

Rock Mass Rating (RMR)

Need for **Engineering Classific**ation!

- They provide better communication between planners, geologists, designers, contractors, and engineers.
- An engineer's observations, experience, and judgment are correlated and consolidated more effectively by an engineering (quantitative) classification system.
- Engineers prefer numbers in place of descriptions; hence, an engineering classification system has considerable application in an overall assessment of the rock quality.
- An ideal **application** of engineering rock mass classification occurs in the planning of hydroelectric projects, tunnels, caverns, bridges, building complexes, hill roads, rail tunnels, and so forth.

Rock Mass Rating

- The geomechanical classification or the Rock Mass Rating (RMR) system was proposed by **Bieniawski** (1973) on the basis of his experiences in shallow tunnels in sedimentary rocks
- The classification has undergone several significant evolutions in the year 1975, 1976, 1979 and 1984
- The Rock Mass Rating (RMR) System is a geomechanical classification system for rocks, developed by Z. T. Bieniawski between 1972 and 1973. It combines the most significant geologic parameters of influence and represents them with one overall comprehensive index of rock mass quality, which is used for the design and construction of excavations in rock, such as tunnels, mines, slopes and foundations
- To apply the geomechanical classification system, a given site should be divided into a number of geological structural units in such a way that each type of rock mass is represented by a separate geological structural unit

Bieniawski (1973) proposed a quantitative classification system considering six parameters

- * Uniaxial compressive strength (UCS) of intact rock material
- * Rock Quality Designation (RQD)
- **Spacing of Joint or discontinuity**
- * Condition of Joint or discontinuity
- Groundwater condition
- **❖** Joint orientation

^{*} Assigned a rating (numerical value) to each condition & the total is RMR

1. Strength of Intact Rock Materials

Strength of intact rock material (Bieniawski, 1979 & 1984 and ISO14689)

Qualitative	Compressive	Point Load Strength	Rating
Description	Strength (MPa)	(MPa)	
Extremely strong*	> 250	8	15
Very strong	100 -250	4-8	12
Strong	50 -100	2-4	7
Medium strong*	25 - 50	1-2	4
Weak	5 - 25	use of uniaxial	2
		compressive strength is	
		preferred	
Very weak	1 - 5	-do-	1
Extremely weak	< 1	-do-	0

<u>Note</u>: 1. At compressive strength of rock material less than 1.0 MPa, many rock materials would be regarded as soil.

2. Terms in first column (*) redefined according to ISO14689.

Sources: Bieniawski, 1979, 1984; ISO14689-1, 2003

RQD Calculation (Direct Method)

Total length of core run = 200 cms

RQD =
$$\frac{\sum \text{Length of core pieces} > 10 \text{ cm length}}{\text{Total length of core run}} \times 100$$

$$RQD = \frac{38 + 17 + 20 + 35}{200} \times 100 = 55\%$$

2. Rock Quality Designation

Rock Quality Designation	Rock	Qua	lity	Desig	gnation
---------------------------------	------	-----	------	-------	---------

Qualitative description	RQD (%)	Rating
Excellent	90–100	20
Good	75–90	17
Fair	50–75	13
Poor	25–50	8
Very poor	<25	3

Source: Bieniawski, 1979.

3. Joint or discontinuity spacing

Spacing between two joints of same set

SPACING OF DISCONTINUITIES (Bieniawski, 1979)

Description	Spacing	Rating
	(m)	
Very wide	> 2	20
Wide	0.6 - 2	15
Moderate	0.2 - 0.6	10
Close	0.06- 0.2	8
Very close	< 0.06	5

<u>Note</u>: If more than one discontinuity sets are present and the spacing of discontinuities of each set varies, consider the set with lowest rating

The term "discontinuity" covers joints, beddings or foliations, shear zones, minor faults, and other surfaces of weakness

4. Joint condition

This parameter includes roughness of discontinuity surfaces, their separation (aperture or opening), length or continuity (persistence), weathering of the discontinuity surfaces (roughness), and infilling (gouge) material.

CONDITION OF DISCONTINUITIES (Bieniawski, 1979)

Description	Rating
Very rough and unweathered, wall rock tight and	30
discontinuous, no separation	
Rough and slightly weathered, wall rock surface	25
separation <1mm	
Slightly rough and moderately to highly	20
weathered, wall rock surface separation <1mm	
Slickensided wall rock surface or 1-5mm thick	10
gouge or 1-5mm wide continuous discontinuity	
5mm thick soft gouge, 5mm wide continuous	0
discontinuity	

Study/look/observe the surface of the discontinuity: Roughness, Tightness, Alteration, Infillings, etc-

Roughness

Aperture

5. Groundwater Condition

Groundwater Condition	on				
Inflow per 10 m tunnel length (L/min)	None	<10	10–25	25–125	>125
Ratio of joint water pressure to major principal stress	0	0-0.1	0.1-0.2	0.2-0.5	>0.5
General description	Completely dry	Damp	Wet	Dripping	Flowing
Rating	15	10	7	4	0

Source: Bieniawski, 1979.

