第 10 次作业 (提交截止时间: 5 月 8 日上午 9:50)

1. (简单随机抽样)设总体的大小为 N ,总体均值和方差分别为 μ,σ^2 , X_i

 $(i=1,\cdots,n)$ 为无放回抽取的简单随机样本, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$.

- (1) *证明: $E(\hat{\sigma}^2) = \sigma^2 \cdot \frac{n-1}{n} \cdot \frac{N}{N-1}$.
- (2) 给出 $Var(\overline{X})$ 的一个无偏估计.
- 2. 设 X 来自 Poisson 总体 $P(\lambda)$ 的一个样本.
 - (1) **证明: $g(\lambda) = e^{-2\lambda}$ 的唯一无偏估计为 $\hat{\theta}(X) = \begin{cases} 1, & \exists X$ 为偶数 $-1, & \exists X$ 为奇数 .
 - (2) 上述估计是否合理?如不合理,请尝试给出一个合理的估计.
- 3. 设随机样本 X_i ($i=1,\dots,n$)来自总体 $U(0,\theta)$.
 - (1) 证明: $\hat{\theta}_1 = \max(X_1, \dots, X_n) + \min(X_1, \dots, X_n)$ 是 θ 的无偏估计.
 - (2) 证明:可以适当选择常数 c_n 使得 $\hat{\theta}_2 = c_n \min(X_1, \dots, X_n)$ 是 θ 的无偏估计.
 - (3) **比较四个无偏估计 $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3 = 2\bar{X}$, $\hat{\theta}_4 = \frac{n+1}{n} \max(X_1, \dots, X_n)$ 的方差大小.
- 4. 设随机样本 X_i ($i=1,\cdots,n$)来自某一个均值为 θ 且方差有限的总体.
 - (1) 设 c_1, \cdots, c_n 为常数,证明: $\sum_{i=1}^n c_i X_i$ 是 θ 的无偏估计当且仅当

$$\sum_{i=1}^n c_i = 1.$$

- (2) 在上述形式的估计类中,只有在 $c_1 = \cdots = c_n$ $\left(= \frac{1}{n} \right)$ 时方差达到最小.
- 5. **设随机样本 X_i ($i=1,\cdots,n$)来自正态总体 $N(\mu,\sigma^2)$, m_2 和 S^2 可以作为 σ^2 的估计,试比较两个估计的均方误差.
- 6. 设随机样本 X_i ($i=1,\cdots,4$)来自正态总体N(0,4),令 $Y=a\frac{X_1+X_2}{\sqrt{X_3^2+X_4^2}}$,

这里a为常数,已知Y服从t分布,求a的值以及t分布的自由度.

7. 有一大批糖果,现从中随机取 16 袋称得重量(克)为 506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496

假设袋装糖果重量服从正态分布,求总体均值的 95%置信的区间估计. 如果用这 16 袋样品的平均重量作为总体均值的估计,误差的范围为多少?这个范围是在什么意义下?

- 8. 从一大批灯泡中随机地取 5 只作寿命试验,测得寿命(单位:小时)为
 1050 1100 1120 1250 1280
 假设灯泡寿命服从正态分布,求这批灯泡寿命平均值 95%置信的单侧置信下限
 (即求 û(X1,···,X1) 使得 P(µ > û)≥ 0.95).
- 9. *为提高某一化学生产过程的得率,试图采用一种新的催化剂.为慎重起见, 先进行试验.采用原催化剂 20 次试验的得率均值为91.73,样本方差为3.89; 采用新催化剂 30 次试验的得率均值为93.75,样本方差为4.02.假设两总体 都服从正态分布,方差相等,且两样本独立.
 - (1) 求两总体均值差的 95%置信的区间估计.
 - (2) 两种催化剂有显著差别吗?请尝试说明你的理由.
- 10. *设随机样本 X_i ($i=1,\cdots,n$) 来自总体 $U(0,\theta)$. 证明:对于任意给定常数 $0<\alpha<1$,可以找到常数 c_n ,使 ($\max\{X_1,\cdots,X_n\}$, $c_n\max\{X_1,\cdots,X_n\}$) 为 θ 的一个 $(1-\alpha)$ 置信区间.
- 11. (计算机实验)(自助法 Bootstrap)设随机样本 X_i ($i=1,\cdots,n$)来自正态

总体 $N(\mu,1)$, $\theta = e^{\mu}$, 考虑 θ 的估计 $\hat{\theta} = T(X_1, \dots, X_n) = \exp(\bar{X})$.

- (1) 创建一个包含n 个观测的数据集,数据记为 x_1, \dots, x_n (取 $\mu = 5$,n = 100). (数据所确定的经验分布记为 $F_n(x)$)
- (2) 从 (1) 中数据集中有放回地抽取 n = 100 个观测,记为 x_1^*, \dots, x_n^* . (等同于从分布 $F_n(x)$ 中抽取容量依旧为 n 的随机样本)
- (3) 计算 $\hat{\theta}^* = T(x_1^*, \dots, x_n^*).$
- (4) 重复步骤(2)和(3)m次,得到 $\hat{\theta}_1^*,\dots,\hat{\theta}_m^*$.(取m=1000)
- (5) 画出 $\hat{\theta}_1^*, \dots, \hat{\theta}_m^*$ 的直方图,并与 $\hat{\theta}$ 的分布相比较,你能得到什么结论?
- (6) 令 $V_{boot} = \frac{1}{m} \sum_{r=1}^{m} \left(\hat{\theta}_{r}^{*} \frac{1}{m} \sum_{r=1}^{m} \hat{\theta}_{r}^{*} \right)^{2}$,求 V_{boot} . 是否可以用 V_{boot} 来近似 $Var(\hat{\theta})$?