- 1. Using *identifying_heatwaves.py*, identify periods of heatwaves (>6 days) (Fischer and Schär, 2010)
 - a. Isolate the max daily temperatures from the existing dataset
 - b. Identify 90th percentile from these max daily temps
 - c. Subset data into summer months only
 - d. Find periods of time exceeding 90th percentile for more than 6 days
 - e. Return statement of the periods of heatwaves
- 2. Remove the years with heatwaves in data using *remove heatwaves.py*
 - a. Change variables for 'exclude_years' and 'heatwave_periods' to reflect heatwave periods found from Step 1
 - b. Subset data into summer months
 - c. Calculate the median temperature for each hour of the summer period
 - d. Get a median temperature profile
 - e. Identify the best median summer day to replace forcing data for heatwave periods using mean squared error analysis
 - f. Hold onto variable for best day
 - g. Replace heatwave days in original dataset with the median temperature profile
 - h. Replace forcing datasets with forcing data of identified best day
 - i. Return new dataset with no heatwaves
- 3. Run temp anomaly.py to get a dataset of temperature anomalies of heatwaves
 - a. Change 'heatwave periods' variable to match heatwave periods from Step 1
 - b. Subset data into summer months
 - c. Find median temperature for each hour of the summer period
 - d. Filter data for heatwaves period you want to use for synthetic heatwaves
 - i. 'start date'
 - ii. 'end date'
 - e. Create a mask for this time
 - f. Filter out temperatures from this time and calculate the temperature anomaly for the heatwave period
 - g. Return csv file containing heatwave temperature anomalies
- 4. Play around with synthetic heatwaves using synthetic heatwaves.py
 - a. Choose your desired synthetic heatwave period and change the variable 'heatwave_period' to match it
 - i. You can change the duration of the desired synthetic heatwave here too
 - 1. Synthetic heatwave duration must be:
 - 0 < x < original heatwave duration
 - b. Use the original real heatwave period you used in Step 3d to modify the 'original_heatwave_period' variable
 - c. Calculate offset between original and new heatwave period
 - d. Create mask for new heatwave period in dataset
 - e. Extract subset of data for new heatwave
 - f. Adjust temperature anomalies to new heatwave period
 - g. Set desired magnitude (1 = original temperature anomaly) of synthetic heatwave
 - h. Add temperature anomalies to the subset data at chosen new heatwave period
 - i. Update dataset with modified values
 - j. Return modified data set as .nc file