1. ABC ਇੱਕ ਸਮਦੋਭੁਜੀ ਤ੍ਰਿਭੁਜੀ ਹੈ, ਜਿਸਦਾ ਕੋਣ C ਸਮਕੋਣ ਹੈ। ਸਿੱਧ ਕਰੋ $AB^2=2AC^2$

[Ex 6.5, Q4]

ਹੱਲ: ΔABC ਵਿੱਚ AC = BC i)

ਪਾਈਥਾਗੋਰਸ ਥਿਉਰਮ ਦੁਆਰਾ,

$$AB^2 = AC^2 + BC^2 = AC^2 + AC^2$$
 (i) $\exists \vec{s}$

$$\Rightarrow$$
 AB² = 2AC²

2. ਸਿੱਧ ਕਰੋ ਕਿ ਇੱਕ ਸਮਚਤੁਰਭੁਜ ਦੀਆਂ ਭੁਜਾਵਾਂ ਦੇ ਵਰਗਾਂ ਦਾ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। [Ex 6.5, Q7] ਹੱਲ: ABCD ਇੱਕ ਸਮਚਤੁਰਭੁਜ ਹੈ ਅਤੇ ਇਸਦੇ ਵਿਕਰਨ AC ਅਤੇ BD ਆਪਸ ਵਿੱਚ ਬਿੰਦੂ 0 ਤੇ 90 ਦੇ ਕੋਣ ਤੇ ਸਮਦਭਾਜਿਤ ਕਰਦੇ ਹਨ।

∧OAB ਵਿੱਚ

$$AB^{2} = OA^{2} + OB^{2} = \left(\frac{AC}{2}\right)^{2} + \left(\frac{BD}{2}\right)^{2} \qquad \begin{cases} As \ OA = OC, AC = 2OA \\ \text{w} \ \exists \ OB = OD, BD = 2OB \end{cases}$$
$$= \frac{AC^{2}}{4} + \frac{BD^{2}}{4}$$
$$\Rightarrow 4AB^{2} = AC^{2} + BD^{2}$$
$$\forall AB^{2} + BC^{2} + CD^{2} + AD^{2} = AC^{2} + BD^{2}$$

3. $\triangle ABC$ ਵਿੱਚ $\angle C = 90^{0}$ ਦੀਆਂ ਭੁਜਾਵਾਂ CA ਅਤੇ CB ਤੇ ਕ੍ਰਮਵਾਰ ਬਿੰਦੂ D ਅਤੇ E ਸਥਿਤ ਹਨ। ਸਿੱਧ ਕਰੋ ਕਿ $AE^{2} + BD^{2} = AB^{2} + DE^{2}$ [Ex 6.5, Q13]

ਹੱਲ: {ਜੋ ਸਿੱਧ ਕਰਨਾ ਹੈ ਉਸ ਦੇ ਅਨੁਸਾਰ ਸਮਕੋਣ ਤਿਕੋਣਾਂ ਲਓ, ਭਾਵ ਖੱਬੇ ਪਾਸੇ ਵਿੱਚ AE^2 ਲਈ $\overline{\Delta}ACE$, BD^2 ਲਈ ΔBDC , ਸੱਜੇ ਪਾਸੇ ਵਿੱਚ AB^2 ਲਈ ΔABC , DE^2 ਲਈ ΔCDE ਲਈ ਜਾਵੇ}

ਸਮਕੋਣੀ
$$\Delta ACE$$
 ਵਿੱਚ $AE^2 = AC^2 + CE^2$ i)
ਸਮਕੋਣੀ ΔBDC ਵਿੱਚ $BD^2 = BC^2 + CD^2$ ii)
ਦੋਹਾਂ ਨੂੰ ਜੋੜਨ 'ਤੇ
$$AE^2 + BD^2 = (AC^2 + CE^2) + (BC^2 + CD^2)$$
$$= (AC^2 + BC^2) + (CE^2 + CD^2)$$
$$= AB^2 + CD^2$$

4. BL ਅਤੇ CM ਇੱਕ ਸਮਕੋਣ ΔABC ਦੀਆਂ ਮੱਧਿਕਾਵਾਂ ਹਨ ਅਤੇ ਇਸ ਤ੍ਰਿਭੁਜ਼ ਦਾ A ਸਮਕੋਣ ਹੈ। ਸਿੱਧ ਕਰੋ $4(BL^2+CM^2)=5BC^2$ [Example 13]

ਹੱਲ: $\triangle ABC$ ਵਿੱਚ $\angle A = 90^\circ$, BL, CM ਮੱਧਿਕਾਵਾਂ ਹਨ,

$$\therefore AM = BM = \frac{1}{2}AB, AL = LC = \frac{1}{2}AC \dots \dots i)$$

ਹੁਣ,
$$\triangle ABL$$
, ਵਿੱਚ $BL^2 = AB^2 + AL^2 \dots \dots ii$)

$$\Delta$$
AMC, ਵਿੱਚ $CM^2 = AM^2 + AC^2 \dots \dots \dots$ iii)

$$BL^{2} + CM^{2} = AB^{2} + AL^{2} + AM^{2} + AC^{2}$$

$$= AB^{2} + \left(\frac{AC}{2}\right)^{2} + \left(\frac{AB}{2}\right)^{2} + AC^{2} \qquad \text{{[by i)]}}$$

$$= AB^{2} + \frac{AC^{2}}{4} + \frac{AB^{2}}{4} + AC^{2} = \frac{4AB^{2} + AC^{2} + AB^{2} + 4AC^{2}}{4}$$

$$= \frac{5AB^{2} + 5AC^{2}}{4} = \frac{5(AB^{2} + AC^{2})}{4} = \frac{5}{4}BC^{2}$$

$$\Rightarrow 4(BL^{2} + CM^{2}) = 5BC^{2}$$