

Theory of Computation CSC 339 – Spring 2021

Chapter-4: part1Decidability

King Saud University

Department of Computer Science

Dr. Azzam Alsudais

- >Turing-recognizable languages
 - >A language L is called Turing-recognizable if there is a TM that recognizes it.

- >Turing-recognizable languages
 - >A language L is called Turing-recognizable if there is a TM that recognizes it.
 - >The TM may or may not halt on strings ∉ L.

- >Turing-recognizable languages
 - >A language L is called Turing-recognizable if there is a TM that recognizes it.
 - >The TM may or may not halt on strings ∉ L.
 - >Also called Turing-acceptable or recursively-enumerable
- Turing-decidable languages
 - >A language L is called Turing-decidable if there is a TM that decides it.

- >Turing-recognizable languages
 - >A language L is called Turing-recognizable if there is a TM that recognizes it.
 - >The TM may or may not halt on strings ∉ L.
 - >Also called Turing-acceptable or recursively-enumerable
- Turing-decidable languages
 - >A language L is called Turing-decidable if there is a TM that decides it.
 - >The TM always halts on every input.

- >Turing-recognizable languages
 - >A language L is called Turing-recognizable if there is a TM that recognizes it.
 - >The TM may or may not halt on strings ∉ L.
 - >Also called Turing-acceptable or recursively-enumerable
- Turing-decidable languages
 - >A language L is called Turing-decidable if there is a TM that decides it.
 - >The TM always halts on every input.
 - >Also called recursive languages

Problem: is X a prime number?

Problem: is X a prime number?

Corresponding language: PRIMES = {1, 2, 3, 5, 7, ...}

- **Problem:** is X a prime number?
- **Corresponding language: PRIMES = {1, 2, 3, 5, 7, ...}**
- Can we decide (solve) this problem?

- Problem: is X a prime number?
- Corresponding language: PRIMES = {1, 2, 3, 5, 7, ...}
- Can we decide (solve) this problem?
 - >If we can devise a TM (or an algorithm) that decides whether a given number is prime, then the language is decidable.

Problem: is X a prime number?

Suggested Algorithm:

On input x:

- Divide x by all possible numbers between 2 and \sqrt{x}

Problem: is X a prime number?

Suggested Algorithm:

On input x:

- Divide x by all possible numbers between 2 and \sqrt{x}
- If any of those numbers can divide x, then reject

Problem: is X a prime number?

Suggested Algorithm:

On input x:

- Divide x by all possible numbers between 2 and \sqrt{x}
- If any of those numbers can divide x, then reject
- Else, accept

If L is decidable so is L^c .

L^c or L's complement is the set of elements that are not in L

If L is decidable so is L^c .

L^c or L's complement is the set of elements that are not in L

If L is decidable so is L^c .

Given a TM M that decides L, how can we build TM M' that decides L^c ?

If L is decidable so is L^c .

Given a TM M that decides L, how can we build TM M' that decides L^c ?

Replace every accept state with a reject state, and vice versa

