

MQTT Version 3.1.1

OASIS 标准

OASIS 结构化信息标准促进组织(Organization for the Advancement of Structured Information Standards)

2014年10月29日

Specification URIs

This version:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.doc (Authoritative) http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

Previous version:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cos01/mqtt-v3.1.1-cos01.doc (Authoritative) http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cos01/mqtt-v3.1.1-cos01.html http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cos01/mqtt-v3.1.1-cos01.pdf

Latest version:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.doc (Authoritative) http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf

Technical Committee:

OASIS Message Queuing Telemetry Transport (MQTT) TC

Chairs:

Raphael J Cohn (raphael.cohn@stormmq.com), Individual Richard J Coppen (coppen@uk.ibm.com), IBM

Editors:

Andrew Banks (Andrew_Banks@uk.ibm.com), IBM Rahul Gupta (rahul.gupta@us.ibm.com), IBM

Related work:

This specification is related to:

 MQTT and the NIST Cybersecurity Framework Version 1.0. Edited by Geoff Brown and Louis-Philippe Lamoureux. Latest version: http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html.

Abstract:

MQTT 是一个终端和服务器之间发布/订阅消息的传输协议。它是重量轻,开放,简单,设计,以便易于实现。这些特点使它非常适合使用在许多情况下,包括受限的环境中,如通信在机器对机器(M2M)和物联网(IoT)的背景下,需要代码占用空间非常小并且带宽需要额外费用,带宽的使用量又非常大的场景。

MQTT is a Client Server publish/subscribe messaging transport protocol. It is light weight, open, simple, and designed so as to be easy to implement. These characteristics make it ideal for use in many situations, including constrained environments such as for communication in Machine to Machine (M2M) and Internet of Things (IoT) contexts where a small code footprint is required and/or network bandwidth is at a premium.

硬件

MQTT 规范 3.1.1 中文翻译

该协议运行在 TCP / IP, 或在其他的网络协议,提供有序,无损,双向连接。其特点包括:

- 1、使用发布/订阅消息模式,该模式提供一对多消息分发,并且与应用解耦。
- 2、消息的传输,与消息体里面包含的内容无关.
- 3、对于消息传输有三种 QoS:

"At most once"(最多一次),按照工作环境的最好效果,进行消息传输。例如环境传感器数据,不需要关心一个单次的阅读是否丢失,因为下一次发布很快就会到来。

"At least once"(至少一次),消息确保到达,但是重发会产生。

"Exactly once"(完全正确一次),消息确保正确到达一次。例如计费系统。

- 4、传输开销小,交换协议最小化,降低网络占用。
- 5、 当一个异常发生时,会有机制通知利害关系方。

Status:

This document was last revised or approved by the membership of OASIS on the above date. The level of approval is also listed above. Check the "Latest version" location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt#technical.

TC members should send comments on this specification to the TC's email list. Others should send comments to the TC's public comment list, after subscribing to it by following the instructions at the "Send A Comment" button on the TC's web page at https://www.oasis-open.org/committees/mqtt/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (https://www.oasis-open.org/committees/mqtt/ipr.php).

Citation format:

When referencing this specification the following citation format should be used:

[mqtt-v3.1.1]

MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29 October 2014. OASIS Standard. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Latest version: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

Notices

Copyright © OASIS Open 2014. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.

Table of Contents

1	Introduction	9
	1.1 Organization of MQTT	9
	1.2 Terminology	错误!未定义书签。
	1.3 Normative references	12
	1.4 Non normative references	12
	1.5 Data representations	14
	1.5.1 Bits	15
	1.5.2 Integer data values	15
	1.5.3 UTF-8 encoded strings	15
	1.6 Editing conventions	17
2	MQTT Control Packet format	18
	2.1 Structure of an MQTT Control Packet	18
	2.2 Fixed header	18
	2.2.1 MQTT Control Packet type	
	2.2.2 Flags	19
	2.2.3 Remaining Length	
	2.3 Variable header	22
	2.3.1 Packet Identifier	
	2.4 Payload	23
3	MQTT Control Packets	25
	3.1 CONNECT – Client requests a connection to a Server	
	3.1.1 Fixed header	
	3.1.2 Variable header	
	3.1.3 Payload	
	3.1.4 Response	
	3.2 CONNACK – Acknowledge connection request	
	3.2.1 Fixed header	
	3.2.2 Variable header	
	3.2.3 Payload	
	3.3 PUBLISH – Publish message	
	3.3.1 Fixed header	
	3.3.2 Variable header	
	3.3.3 Payload	
	3.3.4 Response	
	3.3.5 Actions	
	3.4 PUBACK – Publish acknowledgement	
	3.4.1 Fixed header	
	3.4.2 Variable header	
	3.4.3 Payload	
	3.4.4 Actions	
	3.5 PUBREC – Publish received (QoS 2 publish received, part 1)	
	3.5.1 Fixed header	46

3.5.2 Variable header	46
3.5.3 Payload	47
3.5.4 Actions	47
3.6 PUBREL – Publish release (QoS 2 publish received, part 2)	47
3.6.1 Fixed header	47
3.6.2 Variable header	47
3.6.3 Payload	48
3.6.4 Actions	48
3.7 PUBCOMP - Publish complete (QoS 2 publish received, part 3)	48
3.7.1 Fixed header	48
3.7.2 Variable header	48
3.7.3 Payload	49
3.7.4 Actions	49
3.8 SUBSCRIBE - Subscribe to topics	49
3.8.1 Fixed header	49
3.8.2 Variable header	49
3.8.3 Payload	50
3.8.4 Response	51
3.9 SUBACK – Subscribe acknowledgement	52
3.9.1 Fixed header	52
3.9.2 Variable header	53
3.9.3 Payload	53
3.10 UNSUBSCRIBE – Unsubscribe from topics	54
3.10.1 Fixed header	54
3.10.2 Variable header	54
3.10.3 Payload	54
3.10.4 Response	55
3.11 UNSUBACK – Unsubscribe acknowledgement	
3.11.1 Fixed header	56
3.11.2 Variable header	56
3.11.3 Payload	56
3.12 PINGREQ – PING request	57
3.12.1 Fixed header	57
3.12.2 Variable header	57
3.12.3 Payload	57
3.12.4 Response	57
3.13 PINGRESP – PING response	57
3.13.1 Fixed header	58
3.13.2 Variable header	58
3.13.3 Payload	58
3.14 DISCONNECT – Disconnect notification	58
3.14.1 Fixed header	
3.14.2 Variable header	58
3.14.3 Payload	58
3.14.4 Response	59

4	Operatio	nal behavior	60
	4.1 Storing	state	60
	4.1.1 No	n normative example	61
	4.3 Quality	of Service levels and protocol flows	62
5	4.3.1 Qo	S 0: At most once delivery	62
	4.3.2 Qo	S 1: At least once delivery	63
	4.3.3 Qo	S 2: Exactly once delivery	64
	4.4 Messag	e delivery retry	66
	4.5 Messag	e receipt	67
	4.6 Messag	e ordering	67
	4.7 Topic N	ames and Topic Filters	68
	4.7.2 Top	pics beginning with \$	70
	4.7.3 Top	pic semantic and usage	71
	4.8 Handlin	g errors	72
5	Security.		74
	5.1 Introduc	ction	74
		•	
	_		
	5.4 Implem	entation notes	75
	5.4.1 Au	thentication of Clients by the Server	76
	5.4.2 Au	thorization of Clients by the Server	76
	5.4.3 Au	thentication of the Server by the Client	76
	5.4.5 Pri	vacy of Application Messages and Control Packets	77
	5.4.6 No	n-repudiation of message transmission	78
		•	
		•	
	5.4.11 Se	ecurity profiles	80
6	_	·	
7	Conform	ance	83
		_	
ΑĮ	ppendix A.	Acknowledgements (non normative)	错误!未定义书签。
Αį	ppendix B.	Mandatory normative statements (non normative)	错误!未定义书签。
Αį			错误!未定义书签。

Table of Figures and Tables

Figure 1.1 Structure of UTF-8 encoded strings	15
Figure 1.2 UTF-8 encoded string non normative example	14
Figure 2.1 – Structure of an MQTT Control Packet	18
Figure 2.2 - Fixed header format	18
Table 2.1 - Control packet types	18
Table 2.2 - Flag Bits	20
Table 2.4 Size of Remaining Length field	21
Figure 2.3 - Packet Identifier bytes	22
Table 2.5 - Control Packets that contain a Packet Identifier	22
Table 2.6 - Control Packets that contain a Payload	23
Figure 3.1 – CONNECT Packet fixed header	25
Figure 3.2 - Protocol Name bytes	25
Figure 3.3 - Protocol Level byte	26
Figure 3.4 - Connect Flag bits	26
Figure 3.5 Keep Alive bytes	31
Figure 3.6 - Variable header non normative example	32
Figure 3.7 - Password bytes	34
Figure 3.8 – CONNACK Packet fixed header	35
Figure 3.9 – CONNACK Packet variable header	36
Table 3.1 – Connect Return code values	37
Figure 3.10 – PUBLISH Packet fixed header	37
Table 3.2 - QoS definitions	38
Table 3.3 - Publish Packet non normative example	44
Figure 3.11 - Publish Packet variable header non normative example	44
Table 3.4 - Expected Publish Packet response	45
Figure 3.12 - PUBACK Packet fixed header	45
Figure 3.13 – PUBACK Packet variable header	46
Figure 3.14 – PUBREC Packet fixed header	46
Figure 3.15 – PUBREC Packet variable header	47
Figure 3.16 – PUBREL Packet fixed header	47
Figure 3.17 – PUBREL Packet variable header	
Figure 3.18 – PUBCOMP Packet fixed header	48
Figure 3.19 – PUBCOMP Packet variable header	48
Figure 3.20 – SUBSCRIBE Packet fixed header	49
Figure 3.21 - Variable header with a Packet Identifier of 10, Non normative example	50
Figure 3.22 – SUBSCRIBE Packet payload format	50
Table 3.5 - Payload non normative example	50
Figure 3.23 - Payload byte format non normative example	51
Figure 3.24 – SUBACK Packet fixed header	52
Figure 3.25 – SUBACK Packet variable header	53
Figure 3.26 – SUBACK Packet payload format	53
Table 3.6 - Payload non normative example	53
Figure 3.27 - Payload byte format non normative example	54
Figure 3.28 – UNSUBSCRIBE Packet Fixed header	54
Figure 3.29 – UNSUBSCRIBE Packet variable header	52
Table3.7 - Payload non normative example	55

Figure 3.30 - Payload byte format non normative example	55
Figure 3.31 – UNSUBACK Packet fixed header	
Figure 3.32 – UNSUBACK Packet variable header	56
Figure 3.33 – PINGREQ Packet fixed header	57
Figure 3.34 – PINGRESP Packet fixed header	58
Figure 3.35 – DISCONNECT Packet fixed header	58
Figure 4.1 – QoS 0 protocol flow diagram, non normative example	62
Figure 4.2 – QoS 1 protocol flow diagram, non normative example	64
Figure 4.3 – QoS 2 protocol flow diagram, non normative example	65
Figure 6.1 - IANA WebSocket Identifier	82

1 Introduction

2 1.1 Organization of MQTT

- 3 This specification is split into seven chapters:
- Chapter 1 Introduction
- Chapter 2 MQTT Control Packet format
- Chapter 3 MQTT Control Packets
- Chapter 4 Operational behavior
- Chapter 5 Security
- Chapter 6 Using WebSocket as a network transport
- Chapter 7 Conformance Targets

11 1.2 术语

- 12 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
- 13 NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as
- 14 described in IETF RFC 2119 [RFC2119].
- 15 1. MUST (必须:规范的绝对要求。) This word, or the terms "REQUIRED" or "SHALL", mean that the
- definition is an absolute requirement of the specification.
- 17 2. MUST NOT (不得:绝对禁止的规范。) This phrase, or the phrase "SHALL NOT", mean that the
- definition is an absolute prohibition of the specification.
- 19 3. SHOULD (应该:推荐) This word, or the adjective "RECOMMENDED", mean that there
- 20 may exist valid reasons in particular circumstances to ignore a
- 21 particular item, but the full implications must be understood and
- 22 carefully weighed before choosing a different course.
- 23 4. SHOULD NOT (不应该:不推荐) This phrase, or the phrase "NOT RECOMMENDED" mean that
- there may exist valid reasons in particular circumstances when the
- 25 particular behavior is acceptable or even useful, but the full
- 26 implications should be understood and the case carefully weighed
- 27 before implementing any behavior described with this label.

- 28 Network Connection: (网络连接)
- 29 A construct provided by the underlying transport protocol that is being used by MQTT.
- 30 由 MQTT 提供构建由底层的传输协议。

应用层
表示层
会话层
传输层
网络层
数据链路层
物理层

31

TCP/IP	OSI		
	应用层		
应用层	表示层		
	会话层		
主机到主机层(TCP)(又称传输层)	传输层		
网络层(IP)(又称互联层)	网络层		
	数据链路层		
网络接口层(又称链路层)	物理层		

32

- It connects the Client to the Server. (连接终端到服务器)
- It provides the means to send an ordered, lossless, stream of bytes in both directions. (它提供了
 在两个方向上发送一个有序的、无损的、流的字节的方法)
- 36 应用消息: (Application Message)
- 37 通过 MQTT 协议传输的数据用于应用。当应用消息通过 MQTT 传输,消息都会有 QoS 和 Topic Name
- 38 (抬头?)
- 39 终端(Client):
- 40 一个程序或者器件使用 MQTT 的。终端时钟会建立网络链接到服务器。
- 41 他可以
- 42 1、发布其他终端需要的应用消息
- 43 2、订阅需要的应用消息。
- 44 3、通过退订,来去除应用消息的请求
- 45 4、从服务器断开

- 46 Server (服务器):
- 47 一个程序或者器件作为一个中介,在两个终端之间,一个发布应用消息,一个订阅应用消息。
- 48 1、接受一个来自终端的网络连接
- 49 2、接受一个终端发布的应用消息。
- 50 3、处理终端订阅和退订的请求。
- 51 4、转发应用消息到终端订阅。
- 52 订阅 (Subscription:)
- 53 订阅包含一个主题筛选器和一个最大 QoS。一个订阅与一个会话关联。一个会话可以包含一个订阅甚至更
- 54 多。每个订阅在一个会话内,有一个不同的主题筛选器。

55

- 56 主题名称(Topic Name):
- 57 这个应用消息附带的标签,对应的是服务器能够识别的订阅。服务器发送一个应用消息的拷贝到每个终端
- 58 去匹配订阅。
- 59 主题过滤(Topic Filter)
- 60 一个订阅中包含的一个表达式,指示一个或者多个主题的关心内容。一个主题过滤器可以包含通配符。
- 61 通配符是一种特殊语句,主要有星号(*)和问号(?),用来模糊搜索文件。当查找文件夹时,可以使
- 62 用它来代替一个或多个真正字符; 当不知道真正字符或者懒得输入完整名字时, 常常使用通配符代替
- 63 一个或多个真正的字符。 实际上用"*Not?paOd"可以对应 Notpad\MyNotpad【*可以代表任何文
- 64 字】;Notpad\Notepad【?仅代表单个字】;Notepad\Notepod【ao 代表 a 与 o 里二选一】, 其余以此
- 65 类推。
- 66 通配符是竞价排名广告的一项高级功能,当我们在广告创意中使用了这项功能之后,使用不同搜
- 67 索字词的用户将看到不同的广告创意(虽然我们只制作了一个广告)。这将大大提高我们广告的相关性
- 68 和实用性,从而提高广告的点击率,同时也大大提高了我们的工作效率。

- 70 会话(Session):
- 71 一个终端和服务器之间的状态交互。一些会话与网络链接时间同长,其他一些可以跨越多个服务器和终端
- 72 之间的链接。
- 73 MQTT 控制包(MQTT Control Packet):

74 一个发送在网络链接的信息包。MQTT 规范定义了十四种不同种类的控制包。用于传递应用消息。

75

76 1.3 Normative references (引用规范)

- 77 [RFC2119]
- 78 Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March
- 79 1997.
- 80 http://www.ietf.org/rfc/rfc2119.txt

81

- 82 [RFC3629]
- 83 Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003
- 84 http://www.ietf.org/rfc/rfc3629.txt

85

- 86 [RFC5246]
- 87 Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, August
- 88 2008
- 89 http://www.ietf.org/rfc/rfc5246.txt

90

- 91 **[RFC6455]**
- 92 Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC 6455, December 2011.
- 93 http://www.ietf.org/rfc/rfc6455.txt

94

- 95 [Unicode]
- 96 The Unicode Consortium. The Unicode Standard.
- 97 http://www.unicode.org/versions/latest/

98 1.4 Non normative references (非规范引用)

- 99 [RFC793]
- 100 Postel, J. Transmission Control Protocol. STD 7, IETF RFC 793, September 1981.
- 101 http://www.ietf.org/rfc/rfc793.txt

102

- 103 **[AES]**
- 104 Advanced Encryption Standard (AES) (FIPS PUB 197).
- 105 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

106

- 107 **[DES]**
- 108 Data Encryption Standard (DES).
- 109 http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

硬件

MQTT 规范 3.1.1 中文翻译

111	[FIPS1402]
112	Security Requirements for Cryptographic Modules (FIPS PUB 140-2)
113 114	http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
115	[IEEE 802.1AR]
116 117 118	IEEE Standard for Local and metropolitan area networks - Secure Device Identity http://standards.ieee.org/findstds/standard/802.1AR-2009.html
119	[ISO29192]
120 121 122 123	ISO/IEC 29192-1:2012 Information technology Security techniques Lightweight cryptography Part 1 General http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56425
124	[MQTT NIST]
125 126 127 128	MQTT supplemental publication, MQTT and the NIST Framework for Improving Critical Infrastructure Cybersecurity http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html
129	[MQTTV31]
130	MQTT V3.1 Protocol Specification.
131	http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
132	
133	[NISTCSF]
134 135 136	Improving Critical Infrastructure Cybersecurity Executive Order 13636 http://www.nist.gov/itl/upload/preliminary-cybersecurity-framework.pdf
137	[NIST7628]
138 139	NISTIR 7628 Guidelines for Smart Grid Cyber Security http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf
140	
141	[NSAB]
142 143	NSA Suite B Cryptography http://www.nsa.gov/ia/programs/suiteb_cryptography/
144	
145	[PCIDSS]
146 147	PCI-DSS Payment Card Industry Data Security Standard https://www.pcisecuritystandards.org/security_standards/
148	
149	[RFC1928]
150 151	Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and L. Jones, "SOCKS Protocol Version 5", RFC 1928, March 1996.

190	1.5 Data representations(数据表达)
188 189	U.SEU Safe Harbor http://export.gov/safeharbor/eu/eg_main_018365.asp
187	[USEUSAFEHARB]
186	
184 185	Sarbanes-Oxley Act of 2002. http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm
183	[SARBANES]
179 180 181 182	Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams, "X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP", RFC 6960, June 2013. http://www.ietf.org/rfc/rfc6960.txt
178	[RFC6960]
177	
176	http://www.ietf.org/rfc/rfc6749.txt
175	Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, October 2012.
174	[RFC6749]
172 173	http://www.ietf.org/rfc/rfc6066.txt
171	2011.
170	Eastlake 3rd, D., "Transport Layer Security (TLS) Extensions: Extension Definitions", RFC 6066, January
168 169	[RFC6066]
167	http://www.ietf.org/rfc/z280.txt
165 166	Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008.
164	[RFC5280]
163	
162	http://www.ietf.org/rfc/rfc5077.txt
160 161	Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig, "Transport Layer Security (TLS) Session Resumption without Server-Side State", RFC 5077, January 2008.
159	[RFC5077]
158	Titp://www.tota.org/Tio/Tio-ToTT.txt
156 157	2006. http://www.ietf.org/rfc/rfc4511.txt
155	Sermersheim, J., Ed., "Lightweight Directory Access Protocol (LDAP): The Protocol", RFC 4511, June
154	[RFC4511]
152 153	http://www.ietf.org/rfc/rfc1928.txt
450	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

mqtt-v3.1.1-os

192 **1.5.1 Bits**(字节)

193 字节在一个"字"中标识为"bit7"~"bit0"。Bit7 是字节中的最高位, Bit0 是字节中的最低位。

194 1.5.2 Integer data values(整型数据值)

- 195 整数型数值,16bit 大端排序: 高阶字节先于低阶字节。这个意味着,一个 16bit 的字,在网络中呈现为:
- 196 "MSB", 跟随一个 "LSB"。

197 1.5.3 UTF-8 encoded strings(UTF-8 解码字节)

198 控制包中的分组文本,被描述为"UTF-8字节"。UTF-8是一个高效编解码,是基于优化 ASCII 码特性,支199 持文本为基础的通信。

200 201

每一个字符串,都有两个子节点长度的空间作为前缀,描述 UTF-8 编码字符串自身的字节个数,通过下图 Figure 1.1 UTF-8 编码字节结构描述。因此,传输字符串的大小有限制。传输的字符串大小不能超过 65535 bytes。

203

202

204205

206

207

208

Each of these strings is prefixed with a two byte length field that gives the number of bytes in a UTF-8 encoded string itself, as illustrated in Figure 1.1 Structure of UTF-8 encoded strings below. Consequently there is a limit on the size of a string that can be passed in one of these UTF-8 encoded string components; you cannot use a string that would encode to more than 65535 bytes.

