3 Kolmogorov's 0-1 law

With the Borel–Cantelli lemma, we have seen a first 0–1 law for independent events. We now come to another 0–1 law for independent events and for independent σ -algebras. To this end, we first introduce the notion of the tail σ -algebra.

Definition 3.1 (Tail σ -algebra).

(i) Let A_1, A_2, \ldots be σ -algebras on Ω . Then

$$\mathcal{T}(\mathcal{A}_1, \mathcal{A}_2, \ldots) := \bigcap_{J \subset \mathbb{N} \text{ finite}} \sigma(\mathcal{A}_i \; ; \; i \in \mathbb{N} \setminus J)$$
 (3.1)

is called the tail σ -algebra of the σ -algebras A_1, A_2, \dots

(ii) If A_1, A_2, \ldots are events of \mathcal{A} , then we define the **tail** σ -algebra of the events A_1, A_2, \ldots as the tail σ -algebra of the σ -algebras $\sigma(A_1), \sigma(A_2), \ldots$ and denote it by

$$\mathcal{T}(A_1, A_2, \ldots).$$

(iii) Finally, if $X_1, X_2, ...$ are random variables all defined on Ω , then we define the **tail** σ -algebra of the random variables $X_1, X_2, ...$ as the tail σ -algebra of the σ -algebras $\sigma(X_1), \sigma(X_2), ...$ and denote it by

$$\mathcal{T}(X_1, X_2, \ldots).$$

Theorem 3.2. Let A_1, A_2, \ldots be σ -algebras on Ω . Then

$$\mathcal{T}(\mathcal{A}_1, \mathcal{A}_2, \ldots) = \bigcap_{k \in \mathbb{N}} \sigma(\mathcal{A}_i \; ; \; i = k, k + 1, \ldots). \tag{3.2}$$

Remark 3.3. The name "tail σ -algebra" is due to the interpretation of \mathbb{N} as a set of times. As is made clear in the theorem, any event in \mathcal{T} does not depend on the first finitely many time points.

Remark 3.4. Maybe at first glance it is not evident that there are any interesting events in the tail σ -algebra at all. It might not even be clear that we do not have $\mathcal{T} = \{\emptyset, \Omega\}$. Hence we now present simple examples of tail events and tail σ -algebra measurable random variables.

Example 3.5.

(i) Let A_1, A_2, \ldots be events. Then the events A_* and A^* are in $\mathcal{T}(A_1, A_2, \ldots)$. Indeed, let $k \in \mathbb{N}$. Since

$$\bigcap_{i\geq m} A_i \in \sigma(\sigma(A_i) ; i = k, k+1, \ldots)$$

for any $m = k, k + 1, \dots$ and

$$A_* = \bigcup_{m \ge k} \bigcap_{i \ge m} A_i,$$

 $A_* \in \sigma(\sigma(A_i); i = k, k+1,...)$. Then, $A_* \in \mathcal{T}(A_1, A_2,...)$. Analogously, it holds that $A^* \in \mathcal{T}(A_1, A_2,...)$.

(ii) Let X_1, X_2, \ldots be $\overline{\mathbb{R}}$ -valued random variables. Then the maps X_* and X^* are $\mathcal{T}(X_1, X_2, \ldots)$ -measurable. Indeed, let $k \in \mathbb{N}$. Since

$$\inf_{i>m} X_i$$
 is $\sigma(\sigma(X_i); i=k,k+1,\ldots)$ -measurable

for any $m = k, k + 1, \dots$ and

$$X_* = \sup_{m > k} \inf_{i \ge m} X_i,$$

 X_* is $\sigma(\sigma(X_i); i = k, k+1, \ldots)$ -measurable. Then, X_* is $\mathcal{T}(X_1, X_2, \ldots)$ -measurable. Analogously, it holds that X^* is $\mathcal{T}(X_1, X_2, \ldots)$ -measurable.

(iii) Let X_1, X_2, \ldots be real random variables. Then the *Cesàro limits*:

$$\liminf_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i \quad \text{and} \quad \limsup_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i$$

are $\mathcal{T}(X_1, X_2, \ldots)$ -measurable. Indeed, let $k \in \mathbb{N}$. Since,

$$\liminf_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \liminf_{n \to +\infty} \frac{1}{n} \sum_{i=k}^{n} X_i,$$

by the example above,

$$\liminf_{n\to+\infty} \frac{1}{n} \sum_{i=1}^{n} X_i \text{ is } \sigma(\sigma(X_i); i=k,k+1,\ldots)\text{-measurable.}$$

Then,

$$\liminf_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i$$

is $\mathcal{T}(X_1, X_2, \ldots)$ -measurable. Analogously, it holds that

$$\limsup_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i$$

is $\mathcal{T}(X_1, X_2, ...)$.

Proof of theorem 3.2. Let \mathcal{B} and \mathcal{C} be the σ -algebras defined by equations 3.1 and 3.2, respectively. Let $k \in \mathbb{N}$; then

$$\mathcal{B} \subset \sigma(\mathcal{A}_i ; i = k, k+1, \ldots).$$

Thus, $\mathcal{B} \subset \mathcal{C}$. Let $J \subset \mathbb{N}$ be finite; then

$$C \subset \sigma(A_i; i = k, k + 1, ...) \subset \sigma(A_i; i \in \mathbb{N} \setminus J)$$

for some $k \in \mathbb{N}$. Hence, $\mathcal{C} \subset \mathcal{B}$.

