

Vorlesung "Logik"

10-201-2108-1

8. PL1 - Normalformen

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

12. Juni 2025 Leipzig

In der letzten Vorlesung

Koinzidenzlemma
Erfüllbarkeit, Tautologien und Co.
Semantische Äquivalenz
Ersetzungstheorem
Folgerung

Fahrplan für diese Vorlesung

Substitution und Überführung Gebundene Umbenennung Negationsnormalform Pränexnormalform Skolemnormalform

Negationsnormalform

Definition

Eine Formel ϕ ist in Negationsnormalform (NNF), sofern Negationen nur vor atomaren Formeln stehen.

$$\forall x \neg \exists y \ (\neg R(f(x), c) \lor \neg (P(x) \land \neg Q(d))) \quad \times \\ \forall x \exists y \ (\neg R(f(x), c) \lor (P(x) \land \neg Q(d))) \qquad \checkmark$$

Proposition

Zu jeder Formel ϕ existiert eine Formel ψ , sodass:

- $\Phi \equiv \psi$, und
- 2 ψ ist in Negationsnormalform.

Beweis: Benutze
$$\neg\neg\phi$$
 $\equiv \phi$ $\neg(\phi \land \psi)$ $\equiv \neg\phi \lor \neg\psi$ $\neg(\phi \lor \psi)$ $\equiv \neg\phi \land \neg\psi$ $\neg\forall x \phi$ $\equiv \exists x \neg\phi$ $\neg\exists x \phi$ $\equiv \forall x \neg\phi$

Substitution

ersetzen einer freien Variable durch einen Term

Definition (für Terme)

Sei $x \in \mathcal{V}$ und $t \in \mathcal{T}$. Wie definieren die Substitution [x/t], $[x/t] : \mathcal{T} \to \mathcal{T}$ mit $s \mapsto s[x/t]$ rekursiv durch:

① für $y \in \mathcal{V}$:

$$y[x/t] = \begin{cases} t & \text{falls } y = x \\ y & \text{sonst} \end{cases}$$

- 2 für $c \in C : c[x/t] = c$
- **③** für $f \in \mathcal{F}$, $ar(f) = n \ge 1$ und $t_1, \ldots, t_n \in \mathcal{T}$:

$$f(t_1,\ldots,t_n)[x/t]=f(t_1[x/t],\ldots,t_n[x/t])$$

$$f(x, y, g(x))[x/h(z)] = f(h(z), y, g(h(z)))$$

(rein syntaktisches ersetzen)

Substitution

Definition (für Formeln)

Sei $x \in \mathcal{V}$ und $t \in \mathcal{T}$. Wir definieren die Substitution [x/t], $[x/t]: \mathcal{F} \to \mathcal{F}$ mit $\phi \mapsto \phi[x/t]$ rekursiv durch:

• Für atomare Formeln $P(t_1, \ldots, t_n)$:

$$P(t_1,...,t_n)[x/t] = P(t_1[x/t],...,t_n[x/t])$$

für klassische Junktoren:

$$(\varphi \circ \psi)[x/t] = \varphi[x/t] \circ \psi[x/t] \quad \text{wobei } \circ \in \{\land, \lor\}$$
$$(\neg \varphi)[x/t] = \neg(\varphi[x/t])$$

Für Quantoren Q ∈ {∀,∃}:

$$(Qy \varphi)[x/t] = \begin{cases} Qy \varphi & \text{falls } y = x \\ Qy \varphi[x/t] & \text{sonst} \end{cases}$$

$$(\forall y (P(x,y) \lor R(h(x))) \land \forall x (P(h(x),c))) [x/h(z)]$$

$$= \forall y (P(h(z),y) \lor R(h(h(z)))) \land \forall x (P(h(x),c))$$
Scabs All & Scabs Al

Überführungslemma

 syntaktische Ersetzung innerhalb der Formeln vs. punktuelle Änderung der Belegung

Lemma

Sei $\mathfrak A$ eine Struktur, β eine Belegung, x eine Variable, t ein Term und ϕ eine Formel. Sofern $var(t) \cap geb(\phi) = \emptyset$, dann:

$$(\mathfrak{A},\beta) \left(\phi[x/t]\right) = \left(\mathfrak{A},\beta_{[x\mapsto\beta(t)]}\right) \left(\phi\right)$$

Warum darf t keine Variablen enthalten, die in ϕ gebunden sind?

