	"Send n to infinity" so that we sample all of the function:
Definition	$fare = \lim_{n \to \infty} \frac{1}{n} f(x_i)$
	We can simplify the PHS as follows.
	Recall that the base of each rectangle is: $\Delta x = \frac{b-a}{n} \Rightarrow \frac{1}{b-a} = \frac{Dx}{b-a}$
	Thus
	fave = to dim Z f(xi) Dx
ie.	$fave = \frac{1}{5-a} \int_{a}^{5} f(x) dx \qquad (1)$
	2
EX	Find the average of $f(x) = 2xe^{-x}$ on $[0,2]$
SJI	$fave = \frac{1}{2-0} \int_{-\infty}^{2} 2xe^{-x} dx \qquad u=x^{2}$
	$= \frac{1}{2} \int e^{-u} du \qquad \qquad x = 0 = 0 u = 0$ $x = 2 \times dx$ $x = 0 = 0 u = 0$ $x = 2 = 0 u = 0$
the state of the s	$=\frac{1}{2}\left(-e^{-t}\right)^{\frac{4}{6}}=\frac{1}{2}\left(1-e^{-t}\right)$

In fact, the previous example illustrates a theorem: Mean-value Theorem for Integrals.

If f is continuous on Ea, 5J, then 3

a c e Ea, b J s, t. f(c) = fave EX If (is continuous and , If (x) dx = 8, show that f takes on the value 4 at least once on C1,33. SU^{2} fave = $\frac{1}{3-1}$, $\int_{0}^{3} f(x)dx = \frac{1}{2} \cdot 8 = 4$ Thus, by MUT, 7 c in [1,3] s.t.

f(a) = 40 EX Final b St. fare = 3 on C0,67 where $f(x) = 2+bx-3x^2$. SI^2 fare = 3 on $C_0, bJ = 3 = \frac{1}{b} \int (2+bx-3x^2) dx$ $= \frac{1}{b} \left[2x + 6\frac{x}{2} - 3\frac{x^{3}}{3} \right] = \frac{1}{b} \left[2b + 3b^{2} - b^{3} \right]$ $b = 2 + 3b - b^{2} \Rightarrow b^{2} - 3b + 1 = 0$. $\Rightarrow b = 3 \pm \sqrt{5} \Rightarrow 0$.

*	-5	
	/	
EX	Consider: \tag=f(x)	
	a 6	
	Show that faire > f(a+b).	
	5	Some area.
Sola	fave = b-a a foodx	1
	> b-a area (1)	f(atb)
		a a+b b
		a atb b
	= 5-a area (1)	
	$=\frac{1}{5-a}\cdot f(\frac{a+b}{2})\cdot (b-a)$	
	= b-a + (2). (b-a)	
	= (/a+b)	
	+(2).	
		Ve

Т

Math 2B: Midterm # 1 Sample

This exam consists of 5 questions. Problems # 1-3 are worth 15 points each and problems # 4 and 5 are worth 20 points each. There is a total of 85 available points. Read directions for each problem carefully. Please show all work needed to arrive at your solutions. Label all graphs. Clearly indicate your final answers.

1.) a.) Estimate the area under the graph of $f(x) = x^2 + x$ from x = 0 to x = 3 using 3 approximating rectangles and left endpoints. Width of each rectangle = 1

$$1 \cdot f(0) + 1 \cdot f(1) + 1 \cdot f(2)$$

= $1 \cdot 0 + 1 \cdot 2 + 1 \cdot 6 = 8$.

b.) Estimate the area under the graph of f(x) = x - 1 from x = 0 to x = 6 using 3 rectangles and midpoint approximation method.

c.) Find an expression for the area under the graph of $f(x) = x^2 + x$ from x = 2 to x = 5 as a limit of a Riemann sum. (You do not need to evaluate.)

$$\lim_{n\to\infty} \sum_{i=1}^{5-2} \frac{5-2}{n} \cdot f(x_{i}^{*})$$

$$\lim_{n\to\infty} \sum_{i=1}^{5-2} \frac{5-2}{n} \cdot \sqrt{\frac{1}{2}} = 2+i \cdot (\frac{5-2}{n})$$

$$\lim_{n\to\infty} \sum_{i=1}^{3} \frac{3}{n} \cdot \left(2+i\frac{3}{n}\right)^{2} + (2+i\frac{3}{n})$$

