Cognimobile: Diferenças Cognitivas e os Dispositivos Móveis

João Oliveira Tiago Guerreiro Hugo Nicolau Daniel Gonçalves Instituto Superior Técnico / INESC-ID Rua Alves Redol, 9, 1000-029, Lisboa

jmgdo@ist.utl.pt.com, {tjvg,hman}@vimmi.inesc-id.pt, daniel.goncalves@inesc-id.pt

Sumário

Embora dispositivos como os telemóveis assumam um papel cada vez mais importante na vida diária de muitas pessoas, estes continuam a apresentar dificuldades e restrições a populações com necessidades especiais. Os cegos e deficientes visuais em particular, privados de informação visual na qual a maioria dos dispositivos se baseia, necessitam de um esforço cognitivo suplementar na interacção com telemóveis. Apesar de existir interesse em perceber a importância de características humanas na interacção com tecnologia, existe uma grande lacuna no que respeita a estudos que relacionem capacidades cognitivas e o uso de dispositivos móveis por parte de deficientes visuais. Face ao esforço cognitivo superior, na ausência de visão, pretendem-se caracterizar os diferentes tipos de utilizadores de acordo com as suas capacidades cognitivas, de modo a permitir explorar diferentes métodos de interacção e, assim, criar soluções que se adeqúem ao perfil de cada um.

Palavras-chave

Avaliação, Cognição, Interacção, Dispositivo Móvel, Deficiência Visual

1. INTRODUÇÃO

Os dispositivos móveis, com especial destaque para os telemóveis, fazem cada vez mais parte do quotidiano de cada um de nós. No entanto, e apesar da sua constante evolução, continuam a apresentar grandes dificuldades e restrições a grupos de pessoas com necessidades especiais, como é o caso da população cega [Guerreiro09].

A interacção com telemóveis, assim como qualquer outro dispositivo, exige um esforço cognitivo que, na ausência de um sentido tão fundamental como a visão, se torna muito mais exigente. Um exemplo muito simples deste esforço adicional prende-se na necessidade de memorização da associação entre teclas, e letras ou funções, de um computador ou telemóvel. Uma exigência cognitiva necessária para alguém que não pode simplesmente, e a qualquer momento, confirmar visualmente os botões.

Apesar de existirem estudos que relacionem capacidades cognitivas e o uso de dispositivos, em tarefas como procura e obtenção de informação e introdução de dados [Czaja07], existe uma grande lacuna no que respeita a trabalhos sobre a influência das capacidades cognitivas de um deficiente visual na interacção com dispositivos móveis. A grande maioria dos estudos foca no envelhecimento e não na perda de um sentido vital como a visão.

É nosso objectivo relacionar capacidades de pessoas, a nível cognitivo, com exigências de produtos. Mais precisamente, pretende-se descobrir qual o impacto cognitivo, resultante da interacção de cegos com telemóveis.

2. PERCEBER A AVALIAÇÃO COGNITIVA

Os testes que pretendem avaliar a inteligência geral, ou habilidade cognitiva, de uma forma geral avaliam dois

campos distintos: a habilidade verbal e a não-verbal [Aiken04]. Para a avaliação verbal de cegos, as escalas verbais da terceira versão do teste de Wechsler (WISC-III para crianças e WAIS-III para adultos), são geralmente utilizadas. São compostas por subtestes destinados a avaliar o conhecimento verbal, o raciocínio verbal, a memória e o processamento de informação, que podem ter sido adquiridos quer por vias formais (escola) quer por vias informais (família, comunidade) [Nascimento07].

A componente não-verbal pretende avaliar capacidades independentes da língua materna ou cultura, como a habilidade espacial ou velocidade psicomotora [Aiken04]. De entre vários testes destaca-se o Blind Learning Aptitude Test (BLAT), um teste de inteligência não-verbal específico para o uso com deficientes visuais [Aiken04]. Neste teste, baseado nas matrizes progressivas de Raven, o examinado tem como objectivo através do tacto, descobrir uma relação ou encontrar o item que falta de um determinado padrão.

2.1 Entrevistas a Peritos

De modo a perceber, num contexto mais prático e da realidade portuguesa, como é feita a avaliação cognitiva de deficientes visuais, foram realizadas entrevistas de carácter semi-estruturado a diferentes psicólogos. Pretendeu-se igualmente interrogar se a falta de um sentido como a visão, obrigará a um esforço cognitivo superior aquando da interacção com dispositivos, tentando compreender em caso afirmativo, quais as características relevantes.

Para este efeito, foram entrevistados dois especialistas, um psicólogo e formador de uma instituição de apoio a deficientes visuais, e um psicólogo educacional de uma divisão regional de educação. Embora sob perspectivas diferentes, um trabalha mais com jovens enquanto o outro com uma população mais idosa, ambos realizam frequentemente avaliações cognitivas.