- betrachte $U^{2} = \mathbb{N}$, $P^{2} = \{(n, m) \mid n < m\}$, $\beta(x) = 2$, $\beta(y) = 0$
- für $\phi = \exists y P(x, y)$ ist $\phi[x/y] = \exists y P(y, y)$
- offensichtlich gilt: (\mathfrak{A},β) $(\phi[x/y]) = (\mathfrak{A},\beta)$ $(\exists y P(y,y)) = 0$, da keine natürliche Zahl echt kleiner als sich selbst
- aber: $(\mathfrak{A}, \beta_{[x \mapsto \beta(y)]})(\phi) = (\mathfrak{A}, \beta_{[x \mapsto 0]})(\exists y P(x, y)) = 1$, da beispielsweise 0 echt kleiner als 2

Gebundene Umbennung

Lemma (Gebundene Umbennung)

Sei ϕ ein Formel und $y \notin var(\phi)$. Dann gilt:

$$\forall x \phi \equiv \forall y \phi [x/y] \quad und \quad \exists x \phi \equiv \exists y \phi [x/y]$$

- Variable darf weder gebunden, noch frei vorkommen
- Beispiele:

$$\forall x \underbrace{P(x,z)}_{\phi} \equiv \forall y P(y,z) = \forall y P(x,z)[x/y] \checkmark \qquad (y \notin var(\phi))$$

$$\forall x \underbrace{P(x,y)}_{\phi} \not\equiv \forall y P(y,y) = \forall y P(x,y)[x/y] \times \qquad (y \in frei(\phi))$$

$$\forall x \underbrace{\exists y P(x,y)}_{\phi} \not\equiv \underbrace{\forall y \exists y P(y,y)}_{\equiv \exists y P(y,y)} = \forall y (\exists y P(x,y))[x/y] \times \qquad (y \in geb(\phi))$$

 mit Hilfe des Lemmas können wir erreichen, daß keine Variable gleichzeitig gebunden und frei vorkommt

Gebundene Umbennung

Lemma (Gebundene Umbennung)

Sei ϕ ein Formel und $y \notin var(\phi)$. Dann gilt:

$$\forall x \phi \equiv \forall y \phi[x/y] \quad und \quad \exists x \phi \equiv \exists y \phi[x/y]$$

Beweis: Gegeben Interpretation
$$(\mathfrak{A},\beta)$$
. Es gilt (\mathfrak{A},β) ($\forall x\,\phi$) = 1 gdw. für alle $a\in U^{\mathfrak{A}}$ gilt $(\mathfrak{A},\beta_{[x\mapsto a]})$ (ϕ) = 1 (Semantik) gdw. für alle $a\in U^{\mathfrak{A}}$ gilt $(\mathfrak{A},(\beta_{[y\mapsto a]})_{[x\mapsto a]})$ (ϕ) = 1 (Koinz.-lemma) gdw. für alle $a\in U^{\mathfrak{A}}$ gilt $(\mathfrak{A},(\beta_{[y\mapsto a]})_{[x\mapsto \beta_{[y\mapsto a]}(y)]})$ (ϕ) = 1 $(a=\beta_{[y\mapsto a]}(y))$ gdw. für alle $a\in U^{\mathfrak{A}}$ gilt $(\mathfrak{A},\beta_{[y\mapsto a]})$ ($\phi[x/y]$) = 1 (Überf.-lemma) gdw. (\mathfrak{A},β) ($\forall y\,\phi[x/y]$) = 1 (Semantik)

