

# Desafío - Clasificación desde la econometría

- Para realizar este desafío debes haber estudiado previamente todo el material disponibilizado correspondiente a la unidad.
- Una vez terminado el desafío, comprime la carpeta que contiene el desarrollo de los requerimientos solicitados y sube el .zip en el LMS.
- Desarrollo desafío:
  - El desafío se debe desarrollar de manera Individual.
  - Para la realización del desafío necesitarás apoyarte del archivo Apoyo Desafío
     Clasificación desde la econometría.

### Descripción

En esta sesión trabajaremos el dataset south african heart, el cual contiene las siguientes variables:

- sbp: Presión Sanguínea Sistólica.
- tobacco: Promedio tabaco consumido por día.
- 1d1: Lipoproteína de baja densidad.
- adiposity: Adiposidad.
- famhist: Antecedentes familiares de enfermedades cardiácas. (Binaria)
- types: Personalidad tipo A
- obesity: Obesidad.
- alcohol: Consumo actual de alcohol.
- age: edad.
- chd: Enfermedad coronaria. (dummy)



# Desafío 1: Preparar el ambiente de trabajo

- Cargue las librerías básicas para importación y manipulación de datos (numpy, pandas), gráficos (matplotlib y seaborn) y de modelación econométrica (statsmodels).
- Importe el archivo southafricanheart.csv que se encuentra dentro del material de apoyo.
- Realice una descripción del set importado mostrando:
  - o lista con los nombres de variables importadas
  - un análisis descriptivo mediante .describe()
  - Distribución de categorías para las variables famhist y chd.

#### **Desafío 2**

A continuación se presenta el siguiente modelo a estimar:

$$\log\!\left(rac{\Pr(\mathtt{chd}=1)}{1-\Pr(\mathtt{chd}=1)}
ight) = eta_0 + eta_1 \cdot \mathtt{famhist}$$

Para ello ejecute los siguientes pasos:

- 1. Recodifique famhist a dummy, asignando 1 a la categoría minoritaria.
- 2. Utilice smf.logit para estimar el modelo.
- Implemente una función inverse\_logit que realice el mapeo de log-odds a probabilidad.
- 4. Con el modelo estimado, responda lo siguiente:
  - ¿Cuál es la probabilidad de un individuo con antecedentes familiares de tener una enfermedad coronaria?
  - ¿Cuál es la probabilidad de un individuo sin antecedentes familiares de tener una enfermedad coronaria?
  - ¿Cuál es la diferencia en la probabilidad entre un individuo con antecedentes v otro sin antecedentes?
  - Replique el modelo con smf.ols y comente las similitudes entre los coeficientes estimados.

**Tip:** Utilice β/4



# Desafío 3: Estimación completa

Implemente un modelo con la siguiente forma:

$$\log\!\left(rac{\Pr(\mathtt{chd}=1)}{1-\Pr(\mathtt{chd}=1)}
ight) = eta_0 + \sum_{j=1}^N eta_j \cdot X$$

- Depure el modelo manteniendo las variables con significancia estadística al 5%.
- Compare los estadísticos de bondad de ajuste entre ambos.
- Reporte de forma sucinta el efecto de las variables en el log-odds de tener una enfermedad coronaria.

### Desafío 4: Estimación de perfiles

A partir del modelo depurado, genere las estimaciones en log-odds y posteriormente transfórmelas a probabilidades con <a href="inverse\_logit">inverse\_logit</a>. Los perfiles a estimar son los siguientes:

- La probabilidad de tener una enfermedad coronaria para un individuo con características similares a la muestra.
- La probabilidad de tener una enfermedad coronaria para un individuo con altos niveles de lipoproteína de baja densidad, manteniendo todas las demás características constantes.
- La probabilidad de tener una enfermedad coronaria para un individuo con bajos niveles de lipoproteína de baja densidad, manteniendo todas las demás características constantes.