INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:		(11) International Publication Number:	WO 92/09628	
C07K 7/06, 7/08, 7/48 A61K 37/02	A1	(43) International Publication Date:	11 June 1992 (11.06.92)	
(21) International Application Number: PCT/ (22) International Filing Date: 22 November 19	US91/08 91 (22.11	(European patent), BF (OAP)	aropean patent), AU, BB, BE API patent), BG, BJ (OAPI patent), CG (OAPI patent), t), CI (OAPI patent), CM	

617,494 23 November 1990 (23.11.90) US

(71) Applicant: IMMUNODYNAMICS, INC. [US/US]; 108-50 71st Avenue, Forest Hills, NY 11375 (US).

(72) Inventor: ATKIN, Andrew; 4475 Henry Hudson Parkway - Apt. 3F, Bronx, NY 10471 (US).

(74) Agent: SCHINDLER, Edwin, D.; Five Hirsch Avenue, Coram, NY 11727 (US).

B1) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GN (OAPI patent), GR, (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, LU (European patent), MC, MG, ML (OAPI patent), MN, MR (OAPI patent), MW, NL, NL (European patent), NO, PL, RO, SD, SE, SE (European patent), SN (OAPI patent), SU*,TD (OAPI patent), TG (OAPI patent).

Published

With international search report.

(54) Title: SYNTHETIC IMMUNOACTIVE PEPTIDES HAVING IMMUNOMODULATING AND THERAPEUTIC ACTIVITIES

(57) Abstract

(30) Priority data:

Synthetic peptides which are effective in the therapy of immunodeficiencies, immunosuppression and T-cell subset deviations, and related ailments.

+ DESIGNATIONS OF "SU"

Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

• •					
AT AU BB BE BF BG BJ BR CA CF CG CH CI	Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Canada Central African Republic Congo Switzerland Côte d'Ivoire Caneboon	ES FI FR GA GB GN GR HU IT JP KP KR LI LK	Spain Finland France Gabon United Kingdom Guinea Greece Hungary Italy Japan Democratic People's Republic of Korea Republic of Korea Liechtenstein Sri Lanka	MG ML MN MR NO PL RO SD SE SN SU+ TD TG	Madagascar Mali Mongolia Mauritania Malawi Pictherlands Norway Poland Romania Sudan Sweden Senegal Soviet Union Chad Togo
-		LI	Liechtenstein		

Description

Synthetic Immunoactive Peptides Having

Immunomodulating and Therapeutic Activities

Technical Field

5 The present invention relates, generally, to synthetic immunoactive peptides having immunodulating and therapeutic activities and use of such peptides in pharmaceuticals. More particularly, the present invention relates to chemically synthesized immuno
10 active peptides useful in immunotherapy for regulation of T-cell dependent immunity.

Background Art

15

20

It is generally known in the prior art that a great number of disorders in humans, as well as animals, are associated with decreased immunity or immunodeficiency. Various degrees of altered levels of immunity are found in oncologic and hematalogic diseases, aging, etc. As a result of immunological dysfunction, various infections, neoplasias and accerated metastasizing may be observed in persons suffering from such disorders.

10

15

20

The crucial role of thymus-dependent immunity in the function of the immune system is well-established. Recently, a number of biologically active polypeptides have been isolated from the thymus and, at least partially, characterized. Among such polypeptides are various thymosins, thymopoietins and thymic serum factor. These results are detailed in Cardarelli, Nate P., The Thymus in Health and Senescence, CRC Press (1989); Goldstein, Allan L., Thymic Hormones and Lymphokines: Basic Chemistry and Clinical Applications, NY, Plenum Press (1989); and, Gideon Goldstein et al., NY Liss (1987).

Fraction V, the uncharacterized mixture of polypeptides from calf thymus extract, having relatively high amounts of alpha-, beta- and gamma-thymosins and related polypeptides, has proven to be useful from immunomodulation in in vitro and in vivo tests, as summarized in Aiuti, F. and Wigzell, H., Thymus.

Thymic Hormones, and T-Lymphocytes, Proceedings of the Serono Symposium, V. 38 (Academic Press 1989.)

The potential effectiveness of Fraction V as an immunomodulating drug has been disclosed in H.

Strausser, U.S. Patent No. 4,444,757, issued April 24th, 1984.

5

15

20

The clinical use of the foregoing preparations has been limited by:

- 1. The impossibility of obtaining an adequate quantity for studies, as well as the need for using a significant amount of autological material of thymuses of newborn children:
- 2. The impossibility of precise biochemical identification of extracts; and,
- 3. An immune response to the xenogenic or10 allogenic proteins from thymic extracts.

In summary, the use of purified natural or recombinant polypeptides for immunotherapy is limited by the limited source of biologically active components, as well as the immunological and biochemical difficulties in their purification.

Synthetic peptides avoid these drawbacks.

Different immunologically active synthetic peptides, related to either natural thymosins alpha 1, beta 3 and beta 4, as modified sequences, have been disclosed in, for example, S. Wang, U.S. Patent No. 4,116,951, issued September 26th, 1978; T. Low et

al., U.S. Patent No. 4,395,404, issued July 26th, 1983; and, C. Birr et al., U.S. Patent No. 4,612,365, issued September 16th, 1986. Additionally, the active synthetic peptide of thymopoietin has been described in G. Goldstein et al., Science, 1979, 204, 5 p. 1309. This peptide sequence has been disclosed in G. Goldstein et al., U.S. Patent No. 4,190,646, issued February 1980, and modified sequences having similar activity were disclosed in G. Goldstein et al., U.S. Patent No. 4,201,886, issued April 14th, 10 These peptide sequences induce differentiation of lymphocytes into mature T-cells expressing specific markers, support the delicate equilibrium of helper and suppressor T-cells, stimulate the previously-diminished immune response and suppress 15 excessive autoimmune activity to various autoantigens.

Nevertheless, the overall biological activities of presently known synthetic peptides have proven to be insufficient for clinical use, as detailed, for example, in B. K. Kantharia et al., "Thymopentin (TP-5) in the treatment of Rhumatoid arthritis," Br. J. Rheumatol, 1989, 28(2), pp. 118-123; J. A. Hansen,

5

-5-

J. E. Sanders, R. Stuart, "Use of thymic grafts of thymic factors to augment immunologic recovery after bone marrow transplantation: brief report with 2 - 12 years follow-up. Bone marrow transplant, 1980, pp. 424-436.

Pentapeptide sequences with thymopoietin-like activity and increased resistance to enzymatic degradation in biological fluids were created and disclosed in G. Goldstein et al., U.S. Patent No. 4,505,853, issued March 19th, 1985, however, their biological activity was comparable only with activity of parental peptide sequences.

In order to overcome the weak activities of the thymopoietin-derived peptide to the #32-36 sequence, an additional peptide from alpha-1 thymosin was added. This further procedure, however, failed to increase the biological activity of the parent sequences, as detailed in M. Mokotoff et al., "Thymosin-like peptides as potential immunostimu-lants. Synthesis via the polymeric-reagent method,"

J. Med. Chem., 1990, 33(1), pp. 354-360.

Additional prior art known to the inventor, but

which has failed to overcome the difficulties encountered in the production of immunotherapeutically active peptides, includes G. Goldstein et al., U.S. Patent No. 4,002,740, issued January 11th, 1977; W. McGregor, U.S. Patent No. 4,082,737, issued 5 April 4th, 1978; G. Goldstein, U.S. Patent No. 4,124,700, issued November 7th, 1978; A. Goldstein et al., U.S. Patent No. 4,297,276, issued October 27th, 1981; C. Birr et al., U.S. Patent No. 4,353,821, issued October 12th, 1982; G. Heavner, U.S. Patent 10 No. 4,369,137, issued January 18th, 1983; B. Horecker, U.S. Patent No. 4,374,197, issued February 15th, 1983; G. Goldstein et al., U.S. Patent No. 4,397,842, issued August 9th, 1983; C. Birr et al., U.S. Patent No. 4,466,918, issued August 21st, 1984; 15 C. Birr et al., U.S. Patent No. 4,470,926, issued September 11th, 1984; A. Felix et al., U.S. Patent No. 4,504,415, issued March 12th, 1985; A. Felix et al., U.S. Patent No. 4,517,119, issued May 14th, 1985; B. Horecker, U.S. Patent No. 4,659,694, issued 20 April 21st, 1987; B. Horecker, U.S. Patent No. 4,716,148, issued December 29th, 1987; and, C. Birr et al., U.S. Patent No. 4,910,296, issued March 20th,

1990.

It is clear that if the difficulties encountered in the production of immunotherapeutically active peptides could be overcome, a major advancement in the treatment of various diseases would be achieved.

Thus, a great need exists for the creation of biologically active peptides which can be used for the clinically effective correction of immunodeficiencies and immunosuppressions associated with different pathological conditions.

10 Disclosure of Invention

15

20

It is, therefore, an object of the present invention to provide a series of synthetic peptides which are effective in the therapy of immunodeficiencies, immunosuppression and T-cell subset deviations, and related ailments.

