1. Na raspolaganju nam je skup za učenje \mathcal{D} koji se sastoji od deset primjera iz $\mathcal{X} = \mathbb{R}^4$:

i	x_1	x_2	x_3	x_4
1	-1.28	-1.51	-1.65	-2.29
2	-1.83	-0.99	-2.51	-0.72
3	3.24	0.11	2.15	-1.67
4	-2.47	-1.95	-0.65	-2.61
5	-1.07	0.15	-0.40	-2.31
6	-1.58	0.06	0.26	-0.55
7	-1.00	-0.95	-0.63	-2.12
8	-0.53	-0.67	-1.40	-1.65
9	0.50	-0.91	1.31	-1.80
10	0.70	0.11	-2.04	-1.83

(a) Izračunajte ML-procjenu kovarijacijske matrice $\hat{\Sigma}$.

Procjenitelji najveće izglednosti za srednju vrijednost i kovarijacijsku matricu:

$$\hat{\boldsymbol{\mu}}_{\mathrm{ML}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$$

$$\hat{\boldsymbol{\Sigma}}_{\mathrm{ML}} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}_{\mathrm{ML}}) (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}_{\mathrm{ML}})^{\mathrm{T}}$$

Izračunati procjenitelji:

$$\hat{\mu}_{\mathrm{ML}} =$$
 [-0.5320 -0.6550 -0.5560 -1.7550]

$$\hat{\boldsymbol{\Sigma}}_{\mathrm{ML}} = \begin{bmatrix} 2.4418 & 0.6105 & 1.2935 & 0.0102 \\ [0.6105 & 0.5002 & 0.2914 & 0.1758] \\ [1.2935 & 0.2914 & 1.9438 & -0.0264] \\ [0.0102 & 0.1758 & -0.0264 & 0.4008] \end{bmatrix}$$

(b) Izračunajte Mahalanobisovu udaljenost između točaka $\mathbf{x}^{(1)} = (1, 1, 1, 1)$ i $\mathbf{x}^{(2)} = (1, 1, -1, -1)$. Je li ta udaljenost jednaka euklidskoj udaljenosti? Zašto? Je li to dobro ili loše?

Mahalanobisova udaljenost između točaka x⁽¹⁾ i x⁽²⁾:

$$\Delta = \sqrt{(x^{(1)} - x^{(2)})\Sigma^{-1}(x^{(1)} - x^{(2)})^T}$$

$$\Delta = 4.0301$$

Euklidska udaljenost između točaka x(1) i x(2):

$$d(x^{(1)}, x^{(2)}) = \sqrt{(x^{(1)} - x^{(2)})(x^{(1)} - x^{(2)})^T}$$
$$d(x^{(1)}, x^{(2)}) = 2.8284$$

Euklidska udaljenost nije jednaka Mahalanobisovoj udaljenosti, jer Mahalanobisova uzima u obzir razlike u varijanci između pojedinih dimenzija te korelacije između varijabli. (Bili bi jednaki kad bi $\Sigma = I$)

To je zapravo jako dobro, jer bi nam udaljenosti trebale govoriti koliko su dvije točke su dvije točke 'slične' jedna drugoj, uzimajući u obzir varijance i korelacije, a nama su sličnosti jako važne kad radimo klasifikatore.

Npr, kad bi uspoređivali dvije točke koje su si blizu (u euklidskom pogledu) u jednoj dimenziji, ali ta dimenzija ima veliku varijancu, te dvije točke bi si trebale biti manje slične od dvije točke koje su si blizu u dimenziji koja ima manju varijancu.

(c) Kako možemo utvrditi jesu li dvije varijable statistički nezavisne? Pokušajte to napraviti za varijable x_1 i x_2 . Možemo li definitivno utvrditi da su varijable zavisne ili da su nezavisne? Obrazložite odgovor.

Definicija za nezavisnost varijabli:

Dvije slučajne varijable X i Y su (stohastički) nezavisne akko za sve intervale A i B, $A, B \subseteq \mathbb{R}$, vrijedi

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$
.

No budući da mi ne znamo funkcije razdiobe i intervale varijabli, trebamo naći neki drugi način za odrediti statističku zavisnost. Recimo, koeficijent korelacije:

Koeficijent korelacije upućuje na mjeru linearne zavisnosti među varijablama X i Y.

$$\rho_{X,Y} = \frac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Koeficijent korelacije možemo lagano odrediti iz kovarijacijske matrice. Na našem primjeru to će biti:

$$\hat{\rho}_{X_1,X_2} = \frac{\mathrm{Cov}(X_1,X_2)}{\sigma_{X_1}\sigma_{X_2}} = \begin{array}{c} \text{Varijable x1 i x2 su} \\ \text{zavisne. (Zaključeno} \\ \text{iz pozitivne korelacije)} \end{array}$$

Ne možemo definitivno tvrditi da su dvije varijable zavisne niti nezavisne. Zbog dva problema:

- (1) Koeficijent korelacije pokazuje samo linearnu zavisnost, varijable mogu biti nelinearno zavisne, uz koeficijent korelacije 0.
- (2) Ovo je samo procjena, procjena varira ovisno o izabranim uzorcima, može se dogoditi da smo dobili uzorke koje unose takvu pogrešku u naše procjene da donesemo krivi zaključak o zavisnosti varijabli.