ARCHIV

für

Mikroskopische Anatomie

I. Abteilung

für vergleichende und experimentelle Histologie und Entwicklungsgeschichte

II. Abteilung für Zeugungs- und Vererbungslehre

herausgegeben

von

O. Hertwig und W. Waldeyer in Berlin

Zweiundachtzigster Band

Mit 38 Tafeln und 90 Textfiguren

BONN

Verlag von Friedrich Cohen 1913

Inhalt.

Abteilung I.

Erstes Heft. Ausgegeben am 31. März 1913.	Seite
Zur Entwicklungsgeschichte des menschlichen Zahnsystems nebst Bemerkungen zur Frage der prälaktealen Dentition, der sogenannten Konkreszenztheorie und der Entwicklung des Säugetiergebisses überhaupt. Von P. Adloff. Hierzu Tafel I, II und 5 Textfiguren	1
Zur Frage über den Bau des Zellkernes in den Speicheldrüsen der Larve von Chironomus. Von W. Faussek. (Aus dem Anatomisch- histologischen Laboratorium der Universität St. Petersburg [Vor- stand: Prof. Dr. A. Dogiel].) Hierzu Tafel III und IV	39
Über physiologische Pigmentablagerung in den Kapillarendothelien des Knochenmarks. Von Hans Brass. (X. Fortsetzung der Studien über das Blut und die blutbildenden und zerstörenden Organe von Franz Weidenreich.) Hierzu Tafel V	61
Zweites Heft. Ausgegeben am 30. Mai 1913	
Die Entwicklung der Derivate des Kiemendarmes beim Meerschweinchen. Von H. Rabl, Innsbruck. Hierzu Tafel VI—X und 2 Textfiguren Zur Analyse der Rassenmerkmale der Axolotl. I. Die Pigmentierung junger Larven. Von Fritz Pernitzsch. (Aus dem Zoologischen	79
Institut der Universität Halle.) Hierzu Tafel XI-XIII und 5 Textfiguren	148
Uber Erythrophoren besonderer Art in der Haut von Knochenfischen. Von Prof. Dr. med. et phil. E. Ballowitz, Direktor des Anat. Instituts der Westfälischen Wilhelms-Universität Münster i. W. Hierzu Tafel XIV Berichtigung Dr. A. Adloff, Greifswald.	206
Drittes Heft. Ausgegeben am 24. Juni 1913.	
Studien zur allgemeinen Entwicklungsgeschichte des Blutgefäßsystems. Erster Teil: Anatomische und physiologische Grundlagen. Von Dr. Curt Elze, Heidelberg, Hierzu Tafel XV und 7 Textfiguren Experimentelle und histologische Studien an Turbellarien. Erste Mitteilung: Heteromorphose und Polarität bei Planarien. Von Paul	221
Lang (Aus dem Biologischen Laboratorium der Universität Bonn, Hierzu Tafel XVI	256
Findet im Chorion junger menschlicher Eier eine Blutgefäss- und Blutbildung statt? Von Dr. B. H. Jägerroos aus Finland. (Aus dem Laboratorium der II. Frauenklinik Wertheim, Vorstand	
Prof. Dr. J. Schottlaender.) Hierzu Tafel XVII Zur vergleichenden Anatomie und Histologie der Hypophysis cerebri.	271
Von Dr. W. Stendell, Assistent am Institute. (Aus dem Neurologischen Institut zu Frankfurt a. M., Direktor: Prof. Dr. L. Edinger.) Hierzu Tafel XVIII—XX und 18 Textfiguren.	289
Erwiderung auf die Bemerkung von E. Meirowsky zu meiner Arbeit: Über die Entstehung des melanotischen Pigments im Auge etc. Von Dr. A. v. Szily, Privatdozent und I. Assistent. (Aus der Universitäts-Augenklinik Freiburg i. Br., Direktor: Geheimrat	
Prof. Dr. Th. Axenfeld)	333

Viertes Heft. Ausgegeben am 26. Juli 1913.	Seit
Experimentelle und histologische Studien an Turbellarien. Zweite Mitteilung: 1. Epithelregeneration. 2. Über die Nebenaugen von Planaria polychroa. 3. Experimentelles und histologisches vom Tricladenpharynx. Von Paul Lang. (Aus dem Biologischen Laboratorium der Universität Bonn.) Hierzu Tafel XXI und	33
2 Textfiguren	00
B. Haller, Hierzu Tafel XXII und 1 Textfigur	36
Tafel XXIII und 2 Textfiguren	38
3 Textfiguren	40
Zur Kenntnis der neurofibrillären Apparate der Hirudineen. Von G. Ascoli. (Aus dem Laboratorium für allgemeine Pathologie und Histologie der Kgl. Universität Pavia.) Hierzu 10 Textfiguren Berichtigung. Von Prof. E. Ballowitz, Münster	41 42
Detroiting the state of the sta	
Abteilung II.	
Erstes Heft. Ausgegeben am 31. März 1913.	
Versuche an Tritoneiern über die Einwirkung bestrahlter Samenfäden auf die tierische Entwicklung. Zweiter Beitrag zur experimen- tellen Zeugungs- und Vererbungslehre. Von Oscar Hertwig. (Aus dem Biologischen Institut der Universität Berlin.) Hierzu Tafel I—III und 4 Textfiguren	
Zweites Heft. Ausgegeben am 30. Mai 1913.	
Über künstliche Entwicklungserregung bei Amphibien. Von Fritz Levy. (Aus dem Biologischen Institut der Universität Berlin.) Hierzu 8 Textfiguren	6
Drittes Heft. Ausgegeben am 24. Juni 1913.	
Beiträge zur Kenntnis des Zeugungskreises der Microsporidien Glugea anomala Moniez und hertwigi Weissenberg. Von Richard Weissenberg. (Aus dem Anatomisch-biologischen Institut der Universität Berlin) Hierzu Tafel IV—VII und 6 Textfiguren. Die Fußsohle des Menschen. Eine Studie über die unmittelbare und	8
die erbliche Wirkung der Funktion. Von Richard Semon. Hierzu Tafel VIII-X und 10 Textfiguren	16-
Literarisch-kritische Rundschau	213
Viertes Heft. Ausgegeben am 26. Juli 1913.	
Über das Verhalten des plastomatischen Bestandteiles des Spermiums bei der Befruchtung des Eies von Phallusia mamillata. Von Friedrich Meves, Kiel. Hierzu Tafel XI—XIV und 7 Text- figuren	218
über pluripolare Mitosen in Hodenregeneraten von Rana fusca. Von cand. med Arnold Lauche (Aus dem Biologischen Laboratorium der Universität Bonn.) Hierzu Tafel XV	261

ARCHIV

für

Mikroskopische Anatomie

I. Abteilung

für vergleichende und experimentelle Histologie und Entwicklungsgeschichte

II. Abteilung

für Zeugungs- und Vererbungslehre

herausgegeben

von

O. Hertwig und W. Waldeyer in Berlin

Zweiundachtzigster Band I. Abteilung

Mit 23 Tafeln und 55 Textfiguren

BONN

Verlag von Friedrich Cohen 1913

Inhalt.

Abteilung I.

Erstes Heft. Ausgegeben am 31. März 1913.	Seite
Zur Entwicklungsgeschichte des menschlichen Zahnsystems nebst Bemerkungen zur Frage der prälaktealen Dentition, der sogenannten	
Konkreszenztheorie und der Entwicklung des Säugetiergebisses überhaupt. Von P. Adloff. Hierzu Tafel I, II und 5 Text-	
figuren . Zur Frage über den Bau des Zellkernes in den Speicheldrüsen der Larve	1
von Chironomus. Von W. Faussek. (Aus dem Anatomisch- histologischen Laboratorium der Universität St. Petersburg. [Vor-	
stand: Prof. Dr. A. Dogiel].) Hierzu Tafel III und IV	39
Über physiologische Pigmentablagerung in den Kapillarendothelien des Knochenmarks. Von Hans Brass. (X. Fortsetzung der Studien über das Blut und die blutbildenden und -zerstörenden Organe	
von Franz Weidenreich.) Hierzu Tafel V	61
Zweites Heft. Ausgegeben am 30. Mai 1913.	
Die Entwicklung der Derivate des Kiemendarmes beim Meerschweinchen. Von H. Rabl, Innsbruck. Hierzu Tafel VI—X und 2 Textfiguren	79
Zur Analyse der Rassenmerkmale der Axolotl. I. Die Pigmentierung junger Larven. Von Fritz Pernitzsch. (Aus dem Zoologischen Institut der Universität Halle.) Hierzu Tafel XI—XIII und	
5 Textfiguren	148
Über Erythrophoren besonderer Art in der Haut von Knochenfischen. Von Prof. Dr. med. et phil. E. Ballowitz, Direktor des Anat. Instituts der Westfälischen Wilhelms-Universität Münster i. W.	204
Hierzu Tafel XIV	206
Drittes Heft. Ausgegeben am 24. Juni 1913.	
Studien zur allgemeinen Entwicklungsgeschichte des Blutgefäßsystems.	
Erster Teil: Anatomische und physiologische Grundlagen. Von	
Dr. Curt Elze, Heidelberg. Hierzu Tafel XV und 7 Textfiguren Experimentelle und histologische Studien an Turbellarien. Erste Mit-	221
teilung: Heteromorphose und Polarität bei Planarien. Von Paul	
Lang. (Aus dem Biologischen Laboratorium der Universität Bonn.) Hierzu Tafel XVI	256
Findet im Chorion junger menschlicher Eier eine Blutgefäss- und Blut-	200
bildung statt? Von Dr. B. H. Jägerroos aus Finland. (Aus	
dem Laboratorium der II. Frauenklinik Wertheim, Vorstand Prof. Dr. J. Schottlaender.) Hierzu Tafel XVII	271

Zur vergleichenden Anatomie und Histologie der Hypophysis cerebri.	Seite
Von Dr. W. Stendell, Assistent am Institute. (Aus dem Neuro-	
logischen Institut zu Frankfurt a. M., Direktor: Prof. Dr.	
L. Edinger.) Hierzu Tafel XVIII—XX und 18 Textfiguren .	289
Erwiderung auf die Bemerkung von E. Meirowsky zu meiner Arbeit:	
Über die Entstehung des melanotischen Pigments im Auge etc.	
Von Dr. A. v. Szily, Privatdozent und I. Assistent. (Aus der	
Universitäts-Augenklinik Freiburg i. Br., Direktor: Geheimrat	
Prof. Dr. Th. Axenfeld)	
Viertes Heft. Ausgegeben am 26. Juli 1913.	
Experimentelle und histologische Studien an Turbellarien. Zweite Mit-	
teilung: 1. Epithelregeneration. 2. Über die Nebenaugen von	
Planaria polychroa. 3. Experimentelles und histologisches vom	
Tricladenpharynx. Von Paul Lang, (Aus dem Biologischen	
Laboratorium der Universität Bonn.) Hierzu Tafel XXI und	
2 Textfiguren	339
Die Verbindung des Vorderhirns mit dem metameren Hirn. Von	
B. Haller. Hierzu Tafel XXII und 1 Textfigur	365
Über die Wirkung der Röntgenstrahlen auf die Bursa Fabricii und	
einige andere Organe junger Hühner. Von Tierarzt Hans	
Unzeitig. (Aus dem histologischen und embryologischen Institut	
der k. und k. Tierärztlichen Hochschule in Wien.) Hierzu	
Tafel XXIII und 2 Textfiguren	380
Über das Stroma der Nebennierenrinde. Von Dr. med. Snessarew,	
Oberarzt der Irrenanstalt "Nikolskoë", Kostroma, Russland. Hierzu	
3 Textfiguren	408
Zur Kenntnis der neurofibrillären Apparate der Hirudineen. Von	
G. Ascoli. (Aus dem Laboratorium für allgemeine Pathologie	
und Histologie der Kgl. Universität Pavia.) Hierzu 10 Textfiguren	414
Berichtigung. Von Prof. E. Ballowitz. Münster	426

Zur Entwicklungsgeschichte des menschlichen Zahnsystems nebst Bemerkungen zur Frage der prälaktealen Dentition, der sogenannten Konkreszenztheorie und der Entwicklung des Säugetiergebisses überhaupt.

> Von P. Adloff.

Hierzu Tafel I, II und 5 Textfiguren.

Die Entwicklung des menschlichen Zahnsystems ist schon verschiedentlich behandelt worden, am ausführlichsten von Röse und Leche, so dass nach den Arbeiten dieser ausgezeichneten Forscher eine erneute Untersuchung wenig Erfolg versprach. Verschiedene neuere Publikationen aber, insbesondere diejenigen Bolks, der eine ganz neue Theorie über die Differenzierung des Primatengebisses aufstellte, waren für Verfasser die Veranlassung, die Gebissentwicklung des Menschen doch noch einmal einer näheren Prüfung zu unterziehen.

Das Gebiss des Menschen besitzt bekanntlich dieselbe Formel, wie dasjenige der katarrhinen Primaten $\frac{2123}{2123}$. Von der typischen Säugetierzahnzahl fehlen ihm also ein Schneidezahn und zwei Prämolaren. Besonderes Interesse hat von jeher die Frage erregt, welche von den vier ursprünglich vorhandenen Prämolaren ausgefallen sind. Die Ansichten hierüber sind bekanntlich geteilt. Die einen Autoren sind der Ansicht, dass es die beiden ersten gewesen sind, so dass also die heute noch vorhandenen als P_3 und P_4 zu bezeichnen wären, andere wieder glauben, dass die beiden letzten ausgefallen sind, dass also der Mensch und die Katarrhinen nur noch P_1 und P_2 besitzen, noch andere nehmen an, dass zwischen und hinter den beiden übrig gebliebenen je ein Zahn verloren gegangen ist, so dass erstere mithin den P_1 und P_3 vorstellen würden.

Bolk schliesslich glaubt, dass nur der erste Prämolar wirklich ausgefallen, dass aber die Reduktion auf die jetzige Anzahl von 2 P dadurch zustande gekommen ist, dass der letzte Archiv f. mikr. Anat. Bd. 82. Abt. I. Milchmolar der Platyrrhinen in einen bleibenden Molaren umgewandelt wurde und dafür der letzte Mahlzahl ausgefallen ist. Bolk nimmt aber weiter an, dass ein ähnlicher Umwandlungsprozess auch heute im Gebiss des Menschen im Gange ist, indem der letzte Milchmolar wiederum zu einem bleibenden Molar wird, während der Weisheitszahn zur Rückbildung gelangt.

In verschiedenen Arbeiten habe ich gegen diese eigenartige Hypothese Stellung genommen und glaube auch überzeugend nachgewiesen zu haben, dass der von Bolk angenommene Umwandlungsvorgang nicht stattgefunden haben kann und dass auch das menschliche Zahnsystem keine Ausnahme macht von den Gesetzen, die die Stammesgeschichte des Säugetiergebisses beherrschen.

Hauptsächlich zu diesem Zwecke wurden die vorliegenden Untersuchungen unternommen, wenn nebenbei auch noch andere schwebende Fragen Berücksichtigung finden sollten. 1)

Die Hypothese Bolks war nämlich von vornherein unmöglich, wenn es sich entwicklungsgeschichtlich nachweisen liess, dass die Reduktion der Prämolarenzahl auf zwei durch Ausfall der beiden vorderen P und nicht durch Umwandlungsvorgänge am hinteren Ende der Prämolarenreihe stattgefunden hat; mit anderen Worten: es kam darauf, vielleicht Reste der verlorengegangenen P₁ und P₂ entwicklungsgeschichtlich festzustellen, dann müssten die beiden P der heutigen katarrhinen Primaten und des Menschen natürlich P₃ und P₄ sein.

Wenn auch Leche nur ältere Embryonen untersucht hat, so haben doch Röse so zahlreiche Stadien jeglichen Alters zur Verfügung gestanden, dass die Aussichten auf positive Befunde von vornherein äusserst gering waren. Im Hinblick auf die Arbeit Röses hat auch Leche von einer Untersuchung jüngerer Embryonen absehen zu müssen geglaubt, weil eine erneute Darstellung sich wesentlich als eine Wiederholung der Röseschen Schilderung gestalten würde. Um so überraschender waren daher die neuen und wichtigen Resultate meiner Untersuchungen, die noch dazu an einem weit geringeren Material gewonnen wurden, als es Röse seinerzeit benutzen durfte.

¹⁾ Die Bedeutung meiner Untersuchungen für die Theorie Bolks habe ich an anderer Stelle ausführlich erörtert (Literaturverzeichnis Nr. 12), dort sind auch die Textfig. 1—4 bereits wiedergegeben. Sie sind hier wiederholt, um einen direkten Vergleich der verschiedenen Entwicklungsstadien zu ermöglichen.

Es gelang mir, einen ca. 9 wöchigen, einen ca. 11- und einen ca. 12 wöchigen Embryo zu erhalten, auch überliess mir Herr Prof. Kallius freundlichst die Durchsicht einer ihm gehörigen Schnittserie eines Embryo der trefflich diese drei Stadien ergänzte, indem er etwas älter war, als mein jüngstes Stadium, also ca. aus der 10. Woche stammen musste. Ausserdem hatte ich noch zwei ältere Stadien aus dem 4. und 5. Monat zur Verfügung, doch boten dieselben im allgemeinen nichts Neues, so dass ich von einer ausführlichen Beschreibung absehen kann und nur gelegentlich auf sie zurückkommen werde. Leider kann ich keine genauen Maße angeben, da ich in allen Fällen nur die Köpfe, und auch diese zum Teil unvollkommen erhielt; gewiss ein Mangel, der aber für meine Zwecke nicht von Bedeutung ist.

Die Zahnanlagen des jüngsten Embryos befinden sich im knospenförmigen, teilweise im Beginne des kappenförmigen Stadiums. Es sind acht Anlagen vorhanden und hinter der letzten, also derjenigen von Pd. setzt sich die Zahnleiste noch eine Strecke weit fort, um dann allmählich zu verschwinden. Dicht hinter und lingual neben der Anlage von Pd, im linken Unterkiefer, liegt nun ein eigenartiges Gebilde. Über die Oberfläche des Epithels ragt eine freie Papille empor, andererseits wölbt sich das Epithel auch kuppenförmig in das Bindegewebe vor. Die periphere Zellschicht besteht aus besonders hohen Zylinderzellen mit länglichen, stark dunkel gefärbten Kernen (Fig. 1). Zwei Schnitte hinterher hat sich das Bild etwas geändert. Die freie Papille ist verschwunden. Es ist lediglich eine starke Verdickung des Epithels vorhanden, das sowohl auf seiner freien Oberfläche, als auch ins Mesoderm hinein halbkugelig hervorragt. Im ganzen ist das Gebilde auf sechs Schnitten verfolgbar. Sobald dasselbe auf der linken Unterkieferseite verschwunden ist, erscheint rechts eine ähnliche freie Papille. Hier liegt dieselbe aber labial von der Zahnleiste; auch ist die Hervorwölbung ins Bindegewebe hinein gering. Dagegen fällt in letzterem eine Anhäufung von Rundzellen auf und es hat den Anschein, als ob auch hier die Bildung einer Papille vor sich geht (Fig. 2). Nach drei Schnitten ist nichts mehr bemerkbar. Im Oberkiefer ist links nur eine mässige Verdickung des Epithels lingual von der Zahnleiste vorhanden (Fig. 1), auf der rechten Seite ist absolut nichts Auffallendes feststellbar.

Ich habe die Befunde schon an anderer Stelle publiziert, dort auch meine Auffassung über die Bedeutung derselben niedergelegt.

Ursprünglich geht ja die Zahnentwicklung nicht durch Vermittlung einer Zahnleiste vor sich, sondern die Zähne entstehen. wie noch heute die Hautzähne der Selachier, lediglich innerhalb des Mundhöhlenepithels. Röse hat nun nachgewiesen, dass bei den Knochenfischen, Ganoiden und geschwänzten Amphibien, die ihre Zähne mehrfach wechseln, die ersten gewöhnlich gar nicht zur Funktion gelangenden Zähnchen sich ganz nach Art der Placoidschuppen als einfache Papillen im Bereiche der Schleimhaut bilden. Erst die zweite Zahnreihe entsteht dann an der in das Bindegewebe hineingewucherten Zahnleiste. Röse hat dieses ursprüngliche Verhalten der Zahnentwicklung, bei welchem die Zahnpapille über die tiefstgelegene Zylinderzellenschicht ins Epithel hinein und manchmal sogar halbkugelig über die Epitheloberfläche emporragt, als plakoides Stadium bezeichnet. Laaser hat dann in neuerer Zeit die Resultate Röses dahin vervollständigt, dass auch bei Selachiern die ersten Kieferzahnanlagen nach dem plakoiden Typus entstehen und zwar liegen dieselben am Übergang vom äusseren Zahnepithel zur Zahnleiste.

Es ist nun ohne Frage, dass die von Röse und Laaser gegebenen Bilder eine frappante Ähnlichkeit mit meinen Beobachtungen aufweisen. Das gilt insbesondere auch von Fig. 2, denn auch hier ist im Übergang vom äusseren Zahnepithel zur Zahnleiste deutlich eine Papillenbildung im Bindegewebe bemerkbar. Immerhin sind doch wichtige Unterschiede vorhanden: das plakoide Stadium geht dem Erscheinen der Zahnleiste voraus; es stellt den Beginn der Zahnentwicklung dar. Hier ist aber die Zahnleiste längst schon gebildet, ja die Differenzierung der einzelnen Zahnanlagen ist bereits im Gange.

Auffallend ist auch die Lage der Gebilde, einmal lingual, das andere Mal labial der Zahnleiste. Es geht hieraus hervor, dass direkte genetische Beziehungen, wie sie ja normalerweise zwischen den beiden Formen der Zahnentwicklung vorhanden sind, hier nicht bestehen können. Denn sonst müsste ja die erste, im plakoiden Stadium befindliche Anlage, von der aus dann später die Entstehung der Zahnleiste vor sich geht, stets labial von ersterer liegen, was hier aber nicht der Fall ist. Falls also die

von mir beschriebenen Bildungen in der Tat plakoide Zahnanlagen repräsentieren sollten - und eine andere Erklärung für die eigenartigen Befunde vermag ich vorläufig nicht zu geben - so

dürfte es sich lediglich um ein atavistisches isoliertes Wiederauftauchen dieser ältesten Form der Zahnentwicklung handeln können.

Die Anlagen der nächsten Serie (Prof. Kallius) befinden sich auf dem kappenförmigen Stadium. Labial der Anlage des ersten Milchmolaren im Unterkiefer senkt sich hier ein verhältnismässig flacher Fortsatz des Mundhöhlenepithels in das Bindegewebe hinein, derselbe ist eine

Fig. 1.

Strecke weit verfolgbar, ohne dass aber eine weitergehendere Differenzierung zu bemerken wäre (Textfig. 1). Dass dieser Fortsatz nicht etwa die Lippenfurchenleiste repräsentiert, die weiter labialwärts vorhanden ist, brauche ich kaum besonders zu bemerken.

Im nächst älteren Stadium treffen wir labial der ersten Milchmolarenanlagen wiederum auf diesen Fortsatz des Mundhöhlenepithels. Er erstreckt sich hier ohne Frage tiefer in das Bindegewebe hinein, auch ist deutlich erkennbar, dass diese labiale Leiste an zwei Stellen, die auf der rechten Seite 12, auf der linken 10 Schnitte auseinander liegen, eine besonders starke Ausbildung erfahren hat. Im ganzen ist sie rechts während 27, links während 22 Schnitten verfolgbar (Fig. 3a und b und 4a und b).

Entscheidend für die Bedeutung dieser Befunde war aber das älteste Stadium. Auch hier erscheint kurz vor der Anlage des ersten Milchmolaren im Unterkiefer labial der Schmelzleiste ein Fortsatz des Mundhöhlenepithels, der sich hier im Anfange besonders tief in das Bindegewebe herabsenkt und nach einigen Schnitten deutlich die Form eines rudimentären Schmelzkeimes annimmt (Textfig. 2). Diese zweite Schmelzleiste bleibt immer labial der Anlage des Milchmolaren verfolgbar und lässt nach 35 Schnitten noch einen zweiten rudimentären Schmelzkeim hervorgehen (Textfig. 3). Dass es sich auch hier direkt um einen

Fig. 2

Fig. 3.

Schmelzkeim handelt, geht aus der Betrachtung bei stärkerer Vergrösserung ohne allen Zweifel hervor. Nach neun Schnitten

Fig. 4.

verschwindet dann diese sekundäre Schmelzleiste. Die Befunde sind auf beiden Seiten ziemlich gleichzeitig. Die rudimentären Zahnanlagen sind auch noch weiter entwicklungsfähig; das geht aus einem einzelnen Schnitt hervor, den ich gelegentlich von befreundeter Seite erhielt und der augenscheinlich einem noch älteren Embryo entstammt. Hier finden wir neben der im glocken-

förmigen Stadium befindlichen Anlage des Milchmolaren einen kappenförmig eingestülpten rudimentären Schmelzkeim, der sich gerade hier vom Mundhöhlenepithel loszulösen scheint (Textfig. 4).

Damit sind wohl aber die Grenzen der Entwicklungsfähigkeit erreicht, denn es fehlt jede Differenzierung der Bindegewebszellen zu einer Papille, die ja die Voraussetzung zur Entstehung eines Zahnes abgibt. Es ist das aber durchaus nichts Auffallendes! Das Epithel als das auslösende Element bei der Zahn entwicklung spielt seine Rolle auch bei eintretender Rückbildung am längsten, während das Bindegewebe seine Beteiligung viel früher einstellt. Ich bemerke dieses besonders, weil das Fehlen jeder bindegewebigen Verdichtung als Grund angeführt worden ist, um die Schmelzkeimnatur dieser Epitheleinstülpung überhaupt zu leugnen.

Es erhebt sich nun die Frage, was diese rudimentären Anlagen vorstellen? Das Nächstliegende wäre es, sie als Überreste der prälaktealen Dentition zu deuten, und ich muss auch ohne weiteres zugeben, dass ich selbst zunächst diese Auffassung gehabt und gelegentlich der Publizierung des zuletzt erwähnten Befundes auch vertreten habe, dieselbe aber aus verschiedenen sogleich zu erörternden Gründen habe fallen lassen müssen.

Da nun aber neuerdings die Frage der prälaktealen Dentition von neuem angeschnitten und ihr Vorhandensein überhaupt geleugnet worden ist, so scheint es mir angebracht zu sein, auch ihre Grundlagen noch einmal zu prüfen und die Tatsachen kurz zu rekapitulieren, die zu ihrer Begründung im Laufe der Jahre beigebracht worden sind.

Die Annahme einer prälaktealen Dentition steht bekanntlich in engstem Zusammenhange mit der modernen Auffassung von der Genese des Säugetiergebisses. Bekanntlich wird das letztere mit seinem einmaligen Zahnwechsel abgeleitet von den sich in ununterbrochener Folge ersetzenden Zahnreihen der niederen Wirbeltiere. In welcher Weise sich aber die an Zahl zwar geringeren, aber an Qualität bedeutend vervollkommneten Zähne der heutigen Säugetiere aus den weit zahlreicheren, einspitzigen Zähnen jener niederen Wirbeltiere herausgebildet haben, darüber gehen die Ansichten auch heute noch auseinander. Die einen Autoren nehmen an, dass ein Teil der Zähne ausgefallen ist, während die übrig bleibenden eine bessere Ausbildung erfuhren (Differenzierungstheorie), während die anderen die heutigen komplizierten Zahnformen aus der Verschmelzung mehrerer einfacher Einzelzähne entstehen lassen (Konkreszenztheorie); und zwar sollen

hintereinander gelegene Einzelzähne, dann aber auch nebeneinander liegende Keime verschiedener Dentitionen zur Bildung eines Zahnes zusammengetreten sein. Hiermit wäre die Vermehrung der Zahl und die bessere Ausgestaltung der Einzelzähne befriedigend erklärt. Die erste Annahme, Konkreszenz in longitudinaler Richtung, war lange Zeit Hypothese und erst in neuester Zeit sind auch hierfür Beweise beigebracht worden. Anders dagegen verhält es sich mit der Verschmelzung von Zahnkeimen verschiedener Dentitionen. Gerade in dieser Beziehung spielt aber die sogenannte prälakteale Dentition eine ausschlaggebende Rolle.

