Universidade da Beira Interior Departamento de Informática

Nº 112 - 2019: Codificação da Cor de Hologramas Digitais Usando Multivistas

Elaborado por:

Raquel Sofia Brás Guerra

Orientador:

Professora Doutora Maria Manuela Areias da Costa Pereira de Sousa

10 de Agosto de 2020

Agradecimentos

Conteúdo

Co	nteú	do			iii
Li	sta de	Figura	s		v
Li	sta de	Tabela	s		vii
1	Intr	odução			1
	1.1	Enqua	dramento	0	1
	1.2	Motiva	ação		1
	1.3	Objeti	vos		2
	1.4	Organ	ização do	Documento	2
2	Esta	do da A	rte		3
	2.1	Introd	ução		3
	2.2	Objeti	vos		3
	2.3	Perspe	etiva Histá	órica	3
	2.4	Conce	itos Base		3
		2.4.1	Hologra	fia	3
			2.4.1.1	Princípios de Holografia	3
			2.4.1.2	Representação de Dados Holográficos	4
			2.4.1.3	Reconstrução de Holograma	4
		2.4.2	Compre	ssão	4
		2.4.3	JPEG200	00	4
		2.4.4	Cor		4
			2.4.4.1	RGB	4
			2.4.4.2	YCBCR	4
	2.5	Estado	da Arte		4
	2.6	Concl	usões		6
3	Tecı	nologias	s e Ferran	nentas Utilizadas	7
	3.1	Introd	ução		7
	3.2	Secçõe	es Intermo	édias	7
	2.2	Conoli	110000		7

iv	CONTEÚDO

4	Imp	lementação e Testes	9
	4.1	Introdução	Ç
	4.2	Secções Intermédias	Ç
	4.3	Conclusões	10
5	Con	clusões e Trabalho Futuro	1
	5.1	Conclusões Principais	1
	5.2	Trabalho Futuro	1

Lista de Figuras

Lista de Tabelas

3.1	Esta é uma tabela de exemplo	7

Acrónimos

1

Introdução

1.1 Enquadramento

A história da captura, armazenamento e visualização de imagens é extremamente rica e milenar. Marcos importantes destacam-se, sendo do particular interesse no Século XXI os grandes passos dados na imagem digital.

Contudo, a vasta maioria da fotografia tem-se centrado na captura de imagens estáticas em duas dimensões. O interesse na captura e representação de objetos e momentos em três dimensões tem ganho um interesse crescente nas últimas décadas.

A área dedicada ao estudo deste modelo, a **holografia**, carece de vários marcos que já fazem parte do quotidiano da fotografia clássica, nomeadamente padrões *standardizados* para a codificação e compressão de **hologramas** em formato digital.

1.2 Motivação

Dada a referida ausência de *standards* no armazenamento e representação da informação, reconstrução e codificação de um holograma, é do interesse da comunidade do JPEG Pleno estudar os codificadores existentes para melhor perceber qual a sua adaptabilidade aos hologramas e quais as modificações necessárias para resolver a falta de padrões nos pontos mencionados.

2 Introdução

1.3 Objetivos

Tendo em mente a motivação apresentada na secção 1.2, o presente projeto tem por objetivo principal investigar o desempenho do codec JPEG2000 na codificação de hologramas a cores em multivistas.

Por seu turno, os objetivos secundários — os quais refletem as diferentes fases da investigação — são os seguintes:

- 1. Implementar um reconstrutor para hologramas com cor;
- 2. Comprimir hologramas reconstruidos com recurso ao codificador JPEG2000;
- 3. Avaliar a qualidade da imagem comprimida face ao holograma original.

Os objetivos supra-mencionados refletem o objetivo geral de estudar holografia e, assim, expandir o conhecimento na área das tecnologias multimédia.

1.4 Organização do Documento

2

Estado da Arte

2.1 Introdução

Cada capítulo <u>intermédio</u> deve começar com uma breve introdução onde é explicado com um pouco mais de detalhe qual é o tema deste capítulo, e como é que se encontra organizado (i.e., o que é que cada secção seguinte discute).

