1989 年全国高中数学联赛

(10月15日上午8:00-10:00)

一. 选择题(本题满分 30 分,每小题 5 分):1. 若 A、 B 是锐角△ABC的两个内角,则复数

在复平面内所对应的点位于()

 $z=(\cos B-\sin A)+i(\sin B-\cos A)$

Α.	第一象限	<i>B</i> . 第二象限	<i>C</i> . 第三象限	<i>D</i> . 第四象限
2. 函	数 f(x)=arctan	x+ 1 arcsinx的值域是(()	
А.	$(-\pi, \pi)$	B. $\left[-\frac{3}{4} \pi, \frac{3}{4} \pi \right]$] $C. \left(-\frac{3}{4}\pi\right)$	$\frac{3}{4}\pi$) D. $[-\frac{1}{2}\pi, \frac{1}{2}\pi]$
3. 对任意的函数 y=f(x),在同一个直角坐标系中,函数 y=f(x-1)与函数 y=f(-x+1)				
的图象恒(-			
	关于 x 轴对称	B. 关于直线 x=1对	称	线 x=-1对称 D. 关于 y
轴对称 4. 以长方体 8 个顶点中任意 3 个为顶点的所有三角形中,锐角三角形的个数为()				
4. VA A.		中在息3个小火息的 8.6	ян—жжч, і <i>С</i> . 8	免用三角形的个数为() D. 24
5. 若		<i>D</i> . 0	<i>c.</i> 0	D. 24
$I = \{z \mid z = \frac{t}{1+t}, t \in \mathbb{R}, t \neq -1, t \neq 0\},$				
$I = \{z \mid z = \sqrt{2[\cos(\arcsin t) + i\cos(\arccos t)]}, t \in \mathbb{R}, t \le 1\}.$ 则 $I \cap I $ 中元素的个数为				
A.		<i>B</i> . 1	C. 2	D. 4
6. 集		###	1	
#={u u=12#+8n+41,其中 #, n, 1∈Z} #={u u=20p+16g+12x,其中 p, q, x∈Z}				
的关系为	#-\u u-20p	·10 <i>g</i> ·125 共中 p,g	, ICI	
изжила			_	
A.	# =₩	B. My M My M C.). II ≠ I I
三. 填 2. 填 2. 4. 2. 3. 轴 4. 5.	$ \begin{bmatrix} 0 & \text{Mod} & \text$	f,每小题 f 分) f 的取值范围是	 栈 <i>l'</i> 丄 <i>l</i> , 则 <i>l'</i> 与 f ₂ (x) = f ₁ (x) — 注自身成等比数 <i>页</i> 到大的顺序取出	<i>I</i> 的交点坐标为 2│,则函数 <i>y=f₂(x</i>)的图象

三. (本题满分 20 分)

已知 a_1 , a_2 , …, a_n 是 n个正数, 满足

 $a_1 \cdot a_2 \cdot \cdot \cdot \cdot \cdot a_n = 1$.

求证: $(2+a_1)(2+a_2)\cdots(2+a_n) \geqslant 3^n$.

四. (本题满分 20 分)

已知正三棱锥 S—ABC 的高 SO=3,底面边长为 6,过点 A 向其所对侧面 SBC作垂线,垂足为 0,在 A0上取一点 P,使 $\frac{AP}{PQ}$ =8,求经过点 P且平行于底面的 截面的面积.

五. (本题满分20分)

已知:对任意的 $n \in \mathbb{N}^*$,有 $a_n > 0$,且 $\sum_{j=1}^n a_j^3 = (\sum_{j=1}^n a_j)^2$. 求证: $a_n = n$.

第二试 (上午 10:30-12:30)

一. (本題満分 35 分)

已知 在 $\triangle ABC$ 中, $AB^{\circ}AC$, $\angle A$ 的一个外角的平分线交 $\triangle ABC$ 的外接圆于点 E,过 E作 EFLAB 垂足为 F.

求证 2AF=AB-AC.

