MATH SSE, SESE SOLVED MCQ,S PART 2 OF 3

Prepared by: Babar Joya

Like This Page For More Study Material

http://www.facebook.com/techwithease **Any Question???**

Ask Me at http://www.facebook.com/babarjoyaofficial Like http://www.facebox

Chapter-3 INEQUALITY

An inequality, or inequation is a statement which involves one of the sign below:

- Less than
- 1 ess than or equal to
- · Greater than
- circuter than or equal to

comples

The set of all solutions of an inequality is called the solution set of the inequality. For example the solution of x + 3 > 5 is the set of all real numbers greater than 2.

Note:

Equivalent Inequalities have the same sulution set.

Representation of Inequality on number line:

Inequalities such as $x \ge 3$ or $x \le 3$ can be represented on number line.

In following number line a circle "shows that x is included and a rectangle "O" shows that it is not

Note:

1. Any quantity x is said to be greater than another quantity y when (x - y) is positive.

e ample:

If x = 2 and y = -3, thus x > y because 2 - (-3) = 5 or positive.

2. y is said to be less than x when y - x is negative.

ample:

If x = 2 and y = -3, then y < x because -3 - 2 = -5 or negative.

Properties of Inequalities:

We apply the following properties to solve in-equalities.

1. An inequality will still hold after each side has been increased, decreased multiplied or divided by the same positive quantity

For example:
$$x + z > y$$

 $x + z > y + z$;
 $x - z > y - z$;
 $xz > yz$;
 $xz > yz$;
 $xz > yz$;

2. In an un-equality any term may be transposed from one side to the other if its sign be changed

If
$$x-y > z$$

$$x > z + y$$

3. If the sides of an inequality is transposed, then the sign of inequality is reversed

Example: If
$$x > y$$
, then evidently $y < x$

4. If both sides of the inequality are multiplied or divided by a negative number, then direction of the inequalities sign is reversed

Example: If
$$x > y$$
, then $-x < y$ and $\therefore -xz < yz$

5. The square of real quantity is positive, therefore it is greater than zero.

Therefore
$$(x - y)^2$$
 is always positive

$$\therefore (x - y)^2 > 0$$

$$\therefore (x-y)^2 > 0$$

$$\therefore x^2 + y^2 > 2xy$$

6. If x and y are two positive quantities, then their arithmetic mean $\left(\frac{x+y}{2}\right)$ is greater than their geometric mean $\left(\sqrt{xy}\right)$.

$$\therefore \frac{x+y}{2} > \sqrt{xy}$$

e ample:

Solve the following inequalities

(i)
$$3x - 11 < 13$$
 (ii) $\frac{-x}{2} \le 2$

lucutors' - Math Teachers' Guide

pulmetions:

$$3x - 11 < 13$$
 $3x - 11 = 11 < 13 + 11$ (using property 1)

 $3x < 24$
 $3x < 24$

(using property 1)

 $3x < 8$
 $3x < 8$
 $3x < 20$
 $3x < 8$
 $3x < 8$

 $\geq 4 \times -1$ (using property 4)

comple: Find the greatest possible value of x, when the arithmetic mean of 5, 7

and a so less than 24.

Solution:

The arithmetic mean of three numbers 5, 7 and x is

The prime condition
$$\frac{5+7+x}{3}$$
 < 24

By given condition
$$\frac{5+7+x}{3} < 24$$

Now $\frac{(5+7+x)}{3} \times 3 < 24 \times 3$ (using property 1)

 $12+x < 72$
 $12+x-12 = 72-12$ (using property 1)

 $x < 60$

Thus the greatest possible value of x is 59.

$$12+x-12$$
 72 - 12 (using property 1)

$$\frac{x}{4}-4 > \frac{3}{4}$$

$$\frac{x}{4} - 4 > \frac{x}{5}$$

(C)	$\frac{1}{b} > a$	(D)	$\frac{1}{a} < 1$
	11	7.7	a

- If a < c and a < b, assume a ≥ 0 then which of the following statements are Q7. always true?
 - (i) b < c (ii) a < bc (iii) 2a < b + c
 - (A) only (i) only (ii) (B) only (iii) (i) and (ii) (D)
- If 6 a > 7, then Q8. a > 1 (A)
- a < 1 (C) a < -I (D) a has to be a whole number such that $0 \le a \le 10$. The solution for a < 4 and a Q9.
- ≥ 6 is: (B)
- (A) no solution (D) (C)
- If 5x > 2 and $\frac{1}{2}x \le 4$, list all the possible integral values of x? Q10.
 - (B) 4, 2, 3, 4, 5, 6, 7, 8 (A) 2, 3, 4, 5, 6 (C)
- The solution of the inequality $-1 < 5x 6 \le 4$ in whole number is Q11.
- (A) (C)
- In inequality y > 3x 2 if a > b, then which of the following statement is Q12.
 - x > 1(A) x = 1(C) x < 1(D) $x \ge 1$
- Q13. If $\frac{a}{2} 2 > \frac{a}{3}$, then which of the following statement is true?
- a > 12 (A) a < 12 (C) a = 12 (D) a > 12
- Which of the following inequalities is the solution of the inequality 7a 5 < Q14.
- 2a + 187 ? a > 13 (B) a < 23 (A) . $a \ge 13$
 - (D) (C) $a \le 23$
- For which values of p is p2-5p+6 negative? Q15. 2 < p < 3 (B) p < 0 (A) x > 3

The product of two numbers > 0 is only possible when either both numbers are positive or both are negative. Since x < 0, y must also be Q1. (C)

in this case a and b are both positive (a > 0, b > 0), but a - b is negative

- which is only possible when a < b. (A) When the lines will be extended to the right. They will make a triangle with the lines will be extended to the right. They will make a triangle is 180°. Therefore of 02.
- When the lines will be extended the triangle is 180°. Therefore, the som of and the sum of the angles of the triangle is 180°. (H) Q3. the two angles in a triangle is less than 180°. Since both inequalities have the same direction, therefore
- corresponding sides can be added. Thus, (A) Q4.

a + b - 7 a - b - 5 2a > 12

If A :- B and C < 0, then multiplication of both sides by C reverses the (0) Q5. Which implies inequality AC < BC. Also adding and subtracting in inequality, gives

A+C>B+C and CO A-C>B-C

But A - C < B - C is not possible.

- Since b is a +ve fraction less than 1, therefore b is a positive fraction (C) Q6. greater than 1. Hence
- Statements (i) and (ii) are not always true. Given 6 a > 7Q7.
- Q8. 8>1 Dividing both sides by -1. This will reverse the inequality sign a <-1
- Given set is $\{0,1,2,3,4,5,6,7,8,9,10\}$, the number a < 4 are $\{0,1,2,3\}$ and Q9. (D) the numbers $a \ge 6$ are $\{6,7,8,9,10\}$. Since there are no common elements between the last two sets. Therefore, there is no solution of the inequality.

from above the integers greater than $\frac{2}{5}$ and less than and equal to 8 1,2,3,4,5,6,7,8

Given $-1 < 5x - 6 \le 4$, first of all get rid -6 then 5 in the middle term To get rid -6, add 6 to each part

up-to-satt Educators' - Math Teachers' Guide

· 5 = 5x = 10 To get rid of 5, divide each part by 5.

only 2 is a whole number solution
only 2 is a whole number solution
Since
$$x > y$$
 and $y - 3x - 2$, this implies that
 $x > 3x - 2 \implies -2x > -2$

Dividing both sides by 2 will reverse the inequality symbol

$$\frac{-2x}{-2} < \frac{-2}{-2}$$

013. b) Given
$$\frac{a}{2} - 2 > \frac{a}{3}$$

adding $\frac{-a}{2}$ both sides of the inequality

$$\frac{a}{2} - 2 - \frac{a}{2} > \frac{a}{3} - \frac{a}{2}$$

$$-2 > \frac{-a}{6} \Rightarrow \frac{-a}{6} < -2$$

dividing both sides by -1 will reverse the inequality sign, therefore

dividing both sides by
$$-1$$
 will reve
 $a > 12$
O14. (A) $7a - 5 < 2a + 18$
 $7a - 2a < 18 + 5$
 $5a < 23$
 $\Rightarrow a < 23$
Given $n^2 - 5n + 6$. The given expression

Given $p^2 - 5p + 6$. The given expression factors into (p - 3)(p - 2). If the Q15. (B) expression is negative then the factors must have opposite signs. If (p-2)is negative and (p-3) is positive there are no such number. It is only possible when (p-3) is negative and (p-2) is positive, then p>2 and p<3. So, 2 is the correct choice.

Just them were det Bebermbers'. Math Trachers' Guide

	* 14415	uld. In surmer of	t. how old us	1 Mahan	be:	
	(A)	1 4		(33)	1 - 4	
	fari			(42)	3	
	(C)	* 1 4		(D)	x - 2	
Q10.			d of a number	r and twic	ce the same nu	mber is 28, the
	number					*
	(A)	10		(13)	12	20
	(C)	28		(D)	14	
Qtt.	A man'	s present age b	x years. If hi	is age in S	years will be	e of what is will
	be in 20	years, then his	present age is	12		XU)
	(4)	4.5		(13)	25	5
	(C)	30		(D)	46)	0
Q12.	When 4	is added to tv	rice a number			mber is:
_	(:A)	1.0-4		(B)	242	
	(6)	125		(D)	20.5	
Q13.						he is three times
-	as old a	s his daughter.	How many ye			ow?
	(A)	13 years		(B)	21 years	
	(C)	15 years		(10)	12 years	
Q14.	13 year	s ago Shabbir'	s mother was	7 times a	is old as he was	s. She is now 48
	years of	d. How many y	cars old is Sh	abbir non	17	
	(A)	28	30	(B)	18	
	(C)	38	CO.	(D)	20	
Q15.		rs are added to	a man's pres	ent age at	nd that age is to	ripled, he will be
Mier		at is his present				
	(A)	18	-0,	(B)	23	
	(C)	3.2		(D)	54	
	(-9					
		6	planatary	PASSOE	N.R.	
Q1.	(A) L	et the required r	number be 1. T	hen 1 - 5	= 2x - 7	
		Thus the co				
-	- 17	Let	x = first into			
Q2.	(C)		+2 = second			
	Acres					
			+4 = third int			
No			(x) = 3 + 2(x)			
			3x = 3 + 2x +	- 8		
Y			x = 11			
	Thir	d integer is (x +	4) = 13			
	4 4141	The same of the same	-			
				1		

$$\frac{2}{5^{x}} = 30$$

$$x = \frac{30 \times 5}{2}$$

and
$$x - 25 = y$$

$$x + y = 205$$

$$x - y = 25$$

$$x + y = 205$$

$$2x = 230$$

$$2x = 230$$

$$230 = 115 \text{ pound}$$

Q5. (A)Let the smaller number
$$= x$$

Then the larger number $= 3x$
Now $3x + x = 36$

The larger number is 36 - 9 = 27

The larger number is 30

$$p+q = 352 \text{ and } \frac{p}{10} = q \Rightarrow p = 10q$$

$$10q+q = 352 \Rightarrow 11q = 352 \Rightarrow q = 32$$

$$10q+q = 352 \Rightarrow p = 320$$

$$10q+q = 352 \Rightarrow p = 320$$

(B) 30 packers will load $30 \times \frac{1}{8}$ or $\frac{30}{8}$ boxes in 9 minutes. There are 90 Q7. minutes in $1\frac{1}{2}$ hours. So the 30 packers will load $10 \times \frac{30}{8}$ or $37\frac{1}{2}$ boxes in $1\frac{1}{2}$ hours.

