Coursework (5) for Introductory Lectures on Optimization

Zhou Nan 3220102535

December 10, 2024

Excercise 1. Prove the following theorem:

for any $x_0 \in \text{dom } f$, all vectors $g \in \partial f(x_0)$ are supporting to the level set $\mathcal{L}_f(f(x_0))$:

$$\langle \boldsymbol{g}, \ \boldsymbol{x}_0 - \boldsymbol{x} \rangle \geq 0, \quad \forall \boldsymbol{x} \in \mathcal{L}_f(f(\boldsymbol{x}_0)) \equiv \{ \boldsymbol{x} \in \text{dom } f : f(\boldsymbol{x}) \leq f(\boldsymbol{x}_0) \}.$$

Proof of Excercise 1: According to the definition of subdifferential, we have

$$f(x) > f(x_0) + \langle q, x - x_0 \rangle$$

Then, for any $x \in \mathcal{L}_f(f(x_0))$, we have

$$f(\boldsymbol{x}) \leq f(\boldsymbol{x}_0)$$

Therefore,

$$\langle \boldsymbol{g}, \boldsymbol{x} - \boldsymbol{x}_0 \rangle \leq f(\boldsymbol{x}) - f(\boldsymbol{x}_0) \leq 0.$$

$$\langle \boldsymbol{g}, \boldsymbol{x}_0 - \boldsymbol{x} \rangle \geq 0.$$

Therefore, for any $x_0 \in \text{dom } f$, all vectors $g \in \partial f(x_0)$ are supporting to the level set $\mathcal{L}_f(f(x_0))$.

Excercise 2. Prove the following theorem:

let $Q \subseteq \text{dom } f$ be a closed convex set, $\boldsymbol{x}_0 \in Q$ and

$$\boldsymbol{x}^* = \operatorname{argmin}\{f(\boldsymbol{x})|\boldsymbol{x} \in Q\}.$$

Then for any $g \in \partial f(\boldsymbol{x}_0)$ we have $\langle \boldsymbol{g}, \ \boldsymbol{x}_0 - \boldsymbol{x}^* \rangle \geq 0$.

Proof of Excercise 2: According to the definition of subdifferential, we have

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

Then, for any $\boldsymbol{x}=\boldsymbol{x}^*\in Q,$ we have

$$f(\boldsymbol{x}^*) \leq f(\boldsymbol{x_0})$$

Therefore,

$$\langle \boldsymbol{g}, \boldsymbol{x}^* - \boldsymbol{x}_0 \rangle \le f(\boldsymbol{x}^*) - f(\boldsymbol{x}_0) \le 0$$

 $\langle \boldsymbol{g}, \boldsymbol{x}_0 - \boldsymbol{x}^* \rangle > 0$

Excercise 3. Prove the following theorem:

let f be closed and convex. Assume that it is differentiable on its domain. Then $\partial f(x) = \{\nabla f(x)\}\$ for any $x \in \operatorname{int}(\operatorname{dom} f)$.

Proof of Excercise 3: It is obvious that $\partial f(x) \in \{\nabla f(x)\}\$ for any $x \in \operatorname{int}(\operatorname{dom} f)$.

Now we prove that there is no other vector in $\nabla f(\mathbf{x})$ except $\partial f(\mathbf{x})$.

Assume that there is a vector $\mathbf{g} \in \partial f(\mathbf{x})$ and $\mathbf{g} \neq \nabla f(\mathbf{x})$.

According to the definition of subdifferential, we have

$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$$

Let $\mathbf{x} = \mathbf{x}_0 + at(\nabla f(\mathbf{x}_0) - \mathbf{g})$, where $a \in \mathbb{R}$ and $t \in (0, 1)$.

Therefore,

$$f(\boldsymbol{x}_0 + at(\boldsymbol{x} - \boldsymbol{x}_0)) = f(\boldsymbol{x}_0) + at\langle \nabla f(\boldsymbol{x}_0), \nabla f(\boldsymbol{x}_0) - \boldsymbol{g} \rangle + o(t) \ge f(\boldsymbol{x}_0) + at\langle \nabla f(\boldsymbol{x}_0), \nabla f(\boldsymbol{x}_0) - \boldsymbol{g} \rangle$$

Which implies that

$$at \|\nabla f(\boldsymbol{x}_0) - \boldsymbol{g}\|^2 + o(t) \ge 0$$

$$\Leftrightarrow a\|\nabla f(\boldsymbol{x}_0) - \boldsymbol{g}\|^2 + \frac{o(t)}{t} \ge 0$$

$$\Rightarrow \lim_{t \to 0} a\|\nabla f(\boldsymbol{x}_0) - \boldsymbol{g}\|^2 + \frac{o(t)}{t} \ge 0$$

$$\Rightarrow a\|\nabla f(\boldsymbol{x}_0) - \boldsymbol{g}\|^2 \ge 0$$

Since $a \in \mathbb{R}$ and $a \neq 0$, we have

$$\|\nabla f(\boldsymbol{x}_0) - \boldsymbol{g}\| = 0$$

Which implies that $g = \nabla f(x_0)$. It is a contradiction.

Therefore, $\partial f(\mathbf{x}) = {\nabla f(\mathbf{x})}$ for any $\mathbf{x} \in \operatorname{int}(\operatorname{dom} f)$.