# Einführung in die Geometrie und Topologie Blatt 4

#### Jendrik Stelzner

#### 20. Mai 2014

Lemma 1 (Universelle Eigenschaft des Koproduktes). Es sei I eine nichtleere Menge und  $(X_i)_{i\in I}$  eine Familie topologischer Räume. Dann besitzt das Koprodukt  $\coprod_{i\in I} X_i$  die folgende universelle Eigenschaft: Bezeichnet für alle  $j\in I$ 

$$\iota_j: X_j \to \coprod_{i \in I} X_i, x \mapsto (x, j)$$

die kanonische Inklusion, so gibt es für jeden topologischen Raum Y und jede Familie von Abbildungen  $(f_i)_{i\in I}$  mit

$$f_i: X_i \to Y$$
 für alle  $j \in I$ 

eine eindeutige Abbildung  $f:\coprod_{i\in I}X_i\to Y$ , so dass  $f_j=f\circ\iota_j$  für alle  $j\in I$ , also das Diagramm



für alle  $j \in I$  kommutiert. f ist genau dann stetig, wenn  $f_j$  für alle  $j \in I$  stetig ist.

Beweis. Dass  $f_j=f\circ\iota_j$  für alle  $j\in I$  ist offenbar äquivalent dazu, dass für alle  $(x,j)\in\coprod_{i\in I}X_i$ 

$$f((x,j)) = f(\iota_j(x)) = f_j(x).$$

Definiert man f hierdurch, so ist f offenbar wohldefiniert. Das zeigt die Existenz. Die Eindeutigkeit ist klar, da jedes Element  $y \in \coprod_{i \in I} X_i$  von der Form y = (x, j) mit  $j \in I$  und  $x \in X_j$  ist.

Ist f stetig, so ist  $f_j = f \circ \iota_j$  für alle  $j \in I$  als Verknüpfung stetiger Abbildungen ebenfalls stetig, da die Inklusion  $\iota_j$  für alle  $j \in I$  stetig ist.

Ist  $f_j$  für alle  $j \in I$  stetig, so ergibt sich die Stetigkeit von f wie folgt: Es sei  $U \subseteq Y$  offen, beliebig aber fest. Da  $f_j$  für alle  $j \in I$  stetig ist, ist  $f_j^{-1}(U) \subseteq X_j$  für alle  $j \in I$  offen. Da nach der Definition des Koproduktes eine Teilmenge  $V \subseteq \coprod_{i \in I} X_i$  genau offen ist, wenn  $\iota_j^{-1}(V) \subseteq X_j$  für alle  $j \in I$  offen ist, und

$$\iota_j^{-1}(f^{-1}(U)) = (f \circ \iota_j)^{-1}(U) = f_j^{-1}(U)$$

für alle  $j\in I$  offen ist, ist daher  $f^{-1}(U)\subseteq\coprod_{i\in I}X_i$  offen. Wegen der Beliebigkeit von U zeigt dies die Stetigkeit von f.

### Aufgabe 4.1:

1.

Es sei  $W \subseteq X \times Y$  offen und beliebig aber fest. Da

$$\{U \times V \mid U \subseteq X \text{ offen}, V \subseteq Y \text{ offen}\}$$

eine topologische Basis von  $X\times Y$  ist, gibt es offene Mengen  $\{U_i\subseteq X\mid i\in I\}$  und  $\{V_i\subseteq Y\mid i\in I\}$  mit

$$W = \bigcup_{i \in I} (U_i \times V_i).$$

Daher sind

$$p_1(W) = \bigcup_{i \in I} U_i \subseteq X \text{ und } p_2(W) = \bigcup_{i \in I} V_i \subseteq Y$$

in den jeweiligen Räumen offen. Wegen der Beliebigkeit von W folgt, dass  $p_1$  und  $p_2$  offen sind.

2.

Bekanntermaßen ist  $[0,1)\times[0,1)=[0,1)^2$ , wobei  $p_1$  und  $p_2$  den kanonischen Projektionen  $\pi_1,\pi_2:[0,1)^2\to[0,1)$  entsprechen. Diese sind nicht abgeschlossen: Es ist  $\overline{B_1((1,1))}\subseteq\mathbb{R}^2$  abgeschlossen, also auch

$$C := [0,1)^2 \cap \overline{B_1((1,1))}.$$

abgeschlossen in  $[0,1)^2$ . Da  $\pi_1(C)=\pi_2(C)=(0,1)$  nicht abgeschlossen in [0,1) ist, sind  $\pi_1$  und  $\pi_2$  nicht abgeschlossen.

3.

Da  $Y \neq \emptyset$  ist  $p_1$  surjektiv.

Es ist daher  $U \subseteq X$  genau dann offen, wenn  $p_1^{-1}(U) = U \times Y \subseteq X \times Y$  offen ist: Ist U offen, so ist klar, dass auch  $U \times Y$  offen ist. Ist andererseits  $U \times Y$  offen, so ist wegen der Offenheit und Surjektivität von  $p_1$  auch

$$U = p_1(p_1^{-1}(U)) = p_1(U \times Y)$$

offen. Da  $U\subseteq X$  genau dann offen ist, wenn  $p_1^{-1}(U)$  offen ist, ist  $p_1$  eine Quotientenraumabbildung.

# Aufgabe 4.2:

**Lemma 2.** Seien  $X_1, X_2, T_1, T_2$  topologische Räume,  $f_1: X_1 \to T_1$  und  $f_2: X_2 \to T_2$  stetige Abbildungen. Dann ist auch die Abbildung

$$f_1 \times f_2 : X_1 \times X_2 \to T_1 \times T_2, (x_1, x_2) \mapsto (f_1(x_1), f_2(x_2))$$

stetig. Sind  $f_1$  und  $f_2$  offen, so ist auch  $f_1 \times f_2$  offen.

Beweis. Wir betrachten das kommutative Diagramm



wobei  $\pi_1, \pi_2, \tau_1$  und  $\tau_2$  die entsprechenden kanonischen Projektionen bezeichnet. Da  $\tau_1 \circ (f_1 \times f_2) = f_1 \circ \pi_1$  und  $\tau_2 \circ (f_1 \times f_2) = f_2 \circ \pi_2$  stetig sind, ist es auch  $f_1 \times f_2$  (siehe Aufgabe 3).

Angenommen,  $f_1$  und  $f_2$  sind offen. Für offene Mengen  $U\subseteq X_1, V\subseteq X_2$  ist dann auch  $f_1(U)\subseteq T_1$  und  $f_2(V)\subseteq T_2$  offen, also

$$(f_1 \times f_2)(U \times V) = f_1(U) \times f_2(V) \subseteq T_1 \times T_2$$

offen. Da die Mengen der Form  $U\times V$  mit offenen Mengen  $U\subseteq X_1$  und  $V\subseteq X_2$  eine topologische Basis von  $X_1\times X_2$  bilden, zeigt dies die Offenheit von  $f_1\times f_2$ .  $\square$ 

Für alle  $j \in I$  bezeichne

$$\iota_j: X_j \to \coprod_{i \in I} X_i, x \mapsto (x, j)$$

und

$$\iota'_j: X_j \times Y \to \coprod_{i \in I} (X_i \times Y), (x, y) \mapsto ((x, y), j)$$

die entsprechenden kanonischen Inklusionen. Da  $\iota_j$  für alle  $j\in I$  stetig ist, ist nach Lemma 2 für alle  $j\in I$  auch die Abbildung

$$\iota_j \times \mathrm{id}_Y : X_j \times Y \to \left(\coprod_{i \in I} X_i\right) \times Y$$
  
 $(x, y) \mapsto ((x, j), y).$ 

stetig. Deshalb gibt es nach der universellen Eigenschaft des Koproduktes (siehe Lemma 1) eine eindeutige stetige Abbildung

$$f: \coprod_{i \in I} (X_i \times Y) \to \left(\coprod_{i \in I} X_i\right) \times Y,$$

so dass das Diagramm

für alle  $j \in I$  kommutiert. Dabei ist für alle  $j \in I$  und  $x \in X_j, y \in Y$ 

$$f(((x,y),j)) = f(\iota'_{i}(x,y)) = (\iota_{i} \times id_{Y})(x,y) = ((x,j),y).$$

f ist offen: Seien  $j \in I$  und  $U \subseteq X_j \times Y$  offen beliebig aber fest. Da  $\iota_j$  per Definition des Koproduktes offen ist, und die Identität id $_Y$  offenbar ebenfalls offen ist, ist nach Lemma 2 auch  $\iota_j \times \operatorname{id}_Y$  offen. Daher ist

$$f(U \times \{j\}) = f(\iota'_j(U)) = (\iota_j \times \mathrm{id}_Y)(U)$$

offen.

