UCS 2403 Design & Analysis of Algorithms

Assignment 3

Date of Exercise: 06.03.2024

Aim: To gain understanding and proficiency on how to find and analyse the errors in a code

Question 1:

Given a list L of n numbers, an inversion is defined as a pair (L[i], L[j]) such that i < j and L[i] > L[j]. For example, if L = [3, 2, 8, 1], then (3, 2), (8, 1), (2, 1), (3, 1) are the inversions in L. Consider the Python codes given in (1) and (2) below for finding the count of inversions in a list.

Find if there are errors in these codes. If there are, find one counterexample for each incorrect code, fix the errors, and write your own (correct) code to find the count of inversions in a list. Derive the time complexity of your final algorithm(s). Note that a counterexample is an input instance to the algorithm that produces a wrong output

Algorithm:

The state of the s
Algorithm:
frages in (1)
It doesn't consider cases like comparing
the state of the s
Counter example: When L= [3,2,8,1],
innerwions obtained are (3,2) and (8,1)
only. Thus cases like (2, 1) and (3, 1) are
not printed and thus is wrong
Errous in(2)
Same as (1), it doesn't compare elements
1 - 100 -
Counter Example: When L= [3,2,8,1], after sorting
C10 2 8
Co innerions obtained aux none which
is weigng.

Code:

```
#INVERSIONS IN A LIST

#Input list
size = int(input("Enter the size of the List: "))
nums = []

for k in range(size):
    nums.append(int(input("Enter element " + str(k+1) + ": ")))

print("\nList:", nums)

#Method 1
#Time Complexity: O(n^2)
```



```
def count_inversions1(nums):
    count1 = 0
    for i in range(0, len(nums)):
        for j in range(i+1, len(nums)):
            if nums[i] > nums[j]:
                count1 += 1
    return count1
print("\nNumber of inversions (0(n^2)):", count_inversions1(nums))
#Method 2
#Time Complexity: O(n*logn)
def count_inversions2(nums):
    return merge_sort(nums, 0, len(nums) - 1)
def merge_sort(nums, left, right):
    count2 = 0
    if left < right:</pre>
        mid = (left + right) // 2
        count2 += merge_sort(nums, left, mid)
        count2 += merge_sort(nums, mid + 1, right)
        count2 += merge(nums, left, mid, right)
    return count2
def merge(nums, left, mid, right):
    count2 = 0
    temp = [0] * (right - left + 1)
    i = left
    j = mid + 1
    k = 0
    while i <= mid and j <= right:
        if nums[i] <= nums[j]:</pre>
            temp[k] = nums[i]
            k += 1
            i += 1
        else:
            temp[k] = nums[j]
            k += 1
            count2 += mid - i + 1
    while i <= mid:
        temp[k] = nums[i]
        k += 1
        i += 1
```



```
while j <= right:
    temp[k] = nums[j]
    k += 1
    j += 1

for p in range(len(temp)):
    nums[left + p] = temp[p]

return count2

print("Number of inversions (O(n*logn)):", count_inversions2(nums))</pre>
```

Output:

```
PS C:\Users\Mugilkrishna D U\OneDrive\Desktop\My Files\.vscode> & "C:/Users/Mugilkrishna D U/AppDat
a/Local/Programs/Python/Python311/python.exe" "c:/Users/Mugilkrishna D U/OneDrive/Desktop/My Files/
SSN/SEM4/DESIGN AND ANALYSIS OF ALGORITHMS/LAB/3.1.py"
Enter the size of the List: 5
Enter element 1: 3
Enter element 2: 4
Enter element 3: 5
Enter element 4: 6
Enter element 5: 1
List: [3, 4, 5, 6, 1]
Number of inversions (0(n^2)): 4
Number of inversions (O(n*logn)): 4
PS C:\Users\Mugilkrishna D U\OneDrive\Desktop\My Files\.vscode> & "C:/Users/Mugilkrishna D U/AppDat
a/Local/Programs/Python/Python311/python.exe" "c:/Users/Mugilkrishna D U/OneDrive/Desktop/My Files/
SSN/SEM4/DESIGN AND ANALYSIS OF ALGORITHMS/LAB/3.1.py"
Enter the size of the List: 6
Enter element 1: 6
Enter element 2: 5
Enter element 3: 1
Enter element 4: 4
Enter element 5: 8
Enter element 6: 2
List: [6, 5, 1, 4, 8, 2]
Number of inversions (0(n^2)): 9
Number of inversions (O(n*logn)): 9
```

Time Complexity:

- (i) Method 1: O(n^2) Quadratic Time Complexity
- (ii) Method 2: O(n*logn) Linear Logarithmic Time Complexity

Question 2:

Given a list of integers, the comparison count sorting algorithm sorts the list as follows: For each integer at index i in the list, count the number of integers that are strictly less than it. In the sorted list, place the integer at the index equal to the number of integers that are less than it. For example, there are no integers less than the minimum integer in the list, so the minimum integer is placed at index 0. Now, consider the code given below to sort a list of numbers using comparison count sort.

Find if there are errors in this code. If there are, find at least one counterexample, list the lines of code that have errors, and write your own (correct) code to implement comparison count sort. Derive the time complexity of your algorithm.

Algorithm:

Algoerthm:
Ecocoes:
There are correspondent
The most of the most of a second
argue turing out to be [0,1,2,3,5]
⇒ This happens because there is no peropeer
the code for comparing
two equal num bears i.e it gets changed to o
=> Lines that have everous:
I rume Cit > rums Ci I and
elij nums (i) <nums [i]<="" td=""></nums>
It should have been >= and <= instead
of simply > and <
New algorithm:
- C - cont (ounde)
nume sont ed = [0] le n(nums)
rount - [b] * flengrums) rount - [b] * flengrums) rouns sosted = [c] * lengrams) for t -> len (nums) - 1
for
0-21
n = len(nums) count = [o] * (max(nums)+1)
nums_sorted = [o] *n
IMMIS _ ZZZ

for numin nums:

Count Enum] += |

for i -> range (1, len (count)):

Count [i] += count [i-1]

for num in removed (nums):

nums - sorted [count (num) - 1] = num

Count [num] -= |

Code:

```
#COUNT SORTING ALGORITHM
#Input list
size = int(input("Enter the size of the List: "))
nums = []
for k in range(size):
    nums.append(int(input("Enter element " + str(k+1) + ": ")))
print("\nList:", nums)
#Method 1
#Time Complexity: 0(n^2)
def comparison_count_sort(nums):
    count = [0] * len(nums)
    nums_sorted = [0] * len(nums)
    for i in range(len(nums) - 1):
        for j in range(i + 1, len(nums)):
            if nums[i] >= nums[j]:
                count[i] += 1
            elif nums[i] <= nums[j]:</pre>
                count[j] += 1
    for i in range(len(nums)):
        nums_sorted[count[i]] = nums[i]
    return nums_sorted
print("\nSorted List:",comparison_count_sort(nums))
#Method 2
#Time Complexity: O(n)
def comparison_count_sort1(nums):
    n = len(nums)
    count = [0] * (max(nums) + 1) # Initialize count array with length max(nums) +
1
    nums_sorted = [0] * n
    # Count occurrences of each element
    for num in nums:
        count[num] += 1
    # Calculate Cumulative Sum
    for i in range(1, len(count)):
       count[i] += count[i - 1]
```



```
# Sorted array
for num in reversed(nums):
    nums_sorted[count[num] - 1] = num
    count[num] -= 1

return nums_sorted

print("Sorted List:",comparison_count_sort1(nums))
```

Output:

```
PS C:\Users\Mugilkrishna D U\OneDrive\Desktop\My Files\.vscode> & "C:/Users/Mugilkrishna D U/AppDat
a/Local/Programs/Python/Python311/python.exe" "c:/Users/Mugilkrishna D U/OneDrive/Desktop/My Files/
SSN/SEM4/DESIGN AND ANALYSIS OF ALGORITHMS/LAB/3.2.py"
Enter the size of the List: 8
Enter element 1: 3
Enter element 2: 6
Enter element 3: 2
Enter element 4: 1
Enter element 5: 10
Enter element 6: 5
Enter element 7: 4
Enter element 8: 4
List: [3, 6, 2, 1, 10, 5, 4, 4]
Sorted List: [1, 2, 3, 4, 4, 5, 6, 10]
Sorted List: [1, 2, 3, 4, 4, 5, 6, 10]
PS C:\Users\Mugilkrishna D U\OneDrive\Desktop\My Files\.vscode> & "C:/Users/Mugilkrishna D U/AppDat
a/Local/Programs/Python/Python311/python.exe" "c:/Users/Mugilkrishna D U/OneDrive/Desktop/My Files/
SSN/SEM4/DESIGN AND ANALYSIS OF ALGORITHMS/LAB/3.2.py"
Enter the size of the List: 7
Enter element 1: 6
Enter element 2: 5
Enter element 3: 4
Enter element 4: 3
Enter element 5: 2
Enter element 6: 10
Enter element 7: 7
List: [6, 5, 4, 3, 2, 10, 7]
Sorted List: [2, 3, 4, 5, 6, 7, 10]
Sorted List: [2, 3, 4, 5, 6, 7, 10]
```

Time Complexity:

- (i) Method 1: O(n^2) Quadratic Time Complexity
- (ii) Method 2: O(n) Linear Time Complexity

Learning Outcome:

Upon completing this exercise, I have understood the importance of counting sort algorithm and the counting inversions algorithm and I have learnt to maximise their efficiency by reducing their time complexities. I have also learnt to check for errors and correct the code.