Auf Frontalschnitten wurden labial von der Anlage der Milchdentition zunächst bei Plazentaliern, bei Pinnipediern, Cetaceen und Erinaceus, Epithelknospen und Fortsätze aufgefunden. die durch ihr konstantes Vorkommen die Vermutung weckten. dass man es nicht mit gelegentlichen Ausläufern der Schmelzleiste, sondern mit gesetzmässigen Bildungen zu tun habe. Da nun die älteren Dentitionen immer auf der labialen Seite der jüngeren liegen, und letztere aus dem lingualwärts gerichteten freien Schmelzleistenende ihren Ursprung nimmt, so nahm man an, dass man es hier mit den Resten einer den Milchzähnen vorhergehenden Zahnreihe zu tun habe, die als letzter Rest des mehrmaligen Zahnwechsels bei niederen Wirbeltieren, auch bei Säugetieren noch zur Entwicklung gelange. In ein weiteres Stadium trat die Frage, als bei dem Zahnsystem der Marsupialier, das von Leche, Kükenthal, Röse übereinstimmend als persistierendes Milchgebiss gedeutet wird, labial der funktionierenden Reihe gleichfalls Reste einer vorangegangenen Dentition und zwar nicht nur als immerhin doch etwas fragwürdige Epithelknospen. sondern als direkt verkalkte Zähnchen gefunden wurden. Wäre die Natur des Beutlergebisses als Milchgebiss in der Tat einwandfrei festgestellt, so müsste auch jeder Zweifel an der Natur dieser älteren Zahnreihe als behoben gelten. Mir scheint jedoch das erstere noch keineswegs ohne weiteres der Fall zu sein, und damit verliert natürlich auch das Vorhandensein der labialen Zahnserie an Bedeutung. Denn, ist das Zahnsystem der Marsupialier, wie es auch noch heute vielfach behauptet wird, ein bleibendes Gebiss, so würden die letzteren eben die erste Dentition repräsentieren, die rudimentär geworden ist. Jedenfalls scheint mir diese Frage noch nicht restlos geklärt zu sein.

In der Folge wurden aber Reste der prälaktealen Dentition auch noch bei anderen Säugetieren festgestellt, und zwar handelte es sich nicht nur um zweifelhafte Wucherungen der Schmelzleiste, sondern um Bildungen, die direkt als Schmelzkeime bezeichnet werden mussten. Besonders einwandfrei waren die von mir bei Sciuriden (Sciurus und Spermophilus) und von Bild und mir bei Sus domesticus beschriebenen Befunde.

Ahrens hat allerdings die letzteren auf Grund der Herstellung von Wachsmodellen in Frage gestellt. Eine Berücksichtigung dieser gelegentlichen Äusserung nach der einen oder der anderen Seite hin ist aber solange unmöglich, als nicht eine ausführliche Begründung vorliegt.

Erst neuerdings hat aber Augusta Arnsbäck-Christie-Linde in einer im Lecheschen Institut angefertigten ausführlichen Arbeit über das Soricidengebiss prälakteale Reste bei Sorex nachgewiesen und auch plastisch dargestellt. Über die Bedeutung der Rekonstruktionsmethode für die Beurteilung der ganzen Frage werde ich noch später mich zu äussern Gelegenheit haben.

Es wurden aber noch weitere bemerkenswerte Entdeckungen gemacht. Diese prälaktealen Reste schienen sich nämlich an dem Aufbau der jüngeren, also in diesem Falle der Milchdentition mit zu beteiligen, und es schien dieses ein Beweis zu sein für die Auffassung, wonach der Säugetierzahn aus der Verschmelzung mehrerer zusammengezogener Dentitionen niederer Wirbeltiere entstanden sein sollte. Man hat diesen Befunden von Anfang an ein gewisser Misstrauen entgegengebracht und noch neuerdings ist ihre Deutung im Sinne der Konkreszenztheorie heftig bestritten worden. Es scheint mir daher zweckmässig, einige besonders beweiskräftige Beobachtungen noch einmal kurz wiederzugeben, um so mehr als ich dieselben heute zu vervollständigen resp. zu erweitern in der Lage bin.

Die Sciuriden besitzen bekanntlich im Oberkiefer zwei Prämolaren, von denen der erste rudimentär und stiftförmig, der zweite ein normaler, wohl ausgebildeter Zahn ist. Im Unterkiefer ist nur ein gut entwickelter Prämolar vorhanden.

Labial der Anlage des stiftförmigen Prämolaren im Oberkiefer bei Spermophilus finden wir nun auf Frontalschnitten einen rudimentären, kappenförmig, eingestülpten Schmelzkeim. von dem aus, nicht etwa vom Mundhöhlenepithel, die Schmelzleiste ihren Ursprung nimmt (Fig. 5). Der Schmelzkeim ist während weniger Schnitte sichtbar, er verschwindet dann, während ein labialer Epithelstrang auch weiterhin neben der Schmelzleiste frei im Bindegewebe liegt. Nach einigen weiteren Schmitten, am Ende der Anlage des Prämolaren, ist diese labiale Epithelleiste von neuem mit der Schmelzleiste in Verbindung getreten und hat sich wiederum zu einem kappenförmig eingestülpten rudimentären Schmelzkeim differenziert (Fig. 6). Auch bei der Anlage des nächsten Prämolaren ist ein derartiger labialer Ausläufer der Schmelzleiste vorhanden, nur bleibt derselbe hier nicht gesondert, sondern vereinigt sich im weiteren Verlaufe mit dem Schmelzorgan der Anlage. Dasselbe ist der Fall bei der Anlage des entsprechenden Prämolaren im Unterkiefer, wo der vordere Prämolar ja fehlt. Da die Verhältnisse hier instruktiver liegen als im Oberkiefer, so sollen diese beschrieben werden.

Auch hier im Unterkiefer entsteht an der labialen Seite der Schmelzleiste eine kleine Knospe, die allmählich grösser und zu einem am Ende kolbig verdickten Epithelspross wird. Dieser Epithelspross, der auf beiden Seiten vom Zylinderepithel umgeben ist, tritt weiterhin mit dem Schmelzorgan des Prämolaren in Verbindung, in welchem er schliesslich ganz aufgeht (Fig. 7a, b).

Ich habe nun sowohl von dem oberen ersten Prämolaren, wie von dem unteren Prämolaren Wachsmodelle hergestellt, die speziell für den ersteren ein etwas anderes Bild ergeben, als ich es mir seinerzeit aus der Betrachtung lediglich der Schnittserie gebildet hatte. Wir sehen nämlich deutlich, dass es sich hier nicht um eine prälakteale Anlage handelt, sondern dass deren zwei vorhanden sind, eine Tatsache, die im Hinblick auf andere Befunde ganz ausserordentlich wichtig ist (Fig. 11).

Auch das zweite Modell lässt unzweideutig erkennen, dass es sich hier nicht etwa um belanglose Ausläufer der Schmelzleiste handelt (Fig. 12). Dies geht ja schon ohne weiteres daraus hervor, dass diese Bildungen gesetzmässig vorkommen, an bestimmten Stellen bestimmter Zähne, und dass sie nicht etwa nur in diesem einen Stadium beobachtet wurden, sondern bei Embryonen verschiedenen Alters. Denn selbstverständlich müssen ganz bestimmte Kriterien vorhanden sein, um die Natur dieser Bildungen einwandfrei festzulegen. Ich möchte es bei dieser Gelegenheit noch ganz besonders betonen, dass es selbstverständlich niemand ein-

gefallen ist, kritiklos jede belanglose Wucherung der Schmelzleiste als prälakteale Anlage zu deuten, wie es von einem Kritiker der neuesten Zeit angenommen zu sein scheint. Im obigen Fall handelt es sich um so charakteristische Bildungen, dass an ihrer Natur ein Zweifel kaum aufkommen kann. Es gibt aber viele Befunde, die nicht so leicht zu deuten sind, deren wahrer Charakter sich nur nach einer sorgfältigen Prüfung sämtlicher in Betracht kommender Umstände bei verschiedenen Entwicklungsstadien ermitteln lässt. Hieraus geht schon hervor, dass es unzulässig ist — und dieses sollte eigentlich überflüssig sein zu betonen — aus einem vielleicht zur Wiedergabe ausgewählten Bilde kritische Schlüsse zu ziehen. Wenn irgendwo, so ist hier ein objektives Urteil nur durch exakte Nachprüfung des gesamten Materiales zu gewinnen.

Wenn es sich hier nun um Reste einer prälaktealen Dentition handelt, so erhebt sich die Frage, warum dieselbe in dem einen Falle getrennt bleibt, während sie in dem anderen mit der danebenliegenden Anlage des zugehörigen Milchzahnes verschmilzt. Nehmen wir doch an, dass generell der heutige Säugetierzahn aus der Verschmelzung mehrerer Einzelzähne derselben und verschiedener Dentitionen hervorgegangen ist. Es müssen also ganz besondere Ursachen vorliegen, die zu einem selbständigen Auftreten der prälaktealen Dentition geführt haben. Auch hier geben die oben geschilderten Befunde bei Spermophilus vielleicht eine plausible Erklärung. Das Zahnsystem der Rodentien ist besonders instruktiv, weil seine stammesgeschichtliche Entwicklung auch heute noch im Flusse ist und weil progressive und regressive Entwicklungsvorgänge nebeneinander tätig gewesen sind und noch tätig sind. Bei excessiver Ausbildung der zweiten Schneidezähne zu Nagezähnen sind die übrigen Incisivi Eckzähne und Prämolaren vollständig oder nahezu geschwunden. Die Prämolaren haben aber nur die specialisiertesten Formen vollkommen eingebüsst, während die primitiven Typen, so die Sciuriden, sie noch teilweise erhalten haben. Jedoch sind auch letztere zweifellos auf dem Wege, sie schliesslich ganz zu verlieren. Von den beiden im Oberkiefer vorhandenen Backenzähnen ist ja der erste bei den meisten Arten ganz klein, rudimentär und stiftförmig, während einige Formen ihn überhaupt nicht mehr besitzen; im Unterkiefer ist bei allen Gattungen nur ein Prämolar vorhanden. Gerade labialwärts des

kleinen stiftförmigen ersten Backenzahnes im Oberkiefer finden wir aber nun, stets vollständig von ihm getrennt, einen typischen prälaktealen Schmelzkeim, während bei dem letzten Prämolar im Ober- wie im Unterkiefer ein ähnlicher prälaktealer Rest stets in Verbindung mit der funktionierenden Anlage angetroffen wird.

Und auch sonst finden wir prälakteale Reste vielfach bei Zähnen, die mehr oder weniger der Reduktion anheim gefallen sind und auch Verschmelzungen sind in der Mehrzahl der Fälle bei Zähnen beobachtet worden, die, wenn auch nicht direkt rückgebildet, doch einem Abschnitte des Zahnsystems angehören, in dem Reduktion bereits tätig gewesen ist.

Als ein weiteres Beispiel hierfür möchte ich die Prämolaren von Sus scrofa dom. anführen, die infolge der besonders starken Entwicklung der Eckzähne einerseits, der Molaren andererseits in ihrer Ausbildung zurückgeblieben sind. Wir sehen auf einem jüngeren Stadium eine Zahnleiste von ganz auffallender Form (Fig. 8a, b). Unschwer lässt sich dieselbe entstanden denken durch zwei nebeneinander liegende Keime, wie es in Textfig. 5 skizziert

ist. Ein paar Schnitte dahinter hat die Zahnleiste die in Fig. 9a, b wiedergegebene Form angenommen. In einem älteren Entwicklungsstadium finden wir aber folgendes Bild. Labial der glockenförmigen Anlage liegt

Fig. 5

eine kolbenförmige Ausstülpung der Schmelzleiste, die offenbar mit dem labialen Teile der Zahnleiste des jüngeren Stadiums identisch ist und sich von der funktionierenden Anlage abzutrennen im Begriffe steht (Fig. 10).

Ich sprach daher schon früher die Vermutung aus, dass das Vorhandensein prälaktealer Reste in Zusammenhang stehe mit der grösseren oder geringeren Reduktion. Man könnte annehmen, dass, so wie jeder Zahn aus einer Verschmelzung verschiedener Dentitionen seinen Ursprung nähme, er umgekehrt bei beginnender Rückbildung wieder in seine Komponenten zerfiele.

Es würde sich also nicht eigentlich um Verschmelzungs-, sondern vielmehr um Trennungsvorzüge handeln. Das Sichtbarwerden einer einst stattgehabten Verschmelzung wäre vielleicht das erste Anzeichen einer regressiven Metamorphose, bis bei immer fortschreitender Reduktion schliesslich wieder eine Trennung der verschiedenen Dentitionen stattfände. Die prälaktealen Reste

hätten also keinen primitiven Charakter, sondern wären gewissermassen erst sekundär zu ihrer alten Unabhängigkeit zurückgekehrt. Gegen diese Auffassung ist vor allem der Einwand gemacht worden, dass, da wir die Rückbildung eines Zahnes schrittweise, unter dem Zeichen des allmählichen Höcker- und Wurzelverlustes und nie unter dem Zerfall in seine Einzelglieder festhalten können, wir wohl auch für die Ausbildung des komplizierten Säugetierzahnes in umgekehrter Richtung dasselbe, die Herausdifferenzierung annehmen müssen. Diesen Einwand kann ich nicht als berechtigt anerkennen. Auch wenn wir annehmen. dass der heutige komplizierte Säugetierzahn aus der Verschmelzung mehrerer ursprünglich getrennt gewesener Einzelzähne entstanden ist: in jedem Zahne ist auch selbstverständlich Material vorhanden. das derselbe gewissermassen aus sich selbst heraus geschaffen hat. Es muss immer wieder betont werden, dass auch die Anhänger der Konkreszenztheorie neben Verschmelzungsvorgängen, die im Beginne der stammesgeschichtlichen Entwicklung vor sich gegangen sein werden, späterhin auch die Differenzierung als wesentlichen Faktor für die Herausbildung der heutigen Zahnformen in Anspruch nehmen. Unter diesen Umständen kann es aber nicht weiter wundernehmen, dass auch bei einer Rückbildung entsprechend der zuletzt stattgehabten Differenzierung zunächst eine allmähliche allgemeine Grössenabnahme bemerkbar ist, während der Zerfall in Einzelglieder als der stammesgeschichtlich am weitesten zurückliegende Entwicklungsvorgang nur wenig deutlich in Erscheinung tritt. Vielleicht ist das in früheren Entwicklungsperioden anders gewesen! Wissen wir doch, dass das heute homoiodonte, vielzähnige Gebiss der Delphine in der Tat durch Zerfall weniger mehrhöckeriger Zähne in ihre einzelnen Bestandteile entstanden ist. Nun sollen ia aber nicht allein die nebeneinander liegenden Keime verschiedener Dentitionen, sondern auch hintereinander gelegene Einzelzähne derselben Dentition zur Bildung eines Zahnes zusammengetreten sein. Es ist daher auffallend, dass nur jene unter gewissen Umständen wieder sichtbar werden, während die verschmolzenen Komponenten derselben Dentition nicht mehr zum Vorschein zu kommen scheinen. Auch hierfür gibt es eine, wie mir scheint, einleuchtende Erklärung, auf die ich schon an anderer Stelle hingewiesen habe. Die nur

örtlich getrennt gewesenen Schmelzkeime sind so ineinander aufgegangen, dass ein nachheriger Zerfall ausgeschlossen erscheint. Dagegen lassen die ehemals örtlich und zeitlich geschiedenen Bestandteile naturgemäss viel eher die Möglichkeit zu, unter besonderen Umständen aus dem gemeinsamen Verbande zu dem alten Zustand zurückzukehren. Ausserdem liegen neueste Beobachtungen vor. die uns hierüber weiteren Aufschluss geben. Wilson und Hill haben entwicklungsgeschichtliche Untersuchungen über das Zahnsystem von Ornithorynchus veröffentlicht, in welchen sie folgendes festgestellt haben: Ornithorynchus besitzt bekanntlich in der Jugend in jedem Oberkiefer 1 Prämolaren und 2 Molaren, im Unterkiefer 3 Molaren. Angelegt werden jedoch ausserdem noch im Ober- und Unterkiefer jederseits 1 Prämolar. Die Molaren besitzen eine niedrige breite, multituberkuläre Krone. Wilson und Hill haben nun nachgewiesen. dass im Bereiche der hinteren vielhöckerigen Molaren noch Reste von Anlagen einer früheren Dentition vorhanden sind und zwar nicht etwa für jeden multituberkulären Mahlzahn, sondern für jeden ihrer Höcker je eine solche Anlage, ja für den vorderen Höcker des zweiten Molaren oben und unten waren zwei solcher rudimentärer Schmelzkeime nachweisbar, von denen der eine im Oberkiefer sogar verkalkt war. Wilson und Hill halten diese Reste für die zurückgebildete erste Dentition der Molaren, die dann selbst zur permanenten Serie gehören würden. Ich vermag diese Anschauung nicht zu teilen, halte auch die von den Autoren angeführten Argumente, auf die näher einzugehen hier zu weit führen würde, nicht für stichhaltig; meines Erachtens müssen sie zur prälaktealen Reihe gerechnet werden. Darin stimme ich aber mit Wilson und Hill vollkommen überein, dass das Vorhandensein von mehreren Anlagen früherer Dentitionen neben nur einer funktionierenden ohne Frage ein Beweis dafür ist, dass die letztere aus der Verschmelzung mehrerer Einzelanlagen entstanden ist. In demselben Sinne sind wohl auch die beiden prälaktealen Anlagen neben dem Schmelzkeim des stiftförmigen Prämolaren bei Spermophilus, deren zweifache Anzahl erst durch die Herstellung eines körperlichen Modelles zutage getreten ist, zu deuten. Auch hier handelt es sich um zwei getrennte Anlagen einer älteren Zahnreihe, die in der jüngeren Dentition

nur durch einen einheitlichen Zahn repräsentiert werden

Wenn wir jetzt zu unseren Befunden beim Menschen zurückkehren, so wird es verständlich sein, dass über ihre Deutung Zweifel entstehen konnten. Hier wie dort finden wir auf der labialen Seite einer zur Milchdentition gehörigen Zahnanlage rudimentare Schmelzkeime, die sogar ganz ähnlich wie die Beobachtungen bei Spermophilus und bei Ornithorvnchus, in der Zweizahl vorkommen. Es liegt daher in der Tat der Schluss nahe, auch sie der prälaktealen Dentition zuzurechnen. Es ist aber ein wichtiger Unterschied vorhanden, der diesen Schluss unbedingt verbietet. Nach unserer Annahme ist die prälakteale Dentition eine ältere Zahngeneration, die bei den Vorfahren unserer Säugetiere selbständig funktioniert hat, ihre Nachfolgerin ist heute die sogenannte Milchdentition, der als letztes Glied die permanente Reihe folgt. Ich sehe hier ganz von der Frage ab, ob diese heutige Dentition einer oder mehreren Reptilienzahnreihen entspricht, ich möchte nur betonen, dass sie gleichwertige Produkte der gemeinsamen Mutter, der Schmelzleiste sind. Es ist daher nur natürlich, dass auch die prälakteale Dentition in engster Beziehung zur produktiven Schmelzleiste steht und wir finden, dass auch die Reste der prälaktealen Anlage bald von der Schmelzleiste selbst ausgehen, bald scheint umgekehrt die Schmelzleiste aus der prälaktealen Anlage (Fig. 5 und 6) zu entspringen: auch stehen sie nicht allein im Zusammenhange mit der Schmelzleiste, sondern sie erscheinen und verschwinden zusammen mit den betreffenden Anlagen, deren ältere Generation sie repräsentieren. Ganz anders liegen die Verhältnisse nun bei den Befunden im Gebisse des Menschen. Betrachten wir die Schnitte oder besser das Plattenmodell (Fig. 13), so sehen wir, dass es sich nicht um einzelne Anlagen handelt, sondern dass es direkt eine zweite Schmelzleiste ist, die räumlich verhältnismässig weit von der produktiven Schmelzleiste getrennt und parallel zu ihr verläuft und in ihrem Verlaufe zwei rudimentäre Anlagen hervorgehen lässt (Textfig. 2 und 3). Daher kann es sich in diesem Falle auch niemals um Bildungen handeln, die als prälakteal zu bezeichnen sind. Wir kennen keine prälakteale Schmelzleiste, sondern nur prälakteale Anlagen, die aus derselben Schmelzleiste hervorgehen, die vor unendlichen Zeiten die

sich unablässig erneuernde Dentitionen der Reptilien, die heute die beiden Säugetierzahnreihen entstehen lässt. Jene zweite Schmelzleiste muss also einen anderen Ursprung haben. Nunmehr erinnern wir uns der Tatsache, dass der Mensch nur noch zwei Prämolaren besitzt, während die beiden anderen im Laufe der Stammesgeschichte verloren gegangen sind. Wenn also jene sekundäre Schmelzleiste nicht prälaktealen Ursprungs sein kann, so bleibt nur die zweite Möglichkeit übrig, dass es sich hier um Reste jener aus der Zahnreihe der Menschen geschwundenen Prämolaren handelt. Dann bliebe aber zunächst die weit labialwärts gerückte Lage zu erklären. Ich habe schon an anderer Stelle ausgeführt, dass es auch hierfür eine durchaus einleuchtende Erklärung gibt. Die räumliche Trennung der ursprünglich ia zu derselben Dentition gehörenden Anlagen muss danach als Folge aufgefasst werden einer im Laufe der Stammesgeschichte eingetretenen Kieferverkürzung und hierdurch bedingten Einfaltung der Schmelzleiste. Es ist diese Annahme um so wahrscheinlicher, als sich ähnliche Vorgänge auch gegenwärtig im menschlichen Gebisse wiederum abzuspielen scheinen. Bekanntlich gehört der I2 des Menschen zu denjenigen Zähnen, die dem Untergange geweiht sind. Er findet sich in allen Stadien der Reduktion und fehlt sogar oft ganz. Es scheint nun hier eine weitere Verkürzung der Kiefer im Gange zu sein und infolgedessen ebenfalls eine Einfaltung der Schmelzleiste sich anzubahnen. Während sich nämlich in jüngeren Entwicklungsstadien Id 2 und Cd ganz normalerweise hintereinander entwickeln, liegen die beiden Anlagen bei älteren Embryonen nebeneinander, so dass das vordere von Cd noch eine ganze Strecke weit neben dem hinteren Ende von Id2 zu liegen kommt. Mit anderen Worten: die Entwicklung des Kiefers hat mit dem Wachstum der Zahnanlagen nicht gleichen Schritt gehalten; infolgedessen ist eine Verschiebung eingetreten. Nimmt die Verkürzung und damit die Verschiebung ihren Fortgang und nehmen wir weiter an, dass Id 2 immer mehr reduziert wird, so erhalten wir schliesslich dasselbe Bild wie in unserem Falle, nur dass die rudimentäre Zahnanlage hier lingual liegen würde. Warum die Verschiebung hier lingualwärts, dort labialwärts stattfindet, entzieht sich unserer Kenntnis. Sicherlich sind hier die räumlichen Verhältnisse der betreffenden Kiefergegend von Bedeutung.

Bolk bemängelt in seiner neuesten Arbeit diese Interpretation und bezeichnet sie als völlig verfehlt. Demgegenüber möchte ich darauf aufmerksam machen, dass diese Annahme einer Kieferverkürzung, mit welcher die Entwicklung der Zahnanlagen nicht gleichen Schritt hält, so dass es zu einer Einfaltung der Zahnleiste kommen muss, in vollem Einklange steht, mit Variationen und Anomalien des normalen und des pathologisch veränderten menschlichen Gebisses. Es ist eine allen Zahnärzten wohlbekannte Tatsache, dass ein grosser Teil der unregelmässigen Zahnstellungen seinen Ausgang nimmt von den räumlichen Verhältnissen des Vorderkiefers. In einem augenscheinlich rückgebildeten Vorderkiefer stehen Zähne normaler Grösse und hieraus resultieren dann Anomalien, die sich sehr oft darin äussern, dass der zweite Schneidezahn lingual, der Eckzahn labial verlagert wird. Es scheint mir daher der Gedanke nicht so sehr fern zu liegen, zwischen beiden Erscheinungen einen ursächlichen Zusammenhang anzunehmen und den so ausserordentlich häufigen Raummangel gerade im Bereiche der C und L₂ als die Folge aufzufassen einer schon embryonal feststellbaren Verkürzung dieser Kiefergegend, die eben darin ihren Ausdruck findet, dass die sich ursprünglich hintereinander anlegenden Keime der 12 und C in späteren Stadien nebeneinander zu liegen kommen.

Jedenfalls scheint mir die Deutung der labialen rudimentären Schmelzkeime als die Reste der ausgefallenen Prämolaren hierdurch eine wesentliche Stütze zu erfahren. Es fragt sich nun, welche von den vier ursprünglich vorhandenen Prämolaren ausgefallen sind? Die Antwort ist in diesem Falle sehr einfach! Es unterliegt zunächst keinem Zweifel, dass an erster Stelle der vorderste Prämolar ausgefallen ist. Dieses ist paläontologisch festgestellt! Da es sich nun hier um zwei Anlagen handelt, beide aber durch eine fortlaufende Schmelzleiste verbunden sind, so geht hieraus hervor, dass dieselben von jeher zusammengehört haben, d. h. dass sie auch ursprünglich hintereinander gestanden haben müssen, denn sonst wäre der Zusammenhang durch die sie verbindende Schmelzleiste unerklärlich. Mit anderen Worten: die beiden rudimentären Schmelzkeime können nur P1 und P2 sein.

Im Oberkiefer konnten übrigens Spuren dieser ausgefallenen Zähne nicht nachgewiesen werden. Es ist das nicht weiter auffallend. Fast allgemein ist der Unterkiefer das konservative Element. Es liegt das wohl daran, dass der Oberkiefer ein integrierender Teil des Schädels ist und an den sich an diesem abspielenden Umformungen in erster Linie beteiligt ist, während der Unterkiefer als besonderer Knochen erst sekundar in Mitleidenschaft gezogen wird.

Welche Konsequenzen diese Resultate für die Bolksche Hypothese besitzen, habe ich bereits an anderer Stelle ausführlich erörtert, worauf ich hiermit verweise.

Es ist übrigens vielleicht interessant, festzustellen, dass diese Annahme einer stattgehabten Einfaltung der Zahnleiste zwischen Eckzahn und den Prämolaren in gewissem Sinne die Bestätigung einer schon 1894 von Schwalbe allerdings aus anderen Gründen und in anderer Form ausgesprochenen Ansicht ist, wonach im Bereiche der Prämolaren die Zahnleiste infolge Raummangels eine Verlagerung erfahren hat.

Aber auch in anderer Beziehung sind die Feststellungen von Wichtigkeit.

Die Tatsache, dass die beiden rudimentären Schmelzkeime noch eine gemeinsame Schmelzleiste besitzen, scheint dafür zu sprechen, dass die Reduktion beider Zähne ziemlich gleichzeitig eingeleitet worden sein muss, dass der Mensch also ein Platyrrhinenstadium mit drei Prämolaren kaum durchlaufen haben kann. Da ferner dem heutigen Menschen auch ein Schneidezahn fehlt, von diesem aber irgend welche Reste nicht mehr vorhanden sind, so geht hieraus hervor, dass, übereinstimmend mit den übrigen Primaten, zunächst dieser dritte Incisivus und dann erst die Prämolaren verloren gegangen sind.