Da die Mengen der Form  $U \times \{j\} \subseteq \coprod_{i \in I} (X_i \times Y)$  mit  $j \in I$  und  $U \subseteq X_j \times Y$  offen eine topologische Basis von  $\coprod_{i \in I} (X_i \times Y)$  bilden, zeigt dies die Offenheit von f.

Da f offenbar auch bijektiv ist, zeigt dies, dass f ein Homöomorphismus ist.

### Aufgabe 4.3:

Für alle  $j \in I$  bezeichnen wir die kanonische Projektion  $\prod_{i \in I} X_i \to X_j$  mit  $\pi_j$ , und für alle  $i \in I$  setzen wir  $f_i := f \circ \pi_i$ . Ist f stetig, so ist  $f_i$  als Verknüpfung stetiger Funktionen für alle  $i \in I$  stetig.

Angenommen  $f_i$  ist für alle  $i\in I$  stetig. Für paarweise verschiedene Indizes  $i_1,\ldots,i_n\in I$  und beliebige offene Mengen  $U_1\in X_{i_1},\ldots,U_n\in X_{i_n}$  setzen wir

$$P_{i_1,\dots,i_n}^{U_1,\dots,U_n} = \prod_{i \in I} \begin{cases} U_k & \text{falls } i = i_k, \\ X_i & \text{sonst}, \end{cases} \subseteq \prod_{i \in I} X_i.$$

Da die Mengen dieser Form eine topologische Basis von  $\prod_{i \in I} X_i$  bilden, genügt es zum Nachweis der Stetigkeit von f zu zeigen, dass

$$f^{-1}\left(P_{i_1,\dots,i_n}^{U_1,\dots,U_n}\right) \subseteq T$$

offen ist für alle paarweise verschiedenen Indizes  $i_1,\ldots,i_n\in I$  und beliebige offene Mengen  $U_1\in X_{i_1},\ldots,U_n\in X_{i_n}.$ 

Seien also  $i_1, \ldots, i_n$  und  $U_1, \ldots, U_n$  wie zuvor beliebig aber fest. Wir bemerken, dass

$$P_{i_1,\dots,i_n}^{U_1,\dots,U_n} = \bigcap_{k=1}^n \pi_{i_k}^{-1}(U_k),$$

und deshalb

$$f^{-1}\left(P_{i_1,\dots,i_n}^{U_1,\dots,U_n}\right) = f^{-1}\left(\bigcap_{k=1}^n \pi_{i_k}^{-1}(U_k)\right) = \bigcap_{k=1}^n (\pi_{i_k} \circ f)^{-1}(U_k) = \bigcap_{k=1}^n f_{i_k}^{-1}(U_k).$$

Da  $U_k$  für alle  $1 \leq k \leq n$  offen ist, und die  $f_i$  alle stetig sind, ist  $f_{i_k}^{-1}(U_k)$  für alle  $1 \leq k \leq n$  offen, also  $f^{-1}(P_{i_1,\dots,i_n}^{U_1,\dots,U_n})$  als endlicher Schnitt offener Mengen offen. Wegen der Beliebigkeit von  $i_1,\dots,i_n$  und  $U_1,\dots,U_n$  zeigt dies die Stetigkeit von f.

## Aufgabe 4.4:

Lemma 3. Seien X', X, Y, Y' topologische Räume und f, g, h, k stetige Abbildungen mit

$$\begin{split} f: X &\to Y, \\ g: X &\to Y, \\ h: X' &\to X \ \textit{und} \\ k: Y &\to Y'. \end{split}$$

Ist  $f \simeq g$ , so ist auch  $fh \simeq gh$  und  $kf \simeq kg$ .

