Kalman Filter Theory and Applications Equation Drilldown

https://github.com/musicarroll/kalman_course

Michael L. Carroll

June 16, 2023

©2023 by Michael L. Carroll

Part I

The Basic Kalman Equations Topics

Part I The Basic Kalman Equations Topics

• Understanding the Equations: Heuristic Introduction

Part I The Basic Kalman Equations Topics

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart
- State Space Concepts

Part | The Basic Kalman Equations Topics

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart
- State Space Concepts

Mathematical Formulation of the Problem

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples
- Exercises

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples
- Exercises

Kalman Filter Problem Summary

• Given two models:

- Given two models:
 - State Dynamics Model (sometimes called the System or Process Model)

- Given two models:
 - State Dynamics Model (sometimes called the System or Process Model)
 - Measurement Model (sometimes called the Observation Model)

- Given two models:
 - State Dynamics Model (sometimes called the System or Process Model)
 - Measurement Model (sometimes called the Observation Model)
- Find a way to optimally combine our knowledge of the predicted state estimate with our knowledge of the actual measurement to produce an updated state estimate

- Given two models:
 - State Dynamics Model (sometimes called the System or Process Model)
 - Measurement Model (sometimes called the Observation Model)
- Find a way to optimally combine our knowledge of the predicted state estimate with our knowledge of the actual measurement to produce an updated state estimate
 - I.e., find the optimal gain with which to weight the measurement residual (difference between actual and predicted measurement)

- Given two models:
 - State Dynamics Model (sometimes called the System or Process Model)
 - Measurement Model (sometimes called the Observation Model)
- Find a way to optimally combine our knowledge of the predicted state estimate with our knowledge of the actual measurement to produce an updated state estimate
 - I.e., find the optimal gain with which to weight the measurement residual (difference between actual and predicted measurement)
 - Use weighted residual to increment or update the state estimate

- Given two models:
 - State Dynamics Model (sometimes called the System or Process Model)
 - Measurement Model (sometimes called the Observation Model)
- Find a way to optimally combine our knowledge of the predicted state estimate with our knowledge of the actual measurement to produce an updated state estimate
 - I.e., find the optimal gain with which to weight the measurement residual (difference between actual and predicted measurement)
 - Use weighted residual to increment or update the state estimate
 - Use Kalman gain also to update the estimation uncertainty (estimation error covariance aka "covariance")

- Given two models:
 - State Dynamics Model (sometimes called the System or Process Model)
 - Measurement Model (sometimes called the Observation Model)
- Find a way to optimally combine our knowledge of the predicted state estimate with our knowledge of the actual measurement to produce an updated state estimate
 - I.e., find the optimal gain with which to weight the measurement residual (difference between actual and predicted measurement)
 - Use weighted residual to increment or update the state estimate
 - Use Kalman gain also to update the estimation uncertainty (estimation error covariance aka "covariance")

Kalman Filter Problem Summary General, Non-Linear, Time-Invariant, Discrete-Time Formulation

Kalman Filter Problem Summary
General, Non-Linear, Time-Invariant, Discrete-Time Formulation

Given:

• State Dynamics Model: x(k) = f[x(k-1)] + w(k)

Kalman Filter Problem Summary General, Non-Linear, Time-Invariant, Discrete-Time Formulation

- State Dynamics Model: x(k) = f[x(k-1)] + w(k)
 - k indicates the time step; the actual time at that time step is t_k , and the time increment is $\Delta t = t_k t_{k-1}$

Kalman Filter Problem Summary General, Non-Linear, Time-Invariant, Discrete-Time Formulation

- State Dynamics Model: x(k) = f[x(k-1)] + w(k)
 - k indicates the time step; the actual time at that time step is t_k , and the time increment is $\Delta t = t_k t_{k-1}$
 - x(k)=state vector, f=true dynamics function, w(k)=process noise

Kalman Filter Problem Summary General, Non-Linear, Time-Invariant, Discrete-Time Formulation

