Histograms

A **histogram** is a special type of column statistic that provides more detailed information about the data distribution in a table column. A histogram sorts values into "buckets," as you might sort coins into buckets.

Based on the NDV and the distribution of the data, the database chooses the type of histogram to create. (In some cases, when creating a histogram, the database samples an internally predetermined number of rows.) The types of histograms are as follows:

- Frequency histograms and top frequency histograms
- Height-Balanced histograms (legacy)
- Hybrid histograms

Purpose of Histograms

By default the optimizer assumes a uniform distribution of rows across the distinct values in a column.

For columns that contain data skew (a nonuniform distribution of data within the column), a histogram enables the optimizer to generate accurate cardinality estimates for filter and join predicates that involve these columns.

For example, a California-based book store ships 95% of the books to California, 4% to Oregon, and 1% to Nevada. The book orders table has 300,000 rows. A table column stores the state to which orders are shipped. A user queries the number of books shipped to Oregon. Without a histogram, the optimizer assumes an even distribution of 300000/3 (the NDV is 3), estimating cardinality at 100,000 rows. With this estimate, the optimizer chooses a full table scan. With a histogram, the optimizer calculates that 4% of the books are shipped to Oregon, and chooses an index scan.

When Oracle Database Creates Histograms

If DBMS_STATS gathers statistics for a table, and if queries have referenced the columns in this table, then Oracle Database creates histograms automatically as needed according to the previous query workload.

The basic process is as follows:

- You run DBMS_STATS for a table with the METHOD_OPT parameter set to the default SIZE AUTO.
- 2. A user queries the table.
- 3. The database notes the predicates in the preceding query and updates the data dictionary table SYS.COL USAGE\$.
- 4. You run DBMS_STATS again, causing DBMS_STATS to query SYS.COL_USAGE\$ to determine which columns require histograms based on the previous query workload.

Consequences of the AUTO feature include the following:

- As queries change over time, DBMS_STATS may change which statistics it gathers. For example, even if the data in a table does not change, queries and DBMS_STATS operations can cause the plans for queries that reference these tables to change.
- If you gather statistics for a table and do not query the table, then the database does not
 create histograms for columns in this table. For the database to create the histograms
 automatically, you must run one or more queries to populate the column usage information
 in SYS.COL USAGE\$.

Example 11-1 Automatic Histogram Creation

Assume that sh.sh_ext is an external table that contains the same rows as the sh.sales table. You create new table sales2 and perform a bulk load using sh_ext as a source, which automatically creates statistics for sales2. You also create indexes as follows:

```
SQL> CREATE TABLE sales2 AS SELECT * FROM sh_ext;
SQL> CREATE INDEX sh_12c_idx1 ON sales2(prod_id);
SQL> CREATE INDEX sh 12c idx2 ON sales2(cust id,time id);
```

You query the data dictionary to determine whether histograms exist for the sales2 columns. Because sales2 has not yet been queried, the database has not yet created histograms:

```
SQL> SELECT COLUMN_NAME, NOTES, HISTOGRAM

2 FROM USER_TAB_COL_STATISTICS

3 WHERE TABLE_NAME = 'SALES2';

COLUMN_NAME NOTES HISTOGRAM

AMOUNT_SOLD STATS_ON_LOAD NONE
QUANTITY_SOLD STATS_ON_LOAD NONE
PROMO_ID STATS_ON_LOAD NONE
CHANNEL_ID STATS_ON_LOAD NONE
TIME_ID STATS_ON_LOAD NONE
CUST_ID STATS_ON_LOAD NONE
PROD_ID STATS_ON_LOAD NONE
PROD_ID STATS_ON_LOAD NONE
```

You query sales2 for the number of rows for product 42, and then gather table statistics using the GATHER AUTO option:

```
SQL> SELECT COUNT(*) FROM sales2 WHERE prod_id = 42;

COUNT(*)
-----
12116

SQL> EXEC DBMS STATS.GATHER TABLE STATS(USER, 'SALES2', OPTIONS=>'GATHER AUTO');
```

A query of the data dictionary now shows that the database created a histogram on the prod id column based on the information gather during the preceding query:

```
SQL> SELECT COLUMN_NAME, NOTES, HISTOGRAM
2  FROM    USER_TAB_COL_STATISTICS
3  WHERE    TABLE_NAME = 'SALES2';
COLUMN NAME    NOTES    HISTOGRAM
```