Asma is one-third older or $\frac{1}{3} \times 15 = 5$ years older. Let x be the age of Uzma Q8. and x + 5 be Asma's age. When Asma was twice the age of Uzma, 2x = x + 5 or x old and Asma years was Uzma x = 5 or 10 years old, twice Uzma's age. Since Uzma is 15 years old now, Uzma was 5 years old 10 years ago.

Assume x for Mohin and y for Mohsin

x is three times y
$$\Rightarrow$$
 $x = 3y$
x in four years \Rightarrow $x = x + 4$
 \Rightarrow $x = 3y + 4$
 \Rightarrow $x - 4 = 3y$

$$\frac{x-4}{3} = y$$

Q10. (B) Let x be the required number, then
$$\frac{1}{1}x + 2x = 28$$

$$\frac{1}{3}x + 2x = 28$$

$$x + 6x = 84$$

$$7x = 84$$

$$x = 12$$

Q11. (D) Present age
$$= x$$

$$x + 8 = \frac{4}{5}(x + 20)$$

$$5x + 40 = 4x + 80$$

$$5x - 4x = 80 - 40$$

$$x = 40$$

$$2x + 42 = 346$$

$$\Rightarrow \qquad 2x = 304$$

$$x = 152$$

013. (A) Let x be the age of man and y be the age of his daughter

$$x - 26 = y$$
(1)
 $x = 3y$ (2)

Substituting the value of x in (1)

$$3y - 26 = y$$

$$2y = 26 \implies y = 13$$

$$7(x-13) = 48-13$$

$$7(x-13) = 35$$

$$x-13 = 5$$

$$x = 18$$

Q15. (B) Let x be the man's present age, then

$$3(x+5) = 84$$

$$x+5 = 28$$

$$x = 23$$

In all above figures 0 lies between 0 and 90°.

An angle whose measure is greater than 90° and less than 180° is called obtuse angle.

In all above figures θ lies between 90° and 180° .

Reflex Angle:

A reflex angle is between 180° and 360°.

e ample:

A reflex angle lies between 180° and 360° degrees.

Calculating Angles:

Angles on a straight line add up to 180°.

A straight angle is 180°. So angles on a straight line add up to 180°.

What is the average of a, b, c and d in the following figure

Solution:

In the given figure since \(\textit{PQR}\) is a straight angle. Because the angles on a straight line add up to 180°, therefore $a+b+c+d=180^{\circ}$

$$a+b+c+d=180^{\circ}$$

Average is

Angles in a full turn add upto 360%. Note:

imple 2:

Find the angle a in these diagrams.

Solution:

$$= 360^{\circ} - (60^{\circ} + 105^{\circ} + 85^{\circ})$$

$$= 360^{\circ} - 250^{\circ}$$

$$= 110^{\circ}$$

$$= 180^{\circ} - (60^{\circ} + 30^{\circ})$$

$$= 180^{\circ} - 90^{\circ}$$

$$= 90^{\circ}$$

When two straight lines intersect, they make four angles. The two opposite angles are called vertical angles. In this diagram angles a, c and b, d are vertical angles.

7 (b)

Vertically opposite angles are equal

comple 3:

Find the value of pronumerals in the following diagram, giving reasons:

Solution:

Because angles on a straight line add up to 180°, and vertically opposite angles are equal:

$$3x + x + 32 = 180^{\circ} \Rightarrow 4x = 148 \Rightarrow x = 37^{\circ}$$

$$y^{\circ} = 3x^{\circ} + x^{\circ} \Rightarrow y = 4(37^{\circ}) \Rightarrow y = 148^{\circ}$$

Again

what is the value of x in the following diagram?

Solution:

Since the vertically opposite angles are equal:

$$5x + 11 = 2(3x + 1)$$

 $5x + 11 = 6x + 2$
 $x = 9$

Parallel Lines:

Parallel lines are always the same distance apart. They never meet, even if you make them longer. Parallel lines form no angles.

corresponding angles are two angles in corresponding positions relative to the two lines and corresponding angles are also equal. A pair of equal corresponding the transversal. These corresponding angles are also equal. A pair of equal corresponding the is shown below. angles is shown below.

If two lines are both perpendicular to a third line, then the lines are parallel.

Alternatively

If a line is perpendicular to each of a pair of lines, then that pair of lines are parallel.

ultiple Choice Questions

OI. In the following figure, what is the value of x?

- 30 (A)
- 40

(D) 35

Q2. In the figure below, what is the value of x + y + z?

- 200 (A)
- 210 (C)

- 220 (B)
- 190 (D)

Q3. In the following figure, if I || m

190° Then $x^{\circ} + y^{\circ}$

- (A)
- (C)

Q4. In the following figure, what is the value of y?

- 35° Q5.
- In the figure below, if x is 130 more than y, what is the value of y?

Tayou's Chique up-to-date Educatora's Math Teachers' Guide (A) In the following figure, m || n and following statement is (are) true? Q6. x + y = 180 $180 \le x + y \le 270$ Q7. In the following figure, if I, || Is, then what is the value of p? 70 (A) (C) 40 Q8. In the above figure, AC = BC = CD and m ZACB - 80". This information is sufficient to determine the value of which of the following? y only x only (B) (A) (D) y and z only x and y only (C) In the following figure, lines I, and I2 are parallel, and line I, passes through Q9. S, one of the corners of square PQRS. What is the value of x? 50 50 (A) 30 (B)

Like http://acebook.com/technithease for more study material

In the fig below, what is the value of x?

- 20° (A)
- 100° (C)

- (B)
- 70° (D) 1100
- In the fig below, what is the value of a? Q15.

- 100° (A)
- (C) 80°

- 40°

Q1. (A) The sum of the given six angles make a straight angle, and the straight angle equal 180°. Thus

$$x^{o} + x^{o} + x^{o} + x^{o} + x^{o} + x^{o} = 180^{\circ}$$

$$\Rightarrow$$

$$6x^{\circ} = 180^{\circ}$$

$$\Rightarrow$$

$$x^{\circ} = 30^{\circ}$$

Q2. (C) In the given figure, the arc shows a straight angle, hence

 $10 + 70 + x = 180^{\circ}$ x = 100

Because opposite angles are equal, thus

$$x = z^{\circ} = 100 \Rightarrow z = 100$$

Similarly,
$$z + 70 + y = 180^{\circ}$$

$$100 + 70 + y = 180^{\circ}$$
(: $z = x = 100$)

$$(\cdot \cdot z = x = 100)$$

$$y = 10$$

Sum of the angles x + y + z = 100 + 10 +

like http://acebook.com/technithease for more study makerial

Days : Charge up to Late Educators' - Math

of (D) Since, when two straight lines intersect, the vertical angles are equal, therefore

30

Hence,

$$(m + 5) + (3m + 15) = 180 \implies 4m$$

$$(m + 5) + (3m - 160)$$

+20 = 180 \Rightarrow 4m = 160

$$m = 40$$

$$x = m+5 \Rightarrow x = 40+5 \Rightarrow x = 45$$

As,
From figure,
$$x + p = 2m + 30$$
 (: Alternative angles are equal)

From figure,
$$x + p = 2m$$

 $45 + p = 2(40) + 30 \implies 45 + p = 80 + 30 \implies 45 + p = 110$

$$\Rightarrow p = 110 - 45 \Rightarrow p = 65$$

(8. (A) Since AC = BC, we know that when two sides of a mangle are equal then their opposite angles are also equal. Hence $\angle A = \angle B$, and $\angle A = \angle B = x^{\circ}$. In any triangle, the sum of the three angles is equal to 180.

triangle, the sum of all
$$0$$
 and 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 are 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0

y and e are not necessarily equal, therefore, we cannot determine y and z. The answer is x only.

$$x+y+50 = 180$$

$$x+90+50=180$$

(:: Alternative angles are equal)

$$x + 140 = 180 \implies x = 40$$

$$p+q+r+s+50+50=360$$

$$\Rightarrow p+q+r+s=260$$

The Unique up-to-date Educators' - Math Teachers'

Average =
$$\frac{p+q+r+s}{4} = \frac{260}{4} = 65$$

Q12. (E) Since vertical angles are equal,

here, p+q=155. We see that b=65, a = 25, and so and there is no other vertical angle.

So it is impossible to determine p and q from the given information.

(C) Q13.

Through point L, draw ML parallel to RS and PQ.

$$\angle c = \angle MLU + \angle MLT$$
 $\angle MLU = \angle LUS = 180^{\circ} - 140^{\circ} = 40^{\circ}$
 $\angle MLT = \angle LTQ = 60^{\circ}$

$$\angle MLT = \angle LTQ = 60^{\circ}$$

ZMLT = ZL1Q

Then
$$\angle c = 60^{\circ} + 40^{\circ} = 100^{\circ}$$

Then
$$\angle c = 60^{\circ} + 40^{\circ} = 100^{\circ}$$

Q14. (B) Since $x + 90 + 20 = 180$, Therefore

$$x = 70^\circ$$

 $x = 70^{\circ}$ Since, vertical opposite angles are equal, therefore $\angle b = 80^{\circ}$. Again because alternative angles are equal. Therefore, $\angle a = \angle b$ Q15.

$$\Rightarrow$$
 $\angle a = 80^{\circ}$

CHAPTER 1 NUMBER SYSTEM

MULTIPLE CHOICE QUESTIONS

Each question has four possible answers. Choose the correct answer and encircle it. Real Numbers

Topic 1 A real number system contains a. positive numbers b. negative numbers Q.1. d. (option a, b and c) c. zero For each real number, there is a number which is its 0.2. b. positive a. negative d. similar c. opposite Rational number is a number which can be written as a terminating 0.3. decimal fraction or a a. non-terminating decimal fraction b. non-recurring c. recurring decimal fraction a, b and c The set of rational number is represented by 0.4. a. W Union of the sets of rational and irrational numbers is called the set of Q.5. b. Real numbers a. Natural numbers Prime numbers c. Whole numbers There is no element common in Q.6. b. E and W a. N and W d. Q and Q' c. N and O $\sqrt{11}$ is Q.7. b. Rational number a. an Irrational number d. Negative number The decimal fraction in which we have finite number of digits in its decimal c. Odd number Q.8. part is called a b. non terminating fraction a. recurring decimal fraction d. terminating decimal fraction c. non recurring fraction The square root of every incomplete square is an Q.9. b. Even numbers a. Rational numbers d. Irrational numbers c. Odd numbers Q.10, JB is b. Prime number a. Irrational number d. Natural number c. Whole number

