18.335 Problem Set 4

Due Friday, April 9, 2021.

Problem 1: Generalized eigenproblems

Consider the "generalized" eigenvalue problem $Ax = \lambda Bx$ where A and B are Hermitian and B is positive-definite. You could turn this into an ordinary eigenvalue problem $B^{-1}Ax = \lambda x$, but then you disguise the Hermitian nature of the underlying problem.

- (a) Show that the eigenvalue solutios λ of $Ax = \lambda Bx$ must be real (with $x \neq 0$ as usual) and that eigenvectors x_1 and x_2 for distinct eigenvalues $\lambda_1 \neq \lambda_2$ must satisfy a modified orthogonality relationship $x_1^*Bx_2 = 0$.
- (b) A Hermitian matrix A can be diagonalized as $A = Q\Lambda Q^*$; write down an analogous diagonalization formula arising from the eigenvectors X (suitably normalized) and eigenvalues of the generalized problem, in terms of $\{A, B, X, \Lambda\}$. (Your formula should contain no matrix inverses, only adjoints like X^* .)
- (c) Using the Cholesky factorization of B, show that you can derive an ordinary Hermitian eigenvalue problem $Hy = \lambda y$ where $H = H^*$ is Hermitian, the eigenvalues λ are the same as those of $Ax = \lambda Bx$, and there is a simple relationship between the corresponding eigenvectors x and y.

Problem 2: Shifted-inverse iteration

Trefethen, problem 27.5.

Problem 3: Arnoldi

Trefethen, problem 33.2.