Lecture 3

Data Summary/Visualization II

Text: Chapter 3

STAT 8010 Statistical Methods I August 27, 2020 Data Summary/Visualization

Numerical Data

ariables imultaneously

Series, Cross-Sectional, and

Whitney Huang Clemson University

isualizing two ariables imultaneously

Series, Cross-Sectional, and Spatio-Temporal Data

Summarizing Numerical Data

Visualizing two variables simultaneously

Visualizing Time Series, Cross-Sectional, and Spatio-Temporal Data sets

Last Lecture: Sampling Techniques

Simple random sample

Systematic sample

Stratified sample

Cluster sample

Source:

 $\verb|https://www.scribbr.com/methodology/sampling-methods/|$

lummarizing lumerical Data

isualizing two ariables multaneously

sualizing Time

Last Lecture: Summarizing Categorical Variables

> table(sport)			
sport			
Baseball/softball	Basketball	Bicycling	Jogging/running
11	19	11	11
0thers	Soccer	Touch Football	Volleyball
47	24	38	17
<pre>> table(sport) / dim(sp sport</pre>	ort)[1]		
Baseball/softball	Basketball	Bicyclina	Jogging/running
0.06179775	0.10674157	0.06179775	0.06179775
0thers	Soccer	Touch Football	Volleyball
0.26404494	0.13483146	0.21348315	0.09550562

Data Summary/Visualization

Numerical Data

Visualizing two variables simultaneousl

isualizing Tim

Summarizing Numerical Data

/isualizing two ariables imultaneoush

Visualizing Tin

Cross-Sectional, and Spatio-Temporal Data

Summarizing Numerical Variables

Example: Murder arrests (per 100,000) in US States in 1973

```
Data Summary/Visualization
```

Summarizing Numerical Data

variables simultaneously

Visualizing Time Series, Cross-Sectional, and Spatio-Temporal Data sets

```
Data: 13.2, 10.0, 8.1, 8.8, 9.0, 7.9, 3.3, 5.9, 15.4, 17.4, 5.3, 2.6, 10.4, 7.2, 2.2, 6.0, 9.7, 15.4, 2.1, 11.3, 4.4, 12.1, 2.7, 16.1, 9.0, 6.0, 4.3, 12.2, 2.1, 7.4, 11.4, 11.1, 13.0, 0.8, 7.3, 6.6, 4.9, 6.3, 3.4, 14.4, 3.8, 13.2, 12.7, 3.2, 2.2, 8.5, 4.0, 5.7, 2.6, 6.8.
```

Question: How to graphically summarize this data set?

16

Data Summary/Visualization

Numerical Data

/isualizing two variables simultaneously

Histogram

Histogram of US Murder Rate in 1973

Data Summary/Visualization

Summarizing Numerical Data

fisualizing two ariables imultaneously

Histogram

Data Summary/Visualization

Summarizing Numerical Data

isualizing two ariables imultaneously

Box-and-Whisker Plot

Murder Rate (per 100,000)

Data Summary/Visualization

Summarizing Numerical Data

Visualizing two variables simultaneously

Shape of Distributions

Source: Skewness - Wikipedia

In the rest of the class, we will talk about how to summarize a numerical variable in terms of its center and spread

Data Summary/Visualization

Summarizing Numerical Data

> sualizing two triables multaneously

isualizing Time

Measures of Center

alization
II

CLEMS
UNIVERSITY

Data Summary/Visu-

Summarizing Numerical Data

simultaneously

Visualizing Time

- A measure of center attempts to report a "typical" value for the variable
- When a measure of center is calculated with sample data it is a statistic
- When a measure of center is calculated with popular (e.g., census data) it is a parameter
- Measures: Mean, Median, Mode

• The population mean, denoted by μ_X , is the sum of all the population values $(\{X_i, \dots, X_N\})$ divided by the size of the population (N). That is,

$$\mu_X = \frac{\sum_{i=1}^N X_i}{N}$$

• The sample mean, denoted by X is the sum of all the sample values $(\{X_1, \dots, X_n\})$ divided by the sample size (n). That is,

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Median

alization II

Data Summary/Visu-

Summarizing Numerical Data

multaneously isualizing Time

Series, Cross-Sectional, and Spatio-Temporal Data sets

The median is the value separating the higher half from the lower half of a data sample

