Problem set 3

Problem 1. Let $\mathcal{Q}_n(1) = \{ f \in \mathcal{P}_n(\mathbb{R}) : f(1) = 0 \}$ be as in Homework 2 Problem 3.

- (i) Show that $\mathcal{P}_n(\mathbb{R}) = \mathcal{Q}_n(1) \oplus \operatorname{span}(1)$.
- (ii) Describe the quotient space $\mathcal{P}_n(\mathbb{R})/\mathcal{Q}_n(1)$ (what does a typical coset look like?).
- (iii) Determine $\dim(\mathcal{P}_n(\mathbb{R})/\mathcal{Q}_n(1))$.

You can use any results that were proved in Homework 2 Problem 3.

Problem 2. Let V be a vector space and V_1, V_2, U be subspaces such that $V = V_1 \oplus U = V_2 \oplus U$. Is it true that $V_1 = V_2$? If yes, prove it. If no, give an example.

Problem 3. Let $T: V \to W$ be a linear transformation between vector spaces V, W.

- (i) Let $x \in \text{span}(v_1, \dots, v_n)$. Show that $T(x) \in \text{span}(T(v_1), \dots, T(v_n))$.
- (ii) Let $U \subset V$ be a subspace. Show that T(U) is a subspace of W.
- (iii) If $v_1, \ldots, v_n \in V$ is linearly dependent, then $T(v_1), \ldots, T(v_n)$ is linearly dependent.
- (iv) If $T(v_1), \ldots, T(v_n)$ is linearly independent, then $v_1, \ldots, v_n \in V$ is linearly independent.
- (v) Give an example of T and $v_1, \ldots, v_n \in V$ where v_1, \ldots, v_n is linearly independent but $T(v_1), \ldots, T(v_n)$ is linearly dependent.

Problem 4. Show that the following maps are linear transformations.

- (i) Let $W \subset V$ be a subspace. The canonical projection $\pi: V \to V/W$ is given by $\pi(x) = x + W$.
- (ii) Let $W \subset V$ be a subspace. The **inclusion map** $\iota : W \to V$ is given by $\iota(x) = x$ for $x \in W$.
- (iii) Let V be the vector space in Homework 1 Problem 1. We define $T: V \to C(\mathbb{R})$ by $T(f)(x) = \log(f(x))$.
- (iv) Let V be the vector space in Homework 1 Problem 1. We define $S:C(\mathbb{R})\to V$ by $S(f)(x)=e^{f(x)}$.
- (v) We define $T: \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ by T(p)(x) = p(x+1) which means we replace x by x+1 in the polynomial. For example $T(x^2+1) = (x+1)^2 + 1 = x^2 + 2x + 2$.