2.) Evaluate each of the following indefinite integrals:

a.)
$$\int x\sqrt{3x^2-1} \, dx$$
 $u = 3x^2-1$ $du = 6x \, dx$ $\frac{1}{6} \, du = x \, dx$

$$= \int \frac{1}{6} \, \sqrt{u} \, du = \frac{1}{6} \cdot \frac{2}{3} \cdot u + C$$

$$= \left(\frac{1}{9} \left(\frac{3}{3}x^2 - 1\right)^{\frac{3}{2}} + C\right)$$

b.)
$$\int \frac{(1-\sin^2 x)}{\cos x} dx = \int \frac{\cos^2 x}{\cos x} dx = \int \cos x dx = \int \cos$$

c.)
$$\int \sin(7\theta + 5) d\theta$$
 $u = 70 + 5$ $= \frac{1}{7} \cos(u) + C$ $= \frac{1}{7} \cos(7\theta + 5) + C$

3.) a.) Find the average value of the function
$$f(x) = \tan^3 x \sec^2 x$$
 on the interval $\left[0, \frac{\pi}{4}\right]$.

a verage =
$$\frac{\pi}{4}$$
 -0 $\int_{0}^{\frac{\pi}{4}} \tan x \frac{\sec x}{7\cos^{3}x} dx$
 $u = \tan x \quad du = \sec^{2}x \, dx (4.92 LS)$
 $= \frac{4}{\pi} \int_{0}^{\frac{\pi}{4}} u^{3} du = \frac{4}{\pi} \int_{0}^{\frac{\pi}{4}} u^{3} du = \frac{4}{\pi} \frac{4}{4} \int_{0}^{1} u^{3} du = \frac{1}{\pi} \frac{4}{4}$

b.) A particle moves along a line so that its velocity at time t is v(t) = |2 - t|. Find the displacement of the particle during the time period $0 \le t \le 3$.

Displacement =
$$\int_{0}^{1} |12-t| dt$$

Atternative 31^{12}

$$|2-t| = \int_{-(2-t)}^{3-t} t < 2$$

$$\int_{-(2-t)}^{3} |12-t| dt$$

$$\int_{-(2-$$

4.) a.) Complete the blanks in the following statement of the Fundamental Theorem of Calculus.

Fundamental Theorem of Calculus:

Suppose f is continuous on [a, b]. Suppose f is continuous on [a, b]. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x). $\int_a^b f(x)dx = f(b) - f(a)$, where F is any antiderivative of f.

b.) Use the Fundamental Theorem of Calculus to evaluate the following.

- c.) Answer each of the following questions. No work or explanations are needed.
 - i.) If f(t) is measured in dollars per year and t in years, what are the units of $\int_0^{10} f(t) dt$?
 - ii.) True or False: All continuous functions have derivatives.

iii.) True or False: All continuous functions have antiderivatives.

iv.) Below is the graph of a function v(t). Let $g(x) = \int_0^x v(t)dt$.

Find each of the following:

g(0) =

owing:

$$g(2) = \frac{3}{2 + \frac{1}{2} \cdot | \cdot 2}$$
 $g'(1) = \frac{2}{f(1)}$ $g'(4) = \frac{-1}{f(1)}$

- 5.) Let S be the region bounded by $y = x^3$ and $y = \sqrt{x}$.
 - a.) Find the area of region S.

$$\int_{0}^{1} (\sqrt{x} - x^{3}) dx$$

$$= \frac{2}{3} \times \frac{3}{2} - \frac{4}{4} \Big|_{0}^{1}$$

$$=$$
 $\left(\frac{2}{3} - \frac{1}{4}\right)$

Reality check: it is positive.

b.) i.) Find the volume obtained by revolving the region S about the x axis.

$$\int_{0}^{1} \left[\left(\int_{X} \right)^{2} - \pi \left(x^{3} \right)^{2} \right] dx$$

$$= \int_{0}^{1} \left[\pi x - \pi x^{6} \right] dx$$

$$= \left[\frac{\pi x^{2}}{2} - \frac{\pi x^{2}}{2} \right]_{0}^{1}$$

$$= \left[\frac{\pi x^{2}}{2} - \frac{\pi x^{2}}{2} \right]_{0}^{1}$$

ii.) Set up an integral to find the volume obtained by revolving the region S about the y axis. (You do not need to evaluate the integral.)

$$\int_{0}^{\infty} \left[\pi \left(y^{\frac{1}{3}} \right)^{2} - \pi \left(y^{2} \right)^{2} \right] dy$$

iii.) Set up an integral to find the volume obtained by revolving the region S about the line y = 5. (You do not need to evaluate the integral.)