It is an additional object of the present invention to provide a series of synthetic peptides which have a biological activity which is several hundred times more effective than presently known immunologically-active sequences.

It is, yet, a further object of the present invention to provide synthetic peptides which are

non-toxic to humans, even when administered in doses which are several thousand times higher than effective dose levels.

It is an additional object of the present

invention to provide a series of synthetic peptides
which overcome the disadvantages inherent in the
prior art and with similar substances found in
nature.

The foregoing and related objects are achieved

by linear and cyclized peptide compounds constructed

by combination and/or overlapping of the sequences:

A₁B₁ X B₂A₂, A₃B₃ X A₄B₄, B₅A₅ X A₆B₆,

B₇A₇ X B₈A₈, A₉B₉, A₁₀A₁₁,

B₁₀A₁₂ and/or B₁₁B₁₂,

15 wherein,

20

is a hydrophobic or neutral amino acid independently selected from the group consisting of Ala, D-Ala, Gly, D-Gly, Ile, D-Ile, Leu, D-Leu, Met, D-Met, Phe, D-Phe, Pro, D-Pro, Sar, D-Sar, Ser, D-Ser, Tre, D-Tre, Trp, D-Trp, Val and D-Val;

At through A12 are, independently, neutral or positively-side-chain-charged amino acids independently selected from the group consisting of Ala, D-Ala, Arg, D-Arg, Asp, D-Asp, Glu, D-Glu, Gly, D-Gly, His, D-His, Ile, D-Ile, Leu, D-Leu, Met, D-Met, Phe, D-Phe, Pro, D-Pro, dehydro Pro, Sar, D-Sar, Ser, D-Ser, Tre, D-Tre, Trp, D-Trp, Val and D-Val;

and,

5

- 10 B1 through B12 are, independently, neutral or negatively-side-chain-charged amino acids independently selected from the group consisting of Ala, D-Ala, Asp, D-Asp, Glu, D-Glu, Gly, D-Gly, Ile, D-Ile, Leu, D-Leu, Met, D-Met. Phe, D-Phe, Pro, D-Pro, dehydro Pro, Sar, D-Sar, Tre, D-Tre, Tyr, D-Tyr, Val, D-Val, L-2-amino-glutaryl, D-2-aminoglutaryl, L-2-aminopimelyl, D-2-aminopimelyl.
- The foregoing peptides, in accordance with the present invention, may be acylated and/or amidated.

The foregoing generic formula includes the following sequences of amino acids in accordance with the foregoing definitions for "A," "B" and "X";

	1.	A1 A2 B2 XA3 B3	2.	A1 A2 XB2 A2 A3
5	3.	A ₁ B ₁ XB ₂ A ₂ A ₃	4.	B1 A1 XB2 A2 A3
	5.	B ₁ B ₂ A ₂ XA ₃ B ₃	6.	B ₁ B ₂ A ₂ XB ₃ A ₃
	7.	A1 B1 XA2 B2 B3	8.	B1 A1 XA2 B2 B3
	9.	A ₁ B ₂ A ₂ XA ₃ B ₃	10.	A1 B2 A2 XB3 A3
	11.	A1 B1 XB2 A2 B3	12.	B1 A1 XB2 A2 B3
10	13.	B ₁ A ₂ B ₂ XB ₃ A ₃	14.	B ₁ A ₂ B ₂ XA ₃ B ₃
	15.	A1 B1 XA2 B2 A3	16.	B ₁ A ₁ XA ₂ B ₂ A ₃
	17.	A1 A2 A3 B3 XB4 A4	18.	A1 A2 A3 B3 XA4 B4
	19.	A1 A2 B3 A3 XA4 B4	20.	A1 A2 B3 A3 XB4 A4
	21.	A1 B1 XB2 A2 A3 A4	22.	A1 B1 XA2 B2 A3 A4
15	23.	B1 A1 XA2 B2 A3 A4	24.	B ₁ A ₁ XB ₂ A ₂ A ₃ A ₄
	25.	B ₁ B ₂ A ₃ B ₃ XB ₄ A ₄	26.	B ₁ B ₂ A ₃ B ₃ XA ₄ B ₄
	27.	B ₁ B ₂ B ₃ A ₃ XA ₄ B ₄	28.	B ₁ B ₂ B ₃ A ₃ XB ₄ A ₄
	29.	A ₁ B ₁ XB ₂ A ₂ B ₃ B ₃	30.	A1 B1 XAB2 B3 B4
	31.	B ₁ A ₁ XA ₂ B ₂ B ₃ B ₄	32.	B ₁ A ₁ XB ₂ A ₂ B ₃ B ₄
20	33.	A1 B1 A2 B2 XB3 A3	34.	A1 B1 A2 B2 XA3 B3
	35.	A1 B1 B2 A2 XA3 B3	36.	A1 B1 B2 A2 XB3 A3
	37.	A1 B1 XB2 A2 A3 B3	39.	A1 B1 XA2 B2 A3 B3
	39.	B1 A1 XA2 B2 A3 B3	40.	B1 A1 XB2 A2 A3 B3

-11-

	41.	B ₁ A ₁ A ₂ B ₂ XB ₃ A ₃	42.	B1 A1 A2 B2 XA3 B3
	43.	B ₁ A ₁ B ₂ A ₂ XA ₃ B ₃	44.	B1 A1 B2 A2 XB3 A3
	45.	A1 B1 XB2 A2 B3 A3	46.	A1 B1 XA2 B2 B3 A3
	47.	B1 A1 XA2 B2 B3 A3	48.	B1 A1 XB2 A2 B3 A3
5	49.	B1 A1 A2 B2 XB3 A3 A4 B4	50.	A1 B1 A2 B2 XB3 A3 B4 A4
	51.	B1 A1 A2 B2 XA3 B3 A4 B4	53.	B1 A1 B2 A2 XA3 B3 A4 B4
	53.	A1 B1 B2 A2 XA3 B3 B4 A4	54.	A1 B1 A2 B2 XA3 B3 B4 A4
	55.	B1 A1 B2 A2 XB3 A3 A4 B4	56.	A1 B1 B2 A2 XB3 A3 B4 A4
	57.	B ₁ A ₁ A ₂ B ₂ XB ₃ A ₃ B ₄ A ₄	58.	A1 B1 A2 B2 XB3 A3 A4 B4
10	59.	B1 A1 A2 B2 XA3 B3 B4 A4	60.	A1 B1 A2 B2 XA3 B3 A4 B4
	61.	B1 A1 B2 A2 XA3 B3 B4 A4	62.	A1 B1 B2 A2 XA3 B3 A4 B4
	63.	B1 A1 B2 A2 XB3 A3 B4 A4	64.	A1 B1 B2 A2 XB3 A3 A4 B4
	65.	A1 B2 XA2 A2 XA3 B3	66.	A1 B1 XB2 A2 XB3 A3
	67.	A1 B1 XA2 B2 XB3 A3	68.	B ₁ A ₁ XA ₂ B ₂ XB ₃ A ₃
15	69.	B1 A1 XA2 B2 XA3 B3	70.	B ₁ A ₁ XB ₂ A ₂ XA ₃ B ₃
	71.	A1 B1 XB2 A2 A3 B3 XB4 A4	72.	A1 B1 XA2 B2 A3 B3 XA4 B4
	73.	B1 A1 XA2 B2 B3 A3 XA4 B4	74.	B ₁ A ₁ XB ₂ A ₂ B ₃ A ₃ XB ₄ A ₄
	75.	A1 B1 XB2 A2 A3 B3 XA4 B4	76.	A1 B1 XA2 B2 A3 B3 XB4 A4
	77.	A1 B1 XB2 A2 B3 A3 XA4 B4	78.	B ₁ A ₁ XA ₂ B ₂ A ₃ B ₃ XB ₄ A ₄
20	79.	A1 B1 XB2 A2 B3 A3 XB4 A4	80.	B ₁ A ₁ XB ₂ A ₂ A ₃ B ₃ XB ₄ A ₄
-	81.	A1 B1 XA2 B2 B3 A3 XB4 A4	82.	B1 A1 XB2 A2 A3 B3 XA4 B4
	83.	A1 B1 XA2 B2 B3 A3 XA4 B4	84.	B1 A1 XA2 B2 A3 B3 XA4 B4
	85.	B1 A1 XA2 B2 B3 A3 XB4 A4	86.	B ₁ A ₁ XB ₂ A ₂ B ₃ A ₃ XA ₄ B ₄

The present invention should be understood as encompassing pharmaceutically acceptable acid or base salts, as well as the free peptides generically described above and which are detailed hereinafter.

For the purposes of achieving the objects of the present invention, amino acid sequence No. 41 provides the most effective peptides. Amino acid sequences Nos. 49 and 59 have also been found to be very effective.