Bereinigte Form

Definition

Eine Formel ϕ heißt bereinigt, sofern $frei(\phi) \cap geb(\phi) = \emptyset$, und alle Quantoren binden verschiedene Variablen.

$$\forall x \ (R(x,c) \land P(y)) \lor \exists y \ \forall x \ (P(x) \land \neg Q(y)) \times \\ \forall x \ (\neg R(f(x),z) \lor \exists y \ (P(x) \land \neg Q(y))) \checkmark$$

Proposition

Zu jeder Formel ϕ existiert eine Formel ψ , sodass:

- $\bullet = \psi$, und
- $\mathbf{Q} \ \psi$ ist bereinigt.

Beweis: Systematisches Umbenennen gebundener Variablen.

$$\forall x \ (R(x,c) \land P(y)) \lor \exists y \ \forall x \ (P(x) \land \neg Q(y))$$

$$\equiv \forall z \ (R(z,c) \land P(y)) \lor \exists y \ \forall x \ (P(x) \land \neg Q(y))$$

$$\equiv \forall z \ (R(z,c) \land P(y)) \lor \exists v \ \forall x \ (P(x) \land \neg Q(v))$$

Definition

Eine Formel ϕ ist in Pränexnormalform (PNF), sofern sie bereinigt ist und von der Form:

$$Q_1 x_1 \ldots Q_n x_n \xi$$

mit Quantorenblock $(Q_1, ..., Q_n) \in \{\forall, \exists\}^n$ und quantorenfreier Formel ξ , die sogenannte Matrix von ϕ .

$$\forall x \neg \exists y \neg R(f(x), y) \lor \neg \forall x (P(x) \land \neg Q(y)) \quad \times \\ \forall x \exists y (\neg R(f(x), c) \lor (P(x) \land \neg Q(z))) \quad \checkmark$$

Proposition

Zu jeder Formel ϕ existiert eine Formel ψ , sodass:

- $\phi \equiv \psi$, und
- \bullet ψ ist in Pränexnormalform.

Beweis: Induktion über den Formelaufbau

- Sei $\phi = P(t_1, \dots, t_n)$ atomar. Dann liegt ϕ bereits in PNF vor (bereinigt, da Quantorenblock leer und Matrix ist ϕ selbst)
- Sei $\phi = \neg \phi_1$ und existiere PNF $\psi_1 = Q_1 x_1 \dots Q_n x_n \xi_1$ mit $\phi_1 \equiv \psi_1$. Sei $\overline{\forall} = \exists$ und $\overline{\exists} = \forall$. Verwende wiederholt (*n*-mal) $\neg Qx \xi \equiv \overline{Q}x \neg \xi$ für

$$\phi = \neg \phi_1$$

$$\equiv \neg \psi_1$$

$$= \neg Q_1 x_1 Q_2 x_2 \dots Q_n x_n \xi_1$$

$$\equiv \overline{Q_1} x_1 \neg Q_2 x_2 \dots Q_n x_n \xi_1$$

$$\vdots$$

$$\equiv \overline{Q_1} x_1 \overline{Q_2} x_2 \dots \overline{Q_n} x_n \neg \xi_1$$

Beweis: Induktion über den Formelaufbau

• Sei $\phi = \phi_1 \circ \phi_2$ mit $\circ \in \{\land, \lor\}$ und existiere PNFs ψ_1, ψ_2 mit $\phi_1 \equiv \psi_1$ und $\phi_2 \equiv \psi_2$. Durch Umbenennung der gebundenen Variablen erreichen wir:

$$\psi_1 \equiv Q_1 x_1 \dots Q_n x_n \xi_1 \quad \psi_2 \equiv Q_1' y_1 \dots Q_m' y_m \xi_2$$
mit $\{x_1, \dots, x_n\} \cap \{y_1, \dots, y_m\} = \emptyset$. Verwende wiederholt (genauer $(n+m)$ -mal) $Qx\xi \circ \xi' \equiv Qx \ (\xi \circ \xi')$ für $x \notin frei(\xi')$

