Basic Concepts of Probability Sample space S = set of all possible outcomes = sure event, Sample space	1.8 Independent Events Definition: iff $P_{P}(A \cap P) = P_{P}(A) P_{P}(B)$	• $F(x)$ is a non-decreasing function: $x_1 < x_2 \Rightarrow F(x_1) \le F(x_2)$; and $0 \le F(x) \le 1$	Remarks: The conditional p.d.f (or p.f) satisfy all the requirements for a 1D p.d.f:
with no elements = \emptyset = null event	1.8.1 Properties	2.5 Mean and Variance of an R.V. 2.5.1 Expected Value / Mean / Mathematical Expectation	- For a fixed y , $f_{X Y}(x y) \ge 0$, for a fixed x , $f_{Y X}(y X) \ge 0$
• Mutually exclusive/disjoint if $A \cap B = \emptyset$	• Suppose $Pr(A) > 0$, $Pr(B) > 0$, A and B are independent:	• Discrete: $E(X) = \mu_X = \sum_i x_i f_X(x_i) = \sum_X x f_X(x)$	- For discrete RV: $\sum_{x} f_{X Y}(x y) = 1$ and $\sum_{y} f_{Y X}(y x) = 1$
 Contained: <i>A</i> ⊂ <i>B</i> ≡ <i>B</i> ⊃ <i>A</i>, all of the elements in A are also in B. If <i>A</i> ⊂ <i>B</i> and <i>B</i> ⊃ <i>A</i>, then <i>A</i> = <i>B</i> 	- $Pr(B \mid A) = Pr(B)$ and $Pr(A \mid B) = Pr(A)$	• If $f(x) = \frac{1}{N}$ for each of the N values of x, $E(X) = \frac{1}{N} \sum_{i} x_{i}$	- For cont RV: $\int_{-\infty}^{\infty} f_{X Y}(x y) dx = 1 \text{ and } \int_{-\infty}^{\infty} f_{Y X}(y x) dy = 1$
1.1 Basic Properties • $A \cap A' = \emptyset$ • $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	 A and B cannot be mutually exclusive if they are independent (and vice versa) 	• Continuous: $E(X) = \mu_X = \int_{-\infty}^{\infty} x f_X(x) dx$	• For $f_X(x) > 0$, $f_{X,Y}(x,y) = f_{Y X}(y \mid x)f_X(x)$. For $f_Y(y) > 0$, $f_{X,Y}(x,y) = f_{Y X}(y \mid x)f_X(y)$
• $A \cap \emptyset = \emptyset$ • $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	 The sample space S and Ø are independent of any event 	• Remark: The expected value exists if the sum/integral exists	$f_{X Y}(x y)f_{Y}(y)$
• $A \cup A' = S$ • $(A \cap B)' = A' \cup B'$ • $A \cup B = A \cup (B \cap A')$	 If A ⊂ B, then A and B are dependent unless B = S Warning: Independent events can't be shown using Venn Diagram, so calc!!! 	2.5.2 Expectation of a function of an R.V.	3.4 Independent RV
• $(A \cup B)' = A' \cap B'$ • $A = (A \cap B) \cup (A \cap B')$	1.8.2 Theorem	$\forall g(X)$ with p.f. $f_X(x)$ • Discrete: $E[g(X)] = \sum_X g(x) f_X(x)$	RV X and Y are independent iff $f_{X,Y}(x,y) = f_X(x)f_Y(y) \forall x,y$ This definition can be extended to RV $X_1, X_2,, X_n$
• $(A \cap B) \cup C \neq A \cap (B \cup C)$ 1.2 De Morgan's Law	If A , B are independent, then so are A and B' , A' and B , A' and B' . 1.8.3 n Independent Events	• Continuous: $E[g(X)] = \int_{-\infty}^{\infty} g(x)f_X(x)dx$	• The product of 2 positive functions $f_X(x)$ and $f_Y(y)$ means a function which
• $(\bigcup_{r=1}^{n} A_r)' = \bigcap_{r=1}^{n} (A_r)'$ • $(\bigcap_{r=1}^{n} A_r)' = \bigcup_{r=1}^{n} (A_r)'$	Pairwise Independent Events:	Described the second flucture of a state	is positive on a product space . • i.e. if $f_X(x) > 0$ for $x \in A_1$ and $f_Y(y) > 0$ for $x \in A_2$, then $f_X(x)f_Y(y) > 0$ for
r=1 r=1 r=1 r=1 1.3 Counting Methods	Events $A_1, A_2,, A_n$ are pairwise independent iff $\Pr(A_i \cap A_j) = \Pr(A_i) \Pr(A_j)$	2.5.3 Variance $(\sigma_V^2 = V(X))$	i.e. if $j\chi(x) > 0$ for $x \in A_1$ and $j\gamma(y) > 0$ for $x \in A_2$, then $j\chi(x)j\gamma(y) > 0$ for $(x,y) \in A_1 \times A_2$
1.3.1 Multiplication & Addition Principle	for $i \neq j$ and $i, j = 1,, n$	• $g(x) = (x - \mu_X)^2$, Let X be an R.V. with p.f. $f(x)$	3.5 Expectation
 Multiplication Principal (OP1 \(\times \text{OP2} \)): If an operation can be performed in n₁ ways, and for each of these ways a second operation can be performed in 			• $E[g(X,Y)] = \begin{cases} \sum_{X} \sum_{y} g(x,y) f_{X,Y}(x,y) & \text{for Disc RV} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy & \text{for Cont RV} \end{cases}$
n_2 ways, then the 2 operations can be performed together in $n_1 n_2$ ways.	$\{A_{i_1}, A_{i_2},, A_{i_k}\}$ of $A_1, A_2,, A_n$,		$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f\chi_{,Y}(x,y) dx dy \text{for Cont RV}$
• Addition Principal (OP1 \vee OP2): If a first procedure can be performed in n_1 ways, and a second procedure in n_2 ways, and that it is not possible to	$\Pr(A_{i_1} \cap A_{i_2} \cap \cap A_{i_k}) = \Pr(A_{i_1}) \Pr(A_{i_2}) \Pr(A_{i_k})$	• $E[(X - \mu_X)^2] = \begin{cases} \sum_X (x - \mu_X)^2 f_X(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx & \text{if } X \text{ is continuous} \end{cases}$	• $E(X) = \sum_{X} f_X(x)$ 3.5.1 Covariance $(\sigma_{X,V})$