- State Dynamics Model: x(k) = f[x(k-1)] + w(k)
 - k indicates the time step; the actual time at that time step is t_k , and the time increment is $\Delta t = t_k t_{k-1}$
 - x(k)=state vector, f=true dynamics function, w(k)=process noise
- Measurement Model: z(k) = h[x(k)] + v(k)

Kalman Filter Problem Summary General, Non-Linear, Time-Invariant, Discrete-Time Formulation

- State Dynamics Model: x(k) = f[x(k-1)] + w(k)
 - k indicates the time step; the actual time at that time step is t_k , and the time increment is $\Delta t = t_k t_{k-1}$
 - x(k)=state vector, f=true dynamics function, w(k)=process noise
- Measurement Model: z(k) = h[x(k)] + v(k)
 - z(k)=measurement, h=measurement function, v(k)=measurement noise

Kalman Filter Problem Summary General, Non-Linear, Time-Invariant, Discrete-Time Formulation

Given:

- State Dynamics Model: x(k) = f[x(k-1)] + w(k)
 - k indicates the time step; the actual time at that time step is t_k , and the time increment is $\Delta t = t_k t_{k-1}$
 - x(k)=state vector, f=true dynamics function, w(k)=process noise
- Measurement Model: z(k) = h[x(k)] + v(k)
 - z(k)=measurement, h=measurement function, v(k)=measurement noise

Find:

Kalman Filter Problem Summary General, Non-Linear, Time-Invariant, Discrete-Time Formulation

Given:

- State Dynamics Model: x(k) = f[x(k-1)] + w(k)
 - k indicates the time step; the actual time at that time step is t_k , and the time increment is $\Delta t = t_k t_{k-1}$
 - x(k)=state vector, f=true dynamics function, w(k)=process noise
- Measurement Model: z(k) = h[x(k)] + v(k)
 - z(k)=measurement, h=measurement function, v(k)=measurement noise

Find:

• Optimal gain K(k) that allows us to update our state estimate in the following way:

$$\hat{x}(k) = f[\hat{x}(k-1)] + K(k)[z(k) - h(f[\hat{x}(k-1)])]$$

Kalman Filter Problem Summary General, Non-Linear, Time-Invariant, Discrete-Time Formulation

Given:

- State Dynamics Model: x(k) = f[x(k-1)] + w(k)
 - k indicates the time step; the actual time at that time step is t_k , and the time increment is $\Delta t = t_k t_{k-1}$
 - x(k)=state vector, f=true dynamics function, w(k)=process noise
- Measurement Model: z(k) = h[x(k)] + v(k)
 - z(k)=measurement, h=measurement function, v(k)=measurement noise

Find:

• Optimal gain K(k) that allows us to update our state estimate in the following way:

$$\hat{x}(k) = f[\hat{x}(k-1)] + K(k)[z(k) - h(f[\hat{x}(k-1)])]$$

• (For now, we'll ignore the update of the covariance)

Kalman Filter Problem Summary General, Non-Linear, Time-Invariant, Discrete-Time Formulation

Given:

- State Dynamics Model: x(k) = f[x(k-1)] + w(k)
 - k indicates the time step; the actual time at that time step is t_k , and the time increment is $\Delta t = t_k t_{k-1}$
 - x(k)=state vector, f=true dynamics function, w(k)=process noise
- Measurement Model: z(k) = h[x(k)] + v(k)
 - z(k)=measurement, h=measurement function, v(k)=measurement noise

Find:

• Optimal gain K(k) that allows us to update our state estimate in the following way:

$$\hat{x}(k) = f[\hat{x}(k-1)] + K(k)[z(k) - h(f[\hat{x}(k-1)])]$$

• (For now, we'll ignore the update of the covariance)

Kalman Filter Problem Summary Limitations

Kalman Filter Problem Summary Limitations

• Original Kalman filter solution applies only to ...

Kalman Filter Problem Summary Limitations

- Original Kalman filter solution applies only to ...
 - linear systems with linear measurements driven by ...

