Chapter 7Periodic Properties of the Elements

Learning Outcomes:

- ➤ Explain the meaning of effective nuclear charge, Z_{eff}, and how Z_{eff} depends on nuclear charge and electron configuration.
- > Predict the trends in atomic radii, ionic radii, ionization energy, and electron affinity by using the periodic table.
- > Explain how the radius of an atom changes upon losing electrons to form a cation or gaining electrons to form an anion.
- >Write the electron configurations of ions.
- > Explain how the ionization energy changes as we remove successive electrons, and the jump in ionization energy that occurs when the ionization corresponds to removing a core electron.
- > Explain how irregularities in the periodic trends for electron affinity can be related to electron configuration.
- >Explain the differences in chemical and physical properties of metals and nonmetals, including the basicity of metal oxides and the acidity of nonmetal oxides.
- > Correlate atomic properties, such as ionization energy, with electron configuration, and explain how these relate to the chemical reactivity and physical properties of the alkali and alkaline earth metals (groups 1A and 2A).
- >Write balanced equations for the reactions of the group 1A and 2A metals with water, oxygen, hydrogen, and the halogens.
- >List and explain the unique characteristics of hydrogen.
- Correlate the atomic properties (such as ionization energy, electron configuration, and electron affinity) of group 6A, 7A, and 8A elements with their chemical reactivity and physical properties.

Development of Periodic Table

- •Dmitri Mendeleev and Lothar Meyer (~1869) independently came to the same conclusion about how elements should be grouped in the periodic table.
- •Henry Moseley (1913) developed the concept of atomic numbers (the number of protons in the nucleus of an atom)

Predictions and the Periodic Table

TABLE 7.1 Comparison of the Properties of Eka-Silicon Predicted by Mendeleev with the Observed Properties of Germanium

Property	Mendeleev's Predictions for Eka-Silicon (made in 1871)	Observed Properties of Germanium (discovered in 1886)
Atomic weight	72	72.59
Density (g/cm ³)	5.5	5.35
Specific heat (J/g-K)	0.305	0.309
Melting point (°C)	High	947
Color	Dark gray	Grayish white
Formula of oxide	XO_2	GeO_2
Density of oxide (g/cm ³)	4.7	4.70
Formula of chloride	XCl ₄	GeCl ₄
Boiling point of chloride(°C)	A little under 100	84

Mendeleev, for instance, predicted the discovery of germanium (which he called eka-silicon) as an element with an atomic weight between that of zinc and arsenic, but with chemical properties similar to those of silicon.

Effective Nuclear Charge

Valence electron (3s)

Distance from nucleus (Å)

Sodium nucleus contains 11 protons (11+).

- Observer (valence electron)

 Frosted glass (core electrons)
 - In a many-electron atom, electrons are both attracted to the nucleus and repelled by other electrons.
 - The nuclear charge that an electron experiences depends on both factors.

The effective nuclear charge, $Z_{\rm eff}$, is:

$$Z_{\rm eff} = Z - S$$

where Z is the atomic number and S is a screening constant, usually close to the number of inner (core) electrons.

The valence electrons do not screen as efficiently as core electrons.

 Z_{eff} is a representation of the $\ensuremath{\textit{average}}$ electrical field experienced by a single electron.

Sizes of Atoms

- The nonbonding atomic radius, or van der Waals radius, is half of the shortest distance separating two nuclei during a collision of atoms.
- The bonding atomic radius is defined as onehalf of the distance between covalently bonded nuclei.

Periodic Trends in Atomic Radii

Bonding atomic radius tends to...

- ...decrease from left to right across a row due to increasing Z_{eff} .
- ...increase from top to bottom of a column due to increasing value of *n*

Sizes of Ions

Ionic size depends upon:

- Nuclear charge, number of electrons, orbitals in which electrons reside.
- Cations are smaller than their parent atoms.
 - The outermost electron is removed and repulsions are reduced.
- Anions are larger than their parent atoms.
 - Electrons are added and repulsions are increased.

Sizes of Ions

- In an **isoelectronic series**, ions have the same number of electrons.
- Ionic size decreases with an increasing nuclear charge.
- Increasing nuclear charge with decreasing ionic radius as atomic number increases.

Increasing nuclear charge →					
8 protons	9 protons	11 protons	12 protons	13 protons	
10 electrons	10 electrons	10 electrons	10 electrons	10 electrons	
O ²⁻	F -	Na ⁺	Mg ²⁺	Al ³⁺	
1.26 Å	1.19 Å	1.16 Å	0.86 Å	0.68 Å	

Decreasing ionic radius ----

Ionization Energy

Amount of energy required to remove an electron from the ground state of a gaseous atom or ion.

