

AD AD A062117

NATIONAL BUREAU OF STANDARDS

INTERACTIONAL AERODYNAMICS OF THE SINGLE ROTOR HELICOPTER CONFIGURATION

VOLUME VII-F - Frequency Analyses of Wake Split-Film
Data, Air Ejectors With Hubcaps; Wings

Philip F. Sheridan

Boeing Vertol Company

P. O. Box 16858

Philadelphia, Pa. 19142

V8B 013

September 1978

R

DDC FILE COPY

Final Report for Period March 1977 - February 1978

Approved for public release; distribution unlimited.

Prepared for

APPLIED TECHNOLOGY LABORATORY

U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM)

Fort Eustis, Va. 23604

78 12 11 011

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

In 1975 a wind tunnel test program was conducted in the Boeing-Vertol 20-foot V/STOL Wind Tunnel on a 1/5th-scale UTTAS model to investigate and find solutions for several aerodynamic problems encountered during the UTTAS flight-testing. Specifically, these tests focused upon (a) the structure of the hub/rotor wake in the vicinity of the empennage, (b) the formulation of the ground vortex and its relation to hub loads and fuselage loads during transition, and (c) the occurrence of vibratory air pressures from the blade passing over the fuselage. Only portions of the above-mentioned wind tunnel test data were reduced and analyzed in addressing the flight-test problems of the UTTAS aircraft.

Under Contract DAAJ02-77-C-0020, Boeing-Vertol completed analyses on the data to understand more completely the aerodynamic interactions that are involved and to formulate instructions for the guidance of designers in these respects. The results of these studies are applicable to all existing and future single-rotor/tail rotor helicopters. The data have been segregated according to aerodynamic interactions and associated phenomena/problem areas. From this body of knowledge, a generalized set of design guidelines meaningful to the single-rotor helicopter design concept formulation were developed and are included in these reports.

Mr. Robert P. Smith of the Aeronautical Technology Division, Aeromechanics Technical Area, served as project engineer for this effort.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardwere or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

Interactional Aerodynamics of the Single 1) TR-18-23G Rotor Helicopter Configuration. Volume VIIF. Frequency Analyses of Wake Split-Film Data, Air Bjectors with Inclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Ente Hubeaps; Wings. READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 3. RECIPIENT'S CATALOG NUMBER 2. GOVT ACCESSION NO. USARTL-TR-78-23G FINAL REPORT | 15 Mar 1977 - 13 Feb 1978 TITLE (and Subtitio) INTERACTIONAL AERODYNAMICS OF THE SINGLE ROTOR HELICOPTER CONFIGURATION, Volume VII, Frequency Analyses of Wake Split-Film Data, Sub-Volume F, Air Ejectors With PERFORMING ORG. REPORT NUMB Hubcaps; Wings. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(*) Philip F. Sheridan DAAJQ2-77-C-0020 RAN EL EMENT, PROJECT, TASK PERFORMING ORGANIZATION NAME AND ADDRESS Boeing Vertol Company √ 403 682 P.O. Box 16858 62209A 11L262209AH76 Philadelphia, Pa. 19142 00 189 EK 11. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE Applied Technology Laboratory, US Army Research September 1978 and Technology Laboratories (AVRADCOM) FORT EUSTIS, Va. 23604

14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Volume VII of an eight-volume report Volume VII is comprised of seven sub-volumes (A thru G)

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

Wake Flow Frequency Spectrum

Interaction Aerodynamic Interaction Flow Environment Configuration

Empennage Flow Modifier Powered Model Air Ejector Wing

tity by block number) ABSTRACT (Continue as reverse side H m

Hub Cap

This is the sixth of seven sub-volumes of Volume VII containing spectrographs of the model helicopter hub/rotor wake as it was modified by various aerodynamic devices. This sub-volume deals with the effects of air ejector systems in configurations already possessing hub caps and also effects of several wing configurations mounted variously to alter the wake.

DD 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Mich Date Brite

8 12 11 011

PREFACE

The entire report describing the investigation of INTERACTIONAL AERODYNAMICS OF THE SINGLE-ROTOR HELICOPTER CONFIGURATION comprises eight numbered volumes bound as 33 separate documents. The complete list of these documents is as follows:

Volume I, Final Report

Volume II, Harmonic Analyses of Airframe Surface Pressure Data

- A Runs 7-14, Forward Section
- B Runs 7-14, Mid Section
- C Runs 7-14, Aft Section
- D Runs 15-22, Forward Section
- E Runs 15-22, Mid Section
- F Runs 15-22, Aft Section
- G Runs 23-33, Forward Section
- H Runs 23-33, Mid Section
- I Runs 23-33, Aft Section

Volume III, Flow Angle and Velocity Wake Profiles in Low-Frequency Band

- A Basic Investigations and Hubcap Variations
- B Air Ejector Systems and Other Devices

