3. Übungsblatt

1. Aufgabe. Berechnen Sie eine Potenzreihendarstellung der Funktion

$$f(x) = e^{4x}$$

indem Sie die Exponentialreihe verwenden.

2. Aufgabe. Entwickeln Sie die Funktion

$$f(x) = \cos(2x) \cdot e^{\sin x}$$

in eine Mac Laurinsche Reihe (um die Stelle $x_0 = 0$) bis zum x^3 -Glied.

3. Aufgabe. Entwickeln Sie die Funktion

$$f(x) = (1+x) \cdot e^{-x} - (1-x) \cdot e^{x}$$

in eine Mac Laurinsche Reihe (um die Stelle $x_0=0$) bis zum x^5 -Glied.

- **4.** Aufgabe. Berechnen Sie den Näherungswert von $\sin(18^{\circ})$, indem drei Glieder der Entwicklung der Funktion $f(x) = \sin x$ in eine MacLaurinsche Reihe genommen werden, und schätzen Sie den Fehler ab.
- 5. Aufgabe. Berechnen Sie
- a) \sqrt{e} mit einer Genauigkeit von 0,001,
- b) $\sin(1^{\circ})$ mit einer Genauigkeit von 0,0001,
- c) $\cos(5^{\circ})$ mit einer Genauigkeit von 0,001,

indem die Formel für die Entwicklung der Funktionen e^x , $\sin x$ und $\cos x$ in eine MacLaurinsche Reihe benutzt werden.

- **6. Aufgabe**. Benutzen Sie die Entwicklung einer Funktion in eine Taylorsche Reihe, um den Wert
 - a) der siebten Ableitung der Funktion $y = \frac{x}{1+x^2}$ an der Stelle x = 0,
 - b) der zehnten Ableitung der Funktion $y = x^6 \cdot e^x$ an der Stelle x = 0 zu bestimmen.

- 7. Aufgabe. Berechnen Sie ln 3 mit einer Genauigkeit von 0,0001 mit Hilfe der Formel für die Entwicklung der Funktion l
n $\frac{1+x}{1-x}$ in eine Mac Laurinsche Reihe.
- 8. Aufgabe. Entwickeln Sie die folgenden Funktionen um die Stelle x_0 in eine Taylor-Reihe:

a)
$$f(x) = \cos x$$
, $x_0 = \pi/3$

b)
$$f(x) = \sqrt{x}, \ x_0 = 1$$

a)
$$f(x) = \cos x$$
, $x_0 = \pi/3$ b) $f(x) = \sqrt{x}$, $x_0 = 1$ c) $f(x) = \frac{1}{x^2} - \frac{2}{x}$, $x_0 = 1$.

9. Aufgabe. Bestimmen Sie die Taylor-Reihe von

$$f(x) = \ln\left(\frac{1+x^2}{x^2}\right)$$

um die Stelle $x_0 = 1$.

10. Aufgabe. Bestimmen Sie mit Hilfe der Potenzreihenentwicklung eine Näherungsparabel der Funktion

$$f(x) = \ln(\sqrt{\cos x})$$

in der Umgebung der Stelle $x_0 = 0$.

11. Aufgabe. Die Funktion

$$f(x) = \frac{1}{1 - \sin x}$$

soll in der Umgebung der Stelle $x_0 = 0$ durch eine Parabel ersetzt werden. Welchen Näherungswert liefert diese Parabel an der Stelle x = 0, 2?