Algebra Lineare e Geometria Analitica

Andrea Bellu

2023/2024

Contents

1	Spa	zi Vettoriali
		1.0.1 Nota bene
	1.1	Vettori
		1.1.1 Esercizio
	1.2	Combinazione Lineare
	1.3	Applicazione Lineare
	1.4	Sottospazio Vettoriale
		1.4.1 Teorema 1
		1.4.2 Teorema 2
	1.5	Condizioni per sottospazio
	1.6	Indipendenza e dipendenza lineare
		1.6.1 Sistema Libero o Legato
	1.7	Sistema di generatori di uno spazio vettoriale
		1.7.1 Copertura Lineare = Sottospazio
	1.8	Insieme di generatori
		1.8.1 Lemma
		1.8.2 Teorema
		Lemma di Steinitz
	1.10	Base
		1.10.1 Dimostrazione
	1.11	Metodo degli scarti successivi
		1.11.1 Lemma
		Dimensione
	1.13	Componenti
		1.13.1 Corollario
		1.13.2 Proposizione
		1.13.3 Proposizione
		Teorema del completamento di una base
	1.15	Legami fra sequenze libere, basi e matrici
	1 10	1.15.1 Dimostrazione
	1.10	Teorema
	1 17	1.16.1 Dimostrazione8Intersezione e somma di sottospazi8
	1.17	1.17.1 Proposizione
	1 10	Somma
	1.10	1.18.1 Proposizione
	1 10	Somma diretta
	1.19	1.19.1 Proposizione
		1.19.2 Corollario
	1.20	Formula di Grassmann
	1.20	1.20.1 Conseguenza del teorema di Grassmann
		1.20.2 Dimostrazione
	1 91	Definizione (

2	Siste	emi Lineari	10
	2.1	Determinante	10
		2.1.1 Proprietà	10
	2.2	Eliminazione di Gauss	
	2.3	Complemento algebrico	11
	2.4	Teorema di Laplace I	11
	2.5	Teorema di Laplace II	11
	2.6	Teorema di Binet	
	2.7	Matrici Invertibili	
		2.7.1 Teorema	12
	2.8	Dipendenza lineare e determinanti	
		2.8.1 Teorema	
	2.9	Rango	
		2.9.1 Osservazioni	
		Kronecker	
	2.11	Osservazione	12
		2.11.1 Corollario	
		Teorema degli orlati	
	2.13	Sistemi Lineari	13
		2.13.1 Sistema omogeneo	
		2.13.2 Sistema compatibile	
	2.14	Rouché-Capelli	
		2.14.1 Dimostrazione	14

1 Spazi Vettoriali

Siano K un campo e V un insieme. Si dice che V è uno spazio vettoriale sul campo K, se sono definite due operazioni: un'operazione interna binaria su V, detta somma, $+:V\times V\mathbb{R}\to V$ e un'operazione esterna, detta prodotto esterno o prodotto per scalari, $\bullet:K\times V\mathbb{R}\to V$, tali che:

- 1. (V, +) sia un gruppo abeliano;
- 2. il prodotto esterno soddisfi le seguenti proprietà:
 - (a) $(h \cdot k) \bullet \bar{v} = h \bullet (h \bullet \bar{v}) \quad \forall h, k \in K \quad e \quad \forall \bar{v} \in V$
 - (b) $(h+k) \bullet \bar{v} = h \bullet \bar{v} + k \bullet \bar{v} \quad \forall h, k \in K \quad e \quad \forall \bar{v} \in V$
 - (c) $h \bullet (\bar{v} + \bar{w}) = h \bullet \bar{v} + h \bullet \bar{w} \quad \forall h, k \in K \quad e \quad \forall \bar{v} \in V$
 - (d) $1 \bullet \bar{v} = \bar{v} \quad \forall \bar{v} \in V$ ove 1 è l'unità del campo K

 $V(K) = (V, K, + : V \times V\mathbb{R} \to V, \bullet : K \times V\mathbb{R} \to V) \implies \text{struttura algebrica}$

Gli elementi dell'insieme V sono detti $\mathbf{vettori}$ gli elementi del campo K sono detti $\mathbf{scalari}$.

1.0.1 Nota bene

Sia \mathbb{K} un campo, indichiamo con $\mathbb{K}_{[x]} = \{a_0 + a_1x + \cdots \mid a_i \in \mathbb{K}\}$ l'insieme di tutti i polinomi in x a coefficienti in \mathbb{K} .

1.1 Vettori

I vettori sono segmenti orientati con verso, direzione e lunghezza.

1.1.1 Esercizio

Sia \mathbb{R}^2 con le operazioni di somma componente per componente $\implies (a,b)+(c,d)=(a+c,b+d)$ e prodotto per scalare campo per campo $\alpha(a,b)=(\alpha a,\alpha b)$ è uno spazio vettoriale reale.

- 1. Far vedere che $(\mathbb{R}^2, +)$ è un gruppo abeliano:
 - (a) $\forall a, b \in \mathbb{R}^2 : (a, b) + (0, 0) = (a + 0, b + 0) = (a, b) = (0 + a, 0 + b) = (0, 0) + (a, b)$
 - (b) $\forall a, b \in \mathbb{R}^2 \ \exists \ (-a, -b) \in \mathbb{R}^2 : (a, b) + (-a, -b) = (a a, b b) = (0, 0) = (-a + a, -b + b) = (-a, -b) + (a, b) = (-a, -b) + (a, b) = (-a, -b) + (a, -b) = (-a, -b) + (a, -b) = (-a, -b) + (-a, -b) + (-a, -b) = (-a, -b) + (-a, -b) + (-a, -b) + (-a, -b) = (-a, -b) + (-a$

Figure 1: Vettori

(c)
$$\forall (a,b), (c,d), (e,f) \in \mathbb{R}^2 : (a,b) + ((c,d) + (e,f)) = (a,b) + (c+e,d+f) = (a+(c+e),b+(d+f)) = ((a+c)+e,(b+d)+f) = (a+c,b+d)+(e,f) = ((a,b)+(c,d))+(e,f)$$

(d)
$$(a,b) + (c,d) = (a+c,b+d) = (c+a,d+b) = (c,d) + (a,b)$$

Abbiamo verificato che $(\mathbb{R}^2, +)$ è un gruppo abeliano.

