Konkrete Umsetzung von PAKETH am D-CHAB

Connor Pütz (Präsident) | Paul Gärtner (HoPo-C) | Simon Gläser (HoPo-N)

18. Oktober 2025

Inhaltsverzeichnis

1	Einleitung	2
2	Änderungen an den Curricula der einzelnen Studiengänge	2
	2.1 Chemie BSc	. 2
	2.2 Chemieingenieurwissenschaften BSc	. 4
	2.3 Biochemie BSc	
	2.4 Interdisziplinäre Naturwissenschaften BSc (Biochemisch-physikalische Fachrichtung)	. 6
	2.5 Interdisziplinäre Naturwissenschaften BSc (Physikalisch-chemische Fachrichtung)	. 7
3	Detailanpassungen für Vorlesungen	8
4	Semesteraufteilung erstes Semester	8
	4.1 Erste Semesterhälfte (Wochen 38-43)	. 8
	4.2 Zweite Semesterhälfte (Wochen 44-50)	. 9
5	Conclusion	10

1 Einleitung

Das Projekt **PAKETH** (Prüfungen und Akademischer Kalender an der ETH Zürich) ist eine umfassende Lehr- und Studienreform, mit der die ETH Zürich ihre Studienstrukturen, Prüfungszyklen und Lehrkonzepte modernisieren möchte. Ziel des Projekts ist es, den akademischen Kalender zu vereinheitlichen, die Prüfungsphasen zu entzerren, Lehr- und Lernphasen klarer zu strukturieren und die Studierbarkeit der ETH-Programme zu verbessern. Dabei sollen sowohl Studierende als auch Lehrende von einer besseren Planbarkeit und Flexibilität profitieren. Im Zentrum von PAKETH stehen drei große Veränderungen:

- eine Neugestaltung des akademischen Kalenders, um Prüfungs- und Lernphasen zu harmonisieren,
- die Einführung modulbasierter Leistungsnachweise anstelle großer Endprüfungen,
- und die Optimierung der Lehr- und Lernbelastung über das gesamte Semester hinweg.

Diese Reform bringt für das **Departement Chemie und Angewandte Biowissenschaften (D-CHAB)** jedoch besondere Herausforderungen mit sich. Das D-CHAB zeichnet sich durch eine intensive, praxisorientierte Ausbildung aus, die von zahlreichen Laborpraktika begleitet wird. Während andere Departemente vergleichsweise mehr reine Vorlesungszeit haben, ist der Anteil an verpflichtenden Praktika am D-CHAB deutlich höher.

Die Umstellung des akademischen Kalenders im Rahmen von PAKETH bedeutet, dass die effektive Lernzeit zwischen den Unterrichtsphasen spürbar kürzer wird. Da die Praktika weiterhin einen großen Teil der wöchentlichen Arbeitszeit beanspruchen, entsteht für die Studierenden ein **sehr volles Semester**, in dem weniger Zeit zum selbstständigen Lernen, Wiederholen und Vertiefen bleibt.

Diese erhöhte Belastung hat auch soziale und strukturelle Konsequenzen: Viele Studierende engagieren sich ehrenamtlich in studentischen Organisationen, Fachvereinen oder Kommissionen oder übernehmen als Teaching Assistants (TAs) wertvolle Aufgaben in der Lehre. Wenn durch die neue Struktur weniger zeitliche Freiräume bestehen, besteht die **Gefahr eines Rückgangs dieses Engagements**, was langfristig die studentische Mitgestaltung und die Qualität der Lehre beeinträchtigen könnte.

Daher ist es entscheidend, dass PAKETH am D-CHAB nicht einfach nur organisatorisch umgesetzt, sondern inhaltlich durchdacht und fachgerecht adaptiert wird. Eine erfolgreiche Umsetzung muss darauf abzielen, die Arbeitslast zu reduzieren, ohne die Qualität der Ausbildung zu gefährden. Dies erfordert insbesondere:

- eine bessere Abstimmung zwischen Vorlesungen, Übungen und Praktika,
- die inhaltliche Straffung von Lehrveranstaltungen ohne Substanzverlust,
- und eine klare Priorisierung der Lernziele in allen Lehrmodulen.

