Nom, Prénom: CORRECTION 30 mai 2023

Évaluation probabilités (sujet A)

Exercice 1 (2,5 points) : On considère une expérience aléatoire qui consiste à lancer trois pièces équilibrées.

Compléter les phrases suivantes avec les mots : « une issue », « issues », « un évènement », « l'évènement », « la probabilité »

- 1. Cette expérience comporte 8 issues. (pile ; face ; pile) est une issue.
- 2. « On a obtenu exactement une face » est un évènement.
- 3. $P(X \ge 2)$ est la probabilité de l'évènement X.

Exercice 2 (3,5 points):

- 1. Si n=2, on a:
 - 1 branche donnant 0 succès.
 - 2 branches donnant 1 succès.
 - 1 branche donnant 2 succès.
- 2. Si n=3, on a:
 - 1 branche donnant 0 succès.
 - 3 branches donnant 1 succès.
 - 3 branches donnant 2 succès.
 - 1 branche donnant 3 succès.

3.

n	0	1	2	3	4
1	1	1	×	×	×
2	1	2	1	×	×
3	1	3	3	1	×
4	1	4	6	4	1

4. Pour remplir une cellule, il faut additionner le contenu de la cellule au dessus et celle au dessus à gauche.

Exercice 3 (6 points):

1.

2. La probabilité d'obtenir un 1 au premier lancé et un 3 au deuxième lancé est alors de

$$\frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$$

3. Les issues donnant au moins un 2 sont (1;2), (2;1), (2;2), (2;3) et (3;2). La probabilité d'obtenir au moins un 2 est donc de

$$\frac{1}{3} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{3} + \frac{1}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{6} = \frac{11}{36}$$

4. a_i 2 3 4 5 6 $P(X = a_i)$ $\frac{1}{9}$ $\frac{1}{9}$ $\frac{13}{36}$ $\frac{1}{6}$ $\frac{1}{4}$

5. L'espérance de X est alors

$$2 \times \frac{1}{9} + 3 \times \frac{1}{9} + 4 \times \frac{13}{36} + 5 \times \frac{1}{6} + 6 \times \frac{1}{4} = \frac{13}{3}$$

Exercice 4 (8 points):

1. On croise 4 clous, avec deux possibilités (droite ou gauche) à chaque fois. Il y a donc au total $2 \times 2 \times 2 \times 2 = 16$ chemins possibles.

case	-2	-1	0	1	2
nombre de chemins	1	4	6	4	1

². La probabilité que la bille tombe dans la case $\frac{1}{-2}$ est de $\frac{1}{16}$.

3. La probabilité que la bille tombe dans la case -1 est de $\frac{4}{16} = \frac{1}{4}$.

4. La probabilité que la bille tombe dans la case $\frac{1}{1}$ est de $\frac{6}{16} = \frac{3}{8}$.

5. La fonction case peut renvoyer -2, -1, 0, 1 ou 2.

6. def gain():
 c = case()
 if c == -2 or c == -1:
 return -20
 if c == 0:
 return 0
 if c == 1:
 return 15
 if c == 2:
 return 25

7.

a_i	-20	0	15	25
$P(G = a_i)$	$\frac{5}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{1}{16}$

8. L'espérance de G est

$$-20 \times \frac{5}{16} + 0 \times \frac{6}{16} + 15 \times \frac{4}{16} + 25 \times \frac{1}{16} = -\frac{15}{16}$$

Nom, Prénom : CORRECTION 30 mai 2023

Évaluation probabilités (sujet B)

Exercice 1 (2,5 points) : On considère une expérience aléatoire qui consiste à lancer trois pièces équilibrées.

Compléter les phrases suivantes avec les mots : « une issue », « issues », « un évènement », « l'évènement », « la probabilité »

- 1. Cette expérience comporte 8 issues. (pile ; face ; pile) est une issue.
- 2. « On a obtenu exactement une face » est un évènement.
- 3. $P(X \ge 2)$ est la probabilité de l'évènement X.

Exercice 2 (3,5 points):

- 1. Le lancé de la pièce est une épreuve de Bernoulli. On peut dire que le succès est « Face », tandis que l'échec est « Pile ».
- 2. La probabilité d'obtenir 3 piles est de $\frac{1}{8}$.

Il y a 3 branches donnant exactement une « Face ».

