

Technische Informatik: Abgabe 6

Michael Mardaus

Andrey Tyukin

2. Dezember 2013

Exercise 6.1 (Circuit jam)

f_1,\ldots,f_5 are 0-jams	f_6,\ldots,f_a are 1-jams.
$f_1(x_1, x_2, x_3) = \bar{0}x_3 + x_2 = x_3 + x_2$	$f_6(x_1, x_2, x_3) = \overline{1}x_3 + x_2 = x_2$
$f_2(x_1, x_2, x_3) = \bar{x}_1 x_3 + 0 = \bar{x}_1 x_3$	$f_7(x_1, x_2, x_3) = \bar{x}_1 x_3 + 1 = 1$
$f_3(x_1, x_2, x_3) = \bar{x}_1 0 + x_2 = x_2$	$f_8(x_1, x_2, x_3) = \bar{x}_1 1 + x_2 = \bar{x}_1 + x_2$
$f_4(x_1, x_2, x_3) = 0x_3 + x_2 = x_2$	$f_9(x_1, x_2, x_3) = 1x_3 + x_2 = x_3 + x_2$
$f_5(x_1, x_2, x_3) = 0 + x_2 = x_2$	$f_a(x_1, x_2, x_3) = 1 + x_2 = 1$

	#	x_1	x_2	x_3	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_a	$\int f$	
	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	
	1	0	0	1	1	1	0	0	0	0	1	1	1	1	1	
	2	0	1	0	1	0	1	1	1	1	1	1	1	1	1	
Ausfalltafel:	3	0	1	1	1	1	1	1	1	1	1	1	1	1	1	
	4	1	0	0	0	0	0	0	0	0	1	0	0	1	0	
	5	1	0	1	1	0	0	0	0	0	1	0	1	1	0	
	6	1	1	0	1	0	1	1	1	1	1	1	1	1	1	
	7	1	1	1	1	0	1	1	1	1	1	1	1	1	1	

 $\implies f_1 = f_9; f_2; f_3 = f_4 = f_5 = f_6; f_7 = f_a; f_8$

	#	x_1	x_2	x_3	f_1	f_2	f_3	f_7	f_8	f
	0	0	0	0	0	0	0	1	1	0
	1	0	0	1	1	1	0	1	1	1
	2	0	1	0	1	0	1	1	1	1
Ausfallmatrix:	3	0	1	1	1	1	1	1	1	1
	$\mid 4 \mid$	1	0	0	0	0	0	1	0	0
	5	1	0	1	1	0	0	1	0	0
	6	1	1	0	1	0	1	1	1	1
	7	1	1	1	1	0	1	1	1	1
		-	-	-	-		-	-	-	-

Fehlermatrix:

	#	x_1	x_2	x_3	$f \nleftrightarrow f_1$	$f \nleftrightarrow f_2$	$f \nleftrightarrow f_3$	$f \nleftrightarrow f_7$	$f \nleftrightarrow f_8$	Test
ĺ	0	0	0	0	0	0	0	1	1	*
	1	0	0	1	0	0	1	0	0	*
	2	0	1	0	0	1	0	0	0	*
ζ:	3	0	1	1	0	0	0	0	0	
	4	1	0	0	0	0	0	1	0	
	5	1	0	1	1	0	0	1	0	*
	6	1	1	0	0	1	0	0	0	
	7	1	1	1	0	1	0	0	0	

 \implies Testvector: $\{(0,0,0),(0,0,1),(0,1,0),(1,0,1)\}$

Exercise 5.2 (Row and Column-Rules are not a function)

todo

Exercise 6.3 (Hazards)

$x_1 = 1$									
	x_4x_5								
x_2x_3	00								
00		1							
01		1		1					
11	1	1		1					
10	1	1							

which yields: $f = \neg x_1 x_2 \neg x_3 \neg x_4 + \neg x_1 \neg x_2 \neg x_3 \neg x_5 + \neg x_1 x_2 x_3 x_4 x_5 + x_1 x_2 \neg x_4 + x_1 \neg x_4 x_5 + x_1 x_3 x_4 \neg x_5$