Assignment Project Exam Help Lecture 19 https://tutorcs.com

What we have covered so far

```
Assignment Project Exam Help

Assignment Project Exam Help

Time complexity https://truttorcs.comT.M.

NP. etc... WeChationatulogs

NP A CONP. - Intermediate.
```

New measure of complexity (Space)

Maximum space (number of cells) used by the Turing Machine

DSPACE

$$L = 0^n 1^n$$
.
 $L \in DSPACE(n)$

NSPACE

LENSPACE (SCN) if FN.T.M. N which decides

L USING O(ASSIGNMENT Project Exam Help

https://tutorcs.com

ex) 3SAT with n variablesWeChat: Estitions

easily check that 3SAT @ NSPACE(SCA))

Ex) SAT

Idea

Space is reusable! (while time is not)

Assignment Project Exam Help

https://tutorcs.com

First Theorem

DTIME(S(n)) in DSPACE(S(n)) in NSPACE(S(n)) in DTIME(2^O(S(n)))

* Configuration Graph of TM (Directed)

• Vertices "snapshot" of ≤ Sm each T.M -• Edges: Assignment Project Exam Help C1 C2 by the definition of T.M.

WeChat: ostutores

(2 log(citc2)) = 2 = 2 O(s(n)) $(V_1, V_2) \in \Xi$

yields U2

Properties

Description of each nodes

https://tutorcs.com

• Edges can be described by a Chiffornula i.e. \phi_{M,x} (C, C') = 1 if and only if C and C' are neighbors — Cook-Levin Thridal (A). T.M

NSPACE(S(n)) in $DTIME(2^O(S(n)))$

StartS={Vo} iteratively add neighbors to Holt if \$\$ stays the some. Check if \$\Omegan{array}{c} \Omegan{array}{c} \Omega

2975 Mg/

 Connectivity between accepting config and starting config using standard connectivity algorithm

Our Goal till the finals

Savitch's Theorem

• PSPACE Completeness (?) https://tutorcs.com

PSPACE = DSPACE (
$$n^c$$
) = WeChat: cstutorcs

NSPACE(n^c) | $\leq_p L'$

LogSpace, NL = coNL

$$L = coM$$

$$NP \stackrel{?}{=} GNP$$

Assignment Project Exam Help

Relation betweens.com NSPACE and DSPACE

Clearly

- DSPACE contained in NSPACE (with same function);
- Question) NSPACE(§(n)) contained in PERACE(1) lp

```
DSPACE (S(n)) \subseteq NAPAGE: (Lectorics.com

We Chat: cstutorcs

NSPACE (S(n)) \subseteq DSPACE (?)

NSPACE (S(n)) \subseteq DTIME (20(S(n))) \subseteq DSPACE (2<sup>O(S(n))</sup>)
```

Savitch's Theorem

- There is only polynomial blowup between DSPACE and NSPACE
- NSPACE(f(n)) is in DSPACE(f^2(n)) oject Exam Help

https://tutorcs.com

First attempt on Proof

 N_{\cdot} , ×

Just enumerate all possible paths starting from starting configuration

Proof

• Recursively ask R(u,v,i); if you can reach from u to v in 2^i steps.

Assignment Project Exam Help

https://tutorcs.com

• True iff there exists z such that R(u,z,i-1) and R(z,v,i-1) both true.

Pictorial Description

Assignment Project Exam Help

https://tutorcs.com

So given table for i-1, how much extra space?

• S(i) = S(i-1) + O(log M) where M is the # of vertices – why?

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

• Then S(log M) = O(log^2 M)

PSPACE

Assignment Project Exam Help

https://tutorcs.com