The negative agence root of 9 can be written on Ha and b are real numbers then at h is also real number this law is rulled a associative law of addition to chomics how of addition e distributive law of addition of communities law of addition The identity element with respect to anhtraction is A. 0 e 0 and 1 None of these Wan R, then the additive inverse of a in Q.26. $\frac{3}{9}$, $\frac{3}{7}$ $\approx R$, $\left(\frac{2}{9}\right)\left(\frac{3}{7}\right) = \frac{10}{63}$ $\approx R$ this property is called a. associative property b. identity property c. commutative property d. closure property w.r.t multiplication 3.5 + 5.4 = 5.4 + 3.5 = 8.9 this property of addition is called b. associative property a. additive identity d closure property c. commutative property $\sqrt{2}+(\sqrt{3}+\sqrt{5})=(\sqrt{2}+\sqrt{3})+\sqrt{5}$; this property is called 0.28. a. associative property w.r.t. addition b. commutative property c. closure property w.r.t addition d. additive identity 0.29. For any two real numbers x and y, x+y is equal to

d. option a and b

The set of positive integers, 0 and negative integers is known as the set of 0.30.

a. Natural numbers

b. Rational numbers

c. all integers

d. Irrational numbers

There exist no rational number x, such that

a. $x^2 = 4$

b. x = 9

$$c. x^2 = 2$$
If P is a

d.
$$x^{1} = \frac{1}{49}$$

- Q.32. If P is a whole number greater than 1, which has only P and 1 are factors. Then P is called
 - a. Whole number

b. Prime number

c. Even numbers

d. Odd number

- 0.33, 14 is not a
 - a. Prime number

b. Whole number d. Real number

- Q.34. Any whole number can be written as a product of factors which are b. Odd numbers
 - a. Even numbers

- d. Rational numbres
- c. Prime numbers Q.35. 24 can be written as a product of
 - a. Odd factors

b. Even factors

- d. Prime factors
- Which of the following, has closure property w.r.t. addition Q.36.
 - a. {1}

c. {0}

- If 4+16x = 0, then x =Q.37.
 - a. 4

- Q.38. If a < b, and b < c, then
 - a. a > b

- b. a < c d. c < b
- c. a = c Q.39. If a s b, and b s a, then
 - a. a = b

b. b≥a

c. a > b

- d. a < b
- Q.40. If a < b, and c > 0, then
 - a. ac bc

b. ac = 0

c. ac < bc

- d. ac > bc
- Q.41. If a < b, and $c \le d$, then
 - a. a+c <b+d

b. a+c > b+d

c. a+c=b+d

d. a+c ≥ b+d

- 42. If 0< a < b, then
 - a. b=0

b. a+b=0

c. 1>1

$$ab$$
. $ya < b < 0$, then
$$ab = \frac{1}{b}$$

b.
$$\frac{1}{a} < \frac{1}{b}$$

$$d, \ \frac{1}{n} \leq \frac{1}{b}$$

Q44. If a < b, and c < 0, then

Q.45. For any a e R

8.
$$a^2 > 0$$

c. $a^2 \le 0$

$$d,\ a^2 \geq 0$$

Q.46. If a and b are any real numbers, then

b.
$$|a+b| \ge |a| + |b|$$

d. $|a+b| \le |a| + |b|$

c. |a+b| = |a| + |b|

$$d. |a+b| \le |a| + |b|$$

Q.47. If a and b are any real numbers, then

b.
$$|a-b| < |a| - |b|$$

d. $|a-b| > |a| - |b|$

c.
$$|a-b| \ge |a| - |b|$$

$$d. |a-b| > |a| - |b|$$

Q.48. If a is an element of R, and a=a, this property is called

a. Symmetric property

b. Trichotomy property

c. Transitive property

d. Reflexive property

Q.49. If $a, b, c \in R$ and $a = b \land b = c \Rightarrow a = c$

This property is called

a. Reflexive property

b. Additive property

c. Transitive property

d. Symmetric property

0.50. For all $a, b, c \in R$ and $a = b \Rightarrow ac = bc \land ca = cb$. This property is called

a. Multiplicative inverse

b. Symmetric property

c. Multiplicative property

d. Identity element

Q.51. For all $a,b \in R$, and $a = b \Rightarrow b = a$, this property is called

a. Reflexive property

b. Multiplicative property

c. Additive property

d. Symmetric property

For all $a, b, c \in R$ and $a = b \Rightarrow a+c = b+c$

The name of this property is

b. Symmetric property

a. Transitive property c. Additive property

d. Cancellation property w.r.t addition

0.33. For all $a, b, c \in R$ $a+c = b+c \Rightarrow a = b$,

ainme inverse of a complex number multiplicative nientity of a complex number militaine inverse of a complex number is minuted attentity of a complex number magnificative identity for the set of a complex number is e inverse of a complex number (a, b) is b. (a, -b) of a complex number b. (-a, b) 15, -15, -16, and 1, -16, +1 b2, then 2,+2,b. (a, +a, b, +b,)
d. (a, a, b, h,) 161 Created with ScanWritr. To remove this watermark please use the upgrade options.

- Q.75. If $z_1 = x_1 + iy_1$, and $z_2 = x_2 + iy_2$, then $z_1 z_2 =$

 - a. $(x_1x_2-y_1y_2, x_1y_2+y_1x_2)$ b. $(x_1y_1-x_2y_2, x_1y_2+y_1x_2)$

 - c. (x_1+x_2, y_1+y_2) d. $(x_1y_2-y_1x_2, x_1y_2+y_2x_2)$
- Q.76. If z = x+iy = (x, y), $\forall x, y>0$, then Arg z will be
 - a. in first qudrant

- b. in second quadrant
- c. in fourth quadrant
- d. in third quadrant
- Q.77. If z = x iy = (x, -y), $\forall x > 0$, y > 0, then Arg z will be
 - b. in second quadrant

a. in first quadrant c. in third quadrant

- d. in fourth quadrant
- Q.78. If z = -x iy = (-x, -y), $\forall x > 0 y > 0$, then Arg z will be
 - b. in second quadrant
 - a. in first quadrant c. in third quadrant

- d. in fourth quadrant
- Q.79. $\forall x>0$, y>0, if z=(-x,y), and Arg z, is in second quadrant then Arg z=b. $\pi - \tan^{-1} \frac{y}{x}$ d. $\pi - \tan^{-1} \frac{x}{x}$
 - a. $-\pi \tan^{-1}$

c. $-\pi + \tan^{-1} \frac{y}{x}$

- Q.80. $\forall x, y > 0$, if z = (x, y), then Arg z =
 - a. π+ tan-1 y

b. π- tan-

c. tan y

- Q.81. $\forall x, y < 0$, if z = (-x, -y), then Arg z =
 - a. $-\pi + \tan^{-1} y$

b. $-\pi - \tan^{-1} \underline{y}$

- d. $tan^{-1} \frac{x}{x}$
- Q.82. $\forall x, y > 0$, if z = (-x, y), then Arg z = a. $-\pi \tan^{-1} \frac{y}{x}$ b. π
 c. $\pi + \tan^{-1} \frac{y}{x}$ d. $-\pi + \tan^{-1} \frac{y}{x}$

b. $\pi - \tan^{-1} \frac{y}{x}$

- d. $-\pi + \tan^{-1} \frac{y}{r}$
- Q.83. x, y > 0, if z = (x, -y), then Arg z = a.

 a. $-\tan^{-1} \frac{y}{x}$ b.

 c. $\pi \tan^{-1} \frac{y}{x}$ d.

b. $tan^{-1} x$

$$d. -\frac{\pi}{2}$$

d.
$$-\frac{\pi}{2}$$

o. $\frac{\pi}{2}$

a. d.
$$-\pi$$
c. $-\frac{\pi}{2}$
them $x>0$ then $Arg z$

$$0. -\frac{\pi}{2}$$

$$1 = (x, 0) \in OX, \text{ where } x>0, \text{ then } Arg z = 0.$$

$$0. -\pi$$

$$0. -\pi$$

$$0. -\pi$$

c. 0 (n. v)
$$\in OY$$
, where $y>0$, then Arg $z=$

0.88. If
$$z = x + iy$$
, then $\overline{z} = b$. $x^2 - y^2$

$$\sqrt{x^2 + y^2}$$
 d. $x - t$

0.89. If
$$z = -x + iy$$
, then $\overline{z} = b$. $x - i$

$$-x-iy$$
 d. $x+$

0.90.
$$\sqrt{-1} b = b$$

$$d. -ib$$

0.91.
$$\sqrt{-5} = b. i^5$$

$$d. i^2 5$$

CHAPTER 2

SET, FUNCTIONS & GROUPS

MULTIPLE CHOICE QUESTIONS

Each question has four possible answers. Choose the correct answer and encircle it. Bacis of Sets

Topic 1

Which of the following statement is true?

a A set is a collection of non-empty objects

b. A set is a collection of only numbers

c. A set is any collection of things d. A set is well-defined collection of objects

If $T = \{2,4,6,8,10,12\}$, then B. T = {First six natural numbers}

b. T = {First six odd numbers}

c. T = {First six real numbers}

d. T = {First six even numbers}

Which of the following is the definition of Singleton

a. The objects in a set

b. A set having no element

c. A set having no subset

d. None of these

If $S = \{3, 6, 9, 12, \dots, \}$, then

a. S = Four multiples of 3

b. S = Set of even numbers

c. S=Set of prime numbers

If $P = \{x | x = P/q, \text{ where } p, q \in Z \text{ and } q \neq 0\}$, then P is the set of

a. Irrational numbers

c. Rational numbers

d. Whole numbers

A = B iff

a. All elements of A also the elements of B

b, A and B shoud be singleton

c. A and B have the same number of elements

d. If both have the same elements

The set of months in a year beginning with S.