Volume IV, One-Third Octave Band Spectrograms of Wake Split-Film Data

- A Buildup to Baseline
- B Basic Configuration Wake Explorations
- C Solid Hubcaps
- D Open Hubcaps
- E Air Ejectors
- F Air Ejectors With Hubcaps; Wings
- G Fairings and Surface Devices

Volume V, Harmonic Analyses of Hub Wake

Volume VI, One-Third Octave Band Spectrograms of Wake Single Film Data

- A Buildup to Baseline
- B Basic Configuration Wake Exploration
- C Hubcaps and Air Ejectors

Volume VII, Frequency Analyses of Wake Split-Film Data

- A Buildup to Baseline
- B Basic Configuration Wake Explorations
- C Solid Hubcaps

D - Open Hubcaps

E - Air Ejectors

F - Air Ejectors With Hubcaps; Wings

G - Fairings and Surface Devices

Volume VIII, Frequency Analyses of Wake Single Film Data

A - Buildup to Baseline

B - Basic Configuration Wake Exploration

C - Hubcaps and Air Ejectors

TABLE OF CONTENTS

Volume Wil presence on tryop

nit the control of the rotte to the second						PAGE
INTRODUCTION	a e day	n i	in	01	i e	6
OUTLINE OF WAKE INVESTIGATIONS (TABLE 1)	(38 6-3		143 151	٠	5. B 0. B	7
LIST OF TEST RUNS (TABLE 2)	8.	•	•		18 88	11 / 110 /
INDEX TO RAKE POSITIONS (TABLE 3)	•	•	0-1	114	58	18
RAKE ORIENTATION DIAGRAM (FIGURE 1)	•	•		•	38	24
HOT FILM RAKE LOCATIONS (FIGURE 2-6)	n.	•	10	•		25
UTTAS 1/4.85 - SCALE MODEL GEOMETRY AND PRESSURE TRANSDUCER LOCATIONS (FIGURE	7)			of the	176	30
SPLIT-FILM SPECTROGRAMS OF WAKE						31

INTRODUCTION

Volume VII presents an array of machine plotted graphs of wake angle and velocity versus frequency in the band from 4 to 240 Hz derived from the split film transducers. This encompasses data in the spectrum through 10 times rotor speed which is 1433 RPM or 23.88 Hz.

The graphs showing wake frequency spectra are sequenced in the same order as the Outline of Wake Investigations (Table I). These graphs are distributed among Volumes $\mbox{\rm VII-A}$ through $\mbox{\rm VII-G}$ by the major categories of Table I in the following arrangement:

Volume VII-A - Build-up to Baseline
Volume VII-B - Basic Configuration
Volume VII-C - Effect of Hub Caps Sections 1 & 2
Volume VII-E - Effect of Hub Caps Sections 3 & 4
Volume VII-E - Effect of Hub Caps Section 5 and
Effect of Air Ejectors

Volume VII-F - Air Ejectors with Open Hub Caps and Effect of Wings and Misc. Section 1

Volume VII-G - Effect of Wings and Misc. Sections 2 & 3

The Table I outline and other material is included for reference and as context to the work of each sub-volume. Table 2, the List of Test Runs, arranges the runs in numerical order and gives pertinent text parameters.

The Index of Rake Positions, Table 3, lists the hot film transducer rake positions in the model coordinate system for each run and its test points. The main feature of Table 3 is the indexing of the test point number to the model water line station and butt line as it varied from run to run. The table groups the runs as they shared the indexing correspondence of point with position. It is emphasized that the runs in a group do not necessarily all share the same number of test points but they do have same correspondence within their respective ranges of test points.

The orientation of the rake is shown pictorially in Figures 1 through 6 for the various test runs. Figure 7 presents a scaled drawing of the model with reference to the three-axis coordinate system.

