分析。由 $D = |a-b| + |b-c| + |c-a| \ge 0$ 得:

- ① 当a=b=c时, 距离最小。
- ② 其余情况。不失一般性,假设 $a \le b \le c$,观察下面的数轴:

 $L_1 = |a-b|$, $L_2 = |b-c|$, $L_3 = |c-a|$, $D = |a-b| + |b-c| + |c-a| = L_1 + L_2 + L_3 = 2L_3$ 由 D 的表达式可知,事实上决定 D 大小的关键是 a 和 c 之间的距离,于是问题就可以简化为每次固定 c 找一个 a 使得 $L_3 = |c-a|$ 最小。

1) 算法的基本设计思想

- ① 使用 D_{\min} 记录所有已处理过的三元组的最小距离,初值为一个足够大的整数。
- ② 集合 S_1 、 S_2 和 S_3 分别保存在数组 A、B、C 中。数组的下标变量 i = j = k = 0,当 $i < |S_1|$ 、 $j < |S_2|$ 且 $k < |S_3|$ 时(|S| 表示集合 S 中的元素个数),循环执行 a)~c)。
 - a) 计算 (A[i], B[j], C[k]) 的距离 D; (计算 D)
 - b) 若 $D < D_{\min}$, 则 $D_{\min} = D$; (更新 D)
 - c) 将 A[i], B[j], C[k]中的最小值的下标+1; (对照分析:最小值为 a,最大值为 c,这里 c 不变而更新 a,试图寻找更小距离 D)
- ③ 输出 D_{min}, 结束。