

East West University Department of Computer Science and Engineering Course Outline Summer 2025 Semester

Course: CSE209/ICE109 Electrical Circuits (Section 1)

(Credits and Teaching Scheme							
		Theory	Laboratory	Total				
	Credits	3	1	4				
	Contact	2.5 Hours/Week for 15	2 Hours/Week for	4.5 Hours/Week for 15				
	Hours	Weeks + Final Exam in the	15 Weeks	Weeks + Final Exam in the				
		16 th Week		16 th Week				

Prerequisite

None

Instructor Information

Instructor: Dr. Sarwar Jahan

Associate Professor, Department of Computer Science and Engineering,

East West University, Bangladesh.

Office: Room # 444 **Tel. No.**: 165 (ext.)

E-mail: sjahan@ewubd.edu

Class Routine and Office Hour

<u>Day/Time</u>	08:00-10:00	10:10-11:40	11:50-01:20	01:30-03:00
Sunday	Office Hours	CSE251/ICE213 Section: 3 Room: FUB-303	CSE251/ICE213 Section: 4 Room: 109	
Monday		Office Hours	CSE209/ICE109 Section: 1 Room: 112	CSE251/ICE213[LAB] Section: 4 Room: 547 01:30-03:30
Tuesday	Office Hours	CSE251/ICE213 Section: 3 Room: FUB-303	CSE251/ICE213 Section: 4 Room: 109	CSE209/ICE109[LAB] Section: 1 Room: 548 01:30-03:30
Wednesday		Office Hours	CSE209/ICE109 Section: 1 Room: 112	
Thursday	Office Hours	CSE251/ICE213 [LAB] Section: 3 Room: 449 10:10-12:10		

Course Objective

This course provides the students with fundamental knowledge of electrical circuits and various techniques of analyzing them. This course also provides hands-on experience in building and testing electrical circuits. Knowledge of this course will be needed as prerequisite knowledge for future courses such as CSE251 Electronic Circuits, CSE345 Digital Logic Design, CSE350 Data Communications, CSE360 Computer Architecture, CSE442 Microprocessor and Microcontroller, and CSE490 VLSI design.

Knowledge Profile

K1: Theory-based natural sciences

K3: Theory-based engineering fundamentals

Learning Domains

Cognitive - C2: Understanding, C3: Applying Psychomotor - P2: Manipulation, P3: Precision

Affective - A2: Responding

Program Outcomes (POs)

PO1: Engineering Knowledge PO2: Problem Analysis

Complex Engineering Problem Solution

EP1: Depth of knowledge required EP2: Range of conflicting requirements

Complex Engineering Activities

None

Course Outcomes (COs) with Mappings

After completion of this course, students will be able to:

СО	CO Description	PO	Learning Domains	Knowledge Profile	Complex Engineering Problem Solving/ Engineering Activities
CO1	Discuss and use the concepts of electrical circuit elements, circuit variables, circuit laws, and circuit combinations for solving DC and AC circuits.	PO1	C2, C3	K1	-
CO2	Examine different circuit analysis techniques for DC circuit solutions.	PO2	С3	K3	-

CO3	Examine different circuit	PO2	C3	K3	-
	analysis techniques for AC				
	circuit solution.				
CO4	Use analytical, software, and	PO1	C3	K1, K3	EP1, EP2
	hardware tools and techniques;		P2, P3		
	perform and demonstrate		A2		
	skills; and write report for				
	designing, building, and testing				
	electrical circuits.				

Course Topics, Teaching-Learning Method, and Assessment Scheme

Course Topic	Teaching- Learning Method	СО	Mar Cogn Lear Lev	itive ning	CO Mark	Exam (Mark)
			C2	C3		
Basic Concepts of DC circuit, charge, and current, voltage, power, and energy, Circuit elements. Ohm's Law, Kirchhoff's Voltage Law, Kirchhoff's Current Law, Series-Parallel connections, Voltage and Current Division, and Wye-delta Transformations.	Lecture, Class Discussion, Discussion outside class with Instructor/TA	CO1	5	5	10	Mid Semester Exam (30)
DC Circuit Analysis: Nodal method (including independent and dependent sources, Supernode analysis).	Do	CO2		6	6	
DC Circuit Analysis: Mesh method (including independent and dependent sources, Supermesh analysis).	Do	CO2		6	6	
DC Circuit Analysis: Superposition, Source Transformation	Do	CO2		8	8	
DC Circuit Analysis: Thevenin and Norton's equivalents, Maximum power transfer	Do	CO2		10	10	Final Exam (30)

Basic Concepts of AC circuit, Sinusoids, Phasors, Phasor relationships for Circuit Elements, Impedance and admittance. Kirchhoff's laws in Frequency domain, Impedance Combinations.	Do	CO1	5		5	
AC Circuit Analysis: Superposition, Source Transformation, Thevenin and Norton equivalents, Nodal and Mesh Analysis. Instantaneous and average power; Maximum average power transfer, Effective or RMS value, apparent power and power factor, Complex power.	Do	CO3		15	15	