It was surprisingly discovered that the peptides 10 of the invention, as defined above, express immunomodulating activity, with many such peptides expressing a more powerful immunodulating activity than known natural, or naturally modified, amino acid The compositions to be administered to a sequences. 15 patient in the treatment of immunodeficiencies, immunosuppression, T-cell subset deviations and for the enhancement of vaccinations, etc., is to include one or more of the foregoing peptides in combination with an appropriate solubilizer. Suitable additives 20 known to those skilled in the art, e.g., carriers, preservatives and viscosity modifiers, may be added to the compounds of the invention as required.

5

10

-13-

The synthetic immunologically-active peptides of the present invention are, for example, for parenteral use, direct intranasal, ear, eye, intravaginal or rectal instillation and application to intact or injured conjunctive, mucosa or skin, in order to accomplish the normalization of immune responses. The preparations are to be used either locally or systemically in order to induce immunomodulation, enhance the effect of vaccination and achieve other goals of immunotherapy.

Preferred peptides of the present invention are those wherein:

- As through An are, independently, Arg, Asn, Gln, Lys, Phe or Val;
- 15 B₁ through B_n are, independently, Asp, Glu, Tyr, Phe or Val;
 - X is Ala, Gly, Ile, Leu, Phe or Val.

Most preferred peptides coming within the scope of the present invention contain either balanced side chain charges of the sequences which are symmetrical relative to X or uncompensated opposite side chain

charges relative to X.

For protection against amino- and carboxypeptidases, peptides may be acylated, amidated or cyclized during synthesis.

Examples of peptides falling within the scope of the present invention, which have been found to be particularly effective include:

Arg-Asp-Lys-Asp-Val-Tyr-Arg Lys-Asp-Lys-Asp-Val-Tyr-Lys Lys-Glu-Lys-Asp-Val-Tyr-Lys 10 Arg-Glu-Arg-Asp-Val-Tyr-Arg Lys-Glu-Leu-Tyr-Arg-Lys-Glu Lys-Glu-Leu-Glu-Lys-Lys-Glu Arg-Glu-Leu-Glu-Arg-Arg-Glu Lys-Asp-Val-Asp-Lys-Lys-Asp 15 Lys-Asp-Leu-Glu-Lys-Lys-Glu Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Glu Tyr-Arg-Lys-Glu-Leu-Glu-Lys-Lys-Glu Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu Tyr-Arg-Lys-Glu-Leu-Tyr-Arg-Glu-Lys 20 Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val-Tyr-Arg

Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu-Tyr-Arg

-15-

Glu-Arg-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu-Tyr-Arg

Examples of peptides synthesized in accordance with the present invention, which have been found to be most effective in immunotherapy, include:

5 Arg-Asp-Lys-Asp-Val-Tyr-Arg

Lys-Asp-Lys-Asp-Val-Tyr-Lys

Lys-Glu-Lys-Asp-Val-Tyr-Lys

Arg-Glu-Arg-Asp-Val-Tyr-Arg

Lys-Glu-Leu-Tyr-Arg-Lys-Glu

10 Lys-Glu-Leu-Glu-Lys-Lys-Glu

Arg-Glu-Leu-Glu-Arg-Arg-Glu

Lys-Asp-Val-Asp-Lys-Lys-Asp

Lys-Asp-Leu-Glu-Lys-Lys-Glu

Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Glu

15 Tyr-Arg-Lys-Glu-Leu-Glu-Lys-Lys-Glu

Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu

Tyr-Arg-Lys-Glu-Leu-Tyr-Arg-Glu-Lys

Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val-Tyr-Arg

Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu-Tyr-Arg

20 Glu-Arg-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu-Tyr-Arg

Examples of peptides synthesized in accordance with the present invention, which have been found to be

most effective in immunotherapy, include:

Glu-Arg-Lys-Glu-Leu-Tyr-Arg

Tyr-Arg-Lys-Asp-Val-Tyr-Arg

Tyr-Arg-Lys-Glu-Leu-Tyr-Arg

5 Glu-Arg-Lys-Asp-Val-Tyr-Arg

Cyclized peptides synthesized in accordance with the present invention, and which are preferred for their effective in immunotherapy, include:

	Tyr-Arg-Lys-Asp-Val
10	Tyr-Arg-Lys-Glu-Val
	Glu-Arg-Lys-Glu-Val
	Glu-Lys-Lys-Glu-Leu
	Glu-Lys-Lys-Asp-Leu
	Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Asp-Val
15	Tyr-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu-

Tyr-Arg-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu	
Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val	
Glu-Lys-Lys-Glu-Leu-Glu-Lys-Lys-Glu-Leu	

Other peptides encompassed within the scope of
the present invention and which have effective levels
of immunotherapeutic activity, though not as great as
those peptides listed above, further include:

```
Arg-Lys-Asp-Val-Arg-Tyr;
    Arg-Lys-Asp-Val-Lys-Tyr;
    Arg-Lys-Asp-Val-Phe-Glu;
                                Arg-Glu-Glu-Val-Phe-Glu;
                                Arg-Asn-Asp-Val-Tyr-Arg;
    Arg-Lys-Asp-Val-Tyr-Arg;
10
                                Arg-Gln-Glu-Leu-Tyr-Arg;
    Arg-Lys-Glu-Leu-Tyr-Arg;
                                Arg-Asn-Asp-Val-Tyr-Lys;
     Arg-Lys-Asp-Val-Tyr-Lys;
                                Arg-Gln-Glu-Leu-Tyr-Lys;
     Arg-Lys-Glu-Leu-Tyr-Lys;
                                Arg-Lys-Glu-Leu-Glu-Arg;
     Arg-Lys-Asp-Val-Glu-Arg;
                                Arg-Phe-Leu-Tyr-Arg-Asp;
     Arg-Lys-Glu-Val-Glu-Arg;
15
                                Glu-Tyr-Arg-Leu-Arg-Tyr;
     Phe-Tyr-Arg-Leu-Arg-Tyr;
                                Lys-Glu-Leu-Gln-Glu-Glu;
     Glu-Tyr-Arg-Leu-Tyr-Arg;
                                Lys-Asp-Val-Lys-Phe-Glu;
     Lys-Asp-Val-Arg-Tyr-Tyr;
                                Lys-Asp-Val-Arg-Tyr-Asp;
     Lys-Asp-Val-Arg-Phe-Glu;
```

```
Arg-Tyr-Gln-Leu-Tyr-Arg;
    Arg-Tyr-Asn-Val-Tyr-Arg;
                                Arg-Tyr-Gln-Leu-Tyr-Lys;
    Arg-Tyr-Asn-Val-Tyr-Lys;
                                Gln-Glu-Lys-Leu-Tyr-Arg;
    Arg-Glu-Lys-Leu-Tyr-Arg;
                                Asn-Asp-Lys-Leu-Tyr-Arg;
    Gln-Asp-Lys-Leu-Tyr-Arg;
                                Tyr-Arg-Asp-Val-Tyr-Arg;
    Lys-Tyr-Val-Tyr-Arg-Asp;
 5
                                Tyr-Lys-Glu-Leu-Tyr-Arg;
     Tyr-Lys-Asp-Val-Tyr-Lys;
                                Asp-Asn-Tyr-Leu-Glu-Arg;
     Asp-Asn-Tyr-Val-Tyr-Arg;
    Asp-Asn-Tyr-Leu-Glu-Gln; Arg-Asn-Lys-Asp-Val-Tyr-Arg;
              Arg-Gln-Arg-Glu-Leu-Tyr-Arg;
              Arg-Asn-Arg-Tyr-Leu-Tyr-Arg;
10
              Arg-Asp-Val-Tyr-Arg-Gln-Asn;
              Lys-Asp-Val-Tyr-Arg-Gln-Asn;
              Arg-Asp-Val-Tyr-Lys-Gln-Asn;
              Asp-Glu-Lys-Glu-Leu-Tyr-Arg;
              Glu-Glu-Lys-Asp-Val-Tyr-Arg;
15
              Asp-Glu-Gln-Glu-Leu-Phe-Arg;
              Gln-Asp-Val-Tyr-Arg-Glu-Asp;
              Gln-Glu-Asn-Asp-Val-Glu-Gln;
              Asn-Asp-Gln-Glu-Leu-Glu-Gln;
              Asn-Asp-Lys-Asp-Val-Asp-Lys;
20
              Gln-Glu-Asp-Lys-Leu-Tyr-Arg;
              Arg-Glu-Asp-Lys-Leu-Tyr-Arg;
              Arg-Glu-Asp-Arg-Leu-Tyr-Arg;
```

```
Arg-Asp-Glu-Arg-Leu-Tyr-Arg;
              Arg-Glu-Tyr-Arg-Leu-Tyr-Arg;
              Lys-Glu-Tyr-Arg-Leu-Tyr-Arg;
              Lys-Asp-Val-Tyr-Arg-Arg-Tyr;
              Lys-Asp-Val-Tyr-Arg-Lys-Tyr;
5
              Lys-Asp-Val-Tyr-Arg-Lys-Asp;
              Lys-Glu-Leu-Glu-Arg-Lys-Glu;
              Arg-Asp-Val-Asp-Lys-Lys-Asp;
              Lys-Asp-Leu-Glu-Lys-Lys-Asp;
              Lys-Glu-Leu-Lys-Glu-Lys-Glu;
10
              Lys-Asp-Leu-Lys-Glu-Lys-Asp;
              Glu-Arg-Lys-Asp-Val-Tyr-Arg;
              Glu-Lys-Lys-Asp-Val-Tyr-Arg;
              Asp-Arg-Lys-Asp-Val-Tyr-Arg;
              Lys-Glu-Leu-Lys-Glu-Tyr-Arg;
15
              Lys-Asp-Val-Lys-Glu-Tyr-Lys;
          Glu-Lys-Lys-Glu-Leu-Glu-Lys-Lys-Glu;
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Arg-Tyr;
          Glu-Lys-Lys-Glu-Leu-Arg-Tyr-Tyr-Arg;
20
          Tyr-Arg-Lys-Asp-Val-Lys-Tyr-Tyr-Arg;
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Tyr-Arg;
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Glu-Arg;
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Glu-Arg;
```

