Chapter 19 Balanced Search Trees

CS 302 - Data Structures

M. Abdullah Canbaz

Reminders

- Assignment 7 is available
 - Due Wednesday, May 7th at 2pm
 - TA
 - Shehryar Khattak,
 Email: shehryar [at] nevada {dot} unr {dot} edu,
 Office Hours: Friday, 11:00 am 1:00 pm at ARF 116
- Assignment 8 is available
 - Due Wednesday, May 16th at 2pm
 - -TA
 - Athanasia Katsila,
 Email: akatsila [at] nevada {dot} unr {dot} edu,
 Office Hours: Thursdays, 10:30 am 12:30 pm at SEM 211

Red-Black Trees

Red-Black-Trees

A red-black tree is

- a kind of self-balancing binary search tree.
- Each node of the binary tree has an extra bit, and that bit is often interpreted as the color (red or black) of the node.
- These color bits are used to ensure the tree remains approximately balanced during insertions and deletions.

Red-Black-Trees Properties

(**Binary search tree property is satisfied**)

- 1. Every **node** is either **red** or **black**
- The root is black
- 3. Every leaf (NIL) is black
- 4. If a node is **red**, then both its children are **black**
 - No two consecutive red nodes on a simple path from the root to a leaf
- 5. For each node, all paths from that node to a leaf contain the same number of **black** nodes

Example: RED-BLACK-TREE

- For convenience, we add NIL nodes and refer to them as the leaves of the tree.
 - Color[NIL] = BLACK

Definitions

- Height of a node: the number of edges in the longest path to a leaf
- Black-height bh(x) of a node x: the number of black nodes (including NIL) on the path from x to a leaf, not counting x

Height of Red-Black-Trees

A red-black tree with n internal nodes has height at most 2log(N+1)

Insert Item

- Red?
 - Let's insert 35!
 - Property 4 is violated: if a node is red, then both children are black
- Black?
 - Let's insert 14!
 - Property 5 is violated: all paths from a node to its leaves contain the same number of black nodes

Delete Item

- 1. Every **node** is either **red** or **black** OK!
- 2. The **root** is **black** OK!
- 3. Every leaf (NIL) is black OK!
- 4. If a node is red, then both its children are black OK!

5. For each node, all paths from the node to descendant leaves contain the same number of black nodes

Delete Item

What color was the node that was removed? Black? 38

- 1. Every **node** is either **red** or **black** OK!
- 2. The root is black Not OK! If removing the root and the child that replaces it is red
- 3. Every leaf (NIL) is black OK!
- 4. If a node is red, then both its children are black
 - Not OK! Could change the black heights of some nodes

 Not OK! Could create two red nodes in a row
- 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes

Rotations

- Operations for re-structuring the tree after insert and delete operations
 - Together with some node <u>re-coloring</u>, they help restore the red-black-tree property
 - Change some of the pointer structure
 - Preserve the binary-search tree property
- Two types of rotations:
 - Left & right rotations

Left Rotations

- Assumptions for a left rotation on a node x:
 - The right child y of x is not NIL

Left-Rotate(T, x)

- Idea:
 - Pivots around the link from x to y
 - Makes y the new root of the subtree
 - x becomes y's left child
 - y's left child becomes x's right child

Example: LEFT-ROTATE

LEFT-ROTATE(T, x)

1. $y \leftarrow right[x]$

- ► Set y
- 2. $right[x] \leftarrow left[y] \triangleright y'$ s left subtree becomes x's right subtree
- 3. if $left[y] \neq NIL$
- **then** $p[left[y]] \leftarrow x \triangleright$ Set the parent relation from left[y] to x
- 5. $p[y] \leftarrow p[x]$

► The parent of x becomes the parent of y

- if p[x] = NIL
- then root[T] \leftarrow y
- else if x = left[p[x]]8.
- then $left[p[x]] \leftarrow y$ 9.
- else right[p[x]] \leftarrow y **10.**
- 11. $left[y] \leftarrow x$

► Put x on y's left

12. $p[x] \leftarrow y$

▶ y becomes x's parent

Left-Rotate(T, x)

Right Rotations

- Assumptions for a right rotation on a node X:
 - The left child x of y is not NIL

- Idea:
 - Pivots around the link from y to x
 - Makes x the new root of the subtree
 - y becomes x's right child
 - x's right child becomes y's left child

Insert Item

Goal:

Insert a new node z into a red-black tree

• Idea:

- Insert node z into the tree as for an ordinary binary search tree
- Color the node red
- Restore the red-black tree properties

RB-INSERT(T, z)

