Лабораторна робота N°8

Мінімізація функції однієї змінної методом золотого перетину

Мета роботи

Вивчення методу золотого перетину для зменшення інтервалу невизначеності унімодальної цільової функції, дослідження ефективності методу.

8.1 Інформаційний матеріал

Метод золотого перерізу використовує принципи золотого перетину та симетрії для двох внутрішніх точок поділу інтервалу невизначеності [a,b]. Золотим перетином відрізка [a,b] називається поділ його точкою c на дві нерівні частини таким чином, щоб відношення всього відрізка до більшої частини дорівнювало відношенню більшої частини до меншої (рис. 1), тобто $\frac{b-a}{b-c}=\frac{b-c}{c-a}=r$ (число r називають золотим відношенням, значення якого є відомим: $r=\frac{1+\sqrt{5}}{2}\approx 1,618$).

Рис. 1 - Ілюстрація методу золотого перетину

8.1.1 Вихідні дані до роботи

Задано:

- \bigstar функцію однієї змінної f(x),
- \bigstar початкову точку пошуку мінімуму функції x_0 ,
- \bigstar допустиму похибку ϵ для обчислення точки мінімуму x^* ;

★ математичну модель двохсекторної економіки (1-21):

https://classroom.google.com/c/NTQ1MDk1NzAxMjY3/a/NTUwODQyMTc1MTky/details

значення параметрів моделі (1-21), а також функцію однієї змінної $G(\tau)$ (11) для розв'язання оптимізаційної задачі.

Варіант 1.

$$f(x) = e^{x-5} + e^{5-x}, x_0 = 2, \epsilon = 0.01;$$

Варіант 2.

$$f(x) = x^4 - 8x^3 + 18x^2 + 2$$
, $x_0 = 3$, $\varepsilon = 0.001$;

Варіант 3.

$$f(x) = 2 - \frac{1}{\log_2(x^4 + 4x^3 + 29)}, \ x_0 = -1, \ \epsilon = 0.01;$$

Варіант 4.

$$f(x) = \ln(3x^4 - 4x^3 + 2)$$
, $x_0 = -2$, $\varepsilon = 0.01$.

8.2 Програма виконання роботи

- 1. Для унімодальної цільової функції однієї змінної з початковою точкою пошуку мінімуму за номером варіанта виконати постановку задачі мінімізації цільової функції.
- 2. Реалізувати програмно метод золотого перетину для зменшення інтервалу невизначеності заданої цільової функції.
- 3. Здійснити зменшення інтервалу невизначеності заданої цільової функції:
 - \bigstar на кожній ітерації методу виводити на екран комп'ютера рядок, що містить номер точки пошуку k, довжину інтервалу

невизначеності $L_{_k}$, значення функції $f_{_k}$ і значення змінної $x_{_k}$;

- ★ після закінчення процесу оптимізації на екрані повинна відображатись таблиця, що представляє процес мінімізації функції;
- ★ під таблицею необхідно відобразити кількість обчислень цільової функції, довжину кінцевого інтервалу невизначеності, мінімальне значення функції та відповідне значення незалежної змінної.
- 4. Відобразити графічно процес мінімізації цільової функції однієї змінної.
- 5. Аналітично знайти точку $x^{\hat{}} \in R$ мінімуму заданої функції f(x) і обчислити мінімальне значення функції $f^{\hat{}} = f(x^{\hat{}})$. Порівняти зі значеннями, які знайдено чисельно, зробити висновки.
- 6. Використовуючи програму методу, виконати постановку оптимізаційної задачі (взяти функцію однієї змінної G(τ), врахувати її економічний сенс, розглядаючи модель (1-21) в стаціонарному режимі), здійснити розв'язання оптимізаційної задачі, повторюючи дії пп. 2-5. За результатами розв'язання зробити висновки щодо оптимального значення норми оподаткування.
- 7. Код програми, усі результати, отримані в ході виконання роботи, занести до звіту. Зробити висновки.