题	号	1	2	3	4	5	6	7	8
分	值	15 分	25 分	10 分	12 分	10 分	10 分	10 分	8分

本试卷共 (8) 大题, 满分 (100)分. 请将所有答案写在答题本上.

This exam includes 8 questions and the score is 100 in total. Write all your answers on the examination book.

1. (15 points, 3 points each) Multiple Choice. Only one choice is correct.

(共15分,每小题3分)选择题,只有一个选项是正确的.

(1) The system

$$\begin{cases} u + 2v = b \\ 2u + 3v = 3b \\ 3u + 4v = 4 \\ 4u - 4v = 0 \end{cases}$$

is consistent

- (A) for any b.
- (B) only for b = -1.
- (C) only for b = 1.
- (D) none of the above.

下面这个线性方程组

$$\left\{ \begin{array}{l} u+2v=b\\ 2u+3v=3b\\ 3u+4v=4\\ 4u-4v=0 \end{array} \right.$$

- (A) 对任何的 b 都有解.
- (B) 只有当 b = -1 有解.
- (C) 只有当 b=1 有解.
- (D) 以上都不是.
- (2) Let $A,\ B$ be $n\times n$ square matrices, and $(AB)^2=I,$ where I is the $n\times n$ identity matrix, then
 - (A) $A^{-1} = B$.
 - (B) AB = -I.
 - (C) AB = I.
 - (D) $A^{-1} = BAB$.

设 A, B 为 n 阶方阵, 且 $(AB)^2 = I$, 其中 I 为 n 阶单位矩阵, 则必有

- (A) $A^{-1} = B$.
- (B) AB = -I.
- (C) AB = I.

期中考试 科目: 线性代数 A

- (D) $A^{-1} = BAB$.
- (3) Suppose η_1 , η_2 are two different solutions to the homogeneous system of linear equations Ax = 0 in n unknowns, and rank (A) = n - 1, then the general solution to Ax = 0 can be expressed as
 - (A) $k\eta_1$, k is an arbitrary constant.
 - (B) $k\eta_2$, k is an arbitrary constant.
 - (C) $k(\eta_1 \eta_2)$, k is an arbitrary constant.
 - (D) $k(\eta_1 + \eta_2)$, k is an arbitrary constant.

设 η_1 , η_2 是 n 元齐次线性方程组 Ax=0 的两个不同的解. 如果 $\mathrm{rank}\;(A)=n-1$, 则 Ax = 0 的通解是

- (A) $k\eta_1$, k 是任意常数.
- (B) $k\eta_2$, k 是任意常数.

(B)
$$k\eta_2$$
, k 是任意常数.
(C) $k(\eta_1 - \eta_2)$, k 是任意常数.
(D) $k(\eta_1 + \eta_2)$, k 是任意常数.
(4) Let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, $B = \begin{bmatrix} a_{12} + a_{13} & a_{11} & a_{13} \\ a_{22} + a_{23} & a_{21} & a_{23} \\ a_{32} + a_{33} & a_{31} & a_{33} \end{bmatrix}$, $P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then $B = \begin{bmatrix} 0 &$

- (A) P_1AP_2 .
- (B) AP_2P_1 .
- (C) AP_1P_2 .
- (D) P_2AP_1 .

设
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, B = \begin{bmatrix} a_{12} + a_{13} & a_{11} & a_{13} \\ a_{22} + a_{23} & a_{21} & a_{23} \\ a_{32} + a_{33} & a_{31} & a_{33} \end{bmatrix}, P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$
則 $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- (A) P_1AP_2 .
- (B) AP_2P_1 .
- (C) AP_1P_2 .
- (D) P_2AP_1 .
- (5) Let A, B be $n \times n$ matrices. Which of the following statements is correct?
 - (A) If AB = B, then B is the identity matrix.
 - (B) If $A^2 = A$ and A is invertible, then A must be the identity matrix.
 - (C) If A is invertible, then $ABA^{-1} = B$.
 - (D) If AB = BA, then AB is a symmetric matrix.

设 A, B 都为 n 阶矩阵. 下列哪个论断是正确的?

- (A) 如果 AB = B, 则 B 是单位方阵.
- (B) 如果 $A^2 = A$, 且 A 为可逆矩阵, 则 A 一定为单位矩阵.
- (C) 如果 A 是可逆方阵, 则 $ABA^{-1} = B$.
- (D) 如果 AB = BA, 则 AB 是对称矩阵.
- 2. (25 points, 5 points each) Fill in the blanks. (共 25 分, 每小题 5 分) 填空题.

(1) If
$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} X = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$
, then $X = \underline{\qquad}$.
若 $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} X = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$, 则 $X = \underline{\qquad}$.

(2) If the vectors
$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 2 \\ 3 \\ t \end{bmatrix}$ are linearly dependent, then $t = \frac{1}{2}$

已知向量组
$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 2 \\ 3 \\ t \end{bmatrix}$$
 线性相关,则 $t = \underline{\qquad}$.

(3) Let
$$A$$
 be a 3×3 matrix with rank $(A) = 1$, $B = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 4 & k \\ 5 & 5 & 15 \end{bmatrix}$. If $AB = O$, where O is the zero matrix, then $k =$ _____.

设
$$A$$
 为一个秩为 1 的 3 阶矩阵 $,B=\begin{bmatrix}1&2&4\\3&4&k\\5&5&15\end{bmatrix}$. 如果 $AB=O,$ 其中 O 为零矩阵 $,$ 则 $k=$

(4) Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$
. Then $\dim N(A^TA) = \underline{\hspace{1cm}}$.

设
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$
. 则 $\dim N(A^T A) =$ ______.

(5) Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & -2 \\ 1 & 0 \end{bmatrix}$$
, $b = \begin{bmatrix} 8 \\ 1 \\ -5 \end{bmatrix}$.

