2. Лабораторная работа №2 (4 балла)

1. Циклы

2. Пользовательские функции

Примечание 1: Программу можно выполнить в виде консольного или оконного приложения.

Примечание 2: Выполнение кода с использованием методов и полей класса(ов) +1 бонусный балл.

Вариант 2-1

Безразмерная температура Tr рассчитывается по формуле Tr = T/Tc, где T – температура, K, Tc – критическая температура, K. Рассчитать Tr для CO, CO₂, CH₄ в интервале температур $100 - 200^{\circ}$ C с шагом 2.5 градусов, если Tc=132,9K; 304,2K; 190,6K соответственно.

- Оформить расчёт в виде функции.
- Входные параметры: T(°C/°K), Tc(K), названия веществ
- Названия веществ передавать как публичные свойства.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 2

Коэффициент сжимаемости Z рассчитывается по формуле $Z=Z^{(0)}+\omega Z^{(1)}$. (ω – фактор ацентричности).

		Значения Z ⁽⁰⁾ :		Значения Z ⁽¹⁾ :		
Pr	1.5	2.0	3.0	1.5	2.0	3.0
Tr						
2.0	0.9664	0.9599	0.9550	0.1133	0.1476	0.2069
3.0	1.0101	1.0153	1.0284	0.0828	0.1076	0.1529

Рассчитать коэффициент сжимаемости для CO в заданном интервале температур (2,0-3,0) и давлений (1,5-3,0), если его фактор ацентричности $\omega = 0.049$.

Рассчитать также реальные температуры и давления T, P, соответственно, учитывая Tr=T/Tc и Pr=P/Pc. Критические температура (Tc) и давление (Pc) для CO равны 132.9K, 34.5 атм. соответственно.

- Оформить расчёт в виде функции.
- Входные параметры: Тr, Pr, названия веществ.
- Выходные параметры: массивы Т, Р, Z(Т,Р)
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string
- Названия веществ передавать как публичные свойства.

Вариант 2 – 3

Для смеси газов критический объём Vc_m рассчитывается по формуле Ли – Кесслера:

$$V_{c_m} = 1/8 \sum_{i} \sum_{j} y_i y_j \left(V_{c_i}^{1/3} + V_{c_j}^{1/3} \right)^3$$

Рассчитать критические объёмы смеси СО, СО2, СН4 для заданного состава смеси (см. таблицу)

	Vc _i , см ³ /моль	ω	Tc, K	Рс, атм	Состав смеси (мольн. доли)
CO	93.1	0.049	132.9	34.5	0.1
CO_2	94.0	0.225	304.2	72.8	0.4
CH ₄	99.0	0.008	190.6	45.4	0.5

Рассчитать критические объёмы индивидуальных веществ по формуле:

 $V_{c_i} = (0.2905 - 0.085\omega_i)RT_{c_i}/P_{c_i}$ и сравнить их с заданными в таблице.

 Vc_i – критический объём индивидуальных компонентов, см³/моль.

Тсі – критическая температура, К.

Рсі – критическое давление, атм.

ω – фактор ацентричности.

R – универсальная газовая постоянная = 82,04, (когда P в атм.)

у_і – мольная доля і-го вещества

- Оформить расчёт в виде функции.
- **Входные параметры:** Vc_i, Vc_i, названия веществ.

• Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 4

Для смеси нормальных газов критическая температура Tc_m рассчитывается по формуле: $Tc_m = \sum_i y_i T_{c_i}$.

Рассчитать критические температуры (Tcm_{ij}) бинарных смесей CO, CO_2 , CH_4 . (т.е. смесей $CO - CO_2$, $CO - CH_4$ и $CO_2 - CH_4$) Критические температуры индивидуальных компонентов равны соответственно: $Tc_i=132.9K$; 304.2K; 190.6K.

Произвести расчёт для данных бинарных смесей при мольных долях компонентов y_j =0.3 и y_i =0.7;

Проверить, выполняются ли соотношение $0.5 < Tc_i/Tc_i < 2$

- Оформить расчёт в виде функции.
- Входные параметры: Тсі, Тсі, уі, названия веществ
- Названия веществ передавать как публичные свойства.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2-5

Для смеси газов критический фактор сжимаемости Zc_m рассчитывается по формуле:

$$\mathbf{Zc_m}$$
=0.291 – 0.08 $\mathbf{\omega}_{\mathbf{m}}$. Где фактор ацентричности смеси $\mathbf{\omega}_{\mathbf{m}} = \sum_{i} y_i \mathbf{\omega}_i$

Рассчитать критические факторы сжимаемости бинарных смесей CO, CO_2 , CH_4 если факторы ацентричности компонентов $\omega_i = 0.049$; 0.225; 0.008 соответственно.

