

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

FILE COPY

黑

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

COMPUTER PROGRAM FOR PERFORMANCE

PREDICTION OF TANDEM-ROTOR HELICOPTERS

by

Dave L. Cotner

June 1985

Thesis Advisor:

D. M. Laytor

yton D

Approved for public release; distribution is unlimited

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM						
A D- A S	NO. 3. RECIPIENT'S CATALOG NUMBER						
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED	•					
Computer Program for Performance Prediction of	Master's Thesis	- 1					
Tandem-Rotor Helicopters	Engineer's Thesis June 1985						
-	6. PERFORMING ORG. REPORT NUMBER	İ					
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(*)	\neg					
COTNER, Dave L.		İ					
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS						
Naval Postgraduate School		- 1					
Monterey, California 93943-5100	Ì	1					
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	一					
Naval Postgraduate School	June 1985	_					
Monterey, California 93943-5100	13. NUMBER OF PAGES						
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 18. SECURITY CLASS. (of this report)	_					
	UNCLASSIFIED	1					
	154. DECLASSIFICATION/DOWNGRADING						
	SCHEDULE	_					
S. DISTRIBUTION STATEMENT (of this Report)		- }					
Approved for Public Release, Distribution Unlimi	Accession For	7					
	NTIS GRA&I	7					
	DTIC TAB	†					
	Unannounced	i I					
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different	from Report) Justification	7					
	Distribution/						
	· · · · · · · · · · · · · · · · · · ·						
. SUPPLEMENTARY NOTES	Availability Codes	5					
	Avail and/or						
	Dist Special						
	A-1	Ì					
. KEY WORDS (Continue on reverse side if necessary and identify by block numb	(or)						
Helicopter Power Re	equired	F					
Computer Program Tandem-R	lotor	/ °					
Performance Prediction Prelimin	nary Design	IN CO					
	'	V.º					
. ABSTRACT (Continue on reverse side if necessary and identify by block number							
A computer program for the HP-41 series calculat		:s					
the rotor shaft horsepower required for tandem-r	——————————————————————————————————————						
set of helicopter parameters and flight condition		Į					
analytical methods of calculating the induced po		1					
copters were explored during the development of		1					
on the total shaft horsepower required was compa	red to actual test data.	ſ					

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

5 'N 0102- LF- 014- 6601

UNCLASSIFIED

RCURITY .	CLASSIFICATION	OF THIS PAGE	(Then Date Entered)

These comparisons as well as size and complexity considerations were used in selecting the best method to be used. The program can be used in preliminary design analysis and as an educational tool where only an	
estimate of the actual shaft horsepower is required.	
•	
	i
•	
	1

5.N 0102- LF- 014- 6601

UNCLASSIFIED

2 SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ABSTRACT

the HP-41 computer program for series calculator presented which predicts the rotor shaft horsepower required for tandem-rotor helicopters to a given set of helicopter parameters and flight conditions. Three simplified analytical methods of calculating the induced power for tandem-rotor helicopters were explored during the development of the program and their effect on the total shaft horsepower required was compared to actual test data. These comparisons as well as size and complexity considerations were used in selecting the best method to be used. The program can be used in preliminary design analysis and as an educational tool where only an estimate of the actual shaft horsepower is required.

Approved for public release; distribution is unlimited.

Computer Program for Performance Prediction of Tandem-Rotor Helicopters

bу

Dave L. Cotner Lieutenant, United States Navy B.S., Texas A&M University, 1978

Submitted in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

and

AERONAUTICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL June 1985

Author:	Dan Catu
-	Dave L. Cotner
Approved by:	The Laster
	D.M. Layton, Thesis Advisor
	J.V. Healey, Second Reader
	J.V. Healey, Second Reader
	M.F. Platzer, Chairman, Department of Aeronautics
	M.F. Platzer, Chairman,
	Department of Aeronautics
	AM Dyw
	John N. Dyer,

LIST OF FIGURES

2.1	Effective Rotor Disk Area
2.2	Tandem-rotor Geometry
2.3	Streamtube Mix of Two Rotors
2.4	Wake Separation Distance, h _{rr}
3.1	Comparison of Methods to Actual Power Required 20
3.2	H-46 SSL Power Required
3.3	H-47 SSL Power Required
3.4	H-46 at Altitude: Power Required

TABLE OF CONTENTS

I.	INTR	CODUC	LION				•				•	•								•		7
	A.	BACK	GROU	JND				•			•					•						7
	В.	GOALS	S .							•	•			•	•	•	•			•	•	9
II.	APPR	соасн	то	THE	P	ROB	LE	M			•	•					•					10
	A.	GENER	RAL		•																	10
	В.	EQUA:	rion	s .	•			•					•	•			•					10
III.	SOLU	TION	AND	RES	UL	тs	٠			•			•	•		•	•		•	•		19
IV.	CON	CLUSIC	NS .	AND	RF	ECO!	MM	EN	ID <i>A</i>	ΥI	(01	1S				•	•	•			•	25
APPEND	IX A	: NO	MENC	CLAT	UR	Ε.	٠			•	•	•		•	•		•	•			•	26
APPEND	IX B	: НР	-41 (COMP	UT	ER	ΡI	RO	GR	AM	[•	•							28
LIST O	F RE	FEREN	CES				•					•								•	•	38
BIBLIO	GRAPI	HY .			•		•				•		•	•					•		•	39
INITIAL	DIST	rribu:	ΓΙΟΝ	LIST	Г																	40

some insight into a means of optimizing a design for a specific mission.

