THE SKEW-NORMAL APPROXIMATION OF THE BINOMIAL DISTRIBUTION

Joyce Tipping

Truman State University

Spring 2011

 $X \sim Bin(n, p)$ where 0 and <math>n = 1, 2, 3, ...

$$X \sim Bin(n, p)$$
 where $0 and $n = 1, 2, 3, ...$$

$$f_X(x) = \binom{n}{x} p^x q^{n-x}$$

$$X \sim Bin(n, p)$$
 where $0 and $n = 1, 2, 3, ...$$

$$f_X(x) = \binom{n}{x} p^x q^{n-x}$$

$$F_X(x) = P(X \le x) = \sum_{k=0}^x f_X(k)$$

The binomial cdf is easy to calculate for small $n\dots$

The binomial cdf is easy to calculate for small $n \dots$

But as *n* gets larger, it becomes increasingly difficult.

The binomial cdf is easy to calculate for small $n \dots$

But as *n* gets larger, it becomes increasingly difficult.

For example ...

When
$$n = 3$$
,

$$F(1) = \begin{pmatrix} 3 \\ 1 \end{pmatrix} p^1 q^2 + \begin{pmatrix} 3 \\ 0 \end{pmatrix} p^0 q^3$$

When n = 3,

$$F(1) = \binom{3}{1} p^1 q^2 + \binom{3}{0} p^0 q^3$$

When n = 25,

$$\begin{split} F(12) = & \binom{25}{12} \ \rho^{12} q^{13} + \binom{25}{11} \ \rho^{11} q^{14} + \binom{25}{10} \ \rho^{10} q^{15} + \binom{25}{9} \ \rho^{9} q^{16} \\ & + \binom{25}{8} \ \rho^{8} q^{17} + \binom{25}{7} \ \rho^{7} q^{18} + \binom{25}{6} \ \rho^{6} q^{19} + \binom{25}{5} \ \rho^{5} q^{20} \\ & + \binom{25}{4} \ \rho^{4} q^{21} + \binom{25}{3} \ \rho^{3} q^{22} + \binom{25}{2} \ \rho^{2} q^{23} + \binom{25}{1} \ \rho^{1} q^{24} \\ & + \binom{25}{0} \ \rho^{0} q^{25} \end{split}$$

Normal Approximation of the Binomial:

$$F_X(x) \approx \Phi\left(\frac{x + 0.5 - \mu}{\sigma}\right)$$
,

where $\mu = np$, $\sigma = \sqrt{np(1-p)}$, and Φ is the standard normal cdf.

When does this work well? ...

Normal Approximation of the Binomial:

$$F_X(x) \approx \Phi\left(\frac{x + 0.5 - \mu}{\sigma}\right),$$

where $\mu = np$, $\sigma = \sqrt{np(1-p)}$, and Φ is the standard normal cdf.

When does this work well? ... In a nutshell, when the binomial is symmetric.

The binomial is symmetric when p = 0.5

The binomial is symmetric when p = 0.5 or n is very large.

However, when n is medium and p is extreme ...

the binomial is very skewed.

However, when n is medium and p is extreme ...

the normal approximation doesn't work very well.

However, when n is medium and p is extreme ...

Can we do better?

However, when n is medium and p is extreme ...

Can we do better? Introducing ... the skew-normal distribution.

What we're going to cover:

What we're going to cover:

1. Skew-Normal distribution – basic properties

What we're going to cover:

- 1. Skew-Normal distribution basic properties
- 2. Method of Moments derive an approximation

What we're going to cover:

- 1. Skew-Normal distribution basic properties
- 2. Method of Moments derive an approximation
- 3. Accuracy compare to the normal approximation

DEFINITION (SKEW-NORMAL)

Let Y be a skew-normal distribution, with location parameter $\mu \in \mathbb{R}$, scale parameter $\sigma > 0$, and shape parameter $\lambda \in \mathbb{R}$. Then Y has pdf

$$f(x|\mu,\sigma,\lambda) = \frac{2}{\sigma} \cdot \phi\left(\frac{x-\mu}{\sigma}\right) \cdot \Phi\left(\frac{\lambda(x-\mu)}{\sigma}\right), \quad x \in \mathbb{R},$$

where ϕ is the standard normal pdf and Φ is the standard normal cdf.

We write $Y \sim SN(\mu, \sigma, \lambda)$.

