Remark: The above observation also applies to infinite families $(a_i)_{i \in I}$ of points in E and families $(u_i)_{i \in I - \{0\}}$ of vectors in \overrightarrow{E} , provided that the index set I contains 0.

When $(\overrightarrow{a_0a_1}, \dots, \overrightarrow{a_0a_m})$ is a basis of \overrightarrow{E} then, for every $x \in E$, since $x = a_0 + \overrightarrow{a_0x}$, there is a unique family (x_1, \dots, x_m) of scalars such that

$$x = a_0 + x_1 \overrightarrow{a_0 a_1} + \dots + x_m \overrightarrow{a_0 a_m}$$

The scalars (x_1, \ldots, x_m) may be considered as coordinates with respect to $(a_0, (\overrightarrow{a_0a_1}, \ldots, \overrightarrow{a_0a_m}))$. Since

$$x = a_0 + \sum_{i=1}^m x_i \overrightarrow{a_0 a_i} \quad \text{iff} \quad x = \left(1 - \sum_{i=1}^m x_i\right) a_0 + \sum_{i=1}^m x_i a_i,$$

 $x \in E$ can also be expressed uniquely as

$$x = \sum_{i=0}^{m} \lambda_i a_i$$

with $\sum_{i=0}^{m} \lambda_i = 1$, and where $\lambda_0 = 1 - \sum_{i=1}^{m} x_i$, and $\lambda_i = x_i$ for $1 \le i \le m$. The scalars $(\lambda_0, \ldots, \lambda_m)$ are also certain kinds of coordinates with respect to (a_0, \ldots, a_m) . All this is summarized in the following definition.

Definition 24.5. Given an affine space $\langle E, \overrightarrow{E}, + \rangle$, an affine frame with origin a_0 is a family (a_0, \ldots, a_m) of m+1 points in E such that the list of vectors $(\overrightarrow{a_0a_1}, \ldots, \overrightarrow{a_0a_m})$ is a basis of \overrightarrow{E} . The pair $(a_0, (\overrightarrow{a_0a_1}, \ldots, \overrightarrow{a_0a_m}))$ is also called an affine frame with origin a_0 . Then, every $x \in E$ can be expressed as

$$x = a_0 + x_1 \overrightarrow{a_0 a_1} + \dots + x_m \overrightarrow{a_0 a_m}$$

for a unique family (x_1, \ldots, x_m) of scalars, called the *coordinates of* x w.r.t. the affine frame $(a_0, (\overrightarrow{a_0a_1}, \ldots, \overrightarrow{a_0a_m}))$. Furthermore, every $x \in E$ can be written as

$$x = \lambda_0 a_0 + \dots + \lambda_m a_m$$

for some unique family $(\lambda_0, \ldots, \lambda_m)$ of scalars such that $\lambda_0 + \cdots + \lambda_m = 1$ called the barycentric coordinates of x with respect to the affine frame (a_0, \ldots, a_m) . See Figure 24.15.

The coordinates (x_1, \ldots, x_m) and the barycentric coordinates $(\lambda_0, \ldots, \lambda_m)$ are related by the equations $\lambda_0 = 1 - \sum_{i=1}^m x_i$ and $\lambda_i = x_i$, for $1 \le i \le m$. An affine frame is called an affine basis by some authors. A family $(a_i)_{i \in I}$ of points in E is affinely dependent if it is not affinely independent. We can also characterize affinely dependent families as follows.