

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

CIVIL TECHNOLOGY

NOVEMBER 2009

MEMORANDUM

MARKS: 200

This memorandum consists of 17 pages.

QUESTION 1

LO3 AS1,2,3,5,7,10

```
1.1
        1.1.1
                  TRUE
        1.1.2
                  TRUE
        1.1.3
                  FALSE
        1.1.4
                  TRUE
        1.1.5
                  FALSE
        1.1.6
                  FALSE
        1.1.7
                  TRUE
        1.1.8
                  TRUE
                  FALSE ✓
        1.1.9
                  FALSE
                                                                        (10 \times 1)
        1.1.10
                                                                                    (10)
1.2
        1.2.1
                  A – Border seam ✓
                  B – Bolt pitch ✓
                  C – Back mark ✓
                                                                                    (3)
```

1.2.2

(7)

1.3 Get the person away from the source of electricity.

- Use a piece of timber or non-conductor to break the contact of electricity from the person.
- Switch off the power source.

(2) (ANY TWO OF THE ABOVE OR ANY OTHER SUITABLE ANSWERS)

- 1.4 Only use the tool for its intended purpose.
 - · Wet hands can cause ferrous metals to rust, try to make contact with these parts as little as possible.
 - Remove rust from tools with steel wool only and thereafter apply a thin layer of oil or wax over it.
 - Check tools regularly for defects.
 - Avoid stacking tools on top of each other.
 - Tools must not be left lying around, they must be returned to its proper storage place.
 - Cutting tools must be sharp and its edges protected with a covering.

(ANY FIVE OF THE ABOVE OR ANY OTHER SUITABLE ANSWERS) (5)

- 1.5 Take note of overhead electrical cables and avoid contact with it.
 - Place the ladder so that its feet are a quarter of its length away from the object it is resting against.
 - Unless the ladder is securely tied at the top, another person should hold it whilst in use.
 - Wherever possible, the ladder should protrude at least 900 mm above its support.
 - Do not use ladders horizontally as runways or scaffolding.
 - Never place ladders in front of a door without taking precautions.
 - Only one person at a time is to use a ladder.

(ANY THREE OF THE ABOVE OR ANY OTHER SUITABLE ANSWERS) (3) [30]

QUESTION 2

LO3 AS1,2,3,5,7,10

- 2.1 2.1.1
- Should be strong enough to support the load of wet concrete.
- It must not be able to deflect under the load of wet concrete.
- It must be accurately set out.
- It must have grout tight joints.
- The design of the formwork unit should be such that it can be easily erected and dismantled.
- Formwork material must be of such a nature that it can be easily handled by hand or mechanical lifting device.
- The material must be re-usable.

(ANY FOUR OF THE ABOVE OR ANY OTHER SUITABLE ANSWERS)

2.1.2

	MARK ALLOCATION	
1	Joist / Bearer	✓
2	Cleats	✓
3	Stay / Strut	✓
4	Board shuttering	✓
5	Fixing plate / Kicker	✓
6	Head / Head tree	✓
7	Fish plate / Cleat	✓
8	Strut / Brace	✓
9	Wedges	✓
10	Post / Prop	✓
11	Folding wedges	✓
12	Sole plate / Sole piece	✓

(12)

(4)

(4)

- 2.2 1 – concrete or in-situ concrete ✓
 - 2 Reinforcing mesh/steel or weld mesh ✓
 - 3 Hollow blocks ✓
 - 4 Pre-stressed ribs or ribs ✓

2.3 Pre-stressed units

- Maximum span

 - In-situ concrete layer
 - Unit weight
 - Reinforcement requirements
 - Insulation characteristic
 - Fire resistance
 - Volume reduction
 - Sound insulation
 - Nature of struts
 - Thickness of units
 - Speed of construction
 - Support and formwork needed
 - Weight reduction
 - Foundation reduction
 - Safety characteristics
 - Precast top layer

(ANY FOUR OF THE ABOVE) (4)

Copyright reserved

Please turn over

2.4.2 Yellow ✓ (1)

2.4.3 Green ✓ (1)

2.5

FIGURE 2.5

Basic members must be present, but the layout of the drawing can differ.

MARK ALLOCATION		
Cleat	1	
Timber Planks/Shutter	1	
board		
Shore	1	
Loose and dry ground	1	
Neatness	1	
Correctness	2	
TOTAL	7	

(7)

2.6

- 1 Flat bar
- 2 Square bar
- 3 Rod/round bar
- 4 Angle iron
- 5 T-beam
- 6 Plate or sheet metal
- 7 Square tube
- 8 Rectangular tube
- 9 Piping
- 10 Lipped channel iron
- 11 Lipped angle iron
- 12 I-beam
- 13 Channel or U-channel
- 14 H-beam

(ANY THREE OF THE ABOVE. ONE MARK FOR THE SKETCH AND ONE MARK FOR THE LABEL.)

