Appendix

A Proof of Properties

Proposition 1 (Task Reduction is a Non-Strict Partial Ordering Relation). Suppose that \forall (τ_{ξ}, τ_{ζ}) $\in \mathcal{T}^2$, $H_{\xi,\zeta}$ and $G_{\zeta,\xi}$ include the identity and are closed under composition on \mathcal{T} . Then, task reductions satisfy the following properties and thus define a non-strict partial ordering relation.

Property 1 a. Reflexivity: $\tau_1 \leq \tau_1$.

Property $\[\]$ b. Antisymmetry: $\tau_1 \prec \tau_2 \implies \neg(\tau_2 \preceq \tau_1)$, where $\tau_1 \prec \tau_2$ is defined as $(\tau_1 \preceq \tau_2) \land \neg(\tau_1 \equiv \tau_2)$.

Property 1.c. Transitivity: $(\tau_1 \leq \tau_2) \land (\tau_2 \leq \tau_3) \implies \tau_1 \leq \tau_3$.

Proof. Property 1.a: $\tau_1 \leq \tau_1 \implies \exists g \in G_{1,1}, h \in H_{1,1}$ such that

$$g \circ \pi_1^{\star} \circ h \in \Pi_1^{\star}. \tag{6}$$

If g and h are the identity function, then $g \circ \pi_1^{\star} \circ h = \pi_1^{\star} \ \forall \ \pi_1^{\star} \in \Pi_1^{\star}$. Thus, $\tau_1 \leq \tau_1$ when $G_{1,1}$ and $H_{1,1}$ include their respective identity functions.

Property 1 Suppose $\tau_1 \prec \tau_2$ and thus $(\tau_1 \leq \tau_2) \land \neg(\tau_1 \equiv \tau_2)$. Note that $\neg(\tau_1 \equiv \tau_2) \Longrightarrow \neg((\tau_1 \leq \tau_2) \land (\tau_2 \leq \tau_1)) \Longrightarrow \neg(\tau_1 \leq \tau_2) \lor \neg(\tau_2 \leq \tau_1)$. We assumed $(\tau_1 \leq \tau_2)$, so we must have that $\neg(\tau_2 \leq \tau_1)$.

Property 1.c Suppose $\tau_1 \leq \tau_2$ and $\tau_2 \leq \tau_3$. By Definition 4. $\exists g_1 \in G_{2,1}$, $g_2 \in G_{3,2}$, $h_1 \in H_{1,2}$, and $h_2 \in H_{2,3}$ such that $g_1 \circ \pi_2^* \circ h_1 \in \Pi_1^* \ \forall \ \pi_2^* \in \Pi_2^*$ and $g_2 \circ \pi_3^* \circ h_2 \in \Pi_2^* \ \forall \ \pi_3^* \in \Pi_3^*$. Consider

$$\underbrace{g_1 \circ g_2 \circ \pi_3^{\star} \circ h_2 \circ h_1}_{\in \Pi_1^{\star}} \tag{7}$$

for all $\pi_3^* \in \Pi_3^*$. Let $g_3 := g_1 \circ g_2$ and $h_3 := h_2 \circ h_1$ so that $g_3 \circ \pi_3^* \circ h_3 \in \Pi_1^*$ for all $\pi_3^* \in \Pi_3^*$. If $G_{3,1}$ and $H_{1,3}$ are closed under composition on \mathcal{T} , then $g_3 \in G_{3,1}$ and $h_3 \in H_{1,3}$ and $\tau_1 \preceq \tau_3$. Thus, task reductions are transitive if $G_{3,1}$ and $H_{1,3}$ are closed under composition on \mathcal{T} .

Proposition 6 (Strict Task Reduction is a Strict Partial Ordering Relation). Suppose that \forall $(\tau_{\xi}, \tau_{\zeta}) \in \mathcal{T}^2$, $H_{\xi,\zeta}$ and $G_{\zeta,\xi}$ include the identity and are closed under composition on \mathcal{T} . Then, strict task reductions satisfy the following properties and thus define a strict partial ordering relation.

Property 6.a. Irreflexivity: $\neg(\tau_1 \prec \tau_1)$.

Property 6.b. Asymmetry: $\tau_1 \prec \tau_2 \implies \neg(\tau_2 \prec \tau_1)$.

Property 6.c. Transitivity: $\tau_1 \prec \tau_2 \land \tau_2 \prec \tau_3 \implies \tau_1 \prec \tau_3$.

Proof. Property 6 a Suppose $\tau_1 \prec \tau_1 \implies \tau_1 \preceq \tau_1 \land \neg(\tau_1 \equiv \tau_1)$. $\tau_1 \equiv \tau_1$ by Property 2 b $\Rightarrow \Rightarrow \neg(\tau_1 \prec \tau_1)$ when $H_{1,1}$ and $G_{1,1}$ include their respective identity functions.

