Schalttechnik & Logikgatter Benjamin Tröster, HTW Berlin

# Schalttechnik & Logikgatter

# **Fahrplan**

Recap

Einleitung

Bool'sche Algebra  $\rightarrow$  Logikgatter

Grundlagen

Halbleiter

Transistor

# **Bool'sche Algebra nach Huntington (Wichtig!)**

#### Definition

Die bool'sche Algebra nach Huntington ist definiert als Menge  $\mathcal{V}:\{0,1\}$  mit den Verknüpfungen  $\cdot(\wedge),+(\vee)$ , sodass  $\mathcal{V}\times\mathcal{V}\to\mathcal{V}$ , also  $\{0,1\}\times\{0,1\}\to\{0,1\}$ .

- ► Kommutativgesetze (K):  $a \cdot b = b \cdot a$  bzw. a + b = b + a
- ▶ Distributivgesetze (D):  $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$  bzw.  $a + (b \cdot c) = (a + b) \cdot (a + c)$
- ▶ Neutrale Elemente (N):  $\exists e, n \in \mathcal{V}$  mit  $a \cdot e = a$  und a + n = a
- Inverse Elemente (I):  $\forall a \in \mathcal{V}$  existiert ein a' mit  $a \cdot a' = n$  und a + a' = e

Übernommen von [Bar13] bzw. [Hof20]

# Notation und Operatorenbindung

- Syntactic Sugar (Ableitungen aus Basisverknüpfungen)
  - ►  $(a \Rightarrow b)$  für  $(\neg a \lor b)$  Implikation
  - ▶  $(a \Leftarrow b)$  für  $(b \Rightarrow a)$  Inversion der Implikation
  - ▶  $(a \Leftrightarrow b)$  für  $(a \Rightarrow b) \land (a \Leftarrow b)$  Äquivalenz
  - ▶  $(a \oplus b)$  für  $\neg(a \Leftrightarrow b)$  Antivalenz oder Exklusiv-ODER/XOR
  - $ightharpoonup \neg (a \lor b) NOR$
  - $ightharpoonup \neg (a \land b) NAND$
- Bindung der Operatoren
  - ► ∧ bindet stärker als ∨
  - ▶ ¬ bindet stärker als ∧
  - billuet starker als /
- Klammerung
  - Gleiche Verknüpfungen: linksassoziativ zusammengefasst

### **Erfüllbarkeit**

## Definition (Erfüllbarkeit)

Sei  $\varphi$  ein beliebiger boolescher Ausdruck.  $\varphi$  heißt

- erfüllbar, wenn es Werte  $x_1, \ldots, x_n$  gibt, mit  $\varphi(x_1, \ldots, x_n) = 1$ .
- ightharpoonup widerlegbar, wenn es Werte  $x_1, \ldots, x_n$  gibt, mit  $\varphi(x_1, \ldots, x_n) = 0$ .
- unerfüllbar, wenn  $\varphi(x_1,\ldots,x_n)$  immer gleich 0 ist.
- ▶ allgemeingültig, wenn wenn  $\varphi(x_1, \ldots, x_n)$  immer gleich 1 ist.

Einen allgemeingültigen Ausdruck bezeichnen wir auch als **Tautologie**.

## Negationstheorem

## Theorem (Negationstheorem)

Sei  $f(0, 1, x_1, ..., x_n, \land, \lor, \neg)$  ein boolescher Ausdruck, in dem neben den Konstanten 1 und 0 und den Variablen  $x_1, ..., x_n$  die booleschen Operatoren  $\land, \lor$  und  $\neg$  vorkommen. Dann gilt:

$$\overline{f(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)}=f(1,0,\overline{x_1},\ldots,\overline{x_n},\vee,\wedge,\neg)$$

# Dualitätsprinzip

#### Theorem

Sei

$$\varphi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)=\psi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)$$

ein Gesetz der booleschen Algebra, in der neben Variablen und den Konstanten 0 und 1 ausschließlich die Elementarverknüpfungen  $\neg, \land$  und  $\lor$  vorkommen. Dann ist auch die duale Gleichung

$$\varphi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)=\psi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)$$

ein Gesetz der booleschen Algebra.

# Vollständige Operatorensysteme

## Definition (Vollständige Operatorensystem)

 $\mathcal{M}$  sei eine beliebige Menge von Operatoren.  $\mathcal{M}$  ist ein vollständiges Operatorensystem, wenn sich jede boolesche Funktion durch einen Ausdruck beschreiben lässt, in dem neben den Variablen  $x_1, \ldots, x_n$  ausschließlich Operatoren aus  $\mathcal{M}$  vorkommen.

- ▶ Die Elementaroperatoren  $\land, \lor$  und  $\neg$  bilden zusammen ein vollständiges Operatorensystem
- ▶ Die Operatoren NAND und NOR bilden jeder für sich bereits ein vollständiges Operatorensystem
- ▶ Die Implikation und die 0 bilden zusammen ebenfalls ein vollständiges Operatorensystem

## Normalformdarstellungen

- ► Normalform beschreibt eine eindeutige Darstellung
- ▶ Vollform: Ausdruck, in dem jede Variable genau einmal vorkommt
- ▶ Literal: Teilausdruck, der entweder negierte oder unnegierte Variable darstellt
- Wahrheitstafeldarstellung ist eine Art der Normalformdarstellungen
- Bool'sche Ausdrücke hingegen sind keine Normalformdarstellung
  - ▶ Jede bool'sche Funktion durch unendlich viele Ausdrücke beschrieben werden

# **Disjunktive Normalform**

- ▶ Die disjunktive Normalform (DNF) ist jene Darstellungsart, bei der eine Reihe von Vollkonjunktionen disjunktiv verknüpft wird. Negationen treten nur in atomarer Form auf.
  - $(A \land \neg B \land C) \lor (A \land B \land C) \lor (\neg A \land \neg B \land C)$
- ▶ Die konjunktive Normalform (KNF) ist jene Darstellungsart, bei der eine Reihe von Volldisjunktionen konjunktiv verknüpft wird. Negationen treten nur in atomarer Form auf.
  - $(\neg A \lor \neg B \lor \neg C) \land (A \lor B \lor C) \land (A \lor \neg B \lor \neg C)$
- ► Andere Bezeichnungen:
  - ► Kanonische disjunktive/konjunktive Normalform (KDNF/KKNF)
  - ► Vollständige disjunktive/konjunktive Normalform

# Bitweise logische Operationen

A, B seien Bitvektoren, ∘ eine beliebige Verknüpfung



Dann erhalten wir als Ergebnis:  $E = A \circ B$ 

#### **Heute:**

- ► Von der Bool'schen Algebra zu Logikgattern
- Logische Schaltung auf Mikroprozessoren
- Idee der Arithmetic Logic Unit (also Co-Prozessor oder integriert)
- Grundlegende Logikgatter
- Grundlagen Leiter und Halbleiter
- Aufbau Transistor
- ► Transistortypen: Biopolar- und Feldeffekttransistor
- Vom Transistor zur logischen Schaltung

- ► Status: Wir wissen, wie ein Signal von Analog auf Digital gewandelt wird
  - ► Gist: wie kommen die Bits in den Rechner
- Wir wissen, wie logische Aussagen verarbeitet werden können
- ▶ Noch offen: Wie werden hieraus komplexe Recheneinheiten?
  - ► Erster Schritt wie können Elementarschaltungen realisiert werden

## Intel 4004 Prozessor



### Intel 4004 Prozessor



# 4 Bit ALU Package Layout

#### Logic Symbols



#### **Connection Diagram**



#### **Pin Descriptions**

| Pin Names        | Description                         |  |  |  |
|------------------|-------------------------------------|--|--|--|
| Ā0-Ā3            | Operand Inputs (Active LOW)         |  |  |  |
| B0−B3            | Operand Inputs (Active LOW)         |  |  |  |
| S0-S3            | Function Select Inputs              |  |  |  |
| M                | Mode Control Input                  |  |  |  |
| Cn               | Carry Input                         |  |  |  |
| F0-F3            | Function Outputs (Active LOW)       |  |  |  |
| A = B            | Comparator Output                   |  |  |  |
| G                | Carry Generate Output (Active LOW)  |  |  |  |
| P                | Carry Propagate Output (Active LOW) |  |  |  |
| C <sub>n+4</sub> | Carry Output                        |  |  |  |

