Prof.dr.sc. Bojana Dalbelo Bašić

Fakultet elektrotehnike i računarstva Zavod za elekroniku, mikroelektroniku, računalne i inteligentne sustave

> www.zemris.fer.hr/~bojana bojana.dalbelo@fer.hr

Strojno učenje

Učenje koncepata

Literatura za predavanje

Chapter 2
Concept Learning and the General-to-specific Ordering

2. UČENJE KONCEPATA I UREĐAJ HIPOTEZA OD OPĆENITE PREMA POJEDINAČNOJ

Učenje koncepata

- uobličavanje definicije općenite klase/kategorije ako je dan skup pozitivnih i negativnih primjera te kategorije.
- Kako?

Pretraživanjem prostora potencijalnih hipoteza za onom koja najbolje odgovara primjerima za učenje → koristeći strukturu uređaja hipoteza od općenite prema pojedinačnoj

UVOD

- Što je to koncept?
- Primjer: općeniti koncepti ili kategorije:
 - "ptica",
 - "auto",
 - "situacije u kojima bih trebao učiti više da bi prošao ispit" itd.

Učenje → uobličavanje općenite kategorije na temelju primjera

UVOD

 koncept → podskup objekata (događaja) nekog većeg skupa (primjer: skup ptica ⊂ skup životinja)

ili alternativno

 Koncept (klasa) → funkcija koja poprima boolove vrijednosti definirana na nekom nadskupu. (primjer: funkcija definirana na skupu svih životinja... HIPOTEZA)

Učenje koncepata je izvođenje funkcije boolovih vrijednosti na temelju skupa pozitivnih i negativnih primjera.

- Učenje koncepta:
- "Dan kada moj prijatelj Aldo uživa u omiljenom vodenom sportu".
- Skup primjera za učenje u obliku tablice atributa:

Primjer - dan	Naoblaka	Temperat ura	Vlažnost	Vjetar	Voda	Prognoza	dan za sport
1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
3	kišno	hladno	visoka	jak	topla	promjena	NE
4	sunčano	vruće	visoka	jak	hladna	promjena	DA

- Zadatak: predvidjeti vrijednost atributa dan_za_sport za proizvoljan dan, na temelju vrijednosti ostalih njegovih atributa (naoblaka, temperatura...)
- Kako ćemo predstaviti hipotezu?

- Predstavljanje hipoteze:
 Hipoteza = konjunkcija uvjeta na vrijednosti atributa
- U obliku vektora:

- Za svaki atribut hipoteza može sadržavati:
 - ? znači da je svaka vrijednost prihvatljiva
 - određena vrijednost atributa, npr. Vlažnost: visoka
 - Ø nijedna vrijednost nije prihvatljiva

- Primjer hipoteze h: "Aldo uživa u sportu samo na hladne dane s visokom vlagom" (bez obzira na druge vrijednosti atributa):
 - h = (?, hladno, visoka, ?, ?, ?)Primjeri:
 - (?, ?, ?, ?, ?) najopćenitija hipoteza
 - (∅, ∅, ∅, ∅, ∅) najspecifičnija hipoteza niti jedan dan nije pozitivan primjer
- Ako su za neki primjer x svi uvjeti hipoteze h zadovoljeni, primjer se klasificira kao pozitivni primjer

$$h(x) = 1$$

UČENJE KONCEPATA

Zadaća učenja koncepata (notacija):

- X skup primjera = skup svih dana opisan sa 6 atributa
- c ciljna funkcija ili ciljni koncept koji se uči.

c je funkcija, c:
$$X \rightarrow \{0, 1\}$$
.

$$c(x) = 1$$
 ako **Dan_za_sport** = Da

$$i c(x) = 0$$
 ako $Dan_za_sport = Ne, x \in X$.

H skup svih potencijalnih hipoteza.

