Theorem 8-3

If $c^2 = a^2 + b^2$. then $m \angle C = 90$. and $\triangle ABC$ is right.

Theorem 8-4

If $c^2 < a^2 + b^2$. then $m \angle C < 90$. and $\triangle ABC$ is acute.

Theorem 8-5

If $c^2 > a^2 + b^2$, then $m \angle C > 90$, and $\triangle ABC$ is obtuse.

Example A triangle has sides of the given lengths. Is it acute, right, or obtuse?

Solution a.
$$41^2 \stackrel{?}{=} 9^2 + 40^2$$

 $1681 \stackrel{?}{=} 81 + 1600$
 $1681 = 1681$

b.
$$8^2 \frac{?}{.} 6^2 + 7^2$$

 $64 \frac{?}{.} 36 + 49$
 $64 < 85$

c.
$$11^2 \frac{?}{?} 7^2 + 8^2$$

 $121 \frac{?}{?} 49 + 64$
 $121 > 113$

The triangle is acute. The triangle is obtuse.

Classroom Exercises

If a triangle is formed with sides having the lengths given, is it acute, right, or obtuse? If a triangle can't be formed, say not possible.

5.
$$\sqrt{7}$$
, $\sqrt{7}$, $\sqrt{14}$

6. 4.
$$4\sqrt{3}$$
. 8

7. Specify all values of x that make the statement true.

a. $\angle 1$ is a right angle.

b. $\angle 1$ is an acute angle.

c. $\angle 1$ is an obtuse angle. e. No triangle is possible.

d. The triangle is isosceles.

Exercises 8-10 refer to the figures below.

8. Explain why x must equal 5.

9. Explain why $\angle D$ must be a right angle.

10. Explain why $\angle P$ must be a right angle.

Ex. 9

Ex. 10