$$\phi = \phi_1 \circ \phi_2 \equiv \psi_1 \circ \psi_2$$

$$\equiv Q_1 x_1 \dots Q_n x_n \xi_1 \circ Q_1' y_1 \dots Q_m' y_m \xi_2$$

$$\equiv Q_1 x_1 \quad Q_2 x_2 \dots Q_n x_n \xi_1 \circ Q_1' y_1 \dots Q_m' y_m \xi_2$$

$$\equiv Q_1 x_1 \dots Q_n x_n \ (\xi_1 \circ Q_1' y_1 \dots Q_m' y_m \xi_2)$$

$$\equiv Q_1 x_1 \dots Q_n x_n \ (Q_1' y_1 \ (\xi_1 \circ Q_2' y_2 \dots Q_m' y_m \xi_2))$$

$$\equiv Q_1 x_1 \dots Q_n x_n \ (Q_1' y_1 \dots Q_m' y_m \ (\xi_1 \circ \xi_2))$$

$$\equiv Q_1 x_1 \dots Q_n x_n \ Q_1' y_1 \dots Q_m' y_m \ (\xi_1 \circ \xi_2)$$

Beweis: Induktion über den Formelaufbau

Sei φ = Qx φ₁ und existiere PNF ψ₁ = Q₁x₁ ... Qₙxₙ ξ₁ mit φ₁ ≡ ψ₁. Falls für ein Index i, x = xᵢ, dann benenne xᵢ zu y um. Es gilt:

$$\begin{split} \phi &= Qx \, \phi_1 \\ &\equiv Qx \, \psi_1 \\ &\equiv Qx \, Q_1 \, x_1 \, \dots \, Q_{i-1} \, x_{i-1} \, Q_i x_i \, Q_{i+1} \, x_{i+1} \, \dots \, Q_n \, x_n \, \xi_1 \\ &\equiv Qx \, Q_1 \, x_1 \, \dots \, Q_{i-1} \, x_{i-1} \, Q_i y \, Q_{i+1} \, x_{i+1} \, \dots \, Q_n \, x_n \, \xi_1 \end{split}$$

- für die Umwandlung in PNF benutze Umformungsschritte aus vorherigen Beweis
- Beispiel:

$$\forall x \neg \exists y \neg R(f(x), y) \lor \neg \forall x (P(x) \land \neg Q(y))$$

$$\equiv \forall x \neg \exists y \neg R(f(x), y) \lor \exists x \neg (P(x) \land \neg Q(y))$$

$$\equiv \forall x \forall y \neg \neg R(f(x), y) \lor \exists x \neg (P(x) \land \neg Q(y))$$

$$\equiv \forall x (\forall y \neg \neg R(f(x), y) \lor \exists x \neg (P(x) \land \neg Q(y)))$$

$$\equiv \forall x (\forall u \neg \neg R(f(x), u) \lor \exists x \neg (P(x) \land \neg Q(y)))$$

$$\equiv \forall x \forall u (\neg \neg R(f(x), u) \lor \exists x \neg (P(x) \land \neg Q(y)))$$

$$\equiv \forall x \forall u (\neg \neg R(f(x), u) \lor \exists x \neg (P(x) \land \neg Q(y)))$$

$$\equiv \forall x \forall u \exists v (\neg \neg R(f(x), u) \lor \neg (P(v) \land \neg Q(y))) \checkmark$$

$$\equiv \forall x \forall u \exists v (R(f(x), u) \lor \neg P(v) \lor Q(y)) \checkmark$$

Hörsaalaufgabe

Stellen Sie eine semantisch äquivalente PNF zu nachfolgender Formel her. Bei Fragen konsultieren Sie die Person rechts oder links von Ihnen. (3 min)

$$\neg (\forall x P(x,y) \land \exists x Q(x))$$

Definition

Eine Formel ϕ ist in Skolemnormalform (SNF), wenn sie in PNF vorliegt und ihr Quantorenblock nur Allquantoren enthält.

