Tema 40:Geometría de la circunferencia. Ángulos en la circunferencia. Potencia de un punto respecto de una circunferencia.

Autor: Juan Manuel Hernández

Academia Deimos www.academiadeimos.com

Contenidos

- La circunferencia. Nociones básicas.
- Angulos en una circunferencia.
- Potencia de un punto respecto de una circunferencia.
- Bibliografía

Introducción

Se define circunferencia en la primera sección, en la que también se clasifican las rectas del plano según que sean secantes, tangentes o disjuntos con una circunferencia dada. En la segunda se analiza la relación entre los arcos que determinan en una circunferencia dos rectas concurrentes y el ángulo que estas forman. La última sección se dedica a estudiar las nociones de potencia de un punto respecto de una circunferencia y eje radical de dos circunferencias, exponiendo procedimientos para la construcción de este último.

(1) Dados un punto del plano $O \in X$ y un número real positivo $\rho > 0$, se llama *circunferencia* de centro O y radio ρ al conjunto $\Gamma := \{P \in X : d(O, P) = \rho\}$.

Nótese que el centro y el radio de Γ son únicos. Un punto $Q \in X$ se dice *exterior* a Γ si dista del centro de Γ más que su radio y se dice que es *interior* si dista del centro menos que el radio.

(2) Dados $A, B \in \Gamma$ se cumple, por la desigualdad triangular, que

$$d(A,B) \leq d(A,O) + d(O,B) = 2\rho.$$

Además, se da la igualdad si y sólo si $O \in S(A, B)$. En tal caso se dice que el segmento S(A, B) es un diámetro de Γ y, A y B sus extremos.

(3) Dados tres puntos no alineados A, B y C existe una única circunferencia que pasa por ellos. Veamos primero la unicidad. El centro O de la circunferencia buscada Γ cumple d(O,A) = d(O,B) = d(O,C), luego O pertenece a las mediatrices m_{AB} y m_{BC} de S(A,B) y S(B,C). Esto determina el centro de Γ y su radio $\rho := d(O,A)$, lo que prueba la unicidad.

En cuanto a la existencia basta observar que m_{AB} y m_{BC} no son paralelas. Si lo fuesen lo serían las rectas r(A, B) y r(B, C) perpendiculares a ellas, que es falso, pues comparten el punto B. Así, m_{AB} y m_{BC} se cortan en un punto O y la circunferencia de centro O y radio d(O, A) pasa por A, B y C.

(4) Una recta corta a una circunferencia en, a lo sumo, dos puntos. En efecto, supongamos que la circunferencia Γ de centro Q y radio ρ contiene tres puntos alineados distintos A, B y C. Podemos suponer que $B \in S(A, C)$. Los triángulos $\mathcal{T}_1 := \triangle OAB$ y $\mathcal{T}_2 = \triangle OBC$ son isósceles, pues d(O, A) = d(O, B) =d(O, C). Por tanto, los ángulos $\angle A$ y $\angle B$ en el triángulo \mathcal{T}_1 con vértices A y B son congruentes y agudos. pues en caso contrario la suma de sus amplitudes sería mayor o igual que el ángulo llano.

Por la misma razón también es agudo el ángulo $\angle B$ con vértice B en el triángulo \mathcal{T}_2 . Pero como A, B y C están alineados, la suma de los ángulos en B de $\angle B$ en \mathcal{T}_1 y \mathcal{T}_2 es congruente con el ángulo llano, y esto es una contradicción.

Se dice que la recta ℓ es secante (respectivamente tangente, o exterior) a la circunferencia Γ si se cortan en dos, uno o ningún punto.

Recta tangente a una circunferencia.

Sean Γ la circunferencia de centro O y radio ρ , y $Q \in \Gamma$. La recta que pasa por Q y es perpendicular en Q a la recta r := r(O, Q) que pasa por O y Q es la única recta tangente a Γ en Q.

Recta tangente a una circunferencia.

