Capítulo 6 – Aritmética digital: operações e circuitos

(parte 2: números com sinal)

ELEVENTH EDITION

Digital Systems

Principles and Applications

Tradução e adaptação: Profa. Denise Stringhini

Parte do material adaptado de "Aritmética Binária", Prof. Bernardo Goncalves - UFES Ronald J. Tocci
Monroe Community College

Neal S. Widmer Purdue University

Gregory L. Moss
Purdue University

- O sinal (+) ou (-) é mostrado pela adição de um bit extra de "sinal".
- Um bit de sinal 0 indica um número positivo.
- Um bit de sinal 1 indica um número negativo.

Sistema sinal-magnitude

Algoritmo de soma (números com sinal):

- Sinais diferentes
 - Encontra número com maior magnitude
 - Subtrai menor do maior
 - Atribui ao resultado o sinal do número de maior magnitude
- Sinais iguais
 - Soma e atribui sinal dos operandos
 - Atenção deve ser dada ao estouro de magnitude

Algoritmo do sistema sinal-magnitude:

 Lógica complexa por conta das diversas condições (requer vários testes), o que leva a uma aritmética complicada em termos de hardware.

Complemento a Base

Em computadores a subtração em binário é feita por um artifício: o "Método do Complemento a Base".

 Consiste em encontrar o complemento do número em relação a base e depois somar os números.

 Os computadores funcionam sempre na base 2, portanto o complemento a base será complemento a dois.

Representação de números em complemento

 Complemento é a diferença entre o maior algarismo possível na base e cada algarismo do número.

 Através da representação em complemento a subtração entre dois números pode ser substituída pela sua soma em complemento.

OBS: A representação de números **positivos** em complemento é idêntica à representação em sinal e magnitude.

Representação de números em complemento

 Para a compreensão do método de complemento aplicado a números binários é interessante visualizar inicialmente em números decimais.

- Existem duas representações úteis para números negativos com sinal:
 - Complemento à base 1
 - Complemento à base

- Relembrando:
 - Base é a quantidade de símbolos usados para representar os números.

 Se a base é 10, então 10 - 1 = 9 e o complemento a (base -1) será complemento a 9.

 Ex 1: Calcular o complemento a (base - 1) do número 297.

Aritmética em complemento a (base -1)

Ex.: Somar + 123 com - 418 (decimal).

Sinal e magnitude	Complemento a (base-1)	Verificação
- 418	581 (C9)	999
+ 123	+ <u>123</u>	- <u>295</u>
- 295	704	704

Faixa de representação

Base 10 com 3 dígitos

- A representação varia de 000 a 999 (10³ representações)
- Duas faixas devem ser representadas:
 - -499 a -1 (faixa negativa)
 - +1 a +499 (faixa positiva)

Base 10	Faixa Inferior (positiva)	Faixa Superior (negativa)
C9	1 2 498 499	500 501 997 998
Número representado	1 2 498 499	-499 -4982 -1

Problema: O zero pode ser representado tanto por 000 quanto por 999.

Faixa de representação: números negativos

Sinal e magnitude	Complemento a (base-1)	Verificação
- 418	581 (C9)	999
+ 123	+ <u>123</u>	- <u>295</u>
- 295	704	704

 Verificamos que o resultado 704 (C9) é um número negativo, isto é, o complemento a 9 (base 10 -1) de 295.

Base 10	Faixa Inferior (positiva)	Faixa Superior (negativa)		
C9	1 2 498 499	500 501 997 998		
Número representado	1 2 498 499	-499 -4982 -1		

OBS: para conhecermos o real valor de um número negativo em complemento temos que aplicar a verificação. Exemplo: 999 - 704 = 295. Sabemos que é um número negativo portanto 704 em C9 é igual a -295.

Complemento a base

- É obtido subtraindo-se da base cada algarismo do número.
 - Ex: base 10 com 3 dígitos: 1000 x
 - Seria o mesmo que subtrair cada algarismo de (base -1), isto é, calcular o complemento a (base -1) e depois somar 1 ao resultado.

- Assim, para encontrar o complemento a base, encontramos o complemento a (base - 1) do número e depois somamos 1 ao resultado.
 - Isto facilita muito no caso dos números binários.

Complemento a base

Ex: calcular o complemento a base (C10) do número 297.

Em qual aspecto a versão alternativa é mais eficiente?

Aritmética em complemento a base

Ex.: Somar + 123 com - 418 (decimal).

Sinal e magnitude	Cálculo C10	C10	Verificação
- 418	999	582	999
+ <u>123</u>	- <u>418</u>	+ 123	- <u>295</u>
- 295	581 (C9)	705 (C10)	704
	+ <u>001</u>		+ <u>001</u>
	582 (C10)		705

 Verificamos que o resultado 705 (C10) é um número regativo, isto é o complemento a 10 (base 10) de 295.

Base 10	Faixa Inferior (positiva)		aixa Superior (negativa)	
C10	1 2 499	500 501	999	
Número representado	1 2 499	-500 -499	1	

Para verificar: haveria mais de uma representação para o zero em C10?

6-2 Representação de números com sinal

- O sistema do complemento de 2 (C2) é a forma mais comumente usada para representar números binários com sinal.
- Para converter um número binário para complemento de 2, primeiro ele deve ser convertido para complemento de 1.
- Método:
 - C1: Mudar cada bit para o seu complemento (oposto).
 - C2: Adicionar 1 ao número em C1.

•

- A operação de complemento também é chamada de negação:
 - Negar um número binário é aplicar o complemento de
 2.
 - Um número negado é convertido para o sinal oposto.

