Homework 4 Due Wednesday, October 5th

- 1. Let Γ be a subgroup of \mathbb{R}^n such that in each ball there are finitely-many elements of
- Γ . Show that Γ is a free \mathbb{Z} -module generated by at most n elements.
- **2**. Prove that a non-trivial discrete subgroup of \mathbb{R} is a free \mathbb{Z} -module of rank 1.
- **3**. Read sections 10.1–10.3 (Module theory), do problem 27 on p. 358, problems 10, 11 on p. 344 from Dummit and Foote, 3rd edition.
- 4. Read sections 8.1–8.3, do problems 1, 3, 5, 8 on p. 292 from Dummit and Foote, 3rd edition.
- **5**. A non-empty subset Y of a topological space X is called irreducible if it cannot be expressed as the union $Y = Y_1 \cup Y_2$ of two proper subsets, each one of which is closed in Y. The empty space is not considered to be irreducible.
- (i) Give an example of an irreducible space and an example of a space which is not irreducible.
- (ii) Show that any non-empty open subset of an irreducible space is irreducible and dense.
- (iii) Show that in an irreducible space any two non-empty open subsets have a non-empty intersection.
- (iv) If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \overline{Y} is also irreducible.