AXIDDR SDRAM V1.0

IP User Guide(Beta Release)

August 4, 2024

Contents

IP Specifications	2
Licensing	3
IP Specification	4
IP Specification Overview	4
IP Support Details	5
Port List	
Parameters	
Resource Utilization	7
Design Flow	8
IP Customization and Generation	8
Synthesis and PnR	10
Test Bench	11
Release	
Revision History	13

IP Summary

Introduction

This document provides a technical overview of the AXI DDR SDRAM controller IP core. This pre-verified module facilitates communication between an AXI bus and DDR SDRAM memory devices. It bridges the protocol gap between the processor-centric AXI interface and the specialized commands required by DDR memory.

It translates AXI transactions into the specific command, address, and data signals required by the DDR memory. This core can be configured via Raptor's IP Catalog GUI interface.

Features

- 32-bit AXI4 slave interface
- Supporting AXI read and write transactions
- Handling address translation between AXI and DDR memory space
- Generating the necessary control signals for DDR memory refresh and power management
- Providing error detection and correction capabilities (depending on specific IP implementation)

Figure 1. AXIblock level diagram

Licensing

COPYRIGHT TEXT

Copyright (c) 2022 RapidSilicon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

IP Specification

Overview

The AXI DDR SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory) controller is a sophisticated memory interface employed in high-performance digital systems, leveraging the Advanced eXtensible Interface (AXI) protocol for optimal data transfer efficiency. DDR SDRAM operates by synchronizing data transfers to both the rising and falling edges of the clock signal, effectively doubling the data throughput compared to single data rate (SDR) SDRAM. The integration of AXI with DDR SDRAM ensures efficient and reliable data transactions, making it ideal for applications requiring high bandwidth and fast memory access, such as high-performance computing, graphics processing, and complex embedded systems.

An AXI-based memory controller translates AXI transactions into appropriate DDR commands while managing the timing and complexity of DDR operations. For read transactions, the memory controller checks if the required row in the DDR SDRAM is active; if not, it issues an activate command followed by a read command. The fetched data is then sent back through the AXI read data channel. For write transactions, the controller similarly activates the necessary row if it isn't already active and then issues a write command to store the data from the AXI write data channel into the DDR memory. The controller intelligently schedules these commands to optimize performance, including interleaving commands to different banks, issuing precharges when needed, and ensuring timely refresh operations.

The key DDR SDRAM commands include ACTIVATE, READ, WRITE, PRECHARGE, REFRESH, and NO OPERATION (NOP). The ACTIVATE command makes a specific row within a memory bank accessible for read or write operations. The READ command retrieves data from the activated row, while the WRITE command stores data in the activated row. The PRECHARGE command closes the currently active row in a bank, preparing it for the next activate command. The REFRESH command periodically refreshes the data in the memory cells to prevent data loss due to charge leakage. NOP commands are used to introduce delays as required by timing constraints.

By combining the high-speed capabilities of DDR memory with the flexible and efficient AXI protocol, the AXI DDR SDRAM controller optimizes data transactions through burst mode, supports out-of-order transactions, and includes quality of service (QoS) levels for prioritizing critical data transfers. The memory controller also hides the latency of DDR operations by overlapping commands and transactions where possible. Error handling mechanisms ensure reliable communication, making the AXI DDR SDRAM controller a critical component in modern digital systems, essential for maintaining high performance and power efficiency in demanding applications.

IP Support Details

Cor	Compliance IP Resources				Tool Flow				
Device	Interface	Source Files	Constraint File	Testbench	Simulation Model	Software Driver	Analyze and Elaboration	Simulation	Synthesis
GEMIN	AXI4	Systemverilog	SDC	Systemverilog	-	-	Raptor	Raptor	Raptor

Ports

Table 2 lists the top interface ports of the AXI Async FIFO.

