Chapitre 3 : Réactions de dissolution ou de précipitation

- 1 constante de l'équation de dissolution : Produit de solubilité Ks
 - 1.1 Couple Donneur/Accepteur

Soient les exemples suivants :

 $AgCl(S) \leftrightharpoons Ag^+ + Cl^ NaCl(S) \leftrightharpoons Na^+ + Cl^ CuSO4(S) \leftrightharpoons Cu^{2+} + SO^{2-}_4$ $D \leftrightharpoons A+P$

- Le donneur est le précipité.
- L'accepteur n'est pas défini :on peut avoir AgCl/Ag⁺ ou AgCl/Cl⁻.

On choisit comme accepteur le cation métallique

D'où:

 $AgCl(S) = Ag^{+} + Cl^{-}$: $AgCl/Ag^{+}$ $CuSO_4(S) = Cu^{2+} + SO^{2-}_{4}$ $CuSO_4/Cu^{2+}$ $Ag_2S(S) = 2Ag^{+} + S^{2-}$ Ag_2S/Ag^{+}

1.2 L'étude quantitative :

1.2.1 Produit de solubilité Ks

Soit une solution saturée de phosphate d'argent Ag3PO4

$$Ag_3PO_4(S) \leftrightharpoons 3Ag + PO^{3-}_4$$

Le **produit de solubilité** est la constante d'équilibre correspondant à la dissolution d'un solide dans un solvant, noté K_s

Ici nous avons:

Ks = $[Ag+]^{3}_{e}$ $[PO^{3-}_{4}]_{e}$ On définit aussi le pKs = -logKs

Remarque:

1- Soit l'équilibre : $CaSO_4 \leftrightharpoons Ca^{2+} + SO^{2-}_4$ Le quotient de la réaction est : $Qr = [Ca2+][SO^{2-}_4] = Ks$ * Si $Qr < Ks = \Rightarrow l$ a solution est homogène et le précipité n'existe pas. * Si $Qr > Ks = \Rightarrow l$ la solution est hétérogène et on formation du précipité. 2- Plus Ks est grand (pKs est petit) plus le complexe est soluble.

1.2.2 La solubilité

On appelle solubilité molaire volumique s d'un solide, sa quantité de matière que l'on peut dissoudre dans un litre de solution ($mol.l^{-1}$)

Remarque :

ullet On définit la solubilité massique volumique s_m par la masse du solide qu'on peut dissoudre dans un litre de solution, donc

$$s_m = \frac{m(solide)}{V(solvant)}$$

Puisque $n = \frac{m}{M}$; M étant la masse molaire du solide , alors

$$s_m = sM$$

1.2.3 Condition de précipitation

Soit un solide précipité, $C_x A_{y(s)}$ constitué à partir des ions C^{p+} et A^{n-} .

Il existe deux possibilités d'obtenir ce précipité :

- · en dissolvant le solide dans une solution,
- · partir de deux solutions limpides contenant séparément les ions formant le précipité.

Nous allons étudier les deux possibilités successivement.

A. Dissolution du solide

D'un point de vue expérimental, on constate que, lorsqu'on place du solide en solution, celle-ci reste d'abord limpide, c'est-à-dire que le solide se dissout totalement, ce que l'on peut résumer par l'équation bilan (avec la réaction totale):

$$C_x A_{y(s)} \to x C^{p+} + y A^{n-}$$

Il n'y a donc pas équilibre dans un premier temps, pour une faible quantité de solide dissous. En ajoutant encore du solide, on constate que celui-ci reste présent en solution, elle ne peut plus en dissoudre. La solution est saturée. Une fois cette quantité atteinte, il s'instaure donc l'équilibre :

$$C_x A_{y(s)} \rightleftharpoons x C^{p+} + y A^{n-}$$

Exemple: on tente de dissoudre $m_0 = 1,00 \, mg$ de chlorure d'argent dans $V_0 = 100 \, mL$ d'eau ne contenant initialement ni ions argent (I) ni ions chlorure. Est-ce possible?