AMOUNT_SOLD	STATS_ON_LOAD	NONE
QUANTITY_SOLD	STATS_ON_LOAD	NONE
PROMO_ID	STATS_ON_LOAD	NONE
CHANNEL_ID	STATS_ON_LOAD	NONE
TIME_ID	STATS_ON_LOAD	NONE
CUST_ID	STATS_ON_LOAD	NONE
PROD_ID	${\tt HISTOGRAM_ONLY}$	FREQUENCY

How Oracle Database Chooses the Histogram Type

Oracle Database uses several criteria to determine which histogram to create: frequency, top frequency, height-balanced, or hybrid.

The histogram formula uses the following variables:

NDV

This represents the number of distinct values in a column. For example, if a column only contains the values 100, 200, and 300, then the NDV for this column is 3.

• n

This variable represents the number of histogram buckets. The default is 254.

• p

This variable represents an internal percentage threshold that is equal to (1-(1/n)) * 100. For example, if n = 254, then p is 99.6.

An additional criterion is whether the <code>estimate_percent</code> parameter in the <code>DBMS_STATS</code> statistics gathering procedure is set to <code>AUTO SAMPLE SIZE</code> (default).

The following diagram shows the decision tree for histogram creation.

Figure 11-1 Decision Tree for Histogram Creation

Cardinality Algorithms When Using Histograms

For histograms, the algorithm for cardinality depends on factors such as the endpoint numbers and values, and whether column values are popular or nonpopular.

Endpoint Numbers and Values

An **endpoint number** is a number that uniquely identifies a bucket. In frequency and hybrid histograms, the endpoint number is the cumulative frequency of all values included in the current and previous buckets.

For example, a bucket with endpoint number 100 means the total frequency of values in the current and all previous buckets is 100. In height-balanced histograms, the optimizer numbers buckets sequentially, starting at 0 or 1. In all cases, the endpoint number is the bucket number.

An endpoint value is the highest value in the range of values in a bucket. For example, if a bucket contains only the values 52794 and 52795, then the endpoint value is 52795.

Popular and Nonpopular Values

The popularity of a value in a histogram affects the cardinality estimate algorithm.

Specifically, the cardinality estimate is affected as follows:

Popular values

A popular value occurs as an endpoint value of multiple buckets. The optimizer determines whether a value is popular by first checking whether it is the endpoint value for a bucket. If so, then for frequency histograms, the optimizer subtracts the endpoint number of the previous bucket from the endpoint number of the current bucket. Hybrid histograms already store this information for each endpoint individually. If this value is greater than 1, then the value is popular.

The optimizer calculates its cardinality estimate for popular values using the following formula:

```
cardinality of popular value =
  (num of rows in table) *
  (num of endpoints spanned by this value / total num of endpoints)
```

Nonpopular values

Any value that is not popular is a nonpopular value. The optimizer calculates the cardinality estimates for nonpopular values using the following formula:

```
cardinality of nonpopular value =
  (num of rows in table) * density
```

The optimizer calculates density using an internal algorithm based on factors such as the number of buckets and the NDV. Density is expressed as a decimal number between 0 and 1. Values close to 1 indicate that the optimizer expects many rows to be returned by a query referencing this column in its predicate list. Values close to 0 indicate that the optimizer expects few rows to be returned.

Oracle Database Reference to learn about the DBA_TAB_COL_STATISTICS.DENSITY column

Bucket Compression

In some cases, to reduce the total number of buckets, the optimizer compresses multiple buckets into a single bucket.

For example, the following frequency histogram indicates that the first bucket number is 1 and the last bucket number is 23:

ENDPOINT_	NUMBER	ENDPOINT_	VALUE
	1		52792
	6		52793
	8		52794
	9		52795
	10		52796
	12		52797
	14		52798
	23		52799

Several buckets are "missing." Originally, buckets 2 through 6 each contained a single instance of value 52793. The optimizer compressed all of these buckets into the bucket with the highest endpoint number (bucket 6), which now contains 5 instances of value 52793. This value is popular because the difference between the endpoint number of the current bucket (6) and the previous bucket (1) is 5. Thus, before compression the value 52793 was the endpoint for 5 buckets.