How to compute the median: Order the n observations in a data set from smallest to largest, then

 $Median = \begin{cases} \text{ the single middle value,} & \text{n odd} \\ \text{the average of the middle two values,} & \text{n even} \end{cases}$

Series, Cross-Sectional, and

The mode is the value of the observation that appears most frequently

How to compute the mode(s): Order the observations in a data set from smallest to largest, then find the number that is repeated more often than any other

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

Plot this "data set" and describe the shape of the distribution

13, 16, 14, 21, 13

Suppose we have the following list of values: 13, 18, 13, 14,

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

Data Summary/Visualization

Numerical Data

variables simultaneously

/isualizing Time

13, 16, 14, 21, 13

Suppose we have the following list of values: 13, 18, 13, 14,

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

Data Summary/Visualization

Numerical Data

variables simultaneously

/isualizing Time

alization
II

CLEMSEN

Data Summary/Visu-

Summarizing

variables simultaneously

Series, Cross-Sectional, and Spatio-Temporal Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - Compute the sample size n and identify (or compute) the median value

alization
II

CLEMSEN

Data Summary/Visu-

Summarizing

variables simultaneously

Series, Cross-Sectional, and Spatio-Temporal Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - Compute the sample size n and identify (or compute) the median value

Data Summary/Visualization

Numerical Data

Simultaneously

Series, Cross-Sectional, and Spatio-Temporal Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - Compute the sample size n and identify (or compute) the median value
 - $n = 9 \Rightarrow$ the median is the 5th number, which is 14

Data Summary/Visualization

Summarizing Numerical Data

Visualizing two variables simultaneously

Series, Cross-Sectional, and

Find the mode

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

Data Summary/Visualization

Summarizing Numerical Data

Visualizing two variables simultaneously

Series, Cross-Sectional, and

Find the mode

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

- Data Summary/Visualization
- CLEMS N

Summarizing Numerical Data

variables simultaneousl

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - ② We have 3 13 and 2 14 \Rightarrow 13 is the mode

alization

Data Summary/Visu-

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, **210**, 13

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

alization

Data Summary/Visu-

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, **210**, 13

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

Data Summary/Visualization

Summarizing Numerical Data

Simultaneously

Series, Cross-Sectional, and Spatio-Temporal Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - Compute the sample size n and identify (or compute) the median value

Data Summary/Visualization

Summarizing Numerical Data

simultaneously

Series, Cross-Sectional, and

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - Compute the sample size n and identify (or compute) the median value

Data Summary/Visualization

Summarizing Numerical Data

Simultaneously

Series, Cross-Sectional, and Spatio-Temporal Data sets

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - Compute the sample size n and identify (or compute) the median value
 - 0 $n = 9 \Rightarrow$ the median is the 5th number, which is (still) 14

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

Data Summary/Visualization

Summarizing Numerical Data

> sualizing two ariables multaneously

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - ② We have 3 13 and 2 14 \Rightarrow 13 is (still) the mode

Data Summary/Visualization

Summarizing Numerical Data

> isualizing two ariables multaneously

isualizing Tin

Cross-Sectional, and Spatio-Temporal Data

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - ② We have 3 13 and 2 14 \Rightarrow 13 is (still) the mode

Data Summary/Visualization

Summarizing Numerical Data

> isualizing two ariables multaneously

isualizing Tin

Cross-Sectional, and Spatio-Temporal Data

- Data Summary/Visualization
- CLEMS N

Summarizing Numerical Data

variables simultaneous

/isualizing Time Series,

Cross-Sectional, and Spatio-Temporal Data sets

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - ② We have 3 13 and 2 14 \Rightarrow 13 is (still) the mode

What is the take-home message?

Measures of Spread

 Measures: Range, Variance/Standard Deviation, Interquartile range (IQR)

Data Summary/Visualization

Summarizing Numerical Data

'isualizing two ariables imultaneousl

/isualizing Tim

Range

The range of a dataset is the difference between the largest and smallest values

Range = Largest Value - Smallest Value

 Compute the range of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

 Compute the range of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is Range a robust statistic?

