Communication Networks II

Real-time Interactive Multimedia VoIP and Instant Messaging

Prof. Dr.-Ing. **Ralf Steinmetz** KOM - Multimedia Communications Lab

Overview

1 Basics of Real-Time Interactive Internet based Communications

- 2 Messaging Protocols
 - 2.1 IRC Internet Relay Chat
 - 2.2 H.323 Packet-based Multimedia Communication System
 - 2.3 SIP Session Initiation Protocol
 - 2.4 Jabber / XMPP Extensible Messaging and Presence Protocol
 - 2.5 MSNP Microsoft Notification Protocol
- 3 SIP: Session Initiation Protocol
 - 3.1 Signaling
 - 3.2 SIP Messages
 - 3.3 Setting up a Call to known IP Address
 - 3.4 Setting up a Call to unknown IP Address
 - 3.5 Protocol-Interworking
 - 3.6 Comparison SIP and H.323
- **4 Instant Messaging**
 - 4.1 SMS Sort Message Service
 - 4.2 Joyn
 - 4.3 WhatsApp
 - 4.4 Instant Messaging User View
 - 4.5 Instant Messaging System View
 - 4.6 Instant Messaging Enhancements
 - 4.7 Instant Messaging with SIP
- **5 Voice Communication**
 - 5.1 Speech Quality
 - 5.2 VolP Protocols, System Elements and Scenarios
 - 5.3 Example of Internet Phone
 - 5.4 VoiP Jitter, Playout Delay and Data Loss
 - **5.5 Summary Voice Communication**

Basics of Real-Time Interactive Internet based Communications

Asynchronous communication:

- FAX
- E-Mail
- Forum
- Twitter
- ...

Here we focus on Synchronous communication:

- Chat
- Instant Messaging (IM)
- Voice over IP (VoIP)
- Videoconference
- ...

Synchronous Communications - Common Terms

VoIP (Voice over IP) / IP telephony

- Voice communication (telephone call) over
 - a packet-switched network using
 - the Internet Protocol
 - instead public telephone network
- Part of Internet Telephone services
 - like SMS, fax, ... part of public telephone services
- Software applications or integrated into hardware devices

Videoconference

- Distributed meeting
 - two or more locations and two or more participants
 - with simultaneous voice and video transmission
- Additional document or desktop sharing

Chat

- Real-time communication over the Internet
- Text-Chat, Voice-Chat, Video-Chat

Instant Messaging (IM)

- Synchronous text-based communication
- Discussed in RFC 2778
 - A Model for Presence and Instant Messaging

Common Applications and Tools

Tools for synchronous communication: IM, VoiP, Video Conference

- Whatsapp
- Viber
- iMessage (Apple)
- Facetime (Apple)
- Facebook chat
- Skype (Microsoft)
- Windows Live Messenger
 - successor of MSN Messenger
- Microsoft Lync
 - successor of Microsoft Office Communicator
 - Mainly used in corporate environments
- ICQ (since 1996 ICQ Instant Messenger)
- Yahoo! Messenger
- AOL Instant Messenger (AIM)
- **-** ...

Specialized Tools

- Voice Chats mainly used for gaming:
 - TeamSpeak, Ventrilo, Mumble, ...
- Videoconference:
 - Microsoft NetMeeting, Adobe Connect, ...

2 Messaging Protocols

History

1988 IRC - Internet Relay Chat

- by Jarkko Oikarinen
- Inspired by BITNET Relay Chat
- RFC 1459

1996 H.323: Packet-based multimedia communication system (12/09)

ITU-T recommendation

1996 SIP: Session Initiation Protocol

- by Henning Schulzrinne and Mark Handley
- Standardized 1999
- RFC 3261-3265
- 2002 SIMPLE RFC 3428 and RFC 3856

1999 Jabber → XMPP - Extensible Messaging and Presence Protocol

- by Jeremie Miller
- Standardized 2004 as Extensible Messaging and Presence Protocol (XMPP)
- RFC 6120-6122 and 3922-3923

