Segmentação de núcleos de células cervicais em exame de Papanicolau

Paulo Henrique Calaes Oliveira

Orientadora: Andrea G. C. Bianchi

Agenda

- 1. Introdução
- 2. Objetivos
- 3. Bases de Dados
- 4. Método Proposto
- 5. Testes
- 6. Resultados
- 7. Conclusão

1. Câncer Cervical

- Terceira maior causa de mortes relacionadas à câncer em mulheres;
- Acima de 527,600 casos de câncer anualmente;
- 265,700 mortes em 2012

 100% chance de cura se diagnosticado prematuramente

1. Câncer Cervical: Diagnóstico

1. Câncer Cervical: Diagnóstico

Exame em meio líquido X Exame Convencional

1. Câncer Cervical: Diagnóstico

- Milhões de testes são realizados anualmente
- Os exames são feitos de forma manual e tem uma taxa de erro de 5% a 55%

Por que não criar uma ferramenta de auxílio ao diagnóstico?

 Proposta de um método de segmentação de núcleos de células cervicais

- Proposta de um método de segmentação de núcleos de células cervicais
- Comparação do método com o estado da arte

- Proposta de um método de segmentação de núcleos de células cervicais
- Comparação do método com o estado da arte
- Base de dados de imagens reais

Importância da segmentação dos núcleos:

- Relação Núcleo / Citoplasma
- Tamanho
- Granulometria
- Pigmentação
- Forma

3. Bases de Dados

- Herlev
- Hacettepe
- ISBI 2014

3. Bases de Dados: Herlev

- 917 imagens
- 7 classes

Desvantagem: Uma célula por imagem.

3. Bases de Dados: Hacettepe

82 imagens

Desvantagem: Não é pública

3. Bases de Dados: ISBI 2014

 First Challenge of Overlapping Cervical Cell Segmentation at International Symposium on Biomedical Imaging(ISBI)

Desvantagens: Imagens simuladas

Não trata classificação

Trabalhos Relacionados

Trabalho	Base de dados	Precision %	Recall	F-value	
Kale & Aksoy 2010	Herlev/Hacettepe	86,36	92,61	89,37	
Gençtav, Aksoy & Onder 2012	Herlev/Hacettepe	74,71	93,53	83,06	
Nosrati 2014	ISBI 2014	90,30	89,30	89,79	
Ushizima et al 2014	ISBI 2014	95,90	89,50	92,58	
Nosrati 2015	ISBI 2014	-	-	99,00	

HOG Features + Random Forest

3. Bases de Dados

- ISBI 2014
- Herlev
- Hacettepe
- Base de Imagens Reais

4. Método Proposto

Pré-Processamento

- Simple Linear Iterative Clustering (SLIC)
- Density Based Spatial Clustering of Applications with Noise(DBSCAN)

SLIC

- Uma adaptação do K-means para a geração de superpixels
- Distância de Cor + Distância Espacial

K-means

SLIC

DBSCAN

Usado para agrupar regiões similares

4. Método Proposto

Avaliação da Solução

Heurística CIA

(Circularidade, Intensidade e Área)

$$circularidade = \frac{4\pi Area}{Perimetro^2}$$

Heurística CIA

```
input: superpixel as s
if s.Intensity > maxIntensity then
return false;
else if s.Area < minArea or s.Area > maxArea then
return false;
else if s.Circularity > minCircularity or s.Circularity > maxCircularity then
return false;
else
return true;
```

Se o superpixel satisfaz todos os critérios ele é classificado como núcleo, caso contrário, é descartado.

Calibração dos Parâmetros da Heurística

- Algoritmo baseado em NSGA-II
- Cada indivíduo tem os seguintes 5 parâmetros:
 - Intensidade máxima
 - Área mínima
 - Área máxima
 - Circularidade mínima
 - Circularidade máxima

Objetivos

Maximizar taxa de TP

Minimizar taxa de FP

Calibração dos Parâmetros da Heurística

- 1. Gera população inicial (*n* indivíduos)
 - a. Avalia indivíduos
 - b. Cruzamento
 - c. Mutação
 - d. Avalia População
 - e. Seleciona nova população
- 2. Repete a-e

Cruzamento

Mutação

Max Intensity	Min Area		Min Circularity	Max Circularity
10	20	500	0.8	1.2

Probabilidade de mutação: X %, faz mutação?

Sim	Não	Sim	Sim	Não
12	20	530	0.85	1.2

- Intensidade máxima, $\delta \in [-5, 5]$;
- Área mínima, $\delta \in [-5, 5]$;
- Área máxima, δ ∈ [-5, 5];
- Circularidade mínima, $\delta \in [-0.1, 0.1]$;
- Circularidade máxima, $\delta \in [-0.1, 0.1]$.

