Συναρτήσεις Συνέπειες Bolzano 1 (Διατήρηση Προσήμου)

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

- Φτιάξτε άξονες
- Σχεδιάστε όσες συναρτήσεις μπορείτε που ισχύει $f^2(x)=1$ για κάθε $x\in\mathbb{R}$

- Φτιάξτε άξονες
- Σχεδιάστε όσες συναρτήσεις μπορείτε που ισχύει $f^2(x)=1$ για κάθε $x\in\mathbb{R}$

- Φτιάξτε άξονες
- Σχεδιάστε όσες συναρτήσεις μπορείτε που ισχύει $f^2(x)=1$ για κάθε $x\in\mathbb{R}$

- Φτιάξτε άξονες
- Σχεδιάστε όσες συνεχείς στο $\mathbb R$ συναρτήσεις μπορείτε που ισχύει $f^2(x)=1$ για κάθε $x\in\mathbb R$

- Φτιάξτε άξονες
- Σχεδιάστε όσες συνεχείς στο $\mathbb R$ συναρτήσεις μπορείτε που ισχύει $f^2(x)=1$ για κάθε $x\in\mathbb R$

- Φτιάξτε άξονες
- Σχεδιάστε όσες συνεχείς στο $\mathbb R$ συναρτήσεις μπορείτε που ισχύει $f^2(x)=1$ για κάθε $x\in\mathbb R$

Θεώρημα 1

Θεώρημα σταθερού προσήμου

Εστω μια συνάρτηση f συνεχής στο διάστημα Δ . Αν $f(x) \neq 0$ για κάθε $x \in \Delta$ τότε η f διατηρεί το πρόσημο της σε όλο το Δ

Θεώρημα 2

Θεώρημα σταθερού προσήμου (γενίκευση)

Μια συνεχής συνάρτηση f διατηρεί το πρόσημό της μεταξύ δύο διαδοχικών της ριζών.

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση με f(0)=1 η οποία είναι συνεχής και ισχύει $f(x)\neq 0$ για κάθε $x\in\mathbb{R}.$ Να βρείτε το πεδίο ορισμού της συνάρτησης $g(x)=\ln f(x)$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 6/1

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής και ισχύει $f^2(x)>0$ για κάθε $x\in\mathbb{R}.$ Να βρείτε το

$$\lim_{x \to +\infty} \frac{f(1)x^2 + 1}{f(0)x + 2}$$

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής. Αν f(3)=-2 και $x_1=1$ και $x_2=4$ είναι διαδοχικές ρίζες της εξίσωσης f(x)=0, να βρείτε το

$$\lim_{x \to +\infty} f(2)x^3 - x + 1$$

Να βρείτε το πρόσημο των συναρτήσεων

•
$$f(x) = 2x^3 - x - 1$$

•
$$f(x) = \sqrt{x^2 + 1} - x$$

Να βρείτε το πρόσημο της συνάρτησης $f(x)=2\eta\mu x-1$, $x\in[0,\pi]$.

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 10/1

Εστω $f:\mathbb{R} o \mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής και ισχύει

$$|f(x)|=e^x$$
 για κάθε $x\in\mathbb{R}$

- Να αποδείξετε ότι $f(x) \neq 0$, για κάθε $x \in \mathbb{R}$
- Aν f(0) = -1 να βρείτε τον τύπο της f

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση με f(0)=1 η οποία είναι συνεχής και ισχύει $f^2(x)=x^2+1$ για κάθε $x\in\mathbb{R}.$ Να βρείτε τον τύπο της f.

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 12/1

Να βρείτε τη συνεχή συνάρτηση f με f(0)=1 για την οποία ισχύει $f^2(x)=1+2xf(x)$ για κάθε $x\in\mathbb{R}$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 13/1

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση με f(2)=2 η οποία είναι συνεχής και ισχύει $f^2(x)+2=x+2f(x)$ για κάθε $x\in[1,+\infty]$. Να βρείτε τον τύπο της f.

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 14/1

Εστω $f:[-1,1]\to\mathbb{R}$ μία συνάρτηση με f(0)=-1 η οποία είναι συνεχής και ισχύει $x^2+f^2(x)=1$, $x\in[-1,1]$. Να βρείτε τον τύπο της f.

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 15/1

Εστω $f: [-1,1] \to \mathbb{R}$ μία συνεχής συνάρτηση για την οποία ισχύει $4x^2 + f^2(x) = 4$ για κάθε $x \in [-1, 1]$

- Να βρείτε τις ρίζες της εξίσωσης f(x) = 0
- Να δείξετε ότι η f διατηρεί το πρόσημό της στο (-1,1)
- Ποιος μπορεί να είναι ο τύπος της f;
- Av f(0) = 2, va βρείτε την f

Συναρτήσεις 16/1

Να βρείτε όλες τις συνεχείς συναρτήσεις $f:\mathbb{R}\to\mathbb{R}$ που ικανοποιούν τη σχέση

$$f^{2}(x) + 2x = x^{2} + 1$$
, $x \in \mathbb{R}$

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση