Отчет о выполнении лабораторной работы 1.2.3

Определение моментов инерции твердых тел с помощью трифилярного подвеса

Костылев Влад, Б01-208

7 декабря 2022 г.

Аннотация

Цель работы: измерение момента инерции тел и сравнение результатов с расчётами по теоретическим формулам; проверка аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

В работе используются: трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень, полный цилиндр и другие).

1 Теоретическая справка

Момент инерции твердого тела рассчитывается по формуле:

$$I = \int r^2 dm \tag{1}$$

Далеко не всегда удается вычислить момент инерции тела аналитически ввиду неоднородности или сложной формы, в таких случаях удобно сделать это экспериментально, например, с помощью трифилярного подвеса.

Устройство состоит из неподвижной платформы, вращающейся платформы, подвешенной на трех симметричных нитях. Если пренебречь потерями энергии, то уравнение сохранения энергии при колебаниях:

$$\frac{I\dot{\varphi}^2}{2} + mg(z_0 - z) = E,\tag{2}$$

где I - момент инерции платформы и тела, z_0 - координата по вертикали центра нижней платформы при равновесии, z - координата аналогичной точки при повороте на угол ϕ . Из уравнения 2 видно, что колебательное движение системы происходит благодаря силе тяжести.

Рассмотрим точку С на верхней платформе с координатами (r,0,0) и точку C'', противоположную С при повороте на ϕ , с координатами $(R\cos(\varphi),R\sin(\varphi)),z)$

Расстояние между ними равно длине нити:

$$(R\cos(\phi) - r)^2 + R^2\sin^2\phi + z^2 = L^2$$
(3)

Для малых углов:

$$z^{2} = L^{2} - R^{2} - r^{2} + 2Rr\cos\varphi = z_{0}^{2} - 2Rr(1 - \cos\varphi) \approx z_{0}^{2} - Rr\varphi^{2}$$
(4)

$$z \approx \sqrt{z_0^2 - Rr\varphi^2} \approx z_0 \sqrt{1 - \frac{Rr\varphi^2}{z_0^2}} \approx z_0 - \frac{Rr\varphi^2}{2z_0}$$
 (5)

Подставив это в уравнение 2:

$$\frac{1}{2}I\dot{\varphi} + mg\frac{Rr}{2z_0}\varphi^2 = E\tag{6}$$

Откуда:

$$\varphi = \varphi_0 \sin(\sqrt{\frac{mgRr}{Iz_0}}t + \Theta) \tag{7}$$

Константны определяются начальными условиями, а период колебаний системы:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}} \tag{8}$$

Откуда не трудно определить выражение для момента инерции:

$$I = \frac{mgRrT^2}{2\pi^2 z_0} \tag{9}$$

Для краткости:

$$I = kmT^2 (10)$$

Для постоянной k для данной установки:

$$k = I = \frac{gRr}{2\pi^2 z_0} \tag{11}$$

2 Используемое оборудование

В работе используются: трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень, полный цилиндр и другие).

3 Методика измерений

Воспользовавшись представленной установкой, измерим период колебаний для каждого из предложенных тел. Для этого у нас есть специальный прибор, который может считать полуколебания, либо полные колебания, собственно, что нам и нужно. Для каждого тела выполним по 3 таких измерения, по 10 полных колебаний и занесем полученные данные в таблицу.

4 Результаты измерений и обработка данных

4.1 Измерение постоянной к для установки:

Параметры установки:

R, MM	114+-0,5
r, mm	30,2+-0,3
z, mm	2230,1+-0,5
т, г	965,7+-0,5

Что самое важное в измерение постоянной, правильно - измерение ее погрешности.

