1. Introduzione al Livello di Trasporto

Il **livello di trasporto** è il quarto livello del modello OSI e una parte essenziale della suite di protocolli TCP/IP. Fornisce servizi fondamentali per la comunicazione end-to-end tra processi su dispositivi remoti. La sua funzione principale è garantire che i dati siano trasferiti in modo affidabile, efficiente e strutturato tra applicazioni in esecuzione su dispositivi diversi.

2. Funzioni Principali del Livello di Trasporto

1. Comunicazione End-to-End:

- o Stabilisce una connessione logica tra processi applicativi su dispositivi remoti.
- Utilizza indirizzi IP (per identificare gli host) e numeri di porta (per identificare i processi).

2. Multiplexing e Demultiplexing:

- Multiplexing: Permette a più applicazioni di condividere la stessa connessione di rete, distinguendole tramite numeri di porta.
- Demultiplexing: Smista i dati ricevuti verso l'applicazione appropriata.

3. Incapsulamento e Decapsulamento:

- Incapsulamento: I dati ricevuti dal livello applicativo vengono trasformati in segmenti (TCP) o datagrammi (UDP).
- Decapsulamento: I segmenti o datagrammi vengono elaborati e consegnati al livello applicativo.

4. Controllo di Flusso:

- o Previene il sovraccarico del ricevitore regolando la velocità di trasmissione.
- o Utilizza tecniche come la Sliding Window.

5. Controllo degli Errori:

- o Identifica e corregge errori nei dati trasmessi.
- o Garantisce che i dati vengano ricevuti nell'ordine corretto e senza duplicati.

6. Controllo della Congestione:

 Regola la velocità di trasmissione per evitare il sovraccarico della rete, migliorando le prestazioni complessive.

3. Protocolli Principali del Livello di Trasporto

3.1 User Datagram Protocol (UDP)

• Caratteristiche:

- o Protocollo leggero, non orientato alla connessione.
- o Non garantisce affidabilità, ordine o correzione degli errori.
- o Adatto a applicazioni che richiedono velocità, come streaming, VoIP e DNS.

• Struttura del Datagramma UDP:

Campo	Lunghezza (bit)	Descrizione
Numero Porta Mittente	16	Identifica il processo mittente.
Numero Porta Destinatario	16	Identifica il processo destinatario.
Lunghezza	16	Dimensione totale del datagramma.
Checksum	16	Verifica l'integrità di dati e intestazione.

• Checksum UDP:

- Comprende:
 - Pseudo-header (indirizzi IP e protocollo).
 - Header UDP.
 - Dati del datagramma.
- o Un checksum non valido provoca lo scarto del datagramma.

3.2 Transmission Control Protocol (TCP)

• Caratteristiche:

- o Protocollo orientato alla connessione.
- o Garantisce affidabilità, ordine e assenza di duplicati.
- o Supporta la comunicazione full-duplex.

• Struttura del Segmento TCP:

Campo	Lunghezza (bit)	Descrizione
Numero Porta Sorgente	16	Identifica l'applicazione mittente.
Numero Porta Destinatario	16	Identifica l'applicazione destinataria.
Numero di Sequenza	32	Indica il numero del primo byte trasmesso.
Numero di Riscontro (ACK)	32	Indica il numero del prossimo byte atteso.
Lunghezza Intestazione	4	Dimensione dell'intestazione in multipli di 4 byte.
Flag di Controllo	6	Specifica lo stato della connessione (SYN, ACK).
Dimensione Finestra	16	Quantità di dati che il mittente può inviare.
Checksum	16	Verifica l'integrità del segmento.
Puntatore Urgente	16	Indica dati urgenti, se presenti.

• Funzionalità di TCP:

- o Numerazione dei byte per garantire l'ordine.
- o Ritrasmissione per pacchetti persi.
- o Timer per gestire ritardi e congestioni.

4. Meccanismi del Livello di Trasporto

4.1 Apertura e Chiusura della Connessione (TCP):

1. Apertura (Three-Way Handshake):

- o **SYN:** Il client invia un segmento con flag SYN.
- o **SYN-ACK:** Il server risponde con un segmento SYN-ACK.
- o **ACK:** Il client conferma con un segmento ACK.

2. Chiusura (Four-Way Handshake):

o **FIN:** Il mittente invia un segmento con flag FIN.

- o **ACK:** Il ricevitore risponde con un segmento ACK.
- o **FIN:** Il ricevitore invia un segmento FIN.
- o **ACK:** Il mittente risponde con un ACK finale.

4.2 Controllo di Flusso:

• Sliding Window:

- Determina quanti dati il mittente può inviare senza attendere un riscontro (ACK).
- Migliora l'efficienza adattando la finestra di trasmissione alle capacità del ricevitore.

4.3 Controllo della Congestione:

- Slow Start: Incrementa esponenzialmente la finestra di congestione iniziale.
- Congestion Avoidance: Incrementa linearmente la finestra per evitare congestione.
- Fast Retransmit: Ritrasmette segmenti persi dopo tre ACK duplicati.
- Fast Recovery: Evita di ripartire da zero dopo una congestione moderata.

4.4 Timer in TCP:

- 1. Timer di Ritrasmissione (RTO): Calcolato in base all'RTT.
- 2. **Timer di Persistenza:** Mantiene attiva la connessione in caso di finestra di ricezione nulla.
- 3. **Timer Keepalive:** Previene la chiusura inattesa della connessione.
- 4. **Timer 2MSL:** Assicura che tutti i segmenti siano ricevuti prima della chiusura definitiva.

5. Confronto tra TCP e UDP

Caratteristica	TCP	UDP
Affidabilità	Sì (ritrasmissioni, ACK)	No
Ordinamento	Sì	No
Connessione	Orientato alla connessione	e Non orientato alla connessione
Overhead	Alto	Basso
Applicazioni Tipiche	e File transfer, email	Streaming, VoIP, DNS

6. TCP Tahoe e TCP Reno

• TCP Tahoe:

- Riparte da Slow Start dopo 3 ACK duplicati.
- o Riduzione drastica della finestra di congestione.

• TCP Reno:

- o Introduce **Fast Recovery**, evitando Slow Start completa.
- o Più efficiente durante congestioni moderate.

7. Considerazioni Finali

Il livello di trasporto è fondamentale per garantire comunicazioni affidabili e ottimizzate nelle reti moderne. TCP offre un controllo rigoroso su flusso, errori e congestione, rendendolo ideale per applicazioni critiche, mentre UDP privilegia velocità e semplicità, adattandosi a esigenze come streaming e VoIP. La comprensione di questo livello è cruciale per progettare sistemi di comunicazione robusti ed efficienti.