Q = quantidade de calor m = massa Calor sensível c = calor específico $Q = m \cdot c \cdot \Delta T$ ΔT = variação da temperatura

 $Q = m \cdot L$

Q = quantidade de calor

C = capacidade térmica

Q = quantidade de calor

Q = quantidade de calor

 Δt = intervalo de tempo

m = massa

L = calor latente

ΔT = variação da

c = calor específico

temperatura

m = massa

 $C = Q = m \cdot c$ ΛT Trocas de calor

Calor

 ΣQ = somatória das quantidades de calor Q_1 = quantidade de calor 1 $\Sigma Q = Q_1 + Q_2 + ... + Q_n = 0$ Q_n = quantidade de calor 2 Q_n = n quantidade de calor Processo de propagação do calor Φ = fluxo de calor

Equilíbrio térmica

Calor latente

Capacidade térmica

Fluxo de calor

 $\Phi = Q$ Λt