Произвести расчёт для бинарных смесей (т.е. смесей $CO - CO_2$, $CO - CH_4$ и $CO_2 - CH_4$) при мольных долях обоих компонентов y_i =0.5;

- Оформить расчёт в виде функции.
- Входные параметры: ω_i, у_i, названия веществ.
- Названия веществ передавать как публичные свойства.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 - 6

Теплоёмкость газовой смеси в идеальногазовом состоянии рассчитывается как: $Cp_m^0 = \sum_i y_i Cp_i^0$. Рас-

считать теплоёмкость газовой смеси $CO + CO_2$ в интервале температур 100 - 200 °C с шагом 5 °C для мольных долей $y_{CO} = 0.1, 0.25, 0,5$. Индивидуальные теплоёмкости $Cp^0{}_i = A + BT + CT^2 + DT^3$. Т– температура, К. Коэффициенты даны в таблице ниже. Сумма мольных долей $y_{CO} + y_{CO2} = 1$

-	F 1 1		71 JCO JCO2		
		A	В	C	D
	CO	7.373	$-0.307 \cdot 10^{-2}$	$6.662 \cdot 10^{-6}$	-3.3037·10 ⁻⁹
	CO ₂	4.728	$1.754 \cdot 10^{-2}$	-1.338·10 ⁻⁵	4.097·10 ⁻⁹

• Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2-7

Рассчитать давление паров ацетона P_{vp} при температурах 273,4 — 373,4К с шагом 5 К используя уравнение Антуана: $\ln P_{vp} = A - \frac{B}{T+C}$ мм. рт. ст.

A=16.6513; B=2940.46; C=-35.93.

Прим. Экспериментальное значение при 273,4К равно 71,2 мм. рт. ст.

- Оформить расчёт в виде функции. В зависимости от заданного пользователем входного флага обеспечить вывод давления паров в мм.рт.ст, Па или атм.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Уравнение Риделя-Планка-Миллера для давления паров этилбензола имеет вид: $\ln(P_{\mathrm{Vpr}}) = -\frac{3.720}{T_{\mathrm{rr}}} * [1 - \mathrm{Tr}^2 + 0.544(3 + \mathrm{Tr})(1 - \mathrm{Tr})^3].$ Принимая во внимание, что безразмерная температура Tr=T(K)/Tc(K), критическая температура Tc=617.1K, $P_{Vpr}=Pvp/Pc$, где Pc=35.6 атм. найти давления паров этилбензола в интервале температур 50 – 200°C с шагом 10°C.

Проверить точность расчётов при t=74.1°C и 186,8°C, если экспериментальные значения равны 100 и 2494 мм. рт.ст., соответственно.

- Названия вещества передавать как глобальный параметр.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 - 9

Используя корреляцию Питцера и др. рассчитать теплоты парообразования ΔH_v пропионового альдегида и н-октана в интервале температур 40-180°C с шагом 10°C. Сравнить с литературными значениями 6760 (48°C) и 7254 (171 $^{\circ}\text{C})$ кал/моль, соответственно для альдегида и н-октана.

Вещество	Тс,К	ω
пропионовый альдегид	496	0,313
н-октан	568,6	0,394

Корреляция Питцера записывается как: $\Delta H_v/(RT_c) = 7.08(1-Tr)^{0.354} + 10.95\omega(1-Tr)^{0.456}$ где Tr -безразмерная температура (Tr = T(K)/Tc(K)), Tc -критическая температура (K), R – универсальная газовая постоянная R = 1.987 кал/моль· K, ω – фактор ацентричности

- Обеспечить вывод ΔH_v в Дж/моль и кал/моль в зависимости от выбора пользователя. (1 кал = 4,1868 Дж)
- Названия вещества передавать как глобальный параметр.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 10

Рассчитать вязкость (η) диоксида серы при низком давлении и температурах 40 – 140°C с шагом, задаваемым пользователем, используя уравнение Голубева:

$$\eta$$
, мк $\Pi = \begin{cases} \eta_c^* T_r^{0.965} & T_r < 1 \\ \eta_c^* T_r^{0.71+0.29/T_r} & T_r > 1 \end{cases}$, где η_c^* – вязкость при критической температуре, но низком давлении

$$\eta_c^* = \frac{3.5 M^{1/2} P_c^{2/3}}{T_c^{1/6}}$$
. Здесь М — молекулярная масса (64,063 г/моль), Рс — критическое давление, (77,8 атм), Тс —

критическая температура (430,8K), Tr – безразмерная температура, Tr=T(K)/Tc(K).

- Проверить точность расчёта, если при $t = 40^{\circ}$ C вязкость $\eta = 135$ мкП
- Оформить расчёт в виде функции. Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 11

Рассчитать вязкость (η) диоксида серы при низком давлении и температурах 40 – 140°C используя уравнение Тодоса для неполярных газов:

$$\eta \xi = 4.610 \cdot Tr^{0.618} - 2.04 \cdot e^{-0.449Tr} + 1.94 \cdot e^{-4.058Tr} + 0.1$$

где ξ – вязкость при критической температуре, но низком давлении $\xi = \frac{T_c^{1/6}}{M^{1/2}P_c^{2/3}}$. Здесь М – молекулярная

масса (64,063 г/моль), Рс – критическое давление, (77,8 атм), Тс – критическая температура (430,8К), Тг – безразмерная температура, Tr=T(K)/Tc(K).

