Heurísticas e Metaheuristicas

Busca Tabu

Prof. Guilherme de Castro Pena guilherme.pena@ufsj.edu.br Sala: DCOMP 3.11

Departamento de Ciência da Computação Universidade Federal de São João del-Rei

Material adaptado do Prof. André (UFV) e Prof. Marcone (UFOP)

Agenda

- Busca Tabu
 - Introdução
- Metodologia
 - Fundamentação Problema da Mochila
 - Fundamentação Lista Tabu
 - Fundamentação Critérios de Aspiração
- Algoritmo
 - Pseudocódigo da Busca Tabu
 - Considerações de Memória
 - Aplicações

Referência

Livro

- Esse conteúdo está baseado no livro:
- ▶ MICHLEWICZ, Zbigniew; FOGEL, David B. How to solve it: modern heuristics. 2nd. ed. Berlin: Springer c2010 554 p. ISBN 9783642061349 (Capítulo 5, seção 5.2).

- ▶ A Busca Tabu (*Tabu Search*) é uma *meta-heurística* poderosa que também possui a característica de **escapar de ótimos locais**.
- ▶ Sua ideia principal é fazer uso de uma *memória* que força a exploração de novas áreas do espaço de busca.
- Ou seja, memorizar soluções examinadas recentemente, que se tornam tabu (proibidas) ao tomar decisões na seleção da próxima solução.
- Outro detalhe é que diferentemente do simulated annealing padrão, a busca tabu é determinística por padrão.

Visão geral:

▶ De forma breve vamos ver um comparativo entre os procedimentos:

```
      Algorithm 1: Simulated Annealing
      Algorithm 2: Busca Tabu

      1 s \leftarrow s_0 (Solucao inicial)
      1 s \leftarrow s_0 (Solucao inicial)

      2 while Nao condicao de termino do
      2 while Nao condicao de termino do

      3 s \leftarrow melhora?(s, T)
      3 s \leftarrow melhora?(s, H)

      4 | atualiza(T)
      4 | atualiza(H)

      5 end
      5 end

      6 return s
      6 return s
```

- ▶ A busca tabu é quase idêntica ao SA com respeito à estrutura do algoritmo.
- A função melhora?(x, H) retorna uma solução aceita s' a partir da vizinhança de s, que não precisa ser melhor que s, mas a aceitação é baseada na história da busca H.
- ► Todo o resto é similar (pelo menos, de uma perspectiva mais abrangente).

- ▶ No entanto seguem diferenças importantes entre eles:
 - SA é estocástico enquanto a Busca Tabu (BT) é determinística.
 - O SA pode escolher solução pior a qualquer momento. Enquanto a BT só escolhe solução pior quando está preso num ótimo local.
 - Em relação aos parâmetros, ambos tem iterações, o SA contém temperatura e taxa de resfriamento. Enquanto a BT tem o que chamamos de memória e critério de aspiração.

- ▶ No entanto seguem diferenças importantes entre eles:
 - SA é estocástico enquanto a Busca Tabu (BT) é determinística.
 - O SA pode escolher solução pior a qualquer momento. Enquanto a BT só escolhe solução pior quando está preso num ótimo local.
 - Em relação aos parâmetros, ambos tem iterações, o SA contém temperatura e taxa de resfriamento. Enquanto a BT tem o que chamamos de memória e critério de aspiração.

- No entanto seguem diferenças importantes entre eles:
 - SA é estocástico enquanto a Busca Tabu (BT) é determinística.
 - O SA pode escolher solução pior a qualquer momento. Enquanto a BT só escolhe solução pior quando está preso num ótimo local.
 - Em relação aos parâmetros, ambos tem iterações, o SA contém temperatura e taxa de resfriamento. Enquanto a BT tem o que chamamos de memória e critério de aspiração.

- No entanto seguem diferenças importantes entre eles:
 - SA é estocástico enquanto a Busca Tabu (BT) é determinística.
 - ② O SA pode escolher solução pior a qualquer momento. Enquanto a BT só escolhe solução pior quando está preso num ótimo local.
 - Em relação aos parâmetros, ambos tem iterações, o SA contém temperatura e taxa de resfriamento. Enquanto a BT tem o que chamamos de memória e critério de aspiração.

Considerações:

- ▶ Proposta por Glover e Hansen (1986).
- Metaheurística de busca local que se apoia em estruturas de memória.
- Resolução eficiente de vários problemas combinatórios, destacando-se:
 - Roteamento (Gendreau et al., 2006; Cordeau et al., 2002; Gendreau et al., 1999)
 - Sequenciamento (Allahverdi et al., 2008)
 - Programação de horários (Santos et al., 2005; Souza et al., 2004)

Características Típicas:

- Busca Tabu padrão (básica):
 - Geração da solução inicial;
 - Critério de escolha de vizinho;
 - Definição das regras de proibição: memória de curto prazo;
 - Critério de aspiração;
- Busca Tabu mais avançada inclui:
 - Definição de uma memória de longo prazo: intensificação x diversificação
 - Reconexão por Caminhos
 - Aplicação da oscilação estratégica.

Características Típicas:

- Busca Tabu padrão (básica):
 - ► Geração da solução inicial;
 - Critério de escolha de vizinho;
 - Definição das regras de proibição: memória de curto prazo;
 - Critério de aspiração;
- Busca Tabu mais avançada inclui:
 - Definição de uma memória de longo prazo: intensificação x diversificação.
 - Reconexão por Caminhos.
 - Aplicação da oscilação estratégica.

Agenda

- Busca Tabu
 - Introdução
- 2 Metodologia
 - Fundamentação Problema da Mochila
 - Fundamentação Lista Tabu
 - Fundamentação Critérios de Aspiração
- Algoritmo
 - Pseudocódigo da Busca Tabu
 - Considerações de Memória
 - Aplicações

Exemplo:

➤ Vamos utilizar como exemplo o Problema da Mochila para fundamentarmos a Busca Tabu:

Problema da Mochila:

- ightharpoonup Há um conjunto de n itens e uma mochila de capacidade C.
- ightharpoonup A cada item está associado um peso w_i (weight) e um valor de retorno p_i (price).
- ▶ Objetivo: alocar os itens à mochila de forma que se tenha o maior valor de retorno, respeitando-se a capacidade da mochila.

