

22 APR 2005 THE REPORT OF THE PROPERTY OF

(43) 国際公開日 2004年5月6日(06.05.2004)

(19) 世界知的所有権機関

国際事務局

PCT

(10) 国際公開番号 WO 2004/038492 A1

(51) 国際特許分類7: G02F 1/01, 3/00, H01S 5/50, 3/10, 3/00

(21) 国際出願番号:

PCT/JP2003/011961

(22) 国際出願日:

2003 年9 月19 日 (19.09.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-308946

> Ъ 2002年10月23日(23.10.2002) 2003年3月6日 (06.03.2003) Љ 特願2003-059382

特願2003-287576

2003年8月6日(06.08.2003) JP (71) 出願人(米国を除く全ての指定国について): 科学技術 振興事業団 (JAPAN SCIENCE AND TECHNOLOGY CORPORATION) [JP/JP]; 〒332-0012 埼玉県 川口市 本町 4丁目1番8号 Saitama (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 前田 佳伸 (MAEDA, Yoshinobu) [JP/JP]; 〒510-0874 三重県 四日 市市河原田町2220 Mie (JP).

(74) 代理人: 池田 治幸 (IKEDA, Haruyuki); 〒450-0002 愛 知県 名古屋市 中村区名駅三丁目 1 5-1 名古屋ダイ ヤビル2号館 池田国際特許事務所 Aichi (JP).

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,

/続葉有/

(54) Title: OPTICAL SIGNAL AMPLIFYING THREE-TERMINAL DEVICE, OPTICAL SIGNAL TRANSFER METHOD US-ING SAME, OPTICAL SIGNAL RELAY DEVICE, AND OPTICAL SIGNAL STORAGE DEVICE

(54) 発明の名称: 光信号増幅 3 端子装置、それを用いた光信号転送方法、光信号中継装置、および光信号記憶装置

(57) Abstract: An optical signal amplifying three-terminal device (10) for directly amplifying an optical signal by using a control input light. A first input light L_1 of a first wavelength λ_1 and a second input light L_2 of a second wavelength λ_2 are inputted into a first optical amplifying element (26). A light of the second wavelength λ_2 and a third input light (control light) L_3 of a third wavelength λ_3 outputted from the first optical amplifying element (26) are inputted into a second optical amplifying element (34). An output light L_4 of the third wavelength λ_3 selected from the light outputted from the second optical amplifying element (34) is modulated with the intensity variation of the first input light L_1 and/or the third input light L_3 . Therefore, the output light L_4 is an amplified signal amplified with a signal amplification factor of 2 or more with respect to the third input light (control light) L₃. Thus, an optical signal is directly amplified by using a control input light.

光信号増幅3端子装置10においては、第1波長入1の第1入力光し1と第2波長入2の第2入力光し2 とが入力された第1光増幅素子26からの光から選択された第2波長入2の光と、第3波長入3の第3入力光(制御 光) L₃

ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,

GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

とが第2光増幅素子34へ入力させられるとき、その第2光増幅素子34から出された光から選択された第3波長 λ_3 の出力光 L_4 は、前記第1波長 λ_1 の第1入力光 L_1 および/または第3波長 λ_3 の第3入力光 L_3 の強度変化に応答して変調された光であって、前記第3波長 λ_3 の第3入力光(制御光) L_3 に対する信号増幅率が2以上の大きさの増幅信号となるので、光信号の増幅処理を制御入力光を用いて直接行うことができる光信号増幅3端子装置10を得ることができる。

明細書

光信号増幅3端子装置、それを用いた光信号転送方法、光信号中継装置、および光信号記憶装置

5

10

技術分野

本発明は、(a) 光信号を増幅、制御、或いはスイッチングする光信号増幅 3 端子装置、特に、高度情報処理が可能な光通信、光画像処理、光コンピュータ、光計測、光集積回路などの光エレクトロニクスに好適な光信号増幅装置、(b) 光ファイバなどの所定の伝送路を介して伝播した光信号をその光信号に含まれる行先情報が示す他の伝送路へ転送するための光信号転送方法および光信号中継装置、(c) 光ファイバなどの所定の伝送路を介して伝播した光信号を記憶すると共に任意の時間に取り出すことを可能とする光信号記憶装置に関するものである。

15 背景技術

広帯域且つ高速伝送が可能な光ファイバ通信を用いた動画像通信や映像の分配といった広帯域な新サービスの広範な展開が期待されている。しかしながら、たとえばエレクトロニクスで言えば3端子のトランジスタに相当するような機能(信号増幅作用)素子、すなわち光信号を他の光信号で直接制御して信号増幅するような光機能素子は、未だ、実現されていない。

20

このため、折角、高速で伝送した光信号を一旦電気信号に変換し、電子回路において情報処理が行われ、処理後の信号を再度光に変換して伝送するというのが実情である。したがって、光を光で直接制御することができないので、信号処理の高速性に限界があった。光信号のまま信号処理ができる場合には、並列処理が可能であると言われており、一層の処理時間の短縮化が期待できるのである。

25

これに対し、文献1或いは文献2に記載されている装置は、光をスイッチング する装置、マッハツェンダー型光干渉による波長変換などを利用したゲートスイ ッチング装置に過ぎず、これらは、温度変化、振動に弱く、設定が厳しいという

10

15

20

25

不都合があった。このような従来技術は、電子回路におけるトランジスタのように、入力光を制御光を用いて信号増幅された出力光を得る機能を備えた光信号増幅3端子装置を構成する点については何ら開示されていない。

次に、広帯域、高速且つ高容量の信号伝送が可能な光通信の分野において、その光信号の通信、転送、分配がその広帯域、高速且つ高容量といった性質を損わないようにして行われることが期待されている。比較的近い将来に構築されることが予想されている波長分割多重(WDM)をベースとした光ネットワークでは、一方の光伝送路から伝送された波長の異なる複数種類のレーザ光である波長分割多重光信号を波長毎に所望の光伝送路へ転送する光信号の転送(光信号の中継)技術が重要となる。光ファイバなどの所定の伝送路(たとえば波長バス)を介して伝播した一連の光信号(たとえばパケット信号)を、その一連の光信号に付されているラベル或いはタグのような行先情報が示す他の伝送路へ転送するための光信号転送、たとえば光ネットワーク内或いは光ネットワーク間でルーティングするルーティングでは、大容量且つ高速であるという光信号伝送の特徴を損うものであってはならなず、ルータすなわち光信号中継(転送)装置においても高速で転送処理されること、信頼性が高く、小型であることなどが要求される。

これに対し、たとえば文献 3 に記載された光パスクロスコネクト装置が提案されている。これによれば、波長多重伝送リンクの波長バスを G本ずつ N個の波長群バスに分割する分波器と、その分波器によって分割された波長群毎にルーティング処理を実行するルーティング処理部とが備えられ、波長群毎にルーティング処理が行われるように構成されている。この光パスクロスコネクト装置のルーティング処理部は、波長群毎に波長変換する波長変換器と、それにより波長変換された光を分配するためにコントローラによって制御される光マトリックススイッチとから構成されている。そして、この光マトリックススイッチは、マトリックス状光路の交点に配置されたメカニカル動作の反射鏡スイッチをコントローラによって択一的に動作させ、複数の波長群のうちその反射鏡スイッチにより反射された1つの波長群を所望の伝送路へ出力させるように構成されるか(段落0042、図10(1))、或いは、コントローラによって択一的に動作させられる光ス

10

15

20

25

イッチとメッシュ配線とが配置され、複数の波長群のうちその光スイッチにより 通過させられた1つの波長群をメッシュ配線内の1つの伝送路へ出力させるよう に構成される(段落0043、図10(2))。

しかしながら、上記従来の光パスクロスコネクト装置では、コントローラによって作動制御される反射鏡スイッチ或いは光スイッチによってルーティング処理されることから、コントローラにおいて電子的に処理された出力であるルーティング先(行先)を示すが指令信号に従って反射鏡スイッチ或いは光スイッチが切換動作させられる。このため、光信号の一部を電気信号に変換してその電気信号に含まれる行先情報たとえばパケットのラベルやタグに含まれる転送関連信号を抽出し、それに従って反射鏡スイッチ或いは光スイッチを電気的に作動制御してから光信号を転送する必要があるため、応答速度が十分に得られなかった。また、転送先の伝送路(波長バス)の波長に合わせて波長を変換するために、上記ルーティング処理部の他に波長変換部が備えられており、そのような波長変換部がルーティング処理部に加えて設けられているので、装置が大型となるとともに、特にメカニカル作動の反射鏡スイッチが用いられる場合には信頼性が得られない場合があった。

さらに、 広帯域、高速且つ高容量の信号伝送が可能な光通信の分野において、光信号(たとえばパケット信号などの光データ)の識別、多重や分離、スイッチング、ルーティング(転送、分配)がその広帯域、高速且つ高容量といった性質を損わないようにして行われることが期待されている。このような光の領域では、たとえばフォトニックルータシステムに代表される光信号を処理する光信号処理システムの全般において、光信号を一時的に記憶し且つ所望のタイミングで取り出すことができる光信号記憶装置が求められている。エレクトロニクス分野の信号処理においてメモリが必須であると同様に、光信号処理分野においても光メモリ、光バッファと称される光信号記憶装置が必要不可欠であるからである。

これに対し、たとえば特許文献 1 に記載されているような、光メモリ装置が提案されている。これによれば、複数種類の遅延時間を与えるために長さの異なる 光ファイバからそれぞれ構成された複数の光導波手段 1 0 5 ~ 1 0 8 が用意され

15

ており、その光導波手段 $105 \sim 108$ のいずれかを通過させることでその光導波手段 $105 \sim 108$ のいずれかの伝播時間に対応する遅延時間だけ、光信号を記憶させることができるように構成されている。

しかしながら、上記従来の光メモリ装置では、光信号が伝播させられる光導波手段105~108のいずれかの伝播時間に対応する遅延時間だけ、その光信号の記憶時間が予め決定されるに過ぎず、任意のタイミングで光信号を取り出すことができないことから、光信号の処理の自由度が制限されて信号処理効率が低くなることが避けられなかった。

[文献 1] K.E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Quamtum Electron., vol. 6, no. 6, pp. 1428-1435, Nov. /Dec. 2000

【文献 2】 T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen, a nd A. E. Stubkjaer, "All optical wavelength conversion by SOAs in a Mach-Zender configuratiom," IEEE Photon. Technol. Lett., vol. 6, pp. 53-55, Jan. 1994

【文献3】 特開2002-262319号公報

【文献4】特開平8-204718号公報

20 本発明は以上の事情を背景として為されたものであり、その第1の目的とするところは、光信号の増幅処理を制御光を用いて直接行うことができる光信号増幅3端子装置を提供することにある。また、第2の目的とするところは、光信号のルーティングを高速で処理でき、或いは装置が小型となる光信号転送方法および光信号中継装置を提供することにある。また、第3の目的とするところは、光信号を記憶し且つ任意の時間にそれを取り出すことができる光信号記憶装置を提供することにある。

本発明者は、以上の事情を背景として種々の検討を重ねた結果、半導体光増幅 素子や希土類元素添加ファイバアンプなどの光増幅素子において、所定波長 λ 1

10

15

20

の入力光の周囲波長の自然放出光が、その入力光の強度変化に応答して強度変化し、その変化は入力光の信号強度変化に対して逆の強度変化をする点、および、その自然放出光の波長域内すなわち入力光の周囲波長域内の他の波長え。のレーザ光を上記入力光に重畳させて入射させると、上記自然放出光の信号(振幅)変化は維持されつつ、全体の強度が急激に増加するという現象すなわちレーザ誘導光信号増強効果(Laser-induced signal enhancement effect)を見い出した。また、本発明者は、この現象を、波長え」からえ。への波長変換機能としても把握し、その波長変換を2段接続するタンデム波長変換素子に基づく光3端子装置(All-Optical Triode Based on Tandem Wavelength Converter)を着想し、光信号増幅3端子装置を見いだした。本第1発明はかかる知見に基づいて為されたものである。

また、本発明者は、上記の光信号増幅 3 端子装置の光増幅素子が波長 λ_1 から λ_2 への波長変換機能を有するだけでなく、その波長変換機能とスイッチング機能とを備えた機能素子であることにも着眼し、行先情報を光信号に振幅変調して重畳させることによりその機能素子が波長多重信号のルーティング装置すなわち 転送装置として好適に用いられることを見いだした。本第 2 発明および第 3 発明 はかかる知見に基づいて為されたものである。

また、本発明者は、前記のような現象を有する光信号増幅3端子装置の光増幅素子を、波長 λ 1から λ 2への波長変換機能として機能させつつ、入力波長に応じて異なる出力伝送路へ分配する分波器と組み合わせて、光信号が周回する環状伝送路内に介そうすることにより、周回させられることにより記憶されている光信号を任意の時間に取り出すことが可能である点を見いだした。第4発明はかかる知見に基づいて為されたものである。

25 発明の開示

第1発明

すなわち、第1発明の光信号増幅3端子装置の要旨とするところは、(a) p n 接合から構成される活性層を備え、入力された光信号を増幅および波長変換して

10

15

20

25

出力するための第1半導体光増幅素子および第2半導体光増幅素子と、(b) 第1 波長の第1入力光と第2波長の第2入力光とを前記第1半導体光増幅素子に入力させる第1光入力手段と、(c) 前記第1半導体増幅素子からの光から前記第2波長の光を選択する第1波長選択素子と、(d) その第1波長選択素子により選択された第2波長の光と第3波長の第3入力光とを前記第2半導体光増幅素子へ入力させる第2光入力手段と、(e) その第2半導体光増幅素子からの光から第3波長の出力光を選択する第2波長選択素子とを、含み、(f) 前記第3波長の出力光は、前記第1波長の第1入力光および/または第3波長の第3入力光の強度変化に応答して変調され、且つ前記第3波長の第3入力光に対する信号増幅率が2以上であることにある。

このようにすれば、第1波長の第1入力光と第2波長の第2入力光とが入力された第1半導体光増幅素子からの光から選択された第2波長の光と、第3波長の第3入力光とが第2半導体光増幅素子へ入力させられるとき、その第2半導体光増幅素子から出された光から選択された第3波長の出力光は、前記第1波長の第1入力光および/または第3波長の第3入力光の強度変化に応答して変調された光であって、前記第3波長の第3入力光に対する信号増幅率が2以上の大きさの増幅信号となるので、光信号の増幅処理を制御入力光を用いて直接行うことができる光信号増幅3端子装置を得ることができる。また、第1半導体光増幅素子および第2半導体光増幅素子はpn接合から構成される活性層を備えた光増幅素子であるので、光信号増幅3端子装置が小型化されるとともに、信号増幅率が一層高められる。

ここで、好適には、前記第1波長の第1入力光は変調光であり、前記第2波長の第2入力光は連続光であり、前記第3波長の第3入力光は制御光であり、前記第3波長の出力光は、その制御光の入力区間においてその第1入力光の変調信号が増幅された信号波形を備えたものである。このようにすれば、第3波長の出力光は、制御光の入力区間において前記第1波長の第1入力光の強度変化に応答して変調された増幅光となるので、増幅された光信号のスイッチング処理を制御入力光を用いて直接行うことができる光信号増幅3端子装置を得ることができる。

10

15

また、好適には、前記第3波長は、前記第1波長と同じ波長である。このようにすれば、光信号増幅3端子装置の信号入力光としての第1入力光及び第3入力光と、出力光とが同じ波長となるので、共通の波長で複数の光信号増幅3端子装置を接続することが可能となり、複数個の光信号増幅3端子装置を用いて集積度の高い光回路を構成することができる。

また、好適には、前記第3波長の出力光の前記第3波長の制御光に対する信号 増幅率は、10以上の値である。このようにすれば、光信号増幅3端子装置の信 号増幅率が一層高められる。

また、好適には、前記半導体光増幅素子の活性層は、量子井戸または量子ドットから構成されたものである。このようにすれば、量子井戸または量子ドットから構成される活性層を備えた半導体光増幅素子が用いられるので、高速応答が可能となる。特に量子ドットを用いた場合には100GHz以上の応答速度が得られる。また、活性層として歪み超格子を用いると偏波依存性が小さくなる。

また、好適には、前記半導体光増幅素子は、前記活性層を通過した光を反射するための反射手段をその一端面に備え、他端面を通して入力光が入力され且つ出力光が取り出されるものである。このようにすれば、1端面に備えられた反射手段によって活性層における通過路が実質的に長くされるので、信号増幅率が一層高められる。また、フィードバック効果によって、出力信号の変調度が一層高められる。

20 また、好適には、前記第1半導体光増幅素子および/または第2半導体光増幅素子は、選択的に光を反射するための反射手段をその一端面側に備え、その反射手段は、レンズを通してその第1半導体光増幅素子および/または第2半導体光増幅素子の端面と光学的に結合されたものである。このようにすれば、この集光レンズにはマイクロレンズが好適に用いられ、入力光、出力光は光ファイバを介して伝送される。

また、好適には、前記反射手段は、前記第1半導体光増幅素子からの光のうちの前記第1波長の第1入力光は反射しないが前記第2波長の光は第2半導体光増幅素子へ向かって反射する波長選択性ミラーと、前記第2半導体光増幅素子から

20

25

の光のうちの前記第2波長の第2入力光は反射しないが前記第3波長の光は反射 する波長選択性ミラーである。このようにすれば、反射手段は、第1波長選択素 子として機能する波長選択性ミラーと第2波長選択素子として機能する波長選択 性ミラーとにより構成される。

5 また、好適には、前記第1半導体光増幅素子の一端面と光を反射するための反射手段との間には、前記第1波長の光は透過しないが前記第2波長の光は透過させる第1波長選択性フィルタが設けられ、前記第2半導体光増幅素子の一端面と光を反射するための反射手段との間には、前記第2波長の光は透過しないが前記制御光の波長は透過させる第2波長選択性フィルタが設けられたものである。このようにすれば、前記第1波長選択素子および第2波長選択素子が第1波長選択性フィルタおよび第2波長選択性フィルタによって構成される。また、第1入力光すなわち信号光の波長である第1波長の光が第1波長選択性フィルタによって透過させられないので、一層よい特性が得られる。

また、好適には、前記反射手段は、前記第1波長選択素子および/または第2 波長選択素子として機能し、その反射手段に対して入力光の入射角度および/ま たは出力光の出射角度を変えることによって、所定の半導体光増幅素子から他の 半導体光増幅素子へ入力させるものである。

また、好適には、前記第1半導体光増幅素子および第2半導体光増幅素子は、 半導体基板の上に形成された光導波路においてそれぞれ複数組設けられ、それら 複数組が1チップとして一体的に構成されたものである。このようにすれば、光 信号増幅3端子装置が一層小さな集積化1チップのモノリシック構造となる。

また、好適には、前記半導体光増幅素子の他端面を通して前記半導体光増幅素子内に入力光を入力させ、その他端面を通してその半導体光増幅素子内から出力される光をその入力光とは異なる光路へ導く光サーキュレータまたは方向性結合素子が設けられたものである。このようにすれば、半導体光増幅素子の他端面から出た光はその他端面へ入力させる光を導く導波路に入ることがなく、専ら他の出力用導波路に導かれる。

また、好適には、前記第1波長選択素子または第2波長選択素子として機能す

10

15

20

25

る波長選択性ミラーまたは波長選択性フィルタは、導波路または光ファイバ内の 光伝播方向において屈折率が周期的に変化させられたグレーティングフィルタ、 屈折率が異なる多数組の層が積層されて成る多層膜フィルタ、フォトニックバン ドギャップを有するフォトニッククリスタルのいずれかから構成されたものであ る。このようにすれば、第1半導体光増幅素子或いは第2半導体光増幅素子から の光から第2波長或いは第3波長が好適に抽出される。

また、好適には、前記光信号増幅3端子装置は、光NANDゲート、光NORゲート、光フリップフロップ回路、または光演算増幅器を構成するものである。このようにすれば、光デジタル回路、または光アナログ回路が前記光信号増幅3端子装置から好適に構成される。

