Содержание

1	Комплексные числа. Определение	2
1	Комплексные числа. Определение	4
2	Комплексные числа. Геометрия и картинки	6
2	Комплексные числа. Геометрия и картинки	7
3	Поле направления и экспонента	8
4	Геометрия Фано	9
5	Лог. КЛШ-2019 5.1 Плакат	9
6	Решения	9
7	Источники мудрости	11

Цель

Рассказать про комплексный числа, преобразование Мёбиуса, кватернионы, вращения, роторы, октонионы, гиперболическую и проективную геометрию.

ччч

1. Комплексные числа. Определение

Определение 1. Комплексное число — это вектор на плоскости.

- 1. Длина вектора модуль комплексного числа, |z|.
- 2. Угол между вектором и горизонатльной осью аргумента комплексного числа, arg z.
- 3. Горизонтальная составляющая вектора действительная часть, $\operatorname{Re} z$.
- 4. Вертикальная составляющая вектора мнимая часть, действительное число, ${\rm Im}\,z$.
- 1.1 Поехали.
 - 1. Для комплексных чисел 1+i и 3+4i найди |z|, arg z, Re z, Im z.
 - 2. Нарисуй числа 1+i, 3+4i, 3-i, -3i.

Действия:

- 1. Сложение комплексных чисел сложение векторов.
- 2. Умножение комплексных чисел длины векторов умножаются, аргументы складываются.
- 3. Сопряжение z^* комплексного числа отражение относительно горизонтальной оси.
- 1.2 Базируясь на геометрическом определении умножения, ответь на вопросы:
 - 1. Чему равняется $(1+i)^2$? $(1+i)^{43}$?
 - 2. Почему $i^2 = -1$?
 - 3. Чему равняется произведение z = 6 + 3i на i?

Наивное умножение комплексных чисел. Раскрываем скобки и упрощаем по принципу $i^2 = -1$.

- 1.3 Нарисуй процесс умножение произвольного z на 3+4i. А именно, нарисуй 3z, 4iz, (3+4i)z и по рисунку объясни, почему (3+4i)z=3z+4iz.
- 1.4 1. У комплексного числа $w = \sqrt{11} + 5i$ найди |w|, $|w|^2$, Arg w, Re w, Im w, w^* , ww^* .
 - 2. Найди $(3+5i)\cdot(3+3i),$ (1+i)/(1-i),
 - 3. Найди $(\sqrt{3}+i)^{43}$, $(1-i)^{2018}$;
 - 4. Найди $(\cos(20^\circ) + i\sin(20^\circ)) \cdot (\cos(10^\circ) + i\sin(10^\circ));$
 - 5. Найди $(\cos(20^\circ) + i\sin(20^\circ))/(\cos(10^\circ) + i\sin(10^\circ));$
- 1.5 Реши уравнения $z^2=-1$, $z^2+6z+10=0$, $z^6=64$, (z-1)/(z+1)=1+3i.
- 1.6 Найди суммы $1+i+i^2+i^3+i^4+\ldots+i^{2019}$, $(1+i)+(1+i)^2+(1+i)^3+(1+i)^4+\ldots+(1+i)^{2020}$.
- 1.7 Бесконечно живущая черепаха за первый день проходит 10 км на север. Затем каждый день она поворачивает на 90° налево и снижает скорость на 20%. К какой точке она приближается?

К какой точке стремится черепах, если она поворачивает на 60° ?

1.8 Найди сумму углов между векторами и горизонтальной осью.

1.9 На плоскости нарисована кошечка. Что прозойдет с кошечкой, если каждую точку кошечки домножить на комплексное число $1/\sqrt{2}+i/\sqrt{2}$?

1. Комплексные числа. Определение

Определение 2. Комплексное число — это вектор на плоскости.

- 1. Длина вектора модуль комплексного числа, |z|.
- 2. Угол между вектором и горизонатльной осью аргумента комплексного числа, $\arg z$.
- 3. Горизонтальная составляющая вектора действительная часть, $\operatorname{Re} z$.
- 4. Вертикальная составляющая вектора мнимая часть, действительное число, ${\rm Im}\,z.$
- 1.1 Поехали.
 - 1. Для комплексных чисел 1+i и 3+4i найди |z|, arg z, Re z, Im z.
 - 2. Нарисуй числа 1+i, 3+4i, 3-i, -3i.