- Проверить точность расчёта, если при $t=40^{\circ} \text{C}$ вязкость $\eta=135$ мкП
- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Рассчитать вязкость (η_L , сП) жидкого н-гептана при $200-250^{\circ}$ С используя корреляцию Лецу-Стила: $\eta_L \xi = (\eta_L \xi)^{(0)} + \omega(\eta_L \xi)^{(1)}$, где

 $(\eta_L \xi)^{(0)} = 0.015174 - 0.02135 \text{Tr} + 0.0075 \text{Tr}^2$

 $(\eta_L \xi)^{(1)} = 0.042552 - 0.07674 \text{Tr} + 0.0340 \text{Tr}^2$

где Tr – безразмерная температура = T(K)/Tc(K), Tc, Pc – критическая температура и давление, 540,2K, 27,0 атм., ω – фактор ацентричности (0,351), M – молекулярная масса, 100,205 г/моль,

$$\xi = \frac{T_c^{1/6}}{M^{1/2} P_c^{2/3}}$$

- Сравнить с экспериментальным значением 0,085 сП при температуре 210 °C
- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 - 13

Теплопроводность паров оксида азота при атмосферном давлении описывается формулой:

 $\lambda \cdot 10^3 = -2.42 + 0.114 \times T - 7.95 \cdot 10^{-5} \times T^2 + 4.85 \cdot 10^{-8} \times T^3$, Вт/(м·К). Сравнить данные расчёта по этой формуле с данными эксперимента (см. табл.) при температурах 200 - 300К

T, K	200	220	240	260	280	300
$\lambda \cdot 10^3$, BT/(M·K)	17,6	19,3	21,0	22,7	24,3	25,9

Теплопроводность аммиака при атмосферном давлении описывается формулой:

 $\lambda \cdot 10^3 = -2.46 + 0.0525 \times T + 1.43 \cdot 10^{-4} \times T^2 - 0.635 \cdot 10^{-7} \times T^3$, Вт/(м·К). Сравнить данные расчёта по этой формуле с данными эксперимента (см. табл.) при температурах 200 - 300К

II DIMIT SKOTTOPITMOTTE	<i>i</i> (0111. 14031.) 11	on reminepary p	421 200 3001			
T, K	200	220	240	260	280	300
$\lambda \cdot 10^3$, BT/(M·K)	13,25	15,33	17,50	19,74	22,05	24,44

- Оформить расчёт в виде подпрограмм.
- Обеспечить выбор пользователем расчётной функции в зависимости от вида вещества.
- Входные данные: массив температур, названия веществ, метод расчёта (опционально)
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вапиант 2 – 14

Теплопроводность (λ) жидкого метиламина рассчитывается по формуле:

 $\lambda \cdot 10^3 = A_0 + A_1 p$, Bт/(м·К) где

 $A_0 = 1316 - 5.692 \cdot T + 6.83 \cdot 10^{-3} T^2$;

 $A_1 = -8.89 \cdot 10^{-2} + 4.76 \cdot 10^{-3} \text{T} - 5.68 \cdot 10^{-7} \text{T}^2$.

р – давление, МПа

Рассчитать теплопроводность для интервала температур 300 - 350К и давлений 2 - 10 МПа. Сравнить с экспериментальными значениями $\lambda \cdot 10^3$ (см. табл.)

Попробовать использовать коэффициент $8.99 \cdot 10^{-6}$ вместо $-5.68 \cdot 10^{-7}$ при расчёте A_1 .

р, МПа	2	5	10
T,K			
300	224	226	229
310	210	212	216
320	196	199	204
330	184	187	193
340	173	176	183
350	163	167	174

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Справочник по теплопроводности жидкостей и газов / Н.Б. Варгафтик, Л.П. Филиппов, А.А. Тарзиманов, Е.Е. Тоцкий. – М.: Энергоатомиздат, 1990. – 352 с.

Рассчитать теплоты парообразования ΔHv_b для пропионового альдегида при температурах 300 - 330 K. Для расчёта использовать формулы Риделя и Джиаколоне. Сравнить их точность для расчёта при температуре кипения (T_b=321K) с экспериментальной (6760 кал/моль).

Формула Риделя:
$$\Delta H v_b = 1.093 RT_c \left[T_{b_r} \left(\frac{\ln P_c - 1}{0.930 - T_{b_r}} \right) \right]$$
, кал/моль

Формула Джиаколоне:
$$\Delta H v_b = R T_c \Delta Z v_b \Bigg[T_{b_r} \Bigg(\frac{\ln P_c}{1-T_{b_r}} \Bigg) \Bigg]$$
, кал/моль

Здесь R – универсальная газовая постоянная = 1,987 кал/(моль · К)

Тс – критическая температура, (496 К)

Рс – критическое давление, (47 атм)

 T_b - безразмерная температура кипения (T_b/T_c)

 $\Delta Z v_b$ – параметр. Принять равным 1.

