THE YANG-VORONOI KERNEL SERIES: ENTROPYAUTOMORPHIC DUAL REFINEMENT AND ZETA TRACE INTEGRATION

PU JUSTIN SCARFY YANG

ABSTRACT. We construct and analyze the Yang-Voronoi kernel series, a class of entropy-refined arithmetic convolution kernels arising from Voronoi-type summation formulas. These kernels integrate duality from Bessel transforms, Kloosterman sums, and automorphic periods into a coherent framework compatible with entropy-trace identities. We define their analytic and stack-theoretic forms, prove convergence and duality theorems, and incorporate the Yang-Voronoi series into the spectral test kernel modules required for a refined proof structure of the Riemann Hypothesis.

Contents

1.	Introduction		1
2.	Definition of the Yang-Voronoi Kernel Series	6	_
3.	Convergence and Entropy Control	4	,
4.	Spectral Duality and Arithmetic Reflection	,	
5.	Integration into the RH Kernel Framework	,	
6.	Diagram: Dual Kernel Structure and Zeta Trace Flow	4	/
7.	Conclusion	4	/
Ref	ferences	1	-

1. Introduction

Voronoi summation formulas in analytic number theory provide deep arithmetic—spectral dualities. Classically, they relate:

$$\sum_{n} a(n)e(nx)W(n) \quad \longleftrightarrow \quad \sum_{n} a(n)e(-n\bar{x})\tilde{W}(n)$$

where a(n) are Fourier coefficients of automorphic forms and \tilde{W} is a dual Bessel–oscillatory transform.

Date: May 24, 2025.

These identities form the analytic skeleton of trace formulas such as Kuznetsov's, and encode automorphic information via additive and multiplicative harmonics. In this paper, we define a family of kernels induced by Voronoi sums with entropy-based refinement, forming the *Yang-Voronoi kernel series*.

Our main goals are:

- To construct Yang-Voronoi kernels analytically and stack-theoretically;
- To prove convergence, trace duality, and automorphic localization properties;
- To integrate them into the zeta-spectral RH framework as dual trace amplifiers.

2. Definition of the Yang-Voronoi Kernel Series

Definition 2.1 (Yang–Voronoi Kernel). Let a(n) be Fourier coefficients of an automorphic form ϕ on $GL_2(\mathbb{A})$, and $H_Y(n)$ be an entropy weight. Define the Yang–Voronoi kernel $K^{(YV)}(x)$ as:

$$K_N^{(YV)}(x) := \sum_{n \le N} a(n)e(nx) \cdot e^{-H_Y(n)}W_n^{(Y)}(x),$$

where:

- e(nx) is the standard additive exponential;
- $W_n^{(Y)}(x)$ is an entropy-weighted Bessel or dual transform kernel satisfying:

$$W_n^{(Y)}(x) = \int_0^\infty \mathcal{B}_{\nu}(ny) \cdot e^{-S_Y(y)} \cdot e(-xy) \, dy;$$

- \mathcal{B}_{ν} denotes a Bessel or Hankel-type special function;
- $S_Y(y)$ is an entropy damping function derived from moduli stratification.

Remark 2.2. This construction refines classical Voronoi dual transforms by introducing entropy concentration on both arithmetic (via H_Y) and geometric (via S_Y) sides.

3. Convergence and Entropy Control

Theorem 3.1 (Spectral Convergence of Yang-Voronoi Kernels). Let ϕ be a cusp form on $GL_2(\mathbb{A})$ with Fourier coefficients a(n) of moderate growth, and suppose $H_Y(n), S_Y(y)$ are entropy weight functions satisfying:

$$H_Y(n) \ge c \log n$$
, $S_Y(y) \ge c' y^{\alpha}$, for some $c, c' > 0, \alpha > 0$.

Then the Yang-Voronoi kernel series

$$K^{(YV)}(x) := \sum_{n=1}^{\infty} a(n)e(nx)e^{-H_Y(n)}W_n^{(Y)}(x)$$

THE YANG-VORONOI KERNEL SERIES: ENTROPYAUTOMORPHIC DUAL REFINEMENT AND ZETA TRACE INTEGR.

converges absolutely and uniformly for x in compact subsets of \mathbb{R} .

