TMF school 2022

Block VI: Datenformate, Terminologien und Metadaten Übung FAIR4Health Data Curation Tool

Matthias Löbe

Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig

Motivation und Ziel der Übung

Klinische Daten liegen selten als FHIR-Ressourcen vor

- Häufig relationale Datenbankmodelle, spezifisch für jedes System, aber kein Zugriff machbar
- Exporte in tabellarische Formate gängig

Kleine Gruppen von Enthusiasten beschäftigen sich aktuell mit:

- Der Anbindung der klinischen Systeme
- Der Normierung auf ein Common Data Modell (Kerndatensatz)
- Dem Laden in FHIR-Server zur weiteren Nutzung
 Dieser Vorgang heißt auch ETL und geschieht in den Datenintegrationszentren

Im Rahmen dieser Übung werden wir synthetische, aber realistische klinische Daten aus CSV-Dateien in FHIR "konvertieren"

- Demografische Daten, Falldaten, Diagnosen, Laborwerte, Medikationen
- FAIRification Workflow, metadatengetrieben

FAIRification workflow

https://www.go-fair.org/fair-principles/fairification-process/

Installation und Konfiguration (1)

Beispielhaft unter Windows, Linux kann alternativ auch verwendet werden

Anlegen des Arbeitsbereichs

- Erstellen Sie den Ordner C:\F4H_DEMO
 - Natürlich ist der Ordner prinzipiell frei wählbar, allerdings ist C:\F4H_DEMO bei einigen Skripten voreingestellt

Installation Java

- Falls bei Ihnen kein Java oder eine ältere Version als 11 installiert ist, laden Sie sich bitte die Datei https://github.com/adoptium/temurin11-binaries/releases/download/jdk-11.0.15%2B10/OpenJDK11U-jre_x64_windows_hotspot_11.0.15_10.msi
- Bei der Installation einfach alle Vorschläge übernehmen

Installation und Konfiguration (2)

Installation FHIR-Server

- Laden Sie sich die Datei onFHIR-FAIR4Health.zip aus https://github.com/fair4health/common-data-model/releases herunter
- Entpacken Sie das ZIP nach C:\F4H_DEMO\onFHIR
- Starten Sie den FHIR-Server durch Doppelklick auf start-onFHIR.bat im Verzeichnis
 - Eventuell kommt eine Sicherheitswarnung von Windows bzw. der integrierten Firewall, die einen Netzwerkzugriff feststellt >> gewähren!
- Nach einer Weile (bis zu 5 min.) sind der Server und die Datenbank einsatzbereit
- Prüfen Sie durch Aufruf von http://localhost:8282/fhir/metadata, ob der Start erfolgreich war
 - In diesem Fall kommt eine Meldung der Form "This result is being rendered in HTML for easy viewing. You may access this content as Raw JSON or Raw XML

```
"resourceType":"CapabilityStatement",...
```

In diesem Fall wäre die Installation erfolgreich. Es gibt hier keine grafische Oberfläche.

Installation und Konfiguration (3)

Installation FHIR-Client

- Laden Sie sich die Datei FAIR4Health.Data.Curation.Tool.Setup.1.2.5.exe aus https://github.com/fair4health/data-curation-tool/releases herunter
- Installieren Sie das FAIR4Health Data Curation Tool nach C:\F4H_DEMO\
- Eventuell kommt eine Sicherheitswarnung wie

Dann auf "Weitere Informationen" klicken und "Trotzdem ausführen"

Installation und Konfiguration (4)

Installation FHIR-Client

- Installieren Sie in das Verzeichnis C:\F4H_DEMO\
- Starten Sie die Datei FAIR4Health Data Curation Tool.exe in C:\F4H_DEMO\FAIR4Health Data Curation Tool >> eine grafische Oberfläche erscheint

Installation und Konfiguration (5)

Installation Demodatensatz

- Laden Sie sich die Datei F4H_Demo.zip von https://github.com/fair4health/dmea-werkstatt-2022/blob/main/Demodaten/F4H_DEMO.zip herunter
 - Hinweis: Der Downloadbutton ist rechts unten, siehe Abbildung
- Entpacken Sie das ZIP nach C:\F4H_DEMO
- Der Demodatensatz enthält artifizielle medizinische Daten über Patienten, Fälle,
 Laborwerte, Medikationen und Phänotypen und ist Basis der folgenden Übung