# 4 Bit ALU – Logikgatter



# **Bool'sche Algebra** → **Logikgatter**

- ▶ Bis jetzt abstrakt mathematische Definition der logischen Aussage
- ▶ D.h. Zuordnung von Werten auf binärer Ebene
- Umsetzung der bool'schen Funktionen mithilfe von Logikgattern (Gatter)
- Physikalische Umsetzung beispielsweise mithilfe von Transistoren

# **Darstellung Logikgatter**



# Beispiel: Paritätsfunktion

ightharpoonup Eingänge:  $x_1, x_2, x_3, x_4$ 

► Ausgänge: *y* 

► Gatter: *XOR* 

► Stufen: 2



# Beispiel: Paritätsfunktion

ightharpoonup Eingänge:  $x_1, x_2, x_3, x_4$ 

Ausgänge: *y*Gatter: *XOR* 

► Stufen: 2

| <i>x</i> <sub>1</sub> | $x_2$ | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | y |
|-----------------------|-------|-----------------------|-----------------------|---|
| 0                     | 0     | 0                     | 0                     | 0 |
| 0                     | 0     | 0                     | 1                     | 1 |
| 0                     | 0     | 1                     | 0                     | 1 |
| 0                     | 0     | 1                     | 1                     | 0 |
| 0                     | 1     | 0                     | 0                     | 1 |
|                       |       |                       |                       |   |



### **Atommodell nach Bohr**

- Grundsätzlich: Kern Neutronen,
   Protonen
- Elektronen außerhalb des Kerns, frei beweglich in Orbitalräumen
- ► Äußerste Schale: Valenzelektronen
- ➤ Zusammenschluss von Atomen über die Valenzelektronen



## Leiter & Bändermodell





# Siliziumgitter

- Struktur des Siliziumkristalls
- ► Jedes Atom ist von 4 weiteren Atomen umgeben
- Jeweils zwei gemeinsam genutzte Valenzelektronen eine stabile Verbindung



# Eigenleitung im Halbleiterkristall

- Freigesetzten Leitungselektronen richten sich im elektrischen Feld aus
- Freie Elektronen wandern in Richtung der positiven Spannungsquelle
- Gleichzeitig entstehenden
   Elektronenlöcher bewegen sich in entgegengesetzter Richtung auf den Minuspol zu



## Elektronenüberschussleiter: n-Leiter

- Struktur eines
   Elektronenüberschussleiters
   (n-Leiter)
- Einbau von Phosphoratomen zusätzliche Valenzelektronen im Gitter
- Zusätzliche Elektronen können sich nahezu ungehindert durch die Kristallstruktur bewegen



## **Elektronenmangelleiter:** *p***-Leiter**

- Struktur einesElektronenmangelleiters (*p*-Leiter)
- Einbau von
   Aluminiumatomen/Bohr
   entstehen künstliche
   Flektronenlöcher
- Elektronenlöcher wirken, wie positive Ladungsträger



# Leiter/Halbleiter

- ► Halbleiter sind Stoffe, deren elektrische Leitfähigkeit geringer als von Leitern und größer als von Nichtleitern sind
- ► Halbleiter wie Silizium und Germanium verfügen über eine Kristallstruktur
- ▶ Die Kristallstruktur wird mit hoher Reinheit hergestellt
- Auf ca. 1010 Atome kommt ein Fremdatom
- ► Die Eigenleitfähigkeit von Halbleitern basiert auf:
  - Verunreinigung
  - Aufbrechen von Kristallbindungen
  - Oberflächen-Leitfähigkeit

### Halbleiterdioden

- Dioden: spezielle Schaltelemente
- Begrenzung des Stromfluss richtungsabhängig
- ► In Durchlassrichtung neutral
- ► In Sperrrichtung als Isolator