Exemplo:

Podemos fazer uma formulação para o problema em Programação Linear Inteira (PLI) da seguinte forma:

Formulação em PLI do Problema da Mochila

$$\max \sum_{i=1}^{n} p_i x_i$$

$$\sum_{i=1}^{n} w_i x_i \le C$$

$$x_i \in \{0, 1\} \quad \text{para} \quad i = 1, \dots, n$$

onde:

 $ightharpoonup x_i = 1$ se o item i é incluído na mochila ou (0) caso contrário.

Exemplo:

- Podemos definir também uma estratégia de exploração do espaço de busca usando uma constante de penalidade (ρ) :
 - Soluções factíveis
 - Soluções infactíveis

Função objetivo com penalidade:

$$f(s) = \sum_{i=1}^{n} p_i x_i - \rho \times max\{0, \sum_{i=1}^{n} w_i x_i - C\}$$

onde:

 $\triangleright \rho$ = penalidade por excesso de carga.

Exemplo

Assim, definimos os componentes finais do nosso problema:

Componentes:

Representação de uma solução:

▶ Vetor $s = (x_1, x_2, ..., x_n)$, em que $x_i \in \{0, 1\}$

Solução inicial:

- ▶ Gulosa: alocar os itens mais valiosos por unidade de peso
- ► Aleatória

Movimento m: inverter o valor de um bit

- ► Valor 0 muda para 1
- ▶ Valor 1 muda para 0

Vizinhança: $N(s) = \{s' : s' \leftarrow s \oplus m\}$

Constante de Penalidade: $\rho = \sum p_i$

Exemplo:

Seja mochila de capacidade C = 32:

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

- $s_0 = (1,0,0,1,0,1,1,0)$
- $f(s_0) = 19$

Exemplo:

8

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

# viz.	$s' \in N(s^0)$	peso(s')	f(s')
1	(0 0 0 1 0 1 1 0)	28	17
2	(1 1 0 1 0 1 1 0)	47	-534
3	(1 0 1 1 0 1 1 0)	39	-237
4	$(1\ 0\ 0\ 0\ 1\ 1\ 1\ 0)$	23	15
5	(1 0 0 1 1 1 1 0)	40	-271
6	$(1\ 0\ 0\ 1\ 0\ 0\ 1\ 0)$	22	14
7	$(1\ 0\ 0\ 1\ 0\ 1\ 0\ 0)$	23	11

43

-381

 $(1\ 0\ 0\ 1\ 0\ 1\ 1\ 1)$

$$s^0 = (10010110)$$
$$f(s^0) = 19$$

- Esta solução é um ótimo local, pois não há uma solução vizinha com melhor função de avaliação.
- ▶ Ideia: Mover para o melhor vizinho, ainda que de piora.

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^0 = (10010110)$$
$$f(s^0) = 19$$

# viz.	$s' \in N(s^0)$	peso(s')	f(s')
1	(0 0 0 1 0 1 1 0)	28	17
2	(1 1 0 1 0 1 1 0)	47	-534
3	(1 0 1 1 0 1 1 0)	39	-237
4	$(1\ 0\ 0\ 0\ 1\ 1\ 1\ 0)$	23	15
5	(1 0 0 1 1 1 1 0)	40	-271
6	$(1\ 0\ 0\ 1\ 0\ 0\ 1\ 0)$	22	14
7	$(1\ 0\ 0\ 1\ 0\ 1\ 0\ 0)$	23	11
8	(1 0 0 1 0 1 1 1)	43	-381

- Esta solução é um ótimo local, pois não há uma solução vizinha com melhor função de avaliação.
- ► Ideia: Mover para o melhor vizinho, ainda que de piora.

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

# viz.	$s' \in N(s^0)$	peso(s')	f(s')
1	(1 0 0 1 0 1 1 0)	32	19
2	(0 1 0 1 0 1 1 0)	43	-388
3	(0 0 1 1 0 1 1 0)	35	-91
4	(0 0 0 0 0 1 1 0)	19	13
5	(0 0 0 1 1 1 1 0)	36	-125
6	(0 0 0 1 0 0 1 0)	18	12
7	(0 0 0 1 0 1 0 0)	19	9
8	$(0\ 0\ 0\ 1\ 0\ 1\ 1\ 1)$	39	-235

$$s^1 = (00010110)$$
$$f(s^1) = 17$$

- Observe que o vizinho #1, isto é, s⁰, tem a melhor avaliação na vizinhança de s¹.
- Mas nesse caso, mover para o melhor vizinho, retorna-se a uma solução já gerada anteriormente!
- ▶ Ideia: Criar uma Lista T das soluções já geradas (Lista Tabu).

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

# viz.	$s' \in N(s^0)$	peso(s')	f(s')
1	(1 0 0 1 0 1 1 0)	32	19
2	(0 1 0 1 0 1 1 0)	43	-388
3	(0 0 1 1 0 1 1 0)	35	-91
4	(0 0 0 0 0 1 1 0)	19	13
5	(0 0 0 1 1 1 1 0)	36	-125
6	(0 0 0 1 0 0 1 0)	18	12
7	$(0\ 0\ 0\ 1\ 0\ 1\ 0\ 0)$	19	9
8	(0 0 0 1 0 1 1 1)	39	-235

$$s^1 = (00010110)$$
$$f(s^1) = 17$$

- Observe que o vizinho #1, isto é, s⁰, tem a melhor avaliação na vizinhança de s¹.
- Mas nesse caso, mover para o melhor vizinho, retorna-se a uma solução já gerada anteriormente!
- ▶ Ideia: Criar uma Lista T das soluções já geradas (Lista Tabu).