Glu-Lys-Lys-Glu-Leu-Glu-Gln-Tyr-Arg;
Glu-Lys-Lys-Glu-Leu-Glu-Gln-Asp-Asn;
Lys-Glu-Glu-Lys-Leu-Glu-Lys-Lys-Glu;
Lys-Asp-Asp-Lys-Leu-Tyr-Arg-Gln-Glu;
Gln-Glu-Asp-Lys-Leu-Tyr-Arg-Gln-Glu;
Gln-Glu-Asp-Lys-Leu-Tyr-Arg-Gln-Glu;
Arg-Tyr-Leu-Arg-Tyr-Leu-Tyr-Arg;
Tyr-Arg-Gly-Lys-Glu-Leu-Tyr-Arg;
Arg-Tyr-Leu-Tyr-Arg-Lys-Asp-Val-Tyr-Arg; and,
Arg-Tyr-Leu-Glu-Lys-Lys-Glu-Leu-Tyr-Arg.

Linear peptides of the present invention may be synthesized via procedures generally known to those skilled in the art and which are of wide use at present. M. Bodanszky and A. Bodanszky, Peptide Chemistry: A Practical Textbook, Springer-Verlag, N.Y. (1988); M. Bodanszky and A. Bodanszky, The Practice of Peptide Synthesis, Springer-Verlag, N.Y. (1989). All linear peptides of the present invention, for example, may be synthesized by the solid phase method utilizing peptide synthesizers which are commercially available through, for example, Applied Biosystems, Inc., Foster City,

-21-

California, U.S.A., and t-Boc chemistry.

5

15

20

In practice, crude preparations of peptides were purified by low pressure column ion-exchange chromatography following preparative ion-exchange as reverse phase HPLC. Purity of the final products had been analyzed by analytical reverse phase HPLC using ODS-columns and structure was verified by amino acid analysis. Purity of peptides synthesized varied from 94.2% to 99.2%.

10 Cyclized peptides synthesized in accordance with the present invention may be synthesized in accordance with the following:

Dicarbonic amino acids were attached to a resin via estification of a side chain carboxyl group and deprotected. Aminoacid-O-nitrophenol esters and aminoacid-O-succinimide esters were coupled directly to the deprotected alpha-amino groups of the growth peptide in the desired sequence to produce C-terminal and N-terminal deprotected peptide-resin. These resin-bounded peptides were cyclized using dicyclohexyl carbodimide, cleaved and side chain deprotected following purification. Aminoacidic

10

20

analysis or NMR spectra may be utilized to confirm that the desired cyclized peptide has been produced.

Other objects and features of the present invention will be described in connection with the accompanying drawing figures and tables, which further illustrate the invention. It should, however, be recognized that the accompanying figures and tables are intended solely to illustrate the invention and are not intended as a means for defining the scope of the invention.

Brief Description of the Drawing Figures/Tables

Figures 1 - 5 (i.e., Tables 1 - 5) present experimental data illustrating the use and effectiveness of the peptides of the present invention.

15 <u>Detailed Description of the Preferred Embodiments</u>

Turning now, in detail, to an analysis of the preferred embodiments and experimental data, conducted by the inventor, which illustrates the immunotherapeutic activity of the peptide compounds of the present invention.

Initially, a suboptimal amount of phyto-

hemagglutinin from <u>Phaseolus vulgaris</u> was utilized in experimentation. Phytohemagglutinin is a non-specific stimulator of T-lymphocyte activation, which does not induce ³H-thymidine uptake by peripheral blood lymphocytes in sub-optimal amounts. Peptides of the present invention were added in a wide range of concentrations to lymphocyte cultures and caused a dramatic increase of ³H-thymidine incorporation into cell DNA.

10 As shown in Table 1, the peptides of the invention are over 100 to 1000 times more active than other known immunologically-active sequences. The peptides tested in Table 1 were as follows:

	<u>Peptides</u>	Amino Acid Sequence
15	Thymopoietin NN32-36	Arg-Lys-Asp-Val-Tyr
	Thymosin alpha-1 N23-27	Val-Glu-Glu-Ala-Glu
	Peptide (a)	Arg-Lys-Asp-Val-Tyr-Arg
	Peptide (b)	Arg-Lys-Asp-Val-Tyr-Lys
	Peptide (c)	Glu-Arg-Lys-Asp-Val-Tyr-Arg
20	Peptide (d)	Tyr-Arg-Lys-Asp-Val-Tyr-Arg

Peripheral blood lymphocytes (PBL) were purified by isopicnic centrifugation, washed and diluted in

complete RPMI 1640 medium, supplemented with human AB sera. 10⁵ cells were added into the wells of 96 well plates, which contain 100 µl of tested substances, diluted in RPMI 1640 culture medium as above, and a suboptimal amount of PHA. Cells were cultured for 4 days and ³H-thymidine was added into each well for 24 hours. Cells were harvested and incorporation of ³H-thymidine was measured by scintillation counting. All experiments were conducted in quadruplicate.

10 The addition of peptides to the peripheral blood lymphocytes of patients with depressed immunity, as reflected by decreased expression of T-cell subset markers and lymphocyte deviations, normalizes these characteristics. Positive results were achieved

15 within one hour of incubation, while no normalization was seen after such time when any presently known sequence was added. By contrast, previously known sequences led to limited normalization, but only after 18 - 24 hours of incubation. The experimental data of such comparative testing is set forth in Table 2.

With respect to the data set forth in Table 2, the PBL of normal persons and patients were treated

5

10

15

by the peptide Glu-Lys-Lys-Asp-Val-Tyr-Arg or
Thymosin alpha-1 fragment N23-27 in culture medium
for either 1 hour or 24 hours. Expression of CD4,
CD8 and NK markers was detected by immunofluorescene
as being the number of positive cells in cultures.
All experiments were conducted in triplicate. P was
calculated by using the t distribution of Student.

As measured by ³H-thymidine uptake, the peptides of the invention were able to restore normal response to phytohemagglutinin, while the amino acid sequences of peptides known to the prior art failed to do so. The experimental results are presented in Table 3. (Such comparative testing was performed in a manner similar to that described above for the test results set forth in Table 1. PBL of patients with signs of immunodeficiency were tested for PHA-induced ³H-thymidine uptake in the presence of tested substances in culture medium.)

It is known that <u>vaccinia</u> virus partially

20 protects the mouse from infection with <u>Ectromelia</u>

virus. The latter infection is lethal in most cases
in inbred mice. Mice BALB/c received peptides of the
present invention in doses of from 0.1 mcg to 1 mcg

per kg of body weight, one day prior to exposure to vaccinia virus. A month later, they were injected with Ectromelia virus in an extract from the spleen and liver of spontaneously infected animals. The clinical signs of infection on record were 5 hepatosplenomegaly, mucosal inflammation and necrosis of extremities and tail. The potentiating effect of peptides following vaccination with viccinia virus The test results are presented in Table was evident. 4 for the peptide Tyr-Arg-Lys-Glu-Leu-Tyr-Arg versus 10 a placebo. (In Table 4, P was calculated using the "F" distribution of Fischer, also known as Fischer's exact test.)

A single injection of a peptide one day prior to intranasal application in mice C57BL/6 with Influenza A virus strain WSN saved a significant number of animals. (See, Table 5.) The peptide had the amino acid sequence of Tyr-Arg-Lys-Glu-Leu-Glu-Lys-Lys-Glu. Mortality was recorded during a two-week period. P

was calculated using the "F" distribution of Fischer.

Peptides of the present invention, injected in doses of from 0.1 mcg to 1 mcg per kg of mouse body weight, normalized the depleted T-cell immunity of

10

15

20

thymectomized animals.