Kalman Filter Problem Summary Limitations

- Original Kalman filter solution applies only to ...
 - linear systems with linear measurements driven by ...
 - zero-mean, Gaussian white noise processes (for both process and measurement noise)

- Original Kalman filter solution applies only to ...
 - linear systems with linear measurements driven by ...
 - zero-mean, Gaussian white noise processes (for both process and measurement noise)
- Assume from now on that ...

- Original Kalman filter solution applies only to ...
 - linear systems with linear measurements driven by ...
 - zero-mean, Gaussian white noise processes (for both process and measurement noise)
- Assume from now on that ...
 - Our vector-valued function f is a linear, vector-valued function, i.e., a matrix Φ

- Original Kalman filter solution applies only to ...
 - linear systems with linear measurements driven by ...
 - zero-mean, Gaussian white noise processes (for both process and measurement noise)
- Assume from now on that ...
 - Our vector-valued function f is a linear, vector-valued function, i.e., a matrix Φ
 - h is also a linear, vector-valued function, i.e. a matrix H

- Original Kalman filter solution applies only to ...
 - linear systems with linear measurements driven by ...
 - zero-mean, Gaussian white noise processes (for both process and measurement noise)
- Assume from now on that ...
 - Our vector-valued function f is a linear, vector-valued function, i.e., a matrix Φ
 - h is also a linear, vector-valued function, i.e. a matrix H
- ullet Thus, the problem is to find a gain matrix K(k) such that

- Original Kalman filter solution applies only to ...
 - linear systems with linear measurements driven by ...
 - zero-mean, Gaussian white noise processes (for both process and measurement noise)
- Assume from now on that ...
 - Our vector-valued function f is a linear, vector-valued function, i.e., a matrix Φ
 - h is also a linear, vector-valued function, i.e. a matrix H
- ullet Thus, the problem is to find a gain matrix K(k) such that

$$\hat{x}(k) = \Phi \hat{x}(k-1) + K(k) [z(k) - H\Phi \hat{x}(k-1)]$$

- Original Kalman filter solution applies only to ...
 - linear systems with linear measurements driven by ...
 - zero-mean, Gaussian white noise processes (for both process and measurement noise)
- Assume from now on that ...
 - Our vector-valued function f is a linear, vector-valued function, i.e., a matrix Φ
 - h is also a linear, vector-valued function, i.e. a matrix H
- ullet Thus, the problem is to find a gain matrix K(k) such that

$$\hat{x}(k) = \Phi \hat{x}(k-1) + K(k) [z(k) - H\Phi \hat{x}(k-1)]$$

Kalman Filter Problem Summary Linear Discrete Formulation

Kalman Filter Problem Summary Linear Discrete Formulation

Given:

• State Dynamics Model: $x(k) = \Phi x(k-1) + w(k)$

Kalman Filter Problem Summary Linear Discrete Formulation

- State Dynamics Model: $x(k) = \Phi x(k-1) + w(k)$
 - x(k)=state vector, Φ =state transition matrix, w(k)=process noise vector

Kalman Filter Problem Summary Linear Discrete Formulation

- State Dynamics Model: $x(k) = \Phi x(k-1) + w(k)$
 - x(k)=state vector, Φ =state transition matrix, w(k)=process noise vector
- Measurement Model: z(k) = Hx(k) + v(k)

Kalman Filter Problem Summary Linear Discrete Formulation

- State Dynamics Model: $x(k) = \Phi x(k-1) + w(k)$
 - x(k)=state vector, Φ =state transition matrix, w(k)=process noise vector
- Measurement Model: z(k) = Hx(k) + v(k)
 - z(k)=measurement vector, H=meas. matrix, v(k)=meas. noise vector

Kalman Filter Problem Summary Linear Discrete Formulation

Given:

- State Dynamics Model: $x(k) = \Phi x(k-1) + w(k)$
 - x(k)=state vector, Φ =state transition matrix, w(k)=process noise vector
- Measurement Model: z(k) = Hx(k) + v(k)
 - z(k)=measurement vector, H=meas. matrix, v(k)=meas. noise vector