二. (本題満分 35 分)

已知 x_i∈ R(i=1, 2, ···, n, n≥2), 満足

$$\sum_{i=1}^{n} |x_i| = 1, \sum_{i=1}^{n} x_i = 0,$$

求证:
$$\left| \frac{n}{\sum_{i=1}^{n} x_i} \right| \leq \frac{1}{2} - \frac{1}{2n}$$

三. (本题满分 35 分)

有 $n \times n$ ($n \ge 4$)的一张空白方格表,在它的每一个方格内任意的填入+1 与-1 这两个数 中的一个,现将表内 n 个两两既不同行(横)又不同列(竖)的方格中的数的乘积称为一个基 本项. 试证明: 按上述方式所填成的每一个方格表,它的全部基本项之和总能被4整除(即 总能表示成 4k 的形式, 其中 $k \in \mathbb{Z}$).

1989 年全国高中数学联赛解答

第一试

- 一. 选择题(本题满分30分,每小题5分):
- 1. 若 A、 B 是锐角 $\triangle ABC$ 的两个内角,则复数 $z=(\cos B-\sin A)+i(\sin B-\cos A)$

在复平面内所对应的点位于()

A. 第一象限 *B*. 第二象限

C. 第三象限

D. 第四象限

【答案】B

【解析】0.° ⟨A、B⟨90° ⟨A+B⟨180° . 故 90° ⟩A⟩90° -B⟩0° , sinA⟩cosB, cosA⟨sinB. 故 cosB-sinA(0, sinB-cosA)0. 点 Z位于第二象限. 选 B

2. 函数 f(x)=arctanx+\frac{1}{2}arcsinx的值域是(

$$B. \quad \left[-\frac{3}{4} \pi, \frac{3}{4} \pi \right]$$

A
$$(-x, x)$$
 B. $[-\frac{3}{4}x, \frac{3}{4}x]$ C. $(-\frac{3}{4}x, \frac{3}{4}x)$ D. $[-\frac{1}{2}x, \frac{1}{2}x]$

【答案】D

【解析】因 $x \in [-1, 1]$,故 $\arctan x \in [-\frac{x}{4}, \frac{x}{4}]$, $\frac{1}{2} \arcsin x \in [-\frac{x}{4}, \frac{x}{4}]$,且 $f(-\frac{x}{4}, \frac{x}{4})$,

1) =
$$-\frac{\pi}{2}$$
, $f(1) = \frac{\pi}{2}$. 选 D

- 3. 对任意的函数 y=f(x),在同一个直角坐标系中,函数 y=f(x-1)与函数 y=f(-x+1)的图象恒()
- A. 关于 x 轴对称 B. 关于直线 x=1 对称 C. 关于直线 x=-1 对称 D. 关于 y轴对称

【答案】B

【解析】令 x-1=t,则得 f(t)=f(-t),即 f(t)关于 t=0 对称,即此二图象关于 x=1对称. 选 B

4. 以长方体8个顶点中任意3个为顶点的所有三角形中,锐角三角形的个数为(

A. 0

B. 6

C. 8

D. 24

【答案】C

【解析】以不相邻的 4 个顶点为顶点的四面体的 8 个面都是锐角三角形。其余的三角 形都不是锐角三角形。选 &

5. 若

$$M = \{z \mid z = \frac{t}{1+t} + i\frac{1+t}{t}, t \in \mathbb{R}, t \neq -1, t \neq 0\},$$

 $N=\{z \mid z=\sqrt{2}[\cos(\arcsin t)+i\cos(\arccos t)], t\in\mathbb{R}, |t|\leq 1\}.$ 则 M ∩ N 中元素的个数为

A. 0

B. 1

C. 2

D. 4

【答案】A

【解析】M的图象为双曲线 $xy=1(x\neq 0, x\neq 1)N$ 的图象为 $x^2+y^2=2(x\geq 0)$,二者无公共

点. 选 A.

6. 集合

#={u|u=12#+8m+41, 其中 #, n, 1∈Z} #={u|u=20p+16a+12x, 其中 p, a, x∈Z}

的关系为

A. II=N B. II(II, N) D. N, i

【答案】▲

【解析】z=12=+8z+4Z=4(3=+2z+Z),由于 3=+2z+Z 可以取任意整数值,故 =表示所有 4的倍数的集合。

同理 u=20p+16q+12x=4(5p+4q+3x)也表示全体 4的倍数的集合。于是 J=X

- 三. 填空题(本题满分30分,每小题5分)
- 1. 若 log_a√2<1,则 a 的取值范围是 .

