Exercise 1

and $X_n \in L^1$. Also $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = X_n$ from the lower law (iv)

On the other hand, $A \in G_{\infty} \subseteq G_{n+1} \perp L \neq F_n$, so $A \perp L \neq F_n$ and $X_n = L \in [1]_{A} \mid F_n] = L \in [1]_{A} \cdot P(A)$ a.s.

It follows that $X_n \xrightarrow{a.s.} X_{\infty} := \mathbb{P}(A)$ and because the martingale is closed, we have that $X_{\infty} = \mathbb{E}[1|_A |_{\widehat{F}_{\infty}}] = 1|_A$ from Theorem 10.2.

Bit 11 A = (P(A) a.s. =D P(A) e 80, 15, as desired 19

b Let $A_{K}=$ $\{Z< X\}$. Because Z:S G_{∞} -measurable, we have that $A_{\chi}\in G_{\infty}$ $\forall \chi\in IR$. Let $\chi=\inf_{\chi\in IR}\{P(A_{\chi})=1\}$. We claim that $Z=\chi_{0}$ a.s.

First, observe that $x_0 \in \mathbb{R}$ is finite, as

An $\int_{\Lambda} \bigcup_{\lambda} \{\frac{1}{2} < k\} = \int_{\Lambda} \int_{\Lambda} \int_{\Lambda} \lim_{\lambda \to +\infty} |P(A_{\lambda})| = 1$, hence from the O-1 (ew, $P(A_{\lambda}) = 1$ for some $n \ge 0$

A.n. $\bigcap_{K} \{2 < K\} = \emptyset$ So $\lim_{N \to +\infty} P(A_{-K}) = 0$, hence $\lim_{N \to +\infty} P(A_{-K}) = 0$ for some n = 0.

Now, if $x > x_0$, there is some $t \in [x_0, x)$ s.t. $P(A_t)=1$ by the properties of infimum and the definition of x_0 . So $P(A_x) \ge P(A_t) = 1$. $P(A_x) = 1$.

if $X < X_0$, by definition $P(A_X) + 1$, by the O-1 (on we have $P(A_X) = 0$. It follows that $P(Z + Z_0) = 0$ U

Exercise 2 (a) Because Yn+1 II $\overline{\forall (Y_1,-,Y_n)}$, we have that E[Xn.] = [Xn. Yn. | Fn] = Xn E[Yn.] = Xn Fried

Fried

N

Fried

Fried

N

Fried

N

Fried

N

Fried

Fried

N

Fried

Fri Also, Et-> - It is convex function, to 3-5xx3 is a supermortingale and 25xx3 is a supermortingale. (b) Because 12n5_{0,21} is a positive supermatingale, it converges a.s. to some v.v. Z. By Fatou's Lemma we have ELZJ = E [liming Zn] = (in ing ElZn] = lin : of TI [[[]] = 0 It follows that F[Z]=0, because 270 we conclude flut 2=0 0.5. Because $\sqrt{X_n} \to 0$ a.s., $X_n \to 0$ a.s. (5. is outnown) Now suppose that $\{X_n\}_{n>0}$ is r.i.. Then the convergence above is in h and b IE[Xn] > 0 However, IE[Xn]=TIIE[Yn]=1 so IE[Xn]>1, a 94:5 indep. Contradiction L (c) $||z_n - z_m||_2 = E[z_n^2 + z_m^2 - 2z_n z_m] = E[x_n + x_m - 2x_n \sqrt{x_n}] = 2 - 2 E[x_n + x_m] = E[sy_n]$ $= 2\left(1 - \prod_{k=n+1}^{m} \mathbb{E}\left[\sqrt{\frac{1}{2}}\right]\right). \quad \text{Fix } \text{ E>D and suppose } \text{Uloy } \text{ E<2}$

Because the - It is a convex function, by Jensen's ineq. So &[54,] <1. Let M= line TI [F[J4] = [] E[J4]] Cocause of (*), M is the limit of a decreasing sequence.