In toxicity studies, no toxicity was observed for the peptides of the invention in doses of up to 1 g per kg of mouse body weight; 20 subcutaneous or intraperitoneal injections every other day of the same dose also failed to produce any signs of toxicity. There were no significant changes in arterial blood pressure, heart rate, respiration or body temperature between the placebo group and animals injected with peptides during acute or chronic toxicity studies. The peptides of the invention did not cause any morphological changes in the brain, heart, lung, kidney and liver tissues. Complete blood counts on the experimental animals revealed an elevation of white blood cells to high normal levels. Hyperplasia of the thymus and thymusdependent zones of lymph nodes was recorded.

The medical formulations of the present invention preferably include an effective amount of one or more peptides and a solubilizer, with the possible inclusion of additional carriers and preservatives, as determined by the specifics of the different product formulations so desired by the

skilled artisan.

Solubilizers useful in combination with the peptides of the present invention include any solubilizer which is compatible with bodily fluids. Examples of solubilizers are water, solvents such as dimethylsulfoxide, propylene glycol, dimethylformamide and mixtures thereof, and surface active agents, such as non-ionic alkylene oxide block copolymers.

additives can be used to achieve physiological concentrations of inorganic salts, normal osmotic pressure and effective lyophilization. Such additives can be selected from, for example, sodium chloride and potassium chloride, sodium and potassium phosphate salts, sucrose, glucose, protein hydrolysate, dextran, polyvinylpyrrolidone and polyethylene glycol, among others.

In accordance with a preferred embodiment,

20 peptides are included in medical treatment
composition of the present invention in order to
provide doses ranging from 0.0001 mg to about 5 mg

5

-29-

per kg of body weight for parenteral use, as well as concentrations ranging from about 0.0001% to about 5% for topical use.

A preferred composition of the present invention for parenteral usage is a 0.01% solution of peptides in 1 ml of 0.85 wt-% sodium chloride containing 0.1 wt-% of ascorbic acid; it can be lyophilized in the presence of 100 mg glucose.

A preferred composition of the present invention

10 for eye and ear drops, for example, is a composition

comprising a 0.0001 wt-% solution of peptides in a

0.85% sodium chloride solution.

The medicinal compositions utilizing the

peptides of the present invention may be used for

immunomodulation of various immunodeficiencies and

immunosuppressed conditions, T-cell subset and

lymphocyte deviations, enhancement of a vaccine's

efficacy, as well as for immunotherapy, including

infections, local or systemic complications of non
infectious diseases, postoperatives inflammations,

wounds and burns.

While only several embodiments of the present invention have been described, it will be obvious to those of ordinary skill in the art that many modifications may be made to the present invention without departing from the spirit and scope thereof.

-31-

Claims

1. A peptide compound, or an acid or base salt thereof, constructed by combination and/or overlapping of the amino acid sequences:

A₁B₁ X B₂A₂, A₃B₃ X A₄B₄, B₅A₅ X A₆B₆,

B₇A₇ X B₈A₈, A₉B₉, A₁₀A₁₁,

B₁₀A₁₂ and/or B₁₁B₁₂,

wherein,

is a hydrophobic or neutral amino acid independently selected from the group consisting of Ala, D-Ala, Gly, D-Gly, Ile, D-Ile, Leu, D-Leu, Met, D-Met, Phe, D-Phe, Pro, D-Pro, Sar, D-Sar, Ser, D-Ser, Tre, D-Tre, Trp, D-Trp, Val and D-Val;

A1 through A12 are, independently, neutral or

positively-side-chain-charged amino acids
independently selected from the group consisting
of Ala, D-Ala, Arg, D-Arg, Asp, D-Asp, Glu,
D-Glu, Gly, D-Gly, His, D-His, Ile, D-Ile, Leu,
D-Leu, Met, D-Met, Phe, D-Phe, Pro, D-Pro,
dehydro Pro, Sar, D-Sar, Ser, D-Ser, Tre, D-Tre,

Trp, D-Trp, Val and D-Val; and,

- B1 through B12 are, independently, neutral or negatively-side-chain-charged amino acids independently selected from the group consisting of Ala, D-Ala, Asp, D-Asp, Glu, D-Glu, Gly, D-Gly, Ile, D-Ile, Leu, D-Leu, Met, D-Met. Phe, D-Phe, Pro, D-Pro, dehydro Pro, Sar, D-Sar, Tre, D-Tre, Tyr, D-Tyr, Val, D-Val, L-2-amino-glutaryl, D-2-aminoglutaryl, L-2-aminoadiphyl, D-2-aminopimelyl.
 - 2. The peptide compound according to Claim 1, wherein,
 - X is an amino acid selected from the group consisting of Ala, Gly, Ile, Leu, Phe and Val;
 - 5 An through An are amino acids independently selected from the group consisting of Arg, Asn, Gln, Lys, Phe and Val; and,
- B1 through Bn are amino acids independently selected from the group consisting of Asp, Glu,

 Tyr, Phe and Val.

-33-

- 3. The peptide compound according to Claim 1, wherein said peptide compound has balanced side chain charges of amino acid sequences which are symmetrical to X.
- 4. The peptide compound according to Claim 1, wherein said peptide compound has uncompensated opposite side chain charges of amino acid sequences relative to X.
- 5. The peptide compound according to Claim 1, wherein said peptide compound is Glu-Arg-Lys-Glu-Leu-Tyr-Arg.
- 6. The peptide compound according to Claim 1, wherein said peptide compound is Tyr-Arg-Lys-Asp-Val-Tyr-Arg.
- 7. The peptide compound according to Claim 1, wherein said peptide compound is Tyr-Arg-Lys-Glu-Leu-Tyr-Arg.
- 8. The peptide compound according to Claim 1, wherein said peptide compound is Glu-Arg-Lys-Asp-Val-Tyr-Arg.

The peptide compound according to Claim 1, 9. wherein said peptide compound is a member selected from the group consisting of: Arg-Asp-Lys-Asp-Val-Tyr-Arg; Lys-Asp-Lys-Asp-Val-Tyr-Lys; 5 Lys-Glu-Lys-Asp-Val-Tyr-Lys; Arg-Glu-Arg-Asp-Val-Tyr-Arg; Lys-Glu-Leu-Tyr-Arg-Lys-Glu; Lys-Glu-Leu-Glu-Lys-Lys-Glu; Arg-Glu-Leu-Glu-Arg-Arg-Glu; 10 Lys-Asp-Val-Asp-Lys-Lys-Asp; Lys-Asp-Leu-Glu-Lys-Lys-Glu; Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Glu; Tyr-Arg-Lys-Glu-Leu-Glu-Lys-Lys-Glu; Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu; 15 Tyr-Arg-Lys-Glu-Leu-Tyr-Arg-Glu-Lys; Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val-Tyr-Arg; Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu-Tyr-Arg; Glu-Arg-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu-Tyr-Arg; Tyr-Arg-Lys-Asp-Val-20 Tyr-Arg-Lys-Glu-Val-21

WO 92/09628

Arg-Glu-Glu-Val-Phe-Glu;

Arg-Lys-Asp-Val-Phe-Glu;

5

```
Arg-Asn-Asp-Val-Tyr-Arg;
    Arg-Lys-Asp-Val-Tyr-Arg;
                                Arg-Gln-Glu-Leu-Tyr-Arg;
    Arg-Lys-Glu-Leu-Tyr-Arg;
                                Arg-Asn-Asp-Val-Tyr-Lys;
    Arg-Lys-Asp-Val-Tyr-Lys;
                                Arg-Gln-Glu-Leu-Tyr-Lys;
    Arg-Lys-Glu-Leu-Tyr-Lys;
                                Arg-Lys-Glu-Leu-Glu-Arg;
    Arg-Lys-Asp-Val-Glu-Arg;
10
                                Arg-Phe-Leu-Tyr-Arg-Asp;
    Arg-Lys-Glu-Val-Glu-Arg;
                                Glu-Tyr-Arg-Leu-Arg-Tyr;
    Phe-Tyr-Arg-Leu-Arg-Tyr;
                                Lys-Glu-Leu-Gln-Glu-Glu;
     Glu-Tyr-Arg-Leu-Tyr-Arg;
                                Lys-Asp-Val-Lys-Phe-Glu;
     Lys-Asp-Val-Arg-Tyr-Tyr;
                                Lys-Asp-Val-Arg-Tyr-Asp;
     Lys-Asp-Val-Arg-Phe-Glu;
15
                                Arg-Tyr-Gln-Leu-Tyr-Arg;
     Arg-Tyr-Asn-Val-Tyr-Arg;
                                Arg-Tyr-Gln-Leu-Tyr-Lys;
     Arg-Tyr-Asn-Val-Tyr-Lys;
                                Gln-Glu-Lys-Leu-Tyr-Arg;
     Arg-Glu-Lys-Leu-Tyr-Arg;
                                Asn-Asp-Lys-Leu-Tyr-Arg;
     Gln-Asp-Lys-Leu-Tyr-Arg;
                                 Tyr-Arg-Asp-Val-Tyr-Arg;
     Lys-Tyr-Val-Tyr-Arg-Asp;
20
                                 Tyr-Lys-Glu-Leu-Tyr-Arg;
     Tyr-Lys-Asp-Val-Tyr-Lys;
                                 Asp-Asn-Tyr-Leu-Glu-Arg;
     Asp-Asn-Tyr-Val-Tyr-Arg;
     Asp-Asn-Tyr-Leu-Glu-Gln; Arg-Asn-Lys-Asp-Val-Tyr-Arg;
              Arg-Gln-Arg-Glu-Leu-Tyr-Arg;
              Arg-Asn-Arg-Tyr-Leu-Tyr-Arg;
25
               Arg-Asp-Val-Tyr-Arg-Gln-Asn;
               Lys-Asp-Val-Tyr-Arg-Gln-Asn;
               Arg-Asp-Val-Tyr-Lys-Gln-Asn;
               Asp-Glu-Lys-Glu-Leu-Tyr-Arg;
```