Comprobemos en primer lugar que si una recta t es tangente a Γ en Q, entonces $t \perp r$. En efecto, sean ℓ la recta perpendicular a t que pasa por O y σ_{ℓ} la simetría axial de eje ℓ . Se tiene $\sigma_{\ell}(t) = t$, luego $\sigma_{\ell}(Q) \in t$. Pero, como $\sigma_{\ell}(O) = O$,

$$d(O, \sigma_{\ell}(Q)) = d(\sigma_{\ell}(O), \sigma_{\ell}(Q)) = d(O, Q) = \rho,$$

o sea, $\sigma_{\ell}(Q) \in \Gamma \cap t = \{Q\}$. Así $\sigma_{\ell}(Q) = Q$, esto es, $Q \in \ell$. Por ello, $\ell = r$ pues ambas rectas comparten los puntos $Q \notin Q$.

Recta tangente a una circunferencia.

Esto demuestra que, si existe alguna recta tangente a Γ en Q, ésta es única, y es la recta s perpendicular en Q a r. Comprobemos para terminar que esta recta corta a Γ sólo en Q. Para cada punto $A \in s \setminus \{Q\}$ el triángulo $\triangle AQO$ es rectángulo en Q por lo ya probado luego, por el Teorema de Pitágoras,

$$d(O, A)^2 = d(O, Q)^2 + d(A, Q)^2 = \rho^2 + d(A, Q)^2 > \rho^2$$

esto es, $d(O, A) > \rho$, lo que implica que $A \notin \Gamma$.

Sean Γ una circunferencia y s y t dos rectas que se cortan en P. Se dice que el ángulo que forman s y t es central respecto de l'isi su vértice P es el centro de Γ , inscrito si $P \in \Gamma$ y s y t son secantes a Γ , y semiinscrito si $P \in \Gamma$, s es secante y t es tangente a Γ . Si P es un punto exterior a Γ y los lados s y tson secantes o tangentes a Γ se dice que el ángulo es exterior respecto de Γ , y si P es un punto interior se dice que el ángulo es interior.

(1) Los ángulos inscrito y semiinscrito en una circunferencia miden la mitad del arco comprendido entre sus lados. De este modo, la amplitud del ángulo sólo depende del arco que comprende y no de la posición del vértice sobre la circunferencia.

- (2) Un ángulo interior de Γ mide la semisuma entre el arco comprendido entre sus lados y el arco comprendido entre la prolongación de los mismos.
- (3) Un ángulo exterior a Γ mide la semidiferencia entre los arcos comprendidos entre sus lados.

Sólo probaremos (1) pues para (2) y (3) basta descomponer la amplitud del ángulo interior en suma de dos ángulos inscritos o semiinscritos y, la amplitud del exterior en diferencia de estos últimos. Sea $\angle BAC$ un ángulo inscrito en la circunferencia Γ de centro O. Podemos suponer, que los puntos A, O y C están alineados, pues cualquier otro caso se reduce a este.

El ángulo $\angle BOC$ es exterior en el triángulo isósceles $\triangle BOA$, y por tanto $\angle BOC = \angle OBA + \angle BAO = 2\angle BAO$. El caso de un ángulo semiinscrito se demuestra descomponiéndolo en una suma o diferencia de un ángulo que abarca una semicircunferencia y otro inscrito.

Sean Γ una circunferencia, P un punto del plano y r,s dos rectas secantes a Γ que pasan por P. Sean $\Gamma \cap r := \{A, B\}$ $y \Gamma \cap s := \{C, D\}$. Entonces,

$$PA \cdot PB = PC \cdot PD$$
.

Este valor común se denomina potencia de P respecto de Γ , y se denota $Pot(P;\Gamma)$. En efecto, si $P \in \Gamma$ ambos miembros son nulos, luego coinciden, pues A = P = C. Así, podemos suponer que $P \notin \Gamma$ y, por simplicidad, suponemos que P es exterior a Γ ; cuando es interior se razona igual.

