

ProjektB-Elektrik

Simulationstechnik - Bericht

Studiengang Elektrotechnik

 $Studien richtung \ Fahrzeugelektronik$

Duale Hochschule Baden-Württemberg Ravensburg, Campus Friedrichshafen

von

Alexander Herrmann Johannes Ruffer

Abgabedatum: 19.04.2020

Bearbeitungszeitraum: 01.02.2020 - 19.04.2020

Matrikelnummer: 9859538 x 1011921

Kurs: TFE18-2 Gutachter der Dualen Hochschule: Sipler

Eidesstattliche Erklärung

Gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2015.

Wir versichern hiermit, dass wir unsere Projektarbeit mit dem Thema:

ProjektB-Elektrik

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben. Wir versichern zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Friedrichshafen, den 5. März 2020

Alexander Herrmann	Johannes Ruffer
A	UTOREN

Kurzfassung

Inhaltsverzeichnis

1.	Einleitung	1
2.	Aufgabenteil a.) 2.1. Physikalisches Modell	3
	2.2. Mathematisches Modell	4 5
3.	Aufgabenteil b.)	7
4.	Ausblick	9
5.	Fazit	11
Αu	ntorenverzeichnis	13
Ve	erzeichnis verwendeter Abkürzungen und Formelzeichen	15
Lit	eraturverzeichnis	17
Sa	chwortverzeichnis	17
Αb	bildungsverzeichnis	19
Та	bellenverzeichnis	21
	Anhang 1. Weitere Abbildungen	23

1. Einleitung

2. Aufgabenteil a.)

a.) Leiten Sie die Gleichungen der Nebenschlussmaschine her und modellieren Sie die Systemgleichungen des mechatronischen Unwuchtsystems in SIMULINK. Bestimmen Sie Unwuchtkraft F_U , die durch die Rotation der Masse m_2 auf die Masse m_1 wirkt.

2.1. Physikalisches Modell

In Abbildung 2.1 wird der Gleichstrommotor des Umwuchtsystems, vereinfacht durch das physikalische Modell einer Nebenschlussmaschine dargestellt. Diese besteht aus einem Wicklungssystem des Ankerkreises und einer Erregerwicklung, welche dem Motor parallel geschaltet ist. Aufgrund von Wicklungen und Streufeldern im Ankerkreis entsteht eine Induktivität L_A , über welche die Spannung U_L abfällt. Dazu ist ein Widerstand R_A geschaltet. Der Gleichstrommotor wird dabei ausschließlich von der Klemmspannung U gesteuert.

Abbildung 2.1.: Physikalisches Modell einer Nebenschlussmaschine

Die gegebenen Systemparameter lauten dabei:

Ankerflussverkettung, Motorkonstante	$M_A = 50 \frac{\mathrm{Nm}}{\mathrm{A}}$
Ohmscher Widerstand des Ankerkreises	$R_A = 0.1\Omega$
Induktiver Widerstand des Ankerkreises	$L_A = 10 \frac{\mathrm{Vs}}{\mathrm{A}} = 10 \mathrm{H}$
Klemmspannung	U = 100V

Tabelle 2.1.: Systemparameter des physikalischen Modells für die Nebenschlussmaschine

2.2. Mathematisches Modell

Aufgrund der Schaltung in Abbildung 2.1 und der Vernachlässigung des Erregerstroms i_E , ergibt sich das mathematische Modell der Nebenschlussmaschine mit den drei Systemgleichungen des Unwuchtsystems:

$$U = U_R + U_i + U_L$$

$$U = R_A i_A + K_A \dot{\varphi} + L_A \frac{\mathrm{d}i_A}{\mathrm{d}t}$$

$$\frac{\mathrm{d}i_A}{\mathrm{d}t} = \frac{1}{L_A} (U - K_A \dot{\varphi} - i_A R_A) = f_1(U, \dot{\varphi}, i_A)$$
(2.1)

Translatorisch:

$$(m_1 + m_2)\ddot{s} - m_2 e(\ddot{\varphi}\sin\varphi + \ddot{\varphi}^2\cos\varphi) + d_t\dot{s} + cs = 0$$

$$\ddot{s} = \frac{1}{m_1 + m_2} [m_2 e(\ddot{\varphi}\sin\varphi + \ddot{\varphi}^2\cos\varphi) - d_t\dot{s} - cs] = f_2(\varphi, \dot{\varphi}, \ddot{\varphi}, s, \dot{s})$$
(2.2)

Rotatorisch:

$$m_2 e^2 \dot{\varphi} - m_2 e \sin \varphi (\ddot{s} + g) d_r \dot{\varphi} - M_A = 0$$

$$m_2 e^2 \dot{\varphi} - m_2 e \sin \varphi (\ddot{s} + g) d_r \dot{\varphi} - K_A i_A = 0$$

$$\ddot{\varphi} = \frac{1}{m_2 e^2} [m_2 e \sin \varphi (\ddot{s} + g) d_r \dot{\varphi} + K_A i_A] = f_3(\varphi, \dot{\varphi}, \ddot{s}, i_A)$$
(2.3)

Die gegebenen mechanischen Systemparameter lauten dabei:

Um die Unwuchtkraft des Systems zu bestimmen, muss das 2. Newton'sche Axiom 2.4 angewendet werden:

$$F = m \cdot a \tag{2.4}$$

Massen	$m_1 = 90 \text{kg}; m_2 = 10 \text{kg}$
Federkonstante	$c = 1600 \frac{\mathrm{N}}{\mathrm{m}}$
Dämpfungskonstanten	$d_t = 5 \frac{\mathrm{Ns}}{\mathrm{m}}$
Rotationsarm	e = 0.2m
Erdbeschleunigung	$g = 9.81 \frac{\text{m}}{\text{s}^2}$

Tabelle 2.2.: Mechanische Systemparameter der Nebenschlussmaschine

Daraus ergibt sich, angepasst an das Unwuchsystem:

$$F_{U} = -m_{2} \cdot \underline{a}$$

$$\operatorname{mit} \underline{a} = \begin{bmatrix} e\ddot{\varphi}\cos\varphi - e\dot{\varphi}^{2}\sin\varphi \\ -e\ddot{\varphi}\sin\varphi - e\dot{\varphi}^{2}\cos\varphi \end{bmatrix} \text{ ergibt sich:}$$

$$\underline{F_{U}} = \begin{bmatrix} e\ddot{\varphi}\cos\varphi - e\dot{\varphi}^{2}\sin\varphi \\ -e\ddot{\varphi}\sin\varphi - e\dot{\varphi}^{2}\cos\varphi \end{bmatrix}$$

$$(2.5)$$

Das Unwuchtsystem kann modelliert nun wie folgt dargestellt werden:

Abbildung 2.2.: Unwuchtsystem mit Eingangsspannung und Ausgang (Kinematik, Kinetik)

2.3. Simulation

Aufgrund einer Kopplung der beiden Gleichungen 2.2 und 2.3 entsteht eine sogenannte algebraische Schleife, die besagt:

Ursache gleich Wirkung gleich Ursache.

Durch eine Vereinfachung des Systems soll die algebraische Schleife verhindert werden. Dies wird mithilfe von Matlab SIMULINK durchgeführt.

Die Parameter werden mit den Funktionen 2.1, 2.2, 2.3 und 2.5 in einem Blockdiagramm verknüpft. So vereinfacht sich zum einen das System, zum anderen kann man leichter eine Aussage über das Verhalten des Systems treffen.

Abbildung 2.3.: Matlab SIMULINK Blockdiagramm zur Simulation des Systemverhaltens mit Memory-Block zur Umgehung der algebraischen Schleife

Mithilfe von Scopes werden nun die gesuchten Signale abgegriffen und als Funktionen der Zeit dargestellt.

In der folgenden Abbildung 2.4 sind Winkelgeschwindigkeit Ω , die Strecke s, der Strom i_A und die Unwuchtkraft F_U über die Zeit von 100ms dargestellt.

Abbildung 2.4.: Ausgabe der Winkelgeschwindigkeit Ω , Strecke s, dem Strom i_A und der Unwuchtkraft F_U über die Zeit von 100ms durch Scopes

3. Aufgabenteil b.)

b.) Untersuchen Sie die Wechselwirkungen zwischen Schwingsystem und Gleichstrommotor. Bestimmen Sie hierfür die zeitlichen Verläufe des Antriebsmoments M_A , der Winkelgeschwindigkeit Ω , der Unwuchtkraft F_U und der Auslenkung s des Systems.

4. Ausblick

5. Fazit

Autorenverzeichnis

Alexander Herrmann Johannes Ruffer

Verzeichnis verwendeter Abkürzungen und Formelzeichen

Literaturverzeichnis

Abbildungsverzeichnis

2.1.	Physikalisches Modell einer Nebenschlussmaschine	3
2.2.	Unwuchtsystem mit Eingangsspannung und Ausgang (Kinematik, Kinetik)	5
2.3.	Matlab SIMULINK Blockdiagramm zur Simulation des Systemverhaltens mit	
	Memory-Block zur Umgehung der algebraischen Schleife	6
2.4.	Ausgabe der Winkelgeschwindigkeit Ω , Strecke s , dem Strom i_A und der Un-	
	wuchtkraft F_U über die Zeit von 100ms durch Scopes	6

Tabellenverzeichnis

2.1.	Systemparameter des physikalischen Modells für die Nebenschlussmaschine	4
2.2.	Mechanische Systemparameter der Nebenschlussmaschine	5

A. Anhang

1. Weitere Abbildungen