Ziel dieses Dokuments ist es, Vorschläge und konkrete Maßnahmen für die Umsetzung von PAKETH am D-CHAB darzulegen. Dabei soll der Fokus auf einer qualitativ hochwertigen, aber realistisch gestalteten Ausbildung liegen, die Studierende fordert, aber nicht überfordert, und die Raum für persönliches und akademisches Engagement lässt.

2 Änderungen an den Curricula der einzelnen Studiengänge

2.1 Chemie BSc

Die Neustrukturierung des Chemie-Bachelorstudiums unter PAKETH erfordert eine durchdachte Anpassung der Modulverteilung, um die besonderen Herausforderungen des Faches zu berücksichtigen.

Das zweite Studienjahr ist deutlich anspruchsvoller als das Basisjahr und erfordert eine solide mathematische Grundlage. Insbesondere für die Physikalische Chemie III (Molekulare Quantenmechanik) wird eine vertiefte Kenntnis der Linearen Algebra benötigt. Daher wird die Lineare Algebra bereits im ersten Semester platziert, um den Studierenden die nötigen mathematischen Werkzeuge frühzeitig zu vermitteln.

Die Biochemie wird strategisch ins zweite Semester verschoben, um das vierte Semester zu entlasten. Diese Maßnahme ist besonders wichtig, da das dritte und vierte Semester sehr zeitintensive Praktika beinhalten, die eine hohe Arbeitsbelastung für die Studierenden darstellen. Der Inhalt der Biochemie wird dabei gestrafft: sowohl der Reaktionskinetik- als auch der Genetik-Teil werden aus dem Curriculum gestrichen, um das Modul zu fokussieren und die Arbeitsbelastung zu reduzieren.

Eine weitere wichtige Änderung betrifft das Informatik-Modul: Es wird von einer Prüfung zu einer benoteten Semesterleistung umgestellt. Die Bewertung erfolgt über wöchentliche Abgaben von Übungsaufgaben, was eine kontinuierlichere Lernbetreuung ermöglicht und die Prüfungsbelastung in der Prüfungsphase reduziert.

PAKETH (Vorschlag)	Тур	PR	NG	KP
a. Module des Basisjahrs (Notengewichte) – 44 KP				
Basisprüfungsgruppe A (Pflichtmodule mit Kompensation - 20 KP)				
Allgemeine Chemie I (AC)	2V+1U	60 s	3	3
Allgemeine Chemie I (OC)	2V+1U	60 s	3	3
Allgemeine Chemie I (PC)	2V+1U	60 s	3	3
Physik I	3V+1U	60 s	3	3
Analysis I	3V+2U	60 s	3	3
Lineare Algebra	2V+1U	60 s	2	2
Informatik I	2V+1U	60 s	2	2
Basisprüfungsgruppe B (Pflichtmodule mit Kompensation – 23 KP)				
Allgemeine Chemie II (AC)	2V+1U	60 s	3	3
Allgemeine Chemie II (OC)	2V+1U	60 s	3	3
Physikalische Chemie I: Thermodynamik	2V+1U	60 s	3	3
Physik II	2V+1U	60 s	3	3
Analysis II	2V+1U	60 s	3	3
Biochemie	2V+1U	60 s	3	3
b. Module höheres Bachelorstudium – 96 KP				
Kernmodulgruppe A (Pflichtmodule mit Kompensation – 17 KP)				
Anorganische Chemie I	2V+1U	60 s	3	3
Organische Chemie I	2V+1U	60 s	4	4
Physikalische Chemie II: Chemische Reaktionskinetik	2V+1U	60 s	3	3
Analytische Chemie I	2V+1U	60 s	4	4
Analysis III: Partielle Differenzialgleichungen	2V+1U	60 s	2	2
Kernmodulgruppe B (Pflichtmodule mit Kompensation – 17 KP)				
Anorganische Chemie II	2V+1U	60 s	3	3
Organische Chemie II	2V+1U	60 s	4	4
Physikalische Chemie III: Molekulare Quantenmechanik	2V+1U	60 s	3	3
Analytische Chemie II	2V+1U	60 s	4	4
Chemieingenieurwissenschaften	2V+1U	60 s	3	3
Kernmodulgruppe C (Pflichtmodule mit Kompensation – 12 KP)	1	'		
Anorganische Chemie III: Metallorganische Chemie und Homogenkatalyse	2V+1U	30 m	3	3
Organische Chemie III: Einführung in die Asymmetrische Synthese	2V+1U	30 m	3	3
Physikalische Chemie IV: Magnetische Resonanz	2V+1U	30 m	3	3
Kernmodulgruppe D (Pflichtmodule mit Kompensation – 16 KP)	1	'		
Anorganische Chemie IV: Nanomaterialien: Synthese, Eigenschaften und Oberflächenchemie	2V+1U	30 m	3	3
Organische Chemie IV: Physikalisch Organische Chemie	2V+1U	30 m	3	3
Physikalische Chemie V: Spektroskopie	2V+1U	30 m	3	3
Sicherheit	2V+1U	180 s	2	2
Vertiefungsmodule (Wahlpflichtmodule – 15 KP)				
Gemäß Wahl der Studierenden	2V+1U	variabel	-	15
Wissenschaft im Kontext (WIK) – Wahlpflichtmodule – 6 KP	•			
Gemäß Vorgabe des D-CHAB	2V+1U	variabel	-	6
c. Praxismodule – Pflichtmodule – 50 KP	•			
Gemäß definierter Praktika	2V+1U	-	-	50