- Thoralf Albert Skolem (1887 1963)
- Elimination der Existenzquantoren (durch Skolemisierung)

Definition (Skolemtransformation)

Sei $\phi = Q_1 x_1 \dots Q_n x_n \xi$ in PNF und $n = |\{i \mid Q_i = \exists\}|$. Die Skolemnormalform von ϕ ergibt sich durch n-maliges Anwenden von:

Sei *i* kleinster Index mit $Q_i = \exists$, d.h.

$$\phi = \forall x_1 \ldots \forall x_{i-1} \exists x_i \ \xi'$$

dann transformiere mit Hilfe einer Skolemfunktion $f \notin s(\phi)$ zu:

$$\phi' = \forall x_1 \ldots \forall x_{i-1} \xi' [x_i/f(x_1,\ldots,x_{i-1})]$$

Definition (Skolemtransformation)

Sei $\phi = Q_1 x_1 \dots Q_n x_n \xi$ in PNF und $n = |\{i \mid Q_i = \exists\}|$. Eine Skolemnormalform von ϕ ergibt sich durch n-maliges Anwenden von:

Sei *i* kleinster Index mit $Q_i = \exists$, d.h.

$$\phi = \forall x_1 \ldots \forall x_{i-1} \exists x_i \xi'$$

dann transformiere mit Hilfe einer Skolemfunktion $f \notin s(\phi)$ zu:

$$\phi' = \forall x_1 \ldots \forall x_{i-1} \xi'[x_i/f(x_1,\ldots,x_{i-1})]$$

Beispiel:

$$\forall x \forall y \exists z \forall u \exists v \ (R(u, g(x), z) \lor \neg P(v) \lor Q(y, z, c))$$

$$\rightsquigarrow \forall x \forall y \forall u \exists v \ (R(u, g(x), f(x, y)) \lor \neg P(v) \lor Q(y, f(x, y), c))$$

$$\rightsquigarrow \forall x \forall y \forall u \ (R(u, g(x), f(x, y)) \lor \neg P(h(x, y, u)) \lor Q(y, f(x, y), c))$$

Welche Beziehung zwischen ϕ und ihrer skolemisierten Form?

Proposition

Sei ϕ in PNF und ψ eine Skolemnormalform von ϕ . Es gilt:

- \bullet $\psi \models \phi$, und
- \bullet ψ und ϕ sind erfüllbarkeitsäquivalent

Beweis: Wir zeigen, daß beide Eigenschaften für einzelne Skolemisierungsschritte gelten. Sei also $\phi = \forall x_1 \ldots \forall x_{i-1} \exists x_i \xi'$ und $\psi = \forall x_1 \ldots \forall x_{i-1} \xi' [x_i/f(x_1,\ldots,x_{i-1})]$ mit $f \notin s(\phi)$.

1. Sei (\mathfrak{A},β) Modell von ψ d.h. für alle $a_1,\ldots,a_{i-1}\in U^{\mathfrak{A}}$ gilt:

$$(\mathfrak{A}, \beta_{[x_1 \mapsto a_1, \dots, x_{i-1} \mapsto a_{i-1}]}) (\xi'[x_i/f(x_1, \dots, x_{i-1})]) = 1$$

 $da\ var(f(x_1,\ldots,x_{i-1}))\cap geb(\xi')=\varnothing\ folgt\ mit\ Überführ.-lemma$

$$\left(\mathfrak{A},\beta_{\left[x_{1}\mapsto a_{1},\ldots,x_{i-1}\mapsto a_{i-1},x_{i}\mapsto b\right]}\right)\left(\xi'\right)=1\qquad (*$$

mit $\beta_{[x_1\mapsto a_1,...,x_{i-1}\mapsto a_{i-1}]}(f(x_1,...,x_{i-1})) = f^{\mathfrak{A}}(a_1,...,a_{i-1}) = b \in U^{\mathfrak{A}}$. Demzufolge, für alle $a_1,...,a_{i-1}\in U^{\mathfrak{A}}$ existiert ein $b\in U^{\mathfrak{A}}$ mit (*), d.h. $(\mathfrak{A},\beta)(\phi)=1$. Folglich, $\psi\models\phi$.

