P-4. Wzmacniacz tranzystorowy w konfiguracji WE

wersja 04'2022

1. Zakres ćwiczenia

Ćwiczenie polega na zaprojektowaniu, zbudowaniu i wykonaniu podstawowych pomiarów parametrycznych jednotranzystorowego wzmacniacza w konfiguracji WE (wspólnego-emitera) ze zdegenerowanym emiterem.

2. Wstęp [1] [2] [3] [4]

Podstawowy schemat ideowy wzmacniacza, oparty na pojedynczym tranzystorze bipolarnym wraz z elementami polaryzującymi (ustalającymi punkt pracy) przedstawiono na rysunku poniżej. Jest to konfiguracja wzmacniacza WE z degeneracją w emiterze, której podstawową cechą jest uzyskanie wzmocnienia napięciowego z odwróceniem fazy. Aby układ działa poprawnie należy dobrać prawidłowo wszystkie elementy obwodu tak by zapewnić pracę tranzystora w stanie aktywnym normalnym, którego cechą charakterystyczną jest spolaryzowanie diodowego złącza baza-emiter w kierunku przewodzenia, a złącza baza-kolektor w kierunku zaporowym. Zapewnia to odpowiednie podłączenia dodatniego napięcia zasilającego +Ucc i rezystory. Cechą charakterystyczną polaryzacji jest spełnienie pewnych założeń projektowych, które zakładają przy danym napięciu zasilającym +Ucc, określony prąd kolektora I_C , optymalny potencjał wyjścia oraz wykorzystanie parametrów technologicznych tranzystora (w szczególności wartość wzmocnienia prądowego β). Dla ułatwienia obliczeń należy wykorzystać fakt, że optymalny potencjał emitera tranzystora V_E powinien stanowić wartość 10% napięcia zasilającego +Ucc.

Rysunek 1. Schemat ideowy wzmacniacza WE do wyznaczenia parametrów punktu pracy

Na podstawie powyższych założeń projektowych, zgodnie ze schematem z rysunku 1 można zapisać:

$$R_E = \frac{V_E}{I_E} = \frac{V_E}{I_C \left(1 + \frac{1}{\beta}\right)}$$

Optymalna wartość potencjału wyjściowego jest wyrażona zależnością:

$$U_o = \frac{U_{CC} + V_E}{2}$$

Wartość rezystancji R_C obliczamy zgodnie z równaniem:

$$R_C = \frac{U_{CC} - U_o}{I_C}$$

Rezystory R_1 i R_2 zapewniają polaryzację bazy tranzystora poprzez dzielnik napięciowy. Zakładając prąd płynący przez dzielnik napięciowy znacznie większy od prądu bazy I_B rezystancję rezystorów wylicza się z następujących zależności:

$$R_{1} = \frac{U_{CC} - U_{BE} - V_{E}}{I_{R1}}$$

$$R_{2} = \frac{U_{BE} + V_{E}}{I_{R2}}$$

Wykorzystując powyższe dane liczbowe można zbudować układ wzmacniacza WE, spełniający założenia projektowe odnośnie określonego punktu pracy. Jednak wartość małosygnałowego wzmocnienia napięciowego konfiguracji WE z degeneracją emiterową jest dość niska. Do wyznaczenia teoretycznej wartości małosygnałowego wzmocnienia napięciowego układu z rysunku 1 należy przeanalizować pracę modelu małosygnałowego np. z użyciem modelu hybryd-π. Schemat taki przedstawia Rysunek 2.

Rysunek 2. Model małosygnałowy (niskoczęstotliwościowy) typu hybryd- π schematu z rysunku 1

Na podstawie analizy obwodu z rysunku powyżej wartość małosygnałowego wzmocnienia napięciowego wynosi:

$$k_u := \frac{U_o}{U_1} \approx \frac{-g_m \cdot R_C}{1 + g_m \cdot R_E} \bigg|_{r_{ce} \to \infty, \beta \gg 1}$$

Uwzględniając tzw. uproszczenia inżynierskie powyższą zależność można przybliżyć postacią:

$$k_u \approx \frac{-R_C}{R_E}$$

Narzucone założenia projektowe na wartość wzmocnienia napięciowego znacznie odbiegają od tych jakie możemy uzyskać w konfiguracji ze schematu na rysunku 1. Aby zwiększyć wartość małosygnałowego wzmocnienia k_U , należy zmniejszyć wartość rezystancji R_E ale tak by narzucone wartości punktów pracy nie uległy zmianie. Można tego dokonać, zamieniając rezystor R_E na dwa połączone szeregowo (R_{E1} i R_{E2}) o rezystancji zastępczej ciągle równej R_E ale z dodatkowym kondensatorem C_E , bocznikującym niską impedancją w paśmie przepustowym rezystor R_{E2} . Modyfikację przedstawiono na rysunku 3.