Données:
$$M(Ag) = 107.8 \ g. mol^{-1}, M(Cl) = 35.5 \ g. mol^{-1}, pK_s = 9.7$$

On souhaite donc dissoudre $n_0 = \frac{m_0}{M(Ag) + M(Cl)} = \frac{1,00.10^{-3}}{107.8 + 35.5} = 6,98.10^{-6}$ mol de chlorure d'argent. Si le précipité n'est pas totalement dissous, alors s'établit l'équilibre :

$$AgCl_{(s)} \rightleftharpoons Ag^+ + Cl^-$$

A l'équilibre, $K_s = [Ag^+][Cl^-]$. A l'aide d'un tableau d'avancement,

Donc, à l'équilibre, $[Ag^+] = [Cl^-] = \frac{\xi_{eq}}{V_0}$

Donc
$$K_S = \left(\frac{\xi_{eq}}{V_0}\right)^2$$
 Donc $\xi_{eq} = V_0 \sqrt{K_S} = 1.41.10^{-6} \ mol$

Donc $\xi_{eq} < n_0$: tout le chlorure d'argent n'est donc pas dissous et il reste du solide en solution; on peut seulement dissoudre 1,41.10⁻⁶ mol.

On peut alors déterminer la solubilité du chlorure d'argent dans l'eau pure, correspondant la quantité de chlorure d'argent que l'on peut dissoudre dans un litre d'eau, donc ici $s = \frac{1.41.10^{-6}}{0.100} = 1.41.\,10^{-5}\,mol.\,L^{-1}$

B. Apport séparé des ions

Considérons à présent le mélange de deux solutions limpide, l'une contenant des ions C^{p+} et l'autre des ions A^{n-} .

Juste après le mélange des deux solutions et juste avant toute réaction, les concentrations de ces deux ions sont alors $[C^{p+}]_0$ et $[A^{n-}]_0$.

La réaction qui peut avoir lieu s'écrira alors :

$$x C^{p+} + y A^{n-} \rightleftharpoons C_x A_{y(s)}$$

De quotient réactionnel,
$$Q_r = \frac{1}{[C^{p+}]_{eq}^x [A^{n-}]_{eq}^y}$$

Cependant, il est possible que le précipité ne se forme pas. Pour le savoir nous pouvons comparer le quotient réactionnel initial, Q_{r0} à la constante d'équilibre de cette réaction, $K^{\circ} = \frac{1}{K_s}$ et utiliser les résultats du chapitre « Réactions en solution aqueuse ».

Si $Q_{r0} > K^{\circ}$ (c'est-à-dire si $[C^{p+}]_0^x$ $[A^{n-}]_0^y < K_s$), la réaction devrait se faire dans le sens inverse, ce qui est impossible ici : le précipité ne se formera pas ; il n'y a pas équilibre.

Si $Q_{r0} < K^{\circ}$ (c'est-à-dire si $[C^{p+}]_0^x$ $[A^{n-}]_0^y > K_s$), la réaction se fait dans le sens direct : le précipité va se former jusqu'à ce que l'équilibre s'instaure et, donc, que $Q_{req} = \frac{1}{K_s}$.

Si $Q_{r0} = K^{\circ}$ (c'est-à-dire si $[C^{p+}]_0^x [A^{n-}]_0^y = K_s$), le système est à l'équilibre. Le précipité n'existe pas mais tout ajout de l'un ou l'autre des ions même dans les plus petites quantités provoque son apparition : on dit que la solution se trouve à la limite de précipitation (ou de solubilité).

Exemple:

On mélange deux solutions :

- $V_1 = 20 \, mL$ de chromate de potassium $(2 \, K^+, CrO_4^{2-})$ de concentration molaire $c_1 = 1, 0. \, 10^{-1} \, mol. \, L^{-1}$;
- $V_2 = 30 \, mL$ de nitrate d'argent (Ag^+, NO_3^-) de concentration $c_2 = 2, 0.10^{-3} \, mol. L^{-1}$.

Le produit de solubilité du chromate d'argent $\left(Ag_2CrO_{2(s)}\right)$ vaut $pK_s=8,7$.

