Backpropagation and Neural Networks

Recap: Loss function/Optimization

airplane	-3.45 -8.87
automobile	-0.0/
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

e d	N.	ŭ	ш
			_
		•	
		•	_
			_

MARKET NO.	No.	AND SERVICE
_		
- ()	• `	51

We defined a (linear) score function:

$$f(x_i, W, b) = Wx_i + b$$

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

3.2

5.1

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

scores = unnormalized log probabilities of the classes.

 $s = f(x_i; W)$

slide by Fei-Fei Li & Andrej Karpathy & Justin Jo

3.2

5.1

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} s=f(x_i;W) \end{aligned}$

$$s=f(x_i;W)$$

3.2

5.1

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where
$$s=f(x_i;W)$$

Softmax function

3.2

5.1

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} s=f(x_i;W) \end{aligned}$

$$s=f(x_i;W)$$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

5.1

$$L_i = -\log P(Y=y_i|X=x_i)$$

-1.7 in the second se

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} s=f(x_i;W) \end{aligned}$

$$s=f(x_i;W)$$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y = y_i|X = x_i)$$

in summary:
$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

i Karpathy & if frog

i-Fei Cat

 $L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$

cat

car

frog

3.2

5.1

-1.7

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

cat

car

frog

3.2

5.1

-1.7

24.5

164.0

0.18

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

cat

car

frog

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

3.2

5.1

-1.7

24.5

exp

164.0

0.18

normalize 0.13

0.87

0.00

probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

cat car frog

24.5 164.0 0.18

0.13 $-\frac{L_{-i} = -\log(0.13)}{= 0.89}$ 0.87
0.00

probabilities

Optimization

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Gradient Descent

Vanilla Gradient Descent

while True:

weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the gradient is the vector of (partial derivatives).

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Mini-batch Gradient Descent

 only use a small portion of the training set to compute the gradient

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Mini-batch Gradient Descent

 only use a small portion of the training set to compute the gradient

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

there are also more fancy update formulas (momentum, Adagrad, RMSProp, Adam, ...)

Example of optimization progress while training a neural network.

(Loss over mini-batches goes down over time.)

Back-propagation

Computational Graph

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 $\frac{x^{-2}}{y^{-5}}$ $\frac{f^{-12}}{z^{-4}}$ $\frac{\partial f}{\partial f}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 $\frac{x-2}{y-5}$ $\frac{f-12}{1}$ z-4 $\frac{\partial f}{\partial f}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

x -2 + q 3 * f -12 z -4 3

 $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

y = 5 z = -4 $\frac{-4}{3}$ $\frac{f - 12}{1}$ $\frac{\partial f}{\partial f}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

x -2 + q 3 y 5 -4 x 1 z -4 3

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$rac{df}{dx} = e^x$$
 $f(x) = rac{1}{x}$ $ightarrow$ $rac{df}{dx} = -1/x^2$ $f_c(x) = c + x$ $ightarrow$ $rac{df}{dx} = 1$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_c(x) = c + x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx} = 1$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(x)=e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_a(x)=ax \hspace{1cm} o \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f(x)=c+x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=1$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad \qquad \qquad rac{df}{dx}=1$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

slide by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Patterns in backward flow

- add gate: gradient distributor
- · max gate: gradient router
- mul gate: gradient... "switcher"?

Where are we now...

Mini-batch SGD

Loop:

- 1.Sample a batch of data
- 2.Forward prop it through the graph, get loss
- 3.Backprop to calculate the gradients
- 4.Update the parameters using the gradient