Hieraus ist aber ein weiterer Schluss zu ziehen: Bekanntlich werden gerade in der Schneidezahngegend des Menschen besonders häufig überzählige Zähne gefunden, die mit mehr oder weniger Bestimmtheit als die atavistisch wieder aufgetauchten dritten Schneidezähne bezeichnet worden sind. Wenn dieses auch für einzelne Fälle zutreffen mag, so scheint mir doch der Umstand, dass entwicklungsgeschichtlich irgend welche Reste der I3 nicht mehr angetroffen werden, während solche von den beiden ausgefallenen Prämolaren regelmässig vorhanden sind, dafür zu

sprechen, dass es sich hierbei doch wohl mehr um Variationen des I₂, als eines in Rückbildung begriffenen Organes zu handeln scheint.

Es muss in diesem Zusammenhang auch noch die Frage erörtert werden, ob die seit langem als "schmelzlose Zahnrudimente" beschriebenen Gebilde, die auch in der Gegend der Prämolaren beobachtet worden sind, vielleicht zu den rudimentären Schmelzkeimen in Beziehung gebracht werden können. Ich habe mich hierzu schon früher geäussert. Dagegen spricht vor allen Dingen die Tatsache, dass diese Zahnrudimente nach den Untersuchungen Röses und Zuckerkandls an allen Zähnen vorkommen können. Ausserdem sind sie bisher nur im Bereiche der Ersatzzähne gefunden worden. Sie werden daher wohl auch der zweiten Dentition zugehören und nicht dem Milchgebiss, denn es ist kaum anzunehmen, dass diese oberflächlich gelegenen Gebilde den Zahnwechsel mit seinen mannigfachen Störungen würden überstehen können, ohne ausgestossen zu werden. Andererseits ist es aber ebensowenig wahrscheinlich, dass die rudimentären Anlagen es noch zur Bildung einer Ersatzdentition bringen könnten.

Es erhebt sich nun die Frage, da es sich hierbei nicht um Reste der prälaktealen Dentition handelt, ob solche prälaktealen Reste im menschlichen Zahnsystem sonst etwa vorkommen oder beobachtet worden sind. Die Frage ist um so berechtigter, als dieselbe erst kürzlich durch Ahrens zum Gegenstand ausführlicher Erörterungen gemacht worden ist.

Ahrens hat die Entwicklung des menschlichen Gebisses studiert und sein Augenmerk besonders auf die prälaktealen Anlagen und auf eventuelle Verschmelzungen gerichtet. Er hat bei seinen Untersuchungen labial vom Schmelzorgan liegende Fortsätze, Ausbuchtungen und Vorsprünge gefunden, die, wie er meint, nach dem Vorgehen Adloffs zweifellos als prälakteale Anlagen aufgefasst werden müssen. Er fügt hinzu, dass er diese labialen Epithelleisten bei allen Zähnen in grosser Zahl gefunden habe, sowohl bei Milchzähnen und bleibenden Zähnen, als auch bei Molaren und Fronzähnen und namentlich bei letzteren in grosser Anzahl. Er sah aber ferner solche labiale Epithelstränge zum Schmelzorgan ziehen und sich mit diesem vereinigen. Diese Beobachtungen identifiziert er mit meinen Befunden bei Spermophilus. Er hat dann seine Schnittserien rekonstruiert und dabei stellte es sich anscheinend heraus, dass die vermeintlichen

prälaktealen Anlagen nichts anderes waren als Faltenbildungen im Schmelzorgan. Da nun meine Bilder und diejenigen anderer Autoren anscheinend eine gewisse Ähnlichkeit haben mit den seinigen, so kommt er zu dem Schlusse, dass es weder prälakteale Anlagen gibt, noch Verschmelzungen. Letztere sind einfache Faltungen des Schmelzorgans und der Zahnleiste. Und damit fallen auch alle Schlussfolgerungen in sich zusammen, die man aus dem vermeintlichen Nachweis derartiger Verschmelzungen für die Konkreszenztheorie gezogen hat.

Nach meinen Ausführungen über prälakteale Anlagen kann ich mich kurz fassen. Ahrens will etwas beweisen, was noch niemand behauptet hat. Weder ich noch irgend ein anderer Autor hat die von ihm beobachteten und abgebildeten labialen Fortsätze der Zahnleiste resp. des Schmelzorgans als prälakteale Anlagen gedeutet. Das menschliche Gebiss ist nach dieser Richtung hin überhaupt noch nicht systematisch untersucht worden. Mir selbst kam es zunächst nur darauf an, etwaige Reste der verloren gegangenen Prämolaren aufzufinden. Die Befunde sind übrigens auch, wie aus Ahrens, Fig. 1, 2 und 3 hervorgeht, ihrer Natur nach ganz verschiedener Herkunft. In Fig. 1 handelt es sich augenscheinlich um eine Abschnürung des Mundhöhlenepithels. Fig. 2 betrifft ohne Frage eine gelegentliche Hervorwölbung des Schmelzorgans, während die Fig. 3 allerdings ein Bild zeigt, über dessen Natur Zweifel entstehen könnten. Meine Stadien besassen indessen wohl nicht das entsprechende Alter, wenigstens habe ich nichts Ähnliches feststellen können. Die missverständliche Auffassung von Ahrens beruht lediglich auf einer kritiklosen Identifizierung aller dieser Befunde untereinander und mit meinen ihnen nur oberflächlich ähnlich sehenden Abbildungen ohne exakte Nachprüfung, die mit Sicherheit ein ganz anderes Resultat ergeben hätte. Sie beruht ferner auf einer ausserordentlichen Überschätzung der Rekonstruktionsmethode. Es steht ausser Frage. dass dieselbe ein wertvolles Hilfsmittel darstellt, die bisweilen recht komplizierten Beziehungen der einzelnen Zahnanlagen zur Zahnleiste übersichtlich zur Anschauung zu bringen, und es wird jeder, der sich mit dem Studium der Zahnentwicklung beschäftigt, gegebenen Falls die Rekonstruktion zur Anwendung bringen müssen. Aber ihr Wert darf auch nicht überschätzt werden! Ahrens glaubt mit Hilfe seiner Wachsmodelle fest-

gestellt zu haben, dass die angeblichen prälaktealen Anlagen beim Menschen nichts anderes sind, als Faltungen des Schmelzorganes und der Zahnleiste. Ja, ist denn aber nicht jede Zahnanlage im Grunde genommen eine Faltung resp. Einstülpung der Zahnleiste? Sicherlich! Dasselbe gilt aber auch von den prälaktealen Resten. Auch sie werden körperlich in jedem Falle Faltungen der Zahnleiste resp. des Schmelzorganes repräsentieren und dieses um so mehr, als sie infolge ihrer geringen Grösse von vornherein als unbedeutende Anhängsel der Zahnleiste erscheinen. Das zeigen meine Rekonstruktionen, das zeigt auch diejenige der Zahnleiste von Sorex von Arnbäck-Christie-Linde. Über die Natur dieser Gebilde kann uns die Rekonstruktion daher allein niemals Aufschluss liefern, es wird nur die histologische Untersuchung unter Berücksichtigung sämtlicher Nebenumstände ein möglichst sicheres Urteil ermöglichen können. Sprechen aber diese für die prälakteale Natur der fraglichen Befunde, dann ist es selbstverständlich vollkommen gleichgültig, ob dieselben sich in typischer Schmelzkeimform oder nur als Knospen resp. Ausstülpungen der Zahnleiste repräsentieren. Die Existenz prälaktealer Anlagen nur dann als bewiesen anzuerkennen, wenn sie in einwandfreier Schmelzkeimform nachgewiesen werden, wie Ahrens verlangt, ist wohl kaum angängig. Ein derartiges Verfahren würde auch unseren Untersuchungsmethoden ein recht schlechtes Zeugnis ausstellen, wozu nach Lage der Sache gar keine Veranlassung vorliegt.

Es erscheint mir ferner durchaus unberechtigt, aus der Untersuchung nur einer Form, noch dazu einer Form, die aus mannigfachsten Gründen zu diesem Zwecke so ungeeignet ist, wie der Mensch, derartige wichtige allgemeine Schlussfolgerungen zu ziehen, wie Ahrens es tut. Allerdings erklärt er in seiner gegen mich gerichteten Polemik, dass er neuerdings seine Untersuchungen auch auf Kaninchen, Meerschweinchen, Ratte und Schwein ausgedehnt und seine am Menschen gemachten Beobachtungen nur hat bestätigen können. Nun sind aber die drei Nagetiere so hochspezialisierte Formen, dass irgendwelche positiven Ergebnisse von vornherein nicht zu erwarten waren. Was aber Sus anbetrifft, so stehen seine Resultate im Gegensatz zu Bilds und meinen eigenen Ergebnissen, und wie ich schon vorher bemerkte, müsste ihre Unrichtigkeit doch in anderer überzeugenderer Weise

bewiesen werden, als durch eine derartige kategorische Erklärung, die in dieser Form und in dieser Kürze wenig massgeblich ist.

Auf solch einfache Weise ist die Frage der Konkreszenztheorie wohl kaum zu lösen.

Im übrigen beruht ia auch die Konkreszenztheorie nicht allein auf den vorher geschilderten entwicklungsgeschichtlichen Befunden, sondern es liegen auch noch andere Tatsachen vor die derartige Vorgänge bei der stammesgeschichtlichen Entwicklung des Gebisses wahrscheinlich machen. Trotzdem bin ich weit davon entfernt, die ganze Frage etwa als erledigt zu betrachten; gerade die Entwicklungsgeschichte des Gebisses bietet eine Fülle von Problemen, deren restlose Lösung kaum jemals gelingen dürfte und wie auf vielen anderen Gebieten werden wir uns auch hier mit dem wenig tröstlichen "ignorabimus" bescheiden müssen. Immerhin muss jeder Versuch, Licht in das Dunkel zu bringen, mit Freuden begrüsst werden, und in diesem Sinne verdienen auch die Arbeiten Bolks, der sich in letzter Zeit dankenswerterweise viel mit diesem Thema beschäftigt hat, unser grösstes Interesse, wenn auch ihre positiven Ergebnisse zunächst anfechtbar erscheinen. Das gilt auch für den Inhalt seines auf der letzten Anatomen-Versammlung gehaltenen Vortrages über die Struktur des Reptiliengebisses und die Beziehungen desselben zum Säugetiergebiss, der sich gleichfalls mit allen diesen Fragen befasst. Und ich muss von vornherein erklären, dass ich auch dieses Mal den Anschauungen des verdienstvollen Autors leider nicht ganz folgen kann.

Bolk hat zum besseren Verständnis der Ontogenie der Primatenzähne die Entwicklung des Reptiliengebisses studiert und ist dabei zu folgenden Ergebnissen gelangt. Das Kiefergebiss der Reptilien — und allein um dieses handelt es sich hierbei — besteht im ausgebildeten Zustande nur aus einer einzelnen Reihe von Zähnen. Bolk nennt ein derartig einreihiges Gebiss ein monostichisches. Bolk will nun nachgewiesen haben, dass diese Einreihigkeit nur scheinbar ist und dass das Gebiss in Wirklichkeit distichisch ist, d. h. es besteht aus zwei Reihen von Zähnen, einer äusseren Reihe, welche Bolk "Exostichos" und einer inneren Reihe, welche er "Endostichos" nennt. Die Gründe für diese Auffassung entnimmt er aus der Ontogenie.

Untersucht man z. B. den Oberkiefer eines Embryo von Crocodilus auf Frontalschnitten, so findet man, dass die Zahnanlagen sich der Zahnleiste gegenüber verschieden halten, indem einmal sich die Zahnpapille von buccal einstülpt (laterale Anlage), ein andermal sich am freien Rande der Zahnleiste bildet (terminale Anlage). In ihrer Entwicklung ist die erstere Art von Zahnanlagen ein wenig weiter vorgeschritten. Auffallend ist nun, dass beide Arten alternieren, indem auf eine laterale eine terminale, oder — das möchte ich schon hier besonders hervorheben — auf eine weiter entwickelte, eine in der Entwicklung zurückgebliebene folgt.

Bolk kann sich nun nicht der Auffassung anschliessen, wonach die weniger weit entwickelte oder die terminale Anlage der Endostichos nach seiner Terminologie die Ersatzdentition der lateralen Anlagen, der Exostichos ist, sondern er hat festgestellt, dass sich die Anlagen der einen Reihe zwischen zwei solche der anderen Reihe einschieben. Sämtliche Anlagen sind einander gleichwertig und stellen eine erste Generation dar. Dass die Zähne sich später in einer einzigen Reihe finden, ist eine sekundäre Erscheinung. In seiner ersten Anlage stellt somit das Gebiss vom Krokodil nicht ein einreihiges, sondern ein zweireihiges System dar und die Elemente beider Reihen alternieren regelmässig. Das scheinbar monostichische Gebiss dieses Reptils ist aus einer distichen Grundform hervorgegangen. Und die beiden Reihen dieses Systems verhalten sich als eine äussere und eine innere, stellen einen "Exostichos" und einen "Endostichos" dar.

Bolk hat dann weiter den schon früher von Röse gemachten Befund bestätigen können, dass an der Ursprungsstelle der Schmelzleiste eine Reihe kleinster Zähnchen direkt aus dem Mundhöhlenepithel entsteht, die, ohne zur Funktion gelangen, wieder resorbiert werden. Röse hat dieselbe als die erste Zahngeneration gedeutet. Bolk fasst sie als die letzten Reste einer dritten Zahnreihe auf, welche ursprünglich lateral von dem Exostichos verliefen und die er "Parastichos" nennt. Seiner Auffassung nach besteht also das Gebiss vom Krokodil und dasjenige einer Reihe anderer Reptilien bei seiner ersten Anlage aus drei einander parallel verlaufenden Zahnreihen, wovon jedoch die äusserste Reihe — der Parastichos — verschwindet, ohne ihre erste Zahngeneration zu funktionsfähigen Elementen zu entwickeln.

Als Beweis für seine Auffassung bildet dann Bolk noch das prämaxillare Gebiss eines erwachsenen Tupinambis nigropunctatus ab, in welchem regelmässig ein intaktes Zähnchen alterniert mit einem zum Teil zerstörten Zähnchen und dessen Ersatzzahn, und er führt Hatteria an, bei welcher gleichfalls die Zähne in zwei Reihen zur Anlage kommen.

Somit ist bei den Reptilien ein dreireihiges Gebiss vorhanden. Der Parastichos besteht nur aus rudimentären Elementen, welche niemals zur Funktion gelangen und ohne Nachfolger zugrunde gehen. Zwei Reihen treten in Funktion, eine äussere — der Exostichos — und eine innere — der Endostichos —, die Elemente beider Reihen werden bei der Mehrzahl der Reptilien durch nachfolgende Generationen fortwährend ersetzt.

Bolk glaubt nun, dass dieser "Tristichismus" von reptilienartigen Stammformen auf die Säugetiere vererbt ist. Den zwei Zahngenerationen der Säugetiere kommt nicht der Wert von Generationen zu, sondern sie sind identisch mit den zwei Reihen des Reptiliengebisses und zwar das Milchgebiss mit dem Exostichos und das bleibende Gebiss mit dem Endostichos, während das sogenannte prälakteale Gebiss dem Parastichos entspricht.

Während also bei den Säugern die äussere Zahnreihe durch die innere ersetzt wird — es ist ein Reihenwechsel — bleiben bei den Reptilien beide Reihen das ganze Leben hindurch funktionierend und nur die einzelnen Elemente werden ersetzt, es ist ein Elementarwechsel. Somit ist der Diphyodontismusder Säugetiere prinzipiell etwas ganz anderes als der Polyophyodontismus der Reptilien. Die Frage aber, was aus den Zahngenerationen der Reptilien geworden ist, beantwortet Bolk dahin, dass jeder Zahn — Bolk denkt speziell an die Primatenzähne — aus der Konkreszenz zweier Zahngenerationen hervorgegangen ist und zwar ist an jedem Zahn ein Aussenglied und ein Innenglied zu unterscheiden. Jedes von diesen präsentiert eine Generation des Reptiliengebisses.

Die Urform des Säugerzahnes ist aber nicht der einfache Kegelzahn, sondern ein trikonodonter Zahn. Solche trikonodonte Zahne besassen schon die Cynodontia, jene paläontologische Form, welche sich auch in anderen morphologischen Verhältnissen des Schädels den Säugern am meisten nähert.

Der Säugerzahn, insbesondere der Primatenzahn, ist also entstanden zu denken durch Konkreszenz zweier Generationen von trikonodonten Reptilienzähnen. Die Komplizierung jener Zähne in longitudinaler Richtung ist somit von den Reptilien — wo sie durch Differenzierung entstanden ist — auf die Säugetiere vererbt worden, die Komplizierung der Krone in transversaler Richtung ist die Folge der Konkreszenz von zwei Zahngenerationen, wodurch die Entstehung des Säugerzahnes aus dem Reptilienzahn vollendet wurde. Eben durch diese Konkreszenz wurde die Multiplizität der Zahngenerationen unterdrückt und so konnte man sagen: der Polyphyodontismus der Reptilien ist untergegangen in der Kompliziertheit der Zahnkrone der Säuger in transversalem Sinne."

Gegen diese Auffassung habe ich folgende Bedenken geltend zu machen. Zunächst scheint es mir überflüssig und nur geeignet zu sein. Verwirrung herbeizuführen, wenn Bolk einen Unterschied konstruiert zwischen lateralen und terminalen Anlagen. Die lateralen, in ihrer Entwicklung auch etwas vorgeschritteneren Anlagen sind zeitlich älter, während die am freien Ende der Schmelzleiste entstehenden Anlagen jünger sind. Wir können also auch sagen, im Gebiss der Reptilien alterniert eine etwas ältere Anlage mit einer jüngeren. Trotzdem hat Bolk darin aber unbedingt recht, dass letztere nicht etwa dazu bestimmt ist, die erstere zu ersetzen. Das geht schon ohne weiteres daraus hervor, dass auch bei den weiter entwickelten Anlagen ein freies Schmelzleistenende vorhanden ist, was nicht der Fall sein könnte, wenn die jüngere Anlage jene zu ersetzen bestimmt wäre. Die Anlagen sind in der Tat gleichwertig und stellen eine Generation dar, deren Einzelglieder nur ungleich entwickelt sind.

Dagegen kann ich nicht mit Bolk übereinstimmen, wenn er fortfährt: dass die Zähne sich später in einer einzigen Reihe finden, ist eine sekundäre Erscheinung, was ja auch der soeben betonten Gleichwertigkeit direkt widersprechen würde. Ich glaube vielmehr, dass gerade das Alternieren der Zahnanlagen, die verschieden weit vorgeschrittene Entwicklung derselben eine sekundäre Erscheinung ist. Mir scheint, es liegt hier lediglich eine sehr zweckmässige Einrichtung vor. Wären nämlich alle Anlagen stets gleich weit entwickelt, so würde das Tier ja später beim Zahnwechsel mit einem Male sämtlicher Zähne beraubt werden und dem Hungertode preisgegeben sein. Aus diesem Grunde ist immer alternierend ein Zahn in seiner Entwicklung seinen Nachbarn voraus, so dass beim Wechsel stets nur eine Hälfte sämtlicher Zähne ausser Funktion gesetzt ist. Das zeigt ja sehr schön das ab-

gebildete fertige Gebiss von Tupinambis nigropunctatus, dieselbe Erscheinung sehen wir aber auch im Gebiss von Lacerta agilis und dieselben Verhältnisse finden wir schliesslich auch im Zahnsystem der Säugetiere, bei denen der Ersatz der Milchzähne ja auch alternierend vonstatten geht, so dass ein Teil des Gebisses stets funktionsfähig ist.

Wenn dann Bolk ferner sagt, dass er die rudimentären. direkt im Mundhöhlengewebe von der labialen Seite der Schmelzleiste entstehenden Zähnchen nicht als die erste Zahngeneration auffasst, sondern in ihnen die letzten Spuren einer dritten Zahnreihe sieht, so muss ich offen gestehen, dass ich diese Auffassung nicht recht verstehe, um so weniger, als ich schliesslich einen Unterschied zwischen seiner Ansicht und derjenigen der früheren Autoren gar nicht feststellen kann. Nur die Bezeichnung dritte Zahnreihe ist irreführend, da dieselbe hiernach hinter der zweiten. dem Endostichos, rangieren müsste. Das ist aber nicht der Fall. sondern sie liegt lateral von dem Exostichos und stellt somit ein älteres Element der Bezahnung dar. Ob man im übrigen sagen kann, dass diese rudimentären Zähnchen, die niemals zur Funktion gelangen, auch ohne Nachfolger zugrunde gehen, scheint mir nicht so ohne weiteres richtig zu sein. Auch sie stehen in Beziehung zur Schmelzleiste und den nachfolgenden Generationen. Schon bei Selachiern liegen diese ersten Zähnchen, wie Laaser überzeugend nachgewiesen hat, am Übergang vom Mundhöhlenepithel zur Zahnleiste, also an der lateralen Seite derselben. Sie stellen also in Wahrheit die erste Generation dar. Es scheint mir auch jeder sicheren Begründung zu entbehren, wenn Bolk den sogenannten Exostichos und den Endostichos als zwei Reihen bezeichnet, die bei der Mehrzahl der Reptilien durch nachfolgende Generationen fortwährend ersetzt werden, und somit diese beiden Reihen aus den nachfolgenden Generationen gewissermassen heraushebt. Abgesehen davon, dass er sich mit sich selbst zunächst in Widerspruch setzt, indem er S. 61 ausdrücklich hervorhebt, dass sämtliche Anlagen der beiden Reihen einander gleichwertig sind und eine erste Generation darstellen, wäre zunächst zu erwägen, ob man hier überhaupt von Reihen sprechen darf. Als reihenweises Auftreten bezeichnen wir das Auftreten weniger, aber in strenger Reihenfolge aufeinander folgender Zahngenerationen. "Das reihenweise

Auftreten, d. h. die schärfere, zeitliche und räumliche Absonderung der Dentitionen hat sich erst allmählich ausgebildet und zwar als unmittelbare Folge der höheren Differenzierung, der schärferen Sonderung der einzelnen Komponenten des Gebisses" (Leche). Halten wir an dieser Definition fest, so ist es klar, dass auch in diesem Sinne hier von Reihen eigentlich kaum die Rede sein kann.

Meiner Auffassung nach sind die in Frage stehenden Verhältnisse folgendermassen einwandfrei zu deuten.

Wir haben zunächst den sogenannten Parastichos Bolks, der die erste Generation der Reptiliendentition darstellt und sich noch ohne Vermittlung der Zahnleiste am Ausgangspunkt derselben entwickelt; Exostichos und Endostichos bilden die zweite Generation. Die Anlagen dieser Generation sind alternierend ungleichmässig entwickelt, um den Zahnwechsel für das erwachsene Tier alternierend zu gestalten und die Nahrungsaufnahme nicht zu beeinträchtigen. Ihr folgen die weiteren Generationen, alle einander gleichwertig, Produkte derselben einen Zahnleiste.

Akzeptieren wir diese Auffassung, so fallen natürlich auch alle Schlussfolgerungen, die Bolk gezogen hat und für die an und für sich eine ausreichende Begründung nicht vorlag. Es erscheint mir vor allen Dingen sehr gewagt, so zweifelhafte Momente, wie die Lagerung der einzelnen Zahnanlagen und insbesondere die alternierende Stellung der Milch- und der bleibenden Zähne im Säugetiergebiss zur Stütze seiner Hypothese heranzuziehen und derselben besondere Wichtigkeit beizumessen. Bolk nimmt ohne weiteres an, dass das Zusammentreten des Exostichos und Endostichos zu einer Reihe ein sekundär zustande gekommener Zustand ist. Mir scheint es, wie ich schon vorher ausführte, viel natürlicher, gerade das Gegenteil anzunehmen und die Tatsache, dass die Zähne bei Reptilien alternierend gewechselt werden, als eine sekundar erworbene Anpassungserscheinung aufzufassen. Ebenso kann meines Erachtens aber auch die alternierende Stellung der Milch- und bleibenden Zähne bei dem Säugetier lediglich sekundär durch die Raumverhältnisse bedingt sein. Dieses räumliche Alternieren erscheint mir auch von weit geringerer Bedeutung, als das zeitliche Alternieren, die in verschiedenem Tempo erfolgende Entwicklung und Fertigstellung der einzelnen Anlagen des Milchgebisses. Gerade sie, keineswegs die alternierende Stellung der Milch- und

Ersatzzähne ermöglicht ebenso wie bei Reptilien auch bei Säugetieren einen Zahnwechsel, der nicht auf einmal, sondern alternierend resp. successive vonstatten geht. Demgemäss entsprechen auch die einzelnen alternierend aufeinanderfolgenden Anlagen des Exostichos und Endostichos den verschieden weit entwickelten Anlagen des Milchgebisses, also Exostichos + Endostichos = Milchgebiss, während das bleibende Gebiss durch die folgenden Generationen der Reptilien repräsentiert wird. Ebensowenig kann ich auch die ferneren Gründe, die Bolk für seine Ansicht anführt, als stichhaltig anerkennen. Jeden einzigen von ihnen vermag ich durch andere ersetzen, die ebenso treffend für die gegenteilige Auffassung zu sprechen scheinen. Es scheint mir daher auch absolut keine Ursache vorzuliegen, die alte Anschauung aufzugeben. Die drei ersten Zahngenerationen der Reptilien sind überhaupt nicht mit den Dentitionen der Säugetiere zu homologisieren. Diese letzteren entsprechen nicht einem Abschnitte aus der vielreihigen Zahnleiste, sondern der ganzen Zahnleiste der tieferstehenden Wirbeltiere samt ihren vielen Zahnreihen.

Diese Auffassung scheint mir vorläufig noch am natürlichsten zu sein und es liegen bis jetzt auch keine Tatsachen vor, die im Widerspruch mit ihr stehen.

Was nun die von Bolk vertretene Auffassung anbetrifft, nach der die äusseren und inneren Höcker der Säugetierzähne je eine Reptiliengeneration repräsentieren, so möchte ich daran erinnern, dass schon vor Jahren von Schwalbe eine ähnliche Ansicht vertreten worden ist. Auch ich selbst habe mich zu dieser Frage mehrfach geäussert; ich weiche aber auch hierin prinzipiell von Bolk ab. Auch nach meiner Auffassung sind sämtliche Zähne — dies gilt besonders für die Primatenzähne — nur Umwandlungen einer Grundform. Als solche habe ich aber nicht eine trikonodonte, sondern eine trituberkuläre angenommen mit zwei Aussenhöckern und einem Innenhöcker. Es lassen sich hierfür mancherlei Belege anführen, auf die näher einzugehen hier zu weit führen würde. Nur auf einen Punkt möchte ich kurz hinweisen. Ich habe schon an anderer Stelle ausgeführt, dass auch bei den Schneidezähnen des Menschen, insbesondere

des diluvialen Menschen und bei den Anthropoiden diese trituberkuläre Grundform bisweilen noch deutlich in Erscheinung tritt. Mir liegt nun ein Macacus-Schädel vor. in welchem der rechte I₁ in der Tat in drei einzelne Zähnchen zerfallen ist und dieselbe Beobachtung hat kürzlich Hübner bei einem Herero-Schädel gemacht. Ich möchte diesen beiden Befunden gewiss nicht ein besonderes Gewicht beilegen, im Zusammenhange mit den anderen Tatsachen der vergleichenden Anatomie kann ich dieselben aber auch nicht für ganz bedeutunglos halten. Diese trituberkuläre Form wäre dann durch Konkreszenz entstanden. Sie ist ja auch als Ausgangspunkt für fast sämtliche Säugetierzähne angenommen und ihre weitere Entwicklung in die so verschiedenartigen, zum Teil hoch komplizierten Zahngebilde der heutigen Placentalier ist besonders von den amerikanischen Forschern Cope und Osborn nachgewiesen worden. Es geht aber daraus hervor und dieses ist auch von den Anhängern der Konkreszenstheorie stets zugegeben worden, und ich habe es schon früher betont, dass in ihnen auch stammesgeschichtlich selbst erworbenes Material vorhanden ist. Vom trituberkulären Zahn an befinden wir uns also in gewissem Sinne auf gesicherten Bahnen. Dagegen ist die Entstehung des trituberkulären Zahnes aus dem trikonodonten Zahn meines Erachtens nur mit Hilfe der Konkreszenztheorie vorstellbar, während für letzteren die Möglichkeit seiner Entstehung auf dem Wege der Differenzierung¹) zugegeben werden muss. Allerdings liegen heute Befunde vor, die eine Verschmelzung

¹⁾ In seiner Polemik gegen mich wirft mir Ahrens auch besonders vor, dass, während ich bis 1910 angenommen babe, dass zwar der Trituberkularzahn der Säugetiere durch Konkreszenz entstanden sei, bei der Entstehung der komplizierten Zahnformen aber auch Differenzierungsvorgänge mitgespielt haben, für mich heute jede Differenzierung unwahrscheinlich sei. Ich war über diese Behauptung zunächst etwas verblüfft, habe dann aber, als ich daraufhin mein kurzes Referat "Über prälakteale Zahnanlagen" in der Deutschen Medizinischen Wochenschrift noch einmal durchsah, konstatieren müssen, dass ich dort in der Tat dieses gesagt habe. Selbstverständlich handelt es sich aber um einen lapsus calami, den auch Ahrens als solchen hätte erkennen müssen, wenn er nicht allein dieses dürftige Referat, sondern meine ausführlichen Arbeiten gekannt hätte. Ich meinte nicht Differenzierung im allgemeinen, sondern Differenzierung infolge funktioneller Anpassung. Ahrens meint nun weiter, dass man den Begründern der Differenzierungstheorie Unrecht tut, wenn man mit einem derartigen Grunde die Unrichtigkeit ihrer Theorie beweisen will: er nimmt also augenscheinlich an,

auch hintereinander gelegener Zähne viel wahrscheinlicher erscheinen lassen. Einige derselben sind schon vorher erwähnt worden und ich möchte bei dieser Gelegenheit noch auf eine andere Tatsache aufmerksam machen.