- First ionization energy is that energy required to remove first electron.
- Second ionization energy is that energy required to remove second electron, etc.

Trends in First Ionization Energies

- I_1 generally decreases down a group. For atoms in the same group, $Z_{\rm eff}$ is essentially the same, but the valence electrons are farther from the nucleus.
- I_1 generally increases across a period.
- The s- and p-block elements show a larger range of values for I_1 .
- The *d*-block generally increases slightly across the period; the *f*-block elements show only small changes.

Irregularities in First Ionization Energies

- Discontinuity occurs between Groups IIA and IIIA.
- Electron removed from porbital rather than s-orbital
 - Electron farther from nucleus
 - Small amount of repulsion by s electrons.
- The second occurs between Groups VA and VIA.
 - Electron removed comes from doubly occupied orbital.
 - Repulsion from other electron in orbital helps in its removal.

Electronic Configurations of Ions

To form cations from elements remove e^{-t} s from the subshell with the highest n.

Electronic Configurations of Ions

For transition metals, remove ns electrons and then (n - 1)d electrons.

Electron Affinity

Energy change accompanying addition of electron to gaseous atom:

1A
8A

In general, electron affinity becomes more exothermic as you go from left to right across a row.

Three notable exceptions include the following:

- 1) Group 2A: s sublevel is full
- 2) Group 5A: p sublevel is half-full
- 3) Group 8A: p sublevel is full

Halogens have the most negative electron affinity.

Metal, Nonmetals, and Metalloids

TABLE 7.3 Characteristic Properties of Metals ar	id Nominetais
Metals	Nonmetals
Have a shiny luster; various colors, although most are silvery	Do not have a luster; various colors
Solids are malleable and ductile	Solids are usually brittle; some are hard, and some are soft
Good conductors of heat and electricity	Poor conductors of heat and electricity
Most metal oxides are ionic solids that are basic	Most nonmetal oxides are molecular substances that form acidic solutions
Tend to form cations in aqueous solution	Tend to form anions or oxyanions in aqueous solution

Metals versus Nonmetals

Metals tend to form cations.

Nonmetals tend to form anions.

Metals

NiO is insoluble in water but reacts with ${\rm HNO_3}$ to give a green solution of the salt ${\rm Ni(NO_3)_2}.$

- Compounds formed between metals and nonmetals tend to be ionic.
- Metal oxides tend to be basic.

 $CaO(s) + H_2O(I) \rightarrow Ca(OH)_2 (aq)$

Nonmetals

- Dull, brittle substances that are poor conductors of heat and electricity.
- Large negative electron affinity, tend to gain electrons in reactions with metals to acquire noble gas configuration.
- Substances containing only nonmetals are molecular compounds.

Nonmetals

- Most nonmetal oxides are acidic.
- Nonmetal oxides react with bases to form salts and water.

Metalloids

- B, Si, Ge, As, Sb, Te
- Have some characteristics of metals, some of nonmetals.
- For instance, silicon looks shiny (metallic luster), but is brittle and fairly poor conductor (semiconductor).

Group Trends

- Elements in a group have similar properties.
- Trends also exist within groups.
- Groups compared:
 - Group 1A: the alkali metals
 - Group 2A: the alkaline earth metals
 - Group 6A: the oxygen group
 - Group 7A: the halogens
 - Group 8A: the noble gases
 - Hydrogen: nonmetal

Alkali Metals

- Soft, metallic solids.
- Name comes from Arabic word for ashes.
- Found only as compounds in nature.
- Have low densities and melting points.
- Also have low ionization energies.

TABLE 7.4 Some Pro	perties of the A	Alkali Metals
--------------------	------------------	---------------

Element	Electron Configuration	Melting Point (°C)	Density (g/cm³)	Atomic Radius (Å)	/ ₁ (kJ/mol)
Lithium	[He]2s ¹	181	0.53	1.28	520
Sodium	$[Ne]3s^1$	98	0.97	1.66	496
Potassium	$[Ar]4s^1$	63	0.86	2.03	419
Rubidium	$[Kr]5s^1$	39	1.53	2.20	403
Cesium	[Xe]6s ¹	28	1.88	2.44	376

Alkali Metals

Reactions with water are exothermic

React with oxygen, hydrogen, and halogens.

Alkali metals (except Li) react with oxygen to form peroxides.

• K, Rb, and Cs also form superoxides:

$$\mathsf{K}\,+\,\mathsf{O}_2\!\longrightarrow\!\mathsf{KO}_2$$

Produce bright colors when placed in flame.

