APPLY ANALYTICS FOR FORECASTING AIR PASSENGERS

May 13, 2023

0.1 Load Data

[7]: library (dplyr)
library(tseries)
library(forecast)
data(AirPassengers)

Warning message:
"package 'forecast' was built under R version 4.2.3"

[8]: AirPassengers

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
•	1949	112	118	132	129	121	135	148	148	136	119	104	118
	1950	115	126	141	135	125	149	170	170	158	133	114	140
	1951	145	150	178	163	172	178	199	199	184	162	146	166
	1952	171	180	193	181	183	218	230	242	209	191	172	194
	1953	196	196	236	235	229	243	264	272	237	211	180	201
A Time Series: 12×12	1954	204	188	235	227	234	264	302	293	259	229	203	229
	1955	242	233	267	269	270	315	364	347	312	274	237	278
	1956	284	277	317	313	318	374	413	405	355	306	271	306
	1957	315	301	356	348	355	422	465	467	404	347	305	336
	1958	340	318	362	348	363	435	491	505	404	359	310	337
	1959	360	342	406	396	420	472	548	559	463	407	362	405
	1960	417	391	419	461	472	535	622	606	508	461	390	432

[9]: class(AirPassengers)

'ts'

[10]: end(AirPassengers)

1. 1960 2. 12

[11]: sum(is.na(AirPassengers))

0

[12]: frequency(AirPassengers)

12

```
[13]: summary(AirPassengers)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 104.0 180.0 265.5 280.3 360.5 622.0
```

0.2 TEST THE STATIONARITY OF TIME SERIES

[14]: adf.test(AirPassengers, alternative ="stationary", k=12)

Augmented Dickey-Fuller Test

data: AirPassengers

Dickey-Fuller = -1.5094, Lag order = 12, p-value = 0.7807

alternative hypothesis: stationary

[15]: plot(AirPassengers, main="Air Passenger numbers from 1949 to 1961") #show_ \$\to sparkine\$

Air Passenger numbers from 1949 to 1961


```
[16]: plot(AirPassengers)+abline(reg=lm(AirPassengers~time(AirPassengers)))
```


0.3 MAKE IT STATIONARY

[17]: plot(log(AirPassengers))


```
[18]: plot(diff(log(AirPassengers)))
```


Now you can see mean and variance both are stationary

0.3.1 Check General Trend

```
[19]: plot(aggregate(AirPassengers,FUN = mean))
```


It is upword trend Use the boxplot function to see any seasonal effects.

0.3.2 show seasonality

```
[20]: boxplot(AirPassengers~cycle(AirPassengers))
```


In the boxplot you can see in month july and aug no of passangers traveling are more. The rationale for this could be more people taking holidays and fly over the summer months

0.4 TIME SERIES DECOMPOSITION

```
[21]: plot(decompose(AirPassengers)) # time series decomposition
```

Decomposition of additive time series

The above figure shows the time series decomposition into trend, seasonal and random (noise). It is clear that the time series is non-stationary (has random walks) because of seasonal effects and a trend (linear trend).

0.5 MODEL IDENTIFICATION AND ESTIMATION

- . Calculate p d q value
- . AR(Autoregreesive):- by seeing the past value, predict own value Integration
- . $MA(Moving\ Average)$:- you take diff intervals and calculate the average Autocorrelation function and partial autocorrelation function to determine value of p and q

- . Autocorrelation is the linear dependence of a variable with itself at two points in time Auto correlation function, as the word suggests, auto-correlation, means it is really correlation on itself. With time series we just have a single stream of values, or in other words there is just the X no Y.
- . So suppose your time series is like this X = 3,5,6,6,7,4,5,6,7,2,3,4, correlation between 4 and 3, 3 and 2, 2 and 7 (lag 1) will be say y1; correlation between 4 and 2, 3 and 7, 2 and 6 (lag 2) will be say y2; and so on at lags 3 = y3, lag 4 = y4.

[23]: acf(AirPassengers)

Series AirPassengers

[24]: acf(diff(log(AirPassengers)))

Series diff(log(AirPassengers))

Partial auto correlation function, as the word suggests, is partial not complete. Here again we are plot the correlations at various lags 1,2,3 BUT after adjusting for the effects of intermediate numbers.

[25]: pacf(diff(log(AirPassengers)))

Series diff(log(AirPassengers))

It determine value of p (value we got as 0)

d is number of time you do the differentiations to make the mean

We do diff only one time so value of d is 1

[26]: plot(diff(log(AirPassengers)))

0.6 ARIMA MODEL PREDICTION

[28]: fit

Coefficients:

```
\begin{array}{cccc} & \text{ma1} & \text{sma1} \\ & -0.4018 & -0.5569 \\ \text{s.e.} & 0.0896 & 0.0731 \end{array}
```

sigma^2 estimated as 0.001348: log likelihood = 244.7, aic = -483.4

0.6.1 Predict for next 10 years

[29]: pred <- predict(fit,n.ahead=10*12) #10 years * 12 months
pred</pre>

				Jan	Feb	Mar	Apr	May	Jun	Jul
		196	61	6.110186	6.053775	6.171715	6.199300	6.232556	6.368779	9 - 6.50729
\$pred A Time Series: 10×10	196	32	6.206435	6.150025	6.267964	6.295550	6.328805	6.465028	8 6.60354	
	196	53	6.302684	6.246274	6.364213	6.391799	6.425054	6.56127	7 6.69979	
	196	64	6.398933	6.342523	6.460463	6.488048	6.521304	6.657520	6 6.7960	
	12 196	35	6.495183	6.438772	6.556712	6.584297	6.617553	6.75377	6 - 6.89229	
	196	66	6.591432	6.535022	6.652961	6.680547	6.713802	6.85002	5 - 6.98854	
		196		6.687681	6.631271	6.749210	6.776796	6.810051		
		196		6.783930	6.727520	6.845460	6.873045	6.906301		
		196		6.880180	6.823769	6.941709	6.969294	7.002550		
		197		6.976429	6.920019	7.037958	7.065544	7.098799		
				0.0.0120	0.020020			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_ ,,,,,,,,,,
	_		Ja	an	Feb	Mar	Apr	M	ay	Jun
	_	1961	0.	03671562	0.04278291	0.048090	0.052	86830 0.0	05724856	0.0613167
		1962	0.	09008475	0.09549708	0.100618	869 0.105	49195 0.3	11014981	0.1146185
		1963	0.	14650643	0.15224985	0.157784	0.163	13118 0.3	16830825	0.1733307
		1964	0.	20896657	0.21513653	0.221134	142 0.226	97386 0.5	23266679	0.2382237
	\$se A Time Series: 10×12	1965	0.	27748210	0.28408309	0.290534	0.296	84503 0.3	30302451	0.3090804
		1966	0.	35174476	0.35876289	0.365646	0.372	40257 0.3	37903840	0.3855600
		1967	0.	43142043	0.43883816	0.446132	258 0.453	30963 0.4	46037481	0.4673331
		1968		51620376	0.52400376				54673651	0.5541068
		1969		60582584	0.61399203				63786363	0.6456247
		1970		70005133	0.70856907				73352910	0.7416624
										www.com.com.com.com.com.com.com.com.com.com

The above output prediction value are in logarithemic part, convert them to original form we need to transform them. 2.718 is evalue and round them to 0 decimal

[30]: pred1<-round(2.718^pred\$pred,0)
pred1</pre>

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
•	1961	450	425	479	492	509	583	670	667	558	497	430	477
	1962	496	468	527	542	560	642	737	734	614	547	473	525
	1963	546	516	580	597	617	707	812	808	676	602	521	578
	1964	601	568	639	657	679	778	894	890	745	663	573	637
A Time Series: 10×12	1965	661	625	703	723	748	857	984	980	820	730	631	701
	1966	728	688	775	796	823	943	1083	1079	903	804	695	772
	1967	802	758	853	877	906	1039	1193	1188	994	885	765	850
	1968	883	834	939	965	998	1143	1313	1308	1094	975	843	935
	1969	972	919	1034	1063	1099	1259	1446	1440	1205	1073	928	1030
	1970	1070	1012	1138	1170	1210	1386	1592	1585	1326	1181	1021	1134

line type (lty) can be specified using either text ("blank", "solid", "dashed", "dotted", "dotdash", "longdash", "twodash") or number $(0,\,1,\,2,\,3,\,4,\,5,\,6)$. Note that lty = "solid" is identical to lty=1.

