Logika és számításelmélet

Második zárthelyi dolgozat, A

1. feladat. [5 pont]

Tekintsük az alábbi f(n) és a g(n) függvényeket. Az $f(n) = \mathcal{O}(g(n)), f(n) = \Omega(g(n)), f(n) = \Theta(g(n))$ állítások közül melyik igaz? A választ indokold is!

- 1. $f(n) = n^2$ és a $g(n) = 10^{13}n$,
- 2. $f(n) = n^{\log n}$ és a $g(n) = 2^n$.
- 2. feladat. [5 pont] Mutasd meg az alábbi Turing-gép működését az 1011 és az 010 szavakon (írd le a gép konfigurációátmeneteit ezeken a szavakon)!

Általánosan, mikor áll meg q_i -ben az alábbi Turing gép (ha a gépet egy $u \in \{0,1\}^*$ szóval a bemenetén indítjuk el) és mi lesz akkor a gép szalagján? A választ indokold is!

3. feladat. [5 pont] Adj meg egy olyan (esetleg többszalagos) determinisztikus Turing-gépet, ami pontosan azokat a {0,1}-feletti szavakat ismeri fel, melyek páratlan hosszúak, az első és a középső betűjük 0, az utolső betűjük pedig 1.

Mekkora lesz a megadott gép időigénye?

- **4. feladat.** [5 pont] Vázlatosan ismertesd azt a Turing-gépet, ami az $L = \{u \in \{a, b, c\}\}^* \mid l_a(u) = l_b(u) = l_c(u)$ nyelvet dönti el. A leírásból derüljön ki, hogy milyen algoritmus szerint működik a gép és hogyan manipulálja a szalagjait. Hogyan módosítanád a megadott gépet ahhoz, hogy az L nyelv eldöntése logaritmikus tárral működjön?
- 5. feladat. [5 pont] Adj meg egy olyan három dominóból álló dominokészletet, amelynek van a Post Megfelelkezési Probléma szerint megoldása, de ha a készletből elvesszük a legelső dominót, akkor a készletnek már nem lesz megoldása! A megoldást igazold is!
- **6. feladat.** [5 pont] Legyen $\langle M, w \rangle$ egy tetszőleges Turing-gép és bemenet páros. Adj meg egy olyan M' Turing-gépet, ami pontosan akkor fogad el minden bemenetet, amikor M elfogadja w-t. Ezek alapján eldönthető-e az $L = \{\langle N \rangle \mid N \text{ elfogad minden bemenetet} \}$ nyelv. A választ indokold is!