Alkaline Earth Metals

 TABLE 7.5
 Some Properties of the Alkaline Earth Metals

Element	Electron Configuration	Melting Point (°C)	Density (g/cm ³)	Atomic Radius (Å)	l ₁ (kJ/mol)
Beryllium	[He]2s ²	1287	1.85	0.96	899
Magnesium	[Ne] $3s^2$	650	1.74	1.41	738
Calcium	$[Ar]4s^2$	842	1.55	1.76	590
Strontium	$[Kr]5s^2$	777	2.63	1.95	549
Barium	$[Xe]6s^2$	727	3.51	2.15	503

- Have higher densities and melting points than alkali metals.
- Have low ionization energies, but not as low as alkali metals.

Alkaline Earth Metals

- Be does not react with water, Mg reacts only with steam, but others react readily with water.
- Reactivity tends to increase as go down group.

Hydrogen

- 1s¹ a metallic electron configuration like the other ns¹ elements
- We do think of acid compounds, like HCl, as having H⁺, however they are really covalent in nature.
- When reacting with metals, hydride anions (H⁻) form.
- Forms both ionic (H⁻ with metals) and molecular compounds (H⁺ with nonmetals).

Group 6A - chalcogens

TABLE 7.6	Some Properties of the Group 6A Elements					
Element	Electron Configuration	Melting Point (°C)	Density	Atomic Radius (Å)	/ ₁ (kJ/mol)	
Oxygen	[He] $2s^22p^4$	-218	1.43 g/L	0.66	1314	
Sulfur	[Ne] $3s^23p^4$	115	$1.96\mathrm{g/cm^3}$	1.05	1000	
Selenium	$[Ar]3d^{10}4s^24p^4$	221	$4.82\mathrm{g/cm^3}$	1.20	941	
Tellurium	$[Kr]4d^{10}5s^25p^4$	450	$6.24\mathrm{g/cm^3}$	1.38	869	
Polonium	$[Xe]4f^{14}5d^{10}6s^26p^4$	254	$9.20\mathrm{g/cm^3}$	1.40	812	

- Oxygen, sulfur, and selenium are nonmetals.
- Tellurium is a metalloid.
- Radioactive polonium is a metal, forms a cation.

Oxygen and Sulfur

- Two allotropes:
 - O₂, dioxygen
 - O₃, ozone
- Three anions:
 - O²⁻, oxide
 - O_2^{2-} , peroxide
 - O_2^{1-} , superoxide
- Tends to take electrons from other elements (oxidation)
- S is weaker oxidizing agent than oxygen.
- Most stable allotrope is S₈, a ringed molecule shaped like a crown.

USP

3% Solution 10-Volume

pical antiseption

Group VIIA: Halogens

TABLE 7.7	Some Properties of the Halogens					
Element	Electron Configuration	Melting Point (°C)	Density	Atomic Radius (Å)	/ ₁ (kJ/mol)	
Fluorine	[He] $2s^22p^5$	-220	1.69 g/L	0.57	1681	
Chlorine	[Ne] $3s^23p^5$	-102	$3.12\mathrm{g/L}$	1.02	1251	
Bromine	$[Ar]4s^23d^{10}4p^5$	-7.3	$3.12\mathrm{g/cm^3}$	1.20	1140	
Iodine	$[Kr]5s^24d^{10}5p^5$	114	$4.94\mathrm{g/cm^3}$	1.39	1008	

- Prototypical nonmetals
- Name comes from the Greek halos and gennao: "salt formers"

Halogens

- Group VIIA: Large, negative electron affinities
 - Therefore, tend to oxidize other elements easily
 - · React directly with metals to form metal halides
 - Chlorine added to water supplies to serve as disinfectant

Group VIIIA: Noble Gases

TABLE 7.8	Some Properties of the Noble Gases					
Element	Electron Configuration	Boiling Point (K)	Density (g/L)	Atomic Radius* (Å)	/ ₁ (kJ/mol)	
Helium	$1s^2$	4.2	0.18	0.28	2372	
Neon	[He] $2s^22p^6$	27.1	0.90	0.58	2081	
Argon	[Ne] $3s^23p^6$	87.3	1.78	1.06	1521	
Krypton	$[Ar]4s^23d^{10}4p^6$	120	3.75	1.16	1351	
Xenon	$[Kr]5s^24d^{10}5p^6$	165	5.90	1.40	1170	
Radon	[Xe] $6s^24f^{14}5d^{10}6p^6$	211	9.73	1.50	1037	

^{*}Only the heaviest of the noble-gas elements form chemical compounds. Thus, the atomic radii for the lighter noble-gas elements are estimated values.

- Monatomic gases
- Large ionization energies
- Positive electron affinities
- Relatively unreactive
 - Only fluorine (F) can remove electrons to form compounds
 - XeF₂, XeF₄ XeF₆, KrF₂ are known

XeF₄