Exemplo: Lista Tabu

- É inviável armazenar uma lista de todas as soluções geradas.
- Então para nossa $Lista\ Tabu$, ela pode possuir um tamanho |T| e podemos manter um histórico dos passos feitos!

Lista Tabu para o Problema da Mochila

- ▶ Atributo: posição de um item
- ▶ Regra de ativação (proibição): impedir a inversão do valor do bit da posição modificada.
- ▶ Representação da Lista Tabu: T = <posição modificada>
- ightharpoonup Seja |T|=2

Exemplo: Lista Tabu

- É inviável armazenar uma lista de todas as soluções geradas.
- Então para nossa $Lista\ Tabu$, ela pode possuir um tamanho |T| e podemos manter um histórico dos passos feitos!

Lista Tabu para o Problema da Mochila

- ► Atributo: posição de um item
- ▶ Regra de ativação (proibição): impedir a inversão do valor do bit da posição modificada.
- ▶ Representação da Lista Tabu: T = <posição modificada>
- ightharpoonup Seja |T|=2

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

# viz.	$s' \in N(s^0)$	peso(s')	f(s')
1	(0 0 0 1 0 1 1 0)	28	17
2	(1 1 0 1 0 1 1 0)	47	-534
3	(1 0 1 1 0 1 1 0)	39	-237
4	$(1\ 0\ 0\ 0\ 1\ 1\ 1\ 0)$	23	15
5	(1 0 0 1 1 1 1 0)	40	-271
6	$(1\ 0\ 0\ 1\ 0\ 0\ 1\ 0)$	22	14
7	$(1\ 0\ 0\ 1\ 0\ 1\ 0\ 0)$	23	11
8	(1 0 0 1 0 1 1 1)	43	-381

$$s^0 = (10010110)$$
$$f(s^0) = 19$$

- O melhor vizinho de s⁰ é o vizinho #1, que teve o bit da posição #1 alterado.
- O atributo #1 é, então, adicionado à lista tabu, passando a estar tabu-
- $T = \{ <1> \}$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

# viz.	$s' \in N(s^0)$	peso(s')	f(s')
1	(00010110)	28	17
2	(1 1 0 1 0 1 1 0)	47	-534
3	(1 0 1 1 0 1 1 0)	39	-237
4	$(1\ 0\ 0\ 0\ 1\ 1\ 1\ 0)$	23	15
5	(1 0 0 1 1 1 1 0)	40	-271
6	$(1\ 0\ 0\ 1\ 0\ 0\ 1\ 0)$	22	14
7	$(1\ 0\ 0\ 1\ 0\ 1\ 0\ 0)$	23	11
8	$(1\ 0\ 0\ 1\ 0\ 1\ 1\ 1)$	43	-381

$$s^0 = (10010110)$$
$$f(s^0) = 19$$

- O melhor vizinho de s^0 é o vizinho #1, que teve o bit da posição #1 alterado.
- O atributo #1 é, então, adicionado à lista tabu, passando a estar tabuativo
- $T = \{ <1 > \}$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^1 = (00010110)$$
$$f(s^1) = 17$$

# viz.	$s' \in N(s^1)$	peso(s')	f(s')
Tabu: 1	(1 0 0 1 0 1 1 0)	32	19
2	(0 1 0 1 0 1 1 0)	43	-388
3	(0 0 1 1 0 1 1 0)	35	-91
4	(0 0 0 0 0 1 1 0)	19	13
5	(0 0 0 1 1 1 1 0)	36	-125
6	$(0\ 0\ 0\ 1\ 0\ 0\ 1\ 0)$	18	12
7	$(0\ 0\ 0\ 1\ 0\ 1\ 0\ 0)$	19	9
8	(0 0 0 1 0 1 1 <mark>1</mark>)	39	-235

- Mover para o melhor vizinho da solução s^0 , isto é, para s^1 .
- Nesta nova solução, seu vizinho #1 é tabu porque ele tem um atributo tabuativo (a posição #1 está na lista tabu).

$$T = \{ <1> \}$$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^1 = (00010110)$$
$$f(s^1) = 17$$

# viz.	$s' \in N(s^1)$	peso(s')	f(s')
Tabu: 1	(1 0 0 1 0 1 1 0)	32	19
2	(0 1 0 1 0 1 1 0)	43	-388
3	(0 0 1 1 0 1 1 0)	35	-91
4	$(0\ 0\ 0\ 0\ 0\ 1\ 1\ 0)$	19	13
5	(0 0 0 1 1 1 1 0)	36	-125
6	$(0\ 0\ 0\ 1\ 0\ 0\ 1\ 0)$	18	12
7	$(0\ 0\ 0\ 1\ 0\ 1\ 0\ 0)$	19	9
8	(0 0 0 1 0 1 1 <mark>1</mark>)	39	-235

- Mover para o melhor vizinho da solução s^0 , isto é, para s^1 .
- Nesta nova solução, seu vizinho #1 é tabu porque ele tem um atributo tabuativo (a posição #1 está na lista tabu).
- $T = \{ <1> \}$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^1 = (00010110)$$
$$f(s^1) = 17$$

# viz.	$s' \in N(s^1)$	peso(s')	f(s')
Tabu: 1	(1 0 0 1 0 1 1 0)	32	19
2	(0 1 0 1 0 1 1 0)	43	-388
3	(0 0 1 1 0 1 1 0)	35	-91
4	(0 0 0 0 0 1 1 0)	19	13
5	(0 0 0 1 1 1 1 0)	36	-125
6	$(0\ 0\ 0\ 1\ 0\ 0\ 1\ 0)$	18	12
7	$(0\ 0\ 0\ 1\ 0\ 1\ 0\ 0)$	19	9
8	(0 0 0 1 0 1 1 <mark>1</mark>)	39	-235

- Mover para o melhor vizinho da solução s^0 , isto é, para s^1 .
- Nesta nova solução, seu vizinho #1 é tabu porque ele tem um atributo tabuativo (a posição #1 está na lista tabu).

$$T = \{ <1 > \}$$

Exemplo:

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^1 = (00010110)$$
$$f(s^1) = 17$$

# viz.	$s' \in N(s^1)$	peso(s')	f(s')
Tabu: 1	(1 0 0 1 0 1 1 0)	32	19
2	(0 1 0 1 0 1 1 0)	43	-388
3	(0 0 1 1 0 1 1 0)	35	-91
4	$(0\ 0\ 0\ 0\ 0\ 1\ 1\ 0)$	19	13
5	(0 0 0 1 1 1 1 0)	36	-125
6	$(0\ 0\ 0\ 1\ 0\ 0\ 1\ 0)$	18	12
7	$(0\ 0\ 0\ 1\ 0\ 1\ 0\ 0)$	19	9
8	(0 0 0 1 0 1 1 <mark>1</mark>)	39	-235

O melhor vizinho não-tabu da solução atual s¹ é o vizinho #4, no qual a posição #4 foi modificada, então esse atributo é adicionado à lista tabu.

$$T = T \cup \langle 4 \rangle$$

$$T = \{ <1>, <4> \}$$

Exemplo:

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^1 = (00010110)$$
$$f(s^1) = 17$$

# viz.	$s' \in N(s^1)$	peso(s')	f(s')
Tabu: 1	(1 0 0 1 0 1 1 0)	32	19
2	(0 1 0 1 0 1 1 0)	43	-388
3	(0 0 1 1 0 1 1 0)	35	-91
4	(0 0 0 0 0 1 1 0)	19	13
5	(0 0 0 1 1 1 1 0)	36	-125
6	$(0\ 0\ 0\ 1\ 0\ 0\ 1\ 0)$	18	12
7	$(0\ 0\ 0\ 1\ 0\ 1\ 0\ 0)$	19	9
8	(0 0 0 1 0 1 1 <u>1</u>)	39	-235

O melhor vizinho não-tabu da solução atual s¹ é o vizinho #4, no qual a posição #4 foi modificada, então esse atributo é adicionado à lista tabu.

$$ightharpoonup T = T \cup <4>$$

$$T = \{ <1>, <4> \}$$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^2 = (00000110)$$
$$f(s^2) = 13$$

# viz.	$s' \in N(s^2)$	peso(s')	f(s')
Tabu: 1	(1 0 0 0 0 1 1 0)	23	15
2	(0 1 0 0 0 1 1 0)	34	-59
3	(0 0 1 0 0 1 1 0)	26	16
Tabu: 4	(0 0 0 1 0 1 1 0)	28	17
5	(0 0 0 0 1 1 1 0)	27	19
6	$(0\ 0\ 0\ 0\ 0\ 0\ 1\ 0)$	9	8
7	$(0\ 0\ 0\ 0\ 0\ 1\ 0\ 0)$	10	5
8	(0 0 0 0 0 1 1 1)	30	20

- Mover para o melhor vizinho não-tabu da solução s^1 , isto é, para s^2 .
- ▶ Os vizinhos #1 e #4 de s² são tabus porque eles contêm atributos tabu-ativos (posições 1 e 4).
- $T = \{ <1>, <4> \}$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^2 = (00000110)$$
$$f(s^2) = 13$$

# viz.	$s' \in N(s^2)$	peso(s')	f(s')
Tabu: 1	(1 0 0 0 0 1 1 0)	23	15
2	(0 1 0 0 0 1 1 0)	34	-59
3	(0 0 1 0 0 1 1 0)	26	16
Tabu: 4	(0 0 0 1 0 1 1 0)	28	17
5	(0 0 0 0 1 1 1 0)	27	19
6	$(0\ 0\ 0\ 0\ 0\ 0\ 1\ 0)$	9	8
7	$(0\ 0\ 0\ 0\ 0\ 1\ 0\ 0)$	10	5
8	(0 0 0 0 0 1 1 <mark>1</mark>)	30	20

- Mover para o melhor vizinho não-tabu da solução s^1 , isto é, para s^2 .
- Os vizinhos #1 e #4 de s² são tabus porque eles contêm atributos tabu-ativos (posições 1 e 4).
- $T = \{<1>, <4>\}$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

# viz.	$s' \in N(s^2)$	peso(s')	f(s')
Tabu: 1	(1 0 0 0 0 1 1 0)	23	15
2	(0 1 0 0 0 1 1 0)	34	-59
3	(0 0 1 0 0 1 1 0)	26	16
Tabu: 4	$(0\ 0\ 0\ 1\ 0\ 1\ 1\ 0)$	28	17
5	$(0\ 0\ 0\ 0\ 1\ 1\ 1\ 0)$	27	19
6	$(0\ 0\ 0\ 0\ 0\ 0\ 1\ 0)$	9	8
7	$(0\ 0\ 0\ 0\ 0\ 1\ 0\ 0)$	10	5
8	(0 0 0 0 0 1 1 1)	30	20

$$s^2 = (00000110)$$

$$f(s^2) = 13$$

- Melhor vizinho não-tabu da solução atual é #8 (gerado pela alteração da posição #8). Esse atributo é adicionado à lista tabu.
- Como |T| = 2, então pela estratégia FIFO, o atributo tabu-ativo 1 deixa de ser ativo e entra o atributo 8 ao final da lista tabu.

$$T = T \setminus \langle 1 \rangle \cup \langle 8 \rangle$$

$$T = \{ <4>, <8> \}$$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

# viz.	$s' \in N(s^2)$	peso(s')	f(s')
Tabu: 1	(1 0 0 0 0 1 1 0)	23	15
2	(0 1 0 0 0 1 1 0)	34	-59
3	(0 0 1 0 0 1 1 0)	26	16
Tabu: 4	(0 0 0 1 0 1 1 0)	28	17
5	(0 0 0 0 1 1 1 0)	27	19
6	$(0\ 0\ 0\ 0\ 0\ 0\ 1\ 0)$	9	8
7	$(0\ 0\ 0\ 0\ 0\ 1\ 0\ 0)$	10	5
8	(0 0 0 0 0 1 1 1)	30	20

$$s^2 = (00000110)$$
$$f(s^2) = 13$$

- Melhor vizinho não-tabu da solução atual é #8 (gerado pela alteração da posição #8). Esse atributo é adicionado à lista tabu.
- Como |T| = 2, então pela estratégia FIFO, o atributo tabu-ativo 1 deixa de ser ativo e entra o atributo 8 ao final da lista tabu.