Computer programs for the HP-41 series hand-held calculator have been developed at the Naval Postgraduate School for performance predictions of single-rotor helicopters [Ref. 1]. These programs are used for single-rotor helicopter performance predictions in the Helicopter Performance and Preliminary Design Courses that are taught, but only a method of predicting the power required for tandem-rotor helicopters is presented.

A program was desired for tandem-rotor helicopters that would predict the approximate power required, for different helicopter configurations and flight conditions, as an addition to the previously developed programs for single-rotor helicopters. The program could be used in Preliminary design work and as an educational tool to examine how different helicopter configurations affect the power This could also be the first step in the addition of required. tandem-rotor helicopter design into the Helicopter Design Course, which covers single-rotor design only, and would allow for a comparison to be made between single-rotor and tandem-rotor designs to determine the best design to meet a specified mission requirement.

A current program for use in single-rotor and tandem-rotor helicopter sizing and performance is HESCOMP [Ref. 2], however, this program is more suited for detailed design, requiring large amounts of input data for even a simple analysis.

I. INTRODUCTION

A. BACKGROUND

Tandem-Rotor helicopters and single-rotor helicopters are used in both the military and civilian communities. Tandem-Rotor helicopters have both advantages and disadvantages over single-rotor helicopters of the same gross weight and disk loading. Advantages include low shaft horsepower (shp) required to hover and elimination of required tail rotor power. Some disadvantages are higher power required in the minimum power range, decreased service ceiling and climb capability, and increased autorotational rate of descent. These differences in performance are primarily due to rotor-rotor interference, elimination of tail rotor power and a difference in download levels.

Performance prediction of helicopters for use in both the preliminary and Detailed Design process has been the subject of numerous articles and studies. Detailed design normally involves the use of large, detailed, time-consuming and costly computer programs. On the other hand, in Preliminary design work, performance evaluations using simplified analytical techniques based on a combined blade element and momentum theory provide a simple cost-effective means of investigating the influence of important design parameters on performance. The simplified techniques also give details concerning the power required breakdown and thus,

II. APPROACH TO THE PROBLEM

A. GENERAL

The major difference in Total Power required for ta-dem-rotor helicopters is due to the rotor-rotor interference effect, which causes an increase in the induced power required. The methods developed by D.M. Layton [Ref. 3] were the primary source for the equations for determining the total power required. Numerous other publications were also reviewed for alternate equations to determine the induced power and an induced power correction factor. From these, three methods were chosen for a comparison of the total power required to find the closest to actual test data of existing tandem-rotor helicopters.

The H-46 and the H-47 Chinook were chosen as comparison helicopters. The H-46 NATOPS was readily available with hover data for both in and out of ground effect. Additional test data were obtained for both the H-46 and the Chinook from the Boeing Vertol Company.

B. EQUATIONS

The analytical methods for prediction of power required can be simplified by making assumptions to the flow through the rotor disks. Errors in the results are introduced by these assumptions but are insignificant compared to the simplification obtained. The assumptions are listed as follows [Ref. 3: pp. 27-28]:

B. GOALS

The goal of this project was to produce a self-prompting, alpha-numeric computer program for the HP-41 series calculator that determines the shaft horsepower required, for the given parameters and flight conditions, to within 10% of the actual values. This could then be used in the preliminary design process for tandem-rotor helicopters and for parametric studies. The program should be consistent and compatible with the programs of [Ref. 1] using the Standard Data Set with certain exceptions and additions. Instructions, equations and examples should also be provided.

- 1. Air is a frictionless, incompressible fluid.
- 2. The rotor acts as a disc with an infinite number of blades.
- 3. Flow through the disc is steady and uniform.
- 4. The rotor imparts no rotation to the air as it passes through.
- 5. Flow above and below the rotor is streamlined and of constant energy, although the energy is different above and below.
- 6. Energy is added at the rotor in the form of a pressure increase.

The total power required for tandem-rotor helicopters was determined using the same equations for thrust coefficient, tiploss, profile power, parasite power and climb power used for single-rotor helicopters. The three methods used in determining the induced power and induced power correction factor are described below.