LEMMA

If f_0 is a one-dimensional probability density function symmetric about 0, and G is a one-dimensional distribution function such that G' exists and is a density symmetric about 0, then

$$f(z) = 2 \cdot f_0(z) \cdot G\{w(z)\} \quad (-\infty < z < \infty)$$

is a density function for any odd function $w(\cdot)$. (Lemma 1, Azzalini, 2005)

Basic properties:

$$E(Y) = \mu + b\delta\sigma$$

$$E(Y^2) = \mu^2 + 2b\delta\mu\sigma + \sigma^2$$

$$E(Y^3) = \mu^3 + 3b\delta\mu^2\sigma + 3\mu\sigma^2 + 3b\delta\sigma^3 - b\delta^3\sigma^3$$

$$Var(Y) = \sigma^2(1 - b^2\delta^2)$$

where
$$b=\sqrt{\frac{2}{\pi}}$$
 and $\delta=\frac{\lambda}{\sqrt{1+\lambda^2}}$. (Pewsey, 2000)

What happens when $\lambda = 0$?

$$f(x|\mu,\sigma,\lambda=0) = \frac{2}{\sigma} \cdot \phi \left(\frac{x-\mu}{\sigma}\right) \cdot \Phi(0)$$

$$= \frac{2}{\sigma} \cdot \phi \left(\frac{x-\mu}{\sigma}\right) \cdot 0.5$$

$$= \frac{1}{\sigma} \cdot \phi \left(\frac{x-\mu}{\sigma}\right)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right),$$

which is the pdf of the normal distribution (μ, σ) .

THE SKEW-NORMAL DISTRIBUTION: THE STANDARD SKEW-NORMAL

DEFINITION (STANDARD SKEW-NORMAL)

The $SN(0,1,\lambda)$ distribution is called the standard skew-normal and has pdf

$$f_Z(x|\lambda) = 2 \cdot \phi(x) \cdot \Phi(\lambda x), \quad x \in \mathbb{R}.$$

Similar to the normal and standard normal, $Z = \frac{Y - \mu}{\sigma}$ and $Y = \sigma Z + \mu$.

THE SKEW-NORMAL DISTRIBUTION: THE STANDARD SKEW-NORMAL

PROPERTY

If $Z \sim SN(0, 1, \lambda)$, then $(-Z) \sim SN(0, 1, -\lambda)$.

PROPERTY

If $Z \sim SN(0,1,\lambda)$, then $Z^2 \sim \chi_1^2$ (chi-square with 1 degree of freedom).

THE SKEW-NORMAL DISTRIBUTION: THE STANDARD SKEW-NORMAL

PROPERTY

As $\lambda \to \pm \infty$, $SN(0,1,\lambda)$ tends to the half normal distribution, $\pm |N(0,1)|$.

PROPERTY

The moment generating function of $SN(0, 1, \lambda)$ is

$$M(t|\lambda) = 2 \cdot \Phi(\delta t) \cdot e^{t^2/2}$$

where
$$\delta = \frac{\lambda}{\sqrt{1+\lambda^2}}$$
 and $t \in (-\infty, \infty)$.

METHOD OF MOMENTS: OVERVIEW

Game plan:

1. Find the first three central moments of the binomial and the first three central moments of the skew-normal.

What are central moments?:
$$E(X)$$
, $E([X - E(X)]^2)$, $E([X - E(X)]^3)$.

METHOD OF MOMENTS: OVERVIEW

Game plan:

1. Find the first three central moments of the binomial and the first three central moments of the skew-normal.

What are central moments?:
$$E(X)$$
, $E([X - E(X)]^2)$, $E([X - E(X)]^3)$.

2. Set them equal to each other.

METHOD OF MOMENTS: OVERVIEW

Game plan:

1. Find the first three central moments of the binomial and the first three central moments of the skew-normal.

```
What are central moments?: E(X), E([X - E(X)]^2), E([X - E(X)]^3).
```

- 2. Set them equal to each other.
- 3. Take *n* and *p* to be constants; solve for μ , σ , and λ .

The first two are easy:

$$E(B) = np$$

$$E([B - E(B)]^{2}) = Var(B) = np(1 - p)$$

The third one takes some elbow grease.

