Схемотехника ЭВМ

Введение. Основные характеристики логических элементов

Название дисциплины

« Схемотехника ЭВМ »

Преподаватель

Коротких Дмитрий Александрович

Цель и задачи дисциплины

Учебная дисциплина «Схемотехника ЭВМ» относится к циклу специальных дисциплин. Предметом изучения курса «Схемотехника ЭВМ» являются элементы, узлы и блоки ЭВМ различных типов.

Целью дисциплины «Схемотехника ЭВМ» является формирование систематизированных теоретических знаний о принципах организации и функционирования аппаратных средств ЭВМ. **Задачей дисциплины** «Схемотехника ЭВМ» является освоение эмпирических и формальных методов эффективной разработки аппаратных средств ЭВМ.

В результате изучения курса студент должен знать:

- •принципы организации и функционирования элементов и узлов ЭВМ, их номенклатуру
- •методы расчёта и конструирования основных подсистем ЭВМ
- •особенности организации подсистем ЭВМ с учётом требований быстродействия, аппаратурных затрат, надёжности и помехоустойчивости
- •основные направления научно-технического развития аппаратных средств ЭВМ

В результате изучения курса студент должен владеть:

- •методами проектирования аппаратных средств ЭВМ
- •методами разработки моделей, архитектур и структур подсистем ЭВМ
- •методами тестирования подсистем ЭВМ на соответствие требованиям правильности функционирования, надёжности и помехоустойчивости
- •современными инструментами автоматизации проектирования средств вычислительной техники

Связанные дисциплины

Для успешного освоения курса дисциплины, студенты должны владеть материалами предшествующих дисциплин:

- •«Информатика»;
- •«Дискретная математика»;
- «Теория автоматов»;
- «Электротехника и электроника».

Список литературы

- [1] П.Хоровиц, У.Хилл Искусство схемотехники (1998)
- [2] В.Л.Шило Популярные цифровые микросхемы
- [3] В.Л.Шило Популярные микросхемы КМОП
- [4] Ю. В. Новиков, О. А. Калашников, С. Э. Гуляев РАЗРАБОТКА УСТРОЙСТВ СОПРЯЖЕНИЯ ДЛЯ ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА ТИПА ІВМ РС
- [5] В.А. Потехин СХЕМОТЕХНИКА ЦИФРОВЫХ УСТРОЙСТВ
- [6] Гусев В.Г., Гусев Ю.М.,Электроника и микропроцессорная техника, 2013

Определения

Элемент ЭВМ – простейший в функциональном смысле элемент, выполняющий какую-либо элементарную функцию преобразования сигналов.

Узел ЭВМ – совокупность функционально связанных элементов.

Узлы, функционально связанные между собой, образуют устройство (**блок**).

Дисциплина «**Схемотехника ЭВМ**» изучает элементы, узлы, устройства ЭВМ, а так же вопросы их взаимодействия.

Основы электроники

Рассмотрим основные электронные элементы и их свойства :

- резистор
- катушка индуктивности
- конденсатор
- диод
- транзистор

Классификация элементов ЭВМ

По функциональному назначению:

- •**логические** преобразующие логическое содержание информации;
- •элементы памяти осуществляющие хранение информации в течение некоторого промежутка времени;
- •вспомогательные преобразующие электрические величины в электрические;
- •специальные преобразующие неэлектрические величины в электрические и наоборот.

Классификация элементов ЭВМ

По физической реализации:

- •полупроводниковые;
- •магнитные;
- •оптические;
- •электровакуумные;

• . . .

Классификация элементов ЭВМ

По электрической схеме базового элемента:

- •ТТЛ транзисторно-транзисторная логика;
- •ТТЛШ ТТЛ с диодами Шоттки;
- •**КМОП** на комплементарных МОПтранзисторах;
- • ${\bf M}^{2}{\bf \Lambda}$ инжекционная логика;
- •ЭСЛ эмиттерно-связная логика;
- •ДТЛ, РТЛ, . . .

Обозначения элементов

Обозначения элементов

Примеры функций элементов

```
1 – «ИЛИ»
& - «И»
=1 - «исключающее ИЛИ»
== - «исключающее ИЛИ-НЕ»
Т – триггер
RG – регистр
MUX - мультиплексор
```

Положительная и отрицательная логики

ЛЭ положительной логики

ЛЭ отрицательной логики

Статические параметры ЛЭ

Динамические параметры ЛЭ

Динамические параметры ЛЭ

Помехоустойчивость

Передаточная характеристика инвертора

Разветвление

Коэффициент разветвления

$$N = min(\frac{I_{BblX}^{0}_{max}}{I_{BX}^{0}_{max}}; \frac{I_{BblX}^{1}_{max}}{I_{BX}^{1}_{max}})$$

Конструктивное исполнение

3 – прочие.