Data Curation Tool (1): Konfiguration des Servers

Klick auf "Quick Start"

Data Curation Tool (2): Konfiguration des Servers

- Adresse
 http://localhost:8282/fhir
 eintragen und auf "Verify"
 klicken
- Es sollte das grüne Häkchen erscheinen
- "Next" klicken

- Klick auf "Browse" in der linken Spalte "Data Source"
- Auswählen der
 Quelldateien aus
 C:\F4H_DEMO (eine Datei
 oder gleich mehrere)
- o "Next" klicken

Das Mapping erfolgt hier von "rechts nach links", links ist die Zielstruktur in FHIR, rechts die Spalten aus dem Quelldokument

- Wählen Sie für "Source File" die Quelldatei Patientdemo.xlsx
- 2. Wählen Sie "FHIR Resource Type" die Ressource Patient
- 3. Wählen Sie unter "Profiles" das Profil "Patient-eu-f4h"

- Schränken Sie die Zielstruktur auf Pflichtfelder ein
- Wählen Sie zum Mappen des ersten Attributs "PatientId" aus
- 3. Wählen Sie als Ziel das "id"-Attribut aus
- 4. Wählen Sie als zweites Ziel den "identifier"-Container und dort das "value"-Attribut aus
- 5. Klicken Sie auf "Match Attribute"

Das eben erzeugte Mapping wird grafisch angezeigt.

 Klicken Sie auf "Gender" (rechts), "gender" (links) und "Match Attribute"

Vervollständigen Sie das Mapping für Patient:

- Mappen Sie "Birthdate" auf "birthDate" und "Match Attribute"
- Mappen Sie "Country" auf "address.country" und "Match Attribute"
- Zuletzt Klick auf "Add Mapping" => das Mapping wird gespeichert
- Und wieder "Next"

Data Curation Tool: Validierung

Bisher haben wir "frei" gemappt.

- Mit "Validate"wird der FHIR-Server befragt, um das Mapping gültige Ergebnisse erzeugt hat
- Fehler werden im Logfile angezeigt
- Man kann die FHIR-Ressourcen auch exportieren, um sie später oder woanders hochzuladen.
- Und wieder "Next"

Data Curation Tool: Hochladen auf FHIR-Server

Zuletzt erfolgt die echte Transformation

- Mit "Transform" wird die Transformation angestoßen, d.h. der Upload auf den FHIR-Server
- Auswahl einer Lizenz (FAIR-Kriterium!)
- Zuletzt sollten im Beispiel
 732 Patienten grün
 (=erfolgreich) transformiert
 worden sein
- Das Logfile zeigt Details für jede einzelne Ressource an

FHIR-Server: Anzeige der Ergebnisse

Die Daten lassen sich vom lokalen FHIR-Server abrufen:

Ð

■ 120% ☆

- Geben Sie
 "http://localhost:8282/fhir/
 Patient " als URL in den
 Browser ein
- Das ist äquivalent zu "Gib mir alle Patienten zurück"

(Haus-)Aufgaben

- 1. Mappen Sie anderen Dateien aus F4H_DEMO!
 - Fälle sind in FHIR Encounter
 - Diagnosen sind in FHIR Conditions
 - Medikamentationen sind in FHIR MedicationStatements
 - Laborwerte und andere Phänotypen sind in FHIR Observations
 - Hinweis: die Musterlösung "F4H_mapping.json" liegt in dem Demodatensatzarchiv und kann zu Beginn importiert werden
- 2. Laden Sie die Profile des MII-Kerndatensatzes herunter und erzeugen Sie MII-konforme Ressourcen!
 - Muss für jedes einzelne MII-Modul unter <u>https://simplifier.net/organization/koordinationsstellemii/~projects</u> >> Modulname >> Packages heruntergeladen werden
 - Profile als JSON kommen nach ..\onFHIR\conf\profile