1. Graph Combinatorics

Throughout this paper A, B, C, M will denote finite graphs, and \mathbb{D} will be used to denote potentially infinite graphs. For a graph A the set of its vertices is denoted by v(A), and the set of its edges by e(A). Number of vertices of A will be denoted as |A|. Subgraph always means induced subgraph and $A \subseteq B$ means that A is a subgraph of B. For two subgraphs A, B of a larger graph, the union $A \cup B$ denotes the graph induced by $v(A) \cup v(B)$. Similarly, A - B means a subgraph of A induced by the vertices of v(A) - v(B). For $A \subseteq B \subseteq D$ and $A \subseteq C \subseteq D$, graphs B, C are said to be disjoint over A if v(B) - v(A) is disjoint from v(C) - v(A) and there are no edges from v(B) - v(A) to v(C) - v(A) in D.

For the remainder of the paper fix $\alpha \in (0,1)$, irrational.

Definition 1.1.

- For a graph A let $\dim(A) = |A| \alpha |e(A)|$.
- For A, B with $A \subseteq B$ define $\dim(B/A) = \dim(B) \dim(A)$.
- We say that $A \leq B$ if $A \subseteq B$ and $\dim(A'/A) > 0$ for all $A \subsetneq A' \subseteq B$.
- Define A to be positive if for all $A' \subseteq A$ we have $\dim(A') \ge 0$.
- We work in theory S_{α} in the language of graphs axiomatized by:
 - Every finite substructure is positive.
 - Given a model \mathbb{G} and graphs $A \leq B$, every embedding $f: A \longrightarrow \mathbb{G}$ extends to an embedding $g: B \longrightarrow \mathbb{G}$.

(Here an embedding maps edges to edges and nonedges to nonedges.) This theory is complete and stable (see 5.7 and 7.1 in [2]). From now on fix an ambient model $\mathbb{G} \models S_{\alpha}$. This will be the only infinite graph we work with.

- For A, B positive, (A, B) is called a minimal pair if $A \subseteq B$, $\dim(B/A) < 0$ but $\dim(A'/A) \ge 0$ for all proper $A \subseteq A' \subsetneq B$. We call B a minimal extension of A. The dimension of a minimal pair is defined as $|\dim(B/A)|$.
- A sequence $\langle M_i \rangle_{0 \le i \le n}$ is called a <u>minimal chain</u> if (M_i, M_{i+1}) is a minimal pair for all $0 \le i < n$.

- For a graph A with the tuple of vertices x let $\operatorname{diag}_A(x)$ be the atomic diagram of A, i.e. the first-order formula recording whether there is an edge between every pair of vertices.
- Given $A \subseteq B$ let

$$\phi_{A,B}(x) = \operatorname{diag}_A(x) \wedge \exists z \operatorname{diag}_B(x,z).$$

Any graph isomorphic to B is called a <u>witness</u> of $\phi_{A,B}$.

• A formula $\phi_{A,B}$ is called a <u>basic formula</u> if there is a minimal chain $\langle M_i \rangle_{0 \le i \le n}$ such that $A = M_0$ and $B = M_n$.

Theorem 1.2 (Quantifier elimination, 5.6 in [2]). In theory S_{α} every formula is equivalent to a boolean combination of basic formulas.

Definition 1.3. A graph $S \subseteq \mathbb{D}$ is called <u>N</u>-strong if for any $S \subseteq T \subseteq D$ with $|T| - |S| \leq N$ we have $S \leq T$.

2. Basic Definitions and Lemmas

Definition 2.1. Suppose $\phi(x,y)$ is a basic formula. Define X to be the graph on vertices x with edges defined by ϕ . Similarly define Y. Note that X,Y are positive. Additionally, let Y' be a subgraph of Y induced by vertices of Y that are connected to $W - (X \cup Y)$, where W is a witness of ϕ .

