Neural Network Introduction

Harpreet Singh (Fall 2023)

Artificial Neural Network (Feed Forward neural Network

Biological Neural Networks

Biological neurons refer to a collection of interconnected nerve cells organized in layers, which communicate with one another when specific conditions are met.

Artificial Neurons

The properties of biological neurons inspire the processing elements in ANN in several ways:

- The processing element receives multiple signals.
- These signals can be adjusted by weights at the receiving connection points.
- The processing element calculates the weighted sum of the inputs.
- When the conditions are appropriate (sufficient input), the neuron transmits a single output.
- The output from a particular neuron can be connected to many other neurons

Perceptron

The Perceptron is one of the simplest ANN architectures, invented in 1957 by Frank Rosenblatt.

Linear threshold units can be used for simple binary classification.

It computes a linear combination of the inputs and if the results exceeds a threshold, it outputs the positive class or else outputs the negative class.

$$f(x) = \begin{cases} 1 & wx + b > 0 \\ 0 & otherwise \end{cases}$$

Artificial Neuron

Linear Regression as a Single-layer Neural Network

Number of Neurons in Output Layer: One

Activation Function for output Layer: Linear (None)

Prediction $\hat{y} = b + \hat{w}_1 x_1 + \hat{w}_2 x_2 + \dots + \hat{w}_n x_n$

Loss Function: Mean Squared Error

Recap- Gradient Descent

Goal: Optimize model performance by finding suitable weights.

- Define a loss function a lower value indicates better model performance.
- Calculate gradients these represent the change in loss with respect to weights. Positive gradients imply a decrease in weight to minimize loss, while negative gradients indicate an increase in weight.
- Utilize gradients to guide weight adjustments, leading to continuous improvement in model performance.

Binary Classification (pick one from two labels)

$$\hat{y} = b + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Math (Logistic Regression)

p: probability of class "1"

Need to relate p to predictors with a function that guarantees $0 \le p \le 1$

The standard linear function does not

Fix: logistic response function (logit/sigmoid)

•
$$\hat{z} = \hat{b} + \hat{w}_1 x_1 + \hat{w}_2 x_2 + \dots + \hat{w}_n x_n$$

•
$$\hat{p} = \sigma(\hat{z}) = \frac{e^{\hat{z}}}{1+e^{\hat{z}}} = \frac{1}{1+e^{-\hat{z}}}$$

Logit (Sigmoid) Function

Logit (sigmoid) function is a function that returns the result between 0 and 1.

Prediction
$$\hat{y} = \begin{cases} 0 & \text{if } \hat{p} < \text{threshold} \\ 1 & \text{if } \hat{p} \geq \text{threshold} \end{cases}$$
, typically, threshold = 0.5

$$\hat{p} < 0.5$$
, when $z < 0$

$$\hat{p} \geq 0.5 \text{ when } z \geq 0$$

This means Logistic Regression predicts 1 if z is positive and 0 if it is negative

Binary Cross Entropy Loss/Logistic Loss function

Loss function single training instance :

$$c(\theta) = \begin{cases} -\log(\hat{p}) & \text{if } y = 1 \\ -\log(1-\hat{p}) & \text{if } y = 0 \end{cases}$$

$$c(\theta) = \begin{cases} 0, \text{if } \hat{p} = y, \\ c(\theta) \to \infty, \text{if } y = 1 \text{ and } \hat{p} \to 0 \end{cases}$$

Intuition

$$c(\theta) = 0$$
, if $\hat{p} = y$,
 $c(\theta) \to \infty$, if $y = 1$ and $\hat{p} \to 0$
 $c(\theta) \to \infty$, if $y = 0$ and $\hat{p} \to 1$

Alternatively:

$$c(\theta) = -y \log(\hat{p}) - (1 - y) \log(1 - \hat{p})$$

The cost function over the whole triaging set:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(\hat{p}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{p}^{(i)}) \right]$$

Intuition: Minimizing the loss will maximize the probability of the true label (class)

Logistic Regression as a Single-layer Neural Network

Number of Neurons in Output Layer: One

Activation Function for output Layer: Sigmoid

Prediction
$$\hat{y} = \begin{cases} 0 & \text{if } \hat{z} < 0 \\ 1 & \text{if } \hat{z} \ge 0 \end{cases} = \begin{cases} 0 & \text{if } \hat{p} < 0.5 \\ 1 & \text{if } \hat{p} \ge 0.5 \end{cases}$$

Loss Function: Binary Cross Entropy Loss (Logistic Loss Function)

Multiclass Classification (Softmax Regression) (pick one from more than two labels)

Binary Classification

Dog or No Dog

Multi-class Classification

Dog or Cat or Hen

Multiclass Classification (Softmax Regression) (pick one from more than two labels)

Generalization of Logistic regression:

 $\hat{z}_k(x) = \hat{b}^k + \hat{w}_1^k x_1 + \dots + \hat{w}_n^k x_n$, each class has set of weights and bias.

