M \times \cdots \times M \to \mathcal{P}(M)$ for each symbol σ

Given a model M and a variable valuation ρ :

$$oldsymbol{arphi}$$
 pattern matching $|oldsymbol{arphi}|_{M,
ho}\subseteq M$

- $|x|_{M,\rho} = {\rho(x)}$
- $|\sigma(\varphi_1, ..., \varphi_n)|_{M,\rho} = \bigcup \{\sigma_M(a_1, ..., a_n) \mid a_i \in |\varphi_i|_{M,\rho} \}$
- $|\varphi_1 \wedge \varphi_2|_{M,\rho} = |\varphi_1|_{M,\rho} \cap |\varphi_2|_{M,\rho}$
- $|\neg \varphi|_{M,\rho} = M \setminus |\varphi|_{M,\rho}$
- $|\exists x. \varphi|_{M,\rho} = \bigcup \{ |\varphi|_{M,\rho \lceil a/x \rceil} \mid a \in M \}$
- $|X|_{M,\rho} = \rho(X)$
- $|\mu X. \varphi|_{M,\rho} = \mathbf{lfp} \left(A \mapsto |\varphi|_{M,\rho[A/X]} \right)$

Examples of Fixpoint Patterns

- inductive datatypes [JLAMP'21]
 - type nat = Zero | Succ of nat
 - $\top_{\mathbf{nat}} = \mu N. \mathbf{0} \vee \mathbf{Succ}(N)$
 - type list = Nil | Cons of nat * list
 - $\top_{\mathbf{list}} = \mu L. \, \mathbf{Nil} \vee \mathbf{Cons}(\top_{\mathbf{nat}}, L)$
- program execution [LICS'19, CAV'21]

•
$$t_1 \Rightarrow_{\text{exec}} t_2 \equiv t_1 \rightarrow \underbrace{\text{eventually } t_2}_{\mu S. \ t_2 \ \lor \ (\text{next } S)}$$

formal verification [LICS'19, OOPSLA'23]

•
$$\varphi_{\mathrm{pre}} \leadsto \varphi_{\mathrm{post}} \equiv \varphi_{\mathrm{pre}} \rightarrow \underbrace{\mathbf{weak-eventually}}_{vS.\,\varphi_{\mathrm{post}}} \lor (\mathbf{next}\,S)$$
 (if φ_{pre} holds when P starts, then φ_{post} holds when P terminates)

Various forms/instances of fixpoints are definable by patterns.

Matching μ -Logic (MmL) Expressive Power

[Chap 5 of Thesis, also in LICS'19, OOPSLA'20, ICFP'20, CAV'21, JLAMP'21, JLAMP'22, OOPSLA'23]

Matching μ -Logic (MmL) Expressive Power

Matching μ -Logic (MmL) Expressive Power

Matching μ -Logic Proof System

(only 14 proof rules)

$$\begin{array}{lll} & (\operatorname{Propositional 1}) & \varphi \to (\psi \to \varphi) \\ (\operatorname{Propositional 2}) & (\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta)) \\ (\operatorname{Propositional 3}) & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \psi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \psi \\ &$$

Deriving Mathematical Induction in Matching μ -Logic

Mathematical Induction: To show a property *P* holds for all naturals, prove:

(basis). The number 0 satisfies P

(**step**). If n satisfies P then n + 1 also satisfies P.

Step 1. Note that $T_{nat} = \mu N.0 \vee succ(N)$ captures all natural numbers.

Step 2. Set the proof goal
$$\vdash (\mu N. \ 0 \lor \mathbf{succ}(N)) \rightarrow \psi_P$$

Step 3. Apply (Knaster Tarski) and get

$$\vdash (0 \lor \mathbf{succ}(\psi_P)) \rightarrow \psi_P$$

i.e., Sub-Goal-1
$$0 o \psi_P$$
 (basis Sub-Goal-2 $\mathbf{succ}(\psi_P) o \psi_P$ (step)

(Knaster Tarski)
$$\varphi[\psi/X] \to \psi$$

$$\mu X. \varphi \to \psi$$

Various forms/instances of fixpoints reasoning are supported by (Knaster Tarski)