Hipoteze - funkcije boolovih vrijednosti, h: $X \rightarrow \{0, 1\}$. (Dizajner određuje reprezentaciju hipoteze)

(?, hladno, visoka, ?, ?, ?)

h je opisana s konjunkcijom uvjeta

- D skup primjera za učenje (x, c(x)) .
 - pozitivni primjeri (c(x) = 1), negativni primjeri (c(x) = 0)
 Primjer:

((sunčano, vruće, normalno, jak, topla, ista), 1)

Učenje koncepta *dan_za_sport* je učenje skupa dana za koji funkcija *dan_za_sport* = Da.

Taj je skup opisan sa <u>konjunkcijom</u> uvjeta nad atributnim vrijednostima

- DANO:
- Primjeri X: mogući dani, svaki opisan skupom atributa:
 - Nebo (sunčano, oblačno, kišno)
 - Temperatura zraka (vruće, hladno)
 - Vlaga (normalna, visoka)
 - Vjetar (jak, slab)
 - Voda (topla, hladna)
 - Prognoza (ista, promjena)

TRAŽI SE:

Hipoteza $h \in H$, takva da je h(x) = c(x), za $\forall x \in X$.

 Ako je dan skup primjera za učenje D, problem učenja koncepta je aproksimacija ciljne funkcije c.

Hipoteza induktivnog učenja

- Uočite: iako je zadaća učenja određivanje hipoteze h identične ciljnoj funkciji c na cijelom X, jedina dostupna informacija jest vrijednost funkcije c na skupu primjera za učenje D!
- Nema potpune informacije naša pretpostavka jest da najbolja hipoteza s obzirom na neviđene primjere jest upravo ona koja najbolje opisuje primjere za učenje!

Hipoteza induktivnog učenja

HIPOTEZA INDUKTIVNOG UČENJA

Bilo koja hipoteza koja dobro aproksimira ciljnu funkciju na dovoljno velikom skupu primjera aproksimirat će ciljnu funkciju dovoljno dobro i nad novim primjerima.

- Izbor reprezentacije hipoteze određuje prostor svih hipoteza.
- Primjer : Dan_za_sport
 - Nebo (sunčano, oblačno, kišno)
 - Temperatura zraka (vruće i hladno)
 - Vlaga (normalna, visoka)
 - Vjetar (jak, slab)
 - Voda (topla, hladna)
 - Prognoza (ista, promjena)
- Različitih primjera ima , elementi skupa X
 3*2*2*2*2*2 = 96

- Prostor svih hipoteza H
- Sintaktički različitih hipoteza u H ima
- Semantički različitih hipoteza u H ima

(Hipoteza koja sadrži jedan ili više Ø predstavlja prazan skup primjera)

- Primjer koncepta dan_za_sport je jednostavan, H je konačan. Obično, je H vrlo velik ili beskonačan.
- Zanimaju nas algoritmi koji mogu efikasno pretraživati vrlo veliki ili beskonačni skup hipoteza
 - → oslanjanje na UREĐAJ!

Uređaj hipoteza od općenitog prema specifičnom

- Temelj algoritama za učenje koncepata → parcijalni uređaj prostora hipoteza
- Svaka hipoteza odgovara nekom podskupu primjera iz X koje pozitivno klasificira:

```
h1 = (sunčano, ?, ?, jak, ?, ?)
h2 = (sunčano, ?, ?, ?, ?, ?)
```

 Pogledajmo skup primjera klasificiran pozitivno kod jedne ili druge hipoteze!

h2 je općenitija od h1

Definicija

Za neki $x \in X$ i hipotezu $h \in H$ kažemo da x zadovoljava h akko h(x)=1.

Definicija

Neka su $\mathbf{h_j}$ i $\mathbf{h_k}$ funkcije boolovih vrijednosti definirane na X. Tada je $\mathbf{h_j}$ općenitija_od_ili_jednaka $\mathbf{h_k}$ (piše se $\mathbf{h_j} \geq_{\mathbf{g}} \mathbf{h_k}$) akko

$$(\forall x \in X) [(h_k(x) = 1) \Rightarrow (h_j(x) = 1)].$$

- Možemo razmatrati i relaciju strogo_općenitija_od
 (h_j >_g h_k) ⇔ (h_j ≥_g h_k) ∧ (h_k ¬≥_g h_j))
- Inverzna relacija naziva se specifičnija_od.
- ≥_g je relacija parcijalnog uređaja na H (refleksivna, antisimetrična i tranzitivna).
- Neki je skup potpuno uređen ako nema neusporedivih elemenata (što ovdje nije slučaj!).