The following annotations show which buckets are compressed, and which values are popular:

ENDPOINT_NUMBER ENDPOINT	_VALUE	
1	52792 ->	> nonpopular
6	52793 ->	> buckets 2-6 compressed into 6; popular
8	52794 ->	> buckets 7-8 compressed into 8; popular
9	52795 ->	> nonpopular
10	52796 ->	> nonpopular
12	52797 ->	> buckets 11-12 compressed into 12; popular
14	52798 ->	> buckets 13-14 compressed into 14; popular
23	52799 ->	> buckets 15-23 compressed into 23; popular

Frequency Histograms

In a **frequency histogram**, each distinct column value corresponds to a single bucket of the histogram. Because each value has its own dedicated bucket, some buckets may have many values, whereas others have few.

An analogy to a frequency histogram is sorting coins so that each individual coin initially gets its own bucket. For example, the first penny is in bucket 1, the second penny is in bucket 2, the

first nickel is in bucket 3, and so on. You then consolidate all the pennies into a single penny bucket, all the nickels into a single nickel bucket, and so on with the remainder of the coins.

Criteria For Frequency Histograms

Frequency histograms depend on the number of requested histogram buckets.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram Type", the database creates a frequency histogram when the following criteria are met:

- NDV is less than or equal to n, where n is the number of histogram buckets (default 254).
 - For example, the sh.countries.country_subregion_id column has 8 distinct values, ranging sequentially from 52792 to 52799. If *n* is the default of 254, then the optimizer creates a frequency histogram because 8 <= 254.
- The estimate_percent parameter in the DBMS_STATS statistics gathering procedure is set to either a user-specified value or to AUTO SAMPLE SIZE.

Starting in Oracle Database 12c, if the sampling size is the default of AUTO_SAMPLE_SIZE, then the database creates frequency histograms from a full table scan. For all other sampling percentage specifications, the database derives frequency histograms from a sample. In releases earlier than Oracle Database 12c, the database gathered histograms based on a small sample, which meant that low-frequency values often did not appear in the sample. Using density in this case sometimes led the optimizer to overestimate selectivity.

Oracle Database PL/SQL Packages and Types Reference to learn about ${\tt AUTO\ SAMPLE\ SIZE}$

Generating a Frequency Histogram

This scenario shows how to generate a frequency histogram using the sample schemas.

Assumptions

This scenario assumes that you want to generate a frequency histogram on the sh.countries.country subregion id column. This table has 23 rows.

The following query shows that the <code>country_subregion_id</code> column contains 8 distinct values (sample output included) that are unevenly distributed:

```
SELECT country_subregion_id, count(*)
FROM sh.countries
GROUP BY country_subregion_id
ORDER BY 1;
```

COUNTRY_SUBREGION_ID	COUNT(*)
52792	1
52793	5
52794	2
52795	1
52796	1

52797	2
52798	2
52799	9

To generate a frequency histogram:

1. Gather statistics for sh.countries and the country_subregion_id column, letting the number of buckets default to 254.

For example, execute the following PL/SQL anonymous block:

```
BEGIN
   DBMS_STATS.GATHER_TABLE_STATS (
      ownname => 'SH'
, tabname => 'COUNTRIES'
, method_opt => 'FOR COLUMNS COUNTRY_SUBREGION_ID'
);
END;
```

2. Query the histogram information for the country subregion id column.

For example, use the following query (sample output included):

The optimizer chooses a frequency histogram because n or fewer distinct values exist in the column, where n defaults to 254.

3. Query the endpoint number and endpoint value for the country subregion id column.

For example, use the following query (sample output included):

```
SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE
FROM USER_HISTOGRAMS
WHERE TABLE_NAME='COUNTRIES'
AND COLUMN_NAME='COUNTRY_SUBREGION_ID';

ENDPOINT_NUMBER ENDPOINT_VALUE

1 52792
6 52793
8 52794
9 52795
10 52796
12 52797
14 52798
23 52799
```


Figure 11-2 is a graphical illustration of the 8 buckets in the histogram. Each value is represented as a coin that is dropped into a bucket.

