Attention, Self-attention, Transformers, **BERT**

Manaal Faruqui
Google Assistant

Content Borrowed From:

Ankur Parikh,

Jacob Devlin,

Ashish Vaswani

Attention

Neural Machine Translation

Sutskever et al (2014)

Image: Luong et al (2015)

Neural Machine Translation

$$\log p(y|x) = \sum_{j=1}^{m} \log p(y_j|y_{< j}, \boldsymbol{s})$$

$$p(y_i|y_{< i}, \boldsymbol{s}) = \operatorname{softmax}(g(\boldsymbol{h}_i))$$

Attention in Neural Machine Translation

$$\log p(y|x) = \sum_{j=1}^{m} \log p(y_j|y_{< j}, \boldsymbol{s})$$

$$p(y_j|y_{< j}, \boldsymbol{s}) = \operatorname{softmax}(g(\boldsymbol{h}_j))$$

$$ilde{m{h}}_t = anh(m{W}_{m{c}}[m{c}_t;m{h}_t])$$
 —— Augment with source context

$$p(y_t|y_{< t}, x) = \operatorname{softmax}(\boldsymbol{W_s}\tilde{\boldsymbol{h}}_t)$$

Attention in Neural Machine Translation

$$P(\mathbf{y}|\mathbf{c}_1,...,\mathbf{c}_T) = \prod_{t=1}^T P(\mathbf{y}_t|\mathbf{y}_1,...,\mathbf{y}_{t-1},\mathbf{c}_t)$$
 $\mathbf{c}_t = \sum_j \alpha_{tj} \mathbf{h}_j$ weighted average of source LSTM states $lpha_{tj} = \frac{\exp(\epsilon_{tj})}{\sum_j \exp(\epsilon_{tj})}$ weights form a probability distribution $\epsilon_{tj} = F_{att}(\mathbf{h}_{t-1},\mathbf{h}_j)$

some learned function

Parameterizing Attention

$$\operatorname{score}(m{h}_t, ar{m{h}}_s) = egin{cases} m{h}_t^ op m{h}_s & dot \ m{h}_t^ op m{W}_a ar{m{h}}_s & general \ m{v}_a^ op anh \left(m{W}_a [m{h}_t; ar{m{h}}_s]
ight) & concat \end{cases}$$

Image: Sennrich (2016)

Rocktaschel et al (2016)

Interpretability of Attention

Attention provides probabilistic weights on input sequence

Premise

Interpretability of Attention

Attention provides probabilistic weights on input sequence

Luong et al (2016)

- Replace attention weights at test time by random vector of weights.
 - The results do not change significantly.

Jain and Wallace (2019)

 Find adversarial weights that are maximally divergent while producing very similar result.

Jain and Wallace (2019)

- Zero out the maximum attention weight (and renormalize)
- Zero out a random attention weight (and renormalize)

Serrano and Smith (2019)

- Attention is interpretable when it's model critical [Ongoing work, Vashishta et al 2019]
- Train models with standard attention layer or random attention layer.

	BLEU
Luong	20.2
Bahdanau	18.2
Random	7.3

	Accuracy
Luong	Similar
Bahdanau	Similar
Random	Similar

NMT

Text classification

- If attention is so important, how much can we get with just attention?
- Often times, alignment is sufficient, do not need sentence representation

Self-Attention

Self-attention

Construct a context by attending to your-self: <u>Intra-sentence attention</u>

Language modeling

Cheng et al (2016)

Self-attention

- Self Attention without LSTMs
- Use weak word order information via distance bias

Parikh et al (2016), Cheng et al (2016)

Self-attention in NLI

Performance on SNLI dataset

Transformers

Learning Representations of Variable Length Data

Basic building block of sequence-to-sequence learning

Neural machine translation, summarization, QA, ...

Recurrent Neural Networks

- Model of choice for learning variable-length representations.
- Natural fit for sentences and sequences of pixels.
- LSTMs, GRUs and variants dominate recurrent models.

But...

- Sequential computation inhibits parallelization.
- No explicit modeling of long and short range dependencies.
- We want to model hierarchy.

Convolutional Neural Networks?

Convolutional Neural Networks?

Trivial to parallelize (per layer).

Exploits local dependencies

'Interaction distance' between positions linear or logarithmic.

Long-distance dependencies require many layers.

Attention

Attention between encoder and decoder is crucial in NMT.

Why not use attention for representations?

Self-Attention

Self-Attention

Constant 'path length' between any two positions.

Gating/multiplicative interactions.

Trivial to parallelize (per layer).

Stacking Self-Attention

- Just like CNNs and LSTMs can be stacked together, so can self-attention
- Build iteratively transformed representations

Position Embeddings

- Position encoding. A weakness of (vanilla) self attention is that unlike CNNs/LSTMs, it has no notion of position.
- Option 1: Learned position embeddings [Gehring et al. 2017]

Option 2: Fixed sinusoids of various frequencies [Vaswani et al 2017]

The Transformer Softmax Feed-forward Feed-forward **Encoder-Decoder Attention** Self-Attention Self-Attention **FFNN FFNN FFNN FFNN** Position-wise Feed-forward **FFNN FFNN FFNN FFNN** Position-wise Encoder-Decoder Attention Feed-forward softmax softmax Self-Attention Self-Attention p_2 Satz, Let's Representieren wir diesen this represent sentence,

Attention is Cheap!

