Oscillator Basics

- Barkhausen criterion: A linear circuit with a feedback loop will sustain steady-state oscillations only for frequencies at which the loop gain (product of forward gain and feedback gain) has a magnitude equal to one and a phase shift equal to zero or an integer multiple of 2π
- In effect, feedback network acts as a band-pass filter
 - Initially, only noise present at amplifier input; feedback network only allows the oscillation frequency through, amplitude increases till stable oscillations start

Metrics for Oscillators

- Q factor: measure of energy loss within the resonating structure
- Frequency Stability: How much the peak frequency moves (long term)
- Phase Noise: Energy around the peak (short term)
- Startup Time: How long it takes for oscillations to start

Ring Oscillator

An odd number of inverters arranged in a ring produce a frequency

$$f_{CLK} = 1 / (2 \times N \times t_{pd})$$

- Inverter propagation delay has a strong dependence on temperature, supply voltage, and load capacitance, leading to high frequency drift
- Advantages:
 - Very high frequencies possible (t_{pd} < 10ps for 45nm), high integration, low cost, nearly arbitrary frequency choice
- Disadvantages:
 - Very low Q-factor, very low stability ≈ 10⁵ ppm (affected by temperature and voltage),
 very high phase noise

RC/LC Oscillators

- Lots of different circuits exist for RC oscillators to produce sinusoidal as well as non-sinusoidal waveforms
- Almost all MCUs have one or more RC oscillators integrated on chip
- Also available as Si oscillator modules, with the benefits of matched components and temperature-compensation for increased stability
- Advantages:
 - Low cost, no external components, insensitive to humidity, vibration, EMI
- Disadvantages:
 - Low stability (1000 10000 ppm), high supply current (some types)

Crystal Oscillators

- Use the mechanical resonance of a vibrating piezoelectric material to achieve frequency-selective phase shift in the feedback network
- If properly cut and mounted, piezoelectric material distorts when an electric field is applied; if the field is removed, it generates an electric field as it returns to its original shape
- Most common type of piezoelectric material used is the quartz crystal; hence these oscillators are called crystal oscillators

Schematic of MSP430F5438 EXP board

Quartz Crystals

- The resonance frequency of a quartz crystal depends on its length, thickness, and angle of cut with respect to the crystallographic axes
- Quartz crystals are manufactured for frequencies from a few tens of kilohertz to tens of megahertz
- Most common for 32 kHz clock: XY-cut, tuning fork crystal
- Most common for > 400 kHz clock: AT-cut crystal

- Advantages:
 - Very high Q-factor (≈ 10⁶), high stability (10 100 ppm), low phase noise
- Disadvantage:
 - Expensive, precision engineering, not all frequencies, susceptible to vibrations

Ceramic Resonators

- Ceramic resonators are made of high-stability piezoelectric ceramics, generally lead zirconium titanate (PZT)
 - Principle of operation similar to quartz crystals, but cheaper to produce
- Ceramic resonators stand between quartz crystals and LC/RC oscillators in regard to accuracy
- Often have built-in load capacitors, so no external capacitors needed
- Advantages:
 - Lower cost than crystals
- Disadvantage:
 - Medium stability (100 1000 ppm), sensitive to EMI, vibrations, hum

MSP4305xx Clock Subsystem

- Five different clock sources: 3 internal oscillators, 2 crystal oscillators
- Three different clocks: ACLK, MCLK, SMCLK
- XT1CLK: Low-frequency/high-frequency Pierce oscillator that can be used either with low-frequency 32768 Hz crystals, standard crystals, resonators, or external clock sources in the 4 MHz to 32 MHz range
- VLOCLK: Internal very low power, low frequency oscillator with 10 kHz typical frequency
- REFOCLK: Internal, trimmed, low-frequency RC oscillator with 32768 Hz typical frequency
- DCOCLK: Internal digitally-controlled oscillator (DCO)
- XT2CLK: Optional high-frequency osc.; can be used with standard crystals, resonators, or external clocks in the 4 MHz to 32 MHz range

ESP32 Clock Subsystem

- The ESP32 integrates multiple clock sources for the CPU cores, the peripherals and the RTC. These clocks can be configured to meet different requirements.
- The ESP32 can use an external crystal oscillator, an internal PLL or an oscillating circuit as a clock source.

ESP32 Clock Subsystem

High Speed Clocks

- PLL_CLK is an internal PLL clock with a frequency of 320 MHz.
- XTL_CLK is a clock signal generated using an external crystal with a frequency range of 2 ~ 40 MHz.

Low Power Clocks

- XTL32K_CLK is a clock generated using an external crystal with a frequency of 32 KHz.
- RTC8M_CLK is an internal clock with a default frequency of 8 MHz.
- RTC8M_D256_CLK is divided from RTC8M_CLK. Its frequency is (RTC8M_CLK / 256).
 With the default RTC8M_CLK frequency of 8 MHz, this clock runs at 31.250 KHz.
- RTC_CLK is an internal low power clock with a default frequency of 150 KHz.

Audio Clock

APLL_CLK is an internal Audio PLL clock with a frequency range of 16 ~ 128 MHz.

Timers: How do we Keep Time?

26

Timer Basics

- 16-bit Counter
 - Clock source selector
 - Dividers
 - Counter Register
 - Count Mode (up, down, up/down)
- Capture/Compare Unit
 - Capture Register
 - Compare Register
 - Capture/Compare Inputs Interrupt
 - Output Unit

Timer counting modes

0FFFFh

TAxCCR0

0h

Up mode

Continuous mode

Up/Down mode

Capture, Compare, PWM

- Input Capture Mode: Save time when a specific event occurs and signal interrupt
- Output Compare Mode: Generate interrupt when counter reaches a specific value
 - Can set/reset/toggle a GPIO when counter reaches a specific value
- Output/ Pulse Width Modulated (PWM): Special case of Output Compare Mode
 - Set I/O when reaching a specific counter value
 - Clear I/O when reaching LOAD value
 - Usually used in continuous mode