Figure 11-2 Frequency Histogram

As shown in Figure 11-2, each distinct value has its own bucket. Because this is a frequency histogram, the endpoint number is the cumulative frequency of endpoints. For 52793, the endpoint number 6 indicates that the value appears 5 times (6 - 1). For 52794, the endpoint number 8 indicates that the value appears 2 times (8 - 6).

Every bucket whose endpoint is at least 2 greater than the previous endpoint contains a popular value. Thus, buckets 6, 8, 12, 14, and 23 contain popular values. The optimizer calculates their cardinality based on endpoint numbers. For example, the optimizer calculates the cardinality (C) of value 52799 using the following formula, where the number of rows in the table is 23:

```
C = 23 * (9 / 23)
```

Buckets 1, 9, and 10 contain nonpopular values. The optimizer estimates their cardinality based on density.

See Also:

- Oracle Database PL/SQL Packages and Types Reference to learn about the DBMS STATS.GATHER TABLE STATS procedure
- Oracle Database Reference to learn about the USER TAB COL STATISTICS view
- Oracle Database Reference to learn about the USER HISTOGRAMS view

Top Frequency Histograms

A **top frequency histogram** is a variation on a frequency histogram that ignores nonpopular values that are statistically insignificant.

For example, if a pile of 1000 coins contains only a single penny, then you can ignore the penny when sorting the coins into buckets. A top frequency histogram can produce a better histogram for highly popular values.

Criteria For Top Frequency Histograms

If a small number of values occupies most of the rows, then creating a frequency histogram on this small set of values is useful even when the NDV is greater than the number of requested histogram buckets. To create a better quality histogram for popular values, the optimizer ignores the nonpopular values and creates a top frequency histogram.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram Type", the database creates a top frequency histogram when the following criteria are met:

- NDV is greater than n, where n is the number of histogram buckets (default 254).
- The percentage of rows occupied by the top n frequent values is equal to or greater than threshold p, where p is (1-(1/n))*100.
- The estimate_percent parameter in the DBMS_STATS statistics gathering procedure is set to AUTO SAMPLE SIZE.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about AUTO SAMPLE SIZE

Generating a Top Frequency Histogram

This scenario shows how to generate a top frequency histogram using the sample schemas.

Assumptions

This scenario assumes that you want to generate a top frequency histogram on the sh.countries.country subregion id column. This table has 23 rows.

The following query shows that the <code>country_subregion_id</code> column contains 8 distinct values (sample output included) that are unevenly distributed:

To generate a top frequency histogram:

 Gather statistics for sh.countries and the country_subregion_id column, specifying fewer buckets than distinct values.

For example, enter the following command to specify 7 buckets:

```
BEGIN
   DBMS_STATS.GATHER_TABLE_STATS (
      ownname => 'SH'
, tabname => 'COUNTRIES'
, method_opt => 'FOR COLUMNS COUNTRY_SUBREGION_ID SIZE 7'
);
END;
```

2. Query the histogram information for the country subregion id column.

For example, use the following query (sample output included):

The sh.countries.country_subregion_id column contains 8 distinct values, but the histogram only contains 7 buckets, making n=7. In this case, the database can only create a top frequency or hybrid histogram. In the country_subregion_id column, the top 7 most frequent values occupy 95.6% of the rows, which exceeds the threshold of 85.7%, generating a top frequency histogram.

3. Query the endpoint number and endpoint value for the column.

For example, use the following query (sample output included):

```
SELECT ENDPOINT NUMBER, ENDPOINT VALUE
FROM USER HISTOGRAMS
WHERE TABLE NAME='COUNTRIES'
AND
    COLUMN NAME='COUNTRY SUBREGION ID';
ENDPOINT NUMBER ENDPOINT VALUE
                   52792
            1
            6
                      52793
                     52794
            9
                     52796
               52797
52798
            11
            13
            22
                      52799
```

Figure 11-3 is a graphical illustration of the 7 buckets in the top frequency histogram. The values are represented in the diagram as coins.