Matching μ -Logic Proof Object

(Propositional 1)	$\varphi \to (\psi \to \varphi)$
(Propositional 2)	$(\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))$
(Propositional 3)	$((\varphi \to \bot) \to \bot) \to \varphi$
(Modus Ponens)	$\frac{\varphi \varphi \to \psi}{\psi}$
$(\exists -Quantifier)$	$\varphi[y/x] o \exists x. \varphi$
$(\exists \text{-} Generalization)$	$\frac{\varphi \to \psi}{(\exists x.\varphi) \to \psi} x \notin FV(\psi)$
(Propagation _V)	$C[\varphi \lor \psi] \to C[\varphi] \lor C[\psi]$
(Propagation _∃)	$C[\exists x. \varphi] \to \exists x. C[\varphi] \text{ with } x \notin FV(C)$
(Framing)	$\frac{\varphi \to \psi}{C[\varphi] \to C[\psi]}$
(Substitution)	$\frac{\varphi}{\varphi[\psi/X]}$
(Prefixpoint)	$\varphi[(\mu X.\varphi)/X] \to \mu X.\varphi$
(Knaster-Tarski)	$\frac{\varphi[\psi/X] \to \psi}{(\mu X.\varphi) \to \psi}$
(Existence)	$\exists x. x$
(Singleton)	$\neg (C_1[x \land \varphi] \land C_2[x \land \neg \varphi])$

a proof object;very easy & fast to check;embarrassingly parallelable

Matching μ -Logic Proof Checker

- We use Metamath [Megill & Wheeler] http://metamath.org
 - to encode proof objects &
 - check them automatically
 - embarrassingly parallelable
- Very small trust base
 - Matching μ -logic: 200 LOC
 - Metamath itself:
 - 350 LOC in Python
 - 400 LOC in Haskell
 - 550 LOC in C#
 - •

```
$c \imp ( ) #Pattern |- $.
      $v ph1 ph2 ph3 $.
      phl-is-pattern $f #Pattern phl $.
      ph2-is-pattern $f #Pattern ph2 $.
      ph3-is-pattern $f #Pattern ph3 $.
      imp-is-pattern
        $a #Pattern ( \imp ph1 ph2 ) $.
10
      axiom-1
11
       $a |- ( \imp ph1 ( \imp ph2 ph1 ) ) $.
12
13
      axiom-2
14
        $a |- ( \imp ( \imp ph1 ( \imp ph2 ph3 ) )
              ( \imp ( \imp ph1 ph2 )
15
16
                     ( \imp ph1 ph3 ) ) $.
17
18
     ${
19
        rule-mp.θ $e |- ( \imp ph1 ph2 ) $.
20
        rule-mp.1 $e |- ph1 $.
21
        rule-mp $a |- ph2 $.
22
```

Matching μ-logic syntax & proof rules; Defined in 200 LOC

```
imp-refl $p |- ( \imp phl phl )
24
25
        phl-is-pattern phl-is-pattern
        phl-is-pattern imp-is-pattern
       imp-is-pattern phl-is-pattern
27
        phl-is-pattern imp-is-pattern
28
        ph1-is-pattern ph1-is-pattern
30
        phl-is-pattern imp-is-pattern
31
        phl-is-pattern imp-is-pattern
32
        imp-is-pattern phl-is-pattern
33
        phl-is-pattern phl-is-pattern
34
        imp-is-pattern imp-is-pattern
35
        phl-is-pattern phl-is-pattern
        imp-is-pattern imp-is-pattern
37
        phl-is-pattern phl-is-pattern
        phl-is-pattern imp-is-pattern
39
        phl-is-pattern axiom-2
        phl-is-pattern phl-is-pattern
41
        phl-is-pattern imp-is-pattern
42
        axiom-1 rule-mp ph1-is-pattern
43
        phl-is-pattern axiom-1 rule-mp
44
```

Proof objects (automatically checked)

Checking proof objects is fast and trustworthy.

Automatic Theorem Prover for Matching μ -Logic

- Separation logic: Proved 265/280 benchmark tests in SL-COMP'19
 - (latest WIP even reached 280/280!)