また、前記光信号増幅3端子装置において、第1半導体光増幅素子および第2半導体光増幅素子、第1波長選択素子および第2波長選択素子、それらへ入力される光を合波する光カプラなどの構成部品は、光を導く光ファイバや、半導体基板またはガラス基板のような透光性物質製基板の上に形成された光導波路などにより結合されてもよい。

第2発明

次に、第2発明の要旨とするところは、所定の伝送路を介して伝送された一連の光信号を、複数の伝送路のうちのその光信号に含まれる行先情報に対応する伝送路へ転送する光信号転送方法であって、(a) 前記行先情報が施された一連の光信号を光信号増幅3端子装置本体へ入力させる入力工程と、(b) 前記振幅変調信号に対応する波長の制御光を前記光信号増幅3端子装置本体へ供給し、その光信号増幅3端子装置本体からその制御光の波長の光信号を出力させる波長変換工程と、(c) 前記光信号増幅3端子装置本体から出力された光信号を光分配装置に入力させ、その光信号をその波長に応じてその光分配装置に接続された複数の光伝送路へ分配する光分配工程とが、含まれる。その行先情報としてその一連の光信号に振幅変調信号を付与し、その振幅変調信号が示す行先へ転送するようにしたことにある。

このようにすれば、行先情報が施された一連の光信号が光信号増幅3端子装置

15

20

25

本体へ入力され、その振幅変調信号に対応する波長の制御光がその光信号増幅 3 端子装置本体へ供給されて、その光信号増幅 3 端子装置本体からその制御光の波 長の光信号が光分配装置へ出力され、その出力された光信号はその波長に応じて 光分配装置に接続された複数の光伝送路へ分配されることによってルーティング が行われる。このように、行先情報が光信号に付与されていることから、波長変 換機能とスイッチング機能とを有する光信号増幅 3 端子装置本体が行先情報に対 応した波長の光信号を出力して光分配装置による分配を可能とするので、高速か つ小型のルーティング装置すなわち光信号転送装置或いは光信号中継装置が可能 となる。

10 ここで、上記行先情報とは、たとえば I Pアドレス或いは送信元アドレス、あて先アドレス、ソースルーティングのようなルート情報、データリンク層のコネクション情報など、光信号の転送先の決定に関連する情報である。

好適には、前記一連の光信号は、90%以下の変調度で振幅変調されたものである。このようにすれば、光信号が損われず、且つ行先情報が光信号に確実に付与される。

また、好適には、前記一連の光信号はパケット信号であり、前記行先情報はそのパケット信号の先頭部に設けられたラベル情報或いはタグ情報である。このようにすれば、パケット信号を構成する一連の光信号の先頭部に設けられたラベル部或いはタグ部において、振幅変調によりラベル情報或いはタグ情報が付与される。

また、好適には、前記波長変換工程は、光信号増幅3端子装置本体から出力される光信号にその制御光を用いて振幅変調を施すことにより、その光信号に新たな行先情報を再付与するものである。このようにすれば、転送装置内において適宜転送先を付与できる。このため、たとえばリンクの状態、ノードの状態、ロタフィック状態に応じて転送ルートを決定する動的ルーティングが可能となる。

第3発明

上記第2発明の光信号転送方法が好適に実施されるための光信号中継装置の要 旨とするところは、光信号伝送ネットワーク間において、行先情報として振幅変

10

15

20

25

調が施された一連の光信号を一方のネットワークから他方のネットワークの伝送路のうちのその光信号に含まれる行先情報に対応する伝送路へ転送するための光信号中継装置であって、(a) 前記一連の光信号の振幅変調信号から、その振幅変調信号が示す行先に対応した波長の制御光を発生させる制御光発生装置と、(b) 前記一連の光信号を前記制御光の波長の光信号に変換する光信号増幅3端子装置本体と、(c) その光信号増幅3端子装置本体から出力された光信号をその波長に応じて複数の光伝送路へ分配する光分配装置とを、含むことにある。

このようにすれば、行先情報として振幅変調信号が付与された一連の光信号が 伝送されて来ると、制御光発生装置により、その一連の光信号の振幅変調信号からその振幅変調信号が示す行先に対応した波長の制御光が発生させられ、光信号 増幅3端子装置本体により、その一連の光信号が前記制御光の波長の光信号に変換され、光分配装置により、その光信号増幅3端子装置本体から出力された光信号がその波長に応じて複数の光伝送路へ分配される。したがって、波長変換機能とスイッチング機能を有する光信号増幅3端子装置本体が行先情報に対応した波長の光信号を出力して光分配装置による分配を可能とするので、高速かつ小型のルーティング装置すなわち光信号転送装置或いは光信号中継装置が可能となる。

好適には、前記光信号に含まれる振幅変調信号に応じて、前記制御光発生装置からその振幅変調信号が示す行先情報に応じた波長の制御光を発生させる電子制御装置または全光学的制御装置を備えたものである。このようにすれば、電子制御装置または全光学的制御装置により、光信号に含まれる振幅変調信号が示す行先情報に応じた波長の制御光が発生するように制御光発生装置が制御されることから、波長変換機能とスイッチング機能を有する光信号増幅3端子装置本体が行先情報に対応した波長の光信号を出力して光分配装置による分配を可能とするので、高速かつ小型のルーティング装置すなわち光信号転送装置或いは光信号中継装置が可能となる。また、電子制御装置が、前記主光導波路から入力される光信号に含まれる振幅変調信号のみを光学的に抽出し、制御光発生装置からそのアドレス信号に対応する波長の制御光を発生させる全光学的制御装置である場合には

10

15

20

25

、アドレス信号以外の信号に対応する電磁波が発生しないので、光信号の秘匿性が確保される利点がある。

また、好適には、(a) 前記光信号の一部を分岐する光分波器と、(b) その光分波器により分岐された光信号を電気信号に変換して前記電子制御装置へ供給する光電信号変換器と、(c) 前記光分波器よりも下流側に設けられ、その光分波器を通過して光信号増幅3端子装置本体に入力させる光信号を遅延させる光遅延素子とが備えられ、上記電子制御装置は、前記光信号に含まれる振幅変調信号を抽出して、その振幅変調信号が示す行先情報に対応する波長の制御光を前記制御光発生装置から発生させるものである。このようにすれば、波長変換機能とスイッチング機能を有する光信号増幅3端子装置本体が行先情報に対応した波長の光信号を出力して光分配装置による分配を可能とするので、高速かつ小型のルーティング装置すなわち光信号転送装置或いは光信号中継装置が可能となる。

また、好適には、前記光分配装置により分配された光パケット信号を一時的に記憶する光信号記憶素子と、その光信号記憶素子から出力された光信号を入力側に帰還させる光帰還伝送路とを備え、前記電子制御装置は、前記光信号が一時記憶させるべきものである場合には、その光パケット信号を予め設定した記憶用波長に変換させるための制御光信号を出力させ、前記光分波器は、その記憶用波長に変換された後の光パケット信号を前記光信号記憶素子へ分配してそこで一時的に記憶させるものである。このようにすれば、中継処理された複数の光パケット信号が同じ伝送路へ出力されようとする場合には、一方の光パケット信号が予め設定した記憶用波長に変換され、光分波器は、その記憶用波長に変換された後の光パケット信号を前記光信号記憶素子へ分配してそこで一時的に記憶させてから入力側に帰還させられ、改めて中継処理が実行される利点がある。

また、好適には、前記光信号記憶素子は、前記光分配装置により分配された光信号を受けるために光学的伝播長さが異なる複数本の光ファイバを並列に備えたものであり、前記電子制御装置は、前記一時記憶すべき光パケット信号に必要とされる記憶時間に応じて、その光パケット信号を予め設定した記憶用波長に変換させるための制御光信号を出力させ、前記光分配装置は、その記憶用波長に変換

10

15

20

25

された後の光パケット信号を前記光信号記憶素子の複数本の光ファイバのいずれかへ分配してそこで一時的に記憶させるものである。このようにすれば、光パケット信号が並列配置された複数本の光ファイバのうちのそれに必要とされる記憶時間に応じた光ファイバ内で伝播させられる過程で一時記憶される。

また、好適には、前記全光学的制御装置は、前記第1入力光の一部を分岐する 光カプラと、前記制御光と同じ波長の連続光を発生する連続光源と、その連続光 源からの連続光とその光カプラからの前記第1入力光の一部とを合波する光カプ ラと、その光カプラからの光を受けて、上記第1入力光に含まれる変調信号を有 する制御光を出力する、前記半導体光増幅素子よりも応答速度が遅い半導体光増 幅素子とを含むものである。このようにすれば、全光学的に制御装置が構成され る。

また、好適には、前記光分配装置は、前記光信号増幅3端子装置から出力された出力光が入力されると、その入力された出力光を前記複数の光伝送路のうち前記制御光の波長に対応する光伝送路へ選択的に分配するものである。たとえば、その光分配装置は、入力ポートに接続された第1スラブ導波路と、複数の出力ポートに接続された第2スラブ導波路と、それら第1スラブ導波路および第2スラブ導波路の間に設けられた長さの異なる複数のアレー導波路とを備え、その入力ポートに入力された入力光をその波長毎に前記複数の出力ポートへ分配するアレー導波路格子型分波器である。或いは、波長毎に異なる回折格子またはプリズムの屈折角度を利用して入力光をアレイ状に配列された複数のアレー導波路へ選択的に分配する回折格子型またはプリズム型光分配器を含むものである。このようにすれば、前記光3端子装置から出力された制御光に対応する波長の出力光は、その波長毎に複数の分岐導波路のうちのいずれかへ選択的に分配される。

第4発明

第4発明の要旨とするところは、入力光伝送路から入力された光信号を記憶するとともに任意の時間に取り出すことが可能な光信号記憶装置であって、(a) 前記入力光伝送路から入力された光信号をその入力信号に含まれる伝送先に対応し且つ前記光信号と同じ又は異なる波長に変換するための制御光を発生する制御光

10

15

20

25

発生装置と、(b) 前記入力された光信号と制御光とを受け、その入力された光信号をその制御光の波長の光信号に変換して出力する光信号増幅3端子装置本体と、(c) その光信号増幅3端子装置本体から出力された光信号をその光信号の波長に応じて分配する光分配器と、(d) その光分配器により分配された記憶用波長の光信号を一時的に記憶する光バッファメモリ素子と、(e) その光バッファメモリ素子から出力された光信号を光信号増幅3端子装置本体へ再び入力させるために、その光信号を前記入力光伝送路へ帰還させる光帰還伝送路と、(f) 前記光信号増幅3端子装置本体、光分配器、光バッファメモリ素子、およびその光帰還伝送路を繰り返し周回させられる光信号をその光信号増幅3端子装置本体において出力用波長に変換するための制御光を前記制御光発生装置から発生させる光信号記憶制御手段とを、含むことにある。

この第4発明によれば、前記光信号増幅3端子装置本体、光分配器、光バッファメモリ素子、およびその光帰還伝送路を繰り返し周回させられる光信号は、光信号取出制御手段により光信号増幅3端子装置本体において出力用波長に変換されると、分配器によりその出力用波長に基づいて取出用伝送路へ分配されることによって、任意のタイミング(取出し時刻)において時間光信号が取り出される。この取出用伝送路は、たとえば、取り出した光信号を合波処理(所謂光アド処理)或いは分波処理(所謂光ドロップ処理)するための用意されたものである。

ここで、上記第4発明において、好適には、上記光信号記憶制御手段は、前記 光信号増幅3端子装置本体へ入力される光信号の波長を記憶用波長へ変換するた めの制御光を前記制御光発生装置から発生させる。このようにすれば、入力され た光信号が光信号増幅3端子装置本体において記憶用波長に変換されることによ り、光信号増幅3端子装置本体、光分配器、光バッファメモリ素子、および光帰 還伝送路を繰り返し経由する周回伝送路において周回させられることにより、そ の光信号の記憶が開始される。

また、好適には、前記周回させられる光信号のゲインの増減例えば増加または 減衰を抑制するように、前記光帰還伝送路により帰還させられる光信号、または 前記光信号増幅3端子装置本体に供給される制御光を制御する光信号ゲイン制御

10

15

20

25

手段が、さらに含まれる。このようにすれば、光信号の周回による減衰が防止されるので、その光信号のゲインが一定に維持される。

また、好適には、前記光信号増幅 3 端子装置本体は、前記光信号をバイアス光の波長に変換して反転させる第 1 半導体光増幅素子と、その第 1 半導体光増幅素子と、り反転させられた光信号を前記制御光の波長に変換して反転させる第 2 半導体光増幅素子とを備えたものであり、前記光信号ゲイン制御手段は、その第 2 半導体光増幅素子からの出力光に含まれるバイアス光のゲインの増減に基づいて光帰還伝送路により帰還させられる光信号を制御するものである。例えばバイアス光のゲインの増加または減少に基づいて光帰還伝送路により帰還させられる光信号を減衰または増幅する。このようにすれば、光帰還伝送路により帰還させられる光信号が光信号ゲイン制御手段により増幅されることによってその光信号の周回による減衰が防止されるので、その光信号のゲインが略一定に維持される。

また、好適には、前記光信号ゲイン制御手段は、前記バイアス光とそのバイアス光とは異なる波長の連続光であるゲイン制御光とを受けてそのバイアス光のゲインの増加に伴ってゲインが減少するゲイン制御光を出力する第1ゲイン制御用光増幅素子と、その第1ゲイン制御用光増幅素子からの出力光と前記光帰還伝送路により帰還させられる光信号とを受けてそのゲイン制御光の減少に伴ってゲインが増加する光信号を出力する第2ゲイン制御用光増幅素子とを含むものである。このようにすれば、全光学的処理により、記憶のために周回させられる光信号のゲインが一定に維持される。

また、好適には、上記第1ゲイン制御用光増幅素子および/または第2ゲイン制御用光増幅素子は、希土類元素がドープされることにより3準位系または4準位系のエネルギ準位が構成された光透過媒体から成る光増幅素子から構成される。このような光増幅素子は、相互利得変調の応答時間が遅いので、周回させられる光信号の信号成分が平滑化されてそのゲインの低下或いは上昇が容易に検出されるようになる。

また、好適には、前記光信号ゲイン制御手段は、前記周回させられる光信号の

10

15

20

ゲインを一定に維持するように、前記光帰還伝送路により帰還させられる光信号のゲインの増減に基づいて、前記光信号増幅3端子装置本体に供給される制御光のゲインを制御する光学的演算制御装置を含むものである。このようにすれば、光信号増幅3端子装置本体から出力される光信号が、帰還させられるその光信号のゲインの減少に基づいて全光学的演算制御装置により増幅されてその光信号の周回による減衰が防止されるので、その光信号のゲインがほぼ一定に維持される

また、好適には、(a) 前記制御光発生装置を制御するための電子制御装置と、(b) その光分波器により分岐された光信号を電気信号に変換して前記電子制御装置へ供給する光電信号変換器と、(c) 前記光分波器よりも下流側に設けられ、その光分波器を通過して前記光信号増幅3端子装置本体に入力させる光信号を遅延させる光遅延素子とを備え、(d) 前記電子制御装置は、外部から供給されるか或いは前記光信号に含まれる記憶信号出力情報が示す出力時期に応答して、前記光信号を出力用波長に変換するための制御光を前記制御光発生装置から発生させるものである。このようにすれば、電子処理により、外部から供給されるか或いは前記光信号に含まれる記憶信号出力情報が示す出力時期に応答して、周回により記憶されている光信号が出力させられる。

また、好適には、外部から供給されるか或いは前記光信号に含まれる記憶信号出力情報が示す出力時期に応答して、前記光信号を出力用波長に変換するための制御光を前記制御光発生装置から発生させる全光学的演算制御装置を備えたものである。このようにすれば、全光学的処理により、外部から供給されるか或いは前記光信号に含まれる記憶信号出力情報が示す出力時期に応答して、周回により記憶されている光信号が出力させられる。

25 図面の簡単な説明

図1は、本発明の一実施例の光信号増幅3端子装置の構成を説明するブロック 図である。

図2は、図1の実施例における光増幅素子が半導体光増幅素子により構成され

10

15

た場合の外形を示す斜視図である。

図3は、図1の光信号増幅3端子装置の作動を説明するタイムチャートであり、上段は第1入力光の波形を示し、中段は制御光の波形を示し、下段は出力光の波形を示している。

図4は、図1の光信号増幅3端子装置の入出力特性を示す図である。

図5は、図1の光信号増幅3端子装置の出力信号の周波数特性を示す図である

図6は、図1の光信号増幅3端子装置によって構成される光フリップフロップ 回路を示す図であって、(a) は一対の光NANDゲードから構成される光フリッ プフロップ回路、(b) は一対の光NORゲードから構成される光フリップフロッ プ回路をそれぞれ示している。

図7は、図1の光信号増幅3端子装置によって構成される光演算増幅回路を示す図である。

図8は、光信号増幅3端子装置の他の実施例の構成を説明する図1に相当する 図である。

図9は、光信号増幅3端子装置の他の実施例の構成を説明する図1に相当する 図である。

図10は、図9の光信号増幅3端子装置をモノリシック構造とした場合の構成を説明する図である。

20 図11は、光信号増幅3端子装置の他の実施例であって、4端子型光サーキュレータを用いた構成を説明する図1に相当する図である。

図12は、図11の光信号増幅3端子装置をモノリシック構造とした場合の構成を説明する図である。

図13は、光信号増幅3端子装置の他の実施例であって、半導体基板の上にエ 25 ピタキシャル成長させられたV字型光導波路を備えたモノリシック構造の構成を 説明する図である。

図14は、光信号増幅3端子装置の他の実施例の構成を説明する図1に相当する図である。

10

15

25

図15は、光信号増幅3端子装置の他の実施例であって、半導体基板の上にエピタキシャル成長させられたV字型光導波路を備えたモノリシック構造の構成を説明する図である。

図16は、光信号転送方法が適用される装置の一実施例である光信号中継装置 の構成を説明する略図である。

図17は、図16の実施例の光信号中継装置の一部を構成する複数の中継器の 1つの構成例を説明するブロック図である。

図18は、図17の中継器の構成を説明するブロック図である。

図19は、図18の制御光発生装置の構成例を説明するブロック図である。

図20は、図18の制御光発生装置の他の構成例を説明するブロック図である

図21は、図18の制御光発生装置の他の構成例を説明するブロック図である

図22は、図18の光信号増幅3端子装置の構成例を説明するブロック図である。

図23は、図22の光信号増幅3端子装置の作動を説明するタイムチャートであり、上段は入力光である信号光の波形を示し、中段は制御光の波形を示し、下段は出力光の波形を示している。

図24は、図22の光信号増幅3端子装置の周波数特性を示す図である。

20 図25は、図22の光分配装置の構成例を説明する図である。

図26は、図23の一連の入力光信号の構成例を説明する図である。

図27は、図26の一連の入力光信号を、それを構成する主信号と振幅変調信号とを用いて説明するタイムチャートである。

図28は、図26の一連の入力光信号について図18の中継器本体部の作動であって、行先情報を付与しない場合の作動を説明するタイムチャートである。

図29は、図26の一連の入力光信号について、図18の中継器本体部の作動であって、入力光信号とは異なる行先情報を付与する場合のを説明するタイムチャートである。

25

図30は、光信号増幅3端子装置の全光学式に制御光を発生させる他の実施例の構成を説明する図であって、図22に相当する図である。

図31は、図30の光信号増幅3端子装置の作動を説明するタイムチャートである。

5 図32は、図30の実施例の波長変換装置を含む光信号中継器の構成を説明する図であって、図17に相当する図である。

図33は、光信号中継装置の他の実施例における要部すなわち中継器を説明する図であって、図18に相当する図である。

図34は、光信号記憶装置の一実施例の構成を説明する略図である。

10 図35は、図34の光信号記憶装置とは異なる他の実施例の構成を説明する略図である。

図36は、図35の光信号記憶装置の光信号記憶作動を説明するタイムチャートである。

図37は、図35の光信号記憶装置において帰還光増幅装置が設けられない場合の光信号記憶作動を説明するタイムチャートである。

図38は、図34、図35の光信号記憶装置とは異なる他の実施例の構成を説明する略図である。

発明を実施するための最良の形態

20 以下、本発明の実施例を図面を参照しつつ詳細に説明する。

図1万至図15は、光信号増幅3端子装置に関連する実際例を示すものであって、図1はその一実施例の光信号増幅3端子装置10を示している。

図1において、第1レーザ光源12は、たとえば1555nmの第1波長 λ_1 の第1レーザ光(第1入力光) L_1 を出力し、第1光変調器14が設けられた光ファイバ F_1 を介して伝播させる。第2レーザ光源16は、たとえば1548nmの第2波長 λ_2 の第2レーザ光(第2入力光) L_2 を一定の強度で連続的に出し、第2光ファイバ F_2 を介して伝播させる。上記第1レーザ光源12はたとえば可変波長半導体レーザが用いられるが、第2レーザ光源16はたとえば単一波

