Universidad Nacional Arturo Jauretche

Lenguajes Formales y Autómatas

RAZONAMIENTO FORMAL

Cuestionario nº 1

Autor Emiliano Salvatori Supervisor Ing. Jorge Rafael Osio

19 de abril de 2021

Índice

1.	Intr	oducción
2.	Ejer	rcicios
	2.1.	Ejercicio nº 1
		Ejercicio nº 2
	2.3.	Ejercicio nº 3
3.	Rese	oluciones
	3.1.	Ejercicio nº 1
	3.2.	Ejercicio nº 2
	3.3.	Ejercicio nº 3

1. Introducción

En el siguiente trabajo se detalla lo realizado como parte del primer cuestionario de la materia **Lenguajes Formales y Autómatas** para la **Comisión nº 1**.

2. Ejercicios

2.1. Ejercicio nº 1

Si se asume $P \to Q$ como verdadera, ¿cuáles serían los valores de verdad para la siguiente Fórmula bien formada?

$$\neg P \to Q \land R$$

2.2. Ejercicio nº 2

Escribir la siguiente Fórmula Bien Formada en Forma Normal Disyuntiva:

$$\neg((P \to Q) \land (Q \to R))$$

2.3. Ejercicio nº 3

Sabiendo que las siguientes proposiciones son verdaderas:

$$((A \lor B) \to (B \land C))$$

$$A \vee B$$

¿Qué regla de inferencia se puede aplicar y qué se puede concluir?

3. Resoluciones

3.1. Ejercicio nº 1

Tenemos la siguiente aseveración:

$$P \rightarrow Q \implies Verdadero$$

Ahora bien, evaluamos los valores de verdad de la siguiente tabla de la **implicación**:

P	Q	$P \rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

Como la condición es que $P \to Q \implies V$ entonces nos quedamos con aquellos valores que hagan a la implicación verdadero, es decir, con los siguientes valores:

P	Q	$P \rightarrow Q$
V	V	V
F	V	V
F	F	V

Ahora bien, queremos establecer los valores de verdad para la siguiente preposición:

$$\neg P \to Q \land R$$

Como en la preposición, la letra P se encuentra negada, nos centramos en los valores **Falsos** de la anterior tabla, es decir:

P	Q	$P \rightarrow Q$
F	V	V
F	F	V

Ahora que ya tenemos los valores establecidos para $P \to Q$ podemos generar la tabla de verdad para la preposición propuesta:

$\neg P$	Q	R	$Q \wedge R$	$\neg P \to (Q \land R)$
F	V	V	V	V
F	V	F	F	V

3.2. Ejercicio nº 2

Tenemos la siguiente Fórmula Bien Formada (FBF):

$$\neg((P \to Q) \land (Q \to R))$$

Vemos a simple vista que los términos están distribuidos de tal manera que con aplicar algunas propiedades, nos podría quedar la *Forma Normal Disyuntiva*, por lo que procedemos:

$$\begin{split} \neg((P \to Q) \land (Q \to R)) \\ \neg(P \to Q) \lor \neg(Q \to R)) \\ \neg(\neg P \lor Q) \lor \neg(\neg Q \lor R) \\ (\neg \neg P \land \neg Q) \lor (\neg \neg Q \land \neg R) \\ (P \land \neg Q) \lor (Q \land \neg R) \\ \end{pmatrix} & \text{3. Aplicamos De Morgan} \\ \text{4. Obtenemos FND} \end{split}$$

Podemos observar que la Forma Normal Disyuntiva obtenida es la del punto nº 4.

3.3. Ejercicio nº 3

Se tienen las siguientes preposiciones verdaderas:

$$((A \vee B) \to (B \wedge C))$$

$$A \vee B$$

Desarrollamos la tabla de verdad de la **Implicación**, centrándonos en los valores que la hacen verdadera:

$(A \lor B)$	$(B \wedge C)$	$(A \vee B) \to (B \wedge C)$
V	V	V
F	V	V
F	F	V

Ahora bien, si evaluamos en la tabla anterior la preposición $A \vee B$ como verdadera, se obtiene el único valor posible para tales condiciones, siendo el siguiente:

$(A \lor B)$	$(B \wedge C)$	$(A \vee B) \to (B \wedge C)$	
V	V	V	

Bibliografía

[1] James L. Hein. Discrete Structures, Logic And Computability. Jones y Bartlett, 1995.