ELECTRONIC COMPONENT STEADY/UNSTEADY AIR COOLING

By:

David Altura

Advisors:

Dr. Alex Liberzon

Prof. Neima Brauner

MOTIVATION

Microprocessor chip power and heat flux trends Anandan & Ramalingam (2008)

STATE OF THE ART COOLING TECHNIQUES

~10 W Passive Air

-Cheap, quiet-Low heat loads

~100 W Forced Air

-Inexpensive, noisy

-Mid heat loads

~200 W Coolant (water)

-Expensive, complex

-High heat loads

~300 W Refrigeration

- -Expensive, complex
- -High heat loads

PRESENTATION OUTLINE

- Research objectives
- Control system
- Cooling system physical conditions
- Thermal & power performance (COP)
- Experimental cooling system
- Fan operation schemes: thermal & power performance
- PIV optical measurement system & results
- Conclusions

RESEARCH OBJECTIVES

- Using controllable and measurable forced air cooling system for heat generating element - the "thermal system" – to optimize power performance, in terms of COP parameter, for the following possible fan operation conditions:
 - Steady fan speed operation
 - Combined fan/natural convection (constant thermal performance)
 - Sinusoidal fan operation
- Understand channel flow behavior using PIV technique
- Control of thermal system, via manipulation of fan speed constantly maximizing COP, while operating within the thermal system θ specified limit.

CONTROL SYSTEM

Control objective : optimize *COP*

Specified constrain: θ_{SP}

Manipulated parameter: V_{fan}

Disturbance: Q

HEAT SINK FLOW ORIENTATIONS

PARALLEL PLATE HEAT SINK

❖ Impingement flow: very widespread use in microprocessor cooling, more effective than parallel flow; used in this research

FLOW DIRECTIONS

PHYSICAL CONDITIONS & ANALYSIS

Thermal resistance circuit:

$$\Delta T = R_{th} \cdot Q$$

Heat sink thermal resistance circuit:

$$T_{air}$$
 — M_{conv} $T_{component}$

• Lumped system condition $Bi = \frac{hx}{k} = \frac{h(V/A)}{k} < 0.1$ (verified experimentally):

• Lumped system the mal resistance:
$$R_{th} \approx R_{conv} = \frac{1}{hA} = \frac{\Delta T}{Q}$$
 $\Delta T = T_{component} - T_{air}$

$$h = h(G_{air}, flow attributes, \Delta T for NC)$$

COOLING SYSTEM POWER PERFORMANCE

• High power performance \leftarrow High heat transfer rate @ Low HP_{fan}

$$\sqrt[3]{\frac{\left(HP_{fan}\right)_{1}}{\left(HP_{fan}\right)_{2}}} = \frac{\left(RPM_{fan}\right)_{1}}{\left(RPM_{fan}\right)_{2}} = \frac{\left(G_{air}\right)_{1}}{\left(G_{air}\right)_{2}} = \frac{\left(V_{fan}\right)_{1}}{\left(V_{fan}\right)_{2}} = \frac{\left(U_{air}\right)_{1}}{\left(U_{air}\right)_{2}} = 2\sqrt[4]{\frac{\left(\Delta P_{fan}\right)_{1}}{\left(\Delta P_{fan}\right)_{2}}}$$

Fan laws:

• Fan power coefficient of performance: = $R_{th} \cdot \theta_{SP}$

THERMAL SYSTEM

System operation:

- Heat flow Q_{exp} is set at heat element power supply
- Fan voltage/speed is set at programmable fan power supply
- Thermocouple and fan power data are acquired at steady or dynamic conditions

Calculations:

Legend

- 1 lower plate
- 2 threaded rods
- 3 upper plate
- 4 axial fan
- 4 axiai iai
- 5 heat sink
- 6 insulation
- 7 heat element
- 8 thermocouples