		TABL	E 1
OUTLINE	OF	WAKE	INVESTIGATIONS

		Configuration	Dun	Base-
Description		Code	The second second	line
Build-up to Baseline		(Feb. of Street) Tools		20.353
. Nacelles removed		K ₁₃ +H ₁ -N	149	150
Blades off, rotati	ing hub	K ₁₃ -M+H _{1.0}	160	156
" , non-ro	tating hub	K ₁₃ -M+H _{1.0}	158	156
. " ", hub of	f	K ₁₃ -M-H _{1.0}	159	156
asic Configuration				
. Wake Explorations near	Empennage			
(a) 15" Long. + travers	se at T/R C.L.	K ₁₁	111	
(b) 9" Vert. + " a	above T/R "	•	1112	
(c) 2" " " (d) 8" " (e) 13" " 1	in vortex	•	113	
(d) 8" " (d)	continue 112)	•	114	
(e) 13" " " h	behind stab.	"	115	
(f) Lateral traverse,	left stab.	"	116	
(One T.P. only)				
(g) Same continued			117	
(h) Same continued (One		"	118	
(i) Lateral traverse ri	ight stab.	" 0	119	
(j) T/R effect on wake		$\mathbf{K}_{11} + \mathbf{T}_2^0$	121	115
2. Climb/Descent Studies		gree "Et a Buits		
(a) Climb 900 FPM	100	K _{1 1}	135	
(b) Descent 800 FPM		"	136	
Effect Of Hub Caps				
1. Solid Caps on Canis	ter	COME TOS. T.		
(a) 7.6" diam. 2.17 Pitch Arms	" ht. soft	K ₁₁ -H _{1.0} +H _{1.2}	137	136
(b) 7.6" diam. 2.17 Pitch Arms	" ht. stiff	K ₁₃ +H _{1.2}	153	156
(b) 7.6" diam. 2.45 test config.	" ht. flt.	K13+H1.2.1+IT	207	188

TABLE 1 (CONTINUED)

OUTLINE OF WAKE INVESTIGATIONS

	Description	Configuration Code*	Run No.	Base- line
Effect	of Hub Caps (Continued)			
2.	Solid Caps Raised Above Canister	hyvravieri		
	(a) 7.6" diam. 2.45" ht. 70" depth, .55 gap	H _{1.2.2} +I ₁ +E _{1.0}	208	188
		H _{1.8.1} +I ₁ +E _{1.0}	189	188
	(c) 10.0" diam. 4.125" ht. 2.05" depth, .875" gap	H _{1.8.2} +I ₁ +E _{1.0}	190	188
	(d) Repeat of 189		210	188
3.	Open Caps Without Underbody			
	(a) 10.0" diam. 1.25" gap, blades (b) " " gap, no blades	H ₁ .0.2+I ₁ +E _{1.0}	193 166	188/166 158
	(c) " 2.05" gap,blades	H _{1.14.1} +I ₁ +E _{1.0} H _{1.0.1} -M	211 165	188 158
	(e) " " 1.87" gap, blades (f) 16" diam. 2.00" gap, blades (g) " " gap, no	H _{1.0.3} +I ₁ +E _{1.0} H _{1.7.1} -M	191 168 167	188 156/167 158
		H _{1.7.2}	169	156
4.	Open Caps with Underbody			
	(a) 7.6" diam. 1.25" gap (b) " " " " center post	H _{1.11.1} +I ₂ +E _{1.0} H _{1.11.1} +I ₂ +E _{4.0} H _{1.11.2} +I ₂	194 198 202	188 188 194
		H _{1.5.1} -M	164	158
		H _{1.5.2} -M	161	158
	(f) " " 2.0" gap, no	H _{1.5.4} -M	163	158
	(g) " " 4.0" gap, no	H _{1.5.3} -M	162	158
	(h) " " 1.25" gap	H _{1.5.2}	154	156/161

TABLE 1 (CONTINUED)

OUTLINE OF WAKE INVESTIGATIONS

Description	Configuration Code*	Run No.	Base- line
5. Miscellaneous Hub Covers (a) Hub fairing 16" diam. (b) Wham-O-Frisbee 10" diam. (c) Fab. glass Frisbee 16" diam.	H _{1.3} H _{1.9.0} +E _{1.2} H _{1.9.1} +E _{1.2}	151 182 183	150 181 181
Effect of Air Ejectors	a Tel Deput (Sales La)		5, (a)
L. Basic system no blowing 2. " " 40 psi 3. " " 150 psi 4. Wide chord shroud 40 psi 5. Wide " " 150 psi 6. W/C shroud w. lip 40 psi 7. Same Contoured Parallel 150 psi 8. Bifurcated duct 0 psi 9. " 40 psi 10. " " 150 psi	H ₁ .0+E ₁ .0 H ₁ .0+E ₂ .5.1 H ₁ .0+E ₃ .5.2 H ₁ .0+E ₃ .5.4	174 175 176 184 187 203	156/172 156/173 156/174 156/174 156/174 156 156/203
Air Ejectors with Open Hub Caps with Underbodies			
1. 7.6" diam. 1.25" gap, 0 psi 2. " " " 20 psi 3. " " 40 psi 4. " " " 150 psi 5. " " " 0 psi 6. " " " 40 psi 7. " " 150 psi 8. Same with center post 9. 10.0" diam. 2.0" gap wide ch'd shroud (150 psi)	H _{1.11.1} +l ₂ +E _{1.0} """ H _{1.11.1} +l ₂ +E _{4.0} """ H _{1.11.2} +I ₂ +E _{4.6} H _{1.5.4} +E _{2.5.1}	195 196 197 198 199 200 201	188/172 188 188/173 188/174 188/194 188/196 188/200 156/176
Effect of Wings and Misc.			
1. Wings (a) Nacelle-mounted stub wing (b) Single slotted flapped wing (c) Dougle slotted flapped wing (d) Boom-mounted stub wing	H _{1.0} +W _{1.0} +E _{1.1} H _{1.0} +W _{3.0} +E _{1.0} H _{1.0} +W _{2.0} +E _{1.0} H _{1.0} +W _{4.0}	178 180 179 186	181 181 181 156