10

15

20

25

長の半導体レーザが用いられる。上記第1光変調器14は、図示しない信号発生器からの電気信号或いは光信号に従って、たとえば図3の上段の波形に示すように、その電気信号或いは光信号の周波数のパルス信号となるように通過光である第1レーザ光L」を強度変調する。第1光カプラ18は、第1光入力手段として機能するものであり、上記光ファイバF」および光ファイバF。を光ファイバF。な光ファイバF」なよび光ファイバF。を光ファイバF。で表し、それら光ファイバF」および光ファイバF。を伝播してきた第1レーザ光L」および第2レーザ光L。を重畳(合波)し、第3光ファイバF。および第1光サーキュレータ20を介して第1光増幅素子26へ入力させる。

上記第1光増幅素子26は、たとえば図2に示す半導体光増幅素子(SOA: semiconductor optical amplifier) から構成される。

図2において、化合物半導体たとえばインジウム燐(InP)やガリウム砒素 (GaAs) から構成される半導体基板26aの上に形成された光導波路26b は、その半導体基板26aの上にエピタキシャル成長させられ且つホトリソグラ フィーにより所定の導波路パターンに形成されたたとえばInGaAsP、Ga InNAs、AlGaInPなどのIII-V 族混晶半導体の多層膜であり、たとえ ばホトリソグラフィーを用いて所定幅のテープ状突起となるように形成されてい る。この光導波路26bは、半導体基板26aよりも屈折率が高い物質で構成さ れているので、光を厚み方向に閉じ込めつつ伝播させる機能を備えている。上記 光導波路 2 6 b内の多層膜内には、p n接合により構成された活性層 2 6 c、キ ャップ層などが含まれ、その上には上部電極26eが固着されている。この活性 層26cは、半導体基板26aの下面に固着された下面電極26fと上記上部電 極26 e との間に電圧が印加され且つ上記p n接合に励起電流が流されることに よって電子・正孔対が形成され、その活性層26cを通過する光が誘導放射作用 によって増幅されるようになっている。上記活性層26cは、多重量子井戸、歪 み超格子、或いは量子ドットから構成されている。多重量子井戸である場合は、 たとえば、ІпР半導体基板26 aからエピタキシャル成長させられることによ り格子整合されたInGaAs (100Åの厚み)とInGaAsP (100Å の厚み)との6対により構成され、その活性層26cの上には、組成(屈折率)

10

15

20

25

が段階的に変化させられたグリン(GRIN)構造のガイド層(2000Å)が順次設けられている。この活性層 26 cのデバイス長(光路長さ)は600 μ mであり、たとえば 250 μ Aの電流値によるエネルギ注入によって注入された電子が通過する光子による誘導放射によって価電子帯へ移動させられるときに光エネルギを放出して通過光を増幅させると考えられている。この 250 μ Aの電流値によるエネルギ注入により、たとえば波長 1555 μ Amにおいて 20dB程度の利得が得られる。

前記第1光増幅素子26の1端面には、金属或いは誘電体がスパッタリングされることによって光を反射する処理が施された金属膜或いは誘電体多層膜などの反射手段26dが備えられているため、その1端面とは反対側に位置する他端面を通して光入力或いは光出力が行われるようになっている。したがって、前記第1レーザ光L」および第2レーザ光L。の合波光は、上記他端面を通して第1光増幅素子26内に入力されるとともに、上記反射手段26dに反射された光は再びその他端面を通して出力される。この第1光増幅素子26の活性層26c内では、上記第1レーザ光L」の入射によってその波長入」を中心とする周囲波長の自然光が発生し、その自然光は第1レーザ光L」の強度変調に反比例して強度が増減する。この状態においてその自然光の波長範囲内にある第2波長入。の第2レーザ光L、が通過させられると、その第2波長入。は、その自然光と同様の変化を受けつつ増強させられる。すなわち、第1レーザ光L」の変調と同様ではあるが位相反転させられた変調を受けて増幅させられる。すなわち、第1光増幅素子26は、第2光増幅素子34とともにクロスゲイン変調特性すなわち相互利得変調特性を備えている。

第1光サーキュレータ20は、第1光増幅素子26から出力された光を、第3光ファイバF。ではなく、第1波長選択素子28を備えた第4光ファイバF。へ導く。第1波長選択素子28は、前記第1光増幅素子26に接続され、その第1光増幅素子26から出力された光のうちから第2波長 λ_2 である1548nmの光を抽出する。この第1波長選択素子28は、光フィルタ素子として機能するものであり、たとえば紫外線が局部的に照射されることにより、第4光ファイバF

10

15

20

25

、の一部が長手方向において屈折率が周期的に変化させられたファイバーグレーティングフィルタであって、第2波長 λ_2 を中心波長とし且つ半値幅が1nmの光を選択して透過させるものである。なお、第1波長選択素子28は、屈折率が異なる多数組の層が積層されて成る多層膜フィルタ、フォトニックバンドギャップを有するフォトニッククリスタルのいずれかから構成されてもよい。

第2光カプラ30は、第2光入力手段として機能するものであり、上記第1波長選択素子28により第1光増幅素子26から出力された光のうちから選択された第2波長 λ 2の光と、たとえば図3の中段の波形に示す第3波長 λ 3の制御光である第3レーザ光L。とを重畳(合波)し、第5光ファイバF。および第2光サーキュレータ32を介して第1光増幅素子26と同様に構成された第2光増幅素子34へ入力させる。この第2光増幅素子34では、変調された第2光増幅素子34へ入力させる。この第2光増幅素子34では、変調された第2波長 λ 2は、その第2波長 λ 2を中心とする自然光の波長範囲内の第3波長 λ 3の制御光によってさらに変調を受け、第3波長 λ 3に関しては、図3の下段に示す波形とされる。第2光サーキュレータ32は、第2光増幅素子34から出力された光を、第5光ファイバF。へではなく、第2光フィルタ素子36を備えた第6光ファイバF。へ導く。上記第2光フィルタ素子36を備えた第6光ファイバF。へ導く。上記第2光フィルタ素子36は、第2光増幅素子34から出力された光のうちから第3波長 λ 3の光を選択し、図3の下段に示す出力光 λ 4から出力された光のうちから第3波長 λ 5の光を選択し、図3の下段に示す出力光 λ 6として出力する。図3において、中段の波形に示す制御光 λ 6の実線、1点鎖線、破線に対応しており、出力光 λ 6とは制御光 λ 7に対して約30倍のゲイン(増幅率)を有している。

図4および図5は、上記のようにして構成された光信号増幅3端子装置10の相互利得変調型波長変換作用の特性を示している。図4は、第1入力光である第1レーザ光L1の信号強度PINを示す横軸と出力光である第4レーザ光L4の信号強度Pourを示す縦軸とからなる二次元座標において、制御光L3の信号強度Pcをパラメータとする第4レーザ光L4の入出力特性図である。図から明らかなように、トランジスタなどのような3端子増幅素子と同様に、出力光である第4レーザ光L4の信号強度Pourは、制御光L3の信号強度Pcの変化に応答し、且つその変化が増幅されて変調させられるとともに、第1入力光である第1レ

15

20

ーザ光L」の信号強度 P_{IN} の変化に応答し、且つその変化が増幅されて変調させられる。また、図5は、第1入力光である第1レーザ光L」の周波数を示す横軸と出力光である第4レーザ光L」の信号変調度H(%)を示す縦軸とからなる二次元座標において、その第4レーザ光L」の周波数特性を示している。図5によれば、5 GHzまでは信号変調度Hの低下が見られなかった。上記信号変調度Hはたとえば次式(1)により表される。但し、 I_{max} は光信号の最大値、 I_{min} は光信号の最小値である。なお、前記活性層2 6 c に量子ドットが用いられる場合には、1 0 0 GHz以上の範囲において信号変調度Hの低下が見られない。

10 $H = 100 \times (I_{max} - I_{min}) / (I_{max} + I_{min}) \cdot \cdot \cdot (1)$

なお、本発明者の実験によれば、上記制御光L。を第3波長 λ 。から第1波長 λ 1、へ変更することにより、第1波長 λ 1、の出力光L、が得られるとともに、上記と同様の光信号増幅効果結果が得られた。また、上記においては、第2レーザ光L2の第2波長 λ 2。は第1レーザ光L1よりも短波長であったが、その第2レーザ光L2の第2波長 λ 2。を第1レーザ光L1よりも長波長としても上記と同様の光信号増幅効果結果が得られただけでなく、たとえば図3の下段の波形の最低値が零に近づくというような、出力光L4の基線が第1レーザ光L1と同様に零に近接するという更なる効果が認められた。また、第1波長 λ 1、の第1入力光L1を第2波長 λ 2。の第2レーザ光L2と同様に連続光(バイアス光)として、第3波長 λ 3。の第3入力光L3。に信号変調をかけると、第3波長 λ 3。の出力光L4は、その第3入力光L3。の信号が10以上の増幅率で増幅されたものとして出力された。

図 6 (a) は、上記光信号増幅 3 端子装置 1 0 が適用された 2 つの光NAND が -ト4 0 から構成されたフリップフロップ回路 4 2 を示し、図 6 (b) は 2 つの光 NORゲート 4 4 から構成されたフリップフロップ回路 4 6 を示している。電子 回路におけるNANDゲートおよびNORゲートはよく知られているように複数 のトランジスタから構成されており、そのトランジスタに替えて上記光信号増幅

3端子装置10が光回路中に設けられることにより光NANDゲート40およびNORゲート44が構成され、それら1対の光NANDゲート40および1対の光NORゲート44からフリップフロップ回路42および46が構成される。このフリップフロップ回路42および46によれば、光により情報が記憶される。

5

10

図7は、前記光信号増幅3端子装置10が適用された光演算増幅器(光オペレーショナルアンプ)48を示している。電子回路における演算増幅器はよく知られているように複数のトランジスタから構成されており、そのトランジスタに替えて上記光信号増幅3端子装置10が光回路中に設けられることにより、光演算増幅器48が構成される。

以上のように構成された図1の光信号増幅3端子装置10においては、第1波長λ1の第1入力光L1と第2波長λ2の第2入力光L2とが入力された第1光増幅素子26からの光から選択された第2波長入2の光と、第3波長入3の第3入力光(制御光)L3とが第2光増幅素子34へ入力させられるとき、その第2光増幅素子34から出された光から選択された第3波長入3の出力光L1は、前記第1波長入1の第1入力光L1および/または第3波長入3の第3入力光L3の強度変化に応答して変調された光であって、その第3波長入3の第3入力光L3の強度変化に応答して変調された光であって、その第3波長入3の第3入力光(制御光)L3に対する信号増幅率が2以上の大きさの増幅信号となるので、光信号の増幅処理を制御入力光を用いて直接行うことができる光信号増幅3端子装置10を得ることができる。

20

25

また、本実施例の光信号増幅 3 端子装置 10 によれば、前記第 1 波長 λ 1 の第 1 入力光 L1 は変調光であり、前記第 2 波長 λ 2 の第 2 入力光 L2 は連続光であり、前記第 3 波長 λ 3 の第 3 入力光 L3 は制御光であり、前記第 3 波長 λ 3 の出力光 L4 は、その制御光 L5 の入力区間においてその第 1 入力光 L7 の変調信号が増幅された信号波形を備えたものであることから、第 3 波長 λ 3 の出力光 L4 は、制御光 L5 の入力区間において第 1 波長 λ 7 の第 1 入力光 L7 の強度変化に応答して変調された増幅光となるので、増幅された光信号のスイッチング処理を制御入力光を用いて直接行うことができる光信号増幅 3 端子装置 10 を得ること

ができる。

5

10

15

20

25

また、本実施例では、前記第1波長入」と第3波長入。とは、同じ波長とすることもできることから、光信号増幅3端子装置10の信号入力光としての第1入力光L」及び第3入力光L。と、出力光L」とが同じ波長となるので、共通の波長で複数の光信号増幅3端子装置10を接続することが可能となり、複数個の光信号増幅3端子装置10を用いて集積度の高い光回路を構成することができる。

また、本実施例では、前記第 2 波長 λ 2 は、前記第 1 波長 λ 1 よりも長波長とすることができるので、このような場合には、変調された第 1 入力光 L 1 の増幅光である出力光 L 3 が示す波形が、その第 1 入力光の波形の基線と同様に零レベルに近い基線となる利点がある。すなわち、変調度を大きくする利点がある。

また、本実施例では、第 3 波長 λ 。の出力光 L 。の第 3 波長 λ 。の制御光 L 。に対する信号増幅率は、 1 。 0 以上の値であるので、光信号増幅 3 端子装置の増幅機能が一層高められ、その応用範囲が拡大される。

また、本実施例では、第1光増幅素子26および第2光増幅素子34は、pn接合から構成される活性層26cを備えた半導体光増幅素子であることから、信号増幅率および応答速度が一層高められた光信号増幅3端子装置10が得られる

また、本実施例では、第1光増幅素子26および第2光増幅素子34の活性層26cは、量子井戸または量子ドットから構成されたものであることから、一層高い信号増幅率および速い応答速度を備えた光信号増幅3端子装置10が得られる。特に量子ドットを用いた場合には100GHz以上の応答速度が得られる。また、活性層として歪み超格子を用いると偏波依存性が小さくなる。

また、本実施例では、第1光増幅素子26および第2光増幅素子34は、活性層26cを通過した光を反射するために金属蒸着などにより形成されたミラーなどの反射手段26dをその一端面に備え、他端面を通して入力光が入力され且つ出力光が取り出されるものであることから、1端面に備えられたミラーなどの反射手段26dによって活性層26cにおける通過パスが実質的に長くされるので

10

15

20

25

、信号増幅率が一層高められる。また、フィードバック効果によって一層変調度 が高められる。

また、本実施例では、第1光増幅素子26および第2光増幅素子34の他端面を通してその中に入力光を入力させ、その他端面を通して出力される光をその入力光とは異なる光路へ導く光サーキュレータ20および32が設けられていることから、第1光増幅素子26および第2光増幅素子34の他端面から出た光はその他端面へ入力させる光を導く導波路に入ることがなく、専ら他の出力用導波路に導かれる。

また、本実施例では、第 1 波長選択素子 2 8 および/または第 2 波長選択素子 3 6 は、導波路または光ファイバ内の光伝播方向において屈折率が周期的に変化 させられたグレーティングフィルタ、屈折率が異なる多数組の層が積層されて成る多層膜フィルタ、フォトニックバンドギャップを有するフォトニッククリスタルのいずれかから構成されたものであることから、第 1 光増幅素子 2 6 或いは第 2 光増幅素子 3 4 からの光から第 2 波長 3 2 或いは第 3 波長 3 3 が好適に抽出される。

また、前述の光信号増幅3端子装置10は、光NANDゲート40、その一対の光NANDゲート40から成る光フリップフロップ回路42、または光演算増幅器46を構成することができ、光集積回路の機能を高めることができる。

また、本実施例の第 1 光増幅素子 2 6 において、第 2 波長 λ 2 は第 1 波長 λ 1 の第 1 入力光 L_1 の周囲光の波長域内の波長であり、第 2 光増幅素子 3 4 において、第 3 波長 λ 3 は、第 2 波長 λ 2 の入力光の波長域内の波長であるので、第 1 光増幅素子 2 6 或いは第 2 増幅素子 3 4 からの出力光に含まれる第 2 波長 λ 2 或いは第 3 波長 λ 3 の信号が好適に増幅される。

また、第1光増幅素子26の一端面に設けられた反射手段26が、第1波長λ 1の光は透過させるが第2波長入2の光は反射する波長選択性反射膜から構成されている場合は、第1波長選択素子28が不要となる。第1光増幅素子26と同様に構成されている第2光増幅素子34の反射手段が、第2波長入2の光は透過させるが第3波長入3の光は反射する波長選択性反射膜(波長選択性ミラー)か

10

15

20

25

ら構成されている場合は、第2波長選択素子36が不要となる。上記波長選択性 反射膜は、たとえば屈折率が異なる誘電体層が交互に積層された誘電体多層膜か ら構成される。

次に、他の実施例を説明する。なお、以下の説明において前述の実施例と共通 する部分には同一の符号を付して説明を省略する。

図8は、前述の光信号増幅3端子装置10の他の実施例の光信号増幅3端子装 置50の構成例の要部を示している。本実施例の波長変換装置50は、第1光入 カ手段として機能するハーフミラー51および集光レンズ52を通して光信号L A が第1光増幅素子26の一方の端面に入力され、その第1光増幅素子26の他 方の端面から集光レンズ53を通して出力された光のうち第1波長 1、の光は透 過させられるが、バイアス光L2の波長λbの光は第1波長選択素子として機能 する波長選択型ミラー54により反射されて第1光増幅素子26に戻される。そ の第1光増幅素子26の一方の端面から出力された光は上記ハーフミラー51に より反射されるとともに第2光入力手段として機能するハーフミラー55により 制御光し。と合波され、集光レンズ56を通して第2光増幅素子34の一方の端 面に入射される。この第2光増幅素子34の他方の端面から集光レンズ57を通 して出力された光のうちのバイアス光し。の波長ん。の光は透過させられるが、 制御光Lc と同じ波長成分は第2波長選択素子として機能する波長選択型ミラー 58により反射されて第2光増幅素子34に戻される。その第2光増幅素子34 の一方の端面から出された出力光L。は、前述の光信号増幅3端子装置10と同 様のものとなる。このように構成された波長変換装置50によれば、前述の光信 号増幅3端子装置10と同様の相互利得変調型の波長変換作用および光増幅作用 が得られる。上記波長選択型ミラー58および波長選択型ミラー54は、集光レ ンズ57および集光レンズ53を通して第2光増幅素子34の端面および第1光 増幅素子26の端面と光学的に結合されている。上記集光レンズ52、53、5 6、57はたとえばマイクロレンズにより構成され、上記光信号L や出力光L 』などは光ファイバにより伝送される。なお、ハーフミラー51および55は光 カプラ又は光サーキュレータにより置き替えられてもよい。

10

15

20

25

図9は、前記光信号増幅3端子装置10の他の実施例の光信号増幅3端子装置 59の構成例の要部を示している。本実施例の光信号増幅3端子装置59は、直 列に配設された第1光増幅素子26および第2光増幅素子34と、光信号L』お よびバイアス光し。(波長入。)を第1光増幅素子26の内側端面に入射させる 光カプラ60および61と、第1光増幅素子26の外側端面からの光のうち第1 波長 λ」の光は透過させるが波長 λ。の成分を反射して第1光増幅素子 26 内に 戻す波長選択性の反射器62と、その第1光増幅素子26の内側端面から出射し た光のうち波長 礼。の成分を通過させて第2光増幅素子34の内側端面に入射さ せるフィルタ63と、その第2光増幅素子34の外側端面に制御光し。を入射さ せる光カプラ64と、その第2光増幅素子34の外側端面から出射した光のうち 制御光しこと同じ波長成分の光を透過させ、出力光しことして出力させるフィル タ65とを備えている。上記光カプラ60および61は第1光入力手段として機 能し、上記光カプラ64が第2光入力手段として機能し、上記反射器62および フィルタ65は第1波長選択素子および第2波長選択素子として機能している。 このように構成された波長変換装置59によれば、前述の光信号増幅3端子装置 10と同様の相互利得変調型の波長変換作用および光増幅作用が得られる。上記 制御光 L_c の波長 λ_c の光信号はフィルタ 6 3 で反射され且つフィルタ 6 5 を透 過して出力される。波長 A 。の光成分はフィルタ 6 5 を透過しない。上記光カプ ラ60および61は、1個の光カプラから構成されてもよい。

図10は上記光信号増幅3端子装置59を、図2に示すモノリシック構造の第1光増幅素子26と同様のモノリシック構造すなわち1チップ構造で半導体基板26aの上に構成した例を示している。本実施例のモノリシック構造の光信号増幅3端子装置59では、第1光増幅素子26の外側位置、第1光増幅素子26と第2光増幅素子34との間の位置、第2光増幅素子34の外側位置には、屈折率が周期的に変化させられたグレーティングにより構成された反射器62、フィルタ63、フィルタ65が順次設けられている。なお、直線状の光導波路26bから分岐させられている一対の分岐導波路は、前記光カプラ60および61および光カプラ64に対応している。

10

15

20

25

図11は、前述の光信号増幅3端子装置10の他の実施例の光信号増幅3端子 装置66の構成例の要部を示している。本実施例の波長変換装置66は、一対の 反射型の第1光増幅素子26および第2光増幅素子34と、その一対の反射型の 第1光増幅素子26および第2光増幅素子34に接続された第2端子67bおよ び第3端子67cを含む4端子を備え、その4端子間において光を伝送するが所 定の端子からの出射光とその端子への入射光とが異なる光路とする4端子型光サ ーキュレータ67と、光信号L、およびバイアス光L。(波長λ。)を合波して 4端子型光サーキュレータ67の第1端子(第1ポート)67aに入射させる光 カプラ68と、反射型第1光増幅素子36から4端子型光サーキュレータ67の 第2ポート67bに向かう波長入。の光に制御光Lcを合波して第2光増幅素子 34に入射させる光カプラ69とを備え、4端子型光サーキュレータ67の第4 ポート67dから制御光しこと同じ波長成分の光を透過させる。上記第1光増幅 素子26の反射面には、第1波長入」の光は透過させるが第2波長入。の光を選 択的に反射する反射膜26 dが設けられており、上記第2光増幅素子34の端面 には、第2波長A。の光は透過させるが制御光Lcと同じ波長Ac成分の光を反 射する反射膜34 dが設けられている。このように構成された光信号増幅3端子 装置66によれば、前述の光信号増幅3端子装置10と同様の相互利得変調型の 波長変換作用および光増幅作用が得られるとともに、4端子型光サーキュレータ 67を通されるために出力光し。の変調度が高められる。本実施例の光信号増幅 3端子装置66は図1の光信号増幅3端子装置10に比較して構成が簡単となる 利点がある。なお、上記光カプラ69は、4端子型光サーキュレータ67の第3 ポート67cから第2光増幅素子34に向かう波長え。の光に制御光Lcを合波 して第2光増幅素子34に入射させるものであってもよい。本実施例では、光カ プラ68および光カプラ69が第1光入力手段および第2光入力手段として機能 し、反射膜26dおよび34dが第1波長選択素子および第2波長選択素子とし て機能している。

図12は、上記光信号増幅3端子装置66がモノリシック構造とされた場合の 例が示されている。このモノリシック構造の光信号増幅3端子装置66も、前述

10

15

20

25

の図6、図10に示すものと同様に、半導体基板26aの上に形成された光導波路26bを備えている。この光導波路26bは、4端子型光サーキュレータ67と同様の機能を出すためのZ字状の部分と、光カプラ68および69としての機能を出すためにその一部から分岐させられた分岐導波路とが設けられている。上記光導波路26bのZ字状の部分のうちの屈折点には、一対の反射型第1光増幅素子26および第2光増幅素子34が前述の図2、図10に示すものと同様に構成されている。なお、反射膜26dおよび34dは、それら反射型第1光増幅素子36および第2光増幅素子34の外端面に設けられている。

図13は、前述の光信号増幅3端子装置10の他の実施例の光信号増幅3端子 装置70の構成例の要部を示している。本実施例の光信号増幅3端子装置70は 、たとえばGaAs等の矩形半導体基板71上に成長させられたたとえばGaI nNAsなどのpn接合層(活性層)を有する混晶半導体層がホトリソグラフィ ーによりV字状に形成された第1光導波路72および第2光導波路73と、それ ら第1光導波路72および第2光導波路73に図示しない電極が設けられること によって設けられた第1光増幅素子26、第2光増幅素子34と、上記矩形半導 体基板71の一端面であって上記第1光導波路72および第2光導波路73の交 差部に設けられ、バイアス光L。の第2波長λ。の光および制御光L。は第2光 導波路 7 3 へ向かって反射するが光信号 L 、の第 1 波長 λ ι の光を選択的に透過 させる波長選択性反射膜74と、矩形半導体基板71の一端面であって上記第2 光導波路73の出力側に設けられ、第2波長λ。の光は反射するが制御光Lcと 同じ波長成分の光を透過させる波長選択性反射膜75とを備えている。光信号L _A とバイアス光L。は光カプラ76によって合波されてから光導波路72の端面 に入射され、制御光Lcは、上記波長選択性反射膜75の外側に設けられた光カ プラ77から第2光導波路156内に入射されるようになっている。このように 構成された光信号増幅3端子装置70によれば、前述の光信号増幅3端子装置1 0と同様の相互利得変調型の波長変換作用および光増幅作用が得られる。また、 本実施例の光信号増幅3端子装置70は、たとえばGaAs等の矩形半導体基板 上に成長させられたGaInNAsなどのIII-V 族混結晶半導体層から成るpn

10

15

20

25

接合層 (活性層)を有する混晶半導体層がホトリソグラフィーによって処理され 且つ電極が付与されることによって1チップ化されるので、極小のサイズに構成 される利点がある。本実施例では、上記光カプラ76および77が第1および第 2光入力手段として機能し、上記波長選択性反射膜74および波長選択性反射膜 75が第1波長選択素子および第2波長選択素子として機能している。

図14は、前述の光信号増幅3端子装置10の他の実施例の光信号増幅3端子 装置78の構成例の要部を示している。本実施例の光信号増幅3端子装置78は 、合波素子として用いられる光カプラ79、光分波素子として用いられる光カプ ラ80、および集光レンズ52を通して光信号し、が第1光増幅素子26の一方 の端面に入力され、その第1光増幅素子26の他方の端面から集光レンズ53を 通して出力された光のうち上記光信号 L_{λ} の波長 λ_{\perp} は波長選択性フィルタ81 により透過させられない (吸収される) がバイアス光の波長 え。の光はそのフィ ルタ81を透過し且つ全反射型ミラー82により反射されて第1光増幅素子26 に戻される。その第1光増幅素子26の一方の端面から出力された光は上記光カ プラ80から他の光カプラ83へ伝送され、そこで制御光L。と合波される。次 いで、光カプラ84および集光レンズ56を通して第2光増幅素子34の一方の 端面に入射される。この第2光増幅素子34の他方の端面から集光レンズ57を 通して出力された光のうちバイアス光の波長 A 。の光は波長選択性フィルタ 8 5 により透過させられない(吸収される)が制御光L。と同じ波長 λ 。の成分はそ の波長選択性フィルタ85を透過し且つ全反射型ミラー86により反射されて第一 2光増幅素子34に戻される。その第2光増幅素子34の一方の端面から出され た出力光し。は、光カプラ84によって外部たとえば後述の光分配装置150へ 出力される。このように構成された光信号増幅3端子装置78によれば、前述の 光信号増幅3端子装置10と同様の相互利得変調型の波長変換作用および光増幅 作用が得られるだけでなく、光信号し、の波長 λ 、は波長選択性フィルタ 8 1 に より吸収されて透過させられないことにより第1光増幅素子26側へ戻される割 合が極めて少なくなり、特性が一層改善される利点がある。本実施例では、光カ プラ79および光カプラ84が第1光入力手段および第2光入力手段として機能

10

15

20

25

し、上記波長選択性フィルタ81および波長選択性フィルタ85が第1波長選択 素子および第2波長選択素子として機能している。

図15は、前述の光信号増幅3端子装置10の他の実施例であって、1チップ に複数個(本実施例では2個)の光信号増幅3端子装置88が集積化されたモノ リシック構造の構成例の要部を示している。本実施例の複数組の光信号増幅 3 端 子装置88は、たとえばGaAs等の矩形半導体基板89上に成長させられたた とえばGaInNAsなどのpn接合層(活性層)を有する混晶半導体層がホト リソグラフィーにより一方の端面から他方の端面にわたって直線状に形成され、 互いに隣接する1対でV字状を成す第1光導波路90、第2光導波路91、およ び第3光導波路92と、それら第1光導波路90、第2光導波路91、および第 3 光導波路 9 2 に図示しない電極が設けられることによって設けられた第 1 光増 幅素子26、第2光増幅素子34、および第3光増幅素子93と、上記矩形半導 体基板89の一端面であって上記第1光導波路90および第2光導波路91の交 差部と上記第3光導波路92の出力側端面とにわたって設けられ、バイアス光L 。の第2波長λ。の光および制御光L。は第2光導波路91へ向かって反射する が光信号L_Aの第1波長 A₁の光および制御光L_cを選択的に透過させる波長選 択性反射膜(波長選択性ミラー)94と、矩形半導体基板89の一端面であって 上記第2光導波路91の出力側端面に設けられ、第2波長2。の光は透過するが 制御光Lcと同じ波長成分の光を第3光導波路92へ向かって反射する波長選択 性反射膜(波長選択性ミラー)95とを、それぞれ備えている。光信号しょとバ イアス光し、は光カプラ96によって合波されてから第1光導波路90の入力側 の端面に入射され、制御光L。は、上記波長選択性反射膜94の外側から第2光 導波路91内に入射されるようになっている。このように構成された光信号増幅 3端子装置88によれば、前述の光信号増幅3端子装置10と同様の相互利得変 調型の波長変換作用および光増幅作用が得られる。本実施例の光信号増幅3端子 装置88は、たとえばGaAs等の矩形半導体基板上に成長させられたGaIn NAsなどのIII-V 族混結晶半導体層から成るpn接合層(活性層)を有する混 晶半導体層がホトリソグラフィーによって処理され且つ電極が付与されることに

15

20

25

よって1チップ化されるので、たとえば1.3 μ m波長帯の光信号の信号処理が可能な光信号増幅3端子装置10が極小のサイズに構成される利点がある。また、本実施例によれば、サーキュレータが不要となるとともに、3つの光増幅素子26、34、93により高出力が得られる。本実施例では、光カプラ96が第1光入力手段として機能し、波長選択性反射膜94が第2光入力手段および第1波長選択素子として機能し、波長選択性反射膜95が第2波長選択素子として機能している。

図16乃至図33は、光信号転送方法、その光信号転送方法を好適に実施する ための光信号ルータすなわち光信号中継(転送)装置に関連する実施例を示すも のであって、これらによれば、所定の伝送路を介して伝送された一連の光信号を 、複数の伝送路のうちのその光信号に含まれる行先情報に対応する伝送路へ転送 することにより、高度情報処理のための光通信が可能とされる。

図16は、一方の光ネットワークにおける複数本の伝送路である入力光ファイバ F_{A1} 乃至 F_{AM} と他方の光ネットワークにおける複数本の伝送路である出力光ファイバ F_{B1} 乃至 F_{BM} との間に配設されて、入力光ファイバ F_{A1} 乃至 F_{AM} のいずれかを介して伝送された波長多重の光信号(レーザ光) L_{A1} 乃至 L_{AM} を、その光信号に振幅変調により付与されている行先情報に基づいて決定された出力光ファイバ F_{B1} 乃至 F_{BM} のいずれか内の波長バスの1つへ転送するための光信号中継(転送)装置110を概略示す図である。この光信号中継装置110は光信号ルータとも称される。

図16において、上記入力光ファイバF $_{A1}$ 乃至F $_{AM}$ のいずれかにより伝送される光信号 L_{A1} 乃至 L_{AM} はそれぞれ波長分割多重(WDM)信号であり、予め設定された複数種類の波長の光信号が重畳されている。したがって、たとえば光信号 L_{A1} に含まれる所定波長の一連の波長 λ_{1} の光信号 L_{A11} は、たとえばそのラベル部或いはタグ部において振幅変調が付与されることにより設けられた行先情報に従って、出力光ファイバF $_{B1}$ 乃至 F_{BM} のいずれか 1 つの光ファイバF $_{B}$ 内のいずれかの波長バスへ、すなわち予め設定された複数種類すなわち N種類の波長 λ

10

15

20

25

」乃至 Л N のいずれかの波長で転送される。出力光ファイバ F в 1 乃至 F в м により、 波長多重の光信号(レーザ光) L в 1 乃至 L в м がそれぞれ伝送される。

図17は、上記互いに同様に構成された第1中継器R、乃至第M中継器RMの構成を説明するために、たとえば入力光ファイバFMに出力光ファイバFBにとの間に対応する位置に設けられた第1中継器R、を代表させてその構成を説明する図である。図17において、第1中継器R、には、入力光ファイバFMにから伝送された波長多重の光信号LMから光分波器SによってN種類の波長 λ 、乃至 λ 、毎に分離されたの一連の光信号(パケット)LMI、乃至LMI、が光ファイバFMI、乃至FMINを介して入力されると、その光信号LMI、乃至LMINのラベル部或いはタグ部において振幅変調が付与されることにより設けられている行先情報に従って波長変換し且つそれまでと同じ行先情報か或いは新たな行先情報を示す振幅変調を施して出力するN個の互いに同様に構成された第1中継器本体部RBINT至RBINが設けられている。第1中継器本体部RBINTをれぞれ出力されたN種類の波長 λ 、乃至 λ のいずれかの波長の出力信号は、その波長および行先情報に従って分岐された光信号を伝送するためのN×M本のクロスコネクトファイバFIII 乃至FINM・・・N×M本のクロスコネクトファイバFIII 乃至FINM・・・N×M本のクロスコネクトファイバFIII 乃至FINM・・・N×M本のクロスコネクトファイバFIII 乃至FINM・・・N×M本のクロスコネクトファイバFIII 乃至FINM・・・N×M本のクロスコネクトファイバFIII 乃至FINM・・・N×M本のクロスコネクトファイバFIII 乃至FINM・・・N×M本のクロス

10

15

20

25

されている。これにより、第1中継器本体部RB₁₁・・・第M中継器本体部RB_{1N}の出力信号は、合波器T₁ 乃至T_Mを介して出力光ファイバF_{B1}乃至F_{BM}のうちの所望の出力光ファイバへ所望の波長で伝送されるようになっている。他の中継器R_Mを構成する中継機本体部RB_{M1}乃至RB_{MN}も、同様に、N×M本のクロスコネクトファイバF₁₁₁ 乃至F_{1NM}・・・N×M本のクロスコネクトファイバF_{N11} 乃至F_{NNM}をそれぞれ介して合波器T₁ 乃至T_Mと接続されている。なお、図17に示すように、同じ波長たとえば波長 λ_1 の信号を伝送するクロスコネクトファイバF₁₁₁、F₂₁₁、・・・F_{N11} の出力端が結合され、ファイバF_{B1}を介して合波器T₁ に入力されている。波長 λ_N の信号を伝送するクロスコネクトファイバF_{1N1}、F_{2N1}、・・・F_{NN1} の出力端が結合され、ファイバF_{BN} を介して合波器T₁に入力されている。

上記光分波器 S₁ は、たとえば、回折格子やプリズムなどの角度分散素子、誘電体多層膜の干渉フィルタなどの波長選択性反射/透過膜、或いは光導波路形分波回路などを利用して構成される光分波回路としてよく知られたものである。また、上記合波器 T₁ は、たとえば、マイクロレンズを主要な構成要素とする光方向性結合回路、複数本の並列配置された光ファイバの一部が局部的に結合された分布結合形光多重カプラ、四角管の内壁における多重反射或いは平面板内における混合を利用した集中結合形光多重カプラなどから構成される。

また、上記第1中継器本体部RB」は、たとえば図18に示すように構成される。図18において、光分波器S」から光ファイバ F_{A11} を介して入力された光信号 L_{A11} は、光分波合波器として機能する第1光カプラ114、光遅延素子116、および相互利得変調型の波長変換装置(光スイッチング装置、光信号増幅3端子装置本体)118が順次接続されている。上記第1光カプラ114は、光ファイバを主体とした分岐回路、マイクロレンズを主体とした分岐回路などから構成される。光ファイバを主体とした分岐回路では、たとえば一対の光ファイバの所定区間を相互に密着して並行した状態で或いは螺旋状に相互にひねった状態で相互に密着させたり、透過および反射可能な反射膜を光ファイバの分岐点に設けたりすることにより構成される。マイクロレンズを主体とした分岐回路では

10

15

20

25

、たとえば集束性ロッドレンズで平行ビーム化された光をくさび型屈折面或いは 反射面を用いて分岐させるように構成される。この第1光カプラ114は、双方 向性すなわち可逆性を備えているので、反対向きに光信号が伝播させられるとき には、光信号を合波して第1光ファイバ112内を反対向きに伝送させる合波器 として機能する。

また、光遅延素子 1 1 6 は、上記光ファイバ F All 内を伝送される光信号を所定時間だけ遅延させるためのものであり、たとえば所定の長さの光ファイバを巻回して伝播距離を設けることよりその所定の伝播距離を伝播する伝播時間だけ遅延させるように構成される。この光遅延素子 1 1 6 の遅延時間は、波長変換装置 1 1 8 内において、そこで波長変換される光信号とその光信号の伝送先を示す制御光とが同期するように予め実験的に求められる。

上記第1光カプラ114により光ファイバF $_{\Lambda11}$ 内の光信号から分岐された分岐光信号は、光ファイバ120とこれに接続された光電信号変換器122とを介して電子制御装置124へ供給される。電子制御装置124は、たとえば $_{\Lambda}$ に含まれたの一時記憶機能を利用しつつ $_{\Lambda}$ の $_{\Lambda}$

上記制御光発生装置 1 2 6 は、予め設定された複数種類の波長 λ 。の制御光 L c を出力する制御光源を有し、前記電子制御装置 1 2 4 からの指令信号、すなわち光信号 L に含まれる分岐情報に応じて選択された波長指令信号に従って、その分岐情報に対応する波長 λ 。を有する制御光 L c を前記波長変換装置 1 1 8 に

10

15

20

25

対して供給する。制御光発生装置 126 は、転送先の出力光ファイバF $_{\rm BN}$ 乃至F $_{\rm BM}$ 内の波長バスの本数に対応する複数種類たとえば ${
m N}$ 種類の波長 ${
m \lambda}_{{
m C1}}$ 、 ${
m \lambda}_{{
m C2}}$ 、 ${
m \lambda}_{{
m C3}}$ 、・・・ ${
m \lambda}_{{
m CN}}$ の制御光 ${
m L}_{{
m C}}$ を択一的或いは選択的に発生させる。図 19、図 200、図 201 は、その制御光発生装置 102 103 の構成例をそれぞれ示している。

図19において、制御光発生装置126は、制御光源に対応する相互に波長が 異なる単一波長の光を出力する複数のレーザ光源126ょ、乃至126ょ。と、それ らレーザ光源126ょ、乃至126よの出力側にそれぞれ設けられてそれらから 出される出力光をそれぞれスイッチングするための複数(N個)の光変調器 1 2 6 м1 乃至 1 2 6 мп と、それら光変調器 1 2 6 м1 乃至 1 2 6 мпを通過した光を 合波し、制御光として出力する単一の光合波器 1 2 6 s とから構成され、電子制 御装置124からの分岐指令信号に従ってレーザ光源12611万至1261点お よび光変調器 1 2 6 м г 乃至 1 2 6 м п が作動させられることにより、光信号 L д г г に含まれる振幅変調信号が示す行先情報(分岐情報)に応じて選択された波長 A c の制御光Lc を出力する。上記複数のレーザ光源12611乃至1261mとして は、たとえば半導体レーザダイオードが用いられる。図20において、制御光発 生装置126は、制御光源に対応する相互に波長が異なる単一波長の光を出力す る複数のレーザ光源126ょ、乃至126ょ。とそれらレーザ光源126ょ、乃至12 6 டாから出力された光を1つの導波路に合波する単一の光合波器126 s と、 その光合波器 1 2 6 s の出力側に設けられてそれから出される出力光をスイッチ ングしてブランキング区間を遮断する単一の光変調器126μとから構成され、 電子制御装置124からの分岐指令信号に従ってレーザ光源1261,乃至126 ιпおよび光変調器 1 2 6 м が作動させられることにより、光信号 L д г に含まれ る分岐情報に応じて選択された波長 A c の制御光 L c を出力する。図 2 1 におい て、制御光発生装置126は、出力光の波長を変更することが可能な波長可変レ ーザ光源126 Lvと、その波長可変レーザ光源126 Lvの出力側に設けられてそ れから出される出力光をスイッチングしてブランキング区間を遮断する単一の光 変調器126mとから構成され、電子制御装置124からの分岐指令信号に従っ て波長可変レーザ光源 1 2 6 Lvおよび光変調器 1 2 6 M が作動させられることに

10

15

20

25

より、光信号L₁に含まれる分岐情報に応じて選択された波長 λ cの制御光Lcを出力する。上記波長可変レーザ光源126 μ cvは、たとえば分布ブラッグ反射型レーザ、マイクロマシン面発光レーザ、温度同調DFBレーザなどが用いられる。分布ブラッグ反射型レーザでは、その光共振器を構成する一対のミラーのうちの一方を構成するDBR層(ブラッグ反射層)に電流を注入し、プラズマ効果によってその部分の屈折率を変化させることにより光共振波長が可変とされる。マイクロマシン面発光レーザでは、マイクロマシンによって光共振器長が変化されることにより光共振波長が可変とされる。温度同調DFBレーザでは、温度による屈折率変化により光共振波長が可変とされる。なお、上記光変調器126 μ lの上記を引力を発展して、カールのでは、は、たとえば駆動電流または駆動電圧が μ lの上記を引力を引力に加えられることによって透過光をオンオフさせる半導体型光変調器や、ニオブ酸リチウムなど単結晶のような電気光学効果を有する物質に外部から駆動電圧を印加することにより透過光をオンオフさせる外部変調型光変調器などから構成される。

上記図18の前記光波長変換装置118は、第2波長選択素子としても機能する光分配装置150と共に光信号増幅3端子装置128を構成するものであり、基本的には図1、図8乃至図15に示す光信号増幅3端子装置10、50、59、66、70、78、88のいずれかと同様に構成される。本実施例の光波長変換装置118は、たとえば図22に示されるように、第1光ファイバ112を介して入力された光をクロスゲイン変調特性を利用して増幅および波長変換して出力する複数個の光増幅素子に対応する一対の第1光増幅素子136および第2光増幅素子144を直列に備え、上記第1光ファイバ112を介して入力された光信号を増幅するとともに、その光信号に含まれる分岐情報に対応する制御光したの入力に同期してその制御光したと同じの波長の光し。を出力するように構成されている。すなわち、図22において、レーザ光源130は、たとえば単一波長の半導体レーザから構成され、光信号し、(第1入力光)の波長え、たとえば1555mmよりも長い波長え。たとえば1565mmのレーザ光(第2入力光)し、を一定の強度で連続的に出力する。第3光カプラ132は、第1光入力手段

10

15

20

25

として機能するものであり、振幅変調されて第1光ファイバ112内を伝送された上記光信号L」と連続光である上記レーザ光L。とを重畳(合波)し、第1光サーキュレータ34を介して第1光増幅素子136へ入力させる。

上記第1光増幅素子136および第2光増幅素子144も、図2に示す第1光増幅素子26と同様に、半導体光増幅素子(SOA)から構成される。上記第1光増幅素子136は、スパッタリングなどによって光を反射する端面処理が施された鏡などの反射手段136dをその1端面に備えているため、その1端面とは反対側に位置する他端面を通して光入力或いは光出力が行われるようになっている。したがって、光信号L1(第1入力光)およびそれよりも長い波長入2のレーザ光(第2入力光)L2の合波光は、上記他端面を通して第1光増幅素子136内に入力されるとともに、上記反射手段136内に反射された光は再びその他端面を通して出力される。この第1光増幅素子136の活性層内では、図2に示す第1光増幅素子26と同様に、光信号L1の変調と同様ではあるが位相反転させられた変調を受けて増幅され、第1光増幅素子136から出力される。すなわち、第1光増幅素子136は、第2光増幅素子144とともにクロスゲイン変調特性すなわち相互利得変調特性を備えている。

図22において、第1光サーキュレータ134は、上記第1光増幅素子136から出力された光を、第3光カプラ132へではなく、第1波長選択素子138へ導く。第1波長選択素子138は、前記第1光増幅素子136から出力された光のうちから第2波長 λ_2 である1565nmの光を抽出する。この第1波長選択素子138は、光フィルタ素子として機能するものであり、たとえば紫外線が局部的に照射されることにより、光ファイバの一部が長手方向において屈折率が周期的に変化させられたファイバーグレーティングフィルタから構成されるものであって、第2波長 λ_2 を中心波長とし且つ半値幅がたとえば1乃至十数nmの光を選択して透過させるものである。なお、第1波長選択素子138は、屈折率が異なる多数組の層が積層されて成る多層膜フィルタ、フォトニックバンドギャップを有するフォトニッククリスタルのいずれかから構成されてもよい。

第4光カプラ140は、第2光入力手段として機能するものであり、上記第1

10

15

20

25

波長選択素子 138により第 1 光増幅素子 136 から出力された光のうちから選択された第 2 波長 λ_2 の光と、第 3 波長 λ_3 のレーザ光である制御光 L ことを重置(合波)し、第 2 光サーキュレータ 142 を介して第 1 光増幅素子 136 と同様に構成された第 2 光増幅素子 144 へ入力させる。第 1 光増幅素子 136 において変調された第 2 波長 λ_2 は、この第 2 光増幅素子 144 において、その第 2 波長 λ_2 を中心とする自然光の波長範囲内の第 3 波長 λ_3 の制御光 L によってさらに変調を受け且つ増幅され、波長 λ_2 の光と制御光 L の波長とされた変調光 (出力光信号) L_3 との混合光が出力される。第 2 光サーキュレータ 142 は、第 2 光増幅素子 144 から出力された上記混合光(波長 λ_2 の光および変調光 L_3)を、第 4 光カプラ 140 へではなく、光分配装置 150 へ出力させる。

図24は、上記のようにして構成されることにより光信号増幅3端子装置128として機能する波長変換装置118および光分配装置150において、第1光増幅素子136の活性層が量子ドットから構成された場合の特性を示している。図24において、第1入力光である信号光LAIIの周波数を示す横軸と出力光である出力光L4の信号変調度H(%)を示す縦軸とからなる二次元座標において、その出力光L4の周波数特性が示されている。この図24によれば、100GHz程度までは信号変調度Hの低下がそれ程見られなかった。上記信号変調度H

10

15

20

25

はたとえば前式(1) により表される。

図18に戻って、上記波長変換装置118からの光のうちの変調光L。は、その波長すなわち制御光L。の波長 λ c($=\lambda_{c1}$ 、 λ_{c2} 、・・・、 λ_{cn})毎に光分配装置150によって複数の導波路に対応するように予め定められたクロスコネクトファイバ F_{111} 乃至 F_{11M} 、 F_{121} 乃至 F_{12M} 、・・・ F_{1N1} 乃至 F_{1NM} へそれぞれ選択的に分配される。また、波長変換装置118からの光のうちのそれらの波長 λ c と異なる波長 λ 2 の光は分岐光ファイバ F_{B0} に分配される。この分岐光ファイバ F_{B0} の終端は後段に連結されておらず閉じられているので、波長 λ 2 の光の伝播がここで阻止される。このように、光分配装置150は、第2光増幅素子144からの光から第3波長 λ 6 の出力光を選択する第2波長選択素子としても機能しているのである。

上記光分配装置150において、たとえば、変調光L3が制御光Lcの波長λ c のうちの l つである単色光である場合にはクロスコネクトファイバ F 111 乃至 F_{11M} 、F₁₂₁ 乃至F_{12M} 、・・・F_{1N1} 乃至F_{1NM} のうちの1つの群へ択一的 に分配されるが、2種類の混合色である場合にはクロスコネクトファイバF 111 乃至F_{11M}、F₁₂₁ 乃至F_{12M}、・・・F_{1N1} 乃至F_{1NM} のうちのいずれか2つ の群へ分配される。上記光分配装置150は、たとえば図25に示すように、入 力ポート150aに接続された第1スラブ導波路150bと、複数の出力ポート 150 cに接続された第2スラブ導波路150 dと、それら第1スラブ導波路1 50 bおよび第2スラブ導波路150 dの間に設けられた長さの異なる複数のア レー導波路150eと、複数の出力ポート150cにそれぞれ接続されたクロス コネクトファイバF 111 乃至F 11M 、F 121 乃至F 12M 、・・・F 1N1 乃至F 1N м とを備え、その入力ポート150aに入力された波長変換装置118からの変 調L3 (入力光)をその波長毎に複数の出力ポート150cのいずれかすなわち クロスコネクトファイバF 111 乃至F 11M 、F 121 乃至F 12M 、・・・F 1N1 乃 至F լмм のいずれかへ分配するアレー導波路格子型光分波器から構成されている 。なお、上記光分配装置150には、クロスコネクトファイバF111乃至F11m 、Fızı 乃至Fızm 、・・・Fını 乃至Fınm の端面に分岐光を集光させるため

10

15

20

25

の集光レンズなどの光学系が必要に応じて備えられる。本実施例では、前記制御 光発生装置 1 2 6、波長変換装置 1 1 8、および光分配装置 1 5 0 が、光信号中 継器本体部 R B 1 の主要部を構成している。

図28は、以上のように構成された本実施例の光中継器110の作動を、たとえば図18に示す第1中継器本体部RB」を代表させて説明するタイムチャートである。第1中継器本体部RB」において、図28の上段部に示す光信号LAIIが光遅延素子116を介して波長変換装置118へ入力される(入力工程)一方で、第1光カプラ114によりその光信号LAIIの一部が光電信号変換器122により電気信号に変換されて電子制御装置124へ供給され、その電子制御装置124により抽出された図28の第2段部に示す変調パルス信号(行先情報)が制御光発生装置126へ供給され、その制御光発生装置126からはその変調パルス信号が示す行先情報に従って決定された波長え。の制御光L。が図28の第3段部に示すように発生させられ、その発生に同期して波長変換装置118に入力されている光信号LAIIが波長変換装置118において制御光L。の波長えこに変換され出力される(波長変換工程)。上記光遅延素子116により、光電信

10

15

20

25

号変換器122による光電変換後の電子制御装置124の演算動作時間などに対 応した時間だけ光信号しよいが遅延させられることにより上記の同期が行われる 。たとえば光信号 L_{AII} に含まれる振幅変調パルス P_{II} が示す行先情報が波長 λ 」の波長バスである場合は、波長λιの制御光Lcが発生されて光信号LAIIが 図28の下から2段目に示すように波長入」に変換されて波長変換装置118か ら出力される。また、光信号し、ハロウェれる振幅変調パルスト」が示す行先情 報が波長え。の波長バスである場合は、波長え。の制御光Lcが発生されて光信 号し 👢 が図 2 8 の下段部に示すように波長 λ 2 に変換されて波長変換装置 1 1 8から出力され、光分配装置150によりその波長に従って分配される(光分配 工程)。ここで、入力光である光信号LAII は第1光増幅素子136の出力が飽 和する利得に設定されていることから、第1光増幅素子136から第1波長選択 素子138を通して出力されて第2光増幅素子144へ入力される光信号は一定 の大きさとされるので、その第2光増幅素子144から出力されて光分配装置1 50へ入力される波長変換後の光信号は振幅一定となるので、振幅変調が容易と なる。本実施例の光中継器110の波長変換装置118では、入力光である光信 号し、いの信号と出力光し、或いはし、の信号との間で位相反転がなく、その光 信号しれ」の波長は、第1光増幅素子136の利得範囲内であればどの波長が選 択されてもよく自由度が高い利点がある。

図29は、前記光中継器110の他の作動すなわち波長変換と同時にラベリングして出力する作動を、たとえば図18に示す第1中継器本体部RB」を代表させて説明するタイムチャートである。第1中継器本体部RB」において、図29の上段部に示す光信号Laiiが光遅延素子116を介して波長変換装置118へ入力される一方で、第1光カプラ114によりその光信号Laiiの一部が光電信号変換器122により電気信号に変換されて電子制御装置124へ供給され、その電子制御装置124により抽出された図29の第2段部に示す変調パルス信号(行先情報)が制御光発生装置126へ供給される。制御光発生装置126では、その変調パルス信号が示す行先情報に従って決定された波長入cの制御光Lcが発生させられて、その発生に同期して波長変換装置118に入力されている光

10

15

20

25

信号LAII が制御光Lcの波長 λ cに変換されて出力される。このときの変調パルス信号には、再付与するための行先情報が含まれているので、電子制御装置124はその行先情報を示すパルス信号を含むように図29の第3段部に示す振幅変調された制御光Lcが発生させられる。たとえば光信号 L_{AII} に含まれる振幅変調パルス P_{II} が示す行先情報が波長 λ_{II} の波長バスである場合は、波長 λ_{II} の制御光Lcが発生されて光信号 L_{AII} が図29の下から2段目に示すように波長 λ_{II} に変換されて波長変換装置118から出力される。また、光信号 L_{AII} に含まれる振幅変調パルス P_{II} が示す行先情報が波長 λ_{II} の波長バスである場合は、波長 λ_{II} の制御光IC。が発生されて光信号IC。の波長バスである場合は、波長IC。の制御光IC。が発生されて光信号IC。の波長バスである場合は、波長IC。の制御光IC。が発生されて光信号IC。の波長バスである場合は、波長IC。の制御光IC。が発生されて光信号IC。の波長バスである場合は、波長IC。の制御光IC。が発生されて光信号IC。の力される。

上述のように、本実施例によれば、行先情報としてその一連の光信号LAIIに振幅変調信号が付与され、その光信号LAIIは振幅変調信号が示す行先へ転送される。このため、相互利得変調型の波長変換装置118に振幅変調された一連の光信号が入力される場合には、その光信号LAIIの振幅変調が示す行先情報に対応した波長の制御光L。がその相互利得変調型の波長変換装置118に供給されると、その制御光L。と同じ波長の出力光が出力されるので、たとえば光分配装置150によりその出力光がその波長に応じた伝送路へ分配されることによってルーティングが行われるので、高速かつ小型のルーティング装置すなわち光信号転送装置或いは光信号中継装置110を構成することが可能となる。

また、本実施例によれば、上記一連の光信号 L_{AII} に付与された振幅変調は、 9.0%以下の変調度で施されたものであるので、光信号 L_{AII} が損なわれず、且 つ行先情報が光信号に確実に付与される。また、上記一連の光信号 L_{AII} パケット信号であり、前記行先情報はそのパケット信号の先頭部に設けられたラベル情報或いは夕グ情報であるので、そのラベル部LA或いは夕グ部において、振幅変調によりラベル情報或いは夕グ情報が付与される。

また、本実施例によれば、(a) 行先情報として振幅変調が施された一連の光信号 L_{A11} を相互利得変調型の波長変換装置 1 1 8 へ入力させる入力工程と、(b) その光信号 L_{A11} とは異なり且つ振幅変調信号に対応する波長の制御光 L_c を上

10

15

20

記相互利得変調型の波長変換装置 1 1 8 へ供給し、その相互利得変調型の波長変換装置 1 1 8 からその制御光Lcの波長の光信号を出力させる波長変換工程と、

(c) 相互利得変調型の波長変換装置 1 1 8 から出力された光信号を光分配装置 1 5 0 に入力させ、その光信号をその波長に応じて光分配装置 1 5 0 に接続された複数の光伝送路へ分配する光分配工程とが、含まれるので、光信号 L A 1 1 はその振幅変調信号が示す行先情報に応じた波長で光分配装置 1 5 0 に接続された複数の光伝送路へ分配される。

また、本実施例によれば、上記波長変換工程は、相互利得変調型の波長変換装置118から出力される光信号 L_{AII} に制御光 L_{c} を用いて振幅変調を施すことにより、その光信号 L_{AII} に新たな行先情報を再付与するものであることから、信号光中継(転送)装置110内において適宜転送先を再付与できるので、たとえばリンクの状態、ノードの状態、ロタフィック状態に応じて転送ルートを決定する動的ルーティングが可能となる。

また、本実施例の光信号中継装置 1 1 0 によれば、行先情報として振幅変調信号が付与された一連の光信号 Laii が伝送されて来ると、制御光発生装置 1 2 6 により、その一連の光信号 Laii の振幅変調信号からその振幅変調信号が示す行先に対応し且つその光信号 Laii とは異なる波長の制御光 Lc が発生させられ、相互利得変調型の波長変換装置 1 1 8 により、その一連の光信号 Laii がその制御光 Lc の波長の光信号に変換され、光分配装置 1 5 0 により、その相互利得変調型波長変換装置 1 1 8 から出力された光信号がその波長に応じて複数の光伝送路へ分配されるので。高速かつ小型のルーティング装置すなわち光信号転送装置或いは光信号中継装置 1 1 0 が提供可能となる。

また、本実施例では、光信号LAII に含まれる振幅変調信号に応じて、制御光発生装置126からその振幅変調信号が示す行先情報に応じた波長の制御光Lc を発生させる電子制御装置124を備えたものであるので、波長変換機能とスイッチング機能を有する相互利得変調型波長変換装置118が行先情報に対応した波長の光信号を出力して光分配装置150による分配を可能とするので、高速かつ小型のルーティング装置すなわち光信号転送装置或いは光信号中継装置110

が得られる。

5

10

15

20

25

また、本実施例では、(a) 光ファイバ112内を伝播する光信号L_A11 を分岐 させて電子制御装置124へ供給するための第1光カプラ(光分波器)114と 、(b) その第1光カプラ114により分岐された光信号を電気信号に変換して電 子制御装置124へ供給する光電信号変換器122と、(c) その光ファイバ11 2においてその第1光カプラ114よりも下流側に設けられ、その第1光ファイ バ112から波長変換装置118に入力させる光信号L, を遅延させる光遅延素 子116とが設けられ、上記電子制御装置124は上記光信号Laii に含まれる 振幅変調信号を抽出して、その振幅変調信号が示す行先情報に対応する波長の制 御光し を制御光発生装置 126から発生させるものであるので、波長変換機能 とスイッチング機能を有する相互利得変調型波長変換装置118が行先情報に対 応した波長の光信号を出力して光分配装置150による分配を可能とするので、 高速かつ小型のルーティング装置すなわち光信号転送装置或いは光信号中継装置 が可能となる。また、光信号しれ、の一部が第1光カプラ114から分岐されて 電子制御装置124へ供給される一方で、その光信号Lネュュの他の一部が光遅延 素子116により遅延させられて波長変換装置118へ供給されるので、電子制 御装置124における電子信号処理に用いられる遅れ時間にもかかわらず、制御 光発生装置126から波長変換装置118へ供給される制御光Lcがその波長変 換装置118における光信号L」と好適に同期させられる。