Действия:

- 1. Сложение комплексных чисел сложение векторов.
- 2. Умножение комплексных чисел длины векторов умножаются, аргументы складываются.
- 3. Сопряжение z^* комплексного числа отражение относительно горизонтальной оси.
- 1.2 Базируясь на геометрическом определении умножения, ответь на вопросы:
 - 1. Чему равняется $(1+i)^2$? $(1+i)^{43}$?
 - 2. Почему $i^2 = -1$?
 - 3. Чему равняется произведение z = 6 + 3i на i?

Наивное умножение комплексных чисел. Раскрываем скобки и упрощаем по принципу $i^2 = -1$.

- 1.3 Нарисуй процесс умножение произвольного z на 3+4i. А именно, нарисуй 3z, 4iz, (3+4i)z и по рисунку объясни, почему (3+4i)z=3z+4iz.
- 1.4 1. У комплексного числа $w = \sqrt{11} + 5i$ найди |w|, $|w|^2$, Arg w, Re w, Im w, w^* , ww^* .
 - 2. Найди $(3+5i)\cdot(3+3i),$ (1+i)/(1-i),
 - 3. Найди $(\sqrt{3}+i)^{43}$, $(1-i)^{2018}$;
 - 4. Найди $(\cos(20^\circ) + i\sin(20^\circ)) \cdot (\cos(10^\circ) + i\sin(10^\circ));$
 - 5. Найди $(\cos(20^\circ) + i\sin(20^\circ))/(\cos(10^\circ) + i\sin(10^\circ));$
- **1.5** Реши уравнения $z^2 = -1$, $z^2 + 6z + 10 = 0$, $z^6 = 64$, (z 1)/(z + 1) = 1 + 3i.
- 1.6 Найди суммы $1+i+i^2+i^3+i^4+\ldots+i^{2019}$, $(1+i)+(1+i)^2+(1+i)^3+(1+i)^4+\ldots+(1+i)^{2020}$.
- 1.7 Бесконечно живущая черепаха за первый день проходит 10 км на север. Затем каждый день она поворачивает на 90° налево и снижает скорость на 20%. К какой точке она приближается?

К какой точке стремится черепах, если она поворачивает на 60° ?

1.8 Найди сумму углов между векторами и горизонтальной осью.

1.9 На плоскости нарисована кошечка. Что прозойдет с кошечкой, если каждую точку кошечки домножить на комплексное число $1/\sqrt{2}+i/\sqrt{2}$?

2. Комплексные числа. Геометрия и картинки

- **2.1** Рассмотрим произвольный четырёхугольник. Снаружи каждой стороны четырёхугольника построим квадрат. Назовём отрезки, соединяющие центры противоположных квадратов, MN и KL.
 - 1. Найди угол между MN и KL.
 - 2. Найди отношение длин MN и KL.
- 2.2 Нарисуй на комплексной плоскости множества
 - 1. |z| = 4;
 - 2. |z-2+3i| > 5;
 - 3. Re z = 3;
 - 4. Im z < 6;
 - 5. 1 < |2z 6| < 2;
 - 6. $|z-1|^2 + |z+1|^2 < 8$;
 - 7. $|z-1|+|z+1| \le 2$;
 - 8. $|\operatorname{Re} z| < |z|$;
 - 9. |z i| = |z (3 + 2i)|;
 - 10. Re((1+i)z) > 2;
 - 11. Re $\left(\frac{z-1-i}{z+1+i}\right) = 0$;
 - 12. Im $\left(\frac{z-1-i}{z+1+i}\right) = 0;$
- **2.3** Нарисуй на комплексной плоскости траектории, $t \to z(t)$, для $t \in \mathbb{R}$, отметив стрелкой направление:
 - 1. $t \rightarrow 6 + it$;
 - 2. $t \to t + 2 + 7i$;
 - 3. $t \to t + 2 + it$;
 - 4. $t \rightarrow t + it^2$;
 - 5. $t \rightarrow \cos t + i \sin t$;
 - 6. $t \rightarrow t \cdot (\cos t + i \sin t)$;
 - 7. $t \to t \cdot (\cos t i \sin t)$;
- **2.4** Нарисуй комплексные числа z_1 и z_2 с единичной длиной и аргументами $\pi/4$ и $\pi/2$.
 - 1. Запиши z_1 , z_2 и $z_1 + z_2$ в виде a + bi.
 - 2. Найди $\tan 3\pi/8$;