Theorem 3.6 (Kolmogorov's 0–1 law). Let $A_1, A_2, ...$ be independent σ -algebras on Ω . Then the tail σ -algebra of $A_1, A_2, ...$ is **P**-trivial, that is,

$$A \in \mathcal{T}(A_1, A_2, \dots) \Rightarrow \mathbf{P}(A) \in \{0, 1\}.$$

Example 3.7.

- (i) Let A_1, A_2, \ldots be independent events. Then $\mathbf{P}(A_*), \mathbf{P}(A^*) \in \{0, 1\}$. Indeed, $A_*, A^* \in \mathcal{T}(A_1, A_2, \ldots)$.
- (ii) Let X_1, X_2, \ldots be independent $\overline{\mathbb{R}}$ -valued random variables. Then the maps X_* and X^* are deterministic. Indeed, since X^* is $\mathcal{T}(X_1, X_2, \ldots)$ -measurable,

$$\mathbf{P}(X^* \le x) \in \{0, 1\}$$
 for every $x \in \mathbb{R}$.

Let

$$x^* := \inf\{x \in \mathbb{R} ; \mathbf{P}(X^* \le x) = 1\}.$$

Then we have three cases:

If $x^* = -\infty$, then

$$\mathbf{P}(X^* = -\infty) = \lim_{n \to +\infty} \mathbf{P}(X^* \le -n) = 1.$$

If $x^* \in \mathbb{R}$, then

$$\mathbf{P}(X^* \le x^*) = \lim_{n \to +\infty} \mathbf{P}\left(X^* \le x^* + \frac{1}{n}\right) = 1,$$

and

$$\mathbf{P}(X^* < x^*) = \lim_{n \to +\infty} \mathbf{P}\left(X^* \le x^* - \frac{1}{n}\right) = 0.$$

If $x^* = +\infty$, then

$$\mathbf{P}(X^* < +\infty) = \lim_{n \to +\infty} \mathbf{P}(X^* \le n) = 0.$$

Since the conclusion that X_* is deterministic only depends from the fact that X_* is $\mathcal{T}(X_1, X_2, \ldots)$ -measurable, we can also conclude that X^* is deterministic.

(iii) Let X_1, X_2, \ldots be independent real random variables. Then the Cesàro limits

$$\liminf_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i \quad \text{and} \quad \limsup_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i$$

are deterministic. Indeed, the Cesàro limits are $\mathcal{T}(X_1, X_2, \ldots)$ -measurable.

Proof of theorem 3.6. It is enough to prove that \mathcal{T} and \mathcal{T} are independent. Indeed, let $n \in \mathbb{N}$. Then, by virtue of theorem ??,

$$C_n := \sigma(A_i; i = 1, \dots, n)$$
 and $\sigma(A_i; i = n + 1, n + 2, \dots)$

are independent. Since

$$\mathcal{T} := \mathcal{T}(\mathcal{A}_1, \mathcal{A}_2, \ldots) \subset \sigma(\mathcal{A}_i ; i = n + 1, n + 2, \ldots),$$

 C_n and T are independent. Hence C and T are independent, where $C_n \uparrow C$. Then, because C is a π -system and generates

$$\mathcal{C}_{\infty} := \sigma(\mathcal{A}_i \; ; \; i = 1, 2, \ldots),$$

 \mathcal{C}_{∞} and \mathcal{T} are independent. Finally, the assertion follows since $\mathcal{T} \subset \mathcal{C}_{\infty}$.

Exercise 3.1. Let $X_1, X_2, ...$ be independent real random variables. Then $\mathbf{P}(\lim_{n\to+\infty} X_n \text{ exists})$ must be 0 or 1.

Exercise 3.2. Let $X_1, X_2, ...$ be independent real random variables with $X_n \sim \mathcal{U}_{\{1,...,n\}}$. Compute $\mathbf{P}(X_n = 5 \text{ i.o.})$.

Exercise 3.3. Let A_1, A_2, \ldots be events such that

- 1. $A_{i_1}, A_{i_2}, \ldots, A_{i_k}$ are independents whenever $i_{j+1} \geq i_j + 2$ for $j = 1, \ldots, k-1$, and
- $2. \sum_{n=1}^{+\infty} \mathbf{P}(A_n) = +\infty.$

Prove that $\mathbf{P}(A^*) = 1$.

Exercise 3.4. Consider infinite, independent, fair coin tossing, and let H_n be the event that the nth coin is heads. Determine the following probabilities.

- 1. $P[H_{n+1} \cap H_{n+2} \cap ... \cap H_{n+9} \text{ i.o.}].$
- 2. $P[H_{n+1} \cap H_{n+2} \cap ... \cap H_{2^n} \text{ i.o.}].$

Exercise 3.5. Let A_1, A_2, \ldots be independent events, let $x \in \mathbb{R}$, and let

$$S_x = \left(\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{A_i} \le x\right).$$

Prove that $\mathbf{P}(S_x)$ must equal 0 or 1.

Exercise 3.6. Let $A_1, A_2, ...$ be independent events. Let X be a real random variable which is $\sigma(A_n, A_{n+1}...)$ -measurable for each $n \in \mathbb{N}$. Prove that X is deterministic.