Calcul Scientifique et Apprentissage Automatique

TD Apprentissage Non Supervisé - Clustering

Elana Courtines courtines.e@gmail.com https://github.com/irinacake

Séance 1 - 4 octobre 2022

Sandrine Mouysset - sandrine.mouysset@irit.fr

Exercice 1

Avec les points suivants :

$$A1 = (2, 10), A2 = (2, 5), A3 = (8, 4), A4 = (5, 8)$$

 $A5 = (7, 5), A6 = (6, 4), A7 = (1, 2), A8 = (4, 9)$

Kppv

Question 1 Calculer la matrice des distances euclidiennes au carré entre les points $(A_i)_{i=1..8}$:

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8
$\overline{A_1}$	0	25	72	13	50	52	65	5
A_2		0	37	18	25	17	10	20
A_3			0	25	2	4	53	41
A_4				0	13	17	52	2
A_5					0	2	45	25
A_6						0	29	29
A_7							0	58
A_8								0

Question 2 : Réaliser la méthode des K-ppv avec k=1 et un seuil de 16 :

Pour ce faire, on parcourt la liste des points X_i dans l'ordre et :

- 1. On déterminer le point le plus proche ;
- 2. Si aucun des points n'est dans une classe, on en crée une et on y ajoute les deux points ;
- 3. Si ce point le plus proche appartient déjà à une classe, on y ajoute X_i

D'où:

- $\forall j \neq 1, \ d(A_1, A_8) \leq d(A_1, A_j)$ or, $d(A_1, A_8) = 5 \leq seuil$ d'où : $C^1 = \{A_1, A_8\}$
- $\forall j \neq 2, \ d(A_2, A_7) \leq d(A_2, A_j)$ or, $d(A_2, A_7) = 10 \leq seuil$ d'où : $C^2 = \{A_2, A_7\}$
- $\forall j \neq 3, \ d(A_3, A_5) \leq d(A_3, A_j)$ or, $d(A_3, A_5) = 2 \leq seuil$ d'où : $C^3 = \{A_3, A_5\}$
- $\forall j \neq 4, \ d(A_4, A_8) \leq d(A_4, A_j)$ or, $d(A_4, A_8) = 2 \leq seuil$ d'où : $C^1 = \{A_1, A_4, A_8\}$
- $\forall j \neq 5$, $d(A_5, A_3) = d(A_5, A_6) \leq d(A_1, A_j)$ or, $d(A_5, A_3) = d(A_5, A_6) = 2 \leq seuil$ d'où : $C^3 = \{A_3, A_5, A_6\}$
- les étapes pour A_6, A_7 et A_8 ne changent rien au résultat

Au final on a:

- $C^1 = \{A_1, A_4, A_8\}$
- $C^2 = \{A_2, A_7\}$
- $C^3 = \{A_3, A_5, A_6\}$

Kmeans

Question 1 : Réaliser une itération de la classification par K-means en prenant des centres initiaux $C^1 = A_1$, $C^2 = A_4$ et $C^3 = A_7$, c'est à dire $m_1 = (2, 10)$, $m_2 = (4, 9)$, $m_3 = (1, 2)$

Itération 1 :

Étape 1, "étiquetage de tous les points":

- Pour A_1 : étant confondu avec $C^1,\ C^1=\{A_1\}$
- Pour A_2 : $\forall j = 1, 2, 3, \ d(A_2, C^3) \le d(A_2, C^j)$ d'où : $C^3 = \{A_2\}$
- Pour A_3 : $\forall j = 1, 2, 3, d(A_3, C^2) \le d(A_3, C^j)$ d'où : $C^2 = \{A_3\}$

• Pour A_4 : étant confondu avec C^2 , $C^2 = \{A_3, A_4\}$

• Pour $A_5: \forall j = 1, 2, 3, \ d(A_5, C^2) \le d(A_5, C^j)$ d'où : $C^2 = \{A_3, A_4, A_5\}$

