PORTOFOLIO

Miftakhul Ma'firoh

MIFTAKHUL MA'FIROH

I am a highly motivated and enthusiastic individual eager to build a career in Data Science. While my educational background is not directly related, I have a strong interest in data analysis, problem-solving, and machine learning. I am actively developing my skills through intensive bootcamps and personal projects to prepare for a career in this field. I am passionate about continuous learning and adapting to the latest trends in Data Science.

BACKGROUND

Pendidikan Biologi Universitas Muhammadiyah Malang

Studi Independent-Data Analyst PT. GreatEdu Global Mahardika

CERTIFICATION

PROJECT WITH TEAM

Data Analyst

Presentasi Final Project Kelompok 2 : Agrifood

Swipe

Profile Team

Universitas Saintek Muhammadiyah

Erna Endang Lestari

Data Analyst

Universitas Mahaputra Muhammad Yamin

Dwi Wulandari

Data Visualization

Universitas Negeri Semarang

Miftakhul Ma'firoh

GreatEdu MSIB Kampus Merdeka

Data Analyst

Universitas Muhammadiyah Malang

Siti Magfiroh

Data Visualizatin

Universitas Sultan Ageng Tirtayasa

#1SemesterBarengGreatEdu www.greatedu.co.id SIB Cycle 5 | **Data Ana**

TOOLS

Dataset ini di dapatkan dari https://www.kaggle.com/datasets/alessandrolobello/agri-food-co2emissiondataset-forecasting-ml

VISI MISI

Visi

Menjadi kelompok riset yang unggul di bidang analisis data yang berbasis teknologi hijau dan berkelanjutan secara terpadu.

Misi

Melakukan analisis dan visualisasi tehadap data emisi karbon di lahan pertanian guna mewujudkan lahan pertanian yang minim dalam menyumbang emisi karbon dengan berbasis pada teknologi.

BUSINESS UNDERSTANDING

Data ini menggambarkan emisi karbondioksida yang terkait dengan pertanian pangan, yang berjumlah sekitar 62% dari emisi tahunan global. Dengan memanfaatkan teknik pembelajaran mesin, dataset ini memungkinkan peramalan emisi di masa depan, sehingga para pembuat kebijakan dan peneliti dapat mengembangkan strategi dan intervensi yang ditargetkan untuk praktik pertanian yang berkelanjutan. Tools yang digunakan untuk pengolahan data adalah Google Collab, Bahasa Pemrograman Python dan Google Looker Studio.

Menggunakan dataset Agrofood_co2_emission Data berisi emisi karbondioksida yang terkait dengan pertanian pangan, yang berjumlah sekitar 62% dari emisi tahunan global. Data ini bersumber dari Organisasi Pangan dan Pertanian (FAO) dan data dari IPCC. Dataset ini awalanya mempunyai 6965 baris dan 29 kolom.

DESKRIPSI KOLOM

No	Nama Kolom	Deskripsi	Tipe Data
1	Savanna fires	Emisi dari kebakaran di ekosistem sabana	Object
2	Forest fires	Emisi dari kebakaran di kawasan hutan	Object
3	Crop Residues	Emisi dari pembakaran atau pembusukan sisa bahan tanaman setelah panen	Object
4	Rice Cultivation	Emisi dari metana dilepaskan selama budidaya padi	Float64
5	Drained organic soils (CO2)	Emisi dari karbon dioksida dilepaskan ketika menguras tanah organik	Float64
6	Pesticides Manufacturing	Emisi dari produksi pestisida.	Float64
7	Food Transport	Emisi dari pengangkutan produk makanan.	Float64
8	Forestland	Tanah yang tertutup oleh hutan.	Object
9	Net Forest conversion	Perubahan kawasan hutan akibat penggundulan hutan dan penghijauan.	Object
10	Food Household Consumption	Emisi dari konsumsi makanan di tingkat rumah tangga.	Object

DESKRIPSI KOLOM

No	Nama Kolom	Deskripsi	Tipe Data
11	Food Retail	Emisi dari operasi perusahaan ritel yang menjual makanan.	Object
12	On-farm Electricity Use	Konsumsi listrik di peternakan	Object
13	Food Packaging	Emisi dari produksi dan pembuangan bahan kemasan makanan	Float64
14	Agrifood Systems Waste Disposal	Emisi dari pembuangan limbah dalam sistem pertanian.	Float64
15	Food Processing	Emisi dari pengolahan produk makanan	Float64
16	Fertilizers Manufacturing	Emisi dari produksi pupuk	Float64
17	IPPU	Emisi dari proses industri dan penggunaan produk.	Float64
18	Manure applied to Soils	Emisi dari penerapan pupuk kandang hewan ke tanah pertanian.	Object
19	Manure left on Pasture	Emisi dari kotoran hewan di padang rumput atau tanah penggembalaan.	Object
20	Manure Management	Emisi dari pengelolaan dan perawatan kotoran hewan.	Float64

