Proces Markowa / Łańcuchy Markowa

Wykorzystywana literatura:

- Wykłady (3,4): https://kacpertopol.github.io/
- Załączone zdjęcia (data dostępu 28.11.2024):

http://statystyka.rezolwenta.eu.org/Materialy/Markowa.pdf

https://ww2.ii.uj.edu.pl/~spurek/publications/zbior.pdf

Łańcuchy Markowa to procesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez pamięci".

Zwykle będziemy zakładać, że zbiór stanów to podzbiór zbioru liczb całkowitych Z lub zbioru $\{0, 1, 2,\}$ jako uproszczenie zapisu $\{S_0, S_1, S_2,\}$.

Lańcuchem Markowa nazywamy proces będący ciągiem zmiennych losowych

$$X_0, X_1, ...$$

Określonych na wspólnej przestrzeni probabilistycznej, przyjmujących wartości całkowite i spełniające warunek

$$\begin{split} &P\big(X_n=j\big|X_0=i_0,X_1=i_1,\,...,X_{n-1}=i_{n-1}\big)=\\ &=P\big(X_n=j\big|X_{n-1}=i_{n-1}\big) \qquad \bigwedge_{n} \quad \bigwedge_{i_0,...,i_{n-1},j\in\{0,1,2,...\}} \end{split}$$

Zatem dla łańcucha Markowa rozkład prawdopodobieństwa warunkowego położenia w n-tym kroku zależy tylko od prawdopodobieństwa warunkowego położenia w kroku poprzednim a nie od wcześniejszych punktów trajektorii (historia).

Niech

$$p_{ij}^{(n)} = P(X_n = j | X_{n-1} = i)$$

oznacza prawdopodobieństwo warunkowe przejścia w n-tym kroku ze stanu i do stanu j. Jeśli $p_{ii}^{(n)}$ nie zależą od n to łańcuch nazywamy jednorodnym (jednorodnym w czasie) i stosujemy zapis p_{ii} .

Zakładając, że numery stanów są całkowite, nieujemne można prawdopodobieństwa przejść zapisać w macierzy

$$P^{(n)} = \begin{bmatrix} p_{00}^{(n)} & p_{01}^{(n)} & \cdots \\ p_{10}^{(n)} & p_{11}^{(n)} & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$

W pierwszym wierszu mamy kolejno prawdopodobieństwo pozostania w stanie 0 w n-tym kroku i prawdopodobieństwa przejścia w n-tym kroku ze stanu o numerze 0 do stanów o numerach 1, 2, itd. Analogicznie określone są pozostałe wiersze.

Dla łańcuchów jednorodnych powyższą macierz oznaczamy P i ma ona postać

$$P = \begin{bmatrix} p_{00} & p_{01} & \cdots \\ p_{10} & p_{11} & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$

Własności macierzy prawdopodobieństw przejść:

 $p_{ii}^{(n)} \ge 0$ b) suma każdego wiersza jest równa 1.

Zauważmy też, że w macierzy tej nie może istnieć kolumna złożona z samych zer.

Każdą macierz spełniającą warunki a), b) nazywamy macierzą stochastyczną.

Bedziemy dalej przyjmować najczęściej, że rozpatrywane łańcuchy Markowa mają skończona liczbę stanów.

p_i(n) - prawdopodobieństwo znalezienia się w stanie i po n krokach (rozkład zmiennej losowej X_n). Prawdopodobieństwa te stanowia składowe wektora p(n), jest to rozkład łańcucha Markowa po n krokach.

pi(0) - prawdopodobieństwo znalezienia się w stanie i w chwili początkowej (rozkład zmiennej losowej X0 - rozkład początkowy). Prawdopodobieństwa te stanowią składowe wektora p(0).

p_{ii} - prawdopodobieństwo przejścia od stanu i do stanu j w jednym (dowolnym) kroku,

 $P = [p_{ij}]$ - macierz prawdopodobieństw przejść (w jednym kroku), jest to macierz stochastyczna.

Przykład.

Błądzenie przypadkowe z odbiciem. Np. gdy stany 0 i 4 są odbijające

$$[0] \xrightarrow{1 \atop q} [1] \xrightarrow{p \atop q} [2] \xrightarrow{p \atop q} [3] \xrightarrow{p \atop 1} [4]$$

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ q & 0 & p & 0 & 0 \\ 0 & q & 0 & p & 0 \\ 0 & 0 & q & 0 & p \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Przykład.