- * It is essential to identify the "most critical condition" for the assessment of the rock strata. This means that the geological features that are most significant for stability purposes will have an overriding influence
- Water-in-rush is an extreme condition, being faced in many Himalayan tunnel
- Water is responsible to faster weathering of rocks; Affects long-term behaviour in shallow tunnels
- Erodible binding/cementing material washed away with time (high pressure)

6. Joint Orientation

Adjustment to	r Joint Orientation	
tation		

Joint orientation assessment for	Very favorable	Favorable	Fair	Unfavorable	Very unfavorable
Tunnels	0	-2	-5	-10	-12
Raft foundation	0	-2	-7	-15	-25
Slopes*	0	-5	-25	-50	-60

Design Parameters and Engineering Properties of Rock Mass

	Parameter/	RMR (rock class)					
S. No.	properties of rock mass	100-81 (I)	80–61 (II)	60–41 (III)	40–21 (IV)	<20 (V)	
1	Classification of rock mass	Very good	Good	Fair	Poor	Very poor	
2	Average stand-up time	20 years for 15 m span	1 year for 10 m span	1 week for 5 m span	10 hours for 2.5 m span	30 minutes for 1 m span	
3	Cohesion of rock mass (MPa)*	>0.4	0.3-0.4	0.2-0.3	0.1–0.2	<0.1	
4	Angle of internal friction of rock mass	>45°	35–45°	25–35°	15–25°	<15°	

^{*}These values are applicable to slopes only in saturated and weathered rock mass

^{*}In tunnels, the values are found to be more because of confinement

Applications of RMR

- Rock Mass Rating RMR has found wide applications in various types of engineering projects such as tunnels, slopes, foundations, and mines
- A rock mass rating system provides a method of incorporating some of the complex mechanics of actual rocks into engineering design.
- Moreover, the system was the first to enable estimation of rock mass properties, such as the modulus of deformation, in addition to providing tunnel support guidelines and the stand-up time of underground excavations.

Thanks

	PARA	AMETER	Range of values // ratings						
Strength of intact		Point-load strength index	> 10 MPa	4 - 10 MPa	2 - 4 MPa	1 - 2 MPa	unlaxial	this low rational compr. 8 preferre	strength
1	rock material	Uniaxial com- pressive strength	> 250 MPa	100 - 250 MPa	50 - 100 MPa	25 - 50 MPa	5 - 25 MPa	1-5 MPa	< 1 MPa
		RATING	15	12	7	4	2	1	0
_	Drill core qu	uality RQD	90 - 100%	75 - 90%	50 - 75%	25 - 50%		< 25%	
2	<u> </u>	RATING	20	17	13	8		5	
_	Spacing of	discontinuities	> 2 m	0.6 - 2 m	200 - 600 mm	60 - 200 mm		< 60 mn	n
3		RATING	20	15	10	8		5	
	İ	Length, persistence	< 1 m	1 - 3 m	3 - 10 m	10 - 20 m		> 20 m	
		Rating	6	4	2	1		0	
		Separation	none	< 0.1 mm	0.1 - 1 mm	1 - 5 mm		> 5 mm	
		Rating	6	5	4	1		0	
	Condition	Roughness	very rough	rough	slightly rough	smooth	sli	ckensid	ed
4	of discon-	Rating	6	5	3	1		0	
	tinuities		none	Hard filling		Soft filling			
	!	Infilling (gouge)	-	< 5 mm	> 5 mm	< 5 mm		> 5 mm	1
		Rating	6	4	2	2		0	
		Weathering	unweathered	slightly w.	moderately w.	highly w.	de	compos	ed
		Rating	6	5	3	1		0	
	Ground	Inflow per 10 m tunnel length	none	< 10 litres/min	10 - 25 litres/min	25 - 125 litres/min	> 12	25 litres	/min
5	water	p _w / σ1	0	0 - 0.1	0.1 - 0.2	0.2 - 0.5		> 0.5	
		General conditions	completely dry	damp	wet	dripping		flowing	
	ļ	RATING	15	10	7	4		0	

B. RATING ADJUSTMENT FOR DISCONTINUITY ORIENTATIONS

		Very favourable	Favourable	Fair	Unfavourable	Very unfavourable
	Tunnels	0	-2	-5	-10	-12
RATINGS	Foundations	0	-2	-7	-15	-25
l .	Slopes	0	-5	-25	-50	-60

C. ROCK MASS CLASSES DETERMINED FROM TOTAL RATINGS

Rating	100 - 81	80 - 61	60 - 41	40 - 21	< 20
Class No.	1	Ш	III	IV	V
Description	VERY GOOD	GOOD	FAIR	POOR	VERY POOR

GROUNDWATER CONDITIONS

- In the case of tunnels, the rate of inflow of groundwater per 10 m length is determined.
- General condition can be described as completely dry, damp, wet, dripping, and flowing.
- If actual water pressure data are available

water pressure major principal stress

Major principal stress is vertical stress which is determined from the depth below surface and increases with depth at 1.1 psi per foot of the depth below surface.