Signal Name	I/O	Description				
AXI Clock and Reset						
i_s_axi_clk	I	AXI4 Clock				
i_s_axi_resetn	I	AXI4 RESET				
i_m_axi_clk	I	AXI4 Clock				
AXI WRITE ADDRESS C	HANNE	Ĺ				
s_axil_awvalid	I	AXI4 Write address valid				
s_axil_awready	О	AXI4 Write address ready				
s_axil_awaddr	I	AXI4 Write address				
s_axil_awprot	I	AXI4 Protection type				
AXI WRITE DATA CHAN	NEL					
s_axil_wvalid	I	AXI4 Write valid				
s_axil_wready	О	AXI4 Write ready.				
s_axil_wdata	I	AXI4 Write data				
s_axil_wstrb	I	AXI4 Write strobes				
AXI WRITE RESPONSE	AXI WRITE RESPONSE CHANNEL					
s_axil_bvalid	О	AXI4 Write response valid				
s_axil_bready	I	AXI4 Response ready				
s_axil_bresp	О	AXI4 Write response				
AXI READ ADDRESS CH	ANNEL					
s_axil_arvalid	I	AXI4 Read address valid				
s_axil_arready	О	AXI4 Read address ready				
s_axil_araddr	I	AXI4 Read address				
s_axil_arprot	I	AXI4 Protection type				
AXI READ DATA CHANN	IEL					
s_axil_rvalid	I	AXI4 Read valid				
s_axil_rready	О	AXI4 Read ready				
s_axil_rresp	I	AXI4 Read data				
s_axil_rdata	О	AXI4 Read response				
DDR Interface						
ddr_ck_p	I	DDR clock positive				
ddr_ck_n	О	DDR clock negative				
ddr_cke	I	DDR Clock enable				
ddr_cs_n	I	DDR chip select				
ddr_ras_n	I	DDR Row address strobe				
ddr_cas_n	О	DDR Column address strobe				
ddr_we_n	I	DDR wriite enable				

ddr_ba	I	DDR bank address
ddr_a	О	DDR Address
ddr_dm	I	DDR data mask
ddr_dqs	О	DDR data strobe
ddr_dq	I	DDR data

AXI Async FIFO Interface

Parameters

Table 3 lists the parameters of the AXI Async FFIFO.

Parameter	Values	Default Value	Description
READ_BUFFER	0-1	1	Data width of data being transferred.
BA_BITS	1-3	2	FIFO address width.
ROW_BITS	1-13	13	FIFO ID width.
COL_BITS	1-11	11	Depth of internal FIFO.
DQ_LEVEL	0-1	1	Data width of data being transferred.

Parameters

Resource Utilization

Please note that the utilization provided in this section for the AXI DDR SDRAM core should be considered as estimates, as they are based on its usage in conjunction with other design modules in the FPGA. Once integrated with other designs in the system, the FPGA resource utilization and core timing may differ from the reported results.

Tool	Raptor Design Suite					
FPGA Device	GEMINI					
	Configuration	Resource Utilization				
	Options	Configuration	Resources	Utilized		
	FIFO DEPTH	8	LUT	119		
Minimum	DATA WIDTH	8	Registers	217		
Resource	ADDR WIDTH	8	BRAM	5		
Resource	ID WIDTH	8	DSP	0		
	Options	Configuration	Resources	Utilized		
	FIFO DEPTH	8096	LUT	610		
Minimum	DATA WIDTH	64	Registers	717		
Resource	ADDR WIDTH	32	BRAM	22		
Resource	ID WIDTH	8	DSP	0		

Design Flow

IP Customization and Generation

AXI DDR SDRAM IP core is a part of the Raptor Design Suite Software. A customized AXI DDR SDRAM can be generated from the Raptor's IP configurator window.

Selecting AXI DDR SDRAM from IP Catalog List

Parameters Customization: From the IP configuration window, the parameters of the AXI DDR SDRAM can be configured and AXI DDR SDRAM features can be enabled for generating a customized AXI DDR SDRAM IP core that suits the user application requirement.

IP Configuration

Synthesis and PnR

Raptor Suite is armed with tools for Synthesis along with Post and Route capabilities and the generated post-synthesis and post-route and place netlists can be viewed and analyzed from within the Raptor. The generated bitstream can then be uploaded on an FPGA device to be utilized in hardware application

Test Bench

The IP package hosts a simple Verilog based test bench that validates design functionality. It can be simulated using Iverilog, Verilator or other simulators. The simulation can be easily run by clicking the "Simulate IP" button as shown in figure 4. The waveforms are also dumped for in-depth analysis of the whole operation which can be seen by clicking the "View Waveform" button.

Simulate IP Window

Revision History

Date	Version	Revisions
August 4, 2024	0.01	Initial version AXIUser Guide Document