DESKRIPSI KOLOM

No	Nama Kolom	Deskripsi	Tipe data
21	Fires in organic soils	Emisi dari kebakaran di tanah organik.	Float64
22	Fires in humid tropical forests	Emisi dari kebakaran di hutan tropis yang lembap.	Object
23	On-farm energy use	Konsumsi energi di peternakan.	Object
24	Rural population	Jumlah orang yang tinggal di daerah pedesaan.	Float64
25	Urban population	Jumlah orang yang tinggal di daerah perkotaan.	Float64
26	Total Population - Male	Jumlah total individu laki-laki dalam populasi.	Float64
27	Total Population - Female	Jumlah total individu perempuan dalam populasi.	Float64
28	Total_emission	Total emisi gas rumah kaca dari berbagai sumber.	Float64
29	Average Temperature *C	Peningkatan suhu rata-rata (per tahun) dalam derajat Celcius.	Float64

KORELASI ATRIBUT YANG BERKAITAN

DATA PREPARATION

CLEANING DATASET

Dataset Sebelum di Cleaning

Crop Residues	1389
On-farm energy use	956
Manure applied to Soils	928
Manure Management	928
IPPU	743
Net Forest conversion	493
Forestland	493
Food Household Consumption	473
Fires in humid tropical forests	155
Forest fires	93
Savanna fires	31
Total Population - Male	0
Urban population	0
Total Population - Female	0
total_emission	е
Rural population	8
Fires in organic soils	0
Manure left on Pasture	8
Area	8
Agrifood Systems Waste Disposal	0
Fertilizers Manufacturing	0
Food Processing	e
Year	8
Food Packaging	0
On-farm Electricity Use	
Food Retail	0
Food Transport	0
Pesticides Manufacturing	0
Drained organic soils (CO2)	8
Rice Cultivation	е
Average Temperature °C	0
dtype: int64	

Dataset Sesudah di Cleaning

Area	0
Food Processing	e
total_emission	0
Total Population - Female	e
Total Population - Male	0
Urban population	e
Rural population	е
On-farm energy use	e
Fires in humid tropical forests	ø
Fires in organic soils	0
Manure Management	e
Manure left on Pasture	0
Manure applied to Soils	Ð
IPPU	Ð
Fertilizers Manufacturing	e
Agrifood Systems Waste Disposal	0
Year	Ð
Food Packaging	0
On-farm Electricity Use	0
Food Retail	Ø
Food Household Consumption	8
Net Forest conversion	0
Forestland	0
Food Transport	Ð
Pesticides Manufacturing	e
Drained organic soils (CO2)	0
Rice Cultivation	Ð
Crop Residues	0
Forest fires	0
Savanna fires	0
Average Temperature °C	0
dtype: int64	

DATA PREPARATION

Outliers

DATA PREPARATION

Outliers

MACHINE LEARNING

Modelnya menggunakan:

- LGBMRegressor
- KNeighborsRegressor
- RandomForestRegressor
- GradientBoostingRegressor
- BaggingRegressor
- XGBRegressor

```
[FIGURESA] [TULO] STOLE FLORE STOLE 6.7/I
LGBMRegressor
MAE: 0.2794
MSE: 0.1358
Cross val score -0.30112278315855945
KNeighborsRegressor
MAE: 0.4892
MSE: 0.3649
Cross val score -0.4689388423528101
RandomForestRegressor
MAE: 0.2874
MSE: 0.1461
Cross val_score -0.3019731013223633
GradientBoostingRegressor
MAE: 0.2915
MSE: 0.1508
Cross_val_score -0.3198780141631989
BaggingRegressor
MAE: 0.2941
MSE: 0.1519
Cross val score -0.3168548653082326
XGBRegressor
MAE: 0.2928
MSE: 0.149
Cross val score -0.3181970789236416
```

MACHINE LEARNING

Modelnya menggunakan:

- LGBMRegressor
- KNeighborsRegressor
- RandomForestRegressor
- GradientBoostingRegressor
- BaggingRegressor
- XGBRegressor

```
[FIGURESA] [TULO] STOLE FLORE STOLE 6.7/I
LGBMRegressor
MAE: 0.2794
MSE: 0.1358
Cross val score -0.30112278315855945
KNeighborsRegressor
MAE: 0.4892
MSE: 0.3649
Cross val score -0.4689388423528101
RandomForestRegressor
MAE: 0.2874
MSE: 0.1461
Cross val_score -0.3019731013223633
GradientBoostingRegressor
MAE: 0.2915
MSE: 0.1508
Cross_val_score -0.3198780141631989
BaggingRegressor
MAE: 0.2941
MSE: 0.1519
Cross val score -0.3168548653082326
XGBRegressor
MAE: 0.2928
MSE: 0.149
Cross val score -0.3181970789236416
```


THANKYOU