Security

3. Digital Certificates & Transport Layer Security

Digital Certificates

(Public) Key Management

• Q. When you receive a public key, how can you be sure that it is authentic?

• A. If the received public key is digitally signed by someone whose own public key you have and are sure is correct and you trust them to sign keys responsibly.

Digital Certificate – components

- Most important components of a digital certificate:
 - Subject (owner)
 - The name on the certificate i.e. to whom it was issued
 - Subject's public key
 - The purpose of a certificate is to validate the public key of the subject
 - Issuer (Certificate Authority)
 - The identity of entity that signed the certificate
 - Issuer's digital signature
 - Serial number
 - Unique identifier for checking against revocation lists
 - Validity period
 - Start date; expiry date

Chain of trust

- Can build up a chain of trusts with linked digital certificates
- This is the basis of what are known as Public Key Infrastructures (PKIs)

Verification using chain of trusts

Chain of trust

- The buck must stop somewhere. Ultimately, at the end of the chain, you must trust a public key that is not signed (usually belonging to some recognised "authority").
 - In your browser, this is one of the trusted root certificate authorities

Certificate Expiry & Revocation

- A Digital Certificate doesn't last for ever
- It normally expires after a certain time and must be renewed
- It may be revoked:
 - If the subject's private key is compromised
 - If there is a change in status of the subject
 - If the CA's private key is compromised
- Revoked Certificates are placed on a Certificate Revocation List (CRL)

Certificate Revocation

- An issue is where to find CRL to check if cert has been revoked
 - One solution is to provide as part of certificate URL pointing to CRL
 - Another solution is
 OCSP (online certificate status protocol) which allows real time queries.
 - Another is to just rely on local list which is refreshed by browser updates (Chrome does this)

Transport Layer Security

Securing Web content

- HTTP by itself doesn't provide any security
- The approach to securing web content is to:
 - Leave HTTP as it is
 - Add security just above the transport layer
- This has been variously known as
 - Secure Socket Layer (SSL)
 - Originated by Netscape
 - Transport Layer Security (TLS)
 - Vendor-neutral standard
 - RFC 5246 (TLS 1.2)

Reminder: TCP/IP (Internet) Protocol Stack

TLS Requirements

- Client contacts Server (possibly for the first time)
 - Spontaneity
- Client conveys secret info to Server
 - Confidentiality
- Authentication Who's on the other side?
 - Server Authentication required
 - Client authentication optional
- User doesn't not want to know about security
 - Transparency
 - This property means that other protocols can also work over SSL/TLS (it's not tied to HTTP)

Recognising a TLS (SSL) page

Get help with Moodle

password?

TLS (SSL) Protocol Overview

- TLS (SSL) has 2 layers of protocols:
- One layer is a set of protocols for setting up a session, changing parameters, etc
 - TLS Handshake Protocol
 - TLS Change Cipher Spec Protocol
 - TLS Alert Protocol
- The other is the "workhorse", doing the encryption and authentication
 - TLS Record Protocol

TLS Architecture

TLS Handshake Protocol

- Agree TLS/SSL version & cipher suite (algorithms and settings)
- 2. Client authenticates server using its certificate; server optionally authenticates client.
- 3. Client generates random session key and shares with server by encrypting it with server's public key (from its cert)
- Client and server can now communicate using shared session key (for symmetric encryption)

TLS Cipher Suites and Alerts

- An official registry of cipher suites and alert types is maintained by the Internet Assigned Names and Numbers Authority (IANA)
 - http://www.iana.org/assignments/tls-parameters/

Is TLS secure?

- So much relies on TLS nowadays that it is fair to ask whether it can be considered secure
- The answer is yes and no
 - Yes, the protocol seems to be secure if used correctly
 - However it is very fragile any of a large number of conditions can break it (completely)

Is TLS secure?

TLS fails if:

- One "bad" certificate authority is added to the client's list of trusted CAs
- One of the "good" CAs is careless or unlucky
- Weak algorithms are used
- Key generation is weak (often due to bad pseudo-random number generator)
- One side tricks the other into "stepping down" to use a weak algorithm or key length (e.g. MD5, 512 bit RSA).
 This is possible as TLS allows the two sides to negotiate these.
- Client doesn't check for certificate revocation

Is TLS secure?

- TLS fails if (continued):
 - Client or server is modified by malware
 - Client or server has software bugs (e.g. Heartbleed)
 - Client is modified by system administrator to use company's CA list
 - Pages contain a mix of secure and insecure content (frames, images, etc)
 - Users fail to understand security warnings and/or are conditioned to ignore them
 - Server fails to renew certificates