$$T = T \setminus \langle 1 \rangle \cup \langle 8 \rangle$$

$$T = \{ <4>, <8> \}$$

Exemplo:

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^3 = (00000111)$$
$$f(s^3) = 20$$

# viz.	$s' \in N(s^3)$	peso(s')	f(s')
1	(1 0 0 0 0 1 1 1)	34	-52
2	(0 1 0 0 0 1 1 1)	45	-459
3	(0 0 1 0 0 1 1 1)	37	-162
Tabu: 4	(0 0 0 1 0 1 1 1)	39	-235
5	(0 0 0 0 1 1 1 1)	38	-196
6	$(0\ 0\ 0\ 0\ 0\ 0\ 1\ 1)$	20	15
7	$(0\ 0\ 0\ 0\ 0\ 1\ 0\ 1)$	21	12
Tabu: 8	(0 0 0 0 0 1 1 <mark>0</mark>)	19	13

Mover para o melhor vizinho não-tabu da solução s^2 , i.e., para s^3 .

Os vizinhos #4 e #8 de s^3 são tabus.

O vizinho #6 (não-tabu) é o melhor. O atributo 6 entra e sai o 4 da lista.

$$T = T \setminus <4> \cup <6>$$

 $T = \{ < 8 >, < 6 > \}$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^3 = (00000111)$$
$$f(s^3) = 20$$

# viz.	$s' \in N(s^3)$	peso(s')	f(s')
1	(1 0 0 0 0 1 1 1)	34	-52
2	(0 1 0 0 0 1 1 1)	45	-459
3	(0 0 1 0 0 1 1 1)	37	-162
Tabu: 4	(0 0 0 1 0 1 1 1)	39	-235
5	(0 0 0 0 1 1 1 1)	38	-196
6	$(0\ 0\ 0\ 0\ 0\ 0\ 1\ 1)$	20	15
7	$(0\ 0\ 0\ 0\ 0\ 1\ 0\ 1)$	21	12
Tabu: 8	(0 0 0 0 0 1 1 <mark>0</mark>)	19	13

- Mover para o melhor vizinho não-tabu da solução s^2 , i.e., para s^3 .
- ightharpoonup Os vizinhos #4 e #8 de s^3 são tabus.
- O vizinho #6 (não-tabu) é o melhor. O atributo 6 entra e sai o 4 da lista.
- $T = T \setminus <4> \cup <6>$ $T = \{<8>,<6>\}$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^4 = (00000011)$$
$$f(s^4) = 15$$

# viz.	$s' \in N(s^4)$	peso(s')	f(s')
1	(1 0 0 0 0 0 1 1)	24	17
2	(0 1 0 0 0 0 1 1)	35	-94
3	(0 0 1 0 0 0 1 1)	27	18
4	(0 0 0 1 0 0 1 1)	29	19
5	(0 0 0 0 1 0 1 1)	28	21
Tabu: 6	(0 0 0 0 0 1 1 1)	30	20
7	$(0\ 0\ 0\ 0\ 0\ 1\ 0\ 1)$	11	7
Tabu: 8	$(0\ 0\ 0\ 0\ 0\ 0\ 1\ 0)$	9	8

- Mover para o melhor vizinho não-tabu da solução s^3 , i.e., para s^4 .
- ightharpoonup Os vizinhos #6 e #8 de s^4 são tabus.
- O vizinho #5 (não-tabu) é o melhor. O atributo 5 entra e sai o 8 da lista.
- $T = T \setminus <8> \cup <5>$ $T = \{<6>, <5>\}$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^5 = (00001011)$$
$$f(s^5) = 21$$

# viz.	$s' \in N(s^5)$	peso(s')	f(s')
1	(1 0 0 0 1 0 1 1)	32	23
2	(0 1 0 0 1 0 1 1)	43	-384
3	(0 0 <mark>1</mark> 0 1 0 1 1)	35	-87
4	(0 0 0 1 1 0 1 1)	37	-160
Tabu: 5	$(0\ 0\ 0\ 0\ 0\ 1\ 1)$	20	15
Tabu: 6	(0 0 0 0 1 1 1 1)	38	-196
7	$(0\ 0\ 0\ 0\ 1\ 0\ 0\ 1)$	19	13
8	(0 0 0 0 1 0 1 <mark>0</mark>)	17	14

- Mover para o melhor vizinho não-tabu da solução s^4 , i.e., para s^5 .
- Os vizinhos #5 e #6 de s^5 são tabus.
- O vizinho #1 (não-tabu) é o melhor. O atributo 1 entra e sai o 6 da lista.
- $T = T \setminus <6> \cup <1>$
- $T = \{<5>, <1>\}$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^6 = (10001011)$$
$$f(s^6) = 23$$

# viz.	$s' \in N(s^6)$	peso(s')	f(s')
Tabu: 1	(00001011)	28	21
2	(1 1 0 0 1 0 1 1)	47	-530
3	(1 0 1 0 1 0 1 1)	39	-233
4	(1 0 0 1 1 0 1 1)	41	-306
Tabu: 5	$(1\ 0\ 0\ 0\ 0\ 1\ 1)$	24	17
6	(1 0 0 0 1 1 1 1)	42	-342
7	$(1\ 0\ 0\ 0\ 1\ 0\ 0\ 1)$	23	15
8	$(1\ 0\ 0\ 0\ 1\ 0\ 1\ 0)$	21	16

- Mover para o melhor vizinho não-tabu da solução s^5 , i.e., para s^6 .
- ightharpoonup Os vizinhos #1 e #5 de s^5 são tabus.
- O vizinho #8 (não-tabu) é o melhor. O atributo 8 entra e sai o 5 da lista.

