

planetmath.org

Math for the people, by the people.

proof of Tychonoff's theorem in finite case

 ${\bf Canonical\ name} \quad {\bf ProofOfTychonoffsTheoremInFiniteCase}$

Date of creation 2013-03-22 15:26:27 Last modified on 2013-03-22 15:26:27 Owner stevecheng (10074) Last modified by stevecheng (10074)

Numerical id 4

Author stevecheng (10074)

Entry type Proof

Classification msc 54D30

(The finite case of Tychonoff's Theorem is of course a subset of the infinite case, but the proof is substantially easier, so that is why it is presented here.)

To prove that $X_1 \times \cdots \times X_n$ is compact if the X_i are compact, it suffices (by induction) to prove that $X \times Y$ is compact when X and Y are. It also suffices to prove that a finite subcover can be extracted from every open cover of $X \times Y$ by only the *basis sets* of the form $U \times V$, where U is open in X and Y is open in Y.

Proof. The proof is by the straightforward strategy of composing a finite subcover from a lower-dimensional subcover. Let the open cover \mathcal{C} of $X \times Y$ by basis sets be given.

The set $X \times \{y\}$ is compact, because it is the image of a continuous embedding of the compact set X. Hence $X \times \{y\}$ has a finite subcover in \mathcal{C} : label the subcover by $\mathcal{S}^y = \{U_1^y \times V_1^y, \dots, U_{k_y}^y \times V_{k_y}^y\}$. Do this for each $y \in Y$.

To get the desired subcover of $X \times Y$, we need to pick a finite number of $y \in Y$. Consider $V^y = \bigcap_{i=1}^{k_y} V_i^y$. This is a finite intersection of open sets, so V^y is open in Y. The collection $\{V^y : y \in Y\}$ is an open covering of Y, so pick a finite subcover V^{y_1}, \ldots, V^{y_l} . Then $\bigcup_{j=1}^{l} \mathcal{S}^{y_j}$ is a finite subcover of $X \times Y$.