STEADY FAN OPERATION

$$COP = \frac{Q_{SP}}{HP_{fan}}$$

$$Q_{SP} = hA\theta_{SP}$$

$$R_{th} = \frac{\Delta T_{\text{exp}}}{Q_{\text{exp}}}$$

$$Q_{SP} = hA\theta_{SP}$$
 $R_{th} = \frac{\Delta T_{\text{exp}}}{Q_{\text{exp}}}$ $h = \frac{1}{R_{th} \cdot A} = \frac{Q_{\text{exp}}}{\Delta T_{\text{exp}} \cdot A}$

$$HP_{fan} = V_{fan} \cdot I_{fan}$$

$$\sqrt[3]{\frac{\left(HP_{fan}\right)_{1}}{\left(HP_{fan}\right)_{2}}} = \frac{\left(RPM_{fan}\right)_{1}}{\left(RPM_{fan}\right)_{2}} = \frac{\left(G_{air}\right)_{1}}{\left(G_{air}\right)_{2}} = \frac{\left(V_{fan}\right)_{1}}{\left(V_{fan}\right)_{2}} = \sqrt[2]{\frac{\left(\Delta P_{fan}\right)_{1}}{\left(\Delta P_{fan}\right)_{2}}}$$

COMBINED FAN/NATURAL CONVECTION

- Fan is OFF for part of cycle → combined forced/natural convection
- System time constant is large, theoretically allowing small temperature change within cycle
- Time average heat transfer coefficient (h_{av}) determined by forced/natural convection coefficients and fan operation time fraction (x)
- *COP* is compared between different V_{fan} at common h_{av}

$$h_{av} = xh_{fc} + (1-x)h_{NC} \qquad Q = h_{av}A\theta_{sp}$$

$$h_{NC} = 3.9W / m^2 K$$
, @ 41.6K

FAN SINUSOIDAL CYCLE RESULTS

• Comparison between steady and fan operation, regarding heat transfer coefficient (h) and COP

FAN SINUSOIDAL CYCLE RESULTS

- Axial fan limits maximum frequency to ~2Hz @ tested amplitudes
- Frequency in this range had negligible affect on h
- Increasing frequency raises HP_{fan}, and therefore *COP* is reduced

PIV EXPERIMENTAL SYSTEM

PIV technique:

- ullet Two consecutive exposures are taken of flow plane, at set Δt , each illuminated by laser sheet
- A 2D velocity vector field is produced by calculating particle translation between the two exposures, using cross-correlation methods

PIV EXPERIMENTAL PARAMETERS

- 11 Megapixel (4008X2672) CCD camera
- 120 mJ Nd:YAG (532nm wavelength) pulse laser
- Insight 3G_™ software
- Operation frequency: 2.07 Hz
- Exposure pair Δt: 30-200 µs
- Spot dimensions: 75X75 pixels

PIV VECTOR FIELDS & FAN INLET PROFILES

$$Re_{D_{II}} = 400U$$

TRANSPARENT CHANNEL MODEL FLOW

TURBULENCE INTENSITY

CHANNEL RETENTION TIME & TURNOVER RATE

 Definition: amount of time a characteristic air particle remains in a heat sink channel, and the reciprocal of that time

$$\tau_{ch} = \frac{x_{streamline}}{v_{average}}$$
 $f = \frac{1}{\tau_{ch}}$

Characteristic values, based on PIV flow measurements:

$$\tau_{ch} = O\left(\frac{0.035m}{1m/s}\right) = O(0.035s)$$
$$f = O\left(\frac{1}{0.35s}\right) = O(30Hz)$$

 Sinusoidal fan cyclic operation at frequency lower than the turnover rate may be regarded as a sum of steady speed operations

CONCLUSIONS

The following important information regarding power performance was obtained in this research, which will be used in control system design:

- COP highest at low fan speed, for steady and forced/natural convection fan operation
- •Sinusoidal fan cyclic operation did not show heat transfer improvement, and increasing frequency lowered *COP* in the range examined
- •Channel retention time is O(0.035s) and turnover rate is O(30Hz); sinusoidal fan cyclic operation may or may not improve heat transfer at frequency above turnover rate
- •PIV results show stagnation area in some channels; flow is influenced by fan hub; asymmetry between left & right in channel flow; relatively low turbulence intensity

FUTURE WORK

- Control system design based on the present experimental conclusions
- PIV analysis for sinusoidal cyclic fan operation for current tested frequency range
- PIV/thermal system analysis for sinusoidal cyclic fan operation at higher frequency
- Attempt to find solution for stagnation area in selected channels

THANKS FUN LISTENING