Nous admettrons que les ions potassium et nitrate sont spectateurs.

Le précipité se forme-t-il ? Si oui, déterminer les concentrations à l'équilibre en ions argent (I) et chromate.

Déterminons les concentrations initiales en ions argent (I) et chromate.

$$[CrO_4^{2-}]_0 = \frac{c_1 V_1}{V_1 + V_2} = 4,0.10^{-2} \ mol. L^{-1}$$

$$[Ag^{+}]_{0} = \frac{c_{2} V_{2}}{V_{1} + V_{2}} = 1, 2. \, 10^{-3} \, mol. \, L^{-1}$$

Il suffit alors de comparer $[CrO_4^{2-}]_0[Ag^+]_0^2$ à $K_s = 2.0.10^{-9}$.

Ici,
$$[CrO_4^{2-}]_0[Ag^+]_0^2 = 5.8 \cdot 10^{-8} > K_s$$

Le précipité se forme.

Pour déterminer les concentrations, il suffit de dresser un tableau d'avancement :

Attention : x_{eq} en dessous de $Ag_2CrO_{2(s)}$ n'est pas une concentration (non définie pour un solide) mais la quantité de précipité présente par litre de solution.

A l'équilibre, $[CrO_4^{2-}][Ag^+]^2 = K_s$

Done
$$[4,0.10^{-3} - x_{eq}][1,2.10^{-3} - 2x_{eq}]^2 = K_s$$
.

Par une résolution numérique, on obtient $x_{eq} = 4.8 \cdot 10^{-4} \, mol. \, L^{-1}$ (des 3 solutions, c'est la seule possible puisque $x_{eq} < 6. \, 10^{-4}$.

Donc
$$[CrO_4^{2-}] = 3.5. \times 10^{-3} \ mol. \ L^{-1} \ et \ [Ag^+] = 2.4. \times 10^{-4} \ mol. \ L^{-1}$$

2 Domaine d'existence

Dans le cas d'un précipité, on ne peut pas parler de diagramme de prédominance puisqu'on ne peut pas définir la concentration du précipité : nous parlerons donc de diagramme d'existence, le précipité existant en solution ou non.

Soit l'équilibre :
$$AgCl_{(S)} \rightleftharpoons Ag^+ + Cl^-$$
 : $pK_s = 9.75$ Cl^- étant la particule échangée (H^+ pour les acides). Si on choisi $[Ag^+] = 10^{-2} \, mo\ell.\ell^{-1}$ alors $[Cl^-] = \frac{K_s}{[Ag^+]} = 10^{-7.75} \, mo\ell.\ell^{-1}$; donc $pCl = -\log[Cl^-] = 7.75$ Domaine d'existence de $AgCl$ 7,75 Domaine de prédominance de $AgCl$

Remarque

Le domaine frontière (valeur de pCl) dépend de la concentration arbitraire choisi.

APPLICATION:

Tracer le diagramme d'existence pour $Fe(OH)_2$ sur l'axe des pH. On donne : $pK_s(Fe(OH)_2) = 15$; $[Fe^{2+}] = 0,01 \, mo\ell.\ell^{-1}$

3 Facteurs influençant la solubilité.

3.1 Influence de la température

On admet la relation de Van't Hoff:

$$\frac{d\ln \mathbf{K}_s}{dT} = \frac{\Delta_r H^o}{RT^2}$$

 $\Delta_r H^o$: l'énergie (enthalpie standard) de la réaction de dissolution.

▶ Si $\Delta_r H^o > 0 \implies$ si $T / \implies K_s /$ et s / : la solubilité augmente avec la température .

Exemple CuSO₄; NaCl; PbCl₂;

▶ Si $\Delta_r H^o < 0 \implies$ si $T \nearrow \implies K_s \setminus \text{et } s \setminus :$ la solubilité diminue avec la température .

Exemple Le calcaire = tartre : CaCO3 ;......