Es ist unbestreitbar und in der zahnärztlichen Literatur schon oft hervorgehoben worden, dass das Milchgebiss in besonders hohem Grade zu Verschmelzungen in longitudinaler Richtung neigt, während im bleibenden Gebiss nur äusserst selten derartige Beobachtungen gemacht worden sind. Ich habe dieses auch für Affen bestätigen können; es liegen mir eine Reihe derartiger Verschmelzungen im Milchgebiss derselben vor. Ist dieses nicht sehr bemerkenswert im Hinblick auf die Tatsache, dass das Milchgebiss eine ältere Zahngeneration mit ursprünglichem Gepräge darstellt und sich auch sonst, in vielen Punkten viel primitiver verhält als die bleibende Dentition? Sollte hier nicht eine Reminiszenz vorliegen an frühere Ereignisse der Stammesgeschichte, während die moderne bleibende Reihe jede Erinnerung daran verloren hat?

Zum Schlusse möchte ich noch meiner Überzeugung Ausdruck geben, dass die Cynodontier als Ausgangsform des Säugetiergebisses meines Erachtens nicht in Frage kommen, wenn sie auch sonst in anderen Beziehungen den Säugern sehr nahe stehen mögen. Ihr Gebiss ist viel zu sehr spezialisiert, als dass sich aus ihm die Mannigfaltigkeit des Säugetiergebisses mit seinen zum Teil sehr primitiven Formen hätte herausbilden können. Aber vielleicht sind in ihren Ahnen auch diejenigen der Säugetiere zu suchen.

Nachtrag.

Nach Drucklegung meiner Abhandlung ist eine ausführliche Arbeit von Bolk¹) erschienen, auf die ich wegen der engen Beziehungen zu den vorstehenden Ausführungen, wenn auch nur kurz, eingehen muss. Eine eingehende Stellungnahme zu der dass ich der Urheber dieser Idee bin. Leider muss ich diese Ehre ablehnen! Wenn Ahrens die Osborn schen Arbeiten gelesen hätte, so wäre ihm nicht unbekannt geblieben, dass dieser Einwurf von Poulton stammt und von Osborn selbst besonders anerkannt ist. Die Differenzierungstheorie als solche wird im übrigen durch diesen Einwand selbstverständlich nicht berührt.

¹) Bolk, Prof. Dr. L., Odontologische Studien, I. Die Ontogenie der Primatenzähne, Versuch einer Lösung des Gebissproblems. Jena, Gustav Fischer 1913. wichtigen und inhaltsreichen Publikation behalte ich mir vor. Bolk hat an einem ausserordentlich reichhaltigen, schier beneidenswerten Material eine Untersuchung der Gebissentwicklung der Primaten vorgenommen und ist zu folgenden bemerkenswerten Resultaten gekommen:

Er weist zunächst darauf hin, dass die Zahnanlagen, die als Anschwellungen am freien Rande der "generellen" Zahnleiste (Zahn- oder Schmelzleiste der Autoren) entstehen, mit letzterer noch durch eine zweite Leiste, die sogenannte laterale Schmelzleiste, in Verbindung stehen. Legt schon dieses Vorkommen von zwei Schmelzleisten den Gedanken nahe, dass der Primatenzahn eine Doppelbildung ist, aus einer buccalen und lingualen Komponente zusammengesetzt, so erlangt diese Behauptung festen Grund durch den Nachweis, dass auch das Schmelzorgan durch ein bindegewebiges Septum in zwei Teile, einen buccalen und einen lingualen, geteilt ist, und dass die Bildung der Schmelzpulpa in zwei Zentren stattfindet. Bolk schliesst daraus, dass das Schmelzorgan des Primatenzahnes ein zusammengesetztes Gebilde ist, es besteht aus zwei eng aneinander geschlossenen Einzelorganen, welche jedes mittelst einer eigenen Schmelzleiste mit der generellen Zahnleiste zusammenhängen. Durch Vergleich dieser Beobachtungen mit entsprechenden Bildern bei Reptilien kommt dann Bolk schliesslich zu dem bedeutungsvollen Schluss, dass das Schmelzorgan der Primaten homolog ist mit zwei Schmelzorganen der Reptilien, welche in bucco-lingualer Richtung nebeneinander lagern. Diese zwei Schmelzorgane sind identisch mit zwei Reptilienzähnen, also muss der Primatenzahn aus einer Konkreszenz zweier, zu zwei verschiedenen Generationen gehörigen Reptilienzähnen entstanden sein. Der Säugerzahn im allgemeinen ist also durch Konkreszenz von zwei Reptilienzähnen entstanden, welche einander als eine ältere Generation und eine jüngere verwandt waren, erstere war buccal von der letzteren gelagert.

Jeder Leser wird die Übereinstimmung dieser Schlussfolgerungen mit der von mir soeben vertretenen Auffassung anerkennen müssen. Bolk macht auch sogar auf das von mir auch in dieser Arbeit reproduzierte Bild (Fig. 7 a und b) aufmerksam, das vollständig mit den von ihm gegebenen Abbildungen übereinstimmt und fährt wörtlich weiter fort: "Und merkwürdig ist es, wie nahe der Autor der richtigen Interpretation kommt.

Er kommt auf die Entstehung des Säugerzahnes durch Beteiligung mehrerer Dentitionen von Reptilien zu sprechen und fährt dann folgenderweise fort: "Es sind neuerdings eine Reihe von Untersuchungen veröffentlicht worden, die zum mindesten die Beteiligung mehrerer Dentitionen an dem Aufbau eines Zahnes ausser allen Zweifel zu stellen scheinen. Textfig. 9 (die diesbezügliche Figur in der Adloffschen Arbeit. Ref.) zeigt einen derartigen Befund. Es ist der Schmelzkeim des unteren Prämolaren von Spermophilus leptodactylus. Labial desselben liegt eine der sogenannten prälaktealen Dentition angehörige Anlage, die sich teilweise mit ihm in Verbindung befindet."

Man sieht, die Übereinstimmung mit Bolk ist eine vollständige, bis auf den Ausdruck "prälakteale Dentition".

Und dasselbe ist der Fall mit den von Kükenthal geschilderten Beobachtungen bei der Anlage der Backzähne von Manatus. Bolk sagt hierzu selbst, dass, wenn man in den diesbezüglichen Sätzen von Kükenthal jedesmal statt "prälakteale Zahnleiste" die in dieser Arbeit inaugurierte Bezeichnung laterale Schmelzleiste stellt, sich nicht nur die Beschreibung, sondern auch die auf Grund der Beobachtung gezogene Schlussfolgerung vollkommen deckt. Ob übrigens die Bezeichnung "laterale Schmelzleiste" treffend ist und ob überhaupt die Vorstellung, die sich Bolk von diesen Vorgängen macht, richtig sind, erscheint mir noch zweifelhaft. So leugnet Bolk bekanntlich das Vorkommen freier prälaktealer Anlagen. Da er aber zugibt, dass der von mir Fig. 7 beschriebene, in Verbindung mit der funktionierenden Anlage befindliche prälakteale Rest identisch ist mit seiner lateralen Schmelzleiste, und da ferner die Identität dieses Restes mit der freien prälaktealen Anlage bei dem oberen P (Fig. 5 und 6) unzweifelhaft ist, so scheint mir allein hieraus die Unrichtigkeit der Bolkschen Annahme ohne weiteres hervorzugehen.

Bezüglich der Bedeutung des Ausdrucks "prälakteale Dentition" scheint nun Bolk eine durchaus irrtümliche Ansicht zu hegen, die es vielleicht erklärlich macht, dass er seine Auffassung für vollkommen neu und abweichend von den bisherigen Anschauungen hält. Er scheint nämlich anzunehmen, dass allgemein die prälakteale Dentition als Säugetier-Dentition aufgefasst wird, die die Mammalia als solche noch besessen und im weiteren Verlaufe der Stammesgeschichte verloren haben. Das

ist selbstverständlich ein Irrtum! Diese Anschauung hat meines Wissens nur Leche vertreten, der in dieser Frage ja eine ganz besondere Stellung einnimmt. Ich wenigstens habe von jeher auf dem Standpunkt gestanden, dass die prälakteale Dentition keine Säugetierdentition darstellt, sondern nur ein Besitztum ihrer Vorfahren gewesen ist.

Schon 1905 in einer Polemik gegen Stach, der denselben Irrtum hegte, habe ich meine Auffassung nachdrücklich vertreten. Ich sagte dort 1) wörtlich: "Was nun ferner die prälaktealen Reste anbelangt, so habe ich niemals den Standpunkt vertreten, dass die prälakteale Zahnreihe als Säugetierdentition aufzufassen sei. Im Gegenteil — ich habe stets betont, dass wir es hier nur mit den Überresten von Vorfahrenzahnreihen zu tun haben. Nur die sogenannte Milch- und die permanente Zahnreihe dürfen als echte Säugetierdentitionen angesprochen werden."

Unter diesen Umständen ist wirklich nicht ersichtlich, welcher prinzipielle Unterschied zwischen meiner und der Bolkschen Auffassung vorliegt. Bolk bezeichnet die von mir prälakteale Reste genannten labialen Fortsätze der Schmelzleiste als laterale Schmelzleiste und er folgert weiter, dass der Säugetierzahn aus der Verschmelzung zweier Reptilienzähne, welche einer älteren und einer jüngeren Generation angehören, entstanden ist, während nach meiner Auffassung, wie ich noch Eingangs dieser Arbeit ausgeführt habe, nebeneinander liegende Keime verschiedener Dentitionen zur Bildung eines Zahnes zusammengetreten sein sollen. Der einzige Unterschied ist wohl der, dass Bolk in der lateralen Schmelzleiste einen normalen Bestandteil der Zahnanlage sieht, während ich zwar allgemein den Säugetierzahn als ein Verschmelzungsprodukt auffasse, ein entwicklungsgeschichtliches Sichtbarwerden dieses Vorgangs aber nur unter gewissen Bedingungen angenommen habe.

Auch habe ich es mit Absicht vermieden, von der Konkreszenz zweier Reptilienzähne zu sprechen. Auch in dieser Beziehung huldige ich der alten Auffassung, wonach die beiden Dentitionen der Säugetiere in nuce sämtlichen Zahnreihen ihrer Vorfahren entsprechen. Wenn wir nun die prälakteale Dentition nicht gerade der ersten Zahnreihe derselben gleichsetzen, so ist es

¹) Adloff, P., Zur Entwicklung des Säugetiergebisses. Anat. Anz., XXVI. Bd., Nr. 11 und 12, 1905.

Archiv f. mikr. Anat. Bd. 82. Abt. I.

klar, dass auch in ihr schon das Material mehrerer Reptiliendentitionen — der Begriff Dentition im weitesten Sinne gefasst enthalten sein muss. Im übrigen scheint mir diese Frage auch nur von untergeordneter Bedeutung zu sein.

Während ich aber für die Entstehung des Säugetierzahnes auch eine Verschmelzung in longitudinaler Richtung annehme und hierfür auch, wie mir scheint, einige Gründe beigebracht habe, lehnt Bolk dieses ab und nimmt an, dass derselbe aus der Konkreszenz zweier trikonodonter Zähne verschiedener Dentitionen hervorgegangen ist, die ihrerseits dann durch Differenzierung entstanden sein sollen. Der Urtypus des Primatenzahnes wäre also ein sechshöckeriger Zahn und die heutigen einfacheren Formen wären nicht durch Differenzierung, sondern durch Rückbildung zustande gekommen. Ich habe schon früher ausgeführt, dass ich dieser Ansicht nicht beitreten kann und vielmehr einen durch Konkreszenz entstandenen trituberkulären Zahn als die Urform annehme, und zwar nicht allein für die zusammengesetzten Zähne (Prämolaren, Molaren), sondern auch für die einfacher gebauten Eck- und Schneidezähne.

Ausser Gründen vergleichend-anatomischer Natur bestimmte mich dazu die Tatsache, dass der trituberkuläre Zahn als die Urform sämtlicher Säugetierzähne mit Ausnahme der Multituberkulaten paläontologisch belegt ist und dass die allmähliche Entstehung der komplizierten Zahnformen aus diesem Dreihöckerzahn zum Teil in überzeugendster Weise nachgewiesen ist.

Ebensowenig teile ich die Anschauung Bolks über die Beziehung der Säugetierdentitionen zu den Reptilienzahnreihen, die übrigens auch nicht neu ist, sondern in der alten Baumeschen Theorie vom Scheindiphyodontismus der Säugetiere bereits einen Vorgänger besitzt. Auch hierüber habe ich mich schon vorher auf Grund des von Bolk gehaltenen Vortrages ausführlicher geäussert und meine Bedenken gegen diese Hypothese kurz geltend gemacht. Weiter möchte ich an dieser Stelle diese Frage nicht aufrollen. Dagegen muss ich noch auf einen anderen Punkt näher eingehen, der von besonderer Wichtigkeit ist, weil er in Beziehung steht zu der Hypothese Bolks von der Differenzierung des Primatengebisses.

Die von mir festgestellten und als die letzten Reste der verloren gegangenen Prämolaren beschriebenen rudimentären Schmelz-

keime beim Menschen (Textfig. 1-4 u. Tafelfig. 3 u. 4) betrachtet Bolk überhaupt nicht als Zahnanlagen, sondern hält sie für die Reste einer bei Reptilien vorhandenen Zahndrüsenleiste. Ich lasse es nun ganz dahingestellt sein, ob eine derartige Zahndrüsenleiste bei Säugetieren überhaupt vorkommt und ob insbesondere die von Bolk gefundenen und abgebildeten Gebilde in diesem Sinne zu deuten sind: hierüber werden noch weitere Untersuchungen notwendig sein. Jeder aber, der meine Abbildungen mit denjenigen Bolks vergleicht, wird ohne weiteres zugeben müssen, dass kein einziges der von Bolk gegebenen Bilder mit meinen Mikrophotogrammen übereinstimmt. Eine Ausnahme macht nur die Fig. 52, die einen Schnitt durch die Anlage des ersten oberen Milchmolaren bei Macacus darstellt. Bolk hat also offenbar die von mir gemachten Befunde beim Menschen gar nicht gesehen. sonst hätte er doch wohl unter allen Umständen möglichst identische Bilder zur Reproduktion ausgewählt. Er scheint mir daher auch nicht berechtigt zu sein, ein Urteil über dieselben abzugeben und ich muss meine Deutung voll und ganz aufrecht erhalten.

Die von ihm als rudimentäre Zahndrüsenleiste (Nebenleiste) im Oberkiefer beschriebenen labialen Fortsätze der Schmelzleiste habe ich übrigens auch gesehen, ich halte dieselben aber mit meinen Befunden im Unterkiefer nicht für identisch und habe sie daher auch in diesem Zusammenhange nicht erwähnt.

Bolk motiviert die Publikation seiner Arbeit mit der Bemerkung, dass durch meine jüngste Abhandlung die Anschauung über die Entwicklungsgeschichte unseres Gebisses in falsche Bahnen gelenkt zu werden droht. Und weiter meint er, dass die von ihm mitgeteilten Tatsachen für sich von genügender Beredsamkeit sind, um die hypothetischen Betrachtungen, die Adloff der Ontogenie der Primatenzähne widmet, zu widerlegen. Demgegenüber bin ich doch gezwungen, festzustellen, dass die Arbeit Bolks in ihrem Hauptteil lediglich eine Bestätigung der von mir seit 15 Jahren vertretenen Anschauung über die Entstehung der komplizierten Zahnformen bildet. Ich möchte mit allem Nachdruck betonen, dass Kükenthal und ich bereits 1898 nicht auf Grund hypothetischer Betrachtungen, sondern auf Grund entwicklungsgeschichtlich festgestellter Tatsachen und zwar derselben Tatsachen, die Bolk heute publiziert, den Nachweis geführt haben, welche Bedeutung Verschmelzungsprozessen bei der Entwicklung der heutigen Säugetiere

zukommt. Ich gebe aber ohne weiteres auch zu, dass in meinen verschiedenen Publikationen über dieses Thema vielleicht auch manche hypothetische Annahme mit unterlaufen ist. Ich meine aber, dass Bolk sich nicht der Erkenntnis verschliessen kann, dass der grösste Teil seiner allgemeinen Schlussfolgerungen und insbesondere auch seine Theorie über die Herausdifferenzierung des Gebisses der katarrhinen aus demjenigen der platyrrhinen Primaten Hypothese ist, und zwar reine Hypothese. Aber ist denn eine Erörterung stammesgeschichtlicher Probleme überhaupt denkbar ohne Hypothesen?

Literaturverzeichnis.

- Adloff, P.: Zur Entwicklung des Nagetiergebisses. Jenaische Zeitschrift f. Naturwiss., Bd. XXXII, N. F. XXV, 1898.
- Derselbe: Über das Gebiss von Phocaena communis. Anat. Anz., Bd. XV, 1898.
- Derselbe: Zur Entwicklungsgeschichte des Zahnsystems von Sus scrofa domest. Anat. Anz., XIX. Bd., Nr. 19, 1901.
- Derselbe: Zur Kenntnis des Zahnsystems von Hyrax. Zeitschr. f. Morphol. u. Anthropol., Bd. V, H. 1, 1902.
- Derselbe: Zur Frage der Konkreszenztheorie. Jenaische Zeitschr. f. Naturwiss., XLIII. Bd., 1907.
- Derselbe: Die Differenzierung des Primatengebisses. Zeitschr. f. Morphol. u. Anthropol., Bd. XI, H. 2, 1908.
- Derselbe: Das Gebiss des Menschen und der Anthropomorphen. Vergleichende anatomische Untersuchungen. Zugleich ein Beitrag zur menschlichen Mannesgeschichte, Berlin 1908.
- Derselbe: Über den gegenwärtigen Stand der vergleichenden Morphologie des Zahnsystems der Säugetiere und des Menschen. Ergebn. d. ges. Zahnheilk., 1. Jahrg., H. 1, 1910.
- Derselbe: Über plakoide Zahnanlagen beim Menschen. Anat. Anz., 40. Bd., Nr. 6 und 7, 1911.
- Derselbe: Vererbung und Auslese im Zahnsystem des Menschen. Deutsche Monatsschr. f. Zahnheilk., H. 10, 1911.
- Derselbe: Über die Phylogenese des Primatengebisses und das Zukunftsgebiss des Menschen. Zeitschr. f. Morphol. u. Anthropol., Bd. XIII. H. 3.
- Derselbe: Noch einmal die Bolksche Hypothese und die Differenzierung des Primatengebisses. Ebenda, Bd. XV, H. 2.
- Ahrens, Dr.: Über prälakteale Zahnanlagen. Sitzungsber. d. Ges. f. Morphol. u. Physiol., 1911.
- Derselbe: Zur Frage der prälaktischen Zahnanlage. Anat. Anz., 42. Bd., Nr. 20-21, 1912.

- Arnbäck-Christie-Linde, Augusta: Der Bau der Sorieiden und ihre Beziehungen zu anderen Säugetieren. II. Zur Entwicklungsgeschichte der Zähne. Morphol. Jahrb., Bd. XLIV, Heft 2, 1912.
- Bild, Dr. A.: Die Entwicklungsgeschichte des Zahnsystems bei Sus domestieus und das Verhältnis der Lippenfurchenanlage zur Zahnleiste. Anat. Anz., XX. Bd., Nr. 17, 1902.
- 17. Bluntschli: Diskussionsbemerkung zu dem Vortrage von Heidenhain: Über Zwillings- und Drillingsbildungen der Dünndarmzotten, ein Beitrag zur Teilkörpertheorie. Verh. d. Anat. Ges., 1911.
- Bolk, Prof. Dr., L.: Beiträge zur Affenanatomie. V. Die Differenzierung des Primatengebisses. Petros Camper, D. I., IV, Aufl. 1.2.
- Derselbe: Über die Phylogenese des Primatengebisses und das Zukunftsgebiss des Menschen. Zeitschr. f. Morphol. u. Anthropol., Bd. XIII, H. 1, 1910.
- Derselbe: Über die Gaumenentwicklung und die Bedeutung der oberen Zahnleiste beim Menschen. Ebenda, Bd. XIV, H. 2, 1911.
- Bolk, Prof. Dr. L.: Über die Struktur des Reptiliengebisses und die Beziehung desselben zum Säugetiergebiss. Verh. d. Anat. Ges., 1912.
- Dependorf, Ph.: Zur Entwicklungsgeschichte des Zahnsystems der Marsupialier. Denkschr. d. Mediz.-Naturwiss. Ges., Jena 1898.
- Derselbe: Zur Frage der sogenannten Konkreszenztheorie. Jenaische Zeitschr. f. Naturwiss., 42. Bd., 1907.
- 24. Fuchs, Hugo: Über die Beziehungen zwischen den Teromorphen Copes bezw. den Therapsiden Brooms und den Säugetieren, erörtert auf Grund der Schädelverhältnisse. Zeitschr. f. Morphol. u. Anthropol., Bd. XIV, 1912.
- Laaser, P.: Die Zahnleiste und die ersten Anlagen der Selachier. Inaug, Dissert., Leipzig 1903.
- Leche, Wilhelm: Zur Entwicklungsgeschichte des Zahnsystems der Säugetiere. I. Teil: Ontogenie, Bibliotheca Zoologica, H. 17, Stuttgart 1895. II. Teil: Phylogenie, 1. H.: Die Familie Erinaceidae, Zoologica, H. 37, Stuttgart 1902. II. Teil, 2. H.: Die Familien der Centetidae, Selenodontidae und Chrysochloridae, Zoologica, H. 49, Stuttgart 1907.
- Schwalbe, G.: Über Theorien der Dentition. Anat. Anz., Ergänzungsheft zum IX. Bd., 1894, Verhandlungen.
- Wilson, J. T. und Hill, J. P.: Observations on tooth-development in Ornithorhynchus. The Quarterly Journal of Microscopical Science, 1907.
 Die sonst angeführte ältere Literatur findet sich in den Literatur-

Die sonst angeführte ältere Literatur undet sich in den Literaturverzeichnissen der Nummern 19, 23 und 24.

Erklärung der Abbildungen auf Tafel I und II.

Die mikroskopischen Schnitte sind sämtlich Frontalschnitte durch die Kiefer der betreffenden Embryonen.

- Menschlicher Embryo Stadium I. Im linken Ober- und Unterkiefer auf der lingualen Seite der Zahnleiste (Zl.) plakoide Zahnanlage (Pz.).
 Im Unterkiefer kräftige Papille, im Oberkiefer schwache Verdickung des Mundhöhlenepithels.
- Fig. 2. Die rechte Seite desselben Stadiums. Die plakoide Zahnanlage (Pz.) liegt hier auf der labialen Seite der Zahnleiste. Im Bindegewebe gleichfalls Papillenbildung (P.).
- Fig. 3a und b. Menschlicher Embryo Stadium III. Derselbe Zahn. Der labiale Fortsatz ist stärker ausgebildet und reicht an dieser Stelle besonders tief ins Bindegewebe hinein. Rechts und links.
- Fig. 4a und b. Dasselbe Stadium. Der labiale Fortsatz war flacher geworden und senkt sich hier zum zweiten Male tiefer in das Bindegewebe hinein. Rechts und links.
- Fig. 5. Spermophilus leptodactylus. Neben der Anlage des stiftförmigen Prämolaren im Oberkiefer eine kappenförmig eingestülpte prälakteale Anlage.
- Fig. 6. Einige Schnitte dahinter. Eine zweite kappenförmig eingestülpte prälakteale Anlage labial desselben Zahnes.
- Fig. 7a. Labial des Prämolaren im Unterkiefer ein prälaktealer Rest, der mit dem Schmelzorgan desselben in Verbindung steht. b = Die betreffende Stelle bei stärkerer Vergrösserung.
- Fig. 8a und b. Sus scrofa domest. Jüngeres Stadium. Zahnleiste in der Gegend der Prämolaren rechts und links. Es liegen anscheinend zwei Zahnkeime nebeneinander (vgl. Textfig. 1).
- Fig. 9a und b. Die Zahnleiste einige Schnitte dahinter.
- Fig. 10. Sus scrofa domest. Älteres Stadium. Anlagen der zwei Prämolaren. Labial eine Ausstülpung der Schmelzleiste, die wohl einen prälaktealen Rest repräsentiert.
- Fig. 11. Wachsmodell des oberen stiftförmigen Prämolaren bei Spermophilus mit den beiden prälaktealen Anlagen.
- Fig. 12. Wachsmodell des unteren Prämolaren und der mit diesem in Verbindung stehenden prälaktealen Anlage.
- Fig. 13. Wachsmodell des ersten Milchmolaren beim Menschen mit der sekundären Zahnleiste.

Aus dem Anatomisch-histologischen Laboratorium der Universität St. Petersburg. (Vorstand: Prof. Dr. A. S. Dogiel.)

Zur Frage über den Bau des Zellkernes in den Speicheldrüsen der Larve von Chironomus.

Von W. Faussek

Hierzu Tafel III und IV.

Seit Balbiani im Jahre 1881 zuerst die Struktureigenheiten in den grossen Kernen der Zellen der Speicheldrüsen bei den Larven von Chironomus plumosus beschrieben hat, ist häufig die Frage nach dem Wesen dieses Baues aufgeworfen und sind zahlreiche Ansichten über denselben ausgesprochen worden. Balbiani hatte in den Kernen der erwähnten Zellen bei den Larven von Chironomus ein besonderes zu einem Knäuel aufgerolltes Band oder einen Strang gefunden, der quergestreift war und gleichsam aus zahlreichen hellen und dunklen in Geldrollenform dicht aneinander gelagerten Scheiben bestand. Eine derartige eigenartige Anordnung der Kernelemente, für die scheinbar im Kernbau bei anderen Tieren kein Analogon vorhanden war, erklärte Balbiani folgendermassen: Die dunklen Scheiben bestehen aus Chromatin, die hellen aus einer flüssigen oder halbflüssigen Substanz, wobei die dünne Hülle, welche das Kernband allseitig umgibt, eine Mischung dieser Substanz mit dem Kernsaft verhindert. Später sah man gleichsam in Ergänzung zu der Ansicht von Balbiani die hellen Scheiben für Anhäufungen der achromatischen Substanz an. Die Kernkörperchen und die besonderen körnigen Gebilde in Ringform, die das Kernband an den Stellen, an denen dieses den Kernkörperchen anliegt (die sog. Ringe von Balbiani), bestehen nach Balbiani aus einer besonderen, vom Chromatin verschiedenen Substanz.

