

DLI Accelerated Data Science Teaching Kit

Lecture 20.2 - Latent Semantic Indexing (Singular Value Decomposition)

The Accelerated Data Science Teaching Kit is licensed by NVIDIA, Georgia Institute of Technology, and Prairie View A&M University under the Creative Commons Attribution-NonCommercial 4.0 International License.

Main idea

- map each document into some 'concepts'
- map each term into some 'concepts'

'Concept': ~ a set of terms, with weights.

```
For example, DBMS_concept: "data" (0.8), "system" (0.5), "retrieval" (0.6)
```


~ pictorially (before) ~

document-term matrix

	data	system	retireval	lung	ear
doc1	1	1	1		
doc2	1	1	1		
doc3				1	1
doc4				1	1

~ pictorially (after) ~

term-concept matrix

	database concept	medical concept
data	1	
system	1	
retrieval	1	
lung		1
ear		1

document-concept matrix

	database concept	medical concept
doc1	1	
doc2	1	
doc3		1
doc4		1

Q: How to search, e.g., for "system"?

A: find the corresponding concept(s); and the

corresponding documents

		database concept	medical concept	
	data	1		
->	system	1 🐴		
	retrieval	1		
	lung		1	
	ear		1	

	database	medical
	concept	concept
doc1	1 🔷	
doc2	1 🔷	
doc3		1
doc4		1

Works like an automatically constructed thesaurus

We may retrieve documents that **DON'T** have the term "system", but they contain almost everything else ("data", "retrieval")

LSI - Discussion

Great idea,

- to derive 'concepts' from documents
- to build a 'thesaurus' automatically
- to reduce dimensionality (down to few "concepts")

How does LSI work?
Uses Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) Motivation

Problem #1

Find "concepts" in matrices

Problem #2

Compression / dimensionality reduction

SVD is a powerful, generalizable technique.

Songs / Movies / Products

_			
C_{I}	usta	٦m	ers

1	1	1		
2	2	2		
1	1	1		
5	5	5		
			2	2
			3	3
			1	1

SVD Definition (pictorially)

$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \Lambda_{[r \times r]} (\mathbf{V}_{[m \times r]})^{\mathsf{T}}$$

SVD Definition (in words)

$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \Lambda_{[r \times r]} (\mathbf{V}_{[m \times r]})^{\mathsf{T}}$$

A: n x m matrix

e.g., n documents, m terms

U: n x r matrix

e.g., n documents, r concepts

Λ : r x r diagonal matrix

r : rank of the matrix; strength of each 'concept'

V: m x r matrix

e.g., m terms, r concepts

SVD - Properties n

THEOREM [Press+92]:

always possible to decompose matrix A into

$$A = U \wedge V^{T}$$

U, Λ , **V**: **unique**, most of the time

U, V: column orthonormal

i.e., columns are unit vectors, and orthogonal to each other

$$\mathbf{U}^{\mathsf{T}} \mathbf{U} = \mathbf{I}$$

 $\mathbf{V}^{\mathsf{T}} \mathbf{V} = \mathbf{I}$ (I: identity matrix)

 Λ : diagonal matrix with non-negative diagonal entires, sorted in decreasing order

SVD - Example

_	98	io H	,eil	pro	INUÓ
4	1	1	1	0	0
CS	2	2	2	0	0
docs	1	1	1	0	0
4	5	5	5	0	0
A	0	0	0	2	2
MD docs	0	0	0	3	3
*	0	0	0	1	1

0.18	0	
0.36	0	
0.18	0	
0.90	0	X
0	0.53	
0	0.80	
0	0.27	

9.64	0	\ \ \	0.58	0.58	0.58	0	0
0	5.29	X	0	0	0	0.71	0.71

document-concept similarity matrix

DLI Accelerated Data Science Teaching Kit

Thank You