Definition 2.2. Suppose A, B are subgraphs of \mathcal{D} such that v(A), v(B) are disjoint. Then define $\mathscr{E}(A, B)$ to be the number of edges between the vertices in v(A) and the vertices in v(B).

We will require the following lemmas from [2]:

Lemma 2.3. *[See 2.3 in* [2]*] Let* $A, B \subseteq \mathbb{D}$ *. Then*

$$\dim(A \cup B/A) \le \dim(B/A \cap B).$$

Moreover,

$$\dim(A \cup B/A) = \dim(B/A \cap B) - \alpha E,$$

where E is the number of edges connecting the vertices of B-A to the vertices of A-B.

Lemma 2.4. [See 4.1 in [2]] Suppose A is a positive graph, with at least $1/\alpha + 2$ vertices. Then for any $\epsilon > 0$ there exists a graph B such that (A, B) is a minimal pair with dimension $\leq \epsilon$. Moreover, every vertex in A is connected to a vertex in B - A.

Lemma 2.5. [See 4.4 in [2]] Suppose A is a positive graph, and \mathcal{G} a model of S_{α} . Then for any integer S there exists an embedding $f: A \longrightarrow \mathcal{G}$ such that f(A) is S-strong in \mathcal{G} .

Lemma 2.6. [See 3.8 in [2]] For all S > 0 there exists $M = M(S, \alpha) \in \mathbb{N}$ with the following property. Suppose $A \subseteq \mathcal{G}$ where \mathcal{G} is a model of S_{α} . Then there exists B with $A \subseteq B \subseteq \mathcal{G}$ such that B is S-strong in \mathbb{G} and $|B| \leq M|A|$.

We conclude this section by stating a couple of technical lemmas that will be useful in our proofs later.

Lemma 2.7. Work in an ambient graph \mathbb{D} . Suppose we have a set B and a minimal pair (A, M) with $A \subseteq B$ and $\dim(M/A) = -\epsilon$. Then either $M \subseteq B$ or $\dim(M \cup B/B) < -\epsilon$.

Proof. By Lemma 2.3

$$\dim(M \cup B/B) \le \dim(M/M \cap B),$$

and as $A \subseteq M \cap B \subseteq M$

$$\dim(M/A) = \dim(M/M \cap B) + \dim(M \cap B/A).$$

In addition we are given $\dim(M/A) = -\epsilon$. If $M \nsubseteq B$ then $A \subseteq M \cap B \subsetneq M$ and by minimality $\dim(M \cap B/A) > 0$. Combining the inequalities above we obtain the desired result:

$$\dim(M \cup B/B) \le \dim(M/M \cap B) = \dim(M/A) - \dim(M \cap B/A) < -\epsilon.$$

Lemma 2.8. Work in an ambient graph \mathbb{D} . Suppose we have a set B and a minimal chain $\langle M_i \rangle_{0 \le i \le n}$ with dimensions

$$\dim(M_{i+1}/M_i) = -\epsilon_i$$

and $M_0 \subseteq B$. Let $\epsilon = \min_{0 \le i \le n} \epsilon_i$. Then either $M_n \subseteq B$ or $\dim((M_n \cup B)/B) < -\epsilon$. Proof. Let $\bar{M}_i = M_i \cup B$. Then:

$$\dim(\bar{M}_n/B) = \dim(\bar{M}_n/\bar{M}_{n-1}) + \ldots + \dim(\bar{M}_2/\bar{M}_1) + \dim(\bar{M}_1/B).$$

Either $M_n \subseteq B$ or at least one of the summands above is nonzero. Apply previous lemma.

Lemma 2.9. Suppose we have a minimal pair (A, M) with dimension ϵ . Suppose we have some $B \subseteq M$. Then $\dim B/(A \cap B) \ge -\epsilon$. Moreover if $B \cup A \ne M$ then $\dim B/(A \cap B) \ge 0$.

Proof. We have $\dim(B \cup A/A) \leq \dim B/(A \cap B)$ by Lemma 2.3. As $A \subseteq B \cup A \subseteq M$ we have $\dim(B \cup A/A) \geq -\epsilon$ by minimality. Moreover, minimality implies that it is positive if $B \cup A \neq M$.

Lemma 2.10. Suppose we have a minimal chain $\langle M_i \rangle_{0 \le i \le n}$ with dimensions

$$\dim(M_{i+1}/M_i) = -\epsilon_i.$$

Let ϵ be the sum of all ϵ_i . Suppose we have a graph B with $B \subseteq M_n$. Then $\dim B/(M_0 \cap B) \ge -\epsilon$.

Proof. Let $B_i = B \cap M_i$. We have dim $B_{i+1}/B_i \ge \dim M_{i+1}/M_i$ by the previous lemma. Thus

$$\dim B/(M_0 \cap B) = \dim B_n/B_0 = \sum \dim B_{i+1}/B_i \ge -\epsilon.$$

3. Upper bound

Consider a basic formula $\phi(x,y)$ with a minimal chain $\langle M_i \rangle_{0 \le i \le n_{\phi}}$ with dimensions $\dim(M_{i+1}/M_i) = -\epsilon_i$. Define

$$\epsilon(\phi) = \min \left\{ \epsilon_i \right\}_{0 \le i \le n_{\phi}}$$
$$K(\phi) = |M_{n_{\phi}}|.$$

Now consider a finite collection of basic formulas

$$\Phi = \Phi(\vec{x}, \vec{y}) = \{\phi_i(\vec{x}, \vec{y})\}_{i \in I}$$
.

Define

$$\epsilon(\Phi) = \min \left\{ \epsilon(\phi_i) \right\}_{i \in I} \cup \left\{ \alpha \right\},$$

$$K(\Phi) = \max \left\{ K(\phi_i) \right\}_{i \in I},$$

$$D_1(\Phi) = \frac{K(\Phi)}{\epsilon(\Phi)},$$

$$D(\Phi) = |y| D_1(\Phi).$$

We claim that

Theorem 3.1. If ϕ is a boolean combination of formulas from Φ , then $vc(\phi) \leq D(\Phi)$.

Let

$$S = \left\lceil \left(\frac{|y|}{\epsilon(\phi)} + 1 \right) K(\phi) \right\rceil.$$

Suppose we have a finite parameter set $A_0 \subseteq \mathbb{G}^{|x|}$ with $|A_0| = N_0$. We would like to bound $\phi(A_0, \mathbb{G}^{|y|})$. Let $A_1 \subseteq \mathbb{G}$ consist of the components of the elements of A_0 . Then $|A_1| \leq |x|N_0$. Using Lemma 2.6 let A be a graph $A_0 \subseteq A \subseteq \mathbb{G}$, S-strong in \mathbb{G} . Let N = |A|. We have $N \leq |x|N_0M$ (where M is the constant from the Lemma 2.6). As $A_0 \subseteq A^{|x|}$ we have

$$\left|\phi(A_0, \mathbb{G}^{|y|})\right| \le \left|\phi(A^{|x|}, \mathbb{G}^{|y|})\right|.$$

Therefore it suffices to bound $|\phi(A^{|x|}, \mathbb{G}^{|y|})|$.

Definition 3.2. For $A \subseteq \mathbb{G}^{|x|}, B \subseteq \mathbb{G}^{|y|}$ define

$$\Phi(A,B) = \{(a,i) \in A \times I \mid \mathbb{G} \models \phi_i(a,b)\} \subseteq A \times I$$

Lemma 3.3. For $A \subseteq \mathbb{G}^{|x|}, B \subseteq \mathbb{G}^{|y|}$ if ϕ is a boolean combination of formulas from Φ then

$$|\phi(A,B)| < |\Phi(A,B)|$$

Proof. Clear, as for all $a \in A, b \in B$ the set $\Phi(a, b)$ determines the truth value of $\phi(a, b)$.