WO 92/09628 PCT/US91/08795

-37-

30	Glu-Glu-Lys-Asp-Val-Tyr-Arg;
	Asp-Glu-Gln-Glu-Leu-Phe-Arg;
	Gln-Asp-Val-Tyr-Arg-Glu-Asp;
	Gln-Glu-Asn-Asp-Val-Glu-Gln;
	Asn-Asp-Gln-Glu-Leu-Glu-Gln;
35	Asn-Asp-Lys-Asp-Val-Asp-Lys;
	Gln-Glu-Asp-Lys-Leu-Tyr-Arg;
	Arg-Glu-Asp-Lys-Leu-Tyr-Arg;
	Arg-Glu-Asp-Arg-Leu-Tyr-Arg;
	Arg-Asp-Glu-Arg-Leu-Tyr-Arg;
40	Arg-Glu-Tyr-Arg-Leu-Tyr-Arg;
	Lys-Glu-Tyr-Arg-Leu-Tyr-Arg;
	Lys-Asp-Val-Tyr-Arg-Arg-Tyr;
	Lys-Asp-Val-Tyr-Arg-Lys-Tyr;
	Lys-Asp-Val-Tyr-Arg-Lys-Asp;
45	Lys-Glu-Leu-Glu-Arg-Lys-Glu;
	Arg-Asp-Val-Asp-Lys-Lys-Asp;
	Lys-Asp-Leu-Glu-Lys-Lys-Asp;
	Lys-Glu-Leu-Lys-Glu-Lys-Glu;
	Lys-Asp-Leu-Lys-Glu-Lys-Asp;
50	Glu-Arg-Lys-Asp-Val-Tyr-Arg;
	Glu-Lys-Lys-Asp-Val-Tyr-Arg;
	Asp-Arg-Lys-Asp-Val-Tyr-Arg;
	Lys-Glu-Leu-Lys-Glu-Tyr-Arg;

```
Lys-Asp-Val-Lys-Glu-Tyr-Lys;
          Glu-Lys-Lys-Glu-Leu-Glu-Lys-Lys-Glu;
55
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Arg-Tyr;
          Glu-Lys-Lys-Glu-Leu-Arg-Tyr-Tyr-Arg;
          Tyr-Arg-Lys-Asp-Val-Lys-Tyr-Tyr-Arg;
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Tyr-Arg;
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Glu-Arg;
60
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Glu-Arg;
          Glu-Lys-Lys-Glu-Leu-Glu-Gln-Tyr-Arg;
          Glu-Lys-Lys-Glu-Leu-Glu-Gln-Asp-Asn;
          Lys-Glu-Glu-Lys-Leu-Glu-Lys-Lys-Glu;
          Lys-Asp-Asp-Lys-Leu-Tyr-Arg-Gln-Glu;
65
          Gln-Glu-Asp-Lys-Leu-Tyr-Arg-Gln-Glu;
          Gln-Glu-Asp-Lys-Leu-Tyr-Arg-Gln-Glu;
            Arg-Tyr-Leu-Arg-Tyr-Leu-Tyr-Arg;
            Arg-Tyr-Leu-Lys-Glu-Leu-Tyr-Arg;
            Tyr-Arg-Gly-Lys-Glu-Leu-Tyr-Arg;
70
        Arg-Tyr-Leu-Tyr-Arg-Lys-Asp-Val-Tyr-Arg; and,
        Arg-Tyr-Leu-Glu-Lys-Lys-Glu-Leu-Tyr-Arg.
```

11. A composition having immunotheapeutic activity, comprising:

a peptide compound, or an acid or base salt thereof, constructed by combination and/or overlap-

WO 92/09628 PCT/US91/08795

-39-

5 ping of the amino acid sequences:

A₁ B₁ X B₂ A₂, A₃ B₃ X A₄ B₄, B₅ A₅ X A₆ B₆, B₇ A₇ X B₈ A₈, A₉ B₉, A₁₀ A₁₁, B₁₀ A₁₂ and/or B₁₁ B₁₂,

wherein,

- is a hydrophobic or neutral amino acid independently selected from the group consisting of Ala, D-Ala, Gly, D-Gly, Ile, D-Ile, Leu, D-Leu, Met, D-Met, Phe, D-Phe, Pro, D-Pro, Sar, D-Sar, Ser, D-Ser, Tre, D-Tre, Trp, D-Trp, Val and D-Val;
- At through A12 are, independently, neutral or positively-side-chain-charged amino acids independently selected from the group consisting of Ala, D-Ala, Arg, D-Arg, Asp, D-Asp, Glu, D-Glu, Gly, D-Gly, His, D-His, Ile, D-Ile, Leu, D-Leu, Met, D-Met, Phe, D-Phe, Pro, D-Pro, dehydro Pro, Sar, D-Sar, Ser, D-Ser, Tre, D-Tre, Trp, D-Trp, Val and D-Val; and,
- B1 through B12 are, independently, neutral or negatively-side-chain-charged amino acids

independently selected from the group consisting of Ala, D-Ala, Asp, D-Asp, Glu, D-Glu, Gly, D-Gly, Ile, D-Ile, Leu, D-Leu, Met, D-Met. Phe, D-Phe, Pro, D-Pro, dehydro Pro, Sar, D-Sar, Tre, D-Tre, Tyr, D-Tyr, Val, D-Val, L-2-amino-glutaryl, D-2-aminoglutaryl, L-2-aminopimelyl, L-2-aminopimelyl;

and,

30

35 a solubilizer for said peptide compound.

- 12. The composition having immunotherapeutic activity according to Claim 11, wherein said peptide compound is Glu-Arg-Lys-Glu-Leu-Tyr-Arg.
- 13. The composition having immunotherapeutic activity according to Claim 11, wherein said peptide compound is Tyr-Arg-Lys-Asp-Val-Tyr-Arg.
- 14. The composition having immunotherapeutic activity according to Claim 11, wherein said peptide compound is Tyr-Arg-Lys-Glu-Leu-Tyr-Arg.

- 15. The composition having immunotherapeutic activity according to Claim 11, wherein said peptide compound is Glu-Arg-Lys-Asp-Val-Tyr-Arg.
- 16. The composition having immunotherapeutic activity according to Claim 11, wherein said peptide compound is a member selected from the group consisting of:

```
5
    Arg-Asp-Lys-Asp-Val-Tyr-Arg;
     Lys-Asp-Lys-Asp-Val-Tyr-Lys;
     Lys-Glu-Lys-Asp-Val-Tyr-Lys;
     Arg-Glu-Arg-Asp-Val-Tyr-Arg;
     Lys-Glu-Leu-Tyr-Arg-Lys-Glu;
10
    Lys-Glu-Leu-Glu-Lys-Lys-Glu;
     Arg-Glu-Leu-Glu-Arg-Arg-Glu;
     Lys-Asp-Val-Asp-Lys-Lys-Asp;
     Lys-Asp-Leu-Glu-Lys-Lys-Glu;
     Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Glu;
15
     Tyr-Arg-Lys-Glu-Leu-Glu-Lys-Lys-Glu;
     Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu;
     Tyr-Arg-Lys-Glu-Leu-Tyr-Arg-Glu-Lys;
     Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val-Tyr-Arg;
     Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu-Tyr-Arg;
```

21 Tyr-Arg-Lys-Asp-Val ; 22 Tyr-Arg-Lys-Glu-Val ; 23 Glu-Arg-Lys-Glu-Leu ; 24 Glu-Lys-Lys-Glu-Leu ; 25 Glu-Lys-Lys-Asp-Leu ; 26 Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Asp-Val ; 27 Tyr-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu ; 28 Tyr-Arg-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu ; 29 Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val ; 30 and, 31 Glu-Lys-Lys-Glu-Leu-Glu-Lys-Lys-Glu-Leu ;	20	Glu-Arg-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu-Tyr-Arg;
; 23 Glu-Arg-Lys-Glu-Val ; 24 Glu-Lys-Lys-Glu-Leu ; 25 Glu-Lys-Lys-Asp-Leu ; 26 Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Asp-Val 27 Tyr-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu 28 Tyr-Arg-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu 29 Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val 30 and,	21	
; 24 Glu-Lys-Lys-Glu-Leu ; 25 Glu-Lys-Lys-Asp-Leu ; 26 Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Asp-Val ; 27 Tyr-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu 28 Tyr-Arg-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu 29 Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val 30 and,	22	1
; 25	23	
; 26 Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Asp-Val 27 Tyr-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu 28 Tyr-Arg-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu 29 Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val 30 and,	24	Glu-Lys-Lys-Glu-Leu;
27 — Tyr-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu— 28 — Tyr-Arg-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu 29 — Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val 30 and,	25	
28	26	Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Asp-Val
29 Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val 30 and,	27	Tyr-Lys-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu-
30 and,	28	Tyr-Arg-Lys-Glu-Leu-Tyr-Arg-Lys-Glu-Leu
Clu Lou-Clu-Lys-Clu-Leu	29	Tyr-Arg-Lys-Asp-Val-Tyr-Arg-Lys-Asp-Val-

