MPI-漫谈并行计算思路入门

制作: 一条咸鱼

写在前面

- 本文以python作为**伪代码**,旨在介绍并行计算的基本思想,为正式进行程序设计做铺垫。
- 本文经不断查阅资料并实验综合得到,如有错误,欢迎校正。

```
写在前面
微分面积
从连续值计算开始说起
走向离散(一)
走向离散(二)
负载均衡
矩阵乘法
PageRank
并行优化
串行优化
消失的分值
方案一:使连通图中主对角线恒为1
方案二:使全0列变为全1
```

微分面积

从连续值计算开始说起

考虑这样一个题目:给定函数y=f(x),求解其与x=a、x=b、y=0所围成图形的面积。

- 一个可行的思路如下:
 - 1. 将该图形沿平行y轴方向,划分为n块
 - 2. 建立n个进程,每个进程分配一块,单独计算该块面积
 - 3. 累计即可得到近似面积

通过调整进程的数量,我们可以轻易的控制计算结果的精度,进程越多,划分数量越多,计算精度越高。

那么,如何分配每个进程计算的部分呢?灵活使用每个进程的进程号是一个不错的选择。

走向离散(一)

如果更深入一点,想一下这种思路的具体的应用,不难发现该算法存在着一些弊端:

- 1. 计算精度和并行进程数量有关, 进程数量越多, 精度越高
- 2. 计算精度要求又与a-b相关, a-b越大, 如果不增加进程数, 误差也会越大
- 3. 硬件设备的并行线程数是有限制的,不可以无限增加

那么,在遇到极高精度要求时,这种方法就行不通了。因此我们可以尝试离散映射的方法

- 1. 设根据精度要求,要把图形切成N块,机器同时最多运行n个进程,且N是n的倍数
- 2. 每次计算n个图形,一共通过N/n次计算,累加获取总面积

以3个进程,6个块为例,该方案将块号映射到每个进程如下:

块号	1	2	3	4	5	6
进程号	1	2	3	1	2	3

同样可以使用进程号分配块号:

```
1
2 for i in N/n:
3 for j in n:
4 start = i*n*h # 当前进行了i个循环,每个循环里有n个块,每块长度为h
5 end = start + h
6
```

走向离散(二)

刚刚的算法仍然存在缺点:即N必须整除n,才能得到正确答案,如果N是一个大质数,改进的算法便退化回"连续值计算"(即:每块一个进程)。为了避免这个问题,再次改进,可令前rank-1个进程正常计算分配到的块,最后一个进程计算剩余所有块。

以3个进程,8个块为例,该方案将块号映射到每个进程如下::

块号	1	2	3	4	5	6	7	8
进程号	1	2	3	1	2	3	3	3

```
1 for i in N/n:
2 for j in n:
3 if rank!=size-1:
4 start = i*n*h # 当前进行了i个循环,每个循环里有n个块,每块长度为h
5 end = start + h
6 if rank==size-1:
7 while k in range((b-i*n*h)/h): # 让最后一个进程计算剩余所有块
8 start = (i+k)*n*h # 当前进行了i+k个循环,每个循环里有n个块,每块长度为h
9 end = start + h
```

负载均衡

虽然上述方法让算法具有了较好的鲁棒性,但在效率上仍然不高。试想这样一种情况:

一共有1099个块,并行进程为100个,那么按以上算法,前99个进程各需计算10个块,最后一个进程需要计算109个块。由于总结果是每个进程结果的总和,因此必须等待最后一个进程计算完109个块后才能得到最终结果。这样做显然效率很低。当进程数n很大,且总块数N为 k*n+(n-1) 时,计算开销最高。

为了解决这个问题,我们可以尝试把余数中的块均匀分配到各个进程中,使各进程之间,计算的块数差最大仅为1。

仍然以3个进程,8个块为例:

块号	1	2	3	4	5	6	7	8
进程号	1	2	3	1	2	3	1	2

矩阵乘法

就代数计算方法而言,对矩阵乘法的优化思路如下:

- 1. 将左矩阵切割为n行,或将右矩阵切割为n列
- 2. 广播剩余的那个矩阵
- 3. 各进程计算切割后矩阵的乘积,收集则为答案

以切割左矩阵为例

进程1	Х	Х	Х	Х
进程1	X	X	X	X
进程2	X	X	X	X
进程2	X	X	X	X

这种并行方法,除了可以减少计算时间以外,还可以降低存储需求。即只需要主进程所在的机器,读取全部的两个矩阵,其余机器只需接收并存储切割后的矩阵即可。

如果想进一步降低对存储空间的需求,可以将两个矩阵都进行切割(左按行,右按列),计算并收集答案即可。

PageRank

并行优化

PageRank的计算本质而言,可以用矩阵乘法解决。

对于网页节点之间,输入各个节点之间的连通关系,那么有向连通图可以用类似如下矩阵表示(右上为出节点,左下为入节点):

∠	node1	node2	node3
node0	0	0	1
node1	1	0	1
node2	0	1	0

同理,可求出各节点向其他节点转移的概率P如下:

✓	node1	node2	node3
node0	0	0	1
node1	0.5	0	0.5
node2	0	1	0

为了防止链接陷阱出现,每个节点还要单独设定一个概率值P_out,向任意结点跳转。(详见搜索引擎课程)

可以算出每次跳转,向各节点转移的概率P_rand如下:

✓	node1	node2	node3
node0	0.33	0.33	0.33
node1	0.33	0.33	0.33
node2	0.33	0.33	0.33

