Exercice 7 (suite)

- (vi) Oui. Cela peut être démontré par induction. G_0 est connexe. Supposons maintenant que G_n est connexe et considérons G_{n+1} . $C_{n+1} = \langle v_{3(n+1)-1}, v_{3(n+1)+1}, v_{3(n+1)+1}, v_{3(n+1)+2}, v_{3(n+1)-3} \rangle = \langle v_{3n+2}, v_{3(n+1)}, v_{3(n+1)+1}, v_{3(n+1)+2}, v_{3n} \rangle$ est une G_n -chaine de G_{n+1} donc par l'hypothèse d'induction il doit y avoir un chemin entre tous les sommets de G_{n+1} et G_n également. Mais cela implique que G_n est connexe.
- (vii) Oui. On peut montrer cela par induction. G_0 est 2-connexe. Maintenant, supposons que G_n est 2-connexe et considérons G_{n+1} . En retirant n'importe quel sommet de G_n , G_{n+1} reste 2-connexe par notre hypothèse, puisque même si nous retirons v_{3n} ou v_{3n+2} , nous avons toujours la chaîne $\langle v_{3(n+1)}, v_{3(n+1)+1}, v_{3(n+1)+2}, v_{3n-3} \rangle$ ou $\langle v_{3n}, v_{3(n+1)}, v_{3(n+1)+1}, v_{3(n+1)+2} \rangle$, qui sont tous les deux G_n -chaines de G_{n+1} ce qui laisse un chemin de G_{n+1} vers G_n . De plus, retirer n'importe quel sommet de G_{n+1} laisse les chaînes $\langle v_{3(n+1)+1}, v_{3(n+1)+2}, v_{3n-3} \rangle$ ou $\langle v_{3n}, v_{3(n+1)+2}, v_{3n-3} \rangle$ ou $\langle v_{3n}, v_{3(n+1)+1}, v_{3(n+1)+1}, v_{3(n+1)+2} \rangle$, et chacun d'eux est encore une fois G_n -chaines de G_{n+1} . Par conséquent, G_{n+1} est 2-connexe.
- (viii) oui pour n = 0 non pour n > 0 car par exemple la suppression des sommets v_0 et v_2 laisse v_1 sans arête.
- (ix) oui pour tout n, car on peut toujours supprimer e_3 et il restera connexe.
- (x) oui pour tout n > 1, car on peut toujours supprimer e_3 et e_5 et il restera connexe.
- (xi) G est planaire car il peut toujours être dessiné sans intersections car lors de l'ajout d'un triplet de nouveaux sommets, leur indice le plus petit peut être tracé parallèlement à l'indice le plus élevé du triplet de sommets précédent et vice-versa. Les nouveaux sommets eux-mêmes peuvent ensuite être dessinés sur une ligne parallèle équidistante, en garantissant que l'arrêt $[v_{3n-2}, v_{3n+1}]$, s'il en a besoin, ne croise pas les autres.
- D) G n'est clairement pas 1-colorable puisqu'il n'y a aucun moyen de 1-colorer G_0 car il est complet. De même, G_0 ce n'est pas 2-coularable car encore une fois il y a 3 sommets et c'est complet.

Pour voir G est 3-colorable, commençons par colorier G_0 avec, disons, rouge, jaune et bleu. $C = \{r, j, b\}$ une 3-coloration serait $c(v_1) = j, c(v_0) = b, c(v_2) = r$. Maintenant G_1 peut être 3-coloré par $c(v_3) = g, c(v_4) = j, c(v_5) = r$. Et de même G_2 peut être 3-coloré par $c(v_8) = j, c(v_7) = g, c(v_6) = r$. Ainsi, définis $c: V(G) \to C$ par

$$v_{3n+k} \mapsto \begin{cases} b & \text{si } k = 0, \\ j & \text{si } k = 1 \text{ et } n \text{ est impair,} \\ r & \text{si } k = 2 \text{ et } n \text{ est impair,} \\ r & \text{si } k = 1 \text{ et } n \text{ est pair,} \\ j & \text{si } k = 2 \text{ et } n \text{ est pair.} \end{cases}$$

pour que c soit une 3-coloration de G