Obgleich die Ansicht Balbianis über die Struktur der Kerne bei den Larven von Chironomus von vielen Forschern angenommen worden war, so stimmten dennoch einige seinen Schlüssen nicht bei. So studierte Levdig (1883) recht ausführlich diese Kerne und gelangte zum Schluss, dass die Querstreifung des Kernfadens sich nicht in die Tiefe desselben erstreckt, sondern nur ihre Oberfläche betrifft, dass sie somit der Ausdruck einer ringförmigen Kerbung ist, die bis an die Achse des Fadens nicht heranreicht. Was den Bau der Substanz der hellen und dunklen Scheiben anbetrifft, so sind nach seinen Beobachtungen die dunklen Scheiben in zahlreiche Abschnitte geteilt, welche durch helle Zwischenräume voneinander geschieden werden. Diese erstrecken sich in Gestalt von hellen Streifen durch die helle Scheibe und verschmelzen mit dem entsprechenden Zwischenraum zwischen zwei dunklen Abschnitten der folgenden dunklen Scheibe, infolgedessen der Kernfaden ausser einer Querstreifung ähnlich den quergestreiften Muskelfasern noch eine Längsstreifung besitzt.

Korschelt (1884) stellt den diskoidalen Bau des Kernfadens vollkommen in Abrede und erklärt die Aufeinanderfolge der dunklen und hellen Scheiben durch das Vorhandensein von Querfalten auf der Oberfläche derselben, infolgedessen die Vertiefungen durch den Schatten dunkel, die Erhebungen zwischen ihnen hell erscheinen.

Eine vollkommen neue Erklärung des Baues des Kernfadens hat Herwerden (1910) vorgeschlagen. Nach ihren Beobachtungen besteht der Faden nicht aus einzelnen Scheiben, sondern aus einem spiralförmigen Chromatinbande (das infolge der stärkeren Lichtbrechung dunkel erscheint), das sich um ein helles achromatisches Stroma windet; in den Zwischenräumen zwischen den Schleifen der chromatischen Spirale sind Stromaabschnitte sichtbar, die als helle Scheiben erscheinen.

Erhard (1910) verteidigt die Scheibentheorie des Baues des Kernfadens und hält das Kernkörperchen für eine Chromatinanhäufung, während der Kernfaden seiner Ansicht nach aus einer Substanz besteht, die der Kernkörperchensubstanz in den Kernen anderer Tiere identisch ist. Diese Ansicht gründet sich offenbar auf die Überzeugung, dass die Kernkörperchensubstanz sich scharf vom Chromatin unterscheidet. In letzter Zeit (1912) kehrte Alverdes zur alten Ansicht von Balbiani zurück. Derselben Ansicht ist auch Bolsius (1911), von dem einige Beobachtungen mit den meinigen zusammenfallen, obgleich meine Beobachtungen selbständig gemacht worden sind noch vor Kenntnis der Arbeit von Bolsius. Bereits 1905 hat schliesslich Kulagin die Ansicht

ausgesprochen, dass die Scheiben des Kernfadens bei der Larve von Chironomus nicht aus Chromatin und Achromatin bestehen, wie es Alverdes und Bolsius behaupten, sondern aus Basiund Oxychromatin.

In Anbetracht der mannigfaltigen Beobachtungen und Deutungen der Kernstruktur in den Zellen der Speicheldrüsen der Larve von Chironomus, einer Struktur, die offenbar eine weit über die Grenzen der Ordnung Diptera herausgehende Verbreitung hat, entschloss ich mich auf den Rat meines hochverehrten Lehrers Herrn Prof. Dr. A. S. Dogiel, diese Frage einer Bearbeitung zu unterziehen.

Als Material dienten mir Larven von Chironomus plumosus verschiedenen Alters, meistenteils grössere, ältere Entwicklungsstadien. Larven aus den frühesten Stadien habe ich trotz vielfacher Bemühungen nicht erhalten können. Das Material wurde in dem Gemisch von Flemming oder Lenhossék fixiert, die 5—10 Mikron dicken Schnitte in Phenosafranin und Lichtgrün, in Hämatoxylin nach Heidenhain mit Vorfärbung in Bordeaux und in Phenosafranin und dem Gemische von Blochmann gefärbt. Zwecks Klarstellung der Struktur des Kernkörperchens behandelte ich ausserdem die Präparate mit salpetersaurem Silber nach dem Verfahren von S. R. y Cajal.

Eigene Beobachtungen.

Die das Kernkörperchen und den Kernfaden zusammensetzenden Substanzen.

Die Zellkerne in den Speicheldrüsen bei den Larven von Chironomus unterscheiden sich zunächst scharf durch eine gesonderte Membran; im Kerninnern fallen sofort ein oder zwei Kernkörperchen und einzelne Teilstücke des Kernfadens auf; diese bei einer Dicke der Schnitte bis 15 Mikron in toto zu erhalten, ist infolge der verhältnismässig ungeheuren Grösse der Kerne unmöglich.

Weiter unten will ich ausführlich den feineren Bau des Kernkörperchens und des Fadens besprechen, zunächst werde ich jedoch die sie zusammensetzenden Substanzen in Betracht ziehen. Bei sämtlichen oben angeführten Doppelfärbungen wurde sowohl das Kernkörperchen, als auch der Faden intensiv von der basischen Farbe — Phenosafranin — und von indifferenten Farben

— Hämatoxylin nach Heidenhain, Hämatoxylin nach Böhmer tingiert. Das Kernkörperchen wird gewöhnlich, besonders von Hämatoxylin nach Heidenhain, diffus gefärbt, und gibt fast keine Farbe bei der Extraktion mit Eisenalaun ab: der Kernfaden wird desgleichen total gefärbt, sein Aufbau aus Scheiben tritt jedoch deutlich hervor, infolge der verschiedenen Lichtbrechung der ihn zusammensetzenden Scheiben. Nach einer längeren Extraktion macht sich eine Farbendifferenzierung geltend: elektiv sind nur die dunklen Scheiben gefärbt, die Zwischenscheiben sind diffus gefärbt, geben die Farbe leicht ab und offenbaren eine elektive Fähigkeit für die Ergänzungsfarbe — d. h. saure Farbe — Lichtgrün, Bordeaux u. a. Bei länger dauernder Extraktion wird die basische Farbe vollkommen extrahiert und der ganze Faden wird nur von der Ergänzungsfarbe gefärbt. Der Nucleolus behält in diesen Fällen gewöhnlich die Färbung mit der basischen Farbe. welches Verhalten, wie weiter unten gezeigt werden soll, durchaus nicht von einer Differenz seines chemischen Bestandes von derjenigen des Fadens bedingt wird, sondern von dem quantitativen Verhältnis der ihn zusammensetzenden Substanzen.

Die Färbung der Speicheldrüsenzellen von Chironomus mit Phenosafranin und dem Gemische von Blochmann gibt sehr interessante Resultate, infolge einer feineren Differenzierung der Elemente im Vergleich mit anderen Färbungen. Das mit Phenosafranin gefärbte Kernkörperchen erscheint feinkörnig, wobei zu erkennen ist, dass seine periphere Schicht aus einer homogenen Substanz besteht, in welcher Körner eingeschlossen sind, wodurch die glatte Oberfläche des Kernkörperchens erklärt wird (Fig. 1, a). Bei längerdauernder Extraktion der Farbe, sowie bei einer Färbung der Präparate mit salpetersaurem Silber habe ich mich überzeugen können, dass das Kernkörperchen aus zwei Teilen besteht (Fig. 2), einem inneren kompakteren, aus basophiler Substanz bestehenden (Basichromatin), und einem äusseren, die basophile Substanz allseitig umgebenden, aus oxyphiler Substanz bestehenden (Oxychromatin); in der letzteren sind dermassen viele Körner basophiler Substanz eingeschlossen, dass das Oxychromatin durch dieselben vollkommen verdeckt wird. Die Färbung in salpetersaurem Silber mit schwacher Nachfärbung in Lichtgrün gibt dieselben Resultate: der innere Teil des Kernkörperchens wird ungemein intensiv durchweg imprägniert, während die äussere

Schicht von dieser zentralen Masse sehr scharf geschieden ist, da in ihr nur die einzelnen, feinen Körner (Fig. 3) imprägniert sind, welche vollkommen den Körnern, die sich in Phenosafranin färben, entsprechen; die übrige homogene Substanz, in welche alle diese Körner eingeschlossen sind, wird mit Silber nicht tingiert und färbt sich mit Lichtgrün.

Bei Anwendung der erwähnten Färbungsverfahren kann nachgewiesen werden, dass auch der Faden, gleich dem Kernkörperchen, aus zwei Substanzen besteht, einer oxyphilen, die sich mit Lichtgrün, Bordeaux und anderen sauren Farben und aus basophilen Körnern (Fig. 1, b, b; Fig. 4), die sich mit basischen Farben und teilweise mit salpetersaurem Silber tingieren. Erstere setzt offenbar die ganze Masse, den ganzen Faden zusammen. die zweiten (die basophilen Körner) sind in Scheiben angeordnet. wobei die dunkleren Scheiben mit den erwähnten Körnern angefüllt sind, während die Zwischenscheiben dieselben fast nicht enthalten, woher denn auch eine Differenzierung der Scheiben erhalten wird. Die äussere Schicht des Kernkörperchens und die Grundmasse des Kernfadens bestehen aus oxyphiler Substanz. während der innere Teil des Kernkörperchens und die in den dunklen Scheiben des Fadens eingeschlossenen Körner aus basophiler Substanz aufgebaut sind. Im Kernkörperchen prävaliert quantitativ die basophile Substanz, in dem Faden eher die oxyphile. welches Verhalten die Unterschiede in der Färbung des Kernkörperchens und des Fadens bedingt. Die Färbung mit salpetersaurem Silber beweist zweifellos, dass die Substanz des Kernkörperchens auch in dem Faden in Form von Körnern verstreut ist. Daraus folgt jedoch, dass die Ansicht von Erhard, als setze eine besondere Substanz des Kernkörperchens den Faden zusammen, während das Kernkörperchen selber aus Chromatin besteht. nicht richtig ist, tatsächlich ist in den Zellkernen der Speicheldrüsen von Chironomus keine nur dem Kernkörperchen eigene Substanz vorhanden, da sowohl das Kernkörperchen als der Faden aus denselben Substanzen - der basophilen und oxyphilen - aufgebaut sind.

Der Bau des Kernfadens.

Die Scheiben, welche den Kernfaden zusammensetzen, sind, worauf bereits Balbiani hingewiesen hat, sowohl ihrer Form als ihrer Grösse nach bei weitem nicht gleich. Als Regel muss anerkannt

werden, dass der Durchmesser der dunklen, stark lichtbrechenden Scheiben, welche basophile Substanz enthalten, grösser ist als derjenige der hellen Zwischenscheiben. In der Mehrzahl der Fälle haben die letzteren nicht das Aussehen von selbständigen. d. h. eine eigene Form besitzenden Scheiben, sondern erscheinen als Zwischenräume zwischen zwei dunklen Scheiben, infolgedessen ihr Aussenrand häufig konkav ist, während die Ränder der dunklen Scheiben gleichmässig oder sogar leicht konvex sind. Die Ränder der dunklen Scheiben sind häufig leicht spiralig eingebogen (Fig. 4), welches Verhalten, vielleicht Herwerden die Veranlassung gegeben hat zur erwähnten Deutung der Struktur des Kernfadens; man kann sich jedoch leicht davon überzeugen. dass hier keine eigentliche spiralige Struktur vorhanden ist, da bei Drehung der Mikrometerschraube keine Fortsetzung der vermeintlichen Chromatinspirale auf der entgegengesetzten Seite des Fadenzylinders wahrgenommen wird, sondern die dunklen Scheiben überall von vollständigen Scheiben der hellen Substanz getrennt bleiben. Auf dieses Verhalten weist hinreichend deutlich auch Bolsius. Herwerden nimmt an, dass die dunklen Scheiben tatsächlich nicht vollständig sind, sondern die Form von Spiralringen haben, d. h. dass das Chromatin an der Peripherie des Zylinders gelegen ist. Tatsächlich ist dieses jedoch nicht der Fall, da die Doppelfärbungen mit Hämatoxylin nach Heidenhain und Bordeaux oder nach Blochmann erweisen, dass die basophile Substanz entweder durchweg die ganze Scheibe einnimmt, oder näher zum Zentrum der Scheibe angeordnet ist; niemals erscheint jedoch die Scheibe in der Mitte vom Zylinder der oxyphilen Substanz (Achromatin von Herwerden) durchsetzt. Das salpetersaure Silber färbt in den Scheiben des Kernfadens zweierlei Arten Körner: grosse kegelförmige und zahlreiche sehr kleine, die vollkommen identisch mit den argentophilen Körnern in der peripheren (oxyphilen) Schicht des Kernkörperchens sind. Zwischen den grossen und kleinen Körnern sind noch der Grösse nach Übergangsformen vorhanden. Die grösseren Körner sind meist von mehr oder weniger gleicher Grösse, einige derselben sind jedoch bedeutend grösser und erreichen bisweilen einen derartigen Umfang, dass sie den Eindruck von kleinen Nucleolen machen (Fig. 5, b). Letztere entstehen meiner Meinung nach durch Quellung kleinerer Körner in der Fixierungsflüssigkeit. Die

argentophilen Körner sind in Scheiben angeordnet, wobei die grösseren Körner häufiger näher zur zentralen Achse des Fadens liegen, wenngleich sie bisweilen auch die Peripherie desselben erreichen und häufig dermassen dicht beieinander gelegen sind. dass sie eine kompakte Scheibe von körnigem Aussehen bilden (Fig. 5, a). Einige dieser grossen Körner sind bisweilen dicht an der Peripherie des Fadens angeordnet, treten sogar aus ihr heraus. wandern gleichsam in den Kernsaft aus. Diese Erscheinung habe ich auch in den lebenden, ungefärbten Kernen beobachten können. in welchen die grossen argentophilen Körner infolge ihrer starken Lichtbrechung fast ebensogut wie in den gefärbten Präparaten sichtbar sind (Fig. 6, ac). Die grossen argentophilen Körner sind jedoch nur in relativ wenigen, dunklen Scheiben vorhanden. Fernerhin sind sie nicht immer in den Scheiben angeordnet: einige werden in den Zwischenscheiben angetroffen; die grössten Körner können natürlich nicht in einer Scheibe allein gelagert sein, sondern liegen in der oxyphilen Substanz. Besonders zahlreich sind diese im oxyphilen Zylinder verstreuten Körner in den leicht verbreiterten Enden des Fadens, welche unmittelbar der Kernhülle anliegen. Die kleinen argentophilen Körner sind viel zahlreicher als die grossen und sind näher zur Peripherie des Fadens gelagert, gewöhnlich um Anhäufungen grosser Körner, wobei sie die Zwischenräume zwischen letzteren dicht ausfüllen, infolgedessen die aus Körnern bestehenden Scheiben kompakt erscheinen. Die kleinen Körner bilden auch an den Stellen des Fadens, wo grosse Körner fehlen (Fig. 5. cc) scheibenförmige Anhäufungen. wobei jede dieser Anhäufungen bei der genaueren Betrachtung aus zwei äusserst dünnen, eng beieinander liegenden Scheiben besteht, die durch eine feine Schicht von Zwischensubstanz getrennt werden.

Auf den mit Phenosafranin und dem Gemisch von Blochmann gefärbten Präparaten werden desgleichen kleine basophile Körner (Fig. 1, b, Fig. 4) dargestellt, die ihrem allgemeinen Aussehen und ihrer scheibenförmigen Anordnung nach den beschriebenen argentophilen Körnern gleichen. Ich bin der Meinung, dass die sich mit Silber und basischen Farben tingierenden Körner vollkommen identisch sind, d. h. aus basophiler Substanz bestehen, die in den Bestand der dunklen Scheiben eingeht. Schwieriger wird eine differenzierte Färbung der grossen argentophilen Körner

erhalten. Nach dem Virieren der mit salpetersaurem Silber gefärbten Schnitte mit Goldchlorid färben sich diese Körner gut mit Hämatoxylin, ebenso wie die basophile Substanz des Nucleolus und des Fadens. Auf den nach Blochmann gefärbten Präparaten erscheinen einige rote (basophile) Scheiben aus einzelnen dicht beieinander liegenden Körperchen zusammengesetzt. Wird schliesslich das Phenosafranin sehr stark extrahiert, und werden die Schnitte nur kurze Zeit im Gemisch von Blochmann gehalten. so gibt die basophile Substanz die Farbe vollkommen ab, worauf in dem Kernfaden ungefärbte, jedoch stark lichtbrechende Körperchen (Fig. 7, a) sichtbar werden. Letztere haben entweder das Aussehen von grossen Körnern, die sich ihrer Form und Anordnung nach nicht von den mit Silber färbbaren unterscheiden. oder erscheinen als rundliche, seitlich leicht komprimierte Gebilde. die stets in dem Kernfaden eingelagert sind (Fig. 7, b. Fig. 8). Diese Gebilde stellen möglicherweise eine dritte Reihe von Anhäufungen basophiler Substanz dar. Sie färben sich sehr intensiv in Phenosafranin. Ein jedes derartige, seiner Zusammensetzung nach homogene, basophile Körperchen ist an der Peripherie von der oxyphilen Substanz des Fadens umgeben, mit den in ihr eingeschlossenen kleinen, basophilen Körnern. Auf Querschnitten scheinen somit einige Scheiben aus einer zentralen basophilen Scheibe und einer peripheren oxyphilen Hülle zu bestehen: die gleichen Bilder werden auch auf Präparaten erhalten, die mit Hämatoxylin nach Heidenhain und Bordeaux gefärbt worden waren; dieselben stimmen durchaus nicht überein mit der Theorie von Herwerden. Die basophile, in den dunklen Scheiben des Fadens konzentrierte Substanz ist somit tatsächlich nicht homogen. sondern ist in der Form von dreierlei Arten selbständiger Gebilde von Körnerform vorhanden.

Kernkörperchen. In der überwiegenden Mehrzahl der Fälle ist im Kern nur ein Nucleolus vorhanden. Kerne mit zwei Kernkörperchen, wie sie Balbiani beschreibt, werden verhältnismässig selten angetroffen und stellen offenbar spätere Entwicklungsstadien der Kernstruktur dar. Nach den Beobachtungen von Alverdes teilt sich das einzige Kernkörperchen in einem gewissen Entwicklungsstadium des Kernes in zwei. Diese Beobachtung erklärt vollkommen die Tatsache des Vorhandenseins bald eines, bald zweier Kernkörperchen in den Kernen der Speichel-

drüsenzellen von Chironomuslarven. Der Nucleolus hat selten eine regelmässige Kugelform, viel häufiger ist er an den Polen abgeplattet und im Zentrum durchlocht, stellt sich somit in Form eines Ringes dar (Fig. 7, A, Fig. 9 und 10), dessen Querschnitt ein mehr oder weniger regelmässiger Kreis ist. Durch die Öffnung dieses Ringes erstreckt sich der Kernfaden, worauf bereits Herwerden hingewiesen hat. Sehr häufig werden, wie ich bemerkt habe, beide Hälften des Ringes entsprechend dem grössten Durchmesser des von ihm gebildeten Kreises durch eine Querbrücke (Fig. 9 und 10) verbunden, die die Öffnung des Ringes in zwei Teile teilt. Diese Querbrücke steht in einem gewissen Zusammenhange mit der Substanz des Kernfadens, den zu eruieren jedoch sehr schwierig ist. Am häufigsten verläuft augenscheinlich die Brücke seitwärts von dem Faden (Fig. 9), wobei sie möglicherweise mit der basophilen Substanz derjenigen Scheibe des Fadens in Verbindung tritt, an der Seite welcher sie vorbeizieht. Bisweilen bohrt sie sich in das Innere des Fadens selber ein, wobei sie diesen in zwei parallele Aste teilt, die bald wieder miteinander verschmelzen; häufig wenigstens kann man die Beobachtung machen, dass auf Frontalschnitten durch das ringförmige Kernkörperchen nicht ein, sondern zwei dicht beieinander gelegene Fäden heraustreten. In der Seitenansicht haben derartige ringförmige Kernkörperchen das Aussehen zweier runder Lappen, die durch einen feinen Stiel miteinander verbunden sind (Fig. 10), wobei beide Lappen seitwärts an dem Kernfaden hängen. Ein derartiges Bild ist leicht an lebenden Kernen zu erkennen. Herwerden bildet einen gleichen Bau des Kernkörperchens in ihrer Arbeit ab, die von ihr gegebene Erklärung ist jedoch nicht richtig, da sie nichts von der Brücke des Nucleolus erwähnt. Bisweilen übrigens sind an lebenden Kernen zwei lappige Kernkörperchen mit einer Brücke sichtbar, die auch bei der Betrachtung im optischen Querschnitt das zweilappige Aussehen beibehalten. folglich tatsächlich aus zwei Teilen bestehen. In diesen Fällen ist, wie ich auf Präparaten, die in salpetersaurem Silber gefärbt worden waren, erkennen konnte, der ringförmige Bau des Nucleolus stark verändert: das Kernkörperchen besteht aus zwei grossen Lappen, die durch zwei Brücken verbunden werden; durch die ovale Offnung zwischen diesen tritt der Faden hindurch. Bisweilen kann das Kernkörperchen, wie mir scheint, auch aus

einem Lappen bestehen, der vermittelst seiner bügelförmigen Brücken seitwärts an dem Faden wie ein Ohrgehänge hängt. Ein derartiges Bild weist die Fig. 6 auf.

Wie bereits oben angeführt wurde, so besteht das Kernkörperchen aus zwei Substanzen: der basophilen und der oxyphilen. wobei letztere in Form einer kompakten Schicht an der Peripherie gelegen ist. Diese äussere Schicht ist von der inneren scharf geschieden; die scharfe Grenze ist bisweilen auch auf lebenden ungefärbten Präparaten gut sichtbar. Die innere Masse des Kernkörperchens, die zahlreiche Vacuolen enthält, erscheint dunkler, glänzender, anisotrop; die äussere Schicht ist lockerer und in frisch den Larven entnommenen Drüsen von der Innenschicht durch eine sehr scharfe Linie getrennt: diese scharfe Grenze ist jedoch an lebenden Kernen nicht lange sichtbar, augenscheinlich infolge eines Zerfalls der oxyphilen Substanz der äusseren Schicht im Kernsafte; damit lässt sich vielleicht auch der Umstand erklären. dass bisher noch niemand den doppelten Bau des Kernkörperchens, der bereits deutlich in lebenden Kernen wahrnehmbar ist, beschrieben hat. Der Bau des Fadens, auf den hauptsächlich die Aufmerksamkeit der Forscher gelenkt war, ist zunächst im Kern vollkommen unkenntlich, worauf bereits Balbiani hingewiesen hat; er tritt erst 15-20 Minuten nach der Herausnahme der Drüse aus dem Körper der Larve hervor, d. h. zu einer Zeit, wann die äussere Schicht des Kernkörperchens bereits nicht mehr deutlich sichtbar ist. Die Dicke der äusseren Schicht ist mehr oder weniger gleichmässig auf der ganzen Oberfläche des Kernkörperchens. Sie erscheint körnig infolge zahlreicher in sie eingeschlossener basophiler Körnchen sowie kleiner Vacuolen. Die innere basophile Substanz, die die Hauptmasse des Nucleolus bildet, enthält keine oxyphile Substanz, sondern zahlreiche Vacuolen, die augenscheinlich mit Flüssigkeit angefüllt sind. (Die Beobachtungen von Herwerden sprechen desgleichen zugunsten eines flüssigen Inhalts der Vacuolen.) Die Masse der basophilen Substanz im Nucleolus erscheint nicht immer in Form eines geschlossenen Ringes; sehr häufig, besonders in grossen Kernkörperchen, zerfällt sie in einzelne Teile oder Lappen (Fig. 3), die in der oxyphilen Substanz liegen. Von diesen Teilen ziehen feine Brücken oder Leisten, die gewöhnlich aus einer Reihe runder Körner der basophilen Substanz bestehen und die einzelnen Lappen miteinander

vereinigen (Fig. 3, c). Diese Brücken können sowohl durch die Dicke des Kernkörperchens selber verlaufen, als auch durch die runde Offnung in ihm; die oben beschriebene Brücke innerhalb des Kernkörperchenringes stellt desgleichen eine derartige Brücke basophiler Substanz dar. - Gewöhnlich hängen diese nach verschiedenen Richtungen verlaufenden Brücken mit dem Faden, und zwar mit seiner basophilen Substanz zusammen, doch ist dieser Zusammenhang kein sehr fester. Eine Verzweigung des Kernfadens im Kernkörperchen, wie sie Balbiani beschreibt, kommt. soviel ich habe wahrnehmen können, nicht vor. Falls eine derartige Verzweigung vorhanden ist, so ist dieselbe recht schwer, auf Totalpräparaten sogar unmöglich zu eruieren, da mit dem Kernkörperchen nur die innere basophile Substanz des Fadens verbunden ist, ihre Oberfläche im Kernkörperchenringe bleibt jedoch überall frei: nur bisweilen liegt der Faden mit einer Seite der Innenfläche des Kernkörperchens dicht an.

Die Lininelemente des Kernes. Ausser dem Kernfaden und dem Kernkörperchen sind im Kern noch Achromatin-(Linin-)elemente in Form von Fäden, die den Kernfaden und den Nucleolus mit der Kernmembran verbinden, vorhanden. Die Lininfäden sind auf den lebenden Kernen nicht sichtbar, während sie auf den fixierten Präparaten nach jeglicher Färbung deutlich hervortreten; sie färben sich stets sehr blass - mit gewöhnlichem Hämatoxylin, Lichtgrün, Bordeaux oder Wasserblau - und sind meistens nur an ihrem matten Glanze zu erkennen; sie verlaufen, indem sie sich nicht selten teilen und gewöhnlich winden, von der Kernmembran, an die sie sich befestigen, bis zum Kernfaden und dem Kernkörperchen; bisweilen ist ihre Zahl dermassen gross. dass das Kernkörperchen und die Abschnitte des Kernfadens an einer Menge parallel verlaufender oder radiär auseinanderziehender, sich miteinander verflechtender, stark gespannter Stränge zu hängen scheinen (Fig. 1, cc). Levdig beschreibt derartige Fäden, die vom Kernkörperchen ausgehen, als radiäre Fortsätze seiner Oberfläche; seine Zeichnung beweist jedoch, dass diese Fortsätze die hier beschriebenen Lininfäden sind. Indem sie sich miteinander verflechten, bilden sie eine Art von Netz. in dessen Strängen zahlreiche Körner von unregelmässiger Form eingelagert sind. Diese Körner bestehen zum Teil aus basophiler Substanz, da sie sich schwach mit Safranin und ziemlich intensiv

mit Hämatoxylin nach Heidenhain färben; die grössere Anzahl derselben offenbart jedoch Affinität für saure Farben, d. h. besteht aus oxyphiler Substanz. Diese Körnchen sind die Chromiolen, von denen Erhard, Herwerden und Alverdes berichten.