Find:

Kalman Filter Problem Summary Linear Discrete Formulation

Given:

- State Dynamics Model: $x(k) = \Phi x(k-1) + w(k)$
 - x(k)=state vector, Φ =state transition matrix, w(k)=process noise vector
- Measurement Model: z(k) = Hx(k) + v(k)
 - z(k)=measurement vector, H=meas. matrix, v(k)=meas. noise vector

Find:

• State estimate in the form

$$\hat{x}(k) = \Phi \hat{x}(k-1) + K(k)[z(k) - H\Phi \hat{x}(k-1)]$$

Kalman Filter Problem Summary Linear Discrete Formulation

Given:

- State Dynamics Model: $x(k) = \Phi x(k-1) + w(k)$
 - x(k)=state vector, Φ =state transition matrix, w(k)=process noise vector
- Measurement Model: z(k) = Hx(k) + v(k)
 - z(k)=measurement vector, H=meas. matrix, v(k)=meas. noise vector

Find:

State estimate in the form

$$\hat{x}(k) = \Phi \hat{x}(k-1) + K(k)[z(k) - H\Phi \hat{x}(k-1)]$$

Kalman Filter Problem Summary Slight Notational Change

Kalman Filter Problem Summary Slight Notational Change

• The term $\Phi \hat{x}(k-1)$ is the extrapolated state estimate prior to making the measurement update or correction

Kalman Filter Problem Summary Slight Notational Change

- The term $\Phi \hat{x}(k-1)$ is the extrapolated state estimate prior to making the measurement update or correction
- To distinguish prior (extrapolated) estimate from updated estimate, we use the following notation:

Kalman Filter Problem Summary Slight Notational Change

- The term $\Phi \hat{x}(k-1)$ is the extrapolated state estimate prior to making the measurement update or correction
- To distinguish prior (extrapolated) estimate from updated estimate, we use the following notation:

$$\hat{x}^-(k) = \Phi \hat{x}^+(k-1) = \text{predicted estimate}$$
 prior to update

- The term $\Phi \hat{x}(k-1)$ is the extrapolated state estimate prior to making the measurement update or correction
- To distinguish prior (extrapolated) estimate from updated estimate, we use the following notation:

$$\hat{x}^-(k) = \Phi \hat{x}^+(k-1) =$$
predicted estimate prior to update

$$\hat{x}^+(k) =$$
updated state estimate

Kalman Filter Problem Summary Slight Notational Change

- The term $\Phi \hat{x}(k-1)$ is the extrapolated state estimate prior to making the measurement update or correction
- To distinguish prior (extrapolated) estimate from updated estimate, we use the following notation:

$$\hat{x}^-(k) = \Phi \hat{x}^+(k-1) = \text{predicted estimate}$$
 prior to update

$$\hat{x}^+(k) =$$
updated state estimate

• Applying H to $\hat{x}^-(k)$ yields the **predicted measurement**

Kalman Filter Problem Summary Slight Notational Change

- The term $\Phi \hat{x}(k-1)$ is the extrapolated state estimate prior to making the measurement update or correction
- To distinguish prior (extrapolated) estimate from updated estimate, we use the following notation:

$$\hat{x}^-(k) = \Phi \hat{x}^+(k-1) = \text{predicted estimate}$$
 prior to update

$$\hat{x}^+(k) =$$
updated state estimate

• Applying H to $\hat{x}^-(k)$ yields the **predicted measurement**

Kalman Filter Problem Solution

Kalman Filter Problem Solution

• Thus, the solution we seek now looks like this:

Kalman Filter Problem Solution

• Thus, the solution we seek now looks like this:

$$\hat{x}^{+}(k) = \hat{x}^{-}(k) + K(k)[z(k) - H\hat{x}^{-}(k)]$$
 (1)

Kalman Filter Problem Solution

• Thus, the solution we seek now looks like this:

$$\hat{x}^{+}(k) = \hat{x}^{-}(k) + K(k)[z(k) - H\hat{x}^{-}(k)] \tag{1}$$
 where $\hat{x}^{-}(k) = \Phi \hat{x}^{+}(k-1)$

Kalman Filter Problem Solution

• Thus, the solution we seek now looks like this:

$$\hat{x}^{+}(k) = \hat{x}^{-}(k) + K(k)[z(k) - H\hat{x}^{-}(k)] \tag{1}$$

where $\hat{x}^-(k) = \Phi \hat{x}^+(k-1)$

• This now looks very much like the running average problem!