【答案】 $(0, 1) \cup (\sqrt{2}, +\infty)$

【解析】若 0 < a < 1,则 $\log_a \sqrt{2} < 0$,若 a > 1,则得 $a > \sqrt{2}$. 故填 $(0, 1) \cup (\sqrt{2}, +\infty)$

2. 已知直线 I: 2x+y=10, 过点 (-10,0) 作直线 $I' \perp I$, 则 I'与 I 的交点坐标为______

【答案】(2,6)

【解析】直线 I'方程为 (x+10)-2y=0,解得交点为 (2,6).

3. 设函数 $f_0(x) = |x|$, $f_1(x) = |f_0(x) - 1|$, $f_2(x) = |f_1(x) - 2|$, 则函数 $y = f_2(x)$ 的图象与 x 轴所围成图形中的封闭部分的面积是_______.

【答案】7

【解析】 图 1 是函数 $\pounds(x) = /x |$ 的图形,把此图形向下平行移动 1 个单位就得到函数 $\pounds(x) = /x | -1$ 的图形,作该图形的在 x 轴下方的部分关于 x 轴的对称图形得出图 2,其中在 x 轴上方的部分即是 $\pounds(x) = |\pounds(x)| = 1$ 的图象,再把该图象向下平行移动 2 个单位得到 $\pounds(x) = /x | -2$ 的图象,作该图象在 x 轴下方的部分关于 x 轴的对称图形得到图 3,其中 x 轴上方的部分即是 $\pounds(x) = |\pounds(x)| = 2$ 的图象。 易得所求面积为 7。

4. 一个正数,若 其小数部分、整数部 分和其自身成等比数 列 , 则 该 数 为______.

【答案】 $\frac{-1+\sqrt{5}}{2}$

【解析】设其小

数部分为 σ(0< σ<1),整数部分为 n(n∈m+),则得, σ(n+ σ)=n²,

 $\therefore \qquad \qquad n^{2} < n + \sigma < n + 1.$ $\therefore \qquad \qquad \frac{1 - \sqrt{5}}{2} < n < \frac{1 + \sqrt{5}}{2} ,$

但 $n \in \mathbb{N}^*$, 故 n=1, 得, $\alpha^2 + \alpha - 1 = 0$,

$$\alpha = \frac{-1 \pm \sqrt{5}}{2},$$

由 $\alpha > 0$, 知, $\alpha = \frac{-1 + \sqrt{5}}{2}$. ∴ 原数为 $\frac{-1 + \sqrt{5}}{2}$.

5. 如果从数 1, 2, 3, …, 14 中,按由小到大的顺序取出 a_1 , a_2 , a_3 , 使同时满足 $a_2-a_1\geqslant 3$, 与 $a_3-a_2\geqslant 3$,

那么,所有符合上述要求的不同取法有 种.

. 【答案】120

【解析】令 $a_1'=a_1$, $a_2'=a_2-2$, $a_3'=a_3-4$, 则得 $1 \le a_1' < a_2' < a_3' \le 10$. 所求取法为 $C_{10}^3=120$.

6. 当 s和 t取遍所有实数时,则

$$(s+5-3|\cos t|)^2+(s-2|\sin t|)^2$$

所能达到的最小值为______

【答案】2

【解析】令 $x=3|\cos t|$, $y=2|\sin t|$, 则得椭圆 $\frac{x^2}{9}, \frac{y^2}{4}=1$ 在第一象限内的弧段.

再令 x=s+5, y=s, 则得 y=x=5, 表示—条直线. (s+5-3|cos t|)²+(s-2|sin t|)²表示 椭圆弧段上点与直线上点距离平方. 其最小值为点(3, 0)与直线 y=x-5 距离平方=2.

三. (本题满分 20 分)

已知 *a*₁, *a*₂, ····, *a*_n是 *n* 个正数,满足 *a*₁·*a*₂······ *a*_n=1.

求证: $(2+a_1)(2+a_2)\cdots(2+a_n) \ge 3^n$.

【解析】证明: $2+a_i=1+1+a \ge 3\sqrt[3]{a_i}$, $(i=1, 2, \dots, n)$

$$\therefore \quad (2+a_1) (2+a_2) \cdots (2+a_n) = (1+1+a_1) (1+1+a_2) \cdots (1+1+a_n) \geqslant 3\sqrt[3]{a_1} \cdot 3\sqrt[3]{a_2} \cdot \cdots \cdot 3\sqrt[3]{a_n} \geqslant 3\sqrt[3]{a_n} \cdot 3\sqrt[3]{a_n} \cdot \cdots \cdot 3\sqrt[3]{a_n} \geqslant 3\sqrt[3]{a_n} \cdot \cdots \cdot 3\sqrt[3]{a_n} \cdot \cdots \cdot 3\sqrt[3]{a_n} \geqslant 3\sqrt[3]{a_n} \cdot \cdots \cdot 3\sqrt[3]{a_n} \geqslant 3\sqrt[3]{a_n} \cdot \cdots \cdot 3\sqrt[3]$$

3°\squae...a.=3°.

证法 2: (2+a) (2+a)···(2+a)=2*+(a+a+···+a)2****+(a a+a a+···+a-a)2****+···+a a···
a.

$$\bigoplus s_1 + s_2 + \cdots + s_n \ge n \sqrt[4]{s_1 s_2 \cdots s_n} = n = C_n$$

$$a_1a_2+a_1a_3+\cdots+a_{n-1}a_n \geqslant \hat{C}_n^2 \hat{C}_n^2 \sqrt{(a_1a_2\cdots a_n)^{n-1}} = \hat{C}_n^2, \cdots,$$

 $(2+a_1) (2+a_2) \cdots (2+a_n) = 2^n + (a_1 + a_2 + \dots + a_n) 2^{n-1} + (a_1 a_2 + a_1 a_3 + \dots + a_{n-1} a_n) 2^{n-2} + \dots + a_1 a_2 \cdots a_n$ $\ge 2^n + C_n^1 2^{n-1} + C_n^2 2^{n-2} + \dots + C_n^1 = (2+1)^n = 3^n.$

四. (本题满分 20 分)

已知正三棱锥 S—ABC 的高 SO=3,底面边长为 6,过点 A 向其所对侧面 SBC 作垂线,垂足为 O,在 AO上取一点 P,使 $\frac{AP}{PO}$ =8,求经过点 P且平行于底面的截面的面积.

【解析】正三棱锥 5—ABC 的高为 50. 故 AOL BC, 设 AO交 BC 于 E, 连 SE. 则可证 BC上面 AES. 故面 AES上面 SBC.

由 Ad 上面 SBC 于 d,则 Ad 在面 AES 内,d在 SE 上。Ad 与 SO 相 交于点 F.

- ∴ ABC 为正三角形, AB=6, 故 AE=3√3, OE=√3.
- ∵ 50=3, ∴ tan∠0E5=√3, ∠E=60°.
- $\therefore O' E = AE \cos 60^{\circ} = \frac{3}{2} \sqrt{3}.$

作 O'GL平面 ABC。则垂足 G在 AE上。O'G=O'Esin60° = 4.

$$\therefore \frac{AP}{PO} = 8, \therefore \frac{PH}{OG} = \frac{8}{9}, \Rightarrow PH = 2.$$

设过 P与底面平行的截面面积为 55 截面与顶点 5的距离 =3-2=1.

$$\therefore \quad S_{\triangle ABC} = \frac{\sqrt{3}}{4} \cdot 6^2 = 9\sqrt{3}.$$

$$\therefore \frac{5}{S_{\Delta ASC}} = (\frac{1}{3})^2, \text{ if } 5 = \sqrt{3}.$$

五. (本题满分 20 分)

已知:对任意的 $n \in \mathbb{N}^*$,有 $a_n > 0$,且 $\sum_{j=1}^n a_j^3 = (\sum_{j=1}^n a_j)^2$. 求证: $a_n = n$.

【解析】证明:由已知, $a_1^3 = a_1^2$, $a_1 > 0$, $a_1 = 1$.

