Mathematics Class Slides Bronx Early College Academy

Chris Huson

26 November 2018

BECA / Dr. Huson / Geometry Unit 4
4.1 Project: Triangle congruence project, Monday 26 November
4.1 Drui: Triangle congruence. Monday 26 November
4.2 Drui: Deltamath. Tuesday 27 November
4.3 Drui: Triangle proofs. Wednesday 28 November
4.4 Drui: Pretest review. Thursday 29 November
4.5 Drui: Exam. Friday 30 November
4.6 Drui: Translations Monday December 3
4.7 Deltamath Translations Tuesday December 4
4.8 Drui: Translations Wednesday December 5
4.9 Drui: Reflections Thursday December 6
4.10 Drui: Rotation Friday December 7
4.11 Drui: Rounding, volume formulas Monday December 104.11 Rigid motion: Transformations that maintain length and
angle measures Monday December 10 4.11 Symmetry: objects invariant under a transformation Monday
December 10
4.12 Deltamath Translations Tuesday December 114.13 Drui: Radians, symmetry; Test review Wednesday December
12
4.14 Drui: Dilation Thursday December 13

Construction project: Triangle congruence

CCSS: HSG.CO.C.9 Prove geometric theorems

4.1

Four pages of \triangle duplication constructions for binder

- 1. Side-side (SSS)
- 2. Side-angle-side (SAS)
- 3. Angle-side-angle (ASA)
- 4. Side-side-angle (SSA), false, "ambiguous case"

Grading criteria (20 points)

- 1. Complete and correct construction
- 2. State postulate or theorem. (written steps not necessary)
- 3. MLA header, center title & last name on right
- 4. Precise, elegant, mathematical aesthetic

Due Friday November 30

GQ: How do we construct congruent triangles?

CCSS: HSG.CO.C.9 Prove geometric theorems 4.1 Monday 26 November

Do Now:

- 1. Trig review problems handout
- 2. $+, \triangle$ What is working? What would you change?

Seating chart 2nd trimester norms and expectations \triangle congruence construction project, SSS Homework packet review, trig problems

Homework: Distance, midpoint, and slope review, handout Parent-teacher conferences Thursday & Friday

GQ: How do we use trigonometric ratios?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.2 Tuesday 27 November

Do Now: SAS \triangle congruence

- 1. Duplicate a side, duplicate an angle, duplicate a side.
- 2. Angle must be the *included* angle, between the two sides
- 3. $\triangle ABC \cong \triangle A'B'C'$ iff $\overline{AB} \cong \overline{A'B'}, \angle A \cong \angle A', \text{ and } \overline{AC} \cong \overline{A'C'}$

Geogegra intro (?)

Deltamath assessment: distance, midpoint, and slope Deltamath homework: trig ratios, triangle relationships

Homework: Complete deltamath (10pm deadline) Parent-teacher conferences Thursday & Friday

GQ: How do we prove triangles congruent?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.3 Wednesday 28 November

Do Now: Theorems review handout Triangle sum, transversal, vertical

Angle-side-angle (ASA) \triangle congruence

- 1. Duplicate an angle, duplicate a side, duplicate an angle
- 2. $\triangle ABC \cong \triangle A'B'C'$ iff $\angle A \cong \angle A'$, $\overline{AB} \cong \overline{A'B'}$, and $\angle B \cong \angle B'$

Lesson:

Triangle congruence proofs

Assessment: distance, midpoint, and slope

Homework: Pretest packet. Test Friday

GQ: How do we prove triangles congruent?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.4 Thursday 29 November

Do Now: Triangle congruence practice handout

SSA \triangle congruence (or ASS, "jack ass theorem")

- 1. Duplicate an angle, duplicate a side, duplicate an side
- 2. Given $\triangle ABC$ if $\angle A \cong \angle A'$, $\overline{AB} \cong \overline{A'B'}$, and $\overline{BC} \cong \overline{B'C'}$ then two possible \triangle s may result.

Lesson:

Review problems for take home test

Homework: Complete $\triangle \cong$ project due tomorrow

GQ: How do we prove triangles congruent?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.5 Friday 30 November

Review for unit exam

Triangle congruence project due

Homework: Take home test

GQ: How do we translate the plane?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.6 Monday December 3

Transformations, translations Hexagon (& square) construction project due Friday

Homework: Hexagon construction

GQ: How do we translate the plane?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.7 Tuesday December 4

HL Triangle congruence

Deltamath classwork: Transformations, translations, hexagon construction

Homework: Deltamath homework package

GQ: How do we translate the plane?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.8 Wednesday December 5

Triangle congruence handout. Problem #1 Spicy: keep going!