- Оформить расчёт в виде функции.
- Обеспечить выбор пользователем расчётной функции.
- Входные данные: массив температур, названия веществ, метод расчёта (опционально)
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вапиант 2 - 16

Теплопроводность (λ) жидкого н-амилацетата рассчитывается по формуле:

$$\lambda \cdot 10^3 = A_0 + A_1 p + A_2 p^2$$
, Bт/(м·К) где

$$A_0 = 248 - 0.4695T + 2.889 \cdot 10^{-4}T^2$$
;

$$A_1 = -0.669 + 4.879 \cdot 10^{-3} \text{ T} - 4.86 \cdot 10^{-6} \text{ T}^2$$

$$A_1$$
= $-0.669 + 4.879 \cdot 10^{-3} \, T - 4.86 \cdot 10^{-6} T^2$. A_2 = $2.889 \cdot 10^{-3} - 1.852 \cdot 10^{-5} T + 2.263 \cdot 10^{-8} T^2$. р – давление, МПа

Рассчитать теплопроводность для интервала температур 300 – 380К и давлений 0.1 – 10 МПа. Сравнить с табличными значениями $\lambda \cdot 10^3$ (см. табл.)

р, МПа	0.1	5	10
T,K			
300	133	135	136
320	127	129	131
340	122	124	126
360	116	118	121
380	111	113	113

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 17

Рассчитать давление паров этилбензола P_{vp} при температурах 273 – 473К с шагом 10 К используя уравнение

Риделя:
$$\ln P_{vp_r} = A^+ - \frac{B^+}{T_r} + C^+ \ln T_r + D^+ T_r^6$$
 . Сравнить с экспериментом.

$$A^{+}=10,353$$
; $B^{+}=10,649$; $C^{+}=-5,136$, $D^{+}=0.2958$;

Безразмерная температура T_r : $T_r = T/T_c$, где критическая температура T_c для этилбензола равна 617,1 К. Безразмерное давление паров P_{vp_r} вычисляется как $P_{vp_r} = P_{vp}/P_{c,r}$ где Pc = 35.6 атм.

Экспериментальные значения P_{vp} при 74.1° C = 100 мм. рт. ст., при 186.8° C = 2494 мм. рт. ст

- Оформить расчёт в виде функции. В зависимости от заданного пользователем входного флага обеспечить вывод давления паров в мм. рт. ст, Па или атм.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вязкость растворов сахарозы (η, сП) рассчитывается по уравнению:

$$\lg \eta = 22,46x - 0,114 + \frac{30 - t}{91 + t} (1,1 + 43,1x^{1,25}),$$
 где

Где $x = \frac{CB}{1900 - 18CB}$; CB – концентрация чистого сахарного раствора, определённая высушиванием (г сухого вещества/г раствора), %; t – температура, ${}^{\circ}$ С

Рассчитать вязкости растворов сахарозы при интервале температур 10 - 50 °C с шагом 10 °C в интервале концентраций CB = 0 - 50% с шагом 2,5%

Сравнить с экспериментальными данными и оценить погрешность вычислений:

$$t=40^{\circ}\text{C}$$
; CB = 0% $\eta_{\text{эксп}}$ = 0,65 cП;

$$t=50^{\circ}\text{C}$$
; CB = 50% $\eta_{\text{эксп}}$ = 4,94 cП;

$$t=30^{\circ}\text{C}$$
; CB = 30% $\eta_{\text{эксп}}$ = 2,50 cП;

Примечание: Все числовые величины подставлять в формулы в тех размерностях, в которых они даны в условии!

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 19

Вязкость растворов сахарозы (η , сП) рассчитывается по уравнению:

$$\lg \eta = -1.52 + \frac{0.065 + x}{19.147T} \left(140845 - 4.4429 \cdot 10^7 \, \frac{T - T_0}{T^2} \right)$$
, где

Где $x = \frac{CB}{1900 - 18CB}$; CB – концентрация чистого сахарного раствора, определённая высушиванием (г сухого вещества/г раствора), % ; T – температура, °K, T_0 = 273.15 °K

Рассчитать вязкости растворов сахарозы при интервале температур 20 – 50 °C с шагом 5°C в интервале концентраций CB = 0 - 50% с шагом 10%

Сравнить с экспериментальными данными и оценить погрешность вычислений:

$$t=40^{\circ}\text{C}$$
; CB = 0% η_{akcu} = 0,65 cH;

$$t=50^{\circ}\text{C}$$
; CB = 50% $\eta_{\text{эксп}}$ = 4,94 c Π ;

$$t=30^{\circ}\text{C}$$
; CB = 30% $\eta_{\text{эксп}}=2,50 \text{ c}\Pi$;

Примечание: Все числовые величины подставлять в формулы в тех размерностях, в которых они даны в условии!