Conclusion :Lorsque la température T augmente alors :

$$Pr\acute{e}cipit\acute{e} \stackrel{\Delta_r H^o > 0}{\overleftarrow{\Delta_r H^o < 0}} cation + anion$$

3.2 Influence de l'ion commun

Le produit de solubilité de BaF_2 est $K_s = 1.37 \, 10^{-6}$

- 1. Calculer la solubilité molaire s et la solubilité massique s_m (en g/l).
- 2. A un litre de solution de BaF_2 , on ajoute une mole de $Ba(NO_3)_2$; calculer la nouvelle solubilité molaire s' de BaF_2 .
- 3. A un litre de solution molaire de $Ba(NO_3)_2$ on ajoute 0.02 mol de NaF. Le BaF_2 précipite-t-il?

On donne: $M(BaF_2) = 177 \text{ g/mol}; O=16; N=14; F=20; Ba=137.$

On suppose que les nitrates beaucoup soluble dans l'eau

RÉPONSE

$$BaF_2 \rightleftharpoons Ba^{2+} + 2F^-$$

$$\mathbf{K}_s = 4s^3 \Longrightarrow s = \sqrt[3]{\mathbf{K}_s/4} : A.N : \boxed{s = 7.10^{-3} \, mo\ell . \ell^{-1}}$$

$$\triangleright \quad s_m = s \times M : A.N : \boxed{s_m = 1.24 \, g/\ell}$$
2-

On pose: $s' = s - y \Longrightarrow s' < s$; donc:

 $\mathbf{K}_s=(s'+1)(2s')^2=4s'^2(s'+1)=4s^3$ (\mathbf{K}_s ne depend pas de la concentration).

Comme
$$s' < s \ll 1 \Longrightarrow 4s'^2 = 4s^3$$

 $\Longrightarrow s' = s^{3/2}$ $A.N: s' = 5.85 \cdot 10^{-4} \, mo\ell.\ell^{-1}$

On constate que la solubilité diminue avec l'addition d'un ion commun.

3- En milieux aqueux , NaF et $Ba(NO_3)_2$ sont totalement dissocies :

$$Ba(NO_3)_2 \to Ba^{2+} + 2NO_3^-; NaF \to Na^+ + F^-$$

 BaF_2 se précipite si $\mathbb{Q}_r \geqslant \mathbf{K}_s$.

On
$$a: [Ba^{2+}] = 1 \, mo\ell . \ell^{-1}$$
; $[F^{-}] = 0.02 \, mo\ell . \ell^{-1}$

Donc: $\mathbb{Q}_r = [Ba^{2+}][F^-]^2 = 4.10^{-4} > K_s$: BaF_2 se précipite

3.3 Influence du pH de la solution

Le carbonate de calcium est un sel peu soluble dont le produit de solubilité à $25^{\circ}C$ est $K_s = 4,9.10^{-9}$.

- 1- On néglige la basicité des ions CO_3^{2-} , calculer la solubilité molaire s de ce sel.
- 2- En tenant compte de la basicité des ions CO_3^{2-} , calculer a cette température, la solubilité molaire s de $CaCO_3$ dans l'eau et le pH de la solution saturée.

On rappelle que les constantes d'acidités de CO_2 et de HCO_3^- sont respectivement : $K_1=4,1.10^{-7}$ et $K_2=4,9.10^{-11}$.

3- On fait barboter CO_2 dans la solution précédente en présence de $CaCO_3$ solide, Montrer que du $CaCO_3$ passe en solution.

Établir, en fonction de la pression P du CO_2 au dessus de la solution, les expressions littérales de $[Ca^{2+}] = x$ et de $[H_3O^+] = h$ dans la solution.

On précise que, suivant la loi de Henry, on a $[CO_2]=k.P$, avec $k=4,9.10^{-2}$, P étant en atmosphère et les concentrations en $mol.\ell^{-1}$

A.N: Si l'on pose P = 1atm, quelle est la solubilité massique de $CaCO_3$? Quel est le pH de la solution saturée. On donne Ca = 40.

La solution des équations :

•
$$s^4 - 9, 8.10^{-9}s^2 - 10^{-12}s + 2, 4.10^{-17} = 0 \implies s = 0,0001272$$

• .100
$$10^{11} h^2 + h = .201 \, 10^{-7} \frac{1}{h} + \frac{.197 \, 10^{-17}}{h^2} \Longrightarrow h = 12, 6.10^{-7}$$

RÉPONSE

$$1 - s = \sqrt{K_s} \implies A.N \qquad \boxed{s = 7 \times 10^{-5} \, mol.\ell^{-1}}$$

$$2 - On \, a :$$

$$\star \quad CaCO_3 \rightleftharpoons Ca^{2+} + CO_3^{2-}; \quad K_s = [Ca^{2+}][CO_3^{2-}] \; (1)$$

$$\star \quad CO_2 + 2H_2O \rightleftharpoons H_3O^+ + HCO_3^- \qquad K_1 = \frac{h[HCO_3^-]}{[CO_2]} \quad (2) \; (K_{B1} = 10^{-7.6})$$

$$\star \quad HCO_3^- + H_2O \rightleftharpoons H_3O^+ + CO_3^{2-} \qquad K_2 = \frac{h[CO_3^{2-}]}{[HCO_3^-]} \quad (3) \; (K_{B2} = 10^{-3.69})$$

* puisque Ca^{2+} est un ion indiffèrent alors la solubilité :

$$s = [Ca^{2+}] = [CO_2] + [HCO_3^-] + [CO_3^{2-}]$$

$$\star N.E : 2[Ca^{2+}] + [H_3O^+] = [HCO_3^-] + 2[CO_3^{2-}] + [OH^-]$$

$$\star K_e = [H_3O^+][OH^-]$$
(6)

Comme CO_3^{2-} est une dibase alors le milieu est basique et on peut faire les approximations suivantes qu'on justifies à la fin.

$$|H_{3}O^{+}| \ll |OH^{-}|$$

$$|CO_{2}| \ll |HCO_{3}^{-}|$$

$$|(4) \Longrightarrow |Ca^{2+}| \simeq |HCO_{3}^{-}| + |CO_{3}^{2-}|$$

$$|(5) \Longrightarrow 2|Ca^{2+}| \simeq |HCO_{3}^{-}| + 2|CO_{3}^{2-}| + |OH^{-}|$$

$$\Longrightarrow 2|Ca^{2+}| \simeq |Ca^{2+}| + |CO_{3}^{2-}| + |OH^{-}|$$

$$donc: |Ca^{2+}| \simeq |CO_{3}^{2-}| + |OH^{-}|$$

$$|(4')et (6) \Longrightarrow |HCO_{3}^{-}| = |OH^{-}| = w$$

$$|(1) \Longrightarrow K_{s} = |Ca^{2+}| |CO_{3}^{2-}|$$

$$\Longrightarrow K_{s} = |Ca^{2+}| |CO_{3}^{2-}|$$

$$\Longrightarrow K_{s} = |Ca^{2+}| |CO_{3}^{2-}|$$

$$\implies \mathbf{K}_s = s(s - w) \implies w = s - \frac{\mathbf{K}_s}{s} = \frac{s^2 - \mathbf{K}_s}{s}$$

$$Or: \mathbf{K}_2 = \frac{h[CO_3^{2-}]}{[HCO_3^{-}]} = \frac{\frac{\mathbf{K}_e}{w}(s - w)}{w} = \frac{\mathbf{K}_e}{w^2}(s - w)$$

$$\frac{\mathbf{K}_2}{\mathbf{K}_e} w^2 = s - w \Longrightarrow \frac{\mathbf{K}_2}{\mathbf{K}_e} \left[\frac{s^2 - \mathbf{K}_s}{s} \right]^2 = s - \frac{s^2 - \mathbf{K}_s}{s}$$

$$\Longrightarrow \frac{\mathbf{K}_2}{\mathbf{K}_e} (s^2 - \mathbf{K}_s)^2 = \mathbf{K}_s . s$$

On tire que:

$$s^4 - 2K_s s^2 - \frac{\mathbf{K}_e \mathbf{K}_s}{\mathbf{K}_2} s + \mathbf{K}_s^2 = 0$$