[31]: ts.plot(AirPassengers, pred1, log="y", lty=c(1,3))

0.6.2 Get only 1961 values

 Oct Feb Mar Nov Dec Jan Apr May Jun Jul Aug Sep A Time Series: 1×12 – 1961 450 425 479 492 509 583 670 667 558 497 430 477

0.6.3 Predicted outcome in 1960 row

[33]: predicted_1960 <- round(data1)#head of Predicted predicted_1960

A Time Series: 1×12	$1 \times 12 \frac{}{}$				-	May				-			Dec	
A Time Series. 1 × 12	1961	450	425	479	492	509	583	670	667	558	497	430	477	

0.6.4 Actual outcome in 1960 row

Lets Test this Model we are going to take a dataset till 1959, and then we predict value of 1960, then validate that 1960 from alredy existing value we have it in dataset

0.6.5 Recreate model till 1959

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1949	112	118	132	129	121	135	148	148	136	119	104	118
	1950	115	126	141	135	125	149	170	170	158	133	114	140
	1951	145	150	178	163	172	178	199	199	184	162	146	166
	1952	171	180	193	181	183	218	230	242	209	191	172	194
A Time Series: 11×12	1953	196	196	236	235	229	243	264	272	237	211	180	201
A Time Series. 11×12	1954	204	188	235	227	234	264	302	293	259	229	203	229
	1955	242	233	267	269	270	315	364	347	312	274	237	278
	1956	284	277	317	313	318	374	413	405	355	306	271	306
	1957	315	301	356	348	355	422	465	467	404	347	305	336
	1958	340	318	362	348	363	435	491	505	404	359	310	337
	1959	360	342	406	396	420	472	548	559	463	407	362	405

0.6.6 give op of 1960 to 1970

```
[36]: fit1 <- arima(log(datawide),c(0,1,1),seasonal = list(order=c(0,1,1),period=12))
pred <- predict(fit1,n.ahead=10*12) # predictfor now 1960 to 1970
pred1<-2.718^pred$pred
pred1
```

		Jan	Feb	Mar	Apr	May	Jun	Jul
	1960	419.0628	398.6732	466.2820	454.1188	472.9611	546.7614	621.801
	1961	469.5742	446.7270	522.4849	508.8558	529.9692	612.6649	696.7502
	1962	526.1740	500.5730	585.4623	570.1903	593.8487	686.5121	780.7325
	1963	589.5961	560.9092	656.0306	638.9179	665.4278	769.2603	874.8370
A Time Series: 10×12	1964	660.6626	628.5180	735.1048	715.9294	745.6347	861.9826	980.2858
	1965	740.2952	704.2760	823.7102	802.2235	835.5093	965.8811	1098.443
	1966	829.5262	789.1655	922.9956	898.9189	936.2168	1082.3030	1230.843
	1967	929.5126	884.2870	1034.2482	1007.2695	1049.0631	1212.7576	1379.202
	1968	1041.5507	990.8740	1158.9107	1128.6801	1175.5113	1358.9366	1545.444
	1969	1167.0934	1110.3083	1298.5992	1264.7248	1317.2007	1522.7351	1731.723
	,							

```
[39]: data11=round(head(pred1,12),0) #head of Predicted
data22=round(tail(AirPassengers,12),0) #tail of original
plot(data11,col="red", type="l")
lines(data22,col="blue")
```


0.6.7 CHECK NORMALITY USING Q-Q PLOT

```
[42]: qqnorm(residuals(fit))
qqline(residuals(fit))
```

Normal Q-Q Plot

[]: