Bio393: Genetic Analysis

Behavioral genetics

Nearly all organisms have a natural cycle of activity

Light and/or temperature can entrain the cycle

Time of day (clock time or circadian hours)

Seymour Benzer

Drosophila eclose from the pupal case with a reproducible cycle

Drosophila eclose from the pupal case with a reproducible cycle

Difficult assay
You need to watch the flies a lot of the time

Drosophila movement cycles and is much easier to score

Drosophila movement cycles and is much easier to score

Drosophila movement cycles and is much easier to score

Screened 2,000 males

got three mutants that affected all cyclic behaviors

period encoded a novel protein at the time

period encoded a novel protein at the time

period transcription and translation cycles

Another genetic screen with a focus on chromosome 2 found the gene *timeless*

period transcription and translation cycles

Another genetic screen with a focus on chromosome 2 found the gene *timeless*

period transcription and translation cycles timeless transcription and translation cycles

Another genetic screen with a focus on chromosome 2 found the gene *timeless*

period transcription and translation cycles timeless transcription and translation cycles

Joe Takahashi

Mice love to run at night

Mice love to run at night

Circadian rhythm screen

304 mutant mice screened

1 mutant with 24.7 hour clock (WT = 23.8 hour clock)

Autosomal dominant

Clock mutants have lengthened cycles and go arrhythmic without light entrainment

Clock = circadian locomotor output cycles kaput

Clock mutants have a semi-dominant phenotype

<u>Clock</u>	<u>Clock</u>	<u>Clock</u>	<u>+</u>	<u>±</u>
Clock	Deficiency	+	+	Deficiency
27.3 hr	27.0 hr	24.7 hr	23.8 hr	23.8 hr

How do you think light entrains the system?

In humans, the suprachiasmatic nucleus regulates sleep and wakefulness

In humans, the suprachiasmatic nucleus regulates sleep and wakefulness

Do blind people have circadian cycles?

The activities of neurons and their connections regulate behavior

When neurons are active, intracellular calcium concentration increases

Genetically encoded calcium indicators show neuronal activity

Genetically encoded calcium indicators show neuronal activity

Using cell lineage, genetics, and calcium indicators, we can build neuronal circuits for behavior

What if you want to turn neurons ON or OFF at will?

Channelrhodopsin for turning cells ON

Chlamydomonas reinhardtii

Elue Light home extracellular extracellular intracellular

What if you want to turn neurons ON or OFF at will?

Halorhodopsin for turning cells OFF

Halobacterium salinarum

Using cell lineage, genetics, calcium indicators, and rhodopsins, we can control neuronal circuits

Using narcoleptic dogs, researchers found the gene underlying narcolepsy

How?

No genetic screens, no balancers, small numbers of offspring

Using narcoleptic dogs, researchers found the gene underlying narcolepsy

How?

No genetic screens, no balancers, small numbers of offspring