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 - 20

Для расчёта массовой доли растворённой сахарозы в чистом насыщенном растворе (СХ, %) предложено несколько формул (см. ниже). Определить наиболее подходящую формулу для расчёта в диапазоне температур $0 - 90^{\circ}$ C, если известны экспериментальные данные:

	<i>J</i> 1	,				7 1				
t,°C	0	10	20	30	40	50	60	70	80	90
CX, %	64,44	65,4	66,74	68,36	70,22	72,24	74,32	76,51	78,74	80,86

Расчётные формулы:

1.
$$CX = 64,496 + 0.0659625 \cdot t + 0.224306 \cdot 10^{-2} t^2 - 0.105729 \cdot 10^{-4} t^3$$

2
$$CX = 64.496 + 0.066027 \cdot t + 0.2241304 \cdot 10^{-2} \cdot t^2 - 0.10560396 \cdot 10^{-4} \cdot t^3$$

2. CX =
$$64,496 + 0,066027 \cdot t + 0,2241304 \cdot 10^{-2} \cdot t^2 - 0,10560396 \cdot 10^{-4} \cdot t^3$$

3. CX = $64,4724 + 8,1564207 \cdot 10^{-2} \cdot t + 2,3034122 \cdot 10^{-4} \cdot t^{2,8} - 2,6492852 \cdot 10^{-5} \cdot t^{3,3} + 2,4826037 \cdot 10^{-8} \cdot t^{4,5}$

4.
$$CX = 64.18 + 0.1348 \cdot t + 5.31 \cdot 10^{-4} t^2$$

5.
$$CX = 63.608 + 0.133 \cdot t + 7.22 \cdot 10^{-4} t^2$$

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Массовая доля растворенного вещества (w_i) рассчитывается как: $w_i = m_i/m_{pacmeopa}$, где m — масса вещества или раствора.

Мольная доля растворённого вещества (x_i) рассчитывается как: $x_i = n_i / \sum_i n_i$, где n_i – количество і-го вещества (моль). Создать программу для пересчёта из **массовых** долей в **мольные** и обратно для произвольных веществ и произвести пересчёт для массовых долей: 0.1, 0.2, 0.4, 0.5, 0.9 и мольных долей 0.05, 0.15, 0.4, 0.8, 0.95 на примере водных растворов серной и соляных кислот.

Учесть, что сумма массовых долей всех компонентов равна 1, как и сумма всех мольных долей.

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 22

Плотность водных растворов фосфорной кислоты рассчитывается по формуле:

$$d = A_0 + A_1W - (A_2 - A_3W) \times t$$

где d – плотность раствора кислоты г/см³, W – массовая доля H_3PO_4 , масс. %, t – температура °C. $A_0 = 0.68235$; $A_1 = 1.20811 \times 10^{-2}$; $A_2 = 1.2379 \times 10^{-3}$; $A_3 = 3.7938 \times 10^{-6}$.

Проверить точность расчёта по этой формуле, если экспериментальные данные представлены таблицей в зависимости от массовой доли H_3PO_4 , и температуры:

Wt. %	3 1) 1	J 1	Solution Ter
H_3PO_4	25	130	140
86.68		1.6141 ± 3	1.6028 ± 23
88.28	1.7261 ± 0	1.6324 ± 4	1.6237 ± 0
89.58		1.6479 ± 9	1.6387 ± 5
90.63		1.6594 ± 2	1.6508 ± 6
92.97		1.6894 ± 4	1.6806 ± 2
93.82		1.6992 ± 0	1.6918 ± 0
94.38	1.8010 ± 3	1.7080 ± 5	1.7000 ± 6
97.48	1.8390 ± 1	1.7478 ± 1	1.7395 ± 1
98.66	1.8522 ± 1	1.7607 ± 1	1.7528 ± 1
100.93	1.8818 ± 2	1.7908 ± 4	1.7830 ± 2
101.60	1.8875 ± 18	1.7973 ± 10	1.7890 ± 10

Источник: DAVID I. MacDONALD' and JAMES R. BOYACK, Density, Electrical Conductivity, and Vapor pressure of Concentrated Phosphoric Acid, JOURNAL OF CHEMICAL AND ENGINEERING DATA, VOL. 14, No. 3, JULY 1969, pp 380-384

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 23

Плотность водных растворов фосфорной кислоты рассчитывается по формуле:

$$d = A_0 + A_1W - (A_2 - A_3W) \times t$$

где d – плотность раствора кислоты г/см³, W – массовая доля H_3PO_4 , масс. %, t – температура °C. $A_0 = 0.68235$; $A_1 = 1.20811 \times 10^{-2}$; $A_2 = 1.2379 \times 10^{-3}$; $A_3 = 3.7938 \times 10^{-6}$.

Проверить точность расчёта по этой формуле, если экспериментальные данные представлены таблицей в зависимости от массовой доли H₃PO₄, и температуры:

CCBCII A	0,111 11,11 04, 11 10,111101	mijpbi.	
Wt.%	i Temp., "C.		
H_3PO_4	150	160	170
86.68	1.5940 ± 20		
88.28	1.6146 ± 8		
89.58	1.6301 ± 0	1.6215 ± 0	
90.63	1.6420 ± 2	1.6332 ± 4	1.6249 ± 4
92.97	1.6724 ± 7	1.6630 ± 1	1.6544 ± 3
93.82	1.6821 ± 0		1.6653 ± 0
94.38	1.6911 ± 6	1.6826 ± 5	1.6737 ± 1
97.48	1.7308 ± 1	1.7224 ± 1	1.7145 ± 3
98.66	1.7446 ± 2	1.7353 ± 2	1.7270 ± 0
100.93	1.7752 ± 2	1.7662 ± 0	1.7571 ± 2
101.60	1.7807 ± 13	1.7723 ± 16	1.7643 ± 13