- 1. $y \leftarrow NIL$
- 2. $x \leftarrow root[T]$
- Initialize nodes x and y
- Throughout the algorithm y points to the parent of x
- 3. while $x \neq NIL$
- 4. do $y \leftarrow x$
- 5. if key[z] < key[x]
- 6. then $x \leftarrow left[x]$
- 7. else $x \leftarrow right[x]$
- 8. p[z] ← y } Sets the parent of z to be y

- Go down the tree until reaching a leaf
- At that point y is the parent of the node to be inserted

RB-INSERT(T, z)

9. if
$$y = NIL$$

10. then
$$root[T] \leftarrow z$$

The tree was empty: set the new node to be the root

12. then
$$left[y] \leftarrow z$$

13. else right[y]
$$\leftarrow$$
 z

Otherwise, set z to be the left or right child of y, depending on whether the inserted node is smaller or larger than y's key

14.
$$left[z] \leftarrow NIL$$

15. right[z]
$$\leftarrow$$
 NIL

Set the fields of the newly added node

16.
$$color[z] \leftarrow RED$$

Fix any inconsistencies that could have been introduced by adding this new red node

RB Properties Affected by Insert

- 1. Every **node** is either **red** or **black**
- 2. The root is black If z is the root \Rightarrow not OK
- 3. Every leaf (NIL) is black OK!
- 4. If a node is red, then both its children are black

If p(z) is red \Rightarrow not OK > z and p(z) are both red

OK!

5. For each node, all paths from the node to descendant leaves contain the same number of black nodes

OK!

RB-INSERT-FIXUP

Case 1: z's "uncle" (y) is red
(z could be either left or right child)

Idea:

- p[p[z]] (z's grandparent) must be black
- color p[z] ← black
- color $y \leftarrow black$
- color p[p[z]] ← red
- z = p[p[z]]
 - Push the "red" violation up the tree

RB-INSERT-FIXUP

Case 2:

- z's "uncle" (y) is black
- z is a left child

Idea:

- color p[z] ← black
- color p[p[z]] ← red
- RIGHT-ROTATE(T, p[p[z]])
- No longer have 2 reds in a row
- p[z] is now black

RB-INSERT-FIXUP

Case 3:

- z's "uncle" (y) is black
- z is a right child

Idea:

- $z \leftarrow p[z]$
- LEFT-ROTATE(T, z)
- \Rightarrow now z is a left child, and both z and p[z] are red \Rightarrow case 2

Example

RB-INSERT-FIXUP(T, z)

```
while color[p[z]] = RED
                                            The while loop repeats only when
                                            case1 is executed: O(logN) times
          if p[z] = left[p[p[z]]]
2.
                                             Set the value of x's "uncle"
             then y \leftarrow right[p[p[z]]]
3.
                  if color[y] = RED
4.
                    then Case 1
5.
                       else if z = right[p[z]]
6.
                                then Case 3
7.
                                Case2
8.
             else (same as then clause with "right" and "left"
9.
            exchanged for lines 3-4)
                                          We just inserted the root, or
10. color[root[T]] \leftarrow BLACK
                                          The red violation reached the root
```

\mathbb{M}

Analysis of InsertItem

Inserting the new element into the tree
 O(logN)

- RB-INSERT-FIXUP
 - The while loop repeats only if CASE 1 is executed
 - The number of times the while loop can be executed is O(logN)

Total running time of Insert Item: O(logN)

Delete Item

Delete as usually, then re-color/rotate

A bit more complicated though ...

- Demo
 - http://gauss.ececs.uc.edu/RedBlack/redblack.html

Discussion Problems

- What is the ratio between the longest path and the shortest path in a red-black tree?
 - The shortest path is at least bh(root)
 - The longest path is equal to h(root)
 - From Claim 1, bh(root) ≥ h(root)/2
 or h(root) ≤2 bh(root)
 - Therefore, the ratio is ≤ 2

Discussion Problems

- What red-black tree property is violated in the tree below? How would you restore the red-black tree property in this case?
 - Property violated: if a node is red, both its children are black
 - Fixup: color 7 black, 11 red, then right-rotate around 11

Discussion Problems

- Let a, b, c be arbitrary nodes in subtrees α , β , γ in the tree below.
- How do the depths of a, b, c change when a left rotation is performed on node x?
 - a: increases by 1
 - b: stays the same
 - c: decreases by 1

LEFT-ROTATE(T, x)

Discussion Problems

 When we insert a node into a red-black tree, we initially set the color of the new node to red.

Why didn't we choose to set the color to black?

 Would inserting a new node to a red-black tree and then immediately deleting it, change the tree?