$$T = T \setminus <5> \cup <8>$$

$$T = \{<1>, <8>\}$$

$$T = \{ <1>, <8> \}$$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^7 = (10001010)$$
$$f(s^7) = 16$$

# viz.	$s' \in N(s^7)$	peso(s')	f(s')
Tabu: 1	$(0\ 0\ 0\ 0\ 1\ 0\ 1\ 0)$	17	14
2	(1 1 0 0 1 0 1 0)	36	-130
3	(1 0 1 0 1 0 1 0)	28	19
4	$(1\ 0\ 0\ 1\ 1\ 0\ 1\ 0)$	30	20
5	$(1\ 0\ 0\ 0\ 0\ 1\ 0)$	13	10
6	(1 0 0 0 1 1 1 0)	31	21
7	$(1\ 0\ 0\ 0\ 1\ 0\ 0\ 0)$	12	8
Tabu: 8	(1 0 0 0 1 0 1 <mark>1</mark>)	32	21

- Mover para o melhor vizinho não-tabu da solução s^6 , i.e., para s^7 .
- ightharpoonup Os vizinhos #1 e #8 de s^6 são tabus.
- O vizinho #6 (não-tabu) é o melhor. O atributo 6 entra e sai o 1 da lista.

$$T = T \setminus <1 > \cup <6 >$$

$$T = \{<8>,<6>\}$$

$$T = \{ < 8 >, < 6 > \}$$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^8 = (10001110)$$
$$f(s^8) = 21$$

# viz.	$s' \in N(s^8)$	peso(s')	f(s')
1	(00001110)	27	19
2	(1 1 0 0 1 1 1 0)	46	-495
3	(1 0 1 0 1 1 1 0)	38	-198
4	$(1\ 0\ 0\ 1\ 1\ 1\ 1\ 0)$	40	-271
5	$(1\ 0\ 0\ 0\ 0\ 1\ 1\ 0)$	23	15
Tabu: 6	$(1\ 0\ 0\ 0\ 1\ 0\ 1\ 0)$	21	16
7	$(1\ 0\ 0\ 0\ 1\ 1\ 0\ 0)$	22	13
Tabu: 8	(1 0 0 0 1 1 1 1)	42	-342

- Mover para o melhor vizinho não-tabu da solução s⁷, i.e., para s⁸.
- Os vizinhos #6 e #8 de s^8 são tabus.
- O vizinho #1 (não-tabu) é o melhor. O atributo 1 entra e sai o 8 da lista.
- $T = T \setminus \langle 8 \rangle \cup \langle 1 \rangle$
- $T = \{ <6>, <1> \}$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^9 = (00001110)$$
$$f(s^9) = 19$$

# viz.	$s' \in N(s^9)$	peso(s')	f(s')
Tabu: 1	(1 0 0 0 1 1 1 0)	31	21
2	(0 1 0 0 1 1 1 0)	42	-349
3	(0 0 1 0 1 1 1 0)	34	-52
4	(0 0 0 1 1 1 1 0)	36	-125
5	$(0\ 0\ 0\ 0\ 0\ 1\ 1\ 0)$	19	13
Tabu: 6	(0 0 0 0 1 0 1 0)	17	14
7	$(0\ 0\ 0\ 0\ 1\ 1\ 0\ 0)$	18	11
8	(0 0 0 0 1 1 1 <mark>1</mark>)	38	-196

- Mover para o melhor vizinho não-tabu da solução s^8 , i.e., para s^9 .
- ightharpoonup Os vizinhos #1 e #6 de s^9 são tabus.
- O vizinho #5 (não-tabu) é o melhor. O atributo 5 entra e sai o 6 da lista.
- $T = T \setminus <6> \cup <5>$ $T = \{<1>, <5>\}$

Item i	1	2	3	4	5	6	7	8
Peso w_i	4	15	7	9	8	10	9	11
Valor p_i	2	2	3	4	6	5	8	7

$$s^{10} = (00000110)$$
$$f(s^{10}) = 13$$

# viz.	$s' \in N(s^{10})$	peso(s')	f(s')
Tabu: 1	(1 0 0 0 0 1 1 0)	23	15
2	(0 1 0 0 0 1 1 0)	34	-59
3	(0 0 1 0 0 1 1 0)	26	16
4	(0 0 0 1 0 1 1 0)	28	17
Tabu: 5	(0 0 0 0 1 1 1 0)	27	19
6	$(0\ 0\ 0\ 0\ 0\ 0\ 1\ 0)$	9	8
7	$(0\ 0\ 0\ 0\ 0\ 1\ 0\ 0)$	10	5
8	(0 0 0 0 0 1 1 <mark>1</mark>)	30	20

- Mover para o melhor vizinho não-tabu da solução s^9 , i.e., para s^1 0.
- Os vizinhos #1 e #5 de s^10 são tabus.
- O vizinho #8 (não-tabu) é o melhor. O atributo 8 entra e sai o 1 da lista.

$$T = T \setminus \langle 1 \rangle \cup \langle 8 \rangle$$

$$T = \{ <5 >, <8 > \}$$

Exemplo:

Evolução do valor da função objetivo ao longo das iterações.

Note que as iterações das soluções s^2 e s^{10} apesar de terem tabus diferentes, vão gerar as mesmas próximas soluções até os tabus.

- Na implementação da lista tabu, verificar se um movimento é ou não tabu pode ser dispendioso.
- \blacktriangleright No Problema da Mochila, $T = \{ < j_1 >, < j_2 >, \ldots, < j_{|T|} > \}$
- ightharpoonup Considerando o vetor de n posições e |T| elementos na lista tabu:
 - Pior caso: O(n.|T|) avaliações, por iteração.