The first method was taken from [Ref. 3] and [Ref. 4]. The induced power equation is:

$$P_{i} = T \cdot v_{ih} \cdot K \cdot K_{u}$$
 (2.1)

where

$$v_{ih} = \left(\frac{T}{2\rho A_e}\right)^{1/2} \tag{2.2}$$

The factor K is a hover induced power correction factor due to overlap and is an approximation from numerous tests. Its value is determined as a function of the rotor shaft spacing ratio, S_R , by the equation

$$K = 1.46 - .253 \cdot S_R$$
 (2.3)

 A_{\bullet} is the effective area and is equal to the projected area of the two rotor disks with the radii reduced by a factor to account for tip losses. The equation for A_{\bullet} was derived from Figure 2.1 to be

$$A_{\bullet} = 2R_{\bullet}^{2} \left[\pi - \frac{\pi}{180} \cos^{-1} \left(\frac{S_{1}}{2R_{\bullet}} \right) \right] + S_{1} \sqrt{R_{\bullet}^{2} - \frac{1}{4}S_{1}^{2}}$$
 (2.4)

$$A_e = A_1 + A_2 + A_3$$

Figure 2.1 Effective Rotor Disk Area.

The forward flight correction factor, $\mathbf{K}_{\mathbf{u}}$, is computed from

$$K_{\mathbf{u}}^{4} + \left(\frac{A_{\mathbf{v}}}{A_{\mathbf{e}}}\right)^{2} \left(\frac{V_{f}}{v_{ih}}\right)^{2} \cdot K_{\mathbf{u}}^{2} = 1$$
 (2.5)

which is derived in [Ref. 5] from momentum theory. Solving for $K_{\mathbf{u}}$

$$K_{u} = \left\{ \left[\frac{1}{4} \left(\frac{A_{v}}{A_{e}} \right)^{4} \left(\frac{V_{f}}{v_{ih}} \right)^{4} + 1 \right]^{1/2} - \frac{1}{2} \left(\frac{A_{v}}{A_{e}} \right)^{2} \left(\frac{V_{f}}{v_{ih}} \right)^{2} \right\}^{1/2}$$
(2.6)

The angle that the forward rotor wake is skewed, 7, before it strikes the aft rotor is calculated by

$$\gamma = \tan^{-1} \frac{1.5 v_{ifr}}{V_f} = \frac{1.5 T_{fr}}{2 \rho A_{fr} V_f^2}$$
 (2.10)

and uses the approximation

$$v_{ifr} = \frac{T}{2\rho A_{fr} V_{f}} \tag{2.11}$$

which is valid at velocities where $V_f/V_{ih} > 2$. The induced power correction factor, K_u , is multiplied by the induced power for a single-rotor helicopter with the same gross weight and disk loading, including tip losses, to give the induced power equation

$$\dot{P}_{i} = K_{u} \cdot P_{i_{gingle}} \tag{2.12}$$

$$P_{i} = K_{u} \cdot T \cdot v_{ih} \left\{ \left[\frac{1}{4} \left(\frac{V_{f}}{v_{ih}} \right)^{4} + 1 \right]^{1/2} - \frac{1}{2} \left(\frac{V_{f}}{v_{ih}} \right)^{2} \right\}^{1/2}$$
 (2.13)

where

$$v_{ih} = \left(\frac{T}{4\rho\pi R_{\bullet}^2}\right)^{1/z} \tag{2.14}$$

The third method is actually two in that the correction factor was determined in two ways. The first, K_{inde} , is developed theoretically in [Ref. 7] and is based on momentum theory by assuming the downwash of the forward rotor mixing with the rear rotor has reached its downstream value of $2v_{ife}$.

$$\dot{\mathbf{k}}_{indo} = 2 \left[\frac{1}{4} + \left(\frac{\pi R^2}{4} \right) \mathbf{A}_{refree} + \mathbf{A}_{remix} \right] \tag{2.15}$$

The vertical area A_{ψ} is shown in Figure 2.2 and is equal to

$$A_{\mathbf{v}} = \pi \mathbf{R}^2 + 2\mathbf{R} \cdot \mathbf{g} \tag{2.7}$$

Figure 2.2 Tandem-rotor Geometry.

The second method uses the correction factor $K_{\mathbf{u}}$ derived in [Ref. 6] and presented in [Ref. 3] and [Ref. 4].

$$K_u = 1 + \frac{d_f}{2}$$
 (2.8)

The factor d_f is the amount of forward rotor downwash velocity that is added to the rear rotor downwash and is equal to

$$d_{f} = \frac{\sqrt{1 + S_{R}^{2} + S_{R}\cos\gamma}}{\sqrt{1 + S_{R}^{2}(1 + S_{R}^{2}\sin^{2}\gamma)}}$$
 (2.9)

A curve fit to this data provided the following equation for K_{ind} .

$$K_{ind} = \frac{2.08 - 5.5h_{rr} + 69.9h_{rr}^{2} + 4.8h_{rr}^{3}}{1 - 2.93h_{rr} + 34.14h_{rr}^{2} + 21.5h_{rr}^{3}}$$
(2.19)

The value of the parameter h_{rr}/R used for both correction factors was determined from the equations developed in [Ref. 9], modified slightly. These equations are listed below and their relationships are shown in Figure 2.4. The helicopter pitch attitude, θ_t , was assumed to be zero in this project.

