In [1]: 1 import numpy as np

Sin Cos Tan Formulas

$$sin A = \frac{Opposite Side}{Hypotenuse}$$

$$tan A = \frac{Opposite Side}{Adjacent Side}$$

Note:

•
$$\sin A = \frac{1}{\csc A}$$
 (or) $\csc A = \frac{1}{\sin A}$

•
$$\cos A = \frac{1}{\sec A}$$
 (or) $\sec A = \frac{1}{\cos A}$

•
$$\tan A = \frac{1}{\cot A}$$
 (or) $\cot A = \frac{1}{\tan A}$

•
$$tan A = \frac{sin A}{cos A}$$

• cot A =
$$\frac{\cos A}{\sin A}$$

1 all numpy trignometric function takes in values in radians only

Trigonometry I	Ratio Table							
Angles (In Degrees)	0°	30°	45°	60°	90°	180°	270°	360°
Angles (In Radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not Defined	0	Not Defined	1
cot	Not Defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	Not Defined	0	Not Defined
esc	Not Defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	Not Defined	-1	Not Defined
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not Defined	-1	Not Defined	1

In [3]: 1 np.sin(np.pi/6)

Out[3]: 0.499999999999999

In [4]: 1 np.cos(np.pi/4)

Out[4]: 0.7071067811865476

```
In [6]:
         1 1/np.sqrt(2)
 Out[6]: 0.7071067811865475
 In [9]:
         1 np.tan(np.pi)
                                << tan(pi) is 0
Out[9]: -1.2246467991473532e-16
In [11]: 1 cot_90 = np.tan((np.pi/2))**(-1)
          2 cot_90
Out[11]: 6.123233995736766e-17
In [12]:
         1 6.123233995736766/10000000000000000000
Out[12]: 6.123233995736766e-17
         1 0.000000000000000000061223
         1 cot_90 = 1/np.tan((np.pi/2))
In [13]:
          2 cot_90
Out[13]: 6.123233995736766e-17
```

degrees to radians

deg2rad()

```
In [14]: 1 np.deg2rad(30)
Out[14]: 0.5235987755982988

In [15]: 1 np.pi/6 # (22/7)/6
Out[15]: 0.5235987755982988

In [22]: 1 np.sin(0.5235987755982988)
Out[22]: 0.49999999999994

In [17]: 1 np.deg2rad(45),np.pi/4
Out[17]: (0.7853981633974483, 0.7853981633974483)
```

radians()

```
In [19]: 1 np.radians(30)
```

Out[19]: 0.5235987755982988

```
In [20]: 1 np.deg2rad(30)
Out[20]: 0.5235987755982988
```

radians to degree

rad2deg()

In [23]:	1 np.rad2deg(np.pi/6)				
Out[23]:	29.9999999999				
In [24]:	<pre>1 np.rad2deg(np.pi/4)</pre>				
Out[24]:	45.0				
In [25]:	1 np.rad2deg(np.pi)				
Out[25]:	180.0				
	degrees()				
In [26]:	1 np.degrees(np.pi/6)				
Out[26]:	29.99999999996				
In [27]:	1 np.degrees(np.pi/4)				
Out[27]:	45.0				
In [28]:	1 np.degrees(np.pi/2)				
Out[28]:	90.0				
In [29]:	1 np.cos(np.radians(45))				
Out[29]:	0.7071067811865476				
In [30]:	1 np.cos(np.pi/4)				
Out[30]: 0.7071067811865476					
In []:	1				