Для начала продифференцируем по каждому параметру:

$$f'(R) = \frac{(((0 \cdot R + g \cdot 1) \cdot r + (g \cdot R) \cdot 0) \cdot ((4 \cdot Pi^{2}) \cdot z) - ((g \cdot R) \cdot r) \cdot ((0 \cdot Pi^{2} + 4 \cdot 1) \cdot z + (4 \cdot Pi^{2}) \cdot 0))}{((4 \cdot Pi^{2}) \cdot z)^{2}}$$

$$f'(R) = \frac{((g \cdot r) \cdot ((4 \cdot Pi^2) \cdot z) - ((g \cdot R) \cdot r) \cdot (4 \cdot z))}{((4 \cdot Pi^2) \cdot z)^2}$$

$$f'(r) = \frac{(((0 \cdot R + g \cdot 0) \cdot r + (g \cdot R) \cdot 1) \cdot ((4 \cdot Pi^2) \cdot z) - ((g \cdot R) \cdot r) \cdot ((0 \cdot Pi^2 + 4 \cdot 1) \cdot z + (4 \cdot Pi^2) \cdot 0))}{((4 \cdot Pi^2) \cdot z)^2}$$

$$f'(r) = \frac{((g \cdot R) \cdot ((4 \cdot Pi^2) \cdot z) - ((g \cdot R) \cdot r) \cdot (4 \cdot z))}{((4 \cdot Pi^2) \cdot z)^2}$$

$$f'(z) = \frac{(((0 \cdot R + g \cdot 0) \cdot r + (g \cdot R) \cdot 0) \cdot ((4 \cdot Pi^2) \cdot z) - ((g \cdot R) \cdot r) \cdot ((0 \cdot Pi^2 + 4 \cdot 1) \cdot z + (4 \cdot Pi^2) \cdot 1))}{((4 \cdot Pi^2) \cdot z)^2}$$

$$f'(z) = \frac{(0 - ((g \cdot R) \cdot r) \cdot (4 \cdot z + 4 \cdot Pi^2))}{((4 \cdot Pi^2) \cdot z)^2}$$

Ну и теперь воспользуемся формулой подсчета погрешности косвенных измерений:

$$dk = ((((\frac{((g \cdot r) \cdot ((4 \cdot Pi^{2}) \cdot z) - ((g \cdot R) \cdot r) \cdot (4 \cdot z))}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dR)^{2} + (\frac{((g \cdot R) \cdot ((4 \cdot Pi^{2}) \cdot z) - ((g \cdot R) \cdot r) \cdot (4 \cdot z))}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dr)^{2}) + (\frac{(0 - ((g \cdot R) \cdot r) \cdot (4 \cdot z + 4 \cdot Pi^{2}))}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dz)^{2}) + (\frac{(0 - ((g \cdot R) \cdot r) \cdot ((4 \cdot (2 \cdot Pi)) \cdot z))}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{2}} \cdot dPi)^{2}) + (\frac{((4 \cdot Pi^{2}) \cdot z)^{2}}{((4 \cdot Pi^{2}) \cdot z)^{$$

$$+\left(\frac{((R\cdot r)\cdot ((4\cdot Pi^2)\cdot z)-((g\cdot R)\cdot r)\cdot (4\cdot z))}{((4\cdot Pi^2)\cdot z)^2}\cdot dg\right)^2)^{0.5}=0.027708\ \mathrm{MM}$$

А вам не интересно как будет выглядеть график зависимости погрешности при изменении радиуса платформы [0; 10] мм, мне вот интересно, поэтому давайте построим его:

Давайте теперь повысим отрезок радиуса до [0; 120] мм:

Можем заметить, при радиусе установки 5 мм погрешность минимальна, почему пластины не такого радиуса!?

Время перейти к подсчету самой постоянной, сделаем мы это по формуле (11), тогда окончательно получаем:

$$k = \frac{((9.8 \cdot 114.6) \cdot 30.2)}{((4 \cdot 3.14^2) \cdot 2230.1)} = 0.385633 \pm 0.027708$$

Построим график зависимости k от R:

Ну и что, что он линейный, не важно...