Summarizing

ariables multaneously

Standard Deviation/Variance

- The sample standard deviation (variance), denoted by s (s^2), is a measure of the amount of variation of data. s (s^2) can be used as the estimate of the population standard deviation (varaince), denoted by σ (σ^2)
- s is calculated in the following way:
 - O Calculate the sample mean \bar{X}
 - ② Calculate the deviation (from the sample mean) for each observation (i.e., $X_i \bar{X}$, $i = 1, \dots, n$)
 - **Square** each deviation and add them (i.e., $\sum_{i=1}^{n} (X_i \bar{X})^2$)
 - O Divide by n-1 and take the square root, that is,

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

Summarizing Numerical Data

simultaneously

 Compute s of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

Compute s of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is standard deviation a robust statistic?

Numerical Data

riables nultaneously

Visualizing Time Series.

Interquartile range (IQR)

Data Summary/Visu-

Summarizing Numerical Data

variables simultaneously

Series,
Cross-Sectional, and
Spatio-Temporal Data
sets

• IQR = $Q_3 - Q_1$, where Q_1 is the Lower Quartile (the median of the lower half of the data) and Q_3 is the Upper Quartile (the median of the upper half of the data)

 Compute the IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

Compute the IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is IQR a robust statistic?

Summarizing Numerical Data

/isualizing two rariables imultaneously

Visualizing Tim

Cross-Sectional, and Spatio-Temporal Data sets

Percentiles, Quartiles, and Boxplots

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order

Quartiles:

Summarizing Numerical Data

variables simultaneously

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size

Quartiles:

Numerical Data

rariables simultaneously

Series, Cross-Sectional, and Spatio-Temporal Data

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the $p_{\rm th}$ percentile, compute the index $i=\frac{np}{100}$ where n is the sample size
 - If *i* is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:

Summarizing
Numerical Data

rariables simultaneously

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If *i* is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - **Q**1: first quartile (25_{th} percentile)

Numerical Data

rariables simultaneously

- The p_{th} percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - Q1: first quartile (25th percentile)
 - 2 M (Q2): median (second quartile, 50th percentile)

Numerical Data

variables simultaneously

- The p_{th} percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - Q1: first quartile (25th percentile)
 - M (Q2): median (second quartile, 50_{th} percentile)
 - Q3: third quartile (75th percentile)

Numerical Data

variables simultaneously

- The p_{th} percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - Q1: first quartile (25th percentile)
 - Q M Q2): median (second quartile, 50_{th} percentile)
 - Q3: third quartile (75_{th} percentile)
 - Interquartile range or *IQR*: *Q*3 *Q*1

Numerical Data

variables simultaneously

Data Summary/Visualization

Numerical Data

Find Q_1, M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

Data Summary/Visualization

UNIVERSIT

Visualizing two variables

Visualizing Time Series, Cross-Sectional, and

Find Q_1 , M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- Find the sample size n and compute the indices for p = 25,50,75

Find Q_1, M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- Find the sample size n and compute the indices for p = 25, 50, 75
- 0 $n = 9 \Rightarrow$ the indices are 3, 5, 7 \Rightarrow $Q_1 = 13$, M = 14, $Q_3 = 16$

Find Q_1, M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- ② Find the sample size n and compute the indices for p = 25, 50, 75

Steps to Making a Boxplot

Summarizing Numerical Data

simultaneously

- Find Q₁, M, Q₃ and draw a box from Q₁ to Q₃. Add a vertical line inside the box at M
- ② Compute the value of Lower Fence (LF) = Q1 1.5IQR and the Upper Fence (UF) = Q3 + 1.5IQR. Find the largest value \leq UF and the smallest value \geq LF. Draw whiskers go from Q_1 , Q_3 to these two values
- Plot the individual outlier(s) (i.e., the values either > UF or < LF)</p>

Bopxplot

• Ordered data values: 13, 13, 13, 13, 14, 14, 16, 18, 21

Summarizing Numerical Data

Visualizing tw variables simultaneousl

Series,
Cross-Sectional, and
Spatio-Temporal Data

- **Bopxplot**
 - Ordered data values: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - IQR $16 13 = 3 \Rightarrow LF = 13 1.5 \times 3 = 8.5$; UF = $16 + 1.5 \times 3 = 20.5$

Numerical Data

Data Summary/Visualization

Summarizing Numerical Data

variables simultaneously

Series, Cross-Sectional, and

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

• Find the 35th percentile

Data Summary/Visualization

Summarizing Numerical Data

variables simultaneously

Series,

Cross-Sectional, and Spatio-Temporal Data sets

- Find the 35th percentile
 - Sort the data: 6, 9, 13, 13, 13, 14, 14, 16, 18, 18, 20, 21, 25, 27

Data Summary/Visualization

Numerical Data

variables simultaneously

Series, Cross-Sectional, and

- Find the 35th percentile
 - O Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27
 - ② Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13

Data Summary/Visualization II

Numerical Data

variables simultaneously

Series,

Cross-Sectional, and Spatio-Temporal Data sets

- Find the 35th percentile
 - Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27
 - Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13
- Find the 65th percentile

Data Summary/Visualization

Summarizing Numerical Data

variables simultaneously

Series, Cross-Sectional, and

- Find the 35th percentile
 - Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27
 - Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13
- Find the 65th percentile
 - Sort the data: 6, 9, 13, 13, 13, 14, 14, 16, 18, 18, 20, 21, 25, 27

Summarizing Numerical Data

variables simultaneously

Series, Cross-Sectional, and

- Find the 35th percentile
 - Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27
 - Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13
- Find the 65th percentile
 - Sort the data: 6, 9, 13, 13, 13, 14, 14, 16, 18, 18, 20, 21, 25, 27
 - ② Compute the index value $i = \frac{65 \times 15}{100} = 9.75 \Rightarrow$ the 65th percentile is 18

isualizing Tim

Cross-Sectional, and Spatio-Temporal Data

Visualizing two variables simultaneously

Example: O'Hare Airport Flight Data

	carrier	origin
1	UA	EWR
2	AA	LGA
3	AA	LGA
4	AA	LGA
5	UA	LGA
6	UA	EWR

In this example, we have two categorical variables, carrier and origin, respectively. How to summarize/visualize this dataset?

Summarizing Numerical Data

Visualizing two variables simultaneously

ORD Flight Data Cont'd

Data Summary/Visualization

Numerical Data

Visualizing two variables simultaneously

isualizing Time

ORD Fligts Data Cont'd

arr_delay	origin	rrier
12	EWR	UA
8	LGA	AA
14	LGA	AA
4	LGA	AA
20	LGA	UA
21	EWR	UA

In this example, we have two categorical variables, carrier, origin and a numerical variable arr_delay, respectively. How to visualize, for example, arr_delay VS. carrier?

Data Summary/Visualization

lummarizing Iumerical Data

Visualizing two variables simultaneously

isualizing Time

ORD Example: Arrival Delay vs. Air Carrier

Data Summary/Visualization

Summarizing
Numerical Data

Visualizing two variables simultaneously

isualizing Time

Example: Max Heart Rate and Age

Suppose we have 15 people of varying ages are tested for their maximum heart rate (MHR)

Summarizing Numerical Data Visualizing two

variables simultaneously Visualizing Time

Visualizing Time Series, Cross-Sectional, and Spatio-Temporal Data

- How many variables do we have in this data set? What are the variable types?
- How to summarize these variables?

Scatterplot

A scatterplot is a useful tool to graphically display the relationship between two numerical variables. Each dot on the scatterplot represents one observation from the data

Data Summary/Visualization

Numerical Data

Visualizing two variables simultaneously

sualizing Time

Visualizing two variables simultaneously

Series, Cross-Sectional, and Spatio-Temporal Data

Visualizing Time Series, Cross-Sectional, and Spatio-Temporal Data sets

Visualizing Time Series Data

Data Summary/Visualization

Summarizing Numerical Data

Visualizing two variables simultaneously

Series,
Cross-Sectional, and
Spatio-Temporal Data

Visualizing Cross-Sectional Data

Data Summary/Visualization

Summarizing
Numerical Data

Visualizing two variables simultaneously Visualizing Time

Visualizing Spatio-Temporal Data

Data Summary/Visualization

Summarizing Numerical Data

Visualizing two variables simultaneously

Visualizing Time Series, Cross-Sectional, and Spatio-Temporal Data sets

Summary

Data Summary/Visualization

umerical Data

sualizing two riables nultaneously

Series, Cross-Sectional, and Spatio-Temporal Data

In this lecture, we learned

- How to summarize numerical variable
- How to visualize two variables simultaneously
- How to visualize time series, cross-sectional, spatio-temporal data sets

We will talk about Probability in the next few weeks