

CHANDRAMOULI **GNANASAMBANDHAM**

SIMULATION ENGINEER

Bromenlandweg 10 71034 Böblingen

658 8043 658 8043

chandramouli681990@gmail.com

ANGESTREBTE STELLE

Ich bin ein leidenschaftlich neugieriger Ingenieur mit exzellenten interkulturellen Kommunikationsfähigkeiten. Ich habe 6 Zeitschriftartikel in renommierten Fachzeitschriften publiziert und an mehreren erfolgreichen DFG-Forschungsanträgen entscheidend mitgewirkt. All dies war möglich, dank meiner sehr guten Anpassungsfähigkeit an schnell wechselnden Umgebungen und meiner hervorragenden analytischen, Projektmanagement- und Team-Fähigkeiten, die ich an der Universität erworben habe. Ich suche eine Tätigkeit als Entwicklungsingenieur, idealerweise im Bereich autonomes Fahren, Fahrzeugdynamik und Softwareentwicklung.

KERNKOMPETENZEN

WEB

https://github.com/chandramouli6890

https://linkedin.com/in/gnanasambandhamc

Medium

TECHNISCHE QUALIFIKATIONEN

Programmiersprachen:

■ ■ ■ ■ 8 Jahre | C/C++

■ ■ ■ ■ 8 Jahre | Matlab

■ ■ ■ □ 5 Jahre | BASH

■ ■ □ □ 3 Jahre | Python

Betriebssystem

■ ■ ■ ■ Linux (Debian, Ubuntu)

■ ■ ■ □ Microsoft Windows

Programm-Kenntnisse:

- Matlab/Simulink: langjährige Erfahrung in Modellierung, Simulation, Optimierung, C/C++ MEX API, SiL/HiL Simulationen
- Partikelsimulation: Pasimodo, Project Chrono, DualSPHysics
- Visualisierung: Paraview, PlotlyDash, Matplotlib, Matlab
- FE- und CAD-Programme: COMSOL Multiphysics, OpenSCAD, Blender mit Python scripting
- Sonstiges: LATEX, TikZ, Inscape, MS Office

Software Entwicklung:

- Technologien: CUDA GPU Programmierung, PETSc, EIGEN, objektorientierte Programmierung (OOP)
- Versionierung: Gitlab, Github, Git-flow Branching-Modell
- Entwicklungsumgebung: vim, Visual-Studio Code, Eclipse, Arduino IDE
- **Debuggers/Profilers:** gdb, valgrind, calgrind, Intel VTune

BERUFLICHER WERDEGANG

April 2021

Einreichung der Dissertationsschrift

Particle Dampers- Enhancing Energy Dissipation using Fluid/Solid Interactions and Rigid Obstacle-Grids

• voraussichtlicher Termin der Doktorprüfung: 13.07.2021

SPRACHEN

fließend | Deutsch fließend | Englisch Muttersprache | Tamil fortgeschritten | Hindi

PREISE

Best Presentation Award

Title: Optimization of Vehicle Paramters based on Lap-Time Simualtions using Multiobjective Evolutionary Algorithm

Der Preis wurde 2015 von der Firma ALTEN GmbH aestiftet und war mit **500**€ dotiert.

Best Presentation Award

Title: An Adaptive Approach to Real-Time Estimation of Vehicle Dynamics Parameters using Kalman Filtering

Der Preis wurde 2014 von der Firma ALTEN GmbH gestiftet und war mit **500**€ dotiert.

SONSTIGE PROJEKTE

Juni 2014

Driver-in-the-Loop Simulator

Im Rahmen meiner freiwilligen Tätigkeit für das KaRaT Formula Student Rennteamhabe ich einen Driver-in-the-Loop Simulator basierend auf einer Kommunikationsschnittstelle zwischen IPG CarMaker und Matlab/Simulink entwickelt.

Juni 2015

Machine Learning Suite

Implementierung eines Deep Convolution Neural Network (Deep ConvNet) zur optischen Zeichenerkennung im Rahmen eines freelancer Softwareientwicklungsprojektes. Zur Steigerung der Effizienz wurde das Matlab MEX-API verwendet.

Juli 2020

Rasperry Pi NAS

Aufbau und Einrichtung eines vielseitig einsetzbaren Raspberry-Pi Heimnetzwerkspeichers (NAS) mit vielen Funktionen, wie z.B. ssh-Zugriff über das Interet, automatisches Backups mit rsync, DNS-server mit integriertem Pi-Hole Werbeblocker und VPN-Server.

