organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-Hydroxyisoquinoline-1,3(2*H*,4*H*)-dione

Yoshinobu Ishikawa* and Soichiro Matsuo

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 21 June 2013; accepted 18 July 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.032; wR factor = 0.089; data-to-parameter ratio = 13.9.

The title molecule, $C_9H_7NO_3$, exists in the diketo form and the isoquinoline unit is approximately planar (r.m.s. deviation = 0.0158 Å). In the crystal, molecules are linked into inversion dimers through pairs of $O-H\cdots O$ hydrogen bonds and are further assembled into the (100) layers *via* stacking interactions [centroid–centroid distances = 3.460 (3) and 3.635 (4) Å].

Related literature

For the biological properties of the title compound, see: Parkes *et al.* (2003); Hang *et al.* (2004); Billamboz *et al.* (2008). For a related structure, see: Miao *et al.* (1995).

Experimental

Crystal data

 $C_9H_7NO_3$ $M_r = 177.16$ Monoclinic, $P2_1/n$ a = 12.336 (5) Å b = 8.666 (4) Å c = 7.052 (7) Å $\beta = 104.19$ (5)° V = 730.8 (9) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 100 K $0.50 \times 0.50 \times 0.45 \text{ mm}$

Data collection

Rigaku AFC-7R diffractometer 3873 measured reflections 1650 independent reflections 1484 reflections with $F^2 > 2\sigma(F^2)$

 $R_{\rm int} = 0.016$ 3 standard reflections every 150 reflections intensity decay: -0.5%

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.089$ S = 1.041650 reflections 119 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O5-H5···O1 ⁱ	0.84	1.91	2.7056 (17)	158

Symmetry code: (i) -x + 1, -y + 1, -z + 2.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

The authors acknowledge the University of Shizuoka for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2583).

References

Billamboz, M., Bailly, F., Barreca, M. L., De Luca, L., Mouscadet, J. F., Calmels, C., Andréola, M. L., Witvrouw, M., Christ, F., Debyser, Z. & Cotelle, P. (2008). J. Med. Chem. 51, 7717–7730.

Hang, J. Q., Rajendran, S., Yang, Y., Li, Y., In, P. W., Overton, H., Parkes, K. E., Cammack, N., Martin, J. A. & Klumpp, K. (2004). *Biochem. Biophys. Res. Commun.* 317, 321–329.

Miao, F.-M., Wang, J.-L. & Miao, X.-S. (1995). *Acta Cryst.* C51, 712–713.
Parkes, K. E., Ermert, P., Fässler, J., Ives, J., Martin, J. A., Merrett, J. H., Obrecht, D., Williams, G. & Klumpp, K. (2003). *J. Med. Chem.* 46, 1153–1164.

Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.

Rigaku (2010). *CrystalStructure*. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

supplementary materials

Acta Cryst. (2013). E69, o1312 [doi:10.1107/S1600536813019843]

2-Hydroxyisoquinoline-1,3(2H,4H)-dione

Yoshinobu Ishikawa and Soichiro Matsuo

Comment

The title compound is known to inhibit metalloenzymes such as influenza endonuclease (Parkes *et al.*, 2003), HIV-1 reverse transcriptase RNase H (Hang *et al.*, 2004), and HIV-1 integrase (Billamboz *et al.*, 2008). Here we report the crystal structure of the title compound, which was obtained from the deprotection of 2-benzyloxyiso-quinoline-1,3(2H,4H)-dione by the use of boron tribromide. The compound exists in keto form and the isoquinoline ring is almost planar (r.m.s. deviation = 0.0158 Å). In the crystal, the molecules link through intermolecular O–H···O hydrogen bonds and stack along the c axis, as shown in Figure 2. The distance from plane1 (C7/C8/C9/C11/C12/C13) to plane2 [C4/C6/C7/C8/C10/N3, (1 - x, 2 - y, 1 - z)] is 3.460 (3) Å.

Experimental

The title compound was synthesized according to the literature (Billamboz *et al.*, 2008). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution of the compound at room temperature.

Refinement

The hydrogen atoms of the benzene ring were placed geometrically [C-H 0.95 Å, $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$], and refined using a riding model. The hydrogen atoms of the methylene and N-OH groups were found in a difference Fourier map, and refined with distance constraints [C-H 0.99 Å, $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$, O-H 0.84 Å, $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm O})$].

Computing details

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Acta Cryst. (2013). E69, o1312 Sup-1

Figure 1The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Acta Cryst. (2013). E69, o1312 sup-2

Figure 2

A crystal packing view of the title compound. Hydrogen bonds are represented as dashed lines.