Self-Attention	O(length ² · dim)				
RNN (LSTM)	O(length · dim²)				
Convolution	O(length · dim² · kernel_width)				

Attention is Cheap!

Self-Attention	O(length ² · dim)	$= 4.10^9$
RNN (LSTM)	O(length · dim²)	= 16·109
Convolution	O(length · dim² · kernel_width)	$= 6.10^9$

length=1000 dim=1000 kernel_width=3

Transformers

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training C	Training Cost (FLOPs)			
Wodel	EN-DE EN-FR		EN-DE	EN-FR			
ByteNet [17]	23.75			,,			
Deep-Att + PosUnk [37]		39.2		$1.0\cdot 10^{20}$			
GNMT + RL [36]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$			
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$			
MoE [31]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$			
Deep-Att + PosUnk Ensemble [37]		40.4		$8.0\cdot 10^{20}$			
GNMT + RL Ensemble [36]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$			
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$			
Transformer (base model)	27.3	38.1	3.3 ·	10 ¹⁸			
Transformer (big)	28.4	41.0	2.3 \cdot	$2.3\cdot 10^{19}$			

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

(Bidirectional Encoder Representations from Transformers)

Pre-training in NLP

 Word embeddings are the basis of deep learning for NLP

 Word embeddings (word2vec, GloVe) are often pre-trained on text corpus from co-occurrence statistics

Contextual Representations

 Problem: Word embeddings are applied in a context free manner

Solution: Train contextual representations on text corpus

```
[0.9, -0.2, 1.6, ...] [-1.9, -0.4, 0.1, ...] 

open a bank account on the river bank
```

History of Contextual Representations

Train LSTM

• Semi-Supervised Sequence Learning, Google, 2015

Fine-tune on

History of Contextual Representations

 ELMo: Deep Contextual Word Embeddings, Al2 & University of Washington, 2017

Train Separate Left-to-Right and Right-to-Left LMs

Apply as "Pre-trained Embeddings"

History of Contextual Representations

 Improving Language Understanding by Generative Pre-Training, OpenAI, 2018

Train Deep (12-layer) Transformer LM

open

<s>

open a bank Transformer Transformer Transformer

Fine-tune on Classification Task

Problem with Previous Methods

- Problem: Language models only use left context or right context, but language understanding is bidirectional.
- Why are LMs unidirectional?
- <u>Reason 1</u>: Directionality is needed to generate a well-formed probability distribution.
 - We don't care about this.
- Reason 2: Words can "see themselves" in a bidirectional encoder.

Unidirectional vs. Bidirectional Models

Unidirectional context Build representation incrementally

Bidirectional context Words can "see themselves"

Masked LM

- Solution: Mask out k% of the input words, and then predict the masked words
 - Use k = 15%

```
store gallon

the man went to the [MASK] to buy a [MASK] of milk
```

- Too little masking: Too expensive to train
- Too much masking: Not enough context

Masked LM

- Problem: Mask token never seen at fine-tuning
- Solution: 15% of the words to predict, but don't replace with [MASK] 100% of the time. Instead:
- 80% of the time, replace with [MASK]
 went to the store → went to the [MASK]
- 10% of the time, replace random word
 went to the store → went to the running
- 10% of the time, keep same
 went to the store → went to the store

Next Sentence Prediction

 To learn relationships between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

```
Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence
```

```
Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence
```

Input Representation

- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings

Model Architecture

Transformer encoder

- Multi-headed self attention
 - Models context
- Feed-forward layers
 - Computes non-linear hierarchical features
- Positional embeddings
 - Allows model to learn relative positioning

Model Architecture

- Empirical advantages of Transformer vs. LSTM:
- 1. Self-attention == no locality bias
 - Long-distance context has "equal opportunity"
- 2. Single multiplication per layer == efficiency on TPU
 - Effective batch size is number of words, not sequences

Model Details

- <u>Data</u>: Wikipedia (2.5B words) + BookCorpus (800M words)
- <u>Batch Size</u>: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
- <u>Training Time</u>: 1M steps (~40 epochs)
- Optimizer: AdamW, 1e-4 learning rate, linear decay
- BERT-Base: 12-layer, 768-hidden, 12-head
- BERT-Large: 24-layer, 1024-hidden, 16-head
- Trained on 4x4 or 8x8 TPU slice for 4 days

Fine-Tuning Procedure

GLUE Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

MultiNLI

<u>Premise</u>: Hills and mountains are especially

sanctified in Jainism.

Hypothesis: Jainism hates nature.

<u>Label</u>: Contradiction

CoLa

<u>Sentence</u>: The wagon rumbled down the road.

Label: Acceptable

<u>Sentence</u>: The car honked down the road.

<u>Label</u>: Unacceptable

Effect of Directionality and Training Time

- Masked LM takes slightly longer to converge because we only predict 15% instead of 100%
- But absolute results are much better almost immediately

Effect of Model Size

- Big models help a lot
- Going from 110M -> 340M params helps even on datasets with 3,600 labeled examples
- Improvements have not asymptoted

Attention Self-Attention Transformers

BERT

Thank you!