

Scanned By Camera Scanner

0(21) = 0(2) Union personned between P(1) weighting Rule, 1,23,45 temp = p[i)+p[i); (0 >3 +=plish(plis) if (pli) spli)) then 63 >4 Divide & AH (Pliscolis) pco=j P(i) = temp; (3393 else Final tree P(i)=i -) 06) else P(i) = i; PLI) = temp; that fait the Collapse Find :-97:=1; カニュ while (p[n) >6) while (p[n) >0) カーターの ورسام= : ده while (i!=9) while (ifn) do S=p[i] p[i]-n S: = p(i);

Scanned By Camera Scanner

Scanned By Camera Scanner

Scanned By Camera Scanner

$$T(n) = \frac{2^{1}}{2^{1}}T(\frac{2^{1}+1}{2^{1}}) + 2^{1}+2^{1}+ \dots + 2$$

$$T(n) = \frac{2^{1}}{2^{1}}+(2)+2^{1}+2^{1}+ \dots + 2$$

$$T(n) = \frac{2^{1}}{2^{1}}+2^{1}+2$$

$$T(n) = \frac{2^{1}}{2}+n-2$$

$$T(n) = \frac{3n}{2}-2 = \frac{3n+4}{2}$$

$$T(n) = \frac{3n}{2}-2 = \frac{3n+4}{2}$$

$$T(n) = \frac{3n}{2^{1}}+2^{1$$

Scanned By Camera Scanner

Scanned By Camera Scanner

one of worth in days I among sensite in low =) Recursive (In dividing of armys) Algorithm Binsoch (a,1,1,x) 11 ali:1), Iciel, xis in/not 11 netwon o, such that x=a(i), else neturn of if(l=i) then f i+6c=a(i)) then
i; //If small(p) else netwon o; else 2 11 Reduce p into a Smallers Supproblem. mid:=[(i+1)/2); if (x = a [mid) then treturn mid; else if (xealmid)) then treturn Binsorch(a, i, mid-1,x); else neturn Binsnch(a, mid Hdix);

Scanned By Camera Scanner

Scanned By Camera Scanner

Scanned By Camera Scanner

Scanned By Camera Scanner

Scanned By Camera Scanner

=) Algerithm mengesont (low, high) Karlow: high) to be sorted (Gridal asma 11 small (p) is true if there is only ! 5 lement. 11 to Sont, In this case the list is almorary sontes d if (low chigh) then 1126 >1 5 demen 11 Divide p' into Sub-problems 0 = R = " Find where to split the 5 = mid:[(low-thigh)/2]; V: 11 solve the subproblems mengesont (low, mid); 2) mengesont (mid+1, high); Mombine the Solutions. merge (low, mid, high);
merge (low, mid, high);
merge (low, mid, high);

Scanned By Camera Scanner

T(n) =
$$\int (x - \frac{1}{2}) dx$$
 (a constant)

Solve of the second of the se

Scanned By Camera Scanner

Scanned By Camera Scanner

=) afective chess Board problem:-Boots = 1 byn / h = 2k /K2=1 =) Use Trionimos 8×2 Size, IXI Size =) Divide & conquers used, Divided into Sub-problems Each is an Exact Gpy of the loopers Squares => n2/4t Removing the defect, + x-1 (multiple of those) =) The Cursive Algorithm I must have base case, -) Defect identified. -) piride into 4 x4 Divide into - Divide into 2x2 Sub problems -) Fill with tonionimo(grey)

-) Divide into 2x2

-) Colors all titles except tonionimo Salve the -> Divide-into 2 x2 Continue the procedure till

all tiles covered in sub board combine the

-> Every 2 x2 with have defect and sub problems.

that one created by us. Sub problems.

Scanned By Camera Scanner

Scanned By Camera Scanner