a. (September, October, November)

b. Singleton set

District Charles of	d. Empty set
Lynn .	b. P is an element of A
11.501	d. A does not element of P
will sol	d. A does not cond B. then we
Persubset of A	dence between A and I we wri
Q.8. p is subset belongs to	d. A does not element of P dence between A and B, then we write b. $A \subseteq B$ d. $A \cap B$
c. I one one	d. A B
0.9. If the B	d x<5} is a
Q.9. If there is the grant of the property of	b. Tabular method
Exex is a position	b. Tabular included and the d. Set of natural number
Q.10. $A = fx:x$ is a positive method a. Descriptive method c. Set-builder method c. Set-builder method d.11. If $A = fx x \in Q \land 0 < x < f$ a. Infinite set a. Infinite set	whe A is
Set-builder mo o < x <	b. Finite set
$If A = \{x x \in \mathcal{L}$	d. Set of real numbers
Q.11. If A infinite set a infinite set	
- FALLOIT	· C - ito CPI
C-091	numbers d. Not subset of every set
Q.12. Emply the member of feat	
c. Finite set Every set is an improper	b. Equivalent set
2 13 Every set is an unp	d. Singleton set
Q.13. Every set a. Empty set	d. Singictor
a. Empty set c. itself c. itself $Q.14.$ If $B = \{x x \in R \land 0 < x\}$ Singleton set	≥ 1 }, then B is
$If B = \{x x \in R \land 0$	b. Null set
Q.14. a. Singleton set	d. Finite set
c. Infinite set	
end in the	b. Singleton set
Q.15. [0] is a a a. Empty set	d. Null set
c. Zero set	C
	. Tinito get
Q.16. Z is a	b. Finite set
a. Infinite set	d. Set of all integers
c. Singleton set	integer and $4x<23$, then $A=$
Q.17. If $A = \{x x \text{ is a positive} \}$	we integer and $4x<23$, then $A=$ b. $\{4,5,6,,22\}$
a. {1,2,3,4,5,6,7}	d. {1,2,3,4,5}
c f1 2 323}	
Q.18. If $A = \{3n \mid n \in \mathbb{Z}^+ \land$	$n < 6$ }, then A is
a. {3,4,5,6}	0. 11,2,0,1,1,0,1
	d. (3,6,9,12,15)
c. {3,4,5}	

```
p^{19}. If C = \{p \mid p < 18, p \text{ is a prime number}\}, then C = \{1, 2, 3, 4, \dots, 17\}
      B. {1,2,3,4.....17}
                                  b. {2,4,6,8......16}
      a. {1,3,5,7,9,11,13,15,17}
c. {1,3,5,7,9,11,13,15,17}
a. {2,3,4,5,6,7,8}
                                             b. {2,4,6,8}
Q21. If B = \{x | x \in \mathbb{Z} \land -3 < x < 6\}, then n(B) =
                                            d. {2,3,5,7}
                                             b. \{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6\}
                                             d. 9
0.22. If 0 = \{1, 3, 5, \dots, \}, then n(0) =
                                             b. Odd integer
      a. 99
      c. Even numbers
                                             d. Infinite
Q.23. If A = \{2m | m^3 = 8, m \in \mathbb{Z}\}, Then A =
                                             b. 143
      a. {1,8,27}
                                             d. (2,16,54)
      c. {2,4,6}
0.24. If C = \{x | 3x = 5, x \in N \}, then C =
      a. {1}
Q.25. If A = \{x | x \in Z^+ \land \sqrt{x} \le 2\}, then A = \{1,3,4\}
b.
                                            b. {4,9,16}
                                            d. { }
      c. {1,2,3,4}
0.26. If A & B, and B is a finite set, then
      a. n(A) < n(B)
                                            b. n(B) < n(A)
      c. n(A) \le n(B)
                                            d. n(A) \ge n(B)
0.27. The set of even prime numbers is
      a. {2,4,6,8,10}
                                            b. {2,4,6,8,10,12}
      c. {1,3,5,7,9}
                                            d. {2}
     If Q = \{x | x = \frac{1}{n}, y \in N\}, then
      a. 2 ∈ O
                                           b. 1 ∈ Q
     c. 3 ∈ Q
                                            d. 0 ∈ Q
Q.29. If D = \{a\}, then P(D) =
     a. {a}
```

b. 0

100		
100	Every subset of a finite so a Disjoint	et is
n.H.	a Disjoint	b. Null
V.	c. Finite	d. Infinite
	or of the same element	but in different orders are b. Equivalent set
0.42	a. Equal set	
	p. Le cost	d. Complement set
	and a number of elements	of the power set of {{a,b}, {b,c}, {d,e}} is
2.43.		b. 6
	a	d. 9
	c. 8 The number of elements	of power set of { } are
0.44.		b. 2
	8. 1	d. 3
	All possible subsets of {{	633 are
0.45.	All possible subsets of th	b. {{φ}}, {φ}, φ
2	a. { \$ 3	
	c. {\phi, \phi} , \phi	d. {{φ} {φ}}
0.16	The set of rational numi	ber between 3 and 9 is
Q.46.	a. Infinite set	b. Finite set
	c. Countable set	d. Empty set
	(n) is equivalent	to the set
Q.47.		b. {\phi}
	a. 0	d. {0, \phi}
	c. ¢	ments of a set A, the number of elements of P(A) is
Q.48.		b. 2k
	a. k ² c. 2 ^k	d. (k+2) ²
0.40	$A = \{x x \in Z \text{ and } 9 < 4x\}$	≤ 33 }, then $A =$
Q.49.	a. {1,2,333}	b. {10,11,1233}
	c. {4,8,16,32}	d. {3,4,5,6,7,8}
0.50	If A is proper subset of	
0,50.		b. A ⊂ B
	a. A B	$d. B \subset A$
	c. A⊆B	0) 4L 4 has
	If $A = \{x x \in \mathbb{N}, 7 < x < 0\}$	b. No proper subset
	a. Two elements	d. Only one element
	c. No emepty set	
2.52,	{1,2,3} and {1, 1, 1,	1} are
	2 2	

	a. Equal sets	
	c. Equivalent sets	b. Additive inverse
		d D subset
0	Topic 2 Oper	ations on Three Set
Q.53.	If set A = E and	
	If set $A = E$ and set $B = O$, the	n AUB = ?
	c. O	b. E
Q.54.		d. N
-	If set $A = N$ and set $B = E$, the	$en\ A\cap B=?$
	14	b. Q d. ϕ $T = 7$
0	c, B	d. φ
Q.55.	If set S = E and set T = O, the	$nS\cap T=?$
	a. N	b. E
-	c. O	d. \$
Q.56.	If $A = \{1, 2, 3, \dots, 10\}$ and $B = \{2, 4, \dots, 10\}$	6 10], then A-B=!
	a, {1,3,5,7,9}	D. 11,2,2,1,1,1,1
4	c. {1,210}	d. {2,4,6,8,10}
Q.57.	If set $A = Q$ and set $B = Q'$, the	en AUB = ?
	a. N	b. Q
	c. Q'	d. R
Q.58.	Symbolically, we can write A	b. $\{x:x \notin A \land x \notin B\}$
	a. $\{x: x \in A \lor x \in B\}$	d. $\{x:x \in A \land x \in B\}$
0.50	c. $\{x x \in A \land x \notin B\}$ Symbolically, we can write A -	
Q.59.	a. $\{x:x \in A \land x \notin B\}$	b. $\{x:x\in A\lor x\in B\}$
	c. $\{x: x \in A \land x \in B\}$	d. $\{x x \notin A \land x \notin B\}$
Q.60.	We can write B-A, symbolical	
2.00.	a. $\{x:x\in A \land x\in B\}$	b. $\{x x \in A \land x \notin B\}$
	c. $\{x: x \notin A \land x \in B\}$	d. $\{x x \notin A \land x \notin B\}$
Q.61.	To find the complement of set	A, which set is necessary?
	a. Natural number	b. Whole number
	c. Universal	d. Set B
Q. 62.	For any two sets A and B, B \(\cappa\)	A = 2
	a. BUA	b. AUB
	c. B-A	
062		d. A∩B
Q.63.	For any two sets A and B, (AU	(B)'=?
	a. A'UB'	b. A'∩B'
	c. (A\OB)'	d. (A-B)

This Daigue up to date Educators' - Math Toachers' Guide

100	Total Control										
		- water	A and	B. A 11	H = ?						
	For any In	di una	44 41.55		b (AUIN					
0.04	Far any m				11.1	Alim					
	e. (AUB)		Fle	. JC\/H	1000-0	ACLENI	142				
	Name the P	A select de	MANGET IF	e af un	Dan.	#1 (M)	1.5				
3,63.	" Comme	****	. Carrier	PL FILME	ATTENT BEAT	Tiens					
	P. Districe		www.tv	of inter	encusties:						
	a Announ		accessort!	west int	expectly.	111					
	d.Commu		erty un	ed in A	CHENT	C)-(A	(HI)U(ALIC		6.	3
2.66.	Name the	by ofer	operty	ofune	111					XV)	
3.00	a. Associa	talive	proper	ty of m	nion					2	
	b. Commu	itivity	of inter	raction	Lover i	mion			40		
	d. Distribu	ativity	of unit	n over	interse	ction	I Indiana	-val va	0		. 9
	ACC. 1 49 05 17 F	wo set	s A and	is, an	u ter ti	14'	Chive	raut ago	Kinnn i	.,-,,,	
2.67.	a. B				15	1		9			
	For any s	. 4 4	and Un	iversal	set U.	AUA	= 7	(0)			
- 218	For any 8	EE	*****		ls.	A	0				
2.05-											
0.68-	а. ф.				d.	Ü	25				
	а. ф.				set U.	XID	507				
	a. o. A' For any s				set U.		507				
	a. o. A' For any s	et X a	nd Uni	versal	set U.	XID					
Q.69.	a. o. A' For any s a. U c. X' If A = B	et X a		versal	set U.	A D	4 CS				
Q.68. Q.69. Q.70.	a. o. A' For any s a. U c. X' If A = B a. A = B	et X a	nd Uni	versal	set U,	A D					
Q.69.	a. o. A' For any s a. U c. X' If A = B	et X a	nd Uni	versal	set U,	A D					
Q.69.	a. o. A' For any s a. U c. X' If A = B a. A = B	et X a	nd Uni	versal	set U,	B = d	4.	d	5.	6	
Q.69.	a. ϕ c. A For any s a. X If $A = B$ c. $A = \phi$	and i	nd Uni	versal	NSV	B B C	4.	d	5.	6	
Q.69.	a. o. A' For any s a. U c. X' If A = B a. A = B	and d	2. 7.	then	NSV 3.	B B C VERS	4.	d	5. 10.	-	
Q.69.	a. \$\phi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	d d	nd Uni	then	NSV 3. 8. 13.	BB-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	4. 9. 14.			C	
Q.69.	a. ϕ c. A For any s a. X If $A = B$ c. $A = \phi$	and a	2. 7. 12.	then	3. 8. 13. 18.	BB-0VERS	4.	c	15.	C	
Q.69.	a. \$\phi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	d d	2. 7.	then	3. 18. 18. 23.	BB-6VERS	4. 9. 14. 19.	d	15. 20.	b 0	
Q.69.	a. \$\phi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	and a	2. 7. 12.	then	3. 8. 13. 18.	BB-0VERS	4. 9. 14. 19.	d e	15. 20. 25.	6 6	1