1999 MSNP - Microsoft Notification Protocol

- Microsoft Instant Messenger Protocol (Mobile Status Notification Protocol)
- First used with MSN Messenger

2.1 IRC - Internet Relay Chat

Internet Relay Chat Protocol

■ RFC 1459

Real-time internet chat – synchronous communication

Text messages / Chat Rooms (Channels) / Private Chat rooms

Mainly using TCP/IP and Client-Server

- Many client implementations,
 - e.g. mIRC, Trillian, Xchat, androIRC, Unreal Tournament build-in IRC
- Thousands of IRC networks worldwide,
 - e.g. EFnet, IRCnet, QuakeNet, Undernet

Security depending on server No voice or video

2.2 H.323 - Packet-based Multimedia Communication System

Some properties of H.323 Packet-based multimedia communication system

- Current version v7(12/09)
- ITU-T recommendation
- Industry driven
- Initially defined for LANs (1996)
 - Visual telephone system and equipment for local area networks which provide a non-guaranteed quality of service
- Revised since version 2 for packet-switched networks in general
- Protocol properties
 - Stateful
 - Binary (ASN.1)

H.323 – Set of ... and comprises further Recommendations

H.225.0: Call signaling protocols and media stream packet building for packet-based multimedia communication systems (2009) and Q.931

- Registration, authentication, status (RAS)
- Call control

H.245: Control protocol for multimedia communication (2009)

Control	Data	Audio	Video	A/V Cntl	Control
H.225.0 H.245	T.120	G.7xx	H.26x	RTCP	Gate- keeper Reg, Adm, Status (RAS)
ТСР		UDP			
IP					

- Logical channel capabilities negotiation
- Dynamic port negotiation (problem with firewalls)

e.g. H.235.0: H.323 Security: Framework for security in H-series (H.323 and other H.245-based) multimedia systems (2005)

G.711: Pulse code modulation (PCM) of voice frequencies (1988)

2.3 SIP - Session Initiation Protocol

Session Initiation Protocol (SIP)

RFC 3261

Application Layer control protocol

- to establish, modify, and terminate multimedia sessions (conferences),
- e.g. Internet telephony calls

SIP for

Instant Messaging and Presence Leveraging Extensions (SIMPLE)

- Addition to SIP for
 - Instant Messaging (RFC 3428) and
 - presence (RFC 3856)

SIP - 5 facets of establishing and terminating multimedia communications:

- User location:
 - determination of the end system to be used for communication
- User availability:
 - determination of the willingness of the called party to engage in communications
- User capabilities:
 - determination of the media and media parameters to be used
- Session setup:
 - "ringing", establishment of session parameters at both called and calling party
- Session management:
 - including transfer and termination of sessions, modifying session parameters, and invoking services

2.4 Jabber / XMPP - Extensible Messaging and Presence Protocol

Basics

- XMPP Extension Protocols by XMPP Standards Foundation
- RFC 6120 (core), RFC 6121 (IM and presence) and RFCs 6122, 3922, 3923

- Open XML protocol for messaging, presence and request-response services
- Open-source, further improved

Characteristics

- Client-Server Architecture
- Unique Identifier: Jabber ID username @host
- TCP/IP
- Transport
 - gateways to other messaging protocols, SMS or e-mail
- Security:
 - Simple Authentication and Security Layer SASL and Transport Layer Security TLS
- Jingle: Extension for P2P signaling as base for voice communication / video conferencing (draft standard XEP-0166 and others)

2.5 MSNP - Microsoft Notification Protocol

Also known as the Mobile Status Notification Protocol Microsoft IM-Protocol

- Used by .NET Messenger Service and its clients
 - E.g. Windows Live Messenger

Client-Server

MSN Messenger protocol consists of a series of commands sent between the client and the server

- Notification server (NS) providing presence service
- Switchboard server (SB) providing instant messaging service
 - Acting as a proxy between clients (no directly connected conversations)
 - A switchboard session is not restricted in the number of participants

3 SIP: Session Initiation Protocol

Session Initiation Protocol (SIP)

Signaling-approach of IETF

Basic functions:

- Location of an end point
- Signal of a desire to communicate
- Negotiation of session parameters to establish the session
- Teardown of the session once established

Characteristics:

- Text-based signaling-message
- E-mail like addressing
 - sip:[user]@[domain]
- "fast in the core and smart at the edges"

```
e.g.
```

```
REGISTER sip:domain.com
```

SIP/2.0

Via: SIP/2.0/UDP

193.64.210.89

From: sip:bob@domain.com

To: sip:bob@domain.com

Expires: 3600

SIP Properties

Advantages:

- Good interworking with other (orthogonal) internet protocols
 - DNS (Domain Name System)
 - STUN (Simple Traversal of UDP over NATs)
 - ENUM (E.164 Number and DNS)

Service provided by SIP servers:

- SIP registrar server
- SIP proxy server

SIP long-term vision:

- All telephone calls, video conference calls take place over Internet
- People are identified by names or e-mail addresses, rather than by phone numbers
- You can reach callee, no matter where
 - callee roams
 - what IP device callee is currently using

3.1 Signaling

Signaling protocol tasks

1. Pre-call

- User addressing (URL, number)
- Authentication / registration (security, billing)
- Locating (dynamic IP-address mapping on user ID)
- Heartbeat (client online)

2. Call

- Invitation
- Parameter negotiation (media codec...)
- Management (redirect, forward, cancel,...)
- State (pick up, ongoing,...)

3. Post-call

Release and reset of resources

SIP - Signaling Sequence

Signaling sequence

similar to HTTP: request triggers response

2 message types:

SIP-Request

SIP-Response

- SIP Requests
 - specific methods
- SIP Response
 - response codes from HTTP
 - additional explanatory text
 - extended with new numeric result codes

SIP – Signaling Procedure

3.2 SIP - Messages

SIP Requests

SIP-Request

SIP Responses

A SIP-Response

REGISTER

- binds id to the current IP
- Authentication

1xx: Informational

В

- 100 Trying
- 180 Ringing

INVITE

- usually begins a session
- body contains session description (SDP)

2xx: Success

■ 200 OK

OPTIONS

returns client capability

3xx: Redirect

■ 302 Moved temporarily

ACK

- only used in session initiation
- end of 3-way handshake

4xx: Client error

400 Bad Request

CANCEL

terminates an request

5xx : Server error

6xx : Global failure

BYE

terminates an open session

SIP - Message - Schema

First line

method (SIP Request)

Header

- similar to E-Mail header
- request specific information
- mainly
 - URL: to / from / via
 - Call-ID (unique ID for call identification)
 - Body description ("Content-...")

Body

- Session Description Protocol (SDP) format
- codec information
 - provided codecs, sampling rates
 - addresses and ports for media-data-receive
 - media destination, IP address and port number
- session name and purpose

SIP – Message - Example

First Line	INVITE sip:00491266666@130.83.139.45:22400 SIP/2.0
Header	Via: SIP/2.0/UDP 130.83.139.206 To: <sip:00491266666@130.83.139.45> From: <sip:00491266766@130.83.139.45>;tag=1c16296</sip:00491266766@130.83.139.45></sip:00491266666@130.83.139.45>
	Call-ID: call-1036074256-8@130.83.139.206 CSeq: 1 INVITE Contact: <sip:00491266766@130.83.139.206> Content-Type: application/sdp</sip:00491266766@130.83.139.206>
D . 1	Content-Length: 310v=0
Body	o=Pingtel 5 5 IN IP4 130.83.139.206 s=phone-call t=0 0 m=audio 8766 RTP/AVP 96 97 0 8 18 98 a=rtpmap:96 eg711u/8000/1 a=rtpmap:97 eg711a/8000/1 a=rtpmap:0 pcmu/8000/1 a=rtpmap:8 pcma/8000/1 a=rtpmap:18 g729/8000/1 a=rtpmap:98 telephone-event/8000/1

3.3 Setting up a Call to known IP Address

Alice

Bob

Alice's SIP invite message indicates

- her port number,
- IP address,
- encoding she prefers to receive (PCM μlaw)