NB: abbiamo usato solamente che $\mathbb R$ è un campo \implies abbiamo usato solo le proprietà della somma

- 1. Ora dobbiamo verificare che il prodotto esterno soddisfi le proprietà dello spazio vettoriale:
 - (a) $\forall a, b, c \in \mathbb{R}^2 : 1 \cdot (a, b) = (1 \cdot a, 1 \cdot b) = (a, b) \implies \text{elemento neutro}$
 - (b) $\alpha, \beta \in \mathbb{R}^2 = (\alpha\beta) \cdot (a,b) = ((\alpha\beta)a, (\alpha\beta)b) = (\alpha(\beta a, \alpha(\beta b)) = \alpha(\beta a, \beta b) = \alpha(\beta \cdot (a,b)) \implies \text{pseudo associativa}$
 - (c) $\forall \alpha, \beta \in \mathbb{R}$ $(a,b) \in \mathbb{R}^2 : (\alpha + \beta)(a,b) = ((\alpha + \beta)a, (\alpha + \beta)b) = (\alpha a + \beta a, \alpha b + \beta b) = (\alpha a, \alpha b) + (\beta a, \beta b) = \alpha(a,b) + \beta(a,b) \implies \text{pseudo distributiva}$
 - (d) $\forall \alpha \in \mathbb{R}(a,b), (c,d) \in \mathbb{R}^2 : \alpha((a,b)+(c,d)) = \alpha(a+c,b+d) = (\alpha a,\alpha c,\alpha b,\alpha d) = (\alpha a,\alpha b)+(\alpha c,\alpha d) = \alpha(a,b)+\alpha(c,d)$

1.2 Combinazione Lineare

Siano $\bar{v_1} \dots \bar{v_k} \in V(\mathbb{K})$ vettori, α_1, α_n scalari, si dice combinazione lineare di $(\bar{v_1} \dots \bar{v_k})$ con α_1, α_k il vettore $\alpha_1 \bar{v_1} + \dots + \alpha_n \bar{v_k}$.

1.3 Applicazione Lineare

Siano $V(\mathbb{K})$ e $W(\mathbb{K})$ due spazi vettoriali su \mathbb{K} . Si dice applicazione lineare da $V(\mathbb{K})$ in $W(\mathbb{K})$ una funzione $f:V\to W$ tale che

$$\forall \bar{v}, \bar{w} \in W, \forall \alpha, \beta \in \mathbb{K} \quad f(\alpha \bar{w} + \beta \bar{v}) = \alpha f(\bar{w}) + \beta f(\bar{v})$$

Un'applicazione lineare è una funzione che manda combinazioni lineari di vettori in combinazioni lineari con i medesimi coefficienti. Se $V(\mathbb{K})$ è spazio vettoriale e $f:V\to W$ è applicazione lineare $\implies f(V)$ immagine di V mediante f è uno spazio vettoriale.

1.4 Sottospazio Vettoriale

Sia $W(\mathbb{K})$ uno spazio vettoriale, sia anche $X \subseteq W$ sottoinsieme $x \neq 0$, allora X è detto **sottospazio** di W se X rispetta le operazioni di somma di vettori ristretta ad $X \times X$ e troncata ad X e di prodotto per scalari di W ristretta a $\mathbb{K} \times X$ e troncata ad X soddisfa gli assiomi di spazio vettoriale.

In tale caso scriviamo $X \leq W$. X è sottospazio vettoriale se:

- 1. la somma di due qualsiasi vettori di X è un vettori di X
- 2. il prodotto di un qualsiasi vettore di X per uno scalare è ancora un vettore di X

1.4.1 Teorema 1

Sia $\mathbb{V}(\mathbf{K})$ uno spazio vettoriale su \mathbb{K} , allora:

1.
$$\forall \bar{v} \in V, \forall \alpha \in \mathbb{K} \ \alpha \cdot \bar{v} = \underline{0} \iff \alpha = 0 \lor \bar{v} = \underline{0}$$

2.
$$\forall \bar{v} \in V = (-1)\bar{v} = -\bar{v}$$

Dimostrazione:

- 1. Consideriamo $0 \cdot \bar{v} = (0+0) \cdot \bar{v} = 0 \cdot \bar{v} + 0$ sommando a destra e a sinistra $-(0 \cdot \bar{v})$ si ottiene $-(0 \cdot \bar{v}) + (0 \cdot \bar{v}) = -(0 \cdot \bar{v}) + 0 \cdot \bar{v} + 0 \cdot \bar{v} \implies 0 + 0 + 0 \cdot \bar{v} \implies 0 \cdot \bar{v} = \underline{0} \ \alpha = 0 \implies \alpha \bar{v} = \underline{0}.$ Supponiamo $\alpha \bar{v} = \underline{0}$ con $\alpha = 0 \implies \exists \alpha^{-1} \in \mathbb{K} \ e \ \alpha^{-1}(\alpha \bar{v}) = \alpha^{-1} \cdot \underline{0}$ $\alpha^{-1}(\alpha \bar{v}) = 1 \cdot \bar{v} = \bar{v}$ $\alpha^{-1} \cdot \underline{0} = \alpha^{-1} \cdot \underline{0} + \alpha^{-1} \cdot \underline{0} = \alpha^{-1} \cdot \underline{0}$
- 2. $(-1)\bar{v}+\bar{v}=(-1)\bar{v}+1\bar{v}=(-1+1)\bar{v}=0$ pertanto sommando a dx e sx $(-\bar{v})$ otteniamo $-1\bar{v}=-1\bar{v}+\bar{v}+(-\bar{v}=0+(-\bar{v})=0+(-\bar{v})=0+(-\bar{v})=-\bar{v}$

1.4.2 Teorema 2

 $X \leq V(\mathbb{K}) \iff X \subseteq V(\mathbb{K})$ ed X è chiuso rispetto le combinazioni lineari di suoi elementi mediante le equazioni di V. In altre parole:

$$\star$$
) $\forall \bar{v}, \bar{w} \in X \ \forall \alpha \beta \in \mathbb{K} : \alpha \bar{v} + \beta \bar{w} \in X$

Osservazione: \star è equivalente a dire:

•)
$$\forall \alpha \in \mathbb{K} \ \forall \bar{v} \in X : \alpha \bar{v} + \beta \bar{w} \in X \& \forall \bar{v}, \bar{w} \in X : \bar{v} + \bar{w} \in X$$

Verifichiamo che se vale \star allora $\forall \alpha \in \mathbb{K}, \forall \bar{v}, \bar{w} \in X : \alpha \bar{v} + \underline{0} = \alpha \bar{v} \in X$ e $\forall \bar{v}, \bar{w} \in X : 1 \cdot \bar{v} + 1 \cdot \bar{w} \in X$. Viceversa se vale $\bullet \implies \forall \alpha, \beta \in \mathbb{K}, \forall \bar{v}, \bar{w} \in X : \alpha \bar{v}, \beta \bar{w} \in X \implies \bar{v}' = \alpha \bar{v}, \bar{w} = \beta \bar{w} \in X \implies \bar{v}' + \bar{w}' \in X \implies \alpha \bar{v} + \beta \bar{w} \in X$ Se vale \bullet o \star (stessa cosa) allora X è sottospazio. Osserviamo che molte delle proprietà di spazio vettoriale valgono automaticamente per le restrizioni applicate a qualsiasi $X \subseteq V(\mathbb{K})$:

- 1. se $\forall \bar{v} \in V : 1 \cdot \bar{v} = \bar{v} \implies \forall \bar{v} \in X : 1 \cdot \bar{v} = \bar{v}$
- 2. $\forall \alpha, \beta \in \mathbb{K} \ \forall \bar{v} \in V : (\alpha \beta) \bar{v} = \alpha(\beta \bar{v}) \implies \text{vale anche per } \forall \bar{v} \in X$
- 3. $\forall \alpha, \beta \in \mathbb{K} \ \forall \bar{v} \in V : (\alpha + \beta)\bar{v} = \alpha\bar{v} + \beta\bar{v}$
- 4. $\forall \bar{v}, \bar{w} \ \forall \alpha \in \mathbb{K} = \alpha(\bar{v} + \bar{w}) = \alpha \bar{v} + \alpha \bar{w}$
- 1, 2, 3, 4 valgono tutte anche sulla restrizione. Vale anche sulle restrizioni che $\forall \bar{u} \bar{v} \bar{w} \in V : \bar{u} + (\bar{v} + \bar{w}) = (\bar{u} + \bar{v}) + \bar{w} \implies \forall \bar{u}, \bar{v}, \bar{w} \in X : \bar{u} + (\bar{v} + \bar{w}) = (\bar{u} + \bar{v}) + \bar{w}$ e similmente: $\forall \bar{u}, \bar{v} \in V : \bar{u} + \bar{v} = \bar{v} + \bar{w} \implies \forall \bar{u}, \bar{v} \in X : \bar{u} + \bar{v} = \bar{v} + \bar{w}$ Cosa potrebbe non funzionare?
 - 1. $0 \in X$
 - 2. $\forall \bar{u}, \bar{v} \in X : \bar{u} + \bar{v} \in X$
 - 3. $(-\bar{u}) \in X$ se $\bar{u} \in X$
 - 4. $\alpha \bar{u} \in X$ se $\bar{u} \in X \quad \forall \alpha \in \mathbb{K}$

Se valgono a, b, c, d possiamo troncare le operazioni ad $X \Longrightarrow$ abbiamo un sottospazio. b+d \Longrightarrow significa che si può troncare. a+b+c \Longrightarrow (X,+) un gruppo.

1.5 Condizioni per sottospazio

Se vale la condizione \star : $\forall \alpha, \beta \in \mathbb{K} \ \forall \bar{u}, \bar{v} \in X : \alpha \bar{u} + \beta \bar{v} \in X$

- 1. $0 \cdot \bar{u} + 0 \cdot \bar{v} = 0 + 0 = 0 \in X$
- 2. $1 \cdot \bar{u} + 1 \cdot \bar{v} = \bar{u} + \bar{v} \in X$
- 3. $(-1)\bar{u} + 0 \cdot \bar{v} = -\bar{u} + \underline{0} = -\bar{u} \in X \quad \forall \bar{u} \in X$
- 4. $\alpha \bar{u} + 0 \cdot \bar{v} = \alpha \bar{u} + 0 = \alpha \bar{u} \in X \ \forall \bar{u} \in X$

X è un sottospazio, viceversa se X sottospazio allora ogni combinazione lineare di suoi vettori deve stare in $X \implies$ vale \star .

1.6 Indipendenza e dipendenza lineare

Siano $v_1, v_2 \cdots v_n$ vettori di uno spazio vettoriale e $a_1, a_2 \cdots a_n$ elementi del campo \mathbb{K} . Si dice **combinazione lineare** dei vettori $v_1, v_2 \cdots v_n$ con coefficienti $a_1, a_2 \cdots a_n$ il vettore di \mathbb{V} .

$$a_1v_1 + a_2v_2 + \dots + a_nv_n$$

1.6.1 Sistema Libero o Legato

 $\mathbb{V}(\mathbb{K})$ spazio vettoriale e un sistema $\mathbb{A} = [v_1, v_2, \dots, v_n]$ si dice **libero**, ovvero i suoi vettori sono **linearmente indipendenti**, se l'unica combinazione lineare che dà come risultato il vettore nullo è quella con i coefficienti tutti nulli. Viceversa il sistema è **legato** e i suoi vettori sono **linearmente dipendenti**.

1.7 Sistema di generatori di uno spazio vettoriale

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale e sia \mathbb{A} un sistema o un insieme non vuoto di vettori di \mathbb{V} . Si dice **copertura lineare** di \mathbb{A} , e si indica span(\mathbb{A}), l'insieme dei vettori di $\mathbb{V}(\mathbb{K})$ che si possono esprimere come combinazioni lineari, di un numero finito, di vettori di \mathbb{A} (tutte le possibili combinazioni lineari).

$$span(A) = \{ v \in V \mid v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n, a_i v_n, a_1 \in \mathbb{K}, v_i \in \mathbb{A} \}$$

1.7.1 Copertura Lineare = Sottospazio

La copertura lineare span(A) di un sistema o di un insieme A, non vuoto, di vettori $\mathbb{V}(\mathbb{K})$ è un sottospazio vettoriale di $\mathbb{V}(\mathbb{K})$.

Dimostrazione: si osserva che la somma di un numero finito di vettori di \mathbb{A} è sempre una combinazione lineare di un numero finito di vettori a \mathbb{A} e, analogamente, il prodotto di un elemento del campo \mathbb{K} , per una combinazione lineare di vettori di \mathbb{A} , è ancora una combinazione lineare di un numero finito di vettori di \mathbb{A} . Quindi, span(A) è un sottospazio vettoriale di $\mathbb{V}(\mathbb{K})$. Pertanto, dire che span(A) è un sottospazio vettoriale di $\mathbb{V}(\mathbb{K})$, la copertura lineare di un insieme o di un sistema \mathbb{A} di vettori si suole chiamare **spazio generato** da \mathbb{A} .

