Learning Probabilistic Automata

Mathias M. Andersen Kent M. Caspersen Anders R. Nielsen Juraj Kolčák Guillaume Grippari Theis Christensen

MODELS

 $n \ grams \approx Markov \ chains \leq DPFA... \leq$

 \leq HMM \approx PFA \leq

 \leq Multiplicity automata

PAutomaC

- ▶ 2012 online PFA learning competition.
- All results and training data published after competition finished.
- Large amount of data available artificially generated by several types of models (Markov chains, DPFA, PFA, HMM).
- ► The generator models vary in number of states/symbols and density of the transitions and emissions providing for a large scale of different data.

PROBLEM DEFINITION

"Based on the *PAutomaC* competition data, how can we learn not only the probabilistic parameters but the structure of an HMM as well."

HIDDEN MARKOV MODELS

DEFINITION

Alphabet of observable symbols $\Sigma = \{\sigma_1, ..., \sigma_m\}$. Set of hidden states $S = \{s_1, ..., s_n\}$. Sequence of observable symbols $\mathbf{O} = (o_1, ..., o_T) = \Sigma^T$. Sequence of hidden states $\mathbf{Q} = (q_1, ..., q_T) = S^T$.

$$\lambda = (\mathbf{A}, \mathbf{B}, \boldsymbol{\pi})$$

Transition matrix **A**: $\forall s, r \in S : a_{sr} = P(q_{t+1} = r | q_t = s)$ Emission matrix **B**: $\forall s \in S, \forall \sigma \in \Sigma : b_s(\sigma) = P(o_t = \sigma | q_t = s)$ Initial probability distribution π : $\forall s \in S : \pi_s = P(q_1 = s)$

EVALUATION

Evaluation signal $\mathbf{O} = (o_1, ..., o_T)$ and model λ .

$$P(\mathbf{O}|\lambda) = \sum_{\mathbf{Q} \in \mathcal{Q}_{\lambda}^{T}} P(\mathbf{O}|\mathbf{Q}, \lambda) P(\mathbf{Q}|\lambda)$$

$$= \sum_{\mathbf{Q} \in \mathcal{Q}_{\lambda}^{T}} \pi_{q_{1}} b_{q_{1}}(o_{1}) a_{q_{1}q_{2}} b_{q_{2}}(o_{2}) ... a_{q_{T-1}q_{T}} b_{q_{T}}(o_{T})$$

Where Q_{λ}^{T} is a set of all walks through the hidden state space of λ of length T.

FORWARD-BACKWARD PROCEDURE

Forward variable:

$$\forall s \in S : \alpha_1(s) = \pi_s b_s(o_1)$$

$$\forall s \in S, t \in \{2, ..., T\} : \alpha_t(s) = \sum_{r \in S} (\alpha_{t-1}(r)a_{rs})b_s(o_t)$$

Backward variable:

$$\forall s \in S : \beta_T(s) = 1$$

$$\forall s \in S, t \in \{1, ..., T - 1\} : \beta_t(s) = \sum_{r \in S} (a_{sr}b_r(o_{t+1})\beta_{t+1}(r))$$

$$\sum_{s \in S} \alpha_T(s) = P(\mathbf{O}|\lambda) = \sum_{s \in S} \beta_1(s)$$

BAUM-WELCH ALGORITHM

$$\forall t \in \{1, ..., T - 1\}, \forall s, r \in S : \xi_t(s, r) = P(q_t = s, q_{t+1} = r | \mathbf{O}, \lambda) =$$

$$= \frac{\alpha_t(i) a_{sr} b_r(o_{t+1}) \beta_{t+1}(r)}{\sum_{u \in S} \sum_{v \in S} (\alpha_t(u) a_{uv} b_v(o_{t+1}) \beta_{t+1}(v))}$$

$$\forall t \in \{1, ..., T\}, \forall s \in S : \gamma_t(s) = P(q_t = s | \mathbf{O}, \lambda) = \sum_{r \in S} \xi_t(s, r)$$

BAUM-WELCH ALGORITHM

$$\forall s \in S : \overline{\pi_s} = \gamma_1(s)$$

$$\forall s, r \in S : \overline{a_{sr}} = \frac{\sum_{t=1}^{T-1} \xi_t(s, r)}{\sum_{t=1}^{T-1} \sum_{u \in S} \xi_t(s, u)}$$

$$\forall s \in S, \forall \sigma \in \Sigma : \overline{b_s(\sigma)} = \frac{\sum_{t \in \mathcal{T}_{\mathbf{O}}(\sigma)} \gamma_t(s)}{\sum_{t=1}^{T} \gamma_t(s)}$$

$$\mathcal{T}_{\mathbf{O}}(\sigma) = \{t \in \{1, ..., T\} | o_t = \sigma\}$$

$$P(\mathbf{O}|\overline{\lambda} = (\overline{\mathbf{A}}, \overline{\mathbf{B}}, \overline{\pi})) >= P(\mathbf{O}|\lambda = (\mathbf{A}, \mathbf{B}, \pi))$$

HMM vs PFA

- ► HMMs and PFAs are mutually convertible between each other.
- ► PFAs often utilise stopping probabilities (also used for *PAutomaC* models).
- ▶ Distribution defined by PFA with stopping probabilities: $P(\Sigma^*)$ against the HMM: $\forall n \in \mathbb{N} : P(\Sigma^n)$.
- ▶ A possible solution: introduce a new "stopping" symbol $x \notin \Sigma$ and create an HMM over the alphabet $\overline{\Sigma} = \Sigma \cup \{x\}$. End the signal once the new symbol x is reached.

