

TCAM: Temporal Class Activation Maps for Object Localization in Weakly-Labeled Unconstrained Videos

#1703

Soufiane Belharbi¹, Ismail Ben Ayed¹, Luke McCaffrey², **Eric Granger**¹

- 1. LIVIA, Dept. of Systems Engineering, ETS Montreal, Canada
- 2. Goodman Cancer Research Centre, Dept. of Oncology, McGill University, Montreal, Canada

numérique du Canada

Video object localization allows to:

- locate object of interest in video
- understand video content
- improve subsequent tasks: video summarization, event detection, object detection, tracking, etc.

Unconstrained videos are challenging:

- moving and occluded objects
- camera motion and changes viewpoints
- decoding artifacts and editing effects

Source: Unconstrained videos from the YouTube-Objects v1.0 dataset.

Levels of supervision:

- annotating all the frames using bounding boxes (bbox) is an expensive process
- training a model with weak video labels, like video tags are less expensive
- *global video tag* = main object class in the video, not necessarily present in all the frames

Challenges for State-of-Art Methods:

- Multiple sequential, independent stages
- Video tags (labels) are only used to cluster video
- ROI are not necessarily discriminative
- Motion cues (optical flow) are not necessarily discriminative
- Localization involves solving an optimization problem over one or more videos →

slow inference time, build model per class/video

CAM methods:

- successful in developing discriminative WSOL models for CNNs
- we adapt CAMs to exploit the spatio-temporal dependency in videos

CAM methods:

- successful in developing discriminative WSOL models for CNNs
- we adapt CAMs to exploit the spatio-temporal dependency in videos

Advantages compared to SOTA of WSVOL (videos):

- single, discriminative model for all classes
- fast inference (single forward pass)

Advantage compared to CAMs for WSOL (still images):

- allows to leverage temporal information in videos

CAM results on still images

1. Background: CAM methods trained on still images yield decent localization performance

Source: Zhou, B. et al., Learning deep features for discriminative localization. In CVPR 2016.

1. Background: CAM methods trained on still images yield decent localization performance

Do not account for spatio-temporal dependency

Source: Zhou, B. et al., Learning deep features for discriminative localization. In CVPR 2016.

2. Proposed TCAM method

Main idea:

- leverage the slight variations in sets of consecutive frames
- aggregate diversified CAMs from *n* frames
- use aggregated CAMs for sample pixel pseudo-labels for training

2. Proposed TCAM method

CAM-Temporal Max Pooling (CAM-TMP) for aggregation of *n* consecutive CAMs

2. Proposed TCAM

Training: accounts for spatio-temporal dependency at a CAM level

 $oldsymbol{V}$: video

y: video tag (class)

 \boldsymbol{X}_t : frame at time t

 $oldsymbol{C}_t$: CAM of frame $oldsymbol{X}_t$

 $\mathcal{S}(\boldsymbol{X}_t,2)$: sampling function

 $\dot{m{C}}_t$: aggregated CAM

 Y_t : pixel pseudo-label mask

S: output CAM

2. Proposed TCAM

Training: accounts for spatio-temporal dependency at a CAM level

CRF

pixel

s.t.

pseudo-labels

min $p \in \Omega'_{t}$

 $r \in \{0,1\}$,

large size

Standard bounding

box extractor

Localization

 $\rightarrow g(\boldsymbol{X}_t) \rightarrow \hat{y}$

Classification

Foreground

Background

 X_t

3. Experimental results: YouTube-Object v1.0 and v2.2 datasets

3. Experimental results: YTOv1 dataset

- Standard CAM methods yield discriminative models for localization
- Leveraging temporal information with TCAM yields new state-of-the-art results

