DEVOIR SURVEILLÉ N°05

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

EXERCICE 1.

On considère sur $\mathbb R$ l'équation différentielle :

(E):
$$(1+x^2)y'-3xy=1$$

- 1. Résoudre l'équation homogène (E_H) associée à (E).
- **2.** Rechercher une solution particulière de (E) sous la forme d'une fonction polynomiale de degré 3. En déduire l'ensemble des solutions de (E).
- 3. Montrer que $(1+x^2)^{\frac{3}{2}} = x^3 + \frac{3}{2}x + o(1)$.
- **4.** On pose $g: x \mapsto \frac{2}{3}x^3 + x \frac{2}{3}(1+x^2)^{\frac{3}{2}}$. Vérifier que g est l'unique solution de (E) admettant une limite finie en $+\infty$.
- 5. Déterminer les variations de g. On précisera ses limites en $-\infty$ et en $+\infty$.

EXERCICE 2.

On considère, pour tout entier naturel n, l'application φ_n définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ \varphi_n(x) = (1-x)^n e^{-2x}$$

ainsi que l'intégrale $I_n = \int_0^1 \varphi_n(x) dx$.

On se propose de démontrer l'existence de trois réels a, b, c tels que :

$$I_n = a + \frac{b}{n} + \frac{c}{n^2} + o\left(\frac{1}{n^2}\right)$$

- **1.** Calculer I_0 , I_1 .
- **2.** Étudier le sens de variation de la suite (I_n) .
- 3. Déterminer le signe de I_n pour tout entier naturel n.
- **4.** Majorer la fonction $g: x \mapsto e^{-2x}$ sur [0, 1] et en déduire que :

$$\forall n \in \mathbb{N}, \ 0 \le I_n \le \frac{1}{n+1}$$

Quelle est la limite de la suite (I_n) ?

5. A l'aide d'une intégration par parties, montrer que :

$$\forall n \in \mathbb{N}, 2I_{n+1} = 1 - (n+1)I_n$$

- **6.** En déduire la limite de la suite (nI_n) .
- 7. Déterminer la limite de la suite $(n(nI_n-1))$.
- **8.** Donner alors les valeurs de *a*, *b*, *c*. On justifiera sa réponse.

EXERCICE 3.

Soit f l'application de \mathbb{R} dans \mathbb{R} définie par f(0) = 1 et $f(t) = \frac{\arctan t}{t}$ pour tout $t \in \mathbb{R}^*$.

- **1.** Montrer que f est continue sur \mathbb{R} et paire.
- 2. Donner le développement limité de f à l'ordre 1 en 0. En déduire que f est dérivable en 0 et donner f'(0).
- **3.** Justifier que f est dérivable sur \mathbb{R} et calculer f'(t) pour tout $t \in \mathbb{R}^*$.
- **4.** A l'aide d'une intégration par parties, montrer que pour tout $t \in \mathbb{R}$,

$$\int_0^t \frac{u^2}{(1+u^2)^2} \, \mathrm{d}u = -\frac{1}{2} t^2 f'(t)$$

En déduire le sens de variation de f.

5. Tracer la courbe représentative de f dans un repère orthonormé. On précisera les éventuelles asymptotes.

Soit ϕ l'application de \mathbb{R} dans \mathbb{R} définie par $\phi(0) = 1$ et pour tout $x \in \mathbb{R}^*$, $\phi(x) = \frac{1}{x} \int_0^x f(t) dt$.

- **6.** Montrer que ϕ est continue sur $\mathbb R$ et paire.
- 7. Montrer que pour tout $x \in \mathbb{R}$, $f(x) \le \phi(x) \le 1$. On pourra commencer par supposer x > 0.
- 8. Montrer que ϕ est dérivable sur \mathbb{R}^* et que pour tout $x \in \mathbb{R}^*$, $\phi'(x) = \frac{1}{x} (f(x) \phi(x))$. Montrer que ϕ est dérivable en 0 avec $\phi'(0) = 0$. Donner les variations de ϕ .
- 9. Montrer que $\lim_{x \to +\infty} \frac{1}{x} \int_{1}^{x} f(t) dt = 0$. En déduire que $\lim_{x \to +\infty} \phi(x) = 0$.

On considère l'équation différentielle (E): $x^2y' + xy = \arctan(x)$.

- **10.** Résoudre cette équation différentielle sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- 11. Montrer que ϕ est l'unique solution de cette équation différentielle sur $\mathbb R$.