La probabilité d'obtenir exactement une face sur les trois lancés est alors de $\frac{3}{8}$

Exercice 3 (6 points):

2. La probabilité d'obtenir un 1 au premier lancé et un 3 au deuxième lancé est alors de

$$\frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$$

3. Les issues donnant au moins un 2 sont (1;2), (2;1), (2;2), (2;3) et (3;2). La probabilité d'obtenir au moins un 2 est donc de

$$\frac{1}{6} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{6} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{3} = \frac{5}{9}$$

 $P(X = a_i)$

5. L'espérance de X est alors

$$2 \times \frac{1}{36} + 3 \times \frac{1}{9} + 4 \times \frac{5}{18} + 5 \times \frac{1}{3} + 6 \times \frac{1}{4} = \frac{14}{3}$$

Exercice 4 (8 points):

1. On croise 4 clous, avec deux possibilités (droite ou gauche) à chaque fois. Il y a donc au total $2 \times 2 \times 2 \times 2 = 16$ chemins possibles.

case	-2	-1	0	1	2
nombre de chemins	1	4	6	4	1

- 2. La probabilité que la bille tombe dans la case $\boxed{-2}$ est de $\frac{1}{16}$.

 3. La probabilité que la bille tombe dans la case $\boxed{-1}$ est de $\frac{4}{16}=\frac{1}{4}$.

 4. La probabilité que la bille tombe dans la case $\boxed{-1}$ est de $\frac{6}{16}=\frac{3}{8}$.
- 5. La fonction case peut renvoyer -2, -1, 0, 1 ou 2.

```
6. def gain():
    c = case()
    if c == -2 or c == -1:
        return -10
    if c == 0:
        return 0
    if c == 1:
        return 5
    if c == 2:
        return 15
```

a_i	-10	0	5	15
$P(G = a_i)$	$\frac{5}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{1}{16}$

8. L'espérance de G est :

$$-10 \times \frac{5}{16} + 0 \times \frac{6}{16} + 5 \times \frac{4}{16} + 15 \times \frac{1}{16} = -\frac{15}{16}$$

Nom, Prénom : CORRECTION 2 juin 2023

Évaluation probabilités (sujet C)

Exercice 1 (2,5 points) : On considère une expérience aléatoire qui consiste à lancer trois pièces équilibrées.

Compléter les phrases suivantes avec les mots : « une issue », « issues », « un évènement », « l'évènement », « la probabilité »

- 1. Cette expérience comporte 8 issues. (pile ; face ; pile) est une issue.
- 2. « On a obtenu exactement une face » est un évènement.
- 3. $P(X \ge 2)$ est la probabilité de l'évènement X.

Exercice 2 (3,5 points):

- 1. Le lancé de la pièce est une épreuve de Bernoulli. On peut dire que le succès est « Face », tandis que l'échec est « Pile ».
- 2. La probabilité d'obtenir 3 piles est de $\frac{1}{8}$.
- 3.

Il y a 3 branches donnant exactement une « Face ».

La probabilité d'obtenir exactement une face sur les trois lancés est alors de $\frac{3}{8}$

Exercice 3 (6 points):

 $\frac{1}{3}$ 2. La probabilité d'obtenir un 1 au premier lancé et un 3 au deuxième lancé est alors de

$$\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

3. Les issues donnant au moins un 2 sont (1;2), (2;1), (2;2), (2;3) et (3;2). La probabilité d'obtenir au moins un 2 est donc de

$$\frac{1}{2} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{2} + \frac{1}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{6} = \frac{11}{36}$$

4. $P(X = a_i)$

5. L'espérance de \boldsymbol{X} est alors

$$2 \times \frac{1}{4} + 3 \times \frac{1}{6} + 4 \times \frac{13}{36} + 5 \times \frac{1}{9} + 6 \times \frac{1}{9} = \frac{11}{3}$$

Exercice 4 (8 points):

1. On croise 4 clous, avec deux possibilités (droite ou gauche) à chaque fois. Il y a donc au total $2 \times 2 \times 2 \times 2 = 16$ chemins possibles.

case	-2	-1	0	1	2
nombre de chemins	1	4	6	4	1

2. La probabilité que la bille tombe dans la case $\boxed{-2}$ est de $\cfrac{1}{16}$.

3. La probabilité que la bille tombe dans la case $\boxed{-1}$ est de $\cfrac{4}{16}=\cfrac{1}{4}$.

4. La probabilité que la bille tombe dans la case $\boxed{-1}$ est de $\cfrac{6}{16}=\cfrac{3}{8}$.

5. La fonction case peut renvoyer -2, -1, 0, 1 ou 2.

```
6. def gain():
    c = case()
    if c == -2 or c == -1:
        return -30
    if c == 0:
        return 0
    if c == 1:
        return 15
    if c == 2:
        return 40
```

a_i	-30	0	15	40
$P(G = a_i)$	$\frac{5}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{1}{16}$

8. L'espérance de G est :

$$-30 \times \frac{5}{16} + 0 \times \frac{6}{16} + 15 \times \frac{4}{16} + 40 \times \frac{1}{16} = -\frac{50}{16}$$