(6) **[40]**

QUESTION 3

LO3 AS5,8,10

3.1 3.1.1

1	Bath or B√
2	Wash hand basin or WHB✓
3	Sink or S√
4	Water closet or WC✓
5	Shower or S√
6	Gulley or G√

(6)

(15)

3.1.2

$$3.1.3 45^{\circ} \checkmark (1)$$

3.1.4 Waste-water pipe ✓ (1)

Copyright reserved Please turn over

FIGURE 3.1.2

3.2	 Pipe must be encased with concrete. Pipe must be laid on a fixed concrete base. Inspection eyes must be provided on both sides of building. There must be no change in direction under the building. There must be no connection under the building. It is preferable to use heavy cast-iron pipes under the building. The sewer should be laid at least 50 mm clear of any foundation (ANY TWO OF THE ABOVE) 	(2)
3.3	 Do not use strong or harsh chemical agents to wash toilet pans. Do not dispose of cigarette ashes and cigarette stubs into the toilet pan. If sewer line is blocked, do not use chemicals to clear the blockage but rather use cleaning rods. (ANY ONE OF THE ABOVE) 	(1)
3.4	 Breaks the siphon that could empty the hot-water cylinder to inlet level. Prevents back-flow of hot water to cold-water taps. Prevents contamination of fresh water supply. Allow air into the cylinder to ensure good flow of water when the cylinder must be drained. (ANY ONE OF THE ABOVE) 	(1)
3.5	 Solar Hydro Nuclear Wind (ANY THREE OF THE ABOVE) 	(3) [30]
QUESTI	DN 4 LO3 AS2,5,9	
4.1	Visual grading is done visually ✓whilst mechanical grading is done with testing equipment (machines). ✓	(2)
4.2	4.2.1 In mechanical grading the strength and stiffness of timber is tested. ✓	(1)
	4.2.2 In visual grading – The size of the knots, the arrangements of the grain and the number of the annual rings are noted. ✓	(1)
4.3	 Cement should be stored on a raised platform covered with waterproof material. Should not be exposed to moisture. Should be used as soon as possible. Must be used in a cycle of first in first out. Must be stacked away from the walls. Do not store more than 12 bags on top of one another. Do not stack more than two pallets on top of each other. (ANY THREE OF THE ABOVE) 	(3)

Civil Technology DoE/November 2009 NSC - Memorandum

1	1	1
4	.4.	

Α	В	С	D
			FOUNDATION
			Centre line: 2 / 6 000 = 12 000 ✓
			2 / 3 000 = <u>6 000</u> √
			= 18 000 √
			Less 4 / 600 = <u>2 400</u> √
			= 15 600 √
1/	15.6✓		
	0.60√		Volume of concrete required for foundation
	<u>0.25</u> √	2,34 m³√	2,34 m³

(9)

4.4.2

			FLOOR SLAB
			(Floor is cast up to the middle of one-brick
			wall)
			$6\ 000 - 2(190 + 110) = 6\ 000 - 600 = 5\ 400 \checkmark$
			$3\ 000 - 2(190 + 110) = 3\ 000 - 600 = 2\ 400 \checkmark$
1/	5.4 ✓		
	2.4 ✓		Volume of concrete required for floor slab
	<u>0.075</u> ✓	0,972 m³ √	0,972 m³
			OR
			(Floor is cast up to the middle of one-brick
			wall)
			$6\ 000 - 380 = 5\ 620$ (External measurements of
			wall)
			5 620 − (2 x 110) = 5 400 ✓
			3 000 – 380 = 2 620 (Short wall)
			2 620 – (2 x 110) = 2 400 ✓
1/			
	2.4 ✓		
	0.075✓	0,972 m³√	
			OR (Floor is cast between external walls)
			$6\ 000 - 380 = 5\ 620$ (External measurements of
			wall)
			5 620 – (2 x 220) = 5 180 ✓
			$3\ 000 - 380 = 2\ 620$ (External measurements of
			wall)
			2 620 – (2 x 220) = 2 180 ✓
1/	5.18 ✓		
	2.18 ✓		
	0.075 ✓	0,847 m³ √	

			OR (Floor is cast over external walls)
			$6\ 000 - 380 = 5\ 620$ (External measurements of wall)
			$3\ 000 - 380 = 2\ 620$ ✓ (External measurements of wall)
1/	5.62 ✓		
	2.62 ✓		
	0.075 ✓	1,104 m³√	

4.5

TYPE OF GLASS	WHERE USED
Rolled glass/Sheet glass	Windows/Mirrors
Patterned glass	Windows
Safety glass/Reinforced glass	Shower doors Sliding doors Safety doors Windows
Glass bricks	Transparent walls

(ANY TWO OF THE ABOVE AND ONE MARK EACH)

(4)

(6)

- 4.6
- It is available in long lengths.
- Lighter to handle.
- Easier to join.
- Does not rust.
- Less maintenance.
- It is cheaper than copper pipe.