また、本実施例では、相互利得変調型の波長変換装置118は、(a) 入力された光をクロスゲイン変調特性を利用して増幅および波長変換して出力するための第1光増幅素子136および第2光増幅素子144と、(b) 光ファイバ112から入力された第1波長入」の信号光LAIIと、その信号光LAIIとは異なる波長入。の連続光であるレーザ光(第2入力光)L2とを合波して第1光増幅素子136に入力させる第3光カプラ(第1光合波器)132と、(c) 第1光増幅素子136からの光から第2波長入。の光を選択する第1波長選択素子138と、(d) その第1波長選択素子138により選択された第2波長入2の光と第3波長入。の制御光Lcとを合波して第2光増幅素子144へ入力させる第4光カプラ(

10

15

20

25

第2光合波器)140とを、含み、第3波長入。の出力光L。は、制御光L。と同じ波長の光であって、第1波長入。の信号光L。および/または第3波長入。の制御光L。の強度変化に応答して変調されるものであることから、信号光L。とレーザ光(第2入力光)L。とが入力された第1光増幅素子136からの光から選択された第2波長入。の光と制御光L。とが第2光増幅素子144へ入力させられるとき、その第2光増幅素子144から出された光から選択された第3波長入。の変調光L。或いは出力光L。は、信号光L、および/または制御光L。の強度変化に応答して変調された光であって、制御光L。に対する信号増幅率が少なくとも2以上の大きさの増幅信号となるので、光信号L。の増幅処理を制御光L。を用いて直接行うことができる。

また、本実施例の光信号中継装置 $1 \ 1 \ 0$ によれば、予め設定された複数種類の 波長の制御光を出力する複数の単一波長のレーザ光源(制御光源)または波長可変レーザ光源を有し、前記光信号 L_1 に含まれる分岐情報に応じて選択された波長の制御光 L_2 を波長変換装置 $1 \ 1 \ 8$ に対して供給する制御光発生装置 $1 \ 2 \ 6$ が備えられているので、複数の分岐光導波路に対応する光ファイバ F_{B1} 、 F_{B2} 、 F_{B3} 、・・・ F_{Bn} のうちの上記制御光 L_2 の波長に対応して予め設定された所定の光ファイバへ光信号 L_1 が選択的に分配される。

10

15

20

25

また、本実施例の制御光発生装置 $1 \ 2 \ 6$ は、複数種類のレーザ光源 $1 \ 2 \ 6$ ட1 乃至 $2 \ 6$ ட1 または波長可変レーザ光源 $1 \ 2 \ 6$ ட1 から出力される制御光をスイッチングするための光変調器 $1 \ 2 \ 6$ 1 を備えたものであるので、制御光発生装置 $1 \ 2 \ 6$ から出力された相互に異なる波長の制御光Lc の立上がりおよび立下がりが急峻とされ、その応答性が高められる。

また、本実施例では、第1光ファイバ112から入力される光信号 L_1 に含まれる分岐情報に応じて、制御光発生装置126からその分岐情報に応じた波長を有する制御光 L_2 を発生させる電子制御装置124を備えたものであるので、波長変換装置118から出力される変調光 L_3 の波長がその光信号 L_{A11} に含まれる行先(分岐)情報に応じて切り換えられて、その波長毎に複数の光ファイバF B_1 、 F_{B2} 、 F_{B3} 、・・・ F_{Bn} のうちのいずれかへ選択的に分配される。

また、本実施例では、電子制御装置 124 は、光ファイバ 112 から入力される光信号 L_{AII} に含まれる行先情報(アドレス信号)のみを抽出し、前記制御光発生装置 126 からそのアドレス信号に対応する波長の制御光 L_c を発生させるものであることから、アドレス信号以外の信号に対応する電磁波が信号処理によって発生しないので、光信号 L_I の秘匿性が確保される利点がある。

次に、他の実施例を説明する。なお、以下の説明において前述の実施例と共通 する部分には同一の符号を付して説明を省略する。

図30は、前述の図18および図22に示す第1中継器本体部RB」が全光学的に構成された実施例を示している。図30において、波長変換装置118の第3光カプラ132に入力される入力光信号LAIIの一部が光カプラ(光分波/合波素子或いは光合波器/光合波器)164によって分岐され、次いで、光カプラ166によって連続光である所定波長たとえば波長λ、乃至λ、のいずれかの波長の連続光であるレーザ光Lと合波されて、図22に示す第1光増幅素子136と同様に構成されることによりクロスゲイン変調特性すなわち相互利得変調特性を備えた半導体光増幅素子(SOA)168に入力される。上記連続光であるレーザ光Lは、たとえば図19或いは図20に示すレーザ光源126に乃至126にかおよび光合波器126s、図21に示す可変レーザ光源126に検成

10

15

20

されたレーザ光源170が用いられる。この半導体光増幅素子168は、前記第 1半導体光増幅素子136や第2半導体光増幅素子144に比較して相対的に応 答速度が遅くなる特性となるように構成される。たとえば、前述のように、第1 半導体光増幅素子136や第2半導体光増幅素子144が量子井戸または量子ド ットから構成された活性層を備える場合には、上記半導体光増幅素子168はバ ルクから構成された活性層を備えるように構成される。この半導体光増幅素子 1 6 8 は、その利得および/または偏波状態が調整設定されることにより、高速の スイッチングに応答しないようにされている。これにより、図31の上段に示さ れる入力光信号しムロが入力されると、その入力光信号しムロの振幅変調信号に 対応する波形の制御光信号しc (図31の第2段目または第3段目)が上記半導 体光増幅素子168から第4光カプラ(第2光合波器) 140へ入力されるので 、図31の下から2段目または下段に示すように振幅変調された波長 2: または λ_N の出力光信号 L_3 が光分配装置150へ出力される。この出力光信号 L_3 の 振幅変調信号は、たとえば分岐情報を示している。本実施例では、上記光カプラ 164、光カプラ166、半導体光増幅素子(SOA) 168レーザ光源170 は、波長変換すべき波長および行先(分岐)情報を付与する上記制御光L。を出 力するための全光学式制御装置172を構成している。

本実施例によれば、上記光カプラ164、光カプラ166、半導体光増幅素子168によって生成される上記光信号Lcは、前述の図18の制御光Lcと同様に、振幅変調によって一連の出力光の先頭部に入力光信号Laiiに含まれるものと同じ行先情報をリアルタイムで付与するものであるので、このようなスイッチング作動については前述の実施例の電子制御装置124が不要となって全光学的に構成される利点がある。

また、本実施例では、光信号LAII に含まれる振幅変調信号に応じて、制御光 25 発生装置 1 2 6 からその振幅変調信号が示す行先情報に応じた波長の制御光Lc を発生させる全光学的制御装置を備えたものであるので、入力光信号LAII に含 まれる振幅変調信号が示す行先情報に応じた信号の制御光が発生するように制御 されることから、波長変換機能とスイッチング機能を有する相互利得変調型波長

10

15

25

変換装置118が行先情報に対応した波長の光信号を出力して光分配装置による 分配を可能とするので、高速かつ小型のルーティング装置すなわち光信号転送装 置或いは光信号中継装置が可能となる。光学的信号処理によって電磁波が発生し ないので、光信号の秘匿性が確保される利点がある。

図32は、上記図30の波長変換装置118の技術を利用して構成された、全 光学式の光信号中継装置180を説明するための図17に相当する図である。光 分波器SIによって分波された複数の光のうち、波長AIの入力光信号LAIIを 代表させて説明すると、図30と同様に、波長変換装置118の第3光カプラ(第1光合波器) 132に入力される入力光信号 L 👢 の一部が光カプラ 164に よって分岐され、次いで、光カプラ166によって連続光である所定波長たとえ ば波長 λ_2 乃至 λ_N のいずれかの波長の連続光であるレーザ光Lと合波されて、 第1光増幅素子136と同様に構成されることによりクロスゲイン変調特性すな わち相互利得変調特性を備えた半導体光増幅素子(SOA)168に入力される 。上記連続光であるレーザ光Lが光分波器S」によって分波された他の波長 λ_2 乃至 λν のいずれかが用いられる点において図 3 0 の実施例と相違する。これに より、図31に示すように、その上段に示される入力光信号しょこが入力される と、その入力光信号 L 🛕 🗋 の振幅変調信号に対応する波形の光信号 L c (図31 の第2段目または第3段目)が上記半導体光増幅素子168から第4光カプラ(第2光合波器) 140へ入力されるので、図31の下から2段目または下段に示 す波長 λ_1 または λ_N の出力光信号 L_2 が光分配装置 150 へ出力される。本実 20 施例によれば、一層全光学式に構成される利点がある。

次に、さらに他の実施例を説明する。

前述の実施例において、他の中継器本体部RBMNにおいて入力光信号LANM で ある光パケット信号を所定の波長に変換して所定のファイバ Рым へ出力する中 継処理中に、入力光信号し、エロッである光パケット信号を中継処理する中継器本体 部RBiからその所定のファイバFВМ へ同じ波長の光信号を重複的に出力させ て光信号の重畳を発生させてしまう可能性がある。このような場合には、たとえ ば図18の実施例では、電子制御装置124は、先に中継処理をしている中継器

10

15

20

25

本体部 RB_{MN} が光パケット信号の終端を確認する前に、入力光信号 $L_{\Lambda11}$ である光パケット信号の先頭のヘッダー部Hに振幅変調信号により付されているヘッダ情報を検知した場合には、その光パケット信号に迂回を指示する情報を振幅変調により付与するように構成されている。たとえば、最終の行先情報は変更しないが、途中のアドレスを振幅変調により変更する。本実施例によれば、複数の光パケット信号が略同時に同じ伝送路である所定のファイバ F_{BNM} へ送信されようとするときの相互の衝突を回避することができる。

図33は、他の中継器本体部RBммにおいて入力光信号Lммм である光パケッ ト信号を所定の波長に変換して所定のファイバF_{BNM} へ出力する中継処理中は、 それに時期的に重複して着信した入力光信号LAIIである光パケット信号を一時 的に記憶し、先に上記所定の波長に変換している光パケット信号の中継処理が完 了した後でその中継処理を可能とするようにした中継装置110の要部を示す図 である。図33において、前記光分配装置150により分配された光パケット信 号を一時的に記憶するために長さの異なる複数本の光ファイバが並列接続して成 る複数の光信号記憶素子174と、その光信号記憶素子174から出力された光 信号を入力側へ帰還させるための光帰還伝送路すなわち帰還用光ファイバ178 と、帰還用光ファイバ178を介して入力側へ伝送された待機用波長 λ ω 乃至 λ 03のいずれかの光パケット信号を入力光信号LAII として第1カプラ114へ再 び入力させるための光カプラ176とが備えられている。他の中継器本体部RB MNにおいて入力光信号LANM である光パケット信号を所定の波長に変換して所定 のファイバF_{BNM} へ出力する中継処理中に、光パケット信号の先頭のヘッダー部 Hに振幅変調信号により付されているヘッダ情報にしたがって、本中継器本体部 RB」が上記所定のファイバFBNM へ出力する行先情報を有する光パケット信号 L_{A11} を受けたと判定された場合は、電子制御装置124はその光パケット信号 L 👢 は一時記憶させるべきものであると判定する。電子制御装置124は、上 記他の中継器本体部RBmnの電子制御装置からの信号に応答して、上記光パケッ ト信号 Lail を予め設定された待機用波長 λοι 乃至 λοο のいずれかに変換するた めの制御信号Lc゚ 乃至Lc゚ を制御光発生装置126から出力させる。光分配

10

15

20

25

装置150から出力された待機(一時記憶)用波長えい乃至えるのいずれかの光信号は、その光分配装置150に接続された光信号記憶素子174のいずれかへ送られてそこで所定時間記憶された後、帰還用光ファイバ178を介して光カプラ176へ伝送され、そこから入力光信号Lainとして第1カプラ114へ再び入力され、前述の中継処理が再び行われる。上記複数の光信号記憶素子174は、たとえば前述の光遅延素子116と同様に、それに記憶させる光パケット信号が必要とする記憶時間に対応する長さを備えるために、その記憶時間だけ伝播のために必要とする光学的長さの相互に異なる複数本の光ファイバをそれぞれ巻回してそれぞれ構成される。本実施例によれば、複数の光パケット信号が略同時に同じ伝送路である所定のファイバFBNMへ送信されようとするときの相互の衝突を回避することが可能となる。

また、前述の図18の実施例において、電子制御装置124は、入力光信号 L_{A11} 乃至 L_{A21} 乃至 L_{A21} 乃至 L_{A21} 乃至 L_{A21} 乃至 L_{A21} 乃至 L_{AM1} 乃至 L_{AM1} 乃至 L_{AMN} について、たとえば 所望の波長を所望の伝送路へ転送するように、その処理時間帯を波長群や伝送路 群毎などで相互に相違させるように波長変換装置118に選択的に波長変換処理 を実行させる制御光 L_c を発生するように構成されてもよい。

また、前述の波長変換装置118において、第3光カプラ132および第4光カプラ140、第1光増幅素子136および第2光増幅素子144、および第1波長選択素子138などの構成部品は、光ファイバにより連結されてもよいが、半導体基板またはガラス基板のような透光性物質製基板の上に形成された光導波路などにより結合されてもよい。

また、前述の光分配装置 150 は、入力ポート 150 a に接続された第 1 スラブ導波路 150 b と、複数の出力ポート 150 c に接続された第 2 スラブ導波路 150 d と、それら第 1 スラブ導波路 150 b および第 2 スラブ導波路 150 d の間に設けられた長さの異なる複数のアレー導波路 150 e と、複数の出力ポート 150 c に接続された分岐光ファイバ F_{B1} 、 F_{B2} 、 F_{B3} 、・・・ F_{Bn} とを備え、その入力ポート 150 a に入力された波長変換装置 118 からの出力光 L_{30} (入力光) をその波長毎に複数の出力ポート 150 c のいずれかすなわち分岐光フ

15

20

ァイバ F_{B1} 、 F_{B2} 、 F_{B3} 、・・・ F_{Bn} のいずれかへ分配するように構成されていたが、波長毎に異なる回折格子の回折角度を利用してその入力光である出力光L。をアレイ状に配列された複数の分岐光ファイバ F_{B1} 、 F_{B2} 、 F_{B3} 、・・・ F_{Bn} へ選択的に分配する回折格子型光合成分波器から構成されたり、或いはその回折格子に替えてプリズムが利用されたプリズム光合成分波器から構成されてもよい。この場合には、光分配装置 150 は、波長毎に異なるプリズムの屈折角度を利用して入力光をアレイ状に配列された複数のアレー導波路へ選択的に分配するプリズム型光分配器から構成される。光分波器 S_1 乃至 S_M や合波器 T_1 乃至 T_M も同様である。

10 また、前述の実施例の電子制御装置 1 2 4 に替えて、複数の光トライオードから成る演算装置およびレーザ光源などから構成される光演算制御装置が用いられてもよい。電子制御装置 1 2 4 に替わる全光学的装置が用いられることにより、光信号中継装置 1 1 0 の全体が光学素子によって構成される。

また、前述の実施例では、光導波路として、第1光ファイバ112、第2光ファイバ120などが用いられていたが、光回路の一部に設けられた、二次元方向において光を導く二次元光導波路や三次元方向において光を導く三次元光導波路が用いられてもよい。

また、前述の実施例では、図19、図20、図21に示される制御光発生装置 126において、光変調器 126 M1乃至 126 M1 が除去されても差し 支えない。この場合、たとえば図19、図20の光変調器 126 では、レーザ光源 126 L1 乃至 126 L1 が選択的にオンオフ駆動されることにより、波長の異なる制御光Lc が選択的に出力される。また、図21の光変調器 126 では、可変 波長レーザ光源 126 L1 の DBR層に対する注入電流を段階的に変化させること により、波長の異なる制御光Lc が選択的に出力される。

25

図34乃至図38は、所望のタイミングで光信号を取り出すことが可能な光信号記憶装置が、高度情報処理のための光通信のための光合波/分波装置に適用された例を示すものである。

10

15

20

25

図34は、光信号記憶装置210の要部構成を説明するための図である。図34において、光ネットワークなどからの光パケット信号、光データ通信信号などの光信号LAを伝送する光ファイバ212には、光分波合波器として機能する第1光カプラ214、光遅延素子216、および相互利得変調型の波長変換装置(光スイッチング装置、光信号増幅3端子装置本体)218が順次接続されている

また、光遅延素子216は、上記光ファイバ12内を伝送される光信号を所定時間だけ遅延させるためのものであり、たとえば所定の長さの光ファイバを巻回して伝播距離を設けることよりその所定の伝播距離を伝播する伝播時間だけ遅延させるように構成される。この光遅延素子216の遅延時間は、波長変換装置218内において、そこで増幅される光信号とその光信号の伝送先を波長で示す制御光とが同期するように予め実験的に求められる。

上記第1光カプラ214により光ファイバ212内の光信号から分岐された分岐光信号は、光ファイバ220とこれに接続された光電信号変換器222とを介して電子制御装置224へ供給される。電子制御装置224は、たとえばCPUがRAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って入力信号を処理する所謂マイクロコンピュータにより構成される。この電子制御装置224は、光ファイバ220を介して伝送された光信号に含まれている振幅変調で示されるコード信号すなわち行先情報に基づいて、その光信号をルーティングするためにその行先情報に対応する波長指令信号を制御光発生装置226へ供給する。たとえば、電子制御装置224は、光ファイバ220から入力される光信号LAに含まれる行先情報を抽出し、制御光発生装置226からその行先情報に対応する波長に応じた制御光L。を発生させるものである。

上記制御光発生装置 2 2 6 は、予め設定された複数種類の波長 λ 。の制御光 L c を出力する制御光源を有し、前記電子制御装置 2 2 4 からの指令信号、すなわち光信号 L に含まれる分岐情報に応じて選択された波長指令信号に従って、その分岐情報に対応する波長 λ 。を有する制御光 L c を前記波長変換装置 2 1 8 に対して供給する。制御光発生装置 2 2 6 は、転送先の出力光ファイバ F 、乃至 F

10

15

20

25

 $_{\rm N}$ に対応する複数種類たとえばN種類の波長 $_{\rm A_{\, 1}}$ 、 $_{\rm A_{\, 2}}$ 、 $_{\rm A_{\, 3}}$ 、・・・ $_{\rm A_{\, N}}$ の制御光L。を択一的或いは選択的に発生させる。前述の実施例の図19、図20、図21は、その制御光発生装置226の構成例をそれぞれ示している。なお、本実施例の光ファイバ212、第1光カプラ214、光遅延素子216、波長変換装置218、光ファイバ220、光電信号変換器222、電子制御装置224、制御光発生装置226、光信号分配装置250は、前述の実施例の光ファイバ112、第1光カプラ114、光遅延素子116、波長変換装置118、光ファイバ120、光電信号変換器122、電子制御装置124、制御光発生装置126、光信号分配装置150と同様に構成されたものであり、波長変換装置218および光信号分配装置250は前述の光信号増幅3端子装置128と同様の光信号増幅3端子装置228を構成している。

図34に戻って、上記波長変換装置 218からの出力光L。は、その波長すなわち制御光L。の波長 λ_1 、 λ_2 、 λ_3 、・・・ λ_N 毎に光分配装置 250によって複数の導波路に対応するように予め定められたクロスコネクトファイバF」、 F_2 、 F_3 、・・・ F_N へそれぞれ選択的に分配される。また、それらと異なるバイアス光L。と同じ波長 λ_b の光は分岐光ファイバF。に分配される。たとえば、出力光L。が単色である場合にはクロスコネクトファイバF」、 F_2 、 F_3 、・・・ F_N のうちの1つに分配されるが、2種類の混合色である場合にはクロスコネクトファイバF」、 K_2 、 K_3 、・・・ K_1 のうちの1つに分配されるが、2種類の混合色である場合にはクロスコネクトファイバF」、 K_2 、 K_3 、・・・ K_1 のうちの1つに分配されるが、2種類の混合色である場合にはクロスコネクトファイバF」、 K_2 、 K_3 、・・・ K_1 のうちのいずれか 2 つの群へ分配される。上記クロスコネクトファイバF」およびF。は、光信号 K_1 を分波処理するための光アド処理回路 252 および光信号 K_1 を分波処理するための光アド処理回路 252 および光信号 K_1 を分波処理するための光アド処理回路 254 に接続されており、クロスコネクトファイバF。乃至 K_1 は光バッファメモリ素子 K_2 の所定長の光ファイバ内の伝播時間に対応する遅延時間だけ遅延させて光信号 K_1 を出力する遅延素子である。