HMM DENSITY

- Empirical results show that real world entities display "sparse" behaviour.
- Current state-of-the-art methods (Baum-Welch for HMMs) require the user to fully specify the amount of states and structure of the transition graph.
- Sparse transition matrix can also provide for a computational speedup.

OVERFITTING

Example:

We want to learn the model that generated some training data:

Training data

0
2135
4313
1325
2213
4133

Learned model

2135	
4313	
2135	
2213	
4133	

Learned model

2, 2135
1, 4313
1, 2213
1, 4133

LL of training data: $\sum_{O} log P(O \mid \lambda)$

What about other data generated by the model?

New sequences	Learned model
4135	2, 2135
1322	1, 4313
4213	1, 2213
5135	1, 4133
1345	

LL of new data?

▶ 0?

When does overfitting happen?

- ► Learning a too complex model
 - ► Models all the noise
- ► Training data too little
 - ► May not reflect model good enough

Assume a very general pattern exists:

Training data

2 <u>13</u> 5
43 <u>13</u>
<u>13</u> 25
22 <u>13</u>
4 <u>13</u> 3

1 always followed by 3:

When learning a simple model:

- ► Cannot express all noise
- ► May benefit more from describing general patterns

When learning a complex model:

- ► May be able to describe all noise
 - ► So why not do it?

How do we compare models / algorithms?

AVOIDING UNDERFLOW

$$P(X) = p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9 \cdots$$

$$0 < p_x < 1$$

Underflow when P(X) = 0

Visual Studio, C#: Double precision floating point

- $ightharpoonup 0.01^{200} = 0$
- $ightharpoonup 0.02^{200} = 0$

Probability of a particular sequence can be very small:

- ► 23 symbols, uniformly distributed: $\frac{1}{23}^{238} = 0$
- ▶ What about rare symbols?
- ▶ What about probability of 1000 sequences?

Solution: Convert to log-space
$$log (a \cdot b) = log \ a + log \ b$$

Since $a < b \iff log \ a < log \ b$:

We can often stay in Log-space

$$log(0.01^{200}) = log \ 0.01 + log \ 0.01 + \dots = -1381.55$$

$$log(0.02^{200}) = log \ 0.02 + log \ 0.02 + \dots = -1173.60$$

ALGORITHMS

STATIC VS. DYNAMIC

Figure: The algorithms used in our experiments

SPARSE BAUM-WELCH

- ► Creates HMM with *n* states and *m* symbols
- ► All parameters are initialized randomly
- ► Constraint: Each state has exactly log(n) transitions
- ► Other transitions set to zero
- ► Trained using Baum-Welch until convergence

GREEDY EXTEND: SETUP

- Works by adding states to the graph in iterations
- ► Starts as a single node with initial probability 1, random emission probabilities and a single transition to itself.

GREEDY EXTEND: ITERATIONS

- 1. Repeat until convergence
- 2. $G' = (V(G) \cup \{y'\}, E(G))$
- 3. Randomly choose a set X of log|V(G')| nodes from V(G')
- 4. $\forall x \in X$ add transitions (x, y') and (y', x) to E(G') with random probabilities
- 5. Normalize G'
- 6. if $LL(BW^{\beta}(G')) > LL(G)$, let $G = BW^{\beta}(G')$

STATE SPLITTING: OVERALL APPROACH

- 1. Identify a set of states W to split
- 2. Split all states in \mathcal{W} using a mechanic
- 3. Run Baum-Welch for β iterations

STATE SPLITTING: SPLITTING MECHANICS

Clone Split

- Makes a copy of the chosen state
- Problem: BW unable to distinguish between clone and original
- ► Alternative: Randomize clones probabilities.

