Modelo de examen

1. Sean p, q proposiciones lógicas tales que $p \wedge q$ es un enunciado contradictorio. Entonces:

- a) p es falsa o bien q es falsa.
- b) $p \vee q$ es contradictorio.
- c) $p \rightarrow q$ es contingente.
- d) $\neg p \land \neg q$ es tautológico.

2. Sea p(x) el predicado $\forall y \in \mathbb{R}, x \cdot y < y^2$. Entonces:

- a) Se cumple p(0).
- b) Se cumple p(1).
- c) Se cumple p(-1).
- d) El enunciado no se cumple para ningún $x \in \mathbb{R}$.

3. Sean A, B conjuntos tales que |A| = 47, |B| = 53 y $f: A \to B$ una aplicación. Entonces:

- a) f nunca puede ser inyectiva.
- b) f nunca puede ser sobreyectiva.
- c) f nunca puede ser biyectiva.
- d) f nunca puede tener inversa.

4. ¿Cuántos números de 16 bits se pueden construir con el mismo número de digitos "0" y "1"?

5. Sea $f:\mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} \sqrt{x^2 + 1} & \text{si } x < 0\\ 0 & \text{si } x = 0\\ \ln(x + 1) + e^x & \text{si } x > 0 \end{cases}$$

Entonces:

- a) $\lim_{x\to 0} f(x) = 0$
- b) $\lim_{x\to 0} f(x) = 1$
- c) f es continua en x = 0.
- d) f es derivable en x = 0.

6. Sean A,B dos sucesos sucesos independientes tales que p(A)=0.4 y p(B)=0.5. Obténgase $p(A\cup B)$. Debe indicarse el resultado exacto, escalado entre 0 y 1 y utilizando coma "," en vez de punto "." para indicar la parte decimal.

- 7. Sea un algoritmo cuyo coste computacional asociado es $c(n)=(n^5-2n+1)^2$. Entonces su complejidad computacional es:
 - a) $\mathcal{O}(n^5)$.
 - b) $O(n^7)$.
 - c) $\mathcal{O}(n^{10})$.
 - d) $\mathcal{O}(n^5 2^n)$.
- 8. Un problema de decisión que no es verificable en tiempo polinomial...
 - a) ...no está en P.
 - b) ...no está en NP.
- 9. Sea $A \in \mathbb{R}^{3 \times 3}$ una matriz tal que $\det(A) = 2$ y $B \in \mathbb{R}^{3 \times 3}$ una matriz diagonalizable cuyos autovalores son $\lambda_1 = -2, \lambda_2 = 1, \lambda_3 = 3$. Obténgase $\det(2A^{-1}B)$.
- 10. Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica definida positiva. Selecciónese el o los enunciados correctos:
 - a) $\forall v \in \mathbb{R}^{n \times 1} \setminus \{\mathbf{0}\}, Av \neq -2v.$
 - b) A es diagonalizable.
 - c) $\det(A) > 0$.
 - d) A es regular.
- 11. Sea $A \in \mathbb{R}^{5 \times 5 \times 5 \times 5}$ un array multidimensional definido por $A_{i,j,k,l} = i+j+k+l$, para $i,j,k,l \in \{1,2,3,4,5\}$. Entonces A representa...
 - a) Un tensor de rango 5 y dimensión 4.
 - b) Un tensor de rango 4 y dimensión 5.
 - c) Un tensor de rango 5^4 y dimensión 4^5 .
 - d) Un tensor de rango 4^5 y dimensión 5^4 .
- 12. Sea $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^4 2x^2$. Indíquese el punto al que converge el algoritmo de descenso de gradiente para $x_0 = 0.1$ y un ratio de aprendizaje lo suficientemente pequeño.
- 13. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = 1 x^2 y^2$. Entonces:
 - a) f no tiene puntos críticos.
 - b) (0,0) es un punto crítico de f y se trata de un mínimo relativo.
 - c) (0,0) es un punto crítico de f y se trata de un máximo relativo.
 - d) (0,0) es un punto crítico de f y se trata de un punto de silla.
- 14. Sea $f:\mathbb{R}\to\mathbb{R}^2$ dada por $f(x)=(x+1,x^2-x)$ y $g:\mathbb{R}^2\to\mathbb{R}$ dada por g(x,y)=x-y. Obténgase el valor de $[g\circ f]'(0)$.