

Tratamiento de Señales

Version 2024-I

Implementación de Filtros usando Fourier en 2D

[Capítulo 4]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

DISEÑO DEL FILTRO EN EL DOMINIO DE LA FRECUENCIA

Si H es un filtro pasa bajos (por ejemplo Gaussiana):

H(u,v) (en el dominio de Fourier)

Top View
(la frecuencia central está en el centro)

Si H es un filtro pasa bajos (por ejemplo Gaussiana):

H(u,v) (en el dominio de Fourier)

Top View
(la frecuencia central está en el centro)

Si H es un filtro pasa bajos (por ejemplo Gaussiana):

fftshift(H)
(en el dominio de Fourier)

Top View
(la frecuencia central está en esquina superior izquierda)

Input X

Output Y

DISEÑO DEL FILTRO EN EL DOMINIO DEL ESPACIO

La convolución en 2D es similar a la convolución en 1D: es necesario hacer un *zero padding* para evitar el traslape.

Este programa obtiene el mismo resultado de

```
J=conv2(X,h,'same').
```

```
function J = conv2fft(X,h);
[A,B] = size(X);
[C,D] = size(h);
P = A + C - 1;
Q = B + D -1;
Xp = zeros(P,Q);
Xp(1:A,1:B) = X;
hp = zeros(P,Q);
hp(1:C,1:D) = h;
Xpf = fft2(Xp);
Hpf = fft2(hp);
Ypf = Xpf.*Hpf;
Yp = ifft2(Ypf);
m1 = (C+1)/2;
m2 = (D+1)/2;
    = Yp(m1:m1+A-1,m2:m2+B-1);
Y
```

Xp: Input (X) con zero padding

Size: P x Q

hp: Filtro Promedio (h) con zero padding

zeropadding

zero-

padding

Transformada de Fourier de Xp

Size: P x Q

Transformada de Fourier de hp

Size: P x Q

(resultados con fftshift)

Transformada Inversa de la multipicación

Transformada Inversa de la multipicación

(con recorte)