► Distribution Split

- Only splits if Transition or Emission probabilities are uniform.
- Copies the emission probabilities from the original to the new state
- ► Randomizes transition probabilities on the new state
- ► Problem: Algorithm can get stuck (splits after 10 iterations)

STATE SPLITTING: IDENTIFICATION HEURISTICS

- ► The Heuristics compute a score *ç* that is used to choose which states to split
- ► Gamma Heuristic
 - Assign ς based on the number of times the state is visited when generating the sequence
 - $\forall i \in \{1, ..., n\} : \varsigma S_i = \sum_{O \in D} \sum_{t=1}^T \gamma_t(S_i)$

STATE SPLITTING: IDENTIFICATION HEURISTICS

- ▶ Viterbi Heuristic
 - 1. Compute $Q = \mathcal{V}_G(O)$ foreach signal $O \in D$
 - 2. For each state $s \in S$ determine its significant positions in Q

3.
$$\forall s \in S, \forall O \in D \text{ compute } \hat{\varsigma_O}(s) = \frac{\sum_{t \in \tau_{s,\lambda}^O}^O b_s(o_t)}{|\tau_{s,\lambda}^O|}$$

4. Compute $\forall s \in S: \varsigma(s) = \sum_{O \in D} P(Q|O, \lambda) \hat{\varsigma_O}(s)$

EDGE CUTTING & STATE REMOVAL

- ► Edge cutting
 - ► Strict Edge cutting
 - ► Threshold Edge cutting
- ► State Removal

CHOSEN ALGORITHM

The algorithm we chose for the experiments had the following characteristics

- ► Splitting Mechanic: Distribution Split
- ▶ Identification: Gamma Heuristic
- \triangleright β value: 10

TEST ENVIRONMENT

TEST ENVIRONMENT

- ► Benchmark
- ▶ Data
- ► PautomacEvaluator
- ► Learner
- ► Models

SELECTING DATASET

SELECTING DATASET

- ► Sparsity
- ► Transition Density

EXPERIMENT PARAMETER

EXPERIMENT PARAMETER

- ► Static Learners
- ► Training Sequences
- ► Baum-Welch Threshold
- ► Greedy Extend

EXPERIMENTS

EXPERIMENTS

- ► Training 5000 sequences
- ► Validation 5000 sequences
- ► States 10 to 100
- How does problem characteristics affect prediction accuracy
- ► Speed comparison

Dataset: 36, Sparsity: 7.4%

Dataset: 8, Sparsity: 16.8%

Dataset: 43, Sparsity: 40.2%

Dataset: 37, Sparsity: 50%

Dataset: 10, Symbols: 11

Dataset: 35, Symbols: 20

SPEED COMPARISON

Figure: Results achieved in a time scope of eight hours.

SPEED COMPARISON

Figure: Running time comparison between Baum-Welch and Sparse Baum-Welch Learners

RESULTS

- ▶ 3 data sets: 6, 23, 35
- Parameters chosen based on the experiments presented earlier
- ► 5000 sequences
- ▶ 10 initial states, step size 10 for static algorithms
- ► 10 initial states, step size 5 for dynamic algorithms

RESULTS

Data set	GE	BW	SBW	GS	Goal
6	115.53	122.60	129.64	114.77	66.98
23	26.30	26.16	26.08	26.19	18.41
35	49.48	43.36	50.79	44.44	33.78

Table: The best scores of each algorithm on the three data sets.

RESULTS

Figure: The different algorithm's score on *PAutomaC*'s 23rd data set, according to the perplexity measure used in the competition.

CONCLUSION

CONCLUSION

- Analysis of different approaches using a sparse transition matrix in the BW algorithm
- Dynamic algorithms: abous as good results as BW when not better
- Sparse matrix ensured by adding states iteratively

CONCLUSION: PROS AND CONS

Algorithm	Advantages	Drawbacks	
GE	- Rather fast	- Usually needs more states to	
	- Good results	start to compare	
GS	- Splitting heuristic	- Runs on a dense matrix	
	- Best results, but	unusual behaviour	
SBW	- Computational speed-up	- Results slightly worse than BW	
	- Room for improvement	- No speed-up on some data sets	

CONCLUSION: EXPERIMENTS CONDUCTED

- ► 3 types of experiment
- ► 4 algorithms

CONCLUSION: FIRST EXPERIMENTS

- Extremely varied behaviour on different data sets
- ► Three available parameters for results analysis
- ► Hypotheses, but no definite clear pattern
- In general, results on par with BW (sometimes outperforming it)

CONCLUSION: SECOND EXPERIMENTS

- ► Speed comparison between: BW, SBW, GE
- ▶ 8-hour run
- ► GE dominating both in speed and in score
- SBW unstable: random matrix causing non-deterministic behaviour (suggests building a data-derived one instead)

CONCLUSION: THIRD EXPERIMENTS

- ► Comparison using PAutomaC scores
- ► Unsatisfactory results, but...
- ...due to a different paradigm used: no stopping probabilities have been used

CONCLUSION: FUTURE WORK

- ► Eliminating possible noise
- Explain the multitude of behaviours, validating or disproving our hypotheses
- ► Running on more states
- Comparing with the PAutomaC scores, using the same paradigm
- Optimising the sparse transition matrices used in the algorithms
- Making sure underflow and overfitting are avoided
- Looking more in-depth into the other methods we have put aside in this project