Thus it suffices to bound $|\Phi(A^{|x|}, \mathbb{G}^{|y|})|$.

Definition 3.4. • For all $i \in I, a \in A^{|x|}, b \in \mathbb{G}^{|y|}$ if $\phi_i(a, b)$ holds fix $W_{a,b}^i \subseteq \mathbb{G}$, a witness of this formula.

• For $b \in \mathbb{G}^{|y|}$ let

$$W_b = \bigcup \left\{ W_{a,b}^i \mid a \in A^{|x|}, i \in I, \mathbb{G} \models \phi_i(a,b) \right\}.$$

• For sets $C, B \subset \mathbb{G}$ define the boundary of C over B

$$\partial(C, B) = \{ b \in B \mid \mathscr{E}(b, C - B) \neq \emptyset \}$$

(see Definition 2.2 for \mathscr{E}).

- For $b \in \mathbb{G}^{|y|}$ let $\partial_b \subseteq A$ be the boundary $\partial(W_b, A)$.
- For $b \in \mathbb{G}^{|y|}$ let $\bar{W}_b = (W_b A) \cup \partial_b$.
- For $b_1, b_2 \in \mathbb{G}^{|y|}$ we say that $b_1 \sim b_2$ if $\partial_{b_1} = \partial_{b_2}$, $b_1 \cap A = b_2 \cap A$, and there exists a graph isomorphism from $\bar{W}_{b_1} \cup b_1$ to $\bar{W}_{b_2} \cup b_2$ that fixes ∂_{b_1} and maps b_1 to b_2 . One easily checks that this defines an equivalence relation.
- For $b \in \mathbb{G}^{|y|}$ define \mathscr{I}_b to be the \sim -equivalence class of b.

Lemma 3.5. For $b_1, b_2 \in \mathbb{G}^{|y|}$ if $b_1 \sim b_2$ then $\Phi(A^{|x|}, b_1) = \Phi(A^{|x|}, b_2)$.

Proof. Fix a graph isomorphism $\bar{f} \colon \bar{W}_{b_1} \cup b_1 \longrightarrow \bar{W}_{b_2} \cup b_2$. Extend it to an isomorphism $f \colon W_{b_1} \cup A \longrightarrow W_{b_2} \cup A$ by being an identity map on the new vertices. Suppose $\mathbb{G} \models \phi_i(a,b_1)$ for some $a \in A^{|x|}$. Then $f(W_{a,b_1}^i)$ is a witness for $\phi_i(a,b_2)$ (though not necessarily equal to W_{a,b_2}^i) and thus $\mathbb{G} \models \phi_i(a,b_2)$. As a was arbitrary, this proves the equality of the traces.

Thus to bound the number of traces it is sufficient to bound the number of possibilities for \mathscr{I}_b .

Theorem 3.6. Suppose we have $b \in \mathbb{G}^{|y|}$. Let Y = |b - A|. Then

$$|\partial_b| \leq Y D_1(\phi)$$

$$|\bar{W}_b| \leq 3YD_1(\phi)$$

From this theorem we get the desired result:

Corollary 3.7. (Theorem 3.1) If ϕ is a boolean combination of formulas from Φ , then $vc(\phi) \leq D(\Phi)$.

Proof. We count possible equivalence classes of \sim . This essentially boils down to bounding possibilities for ∂_b , $b \cap A$, and number of isomorphism classes of W_b . Fix

