Accelerated Proximal Algorithms

Karol Chojnacki

March 2025

Gradient Descent (GD)

Optimization Problem:

$$\min_{x} f(x)$$

Update Rule:

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

Convergence Rate: O(1/t)

Accelerated Gradient Descent (AGD)

Optimization Problem:

$$\min_{x} f(x)$$

Update Rule:

$$y_{t+1} = x_t - \eta \nabla f(x_t)$$
$$x_{t+1} = y_{t+1} + \frac{k-1}{k+2} (y_{t+1} - y_t)$$

Convergence Rate: $O(1/t^2)$

Definition Reminder

Proximal Operator: For a closed, proper, convex function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$, the (scaled) proximal operator is defined as:

$$\operatorname{prox}_{\lambda f}(v) = \arg\min_{x} \left(f(x) + \frac{1}{2\lambda} ||x - v||^2 \right),$$

where $\lambda > 0$ scales the problem.

Motivation.

When we linearize f(x) by $\langle x - x_k, \nabla f(x_k) \rangle$, prox iterating becomes GD.

$$x^* = \operatorname{argmin} f(x) \iff x^* = \operatorname{argmin} f(x) + \delta ||x - x^*||_2^2$$

$$x_{k+1} = \operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^N} \left(f(\mathbf{x}_k) + \langle \mathbf{x} - \mathbf{x}_k, \nabla f(\mathbf{x}_k) \rangle + \frac{1}{2\alpha_k} \|\mathbf{x} - \mathbf{x}_k\|_2^2 \right)$$

$$= \underset{\boldsymbol{x} \in \mathbb{R}^{N}}{\arg \min} \left(\frac{\alpha_{k}}{2} \left\| \nabla f\left(\boldsymbol{x}_{k}\right) \right\|_{2}^{2} + \left\langle \boldsymbol{x} - \boldsymbol{x}_{k}, \nabla f\left(\boldsymbol{x}_{k}\right) \right\rangle + \frac{1}{2\alpha_{k}} \left\| \boldsymbol{x} - \boldsymbol{x}_{k} \right\|_{2}^{2} \right)$$

$$= \underset{\boldsymbol{x} \in \mathbb{R}^{N}}{\arg \min} \left(\frac{1}{2\alpha_{k}} \left\| \boldsymbol{x} - \boldsymbol{x}_{k} + \alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right) \right\|_{2}^{2} \right)$$

$$= \mathbf{x}_k - \alpha_k \nabla f\left(\mathbf{x}_k\right)$$

ISTA (Iterative Shrinkage-Thresholding Algorithm)

Optimization Problem:

$$\min_{x} g(x) + h(x)$$

where
$$h(x)$$
 is a regularization term, e.g., $h(x) = \lambda \|x\|_1$.
$$\mathbf{x}_{k+1} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^N} \left(g\left(\mathbf{x}_k\right) + \langle \mathbf{x} - \mathbf{x}_k, \nabla g\left(\mathbf{x}_k\right) \rangle + h(\mathbf{x}) + \frac{1}{2\alpha_k} \left\|\mathbf{x} - \mathbf{x}_k\right\|_2^2 \right)$$

$$= \underset{\boldsymbol{x} \in \mathbb{R}^{N}}{\arg \min} \left(h(\boldsymbol{x}) + \frac{1}{2\alpha_{k}} \| \boldsymbol{x} - \boldsymbol{x}_{k} + \alpha_{k} \nabla g(\boldsymbol{x}_{k}) \|_{2}^{2} \right)$$
$$= \underset{\boldsymbol{x} \in \mathbb{R}^{N}}{\operatorname{prox}_{\alpha_{k}, h}} \left(\boldsymbol{x}_{k} - \alpha_{k} \nabla g(\boldsymbol{x}_{k}) \right).$$

Update Rule:

$$x_{t+1} = \operatorname{prox}_{\lambda \eta h}(x_t - \eta \nabla g(x_t)) = T(x_t - \eta \nabla g(x_t))$$

Convergence Rate: O(1/t)

Proximal Operator for L1 Regularization:

$$\operatorname{prox}_{\lambda||x||_1}(v) := T(v) = egin{cases} v - \lambda, & v > \lambda \ 0, & |v| \leq \lambda \ v + \lambda, & v < -\lambda \end{cases}$$

FISTA (Fast ISTA)

Optimization Problem:

$$\min_{x} f(x) + g(x)$$

where g(x) is a regularization term.

Update Rule:

$$y_{t+1} = \text{prox}_{\lambda \eta g}(x_t - \eta \nabla f(x_t))$$

 $x_{t+1} = y_{t+1} + \frac{t-1}{t+2}(y_{t+1} - y_t)$

Convergence Rate: $O(1/t^2)$

Adaptive μ FISTA

Modification: Adaptive step size $\eta \to \eta_k$:

$$\eta_k = \frac{1}{I} + k\mu$$

Expected Convergence: Empirically close to $\mathcal{O}(1/t^2)$

Modification: Step-size depends on support structure:

$$\eta_k = c \frac{\|s_k \nabla f(x_k)\|^2}{\|\Phi(s_k \nabla f(x_k))\|^2}$$

where:

- *c* is a scaling constant controlling the step size.
- s_k is a binary mask indicating which elements of x_k are nonzero (support of x_k).
- $\nabla f(x_k)$ is the gradient of the loss function with respect to the model parameters.
- $\Phi(\cdot)$ represents a transformation that captures structural information, such as a convolutional layer in a CNN.

Expected Convergence: Adaptive, may accelerate convergence in sparse problems to $\mathcal{O}(1/t^3)$, Gustavo Silva and Paul Rodriguez.

Experiment Methodology

Goal: Compare optimization methods on ML problems.

Tasks: MNIST classification with CNN.

Loss function: Cross-entropy + L1.

Metrics: Convergence speed, sparsity, test accuracy. **Implementation:** PyTorch, Google Colab (T4 GPU).

Sparsity

Algorithm	Final Sparsity (%)	Test Accuracy (%)
AGD	0.064	97.73
GD	0.075	98.25
adaptive_support_FISTA	50.968	63.10
adaptive_mu_FISTA	13.115	94.81
FISTA	39.842	98.31
ISTA	43.394	98.24

Sources

- Proximal Algorithms Stanford University, Neal Parikh
- https://sci-hub.se/https: //ieeexplore.ieee.org/document/8903154
- My code for experiment, if anybody wants hit me up

Thank you very much for listening!