GeeksQuiz

Computer science mock tests for geeks

Sorting

Question 1

What is recurrence for worst case of QuickSort and what is the time complexity in Worst case?

- Recurrence is T(n) = T(n-2) + O(n) and time complexity is $O(n^2)$
- Recurrence is T(n) = T(n-1) + O(n) and time complexity is $O(n^2)$
- Recurrence is T(n) = 2T(n/2) + O(n) and time complexity is O(nLogn)
- Recurrence is T(n) = T(n/10) + T(9n/10) + O(n) and time complexity is O(nLogn)

Discuss it

Question 2

Suppose we have a O(n) time algorithm that finds median of an unsorted array. Now consider a QuickSort implementation where we first find median using the above algorithm, then use median as pivot. What will be the worst case time complexity of this modified QuickSort.

- A O(n^2 Logn)
- B O(n^2)

C	O(n Logn Logn)	
D	O(nLogn)	
Discuss	it	
Question	3	
Which of	the following is not a stable sorting algorithm in its typical implementation.	
A	Insertion Sort	
В	Merge Sort	
С	Quick Sort	
D	Bubble Sort	
Discuss i		
Question	•	_
	the following sorting algorithms in its typical implementation gives best performance plied on an array which is sorted or almost sorted (maximum 1 or two elements are d).	
A	Quick Sort	
В	Heap Sort	
С	Merge Sort	

D	Insertion Sort
Discuss i	t
Question	5
distance	unsorted array. The array has this property that every element in array is at most k from its position in sorted array where k is a positive integer smaller than size of array. rting algorithm can be easily modified for sorting this array and what is the obtainable aplexity?
A	Insertion Sort with time complexity O(kn)
В	Heap Sort with time complexity O(nLogk)
С	Quick Sort with time complexity O(kLogk)
D	Merge Sort with time complexity O(kLogk)
Discuss i	t
Question	6
	a situation where swap operation is very costly. Which of the following sorting ns should be preferred so that the number of swap operations are minimized in general?
A	Heap Sort
В	Selection Sort
C	Insertion Sort

D	Merge Sort
Discuss i	t
Question	7
Which of	the following is not true about comparison based sorting algorithms?
A	The minimum possible time complexity of a comparison based sorting algorithm is O(nLogn) for a random input array
В	Any comparison based sorting algorithm can be made stable by using position as a criteria when two elements are compared
С	Counting Sort is not a comparison based sorting algortihm
D	Heap Sort is not a comparison based sorting algorithm.
Discuss i	
	we are sorting an array of eight integers using quicksort, and we have just finished the itioning with the array looking like this: 2 5 1 7 9 12 11 10 Which statement is correct?
A	The pivot could be either the 7 or the 9.
В	The pivot could be the 7, but it is not the 9
C	The pivot is not the 7, but it could be the 9
D	Neither the 7 nor the 9 is the pivot.

Discuss i	t
Question	9
heapify (we are sorting an array of eight integers using heapsort, and we have just finished some either maxheapify or minheapify) operations. The array now looks like this: 16 14 15 10 How many heapify operations have been performed on root of heap?
A	1
В	2
С	3 or 4
D	5 or 6
Discuss i	
Question	
What is the	ne best time complexity of bubble sort? N^2
В	NlogN
С	N
D	N(logN)^2
Discuss i	t

Question	111
	e to sort 1 GB of data with only 100 MB of available main memory. Which sorting see will be most appropriate?
Δ	Heap sort
В	Merge sort
С	Quick sort
D	Insertion sort
	•
Discuss	it
Question	. 12
	the worst case time complexity of insertion sort where position of the data to be inserted ated using binary search?
Α	N
В	NlogN
C	N^2
D	N(logN)^2
Discuss	it
Question	13
The tight	test lower bound on the number of comparisons, in the worst case, for comparison-based

sorting is	of the order of	
A	N	
В	N^2	
С	NlogN	
D	N(logN)^2	
Discuss i	E	
Question	14	
	fied merge sort, the input array is splitted at a position one-third of the length(N) of the at is the worst case time complexity of this merge sort? N(logN base 3)	
В	N(logN base 2/3)	
С	N(logN base 1/3)	
D	N(logN base 3/2)	
Discuss i		
Question	15	
	ting algorithm will take least time when all elements of input array are identical? typical implementations of sorting algorithms. Insertion Sort	

В	Heap Sort
С	Merge Sort
D	Selection Sort
Discuss i	t
Question	16
algorithm	string, each of length n, is sorted into lexicographic order using the merge-sort n. The worst case running time of this computation is (A) $O(nlogn$ (B) $O(n^2logn)$ (C) $logn)$ (D) $O(n^2)$
A	A
В	В
С	C
D	D
Discuss i	t
Question	17
O(n) time	ort, for sorting n elements, the (n/4)th smallest element is selected as pivot using an algorithm. What is the worst case time complexity of the quick sort? (A) θ (n) (B) θ (n^2) (D) θ (n^2 log n)
B	В