综上,设P_out=0.1,最终的状态转移矩阵如下:

计算公式为: $P \times (1 - P_out) + P_rand \times P_out$

∠	node1	node2	node3
node0	0.033	0.033	0.9+0.033
node1	0.45+0.033	0.033	0.45+0.033
node2	0.033	0.9+0.033	0.033

各节点分值向量初始化如下:

	mark
node0	0.333
node1	0.333
node2	0.333

每轮迭代,相当于计算:状态转移矩阵×各节点初始分值向量

更新各节初始分值向量,即可进行下一轮迭代。

串行优化

PageRank算法除了在并行部分可以优化以外,串行部分也值得好好思考:

设最终状态转移矩阵为M,分值向量为V,迭代数为N,不难发现,整个迭代过程可以写为

$$M \times M \times \ldots \times M \times M \times V = \prod_{i=1}^{N} M \times V$$

即: V左乘N次M。时间复杂度为O(n)

如果应用结合律,将累乘部分结合,如果N为奇数,则单独留一个M在外面最后计算。得到:

$$(M \times M) \times \ldots \times (M \times M) \times V = \Pi_{i=1}^{N/2}(M \times M) \times V$$

$$((M \times M) \times (M \times M)) \times \ldots \times ((M \times M) \times (M \times M)) \times V = \Pi_{i=1}^{N/4}((M \times M) \times (M \times M) \times V$$
...

即:每轮迭代,优先计算累乘的部分,那么时间复杂度可以降低至log(n)

消失的分值

以上方案还有一个缺陷: 当连通矩阵存在全0列时, 计算值会收敛到接近全0。

实际情况对应为:至少存在一个节点,有其他节点连接进该节点,但该节点不连接出任意一个节点(包括自己本身)

原因如下:

- PageRank每轮循环的本质是将自己的节点分值交给其他节点,再收集其他节点的分值,从而实现节点分值的再分配。
- 此处"再分配"表现为:无论怎样循环,所有节点的分数总和必为1,不会增加也不会减少。因为分值在该集合内只是流动、转移,而不会增加或消失。
- 但是,如果一个节点只接收其他节点的分值,而不把自己节点的分值交给其他节点(甚至不交给自己)其他节点给与它的分值相当于被直接浪费(经过随机游走分散出去的分值除外)
- 因此每轮循环后,总分值越来越少,对应导致各节点分值不断收敛至0.

以总计5个网络节点,其中234节点均指向0节点,0节点指向5节点为例,可以画出如下的连通图,且第五列为全0:

	node0	node1	node2	node3	node4
node0	0	1	1	1	0
node1	0	0	0	0	0
node2	0	0	0	0	0
node3	0	0	0	0	0
node4	1	0	0	0	0

该连通矩阵经过计算结果如下:

	node0	node1	node2	node3	node4
第1 轮循 环	0.0704	0.0164	0.0164	0.0164	0.5204
第2 轮循 环	0.05708	0.0128	0.0128	0.0128	0.07616
第3 轮循 环	0.0379928	0.0034328	0.0034328	0.0034328	0.0548048

第					
100	1.30911492e-	1.94594479e-	1.94594479e-	1.94594479e-	2.69386947e-
轮循	33	34	34	34	33
环					

对此,存在两种可能的改进方法:

方案一: 使连通图中主对角线恒为1

此方案实际意义为,认为每个网站一定连接到自己。这样就可以保留每次其他节点给予该节点的分值,避免最终结果收敛至全0的情况。

经过修改后,邻接矩阵如下所示:

	node0	node1	node2	node3	node4
node0	1	1	1	1	0
node1	0	1	0	0	0
node2	0	0	1	0	0
node3	0	0	0	1	0
node4	1	0	0	0	1

连通矩阵经过此方案计算结果如下:

	node0	node1	node2	node3	node4
第100轮循环	0.06909091	0.03636364	0.03636364	0.03636364	0.82181818

方案二: 使全0列变为全1

此方案实际意义为: 将没有任何外部链接的网络节点,所拥有的分值,平均分给所有其他节点,以此保证分值不消失。

经过修改后,邻接矩阵如下所示:

	node0	node1	node2	node3	node4
node0	0	1	1	1	1
node1	0	0	0	0	1
node2	0	0	0	0	1
node3	0	0	0	0	1
node4	1	0	0	0	1

连通矩阵经过此方案计算结果如下:

	node0	node1	node2	node3	node4
第100轮循环	0.33544878	0.09066183	0.09066183	0.09066183	0.39256573

相对于上一个方案,该方案好处为:最终分值的分布相对更加平均。也更能客观的表现网站之间的权重关系。

修正项

由于每个节点分值总和必为1,我们可以发现,随着节点数增加,各个节点的平均分数会相应降低。 这样会导致不同大小的局域网络计算出的节点分值,不具有可比性。阅读上也相当的不适。

十个节点的某次计算结果如下:

	node0	node1	node2	 node7	node8	node9
第 100 轮 循 环	0.09848767	0.04922033	0.11370036	 0.09530293	0.0497375	0.07028376

一百个节点的某次计算结果如下:

	node0	node1	node2	•••	node97	node98	node99
第 100 轮 循 环	0.01867948	0.0089862	0.00314754		0.01728934	0.00682841	0.00925973

为了阅读上的便捷,以及使各个大小的网络具有可比性,我们可以增加一个修正项:将最终结果均扩大"节点数"倍。