Zašto je ≥_g - vrlo važna relacija?

Primjeri X

Hipoteze **H**

x₁=(sunčano, vruće, visoka, jak, hladna, ista)
 x₂=(sunčano, vruće, visoka, slab, topla, ista)

$$h_1(x_1) = 1, h_2(x_1) = 1, h_3(x_1) = 1$$

$$h_1(x_2) = 0, h_2(x_2) = 1, h_3(x_2) = 0$$

 Jedan način je krenuti od najspecifičnije hipoteze i generalizirati svaki put kada hipoteza ne pokrije pozitivni primjer za učenje

Pronađi-S algoritam

- 1. Inicijaliziraj *h* na najspecifičniju hipotezu u *H*
- 2. Za svaki pozitivni primjer za učenje x

Za svaki atribut a, u h

AKO je uvjet a_i zadovoljen sa x

TADA ne čini ništa

INAČE zamijeni a_i u *h* sa slijedećim općenitijim uvjetom koji je zadovoljen sa x

3. Predoči na izlazu h

Primjer

Primjer - dan	Naoblaka	Temper atura	Vlažnos t	Vjetar	Voda	Prognoza	Sport
1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
3	kišno	hladno	visoka	jak	topla	promjena	NE
4	sunčano	vruće	visoka	jak	hladna	promjena	DA

$$h \leftarrow (\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing)$$

Niti jedan uvjet hipoteze nije zadovoljen -> generelizacija

h ← (sunčano, vruće, normalna, jak, topla, isto)

Nakon 2. pozitivnog primjera:

h ← (sunčano, vruće, ?, jak, topla, isto)

- Treći primjer se ignorira jer je negativan (h ga korektno klasificira kao -)
- Komentar. Ne treba revizija negativnih primjera Zašto?

- Tekuća hipoteza je uvijek najspecifičnija koja pokriva + primjere.
- Pretpostavka: c se nalazi u H i nema pogrešaka u podacima.
 - Ciljni koncept c je konzistentan je s + primjerima i vrijedi
 c ≥_g h,
 no kako c ne pokriva negativne primjere, ne pokriva ih ni h.

Četvrti primjer

 $h \leftarrow (sunčano, vruće, ?, jak, ?, ?)$

- Ukratko:
- PRONAĐI-S algoritam pretražuje po stablu parcijalnog uređaja od najspecifičnije prema općenitijim hipotezama.
- U svakom koraku hipoteza se generalizira samo onoliko koliko je nužno da pokrije pozitivne primjere.
- Dakle, PRONAĐI-S nalazi najspecifičniju hipotezu konzistentnu s pozitivnim primjerima

- Svojstvo PRONAĐI-S:
 - prostor hipoteza H opisan je kao konjunkcija uvjeta postavljenih na atribute.
 - algoritam garantira nalaženje najspecifičnije hipoteze konzistentne sa pozitivnim primjerima za učenje.
 - završna hipoteza konzistentna je i sa negativnim primjerima za učenje uz uvjet:
 - ciljni koncept c je u H
 - primjeri za učenje su ispravni

Problemi u vezi PRONAĐI-S algoritmom

- Da li je učenik konvergirao prema pravom konceptu? Da li je pronađena hipoteza jedina hipoteza konzistentna s podacima (tj. ciljnim konceptom)?
- Zašto preferirati najspecifičniju hipotezu?
- Što ako primjeri za učenje sadrže šum ili pogrešku?
- Što ako ima više maksimalno specifičnih konzistentnih hipoteza? (To nije slučaj u navedenom primjeru "dan_za_sport", no postoje slučajevi gdje ima više maksimalno specifičnih hipoteza kao i primjera prostora hipoteza gdje nema maksimalno specifične hipoteze. Algoritam treba biti u mogućnosti vraćati se unatrag i pretraživati različite druge grane prostora hipoteza s parcijalnim uređajem)

