Algorithms and tools for Big Data Application - Comparison of Tensor and Matrix based Approach in Foreground\Background Separation

Suhail Ahamed
Jianshu Zhang
Responsible Professor: Univ.-Prof. Dr. –Ing. Martin Haardt

Outline

- Motivation and State of the art
- Subspace estimation
 - → Matrix based
 - ⇒ Tensor based
- Simulation results
- Conclusion

Motivation and State of the Art

Identifying moving objects is a fundamental and critical task in many video applications. It is a big data application since the resolution of each frame might be huge or the video consists a large number of frames

Original video

Background

Foreground

- Compressed sensing based approaches [1]-[2] has gained great attraction in recent years ,e.g. the Recursive Projected Compressive Sensing (ReProCS). These methods use matrices (not taking into account the R-D structure)
- Our task is to investigate whether and when it is beneficial to use tensor based approach

Foreground and background Separation via Recursive Projected Compressive Sensing

Assume that the video sequence consists of a slowly changing low-rank background and a sparse foreground. For each frame, we have

- Training phase: Estimating the subspace (U_s) of the slowly varying background
- Data processing phase
- \Rightarrow Perpendicular Projection: project the measurement vector (\mathbf{x}_t) into the space orthogonal to the U_s

$$\mathbf{y}_t := \Phi_t \mathbf{x}_t \qquad \qquad \Phi_t := (I - U_s U_s')$$

 \Rightarrow Sparse Recovery: basis pursuit is used to estimate the foreground \mathbf{f}_t , solving

$$\Rightarrow \operatorname{Recovel} \min_{\mathbf{z}} \|\mathbf{z}\|_{1} s.t. \|\mathbf{y}_{t} - \Phi_{t}\mathbf{z}\|_{2} \leq \xi \qquad \qquad \xi = \|\Phi_{t}\mathbf{b}_{t-1}\|_{2}$$

Existing matrix based subspace estimation

□ The 3-mode unfolding $X \in \mathbb{R}^{(w \cdot h) \times T}$ of training video volume $\mathcal{X} \in \mathbb{R}^{w \times h \times T}$ is used and we have

$$X = [\mathcal{X}]'_{(3)}$$

Low-rank approximation of X using the truncated Singular
 Value Decomposition

$$X = U \cdot \Sigma \cdot V^H \approx U_s \cdot \Sigma_s \cdot V_s^H$$

The matrix based Background Subspace is decided by

$$U_s = U(:,1:\hat{r})$$
 $\hat{r},$ s.t. $\sum_{i=1}^{\hat{r}} \lambda_i =$ b% of energy we use b=95%

Proposed tensor based subspace estimation

□ Higher-Order Singular Value Decomposition (HOSVD) of $\mathcal{X} \in \mathbb{R}^{w \times h \times T}$

$$\mathcal{X} = \mathcal{S} \times_1 U_1 \times_2 U_2 \times_3 U_3$$

Truncated HOSVD

$$\mathcal{X} \approx \mathcal{S}^{[s]} \times_1 U_1^{[s]} \times_2 U_2^{[s]} \times_3 U_3^{[s]}$$

- The n-ranks are decided via the n-mode unfoldings
- The tensor based background subspace

$$\mathcal{U}^{[s]} = \mathcal{S}^{[s]} \times_1 U_1^{[s]} \times_2 U_2^{[s]} \times_3 \left(\Sigma_3^{[s]}\right)^{-1}$$

Link between matrix based and tensor based subspace estimates

A link between the matrix based and the tensor based subspace estimates

$$[\mathcal{U}^{[s]}]'_{(3)} = (T_1 \otimes T_2) \cdot U_s$$
 $T_i = U_i^{[s]} \cdot U_i^{[s]H}$

 \Rightarrow do not need to compute the core tensor, only U_1 , U_2 , U_3 .