Hinsichtlich der Verbindungsweise der Lininfäden an den Kernfaden kann ich mit der einfachsten Erklärung von Alverdes mich nicht einverstanden erklären, dass dieselben nämlich unmittelbar in die Substanz der hellen Zwischenscheiben übergehen. da diese Scheiben meiner Beobachtung nach nicht aus Linin, sondern aus oxyphiler Substanz bestehen. Wahrscheinlicher scheint mir die Annahme von Balbiani von der Existenz einer feinen. strukturlosen Membran, die den Kernfaden in ihrer Gesamtausdehnung einhüllt. (Balbiani stellt jedoch kategorisch das Vorhandensein irgendwelcher Lininelemente, ausser der angegebenen Membran und den hellen Scheiben, in den Kernen der Speicheldrüsen von Chironomuslarven in Abrede.) Eine derartige feine Membran ist nach meinen Beobachtungen vorhanden, an dieselbe heften sich die Lininfäden an. Bei der Färbung mit Hämatoxylin nach Heidenhain oder nach Blochmann erscheint der Kernfaden im optischen Durchschnitt auf seiner ganzen Länge beiderseits von einer feinen, einfach konturierten Linie umgeben (Fig. 1, d), die stellenweise der Substanz des aus Scheiben zusammengesetzten Zylinders dicht anliegt, stellenweise jedoch etwas abgelöst ist. Bei der Färbung nach Blochmann tritt diese Begrenzungslinie besonders deutlich hervor, da sie gleich den Fäden und der Kernmembran sich mit Wasserblau hellblau färbt, während die oxyphile Substanz durch Pikrinsäure gelblichgrün tingiert wird. An den Stellen der Membran des Kernfadens. an denen an dieselbe die Achromatinfäden herantreten, wird sie infolge der Anspannung durch letztere wellig. Der Kernfaden ist somit gleichsam in einem feinen Überzuge gelegen, der an zahlreichen Lininfädchen aufgehängt ist. Dieser Überzug besteht aus einer geschlossenen Membran, was an den Rißstellen der chromatischen Fadensubstanz sichtbar ist, da in derartigen Fällen das Stück nicht in zwei Teile zerfällt, sondern durch die gespannte, feine strukturlose Membran, die als Fortsetzung des umhüllten Zylinders erscheint, zusammengehalten wird - ein Bild, das an das Sarcolemm der quergestreiften Muskelfaser erinnert. Die Schrumpfung

dieser strukturlosen Membran durch Einwirkung der fixierenden Flüssigkeiten bedingt eine Längsstreifung des Kernfadens, die bisweilen beobachtet wird, und die Leydig für Längsfibrillen gehalten hat. Bisweilen endigt der Faden blind im Kern, ohne bis an die Membran zu gelangen, in welchem Falle von ihrem Ende ein Bündel Achromatinfäden abgeht; auch diese Lininfäden entspringen von der blind endigenden Hülle des Chromatinfadens. Die Befestigungsweise des letzteren an die Kernmembran ist für mich unaufgeklärt geblieben, augenscheinlich gibt auch hier die achromatische Membran des Kernfadens, die blind endigt, zahlreiche fadenförmige Fortsätze ab, die längs der Innenfläche der Kernmembran hinziehen und schliesslich mit ihr verschmelzen.

In den Kernen einiger anderer Zellen der Chironomuslarve, z. B. in den Zellkernen des Darmepithels, welche gleiche Chromatinfäden besitzen wie die Kerne der Speicheldrüsenzellen, sowie nach den Beobachtungen von Alverdes in frühen Entwicklungsstadien der Zellkerne in den Speicheldrüsen derselben Larven, nimmt das Linin augenscheinlich viel grösseren Anteil an der Bildung des Chromatinfadens, indem es unmittelbar in seinen Bestand eingeht. In einzelnen sehr grossen, fast stets vollkommen runden, bisweilen ovalen Kernen der Darmepithelzellen ist ein vollkommen ausgebildeter, in einen Knäuel aufgewundener Chromatinfaden vorhanden, der sich seinem Aussehen nach durchaus nicht von demjenigen der Speicheldrüsen unterscheidet. In der Mitte des von dem Faden gebildeten Knäuels liegt ein grosses Kernkörperchen (in der Mehrzahl der Fälle ist ein Kernkörperchen vorhanden, bisweilen zwei nebeneinander gelegene, oder an die Kernpole abgerückte). Das Kernkörperchen ist kuglig oder an den Polen etwas abgeplattet, häufig von unregelmässiger Form. niemals jedoch zweilappig. Es enthält glänzende Vacuolen; bei der Färbung nach Blochmann offenbart es einen Bestand aus einer zentralen basophilen und einer peripheren oxyphilen Substanz: letztere ist dermassen dünn, dass sie als schmaler Saum erscheint. der von der inneren basophilen Kernkörperchenmasse nicht scharf geschieden ist; letztere enthält zahlreiche sich in Safranin färbende Körnchen. Die Kernkörperchen der Darmepithelzellen werden durch salpetersaures Silber sehr intensiv tingiert, wobei sie einen Bestand aus recht grossen argentophilen Körnern offenbaren

(Fig. 11, C, D). Bisweilen ist das Kernkörperchen der Epithelzellen stark verlängert, wobei es eine vollkommen unregelmässige Form annimmt und parallel der Fläche des Kernäquators angeordnet ist. Die Scheiben der Chromatinfäden dieser Zellen sind nicht so regelmässig wie in den Speicheldrüsen. Sie sind relativ dicker, eckiger, während die hellen Zwischenräume zwischen ihnen im Vergleich zu denjenigen in den Kernen der Speicheldrüsenzellen bedeutend breiter sind und eine dermassen geringe Menge basophiler Elemente enthalten, dass sie sich sehr schwach färben und sich nicht scharf von dem umgebenden Kernsaft abheben, der von sauren Farben (z. B. von Lichtgrün) schwach tingiert wird. Infolgedessen erscheint der Chromatinfaden in den Kernen der Darmzellen nicht kontinuierlich, d. h. die Scheiben scheinen durch die Zwischensubstanz nicht miteinander verbunden zu sein, sondern frei im Kernsaft zu liegen und bloss in Form eines farbigen Bandes angeordnet zu sein. Die Färbung nach Blochmann beweist jedoch, dass auch hier ein echter Chromatinfaden vorliegt, der aus hellen und dunklen Scheiben besteht. Ausserdem besteht jede basophile Scheibe bloss aus einem Stück, infolgedessen der Kernfaden der feinen Körnelung entbehrt. die in den Scheiben der Kerne in den Speicheldrüsenzellen sichtbar ist. Die Kerne der Darmepithelzellen sind somit ärmer an basophiler Substanz; in den Bestand ihrer Zwischenscheiben geht möglicherweise nicht nur oxyphile Substanz, sondern auch Linin ein.

Die kleineren Kerne im Darme haben eine runde oder häufiger ovale Form. Der Chromatinfaden ist in ihnen gewöhnlich in Form eines dichten Knäuels um das Kernkörperchen angeordnet. In anderen desgleichen kleinen und stets runden Kernen ist ein echter Kernfaden nicht mehr sichtbar. Hier liegt im Zentrum ein grosses Kernkörperchen, das von einem schwach gefärbten achromatischen Bande umgeben ist, auf welchem einzelne basophile, schwach gefärbte, unregelmässige Körner aufliegen; zahlreiche basophile Körner liegen der Innenfläche der Kernmembran an. Als erstes Entwicklungsstadium dieser Kerne muss augenscheinlich dasjenige anerkannt werden, in welchem aus dem im Zentrum des Kernes gelegenen Kernkörperchen zur Kernmembran dicke, infolge ihres schwachen Glanzes gut wahrnehmbare, vollkommen gerade, radiäre Lininfäden abgehen; von der basophilen Substanz

ist in diesem Stadium nur sehr wenig vorhanden; sie erscheint hier in Form von feinen Körnern, die an der Innenfläche des Sämtliche Differenzierungsstadien der Kernes verstreut sind. Kernsubstanzen, von denen einige auf der Fig. 11 sichtbar sind, werden im Darm, besonders im Mitteldarm, häufig in benachbarten Zellen angetroffen; sie erinnern sehr an die Entwicklungsstadien des Chromatinfadens, die Alverdes für die Kerne der Zellen in den Speicheldrüsen junger Chironomuslarven beschrieben hat. Hier wird er nach den Beobachtungen von Alverdes aus einzelnen basophilen (und oxyphilen?) Körnern gebildet, die in Verbindung mit dem achromatischen Netze treten: dieses wandelt sich allmählich in ein um das Kernkörperchen gewundenes Netz um und wird mit der Kernmembran nur durch einzelne Fäden verbunden. Indem sich die basophilen Körner vergrössern, nehmen sie die Form von Scheiben an. In den Zellkernen des Darmepithels gehen dieselben Umwandlungen vor sich, nur mit dem Unterschiede, dass die Differenzierung der Kernelemente früher Halt macht auf einer niedereren Entwicklungsstufe als in den Kernen der Speicheldrüsenzellen. Schwieriger ist die Frage zu entscheiden, auf welche Weise die Zwischenräume zwischen den basophilen Scheiben mit der oxyphilen Substanz angefüllt werden: infolge ihrer relativ geringen Grösse erschweren die Kerne der Darmepithelzellen das Studium dieser Beziehungen.

An den sogen, Balbianischen Ringen habe ich nur sehr wenige Beobachtungen machen können, da sie eine relativ seltene Erscheinung sind und durchaus nicht einen notwendigen Bestandteil eines jeden Kernes der Speicheldrüsenzellen darstellen; der von Balbiani beschriebene, für typisch gehaltene Kern ist somit nur ein mehr oder weniger häufig vorkommender Spezialfall. Erhard vermerkt desgleichen das seltene Vorkommen der Ringe von Balbiani. Die Angabe von Erhard über das Vorkommen von Balbianischen Doppelringen kann ich desgleichen bestätigen; ein derartiger Ring besteht aus zwei einander mehr oder weniger genäherten Ringen, die den Zylinder des Chromatinfadens nahe der Stelle seines Herantretens an das Kernkörperchen umgeben. Ein jeder Balbianische Ring besteht aus zahlreichen recht grossen, kugelförmigen Körnern; diese letzteren bestehen meiner Meinung nach aus oxyphiler Substanz, da sie von Lichtgrün intensiv gefärbt werden.

Die Chromatinfäden in anderen Zellen der Chironomuslarve und bei einigen anderen Dipteren.

Ausser den Zellen der Speicheldrüsen und des Darmepithels enthalten noch Zellen vieler anderer Organe der Chironomuslarve Kerne mit mehr oder weniger entwickelten Kernfäden. Zunächst finden sich derartige Kerne in den Zellen der Malpighischen Gefässe, worauf bereits Balbiani hingewiesen hat. Die Zellkerne der Malpighischen Gefässe sind verhältnismässig gross, von runder Form. Das Kernkörperchen ist in ihnen gewöhnlich in der Einzahl vorhanden, ist sehr gross, gewöhnlich kugelförmig oder an den Polen leicht abgeplattet, bisweilen wird auch ein ringförmiges mit einer Brücke im Lumen wie in den Kernen der Speicheldrüsenzellen angetroffen. Der Chromatinfaden ist in diesen Kernen stärker entwickelt als in den Zellen des Darmepithels, während die Scheiben hier das Aussehen von grossen eckigen Körnern haben. Zwischen den Hypodermzellen werden einzelne sehr grosse Drüsenzellen angetroffen, die später in die Leibeshöhle ausfallen; die grossen Kerne dieser Zellen haben einen ausgezeichnet entwickelten Chromatinfaden. Die Nervenzellen sind überhaupt arm an basophilen Elementen; bisweilen jedoch kommen, am häufigsten zwischen den Zellen des unteren Schlundganglions, einzelne, sehr seltene Kerne vor, die um das Mehrfache die benachbarten Nervenzellen an Grösse übertreffen; in diesen grossen Kernen sind desgleichen gut entwickelte Chromatinfäden vorhanden.

Hinsichtlich des Vorkommens eines Chromatinfadens bei anderen Tieren, sind gegenwärtig bereits genügende Hinweise darauf vorhanden, dass die beschriebene Kernstruktur weit über die Grenzen der Art Chironomus verbreitet ist. Leydig, Carnoy, Henneguy, R. Hertwig und Van Gehuchten haben einen Chromatinfaden bei Larven vieler anderer Diptera, sowie bei erwachsenen Formen verschiedener Arthropoda und sogar in den Eizellen einiger Amphibien (Carnoy et Lebrun) beschrieben; Baranetzky und Strassburger haben ähnliche Kerne auch bei Pflanzen beobachtet.

Ich hatte die Möglichkeit, die Kernstruktur ausser an Chironomuslarven auch noch an Larven einiger Culicidae zu untersuchen. Bei den Larven einer Art Culex, die ich im See Seliger gefunden habe, sind Kerne mit Chromatinfäden nicht nur in den Speicheldrüsen (in letzteren hat dieselben R. Hertwig aufgefunden), sondern auch in allen Zellen des Darmepithels, sowie in fast sämtlichen Körperzellen. Bei dieser Larve ist der Entwicklungsgrad des Kernfadens in Zellen, die nicht dem Verdauungssystem angehören, z. B. in den Zellen des Fettkörpers, grösser als in den entsprechenden Zellen der Chironomuslarve, doch erreicht der Kernfaden auch in den Speicheldrüsenzellen nicht den komplizierten Bau wie in den Speicheldrüsenzellen der Chironomuslarve; bei der Larve von Culex ist somit die Kerndifferenzierung einförmiger. Hinreichend entwickelte Kernfaden fand ich desgleichen in den Darmepithelzellen der Larven von Corethra.

Die Tatsache der relativ weiten Verbreitung der Chromatinfäden in den Zellkernen von Insekten und anderen Tieren zwingt. diese Kerne nicht als einzeln dastehende Erscheinung anzusehen. sondern als einen der allgemeinen Typen der Kernstruktur. Der Versuch, diesen Typus auf einen Spezialfall eines allgemeinen Typus zurückzuführen, nämlich der Versuch von Carnoy und Herwerden, die Struktur der Kerne in den Speicheldrüsenzellen von Chironomuslarven mit dem Zustande des Kernes von mehr allgemeiner Struktur vor Beginn der Kernteilung, d. h. mit der sog. Spiremstruktur des Kernes zu homologisieren, hat sich als misslungen erwiesen, bereits aus dem Grunde, dass die am meisten differenzierten Fäden in Kernen sich vorfinden, die ihre Entwicklung und ihren Wuchs bereits beendet haben und sich nicht mehr teilen. Herwerden behauptet selber, dass im Verlauf des ganzen Lebens der Larve nicht eine Speicheldrüsenzelle sich teilt; diese Behauptung kann ich bestätigen, da ich keinmal eine Teilungsfigur einer Speicheldrüsenzelle angetroffen habe.

Sämtliche Speicheldrüsenzellen werden augenscheinlich im Laufe der embryonalen Entwicklung gebildet; ihre Teilung erfolgt somit zu einer Zeit, wann ein Chromatinfaden noch nicht vorhanden ist oder sich in einem embryonalen Zustande vorfindet; vom Moment des Austritts der Larve aus dem Ei beschränkt sich die weitere Entwicklung der Speicheldrüsen auf ein verstärktes Wachstum ihrer Zellen; im Zusammenhang damit erfolgt auch eine Differenzierung der Kernelemente. Dasselbe Verhalten weisen auch die Darmepithelzellen auf — hier teilen sich offenbar nur die jüngsten, kleinsten Kerne, die noch keinen Faden haben,

welcher erst später gebildet wird. Ich bin daher der Meinung, dass die indirekte Teilung sämtlicher beschriebener Kerne der Chironomuslarve sich in nichts von der gewöhnlichen Teilung unterscheidet, und dass der Chromatinfaden in keinerlei Zusammenhang mit der Karyokinese steht. Andererseits ist es fast zweifellos, dass der Entwicklungsgrad des Kernfadens in Zusammenhang steht mit der Grösse und folglich auch mit dem Alter des Fadens. Die schönsten Kernfäden sind in den Kernen der Speicheldrüsen vorhanden, d. h. in den grössten Kernen im Körper der Chironomuslarve. Im Darm, den Malpighischen Gefässen und den Nervenzellen wird dasselbe beobachtet: die am meisten entwickelten Chromatinfäden sind in den grössten Kernen vorhanden.

Die Chromatinfadenstruktur der Kernelemente steht, wie es mir scheint, auch in einem gewissen Zusammenhang mit der sekretorischen Tätigkeit der Zelle. Zugunsten dieser Ansicht spricht der Umstand, dass Kerne mit Chromatinfäden am häufigsten in Drüsenzellen angetroffen werden. (Speicheldrüsen, Malpighische Gefässe, Darmepithelzellen, deren sekretorische Funktion desgleichen eine sehr beträchtliche ist, in Berücksichtigung der zahlreichen Einschlüsse — bei der Chironomuslarve krystallinischer, die sich in Hämatoxylin nach Heidenhain, nach der Fixierung in Flemmings Gemisch, färben und das Protoplasma dieser Zellen besonders in der Umgebung des Kernes anfüllen.) In den Speicheldrüsenzellen erlangen die Chromatinfäden ihre grösste Entwicklung.

Herrn Professor Dr. A. S. Dogiel, der mich während meiner Arbeit beraten hat, sowie seinen Herren Assistenten spreche ich meinen ergebensten Dank aus.

Nachtrag.

Vor einiger Zeit erschien im "Archiv für Zellforschung" (Bd. 9, I. Heft 1912) eine wichtige Arbeit von F. Alverdes; die vorläufige Mitteilung derselben habe ich schon oben mehrmals zitiert. Die jetzige Arbeit von Alverdes erschien, als die meinige schon beendet war. Der Streit zwischen der Spiraltheorie von Herwerden und der alten Scheibentheorie scheint jetzt, nach den Untersuchungen von Alverdes, völlig entschieden zu sein, da Alverdes zeigte, dass in gewissen Stadien ihrer Entwicklung die Kerne der Speicheldrüsenzellen eine

spiralige Struktur des Chromatinfadens haben, die sich später in eine scheibenartige verwandelt. Die chromatische Spirale ist doppelt, besteht also aus zwei um einen achromatischen Zylinder spiralig gewundenen Fäden. Ich habe im Kerne einer der Drüsenzelle, die aus dem Hypoderm entstehen und welche ich später noch näher zu studieren hoffe, eine doppelte Chromatinspirale gesehen, welche völlig den von Alverdes beschriebenen entspricht. Im übrigen stimmen die Befunde von Alverdes nicht immer mit den meinigen überein. So verteidigt Alverdes seine frühere Ansicht, dass die dunklen Scheiben aus Chromatin und die hellen - aus Achromatin bestehen, und beschreibt sogar in den hellen Scheiben ein achromatisches Netz. Meiner Meinung nach kann dieses Netz nichts anderes als Faltungen der achromatischen Hülle sein, die, nach meinen Beobachtungen, den ganzen Kernfaden der Länge nach umhüllt, während nach Alverdes eine derartige Hülle gar nicht vorhanden ist. Er identifiziert das von ihm beschriebene Netz der achromatischen Scheiben mit der Längsstreifung des Kernfadens, welche Leydig verteidigte und welche, nach meiner Meinung, auch nur ein Zufall der Faltung der peripherischen Hülle ist. Sehr interessant ist endlich der Befund der amitotischen Teilung der Kerne in den Speicheldrüsenzellen, die Alverdes gefunden hat. Die Tatsache, dass die Kerne. welche Kernfäden enthalten, sich amitotisch, und nicht mitotisch, teilen, scheint mir gegen eine Identifizierung der Struktur des Kernfadens mit dem Spiremstadium der Karvokinese zu sprechen.

Literaturverzeichnis.

- Alverdes, Fr.: Die Entwicklung des Kernfadens in der Speicheldrüse der Chironomuslarve. Zoolog. Anz., Bd. XXXIX, I, 1912.
- Balbiani, E. G.: Sur la structure du noyau des cellules salivaires chez les larves de Chironomus. Zoolog. Anz., Bd. IV, 1881.
- Bolsius, H.: Sur la structure spiralée ou discoïde de l'élément chromatique dans les glandes salivaires des larves de Chironomus. La Cellule, T. XXVII, 1911.
- Erhard, H.: Über den Aufbau der Speicheldrüsenkerne der Chironomuslarve. Arch. f. mikr. Anat., Bd. 76, I, 1910.
- Herwerden, M. A. van: Über die Kernstruktur in den Speicheldrüsen der Chironomuslarve. Anat. Anz., Bd. XXXVI, 1910.
- Dieselbe: Über den Kernfaden und den Nucleolus in den Speicheldrüsenkernen der Chironomuslarve. Anat. Anz., Bd. XXXVIII, 1911.
- Korschelt, Eugen: Über die eigentümlichen Bildungen in den Zellkernen der Speicheldrüsen von Chironomus plumosus. Zoolog. Anz., Bd. VII, 1889.
- K u l a g i n , N.: Zur Frage über die Struktur der Zellkerne der Speicheldrüsen und des Magens bei Chironomus. Zeitschr. f. wiss. Insektenbiologie, Bd. I, 1905.
- Leydig, Fr.: Untersuchungen zur Anatomie und Histologie der Tiere. Bonn 1883.

Erklärung der Abbildungen auf Tafel III und IV.

- Fig. 1. Zellkern einer Speicheldrüsenzelle von einer Chironomuslarve, Färbung mit Phenosafranin und dem Gemisch von Blochmann. Reichert hom. Immers. 1/12, Oc. 4.
 - a = Nucleolus, in ihm sind zahlreiche basophile Körnchen sichtbar, eingeschlossen in eine Schicht oxyphiler Substanz, die nur am Rande wahrnehmbar ist; bbb = Teile des Kernfadens, in dessen Scheiben basophile Körner sichtbar sind; c = Querschnitt der Kette, auf welchem der Bestand der Scheibe aus einer inneren körnigen Masse basophiler Substanz und einem peripheren oxyphilen Saum sichtbar ist; dd = Lininfäden; e = strukturlose Membran, die den Kernfaden umhüllt.
- Fig. 2. Nucleolus aus einer Speicheldrüsenzelle einer Chironomuslarve. Färbung mit Safranin und dem Gemisch von Blochmann. Reichert, hom. Immers. 1/12, Oc. 4.
 - a = innere basophile Substanz (in ihr sind Vacuolen sichtbar);
 b = periphere Schicht oxyphiler Substanz.

Fig. 3 Nucleolus aus einer Speicheldrüsenzelle einer Chironomuslarve aus einem Präparat, das mit salpetersaurem Silber nach R. y Cajal gefärbt worden war. Reichert, hom. Immers. 1/12, Oc. 4.

A = Ansicht des Kernkörperchens von der Oberfläche; B = Dasselbe Kernkörperchen auf einem benachbarten Schnitt im Längsschnitt; aa = Teile des inneren Abschnittes des Kernkörperchens, die aus argentophiler Substanz bestehen; b = periphere (oxyphile) Schicht des Kernkörperchens mit eingeschlossenen zahlreichen argentophilen Körnern; cc = Brücken, die die inneren Teile des Kernkörperchens verbinden; d = Kernfaden, der in den Nucleolus eintritt.

Fig. 4. Teil des Kernfadens aus einem Präparat, das mit Phenosafranin und dem Gemisch von Blochmann gefärbt worden ist. Reichert, hom. Immers. 1/12, Oc. 4.

> aa = dunkle Scheiben; bb = helle Scheiben; c = dunkle Scheiben, deren Ränder leicht umgebogen sind, was den Anschein einer Spiralstruktur hervorruft; dd = basophile in den dunklen Scheiben eingeschlossene Körner.

Fig. 5. Teile des Kernfadens aus einem Präparat, das mit salpetersaurem Silber und Lichtgrün gefärbt war.

> aa = grosse argentophile Körner, welche die Scheiben bilden; b = gleiche infolge Quellung in der Fixierungsflüssigkeit besonders grosse Körner; cc = kleine argentophile Körner.

Fig. 6. Lebender ungefärbter Kern aus einer Speicheldrüsenzelle einer Chironomuslarve. Reichert, Obj. 7, Oc. 4.

> Im Kern ist ein Teil des Kernfadens mit stark lichtbrechenden Körnern (aa) sichtbar. b = Balbianischer Ring; c = Kernkörperchen mit zwei Brücken e und d, die einen Ring bilden; f = Kernmembran.

Fig. 7. Nucleolus und Teile des Kernfadens aus dem Kern einer Speicheldrüsenzelle einer Chironomuslarve. Das Präparat ist mit Phenosafranin und dem Gemisch von Blochmann gefärbt, wobei jedoch fast sämtliches Phenosafranin extrahiert ist. Reichert, hom. Immers. 1,12, Oc. 4.

A = ringförmiger Nucleolus, durch dessen Öffnung der Kernfaden hindurchtritt; a = basophile (ungefärbte) Körner in dem Kernfaden. B = Teil des Kernfadens mit stark lichtbrechenden basophilen Körnern und scheibenförmigen Körpern (b).

Fig. 8. Teil des Kernfadens aus einem mit Phenosafranin und dem Gemisch von Blochmann gefärbten Präparate. Reichert, hom. Immers. ¹/₁₂, Oc. 4; in dem Faden sind basophile Körner und scheibenförmige Körper sichtbar.

Fig. 9. Ringförmiges Kernkörperchen aus einer Speicheldrüsenzelle einer Chironomuslarve, gefärbt mit salpetersaurem Silber. Reichert, hom. Immers. 1/12, Oc. 4.

> a = Brücke, die beide Ringhälften verbindet, seitlich von ihr verläuft der Faden.

a = Brücke, die beide Ringhälften verbindet; in der Öffnung zwischen diesen verläuft der Kernfaden (b).

Fig. 11. Verschiedene Kerne aus Epithelzellen des Mitteldarmes einer Chironomuslarve. Reichert, hom. Immers. 1/12. Oc. 4.

A = Kern mit zwei Kernkörperchen und einem vollkommen entwickelten Kernfaden, gefärbt mit Phenosafranin und Lichtgrün. B = Kern in einem früheren Stadium: im Zentrum des Kernes liegt das Kernkörperchen, das mit der Kernmembran durch achromatische Fäden verbunden ist, um die sich basophile Körner ansammeln. Färbung mit Phenosafranin und dem Gemisch von Blochmann. C = kleiner Kern auf einem noch früheren Entwicklungsstadium, gefärbt mit salpetersaurem Silber und Lichtgrün. Im Kernkörperchen sind argentophile Körner sichtbar; dasselbe ist mit der Kernmembran durch Achromatinfäden verbunden. D = ein isoliertes Kernkörperchen aus dem Kern einer Darmepithelzelle. Färbung mit salpetersaurem Silber. Das Kernkörperchen besteht aus zwei Teilen, einem inneren argentophilen und einer äusseren durch Silber schwach tingierten Schicht.

Aus dem Anatomischen Institut in Strassburg.

Über physiologische Pigmentablagerung in den Kapillarendothelien des Knochenmarks.

Von Hans Brass.

X. Fortsetzung der Studien über das Blut und die blutbildenden und -zerstörenden Organe.

Von Franz Weidenreich.

Hierzu Tafel V.

Die Frage nach dem Bau der Blutkapillaren ist trotz zahlreicher Untersuchungen noch nicht in allen Einzelheiten gelöst, noch weniger aber besteht eine klare und einheitliche Auffassung von der Funktion der Kapillarendothelzellen. Vielleicht ist es auch nicht möglich, eine Erklärung der Endothelfunktion in eine allgemein gültige Formel zu fassen. Da nämlich die verschiedenen Kapillarbezirke Abweichungen in ihrem Bau aufweisen, so scheint der Gedanke berechtigt, dass diesen histologischen Differenzen auch funktionelle Eigentümlichkeiten der Endothelzellen entsprechen könnten. Worin dieselben bestehen, entzieht sich aber in der allergrössten Mehrheit der Fälle unserer Kenntnis. Man weiss ganz allgemeinhin — um nur einige Beispiele zu geben, — dass kleine Partikelchen, die durch die Kapillarwand hindurchgelangen, nicht durch vorgebildete Stomata, sondern durch Lücken, die jedesmal durch Auseinanderweichen der Endothelzellen entstehen, durchtreten, ja es lässt sich auch eine aktive Beteiligung der Endothelien dabei denken, aber gerade diese entbehrt eines allgemein anerkannten histologischen Nachweises. Man hat ferner nach den Untersuchungen von R. Heidenhain über Lymphbildung annehmen wollen, dass die Kapillarendothelien sekretorisch, also nach Art von Drüsenzellen, tätig sein könnten; der histologische Beweis steht aber aus. Anhäufungen von Pigment in Endothelien verschiedener Organe sind bei pathologischen Zuständen häufig genug beobachtet worden; sie erlauben jedoch nur Schlüsse auf krankhafte Verhältnisse, und es wäre daher von Wichtigkeit,

wenn sich auch die physiologische Tätigkeit von Kapillarendothelien mikroskopisch nachweisen liesse. Die Möglichkeit hierzu gewährt die Untersuchung der Knochenmarkskapillaren von Säugern, deren auch in normalem Zustand vorhandener Pigmentgehalt einiges Licht auf die Endothelfunktion zu werfen vermag.