TABLE 1 (CONTINUED)

OUTLINE OF WAKE INVESTIGATIONS

	Description	Configuration Code*	Run No.	Base- line
2.	Crown Fairings (a) Flat top behind shaft (b) Round top behind shaft (c) Extended flat top fairing (d) Flat top + 16" cap, 4" gap (e) Forward fairing/nacelle fairing Surface Devices (a) Vortex generators (b) Guidevane between nacelles (c) Longitudinal strakes (d) 14% porosity spoiler	K ₁₁ +D ₁ K ₁₁ +D ₂ H ₁ +D ₄ H ₁ •7•2+D ₄ P ₁ •0 K ₁₁ +VG ₂ .1 K ₁₁ +FV ₁ H ₁ •5.3+S ₄ K ₁₁ +X ₁	140 141 170 171 152 139 142 155 143	138 138 156 170 156 138 138 156 138
		odze duna Lintinioni lot Jespin (1 lectricis lot Jespin (2 lectricis lot Joseph (2 lectricis gode lote (4 lectric		

*Basic Code is K13 unless noted otherwise.

TABLE 2
LIST OF TEST RUNS
BASIC INVESTIGATIONS OF THE HUB WAKE

TAIL		O£É	•		=					•	uO	Off	
HT	p/q	8	•	•	=	=	•	•	-	•	•	=	=
MODEL	• =	-2.0			=		•		•	•	=	4.5	12.0
ANG	• ¤	0.9		=	=	=		:		=	=	0.9-	6.0
DISK	pst.	æ	•	•		=				=		93 S	
RPM	MR/TR	1433/0		u		=		п			1433/ 4500		
VTUN	KNOTS	80			,	=	=			•	=		
CONFIGURATION		K ₁₁ /15" Long. wake traverse at TR center line	" /9" Vert. wake traverse above TR center line	" /2" Vert traverse through MR vortex	8/	" /13" Vert. traverse behind stabilizer	" /Lateral traverse - left stabilizer	" /116 continued	" /116 continued	" /Lateral traverse - right stabilizer	K ₁₁ +T ₂ /Effect of tail rotor flow on wake	K ₁₁ /Wake in 900 fpm climb	" /Wake in 800 fpm descent
RUN	NO.	111	112	113	114	115	116	117	118	119	121	135	136

		DEVICES
JED)	RUNS	ERING
TABLE 2 (CONTINUED)	LIST OF TEST RUNS	KE-ALT
7	OF	WA
ABLE	IST	OF
I	4	EVALUATION OF WAKE-ALTERING DEVICES

TAIL	ROTOR	Off	•		•	•	•		10 mm	•	=		
MR HT.	h/d	8	•	•	•	•	•	=	•	•			•
MODEL		-3.8		-	=	=							=
MODEL	° g	9		•	=	=	ε.				=	=	:
DISK	pst.	8			•			•	4.5	•	=	8	:
RPM	MR/TR	1433/0			=				1075/0	•	=	1433/0	:
VTUN	KNOTS	80					=		60		=	80	
CONFIGURATION/CONDITTON		Kll-Hl.0+Hl.2/Effect of 7.6 inch diam. solid hub cap	K ₁₁ /Repeat of base run	K ₁₁ +VG _{2.1} /Effect of vortex gener- ators on aft crown	K ₁₁ +D ₁ /Flat-topped "doghouse" fair- ing on aft crown	K ₁₁ +D ₂ /Rounded-top fairing	K ₁₁ +FV ₁ /Deflection vane on crown between nacelles	K ₁₁ +X ₁ /Variable porosity spoiler	K ₁₃ +H ₁ -N ₁ /Effect of nacelles off also add stiff pitch arms (K ₁₃)	K ₁₃ +H ₁ /60 knot baseline	K ₁₃ +H _{1.3} /16 inch diam. helmet fair- ing	K ₁₃ +P _{1.0} /Pylon and intake fairings	K ₁₃ +H _{1.2} /Repeat 137 with K ₁₃ pitch arms
RUN	NO.	137	138	139	140	141	142	143	149	150	151	152	153

TABLE 2 (CONTINUED)