Method (venue)	Aero	Bird	Boat	Car	Cat	Cow	Dog	Horse	Mbike	Train	Avg	Time/Frame
(Prest et al., 2012) (cvpr,2012)	51.7	17.5	34.4	34.7	22.3	17.9	13.5	26.7	41.2	25.0	28.5	N/A
(Papazoglou and Ferrari, 2013) (iccv,2013)	65.4	67.3	38.9	65.2	46.3	40.2	65.3	48.4	39.0	25.0	50.1	4s
(Joulin et al., 2014) (eccv, 2014)	25.1	31.2	27.8	38.5	41.2	28.4	33.9	35.6	23.1	25.0	31.0	N/A
(Kwak et al., 2015) (iccv,2015)	56.5	66.4	58.0	76.8	39.9	69.3	50.4	56.3	53.0	31.0	55.7	N/A
(Rochan et al., 2016) (ivc,2016)	60.8	54.6	34.7	57.4	19.2	42.1	35.8	30.4	11.7	11.4	35.8	N/A
(Tokmakov et al., 2016) (eccv, 2016)	71.5	74.0	44.8	72.3	52.0	46.4	71.9	54.6	45.9	32.1	56.6	N/A
POD (Koh et al., 2016) (cvpr,2016)	64.3	63.2	73.3	68.9	44.4	62.5	71.4	52.3	78.6	23.1	60.2	N/A
(Tsai et al., 2016) (eccv,2016)	66.1	59.8	63.1	72.5	54.0	64.9	66.2	50.6	39.3	42.5	57.9	N/A
(Haller and Leordeanu, 2017) (iccv,2017)	76.3	71.4	65.0	58.9	68.0	55.9	70.6	33.3	69.7	42.4	61.1	0.35s
(Croitoru et al., 2019) (LowRes-Net _{iter1}) (ijcv,2019)	77.0	67.5	77.2	68.4	54.5	68.3	72.0	56.7	44.1	34.9	62.1	0.02s
(Croitoru et al., 2019) (LowRes-Net _{iter2}) (ijcv,2019)	79.7	67.5	68.3	69.6	59.4	75.0	78.7	48.3	48.5	39.5	63.5	0.02s
(Croitoru et al., 2019) (DilateU-Net _{iter2}) (ijcv,2019)	85.1	72.7	76.2	68.4	59.4	76.7	77.3	46.7	48.5	46.5	65.8	0.02s
(Croitoru et al., 2019) (MultiSelect-Net _{iter2}) (<i>ijcv</i> ,2019)	84.7	72.7	78.2	69.6	60.4	80.0	78.7	51.7	50.0	46.5	67.3	0.15s
SPFTN (M) (Zhang et al., 2020b) (tpami, 2020)	66.4	73.8	63.3	83.4	54.5	58.9	61.3	45.4	55.5	30.1	59.3	N/A
SPFTN (P) (Zhang et al., 2020b) (tpami, 2020)	97.3	27.8	81.1	65.1	56.6	72.5	59.5	81.8	79.4	22.1	64.3	N/A
FPPVOS (Umer et al., 2021) (optik, 2021)	77.0	72.3	64.7	67.4	79.2	58.3	74.7	45.2	80.4	42.6	65.8	0.29s
CAM (Zhou et al., 2016) (cvpr,2016)	75.0	55.5	43.2	69.7	33.3	52.4	32.4	74.2	14.8	50.0	50.1	0.2ms
GradCAM (Selvaraju et al., 2017) (iccv,2017)	86.9	63.0	51.3	81.8	45.4	62.0	37.8	67.7	18.5	50.0	56.4	27.8ms
GradCAM++ (Chattopadhyay et al., 2018) (wacv,2018)	79.8	85.1	37.8	81.8	75.7	52.4	64.9	64.5	33.3	56.2	63.2	28.0ms
Smooth-GradCAM++ (Omeiza et al., 2019) (corr,2019)	78.6	59.2	56.7	60.6	42.4	61.9	56.7	64.5	40.7	50.0	57.1	136.2ms
XGradCAM (Fu et al., 2020) (bmvc, 2020)	79.8	70.4	54.0	87.8	33.3	52.4	37.8	64.5	37.0	50.0	56.7	14.2ms
LayerCAM (Jiang et al., 2021) (ieee,2021)	85.7	88.9	45.9	78.8	75.5	61.9	64.9	64.5	33.3	56.2	65.6	17.9ms
TCAM (ours)	90.5	70.4	62.2	75.7	84.8	81.0	81.0	64.5	70.4	50.0	73.0	18.5ms

3. Experimental results: YTOv2.2 dataset

Method (venue)	Aero	Bird	Boat	Car	Cat	Cow	Dog	Horse	Mbike	Train	Avg	Time/Frame
(Haller and Leordeanu, 2017) (iccv, 2017)	76.3	68.5	54.5	50.4	59.8	42.4	53.5	30.0	53.5	60.7	54.9	0.35s
(Croitoru et al., 2019) (LowRes-Net _{iter1}) (ijcv, 2019)	75.7	56.0	52.7	57.3	46.9	57.0	48.9	44.0	27.2	56.2	52.2	0.02s
(Croitoru et al., 2019) (LowRes-Net _{iter2}) (ijcv,2019)	78.1	51.8	49.0	60.5	44.8	62.3	52.9	48.9	30.6	54.6	53.4	0.02s
(Croitoru et al., 2019) (DilateU-Net _{iter2})(ijcv,2019)	74.9	50.7	50.7	60.9	45.7	60.1	54.4	42.9	30.6	57.8	52.9	0.02s
(Croitoru et al., 2019) (BasicU-Net _{iter2})(ijcv,2019)	82.2	51.8	51.5	62.0	50.9	64.8	55.5	45.7	35.3	55.9	55.6	0.02s
(Croitoru et al., 2019) (MultiSelect-Net _{iter2})(ijcv,2019)	81.7	51.5	54.1	62.5	49.7	68.8	55.9	50.4	33.3	57.0	56.5	0.15s
CAM (Zhou et al., 2016) (cvpr,2016)	52.3	66.4	25.0	66.4	39.7	87.8	34.7	53.6	45.4	43.7	51.5	0.2ms
GradCAM (Selvaraju et al., 2017) (iccv,2017)	44.1	68.4	50.0	61.1	51.8	79.3	56.0	47.0	44.8	42.4	54.5	27.8ms
GradCAM++ (Chattopadhyay et al., 2018) (wacv,2018)	74.7	78.1	38.2	69.7	56.7	84.3	61.6	61.9	43.0	44.3	61.2	28.0ms
Smooth-GradCAM++ (Omeiza et al., 2019) (corr,2019)	74.1	83.2	38.2	64.2	49.6	82.1	57.3	52.0	51.1	42.4	59.5	136.2ms
XGradCAM (Fu et al., 2020) (bmvc, 2020)		44.5	45.8	64.0	46.8	86.4	44.0	57.0	44.9	45.0	54.6	14.2ms
LayerCAM (Jiang et al., 2021) (ieee,2021)		84.5	47.2	73.5	55.3	83.6	71.3	60.8	55.7	48.1	66.0	17.9ms
TCAM (ours)	79.4	94.9	75.7	61.7	68.8	87.1	75.0	62.4	72.1	45.0	72.2	18.5ms

CAM methods

- Standard CAM methods yield decent results → discriminative models are powerful for localization
- Leveraging temporal information during training yielded new state-of-the-art results

3. Experimental results: YouTube-Object v1.0 and v2.2 datasets

5. Experimental results: ablations

Method	ls	CorLoc
Layer-C	65.6	
	Ours + \mathbb{C}_t^+ + \mathbb{C}_t^-	68.5
n = 0	Ours + \mathbb{C}_t^+ + \mathbb{C}_t^- + CRF	69.6
	Ours + \mathbb{C}_t^+ + \mathbb{C}_t^- + ASC	66.2
	Ours + \mathbb{C}_t^+ + \mathbb{C}_t^- + CRF + ASC	70.5
n > 0	Ours + \mathbb{C}_t^+ + \mathbb{C}_t^- + CRF + ASC + CAM-TMP	73.0
Improve	ement	+7.4

Time dependency: *n* (number of frames)

5. Experimental results: ablations

3. Experimental results: Failure cases

- Due to the co-occurrence of objects, and to small objects
- Caused by strong dependency to the pseudo-labels quality

TCAM

Base-CAM

For questions and more details, please visit our poster #1703

Resources:

- Code: https://github.com/sbelharbi/tcam-wsol-video
- Demo videos:

https://drive.google.com/drive/folders/1D8DgOdjT35Vf5Tqej3K5Z

WFqz3LhgeQt?usp=sharing