$$\frac{h_{rr}}{R} = -\frac{\sqrt{g^2 + S_1^2}}{R} \sin\gamma \tag{2.20}$$

$$\gamma = \theta_{\rm f} - \varepsilon - \gamma_{\rm o} \tag{2.21}$$

$$\gamma_{o} = \tan^{-1} \left(\frac{g}{S_{1}} \right) \tag{2.22}$$

$$\varepsilon = \tan^{-1} \left(\frac{K_d v_{ifr}}{V_f} \right) \tag{2.23}$$

$$v_{i_{fr}} = v_{ih} \left\{ \left[\frac{1}{4} \left(\frac{V_f}{v_{ih}} \right)^4 + 1 \right]^{1/2} - \frac{1}{2} \left(\frac{V_f}{v_{ih}} \right)^2 \right\}^{1/2}$$
 (2.24)

$$v_{ih} = \left(\frac{T}{4\rho\pi R^2}\right)^{1/2} \tag{2.25}$$

$$K_{d} = \frac{.043}{.043 + \mu} \tag{2.26}$$

The areas derived from Figure 2.3 in terms of the elevation of the rear rotor hub above the centerline of the forward rotor streamtube, \mathbf{h}_{rr} , are

$$A_{re_{mix}} = \left(\frac{\pi}{90}\right) R^{2} cos^{-1} \left(\frac{h_{rr}}{2R}\right) - h_{rr} \sqrt{R^{2} - \frac{1}{4}h_{rr}^{2}}$$
 (2.16)

$$A_{refree} = \pi R^2 - A_{remix} \tag{2.17}$$

Figure 2.3 Streamtube Mix of Two Rotors.

Substituting into equation 2.15 and including tip losses

$$K_{indo} = \left[1 + \left(\frac{1}{90}\right)\cos^{-1}\left(\frac{h_{rr}}{2R}\right) - \left(\frac{h_{rr}}{\pi R}\right)\sqrt{1 - \frac{1}{4}\left(\frac{h_{rr}}{R}\right)^2}\right] \cdot \frac{1}{B} \qquad (2.18)$$

The second, K_{ind} , was determined empirically from wind tunnel data given in [Ref. 9: Figure 5-13] where the correction factor K_{ind} is plotted versus the rotor wake separation ratio h_{rr}/R .

In order that the comparisons of power predicted by each of these equations could be made more quickly, for a number of different flight conditions, the equations were programmed on the IBM 3033.

Figure 2.4 Wake Separation Distance, hrr.

The induced power correction factors were multiplied by the ideal induced power of one rotor producing one half T to give the equations

$$P_{i} = 2P_{id} \cdot K_{indo}$$
 (2.27)

$$P_{i} = 2P_{id} \cdot K_{ind}$$
 (2.28)

Pid was calculated by

$$P_{id} = \frac{1}{2}T \cdot v_{ih}$$
 (2.29)

where v_{ih} is the same as v_{ig} in equation 2.24

The induced power correction factor due to Ground Effect for tandem-rotor helicopters is the same as for single-rotor helicopters. The value for a given wheel height is normally larger for the tandem-rotor helicopter because the aft rotor is normally higher than the main rotor for a single-rotor helicopter.

Figure 3.1 Comparison of Methods to Actual Power Required.

III. SOLUTION AND RESULTS

The actual power required data was entered into the IBM 3033 program and the percentage error of each of the methods was calculated. The three methods gave results within a few percent of each other for most weights and flight conditions tested. These results are shown in Figure 3.1 for the H-46 at a weight of 21,000 lbs and standard sea level (ssl) conditions.

The first method was used for both hover and forward flight calculations whereas the second and third methods were derived for forward flight use. The second method gave closest results at most velocities above the minimum power velocities but the first method's results were normally within 1% of these values. The third method sometimes gave the closest results but no trends could be established for either $K_{\rm ind}$ or $K_{\rm indo}$ correction factors.

To get results that are the closest possible using these methods, a combination of methods should be used. This would require a large and complex program since the switching points between methods would be weight and altitude dependent.

Considering all the above information, the first method was selected for use in the HP-41 program. This allows one method to be used from hover to Vmax and at all weights and flight conditions while minimizing the size and complexity of the program and still meeting the desired goals. The HP-41 program developed is a self-prompting, alpha-numeric computer program that determines the

Figure 3.2 H-46 SSL Power Required.

steady state power requirements for tandem-rotor helicopters. Basic geometric and flight parameters are inputs to the program and the total rotor shaft horsepower required is the output. Appendix B is the program documentation which is presented in the same format as the programs of [Ref. 1]. The documentation includes an introduction to the program, additional programs required, the equations used, a list of the standard storage registers utilized with a separate list of non-standard and additional storage registers, a detailed step-by-step example problem and a complete program listing.

Differences in the power required predicted by the HP-41 program and actual test data can be seen in Figures 3.2, 3.3 and 3.4. Figures 3.2 and 3.3 are plots of the H-46 and H-47 at normal operating weights and standard sea level conditions. Figure 3.4 shows the H-46 at maximum gross weight and an altitude of 4000 ft and 95 degrees Fahrenheit. Compressibility and blade stall effects at high velocities and altitudes result in additional power required. These high speed effects were not taken into account in the program and with the exception of these high velocities and altitudes, the predicted power required was within the desired 10% of the actual values for all weights and flight conditions tested.

