Section 1.4: Consequences of Completeness

Juan Patricio Carrizales Torres

May 23, 2022

One important "corollary" of the Axiom of Completeness in \mathbb{R} is the **Archimedean Property**, which states that there is no real number that bounds above the set \mathbb{N} . Interetingly, this implies the density of \mathbb{Q} in \mathbb{R} , which is a powerful property that can be used to determine the *supremums* and *infimums* of some bounded sets (as we have seen in the **Problem 1.3.8** of the previous section). Note that \mathbb{Q} is dense in itself.

Problem 1.4.1. Recall that \mathbb{I} stands for the set of irrational numbers.

(a) Show that if $a, b \in \mathbb{Q}$, then ab and a + b are elements of \mathbb{Q} as well.

Proof. Consider two rational numbers a and b. Hence, a = m/n and b = x/y for some $m, x \in \mathbb{Z}$ and $y, n \in \mathbb{N}$. Note that

$$\frac{m}{n} + \frac{x}{y} = \frac{my + xn}{ny} \quad \text{and} \quad \frac{m}{n} \cdot \frac{x}{y} = \frac{mx}{ny}.$$

Since $my, xn, mx \in \mathbb{Z}$ and $ny \in \mathbb{N}$, it follows that a + b and ab are rationals. \square

(b) Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$, then $a + t \in \mathbb{I}$ and $at \in \mathbb{I}$ as long as $a \neq 0$.

Proof. Consider some nonzero $a \in \mathbb{Q}$ and $t \in \mathbb{I}$. Recall that $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$ is closed under addition and multiplication. Hence, assume, to the contrary, that a+t and at are rationals. Then, $a+t=m\in\mathbb{Q}$ and $at=n\in\mathbb{Q}$. Therefore,

$$t = m + (-a)$$
 and $t = n \cdot \frac{1}{a}$.

Since, (-a), $1/a \in \mathbb{Q}$ and \mathbb{Q} is closed under addition and multiplication, it follows that in both cases, t ends up being a rational number, which contradicts our assumption that it is an irrational one.

(c) Part (a) can be summarized by saying that \mathbb{Q} is closed under addition and multiplication. Is \mathbb{I} closed under addition and multiplication? Given two irrationl numbers s and t, what can we say about s+t and st?

Solution c. Let's examine some specific examples of multiplication and addition of irrational numbers:

In the case of multiplication, consider $\sqrt{2} \cdot \sqrt{2} = 2 \in \mathbb{Q}$ and $(1 + \sqrt{2}) \cdot (1 + \sqrt{2}) = 2\sqrt{2} + 3 \in \mathbb{I}$.

In the case of addition, consider $\sqrt{2} + (-\sqrt{2}) = 0 \in \mathbb{Q}$ and $2\sqrt{2} + 3\sqrt{2} = 5\sqrt{2} \in \mathbb{I}$. Hence, the sum and addition of irrational numbers can result in either a rational or an irrational number. Thus, \mathbb{I} is neither closed under multiplication nor under addition.

Problem 1.4.2. Let $A \subseteq \mathbb{R}$ be nonempty and bounded above, and let $s \in \mathbb{R}$ have the property that for all $n \in \mathbb{N}$, $s + \frac{1}{n}$ is an upper bound for A and $s - \frac{1}{n}$ is not an upper bound for A. Show $s = \sup A$.

Proof. First, we will show that s is an upper bound for A. Assume, to the contrary, that s is not an upper bound for A, namely, there is some $a \in A$ such that s < a. By the **Archimedean Property**, there is some $k \in \mathbb{N}$ such that 0 < 1/k < a - s and so $s < s + \frac{1}{k} < a$ which contradicts our assumption that $s + \frac{1}{k}$ ($k \in \mathbb{N}$) is an upper bound for A. Thus, s is an upper bound for A.

Now, consider some $\varepsilon > 0$. By the **Archimedean Property**, there is some $k \in \mathbb{N}$ such that $\frac{1}{k} < \varepsilon$. Hence,

$$s - \varepsilon < s - \frac{1}{k}.$$

Because $s - \frac{1}{k}$ is not an upper bound for A, there is some $a \in A$ such that $s - \frac{1}{k} < a$ and so $s - \varepsilon < a$. Hence, $s = \sup A$.

Problem 1.4.3. Prove that $\bigcap_{n=1}^{\infty}(0,1/n)=\emptyset$. Notice that this demonstrates that the intervals in the Nested Interval Property must be closed for the conclusion of the theorem to hold.

