## Lukion matematiikkakilpailun alkukilpailu 2015

## Avoimen sarjan tehtävien ratkaisuja

- 1. Voidaan olettaa, että b=a+1. Silloin  $d=a^2+(a+1)^2+(a(a+1))^2=a^2+a^2+2a+1+a^4+2a^3+a^2=a^4+2a^3+3a^2+2a+1$ . Toisaalta  $(a^2+a+1)^2=a^4+a^2+1+2a^3+2a^2+2a=a^4+2a^3+3a^2+2a+1$ . d on siis neliöluku ja  $\sqrt{d}=a^2+a+1$ .  $(a^2+a+1)=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0$ .) Koska  $a^2+a+1=a(a+1)+1$  ja joko a tai a+1 on parillinen, niin a(a+1) on parillinen ja  $\sqrt{d}$  on pariton.
- **2.** 1. ratkaisu. Olkoon suorakulmainen kolmio ABC, sen hypotenuusa c = AB,  $\angle ABC = \beta$ ,  $\angle CAB = \alpha$  ja I sisään piirretyn ympyrän keskipiste. I on kolmion kulmien puolittajien leikkauspiste. Sovelletaan (kolmion kulmasummasta välittömästi seuraavaa) tietoa, jonka mukaan kolmion kulman vieruskulma on kolmion muiden kulmien summa, kolmioihin CAI ja



BCI. Saadaan  $\angle AIB = \left(45^\circ + \frac{\alpha}{2}\right) + \left(45^\circ + \frac{\beta}{2}\right) = 90^\circ + \frac{1}{2}(\alpha + \beta)$ . Koska ABC on suorakulmainen,  $\alpha + \beta = 90^\circ$ . Siis  $\angle AIB = 135^\circ$ . Sovelletaan kosinilausetta kolmioon ABI. Koska  $\cos 135^\circ = -\frac{1}{\sqrt{2}}$ , saadaan heti

$$c^2 = 4^2 + 2^2 + 2 \cdot 4 \cdot 2 \cdot \frac{1}{\sqrt{2}} = 20 + 8\sqrt{2},$$

joten

$$c = 2\sqrt{5 + 2\sqrt{2}}$$

2. ratkaisu. Olkoon D se piste kulman  $\angle CAB$  puolittajalla AI, jolle  $BD \bot AI$ . Kolmion ABI kulman  $\angle BIA$  vieruskulmana  $\angle BID = \frac{\alpha}{2} + \frac{\beta}{2} = 45^{\circ}$ . Kolmio IBD on siis tasakylkinen suorakulmainen kolmio, jonka hypotenuusa BI = 2. Siis  $BD = DI = \sqrt{2}$ . Suorakulmaisesta kolmiosta ABD saadaan Pythagoraan lauseen perusteella heti  $c^2 = AB^2 = (4 + \sqrt{2})^2 + (\sqrt{2})^2 = 20 + 8\sqrt{2}$  ja  $c = 2\sqrt{5 + 2\sqrt{2}}$ .



3. ratkaisu. (Kalevi Lyyra) Olkoon IA=2, IB=4, D ABC:n sisäympyrän ja AB:n sivuamispiste, AD=u, BD=t,  $\angle IAB=\alpha$  ja  $\angle IBA=\beta$ . Suorakulmaisista kolmioista AID ja BID saadaan  $r=2\sin\alpha=4\sin\beta$ . Siis  $\sin\alpha=2\sin\beta$ . Toisaalta  $\alpha+\beta=45^\circ$ , joten  $2\sin\beta=\sin(45^\circ-\beta)=\frac{1}{\sqrt{2}}(\cos\beta-\sin\beta)$ . Tästä



ratkaistaan

$$\tan \beta = \frac{1}{1 + 2\sqrt{2}} = \frac{r}{t}, \qquad r = \frac{t}{1 + 2\sqrt{2}}.$$

Samoin johdetaan yhtälöt

$$\tan \alpha = \frac{\sqrt{2}}{1+\sqrt{2}} = \frac{r}{u}, \qquad r = \frac{u\sqrt{2}}{1+\sqrt{2}}.$$