2.2 Chemieingenieurwissenschaften BSc

PAKETH (Vorschlag)	Тур	PR	NG	KP
a. Module des Basisjahrs (Notengewichte) – 43 KP				
Basisprüfungsgruppe A (Pflichtmodule mit Kompensation – 20 KP)				
Allgemeine Chemie I (AC)	2V+1U	60 s	3	3
Allgemeine Chemie I (OC)	2V+1U	60 s	3	3
Allgemeine Chemie I (PC)	2V+1U	60 s	3	3
Physik I	2V+1U	60 s	3	3
Analysis I	2V+1U	60 s	3	3
Lineare Algebra	2V+1U	60 s	2	2
Basisprüfungsgruppe B (Pflichtmodule mit Kompensation – 23 KP)				
Allgemeine Chemie II (AC)	2V+1U	60 s	3	3
Allgemeine Chemie II (OC)	2V+1U	60 s	3	3
Physikalische Chemie I: Thermodynamik	2V+1U	60 s	3	3
Physik II	2V+1U	60 s	3	3
Analysis II	2V+1U	60 s	3	3
Informatik I	2V+1U	60 s	2	2
Biologie: Biochemie	2V+1U	60 s	3	3
b. Module höheres Bachelorstudium – 96 KP				
Kernmodulgruppe A (Pflichtmodule mit Kompensation – 17 KP)				
Anorganische Chemie I	2V+1U	60 s	3	3
Organische Chemie I	2V+1U	60 s	4	4
Physikalische Chemie II: Chemische Reaktionskinetik	2V+1U	60 s	3	3
Analytische Chemie I	2V+1U	60 s	4	4
Analysis III: Partielle Differenzialgleichungen	2V+1U	60 s	2	2
Kernmodulgruppe B (Pflichtmodule mit Kompensation – 17 KP)				
Anorganische Chemie II	2V+1U	60 s	3	3
Organische Chemie II	2V+1U	60 s	4	4
Physikalische Chemie III: Molekulare Quantenmechanik	2V+1U	60 s	3	3
Analytische Chemie II	2V+1U	60 s	4	4
Chemieingenieurwissenschaften	2V+1U	60 s	3	3
Kernmodulgruppe C (Pflichtmodule mit Kompensation – 21 KP)				
Thermodynamik für Chemieingenieure	2V+1U	60 s	3	3
Stofftransport	2V+1U	60 s	3	3
Wärmetransport und Strömungslehre	2V+1U	60 s	3	3
Homogene Reaktionstechnik	2V+1U	60 s	3	3
Mikrobiologie	2V+1U	60 s	3	3
Statistische und Numerische Methoden	2V+1U	60 s	3	3
Technologieunternehmertum	2V+1U	60 s	3	3
Kernmodulgruppe D (Pflichtmodule mit Kompensation – 17 KP)				
Industrielle Chemie	2V+1U	60 s	3	3
Heterogene Reaktionstechnik	2V+1U	60 s	3	3
Trennprozesstechnologie	2V+1U	60 s	3	3
Regelungstechnik	2V+1U	60 s	3	3
Chemometrik und Maschinelles Lernen	2V+1U	60 s	3	3

PAKETH (Vorschlag)	Тур	PR	NG	KP		
Sicherheit	2V+1U	-	2	2		
Vertiefungsmodule (Wahlpflichtmodule – 15 KP)						
Gemäß Wahl der Studierenden	2V+1U	variabel	-	15		
Wissenschaft im Kontext (WIK) – Wahlpflichtmodule – 6 KP						
Gemäß Vorgabe des D-CHAB	2V+1U	variabel	-	6		
c. Praxismodule – Pflichtmodule – 41 KP						
Gemäß definierter Praktika	2V+1U	-	-	41		

2.3 Biochemie BSc

PAKETH (Vorschlag)	Тур	PR	NG	KP					
a. Module des Basisjahrs (Notengewichte) – 43 KP									
Basisprüfungsgruppe A (Pflichtmodule mit Kompensation – 20 KP)									
Allgemeine Chemie I (AC)	2V+1U	60 s	3	3					
Allgemeine Chemie I (OC)	2V+1U	60 s	3	3					
Allgemeine Chemie I (PC)	2V+1U	60 s	3	3					
Physik I	2V+1U	60 s	3	3					
Analysis I	2V+1U	60 s	3	3					
Lineare Algebra	2V+1U	60 s	2	2					
Basisprüfungsgruppe B (Pflichtmodule mit Kompensation – 23 KP)	1								
Allgemeine Chemie II (AC)	2V+1U	60 s	3	3					
Allgemeine Chemie II (OC)	2V+1U	60 s	3	3					
Physikalische Chemie I: Thermodynamik	2V+1U	60 s	3	3					
Physik II	2V+1U	60 s	3	3					
Analysis II	2V+1U	60 s	3	3					
Informatik I	2V+1U	60 s	2	2					
Biologie: Biochemie	2V+1U	60 s	3	3					
b. Module höheres Bachelorstudium – 114 KP									
Kernmodulgruppe A (Pflichtmodule mit Kompensation – 24 KP)									
Anorganische Chemie I	2V+1U	60 s	3	3					
Physikalische Chemie II	2V+1U	60 s	3	3					
Statistik II	2V+1U	60 s	2	2					
Informatik I	2V+1U	60 s	2	2					
Organische Chemie I	2V+1U	60 s	6	6					
Physik I	2V+1U	60 s	6	6					
Analytische Chemie I	2V+1U	60 s	6	6					
Kernmodulgruppe B (Pflichtmodule mit Kompensation – 20 KP)	1								
Organische Chemie II	2V+1U	60 s	6	6					
Physik II	2V+1U	60 s	6	6					
Analytische Chemie II	2V+1U	60 s	6	6					
Biochemie	2V+1U	60 s	5	5					
Systembiologie	2V+1U	60 s	5	5					
Kernmodulgruppe C (Pflichtmodule mit Kompensation – 24 KP)	•								
Molekular- und Strukturbiologie I	2V+1U	60 s	1	1					
Molekular- und Strukturbiologie II	2V+1U	60 s	1	1					

PAKETH (Vorschlag)	Тур	PR	NG	KP			
Nukleinsäuren und Kohlenhydrate	2V+1U	60 s	1	1			
Proteine und Lipide	2V+1U	60 s	1	1			
Organische Chemie für BCB	2V+1U	60 s	1	1			
Vertiefungsmodule – Wahlpflichtmodule – 46 KP							
Blockkurse – Wahlpflichtmodule – 24 KP							
Gemäß Wahl der Studierenden	2V+1U	variabel	-	24			
Wahlmodule BCB – Wahlpflichtmodule – 16 KP							
Gemäß Wahl der Studierenden	2V+1U	variabel	-	16			
Wissenschaft im Kontext – Wahlpflichtmodule – 6 KP							
Gemäß Vorgabe des D-CHAB	2V+1U	variabel	-	6			
c. Praxismodule – Pflichtmodule – 30 KP							
Gemäß definierter Praktika	2V+1U	-	-	30			

