EA614 - Análise de Sinais EFC5 - Amostragem

Rafael Gonçalves (186062)

3 de Junho de 2018

- (a) y(t) sinal do arquivo 'queen_I_want_it_all.wav' amostrado em uma taxa Fs = 44,1 kHz.
- (b) Gráfico do espectro de frequência do sinal y(t):

Figura 1: Espectro de frequência $Y(j\Omega)$ em função de Ω

Há a predominância do sinal nas "bordas" do gráfico (perto de $\Omega=0$ e $\Omega=2\pi$, ou seja, baixas frequências). Nas frequências mais altas (intervalo aproximadamente igual a $1<\Omega<5$) o sinal é praticamente nulo.

(c) $y_{dec}(t)$ - sinal do arquivo 'queen_I_want_it_all.wav' amostrado em uma taxa Fs_dec = Fs/6 = 7,35 kHz. Gráfico do espectro de frequência do sinal $y_{dec}(t)$:

Figura 2: Espectro de frequência $Y_{dec}(j\Omega)$ em função de Ω

Embora o perfil do espectro seja similar ao do sinal original, têm-se a impressão de que foi adicionado um ruído em todas as frequências (valor de $Y_{dec}(j\Omega)$ é maior que 0.1 em para praticamente todos os valores de Ω). Há uma distorção bastante perceptível para as frequências altas que eram praticamente nulas no espectro original. Esse ruído também é percebido pois há uma consistencia menor do sinal, enquanto que a curva original era mais bem definida, nesta há uma ocorrência maior de vales e picos durante todo o espectro.

- (d) O sinal subamostrado tem um som "abafado" quando comparado com o original. O volume do áudio diminuiu e há uma dificuldade maior em distinguir os sons (instrumentos, voz) por conta destes aparecerem com um chiado.
- (e) Gráficos das respostas em frequência h(t):

Figura 3: Filtro Kaiser $\Omega_p = 0.45$ e $\Omega_r = 2$

Figura 4: Filtro Kaiser $\Omega_p=0.45$ e $\Omega_r=0.5$

Figura 5: Filtro Kaiser $\Omega_p=1.5$ e $\Omega_r=2$

Os 3 filtros são filtros passa-baixa em que as frequências entre $\Omega=0$ e $\Omega=\Omega_p$ são próximas de um enquanto que as frequências a partir de $\Omega=\Omega_r$ até $\Omega=\pi$ são próximas de zero. O filtro é simétrico centrado em π , pois o espectro de um sinal discreto é periódico com período 2π (baixas frequências nas extremidades e altas frequências próximas a $\Omega=\pi$). Quanto menores os valores de Ω_p e Ω_r , uma faixa maior de frequências altas é rejeitada. Quanto mais próximos os valores de Ω_p e Ω_r , mais rápida é a transição do filtro entre passagem e rejeição, no caso oposto, mais suave é a transição entre passagem e rejeição.

(f) Gráfico da respostas em frequência de $h(t) \ast y(t) \colon$

Figura 6: y(t)aplicado o filtro Kaiser $\omega_p=0.45$ e $\omega_r=0.5$

Após aplicado o filtro, há

(g) Gráfico da respostas em frequência de h(t)*y(t) com M = 6:

Figura 7: y(t) amostrado com M=6 após ter sido aplicado o filtro Kaiser $\omega_p=0.45$ e $\omega_r=0.5$