LIQUID PROPULSION

WEEK 11 REPORT

Tasks assigned for week 11

```
#142 Research on water-test design
```

#143 Mass flow rate re-calculation

#139 Remote operation

Water-flow test

- Why water-flow test?
- Flow coefficient
- Injector spray formation
- Flow distribution within regeneration cooling

$$C_v = q \sqrt{\frac{G_f}{\Delta P}},$$

Water-Flow Test Stand

Mass flow rates & O/F RPA

Exploded formula: (0)1.432 (C)0.568 (H)1.704

0/F: 2.6823988

0/F 0: 3.7246217 (stoichiometric)

alpha: 0.7201802 (oxidizer excess coefficient)

# Table 3. Theoretical (ideal) performance						
# Parameter Se #		Optimum ex	Vacuum	Unit		
Characteristic velocity Effective exhaust velocity Specific impulse (by mass) Specific impulse (by weight) Thrust coefficient	0.0000 2622.75 2622.75 267.45 1.4201	1846.9100 500 2627.6000 500 2627.6000 500 267.9400 1.4227	0.0000 2994.0400 2994.0400 305.3100 1.6211	m/s	m/s N·s/kg s	
# ## # Table 4. Estimated delivered performance #						
# Parameter Se #						
Characteristic velocity Effective exhaust velocity Specific impulse (by mass) Specific impulse (by weight) Thrust coefficient	0.0000 2474.62 2474.62 252.34 1.3782	1795.5400 200 2479.4800 200 2479.4800 400 252.8400 1.3809	0.0000 2845.9100 2845.9100 290.2000 1.5850	m/s	m/s N·s/kg s	I
## # # Ambient condition for op						

Optimum O/F

Mass flow rates

MASS FLOW RATE

Target thrust=2KN

Target chamber pressure=2Mpa

Exit pressure=0.1Mpa

$$V_{e} = \sqrt[2]{2 \frac{RK}{K-1} \frac{T_{0}}{M} \left[1 - \left(\frac{P_{e}}{P_{0}} \right)^{\frac{k-1}{k}} \right]}$$

I_{SP}(from the simulation) = 252.34s

$$V_e = I_{sp} * g = 2474.62 \text{ m/s}$$

$$\dot{m} = F_{thrust}/V_e$$
=2000N/2474.62=0.8082 kg/s

Optimum O/F ratio from simulation chosen as from the graph=2.5

$$\begin{split} \dot{m}_{oxygen} &= \frac{\dot{m}}{1+O/F} \\ &= &\frac{0.8082}{1+2.5} = 0.23091 \text{kg/s} \\ \dot{m}_{fuel} &= \dot{m} - \dot{m}_{oxygen} \end{split}$$

=0.57729kg/s

- mass flow rate of Gox = 0.67093 kg/s
- mass flow rate of ethanol = 0.5161 kg/s
- Isp = 240s

Challenges in previous report

- Unavailability of components locally
- No suitable filling system or station could be found
- Pressure accumulator is made up of Nitrile rubber which is incompatible with ethanol

Remote operation

```
Administrator: Command Prompt

C:\Windows\System32>mosquitto_pub -t "topics" -m "Hello"

C:\Windows\System32>mosquitto_pub -t "topics" -m "World"

C:\Windows\System32>mosquitto_pub -t "topics" -m "Data"

C:\Windows\System32>_

C:\Windows\System32>_
```

- We choose MQTT as way of transmitting sensor data i.e. pressure data, flow rate
- It works by publishing and subscribing to the same topic
- MQTT is used where low bandwidth and low power consumption are crucial

Task allocated for next week

- Design P & I D of water-test in 3D
- Water-test control circuitry
- Identify materials required
- Remote operation

THANK YOU