Rysunek 3. Schemat wzm. WE ze zdegenerowanym emiterem i częściowo bocznikowanym rezystorem RE

Wzmocnienie napięciowe k_U dla konfiguracji wzmacniacza WE ze schematu przedstawionego na rysunku 3 w zakresie częstotliwości z interesującego pasma przepustowości przyjmuje postać:

$$k_U \approx \frac{-g_m \cdot R_C}{1 + g_m \cdot R_{E1}} \bigg|_{r_{ce} \to \infty, \beta \gg 1, Z_{CE} \to 0}$$

W projekcie wzmacniacza można narzucić ograniczenie pasma przepustowości wprowadzając dominujące bieguny dolnej (f_1) i górnej (f_2) częstotliwości granicznej odpowiednich układów filtrujących (górno- i dolno-przepustowe filtry połączone kaskadowo). Pomocnym w zrozumieniu filtracji pasma przepustowego będzie rysunek 4, przedstawiający małosygnałowy model zastępczy wzmacniacza z uwzględnieniem podstawowych parametrów modelu, tj. wzmocnienia k_U , małosygnałowej ekwiwalentnej rezystancji wejściowej r_{in} oraz rezystancji wyjściowej rout.

Rysunek 4. Schemat zastępczy wzmacniacza WE wraz z dodatkowymi pojemnościami dodanymi na schemacie z rysunku 3

Transmitancja zespolona układu z rysunku 4 przybiera postać:
$$H(j\omega) := \frac{U_O}{U_i} = k_U \cdot \frac{1}{1 + \frac{\omega_1}{j\omega}} \cdot \frac{1}{1 + \frac{j\omega}{\omega_2}}$$

gdzie:
$$\omega_1 = \frac{1}{C_i} \cdot r_{in}$$

$$\omega_2 = {}^1/_{C_o} \cdot r_{out}$$

Wartości małosygnałowej rezystancji wejściowej r_{in} oraz wyjściowej r_{out} należy wyznaczyć na podstawie schematu z rysunku 2.

3. Program ćwiczenia

Program ćwiczenia i sposób opracowania sprawozdań zgodnie z wytycznymi prowadzącego.

4. Dodatek

Dane katalogowe tranzystora BC547 (*n-p-n*) produkcji Fairchild Semi. [5]:

BC546/547/548/549/550

Switching and Applications

- High Voltage: BC548, V_{CEO}=85V
 Low Noise: BC549, BC550
- · Complement to BC556 ... BC560

NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings Ta=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage : BC546	80	V
	: BC547/550	50	V
	: BC548/549	30	V
V _{CEO}	Collector-Emitter Voltage : BC546	65	V
	: BC547/550	45	V
	: BC548/549	30	V
V _{EBO}	Emitter-Base Voltage : BC546/547	6	V
	: BC548/549/550	5	V
lc	Collector Current (DC)	100	mA
Pc	Collector Power Dissipation	500	mW
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-65 ~ 150	°C

Electrical Characteristics Ta=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
I _{CBO}	Collector Cut-off Current	V _{CB} =30V, I _E =0			15	nA
h _{FE}	DC Current Gain	V _{CE} =5V, I _C =2mA	110		800	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =10mA, I _B =0.5mA I _C =100mA, I _B =5mA		90 200	250 600	mV mV
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C =10mA, I _B =0.5mA I _C =100mA, I _B =5mA		700 900		mV mV
V _{BE} (on)	Base-Emitter On Voltage	V _{CE} =5V, I _C =2mA V _{CE} =5V, I _C =10mA	580	660	700 720	mV mV
f _T	Current Gain Bandwidth Product	V _{CE} =5V, I _C =10mA, f=100MHz		300		MHz
Cob	Output Capacitance	V _{CB} =10V, I _E =0, f=1MHz		3.5	6	pF
CIP	Input Capacitance	V _{EB} =0.5V, I _C =0, f=1MHz		9		pF
NF	Noise Figure : BC546/547/548	V _{CE} =5V, I _C =200μA		2	10	dB
	: BC549/550	f=1KHz, R _G =2KΩ		1.2	4	dB
	: BC549	V _{CE} =5V, I _C =200μA		1.4	4	dB
	: BC550	R _G =2KΩ, f=30~15000MHz		1.4	3	dB

h_{FF} Classification

Classification	Α	В	С
h _{FE}	110 ~ 220	200 ~ 450	420 ~ 800

©2002 Fairchild Semiconductor Corporation

©2002 Fairchild Semiconductor Corporation

Rev. A2, August 2002

Bibliografia

- [1] S. Kuta, Układy Elektroniczne, cz. 1, Kraków: Wydawnictwa AGH, 1995.
- [2] J. Koprowski, Podstawowe przyrządy półprzewodnikowe, Kraków: Wydawnictwa AGH, 2009.
- [3] W. H. Paul Horowitz, Sztuka elektroniki, Tom 1-2, Wydawnictwa Komunikacji i Łączności.
- [4] B. Razavi, Fundamentals of Microelectronics, John Wiley and Sons, 2008.
- [5] "AllDatasheet," [Online]. Available: https://www.alldatasheet.com/datasheet-pdf/pdf/50729/FAIRCHILD/BC546.html.
- [6] J. M. R.S. Ebers, "Large-Signal Behavior of Function Transistors," *Proc. IRE vol. 42*, pp. 1761 1772, Dec. 1954.