Estimable Functions and Contrasts

Peter von Rohr

2022-03-21

Models Not Of Full Rank

► Model

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$

► Least squares normal equations

$$\boldsymbol{\mathsf{X}}^T\boldsymbol{\mathsf{X}}\boldsymbol{\mathsf{b}}^{(0)}=\boldsymbol{\mathsf{X}}^T\boldsymbol{\mathsf{y}}$$

Solutions

- matrix X not of full rank
- ► X^TX cannot be inverted
- solution

$$\mathbf{b}^{(0)} = (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{y}$$

where $(\mathbf{X}^T\mathbf{X})^-$ stands for a **generalized inverse**

Generalized Inverse

▶ matrix **G** is a generalized inverse of matrix **A**, if

$$AGA = A$$

$$(AGA)^T = A^T$$

► Use MASS::ginv() in R

Systems of Equations

► For a consistent system of equations

$$Ax = y$$

Solution

$$x = Gy$$

if G is a generalized inverse of A.

$$x = Gy$$
$$Ax = AGy$$
$$Ax = AGAx$$

Non Uniqueness

ightharpoonup Solution x = Gy is not unique

$$\tilde{\mathbf{x}} = \mathbf{G}\mathbf{y} + (\mathbf{G}\mathbf{A} - \mathbf{I})\mathbf{z}$$

yields a different solution for an arbitrary vector ${\bf z}$

$$\mathbf{A}\tilde{\mathbf{x}} = \mathbf{A}\mathbf{G}\mathbf{y} + (\mathbf{A}\mathbf{G}\mathbf{A} - \mathbf{A})\mathbf{z}$$

Least Squares Normal Equations

lnstead of Ax = y, we have

$$\mathbf{X}^T \mathbf{X} \mathbf{b}^{(0)} = \mathbf{X}^T \mathbf{y}$$

 \triangleright With generalized inverse **G** of $\mathbf{X}^T\mathbf{X}$

$$\mathbf{b}^{(0)} = \mathbf{G}\mathbf{X}^T\mathbf{y}$$

is a solution to the least squares normal equations

Parameter Estimator

But $\mathbf{b}^{(0)}$ is not an estimator for the parameter \mathbf{b} , because

- ▶ it is not unique
- ightharpoonup Expectation $E(\mathbf{b}^{(0)}) = E(\mathbf{G}\mathbf{X}^T\mathbf{y}) = \mathbf{G}\mathbf{X}^T\mathbf{X}\mathbf{b} \neq \mathbf{b}$

Estimable Functions

Animal	Breed	Observation
1	Angus	16
2	Angus	10
3	Angus	19
4	Simmental	11
5	Simmental	13
6	Limousin	27

Model

$$y = Xb + e$$

$$\mathbf{y} = \begin{bmatrix} 16\\10\\19\\11\\13\\27 \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} 1 & 1 & 0 & 0\\1 & 1 & 0 & 0\\1 & 1 & 0 & 0\\1 & 0 & 1 & 0\\1 & 0 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} \mu\\\alpha_1\\\alpha_2\\\alpha_3 \end{bmatrix}$$

Normal Equations

$$X^T X b^0 = X^T y$$

$$\begin{bmatrix} 6 & 3 & 2 & 1 \\ 3 & 3 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu^0 \\ \alpha_1^0 \\ \alpha_2^0 \\ \alpha_3^0 \end{bmatrix} = \begin{bmatrix} 96 \\ 45 \\ 24 \\ 27 \end{bmatrix}$$

Solutions to Normal Equations

b_1^0	b_{2}^{0}	b_{3}^{0}	b_4^0
16	14	27	-2982
-1	1	-12	2997
-4	-2	-15	2994
11	13	0	3009
	-1 -4	16 14 -1 1 -4 -2	16 14 27 -1 1 -12 -4 -2 -15

Functions of Solutions

Linear Function	b_{1}^{0}	b_2^0	b_3^0	b_4^0
$\overline{\alpha_1^0 - \alpha_2^0}$	3.0	3.0	3.0	3.0
$\mu^{\bar{0}} + \alpha_1^{\bar{0}}$	15.0	15.0	15.0	15.0
$\mu^0 + 1/2(\alpha_2^0 + \alpha_3^0)$	19.5	19.5	19.5	19.5

- $\alpha_1^0 \alpha_2^0$: estimate of the difference between breed effects for Angus and Simmental
- ho $\mu^0+lpha_1^0$: estimate of the general mean plus the breed effect of Angus
- $\mu^0 + 1/2(\alpha_2^0 + \alpha_3^0)$: estimate of the general mean plus mean effect of breeds Simmental and Limousin

Definition of Estimable Functions

$$\mathbf{q}^T \mathbf{b} = \mathbf{t}^T E(\mathbf{y})$$

Example

$$E(y_{1j}) = \mu + \alpha_1$$

Properties

$$\mathbf{q}^t = \mathbf{t}^T \mathbf{X}$$

▶ Test

$$\mathbf{q}^T \mathbf{H} = \mathbf{q}^T$$

with $\mathbf{H} = \mathbf{G} \mathbf{X}^T \mathbf{X}$