Property 6.b: $\tau_1 \prec \tau_2 \implies \neg(\tau_2 \preceq \tau_1)$ by Property 1.b. since $\tau_1 \prec \tau_2 \implies \neg(\tau_1 \equiv \tau_2)$. $\neg(\tau_2 \preceq \tau_1) \iff \neg(\tau_2 \preceq \tau_1) \lor \tau_2 \equiv \tau_1 \implies \neg(\tau_2 \preceq \tau_1 \land \neg(\tau_2 \equiv \tau_1)) \implies \neg(\tau_2 \prec \tau_1)$.

Property 6.c: $\tau_1 \prec \tau_2 \land \tau_2 \prec \tau_3 \implies \tau_1 \preceq \tau_2 \land \tau_2 \preceq \tau_3 \land \neg(\tau_1 \equiv \tau_2) \land \neg(\tau_2 \equiv \tau_3) \implies \tau_1 \preceq \tau_3 \land \neg(\tau_1 \equiv \tau_3)$ by Properties 1.c and 2.c. $\implies \tau_1 \prec \tau_3$ when $H_{1,3}$ and $G_{3,1}$ are closed under composition on \mathcal{T} .

Proposition 2 (Task Equivalence is an Equivalence Relation). Suppose that $\forall (\tau_{\xi}, \tau_{\zeta}) \in \mathcal{T}^2$, $H_{\xi,\zeta}$ and $G_{\zeta,\xi}$ include the identity and are closed under composition on \mathcal{T} . Then, task equivalence satisfies the following properties and thus defines an equivalence relation.

Property 2.a. Reflexivity: $\tau_1 \equiv \tau_1$.

Property 2.b. Symmetry: $\tau_1 \equiv \tau_2 \implies \tau_2 \equiv \tau_1$.

Property 2.c. Transitivity: $\tau_1 \equiv \tau_2 \wedge \tau_2 \equiv \tau_3 \implies \tau_1 \equiv \tau_3$.

Proof. Property 2 a $\tau_1 \equiv \tau_1 \implies \tau_1 \preceq \tau_1$ by Property 1 a when $G_{1,1}$ and $H_{1,1}$ include the identity. Thus, task equivalence is reflexive if $G_{1,1}$ and $H_{1,1}$ include the identity.

Property 2.b: $\tau_1 \equiv \tau_2 \implies (\tau_1 \preceq \tau_2) \land (\tau_2 \preceq \tau_1)$ by Definition 5 $\implies (\tau_2 \preceq \tau_1) \land (\tau_1 \preceq \tau_2) \implies \tau_2 \equiv \tau_1$.

Property 2.c $(\tau_1 \equiv \tau_2) \wedge (\tau_2 \equiv \tau_3) \implies (\tau_1 \preceq \tau_2) \wedge (\tau_2 \preceq \tau_3) \wedge (\tau_3 \preceq \tau_2) \wedge (\tau_2 \preceq \tau_1)$ by Definition 5. $(\tau_3 \preceq \tau_2) \wedge (\tau_2 \preceq \tau_1) \implies (\tau_3 \preceq \tau_1)$ by Property 1.c when $G_{3,1}$ and $H_{1,3}$ are closed under composition on \mathcal{T} . Similarly, $(\tau_1 \preceq \tau_2) \wedge (\tau_2 \preceq \tau_3) \implies (\tau_1 \preceq \tau_3)$. Thus $(\tau_1 \preceq \tau_3) \wedge (\tau_3 \preceq \tau_1) \implies \tau_1 \equiv \tau_3$. Thus task equivalence is transitive if $G_{3,1}$ and $H_{1,3}$ are closed under composition on \mathcal{T} .

Proposition [5] (Properties of the Relative Complexity). Relative Complexity satisfies the following properties:

Property 5.a. Nonnegativity and boundedness: $C_{\tau_1/\tau_2} \in [0,1]$.

Property 5.b. Monotonicity with respect to H and G: If $H \subseteq H'$ and $G \subseteq G'$, then $C_{\tau_1/\tau_2}(H', G') \leq C_{\tau_1/\tau_2}(H, G)$.

Assume that the supremum and infimum in Definition 7 are attained by functions in Π_2^*, H, G . Then:

Property 5.c. Equivalence between reduction and 0 relative complexity: $C_{\tau_1/\tau_2} = 0 \iff \tau_1 \preceq \tau_2$.

Property 5.d. Equivalence between no reduction and positive relative complexity: $C_{\tau_1/\tau_2} \in (0,1] \iff \neg(\tau_1 \leq \tau_2).$

Proof. Property 5 a $R_1(g \circ \pi_2^{\star} \circ h) \in [0, R_1^{\star}]$. Therefore, $R_1(g \circ \pi_2^{\star} \circ h)/R_1^{\star} \in [0, 1] \implies C_{\tau_1/\tau_2} \in [0, 1]$ for any H, G.