Avalia Soluções: Fronteira Pareto

Segmentação dos Núcleos

Experimentos e Resultados

Testes de Calibração(isbi train 45)

Imagens: 45

Núcleos: 236

40 imagens -> Treino 5 imagens -> Teste

População: 20

Gerações:50

% cruzamento: 50%

% mutação: 30%

Fronteira Pareto(isbi_train_45)

Fronteira Pareto(isbi_train_45)

i	Intensity	Minimum Area	Maximum Area	Minimum Circularity	Maximum Circularity	TP	FN	FP
1	140	95	919	0,67	1,31	206	30	0
2	136	92	920	0,6073	1,26	209	27	6
3	153	63	626	0,55	1,49	215	21	96
4	140	95	1359	0,6073	1,49	211	25	12
5	140	95	626	0,5422	1,49	212	24	22
6	153	95	626	0,55	1,49	214	22	52
7	153	95	626	0,6073	1,3	213	23	42
8	136	95	626	0,5422	1,49	210	26	9
9	153	98	625	0,4651	1,25	217	19	182
10	153	92	626	0,476	1,26	216	20	172
11	153	63	626	0,4651	1,3	218	18	243

Testes CIA(isbi_train_45)

6.Resultados (isbi_train_45)

Metodo	Daniela et al.(2014)*	Método proposto
ТР	23	29
FP	0	0
FN	11	5
% Recall	67,65	85,29
% Precision	100,00	100,00
% F-Value	80,70	92,06

Recall - 17,64% 1 F-Value - 11,36% 1

^{*}First Place in ISBI Challenge

Testes de Calibração(isbi train 90)

Imagens: 90

Núcleos: 472

80 imagens -> Treino 10 imagens -> Teste

População: 20

Gerações:50

% cruzamento: 50%

% mutação: 30%

Fronteira Pareto(isbi_train_90)

i	Intensity	Minimum Area	Maximum Area	Minimum Circularity	Maximum Circularity	TP	FN	FP
1	139	45	914	0,3756	1,2200	433	39	0
2	142	57	914	0,3756	1,4000	439	33	7
3	142	46	906	0,3544	1,2200	440	32	21
4	144	15	913	0,3648	1,3990	442	30	74

Testes CIA(isbi_train_90)

6.Resultados (isbi_train_90)

Metodo	Daniela et al.(2014)*	Método proposto
TP	40	66
FP	0	0
FN	28	2
% Recall	58,82	97,06
% Precision	100,00	100,00
% F-Value	74,07	98,51

Recall - 38,24% 1 F-Value - 24,44% 1

^{*}First Place in ISBI Challenge

- Base de imagens foi cedida pelo NUPEB UFOP
- 400 imagens reais
- 11.480 núcleos
- 6 classes
 - Normais 6792
 - ASC-US 627
 - LSIL 1336
 - o ASC-H 915
 - HSIL 1687
 - o Carcinoma 123

www.cricdatabase.com.br

Testes de Calibração(CRIC Database)

Imagens: 22

Núcleos: 831

22 imagens -> Treino 2 imagens -> Teste

Gerações:30

% cruzamento: 50%

% mutação: 30%

Elementos da Fronteira Pareto(CRIC Database)

i	Intensity	Minimum Area	Maximum Area	Minimum Circularity	Maximum Circularity	TP	FN	FP
1	168	253	1451	0,4173	1,2800	544	287	1286
2	184	253	1341	0,4173	1,1455	551	280	1370
3	184	253	1455	0,4173	1,2800	563	268	1393
4	182	217	1450	0,4441	1,1000	566	265	1449
5	185	217	1455	0,4441	1,1000	569	262	1476
6	187	216	1451	0,4441	1,2800	571	260	1503
7	187	214	1451	0,4441	1,2287	573	258	1517
8	189	216	1451	0,4441	1,2800	574	257	1524
9	189	212	1346	0,4441	1,1503	575	256	1533
10	189	214	1451	0,4441	1,2287	576	255	1538
11	189	212	1451	0,4441	1,2800	580	251	1550
12	184	216	1455	0,4173	1,2800	601	230	1627

Testes CIA(CRIC Database)

6.Resultados (CRIC Database)

Medida	Valor
TP	29
FP	114
FN	10
% Recall	74,36
% Precision	20,28
% F-Value	31,87

7. Conclusão

- Método eficiente para segmentar núcleos em imagens sintéticas
- Uma nova base de imagens reais e uma ferramenta colaborativa para criação da base
- Uso de algoritmos genéticos

Desvantagens:

- tempo de execução
- imagens reais

Futuro

- Avaliar outros parâmetros que possam ser relevante e adicionados a heurística
- Investigar o funcionamento do algoritmo na base de imagens reais
- Acrescentar funcionalidades na ferramenta criada para gerar a base de imagens

Agradecimentos