- ightharpoonup Uma nova ideia consiste em substituir a lista T por um vetor de n posições, em que cada posição j armazene a iteração até a qual o atributo está **tabu-ativo**.
- ightharpoonup T: vetor de prazo tabu (tabu tenure).
- Na primeira iteração do PM (iter = 1), considerando Duracao Tabu = 2, temos:
 - $T = \{\langle 1 \rangle\}$ é substituida por $T = \{3, 0, 0, 0, 0, 0, 0, 0, 0\}$
 - pois, iter + Duracao Tabu = 1 + 2 = 3
- Significado: O movimento de inverter o bit da primeira posição está tabuativo até a iteração 3. Após a terceira iteração, o movimento deixa de ser tabu.

- ▶ Uma nova ideia consiste em substituir a lista T por um vetor de n posições, em que cada posição j armazene a iteração até a qual o atributo está tabu-ativo.
- ightharpoonup T: vetor de prazo tabu (tabu tenure).
- Na primeira iteração do PM (iter = 1), considerando DuracaoTabu = 2, temos:
 - $T = \{ <1 > \}$ é substituida por $T = \{3,0,0,0,0,0,0,0,0 \}$
 - ightharpoonup pois, iter + DuracaoTabu = 1 + 2 = 3
- Significado: O movimento de inverter o bit da primeira posição está tabuativo até a iteração 3. Após a terceira iteração, o movimento deixa de ser tabu.

- Com um vetor T de prazo tabu, a verificação se um movimento é tabu ou não é bastante simples.
- ▶ Seja iter a iteração atual. Então o movimento de inverter o valor do bit da posição j é tabu se tivermos: $T(j) \ge iter$
- Ex.: Dado $T = \{3,0,8,5,9,10,7,11\}$ e iter = 10, então são tabus os movimentos envolvendo as posições 6 e 8.
- Complexidade de verificação se um movimento está ou não na lista tabu é: O(1). Logo, a complexidade de verificação de todos vizinhos é O(n). O(1) = O(n).

- A Duracao Tabu indica a quantidade máxima de iterações que cada movimento permanece tabu para impedir o retorno a uma solução já visitada.
- ightharpoonup A DuracaoTabu depende:
 - Do tipo de atributo considerado: Regras de ativação mais restritivas têm duração menor.
 - Do tamanho da instância: Quanto maior o tamanho, maior a lista (crescimento não-linear).
 - Do estágio da busca: Pode-se usar uma duração dinâmica que muda durante a busca, evitando ciclagens.

Exemplo - Lista Tabu com Prazo:

▶ Uma *Duracao Tabu* muito pequena pode causar ciclagem (repetições).

▶ Uma *Duracao Tabu* muito grande pode causar deterioração.

- A duração tabu também depende do atributo e da regra de proibição.
- No problema da mochila, considerando que:
 - A cada iteração uma posição é tornada tabu-ativa;
 - ightharpoonup Ao final de n-1 iterações há apenas um movimento possível.
 - $\blacktriangleright\,$ Assim, o limitante superior para a duração tabu de um movimento é n-1.

Exemplo - Lista Tabu com Prazo:

- ▶ Uma versão alternativa para a Lista Tabu com Prazo, seria a de considerar a *Duracao Tabu* para o atributo, e a cada nova iteração reduzindo-o uma unidade até chegar em 0.
 - Assim, somente as casas que valem 0, seriam os vizinhos não-tabu.

Lista Tabu com Prazo (Decrescente)

- ▶ Na primeira iteração do PM (iter = 1), considerando DuracaoTabu = 2, temos:
 - ▶ $T = \{ <1 > \}$ é substituída por $T = \{ 2,0,0,0,0,0,0,0 \}$ pois, foi trocado o bit 1;
 - Na iteração seguinte, troca-se o bit 4, logo $T = \{1, 0, 0, 2, 0, 0, 0, 0, 0\}$
 - \blacktriangleright Na iteração seguinte, troca-se o bit 8, logo $T = \{0, 0, 0, 1, 0, 0, 0, 2\}$
 - E assim por diante..
- ▶ Significado: O movimento de inverter o bit, deixa a posição tabu-ativa por 2 iterações. Duas iterações depois, o movimento deixa de ser tabu.

Exemplo: Critérios de Aspiração

- Mas essa proibição tabu às vezes é restritiva demais!
- Suponha, que por exemplo, que uma solução tabu produza uma solução melhor do que a $s_b est$ (i.e., melhor do que a melhor já vista)
- Nesse caso podemos esquecer que era tabu, aplicando um critério de aspiração (ou função de aspiração).

Critério de Aspiração por objetivo regional

- ► Sobrepõe a Regra de ativação (proibição)
- ▶ Aceita o vizinho, mesmo sendo gerado por movimento tabu, quando se produz uma solução melhor que a melhor já vista.

ındamentação - Problema da Mochila ındamentação - Lista Tabu ındamentação - Critérios de Aspiraçã

Fundamentação

Exemplo: Critérios de Aspiração

- Existem outros critérios de aspiração, como por exemplo o *critério de aspiração por default*.
- Se todos os movimentos possíveis são tabus e não é possível aplicar outro critério de aspiração, então o movimento mais antigo perde sua condição tabu.

Critério de Aspiração por default

- ▶ Implementação baseada em tempo de permanência na lista, como o do Problema da Mochila.
 - ▶ Se $T(i) \ge$ iter, para todo i, em que iter representa a iteração atual,
 - ightharpoonup então a inversão do bit da posição k tal que:

$$T(k) = \min\{T(i) \text{ para todo } i\}$$

pode ser realizada.

► Em outras palavras, se todos os movimentos estão proibidos, então o movimento tabu há mais tempo na lista é realizado.