2. Комплексные числа. Геометрия и картинки

- **2.1** Рассмотрим произвольный четырёхугольник. Снаружи каждой стороны четырёхугольника построим квадрат. Назовём отрезки, соединяющие центры противоположных квадратов, MN и KL.
 - 1. Найди угол между MN и KL.
 - 2. Найди отношение длин MN и KL.
- 2.2 Нарисуй на комплексной плоскости множества
 - 1. |z| = 4;
 - 2. |z-2+3i| > 5;
 - 3. Re z = 3;
 - 4. Im z < 6;
 - 5. 1 < |2z 6| < 2;
 - 6. $|z-1|^2 + |z+1|^2 < 8$;
 - 7. $|z-1|+|z+1| \le 2$;
 - 8. $|\operatorname{Re} z| < |z|$;
 - 9. |z i| = |z (3 + 2i)|;
 - 10. Re((1+i)z) > 2;
 - 11. Re $\left(\frac{z-1-i}{z+1+i}\right) = 0;$
 - 12. Im $\left(\frac{z-1-i}{z+1+i}\right) = 0;$
- **2.3** Нарисуй на комплексной плоскости траектории, $t \to z(t)$, для $t \in \mathbb{R}$, отметив стрелкой направление:
 - 1. $t \to 6 + it$;
 - 2. $t \to t + 2 + 7i$;
 - 3. $t \to t + 2 + it$;
 - 4. $t \rightarrow t + it^2$;
 - 5. $t \rightarrow \cos t + i \sin t$;
 - 6. $t \to t \cdot (\cos t + i \sin t)$;
 - 7. $t \to t \cdot (\cos t i \sin t)$;
- 2.4 Нарисуй комплексные числа z_1 и z_2 с единичной длиной и аргументами $\pi/4$ и $\pi/2$.
 - 1. Запиши z_1 , z_2 и $z_1 + z_2$ в виде a + bi.
 - 2. Найди $\tan 3\pi/8$;

3. Поле направления и экспонента

Определение 3. Если z(t) — положение точки в момент t, то $\dot{z}(t)$ или z'(t) — мгновенная скорость точки (вектор).

Определение 4. Поле направления — в каждой точки плоскости нарисован вектор скорости движения точки.

- 3.1 Нарисуй поле направления для каждого случая:
 - 1. $\dot{z}(t) = 1$;

- 4. $\dot{z}(t) = -z(t)$;
- 7. $\dot{z}(t) = 2 z(t)$;

2. $\dot{z}(t) = i$:

5. $\dot{z}(t) = iz(t)$:

3. $\dot{z}(t) = z(t)$;

6. $\dot{z}(t) = -iz(t)$;

8. $\dot{z}(t) = 2 - iz(t)$;

Определение 5. Экспонента $\exp(t)$ — функция z(t) со свойствами z(0) = 1, $\dot{z}(t) = z(t)$. Экспонента $\exp(it)$ — функция z(t) со свойствами $z(0)=1, \dot{z}(t)=iz(t).$

- 3.2 Докажи, что
 - 1. $\exp(1) \approx 1.01^{100}$;
 - 2. $\exp(2) = \exp(1) \cdot \exp(1)$;
 - 3. $\exp(3) = \exp(1) \cdot \exp(1) \cdot \exp(1)$;
- 3.3 Найди
 - 1. $\exp(i\pi/3)$;

- 3. Формула Эйлера! $\exp(i\pi)$; 5. $\exp(i\pi/3) \cdot \exp(i\pi/2)$;

2. $\exp(i\pi/2)$;

- 4. $\exp(it)$;
- 3.4 Запиши комплексные числа с помощью экспоненты
 - 1. 1 + i;
 - 2. $\sqrt{3} + i$;
 - 3. $\sqrt{3} i$:
 - 4. 6*i*;
- 3.5 Реши уравнения
 - 1. $z^2 = 6$:

5. $z^2 = -4i$:

9. $z^5 = 32$:

2. $z^2 = -9$;

- 6. $z^2 + 4z + 13 = 0$;
- 10. $z^6 = i$;

3. $z^2 = 4i$: 4. $z^3 = -27$:

- 7. $\frac{z+i+2}{z-i-3} = 4i;$
- 8. $z^3 + z^2 + z 3 = 0;$ 11. $z^7 = 1 i;$

4. Геометрия Фано

Количество точек и прямых на проективной плоскости порядка такого-то?

