INTRODUCTION

MEDIA COMPETITION AND THE SOURCE OF DISAGREEMENT

Jacopo Perego Sevgi Yuksel NYU NYU

July 2015

•000

How does competition among information providers affect the efficiency of electoral outcomes?

MAIN QUESTION

INTRODUCTION

•000

How does **competition** among information providers affect the efficiency of electoral outcomes?

A classic view

Beneficial effects: A competitive marketplace for ideas.

MAIN QUESTION

INTRODUCTION

How does competition among information providers affect the efficiency of electoral outcomes?

A classic view

- Beneficial effects: A competitive *marketplace for ideas*.

A **modern** critique

Effects of competition not so obviously beneficial.

We identify a novel channel through which market fails.

Our Main Result:

As competition increases, the equilibrium share of votes going to the socially optimal candidate decreases.

In our model:

- (a) Agents are Bayesian utility maximizer.
- (b) Information Providers are profit maximizers.

Agents seek to learn how two political candidates compare on several issues.

Agents may disagree on:

- 1. Which issues are important to them. (agenda)
- 2. How each issue in their agenda should be addressed. (*slant*)

- Competition forces firms to **differentiate** the *type* of information they produce.

INTRODUCTION

- Competition forces firms to **differentiate** the *type* of information they produce.
- Differentiation leads to more information on issues where there is higher **disagreement** in the electorate.

INTRODUCTION

- Competition forces firms to differentiate the type of information they produce.
- Differentiation leads to more information on issues where there is higher disagreement in the electorate.
- Voters become individually better informed.

INTRODUCTION

- Competition forces firms to differentiate the type of information they produce.
- Differentiation leads to more information on issues where there is higher disagreement in the electorate.
- Voters become individually better informed.
- Yet, the share of votes going to the socially optimal candidate decreases.

Model

PRIMITIVES

INTRODUCTION

- Two ex-ante unknown candidates (A and B) running for office.
- Focus on *relative* comparison θ .
- Two components: $oldsymbol{ heta}:=(heta_v, heta_{id})\sim\mathcal{N}ig(0,I_2ig).$ (Common Prior)
- Continuum of **agents**, $t \sim \mathcal{U}(T)$ with preferences

$$u(\boldsymbol{\theta},t) := \lambda \theta_v + (1-\lambda) f(\theta_{id},t)$$

Preferences on θ_v are homogeneous. Preferences on θ_{id} are heterogeneous. Valence (Stokes, 1963).

Ideology (Downs, 1957)

PRIMITIVES

INTRODUCTION

- Two ex-ante unknown candidates (A and B) running for office.
- Focus on *relative* comparison θ .
- Two components: $\boldsymbol{\theta} := (\theta_v, \theta_{id}) \sim \mathcal{N} (0, I_2)$. (Common Prior)
- − Continuum of **agents**, $t \sim U(T)$ with preferences

$$u(\boldsymbol{\theta}, t) := \lambda \theta_v + (1 - \lambda) f(\theta_{id}, t)$$

Preferences on θ_v are homogeneous.

Valence (Stokes, 1963).

Preferences on θ_{id} are heterogeneous. *Ideology* (Downs, 1957).

VOTERS HETEROGENEITY REVISITED

In this paper, we want *f* to generate a **richer** space of heterogeneity.

We allow ideology θ_{id} to be multi-dimensional: $(\vartheta_1, \vartheta_2)$.

We want to capture two key aspects

- (*Slant*) Voters disagree on whether more ϑ_k is good?
- (*Agenda*) Voters disagree on what's more important: ϑ_1 vs ϑ_2

INTRODUCTION

In this paper, we want *f* to generate a **richer** space of heterogeneity.

We allow ideology θ_{id} to be multi-dimensional: $(\vartheta_1, \vartheta_2)$.

We want to capture two key aspects

- (*Slant*) Voters disagree on whether more ϑ_k is good?
- (*Agenda*) Voters disagree on what's more important: ϑ_1 vs ϑ_2

INTRODUCTION

In this paper, we want *f* to generate a **richer** space of heterogeneity.

We allow ideology θ_{id} to be multi-dimensional: $(\vartheta_1, \vartheta_2)$.

We want to capture two **key aspects**:

(*Slant*) Voters disagree on whether more ϑ_k is good?

(*Agenda*) Voters disagree on what's more important: ϑ_1 vs ϑ_2 .

CONCLUSION

VOTERS HETEROGENEITY REVISITED

VOTERS HETEROGENEITY REVISITED

INTRODUCTION

We assume that $\theta_{id} := (\vartheta_1, \vartheta_2)$.

Type space is $T := [-\pi, \pi]$.

Ideological preferences are defined as follows:

$$f(\theta_{id},t) := \vartheta_1 \cos(t) + \vartheta_2 \sin(t)$$

VOTERS PREFERENCES

Summing up:

$$u(\boldsymbol{\theta},t) := \lambda \, \theta_v + (1-\lambda) f(\theta_{id},t).$$

Convenient features:

- 1. Ideological Distance: $\rho_t(t') = \cos(t t')$.
- 2. Spatial model.
- 3. Polarization.

INTRODUCTION

Social planner maximizes total welfare.

That is, she chooses

$$r^{SP}(\boldsymbol{\theta}) = \left\{ egin{array}{ll} A & ext{if } rac{1}{2\pi} \int_T u(\boldsymbol{\theta},t) dt > 0 \\ B & ext{else.} \end{array} \right.$$

PROPOSITION 1 (First Best): Planner selects candidate A iff $\theta_v > 0$.

Information providers produce two signals on θ_v and θ_{id} that agents can acquire.

Constraints:

INTRODUCTION

- 1. Precision is bounded.
- 2. Coverage is bounded.

Precision:
$$\tau \in [0,1]$$
 Location: $x \in T$

$$s_{\rm v} \sim \mathcal{N}\left(\theta_v, au^{-1}\right)$$
 and $s_{\rm id} \sim \mathcal{N}\left(f(\theta_{\it id}, x), (1- au)^{-1}\right)$

Information Providers

Information providers produce two signals on θ_v and θ_{id} that agents can acquire.

Constraints:

INTRODUCTION

- 1. Precision is bounded.
- 2. Coverage is bounded.

Strategy space:

Precision:
$$\tau \in [0, 1]$$
 Location: $x \in T$

Two *independent* signals:

$$s_{v} \sim \mathcal{N}\Big(\theta_{v}, \tau^{-1}\Big)$$
 and $s_{id} \sim \mathcal{N}\Big(f(\theta_{id}, x), (1 - \tau)^{-1}\Big).$

VOTER'S PROBLEM

Agents vote sincerely.

Value of information (τ, x) for type t is $V(\tau, x \mid t)$.

Agents acquire *the* information structure with highest value.

INTRODUCTION

LEMMA 1: Value of information (τ, x) for type t:

$$V(\tau, x|t) := \sqrt{2/\pi} \ \sigma(\tau, x|t)$$

EQUILIBRIUM

•000

RESULTS

$$\sigma^{2}(\tau, x|t) = \lambda^{2} \left[g(\tau) \right] + (1 - \lambda)^{2} \left[\cos^{2}(t - x)g(1 - \tau) \right]$$

EQUILIBRIUM

INTRODUCTION

$$\sigma^{2}(\tau, x|t) = \lambda^{2} \left[g(\tau) \right] + (1 - \lambda)^{2} \left[\cos^{2}(t - x)g(1 - \tau) \right]$$

EQUILIBRIUM

- *Valence* works as **public** good. It increases value for all voters.
- *Ideology* works as **local** good. It increases value for closeby voters.

INFORMATION PROVIDER'S PROBLEM

Information providers simultaneously maximize market capture.

DEFINITION 1:

INTRODUCTION

A Nash equilibrium (τ, x) is **symmetric** if:

- For all $i \in N$, $\tau_i = \tau^*$.
- Firms are located equidistantly in T.

INFORMATION PROVIDER'S PROBLEM

RESULTS

INTRODUCTION

Proposition 2:

There exists a symmetric Nash equilibrium (τ^*, x^*) . For n > 2, it is unique* in the class of symmetric equilibria.

PROPOSITION 3:

As n increases, firms become less informative on valence, i.e. τ^{\star} decreases.

Intuition: As *n* increases,

- Your market shrinks.
- And becomes more homogeneous.

..... Market Capture

• Firm Location

..... Market Capture

• Firm Location

..... Market Capture

• Firm Location

Individual Voting Behavior

What is the effect of competition on individual behavior?

PROPOSITION 3: As *n* increases,

- Voters become individually more informed.
- The voting behavior of each type becomes increasingly ideological.
- The voting behavior of each type becomes increasingly uncorrelated with the first best.

INDIVIDUAL VOTING BEHAVIOR

AGGREGATE VOTING BEHAVIOR

What is the effects of competition on aggregate behavior?

PROPOSITION 4:

As competition increases, the share of votes received by the socially optimal candidate decreases.

PROPOSITION 5:

For all *n*, preference polarization magnifies this inefficiency.

AGGREGATE VOTING BEHAVIOR

CONCLUSION

CONCLUSION

We studied a model in which competition leads to welfare loss.

- Competition leads to differentiation.
- Differentiation leads to more ideological voting.

Not quite a market failure.

- − As *n* increases, voters get what they want.
- Competition does not create, but simply *uncovers* the heterogeneity in voters' preferences.
- Media serve as a *driver* for disagreement.

MARKET CAPTURE

Motivations:

- 1. Price competition generally highly regulated.
- Price for political news is often negligible. Rather than price, content.
- 3. Price competition would set an even stronger case for differentiation.

ROBUSTNESS

Discussion:

- Robust to strategic voting.
- Robust to consumption of a finite number of new sources.
- Continuum of voters and simple value of information.