Proof. Note that $(0,1/n) \supseteq (0,1/(n+1))$ for any $n \in \mathbb{N}$ and so $(0,1/n) : n \in \mathbb{N}$ is a nested sequence of sets. Assume, to the contrary, that there exists some $x \in \bigcap_{n=1}^{\infty} (0,1/n)$ and so 0 < x. However, by the **Archimedean Property**, there exist some $k \in \mathbb{N}$ such that 0 < 1/k < x and so $x \notin \bigcap_{n>k} (0,1/k)$. This contradicts our assumption.

Problem 1.4.4. Let a < b be real numbers and consider the set $T = \mathbb{Q} \cap [a, b]$. Show $\sup T = b$.

Proof. Note that

$$T = \mathbb{Q} \cap [a, b]$$

= $\{x : x \in \mathbb{Q}, a \le x \le b\}$
= $\{x \in \mathbb{Q} : a \le x \le b\}.$

Hence, b is an upper bound for T. We show that it is the least one. Consider some $\varepsilon > 0$. Then, $b - \varepsilon < b$. By **The Density of Rational Numbers in** \mathbb{R} , there exists some rational number c such that $b - \varepsilon < c < b$. If $a \le c$, then $c \in T$. On the other hand, if c < a, recall that there is some rational number d such that a < d < b and so $b - \varepsilon < d \in T$. Hence, $\sup T = b$.

Problem 1.4.5. Using **Problem 1.4.1**, supply a proof for Corollary 1.4.4 by considering the real numbers $a - \sqrt{2}$ and $b - \sqrt{2}$. Recall that

Corollary 1.4.4. Given any two real number a < b, there exists an irrational number t satisfying a < t < b.

Proof. Consider two real numbers a and b such that a < b. Then, $a - \sqrt{2} < b - \sqrt{2}$ and, by the density of rational numbers in \mathbb{R} , there exists some rational q such that $a - \sqrt{2} < q < b - \sqrt{2}$. Thus, $a < q + \sqrt{2} < b$. Note that $q + \sqrt{2}$ is the sum of a rational and irrational number and so $q + \sqrt{2} \in \mathbb{I}$.

Problem 1.4.6. Recall that a set B is *dense* in \mathbb{R} if an element of B can be found between any two real numbers a < b. Which of the following sets are dense in \mathbb{R} ? Take $p \in \mathbb{Z}$ and $q \in \mathbb{N}$ in every case.

(a) The set of all rational numbers p/q with $q \leq 10$.

Proof. This set is not dense in \mathbb{R} . Let a=0 and b=1/100. Consider some rational number x=p/q for $p\in\mathbb{Z}$ and for the natural number $q\leq 10$. For $p\leq 0$, $a\leq 0$ and so we may further assume that p>0. Note that 1/100<1/10 and so $1/100\leq p/100<$ p/10 for any positive integer p. Thus,

$$\frac{1}{100} < \frac{p}{10} < \frac{p}{9} < \frac{p}{8} < \dots < \frac{p}{1}.$$

Therefore, there is no such x such that 0 < a < 1/100.

(b) The set of all rational numbers p/q with q a power of 2.

Proof. This set is dense in \mathbb{R} . Consider some rational numbers a < b. By the **Archimedean Property**, there is some $n \in \mathbb{N}$ such that 1/n < b - a and so $1/2^n < 1/n < b - a$. Now we can proceed with the same argument from the proof of **Theorem 1.3.4**. Consider some integer m such that

$$m - 1 \le 2^n \cdot a < m.$$

Since $1/2^n < b-a$, it follows that $a < b-1/2^n = \frac{1}{2^n}(2^n \cdot b-1)$. Therefore,

$$2^n \cdot a + 1 < 2^n \cdot b$$

and so $m \leq 2^n \cdot a + 1 < 2^n \cdot b$. Thus, $2^n \cdot a < m < 2^n \cdot b$, which implies that

$$a < \frac{m}{2^n} < b.$$

(c) The set of all rational numbers p/q with $10|p| \ge q$.

Proof. This set is not dense in \mathbb{R} . Let a=0 and b=1/11. If the integer p<0, then p/q<0. Also, there is no element in this set for p=0 since $q\leq 10\cdot 0$ contradicts the fact that $q\in\mathbb{N}$. Hence, we may assume that p>0 and so |p|=p and $10p\geq q$. Note that

$$\frac{1}{10p} < \frac{1}{10p-1} < \frac{1}{10p-2} < \frac{1}{10p-3} < \dots < \frac{1}{1},$$

which implies that

$$\frac{1}{10} < \frac{p}{10p-1} < \frac{p}{10p-2} < \frac{p}{10p-3} < \dots < p.$$

Since 1/11 < 1/10 it follows that 1/11 < p/q for any positive integer p. Therefore, there is no element in this set that lies between 0 and 1/11.