BERUFLICHER WERDEGANG (FORTSETZUNG)

Mai 2016 - April 2021

Universität Stuttgart

Wissenschaftlicher Mitarbeiter am Institut für Technische und Numerische Mechanik (ITM)

- Forschungsschwerpukte:
 - Modellierung und Simulation von Partikeldämpfern (PD) mittels gitterfreien Lagrange'schen Methoden
 - systematische Untersuchung der zugrundeliegenden Dissipationsmechanismen bei PD
 - Steigerung der Energiedissipation in PD durch Fluid/Festkörper-Interaktion und starren Hindernis-Gittern
- Planung und Durchführung messtechnischer Analysen schwingungsbehafteter Systeme mithilfe von Laser-Doppler Vibrometrie und Verfahren der experimentellen Modalanalyse
- Entwicklung und Administration der Partikelsimulationssoftware
 Pasimodo in C++:
 - Entwicklung und Implementierung von Algorithmen zur effizienten Berechnung der Fluid/Struktur Interaktionen
 - Implementierung des $k\text{-}\epsilon$ Turbulenzmodells zur genauere Modellierung der Fluidströmungen
 - Koordination von Lösungen im Falle von Codekonflikten
 - Bearbeitung und Verwaltung von Bugreports und Merge-Requests in Gitlab
 - Überwachung und Pflege des nächtlichen Pasimodo-Build-Systems nach den Prinzipien der Continuous Integration (CI)
 - Pflege des verteilten C++ Kompilierungsystemes bassierend auf distcc
 - Entwicklung und Pfege von Software Releases mithilfe des Gitflow Branching-Modells
- Anfertigen von Veröffentlichungen für wissenschaftliche Fachzeitschriften und Vorträgen auf internationalen Fachkonferenzen
- Vorbereiten von Forschungsanträgen für die DFG
- Lehrtätigkeiten:
 - Organisation und Durchführung von Veranstaltungen für die Vorlesung "Fahrzeugdynamik"
 - Durchführung von Laborpraktika
 - Betreuung von Bachelor-, Studien- und Masterarbeiten

Oktober 2015 - April 2016

Fraunhofer Institut für Techno- und Wirtschaftsmathematik (ITWM), Kaiserslautern

Werkstudententätigkeit in der Abteilung Mathematische Methoden für Dynamik und Festigkeit

 Entwicklung eines Proper Orthogonal Decomposition basierenden Verfahrens zur Reduktion von hochdimensionalen nichtlinearen FE Systemen

BERUFLICHER WERDEGANG (FORTSETZUNG)

Oktober 2014 - September 2015

Daimler AG, Böblingen

Praktikum und Werkstudententätigkeit in der Abteilung RD/FFC

 Entwurf und Entwicklung einer parametrischen Kennlinie zur automatisierten Elastomerlageroptimierung in der Gesamtfahrzeugsimulation mit Hilfe des Programms optiSLang

Dezember 2013 - September 2014

Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern

Wissenschaftliche Hilfskraft im Fachbereich Embedded Intelligence

 Implementierung eines Sensor-Fusion Algorithmus zur Orientierungsbestimung eines Systems mithilfe einer inertialen Messeinheit (IMU) in C++

AKADEMISCHER WERDEGANG

Oktober 2012- April. 2016

Master of Science Commercial Vehicle Technology

Technische Universität Kaiserslautern, Abschussnote: 1.9 Studienschwerpunkte: Regelungstechnik, Fahrdynamikregelung, Lastdatenanalyse, Echtzeitsysteme, Automotive Software Development.

Juni 2008- April 2012

Bachelor of Engineering Fertigungstechnik

Anna University, Chennai, Indien, Abschussnote: 8.3/10 (sehr gut)

Juni 1996- April 2008

Gymnasium

DAV Hr. Sec. School, Chennai, Indien, Abschussnote: 93/100 (sehr gut)

AUSGEWÄHLTE PUBLIKATIONEN

Gnanasambandham, C.; Fleissner, F.; Eberhard, P.: Enhancing the Dissipative Properties of PDs using Rigid Obstacle-Grids. J. Sound Vib., Vol. 484, p. 115522, 2020.

Gnanasambandham, C.; Stender, M.; Hoffmann, N.; Eberhard, P.: Multi-Scale Dynamics of PDs using Wavelets: Extracting Particle Activity Metrics from Ring Down Experiments. J. Sound Vib., Vol. 454, pp. 1-13, 2019.

Gnanasambandham, C.; Schönle, A.; Eberhard, P.: Investigating the Dissipative Effects of Liquid Filled PDs using Coupled DEM-SPH Methods. Comp. Part. Mech., Vol. 6, pp. 257-169, 2019.

Böblingen, den 23. Mai 2021

Chandramouli Gnanasambandham

-120.