Hint: use theorems from transversals and parallel lines

Triangle congruence proofs
Square construction
Rigid motion, pre-image→image, compositions. pp. 545-550

Homework: Congruence handout

GQ: How do we reflect objects on the plane?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.9 Thursday December 6

Triangle congruence, translation handout.

Constructing the line of reflection given pre-image \rightarrow image Reflection across a line, orientation. pp. 554-557

Homework: Congruence handout

GQ: How do we rotate objects on the plane?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.10 Friday December 7

Triangle congruence, transformation handout.

Center and angle of rotation mapping pre-image \rightarrow image pp. 561-567

Homework: Congruence, transformation handout

GQ: What are the arithmetic skills in geometry?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.11 Monday December 10

Do Now: Answer on a separate sheet of paper to turn in.

Triangle A'B'C' is the image of triangle ABC after a translation of 2 units to the right and 3 units up. Is triangle ABC congruent to triangle A'B'C'? Explain why.

Lesson: Rounding, volume calculations using the formula sheet

Test Thursday

Homework: Pretest handout, due Wednesday

Rigid motion

When does a transformations maintain length and angle measures?

Triangle A'B'C' is the image of triangle ABC after a translation of 2 units to the right and 3 units up. Is triangle ABC congruent to triangle A'B'C'? Explain why.

Rigid motion

When does a transformations maintain length and angle measures?

Triangle A'B'C' is the image of triangle ABC after a translation of 2 units to the right and 3 units up. Is triangle ABC congruent to triangle A'B'C'? Explain why.

 ΔABC must be congruent to $\Delta A'B'C'$ because a translation is a basic rigid motion which preserves angle measure and side length. Therefore the 2 $\Delta'S$ have all corresponding parts congruent.

Rigid motion

When does a transformations maintain length and angle measures?

Triangle A'B'C' is the image of triangle ABC after a translation of 2 units to the right and 3 units up. Is triangle ABC congruent to triangle A'B'C'? Explain why.

 \triangle ABC must be congruent to \triangle A'B'C' because a translation is a basic rigid motion which preserves angle measure and side length. Therefore the 2 \triangle 's have all corresponding parts congruent.

Yes, the △s are ≥ because a translation is a rigid motion so it preserves side lengths. and angle mouses.

Because corn sides have the same lengths, the △'s are ≥ by 555.

Symmetry

When is an object unchanged by a transformation?

If when an object $A \rightarrow A'$ and A = A' then we say it is symmetric.

Reflection: axis of symmetry

Rotation: center and angle of rotation

Example: Regular polygons are symmetrical

Symmetry

When is an object unchanged by a transformation?

If when an object $A \rightarrow A'$ and A = A' then we say it is symmetric.

Reflection: axis of symmetry

Rotation: center and angle of rotation

Example: Regular polygons are symmetrical

Which transformation would *not* carry a square onto itself?

- (1) a reflection over one of its diagonals
- (2) a 90° rotation clockwise about its center
- (3) a 180° rotation about one of its vertices
- (4) a reflection over the perpendicular bisector of one side

Symmetry

When is an object unchanged by a transformation?

If when an object $A \rightarrow A'$ and A = A' then we say it is symmetric.

Reflection: axis of symmetry

Rotation: center and angle of rotation

Example: Regular polygons are symmetrical

Which transformation would *not* carry a square onto itself?

- (1) a reflection over one of its diagonals
- (2) a 90° rotation clockwise about its center
- (3) a 180° rotation about one of its vertices
- (4) a reflection over the perpendicular bisector of one side

The regular polygon below is rotated about its center.

GQ: How do we translate the plane?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.12 Tuesday December 11

Area formulas: triangle, semi-circle

Deltamath classwork: Transformations, volume calculations

Test Thursday

Homework: Deltamath homework package

GQ: How do we convert angle measure units?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.13 Wednesday December 12

Triangle congruence, transformation handout.

Lesson: radians to degrees formulas, symmetry Review for test

Intensives daily homework protocol

Homework: Study for Test Tomorrow

GQ: How do we translate objects on the plane?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.14 Thursday December 13

Test

Homework: Review packet, due Monday Room 450

(Intensives daily homework)

GQ: How do we translate the plane?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.15 Friday December 14

Intensives daily homework protocol

Deltamath classwork: Holiday review

Homework: Deltamath homework package

GQ: How do we dilate objects on the plane?

CCSS: HSG.CO.D.12 Congruence, geometric constructions 4.11 Monday December 10

Triangle congruence, transformation handout.

Center of dilation and scale factor mapping pre-image \rightarrow image pp. 587-591

Homework: