Problemas de Teoría de la Decisión bajo Incertidumbre

Problema 1: Elección de proveedor de café

Una empresa que fabrica cápsulas de café debe decidir entre tres posibles proveedores: **Aroma S.A.**, Cafés del Sur y Tostadores Sevilla.

El precio por kilo dependerá de la **cosecha anual**, que puede ser buena, normal o mala.

Pregunta:

Si la empresa no conoce las probabilidades de cada tipo de cosecha, ¿qué proveedor debería elegir para minimizar el riesgo de pagar precios altos?

```
# Tabla de precios
proveedores <- matrix(
    c(8, 9, 13,
        9, 8, 11,
        7, 10, 15),
    nrow = 3, byrow = TRUE
)
colnames(proveedores) <- c("Cosecha buena", "Cosecha normal", "Cosecha mala")
rownames(proveedores) <- c("Aroma S.A.", "Cafés del Sur", "Tostadores Sevilla")
# Mostrar tabla de precios
print("Tabla de precios por proveedor (€/kg):")</pre>
```

[1] "Tabla de precios por proveedor (€/kg):"

```
print(proveedores)
```

	Cosecha	buena	Cosecha	normal	Cosecha	mala
Aroma S.A.		8		9		13
Cafés del Sur		9		8		11
Tostadores Sevilla		7		10		15

Table 1: Coste medio según Laplace

	Proveedor	Coste_Medio
Aroma S.A.	Aroma S.A.	10.000000
Cafés del Sur	Cafés del Sur	9.333333
Tostadores Sevilla	Tostadores Sevilla	10.666667

```
# Decisión recomendada
mejor_proveedor <- names(which.min(media_costes))
mejor_proveedor</pre>
```

[1] "Cafés del Sur"

Problema 2: Elección de proveedor de energía

Una pequeña cadena de supermercados de Sevilla debe elegir entre tres proveedores de energía:

- SolarSur (solar)
- EólicaAndalucía (eólica)
- HidroPower (hidroeléctrica)

El beneficio anual estimado (en miles de euros) depende del precio de la energía durante el año: bajo (e1), medio (e2), alto (e3).

```
# Matriz de beneficios por proveedor (miles de euros)
energia <- matrix(
  c(60, 80, 100,
    50, 100, 120,
    70, 90, 110),
    nrow = 3,
    byrow = TRUE
)
colnames(energia) <- c("Bajo", "Medio", "Alto")
rownames(energia) <- c("SolarSur", "EólicaAndalucía", "HidroPower")

# Mostrar tabla
knitr::kable(energia, caption = "Tabla de beneficios por proveedor (miles de euros)")</pre>
```

Table 2: Tabla de beneficios por proveedor (miles de euros)

	Bajo	Medio	Alto
SolarSur	60	80	100
EólicaAndalucía	50	100	120
HidroPower	70	90	110

```
# Función para calcular todos los criterios de decisión
decision_incertidumbre <- function(tabla, alpha = 0.6) {
    # Maximax
    maximax <- apply(tabla, 1, max)

# Maximin
    maximin <- apply(tabla, 1, min)

# Laplace
laplace <- rowMeans(tabla)

# Hurwicz
hurwicz <- alpha * apply(tabla, 1, max) + (1 - alpha) * apply(tabla, 1, min)

# Savage
mejores <- apply(tabla, 2, max)
regret <- sweep(tabla, 2, mejores, "-") # <- CORREGIDO
savage <- apply(regret, 1, max)

# Tabla de resultados</pre>
```

```
data.frame(
   Decisión = rownames(tabla),
   Maximax = maximax,
   Maximin = maximin,
   Laplace = laplace,
   Hurwicz = hurwicz,
   Savage = savage
)
}

# Aplicar la función
resultado <- decision_incertidumbre(energia)

# Mostrar tabla de resultados
knitr::kable(resultado, caption = "Resultados de todos los criterios")</pre>
```

Table 3: Resultados de todos los criterios

	Decisión	Maximax	Maximin	Laplace	Hurwicz	Savage
SolarSur	SolarSur	100	60	80	84	-10
EólicaAndalucía	Eólica Andalucía	120	50	90	92	0
HidroPower	HidroPower	110	70	90	94	0

```
# Conclusión
print("Conclusión: La opción más recomendable según la mayoría de criterios es EólicaAndaluc
```

[1] "Conclusión: La opción más recomendable según la mayoría de criterios es EólicaAndalucía