Введение в атаки по сторонним каналам на микроархитектуру, основанные на исполнении кода

Введение

Теория

Типы атак

Атаки, основанные на аппаратных дефектах

Meltdown & Spectre

Заключение

Введение

Атаки по сторонним каналам Атаки на микроархитектуру

Введение

Атаки по сторонним каналам

Атаки по сторонним каналам

Пример цели для атаки по сторонним каналам

Введение

Атаки на микроархитектуру

Атаки на микроархитектуру

code1a:

mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
.imp code1a

При эксплуатации аппаратных дефектов есть шанс нанести физические повреждения

Теория

Процессор

Кэш-память

DRAM

Теория

Процессор

Конвейеризация Оптимизатор потока инструкций

Многоядерность

Процессор

Архитектура многоядерного процессора

Процессор

Абстрактная архитектура элементов ядра, работающих с данными

Процессор

Абстрактная архитектура элементов ядра, работающих с данными

Конвейеризация. По порядку

Элементы системы выполнения современного процессора (выполнение по порядку)

Конвейеризация. Не по порядку

Конвейеризация. Не по порядку

Элементы системы выполнения современного процессора (выполнение инструкций не по порядку)

Оптимизатор потока инструкций

get_secret_key() может выполниться спекулятивно

Многоядерность

Архитектура многоядерного процессора AMD Bulldozer

Теория

Кэш-память

Типы кэш-памяти Наборно-ассоциативный кэш Правила вымещения из кэша Режимы адресации

Абстрактная архитектура элементов ядра, работающих с данными

Пример взаимодействия с кэшем

Пример взаимодействия с кэшем

Типы кэш-памяти

- ▶ кэш с прямым отображением (direct mapped cache)
- ▶ полностью ассоциативный кэш (fully associative cache)
- ▶ наборно-ассоциативный кэш (2/4/8/12-way set associative cache)

Наборно-ассоциативный кэш

Правила вымещения из кэша

- ► FIFO
- ► LIFO
- least recently used, LRU
- ▶ time aware least recently used, TLRU
- most recently used, MRU
- pseudo-LRU, PLRU
- random replacement, RR
- segment LRU, SLRU
- ▶ least frequently used, LFU
- least frequent recently used, LFRU
- ► LFU with dynamic aging, LFUDA
- ▶ low inter-reference recency set, LIRS
- ▶ adaptive replacement cache, ARC
- clock with adaptive replacement, CAR
- ▶ multi queue, MQ
- и другие.

Режимы адресации

- Virtually indexed, virtually tagged (VIVT)
- ► Physically indexed, virtually tagged (PIVT)
- ► Virtually indexed, physically tagged (VIPT)
- Physically indexed, physically tagged (PIPT)

Теория

DRAM

Алгоритм работы Физическое строени

Алгоритм работы

Простая компьютерная система с единственным DRAM массивом

Алгоритм работы

Простая компьютерная система с единственным DRAM массивом

Архитектура DRAM

Архитектура DRAM

Архитектура DRAM

Физическое строение

Типы атак

Атаки на кэш

Атаки на предсказатель переходов

Атаки на буфер ассоциативной трансляции

Атаки, основанные на срабатывании исключительных ситуаций

Атаки на DRAM

Типы атак

Атаки на кэш

Flush + Reload Другие типы атак на кэц

Атаки на кэш

Кэш — это не только полезно, но и опасно

- 1. Отобразить бинарный файл (например, разделяемый объект) в своё адресное пространство
- 2. Сбросить содержимое кэш-линии (код или данные)
- 3. Передать управление программе-жертве
- 4. Определить какие линии кэша были загружены программой-жертвой снова

Отобразить бинарный файл (например, разделяемый объект) в своё адресное пространство

Сбросить содержимое кэш-линии (код или данные)

Передать управление программе-жертве

Определить какие линии кэша были загружены программой-жертвой снова

Другие типы атак на кэш

- ► Evict + Time
- ▶ Prime + Probe
- ▶ Prime + Abort
- ► Flush + Flush
- ► Evict + Reload
- ► AnC (ASLR ⊕ Cache)
- ▶ и др.

Типы атак

Атаки на предсказатель переходов

Атаки на предсказатель переходов

Тег вычисляется, основываясь на последних байтах виртуального адреса

Типы атак

Атаки на буфер ассоциативной трансляции

Атаки на буфер ассоциативной трансляции

Translation lookaside buffer (TLB) используется как для ускорения трансляции виртуальных адресов ядерного пространства, так и пользовательского!

Типы атак

Атаки, основанные на срабатывании исключительных ситуаций

Атаки, основанные на срабатывании исключительных ситуаций

- прерывание планировщика
- инструкции прерывания
- ▶ ошибка отсутствия страницы в памяти
- ▶ поведенческие изменения (например, возврат кода ошибки)

Типы атак

Атаки на DRAM

Алгоритм работы DRAM Типы атак на DRAM

DRAM банк

0123456789
1234567890
2345678901
3456789012
4567890123
5678901234
6789012345

row buffer

Работа DRAM (ещё раз)

CPU запрашивает на чтение строку ${
m I\!\!\! P1}$

DIANI OTRIBBBET CIPORY N-1

CPU читает строку N1 из буфера строки

CPU снова запрашивает на чтение строку \mathbb{N}_1 , которая уже есть в буфере строки, чтение происходит быстрее

Типы атак на DRAM

- DRAMA
- ► Row hit (Flush + Reload)
- ► Row miss (Prime + Probe)
- ▶ и др.

Типы атак

Скрытые каналы между процессорами

- ▶ Атаки на кэш (использование разделяемой библиотеки)
- ► Row miss атака (DRAM)
- Тепловой канал
- ▶ Радио канал (без специализированного аппаратного обеспечения)

Атаки, основанные на аппаратных дефектах Rowhammer

Атаки, основанные на аппаратных дефектах

Аппаратные дефекты можно эксплуатировать с помощью исполнения кода

Атаки, основанные на аппаратных дефектах

Rowhammer

Heoбходимые примитивы Rowhammer Разновидности Rowhammer

Необходимые примитивы Rowhammer

- быстрый некэшируемый доступ к памяти
- ▶ определение местонахождения уязвимых строк DRAM
- знание функций адресации физической памяти

Разновидности Rowhammer

- ▶ Flip Feng Shui целенаправленный Rowhammer
- ▶ Throwhammer удалённая атака
- ▶ Nethammer улучшенная удалённая атака
- Drammer, RAMpage атака на ARM
- ▶ Glitch улучшенная атака на ARM

Meltdown & Spectre

Производные и не только Абстрактный пример эксплуатации

Meltdown & Spectre
Производные и не только

Производные и не только

Spectre-NG

- ► MeltdownPrime & SpectrePrime
- SgxPectre
- ► SMM Speculative Execution Attacks
- BranchScope
- LazyFP
- **.**..

Производные и не только

- ► Spectre 1.1, 1.2 (Speculative Buffer Overflows)
- SpectreRSB
- NetSpectre

TotalMeltdown?

План

 $Meltdown \ \& \ Spectre$

Абстрактный пример эксплуатации

Требуется для атаки с помощью техники спекулятивного выполнения:

1. Примитив спекулятивного выполнения

Требуется для атаки с помощью техники спекулятивного выполнения:

1. Примитив спекулятивного выполнения

- Обход проверки границ
- Тренировка предсказателя переходов
- Чтение памяти после сохранения её в регистр
- Отложенная исключительная ситуация
- Засорение таблиц с историей шаблонов переходов
- ▶ Засорение Return Stack Buffer
- Спекулятивная запись (buffer overflow)

Микроархитектура — ?

Вид ПП

Алгоритм работы ПП

Характерные условия работы ПП

Фундамент башни атаки на основе спекулятивного выполнения

- 1. Примитив спекулятивного выполнения
- 2. Гаджеты для создания «окна» спекулятивного выполнения

- 1. Примитив спекулятивного выполнения
- 2. Гаджеты для создания «окна» спекулятивного выполнения

- Загрузка некэшированных данных
- Цепочка из зависимых загрузок данных
- Цепочка из зависимых целочисленных операций в АЛУ

Башня атаки на основе спекулятивного выполнения

- 1. Примитив спекулятивного выполнения
- 2. Гаджеты для создания «окна» спекулятивного выполнения
- 3. Гаджеты обнародования информации

- 1. Примитив спекулятивного выполнения
- 2. Гаджеты для создания «окна» спекулятивного выполнения
- 3. Гаджеты обнародования информации

- ASLR
- CFI
- ► SMAP
- ► DEP/NX
- retpoline
- ▶ И т. д.

Вавилонская башня атаки на основе спекулятивного выполнения

- 1. Примитив спекулятивного выполнения
- 2. Гаджеты для создания «окна» спекулятивного выполнения
- 3. Гаджеты обнародования информации
- 4. Примитив обнародования информации

- 1. Примитив спекулятивного выполнения
- 2. Гаджеты для создания «окна» спекулятивного выполнения
- 3. Гаджеты обнародования информации
- 4. Примитив обнародования информации
- Устройство кэша
- Правила вымещения из кэша
- Эксклюзивность и инклюзивность
- Тип атаки
- Зашумлённость
- Счётчики
- ▶ И т. д.