Los triángulos $\triangle PAD$ y $\triangle PCB$ son semejentes pues los ángulos $\angle ABC$ y $\angle ADC$ son congruentes, ya que sus vértices pertenecen a Γ y abarcan el mismo arco. Además, los ángulos con vértice P en ambos triángulos tienen la misma amplitud, luego los ángulos de $\triangle PAD$ y $\triangle PCB$ son congruentes dos a dos. Visto que $\triangle PAD$ y $\triangle PCB$ son semejantes se tiene:

$$\frac{PA}{PC} = \frac{PD}{PB} \implies PA \cdot PB = PC \cdot PD.$$

Cuatro puntos se dicen *concíclicos* si constituyen un cuadrilátero inscriptible en una circunferencia. A la luz de la prueba anterior es fácil comprobar que el recíproco también es cierto, esto es: *Cuatro puntos distintos A y B, C y D tales que las rectas r*(A, B) y r(C, D) se cortan en un punto P son concícicos si y sólo si $PA \cdot PB = PC \cdot PD$.

Esta útil proposición admite una reformulacion de fácil prueba en términos de los ángulos del cuadrilátero: La condición necesaria y suficiente para que un cuadrilátero sea inscriptible en una circunferencia es que dos ángulos opuestos sean suplementarios.

Hemos probado que el producto es independiente de la recta secante a Γ que tomemos por P; trazando dos secantes especiales obtenemos a continuación dos formas efectivas de calcular la potencia.

Cálculo de la potencia.

Sean P un punto del plano y Γ una circunferencia de centro O y radio ρ . Sea d la distancia entre P y O.

- (1) Se cumple $Pot(P; \Gamma) = d^2 \rho^2$.
- (2) Si P es exterior a Γ y T es el punto de contacto de Γ con una de las tangentes a Γ trazadas desde P, entonces Pot(P; Γ) = PT².

Cálculo de la potencia.

Para probar (1), consideramos sólo el caso en que P es exterior a Γ , pues en los otros basta repetir los argumentos.

Denotamos s := r(P, O) la recta que une P con O y $\Gamma \cap s = \{A, B\}$, con A más próximo a P que B. Así, $PA := d - \rho$ y $PB := d + \rho$, luego

$$Pot(P; \Gamma) = PA \cdot PB = (d-\rho) \cdot (d+\rho) = d^2 - \rho^2 = PO^2 - \rho$$

Cálculo de la potencia.

En cuanto a (2), el triángulo $\triangle PTO$ es rectángulo en T por ser la tangente perpendicular al radio. Así, por lo visto en el apartado anterior, y el teorema de Pitágoras,

$$Pot(P; \Gamma) = PO^{2} - \rho^{2} = PT^{2}.$$

Eje radical de dos circunferencias.

Sean Γ_1 y Γ_2 dos circunferencias no concéntricas. Se llama *eje radical* de Γ_1 y Γ_2 al conjunto

$$e(\Gamma_1, \Gamma_2) := \{ P \in X : (P; \Gamma_1) = (P; \Gamma_2) \}.$$

Sean O_1 y O_2 , respectivamente, los centros de Γ_1 , Γ_2 y ρ_1 y ρ_2 sus radios. Su eje radical es una recta perpendicular a la que une sus centros. En efecto, como $P \in e(\Gamma_1, \Gamma_2)$ si y sólo si $PO_1{}^2 - \rho_1^2 = PO_2{}^2 - \rho_2^2$, es decir, la diferencia $PO_1{}^2 - PO_2{}^2 = \rho_1^2 - \rho_2^2$ es constante.

Bibliografía

- Retorno a la Geometría. H.S.M Coxeter. S.L. Greitzer. La Tortuga de Aquiles.
- Fundamentos de la Geometría. David Hilbert. CSIC.
- Curso de geometría básica. Antonio F. Costa.
 Ed. Sanz y Torres.
- Curso de geometría métrica. Tomo 1. Puig Adam.
- Geometría. S. Xambó. Edicions UPB.