Beweis. Sei

$$F: X \times [0,1] \to Y$$

eine Homotopie mit F(x,0)=f(x) und F(x,1)=g(x) für alle  $x\in X.$  Da h und id $_{[0,1]}$  stetig sind, ist nach Lemma 2 auch

$$h \times id_{[0,1]} : X' \times [0,1] \to X \times [0,1].$$

stetig. Daher ist auch die Verknüpfung

$$F_h := F \circ (h \times id_{[0,1]}) : X' \times [0,1] \to Y$$

stetig, also eine Homotopie. Für alle  $x' \in X'$  ist

$$F_h(x',0) = F(h(x'),0) = f(h(x')) = (fh)(x')$$
 und  
 $F_h(x',1) = F(h(x'),1) = g(h(x')) = (gh)(x').$ 

Das zeigt, dass  $fh \simeq gh$ .

Da k und F stetig sind, ist auch die Verknüpfung

$$F_k := k \circ F : X \times [0,1] \to Y'.$$

stetig, also eine Homotopie. Für alle  $x \in X$  ist

$$F_k(x,0) = k(F(x,0)) = k(f(x)) = (kf)(x)$$
 und  $F_k(x,1) = k(F(x,1)) = k(g(x)) = (kg)(x)$ .

Das zeigt, dass  $kf \simeq kg$ .

Zunächst nehmen wir an, dass  $\varphi:X\to Y$  ist eine Homotopieäquivalenz ist, d.h. es gibt eine stetige Abbildung  $\psi:Y\to X$ , so dass

$$\psi \varphi \simeq \mathrm{id}_X \quad \text{ und } \quad \varphi \psi \simeq \mathrm{id}_Y \,.$$

Sei K ein beliebiger topologischer Raum und

$$\varphi_*: [K, X] \to [K, Y], [f] \mapsto [\varphi f].$$

 $\varphi_*$  ist wohldefiniert, denn für stetige Abbildungen  $f,g:K\to X$  mit ist  $f\simeq g$  ist nach Lemma 3 auch  $\varphi f\simeq \varphi g$ . Analog definieren wir

$$\psi_*: [K, Y] \to [K, X], [g] \mapsto [\psi g].$$

Da  $\psi\varphi\simeq\operatorname{id}_X$ ist nach Lemma 3

$$\psi \varphi f \simeq \operatorname{id}_X f = f$$
 für alle  $f: K \to X$ ,

und da  $\varphi\psi\simeq\operatorname{id}_Y$ ist nach Lemma 3

$$\varphi \psi g \simeq \operatorname{id}_Y g = g$$
 für alle  $g: K \to Y$ .

Also ist

$$\begin{split} (\psi_*\varphi_*)([f]) &= [\psi\varphi f] = [f] \text{ für alle } [f] \in [K,X] \text{ und } \\ (\varphi_*\psi_*)([g]) &= [\varphi\psi g] = [g] \text{ für alle } [g] \in [K,Y]. \end{split}$$

Das zeigt, dass  $\varphi_*$  bijektiv ist, und dass  $\psi_* = \varphi_*^{-1}$ .

Nun nehmen wir an, dass  $\varphi:X\to Y$  stetig ist und für jeden topologischen Raum K die induzierte Abbildung

$$\varphi_*^K : [K, X] \to [K, Y], [f] \mapsto [\varphi f].$$

eine Bijektion ist. Wegen der Surjektivität von  $\varphi_*^Y$ existiert eine stetige Abbildung  $\psi:Y\to X$ mit

$$\varphi_*^Y(\psi) = [\varphi\psi] = [\mathrm{id}_Y],$$

also  $\varphi\psi\simeq\operatorname{id}_Y$ . Da  $\varphi\psi\simeq\operatorname{id}_Y$  ist nach Lemma 3

$$\varphi_*^X([\psi\varphi]) = [\varphi\psi\varphi] = [\varphi] = \varphi_*^X([\mathrm{id}_X]),$$

wegen der Injektivität von  $\varphi^X_*$  also  $[\psi\varphi]=[\mathrm{id}_X]$  und deshalb  $\psi\varphi\simeq\mathrm{id}_X$ . Das zeigt, dass  $\varphi$  eine Homotopieäquivalenz ist.