Kalman Filter Problem Solution

• Thus, the solution we seek now looks like this:

$$\hat{x}^{+}(k) = \hat{x}^{-}(k) + K(k)[z(k) - H\hat{x}^{-}(k)] \tag{1}$$
 where $\hat{x}^{-}(k) = \Phi \hat{x}^{+}(k-1)$

• This now looks very much like the running average problem!

Vector Check

Vector Check

Vector Check

- Where are we?
 - We've formulated the linear discrete problem

Summary Vector Check

- Where are we?
 - We've formulated the linear discrete problem
 - We've indicated the form of the solution: the recursive estimating algorithm with the Kalman gain

Vector Check

- Where are we?
 - We've formulated the linear discrete problem
 - We've indicated the form of the solution: the recursive estimating algorithm with the Kalman gain
 - But we haven't yet presented the complete solution

Summary Vector Check

- We've formulated the linear discrete problem
- We've indicated the form of the solution: the recursive estimating algorithm with the Kalman gain
- But we haven't yet presented the complete solution
 - For the complete solution, we'll need to compute the gain K(k) and use it to update both the state estimate and the estimation uncertainty

Summary Vector Check

- Where are we?
 - We've formulated the linear discrete problem
 - We've indicated the form of the solution: the recursive estimating algorithm with the Kalman gain
 - But we haven't yet presented the complete solution
 - For the complete solution, we'll need to compute the gain K(k) and use it to update both the state estimate and the estimation uncertainty
- What's next?

- Where are we?
 - We've formulated the linear discrete problem
 - We've indicated the form of the solution: the recursive estimating algorithm with the Kalman gain
 - But we haven't yet presented the complete solution
 - For the complete solution, we'll need to compute the gain K(k) and use it to update both the state estimate and the estimation uncertainty
- What's next?
 - Drill down on state dynamics and determine how estimation uncertainty changes over time and also how it is updated

- We've formulated the linear discrete problem
- We've indicated the form of the solution: the recursive estimating algorithm with the Kalman gain
- But we haven't yet presented the complete solution
 - For the complete solution, we'll need to compute the gain K(k) and use it to update both the state estimate and the estimation uncertainty
- What's next?
 - Drill down on state dynamics and determine how estimation uncertainty changes over time and also how it is updated
 - Use both the predicted estimation uncertainty and measurement noise uncertainty to calculate the Kalman gain

- We've formulated the linear discrete problem
- We've indicated the form of the solution: the recursive estimating algorithm with the Kalman gain
- But we haven't yet presented the complete solution
 - For the complete solution, we'll need to compute the gain K(k) and use it to update both the state estimate and the estimation uncertainty
- What's next?
 - Drill down on state dynamics and determine how estimation uncertainty changes over time and also how it is updated
 - Use both the predicted estimation uncertainty and measurement noise uncertainty to calculate the Kalman gain
 - Use Kalman gain to update estimation uncertainty

- We've formulated the linear discrete problem
- We've indicated the form of the solution: the recursive estimating algorithm with the Kalman gain
- But we haven't yet presented the complete solution
 - For the complete solution, we'll need to compute the gain K(k) and use it to update both the state estimate and the estimation uncertainty
- What's next?
 - Drill down on state dynamics and determine how estimation uncertainty changes over time and also how it is updated
 - Use both the predicted estimation uncertainty and measurement noise uncertainty to calculate the Kalman gain
 - Use Kalman gain to update estimation uncertainty