Bob's 200 OK message indicates

- his port number,
- IP address,
- preferred encoding

SIP messages can be sent

- over TCP or UDP;
- here sent over RTP/UDP

Default SIP port number

• is 5060

Multimedia Networking KOM – Multimedia Communications Lab

time

time

Setting up a Call to known IP Address

Codec negotiation:

- Suppose Bob doesn't have PCM µlaw encoder.
- Bob
 - will instead reply with 606 Not Acceptable Reply,
- Alice
 - listing his encoders can then send new INVITE message, advertising different encoder

Rejecting a call

- Bob can reject with replies
 - "busy," "gone," "payment required," "forbidden"

Media exchange

Media can be sent over RTP or some other protocol

SIP Registrar

When Bob starts SIP client, client sends SIP REGISTER message to Bob's registrar server

(similar function needed by Instant Messaging)

Register Message:

```
REGISTER sip:domain.com SIP/2.0
```

Via: SIP/2.0/UDP 193.64.210.89

From: sip:bob@domain.com

To: sip:bob@domain.com

Expires: 3600

SIP Proxy

Alice sends invite message to her proxy server

Contains address sip:bob@domain.com

Proxy responsible for routing SIP messages to callee

Possibly through multiple proxies

Callee sends response back through the same set of proxies

Proxy returns SIP response message to Alice

Contains Bob's IP address

Proxy analogous to local DNS server

3.4 Setting up a Call to unknown IP Address

Caller wants to call callee, but only has callee's name or e-mail address

- Need to get IP address of callee's current host:
 - User moves around
 - DHCP protocol
 - User has different IP devices (PC, PDA, car device)
- Result can be based on:
 - Time of day (work, home)
 - Caller (don't want boss to call you at home)
 - Status of callee
 - (calls sent to voicemail when callee is already talking to someone)

i.e. Name Translation and User Location issue

Example of Setting up a Call to unknown IP Address

Alice doesn't know Bob's IP address

- Intermediate SIP servers needed
- Alice sends, receives SIP messages using SIP default port 5060
- Alice specifies in header that SIP client sends, receives SIP messages over UDP

Figure 1: SIP session setup example with SIP trapezoid

Example of Setting up a Call to unknown IP Address

Caller jim@umass.edu places a call to keith@upenn.edu

- (1) Jim sends INVITE message to umass SIP proxy
- (2) Proxy forwards request to upenn registrar server
- (3) upenn server returns redirect response, indicating that it should try keith@eurecom.fr
- (4) umass proxy sends INVITE to eurecom registrar

- (5) eurecom registrar forwards INVITE to 197.87.54.21, which is running keith's SIP client
- (6-8) SIP response sent back
- (9) media sent directly between clients
- Note: also a SIP ack message, which is not shown

3.5 Protocol-Interworking

Gateways

- Inter-connection to other communication systems
 - H.323, SIP, IAX2, PSTN, others...
- To extend the range of "reachable" users

Back-to-Back User Agent (B2BUA)

- Simulates an endpoint to each direction
- Media/signaling message transferred through gateway
- Example SIP-PSTN gateway:

Protocol-Interworking

Gateway with direct RTP connection

- Direct exchange of RTP media-data
 - Less data transfer through gateway
- Mapping of signaling-primitives
 - E.g. between
 - H.323 and SIP

3.6 Comparison SIP and H.323

H.323

Another signaling protocol for real-time, interactive communication

H.323 is a complete, vertically integrated suite of protocols for multimedia conferencing including

Signaling, registration, admission control, transport, codecs

SIP is a single component.

- Works with RTP, but does not mandate it
- Can be combined with other protocols, services

H.323 comes from the ITU (telephony)

H.323 has "telephony flavor"

SIP comes from IETF

- Borrows much of its concepts from HTTP
- SIP has "web flavor"

SIP uses the KISS principle: Keep it simple, stupid!