2.4 Interdisziplinäre Naturwissenschaften BSc (Biochemisch-physikalische Fachrichtung)

PAKETH (Vorschlag)	Тур	PR	NG	KP
a. Module des Basisjahrs (Notengewichte) – 43 KP			-	
Basisprüfungsgruppe A (Pflichtmodule mit Kompensation – 20 KP)				
Allgemeine Chemie I (AC)	2V+1U	60 s	3	3
Allgemeine Chemie I (OC)	2V+1U	60 s	3	3
Allgemeine Chemie I (PC)	2V+1U	60 s	3	3
Physik I	2V+1U	60 s	3	3
Analysis I	2V+1U	60 s	3	3
Lineare Algebra	2V+1U	60 s	2	2
Basisprüfungsgruppe B (Pflichtmodule mit Kompensation – 23 KP)				
Allgemeine Chemie II (AC)	2V+1U	60 s	3	3
Allgemeine Chemie II (OC)	2V+1U	60 s	3	3
Physikalische Chemie I: Thermodynamik	2V+1U	60 s	3	3
Physik II	2V+1U	60 s	3	3
Analysis II	2V+1U	60 s	3	3
Informatik I	2V+1U	60 s	2	2
Biologie: Biochemie	2V+1U	60 s	3	3
b. Module höheres Bachelorstudium – 96 KP				
Kernmodulgruppe A (Pflichtmodule mit Kompensation – 17 KP)				
Anorganische Chemie I	2V+1U	60 s	3	3
Organische Chemie I	2V+1U	60 s	4	4
Physikalische Chemie II: Chemische Reaktionskinetik	2V+1U	60 s	3	3
Analytische Chemie I	2V+1U	60 s	4	4
Analysis III: Partielle Differenzialgleichungen	2V+1U	60 s	2	2
Kernmodulgruppe B (Pflichtmodule mit Kompensation – 17 KP)	<u>.</u>			
Anorganische Chemie II	2V+1U	60 s	3	3
Organische Chemie II	2V+1U	60 s	4	4
Physikalische Chemie III: Molekulare Quantenmechanik	2V+1U	60 s	3	3
Analytische Chemie II	2V+1U	60 s	4	4
Chemieingenieurwissenschaften	2V+1U	60 s	3	3

PAKETH (Vorschlag)	Тур	PR	NG	KP				
Kernmodulgruppe C (Pflichtmodule mit Kompensation – 9 KP)	Kernmodulgruppe C (Pflichtmodule mit Kompensation – 9 KP)							
Anorganische Chemie III: Metallorganische Chemie und Homogenkatalyse	2V+1U	30 m	3	3				
Organische Chemie III: Einführung in die asymmetrische Synthese	2V+1U	30 m	3	3				
Physikalische Chemie IV: Magnetische Resonanz	2V+1U	30 m	3	3				
Kernmodulgruppe D (Pflichtmodule mit Kompensation – 11 KP)								
Anorganische Chemie IV: Nanomaterialien: Synthese, Eigenschaften und Oberflächenchemie	2V+1U	30 m	3	3				
Organische Chemie IV: Physikalisch Organische Chemie	2V+1U	30 m	3	3				
Physikalische Chemie V: Spektroskopie	2V+1U	30 m	3	3				
Sicherheit	2V+1U	-	2	2				
Vertiefungsmodule (Wahlpflichtmodule – 15 KP)								
Gemäß Wahl der Studierenden	2V+1U	variabel	-	15				
Wissenschaft im Kontext (WIK) – Wahlpflichtmodule – 6 KP								
Gemäß Vorgabe des D-CHAB	2V+1U	variabel	-	6				
c. Praxismodule – Pflichtmodule – 41 KP								
Gemäß definierter Praktika	2V+1U	-	-	41				

2.5 Interdisziplinäre Naturwissenschaften BSc (Physikalisch-chemische Fachrichtung)

PAKETH (Vorschlag)	Тур	PR	NG	KP
a. Module des Basisjahrs (Notengewichte) – 43 KP				
Basisprüfungsgruppe A (Pflichtmodule mit Kompensation – 20 KP))			
Allgemeine Chemie I (AC)	2V+1U	60 s	3	3
Allgemeine Chemie I (OC)	2V+1U	60 s	3	3
Allgemeine Chemie I (PC)	2V+1U	60 s	3	3
Physik I	2V+1U	60 s	3	3
Analysis I	2V+1U	60 s	3	3
Lineare Algebra	2V+1U	60 s	2	2
Basisprüfungsgruppe B (Pflichtmodule mit Kompensation – 23 KP)				
Allgemeine Chemie II (AC)	2V+1U	60 s	3	3
Allgemeine Chemie II (OC)	2V+1U	60 s	3	3
Physikalische Chemie I: Thermodynamik	2V+1U	60 s	3	3
Physik II	2V+1U	60 s	3	3
Analysis II	2V+1U	60 s	3	3
Informatik I	2V+1U	60 s	2	2
Biologie: Biochemie	2V+1U	60 s	3	3
b. Module höheres Bachelorstudium – 96 KP				
Kernmodulgruppe A (Pflichtmodule mit Kompensation – 17 KP)				
Anorganische Chemie I	2V+1U	60 s	3	3
Organische Chemie I	2V+1U	60 s	4	4
Physikalische Chemie II: Chemische Reaktionskinetik	2V+1U	60 s	3	3
Analytische Chemie I	2V+1U	60 s	4	4
Analysis III: Partielle Differenzialgleichungen	2V+1U	60 s	2	2
Kernmodulgruppe B (Pflichtmodule mit Kompensation – 17 KP)				
Anorganische Chemie II	2V+1U	60 s	3	3

PAKETH (Vorschlag)	Тур	PR	NG	KP			
Organische Chemie II	2V+1U	60 s	4	4			
Physikalische Chemie III: Molekulare Quantenmechanik	2V+1U	60 s	3	3			
Analytische Chemie II	2V+1U	60 s	4	4			
Chemieingenieurwissenschaften	2V+1U	60 s	3	3			
Kernmodulgruppe C (Pflichtmodule mit Kompensation – 9 KP)							
Anorganische Chemie III: Metallorganische Chemie und Homogenkatalyse	2V+1U	30 m	3	3			
Organische Chemie III: Einführung in die asymmetrische Synthese	2V+1U	30 m	3	3			
Physikalische Chemie IV: Magnetische Resonanz	2V+1U	30 m	3	3			
Kernmodulgruppe D (Pflichtmodule mit Kompensation – 11 KP)							
Anorganische Chemie IV: Nanomaterialien: Synthese, Eigenschaften und Oberflä-	2V+1U	30 m	3	3			
chenchemie							
Organische Chemie IV: Physikalisch Organische Chemie	2V+1U	30 m	3	3			
Physikalische Chemie V: Spektroskopie	2V+1U	30 m	3	3			
Sicherheit	2V+1U	-	2	2			
Vertiefungsmodule (Wahlpflichtmodule – 15 KP)							
Gemäß Wahl der Studierenden	2V+1U	variabel	-	15			
Wissenschaft im Kontext (WIK) – Wahlpflichtmodule – 6 KP							
Gemäß Vorgabe des D-CHAB	2V+1U	variabel	-	6			
c. Praxismodule – Pflichtmodule – 41 KP							
Gemäß definierter Praktika	2V+1U	-	-	41			

3 Detailanpassungen für Vorlesungen

4 Semesteraufteilung erstes Semester

Die folgende Tabelle zeigt die wochenweise Aufteilung der Lehrveranstaltungen im ersten Semester des Chemie-Bachelorstudiums unter PAKETH.

