

Universidade de São Paulo

Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC218 – Alg. Avançados e Aplicações

Caminhos no labirinto

1 Descrição

Impactado pelo **horrível** formato da entrada do exercício de *backtracking* "labirinto", o professor, em busca do perdão da turma e da redenção de sua alma, retoma aqui o mesmo exercício!

Seja um labirinto de tamanho $n \times n$ que contém obstáculos, impossíveis de se transpor. A posição de saída é fixa (0,0), assim como a de chegada (n-1, n-1). Para tornar o exercício um pouquinho diferente, agora é possível mover para a direita (i+1,j), para baixo (i,j+1) e para a diagonal (1+1,j+1).

Sua tarefa é encontrar a quantidade de caminhos existentes entre a origem e o destino.

2 Input

A primeira linha contém um inteiro n que é o tamanho do grid. Após isso, haverá n linhas, cada qual com com n caracteres "." e "*". O primeiro caracter indica uma célula vazia, enquanto o segundo, um obstáculo.

Obs: $1 \le n \le 1000$. Perceba que a dimensão do tabuleiro é muito maior que a do exercício de anterior. Dá pra usar backtracking??

3 Output

Entrodo

Imprima em uma única linha a quantidade de caminhos módulo $10^9 + 7$. Obs: Como a quantidade de caminhos pode ser muito grande, sempre que precisar fazer uma soma de caminhos parciais faça módulo $10^9 + 7$ para evitar *overflow* no resultado.

Soids

4 Exemplos de Entrada e Saída

Elitiada	Salua
4	3
• • • •	
.*	
*	
*	
2	0
*.	O .
T.	
••	