2.2 Objetivos

2.3 Perspetiva Histórica

2.4 Conceitos Base

2.4.1 Holografia

Quando um objeto é iluminado, a luz é dispersa pela superfície desse objeto, criando uma onde. Esta onda contém toda a informação sobre a luz: a amplitude define o brilho e a fase representa a forma do objeto. Enquanto as fotografias clássicas gravam apenas a intensidade da luz, um holograma preserva a fase do objeto através das características de interferência e difração da luz, guardando assim toda a informação necessária à reconstrução 3D do objeto original.

2.4.1.1 Princípios de Holografia

O principio de holografia foi descoberto em 1948 pelo físico Dennis Gabor enquanto investigava microscopia de eletrões.

4 Estado da Arte

Ao contrário da fotografia convencional, que permite a captura da intensidade da luz, holografia permite guardar a amplitude e a fase da onde de luz dispersa por um objeto. Com a iluminação correta, o holograma produz a onda de luz original, permitindo ao utilizador observar o objeto tal como se estivesse fisicamente presente.

2.4.1.2 Representação de Dados Holográficos

Os dados holográficos podem ser representados de várias formas. Embora sejam todas equivalentes no sentido em que representam o mesmo objeto, algumas tornam a compressão mais eficiente.

No âmbito deste projeto, apenas é relevante a representação no campo de onda complexo.

- Dados reais e imaginários Utiliza um sistema de coordenadas cartesiano para representar amplitudes complexas;
- Dados da amplitude e fase Os valores complexos são expressos num sistema de coordenadas polares.

Os hologramas utilizados neste projeto são representados pelo formato de amplitude-fase.

2.4.1.3 Reconstrução de Holograma

- 2.4.2 Compressão
- 2.4.3 **JPEG2000**
- 2.4.4 Cor
- 2.4.4.1 RGB
- 2.4.4.2 YCBCR

2.5 Estado da Arte

Primeira proposta para codificação digital de hologramas data 1991, Sato et al. captura franjas holográficos usando uma câmara que foram por sua vez modulados em sinal TV e transmitidos para um recetor [1]. (captured the holographic fringes using a camera, which was then modulated into a TV signal and transmitted to the receiver.);

2.5 Estado da Arte 5

Em 1993, Yoshikawa notou que não era prática a aplicação da compressão de imagem 2d diretamente no holograma. Propôs a compressão do holograma em segmentos que correspondem a diferentes perspetivas de reconstrução. Segmentos foram comprimidos com MPEG-1 e MPEG-2 [2,3]. (ver resultados)

Em 2002, Naughton et al. estudou a compressibilidade da holografia digital de mudança de fase usando vários algoritmos de compressão sem perdas [4]. Concluiram que são esperadas melhores taxas de compressão quando o holograma digital é codificado em componentes reais e imaginarias independentemente.

Em [4] foram também estudadas outras técnicas de compressão com perdas tais como subamostragem e quantificação, sendo a última muito eficaz. A eficácia da quantização tanto na simulação numérica como na ótica foi confirmada por Mills e Yamaguchi [5].

A quantização no domínio da reconstrução (não sei o que isto quer dizer) de hologramas de mudança de fase de foram analisados por Darakis and Soraghan [6].

Naughton et al. em 2003 e Darakis et al. em 2006 demonstraram que a aplicação direta de wavelets standard em hologramas não é muito eficiente, visto que as wavelets standard são tipicamente usadas no processamento de sinais com poucas variações (smooth signals). Propuseram a utilização de uma outra familia de wavelets — Fresnelets. Fresnelets foram também aplicadas em 2003 por Liveling et al. [8]

Em 2006, Seo et al. propôs comprimir segmentos do holograma usando multi-vistas e temporal prediction dentro de MPEG-2 modificado.

Em 2010 Darkis et al. Determinaram a taxa de compressão mais elevada que pode ser obtida em hologramas mantendo uma qualidade de reconstrução visualmente sem perdas. Nos seus ensaios foram usados MPEG-4 e Dirac. Na informação amplitude-fase foi aplicado um método multiple description coding utilizando máximo à posterior. Mostrou-se um mecanismo poderoso para mitigar erros no canais em hologramas digitais.