Figure 3.4 H-46 at Altitude: Power Required.

Figure 3.3 H-47 SSL Power Required.

APPENDIX A

NOMENCLATURE

TERM	DEFINITION	UNITS
A	- affective rotor disc area of tandem rotors	ft²
A _{fr}	- rotor disc area of forward rotor	ft²
Arefree	- area of the nonmixed part of the rear-rotor airstream	ft²
A _{remix}	- area where the two streamtubes mix together	ft²
A_{Ψ}	 vertical area equal to single rotor plus vertical gap area 	ft²
d _f	- induced power interference parameter	dimensionless
g	- vertical gap between rotor hubs	ft
h _{rr}	 elevation of rear rotor hub above the centerline of the forward rotor streamtube, or, the rotor wake separation distance 	ft
K	 hover induced power correction factor due to overlap 	dimensionless
$K_{\mathbf{d}}$	 local downwash velocity correction factor 	dimensionless
K_{ind}	- tandem-rotor induced power correction factor	dimensionless
Kindo	- tandem-rotor induced power correction factor	dimensionless
K_u	- forward flight induced power correction factor	dimensionless
OGE	- out-of-ground effect	

IV. CONCLUSIONS AND RECOMMENDATIONS

Three methods of calculating the induced power required for tandem-rotor helicopters were used to predict the total power required for various weights and flight conditions. These values were then compared to the actual test data and a method was selected for use in an HP-41 program. A HP-41 program was then developed that predicts the rotor shaft horsepower required within 10% of the actual values for given helicopter parameters and flight conditions, except where high speed effects are significant. The documentation and program are consistent with the existing programs of [Ref. 1] developed for single-rotor helicopters and it uses the standard data set with some exceptions and additions. The program gives a rough estimate of the actual power required and its main use is as an educational tool.

A more exact and detailed analysis of any design should be done with a larger main frame type computer program, such as HESCOMP.

The HP-41 High Speed Program [Ref. 1: pp. 35-40] computes the additional power required for single-rotor helicopters due to blade stall and compressibility. This program could be modified to include tandem-rotor helicopters. With the addition of high speed effects, the total power required should be recomputed using the three methods and compared to the actual data. Additional test data for other tandem-rotor helicopters should also be obtained for further comparisons of actual and predicted values.

APPENDIX B

HP-41 COMPUTER PROGRAM

TANPWR

Tandem-Rotor Helicopter Power Required

Introduction: This program determines the steady state power requirements for a tandem-rotor helicopter. Basic geoand flight parameters of the helicopter are metric inputs to the program and the total rotor shaft horsepower required is the output. Other results can be viewed by recalling the appropriate storage registers. High speed effects are not included in this The Standard Data Set is utilized with the tandem-rotor parameters using the registers for tail-rotor parameters. These non-standard registers and the additional storage registers are listed. The HP-41 should be in degrees mode with size 060.

Additional Programs Required: None

Equations:

<u>PGM</u>

h/D = (WHEEL HT + RTR HT)/2R $\{(h/D) - 1.55\} < 0 ? (In Ground Effect)$

P_i	- total tandem-rotor induced power	ft-lb/sec
P _{id}	 ideal induced power of one rotor producing one half T 	ft-lb/sec
P _{isingle}	 induced power of a single-rotor helicopter with the same gross weight and disc loading 	ft-lb/sec
R	- rotor radius	ft
R_{ullet}	- effective rotor radius	ft
S_1	- distance between rotor shafts	ft
SR	- ratio of the distance between rotor shafts and rotor radius	dimensionless
T	- total thrust	lb
Tfr	- thrust of forward rotor	lb
V _f	 forward velocity, or, free stream velocity 	ft/sec
V _{if}	 rotor-induced velocity in forward flight OGE 	ft/sec
v _{ifr}	- rotor-induced velocity of forward rotor	ft/sec
V_{ih}	 tandem-rotor induced velocity in hover OGE 	ft/sec
ρ	- density of air	lb sec ² /ft ⁴
γ	- forward rotor wake skew angle	radians
γ	 forward rotor wake separation angle 	degrees
γ_{o}	- aft rotor hub elevation angle	degrees
ε	- forward rotor downwash angle	degrees
μ	- rotor advance ratio	dimensionless
$\theta_{\mathbf{f}}$	- fuselage pitch attitude	degrees

$$\mathbf{v_i} = (\mathbf{T}/2\rho\mathbf{A_e})^{1/2}$$

KU

$$K_{\mathbf{u}} = \left\{ \left[\frac{1}{4} \left(\frac{A_{\mathbf{v}}}{A_{\mathbf{e}}} \right)^{4} \left(\frac{V_{\mathbf{f}}}{v_{\mathbf{ih}}} \right)^{4} + 1 \right]^{1/2} - \frac{1}{2} \left(\frac{A_{\mathbf{v}}}{A_{\mathbf{e}}} \right)^{2} \left(\frac{V_{\mathbf{f}}}{v_{\mathbf{ih}}} \right)^{2} \right\}^{1/2}$$