На самом деле это все далеко не легко, примерно так выглядит подсчет погрешности и результат дифференцирования:

Даже сама функция представляется не маленьким графом:

4.2 Измерение моментов инерции тел

Воспользовавшись формулой (10), давайте посчитаем моменты инерции всех представленных тел:

	T(10), c		T(10), c		T(10), c
Установка	44,156		42,726		31,014
	44,005	Цилиндр Полый	42,498	Цилиндр(не полый)	31,082
	44,281		42,69		31,056
Диск	39,665		39,526		32,602
	39,652	Цилиндр(полый) + Диск	39,842	Цилиндры + Диск	32,734
	39,58		39,744		32,716
Палка	37,986		32,862		30,55
	37,244	Цилиндры	33,234	Цилиндр(не полый) + Диск	30,39
	37,276		33,064		30,514

$$I_{\rm диск} = (2.15 \pm 0.24) \cdot 10^{-3} \ {\rm K}{\rm \Gamma} \cdot {\rm M}^2$$

$$I_{\rm палка} = (5.74 \pm 0.23) \cdot 10^{-3} \ {\rm K}{\rm \Gamma} \cdot {\rm M}^2$$

$$I_{\rm цилиндр полый} = (4.45 \pm 0.16) \cdot 10^{-3} \ {\rm K}{\rm \Gamma} \cdot {\rm M}^2$$

$$I_{\rm кастрюля} = (6.85 \pm 0.18) \cdot 10^{-3} \ {\rm K}{\rm \Gamma} \cdot {\rm M}^2$$

$$I_{\rm половинки} = (4.26 \pm 0.13) \cdot 10^{-3} \ {\rm K}{\rm \Gamma} \cdot {\rm M}^2$$

$$I_{\rm кастрюлька \ c} = (4.26 \pm 0.13) \cdot 10^{-3} \ {\rm K}{\rm \Gamma} \cdot {\rm M}^2$$

$$I_{\rm кастрюлька \ c} = (11.62 \pm 0.22) \cdot 10^{-3} \ {\rm K}{\rm \Gamma} \cdot {\rm M}^2$$

4.3 Гюйгенс Штейнер

Теперь воспользуемся половинками не полого цилиндра. Будем раздвигать их как показано на картинке (одновременно):

	1	2	3	4	5	6	7	8	9	10
	T(10), c									
Цилиндр(оба)	31,026	31,058	31,386	31,751	32,519	33,983	34,189	34,529	35,741	35,078
	31,04	31,126	31,42	31,738	32,486	33,976	34,082	34,567	35,798	35,057
	31,084	30,912	31,401	31,748	32,532	33,869	34,021	34,589	35,722	35,021
	11	12	13	14						
	T(10), c	T(10), c	T(10), c	T(10), c						
	36,373	39,438	39,668	40,102						
	36,321	39,429	39,701	40,028						
	36,358	39,487	39,682	39,987						

Зафиксируем одну половинку и проделаем тоже самое:

	1	2	3	4	5	6	7	8	9	10
	T(10), c									
Цилиндр(один)	30,748	31,021	31,165	31,173	31,584	32,222	32,477	32,678	32,981	33,028
	30,821	31,034	31,198	31,221	31,687	32,213	32,501	32,651	32,976	33,051
	30,791	31,015	31,121	31,203	31,612	32,198	32,489	32,694	32,951	33,098
	11	12	13	14						
	T(10), c	T(10), c	T(10), c	T(10), c						
	34,473	34,689	35,206	36,102						
	34,434	34,798	35,219	36,156						
	34,452	34,756	35,198	36,058						

Можем убедиться, что во втором случае момент инерции изменяется медленнее.

5 Обсуждение результатов

Все выше полученные результаты можно считать довольно точными, так как лежат в пределах погрешности.

6 Заключение

Мы провели лабораторную работу, которая требует минимума человеческого вмешательства, но при этом полностью раскрывает физику.