LIST OF TEST RUNS

EVALUATION OF WAKE-ALTERING DEVICES

RUN	CONFIGURATION/CONDITTION	VTUN	RPM	DISK	ANG	MODEL	MR HT.	TAIL
NO.		KNOTS	MR/TR	LDG.	• 8	•	h/d	ROTOR
154	K13+H1.5.2/10" open hub cap, 7" underbody, 1.25"gap	08	1433/0	8	9	-3.8	8	Off
155	K ₁₃ +H _{1.5.2} +S ₄ /Same as 154 except strakes on aft crown		-		•		•	
156	K ₁₃ +H _{1.0} /Baseline with K ₁₃ ,i.e., stiff pitch arms	=	=	-		-		:
158	<pre>K13-M+H1.0/Wake studies with blades</pre>		0/0		=	=	=	
159	K ₁₃ -M-H _{1.0} /Wake studies with hub of	=			=		=	• ,
160	K ₁₃ -M+H _{1.0} /Same as 158 except hub is rotating	=	1433/0		•	•	:	
161	K ₁₃ -M+H _{1.5.2} /Repeat of 154 without blades	=	0/0				=	•
162	K ₁₃ -M+H _{1.5.3} /Same as 161 except 4"		•		•	:		•
163	K ₁₃ -M+H _{1.5.4} /Same as 161 except 2"		1000		:	=		•
164	K ₁₃ -M+H _{1.5.1} /Same as 161 except 0.5" gap						•	
165	K ₁₃ -M+H _{1.0.1} /10" open hub cap,no underbody,same cap vert.position as Run 154		•			=	•	:
166	K ₁₃ -M+H _{1.0.2} /Same as 165 with cap lowered by 0.5"	(dervices)			-			

		OF WAKE-ALTERING DEVICES
JED)	RUNS	RING
TABLE 2 (CONTINUED)	TEST	-ALTE
5	OF	AKE.
TABLE	LIST OF TEST RUNS	OF W
		EVALUATION

Kij+Hi,71/16 Open cap, no under- 80	RUN	MOTHIT CINCO/ MOTH ROUND TOWNOO	V _{фПМ}	MdR	DISK	ANG	MODEL	M. H	TATE
K13-M+1.7.1/16" open cap, no under- 80 0/0 8 6 -3.8	NO.	CONFIGURATION CONDITION	KNOTS	MR/TR	LDG.	• 8	•	h/d	ROTOR
K ₁₃ +H ₁ .7.1/Blades on, same cap K ₁₃ +H ₁ .7.2/16 open cap, no under- K ₁₃ +H ₁ .7.2/16 open cap, no under- K ₁₃ +H ₁ .7.2/16 open cap, no under- K ₁₃ +H ₁ .7.2+D ₄ .0/Extended flat topn K ₁₃ +H ₁ .7.2+D ₄ .0/Extended flat topn K ₁₃ +H ₁ .7.2+D ₄ .0/Extended flat topn K ₁₃ +H ₁ .7.2+D ₄ .0/Extended flat topn K ₁₃ +H ₁ .7.2+D ₄ .0/Extended flat topn K ₁₃ +H ₁ .7.2+D ₄ .0/Extended flat topn K ₁₃ +H ₁ .7.2+D ₄ .0/Extended flat topn K ₁₃ +H ₁ .0+E ₁ .0(Opsi)/Basic air ejec- K ₁₃ +H ₁ .0+E ₁ .0(40 psi)/Same as 172 K ₁₃ +H ₁ .0+E ₁ .0(150 psi)/Same as 174 K ₁₃ +H ₁ .0+E ₂ .5 ₁ .1(150 psi)/Same as 174 K ₁₃ +H ₁ .0+E ₂ .5 ₁ .1(150 psi)/Same as 174 K ₁₃ +H ₁ .0+E ₂ .5 ₁ .1(150 psi)/Same as 174 K ₁₃ +H ₁ .0+E ₂ .5 ₁ .1(150 psi)/Same as 174 K ₁₃ +H ₁ .0+E ₂ .5 ₁ .1(150 psi)/Nacelle K ₁₃ +H ₁ .0+E ₁ .1(0 psi)/Nacelle K ₁₃ +H ₁ .0+E ₁ .1(0 psi)/Nacelle mounted wing	167	K ₁₃ -M+H _{1.7.1} /16" open cap, body, 2" gap	- 80	0/0	ω	9	-3.8	8	Off
K13+H1.7.2/16" open cap, no under- K13+H1.0+D4.0/Extended flat top K13+H1.0+D4.0/Extended flat top K13+H1.0+E1.0(Opsi)/Bame fairing as 170 " " " " " K13+H1.0+E1.0(Opsi)/Bame as 172 " " " " " K13+H1.0+E1.0(150 psi)/Same as 172 " " " " " " K13+H1.0+E1.0(150 psi)/Same as 174 " " " " " " " " " " " " " " " " " " "	168	same 167		1433/0		3			•
K ₁₃ +H ₁ .0+D ₄ .0/Extended flat top K ₁₃ +H ₁ .0+D ₄ .0/Extended flat top K ₁₃ +H ₁ .7.2+D ₄ .0/Same fairing as 170 K ₁₃ +H ₁ .0+E ₁ 0(0psi)/Basic air ejector expected blowing baseline K ₁₃ +H ₁ .0+E ₁ 0(0psi)/Bame as 172 K ₁₃ +H ₁ .0+E ₁ .0(40 psi)/Same as 172 K ₁₃ +H ₁ .0+E ₁ .0(150 psi)/Same as 172 K ₁₃ +H ₁ .0+E ₂ .5,1(40 psi)/Ejector with K ₁₃ +H ₁ .0+E ₂ .5,1(40 psi)/Ejector with K ₁₃ +H ₁ .0+E ₂ .5,1(150 psi)/Same as 174 K ₁₃ +H ₁ .0+E ₂ .5,1(150 psi)/Same as 174 K ₁₃ +H ₁ .0+E ₂ .5,1(150 psi)/Nacelle K ₁₃ +H ₁ .0+E ₁ .1(0 psi)/Nacelle K ₁₃ +H ₁ .0+E ₁ .1(0 psi)/Nacelle mounted wing	169	K ₁₃ +H _{1.7.2} /16" open body, 4"	•		•	•	•		•
K ₁₃ +H _{1.7.2} +D _{4.0} /Same fairing as 170 """""""""""""""""""""""""""""""""""	170	K13+H1.0+D4.0/				•	•		•
K13+H1.0+E1.0(0psi)/Basic air ejec- " " " " " " " " " " " " " " " " " " "	171	0/Same fairing as same cap as 169				•	•	•	•
K ₁₃ +H _{1.0} +E _{1.0} (40 psi)/Same as 172 """""""""""""""""""""""""""""""""""	172	air			•	•			
K ₁₃ +H _{1.0} +E _{1.0} (150 psi)/Same as 172 " " " " " " " " " " " " " " " " " " "	173	_ ~		=	=			=	
K13 ^{+H} 1, 0 ^{+E} 2, 5, 1 (40 psi)/Ejector with """"""""""""""""""""""""""""""""""""	174	X ₁₃ +H _{1.0} +E _{1.0} (150 psi)/Same with 150 psi su	98						
K ₁₃ +H _{1.0} +E _{2.5,1} (150 psi)/Same as 174 " " " " " " " " " " " " " " " " " " "	175					•			
K ₁₃ +H ₁ .5 ₁ 4 ^{+E} 2 ₅ , 1(150 psi)/Same as " " " " " " " " " " " " " " " " " "	176	K ₁₃ +H _{1.0} +E _{2.5.1} (150 psi)/Same as 174 with 150 psi supply			•				
K13 ⁺ H _{1.0} ^{+W} 1.0 ^{+E} 1.1 ^(0 psi) /Nacelle " " " " " " " "	771	K ₁₃ +H _{1.51} 4+E ₂ 5,1(150 psi)/Same as			•	=			
	178	K13+H1.0+W1.0+E1.1(0	•		•	•			

	TABLE 2 (CONTINUED) LIST OF TEST RUNS	2 (CONTINUED) OF TEST RUN	St.					A1
ŝ	EVALUATION OF WAKE-ALTERING DEVICES	ALTERING	3 DEVICE	S				
RUN	NOTHE TONOO/NOTHER STATES	VTUN	RPM	DISK	MOL	MODEL	MR HT.	TAIL
Š.	NOTITION (NOTITION OF THE PARTY	KNOTS	MR/TR	LDG.	· g	•	p/u	ROTOR
179	K13+H1.0+W2.	80	1433/0	8	9	-3.8	.8	off
180	K13+H1.0+W3.					=		.
181	K ₁₃ +H _{1.0} +E _{1.2} (0 psi)/Baseline with ejector tube moved aft		u		=			=
182								•
183	K ₁₃ +H _{1.9.1} +E _{1.2} (0 psi)/cated					•		•
184	Kl3+Hl.0+E3.5.2 (40 psi)/Wide chord with lip at 40 psi							•
185	K13+H1.0+E3.5.				=		z	=
186	K ₁₃ +H _{1.0} +W _{4.0} /Boom mounted stub wing	588	9 (25)				=	• 1
187	K ₁₃ +H _{1.0} +E _{3.5.4} (150 psi)/Like 185 with modified shrond			300	:			•
188	K13+H1.0+I1+	•		•	•			•
189	K13+H1.8.1+I1+E1.0	ert de la se	•		:	:	e	•
190	K ₁₃ +H ₁ .8.2+I ₁ +E ₁ .0 (0			=	=			•