Kun Pythagoraan lausetta sovelletaan kolmioihin AID ja BID, saadaan

$$4 = r^2 + u^2 = u^2 \left( \frac{2}{(1+\sqrt{2})^2} + 1 \right)$$

ja

$$16 = r^2 + t^2 = t^2 \left( \frac{1}{(1 + 2\sqrt{2})^2} + 1 \right).$$

Tästä ratkaistaan

$$u = \frac{2(1+\sqrt{2})}{\sqrt{5+2\sqrt{2}}}, \qquad t = \frac{2\sqrt{2}(1+2\sqrt{2})}{\sqrt{5+2\sqrt{2}}},$$

ja edelleen

$$c = u + t = \frac{2(1+\sqrt{2}) + 2\sqrt{2}(1+2\sqrt{2})}{\sqrt{5+2\sqrt{2}}} = \frac{10+4\sqrt{2}}{\sqrt{5+2\sqrt{2}}} = 2\sqrt{5+2\sqrt{2}}.$$

4. ratkaisu. Olkoon BC = a, CA = b, ABC:n sisäympyrän säde r ja sisäympyrän ja kolmion sivujen BC, CA, AB sivuamispisteet A', B', C'. Koska A'CB'I on neliö, A'C = CB' = r. Koska ympyrän tangenttien leikkauspisteestä sivuamispisteisiin piirretyt janat ovat yhtä pitkiä, on BC' = BA' = a - r ja C'A = B = b - r. Siis c = a + b - 2r, joten



$$r = \frac{1}{2}(a+b-c), \quad a-r = \frac{1}{2}(a-b+c), \quad b-r = \frac{1}{2}(-a+b+c).$$

Suorakulmaisista kolmioista IAC' ja BIC' saadaan Pythagoraan lauseen nojalla

$$(-a+b+c)^2 + (a+b-c)^2 = 4 \cdot 4^2 = 64 \tag{1}$$

$$(a-b+c)^{2} + (a+b-c)^{2} = 4 \cdot 2^{2} = 16.$$
 (2)

Kun otetaan huomioon, että ABC on suorakulmainen, joten  $a^2+b^2=c^2$ , niin (1) ja (2) sievenevät muotoihin

$$4c^2 - 4ac = 64, \qquad 4c^2 - 4bc = 16.$$

Siis

$$a = \frac{c^2 - 16}{c}, \qquad b = \frac{c^2 - 4}{c}$$

Kun nämä a:n ja b:n arvot sijoitetaan Pythagoraan yhtälöön  $a^2+b^2=c^2$ , saadaan c:lle yhtälö

$$c^4 - 40c^2 + 272 = 0,$$

josta ratkaistaan

$$c^2 = \frac{40 \pm \sqrt{1600 - 4 \cdot 272}}{2} = 20 \pm \sqrt{400 - 272} = 20 \pm \sqrt{128} = 20 \pm 8\sqrt{2}.$$

Kolmiosta ABI nähdään, että c>4, joten  $c^2$ :n lausekeessa vain +-merkki kelpaa. Siis

$$c = 2\sqrt{5 + 2\sqrt{2}}.$$

5. ratkaisu. Käytetään samoja merkintöjä kuin edellä. Pythagoraan lause sovellettuina suorakulmaisiin kolmioihin AC'I, AB'I, BC'I, BA'I antaa  $AC'=AB'=\sqrt{16-r^2}$  ja  $BC'=BA'=\sqrt{4-r^2}$ . Yhtälö  $a^2+b^2=c^2$  on siis

$$(r + \sqrt{4 - r^2})^2 + (r + \sqrt{16 - r^2})^2 = (\sqrt{4 - r^2} + \sqrt{16 - r^2})^2$$
.

Kun tässä suoritetaan neliöön korotukset ja sievennetään, saadaan, että r toteuttaa yhtälön

$$r\left(\sqrt{4-r^2}+\sqrt{16-r^2}\right) = -r^2 + \sqrt{r^4 - 20r^2 + 64}.$$

Kun tämä korotetaan puolittain neliöön ja sievennetään, saadaan, että r toteuttaa yhtälön

$$r^2\sqrt{r^4 - 20r^2 + 64} = r^4 - 10r^2 + 16.$$

Kun tämä vielä korotetaan puolittain neliöön ja sievennetään, saadaan r:n toteuttamaksi yhtälöksi

$$17r^4 - 80r^2 + 64 = 0.$$

Tämä on tuntemattoman  $r^2$  toisen asteen yhtälö, jolle voidaan suoraan kirjoittaa ratkaisu

$$r^2 = \frac{80 \pm \sqrt{6400 - 17 \cdot 256}}{34} = \frac{40 \pm 16\sqrt{2}}{17}.$$

Koska r on kolmion BIC' lyhempi kateetti, on oltava  $r^2 < 2$ . Vain

$$r^2 = \frac{40 - 16\sqrt{2}}{17}$$

voi tulla kyseeseen. Nyt

$$c = \sqrt{4 - r^2} + \sqrt{16 - r^2} = \frac{\sqrt{28 + 16\sqrt{2}} + \sqrt{232 + 16\sqrt{2}}}{\sqrt{17}}$$
$$= \frac{2}{\sqrt{17}} \left(\sqrt{7 + 4\sqrt{2}} + \sqrt{58 + 4\sqrt{2}}\right).$$

– Tämä yllättävän erinäköinen ratkaisu on kuitenkin sama kuin edellisissä ratkaisuissa saatu  $c=2\sqrt{5+2\sqrt{2}}$ , niin kuin selviää, kun korottaa molemmat lausekkeet neliöön ja tekee rutiinisievennykset.

6. ratkaisu. Käytetään samoja merkintöjä kuin 3. ratkaisussa. Koska  $\sin \beta = 2 \sin \alpha = 2 \sin(45^{\circ} - \beta) = \sqrt{2}(\cos \beta - \sin \beta)$ , saadaan  $(1 + \sqrt{2}) \sin \beta = \sqrt{2} \cos \beta$ ,  $(3 + 2\sqrt{2}) \sin^2 \beta = (3 + 2\sqrt{2})(1 - \cos^2 \beta) = 2 \cos^2 \beta$ , josta ratkaistaan

$$\cos \beta = \frac{\sqrt{3 + 2\sqrt{2}}}{\sqrt{5 + 2\sqrt{2}}}.$$

Kun vastaavasti lähdetään yhtälöstä  $\sin\alpha=\frac{1}{2}\sin\beta=\frac{1}{2}\sin(45^\circ-\alpha)$  ja tehdään samat operaatiot kuin edellä, tullaan yhtälöön

$$\cos \alpha = \frac{\sqrt{2}\sqrt{9 + 4\sqrt{2}}}{2\sqrt{5 + 2\sqrt{2}}}.$$

Nyt

$$c = 2\cos\alpha + 4\cos\beta = \frac{2\left(\sqrt{3 + 2\sqrt{2}} + \sqrt{18 + 8\sqrt{2}}\right)}{\sqrt{5 + 2\sqrt{2}}}.$$

Tämä jälleen aivan erinäköinen lauseke on kuitenkin sama kuin aikaisemmissa ratkaisuissa saatu c:n arvo.

- **3.** 1. ratkaisu. Olkoon x mielivaltainen joukon A alkio. Jaetaan joukon  $A \setminus \{x\}$  40 alkiota kahdeksi 20-alkioiseksi joukoksi. Olkoot näiden joukkojen alkioiden summat  $S_1$  ja  $S_2$ . Tehtävän ehdon perusteella  $S_1 + x > S_2$  ja  $S_2 + x > S_1$ . Edellisestä epäyhtälöstä seuraa  $x > S_2 S_1$  ja jälkimmäisestä  $x > S_1 S_2$ . Siis  $x > |S_1 S_2| \ge 0$ . Jokainen A:n alkio on siis positiivinen luku, joten negatiivisia lukuja A:ssa ei ole.
- 2. ratkaisu. A on joukko, joten sen alkiot ovat eri lukuja. Kirjoitetaan ne suuruusjärjestykseen  $x_1 < x_2 < \ldots < x_{41}$ . Jos joukossa A on negatiivisia lukuja, niin  $x_1 < 0$ . Silloin

$$\sum_{k=22}^{41} x_k < \sum_{k=1}^{21} x_k < \sum_{k=2}^{21} x_k < \sum_{k=22}^{41} x_k.$$

Tämä ei ole mahdollista, joten joukossa A ei ole negatiivisia lukuja.

**4.** 1. ratkaisu. Jonoja, joissa on  $2k, k \geq 0$ , **A**-kirjainta, on

$$\binom{n}{2k} 2^{n-2k}$$

kappaletta: paikat, joissa on **A**-kirjain voidaan valita yhtä monella tavalla kuin voidaan valita n-alkioisen joukon 2k-alkioinen osajoukko. **B**- ja **C**-kirjaimille jää n-2k paikkaa, ja jokaiseen tällaiseen voidaan asettaa kumpi tahansa näistä kirjaimista, joten mahdollisuuksia on  $2^{n-2k}$ . Kaikkiaan tehtävän mukaisia merkkijonoja on siis

$$2^{n} + {n \choose 2} 2^{n-2} + {n \choose 4} 2^{n-4} + \cdots$$

kappaletta. Mutta summa saadaan kirjoitettua suljettuun muotoon, kun huomataan, että

$$3^{n} = (2+1)^{n} = 2^{n} + \binom{n}{1} 2^{n-1} + \binom{n}{2} 2^{n-2} + \binom{n}{3} 2^{n-3} + \binom{n}{4} 2^{n-4} + \cdots,$$

$$1 = (2-1)^{n} = 2^{n} - \binom{n}{1} 2^{n-1} + \binom{n}{2} 2^{n-2} - \binom{n}{3} 2^{n-3} + \binom{n}{4} 2^{n-4} - \cdots.$$

Kun edelliset binomikehitelmät lasketaan yhteen, saadaan

$$3^{n} + 1 = 2 \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} 2^{n-2k}.$$

Tehtävässä kysytty lukumäärä on siis

$$\frac{1}{2}(3^n+1).$$

2. ratkaisu. n-kirjaimisia sanoja on kaikkiaan  $3^n$  kappaletta. Olkoon näistä  $S_n$  sellaisia, joissa on parillinen määrä  $\mathbf{A}$ -kirjaimia ja  $T_n$  sellaisia, joissa on pariton määrä  $\mathbf{A}$ -kirjaimia. Tarkastellaan sanoja, joissa on parillinen määrä  $\mathbf{A}$ -kirjaimia. Jos sanan viimeinen kirjain on  $\mathbf{A}$ , sen (n-1):n ensimmäisen kirjaimen joukossa on pariton määrä  $\mathbf{A}$ -kirjaimia ja jos viimeinen kirjain on  $\mathbf{B}$  tai  $\mathbf{C}$ , sen (n-1):n ensimmäisen kirjaimen joukossa on parillinen määrä  $\mathbf{A}$ -kirjaimia. Tästä seuraa

$$S_n = T_{n-1} + 2S_{n-1}. (1)$$

Vastaavasti tarkastelemalla sanoja, joissa on pariton määrä A-kirjaimia, tullaan yhtälöön

$$T_n = S_{n-1} + 2T_{n-1}. (2)$$

Kun yhtälöt (1) ja (2) vähennetään toisistaan, saadaan

$$S_n - T_n = S_{n-1} - T_{n-1}. (3)$$

Nyt  $S_1 = 2$  ja  $T_1 = 1$  (parillinen määrä **A**-kirjaimia on sanoissa **B** ja **C**, pariton sanassa **A**) eli  $S_1 - T_1 = 1$ . Yhtälöstä (3) seuraa nyt yksinkertaisella induktiolla, että  $S_n - T_n = 1$  kaikilla n. Koska  $S_n + T_n = 3^n$ , saadaan heti

$$S_n = \frac{1}{2}(3^n + 1).$$

3. ratkaisu. Pienillä n:n arvoilla tehdyt kokeilut antavat aiheen olettaa, että

$$S_n = \frac{1}{2}(3^n + 1)$$

ja

$$T_n = 3^n - S_n = \frac{1}{2}(3^n - 1).$$

Todistetaan tämä induktiolla.  $S_1=2$  ja  $T_1=1$ . Oleteaan, että väite pätee n:n merkin pituisiin jonoihin. Jonot, joiden pituus on n+1 merkkiä ja joissa on parillinen määrä **A**-kirjaimia, saadaan liittämällä n-pituisiin jonoihin, joissa on parillinen määrä **A**-kirjaimia, viimeiseksi merkiksi **B** tai **C**, tai sellaisiin, joissa on pariton määrä **A**-kirjaimia, viimeiseksi merkiksi **A**. Siis

$$S_{n+1} = 2S_n + T_n = 3^n + 1 + \frac{1}{2}(3^n - 1) = \frac{3}{2} \cdot 3^n + \frac{1}{2} = \frac{1}{2}(3^{n+1} + 1).$$

Induktioaskel on otettu ja todistus on valmis.