 $b \in \mathbb{G}^{|y|}$ and let Y = |b - A|. Let $D = YD_1(\Phi)$. By the first part of Theorem 3.6 there are $\binom{N}{D}$ choices for boundary ∂_b . By the second part of Theorem 3.6 there are at most 3D vertices in \overline{W}_b . Thus to determine the graph \overline{W}_b we need to choose how many vertices it has and then decide where edges go. This amounts to at most $3D2^{(3D)^2}$ choices. Additionally there are $\binom{N}{|y|-Y}$ choices for $b \cap A$. In total this gives us at most

$$\binom{N}{D} \cdot \binom{N}{|y| - Y} \cdot 3D2^{(3D)^2} = O(N^{D + |y| - Y}) =$$

$$= O(N^{YD_1(\Phi) + |y| - Y}) = O(N^{|y|D_1(\Phi)}) = O(N^{D(\Phi)})$$

choices (second to last inequality uses $D_1(\Phi) \geq 1$). By Lemma 3.5 we have $|\Phi(A^{|x|}, \mathbb{G}^{|y|})| = O(N^{D(\Phi)})$. Recall that

$$\left|\phi(A_0, \mathbb{G}^{|y|})\right| \le \left|\Phi(A^{|x|}, \mathbb{G}^{|y|})\right|.$$

Therefore we have

$$\left| \phi(A_0, \mathbb{G}^{|y|}) \right| = O(N^{D(\Phi)}) = O((|x|N_0M)^{D(\Phi)}) =$$

$$= O((|x|M)^{D(\Phi)} N_0^{D(\Phi)}) = O(N_0^{D(\Phi)}).$$

As A_0 was arbitrary, this shows that $\operatorname{vc}(\phi) \leq D(\Phi)$ as needed. (Note that throughout this proof we are using the fact that quantities $D_1(\Phi), D(\Phi), M$ are completely determined by Φ , thus independent from A_0 .)

Proof. (of Theorem 3.6)

The graph W_b is a union of witnesses of the from $W_{a,b}$ for some $a \in A^{|x|}, b \in \mathbb{G}^{|y|}$. Enumerate all of them as $\{W_j\}_{1 \leq j \leq J}$. Define $M_j = \bigcup_1^j W_{j'}$ for $1 \leq j \leq J$ and let $M_0 = b$. Let $\bar{A} = A \cup b$.

Definition 3.8. For $0 \le j \le J$ define:

• Let $v_j = 1$ if new vertices are added to M_j outside of \bar{A} , that is if $M_j - \bar{A} \neq M_{j-1} - B$, and let it be 0 otherwise.

- Let $E_j = \partial (A W_j, M_j A)$.
- \bullet Let

$$m_j = \sum_{j'=0}^{j} (v_j + |E_j|).$$

(Here assume $M_{-1} = \emptyset$.)

Lemma 3.9. For $0 \le j \le J$ we have

$$|\partial(M_j, A)| \le |E_0| + m_j K(\Phi)$$

Proof. Proceed by induction. The base case j=0 is clear. For an induction step suppose that

$$|\partial(M_{j-1},A)| \le m_{j-1}K(\Phi)$$

holds. Let

$$\delta_1 = \partial(M_j, A) - \partial(M_{j-1}, A) =$$

$$= \{ a \in A \mid \mathscr{E}(a, M_j - A) \neq \emptyset \text{ and } \mathscr{E}(a, M_{j-1} - A) = \emptyset \}.$$

If $M_j - A = M_{j-1} - A$ then $\delta_1 = \emptyset$ and we are done as m_j is increasing. Suppose not. We have $|\delta_1| = |\delta_1 \cap W_j| + |\delta_1 - W_j|$, and

$$\delta_1 - W_i = \{ a \in A - W_i \mid \mathscr{E}(a, M_i - A) \neq \emptyset \text{ and } \mathscr{E}(a, M_{i-1} - A) = \emptyset \}.$$