	TABLE 2 (CONTINUED) LIST OF TEST RUNS	(CONTINUED)	NS					
	EVALUATION OF WAKE-ALTERING DEVICES	ALTERIN	G DEVICE	S				
RON	NOT#IGNOO/NOT#AGIIOT#WOO	Vrun	RPM	DISK	MOL	MODEL	MR HT.	TAIL
Š.		KNOTS	MR/TR	rbg.	• 8	•	p/q	ROTOR
191	K ₁₃ +H _{1.0.2} +I ₁ +E _{1.0} no underbody, 1	80	1433/0	8	9	-3.8	8	OÉÉ
193	K13+H1.0,2+I1+E1.0 (0 In on underbody, 1.25"	=	-		•		=	
194	4 Kl3+H1.11.1+I2+E1.0(0 psi)/7.6" cap, underbody, 1.25" gap	=			=	=	=	
195	K13+H1.11.1+I2+E1.0	=	=	=	•	= -		
196	K13+H1.11,1+I2+E1,0(40 psi)/Same as 194 with 40 psi air	=	=	2	•			•
197	K13+H1.11.1+ 194 with				•	•	•	
198	K13+H1.11.1+I2+F				=			
199	K13+H1.11.1+I2+E4.0 (40 psi)/Sane as					•		3.5
200	K13+H1,11,1+1		850 EN	5,0,0				
201	K13+H1.11.2+I2+E4.(=		•		
202	K ₁₃ +H _{1.11.2} +I ₂ /Baseline with I ₂ no blowing tube	•	•		=	=		
203	K13+H1.0+E5.0 (duct baseli	-			=			

TABLE 2 (CONTINUED)

LIST OF TEST RUNS

EVALUATION OF WAKE-ALTERING DEVICES

MR HT. TAIL		Off	2 × 0 1	180		A.3	7 X	2.41	Tai			
MH	p/q	8	=	=	=	-	=		THE			
MODEL	•	-3.8		•		•	-					
MOI	°g	9		•	•	=			9 S			
DISK	psf.	8	=			=	=		- 14 - 14 - 16			
RPM	MR/TR	1433/0	=	=		=	80				522	
VTUN	KNOTS	80			•	• 4	•					
CONFIGURATION		×		-		K ₁₃ +H _{1.15.1} +I ₁ of 189	K ₁₃ +H _{1.14.1} +I ₁ +E _{1.0} (0 psi)/Like 189 and 210 except cap is open				211	
RUN	NO.	204	205	207	208	210	211					

TABLE 3
INDEX TO RAKE POSITIONS

RUN NUMBER	POINT	WATER	MODEL STATION	LINE	FIGURE
111	20 21 22 24 26 28 30 32 34 36	53.5	103.1 105.0 107.0 109.0 111.0 112.9 114.9 116.9 118.9	-7.25	
112	2 4 6 8 10 12	48.9 50.8 52.7 54.5 56.2 57.2	107.3	-7.25	1
113	2 4 6 8 10 11	51.7 52.3 52.8 53.3 53.9 53.3	103.3	-3.25 "	1
114	2 4 6 8 10	44.5 46.4 48.2 50.0 51.9	103.0	-3.25 "	1
115	3 4 6 9 10 12 14 16 18 20	52.9 52.0 50.0 48.0 46.0 44.1 42.1 53.0 54.0	124.7	-3.25	1

TABLE 3 (CONTINUED) INDEX TO RAKE POSITIONS

RUN NUMBER	TEST POINT	WATER	MODEL STATION	BUTT	LOCATION FIGURE
116	7	36.9	100.5	-17.5	1
117	2 4 6 8 10	37.6 37.3	100.5	-16.0 -14.0 -12.0 -10.0 - 8.0	1
118	2	37.6	100.5	- 6.0	1
119	2 5 8 9 14 16 20 25	37.3 "" "" 51.5 52.3	99.6 " " " 102.5 101.7	+ 6.0 8 10 14 16 17.5 -17.5	1
1.21	3 4 6 8 10	62.9 53.5 50.1 46.0 42.1	129.0	+ 5.7	2
135	2 4 6 8 10 12 14	56.9 54.5 52.5 50.5 48.5 46.5 44.5	106.3	- 5.7	3
136	2 4 6 8 10 12 14 17 18	56.5 54.5 52.5 50.6 48.5 46.5 44.5 37.1 39.0 41.0	104.0	- 8.0	4

TABLE 3 (CONTINUED) INDEX TO RAKE POSITIONS

RUN NUMBER	TEST POINT	WATER	MODEL STATION	BUTT	LOCATION FIGURE
137	3 5 7	38.7	98.4	- 8.0	5
	7 9 11 13 15 17	42.0 44.0 46.0 48.0 50.0 52.0 54.0	100.5	# # # # #	923
138-41, 143	2 3 4 5 6 7 8 9	38.8 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0	98.4 100.5 103.6	- 8.0 "" ""	5
142	7 8 9	37.8 40.2 42.0	98.4	- 8.0	5
5	11 12 13 14 15 16 17	44.0 46.0 48.0 50.0 52.0 54.0 56.8	103.6	## ## ## ## ## ## ## ## ## ## ## ## ##	
	9.9	0:-0.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		136

