

AD-A264 996**IMPLEMENTATION PAGE**Form Approved
OMB No. 0704-0188

To average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggested changes to reduce the burden to the Office of Management and Budget Paperwork Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)		2. REPORT DATE	3. REPORT TYPE AND DATES COVERED
		March 1993	Professional Paper
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS	
A DUAL-MODE OPTICAL FIBER FOR LONG HAUL TRANSMISSION		PR: ZE93 PE: N/A WU: DN300042	
6. AUTHOR(S)		7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	
N. T. Kamikawa		Naval Command, Control and Ocean Surveillance Center (NCCOSC) RDT&E Division San Diego, CA 92152-5001	
8. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)		9. PERFORMING ORGANIZATION REPORT NUMBER	
Office of Chief of Naval Research Independent Exploratory Development Program (IED) OCNR-20T Arlington, VA 22217		10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STATEMENT		12b. DISTRIBUTION CODE	
Approved for public release; distribution is unlimited.			
13. ABSTRACT (Maximum 200 words)			

The goal for the matched-clad dual-mode fiber was to duplicate the low bending losses exhibited by high- Δ fibers (Δ as large as 1%), which are the lowest bending loss fibers available for long-haul applications. This was achieved by increasing the cutoff wavelength λ_c to 1630 nm and reducing Δ to 0.75% to be comparable with the largest Δ reported for a pure-silica core fiber. The bending losses in both fibers also are much less than a telco fiber with $\Delta = 0.34\%$ and $\lambda_c = 1200$ nm. The high λ_c in the dual-mode fiber has the same effect of confining the mode field tightly to the core and reducing bending losses as the high Δ in the high- Δ fiber.

93 5 20 00

93-11957

Published in *Conference Proceedings, DoD Fiber Optics '92*, March 1992, pp 253-254.

14. SUBJECT TERMS		15. NUMBER OF PAGES	
fiber optics microbending loss mode coupling		cutoff wavelength dispersion	
16. PRICE CODE			
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAME AS REPORT

CONFERENCE PROCEEDINGS

DOD FIBER OPTICS '92

March 24-27, 1992
McLean Hilton Hotel
McLean, Virginia

Sponsored by:

the Tri-Service Fiber Optics Coordinating Committee

In Cooperation with:

the Department of Energy
and
the National Aeronautics and Space Administration

In Association with:

the Armed Forces Communications and Electronics Association

Approved by:

the Office of the Undersecretary of Defense Acquisition
(Research and Advanced Technology/Electronic Systems)

A Dual-mode Optical Fiber for Long-Haul Transmission

Ned Kamikawa

Naval Ocean Systems Center, Hawaii Laboratory

We are currently investigating the feasibility of dual-mode optical fibers of both matched-clad and depressed-clad, pure-silica core designs for application in missile tethers and undersea surveillance cables. The ultimate goal is to realize a fiber with a pure-silica core for the lowest spectral attenuation and dual-mode operation ($\lambda_c > 1550$ nm) for reduced bending losses. An intermediate goal has been achieved in which the dual-mode fiber performance was realized in a matched-clad design. This was done to study bending loss and modal noise and dispersion at 1550 nm. The matched-clad dual-mode fiber exhibits low bending losses that are comparable to high- Δ single-mode fibers, but with a lower Δ which is achievable in depressed-clad, pure-silica core fibers. Δ is the relative index difference between the core and cladding. Since the fiber supports two modes, we also studied the effects of modal noise and modal dispersion and found that the fiber can be designed to exhibit minimal modal noise and dispersion penalties.

The goal for the matched-clad dual-mode fiber was to duplicate the low bending losses exhibited by high- Δ fibers (Δ as large as 1%)^{1,2}, which are the lowest bending loss fibers available for long-haul applications. This was achieved by increasing the cutoff wavelength λ_c to 1630 nm and reducing Δ to 0.75% to be comparable with the largest Δ reported for a pure-silica core fiber¹. Fig. 1 shows that the bending losses in the dual-mode fiber are comparable to a high- Δ fiber with $\Delta = 0.93\%$ and $\lambda_c = 1259$ nm. The bending losses in both fibers also are much less than a telco fiber with $\Delta = 0.34\%$ and $\lambda_c = 1200$ nm. The high λ_c in the dual-mode fiber has the same effect of confining the mode field tightly to the core and reducing bending losses as the high Δ in the high- Δ fiber.

Since the dual-mode fiber supports both the fundamental LP_{01} mode and second-order LP_{11} mode, modal noise and dispersion can impact system performance. Both effects were found to be minimal for $\lambda_c = 1630$ nm where the LP_{11} mode is very loosely bound to the core. Bit-error-rate tests at a data rate of 200 Mb/sec were conducted to evaluate the effects of modal noise. The modal-noise power penalty in a worse case situation where a misaligned splice was positioned near the end of the fiber was only 0.2 dB with respect to a baseline measurement. The spectral attenuations of the modes also were measured to indirectly evaluate modal dispersion since long lengths of the dual-mode fiber were not available for direct dispersion measurements. The LP_{11} mode exhibited about 300 dB/km attenuation at 1550 nm, which is three orders of magnitude greater than the attenuation of the LP_{01} mode and precludes modal dispersion.

Based on the test results, the matched-clad, dual-mode fiber is feasible for reduced bending losses in long-haul transmission. Further investigations into a pure-silica core, dual-mode fiber is recommended.

This work was supported by the Independent Exploratory Development program at NOSC and the Skyray program at NWC. Contributions by Dr. F. Dabby of Ensign-Bickford Optical Technologies; G. Tanaka, A. Nakagawa, and M. Lapolla of NOSC; and Dr. G. Tangonan of Hughes Research Labs are gratefully acknowledged.

References:

1. Starkey, T.C., J.W. Suggs, "Reduced Mode-Field Diameter Single-Mode Fiber for Specialty

- Applications", Proc IW&CS, Nov 15-17, 1988, pp 15-17

 2. Schute, M.W., H.T. Shang, "Optical Fibers for Tethered Vehicle Applications", DoD Fiber Optics Conf., Mar 22, 1990, pp 187-191
 3. Urano, A., Y. Ishiguro, M. Shigematsu, et al., "Pure Silica Core Dispersion-Shifted Single-Mode Fibers", 13th ECOC, Sept. 1987, pp 175-178

Fig. 1. Bending losses at 1550 nm

SEARCHED	INDEXED	FILED
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
JULY 1 1968		
FBI - NEW YORK		
SEARCHED INDEXED SERIALIZED FILED JULY 1 1968 FBI - NEW YORK		
A-1 [26]		