2-Hydroxyisoquinoline-1,3(2*H*,4*H*)-dione

Crystal data	
$C_9H_7NO_3$ $M_r = 177.16$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.336 (5) Å b = 8.666 (4) Å c = 7.052 (7) Å $\beta = 104.19$ (5)° V = 730.8 (9) Å ³ Z = 4	F(000) = 368.00 $D_x = 1.610 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 14.9 - 17.0^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 100 K Block, orange $0.50 \times 0.50 \times 0.45 \text{ mm}$
Data collection Rigaku AFC-7R diffractometer ω -2 θ scans 3873 measured reflections 1650 independent reflections 1484 reflections with $F^2 > 2\sigma(F^2)$ $R_{\rm int} = 0.016$	$\theta_{\text{max}} = 27.5^{\circ}$ $h = -16 \rightarrow 15$ $k = -11 \rightarrow 11$ $l = -5 \rightarrow 9$ 3 standard reflections every 150 reflections intensity decay: -0.5%

Acta Cryst. (2013). **E69**, o1312 **sup-3**

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.089$ S = 1.041650 reflections 119 parameters

0 restraints Primary atom site location: structure-invariant Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0517P)^2 + 0.2377P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.25$ e Å⁻³ $\Delta\rho_{\rm min} = -0.25$ e Å⁻³

Special details

direct methods

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.41291 (6)	0.60097 (8)	0.84881 (11)	0.01900 (19)	
O2	0.71902 (6)	0.89780 (9)	0.89569 (11)	0.01901 (19)	
O5	0.63125 (6)	0.62843 (8)	0.92088 (12)	0.01860 (19)	
N3	0.56130 (7)	0.75393 (9)	0.86013 (12)	0.0136 (2)	
C4	0.37267 (8)	0.86193 (11)	0.74485 (15)	0.0132 (2)	
C6	0.61776 (8)	0.89219 (11)	0.84438 (14)	0.0133 (2)	
C7	0.54474 (8)	1.02389 (11)	0.76248 (13)	0.0124 (2)	
C8	0.42836 (8)	1.01072 (11)	0.71477 (13)	0.0124 (2)	
C9	0.59616 (8)	1.16334 (12)	0.73257 (14)	0.0149 (3)	
C10	0.44805 (8)	0.72873 (11)	0.82056 (14)	0.0134 (2)	
C11	0.53109 (9)	1.28959 (12)	0.65699 (15)	0.0164(3)	
C12	0.36371 (8)	1.13890 (12)	0.63746 (15)	0.0151 (3)	
C13	0.41430 (9)	1.27737 (12)	0.60954 (15)	0.0165 (3)	
H4A	0.3253	0.8813	0.8372	0.0158*	
H4B	0.3224	0.8312	0.6184	0.0158*	
H5	0.6004	0.5666	0.9829	0.0223*	
H9	0.6754	1.1710	0.7641	0.0179*	
H11	0.5655	1.3843	0.6373	0.0197*	
H12	0.2845	1.1312	0.6037	0.0182*	
H13	0.3696	1.3641	0.5581	0.0198*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0159 (4)	0.0140(4)	0.0257 (4)	-0.0012 (3)	0.0025(3)	0.0038(3)
O2	0.0111 (4)	0.0193 (4)	0.0255 (4)	0.0003(3)	0.0023(3)	0.0022(3)
O5	0.0134 (4)	0.0132 (4)	0.0283 (5)	0.0044(3)	0.0034(3)	0.0058(3)
N3	0.0114 (4)	0.0112 (4)	0.0173 (4)	0.0027(3)	0.0014(3)	0.0018 (3)
C4	0.0104 (5)	0.0130 (5)	0.0158 (5)	0.0001 (4)	0.0028 (4)	0.0006 (4)
C6	0.0126 (5)	0.0142 (5)	0.0132 (5)	-0.0007(4)	0.0032 (4)	-0.0011(4)
C7	0.0133 (5)	0.0128 (5)	0.0112 (5)	0.0003 (4)	0.0030(4)	-0.0012(4)