Laboratory Experiments and Assessment Scheme

Experiment	Teaching- Learning Method	СО	Mark of Cognitive Learning Level	Mark of Psychomotor Learning Levels		Mark of Affective Learning Level	CO Mark
			С3	P2	Р3	A2	
Introduction to Circuit Elements and Variables	Preparing Pre-Lab Report, Lab Experiment, and Result Analysis	CO4					
Series DC Circuit and Verification of Kirchhoff's Voltage Laws	Do	CO4					
Parallel DC Circuit and Verification of Kirchhoff's Current Laws	Do	CO4					Experiments
Bias Point Detail Analysis	Do	CO4					

of DC Circuit with Independent and Dependent Sources Using PSpice Schematics.							
Verification of Superposition Theorem	Do	CO4					
Verification of Thevenin's theorem	Do	CO4					
DC Circuit Analysis in PSpice using Source and Resistance Sweep	Do	CO4					
Experimental Study of Sinusoids and Their Characteristics	Do	CO4					
AC Circuit Analysis using PSpice Schematics	Do	CO4					
Total Lab Performance		CO4	4	1	0	0	5
Lab Exam		CO4	7	1	1	1	10
Total			11	2	1	1	15

Mini Project

Mini Teaching- CO EP/ Project Learning Method EA	Mark of Cognitive Learning Level	Mark of Psychomotor Learning Levels	Mark of Affective Learning Level	CO Mark	
--	---	--	---	------------	--

				С3	P2	Р3	A2	
Mini Project including Report and Presentation	Group-based, moderately complex electrical circuit building for practical application with report writing and presentation	CO4	EP1, EP2	7	1	1	1	10

Overall Assessment Scheme

Assessment Anno		CO				PO Marks		
Assessment Area	CO1	CO2	CO3	CO4	PO1	PO2		
Class Test/Quiz	5	5	5		5	10		
Mid Semester Exam	10	20			10	20		
Final Exam	5	10	15		5	25		
Laboratory Performance and Lab Exam				15	15			
Mini Project				10	10			
Total	20	35	20	25	45	55		

Teaching Materials/Equipment

Textbook:

1. Charles K. Alexander and Matthew N. O. Sadiku, *Fundamentals of Electric Circuits*, 5th Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2008.

Teaching-Learning Method:

Lectures, Discussions, Lab Exercises, and post-lab assignments

Lab Manual:

Lab manual will be provided.

Mini Project Description:

Mini-project description will be provided.

Equipment/Software:

Circuit trainer board, Power supply, and PSpice Software.

Grading System

Marks (%)	Letter Grade	Grade Point
80% and above	A+	4.00
75% - 79%	A	3.75
70% - 74%	A-	3.50
65% - 69%	B+	3.25
60% - 64%	В	3.00
55% - 59%	B-	2.75
50% - 54%	C+	2.50
45% - 49%	C	2.25
40% - 44%	D	2.00
Less than 40%	F	0.00

Exam Dates

Section	Class Slot	Mid Semester Exam	Final
1	MW	30 July 2025 (W)	10 September 2025 (W)

^{**}As per the university decision Exam Dates may change.

Academic Code of Conduct

Academic Integrity:

Any form of cheating, plagiarism, personification, or falsification of a document as well as any other form of dishonest behavior related to obtaining academic gain or the avoidance of evaluative exercises committed by a student is an academic offense under the Academic Code of Conduct and may lead to severe penalties as decided by the Disciplinary Committee of the university.

Special Instructions:

- Students are expected to attend all classes and examinations. A student MUST have at least 80% class attendance to sit for the final exam.
- Students will not be allowed to enter the classroom after 20 minutes of the starting time.
- For plagiarism, the grade will automatically become zero for that exam/assignment.
- Normally there will be **NO** make-up exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student misses any exam, the student MUST get approval for a makeup exam by written application to the Chairperson through the Course Instructor within 48hours of the exam time. Proper supporting documents in favor of the reason for missing the exam have to be presented with the application.

- For the final exam, there will be NO makeup exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student misses the final exam, the student MUST get the approval of Incomplete Grade by written application to the Chairperson through the Course Instructor within 48 hours of the final exam time. Proper supporting documents in favor of the reason for missing the final exam have to be presented with the application. It is the responsibility of the student to arrange an Incomplete Exam within the deadline mentioned in the Academic Calendar in consultation with the Course Instructor.
- All mobile phones MUST be turned to silent mode during class and exam periods.
- There is zero tolerance for cheating in exams. Students caught with cheat sheets in their possession, whether used or not writing on the palm of the hand, back of calculators, chairs, or nearby walls; copying from cheat sheets or other cheat sources; copying from other examinees, etc. would be treated as cheating in the exam hall. The only penalty for cheating is expulsion for several semesters as decided by the Disciplinary Committee of the university.

Course	instructor