

Tradução e Adaptação: Profa. Thaina A. A. Tosta

Capítulo 1
Conceitos introdutórios

Arquitetura de Computadores Organização de Computadores

- Atributos de um sistema visíveis a quem programa;
- Tem um impacto direto na execução lógica de um programa;
- Arquitetura de conjunto de instrução (ISA do inglês, Instruction Set Architecture): formatos de instruções, códigos de operação da instrução (opcodes), registradores, memória de dados e instrução; o efeito das instruções executadas nos registradores e na memória; e um algoritmo para o controle de execução das instruções.

Questão de arquitetura: se um computador terá uma instrução de multiplicação.

Arquitetura do Computador

Atributos de arquitetura incluem:

Atributos organizacionais incluem:

•Detalhes do hardware transparentes a quem programa, como sinais de controle, interfaces entre o computador e periféricos, e a tecnologia de memória utilizada. Organização do Computador Conjunto de instruções, número de bits usados para representar vários tipos de dados, mecanismos de E/S, técnicas para endereçamento de memória

Questão de organização:
se essa instrução será
implementada por uma
unidade de
multiplicação especial
ou por um mecanismo
que faça repetidas
adições.

 Unidades operacionais e suas interconexões que percebam as especificações da arquitetura

Arquitetura IBM System/370

- Arquitetura IBM System/370
 - Foi introduzida em 1970;
 - Incluía diversos modelos;
 - Era possível atualizar para um modelo mais caro e mais rápido, sem ter que abandonar o software original;
 - Novos modelos foram introduzidos com tecnologia melhorada, mas mantendo a mesma arquitetura, de modo que o investimento de software fosse protegido;
 - Essa arquitetura sobreviveu até os dias de hoje como a arquitetura da linha de produtos de computadores de grande porte (*mainframes*) da IBM.

Muitos fabricantes oferecem uma família de modelos de computador: todos com a mesma arquitetura, mas com diferenças na organização.

Funções do computador

O computador pode realizar quatro funções básicas:

- Processamento de dados: os dados podem ter uma grande variedade de formas, e a amplitude de exigências de processamento é grande;
- Armazenamento de dados: o computador deve temporariamente armazenar pelo menos os dados que estão sendo trabalhados em um dado momento, contando ainda com armazenamentos de curto e longo prazos;
- Movimentação de dados: o ambiente operacional do computador consiste em dispositivos que servem como fontes ou destinos de dados, com entrada-saída ou comunicação de dados em longas distâncias;
- Controle: uma unidade de controle gerencia os recursos do computador e orquestra o desempenho de suas partes funcionais na resposta às instruções.

Estrutura do computador

Computador tradicional com um processador único que emprega uma unidade de controle microprogramada

Estrutura do computador

Multicore típica com múltiplos processadores em um único chip, onde cada unidade de processamento é chamada de core

Estrutura de computador multicore

- Unidade central de processamento (CPU)
 - Parte do computador que busca e executa instruções;
 - Consiste em uma ALU, uma unidade de controle e registradores;
 - Referida como processador em um sistema com uma única unidade de processamento.

■ Core

- Uma unidade de processamento individual em um chip de processador;
- Um core pode ser equivalente em funcionalidade a uma CPU em um sistema de CPU única;
- Outras unidades de processamento especializadas, como uma otimizada para operações de matrizes, são também referidas como cores.

Processador

- Pedaço físico de silício que contém um ou mais cores;
- Componente do computador que interpreta e executa instruções;
- Se um processador contém múltiplos cores, ele é referido como um processador multicore.

Computador hoje – i7 Como chegamos até aqui?