<u>PI</u>

$$P_i = (P_i/P_{i_{OGE}})(Tv_i/550) \cdot K \cdot K_u$$

<u>PO</u>

$$P_o = (C_{d_o} \cdot b \cdot c \cdot R \cdot V_T^3 \rho / 2200)(1 + 4.3\mu^2)$$

<u>PP</u>

$$P_p = V_t^3 F_t \rho / 1100$$

PC

$$P_c = (T \cdot V_v + \rho F_f V_v^3) / 1100$$

PT

$$P_T = P_i + P_o + P_p + P_c = P_T < AC >$$

$$P_i/P_{i_{OGE}} = .5147 + 1.3432(h/D) - 1.4569(h/D)^2$$

$$+ .7080(h/D)^3 - .1276(h/D)^4$$

$$V_T = RV \cdot R$$

<u>ICAO</u>

$$p_{alt}/p_{ast} = (1 - 6.87535 \times 10^{-4} \cdot H)^{6.2661} = \delta$$

$$\rho_{\text{alt}}/\rho_{\text{ssl}} = (1 - 6.87535 \times 10^{-6} \cdot \text{H})^{4.2861} = \sigma$$

TEMP

$$\theta = [\text{Temp(*F)} + 459.68]/518.68$$

$$\sigma = \delta/\theta$$

RHO

$$\rho_{\rm alt} = \sigma \cdot .0023769$$

T

$$T = 1.055 \cdot W$$

<u>CT</u>

$$C_{T} = T/\rho \pi R^{2} V_{T}^{2}$$

TL

$$B = 1 - (2C_T)^{1/2}/b$$

AREA

$$S_R = S_1/R$$

$$R_{\bullet} = B'R$$

$$A_e = 2R_e^2 \left[\pi - \frac{\pi}{180} \cos^{-1} \left(\frac{S_1}{2R_e} \right) \right] + S_1 \sqrt{R_e^2 - \frac{1}{4}S_1^2}$$

<u>K</u>

$$K = 1.46 - .253 \cdot S_R$$

AY

$$A_{\psi} = \pi R^2 - 2R \cdot g$$

Standard Storage Registers Utilized:

Storage Register	Stored Quantity
00	R - main rotor radius (ft)
01	c - main rotor equivalent chord (ft)
02	RV - main rotor rotational velocity (ft/sec)
03	C _{do} - main rotor profile drag coefficient
04	b - number of main rotor blades
11	W - helicopter weight (lbs)
12	F _f - forward equivalent flat plate area (sq ft)
13	F, - vertical equivalent flat plate area (sq ft)
14	RTR HT - main rotor height above wheels (ft)
18	V _f - forward velocity of aircraft (ft/sec)
19	V _v - vertical velocity of aircraft (ft/sec)
20	PA/DA - pressure or density altitude (ft)
21	TEMP <f> - temp deg F converted and stored in deg R</f>
22	ρ - ambient density (slugs/cubic ft)
25	WHEEL HT - height of wheels above the ground (ft)
26	h/D - ratio of rotor height to diameter
27	V _T - main rotor tip velocity (ft/sec)
29	C _T - main rotor coefficient of thrust
31	v _i - main rotor induced velocity (ft/sec)
33	B - main rotor tip loss factor
35	P _i - main rotor induced power (SHP)

36	P _o - main rotor profile power (SHP)
37	P _p - main rotor parasite power (SHP)
38	P _c - main rotor climb power (SHP)
39	P _T <mr> - main rotor total power (SHP)</mr>
44	P _T <ac> - aircraft total power required (SHP)</ac>
45	P _i /P _{iogg} - ground effect induced power ratio

TANPWR

			ı	SIZE 060
	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1.	Initialize the program		XEQ TANPWR	NEED DATA?
2.	Answer 1 for yes, 0 for no	1	R/S	RV=?
3.	Input rotor rotational velocity (rad/sec)	28	R/S	b=?
4.	Input number of blades per rotor	3	R/S	c=?
5.	Input rotor chord (ft)	1.6	R/S	CdO=?
6.	Input rotor drag coefficient	.009	R/S	R=?
7.	Input rotor radius (ft)	26	R/S	S1=?
8.	Input rotor shaft spacing (ft)	33	R/S	G=?
9.	Input vertical gap (ft)	4	R/S	FF=?
10.	Input forward flat plate area (sq ft)	44	R/S	FV=?
11.	Input vertical flat plate area (sq ft)	100	R/S	RTR HT=?
12.	Input rotor height above wheels (ft)	16	R/S	W=?
13.	Input weight (lbs)	20000	R/S	WHEEL HT=?
14.	Input wheel height above ground (ft)	100	R/S	PA?
15.	Do you know pressure altitude?			
	a. Answer 1 for yes	1	R/S	PA=?
	Input pressure _altitude (ft)	0	R/S	TEMP <f>=?</f>