1. Zadatak

 Razmotrite zadatak učenja koncepta u kojem je skup primjera jednak skupu realnih brojeva, tj. X = R i svaka hipoteza je u obliku a < x < b, gdje su a i b realne konstante, a x primjer, tj.

$$H = \{ (a, b) \mid a, b \in R \}.$$

- Na primjer, hipoteza 3.1 < x < 6.2 klasificira sve realne brojeve iz otvorenog intervala (3.1, 6.2) kao pozitivne, a ostale kao negativne.
- a) Objasni zašto ne postoji maksimalno specifična hipoteza koja bi bila konzistentna sa bilo kojim skupom pozitivnih primjera?
- b) Sa kakvom modifikacijom predstavljanja hipoteze se to može postići?

2. Zadatak

- Implementiraj PRONAĐI-S algoritam.
- Najprije provjeri da implementacija proizvodi trag identičan onom iz odjeljka 2.4.
- Zatim koristi program za slučajno generiranje primjera za učenje koji su potrebni da nauče točan ciljni koncept (iz istog primjera).
- Implementiraj generator primjera za učenje koji generira slučajne primjere, a zatim ih klasificira u skladu s ciljnim konceptom (sunčano, vruće, ?, ?, ?)
- Razmotri učenje svog PRONAĐI-S algoritma na slučajno generiranim primjerima i promatraj broj primjera potrebnih da bi program točno naučio ciljnu hipotezu.
- Možete li predvidjeti broj primjera za učenje?
- Napravi eksperiment barem 20 puta i navedi prosječan broj primjera za učenje. Kako taj broj ovisi o broju "?" u ciljnom konceptu? Kako ovisi o broju atributa koji se koriste za opis primjera i hipoteza?

ALGORITAM ELIMINACIJE-KANDIDATA

- PRONAĐI-S algoritam nalazi samo jednu od mogućih hipoteza koja je konzistentna s podacima.
- Algoritam ELIMINACIJE-KANDIDATA (engl.
 CANDIDATE-ELIMINATION ALGORITHM) daje opis
 skupa svih hipoteza konzistentnih s primjerima za učenje
 (i dalje važna relacija općenitija_od_ili_jednaka)
- Oba spomenuta algoritma isti nedostatak loše ponašanje ako su podaci sa šumom.

ALGORITAM ELIMINACIJE-KANDIDATA

 Algoritam ELIMINACIJE-KANDIDATA nalazi sve opisive hipoteze konzistentne s primjerima za učenje

Definicija

Hipoteza h je konzistentna sa skupom primjera za učenje D akko h(x)=c(x) za svaki primjer (x,c(x)) iz D.

Uoči bitnu razliku između definicije konzistentnosti i definicije zadovoljivosti!

ALGORITAM ELIMINACIJE-KANDIDATA

 Algoritam ELIMINACIJE-KANDIDATA → nalazi sve hipoteze konzistentne s primjerima za učenje - PROSTOR INAČICA (engl. VERSION SPACE)

Definicija

Prostor inačica, označen s VS_{H,D}, u odnosu na prostor hipoteza **H** i skup primjera za učenje **D**, jest podskup skupa hipoteza **H**, konzistentan s primjerima za učenje.

$$VS_{H,D} \equiv \{h \in H | Konzistentna(h, D)\}$$

LISTAJ-ZATIM-ELIMINIRAJ algoritam

Listaj-zatim-eliminiraj algoritam

- 1. Prostor inačica ← lista koja sadrži sve hipoteze iz H
- 2. Za svaki primjer za učenje (x, c(x)) iz D ukloni iz *Prostora inačica* sve hipoteze za koje je $h(x) \neq c(x)$
- 3. Predoči na izlazu hipoteze iz Prostora inačica
- Prostor inačica se reducira na
 - jednu hipotezu
 konzistentnih s podacima za učenje
 - cijeli skup hipoteza

(ako nema dovoljno podataka VS se ne može reducirati na jednu hipotezu)

