University of Oxford

MSC IN STATISTICAL SCIENCE

FINAL THESIS

Missing data imputation for Haemorrhagic shock prediction

Author:
Antoine OGIER

Supervisor:
Pr. Julie Josse
(École polytechnique)
Pr. Geoff NICHOLLS
(University of Oxford)

September 2018

Abstract

Lorem ipsum dolot sit amet nunc cui Brexit.

Acknowledgements

Lorem ipsum dolot sit amet

Contents

In	trod	uction	1
1	Goa	al and data	3
	1.1	The problem of haemorrhagic shock	3
	1.2	The Traumabase data	3
	1.3	Exploratory data analysis	3
2	Imp	outation methods	5
	2.1	Main types of imputation	5
	2.2	Multiple imputation	5
	2.3	Normality hypothesis: transforming the data	5
3	Me	thodology: imputation and the validation split	7
	3.1	Empirical risk minimization (ERM): classical context	7
	3.2	The problem of current imputation methods	7
	3.3	Possible solutions	7

iv CONTENTS

4	Err	or sources and dest imputation: the case of linear re-				
	gres	ssion with missing data	9			
	4.1	Problem set-up	Ö			
	4.2	Partial resolution	Ö			
	4.3					
5	Ana	alysis: imputing the Traumabase data for prediction	11			
	5.1	Criteria for evaluation	11			
	5.2	Single imputation	11			
	5.3	Multiple imputation	11			
6	Res	ults	13			
C	onclu	sion	15			
$\mathbf{B}^{\mathbf{i}}$	Bibliography 17					

Introduction

Goal and data

1.1 The problem of haemorrhagic shock

Prediction is very hard, as described in [1]

- 1.2 The Traumabase data
- 1.3 Exploratory data analysis
- 1.3.1 Variables
- 1.3.2 Missing data

Imputation methods

- 2.1 Main types of imputation
- 2.1.1 Joint parametric specification
- 2.1.2 Fully conditional specification: the MICE algorithm
- 2.1.3 Low-rank approximation for imputation
- 2.1.4 ML-based
- 2.2 Multiple imputation
- 2.2.1 Principle
- 2.2.2 Rubin's rule and prediction aggregation
- 2.3 Normality hypothesis: transforming the data

Methodology: imputation and the validation split

- 3.1 Empirical risk minimization (ERM): classical context
- 3.2 The problem of current imputation methods
- 3.2.1 Imputation seen as an ERM
- 3.2.2 Unsuitability of current methods
- 3.3 Possible solutions
- 3.3.1 Using current implementations
- 3.3.2 A new variant: Multivariate Normal Mode with reserved data
- 3.3.3 Comparison on simulated data

Error sources and best imputation: the case of linear regression with missing data

- 4.1 Problem set-up
- 4.1.1 Notations
- 4.1.2 Objective
- 4.2 Partial resolution
- 4.2.1 General loss
- 4.2.2 When the validation set is fully observed

Strong consistency of the least square estimator [2]

- 4.2.3 When the data is large and the training data is fully observed
- 4.3 Consequences
- 4.3.1 Theoretical implications for our data
- 4.3.2 Verification with simulated data

Analysis: imputing the Traumabase data for prediction

- 5.1 Criteria for evaluation
- 5.2 Single imputation
- 5.3 Multiple imputation

Results

Conclusion

Bibliography

- [1] Matthew J Pommerening, Goodman, et al. Clinical gestalt and the prediction of massive transfusion after trauma. *Injury*, 46(5):807–813, 2015.
- [2] TW Anderson, John B Taylor, et al. Strong consistency of least squares estimates in normal linear regression. *The Annals of Statistics*, 4(4): 788–790, 1976.