52793 52793 52792 52793 (52793 (52793 52794 (52794) **Endpoint Value Endpoint Value Endpoint Value** (52792 (52793 (52794 Endpoint Number: 1 Endpoint Number: 6 Endpoint Number: 8 52796 52797 (52797 **Endpoint Value Endpoint Value** (52796 (52797 Endpoint Number: 9 **Endpoint** Number: 11 52799 52799 (52799 52799 (52799 (52799 52799 (52799 (52799 52798 (52798 **Endpoint Value Endpoint Value** (52798 (52799 **Endpoint Endpoint** Number: 13 Number: 22

Figure 11-3 Top Frequency Histogram

As shown in Figure 11-3, each distinct value has its own bucket except for 52795, which is excluded from the histogram because it is nonpopular and statistically insignificant. As in a standard frequency histogram, the endpoint number represents the cumulative frequency of values.

See Also:

- "Criteria For Frequency Histograms"
- Oracle Database PL/SQL Packages and Types Reference to learn about the DBMS STATS.GATHER TABLE STATS procedure
- Oracle Database Reference to learn about the USER TAB COL STATISTICS view
- Oracle Database Reference to learn about the USER HISTOGRAMS view

Height-Balanced Histograms (Legacy)

In a legacy height-balanced histogram, column values are divided into buckets so that each bucket contains approximately the same number of rows.

For example, if you have 99 coins to distribute among 4 buckets, each bucket contains about 25 coins. The histogram shows where the endpoints fall in the range of values.

Criteria for Height-Balanced Histograms

Before Oracle Database 12c, the database created a height-balanced histogram when the NDV was greater than n. This type of histogram was useful for range predicates, and equality predicates on values that appear as endpoints in at least two buckets.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram Type", the database creates a height-balanced histogram when the following criteria are met:

- NDV is greater than n, where n is the number of histogram buckets (default 254).
- The estimate_percent parameter in the DBMS_STATS statistics gathering procedure is not set to AUTO SAMPLE SIZE.

It follows that if Oracle Database 12c creates new histograms, and if the sampling percentage is AUTO_SAMPLE_SIZE, then the histograms are either top frequency or hybrid, but not height-balanced.

If you upgrade Oracle Database 11g to Oracle Database 12c, then any height-based histograms created *before* the upgrade remain in use. However, if you refresh statistics on the table on which the histogram was created, then the database replaces existing height-balanced histograms on this table. The type of replacement histogram depends on both the NDV and the following criteria:

- If the sampling percentage is AUTO_SAMPLE_SIZE, then the database creates either hybrid
 or frequency histograms.
- If the sampling percentage is not AUTO_SAMPLE_SIZE, then the database creates either height-balanced or frequency histograms.

Generating a Height-Balanced Histogram

This scenario shows how to generate a height-balanced histogram using the sample schemas.

Assumptions

This scenario assumes that you want to generate a height-balanced histogram on the sh.countries.country subregion id column. This table has 23 rows.

The following query shows that the <code>country_subregion_id</code> column contains 8 distinct values (sample output included) that are unevenly distributed:

To generate a height-balanced histogram:

 Gather statistics for sh.countries and the country_subregion_id column, specifying fewer buckets than distinct values.

To simulate Oracle Database 11g behavior, which is necessary to create a height-based histogram, set <code>estimate_percent</code> to a nondefault value. If you specify a nondefault percentage, then the database creates frequency or height-balanced histograms.

For example, enter the following command:

2. Query the histogram information for the country subregion id column.

For example, use the following query (sample output included):

The optimizer chooses a height-balanced histogram because the number of distinct values (8) is greater than the number of buckets (7), and the <code>estimate_percent</code> value is nondefault.

3. Query the number of rows occupied by each distinct value.

For example, use the following query (sample output included):

```
SELECT COUNT(country subregion id) AS NUM OF ROWS, country subregion id
FROM countries
GROUP BY country subregion id
ORDER BY 2;
NUM OF ROWS COUNTRY SUBREGION ID
_____
        1
        5
                      52793
        2
                       52794
                      52795
                      52796
        1
        2
                       52797
        2
                       52798
                       52799
```

4. Query the endpoint number and endpoint value for the country subregion id column.

For example, use the following query (sample output included):

```
SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE
FROM USER_HISTOGRAMS
WHERE TABLE_NAME='COUNTRIES'
AND COLUMN_NAME='COUNTRY_SUBREGION_ID';

ENDPOINT_NUMBER ENDPOINT_VALUE

0 52792
2 52793
3 52795
4 52798
7 52799
```

The following illustration represents a height-balanced histogram. The values are represented in the diagram as coins.

