CSE 423 Computer Graphics

Pranta Sarker

Lecturer

Dept. Of CSE

NEUB

Midpoint Circle Drawing Algorithm concept

- A circle is a set of all points that lie at an <u>equal distances</u> from a fixed point called centre.
- If we draw a line from the centre at an equal distance is called Radius
 (r)
- The position of (x, y) will be interchanged if you change any point with 45^o angle
- Ways to draw a circle
 - Symmetric figure (4 way symmetry and 8 way symmetry)

Symmetric figure

4 way symmetry

8 way symmetry

Midpoint Circle Drawing Algorithm concept

Quadrant

Octant

Circle Equation:

$$(x-h)^2+(y-k)^2=r^2$$

For the axis (x,y) at the point (h,k)
If $h=0$ and $k=0$ then $x^2+y^2=r^2$

x axis will be always increment by $x_k + 1$

If I put the value of M on the equation of circle then

M = 0, lie on the line

M>0, outside the circle boundary, I will pick SE point from the circle boundary

M < 0, inside the circle boundary, I will pick $\it E$ point from the circle boundary

So, if $P_k < 0$, next coordinate $(x_k + 1, y_k)$ Again, if $P_k > 0$, next coordinate $(x_k + 1, y_k - 1)$

Now, find the initial decision parameter P_0 , according to the concept "If we draw a line from the centre at an equal distance is called Radius (r)"

Put that concept into the equation of circle with -

$$M\left(x_k+1,y_k-\frac{1}{2}\right)$$

In this case,

$$x_k = 0$$
 and $y_k = r$

So, the equation of initial decision parameter will be

$$P_0 = (0+1)^2 + \left(r - \frac{1}{2}\right)^2 - r^2$$

We know the circle equation at the point (0,0) is $x^2 + y^2 = r^2$

We have got $E(x_k + 1, y_k)$ and $SE(x_k + 1, y_k - 1)$

Midpoint:
$$\left(\frac{x_k+1+x_k+1}{2}, \frac{y_k+y_k-1}{2}\right) = \left(x_k+1, y_k-\frac{1}{2}\right)$$

Put the circle equation at the midpoint in decision parameter P_k

$$P_k = (x_k + 1)^2 + \left(y_k - \frac{1}{2}\right)^2 - r^2$$

The decision parameter at the k + 1th position/iteration

$$P_{k+1} = (x_{k+1} + 1)^2 + \left(y_{k+1} - \frac{1}{2}\right)^2 - r^2$$

Now,

$$\begin{aligned} &P_{k+1} - P_k \\ &= (x_{k+1} + 1)^2 - (x_k + 1)^2 + \left(y_{k+1} - \frac{1}{2}\right)^2 - \left(y_k - \frac{1}{2}\right)^2 - r^2 + r^2 \end{aligned}$$

$$P_{k+1} - P_k$$

$$= (x_{k+1} + 1)^2 - (x_k + 1)^2 + \left(y_{k+1} - \frac{1}{2}\right)^2 - \left(y_k - \frac{1}{2}\right)^2 - r^2 + r^2$$
...
$$P_{k+1} = P_k + 2x_k + 3 + y_{k+1}^2 - y_{k+1} - y_k^2 + y_k$$

$$P_{k+1} = P_k + 2x_k + 3 + y_{k+1}^2 - y_{k+1} - y_k^2 + y_k$$
 Now, if $P_k < 0$ then $y_{k+1} = y_k$
$$P_{k+1} = P_k + 2x_k + 3 + y_k^2 - y_k - y_k^2 + y_k$$

$$P_{k+1} = P_k + 2x_k + 3$$

if
$$P_k \ge 0$$
 then $y_{k+1} = y_k - 1$

$$P_{k+1} = P_k + 2x_k + 3 + (y_k - 1)^2 - (y_k - 1) - y_k^2 + y_k$$

$$P_{k+1} = P_k + 2x_k - 2y_k + 5 = P_k + 2(x_k - y_k) + 5$$

Summery

• Initial decision parameter $P_0 = 1 - r$

$P_k < 0$	$P_k \geq 0$
Next coordinate $(x_k + 1, y_k)$	Next coordinate $(x_k + 1, y_k - 1)$
Update the decision parameter by –	Update the decision parameter by –
$P_k = P_k + 2x_k + 3$	$P_k = P_k + 2(x_k - y_k) + 5$

Solve a problem

Q: Find/Plot the first/second octant of the circle centered at origin, having the radius 7 units.

Solution:

The radius is r=7

Circle is centered at the origin means the point is (0,0)

Therefore, the initial point is (0,7)

Find the 1st octant for Q1

Initial decision parameter $P_0 = 1 - r = 1 - 7 = -6$

Iteration	(x_0, y_0)	\boldsymbol{P}_{k}	(x_k, y_k)
0	(0,7)	$P_0 = 1 - 7 = -6 < 0$	(1,7)
1	(1,7)	$P_1 = -6 + 2 * 0 + 3 = -3 < 0$	(2,7)
2	(2,7)	$P_2 = -3 + 2 * 1 + 3 = 2 > 0$	(3,6)
3	(3, 6)	$P_3 = 2 + 2 * (2 - 7) + 5 = -3 < 0$	(4,6)
4	(4, 6)	$P_4 = -3 + 2 * 3 + 3 = 6 > 0$	(5,5)

Find the second octant and complete the Q1

Co-ordinates of 1st octant	Co-ordinates of 2 nd octant
(0,7)	(5, 5)
(1,7)	(6, 4)
(2,7)	(6, 3)
(3, 6)	(7,2)
(4, 6)	(7,1)
(5, 5)	(7,0)

Assignment

• Find co-ordinates/octants for rest of the Quadrants (Q2, Q3 and Q4)