```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import silhouette_score
from sklearn.cluster import KMeans
from yellowbrick.cluster import KElbowVisualizer
data = pd.read_excel("ecom customer_data.xlsx")
```

data.head()

→	Cust_I	O Gender	Orders	Jordan	Gatorade	Samsung	Asus	Udis	Mondelez International	Wrangler	•••	LG	Dior	Scabal	Tommy Hilfiger	Hollister	Forever 21	Colavita	Microsoft	Jiffy mix	Kra
	0	1 N	7	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	
	1	2 F	. 0	0	1	0	0	0	0	0		0	1	0	0	0	0	0	0	0	
	2	3 N	1 7	0	1	0	0	0	0	0		0	0	0	0	0	0	0	1	0	
	3	4 F	. 0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	
	4	5 NaN	10	0	0	0	0	0	0	0		0	0	2	0	0	0	0	0	1	

5 rows × 38 columns

df=data.copy() df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 30000 entries, 0 to 29999 Data columns (total 38 columns):

200	COTA (COCAT 30 COTA		
#	Column	Non-Null Count	Dtype
0	Cust_ID	30000 non-null	int64
1	Gender	27276 non-null	object
2	Orders	30000 non-null	int64
3	Jordan	30000 non-null	int64
4	Gatorade	30000 non-null	int64
5	Samsung	30000 non-null	int64
6	Asus	30000 non-null	int64
7	Udis	30000 non-null	int64
8	Mondelez International	30000 non-null	int64
9	Wrangler	30000 non-null	int64
10	Vans	30000 non-null	int64
11	Fila	30000 non-null	int64
12	Brooks	30000 non-null	int64
13	H&M	30000 non-null	int64
14	Dairy Queen	30000 non-null	int64
15	Fendi	30000 non-null	int64

```
16 Hewlett Packard
                                30000 non-null int64
     17 Pladis
                                30000 non-null int64
     18 Asics
                                30000 non-null int64
     19 Siemens
                                30000 non-null int64
     20 J.M. Smucker
                                30000 non-null int64
     21 Pop Chips
                                30000 non-null int64
     22 Juniper
                                30000 non-null int64
         Huawei
     23
                                30000 non-null int64
     24 Compaq
                                30000 non-null int64
     25 IBM
                                30000 non-null int64
     26 Burberry
                                30000 non-null int64
                                               int64
     27
         Μi
                                30000 non-null
     28
         LG
                                30000 non-null int64
     29
         Dior
                                30000 non-null int64
     30 Scabal
                                30000 non-null int64
     31 Tommy Hilfiger
                                30000 non-null int64
     32 Hollister
                                30000 non-null int64
     33 Forever 21
                                30000 non-null int64
     34 Colavita
                                30000 non-null int64
     35 Microsoft
                                30000 non-null int64
     36 Jiffy mix
                                30000 non-null int64
     37 Kraft
                                30000 non-null int64
    dtypes: int64(37), object(1)
    memory usage: 8.7+ MB
df['Gender'] = df['Gender'].fillna(df['Gender'].mode()[0])
df.isna().sum().sum()
→ 0
DATA VISUALIZATION
df.Gender.value_counts()
```

```
Gender
         24778
          5222
     Μ
    Name: count, dtype: int64
sns.countplot(data=df,x='Gender')
plt.show
```

```
\rightarrow
```

```
matplotlib.pyplot.show
def show(*args, **kwargs)

Display all open figures.

Parameters
-----
block : bool, optional
Whether to wait for all figures to be closed before returning.
```


#Overall order count
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.countplot(data=df,x='Orders')

#Order count by each gender
plt.subplot(1,2,2)
sns.countplot(data=df,x='Orders',hue='Gender')
plt.suptitle("Overall Orders vs Genderwise Orders")
plt.show()

Overall Orders vs Genderwise Orders


```
#Overall order count
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.countplot(data=df,x='Orders')

#Order count by each gender
plt.subplot(1,2,2)
sns.countplot(data=df,x='Orders',hue='Gender')
plt.suptitle("Overall Orders vs Genderwise Orders")
plt.show()
```

Overall Orders vs Genderwise Orders

 $\hbox{\tt\#Bocplot for orders and searches of each brands}$

```
cols=list(df.columns[2:])
def dist_list(lst):
  plt.figure(figsize=(30,30))
  for i,col in enumerate(lst,1):
    plt.subplot(6,6,i)
    sns.boxplot(data=df,x=df[col])
dist_list(cols)
```


#Correlation Graph(Heatmap)
plt.figure(figsize=(20,15))
sns.heatmap(df.iloc[:,3:].corr())
plt.show()

an de ng us	er ns ks en	rrd lis cs	ns cer er er aq	Mi G G	er 21 oft
Jorda Satorac Samsur Asu Ud	Mrangle Var Fi Brook y Quee	Fen Packa Plad Asic	Siemens Smucker op Chips Juniper Huawei Compaq	Burberr L Dic	/ Hilfig Holliste rever ? Colavii Aicroso

df.iloc[:,2:].hist(figsize=(40,30))
plt.show()

e		_
	•	_
-	⇁	$\overline{}$

	Cust_ID	Gender	Orders	Jordan	Gatorade	Samsung	Asus	Udis	Mondelez International	Wrangler	• • •	Dior	Scabal	Tommy Hilfiger	Hollister	Forever 21	Colavita	Microsoft	Jiffy mix	
9911	9912	F	2	0	11	0	0	0	0	6		2	8	4	9	1	4	1	3	
24365	24366	F	2	3	3	2	2	0	1	2		2	2	6	4	1	4	3	3	ı
4129	4130	F	1	0	0	0	0	0	0	0		0	0	0	0	0	0	1	0	
888	889	F	0	2	1	3	2	0	1	3		3	1	5	3	2	5	1	3	ı
15015	15016	F	10	2	2	2	0	0	0	0		0	1	0	0	1	7	4	2	
15000	15001	F	4	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1	
7247	7248	F	3	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
7255	7256	М	8	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
7259	7260	F	6	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
7263	7264	М	8	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	Į

