Farmacologia do Sistema Nervoso Autônomo

Prof. Renaldo Moreno

O sistema nervoso coordena três funções básicas: sensorial, integrativa e motora. É formado por componentes periféricos e centrais que controlam as funções orgânicas e a integração ao meio ambiente.

Sistema Nervoso Autônomo

Sistema Nervoso Autônomo

Introdução

- O Sistema Nervoso Autônomo (SNA) tem papel central na manutenção do equilíbrio homeostático;
- Presente em quase todos os processos fisiológicos e fisiopatológicos;
- A ação de alguns fármacos no SNA interfere em muitos sistemas e situações clínicas;

Introdução

- Alguns fármacos podem aumentar ou diminuir a atividade do SNA;
- Esses efeitos podem ser desejáveis, portanto, terapêuticos ou indesejáveis (efeito adverso de medicamento usado com outro fim);
- O conhecimento da fisiologia facilita o entendimento farmacológico.

Papel Fisiológico do SNA

- Ajustes das funções vegetativas (fisiológicas).
- Relógios biológicos: ritmos circadianos, circamensais, sazonais etc.
- Simpático e parassimpático: antagônicos, mas não independentes.
- Efeitos da Estimulação Autonômica: dependem da situação e do efetor.

Papel Fisiológico do SNA

Parassimpático

Simpático

- Fibra pré-ganglionar: corpo localizado no SNC.
- Sinapse: gânglio do SNA.
- Fibra (nervo) pós-ganglionar.
- Parassimpático=craniossacral
- Simpático=toracolombar

Anatomia do SNA

- Porção cefálica do parassimpático: pares III,
 VII, IX e X.
- Porção sacral: S2, S3 e S4.
- Gânglios parassimpáticos: menores; junto ou dentro da víscera (efetor).
- Gânglios simpáticos: próximos à medula espinhal

Anatomia do SNA

- A maioria dos tecidos recebe inervação simpática e parassimpática. Alguns órgãos efetores, como a medula suprarrenal (onde há produção de adrenalina), os rins, os músculos piloeretores e as glândulas sudoríparas, recebem somente inervação do sistema simpático.
- Sistema Nervoso Entérico: inerva o trato gastrintestinal (TGI), o pâncreas e a vesícula biliar; modulado tanto pelo sistema nervoso simpático quanto pelo parassimpático. Considerado por alguns como terceira divisão SNA.

Mediação química no SNA

ACETILCOLINA (Ach)

NORADRENALINA (NA).

Mediação química no SNA

Transmissão sináptica no SNA

- Sinapse química: SNC, gânglios vegetativos e junção neuroefetora;
- Porção pré-s >>> Neurotransmissor (NT) >>>> porção pós-s
- Receptores pós-sinápticos;
- Despolarização ou Hiperpolarização;
- Despolarização >>> potencial excitatório pós-s
- Hiperpolarização (por bloqueio dos recep) >>> potencial inibitório pós-s;
- Regulação da transmissão sináptica. Pré e pós-sináptica: falta do NT x Excesso do NT;

Neurotransmissores do SNA

- NT pré-ganglionar: acetilcolina. Tanto no simpático quanto no parassimpático
- NT pós-ganglionar parassimpático: acetilcolina.
- NT pós-ganglionar simpático: noradrenalina
- Outros neurotransmissores simpáticos: dopamina e adrenalina (diretamente na circulação pela medula adrenal).

Receptores do SNA

- Para a Acetilcolina >>> Receptores nicotínicos na sinapse pré-ganglionar, tanto Simpático quanto Parassimpático.
- Para a Acetilcolina >>> Receptores
 muscarínicos na sinapse pós-ganglionar do
 Parassimpático.

Receptores do SNA

- Receptores pós-ganglionares do sistema simpático (p/noradrenalina):
- Alfa-adrenérgicos (1 e 2) α
- Beta-adrenérgicos (1 e 2) β

Principais efeitos mediados pelos α e β - adrenoceptores

- a
- Vasoconstrição
- Aumento da resistência periférica
- Aumento da pressão arterial
- Midríase
- Contração do esfincter urinário

- a
- Inibição da liberação de noradrenalina
- Inibição da liberação de insulina

Principais efeitos mediados pelos α e β - adrenoceptores

- β
- Taquicardia
- Aumento da lipólise
- Aumento de contratilidade do miocárdio

- β ;
- Vasodilatação
- Pequena diminuição da resistência periférica
- Broncodilatação
- Aumento da glicogenólise muscular e hepática
- Aumento da liberação de glucagon (horm. Hiperglicemiante)
- Relaxamento da musculatura lisa uterina

Sinapse adrenérgica

 Precursor: tirosina >>> hidroxilada em di-hidroxifenilalanina (Dopa)>>> dopamina >>> noradrenalina >>> adrenalina (suprarenal) >>> liberadas >>> parte é recaptada; parte desativada: monoamino oxidase (MAO) e catecol-orto-metil-transferase (COMT)

Sinapse colinérgica

 Colina + acetil-coenzima A >>> acetilcolina armazenada >>> liberada >>>> hidrolizada pela acetilcolinesterase.