209 除非另有说明,否则所有 UTF-8 编码的字符串可以在范围 0 到 65535 字节的任何长度。

210 Figure 1.1 Structure of UTF-8 encoded strings

Bit	7	6	5	4	3	2	1	0
byte 1		String length MSB						
byte 2		String length LSB UTF-8 Encoded Character Data, if length > 0.						
byte 3								

- 211 UTF-8 编码字符串中的字符数据,必须是良好的 UTF-8 定义的统一编码规范。
- 212 特别是这个数据不包括 U + D800 和 U+ DFFF 间编码点的编码。如果一个服务器和终端接收到一个控制包
- 213 的内容是一个错误格式的 UTF-8, 必须关闭网络链接。
- 214 一个 UTF-8 编码字符串不可以包含一个空字符 U+000 的字符。如果接收到了一个这样的控制包,则必须关
- 215 闭网络链接。

216217

218

219

The character data in a UTF-8 encoded string MUST be well-formed UTF-8 as defined by the Unicode specification [Unicode] and restated in RFC 3629 [RFC3629]. In particular this data MUST NOT include encodings of code points between U+D800 and U+DFFF. If a Server or Client receives a Control Packet containing ill-formed UTF-8 it MUST close the Network Connection [MQTT-1.5.3-1].

220221222

223

A UTF-8 encoded string MUST NOT include an encoding of the null character U+0000. If a receiver (Server or Client) receives a Control Packet containing U+0000 it MUST close the Network Connection [MQTT-1.5.3-2].

224 225

226 数据不应该包含 Unicode 的编码,列在下面的。

227 U+0001..U+001F control characters

228 U+007F..U+009F control characters

229 如果一个接受者(终端或者服务器)接收一个控制包,包含他们(U+0001..U+001F、

230 U+007F..U+009F),将关闭网络链接。

231232

233

编码指示 定义在 Unicode 规范,中的非字符(例如: U+0FFFF)

Code points defined in the Unicode specification [Unicode] to be non-characters (for example U+0FFFF)

234235236

一个 UTF-8 编码序列"<mark>0xEF 0xBB 0xBF</mark>"一直被解读为"<mark>U+FEFF ("ZERO WIDTH NO-BREAK SPACE")</mark>", 无论他出现在哪一个字符串,都禁止被忽略,或者被一个包接收给剥离。

237238239

A UTF-8 encoded sequence 0xEF 0xBB 0xBF is always to be interpreted to mean U+FEFF ("ZERO WIDTH NO-BREAK SPACE") wherever it appears in a string and MUST NOT be skipped over or stripped off by a packet receiver [MQTT-1.5.3-3].

241242

243

244

245246

240

1.5.3.1 Non normative example (实例)

例如,一个字符 A,大写拉丁字母 A,后面跟一个 U+2A6D4(表示一个汉字扩展符 B)被解码为如下:

For example, the string A which is LATIN CAPITAL Letter A followed by the code point U+2A6D4 (which represents a CJK IDEOGRAPH EXTENSION B character) is encoded as follows:

247248

249

Figure 1.2 UTF-8 encoded string non normative example

Bit	7	6	5	4	3	2	1	0	
byte 1	String Length MSB (0x00)								
	0	0	0	0	0	0	0	0	
byte 2			S	tring Length	n LSB (0x0	5)			
	0	0	0	0	0	1	0	1	
byte 3	'A' (0x41)								
	0	1	0	0	0	0	0	1	
byte 4	(0xF0)								
	1	1	1	1	0	0	0	0	
byte 5	(0xAA)								
	1	0	1	0	1	0	1	0	
byte 6	(0x9B)								
	1	0	0	1	1	0	1	1	
byte 7				(0x	94)				

1 1	0		1 1	\cap	1	\cap	\cap
	U	0		U	l l	U	U

250

251

1.6 Editing conventions (编辑规范)

- 252 文字用黄色高亮在这个规范中,是标识一致性语句。每一个一致性语句都标识成这样的格式。
- Text highlighted in Yellow within this specification identifies conformance statements. Each conformance statement has been assigned a reference in the format [MQTT-x.x.x-y].

255 2 MQTT Control Packet format (MQTT 控制包格式)

256 2.1 Structure of an MQTT Control Packet (MQTT 控制包的结构)

257 MQTT 协议工作通过交换一系列 MQTT 控制包,用已经定义好的方式。这个章节描述了这些包的格式。

一个 MQTT 控制包由三个部分组成,一直用下面顺序进行说明

258259

260

261

Figure 2.1 – Structure of an MQTT Control Packet

Fixed header, present in all MQTT Control Packets 固定的头,展现在所有的 MQTT 控制包里面。
Variable header, present in some MQTT Control Packets 可变的头,有些 MQTT 控制包里面会出现。
Payload, present in some MQTT Control Packets 消息体(有效荷载),出现在有些 MQTT 控制包里面。

2.2 Fixed header (固定头)

262 Each MQTT Control Packet contains a fixed header. Figure 2.2 - Fixed header format illustrates the fixed

263 header format.

264 每个 MQTT 控制包都包含一个固定头。

265 Figure 2.2 - Fixed header format (固定头格式)

Bit	7	6	5	4	3	2	1	0	
byte 1	MQTT Control Packet type MQTT 控制包类型				Flags specific to each MQTT Control Packet type				
			,, _,		具体到每个 MQTT 控制包类型				
byte 2	Remaining Length(剩余长度)								

266

267

2.2.1 MQTT Control Packet type(MQTT 控制包类型)

268 位置: byte 1, bits 7-4.

269 作为一个 4bit 无符号的值,这些值列下下面:

270 Table 2.1 - Control packet types

Name(名称)	Value(值)	Direction of flow (数据流方向)	Description (描述)
Reserved	0	Forbidden (禁止)	Reserved (保留)
CONNECT	1	Client to Server (终端	Client request to connect to Server(终端请求一个连接到服务器)

		. ,,,			
		到服务器)			
CONNACK	2	Server to Client (服务器到终端)	Connect acknowledgment(连接确认)		
PUBLISH	3	Client to Server or Server to Client 双向	Publish message(发布消息)		
PUBACK	4	Client to Server or Server to Client 双向	Publish acknowledgment(发布确认)		
PUBREC	5	Client to Server or Server to Client	Publish received (assured delivery part 1) 发布接收(确定的传输第 1 部分)		
PUBREL	6	Client to Server or Server to Client	Publish release (assured delivery part 2) 发布释放(确定的传输第 2 部分)		
PUBCOMP	7	Client to Server or Server to Client	Publish complete (assured delivery part 3) 发布完成(确定的传输第 3 部分)		
SUBSCRIBE	8	Client to Server	Client subscribe request 终端订阅请求		
SUBACK	9	Server to Client	Subscribe acknowledgment 订阅确认		
UNSUBSCRIBE	10	Client to Server	Unsubscribe request 退订请求		
UNSUBACK	11	Server to Client	Unsubscribe acknowledgment 退订确认		
PINGREQ	12	Client to Server	PING request PING 请求		
PINGRESP	13	Server to Client	PING response PING 响应		
DISCONNECT	14	Client to Server	Client is disconnecting 终端断开连接		
Reserved	15	Forbidden	Reserved		

271

272

2.2.2 Flags (标志)

- 273 Byte 1 的保留 bits[3-0]在固定消息头内容,详细描述每个 MQTT 控制包类型。在表格 2.2 中。
- 274 表格 2.2 中的"保留"值,是必须按照表格中设置,用于预留给未来使用的。如果无效的标志被接收了,
- 275 接收者必须关闭网络连接。
- 276 查看章节 4.8,详细描述处理的错误。

Table 2.2 - Flag Bits

Control Packet	Fixed header flags	Bit 3	Bit 2	Bit 1	Bit 0
CONNECT	Reserved	0	0	0	0
CONNACK	Reserved	0	0	0	0
PUBLISH	Used in MQTT 3.1.1	DUP ¹	QoS ²	QoS ²	RETAIN ³
PUBACK	Reserved	0	0	0	0
PUBREC	Reserved	0	0	0	0
PUBREL	Reserved	0	0	1	0
PUBCOMP	Reserved	0	0	0	0
SUBSCRIBE	Reserved	0	0	1	0
SUBACK	Reserved	0	0	0	0
UNSUBSCRIBE	Reserved	0	0	1	0
UNSUBACK	Reserved	0	0	0	0
PINGREQ	Reserved	0	0	0	0
PINGRESP	Reserved	0	0	0	0
DISCONNECT	Reserved	0	0	0	0

278

- 279 DUP¹ = Duplicate delivery of a PUBLISH Control Packet (一个"发布"控制包的重复传输)
- 280 QoS² = PUBLISH Quality of Service ("发布"的 QoS)
- 281 RETAIN³ = PUBLISH Retain flag ("发布"的保留标志)

2.2.3 Remaining Length (剩余长度)

- 284 **Position:** starts at byte 2.
- 285 位置: 从 byte2 开始。

286 287

283

"剩余长度"(Remaining Length)是当前消息包中剩余的字节的个数,包含数据在"可变消息头"和消息体(payload)。剩余长度不包含用于编码剩余长度的字节(剩余长度,标称的是后续可变消息头和消息体的长度,不包括他自己的长度)。(The Remaining Length does not include the bytes used to encode the Remaining Length.)

290291

292

288

289

- 剩余长度被编码,用一个变量长度编码方案,使用一个单字节值,达到127。
- 293 更大的值,被处理成跟随的编码。每一个字节编码的最少的七位数据,并且最高 bit 是用来表示表达式中是 294 否有后续的字节。(?)。因此每个字节编码都是 128 个值,和一个续位的值。剩余长度,最多的字节数 295 是 4 个字节。

296 297

Non normative comment (举例)

298 例如,一个数字 64(十进制)用于编码成为一个单字节(十六进制是 0x40)。十进制数字 321 299 (=65+2*128)被编码为两个字节。

第一个字节,是 65+128,标识为 193,注意最高位用于指示至少一个字节跟随;第二个字节标识为 2;

301302303

304

305

306

307

300

Non normative comment (举例)

允许应用发送控制包的大小达到 256MB(268,435,455)的尺寸。表达式是: 0xFF, 0xFF, 0xFF, 0x7F

Table 2.4 表示了:剩余长度值标识字节数的增加。

Table 2.4 Size of Remaining Length field

Digits	From	То
1	0 (0x00)	127 (0x7F)
2	128 (0x80, 0x01)	16 383 (0xFF, 0x7F)
3	16 384 (0x80, 0x80, 0x01)	2 097 151 (0xFF, 0xFF, 0x7F)
4	2 097 152 (0x80, 0x80, 0x80, 0x01)	268 435 455 (0xFF, 0xFF, 0xFF, 0x7F)

308 309

312

Non normative comment (举例)

```
310 编码算法,对于一个无极性整数(X),变成一个长度编码:
```

311 do

encodedByte = X MOD 128 (求余)

313 X = X DIV 128 (除法)

314 // if there are more data to encode, set the top bit of this byte

315 if (X > 0) ///// (X 大于 128)

316 encodedByte = encodedByte OR 128 //////(高位)

endif

318 'output' encodedByte

319 while (X > 0)

320

317

321 MOD 求模运算,求余(% C语言),

322 DIV 整数除(/ C语言)

323 OR 按位或 (| C语言).

324 325

327

Non normative comment

326 编码剩余长度的算法:

multiplier = 1

328 value = 0

329 do

330 encodedByte = 'next byte from stream'

331 value += (encodedByte AND 127) * multiplier

硬件

MQTT 规范 3.1.1 中文翻译

332 multiplier *= 128

333 if (multiplier > 128*128*128)

throw Error(Malformed Remaining Length)

while ((encodedByte AND 128) != 0)

337 AND 按位与运算(& C语言).

334

335

336

339

338 当算法结束, value 包含剩余长度的值。

2.3 Variable header (可变头文件)

340 MQTT 控制包的一些类型包含可变消息头。它处于固定消息头和消息体的中间。可变头的内容取决于包类

- 341 型。包定义可变头的区域在几个包类型中很常见。
- The Packet Identifier field of variable header is common in several packet types.

343 **2.3.1 Packet Identifier**(包标识符)

344 Figure 2.3 - Packet Identifier bytes

Bit	7	6	5	4	3	2	1	0	
byte 1	Packet Identifier MSB(包标识高位)								
byte 2			Packe	t Identifier L	SB(包标识	低位)			

- 345 可变消息头包含很多控制包类型,包含2字节的包标识。这些控制包包含2字节包标识。这些控制包是:
- 346 PUBLISH (where QoS > 0), PUBACK, PUBREC, PUBREL, PUBCOMP, SUBSCRIBE, SUBACK,
- 347 UNSUBSCRIBE, UNSUBACK.
- 348 SUBSCRIBE, UNSUBSCRIBE, and PUBLISH (in cases where QoS > 0)控制包必须包含非零 16bit 包标
- 349 识。每次一个终端发送一个新的数据包时,它必须将它分配给当前未使用的数据包标识符。
- 350 如果一个终端重发一个特殊的控制包,他必须使用相同的包标识,在订阅重发的包中。
- 351 在终端处理了相应的应答数据包之后,该数据包标识符可用于重用。
- 352 在 QoS1PUBLISH 的情况下,对应的是 PUBACK;在 QoS 2 情况下,是 PUBCOMP。对于 SUBSCRIBE
- 353 和退订,对应的是 SUBACK 或者 UNSUBACK。
- 354 同样的情况也适用于服务器,当他发送 PUBLISH,QoS>0 时。
- 355 如果一个 QoS 值为 0 的 PUBLISH 包,禁止包含一个包标识。
- 356 A PUBACK, PUBREC 或者 PUBREL 包必须包含一个相同的包标识,跟之前的 PUBLISH 包之前发送的一
- 357 样。同样: SUBACK 和 UNSUBACK 必须包含包标识,与响应 SUBSCRIBE 和 UNSUBSCRIBE 也需要包
- 358 标识相同。

359

360 控制包包含包标识的情况:

361 Table 2.5 - Control Packets that contain a Packet Identifier

控制包	包标识
CONNECT	NO
CONNACK	NO

PUBLISH	YES (If QoS > 0)
PUBACK	YES
PUBREC	YES
PUBREL	YES
PUBCOMP	YES
SUBSCRIBE	YES
SUBACK	YES
UNSUBSCRIBE	YES
UNSUBACK	YES
PINGREQ	NO
PINGRESP	NO
DISCONNECT	NO

362 363

364 365

366

367

368

369 370

371

372

373

374 375

376

终端和服务器独立地分配分组标识符。其结果是,终端-服务器对可以使用相同的分组标识符来参与并发信息交换。

Non normative comment (举例)

It is possible for a Client to send a PUBLISH Packet with Packet Identifier 0x1234 and then receive a different PUBLISH with Packet Identifier 0x1234 from its Server before it receives a PUBACK for the PUBLISH that it sent.

允许 Client 在收到自己发出的 Packet Identifier 0x1234 的 PUBACK 之前先接受一个服务器发来的 Packet Identifier 0x1234

Client Server
PUBLISH Packet Identifier=0x1234---→
←--PUBLISH Packet Identifier=0x1234
PUBACK Packet Identifier=0x1234---→
←--PUBACK Packet Identifier=0x1234

2.4 Payload(消息体)

- 377 一些 MQTT 控制包包含消息体,作为包的最后的部分,第三章会详细描述。这些情况下,PUBLISH 包是 378 应用消息。
- 379 表格 2.6 列出了需要消息体的控制包。

380 Table 2.6 - Control Packets that contain a Payload

Control Packet	Payload
CONNECT	Required
CONNACK	None
PUBLISH	Optional
PUBACK	None

PUBREC	None
PUBREL	None
PUBCOMP	None
SUBSCRIBE	Required
SUBACK	Required
UNSUBSCRIBE	Required
UNSUBACK	None
PINGREQ	None
PINGRESP	None
DISCONNECT	None

382 3 MQTT Control Packets (MQTT 控制包)

383 3.1 CONNECT – Client requests a connection to a Server

(CONNECT-终端发起一个连接到服务器)

在一个网络连接之后,第一个从客户端发送到服务器的数据包必须是一个 CONNECT 数据包。

385 386

384

387 一个终端只能发送一次 CONNECT 包。服务器如果收到第二次 CONNECT,作为一个协议违规,断开终

388 端。查看章节 4.8 信息,关于处理错误的详细操作。

389

390 消息体包含一个或者多个编码空间。他们制定一个终端,制定了单一的终端标识,Will topic, Will Message,

391 User Name and Password。

392 但是一个终端标识是可选的,他们的存在基于可变消息头的 FLAG 进行检查。

393 **3.1.1 Fixed header**(固定消息头)

394 Figure 3.1 - CONNECT Packet fixed header (CONNECT 包的固定消息头)

Bit	7	6	5	4	3	2	1	0	
byte 1	MQTT Control Packet type (1)				Reserved				
	0	0	0	1	0	0	0	0	
byte 2	Remaining Length								

395 剩余长度位置 Remaining Length field

396 Remaining Length 是可变消息头(10 字节)的长度加上消息体的长度。编码方式在章节 2.2.3 中描述。

397 3.1.2 Variable header (可变消息头)

398 连接数据包的可变头包括以下顺序的四个字段:协议名称、协议级别、连接标志和保持活力。

399 **3.1.2.1 Protocol Name**(协议名称)

400 Figure 3.2 - Protocol Name bytes

	Description	7	6	5	4	3	2	1	0
Protocol Name									
byte 1	Length MSB (0)	0	0	0	0	0	0	0	0
byte 2	Length LSB (4)	0	0	0	0	0	1	0	0
byte 3	'M'	0	1	0	0	1	1	0	1
byte 4	ʻQ'	0	1	0	1	0	0	0	1
byte 5	'T'	0	1	0	1	0	1	0	0

401 402

403

404

The Protocol Name is a UTF-8 encoded string that represents the protocol name "MQTT", capitalized as shown. The string, its offset and length will not be changed by future versions of the MQTT specification.

协议名称是 UTF-8 编码字节,表现为协议名称"MQTT",如图所示。这个字节,他的偏移量和长度不会随着未来 MQTT 的版本变化而变化。

405 406 407

408

如果协议名称错误,服务器可能会断开终端, 或者也可能用其他协议持续处理 CONNECT。在后一种情况,服务器不能继续处理与本规范相一致的 CONNECT 数据包。(这句有点不懂)

409 410 411 If the protocol name is incorrect the Server MAY disconnect the Client, or it MAY continue processing the CONNECT packet in accordance with some other specification. In the latter case, the Server MUST NOT continue to process the CONNECT packet in line with this specification [MQTT-3.1.2-1].

412 413

414

415

416

Non normative comment (举例)

Packet inspectors, such as firewalls, could use the Protocol Name to identify MQTT traffic.

分组检查,如防火墙,可以使用的协议名称识别 MQTT 交通。

3.1.2.2 Protocol Level (协议等级)

417 Figure 3.3 - Protocol Level byte

	Description	7	6	5	4	3	2	1	0
Protocol Level									
byte 7	Level(4)	0	0	0	0	0	1	0	0

418 8bit 无极性值,展现终端使用的协议修订级别。3.1.1 协议的数值是 4(0x04)。如果服务器不支持该协议

419 版本, Server 必须响应 CONNECT 包, 回发一个 CONNACK 包, 编码为 0x01 (不可接受的协议级

420 别),则服务器会断开链接。

3.1.2.3 Connect Flags(链接标识)

422 链接标识字节包含大量参数用于描述 MQTT 的链接行为。他也指示这些在消息体中是否存在。

The Connect Flags byte contains a number of parameters specifying the behavior of the MQTT connection. It also indicates the presence or absence of fields in the payload.

424 425

426

423

421

Figure 3.4 - Connect Flag bits 链接标识 bits

Bit	7	6	5	4 3		2	1	0
	User Name Flag	Password Flag	Will Retain	Will QoS		Will Flag	Clean Session	Reserved
byte 8	Х	Х	Х	Х	Х	Х	Х	0

- 428 Connect Flag, 连接标识,有点像固定头部的。8位分别代表不同的标志。第1个
- 429 字节保留。
- 430 Clean Session, Will flag, Will Qos, Will Retain 都是相对于 CONNECT 消息来说
- 431 的。
- 432 Clean Session: 0表示如果订阅的客户机断线了,那么要保存其要推送的消息,如果
- 433 其重新连接时,则将这些消息推送。
- 434 1 表示消除,表示客户机是第一次连接,消息所以以前的连接
- 435 信息。
- 436 Will Flag,表示如果客户机在不是在发送 DISCONNECT 消息中断,比如 IO 错误
- 437 等,将些置为1,要求重传。并且下且的 WillQos 和 WillRetain 也要设置,消息
- 438 体中的 Topic 和 MessageID 也要设置,就是表示发生了错误,要重传。
- 439 Will Qos, 在 CONNECT 非正常情况下设置,一般如果标识了 WillFlag, 那么这个
- 440 位置也要标识。
- 441 WILL RETAIN: 同样在 CONNECT 中,如果标识了 WillFlag,那么些位也一定要标识
- 442 usename flag 和 passwordflag, 用来标识是否在消息体中传递用户和密码, 只有
- 443 标识了,消息体中的用户名和密码才有效,只标记密码而不标记用户名是不合
- 444 法的。
- 445
- 446 服务器必须验证 CONNECT 控制包的保留标识设置为零了,如果不为零,则断开该客户端
- 447
- 448 Clean Session (清除会话)
- 449 **Position**(位置): bit 1 of the Connect Flags byte. (链接标识字节的 bit1)
- 450 改 bit 指示会话状态的处理。
- 451 客户端和服务器可以存储会话状态,以便在网络连接序列中继续进行可靠的消息传递。此位用于控制会话
- 452 状态的寿命。
- 453
- 如果 CleanSession 被设为 0,则服务器必须保持与终端的通信,基于当前会话状态(由客户端标识符确
- 455 定)。如果没有与客户端标识符相关联的会话,服务器必须创建一个新的会话。终端和服务器必须存储会
- 456 话,在断开链接之后。在断开链接之后,服务器把 CleanSession 设置为 0.服务器必须存储另外 QoS1 和
- 457 QoS2 消息的匹配任何订阅,在断开的时间作为会话状态的一部分客户。也可能存储 QoS0 消息,用于相
- 458 同的标准。
- 459

460 如果 CleanSession 设置为 1,则终端和服务器必须丢弃之前的会话,开始一个新的。Session 跟网络连接 461 持续一样长时间。Session 状态数据禁止在订阅的 Session 中被重新使用。

If CleanSession is set to 1, the Client and Server MUST discard any previous Session and start a new one. This Session lasts as long as the Network Connection. State data associated with this Session MUST NOT be reused in any subsequent Session [MQTT-3.1.2-6].

465 466

Session 状态在在终端,由以下部分组成:

467

- QoS 1 and QoS 2 messages which have been sent to the Server, but have not been completely acknowledged.
- 470 ◆ 终端发送到服务器的 QoS 1 和 QoS 2 消息,还没有被完全"告知已经收到"。
- QoS 2 messages which have been received from the Server, but have not been completely
 acknowledged.
- 473 ◆ 终端接收到的 QoS 2 消息,但是还没有被完全的告知"已经收到"

474

- 475 Session 状态在在终端,由以下部分组成:
- 476 即使是会话状态是空的,会话也可以存在。 (The existence of a Session, even if the rest of the
 477 Session state is empty)
- 478 终端的订阅。
- 479 被发送到终端的 QoS 1 和 QoS 2 消息,但是还没有被确认已经接受。
- **480 QoS 1 and QoS 2** 消息正等待传输到终端
- 481 接受终端发过来的 QoS 2 消息,但是还没有完全确认已经被接受。
- 482 可选: QoS 0 消息正在传输到终端。

483

484 Retained 消息不能构成会话状态,他们禁止在会话结束后,被删除掉。

485

486 查看 4.1 章节,关于存储状态的详述和限制。

487

- 488 当 CleanSession 被设置为 1 时,终端和服务器不需要处理状态的自动删除
- When CleanSession is set to 1 the Client and Server need not process the deletion of state atomically.

490

Non normative comment (举例)

491 492 493

To ensure consistent state in the event of a failure, the Client should repeat its attempts to connect with CleanSession set to 1, until it connects successfully.

为确保在发生故障时一致的状态,客户应重复尝试 cleansession 设置 1 连接,直到连接成功。

495 496 497

498

499

500 501

494

Non normative comment(举例)

一般情况下,终端连接一直使用 CleanSession 设置为 0,或者 CleanSession 设置为 1,不会在两个值之间变来变去。这个选择基于应用的。一个终端使用 CleanSession 设置为 1,将不会接受旧的应用消息,并且会订阅刷新标题,标题为他每次链接时新关注的。一个终端,使用 CleanSession 设置为 1,0,将接受当链接断开的时候所有发布的 QoS1 或者 QoS2 消息。因此,为

MQTT 规范 3.1.1 中文翻译 了确保你不会丢失消息,即使是链接断开的时候,需要把 QoS1 或者 QoS2 的 CleanSession 设置 502 503 为0。 504 Non normative comment(举例) 505 当终端的 CleanSession 设置为 0 时,他相当于要求服务器在他断开之后仍然保持的他的会话状 506 态。终端如果倾向于过一段时间会重复链接到服务器,链接时,只把 CleanSession 设置为 0。 507 508 如果后续不再链接,将会把 CleanSession 设置为 1,并且断开链接。 3.1.2.4 Will Flag (Will 标识) 509 510 位置:链接标识的 bit2 511 保持正常交流时,服务器特意发给客户端的消息。当客户端通过发送 DISCONNECT 消息正常断开时,Will 512 消息不会发送。 513 如果 Will Flag 设置为 1,指示 Connect 请求是否被接受,一个 Will 消息必须存储在服务器,并且与网络连接 有关。当网络连接随后被关闭,Will 消息必须被发布。除非服务器响应 DISCONNECT 包,Will 消息被服务 514 515 器删除。 516 517 Will 消息发布的情况包括, 但不限于: 518 一个 IO 错误,或者网络失败被服务器删除。 519 在保持激活的时间内,一个终端尝试链接失败。 520 在没有先发送 DISCONNECT 包的前提下,终端关闭网络链接 由于协议错误,服务器关闭了网络连接。 521 补充: 522 will topic 和 will message 有点像立遗嘱。也即在连接服务器时通告:当我连接异常终止时请帮我发 523 布这条 message 到相应的 topic。但要注意的是, will topic 和 will message 必须成对出现,并且还 524 525 须设置 will flag。如果需要服务器保留这份遗嘱,则还需设置 will retain。 526 527 528 529 如果 WillFlag 标识设置为 1,则 Will Qos 和 Will Retain 530 531 If the Will Flag is set to 1, the Will QoS and Will Retain fields in the Connect Flags will be used by the Server, and the Will Topic and Will Message fields MUST be present in the payload [MQTT-3.1.2-9]. 532 533 The Will Message MUST be removed from the stored Session state in the Server once it has been 534 published or the Server has received a DISCONNECT packet from the Client [MQTT-3.1.2-10]. If the Will Flag is set to 0 the Will QoS and Will Retain fields in the Connect Flags MUST be set to zero 535 and the Will Topic and Will Message fields MUST NOT be present in the payload [MQTT-3.1.2-11]. 536 If the Will Flag is set to 0, a Will Message MUST NOT be published when this Network Connection ends 537 [MQTT-3.1.2-12]. 538

mqtt-v3.1.1-os

硬件

MQTT 规范 3.1.1 中文翻译 The Server SHOULD publish Will Messages promptly. In the case of a Server shutdown or failure the 540 server MAY defer publication of Will Messages until a subsequent restart. If this happens there might be a 541 delay between the time the server experienced failure and a Will Message being published. 542 3.1.2.5 Will QoS 543 544 545 546 位置: bit 4-3 Will QoS 标志用来设置当客户端异常离线时,服务器发送的 Will 消息的交付质量级别。Will 消息的内容在 547 客户端发送的 CONNECT 消息里的有效载荷里填写。 548 549 这两个 bits 用于 550 **Position:** bits 4 and 3 of the Connect Flags. 551 552 These two bits specify the QoS level to be used when publishing the Will Message. 553 If the Will Flag is set to 0, then the Will QoS MUST be set to 0 (0x00) [MQTT-3.1.2-13]. 554 If the Will Flag is set to 1, the value of Will QoS can be 0 (0x00), 1 (0x01), or 2 (0x02). It MUST NOT be 3 555 (0x03) [MQTT-3.1.2-14]. 556 557 558 559 Position: bits 4 and 3 of the Connect flags byte. (连接标志字节的第4位和3位。) 当一个连接中的客户端被偶然的断开时为一个Will message定义在Will QoS字段中的QoS级别。Will 560 message被定义在CONNECT message的payload中。 (A connecting client specifies the QoS level in 561 562 the Will OoS field for a Will message that is sent in the event that the client is disconnected involuntarily. 563 The Will message is defined in the payload of a CONNECT message.) 564 如果设置Will flag, Will QoS字段是强制性的, 否则他的值将被忽略。 565 566 567 Will QoS 的值是 0 (0x00) , 1 (0x01) , or 2 (0x02) ; 禁止使用 3 (0x03) 在当前版本的协议中这个字节的 0 位不使用。它是为将来使用保留的。 568 3.1.2.6 Will Retain 569 570 位置: Connect Flag (连接标识) 字节的第5位 如果 Will 消息将要被保留, 当 Will 发布时,这个 bit 就要指示。 571 572 如果 will Flag 设置为 0,则 will Retain Flag 必须设置为零。 573 574 如果 Will Flag 设置为 1: 如果 Retain 被设置为 0,则服务器必须发布 Will Message,并且是一个 non-retained message 575

如果 Retain 被设置为 1,则服务器必须发布 Will Message,并且是一个 retained message

If the Will Flag is set to 0, then the Will Retain Flag MUST be set to 0 [MQTT-3.1.2-15].

mqtt-v3.1.1-os

576

578 If the Will Flag is set to 1:

- If Will Retain is set to 0, the Server MUST publish the Will Message as a non-retained message [MQTT-3.1.2-16].
 - If Will Retain is set to 1, the Server MUST publish the Will Message as a retained message [MQTT-3.1.2-17].

583 **3.1.2.7 User Name Flag(**用户名标识)

584 **Position:** bit 7 of the Connect Flags.

585 位置: Connect Flag 是的第七位;

586 如果 User Name Flag 设置为 0,则在消息体中,用户名禁止呈现。

587 如果 User Name Flag 设置为 1,则在消息体中,用户名必须呈现。

588 589

579

580

581 582

590

591

3.1.2.8 Password Flag

- 592 **Position:** bit 6 of the Connect Flags byte.
- 593 位置: Connect Flag 是的第 6 位;
- 594 如果 Password Flag 设置为 0,则在消息体中,密码名禁止呈现。
- 595 如果 Password Flag 设置为 1,则在消息体中,密码名必须呈现。
- 596 如果用户名标识是 0,则密码标识必须也是 0

597

601

- 598 如果设置User Name标志, User Name字段是强制性的, 否则User Name的值是无效的, 如果设置
- 599 Password标志, Password字段是强制性的, 否则Password的值是无效的。如果没有设置User Name,
- 600 而提供Password是无效的。

3.1.2.9 Keep Alive

602 Figure 3.5 Keep Alive bytes

Bit	7	6	5	4	3	2	1	0			
byte 9		Keep Alive MSB									
byte 10				Keep Aliv	/e LSB						

603

604

605

Keep Alive 是一个以一秒为单位的时间间隔。用 16bit 字标识,"终端完成传输一个控制包"和"开始传输下一个控制包"之间的最大的时间间隔。Keep Alive 是负责保证终端控制包发送不会超出 Keep Alive 的值。

- 608 以秒为单位,定义服务器端从客户端接收消息的最大时间间隔。一般应用服务会在业务层次检测客户端网
- 609 络是否连接,不是 TCP/IP 协议层面的心跳机制(比如开启 SOCKET 的 SO_KEEPALIVE 选项)。 一般来
- 610 讲,在一个心跳间隔内,客户端发送一个 PINGREQ 消息到服务器,服务器返回 PINGRESP 消息,完成
- 611 一次心跳交互,继而等待下一轮。若客户端没有收到心跳反馈,会关闭掉 TCP/IP 端口连接,离线。 16 位

612 两个字节,可看做一个无符号的 short 类型值。最大值, $2^16-1=65535$ 秒 =18 小时。最小值可以

613 为 0,表示客户端不断开。一般设为几分钟,比如微信心跳周期为 300 秒。

614

615 在没有发送其他控制包的时候,终端必须发送 PINGREG 包,保持心跳。该服务器得到 ping 请求后会发 616 送一个 PINGRESP 消息。

617

618 终端可以在任意时刻发送 PINGREQ,无论 Keep Alive 值,使用 PINGRESP 去检查网络或者服务器是否在 619 工作。

620

621 如果 Keep Alive 值是非零的,并且服务器在一个或者半个 Keep Alive 周期内不接受控制包,必须断开网络622 连接,认为网络连接已经失败。

623

624 如果终端在发送一个 PINGREG 之后,没有接受到 PINGRESP,他应该关闭网络连接到服务器。

625

626 保持非零 Keep Alive, 会具有关闭 keep alive 机制的效果。意思是,在这种情况下,服务器不需要在闲置 627 的情况下关闭网络。

628 注意: 服务器检测到终端不响应,或者非活动的,则被允许断开终端。除非,终端在 KeepAlive 值内响 629 应。

630 631

634

Non normative comment (范例)

632 **Keep Alive** 的实际值,是由应用程序指派的;特别是设置为几分钟。最大的值是 **18** 小时 **12** 分钟 633 **15** 秒。

3.1.2.10 Variable header non normative example(可变消息头,实例)

635 Figure 3.6 - Variable header non normative example (可变消息头,实例)

	Description	7	6	5	4	3	2	1	0
Protocol Name									
byte 1	0	0	0	0	0	0	0	0	
byte 2	Length LSB (4)	0	0	0	0	0	1	0	0
byte 3	'M'	0	1	0	0	1	1	0	1
byte 4	ʻQ'	0	1	0	1	0	0	0	1
byte 5	'T'	0	1	0	1	0	1	0	0
byte 6	'T'	0	1	0	1	0	1	0	0
Protocol Level									
	Description	7	6	5	4	3	2	1	0
byte 7	Level (4)	0	0	0	0	0	1	0	0
Connect Flags									

	User Name Flag (1)								
	Password Flag (1)								
	Will Retain (0)								
byte 8	Will QoS (01)	1	1	0	0	1	1	1	0
	Will Flag (1)								
	Clean Session (1)								
	Reserved (0)								
Keep Alive (10	秒)		I						I
byte 9	Keep Alive MSB (0)	0	0	0	0	0	0	0	0
byte 10	Keep Alive LSB (10)	0	0	0	0	1	0	1	0

636

637

641

642 643

644

645

3.1.3 Payload (消息体、有效载荷)

- 638 CONNECT 的消息体,包含一个或者多个长度前缀的空间,在可变头里面通过 Flag 进行检测。
- 639 这些内容,如果出现的话,必须通过终端 ID, Will 标题,Will 消息,用户名称,密码进行识别。
- 640 它们为客户端指定了一个唯一的标识符, Will Topic, message和User Name和密码使用

3.1.3.1 Client Identifier (终端 ID)

终端 ID(ClientId)标识,终端到服务器的唯一标识。ClientId 必须用于终端和服务器,标识装填,他们关联到终端和服务器之间的 MQTT 会话。ClientId 必须存在,必须在消息体的第一个位置。ClientId 必须是UTF-8 编码,1.5.3 章节已经定义。服务器必须允许 ClientIDs 在 1 到 23 个字节之间,并且只包含字符 Char"0123456789abcdefghijkImnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"。服务器可能允许 ClientID 超过 23 个字节的编码。服务器可能允许 ClientID 包含字符不止以上这些。

646 647

648 649

650 第一个UTF编码的字符串。客户端标识符(Client ID)是介于1和23个字符长度,客户端到服务器的唯 651 一标识。它必须在搜有客户端连接到一台服务器是唯一的,是在处理QoS级别1和2的消息ID中的关 652 键。如果客户端ID包含23个字符,服务器响应CONNECT消息,通过一个CONNACK,返回码2:标识符

653 被拒绝。

654

655 服务器可能允许一个终端提供一个 ClientID,长度为 0 字节,但是如果非零,则服务器必须作为一种特殊 656 情况进行对待,同时分配一个唯一的 ClientID 给这个终端。必须处理这个独特的 ClientID 的 CONNECT 657 包。

031

658 659

如果终端提供一个 0 字节 ClientID,终端必须把 CleanSession 设置为 1。

660 如果终端提供一个 0 字节 ClientID, 并且把 CleanSession 设置为 0,则服务器必须响应 CONNECT 一个 661 CONNACK 返回,返回码为 0x02 (标识拒绝),同时关闭网络连接。

662 663

如果服务器拒绝 Clientld, 一定是通过 CONNACK 0x02 (表示拒绝), 去响应这个 CONNECT 的

664 665

666

667

671

668

Non normative comment (实例)

一个客户端的实现可以产生一个随机 clientId 提供一个方便的方法。使用这种方法时,应积极鼓励 669 670 cleansession 设置为 0。

3.1.3.2 Will Topic

672 如果 Will Flag 设置为 1,则 Will Topic 就会在下一个位置。Will 标题必须是 UTF-8 编码字符串,在 1.5.3 673 章节已经描述了。

674 3.1.3.3 Will Message (Will 消息)

如果 Will 标识被设置为 1, will 消息将会出现在消息体中。Will 消息定义了 发布的应用消息。这个部分由 675 两个字节长度组成。跟随消息体, will 消息是一个序列, 0个, 或者多个字节。长度给出如下数据的字节 676

数,不包括长度为2字节的字节数。 677

678 虽然在CONNECT消息中的Will Message是UTF编码的,当它发布Will Topic仅仅是消息的字节数被发

679 送,而不是前两个字节的长度。因此,该消息必须只包含7位ASCII字符。

3.1.3.4 User Name (用户名) 680

681 如果 User Name Flag 设置为 1,则 UserName 用户名则会出现在消息体中。用户名必须是 UTF-8 编码。

682 它可用于服务器进行身份验证和授权。

683 如果设置User Name标识,他是下一个UTF编码的字符串。User name标识连接的用户的名字,可用于

684 身份验证。建议用户名为12个字符或者更少,但它不是必须的。请注意,为了兼容原来的MQTT V3规

685 范、固定头的Remaining Length字段优先于User Name标识。

686 服务器必须允许实现设置User Name标识的可能性,但是User Name字符串正在缺少。这是有效的,

687 应允许继续连接。

3.1.3.5 Password (密码)

如果密码 Flag 设置为 1,则 Password 一定出现在消息体中。Password 空间包含 0~65535 个字节,前两 689

690 个字节用于描述长度。(这个长度不包含这两个标识长度的字节)

Figure 3.7 - Password bytes

Bit	7	6	5	4	3	2	1	0			
byte 1		Data length MSB									
byte 2		Data length LSB									
byte 3				Data, if le	ength > 0.						

688

693 3.1.4 Response (响应)

- 694 注意,服务器可能支持多种协议(包括更早版本的 MQTT 协议)在相同 TCP 接口行,或者其他网络端点。
- 695 如果服务器检查协议为 MQTT3.1.1,则他会验证尝试的链接如下。
- 696 1、如果服务器在网络建立之后一段时间内,没有接受到 CONNECT 包,则服务器应该关闭连接。
- 697 2、服务器应该验证 CONNECT 包,如果不符合要求,则不发送 CONNACK 并关闭网络。
- 698 3、服务器可能检查 CONNECT 包的内容,满足任何进一步的限制,并可进行身份验证和授权检查。如果
- 699 这些检查可能失败,他可能发送一个适当的非零码的 CONNACK 响应(3.2 章节描述),并且必须关闭网
- 700 络连接。

701

- 702 如果验证成功,服务器执行以下步骤。
- 703 1、如果 ClientID 代表一个终端,已经连接到服务器,则服务器必须断开这个已经存在的终端。
- 704 2、服务器必须处理一个 CleanSession。
- 705 3、服务器必须发送一个 CONNACK 包包含一个 0 返回码,通知终端已经收到 CONNECT 包。
- 706 4、开始消息传递,并且保持心跳监控。

707

- 708 终端被允许立即发送后续的控制包,在发送 CONNECT 包之后。
- 709 终端需要等待 CONNACK 包,从 Server 发过来的。如果服务器拒绝 CONNECT,他禁止处理终端发送的 710 任何数据,在这个 CONNECT 之后的。
- 711 Non normative comment (实例)
- 712 终端一般会等待 CONNACK 包,但是如果终端在他接收到 CONNACK 之前,他利用他的自由去发 713 送控制包。他可能简化终端实施,如同他不去监管链接状态一样。
- 714 终端接受这种情况,那些在他收到 CONNACK 包之前他发出去的数据,如果服务器拒绝链接,将不 715 会被服务器处理。

716

717 3.2 CONNACK – Acknowledge connection request (通知收到连接请

718 求)

- 719 CONNACK 包,是服务器发送的包,响应接收到终端的 CONNECT 包。第一个从服务器发送到终端的控制 720 包,必须是 CONNACK 包。
- 721 如果终端没有接收到一个 CONNACK 包,在规定的时间内,终端应该关闭网络连接。一个"合理"的时间 722 取决于应用程序和通信基础设施的类型。

723

724

3.2.1 Fixed header (固定消息头)

725 Figure 3.8 - CONNACK Packet fixed header

Bit	7	6	5	4	3	2	1	0		
byte 1	MQ	TT Control I	Packet Type	e (2)	Reserved					
	0	0	1	0	0 0 0					
byte 2		Remaining Length (2)								

0	0	0	0	0	0	1	0
_	_	_	_	_	_		_

726

- 727 Remaining Length field (剩余长度)
- 728 可变消息头的长度,对于 CONNACK 来说,固定是 2

3.2.2 Variable header (可变消息头) 729

730 Figure 3.9 – CONNACK Packet variable header

	Description	7	6	5	4	3	2	1	0
Connect Acknowledge Flags		Rese	erved						SP1
byte 1		0	0	0	0	0	0	0	Х
Connect Return	code								
byte 2		Х	Х	Χ	Χ	Х	Х	Х	Х

731 3.2.2.1 Connect Acknowledge Flags

- 732 Byte 1 is the "Connect Acknowledge Flags". Bits 7-1 are reserved and MUST be set to 0.
- 734

733

737

- Bit 0 (SP1) is the Session Present Flag.
- 735 字节 1 是链接应答指示,字节 7-1 保留,并且必须设置为 0.
- 736 字节 0 (SP1) 是会话展现标识。

3.2.2.2 Session Present (会话 出现)

- 738 Position: bit 0 of the Connect Acknowledge Flags.
- 739 位置: Connect Acknowledge Flags 的字节 0:
- 740 如果服务器接收一个连接,并且 CleanSession 设置为 1,则服务器必须在 CONNACK 设置 Session
- Present 为零,除此之外在 CONNACK 包中发送一个 0 返回码。 741
- 742 如果服务器接收一个 CleanSession 设置为 0 的连接,会话展现中设置的值取决于服务器是否存储会话状态
- 743 用于提供终端 ID。如果服务器已经存储会话状态,并且他必须设置会话展现为 1,在 CONNACK 控制包
- 744
- 745 如果服务器不存储会话状态,则 Session Present 必须设置为 0。除了设置一个 0 返回码的 CONNACK
- 746
- This is in addition to setting a zero return code in the CONNACK packet 747

748

- 749 Session Present flag 使能一个终端去确认 终端和服务器之间是否有一个一致的结论,关于是否存储 Session 状态。 750
- 一旦一个 Session 的初始化设置完成,则一个 终端存储 Session 状态,将会期望服务器保持他会存储 751
- Session 状态。在这个事件中,由终端接收的 Session Present 的值不是期望的值,终端选择处理 Session 752
- 或者断开链接。 终端可以丢弃 Session 状态,终端和服务器都断开链接。重新链接 Clean Session 设置为 753
- 1, 然后再次断开。 754

755

如果服务器发送一个 CONNACK 包,包含一个非零的返回码,必须设置 Session Present 为 0。 756

758 3.2.2.3 Connect Return code (连接返回码)

759 在可变消息头中第二个字节。

760

- 761 如果一个服务器接收到一个良好格式的数据包,但是服务器由于一些原因不能处理,服务器应该尝试发送
- 762 一个 CONNACK 包,非零返回码,在这个表格中。
- 763 如果服务器发送一个非零返回码,必须关闭网络连接。

764 Table 3.1 – Connect Return code values

Value	Return Code Response	Description
0	0x00 Connection Accepted	Connection accepted
1	0x01 Connection Refused, unacceptable protocol version	The Server does not support the level of the MQTT protocol requested by the Client
2	0x02 Connection Refused, identifier rejected	The Client identifier is correct UTF-8 but not allowed by the Server
3	0x03 Connection Refused, Server unavailable	The Network Connection has been made but the MQTT service is unavailable
4	0x04 Connection Refused, bad user name or password	The data in the user name or password is malformed
5	0x05 Connection Refused, not authorized	The Client is not authorized to connect
6-255		Reserved for future use

765 766

767

- If none of the return codes listed in Table 3.1 Connect Return code values are deemed applicable, then the Server MUST close the Network Connection without sending a CONNACK [MQTT-3.2.2-6].
- 768 如果没有返回码被认为是合适的,服务器将关闭网络,并且不发送 CONNACK。
- 769 **3.2.3 Payload**
- 770 CONNACK 没有 payload.
- 771 3.3 PUBLISH Publish message(发布消息)
- 772 PUBLISH 控制包,由终端发送给服务器,或者服务器发送给终端,传输应用消息。
- 773 **3.3.1 Fixed header**(固定消息头)

774 Figure 3.10 - PUBLISH Packet fixed header

Bit	7	6	5	4	3	2	1	0
byte 1	MQTT Control Packet type (3)			DUP flag	QoS	S level	RETAIN	
	0	0	1	1	Х	Х	Х	Х
byte 2	Remaining Length							

3.3.1.1 DUP 776

777 Position: byte 1, bit 3.

778 位置:第一个字节的第三个 bit

如果 DUP 被设置为 0,则他指示:这是第一次,终端或者服务器尝试发送 MQTT PUBLISH 包。如果 DUP 779 780

设置为1,则表示这可能是重传,或者之前传过数据包。

781 782

如果是重传,则 DUP 必须设置为 1。所有的 QoS 为 0 的消息,DUP 必须设置为 0。

783 784

当 PUBLISH 通过服务器传给订阅者,DUP 的值来自 PUBLISH 不会被传输。DUP 在外发的 PUBLISH 包 中,独立于进入的 PUBLISH 包,他的值必须检查外发的 PUBLISH 包是不是重复传输。

785 786 787

788

789

Non normative comment (实例)

The recipient of a Control Packet that contains the DUP flag set to 1 cannot assume that it has seen an earlier copy of this packet.

控制包的接受者,包含 DUP 设置为 1,不能假定它已经看到了这个数据包的早期副本。

790 791 792

793 794

795

Non normative comment (实例)

重要内容:注意 DUP 参考控制包本身,而非控制包内含的应用消息。当使用 QoS1 时,终端发布 的 PUBLISH 包里面的内容是之前他接收的,但是 DUP 标识是 0,并且带有不同的包标识。章节 2.3.1 提供更多的信息关于包标识。

796

3.3.1.2 QoS

位置:第一个字节,bit2-1。 797

798 这个空间指示应用消息的传输级别保证。

799 Table 3.2 - QoS definitions

QoS value	Bit 2	bit 1	Description
0	0	0	At most once delivery(最多一次)
1	0	1	At least once delivery(至少一次)
2	1	0	Exactly once delivery(至少正确交付一次)
-	1	1	Reserved – must not be used

PUBLISH 包禁止把所有的 QoS 的 bit 位设置为 1.如果服务器和终端接受一个 PUBLISH 包,把所有的 800

QoSbit 位设置为 1,会关闭网络连接。

801 802

803

QoS level 决定的消息流

804 QoS level 为 Quality of Service level 的缩写,翻译成中文,服务质量等级。

- 805 MQTT 3.1 协议在"4.1 Quality of Service levels and flows"章节中,仅仅讨论了客户端到服务器的发
- 806 布流程,不太完整。因为决定消息到达率,能够提升发送质量的,应该是服务器发布 PUBLISH 消息到订
- 807 阅者这一消息流方向。

QoS level 0

808

809 至多发送一次,发送即丢弃。没有确认消息,也不知道对方是否收到。

Client	Message and direction	Server
QoS = 0	PUBLISH >	Action: Publish message to subscribers then Forget Reception: <=1

- 810 针对的消息不重要,丢失也无所谓。
- 811 网络层面,传输压力小。
- 812 **QoS level 1**
- 813 所有 QoS level 1 都要在可变头部中附加一个 16 位的消息 ID。
- 814 SUBSCRIBE 和 UNSUBSCRIBE 消息使用 QoS level 1。
- 815 针对消息的发布,**Qos level 1**,意味着消息至少被传输一次。
- 816 发送者若在一段时间内接收不到 PUBACK 消息,发送者需要打开 DUB 标记为 1,然后重新发送
- 817 PUBLISH 消息。因此会导致接收方可能会收到两次 PUBLISH 消息。针对客户端发布消息到服务器的消息
- 818 流:

Client	Message and direction	Server
QoS = 1 DUP = 0 Message ID = x Action: Store message	PUBLISH >	Actions:
Action: Discard message	PUBACK <	Message ID = x

819 针对服务器发布到订阅者的消息流:

Server	Message and direction	Subscriber
QoS = 1 DUP = 0 Message ID = x	PUBLISH >	Actions:
	PUBACK <	Message ID = x

- 820 发布者(客户端/服务器)若因种种异常接收不到 PUBACK 消息,会再次重新发送 PUBLISH 消息,同时
- 821 设置 DUP 标记为 1。接收者以服务器为例,这可能会导致服务器收到重复消息,按照流程,broker(服务
- 822 器)发布消息到订阅者(会导致订阅者接收到重复消息),然后发送一条 PUBACK 确认消息到发布者。
- 823 在业务层面,或许可以弥补 MQTT 协议的不足之处:重试的消息 ID 一定要一致接收方一定判断当前接收
- 824 的消息 ID 是否已经接受过
- 825 但一样不能够完全确保,消息一定到达了。

826 QoS level 2

- 827 仅仅在 PUBLISH 类型消息中出现,要求在可变头部中要附加消息 ID。
- 828 级别高,通信压力稍大些,但确保了仅仅传输接收一次。
- 829 先看协议中流程图, Client -> Server 方向, 会有一个总体印象:

Client	Message and direction	Server
QoS = 2 DUP = 0 Message ID = x Action: Store message	PUBLISH >	Action(a) Store message or Actions(b): • Store message ID • Publish message to subscribers
	PUBREC <	Message ID = x
Message ID = x	PUBREL >	Actions(a): • Publish message to subscribers • Delete message or Action(b): Delete message ID

Client	Message and direction	Server
Action: Discard message	PUBCOMP <	Message ID = x

830 **Server -> Subscriber**:

Server	Message and direction	Subscriber
QoS = 2 DUP = 0 Message ID = x	PUBLISH >	Action: Store message
	PUBREC <	Message ID = x
Message ID =	PUBREL >	Actions: • Make message available
	PUBCOMP <	Message ID = x

- 831 Server 端采取的方案 a 和 b,都包含了何时消息有效,何时处理消息。两个方案二选一,Server 端自己
- 832 决定。但无论死采取哪一种方式,都是在 QoS level 2 协议范畴下,不受影响。若一方没有接收到对应的
- 833 确认消息,会从最近一次需要确认的消息重试,以便整个(QoS level 2)流程打通。

834 3.3.2 消息顺序

- 835 消息顺序会受许多因素的影响,但对于服务器程序,必须保证消息传递流程的每个阶段要和开始的顺序一
- 836 致。例如,在 QoS level 2 定义的消息流中,PUBREL 流必须和 PUBLISH 流具有相同的顺序发送:

Client	Message and direction	Server
	PUBLISH 1> PUBLISH 2> PUBLISH 3>	
	PUBREC 1 <	

Client	Message and direction	Server	
	PUBREC 2 <		
	PUBREL 1 >		
	PUBREC 3 <		
	PUBREL 2 >		
	PUBCOMP 1 <		
	PUBREL 3>		
	PUBCOMP 2 < PUBCOMP 3 <		

837 流动消息(in-flight messages)数量允许有一个可保证的效果:

- 在流动消息(in-flight)窗口 1 中,每个传递流在下一个流开始之前完成。这保证消息以提交的顺序 传递
 - 在流动消息(in-flight)大于 1 的窗口,只能在 QoS level 内被保证消息的顺序

841

838

839

840

842

843

3.3.2.1 RETAIN

- 844 **Position:** byte 1, bit 0.
- 845 位置:第一个字节的 bit0
- 846 retain
- 847 保持;留在心中,记住;雇用;付定金保留;

- 849 如果 RETAIN 设置为 1,则 PUBLISH 包被终端发送到服务器,服务器必须存储应用消息和它的 QoS,所 850 以他可以被传递到更远的订阅了该主题的订阅者。
- 851 当一个新的订阅被建立时,则最后保留的消息必须被发送到每个匹配的主题名称的订阅者。

852 如果服务器接收一个 QoS 为 0 的消息,并且 RETAIN 标识被设置为 1,则他必须抛弃所有的之前保留的主

853 题。他应该存储新的 QoSO 消息,作为新的对应主题的保留消息,但是可能选择任何时刻丢弃他,入这个

MQTT 规范 3.1.1 中文翻译

- 854 发生了,将会对于这个主题来说没有保留的消息。
- 855 查看章节 4.1, 更多消息关于存储状态。

856

857 当服务器发送一个 PUBLISH 包到一个终端的时候,服务器必须设置 RETAIN 为 1,消息被作为一个新的订

858 阅结果发送到服务器。当 PUBLISH 包被发送到终端时,必须设置 RETAIN 为 0,因为它会匹配建立一个订

- 859 阅,无论他接收到的消息是如何设置的。
- 860 带有一个保留标志设置为 1 和一个包含零字节的有效载荷的发布包将被处理为正常的服务器,并发送给客
- 861 户端与订阅匹配的主题名称。另外,任何具有相同主题名称的任何现有的保留消息必须被删除,并且该主
- 862 题的任何未来的用户将无法接收保留消息。"正常"意味着在现有客户端接收的消息中保留标记,终端不设
- 863 置。一个 0 字节的保留消息,禁止被存储。

864

865 由终端发送给服务器的 PUBLISH 包中如果 RETAIN 是 0,则服务器禁止存储消息,禁止移除或者替换已经 866 有的保留消息。

867 868

869

Non normative comment (实例)

- 发布者用不规则的方式发送状态消息,Retained 消息是有用的。
- 870 一个新订阅者将会接收最近的状态。

871 872

Remaining Length field(保留长度)

874 可变消息头长度加上消息体长度。

875

873

876 消息的持久化

- 877 在 MOTT 协议中,PUBLISH 消息固定头部 RETAIN 标记,只有为 1 才要求服务器需要持久保存此消息,
- 878 除非新的 PUBLISH 覆盖。
- 879 对于持久的、最新一条 PUBLISH 消息,服务器不但要发送给当前的订阅者,并且新的订阅者(new
- 880 subscriber,同样需要订阅了此消息对应的 Topic name)会马上得到推送。

881 Tip: 新来乍到的订阅者,只会取出最新的一个 RETAIN flag = 1 的消息推送,不是

882 所有。

883

884

886

3.3.3 Variable header (可变消息头)

885 可变消息头包含:主题名称,包标识。

3.3.3.1 Topic Name(主题名称)

887 主题名称标识,负载数据发布的信息频道。(主题名称标识消息体数据发布的信息通道。)

- 888 The Topic Name identifies the information channel to which payload data is published.
- 889 消息标题名称,必须在 PUBLISH 包的可变头文件的第一个位置。他必须是 UTF-8 的编码,在章节 1.5.3 已 890 经定义。
- 891 PUBLISH 包的主题名称禁止包含通配符字符。
- 892 PUBLISH 包的主题名称由服务器发送给订阅的终端,必须匹配订阅的主题过滤器,根据匹配关系处理。
- 893 但是,由于服务器允许主题重名,所以这个主题名称可能不是最原始 PUBLISH 包里面的相同主题名称。

894 3.3.3.2 Packet Identifier (包标识)

895 在 PUBLISH 包中, QoS 的级别是 1 或者 2,则包标识才会存在。章节 2.3.1 提供更多型信息关于包标识。

3.3.3.3 Variable header non normative example (可变消息头实例)

Table 3.3 - Publish Packet non normative example (PUBLISH 包实例)

Field	Value
Topic Name	a/b
Packet Identifier	10

898

899

900

896

897

Figure 3.11 - Publish Packet variable header non normative example (PUBLISH 包可变消息头实例)

	Description	7	6	5	4	3	2	1	0
	Topic Name)							
byte 1	Length MSB (0)	0	0	0	0	0	0	0	0
byte 2	Length LSB (3)	0	0	0	0	0	0	1	1
byte 3	'a' (0x61)	0	1	1	0	0	0	0	1
byte 4	'/' (0x2F)	0	0	1	0	1	1	1	1
byte 5	'b' (0x62)	0	1	1	0	0	0	1	0
	Packet Identif	ier							
byte 6	Packet Identifier MSB (0)	0	0	0	0	0	0	0	0
byte 7	Packet Identifier LSB (10)	0	0	0	0	1	0	1	0

901

902

3.3.4 Payload (消息体)

903 消息体包含要发布的应用消息。数据的内容和格式是特定于应用程序的。消息体的长度可以通过的在固定 904 头上的剩余长度字段减去可变头的长度来计算。PUBLISH包包含一个 0 长度的消息体是有效的。

905 **3.3.5 Response** (响应)

906 Table 3.4 - Expected Publish Packet response

QoS Level	Expected Response
QoS 0	None
QoS 1	PUBACK Packet
QoS 2	PUBREC Packet

907

908

3.3.6 Actions (行动)

909 终端使用 PUBLISH 包发送应用程序到服务器,用于分发到其他匹配订阅了的终端。

910

911 服务器使用 PUBLISH 包,发送应用消息到每个匹配订阅的终端。另外,服务器可能传输更多的消息副本,

912

- 913 当终端订阅了话题过滤器,包含通配符,可能出现的情况是:终端的订阅可能重复,发布的消息可能匹配
- 914 多个过滤器。在这种情况下,服务器必须传输消息到终端尊从所有匹配的订阅器中最大的 QoS,所有的情
- 915 况都是遵从订阅者的 QoS。

916

- 917 收件者的动作取决于 QoS 的级别,在章节 4.3 中描述。
- 918 如果服务器不允许授权一个由终端执行的 PUBLISH; 服务器没有办法通知终端。它必须是一个积极的接收
- 919 确认,根据正常的 QoS 规则,或关闭网络连接。

920 3.4 PUBACK - Publish acknowledgement (PUBLISH 接收确认)

921 PUBACK 包是 QoS=1 的 PUBLISH 包应答。

922 **3.4.1 Fixed header**(固定消息头)

923 Figure 3.12 - PUBACK Packet fixed header

Bit	7	6	5	4	3	2	1	0			
byte 1	MQ	TT Control	Packet type	(4)	Reserved						
	0	1	0	0	0	0	0	0			
byte 2		Remaining Length (2)									
	0	0	0	0	0	0	1	0			

924 925

Remaining Length field (剩余长度)

- 926 This is the length of the variable header. For the PUBACK Packet this has the value 2.
- 927 可变消息头的长度,对于 PUBACK 来说,一直是 2。

928 3.4.2 Variable header (可变消息头)

- 929 This contains the Packet Identifier from the PUBLISH Packet that is being acknowledged.
- 930 包含包 PUBLISH 包 ID 被接收确认

931 Figure 3.13 – PUBACK Packet variable header

Bit	7	6	5	4	3	2	1	0	
byte 1		Packet Identifier MSB							
byte 2	Packet Identifier LSB								

932

933 3.4.3 Payload (消息体)

- 934 The PUBACK Packet has no payload.
- 935 PUBACK 包没有消息体。
- 936 **3.4.4 Actions**(行动)
- 937 This is fully described in Section 4.3.2.
- 938 完整表述在章节 4.3.2

939 3.5 PUBREC – Publish received (QoS 2 publish received, part 1)

- 940 PUBREC(QoS 为 2PUBLISH 消息的接收确认,第一部分)
- 941 A PUBREC Packet is the response to a PUBLISH Packet with QoS 2. It is the second packet of the QoS
- 942 2 protocol exchange.
- 943 PUBREC 包是 QoS 为 2 的 PUBLISH 包的响应。这是 QoS 为 2 的协议交换的第二包

944 **3.5.1 Fixed header**(固定消息头)

945 Figure 3.14 – PUBREC Packet fixed header

Bit	7	6	5	4	3	2	1	0		
byte 1	MQ	MQTT Control Packet type (5)			Reserved					
	0	1	0	1	0	0	0	0		
byte 2		Remaining Length (2)								
	0	0	0	0	0	0	1	0		

946 947

948

950

Remaining Length field

- This is the length of the variable header. For the PUBREC Packet this has the value 2.
- 949 可变消息头的长度,对于 PUBREC 来说,一直是 2。

3.5.2 Variable header (可变消息头)

951 PUBLISH 被接收确认的包 ID

952 Figure 3.15 – PUBREC Packet variable header

Bit	7	6	5	4	3	2	1	0	
byte 1		Packet Identifier MSB							
byte 2			ſ	Packet Ide	ntifier LSE	3			

953

954 **3.5.3 Payload(**消息体)

955 没有消息体

956 **3.5.4 Actions**(动作)

957 完整描述在章节 4.3.3.

958 3.6 PUBREL – Publish release (QoS 2 publish received, part 2)

959 PUBREL-PUBLISH 释放(QoS=2 的 PUBLISH 接收到, 第二部分)

960 PUBREL 包是 PUBREC 的相应。他是 QoS2 协议交换的第三个包。

961 **3.6.1 Fixed header**(固定消息头)

962 Figure 3.16 - PUBREL Packet fixed header

Bit	7	6	5	4	3	2	1	0		
byte 1	MQ	TT Control	Packet type	e (6)	Reserved					
	0	1	1	0	0	0	1	0		
byte 2		Remaining Length (2)								
	0	0	0	0	0	0	1	0		

963 PUBREL 控制包的固定消息头的 Bit3, 2,1,0 被保留,并且必须设置为 0010。服务器必须处理任何其他值 964 为畸形和关闭网络连接。

965 966

Remaining Length field (剩余长度)

This is the length of the variable header. For the PUBREL Packet this has the value 2.

968 剩余长度都是 2, 就是可变消息头的长度

969 3.6.2 Variable header (可变消息头)

970 The variable header contains the same Packet Identifier as the PUBREC Packet that is being

971 acknowledged.