First we'll need to find $E(B^2)$ and $E(B^3)$.

$$E(B^2) = Var(B) + [E(B)]^2$$

= $np(1-p) + n^2p^2$
= $np - np^2 + n^2p^2$

We will get $E(B^3)$ via the third factorial moment, E[B(B-1)(B-2)].

$$E[B(B-1)(B-2)]$$

$$= \sum_{x=0}^{n} x(x-1)(x-2) \cdot \left\{ \binom{n}{x} p^{x} q^{n-x} \right\}$$

$$= \sum_{x=3}^{n} x(x-1)(x-2) \cdot \left\{ \binom{n}{x} p^{x} q^{n-x} \right\}$$

$$= \sum_{x=3}^{n} x(x-1)(x-2) \cdot \frac{n!}{x! (n-x)!} p^{x} q^{n-x}$$

$$= \sum_{x=3}^{n} \frac{n!}{(x-3)! (n-x)!} p^{x} q^{n-x}$$

$$= \sum_{x=3}^{n} n(n-1)(n-2) p^{3} \cdot \frac{(n-3)!}{(x-3)! (n-x)!} p^{x-3} q^{n-x}$$

Let y = x - 3; then x = y + 3, and x = 3, $x = n \Rightarrow y = 0$, y = n - 3:

$$= \sum_{x=3}^{n} n(n-1)(n-2)p^{3} \cdot \frac{(n-3)!}{(x-3)!(n-x)!} p^{x-3}q^{n-x}$$

$$= n(n-1)(n-2)p^{3} \cdot \sum_{y=0}^{n-3} \frac{(n-3)!}{y!(n-(y+3))!} p^{y}q^{n-(y+3)}$$

$$= n(n-1)(n-2)p^{3} \cdot \sum_{y=0}^{n-3} \frac{(n-3)!}{y!(n-3)-y!} p^{y}q^{(n-3)-y}$$
[pdf of $Bin(n-3,p)$ summed over its domain] = 1
$$= n(n-1)(n-2)p^{3}$$

$$= n^{3}p^{3} - 3n^{2}p^{3} + 2np^{3}$$

To get $E(B^3)$, we expand the left side of the previous equation:

$$E[B(B-1)(B-2)]$$

$$= E[B^3 - 3B^2 + 2B]$$

$$= E(B^3) - 3E(B^2) + 2E(B)$$

$$= E(B^3) - 3(np - np^2 + n^2p^2) + 2np$$

$$= E(B^3) - 3np + 3np^2 - 3n^2p^2 + 2np$$

$$= E(B^3) + 3np^2 - 3n^2p^2 - np$$

Left side:
$$E(B^3) + 3np^2 - 3n^2p^2 - np$$

Right side:
$$n^3p^3 - 3n^2p^3 + 2np^3$$

Set them equal and solve for $E(B^3)$:

$$\begin{split} E(B^3) + 3np^2 - 3n^2p^2 - np &= n^3p^3 - 3n^2p^3 + 2np^3 \\ \Rightarrow & E(B^3) = n^3p^3 - 3n^2p^3 + 2np^3 - 3np^2 + 3n^2p^2 + np \end{split}$$

Now we can (finally!) compute the third central moment:

$$E([B-E(B)]^{3})$$

$$= E(B^{3} - 3B^{2}E(B) + 3B[E(B)]^{2} - [E(B)]^{3})$$

$$= E(B^{3}) - 3E(B^{2})E(B) + 3E(B)[E(B)]^{2} - [E(B)]^{3}$$

$$= E(B^{3}) - 3E(B^{2})E(B) + 2[E(B)]^{3}$$

$$= (n^{3}p^{3} - 3n^{2}p^{3} + 2np^{3} - 3np^{2} + 3n^{2}p^{2} + np)$$

$$- 3(np - np^{2} + n^{2}p^{2})(np) + 2(np)^{3}$$

$$= p^{3}p^{3} - 3p^{2}p^{3} + 2np^{3} - 3np^{2} + 3p^{2}p^{2} + np$$

$$- 3p^{2}p^{2} + 3p^{2}p^{3} - 3p^{3}p^{3} + 2p^{3}p^{3}$$

$$= 2np^{3} - 3np^{2} + np$$

$$= np(p - 1)(2p - 1)$$

Let's restate our results:

$$E(B) = np,$$

$$E([B - E(B)]^2) = np(1 - p),$$

$$E([B - E(B)]^3) = np(p - 1)(2p - 1)$$

The first and second central moments are the mean and variance.