- Dioden: spezielle Schaltelemente
- Begrenzung des Stromfluss richtungsabhängig
- ► In Durchlassrichtung neutral
- ► In Sperrrichtung als Isolator



- ▶ Dioden: spezielle Schaltelemente
- Begrenzung des Stromfluss richtungsabhängig
- ► In Durchlassrichtung neutral
- ► In Sperrrichtung als Isolator



- ▶ Dioden: spezielle Schaltelemente
- Begrenzung des Stromfluss richtungsabhängig
- ► In Durchlassrichtung neutral
- ► In Sperrrichtung als Isolator
  - Anlegen einer Spannung in Sperrrichtung
  - Minuspol: p-Schicht, Pluspol p-Schicht
  - Ladungsträger Richtung
     Spannungspole weggezogen
  - D.h. Vergrößerung Sperrschicht → Isolator



- ▶ Dioden: spezielle Schaltelemente
- Begrenzung des Stromfluss richtungsabhängig
- ► In Durchlassrichtung neutral
  - Anlegen einer Spannung in Sperrrichtung
  - Pluspol: *p*-Schicht, Minus *p*-Schicht
  - ► Freie Ladungsträger bewegen sich aufeinander zu
  - D.h. Rekombination i.d. Sperrschicht → Leiter
- ► In Sperrrichtung als Isolator



### **Transistor – Transfer Resistor**

- ► Gist: steuerbarer Widerstand
- Kann elektrisches Signal verstärken
- Digital ansteuerbar zum Ein- oder Ausschalten
- ▶ Bipolare Transistoren
  - npn-Transistor
  - pnp-Transistor
- Unipolare Transistoren –
   Feldeffekttransistor
  - ► J-FET
  - ► MOS-FET



# npn-Transistor

- Emitter & Kollektor dienen Zufluss bzw. Abfluss der Elektronen
- Basis: Steueranschluss regelt den Stromfluss zwischen Emitter und Kollektor
- Steueranschluss verstärkende Wirkung:
  - Geringe Änderung Stromfluss auf Emitter-Basis-Strecke
  - → große Änderung des Stromflusses auf Emitter-Kollektor



## *npn*-Transistor: Basis-Emitter-Strecke

- pn-Übergang ist in Durchlassrichtung gepolt
- Ermöglicht in Abhängigkeit zur angelegten Spannung einen Stromfluss im Basisstromkreis



## *npn*-Transistor: Basis-Kollektor-Strecke

- Basis besitzt gegenüber Kollektor negatives elektrisches Potenzial
- Stromfluss wird durch den in Sperrichtung gepolten pn-Übergang unterbunden



## *npn*-Transistor: Emitter-Kollektor-Strecke

- Zwischen Emitter und Kollektor stellt sich ein Stromfluss ein
- Stärke proportional mit der Stärke des Basisstroms zunimmt



## pnp-Transistor: Emitter-Kollektor-Strecke

- Zusammensetzung der Halbleiter "invers" zu pnp
- ► Basis *n*-Gebiet
- ► Emitter und Kollektor dagegen *p*-Gebiet
- ▶ Positive Spannung am Emitter eine Flut von Elektronenlöchern aus dem p-Leiter in das p-Gebie
- ► Negative Spannung : fließt geringer Teil der Defektelektronen über Basis ab
- Großteil der Elektronenlöcher wird durch die starke negative Kollektorspannung in die obere p-Schicht gezogen



## **Buffer-Schaltungen mit** *npn*-**Transistor**

### buffer







## **Not-Schaltungen mit** *npn-***Transistor**

### Not



R1: 5 kΩ R2: 10 kO +Vcc

# AND-Schaltungen mit *npn*-Transistor



# NAND-Schaltungen mit npn-Transistor NPN Nand



## **OR-Schaltungen mit** *npn-***Transistor**

#### NPN Or



## NOR-Schaltungen mit *npn*-Transistor

### **PNP Nor**



## Feldeffekttransistoren: JFET

- ► Funktional Äquivalent
- ► Gate-Anschluss JFET entspricht der Basis
- ► Drain-Anschluss ist der Kollektor
- Source-Anschluss dem Emitter



## Feldeffekttransistoren: JFET

- Source und Drain sind durch dotierten Halbleiterkanal verbunden
- ▶ Mitte durch zwei komplementär dotierte Gebiete – dem Gate
- ► Kanal *n*-dotiert und das Gate *p*-dotiert
  - ▶ *n*-Kanal-JFET
- ► Kanal *p*-dotierten und *n* dotierten Gate-Gebiet
  - p-Kanal-JFET



## n-Kanal-JFET



Ohne angelegte Gate-Spannung kann die Raumladungszone den n-Kanal nicht schließen. Zwischen Source und Drain fließt Strom.