Em 2013 Blinder investigou a decomposição alternativa em hologramas off-axis. Em 2014 Still, Xing e Dufaux estudaram codificação sem perdas baseada em quantização vetorial.

Recentemente Peixeiro et al. [9] realizou um benchmark dos codificadores standard de imagens aplicados em hologramas digitais, em conjunto com os formatos de representação principais. Foram comparados os seguintes codificadores de imagem padrão JPEG; JPEG 2000; H.264/AVC intra; HEVC intra. Os autores concluiram que os melhores formatos de representação são phase-shiffted e real-imaginário

6 Estado da Arte

Em 2016, Dufaux review o estado da arte da compressão de hologramas digitais

2.6 Conclusões

Cada capítulo <u>intermédio</u> deve referir o que demais importante se conclui desta parte do trabalho, de modo a fornecer a motivação para o capítulo ou passos seguintes.

3

Tecnologias e Ferramentas Utilizadas

3.1 Introdução

Cada capítulo <u>intermédio</u> deve começar com uma breve introdução onde é explicado com um pouco mais de detalhe qual é o tema deste capítulo, e como é que se encontra organizado (i.e., o que é que cada secção seguinte discute).

3.2 Secções Intermédias

A tabela 3.1 serve apenas o propósito da exemplificação de como se fazem tabelas em LTeX.

3.3 Conclusões

Cada capítulo <u>intermédio</u> deve referir o que demais importante se conclui desta parte do trabalho, de modo a fornecer a motivação para o capítulo ou passos seguintes.

campo 1	campo 2	campo 3
14	15	16
13	13	13

Tabela 3.1: Esta é uma tabela de exemplo.

4

Implementação e Testes

4.1 Introdução

Cada capítulo <u>intermédio</u> deve começar com uma breve introdução onde é explicado com um pouco mais de detalhe qual é o tema deste capítulo, e como é que se encontra organizado (i.e., o que é que cada secção seguinte discute).

4.2 Secções Intermédias

O trecho de código seguinte mostra a função main() e o seu funcionamento:

```
#include <stdio.h>
int main() {
  int i = 0;
  for(i = 0; i < 100; i++)
    printf("%d\n",i);
}</pre>
```

Excerto de Código 4.1: Trecho de código usado no projeto.

Se quiser definir a distribuição de Pareto, posso colocar a fórmula *inline*, da seguinte forma $P(x) = \frac{x_i^{1/\Lambda}}{2}$, ou numa linha em separada, como se mostra a seguir:

$$y^2 = \sum_{x=0}^{20} (x^3 - 2x + 3).$$

Outra maneira, mas numerada, é usar o ambiente equation, como se mostra na (4.1):

$$y^2 = \sum_{x=0}^{20} (x^3 - 2x + 3). \tag{4.1}$$

$$2+2+2+2+2+2+2+2+2+2+2+y^2 = \sum_{x=0}^{20} (x^3 - 2x + 3);$$
 (4.2)

$$=x^4-2.$$
 (4.3)

4.3 Conclusões

Cada capítulo <u>intermédio</u> deve referir o que demais importante se conclui desta parte do trabalho, de modo a fornecer a motivação para o capítulo ou passos seguintes.

5

Conclusões e Trabalho Futuro

5.1 Conclusões Principais

Esta secção contém a resposta à questão:

Quais foram as conclusões princípais a que o(a) aluno(a) chegou no fim deste trabalho?

5.2 Trabalho Futuro

Esta secção responde a questões como:

O que é que ficou por fazer, e porque?

O que é que seria interessante fazer, mas não foi feito por não ser exatamente o objetivo deste trabalho?

Em que outros casos ou situações ou cenários – que não foram estudados no contexto deste projeto por não ser seu objetivo – é que o trabalho aqui descrito pode ter aplicações interessantes e porque?

Bibliografia