(Bisection Method). All numerical answers should be rounded to 6-digit floating-point numbers.

(i) Consider the polynomial

$$f(x) = x^3 + 9x^2 - 10x - 158.$$

Please accept as a given that the polynomial f(x) has three real roots in [-10, 10].

(a) Let then r_1, r_2, r_3 be the roots of f(x) written in increasing order. For each of the roots r_i , find a pair of integer numbers m, m+1 that bracket the root r_i :

- (b) Now, according to (a), is it true that the polynomial f(x) has a unique root in the closed interval [-8, -7]?
- O Yes ✓
 No
- (ii) Use the Bisection to find an approximation p_N of the unique root of the function f(x) in [-8, -7] satisfying

$$\mathrm{RE}(\tilde{p}_N \approx \tilde{p}_{N-1}) < 10^{-3},$$

where \tilde{z} denotes the result $\mathrm{fl}(z)$ of rounding of a real number z to 6-digit floating-point number.

(iii) Show then your work by filling in the table that follows. In each input field in the column labelled by

$$f(a_n)f(p_n),$$

please enter either a plus sign + (if $f(a_n)f(p_n) > 0$), or a minus sign - (if $f(a_n)f(p_n) < 0$). If a particular row of the table is not necessary, enter an asterisk * in each input field in the row. In order to calculate the relative error

$$RE(\tilde{p}_1 \approx \tilde{p}_0)$$

in the first row, assume formally that $p_0 = -8$.

		0			
n	a_n	P_n	b_n	$f(a_n)f(p_n)$	$RE(\tilde{p}_n \approx \tilde{p}_{n-1})$
1	-8	-7.5	-7	-	0.0666667
	~	~	~	~	~
2	-8	-7.75	-7.5	+	0.0322581
	~	~	~	~	~
3	-7.75	-7.625	-7.5	+	0.0163934
	~	~	~	~	~
4	-7.625	-7.5625	-7.5	+	0.00826446
	~	~	~	~	~
5	-7.5625	-7.53125	-7.5	-	0.00414938
	~	~	~	~	~
6	-7.5625	-7.54688	-7.53125	-	0.00207105
	~	~	~	~	~
7	-7.5625	-7.55469	-7.54688	-	0.00103379
	~	~	~	~	~
8	-7.5625	-7.55859	-7.55469	+	0.000515969
	~	~	~	~	~
9	*	*	*	*	*
	~	~	~	~	~
10	*	*	*	*	*
	~	~	~	~	~
11	*	*	*	*	*
	~	~	~	~	~

¹⁾ If you are going to use a scientific calculator, you can create an OpenOffice (or Excel) worksheet with a copy of the table given below in order to smooth up the calculations.

²⁾ In the process of calculations, enter in the rows of your table in the worksheet the terms

$$a_n, p_n, b_n,$$

followed by the sign of the number $f(a_n)f(p_n)$ as described above.

3) If you'll feel that the terms p_n may have become close enough to satisfy the stopping criterion, fill in the last column of the table in your worksheet by calculating the required relative errors

$$\mathrm{RE}(\tilde{p}_n \approx \tilde{p}_{n-1}).$$

Note the step N at which the stopping criterion became true; if all your relative errors are still greater than the tolerance, continue generating the terms a_n, p_n, b_n , and so on.

4) Once the table in your worksheet is ready, check your answers, redo the table if necessary, and then copy-paste your answers to the table in this page.

(iii) Accordingly, by (i) and (ii),

 $p_N \doteq \qquad$ -7.5586 \checkmark .

Check

Previous Activity

Jump to...

Next Activity