• Pour A_6 : $\forall j = 1, 2, 3, d(A_6, C^2) \le d(A_6, C^j)$ d'où : $C^2 = \{A_3, A_4, A_5, A_6\}$

• Pour A_7 : étant confondu avec C^3 , $C^3 = \{A_2, A_7\}$

• Pour A_8 : $\forall j = 1, 2, 3, d(A_8, C^2) \le d(A_8, C^j)$ d'où : $C^2 = \{A_3, A_4, A_5, A_6, A_8\}$

Étape 2, mise à jour des centres :

• $C^1 = milieu(A_1)$, d'où $m_1 = (2, 10)$

• $C^2 = milieu(A_3, A_4, A_5, A_6, A_8)$ d'où m_2

$$= \left(\frac{x_{A_3} + x_{A_4} + x_{A_5} + x_{A_6} + x_{A_8}}{5}, \frac{y_{A_3} + y_{A_4} + y_{A_5} + y_{A_6} + y_{A_8}}{5}\right)$$

$$= \left(\frac{8 + 5 + 7 + 6 + 4}{5}, \frac{4 + 8 + 5 + 4 + 9}{5}\right)$$

$$= (6, 6)$$

• $C^3 = milieu(A_2, A_7)$ d'où m_3

$$= \left(\frac{x_{A_2} + x_{A_7}}{2}, \frac{y_{A_2} + y_{A_7}}{2}\right)$$
$$= \left(\frac{2+1}{2}, \frac{5+2}{2}\right)$$
$$= (1.5, 3.5)$$

On a alors:

Matrice des distances euclidiennes au carré mise à jour pour les nouveaux centres :

	C^1	C^2	C^3
A_1	0	32	30.5
A_2	25	17	2.5
A_3	72	8	42.5
A_4	13	5	32.5
A_5	50	2	32.5
A_6	52	4	20.5
A_7	65	41	2.5
A_8	5	13	36.5

Itération 2:

Étape 1, "étiquetage de tous les points":

- Pour $A_1: \forall j = 1, 2, 3, \ d(A_1, C^1) \le d(A_1, C^j)$ d'où : $C^1 = \{A_1\}$
- Pour A_2 : $\forall j=1,2,3,\ d(A_2,C^3) \leq d(A_2,C^j)$ d'où : $C^3=\{A_2\}$
- Pour A_3 : $\forall j = 1, 2, 3, \ d(A_3, C^2) \le d(A_3, C^j)$ d'où : $C^2 = \{A_3\}$
- Pour A_4 : $\forall j = 1, 2, 3, \ d(A_4, C^2) \le d(A_4, C^j)$ d'où : $C^2 = \{A_3, A_4\}$
- Pour A_5 : $\forall j = 1, 2, 3, d(A_5, C^2) \le d(A_5, C^j)$ d'où : $C^2 = \{A_3, A_4, A_5\}$
- Pour $A_6: \forall j=1,2,3, \ d(A_6,C^2) \leq d(A_6,C^j)$ d'où : $C^2=\{A_3,A_4,A_5,A_6\}$
- Pour A_7 : $\forall j = 1, 2, 3, \ d(A_7, C^3) \le d(A_7, C^j)$ d'où : $C^3 = \{A_2, A_7\}$
- Pour A_8 : $\forall j = 1, 2, 3, d(A_8, C^1) \le d(A_8, C^j)$ d'où : $C^1 = \{A_1, A_8\}$

Étape 2, mise à jour des centres :

• $C^1 = milieu(A_1, A_8)$ d'où m_1

$$= \left(\frac{x_{A_1} + x_{A_8}}{2}, \frac{y_{A_1} + y_{A_8}}{2}\right)$$
$$= \left(\frac{2+4}{2}, \frac{10+9}{2}\right)$$
$$= (3, 9.5)$$

