Fizyka 3.1 - Labolatorium

Skalowanie termopary i wyznaczanie temperatury krzepnięcia wody

Ćwiczenie 20a

Data wykonania ćwiczenia: 21.03.2024 Data oddania sprawozdania: 4.04.2024

1 Wstęp

W 1821 roku Thomas Seeback odkrył zjawisko nazwane potem zjawiskiem termoelektrycznym. Polega ono na przepływie prądu elektrycznego między spojeniami dwóch różnych metali, w przypadku gdy występuje między nimi różnica temperatur.

Na tym zjawisku opiera się działanie termopar, czyli przyrządów służących do pomiaru temperatury. Dzięki nim jesteśmy w stanie przetworzyć wielkość nieelektryczną jaką jest temperatura na napięcie. Jest to szczególnie przydatne w momencie gdy chcemy przesyłać sygnały na duże odległości, przetwarzać lub gromadzić dane o temperaturze badanego obiektu lub sterować różnymi procesami. Z dodatkowych zalet termopary jesteśmy w stanie wymienić jej niezawodność, prostotę użycia, duży zakres pomiarowy oraz mała bezwładność cieplna.

Wzór potrzebny do opracowania pomiarów:

 U_k - napięcie krzepnięcia¹

B - współczynnik równania liniowego

 α - współczynnik termoelektryczny

2 Wyniki i analiza pomiarów

2.1 Skalowanie termopary

Rysunek 1: Schemat pomiarowy

¹Napięcie krzepniecia wody jesteśmy w stanie uzyskać obliczając średnią arytmetyczną napięć mieszczących się w obszerze plateau.

Temperatura [°C]	Napięcie [mV]
46	46
48	58
50	65.3
52	70.7
54	75
56	78.8
58	81.6
60	85.3
62	89.2
64	93.8

Wykres przedstawiający powyższe dane:

Rysunek 2: Wykres funkcji U=f(T)

Dla powyższego wykresu możemy odczytać niepewność współczynnika kierunkowego u(A), który równa się:

$$u(A) = u(\alpha) \approx 0.1846$$

2.2 Wyznaczenie temperatury krzepnięcia wody oraz niepewności jej wyznaczenia

Czas [s]	Napięcie [V]
0	-0.823
20	-0.8188
40	-0.825
60	-0.853
80	-0.8754
100	-0.896
120	-0.8986
140	-0.8996
160	-0.893
180	-0.8997
200	-0.918
220	-0.938
240	-0.958
260	-0.9865
280	-0.977
300	-0.966
320	-0.993
340	-0.955
360	-0.9826
380	-0.977

Czas [s]	Napięcie [V]
400	-0.9949
420	-1.0113
440	-1.0064
460	-1.0094
480	-1.0144
500	-1.0119
520	-1.0216
540	-1.023
560	-1.038
580	-1.039
600	-1.075
620	-1.1111
640	-1.1352
660	-1.1556
680	-1.1654
700	-1.18
720	-1.146
740	-1.1364
760	-1.1468
780	-1.165

Czas [s]	Napięcie [V]
800	-1.174
820	-1.164
840	-1.136
860	-1.124
880	-1.1278
900	-1.1286
920	-1.116
940	-1.1186
960	-1.1236
980	-1.1203
1000	-1.1332
1020	-1.1338
1040	-1.122
1060	-1.122
1080	-1.118
1100	-1.111
1120	-1.145
1140	-1.164
1160	-1.159

Wykres przedstawiający powyższe dane:

Rysunek 3: Wykres funkcji U=f(t), oraz wyznaczanie wartości U_k oraz niepewności u (U_k)

$$U_k = -1.1373mV$$

Aby obliczyć niepewność u (U_k) nusimy najpierw policzyć niepewność standardową średniej napięć w obszarze plateau:

$$u_A(\overline{U}) = \sqrt{\frac{\sum_{i=1}^{n} (U_i - \overline{U})^2}{n(n-1)}} = 0.005380$$

Następnie liczymy niepewność typu B:

$$u_B(x) = \sqrt{\frac{(\Delta_p U)^2}{3}} = 0.00005774$$

Na końcu możemy policzyć niepewność całkowitą $\mathbf{u}(U_k)$:

$$u(x) = \sqrt{u_A^2 + u_B^2} = 0.00544$$

Po analizie powyższych danych z wykresu jesteśmy w stanie wyznaczyć temperaturę krzepnięcia wody:

$$T_k = \frac{U_k + B}{\alpha} = \frac{-1.1373 - 56.48}{2.3791} \approx -24.218^{\circ}C \approx -24^{\circ}C$$

Niepewność złożona $u_c(T_k)$ będzie równa:

$$\begin{split} u_c^2(T_k(U_k,B,\alpha)) &= \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) = \left(\frac{1}{\alpha}\right)^2 \cdot u^2(U_k) + \left(\frac{1}{\alpha}\right)^2 \cdot u^2(B) + \left(-\frac{U_k+B}{\alpha^2}\right)^2 \cdot u^2(\alpha) \\ &= \left(\frac{1}{2.3791}\right)^2 \cdot (0.00538)^2 + \left(\frac{1}{2.3791}\right)^2 \cdot (10.2078)^2 + \left(-\frac{-1.1373 - 56.48}{(2.3791)^2}\right)^2 \cdot (0.1846)^2 \approx 4.6841^\circ C \end{split}$$

3 Wnioski

Analiza wyników pomiarów ujawniła znaczną rozbieżność między zmierzoną temperaturą krzepnięcia wody $(-24^{\circ}C)$ a wartością oczekiwaną $(0^{\circ}C)$, co może potwierdzić błąd złożony, który wysniósł aż $4.68^{\circ}C$. Istotnym źródłem błędu okazało się skalowanie termopary, na które negatywnie wpłynęła ograniczona liczba wykonanych pomiarów oraz problemy z działaniem multimetru. Skutkiem tych czynników było błędne wyznaczenie współczynnika kierunkowego B, który prawdopodobnie został zaniżony o 55 mV.