Błądzenie przypadkowe z pochłanianiem. Np. gdy stany 0 i 4 są pochłaniające

Problem ruiny gracza jest szczególnym przypadkiem błądzenia przypadkowego z pochłanianiem. Gracz dysponuje początkowo kwotą k zł. W kolejnych etapach z prawdopodobieństwem p wygrywa 1zł albo z prawdopodobieństwem q = 1- p przegrywa 1zł. Gra kończy się gdy gracz osiągnie kwotę w > k zł lub przegra wszystko.

Zatem mamy dwa stany pochłaniające 0 i w.

Graf i macierz rozpatrywanego łańcucha są następujące.

$$1 \longrightarrow \begin{bmatrix} 0 \end{bmatrix} \xrightarrow{q} \begin{bmatrix} 1 \end{bmatrix} \xrightarrow{p} \cdots \xrightarrow{q} \begin{bmatrix} k \end{bmatrix} \xrightarrow{p} \begin{bmatrix} k \end{bmatrix} \xrightarrow{p} \cdots \xrightarrow{p} \begin{bmatrix} w - 1 \end{bmatrix} \xrightarrow{p} \begin{bmatrix} w \end{bmatrix} \xrightarrow{p} \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ q & 0 & p & 0 & \dots & 0 \\ 0 & q & 0 & p & \dots & 0 \\ 0 & 0 & q & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

rozkład początkowy określa X0 = k

Przykład.

Rozpatrzmy łańcuch Markowa o macierzy

$$P = \begin{bmatrix} 0.5 & 0 & 0.5 \\ 0 & 0.25 & 0.75 \\ 0.5 & 0.5 & 0 \end{bmatrix}$$

i rozkładzie początkowym p(0) = (1, 0, 0).

Po pierwszym kroku prawdopodobieństwa znalezienia się w poszczególnych stanach są równe

$$p(1) = p(0)P = \begin{bmatrix} 1,0,0 \end{bmatrix} \begin{bmatrix} 0,5 & 0 & 0,5 \\ 0 & 0,25 & 0,75 \\ 0,5 & 0,5 & 0 \end{bmatrix} = \begin{bmatrix} 0,5;0;0,5 \end{bmatrix}$$

Po drugim kroku prawdopodobieństwa znalezienia się w poszczególnych stanach są równe

$$p(2) = p(0)P^{2} = [1,0,0] \begin{bmatrix} 0.5 & 0.25 & 0.25 \\ 0.375 & 0.438 & 0.188 \\ 0.25 & 0.125 & 0.625 \end{bmatrix} = [0.5;0.25;0.25]$$

Po trzecim kroku prawdopodobieństwa znalezienia się w poszczególnych stanach są równe

$$p(3) = p(0)P^{3} = \begin{bmatrix} 1,0,0 \end{bmatrix} \begin{bmatrix} 0,375 & 0,188 & 0,438 \\ 0,281 & 0,203 & 0,516 \\ 0,438 & 0,344 & 0,219 \end{bmatrix} = \begin{bmatrix} 0,375; \ 0,188; \ 0,438 \end{bmatrix}$$

Obliczając kolejne potegi macierzy P możemy wyliczone wartości p(n) zestawić dla n = 1, ..., 12 w następującej tabeli i przedstawić na wykresie.

Zauważmy, że rozpatrywane prawdopodobieństwa stabilizują się na określonym poziomie i dążą do pewnych granic, co związane jest z regularności rozpatrywanej macierzy stochastycznej.

Zobaczmy teraz jak zmienia się prawdopodobieństwo znalezienia się w ustalonym stanie w poszczególnych krokach, gdy zmienia się rozkład początkowy.

Rozpatrzmy stan 0 i rozkłady początkowe p(0) = (1, 0, 0), p(0) = (0, 1, 0), p(0) = (0, 0, 1).

Obliczone prawdopodobieństwa (w podobny sposób jak wyżej) zestawiono w tabeli i przedstawiono na wykresie dla n = 1, ..., 12.

Zauważmy, że rozpatrywane prawdopodobieństwo dla dużych n nie zależy od rozkładu początkowego.

Granice $\Pi = p(\infty) = \lim_{n \to \infty} p(n)$ (o ile istnieje) nazywamy rozkładem granicznym łańcuch Markowa.

$$\boldsymbol{\Pi} = \left(\boldsymbol{\Pi}_0, \boldsymbol{\Pi}_1, \ \boldsymbol{\Pi}_2,\right).$$

Łańcuch Markowa dla którego istnieje rozkład graniczny niezależny od rozkładu początkowego p(0) nazywamy łańcuchem ergodycznym.

