Daniel Subocz 154777 Mateusz Stencel 149110 Adam Dzierżawski 136929 Marcin Bieszk 160232

Roboty mobilne

Sprawozdanie z projektu

1. Wstęp

W realizowanym projekcie skonstruowano robota jeżdżącego, na pokładzie którego zamontowano akcelerometr oraz żyroskop w celu zebrania informacji o położeniu i orientacji robota. Komunikacja z robotem została zrealizowana poprzez moduł radiowy. Zebrane dane zostały przetworzone w środowisku Matlab. Budowa robota oraz wyniki obliczeń zostaną przedstawione w niniejszym sprawozdaniu.

Rysunek 1. Robot.

Rysunek 2. Nadajnik.

2. Konstrukcja robota

a) Czujniki [1]

W robocie wykorzystano moduł MPU-6050. Zawiera on 3-osiowy żyroskop oraz 3-osiowy akcelerometr. W skład modułu wchodzi również czujnik temperatury, lecz nie jest on wykorzystywany w tym projekcie. Podczas pomiarów temperatura była stała. Na rysunku 3. przedstawiono wygląd modułu MPU-6050.

Rysunek 3. Płytka modułu 6050.

Żyroskop umożliwia pomiar prędkości obrotu. Wykorzystywany układ zawiera 3 niezależne żyroskopy służące do pomiaru obrotu dla każdej z osi X, Y i Z.

Akcelerometr służy do pomiaru przyspieszenia. Podobnie jak w przypadku żyroskopu w układzie zastosowano 3 akcelerometry, po jednym dla każdej z osi X, Y oraz Z.

Na rysunku 4 przedstawiono układ współrzędnych wykorzystany w module MPU-6050.

Rysunek 4. Układ współrzędnych modułu MPU-6050.

b) Komunikacja [2]

Do komunikacji robota ze stacją Arduino wykorzystano moduł radiowy nRF24L01. Zawiera nadajnik i odbiornik pracujący na częstotliwości 2,4 GHz. Wygląd modułu przedstawiono na rysunku 5.

Rysunek 5. Moduł radiowy nRF24L01.

3. Sterowanie

Operator steruje robotem za pomocą joysticka umieszczonego przy nadajniku. Kąt oraz kierunek wychylenia gałki jest przekształcany przez przetwornik do postaci cyfrowej, a następnie przesyłany za pomocą modułu radiowego. Informacja odebrana przez moduł znajdujący się w robocie jest przekazywana do Arduino.

Do sterowania silnikami wykorzystywane są wyjścia PWM (pozwalające na modulację szerokości impulsów), przez które sygnał sterujący trafia do wzmacniaczy. Za każdy z silników odpowiedzialne są dwa wzmacniacze. W zależności od pożądanego kierunku ruchu (a zatem odpowiadającym mu kierunkom obrotów silnika) sygnały przesyłane są na odpowiednie wyjścia.

Informacja o położeniu robota w przestrzeni jest otrzymywana poprzez akcelerometr i żyroskop. Dane z nich przesyłane są do operatora poprzez kanał modułu radiowego.

4. Filtr komplementarny [3]

Ideą filtru komplementarnego jest wykorzystanie kilku źródeł informacji (czujników) obarczonych różnym rodzajem zakłóceń. Głównym kryterium podziału zakłóceń jest częstotliwość ich występowania. Każdy pomiar jest filtrowany, a następnie sumowany z innymi, dając informację o badanym parametrze.

Dane z akcelerometru w pliku data przedstawiają pomiar kolejno dla osi x, y ,z. Akcelerometr na robocie został zamontowany pionowo:

Rysunek 6. Osie akcelerometru zamontowanego na robocie.

Oś Y w na akcelerometrze odpowiada osi Z w kodzie w Matlabie. Oś Z odpowiada osi X w kodzie, natomiast oś X odpowiada osi Y w kodzie. Zostało to uwzględnione przy wczytywaniu danych:

```
ay = data(:,1);

az = data(:,2);

ax = data(:,3);

gy = data(:,4)*250/32768;

gz = data(:,5)*250/32768;

gx = data(:,6)*250/32768;
```

Podczas pomiaru robot poruszał się tak, jak zostało to przedstawione w pliku Film.avi. Robot jest lekko pochylony w trakcie jazdy. Wynika z tego, że płaszczyzna x,y nie jest równoległa do podłoża.

Na podstawie pomiarów z akcelerometru i żyroskopu dokonano estymacji orientacji robota poprzez wyznaczenie kąta odchylenia (yaw). Pomiar z żyroskopu został scałkowany, natomiast z danych z akcelerometru kąt obliczono za pomocą wzoru:

$$\psi = \operatorname{atan2}(\sqrt{a_x^2 + a_y^2}, a_z)$$

Kąt był estymowany za pomocą filtru komplementarnego korzystając ze wzoru:

$$\alpha_k = p\alpha_{k-1} + (1-p)\alpha_k^A + p(\alpha_k^G - \alpha_{k-1}^G)$$

- α_k oznacza estymowany kąt,
- • α_{k-1} oznacza estymowany kąt w poprzednim obiegu pętli,
- α_k^A oznacza kąt wyznaczony z akcelerometru,
- α_k^G oznacza kąt wyznaczony z żyroskopu.

$$p = \frac{T}{\Delta t + T}$$

- T jest stałą czasową elementu inercyjnego i określa dynamikę filtru,
- Δt oznacza jeden okres próbkowania.

Poniższy wykres przedstawia estymowany kąt dla T = 0.3.

Rysunek 7. Kat odchylenia.

Należy zauważyć, że do poprawnego wyznaczenia kąta odchylenia konieczne jest wykorzystanie magnetometru, w który układ MPU-6050 nie jest wyposażony. W przypadku poruszania się robota po płaskiej powierzchni kąty przechylenia (roll) i pochylenia (pitch) są stałe, dlatego zostały pominięte w sprawozdaniu.

5. Bibliografia

- https://www.mschoeffler.de/2017/10/05/tutorial-how-to-use-the-gy-521-module-mpu-6050-breakout-board-with-the-arduino-uno/?fbclid=IwAR1b4nwctzE7MN69sv8sQ6Hz9cEpuNamm4CjHQWHaZxuYZGf0z2r41AdSrU (data dostępu 29.12.2018)
- https://howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01tutorial/?fbclid=IwAR2TgYz_7AKmRegPGXhLKy8uoDyBC4oRMnuNGZOJC 40nlX4D24kpoXRiclU (data dostępu 29.12.2018)

3. Grygiel R., Bieda R., Wojciechowski K.: Metody wyznaczania kątów z żyroskopów dla filtru komplementarnego na potrzeby określania orientacji IMU, Przegląd Elektrotechniczny, ISSN 0033-2097, R. 90 NR 9/2014.