Сочиненные задачи

Артемий Соколов

Задачи с олимпиад

ФШ – Финал олимпиады им.Шарыгина ЗШ – Заочный тур олимпиады им.Шарыгина ММО – Московская Математическая олимпиада ТГ – Турнир Городов * – любимые

- 1. ФШ, 2013, 9.6 (совместно с Д.Швецовым, Ю.Зайцевой) Через вершину B правильного треугольника ABC проведена прямая ℓ . Окружность ω_a с центром I_a касается стороны BC в точке A_1 и прямых ℓ и AC. Окружность ω_c с центром I_c касается стороны BA в точке C_1 и прямых ℓ и AC. Докажите, что ортоцентр треугольника A_1BC_1 лежит на прямой I_aI_c . Ссылка на AoPS
- 2. * ФШ, 2014, 10.4 (совместно с А.Гаркавым) Дан фиксированный треугольник ABC. Пусть D произвольная точка в плоскости треугольника, не совпадающая с его вершинами. Окружность с центром в D, проходящая через A, пересекает вторично прямые AB и AC в точках A_b и A_c соответственно. Аналогично определяются точки B_a , B_c , C_a и C_b . Точку D назовём $xopome\check{u}$, если точки A_b , A_c , B_a , B_c , C_a и C_b лежат на одной окружности. Сколько может оказаться точек, хороших для данного треугольника ABC? Ссылка на AoPS
- 3. ЗШ, 2015, №11 Пусть H ортоцентр остроугольного треугольника ABC. Серединный перпендикуляр к отрезку BH пересекает стороны BA, BC в точках A_0 , C_0 соответственно. Докажите, что периметр треугольника A_0OC_0 (O центр описанной окружности треугольника ABC) равен AC. Ссылка на AoPS
- 4. Φ III, **2015**, **10.6** Пусть H и O ортоцентр и центр описанной окружности треугольника ABC. Описанная окружность треугольника AOH, пересекает серединный перпендикуляр к BC в точке A_1 . Аналогично определяются точки B_1 и C_1 . Докажите, что прямые AA_1 , BB_1 и CC_1 пересекаются в одной точке. Ссылка на AoPS
- 5. ФШ, 2017, 8.2 Дан остроугольный треугольник ABC. Точки H и O его ортоцентр и центр описанной окружности соответственно. Серединный перпендикуляр к BH пересекает стороны AB и BC в точках A_1 и C_1 . Докажите, что OB биссектриса угла A_1OC_1 .

Ссылка на АоРЅ

- 6. * ФШ, 2017, 10.3 Дан выпуклый четырехугольник ABCD. Пусть ω_A , ω_B , ω_C , ω_D окружности, описанные вокруг треугольников BCD, ACD, ABD, ABC соответственно. Обозначим через X_A произведение степени точки A относительно ω_A на площадь треугольника BCD. Аналогично определим X_B , X_C , X_D . Докажите, что $X_A + X_B + X_C + X_D = 0$. Ссылка на AoPS
- 7. **ТГ**, **2019/2020**, **осенний тур**, **базовый вариант**, **8-9**, **2** Дана окружность ω с центром O и две её различные точки A и C. Для любой другой точки P на ω отметим середины X и Y отрезков AP и CP и построим точку H пересечения высот треугольника OXY. Докажите, что положение точки H не зависит от выбора точки P. Ссылка на AoPS
- 8. **ТГ**, **2019/2020**, **осенний тур**, **сложный вариант**, **8-9**, **4** Из центра O описанной окружности треугольника ABC опустили перпендикуляры OP и OQ на биссектрисы внутреннего и внешнего углов при вершине B. Докажите, что прямая PQ делит пополам отрезок, соединяющий середины сторон CB и AB. Ссылка на AoPS
- 9. * MMO, 2020, 9.4 и 11.3 В остроугольном треугольнике ABC (AB < BC) провели высоту BH. Точка P симметрична точке H относительно прямой, соединяющей середины сторон AC и BC. Докажите, что прямая BP содержит центр описанной окружности треугольника ABC.
- 10. ММО, 2020, 10.4 Точка O центр описанной окружности треугольника ABC. Серединный перпендикуляр к BC пересекает AB и AC в точках X и Y. Прямая AO пересекает прямую BC в точке D, M середина BC. Описанная окружность треугольника ADM пересекает описанную окружность треугольника ABC в точке E, отличной от A. Докажите, что прямая OE касается описанной окружности треугольника AXY.
- 11. **ТГ**, 2020/2021, весенний тур, сложный вариант, 10-11, 2 Существует ли такое натуральное n, что для любых вещественных чисел x и y найдутся вещественные числа a_1, \ldots, a_n , удовлетворяющие равенствам

$$x = a_1 + \dots + a_n$$
 if $y = \frac{1}{a_1} + \dots + \frac{1}{a_n}$?

Ссылка на АоРЅ

12. ММО, 2023, 9, 1 (совместно с А.Головановым) Саша записывает числа 1, 2, 3, 4, 5 в каком-нибудь порядке, расставляет знаки арифметических операций «+», «-», «×» и скобки и смотрит на результат полученного выражения. Например, он может получить число 8 с помощью выражения $(4-3) \times (2+5) + 1$. Может ли он получить число 123? Формировать числа из нескольких других нельзя (например, из чисел 1 и 2 нельзя составить число 12).

Невошеднее или неподанное

- 1. Дан фиксированный треугольник ABC. Пусть D произвольная точка в плоскости треугольника, не совпадающая с его вершинами. Окружность с центром в A, проходящая через D, пересекает вторично прямые AB и AC в точках A_b и A_c соответственно. Аналогично определяются точки B_a , B_c , C_a и C_b . Точку D назовём xopoweй, если точки A_b , A_c , B_a , B_c , C_a и C_b лежат на одной -окружности. Сколько может оказаться точек, хороших для данного треугольника ABC?
- 2. Дан треугольник ABC с центром описанной окружности O, ортоцентром H и точкой пересечения медиан M. Внутри ABC отметили произвольную точку P. Серединный перпендикуляр к AP пересекает стороны AB и AC в точках A_B и A_C . Аналогично определяются точки B_A , B_C , C_A , C_B . Определим точку X_P как радикальный центр окружностей (AB_AC_A) , (BC_BA_B) , (CA_CB_C) .
 - а) Докажите, что если P = H, то $X_P = M$;
 - **b)** Докажите, что если P = O, то $X_P = M$;
 - **c)** Докажите, что если P и Q изогонально сопряжены, то $X_P = X_Q$; ¹
- 3. * На сторонах AB и BC треугольника ABC выбирается пара точек P и Q, а затем рассматривается окружность ω , касающаяся сторон угла B в этих точки. Если выбрать P и Q с условием $\angle IPB = \angle IQB = 90^\circ$, то ω будет касаться стороны AC, а если с условием $\angle BIP = \angle BIQ = 90^\circ$, то окружности (ABC). Докажите, что если выбрать в качестве точек P и Q что-то "между" с условием BP = BI = BQ, то ω будет касаться окружности с центром в середине дуги ABC, проходящей через вершины A и C.
- 4. В треугольнике ABC точка P пересечение касательных к описанной окружности в точках A и C. M середина AC, а D такая точка на AC, что AD = DB. F пересечение PD и AB. Доказать, что $\angle FMC = \angle ABC$.

 $^{^{1}}$ Последний пункт нерешенный.