Multiple Linear Regression

Multicollinearity Problem and Normality of Errors

Problem of Multicollinearity

Multicollinearity exists if there is strong linear relationship among the independent variables

Multicollinearity has two serious consequences:

- 1. Highly Unstable Model Parameters
 As standard errors of their estimates are inflated
- 2. Model Fails to Accurately Predict for Out of Sample Data

Therefore, it is important to check for Multicollinearity in regression analysis

Detecting Multicollinearity Through VIF

VIF (Variance Inflation Factor) Method:

Dependent Variable : Y

Independent variables: X1, X2, X3, X4

Dependent Variable	Independent Variables	1 – R ² = Tolerance	VIF = 1/(Tolerance)
X1	X2, X3, X4		
X2	X1, X3, X4		
X3	X1, X2, X4		
X4	X1, X2, X3		

Detecting Multicollinearity in R

```
#Importing the Data, Fitting Linear Model
perindex<-read.csv("Performance Index.csv", header=TRUE)</pre>
jpimodel<-lm(jpi~aptitude+tol+technical+general, data=perindex)</pre>
#Variance Inflation Factor
#Install and load package "car".
install.packages("car")
                           car stands for Companion to Applied Regression and
library(car)
                           consists of several useful functions for advance
                           regression analysis.
vif(jpimodel)
                     vif() in package car calculates VIFs.
```

Detecting Multicollinearity in R

Output

```
aptitude tol technical general
1.179906 1.328205 2.073907 2.024968
```

Interpretation:

All VIFs are less than 5, Multicollinearity is not present.

Multicollinearity – Remedial Measures

The problem of Multicollinearity can be solved by different approaches:

Drop one of the independent variables, which is explained by others

Use Principal Component Regression in case of severe Multicollinearity

Use Ridge Regression

Case Study - Modelling Resale Price of Cars

Background

• A car garage has old cars for resale. They keep records for different models of cars and their specifications.

Objective

• To predict the resale price based on the information available about the engine size, horse power, weight and years of use of the cars

Available Information

- · Records -26
- Independent Variables: ENGINE SIZE, HORSE POWER, WEIGHT AND YEARS
- Dependent Variable: RESALE PRICE

Data Snapshot

		Dependent variable { Independent variables }									
Observatio		MODEL Daihatsu Cuore Suzuki Swift 1.0 GL Fiat Panda Mambo L		RESALE PRICE ENGI		NE SIZE HORSE PO		OWER WEIGHT		YEARS	
				3870 4163	846 993 899		32 39 29		650 790	2.9	
										2.9	
				3490					730	3.1	
	Co	Columns		escription			ype	Mea	surement		ssible alues
	V	MODEL Mod		lel of the car		cha	racter	-		-	
		ESALE PRICF	Re	sale price	e nur		meric		Euro	positi	ve values
	ENG	INE SIZE	Size	Size of the engine		numeric			CC	positi	ve values
		iorse Ower	Power of the engi		gine	numeric			kW	positi	ve values
	W	'EIGHT	Weig	tht of the c	car	nur	meric		kg	positi	ve values
	Υ	ÆARS	Numb	oer of year use	s in	nur	meric		-	positiv	e values

Correlation Matrix

```
# Importing the Data
cardata<-read.csv("car price data.csv", header=TRUE)</pre>
# Graphical representation of data
# Install and load package "GGally"
install.packages("GGally")
library(GGally)
ggpairs(cardata[,c("RESALE.PRICE","ENGINE.SIZE","HORSE.POWER","YEARS")
],title="Scatter Plot Matrix", columnLabels = c("RESALE.PRICE",
"ENGINE.SIZE", "HORSE.POWER", "YEARS"))
```

ggpairs() in the package GGally is used to plot the scatter plot matrix.

Correlation Matrix

Output

Interpretation:

> The independent variables have high positive correlation among themselves.

Detecting Multicollinearity in R

```
#Fitting Linear Model
```

```
model<-lm(RESALE.PRICE ~ ENGINE.SIZE +HORSE.POWER +WEIGHT+ YEARS,
data=cardata)</pre>
```

#Variance Inflation Factor

```
library(car)
vif(model)
```

Output

ENGINE.SIZE	HORSE. POWER	WEIGHT	YEARS	
15.759113	12.046734	9.113045	13.978640	

Interpretation

VIF values for all the variables are greater than 5, hence we can conclude that there exist Multicollinearity between the independent variables.

Normality of Errors

• The errors in Multiple Linear Regression are assumed to follow Normal Distribution.

• If Normality of Errors is not true then statistical tests and associated P values based on F and t distribution are not reliable.

Residual Analysis

Observed Value – Predicted value = Residual

Residual Analysis for Performance Index Data

Continuing with the "Performance Index " data,

- Model job performance index (jpi) based on aptitude score (aptitude), test
 of language (tol), technical knowledge (technical) and general information
 (general)
- Get the fitted values and thus the residuals.
- Analyse the distribution of residuals

Residual v/s Predicted Plot in R

```
#Importing the Data, Fitting Linear Model and Calculate Fitted Values
and Residuals
perindex<-read.csv("Performance Index.csv", header=TRUE)</pre>
jpimodel<-lm(jpi~aptitude+tol+technical+general, data=perindex) __</pre>
perindex$pred<-fitted(jpimodel)</pre>
perindex$resi<-residuals(jpimodel)</pre>
     Im() fits a linear regression.
      fitted() and residuals() fetch fitted values and residuals respectively.
#Residuals v/s Predicted Plot
plot(perindex$pred,perindex$resi,col="blue")
                      plot() is used to plot predicted values against residuals.
```

Residual v/s Predicted Plot in R

Interpretation:

> Residuals in our model are randomly distributed which indicates presence of Homoscedasticity

QQ Plot in R

- The Quantile-Quantile (QQ) Plot is a powerful graphical tool for assessing normality.
- Quantiles are calculated using sample data and plotted against expected quantiles under Normal distribution.

High Correlation between Sample Quantiles and Theoretical Quantiles

Normality

• If the data are truly sampled from a Gaussian (Normal) distribution, the QQ plot will be linear.

QQ Plot in R

QQ Plot in R

Output

Interpretation:

Most of these points are close to the line except few values indicating no serious deviation from Normality.

Absence of Normality – Remedial Measure

Mathematical Transformation of the dependent variable is used as a remedial measure in case of serious departure from Normality.

Typically Log Transformation is used. However, there is general transformation called as Box Cox Transformation given as:

Box Cox transformation

$$Y^* = \frac{Y^{\lambda} - 1}{\lambda}$$
 $\lambda \neq 0$
= $\log Y$ $\lambda = 0$
Where Y is the response variable

• R can automatically detect the optimum λ using **boxcox()** in package **MASS**