A two-regime Markov-switching model approach to the U.S. Consumer Sentiment Index via the Gibbs Sampler

N.Serhan Aydın

05.02.2009

Layout

- Introduction
 - The index (visual inspections)
 - Markov regime-switching models
- Bayesian Gibbs Sampling vs. Maximum Likelihood
- Related Studies
- Model
- Estimation Methodology
- Outcome and its Implications
- In-sample performance

- In its current form since 1966
- 21 questions overall
- Serve as an indicator of current and future economic conditions
- High accuracy
 - A correlation of 0.74 with interest rate policy (6-month lead on)
 - A correlation of 0.80 with unemployment (9-month lead on)
- Strongly affected by stock price trends (recent years)

Regime-switching models

- Is there a dynamic that controls the evaluation of consumer confidence (or it is simply a random walk)?
- Are there unobservable structural changes?

Engel & Hamilton (1990)

Kim & Nelson (1999)

Brooks & Persand (2001)

Hamilton (2005)

[Marcelo Perlin]

Gibbs sampling vs. Maximum Likelihood

- Highly nonlinear and complicated models
- Dealing of latent variables
- Large number of parameters

Casella & George (1992) Gelfand (2000) Kim & Nelson (1999)

The Model

Period:	Average jump size	Average change
	(Monthly, 3-month MA, basis point)	(Monthly, 3-month MA, basis point)
Apr 1989 – Nov 1989	0.9	-0.3
Nov 1989 – Mar 1990	1.9	0.4
Mar 1990 – Dec 1991	2.3	-1.1
Dec 1991 – Jun 1999	1.3	0.4
Jun 1999 – May 2003	1.6	-0.5
May 2003 – Aug 2005	1.3	0.7
Aug 2005 – Jan 2009	2.5	-1.1

Difference series is assumed to be characterized by:

$$ccs_{t} = \begin{cases} \alpha_{1} + \sigma_{1}.\mathcal{E}_{t} & if \quad z_{t} = 1\\ \alpha_{2} + \sigma_{2}.\mathcal{E}_{t} & if \quad z_{t} = 2 \end{cases}$$

where, $ccs_t \mid z_t = 1 \sim N(\alpha_1, \sigma_1^2)$, $ccs_t \mid z_t = 2 \sim N(\alpha_2, \sigma_2^2)$, t = 2,3,....,nobs

• Markov chain is controlled by:

$$P_{x,y} = P(z_{t+1} = y \mid z_t = x)$$
 where $x, y \in \{1,2\}$ and $t = 1,2,....,nobs$

The Model

- Set of model parameters $\Theta = \{\sigma_1^2, \sigma_2^2, P_{1,1}, P_{2,2}, \alpha_1, \alpha_2\}$
- WinBUGS14

Methodology

- We have:
 - Parameters of interest: $oldsymbol{\Theta}$ and starting values for them
 - Set of latent parameters : $\,\eta\,$
 - Observed data: _{CCS}
- We need:
 - The pattern in which unobserved parameters evaluate
 - A sample from posterior : $P(\eta, \Theta \mid ccs_t)$
- The procedure to achieve this:

Sample η^{i+1} from $P(\eta \mid \Theta^i, ccs_t)$

Sample Θ^{i+1} from $P(\Theta \mid \eta^{i+1}, ccs_t)$ and so on.

As $i \to \infty$, the joint distribution of (η, Θ) converges to $P(\eta, \Theta \mid ccs_t)$

Methodology

• Priors

```
P_{1,1} \operatorname{and} P_{2,2} \sim \operatorname{Beta}(0.5, 0.5)
\sigma_1 \sim \operatorname{Gamma}(\lambda_1, \varphi_1)
\sigma_2 \sim \operatorname{Gamma}(\lambda_2, \varphi_2)
\alpha_1 \sim N(\mu_1, \tau_1)
\alpha_2 \sim N(\mu_2, \tau_2)
z_t \sim \operatorname{Categorical}(\pi_{t-1}P)
```

- Models Flexibility
 - A variety of behavior is allowed (Asymmetric persistence, long swings,, even a random walk !!!)

