

Introduction to High Performance Computing

Computer Architectures

Classification

Flynn (1966)

- Single Instruction / Single Data (SISD)
- Single Instruction / Multiple Data (SIMD)
- Multiple Instruction / Single Data (MISD)
- Multiple Instruction / Multiple Data (MIMD)

MIMD

Execution units are independent of each other and work asynchronously. Processors handle multiple instruction on multiple (different) data.

memory control

Distributed memory

Each processor owns it's own memory.

memory control

Shared memory

Processor share a common memory.

shared memory

multicore processors: Traditional CPUs with several cores.

manycore processors: CPUs with many cores running in SIMD mode, accelerators.

symmetric design: Uniform memory access time for all cores

assymmetric

assymmetric

Indexes: physical Date: Tue 19 Apr 2016 01:55:09 PM CEST

Haswell architecture with 8 cores per CPU

Source: pics.computerbase.de

AMD Magny Cours

Close look on cluster network

function	demands
computer control (power on/off, sensor data)	cheap, simple network (100 Mb)
computer administration (resource management, boot images)	cheap, medium quality (1GE)
File operations (IO)	high bandwidth
interprocess communication	low latency

Networks for I/O and communication are sometimes

- combined to a single network
 - Quality of service
- used as failover/double bandwidth (dual rail)

simplest strategy: daisy chain

36 Port Ethernet Switch:

IN: 34 computers

IN/OUT: 2 ports to connect 2 neighboring switches.

What characterizes a high performance network?

- •Which bandwidth is available for a point-to-point connection in a daisy chain?
- •Which bandwidth is available for all pairwise p2p connections?
- •Which latency is observed in a daisy chain (each network component adds a bit)?
- •Which differencies in the latencies occur?

Bisectional bandwidth of a network:

The network is segmented in 2 parts – which aggregate bandwidth is possible between these parts?

A daisy chain's bisectional bandwidth is only twice as large as the bandwidth of each connection.

Fully non blocking network:

The bisectional bandwidth is the bandwidth of each connection multiplied with the number of connections.

All pairwise disjunct connections may at any time receive the full bandwidth of a single connection.

Given Switches with 36 Ports – How to set up a nonblocking network for 72 compute nodes?

Known as **fat tree topology**

nonblocking:

- 18 Ports to nodes,
- 18 ports to switch in next layer preserving full bandwidth for all pairs

CLOS2 network full fat tree

- Number of hops 3.
- Maximum of 2 hops difference in pairwise connections.

more information: Clos network

Filesystem requests

- Network boot or local boot (local disk on each node)
- small HOME available on all nodes (backed up)
 - read/write mainly from login nodes
 - read mainly from computing nodes
 - important task: compilation (many small files)
- large SCRATCH available on all nodes (short lifetime files)
 - read/write from computing nodes
 - important task: store large temporary files
 - write a file in parallel from several nodes

Filesystems in Kaiserslautern:

 NFS for HOME, realized with two fileservers (fault tolerant, active/passive coupling)

Scalable File System

normal view

a file is stored and linked to in folder structure Link and file build a unity

Folder

File

object based storage

file is divided into objects objects may be handled independently information on objects is linked in folder structure (**meta data**)

Folder

Information about Objects

Object

Object

Object

File

Filesystems in Kaiserslautern: parallel FS (FhGFS) for SCRATCH, realized with 10 fileservers in 5 pairs.

- Objects are independent
 - scalable with number of fileservers (offers 10-times the bandwidth for the cluster than 1 fileserver)
 - No synchronization among clients when accessing objects
- decoupling of data and directory structure
 - extra servers for meta data
 - scalable with number of meta data servers

Resource management

- all users log in on login nodes (4)
- interactive nodes with high performing graphics cards (10)
- calculations on compute node
- How do we alloc requested compute resources fairly?
 - 2 nodes with 4 proc. each for user A
 - 1 node with 21 proc. for user B
 - 16 nodes with 8 proc. each for user C
- no knowledge on which of the nodes a job will start

Solution: batch scheduling software (load sharing facility (LSF) from IBM (previous Platform Computing).

Einführung in das Hochleistungsrechnen Introduction to High Performance Computing

VIELEN DANK THANK YOU