МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. Шухова» (БГТУ им. В. Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №19.11

по дисциплине: «Рекурсивные функции»

Выполнил/а: ст. группы ВТ-231 Кисиль Николай Владимирович

Проверили: Черников Сергей Викторович Новожен Никита Викторович

Цель работы: получение навыков написания рекурсивных функций

Содержание работы
Задача 1: Определить количество цифр в тексте, вводимом с клавиатуры.
Текст заканчивается символом перехода на новую строку \п
Задача 2: Вывести данное натуральное число в восьмеричной системе
счисления
Задача 3: Дан знаменатель и первый член геометрической прогрессии.
Вычислить n -й член прогрессии
Задача 4: Дана упорядоченная по убыванию последовательность целых
чисел. Определить, есть ли среди членов данной последовательности число x ,
и если есть, найти номер этого члена
Задача 5: Дан массив a размера n ($n \ge 2$). Необходимо проверить,
является ли он упорядоченным по неубыванию
Задача 6: Вывести данное натуральное число в восьмеричной системе
счисления
Задача 7: Даны натуральные числа a и b . Определить, могут ли эти числа
быть соседними членами последовательности Фибоначчи
Задача 8: Вывести в обратном порядке символы данного текста,
вводимого с клавиатуры, которые не являются цифрами. Текст заканчивается
символом перехода на новую строку \п
Задача 9: Дан <i>п</i> -й член арифметической прогрессии, ее разность и
значение n . Вычислить первый член прогрессии
Задача 10: С клавиатуры вводятся положительные вещественные числа
$a1, a2, \ldots, an$. Признак конца ввода — отрицательное число
Задача 11: Реализовать функции апу, которая возвращает значение
'истина', если хотя бы один элемент удовлетворяет функции-предикату f, в

противном случае – ложь. Реализовать функцию all, которая возвращает	
значение 'истина', если все элементы удовлетворяет функции-предикату f, в	
противном случае – ложь	
Задача 12: Реализовать алгоритм бинарного поиска	
Задача 13: Реализовать сортировку выбором	

Задача 1: Определить количество цифр в тексте, вводимом с клавиатуры. Текст заканчивается символом перехода на новую строку \n. Код:

```
int getCountDigitsInText(char s, int count) {
    s = getchar();
    if (s == '\n') {
        return count;
    } else {
        count += isdigit(s);
        return getCountDigitsInText(s, count);
    }
}
int getCountDigits(char s) {
    return getCountDigitsInText(s, 0);
}
```

Задача 2: Вывести данное натуральное число в восьмеричной системе счисления

```
void printOct(int x) {
    if (x) {
        printOct(x / 8);
        printf("%d", x % 8);
    }
}
```

Задача 3: Дан знаменатель и первый член геометрической прогрессии. Вычислить *n*-й член прогрессии

```
int getMemberGeometricProg(int a1, int q, int n) {
   if (n > 2) {
      return getMemberGeometricProg(a1 * q, q, --n);
   } else {
      return a1 * q;
   }
}
```

Задача 4: Дана упорядоченная по убыванию последовательность целых чисел. Определить, есть ли среди членов данной последовательности число x, и если есть, найти номер этого члена. Код:

```
int getIndex(int *a, int n, int x) {
    if (a[n - 1] != x && n) {
        return getIndex(a, --n, x);
    } else {
        return n - 1;
    }
}
```

Задача 5: Дан массив a размера n ($n \ge 2$). Необходимо проверить, является ли он упорядоченным по неубыванию.

```
int sortedUnDecreasing(int *a, int n) {
    if (a[n - 2] < a[n - 1] && n >= 3) {
        return sortedUnDecreasing(a, --n);
    } else {
        return a[n - 2] < a[n - 1];
    }
}</pre>
```

Задача 6: Найти номер первого вхождения минимального значения в последовательность длины n (линейный поиск)

```
int firstMin(int *a, int n, int cur_index, int min_index) {
    if (cur_index == n) {
        return min_index;
    }

    if (a[cur_index] < a[min_index]) {
        min_index = cur_index;
    }

    return firstMin(a, n, cur_index + 1, min_index);
}

int getFirstMin(int *a, int n) {
    return firstMin(a, n, 1, 0);
}</pre>
```

Задача 7: Даны натуральные числа *а* и *b*. Определить, могут ли эти числа быть соседними членами последовательности Фибоначчи.

```
int isFibonacci(int sum, int a, int b) {
    if (b == sum) {
        return 1;
    } else if (b > sum) {
        return 0;
    } else {
        return isFibonacci(sum, b, a + b);
    }
}
int isFibonacciNeighbor(int a, int b) {
    if(a < 1 || b < 1)
        return 0;
    int sum = a + b;
    return isFibonacci(sum, 1, 1);
}</pre>
```

Задача 8: Вывести в обратном порядке символы данного текста, вводимого с клавиатуры, которые не являются цифрами. Текст заканчивается символом перехода на новую строку \n.

```
void printRevers(char s) {
    s = getchar();
    if (s != '\n') {
        printRevers(s);
    }
    if (isdigit(s) == 0) {
        printf("%c", s);
    }
}
```

Задача 9: Дан n-й член арифметической прогрессии, ее разность и значение n. Вычислить первый член прогрессии.

```
int getFirstArifMean(int n, int d) {
   if (n > d) {
     return getFirstArifMean(n - d, d);
   } else {
     return n;
   }
}
```

Задача 10: С клавиатуры вводятся положительные вещественные числа $a1, a2, \ldots, an$. Признак конца ввода – отрицательное число.

```
void task10(float a1, float a2) {
   float result = (a1 + a2) / 2;
   printf("%f ", result);

if (a2 >= 0) {
     float new_a2;
     scanf("%f", &new_a2);
     task10(a2, new_a2);
   }
}
```

Задача 11: Реализовать функции апу, которая возвращает значение 'истина', если хотя бы один элемент удовлетворяет функции-предикату f, в противном случае – ложь. Реализовать функцию all, которая возвращает значение 'истина', если все элементы удовлетворяет функции-предикату f, в противном случае – ложь

```
int isPositive(int x) {
    return x > 0;
}

int anyPredicate(int *a, int n, int (*predicate)(int)) {
    if (n == 0) {
        return 0;
    } else {
        return predicate(a[0]) || anyPredicate(a + 1, n - 1, predicate);
    }
}

int allPredicate(int *a, int n, int (*predicate)(int)) {
    if (n == 0) {
        return 1;
    } else {
        return predicate(a[0]) && allPredicate(a + 1, n - 1, predicate);
    }
}
```

Задача 12: Реализовать алгоритм бинарного поиска

```
int binarySearch(int *a, int 1, int r, int x) {
    if (1 <= r) {
        int m = (1 + r) / 2;

        if (a[m] == x) {
            return m;
        }

        if (a[m] > x) {
            return binarySearch(a, l, m - 1, x);
        }

        return binarySearch(a, m + 1, r, x);
}
```

Задача 13: Реализовать сортировку выбором

Код:

```
void selectionSort(int *a, int n) {
    if (n) {
        int min_index = getFirstMin(a, n);
        swap(&a[0], &a[min_index]);

        selectionSort(a + 1, --n);
    }
}
```

Вывод: реализовали решение задач с помощью рекурсивных функций, получили навыки написания рекурсивных функций