Introduction to Hypothesis Testing

- 1. One-sample Student t-test
 - 2. Test for paired data
- 3. Two-sample Student t-test

Valeria Vitelli
Oslo Centre for Biostatistics and Epidemiology
Department of Biostatistics, UiO
valeria.vitelli@medisin.uio.no

MF9130E – Introductory Course in Statistics 26.04.2023

One-sample Student t-test

One-sample Student t-test (shortly, one sample t-test)

• The one-sample Student t-test is one of the most frequently applied tests in statistics. It is used to test a certain hypothesis about the unknown population mean μ

Background

- The t-test was devised by William Sealy Gosset, working for Guinness brewery in Dublin, to cheaply monitor the quality of stout
- Published in Biometrika in 1908 under the pen name "Student" as Guinness regarded the fact that they used statistics a trade secret

P-value

Definition

The probability that the observed result, or a result more extreme, is true, given H_0 is true.

Then:

- The p-value is a measure of how likely our observed result is, under the H_0 assumption.
- If the p-value is small, then what we have observed is rare under H₀, which means we have evidence against it.
- p-values are used to evaluate the hypothesis test result, in terms of the strength of the evidence that the test provides.

P-value

The one sample t-test: an example

- 30 measures of lactate dehydrogenase (LD)
- **Question**: $\mu = 105$?
- **Test:** H_0 : $\mu = 105$, H_a : $\mu > 105$
- We know that if H_0 is true, then

$$T_0 = rac{ar{X} - \mu_0}{s/\sqrt{n}}
ightarrow t(n-1),$$

 T_0 is called **test statistic**

- For our example: $T_0 = \frac{108.8 105}{7.88 / \sqrt{30}} = 2.64$
- When would you reject the null hypothesis? Two options:
 - when T_0 is large, meaning when $T_0 > t_{n-1,\alpha}$, **OR**
 - when $p < \alpha$
- In our example: $T_0 = 2.64 > t_{29.0.05} = 1.699 \rightarrow \text{Rejection}$
- When the test is **two-sided** (H_a : $\mu \neq 105$), use $t_{29,0.05} = 2.04$

How to get the P-value

- If two-sided test: $p = 2P_{H_0}(t > |T_0|)$
- R or other statistical softwares produce the p-value automatically

Paired data

Paired measurements

- In medical settings we often deal with **paired measurements**, which is two outcomes measured on
 - the same individual under different exposure (or treatment) circumstances
 - two individuals matched by certain key characteristics
- The pairing in the data is taking into account by considering the differences between each pair of outcome observations. In that way the data are turned into a single sample of differences

Paired measurements

2 measures of each individual (for example before/after treatment)

Individual	Measure 1	Measure 2
1	X ₁₁	X ₁₂
2	X ₂₁	X ₂₂
3	X ₃₁	X ₃₂

Example: 7.3 in Kirkwood & Sterne

We consider the results of a **clinical trial** to test the effectiveness of a sleeping drug. The sleep of ten patients was observed during one night with the **drug** and one night with **placebo**. For each patient a *pair* of sleep times, was recorded and the *difference* between these calculated

Hours of sleep				
Patient	Drug	Placebo	Difference	
1	6.1	5.2	0.9	
2	6.0	7.9	-1.9	
3	8.2	3.9	4.3	
4	7.6	4.7	2.9	
5	6.5	5.3	1.2	
6	5.4	7.4	-2.0	
7	6.9	4.2	2.7	
8	6.7	6.1	0.6	
9	7.4	3.8	3.6	
10	5.8	7.3	-1.5	
Mean	$\bar{X}_1 = 6.66$	$\bar{X}_0 = 5.58$	$\bar{X} = 1.08$	

The observed **mean difference** in sleep time was $\bar{X}=1.08$ hours, and the empirical **standard deviation** of the differences was s=2.31. The estimated **standard error** of the differences is $s/\sqrt{n}=2.31/\sqrt{10}=0.73$ hours

A 95% **confidence interval** for the mean difference in sleep time in the population is given by

$$(1.08 - 2.26 \times 0.73, 1.08 + 2.26 \times 0.73) = (-0.57, 2.73),$$

where 2.26 is the two-sided $\mathbf{5\%}$ point of the t distribution with (n-1)=9 degrees of freedom

