



# Программа профессиональной переподготовки «Технологии искусственного интеллекта, визуализации и анализа данных»



## Задача регрессии – предсказание значений непрерывной целевой переменной



### Линейная регрессия

Задача простой (одномерной) линейной регрессии состоит в том, чтобы смоделировать связь между единственным признаком (переменной x) и целевой переменной (ответом) y. Уравнение линейной модели с одним признаком x определяется следующим образом:

 $y = \omega_0 + \omega_1 x.$ 

Цель – определить  $\omega_0$  и  $\omega_1$  таким образом, чтобы описать связь между признаком x и целевой переменной y. Линейная регрессия может пониматься как нахождение оптимально подогнанной прямой линии, проходящей через точки данных.

Оптимально подогнанная прямая линия также называется *линией регрессии*, а вертикальные прямые от линии регрессии до точек данных – это *ошибки предсказания*.



#### Линейная регрессия

#### Если признаков будет больше?

Случай, когда используется один признак, называется простой линейной регрессией, но, разумеется, мы также можем обобщить линейную регрессионную модель на два и более признака. Этот процесс называется множественной линейной регрессией.

$$\hat{y} = \alpha(x) = \omega_0 + \sum_{j=1}^d x_j \omega_j = \omega_0 + \langle x, \omega \rangle$$

 $\omega_1, \dots, \omega_d$  - веса (или коэффициенты)

 $\omega_0$  - сдвиг

Добавим признак  $x_0$  равный 1, это позволит еще упростить запись:

$$\hat{y} = \alpha(x) = \sum_{j=0}^{d} x_j \omega_j = \langle x, \omega \rangle$$

### Как найти $\omega$ ? Метод наименьших квадратов (МНК)

Суть МНК: сумма квадратов ошибок должна быть минимальной.

$$\sum_{i=1}^{n} (\alpha(x_i) - y_i)^2 \to min$$

Продолжение в файле Linear Regression.ipynb

