Unidad 02 - Mecánica Cuántica

Profesor: Dr. Jesus Capistran Martinez	
Alumno:	

Problema 1

¿Que es la energía del estado fundamental de un sistema cuántico (ejemplo: particula cuántica + pozo de potencial)?

Problema 2

Un láser rojo emite luz de $794 \, \mathrm{nm}$. Suponga que esta luz se debe a la transición de un electrón dentro de un pozo cuántico del estado n=2 al estado n=1. Encuentre la longitud \mathbf{L} del pozo.

Problema 3

Un electrón con energía total $E=4.5~{\rm eV}$ se aproxima a una barrera rectangular de energía con $U=5.0~{\rm eV}$ y $L=9.5~{\rm \AA}$. De acuerdo con la mecánica clásica, el electrón no podría pasar la barrera de potencial por que E< U. Sin embargo, segun la mecánica cuántica, la probabilidad de obtener el efecto tunel no es cero. **Calcule la probabilidad de transmición** T:

Problema 4

En una región del espacio, una partícula cuántica con energía total cero tiene una función de onda $\psi = Axe^{-x^2/L^2}$. Encuentre la energía potencial U(x)

Problema 5

Demuestre que el primer término de la ecuación de Scrödinger, se reduce a la energía cinética de la partícula cuántica multiplicada por la función de onda $\psi(x) = Ae^{ikx}$

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi + U\psi = E\psi$$

Nota: U=0