TANPWR

Non-standard and Additional Storage Registers:

Storage Register	Stored Quantity
05	S ₁ - rotor shaft spacing (ft)
06	S _R - rotor shaft spacing ratio
07	g - vertical gap between rotors (ft)
15	solidity
23	A effective rotor area (sq ft)
24	A_{Ψ} - vertical gap area (sq ft)
30	T - rotor thrust (lbs force)
41	R _e - effective blade radius (ft)
42	K - tandem-rotor interference factor due to overlap
43	K _u - forward flight induced power correction factor
40	σ - density ratio
47	δ - pressure ratio
50	scratch
51	scratch

		_
01+LBL -TAMPUR-	46 "RTR HT=?"	91 *
02 FIX 2	47 PROMPT	92 +
83 CF 94	48 STO 14	93 .5147
94 CF 05	49+LBL -PGM-	94 +
05 "NEED DATA?"	50 RCL 11	95 STO 45
06 PROMPT	51 "W=?"	96+LBL -VT-
07 X=07	52 PROMPT	97 RCL 00
98 GTO *PGM*	53 STO 11	98 RCL 8 2
09 RCL 02	54 RCL 25	99 *
10 -RV=?*	35 -WHEEL HT=?-	100 STO 27
11 PROMPT	56 PROMPT	101+LBL -BA-
12 STO 02	57 STO 25	182 -PA?*
13 RCL 04	53 RCL 14	163 PROMPT
14 "b=?"	59 +	194 X=0?
15 PROMPT	60 RCL 90	185 GTO "RNA"
16 STO 94	61 /	196 SF 95
17 RCL 01	62 2	197 -PA=?-
18 *c=?*	63 /	108 PROMPT
19 PROMPT	64 STO 26	169 STO 28
20 STO 01	65 1.55	110+LBL "ICAO"
21 RCL 03	66 -	111 6.875 E-06
22 *0:d0=2*	67 X< 0 ?	112 *
23 PROMPT	68 GTO "GE"	113 CHS
24 STO 03	69 1	114 1
25 RCL 00	70 STO 45	115 +
26 *R=?*	71 GTO -VT-	116 FS? 95
27 PROMPT	72+LBL "GE"	117 5.2561
28 STO 99	73 RCL 26	118 FS? 04
29 RCL 05	74 1.3432	119 4.2561
30 "S1=?"	75 *	129 YTX
31 PROMPT	76 RCL 26	121 FS? 04
32 STO 05	77 Xt2	122 GTO "RHO"
33 RCL 07	78 -1.4569	123 FS? 05
34 "G=?"	79 *	124 STO 47
35 PROMPT	80 +	125+LBL "TEMP"
36 STO 07	81 RCL 26	126 "TEMP(F)=?"
37 RCL 12	82 3	127 PROMPT
38 *FF=?*	83 YfX	128 459.68
39 PROMPT	84 .708 8	129 +
49 STO 12	85 ≄	130 STO 21
41 RCL 13	86 +	131 518.68
42 *FV=?*	87 RCL 26	132 /
43 PROMPT	88 4	133 1/X
44 STO 13	89 Y †X	134 RCL 47
45 RCL 14	901276	135 *

	Input temperature in degrees F	59	R/S	VF=? <kts></kts>
or	b. Answer 0 for no	0	R/S	DA=?
	Input density altitude (ft)	0	R/S	VF=? <kts></kts>
16.	Input forward velocity (kts)	100	R/S	VV=? <fpm></fpm>
17.	Input vertical velocity (ft/min)	0	R/S	
18.	Output total aircraft power (shp)			PT <ac>=1524.6</ac>

271 RCL 23	316 POL 00
272 /	317 Xf2
273 SORT	318 *
274 STO 31	319 PI
275+LBL "K!!"	320 *
276 901 18	321 RCL 27
276 RCL 18 277 RCL 31	322 3
278 /	323 Y 1 X
279 RCL 24	324 *
280 *	325 RCL 03
281 RCL 23	326 *
232 /	327 2200
283 X12	328 /
284 2	329 RCL 22
295 /	330 +
286 STO 50	331 870 51
287 X+2	332 RCL 18
288 1	333 RCL 27
289 +	334 /
290 50RT	335 X12
291 RCL 58	336 4.3
292 -	337 *
293 SQRT	338 I
294 STO 43	339 +
295+LBL *PI*	349 RCL 51
296 RCL 31	341 *
297 *	342 STO 36
298 RCL 45	343+LBL -PP-
299 *	344 RCL 18
300 RCL 30	345 3
301 *	346 YTX
302 RCL 42	347 RCL 12
303 *	348 *
304 55 0	349 RCL 22
305 /	350 *
306 STO 35	351 11 00
307+LBL *PO*	352 /
308 RCL 04	353 STO 37
309 PCL 01	354+LBL *PC*
	355 RCL 19
310 * 311 PI	356 3
312 /	357 YtX
313 RCL 00	358 RCL 13
314 /	359 *
315 STO 15	369 RCL 22
212 340 13	JOS NOT ET