Источник: DAVID I. MacDONALD' and JAMES R. BOYACK, Density, Electrical Conductivity, and Vapor pressure of Concentrated Phosphoric Acid, JOURNAL OF CHEMICAL AND ENGINEERING DATA, VOL. 14, No. 3, JULY 1969, pp 380-384

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 24

Удельная электропроводность водных растворов фосфорной кислоты в диапазоне 84-94 масс. % рассчитывается по формуле:

$$K = A_0 - A_1W - (A_2 - A_3W) \times t$$

где K – удельная электропроводность раствора кислоты $1/(Om \times cm)$, W – массовая доля H_3PO_4 , масс. %, t – температура ${}^{\circ}C$.

 $A_0 = 1.01365$; $A_1 = 1.21548 \times 10^{-2}$; $A_2 = 1.5447 \times 10^{-3}$; $A_3 = 6.42463 \times 10^{-5}$.

Проверить точность расчёта по этой формуле в указанном диапазоне концентраций, если экспериментальные данные представлены таблицей в зависимости от массовой доли H_3PO_4 , и температуры:

Table III. Specific Conductivity (1/Ohm-Cm.)

Composition, Wt. %			phoric Aci	d	,
H_3PO_4	130.00	140.12	150.25	160.92	170.42
85.10	0.4904	0.5299	0.5685		,
89.10	0.4747	0.5169	0.5589	0.6033	
90.45	0.4702	0.5133	0.5568	0.6020	0.6411
91.42 92.75	0.4665 0.4606	0.5098 0.5055	0.5536 0.5495	0.5996 0.5960	0.6397 0.6384

Источник: DAVID I. MacDONALD' and JAMES R. BOYACK, Density, Electrical Conductivity, and Vapor pressure of Concentrated Phosphoric Acid, JOURNAL OF CHEMICAL AND ENGINEERING DATA, VOL. 14, No. 3, JULY 1969, pp 380-384

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 25

Удельная электропроводность водных растворов фосфорной кислоты в диапазоне 95-99 масс. % рассчитывается по формуле:

$$K = -A_0 + A_1W - A_2W^2 - (A_3 - A_4W + A_5W^2) \times t$$

где K – удельная электропроводность раствора кислоты $1/(Om \times cm)$, W – массовая доля H_3PO_4 , масс. %, t – температура ${}^{o}C$.

$$A_0 = 3.45285$$
; $A_1 = 7.77924 \times 10^{-2}$; $A_2 = 4.50762 \times 10^{-4}$; $A_3 = 6.24637 \times 10^{-2}$; $A_4 = 1.387186 \times 10^{-3}$; $A_5 = 7.18336 \times 10^{-6}$.

Проверить точность расчёта по этой формуле в указанном диапазоне концентраций, если экспериментальные данные представлены таблицей в зависимости от массовой доли H_3PO_4 , и температуры:

Table III. Specific Conductivity (1/Ohm-Cm.)

Composition, Wt. %	,	a for Phos	,		
H_3PO_4	130.00	140.12	150.25	160.92	170.42
96.97	0.4369	0.4816	0.5280	0.5763	0.6184
97.96	0.4274	0.4717	0.5178	0.5664	0.6082
98.93	0.4137	0.4578	0.5029	0.5516	0.5936
99.57	0.4019	0.4461	0.4904	0.5386	0.5819
99.72	0.3986	0.4421	0.4872	0.5347	0.5774

Источник: DAVID I. MacDONALD' and JAMES R. BOYACK, Density, Electrical Conductivity, and Vapor pressure of Concentrated Phosphoric Acid, JOURNAL OF CHEMICAL AND ENGINEERING DATA, VOL. 14, No. 3, JULY 1969, pp 380-384

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 26

Давление паров (P_{vp} , кПа) 1-пентанола рассчитывается по формуле Антуана: $ln(P_{vp}) = A - B/(T + C)$ в интервале температур T = 318.15 - 403.15K, где A = 14.9571, B = 3231.225, C = -98.138. Сравнить её точность с формулой Вагнера: $ln(Pvp_r) = (I/T_r)(a\tau + b\tau^{I.5} + c\tau^{2.5} + d\tau^5)$, где $Pvp_r = P_{vp}/P_c$, $T_r = T/T_c$, $P_c = 3.897$ МПа, $T_c = 588.1$ K,

 $\tau = 1 - T_r$, a = -11.806, b = 12.0699, c = -20.477, d = 13.884. Экспериментальные значения даны в таблице ниже.