4.1 Erste Semesterhälfte (Wochen 38-43)

Kalenderwoche	38	39	40 (Test Week)	41	42	43
Semesterwoche	1	2	3	4	5	6
ACAC I	Stöchiometrie und Massenbi- lanz → Konzepte: Summenformel, Massenprozente, Konzentrationen, Gleichgewichtskon- stante	S-B Gleichgewichte A → Konzepte: Dissoziations- gleichgewicht, Protolysereakti- onsgleichgewicht, Verteilungsgleich- gewicht von Konzentrationen	S-B Gleichgewichte B → Konzepte: Berechnen von pH- Werten, Berechnen von pKa Werte	S-B Gleichgewichte C → Vertiefung	S-B Gleichgewichte D → Konzepte: Sillen Diagramme	S-B Gleichgewicht E → Konzept Vertiefung und Pri fungsvorbereitung
ACOC I	Nomenklatur, Strukturenleh- re → Konzepte: Stöchiometrie, Summenformel	von Einprotonigen Nomenklatur und Strukturenlehre → Konzepte: Isomerie, Konstitutionsisomerie, Stereochemie	Nomenklatur und Levoistruktur → Konzepte: Element- verteilung, mole- kulare. Mesomerie, Lewis-Säuren, Lewis-Basen	Nomenklatur und Stereoisomerie → Konzepte: Chiralität	Nomenklatur und Stereoisomerie → Konzepte: Bestim- mung absolute Konfiguration, Fischer Projektion, Stereochemische Isomere	Nomenklatur un die Einführung i die MO-Theorie – Konzepte: Elektr nenkonfiguration, LCAO Methode

Kalenderwoche	38	39	40 (Test Week)	41	42	43	
ACPC I	PC Basics → Konzepte: Phasen- gleichgewichte, spezifische Wär- mekapazität, Wär- mekraftmaschinen, ideale und reale Gase, kinetische Gastheorie. QM Einführung in die Thermodynamik, Kraft, potentielle Energie	Mathematische Einführung → Konzepte: Vektorrechnung → Elementarteil- chen → Konzepte: Elektronenmasse, Ladung Elementarladung Bestimmung mittels Millikan Experiment	Atomaufbau → Konzepte: Modelle zur Betrachtung von Kräften innerhalb eines Atoms und Training von PC Stoff, Massendefekt	Radioaktivität → Konzepte: Zerfallge- setz der Kernphysik, Elektronenmikro- skopie, Forsetzung	Radioaktivität → Konzepte: Stabilität von Geislingen, Nu- kleare Kernmasse, Zerfälle, Halbwerts- zeit, Zerfallsgesetz, Isotopen, Spektr. Fe- instruktur, energies spektrochemischer effekt	Radioaktivität – Konzepte: Lin enspektren – Konzepte: Spektral von Grieslinger Spektren sin Diskret sonder kann man nich versehen, das man daher neu modelle brauch Frequenz, energi spektrochemischer effekt	
Analysis I	Mengenlehre, Voll- ständige Induktion	Komplexe Zahlen → Konzepte: Grundrechenarten. Umrechnen zwischen Normal und Polarform, Betrag, Argument, Radizuit Imaginärteil	Komplexe Zahlen → Konzepte: Wurzelziehen, Hauptwert der Differenzial und intergral Rechnung, Nullstellen	Reihen → Konzepte: Konvergenz, Teleskopssummen	Potenzreihen → Konzepte: konvergenzradius, Injektivität, Surjektivität, Links und rechtsseitige Grenzwerte	Funktionen → Kor zepte: Steigkeit, Di ferenzieren, Hype bolische Funktione	
Lineare Algebra	Vektorgeometrie	Lineare Gleichungs- systeme	Test Week Lösen von Linearen Glei- chungssystemen Gauss-30	Matrix Algebra	Lineare Abbildung	Orthogonale Matr zen	
Informatik (PA- KETH Version)	Einführung in Python: Primitive, Lists, Statements, Loops	Auswertung eines Experiments (Ein- führung NumPy, Matplotlib) + Instal- lation of (Conda) environment	Python Grundlagen (Funktionen)	Python Grundlagen (komplizierte Data Types: Dicts)	Python Grundlagen (class)	Python Grundlage (modules)	
Physik I	[Vollständig schwarz im Screenshot]						
Praktikum Allge- meine Chemie	Dichte bestimmung und Wasserstoffper- oxid Arbeiten mit Watten	S-B Gleichgewichte, Säure Base Titration	Millikan Experiment	Redox Reaktion Versuch			