362 RCL 19 363 RCL 30 364 * 365 + 366 1188 367 / 368 ST0 38 369+LBL "PT" 370 RCL 35 371 + 372 RCL 36 373 + 374 RCL 37 375 + 376 STO 39 377 STO 44 378 *PT(AC)=* 379 ARCL X 380 AVIEW 381 STOP 382 "HI SPD?" 383 PROMPT 384 X=0? 385 GTO "YF" 396 SF 03 387 GTO "HSE" 388 END

361 *

	151 4	
136 GTO "RHO"	181 *	226 CHS
137+LBL "TINA"	192 STO 30	227 PI
138 RCL 20	183+LBL "CT"	228 +
139 •BA=?•	184 RCL 30	229 2
140 PROMPT	135 PI	230 *
141 5TO 20	186 /	231 ROL 41
142 SF 84	187 ROL 00	232 X †2
143 GT0 -1C80-	193 X†2	233 *
144+LBL *RHO*	189 /	234 RCL 41
145 STO 40	190 RCL 22	235 X+2
146 .0023769	191 /	236 RCL 9 5
147 *	193 PCL 27	237 X12
• **	193 Xf2	238 4
148 STO 22	194 /	
149 FS? 05	195 870 29	239 /
150 GTO "YF"	196+1BL "TL"	248 -
151 RCL 20		241 SORT
152 6.875 E-6	197 RCL 29	242 RCL 05
153 *	198 2	243 *
154 CHS	199 *	244 +
155 1	200 SORT	245 STO 23
156 +	201 RCL 04	246+LBL "K"
157 518.6	202 /	247 RCL 06
158 *	203 CHS	248253
159 STO 21	294 1	249 *
160 518.6	205 +	250 1.46
161 /	296 STO 33	251 +
162 RCL 40	207+LBL *AREA*	252 STO 42
163 *	208 RCL 05	253+LBL "AV"
164 STO 47	209 RCL 00	254 RCL 00
165+LBL =YF=	219 /	255 X12
166 *VF=?(KTS)*	211 STO 06	256 PI
= -	212 RCL 00	
167 PROMPT	213 RCL 33	257 *
168 1.68889	214 *	258 RCL 00
169 *	215 STO 41	259 RCL 07
170 STO 18		260 *
171 "VV=?(FPM)"	216 RCL 05	261 2
172 PROMPT	217 RCL 41	262 *
173 60	218 /	263 +
174 /	219 2	264 STO 24
175 STO 19	22 0 /	265+LBL -VI-
176 CF 05	221 ACOS	266 RCL 30
177 CF 04	222 PI	267 2
178+LBL *T*	223 *	268 /
179 RCL 11	224 130	269 RCL 22
190 1.055	225 /	270 /

BIBLIOGRAPHY

Royal Aircraft Establishment Library Translation No 1160, <u>Some Considerations on Performance Estimation of Helicopters</u>, by Kunihisa Wada, April 1966.

U.S. Army Materiel System Analysis Agency Technical Report 78, Simplified Aircraft Performance Methods: Power Required for Single and Tandem Rotor Helicopters in Hover and Forward Flight, by C.R. Dietz, August 1973.

LIST OF REFERENCES

- 1. Layton, Donald M., <u>Helicopter Performance Computer Programs</u>
 <u>for HP-41 Hand-held Computer</u>, Naval Postgraduate School,
 Monterey, California.
- 2. Davis, S.J., Rosenstein, H. and Stanzione, K.A., <u>User's</u> <u>Manual for <u>HESCOMP</u>, Boeing Vertol Co., 1979</u>
- 3. Layton, Donald M., <u>Helicopter Performance</u>, Matrix Publisher Inc., 1984.
- 4. U.S. Army Material Command, Engineering Design Handbook, Helicopter Engineering (AMCP 706-201), HQ. U.S. Army Material Command, 1974.
- 5. Hiller Helicopter Report No. 473.6, <u>Transport Helicopter</u>
 <u>Design Analysis Methods</u>, November 1955.
- 6. McCormick, Barnes W. Jr., <u>Aerodynamics of V/STOL Flight</u>, pp. 148-153, Academic Press Inc., 1967.
- 7. NASA Contractor Report 3082, <u>Rotary-Wing Aerodynamics</u>, <u>Volume I Basic Theories of Rotor Aerodynamics</u>, by W.Z. Stepniewski, pp. 83-87, January 1979.
- 8. NASA Contractor Report 3083, <u>Rotary-Wing Aerodynamics</u>, <u>Volume II Performance Prediction of Helicopters</u>, by C.N. Keys, January 1979.
- 9. Ibid., pp. 182-205.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5100		2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93943-5100		1
4.	LT Dave L. Cotner, USN c/o Janna Brannan 101 Mossridge Universal City, Tx 78148		3
5.	Professor Donald M. Layton Code 67Ln Department of Aeronautics Naval Postgraduate School Monterey, California 93943-5100		4

END

FILMED

11-85

DTIC