T, K	Рур (кПа)	Т, К	Pvp (кПа)

318.15	1.359	363.15	15.808
323.15	1.866	368.15	19.861
328.15	2.528	373.15	24.685
333.15	3.381	378.15	30.467
338.15	4.467	383.15	37.357
343.15	5.873	388.15	45.451
348.15	7.633	393.15	54.875
353.15	9.828	398.15	65.845
358.15	12.520	403.15	78.450

Источник: K. Nasirzadeh et.al., Vapor Pressure Determination of the Aliphatic C5 to C8 1-Alcohols, J. Chem. Eng. Data 2006, 51, 7-10

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 2 – 27

Рассчитать давление паров н-бутанола P_{vp} при температурах 10 - 140°C с шагом 2,5°C, используя

уравнение Риделя:
$$\ln P_{vp_r} = A^+ - \frac{B^+}{T_r} + C^+ \ln T_r + D^+ T_r^6$$
. Сравнить с экспериментом.

Коэффициенты уравнения Риделя вычисляются следующим образом:

$$A^{+}=-35Q$$
; $B^{+}=-36Q$; $C^{+}=42Q+\alpha_c$, $D^{+}=-Q$;
 $\Gamma_{RE}Q=0.0838$ (3.758 – α .)

Тде
$$Q = 0.0838 (3.758 - \alpha_c)$$

$$\alpha_{c} = \frac{0.315\psi_{b} + ln(P_{c})}{0.0838\psi_{b} - ln(T_{br})}; \qquad \psi_{b} = -35 + \frac{36}{T_{br}} + 42ln(T_{br})$$

Где Q = 0,0838 (3,758 – α_c) $\alpha_c = \frac{0,315\psi_b + ln(P_c)}{0,0838\psi_b - ln(T_{b_r})}; \qquad \psi_b = -35 + \frac{36}{T_{b_r}} + 42ln(T_{b_r}) - T_{b_r}^6$ Температура кипения при нормальном давлении $T_b = 390,9$ К. (T_{b_r} – безразмерная температура кипе- $HИЯ = T_b/T_c$)

Безразмерная температура T_r : $T_r = T/T_{c,r}$ где критическая температура T_c для н-бутанола равна <u>562,9 К.</u> Безразмерное давление паров P_{vp_r} вычисляется как $P_{vp_r} = P_{vp}/P_{c}$, где $P_{c} = 43.6$ атм.

Экспериментальные значения $P_{vp, \ \text{мм.рт.ст}}$ приведены в таблице (Источник: Бобылёв В. Н. Физические свойства наиболее известных химических веществ: Справочное пособие /РХТУ им. Д. И. Менделеева. -М., 2003):

Ī	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100°C	110°C	120°C	130°C	140°C
ĺ	1,8	4,5	10,7	18,6	33,1	59	100,6	163,6	255,6	387	572	830,7	1150,2	1518,9

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вариант 5 – 28

1. Рассчитать зависимость вязкости η , м Π а \times с жидкого масла PAG3 от температуры T и давления p по уравнению VFT (Vogel – Fulcher – Tammann) (3).

$$\eta = \exp(a_1 + a_2 p + (a_3 + a_4 p + a_5 p^2)) / (T - T_0)$$
(3)

Параметры уравнения (3) заданы в таблице:

,	SUMMITTED THE STATE OF THE STAT							
a_1	-1,528	a ₃	763,67999	a ₅	-0,00261			
a_2	0,00153	a_4	2,30351	T_0	175,93506			

Сравнить полученные расчётные значения с экспериментальными, заданными в таблице ниже. Экспериментальные значения вязкости масла PAG3, мПа×с

p/MPa	T/K				
	303.15	313.15	333.15	353.15	373.15
0.1	87.83	57.07	28.14	16.05	10.39
1	89.36	58.01	28.55	16.27	10.52
5	96.46	62.34	30.44	17.25	11.13
10	106.08	68.16	32.95	18.55	11.92
20	128.11	81.30	38.51	21.37	13.61
30	154.42	96.66	44.83	24.52	15.47
40	185.76	114.55	52.00	28.01	17.49
50	223.04	135.32	60.09	31.86	19.67
60	267.28	159.34	69.17	36.09	22.02

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Paredes, X., Fandiño, O., Pensado, A. S., Comuñas, M. J. P., & Fernández, J., Pressure–Viscosity Coefficients for Polyalkylene Glycol Oils and Other Ester or Ionic Lubricants. Tribology Letters, 45(1),2011, 89–100. doi:10.1007/s11249-011-9861-z

Вариант 5 – 29

1. Рассчитать зависимость вязкости η , мПа×с жидкого масла PAG3 от температуры T и давления p по уравнению VFT (Vogel – Fulcher – Tammann)(4-6).

$$\eta = exp(b_1 + b_2 p + D_A T_0(p)) / (T - T_0(p))$$
(4)

$$T_0(p) = c_1 + c_2 p + c_3 p^2 (5)$$

Параметры уравнений (4-5) заданы в таблице:

b_1	-1,64587	c_1	172,12865
b_2	0,00626	c_2	0,16221
$b_3=D_A$	4,6575	c_3	-0,00038

Сравнить полученные расчётные значения с экспериментальными, заданными в таблице ниже. Экспериментальные значения вязкости масла PAG3, мПа×с

p/MPa	T/K				
	303.15	313.15	333.15	353.15	373.15
0.1	87.83	57.07	28.14	16.05	10.39
1	89.36	58.01	28.55	16.27	10.52
5	96.46	62.34	30.44	17.25	11.13
10	106.08	68.16	32.95	18.55	11.92
20	128.11	81.30	38.51	21.37	13.61
30	154.42	96.66	44.83	24.52	15.47
40	185.76	114.55	52.00	28.01	17.49
50	223.04	135.32	60.09	31.86	19.67
60	267.28	159.34	69.17	36.09	22.02

