EECS 490 – Lecture 25

Parallel Computing

Announcements

- Project 5 due Tue 12/12 at 8pm
- ► Final survey due Thu 12/14 at 8pm
- Office hours in discussion this week, in the discussion rooms
- No lecture on Tue 12/12
 - Office hours instead, in 2632 BBB

Final Exam

- Thursday, 12/21 10:30am-12:30pm
 - DOW 1010 for <u>uniquames</u> that start with a-i
 - DOW 1017 for <u>uniquames</u> that start with j-z
- Comprehensive, with emphasis on Lectures 13-25 (Operational Semantics through Parallel Computing)
- Covers all material in notes except:
 - ► §6.3.5 (Nested Iteration)
 - ► §7.2 (Asynchronous Tasks)

CPU Performance

 Performance of individual CPU cores has largely stagnated in recent years

Year

Clock Frequency (MHz)

Parallelism

- Applications must be parallelized in order run faster
 - Waiting for a faster CPU core is no longer an option
- Parallelism is easy in functional programming:
 - When a program contains only pure functions, call expressions can be evaluated in any order, lazily, and in parallel
 - Referential transparency: a call expression can be replaced by its value (or vice versa) without changing the program
- We will look at MapReduce, a framework for such computations
- But not all problems can be solved efficiently using functional programming, so we will also look at strategies for parallelism with mutable shared state

MapReduce Evaluation Model

- Map phase: Apply a mapper function to inputs, emitting a set of intermediate key-value pairs
 - The mapper takes an iterator over inputs, such as text lines
 - The mapper yields zero or more key-value pairs per input
- Reduce phase: For each intermediate key, apply a reducer function to accumulate all values associated with that key
 - The reducer takes an iterator over key-value pairs
 - All pairs with a given key are consecutive
 - The reducer yields 0 or more values, each associated with that intermediate key

MapReduce Execution Model

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html

Parallel Computation Patterns

- Not all problems can be solved efficiently using functional programming
- The Berkeley View project has identified 13 common computational patterns in engineering and science:
 - 1. Dense Linear Algebra 8. Combinational Logic
 - 2. Sparse Linear Algebra
 - 3. Spectral Methods
 - 4. N-Body Methods
 - 5. Structured Grids
 - 6. Unstructured Grids
 - 7. MapReduce

- 9. Graph Traversal
- 10. Dynamic Programming
- 11. Backtrack and Branch-and-Bound
- 12. Graphical Models
- 13. Finite State Machines
- MapReduce is only one of these patterns
- The rest require shared mutable state

Parallelism in Python

- Python provides two mechanisms for parallelism
- Threads execute in the same interpreter, sharing all data
 - However, the CPython interpreter executes only one thread at a time, switching between them rapidly at (mostly) arbitrary points
 - Operations external to the interpreter, such as file and network I/O, may execute concurrently
- Processes execute in separate interpreters, generally not sharing data
 - Shared state can be communicated explicitly between processes
 - Since processes run in separate interpreters, they can be executed in parallel as the underlying hardware and software allow
- The concepts of threads and processes exist in other systems as well

Threads in Python

The threading module contains classes that enable threads to be created and synchronized from threading import Thread, current thread def thread hello(): other = Thread(target=thread say hello, args=()) Start the other.start() **Function that** other thread thread_say_hello() new thread **Function** arguments should run def thread say hello(): print('hello from', current_thread().name) >>> thread hello() **Print output** hello from Thread-1 unordered hello from MainThread

Processes in Python

The multiprocessing module contains classes that enable processes to be created and synchronized from multiprocessing import Process, current process def process hello(): other = Process(target=process_say_hello, args=()) Start the other other.start() **Function that** process process_say_hello() **Function** new process arguments should run def process say hello(): print('hello from', current_process().name) >>> process hello() **Print output** hello from Process-1 unordered hello from MainProcess

The Problem with Shared State

 Shared state that is mutated and accessed concurrently by multiple threads can cause subtle bugs

```
from threading import Thread

counter = [0]

def increment():
    counter[0] = counter[0] + 1

other = Thread(target=increment, args=())
other.start()
increment()
other.join()
print('count is now', counter[0])
```

What is the value of counter[0] at the end?

ı

Wait until the

other thread

completes

Atomic Operations

- Only the most basic operations are atomic, taking effect instantaneously, in CPython or any other system
 - Even in a mostly sequential system like CPython, a nonatomic operation can be interrupted by another thread
- The increment is actually several atomic operations

Thread 0

read counter[0]: 0

calculate 0 + 1: 1
write 1 -> counter[0]

Thread 1

read counter[0]: 0

calculate 0 + 1: 1
write 1 -> counter[0]

The counter can end up with a value of 1, even though it was incremented twice!