4 CPU cores GPU core 8MB LL Cache 22 nm Process 1.48B transistors 160 mm2 TDP

Histórico dos computadores modernos

Source-

Bell Labs, 1948 First Transistor 2ª geração: transistores são menores, mais baratos, geram menos calor do que a válvula e são dispositivos sólidos, feitos de silício

Intel 4004, 1971 (Moore, Noyce) 2,300 transistors 740KHz operation 10µm (=10000nm) PMOS technology

3º geração: circuitos integrados com processadores com controle e operações

la geração: válvulas foram usadas para elementos lógicos digitais e memória

Intel Core i7, 2011 2,600,000 transistors 3.4GHz 32nm

Fabricação moderna

Quantidade de transistores

Lei de Moore

- Em 1965, segundo Gordon Moore, o número de transistores dobra a cada 18 meses;
- Entretanto, o número de transistores não é tudo;
- Alguns problemas surgem por esse crescimento, como:

- Dissipação de temperatura;
- Potência consumida;
- Frequência de execução;
- Tempo para acesso de dados externos;
- Melhoria no desempenho.

Dissipação

Inicialmente sem sistema eficiente de refrigeração, com posterior uso de pasta térmica e *coolers*.

Potência

Potência/ Frequência/ Tempo IO

Chegou-se a um limite físico pela potência consumida e o calor dissipado, sem o uso de uma refrigeração absurdamente eficiente.

Desempenho

↑ Frequência do clock, ↑ eficiência, ↑ melhorias na organização dos computadores

Tendêncial atual

Aumentar número de núcleos para lidar com o limitante de frequência.

Intel 80-core multicore chip, 2007

Intel Many Integrated Core Architecture (MIC), 50-cores, 2012

Como essa evolução aconteceu?

Pela arquitetura e organização de computadores!

Como entendemos computadores e sua arquitetura

Foco principal da arquitetura de computadores

- 1950-1960 Relacionado à aritmética computacional: como implementar somador, subtrator, multiplicador e divisor em um chip?
- 1970-1980 Relacionado ao conjunto de instruções: o que o sistema operacional usa para executar as instruções aritméticas?
- 1990-2000 Relacionado à criação do sistema computacional como um todo e início de multi-processadores
 - Preocupação com desempenho, com necessidade de melhorias na CPU, memória e E/S;
- 2005-atual Múltiplos núcleos e sistemas embarcados
 - Preocupação com desempenho, dissipação de calor, consumo de energia e disponibilidade (sistemas sempre prontos e com uso na nuvem/rede).

Tendências de tecnologia

- Avanço do circuito integrado
 - Densidade: 35% ao ano
 - Tamanho do chip: 10 a 20% ao ano (+/-)
 - Total: 40 a 55% ao ano
- Avanço da capacidade da memória DRAM
 - 25 a 40% ao ano e diminuindo (agora quase parando...)
- Avanço da memória flash (pendrive)
 - Capacidade: 50 a 60% ao ano
 - Ficando 15 a 20x mais barato que DRAM
- Avanço do disco magnético
 - Capacidade: 40% ao ano
 - Ficando 15 a 25x mais barato que flash
 - Ficando 300 a 500x mais barato que DRAM

Gerações dos computadores

Gerações de computador.

Geração	Datas aproximadas	Tecnologia	Velocidade normal (operações por segundo)
1	1946–1957	Válvula	40.000
2	1957-1964	Transistor	200.000
3	1965–1971	Integração em pequena e média escala	1.000.000
4	1972-1977	Integração em grande escala	10.000.000
5	1978–1991	Integração em escala muito grande	100.000.000
6	1991–	Integração de escala ultra grande	> 1.000.000.000

Evolução dos microprocessadores Intel

	(a) Processadores da década de 1970				
	4004	8008	8080	8086	8088
Introduzido	1971	1972	1974	1978	1979
Velocidade de clock	108 kHz	108 kHz	2 MHz	5 MHz, 8 MHz, 10 MHz	5 MHz, 8 MHz
Largura do barramento	4 bits	8 bits	8 bits	16 bits	8 bits
Número de transistores	2.300	3.500	6.000	29.000	29.000
Dimensão da tecnologia de fabricação (µm)	10	8	6	3	6
Memória endereçável	640 bytes	16 kB	64 kB	1 MB	1 MB

