

Table of contents

01 Nixon

- Problem Statement
- Background
- Data Cleaning

02 Johnny

EDA

03 Ronnette

EDA

04 Luka

- Modelling
- Insights

05 Clara

- Cost-Benefit Analysis
- Recommendations

06 Nixon

Conclusion

BACKGROUND: Who Are We & Problem Statement

Private Consultant to CDC

 Environmental Factors affecting WNV transmission

Reduce WNV carrying mosquitoes

BACKGROUND: What is West Nile Virus & Resource

- West Nile Virus
 - Vector-borne virus
 - Originated in Africa
 - o 1 in 5 falls mildly ill
 - 1 in 150 falls severely ill

BACKGROUND: What is West Nile Virus & Resource

- West Nile Virus
 - Vector-borne virus
 - Originated in Africa
 - 1 in 5 falls mildly ill
 - o 1 in 150 falls severely ill
- **Prevention** is the best cure

BACKGROUND: What is West Nile Virus & Resource

- West Nile Virus
 - Vector-borne virus
 - Originated in Africa
 - o 1 in 5 falls mildly ill
 - 1 in 150 falls severely ill
- Prevention is the best cure
- Resource and Data from in-house recordings from 2007
 up to 2014

<u>DATA CLEANING: Filtering / Removing / Replacing / Merge</u>

- Determine Relevant Columns
- Clean nulls, na and drop by:
 - Impute
 - Replace
 - Drop
 - Remove Duplicates
- Merge Train, Spray and Weather

EDA

Unbalanced Class

- Imbalanced Data
- Use SMOTE and ADASYN at modelling stage
- Minimize False Negatives
- Minimize False Positives

WNV presence in trapped mosquitoes

Key:

- 0 = Not West Nile Virus Carrying Mosquitoes
- 1 = West Nile Virus Carrying Mosquitoes

Mosquito Population vs Months

- Peaks around
 August (hottest month)
- Blue, Orange and Green represents the mosquitoes that carriers of WNV
- Other species were combined together

WNV Mosquito Frequency vs Temperature

Majority of the Population

WNV Frequency

Higher density in Northern region

Higher density in Eastern region

Mosquito Species with WNV

Total Precipitation and WNV

- Very little precipitation required for the mosquitos to breed.
- Excessive rainfall can cause breeding sites to overflow, disrupting mosquito breeding and destroying developing larvae.
- They could also be breeding in other sources of water such as in flower pots.

Effect of Pesticides on Mosquitos

- Decrease in number of mosquitos with of pesticides
- But not as significant as we would expect from using pesticides

Type of Pesticide Use Matters

- Zenivex is an Adulticide
- Least effective mosquito control technique
- Programs spray indiscriminately

Mosquito Density

- Light green represents high concentration of Mosquitoes
- Majority located near the coastline

WNV Mosquito Density

Two main hotspots for WNV mosquitoes

Spray Location

- Concentrated around 2 main areas
- Density of spray increases in the yellow regions

Overlap of WNV Mosquito and Spray Locations

- Most of the areas currently being sprayed with pesticide are also areas with WNV
- There is one area (in red) with high WNV density that is not covered by pesticide
- Recommended to include that area for pesticide spraying

MODELLING

Models & Resamplers

Models:

- Naive Bayes
- Logistic Regression
- K-Nearest Neighbor
- Random Forest
- Extra Tree
- Decision Tree
- ADA Boost
- Gradient Boost
- XGB
- Light GB
- SVM

Resamplers:

- SMOTE
- ADASYN

SMOTE

Synthetic Minority Over sampling Technique

- K-Nearest Neighbours approach
- Draws a line between the neighbours of the minority class
- Generates random points on the lines

- Majority class samples
- Minority class samples
- Synthetic samples

ADASYN

ADAptive SYNthetic

- K-Nearest Neighbours approach
- no assumptions made for the underlying distribution of the data
- Difference: generates the same number of synthetic samples for each original minority sample

Classifier	CV Score	ROC_AUC (train)	ROC_AUC (test)	Accuracy (train)	Accuracy (test)	Sensitivity	Specificity	Precision (Recall	Misclassification	F1 Score
Gaussian Naive Bayes	0.6838	0.77	0.67	0.77	0.67	0.76	0.51	0.08	0.76	0.48	0.1447619
Gaussian Naive Bayes (SMOTE)	0.6753	0.72	0.64	0.72	0.64	0.92	0.23	0.06	0.92	0.73	0.11265306
Gaussian Naive Bayes (ADASYN)	0.6329	0.69	0.6	0.69	0.6	0.86	0.25	0.06	0.86	0.72	0.11217391
Logistic Regression	0.76917	0.83	0.77	0.83	0.77	0	1	0	0	0.05	0
Logistic Regression (SMOTE)	0.7542	0.8	0.75	0.8	0.75	0.49	0.83	0.14	0.49	0.19	0.21777778
Logistic Regression (ADASYN)	0.752	0.79	0.75	0.79	0.75	0.44	0.84	0.13	0.44	0.18	0.20070175
Random Forest	0.8222	0.94	0.83	0.94	0.83	0	1	0	0	0.05	0
Random Forest (SMOTE)	0.8212	0.92	0.84	0.92	0.84	0.61	0.87	0.2	0.61	0.14	0.30123457
Random Forest (ADASYN)	0.8211	0.92	0.83	0.92	0.83	0.62	0.87	0.21	0.62	0.14	0.31373494
Decision Tree	0.6687	0.68	0.65	0.68	0.65	0	1	0	0	0.05	0
Decision Tree (SMOTE)	0.6871	0.64	0.61	0.64	0.61	0.91	0.33	0.07	0.91	0.64	0.13
Decision Tree (ADASYN)	0.7082	0.76	0.72	0.76	0.72	0.75	0.59	0.09	0.75	0.4	0.16071429
Extra Trees	0.8026	0.96	0.81	0.96	0.81	0	1	0	0	0.05	0
Extra Trees (SMOTE)	0.7959	0.92	0.79	0.92	0.79	0.46	0.87	0.17	0.46	0.15	0.24825397
Extra Trees (ADASYN)	0.795	0.91	0.8	0.91	0.8	0.49	0.87	0.17	0.49	0.15	0.25242424
Light Gradient Boost	0.8302	0.87	0.83	0.87	0.83	0	1	0	0	0.05	0
Light Gradient Boost (SMOTE)	0.8195	0.87	0.82	0.87	0.82	0.62	0.86	0.2	0.62	0.15	0.30243902
Light Gradient Boost (ADASYN)	0.8191	0.87	0.83	0.87	0.83	0.56	0.87	0.19	0.56	0.15	0.28373333
K-Nearest Neighbours	0.7165	0.93	0.73	0.93	0.73	0.05	0.99	0.35	0.05	0.05	0.0875
K-Nearest Neighbours (SMOTE)	0.7498	0.93	0.76	0.93	0.76	0.79	0.66	0.11	0.79	0.34	0.19311111
K-Nearest Neighbours (ADASYN)	0.7443	0.93	0.73	0.93	0.76	0.78	0.66	0.11	0.78	0.33	0.19280899
Gradient Boosting	0.8371	0.92	0.85	0.92	0.85	0.02	1	0.25	0.02	0.05	0.03703704
Gradient Boosting (SMOTE)	0.8239	0.91	0.84	0.91	0.84	0.38	0.93	0.22	0.38	0.1	0.27866667
Gradient Boosting (ADASYN)	0.8233	0.91	0.84	0.91	0.84	0.41	0.92	0.22	0.41	0.11	0.28634921
XG Boost	0.8354	0.9	0.85	0.9	0.85	0.04	1	0.46	0.04	0.05	0.0736
XG Boost (SMOTE)	0.8209	0.87	0.83	0.87	0.83	0.62	0.86	0.2	0.62	0.15	0.30243902
XG Boost (ADASYN)	0.8211	0.88	0.83	0.88	0.83	0.53	0.89	0.21	0.53	0.13	0.30081081
SVM	0.7806	0.97	0.8	0.97	0.8	0	1	0	0	0.05	0
SVM (SMOTE)	0.8136	0.88	0.82	0.88	0.82	0.69	0.84	0.19	0.69	0.17	0.29795455
SVM (ADASYN)	0.8143	0.88	0.82	0.88	0.82	0.67	0.84	0.19	0.67	0.17	0.29604651
ADABoost	0.7765	0.91	0.79	0.91	0.79	0.05	0.99	0.3	0.05	0.06	0.08571429
ADABoost (SMOTE)	0.7813	0.89	0.8	0.89	0.8	0.46	0.88	0.17	0.46	0.15	0.24825397
ADABoost (ADASYN)	0.7831	0.89	0.79	0.89	0.79	0.51	0.88	0.19	0.51	0.14	0.27685714