Problem 1.4.7. Finsih the proof of Theorem 1.4.5

Problem 1.4.8. Give an example of each or state that the request is impossible. When a request is impossible, provide a compelling argument for why this is the case.

(a) Two sets A and B with $A \cap B = \emptyset$, $\sup A = \sup B$, $\sup A \notin A$ and $\sup B \notin B$.

Solution (a). Let $A = \{x \in \mathbb{Q} : x < 1\}$ and $B = \{x \in \mathbb{I} : x < 1\}$. By the desnities of \mathbb{Q} and \mathbb{I} in \mathbb{R} , we can show that $\sup A = \sup B = 1$ (the number 1 is an upper bound for both sets and for any x < 1 we can find some rational and irrational number between x and 1). Also, 1 is neither in A nor in B, and $A \cap B = \emptyset$.

(b) A sequence of nested open intervals $J_1 \supseteq J_2 \supseteq J_3 \supseteq \ldots$ with $\bigcap_{n=1}^{\infty} J_n$ nonempty but containing only a finite number of elements.

Solution (b). Let $J_n = (-\frac{1}{n}, \frac{1}{n})$ for some $n \in \mathbb{N}$. Note that

$$\frac{1}{n+1} < \frac{1}{n} \quad \text{and}$$
$$-\frac{1}{n} < -\frac{1}{n+1}.$$

Hence $J_1 \supseteq J_2 \supseteq J_3 \supseteq \cdots$. Since for any $k \in \mathbb{N}$ it is true that $-\frac{1}{k} < 0 < \frac{1}{k}$, it follows that $0 \in \bigcap_{n=1}^{\infty} J_n$. Also, $-\frac{1}{k} < -\frac{1}{k+1} < 0 < \frac{1}{k+1} < \frac{1}{k+1}$ and so we can find another. Thus

$$\bigcap_{n=1}^{\infty} J_n = \{0\}$$

is finite.

(c) A sequence of nested unbounded closed intervals $L_1 \supseteq L_2 \supseteq L_3 \supseteq \ldots$ with $\bigcap_{n=1}^{\infty} L_n = \emptyset$. (An unbouned closed interval has the form $[a, \infty) = \{x \in \mathbb{R} : x \geq a\}$.)

Solution (c). Let $L_n = [n, \infty)$ for any $n \in \mathbb{N}$. Hence, $L_1 \supseteq L_2 \supseteq L_3 \supseteq \ldots$ and so $\{L_n : n \in \mathbb{N}\}$ is a sequence of nested unbounded closed intervals. We now show that $\bigcap_{n=1}^{\infty} L_n = \emptyset$. Assume to the contrary, that $\bigcap_{n=1}^{\infty} L_n \neq \emptyset$. Then, there is some real number $x \in \bigcap_{n=1}^{\infty} L_n$. By **The Archimedean Property**, there exists some $k \in \mathbb{N}$ such that x < k and so $x \notin [k, \infty) = L_k$. This contradicts our assumption that x is contained in every L_n . Therefore, $\bigcap_{n=1}^{\infty} L_n = \emptyset$.

(d) A sequence of closed (not necessarily nested) intervals I_1, I_2, I_3, \ldots with the property that $\bigcap_{n=1}^{N} I_n \neq \emptyset$ for all $N \in \mathbb{N}$, but $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

Solution (c). Since each I_n is closed and $\bigcap_{n=1}^N I_n \neq \emptyset$ for all $N \in \mathbb{N}$, it follows that each $K_N = \bigcap_{n=1}^N I_n \neq \emptyset$ is a closed set and so $S = \{K_n : n \in \mathbb{N}\}$ is a sequence of closed sets. Since we are talking about consecutive intersections, it follows that either S is decreasing $(K_N \supseteq K_{N+1})$, increasing $(K_N \subseteq K_{N+1})$ or constant $(K_N = K_{N+1})$, where $N \in \mathbb{N}$. If S is decreasing (nested sequence), then

$$\bigcap_{n=1}^{\infty} K_n = \bigcap_{N=1}^{\infty} \left(\bigcap_{n=1}^{N} I_n\right)$$
$$= \bigcap_{n=1}^{\infty} I_n \neq \emptyset$$

by the **Nested Interval Property** of closed sets of real numbers. If S is increasing, then it is easy to understand that

$$\bigcap_{n=1}^{\infty} I_n = I_1$$

which, by assumption, is nonempty. And if it is constant, then every $K_n = X$ for some closed set of real numbers X and so

$$\bigcap_{n=1}^{\infty} I_n = X.$$