CMPE 352 Signal Processing and Algorithms

Spring 2019 11 February 2019

Sedat Ölçer

Course Info

- Office: Engineering Building E3, Room 204
- E-mail: sedat.olcer@bilgi.edu.tr
- Lecture + Applications: 3 hours + 2 hours
- Lecture: Mon 16:00-19:00

Lab: Mon 11:00-13:00, E3-303

Fri 11:00-13:00, E3-306

- Prerequisite: EEEN 201
- Teaching Assistant: Buse Buz
- Textbook: A. V. Oppenheim, A. S. Willsky, S. H. Nawab, Signals and Systems,
 Prentice Hall, 2nd Edition.

Course Description

- Introduction to signals and their description in time and frequency
- Continuous versus discrete signals
- Fourier representation
- Some signal processing algorithms frequently used in audio, video and communication systems and their implementations by hardware and/or software means
- Aims for a basic understanding that is common to almost all sub-disciplines of computer engineering

Course Objectives

- Acquire and be able to apply knowledge of signal processing techniques that are being employed in the field of computer engineering
- Acquire the ability to employ the concepts, theories and techniques of computer engineering for the design and analysis of fundamental signal processing algorithms
- Acquire a deep understanding of the concept of frequency
- Understand the differences and similarities between discrete and continuoustime signals as well as signal conversion
- Be able to analyze signals in both the time and the frequency domains
- Be able to use the Fourier transform technique as a tool
- Be able to code in Matlab various algorithms and acquire in this way design skills for computer systems

Tentative Course Outline

Nr	Week	Topic
1	19 February	Introduction. Discrete and continuous signals. Periodic signals. Signal Operations.
2	26 February	Elementary signals, special signals. Sinusoids, notion of harmonic signals.
3	5 March	Complex numbers. Notion of frequency. The complex exponential. Sum of sinusoids.
4	12 March	The Fourier Series.
5	19 March	Frequency. The electromagnetic spectrum. Examples of Fourier Series.
6	26 March	Amplitude and Phase Spectrum. Energy and power. Decibel.
7	2 April	Review
8	9 April	Midterm Week
9	16 April	Signal Spectrum. Conjugate Symmetry. The Fourier Transform.
10	23 April	Properties of the Fourier Transform. System Frequency Response. Filters. Some commonly used algorithms.
11	30 April	Digital Processing of Analog Signals. Sampling Theorem. Signal Reconstruction. Aliasing.
12	7 May	The Discrete Fourier Transform.
13	14 May	The Fast Fourier Transform algorithm.
14	21 May	Review.

CMPE 352

Assessment

• Homeworks: 15 %

• Quizzes: 15 %

Midterm exam: 30 %

• Final exam: 40 %

Class attendance and lab attendace are required (attendance list)

Requirements

- 1. Students must attend at least 70% of the lectures. This requirement <u>includes</u> illnesses as well as other types of excused absences. Lack of compliance with this attendance rule shall result in a fail (F) assessment.
- 2. Excused absences must be documented and their legitimacy is determined by the instructor.
- 3. Tardy arrivals shall be avoided. Please do not disturb the on-going lecture!
- 4. Adherence to the University Academic Integrity policy is required.