Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Hassiba Benbouali de Chlef Faculté des Sciences Exactes et Informatique

Département de Mathématiques

وزارة التعليم العالي والبحث العلمي جامعة حسيبة بن بوعلي بالشلف كلية العلوم الرقيقة واللإعلام اللآلي قسم الرياضيات

A.U. 2017/2018 Niveau: 1^{ère} Master/ Option: M.A.S. Module: Processus Stochastiques 1

EXAMEN DE RATTRAPAGE

U.H.B.C. Chlef Faculté des Sciences Exactes Département des maths

- 1. Montrer que tout état de non-retour est transitoire, et tout état absorbant est récurrent.
- 2. Donner un exemple, s'il existe, d'une Chaîne de Markov à temps discret dont tous les états sont transitoires.
- 3. Le prix d'un certain produit peut prendre les valeurs 1, 2, 3, 4, 5 selon les lois de l'offre et de la demande. Le prix X_n à la date n détermine la demande D_n à la date n, selon la relation $D_n = c X_n$, où c est une constante supérieure à 5. L'offre C_n , à la date n, est donnée par $C_n = c 3 + Y_n$, où (Y_n) est une suite de variables aléatoires, indépendantes, identiquement distribuées, de loi commune $\frac{1}{2}(\delta_{-1} + \delta_{+1})$

 $(i.e. \mathbb{P}(Y_n = -1) = \mathbb{P}(Y_n = +1) = \frac{1}{2}).Les$ changements de prix se font selon les règles suivantes:

$$X_{n+1} - X_n = +1, \ si \ D_n - C_n > 0;$$

$$X_{n+1} - X_n = -1$$
, si $D_n - C_n < 0$;

$$X_{n+1} - X_n = 0$$
, si $D_n - C_n = 0$.

- (a) On fixe $X_0 = i_0$. Montrer que $(X_n)_{n\geq 0}$ est une chaîne de Markov homogène dont l'ensemble des états est $\mathbb{E} = \{1, 2, 3, 4, 5\}$.
- (b) Déterminer la matrice de transition **P** et trouver la décomposition de l'ensemble des états en classes indécomposables. (**Réf. Dominique exo 5.9 p103**)
- 4. Soient $X_1(t)$ et $X_2(t)$ deux chaînes de Markov indépendantes sur $\{0,1\}$ ayant le même générateur infinitésimal

$$\begin{bmatrix} -\lambda & \lambda \\ \mu & -\mu \end{bmatrix}.$$

(a) Montrer que la matrice de transition de $X_1(t)$ et $X_2(t)$ est donnée par:

$$\begin{bmatrix} \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-t(\lambda + \mu)} & \frac{\lambda}{\lambda + \mu} - \frac{\lambda}{\lambda + \mu} e^{-t(\lambda + \mu)} \\ \frac{\mu}{\lambda + \mu} - \frac{\mu}{\lambda + \mu} e^{-t(\lambda + \mu)} & \frac{\lambda}{\lambda + \mu} + \frac{\mu}{\lambda + \mu} e^{-t(\lambda + \mu)} \end{bmatrix}.$$

- (b) Montrer que $Z(t) := X_1(t) + X_2(t)$ est une chaîne de Markov sur l'espace $\mathbb{E} = \{0, 1, 2\}$ en déduire son générateur infinitésimal.
- (c) Calculer $\mathbb{P}(Z(t) = 0/Z(0) = 0)$, $\mathbb{P}(Z(t) = 1/Z(0) = 0)$ et $\mathbb{P}(Z(t) = 2/Z(0) = 0)$.(Réf. Understanding M.C. exo 10.12 page 207)