The **mean difference** in sleep time was $\bar{X}=1.08$ hours, and the estimated **standard error** was $s/\sqrt{n}=0.73$ hours. The **test statistic** is given by

$$t = 1.08/0.73 = 1.48,$$

which is t distributed with (n-1)=9 degrees of freedom when the null hypothesis of no effect is true. The corresponding P-value, which is the probability of getting a t value with a size as large as this or larger in a t distribution with 9 degrees of freedom, is

$$p = 0.17$$

So, there is no evidence against the null hypothesis that the drug does not affect sleep time

Two sample t-test

So far...

- Tests and confidence intervals for
 - ► Single sample
 - Paired samples
- We know how to test (the procedure)

Now:

• Test for the difference in the mean of two independent samples

The data: two different settings. Now focus on situation 2

1 Paired data: 2 measures of each individual (for example before/after treatment)

Individual	Measure 1	Measure 2
1	X ₁₁	X ₁₂
2	X ₂₁	X ₂₂
3	X ₃₁	X ₃₂

2 groups: 1 measure of each individual, each which corresponds to a group (for example sick/healthy people)

Group 1		Group 2	
Ind.	Measure	Ind.	Measure
1	X ₁₁	1	X ₁₂
2	X ₂₁	2	X ₂₂
		14	X ₁₄₂
15	X _{15 1}		

The two sample t-test

• The **null hypothesis** is given by

$$H_0: \mu_1 = \mu_0 \quad \text{or} \quad H_0: \mu_1 - \mu_0 = 0,$$

i.e. there is *no difference between the population means* in the two groups

• The test statistic is given by

$$t = \frac{\bar{X}_1 - \bar{X}_0}{s\sqrt{(1/n_1 + 1/n_0)}},$$

which follow a t distribution with $(n_1 + n_0 - 2)$ degrees of freedom. Here, s is the common estimate of the population standard deviation:

$$s = \sqrt{\left[\frac{(n_1 - 1)s_1^2 + (n_0 - 1)s_0^2}{n_1 + n_0 - 2}\right]}$$

Example: 7.2 in Kirkwood & Sterne

We return to the data of **birth weights**. The **test statistic** is given by

$$t = \frac{3.1743 - 3.6267}{0.4121\sqrt{(1/14 + 1/15)}} = -\frac{0.4524}{0.1531} = -2.95$$

The corresponding **P-value** calculated from the t distribution with (14+15-2)=27 degrees of freedom is given as:

$$p = 0.006$$

Therefore, the data suggest that smoking during pregnancy reduces the birthweight of the baby

Test statistic

• In the one sample t-test we had

$$T = \frac{\bar{X}_n - \mu_0}{s} \sqrt{n}$$

• Now $T = \frac{\bar{X}_1 - \bar{X}_2}{s_p} \sqrt{n_p}$

 S_p is the pooled standard deviation $\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}$ and

$$n_p = \frac{n_1 \cdot n_2}{n_1 + n_2}.$$

Test statistic (cont.)

- $T \sim t_{n_1+n_2-2}$ under the null hypothesis H_0
- Rejection and conclusion:

H ₀	$\mu_1 = \mu_2$
Rejection, if	 T₀ large
Rejection, if	$P = 2 P_{H_0}(t > T_0) < \alpha$
Conclusion	$\mu_1 \neq \mu_2$

Small samples, unequal standard deviations

- When the population standard deviations, σ_1 and σ_0 , of the two groups are different, and the sample size, n, is not large, the main possibilities are:
 - Use a transformation on the data which makes the standard deviations similar so that methods based on the t distribution can be used
 - Use non-parametric methods based on ranks
 - ► Use either the **Fisher-Behrens** or the **Welch** tests, which allow for unequal deviations
 - Estimate the difference between the means using the original measurements, but use **bootstrap** methods to derive confidence intervals

How to check for normal distribution

- Box-plot
- Histograms
- Q-Q plot

What if the data does not look normal?

- Try to find a meaningful transformation
- Use a test which does not assume normally distributed data
- \rightarrow Lecture on transformations and non-parametric methods in day 1 of week 2