Agenda

- Busca Tabu
 - Introdução
- Metodologia
 - Fundamentação Problema da Mochila
 - Fundamentação Lista Tabu
 - Fundamentação Critérios de Aspiração
- 3 Algoritmo
 - Pseudocódigo da Busca Tabu
 - Considerações de Memória
 - Aplicações

Busca Tabu

return s_{best}

Algorithm 3: Busca Tabu Básica

```
1 s \leftarrow s_0 (Solução inicial)
  s_{hest} \leftarrow s_0
iter \leftarrow 0
   T \leftarrow \emptyset (Lista Tabu)
   while condicao parada não satisfeita do
        iter \leftarrow iter + 1
        Seja s' \leftarrow s \oplus mo melhor elemento de V \subseteq N(s)tal que o movimento mnão seja tabu
        (m \notin T) OU s' atenda o critério de aspiração (f(s') > f(s_{best}))
        Atualiza a lista tabu T
        s \leftarrow s'
        if f(s) > f(s_{best}) then
         s_{best} \leftarrow s
        end
        if todos os movimentos estão proibidos then
13
              Permitir o movimento tabu há mais tempo na lista
14
        end
   end
```

Busca Tabu

Considerações

- As condições de parada para a Busca Tabu mais comuns podem ser:
 - Número máximo de iterações.
 - Número de iterações sem melhorias.
 - ► Tempo limite.
 - Dentre outras.
- Critério de aspiração e Soluções Inviáveis:
 - Note também que o critério de aspiração da busca tabu pode permitir a exploração de soluções inviáveis.
 - Essa característica de escapar de ótimos locais permite explorar regiões mais amplas do espaço de soluções.
 - No entanto, esse fato está relacionado com penalizar soluções inviáveis, direcionando a busca de volta para a viabilidade.
 - Assim, mesmo que a busca explore soluções inviáveis temporariamente, o objetivo final é encontrar uma solução viável e de alta qualidade.

Considerações de Memória

Referência

➤ Seção 2.5 (Talbi, El-Ghazali; Metaheuristics: From Design to Implementation, Wiley Publishing, 2009.).

Tipos de memória na Busca Tabu

- Memória de curto prazo (tabu)
- Memória de médio prazo (intensificação)
- ► Memória de longo prazo (diversificação)

Exemplo TSP

Exemplo TSP

- Considere o movimento swap: trocar duas cidades de lugar na rota
- ▶ Para n = 8 cidades, são 28 vizinhos (pares de cidades a trocar)
- \triangleright Após trocar cidades nas i e j como marcar o movimento tabu?
- Uma ideia seria de guardar em uma matriz de posições, a Duracao Tabu das ultimas trocas entre posições.

Lista Tabu com Prazo (Decrescente) - TSP

- ightharpoonup Considerando Duracao Tabu = 5.
- ▶ A Lista Tabu (Matriz Tabu) mostra que nas ultimas 5 iterações foram trocadas as cidades das posições: (1, 4), (5, 8), (4, 5), (3, 7), (2, 6).
- A cada nova iteração, a matriz é atualizada, reduzindo 1 unidade das trocas já feitas.

ΤĽ) F						
	2	3	4	5	6	7	8
1	0	0	1	0	0	0	0
2		0	0	0	5	0	0
3			0	0	0	4	0
4				3	0	0	0
5					0	0	2
6						0	0
7							0

Exemplo TSP

Exemplo TSP

Outras ideias de memórias também são apresentadas nos livros.

Memórias TSP

- Memória de curto prazo
 - Lista de arcos que não devem ser considerados.
- ► Memória de médio e longo prazo
 - ightharpoonup Lista de arcos considerados nas últimas k melhores (piores) soluções.
 - ► Encorajar (desencorajar) sua seleção futura de acordo com a frequência que aparece em soluções elites e qualidade dessas soluções.

Aplicações

Considerações finais

- A Busca Tabu tem sido usada com sucesso em muitos problemas
- ➤ Seus **componentes**, no entanto, são específicos de cada problema:
 - ▶ Representação da lista tabu
 - Tamanho da lista tabu (pode ser muito sensível a este parâmetro)
 - ▶ Uso de memória de médio e longo prazo
 - **.**..
 - Assim, ela é mais difícil de se aplicar que Busca Local e Simulated Annealing.

Exercício

- Faça uma Busca Tabu para o problema da mochila 0/1 baseado no Algoritmo 3 da página 43:
 - (a) Gere uma solução inicial gulosa.
 - (b) Usa a vizinhança *flip*.
 - (c) Baseado na aula, defina um critério de parada iterações sem melhora.
 - (d) A regra de ativação como o ultimo movimento feito.
 - (e) Lista Tabu com Prazo (Decrescente).
 - (f) Critério de Aspiração por objetivo regional na vizinhança e Critério de Aspiração por default caso proiba todos movimentos.

Obs: Podemos usar a mesmas instâncias utilizadas na busca local anteriormente.

Bibliografias

Bibliografia Básica

- MICHLEWICZ, Zbigniew; FOGEL, David B. How to solve it: modern heuristics. 2nd. ed. Berlin: Springer c2010 554 p. ISBN 9783642061349.
- Talbi, El-Ghazali; Metaheuristics: From Design to Implementation, Wiley Publishing, 2009.
- © GENDREAU, Michel. Handbook of metaheuristics. 2.ed. New York: Springer 2010 648 p. (International series in operations research & management science; 146).
- T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, 3rd edition, 2009 (Pergamum).

Bibliografias

Bibliografia Complementar

- GLOVER, Fred; KOCHENBERGER, Gary A. (ed.). Handbook of metaheuristics. Boston: Kluwer, 2003. 556 p. (International series in operations research & management science; 57).
- BLUM, Christian Et Al. Hybrid metaheuristics: an emerging approach to optimization. Berlin: Springer 2008 289 p. (Studies in Computational intelligence; 114).
- ODERNER, Karl F. (ed.) Et Al. Metaheuristics: progress in complex systems optimization. New York: Springer 2007 408 p. (Operations research / computer science interfaces series).
- GLOVER, Fred; LAGUNA, Manuel. Tabu search. Boston: Kluwer Academic, 1997. 382 p.
- AARTS, Emile. Local search in combinatorial optimization. Princeton: Princeton University Press, 2003 512 p.
- Gaspar-Cunha, A.; Takahashi, R.; Antunes, C.H.; Manual de Computação Evolutiva e Metaheurística; Belo Horizonte: Editora UFMG; Coimbra: Imprensa da Universidade de Coimbra; 2013.