Overview

- Introduction to a Unifying Programming Language Framework
 - Motivating Example: The K Semantic Framework
 - Research Challenge: Proving the Correctness of K
- Main Contribution: Matching μ -Logic
 - Basic Definitions
 - Expressive Power
 - Proof System and Proof Checker
 - Automatic Theorem Prover
- Using Matching μ -Logic to Prove the Correctness of K (in the translation validation style)
 - Translating PL Definitions in K to Matching μ -Logic Theories
 - Generating Proof Objects for K's Program Verifier
- Concluding Remarks

Translating K to Matching μ -Logic

Proving the Correctness of K's Program Verifier

Generating proof objects and

checking them automatically

Slide 23 of 30

Program Verification is Actually Proof Search

A program verifier is a specialized, optimized, proof searcher.

Proof Generation for Program Verification

The K program verifier checks that P satisfies the pre/post-conditions $\varphi_{\rm pre}$ and $\varphi_{\rm post}$ in L

proof generation

fill in the "gaps" in the verification ("proof search")

$$\Gamma^L \vdash \varphi_{\text{pre}} \leadsto \varphi_{\text{post}}$$

a proof object

```
#1. \psi_1
#2. \psi_2
...
#100. \psi_{100}
...
#247. \psi_2 \to \varphi
#247. \varphi // by (Modus Ponens)
// on #2 and #246
...
...
#99999. \varphi_{\text{pre}} \rightsquigarrow \varphi_{\text{post}}
```

Proof Generation for Program Verification

Proof Generation: Complicated ...

... but none of the above needs to be trusted.

Evaluation

proof generation Time (seconds)

checking

We tested on 3 PL paradigms:

- imperative
- register-based
- functional

Reduced K trust base (~120k lines of Haskell)

Found issues in K (missing axioms etc.)

Future work

Apply it to more PLs

						r mire (s	,	Onus
Task	Spec. LOC	Steps	Hint Size	Proof Size	K Verifier	Gen.		Check
sum.imp	40	42	0.58 MB	37/1.6 MB	4.2	105		1.8
sum.reg	46	108	$2.24\mathrm{MB}$	111/3.6 MB	9.1	259		5.4
sum.pcf	18	22	$0.29\mathrm{MB}$	38/1.5 MB	2.9	119		2.4
exp.imp	27	31	$0.5\mathrm{MB}$	37/1.5 MB	3.7	108		2.0
exp.reg	27	43	0.96 MB	70/2.3 MB	4.7	177		3.1
exp.pcf	20	29	$0.5\mathrm{MB}$	65/2.3 MB	3.8	199		3.1
collatz.imp	25	55	$1.14\mathrm{MB}$	49/1.7 MB	4.8	138		2.6
collatz.reg	37	100	$3.66\mathrm{MB}$	$209/4.7\mathrm{MB}$	9.3	414		5.5
collatz.pcf	26	39	1.51 MB	$110/2.2\mathrm{MB}$	5.3	247		5.2
product.imp	44	42	$0.62\mathrm{MB}$	44/1.8 MB	3.9	124		2.4
product.reg	24	42	0.81 MB	65/2.3 MB	4.3	164		4.0
product.pcf	21	48	$0.82\mathrm{MB}$	80/2.8 MB	5.3	234		4.9
gcd.imp	51	93	1.9 MB	74/2.3 MB	22.9	237		2.7
gcd.reg	27	73	1.92 MB	124/3.3 MB	18.6	306		3.6
gcd.pcf	22	38	1.35 MB	$150/3.2\mathrm{MB}$	12.8	367		5.2
ln/count-by-1	44	25	$0.24\mathrm{MB}$	28/1.3 MB	2.7	81		1.6
ln/count-by-2	44	25	$0.26\mathrm{MB}$	28/1.3 MB	9.0	88		1.4
ln/gauss-sum	51	39	$0.53\mathrm{MB}$	38/1.6 MB	4.6	107		2.0
ln/half	62	65	1.3 MB	63/2.2 MB	13.1	173		3.0
ln/nested-1	92	84	1.88 MB	$104/3.4\mathrm{MB}$	7.5	231		5.9

Conclusion: Matching μ -Logic as A Unifying Foundation for Programming

Thank you

Xiaohong Chen https://xchen.page xc3@illinois.edu

Department of Computer Science