

SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Computer Science

F29FA1

Foundations I

Class Test 2014/15

13 October 2014 Duration: 0.5 Hour

Answer ALL questions

1. (a) Remove as many parenthesis as possible from the following expression without changing its meaning: $(\lambda x.(\lambda y.(\lambda z.((((((xy)z)(\lambda x.x))(\lambda x.((xz)(yz))))(\lambda x.(((xx)y)y)))))))$. (1) $\lambda xyz.xyz(\lambda x.x)(\lambda x.xz(yz))(\lambda x.xxyy)$.

Learning Objectives: Syntax and semantics of the λ -calculus.

- (b) Give the subterms of $\lambda xyz.xyz(\lambda x.x)$. (1) $\{\lambda xyz.xyz(\lambda x.x), \lambda yz.xyz(\lambda x.x), \lambda z.xyz(\lambda x.x), x, y, xy, z, (xy)z, \lambda x.x, xyz(\lambda x.x)\}$. Learning Objectives: Syntax and semantics of the λ -calculus.
- (c) Find λ-terms A, B and C such that: A, B and C are all in β-normal form, BC does not have a β-normal form and A(BC) has a β-normal form.
 (2)
 Let A = λx.z, and B = C = λx.xx. Each of A, B and C is in β-normal form, but BC

does not have a β -normal form and A(BC) has the β -normal form z.

Learning Objectives: Reduction and normalisation in the λ -calculus.

(d) If for all A, B, we have $A =_{\beta} B$, would the lambda calculus be allowed to be a model of computation? (1)

No. In any model of computation we need to have at least two different elements. If for all A, B, we have $A =_{\beta} B$ then any two programs have the same meaning.

Learning Objectives: The λ -calculus is a sound model of computation.

(e) Do you know of a computable function which cannot be represented in the λ -calculus? If so give it. Otherwise say why it is not the case. (1)

I expect them to say that anything computable can be represented in the λ -calculus.

Learning Objectives: The λ -calculus is the language of computation.

(f) Let $K = \lambda xy.x$. Show that $KAB =_{\beta} A$. Hint: you can assume that $y \notin FV(A)$ and hence $A[y := B] \equiv A$. $KAB \equiv (\lambda xy.x)AB \to_{\beta} (\lambda y.x)[x := A]B \equiv (\lambda y.A)B \to_{\beta} A[y := B] \equiv A$. Since $KAB \to_{\beta} A$, then $KAB =_{\beta} A$.

Learning Objectives: Calculation in the λ -calculus.

- (g) Assume $v \notin FV(A)$ and $v \notin FV(B)$. Show that if $Av =_{\beta\eta} Bv$ then $A =_{\beta\eta} B$. (3) Assume $v \notin FV(A)$, $v \notin FV(B)$ and $Av =_{\beta\eta} Bv$.
 - By compatibility, $\lambda v.Av =_{\beta\eta} \lambda v.Bv$.
 - $\lambda v.Av =_{\beta\eta} A$ by (η) , since $v \notin FV(A)$
 - $\lambda v.Bv =_{\beta\eta} B$ by (η) , since $v \notin FV(B)$
 - Hence, $A =_{\beta\eta} B$, since $=_{\beta\eta}$ is an equivalence relation.

Learning Objectives: Understanding extensionality and the use of free variables.

(h) Is $(\lambda xyz.xyz)(\lambda x.xx)(\lambda x.xx)x(\lambda x.xx)(\lambda x.xx)$ β -normalising? If yes, give the β -normal form showing all the reduction steps you used to reach it. If not, give a detailed proof why it is not.

 $\frac{(\lambda xyz.xyz)(\lambda x.xx)(\lambda x.xx)x(\lambda x.xx)(\lambda x.xx) \to_{\beta}^{lmo}}{(\lambda yz.(\lambda x.xx)yz)(\lambda x.xx)x(\lambda x.xx)(\lambda x.xx) \to_{\beta}^{lmo}}$

$$\frac{(\lambda z.(\lambda x.xx)(\lambda x.xx)z)x(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta}^{lmo}}{((\lambda x.xx)(\lambda x.xx)x)(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta}^{lmo}}{((\lambda x.xx)(\lambda x.xx)x)(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta}^{lmo}}{((\lambda x.xx)(\lambda x.xx)x)(\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta}^{lmo}}$$

. . .

Since the leftmost reduction path does not terminate, by the normalisation theorem $(\lambda yz.(\lambda x.xx)yz)(\lambda x.xx)x(\lambda x.xx)(\lambda x.xx)$ is not β -normalising.

Learning Objectives: normalisation theorem.

Learning Objectives: reduction.

(i) Give the $\beta\eta$ -normal form of $\lambda z.(z(\lambda y.((\lambda x.x)(\lambda x.xx)(\lambda y.y))y))z.$ (1) $\lambda z.z(\lambda y.y)z.$

TH 45/3 40 U.S.