SNA - Abordagem Farmacológica

Estimulantes e Bloqueadores Ganglionares

- Difícil aplicação clínica, porque envolvem simpático e parassimpático;
- Estimulante clássico: nicotina (ligeiro estimulante do SNC);
- Bloqueador clássico: trimetafano (antihipertensivo).

SNA - Abordagem Farmacológica

- Simpaticomiméticos;
- Antagonistas do S. Simpático (simpaticolíticos);
- Parassimpaticomiméticos (colinérgicos);
- Parassimpaticolíticos (anticolinérgicos).

Classificação dos simpaticomiméticos seg. mecanismo de ação: Estimulantes diretos dos receptores:

- - adrenalina, noradrenalina, dopamina, dobutamina, isoproterenol, agonistas beta-2 (seletivos, ex.: salbutamol. Asma; parto prematuro), fenilefrina, nafazolina etc.
- Promotores da liberação de noradrenalina: anfetaminas (protótipo) e derivados (anorexígenos), efedrina, metilfenidato (Ritalina®) etc.
- Inibidores da recaptação de noradrenalina: cocaína, imipramina etc.

- Antagonistas centrais (agonistas alfa-2)
- Bloqueadores ganglionares
- Depletivos do terminal simpático
- Bloqueadores alfa
- Bloqueadores beta (seletivos e não-seletivos)
- Bloqueadores alfa e beta

- Antagonistas centrais (agonistas alfa-2)
- Atuam diminuindo a estimulação simpática no SNC, ao se fixarem nos receptores pré-sinápticos alfa-2
- Ex.: clonidina, metildopa, guanabenzo, guanfacina etc. Geralmente, empregados no tratamento da hipertensão arterial.

- Bloqueadores ganglionares
- Atuam diminuindo tanto a estimulação simpática como parassimpática.
- O efeito predominante depende do órgão considerado.
- Ex.: trimetafano.

- Depletivos do terminal simpático
- Substituem a noradrenalina nas vesículas pré-sinápticas.
- Mas não têm atividade intrínseca, bloqueando o estímulo.
- Ex.: reserpina, guanetidina, debrisoquina, betanidina etc.

- Bloqueadores alfa-1 e alfa-2
- A maioria age por antagonismo competitivo
- Exemplo de bloqueador alfa-1 adrenérgico: prazosim: vasodilatação arteriolar e de veias, com efeitos bradicárdico e hipotensor.
- Exemplo de bloqueador alfa-2 adrenérgico: ioimbina, usado como afrodisíaco.

- Bloqueadores beta-adrenérgicos
- Não-seletivos: bloqueiam beta 1 e 2, diminuindo a estimulação cardíaca, mas interferem na musculatura lisa periférica. Ex.: propanolol, timolol etc
- Seletivos: para receptores beta-1, atenolol, metoprolol, betaxolol etc.
- Bloqueadores alfa-1e beta; ex: labetalol.

Parassimpaticomiméticos - Colinérgicos

- Diretos: que se acoplam a colinoceptores (muscarínicos e nicotínicos).
- Bradicardia, hipotensão, aumento das motilidades digestiva, biliar, urinária; secreções, broncoconstrição, miose etc. Ex.:
- 1- Esteres da colina: acetilcolina, metacolina, carbacol, betanecol etc.
- 2- Alcalóides e derivados: pilocarpina, muscarina, arecolina etc.

Parassimpaticomiméticos - Colinérgicos

- Indiretos: agem por inibição da acetilcolinesterase.
- Agentes reversíveis. De uso médico; Ex.: neostigmina, fisostigmina, edrofônio, ambemônio, demecário etc.
- Agentes irreversíveis. Inseticidas organofosforados: paration, malation, carbamatos. Gases tóxicos: tabun, sarin, somam etc. Isoflurofato (DFP).

Parassimpaticolíticos – anticolinérgicos

- São antagonistas competitivos de acetilcolina em receptores muscarínicos.
- Atropina e escopolamina são protótipos do grupo. Outros: homatropina, ciclopentolato, tropicamida, ipratrópio, propantelina etc.
- Muitos fármacos usados com outra finalidade têm efeitos anticolinérgicos: antidepressivos, ansiolíticos, antipsicóticos etc.

Parassimpaticolíticos – anticolinérgicos

- Mediadores adrenérgicos, como a noradrenalina, inibem a liberação da acetilcolina fixando-se a receptores alfa-2 pré-sinápticos.
- Morfina e outros opióides também reduzem a liberação da acetilcolina ligando-se a receptores opióides pré-sinápticos.
- Toxina botulínica: liga-se a receptor não identificado na terminação parassimpática inibindo a exocitose da acetilcolina.

Conclusões

- Papel do SNA no desencadeamento, manutenção e tratamento de doenças
- Repercussão de numerosas situações clínicas sobre o SNA
- Importância Toxicológica
- Importância para todo entendimento da Farmacologia em geral