Osservazione: Diremo, talvolta, che la copertura lineare span(\mathbb{A}) di un sistema o di un insieme \mathbb{A} , non vuoto, di vettori di $\mathbb{V}(\mathbb{K})$ è il più piccolo sottospazio vettoriale che contiene \mathbb{A} , nel senso che span(\mathbb{A}) è contenuto in ogni sottospazio vettoriale che contenga \mathbb{A} . E' immediato, infatti osservare che, ogni sottospazio vettoriale che contiene \mathbb{A} deve contentere tutte le possibili combinazioni lineari di un numero finito di vettori di \mathbb{A} e, quindi, anche span(\mathbb{A}). Si può facilmente dimostrare che:

- 1. $\operatorname{span}(\operatorname{span}(\mathbb{A})) = \operatorname{span}(\mathbb{A})$
- 2. $\operatorname{span}(\mathbb{A}) = \mathbb{A} \iff \mathbb{A} \text{ è un sottospazio vettoriale.}$

1.8 Insieme di generatori

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale e sia $\emptyset \neq A \subseteq \mathbb{V}$. Il sottoinsieme \mathbb{A} si dice **sistema o insieme di generatori** di $\mathbb{V}(\mathbb{K})$ se la sua copertura lineare span $(\mathbb{A}) = \mathbb{V}(\mathbb{K})$, cioè se **ogni vettori di** $\mathbb{V}(\mathbb{K})$ **si può esprimere come combinazione lineare di un numero finito di vettori di** \mathbb{A} . (Si dice che X è un **insieme di generatori** per $\mathbb{V}(\mathbb{K})$ se span(X) = V). Ogni spazio vettoriale ammette un insieme di generatori, ma si distinguono due casi:

1. finitamente generato: se ∃ un almeno un sistema di generatori con un numero finito di vettori;

$$\exists X \subseteq \mathbb{V}(\mathbb{K}) \quad |X| = n : \operatorname{span}(X) = V$$

2. non finitamente generato: se ogni sistema di generatori ha un numero infinito di vettori.

1.8.1 Lemma

Se $S = [v_1, v_2, \dots, v_m]$ è un sistema di generatori di uno spazio vettoriale $\mathbb{V}(\mathbb{K})$ e uno dei suoi vettori v_i , dipende linearmente dagli altri, allora S v_i è ancora un sistema di generatori di $\mathbb{V}(\mathbb{K})$.

1.8.2 Teorema

Ogni spazio vettoriale $\mathbb{V}(\mathbb{K})$ finitamente generato non banale ammette almeno un sistema libero di generatori.

1.9 Lemma di Steinitz

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale f.g., sia $B = [v_1, v_2, \dots, v_n]$ un suo sistema di generatori e sia $A = [u_1, u_2, \dots, u_m]$ un sistema libero di vettori di \mathbb{V} . Allora $m \leq n$, cioè $|A| \leq |B|$.

 \mathbf{NB} : fra i vettori di A e quelli di B non c'è nessuna relazione.

La dimostrazione non va studiata.

1.10 Base

Si dice **base** di uno spazio vettoriale $\mathbb{V}(\mathbb{K})$ f.g. una **sequenza** libera di generatori di $\mathbb{V}(\mathbb{K})$. Tutte la basi di uno spazio vettoriale $\mathbb{V}(\mathbb{K})$ hanno la stessa *cardinalità*.

1.10.1 Dimostrazione

Ci basta far vedere che ogni vettori si scrive in modo unico come combinazione lineare degli elementi della base. Supponiamo $B = (b_1, b_2, \dots, b_n)$ e B sequenza libera di generatori.

 $\bar{v} \in \operatorname{span}(B)$ $\bar{v} = \alpha_1 \bar{b_1} + \alpha_2 \bar{b_2} + \dots + \alpha_n \bar{b_n}.$

Supponiamo anche $\bar{v} = \beta_1 \bar{b}_1 + \beta_2 \bar{b}_2 + \dots + \beta_n \bar{b}_n$.

Allora $\bar{v} - \bar{v} = (\alpha_1 \bar{b}_1 + \dots + \alpha_n \bar{b}_n) - (\beta_1 \bar{b}_1 + \beta_2 \bar{b}_2 + \dots + \beta_n \bar{b}_n) = (\alpha_1 - \beta_1) \bar{b}_1 + (\alpha_2 - \beta_2) \bar{b}_2 + \dots + (\alpha_n - \beta_n) \bar{v}_n$. Se B libera \implies deve essere $\alpha_1 = \beta_1, \alpha_2 = \beta_2 \dots \alpha_n = \beta_n$ perchè tutti i coefficienti sono necessariemente 0

 $\implies B$ libera e di generatori $\iff B$ base.

1.11 Metodo degli scarti successivi

Algoritmo che data una sequna finita dei generatori per uno spazio vettoriale produce $\underline{0}$ oppure una sottosequenza libera di generatori. S è di generatori se $S = (\bar{v}_1, \bar{v}_2, \dots, \bar{v}_n)$ ed ogni $\bar{v} \in \mathbb{V}(\mathbb{K})$ si scrive come combinazione lineare di un numero finito di vettori di S. $V = \operatorname{span}(S)$

1.11.1 Lemma

Sia $S = (v_1, v_2, ..., v_n)$ una seuqenza di generatori per uno spazio vettoriale W legato, allora esiste $\bar{v}_i \in S : S \setminus \{\bar{v}_i\}$ genera W ("Possiamo sempre scartare almeno un vettore da S ed otteniamo ancora una sequenza di generatori").

Dimostrazione: $S \text{ legata} \implies \exists \bar{v}_i \in S : \bar{v}_i = \sum_{j \neq i} \alpha_j \bar{v}_i$

Sia $\bar{w} \in \text{span}(S) \implies \exists \beta_j \dots j = 1 \dots n$ tali che $\bar{w} = \beta_1 \bar{v}_1 + \dots + \beta_i \bar{v}_i + \dots + \beta_n \bar{v}_n = \beta_1 \bar{v}_1 + \dots + \beta_i \sum_{j \neq i} (\beta_j + \beta_i \alpha_j) \bar{v}_j$. $\implies \bar{w}$ è combinazione lineare di un numero finito di vettori di $S \setminus \{\bar{v}_i\}$

 $\implies \operatorname{span}(S \setminus \{\bar{v}_i\}) \subseteq \operatorname{span}(S)$

Viceversa ogni vettore di span $(S \setminus \{\bar{v}_i\})$ è anche un vettore di span $(S) \implies \operatorname{span}(S \setminus \{\bar{v}_i\}) \subseteq \operatorname{span}(S) \implies \operatorname{span}(S \setminus \{\bar{v}_i\}) = \operatorname{span}(S)$.

1.12 Dimensione

Uno spazio vettoriale $\mathbb{V}(\mathbb{K})$ ha **dimensione n**, e scriveremo dim $\mathbb{V}(\mathbb{K}) = n$, se n è il numero di vettori che compongono una sua qualunque base.

1.13 Componenti

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale e $B = [v_1, v_2, \dots, v_n]$ una sua base. $\forall v \in \mathbb{V}$ si dicono **componenti di** v, rispetto alla base B, i coefficienti $a_1, a_2, \dots, a_n \in \mathbb{K}$ tali che:

$$v = a_1v_1 + a_2v_2 + \dots + a_nv_n$$

Cambiando l'ordine dei vettori che compaiono in una base, anche se si ottiene ancora una bse, si tratta di una base diversa.

