Modelling the European Energy System to Fulfil the Paris Agreement Targets: The Role of Informatics

Fabian Neumann, Tom Brown

Energy System Modelling Group of Dr. Tom Brown

Institute for Automation and Applied Informatics
Department of Informatics
Karlsruhe Institute of Technology

September 6, 2018

Agenda

- Energy System Challenges
- 2 Informatics in Energy System Optimisation
- 3 Open Energy Modelling
- 4 Conclusion and Outlook

The Global Carbon Dioxide Challenge

```
600 Gt budget gives 33% chance of 1.5°C
(Paris: 'pursue efforts to limit [warming] to 1.5°C')
800 Gt budget gives 66% chance of 2°C
```

(Paris: hold 'the increase...to well below 2°C')

It's not just about electricity demand...

EU28 CO_2 emissions in 2015 (total 3.2 Gt CO_2 , 8% of global):

... but electrification of other sectors is critical for decarbonisation!

Wind and solar dominate the expandable potentials for low-carbon energy provision, so electrification is essential to decarbonise other sectors.

Energy System Design: Research Questions

- What infrastructure (wind, solar, hydro generators, heating/cooling units, storage and networks) does a highly renewable energy system require, where should it go, and when should it be built?
- 2 Given a desired CO_2 emissions reduction (e.g. 95% compared to 1990), what is the **cost-optimal** combination of infrastructure?
- How do we deal with the variablility of wind and solar?

Assess the multitude of trade-offs in the energy system!

Approaches to Dealing with Variable Renewables

- I smoothing renewable feed-in in space with transmission networks,
- 2 smoothing the variability in time with storage, and
- **3** demand-side management with coupling to other energy **sectors** like heating, transport and industrial demand.

Problem 1: Spatial resolution and scope

Need high spatial resolution to represent renewables variations and transmission constraints, as well as continental scope to capture energy markets and large-scale smoothing.

Figure: Snapshot of wind speeds in EU

Problem 2: Temporal resolution and scope

Need high temporal resolution and multi-year time series to represent load and VRE resource variability, correlations and extreme events, and the use of storage.

Figure: An exemplary energy system time profile for Great Britain in July 2013

Problem 3: Model Complexity of Sector Coupling

Large number of interacting interdependencies.

What can we **simplify** while retaining accuracy?

What should we **co-optimise** and what can be treated separately?

Contribution of Informatics

Data side:

- Processing big weather datasets
- Geographical potential analysis
- Merging open data sources
- Visualization of results

Algorithmic side:

- Data reduction techniques such as network clustering and PCA
- New optimisation routines for more speed and accuracy
- Information theory to trace interdependencies
- Understanding the solution space

Example 1: Network Clustering

There are many algorithms for clustering/aggregating networks, but likewise many ways to determine the **nodal weights** for clustering.

Example 2: LOPF speedup with cycle flows

We can use dual graph theory to decompose the flows in the network into two parts:

- A flow on a spanning tree of a network. uniquely determined by nodal balance (KCL).
- 2 Cycle flows, which don't affect KCL and whose strength is fixed by enforcing KVL.

Up next: Explore performance boosts of non-linear power flow approximations/ relaxations.

- speed-up of up to 200 times
- average speed-up of factor 12
- speed-up is highest for large networks with lots of renewables

Source: J. Hrsch. H. Ronellenfitsch. D. Witthaut. T. Brown. Linear Optimal Power Flow Using Cycle Flows. https://arxiv.org/abs/1704.01881.2017

The Idea of Open Energy Modelling

The whole chain from raw data to modelling results should be open:

Why is openness important?

- Transparency
- Quality
- Credibility
- Avoiding double-work
- Encouraging cooperation
- Reproducibility

- Visibility
- Education
- Public funding
- Public engagement
- Unknown benefits and synergies

Open Energy Modelling Initiative

The **Open Energy Modelling Initiative** is a grass roots community of open energy modellers from universities, research institutions and the interested public that promotes open code, open data and open publishing in energy modelling.

Our free software **PyPSA** is online at pypsa.org and on GitHub.

- It can do total energy system investment optimisation with linear optimal power flow including generation expansion, transmission expansion, storage expansion, sector coupling, unit commitment, and security-constraints)
- It has data and models for power plants, storage, meshed AC grids, meshed DC grids, hydro plants, variable renewables and sector coupling at European scale.

The takeaway messages...

- The Energy Transition is an urgent challenge for science, society and industry.
- Studies show that the Energy Transition is feasible, but due to complexity, researchers have to simplify crucial modelling aspects.
- Our research group aims at leveraging new algorithms and methodologies from across informatics, physics, mathematics, economics and engineering to tackle this complexity.
- Taking account of European interactions, spatial & temporal detail, and sector coupling are **all crucial** for reducing CO₂ emissions.
- The energy system is complex and contains short- and long-term uncertainties (e.g. cost developments, scaleability of storage, social acceptance, consumer behaviour), so openness is critical.

What next?

Find the slides:

fneum.github.io/assets/energyinformatics.pdf

Send an email:

fabian.neumann@kit.edu

Get involved with the Open Energy Modelling Initiative:

openmod-initiative.org/

Find our models:

github.com/pypsa/PyPSA
github.com/pypsa/pypsa-eur

Of course, there is much more to find on my supervisor's website:

nworbmot.org