Then the least squares solution to Ax = b is $\hat{x} =$ _____

设
$$A = \begin{bmatrix} 1 & 1 \\ 0 & -2 \\ 1 & 0 \end{bmatrix}, b = \begin{bmatrix} 8 \\ 1 \\ -5 \end{bmatrix}.$$
则 $Ax - b$ 的最小二乘解是 $\hat{x} -$

3. (10 points) Suppose there are three linearly independent solutions to the system

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1 \\ ax_1 + x_2 + 3x_3 + bx_4 = 1 \end{cases}$$

- (a) Prove that the coefficient matrix of the system has the rank: rank (A) = 2;
- (b) Find the values of a, b, and solve the system of linear equations.

己知线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1 \\ ax_1 + x_2 + 3x_3 + bx_4 = 1 \end{cases}$$

有三个线性无关的解.

- (a) 证明: 方程组系数矩阵 A 的秩 rank (A) = 2;
- (b) 求 a,b 的值及方程组的通解.
- 4. (12 points) Let A be the matrix

$$A = \begin{bmatrix} 1 & a & 0 & 0 \\ 0 & a^2 & 0 & 0 \\ 0 & a^3 & 1 & 0 \\ 0 & a^4 & 0 & 1 \end{bmatrix}, \ a \neq 0.$$

- (a) Factor A into LU.
- (b) Find A^{-1} .
- (c) Find the solution of the equation Ax = b, if $b = \begin{bmatrix} 1 \\ a \\ a^2 \\ a^3 \end{bmatrix}$.

设

$$A = \begin{bmatrix} 1 & a & 0 & 0 \\ 0 & a^2 & 0 & 0 \\ 0 & a^3 & 1 & 0 \\ 0 & a^4 & 0 & 1 \end{bmatrix}, \ a \neq 0.$$

- (a) 求 A 的 LU 分解.
- (b) 求 A^{-1} .

(c) 如果
$$b = \begin{bmatrix} 1 \\ a \\ a^2 \\ a^3 \end{bmatrix}$$
, 求解 $Ax = b$.

5. (10 points) Let

$$A = \left[\begin{array}{cccc} 2 & 4 & 6 & 8 \\ 1 & 3 & 0 & 5 \\ 1 & 1 & 6 & 3 \end{array} \right].$$

- (a) Find a basis for the nullspace of A.
- (b) Find a basis for the row space of A.
- (c) Find a basis for the column space of A.
- (d) For each column vector which is not in the basis that you obtained in part (c), express it as a linear combination of the basis vectors for the column space of A (as obtained in part (c)).

设

$$A = \left[\begin{array}{cccc} 2 & 4 & 6 & 8 \\ 1 & 3 & 0 & 5 \\ 1 & 1 & 6 & 3 \end{array} \right].$$

- (a) 求矩阵 A 的零空间的一组基.
- (b) 求矩阵 A 的行空间的一组基.
- (c) 求矩阵 A 的列空间的一组基.
- (d) 把矩阵 A 不在 (c) 中基向量组中的列向量表示成 (c) 中得到的基向量的线性组合.
- 6. (10 points) Let V and W be the following subspaces of the space \mathbb{R}^3 :

$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : x - y + z = 0 \right\}, \ W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : z = 0 \right\}.$$

- (a) Find two orthogonal vectors $v_1, v_2 \in \mathbb{R}^3$ such that $V = \text{span}(v_1, v_2)$, i.e., V is spanned by v_1, v_2 .
- (b) Find a basis for the intersection L of the subspaces V and W (i.e., $L = V \cap W$).
- (c) Find the orthogonal projection p of the vector $v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ onto L.

科目: 线性代数 A 期中考试

设 V 和 W 为 \mathbb{R}^3 的两个子空间:

$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : x - y + z = 0 \right\}, \ W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : z = 0 \right\}.$$

- (a) 求两个正交的向量 $v_1, v_2 \in \mathbb{R}^3$, 使得 $V = \text{span}(v_1, v_2)$, 也即 V 由 v_1, v_2 生成.
- (b) 求子空间 V 和 W 的交 L 的一组基, 这里 $L = V \cap W$.

(c) 求
$$v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 投影到 L 的投影 p .

7. (10 points) Let
$$A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{bmatrix}$$
, $\xi_1 = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$.

- (a) Find all the vectors ξ_2 and ξ_3 which satisfy the equations $A\xi_2 = \xi_1$, $A^2\xi_3 = \xi_1$.
- (b) For any vectors ξ_2 , ξ_3 as described above, show that ξ_1 , ξ_2 , ξ_3 are linearly independent.

设
$$A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{bmatrix}, \xi_1 = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}.$$

- (a) 求满足 $A\xi_2 = \xi_1$, $A^2\xi_3 = \xi_1$ 的所有向量 ξ_2 , ξ_3 .
- (b) 对以上的任意向量 ξ_2 , ξ_3 , 证明: ξ_1 , ξ_2 , ξ_3 线性无关.
- 8. (8 points) Let $u, v \in \mathbb{R}^n$ and U, V be $n \times m$ real matrices.
 - (a) If $v^T u \neq 1$, show that $A = I_n uv^T$ is invertible, and find A^{-1} .
 - (b) If $B = I_n UV^T$ is invertible, find B^{-1} .

Where I_n is the $n \times n$ identity matrix.

设 $u, v \in \mathbb{R}^n, U, V$ 为 $n \times m$ 实矩阵.

- (a) 如果 $v^T u \neq 1$, 证明 $A = I_n uv^T$ 是可逆的, 并求 A^{-1} .
- (b) 如果 $B = I_n UV^T$ 可逆, 求 B^{-1} .

其中 I_n 是 n 阶单位阵.