perform both together, then the number ways we can perform either the first	1.8.4 Remarks • $A_1, A_2,, A_n$ are mutually independent \Leftrightarrow for any pair of events A_j, A_k	$V(X) > 0$ $V(X) = F(X^2) - [F(X)]^2$	Let $g(X,Y) = (X - \mu_X)(Y - \mu_Y)$.
or second procedures is $n_1 + n_2$ ways	where $j \neq k$, the multiplication rule holds, for any 3 distinct events, the multi-	• Standard deviation = $\sigma_V = \sqrt{V(X)}$	Let (X, Y) be a bivariate RV with joint pdf $f_{X,Y}(x, y)$, then the covariance of X, Y
 1.3.2 Permutation An arrangement of r objects from a set of n objects, r ≤ n, order taken into 	plication rule holds, and so on $Pr(A_1 \cap A_2 \cap \cap A_n) = Pr(A_1)Pr(A_2)Pr(A_n)$	2.5.4 K-th moment of X	is $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$ • Discrete : $Cov(X,Y) = \sum_X \sum_y (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y)$
consideration.	In total there are $2^n - n - 1$ diff cases. • Mutually independent \Rightarrow pairwise independent (not the converse)	• Definition: $E(X^k)$, use $g(x) = x^k$ in expectation of a fin	• Discrete: $Cov(X, Y) = \sum_{X} \sum_{Y} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x, y)$ • Cont: $Cov(X, Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x, y) dx dy$
• <i>n</i> distinct objects taken <i>r</i> at a time = ${}_{n}P_{r} = \frac{n!}{(n-r)!}$	• Suppose $A_1, A_2,, A_n$ are mutually independent events, let $B_i = A_i$ or A_i' .	2.5.5 Properties of Expectation • $E(aX + b) = aE(X) + b$	Remarks:
• In a circle: (n-1)!	$i \in [1, n]$. Then $B_1, B_2,, B_n$ are also mutually independent events.	• $V(X) = E(X^2) - [E(X)]^2$	• $Cov(X, Y) = E(XY) - \mu_X \mu_Y = E(XY) - E(X)E(Y)$
• Not all are distinct: $\sum_{r=1}^{k} n_k = n$, ${}_{n}P_{n_1,n_2,,n_k} = \frac{n!}{n_1!n_2!n_k!}$	2 Concepts of Random Variables 2.1 Equivalent Events	$\bullet V(aX+b) = a^2 V(X)$	• If X, Y are independent, then $Cov(X, Y) = 0$. But $Cov(X, Y) = 0 \Rightarrow X$ and Y are independent
1.3.3 Combination# of ways of selecting <i>r</i> from <i>n</i> objects w/o regards to order	2.1.1 Definition	2.6 Chebyshev's Inequality	• $Cov(aX + b, cY + d) = acCov(X, Y)$
• $\binom{n}{r} = n \cdot C_r = \frac{n!}{r!(n-r)!}$, $n \cdot C_r \times r! = n \cdot P_r$	 Let E be an experiment in sample space S. Let X be an R.V. defined on S, and R_X its range space, i.e. X: S → R 		• $V(aX + bY) = a^2 V(X) + b^2 V(Y) + 2abCov(X, Y)$
• $\binom{n}{r}$ = binom coeff of the term a^rb^{n-r} in binom expansion of $(a+b)^n$:	• Let B be an event w.r.t. R_X , i.e. $B \subset R_X$	• $\forall k > 0$, $\Pr(X - \mu \ge k\sigma) \le \frac{1}{k^2}$ OR $\Pr(X - \mu < k\sigma) \ge 1 - \frac{1}{k^2}$	3.5.2 Correlation Coefficient $Cov(X,Y)$
$\binom{n}{r} = 0$ from each of the term u v in binom expansion of $(u+v)$: $\binom{n}{r} = \binom{n}{n-r}$ for $r = 0, 1,, n$	 Suppose A = {s ∈ S X(s) ∈ B} (A consists of all sample points s in S for which X(s) ∈ B) 	Holds for all distributions with finite mean and variance Gives a lower bound but not exact probability.	$Cor(X,Y) = \rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}$
$ (r) = (n-r) \text{ for } r = 0, 1,, n $ $ - \binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1} \text{ for } 1 \le r \le n $	• A and B are equivalent events, and $Pr(B) = Pr(A)$	3 2D RV & Conditional Probability Distributions	• $-1 \le \rho_{X,Y} \le 1$
$\binom{r}{r} = \binom{r}{r} + \binom{r-1}{r-1} = r = r$ - $\binom{n}{r} = 0$ for $r < 0$ pr $r > n$	2.1.2 Example	 3.1 2D RV Definition (Random Vector) Let E be experiment and S sample space associated with E. Let X and Y be 2 	 ρ_{X,Y} = measure of degree of linear relationship between X and Y If X, Y are independent, then ρ_{X,Y} = 0. But ρ_{X,Y} = 0 ⇒ independence
1.4 Relative frequency (f_A)	 Consider tossing a coin twice, S = {HH,HT,TH,TT} Let X be no of heads, then R_X = {0,1,2} 	functions each assigning a real number to each $s \in S$. (X, Y) is a 2D RV	4 Special Probability Distributions
$f_A = \frac{n_A}{n}$, is the relative frequency of A in n repetitions of experiment E, $n_A =$	• $A_1 = \{HH\}$ equiv $B_1 = \{2\}$, $A_2 = \{HT, TH\}$ equiv $B_2 = \{1\}$, $A_3 = \{TT\}$ equiv	• Range Space: $R_{X,y} = \{(x,y) \mid x = X(s), y = Y(s), s \in S\}$ • The definition can be extended to u-dimensional RV (or u-dimensional range)	4.1 Discrete Uniform Distribution If RV X assumes the values $x_1, x_2,, x_k$ with equal probability, then X has a
