Chapter 7 – Kinetics: Rates and Mechanisms

Super Problem

$$X(g) + 2 Y(g) \rightarrow Z(g)$$

The reaction represented above was studied at 25°C. The data collected are shown in the table below.

Experiment	[X]	[Y]	Initial rate of formation of Z (mol L ⁻¹ sec ⁻¹)
1	0.200	0.200	1.20×10^{-5}
2	0.200	0.400	2.40×10^{-5}
3	0.100	0.200	6.00×10^{-6}

- (a) Calculate the initial rate of disappearance of substance Y in Experiment 1.
- (b) Determine the order of the reaction with respect to each reactant. Show your work.
 - (i) X

(ii) Y

- (c) Write the rate law for the reaction consistent with part B.
- (d) Calculate the value of the rate constant, k. Be sure to include proper units.

(e)	In a closed 2.50 L reaction	vessel at 22°C	, 0.0254 mole	of substance X	was reacted	with
	0.0495 mol Y.					

(i) Determine the limiting reactant. Justify your answer mathematically.

- (ii) Calculate the number of moles of Z formed.
- (iii) Calculate the total pressure in the flask at the completion of the reaction.

(f) Three possible mechanisms for this reaction are shown below.

Mechanism 1	Mechanism 2	Mechanism 3		
$Y + Y \Rightarrow D$ (fast) $X + D \rightarrow Z$ (slow)	$ 1) + Y \rightarrow G$ (fast)	$X + Y \rightarrow D$ (slow) $Y + D \rightarrow Z$ (fast)		

(i) Select the one most consistent with the experimental data. Justify your choice by writing a rate law for each of the three mechanisms.

(ii) Identify substance D in the mechanisms shown above as an intermediate or a catalyst. Justify your answer.

- (g) The following diagram shows the energy of the reaction as the reaction progresses.
 - (i) Clearly label the activation energy for the forward reaction.
 - (ii) Clearly label the enthalpy change for the reaction.
 - (iii) On the diagram draw a second energy curve showing the effect of a catalyst on the reaction.

(h) The collision between X and Y occur with enough energy to overcome the activation energy barrier, E_a, however no products are formed. Identify and explain one other factor that affects whether the collision will result in a reaction.