Sposoby wyznaczania rozkładu granicznego:

Sposób I.

Rozkład graniczny Π jest jedynym niezerowym rozwiązaniem układu

$$(\mathbf{P}^{\mathsf{T}} - \mathbf{I}) \, \boldsymbol{\Pi}^{\mathsf{T}} = 0,$$

spełniającym warunek
$$\sum_{i=1}^{n} \Pi_i = 1$$
,

Uwaga.

Z powyższej równości wynika, że $\Pi P = \Pi$ co oznacza, że wektor Π jest wektorem własnym macierzy P odpowiadającym wartości własnej równej 1.

Klasyfikacja stanów łańcucha Markowa.

Niekiedy będziemy utożsamiać stan sk z liczbą k.

Stan s_k jest osiągalny ze stanu s_j jeśli $p_{jk}(n) \ge 0$ dla pewnego n,

Stany s_k i s_j nazywamy wzajemnie komunikującymi się jeśli stan s_k jest osiągalny ze stanu si, i odwrotnie.

Relacja wzajemnego komunikowania się określona na zbiorze stanów łańcucha Markowa jest:

- symetryczna,
- przechodnia (z równości Chapmana-Kołmogorowa).

Zbiór stanów C nazywamy zamknietym, jeżeli żaden stan spoza C nie da się osiągnąć wychodząc z dowolnego stanu w C.

Stan sk jest stanem nieistotnym (chwilowym) gdy istnieje stan si osiągalny ze stanu sk a stan sk nie jest osiagalny ze stanu si,

Stan, który nie jest nieistotny nazywa się istotny (powracający).

Przykład.

Rozpatrzmy łańcuch Markowa

Jego macierz P ma postać

$$p = \begin{bmatrix} 0 & 0.25 & 0 & 0.5 & 0.25 \\ 0 & 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0.75 & 0.25 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 \end{bmatrix}$$

Stany 0 i 4 są nieistotne.

Stany 1, 2 i 3 sa istotne.

Zbiór stanów {1, 2, 3} jest zamkniety.

Pojedynczy stan zamknięty (musi być $p_{kk} = 1$) nazywamy stanem pochłaniającym. Stan s_k jest odbijający gdy $p_{kk} = 0$. Stan odbijający może być zarówno chwilowy jak i powracający.

Łańcuch Markowa jest nieprzywiedlny, gdy wszystkie jego stany wzajemnie komunikują się, w przeciwnym przypadku łańcuch jest przywiedlny.

Lańcuchy okresowe.

Okresem stanu powracającego j nazywamy liczbę:

$$o(i) = NWD(n: p_{ii}(n) > 0)$$

jest to największy wspólny dzielnik takich liczb n, że powrót do stanu j może nastąpić po n krokach.

Stan j nazywamy okresowym gdy ma okres większy od 1 i nieokresowym gdy ma okres 1.

Twierdzenie.

W skończonym nieprzywiedlnym łańcuchu Markowa wszystkie stany mają ten sam okres.

Zatem nieprzywiedlny łańcuch Markowa nazywamy okresowym, gdy jego stany mają okres większy od 1, w przeciwnym przypadku łańcuch nazywamy nieokresowym. Stan, który jest powracający, niezerowy i nieokresowy nazywa się ergodyczny.

Łańcuch ergodyczny.

Łańcuch jest ergodyczny jeśli istnieje

$$\lim_{n\to\infty} p_{ij}(n) = \pi_j \qquad \sum_j \pi_j = 1 \qquad \Pi = (\Pi_1, \Pi_2, \dots)$$

Rozkład II nazywamy rozkładem granicznym.

Twierdzenie Jeśli w łańcuchu Markowa o skończenie wielu stanach, wszystkie stany istotne są nieokresowe i tworzą jedną klase, to istnieją prawdopodobieństwa ergodyczne, przy czym dla stanów istotnych są one dodatnie, zaś dla stanów chwilowych są one równe 0.

Lancuch stacionarny.

Jednorodny łańcuch Markowa jest stacjonarny gdy istnieje rozkład Π jego stanów, zwany rozkładem stacjonarnym, że

$$\Pi P = \Pi$$

(tzn. Π jest wektorem własnym macierzy P dla wartości własnej 1).

Zatem dla dowolnego n, $\Pi P^n = \Pi$, oznacza to, że jeśli rozkład początkowy jest równy Π , to rozkład łańcucha po dowolnej liczbie kroków jest taki sam i równy Π.