1.13.1 Corollario

In $\mathbb{V}_n(\mathbb{K})$, spazio vettoriale di dimensione n,

- 1. m vettori v_1, v_2, \ldots, v_m con m > n sono l.d.;
- 2. m vettori v_1, v_2, \ldots, v_m con m < n non possono generare $\mathbb{V}_n(\mathbb{K})$;
- 3. una sequenza di n generatori di $\mathbb{V}_n(\mathbb{K})$ risulta essere anche libera, e quindi, individua una base di $\mathbb{V}_n(\mathbb{K})$;

4. una sequenza libera di n vettori risulta essere anche un sistema di generatori e, quindi, individua una base di $\mathbb{V}_n(\mathbb{K})$.

Dimostrazione:

- 1. Dal lemma di Steinitz, se uno spazio vettoriale ha dimensione n, il massimo numero di vettori l.d. che si possono trovare in $\mathbb{V}(\mathbb{K})$ è proprio n.
- 2. Il minimo numero di vettori che occorrono per generare $\mathbb{V}_n(\mathbb{K})$ è proprio n.

1.13.2 Proposizione

Ogni spazio vettoriale $\mathbb{V}_n(\mathbb{K})$ di dimensione n contiene sottospazi di dimensione $m \ \forall \ 0 \leq m \leq n$.

1.13.3 Proposizione

Se U e W sono due sottospazi di uno spazio vettoriale $\mathbb{V}_n(\mathbb{K})$ e U è contenuto in W, allora:

- 1. $\dim U \leq \dim W$;
- 2. $U = W \iff \dim U = \dim W$

1.14 Teorema del completamento di una base

Sia $\mathbb{V}_n(\mathbb{K})$ uno spazio vettoriale di dimensione n e sia $A = (v_1, v_2, \dots, v_m)$, ove $m \leq n$, una sequenza livera di vettori di $\mathbb{V}_n(\mathbb{K})$. Allora, in una qualunque base B di $\mathbb{V}_n(\mathbb{K})$, esiste una sequenza B' di vettori, tale che $A \cup B'$ è base di $\mathbb{V}_n(\mathbb{K})$.

1.15 Legami fra sequenze libere, basi e matrici

Se $B = [\bar{e}_1, \bar{e}_2, \dots, \bar{e}_n]$ e $B' = [\bar{e}'_1, \bar{e}'_2, \dots, \bar{e}'_n]$ sono due basi di $\mathbb{V}_n(\mathbb{K})$ allora:

1. Esse hanno la stessa cardinalità [per Steinitz $n \le m$ e $m \le n \implies m = n$ prendendo prima B come libera e B' come di generatori e poi viceversa].

Definizione: si dice dimensione di $V_n(\mathbb{K})$ il numero di vettori di qualunque base.

2. Ogni vettori di $\mathbb{V}_n(\mathbb{K})$ si scrive in modo unico in componenti rispetto una fissata base $B = (\bar{e}_1, \bar{e}_2, \dots, \bar{e}_n) \ \forall \bar{v} \in \mathbb{V}_n(\mathbb{K}) \exists ! (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{K}^n : \bar{v} = \alpha_1 \bar{e}_1 + \dots + \alpha_n \bar{e}_n$

3. Posto
$$E = \begin{bmatrix} \bar{e}_1 \\ \vdots \\ \bar{e}_n \end{bmatrix}$$
 $e \ E' = \begin{bmatrix} \bar{e}'_1 \\ \vdots \\ \bar{e}'_n \end{bmatrix}$ $A = \begin{bmatrix} a_{11} & a_{1n} \\ a_{n1} & a_{nn} \end{bmatrix}$ tale che $\Longrightarrow E' = AE \implies$.

- (a) la matrice A è invertibile $\implies \det(A) \neq 0$
- (b) se $\bar{v} = (x_1, x_2, \dots, x_n)E = (x_1', x_2', \dots, x_n')E' \implies {}^tX = {}^tA^tX'$ cambiamento di base $[XE \implies X'E' = X'AE = {}^tX = {}^tA^tX']$

Osservazione:

- 1. Sia $S = (\bar{e}_1, \bar{e}_2, \dots, \bar{e}_n)$ una sequenza libera \implies ogni sottosequenza di S è libera
- 2. Sia $T = (g_1, g_2, \dots, g_k)$ una sequenza di generatori \implies ogni sovrasequenza di T è di generatori.
- Se **aggiungo** vettori ad una **sequenza libera** ottengo ancora una sequenza libera (Teorema di completamento della base);
- Se tolgo vettori ad una sequenza libera ottengo ancora una sequenza libera;
- Se aggiungo vettori ad ua sequenza di generatori ottengo una sequenza di generatori;
- Se tolgo vettori ad una sequenza di generatori ottengo una sequenza di generatori (Metodo degli scarti successivi).

1.15.1 Dimostrazione

- 1. Sia S libera, supponiamo $S' \leq S$ legata $\Longrightarrow S' = (\bar{e}_1, \bar{e}_2, \dots, \bar{e}_t) \exists \alpha_1, \alpha_2, \dots, \alpha_t$ tali che $\alpha_1 \bar{e}_1 + \dots + \alpha_t \bar{e}_t = \underline{0}$ $(\alpha_1, \alpha_2, \dots, \alpha_t) \neq (0 \dots 0) \Longrightarrow \alpha \bar{e}_1 + \dots + \alpha_t \bar{e}_t + 0 \bar{e}_{t+1} + \dots + 0 \bar{e}_n = \underline{0} \text{ con } (\alpha_1, \alpha_2, \dots, \alpha_t 0 \ 0 \dots 0) \neq \underline{0} \Longrightarrow S$ legata, **assurdo**.
- 2. Sia $T=(\bar{g}_1,\bar{g}_2,\ldots,\bar{g}_k)$ di generatori e $U=(\bar{h}_1,\bar{h}_2,\ldots,\bar{h}_r)$ vettori $\Longrightarrow T\cup S$ è di generatori, perchè \forall vettore di $\mathbb{V}(\mathbb{K})$ si scrive come $\beta_1\bar{g}_1+\ldots+\beta_k\bar{g}_k=\beta_1\bar{g}_1+\ldots+\beta_k\bar{g}_k+0\bar{h}_1+\ldots+0\bar{h}_r$

1.16 Teorema

Sia $\mathbb{V}_n(\mathbb{K})$ uno spazio vettoriale con $\dim(V) = n$. Sia $X \subseteq \mathbb{V}_n(\mathbb{K})$ con |X| = n. Allora X = V.

1.16.1 Dimostrazione

X ammette una base B' di n vettori \Longrightarrow tale base cobsta di n vettori di $\mathbb{V}_n(\mathbb{K})$ liberi \Longrightarrow per le conseguenze di Steinitz take sequenza deve essere di generatori per $V \Longrightarrow \operatorname{span}(B')X \subseteq \mathbb{V}_n(\mathbb{K}) = \operatorname{span}(B')$ ne segue X = V.

La nozione di dimensione ci dice "quanto è grande" uno spazio vettoriale.

1.17 Intersezione e somma di sottospazi

Dati due sottospazi U e W di uno spazio vettoriale $\mathbb{V}(\mathbb{K})$, la loro **intersezione** e la loro **unione** sono, rispettivamente

$$U \cap W = \{v \in V \mid v \in U \text{ and } v \in W\} \quad e \quad U \cup W = \{v \in V \mid v \in U \text{ or } v \in W\}$$

1.17.1 Proposizione

Se U, W sono sottospazi di uno spazio vettoriale $\mathbb{V}(\mathbb{K}), U \cap W$ è un sottospazio vettoriale di $\mathbb{V}(\mathbb{K})$.

1.18 Somma

Siano U, W due sottospazi di uno spazio vettoriale $\mathbb{V}(\mathbb{K})$. Si dice somma S di U, W

$$S = U + W = \{u + w \mid u \in U, w \in W\}$$

1.18.1 Proposizione

La somma S di due sottospazi U, W di uno spazio $\mathbb{V}(\mathbb{K})$ è uno spazio vettoriale di $\mathbb{V}(\mathbb{K})$.

Dimostrazione: basta osservare che se v_1ev_2 sono vettori di U+W anche $\alpha v_1+\beta v_2$ appartiene a U+W. Infatti se $v_1=u_1+w_1$ e $v_2=u_2+w_2$ allora $\alpha v_1+\beta v_2=(\alpha u_1+\beta u_2)+(\alpha w_1+\beta w_2)$ e ciò dimostra l'asserto.

1.19 Somma diretta

La somma S di due sottospazi U, W di uno spazio vettoriale $\mathbb{V}(\mathbb{K})$ si dice **diretta**, e si scrive $U \oplus W$, se pgni vettore di S si può esprimere in modo unico, come somma di un vettore di U e di uno di W.

1.19.1 Proposizione

La somma di due sottospazi U, W di uno spazio vettoriale $\mathbb{V}(\mathbb{K})$ è diretta $\iff U \cap W = \{0\}$

Dimostrazione: supponiamo che la somma di U, W sia diretta e sia, per assurdo, $\underline{0} \neq x \in U \cap W$. Un qualunque vettore v di U + W è v = u + w ove $u \in U$ and $w \in W$, ma anche v = (u + x) + (w - x) ove $u + x \in U$ e $w - x \in W$. Pertanto, v può essere espresso in più modi come somma di un elemento di U e di uno di W, e questo è assurdo.

Viceversa, sia $U \cap W = \{\underline{0}\}$ e, per assurdo, esista un vettore v esprimibile in due modi diversi come somma di vettori di V e W,

$$v = u_1 + w_1 = u_2 + w_2$$

in questo caso il vettore $u_1 - u_2 = w_2 - w_1$ sarebbe un vettore non nullo di $U \cap W$ e ciò è contro l'ipotesi.

1.19.2 Corollario

Uno spazio vettoriale $\mathbb{V}(\mathbb{K})$ è somma diretta di due suoi sottospazi $U, W \iff V = U + W$ and $U \cap W = \{0\}$

1.20 Formula di Grassmann

Siano U, W due sottospazi di uno spazio vettoriale $\mathbb{V}(\mathbb{K})$ f.g. Allora:

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

La formula di Grassmann richiama il cosiddetto principio di induzione/esclusione. Siano A e B due insiemi finiti, $\rightarrow |A \cup B| = |A| + |B| - |A \cap B|$.

$$\begin{split} |A \cup B| &= |A \setminus B| + |A \setminus B| + |A \cap B| \\ |A \setminus B| &= |A| - |A \cap B| \\ |B \setminus A| &= |B| - |A \cap B| \\ \implies |A \cup B| &= |A \cap B| + |A| - |A \cap B| + |B| - |A \cap B| = |A| + |B| - |A \cap B| \end{split}$$

In generale se B_u base di U e B_w base di W allora $B_u \cup B_w$ = generatori di U + W. Ma **non è vero** che $B_u \cap B_w$ base di $U \cap W$. Al massimo $B_u \cap B_w$ è una sequenza libera di generatori di $U \cap W$.

1.20.1 Conseguenza del teorema di Grassmann

 $\Pi \max(dim(U), dim(W)) \leq dim(U+W) \leq \min(dim(U) + dim(W), dim(V_n)) \\
\max(0, dim(U) + dim(W) - dim(V_n)) \leq dim(U \cap W) \leq \min(dim(U), dim(W)) \\
U \cap W \leq U, W \leq U + W$

1.20.2 Dimostrazione

Idea: se $U \oplus W$ cioè $dim(U \cap W) = 0$ allora $dim(U + W) = dim(U) + dim(W) - 0 = dim(U) + dim(W) - dim(W) - dim(U \cap W)$. Supponiamo $dim(U \cap W) = i > 0 \implies \exists$ una base B_i di $U \cap W$, formata da vettori che stanno sia in U che in W e sono una sequenza libera. Applicando il teorema del completamento della base con vettori di U estendiamo B_i ad una base B_u di U (e poniamo $B_u = B_i \cup B'_n$), similmente estendiamo B_i ad una base B_w di W (e poniamo $B'_w = B_w \setminus B_i$).

Figure 2: Grassman

totale vettori = $m - i + i + l - i = m + l - i = dimU + dimU - dimU \cap W$

Osservazione: $B_u \cup B_w = B'_u \cup B_i \cup B'_w$ è una sequenza di generatori di U + W perchè unione di una base di U e di una base di W.

Dobbiamo dimostrare che è una sequenza libera: supponiamo esistano $(\alpha_1, \alpha_2, \dots, \alpha_{m-1}, \beta_1, \beta_2, \dots, \beta_i, \gamma_1, \gamma_2, \dots, \gamma_{e-i}) \neq \underline{0}$ tali che $\alpha_1 \bar{u}_1 + \dots + \alpha_{m-i} \bar{u}_{m-i} + \beta_1 \bar{e}_1 + \dots + \beta_i \bar{e}_i + \dots + \gamma_1 \bar{w}_1 + \dots + \gamma_{l-i} \bar{w}_{l-i} = \underline{0} \implies$ è impossibile che sia $(\alpha_1, \alpha_2, \dots, \alpha_{m-i}) = (0 \ 0 \cdots \ 0)$ perchè altrimenti avremmo una combinazione lineare di vettori di B_w con coefficienti non tutti 0 che dà $\underline{0}$. \implies possiamo scrivere

$$\underline{\beta_1 \bar{e}_1 + \dots + \beta_i \bar{e}_i + \gamma_1 \bar{w}_1 + \dots + \gamma_{l-i} \bar{w}_{l-i}} = \\
\operatorname{span}(B_w) = W$$

$$\underline{= -\alpha_1 \bar{u}_1 \dots - \alpha_{m-i} \bar{u}_{m-i}} \\
\operatorname{span}(B_u') \leq U$$

..... finire

1.21 Definizione

Se U è un sottospazio vettoriale di $\mathbb{V}_n(\mathbb{K})$ si dice **complemento diretto** di U in V, un sottospazio vettoriale W di V_n , tale che $U \oplus W = V$.

