HyperGraph Convolutional Network (HyperGCN)

To Appear as a Poster in Neural Information Processing Systems, 2019

HyperGraph Convolutional Network (HyperGCN)

To Appear as a Poster in Neural Information Processing Systems, 2019

Madhav

Prateek

Vikram

Prof. Anand Louis

Prof. Partha Talukdar

networks have complex relationships

networks have complex relationships

co-authorship

networks have complex relationships

networks have complex relationships

Hypergraph

an edge can connect any number of vertices

$$\mathcal{H} = (V, E)$$
$$E \subseteq 2^V$$

$$E \subseteq 2^{\nu}$$

Hypergraph

$$\mathcal{H} = (V, E)$$
$$E \subseteq 2^V$$

$$E \subseteq 2^V$$

an edge can connect any number of vertices

$$V = \left\{ v_1, v_2, v_3, v_4, v_5, v_6, v_7 \right\}$$

$$E = \left\{ e_1, e_2, e_3, e_4 \right\}$$

Hypergraph

$$\mathcal{H} = (V, E)$$

$$E \subseteq 2^V$$

an edge can connect any number of vertices

 $e_1 = \left\{ v_1, v_7 \right\}$

 $e_4 = \left\{ v_4, v_5, v_6 \right\}$

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\} \qquad e_2 = \{v_1, v_2, v_6, v_7\}$$

$$E = \{e_1, e_2, e_3, e_4\} \qquad e_3 = \{v_3, v_4\}$$

use labelled and unlabelled data for training

$$\mathcal{H} = (V, E)$$

$$E \subseteq 2^V$$

use labelled and unlabelled data for training

expensive

cheap

$$\mathcal{H} = (V, E)$$
$$E \subseteq 2^V$$

$$E \subseteq 2^V$$

use labelled and unlabelled data for training

expensive

cheap

e.g. document classification in co-authorship

$$\mathcal{H} = (V, E)$$
$$E \subseteq 2^V$$

$$E \subseteq 2^{V}$$

use labelled and unlabelled data for training

expensive

cheap

e.g. document classification in co-authorship

Learn
$$f: \left\{ x_1, \cdots, x_n \right\} \to \left\{ y_1, \cdots, y_c \right\}$$

$$\mathcal{H} = (V, E)$$

$$E \subseteq 2^V$$

unsupervised

$$\mathcal{H} = (V, E)$$
$$E \subseteq 2^V$$

explicit regularisation

$$\mathcal{L} = \mathcal{L}_S + \lambda \cdot Q(\mathcal{H}, f)$$

- Zhou et al. NIPS'06
- Hein et al. NIPS'13
- Anand Louis. STOC'15
- Chan and Liang. COCOON'18

Learn
$$f: \left\{ x_1, \cdots, x_n \right\} \to \left\{ y_1, \cdots, y_c \right\}$$

supervised

 $\mathcal{H} = (V, E)$

 $E \subseteq 2^V$

$$\mathcal{L} = \mathcal{L}_S + \lambda \cdot Q(\mathcal{H}, f)$$

- supervised
- Zhou et al. NIPS'06 Hein et al. NIPS'13
- Anand Louis. STOC'15
- Chan and Liang. COCOON'18

hyperedges encode similarity

unsupervised

Learn
$$f: \left\{ x_1, \cdots, x_n \right\} \to \left\{ y_1, \cdots, y_c \right\}$$

$$\mathcal{H} = (V, E)$$
$$E \subseteq 2^V$$

explicit regularisation

$$\mathcal{L} = \mathcal{L}_S + \lambda \cdot Q(\mathcal{H}, f)$$

- Zhou et al. NIPS'06
- Hein et al. NIPS'13
- Anand Louis. STOC'15
- Chan and Liang. COCOON'18

hyperedges encode similarity

unsupervised

Learn
$$f: \left\{ x_1, \cdots, x_n \right\} \to \left\{ y_1, \cdots, y_c \right\}$$

supervised

Our focus: Implicit regularisation

$$f_{Neural}(\mathcal{H}, X) = ?$$
 $\mathcal{L} = \mathcal{L}_S$

$$\mathcal{H} = (V, E)$$
$$E \subseteq 2^V$$

explicit regularisation

$$\mathcal{L} = \mathcal{L}_S + \lambda \cdot Q(\mathcal{H}, f)$$

- Zhou et al. NIPS'06
- Hein et al. NIPS'13
- Anand Louis. STOC'15
- Chan and Liang. COCOON'18

hyperedges encode similarity

unsupervised

Learn
$$f:\left\{x_1,\cdots,x_n\right\} \to \left\{y_1,\cdots,y_c\right\}$$

supervised

Our focus: Implicit regularisation

$$\mathcal{H} = (V, E)$$
$$E \subseteq 2^V$$

explicit regularisation

$$\mathcal{L} = \mathcal{L}_S + \lambda \cdot Q(\mathcal{H}, f)$$

- Zhou et al. NIPS'06
- Hein et al. NIPS'13
- Anand Louis. STOC'15
- Chan and Liang. COCOON'18

unsupervised

Learn
$$f: \left\{ x_1, \cdots, x_n \right\} \to \left\{ y_1, \cdots, y_c \right\}$$

supervised

Our focus: Implicit regularisation

$$f_{Neural}ig(\mathcal{H},Xig)=?$$
 \quad \text{hyperedges need not encode similarity} \(\mathcal{L}=\mathcal{L}_S \) \text{e.g.} \quad \text{e.g.}

=
$$\mathcal{L}_S$$

Hypergraph total variation [Hein et al. NeurIPS'13]

$$\mathcal{L} = \mathcal{L}_S + \lambda \cdot Q(\mathcal{H}, f)$$

graphs:
$$Q(\mathcal{G}, f) = \sum_{\{u,v\} \in E} (f_u - f_v)^2$$

Hypergraph total variation [Hein et al. NeurIPS'13]

$$\mathcal{L} = \mathcal{L}_S + \lambda \cdot Q(\mathcal{H}, f)$$

hypergraphs:
$$Q(\mathcal{H}, f) = \sum_{e \in E} \left(\max_{s \in e} f_s - \min_{i \in e} f_i \right)^2$$

Hypergraph total variation [Hein et al. NeurIPS'13]

$$\mathcal{L} = \mathcal{L}_S + \lambda \cdot Q(\mathcal{H}, f)$$

$$\text{hypergraphs: } Q(\mathcal{H}, f) = \sum_{e \in E} \left(\max_{s \in e} f_s - \min_{i \in e} f_i \right)^2$$

Hypergraph total variation

[Hein et al. NIPS 13]

$$\mathcal{L} = \mathcal{L}_S + \lambda \cdot Q(\mathcal{H}, f)$$

hypergraphs:
$$Q(\mathcal{H}, f) = \sum_{e \in E} \left(\max_{s \in e} f_s - \min_{i \in e} f_i \right)^2$$

$$+\sum_{e\in E}\sum_{m\in e}\left[\left(\max_{s\in e}f_s-f_m\right)^2+\left(f_m-\min_{i\in e}f_i\right)^2\right]$$

[Chan and Liang, COCOON 18]

Graph neural network [Kipf and Welling, ICLR'16]

Graph neural network [Kipf and Welling, ICLR'16]

$$h_v^{\{l\}} = \sigma \left(\frac{W^{\{l\}}}{|\mathcal{N}_v|} \sum_{\{u,v\} \in \mathcal{N}_v} h_u^{\{l-1\}} + b \right)$$

Hypergraph Convolutional Network

$$H^{\{l\}} = \sigma \Biggl(A \cdot H^{\{l-1\}} \cdot W^{\{l\}}\Biggr)$$
 Set $f = H^{\{l-1\}} \cdot W^{\{l\}}$

Hypergraph Convolutional Network

$$H^{\{l\}} = \sigma \left(A \cdot H^{\{l-1\}}_{n \times n} \cdot W^{\{l\}}_{d_{l-1} \times d_l} \right)$$

Set $f=H^{\{l-1\}}\cdot W^{\{l\}}$

parameters shared across input

Hypergraph Convolutional Network

$$H^{\{l\}} = \sigma igg(A \cdot H^{\{l-1\}}_{\scriptscriptstyle n \, imes \, n \, \mid \, n \, imes \, d_{l-1}} \cdot W^{\{l\}}_{\scriptscriptstyle d_{l-1} \, imes \, d_{l}} igg)$$

Set $f=H^{\{l-1\}}\cdot W^{\{l\}}$

parameters shared across input

Graph is fixed

Graph is fixed

number of edges is ${}^{\mathrm{m}}\mathrm{C}_2$

Graph is fixed

number of edges is ^mC₂

 $arg \min_{i \in e} f_i$

 $arg \max_{s \in e} f_s$

number of edges is 2m-3

document classification on co-citation networks

	Cora	Citeseer
Avg. Hyperedge size	3.0 ± 1.1	3.2 ± 2.0
GCN on Clique Expansion	32.41 ± 1.8	37.40 ± 1.6
HyperGCN	32.37 ± 1.7	37.35 ± 1.6

FastHyperGCN

$$H^{\{l\}} = \sigma \left(A \cdot H^{\{l-1\}}_{\scriptscriptstyle n \, imes \, n \, \mid \, n \, imes \, d_{l-1}} \cdot W^{\{l\}}_{\scriptscriptstyle d_{l-1} \, imes \, d_{l}}
ight)$$

HyperGCN

Set $f=H^{\{l-1\}}\cdot W^{\{l\}}$

FastHyperGCN

Set $f=H^{\{0\}}=X$

Test accuracy (lower is better) on co-authorship and co-citation datasets

	DBLP
Avg. Hyperedge size	8.5 ± 8.8
GCN on Clique Expansion	45.27 ± 2.4
HyperGCN	$\textbf{41.64} \pm \textbf{2.6}$
FastHyperGCN	41.78 ± 2.8

Test accuracy (lower is better) on co-authorship and co-citation datasets

	DBLP
Avg. Hyperedge size	8.5 ± 8.8
GCN on Clique Expansion	45.27 ± 2.4
HyperGCN	$\textbf{41.64} \pm \textbf{2.6}$
FastHyperGCN	41.78 ± 2.8

Authors can co author documents from different topics

Test accuracy (lower is better) on co-authorship and co-citation datasets

	DBLP
Avg. Hyperedge size	8.5 ± 8.8
GCN on Clique Expansion	45.27 ± 2.4
HyperGCN	$\textbf{41.64} \pm \textbf{2.6}$
FastHyperGCN	41.78 ± 2.8

- Authors can co author documents from different topics
- HyperGCN accumulates less noise than clique expansion

Test accuracy (lower is better) on co-authorship and co-citation datasets

	DBLP	Pubmed	Cora
Avg. Hyperedge size	8.5 ± 8.8	4.3 ± 5.7	4.2 ± 4.1
GCN on Clique Expansion	45.27 ± 2.4	29.41 ± 1.5	31.90 ± 1.9
HyperGCN	41.64 ± 2.6	$\textbf{25.56} \pm \textbf{1.6}$	30.08 ± 1.8
FastHyperGCN	41.78 ± 2.8	29.48 ± 1.6	32.54 ± 1.8

- Authors can co author documents from different topics
- HyperGCN accumulates less noise than clique expansion

Test accuracy (lower is better) on co-authorship and co-citation datasets

	DBLP	Pubmed	Cora
Avg. Hyperedge size	8.5 ± 8.8	4.3 ± 5.7	4.2 ± 4.1
GCN on Clique Expansion	45.27 ± 2.4	29.41 ± 1.5	31.90 ± 1.9
HyperGCN	41.64 ± 2.6	$\textbf{25.56} \pm \textbf{1.6}$	30.08 ± 1.8
FastHyperGCN	41.78 ± 2.8	29.48 ± 1.6	32.54 ± 1.8

- Authors can co author documents from different topics
- HyperGCN accumulates less noise than clique expansion

Average training time (lower is better) of an epoch

	DBLP	Pubmed
GCN on Clique Expansion	0.115s	0.019s
FastHyperGCN	$0.035\mathrm{s}$	0.016s

What NeurlPS reviewers liked in the paper

Bridges different fields
 Spectral hypergraph theory + graph neural networks

What NeurlPS reviewers liked in the paper

Bridges different fields
 Spectral hypergraph theory + graph neural networks

Reduces complexity from quadratic to linear
 ^mC₂ to 2m-3

What NeurlPS reviewers liked in the paper

Bridges different fields
 Spectral hypergraph theory + graph neural networks

Reduces complexity from quadratic to linear
 ^mC₂ to 2m-3

 Improves performance on large noisy hypergraphs lower error and training time

Limitations and Future Work

• Soft Semi-supervised learning (submitted to ICLR 2020)

Limitations and Future Work

• Soft Semi-supervised learning (submitted to ICLR 2020)

Unsupervised learning

Limitations and Future Work

• Soft Semi-supervised learning (submitted to ICLR 2020)

Unsupervised learning

X Inherently transductive cannot handle unseen vertices at test time

Q & A