Figure 11-4 Height-Balanced Histogram

The bucket number is identical to the endpoint number. The optimizer records the value of the last row in each bucket as the endpoint value, and then checks to ensure that the minimum value is the endpoint value of the first bucket, and the maximum value is the endpoint value of the last bucket. In this example, the optimizer adds bucket 0 so that the minimum value 52792 is the endpoint of a bucket.

The optimizer must evenly distribute 23 rows into the 7 specified histogram buckets, so each bucket contains approximately 3 rows. However, the optimizer compresses buckets with the same endpoint. So, instead of bucket 1 containing 2 instances of value 52793, and bucket 2 containing 3 instances of value 52793, the optimizer puts all 5 instances of value 52793 into bucket 2. Similarly, instead of having buckets 5, 6, and 7 contain 3 values each, with the endpoint of each bucket as 52799, the optimizer puts all 9 instances of value 52799 into bucket 7.

In this example, buckets 3 and 4 contain nonpopular values because the difference between the current endpoint number and previous endpoint number is 1. The optimizer calculates cardinality for these values based on density. The remaining buckets contain popular values. The optimizer calculates cardinality for these values based on endpoint numbers.

See Also:

- Oracle Database PL/SQL Packages and Types Reference to learn about the DBMS STATS.GATHER TABLE STATS procedure
- Oracle Database Reference to learn about the USER_TAB_COL_STATISTICS and USER HISTOGRAMS views

Hybrid Histograms

A **hybrid histogram** combines characteristics of both height-based histograms and frequency histograms. This "best of both worlds" approach enables the optimizer to obtain better selectivity estimates in some situations.

The height-based histogram sometimes produces inaccurate estimates for values that are *almost* popular. For example, a value that occurs as an endpoint value of only one bucket but almost occupies two buckets is not considered popular.

To solve this problem, a hybrid histogram distributes values so that no value occupies more than one bucket, and then stores the endpoint repeat count value, which is the number of times the endpoint value is repeated, for each endpoint (bucket) in the histogram. By using the repeat count, the optimizer can obtain accurate estimates for almost popular values.

How Endpoint Repeat Counts Work

The analogy of coins distributed among buckets illustrate show endpoint repeat counts work.

The following figure illustrates a coins column that sorts values from low to high.

Figure 11-5 Coins

You gather statistics for this table, setting the method_opt argument of DBMS_STATS.GATHER_TABLE_STATS to FOR ALL COLUMNS SIZE 3. In this case, the optimizer initially groups the values in the coins column into three buckets, as shown in the following figure.

Figure 11-6 Initial Distribution of Values

If a bucket border splits a value so that some occurrences of the value are in one bucket and some in another, then the optimizer shifts the bucket border (and all other following bucket borders) forward to include all occurrences of the value. For example, the optimizer shifts value 5 so that it is now wholly in the first bucket, and the value 25 is now wholly in the second bucket.

Figure 11-7 Redistribution of Values

The endpoint repeat count measures the number of times that the corresponding bucket endpoint, which is the value at the right bucket border, repeats itself. For example, in the first bucket, the value 5 is repeated 3 times, so the endpoint repeat count is 3.

Figure 11-8 Endpoint Repeat Count

Height-balanced histograms do not store as much information as hybrid histograms. By using repeat counts, the optimizer can determine exactly how many occurrences of an endpoint value exist. For example, the optimizer knows that the value 5 appears 3 times, the value 25 appears 4 times, and the value 100 appears 2 times. This frequency information helps the optimizer to generate better cardinality estimates.

Criteria for Hybrid Histograms

The only differentiating criterion for hybrid histograms as compared to top frequency histograms is that the top n frequent values is less than internal threshold p.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram Type", the database creates a hybrid histogram when the following criteria are met:

- NDV is greater than n, where n is the number of histogram buckets (default is 254).
- The criteria for top frequency histograms do not apply.

This is another way to stating that the percentage of rows occupied by the top n frequent values is less than threshold p, where p is (1-(1/n))*100.

