142 (square) Let s and n be natural variables. Find a specification P such that both the following hold:

$$s' = n^2$$
 \iff $s := n$. P
 P \iff if $n = 0$ then ok else $n := n - 1$. $s := s + n + n$. P fi

This program squares using only addition, subtraction, and test for zero.

§ Looking at the last refinement, I see that it's a loop, and n gets decreased each iteration, until it is 0. Also, s gets increased each iteration. So P should have the form

$$s' = s + \text{something}$$

In other words, P says that the final value of s is the current value plus something more. When I am proving the first refinement,

$$s' = n^2$$
 \iff $s := n$. $s' = s +$ something

I will use the Substitution Law, making it

$$s' = n^2 \iff s' = n + \text{something}$$

Now I see that "something" has to get rid of n and supply n^2 . So I'll try

$$P = s' = s + n^2 - n$$

Proof of first refinement, starting with its right side:

$$s:= n. P$$
 replace P
 $= s:= n. s' = s + n^2 - n$ substitution law
 $= s' = n + n^2 - n$ arithmetic

Assignment Project Exam Help

Proof of last refinement, starting with its right side:

```
if n=0 then ok else n:=n-1. s:=s+n+n. P_n if replace P and ok

if n=0 then s'=s \land n'=n else n:=n-1. s'=s+n^2+n if substitution law substitution law if n=0 then s'=s \land n'=n else s'=s+(n-1)^2+n-1 if arithmetic if n=0 then s'=s \land n'=n else s'=s+(n-1)^2+n-1 if arithmetic m=0 then m=0
```

I could have used Refinement by Cases to prove the last refinement.