Race Conditions

- A situation where multiple threads concurrently access the same data, and at least one thread mutates it, is called a race condition
- Race conditions are difficult to debug, since they may only occur very rarely
- Access to shared data in the presence of mutation must be synchronized in order to prevent access by other threads while a thread is mutating the data
- Managing shared state is a key challenge in parallel computing
 - Under-synchronization doesn't protect against race conditions and other parallel bugs
 - Over-synchronization prevents non-conflicting accesses from occurring in parallel, reducing a program's efficiency
 - Incorrect synchronization may result in deadlock, where different threads indefinitely wait for each other in a circular dependency
- We will see some basic tools for managing shared state

Synchronized Data Structures

 Some data structures guarantee synchronization, so that their operations are atomic

```
Synchronized
from queue import Queue ←
                               FIFO queue
queue = Queue()
def increment():
                                Wait until an
    count = queue.get() 
                             item is available
    queue.put(count + 1)
other = Thread(target=increment, args=())
other.start()
                  Add initial
queue.put(0)
                  value of 0
increment()
other.join()
print('count is now', queue.get())
```

Synchronization with a Lock

- A lock ensures that only one thread at a time can hold it
- Once it is acquired, no other threads may acquire it until it is released

```
from threading import Thread, Lock
counter = [0]
                                    A lock is a context
counter lock = Lock()
                                        manager
def increment():
                                 with counter_lock:
    counter lock.acquire()
                                    count = counter[0]
    count = counter[0]
                                    counter[0] = count + 1
    counter[0] = count + 1
    counter_lock.release()
other = Thread(target=increment, args=())
other.start()
increment()
```

other.join()

print('count is now', counter[0])

■ We'll start again in five minutes.

Example: Web Crawler

- A web crawler is a program that systematically browses the Internet
- For example, we might write a web crawler that validates links on a website, recursively checking all links hosted by the same site
- A parallel crawler may use the following data structures:
 - A queue of URLs that need processing
 - A set of URLs that have already been seen, to avoid repeating work and getting stuck in a circular sequence of links
- The synchronized Queue class can be used for the URL queue
- There is no synchronized set in the Python library, so we must provide our own synchronization using a lock

Web Crawler Synchronization

URL coordination code:

```
def put_url(url):
    """Queue the given URL."""
    queue.put(url)
def get url():
    """Retrieve a URL."""
    return queue.get()
def already seen(url):
    """Check if a URL has already been seen."""
    with seen lock:
        if url in seen:
            return True
        seen.add(url)
        return False
```

Example: Particle Simulation

- A set of particles all interact with each other (e.g. short range repulsive force)
- The set of particles is divided among all threads or processes
- Forces are computed from particles' positions
 - Their positions constitute shared data
- The simulation is discretized into timesteps

Example: Particle Simulation

Concurrent reads are OK

In each timestep, each thread or process must:

- 1. Read the positions of every particle (read shared data)
- 2. Update acceleration of its own particles (access non-shared data)
- 3. Update velocities of its own particles (access non-shared data)
- 4. Update positions of its own particles (write shared data)
- Steps 1 and 4 conflict with each other

Writes are to different locations

Solution 1: Barriers

- In each timestep, each thread or process must:
 - 1. Read the positions of every particle (read shared data)
 - Update acceleration of its own particles (access non-shared data)
 - 3. Update velocities of its own particles (access non-shared data)
 - Update positions of its own particles (write shared data)
- Steps 1 and 4 conflict with each other
- We can solve the conflict by dividing the program into phases, ensuring that the phases do not overlap
- A barrier is a synchronization mechanism that enables this

```
from threading import Barrier
barrier = Barrier(num threads)
```

barrier.wait() Waits until num_threads threads reach it

Solution 2: Message Passing

- Alternatively, we can explicitly pass state from the thread/process that owns it to those that need to use it
- In each timestep, every process makes a copy of its own particles
- Then, they do the following num_processes-1 times:
 - 1. Interact with the copy that is present
 - 2. Send the copy to the left, receive from the right
- Thus, reads are on copies, so they don't conflict with writes

Summary

- Parallelism is necessary for performance, due to hardware trends
- But parallelism is hard in the presence of mutable shared state
 - Access to shared data must be synchronized in the presence of mutation
- Making parallel programming easier is one of the central challenges that Computer Science faces today

Where to Go from Here

- Related classes
 - EECS 483 and 583: Compilers
 - EECS 590: Advanced Programming Languages
- Read language specifications
 - Python's is very accessible
 - <u>cppreference.com</u> for C++
- Practice using the programming paradigms we've learned
 - Use the right tool for the job
- Keep up with new language features
 - C++17: structured bindings, template argument deduction on constructors, parallel STL algorithms, constexpr if, etc.

26