4.2 Zweite Semesterhälfte (Wochen 44-50)

Kalenderwoche	44	45 (Medium	46	47	48	49	50
		Week)					
Semesterwoche	7	Herbstferien	8	9	10	11	12
ACAC I	Redox-	Redox-	Redox-	Konzentrationsrec	hn kingee ntrationsrec	hn Kngee ntrationsrec	nn Kogee ntrations
	Reaktionen	Reaktionen	Reaktionen	$A \rightarrow Konzepte$:	$B \rightarrow Konzepte$:	$C \rightarrow Konzepte$:	$\mathrm{D} o \mathrm{Konzept}$
	$A \rightarrow Konzepte$:	$B \rightarrow Konzepte$:	$C \rightarrow Konzepte$:	Reduktionen	Spalten von	Stabilität der	Kristall stabilitä
	Oxidationszah-	Spannungsreihe,	Stromloses	und komplexere	Komplexen,	Komplexen,	von Komplexer
	len, Abgleichen	elektrochemi-	Anschließungen	von Komplexen	Elektroneg- und	spaltung von	Umfangszen-
	von Redoxreak-	sche SpanGeb.,	und komplexere		Umfang von	Komplexen in	tralatom, Ober
	tionen	Nernstglei-	Doppelstabexpe-		Komplexen	elektronenman-	flächenbestand,
		chung, Redox-	riment			gel, Einführung	Umfangszen-
		Gleich-Gewicht				in elektronen-	tralatom in
		und pOa Wert				mangel von	Kristall, Struk
		-				Komplexes	turaufklärung
ACOC I	Nomenklatur	Nomenklatur	Nomenklatur	Konfunktionsmole	kü k onfunktionsmole	kü k onfunktionsmole	kü k oordinationsm
	und Hybridi-	und Hybridi-	und Hybridi-	$A \rightarrow Konzepte$:	$B \rightarrow Konzepte$:	$C \rightarrow Konzepte$:	und Synthesen
	sierung und	sierung und	sierung und	Textsynthese	Cycloaliphane,	Verknüpfung	
	Aromatizität	Aromatizität	Aromatizität	Textpolitik von	Überdeckung,	und Textanalyse	
				Thiolen	Stuhl-und		
					Textmehrkorper		

Kalenderwoche	44	45 (Medium Week)	46	47	48	49	50			
ACPC I	QM → Konzepte: Zwei Teilchen, H2 Molekülion, können, Orbitalen und Experimentent, die Konzept realisiert	QM → Konzepte: Zwei Teilchen H2 Molekülion, Wann, Orbitale und Experimentent. die Konzept realisiert	Interferenz	QM → Konzepte: Zwei Teilchen Oszillation, kann man verstehen, dass man daher neue modelle braucht, Frequenz, energie, spektrochemischer effekt						
Analysis I	Optimierung → Konzepte: L'Hospital, Orthobalance	Taylorpolynome, Taylorreihen	Funktionen → Konzepte: Ableitung, Mittelwertsatz, Bernouli Lhopital Zeitreiheanalyse, Hyperbolische Funktionen,		DDL					
Lineare Algebra	Spur & Determi- nante	Eigenwerte & Ei- genvektoren	Allgemeine Vek- torräume	Kombinatorik	Wahrscheinlichkei	Wahrscheinlichkei	tsrechnung			
Informatik (PA- KETH Version)	Python Grundla- gen (einfache Al- gorithmen)	Chemoinformatik Einführung (RD- Kit)	POV Basics (Mol. Darstellung SMI- LES)	Algorithmen	Angewandtes co- ding Project (z.B. Torsions zu Kur- ven programmie- ren)					
Physik I	[Vollständig schwarz im Screenshot]									
Praktikum Allge- meine Chemie				Nucleophile Substitution	Elektrophile aro- matische Substi- tution					

5 Conclusion

Die dargestellte Struktur zeigt die neue modulare Organisation des Chemie-Bachelorstudiums unter PAKETH. Das Modell fasst verwandte Lehrveranstaltungen zu größeren Modulen zusammen und stärkt die Kohärenz zwischen Theorie und Praxis. Für die erfolgreiche Umsetzung sind jedoch gezielte Anpassungen bei Praktika, Prüfungszeitpunkten und Leistungsnachweisen erforderlich, um die Balance zwischen Workload und Qualität zu gewährleisten.

Kontakt:

puetzc@vcs.ethz.ch pgaertner@vcs.ethz.ch glaesers@vcs.ethz.ch