But then it's clear that $\delta_1 - W_j \subseteq E_j$ as

$$W_j - M_{j-1} - A \subseteq M_j - A,$$

 $(W_j - M_{j-1} - A) \cap (M_{j-1} - A) = \emptyset.$

As $b \in M_{j-1}$ and $M_j - A \neq M_{j-1} - A$, then $M_j - \bar{A} \neq M_{j-1} - \bar{A}$, and thus $v_j = 1$. Therefore we have

$$|\delta_1| = |\delta_1 \cap W_j| + |\delta_1 - W_j| \le |W_j| + |E_j| \le$$

$$\le K(\Phi) + |E_j| \le (v_j + |E_j|)K(\Phi) \le (m_j - m_{j-1})K(\Phi),$$

as needed. \Box

Lemma 3.10. For $0 \le j \le J$ we have

$$|M_j - \bar{A}| \le \sum_{j'=0}^j v_{j'} K(\Phi)$$

Proof. Proceed by induction. The base case j=0 is clear. For an induction step suppose that

$$|M_{j-1} - \bar{A}| \le \sum_{j'=0}^{j-1} v_{j'} K(\Phi)$$

holds. If $M_j - \bar{A} = M_{j-1} - \bar{A}$ then the inequality is immediate as $v_j \geq 0$. Therefore assume this is not the case, so $v_j = 1$ and $|M_j - A| - |M_{j-1} - A| \leq |W_j| \leq v_j K(\Phi)$, and so we get the required inequality.

Lemma 3.11. For $0 \le j \le J$ we have

$$\dim(M_j \cup \bar{A}/\bar{A}) \le -m_j \epsilon(\Phi),$$

Proof. Proceed by induction. Base case j=0 is clear. For an induction step suppose that

$$\dim(M_{j-1} \cup \bar{A}/\bar{A}) \le -m_{j-1}\epsilon(\Phi)$$

holds. We have

$$\dim(M_j \cup \bar{A}/\bar{A}) = \dim(M_j \cup \bar{A}/M_{j-1} \cup \bar{A}) + \dim(M_{j-1} \cup \bar{A}/\bar{A}) \le$$
$$\le \dim(M_j \cup \bar{A}/M_{j-1} \cup \bar{A}) - m_{j-1}\epsilon(\Phi).$$

Let $\bar{M}_{j-1} = M_{j-1} \cup \bar{A}$. By Lemma 2.3

$$\dim(M_j \cup \bar{A}/M_{j-1} \cup \bar{A}) = \dim(W_j \cup \bar{M}_{j-1}/\bar{M}_{j-1}) = \dim(W_j/W_j \cap \bar{M}_{j-1}) - e\alpha$$

where e is the number of edges connecting the vertices of $\bar{M}_{j-1}-W_j$ to the vertices of $W_j-\bar{M}_{j-1}$. Recall that $E_j=\partial(A-W_j,M_j-A)$. We have $A-W_j\subseteq\bar{M}_{j-1}-W_j$ (as $A\subseteq\bar{M}_{j-1}$) and $W_j-M_{j-1}-A=W_j-\bar{M}_{j-1}$ (as for j>1, we have $b\subseteq M_{j-1}$). Thus $|E_j|\leq e$, and we get

$$\dim(M_j \cup \bar{A}/M_{j-1} \cup \bar{A}) \le \dim(W_j/W_j \cap \bar{M}_{j-1}) - |E_j|\alpha.$$

If $W_j \subseteq \bar{M}_{j-1}$ then $\dim(W_j/W_j \cap \bar{M}_{j-1}) = 0$. If not, then by Lemma 2.8 we have $\dim(W_j/W_j \cap \bar{M}_{j-1}) \leq -\epsilon(\Phi)$. Either way, we have $\dim(W_j/W_j \cap \bar{M}_{j-1}) \leq -v_j\epsilon(\Phi)$. Using this and the fact that $\epsilon(\Phi) \leq \alpha$, we obtain

$$\dim(M_j \cup \bar{A}/M_{j-1} \cup \bar{A}) \le -v_j \epsilon(\Phi) - |E_j| \epsilon(\Phi) = -(m_j - m_{j-1}) \epsilon(\Phi).$$

