

Лабораторна робота 5 Дослідження складних циклічних алгоритмів Варіант 10

Мета - дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Задача 10.

Дано натуральне число n. Знайти всі числа Мерсена, що не перевищують число n. Просте число називається числом Мерсена, якщо його можна представити у вигляді: $2^p - 1 \quad ,$ де p — теж просте число

Постановка задачі. Результатом розв'язку є частина послідовності простих чисел Мерсена, для визначення кількості яких, нам необхідне задане значення натурального числа. Інших початкових даних для розв'язку не потрібно.

Математична побудова. Складемо таблицю змінних.

Змінна	Тип	Ім'я	Призначення
Число n	Цілий	n	Початкове дане
Число mersen	Дійсний	mersen	Проміжна змінна
Число р	Дійсний	р	Проміжна змінна
Змінна isPrime	Булевий	isPrime	Проміжна змінна
Змінна і	Дійсний	i	Проміжна змінна
Результат mersen	Рядок	mersen	Результат

Таким чином, математичне формулювання задачі зводиться до обчислення членів послідовності (mersen), а для цього треба знайти послідовність простих чисел, значення яких буде приймати показник р. Однак, виконуватися задача буди лише до тих пір, поки число mersen меньше за значення n.

Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо знаходження mersen.

Крок 3. Деталізуємо дію знаходження простого показнику р.

Псевдокод

крок 1

початок

Знаходження простого показнику р

Знаходження mersen

кінець

крок 2

початок

введення п

mersen = 1

поки mersen < n

Обчислення простого показнику р

mersen = pow(2, p) - 1

виведення mersen

p ++

все повторити

кінець

```
крок 3

введення п

mersen = 1

поки mersen < п

boolean isPrime = true

для i=2 поки i<=p/2 виконувати i++

якщо р % i == 0

isPrime = false

break

mersen = pow(2, p) - 1

виведення mersen

р ++

все повторити
```

кінець

Блок-схема

Випробування алгоритму

```
Блок Дія
      Початок
      Введення n = 35
3
      long mersen = 1
4
5
6
      Int p = 1
      boolean isPrime = true
      Mersen = 2-1=1
7
      Вивід: 1
8
      P = p + 1 = 2
9
      boolean isPrime = true
      Mersen = 4-1=3
10
11
      Вивід: 3
12
      P = p + 1 = 3
13
      boolean isPrime = true
14
      Mersen = 8 - 1 = 7
15
      Вивід: 7
16
      P = p + 1 = 4
17
      boolean isPrime = false
18
      P = p + 1 = 5
      boolean isPrime = true
19
20
      Mersen = 32 - 1 = 31
21
      Вивід: 31
      Кінець (результат - виведення 1 3 7 31)
22
```

Висновок

Під час виконання лабораторної було досліджено подання керувальної дії чергування у вигляді умовної та альтернативної форм та набуто практичних навичок їх використання під час складання програмних специфікацій. Покращено навички написання псевдокоду, побудови та тестування алгоритмів.