Module I: DC Circuits

6 Hrs

Basic circuit elements and sources; Ohms law, Kirchhoff's laws; Series and parallel connection of circuit elements; Source transformation; Node voltage analysis; Mesh current analysis; Maximum power transfer theorem

CO1:

Evaluate DC and AC circuit parameters using various laws and theorems

Module 1

Evaluate DC circuit parameters using various laws and theorems

Inductances in series

Voltage across the inductor
 V = Ldi/dt

- In a series circuit, $V = V_1 + V_2 + V_3$
- In a series circuit, Current remains same (I)
- $V = L_1 di/dt + L_2 di/dt + L_3 di/dt$
- $V = di/dt (L_1 + L_2 + L_3)$
- $V = L_{eq} di/dt$
- $L_{eq} = L_1 + L_2 + L_3$

Inductances in parallel

- Voltage across the inductor
 V = Ldi/dt
- In a parallel circuit, $I = I_1 + I_2 + I_3$

- In a parallel circuit, voltage remains same (V)
- $V = L_1 di_1/dt = L_2 di_2/dt = L_3 di_3/dt$
- $di_1/dt = V/L_1$; $I_1 = 1/L_1 \int V dt$
- $di_2/dt = V/L_2$; $I_2 = 1/L_2 \int V dt$
- $di_3/dt = V/L_3$; $I_3 = 1/L_3 \int V dt$

Inductances in parallel

- $| = |_1 + |_2 + |_3$
- $I = 1/L_1 \int Vdt + 1/L_2 \int Vdt + 1/L_3 \int Vdt$
- $1/L_{eq}$ $Vdt = 1/L_1$ $Vdt+1/L_2$ $Vdt+1/L_3$ Vdt
- $1/L_{eq} = 1/L_1 + I/L_2 + 1/L_3$

$$\frac{1}{L_{T}} = \frac{1}{L_{1}} + \frac{1}{L_{2}} + \frac{1}{L_{3}} \dots + \frac{1}{L_{N}}$$

Capacitances in series

- $V_1 = 1/C_1 \text{ fidt}$
- $V_2 = 1/C_2 \text{ fidt}$
- $V_3 = 1/C_3 \text{ fidt}$
- In a series circuit, $V = V_1 + V_2 + V_3$
- $V = 1/C_1 \int idt + 1/C_2 \int idt + 1/C_3 \int idt$
- $V = (1/C_1 + 1/C_2 + 1/C_3) \int idt$
- $V = 1/C_{eq} \int idt$
- $1/C_{eq} = 1/C_1 + 1/C_2 + 1/C_3$

Capacitances in parallel

- Current through the capacitor
 I = CdV/dt
- In a parallel circuit, $I = I_1 + I_2 + I_3$

- $I_2 = C_2 dV/dt$
- $I_3 = C_3 dV/dt$
- $I = C_1 dV/dt + C_2 dV/dt + C_3 dV/dt$
- $I = (C_1 + C_2 + C_3) dV/dt$
- $C_{eq} = C_1 + C_2 + C_3$

Series and parallel connection of circuit elements

Elements Symbol	RESISTOR	CAPACITOR	INDUCTOR ———
Denoted by	R	C	L
Equation	$R = \frac{V}{I}$	c = Q/V	$L = \frac{V_L}{(di/dt)}$
Series	$\mathbf{R}_{T} = \mathbf{R}_1 + \mathbf{R}_2$	$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2}$	$L_T = L_1 + L_2$
Parallel	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$	C _T = C ₁ + C ₂ www.electricaltechnology.org	$\frac{1}{L_{T}} = \frac{1}{L_{1}} + \frac{1}{L_{2}}$

Source Transformation

- Source transformation is the process of replacing a voltage source V_s in series with the resistor R by a current source I_s in parallel with a resistor R or vice versa
- Tool for simplifying circuits

Find the equivalent resistance

 6Ω , 3Ω and 3Ω are in parallel

10 Ω and 1.2 Ω are in series

$$R_{ab} = 11.2 \Omega$$

Find the equivalent resistance

Find the equivalent resistance between terminal ab

Find the equivalent resistance between terminal ab

Find the current delivered by the source

