Learning Modal Continuous Models

Joseph Xu Soar Workshop 2012

Setting: Continuous Environment

- Input to the agent is a set of objects with continuous properties
 - Position, rotation, scaling, ...
- Output is fixed-length vector of continuous numbers
 - Agent runs in lock-step with environment
- Fully observable

Levels of Problem Solving

Continuous Model Learning

Learn a function

$$f(x,u) \rightarrow y$$

- x: current continuous state vector
- u: current output vector
- y: state vector in next time step

Locally Weighted Regression

Problems with LWR

- Euclidean distance doesn't capture relational similarity
- Averages over neighbors exhibiting different types of interactions

Problems with LWR

- Euclidean distance doesn't capture relational similarity
- Averages over neighbors exhibiting different types of interactions

Modal Models

- Object behavior can be categorized into different Modes
 - Behavior within a single mode is usually simple and smooth (inertia, gravity, etc...)
 - Behaviors across modes can be discontinuous and complex (collisions, drops)
 - Modes can often be distinguished by discrete spatial relationships between objects
- Learn two-level models composed of:
 - A classifier that determines the active mode using spatial relationships
 - A set of linear functions (initial hypothesis), one for each model

Unsupervised Learning of Modes From Data

Expectation Maximization

Expectation

Assuming your current model parameters are correct, what is the likelihood that the model m generated data point i?

Maximization

Assuming each data point was generated by the most probable model, modify each model's parameters to maximize likelihood of generating data

Iterate until convergence to local maximum

Learning Classifier

left-of(A,B) = 1
right-of(A,B) = 0
on-top(A,B) = 0
touch(A,B) = 0

1000101011011

Spatial Relations
Training Data

attributes class 1000101011011 1 01010110100 1

 1100101100000
 1

 1010111010100
 1

 0010100010101
 1

 1110100010100
 2

0001010100111 2

 1111010101010
 2

 1010100001001
 2

1010101010011 0100110010101 **Expectation Maximization**

Learned Mode 1

 $y = a_1'x_1 + a_2'x_2 + \dots$

Learned Mode 2

 $y = b_1 x_1 + b_2 x_2 + \dots$

time

1

1

Learning Classifier

Classifier Training Data

class

1000101011011	1
0101011010100	1
1100101100000	1
1010111010100	1
0010100010101	1
1110100010100	2
0001010100111	2
1111010101010	2
1010100001001	2
1010101010011	1
0100110010101	1

Use linear model for items in same model

Prediction Accuracy Experiment

2 Block Environment

- Agent has two outputs (dx, dy) which control the x and y offsets of the controlled block at every times tep
- The pushed block can't be moved except by pushing it with the controlled block
- Blocks are always axis-aligned, there's no momentum

Training

- Instantiate Soar agent in a variety of spatial configurations
- Run 10 time steps, each step is a training example

Testing

- Instantiate Soar agent in some configuration
- Check accuracy of prediction for next time step

Prediction Accuracy – Pushed Block

Classification Performance

Prediction Performance Without Classification Errors

Levels of Problem Solving

Symbolic Abstraction

- Lump continuous states sharing symbolic properties into a single symbolic state
- Should be Predictable
 - Planning requires accurate model (ex. STRIPS operators)
 - Tends to require more states, more symbolic properties
- Should be General
 - Fast planning and transferrable solutions
 - Tends to require fewer states, fewer symbolic properties

S1: intersect(C1, C2)

S2: ~intersect(C1, C2)

Symbolic Abstraction

- Hypothesis: contiguous regions of continuous space that share a single behavioral mode is a good abstract state
 - Planning within modes is simple because of linear behavior
 - Combinatorial search occurs at symbolic level
- Spatial predicates used in continuous model decision tree are a reasonable approximation

Abstraction Experiment

- 3 blocks, goal is to push c2 to t
- Demonstrate a solution trace to agent
- Agent stores sequence of abstract states in solution in epmem
- Agent tries to follow plan in analogous task
- Abstraction should include predicates about c1, c2, t, avoid predicates about d1, d2, d3

Generalization Performance

Conclusions

- For continuous environments with interacting objects, modal models are more general and accurate than uniform model
- The relationships that distinguish between modes serve as useful symbolic abstraction over continuous state
- All this work takes Soar toward being able to autonomously learn and improve behavior in continuous environments

Evaluation

Coal

- Scaling issues: linear regression is exponential in number of objects
- Linear modes is insufficient for more complex physics such as bouncing -> catastrophic failure

Nuggets

- Modal model learning is more accurate and general than uniform models
- Abstraction learning results are promising, but preliminary