Literatur.

Bei der Beurteilung der in der Literatur immerhin nicht selten erwähnten Pigmentbefunde im Knochenmark ist zu unterscheiden zwischen experimentell hervorgerufenen, in pathologischen Fällen beobachteten und als physiologisch erkannten Pigmentationen. Bei den ersteren handelt es sich grösstenteils um Ablagerungen von Farbstoffen oder Metallsalzen, sodann aber auch um Anhäufung von Blutpigment bei experimentell erzeugter Hämatolyse oder Plethora. Ponfick und Hoffmann u. Langerhans waren die ersten, die sich mit der Frage nach dem Verbleib von injizierten Farbstoffen im Organismus ausführlicher beschäftigten, nachdem zuvor schon Hover und v. Recklinghausen das Vorkommen von Zinnober im Knochenmark nach Injektionen beschrieben hatten. Sowohl Ponfick als auch Hoffmann und Langerhans fanden die Zinnoberkörnchen unter anderm im Knochenmark in Zellen abgelagert, die Ponfick als Markzellen des lymphoiden Gewebes bezeichnet, während die beiden anderen Autoren drei Zellarten, nämlich eine intravasculär und zwei extravasculär gelegene, unterscheiden. Freie Zinnoberkörnchen wurden nicht gefunden. Ahnliche Resultate erhielt Siebel nach Indigoeinspritzungen. Die Körnchen waren stets an Zellen gebunden, die ursprünglich dem Blute angehörig, schon nach zwei Stunden extravasculär lagen und nur als Pulpazellen imponierten: zum grossen Teil wurde der Farbstoff aber auch in grossen, zwischen den weiten Venen liegenden Rundzellen abgelagert, die nebenbei noch anderes Pigment oder rote Blutkörperchen enthalten konnten. Welcher Art dieses andere Pigment ist, setzt Siebel nicht auseinander. Glaevecke spritzte Kaninchen Eisensalze ein und fand zwar im Knochenmark Eisenpigment innerhalb von Zellen. die er nicht näher beschreibt; aber er betont gleichzeitig, dass er dasselbe Bild bei einem normalen Kaninchen gefunden habe. so dass die Injektion von Eisensalzen auf den normalen Eisengehalt des Knochenmarks ohne Einfluss sei. Mit dem Nachweis

von eisenhaltigem Pigment beschäftigte sich vor allem Quincke (80), welcher nach Bluttransfusion bei Hunden in den Markzellen des Knochenmarks und in geringerer Menge auch innerhalb der blutführenden Räume dieses Organs eisenhaltige Körner fand. die "sowohl durch diese Reaktion als auch oft durch Form und Grösse ihre Abstammung von roten Blutkörpern dokumentieren". Die Markzellen, soweit sie Pigment führen, hält der Autor übrigens für vielleicht identisch mit weissen Blutkörperchen. Im Gegensatz zu dem Ergebnis der Transfusion verschwanden die Pigmentkörner nach Entziehung grösserer Blutmengen (83). Nach direkter Injektion von Eisensalzen fand Lipski, ähnlich wie Glaevecke, ein Pigment, das die Eisenreaktion gab und einerseits in den Markzellen des Knochenmarks, andererseits ausserhalb derselben in der Umgebung von Riesenzellen und Gefässen abgelagert war. Da er den Knochenmarkskapillaren eigne Wandungen abspricht, vermutet er, dass das Eisen zum Teil in den Markzellen, zum Teil zwischen denselben stecken bleibt. Unter einem gemeinsamen Gesichtspunkt sind die Arbeiten von Minkowski und Naunyn. Löwit, Biondi und Heinz zu betrachten, wenn auch die Versuche an ganz verschiedenartigen Tieren und in verschiedener Absicht ausgeführt wurden. Sie alle aber führten durch Blutgifte eine Hämatolyse herbei und erhoben ziemlich übereinstimmende Befunde. Auf die Resultate dieser Arbeiten werde ich zum Teil noch im geeigneten Zusammenhange zurückzukommen haben; hier sei nur erwähnt, dass die Autoren durchweg nach Vergiftung ihrer Versuchstiere (Frösche, Vögel, Hunde, Katzen, Kaninchen) mit Phenylhydrazin, Toluylendiamin, Arsenwasserstoff und ähnlichen blutzerstörenden Giften im Knochenmark hämosiderinhaltige Zellen fanden, über deren morphologischen Charakter sie sich nur kurz äussern. Während Minkowski und Naunyn in ihnen farblose Blutkörperchen sehen, beschreibt sie Biondi als "siderofere Zellen gleich denen der Lymphdrüsen, der Milz und der Leber und denen, die bisweilen in den Kapillaren und den Lymphscheiden der Gefässe vorkommen". Wichtiger ist der kurze Bericht von Cousin, weil er sich direkt und ausschliesslich mit der Untersuchung über die Ablagerung injizierter Stoffe im Knochenmark befasst. Seine Versuchstiere waren Reptilien, Vögel. Kaninchen, Meerschweinchen und Hunde, und zu seinen Injektionen benutzte er u. a. ammoniakalisches Karmin, eine Mischung

von Karminpulver und Bacillus subtilis-Bouillion und Lackmusblau ("tournesolbleu"). Wesentlich ist, dass Cousin ausdrücklich die Kapillarendothelien des Knochenmarks als diejenigen Zellen bezeichnet, in denen er bei den nach kurzer Zeit oder einigen Tagen getöteten Tieren seine injizierten Stoffe wieder nachweisen konnte, während all die früher genannten Autoren - nur Biondi spricht einmal kurz von einer diffusen Färbung um die Kapillaren herum - Markzellen als den Sitz des Pigments erwähnen, wenn sie überhaupt nähere Angaben machen. Bei Cousins Experimenten also fanden sich entlang den Kapillaren kleine Züge, deren Färbung jedesmal den eingespritzten Substanzen entsprach; das Endothel wies Zellen mit schwarzen oder blauen Granulationen auf. Nach tiefen Injektionen von Lackmusblau fanden sich bei verschiedenen Tieren rötliche Züge entlang den Kapillaren und rötliche Granulationen in den Endothelzellen, die sich bei Einwirkung von Ammoniakdämpfen blau färbten. Auf die Schlüsse, die der Autor daraus zieht, einzugehen, ist noch später Gelegenheit. In bezug auf seine Injektionen von Bakterien erklärt er, dass sich diese in den Endothelzellen nie hätten nachweisen lassen. Ribbert widmet dem Knochenmarksbefund nach Injektionen von Lithionkarmin einige beachtenswerte Bemerkungen und instruktive Zeichnungen, aus denen eine genaue Übereinstimmung mit Cousins Befunden hervorgeht. Er fand im Knochenmark, und zwar in den Kapillarendothelien, ausgedehnte Karminabscheidung in Gestalt von intensiv roten Körnern, die die quergetroffenen Lumina ringsum und die längsgetroffenen auf beiden Seiten umgaben, vor allem um den Kern der Endothelzellen gelegen waren und nach deren Ausläufern zu abnahmen. Goldmann, der mit Trypanblau, Pyrrholblau und Isanaminblau bei Ratten und Mäusen vitale Färbung erzielte, berichtet, dass er im Knochenmark nur bei den Endothelzellen Erfolg sah, und betont ebenso wie Ribbert, dass die Endothelien anderer Gefässe mit gewissen geringen Ausnahmen sich völlig ablehnend gegen vitale Färbung verhielten.

Dass sich bei einer Anzahl von Krankheiten, wie z. B. der perniziösen Anämie, allenthalben im Körper, also auch im Knochenmark, Ablagerung von exogenem oder endogenem Pigment findet, ist bekannt; ich beschränke mich daher darauf, kurz einiger Arbeiten zu gedenken, die speziell auf das Knochenmark als Ablagerungsstätte solcher Pigmente hinweisen. Da ist hauptsächlich Peters zu nennen, der nachwies, dass bei marastischen Individuen, bei Granularatrophie der Nieren und bei Kindern mit Darmkatarrh Pigmentkörnchen im Knochenmark auftreten. Quincke (80) fügt noch einen Fall von Diabetes mellitus mit Siderosis hinzu, und Lipski erwähnt die Resultate von Peters, ohne eigne Beobachtungen hinzuzufügen.

In einem anderen Lichte erscheinen diese Untersuchungen durch die Tatsache, dass auch schon bei ganz normalen Tieren und Menschen das Vorkommen von Pigment im Knochenmark bewiesen ist. Der erste, der darauf aufmerksam machte, war wohl Nasse, der bei alten Menschen, alten Pferden und Hunden eisenhaltiges Pigment nachwies und auch Ochsen, Schweine, Mäuse, Kaninchen und Hühner, freilich erfolglos, daraufhin untersuchte. Schon vorher hatte übrigens Bizzozero eine kurze Andeutung über das Vorkommen von Pigmentkörnern in "lymphoiden Zellen" gemacht, das er auf den Zerfall roter Blutkörperchen zurückführte. Sodann finden sich aber auch bei experimentell arbeitenden Autoren, wie ich sie oben anführte, genug Stellen, aus denen hervorgeht, dass sie die Folgerungen aus den Ergebnissen ihrer Experimente einschränken mussten, weil sie schon normalerweise vorkommendes Pigment konstatieren konnten. Glaeveckes Befund erwähnte ich schon vorhin; Quincke (80) sah im Knochenmark normaler Hunde Pigment- resp. eisenhaltige Körner, so dass die Transfusion von Blut nur zu einer quantitativen Steigerung der Pigmentierung führte. Die Mengen dieser Körner bei den gesunden Tieren waren dabei im roten Mark grösser als im gelben, im Sternum reichlicher als im Femur und in diesem wieder grösser an der Peripherie als im Zentrum. Grosse Körner überwogen die feineren. Ausserordentlich wechselnd ist seiner Behauptung nach die physiologische Siderosis im menschlichen Mark. Was die Lage des Pigments anbetrifft, so ist sie dieselbe wie die des experimentell erzeugten: Parenchymzellen und blutführende Räume des Marks halten die Körner umschlossen; frei dagegen, wie Nasse behauptet, liegen sie nicht. Auch Biondi macht mehrfach die Angabe, dass die von ihm erzeugte Hämatolyse, besonders wenn die Tiere schnell starben, den normalen Pigmentbefund wenig veränderte. Seine Bemerkungen beziehen sich übrigens nur auf Hämosiderin, das er beim Kaninchen spärlich in sideroferen Zellen in derselben Anordnung wie beim Hund sah. Demnach

befand es sich vorzugsweise in der Nähe von Kapillaren, hier und da eine "leichte diffuse Färbung der Gefässwände" hervorrufend. Leider ist die Beschreibung zu ungenau, um präzise Schlüsse auf die Lokalisation des Pigments zu erlauben.

Untersuchungsergebnisse.

Das Material, dessen ich mich bei meinen mikroskopischen Untersuchungen bediente, stammte von normalen, schnell getöteten Kaninchen, Hunden. Ratten und einer Katze, war in Zenkerscher Flüssigkeit fixiert und wurde mir von Herrn Professor Weidenreich freundlichst zur Verfügung gestellt. Die 3, 5 oder 10 µ dicken Paraffinschnitte wurden entweder mit Hämalaun-Eosin oder mit Mallory schem Hämatoxylin gefärbt. Ausserdem aber stellte ich an ungefärbten Schnitten die Eisenreaktion an, und zwar einerseits nach der Quinckeschen Methode mit Schwefelammonium und destilliertem Wasser (1:1), worauf das Präparat in Glycerin mit Schwefelammoniumzusatz untersucht wurde, andererseits mit Salzsäure und Ferrocvankalium nach einer Methode, die Glaevecke angibt. Der Schnitt bleibt hierbei 3-5 Minuten in einer 1/2 proz. Ferrocyankaliumlösung, der einige Tropfen verdünnter Salzsäure zugesetzt sind. Ich versuchte auch Biondis Methode, der den Schnitt 6 Stunden in 1 proz. Ferrocyankaliumlösung lässt und ihn dann 6-12 Stunden mit einer Mischung von 1 gr Salzsäure und 100 gr. 70 proz. Alkohols weiterbehandelt.

Der Befund war bei den vier genannten Tieren durchaus kein gleichartiger. Während bei der Katze das Suchen nach Pigment ganz erfolglos war, wies das Rattenmark hie und da Zellen auf, die sehr spärlich gelbe Körnchen enthielten und sich in der Nähe der Gefässlumina befanden, ohne dass sich eine einheitliche Lokalisation feststellen liess: in einem Mallory-Präparat fiel auf, dass das Pigment in Form ziemlich breiter, ungleich grosser Schollen auftrat.

Im Gegensatz dazu erwies sich das Knochenmark des Hundes als sehr reich an gelbbraunen, verschieden geformten Pigmentkörnchen, die massenhaft in ziemlich grossen Zellen des Marks, aber nicht in der Wand von Kapillaren oder in auffallender Häufung in deren Nähe gelegen waren. Fig. 1 zeigt eine derartige Retikulumzelle — nur solche kommen hier in Betracht, — die ausser dem Pigment noch den Rest eines roten

Blutkörperchens und in einer Vakuole den zerfallenden Kern eines Leukocyten enthält.

Eine besonders charakteristische und in allen Präparaten in der gleichen Weise wiederkehrende Pigmentierung zeigt das Kaninchenmark (Fig. 2, 3, 4). Es handelt sich hier um braune, braungelbliche oder gelbe Körnchen, die, rundlich oder unregelmässig gestaltet, einander an Grösse ungefähr gleichen, während sie den durchschnittlichen Umfang von Leukocytengranula, wenn man von diesen etwa die pseudoeosinophilen des Kaninchens zum Vergleich heranziehen will, übertreffen. Niemals tritt hier das Pigment, wie z. B. bei der Ratte, in Form grösserer Schollen auf, und ebensowenig habe ich beobachtet, dass rote Blutkörperchen ähnlich dem beim Hunde (Fig. 1) beschriebenen Befund, phagocytar aufgenommen worden wären oder sich in Resten vorgefunden hätten. Die Körnchen liegen also stets in Zellen, deren Leib sie unter Freilassung des Kerns fast vollständig ausfüllen und die ihrerseits manchmal zwar in Lage und Form denen des Hundemarks entsprechen, hauptsächlich aber dem Laufe der Kapillaren folgen. Diese Zellen, ausgezeichnet durch einen mässig grossen Kern und einen langgestreckten, schmalen, an der Stelle des Kerns etwas ausgebuchteten Protoplasmaleib, bilden die Wand der Kapillaren und markieren vielfach deren Verlauf infolge ihrer Füllung mit Pigment aufs deutlichste. Ich verweise auf die Figuren 2, 3 und 4, welche das Gesagte gut veranschaulichen. Das Kapillarlumen in Fig. 2 ist umsäumt von feinen, ziemlich gleich grossen, gelbbraunen Körnchen, die, wie auch Fig. 3 deutlich erkennen lässt, innerhalb der oben beschriebenen Zellen liegen. Manchmal erstrecken sich besonders grosse und schmale Zellen weithin der Kapillarwand entlang; ist die Kapillare quer geschnitten wie auf Fig. 4, so erscheint ihre Wand als dicht pigmentierter Ring. Recht instruktiv ist das Bild der von der Fläche gesehenen Zelle in Fig. 3, welches dadurch zustande kam, dass die Kapillarwand tangential getroffen wurde: hier sieht man sehr gut, dass in der Tat der ganze Zelleib von Pigmentkörnchen erfüllt ist. Auf Grund dieser ständig wiederkehrenden Bilder, der Lage und Gestalt der pigmentführenden Zellen sind sie zweifelsohne als Endothelzellen anzusehen.

Mit dieser Feststellung berühre ich eine noch immer nicht ganz entschiedene Streitfrage, das Problem der Blutgefässe im 68

Knochenmark. Zwei Ansichten stehen sich hier gegenüber. Nach der einen, die schon Hover auf Grund von Injektionsexperimenten vertrat, fliesst das Blut im Knochenmark, analog etwa den Verhältnissen in der Milz, in lakunären Bahnen, ohne dass es überhaupt zur Bildung von Kapillaren kommt. Van der Stricht behauptet, dass die Endothelien der arteriellen Kapillaren schliesslich aufhörten regelmässig und in ihren Konturen durch Silbernitrat darstellbar zu sein; die venösen nehmen dann aus den lakunären, offenen Blutbahnen die Produkte des Knochenmarks und die zugeführten Blutbestandteile auf. Zahlreicher sind die Vertreter der anderen Ansicht, derzufolge auch im Knochenmark das Blut bestimmte, mit Wandungen versehene Bahnen benutzt, und bereits Neumann (69) gibt eine nähere Beschreibung der Kapillaren. Er schildert sie als zahlreich und weit, mit einer Wand, die aus einer hvalinen Membran mit eingelagerten Kernen und mit divertikelartigen spitzen Sprossen besteht, und unterscheidet arterielle und venöse Kapillaren, die ineinander übergehen. Hoffmann und Langerhans pflichten ihm bei, wollen aber weder eigentliche Venen noch Kapillaren, sondern nur weite Gefässe mit kernhaltiger Membran im Knochenmark anerkennen. In neuerer Zeit hat Venzlaff das Gefäßsystem im Knochenmark der Vögel einer genauen Untersuchung unterzogen. Die wenigen Hauptäste, die von der Art. nutritia abgehen, lösen sich in Kapillaren auf, deren Wand aus der Intima und der Fortsetzung des Häutchens besteht, welches in den Arterien Intima und Media Die Wand der venösen Kapillaren, in welche die vielfach anastomosierenden arteriellen übergehen, wird von dem genannten Häutchen gebildet, an dessen Innenseite Endothelzellen, an dessen Aussenseite wie bei den arteriellen Kapillaren Bindegewebszellen liegen. Eine einzige grosse Vene mit drei Wandschichten führt das Blut zum Foramen nutritium wieder hinaus. Auch Maximow gehört zu den Verfechtern der zweitgenannten Ansicht und stützt sie durch die Ergebnisse seiner Forschungen über die embryonale Histogenese des Säugermarks. Die breiten Kapillaren des primären Knochenmarks werden später immer weiter, ihr Endothel aber wird dünn und schmächtig, und einzelne Endothelzellen lösen sich ab und ragen ins Kapillarlumen hinein. — Nach alledem besteht wohl über die Berechtigung, die vorher von mir beschriebenen Zellen als Kapillarendothelzellen anzusprechen, kein Zweifel.

Es steht aber noch die Frage nach der Natur des Pigments, das sich darin findet, offen. Eine Zuführung körperfremder Stoffe ist, da die Tiere durchaus gesund waren und keine Injektionen erhalten hatten, auszuschliessen; mehr Wahrscheinlichkeit hat die direkte Herkunft des Pigments aus dem Blute für sich. Eine wichtige Stütze dieser Vermutung wäre der positive Ausfall der Eisenreaktion, die jedoch hier versagt. Nach der Quinckeschen Methode erhielt ich ein Bild, bei dem man zweifelhaft sein kann, ob Hämosiderin vorliegt oder nicht; immerhin scheint es so, als ob einzelne Körner dunkelgrün bis schwarz gefärbt sind. Beim Hunde, bei dem es sich aber nicht um typische Endothelzellen handelt, ist dies am häufigsten der Fall, wenn auch keine ganz ausgesprochene Reaktion eintritt. Völlig negativ aber war bei Hund, Ratte und Kaninchen der Ausfall der Probe mit Ferrocyankalium und Salzsäure.

Dieses Ergebnis jedoch beweist nichts gegen die Annahme der Entstehung des Pigments aus dem Blut, weil ja das Hamosiderin nicht die einzige Umbildungsform des Hamoglobins ist. Ich möchte zur Unterstützung dieser Ansicht einen Satz aus der anfangs erwähnten Arbeit von Biondi heranziehen. Nachdem er ausgeführt hat, wie bei der physiologischen Hämatolyse im Knochenmark das Hämoglobin einen Abbau erfährt und schon bevor die Eisenreaktion eintritt zur Bildung neuer Erythrocyten verwendet werden kann, sagt er noch einmal ausdrücklich: "Ich will . . . nur bemerklich machen, dass es nicht durchaus notwendig ist, als Folge der Hämatolyse im Knochenmark das Vorhandensein eines Pigments (Hämosiderin) anzunehmen, von dem es sehr unsicher ist, ob es das einzige und letzte Produkt des Hämaglobins darstellt." Auch M. B. Schmidt findet bei seinen experimentellen Untersuchungen als Tatsache: "Es gibt also beim Frosch ein körniges Pigment, welches kein mikrochemisch nachweisbares Eisen enthält, obwohl es genetisch und morphologisch vom Hämosiderin nicht unterschieden ist." Die anderen Entwicklungsstufen des Hämoglobins resp. Oxyhämoglobins also ich nenne das Hämochromogen, Hämatin, Hämatoidin, Hämofuscin und Hämatoporphyrin — sind im Gegensatz zum Hämosiderin charakterisiert durch die gemeinsame Eigenschaft, sich ablehnend gegen die Eisenreaktion zu verhalten. Ausführlicher auf ihre chemische Konstitution und ihren genetischen Zusammen-

hang untereinander einzugehen, würde zu weit führen; ich will nur kurz die experimentell und morphologisch begründeten Theorien über die Entstehung der Modifikationen des Blutfarbstoffs skizzieren. Seit Virchow eine Unterscheidung getroffen hatte zwischen körnigem und kristallinischem Blutpigment, suchte man zu ermitteln, in welchem Zusammenhange beide zueinander stünden. Neumann (88) schlug für das körnige Pigment, weil es die Eisenreaktion gab, den Namen Hämosiderin vor und machte seine Entstehung abhängig von der Einwirkung lebenden Gewebes resp. seiner Zellen auf den Blutfarbstoff, während die Bildung des kristallinischen Hämatoidins einen chemischen Zersetzungsprozess darstellen sollte. Er verwarf damit die Meinung Perls', der wie später Mühlmann, das Hämosiderin als eine Vorstufe des Hämatoidins auffasste. M. B. Schmidt unterstützte Neumanns Ansicht durch Experimente und wies ebenfalls der Lebenstätigkeit des Gewebes einen bestimmenden Einfluss auf die Umwandlung des Blutfarbstoffes zu Hämosiderin zu, ohne, wie er hervorhebt, aus dem Fehlen der Eisenreaktion auf Lebensunfähigkeit des Gewebes zu schliessen. Vielmehr repräsentiert das Stadium der Eisenreaktion "nur eine Stufe in der fortwährend weiterschreitenden Entwicklung des scheinbar unveränderlichen körnigen Pigments und verschwindet mit zunehmendem Alter". Ebenso aber liegt zwischen der morphologischen und chemischen Ausbildung des Hämosiderins ein kurzer Zwischenraum, in dem das Pigment die Eisenreaktion verweigert. Beide Autoren treten mit ihrer Ansicht auch der Theorie von Langhans, Cohnheim und Quincke (84) entgegen, derzufolge Hämosiderin nur dann entstehen kann, wenn rote Blutkörperchen von Wander- oder Bindegewebszellen aufgenommen werden: Hämatoidin ist dagegen das Umbildungsprodukt von Hämoglobin, das aus den roten Blutkörperchen in Extravasate ausgetreten ist. Während sie also zur Einleitung der Pigmentmetamorphose das eine Mal die Aufnahme der Erythrocyten durch kontraktile Zellen, das andere Mal die Trennung von Hämoglobin und Membran für erforderlich halten, erkennt Schmidt nur in dem letzteren Moment die wesentliche Veranlassung zur Umwandlung des Blutfarbstoffes in irgendwelche Form.

Morphologisch in seinem Auftreten untersucht ist noch das Hämofuscin, das z.B. Schilling entweder für ein Residualprodukt

des Hämosiderins oder für ein in glatten Muskelzellen spezifisch gebildetes, ihnen gelöst zugeführtes Pigment hält. v. Recklinghausen bezeichnet mit diesem Namen das eisenfreie Blutpigment, das der Hämochromatose eigentümlich ist und sich in den Wandungen des Magens und Darms, in glatten Muskelfasern, in Drüsen und in den Bindegewebsscheiden der Blutgefässe, sogar bis zu den kapillaren Venen hin findet.

Für das von mir oben beschriebene Pigment kommt Hämosiderin, weil die Eisenreaktion fehlt, kaum in Betracht; auch Hämatoidin scheidet aus, dessen Vorkommen im Knochenmark übrigens von Quincke (84) und Naunyn und Minkowski äusdrücklich bestritten wird, wobei sie Hämatoidin und Bilirubin identifizieren. Ob das in den Endothelzellen abgelagerte Pigment nun lediglich eine nicht die Eisenreaktion gebende Vorstufe des Hämosiderins oder eine der vielen anderen Formen des abgebauten und modifizierten Blutfarbstoffs ist, vermag ich nicht zu entscheiden.

Auf Vermutungen muss ich mich auch beschränken bei dem Versuch, die Ablagerungsweise des Pigments in den Endothelzellen und die Art, wie es hingelangt, zu erklären, wenn auch die Lösung dieser Aufgabe durch die Verwertung der Kenntnisse, die wir über den Untergang roter Blutkörperchen und ihre Weiterverwendung im Organismus besitzen, erleichtert wird. Tagtäglich finden, wie Weidenreich ausführt, zahlreiche Erythrocyten ihren Untergang, um ihr dabei freiwerdendes Hämoglobin teils zur Bildung von Gallenfarbstoff, teils zum Aufbau neuer Erythrocyten herzugeben. Ihre Zerstörung kann in verschiedener Weise vor sich gehen; entweder werden sie ausgelaugt, oder es kommt zu einem Zerfall der roten Blutkörperchen zu kleinen, granulaähnlichen Trümmern, die von Leukocyten oder bindegewebigen, auch endothelialen Elementen der Blutorgane (Milz, Blutlymphdrüsen) aufgenommen werden. Häufig ist auch zu beobachten, dass rote Blutkörperchen in toto durch Phagocytose in die Endothelien der eben genannten Organe gelangen und dort zerstört werden. Alle diese im normalen Blut beobachteten Vorgänge sind nicht an bestimmte Organe allein gebunden, soweit nicht deren Endothelzellen phagocytieren, sondern sie müssen sich auch innerhalb der Gefässe abspielen. Dafür spricht schon allein die Tatsache, dass die in der Leber durch

direkte Phagocytose aufgenommenen Erythrocyten nicht genügen, um den Bedarf an Gallenfarbstoff zu decken. Es muss also im Blut gelöstes Hämoglobin kreisen, das durch Zerstörung roter Blutkörperchen frei geworden ist. Dazu gesellen sich gelöste Bestandteile von Blutelementen, die in Leber und Milz verarbeitet Das ist auch die Ansicht Biondis, nach dem das Hämosiderin im Knochenmark nicht das Produkt einer örtlichen Hämaglobinumbildung wäre, sondern gelöst durch den Kreislauf zugeführt sei. In diesem Sinne spricht auch Hunters Theorie, nach der das Eisenpigment in der Leber erst von der Milz aus hintransportiert wird, da die Leber kein Hämosiderin zu bilden vermag. Es ist hier weiter anzuführen, dass Heinz betreffs der Leberzellen und Kupfferschen Sternzellen zu dem Ergebnis kommt, es müsse sich bei der Pigmentbildung infolge von Hämatolyse um den körnigen Niederschlag gelöster Substanzen aus dem Blut handeln. Und schliesslich belehren uns die Resultate der Arbeiten von Ribbert und Goldmann, dass gewisse Zellen, wie besonders die Kapillarendothelien des Knochenmarks und der Vena portae hepatis, die Fähigkeit haben, gelöst im Blute kreisende Farbstoffe in Körnchenform in sich niederzuschlagen.

