Exercise sheet 2 - Topics in Topology

February 14, 2022

- 1. Draw the attaching sphere, attaching region, belt sphere, core and cocore for the attachment of a 3-dimensional 2-handle.
- 2. What does attaching an *n*-dimensional 0-handle consist of? For what k = 0, 1, ..., n can an *n*-dimensional *k*-handle be attached to the empty set?
- 3. Let $K_0, K_1: S^1 \hookrightarrow S^3$ be two smooth knots. We say that they are *isotopic* if there is a map $H: S^1 \times I \to S^3$ such that H_t is an embedding for all $t \in I$ and $H_i = K_i$ for i = 0, 1. We say that they are *ambient isotopic* if there is a map $F: S^3 \times I \to S^3$ such that F_t is a diffeomorphism for all $t \in I$, $F_0 = id$ and $K_1 = F_1 \circ K_0$.
 - Show that two knots are isotopic if and only if they are ambient isotopic.
- 4. Show that the complement of an open disc in \mathbb{RP}^2 is diffeomorphic to a Möbius strip.
- 5. Consider handle decompositions for S^n, T^2 and \mathbb{RP}^2 and describe their dual decompositions.
- 6. Draw what a cancelling pair and a handle slide look like for n=3 and k=2.
- 7. Show that the argument given in the lectures to obtain a unique 0-handle in a handle decomposition is an example of stabilisation according to the Cerf theorem.
- 8. Give a handle decomposition for the 3-manifold $S^1 \times S^1 \times S^1$.