no of times that event A occurred among the n repetitions. 1.5 Axioms of Probability	$B_3 = \{0\}, A_4 = \{HH, HT, TH\} \text{ equiv } B_4 = \{2, 1\}$ 2.2 Discrete Probability Distributions	dom vactor) for V. V. V.	la
	2.2.1 Discrete R.V.	 (X, Y) is a 2D discrete RV if the possible values of (X(s), Y(s)) are finite or countable infinite 	$x_1, x_2,, x_k$, and 0 otherwise.
• $Pr(S) = 1$	Let X be an RV. If R_X is finite or countable infinite, X is discrete RV 2.2.2 Probability Fn (p.f.) or Probability Mass Function (p.m.f.)	• (Y, Y) is a 2D continuous PV if the possible values of $(Y(s), Y(s))$ can assume	4.1.1 Mean and Variance of Discrete Uniform Distribution
 If A₁, A₂, are mutually exclusive (disjoint), i.e. A_i ∩ A_j = Ø when i ≠ j, then Pr(∪[∞]_{i=1} A_i) = ∑[∞]_{i=1} Pr(A_i) 	• For a discrete R.V., each value X has a certain probability $f(x)$. Such a function	all values in some region of the Euclidean plane \mathbb{R}^2	$\mu = E(X) = \sum x f_X(x) = \frac{1}{k} \sum_{i=1}^{k} x_i$
If events A and B are mutually exclusive, then $Pr(A \cup B) = Pr(A) + Pr(B)$	f(x) is called the p.f (or probability mass function , p.m.f).	3.2 Joint Probability Density Function	$\sigma^{2} = V(X) = \sum (x - \mu)^{2} f_{X}(x) = \frac{1}{k} \sum_{i=1}^{k} (x_{i} - \mu)^{2}$
1.6 Properties of Probability	 The collection of pairs (x_i, f(x_i)) is probability distribution of X The probability of X = x_i denoted by f(x_i) must satisfy: f(x_i) ≥ 0 ∀ x_i and 	Let (X, Y) be a 2D discrete RV. With each possible value (x_i, y_j) , we associate a	$\sigma^2 = E(X^2) - \mu^2 = \frac{1}{k} \left(\sum_{i=1}^k x_i^2 \right) - \mu^2$
• $\Pr(\emptyset) = 0$ • If $A = A$ are mutually evaluative than $\Pr(\mathbb{R}^n \mid A) = \sum_{i=1}^n \Pr(A_i)$	$\sum_{i=1}^{\infty} f(x_i) = 1$	number $f_{X,Y}(x_i,y_i)$ representing $Pr(X=x_i,Y=y_i)$ and satisfying:	4.2 Bernoulli and Binomial Distribution
 If A₁, A₂,, A_n are mutually exclusive, then Pr(∪_{i=1}ⁿ A_i) = ∑_{i=1}ⁿ Pr(A_i) Pr(A) = Pr(A ∩ B) + Pr(A ∩ B') 	2.3 Continuous Probability Distributions	• $f_{X,Y}(x_i, y_j) \ge 0 \forall (x_i, y_j) \in R_{X,Y}$	The collection of all probability distributions for different values of the param is called a family of probability distributions.
• $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$	2.3.1 Continuous R.V. Suppose that R_X is an interval or a collection of intervals, then X is a continuous continuous R_X .	$ \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{X,Y}(x_i, y_j) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \Pr(X = x_i, Y = y_j) = 1 $	4.2.1 Bernoulli Distribution
 Pr(A∪B∪C) = Pr(A)+Pr(B)+Pr(C)-Pr(A∩B)-Pr(B∩C)-Pr(A∩C)+Pr(A∩B∩C) The Inclusion-Exclusion Principle 	ous R.V.	The function $f_{X,Y}(x,y)$ defined $\forall (x_i,y_j) \in R_{X,Y}$ is called joint probability func	• RV X has a Bernoulli distribution if the probability function of X is $f_X(x) =$
	2.3.2 Probability Density Function (p.d.f.)Let X be a continuous R.V.	tion of (X, Y) . Let A be any set consisting of pairs of (x, y) values, then:	$p^{x}(1-p)^{1-x}$, $x = 0,1$ where $0 for other X values.$
$\Pr(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \Pr(A_i) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr(A_i \cap A_j) + \sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \sum_{k=j+1}^{n} \Pr(A_i \cap A_j \cap A_j \cap A_j)$	• p.d.f. $f(x)$ is a function satisfying:	$\Pr((X,Y) \in A) = \sum \sum_{(x,y) \in A} f_{X,Y}(x,y)$	Remarks • $(1-p)$ is often denoted by q .
l=1 $l=1$	6	3.2.2 For Continuous RV Let (X, Y) be a 2D continuous RV assuming all values in some region R of the	• $Pr(X = 1) = p$ and $Pr(X = 0) = 1 - p = q$
• If $A \subset B$, then $Pr(A) \le Pr(B)$	A	Euclidean plane \mathbb{R}^2 .	$\mu = L(X) = p$
1.7 Conditional Probability, $P(A \mid B)$	$ \forall c, u : c < u \text{ (i.e. } (c, u) \subset KX), \Gamma(c \leq X \leq u) - \int_{C} \int (x)ux$	$f_{X,Y}(x,y)$ is called joint pdf if it satisfies:	• $\sigma^2 = V(X) = p(1-p) = pq$ 4.2.2 Binomial Distributions $\sim B(n, p)$
• $Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)}$, if $Pr(A) \neq 0$	$-\Pr(X = x_0) = \int_{x_0}^{x_0} f(x) dx = 0$	• $f_{X,Y}(x,y) \ge 0 \forall (x,y) \in R_{X,Y}$	• RV X has a Binomial distribution with 2 parameters n and p , if the proba-
 For fixed A, Pr(B A) satisfies the postulates of probability. 	 2.3.3 Remarks Pr(c ≤ X ≤ d) = ∫_c^d f(x)dx represents area under the graph of the p.d.f. f(x) 	• $\iint_{(x,y)\in R_{X,Y}} f_{X,Y} dy dx = 1 \text{ or } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy dx = 1$	bility function of <i>X</i> is $Pr(X = x) = f_X(x) = \binom{n}{x} p^x q^{n-x}$ for $x = 0, 1,, n$ where
 False positive: Pr(+ condition) Points to take note of: 	 Pr(c ≤ X ≤ a) = ∫_c f(x)ax represents area under the graph of the p.d.f. f(x) between x = c and x = d 	3.3 Marginal and Conditional Probability Distributions 3.3.1 Marginal Probability Distributions	 0 X is the # of successes in n independent Bernoulli trials.
1. $Pr(A B) \neq Pr(B A)$ 2. $Pr(B A') \neq 1$ $Pr(B A)$	• $\Pr(c \le X \le d) = \Pr(c \le X < d) = \Pr(c < X \le d) = \Pr(c < X < d)$	Let (X,Y) be a 2D RV with joint pdf $f_{X,Y}(x,y)$. The marginal probability	• Bernoulli distribution is a special case of Binomial distribution when $n = 1$
 Pr(B A') ≠ 1 - Pr(B A) Pr(A' B) = 1 - Pr(A B) 	 Pr(A) = 0 does not necessarily imply A = Ø R_X ∈ [a, b] ⇒ f(x) = 0 ∀ x ∉ [a, b] 	distributions of X and Y are:	• Mean, $\mu = E(X) = np$
1.7.1 Multiplication rule	 Note that p.d.f can be more than 1! 	• Discrete: $f_X(x) = \sum_y f_{X,Y}(x,y)$ and $f_Y(y) = \sum_x f_{X,Y}(x,y)$	 Variance, σ² = V(X) = npq Conditions: (1) consists of n repeated Bernoulli trials, (2) Only 2 possible
 Pr(A∩B) = Pr(A)Pr(B A) = Pr(B)Pr(A B), provided Pr(A) > 0, Pr(B) > 0 Pr(A∩B∩C) = Pr(A)Pr(B A)Pr(C A∩B) 	2.4 Cumulative Distribution Function (c.d.f.) Let X be an R.V., disc or cont. $F(x)$ is a c.d.f of X where $F(x) = Pr(X \le x)$	 Cont: f_X(x) = ∫_{-∞}[∞] f_{X,Y}(x,y) dy and f_Y(y) = ∫_{-∞}[∞] f_{X,Y}(x,y) dx Basically fix one of the values, then sum/integrate over the other. Gives the 	outcomes in each trial, (3) $Pr(success) = p$ is constant in each trial, (4) trials
• $Pr(A \cap B \cap C) = Pr(A)Pr(B \cap A)Pr(C \cap A \cap B)$ • $Pr(A_1 \cap \cap A_n) = Pr(A_1)Pr(A_2 \cap A_1)Pr(A_3 \cap A_2)Pr(A_n \cap A_1 \cap \cap A_{n-1})$	2.4.1 c.d.f. for Discrete R.V.	probabilities of various values of the variables in the subset without reference	are independent 4.2.3 Negative Binomial Distribution $\sim NB(k,p)$
1.7.2 The Law of Total Probability	 F(x) = ∑_{t≤x} f(t) = ∑_{t≤x} Pr(X = t) c.d.f. of a discrete R.V. is a step function 	to the values of the other variables 3.3.2 Conditional Distribution	• Like binomial, but trials will be repeated until a fixed # of successes occur
 Let A₁, A₂,, A_n be a partition of sample space S (mutually exclusive & exhaustive events s.t. A_i ∩ A_j = Ø for i ≠ j and ∪ⁿ_{i-1} A_i = S). 	•	Let (X,Y) be a 2D RV with joint pdf f_{Y} $v(x,v)$, let $f_{Y}(x)$ and $f_{Y}(v)$ be the	(interested in the probability of the k -th success occurs on the x -th trials)
• Then $\Pr(B) = \sum_{i=1}^{n} \Pr(B \cap A_i) = \sum_{i=1}^{n} \Pr(A_i) \Pr(B \mid A_i)$	• $\forall a, b \text{ s.t. } a \le b, \Pr(a \le X \le b) = \Pr(X \le b) - \Pr(X \le a) = \Pr(b) - \Pr(a)$ where a^- is the largest possible value of X strictly less than a	marginal probability functions of X and Y respectively. Then the conditional distribution of Y given that $X = x$:	 Let X be a RV represents # of trials to produce k successes in a sequence of independent Bernoulli trials
• e.g. $P(B) = P(A)P(B A) + P(A')P(B A')$	2.4.2 c.d.f. for Continuous R.V.		• $\Pr(X = x) = f_X(x) = (\frac{x-1}{k-1})p^k q^{x-k}$ for $x = k, k+1, k+2,$
1.7.3 Bayes' Theorem	• $F(x) = \int_{-\infty}^{x} f(t) dt$	$f_{Y X}(y x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$, if $f_{X}(x) > 0$ for each $x \in \text{range of } X$	• Mean, $\mu = E(X) = \frac{k}{\overline{\nu}}$
• Let $A_1, A_2,, A_n$ be a partition of S	• $f(x) = \frac{d\hat{F}(x)}{dx}$ if the derivative exists	Similarly, the conditional distribution of X given $Y = y$:	• Variance, $\sigma^2 = V(X) = \frac{(1-p)k}{2}$
• $\Pr(A_k \mid B) = \frac{\Pr(A_k)\Pr(B \mid A_k)}{\sum_{i=1}^n \Pr(A_i)\Pr(B \mid A_i)} = \frac{\Pr(A_k)\Pr(B \mid A_k)}{\Pr(B)}, k \in [1, n]$	• $\Pr(a \le X \le b) = \Pr(a < X \le b) = F(b) - F(a)$	$f_{X Y}(x y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$, if $f_{Y}(y) > 0$ for each $y \in \text{range of } Y$	variance, $\sigma^- = v(x) = \frac{1}{p^2}$
$\angle i=1^{\text{Tr}(\Delta_i)}$ $\text{Tr}(B \Delta_i)$		71 V/	