- nedostatak: samo ako je H konačan,
- prednost: garantira nalaženje SVIH hipoteza konzistentnih s D

KOMPAKTNIJA REPREZENTACIJA PROSTORA INAČICA

- Prostor inačica predstavljen sa najopćenitijima (G) i najspecifičnijim hipotezama (S).
- Ta dva skupa hipoteza određuju granice prostora inačica unutar parcijalnog uređaja prostora hipoteza.
- VS za primjer učenja koncepta dan_za_sport

KOMPAKTNIJA REPREZENTACIJA PROSTORA INAČICA

PRONAĐI-S algoritam daje samo hipotezu:

(sunčano, vruće, ?, jak, ?, ?),

koja je samo jedna od šest hipoteza koja je konzistentna sa primjerima za učenje.

- Strelice u VS označuju relaciju općenitija_od
- Algoritam ELIMINACIJA-KANDIDATA pohranjuje:
 - skup S (najspecifičnije hipoteze)
 - skup G (najopćenitije hipoteze).
 - iz ova dva skupa moguće je generirati sve ostale članove VS na temelju parcijalnog uređaja

KOMPAKTNIJA REPREZENTACIJA PROSTORA INAČICA

Definicija

Najopćenitija granica G, u odnosu na prostor hipoteza H i skup primjera za učenje D, jest skup maksimalno općenitih članova skupa hipoteza H, konzistentnih s primjerima za učenje D.

Definicija

Najspecifičnija granica S, u odnosu na prostor hipoteza H i skup primjera za učenje D, jest skup maksimalno specifičnih (minimalno općenitih) članova skupa hipoteza H, konzistentnih s primjerima za učenje D.

KOMPAKTNIJA REPREZENTACIJA PROSTORA INAČICA

Teorem 2.1. - Predstavljanje prostora inačica

Neka je X proizvoljni skup primjera i neka je H skup hipoteza s boolovim vrijednostima definiran na X. Neka je c: $X \rightarrow \{0, 1\}$ proizvoljni ciljni koncept i neka je D proizvoljni skup primjera za učenje $\{(x, c(x))\}$.

Za sve X, H, c i D takve da su S i G dobro definirani, $VS_{H,D} \equiv \{h \in H | (\exists s \in S) (\exists g \in G) (g \geq_g h \geq_g s)\}$

 Prostor inačica se inicijalizira na cijeli H – tj. inicijalno je određen sa

$$S0 = \{(\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing)\}$$

$$G0 = \{(?, ?, ?, ?, ?, ?)\}$$

 Predočavanjem primjera za učenje, rubni se skupovi S i G specijaliziraju, odnosno generaliziraju tako da se eliminiraju sve hipoteze koje su nekonzistentne s novim primjerima za učenje. Na kraju tog postupka, prostor inačica sadrži samo one hipoteze koje su konzistentne sa svim primjerima za učenje

egizacija

$$\mathbf{S}_0 = \{(\varnothing,\varnothing,\varnothing,\varnothing,\varnothing,\varnothing)\}$$

$$\mathbf{G}_0 = \{(?,?,?,?,?,?)\}$$
specijalizacija
specijalizacija

- Inicijaliziraj G na skup maksimalno općenitih hipoteza u H
- Inicijaliziraj S na skup maksimalno specifičnih hipoteza u H
- Za svaki primjer za učenje d ∈ D učini
- Ako je d pozitivni primjer
 - Ukloni iz G sve hipoteze nekonzistentne s d
 - Za svaku hipotezu s ∈ S koja nije konzistentna s d
 - Ukloni $s \in S$
 - Dodaj u S sve minimalne generalizacije h od s takve da
 - h je konzistentna s d, i neki član iz G je općenitiji od h (osigurava konzistentnost s prethodnim negativnim primjerima)
 - Ukloni iz S sve hipoteze koje su općenitije od drugih hipoteza u S

- Ako je d negativni primjer
 - Ukloni iz S sve hipoteze nekonzistentne s d
 - Za svaku hipotezu g ∈ G koja nije konzistentna s d
 - Ukloni $g \in G$
 - Dodaj u G sve minimalne specijalizacije h od g takve da
 - h je konzistentna s d, i neki članovi iz S su specifičniji od h (osigurava konzistentnost s prethodnim pozitivnim primjerima)
 - Ukloni iz **G** sve hipoteze koje su specifičnije od drugih hipoteza u **G**
- Uoči dualnost kako pozitivni i negativni primjeri utječu na S i G!

