项目编号:

百安交通大學

大学生创新训练项目 结题报告书

项目名称:基于多元数据分析的重症监护室

病人健康状态预警方法研究

起止年月:

负责人:

手 机:

邮 箱:

项目成员:

指导老师:

批准经费: 已用金额:

填报日期: 2023年6月3日

报告题目: 学生姓名: 指导老师:

> 中文摘要: 英文摘要: 关键词:

目录

1	绪论												•	 •	 	 		 •	1
2	数据	集分析》	及预久												 	 			2
	2.1	数据集	介绍												 	 			2
	2.2	数据预	处理												 	 			2
		2.2.1	数据	提取											 	 			2
		2.2.2	数据	插补											 	 			2
		2.2.3	异常	值矫	Œ										 	 			2
		2.2.4	数据	填补											 	 			2
		2.2.5	实时	状态	数据	标记	<u>.</u>								 	 			2
_	latte area	1101 /da 14. 1	<i>t</i> 1.																_
3		训练与																	3
	3.1	数据集																	3
	3.2	模型评	估 .												 	 		 •	3
4	模型	可解释	生分析	折											 	 			3
	4.1	SHAP 1	直基を	本原理	里.										 	 			3
		4.1.1	加性	特征	归因	方法	<u> </u>								 	 			3
		4.1.2	加性	特征	归因	方法	中自	的唯	一 角	牟.					 	 			3
		4.1.3	SHA	P(SH	aple	y Ad	lditi	ve e	xPla	nati	on)	值			 	 			3
				E解彩															3
	4.2	基于 SI	HAP	值的词	可解	释性	分析	折 .							 	 			3
		4.2.1	整体	数据	可解	释性	E分t	折 .							 	 			3
		4.2.2	单个	数据	可解	释性	E分t	折 .							 	 			3
5	结论	与展望													 	 			3
A	附录																		5
	A .1	预处理																	5
	A.2	数据集																	
		模型评																	5
	A.4	基于 SI	HAP	值的词	可解	释性	:分林	斤 .					_		 	 	_		5

1 绪论

2 数据集分析及预处理

- 2.1 数据集介绍
- 2.2 数据预处理
- 2.2.1 数据提取

数据全称	缩写	MIMIC-IV 数据编号
1. 血小板计数 (Platelet Count)	PLT	227457
2. 凝血酶原时间 (Prothrombin time)	PT	227465
3. 凝血酶原时间的国际标准化比值	INR	227467
(International Normalized Ratio)	IIVIX	22/40/
4. D-二聚体 (D-Dimer)	D-Dimer	225636
5. 纤维蛋白原 (Fibrinogen)	FIB	227468
6. 二氧化碳分压	pCO2	226062(动脉)
(Venous CO2 Pressure)	pCO2	220002 (251)()(1)
7. 酸碱度 (pH)	pН	223830(动脉)
8. 氧分压 (Venous O2 Pressure)	pO2	226063 (动脉)

表 1: 相关数据对应缩写及编号

- 2.2.2 数据插补
- 2.2.3 异常值矫正
- 2.2.4 数据填补
- 2.2.5 实时状态数据标记

3 模型训练与评估

- 3.1 数据集划分
- 3.2 模型评估

4 模型可解释性分析

- 4.1 SHAP 值基本原理
- 4.1.1 加性特征归因方法
- 4.1.2 加性特征归因方法中的唯一解
- 4.1.3 SHAP(SHapley Additive exPlanation) 值
- 4.1.4 LIME 解释方法
- 4.2 基于 SHAP 值的可解释性分析
- 4.2.1 整体数据可解释性分析
- 4.2.2 单个数据可解释性分析
- 5 结论与展望

参考文献

[1] Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L. A., & Mark, R. (2023). MIMIC-IV (version 2.2)[DB]. PhysioNet. https://doi.org/10.13026/6mm1-ek67.

A 附录

A.1 预处理后 SIC 和 DIC 数据量

时间段长度	插补策略	填补策略	SIC 标签数量	DIC 标签数量
4h	均值插补	临近填补	827 (占比 89.89%)	629 (占比 68.37%)
8h	均值插补	临近填补	1885 (占比87.55%)	1345 (占比 62.47%)
12h	均值插补	临近填补	1823 (占比 86.77%)	1267 (占比 60.30%)

表 2: 预处理后的 SIC 和 DIC 数据量

- A.2 数据集划分结果
- A.3 模型评估结果
- A.4 基于 SHAP 值的可解释性分析