=	16.	8	17.	C	18.	a	1.7.	- 1.1	20101	-	
			22.	d	23.	b	24	C	25.	6	
	21.	2		d	28.	b	29	C	30	d	
ı	26.	10°	27.		33.	b	34.	b	35.	d	
ı	31.	Ь	32.	d	_		39.	C	40.	C	١
ı	36	b	37.	a	38.	ь	-	_	45.	0	١
	41.	C	42.	a	43.	C	44.	a	_	1	1
	46.	а	47.	b	48.	C	49.	d	50.	0	
B	51.	b	52.	C	53.	d	54.	C	55.	a	
ı			_	d	58.	d	59.	a	60.	0	
ı	56.	a	57.	_	_	_	64.	e	65.	C	
ı	61.	C	62,	d	63.	b	_	b	70.	a	
ı	66.	C	67.	e	68.	d	69.	10	101	1	-

	Dogue	
/	For reasoning, we have to us	se
4	For reasonand	b. conjunction
0.9.	implication .	d. proposition
1	o induction statement while	d. proposition ch may be true or false but not both is called a b. proposition
	A daclarative	b. proposition
0.10.	a hypothesis	d. conjunction
	a. hypotherication c. implication According to Aristotle, in prossibility	roposition there could be
	According	b. two possibilities
Q.11.	a. one possibilities	d. seven possibilties
	c. three possion in which e	every statement is regarded as true or false and
. 12	peductive logic in white there is no other possibility	d. seven possibilties every statement is regarded as true or false and is called:
0.12.	there is no other possibility	b. inductive logic
	- deductive logic	1 Arietatlian logic
	c. Aristotlian logic	ope of third or fourth possibility is called. b. Aristotlian logic
	in which there is de-	ope of third or journ possioning is and
Q.13.	a. non-Aristotlian logic	
	a. Hon	d. induction logic
	c. Postulates	
0.14	~p is the	b. disjunction of p
0,14.	a. implication of p	d. conjunction of p
		d. conjunction of p
	o. negonation its	negation is denoted by
Q.15.	c. negation of p If P is any preposition its	b. vP
	a. ~P	$\mathbf{d}. \to p$
	c. ^P	
0.16	If p is false, ~p is	
Q.10.	a. true	b. not true
		d. conjunction
	c. equal to P	ments p and q is denoted symbolically as
0.17.	Conjunction of two state	ments p and q is denoted symbolically as b. p \leftarrow q
-177	a. p. 4 9	
	a. $p \rightarrow q$ c. $p \vee q$	d. p ^ q
	C. B. 4	ared to be true only if both its components are
Q.18.	A conjunction is constat	ered to be true only if both its components are b. equivalent
.0	a. false	0. 04
1/2	c. equal	d. true
Q.19.	Disjunction of p and q i	t mond a
	a. p or q	b. p and q

Created with ScanWritr. To remove this watermark please use the upgrade options.

b. p or q

Q.28.

a. p and q

Dogar's Unique up-to-date Educators' . Math Teachers' Guide

	p sailting	a. p is equivalent to q
	m p miphes q	of p and q is denoted by
0.19.	AH 1004	b.p > q

Q.33. In
$$p \rightarrow q$$
, p is called antecedent or

a. hypothesis
c. consequent
c. consequent
d. conditional

The bicondition
$$p \leftrightarrow q$$
 is true, whenever p and q have the a. opposite truth values

c. only false truth values

d. same truth values

Q.37. The converse of
$$p \rightarrow q$$
 is

a. $\sim p \rightarrow \sim q$

b. $\sim p \rightarrow q$

d. $\sim q \rightarrow p$

Q.38. The inverse of
$$p \rightarrow q$$
 is

b. $\sim p \rightarrow \sim q$

d. $\sim p \rightarrow q$

Q.39. The contrapositive of
$$p \rightarrow q$$
 is
a. $\sim p \rightarrow \sim q$ b. $q \rightarrow p$

Danie up-to-date Educators' - Math Teachers' Guide

ANSWERS

	2.	c	3.	a	4.	a	5.	c
1. 6	7.	d	8.	b	9.	d	10.	ь
6. c	12.	С	13.	a	14.	Ċ	15.	8
11.	17.	d	18.	d	19.	a	20.	a
10.	22.	ь	23.	a	24.	d	25.	d
21	27.	ь	28.	c	29.	d	30:	c
20.	32.	c	33.	а	34.	c	35.	d
31.	37.	c	38.	ь	39.	ь	40.	Oa
30.	42.	a	43.	d	44.	Ь	45.	Oc
41.	47.	c	48.	ď	49.	d	50.	C
46.		-	SILAF	TPP		-		1

CHAPTER 4

FUNCTIONS & GROUPS

MULTIPLE CHOICE QUESTIONS

Each question has four possible answers. Choose the correct answer and encircle it.

Topic 1 Binary Relation

- Let A and B be two non-empty sets, then any subset of the cartesian product

 AXB is called a
 - a function

b. domain

c. range

d. binary relation

- 12 The set of cartesian product AXB consists of
 - a. domain

b. range

c. binary relation

d. ordered pair

- 23. The set of first elements of the ordered pairs forming the relation is called
 - a. domain

b. range

cordered paris

d. relation

84. If A is non-empty set, any subset of AXA is called a relation in

a. A

b. B

C. .

d. r

25. The set of second elements of the ordered pairs forming a relation is called

Dogar's Unique up-to-date Educators' - Math Teachers' Guide

	a. Domain	b. ninge
	c. function	d. relation
06		
2.6.	Which of the following not	ation defines AxB h. \((a,b):a \in A, b \in B\)
	a. ((a,b): a e B A h (A)	b. \(\((a,b)\):\(\alpha = A, b \in B\)\\ d. \(\{(a,b)\):\(\alpha = A, b \in B\}\)
	c. {(a,b):a & A A b = B}	d. I(a,v)
Q.7.	(a,b) = (c,d) if and only if	$b \cdot a = d$ and $b = c$
	a. a = b and $c = d$	b. $a=d$ and b d. $a-b=c-d$ the relation in N given by f N, then range of the relation $\{0,1,2\}$, then its
	c. a = c and $b = d$	d. a-b the retained
Q.8.	If a, b represent elemins o	f N, then rung
	$r=[(a,b) \mid 2a+b=10]$ is	b. {} d. {12,14,16,18} d. {12,14,16,18} the set W has the domain {0,1,2}, then its b. {5,6,7}
	a. {8,6,4,2}	d. {12,14,10, the domain {0,1,2}, then its
0.0	c. (5,7,3)	in the set W
Q.9.	range is	b. $\{5,6,7\}$ d. $\{0,1,2\}$ in set B is m, then the number
	a. (0.1.4)	d (0,1,2) then the number
	c. (0,-1,-2)	d. {0,1,2} in set B is m, then the number a set A is n, and in set B is m, then the number
Q.10.	If the number of elements is	n set A is is
2.20.	of elements in AXB will	b.mc
	a. nm	d.m+n
	c, m x n	
Q.11.	arb mean	b. b is related to a
	a. a is related to b	d. a is not related to b
	c. a is reciprocal of b	Functions
	Topic	21
	A function f from A to B can	be written as:
2.12.	A function J from	b. A:B → f
	a. $f \rightarrow A:B$ c. $f:A \rightarrow B$	$d. J \rightarrow A \rightarrow B$
	Function is a special type of	
.13.	- relation	b. ordered pairs
	a. relation : cartesian product	d. sets
**	Cartesian f: $A \rightarrow B$ is said to t	be one-to-one, if distinct elements in A have
.14. /	similar images	b. distinct images
· ·		d. option a and c
150.	function from A to B is calle	ed on-to function, if its range is
	A	ed on-to function, if its range is b. B
	A and B	d. neither A nor B
		pair of a function from A into B are equal,

Total's Unique up to date Educators' - Math Teachers' Guide

Created with ScanWritr. To remove this watermark please use the upgrade options.

(c)

(b)

(a)

Dapar's Unique up-to-date Educators' - Math Teachers' Guide

Which of the following function represents parabola

 $a \cdot y = ax^2 + b$

- 0. y = axo. y = xo. y = xo. y = xthen the function become

 b. quadratic

a. linear

- the function y = -3x + 2, is the equation of a. straight line
 - b. parabola

- Which of the following graph is the graph of a function?

Q.35. Which of the followin equation represents quadratic function?

a. y = ax + b

 $b. y = ax^2 + bx$

c. y = 2x

- d.y = b
- Q.36. Which of the following is graph of a function?

Days's Unique up-to-date Educators' - Math Teachers' Gr

c. quadratic

d. circle

- Q.43. The line y = x is a
 - a self function
 - c. quadratic function
- b. constant function

- d. inverse function
- Q.44. The function $\{(x,y)|y=x\}$ is called the
 - a. self function
- b. identity function
- c. quadratic function
- d. constant function
- Q.45. The equation $y = \sqrt{x}$, x>0 defines
 - a only relation

- b. a function
- c. quadratic function
- d. inverse function

- Q.46. The equation $y^2 = x$, x>0, does not define a a function
 - b. a relation
 - c. identity function
- d. linear function
- Q.47. The inverse of the function $f:x \to \frac{x-2}{3}$ is

c. 3x+2

- Q.48. There will be no inverse if the function is
 - a. one-to-one

b. one-to-many

c. onto

- d. into
- The inverse of $f(f^{-1})$ exists only if f is
 - a. one-to-one

b. one-to-many

c. onto

- d. into
- The inverse of the function $f:x \to 2x-3$ is
 - a. 2y-3

b. 2x+3

c. 2y+3

Topic 5

binary Operations

- Q.51. A binary operation on a set G is a function from the set G X G to the set

b. GxG

Dur's Union up to date Educators' - Math Teachers' Guide

	XAX c)= (aX b) X c, for a	Il a,b,c ∈ S, then binary operation X on set S
0.66	If a wind	Il a,b,c ∈ S, then binary operation X: on set S
	the contract of the contract o	b. commutative
	a. associative	d inverse of a, b and c
	c. identity element	then e ∈ S is called an
265.	c. identity element If eX a, = aX e = a for all a ∈ S **sociative	b commutative
F	3. 4550	d. inverse of a
	e. identity element Identity element, if it exists, is	
2.66.	a. its inverse	b. unique
	a	d. associative
	The inverse of 'a' is denoted by	
0.67.	The mire.	b. a ⁻¹
	B. 1	
	c, aa-1	d. e
0.68	lamout h & S. is said to be	an inverse of $a \in S$, if $a \times b = b \times a =$
Q.68.	a. a	D. D.
	с. е	d. b-1
	Topic	Groups
		an arration X is called a
0.69.	A closed set with respect to an	b. group
	a. binary opeauon	d. semi-group
	c. groupoid	
Q.70.	The set {E, O}, is a	b. non-abilian group
	a. group c. semi-group	d. groupoid
0.71	r. Y : il is aroun	oid w.r.t
Q.71.	a. addition	b. mulupheadon
		d. addition and multiplication
	C to coming	roup if it is closed w.r.t an operation X and the
Q.72.		
1/6	operation X is	b. distributive
/	a. commutative	
	c. None of these	d. closed
Q.73.	A semi-group having an iden	tity is called a

Doga's Unique up-to-date Educators' - Math Teachers' Guid

a. groupoid

b. non-commutative

c. abelian

d. monoid

Q.74. The power set P(s)of a set S is a

a, groupoid

b. monoid

c. semi-group

d. commutative

The set of natural numbers, N, together with the operation of addition is a Q.75.

a. non-abelian set

b. groupoid

c. semi-group

d. commutative

ANSWERS

		-	-	T 3	а	4.	а		b
I.	d	2.	d	8.	а	9.	d	210:	C
6.	d	7.	C		a	14.	60	15.	b
11.	а	12.	C	13.	a	19.	a	20.	b
16.	b	17.	C	18.	a	24.	а	25.	d
21.	C	22.	d	23.	-	29	С	30.	d
26.	b	27.	C	28.	c	34.	C	35.	b
31.	а	32.	d	33.	a	39.	d	40.	
36.	d	37.	C	38.	0	44.	b	45.	a
41.	а	42.	b	43.	a		-	-	b
46.	а	47.	C	48	ь	49.	а	50.	d
51.	а	52.	C	53.	a	54.	а	55.	C
56.	b	57.	a	58.	C	59.	C	60.	b
_		62.	a	63.	ď	64.	a	65.	C
61.	a	67.	1	68.	C	69.	С	70.	d
66.	b		1		d	74.	b	75.	C
71.	b	72.	C	73.	u	17.		1	

CHAPTER 5 MATRICS & DETERMINANTS

Each question has four possible answers. Choose the correct answer and encircle it.