- Operacije:
 - računanje minimalne generalizacije i specijalizacije dane hipoteze
 - identificiranje neminimalne i nemaksimalne hipoteze

Algoritam ELIMINACIJE_KANDIDATA može biti primijenjen na bilo koju zadaću učenja koncepata za koju su gornje operacije dobro definirane!

 Ako tijekom učenja S ili G postanu prazni skupovi tada to znači da ciljni koncept nije moguće predstaviti u tom prostoru hipoteza.

Primjer - dan	Naoblaka	Temperat ura	Vlažnost	Vjetar	Voda	Prognoza	Dan za sport
1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
3	kišno	hladno	visoka	jak	topla	promjena	NE
4	sunčano	vruće	visoka	jak	hladna	promjena	DA

 Prva dva primjera generaliziraju granicu S0, dok je G0 = G1 = G2

(Primijeti da prva dva koraka podsjećaju na PRONAĐI-S algoritam, pozitivni primjeri generaliziraju S)

Ako je **d** negativni primjer

Ukloni iz S sve hipoteze nekonzistentne s d

Za svaku hipotezu $g \in G$ koja nije konzistentna s d Ukloni $g \in G$

1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
1							
3	kišno	hladno	visoka	jak	topla	promjena	NE

 $S_2 = S_3$ {(sunčano, vruće, ?, jak, topla, isto)}

Ako je **d** negativni primjer Ukloni iz **S** sve hipoteze nekonzistentne s **d**

Za svaku hipotezu $\mathbf{g} \in \mathbf{G}$ koja nije konzistentna s \mathbf{d} Ukloni $\mathbf{g} \in \mathbf{G}$

Dodaj u **G** sve minimalne specijalizacije **h** od **g** takve da **h** je konzistentna s **d**, i neki članovi iz **S** su specifičniji od **h** (osigurava konzistentnost s prethodnim **pozitivnim** primjerima)

I					,	-		
	3	kišno	hladno	visoka	jak	topla	promjena	NE
	4	sunčano	vruće	visoka	jak	hladna	promjena	DA

S₂ S₃ {(sunčano, vruće, ?, jak, topla, isto)}

Primjer - dan	Naoblaka	Temperat ura	Vlažnost	Vjetar	Voda	Prognoza	Dan za sport
1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
3	kišno	hladno	visoka	jak	topla	promjena	NE
4	sunčano	vruće	visoka	jak	hladna	promjena	DA

S₂ S₃ {(sunčano, vruće, ?, jak, topla, isto)}

G₂: {(?, ?, ?, ?, ?, ?)}

Uoči: negativni primjeri specijaliziraju G i to tako da se negativni primjer korektno klasificira kao negativan,

Primjer - dan	Naoblaka	Temperat ura	Vlažnost	Vjetar	Voda	Prognoza	Dan za sport
1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
3	kišno	hladno	visoka	jak	topla	promjena	NE
4	sunčano	vruće	visoka	jak	hladna	promjena	DA

S₂ S₃ {(sunčano, vruće, ?, jak, topla, isto)}

Prijelaz $G2 \Rightarrow G3$ minimalne specijalizacije.

Primjer - dan	Naoblaka	Temperat ura	Vlažnost	Vjetar	Voda	Prognoza	Dan za sport
1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
3	kišno	hladno	visoka	jak	topla	promjena	NE
4	sunčano	vruće	visoka	jak	hladna	promjena	DA

S₂ S₃ {(sunčano, vruće, ?, jak, topla, isto)}

G₃ {(sunčano, ?, ?, ?, ?) (?, vruće, ?, ?, ?), (?, ?, normalna, ?, ?, ?) ...