Em termos de instrumentos utilizados, as escalas verbais de Wechsler tiveram o maior destaque, sendo considerado um instrumento fiável. Para uma avaliação não-verbal, é utilizado ou o BLAT, ou alguns testes que embora não se encontram padronizados, permitem ter uma ideia do desempenho da pessoa. Relativamente ao pressuposto de que a falta de visão implica um esforço cognitivo adicional na interacção com dispositivos, ambos os peritos foram unânimes em concordar, salientado que deverá existir um esforço suplementar, particularmente a nível da memória de curto prazo e da habilidade espacial.

3. COGNIÇÃO E INTERACÇÃO MÓVEL

De forma a atingir os objectivos propostos e relacionar as capacidades cognitivas com a interacção com telemóveis, será utilizada uma metodologia de desenho centrado no utilizador. Com a colaboração de uma fundação de apoio ao cego, diferentes utilizadores serão envolvidos durante o estudo. Serão avaliados e entrevistados, sendo o seu desempenho medido em diversas tarefas.

3.1 Avaliação Cognitiva

De acordo com um estudo efectuado e os depoimentos dos dois peritos entrevistados, a componente verbal dos testes de Wechsler é o instrumento mais utilizado. Assim, este será usado para avaliar capacidades cognitivas como a memória de curto prazo e habilidades verbais.

De modo a complementar a componente verbal, será feita uma avaliação utilizando um instrumento de avaliação não-verbal, o BLAT, referenciado positivamente tanto pela literatura existente como pelos psicólogos. Este teste permite avaliar características como a habilidade espacial e a velocidade de processamento, capacidades que tais como as já referenciadas, se têm mostrado preditivas de desempenho na interacção com dispositivos [Czaja07].

3.2 Avaliação da Tecnologia

Serão feitos testes em diferentes dispositivos móveis com teclados tradicionais. Diferentes estruturas de teclados permitirão sobretudo relacionar o desempenho com a habilidade espacial. O desempenho será medido inicialmente numa tarefa de baixo nível, de aquisição de teclas.

Posteriormente, serão testadas tarefas de alto nível relativamente à introdução de texto e navegação em menus. Tratam-se de duas das principais operações realizadas em telemóveis e onde possivelmente as capacidades cognitivas terão um maior impacto [Guerreiro09].

Serão testados diferentes métodos de introdução de texto, recorrendo a abordagens MultiTapping, onde cada tecla está associada a diversos caracteres, ou de sistemas de navegação [Guerreiro09], onde o utilizador pode percorrer o alfabeto. Adicionalmente irão também ser avaliadas diferentes abordagens de navegação em menus.

3.3 Modelo Preditivo

Dado que o uso de métodos empíricos de avaliação incorre em maiores custos, tanto monetários como de tempo, a criação de ferramentas de auxílio ao desenho mostram-se essenciais. Deste modo, irá ser implementada uma ferramenta que mapeie as características cognitivas de uma pessoa, aos métodos de interacção indicados. À semelhança da teoria *Capability-demand* [Persad07], onde requisitos do produto são equacionados com capacidades de utilizador (Figura 1), procura-se criar um modelo preditivo dos resultados obtidos, onde tendo em conta as características de cada indivíduo, serão apresentadas as técnicas de interacção mais aconselhadas e, consequentemente o dispositivo mais acessível.

Figura 1: Teoria Capability-demand [Persad07].

4. CONCLUSÕES

O uso do telemóvel, cada vez mais vital para a sociedade actual, apresenta um conjunto de desafios a um deficiente visual que implicam um esforço cognitivo superior, podendo restringir ou impossibilitar a utilização destes dispositivos. Diferentes métodos de interacção implicam diferentes exigências cognitivas, pelo que a criação de uma ferramenta de suporte é uma contribuição valiosa para o desenho de interfaces mais inclusivas e adequadas às diferenças individuais de cada utilizador.

5. REFERÊNCIAS

- [Aiken04] L. R. Aiken. *Assessment of Intellectual Functioning*. Perspectives on Individual Differences Series. Springer, 2004.
- [Czaja07] S. Czaja e C. Lee. The impact of aging on access to technology. Universal Access in the Information Society, 5(4):341-349, 2007.
- [Guerreiro09] T. Guerreiro et. al. NavTap: a long term study with excluded blind users. Assets '09: Proceedings of the 11th international ACM SIGACCESS conference on Computers and accessibility, 99-106, New York, NY, USA, 2009. ACM.
- [Nascimento07] E. Nascimento e C. E. Flores-Mendoza. WISC-III e WAIS-III na Avaliação da Inteligência de Cegos. Psicologia em Estudo, 12(3):627-633, 2007.
- [Persad07] U. Persad, P. Langdon, e J. Clarkson. Characterising user capabilities to support inclusive design evaluation. Universal Access in the Information Society, 6(2):119-135, 2007.