17. The composition having immunotherapeutic activity according to Claim 11, wherein said peptide compound is a member selected from the group consisting of:

```
Arg-Lys-Asp-Val-Arg-Tyr;
    Arg-Lys-Asp-Val-Lys-Tyr;
5
                                Arg-Glu-Glu-Val-Phe-Glu;
    Arg-Lys-Asp-Val-Phe-Glu;
                                Arg-Asn-Asp-Val-Tyr-Arg;
     Arg-Lys-Asp-Val-Tyr-Arg;
                                Arg-Gln-Glu-Leu-Tyr-Arg;
     Arg-Lys-Glu-Leu-Tyr-Arg;
                                Arg-Asn-Asp-Val-Tyr-Lys;
     Arg-Lys-Asp-Val-Tyr-Lys;
                                Arg-Gln-Glu-Leu-Tyr-Lys;
     Arg-Lys-Glu-Leu-Tyr-Lys;
10
                                Arg-Lys-Glu-Leu-Glu-Arg;
     Arg-Lys-Asp-Val-Glu-Arg;
                                Arg-Phe-Leu-Tyr-Arg-Asp;
     Arg-Lys-Glu-Val-Glu-Arg;
                                Glu-Tyr-Arg-Leu-Arg-Tyr;
     Phe-Tyr-Arg-Leu-Arg-Tyr;
                                Lys-Glu-Leu-Gln-Glu-Glu;
     Glu-Tyr-Arg-Leu-Tyr-Arg;
                                Lys-Asp-Val-Lys-Phe-Glu;
     Lys-Asp-Val-Arg-Tyr-Tyr;
15
                                Lys-Asp-Val-Arg-Tyr-Asp;
     Lys-Asp-Val-Arg-Phe-Glu;
                                Arg-Tyr-Gln-Leu-Tyr-Arg;
     Arg-Tyr-Asn-Val-Tyr-Arg;
                                Arg-Tyr-Gln-Leu-Tyr-Lys;
     Arg-Tyr-Asn-Val-Tyr-Lys;
                                Gln-Glu-Lys-Leu-Tyr-Arg;
     Arg-Glu-Lys-Leu-Tyr-Arg;
                                Asn-Asp-Lys-Leu-Tyr-Arg;
     Gln-Asp-Lys-Leu-Tyr-Arg;
20
                                Tyr-Arg-Asp-Val-Tyr-Arg;
     Lys-Tyr-Val-Tyr-Arg-Asp;
     Tyr-Lys-Asp-Val-Tyr-Lys;
                                Tyr-Lys-Glu-Leu-Tyr-Arg;
     Asp-Asn-Tyr-Val-Tyr-Arg;
                                Asp-Asn-Tyr-Leu-Glu-Arg;
     Asp-Asn-Tyr-Leu-Glu-Gln; Arg-Asn-Lys-Asp-Val-Tyr-Arg;
              Arg-Gln-Arg-Glu-Leu-Tyr-Arg;
25
```

	Arg-Asn-Arg-Tyr-Leu-Tyr-Arg;
	Arg-Asp-Val-Tyr-Arg-Gln-Asn;
	Lys-Asp-Val-Tyr-Arg-Gln-Asn;
	Arg-Asp-Val-Tyr-Lys-Gln-Asn;
30	Asp-Glu-Lys-Glu-Leu-Tyr-Arg;
	Glu-Glu-Lys-Asp-Val-Tyr-Arg;
	Asp-Glu-Gln-Glu-Leu-Phe-Arg;
	Gln-Asp-Val-Tyr-Arg-Glu-Asp;
	Gln-Glu-Asn-Asp-Val-Glu-Gln;
35	Asn-Asp-Gln-Glu-Leu-Glu-Gln;
	Asn-Asp-Lys-Asp-Val-Asp-Lys;
	Gln-Glu-Asp-Lys-Leu-Tyr-Arg;
	Arg-Glu-Asp-Lys-Leu-Tyr-Arg;
	Arg-Glu-Asp-Arg-Leu-Tyr-Arg;
40	Arg-Asp-Glu-Arg-Leu-Tyr-Arg;
	Arg-Glu-Tyr-Arg-Leu-Tyr-Arg;
	Lys-Glu-Tyr-Arg-Leu-Tyr-Arg;
	Lys-Asp-Val-Tyr-Arg-Arg-Tyr;
	Lys-Asp-Val-Tyr-Arg-Lys-Tyr;
.45	Lys-Asp-Val-Tyr-Arg-Lys-Asp;
	Lys-Glu-Leu-Glu-Arg-Lys-Glu;
	Arg-Asp-Val-Asp-Lys-Lys-Asp;
	Lys-Asp-Leu-Glu-Lys-Lys-Asp;
	Lys-Glu-Leu-Lys-Glu-Lys-Glu
	TAR-GIM-Deg TAR GIG TA

```
Lys-Asp-Leu-Lys-Glu-Lys-Asp;
50
              Glu-Arg-Lys-Asp-Val-Tyr-Arg;
              Glu-Lys-Lys-Asp-Val-Tyr-Arg;
              Asp-Arg-Lys-Asp-Val-Tyr-Arg;
              Lys-Glu-Leu-Lys-Glu-Tyr-Arg;
              Lys-Asp-Val-Lys-Glu-Tyr-Lys;
55
          Glu-Lys-Lys-Glu-Leu-Glu-Lys-Lys-Glu;
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Arg-Tyr;
          Glu-Lys-Lys-Glu-Leu-Arg-Tyr-Tyr-Arg;
          Tyr-Arg-Lys-Asp-Val-Lys-Tyr-Tyr-Arg;
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Tyr-Arg;
60
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Glu-Arg;
          Glu-Lys-Lys-Glu-Leu-Tyr-Arg-Glu-Arg;
          Glu-Lys-Lys-Glu-Leu-Glu-Gln-Tyr-Arg;
          Glu-Lys-Lys-Glu-Leu-Glu-Gln-Asp-Asn;
          Lys-Glu-Glu-Lys-Leu-Glu-Lys-Lys-Glu;
65
          Lys-Asp-Asp-Lys-Leu-Tyr-Arg-Gln-Glu;
          Gln-Glu-Asp-Lys-Leu-Tyr-Arg-Gln-Glu;
          Gln-Glu-Asp-Lys-Leu-Tyr-Arg-Gln-Glu;
            Arg-Tyr-Leu-Arg-Tyr-Leu-Tyr-Arg;
            Arg-Tyr-Leu-Lys-Glu-Leu-Tyr-Arg;
70
             Tyr-Arg-Gly-Lys-Glu-Leu-Tyr-Arg;
        Arg-Tyr-Leu-Tyr-Arg-Lys-Asp-Val-Tyr-Arg; and,
         Arg-Tyr-Leu-Glu-Lys-Lys-Glu-Leu-Tyr-Arg.
```

5

5

5

- activity according to Claim 11, wherein said peptide compound is incorporated into a polymeric matrix selected from the group consisting of a polyanhydride copolymer, ethylen-vinyl acetate copolymer, lactic acid-glycolic acid copolymer, polyhydroxymethyl-metacrilate, polyvinyl alcohol and a combination thereof.
- 19. The composition having immunotherapeutic activity according to Claim 11, wherein said solubilizer is a member selected from the group consisting of water, dimethylsulfoxide, propylene glycol, dimethylformamide and a combination thereof.
- 20. The composition having immunotherapeutic activity according to Claim 11, wherein said solubilizer is a non-ionic alkylene oxide block copolymer.
- 21. The composition having immunotherapeutic activity according to Claim 11, further comprising an additive selected from the group consisting of a stabilizer, a viscosifier, a preservative and a combination thereof.

