#### Example – Charge and Discharge



Position 1: C<sub>1</sub> charges through R1 and R2

Position 2: C<sub>1</sub> discharges through R2

#### Circuit for Position 1



#### Example – Charge and Discharge

$$\tau = RC = 5k\Omega \cdot 20\mu F = 0.1sec$$

$$i_c(t) = (\frac{E}{R})e^{\frac{-t}{\tau}} A, t > 0$$

$$i_c(t) = (\frac{50V}{5k\Omega})e^{\frac{-t}{0.1sec}} A, t > 0$$

$$v_c(t) = E(1 - e^{\frac{-t}{\tau}}) \ V, t \ge 0$$

$$v_c(t) = 50(1 - e^{\frac{-t}{0.1sec}})V, t \ge 0$$

$$V_{R2}(t) = i_C(t) \cdot R_2 = 20e^{\frac{-t}{0.1}}V, t > 0$$



## M

#### Electrical Engineering Technology

#### Example – Charge and Discharge

At  $t = 1 \sec (1 \sec > 5 T)$ , switch moves to position 2

- $\Box$  V<sub>C</sub> (t = 1 sec) = 50V, final V<sub>C</sub>(t) from charge phase
  - V<sub>C</sub> cannot change instantaneously
  - V<sub>C</sub> will decrease exponentially to 0 V
    - $\square$  Depends on  $\mathcal T$  value for timing
  - The capacitor acts like a battery during discharge

$$v_c(t) = Ee^{\frac{-t}{\tau}}V$$

Initial Charge Assumes E at t=0

$$E = 50V \qquad \tau = R \cdot C = 2k\Omega \cdot 20\mu F = 40ms$$

$$v_c(t) = 50e^{\frac{-(t-1)}{.04sec}}V, t \geq 1sec$$
 Note:  $\mathbf{t}_{\text{initial}}$  = 1 sec (not 0 sec)

$$v_{R_2}(t) = -v_c(t) = -50e^{\frac{-(t-1)}{0.04}} \, V, t > 1sec$$

$$i_c(t) = \frac{v_{R_2}(t)}{R_2} = -25 \cdot 10^{-3} e^{\frac{-(t-1)}{0.04}} A, t > 1 sec$$



### Simulation – Charge and Discharge



Recall:  $\tau_{charge} = 0.1 \text{ sec}$ Simulate for 5T

### Simulation – <u>Charge</u> and Discharge







### At one time constant (0.1 sec):

vc(0.1sec) = 31.6V

 $v_{R2}(0.1sec) = 7.35V$ 

ic(0.1sec) = 3.66mA

# Ŋ

### Electrical Engineering Technology

#### Example – Charge and Discharge

Checking the charge phase results (theory and simulation):

$$i_c(t) = 10 \cdot 10^{-3} \cdot e^{\frac{-t}{0.1}} A, t > 0$$

$$v_c(t) = 50(1 - e^{\frac{-t}{0.1}})V, t \ge 0$$

$$v_{R2}(t) = i_c(t) \cdot R_2 = 20e^{\frac{-t}{0.1}}V, t > 0$$

| t (sec)           | i <sub>C</sub> (t) |          | v <sub>C</sub> (t) |          | v <sub>R2</sub> (t) |          |
|-------------------|--------------------|----------|--------------------|----------|---------------------|----------|
|                   | Calc               | Multisim | Calc               | Multisim | Calc                | Multisim |
| 0+                | 10 mA              | 9.9 mA   | 0 V                | 0V       | 20 V                | 19.9 V   |
| 0.1 ( <i>T</i> )  | 3.68 mA            | 3.66 mA  | 31.6 V             | 31.6 V   | 7.36 V              | 7.35 V   |
| 0.25              | 0.82 mA            | 0.82 mA  | 45.9 V             | 45.8 V   | 1.64 V              | 1.63 V   |
| 0.5 (5 <i>T</i> ) | 67.4 µA            | 66.7 µA  | 49.7 V             | 49.6 V   | 0.13 V              | 0.13 V   |
| 1                 | 0.45 μΑ            | 0.45 μΑ  | 49.98 V            | 49.85 V  | 0.91 mV             | 0 V      |

#### Simulation – Charge and <u>Discharge</u>



Distortion

Sensitivity

 $ic(t) = v_3(t)/R_2$ 

Recall:  $\tau_{discharge}$  = 40msec Simulate for 5 $\tau$  (Simulation starts at t=0 sec, actual time is t=1 sec)

### Simulation – Charge and <u>Discharge</u>







At one time constant into discharge (40ms, actual problem time of 1.04 sec):

$$vc(1.04sec) = 18.4V$$

$$v_{R2}(1.04sec) = -18.4V$$

$$ic(1.04sec) = -9.2mA$$

# м

### Electrical Engineering Technology

### Example – Charge and <u>Discharge</u>

Checking the discharge phase results (theory and simulation):

$$v_c(t) = 50e^{\frac{-(t-1)}{0.04}}V, t \ge 1$$

$$v_{R_2}(t) = -50e^{\frac{-(t-1)}{0.04}}V, t > 1$$

$$i_c(t) = -25 \cdot 10^{-3} \cdot e^{\frac{-(t-1)}{0.04}} A, t > 1$$

| t (sec)            | i <sub>C</sub> (t) |           | v <sub>C</sub> (t) |          | v <sub>R2</sub> (t) |          |
|--------------------|--------------------|-----------|--------------------|----------|---------------------|----------|
|                    | Calc               | Multsim   | Calc               | Multisim | Calc                | Multisim |
| 1+                 | -25 mA             | -24.93 mA | 50 V               | 49.85 V  | -50 V               | -50 V    |
| 1.04 ( <i>T</i> )  | -9.20 mA           | -9.2 mA   | 18.39 V            | 18.4 V   | -18.39 V            | -18.4 V  |
| 1.12 (3 <i>T</i> ) | -1.24 mA           | -1.23 mA  | 2.49 V             | 2.47 V   | -2.49               | -2.47 V  |

# Ŋ

#### In Class Problem

#### Find t for $V_c(t) = 25 \text{ V}$ for charge and discharge

- No initial charge on C1
- Switch to pos 1 at t = 0
- Switch to pos 2 at t = 1 sec



Same circuit as earlier