CDD Lab 2 Timing Report

Atomic		Mutex	Synchronised		
	Speed(ms)		Speed(ms)		Speed(ms)
Run 1	2510	Run 1	2516	Run 1	2516
Run 2	2507	Run 2	2513	Run 2	2518
Run 3	2516	Run 3	2517	Run 3	2514
Run 4	2515	Run 4	2512	Run 4	2511
Run 5	2507	Run 5	2518	Run 5	2516
Average	2511	Average	2515.2	Average	2515
Slowest	2516	Slowest	2518	Slowest	2518
Fastest	2507	Fastest	2512	Fastest	2511

What can be observed from the average speeds is that the Atomic variable solution offered the fastest average elapsed time of 2511 milliseconds, while both the Mutex variable and synchronised method solutions displayed almost identical average speeds of 2515.2 milliseconds and 2515 milliseconds respectively.

For the slowest speeds, both the Mutex variable and synchronised method solutions came out to have the same slowest speed of 2518 milliseconds compared to the Atomic solution's slowest speed of 2516 milliseconds.

As for the fastest speeds, the Atomic variable solution came on top with an elapsed time of 2507 milliseconds followed by the synchronised solution with 2511 milliseconds, and finally the slowest of the fastest speeds being displayed by the Mutex solution with 2512 milliseconds.

To conclude from the small set of recorded runs that was gathered, the Atomic variable solution is the better option as it held the best numbers in all categories, however it should be noted that both the Mutex and synchronised solutions displayed practically identical speeds to each other.