Results and its Implications

Parameter estimations

$$\Theta = \left\{ \sigma_1^2, \sigma_2^2, P_{1,1}, P_{2,2}, \alpha_1, \alpha_2 \right\} = \left\{ 1.43, 2.83, 0.96, 0.89, 0.16, -0.90 \right\}$$
Standard Deviations [0.11, 0.40, 0.02, 0.10, 0.14, 0.55]

• $p(z_t = 2 \mid ccs_1, ..., ccs_{nobs}; \hat{\Theta})$ a function of t.

Results and its Implications

• Changes in consumer sentiment are characterized by asymmetric swings

- The system is more likely to be persistent in regime 1.
- Long swings, as in exchange rates, is not apparent.
- The consumer confidence seems to be

much more variable when it is deteriorating. (Figure)

Results and its Implications

- Posterior probability estimates suggest that the U.S. consumers entered the decaying-confidence stage in the second half of 2007.
- What is interesting here is that posterior probability of being in regime 2 has already got far away from 1 (!!!) and is likely to go below the regime threshold (!!!) unless the consumers perceive another shock looming in very near future.

In-sample goodness-of-fit

Model	Averaged sum of squared errors
AR(1) without reg.	3.2494
ARMA(1,1) without reg.	3.2493
2-Regime Markov-Switching	3.8497
Gaussian white noise	4.1790

Conditional Expectation

Model	Averaged sum of squared errors
AR(1) without reg.	6.5054
ARMA(1,1) without reg.	6.5054
AR(1)+GARCH(1,1) without reg.	6.5576
2-Regime Markov-Switching	7.5101
Gaussian white noise	8.3592
GARCH(1,1) without reg.	8.4638

Simulated Residuals

Questions


```
# US consumer sentiment 3-Month MA(regime 1,2)
# Plunges are sharper and shorter in duration, implying a bigger mean in
absolute terms
model{
sentiment.change[1] ~ dnorm(0,precision[1])
precision[1] <- pow(sigma[state[1]],-2)</pre>
for (i in 2:nobs) {
sentiment.change[i] ~ dnorm(mu[i],precision[i])
precision[i] <- pow(sigma[state[i]],-2)</pre>
mu[i] <- alpha[state[i]]
state[1] ~ dcat(P0[])
sigma[1] ~ dgamma(a,b)
sigma[2] ~ dgamma(c,d)
alpha[1] ~ dnorm(e,f)
alpha[2] ~ dnorm(g,h)
for (i in 2:nobs)
state[i] ~ dcat(P.mat[state[i-1], ])
P0[1]<-0.5
P0[2]<-0.5
P.mat[1,1] \sim dbeta(0.5,0.5)
P.mat[2,2] \sim dbeta(0.5,0.5)
P.mat[1,2]<- 1-P.mat[1,1]
P.mat[2,1]<- 1-P.mat[2,2]
```

$$f(x, y) \propto \binom{n}{x} y^{x+\alpha-1} (1-y)^{n-x+\beta-1},$$

 $x = 0, 1, \dots, n \quad 0 \le y \le 1$

$$f(x \mid y)$$
 is Binomial (n, y)
 $f(y \mid x)$ is Beta $(x + \alpha, n - x + \beta)$

$$f(x) = \binom{n}{x} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(x + \alpha)\Gamma(n - x + \beta)}{\Gamma(\alpha + \beta + n)},$$

$$x = 0, 1, \dots, n,$$

Draw from marginal

Figure 1. Comparison of Two Histograms of Samples of Size m=500 From the Beta-Binomial Distribution With n=16, $\alpha=2$, and $\beta=4$. The black histogram sample was obtained using Gibbs sampling with k=10. The white histogram sample was generated directly from the beta-binomial distribution.