• $C^2 = milieu(A_3, A_4, A_5, A_6)$ d'où m_2

$$= \left(\frac{x_{A_3} + x_{A_4} + x_{A_5} + x_{A_6}}{4} , \frac{y_{A_3} + y_{A_4} + y_{A_5} + y_{A_6}}{4}\right)$$

$$= \left(\frac{8+5+7+6}{4}, \frac{4+8+5+4}{4}\right)$$
$$= (6.5, 5.25)$$

• C^3 n'a pas changé, donc $m_3=(1.5,\,3.5)$

On a alors :

2. Obtient-on la même partition que pour les Kppv ? À l'itération 1, non. Mais à partir de l'itération 3 (non réalisée ici), oui.

Classification Hiérarchique

Rappel de la matrice des distances calculée plus haut :

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8
$\overline{A_1}$	0	25	72	13	50	52	65	5
A_2		0	37	18	25	17	10	20
A_3			0	25	2	4	53	41
A_4				0	13	17	52	2
A_5					0	2	45	25
A_6						0	29	29
A_7							0	58
A_8								0

Question 1 : Classification hiérarchique par lien simple :

liens	groupes	k
	${A_1}{A_2}{A_3}{A_4}{A_5}{A_6}{A_7}{A_8}$	k=8
	${A_1}{A_2}{A_3}{A_4}{A_5}{A_6}{A_7}{A_8}$	
$d(A_3, A_5) = d(A_5, A_6) = d(A_4, A_8)$	${A_1}{A_2}{A_3, A_5, A_6}{A_4, A_8}{A_7}$	k=5
	${A_1}{A_2}{A_3, A_5, A_6}{A_4, A_8}{A_7}$	
	$\{A_1\}\{A_2\}\{A_3,A_5,A_6\}\{A_4,A_8\}\{A_7\}$	
$d(A_1, A_8)$	${A_1, A_4, A_8}{A_2}{A_3, A_5, A_6}{A_7}$	k=4
$d(A_2, A_7)$	 {A1, A4, A8}{A2, A7}{A3, A5, A6}	k=3
(2)1)		
$d(A_4, A_5)$	${A_1, A_4, A_8, A_3, A_5, A_6}{A_2, A_7}$	k=2
$d(A_2, A_6)$	$\{A_1, A_4, A_8, A_3, A_5, A_6, A_2, A_7\}$	k=1
	$d(A_3, A_5) = d(A_5, A_6) = d(A_4, A_8)$ $d(A_1, A_8)$ $d(A_2, A_7)$	$d(A_3, A_5) = d(A_5, A_6) = d(A_4, A_8)$ $d(A_1) \{A_2\} \{A_3\} \{A_4\} \{A_5\} \{A_6\} \{A_7\} \{A_8\} \{A_1\} \{A_2\} \{A_3\} \{A_4\} \{A_5\} \{A_6\} \{A_7\} \{A_8\} \{A_1\} \{A_2\} \{A_3, A_5, A_6\} \{A_4, A_8\} \{A_7\} \{A_1, A_4, A_8\} \{A_2\} \{A_3, A_5, A_6\} \{A_7\} \dots$ $d(A_2, A_7)$ $d(A_4, A_5)$ $d(A_4, A_5)$ $\{A_1, A_4, A_8\} \{A_2, A_7\} \{A_3, A_5, A_6\} \{A_2, A_7\} \dots$ $\{A_1, A_4, A_8, A_3, A_5, A_6\} \{A_2, A_7\} \dots$ $\{A_1, A_4, A_8, A_3, A_5, A_6\} \{A_2, A_7\} \dots$ $(A_1, A_4, A_8, A_3, A_5, A_6\} \{A_2, A_7\} \dots$