Eine negative Gate-Spannung führt zu einer Vergrößerung der Raumladungszone. Der Kanal wird geschlossen und der Stromfluss unterbunden.

## p-Kanal-JFET



Ohne angelegte Gate-Spannung kann die Raumladungszone den p-Kanal nicht schließen. Zwischen Source und Drain fließt Strom.



Eine positive Gate-Spannung führt zu einer Vergrößerung der Raumladungszone. Der Kanal wird geschlossen und der Stromfluss unterbunden.

## MOS-Feldeffekttransistoren (MOSFETs)

- MOS-Technik (MOS = Metal Oxide Semiconductor)
- Funktional entspricht MOSFET weitgehend dem JFET
  - Stromfluss zwischen Source- & Drain-Anschluss, Gate angelegtes elektrisches Feld beeinflusst
  - ▶ Wieder zwei Varianten: p und n



### *n*-MOS-Feldeffekttransistoren

- $ightharpoonup V_{DS}$  die Spannung Drain-Source-Strecke
- ► V<sub>GS</sub> die Spannung Gate-Source-Strecke
- Source-Anschluss und das Substrat das gleiche elektrische Potenzial
  - $ightharpoonup V_{GS}$  gleichermaßen die Spannung zwischen Gate & Substrat.

Schalttechnik & Logikgatter Benjamin Tröster, HTW Berlin

$$V_{GS}=0$$

- ▶ Drain, Substrat und Source operieren als klassischer npn-Übergangs
- Halbleiterkristall verhält sich wie entgegengesetzte Dioden
- ► D.h. Stromfluss in beide Richtungen unterbrochen
- ▶ Drain- an Pluspol & Source-Anschluss Minuspol, so sperrt der linke pn-Übergang
- ► Durch Umpolen der Spannung in Durchlassrichtung geschaltet
  - ► Rechte Übergang in den sperrenden Zustand, verhindert den Ladungstransport



Schalttechnik & Logikgatter Benjamin Tröster, HTW Berlin

$$V_{GS} > 0, V_{DS} = 0$$

- Positive Spannung gegenüber dem Source-Anschluss
- ► Minoritätsträger p-dotierten Substrats die Elektronen, nach oben gezogen
- Grenzschicht zwischen Dielektrium und Substrat rekombinieren mit
   Flektronenlöchern
- ► Führt zur Verarmung der Majoritätsträger
- ► Überschreitet die Spannung Schwelle, werden mehr Elektronen in Grenzschicht gezogen,
- ▶ als für eine vollständige Rekombination gebraucht werden



## Quellen I

- Barnett, Janet Heine (2013). "Boolean algebra as an abstract structure: Edward V. Huntington and axiomatization". In: *Convergence*.
- Bewersdorff, Jörg (2007). "Algebra für Einsteiger: Von der Gleichungsauflösung zur Galois-Theorie, 3". In: Aufl. Vieweg+ Teubner, Wiesbaden (2007, Juli).
- Hoffmann, Dirk W (2020). *Grundlagen der technischen Informatik*. Carl Hanser Verlag GmbH Co KG.
- Rautenberg, Wolfgang (2008). Einführung in die mathematische Logik. Springer.
- Sasao, Tsutomu (1999). "Lattice and Boolean Algebra". In: Switching Theory for Logic Synthesis. Springer, S. 17–34.

## Quellen II



Teschl, Gerald und Susanne Teschl (2013). Mathematik für Informatiker: Band 1: Diskrete Mathematik und Lineare Algebra. Springer-Verlag.