G₂: {(?, ?, ?, ?, ?, ?)}

Primjer - dan	Naoblaka	Temperat ura	Vlažnost	Vjetar	Voda	Prognoza	Dan za sport
1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
3	kišno	hladno	visoka	jak	topla	promjena	NE
4	sunčano	vruće	visoka	jak	hladna	promjena	DA

S₂ S₃ {(sunčano, vruće, ?, jak, topla, isto)}

G₃ {(sunčano, ?, ?, ?, ?) (?, vruće, ?, ?, ?), (?, ?, normalna, ?, ?, ?) ...

G₂: {(?, ?, ?, ?, ?, ?)}

h je konzistentna s d, i <u>neki članovi iz S su specifičniji od h</u>

Hipoteza

h = (?, ?, normalna, ?, ?, ?)

nije općenitija od tekuće granice

S2 {(sunčano, vruće, ?, jak, topla, isto)}.

U algoritmu:

. . .

h je konzistentna s d, i neki članovi iz S su specifičniji od h

. . . .

Prin	njer dan	Naoblaka	Temperat ura	Vlažnost	Vjetar	Voda	Prognoza	Dan za sport
	1	sunčano	vruće	normalna	jak	topla	isto	DA
	2	sunčano	vruće	visoka	jak	topla	isto	DA
	3	kišno	hladno	visoka	jak	topla	promjena	NE
	4	sunčano	vruće	visoka	jak	hladna	promjena	DA

S₂ S₃ {(sunčano, vruće, ?, jak, topla, isto)}

G₃ {(sunčano, ?, ?, ?, ?) (?, vruće, ?, ?, ?), (?, ?, visoka, ?, ?, ?)}

Primjer - dan	Naoblaka	Temperat ura	Vlažnost	Vjetar	Voda	Prognoza	Dan za sport
1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
3	kišno	hladno	visoka	jak	topla	promjena	NE
4	sunčano	vruće	visoka	jak	hladna	promjena	DA

S₂ S₃ {(sunčano, vruće, ?, jak, topla, isto)}

G₃ {(sunčano, ?, ?, ?, ?) (?, vruće, ?, ?, ?), (?, ?, visoka, ?, ?, ?)}

h je konzistentna s d, i neki članovi iz S su specifičniji od h

Primjer - dan	Naoblaka	Temperat ura	Vlažnost	Vjetar	Voda	Prognoza	Dan za sport
1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
3	kišno	hladno	visoka	jak	topla	promjena	NE
4	sunčano	vruće	visoka	jak	hladna	promjena	DA

S₂ S₃ {(sunčano, vruće, ?, jak, topla, isto)}

G₃ {(sunčano, ?, ?, ?, ?) (?, vruće, ?, ?, ?, ?) (?, ?, ?, jak, ?, ?)}

Izbacujemo (?, ?, ?, jak, ?, ?) jer...?.

- 1. Zašto G3 ne sadrži {(?, ?, ?, jak, ?, ?)}?
- 2. Zašto G3 ne sadrži {(?, ?, ?, ?, topla,?)}?
- 1. i 2. zbog nekonzistencije ovakve hipoteze klasificirale bi tekući primjer kao pozitivan, a ne kao negativan

.

Ako je d pozitivni primjer

Ukloni iz G sve hipoteze nekonzistentne s d
Za svaku hipotezu g ∈ G koja nije konzistentna s d
Ukloni g ∈ G
Dodaj u G sve minimalne specijalizacije h od g takve da
h je konzistentna s d, i neki članovi iz S su specifičniji
od h (osigurava konzistentnost s prethodnim
pozitivnim primjerima)....

Primjer - dan	Naoblaka	Temperat ura	Vlažnost	Vjetar	Voda	Prognoza	Dan za sport
1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
3	kišno	hladno	visoka	jak	topla	promjena	NE
4	sunčano	vruće	visoka	jak	hladna	promjena	DA

S₂ S₃ {(sunčano, vruće, ?, jak, topla, isto)}

G₃ {(sunčano, ?, ?, ?, ?) (?, vruće, ?, ?, ?, ?) (?, ?, ?, ?, ?, isto)}

Prijelaz $G2 \Rightarrow G3$ minimalne specijalizacije.

