Diskretne Coonsove ploskve

Matej Rojec, Vito Rozman 31. december 2022

Kazalo

1	Uvod	iii
2	Diskretne Coonsove ploskve	iii
3	Ohranjanje Coonsove ploskve	\mathbf{v}
4	Stalne Coonsove ploskve	vi
5	Trikotne stalne Coonsove ploskve	vii
\mathbf{S}	like	
	1 Primer konstrukcije Coonsove ploskve	V

1 Uvod

V seminarski nalogi bomo obravnavali ploskve, ki interpolirajo štiri mejne krivulje, ki so definirane vsaka na svoji stranici pravokotnika $[0,1]^2$. Te ploskve bomo imenovali diskretne Consove ploskve, ki jih bomo dobili z reševanjem linearnega sistema enačb. Pogledali si bomo tudi problem, ko imamo namesto pravokotnika podan trikotnik, ki ga interpolirajo tri merjne krivulje.

Eden od najstarejših problemov v Računalniško podprtem geometrijskem oblikovanju je problem, kjer imamo podane štiri robne krivulje, radi pa bi poiskali ploskev z danimi robnimi krivuljami. Torej podane imamo robne krivulje

kjer lahko brez škode za splošnost predpostavimo da je domena ploskve x(u,v) enotni kvadrat, torej $(u,v) \in [0,1]^2$. Znana rešitev tega problema je bilinearna mešana Coonsova ploskev, ki je interpolirana z robnimi krivuljami, kot:

$$\mathbf{x}(u,v) = (1-u)x(0,v) + ux(1,v) + (1-v)x(u,0) + vx(u,v) - \begin{bmatrix} 1-u & u \end{bmatrix} \begin{bmatrix} x(0,0) & x(0,1) \\ x(1,0) & x(1,1) \end{bmatrix} \begin{bmatrix} 1-v \\ v \end{bmatrix}$$

2 Diskretne Coonsove ploskve

V bolj modernih uporabah RPGO, so mejne krivulje Bézierjeve polinomske krivulje, ki jih napenjajo kontrolne točke.

Definicija 2.1 Naj bodo dane kontrolne točke $\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{R}^d$. Potem je Bézierjeva krivulja stopnje n podana s polinomsko paramerizacijo $\mathbf{p} : [0, 1] \to \mathbb{R}^d$ s predpisom

$$\mathbf{p}(t) = \sum_{i=0}^{n} \mathbf{b}_i B_i^n(t),$$

kjer je
$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$
, za $i = 0, 1, \dots, n$.

Definicija 2.2 Bézierjevo ploskev $\mathbf{p}:[0,1]^2\to\mathbb{R}^3$ iz tenzorskega produkta stopnje $(m,n)\in\mathbb{N}\times\mathbb{N}$ definiramo s parametrizacijo:

$$\mathbf{p}(u,v) := \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{b}_{i,j} B_{i}^{m}(u) B_{j}^{n}(v),$$

kjer sta $(u,v) \in [0,1]^2$ ter $(\frac{i}{m},\frac{j}{n})$ domenske točke, ki ustrezajo kontrolni točki $\mathbf{b}_{i,j}$.

Predpostavimo, da imamo podane robne kontrolne točke $\mathbf{b}_{i,j}$ izračunane pri prametru (u, v), ki predstavljajo sledečo shemo:

Sedaj lahko primer diskritiziramo in robne krivulje zapišemo s štirimi Bezierjevimi krivuljami:

$$\mathbf{p}(u,0) = \sum_{i=0}^{m} \mathbf{b}_{i,0} B_{i}^{n}(u), \qquad \mathbf{p}(u,1) = \sum_{i=0}^{m} \mathbf{b}_{i,n} B_{i}^{n}(u),$$
$$\mathbf{p}(0,v) = \sum_{j=0}^{n} \mathbf{b}_{0,j} B_{j}^{n}(v), \qquad \mathbf{p}(1,v) = \sum_{j=0}^{n} \mathbf{b}_{m,j} B_{j}^{n}(v),$$

Notranje točke kontrolnega polinoma, lahko sedaj izračunamo kot:

$$\mathbf{b}_{i,j} = \left(1 - \frac{i}{m}\right) \mathbf{b}_{0,j} + \frac{i}{m} \mathbf{b}_{m,j}$$

$$+ \left(1 - \frac{j}{n}\right) \mathbf{b}_{i,0} + \frac{j}{n} \mathbf{b}_{i,n}$$

$$- \left[1 - \frac{i}{m} \quad \frac{i}{m}\right] \begin{bmatrix} \mathbf{b}_{0,0} & \mathbf{b}_{0,1} \\ \mathbf{b}_{1,0} & \mathbf{b}_{1,1} \end{bmatrix} \begin{bmatrix} 1 - \frac{j}{n} \\ \frac{j}{n} \end{bmatrix}$$

za $i=1,2,\ldots,m-1$ in $j=1,2,\ldots,n-1$. Izkaže se, da je kontrolni poligon ploskev, ki jo omejujejo robne krivulje, enak kontrolnemu poligonu, ki ga dobimo z opisano metodo. »Morda zanimivo: za določene oblike rabimo definirati samo robne krivulje«.

Ploskev, ki jo dobimo s tako dobljenimi kontrolnimi točkami $\mathbf{b}_{i,j}$ imenujemo Coonsova ploskev.

