# Lista 2 - MAE0524

Guilherme Navarro NºUSP:8943160 e Leonardo NUSP: 9793436

- 4) Suponha que as observações a seguir são uma amostra de uma v.a. Normal com média ( $\mu$ ) e variância ( $\sigma$ š) desconhecidas. 16.6 16.4 17.3 14.5 15.3 15.2 18.1 17.6 17.6 16.3 15.4 17.2
- a) Use o Learn Bayes para desenhar o gráfico de contornos da distribuição a posteriori conjunta de  $(\mu,\sigma^2),$  considerando a distribuição a priori não informativa de Jeffreys  $h(\mu,\sigma^2)=\frac{1}{\sigma^2}$

#### Resolução



b) Simule uma amostra de tamanho 1000 dessa distribuição e inclua esses valores no gráfico de contornos.

#### Resolução



Usando o método de Monte Carlo e a amostra simulada, encontre:

c) os intervalos a posteriori de probabilidade 0.90 para a média  $(\mu)$  e desvio padrão  $(\sigma)$  populacionais

#### Resolução

IC para  $\mu$ :

IC para  $\sigma^2$ :

8) Suponha uma amostra aleatória y1, . . . , yn de uma distribuição Cauchy não centrada com parâmetro de localização  $\theta$  e parâmetro de escala igual a 1. Se a priori uma distribuição uniforme (imprópria) é assumida para  $\theta$  então a densidade a posteriori é proporcional a

$$\prod_{i=1}^{n} \frac{1}{1 + (y_i - \theta)\check{\mathbf{s}}}$$

Considere como resultado experimental y = (0, 10, 9, 8, 11, 3, 3, 8, 8, 11).

a) Use comandos do R para determinar uma grade de valores entre -2 e 12 com distanciamento de 0.1.

### Resolução

b) Determine a densidade a posteriori aproximada usando essa grade de valores. Desenhe essa densidade

## Resolução

O ponto máximo da densidade é representado quando  $\widehat{\theta}$  é igual a 8.2.