Best Features

Top 3 features:

Month

Tavg

Year

PARAMETERS: Confusion Matrix

Predicted Label

PARAMETERS: Confusion Matrix

PARAMETERS: Confusion Matrix

Classifier Evaluation Metric

Precision	TP/(TP+TN)					
Recall	TP/(TP+FN)					
Sensitivity	TP/(TP+FP)					
Specificity	TN/(TN+FN)					

Best Model

Light GB with SMOTE

AUC (Train): 0.87

• AUC (Test): 0.82

• Accuracy: 0.82

Sensitivity: 0.62

Specificity: 0.86

Precision: 0.20

• Recall: 0.62

• F1 Score:

Predicted Label

Conversion for Cost-Benefit Analysis

Overall Total Cost = \$ 32,085.55 per spray

Expected total cost per year = \$US 802,138.75

COST BENEFIT ANALYSIS

COST

Indirect Cost

Higher Tax Rates

Direct Cost

- Cost of Pesticides
- Other Miscellaneous Cost

Intangible Cost

 Lower Quality of Life

DIRECT COST

Direct Cost

- Cost of Pesticides
- Other Miscellaneous Cost

69km²

amount spent on aerial spraying in Chicago in 2020

USD797k

amount spent on spraying in Chicago in 2020

INDIRECT COST

Indirect Cost

Higher Tax Rates

- Shared cost of pesticides borne by both the state Illinois, Chicago city, and the residents of Chicago
- Eventual increase in higher taxes may be a huge financial burden
 - Especially those of the lower-income group.

INTANGIBLE COST

• Lower Income Group

Intangible Cost

Lower Quality of Life

Direct Benefits **Indirect Benefits**

Intangible Benefits

Competitive Benefits

Direct Benefits

Intangible Benefits

Indirect Benefits

Competitive Benefits

- People contracting the West Nile Virus
- Unemployed residents in Chicago
 - Due to contracting the West Nile
 Virus or,
 - Being caregivers to the patients

Direct Benefits

Intangible Benefits

Indirect Benefits

Competitive Benefits

- Decrease in Medical Fees
- Reduce stimulus cheque for patients who cannot work

Direct Benefits

Intangible Benefits

Indirect Benefits

Competitive Benefits

Live with greater
 assurance & lower
 levels of fears of
 contracting the West
 Nile Virus

Direct Benefits

Indirect Benefits

Intangible Benefits

Competitive Benefits

 Stand out from her neighbouring cities

 Promote as a choice destination for a safe summer vacation.

COST BENEFIT ANALYSIS

Cannot put a price tag on human lives!

 As compared to the COVID-19 pandemic, the benefits of preventing an add-on factor on top of an ongoing pandemic will definitely outweigh the cost.

RECOMMENDATIONS & FURTHER STEPS

RECOMMENDATIONS

Focus on Education

- Increase awareness on Social Media
- Start education early in schools

Change the Spray Locations

Blocks 10, 11 & 76
 densely populated
 with the presence of
 West Nile Virus, but
 were not sprayed.

RECOMMENDATIONS

Consider alternative pesticides

 Zenivex is an adulticide which is less effective than larvicides. Utilize effective technologies

 Use drones to spray the pesticides at lower altitude for harder to reach targeted areas.

FURTHER STEPS

Research for less invasive solutions

 Research to optimally use wolbachia or other strains Conduct decision tree / markov models

- Data on healthcare costs & quality-adjusted life years.
- Economic evaluation to calculate incremental cost-effectiveness ratio.

Account for environmental factors

- Study relationship between climate change and WNV transmission.
- Resistance to pesticides
- Public involvement in curbing WNV.

CONCLUSION:

Forecast of seasonal WNV outbreaks

*

- Best Model: Light Gradient Boost Model
- Top determinants for the presence of WNV are: Month, Tavg, year
- Conducted a preliminary cost benefit analysis but requires new data to obtain a more detailed analysis
- Future directions with regards to climate change

Thank you!
Any
Questions?

Distribution of all Mosquitos trapped

Pesticide and WNV occurrence

