A single document copy of these notes, as well as a mirror of every note, can be found at connorduncan.xyz/notes We want to mix $|k\rangle$, $|-k\rangle$ at α $|k\rangle$ + β $|-k\rangle$, which comes down to solve the schroedinger equaltion in this degenerate subspace. This gives

$$\begin{bmatrix} \langle k | H | k \rangle & \langle k | H | k' \rangle \\ \langle k' | H | k \rangle & \langle k' | H | k' \rangle \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = E \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

This becomes

$$\begin{bmatrix} E_0(k) + V_0 & V_n \\ V_n^* & E_0(k') + V_0 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = E \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

We know that $E_0(k) = E_0(k' = -k) = \frac{n^2 h^2 \pi^2}{2ma^2}$, with after a bit of algebra gives us mixing

$$E = \frac{\hbar^2}{2m} \frac{n^2 \pi^2}{a^2} + V_0 \pm |V_n|$$

Case 3: Close to edge of BZ We want to take a "continuous" approach to the edge at each band. We're gonna take $k = \frac{n\pi}{a} + \delta$, and $k' = -\frac{n\pi}{a} + \delta'$. This is going to give us some state where \exists matrix elements, but the gap between energy levels no longer be zero. Now, we want to solve the eigenvalue equaitons for

$$E_{\pm} = \frac{\hbar^2}{2m} \left(\frac{n^2 \pi^2}{a^2} \pm \delta^2 \right) + V_0 \pm \sqrt{|V_n|^2 + \left(\frac{\hbar^2}{2m} \frac{2\pi n}{a} \delta \right)^2}$$

In the limit $\delta \to 0$, we just get our original answer back, which is good. We can check out a few limits. First, let $\delta \gg V_n$. To first order, it becomes

$$E_{\pm} = E_0 \left(\frac{n\pi}{a} \pm \delta \right) + V_0 \pm \frac{|V_n|^2}{E\left(\frac{n\pi}{a} + \delta \right) - E\left(\frac{n\pi}{a} - \delta \right)}$$

Limit 2 is for $\delta \ll V_n$,

$$E_{\pi} = \frac{\hbar^2}{2m} \frac{n^2 \pi^2}{a^2} + V_0 \pm |V_n| + \frac{\hbar^2}{2m} \left(1 + \frac{1}{|V_n|} \frac{n^2 \hbar^2 \pi^2}{ma^2} \right)^2$$

There are some things we should take away from this

- 1. for $k \ll \frac{\pi}{a}$, we have basically a free electron
- 2. for $k = \frac{\pi n}{a}$, the spectrum splits as $2|V_n|$.

1 Variational Method

In most cases, it's basically impossible to solve schroedingers equation, because we can't diagonalize that "big ass matrix" 1 . The idea is to find the ground state of some hamiltonian H. Then, we make the staement

$$\forall |\psi\rangle; E(\psi) = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \ge E_0$$

i.e. any state's energy will be larger than the ground state energy. We can find some trial wavefunctions parameterized by $\{\alpha, \beta, \gamma...\}$. Then, the goal becomes to minimize $E(\psi)$ with respect to these variational parameters which results in a rigorous bound on the ground state energy. In principle, we can always improve our bound by adding more variational parameters.

1.1 Ex: Free Particle

Let's take

$$H_0 = \frac{p^2}{2m} + \lambda x^4$$

The trial wavefunctions we are going to use are $\psi(x,\alpha) = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-\frac{1}{2}\alpha x^2}$. We choose our functions to be "nice" based on the hamiltonian. Prof. Yao wrote this on the board

- 1. Gaussians are easy for this H
- 2. Symmetric Function w/ nodes

We then calculate the variational energy

$$E(\alpha) = \sqrt{\frac{\alpha}{\pi}} \int dx e^{-\frac{\alpha x^2}{2}} \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \lambda x^4 \right) e^{-\frac{\alpha x^2}{2}} = \frac{\hbar^2}{2m} \alpha + \frac{3\lambda}{4\alpha^2}$$

The latter term means that we have $\alpha \to \infty$ wants localized wavefunction to be minimal, and the former is minimzed by $\alpha \to 0$, saying that low momentum minimizes that component of the wf. We can solve this for

$$\alpha_0 = \left(\frac{6m\lambda}{\hbar^2}\right)^{1/3} \qquad E(\alpha_0) = \frac{3}{8} \left(\frac{6\hbar^4\lambda}{m^2}\right)^{1/3}$$

1++1

¹Norman Yao, circa 2019.