(ANY FOUR OF THE ABOVE OR ANY OTHER SUITABLE ANSWERS)

(4) [**30**]

QUESTION 5

LO3 AS5,6

5.1 5.1.1 **SHEAR FORCES**

SF B =
$$25 - 40 \checkmark$$

= -15 N \checkmark

SF C =
$$25 - 40 - 20$$
 \checkmark OR SF C = $-15 - 20$
= -35 N \checkmark = -35 N

SF D = 0 N
$$\checkmark$$
 OR SF D = 25 - 40 - 20 + 35 = 0 N

OR SF D =
$$-35 + 35$$

= 0 N (7)

NOT TO SCALE

(7)

Civil Technology 13 DoE/November 2009

NSC - Memorandum

5.2 5.2.1 Area of triangle $= \frac{1}{2} b x h$

= ½ x 120 mm x 250 mm ✓

= 15 000 mm² ✓

Area of rectangle = $I \times b$

= 400 mm x 120 mm ✓

= 48 000 mm² ✓

Area of square $= I \times b$

= 100 mm x 100 mm ✓

= 10 000 mm² ✓

Total area = 15 000 mm² + 48 000 mm² + 10 000 mm²
= 73 000 mm²
$$\checkmark$$
 (7)

5.2.2 Take moments about B left side

73 000 mm² x X = (15 000 x 180) + (48 000 x 160) + (10 000 x 50)
73 000 mm² x X = 2 700 000 + 7 680 000 + 500 000
$$\checkmark$$

X = $\frac{10\ 880\ 000}{73\ 000}$
X = 149,04 mm OR 149 mm \checkmark

OR

PART	AREA (A)	X	AREA of X (AX)	
Triangle	15 000 ✓	<u>b</u> 3 = 180 ✓	2 700 000	
Rectangle	48 000 ✓	<u>b</u> 2 = 160 ✓	7 680 000 🗸	
Square	10 000 ✓	<u>b</u> 2 = 50 ✓	500 000	
Σ	73 000		10 880 000	

$$X = \sum_{X} \frac{Ax}{\sum_{X} A}$$
= \frac{10.880.000}{73.000} \sqrt{
= 149,04 mm \sqrt{OR} \quad OR \quad 149 mm

OR

Position of centroid =
$$(A1 \times d) + (A2 \times d) + (A3 \times d)$$

Total area
 $\checkmark \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark$
= $(1500 \times 180) + (4800 \times 160) + (10000 \times 50)$
 73000
= $2700000 + 7680000 + 500000$
 73000
= $10880000 \checkmark$
 73000
= $149,04 \text{ mm OR } 149 \text{ mm}$ (9)

QUESTION 6

LO3 AS4,5

6.1

ITEM	MARK
	ALLOCATION
Floor slab height	1
Entrance door	1
Window	1
Window sill	1
Ramp	1
Roll-up door	1
Down pipes	2
Barge boards	2
Gable wall	1
Wall plate height	2
Roof pitch	1
North elevation	1
Scale	1
Accuracy	4
TOTAL	20

NOTE: Use a mask to mark the accuracy of this question.

(20)

MARK ALLOCATION			
Α	Galvanised roof sheet	1	
В	Wall 220 mm	1	
С	Wall plate 114 mm x 38 mm	1	
D	Rafter 114 mm x 38 mm	1	
Е	Tie beam 114 mm x 38 mm	1	
F	Beam filling	1	
G	Purlin 76 mm x 50 mm	1	
Н	Fascia board 225 mm x 30 mm	1	
I	Square gutter 100 mm x 100 mm	1	
J	Down pipe 75 mm diameter	1	
K	Cornice 75 mm	1	
L	Brandering (ceiling batten)	1	
	38 mm x 38 mm		
M	Ceiling board 6 mm thick	1	
Ν	Hanger 38 mm x 38 mm	1	
0	Bearer 38 mm x 38 mm	1	
Р	Covering material	1	
	Accuracy	4	
	TOTAL	20	

(20) **[40]**

NOTE: Provincial moderators and chief markers may accept alternative answers provided they can verify that such answers are indicated in reference material relevant to Civil

Technology used in the province.

TOTAL: 200