A.N:

$$s^4 - 9, 8.10^{-9}s^2 - 10^{-12}s + 2, 4.10^{-17} = 0$$

La résolution par maple donne : $s = \lceil Ca^{2+} \rceil = 1,27.10^{-4} \operatorname{mol}.\ell^{-1}$

D'où les valeurs numériques :

$$\star$$
 $s = [Ca^{2+}] = 1,27.10^{-4} \, mol. \ell^{-1}$

$$\star$$
 $[CO_3^{2-}] = \mathbf{K}_s/[Ca^{2+}] = 3,8.10^{-5} \, mol. \ell^{-1}$

$$\star$$
 $[HCO_3^-] = [OH^-] = s - [CO_3^{2-}] = 8,9.10^{-5} \, mol. \ell^{-1}$

$$\begin{array}{ll} \star & s = [Ca^{2+}] = 1,27.10^{-4} \, mo\ell.\ell^{-1} \\ \star & [CO_3^{2-}] = \mathbf{K}_s/[Ca^{2+}] = 3,8.10^{-5} \, mo\ell.\ell^{-1} \\ \star & [HCO_3^{-}] = [OH^{-}] = s - [CO_3^{2-}] = 8,9.10^{-5} \, mo\ell.\ell^{-1} \\ \star & [H_3O^{+}] = \frac{\mathbf{K}_e}{[OH^{-}]} = 1,1.10^{-10} \, mo\ell.\ell^{-1} \Longrightarrow pH = 9,95 \end{array}$$

$$\star \quad [CO_2] = \frac{[H_3O^+][HCO_3^-]}{K_1} = 2,39.10^{-8} \, mo\ell.\ell^{-1} \ll [HCO_3^-] = 8,9.10^{-5} \, mo\ell.\ell^{-1}$$

Donc les approximations sont biens justifiées.

3- Lorsque on barbote du CO_2 dans la solution en presence de $CaCO_3$ solide alors $[CO_3^{2-}] \searrow \Longrightarrow [Ca^{2+}] \nearrow$: dissolution d'une partie du calcaire .

On a $pK_1 = 6.4$ et $pK_2 = 10.3$ ainsi les espèces majoritaires sont CO_2 et CO_3^{2-} donc la réaction prépondérante est :

$$H_2O + CO_2 + CO_3^{2-} \rightleftharpoons 2HCO_3^{-}$$

avec une constante d'équilibre $K = 10^{10.3-6.4} = 10^{3.9} \gg 1$

$$\begin{split} La~N.E &\Longrightarrow 2[Ca^{2+}] + h = 2[CO_3^{2-}] + [HCO_3^-] + [OH^-] \\ Or~[CO_2] &= KP~donc: \\ [HCO_3^-] &= \frac{\mathbf{K}_1KP}{h}~de~m\^eme~[CO_3^{2-}] = \frac{\mathbf{K}_2[HCO_3^-]}{h} \\ &\Longrightarrow [CO_3^{2-}] = \frac{\mathbf{K}_2\mathbf{K}_1KP}{h^2} \\ D'autre~part: [Ca^{2+}] &= \frac{\mathbf{K}_s}{[CO_3^{2-}]} = \frac{\mathbf{K}_sh^2}{\mathbf{K}_1\mathbf{K}_2KP} \end{split}$$

Dans la N.E on obtient :

$$2[Ca^{2+}] + h = [HCO_3^-] + 2[CO_3^{2-}] + \frac{K_e}{h} \Longrightarrow \frac{2K_sh^2}{K_2K_1KP} = \frac{K_1KP}{h} + 2\frac{K_2K_1KP}{h^2} + \frac{K_e}{h}$$

4 Stabilité relative d'un précipité

Exercice

- 1. Déterminer la solubilité du chlorure d'argent pK_s (AgCl) = 9,75 et celle d'iodure d'argent $pK_s(AgI)$ = 16,20 dans l'eau pure, puis en déduire le composé le plus soluble.
- 2. Déterminer la constante de la réaction ayant lieu par ajout des ions iodures I^- à une solution contenant un précipité de AgCl. Conclure.
- 3. Calculer la solubilité dans l'eau pure du chromate d'argent $pK_s(Ag_2CrO_4)$ = 12,00. La comparer à celle de AgCl. Que peut-on conclure?
- 4. Déterminer la constante de la réaction qu'aura lieu lorsqu'on ajoute des ions Cl^- à un précipité de Ag_2CrO_4 .

REPONSE

La solubilité du :

Chlorure d'argent :

$$AgCl_{(S)} \rightleftharpoons Ag^+ + Cl^-$$

$$\mathbf{K}_{s1} = s_1^2 \Longrightarrow s_1 = \sqrt{\mathbf{K}_{s1}} \; A.N : s_1 = 1,32.10^{-5} \; mo\ell.\ell^{-1}$$

Iodure d'argent :

$$AgI_{(S)} \quad \rightleftharpoons \quad Ag^+ + I^-$$

$$\mathbf{K}_{s2} = s_2^2 \Longrightarrow s_2 = \sqrt{\mathbf{K}_{s2}} \; A.N : \; s_2 = 1,45.10^{-8} \; mo\ell.\ell^{-1}$$

Donc :puisque $s_1 > s_2$ alors AgCl est plus soluble que AgI

Remarque : La comparaison des pK_s pour en déduire le composé le plus soluble n'est valable que si les composés présentent des formules semblables c'est à dire même nombre de cations et d'anions. 2°

$$\begin{array}{cccc} AgCl & \rightleftharpoons & Ag^{+} + Cl^{-} & \mathbf{K}_{s1} \\ Ag^{+} + I^{-} & \rightleftharpoons & AgI & \frac{1}{\mathbf{K}_{s2}} \\ \hline AgCl + I^{-} & \rightleftharpoons & AgI + Cl^{-} & \mathbf{K}_{1} \end{array}$$

Avec:
$$\mathbf{K}_1 = \frac{\mathbf{K}_{s1}}{\mathbf{K}_{s2}} = 10^{\mathbf{pK}_{s2} - \mathbf{pK}_{s1}} A.N$$
: $\mathbf{K}_1 = 10^{6,45} = 2,82.10^6$

<u>Conclusion</u> : AgI moins soluble mais plus stable que AgCl . ③- La solubilité du chromate d'argent :

$$Ag_2CrO_4 \rightleftharpoons 2Ag^+ + CrO_4^{2-}$$

On
$$a: \mathbf{K}_{s3} = (2s_3)^2 \times s_3 \Longrightarrow \mathbf{K}_{s3} = 4s_3^3 \ donc \ s_3 = \sqrt[3]{\frac{\mathbf{K}_{s3}}{4}}$$

$$s_3 = \sqrt[3]{\frac{\mathbf{K}_{s3}}{4}}$$
 ; $A.N$: $s_3 = 6, 3.10^{-5} \ mo\ell.\ell^{-1}$

Comparaison :On a : $\frac{s_3}{s_1} = 4,77$ donc le chromate d'argent Ag_2CrO_4 est 4,77 fois plus soluble que le chlorure d'argent AgCl

(4)- Détermination de la constante de réaction :

$$\begin{array}{cccc}
2AgC\ell & \rightleftharpoons & 2Ag^{+} + 2C\ell^{-} & \mathbf{K}_{s1}^{2} \\
2Ag^{+} + CrO_{4}^{2-} & \rightleftharpoons & Ag_{2}CrO_{4} & \frac{1}{\mathbf{K}_{s3}} \\
\hline
2AgC\ell + CrO_{4}^{2-} & \rightleftharpoons & Ag_{2}CrO_{4} + C\ell^{-} & \frac{1}{\mathbf{K}_{2}}
\end{array}$$

On tire que

$$\mathbf{K}_2 = \frac{\mathbf{K}_{s3}}{\mathbf{K}_{s1}^2} \Longrightarrow \mathbf{K}_2 = 10^{7,5} \gg 1$$

La réaction est quantitative dans le sens direct c'est à dire dans le sens de formation du chlorure d'argent $AgC\ell$, donc $AgC\ell$ est plus stable que le bichromate d'argent.