- Less complex approach compared with H.323
- With a good extensibility

4 Instant Messaging

Instant Messaging (IMS)

Tries to feature real-time direct conversation

- Like & Comparable
 - to SMS / pager services
 - To person to person chat
- Using text messages
- Different from email
- "instant" content sending and delivery
 - Immediate transport if possible
 - By "leaving" it for the receiver otherwise
- Usually coupled with presence mechanisms

Frequently enhanced with additional services like

- Buddy lists
 - All users I want to communicate with
- Chat rooms (private/public)
- Notification of e.g. email
- News ticker
- Transfer of file, picture, video, location, ...

4.1 SMS – Sort Message Service

As part of the GSM – mobile telephone services

e.g. in 2010 per year

Mobile messages (in billions)

Source: Statista and Ofcom, International Communications Market Report 2011, page 262

Usage peak 2012 in Germany

- E.g. According to BITKOM, Nov. 2012
 - 700 per user per year
 - 58 billions of SMS in 2012
 - 3.1 billions EUR
 - More flat rates
 - More internet based alternatives

SMS – History

As part of the GSM – mobile telephone services

History

- Concept originates based on
 - Friedhelm Hillebrand (Deutschen Bundespost, today German Telekom)
- with contributions of
 - Bernard Ghillebaert (PTT, today France Télécom)
- 1984: well defined
- Feb.1985 incorporated into the GSM Standard

"Merry Christmas"

- first SMS sent 3. Dez. 1992 in the UK, Vodaphone
- typed in at PC attached to mobile phone
 - Mobile terminal did not have any facility for characters to be typed in

SMS - Overall

Characteristics

- Usually 160 Characters
- At most 1120 bits

Enhancement MMS – Mobile Multimedia Service

Enhancement Future – Joyn

- Industry based initiative
- Based on Rich Communication
 Suite, Rich Communication Services

Social Impact

- Young generation
- politics

Smilles

Special abbreviations like

Words in full Abbreviations or SMS language

As far as I remember AFAIR

Thanks THNX or THX

Today 2day

Before B4

Have a nice day HAND

See you C U

At @

Keep it simple, stupid KISS

4.2 Joyn

Overall

- Industry based initiative
- Based on Rich Communication
 Suite, Rich Communication Services
- Volume based tariff

Characteristics

- Enhanced Phonebook with
 - service capabilities
 - presence enhanced contacts information
- Enhanced Messaging
 - e.g. chat and messaging history
- Enriched Call
 - multimedia content sharing during a voice call

Social Profile Information Picture Portrait Link Status text (Free Text) Availability Network Address Book

RCS-e Reference Implementation

Communication Services Information

- IM/Chat
- File Transfer
- Image Share
- Video Share

Access Networks

- Mobile PS Access
- Trusted Broadband
- Untrusted Broadband

4.3 WhatsApp

Overall

- Large installed base of users
 - Jabber ID: [phone number]@s.whatsapp.net

Characteristics

- uses customized version of XMPP - Extensible Messaging and Presence Protocol
- Upon installation it creates a user account
 - using one's phone number as username
- Some Privacy and Security concerns
 - Server knows all contacts from users
 - Identity theft possible

4.4 Instant Messaging - User View

Let other people "see" my presence

If I allow that

Let me see the presence of other people Reaches available persons immediately or leaves them a message

4.5 Instant Messaging - System View

Message Transfer Alternatives

- Direct:
 - After learning partners point of presence from infrastructure
- Proxied:
 - Through infrastructure (makes coping with firewalls easier)
- Store and forward

Communication protocol

- Client / server model combined with server push mode
- Centralized databases allow to retrieve "profile / buddy list information"
 - From whatever client somebody is currently using (e.g. PC at work, home,..)