$$E(Y) = \mu + b\delta\sigma$$
$$Var(Y) = \sigma^{2}(1 - b^{2}\delta^{2})$$

Again, the third one is a little harder:

$$\begin{split} &E([Y-E(Y)]^3) \\ &= E(Y^3) - 3E(Y^2)E(Y) + 2[E(Y)]^3 \\ &= (\mu^3 + 3b\delta\mu^2\sigma + 3\mu\sigma^2 + 3b\delta\sigma^3 - b\delta^3\sigma^3) \\ &- 3(\mu^2 + 2b\delta\mu\sigma + \sigma^2)(\mu + b\delta\sigma) + 2(\mu + b\delta\sigma)^3 \\ &= \mu^3 + 3b\delta\mu^2\sigma + 3\mu\sigma^2 + 3b\delta\sigma^3 - b\delta^3\sigma^3 - 3\mu^3 - 3b\delta\mu^2\sigma \\ &- 6b\delta\mu^2\sigma - 6b^2\delta^2\mu\sigma^2 - 3\mu\sigma^2 - 3b\delta\sigma^3 + 2\mu^3 + 6b\delta\mu^2\sigma \\ &+ 6b^2\delta^2\mu\sigma^2 + 2b^3\delta^3\sigma^3 \\ &= 2b^3\delta^3\sigma^3 - b\delta^3\sigma^3 \\ &= b\delta^3\sigma^3(2b^2 - 1) \end{split}$$

Our results, restated:

$$E(Y) = \mu + b\delta\sigma \qquad = \mu + \sigma \cdot \sqrt{\frac{2}{\pi}} \cdot \frac{\lambda}{\sqrt{1 + \lambda^2}}$$

$$E([Y - E(Y)]^2) = \sigma^2 (1 - b^2 \delta^2) \qquad = \sigma^2 \left(1 - \frac{2}{\pi} \cdot \frac{\lambda^2}{1 + \lambda^2}\right)$$

$$E([Y - E(Y)]^3) = b\delta^3 \sigma^3 (2b^2 - 1) = \sigma^3 \sqrt{\frac{2}{\pi}} \left(\frac{\lambda}{\sqrt{1 + \lambda^2}}\right)^3 \left(\frac{4}{\pi} - 1\right)$$

Set the central moments of the binomial equal to the central moments of the skew-normal:

$$np = \mu + \sigma \cdot \sqrt{\frac{2}{\pi}} \cdot \frac{\lambda}{\sqrt{1 + \lambda^2}}$$
 (1a)

$$np(1-p) = \sigma^2 \left(1 - \frac{2}{\pi} \cdot \frac{\lambda^2}{1 + \lambda^2} \right)$$
 (1b)

$$np(p-1)(2p-1) = \sigma^3 \sqrt{\frac{2}{\pi}} \left(\frac{\lambda}{\sqrt{1+\lambda^2}}\right)^3 \left(\frac{4}{\pi} - 1\right)$$
 (1c)

To get λ , divide the cube of (1b) by the square of (1c):

$$\frac{\sigma^{6} \left(1 - \frac{2}{\pi} \cdot \frac{\lambda^{2}}{1 + \lambda^{2}}\right)^{3}}{\sigma^{6} \cdot \frac{2}{\pi} \left(\frac{\lambda}{\sqrt{1 + \lambda^{2}}}\right)^{6} \left(\frac{4}{\pi} - 1\right)^{2}} = \frac{n^{3} p^{3} (1 - p)^{3}}{n^{2} p^{2} (p - 1)^{2} (2p - 1)^{2}}$$

$$\Rightarrow \frac{\left(1 - \frac{2}{\pi} \cdot \frac{\lambda^{2}}{1 + \lambda^{2}}\right)^{3}}{\frac{2}{\pi} \left(\frac{\lambda^{2}}{1 + \lambda^{2}}\right)^{3} \left(\frac{4}{\pi} - 1\right)^{2}} = \frac{n p (1 - p)}{(1 - 2p)^{2}}.$$
(2)

Equation (2) can be solved for λ^2 . Then take

$$\lambda = \{ \text{sign of } (1 - 2p) \} \sqrt{\lambda^2}$$

With λ , solve for σ and then μ

$$np(1-p) = \sigma^2 \left(1 - \frac{2}{\pi} \cdot \frac{\lambda^2}{1 + \lambda^2} \right) \quad \Rightarrow \quad \sigma = \sqrt{\frac{np(1-p)}{1 - \frac{2}{\pi} \cdot \frac{\lambda^2}{1 + \lambda^2}}}$$

$$np = \mu + \sigma \cdot \sqrt{\frac{2}{\pi}} \cdot \frac{\lambda}{\sqrt{1 + \lambda^2}} \quad \Rightarrow \quad \mu = np - \sigma \cdot \sqrt{\frac{2}{\pi}} \cdot \frac{\lambda}{\sqrt{1 + \lambda^2}}$$

When
$$p = 0.5$$
, $\lambda = 0$.