So there is some N s.t. $\frac{N}{11} E \left[JY_1 \right] < M / 1 - \frac{1}{2} E \left[\frac{M}{1 - \frac{1}{2} E} > M \right]$ If follows that $\frac{\infty}{1 - \frac{1}{2} E} E \left[JY_1 \right] > 1 - \frac{1}{2} E$ Then, for M, n > N, m = n wlog, ve have $||Z_{m}-Z_{n}||_{2}=2\left(1-\frac{\alpha}{1-1}E\left[\frac{1}{1-1}E\left[\frac{1}{1-1}\right]\right]$ $<2\left[1-\left(1-\frac{1}{2}E\right)\right]=E$ So $\frac{1}{2}Z_{n}S_{n>0}$ is Couchy Now observe that $\|X_n - X_m\|_{L^2} = \mathbb{E}[\|X_n - X_m\|] = \mathbb{E}[\|Z_n^2 - Z_m^2]$ $= \left[F \left[\left(b_{n} - 2m \right) \cdot \left(2_{n} + 2m \right) \right] \leq \left[F \left[\left(2_{n} - 2m \right) \right]^{\frac{1}{2}} F \left[\left(2_{n} + 2n \right) \right]^{\frac{1}{2}}$ But $E \left[\left(2_{m} + 2n \right)^{2} \right]^{\frac{1}{2}} \leq \left[\left(2_{m} + 2n \right) \right]^{\frac{1}{2}} \leq \left[\left(2_{m} + 2n \right) \right]^{\frac{1}{2}}$ $\leq 1 + 1 = 2 \qquad \text{So} \qquad \left[\left(x_{m} - x_{n} \right) \right]_{1} \leq \left[\left(2_{m} - 2n \right) \right]_{2} \cdot 2.$ It follows that 2 Xn Jn, is Couchy in l' so it converges in L' to some r.v. X. It Jollous from Prop AZ that 4x14 nzo is u.i., so from theorem 10.2, this is a closed martingale of Exercise 3 First, let $A_n = \frac{1}{2} \times_{n+1} = \frac{1}{2} \times_n$, $B_n = \frac{1}{2} \times_{n+1} = \frac{1+x_n}{2}$. Observe that R[A, UBn] = E[11A, + 11Bn] = IF[E[11A, I Jn] + E[11Bn] 5=n] $= \mathbb{E} \left[1 - x_n + x_n \right] = 1.$ It follows that $X_{n+1} \in \{\frac{1}{2}X_1, \frac{1+X_n}{2}\}$ e.s., or

$$X_{n+1} = 1/\left[A_n\right] \frac{1}{2} X_n + 1/\left[B_n\right] \frac{1+X_n}{2} \quad a.s.$$

Clam 1:
$$E[X_{n+1} \mid \widetilde{\mathcal{F}}_n] = X_n$$
 a.s.
Prosed: $E[X_{n+1} \mid \widetilde{\mathcal{F}}_n] = E[1]_{A_n} \mid \widetilde{\mathcal{F}}_n] \frac{1}{2} \times_n + E[1]_{B_n} \mid \widetilde{\mathcal{F}}_n] \frac{1+X_n}{2}$

$$X_n \in \widetilde{\mathcal{F}}_n - m$$

$$= \frac{1}{2} X_n (1-X_n) + \frac{1}{2} X_n (1+X_n) = X_n$$

<u>Claim 2</u>: 0 5 X_n s 1 a.s.

Proof: Induction on n. This is the case for N=0, as a \([0,1]_

Now, for $X_n \in [0,1]$, then $\frac{1}{2}X_n$, $\frac{1+X_n}{2} \in [0,1]$. Since $X_{n+1} \in \{\frac{1}{2}X_n, \frac{1+X_n}{2}\}$ a.s., $X_{n+1} \in [0,1]$ u.s. D

It follows that $X_n \in L'$, so it is a bounded mortingale. Because it is bounded, it converges a.s. and in L^f for $P < +\infty$ from theorem 10.5, to some X_∞ .

It follows that E[XN] = E[XN] = E[XN].

But E[XN] = E[XN] = a VNZO, D E[XN].

© $E[X_{n}^{2}] \rightarrow E[X_{\infty}^{2}]$ because $X_{N} \rightarrow X_{\infty}$ in L^{2} . So $E[X_{n}(1-X_{n})] \rightarrow E[X_{\infty}(1-X_{\infty})]$ On the other hand, $E[X_{n}(1-X_{n})] = 4 \cdot E[(X_{n+1}-X_{n})^{2}] \rightarrow 0$ because $(X_{N})_{n\geq 0}$ converges in h^{2} .

It follows that $E[X_{\infty}(1-X_{\infty})] = 0$. (**)Havever, $X_{n} \xrightarrow{a.s.} X_{\infty}$, and $X_{n} \in [0,1]$ a.s. from pat(∞). It follows that $X_{\infty} \in [0,1]$ a.s., so that $X_{\infty}(1-X_{\infty}) \geq 0$ a.s.

Tage ther with (**), this gives us that $X_{\infty}(1-X_{\infty}) = 0$ as.

So $X_{\infty} = 0$ or $X_{\infty} = 1$ a.s.

Because $E[X_{\infty}] = \alpha$, $P(X_{\infty} = 1) = \alpha$ $TP(X_{\infty} = 0) = 1 - \alpha$