5. Лог. КЛШ-2019

- 1. Было 29 школьников, от 8-го до 10-го класса и одна храбрая семиклассница. Комплексное число вектор на плоскости. Сложение и вычитание. Изобразите 3+4i, 5i, -6+i, -8. Длина и аргумент. Многозначная функция. Геометрическое умножение. Находим $(1+i)^{44}$. Геометрически считаем $i \cdot i$, $(5+6i) \cdot i$. Наивное умножение. Геометрически интерпретируем наивное умножение $z \cdot (3+4i)$. Рисуем число $\cos 40^\circ + i \sin 40^\circ$. Делим через домножение на сопряжённое. Делим геометрически. Находим сумму конечной геометрической прогрессии комплексных чисел.
- 2. Повторили основные мысли. Два варианта записи чисел. Явно z=a+bi, через длину и угол с косинусом и синусом. Решили задачу про сумму углов. Разобрал окружность с центром не в нуле. Далее школьники решали и сдавали номера.
- 3. Решили задачу про сумму квадратов через явное представление z=a+bi. Дальше пообсуждали, что разумно сделать после решения задачи. Придумать более простой метод. Придумать более универсальный метод. Проверить, работает ли старый метод, если пошевилить задачу. Пошевелили нашу задачу и пришли к выводу, что геометрическо множество точек Z таких, что $AZ^2 + BZ^2 = const$ это окружность. Влад, решивший дома задачу по геометрии с произвольным четырёхугольником, начал излагать её. Чтобы ускорить процесс, я изложил за него. Затем кратко рассказал про кривые. И школьники рисовали кривые.

5.1. Плакат

6. Решения

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8. $(4+2i)(3+i) = 10+10i, \pi/4.$

1.9. Кошка повернётся на $\pi/4$ против часовой стрелки относительно начала координат

1.1.

- 1.2.
- 1.3.
- 1.4.
- 1.5.
- 1.6.
- 1.7.
- **1.8.** $(4+2i)(3+i) = 10+10i, \pi/4.$
- 1.9. Кошка повернётся на $\pi/4$ против часовой стрелки относительно начала координат
- 2.1.
- 2.2.
- 2.3.
- 2.4.
- 2.1.
- 2.2.
- 2.3.
- 2.4.
- 3.1.
- 3.2.
- 3.3.
- 3.4.
- 3.5.

7. Источники мудрости

передалать потом в bib-файл

- 1. Кратко про геометрию Фано, https://www.youtube.com/watch?v=CRqso5-uLfI
- 2. How to build hyperbolic soccer ball, http://theiff.org/images/IFF_HypSoccerBall.pdf
- 3. Chaim Goodman-Strauss, Compass and Straightedge in the Poincaré Disk
- 4. Mann, DIY hyperbolic course, https://math.berkeley.edu/~kpmann/DIY%20hyperbolic%20course.pdf
- 5. 3blue1brown, Quaternions visualized, https://www.youtube.com/watch?v=d4EgbgTm0Bg
- 6. Grant Sanderson, Visualizing quaternions, https://eater.net/quaternions
- 7. https://www.quantamagazine.org/the-octonion-math-that-could-underpin-physics-20180720/, есть pdf-ка с картинками умножения на кватернионов и октонионов.
- 8. Hanson, Visualizing quaternions, примеры про ремень, мячик, Apollo
- 9. https://brilliant.org/wiki/complex-numbers-in-geometry/
- 10. Прасолов, Геометрия Лобачевского
- 11. Slerp, wiki, https://en.wikipedia.org/wiki/Slerp
- 12. Wiki, 3d rotation, https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions
- 13. Fano plane, https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spaces-the-fano-plane/
- 14. Lam, Search finite Fano plane of order 10, https://www.maa.org/sites/default/files/pdf/upload_library/22/ Ford/Lam305-318.pdf, связка с латинскими квадратами
- 15. http://kahrstrom.com/mathematics/documents/OnProjectivePlanes.pdf, геометрия как точки и линии