2 Sistemi Lineari

2.1 Determinante

Sia $A = (a_{ij})$ una matrice quadrata di ordine n, a elementi in un campo \mathbb{K} . Si dice **determinante**, e si indica con $\det(A)$ o |A|, la somma di tutti i suoi termini presi con il proprio segno. Cioè:

$$\det(A) = \sum_{\alpha \in S_n} sgn(\alpha) a_{1\alpha(1)} a_{2\alpha(2)} \cdots a_{n\alpha(n)}$$

2.1.1 Proprietà

- 1. Se una colonna (o una riga) di una matrice è nulla, allora il determinante è nullo.
- 2. $\det(A) = \det({}^tA)$, infatti, i termini estratti da tA sono tutti e soli i termini estratti da A. Sia $A = (a_{ij})$ e $B = ({}^tA) = (b_{ij})$ allora $b_{ij} = a_{ji}$. Se:

$$b_{1\alpha(1)}b_{2\alpha(2)}\cdots b_{n\alpha(n)}$$

è un termine estratto da ${}^{t}A$, associato alla permutazione α , esso coincide con:

$$a_{\alpha(1)1}a_{\alpha(2)2}\cdots a_{\alpha(n)n}$$

che per definizione, è un termine estratto da A e individuato dalla permutazione α^{-1} . Dunquue, poichè $sgn(\alpha) = sgn(\alpha^{-1})$, possiamo concludere che $det(A) = det({}^tA)$.

3. Se A' è ottenuta da A scambiando tra loro due righe (o colonne), allora $\det(A') = -\det(A)$. Basta osservare che, i termini della matrice A' si ottengono da quelli di A scambiando tra loro due termini, e quindi, il segno del determinante cambia. Infatti, se $A' = (b_{ij})$ è ottenuta da $A = (a_{ij})$ scambiando la k-esima riga con l'h-esima, allora ogni termine estratto da A'

$$b_{1\alpha(1)} \cdot \ldots \cdot b_{k\alpha(k)} \cdot \ldots \cdot b_{n\alpha(h)} \cdot \ldots \cdot b_{n\alpha(n)}$$

associato alla permutazione α , è uguale a:

$$a_{1\alpha(1)} \cdot \ldots \cdot a_{h\alpha(k)} \cdot \ldots \cdot a_{k\alpha(h)} \cdot \ldots \cdot a_{n\alpha(n)}$$

che risulta un termine di A associato alla permutazione $(\sigma \circ \alpha)$, dove, σ è lo scambio di k con h. Ma essendo $sgn(\alpha) = -sgnS(\alpha \circ \sigma)$, risulta |A'| = -|A|

- 4. Se A ha due righe (o due colonne) uguali, allora $\det(A) = 0$. Infatti, se A ha due righe uguali, allora, scambiando tra loro queste due righe, non si altera la matrice A, e per la precendente proprietà, $\det(A) = -\det(A)$, da cui $\det(A) = 0$.
- 5. Se in A una colonna C_i è la somma di due n-uple X_i, Y_i , cioè se A è del tipo:

$$(C_1 \cdots X_i + Y_i \cdots C_n)$$

allora $|A| = |C_1 \cdots X_i \cdots C_n| + |C_1 \cdots Y_i \cdots C_n|$. Analogamente per le righe.

6. Se A' è una matrice ottenuta da $A = (C_1 \ C_2 \cdots C_n)$ moltiplicando per $k \in \mathbb{K}$ una sua colonna (o riga), allora

$$|A'| = |C_1 \cdots kC_i \cdots C_n| = k|C_1 \cdots C_i \cdots C_n| = k|A|$$

- 7. Se A ha due colonne (o due righe) proporzionali, allora $\det(A) = 0$.
- 8. Se A ha una colonna (o una riga) che è combinazione lineare di altre colonne (o righe), allora $\det(A) = 0$.
- 9. Se A' è una matrice ottenuta da A sommando ad una sua colonna (o riga) un multiplo di un'altra colonna (o riga), allora |A'| = |A|.

2.2 Eliminazione di Gauss

L'intendo del **metodo di eliminazione di Gauss** è quello di ridurre una matrice A ad una matrice A', detta **ridotta a gradini**, in quanto il determinante di quest'ultima può essere calcolato moltiplicando gli elementi presenti nella diagonale principale, che ha la forma:

$$A' = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Per farlo utilizziamo quelle che si chiamano Mosse di Gauss:

- 1. Scambiare tra loro due righe della matrice;
- 2. Moltiplicare una riga per un numero diverso da zero;
- 3. Sostituire ad una riga la somma di essa con un multiplo di un'altra riga.

Osservazione: le mosse di Gauss non alterano il determinante della matrice.

Passi dell'algoritmo di Gauss:

Indichiamo con A una matrice non ridotta a gradini con m righe e n colonne.

- 1. Sia C_k , con $1 \le k \le n$, la prima colonna a paritre da sinistra che contiene almeno un termine a non nullo. Detta R_1 la prima riga della matrice, possono presentarsi **due eventualità**:
 - (a) Se a è un elemento di R_1 , passiamo al punto 3
 - (b) Se $a \notin R_1$. Controlliamo se la matrice ottenuta dopo lo scambio è ridotta a gradini: se lo è possiamo fermarci, in caso contrario procediamo oltre.
- 2. L'obiettivo è annullare tutti gli elementi della k-esima colonna al di sotto di a. Sostituiamo ogni riga R_i , con i > 1 e con k-esimo elemento non nullo, con $R_i + \lambda$ $R_1, \lambda \in \mathbb{R}$: $R_i + \lambda$ $R_1 = 0$.
- 3. Se la matrice risultante è ridotta a gradini, allora l'algoritmo termina, altrimenti ripetiamo i passi precedenti con la matrice ottenuta.

2.3 Complemento algebrico

Sia $A = (a_{ij})$ una matrice quadrata di ordine n, a elementi in un campo \mathbb{K} . Si dice **complemento algebrico** dell'elemento a_{hk} , e si indica con Γ_{hk} , il determinate della matrice quadrata di orfdine n-1, ottenuta da A cancellando la riga h e la colonna k, preso con il segno $(-1)^{h+k}$.