Let
$$u = \frac{\lambda^2}{1+\lambda^2}$$
 and $v = 1/u = \frac{1+\lambda^2}{\lambda^2}$.

Then we can rewrite (2):

$$\frac{\left(1-\frac{2}{\pi}\cdot\frac{\lambda^2}{1+\lambda^2}\right)^3}{\frac{2}{\pi}\left(\frac{\lambda^2}{1+\lambda^2}\right)^3\left(\frac{4}{\pi}-1\right)^2}\\ \vdots\\ (\textit{magic})\\ \vdots\\ \left(v-\frac{2}{\pi}\right)^3\left(\frac{\pi^3}{2(4-\pi)^2}\right)=g(v)$$

$$g(v)$$
 is increasing in $v = \frac{1+\lambda^2}{\lambda^2} \ge 1$. Therefore:

$$\min_{v} g(v) = g(1) = \left(1 - \frac{2}{\pi}\right)^{3} \left(\frac{\pi^{3}}{2(4 - \pi)^{2}}\right) = 1.009524 \approx 1$$

To be able to solve (2) for λ , we must have

{right hand side of (2)}
$$\geq$$
 {min of left hand side of (2)}
$$\frac{np(1-p)}{(1-2p)^2} \geq 1$$

$$np(1-p) \geq (1-2p)^2.$$
 (3)

From (3), we can answer two questions:

Given *p*, what is the least *n* necessary?

$$n \geq \frac{(1-2p)^2}{p(1-p)}$$

Given n, what is the range of possible p's?

$$\frac{1}{2} - \frac{1}{2} \sqrt{\frac{n}{n+4}} \ \leq \ p \ \leq \ \frac{1}{2} + \frac{1}{2} \sqrt{\frac{n}{n+4}}$$

DEMONSTRATING IMPROVED ACCURACY: VISUAL

DEMONSTRATING IMPROVED ACCURACY: MABS

$$\mathsf{MABS}(n, p) = \max_{k \in \{0, 1, \dots, n\}} \left| F_{B(n, p)}(k) - F_{\mathsf{appr}(n, p)}(k + 0.5) \right|$$

DEMONSTRATING IMPROVED ACCURACY: MABS

RESOURCES

BIBLIOGRAPHY I

- B. C. Arnold and G. D. Lin. Characterizations of the skew-normal and generalized chi distributions. *Sankhy: The Indian Journal of Statistics*, 66(4):593–606, 2004.
- Adelchi Azzalini. A class of distributions which includes the normal ones. *Scandinavian Journal of Statistics*, 12: 171–178, 1985.
- Adelchi Azzalini. The skew-normal distribution and related multivariate families. *Scandinavian Journal of Statistics*, 32: 159–188, 2005.
- Lee J. Bain and Max Engelhardt. *Introduction to Probability and Mathematical Statistics*. Duxbury, 2nd edition, 1992.
- Ching-Hui Chang, Jyh-Jiuan Lin, Nabendu Pal, and Miao-Chen Chiang. A note on improved approximation of the binomial distribution by the skew-normal distribution. *American Statistical Association*, 62(2):167–170, May 2008.

BIBLIOGRAPHY II

- A. K. Gupta, T. T. Nguyen, and J. A. T. Sanqui. Characterization of the skew-normal distribution. *Annals of the Institute of Statistical Mathematics*, 56:351–360, 2004.
- A. O'Hagan and Tom Leonard. Bayes estimation subject to uncertainty about parameter constraints. *Biometrika*, 63: 201–203, 1976.
- Arthur Pewsey. Problems of inference for azzalini's skew-normal distribution. *Journal of Applied Statistics*, 27(7): 859–870, 2000.
- Martin Schader and Friedrich Schmid. Two rules of thumb for the approximation of the binomial distribution by the normal distribution. *American Statistical Association*, 43(1):23–24, February 1989.