1/5

FIG.1 (TABLE 1)

3H-THYMIDINE UPTAKE BY DONOR'S LYMPHOCYTES IN (CPM X-10³)
IN SUBOPTIMAL DOSES OF PHA

ES	THYMO- POIETIN	ALPHA 1 THYMOSIN PEPTIDE	PEPTIDE	PEPTI DE	PEPTI DE PEPTI DE PEPTI DE	PEPTIDE
Z	NN 32-36	N 23-27	ם	D	ں ———	ם
9.0	0,6 ±0,2	0.5 ± 0.2	0.5 ± 0.2	0.4 ± 0.2	0.3 ± 0.1 0.6 ± 0.1	0.6 ± 0.1
7.0	0.4 ± 0.1	0,5 ± 0.2	1.8 ± 0.3	1.7 ± 0.2	2.1 ± 0.3	3.1 ± 0.3
0.5	0.5 ± 0.1	0.6 ± 0.1	2.5±0.3	3.6 ±0.3	3.6 ±0.3 4.2 ±0.3	4.0 ± 0.2
0.5	0.5 ± 0.2	0.4 ± 0.1	3.2 ± 0.3	3.2 ±0.3	4.0 ± 0.3	43 ±0,3
0.8	0.8 ± 0.3	0.6 ± 0.2	3.6 ± 0.4	3.4 ± 0.4	3.9±0.2	4.1 ± 0.3
0.9	0.9 ± 0.2	0.9 ± 0.2	0.9 ±0.2 3.4 ± 0.3	3.2 ± 0.3	4.1 ± 0.2	4.1±0.3
1.1	1.1 ± 0.2	1.5 ± 0.3	3.0 ± 0.4	2,8 ±0.3	3.9 ± 0.3	4.2 ±0.3

THYMIDINE UPTAKE AT OPTIMAL CONCENTRATION OF PHA IS 4.1±0.3 3H

CORRECTION OF LYMPHOCYRE MARKER EXPRESSION IN VITRO

- 1				T	T	T-	1						-22		1		-,-
		-	24h	۵	> 0.2	> 0.2		< 0.05	^	^			< 0.005	> 0.05	> 0 0 5		0
2		E ALPHA-1	2	2 POSITIVE	38.1 ±1.9	232 2.7	1.64	20:4 ± 2 0	37.8 ± 22	26.1 ± 3.2	7 7 6	C#	244 ± 1.8	31.7 ± 28	18.7±24	2 02	213 ± 30 / 0 04
	uı	THYMOSINE NN 23-27	1 h	۵	70.5	>0.2	1	.> 0.2	> 0.2	> 0.2			> 0.2	> 0.2	> 0.2	1	100
	TERM CULTURE	THUN	1	RPOSITIVE CELLS	37.4 ± 2.4	20.1 ±23	1.86	~ 0.005 14.9 ±3,1	34.1 ± 3.1	29.9 ±25	1 1%	<u> </u>	14.4±29	26.3 ± 24	14.1 2.5	1.86	06+21
	RM CU		74 h	۵	<0.05	< 0.05	1	< 0.005		<0.005	1		< 0.005	< 0.02	< 0.02	1	2001
	- 1		2,	POSITIVE CELLS	43.8 ±1.9	28.1 3.0	1.56	26.1±1.8	389±2.1	20.1 ± 1.8	1,91		265 ± 23	35.2 ±2.3	21.9±2.1	1.61	25.9 ±26. < 0.01
	SHORT			ď	~0.05	<0.05	1	< 0.005	< 0.005	< 0.005	-		< 0.005	< 0.01	0.05	1	0.005
		PEPTI DE	1 h	% POSITIVE CELLS	44.9 ± 2.2	27.6 ± 1.7	1.62	25.1 ± 1.5	37.4 ± 1.4	19.7 ± 2.3	1.89	1	21.2 ± 3.1	33.8 ± 1.4	20.6 ± 1.7	1.64	25.7 ±3.7
-				1		21.7 2÷4	1,68	15.3 2 . 1	84.7. E. 1.3.	29.5	1.13	14,1	17.	26.8 2 [±] 2	13.7 3.0	1.96	4,4
_	Σ	C CC 7	- ш с	:	700	CD 8	418 ratio	NK	† (CD †	600	418	2	<u> </u>	† O)		418. mt10	NK
	· ·	Æ OF		RE		DONOR				ONCOLOGIC	FALIEN			PATIENT WITH	VIRAL INFFCT-	NO	

IG. 2 ABLE 2) ITE: IE SUM OF THE ERCENTAGE OF ARKER POS-FIVE CELLS IAY BE MORE HAN 100%

F | G , $\mathcal Z$ (TABLE) IN VITRO CORRECTION OF $^3\text{H-THYMIDINE}$ UPTAKE BY PATIENTS' LYMPHOCYTES (CPM × $_10^3$)

ļ.								
DONORS		35	PATIENTS	SINIS				
L.K. P.L	L	P.L.	M.A.	M.A. B.D.	K. E.	H.F.	0.0.	H. S.
4 ± 0.31		1,34 ± 0.31 1.82 ± 0.19	0.78 ± 12	0.78 ± 12 0.62 ± 0.21 0.80 ± 0.11 0.86 ± 0.10 0.52 ± 0.21 0.63 ± 0.2	0.80 ± 0.11	0.86 ± 0.10	0.52 ± 0.21	0.63 ± 0.2
1 ± 0.23	L	1.51 ± 0.23 1.77 ± 0.16	0.89 ± 0.11	0.89 ± 0.11 0.61 ± 0.12 1.23 ± 0.09 0.97 ± 0.12 0.91 ± 0.15 0.75 ± 0.16	1.23 ± 0.09	0.97 ± 0.12	0.91 ± 0.15	0.75 ± 0.16
9±021	I	ALPHA-LTHYMO- 1.39 ± 0.21 1.73 ± 0.16 SINE NO.23 – 27	0.89 ±0.13	0.89 ±0.13 0.71 ± 0.18 0.76 ± 0.11 0.94 ± 0.14 0.74 ± 0.14 0.97 ± 0.13	0.76 ± 0.11	0.94 ± 0.14	0.74 ± 0.14	0.97 ± 0.13
2 ± 0.24		2.12 ± 0.18	1.31 ± 0.14	2.32 ± 0.24 2.12 ± 0.18 1.31 ± 0.14 2.09 ± 0.18 2.30 ± 0.19 1.75 ± 0.17 1.22 ± 0.13 1.42 ± 0.10	230 ± 0.19	1.75 ± 0.17	1.22 ± 0.13	1.42 ± 0.10

PHA WAS ADDED IN OPTIMAL CONCENTRATION, C P.M. WITHOUT PHA 0. 21 ± 0.09.

ALL SUBSTANCES IN CONCENTRATIONS OF 1 mCg/mlall experiments done in triplicets

PEPTIDE HAS A SEQUENCE; TYRARG LYSASP VALTYRARG

4/5

FIG. 4 (TABLE 4)
ENHANCEMENT OF VACCINATION EFFECT AGAINST
ECTROMELIA VIRUS

MORTALITY	8/10	0/20	< 0.00036
SIGNS OF INFECTION	10 / 10	2 / 10	< 0.00036
	PLACEBO	PEPTIDE	<i>d</i>

THE EFFECT OF PEPTIDES ON MOUSE MORTALITY INDUCED BY INFLUENZA A VIRUS FIG. 5 (TABLES)

		1		·
	10	10/10	6/10	<0.043
IRUS, LD 100	2	10/10	2/10	-0.0001
INFLUENZA A VIRUS, LD 100		9/10	6/0	- 0.0001
	0	0/10	0/10	N. A.
		CONTROL	PEPTIDE	·

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91/08795

	-	ON OF SUBJECT MATTER (if several		icate all) ³			
	~	ational Patent Classification (IPC) or to be 7/06,7/08,7/48; A61K 37/02	oth National Classification and IPC				
		.5,16,17; 530/327,328,329					
II. FIELI	OS SEAR						
Classificati	on System		mentation Searched 4 Classification Symbols				
U.S.		514/15,16,17; 530/327,3	328,329				
			other than Minimum Documentation				
APS, B	iosis						
III. DOC	UMENTS	CONSIDERED TO BE RELEVANT 14					
Category*	Citatio	n of Document, ¹⁶ with indication, where ap	propriate, of the relevant passages 17	Relevant to Claim No. 18			
A	1-21						
A	US, A, see er	1-21					
A US, A, 4,002,740 (Goldstein et al) 11 January 1977, 1-21 see entire document.							
US, A, 4,659,694 (Horecker) 21 April 1987 see entire document.							
* Special categories of cited documents: 16							
not considered to be of particular relevance "E" earlier document but published on or after the international filling date "I" document which may throw doubte on priority claim(s) "I" document which may throw doubte on priority claim(s)							
or wanoti	hich is cit her citation ment refer	ed to establish the publication date of or other special reason (as specified) ring to an oral disclosure, use, exhibition	considered to involve an inver "Y" document of particular rel invention cannot be consi- inventive step when the docu	evance; the claimed dered to involve an ment is combined with			
"P" docu		shed prior to the international filing date se priority date claimed	one or more other such docum being obvious to a person skil "&" document member of the sam	ents, such combination led in the art			
IV. CERT			Date of Mailing of this teasure of	Sanah Bana - 2			
		ompletion of the International Search ² ARY 1992	Date of Mailing of this International 1992	Search Report			
		ARY 1992 ng Authority ¹	Cianana of Australia d Office 20				
	/11S	us menonity	Joans Joans	Manie			