Softmax Function:

$$\hat{p}_k = \frac{e^{z_k(x)}}{\sum_{i=1}^k e^{z_j(x)}}, for \ k=2: \ p_1 = \frac{e^{z_1(x)}}{e^{z_1(x)} + e^{z_2(x)}}, p_2 = \frac{e^{z_2(x)}}{e^{z_1(x)} + e^{z_2(x)}}$$

$$\hat{y} = \underset{k}{\operatorname{argmax}} \, \hat{z}_k(x) = \underset{k}{\operatorname{argmax}} \, \hat{p}_k(x)$$

Negative Log Likelihood Loss/Cross Entropy Loss

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(\hat{p}_k^{(i)})$$

For two classes:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y_1^{(i)} log(\hat{p}_1^{(i)}) + y_2^{(i)} log(\hat{p}_2^{(i)})$$

$$y_2 = 1 - y_1 p_2 = 1 - p_1$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(\hat{p}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{p}^{(i)}) \right]$$
 Binary Cross Entropy Loss

Negative Log Likelihood Loss/Cross Entropy Loss

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(\hat{p}_k^{(i)})$$

Example for two observations, m = 2 and two classes, k = 2

Intuition: Minimizing the loss will maximize the probability of the true label (class)

Multiclass Classification as a Single-layer Neural Network

Number of Neurons in Output Layer: Number of Classes

Activation Function for output Layer : Softmax Function

Prediction $\hat{y} = \underset{k}{argmax} z_k(x)$ (Class which has the maximum probbaility value or z_k value)

Loss Function: Cross Entropy Loss

Binary Classification with Softmax and Cross Entropy Loss function

Number of Neurons in Output Layer: Two

Activation Function for output Layer: Softmax Function

Prediction $\hat{y} = \underset{k}{argmax} z_k(x)$ (Class which has the maximum probbaility value or z_k value)

Loss Function: Cross Entropy Loss

Multilabel Classification (Softmax Regression)

Multi-label Classification

Dog or Cat or Hen

Multilabel Classification as a Single-layer Neural Network

Number of Neurons in Output Layer: Number of Classes

Activation Function for output Layer: Sigmoid

Prediction
$$\hat{y} = \begin{cases} 0 & \text{if } \hat{z} < 0 \\ 1 & \text{if } \hat{z} \ge 0 \end{cases} = \begin{cases} 0 & \text{if } \hat{p} < 0.5 \\ 1 & \text{if } \hat{p} \ge 0.5 \end{cases}$$

Loss Function: Binary Cross Entropy Loss (Logistic Loss Function)

Linear Classifiers

Predictions in all the previous models can be made based on:

$$\hat{z}_k(x) = \hat{b}^k + \hat{w}_1^k x_1 + \dots + \hat{w}_n^k x_n$$

Output equation given x_1 and x_2 , is the equation of a line $w_1x_1 + w_2x_2 + b = 0$

(in standard linear format:
$$x_2 = (-w_1/w_2)x_1 + (-b/w_2)$$
)

This line acts as a decision boundary

- 0 if input is on one side of the line
- 1 if on the other side of the line

Decision Boundaries

XOR is not a **linearly separable** function!

Slide Credit: https://web.stanford.edu/~jurafsky/slp3/

Multilayer Perceptron

Multilayer Perceptron

$$H = XW_1^T + b_1$$

$$O = HW_2^T + b_2$$

$$O = (XW_1^T + b_1)W_2^T + b_2$$

$$O = XW_1^TW_2^T + b_1W_2^T + b_2$$

$$O = XW + b$$

$$W = W_1^TW_2^T$$

$$b = b_1W_2^T + b_2$$

Apply Non-Linear Function to Hidden Layers

$$H = \sigma(XW_1^T + b_1)$$
$$O = HW_2^T + b_2$$

Sigmoid Activation

$$sigmoid(x) = \frac{1}{1 + \exp(-x)}$$

$$\frac{d}{dx}\operatorname{sigmoid}(x) = \frac{\exp(-x)}{(1 + \exp(-x))^2}$$

$$\frac{d}{dx}sigmoid(x) = \frac{\exp(-x)}{(1 + \exp(-x)^2)}$$

= sigmoid(x)(1 - sigmoid(x))

Tanh Activation

$$tanh(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}$$

- Output value ranges from -1 to 1 (instead of 0 to 1 in the case of the sigmoid function).
- That range tends to make each layer's output more or less centered around 0 at the beginning of training, which often helps speed up convergence

$$\frac{d}{dx}\tanh(x) = 1 - \tanh^2(x)$$

$$\frac{d}{dx}\tanh(x) = 1 - \tanh^2(x).$$

ReLU Activation

$$ReLU(x) = \max(x, 0)$$

It works very well and has the advantage of being fast to compute, so it has become the default.

$$\frac{d}{dx}ReLU(x) = \begin{cases} 0, & \text{if } x < 0\\ 1, & \text{if } x \ge 0 \end{cases}$$

Note: derivative is not defined at x = 0

MLP that solves XOR problem

- with inputs (0, 0) or (1, 1),
 the network outputs 0.
- and with inputs (0, 1) or (1, 0) it outputs 1.
- All connections have a
 weight equal to 1, except
 the four connections
 where the weight is shown.

Decision Boundary

- 0 hidden layers: linear classifier
 - Hyperplanes

Decision Boundary

- 1 hidden layer with nonlinear activation
 - Boundary of convex region (open or closed)

Slide Credit: © Eric Xing @ CMU, 2006-2011

Multiclass Classification

$$H = \sigma(XW_1^T + b_1)$$

$$O = HW_2^T + b_2$$

 $\widehat{P} = Softmax(O)$

Summary – Layers/Activations/Loss Functions

	Regression	Binary Classification	Multi-class Classification	Multi Label Classification
# input neurons	Depends on the problem (your data) (Number of input variables – (e.g. for 28x28 black & White images = 28*28 =784)			
# hidden layers	Depends on problem (Hyperparameter)			
# neurons per hidden layer	Depends on problem (Hyperparameter)			
# output neurons	One	One (Two)	Number of Classes	Number of Classes
Hidden activation	Hyperparameter (sigmoid, tanh, ReLU, SELU, GELU, MISH etc.)			
Output activation	None	Sigmoid (Softmax)	Softmax	Sigmoid
Loss Function	MSE	Binary Cross Entropy (Cross- Entropy)	Cross-Entropy	Binary Cross Entropy

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

2. Choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

4. Train with SGD:

(take small steps opposite the gradient)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Computation Graph – Efficient way to calculate gradients

A computation graph is a directed acyclic graph (DAG) used to represent mathematical expressions and operations in a structured manner. Each node in the graph represents an operation, like addition or multiplication, and the edges represent the data flow between these operations, typically carrying tensors or matrices.

Key benefits include:

- Modularity: Easy to break down complex expressions into simpler parts.
- **Differentiation**: Facilitates the process of computing gradients efficiently.

Computation graph – Logistic Regression

Computations:

$$u = w * x$$

$$z = u + b$$

$$a = sigmoid(z)$$

$$L = -(y * \log(a) + (1 - y) * \log(1 - a))$$

Logistic Regression – Forward Pass

Initial Model Parameters

w = 2

b = 0

Data

x = 1

y = 1

Forward Pass

Logistic Regression – Forward Pass

Computations:

$$u = w * x$$

$$z = u + b$$

$$a = sigmoid(z)$$

$$L = -(y * log(a) + (1 - y) * log(1 - a))$$

What we want

- Minimize Loss using Gradient descent

What we need:
$$\frac{\partial L}{\partial w}$$
, $\frac{\partial L}{\partial b}$

The derivative $\partial L/\partial w$, tells us how much a small change in w affects L, while holding the other parameters constant

Computation graph – Chain Rule

Given:

$$y = g(u)$$
 and $u = h(x)$

Chain Rule:

$$\frac{dy}{dx} = \frac{dy}{du} * \frac{du}{dx}$$

Backpropagation is just repeated application of the **chain rule**

Chain Rule

$$u = f_1(x)$$
, $z = f_2(u)$, $a = f_3(z)$, $L = f_4(a)$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial a} * \frac{\partial a}{\partial z} * \frac{\partial z}{\partial u} * \frac{\partial u}{\partial w}$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial a} * \frac{\partial a}{\partial z} * \frac{\partial z}{\partial b}$$

Local Gradients

Addition

$$f(x,y) = x + y$$

$$\frac{\partial f}{\partial x} = 1, \frac{\partial f}{\partial y} = 1$$

Multiplication

$$f(w) = w * x$$

$$\frac{\partial f}{\partial w} = x$$

Sigmoid

$$f(z) = sigmoid(z)$$

$$\frac{\partial f}{\partial z} = sigmoid(z) * (1 - sigmoid(z))$$

Binary Cross entropy

$$L = -(y * \log(a) + (1 - y) * \log(1 - a))$$

$$\frac{\partial L}{\partial a} = -\left(\frac{y}{a} + \frac{1-y}{a-1}\right)$$

Need to save from forward pass

1

$$other = x$$

 $(self = w, other = x)$

a, y

Backward pass

For Logistic Regression

$$\frac{\partial L}{\partial w} = (a-1) * x = error * input$$

$$\frac{\partial L}{\partial h} = (a-1) = error$$

Computation graph – Backward pass

$$Path1 = \frac{\partial y}{\partial u_1} * \frac{\partial u_1}{\partial x}$$

$$Path2 = \frac{\partial y}{\partial o_1} * \frac{\partial o_1}{\partial u_2} * \frac{\partial u_2}{\partial x}$$

$$Path3 = \frac{\partial y}{\partial o_2} * \frac{\partial o_2}{\partial u_3} * \frac{\partial u_3}{\partial x}$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u_1} * \frac{\partial u_1}{\partial x} + \frac{\partial y}{\partial o_1} * \frac{\partial o_1}{\partial u_2} * \frac{\partial u_2}{\partial x} + \frac{\partial y}{\partial o_2} * \frac{\partial o_2}{\partial u_3} * \frac{\partial u_3}{\partial x}$$

Backpropagation is just the repeated application of the **chain rule**