Corrigés des exercices Ensembles et applications

N'hésitez pas à m'envoyer un mail si vous avez des questions. 1

1 Ensembles

Exercice 1. Echauffements I (\star)

Soit E un ensemble. Que dire de deux sous-ensembles A et B de E tels que $A \cup B = A \cap B$?

Solution de l'exercice 1.

Faire un dessin pour se convaincre que dans une telle situation, A=B. Montrons que c'est bien le cas. Pour ce faire, nous allons utiliser une technique très importante : la double inclusion. Le principe est d'utiliser l'équivalence suivante : A=B équivaut à $A\subseteq B$ et $B\subseteq A$. On peut donc montrer le second pour en déduire le premier.

Montrons que $A \subseteq B$. Par définition de l'inclusion, nous devons donc montrer que :

Pour tout $a \in A$, on a que $a \in B$.

Soit $a \in A$. Par définition de l'union, an a alors que $a \in A \cup B$. Or, $A \cup B = A \cap B$, donc $a \in A \cap B$. Par définition de l'intersection, on a alors $a \in B$. Conclusion: Pour tout $a \in A$, on a que $a \in B$, donc $A \subseteq B$.

Montrons que $B \subseteq A$. L'énoncé est symétrique en A et B, et $A \subseteq B$, donc $B \subseteq A$.

Conclusion : On a bien montré que $A \subseteq B$ et $B \subseteq A$, i.e A = B.

^{1.} vadim.lebovici@ens.fr