l'Ingénieur

Activation

Activation

Patrick Dupas, http://patrick.dupas.chez-alice.fr/.

Savoirs et compétences :

- ☐ Res2.C6: stabilité des SLCI: position des pôles dans le plan complexe
- Res2.C7: stabilité des SLCI: marges de stabilité (de gain et de phase)

Exercice 1 - Réponse impulsionnelle (entrée Dirac)

Question Pour chaque cas déterminer si la réponse est celle d'un système stable, instable ou juste (quasi) stable.

Exercice 2 - Pôles de la FTBF

On donne les pôles des FTBF de plusieurs systèmes :

1.
$$-1, -2;$$

2. $-3, -2, 0;$
3. $-2 + j, -2 - j, 2j,$
 $-2j;$
8. $2, -1, -3;$

7.
$$-1 + j$$
, $-1 - j$;

1

$$-2j;$$
4. $-2+3j, -2-3j, -2;$

8.
$$2, -1, -3;$$

On donne ci-dessous les lieux de transferts de plusieurs FTBO. Déterminer, à l'aide du critère du Revers si les systèmes sont stables en BF.

Question Pour les systèmes stables déterminer les marges de gain et de phase.

Exercice 4 – Étude de la stabilité

• Caractériser la stabilité d'un système à partir de la FTBO.

• La marge de gain est supérieure à 10 dB et que la marge de phase est supérieure à 45 °.

On donne le schéma bloc suivant :

On a
$$K = 1$$
, $\tau = 0$, 1 et $G = 20$.

Question 1 Déterminer l'erreur statique et l'erreur de traînage.

Question 2 Effectuer les tracés des diagrammes de Bode de la FTBO.

Question 3 Déterminer graphiquement les marges de gains et de phase.

Question 4 Confirmer ces résultats par le calcul.

Question 5 Conclure par rapport au cahier des charges.

Sciences Industrielles de

l'Ingénieur

Activation

Activation

Patrick Dupas, http://patrick.dupas.chez-alice.fr/.

Savoirs et compétences :

- ☐ Res2.C6: stabilité des SLCI: position des pôles dans le plan complexe
- Res2.C7: stabilité des SLCI: marges de stabilité (de gain et de phase)

Exercice 1 – Réponse impulsionnelle (entrée Dirac)

Question Pour chaque cas déterminer si la réponse est celle d'un système stable, instable ou juste (quasi) stable.

Exercice 2 – Pôles de la FTBF

On donne les pôles des FTBF de plusieurs systèmes :

Question Pour chaque cas déterminer si la réponse est celle d'un système stable, instable ou juste (quasi) stable.

Exercice 3 – Applications du critère du Revers

Question On donne ci-dessous les lieux de transferts de plusieurs FTBO. Déterminer, à l'aide du critère du Revers si les systèmes sont stables en BF.

Question Pour les systèmes stables déterminer les marges de gain et de phase.

Exercice 4 – Étude de la stabilité

On a K = 1, $\tau = 0$, 1 et G = 20.

Question 6 Déterminer l'erreur statique et l'erreur de traînage.

$$\begin{aligned} &\textbf{Correction} \quad \text{Ici on a } \varepsilon(p) = \frac{E(p)}{1 + FTBO(p)}. \\ &\textbf{Erreur statique (entrée échelon)} : \varepsilon_s = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} p \frac{1}{p} \frac{1}{1 + \frac{20}{(1 + 0, 1p)p}} = 0 \\ &\textbf{Erreur trainage (entrée rampe)} : \varepsilon_t = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} p \frac{1}{p^2} \frac{1}{1 + \frac{20}{(1 + 0, 1p)p}} = 1/20 \end{aligned}$$

Question 7 Effectuer les tracés des diagrammes de Bode de la FTBO.

Question 8 Déterminer graphiquement les marges de gains et de phase.

Correction

Question 9 Confirmer ces résultats par le calcul.

Correction

La phase ne coupe jamais l'axe des abscisses. Ainsi, La marge de gain n'est pas définie (elle est infinie). Pour déterminer la marge de phase analytiquement :

- 1. On cherche ω_c tel que $G_{\text{dB}}(\omega_c) = 0$;
- 2. On calcule $\varphi(\omega_c)$;

3. La marge de phase est de $\varphi(\omega_c)-(-180)$. Cherchons ω_c tel que $G_{\mathrm{dB}}(\omega_c)=0$. On a $FTBO(j\omega)=\frac{20}{(1+0,1j\omega)j\omega}=\frac{20}{j\omega-0,1\omega^2}$. $20\log|FTBO(j\omega)|=20\log 20-20\log \sqrt{\omega^2+0,01\omega^4}=20\log 20-20\log \omega\sqrt{1+0,01\omega^2}$. $G_{\mathrm{dB}}(\omega_c)=0 \Leftrightarrow 20=\omega_c\sqrt{1+0,01\omega_c^2} \Leftrightarrow 400=\omega_c^2\left(1+0,01\omega_c^2\right)$ On pose $x=\omega_c^2$ et on a : $400=x(1+0,01x)\Leftrightarrow x^2+100x-40000=0$. On a donc $\Delta=412,3^2$ et $x_{1,2}=\frac{-100\pm412,3}{2}$ on conserve la racine positive et $x_1=156,15$ et $\omega_c=12,5\,\mathrm{rad}\,\mathrm{s}^{-1}$. $\varphi(\omega_c)=\mathrm{arg}(20)-90-\mathrm{arg}\left(1+0,1\,j\omega_c\right)=0-90-\mathrm{arctan}(0,1\omega_c)=0-90-51,34=-141,34^\circ$. La marge de phase est donc de $38,66^\circ$.

Question 10 Conclure par rapport au cahier des charges.

Correction Le système ne sera pas stable vis-à-vis du cahier des charges.

Pour $\tau = 0,005$