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Paredes, X., Fandiño, O., Pensado, A. S., Comuñas, M. J. P., & Fernández, J., Pressure–Viscosity Coefficients for Polyalkylene Glycol Oils and Other Ester or Ionic Lubricants. Tribology Letters, 45(1),2011, 89–100. doi:10.1007/s11249-011-9861-z

Вариант 5 - 30

1. Рассчитать зависимость плотности ρ , $\kappa \Gamma/M^3$ масла PAG3 от температуры T, K и давления p, МПа по уравнению Тейта:

$$\rho(p,T) = \frac{A_0 + A_1 T + A_2 T^2}{1 - C \ln\left(\frac{B_0 + B_1 T + B_2 T^2 + p}{B_0 + B_1 T + B_2 T^2 + p_{ref}}\right)}$$

A_0	1232.7	B_0	452.16
A_1	-0.8404	B_1	-1.5087
A_2	0.1143*10 ⁻³	B_2	1.4034*10 ⁻³
С	0.08365		

Сравнить полученные расчётные значения с экспериментальными, заданными в таблице ниже. Экспериментальные значения плотности масла PAG3, кг/м³.

p/MPa	T/K				
	298.15	323.15	348.15	373.15	398.15
0.1	991.7	972.4	953.2	934.4	
0.3					915.4
1	992.3	973.1	953.9	935.1	916.2
5	994.8	976.0	957.1	938.6	920.2
10	998.0	979.4	961.0	942.9	925.0
20	1003.9	986.0	968.3	951.0	933.9
30	1009.5	992.2	975.2	958.4	942.0
40	1014.9	998.0	981.5	965.3	949.5
50	1019.9	1003.5	987.5	971.8	956.5
60	1024.8	1008.7	993.1	977.9	963.1

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Paredes, X., Fandiño, O., Pensado, A. S., Comuñas, M. J. P., & Fernández, J., Pressure–Viscosity Coefficients for Polyalkylene Glycol Oils and Other Ester or Ionic Lubricants. Tribology Letters, 45(1),2011, 89–100. doi:10.1007/s11249-011-9861-z

Вариант 2 – 31

Вычислить плотность этилового спирта (C_2H_5OH) и бензола (C_6H_6) по методу Гольдгаммера в диапазоне температур $10-70^{\circ}C$ с шагом 2,5 °C и оценить относительную погрешность расчёта, сравнив с табличными данными.

Плотность жидкости по методу Гольдгаммера (Голдхаммера) рассчитывается по формуле:

$$\rho = \rho_{\rm II} + \rho_1 (1 - {\rm Tr})^{0.3} (r/{\rm cm}^3)$$

где $\lg(\rho_{\Pi}/\rho_{\Pi K}) = 5(Tr-1)$ (Примечание. Возможно здесь ln. На расчёт влияет слабо в силу малости величины)

 $\rho_{\text{пк}} = M/(82.06\text{Tc}) - \text{плотность паров при температуре кипения (г/см}^3).$

Tr = T/Tc - безразмерная температура.

 $\rho_1 = 1$

Критические температуры этилового спирта и бензола Тс = 516,2 и 562,1К соответственно.

Молярная масса этилового спирта и бензола М = 46,069 и 78,114 г/моль соответственно.

Плотность этилового спирта и бензола. г/см³

	10°C	20°C	25°C	30°C	40°C	50°C	60°C	70°C	80°C
Этиловый	0.7979	0.7895	-	0.7810	0,7722	0,7633	0,7541	0,7446	0,7348
спирт									
Бензол	0.8896	0.8790	0.8737	0.8684	0.8576	0.8468	0.8358	0.8248	0.8137

Татевский В.М., Физико-химические свойства индивидуальных углеводородов, М.– 1960 стр. 91

Столяров Е.А., Орлова Н.Г., Расчёт физико-химических свойств жидкостей, Л.–1976, стр. 17.

Бобылёв В. Н. Физические свойства наиболее известных химических веществ: Справочное пособие /РХТУ им. Д. И. Менделеева. –М., 2003)

- Оформить расчёт в виде функции.
- Обеспечить вывод информации о версии программы и дате её изменения с использованием констант (переменных) типа string

Вапиант 2 – 32

Вычислить плотность ряда веществ по методу Эйкмана при 20°C. Формула метода Эйкмана:

$$\rho = (n_D^2 - 1)/[C(n_D + 0.4)], (\Gamma/\text{см}^3)$$
 где C=0.6.

n_D – коэффициент преломления.

Вычислить относительные погрешности для каждого вещества.

Вещество	Метанол	Этанол	Ацетон	Толуол	Бромбензол	Гексан
n_{D}	1,3288	1,3611	1,3591	1,4969	1,5601	1,3751