30000 rows × 39 columns

SCALING

```
[0, 0, 0, \ldots, 0, 0, 0],
            [3, 2, 0, \ldots, 0, 0, 0]])
scale = MinMaxScaler()
features = scale.fit transform(x)
features
    array([[0.58333333, 0.
                                                                  , 0.
                                    , 0.
                                                , ..., 0.
             0.
                       ],
                       , 0.
                                                                  , 0.
            [0.
                                    , 0.06666667, ..., 0.
             0.
                       ],
            [0.58333333, 0.
                                    , 0.06666667, ..., 0.07142857, 0.
             0.
                       ],
            . . . ,
                       , 0.
                                                                  , 0.
                                    , 0.06666667, ..., 0.
            [0.
             0.
                       ],
                                                                  , 0.
            [0.
                       , 0.
                                    , 0.
             0.
                       1,
                                                                  , 0.
            [0.25
                                                , ..., 0.
                        , 0.08333333, 0.
                       11)
             0.
```

Elbow Method to get optimal k value

```
inertia = []
for i in range(1,16):
 k means = KMeans(n clusters=i)
 k_means = k_means.fit(features)
 inertia.append(k means.inertia )
😽 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `
```

```
warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `warnings.warn(

# Elbow Graph
plt.figure(figsize=(20,7))
plt.subplot(1,2,1)
plt.plot(range(1,16), inertia, 'bo-')
plt.ylabel('No of clusters'), plt.ylabel('Inertia')
```

Kelbow visualizer
plt.subplot(1,2,2)
kmeans = KMeans()

visualize.poof()

plt.show()

visualize.fit(features)

visualize = KElbowVisualizer(kmeans, k=(1,16))

plt.suptitle("Elbow Graph and Elbow Visualizer")

→▼

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of warnings.warn(

Elbow Graph and Elbow Visualizer

Silhouette Score for each k value

```
silhouette avg = []
for i in range(2,16):
 # initialise kmeans
 kmeans = KMeans(n clusters= i)
 cluster_labels = kmeans.fit_predict(features)
 # silhouette score
 silhouette avg.append(silhouette score(features,cluster labels))
😽 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `
     /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `
       warnings.warn(
```

```
plt.figure(figsize=(10,7))
plt.plot(range(2,16),silhouette_avg,'bX-')
plt.xlabel('Values of K')
plt.ylabel('Silhouette score')
plt.title('Silhouette analysis For Optimal k')
plt.show()
```

→

K-means Model

Taking k value as 3 as per Elbow Method

```
model = KMeans(n_clusters=3)
model = model.fit(features)
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `warnings.warn(

y_km = model.predict(features)
centers = model.cluster_centers_

df['Cluster'] = pd.DataFrame(y_km)
df.to_csv("Cluster_data",index=False)

df['Cluster'].value_counts()

Cluster
0 12432
1 9128
2 8440
Name: count, dtype: int64
```

sns.countplot(data=df,x='Cluster')

plt.show

```
\rightarrow
```

```
matplotlib.pyplot.show
def show(*args, **kwargs)

Display all open figures.

Parameters
------
block : bool, optional
Whether to wait for all figures to be closed before returning.
```


Analysing Clusters

```
c_df = pd.read_csv('Cluster_data')
c_df.head()
```

₹	Cust	_ID	Gender	Orders	Jordan	Gatorade	Samsung	Asus	Udis	Mondelez International	Wrangler	•••	Dior	Scabal	Tommy Hilfiger	Hollister	Forever 21	Colavita	Microsoft	Jiffy mix	Kraft
	0	1	М	7	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
	1	2	F	0	0	1	0	0	0	0	0		1	0	0	0	0	0	0	0	0
<pre>c_df['Total Search']=c_df.iloc[:,3:38].sum(axis=1)</pre>																					
	2	1	⊏	Λ	Λ	Λ	Λ	Λ	Ω	0	Λ		Ω	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ

Analyzing Cluster 0

→

```
cl_0=c_df.groupby(['Cluster', 'Gender'], as_index=False).sum().query('Cluster == 0')
cl_0
```

→ ▼		Cluster	Gender	Cust_ID	Orders	Jordan	Gatorade	Samsung	Asus	Udis	Mondelez International	•••	Dior	Scabal	Tommy Hilfiger	Hollister	Forever 21	Colavita	Microsoft	Jiffy mix	Kraft
-	0	0	F	154699357	6269	2470	1947	2086	1813	1632	1480		3041	4194	1807	847	654	1960	1153	870	776
	1	0	М	28245384	1291	601	777	435	12	75	162		283	175	172	83	55	386	186	160	142
4	2 rov	ws × 40 cc	olumns																		

```
plt.figure(figsize=(15,6))
plt.subplot(1,2,1)
sns.countplot(data=c_df.query('Cluster == 0'),x= 'Gender')
plt.title('Customers count')

plt.subplot(1,2,2)
sns.barplot(data=cl_0,x='Gender',y='Total Search')
plt.title('Total Searches by Gender')
plt.suptitle('No. of Customers and their Total Searches in "Cluster 0"')
plt.show()
```

No. of Customers and their Total Searches in "Cluster 0"