1's-Complement Form

The 1's complement of a binary number is obtained by changing each 0 to a 1 and each 1 to a 0. In other words, change each bit in the number to its complement. The process is shown below.

101101 original binary number $\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$ 010010 complement each bit to form 1's complement

Thus, we say that the 1's complement of 101101 is 010010.

6-2 Representação de números com sinal (Tocci)

2's Complement Form

The 2's complement of a binary number is formed by taking the 1's complement of the number and adding 1 to the least-significant-bit position. The process is illustrated below for $101101_2 = 45_{10}$.

Thus, we say that 010011 is the 2's complement representation of 101101.

Here's another example of converting a binary number to its 2's-complement representation:

6-2 Representação de números com sinal (Tocci)

Representing Signed Numbers Using 2's Complement

The 2's-complement system for representing signed numbers works like this:

- If the number is positive, the magnitude is represented in its true binary form, and a sign bit of 0 is placed in front of the MSB. This is shown in Figure 6-2 for $+45_{10}$.
- If the number is negative, the magnitude is represented in its 2's-complement form, and a sign bit of 1 is placed in front of the MSB. This is shown in Figure 6-2 for -45₁₀.

REVIEW QUESTION

Represent each of the following signed decimal numbers as a signed binary number in the 2's-complement system. Use a total of five bits, including the sign bit.

(a)
$$+13$$
 (b) -9 (c) $+3$ (d) -2 (e) -8

6-2 Faixa de representação de números em C2 (Tocci)

Thus, we can state that the complete range of values that can be represented in the 2's-complement system having N magnitude bits is

$$-2^{N}$$
 to $+(2^{N}-1)$

There are a total of 2^{N+1} different values, including zero.

Decimal Value	Signed Binary Using 2's Complement		
$+7 = 2^3 - 1$	0111		
+6	0110		
+5	0101		
+4	0100		
+3	0011		
+2	0010		
+1	0001		
0	0000		
-1	1111		
-2	1110		
-3	1101		
-4	1100		
-5	1011		
-6	1010		
-7	1001		
$-8 = -2^3$	1000		

Special Case in 2's-Complement Representation

Whenever a signed number has a 1 in the sign bit and all 0s for the magnitude bits, its decimal equivalent is -2^N , where N is the number of bits in the magnitude. For example,

$$1000 = -2^3 = -8$$

 $10000 = -2^4 = -16$
 $100000 = -2^5 = -32$

6-3 Adição no sistema C2

- Executar adição binária normal das magnitudes.
 - Os bits de sinal são adicionados com os bits de grandeza.
- Se a adição resultar em um carry do bit de sinal, este é ignorado.
 - Se o resultado for positivo, está em forma de binário puro.
 - Se o resultado for negativo, ele está em forma de complemento de 2.
 - Se o resultado estiver além da faixa de representação, ocorreu um *overflow* ou estouro de magnitude.

- A subtração usando o sistema C2 envolve a operação de adição.
 - O número subtraído (subtraendo) é negado.
 - O resultado é adicionado ao minuendo.
 - A resposta representa a diferença.

$$3_{10} = 0 \ 0 \ 1 \ 1_2$$

 $-3_{10} = 1 \ 1 \ 0 \ 1_2$
 $\begin{array}{r} 0 \ 1 \ 0 \ 1_2 \\ + \ 1 \ 1 \ 0 \ 1_2 \\ \hline (1) \ 0 \ 0 \ 1 \ 0_2 \end{array}$

Estouro de magnitude: overflow

- Overflow (transbordamento ou estouro) pode ocorrer somente quando dois números positivos ou dois negativos estão sendo adicionados.
 - Se a resposta for superior ao número de bits de grandeza, o resultado é um *overflow*.

Aritmética em Complemento a 2: overflow

Somar os dois números e observar se ocorre o carry (vai-1) sobre o bit de sinal e após o bit de sinal:

Se ocorrer um e somente um dos dois *carry*, então houve estouro; caso contrário o resultado da soma está dentro da faixa de representação.

Exemplos para n = 4 bits

$$\begin{array}{ccc}
0 & 1 & 0 & 1 & 5 \\
0 & 1 & 1 & 0 & 6 \\
+ & & & \hline{10} & 1 & 1 & 11
\end{array}$$
Carry sobre o bit de sinal -> estouro = overflow

Aritmética em C2: casos

$$\begin{array}{r} 0 & 1 & 0 & 1 \\ + & 1 & 0 & 1 & 0 \\ \hline & 1 & 1 & 1 & 1 \end{array}$$

Não houve Carry = não overflow

$$\begin{array}{r} 0 & 1 & 1 & 0 \\ + & 1 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 \end{array}$$

Carry sobre o "bit de sinal" e após ele = não overflow

$$\begin{array}{r}
1 \ 0 \ 1 \ 1 \\
+ 1 \ 0 \ 1 \ 0 \\
\hline
0 \ 1 \ 0 \ 1
\end{array}$$

Carry somente após o "bit de sinal" = **overflow**

Aritmética em C2: exemplos

Problema na base de dez	Problema em complemento de dois	Resposta na base de dez	z			
3	0011		A vant	agem da n	notação de	
+ 2	+ 0010 0101	5	complemento de dois é que a adição qualquer combinação de números, positivos e negativos, podem ser efetuadas usando o mesmo algoritmo, portanto o		mbinação de e negativos, as usando o	
-3	1101		mesmo (circuito.		
+ -2	+ 1110	-5				
	1011					
			7	0111	0111	
7	0111		+ -5	- 0101	+ 1011	
+ -5	+ 1011	2			0010 = 2	

0010