

COMP 3 - 1 (RC)

S.E. (Comp.) (Semester – III) (Revised Course) Examination, May/June 2014 APPLIED MATHEMATICS – III

Dur	atio	n: 3 Hours Total Marks: 1	Total Marks: 100	
		Instructions: 1) Attempt any five questions. Atleast one from each Module. 2) Assume suitable data, if necessary.		
		MODULE-I		
1	a)	Define a Hermitian matrix. If A and B are Hermitian matrices show that AB-BA is skew Hermitian.	4	
	b)	Find the rank of the matrix by reducing it to its normal form :	6	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		Find the values of a and b for which the equations $x + ay + z = 3$; $x + 2y + 2z = b$; $x + 5y + 3z = 9$ are consistant. When will these equations have a unique solution?	6	
	d)	Are the following vectors $x = (3, 2, 7)$. $y = (2, 4, 1)$, $z = (1, -3, 6)$ linearly dependent. If so find a relation between them.	4	
2.	a)	Find the eigen value and eigen vector of the matrix $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 1 & 1 & 3 \end{bmatrix}$	8	
	b)	A real symmetric matrix A has eigen values 6, 3, 2 with eigen vectors [1, 1, 2]		
		and [1, 1, -1] corresponding to 6 and 3 determine matrix A.	6	
	c)	Find e^A given $A = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$.	6	

6

6

8

6

MODULE - II

- 3. a) A missile can be launched if two relays A and B both have failed. The probability of A failing is 0.01 and B failing is 0.04. It is also known that B is more likely to fail, probability of 0.08, if A has failed: (3+3+2)
 - i) What is the probability of an accidental launch?
 - ii) What is the probability that A will fail if B fails?
 - iii) Are the events "A fails" and "B fails" statistical independent?
 - b) A students is known to arrive late to class 40% of the time. If the class meets once on each of the five days of the week:
 - a) Find the probability that the student is late for at least 3 classes of the week.
 - b) What is the probability that the student is late for the second time of the week on Thursday?
 - c) Define independent random variables. Show that the sum of two Poisson independent random variables is Poisson.
- 4. a) The average amount of time (in minutes) it takes to be served at a cafeteria is a random variable with probability density function $f(x) = \frac{1}{3}e^{-x} \times 0$.
 - i) Find the average amount of time it takes to be served.
 - ii) Find the probability that a person will be served in 5 minutes.
 - b) Find the moment generating function of a normal distribution $N(\mu, \sigma)$. Use it find the mean.
 - c) A manufacturer claimed that 95% of the equipment supplied to a factory confirmed to specification. An examination of sample of 200 units of equipment revealed that 15 were faulty. Test his claim at significance level of 0.01 and 0.05.

MODULE - III

5. a) If L (f(t) = F (s), where L (f(t)) denotes the Laplace transform of f (t), prove the following:

6

i)
$$L(f'(t)) = sF(s) + f(0)$$

ii)
$$L \left(\int_{0}^{t} f(t) dt \right) = 1/s F(s)$$
.

b) Find the Laplace transform of :

6

ii)
$$\int_{0}^{t} Cos2(t - u) Sinu du$$

c) Solve the ordinary differential equation, using Laplace transforms

$$y''(t) + y(t) = Sin(4t), y(0) = 1, y(\pi/2) = -2$$
.

8

6. a) If f (t) is a periodic function having period p, then prove that

L (f (t)) = $\frac{1}{1 - e^{-ps}} \int_{0}^{p} e^{-st} f(t) dt$. Find the Laplace transform of

$$f(t) = 3t + 2$$
 $0 < t < 2$, $f(t + 2) = f(t)$.

10

b) Solve the integro-differential equation using Laplace transform

$$\frac{dy}{dt} + \int_{0}^{t} y(t-u) e^{u} du = e^{t}, y(0) = 0$$

5

c) Using Laplace transform evaluate $\int_{0}^{x} \frac{1 - \cos 3t}{t} dt$

5

MODULE-IV

-4-

7. a) Find the Fourier transform of f (t) = $\begin{cases} 4 - t^2 & 0 < t < 2 \\ 0 & t \ge 2 \end{cases}$. Hence show that

$$\int_{0}^{\infty} \frac{\sin 2x - 2x}{x^{3}} \frac{\cos 2x}{x} dx = \pi$$

- b) If F(f(x)) = F(s) is the Fourier transform of f(x), show that:
 - i) $F(f(x-a)) = e^{ias} F(s)$
 - ii) $F(f'(x)) = -is F(s) if f(x) \rightarrow 0 as x \rightarrow \pm \infty$.
- c) Find the Fourier Sine transform of $f(x) = e^{-2x}$.
- 8. a) Find the Z-transform of the following:
 - i) $2^n / (n + 1)!$
 - ii) 3n +2ⁿ,
 - b) If Z(f(n) = F(z)) then show that:
 - i) $Z\left(\sum_{1}^{n} f(k)\right) = \frac{z}{z-1} F(z)$
 - ii) $Z(n f(n)) = -z \frac{d}{dz}(F(z))$.
 - c) Solve the difference equation give below using Z-transform $y_{n+2} + 5y_{n+1} + 4y_n = 2^n$, $y_0 = 0$, $y_1 = 1$.