Traffic Signal Control: Q-Learning with Different Rewards

Kyle Masters

Traffic Signal Control: Q-Learning with Different Rewards

Mini-World

- 4 traffic lights
- 8 lanes (2 each direction)
- Vehicles driving through intersection

Traffic issues cause

- Carbon emissions
- Travel time

Environment

Environment Used: SUMO-RL

Input (State Space)

- Current Phase Vector (4)
- Minimum Time Boolean (1)
- Lane density (8)
- Lane queue (8)

Output (Action Space)

- NS Straight
- NS Left Turn
- EW Straight
- EW Left Turn

Method

DQN (Deep Q Learning)

2 Dense Neural Networks:

- Policy Often Updated
- Target Rarely Updated

Replay Buffer

4 different reward functions

- Wait Time
- Speed
- Queue Length
- Vehicle Count

1 evaluation metric

Total vehicle throughput

Results

Successful Rewards

- Wait Time
- Speed

Unsuccessful

- Queue Length
- Vehicle Count

In general:

Susceptible to local maxima

	Total Vehicles Through
Baseline	476
Wait Time	686
Speed	628
Queue Length	326
Vehicle Count	327

Summary

Successful agents

Made intelligent decisions

Unsuccessful agents

- Fell into local maxima
- Solutions focused on single lanes

Reward heavily impacted results

