مدارهای الکتریکی و الکترونیکی فصل دهم: ديود

استاد درس: محمود ممتازپور ceit.aut.ac.ir/~momtazpour

فهرست مطالب

- 🗖 معرفی دیود و کاربردهای آن
- □ مشخصه ولتاژ-جریان دیود و مدلهای آن
 - □ تحلیل مدارهای دیودی

نيمهرسانا

انرژى الكترون

باند هدایت

باند ظرفیت

باند هدایت

باند ظرفیت

باند ظرفیت

باند هدایت

رساتا

(مانند مس، نقره، طلا، آلومینیوم و ...) نيمهرسانا

(مانند سیلیکون، ژرمانیوم و ...) عايق

(مانند شیشه، سرامیک، چوب، پلاستیک و ...)

سیلیکون به عنوان یک نیمهرسانا

- 🗖 ساختار اتمی
- □ دارای 4 الکترون در لایه ظرفیت

- اتم سیلیکون 🔞
- الكترون 🌑

نيمهر سانا نوع N

- □ در نیمهرسانای نوع N، تعدادی اتم فسفر به جای اتمهای سیلیکون جایگزین شدهاند.
- □ اتم فسفر 5 الكترون در لايه ظرفيت دارد، پس يک الكترون ميتواند آزادانه حركت كند.

نیمهرسانا نوع P

- □ در نیمهرسانای نوع P، تعدادی اتم بورون به جای اتمهای سیلیکون جایگزین شدهاند.
- □ اتم بورون 3 الكترون در لايه ظرفيت دارد، پس يک جای خالی الكترون دارد.

ديود

دیود PN المانی است که از اتصال نیمههادیهای نوع P و N ساخته میشود.

Anode Cathode

□ مدار یکسوساز Rectifier

□ مدار آشکارساز قله Peak detector

مثال: برای تبدیل موج AC به DC

□ مدار مهارکننده Clamper

مثال: برای چندبرابرکردن ولتاژ

ے مدار برشدھندہ Clipper/Limiter

مثال: برای حذف اسپایک نویز

Diode Applications

ے مدار تنظیمکنندہ ولتاڑ Voltage Regulator

□ فرستنده/گیرنده مادون قرمز Infrared

Transmitter/Receiver

ديود LED

IR SENSOR (TRANSCEIVER)

□ برای ساخت گیتهای منطقی

مشخصه ولتاژ-جریان

مدلهای دیود

🗖 مدل دقیق

مثال:

- مقدار i_D و v_D را بیابید. \Box
 - □ با نوشتن KVL داریم:

$$-E + Ri_D + v_D = 0$$

$$i_D = I_s (e^{v_D/v_T} - 1)$$

□ مدل دقیق، تحلیل را سخت میکند. □ نیاز به مدلهای سادهتر داریم.

10. ديو د

مدلهای دیود

مدل ایدهآل

- □ دیود همیشه در یکی از دو وضعیت زیر است:
- روشن: $(v_D=0,i_D>0)$ در این حالت دیود اتصال کوتاه است.
 - ر این حالت دیود مدار باز است. ($i_D=0,v_D<0$) حاموش:

مدلهای دیود

🗖 مدل تکهای-خطی Piecewise Linear

□ دیود همیشه در یکی از دو وضعیت زیر است:

تحلیل مدار های دیودی

🗖 روش حالت فرضى

- ا. برای هر دیود، فرض کنید یا روشن است یا خاموش برای هر فرض یک مدار متناظر رسم کنید. (2^N) حالت برای N دیود)
 - 2. یکی از مدارها را تحلیل کنید.
- عنید آیا فرض درنظرگرفته شده برای دیودها صحیح بوده است یا خیر.
 - اگر دیود خاموش فرض شده، ولتاژش باید منفی شده باشد.
 - اگر دیود روشن فرض شده، جریانش باید مثبت شده باشد.
- 4. اگر همه فرضها درست بود، تحلیل کامل است، وگرنه باید یک فرض دیگر را بررسی کنید (مرحله 2).

- □ فرض كنيد ديود روشن (اتصال كوتاه) است.
 - $v_D = 0$, $i_D > 0$
- (حریان دیود مثبت شد. درست.) $i_D=1mA \rightarrow v=3V$

$$R_d = 1, v_{TH} = 0.6$$

- □ فرض کنید دیود خاموش (مدارباز) است.
 - $i_D = 0, v_D < 0.6$
- (ولتاثر ديود مثبت شد. تناقض!) $v_D=0.75V$ 🗖

$$v_D = iD + 0.6, i_D > 0, v_D > 0.6$$

(حریان دیود مثبت شد. درست.) $i_D pprox 0.2mA
ightarrow v pprox 2.4V$

10. ديو د

رسم کنب v_{IN} را بر حسب ولتاثر v_{OUT} رسم کنب

- 4 حالت میتوان فرض کرد:
 - D_1 ON, D_2 ON
 - D_1 ON, D_2 OFF
 - D_1 OFF, D_2 ON
 - D₁ OFF, D₂ OFF □
- □ آیا میتوانید حالت درست را حدس بزنید؟
 - $v_{IN}>0$ اگر
 - $v_{IN} < 0$ اگر

🗖 آشكارساز قله

□ عملکرد مدارهای زیر را تحلیل کنید.

$$A \longrightarrow Z = A + B$$

$$B \longrightarrow \frac{1}{2}$$

 v_{OUT} در مدار زیر، ولتاژ آستانه دیود زنر 6- ولت است ولتاژ آستانه دیود رز v_{IN} رسم کنید

10. ديود