Primer take ploskve je slika 1, kjer je prikazan rob kontrolnega poligona, notranje točke kontrolnega poligona in Bézierjeva ploskev definirana nad kontrolnim poligonom

Slika 1: Primer konstrukcije Coonsove ploskve

3 Ohranjanje Coonsove ploskve

Denimo, da imamo podano Cooncova ploskev definirana nad domeno $D=[0,1]^2$. Izberemo dve točki (u_0,v_0) in (u_1,v_1) ki razpenjata pravokotnik R v domeni D. Štiri mejne krivulje pod-Consove ploskve definirae na R se preslikajo v štiri krivulje na prvotno Consovo ploskev. Izkaže se da pod-Coonsova ploskev definirana na R je prvotna Coonsova ploskev zožana na območje R. To načelo lahko uporabimo na diskretni 3×3 Consovi ploskivi

$$\begin{array}{cccc} \mathbf{b}_{i-1,j-1} & \mathbf{b}_{i-1,j} & \mathbf{b}_{i-1,j+1} \\ \mathbf{b}_{i,j-1} & \mathbf{b}_{i,j} & \mathbf{b}_{i,j+1} \\ \mathbf{b}_{i+1,j-1} & \mathbf{b}_{i+1,j} & \mathbf{b}_{i+1,j+1} \end{array}$$

Če poznamo robne točke lahko notranjo točko $\mathbf{b}_{i,j}$ določimo na sledeč način:

$$\mathbf{b}_{i,j} = -\frac{1}{4}(\mathbf{b}_{i-1,j-1} + \mathbf{b}_{i+1,j-1} + \mathbf{b}_{i-1,j+1} + \mathbf{b}_{i+1,j+1}) + \frac{1}{2}(\mathbf{b}_{i-1,j} + \mathbf{b}_{i,j-1} + \mathbf{b}_{i,j+1} + \mathbf{b}_{i+1,j}).$$

kar lahko krajše zapišemo z masko:

$$\mathbf{b}_{i,j} = -\frac{1}{4} \times \begin{array}{ccc} -1 & 2 & -1 \\ 2 & & 2 \\ -1 & 2 & -1 \end{array}$$

Ker je mreža sestavljena iz $(m+1) \times (n+1)$ kontrolnih točk, dane pa imamo samo robne točke lahko ostalih $(m-1) \times (n-1)$ enlično določimo z zgornjo masko. Določitev točk se prvede na reševanje sistema $(m+1) \times (n+1)$ linearnih enačb.

Oglejmo si 3×3 masko s splošnimi parametri, kjer se element izraža na sledeč način:

$$\mathbf{b}_{i,j} = \begin{array}{ccc} \alpha & \beta & \alpha \\ \beta & \bullet & \beta. \\ \alpha & \beta & \alpha \end{array}$$

V primeru da sta $(\alpha, \beta) = (-0.25, 0.5)$ dobimo Consovo ploskvo. Privzeli bomo, da velja $4\alpha + 4\beta = 1$, saj tako ohranjamo afinost maske. S perturbiranjem parametrov α in β dobimo torej nov razred kontrolnih shem, imenujemo jih stalne krivulje (angl. permanence patches). V članku [1] so raziskovali vpliv α na optimalno oblike ploskve. Ugotovili so, da za izbrana m in n ni vedno ene optimalne vrednosti za α , ki bo dala dobro obliko ploskve.

Oglejmo si še nekaj primerov ploskev pri različnih parametrih α in β .

4 Stalne Coonsove ploskve

Ena kontrolna točka navadne Consove ploskve je odvisna od osem obrobnih točk, torej gre za lokalno odvisnost. V primeru ko govorimo o stalnih ploskvah ($\alpha \neq -0.25$), je točka odvisna od vseh mejnih točk, zato govorimo o globalni odvisnosti. Ta odvisnost nam potencialno lahko pripomore pri ustvarjanju "boljših"krivulj.

Če si ogledamo primer, ko izberemo $\alpha=-0.257$ in rešimo linearni sistem, dobimo "boljšo"ploskev glede na dane robne rivulje. TU BO SLIKA Dani poligoni izhajajo iz torusnih oblik in z modifikacijo α lahko pridemo do željene

oblike. Kot zanimivost se izkaže da ob izbiri paramatra $\alpha=0$ in seveda ob upoštevanju afinosti, dobimo ploskev, katere površina je minimizeranan za dano ogrodje krivulj. To se vidi iz Laplasove parcialne diferencialne enačbe

$$\mathbf{x}_{uu} + \mathbf{x}_{vv} = 0.$$

5 Trikotne stalne Coonsove ploskve

Mreža trikotne Bezirjeve krivulje je delno linearna površina, zato se v tem primeru porodi vprašanje, če imam tri robne poligone, ali obstaja "dobra"kontolna mreža ki zapolni omejeno območje. Ideja rešitve je podobna kot v prejšnem primeru, kjer uporabimo spremenjeno masko oblike:

$$\mathbf{x} = \begin{pmatrix} & & & & & & & \\ & & \beta & & \beta & & \\ & \beta & & \cdot & & \beta & \\ & \alpha & & \beta & & \beta & & \alpha \end{pmatrix}$$

kjer je zaradi pogoja afinoste ponovno predpostavljeno da $3\alpha + 6\beta = 1$.

Literatura

[1] G. Farin, F. Hansford, Discrete Coons patches,