.3 Poisson Distribution $\sim P(\lambda)$ uncountable) large number of elements A set of n observations from a given population is called a **sample** of size nR.V. X, # of successes occurring during a given time interval/in a specified • Each observation in population can be considered as a value of a RV with p.d.f $f_X(x)$ $\Pr(X = x) = f_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}$ for x = 0, 1, 2, 3, ... where $\lambda =$ average no of suc-5.2 Random Sampling cesses occurring in the given time interval/specified region 5.2.1 Simple Random Sampling (SRS) Mean, $\mu = E(X) = \lambda$ A SRS of *n* members is a sample chosen in such a way that **every subset** of Variance, $\sigma^2 = V(X) = \lambda$

Properties: 1. # of successes in one time interval/specified region are independent or those in any other disjoint time interval/region of space

2. The probability of a single success during a short time interval/in a small region is proportional to length of time interval/size of region, and does not depend on no of successes outside this time interval/region 3. The prob of more than one success in such a short time interval/falling in such a small region is negligible Poisson Approximation to the Binomial Distribution

Special case: # of trials required to have the first success (i.e. k = 1) is

Geometric distribution $(X \sim NB(1, p) \equiv X \sim Geom(p))$

Let $X \sim B(n, p)$, suppose that $n \to \infty$ and $p \to 0$ such that $\lambda = np$ remains a 5.2.3 Sampling from an Infinite Population constant as $n \to \infty$, then $X \approx \text{Poisson distribution with parameter } np$ $\lim_{p\to 0} \Pr(X=x) = \frac{e^{-np}(np)^x}{\cdot}$

If $p \to 1$, can still use Poisson distribution to approximate binomial probabili ties by swapping success & failure s.t. $p \rightarrow 0$ 4.5 Continuous Uniform Distribution $\sim \dot{U}(a,b)$

U(a,b) if its p.d.f is $f_X(x) = \frac{1}{b-a}$ for $a \le x \le b$ and 0 otherwise.

Mean, $\mu = E(X) = \frac{a+b}{2}$ Variance, $\sigma^2 = V(X) = \frac{1}{12}(b-a)^2$ 4.6 Exponential Distribution $\sim Exp(\alpha)$

Mean, $\mu = E(X) = \frac{1}{2}$ Variance, $\sigma^2 = V(X) = \frac{1}{2}$

• $\int_{-\infty}^{\infty} f(x) dx = 1$

Then $E(X) = \mu$, $V(X) = \mu^2$ $Pr(X > t) = e^{-\alpha t}$, $Pr(X \le t) = 1 - e^{-\alpha t}$ 4.6.1 No Memory Property of Exponential Distribution

Suppose $X \sim Exp(\alpha)$ where $\alpha > 0$, then for any 2 positive numbers s and t to μ $\Pr(X > s + t \mid X > s) = \Pr(X > t)$ 4.7 Normal Distribution $\sim N(u, \sigma^2)$ RV X assuming all real values, $-\infty < x < \infty$, has a normal distribution if its p.d.f

is $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{(x-\mu)^2}{2\sigma^2})$ where $-\infty < x < \infty, -\infty < \mu < \infty$ and $\sigma > 0$

Graph of the distribution is bell-shaped and symmetrical about the vertical 1. Central Tendency: $\mu_{\overline{X}} = \mu$, Variance: $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{\kappa}}$ line $x = \mu \left(\Pr(Z \ge z_{\alpha}) = \Pr(Z \le -z_{\alpha}) = \alpha \right)$

Max point occurs at $x = \mu$, its value is $\frac{1}{\sqrt{2\pi}c}$ E(X) = u, $V(X) = \sigma^2$ Total area under the curve and above the horizontal axis is 1.

The normal curve approaches the horizontal axis asymptotically in either 5.5.1 Theorem 2 normal curves are identical in shape with same σ^2 , but centered around

As σ increases, the curve flattens; as σ decreases, the curve sharpens If $X \sim N(\mu, \sigma^2)$ and $Z = \frac{X - \mu}{\sigma}$, then $Z \sim N(0, 1)$ (standardized normal 1. $\mu_{\overline{X}_1 - \overline{X}_2} = \mu_1 - \mu_2$

distribution), and E(Z) = 0 and V(Z) = 14.8 Normal Approximation to the Binomial Distribution

When np > 5 and nq > 5 $(n \to \infty, p \to \frac{1}{2})$ $\frac{X-np}{\sqrt{n}}$ is approx. $\sim N(0,1)$ If $X \sim B(np, npq)$, then as $n \to \infty$, Z =

4.8.1 Continuity Correction (Apply when doing normal approximation)

• $\Pr(X = k) \approx \Pr(k - \frac{1}{2} < X < k + \frac{1}{2})$

• $\Pr(a \le X \le b) \approx \Pr(a - \frac{1}{2} < X < b + \frac{1}{2}), \Pr(a < X \le b) \approx \Pr(a + \frac{1}{2} < X < b + \frac{1}{2})$ $\Pr(a \le X < b) \approx \Pr(a - \frac{1}{2} < X < b - \frac{1}{2}), \Pr(a < X < b) \approx \Pr(a + \frac{1}{2} < X < b - \frac{1}{2})$ • $\Pr(X \le c) = \Pr(0 \le X \le c) \approx \Pr(-\frac{1}{2} < X < c + \frac{1}{2})$ • $\Pr(X > c) = \Pr(c < X \le n) \approx \Pr(c + \frac{1}{2} < X < n + \frac{1}{2})$

5 Sampling and Sampling Distributions 5.1 Population and Sample Totality of all possible outcomes is called population A sample is any subset of a population

observations of the population has the same probability of being selected 5.2.2 Sampling from a Finite Population Sampling without replacement: There are $\binom{N}{n}$ samples of size n to be drawn Theorem: If S^2 is the variance of a random sample of size n taken from a normal from a population of size N without replacement. Each sample has the same

elements, (2) Infinite population, consisting of an infinitely (countable and

probability of $1/\binom{N}{n}$ of being selected. **Sampling with replacement:** There are N^n samples of size n drawn from a population of size N with replacement. Each sample has the same probability $\frac{1}{N^n}$ of being selected. 5.7.1 The p.d.f of a t-distribution

Random if (1) In each draw all elements of the population have the same probability of being selected, (2) Successive draws are independent 5.2.4 Theorem Let X be an RV with p.d.f $f_X(x)$, X_1 , X_2 ,..., X_n be n independent RV each having the same distribution as X. Then $(X_1, X_2, ..., X_n)$ is called a **random sample** of size N from a population with distribution $f_X(x)$. RV has **uniform** distribution over interval [a,b], $-\infty < a < b < \infty$, denoted by The joint p.d.f is $f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = f_{X_1}(x_1)x_{X_2}(x_2)...f_{X_n}(x_n)$

5.3 Sampling distribution of sample mean (\overline{X}) 5.3.1 Statistic and Sampling Distribution Sampling distribution = probability distribution of a statistic