C c			
D D			
Discuss it			

Question 18

Consider the Quicksort algorithm. Suppose there is a procedure for finding a pivot element which splits the list into two sub-lists each of which contains at least one-fifth of the elements. Let T(n) be the number of comparisons required to sort n elements. Then

A = T(n) <= 2T(n/5) + n

 $T(n) \le T(n/5) + T(4n/5) + n$

 $T(n) \le 2T(4n/5) + n$

 $T(n) \le 2T(n/2) + n$

Discuss it

Question 19

Which of the following sorting algorithms has the lowest worst-case complexity?

A Merge Sort

Bubble Sort

Quick Sort

D	Selection Sort	
Discuss it		
Question 2	20	
Which sort	ting algorithms is most efficient to sort string consisting of ASCII characters?	
A	Quick sort	
В	Heap sort	
С	Merge sort	
D	Counting sort	
Discuss it Question 2		
The numbe	er of elements that can be sorted in $\Theta(logn)$ time using heap sort is	
(A) Θ (B) Θ (C) Θ (d) Θ	$egin{aligned} O(1) & O(\sqrt{logn}) & O(Logn/(LogLogn)) & O(Logn) &$	
A	A	
В	В	

C	C	
D	D	
Discuss i	t	
Question	22	
Which of	the following is true about merge sort?	
A	Merge Sort works better than quick sort if data is accessed from slow sequential memory.	
В	Merge Sort is stable sort by nature	
С	Merge sort outperforms heap sort in most of the practical situations.	
D	All of the above.	
Discuss i Question		
Given an	array where numbers are in range from 1 to n ⁶ , which sorting algorithm can be used to	
	e number in linear time?	
A	Not possible to sort in linear time	
В	Radix Sort	
С	Counting Sort	
D	Quick Sort	

Discuss it

Question 24

- A
- В
- C
- D

Discuss it

Question 25

Consider the Quicksort algorithm. Suppose there is a procedure for finding a pivot element which splits the list into two sub-lists each of which contains at least one-fifth of the elements. Let T(n) be the number of comparisons required to sort n elements. Then

- A = T(n) <= 2T(n/5) + n
- $T(n) \le T(n/5) + T(4n/5) + n$
- $T(n) \le 2T(4n/5) + n$
- $T(n) \le 2T(n/2) + n$

Discuss	it
Question	26
Let t1 an	a QuickSort Program to sort numbers in ascending order using the first element as pivot. Ind t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, Institutely. Which one of the following holds?
A	t1 = 5
В	t1 < t2
C	t1 > t2
D	t1 = t2
Discuss Question	
	e an array of n elements. Suppose you implement quicksort by always choosing the lement of the array as the pivot. Then the tightest upper bound for the worst case ance is
A	$O(n^2)$
В	O(nLogn)
C	Theta(nLogn)
D	$O(n^3)$

Discuss it

Question	28
aj. What	nutation a1an of n distinct integers, an inversion is a pair (ai, aj) such that i < j and ai > would be the worst case time complexity of the Insertion Sort algorithm, if the inputs are d to permutations of 1n with at most n inversions?
Α	Θ (n ²)
В	⊖ (n log n)
С	⊖ (n ^{1.5})
D	⊖ (n)
Discuss i	
Randomi	zed quicksort is an extension of quicksort where the pivot is chosen randomly. What is t case complexity of sorting n numbers using randomized quicksort?
Α	O(n)
В	O(n Log n)
С	O(n ²)
D	O(n!)
Discuss i	

Which of the following changes to typical QuickSort improves its performance on average and are generally done in practice.

- Randomly picking up to make worst case less likely to occur.
- 2) Calling insertion sort for small sized arrays to reduce recursive calls.
- 3) QuickSort is tail recursive, so tail call optimizations can be done.
- 4) A linear time median searching algorithm is used to pick the median, so that the worst case time reduces to O(nLogn)

Α	1 and	2

Discuss it

Question 31

Which one of the following is the recurrence equation for the worst case time complexity of the Quicksort algorithm for sorting n(≥ 2) numbers? In the recurrence equations given in the options below, c is a constant.

$$A = T(n) = 2T(n/2) + cn$$

$$T(n) = T(n-1) + T(0) + cn$$

$$T(n) = 2T (n-2) + cn$$

D	T(n) = T(n/2) + cn
Discuss i	t
Question	32
Which of	hat a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. the following most closely approximates the maximum input size of a problem that can I in 6 minutes?
A	256
В	512
С	1024
D	2048
Discuss i	t
	There are 32 questions to complete.
E	Tweet 0 8+1 0

Iconic One Theme | Powered by Wordpress