	Topic		0
	mbers used in ro	ws or colums are said to be entries or b. rows	<i>)</i> *
at.	columns		
Q.L.	a. coments	d. matrix	
	c. elementar array of	numbers in rows and columns is called to b. element	2
22	A rectanguit	b. element	
0.2.	maura	A contract of the contract of	
	c. determination	s and n columns, then mxn is called the b. determinants	
-1	If a matrix has he	b. determinants	
Q.3.	dillicitators	d. column matrix	
	c. symmetric		
	Joy of the matri	ix $\begin{vmatrix} 1+5-3 \\ is \end{vmatrix}$	
Q.4.	The order of the matri	2+7-1	
4.		b. 2x2	
	a. 2x3		
	11/2	d. none of these	
	If $A = \begin{bmatrix} 1 & 5 & -3 \\ 2 & 7 & -1 \end{bmatrix}$ the	u alement a is	
Q.5.	If A = 1 5 the	m etement u ₂₃	
Q.u.	2 7 -1]		
	7	b6	
987	a/	d. 6	
-11	c1	u.	
	[1 -3 5] is a		
Q.6.	11 -3 31	b. diagonal matrix	
	a. column matrix	A Audie	
	c. identity matrix	d. row matrix	
	- 7		
	0		
Q.7.	0 is a	4	
0.	[A]	b. column vector	
10	a. null matrix		
	c. row matrix	d. identity matrix	
		4	
Q.8.	If $A = \{3\}$, then order	r of matrix A is	

Dogat's Unique up-to-date Educators' - Math Teachers' Guide

column matrix b.

row matrix

identity matrix d.

of
$$A = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$$
, then $A' = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$

Q.18. If all elements in a matrix A are real, then matrix A is called identity matrix

identity matrix

symmetric

d. none of these

g.19. If
$$B = \begin{bmatrix} 2 & 1 & 5 \\ 5 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$$
, then the entries 2,2,2 form the

rectangular matrix

principal diagonal b.

equality

d. identity element

0.20.
$$A = \begin{bmatrix} 2+1 & 0 \\ 5+1 & 5 \end{bmatrix}$$
, is a

diagonal matrix

null matrix

square matrix

scalar matrix

0.21. Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$, are equall iff

a.
$$a_{ij} = a_{ji}$$

b.
$$a_{ii} = b_{ij}$$

c.
$$a_{ii} = b_{ii}$$

$$\mathbf{d}. \quad \mathbf{b}_{ij}^{0} = b_{ji}^{0}$$

In a diagonal matrix, all entries except in diagonal are

similar a.

b. zero

one

d. real

Q.23.
$$\begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{3} \end{bmatrix}$$
 is a

diagonal matrix

identity matrix b.

null matrix

idemptant d.

Matrix

diagonal matrix

identity matrix b.

scalar matrix

idempotant d.

Dogar's Unique up-to-date Educators' - Math Teachers' Guide

- Q.25. If $B=[b_{ij}]$ be a square matrix of order n, and $b_{ij}=0$ for all $i \neq j$ and $b_{ij} = k$, for all i=j, then the matrix B is called
 - diagonal matrix
- scalar matrix

null matrix

- identity matrix
- Q.26. Ixn matrix of the form [a,pa,...a,], is said to be a
 - null matrix a.

scalar matrix

equal matrix

- row matrix
- The matrices $\begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}$ and $\begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 3 \end{bmatrix}$ are
 - equal matrices a.
- column matrices
- rectangular matrix
- square matrices

Topic 2

Addition and Subtraction of Matrices

- Two matrices are conformable for addition, if they are Q.28.

- 2.29. If $A = \begin{bmatrix} 4 & 9 \\ 2 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 7 \\ 5 & 4 \end{bmatrix}$, then $A B = \begin{bmatrix} 1 & 7 \\ 5 & 4 \end{bmatrix}$ a. $\begin{bmatrix} 5 & 2 \\ -3 & 2 \end{bmatrix}$ b. $\begin{bmatrix} 5 & 16 \\ 7 & 10 \end{bmatrix}$ c. $\begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix}$ d. $\begin{bmatrix} -3 & 2 \\ -3 & 2 \end{bmatrix}$

- Addition and subtraction of two matrices A+B and A-B requires that the 30. matrices be
 - a. equal dimension
- b. rectangulard. identity

- 1. If $A = \begin{bmatrix} 2 & -2 & 4 \\ 0 & -3 & -4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -5 & 6 \\ 4 & -2 & -3 \end{bmatrix}$, then $A + B = \begin{bmatrix} 1 & -5 & 6 \\ 4 & -2 & -3 \end{bmatrix}$.

 a. Not possible

 b. $\begin{bmatrix} 1 & -7 & -7 \\ 1 & -7 & -7 \end{bmatrix}$
- b. $\begin{bmatrix} 1 & -7 & 10 \\ 4 & -5 & -7 \end{bmatrix}$
- c. $\begin{bmatrix} 3 & -7 & 10 \\ 4 & -5 & -7 \end{bmatrix}$ d. $\begin{bmatrix} 3 & 3 & -2 \\ -4 & -1 & -1 \end{bmatrix}$

Multiplication of Matrices

Topic 3

Topic 3

A =
$$\begin{bmatrix} 3 & 6 & 24 \\ 12 & 9 & 36 \\ 6 & 15 & 18 \end{bmatrix}$$
, then $\frac{1}{3}$ $A = \begin{bmatrix} 9 & 18 & 72 \\ 36 & 27 & 108 \\ 18 & 45 & 54 \end{bmatrix}$

b.
$$\begin{bmatrix} 1 & 2 & 8 \\ 4 & 4 & 12 \\ 3 & 5 & 6 \end{bmatrix}$$
d.
$$\begin{bmatrix} 1 & 2 & 18 \\ 4 & 3 & 12 \\ 3 & 5 & 6 \end{bmatrix}$$

$$\int_{0.33.}^{2} If A = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 1 & 2 \end{bmatrix}, \text{ then dimension of } AB \text{ will be}$$

b. Not possible

1x2

Multiplication of a row vector A by a column vector B requires as a precondition that each vector have

same order

same number of elements b.

equal elements

transpose

0. If
$$A = [4 \ 7 \ 2 \ 9]$$
 and $B = \begin{bmatrix} 12 \\ 1 \\ 5 \end{bmatrix}$, then $AB = \begin{bmatrix} 12 \\ 1 \\ 5 \end{bmatrix}$

not possible

119 b.

102

48 10

0.36. If
$$A = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 7 & 1 \end{bmatrix}$, we can find

A+B b.

A-B

none of these

Dogar's Unique up to date Educators' - Math Teachers' Guido

Q.51. If
$$A = \begin{bmatrix} 7 & 49 \\ 14 & 56 \end{bmatrix}$$
 then $\frac{2A}{7} = \begin{bmatrix} 42 & 35 \end{bmatrix}$

Q.52. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 9 & 1 & 11 \end{bmatrix}$$
, then $(A')' =$

Q.53. If A, B and C are three matrices of same order, and (A+B)D=AD+BD, who

is this property called? Right distributive property

Left distributive property

Associative property

Lest associative property

Q.54. If A is any matrix, and r is a scalar, then (rA)' =

Given A and B are matrices of order 3, then (A+B)' =

$$a. A' + B'$$

b.
$$\frac{1}{A} + \frac{1}{1}$$

c.
$$\frac{1}{A'} + \frac{1}{B'}$$

Deput's Unique up-to-date Educators' - Math Teachers' Guide

rse of matrix $A(A^{-1})$ is b. $\frac{1}{adjA} |A|$ d. -|A| $\frac{1}{8} \begin{bmatrix} 1 & -3 \\ -1 & 5 \end{bmatrix}$ b. $\frac{1}{8} \begin{bmatrix} -5 & 1 \\ 3 & -1 \end{bmatrix}$ c. $\begin{bmatrix} \frac{1}{2} - \frac{3}{2} \\ -\frac{1}{2} & \frac{5}{2} \end{bmatrix}$ d. $\frac{1}{2} \begin{bmatrix} 5 - 3 \\ -2 \end{bmatrix}$ b. $\frac{1}{3} \begin{bmatrix} 5 - 3 \\ -2 \end{bmatrix}$ d. $\frac{1}{2} \begin{bmatrix} 5 - 3 \\ -2 \end{bmatrix}$ Doga's Unique up-to-date Educators' - Math Teachers' Guid

Q.67. The adjoint of the matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is

a.
$$\begin{bmatrix} -a & c \\ b & -d \end{bmatrix}$$

c.
$$\begin{bmatrix} \frac{1}{a} - b \\ -c & \frac{1}{d} \end{bmatrix}$$

b.
$$\begin{bmatrix} a - c \\ -b \end{bmatrix}$$

$$\mathbf{d}. \quad \begin{bmatrix} -d & c \\ b & -a \end{bmatrix}$$

Q.68.