上記光バッファメモリ素子 M_3 乃至 M_N から出力された光信号 L_A は、光帰還 伝送路を構成する帰還用光ファイバ 2 5 6 と第 1 光カプラ 2 1 4 と同様に構成さ

10

15

20

25

以上のように構成された光信号記憶装置 $2 \cdot 1 \cdot 0$ において、光ファイバ $2 \cdot 1 \cdot 2$ により伝送された光信号 L_A は、それに含まれる行先信号(ラベリング)が電子制御装置 $2 \cdot 2 \cdot 4$ により抽出され、その行先信号が示す伝送先へ分配されるように、その行先信号に対応する波長の制御光 L_C が出力されるように制御光発生装置 $2 \cdot 6$ が電子制御装置 $2 \cdot 2 \cdot 4$ により制御される。波長変換装置 $2 \cdot 1 \cdot 8$ は、上記制御光 L_C の波長が L_C の波長が L_C である場合には、それから出力される出力光 L_C は、波長が L_C の光信号 L_A とされるので、光分配装置 L_C のにおいて光アド処理回路 L_C の波長が L_C である場合には、波長変換装置 L_C の波長が L_C である場合には、波長変換装置 L_C の波長が L_C である場合には、波長変換装置 L_C の L_C とされるので、光分配装置 L_C の L_C において光ドロップ処理回路 L_C の光信号 L_C とされるので、光分配装置 L_C において光ドロップ処理回路 L_C の L_C において分配すなわち合波或いは分岐される。

しかし、上記光信号 L_{Λ} を直ちに光アド処理回路 2 5 2 或いは光ドロップ処理回路 2 5 4 へ伝送させることが不適当である場合は、電子制御装置 2 2 4 の電子処理により、その光信号 L_{Λ} は外部からの読出タイミング信号 R の受信或いはその光信号 L_{Λ} に含まれる記憶時間の経過までの間記憶された後に取り出される。すなわち、制御光発生装置 2 2 6 から波長変換装置 2 1 8 へ出力される制御光 L_{Λ} の次長が L_{Λ} のいずれかたとえば L_{Λ} とされると、波長変換装置 L_{Λ} 8 から出力される出力光 L_{Λ} の次長が L_{Λ} の次長が L_{Λ} とされるので、光分配装置 L_{Λ} 2 L_{Λ} 0 の次長が L_{Λ} 2 L_{Λ} 2 L_{Λ} 2 L_{Λ} 2 L_{Λ} 3 L_{Λ} 2 L_{Λ} 3 L_{Λ} 3 L_{Λ} 3 L_{Λ} 4 L_{Λ} 4 L_{Λ} 5 L_{Λ} 6 L_{Λ} 6 L_{Λ} 7 L_{Λ} 6 L_{Λ} 7 L_{Λ} 7 L_{Λ} 8 L_{Λ} 8 L_{Λ} 9 L_{Λ} 8 L_{Λ} 9 $L_{$

10

15

20

25

を通過する際には、制御光発生装置 2 2 6 から波長変換装置 2 1 8 へ出力される制御光 L_c の波長は λ_s とされる。このような光信号 L_k の記憶中においてさらに他の光信号が入力され且つそれを記憶する場合には、上記波長 λ_s とは異なる波長たとえば λ_s に上記と同様に変換され且つ上記と同様に帰還用光ファイバ λ_s λ_s

そして、たとえば光アド処理回路 2 5 2 へ取り出すための取出タイミング信号 Rが外部から電子制御装置 2 2 4 へ供給されると、電子制御装置 2 2 4 は、帰還 用光ファイバ 2 5 6 、第 5 光カプラ 2 5 8 、第 1 光カプラ 2 1 4 、光遅延素子 2 1 6 、波長変換装置 2 1 8 、光分配装置 2 5 0 、光バッファメモリ 1 % から成る 周回路で繰り返し周回させられる光信号 1 を相互利得変調型波長変換装置 1 8 において出力用波長 1 に変換するための波長 1 の制御光 1 。を、制御光発生装置 1 2 1 6 から発生させる。この結果、光信号 1 3 1 4 、北分配装置 1 5 1 6 によって光アド処理回路 1 5 1 7 へ出力される。電子制御装置 1 2 1 4 は、そのような光信号記憶制御手段としても機能している。

上述のように、本実施例の光信号記憶装置 210 においては、光信号記憶制御手段として機能する電子制御装置 224 は、帰還用光ファイバ 256、第5 光カプラ 258、第1 光カプラ 214、光遅延素子 216、波長変換装置 218、光分配装置 250、光バッファメモリ 14 、から成る周回路で繰り返し周回させられる光信号 14 を相互利得変調型波長変換装置 14 を相互利用波長 14 に変換するための波長 14 の制御光 14 に変換するための波長 14 の制御光 14 にを制御光発生装置 14 をもいて出力用波長 14 に変から光信号 14 は、任意の時間だけ記憶されるとともに、外部から供給されるか或いは光信号 14 に含まれる記憶信号出力情報(読出 14 に含まれる記憶信号出力情報(読出 14 において光信号 14 が取り出される。

また、本実施例において、光信号記憶制御手段として機能する電子制御装置 2

10

15

20

25

24 は、相互利得変調型波長変換装置 218 へ入力される光信号 L_{Λ} の波長を記憶用波長 $\lambda_{\rm S}$ 乃至 $\lambda_{\rm N}$ のいずれかへ変換するための制御光 $L_{\rm C}$ を制御光発生装置 226 から発生させるので、入力された光信号 L_{Λ} はその記憶用波長 $\lambda_{\rm S}$ 乃至 $\lambda_{\rm N}$ のいずれかに変換されることにより、相互利得変調型の波長変換装置 218、光分配器 250、光バッファメモリ素子 $M_{\rm S}$ 乃至 $M_{\rm N}$ のいずれか、光帰還伝送路 256、第5光カプラ 258、第1光カプラ 214、および光遅延素子 216、を繰り返し経由する周回伝送路において周回させられることにより、その光信号 L_{Λ} の記憶が開始される。

また、本実施例では、(a) 光ファイバ212内を伝播する光信号L』を分岐さ せて電子制御装置224へ供給するための第1光カプラ(光分波器)214と、 (b) その第1光カプラ214により分岐された光信号を電気信号に変換して電子 制御装置224へ供給する光電信号変換器222と、(c) その光ファイバ212 においてその第1光カプラ214よりも下流側に設けられ、その第1光ファイバ 2 1 2 から相互利得変調型の波長変換装置 2 1 8 に入力させる光信号 L 🛦 を遅延 させる光遅延素子216とが設けられ、上記電子制御装置224は上記光信号L A に含まれる行先情報に対応する波長の制御光L c を制御光発生装置 2 2 6 から 発生させるものであるので、波長変換機能とスイッチング機能を有する相互利得 変調型波長変換装置218が行先情報に対応した波長の光信号を出力して光分配 装置250による分配を可能とするので、高速かつ小型のルーティング装置すな わち光信号転送装置或いは光信号中継装置が可能となる。また、光信号LΑの一 部が第1光カプラ214から分岐されて電子制御装置224へ供給される一方で 、その光信号LΑの他の一部が光遅延素子216により遅延させられて波長変換 装置218へ供給されるので、電子制御装置224における電子信号処理に用い られる遅れ時間にもかかわらず、制御光発生装置226から波長変換装置218 へ供給される制御光し。がその波長変換装置218における光信号し、と好適に 同期させられる。

また、本実施例では、相互利得変調型の波長変換装置 2 1 8 は、(a) 入力された光をクロスゲイン変調特性を利用して増幅および波長変換して出力するための

10

15

20

25

第1光増幅素子236および第2光増幅素子244と、(b) 光ファイバ212か ら入力された第 1 波長 λ 、の信号光L 、と、その信号光L 、とは異なる波長 λ 。 の連続光であるレーザ光 (第2入力光、バイアス光) L2とを合波して第1光増 幅素子236に入力させる第3光カプラ(第1光合波器)232と、(c) 第1光 増幅素子236からの光から第2波長入2の光を選択する第1波長選択素子23 8と、(d) その第1波長選択素子238により選択された第2波長22の光と第 3波長 λ。の制御光 L。とを合波して第2光増幅素子244へ入力させる第4光 カプラ (第2光合波器) 240とを、含み、第3波長ん。の出力光L。は、制御 光Lc と同じ波長の光であって、第1波長 l, の信号光L, および/または第3 波長 λ 。の制御光Lcの強度変化に応答して変調されるものであることから、信 号光L_A とレーザ光 (第2入力光) L₂ とが入力された第1光増幅素子236か らの光から選択された第2波長 A2の光と制御光Lcとが第2光増幅素子244 へ入力させられるとき、その第2光増幅素子244から出された光から選択され た第3波長 λ 。の変調光L。或いは出力光L、は、信号光L、および/または制 御光L。の強度変化に応答して変調された光であって、制御光L。に対する信号 増幅率が少なくとも2以上の大きさの増幅信号となるので、光信号L₁の増幅処 理を制御光Lcを用いて直接行うことができる。

次に、光信号記憶装置210の他の実施例を説明する。

前述の電子制御装置 224 は、相互利得変調型波長変換装置 218、光分配器 250、光バッファメモリ素子 M_8 乃至 M_N のいずれか、光帰還伝送路 256、第5光カプラ 258、第1光カプラ 214、および光遅延素子 216 を繰り返し経由する周回伝送路において周回させられることにより記憶される光信号 L_6 のゲインの増減を抑制するように、その周回させられる信号光 L_6 、あるいは相互利得変調型波長変換装置 218 に供給される制御光 L_6 を制御する光信号ゲイン制御手段を、さらに含むものであってもよい。すなわち、電子制御装置 224 は、あらかじめ記憶されたプログラムにしたがって第1光カプラ 214 および光電信号変換器 226 介して入力される周回させられる信号光 L_6 のゲインが一定となるように制御光 L_6 を制御する。たとえば信号光 L_6 のゲインが低下すると

10

15

20

25

、相互利得変調型波長変換装置 $2 \cdot 1 \cdot 8$ においてその信号光 L_{Λ} が増幅されるように制御光 L_{C} のゲインを大きくし、信号光 L_{Λ} のゲインが増加すると、相互利得変調型波長変換装置 $2 \cdot 1 \cdot 8$ においてその信号光 L_{Λ} が減少されるように制御光 L_{C} のゲインを小さくする。

図35は、さらに他の実施例の光信号記憶装置270を示している。本実施例 の光信号記憶装置270は、前述の実施例の光信号記憶装置210に対して、周 回させられる光信号し、の記憶時間(周回数)に伴う強度変動たとえば発振的な 増加あるいは減衰を抑制するための帰還光増幅装置272が帰還用光ファイバ2 56に介そうされた点、電子制御装置224は上記の機能のうち、周回させられ ることにより記憶される光信号Lcのゲインが一定となるように相互利得変調型 波長変換装置218に供給される制御光Lcを制御する光信号ゲイン制御機能が 設けられていない点が相違し、他は同様に構成されている。また、本実施例では 、第1ゲイン制御用光増幅素子276および第2ゲイン制御用光増幅素子280 の応答時間(応答特性)が第1光増幅素子236および第2光増幅素子244よ りも長く(遅く)設定されている。たとえば、第1ゲイン制御用光増幅素子27 6 および/または第2ゲイン制御用光増幅素子280は、たとえばエルビウム元 素などの希土類元素が光ファイバや光導波路内にドープされることにより、3準 位系または4準位系のエネルギ準位がその光透過媒体内に構成された光増幅素子 など、相互利得変調の応答時間が遅い光増幅素子から構成される。応答時間が遅 い光増幅素子から構成されることにより、周回させられる光信号Lkの信号成分 が平滑化されてその信号ゲインの変化が容易に検出される。

上記帰還光増幅装置 2 7 2 は、光信号ゲイン制御手段に対応するものであり、 波長変換装置 2 1 8 の第 2 光増幅素子 2 4 4 からの出力光に含まれるバイアス光 L_2 と同じ波長 λ 。の光のゲインの減少に基づいて帰還用光ファイバ 2 5 6 により帰還させられる光信号 L_A を増幅するものである。すなわち、帰還光増幅装置 2 7 2 は、波長 λ 。の一定のレーザ光を出力するレーザ光源 2 7 4 と、前記光分配装置 2 5 0 からファイバ 1 。を介して出力されるバイアス光 1 2 と同じ波長 1 。の光と上記波長 1 。のレーザ光とを受けてそのバイアス光 1 2 と同じ波長 1 。

10

15

20

25

図36は、上記光信号記憶装置270の作動を説明するタイムチャートである。光信号 L_{Λ} が記憶すべき信号である場合には、入力されたその光信号 L_{Λ} は、波長変換装置218において制御光 L_{Λ} に従って記憶用波長たとえば L_{Λ} に変換されるとともに光分配装置250によって光バッファメモリ L_{Λ} に変換されるとともに光分配装置250によって光バッファメモリ L_{Λ} に分配され、以後はその光バッファメモリ L_{Λ} 、帰還用光ファイバ256、帰還光増幅装置272、帰還用光ファイバ256、第5光カプラ258、波長変換装置218、光分配装置250からなる周回路に沿って光信号 L_{Λ} が周回させられる。このとき、帰還光増幅装置272によって周回させられる光信号 L_{Λ} のゲインの減衰が抑制されて一定に保持されるので、図36の最上段が入力された光信号 L_{Λ} であるとすると、周回させられる光信号 L_{Λ} はその下段に示す状態となる。このような周回によって記憶されている光信号 L_{Λ} が取り出される場合には、任意のタイミングで任意の区間だけ波長変換装置218において制御光 L_{Λ} に入 L_{Λ} に

10

15

20

25

従って出力用波長たとえば λ 」に変換されると、光分配装置 250 によって光アド処理回路 252 へ出力される。図 36 の下から 3 段目に示す波形はその光信号 L_{λ} の出力波形を示している。また、図 36 の下から 2 段目は上記の出力によって残された他の出力波形を示している。

ちなみに、図37は、上記帰還光増幅装置272が設けられず、周回させられる光信号LAのゲインの減衰が抑制されない場合の信号波形を示している。たとえば、上記光信号記憶装置270において帰還光増幅装置272が備えられない場合や電子制御装置224に光信号ゲイン制御手段が備えられない場合の図34の光信号記憶装置210の場合の信号波形である。この図37の上段および下段は、図36の最上段およびその下の段に対応している。

図38は、本発明の他の実施例の光信号記憶装置290を示している。本実施例の光信号記憶装置290は、前述の実施例の光信号記憶装置210に対して、光遅延素子216及び第1光カプラ214が省略された点、電子制御装置224に替えて全光学的演算制御装置292が設けられている点、帰還用光ファイバ256により帰還させられる光信号L』の一部を分岐して全光学的演算制御装置292に入力させるための第1光カプラ214と同様の光カプラ294が設けられている点、その全光学的演算制御装置292が周回させられる光信号L』の記憶時間(周回数)に伴う減衰に基づいてその減衰を抑制する光信号ゲイン制御手段として機能する点が相違し、他は同様に構成されている。

上記全光学的演算制御装置 292 は、たとえば、波長 λ 。の連続光を出力するレーザ光源と、その波長 λ 。のレーザ光と外部からの読出タイミング信号Rとを合波する光カプラと、その光カプラにより合波された光を受け入れて、読出タイミング信号Rの読み出し区間だけ波長 λ 。の制御光 L 。を出力させる前記相互利得変調型波長変換装置 18 と同様の波長変換装置とから成る 1 組の光制御回路をN組備えることにより、任意のタイミングで供給される読出タイミング信号Rに応答して、周回により記憶されている光信号 L 。が取り出されるようにする。また、上記全光学的演算制御装置 292 は、上記光カプラ 294 から供給される周回中の光信号 L 。を受けてそのゲインの減衰を示す包絡線を形成する低応答性の

10

15

光遅延素子を備え、その光遅延素子から出力される波長 λ 。の減衰曲線を示す光を制御光L。として前記相互利得変調型の波長変換装置 2 1 8 に供給するように構成される。これにより、相互利得変調型の波長変換装置 2 1 8 から出力される波長 λ 。の光信号 L_{λ} の周回による減衰が抑制される。本実施例によれば、前述の図 3 5 の実施例と同様の効果が得られる。

また、前述の光分配装置 250 は、干渉膜型光分配装置であってもよい。干渉膜に分類される多層フィルタは SiO_2 の薄膜と TiO_2 の薄膜とが交互に数十層積層されることにより特定の波長を反射させるように構成される。

また、前述の実施例の電子制御装置 2 2 4 に替えて、複数の光トライオードから成る演算装置およびレーザ光源などから構成される光演算制御装置が用いられてもよい。電子制御装置 2 2 4 に替わる全光学的装置が用いられることにより、光信号記憶装置 2 1 0 の全体が光学素子によって構成される。

また、前述の実施例の光信号記憶装置 2 1 0 において、光アド処理回路 2 5 2 、光ドロップ処理回路 2 5 4 、光バッファメモリM。乃至MN の数は種々変更され得るものであり、それらの一部が除去或いは追加されても差し支えない。

また、たとえば相互利得変調型波長変換装置 $2 \cdot 1 \cdot 8$ において、制御光 L_c の波長 λ_c は信号光 L_λ の波長 λ_l と同じとされてもよい。この場合には、相互利得変調型波長変換装置 $1 \cdot 8$ からの出力光 L_λ の波長 λ_l と同じとされる。

20 なお、上述したのはあくまでも本発明の一実施例であり、本発明はその主旨を 逸脱しない範囲において種々変更が加えられ得るものである。

15

20

請求の範囲

1. pn接合からなる活性層をそれぞれ備え、入力された光信号を増幅および波 長変換して出力するための第1半導体光増幅素子および第2半導体光増幅素子と

第1波長の第1入力光と第2波長の第2入力光とを前記第1半導体光増幅素子 に入力させる第1光入力手段と、

前記第1半導体増幅素子からの光から前記第2波長の光を選択する第1波長選択素子と、

10 該第1波長選択素子により選択された第2波長の光と第3波長の第3入力光と を前記第2半導体光増幅素子へ入力させる第2光入力手段と、

該第2半導体光増幅素子からの光から第3波長の出力光を選択する第2波長選択素子とを、含み、

前記第3波長の出力光は、前記第1波長の第1入力光および/または第3波長の第3入力光の強度変化に応答して変調され、且つ前記第3波長の第3入力光に対する信号増幅率が2以上であることを特徴とする光信号増幅3端子装置。

- 2. 前記第1波長の第1入力光は変調光であり、前記第2波長の第2入力光は連続光であり、前記第3波長の第3入力光は制御光であり、前記第3波長の出力光は、該制御光の入力区間において該第1入力光の変調信号が増幅された信号波形を備えたものである請求項1の光信号増幅3端子装置。
- 3. 前記第3波長は、前記第1波長と同じ波長である請求項1または2のいずれかの光信号増幅3端子装置。
- 4. 前記第3波長の出力光の前記第3波長の制御光に対する信号増幅率は、10 以上である請求項1乃至3のいずれかの光信号増幅3端子装置。
- 25 5. 前記半導体光増幅素子の活性層は、量子井戸、歪み超格子、または量子ドットから構成されたものである請求項1乃至4のいずれかの光信号増幅3端子装置
 - 6. 前記半導体光増幅素子の活性層を通過した光を該半導体光増幅素子または他