Proposition

Sei ϕ in PNF und ψ eine Skolemnormalform von ϕ . Es gilt:

- \bullet $\psi \models \phi$, und
- 2 ψ und ϕ sind erfüllbarkeitsäguivalent

Beweis: Wir zeigen, daß beide Eigenschaften für einzelne Skolemisierungsschritte gelten. Sei also $\phi = \forall x_1 \ldots \forall x_{i-1} \exists x_i \xi'$ und $\psi = \forall x_1 \ldots \forall x_{i-1} \xi'[x_i/f(x_1,\ldots,x_{i-1})]$ mit $f \notin s(\phi)$.

2. Wegen 1. impliziert Erfüllbarkeit von ψ die Erfüllbarkeit von ϕ . Sei ϕ erfüllbar, dann ex. (\mathfrak{A},β) , sodaß für alle $a_1,\ldots,a_{i-1}\in U^{\mathfrak{A}}$ ein (möglicherweise auch mehrere) $b \in U^{2l}$ existiert mit:

$$\left(\mathfrak{A},\beta_{[x_1\mapsto a_1,\ldots,x_{i-1}\mapsto a_{i-1},x_i\mapsto b]}\right)(\xi')=1$$

Definiere entsprechend eine Auswahlfunktion $u: (U^{\mathfrak{A}})^{i-1} \to U^{\mathfrak{A}}$ und erweitere \mathfrak{A} zu \mathfrak{A}' mit $f^{\mathfrak{A}'} = u$. Für alle $a_1, \ldots, a_{i-1} \in U^{\mathfrak{A}'}$ gilt

$$\left(\mathfrak{A}',\beta_{\left[x_{1}\mapsto a_{1},\ldots,x_{i-1}\mapsto a_{i-1},x_{i}\mapsto f^{\mathfrak{A}'}\left(a_{1},\ldots,a_{i-1}\right)\right]}\right)\left(\xi'\right)=\mathbf{1}$$

Proposition

Sei ϕ in PNF und ψ eine Skolemnormalform von ϕ . Es gilt:

- \bullet $\psi \models \phi$, und
- $oldsymbol{Q} \psi$ und ϕ sind erfüllbarkeitsäquivalent

Beweis: Wir zeigen, daß beide Eigenschaften für einzelne Skolemisierungsschritte gelten. Sei also $\phi = \forall x_1 \dots \forall x_{i-1} \exists x_i \xi'$ und $\psi = \forall x_1 \dots \forall x_{i-1} \xi'[x_i/f(x_1,\dots,x_{i-1})]$ mit $f \notin s(\phi)$. 2. Da $f^{\mathfrak{A}'}(a_1,\dots,a_{i-1}) = \beta_{[x_1\mapsto a_1,\dots,x_{i-1}\mapsto a_{i-1}]}(f(x_1,\dots,x_{i-1}))$ folgt mit Überführungslemma

$$(\mathfrak{A}', \beta_{[x_1 \mapsto a_1, \dots, x_{i-1} \mapsto a_{i-1}]}) (\xi'[x_i/f(x_1, \dots, x_{i-1})]) = 1$$

Somit $(\mathfrak{A}', \beta)(\psi) = 1$, d.h. ψ ist erfüllbar.

Fazit: Zu jeder Formel ϕ existiert eine Formel ψ , sodass:

- $\mathbf{0}$ ϕ und ψ erfüllbarkeitsäquivalent, und
- \mathbf{Q} ψ ist in Skolemnormalform.

Vorlesung "Logik"

10-201-2108-1

8. PL1 - Normalformen

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

12. Juni 2025 Leipzig