Вавилонская башня атаки на основе спекулятивного выполнения

План

атаки на микроархитектуру становятся популярными

- атаки на микроархитектуру становятся популярными
- ▶ требуется много ресурсов для разработки эксплоита

- атаки на микроархитектуру становятся популярными
- **т**ребуется **много ресурсов** для разработки эксплоита
- атаки на микроархитектуру могут быть автоматизированы

- атаки на микроархитектуру становятся популярными
- ▶ требуется много ресурсов для разработки эксплоита
- атаки на микроархитектуру могут быть автоматизированы
- множество атак ещё не опубликовано/найдено

- атаки на микроархитектуру становятся популярными
- ▶ требуется много ресурсов для разработки эксплоита
- атаки на микроархитектуру могут быть автоматизированы
- множество атак ещё не опубликовано/найдено
- ▶ создание контрмер не тривиальный процесс

Вопросы?

Источники І

Daniel Gruss Software-based Microarchitectural Attacks.

Moritz Lipp, Daniel Gruss ARMageddon: Cache Attacks on Mobile Devices.

D. Page MASCAB: a Micro-Architectural Side-Channel Attack Bibliography.

Pessl P., Gruss D. and others

DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.

Bos H., Fratantonio Y. and others Drammer: Determenistic Rowhammer Attacks on Mobile Platforms.

Microsoft Mitigating speculative execution side channel hardware vulnerabilities.

Источники II

- Google Project Zero Reading privileged memory with a side-channel.
- Daniel Gruss, Moritz Lipp KASLR is Dead: Long Live KASLR.
- Daniel Gruss, Clémentine Maurice and others Flush+Flush: A Fast and Stealthy Cache Attack.
- Fangfei Liu, Yuval Yarom and others Last-Level Cache Side-Channel Attacks are Practical.
- Caroline Trippel, Daniel Lustig, Margaret Martonosi

 MeltdownPrime and SpectrePrime: Automatically-Synthesized Attacks Exploiting

 Invalidation-Based Coherence Protocols.

Источники III

- Michael Schwarz, Clémentine Maurice, Daniel Gruss, Stefan Mangard Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript.
- Moritz Lipp, Misiker Tadesse Aga and others Nethammer: Inducing Rowhammer Faults through Network Requests.
- Andrei Tatar, Radhesh Krishnan and others Throwhammer: Rowhammer Attacks over the Network and Defenses.
- Giovanni Camurati, Sebastian Poeplau and others Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers.
- Julian Stecklina, Thomas Prescher
 LazyFP: Leaking FPU Register State using Microarchitectural Side-Channels.
- Mordechai Guri, Assaf Kachlon and others

 GSMem: Data Exfiltration from Air-Gapped Computers over GSM Frequencies.

Источники IV

- Dean Sullivan, Orlando Arias, Travis Meade, Yier Jin Microarchitectural Minefields: 4K-Aliasing Covert Channel and Multi-Tenant Detection in IaaS Clouds.
- B. Gras, K. Razavi, E. Bosman, H. Bos, C. Giuffrida ASLR on the Line: Practical Cache Attacks on the MMU.
- wan Schaik, S. Giuffrida, C. Bos, H. Razavi, K.
 Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder Than You
 Think.
- Daniel Gruss, Anders Fogh and others Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.
- Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh and others Spectre Returns! Speculation Attacks using the Return Stack Buffer.

Источники V

- Giorgi Maisuradze, Christian Rossow ret2spec: Speculative Execution Using Return Stack Buffers.
- Guoxing Chen, Sanchuan Chen and others SgxPectre Attacks: Leaking Enclave Secrets via Speculative Execution.
- Moritz Lipp, Michael Schwarz and others Meltdown.
- Paul Kocher, Daniel Genkin and others Spectre Attacks: Exploiting Speculative Execution.
- ARM Whitepaper Cache Speculation Side-channels.
- Michael Schwarz, Martin Schwarzl, Moritz Lipp, Daniel Gruss NetSpectre: Read Arbitrary Memory over Network.

Источники VI

- Sophia D'Antoine Out-of-Order Execution and Its Applications.
- Vladimir Kiriansky, Carl Waldspurger Speculative Buffer Overflows: Attacks and Defenses.
- Gras, B. Razavi, K. Bos, H. Giuffrida, C. Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
- Craig Disselkoen, David Kohlbrenner, Leo Porter, Dean Tullsen Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX.
- Moritz Lipp, Michael Schwarz Meltdown & Spectre Side-channels considered hARMful.
- Jon Masters

 Exploiting modern microarchitectures: Meltdown, Spectre, and other attacks.