972 可变消息头包含相同的包 ID 和接收到的 PUBREC 保持一直

973 Figure 3.17 – PUBREL Packet variable header

Bit	7	6	5	4	3	2	1	0
-----	---	---	---	---	---	---	---	---

byte 1	Packet Identifier MSB
byte 2	Packet Identifier LSB

974

- 975 3.6.3 Payload (消息体)
- 976 没有消息体.
- 977 **3.6.4 Actions**(动作)
- 978 完整描述在章节 4.3.3.

979 3.7 PUBCOMP – Publish complete (QoS 2 publish received, part 3)

980 PUBCOMP-PUBLISH 完成(QoS=2 的 PUBLISH 接收的第三部分)

- The PUBCOMP Packet is the response to a PUBREL Packet. It is the fourth and final packet of the QoS
- 982 2 protocol exchange.
- 983 PUBCOMP 是响应 PUBREL 的。是 QoS=2 协议交换的第四包,也是最后一个。

984 **3.7.1 Fixed header**(固定头)

985 Figure 3.18 – PUBCOMP Packet fixed header

Bit	7	6	5	4	3	2	1	0	
byte 1	MQ	TT Control	Packet type	: (7)	Reserved				
	0	1	1	1	0	0	0	0	
byte 2	Remaining Length (2)								
	0	0	0	0	0	0	1	0	

986 987

Remaining Length field

- This is the length of the variable header. For the PUBCOMP Packet this has the value 2.
- 989 剩余长度就是可变消息头,对于 PUBCOMP 剩余长度一直是 2.

990 3.7.2 Variable header (可变消息头)

- 991 The variable header contains the same Packet Identifier as the PUBREL Packet that is being
- 992 acknowledged. (可变消息头包含相同包 ID 和接收到的 PUBREL 保持一致)

993 Figure 3.19 – PUBCOMP Packet variable header

Bit	7	6	5	4	3	2	1	0	
byte 1		Packet Identifier MSB							
byte 2		Packet Identifier LSB							

- 995 **3.7.3 Payload** (消息体)
- 996 The PUBCOMP Packet has no payload. (没有消息体)
- 997 **3.7.4 Actions**
- 998 This is fully described in Section 4.3.3. (章节 4.3.3 完整描述)

999 3.8 SUBSCRIBE - Subscribe to topics (SUBSCRIBE-订阅主题)

- 1000 The SUBSCRIBE Packet is sent from the Client to the Server to create one or more Subscriptions. Each
- 1001 Subscription registers a Client's interest in one or more Topics. The Server sends PUBLISH Packets to
- the Client in order to forward Application Messages that were published to Topics that match these
- 1003 Subscriptions. The SUBSCRIBE Packet also specifies (for each Subscription) the maximum QoS with
- which the Server can send Application Messages to the Client.
- 1005 订阅数据包从终端发送到服务器,以创建一个或多个订阅每个订阅注册一个终端的关注一个主题或者多个
- 1006 主题。服务器向终端发送发布数据包,以便将发布到匹配这些订阅内容的主题中的应用程序消息发送给终
- 1007 端。SUBSCRIBE 包对于每个订阅来说,指定最大的 QoS,服务器可以发送应用消息到终端。

3.8.1 Fixed header (固定消息头)

1009 Figure 3.20 – SUBSCRIBE Packet fixed header

Bit	7	6	5	4	3	2	1	0
byte 1	MQ	QTT Control Packet type (8)					erved	
	1	0	0	0	0	0	1	0
byte 2				Remainir	ng Length			

1010

1008

- 1011 Bits 3,2,1 and 0 of the fixed header of the SUBSCRIBE Control Packet are reserved and MUST be set to
- 1012 0,0,1 and 0 respectively. The Server MUST treat any other value as malformed and close the Network
- 1013 Connection [MQTT-3.8.1-1].
- 1014 SUBSCRIBE 固定消息头的 Bit3、2、1、0 四位保留,必须设置为 0010.服务器必须把其他值认为是畸形
- 1015 值,并且关闭网络。

1016 1017

Remaining Length field (剩余长度)

- This is the length of variable header (2 bytes) plus the length of the payload.
- 1019 可变消息头 2 个字节,加上消息体的长度。

1020 3.8.2 Variable header

- The variable header contains a Packet Identifier. Section 2.3.1 provides more information about Packet
- 1022 Identifiers.
- 1023 可变消息头包含包 ID, 章节 2.3.1 提供更多信息关于包 ID。

1024 3.8.2.1 Variable header non normative example (可变消息头实例)

1025 Figure 3.21 shows a variable header with Packet Identifier set to 10. (包 ID 设置为 10)

1026 Figure 3.21 - Variable header with a Packet Identifier of 10, Non normative example

	Description	7	6	5	4	3	2	1	0
Packet Identifier									
byte 1	Packet Identifier MSB (0)	0	0	0	0	0	0	0	0
byte 2	Packet Identifier LSB (10)	0	0	0	0	1	0	1	0

1027

1028

3.8.3 Payload (消息体)

1029 SUBSCRIBE 包的消息体包含主题过滤器指示主题,终端想订阅的主题。主题过滤器在消息体中必须是 1030 UTF-8 编码,在章节 1.5.3 定义。一个服务器应该支持带有通配符的主题过滤器,在章节 4.7.1 中定义。如 1031 果他选择不支持带通配符的主题过滤器,服务器必须拒绝所有包含通配符的过滤器。每个过滤器都遵循一 1032 个叫做 Requested QoS 的字节。Requested QoS 字节给出服务器可以发送应用消息到终端的最大的 QoS 1033 的级别。查看 4.8 章节,查看处理错误的信息。

1034 1035

需要的最大的 QoS 编码在一个字节中,跟随着每个 UTF-8 编码的主题名称后面,这些 Topic Filter / QoS 对,连续打包。

10361037

1038

Figure 3.22 - SUBSCRIBE Packet payload format

Description	7	6	5	4	3	2	1	0		
Topic Filter	Горіс Filter									
byte 1		Length MSB								
byte 2	Length LSB									
bytes 3N	Topic Filter									
Requested QoS										
	Reserved QoS									
byte N+1	0	0	0 0 0 X					Х		

1039 在当前的协议规范中,Requested QoS的高 6bit 不使用。保留,留以后用;如果保留字节非零,或者 QoS 1040 不是 0,1,2 三个数字,则服务器必须处理 SUBSCRIBE 作为畸形包,然后关闭网络连接。

3.8.3.1 Payload non normative example (消息体实例)

1042

1041

1043 Table 3.5 - Payload non normative example

Topic Name	"a/b"
Requested QoS	0x01
Topic Name	"c/d"
Requested QoS	0x02

mqtt-v3.1.1-os

1044 Figure 3.23 - Payload byte format non normative example

	Description	7	6	5	4	3	2	1	0
Topic Filter		•							
byte 1	Length MSB (0)	0	0	0	0	0	0	0	0
byte 2	Length LSB (3)	0	0	0	0	0	0	1	1
byte 3	'a' (0x61)	0	1	1	0	0	0	0	1
byte 4	'/' (0x2F)	0	0	1	0	1	1	1	1
byte 5	'b' (0x62)	0	1	1	0	0	0	1	0
Requested QoS									
byte 6	Requested QoS(1)	0	0	0	0	0	0	0	1
Topic Filter		•							
byte 7	Length MSB (0)	0	0	0	0	0	0	0	0
byte 8	Length LSB (3)	0	0	0	0	0	0	1	1
byte 9	'c' (0x63)	0	1	1	0	0	0	1	1
byte 10	'/' (0x2F)	0	0	1	0	1	1	1	1
byte 11	'd' (0x64)	0	1	1	0	0	1	0	0
Requested QoS		•	-		•		-	-	
byte 12	Requested QoS(2)	0	0	0	0	0	0	1	0

1045

1046

1047

3.8.4 Response (响应)

当服务器接收到来自终端的 SUBSCRIBE 包,必须响应一个 SUBACK 包。SUBACK 包必须包含相同的包 ID 和 SUBSCRIBE 保持一致,并且他是确认收到。

1048 1049

服务器允许开始传输 PUBLISH 包,匹配订阅,在服务器发送 SUBACK 之前。

105010511052

如果服务器接收到一个 SUBSCRIBE 包,SUBSCRIBE 包含标题过滤器,

1054 1055 1056

1053

If a Server receives a SUBSCRIBE Packet containing a Topic Filter that is identical to an existing Subscription's Topic Filter then it MUST completely replace that existing Subscription with a new Subscription. The Topic Filter in the new Subscription will be identical to that in the previous Subscription, although its maximum QoS value could be different. Any existing retained messages matching the Topic Filter MUST be re-sent, but the flow of publications MUST NOT be interrupted [MQTT-3.8.4-3].

105710581059

Where the Topic Filter is not identical to any existing Subscription's filter, a new Subscription is created and all matching retained messages are sent.

If a Server receives a SUBSCRIBE packet that contains multiple Topic Filters it MUST handle that packet as if it had received a sequence of multiple SUBSCRIBE packets, except that it combines their responses into a single SUBACK response [MQTT-3.8.4-4].

The SUBACK Packet sent by the Server to the Client MUST contain a return code for each Topic Filter/QoS pair. This return code MUST either show the maximum QoS that was granted for that Subscription or indicate that the subscription failed [MQTT-3.8.4-5]. The Server might grant a lower maximum QoS than the subscriber requested. The QoS of Payload Messages sent in response to a Subscription MUST be the minimum of the QoS of the originally published message and the maximum QoS granted by the Server. The server is permitted to send duplicate copies of a message to a subscriber in the case where the original message was published with QoS 1 and the maximum QoS granted was QoS 0 [MQTT-3.8.4-6].

Non normative examples

If a subscribing Client has been granted maximum QoS 1 for a particular Topic Filter, then a QoS 0 Application Message matching the filter is delivered to the Client at QoS 0. This means that at most one copy of the message is received by the Client. On the other hand a QoS 2 Message published to the same topic is downgraded by the Server to QoS 1 for delivery to the Client, so that Client might receive duplicate copies of the Message.

If the subscribing Client has been granted maximum QoS 0, then an Application Message originally published as QoS 2 might get lost on the hop to the Client, but the Server should never send a duplicate of that Message. A QoS 1 Message published to the same topic might either get lost or duplicated on its transmission to that Client.

Non normative comment

Subscribing to a Topic Filter at QoS 2 is equivalent to saying "I would like to receive Messages matching this filter at the QoS with which they were published". This means a publisher is responsible for determining the maximum QoS a Message can be delivered at, but a subscriber is able to require that the Server downgrades the QoS to one more suitable for its usage.

3.9 SUBACK - Subscribe acknowledgement

A SUBACK Packet is sent by the Server to the Client to confirm receipt and processing of a SUBSCRIBE Packet.

A SUBACK Packet contains a list of return codes, that specify the maximum QoS level that was granted in each Subscription that was requested by the SUBSCRIBE.

3.9.1 Fixed header

1100 Figure 3.24 – SUBACK Packet fixed header

Bit	7	6	5	4	3	2	1	0		
byte 1	MQ	TT Control	Packet type	9 (9)	Reserved					
	1	0	0	0	0					
byte 2	Remaining Length									

Remaining Length field

This is the length of variable header (2 bytes) plus the length of the payload.

1104 3.9.2 Variable header

1105 The variable header contains the Packet Identifier from the SUBSCRIBE Packet that is being

acknowledged. Figure 3.25 - variable header format below illustrates the format of the variable header.

1107 Figure 3.25 – SUBACK Packet variable header

Bit	7	6	5	4	3	2	1	0
byte 1	Packet Identifier MSB							
byte 2	Packet Identifier LSB							

1108 **3.9.3 Payload**

The payload contains a list of return codes. Each return code corresponds to a Topic Filter in the

1110 SUBSCRIBE Packet being acknowledged. The order of return codes in the SUBACK Packet MUST

match the order of Topic Filters in the SUBSCRIBE Packet [MQTT-3.9.3-1].

1112

1106

1113 Figure 3.26 - Payload format below illustrates the Return Code field encoded in a byte in the Payload.

1114 Figure 3.26 – SUBACK Packet payload format

Bit	7	6	5	4	3	2	1	0
				Return	Code			
byte 1	Х	0	0	0	0	0	Х	Х

1115

1116 Allowed return codes:

1117 0x00 - Success - Maximum QoS 0

1118 0x01 - Success - Maximum QoS 1

1119 0x02 - Success - Maximum QoS 2

0x80 - Failure

112011211122

11241125

1126

SUBACK return codes other than 0x00, 0x01, 0x02 and 0x80 are reserved and MUST NOT be

1123 used [MQTT-3.9.3-2].

3.9.3.1 Payload non normative example

Figure 3.27 - Payload byte format non normative example shows the payload for the SUBACK

Packet briefly described in Table 3.6 - Payload non normative example.

1127 Table 3.6 - Payload non normative example

Success - Maximum QoS 0	0
Success - Maximum QoS 2	2
Failure	128

1128 Figure 3.27 - Payload byte format non normative example

	Description	7	6	5	4	3	2	1	0
byte 1	Success - Maximum QoS 0	0	0	0	0	0	0	0	0
byte 2	Success - Maximum QoS 2	0	0	0	0	0	0	1	0
byte 3	Failure	1	0	0	0	0	0	0	0

1129

1130

3.10 UNSUBSCRIBE – Unsubscribe from topics

An UNSUBSCRIBE Packet is sent by the Client to the Server, to unsubscribe from topics. 1131

3.10.1 Fixed header 1132

1133 Figure 3.28 – UNSUBSCRIBE Packet Fixed header

Bit	7	6	5	4	3	2	1	0		
byte 1	MQT	TT Control F	acket type	(10)	Reserved					
	1	0	1 0 0 0 1							
byte 2	Remaining Length									

1134

1135 Bits 3,2,1 and 0 of the fixed header of the UNSUBSCRIBE Control Packet are reserved and MUST be set to 0,0,1 and 0 respectively. The Server MUST treat any other value as malformed and close the Network 1136 Connection [MQTT-3.10.1-1].

1137

1138 1139

Remaining Length field

1140 This is the length of variable header (2 bytes) plus the length of the payload.

3.10.2 Variable header 1141

1142 The variable header contains a Packet Identifier. Section 2.3.1 provides more information about Packet Identifiers. 1143

1144 Figure 3.29 – UNSUBSCRIBE Packet variable header

Bit	7	6	5	4	3	2	1	0
byte 1	Packet Identifier MSB							
byte 2	Packet Identifier LSB							

1145

1146

3.10.3 Payload

1147 The payload for the UNSUBSCRIBE Packet contains the list of Topic Filters that the Client wishes to 1148 unsubscribe from. The Topic Filters in an UNSUBSCRIBE packet MUST be UTF-8 encoded strings as 1149 defined in Section 1.5.3, packed contiguously [MQTT-3.10.3-1].

The Payload of an UNSUBSCRIBE packet MUST contain at least one Topic Filter. An UNSUBSCRIBE packet with no payload is a protocol violation [MQTT-3.10.3-2]. See section 4.8 for information about handling errors.

1153

11541155

1156

3.10.3.1 Payload non normative example

Figure 3.30 - Payload byte format non normative example show the payload for the UNSUBSCRIBE Packet briefly described in Table3.7 - Payload non normative example.

1157 Table3.7 - Payload non normative example

Topic Filter	"a/b"
Topic Filter	"c/d"

1158 Figure 3.30 - Payload byte format non normative example

	Description	7	6	5	4	3	2	1	0
Topic Filter		·							
byte 1	Length MSB (0)	0	0	0	0	0	0	0	0
byte 2	Length LSB (3)	0	0	0	0	0	0	1	1
byte 3	'a' (0x61)	0	1	1	0	0	0	0	1
byte 4	'/' (0x2F)	0	0	1	0	1	1	1	1
byte 5	'b' (0x62)	0	1	1	0	0	0	1	0
Topic Filter									
byte 6	Length MSB (0)	0	0	0	0	0	0	0	0
byte 7	Length LSB (3)	0	0	0	0	0	0	1	1
byte 8	'c' (0x63)	0	1	1	0	0	0	1	1
byte 9	'/' (0x2F)	0	0	1	0	1	1	1	1
byte 10	'd' (0x64)	0	1	1	0	0	1	0	0

3.10.4 Response

The Topic Filters (whether they contain wildcards or not) supplied in an UNSUBSCRIBE packet MUST be compared character-by-character with the current set of Topic Filters held by the Server for the Client. If any filter matches exactly then its owning Subscription is deleted, otherwise no additional processing occurs [MQTT-3.10.4-1].

1163 1164

1159

1160

1161 1162

If a Server deletes a Subscription:

11651166

It MUST stop adding any new messages for delivery to the Client [MQTT-3.10.4-2].

- It MUST complete the delivery of any QoS 1 or QoS 2 messages which it has started to send to the Client [MQTT-3.10.4-3].
- It MAY continue to deliver any existing messages buffered for delivery to the Client.

1170

1171 1172

1173

The Server MUST respond to an UNSUBSUBCRIBE request by sending an UNSUBACK packet. The UNSUBACK Packet MUST have the same Packet Identifier as the UNSUBSCRIBE Packet [MQTT-3.10.4-4]. Even where no Topic Subscriptions are deleted, the Server MUST respond with an UNSUBACK [MQTT-3.10.4-5].

1174 1175

> If a Server receives an UNSUBSCRIBE packet that contains multiple Topic Filters it MUST handle that packet as if it had received a sequence of multiple UNSUBSCRIBE packets, except that it sends just one UNSUBACK response [MQTT-3.10.4-6].

1177 1178

1176

1180

3.11 UNSUBACK – Unsubscribe acknowledgement (退订确认) 1179

1181

The UNSUBACK Packet is sent by the Server to the Client to confirm receipt of an UNSUBSCRIBE Packet.

1182 1183

服务器发送给终端,确认一个 UNSUBSCRIBE 包已经被接收。

1184

1185 Figure 3.31 - UNSUBACK Packet fixed header

Bit	7	6	5	4	3	2	1	0
byte 1	MC	QTT Control	Packet type	(11)		Reserv	ed	
	1	0	1	1	0	0	0	0
byte 2			Ī	Remaining L	ength (2)			
	0	0	0	0	0	0	1	0

1186

Remaining Length field

3.11.1 Fixed header

1187 This is the length of the variable header. For the UNSUBACK Packet this has the value 2.

1188 剩余长度为2,就是可变消息头的长度。

1189

3.11.2 Variable header (可变消息头)

1190 The variable header contains the Packet Identifier of the UNSUBSCRIBE Packet that is being

acknowledged. 可变消息头包含接收确认的 UNSUBSCRIBE 的包 ID 1191

1192 Figure 3.32 - UNSUBACK Packet variable header

Bit	7	6	5	4	3	2	1	0
byte 1			F	Packet Ide	ntifier MSI	В		
byte 2			F	Packet Ide	ntifier LSE	3		

1193

1194 3.11.3 Payload

1195 The UNSUBACK Packet has no payload.没有消息体。

1197 3.12 PINGREQ - PING request (PING 请求)

- 1198 The PINGREQ Packet is sent from a Client to the Server. It can be used to:
- 1199 PINGREQ 是终端发给服务器,可以用于:
- Indicate to the Server that the Client is alive in the absence of any other Control Packets being sent from the Client to the Server (在没有其他控制包要发给服务器的时候,告诉服务器,终端还 活着,)
- 1203 2. Request that the Server responds to confirm that it is alive. (请求服务器响应,确认服务器还活 1204 着)
 - 3. Exercise the network to indicate that the Network Connection is active. (网络可用指示)

1207 This Packet is used in Keep Alive processing, see Section 3.1.2.9 for more details.

1208 Keep Alive 处理, 详见 3.1.2.10

1205

1206

1211

1209 3.12.1 Fixed header (固定头)

1210 Figure 3.33 – PINGREQ Packet fixed header

Bit	7	6	5	4	3	2	1	0
byte 1	MQ ⁻	TT Control P	acket type	e (12)		Reser	ved	
	1	1	0	0	0	0	0	0
byte 2				Remaining	Length (0)			
	0	0	0	0	0	0	0	0

1212 **3.12.2 Variable header**

1213 The PINGREQ Packet has no variable header. (没有可变头)

1214 **3.12.3 Payload**

1215 The PINGREQ Packet has no payload. (没有消息体)

1216 **3.12.4 Response**

- 1217 The Server MUST send a PINGRESP Packet in response to a PINGREQ Packet [MQTT-3.12.4-1].
- 1218 服务器必须发送一个 PINGRESP 响应 PINGREQ

1219 3.13 PINGRESP – PING response (PING 响应)

- 1220 A PINGRESP Packet is sent by the Server to the Client in response to a PINGREQ Packet. It indicates
- 1221 that the Server is alive.
- 1222 PINGRESP服务器发送给终端,是 PINGREQ 包的响应,标识服务器还活着。
- 1223 This Packet is used in Keep Alive processing, see Section 3.1.2.9 for more details.

1224 **3.13.1 Fixed header**(固定头)

1225 Figure 3.34 – PINGRESP Packet fixed header

Bit	7	6	5	4	3	2	1	0
byte 1	MQ ⁻	TT Control F	Packet type	(13)		Rese	erved	
	1	1	0	1	0	0	0	0
byte 2				Remaining	Length (0)			
	0	0	0	0	0	0	0	0

1226

1227 3.13.2 Variable header

1228 The PINGRESP Packet has no variable header. (PINGRESP 没有可变消息头)

1229 **3.13.3 Payload**

1230 The PINGRESP Packet has no payload. (PINGRESP 没有消息体)

1231 3.14 DISCONNECT – Disconnect notification (断开链接通知)

1232 The DISCONNECT Packet is the final Control Packet sent from the Client to the Server. It indicates that

the Client is disconnecting cleanly.

1234 DISCONNECT 是终端发送给服务器的控制包。他指示终端正在断开服务器

1235 **3.14.1 Fixed header** (固定消息头)

1236 Figure 3.35 – DISCONNECT Packet fixed header

Bit	7	6	5	4	3	2	1	0
byte 1	MQ [*]	TT Control	Packet type	e (14)		Reser	ved	
	1	1	1	0	0	0	0	0
byte 2				Remaining	Length (0)			
	0	0	0	0	0	0	0	0

The Server MUST validate that reserved bits are set to zero and disconnect the Client if they are not zero [MQTT-3.14.1-1].

1239 **3.14.2 Variable header**

1240 The DISCONNECT Packet has no variable header.没有可变消息头

1241 **3.14.3 Payload**

1242 The DISCONNECT Packet has no payload.没有消息体

1243 **3.14.4 Response** (响应)

- 1244 After sending a DISCONNECT Packet the Client:在发送一个 DISCONNECT 包之后,终端:
- MUST close the Network Connection [MQTT-3.14.4-1].
- 1246 必须关系网络连接
- MUST NOT send any more Control Packets on that Network Connection [MQTT-3.14.4-2].
- 1248 禁止在网络上发送任何控制包。

- 1250 On receipt of DISCONNECT the Server:接收到 DISCONNECT 之后,服务器:
- 1251 必须抛弃任何 Will 消息,跟当前连接有关,并且没有发布它,如章节 3.1.2.5
- 1252 如果终端还没有完成这样干,应该关闭网络连接。

4 Operational behavior 操作性的行为

4.1 Storing state

- 1255 It is necessary for the Client and Server to store Session state in order to provide Quality of Service
- 1256 guarantees. The Client and Server MUST store Session state for the entire duration of the Session
- 1257 [MQTT-4.1.0-1]. A Session MUST last at least as long it has an active Network Connection [MQTT-4.1.0-1258 2].
- 1259 为了提供 QoS 保证,终端和服务器有必要存储会话状态。终端与服务器必须为整个会话存储会话状态。
- 1260 会话必须持续直到网络连接是激活的。

- Retained messages do not form part of the Session state in the Server. The Server SHOULD retain such messages until deleted by a Client.
- 1264 保留信息不能组成服务器的会话状态。服务器应保留这些信息直到被终端删除。

Non normative comment

实例

The storage capabilities of Client and Server implementations will of course have limits in terms of capacity and may be subject to administrative policies such as the maximum time that Session state is stored between Network Connections. Stored Session state can be discarded as a result of an administrator action, including an automated response to defined conditions. This has the effect of terminating the Session. These actions might be prompted by resource constraints or for other operational reasons. It is prudent to evaluate the storage capabilities of the Client and Server to ensure that they are sufficient.

终端和服务器的储存能力在履行时有所限制并服从于诸如网络连接间会话状态的最大时间。存储会话状态。经管理员操作可删除存储会话状态,包括对限制条件的自动回复。该行为会对终止会话产生影响。资源限制或其他操作性原因导致此类行为发生。需要对终端和服务器的存储能力进行谨慎评估以确保存储充足。

Non normative comment

 It is possible that hardware or software failures may result in loss or corruption of Session state stored by the Client or Server.

硬件和软件的损坏可能会导致终端和服务器的存储会话状态丢失或损坏。

Non normative comment

Normal operation of the Client of Server could mean that stored state is lost or corrupted because of administrator action, hardware failure or software failure. An administrator action could be an automated response to defined conditions. These actions might be prompted by resource constraints or for other operational reasons. For example the server might determine that based on external knowledge, a message or messages can no longer be delivered to any current or future client.

终端和服务器的一般性行为意味着由于管理性操作或者硬件软件损坏导致存储状态丢失或损坏。管理性操作可作为对限制条件的自动回复。资源限制或者其他操作性原因促使该类操作发生。例如,服务器必须基于外部认识作出决断,信息不再能够传递到任何当前或者之后的终端上。

Non normative comment

MQTT 规范 3.1.1 中文翻译 An MQTT user should evaluate the storage capabilities of the MQTT Client and Server 1296 implementations to ensure that they are sufficient for their needs. 1297 1298 MQTT 用户应对 MQTT 终端和服务器存储能力进行评估,从而确保他们能够充分满足要求。 1299 1300 4.1.1 Non normative example 1301 实例 1302 For example, a user wishing to gather electricity meter readings may decide that they need to use QoS 1 messages because they need to protect the readings against loss over the network, however they may 1303 1304 have determined that the power supply is sufficiently reliable that the data in the Client and Server can be 1305 stored in volatile memory without too much risk of its loss. 1306 1307 比方说,有个用户希望收集电表读数,于是决定利用 QoS 信息,因为他们需要保护读数以免在网上丢失。 1308 然而,他们需要确保有充足的动力储存好终端和服务器上的数据,以防丢失。 1309 Conversely a parking meter payment application provider might decide that there are no circumstances 1310 where a payment message can be lost so they require that all data are force written to non-volatile memory before it is transmitted across the network. 1311 1312 1313 相反,一个停车收费 app 的开发者要保证在任何情况下都不能丢失收付信息。于是他们要求在传送到网上 1314 之前,强制录入所有数据。 1315 4.2 Network Connections 1316 1317 The MQTT protocol requires an underlying transport that provides an ordered, lossless, stream of bytes from the Client to Server and Server to Client. 1318 1319 MQTT 协议需要一个能够完成终端和服务器之间的传输的基本传输方式。 1320 Non normative comment 1321 The transport protocol used to carry MQTT 3.1 was TCP/IP as defined in [RFC793]. TCP/IP can be used for MQTT 3.1.1. The following are also suitable: 1322 1323 TLS [RFC5246] 1324 WebSocket [RFC6455] 在 RFC793 中规定,被用作传送 MQTT3.1 的传输协议是 TCP/IP。除了 Tcp/IP 可以传输 1325 1326 MQTT3.1.1.还有这些 1327 TLS [RFC5246] 1328 WebSocket [RFC6455] 1329 1330 Non normative comment 1331 TCP ports 8883 and 1883 are registered with IANA for MQTT TLS and non TLS communication respectively. 1332 1333 1334 TCP ports 8883 和 1883 分别注册为 IANA MQTT TLS 和非 TLS 1335 1336 Connectionless network transports such as User Datagram Protocol (UDP) are not suitable on their own

because they might lose or reorder data.

1338

1340

1339 断网传送方式比如 UDP 对他们就不适合,因为这种方法会丢失或弄乱数据。

4.3 Quality of Service levels and protocol flows

- MQTT delivers Application Messages according to the Quality of Service (QoS) levels defined here. The
- delivery protocol is symmetric, in the description below the Client and Server can each take the role of
- either Sender or Receiver. The delivery protocol is concerned solely with the delivery of an application
- message from a single Sender to a single Receiver. When the Server is delivering an Application
- Message to more than one Client, each Client is treated independently. The QoS level used to deliver an
- Application Message outbound to the Client could differ from that of the inbound Application Message.
- The non-normative flow diagrams in the following sections are intended to show possible implementation

1348 approaches.

1349

- 1350 MQTT基于QoS层次定义传送应用信息。其传输协议是对称的,在描述中,终端和服务器都可作为发送者
- 1351 和接受者。发送者和接受者传递一个应用信息只和传输协议有关。当一个服务器在传递一个应用信息给多
- 1352 个终端时,每个终端都是作为独立的。以前,QoS 传递一个向外的信息给终端与传递一个向内信息是不一
- 1353 样的。

1354

13551356

1357

在之后环节中的非规范流程图是为了指出可能的实施办法。

4.3.1 QoS 0: At most once delivery

- The message is delivered according to the capabilities of the underlying network. No response is sent by the receiver and no retry is performed by the sender. The message arrives at the receiver either once or
- 1360 not at all.

1361

1362 基于基础网络能力的信息传送。接受者不发任何回应,发送者也不进行重试。信息一次性传送到接受者要**1363** 不就传不到。

1364

- 1304
- 1365 In the QoS 0 delivery protocol, the Sender
- 1366 在 QoS 传输协议中,发送者
- MUST send a PUBLISH packet with QoS=0, DUP=0 [MQTT-4.3.1-1].
- 1368 必须发送 PUBLISH packet with QoS=0, DUP=0 [MQTT-4.3.1-1]
- 1369 In the QoS 0 delivery protocol, the Receiver
- 1370 在 QoS 传输协议中,接受者
- Accepts ownership of the message when it receives the PUBLISH packet.
- 1372 收到 PUBLISH packet 后就获得信息的所有权。

1373 Figure 4.1 – QoS 0 protocol flow diagram, non normative example

Sender Action	Control Packet	Receiver Action
PUBLISH QoS 0, DUP=0		
	>	

	Deliver Application Message to appropriate onward recipient(s)
	传递应用信息给前方适当的接受 者

1374 4.3.2 QoS 1: At least once delivery 至少一次传递

1375 1376

1377 1378 This quality of service ensures that the message arrives at the receiver at least once. A QoS 1 PUBLISH Packet has a Packet Identifier in its variable header and is acknowledged by a PUBACK Packet. Section 2.3.1 provides more information about Packet Identifiers.

1379

1380 服务质量需保证一次性将信息传送给接收者。QoS PUBLISH packet 能识别和认知 packet。2.3.1 部分具体 1381 描述关于 packet 识别。

13821383

1385

1386

1387

1389

1390 1391

1392

1393

1402

1403

1404

1405

1406 1407

1408 1409

In the QoS 1 delivery protocol, the Sender

1384 在 QoS 传输协议中,发送者

- MUST assign an unused Packet Identifier each time it has a new Application Message to publish.
- 每推送新的应用信息时必须分配一个未使用的 packet 识别器
- MUST send a PUBLISH Packet containing this Packet Identifier with QoS=1, DUP=0.
- 1388 必须发送包含有 packet 识别器(QoS=1, DUP=0)的 publish packet
 - MUST treat the PUBLISH Packet as "unacknowledged" until it has received the corresponding PUBACK packet from the receiver. See Section 4.4 for a discussion of unacknowledged messages.
 - 必须将 PUBLISH 包作为未知直到其从发送者处收到相关的 PUBACK 包。4.4 将对未知信息进行 讨论
- 1394 [MQTT-4.3.2-1].
- 1395 The Packet Identifier becomes available for reuse once the Sender has received the PUBACK Packet.
- 1396 一旦发送者收到 PUBACK 包时,PACKET 识别能够再次使用。
- Note that a Sender is permitted to send further PUBLISH Packets with different Packet Identifiers while it is waiting to receive acknowledgements.
- 1399 注意,发送者在等候接受确认时,有资格发送后续的带有不同包 ID 的 PUBLISH 包。
- 1400 In the QoS 1 delivery protocol, the Receiver
- 1401 在 QoS 传输协议中,接受者
 - MUST respond with a PUBACK Packet containing the Packet Identifier from the incoming PUBLISH Packet, having accepted ownership of the Application Message
 - 必须对包含从传入的 publish 包(取得应用信息所有权)里来的包 id 的 PUBACK 包进行回应,
 - After it has sent a PUBACK Packet the Receiver MUST treat any incoming PUBLISH packet that
 contains the same Packet Identifier as being a new publication, irrespective of the setting of its
 DUP flag.
 - 在发送 PUBACK 包之后,不管其 DUP 标志的设置,接受者必须将传送中包含有相同包 ID 的 PUBLISH 包作为新发布者。
- 1410 [MQTT-4.3.2-2].

1412 Figure 4.2 – QoS 1 protocol flow diagram, non normative example

Sender Action	Control Packet	Receiver action
Store message		
Send PUBLISH QoS 1, DUP 0, <packet identifier=""></packet>	>	
		Initiate onward delivery of the Application Message ¹
	<	Send PUBACK <packet identifier=""></packet>
Discard message		

1413

1414 The receiver is not required to complete delivery of the Application Message before sending the
1415 PUBACK. When its original sender receives the PUBACK packet, ownership of the Application
1416 Message is transferred to the receiver.

1416 1417

1418 在发送 PUBACK 之前,接收者无需完善应用信息的传递。当初始发送者收到 PUBACK 包时,也将应用信 1419 息所有权传给了接收者。

1420 4.3.3 QoS 2: Exactly once delivery 至少一次完全正确的传递

This is the highest quality of service, for use when neither loss nor duplication of messages are acceptable. There is an increased overhead associated with this quality of service.

1423 1424

- 在使用时能够既不丢失信息也不复制信息,这是最高端的服务。这种高质量服务会不断增加开销。
- A QoS 2 message has a Packet Identifier in its variable header. Section 2.3.1 provides more information about Packet Identifiers. The receiver of a QoS 2 PUBLISH Packet acknowledges receipt with a two-step acknowledgement process.

1428 1429

QoS 2 信息有个包 id。2.3.1 部分对包 id 进行更多描述。Qos2 PUBLISH 包的接受者承认收到两步式认证过程。

143014311432

1434

- In the QoS 2 delivery protocol, the Sender
- 1433 在 QoS2 传送协议中,发送者
 - MUST assign an unused Packet Identifier when it has a new Application Message to publish.
 - 当其有一个新的应用信息要发布时,必须分配一个未使用的包 ID.
- MUST send a PUBLISH packet containing this Packet Identifier with QoS=2, DUP=0.
- 1437 必须发送一个包含有包 ID (带有 QoS=2, DUP=0)的 PUBLISH 包
- MUST treat the PUBLISH packet as "unacknowledged" until it has received the corresponding
 PUBREC packet from the receiver. See Section 4.4 for a discussion of unacknowledged
 messages.

硬件

MQTT 规范 3.1.1 中文翻译

- MUST send a PUBREL packet when it receives a PUBREC packet from the receiver. This
 PUBREL packet MUST contain the same Packet Identifier as the original PUBLISH packet.
- 1445 当从接收者处收到 PUBERC 包时,必须发布 PUBREL 包,其中必须包含有与初始 PUBLSH 包相 同的包 ID.
 - MUST treat the PUBREL packet as "unacknowledged" until it has received the corresponding PUBCOMP packet from the receiver.
 - 必须将 PUBREL 包作为未认证的直到其从接收者处收到相关 PUBCOMP 包。
- MUST NOT re-send the PUBLISH once it has sent the corresponding PUBREL packet.
- 一旦发了相关的 PUBREL 包就禁止重新发送 PUBLSH.
- 1452 [MQTT-4.3.3-1].
- 1453 The Packet Identifier becomes available for reuse once the Sender has received the PUBCOMP Packet.
- 1454 一旦发送者收到PUBCOMP包,包ID就能够再次使用。
- Note that a Sender is permitted to send further PUBLISH Packets with different Packet Identifiers while it is waiting to receive acknowledgements.
- 1457 注意,发送者在等候接受确认时,有资格发送后续的带有不同包 ID 的 PUBLISH 包。
- 1458

1447

1448

1449

- 1459 In the QoS 2 delivery protocol, the Receiver

1461 1462

1463 1464

1469

1470

1471

1472

14731474

1475

- MUST respond with a PUBREC containing the Packet Identifier from the incoming PUBLISH Packet, having accepted ownership of the Application Message.
- 必须对包含从传入的 publish 包(取得应用信息所有权)里来的包 id 的 PUBREC 包进行回应,
- 1465
- Until it has received the corresponding PUBREL packet, the Receiver MUST acknowledge any
 subsequent PUBLISH packet with the same Packet Identifier by sending a PUBREC. It MUST
 NOT cause duplicate messages to be delivered to any onward recipients in this case.
 - 接收者必须通过发送 PUBREC 来认证之后有着相同包 ID 的 PUBLISH 包,直到其收到相关 PUBREL 包。禁止造成复制信息传递到任何前方的接收者处。
 - MUST respond to a PUBREL packet by sending a PUBCOMP packet containing the same Packet Identifier as the PUBREL.
 - 必须通过发送包含与 PUBREL 相同 的包 ID 的 PUBCOMP 包来对 PUBREL 包进行回应。
 - After it has sent a PUBCOMP, the receiver MUST treat any subsequent PUBLISH packet that contains that Packet Identifier as being a new publication.
- 1476 [MQTT-4.3.3-2].
- 1477 发送 PUBCOMP 之后,接收者必须将之后那些包含包 ID 的 PUBLISH 包作为新的发布者。

1478

1479

Figure 4.3 – QoS 2 protocol flow diagram, non normative example

Sender Action	Control Packet	Receiver Action
Store message		
PUBLISH QoS 2, DUP 0 <packet identifier=""></packet>		

	>	
		Method A, Store message or Method B, Store <packet Identifier> then Initiate onward delivery of the Application Message¹</packet
		PUBREC <packet identifier=""></packet>
	<	
Discard message, Store PUBREC received <packet Identifier></packet 		
PUBREL <packet identifier=""></packet>		
	>	
		Method A, Initiate onward delivery of the Application Message¹ then discard message or Method B, Discard <packet identifier=""></packet>
		Send PUBCOMP <packet identifier=""></packet>
	<	
Discard stored state		

 ¹ The receiver is not required to complete delivery of the Application Message before sending the PUBREC or PUBCOMP. When its original sender receives the PUBREC packet, ownership of the Application Message is transferred to the receiver.

在发送 PUBREC 或者 PUBCOMP 前,接收者无需完善应用信息的传送。当初始发送者收到 PUBREC 包时,应用信息的所有权便转给了接收者。

Figure 4.3 shows that there are two methods by which QoS 2 can be handled by the receiver. They differ in the point within the flow at which the message is made available for onward delivery. The choice of Method A or Method B is implementation specific. As long as an implementation chooses exactly one of these approaches, this does not affect the guarantees of a QoS 2 flow.

图表 4.3 指出接收者可通过两种方法来解决 QoS2.他们的不同在于如何使得信息能够向前传送。两种方法的选择在应用时是明确的。只要选择其中一种方法,便不会影响 QoS2 流动的保证。

4.4 Message delivery retry 信息传递重试

When a Client reconnects with CleanSession set to 0, both the Client and Server MUST re-send any unacknowledged PUBLISH Packets (where QoS > 0) and PUBREL Packets using their original Packet Identifiers [MQTT-4.4.0-1]. This is the only circumstance where a Client or Server is REQUIRED to redeliver messages.

1498 当终端与会话(设置为0)重新连接时,终端与服务器都必须重新发送未认证的 PUBLISH 包(QoS>0) 1499 PUBREL 包使用其初始包 ID [MQTT-4.4.0-1]. 这是终端或者服务器有资格重新传递信息的唯一情况。

1500 1501

Non normative comment

1502 1503

1504

1505

Historically retransmission of Control Packets was required to overcome data loss on some older TCP networks. This might remain a concern where MQTT 3.1.1 implementations are to be deployed in such environments.

1506

1507 以前,在老的 TCP 网络协议中,重新传送控制包需要克服数据丢失。其中可包含 MQTT3.1.1 在一 些环境中应用的协议。 1508

1509

4.5 Message receipt

- 1510 When a Server takes ownership of an incoming Application Message it MUST add it to the Session state of those clients that have matching Subscriptions. Matching rules are defined in Section 4.7 [MQTT-4.5.0-1511 1512
- 1513 当服务器取得应用信息的所有权时,必须将其加入符合协议的终端的会话状态中去。4.7部分详细说明匹配 1514 原则。
- 1515 Under normal circumstances Clients receive messages in response to Subscriptions they have created. A Client could also receive messages that do not match any of its explicit Subscriptions. This can happen if 1516
- the Server automatically assigned a subscription to the Client. A Client could also receive messages 1517 while an UNSUBSCRIBE operation is in progress. The Client MUST acknowledge any Publish Packet it 1518
- receives according to the applicable QoS rules regardless of whether it elects to process the Application 1519
- Message that it contains [MQTT-4.5.0-2]. 1520
- 1521 正常状况下,终端接收信息作为对他们所建立的协议的回应。终端也可接受那些不符合其明确协议的信
- 息。如果服务器给终端自动分配了协议,这种情况就能够发生。当过程中发生取消操作时,终端同样也能 1522
- 接受信息。根据 QoS 规则,终端必须承认任何其接收的 PUBLISH 包,无论他是否处理其中包含的应用信 1523
- 1524 息。

1525

1528 1529

1534

4.6 Message ordering

- A Client MUST follow these rules when implementing the protocol flows defined elsewhere in this chapter: 1526
- 1527 这章节对实施协议进行定义,终端必须遵守这些条例
 - When it re-sends any PUBLISH packets, it MUST re-send them in the order in which the original PUBLISH packets were sent (this applies to QoS 1 and QoS 2 messages) [MQTT-4.6.0-1]
- 1530 当重新发送任何 PUBLISH 包时,初始 PUBLISH 包已发送时,必须按序重新发送。(这应用于 1531 QoS1和QoS2信息)
- It MUST send PUBACK packets in the order in which the corresponding PUBLISH packets were 1532 received (QoS 1 messages) [MQTT-4.6.0-2] 1533
 - 收到相关 PUBLISH 包时,必须顺序发送 puback 包(QoS 1 信息)
- 1535 It MUST send PUBREC packets in the order in which the corresponding PUBLISH packets were received (QoS 2 messages) [MQTT-4.6.0-3] 1536
- 收到相关 PUBLISH 包时,必须顺序发送 pubrec 包(QoS 2 信息) 1537
- 1538 •
- 1539 It MUST send PUBREL packets in the order in which the corresponding PUBREC packets were received (QoS 2 messages) [MQTT-4.6.0-4] 1540
- 收到相关 PUBLISH 包时,必须顺序发送 puback 包(QoS 2 信息) 1541

1542

1543 1544

A Server MUST by default treat each Topic as an "Ordered Topic". It MAY provide an administrative or other mechanism to allow one or more Topics to be treated as an "Unordered Topic" [MQTT-4.6.0-5].

1545

1546 When a Server processes a message that has been published to an Ordered Topic, it MUST follow the 1547 rules listed above when delivering messages to each of its subscribers. In addition it MUST send 1548 PUBLISH packets to consumers (for the same Topic and QoS) in the order that they were received from

1549

any given Client [MQTT-4.6.0-6].

1550

服务器必须默认每个主题是有序的。可能提供管理或其他机制来允许一个或多个主题作为无序主题

1551

当服务器对发布给一个有序主题的信息进行加工时,必须遵从传递信息给订阅者所列出的各种规则。此

1552

外,必须将他们从终端收到 PUBLISH 包顺序发给消费者(同一主题和 QoS)

1553

Non normative comment

1554 1555 1556

1557

The rules listed above ensure that when a stream of messages is published and subscribed to with QoS 1, the final copy of each message received by the subscribers will be in the order that they were originally published in, but the possibility of message duplication could result in a resend of an earlier message being received after one of its successor messages. For example a publisher might send messages in the order 1.2.3.4 and the subscriber might receive them in the

1558 1559

order 1,2,3,2,3,4.

1560 1561

以上所列的规则为确保当发布和订阅 QoS1 一系列信息时, 最终复制的每条初始信息将有序发送 给订阅者,但是复制的信息可能导致重新发送先前收到的一条信息。比如发布者以 1234 的顺序发

If both Client and Server make sure that no more than one message is "in-flight" at any one time

(by not sending a message until its predecessor has been acknowledged), then no QoS 1

布,订阅者可能收到的信息顺序为 123234 1562

1563

1564

1565 1566

1567

1568

1569

1571 1572

1573

1575

1570

message will be received after any later one - for example a subscriber might receive them in the order 1,2,3,3,4 but not 1,2,3,2,3,4. Setting an in-flight window of 1 also means that order will be preserved even if the publisher sends a sequence of messages with different QoS levels on the same topic.

如果终端和服务器确保某个时刻不超过一条信息在发送中(直到先前的被认证前不发送任何信 息),则之后也不会收到 QoS1 信息。比如,一个订阅者收到的顺序为 12334 不是 123234.。设立 1 的发送窗口意味着该顺序将被保存,即使订阅者发送同一主题不同 QoS 的信息序列。

4.7 Topic Names and Topic Filters

1574 主体名称和主题过滤

4.7.1 Topic wildcards 主题通配符

- The topic level separator is used to introduce structure into the Topic Name. If present, it divides the 1576
- Topic Name into multiple "topic levels". 1577
- 1578 主体分隔符被用于介绍主题名称的结构。如今,它将主体名称分成多元化主题层次
- 1579 A subscription's Topic Filter can contain special wildcard characters, which allow you to subscribe to
- multiple topics at once. 1580
- 一个协议的主题过滤包含特殊通配符,可允许你一次订阅多元主题。 1581
- 1582 The wildcard characters can be used in Topic Filters, but MUST NOT be used within a Topic Name
- [MQTT-4.7.1-1]. 1583
- 1584 通配符可应用于主题过滤,不能用于主题名称。

1585 **4.7.1.1 Topic level separator**

1594 1595

1596

1597 1598

1599

1603 1604 1605

1606 1607

1608 1609

1610 1611

1612 1613

1614

16151616

1617 1618

1624 1625

The forward slash ('/' U+002F) is used to separate each level within a topic tree and provide a hierarchical structure to the Topic Names. The use of the topic level separator is significant when either of the two wildcard characters is encountered in Topic Filters specified by subscribing Clients. Topic level separators can appear anywhere in a Topic Filter or Topic Name. Adjacent Topic level separators indicate a zero length topic level.

1591 前面的斜线(/U+002F)用于分离每个层次,通过主题树的形式,并为主题名称建立等级制度。当在主题过 1592 滤中遇上订阅终端指定的两个通配符时,主题分隔符的使用具有重要意义。主题分隔符在主题过滤和主题

1593 名称中无处不在。临近的主题分隔符表明零长度主题级别。

4.7.1.2 Multi-level wildcard 多级通配符

The number sign ('#' U+0023) is a wildcard character that matches any number of levels within a topic. The multi-level wildcard represents the parent and any number of child levels. The multi-level wildcard character MUST be specified either on its own or following a topic level separator. In either case it MUST be the last character specified in the Topic Filter [MQTT-4.7.1-2].

1600 数字标志('#' U+0023)为一个能够与主题任何级别的数字匹配的通配符。多级通配符代表母体和各种子 1601 体级别数字。必须自主或者遵从主体分隔符指定多级通配符。无论发生何种情况,在主题过滤中必须最后 1602 对其进行规定。

Non normative comment

For example, if a Client subscribes to "sport/tennis/player1/#", it would receive messages published using these topic names:

比如,如果一个终端这样描述"sport/tennis/player1/#",它将接收到使用以下名称的信息发布。

- "sport/tennis/player1"
- "sport/tennis/player1/ranking"
- "sport/tennis/player1/score/wimbledon"

Non normative comment

- "sport/#" also matches the singular "sport", since # includes the parent level.
- "sport/#" 同样适合 "sport",因为#包括母体级别
 - "#" is valid and will receive every Application Message
- "#" 正确 可以收到任何应用消息
- "sport/tennis/#" is valid
- 1619 合規
- 1620 "sport/tennis#" is not valid
- 1621 不合规
- 1622 "sport/tennis/#/ranking" is not valid
- 1623 不合规

4.7.1.3 Single level wildcard 单独等级通配符

The plus sign ('+' U+002B) is a wildcard character that matches only one topic level.

1626 加号也是一个通配符,其只适用于一个主题等级

1627 1628

1629

The single-level wildcard can be used at any level in the Topic Filter, including first and last levels. Where it is used it MUST occupy an entire level of the filter [MQTT-4.7.1-3]. It can be used at more than one level in the Topic Filter and can be used in conjunction with the multilevel wildcard.

1630 1631

1632 1633

单独等级通配符适用于主题过滤的各个等级,包括第一级和最后一级。使用时必须占据过滤器的整个等级 [MQTT-4.7.1-3]。在主题过滤器中其可适用于多个级别以及与多元等级通配符的连接中。

1634 1635 1636

1637

1638 1639

1640

1641

Non normative comment

For example, "sport/tennis/+" matches "sport/tennis/player1" and "sport/tennis/player2", but not "sport/tennis/player1/ranking". Also, because the single-level wildcard matches only a single level, "sport/+" does not match "sport" but it does match "sport/".

比如,"sport/tennis/+" 适用 "sport/tennis/player1" 和"sport/tennis/player2",但非 "sport/tennis/player1/ranking"。而且,因为单独等级通配符只适合唯一的等级。"sport/+" 不适 "sport" 但却适用于 "sport/".

1642 1643 1644

1645

1646 1647

Non normative comment

- "+" is valid
- 合规
- "+/tennis/#" is valid
- 1648 合规
- 1649 "sport+" is not valid
- 1650 不合规
- "sport/+/player1" is valid
- 1652 合规
- 1653 "/finance" matches "+/+" and "/+", but not "+"

1654 1655

1656 1657

4.7.2 Topics beginning with \$ 主题开头的\$

The Server MUST NOT match Topic Filters starting with a wildcard character (# or +) with Topic Names beginning with a \$ character [MQTT-4.7.2-1]. The Server SHOULD prevent Clients from using such Topic Names to exchange messages with other Clients. Server implementations MAY use Topic Names that start with a leading \$ character for other purposes.

1658 1659 1660

服务器不能与主题开头有\$的通配符的主题过滤器相配。服务器应防止终端使用此类主题名称来与其他终端交换消息。为了其他目的,服务器运行会使用主题名称开头为\$。

1661 1662 1663

1664 1665

1666

1667

Non normative comment

- \$SYS/ has been widely adopted as a prefix to topics that contain Server-specific information or control APIs
- \$SYS/被广泛认作为主题前缀,包含服务器专用信息或控制 APIs
- Applications cannot use a topic with a leading \$ character for their own purposes
 应用不能为其自身目的而使用开头\$的主题。

1668	Non normative comment
1669 1670	 A subscription to "#" will not receive any messages published to a topic beginning with a
1671	• #的订阅将不会接收到任何发布给开头为\$的主题的信息
1672 1673	 A subscription to "+/monitor/Clients" will not receive any messages published to "\$SYS/monitor/Clients"
1674	"+/monitor/Clients"的订阅将不会接收到发布给"\$SYS/monitor/Clients"的信息
1675 1676	 A subscription to "\$SYS/#" will receive messages published to topics beginning with "\$SYS/"
1677	● "\$SYS/#"的订阅将接收到发布给主题开头为"\$SYS/"的信息
1678 1679	 A subscription to "\$SYS/monitor/+" will receive messages published to "\$SYS/monitor/Clients"
1680	"\$SYS/monitor/+"的订阅将收到发布给"\$SYS/monitor/Clients"的信息
1681 1682	 For a Client to receive messages from topics that begin with \$SYS/ and from topics that don't begin with a \$, it has to subscribe to both "#" and "\$SYS/#"
1683	• 对于终端从开头为\$SYS/的主题和不以\$开头的主题处收到的信息,必须标注"#"和
1684	"\$SYS/#"
1684 1685	"\$SYS/#" 4.7.3 Topic semantic and usage 主题语意和用法
1685	4.7.3 Topic semantic and usage 主题语意和用法
1685 1686	4.7.3 Topic semantic and usage 主题语意和用法 The following rules apply to Topic Names and Topic Filters:
1685 1686 1687	4.7.3 Topic semantic and usage 主题语意和用法 The following rules apply to Topic Names and Topic Filters:
1685 1686 1687 1688	4.7.3 Topic semantic and usage 主题语意和用法 The following rules apply to Topic Names and Topic Filters: 以下规则适用于主题名称和主题过滤
1685 1686 1687 1688 1689	 4.7.3 Topic semantic and usage 主题语意和用法 The following rules apply to Topic Names and Topic Filters: 以下规则适用于主题名称和主题过滤 All Topic Names and Topic Filters MUST be at least one character long [MQTT-4.7.3-1]
1685 1686 1687 1688 1689 1690	 4.7.3 Topic semantic and usage 主题语意和用法 The following rules apply to Topic Names and Topic Filters: 以下规则适用于主题名称和主题过滤 All Topic Names and Topic Filters MUST be at least one character long [MQTT-4.7.3-1] 所有主题名称和主题过滤必须至少一个字符长
1685 1686 1687 1688 1689 1690	 4.7.3 Topic semantic and usage 主题语意和用法 The following rules apply to Topic Names and Topic Filters: 以下规则适用于主题名称和主题过滤 All Topic Names and Topic Filters MUST be at least one character long [MQTT-4.7.3-1] 所有主题名称和主题过滤必须至少一个字符长 Topic Names and Topic Filters are case sensitive
1685 1686 1687 1688 1689 1690 1691 1692	 4.7.3 Topic semantic and usage 主题语意和用法 The following rules apply to Topic Names and Topic Filters: 以下规则适用于主题名称和主题过滤 All Topic Names and Topic Filters MUST be at least one character long [MQTT-4.7.3-1] 所有主题名称和主题过滤必须至少一个字符长 Topic Names and Topic Filters are case sensitive 主题名称和主题过滤区分大小写
1685 1686 1687 1688 1689 1690 1691 1692 1693	 4.7.3 Topic semantic and usage 主题语意和用法 The following rules apply to Topic Names and Topic Filters: 以下规则适用于主题名称和主题过滤 All Topic Names and Topic Filters MUST be at least one character long [MQTT-4.7.3-1] 所有主题名称和主题过滤必须至少一个字符长 Topic Names and Topic Filters are case sensitive 主题名称和主题过滤区分大小写 Topic Names and Topic Filters can include the space character 主题名称和主题过滤可包括空格字符 A leading or trailing '/' creates a distinct Topic Name or Topic Filter
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694	 4.7.3 Topic semantic and usage 主题语意和用法 The following rules apply to Topic Names and Topic Filters: 以下规则适用于主题名称和主题过滤 All Topic Names and Topic Filters MUST be at least one character long [MQTT-4.7.3-1] 所有主题名称和主题过滤必须至少一个字符长 Topic Names and Topic Filters are case sensitive 主题名称和主题过滤区分大小写 Topic Names and Topic Filters can include the space character 主题名称和主题过滤可包括空格字符

- Topic Names and Topic Filters MUST NOT include the null character (Unicode U+0000) [Unicode]
 1700 [MQTT-4.7.3-2]
 - 主题名称和主题过滤器不能包括空字符 (Unicode U+0000)

只有包含'/' 字符的主题名称或主题过滤器是有效的

- Topic Names and Topic Filters are UTF-8 encoded strings, they MUST NOT encode to more than 65535 bytes [MQTT-4.7.3-3]. See Section 1.5.3
 - 主题名称和主题过滤为 UTF-8 编码字符串,不能超过 65535 bytes [MQTT-4.7.3-3] 详见 1.5.3
- There is no limit to the number of levels in a Topic Name or Topic Filter, other than that imposed by the overall length of a UTF-8 encoded string.
- 1707 主题名称和主题过滤的级别数没有限制,除此之外,为 UTF-8 编码字符串所加。

1698

1701

- 1708 When it performs subscription matching the Server MUST NOT perform any normalization of Topic
- Names or Topic Filters, or any modification or substitution of unrecognized characters [MQTT-4.7.3-4].
- 1710 Each non-wildcarded level in the Topic Filter has to match the corresponding level in the Topic Name character for character for the match to succeed.
- 1712 演示时,服务器协议不能演示任何主题名称或主题过滤的正常形式,或未识别字符的任何替代体或仿体。
- 1713 每个主题过滤中的非通配符级别需与主题名称中的相应级别匹配。

1714 1715

1716

1717 1718

1719

Non normative comment

The UTF-8 encoding rules mean that the comparison of Topic Filter and Topic Name could be performed either by comparing the encoded UTF-8 bytes, or by comparing decoded Unicode characters

UTF-8 编码规则意味着通过比对 UTF-8 bytes 或比对解码的单一码字符可显示出主题过滤与主题名称的不同。

172017211722

1723

1724

1725

1726

1727

1728

Non normative comment

- "ACCOUNTS" and "Accounts" are two different topic names
- "ACCOUNTS"与 "Accounts"为两种不同主题名称
 - "Accounts payable" is a valid topic name
 - Accounts payable 有效
 - "/finance" is different from "finance"
 - "/finance" 有别于"finance"

1729

1730 1731

1732 1733

1734 1735 An Application Message is sent to each Client Subscription whose Topic Filter matches the Topic Name attached to an Application Message. The topic resource MAY be either predefined in the Server by an administrator or it MAY be dynamically created by the Server when it receives the first subscription or an Application Message with that Topic Name. The Server MAY also use a security component to selectively authorize actions on the topic resource for a given Client.

1736 应用信息发送给每个主题过滤器与主题名称相符的订阅终端上。主题资源可能会被服务器的操作者预定 1737 义,若当他收到第一个订阅或主题名称的应用信息时,主题资源也可被服务器随机创建。服务器也会利用 1738 安全控件选择性授权给终端的主题资源。

1739

1740

4.8 Handling errors 错误处理

- 1743 Unless stated otherwise, if either the Server or Client encounters a protocol violation, it MUST close the
 1744 Network Connection on which it received that Control Packet which caused the protocol violation [MQTT-
- 1745 **4.8.0-1**].
- 1746 除非特别声明,若服务器或终端碰上违反协议,必须关掉那个收到导致违反协议的控制包的网络连接。
- 1747 A Client or Server implementation might encounter a Transient Error (for example an internal buffer full condition) that prevents successful processing of an MQTT packet.
- 1749 服务器或终端操作时可能碰上暂时性错误(比如内部缓存已满)而阻碍 MQTT 包的进程。
- 1750 If the Client or Server encounters a Transient Error while processing an inbound Control Packet it MUST
- 1751 close the Network Connection on which it received that Control Packet [MQTT-4.8.0-2]. If a Server

- detects a Transient Error it SHOULD NOT disconnect or have any other effect on its interactions with any other Client.
- 1754 若终端或服务器在运行内部控制包时碰上暂时性错误时,必须关闭那个收到控制包的网络连接。若服务器 1755 检测到一个暂时性错误,不能断开或者做出影响与其他终端连接的行为。

5 Security 安全

1757 **5.1 Introduction**

- 1758 This Chapter is provided for guidance only and is **Non Normative**. However, it is strongly recommended
- that Server implementations that offer TLS [RFC5246] SHOULD use TCP port 8883 (IANA service name:
- 1760 secure-matt).
- 1761 本章只提供非规范性指导意见,但是,强烈建议 TLS [RFC5246]服务器操作应利用 TCP port 8883 (IANA
- 1762 service name: secure-mqtt.

1763

1756

- 1764 There are a number of threats that solution providers should consider. For example:
- 1765 应考虑以下一系列威胁的解决方案
- Devices could be compromised
- **1767** 设备可能受破坏
- Data at rest in Clients and Servers might be accessible
- 1769 终端上的空闲数据和服务器可能会被访问
- Protocol behaviors could have side effects (e.g. "timing attacks")
- 1771 协议行为可能产生副作用(如 "timing attacks")
- Denial of Service (DoS) attacks
- 1773 DoS 攻击
- Communications could be intercepted, altered, re-routed or disclosed
- 1775 通讯可能被截获 修改 改道 或关闭
- Injection of spoofed Control Packets

1777

1778 • 欺诈控制包乱入

1779

- MQTT solutions are often deployed in hostile communication environments. In such cases,
- implementations will often need to provide mechanisms for:
- 1782 在不良网络连接环境中,经常部署 MQTT 解决方案。一些情况下,操作也要提供机制。
- 1783 Authentication of users and devices
- 1784 用户和设备的身份验证
- Authorization of access to Server resources
- 1786 访问服务器的授权
- Integrity of MQTT Control Packets and application data contained therein
- 1788 MQTT 控制包和包含在其中的应用数据的健全
- Privacy of MQTT Control Packets and application data contained therein
- 1790 MQTT 控制包和包含其中的应用数据的隐私

1792 As a transport protocol, MQTT is concerned only with message transmission and it is the implementer's responsibility to provide appropriate security features. This is commonly achieved by using TLS 1793 1794 [RFC5246]. 作为运输协议,MQTT 只管信息运输,操作者有责任提供合适安全措施。一般通过使用 TLS 实 1795 1796 1797 In addition to technical security issues there could also be geographic (e.g. U.S.-EU SafeHarbor [USEUSAFEHARB]), industry specific (e.g. PCI DSS [PCIDSS]) and regulatory considerations (e.g. 1798 1799 Sarbanes-Oxley [SARBANES]). 1800 技术安全问题上还会存在地理性问题(比如 e.g. U.S.-EU SafeHarbor [USEUSAFEHARB]),特定行业 (e.g. 1801 PCI DSS [PCIDSS]) 监管问题(e.g. Sarbanes-Oxley [SARBANES]). 5.2 MQTT solutions: security and certification MQTT 解决方案: 安全和 1802 认证 1803 1804 An implementation might want to provide conformance with specific industry security standards such as 1805 NIST Cyber Security Framework [NISTCSF], PCI-DSS [PCIDSS]), FIPS-140-2 [FIPS1402] and NSA Suite 1806 B [NSAB]. 1807 一个操作想要遵从行业安全标准(比如 NIST Cyber Security Framework [NISTCSF], PCI-DSS 1808 [PCIDSS]), FIPS-140-2 [FIPS1402] and NSA Suite B [NSAB]. 1809 1810 Guidance on using MQTT within the NIST Cyber Security Framework [NISTCSF] can be found in the 1811 MQTT supplemental publication, MQTT and the NIST Framework for Improving Critical Infrastructure 1812 Cybersecurity [MQTT NIST]. The use of industry proven, independently verified and certified technologies 1813 will help meet compliance requirements. 1814 在 MQTT 再版中可找到 NIST 网络安全框架中 MQTT 的使用指导,还有为改进网络安全设施 MQTT 和 1815 NIST 框架。行业证明的使用,独立的技术认证能够帮助达到合规要求。 5.3 Lightweight cryptography and constrained devices 轻量加密和设备 1816 受限 1817 1818 1819 Advanced Encryption Standard [AES] and Data Encryption Standard [DES] are widely adopted. 广泛接受的标准是 AES 和 DES 1820 1821 1822 ISO 29192 [ISO29192] makes recommendations for cryptographic primitives specifically tuned to perform 1823 on constrained "low end" devices. 为运行受限的低端设备而调整密码算法时,建议使用 ISO 29192 [ISO29192]行业标准 1824 5.4 Implementation notes 操作注意 1825 1826 There are many security concerns to consider when implementing or using MQTT. The following section 1827 should not be considered a "check list". 1828 操作或使用 MQTT 时需考虑很多安全问题,以下部分不能作为"检查单"

1	820
1	829

- 1830 An implementation might want to achieve some, or all, of the following:
- 一项操作要达到以下其中一些甚至全部 1831

1832

5.4.1 Authentication of Clients by the Server 服务器认证终端

1833

- 1834 The CONNECT Packet contains Username and Password fields. Implementations can choose how to
- make use of the content of these fields. They may provide their own authentication mechanism, use an 1835
- external authentication system such as LDAP [RFC4511] or OAuth [RFC6749] tokens, or leverage 1836
- 1837 operating system authentication mechanisms.
- 1838 连接包里包含了用户名和密码的内容。操作时可选择如何利用这些字段的内容。他们可能拥有自己的授权
- 机制,有诸如 LDAP 和 OAuth 这样的外部授权系统,或者利用操作系统的授权机制。 1839

1840

- 1841 Implementations passing authentication data in clear text, obfuscating such data elements or requiring no
- 1842 authentication data should be aware this can give rise to Man-in-the-Middle and replay attacks. Section
- 5.4.5 introduces approaches to ensure data privacy. 1843
- 操作以明文形式通过授权,模糊处理数据或是不需要认证数据应当谨慎这种行为会产生中间人和重复攻 1844
- 击。5.4.5 部分介绍如何保证数据的私密性 1845

1846

- 1847 A Virtual Private Network (VPN) between the Clients and Servers can provide confidence that data is only
- being received from authorized Clients. 1848
- 服务器与终端间的 VPN 能有效使得数据只能从被授权的终端处取得 1849

1850

- 1851 Where TLS [RFC5246] is used, SSL Certificates sent from the Client can be used by the Server to
- 1852 authenticate the Client.
- 1853 当使用 TLS 时,终端将发送 SSL 证书,服务器利用该证书来授权终端。

1854

- 1855 An implementation might allow for authentication where the credentials are sent in an Application
- Message from the Client to the Server. 1856
- 1857 当终端给服务器发送带证书的应用信息时,可给予操作授权。

1858

- 5.4.2 Authorization of Clients by the Server 服务器授权终端
- 1859 An implementation may restrict access to Server resources based on information provided by the Client
- such as User Name, Client Identifier, the hostname/IP address of the Client, or the outcome of 1860
- 1861 authentication mechanisms.
- 1862 由于授权机制,操作限制进入基于终端所提供的信息(如用户名终端ID 主机名和IP地址)的服务器。

5.4.3 Authentication of the Server by the Client 终端授权服务器 1863

- 1864 The MQTT protocol is not trust symmetrical: it provides no mechanism for the Client to authenticate the
- Server. 1865
- 1866 MQTT 协议不是绝对对称的,它没有建立终端授权服务器的机制
- 1867 Where TLS [RFC5246] is used, SSL Certificates sent from the Server can be used by the Client to
- authenticate the Server. Implementations providing MQTT service for multiple hostnames from a single IP 1868

- 1869 address should be aware of the Server Name Indication extension to TLS defined in section 3 of RFC
- 1870 6066 [RFC6066]. This allows a Client to tell the Server the hostname of the Server it is trying to connect to.
- 1871 当使用 TLS 时,服务器发送 SSL 证书给终端以此来授权服务器。同一 ip 多个主机使用的 MQTT 协议应注
- 1872 意第三部分中 RFC 所定义的服务器名称指示拓展 6066[RFC6066]. 它允许终端将服务器上试图连接的主机
- 1873 名称告知服务器。
- 1874 An implementation might allow for authentication where the credentials are sent in an Application
- 1875 Message from the Server to the Client.
- 1876 当服务器将带有证书的应用信息发给终端时,可给予操作授权。

1877

- 1878 A VPN between Clients and Servers can provide confidence that Clients are connecting to the intended
- 1879 Server.
- 1880 服务器与终端间的 VPN 能有效使得终端与服务器相连。

1881 **5.4.4 Integrity of Application Messages and Control Packets** 应用信息完整性 1882 和控制包

- 1883 Applications can independently include hash values in their Application Messages. This can provide
- integrity of the contents of Publish Control Packets across the network and at rest.
- 1885 应用能独立包括存在于应用信息中的 hash 值。这保证了发布控制包的完整性。

1886

1887 TLS [RFC5246] provides hash algorithms to verify the integrity of data sent over the network.

1888

- 1889 TLS [RFC5246]利用 hash 算法来证明利用网络发送的数据是完整的
- 1890 The use of VPNs to connect Clients and Servers can provide integrity of data across the section of the
- 1891 network covered by a VPN.
- 1892 连接终端和服务器的 VPN 保证了 VPN 覆盖的网络发送的数据的完整性。

1893 5.4.5 Privacy of Application Messages and Control Packets

- 1894 应用信息的私密性和控制包
- 1895 TLS [RFC5246] can provide encryption of data sent over the network. There are valid TLS cipher suites
- 1896 that include a NULL encryption algorithm that does not encrypt data. To ensure privacy Clients and
- 1897 Servers should avoid these cipher suites.
- 1898 TLS [RFC5246] 提供网络发送的数据加密。存在有效的 TLS 加密套件包括一个空的不能加密数据的加密
- 1899 算法。为保证客户端和服务器的隐私,应避免这些加密套件。
- 1900 An application might independently encrypt the contents of its Application Messages. This could provide
- 1901 privacy of the Application Message both over the network and at rest. This would not provide privacy for
- other properties of the Application Message such as Topic Name.
- 1903 一个应用能独立对应用信息进行加密。无论连接与否都能保护应用信息的私密性。但不能保护诸如主题名
- 1904 称的应用信息中的其他内容。
- 1905 Client and Server implementations can provide encrypted storage for data at rest such as Application
- 1906 Messages stored as part of a Session.
- 1907 终端和服务器操作能在脱机状态下建立加密储存,比如将应用信息作为一部分会话储存。

1908 1909	The use of VPNs to connect Clients and Servers can provide privacy of data across the section of the network covered by a VPN.	
1910	用于连接终端和服务器的 VPN 能保护其下的数据隐私。	
1911	5.4.6 Non-repudiation of message transmission 信息传输的不可抵赖性	
1912 1913 1914	Application designers might need to consider appropriate strategies to achieve end to end non-repudiation.	
1915	App 开发者需要想出合适的策略来实现端到端的不可抵赖性	
1916 1917 1918	5.4.7 Detecting compromise of Clients and Servers 客户端与服务器的检测协议	
1919	Client and Server implementations using TLS [RFC5246] should provide capabilities to ensure that any	
1920 1921	SSL certificates provided when initiating a TLS [RFC5246] connection are associated with the hostname of the Client connecting or Server being connected to.	
1922 1923	当 与连接中的终端的主机或服务器进行 TLS 连接时,利用 TLS [RFC5246]操作的客户端和服务器应想方设法确保建立 SSL 证书。	
1924 1925	Client and Server implementations using TLS [RFC5246] can choose to provide capabilities to check Certificate Revocation Lists (CRLs [RFC5280]) and Online Certificate Status Protocol (OSCP) [RFC6960]	
1926	to prevent revoked certificates from being used.	
1927		
1928 1929 1930 1931	Physical deployments might combine tamper-proof hardware with the transmission of specific data in Application Messages. For example a meter might have an embedded GPS to ensure it is not used in an unauthorized location. [IEEE 802.1AR] is a standard for implementing mechanisms to authenticate a device's identity using a cryptographically bound identifier.	
1932 1933 1934	物理部署应包含应用信息中特殊数据传输的防篡改硬件。比如一米可能有一个内置 GPS 来确保它未在一个未授权位置使用。[IEEE 802.1AR] 是一个操作机制标准,利用密码绑定识别来授权设备 ID。	
	5.4.8 Detecting abnormal behaviors 异常行为检测	
1935		
1936 1937	Server implementations might monitor Client behavior to detect potential security incidents. For example: 服务器操作能监测终端行为以此检测潜在安全威胁,如:	
1938	Repeated connection attempts	
1939	反复尝试连接	
1940	Repeated authentication attempts	
1941	● 反复尝试授权	
1942	Abnormal termination of connections	
1943	• 异常的终止连接	
10//		

- Topic scanning (attempts to send or subscribe to many topics)
- 1946 主题扫描(尝试发送或描述主题)
- Sending undeliverable messages (no subscribers to the topics)
- Clients that connect but do not send data
 - 连接的终端不发送数据

1950 1951

- 1952 Server implementations might disconnect Clients that breach its security rules.
- 1953 服务器可终止不合安全的终端的连接

1954

- Server implementations detecting unwelcome behavior might implement a dynamic block list based on identifiers such as IP address or Client Identifier.
- 1957 服务器检测到不善行为可建立基于诸如 ip 地址或终端 id 的动态阻止列表。

1958

- Deployments might use network level controls (where available) to implement rate limiting or blocking based on IP address or other information.
- 1961 部署可使用网络级别控制(若有的话)来设立基于 ip 地址或其他信息的等级限制或阻止。

1962 **5.4.9 Other security considerations** 其他安全隐患

- 1963 If Client or Server SSL certificates are lost or it is considered that they might be compromised they should
- be revoked (utilizing CRLs [RFC5280] and/or OSCP [RFC6960]).
- 1965 终端或服务器 SSL 证书丢失或者被认作受到威胁,他们应当予以吊销。

1966

- 1967 Client or Server authentication credentials, such as User Name and Password, that are lost or considered compromised should be revoked and/or reissued.
- 1969 终端或服务器授权证书,比如用户名和密码丢失或是被认作受到威胁应给予吊销或补发

1970

1974

1975

- 1971 In the case of long lasting connections:
- 1972 在持续连接下

1973 • Clien

- Client and Server implementations using TLS [RFC5246] should allow for session renegotiation to establish new cryptographic parameters (replace session keys, change cipher suites, change authentication credentials).
- 1976 利用 TLS 的终端和服务器应允许会话重新协商来建立新的加密参数(更换会话密钥,更换密码套 1977 件 更换授权证书)
- Servers may disconnect Clients and require them to re-authenticate with new credentials.
 - 服务器可以中断与终端的连接并要求他们重新授权新的证书

1979 1980

- 1981 Constrained devices and Clients on constrained networks can make use of TLS session resumption
- 1982 [RFC5077], in order to reduce the costs of reconnecting TLS [RFC5246] sessions.
- 1983 为减少重新连接 TLS 的花费, 受限设备和终端的网络连接可利用 TLS 会话恢复

- 1985 Clients connected to a Server have a transitive trust relationship with other Clients connected to the same
- 1986 Server and who have authority to publish data on the same topics.
- 1987 与服务器连接的终端与同一服务器的其他终端,和有权对同一主题发布数据的服务器存在可信传递关系。

1988 **5.4.10 Use of SOCKS socks** 应用

- 1989 Implementations of Clients should be aware that some environments will require the use of SOCKSv5
- 1990 [RFC1928] proxies to make outbound Network Connections. Some MQTT implementations could make
- 1991 use of alternative secured tunnels (e.g. SSH) through the use of SOCKS. Where implementations choose
- 1992 to use SOCKS, they should support both anonymous and user-name password authenticating SOCKS
- 1993 proxies. In the latter case, implementations should be aware that SOCKS authentication might occur in
- 1994 plain-text and so should avoid using the same credentials for connection to a MQTT Server.
- 1995 终端操作时应注意一些情况下会要求利用 SOCKSv5 代理来进行外部的网络连接。一些 MQTT 操作在使用
- 1996 SOCKs 过程中会利用备选固定通道(如 SSH)。选择使用 SOCKS 时,他们应支持匿名和用户名密码授权
- 1997 SOCKS 代理两种形式。后一种情况下,操作时需注意纯文本中可能出现的 SOCKS 授权,应避免使用同样
- 1998 的证书来连接 MQTT 服务器。

5.4.11 Security profiles 安全性配置文件

- 2000 Implementers and solution designers might wish to consider security as a set of profiles which can be
- applied to the MQTT protocol. An example of a layered security hierarchy is presented below.
- 2002 操作者和方案策划者不妨考虑将安全性作为一种配置文件应用于 MQTT 协议。以下是一个层次安全等级的
- 2003 例子

5.4.11.1 Clear communication profile 明确通讯协议

2005

2004

1999

- When using the clear communication profile, the MQTT protocol runs over an open network with no additional secure communication mechanisms in place.
- 2008 当使用明确通信协议时, MQTT 协议在一个没有其他安全通信机制的开放网络中运行。

2009 5.4.11.2 Secured network communication profile 安全网络通讯协议

- 2010 When using the secured network communication profile, the MQTT protocol runs over a physical or virtual
- 2011 network which has security controls e.g., VPNs or physically secure network.
- 2012 当使用安全网络通讯协议时, MQTT 协议在物理的或虚拟的拥有安全控制网络中运行比如 VPN 或物理保护
- 2013 网络。

5.4.11.3 Secured transport profile 传输安全协议

- 2015 When using the secured transport profile, the MQTT protocol runs over a physical or virtual network and
- using TLS [RFC5246] which provides authentication, integrity and privacy.
- 2017 当使用传输安全协议时, MQTT 协议在物理或虚拟的网络中运行并使用授权的完整的私密的 TLS。

2018

- 2019 TLS [RFC5246] Client authentication can be used in addition to or in place of MQTT Client
- 2020 authentication as provided by the Username and Password fields.
- 2021 TLS 终端授权可替代用户名和密码给 MQTT 终端授权

2022	5.4.11.4 Industry specific security profiles 行业专用安全配置文件	
2023 2024 2025	It is anticipated that the MQTT protocol will be designed into industry specific application profiles, each defining a threat model and the specific security mechanisms to be used to address these threats. Recommendations for specific security mechanisms will often be taken from existing works including:	
2026 2027	预计 MQTT 协议将作为特定行业应用规范,定义威胁模型和特定安全机制以此解决这些威胁。专用安全机制建议来源于现存工作包括:	
2028	[NISTCSF] NIST Cyber Security Framework	
2029	[NIST7628] NISTIR 7628 Guidelines for Smart Grid Cyber Security	
2030	[FIPS1402] Security Requirements for Cryptographic Modules (FIPS PUB 140-2)	
2031	[PCIDSS] PCI-DSS Payment Card Industry Data Security Standard	
2032	[NSAB] NSA Suite B Cryptography	

6 Using WebSocket as a network transport 用 WEBSOCKET 作为网络传输

20352036

2033

2034

If MQTT is transported over a WebSocket [RFC6455] connection, the following conditions apply:

2037 若 MQTT 通过 WEBSocket 连接传输,应用于以下状况

2038 2039 • MQTT Control Packets MUST be sent in WebSocket binary data frames. If any other type of data frame is received the recipient MUST close the Network Connection [MQTT-6.0.0-1].

2040 2041 MQTT 控制包必须在 WEBSOCKET 二进制数据框发送。若果收到其他类型 的数据框就,接受者 必须关闭网络连接

2042 2043 2044 • A single WebSocket data frame can contain multiple or partial MQTT Control Packets. The receiver MUST NOT assume that MQTT Control Packets are aligned on WebSocket frame boundaries [MQTT-6.0.0-2].

20452046

• 单一WEBSOKET 数据框可包含多个或部分 MQTT 控制包。接受者不能假定 MQTT 控制包与 WEBSOCKET 框架边界对齐。

20472048

• The client MUST include "mqtt" in the list of WebSocket Sub Protocols it offers [MQTT-6.0.0-3].

2049

• The WebSocket Sub Protocol name selected and returned by the server MUST be "mqtt" [MQTT-6.0.0-4].

2050 2051

服务器的 WEBSOCKET 子协议名称选择和退还必须为 MQTT

终端的 Websocket 子协议名单中必须包括 MQTT

2052 2053

• The WebSocket URI used to connect the client and server has no impact on the MQTT protocol.

2054

● 曾连接服务器和终端的 WEBSOCKET URI 对 MQTT 协议无影响

2055

6.1 IANA Considerations

2056 2057 This specification requests IANA to register the WebSocket MQTT sub-protocol under the "WebSocket Subprotocol Name" registry with the following data:

2058

该规范要求 IANA 以以下数据在 websocket 子协议名称下注册

2059

Figure 6.1 - IANA WebSocket Identifier

Subprotocol Identifier	mqtt
Subprotocol Common Name	mqtt
Subprotocol Definition	http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

2061 7 Conformance 一致性

- 2062 The MQTT specification defines conformance for MQTT Client implementations and MQTT Server
- 2063 implementations.
- 2064 MQTT 规范定义了 MQTT 终端与服务器的一致性
- 2065 An MQTT implementation MAY conform as both an MQTT Client and MQTT Server implementation. A
- Server that both accepts inbound connections and establishes outbound connections to other Servers
- 2067 MUST conform as both an MQTT Client and MQTT Server [MQTT-7.0.0-1].
- 2068 MQTT操作必须与MQTT客户端和服务器一致。一个服务器不仅接收内部连接还能建立与其他服务器的外

2070

- 2071 Conformant implementations MUST NOT require the use of any extensions defined outside of this
- 2072 specification in order to interoperate with any other conformant implementation [MQTT-7.0.0-2].
- 2073 为实现与其他操作的互动,禁止使用规范定义外的任何扩展

2074 7.1 Conformance Targets

- 2075 **7.1.1 MQTT Server**
- 2076 An MQTT Server conforms to this specification only if it satisfies all the statements below:
- 2077 只要符文以下情况, MQTT 服务器遵从该规范
- 2078 1. The format of all Control Packets that the Server sends matches the format described in Chapter 2 and
- 2079 Chapter 3. 服务器发送的控制包的格式与第二第三张描述的格式相符

2080

- 2081 2. It follows the Topic matching rules described in Section 4.7. 遵循与 4.7 中描述的规则相符的主题
- 2082 3. It satisfies all of the MUST level requirements in the following chapters that are identified except for those that only apply to the Client: 除了那些仅适用于终端,满足以下认证的章节中所有等级要求
- 2084 Chapter 1 Introduction
- 2085 Chapter 2 MQTT Control Packet format
- 2086 Chapter 3 MQTT Control Packets
- 2087 Chapter 4 Operational behavior
- 2088 Chapter 6 (if MQTT is transported over a WebSocket connection)
- 2089 Chapter 7 Conformance Targets

2090

A conformant Server MUST support the use of one or more underlying transport protocols that provide an ordered, lossless, stream of bytes from the Client to Server and Server to Client [MQTT-7.1.1-1]. However conformance does not depend on it supporting any specific transport protocols. A Server MAY support any of the transport protocols listed in Section 4.2, or any other transport protocol that meets the requirements of [MQTT-7.1.1-1].

2096 一个一致性服务器必须支持一个或多个能够有序无丢失的实现服务器与终端传送的

- 2006 一个一致性服务器必须支持一个或多个能够有序无丢失的实现服务器与终端传送的基本传送协议。然而一
- 2097 致性不取决于他支持的任何特定传输协议。服务器可支持任何列在 4.2 里的传送协议,或任何达到要求的
- 2098 传送协议。

2099 **7.1.2 MQTT Client MQTT** 终端

- 2100 An MQTT Client conforms to this specification only if it satisfies all the statements below:
- 2101 达到以下状况时, MQTT 终端遵循该规范
- 2102 1. The format of all Control Packets that the Client sends matches the format described in Chapter 2 and
- 2103 Chapter 3. 终端发送的所有控制包的格式与第二第三张描述的格式相符
- 2. It satisfies all of the MUST level requirements in the following chapters that are identified except for
- 2105 those that only apply to the Server: 除了那些仅适用于服务器的,满足以下认证的章节中所有等级要求
- 2106 Chapter 1 Introduction
- 2107 Chapter 2 MQTT Control Packet format
- 2108 Chapter 3 MQTT Control Packets
- 2109 Chapter 4 Operational behavior
- 2110 Chapter 6 (if MQTT is transported over a WebSocket connection)
- 2111 Chapter 7 Conformance Targets

2112

- A conformant Client MUST support the use of one or more underlying transport protocols that provide an
- ordered, lossless, stream of bytes from the Client to Server and Server to Client [MQTT-7.1.2-1]. However
- 2115 conformance does not depend on it supporting any specific transport protocols. A Client MAY support any
- of the transport protocols listed in Section 4.2, or any other transport protocol that meets the requirements
- 2117 of [MQTT-7.1.2-1].
- 2118 一个一致性终端必须支持一个或多个能够有序无丢失的实现服务器与终端传送的基本传送协议。然而一致
- 2119 性不取决于他支持的任何特定传输协议。终端可支持任何列在 4.2 里的传送协议,或任何达到要求的传送
- 2120 协议。

2122 欢迎关注硬件十万个为什么