Finally,

$$\dim(M_j \cup \bar{A}/\bar{A}) \le \dim(M_j \cup \bar{A}/M_{j-1} \cup \bar{A}) - m_{j-1}\epsilon(\Phi) \le$$
$$\le -(m_j - m_{j-1})\epsilon(\Phi) - m_{j-1}\epsilon(\Phi) = -m_j\epsilon(\Phi),$$

as needed. \Box

(Proof of Theorem 3.6 continued) For any $0 \le j \le J$ we have

$$\dim(M_j \cup A/A) = \dim(\bar{A}/A) + \dim(M_j \cup \bar{A}/\bar{A})$$

$$\leq Y - |E_0|\alpha + \dim(M_j \cup \bar{A}/\bar{A}).$$

Lemma 3.11 gives us

$$\dim(M_j \cup \bar{A}/\bar{A}) \leq -m_j \epsilon(\Phi).$$

Thus

$$\dim(M_j \cup A/A) \le Y - |E_0|\alpha - m_j\epsilon(\Phi).$$

Suppose j is an index such that

$$Y - |E_0|\alpha - m_i\epsilon(\Phi) \ge 0$$
,

$$Y - |E_0|\alpha - m_{i+1}\epsilon(\Phi) < 0$$

if one exists. Then

$$m_j \le \frac{Y - |E_0|\alpha}{\epsilon(\Phi)}.$$

By Lemma 3.10 we have

$$|M_{j+1} - A| \le \left(\sum_{j'=1}^{j+1} v_{j'}\right) K(\Phi) \le (m_j + 1) K(\Phi)$$

$$\le \left(\frac{Y - |E_0|\alpha}{\epsilon(\Phi)} + 1\right) K(\Phi) \le S.$$

This is a contradiction, as A is S-strong and $\dim(M_{j+1} \cup A/A)$ is negative. Thus $Y - |E_0|\alpha - m_j\epsilon(\Phi) \ge 0$ for all $j \le J$. In particular $Y - |E_0|\alpha - m_J\epsilon(\Phi) \ge 0$, so $m_J \le \frac{Y - |E_0|\alpha}{\epsilon(\Phi)}$. Noting that $M_J = W_b$, Lemma 3.9 gives us

$$|\partial_b| = |\partial(W_b, A)| \le |E_0| + m_J K(\Phi) \le |E_0| + K(\Phi) \frac{Y - |E_0|\alpha}{\epsilon(\Phi)}.$$

As $K(\Phi) \ge 1$ and $\epsilon(\Phi) \ge \alpha$, we get

$$|\partial_b| \le K(\Phi) \frac{Y}{\epsilon(\Phi)} = Y D_1(\Phi).$$

But this is precisely the first inequality we need to prove. For the second inequality, Lemma 3.10 gives us

$$|W_b - \bar{A}| \le Y + \left(\sum_{j'=0}^J v_{j'}\right) K(\Phi) \le Y + m_J K(\Phi) \le$$
$$\le Y + K(\Phi) \frac{Y}{\epsilon(\Phi)} \le 2Y D_1(\Phi).$$

Thus we have

$$|\bar{W}_b| \le |W_b - A| + |\partial_b| \le 3Y D_1(\Phi),$$

as needed. This ends the proof for Theorem 3.6.

References

- M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson, S. Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, I, Trans. Amer. Math. Soc. 368 (2016), 5889-5949
- [2] Michael C. Laskowski, A simpler axiomatization of the Shelah-Spencer almost sure theories, Israel J. Math. 161 (2007), 157186. MR MR2350161
- [3] P. Assouad, Densite et dimension, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 3, 233-282.
- [4] P. Assouad, Observations sur les classes de Vapnik-Cervonenkis et la dimension combinatoire de Blei, in: Seminaire d'Analyse Harmonique, 1983-1984, pp. 92-112, Publications Mathematiques d'Orsay, vol. 85-2, Universite de Paris-Sud, Departement de Mathematiques, Orsay, 1985.
- [5] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145-147.
- [6] S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247-261.

 $E ext{-}mail\ address: bobkov@math.ucla.edu}$