4.6 Instant Messaging - Enhancements

Privacy and data security

- Encryption of data
- Ensure that data will not be monitored / sold
- Granting, managing and retracting permissions

Interoperable clients

- Increasing number of polyglot clients caused by
 - Competition, reverse engineering
 - Ongoing modifications, enhancements

Access from multiple devices

PC, wireless devices, PDA, IP phones

Scalability

- Hundreds of
 - Millions of users
 - Billions of messages/notifications per day
- Possible speed limits for the propagation of states in distributed systems

Telephony integration

Many services require voice integration industry mandates

Context awareness

Future Enhancements - Context Integration

New Approaches

- Include location and context awareness
 - Where is the user
 - at the moment
 - in near future
 - What is the user doing
 - Which are the available and most suitable communication devices and media

4.7 Instant Messaging with SIP

Use SIP infrastructure for Instant Messaging

- Provides signaling framework
- SIP
 - Servers route messages
 - Registrars provide means for addressing and locating users
 - Covers already some inherent security aspects

New aspects to SIP

- Instant Messaging
 - Problem:
 - possible congestion on SIP signaling path through large amount of SIP messages carrying user payload
 - Solution:
 - Peer-to-Peer technology
 - i.e. to define new MESSAGE method which is sent directly to the target and not through SIP server
- Presence
 - use SIP event concept
 - SUBSCRIBE / NOTIFY
 - new event type "presence"

Instant Messaging with SIP


```
MESSAGE sip:Bob SIP/2.0
Via: SIP/2.0/TCP
proxy;branch=xxx
From: sip:Alice;tag=yyy
To: sip:Bob
Call-ID: xyz
CSeq: 1 MESSAGE
Content-Type: text/plain
Content-Length: 15
Bob, come here!
```

Payload transport

- Must support at least content type text/plain
- May support MIME type content including text/cpim (Common Presence and Instant Message Format)

SIP MESSAGE method for Instant Messaging

- Addressing uses SIP or IMS URLs
- 200 OK
 - Only indicates the message was accepted by the User Agent (UA)

Instant Messaging with SIP

SUBSCRIBE

To subscribe to specific event source "presence"

NOTIFY

- PUSH message about status changes from the SIP server
- Presence information in message body with some non-SIP means
 - E.g. Content-Type: application/cpim-pidf+xm

5 Voice Communication

Encoding of speech

- Codec
 - Transforming speech into binary data
- Defines:

Figure 5: Speech Quality Versus Bit Rate For Common Classes of Codecs

Basics of Voice Data Transport and Voice Coding

Media-transport as general assignment:

- In many systems usage of
 - Real-Time Transport Protocol (RTP)
 - Real-Time Transport Control Protocol (RTCP)
- UDP-based transport
 - Qualified as non-network adaptive (like TCP)
 - Specification of media-endpoint-parameter
 - IP-addresses and ports
- Real-time requirements
 - Sensitivity to delay and jitter

Basics

Common Codec G.711

Recommendation ITU-T G.711 (1988), Pulse code modulation (PCM) of voice frequencies

- ITU (International Telecommunication Union)
- Waveform Codec, no Compression
- Used for ISDN, suited for VoIP
- Needs much bandwidth 64 kbit/s (plain) ~ 80 kbit/s (with headers)
- Frame size not fixed, normally 5ms 20ms

Common Codec Speex

- Open Source Codec (Xiph.org)
- Hybrid Codec
- Flexible quality: sample rates 8kHz (narrowband), 16 kHz (wideband), 32kHz (ultra-wideband)
- Bandwidth 2,15 kbit/s 44kbit/s
- Frame size 20ms

5.1 Speech Quality

Important network parameters:

- Delay
- Throughput
- Jitter
- Packet loss

Delay =

- Codec Delay +
- Serialization Delay +
- Queuing Delay +
- Propagation Delay

Throughput: depending on coding schemes and framing

- G.711 Codec (PCM) requires 64Kbps
- G.721 Codec (ADPCM) requires 32Kbps

Example of encoding / decoding delay for speex (frame size 20ms)

- Sample rate 8kHz -> delay = 30ms
- Sample rate 16kHz -> delay = 34ms

Requirements

End-to-end delay requirements

- < 150 msec good
- < 400 msec ok
- Includes application-level and network delays

End-to-end Delay bounds:

MOS - Measurement of Speech Quality

MOS (Mean Opinion Score)

- ITU 1996
- Subjective measurement, many people needed
- Examples:

■ G.711 with 56-64 kbit/s -> MOS = 4,1 - 4,4

■ Speex with 2-44 kbit/s -> MOS = 2,3 - 4,0

MOS	Quality	Effort
5	Excellent	Complete relaxation possible; no effort required
4	Good	Attention necessary; no appreciable effort required
3	Fair	Moderate effort required
2	Poor	Considerable effort required
1	Bad	No meaning understood with any feasible effort

PESQ – PAMS - ... Measurement of Speech Quality

PESQ (Perceptual evaluation of speech quality)

- ITU 2001
- Difference between source and destination signal is calculated
- Considers transmission losses (e.g. delay, packet loss)
- Can be "transferred" into MOS-values:

$$y = 0,999 + \frac{4,99 - 0,99}{1 + e^{-1,4945*x + 4,6607}}$$

PAMS (Perceptual Analysis Measurement System)

- Like PESQ but different Algorithms
- Defines "listening quality" and "listening effort"

E-Model

- ITU 2005
- Calculates R-factor for quality
 - 0 120 (more is better)

Für R < 0 :	MOS = 1
Für 0 < R < 100 :	$MOS = 1 + 0.035R + R(R - 60)(100 - R)^7 * 10^{-6}$
Für 100 < R :	MOS = -4,5

Tabelle 2.4: Berechnung des MOS-Wert mit Hilfe des R-Wertes [IT05]

 \blacksquare R = Ro – Is – Id – Ie,ett + A

Measurement of Speech Quality

Effect of delay

- Regarding the use of the E-model for speech applications
- Transmission Rating (R) versus delay
- Also shown are the speech quality categories
 - E.g. $90 \le R < 100 \rightarrow$ Users very satisfied

Figure 1/G.114 - Determination of the effects of absolute delay by the E-model

Measurement of Speech Quality

Consider all the way from speaker to listner including:

- Encoding / decoding
- Routing
- De-Jittering
- Playout

Abbildung 3.8: Aufbau des Qualitätsmodells von Hoehne [Hoe06]

5.2 VoIP Protocols, System Elements and Scenarios

VoIP / IP-Telephony / Internet Phone

- VoIP "Voice Over IP Networks"
- Transmission of signaling and media data (voice streams)

Signaling approaches for VoIP:

- 1. Proprietary / closed protocols
 - E.g. Skype
- 2. Open / standardized VoIP protocols
 - SIP signaling-approach from IETF
 - H.323 signaling-approach from ITU
 - IAX/IAX2 signaling and media-approach (IETF Draft)
 - MGCP (Media Gateway Control Protocol)

Focus here

- IP telephony systems
 - As contrast to individual "internet telephony"-approaches

Protocols

Based on Internet Real-time and Multimedia Protocols

Generic VolP Call

VoIP as combination of

- Signaling
- Media-transport
- with quality of service

VoIP System Elements

Clients / Terminals

- Softphones
 - Software with VoIP functionality
- Hardphones
 - Device telephone with VoIP functionality

VoIP (Service) Provider

- Registrar (or gatekeeper)
 - For management of client IP addresses
 - For authentication
- Proxy or Redirect-Server
 - Forwarding of the signaling-messages
- Gateway
 - To other VoIP Systems or PSTN
 - Signaling and/or media conversion

VoIP Scenarios

Contact callee using

1. Direct IP-addressing

Static IP-address needed

2. Directory service / registrar (VoIP Provider)

Dynamic IP-address

3. PSTN gateway

In order to reach phone partners on POTS

5.3 Example of Internet Phone

Speaker's audio: alternating talk spurts, silent periods

- 64 kbps during talk spurt
- packets generated only during talk spurts
- 20 msec chunks at 8 Kbytes/sec: 160 bytes data

Application-layer header added to each chunk

- Chunk+header encapsulated into UDP segment
- Application sends UDP segment into socket every 20 msec during talkspurt

Example: Internet Phone

Packet Loss and Delay

Network loss:

■ IP datagram lost due to network congestion (router buffer overflow)