5.3.2 Sample Mean $[X_1, X_2, ..., X_n]$ is a random sample of size $n \Rightarrow$ sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ Continuous RV X assuming all non-negative values has an exponential dis tribution with parameter $\alpha > 0$ if its p.d.f is $f_X(x) = \alpha e^{-\alpha x}$ for x > 0 and 0

> deviation σ , \overline{X} has its mean and standard deviation: $\mu_{\overline{Y}} = \mu_X$ and $\sigma_{\overline{Y}}^2 = \frac{\sigma_X^2}{n}$, i.e. [(n_1, n_2)] degrees of freedom. $E(\overline{X}) = E(X)$ and $V(\overline{X}) = \frac{V(X)}{X}$

p.d.f can be written in the form $f_X(x) = \frac{1}{u}e^{-x/\mu}$ for x > 0 and 0 otherwise 5.3.4 Law of Large Number (LLN) Let $X_1, X_2, ..., X_n$ be a random sample of size n from a population having any $\left| 1, E(X) = \frac{n_2}{n_2} / (n_2 - 2), \text{ with } n_2 > 2 \right|$ distribution with mean μ and finite population variance σ^2 . Then for any $\epsilon \in \mathbb{R}$ $\Pr(|\overline{X} - \mu| > \epsilon) \to 0$ as $n \to \infty$ (basically saying that as $n \to \infty, \overline{X}$ will be very close 2.

> 5.4 Central Limit Theorem Let $X_1, X_2, ..., X_n$ be a random sample of size n from a population having any $F \sim F(n, m) \to \frac{1}{F} \sim F(m, n)$ and $F(n_1, n_2; 1 - \alpha) = \frac{1}{F(n_2, n_1; \alpha)}$ distribution with mean μ , finite population variance σ^2 . \overline{X} is approximately 6 Estimation based on Normal Distribution

 $=\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ follows approx. N(0,1)

5.4.1 Theorem If X_i , i = 1, 2, ..., n are $N(\mu, \sigma^2)$, then \overline{X} is $n(\mu, \frac{\sigma^2}{n})$ regardless of the sample size . (Same thing if approximately follow) 5.5 Sampling Distribution of the Difference of 2 Sample Means

If independent samples of sizes n_1 and n_2 (each ≥ 30) are drawn from 2 pop \bullet A statistic $\hat{\Theta}$ is an **unbiased estimator** of the parameters θ if $E(\hat{\Theta}) = \theta$ ulations, with means μ_1, μ_2 , variances σ_1^2, σ_2^2 , then the sampling distribution

 $\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2) \sim N(0.1)$

If *Y* is RV with p.d.f $f_Y(y) = \frac{1}{2^{n/2}\Gamma(n/2)} y^{n/2-1} e^{-y/2}$ for y > 0 and 0 otherwise,

then Y has a chi-square distribution with n degrees of freedom, denoted $\chi^2(n)|_{\mathbf{6.3}}^{\bullet}$ Confidence intervals for the Mean where $n \in \mathbb{Z}^+$ and $\Gamma(\cdot)$ is the gamma function 5.6.1 Gamma function $\Gamma(n) = \int_{0}^{\infty} x^{n-1} e^{-x} dx = (n-1)! \text{ for } n \in \mathbb{Z}^{+}$

5.6.2 Properties of Chi-square Distribution If $Y \sim \chi^2(n)$, then E(Y) = n and V(Y) = 2nFor large n, $\chi^2(n)$ approx. $\sim N(n, 2n)$

degrees of freedom: $\sum_{i=1}^{k} Y_i \sim \chi^2(\sum_{i=1}^{k} n_i)$ $\Pr(Y \ge \chi^2(n; \alpha)) = \alpha \text{ where } Y \sim \chi^2(n). \Pr(Y \le \chi^2(n; 1 - \alpha)) = \alpha$

2 kinds of population: (1) Finite population, consisting of a finite number of 5.6.3 From Normal to Chi-square $X \sim N(0,1) \Rightarrow X^2 \sim \chi^2(1)$. $X \sim N(\mu, \sigma^2) \Rightarrow (\frac{X-\mu}{\sigma})^2 \sim \chi^2(1)$

Let $X_1, X_2, ..., X_n$ be a random sample from a normal population with mean μ and var σ^2 . Define $Y = \sum_{i=1}^n \frac{(X_i - \mu)^2}{2}$, then $Y \sim \chi^2(n)$ 5.6.4 The sampling distribution of $\frac{(n-1)S^2}{2}$

Let $X_1, X_2, ..., X_n$ be a random sample from a population, then S^2 $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2$ is the sample variance

population, then $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ 6.4 Confidence Intervals for the Difference between 2 Means 5.7 The t-distribution Let $Z \sim N(0,1)$ and $U \sim \chi^2(n)$. If Z and U are independent, and let $T = \frac{Z}{\sqrt{U/n}}$ estimator of $\mu_1 - \mu_2$

then the RV T follows the t-distribution with n degrees of freedom, $\frac{Z}{\sqrt{IUn}} \sim t(n)$. When $\sigma_1^2 \neq \sigma_2^2$ and (2 populations are normal or n_1, n_2 both ≥ 30)

 $f_T(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} \left(1 + \frac{t^2}{n}\right) \frac{n+1}{2}, -\infty < t < \infty$ 5.7.2 Properties

Graph of t-distribution is symmetric about the vertical axis, resembles standard normal distribution p.d.f of t-distribution is approaching p.d.f of std normal distribution when

 $n \to \infty$, $\lim_{n \to \infty} f_T(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$ E(T) = 0 and $V(T) = \frac{n}{n-2}$ for n > 2

Remark: if the random sample was selected from a normal population, then 6.4.2 Large sample Confidence Interval for Unknown Variances $Z \sim N(0,1)$ and $U \sim \chi^{2}(n-1)$, then $T = \frac{Z}{\sqrt{U/(n-1)}} \sim t_{n-1}$

5.8 The F-distribution $\sim F(n_1, n_2)$

For random samples of size n taken from **infinite** population or from **finite population** with **replacement** having population mean μ and population standard Let $U \sim \chi^2(n_1)$ and $V \sim \chi^2(n_2)$, then $F = \frac{U/n_1}{V/n_2}$ is called **F-distribution** with •