Jeśli macierz P łańcucha jest nierozkładalna to rozkład stacjonarny jest dokładnie jeden. Jeśli macierz P łańcucha jest rozkładalna to rozkładów stacjonarnych jest więcej niż jeden.

W łańcuchu ergodycznym rozkład stacjonarny (graniczny) nie zależy od rozkładu poczatkowego.

Uwaga.

ergodyczny ⇒ stacjonarny

Odwrotna implikacja nie musi zachodzić.

Zadanie 9.1. W pewnym mieście każdy dzień jest słoneczny albo deszczowy. dniu słonecznym dzień słoneczny następuje z prawdopodobieństwem 0.7, a po dniu deszczowym z prawdopodobieństwem 0.4.

Narysuj łańcuch markowa oraz wyznacz macierz przejścia dla niego.

Zadanie 9.2. W pewnym mieście każdy dzień jest słoneczny albo deszczowy. dniu słonecznym dzień słoneczny następuje z prawdopodobieństwem 0.7, a po dniu deszczowym z prawdopodobieństwem 0.4.

W poniedziałek padało. Stwórz prognozę na wtorek, środę i czwartek.

Oznaczenia: stan 1 = dzień słoneczny, 2 = deszczowy.

Zadanie 9.3. W pewnym mieście każdy dzień jest słoneczny albo deszczowy. dniu słonecznym dzień słoneczny następuje z prawdopodobieństwem 0.7, a po dniu deszczowym z prawdopodobieństwem 0.4.

Meteorolodzy przewidują 80% szans na deszcz w poniedziałek. Stwórz prognozę na wtorek, środę i czwartek.

Oznaczenia: stan 1 = dzień słoneczny, 2 = deszczowy.

Zadanie 9.4. Znajdź rozkład stacjonarny dla łańcucha markowa z powyższych zadań.

Rozwiązanie 9.1. Zacznijmy od narysuj łańcucha markowa.

Możemy teraz napisać macierz przejść

$$\begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}.$$

Zauważmy, że wiersze sumują się do 1.

Rozwiązanie 9.2. Zauważmy, że mamy dokładnie taki sam łańcuch Markowa jak w poprzednim zadaniu. Wyznaczmy pogodę na kolejne dni

1. Wtorek

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}$$

2. Środa

$$\begin{bmatrix} 0.4 & 0.6 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.52 & 0.48 \end{bmatrix}$$

3. Czwartek

$$\begin{bmatrix} 0.52 & 0.48 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.556 & 0.444 \end{bmatrix}$$

Rozwiązanie 9.3. Zauważmy, że mamy dokładnie taki sam łańcuch Markowa jak w poprzednim zadaniu. Wyznaczmy pogodę na kolejne dni

1. Wtorek

$$\begin{bmatrix} 0.2 & 0.8 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.46 & 0.54 \end{bmatrix}$$

2. Środa

$$\begin{bmatrix} 0.46 & 0.54 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.538 & 0.462 \end{bmatrix}$$

3. Czwartek

$$\begin{bmatrix} 0.538 & 0.462 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.5614 & 0.4386 \end{bmatrix}$$

Rozwiązanie 9.4. Zauważmy, że mamy dokładnie taki sam łańcuch Markowa jak w poprzednim zadaniu. Przypomnij, że macierz przejść jest postaci

$$P = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}.$$

Aby wyznaczyć rozkład stacjonarny musimy rozwiązać układ równań

$$\begin{cases} \pi P = \pi \\ \pi_1 + \pi_2 = 1 \end{cases}$$

Obliczmy

$$\pi P = \begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.7\pi_1 + 0.4\pi_2 & 0.3\pi_1 + 0.6\pi_2 \end{bmatrix}.$$

Rozwiązujemy układ równań

$$\begin{cases} 0.7\pi_1 + 0.4\pi_2 = \pi_1 \\ 0.3\pi_1 + 0.6\pi_2 = \pi_2 \\ \pi_1 = 1 - \pi_2 \end{cases}$$

$$\begin{cases}
-0.3\pi_1 + 0.4\pi_2 = 0 \\
0.3\pi_1 - 0.4\pi_2 = 0 \\
\pi_1 = 1 - \pi_2
\end{cases}$$

$$-0.3 + 0.3\pi_2 + 0.4\pi_2 = 0$$

$$0.7\pi_2 = 0.3$$

$$\pi_2 = \frac{0.3}{0.7} = \frac{3}{7}$$

$$\pi_1 = \frac{4}{7}.$$

Rozkład stacjonarny to:

$$\begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix} = \begin{bmatrix} \frac{4}{7} & \frac{3}{7} \end{bmatrix}.$$

۸۱۸ +۸۰.