2.4 Teorema di Laplace I

Data una matrice quadrata A di ordine n, la somma dei prodotti degli elementi di una sua riga (o colonna), per i rispettivi complementi algebrici, è il determinate di A. Pertanto, la formula del calcolo del determinanto di $A = (a_{ij})$ rispetto alla i-esima riga è:

$$|A| = \sum_{j=1}^{n} a_{ij} \Gamma_{ij} \quad \forall i = 1, 2, \dots, n$$

Rispetto alla j-esima colonna è:

$$|A| = \sum_{i=1}^{n} a_{ij} \Gamma_{ij} \quad \forall j = 1, 2, \dots, n$$

L'utilizzo dei complementi algebrici consente, quindi il calcolo del determinante di una matrice di ordine n calcolando determinanti di matrici di ordine inferiore.

2.5 Teorema di Laplace II

Sia A una matrice quadrata di ordine n. La somma dei prodotti degli elementi di una sua riga (o colonna) per i complementi elgebrici degli elementi di un'altra riga (o colonna) vale zero.

2.6 Teorema di Binet

Date due matrici quadrate di ordine n, A e B, il determinante della matrice prodotto AB è uguale al prodotto dei determinanti delle due matrici:

$$|AB| = |A||B|$$

2.7 Matrici Invertibili

Una matrice quadrata A di ordine n si dice **invertibile** se esiste una matrice B quadrata e dello stesso ordine, tale che $AB = BA = I_n$, dove I_n è la matrice identità di ordine n. In tal caso, la matrice B si dice **matrice inversa** di A e si indica con A^{-1} .

2.7.1 Teorema

Una matrice quadrata A = (a - ij), di ordine n, è invertibile $\iff |A| \neq 0$. In questo caso, la matrice inversa di A risulta essere $A^{-1} = |A|^{-1} {}^t A_a$ dove ${}^t A_a$ è la trasposta dell'aggiunta di A.

2.8 Dipendenza lineare e determinanti

Data una matrice $A \in \mathbb{K}^{m,n}(K)$ si dice **minore di ordine k**, estratto da A, una matrice quadrata di ordine k (ovviaente $k \leq m$ e $k \leq n$) ottenuta da A cancellando m-k righe e n-k colonne.

2.8.1 Teorema

Una sequenza $S = (v_1, v_2, \dots, v_k)$ di k vettori $(k \le n)$ dello spazio vettoriale $\mathbb{V}_n(\mathbb{K})$ è libera \iff dalla matrice A, che ha nelle proprie righe (o colonne) le componenti dei vettori di S in una base B di $\mathbb{V}_n(\mathbb{K})$, si può estrarre un minore di ordine k con determinante non nullo.

2.9 Rango

Sia A una matrice di $K^{m,n}(\mathbb{K})$. Si dice **rango** della matrice A, e si indica con rK(A), il massimo ordine di un minore non nullo estratto da A.

In modo equivalente, il rango di una matrice A è p quando esiste un minore di ordine p non nullo, ma non esiste alcun minore di ordine p+1 non nullo.

2.9.1 Osservazioni

Data una matrice $A \in K^{m,n}(\mathbb{K})$

- 1. $rK(A) = 0 \iff A$ è la matrice nulla;
- 2. il rango di A coincide con il rango della sua trasposta ${}^{t}A$;
- 3. $rK(A) \leq min\{m, n\};$
- 4. se B è una matrice di $K^{n,p}(\mathbb{K})$, il rango della matrice prodotto AB è minore o guale, si adel rango di A, che di queòòp di B.
- 5. se A e B sono matrici quadrate dello stesso ordine e A è invertibile, allora rK(AB) = rK(BA) = rK(B).

2.10 Kronecker

Gli spazi vettoriali span(R) ed span(C), di una matrice $A \in K^{m,n}(\mathbb{K})$, hanno la stessa dimensione e tale dimensione coincide con il rango di A.

2.11 Osservazione

Il rango di una matrice A coincide con il massimo numero di righe o di colonne linearmente indipendenti estraibili dalla matrice A.

2.11.1 Corollario

Se A è una matrice quadrata di ordine n, con elementi in un campo \mathbb{K} , le seguenti condizioni sono equivalenti:

- 1. $|A| \neq 0$;
- 2. Aè invertibile
- 3. rK(A) = n;
- 4. le righe sono linearmente indipendenti e, quindi sono base di \mathbb{K}^n ;
- 5. le colonne sono linearmente indipendenti e, quindi sono base di \mathbb{K}^n ;

2.12 Teorema degli orlati

Una matrice $A \in K^{m,n}(\mathbb{K})$ ha rango r se e solo se esiste un minore M di ordine r a determinante non nullo e tutti i minori di ordine r+1, che contengono M, hanno determinante nullo.

2.13 Sistemi Lineari

Un sistema lineare è insieme di m equazioni lineari in n incognite a coefficineti in un campo \mathbb{K} , un sistema lineare si può rappresentare come:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

con $a_{ij}, b_i \in \mathbb{K}$. Gli elementi a_{ij} si chiamano coefficienti delle incognite, gli elementi b_i si chiamano termini noti. La matrice $m \times n$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

è detta matrice dei coefficienti o matrice incompleta del sistema. La matrice $n \times 1$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

è detta matrice delle incognite.

La matrice $m \times 1$

$$B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

è detta matrice dei termini noti.

Infine, la matrice $m \times (n+1)$

$$A|B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

è detta matrice completa del sistema.

2.13.1 Sistema omogeneo

Un sistema lineare si dice **omogeneo** se tutti i termini noti sono nulli. Utilizzando il prodotto tra matrici, il sistema lineare assume la seguente forma:

$$AX = B$$

In particolare, un sistema lineare omogeneo, in forma matriciale, si scrive

$$AX = \underline{0}$$

Si è soliti chiamare sistema lineare omogeneo associato ad AX = B, il sistema lineare omogeneo ottenuto da AX = B ponendo $B = \underline{0}$.

2.13.2 Sistema compatibile

Sia AX = B un sistema lineare in m equazioni e n incognite. Si dice che tale sistema ha soluzione, ovvero che il **sistema** è **compatibile**, se esiste almeno un n-upla $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ di elementi di \mathbb{K} che risolve tutte le equazioni del sistema. Tale n-upla è detta **soluzione**.

Osservazione: affermare hce una n-upla $(\alpha_1, \alpha_2, \dots, \alpha_n)$ di elementi di \mathbb{K} è soluzione di un sistema AX = B, pensando tale sistema scritto nella forma, equivale a dire che

$$\alpha_1 C_1 + \alpha_2 C_2 + \dots + \alpha_n C_n = B$$

cioè che B è combinazione lineare delle colonne della matrice A secondo i coefficienti $\alpha_1, \alpha_2, \ldots, \alpha_n$.

2.14 Rouché-Capelli

Un sistema lineare AX = B, in m equazioni e n incognite, è compatibile $\iff rk(A) = rk(A|B)$.

2.14.1 Dimostrazione