• The estimate_percent parameter in the DBMS_STATS statistics gathering procedure is set to AUTO SAMPLE SIZE.

If users specify their own percentage, then the database creates frequency or heightbalanced histograms.

See Also:

- "Criteria For Top Frequency Histograms."
- "Height-Balanced Histograms (Legacy)"
- Oracle Database PL/SQL Packages and Types Reference to learn more about the estimate_percent parameter

Generating a Hybrid Histogram

This scenario shows how to generate a hybrid histogram using the sample schemas.

Assumptions

This scenario assumes that you want to generate a hybrid histogram on the sh.products.prod_subcategory_id column. This table has 72 rows. The prod subcategory id column contains 22 distinct values.

To generate a hybrid histogram:

Gather statistics for sh.products and the prod_subcategory_id column, specifying 10 buckets.

For example, enter the following command:

```
BEGIN DBMS_STATS.GATHER_TABLE_STATS (
    ownname => 'SH'
, tabname => 'PRODUCTS'
, method_opt => 'FOR COLUMNS PROD_SUBCATEGORY_ID SIZE 10'
);
END;
```

2. Query the number of rows occupied by each distinct value.

For example, use the following query (sample output included):

```
SELECT COUNT(prod_subcategory_id) AS NUM_OF_ROWS, prod_subcategory_id
FROM products
GROUP BY prod subcategory id
ORDER BY 1 DESC;
NUM_OF_ROWS PROD_SUBCATEGORY_ID
          8
                            2014
          7
                            2055
                            2032
          6
                            2054
          5
                            2056
          5
                            2031
                            2042
          5
                            2051
          4
                            2036
          3
                            2043
          2
                            2033
          2
                            2034
          2
                            2013
          2
                            2012
          2
                            2053
                            2035
                            2022
          1
                            2041
          1
                            2044
          1
                            2011
          1
                            2021
```


1 2052

22 rows selected.

The column contains 22 distinct values. Because the number of buckets (10) is less than 22, the optimizer cannot create a frequency histogram. The optimizer considers both hybrid and top frequency histograms. To qualify for a top frequency histogram, the percentage of rows occupied by the top 10 most frequent values must be equal to or greater than threshold p, where p is (1-(1/10))*100, or 90%. However, in this case the top 10 most frequent values occupy 54 rows out of 72, which is only 75% of the total. Therefore, the optimizer chooses a hybrid histogram because the criteria for a top frequency histogram do not apply.

3. Query the histogram information for the country subregion id column.

For example, use the following query (sample output included):

4. Query the endpoint number, endpoint value, and endpoint repeat count for the country subregion id column.

For example, use the following query (sample output included):

```
SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE, ENDPOINT_REPEAT_COUNT FROM USER_HISTOGRAMS
WHERE TABLE_NAME='PRODUCTS'
AND COLUMN_NAME='PROD_SUBCATEGORY_ID'
ORDER BY 1;
```

ENDPOINT_NUMBER	ENDPOINT_VALUE	ENDPOINT_REPEAT_COUNT
1	2011	1
13	2014	8
26	2032	6
36	2036	4
45	2043	3
51	2051	5
52	2052	1
54	2053	2
60	2054	6
72	2056	5

10 rows selected.

In a height-based histogram, the optimizer would evenly distribute 72 rows into the 10 specified histogram buckets, so that each bucket contains approximately 7 rows. Because this is a hybrid histogram, the optimizer distributes the values so that no value occupies more than one bucket. For example, the optimizer does not put some instances of value

2036 into one bucket and some instances of this value into another bucket: all instances are in bucket 36.

The endpoint repeat count shows the number of times the highest value in the bucket is repeated. By using the endpoint number and repeat count for these values, the optimizer can estimate cardinality. For example, bucket 36 contains instances of values 2033, 2034, 2035, and 2036. The endpoint value 2036 has an endpoint repeat count of 4, so the optimizer knows that 4 instances of this value exist. For values such as 2033, which are not endpoints, the optimizer estimates cardinality using density.

See Also:

- Oracle Database PL/SQL Packages and Types Reference to learn about the DBMS STATS.GATHER TABLE STATS procedure
- Oracle Database Reference to learn about the USER TAB COL STATISTICS view
- Oracle Database Reference to learn about the USER HISTOGRAMS view