Classification hiérarchique par lien complet :

d	liens	groupes	k
d=0		${A_1}{A_2}{A_3}{A_4}{A_5}{A_6}{A_7}{A_8}$	k=8
d=1		$\{A_1\}\{A_2\}\{A_3\}\{A_4\}\{A_5\}\{A_6\}\{A_7\}\{A_8\}$	
d=2	$d(A_3, A_5) = d(A_5, A_6) = d(A_4, A_8)$	$ A_1 \{A_2 \} \{A_3, A_5, A_6 \} \{A_4, A_8 \} \{A_7 \} $	k=5
 d=10	$d(A_2, A_7)$	$\{A_1\}\{A_2, A_7\}\{A_3, A_5, A_6\}\{A_4, A_8\}$	k=4
d=13	$d(A_1, A_4)$	$\{A_1, A_4, A_8\}\{A_2, A_7\}\{A_3, A_5, A_6\}$	k=3
 d=53	$d(A_3, A_7)$	$\{A_1, A_4, A_8\}\{A_2, A_7, A_3, A_5, A_6\}$	k=2
 d=72	$d(A_1, A_3)$	$\{A_1, A_4, A_8, A_2, A_7, A_3, A_5, A_6\}$	k=1

Dendrogrammes résultants :

Exercice 2: ACP et Classification

Cet exercice reprend l'exercice 4 du TD d'Algèbre Linéraire, dans lequel on a obtenu :

$$X = \begin{bmatrix} -4 & -2 \\ -3 & -1 \\ -1 & 0 \\ 2 & 0 \\ 2 & 1 \\ 4 & 2 \end{bmatrix} \qquad g = [0, 0] \qquad \Sigma = \begin{bmatrix} 50 & 21 \\ 21 & 10 \end{bmatrix} \qquad X_1 = \begin{bmatrix} 7 \\ 3 \end{bmatrix} \text{ le } \overrightarrow{vp} \text{ de } \Sigma \text{ associ\'e \`a } \lambda_1 \text{ (1er axe)}.$$

On effectue d'abord la projection des points sur le premier axe principal :

$$C_{1} = X * X_{1} = \begin{bmatrix} -4 & -2 \\ -3 & -1 \\ -1 & 0 \\ 2 & 0 \\ 2 & 1 \\ 4 & 2 \end{bmatrix} * \begin{bmatrix} 7 \\ 3 \end{bmatrix} = \begin{bmatrix} -34 \\ -24 \\ -7 \\ 14 \\ 17 \\ 34 \end{bmatrix}$$
a b c d d e f

On en déduit alors la matrice des distances suivante :

	$\mid a \mid$	b	c	d	e	f
\overline{a}	0	10	27	48	51	68
b		0	17	38	41	58
c			0	21	24	41
d				0	3	20
e					0	17
f						0

Enfin, on peut itérer sur les points pour kppv avec un seuil de 20 :

- $\forall x \neq a, \ d(a,b) \leq d(a,x)$ or, $d(a, b) = 10 \le 20$ d'où : $C^1 = \{a, \overline{b}\}$
- $\forall x \neq b, \ d(b, a) \leq d(b, x)$ or, $d(b, a) = 10 \leq 20$ d'où : $C^1 = \{a, b\}$
- $\forall x \neq c, \ d(c,b) \leq d(c,x)$ or, $d(c,b) = 17 \leq 20$ $(a,b) = 17 \leq a,b,c$

$$\forall x \neq c, \ d(c, b) \leq d(c, x)$$
or, $d(c, b) = 17 \leq 20$

or,
$$d(d, e) = 5 \le 20$$

d'où : $C^2 = \{d, e\}$

• $\forall x \neq d, \ d(d,e) \leq d(d,x)$

$$\begin{aligned} \bullet \ \, \forall x \neq e, \ d(e,d) \leq d(e,x) \\ \text{or, } d(e,d) &= 5 \leq 20 \\ \text{d'où} : C^2 &= \{d,e\} \end{aligned}$$

• $\forall x \neq f, \ d(f, e) \leq d(f, x)$ or, $d(f, e) = 17 \leq 20$ d'où : $C^2 = \{d, e, f\}$

9

D'où $C^1 = \{a, b, c\}$ et $C^2 = \{d, e, f\}$