Acta Cryst. (2013). E69, o1312 Sup-4

supplementary materials

C8	0.0132 (5)	0.0127 (5)	0.0116 (5)	0.0001 (4)	0.0039 (4)	-0.0012 (4)
C9	0.0140 (5)	0.0162 (5)	0.0146 (5)	-0.0028 (4)	0.0036 (4)	-0.0015 (4)
C10	0.0131 (5)	0.0144 (5)	0.0124 (5)	-0.0007 (4)	0.0027 (4)	-0.0011 (4)
C11	0.0198 (5)	0.0125 (5)	0.0176 (5)	-0.0029 (4)	0.0059 (4)	-0.0012 (4)
C12	0.0135 (5)	0.0154 (5)	0.0168 (5)	0.0019 (4)	0.0040 (4)	-0.0006 (4)
C13	0.0187 (5)	0.0129 (5)	0.0180 (5)	0.0030 (4)	0.0045 (4)	0.0004 (4)
Geometr	ic parameters (Å,	, °)				
O1—C10)	1.2230	(13)	C9—C11		1.3841 (15)
O2—C6		1.2133	(13)	C11—C13		1.4009 (17)
O5—N3		1.3891	(12)	C12—C13		1.3887 (16)
N3—C6		1.4039	(14)	O5—H5		0.840
N3—C10	0	1.3734		C4—H4A		0.990
C4—C8		1.5003	(15)	C4—H4B		0.990
C4—C10)	1.4962		C9—H9		0.950
C6—C7		1.4807		C11—H11		0.950
C7—C8		1.3966		C12—H12		0.950
C7—C9		1.4046		C13—H13		0.950
C8—C12	2	1.3978				
O5—N3-	—С6	114.20	(9)	C9—C11—C13		119.84 (10)
O5—N3-	—C10	117.53	(8)	C8—C12—C13		120.58 (10)
C6—N3-	—C10	128.27	(8)	C11—C13—C12		120.20 (10)
C8—C4	—C10	116.58	(9)	N3—O5—H5		109.471
O2—C6-	—N3	120.34	(9)	C8—C4—H4A		108.149
O2—C6-	—С7	124.67	(10)	C8—C4—H4B		108.145
N3—C6-	—С7	114.99	(9)	C10—C4—H4A		108.149
C6—C7-	—C8	121.47	(9)	C10—C4—H4B		108.153
C6—C7-	—С9	117.89	(9)	H4A—C4—H4B		107.318
C8—C7-	—С9	120.63	(9)	C7—C9—H9		120.087
C4—C8-		121.03	(9)	C11—C9—H9		120.091
C4—C8-		120.06	(9)	C9—C11—H11		120.082
C7—C8-	—C12	118.92	(10)	C13—C11—H11		120.074
C7—C9-		119.82	(10)	C8—C12—H12		119.713
O1—C10	0—N3	119.63	(9)	C13—C12—H12		119.710
O1—C10	0—C4	122.85	(10)	C11—C13—H13 119.902		119.902
N3—C10	0—C4	117.52	(9)	C12—C13—H13		119.895
	—N3—C6	150.2		N3—C6—C7—C9		-176.51 (8)
	—N3—C10	-30.7		C6—C7—C8—C4		0.00 (14)
	—C6—O2	-5.29 (· ·	C6—C7—C8—C12		-179.84 (8)
	—C6—C7	174.61	* *	C6—C7—C9—C11		-179.76 (8)
	—С10—О1	3.59 (14	*	C6—C7—C9—H9		0.2
	—C10—C4	-176.79	` ′	C8—C7—C9—C11		0.67 (14)
	—С10—О1	-177.53	* *	C8—C7—C9—H9		-179.3
	—C10—C4	2.09 (1:		C9—C7—C8—C4		179.56 (8)
	3—C6—O2	175.80	* *	C9—C7—C8—C12		-0.28 (14)
	3—C6—C7	-4.30 (*	C4—C8—C12—C13		179.79 (9)
C8—C4	—С10—О1	-179.03	5 (9)	C4—C8—C12—H12		-0.2

sup-5 Acta Cryst. (2013). E69, o1312

supplementary materials

C8—C4—C10—N3	1.35 (13)	C7—C8—C12—C13	-0.36(15)
C10—C4—C8—C7	-2.26 (14)	C7—C8—C12—H12	179.6
C10—C4—C8—C12	177.58 (8)	C7—C9—C11—C13	-0.41 (15)
H4A—C4—C8—C7	119.8	C7—C9—C11—H11	179.6
H4A—C4—C8—C12	-60.4	H9—C9—C11—C13	179.6
H4B—C4—C8—C7	-124.3	H9—C9—C11—H11	-0.4
H4B—C4—C8—C12	55.5	C9—C11—C13—C12	-0.23 (16)
H4A—C4—C10—O1	58.9	C9—C11—C13—H13	179.8
H4A—C4—C10—N3	-120.7	H11—C11—C13—C12	179.8
H4B—C4—C10—O1	-57.0	H11—C11—C13—H13	-0.2
H4B—C4—C10—N3	123.4	C8—C12—C13—C11	0.62 (16)
O2—C6—C7—C8	-177.04 (9)	C8—C12—C13—H13	-179.4
O2—C6—C7—C9	3.39 (15)	H12—C12—C13—C11	-179.4
N3—C6—C7—C8	3.06 (13)	H12—C12—C13—H13	0.6

Hydrogen-bond geometry (Å, o)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O5—H5···O1 ⁱ	0.84	1.91	2.7056 (17)	158

Symmetry code: (i) -x+1, -y+1, -z+2.

Acta Cryst. (2013). E69, o1312 Sup-6