STATEMENT OF RESEARCH

In have a strong background in radiation/particle interaction simulations and how they affect real particle detector hardware. My expertise also involves processing and analyzing large physics data sets using analysis tools such as ROOT and Python. I have experience working in 3 multinational collaboration experiments where I spearheaded independent research initiatives and successfully interfaced my original work with the larger team. Some of my past accomplishments that I take pride in include development of unprecedented particle detection algorithms that I project will open whole new physics searches by the experiments that I collaborated with.

I have worked as the lead Geant4 simulation designer for the mini-TimeCube experiment at University of Hawaii at Manoa from August 2009 to March 2016. Mini-TimeCube is an ambitious project to build the world's smallest portable neutrino detector. In this project, I mentored 3 undergraduate students and worked in collaboration with them to conduct case studies for optimizing the detector design, test candidate neutron capture doping elements in plastic scintillator, and simulate the response of the multi-channel-plate (MCP) photomultiplier tubes (PMTs) deployed in the detector. The studies were used during construction of the detector, and to develop directional particle detection algorithms that are now being tested in analyses of neutrons from test sources as well as neutrinos from nuclear reactors at the National Institute of Standards and Technology (NIST). I have also conducted simulation studies for cosmic-ray muons and long-lived cosmogenic background isotopes such as ⁸He and ⁹Li. These backgrounds are extremely difficult to tag due to their long life-time (\gtrsim s scale) and travel distances. The studies have been vital to the project. A paper summarizing our accomplishments was published in 2016 (V. A. Li et al. Invited Article: miniTimeCube. Rev. Sci. Instrum., 87(2):021301, 2016, 1602.01405).

I have been involved with the CUORE (Cryogenic Underground Observatory for Rare Events) experiment at the University of California, Los Angeles since March of 2016. The main objective of the CUORE experiment is to hunt for lepton number violation by observing neutrinoless double beta $(0\nu\beta\beta)$ decay in ¹³⁰Te. CUORE employs an almost 20 fold increase in detector mass compared to its previously successful pilot experiment CUORE-0. My work in the collaboration currently involves development of a GEANT4 based precision background model together with a graduate student colleague to better understand the radioactive contaminations in the detector. The energy spectrum of the backgrounds in the so called α region (\gtrsim 2.7 MeV) exhibit peculiar features that, if understood correctly, will better explain the types of contamination sources and their distributions in the materials comprising the experiment. This can help us to better understand our backgrounds and extrapolate this new knowledge to the energy region of interest (2465 keV to 2575 keV) for $0\nu\beta\beta$ decay in ¹³⁰Te. I have previously also mentored 2 undergraduate students and worked together with them to simulate and investigate new radioactivity shielding schemes for further background reduction in future $0\nu\beta\beta$ decay experiments that will cover the inverted hierarchy region of the effective Majorana neutrino mass. A paper for our first $0\nu\beta\beta$ analysis using CUORE data was published in March 2018 (https://arxiv.org/abs/1710.07988).

While working at the University of Hawaii at Manoa, I also developed a novel directional event reconstruction algorithm for high-energy \gtrsim GeV scale neutrinos while working with KamLAND (Kamioka Liquid Scintillation Antineutrino Detector), and demonstrated with data that this technique can be applied to indirect dark matter search by looking for a directional flux of neutrinos from the core of the Sun and Earth. Studies done with Monte Carlo suggest that the accuracy of deducing the neutrino direction using this new method is better than that of water-Cherenkov detectors (the conventional method for directional neutrino detection) by \sim 10° in this energy regime. This method was verified using never before observed neutrino events spilling into KamLAND from the T2K neutrino beam-line. The results were consistent with expectation. According to my knowledge, this is the first ever physics application of neutrino directionality in scintillator.

In summary my strong background in radiation/particle interaction simulations and how they affect real particle detectors, as well as, my comfort in using tools to analyze large physics data sets makes me a strong candidate for your position. Also I would like to reemphasize my previous accomplishments in independently creating novel particle detection techniques to solve complex problems and interface my original work with a large team of collaborators. I believe I can make a significant impact in your team.