 $f_F(x) = \frac{n_1^{1/2} n_2^{n_2/2} \Gamma(\frac{n_1 + n_2}{2}) x^{n_1/2 - 1}}{\Gamma(\frac{n_1}{2}) \Gamma(\frac{n_2}{2}) (n_1 x + n_2)^{(n_1 + n_2)/2}} \text{ for } x > 0 \text{ and } 0 \text{ otherwise.}$

 $= \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)} \text{ with } n_2 > 4$ 5.8.2 Theorem

Some characteristics of elements in a population can be represented by an RV Some characteristics of elements in a population can be represented by an KV Δ normal with mean μ and variance $\frac{\sigma^2}{n}$ if n is sufficiently large (n > 30). Hence, with p.d.f. $f_Y(x;\theta)$ where the form is assumed known, values of random sample

can be observed except unknown parameters θ 6.1 Point Estimation of Mean and Variance **Point estimator** is to let the value of some statistic $\hat{\theta} = \hat{\theta}(X_1, X_2, ..., X_n)$ to

estimate unknown parameters θ A statistic is a function of the random sample which does not depend on any unknown parameters. (e.g. sum/max of observations) An **estimator** is the statistic used to obtain a point estimate. (\overline{X}) is an estimator

of μ . The value of \overline{X} , \overline{x} is an estimate of μ) 6.1.1 Unbiased Estimator

 \overline{X} is an unbiased estimator of u $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ is unbiased estimator of σ^2 , i.e. $E(S^2) = \sigma^2$ of the differences of means \overline{X}_1 and \overline{X}_2 is approx. normally distributed with

> 6.2 Interval Estimation Form: $\hat{\theta}_L < \theta < \hat{\theta}_U$ where $\hat{\theta}_L$ and $\hat{\theta}_U$ depend on (1) value of the stat $\hat{\Theta}$ for

particular sample, (2) the sampling distribution of $\hat{\Theta}$ $\hat{\theta}_{I}$ and $\hat{\theta}_{II}$ = lower and upper confidence limit, $\hat{\theta}$ = point estimate

Seek a random interval s.t. $Pr(\hat{\Theta}_L < \theta < \hat{\Theta}_{II}) = 1 - \alpha$ Seek a random interval s.t. $\Pr(\Theta_L < \theta < \Theta_U) = 1 - \alpha$ The interval computed from the selected sample is $(1 - \alpha)100\%$ confidence interval for α . (CI when μ is unknown: $\frac{(n-1)S^2}{x_{n-1;1-\alpha/2}^2} < \sigma^2 < \frac{(n-1)S^2}{x_{n-1;1-\alpha/2}^2}$

 $(1-\alpha)$ is confidence coefficient or degree of confidence 6.3.1 Known Variance Case With (i) known variance, (ii) the population is normal, or n > 30

 $\Pr(-z_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}) = \Pr(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ If \overline{X} is sample mean from a popn with variance σ^2 , a $(1-\alpha)100\%$ confidence 7.1 Null and Alternative Hypotheses

If $Y_1, Y_2, ..., Y_k$ are independent chi-square RV with $n_1, n_2, ..., n_k$ degrees of Sample size for Estimating μ

freedom, then $Y_1 + Y_2 + ... + Y_k$ has a chi-square distribution with $n_1 + n_2 + ... + n_k$ For a given margin of error e, sample size is $n \ge (z_{\alpha/2}, \frac{\sigma}{\sigma})^2$

With (i) unknown population variance, (ii) the population is normal or very close to normal, (iii) sample size is small (n < 30)

6.3.2 Unknown Variance Case

Let $T = \frac{(\overline{X} - \mu)}{S/\sqrt{n}}$ where S^2 is sample variance, then $T \sim t_{n-1}$.

 $\Pr(-t_{n-1;\alpha/2} < T < t_{n-1;\alpha/2}) = \Pr(\overline{X} - t_{n-1;\alpha/2} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{n-1;\alpha/2} \frac{S}{\sqrt{n}})$ \overline{X} and S are sample mean and standard deviation, a $(1-\alpha)100\%$ confidence

interval for μ is as expressed inside Pr above (middle) For large n > 30, the t-distribution approx. N(0,1). Hence the confidence interval is given by $\overline{X} - z_{\alpha/2}(\frac{S}{\sqrt{n}}) < \mu < \overline{X} + z_{\alpha/2}(\frac{S}{\sqrt{n}})$

2 populations with means μ_1, μ_2 , variances σ_1^2, σ_2^2 then $\overline{X}_1 - \overline{X}_2$ is the point estimator of $\mu_1 - \mu_2$

 $(\overline{X}_1 - \overline{X}_2) \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$

 $(1-\alpha)100\%$ confidence interval for $\mu_1 - \mu_2$ is

$$(\overline{X}_1 - \overline{X}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2}} < \mu_1 - \mu_2 < (\overline{X}_1 - \overline{X}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2}}$$
4.2 Large sample Confidence Interval for Unknown Variances

 σ_1^2, σ_2^2 are unknown, n_1, n_2 both ≥ 30 , replace σ_1^2, σ_2^2 by their estimates S_1^2, S_2^2 6.4.3 Unknown but Equal Variances

 $\sigma_1^2 = \sigma_2^2$, 2 populations are normal, n_1, n_2 both ≤ 30 Pooled sample variance $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} \sim \chi_{n_1 + n_2 - 2}^2$

 $T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t_{n_1 + n_2 - 2}$ $(1-\alpha)100\%$ confidence interval for $\mu_1 - \mu_2$ is

 $(\overline{X}_1 - \overline{X}_2) - t_{n_1 + n_2 - 2; \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2$ $<(\overline{X}_1-\overline{X}_2)+t_{n_1+n_2-2;\alpha/2}S_p\sqrt{\frac{1}{n_1}}+\frac{1}{n_2}$ 6.4.4 Unknown but Equal Variances for Large Samples For n_1, n_2 both ≥ 30 , replace $t_{n_1+n_2-2;\alpha/2}$ by $z_{\alpha/2}$ in **6.4.3**

6.4.5 C.I. for the Difference between 2 Means for Paired (Dependent) Data E.g. same individual before and after (related observations) Point estimate of $\mu_D = \mu_1 - \mu_2$ is given by $\overline{d} = \frac{1}{n} \sum_{i=1}^n d_i = \frac{1}{n} \sum_{i=1}^n (x_i - y_i)$

Point estimate of σ_D^2 is given by $s_D^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \overline{d})^2$ Small sample, approximate normal population:

 $T = \frac{\overline{d} - \mu_D}{s_d / \sqrt{n}} \sim t_{n-1}$ $(1-\alpha)100\%$ CI for $\mu_D = \overline{d} - t_{n-1;\alpha/2} (\frac{S_D}{\sqrt{n}}) < \mu_D < \overline{d} + t_{n-1;\alpha/2} (\frac{S_D}{\sqrt{n}})$

For large sample (n > 30), CI = $\overline{d} - z_{\alpha/2} (\frac{S_D}{\sqrt{s_0}}) < \mu_D < \overline{d} + z_{\alpha/2} (\frac{S_D}{\sqrt{s_0}})$ 6.5 C.I. for Variances and Ratio of Variances 6.5.1 C.I. for a Variance of a Normal Population

Sample var $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} (\sum_{i=1}^{n} X_i^2 - n \overline{X}^2)$ is pt est of σ^2

6.5.2 C.I. for the Ratio of 2 Variances of Norm Population with Unknown Means

Hypotheses Testing based on Normal Distribution

Null Hypothesis, H_0 : Hypothesis formulated with the hope of rejecting

which leads to acceptance of the alternative hypothesis, H_1 When we reject a hypothesis, we conclude that it is false. But if we accept it it merely means we have insufficient evidence to believe otherwise.

We often choose to state the hypothesis in a form that hopefully will be rejected, i.e. usually H_0 will be the status quo.

7.1.1 Types of errors

- **Type I** (serious): $Pr(Reject H_0 | H_0 \text{ is true}) = \alpha = level of significance$ Type II: Pr(Do not reject $H_0 \mid H_0$ is false) = β , Power of a test = $1 - \beta$

Two types of errors in the hypothesis testing:

	State of Nature		
Decision	H ₀ is true	H ₀ is false	
Reject H ₀	Type I error $Pr(Reject H_0 given that H_0 is true) = \alpha$	Correct decision Pr(Reject H_0 given that H_0 is false) = $1 - \beta$	
Do not reject H ₀	Correct decision $Pr(Do not reject H_0 given that H_0 is true) = 1 - \alpha$	Type II error Pr(Do not reject H_0 give that H_0 is false) = β	

7.1.2 Acceptance and Rejection Regions

Rejection (critical) region and acceptance region are separated by critical value 7.2 Hypotheses Testing Concerning Mean
7.2.1 Hypo Testing on Mean with Known Variance

Variance σ^2 is known and underlying distribution is normal or n > 30

Two-sided test:

- Test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$. Under H_0 , we have $\overline{X} \sim N(\mu_0, \frac{\sigma^2}{n})$
- $\overline{x}_1 < \overline{X} < \overline{x}_2$ or $-z_{\alpha/2} < Z < z_{\alpha/2}$ defines acceptance region.
- The two tails, $\overline{X} < \overline{x}_1$ and $\overline{X} > \overline{x}_2$ constitute the critical or rejection region. $\overline{x}_1 = \mu_0 z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ and $\overline{x}_2 = \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
- If X̄ falls in acceptance region, conclude μ = μ₀. Else reject H₀ & accept H₁
 Basically, if the (1 α)100% confidence interval covers μ₀, null hypothesis is
- accepted, else it's rejected. One-sided test: Test $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$ or $H_1: \mu < \mu_0$. The rest is

the same.

7.2.2 p-value Approach to Testing (observed level of significance)

p-value: Probability of obtaining a test statistic more extreme (\leq or \geq) than the observed sample given H_0 is true.

- 1. Convert a sample statistic e.g. \overline{X} into a test statistic e.g. Z statistic
- 2. Obtain the p-value
- 3. Compare the p-value with $\alpha/2$ (or α). If p-value $< \alpha/2$ (or α), reject H_0 .
- 7.2.3 Hypo Testing on Mean with Unknown Variance

Variance unknown and underlying distribution is normal

Two-sided test:

Let $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$ where S^2 is sample variance. Reject H_0 if $> t_{n-1;\alpha/2}$ or

One-sided test: Test the relevant side, $t > t_{n-1}$; α or $t < -t_{n-1}$; α

7.3 Hypo Testing Concerning Difference Between 2 Means 7.3.1 Known Variances Known variances, normal distribution, or n_1, n_2 both ≥ 30 , use section 6.4.1. Generally, since variance is known, we will use Z distribution.

7.3.2 Large Sample Testing with Unknown Variances

Unknown variances, both n_1, n_2 both ≥ 30 , use section 6.4.2

7.3.3 Unknown but Equal Variances

 $\sigma_1^2 = \sigma_2^2$, populations are normal, n_1, n_2 both ≤ 30 , use section 6.4.3 7.3.4 Paired Data

7.3.4 Talled Data Use section 6.4.5 7.4 Hypo Testing Concerning Variance 7.4.1 One Variance Case

Assume normal distribution where σ² is unknown.

• $H_0: \sigma^2 = \sigma_0^2$, use test statistic: $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$

Reject H₀ if within critical region:

H_1	Critical Region	
$\sigma^2 > \sigma_0^2$	$\chi^2 > \chi^2_{n-1;\alpha}$	
$\sigma^2 < \sigma_0^2$	$\chi^2 < \chi^2_{n-1;1-\alpha}$	
$\sigma^2 \neq \sigma_0^2$	$\chi^2 < \chi^2_{n-1;1-\alpha/2}$ or $\chi^2 > \chi^2_{n-1;\alpha/2}$	

7.4.2 Hypo Testing Concerning Ratio of Variances

- Assume normal distribution, unknown mean.
- $H_0: \sigma_1^2 = \sigma_2^2$, use test statistic: $F = \frac{S_1^2}{S_2^2} \sim F(n_1 1, n_2 1)$
- Reject H₀ if within critical region:

H_1	Critical Region	
$\sigma_1^2 > \sigma_2^2$	$F > F_{n_1-1,n_2-1;\alpha}$	
$\sigma_1^2 < \sigma_2^2$	$F < F_{n_1-1,n_2-1;1-\alpha}$	
$\sigma_1^2 \neq \sigma_2^2$	$F < F_{n_1-1,n_2-1;1-\alpha/2} \text{ or } F > F_{n_1-1,n_2-1;\alpha/2}$	