Property 5.b. Consider H, H' such that $H \subseteq H'$ and G, G' such that $G \subseteq G'$. For any function f, the following is true $\forall \pi_2^*$:

$$\inf_{h \in H', g \in G'} f(h, g, \pi_2^*) \le \inf_{h \in H, g \in G} f(h, g, \pi_2^*).$$
 (8)

This implies the following:

$$\sup_{\pi_2 \in \Pi_2^{\star}} \inf_{h \in H', g \in G'} \left[1 - \frac{R_1(g \circ \pi_2^{\star} \circ h)}{R_1^{\star}} \right] \le \sup_{\pi_2^{\star} \in \Pi_2^{\star}} \inf_{h \in H, g \in G} \left[1 - \frac{R_1(g \circ \pi_2^{\star} \circ h)}{R_1^{\star}} \right]. \tag{9}$$

Property 5.c Assume $C_{\tau_1/\tau_2} = 0$ for some H and $G \iff$ for any $\pi_2^{\star} \in \Pi_2^{\star} \exists g \in G$ and $h \in H$ such that $R_1(g \circ \pi_2^{\star} \circ h) = R_1^{\star}$. $R_1(\pi_1) = R_1^{\star} \iff \pi_1 \in \Pi_1^{\star}$. Thus, for all $\pi_2^{\star} \in \Pi_2^{\star} \exists g \in G$ and $h \in H$ such that $g \circ \pi_2^{\star} \circ h \in \Pi_1^{\star} \iff \tau_1 \leq \tau_2$.

 $\begin{array}{c} \mathbf{T} \triangleq \mathbf{T} \triangleq \mathbf{T} \text{ and } \mathbf{T} = \mathbf{T} = \mathbf{T} \text{ and } \mathbf{T} = \mathbf{$

B Additional Experimental Details

Approximating Relative Complexity using Q-learning. We apply Q-learning to Algorithm [] by letting the loss functions L_1 and L_2 correspond to a Q-learning loss: $L_{\xi}(\pi_{\xi}) = -\frac{1}{B} \sum_{b=1}^{B} [Q^{\pi_{\xi}}(s_b, a_b) \log p(a_b)]$, where $p(a_b)$ corresponds to the probability of an action for policy π_{ξ} (which may be a transformation of another policy such as $\pi_{\xi} = g \circ \pi_{\zeta} \circ h$), $Q^{\pi_{\xi}}(s_b, a_b)$ are the Q-values, and B is the batch size. We run Algorithm [] for 1000 iterations and use a batch size B of 1000 transitions.

Approximating Relative Complexity using SAC. We modify Algorithm 1 to use SAC for approximating the relative complexity. Let $Q_2^{\pi^2}$ be a critic of π_2 on task τ_2 and $Q_3^{q \circ \pi_2 \circ h}$ be a critic of $g \circ \pi_2 \circ h$ on task τ_1 . We add an additional step to the algorithm for updating the critics on task τ_1 and τ_2 . The critics are then used in the updates for the policy π_2 and the encoder/decoder. The resulting method is presented in Algorithm 2 We run Algorithm 2 for 50,000 iterations and use a batch size of 200 transitions.

Algorithm 2 Approximating Relative Complexity using SAC

```
1: Input: Learning rates \lambda_1, \lambda_2, adversarial tuning parameter \alpha
 2: Input: Function spaces H, G
  3: Input: Q-functions Q,Q loss functions for \tau_1,\tau_2 respectively
  4: Output: Approximate relative complexity \tilde{C}_{\tau_1/\tau_2} \approx C_{\tau_1/\tau_2}
 5: while \neg(converged \land R_2(\pi_2) = R_2^{\star}) do
 6:
               Step 0: critic update
 7:
              Update critic Q_2^{\pi_2}
              Update critic Q_1^{g \circ \pi_2 \circ h}
 8:
              Step 1: \pi_2 update
 9:
               \pi_2 \leftarrow \pi_2 + \lambda_1 \overset{\cdot}{\nabla}_{\pi_2} [Q_2^{\pi_2} - \alpha Q_1^{g \circ \pi_2 \circ h}] Step 2: encoder/decoder update
10:
11:
12: [h,g] \leftarrow [h,g] + \lambda_2 \nabla_{[h,g]} [Q_1^{g \circ \pi_2 \circ h}]
13: end while
14: \tilde{C}_{\tau_1/\tau_2} \leftarrow \left[1 - \frac{R_1(g \circ \pi_2^{\star} \circ h)}{R_1^{\star}}\right]
```