b.
$$\frac{1}{\text{adj}A} |A|$$

Q.69. If
$$A = \begin{bmatrix} 5 & 3 \\ 1 & 1 \end{bmatrix}$$
, then $A^{-l} =$

$$\mathbf{a.} \quad \frac{1}{8} \begin{bmatrix} 1 & -3 \\ -1 & 5 \end{bmatrix}$$

c.
$$\begin{bmatrix} \frac{1}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{5}{2} \end{bmatrix}$$

$$\frac{1}{8}\begin{bmatrix} -5 & 1\\ 3 & -1 \end{bmatrix}$$

d.
$$\frac{1}{2} \begin{bmatrix} 5-3 \\ -2 \end{bmatrix}$$

Q.70. If
$$A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$$
, then $A^2 = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$

a.
$$\begin{bmatrix} i^2 & 0 \\ 0 & i^2 \end{bmatrix}$$
c.
$$\begin{bmatrix} i^2 & 0 \\ 0 & 0 \end{bmatrix}$$

b.
$$\begin{bmatrix} i^2 & 0 \\ 0 & -i^2 \end{bmatrix}$$

d.
$$\begin{bmatrix} -i^2 & 0 \\ 0 & -i^2 \end{bmatrix}$$

a. $\begin{bmatrix} i^2 & 0 \\ 0 & i^2 \end{bmatrix}$ b. $\begin{bmatrix} i^2 & 0 \\ 0 & -i^2 \end{bmatrix}$ c. $\begin{bmatrix} i^2 & 0 \\ 0 & i^2 \end{bmatrix}$ d. $\begin{bmatrix} -i^2 & 0 \\ 0 & -i^2 \end{bmatrix}$ Q.71. If $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then two different 2x2 matrices A are:

a.
$$\begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} & \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ -\frac{3}{4} & -\frac{1}{4} \end{bmatrix}$$

a.
$$\begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} & \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ -\frac{3}{4} & -\frac{1}{4} \end{bmatrix}$$
 b. $\begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{bmatrix}$ c. $\begin{bmatrix} 5 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{3}{2} \\ \frac{3}{2} & \frac{5}{2} \end{bmatrix}$ d. $\begin{bmatrix} 5 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{5}{2} \end{bmatrix}$

c.
$$\begin{bmatrix} 5 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} - \frac{3}{2} \\ \frac{3}{2} & \frac{5}{2} \end{bmatrix}$$

d.
$$\begin{bmatrix} 5 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} - \frac{3}{2} \\ -\frac{1}{2} & \frac{5}{2} \end{bmatrix}$$

Q.80. a. C. Q.81. ر وواده | a 11 | a 12 | The cofactor of an element a_{ij} denoted by A_{ij} is defined by a. $A_{ij} = (-1)^{(i)} \times M_{ij}$ b. $A_{ij} = (-1)^{(i)} \times M_{ij}$ c. $A_{ij} = (-1)^{(i)} \times M_{ij}$ d. $A_{ij} = (-1)^{(i)} \times M_{ij}$ Q.82. Q.83. If $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$, then cofactor $A_{33} = \begin{bmatrix} 1 & -7 & 1 \\ 4 & -3 & 2 \end{bmatrix}$ b.

Dajur's Unique up-to-date Educators' - Math Teachers' Guide

$$\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}, then cofactor A_{33} = 0$$

ost. If in a square matrix A, two rows or two columns are interchanged the determinant of the resulting matrix is determinant of the resulting matrix is

Q.86. If a square matrix has two identical rows or two idential columns, then |A|

c.
$$\frac{1}{A^{-2}}$$

Q.88.
$$\begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ c^2 & b^2 & c^2 \end{bmatrix} =$$

b.
$$(a-b)^3$$

d. $(a-b)(b-c)(c-a)$

Q.89.
$$\begin{bmatrix} b+c & a & a^2 \\ c+a & b & b^2 \\ a+b & c & c^2 \end{bmatrix} =$$

c.
$$(a+b+c)(a-b)(b-c)(c-a)$$

b.
$$(a+b+c)$$

d. $(a+b-c)(a+b)(b-c)(c-a)$

b. (a+b)(b+c)(c+a) (a+b)(b+c) (a+b)(a+b) (a+b)(a+b) (a+b)(a+b) (a+b)(a+b) (a+b)(a+b)

Q.90.
$$\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix}$$

a.
$$(\alpha+\beta+\gamma)(1-\alpha)$$

Q.91.
$$\begin{vmatrix} 2a & 2b & 2c \\ a+b & 2b & b+c \\ a+c & b+c & 2c \end{vmatrix} =$$

c.
$$2(a+b)(b+c)(c+a)$$

Q.92.
$$\begin{vmatrix} 1^2 & 2^2 & 3^2 \\ 2^2 & 3^2 & 4^2 \end{vmatrix} =$$

Q.93.
$$\begin{vmatrix} b+c & a & a \\ b & c+a & b \end{vmatrix} =$$

Q.94.
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix} =$$

c.
$$(1+x)(1+y)$$

$$(1+x)(1+x)$$

b.
$$(\alpha+\beta+\gamma)$$

d.
$$(\alpha+\beta+\gamma)(\alpha-\beta)(\alpha-\gamma)$$

b.
$$(a+b)(b+c)(c+a)$$

Days's Uniper up-to-date Educators' - Math Teachers' Guide

d.
$$\begin{bmatrix} \frac{11}{27} & -\frac{1}{27} & 0 \\ \frac{1}{27} & \frac{1}{27} & 0 \\ \frac{5}{27} & \frac{2}{27} & 0 \\ -\frac{2}{27} & \frac{10}{27} & 0 \end{bmatrix}$$

Q.100. If
$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A_{II} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
a. 6
c. 5

ANSWERS

								-	_	-	T 4.		d	5.	0	
	1	1. 1	C		2.	T	а	3	-	a		-		10.	b	_
	F	5.	d	-	7.	1	b	8.		C	9.		d		1	-
		-	_	-	12.	+	d	13	. T	b	14	· (10)	d	15.	C	
	1	-	d	-	_	+		18	_	d	119	2	6	20.	C	
	16	3,	C	-	7.	-	C	_	_	a	24		c	25.	Ь	
	2	1.	C	12	2.	1	0 1	23.	-		29.	_	-	30.	a	-
	26	3.	d	12	7.	(:	28.		C		-	-		-	-
	31	1	С	3	2.	C	:	33.		d	34.	t	2	35.	b	
	36	-	d	13	-	b	1	38.	TO		39.	2	1	40.	C	
	41	-	a	42	-	b	-	43.	1 2	,	44.	a		45.	a	
	46	-	c	1 47	-	C	1	48.	10		49.	C		50.	C	
ı	51.	-	c	52	-	Ċ	D:	53.	a		54.	d		55.	a	
1	56.	-	b	57	-	b	1 5	8.	C	1	59.	d		60.	а	
İ	61.	1		62,	X	b	16	3.	а	1	64.	d		65.	b	
ľ	66.	a		67.	1	C	6	8.	C	1	69.	C		70.	a	
	71.	d	1	72.	1	d	7.	3.	С	T	74.	d	T	75.	a	٦
	76.	C	9	77.	1	1	78	3.	d	T	79.	d		80.	b	٦
-	81.	b	1	82.	0		83	3.	a	1	84.	а	1	85.	d	٦
-	86.	d	1	87.	a		88		d	1	89.	C	_	90.	a	7
-	11.	a	3	12.	C	I	93		d	1	94.	С	-	95.	d	7
9	6.	d	9	7.	d	I	98	T	d	1	9.	d	-	00.	d	1

CHAPTER 6 QUADRATIC EQUATIONS

	The second control of the second	
THE PERSON IN	CHOICE	QUESTIONS
AAIII IIPI P	CHUILE	GUESTIONS
MULLING		

Each question has four possible answers. Choose the correct answer and encircle it.

Topic 1

Quadratic Equation

A quadratic equation in x is an equation that can be written in the form

$$a = ax + b = 0$$

b.
$$ax^3+bx^2+c=0$$

d.
$$ax^3 + bx^3 + cx = 0$$

0.2 a. polynomial b.2nd degree polynomial

c. linear equation

- d.simaltaneous equations
- A quadratic equation has two
- a roots

b. degree

c. variables

- d. constants
- The roots of the equation $x^2+6x-7=0$, are 0.4

c. 1 and -7

- The quadratic formula is

$$a. x = \underbrace{a \pm \sqrt{b^2 - 4ac}}_{2a}$$

b.
$$x = -a \pm \sqrt{b^2 - 4ac}$$

$$c. x = b \pm \sqrt{b^2 - 4ac}$$

d.
$$x = -b \pm \sqrt{b^2 - 4ac}$$

- The largest degree of the terms in the poly-nomials is called 0.6.
 - a. term of the polynomial
- b.degree of a polynomial

c. co-efficient

- d. monomial
- The solution of the quadratic equation $x^2-7x+10=0$, is

b. 5

0.2,5

- d. 7
- The graph of the quadratic equation is

Dogu's Unique up-to-date Educators' - Math Teachers' Guide

d. -8c. 8 The equation whose roots are2, -3 and 7 is Q.27. a. $5x^3 - 2x^2 - 37x + 42 = 0$ $b.2x^2+3x+7=0$ c. $-3x^2+2x+7$ d. $2x^3-3x^2-7x+5=0$ Q.28. If $3x^4 + 4x^3 + x^{-5}$ is divided by x+1, which of the following is the remainder a. 7 c. 6 Which of the following is a factor of x"+a", where n is an odd integer 0.29. b. x+a a. x-a d. 2x+a c. 2x-a If x-2 and x-1 both are factors of $x^3-3x^2+2x-4p$, then P must equal to Q.30. a. 1 c. 0 fx^4+x^2+x+2 is divided by x+2, the remainder is 0.31. a. 18 b. 22 c. 17 d. 21 r what value of P is $x^2 - Px + P$ divisible of x - P? c. -1/2 d. 0 Q.33. I $P(x) = x^4 - 13x^2 + 36$, and P(a) = 0, then a equals b. 2 c. -1 d. -2 If x-1 is a factor of x^2+Px-4 , then P has the value Q.34. b. 1 Which of the following is a factor of x^3+2x^2-5x-6 a. (x+2)b. (x-2)c. x+7 d. x-7 Which of the following is a factor of x^4-25x^2+144 a. x-7b. x-9

d = x-3If one root is twice the other root in the equation $3x^2+Px+54=0$, then value of P is value of P is

c. x + 3

Dept's Unique up to date Educators' - Math Teachers' Guide

	b <u>+9</u>
z +21	d ±25
2 ±51 -note of 8x4-14x3-9x4	+11x-2=0, are -1 and 2 then other roots are
is if two rooms	d ± 25 +11x-2 =0, are -1 and 2 then other roots are b. ± 5
z ±3	d ± 5
-	
en - conthetic airisina me	od is only used to divide a polynomial by
- madratic equation	
c. linear equation	d. monomial
of a polynomial P(x) is divi	ided by x-c, then the remainder is b. x-c
4.10. 1) a. P(x)	b. x-c
	d. P(c)
Q.12. A polynomial P(x) has a f	actor(x-a) if $P(a) = 0$
Q.41. A polymon	b. x
2. 3	d 0
c. 1 which of the following is	the factor of $x^4+x^4-21x^2-x+20$
a. x+3	b. x+2
	d(x)-5
u = u = u = u = u = u = u = u = u = u =	ctors of $x^2 - Px^2 + qx + 2$, then $P+q =$
Q.43. 1) (2.1)	b. 1
c-1	d. 3
to the state of	olution of the polynomial
Q.44. What value of X is the st	Julion of the L
x³-28x-48=0	b4
	d2
c. 2	1 (/ 2) -2 then P=
0.45. If $f(x) = 3x^2 + Px - 2$, and	
* * * * * * * * * * * * * * * * * * *	ъ. 5
C 6	d. 3
Q46. Which of the following	g is not the factor of x4-13x2+36
a x+5	b. (x-2)
c. (x+2)	d. x+3
Q.47. When the polynomi	ial Px^2+2x^3+qx+c , is divided by $x+1$ and

remainder remains same, then P+q=

	If wix the complex of	abe root of	unio.	then	w	wo
13.48.	(1 dis m m		1			

b. w

 $d. \omega^2$

Euch complex cube root of unity is square of

a. itself

c. -1

d. the other

If wix the complex cube root of unity, then will O.Sa.