- Interpretacija S i G:
- S granica prostora_inačica sumira sve prethodne pozitivne primjere koji se koriste za određivanje da li je neka dana hipoteza konzistentna s tim primjerima. Bilo koja hipoteza općenitija od S će tada pokrivati pozitivne primjere koje pokriva i S
- Na dualan način G sumira informacije svih prethodnih negativnih primjera. Bilo koja hipoteza specifičnija od G bit će konzistentna s prethodnim negativnim primjerima

Primjer - dan	Naoblaka	Temperat ura	Vlažnost	Vjetar	Voda	Prognoza	Dan za sport
1	sunčano	vruće	normalna	jak	topla	isto	DA
2	sunčano	vruće	visoka	jak	topla	isto	DA
3	kišno	hladno	visoka	jak	topla	promjena	NE
4	sunčano	vruće	visoka	jak	hladna	promjena	DA

- Četvrti primjer:
- Jedan član G3 (?, ?, ?, ?, isto) mora biti uklonjen zato što nije konzistentan s četvrtim primjerom
 - Ako je d pozitivni primjer
 - Ukloni iz G sve hipoteze nekonzistentne s d

(uoči da je uklanjanje neizbježno jer specijalizacijom hipoteze iz G ne postižemo konzistentnost)

Nadalje, četvrti primjer generalizira donju granicu sa S3 na S4

Četvrti primjer:

S4 {(sunčano, vruće, visoka, jak, hladna, promjena), DA}.

S₃ {(sunčano, vruće, ?, jak, topla, isto)}

S₄ {(sunčano, vruće, ?, jak, ?, ?)}

G₄ {(sunčano, ?, ?, ?, ?) (?, vruće, ?, ?, ?)}

G₃ {(sunčano, ?, ?, ?, ?) (?, vruće, ?, ?, ?, ?) (?, ?, ?, ?, isto)}

Konačni oblik prostora_inačica:

 Da li naučeni prostor inačica zavisi od redoslijeda predočavanja primjera?

PRIMJEDBE O *PROSTORU INAČICA* I ALGORITMU ELIMINACIJA_KANDIDATA

Da li algoritam ELIMINACIJA_KANDIDATA konvergira prema korektnoj hipotezi?

- Prostor inačica uz E_K algoritam konvergira prema pravoj hipotezi ako
 - Nema pogrešaka u primjerima za učenje
 - Postoji neka hipoteza u H koja korektno opisuje ciljni koncept

Ciljni koncept je točno naučen kada **S** i **G** konvergiraju prema jednoj identičnoj hipotezi!

PRIMJEDBE O *PROSTORU INAČICA* I ALGORITMU ELIMINACIJA_KANDIDATA

- Što se dešava kada se pozitivan primjer pogrešno deklarira kao negativan?
- Ispravni ciljni koncept se uklanja iz prostora inačica.
 (Uklanjaju se sve hipoteze nekonzistentne s primjerima za učenje).
 - Ako ima dovoljno primjera za učenje eventualno će S i G konvergirati prema <u>praznom skupu</u> NEMA HIPOTEZE KONZISTENTNE S PRIMJERIMA
- Slično ako se ciljni koncept ne može opisati u odabranoj reprezentaciji hipoteze. (konjunkcija -> disjunkcija atributa)

KOJI SLJEDEĆI PRIMJER ZA UČENJE UČENIK TREBA ZATRAŽITI?

- Do sada primjere za učenje daje učitelj
- Što ako učenik može voditi eksperiment i sam izabrati primjer za učenje i zatim dobiti informaciju iz vanjskog svijeta (učitelja, prirode) o korektnoj klasifikaciji izabranog primjera? → u tom slučaju koristimo termin upit (engl. query)

- Što bi bilo dobro pitanje u ovom slučaju?
- Što je dobra strategija upita uopće?