Функциональное назначение

ASV museum of digital archeology, 2009. http://www.asvcorp.ru/darch/

Базовый элемент ТТЛ

Элемент И-ИЛИ-НЕ с расширением по ИЛИ

Элемент И-ИЛИ-НЕ с расширением по ИЛИ

Расширитель

Расширитель

Элемент с повышенной нагрузочной способностью

Элемент с открытым коллектором

Применение элемента с открытым коллектором

Применение элемента с открытым коллектором

Монтажная логика: И по «1», ИЛИ по «0»

Расчет сопротивления

$$\frac{U_{\text{ИП}}^{\text{МИН}} - U_{1}^{\text{МИН}}}{N^{*}I_{\text{YT}}^{1+}n^{*}I_{\text{BX}}^{1}} >= R > = \frac{U_{\text{ИП}}^{\text{МАКС}} - U_{0}^{\text{МАКС}}}{I_{\text{BЫX}}^{0} + (N-1)^{*}I_{\text{YT}}^{0} - n^{*}I_{\text{BX}}^{0}}$$

$$t^{0,1} \approx 0.8RC_{\Pi AP}$$

Элемент с тремя состояниями

Транзисторный ключ с диодом Шотки

Базовый элемент серии К531

Базовый элемент серии К555

Сравнительная характеристика ИС

ТТЛ (ТТЛШ)))	
Серия ИС	Параметры	Нагрузка

t_{зд.р.},

HC

33

10

3

10

3

4

Заруб.

SN74L

SN74

SN74S

SN74LS

SN74F

SN74ALS

Отеч.

K134

K155

K531

K555

KP1531

KP1533

P_{пот.},

мВт

1

10

20

2

4

2

Э,

пДж

33

100

60

20

12

8

 C_{H}

ΠФ

50

15

15

15

15

15

 R_{H}

кОм

4

0,4

0,28

2

0,28

N

10

10

10

20

10

20

Расчет сопротивления для формирования логической единицы

$$\frac{\mathsf{U}_{\mathsf{N}\mathsf{\Pi}^{\mathsf{M}\mathsf{N}\mathsf{H}}}-\mathsf{U}_{\mathsf{1}^{\mathsf{M}\mathsf{N}\mathsf{H}}}}{\mathsf{n}^{\mathsf{*}}\mathsf{I}_{\mathsf{B}\mathsf{X}}^{1}}>=\mathsf{R}$$

Защита выводов КМДП-микросхем

КМДП-инвертор

КМДП-элемент ИЛИ-НЕ

КМДП-элемент ИЛИ-НЕ

КМДП-элемент И-НЕ

КМДП-элемент И-НЕ

Параметры КМОП

$$I_{\rm Bx}{}^1<=0.05$$
 мкА при 20°С $I_{\rm Bx}{}^0<=0.05$ мкА при 20°С $U_{\rm ип}(564,561)=3-15$ В $U_{\rm ип}(176)=9$ В $U_{\rm ип}(1554)=5$ В $U_{\rm Bx}{}^0<=0.3U_{\rm ип}$ $U_{\rm Bx}{}^1>=0.7U_{\rm ип}$ Помехоустойчивость $30\%U_{\rm пит}$

Выходные токи: ИЛИ-НЕ

И-НЕ

Выходные токи (561, 564, U_{ИП}=10В)

Тип ИС	I _{вых} ⁰ , мА	I_{BHX}^{1} , MA
ЛЕ5	0,9	0,5
ЛА7	0,45	0,55
ЛН1	5,3	0,5
ЛН2	8,0	1,25
TM2	0,9	0,6
KT3	7,2	7,2

Задержки (561, 564, U_{ИП}=10В)

Тип ИС	t _{зд} ⁰¹ , нс	t _{зд} ¹⁰ , нс
ЛЕ5	90	80
ЛН1	230	180
ИМ1	270	270
TM2	420	420
TB1	250	250
ИР11	300	300

Потребление тока

$$I_{\text{norp}} = I_1 + I_2 + I_3$$

Серия 1554

Серия 1554: входы и выходы

Серия 1554: подключение к ТТЛ

$$R1 = 0.25 - 4.7 \text{ kOm} \pm 5\%$$

Интегральная инжекционная логика $N^2 \Pi$

Эмиттерно-связная логика

Базовый элемент ЭСЛ К500