Delay loss:

- IP datagram arrives too late for playout at receiver
- Delays: processing, queueing in network; end-system (sender, receiver) delays
 - Typical maximum tolerable delay: 400 ms

Loss tolerance:

- Depending on voice encoding, losses concealed
- Packet loss rates between 1% and 10% can be tolerated

5.4 VoiP – Jitter, Playout Delay and Data Loss

Delay and Jitter

 Consider end-to-end delays of two consecutive packets: difference can be more or less than 20 msec (transmission time difference)

Fixed Playout Delay

Fixed Playout Delay

- Receiver attempts to playout each chunk exactly q msecs after chunk was generated
 - chunk has time stamp t:
 - → play out chunk at t+q.
 - chunk arrives after t+q:
 - → data arrives too late for playout, data "lost"

Tradeoff in choosing q:

- large q: less packet loss
- small q: better interactive experience

Fixed Playout Delay

Sender generates packets every 20 msec during talk spurt

- First packet received at time r
- First playout schedule: begins at p
- Second playout schedule: begins at p'

Adaptive Playout Delay

Goal:

to minimize playout delay, keeping late loss rate low

Approach:

adaptive playout delay adjustment:

- to estimate network delay,
 to adjust playout delay <u>at beginning of each talk spurt</u>
- silent periods compressed and elongated
- chunks still played out every 20 msec during talk spurt.

 $t_i = timestamp of the ith packet$

 r_i = the time packet i is received by receiver

 p_i = the time packet i is played at receiver

 $r_i - t_i = network delay for ith packet$

d_i = estimate of average network delay after receiving ith packet

Dynamic estimate of average delay at receiver:

$$d_i = (1 - u)d_{i-1} + u(r_i - t_i)$$

where u is a fixed constant (e.g., u = .01).

Adaptive Playout Delay

Adaptive Playout Delay

also useful to estimate average deviation of delay, v_i:

$$v_i = (1-u)v_{i-1} + u | r_i - t_i - d_i |$$

- estimates d_i , v_i calculated for every received packet (but used only at start of talk spurt)
- for first packet in talk spurt, playout time is:

$$p_i = t_i + d_i + Kv_i$$

- where K is positive constant
- remaining packets in talkspurt are played out periodically

Adaptive Playout Delay

How does receiver determine whether packet is first in a talkspurt?

If no loss, receiver looks at successive timestamps

- IF Difference of successive stamps > 20 msec
 - → talk spurt begins.

With loss possible, receiver must look at both time stamps and sequence numbers

- IF Difference of successive stamps > 20 msec AND sequence numbers without gaps
 - → talk spurt begins

Forward Error Correction (FEC): simple scheme

- For every group of n chunks create redundant chunk by exclusive OR-ing n original chunks
- Send out n+1 chunks, increasing bandwidth by factor 1/n.
- Can reconstruct original n chunks if at most one lost chunk from n+1 chunks

Playout delay: enough time to receive all n+1 packets

- Tradeoff:
 - Increase n, less bandwidth waste
 - Increase n, longer playout delay
 - Increase n, higher probability that 2 or more chunks will be lost

2nd FEC scheme

- "piggyback lower quality stream"
- Send lower resolution audio stream as redundant information
- E.g., nominal stream PCM at 64 kbps and redundant stream GSM at 13 kbps

Whenever there is non-consecutive loss,

- Receiver can conceal the loss
- Can also append (n-1)st and (n-2)nd low-bit rate chunk

2nd FEC scheme

- "piggyback lower quality stream"
- Send lower resolution audio stream as redundant information
- E.g., nominal stream PCM at 64 kbps and redundant stream GSM at 13 kbps

Whenever there is non-consecutive loss,

Receiver can conceal the loss

Can also append (n-1)st and (n-2)nd low-bit rate chunk

Interleaving

- Chunks divided into smaller units
- For example, four 5 msec units per chunk
- Packet contains small units from different chunks

If packet lost, still have most of every chunk

no redundancy overhead, but increases playout delay

5.5 **Summary Voice Communication**