	(b) Processadores da década de 1980			
	80286	386TM DX	386TM SX	486TM DX CPU
Introduzido	1982	1985	1988	1989
Velocidade de clock	6–12,5 MHz	16–33 MHz	16–33 MHz	25-50 MHz
Largura do barramento	16 bits	32 bits	16 bits	32 bits
Número de transistores	134.000	275.000	275.000	1,2 milhão
Dimensão da tecnologia de fabricação (µm)	1,5	1	1	0,8–1
Memória endereçável	16 MB	4 GB	16 MB	4 GB
Memória virtual	1 GB	64 TB	64 TB	64 TB
Cache	_	_	_	8 kB

Evolução dos microprocessadores Intel

	(c) Processadores da década de 1990			
	486TM SX	Pentium	Pentium Pro	Pentium II
Introduzido	1991	1993	1995	1997
Velocidade de clock	16–33 MHz	60-166 MHz,	150-200 MHz	200–300 MHz
Largura do barramento	32 bits	32 bits	64 bits	64 bits
Número de transistores	1,185 milhão	3,1 milhões	5,5 milhões	7,5 milhões
Dimensão da tecnologia de fabricação (µm)	1	0,8	0,6	0,35
Memória endereçável	4 GB	4 GB	64 GB	64 GB
Memória virtual	64 TB	64 TB	64 TB	64 TB
Cache	8 kB	8 kB	512 kB L1 e 1 MB L2	512 kB L2

	(d) Processadores recentes			
	Pentium III	Pentium 4	Core 2 Duo	Core i7 EE 4960X
Introduzido	1999	2000	2006	2013
Velocidade de clock	450–660 MHz	1,3–1,8 GHz	1,06-1,2 GHz	4 GHz
Largura do barramento	64 bits	64 bits	64 bits	64 bits
Número de transistores	9,5 milhões	42 milhões	167 milhões	1,86 bilhão
Dimensão da tecnologia de fabricação (nm)	250	180	65	22
Memória endereçável	64 GB	64 GB	64 GB	64 GB
Memória virtual	64 TB	64 TB	64 TB	64 TB
Cache	512 kB L2	256 kB L2	2 MB L2	1,5 MB L2/15 MB L3
Número de cores	1	1	2	6

A evolução da arquitetura Intel x86

- Duas famílias de processadores são Intel x86 e ARM;
- Diversos sistemas, tanto contemporâneos como históricos, proporcionam exemplos de importantes características de projeto de arquitetura de computador;
- As propostas dos x86 atuais representam os resultados de décadas de esforço de projeto em computadores com conjunto complexo de instruções (CISC do inglês, Complex Instruction Set Computers);
- Uma técnica alternativa para o projeto do processador é o computador com conjunto de instruções reduzido (RISC do inglês, *Reduced Instruction Set Computers*), como a arquitetura ARM usada em sistemas embarcados.

Sistemas embarcados

- Bilhões de sistemas computacionais são produzidos a cada ano, sendo embarcados dentro de dispositivos maiores;
- Hoje em dia, alguns, ou a maioria, dos dispositivos que usam energia elétrica têm um sistema computacional embarcado;
- Isso pode fazer surgir restrições em tempo real impostas pela necessidade de interagir com o ambiente:
 - Restrições, como velocidades de movimento exigidas, precisão de medição e durações de tempo exigidas, ditam a temporização das operações de software;
 - Se múltiplas atividades tiverem de ser gerenciadas simultaneamente, isso leva a restrições mais complexas de tempo real.

Android

Produtos ARM

Cortex-A/Cortex-A50:

Arquitetura com maior desempenho: direcionados a dispositivos móveis tais como smartphones, leitores de eBook, TV digital e gateways residenciais

Cortex-R:

Tempo real: freios ABS, controladores de armazenamento de massa e dispositivos de impressão e de rede

Cortex-M

- Cortex-M0
- Cortex-M0+
- Cortex-M3
- · Cortex-M4:

Microcontroladores: inclui dispositivos de IoT, redes de sensores/atuadores sem fio usadas em fábricas e outros tipos de empresas, partes eletrônicas, etc

Computação em nuvem

- O Instituto Nacional de Padrões e Tecnologia (NIST) define a computação em nuvem como:
 - "Um modelo para possibilitar acesso onipresente, conveniente e sob demanda a um grupo compartilhado de recursos de computação configuráveis (por exemplo, redes, servidores, armazenamento, aplicações e serviços) que pode ser rapidamente fornecido e liberado com um esforço mínimo de gerenciamento ou interação do provedor de serviço."
- Com a computação em nuvem, consegue-se economia de escala, gerenciamento profissional de rede e gerenciamento profissional de segurança;
- O indivíduo ou empresa somente precisam pagar pela capacidade de armazenamento e pelos serviços de que precisam;
- O provedor da nuvem cuida da segurança.

Rede em nuvem

- Refere-se às redes e funcionalidades de gerenciamento de rede que devem estar em ordem para possibilitar a computação em nuvem;
- Um exemplo da rede de nuvem é a necessidade de rede de alto desempenho e/ou alta confiabilidade entre os provedores e os assinantes;
- Coleção de capacidade de rede exigida para acessar a nuvem, incluindo fazer uso de serviços especializados da internet, ligar centros de dados de empresas a uma nuvem e usar firewalls e outros dispositivos de segurança de rede em pontos importantes a fim de reforçar as políticas de segurança de acesso.

Armazenamento em nuvem

- Subconjunto de computação em nuvem;
- Consiste em um armazenamento de base de dados e aplicações de base de dados hospedadas nos servidores da nuvem;
- Possibilita que pequenos negócios e usuários individuais tenham vantagem do armazenamento de dados compatível com suas necessidades e de uma variedade de aplicações de base de dados sem ter de pagar, manter e gerenciar ativos de estoque.

Como o computador funciona?

- Modelo de Neumann
 - Unidades ou periféricos de entrada
 - Unidades ou periféricos de saída
 - Memória (para a execução de programas)
 - Unidade de controle
 - Unidade lógica/aritmética
- Unidades ou periféricos podem ser unificados em uma categoria
- Unidade de controle e unidade lógica/aritmética compõem a CPU

Barramentos

⁺ Comparação do Modelo de Neumann

Características do Modelo de Neumann

- Arquitetura de computador é independente do problema a ser resolvido por ele;
- A memória pode ser acessada aleatoriamente por endereços. Cada posição possui a mesma capacidade;
- Tanto o programa como os dados são armazenados na memória;
- O computador possui controle centralizado;
- As instruções do programa são executadas sequencialmente;
- Esse modelo ainda é a base para o desenvolvimento de processadores.

Funcionamento do Modelo de Neumann

- 1. Carregar uma instrução da memória para o processador;
- 2. Decodificar a instrução (que tipo de instrução é, o que fazer e se preparar para executá-la);
- 3. Caso haja algum operando na instrução, buscar o seu endereço na memória;
- 4. Carregar o operando para o processador;
- 5. Realizar a operação na CPU;
- 6. Escrever os resultados de volta na memória, se necessário;
- 7. Ajustar o endereço da próxima instrução a ser executada;
- 8. Volta para 1.

Maneiras de executar instruções

Taxonomia de Flynn: mais moderna para os computadores atuais

- Single instruction stream, single data (SISD)
 - Tradicional com um processador (um *core*)
- Single instruction stream, multiple data (SIMD)
 - Arquiteturas vetoriais, operações multimídia, GPU
- Multiple instruction streams, single data (MISD)
 - Não há implementação comercial com pouco uso
- Multiple instruction streams, multiple data (MIMD)
 - Mais próximo de um *cluster*, e até de processadores *multicore*

Capítulo l Conceitos introdutórios

Agradeço ao Prof. Dr. Fábio A. M. Cappabianco pelo material disponibilizado.

Profa. Thaina A. A. Tosta tosta.thaina@unifesp.com

Tradução e Adaptação:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.