d. CO

Product of the complex cube roots of unity is equal to Q.51.

c -1

Q.52. If
$$\omega = -1 + \sqrt{5}i$$
 then $\omega^2 = \frac{1}{2}$

Q.53. If -1+3 i and I are two cube roots of unity, then third is

b. 1

d. none of these

Q.54. $(x+y)(x+\omega y) (x+\omega^2 y) =$ a. x^2+y^2 b. x^3+y^3 c. x^2-y^2 d. x^3-y^3 Q.55. Sum of all the four fourth roots of unity is

b. -1

Q.56. (1+ V-3) + (-1- V3)

Created with ScanWritr. To remove the

b.-32

d 41. d 42. c 48. c 49. d a 46. a 52. c 53. d 54. b	NUME S	date Educa	-	43.	C	44.	b
a 40. d 52. C 53. 50	1 41.	d 42.	C	48.	C	49.	d
51- d 52. c 59. a	46.	a 4/-	C	53.	d	54.	b
	d 51-	d 52.	C	58.	c	59.	а

CHAPTER 7 PARTIAL FRACTIONS

MULTIPLE CHOICE QUESTIONS

☆ Each question has four possible answers. Choose the correct answer and encircle it.

Q.1.
$$\frac{x^2 - x^2 + x + 1}{x^2 + 5}$$
 is a

- a. Proper Rational Fraction
- c. Infinite Rational Fraction
- b. Improper Rational Fraction
- d. Finite Rational Fraction

$$Q.2. \quad \frac{3x^2 + 1}{x - 2} =$$

a
$$13 + \frac{3x+6}{x-2}$$

c.
$$3x+13+6$$

 $x-2$

d.
$$3x+6+\frac{13}{x-2}$$

When rational fraction is separated into partial fractions, the result is Q.3.

a an identity

b. a fraction

c. a partial sum

d. improper fraction

is a Q.4.

- polynomial

- b. algebraic equation
- d. improper fraction

proper fraction An improper rational fraction can be reduced by division to a

a. proper fraction

b. polynomial

To express a single rational fraction as a sum of two or more single rational fraction as a sum of two or more single Q.6. rational fracctions which are called

My Sthique up-to-date Educators' - Math Teachers' Guide

8. improper fractions

b. partial fractions

- d. polynomials
- c. mixed form mixed which hold good for all values of the variables is called b. fraction

a. identity

c. mixed form

If $\frac{7x+25}{(x+3)(x+4)} = \frac{4}{x+3} + \frac{B}{x+4}$, then the value of B is

b. 4

 $23x - 11x^2 =$

- $\frac{5x-11}{2x^2+x-6}$

- $\frac{23x-11x}{(2x-1)(9-x^2)}$ a. $\frac{1}{2x-1} + \frac{4}{9-x^2}$ b. $\frac{1}{2x-1} + \frac{11}{9-x^2}$ c. $\frac{1}{2x-1} + \frac{4}{3+x}$ d. $\frac{1}{2x-1} + \frac{4}{3+x} \frac{1}{3-x}$
 - b. $\frac{1}{x+2} + \frac{3}{2x-3}$

ANSWERS

1	b	2.	d	3.	a	4.	С	5.	С
6.	b	7.		8.			d	10.	a

CHAPTER 8 SEQUENCES & SERIES

MULTIPLE CHOICE QUESTIONS

tach question has four possible answers. Choose the correct answer and encircle it.

Topic

Basics of Sequences

er an water with

- 26 .0 -

Dust's Unique up-to-date Educators' - Math Teachers' Guide

		- Mile
	Sequences also called	
Q.1.	a series	
		d. elements
Q.2.	A sequence is a junction w	b. real numbers
20.40	a natural numbers	
	The same and the same of the s	d. rational numbers
Q.3.	If all members of a sequence	b. function
200	a. series	
	- real sequence	d. range
0.4	A sequence having no last to	erm is called
2	a. arithmetic sequence	b. geometric sequence
	- Courte commence	d. infinite sequence
Q.5.	If the domain of a sequence	is finite set then the sequence is called
2	a. geometric sequences	ar mining application
	c. finite sequence	d. arithmetic sequence
0.6.	1, 1, 1, 1, 1 is a	(0)
5.00	3 5 7 9	
	a. geometric sequence	b. finite sequence
	c. infinite sequence	d arithmetic series
Q.7.	The elements in the range of	a sequence are called
	a. scries	b. progression
	c. members	d. terms
Q.8.	The 6th term of the sequence	7,9,12,16 is
	a. 27	b. 32
	c. 20	d. 19
Q.9.	1. 1. 1. 1	
-	2 3 4 5	
	a. a geometric sequence	b. an arithmetric series
	c. a finite sequence	d. an infinite sequence
2.10.	If $a_n = 2$ and $a_n = a_n - 1$, then	the fourth term of
	2	
1	he sequence is	
, (9	20	h 1
		b. 1
, \c	- 1	d. 1
	*	4
II. T	he sum of the terms of a sequ	ence is called
a. series		b. finite sequence
c.	geometric sequence	d. arithmetic sequence
		ice are 1, -3, 5, -7. The fifth term is
		ice are 1, -3, 5, -/. The jijus term
2.	-11	b. 9

Dyar's Unique up-tu-date Educators' - Math Teachers' Guide

th term of the sequence is

	=3n-11, then the	b. 3n+5
Q.21.	If $a_{n-2} = 3n-11$, then the	d. 3n-1
	c. 3n+1	of the sequence 2, 11 is

Q.22. The common difference of the
$$\frac{1}{2}$$
a. 1

c.
$$\frac{3}{2}$$
The fifth term of the sequence 2, $\frac{3}{2}$, is

The seventh term of an A.P whose first term is P and common difference is

Q.29. If
$$a_6 = 19$$
, $a_9 = 31$ are the 6th and 9th term of an A.P. and $d = 4$ is the common difference, then 18th term of the sequence is

Q.30. How many terms are there in the A.P, in which
$$a_1 = 11$$
, $a_n = 68$, $d = 3$
a. 30

Dogar's Unique up-to-date Educators' - Math Teachers' Guide

The nth term of an A.P., is 12-4n. Its common difference is

the next three terms of the following arithmetic progression x+y, x-y,

x-3y.... are

x = 5y, 3x = 7y, -7x = 9y

b. -x+3y, -9x+y, -x-7y

d. x-5y, x-7y, x-9y v. x-4y,x-5y,x-6y

13. The 14th term of the sequence $a_n = n(n + 3)$ is

0.35. The 7th term of the A.P.: 7,11,15 is

036. The a, of the A.P.: 3,2, 13 is

0.37. If $S_n = 3n^2 + 2n$, in an arithmetic series, then first three terms of the sequence is

a. 5, 11, 17

c. 5, 9, 13

Q.38. The nth term of the sequence $(4)^2$, $(7)^2$, $(10)^2$... is

Qua II it is the tolk borneyer the our mention a son b. $3n^2 + 1$

d. (3n - D2 mounted All & MT 54.0

Octob of resembly 1 Pr

mora d

fa, b, c are in arithmetic progression, then $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in

a. A.M

c. H.M

d. G.P.

Dojar's Unique up-to-date Educators' - Math Teachers' Guide

Q.40. If 6th term of a series in A.P. is -2, and 8th term is 8, the first term of the series is

b. -13

a. 13 d. -10

c. 10 and are in A.P., then the common difference is

Q.41. If 1' 1 and 1 c

a. a - b

2ab

d. c - a

7ac

Q.42. If $a_1 = 3$, d = 7 and $a_n = 59$, then the number of term in A.P. is

a. 7

Q.43. If $a_{n-1}=2n-5$, then the nth term of the sequence is

c. 2n+3 d. 26+5

Topic 3 Arithmetic Mean

Q.44. A number A is said to be the A.M between the two numbers a and b if a, A, b are in

a. A.M

b. A.P

c. G.P

d. G.M

Q.45. The A.M between a and a is:

a. a+b

b. $a_{n+1} - a_{n-1}$

c. $a_{n+1} - a_{n-1}$

 $d. \quad \underline{a_{n-1} - a_{n+1}}$

Q.46. If A is the A.M between the two numbers a and b, then A-a is equal to

a. a-A

b. A+a

c. A-b

d. b-A

Q.47. The A.Ms between $\sqrt{2}$ and $3\sqrt{2}$ is

a. 2√2

b. -2√2

c. 4√2

d. \sqrt{2}

Q.48. The n A.Ms between a and b is .

Treat's Unique up to date Educators' - Math Teachers' Guide

d. 7 and 2

Q.57. If $-\frac{25}{2}$, -7 and $-\frac{3}{2}$ are three A.Ms between a and b, then a and h equal to

a. -25 and -3

d. 18 and 4

c. -14 and 11

ANSWERS

				-	yan-	The Division in which the	-		
1:	E	2	0	3.	6	4	d.c		C
6.	E	7	d	8	15	9.	0	10.	d
11.	B	12.	b	13.	d	14	b	15.	d
16.	II.	17.	E	18.	d	10	d	20.	d
21.	а	22.	b	23.	d	24	6	25.	6
26.	N.	27.	d	28	3	29	b	30.	C
31.	6	32.	d	33.7	- c	34.		35.	b
36.	d	37.	A	38	c	39.	d	40.	a
41.	c	42	b	43.	ti	44.	b	45.	d
46.	d	47.	n	48.	b	49.	d	50.	C
51.	C	\$2.0	C	53.	d	54.	23	55.	d
56.	C	37.	d						

Original de anne a a la desarra de la companya della companya dell 1-1-27 1 Ct-Line ? in

1 - touck to

P. Jane C 5

कार के अनुसार के के तार के अनुसार हो है जिल्ला के तार
equal to

t time to the first and I are a the boys own a cond to there a deal to the part of

SI byras n att to be a