In[@]:= P.P // MatrixForm

postać macierzy

Out[•]//MatrixForm=

In[*]:= P.P.P // MatrixForm

postać macierzy

Out[•]//MatrixForm=

$$\begin{pmatrix} 0.583 & 0.417 \\ 0.556 & 0.444 \end{pmatrix}$$

Inf *]:= P.P.P.P // MatrixForm

postać macierzy

Out[•]//MatrixForm=

Infolia P.P.P.P.P.P.P.P.P.// MatrixForm

postać macierzy

Out[•]//MatrixForm=

$$\left(\begin{smallmatrix} \mathbf{0.571431} & \mathbf{0.428569} \\ \mathbf{0.571425} & \mathbf{0.428575} \end{smallmatrix} \right)$$

$$ln[\cdot]:= N\left[\left\{\frac{4}{7}, \frac{3}{7}\right\}\right]$$
 przybliżerlie numeryczne

Oraz:

Sposoby wyznaczania rozkładu granicznego:

Sposób I.

Rozkład graniczny II jest jedynym niezerowym rozwiązaniem układu

$$(\mathbf{P}^{\mathsf{T}} - \mathbf{I}) \, \boldsymbol{\Pi}^{\mathsf{T}} = 0,$$

spełniającym warunek
$$\sum_{i=1}^{n} \Pi_i = 1$$
,

Uwaga.

Z powyższej równości wynika, że $\Pi P = \Pi$ co oznacza, że wektor Π jest wektorem własnym macierzy P odpowiadającym wartości własnej równej 1.

MatrixForm[PT]

postać macierzy

Out[•]//MatrixForm=

$$\begin{pmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{pmatrix}$$

postać macierzy

Out[•]//MatrixForm=

$$\begin{pmatrix} -0.3 & 0.4 \\ 0.3 & -0.4 \end{pmatrix}$$

$$In[a]:=\begin{pmatrix} -0.3 & 0.4 \\ 0.3 & -0.4 \end{pmatrix}\begin{pmatrix} \pi 1 \\ \pi 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$-0.3 \pi 1 + 0.4 \pi 2 = 0$$

$$\pi 1 + \pi 2 = 1$$

$$\pi \mathbf{1} = \frac{4}{7}$$

$$\pi 2 = \frac{3}{7}$$

Uwaga!

Przykład.

Rozpatrzmy łańcuch Markowa

Jego macierz P ma postać

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Wszystkie stany mają okres 3.

Zauważmy, że wielomian charakterystyczny tej macierzy ma postać

$$W(\lambda) = \lambda^3 - 1$$

i jej wartości własne są równe:
$$\lambda_1 = 1$$
, $\lambda_2 = \frac{-1 - i\sqrt{3}}{2}$, $\lambda_3 = \frac{-1 + i\sqrt{3}}{2}$.

Ponieważ wszystkie wartości własne maja moduł 1 i λ_1 =1 jest jednokrotną wartością własną to rozpatrywana macierz jest nierozkładalna i cykliczna.

Łańcuch ten jest stacjonarny, jego rozkładem stacjonarnym jest (1/3, 1/3, 1/3).

Rozkład ten można wyznaczyć I lub II sposobem obliczania rozkładów granicznych. Kolejne potęgi macierzy P są równe

$$P^{2} = P^{3n+2} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \ P^{3} = P^{3n+3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ P^{4} = P = P^{3n+1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

 $dl_{2.9} = 0.1.2$

Zauważmy, że żadna kolumna Pⁿ nie składa się wyłącznie z elementów dodatnich. Rozkład graniczny nie istnieje.

Weźmy np. rozkład początkowy p(0) = (1, 0, 0).

Obliczone prawdopodobieństwa p(0) zestawiono w tabeli i przedstawiono na wykresie dla

n = 0, ..., 8.

p(n) \ n	0	1	2	3	4	5	6	7	8
Stan 0	1	0	0	1	0	0	1	0	0
Stan 1	0	1	0	0	1	0	0	1	0
Stan 2	0	0	1	0	0	1	0	0	1

Jak widać lim p (n) nie istnieje dla żadnej współrzędnej (dla żadnego stanu).

Wniosek.

Istnienie rozkładu stacjonarnego nie implikuje, że łańcuch jest ergodyczny.