设 $n \leq k (k \in N, \perp k \geq 1)$ 时,由 $\sum_{j=1}^{n} a_{j}^{3} = (\sum_{j=1}^{n} a_{j})^{2}$ 成立可证 $a_{k} = k$ 成立.

当
$$n=k+1$$
 时, $\sum_{j=1}^{k+1} a_j^3 = (\sum_{j=1}^{k+1} a_j)^2 = (\sum_{j=1}^k a_j)^2 + 2a_{k+1}(\sum_{j=1}^k a_j) + a_{k+1}^2$.

$$\mathbb{P} \frac{1}{4} k^2 (k+1)^2 + a_{k+1}^3 = \frac{1}{4} k^2 (k+1)^2 + 2a_{k+1} \cdot \frac{1}{2} k(k+1) + a_{k+1}^2.$$

 $\therefore a_{k+1}^2 - a_{k+1} - k(k+1) = 0$,解此方程,得 $a_{k+1} = -k$ 或 $a_{k+1} = k+1$. 由 $a_n > 0$ 知,只有 $a_{k+1} = k+1$ 成立.

即 n=k+1 时命题也成立. 由数学归纳原理知对于一切 $n\in\mathbb{N}*$, $a_n=n$ 成立.

一. (本题满分 35 分)

已知 在 \triangle ABC 中,AB>AC, \angle A 的一个外角的平分线交 \triangle ABC 的外接圆于点 E,过 E 作 EF \bot AB,垂足为 F.

求证 2AF=AB-AC.

【解析】证明:在 FB上取 FG=AF,连 EG、EC、EB,于是 \triangle AEG 为等腰三角形, \therefore EG=EA. 又 \angle 3=180° - \angle EGA=180° - \angle 5= \angle 4. \angle 1= \angle 2.于是 \triangle EGB \cong \triangle EAC. \therefore BG=AC, 故证

二. 已知 $x_i \in \mathbb{R}(i=1, 2, \dots, n; n \ge 2)$,满足

$$\sum_{i=1}^{n} |x_i| = 1, \quad \sum_{i=1}^{n} x_i = 0,$$

求证:
$$\left| \frac{n}{\sum\limits_{I=1}^{n}i} \right| \leq \frac{1}{2} - \frac{1}{2n}.$$

【解析】证明:由已知可知,必有 x_i 20,也必有 x_j 40 $(i, j \in \{1, 2, ..., p, 1 \} i \neq j\}$. 设 $x_{i_1}, x_{i_2}, ..., x_{i_j}$ 为诸 x_i 中所有 x_i 0 的数, $x_{j_1}, x_{j_2}, ..., x_{j_k}$ 为诸 x_i 中所有 x_i 0 的数。由已知得

 $-\frac{1}{2n}$

总之,
$$\begin{vmatrix} \frac{n}{\sum_{i=1}^{n} i} \end{vmatrix} \leq \frac{1}{2} - \frac{1}{2n}$$
成立.

三. 有 $n \times n$ ($n \ge 4$)的一张空白方格表,在它的每一个方格内任意的填入+1 与-1 这两个数中的一个,现将表内 n 个两两既不同行(横)又不同列(竖)的方格中的数的乘积称为一个基本项. 试证明:按上述方式所填成的每一个方格表,它的全部基本项之和总能被 4 整除(即总能表示成 4k 的形式,其中 $k \in \mathbb{Z}$).

【解析】证明: 基本项共有 n!个,n〉3,则基本项的个数为 4 的倍数,设共有 4m 项. 其中每个数 $a_{ij}(=\pm 1)$ 都要在 (n-1)!个基本项中出现,故把所有基本项乘起来后,每个 a_{ij} 都乘了 (n-1)!次,而 n〉3,故 (n-1)!为偶数,于是该乘积等于 1. 这说明等于—1 的

本项有偶数个,同样,等于+1的基本项也有偶数个.

若等于-1 的基本项有 41 个,则等于+1 的基本项有 4x—41 个,其和为 4x—41—41=4(x) —21)为 4 的倍数,

若等于-1 的基本项有 4*I*-2 个,则等于+1 的基本项有 4*I*-4*I*+2 个,其和为 4*I*-4*I*+2 -4 *I*+2-4 (*I*-2*I*+1) 为 4 的倍数. 故证.