10

15

20

の半導体光増幅素子に向かって反射するための反射手段が、設けられたものである請求項1乃至5のいずれかの光信号増幅3端子装置。

- 7. 前記第1半導体光増幅素子および/または第2半導体光増幅素子は、選択的に光を反射するための反射手段をその一端面側に備え、該反射手段は、レンズを通して該第1半導体光増幅素子および/または第2半導体光増幅素子の端面と光学的に結合されたものである請求項1乃至6のいずれかの光信号増幅3端子装置
- 8. 前記反射手段は、前記第1半導体光増幅素子からの光のうちの前記第1波長の第1入力光は反射しないが前記第2波長の光は第2半導体光増幅素子へ向かって反射する第1の波長選択性ミラーと、該第2半導体光増幅素子からの光のうちの前記第1波長の第2入力光は反射しないが前記第3波長の光は反射する第2の波長選択性ミラーである請求項6または7の光信号増幅3端子装置。
- 9. 前記第1半導体光増幅素子の一端面と光を反射するための反射手段との間には、前記第1波長の光は透過させないが前記第2波長の光は透過させる波長選択性フィルタが設けられ、前記第2半導体光増幅素子の一端面と光を反射するための反射手段との間には、前記第2波長の光は透過させないが前記制御光の波長は透過させる波長選択性フィルタが設けられたものである請求項6または7のいずれかの光信号増幅3端子装置。
- 10. 前記反射手段は、前記第1波長選択素子および/または第2波長選択素子として機能し、該反射手段に対して入力光の入射角度および/または出力光の出射角度を変えることによって、所定の半導体光増幅素子からの出力光を他の半導体光増幅素子へ入力させるものである請求項6乃至9のいずれかの光信号増幅3端子装置。
- 11. 前記第1半導体光増幅素子および第2半導体光増幅素子は、半導体基板の 25 上に形成された光導波路においてそれぞれ複数組設けられ、それら複数組が1チップとして一体的に構成されたものである請求項1乃至6、8、9、10のいずれかの光信号増幅3端子装置。
 - 12. 前記半導体光増幅素子の一端面を通して前記半導体光増幅素子内に入力光

15

20

25

を入力させ、該一端面を通して該半導体光増幅素子内から出力される光を該入力 光とは異なる光路へ導く光サーキュレータまたは方向性結合素子が設けられたも のである請求項1万至9のいずれかの光信号増幅3端子装置。

- 13. 前記第1波長選択素子または第2波長選択素子として機能する波長選択性 ミラーまたは波長選択性フィルタは、光路内に設けられ、光伝播方向において屈 折率が周期的に変化させられたグレーティングフィルタ、屈折率が異なる多数組 の層が積層されて成る多層膜フィルタ、フォトニックバンドギャップを有するフォトニッククリスタルのいずれかから構成されたものである請求項1万至12の いずれかの光信号増幅3端子装置。
- 10 14. 前記光信号増幅3端子装置は、光NANDゲート、光NORゲート、光フリップフロップ回路、または光演算増幅器を構成するものである請求項1乃至13のいずれかの光信号増幅3端子装置。
 - 15. 前記第2波長選択素子は、前記第2半導体光増幅素子から出力される光の うちの前記制御光の波長に対応する第3波長の出力光を選択するとともに、該第 3波長の出力光の波長に応じて複数の光伝送路へ分配する光分配装置である請求 項1乃至14のいずれかの光信号増幅3端子装置。
 - 16. 所定の伝送路を介して伝送された一連の光信号を、複数の伝送路のうちの 該光信号に含まれる行先情報に対応する伝送路へ転送する光信号転送方法であっ て、

前記行先情報が施された一連の光信号を前記光信号増幅3端子装置本体へ入力 させる入力工程と、

前記行先情報を示す信号に対応する波長の制御光を前記光信号増幅3端子装置本体へ供給し、該光信号増幅3端子装置本体から該制御光の波長の光信号を出力させる波長変換工程と、

前記光信号増幅3端子装置本体から出力された光信号を光分配装置に入力させ、該光信号をその波長に応じて該光分配装置に接続された複数の光伝送路へ分配する光分配工程と

20

を、含むことを特徴とする光信号転送方法。

- 17. 前記波長変換工程は、前記光信号増幅3端子装置本体から出力される光信号に前記該制御光を用いて振幅変調を施すことにより、該光信号に新たな行先情報を再付与するものである請求項16の光信号転送方法。
- 5 18. 前記一連の光信号は、90%以下の変調度で振幅変調されたものである請求項16または17の光信号転送方法。
 - 19. 光信号伝送ネットワーク間において、行先情報として振幅変調が施された 一連の光信号を一方のネットワークから他方のネットワークの伝送路のうちの該 光信号に含まれる行先情報に対応する伝送路へ転送するための光信号中継装置で あって、

前記一連の光信号の振幅変調信号から、該振幅変調信号が示す行先に対応した波長の制御光を発生させる制御光発生装置と、

前記一連の光信号を前記制御光の波長の光信号に変換する光信号増幅3端子装置本体と、

15 該光信号増幅 3 端子装置本体から出力された光信号をその波長に応じて複数の 光伝送路へ分配する光分配装置と

を、含むことを特徴とする光信号中継装置。

- 20. 前記光信号に含まれる振幅変調信号に応じて、前記制御光発生装置から該振幅変調信号が示す行先情報に応じた波長の制御光を発生させる電子制御装置または全光学的制御装置を備えたものである請求項19の光信号中継装置。
- 21. 前記光信号の一部を分岐する光分波器と、

該光分波器により分岐された光信号を電気信号に変換して前記電子制御装置へ 供給する光電信号変換器と、

前記光分波器よりも下流側に設けられ、該光分波器を通過して光信号増幅 3 端 25 子装置本体に入力させる光信号を遅延させる光遅延素子とを備え、

前記電子制御装置は、前記光信号に含まれる振幅変調信号を抽出して、該振幅 変調信号が示す行先情報に対応する波長の制御光を前記制御光発生装置から発生 させるものである請求項20の光信号中継装置。

22. 前記光分配装置により分配された光信号を一時的に記憶するための光信号記憶素子と、該光信号記憶素子から出力された光信号を入力側へ帰還させるための光帰還伝送路とを備え、

前記電子制御装置は、前記光信号が一時記憶すべき光パケット信号である場合 には、該光パケット信号を予め設定した記憶用波長に変換させるための制御光信 号を出力させ、

前記光分配装置は、該記憶用波長に変換された後の光パケット信号を前記光信号記憶素子へ分配してそこで一時的に記憶させるものである請求項20または21の光信号中継装置。

10 23. 前記光信号記憶素子は、光分配装置により分配された光信号を受けるために光学的伝播長さが異なる複数本の光ファイバを並列に備えたものであり、

前記電子制御装置は、前記一時記憶すべき光パケット信号に必要とされる記憶時間に応じて、該光パケット信号を予め設定した記憶用波長に変換させるための 制御光信号を出力させ、

- 15 前記光分配装置は、該記憶用波長に変換された後の光パケット信号を前記光信号記憶素子の複数本の光ファイバのいずれかへ分配してそこで一時的に記憶させるものである請求項22の光信号中継装置。
- 2 4. 前記全光学的制御装置は、前記第1入力光の一部を分岐する光カプラと、前記制御光と同じ波長の連続光を発生する連続光源と、該連続光源からの連続光 と該光カプラからの前記第1入力光の一部とを合波する光カプラと、該光カプラからの光を受けて、該第1入力光に含まれる変調信号を有する制御光を出力する、前記半導体光増幅素子よりも応答速度が遅い半導体光増幅素子とを含むものである請求項20の光信号中継装置。
- 2 5. 前記光分配装置は、前記光信号増幅3端子装置本体から出力された出力光 が入力されると、該入力された出力光を前記複数の光伝送路のうち前記制御光の 波長に対応する光伝送路へ選択的に分配するものである請求項19乃至24のい ずれかの光信号中継装置。
 - 26. 前記光分配装置は、入力ポートに接続された第1スラブ導波路と、複数の

15

20

出力ポートに接続された第2スラブ導波路と、それら第1スラブ導波路および第2スラブ導波路の間に設けられた長さの異なる複数のアレー導波路とを備え、該入力ポートに入力された入力光をその波長毎に前記複数の出力ポートへ分配するアレー導波路格子型分波器である請求項19乃至25のいずれかの光信号中継装置。

27. 入力光伝送路から入力された光信号を記憶するとともに任意の時間に取り出すことが可能な光信号記憶装置であって、

前記入力光伝送路から入力された光信号を該入力信号に含まれる伝送先に対応 10 し且つ前記光信号と同じ又は異なる波長に変換するための制御光を発生する制御 光発生装置と、

前記入力された光信号と制御光とを受け、該入力された光信号を該制御光の波 長の光信号に変換して出力する光信号増幅3端子装置本体と、

該光信号増幅3端子装置本体から出力された光信号を該光信号の波長に応じて 分配する光分配器と、

該光分配器により分配された記憶用波長の光信号を一時的に記憶する光バッファメモリ素子と、

該光バッファメモリ素子から出力された光信号を光信号増幅3端子装置本体へ 再び入力させるために、該光信号を前記入力光伝送路へ帰還させる光帰還伝送路 と、

前記光信号増幅3端子装置本体、光分配器、光バッファメモリ素子、および該 光帰還伝送路を繰り返し周回させられる光信号を該光信号増幅3端子装置本体に おいて出力用波長に変換するための制御光を前記制御光発生装置から発生させる 光信号記憶制御手段と

25 を、含むことを特徴とする光信号記憶装置。

28. 前記周回させられる光信号のゲインの増減を抑制するように、前記光帰還 伝送路により帰還させられる光信号、または前記光信号増幅3端子装置本体に供給される制御光を制御する光信号ゲイン制御手段を、さらに含むものである請求

20

項27の光信号記憶装置。

29. 前記光信号増幅3端子装置本体は、前記光信号をバイアス光の波長に変換して反転させる第1半導体光増幅素子と、該第1半導体光増幅素子により反転させられた光信号を前記制御光の波長に変換して反転させる第2半導体光増幅素子とを備えたものであり、

前記光信号ゲイン制御手段は、前記第2半導体光増幅素子からの出力光に含まれるバイアス光のゲインの増減に基づいて光帰還伝送路により帰還させられる光信号を制御するものである請求項28の光信号記憶装置。

- 30. 前記光信号ゲイン制御手段は、前記バイアス光と該バイアス光とは異なる 波長の連続光であるゲイン制御光とを受けて該バイアス光のゲインの増加に伴ってゲインが減少するゲイン制御光を出力する第1ゲイン制御用光増幅素子と、該第1ゲイン制御用光増幅素子からの出力光と前記光帰還伝送路により帰還させられる光信号とを受けて該ゲイン制御光の減少に伴ってゲインが増加する光信号を出力する第2ゲイン制御用光増幅素子とを含むものである請求項28または29の光信号記憶装置。
 - 31. 前記第1ゲイン制御用光増幅素子および/または第2ゲイン制御用光増幅素子は、希土類元素が添加された光ファイバ増幅素子または光導波路増幅素子から構成されたものである請求項30の光信号記憶装置。
 - 32. 前記光信号ゲイン制御手段は、前記周回させられる光信号のゲインを一定に維持するように、前記光帰還伝送路により帰還させられる光信号のゲインの増減に基づいて、前記光信号増幅3端子装置本体に供給される制御光のゲインを制御する光学的演算制御装置を含むものである請求項28の光信号記憶装置。
 - 33. 前記制御光発生装置を制御するための電子制御装置と、

前記光分波器により分岐された光信号を電気信号に変換して前記電子制御装置 25 へ供給する光電信号変換器と、

該光分波器よりも下流側に設けられ、該光分波器を通過して前記光信号増幅3 端子装置本体に入力させる光信号を遅延させる光遅延素子とを備え、

前記電子制御装置は、外部から供給されるか或いは前記光信号に含まれる記憶

信号出力情報が示す出力時期に応答して、前記光信号を出力用波長に変換するための制御光を前記制御光発生装置から発生させるものである請求項27万至30のいずれかの光信号記憶装置。

34.外部から供給されるか或いは前記光信号に含まれる記憶信号出力情報が示す出力時期に応答して、前記光信号を出力用波長に変換するための制御光を前記制御光発生装置から発生させる全光学的演算制御装置を備えたものである請求項27乃至32のいずれかの光信号記憶装置。

10

5

15

20

1

义

16

19

図 20

26

义

24/29

义

26/29

义

A. CLASSIFICATION (Int.Cl ⁷ G02)	OF SUBJECT MATTER F1/01, G02F3/00, H01S5/5	50, но183/10, но183/00	
	Patent Classification (IPC) or to both nati	ional classification and IPC	
B. FIELDS SEARCHEI		1 32 3 - 11	
Minimum documentation Int.Cl ⁷ G02	searched (classification system followed b F1/01, G02F1/35-G02F3/00	y classification symbols) O, H01S3/00, H01S5/00,	н04В10/00
Jitsuyo Shina Kokai Jitsuyo	Shinan Koho 1971-2003	Toroku Jitsuyo Shinan Koho Jitsuyo Shinan Toroku Koho	5 1994–2003 5 1996–2003
Electronic data base const INSPEC, JICS	ulted during the international search (name ST, Esp@cenet, USPTO Web	of data base and, where practicable, sea o Patent Database	rch terms used)
	SIDERED TO BE RELEVANT		
Category* Citation	n of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
Y US 526 23 Nov	US 5264960 A (AT&T BELL LABORATORIES), 23 November, 1993 (23.11.93)		1-34
Modula and Ex	Celles, S. et al., Extinction Ratio of Cross-Gain Modulated Mutistage Wavelength Converters: Model and Experiments, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol.9, No.6, June 1997, pages 758 to 760		
P,Y Tandem Semico TECHNO	Maeda, Y. et al., All-Optical Based on a Tandem Wavelength Converter Using Reflective Semiconductor Optical Amplifiers, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol.15, No.2, February 2003, pages 257 to 259		
X Further documents	are listed in the continuation of Box C.	See patent family annex.	
* Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date "L" date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot a document of particular relevance; the claimed invention cannot are a document of particular relevance; the claimed invention cannot are a documen			the application but cited to derlying the invention claimed invention cannot be ered to involve an inventive see claimed invention cannot be pwhen the document is h documents, such in skilled in the art
16 January,	2004 (16.01.04) ss of the ISA/	03 February, 2004 Authorized officer	
Japanese Patent Office		Telephone No.	
Facsimile No.			

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A Y	Maeda, Y., All-Optical Triode Using Dual-Stage Wavelength Converter in Erbium-Doped Fiber Amlifiers, Jpn.J.Appl.Phys., Vol.41, Part 1, No.7B, July 2002, pages 4828 to 4830	1-15 16-34
Р, Ү	US 2002/0181831 A1 (ALL OPTICAL NETWORKS INC.), 05 December, 2002 (05.12.02), Fig. 15	1-34
P,Y	JP 2003-005240 A (Nippon Telegraph And Telephone Corp.), 08 January, 2003 (08.01.03), (Family: none)	16-34
Y	JP 2001-262319 A (Nippon Telegraph And Telephone Corp.), 26 September, 2001 (26.09.01), (Family: none)	16-34
Y	JP 2001-264825 A (Nippon Telegraph And Telephone Corp.), 26 September, 2001 (26.09.01), (Family: none)	27-34

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of ites sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: .
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: The technical feature common to claims 1-15 and claims 16-34 is "an optical signal amplifying three-terminal device which converts an input optical signal into an optical signal of the wavelength of a control light (third input light) and outputs the optical signal. However, the international search has revealed that this technical feature is not novel since it is disclosed in the document below. Consequently, the common feature is not a special technical feature within the meaning of PCT Rule 13.2, second sentence, since it makes no contribution over the prior art. Therefore, there is no feature common to all the claims. Consequently, it appears that the claims 1-34 do not satisfy the requirement of unity of invention. (Continued to extra sheet) 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. X As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest

Internal application No. PCT/JP03/11961

Continuation of Box No. II of continuation of first sheet(1) Document: Jpn.J.Appl.Phys., Vol.41, part 1, No.7B, July 2002, pages 4828 to 4830

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' G02F1/01, G02F3/00, H01S5/50, H01S3/10, H01S3/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁷ G02F1/01, G02F1/35-G02F3/00, H01S3/00, H01S5/00, H04B10/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2003年

日本国登録実用新案公報

1994-2003年

日本国実用新案登録公報

1996-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

INSPEC

JICST

Esp@cenet

USPTO Web Patent Database

C. 関連する	5と認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	US 5264960 A (AT&T BELL LABORATORIES) 1993. 11. 23	1-34
Y	Chelles, S. et al. Extinction Ratio of Cross-Gain Modulated Mutistage Wavelength Converters: Model and Experiments, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 9, No. 6, June 1997, p. 758-760	1-34
PX	Maeda, Y. et al. All-Optical Based on a Tandem Wavelength Converter Using Reflective Semiconductor Optical Amplifiers,	1–15
PY	IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 15, No. 2, February 2003, p. 257-259	16-34

x C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

16.01.04

国際調査報告の発送日

03. 2. 2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 佐藤 宙子

電話番号 03-3581-1101 内線 3293

	E STAND		
C(続き).	関連すると認められる文献		
引用文献の カテゴリー*		関連する 請求の範囲の番号	
A	Maeda, Y. All-Optical Triode Using Dual erter in Erbium-Doped Fiber Amlifiers,	1–15	
Y	41, Part 1, No. 7B, July 2002, p. 4828-4830	16-34	
PY	US 2002/0181831 A1(ALL OPȚICAL NETWORI Fig. 15	KS INC.)2002.12.05,	1-34
PY	JP 2003-005240 A(日本電信電話株式会社)なし)) 2003. 01. 08(ファミリー	16-34
Y	JP 2001-262319 A(日本電信電話株式会社)なし)) 2001. 09. 26(ファミリー	16-34
Y	JP 2001-264825 A(日本電信電話株式会社)なし)) 2001. 09. 26(ファミリー	27-34
·			

the state of the s	_			
国際調金		国際出願番号	r/JP03/119	961
第 I 欄 請求の範囲の一部の調査ができないときの意見 (第 1 ページの 2 の続き)				
法第8条第3項 (PCT17条(2)(a)) の規定によ成しなかった。			より請求の範囲の一部に	こついて作
1. □ 請求の範囲は、この つまり、	の国際調査機関が罰	蜀査をすることを要	「しない対象に係るもの	である。
2. 請求の範囲 は、有意ない国際出願の部分に係るものである。つ		することができる程	と度まで所定の要件を満	たしてい
3. □ 請求の範囲 は、従原 従って記載されていない。	属請求の範囲であ っ	ってPCT規則6.4	(a) の第 2 文及び第 3 文	の規定に
第Ⅱ欄 発明の単一性が欠如しているときの意見((第1ページの3の	続き)		
次に述べるようにこの国際出願に二以上の発明が	あるとこの国際調	査機関は認めた。		
請求の範囲1-15,及び請求の範囲 (第3入力光)の波長の光信号に変換 査の結果、下記文献に開示されている 結果として、該事項は先行技術の域を いて、この共通事項は特別な技術的特 よって、請求の範囲1-34は発明の	して出力する) から、新規でに 出ないから、] 徴ではなく、言	光信号増幅3端 まないことが明 PCT規則13 骨求の範囲全て	子装置」について(らかになった。 . 2の第2文の意! に共通の事項はな!	は、調 味にお ハ。
文献:Jpn. J. Appl. Phys., Vol. 41, Par	t 1, No. 7B, Jul	y 2002, p. 4828	-4830	
 1. 出願人が必要な追加調査手数料をすべて期 の範囲について作成した。	間内に納付したの	で、この国際調査	報告は、すべての調査	可能な請求
2. 図 追加調査手数料を要求するまでもなく、す 加調査手数料の納付を求めなかった。	べての調査可能な	c請求の範囲につい	て調査することができ	たので、追
3. □ 出願人が必要な追加調査手数料を一部のみ 付のあった次の請求の範囲のみについて作		けしなかったので、	この国際調査報告は、	手数料の納
			·	
4. 出願人が必要な追加調査手数料を期間内に されている発明に係る次の請求の範囲につ	こ納付しなかったの ついて作成した。	つで、この国際調査	報告は、請求の範囲の	最初に記載
				٠

□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。