Homework 2

Maksim Levental MAP 4102

January 29, 2014

Problem 1. Using one-step analysis, compute ρ_{AA} for an unbiased random walk on the following graph:

Solution.

$$\rho_{AA} = \rho_{BA} \cdot p(A, B) + \rho_{CA} \cdot p(A, C) = \rho_{BA} \cdot \frac{1}{2} + \rho_{CA} \cdot \frac{1}{2}$$

$$\rho_{CA} = \rho_{AA'} \cdot p(C, A) + \rho_{BA} \cdot p(C, B) = 1 \cdot \frac{1}{2} + \rho_{BA} \cdot \frac{1}{2}$$

$$\rho_{BA} = \rho_{DA} \cdot p(B, D) = 0 \cdot 1 = 0$$

Note that ρ_{AA} and $\rho_{AA'}$ are different; ρ_{AA} is the probability of hitting A for some time $n \geq 1$ and $\rho_{AA'}$ is the probability of hitting A for sometime $n \geq i$ given that $X_i = A$. Hence

$$\rho_{CA} = 1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} = \frac{1}{2}$$

$$\rho_{AA} = 0 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

Problem 2. Compute ρ_{00} for an unbiased random walk on the following graph

Solution. We claim that

$$\rho_{00} = 1 - \frac{1}{M - 1}$$

where M is the number of nodes, or $1-\frac{1}{N}$ if we abide by the numbering scheme above.

Proof. For arbitrary state x, with the exception of ρ_{00} and ρ_{N0} ,

$$\rho_{x0} = \rho_{(x-1)0} \cdot \frac{1}{2} + \rho_{(x+1)0} \cdot \frac{1}{2}.$$

Summing ρ_{x0} and $\rho_{(x+1)0}$ we get

$$\rho_{x0} + \rho_{(x+1)0} = \rho_{(x-1)0} \cdot \frac{1}{2} + \rho_{(x+1)0} \cdot \frac{1}{2} + \rho_{(x)0} \cdot \frac{1}{2} + \rho_{(x+2)0} \cdot \frac{1}{2}.$$

Rearranging, combining like terms, and cancelling the common factor of $\frac{1}{2}$ yields

$$\rho_{x0} - \rho_{(x-1)0} = \rho_{(x+2)0} - \rho_{(x+1)0} .$$

Hence

$$\rho_{20} - \rho_{10} = \rho_{40} - \rho_{30} = \dots = \rho_{N0} - \rho_{(N-1)0}.$$

But $\rho_{N0} = 0$, because it's an absorbing state. Hence

$$\rho_{20} - \rho_{10} = \rho_{40} - \rho_{30} = \dots = -\rho_{(N-1)0}$$

$$\rho_{10} - \rho_{20} = \rho_{30} - \rho_{40} = \dots = \rho_{(N-1)0}.$$

This shows that ρ_{x0} decreases to zero in increments of $\rho_{(N-1)0}$. Let $\rho_{(N-1)0} = K$ for some yet to be determined constant K and M be the number of nodes. Hence $\rho_{10} = (M-2) \cdot K$ (M-2) incremental "subtractions" occur state 1 and state M). But then

$$\rho_{10} = (M-2) \cdot K = \rho_{00'} \cdot \frac{1}{2} + \rho_{20} \cdot \frac{1}{2} = 1 \cdot \frac{1}{2} + \rho_{20} \cdot \frac{1}{2}$$

where $\rho_{00'} = 1$ because $\rho_{00'}$ is the probability of hitting 0 for sometime $n \geq i$ given that $X_i = 0$. Since similarly $\rho_{20} = (M-3) \cdot K$ it follows that

$$(M-2) \cdot K = 1 \cdot \frac{1}{2} + \frac{1}{2}(M-3) \cdot K$$

$$K = \frac{1}{M - 1}$$

Hence $\rho_{10} = (M-2)\frac{1}{M-1} = 1 - \frac{1}{M-1}$ and

$$\rho_{00} = \rho_{10} = 1 - \frac{1}{M-1} = 1 - \frac{1}{(N+1)-1} = 1 - \frac{1}{N}$$

.

For the instances where M=2,3,4 (corresponding to N=1,2,3) $\rho_{00}=0,\frac{1}{2},\frac{2}{3}$. In the limit as $N\to\infty$ the probability of returning is clearly 1.

Numerical computation confirms this:

randomwalk.py

```
1 import sys
  from random import choice
  direction = [1, -1]
5 | \text{returns} = 0.
6 | k = int(sys.argv[2])
7 \mid n = int(sys.argv[1])
8 for i in range(k):
    step = 1
    while step != 0 and step !=n:
10
       step += choice(direction)
11
    if(step = 0):
12
      returns += 1
13
14
15 print returns/k
```

```
$ python randomwalk.py 1 10000
$ 0.0
$ python randomwalk.py 2 10000
$ 0.4986
$ python randomwalk.py 3 10000
$ 0.6733
$ python randomwalk.py 10 10000
$ 0.9017
```