TABLE 3 (CONTINUED)

INDEX TO RAKE POSITIONS

RUN NUMBER	TEST POINT	WATER	MODEL STATION	BUTT	LOCATION FIGURE
149-151	2 3 4 5 6 7 8 9	38.8 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0	98.5 100.6 103.5	- 8.0	5
152-6, 158 161-4, 166 167, 169-71 175, 177-9 180,182,184 186-8, 190 191,193,194 196,198,201 204,207,208 211	2 3 4 5 6 7 8 9	42.9 44.9 46.9 48.9 50.9 52.9 54.9 56.9	97.9 100.6 104.6	0.0	6
159	1 2 3 4 5	54.9 52.9 50.7 48.6 46.7	104.6	0.0	6
160,203	5 6 7 8 9 10	42.9 44.9 46.9 48.9 50.9 52.9 54.9	97.9 100.6 104.6	0.0	6
165	3 4 5 6 7 8	44.9 42.9 46.9 48.9 50.9 52.9	97.9 100.6 104.6	0.0	6

TABLE 3 (CONTINUED)

INDEX TO RAKE POSITIONS

RUN NUMBER	POINT	WATER	MODEL STATION	LINE	FIGURE
168, 183	4	42.9	97.9	0.0	6
	5	44.9	0,00	"	
	6	46.9	100.6		
	5 6 7 8	48.9	1046		
		50.9 52.9	104.6		
	9 10	54.9	0.08		
172	3	42.9	97.9	0.0	6
	4	44.9			
	3 4 6 7 8	44.9	1 12 21		F 381 3-02
	7	46.9	100.6		1 202 14-13
	8	48.9			21-7e SB
		50.9	104.6		FE-EEL TEE
	10 11	52.9 54.9			1 8 8 E Sittle OB
173,174,176	1	42.9	97.9	0.0	6
185,195,197	2	44.9	37.3	"."	113000000000000000000000000000000000000
199,200,205	1 2 3 4 5 6 7	46.9	100.6		
210	4	48.9	"		
	5	50.9	104.6		
	6	52.9		•	
	7	54.9	1,08	•	
181	2 3 4 5 6 7 9	42.9	97.9	0.0	6
	3	44.9			
0-6-6	4	46.9	100.6		5.000,000
	6	50.9	104.6		
	7	52.9	104.0		
	9	54.9			
	10	1 34.5		•	
	11			•	
	12			•	
3	13	42.9	97.9	•	166
		3,002	4.3		
		3.101	6.8 <i>k</i> 5.02		
			1 1.32		

TABLE 3 (CONTINUED)

RUN NUMBER	TEST	WATER	MODEL STATION	BUTT	LOCATION
189	29 30 31	42.9 44.9 46.9	97.9 " 100.6	0.0	6
	32	48.9	" "		
	34 35	50.9	104.6		77.
	36 37 38 39	48.9 50.9 52.9 54.9	100.6	" "	
202	3 4	43.4 44.9	97.9	0.0	6
	3 4 5 6 7	46.9 48.9 50.9	100.6	" "	
	1				
				E	od/free
		1/2			
				582 d	2 7 m
					Ž.

FIGURE 1 - RAKE ORIENTATION DIAGRAM

FIGURE 2 -HOT FILM RAKE LOCATIONS

FIGURE 3 -HOT FILM RAKE LOCATIONS

FIGURE 4 -HOT FILM RAKE LOCATIONS

RUN 137, 138, 139, 140, 141, 142, 143, 148, 149, 150, 151

FIGURE 5 -HOT FILM RAKE LOCATIONS

FIGURE 6 -HOT FILM RAKE LOCATIONS

2

. 25

BOEING VERTOL CO PHILADELPHIA PA INTERACTIONAL AERODYNAMICS OF THE SINGLE ROTOR HELICOPTER CONFI--ETC(U) AD-A062 117 SEP 78 P F SHERIDAN DAAJ02-77-C-0020 UNCLASSIFIED USARTL-TR-78-236 NL 2 0F3 AD 4062117 额

20F3 AD 4062117

NATIONAL BUREAU OF STANDARDS

DEPARTMENT OF THE ARMY

Applied Technology Laboratory
U.S. Army Research and Technology
Laboratories (AVRADCOM)
DAVDL-EU-TSD
Fort Eustis, Virginia 23604

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID DEPARTMENT OF THE ARMY DOD-314

FOURTH CLASS