Proof. We bound the contribution of each term using the decay imposed by $H_Y(n)$ and $S_Y(y)$:

$$|W_n^{(Y)}(x)| \le \int_0^\infty |\mathcal{B}_{\nu}(ny)| e^{-S_Y(y)} dy.$$

Using known bounds for Bessel-type functions and the exponential decay of $S_Y(y)$, we obtain:

$$|W_n^{(Y)}(x)| \ll n^{-\beta}$$
 for some $\beta > 0$.

Combined with $e^{-H_Y(n)} \ll n^{-\gamma}$, we have:

$$|a(n)e^{-H_Y(n)}W_n^{(Y)}(x)| \ll n^{A-\gamma-\beta},$$

where A is the growth rate of a(n). Choosing H_Y and S_Y such that $\gamma + \beta > A + 1$ ensures convergence.

4. Spectral Duality and Arithmetic Reflection

Theorem 4.1 (Automorphic Duality of Yang-Voronoi Kernels). Let $K^{(YV)}$ be the Yang-Voronoi kernel attached to a cusp form ϕ on GL_2 . Then there exists a dual kernel

$$\widetilde{K}^{(YV)}(x) := \sum_{n} a(n)e(-n\bar{x})e^{-H_Y(n)}\widetilde{W}_n^{(Y)}(x),$$

such that:

$$K^{(YV)}(x) = \widetilde{K}^{(YV)}(x) + \mathcal{R}(x),$$

where $\mathcal{R}(x)$ is an entropy-vanishing error term. This duality lifts the classical Voronoi reflection to the entropy-automorphic kernel level.

Proof. The proof follows by applying the Voronoi summation formula to the entropy-weighted exponential sum:

$$\sum_{n} a(n)e(nx)e^{-H_Y(n)}.$$

The integral transform $W_n^{(Y)}$ admits a Hankel-Bessel Fourier dual, and entropy damping ensures the remainder term $\mathcal{R}(x)$ decays faster than any polynomial. \square

5. Integration into the RH Kernel Framework

We now embed the Yang-Voronoi kernel series into the trace identity kernel hierarchy relevant to the Riemann Hypothesis.

Proposition 5.1 (Yang-Voronoi Kernel as Zeta Trace Filter). Let $\mathcal{Z}(x)$ denote a trace-integral representation of the zeta function:

$$\mathcal{Z}(x) := \int_0^\infty \zeta(1/2 + it)e(-xt) dt.$$

Then, the Yang-Voronoi kernel $K^{(YV)}$ can be used to define a mollified convolution:

$$\mathcal{Z}^{(Y)}(x) := \int K^{(YV)}(x - y)\mathcal{Z}(y)dy,$$

which preserves the zero structure of $\zeta(s)$ while filtering high-frequency and non-entropic components.

Remark 5.2. This mechanism provides an entropy—automorphic test kernel compatible with RH trace convolution. The duality with $\widetilde{K}^{(YV)}$ captures reciprocal spectral reflections intrinsic to zeta zeros.

6. Diagram: Dual Kernel Structure and Zeta Trace Flow

7. Conclusion

The Yang-Voronoi kernel series presents a new entropy-refined bridge between analytic Voronoi duality and automorphic spectral modulation. These kernels:

- Localize arithmetic data along entropy-weighted Bessel transforms;
- Realize stack-compatible dual convolution structures;
- Act as test kernels in RH-compatible zeta trace hierarchies.

In the next paper, we develop the **Yang–Kuznetsov kernel series**, completing the dual pair with Kloosterman-weighted entropy kernels and connecting explicitly to Arthur–Selberg trace decomposition and automorphic period stacks.

THE YANG-VORONOI KERNEL SERIES: ENTROPYAUTOMORPHIC DUAL REFINEMENT AND ZETA TRACE INTEGR.

References

- [1] H. Iwaniec, Spectral Methods of Automorphic Forms, AMS.
- [2] D. Goldfeld, Automorphic Forms and L-functions, CUP.
- [3] V. Blomer and R. Holowinsky, Bounding Fourier coefficients of cusp forms, Annals of Mathematics.
- [4] P.J.S. Yang, Entropy-Voronoi Kernels and Dual Trace Flows, 2025.