Mit Berücksichtigung aller dieser Feststellungen lässt sich die Entstehung des Pigments in den Endothelzellen der Knochenmarkskapillaren unter physiologischen Verhältnissen ungefähr folgendermassen denken: Da es nicht gelungen ist, typische Phagocytose zu finden, muss man annehmen, dass die genannten Endothelien das im Blutplasma gelöste Hämoglobin aufnehmen und in Pigment verwandeln. Dieses Hämoglobin aber stammt von Erythrocyten, die in der Zirkulation selbst und in den Blutorganen (Milz etc.) zugrunde gegangen sind. Unter solchen Umständen entstandenes Pigment braucht, wie ich noch einmal betonen will, nicht die Eisenreaktion zu geben, selbst wenn es Eisen enthält.

Ich glaube, die beschriebenen Verhältnisse werden durch einen Vergleich mit ähnlichen, in anderen Kapillargebieten herrschenden besser übersehbar werden. Im allgemeinen besitzt der histologische, recht einfache Aufbau der Kapillaren keine grosse Mannigfaltigkeit. Das Endothelrohr ist von einer bindegewebigen, manchmal auch elastischen Umhüllung, einer Adventitia capillaris umgeben, deren Zusammensetzung je nach der Lage der Kapillaren

wohl verschieden, aber von geringer Bedeutung für ihre spezifische Funktion ist. Die wesentlichen Unterschiede liegen in der Art der Endothelzellen, obgleich gewisse Eigenarten derselben sich an mehreren Stellen wiederholen. So weisen die Endothelien der Knochenmarkskapillaren eine ziemlich weitgehende, interessante physiologische Übereinstimmung auf mit den v. Kupfferschen Sternzellen, den Endothelien der Leberkapillaren, über deren Bau und Funktion eine Menge von Spezialarbeiten Aufklärung gebracht haben. Nachdem v. Kupffer seine ursprüngliche Ansicht, dass es sich hier um perivasculäre Zellen handle, korrigiert und bewiesen hat, dass diese Sternzellen als endotheliale Elemente zu betrachten sind, ist seine Auffassung allgemein angenommen worden. Schon die Methode ihrer Darstellung verrät eine wichtige Eigenschaft der Sternzellen. Injiziertes colloidales Silber (Ernstbohn), andere colloidale Metallösungen (Brötz). Karminlösungen (Ribbert) und viele andere Farbstoffe werden von ihnen aufgenommen und in Körnchenform niedergeschlagen, auf diese Weise die Zellen gut hervorhebend Ebenso verhalten sich ja — und hierin liegt eine sehr wichtige Übereinstimmung die Knochenmarksendothelien. Wenn Asch nach Einspritzung fein zerriebenen Karmins, v. Kupffer nach Injektionen chinesischer Tusche die Sternzellen mit solchen Körnchen gefüllt sehen, so entspricht das den Resultaten, die Cousin bei den Knochenmarksendothelien mit Karminpulver erzielte. Diese phagocytäre Funktion der Sternzellen äussert sich noch weitergehend: Neoplasmenzellen (Gilbert et Jomier), rote Blutkörperchen oder Reste von ihnen bei künstlich erzeugter Hämatolyse (Heinz. Löwit etc.), injizierte Coccen und Bazillen, letztere allerdings hauptsächlich in degeneriertem Zustand, werden mit ausserordentlicher Schnelligkeit von den Sternzellen aufgenommen. Wenn ähnliche Befunde bei den Knochenmarksendothelzellen fehlen, so liegt das vielleicht nicht nur an einer tatsächlichen Unfähigkeit derselben, solche Gebilde aufzunehmen - Cousins Bakterieninjektionen würden dafür sprechen - sondern eher noch daran, dass nicht darauf geachtet oder die Natur der Knochenmarkszellen, in denen sich Ablagerungen fanden, verkannt wurde. Gleiche Zweifel könnte man auch hegen, wenn zwar Pigmentablagerungen in den Knochenmarksendothelien in pathologischen Fällen in der Literatur nicht erwähnt werden,

dagegen von den v. Kupfferschen Sternzellen bekannt ist, dass sie bei einer grossen Reihe von Krankheiten Hämosiderin, Fettkügelchen etc. enthalten. Endlich macht v. Kupffer darauf aufmerksam, dass er bei ganz normalen Pferden in den Sternzellen der Leber Hämosiderin gefunden habe, das vielleicht in gelöstem Zustande dort hingelangt sei: auch Schilling erwähnt kurz "ein sehr feines, dunkles Pigment, das alle Endothelien gleichmässig durchzieht" und das er häufig in normalen Tierlebern fand. Man kann in diesem Befund ein Seitenstück zu dem vorhin beschriebenen Pigmentnachweis in Knochenmarksendothelzellen sehen, und vielleicht, wie gesagt, liessen sich noch mehr Parallelen ziehen, wenn die Lokalisation des in der Literatur erwähnten Pigments im Knochenmark präziser angegeben wäre. Jedenfalls aber sind in dem Verhalten gegen gelöste Farbstoffe, in der Aufnahmefähigkeit kleiner Partikelchen usw. genug Momente vorhanden, die die ziemliche Übereinstimmung des Endothelcharakters dieser beiden Kapillarbezirke erweisen.

Die Bedeutung der Sternzellen für die Funktion der Leber ist heute im grossen und ganzen soweit sichergestellt, dass in ihnen "ein die Phagocytose sehr energisch bewerkstelligender Apparat" zu sehen ist, in dem auch synthetische, von Plasmosomen (Arnold) besorgte Vorgänge stattfinden. Über die Bedeutung der Kapillarendothelien im Knochenmark herrscht keineswegs dieselbe Klarheit und Einigkeit. Cousin äussert sich am ausführlichsten darüber, indem er ihnen zwar keine baktericide oder bakteriophage, wohl aber ausgesprochene phagocytäre Eigenschaft kleinen soliden Körperchen gegenüber zuspricht.

Weiterhin aber schliesst er aus dem bereits geschilderten Erfolg seiner Injektionen von Lackmusblau, dass sie "des granulations acides" besitzen, die eine eigene Drüsenaktivität entfalten. So kommt er zu dem Ergebnis, dass in dem Gefässendothel eine Drüse zu sehen sei, deren Elemente nicht zusammengeballt und in grösseren Massen vereinigt, sondern ausgebreitet und getrennt sind. Nun kann man aber allein aus der Tatsache, dass injiziertes Lackmusblau in Form von rosa Granulationen auftritt, die sich unter Einwirkung von Ammoniakdämpfen blau färben, nicht eigentlich auf eine Drüsenfunktion schliessen, da die Beeinflussung des Farbstoffs noch nicht die Tätigkeit einer Drüse bedeutet. So ist also wohl nach einer anderen Deutung zu suchen. Gold mann

macht auf die Kapillarendothelien des Knochenmarks wegen ihrer Eigenart, sich durch vitale Farbstoffe zu färben, aufmerksam: "Es ist sicher nicht bedeutungslos, dass.... die Endothelien der venösen Knochenmarkskapillaren ein vital färbbares Granuloplasma besitzen. Ob auch ihnen ein besonderes Reduktionsvermögen zukommt?" Die Erkennung der Tatsache, dass bei gesunden Tieren die genannten Zellen Pigment enthalten, bringt uns der Lösung der Frage einen Schritt näher.

Bisher ist also über die Funktion der Knochenmarksendothelien folgendes festgestellt:

- Sie nehmen vermittelst Phagocytose kleine, solide Körnchen auf, dagegen keine Bakterien.
- 2. Sie nehmen im Gegensatz zu den meisten Gefässendothelien, ähnlich wie die v. Kupfferschen Sternzellen, in die Blutbahn gespritztes, gelöstes Karmin auf und schlagen es in Körnchenform nieder. Desgleichen färben sie sich körnig mit Pyrrholblau und anderen vitalen Farbstoffen.
- 3. Sie enthalten bei manchen Tieren (Kaninchen) unter normalen Verhältnissen ein gelbbraunes Pigment in solchen Massen, dass sie dadurch die Kapillarwand deutlich markieren. Dieses Pigment ist veränderter Blutfarbstoff, der durch die Zerstörung roter Blutkörperchen frei und so den Endothelien in gelöstem Zustande zugeführt wird; es gibt jedoch keine Eisenreaktion.

Aus all dem geht hervor, dass die Zellen neben einer geringen phagocytären Eigenschaft eine ausgesprochene synthetische besitzen, die ihren Ausdruck darin findet, dass die durch den Blutstrom gelöst zugeführten Stoffe in Körnchenform in ihnen niedergeschlagen werden.

Anderer Natur sind, wie ich als Gegensatz hier hervorheben will, die pigmentführenden Zellen beim Hunde. Bei diesen tritt Phagocytose auf, die der in Lymphdrüsen und Milz beobachteten gleichzusetzen ist; hier entsteht also das Pigment durch Erythrocytenzerfall innerhalb der Zelle und ausserdem handelt es sich hier um typische Retikulumzellen, die mit den Gefässen in keinem unmittelbaren Zusammenhang stehen.

Die oben erwähnte synthetische Eigenschaft der Endothelien des Kaninchenmarks wird dadurch von besonderer Bedeutung, dass sie auch den Blutfarbstoff beeinflusst. Der Umstand, dass er unter physiologischen Verhältnissen in den Kapillarendothelien einen Umbau erfährt, weist auf ihren engen Zusammenhang mit der Funktion des Knochenmarks hin.

Sie treten somit aus dem beschränkten Rahmen einfacher Wandzellen heraus und vermitteln den Übertritt des in den Kapillaren kreisenden Blutfarbstoffs zu den spezifischen Bestandteilen des Knochenmarks Das Hämoglobin diffundiert durch die Zellwände der Endothelien, wird in ihnen niedergeschlagen, zu Pigment umgeformt und dann offenbar an die blutbildenden Elemente des Knochenmarkgewebes weitergegeben, welche es wohl zweifellos zur Neubildung von Erythrocyten wieder verwenden.

Zum Schluss möchte ich Herrn Geheimrat Schwalbe für die Benutzung der Hilfsmittel des Anatomischen Instituts und Herrn Professor Weidenreich für die Anregung zu dieser Arbeit und seine Unterstützung meinen tiefsten Dank aussprechen.

Literaturverzeichnis.

- Arnold, J.: Über feinere Strukturen der Leber, ein weiterer Beitrag zur Granulalehre. Virch, ws Archiv. Bd. 166, 1901.
- Asch, Ernst: Über die Ablagerung von Fett und Pigment in den Sternzellen der Leber. Inaug.-Dissert., Bonn 1884.
- Biondi, Cesare: Experimentelle Untersuchung über die Ablagerung von eisenhaltigem Pigment in den Organen infolge von Hämatolyse. Zieglers Beitr. z. path. Anat. u. allgem. Path., 1895.
- Bizzozero, G.: Sulla funzione del midollo delle ossa. Centralblatt f.d. medic. Wissenschaften 1869.
- Brötz, W.: Die v. Kupfferschen Sternzellen und ihr Verhalten gegenüber colloidalen Metallen Frankf. Zeitschr. f. Path. 1909, Bd. III.
- Cohn, Ernst: Die v. Kupfferschen Sternzellen und ihre Darstellung. Zieglers Beitr. z. path. Anat. u. allgem. Path., Bd. 36, 1904.
- Consin: Notes biologiques sur l'endothelium vasculair. Societé biol. 1898, S. 454.
- Gilbert, A., et Jomier: La cellule étoilée du foie à l'état physiol. et à l'état patholog. Arch. méd. expér. et d'Anat. pathol., T. 20, No. 2, S. 145.
- Glaevecke, L.: Über die Ausscheidung und Verteilung des Eisens im tierischen Organismus nach Einspritzung von Eisensalzen. Inaug-Dissert., Kiel 1883.
- Goldmann, Edwin E.: Die äussere und innere Sekretion des gesunden und kranken Organismus im Lichte der "vitalen Färbung". I. Beitr. z klin. Chirurgie, Bd. 64, 1909.

- Heinz, Th.: Über Phagocytose der Lebergefässendothelien. Arch. f. mikr. Anat., Bd. 58, 1901.
- Hoffmann, F. A. und Langerhans, P.: Über den Verbleib des in die Zirkulation eingeführten Zinnobers. Virchows Arch., Bd. 48, 1869.
- Hoyer: Zur Histologie des Knochenmarkes. Zentralbl. f. d. mediz. Wissenschaften 1869.
- Kölliker: Handbuch der Gewebelehre des Menschen, Bd. III, 1902.
- v. Kupffer, C.: Über die sogenannten Sternzellen der Säugetierleber. Arch. f. mikr. Anat., Bd. 54.
- Langhans: Beobachtungen über Resorption der Extravasate und Pigmentbildung in denselben. Virchows Arch., Bd. 49, 1870.
- Lipski, A.: Über die Ablagerung und Ausscheidung des Eisens aus dem tierischen Organismus. Arb. d. pharmak. Instit. zu Dorpat. herausg. v. Kobert, Bd. IX.
- Löwit: Beiträge zur Lehre vom Ikterus. Zieglers Beitr. z. path. Anat. u. allgem. Path., 1889. Bd. 4.
- Maximow, A.: Die embryonale Histogenese des Knochenmarks der Säugetiere. Arch. f. mikr. Anat., Bd. 76, 1910/11.
- Mayer, S.: Bemerkungen über die sogenannten Sternzellen der Leber und und die Struktur der kapillaren Blutgefässe. Anat. Anz., Bd. 16, 1899.
- Mühlmann, M.: Zur Pigmentmetamorphose der roten Blutkörperchen. Virchows Arch., Bd. 126, 1891.
- Nasse: Über das Vorkommen eisenhaltiger Körner im Knochenmark. Marburger Sitzungsberichte 1876.
- Nathan, Marcel: La cellule de Kupffer. Journal de l'anat. et de la physiol., 1908, Année 44.
- Naunyn, B., und Minkowski. O.: Beiträge zur Pathologie der Leber und des Ikterus. Arch. f. exper. Path. u. Pharmak., Bd. 21, 1886.
- Neumann, E.: Über die Bedeutung des Knochenmarks für die Blutbildung. Arch. d. Heilkunde 1869.
- Derselbe: Beiträge zur Kenntnis der pathol. Pigmente. Virchows Arch., Bd. 111, 1888.
- Perls: Nachweis von Eisenoxyd in gewissen Pigmenten. Virchows Arch., Bd. 39, 1867.
- Peters, G.: Beobachtungen über Eisenablagerung in den Organen bei verschiedenen Krankheiten. Deutsch. Arch. f. klin. Medizin, Bd. 32, 1883.
- Ponfick: Studien über die Schicksale körniger Farbstoffe im Organismus. Virchows Arch., Bd. 48, 1869.
- Prenant, Bouin et Maillard: Traité d'Histologie TII, Paris 1911.
- Quincke: Zur Pathologie des Blutes. Arch. f. klin. Medizin, Bd. 25 und 27, 1880.
- Derselbe: Zur Physiologie und Pathologie des Blutes. Arch. f. klin. Medizin, Bd. 33, 1883.
- Derselbe: Beiträge zur Lehre vom Ikterus. Virchows Arch., Bd. 95, 1884.
- v. Recklinghausen: Über Hämochromatose, Tagebl. d. 62. Versamml. deutscher Naturforscher u. Ärzte in Heidelberg 1889.

78

- Ribbert, H.: Die Abscheidung intravenös injizierten Karmins in den Geweben. Zeitschr. f. allgem. Physiol., Bd. IV, 1904.
- Schilling, V.: Zur Morphologie, Biologie und Pathologie der Kupfferschen Sternzellen, besonders der menschlichen Leber. Virchows Arch. 1909, Folge XIX, Bd. 6 und Zentralbl. f. allgem. Pathol., Bd. 19.
- Schmidt, M. B.: Über die Verwandtschaft der hämatogenen und autochthonen Pigmente und deren Stellung z. Hämosiderin. Virchows Arch.. Bd. 115, 1889.
- Siebel, W.: Über das Schicksal von Fremdkörpern in der Blutbahn. Virchows Arch., Bd. 104, 1886.
- Venzlaff, W.: Über Genesis und Morphologie der roten Blutkörperchen der Vögel. Arch. f. mikr. Anat., Bd. 77, 1911.
- Weidenreich, Fr.: Das Schicksal der roten Blutkörperchen im normalen Organismus. Anat. Anz., Bd. 24, 1904.

Erklärung der Abbildungen auf Tafel V.

Die Zeichnungen sind mit Zeiss' Apochromat 2 mm in Objekttischhöhe aufgenommen. Fig. I mit Comp.-Ocul. 8, Fig. II und III mit Ocul. 6, Fig. IV mit Ocul. 4.

- Fig. I. Knochenmark vom Hunde. Retikulumzelle mit Pigment, dem Rest eines Erythrocyten und dem zerfallenden Kern eines Leukocyten.
- Fig. II. Knochenmark vom Kaninchen. Querschnitt einer Kapillare mit pigmentgefüllten Endothelzellen.
- Fig. III. Knochenmark vom Kaninchen. Längs- und tangential geschnittene Kapillare; darin eine von der Fläche gesehene Endothelzelle mit Pigmentkörnchen.
- Fig. IV. Knochenmark vom Kaninchen. Querschnitt einer Kapillare, deren Wand von Pigmentkörnchen erfüllt ist.

Die Entwicklung der Derivate des Kiemendarmes beim Meerschweinchen.

Von

H. Rabl. Innsbruck.

Seinem lieben Lehrer Victor von Ebner anlässlich seines Scheidens vom Lehramte in Dankbarkeit und Verehrung gewidmet.

Hierzu Tafel VI-X und 2 Textfiguren.

					I	n	h	a	1	t.						Seit
Einleitung .		,														79
Literatur																81
Material und	Met	inc	ode													84
Beschreibung	der	S	tad	ien	1						0		٠			86
Zusammenfass	sung															138

Einleitung.

Als ich zu Ostern 1910 auf dem Anatomen-Kongress in Leipzig über einige wichtigere Ergebnisse meiner Untersuchungen, betreffend die Entwicklung der Kiemenspaltenderivate des Meerschweinchens, berichtete (44), hatte ich nicht erwartet, dass ich die ausführliche Mitteilung — und überdies nur ihren ersten Teil — erst 2 Jahre später der Öffentlichkeit übergeben würde. Denn ich hoffte damals, sie in wenigen Monaten abgeschlossen zu haben. Es traten aber unerwartete Ereignisse ein, unter denen ich nur meine Übersiedelung nach Innsbruck nennen will, die mich nötigten, meine ursprüngliche Absicht fallen zu lassen, da sich andere Aufgaben in den Vordergrund drängten, insbesondere Angelegenheiten des Unterrichts, die keinen Aufschub duldeten.

Es kam aber noch ein anderer Grund hinzu.

Als ich in meiner Untersuchung von Meerschweinchenembryonen zu jener wichtigen Periode kam, in der die Einbeziehung des Halsbläschens in die entodermale Thymus erfolgt, hatte ich gleichzeitig Gelegenheit, alle Phasen der Umbildung der Thymus aus einem epithelialen in ein lymphoides Organ zu studieren. Dabei gelangte ich zu einer Ansicht, die sich mit derjenigen der meisten Autoren deckte, die sich ohne Anwendung

Archiv f. mikr. Anat. Bd. 82. Abt. I.

spezifischer Färbemethoden, nicht voreingenommen durch das lymphocytenähnliche Aussehen der kleinen Thymuszellen, sorgfältig mit der Histogenese der Thymus beschäftigt hatten, d. h. mir erschien die Herkunft der Rundzellen aus dem Epithel der bei weitem wahrscheinlichere Vorgang als ihre Einwanderung. Darum machte ich auch, ohne in meinem Vortrage auf die Histogenese der Thymus einzugehen, in einer Fussnote die Bemerkung, der Deutung Maximows (32), welcher bekanntlich die letztere Herkunft verficht, nicht beipflichten zu können.

Um aber in der Lage zu sein, diese Meinung wirkungsvoll zu vertreten, war es notwendig, sich nicht auf eine Säugetierspezies zu beschränken, sondern auch andere Arten, vor allem das Kaninchen, das nach den Beobachtungen des russischen Forschers ein ausserordentlich günstiges Objekt darstellt, zu untersuchen und dabei jene Methode anzuwenden, die nach der Ansicht Maximows in den Stand setzt, schon in den frühesten Stadien Epithelzellen und Leukozyten mit Sicherheit zu unterscheiden. Nun bestand allerdings mein Hauptziel im Nachweise des Verhaltens des Sinus cervicalis und seiner Beziehung zur entodermalen Thymusanlage, und es war ursprünglich nicht meine Absicht, über die Ontogenese der Kiemenspaltenorgane hinauszugehen. Nachdem aber die Vollendung der Arbeit aus anderen Gründen ohnehin eine Verzögerung erfuhr, beschloss ich, sie durch die Untersuchung der Histogenese der Thymus zu ergänzen, um eine allseitig abgeschlossene Vorstellung von der Entwicklung dieses Organs zu gewinnen. Daher wurde die spärliche Zeit, die mir im letzten Schuljahre zu wissenschaftlicher Arbeit übrig blieb, dazu benutzt, um die von Maximow geübte Methode der Eosin-Azur-Färbung auf Meerschweinchenembryonen anzuwenden und Kaninchenembryonen zu untersuchen, die in der Tat, wie gleich die erste Serie lehrte, ganz andere Bilder der Thymusmetamorphose liefern als das Meerschweinchen, das Maximow geradezu als "nicht günstig für die Entscheidung der Herkunft der Thymuslymphocyten" bezeichnet hat.

Diese Untersuchungen nähern sich gegenwärtig ihrem Abschluss. Zwar fehlen mir noch einige ältere Stadien von Meerschweinchen, während andere noch der Zerlegung in Serien harren. Immerhin darf ich hoffen, auch das weiter gesteckte Ziel in Kürze zu erreichen. Einstweilen erlaube ich mir, als ersten

Teil den Bericht über das Aussehen der Kiementaschen in frühen Embryonalperioden, über die Entwicklung der Schilddrüse, über das Schicksal der Kiemenspaltenorgane und die detaillierte, meine ersten Angaben in zahlreichen Punkten erweiternde Beschreibung der Anlage der Thymus, der Epithelkörper und des ultimobranchialen Körpers vorzulegen. Im zweiten Teil soll die Histogenese der Thyreoidea und der Derivate der Kiementaschen, insbesondere der Thymus, bis zur Ausbildung des fertigen Zustandes dargestellt werden.

Literatur.

Bis zur Zeit des Erscheinens der bereits genannten grossen Arbeit von Maximow war über die Entwicklung der Kiemenspaltenderivate des Meerschweinchens so gut wie nichts bekannt.

In der leider allzu knappen Arbeit von Groschuff (14) wird der Verhältnisse beim Meerschweinchen nur an jener Stelle gedacht, wo der Autor alle Säugetiere aufzählt, die einen Epithelkörper III, nicht aber einen Epithelkörper IV besitzen. Es war ein Irrtum, den ich gleich hier richtigstellen will, das Meerschweinchen in diese Gruppe aufzunehmen, da sich ein Epithelkörper IV während jeder Periode des Fetallebens, ebenso wie beim erwachsenen Tiere, nachweisen lässt. 1)

Die bereits in meiner vorläufigen Mitteilung zitierte Notiz von Anikiew (2) enthält nur einen einzigen Passus, der auf die Thymusentwicklung Bezug hat, in welchem der Autor den Aufbau der Thymus aus dem "Entoderma der dritten Kiemenspalte und dem Ectoderma des Sinus praecervicalis" feststellte. Betreffs der Thyreoidea hebt Anikiew hervor, dass sich in späterer Embryonalzeit von der Drüse Teile absondern und bis zur Anastomose zwischen den beiden Jugularvenen in die Brustgegend hinabrücken.

Was die Arbeit von Maximow anbelangt, so erscheinen in derselben die jüngsten Stadien nicht berücksichtigt. Die Untersuchung beginnt erst bei Meerschweinchenembryonen von 9 mm Länge und erstreckt sich ausschliesslich auf die Verhältnisse der

¹) Daher kann ich auch Ruben gegenüber, welcher schreibt: "Die Parathyreoidea IV bleibt klein und kann frühzeitig atrophieren", nur annehmen, er habe sie in älteren Stadien übersehen.

dritten Tasche. Ausser Meerschweinchen untersuchte Maximow. wie bereits aus der vorstehenden Einleitung hervorgeht, auch Kaninchen; ferner Embryonen von Ratten, Mäusen und Katzen. Sein Augenmerk war vorzüglich auf das histologische Verhalten des Epithelkörpers, des Cervicalbläschens und vor allem der Thymus gerichtet, da diese den eigentlichen Gegenstand der Arbeit bildete. Die äusseren Formverhältnisse berücksichtigte Maximow in seiner Darstellung nur so weit, als es notwendig war, um eine Vorstellung von der Gestalt jener Gebilde im allgemeinen zu bekommen. Darum beschrieb er auch die Differenzierung der dritten Tasche nicht für jede Säugetierart getrennt, wie er dies bezüglich der Histogenese der Thymus tat, sondern fasste in jener Hinsicht alle untersuchten Formen zusammen. Seine Angaben über die feinere Struktur des Epithelkörpers, sowie einige Beobachtungen über die Struktur der Epithelzellen der Thymusanlage werde ich bei der folgenden Stadienbeschreibung an geeigneter Stelle zitieren. Dort werden auch die merkwürdigen Einschlüsse, die Maximow reichlich im Epithel des Cervicalbläschens, spärlicher in dem der Thymus, fand, und die auch ich an zahlreichen Ortlichkeiten antraf, zur Besprechung gelangen. Hier möge nur die Schilderung Platz finden, welche Maximow vom Cervicalbläschen gibt. "Das Sinusbläschen"), der sich abschnürende und in die Tiefe abrückende Teil des Sinus praecervicalis, ist als solches leicht zu erkennen, so lange es mit dem Ektoderm durch einen Epithelstrang noch zusammenhängt. Ausserdem liegt es, wie gesagt, dem Ganglion des Nervus vagus in typischer Weise meistens sehr eng an. Es stellt ein dickwandiges Epithelbläschen mit spaltförmigem Lumen vor. Dies Lumen ist in dem uns jetzt interessierenden Stadium schon ganz abgeschlossen. da der mit dem Ektoderm in Verbindung gebliebene Epithelstrang bereits massiv ist. Von dem Lumen der dritten Tasche und der Thymusanlage ist es ebenfalls isoliert, wie es auch die Autoren angeben; nur bei einem Meerschweinchen von 10 mm Länge habe ich eine augenscheinlich zweifellose Verbindung des Lumens des

¹) Die Bezeichnung "Sinusbläschen", die übrigens von Maximow nicht als erstem verwendet wird, scheint mir nicht glücklich gewählt zu sein. Da es sich um ein Bläschen handelt, das durch Abschnürung der Halsbucht (Cervicalsinus) entstanden ist, dürfte die Bezeichnung "Cervicalbläschen" richtiger sein.

Sinusbläschens mit dem Lumen der Thymusanlage gesehen, aber auch in diesem Fall nur auf der einen Seite. 1)

Das Epithel des Sinusbläschens erscheint dem Epithel der dritten Tasche und auch der Thymusanlage im allgemeinen sehr ähnlich, obzwar es ektodermaler Herkunft ist. Es kann als ziemlich hohes ein- oder mehrschichtiges Zylinderepithel bezeichnet werden, dessen Regelmässigkeit und Dicke aber an verschiedenen Stellen grossen Schwankungen unterliegen. Die Kerne, unter welchen man hellere und dunklere unterscheiden kann, liegen stets in mehreren Reihen übereinander und gleichen in ihrer inneren Struktur den weiter unten beschriebenen Kernen des Thymusepithels; in ihnen kommen zahlreiche Mitosen vor. Die Abgrenzung des Epithels vom Mesenchym ist deutlich, eine Membrana propria fehlt aber."

Als letzter Arbeit ist noch jener von Ruben, eines Schülers Hammars, zu gedenken (46), die kurz nach meinem Vortrage erschienen ist und zu wesentlich demselben Ziele wie meine Untersuchung, der Klarstellung des Schicksals des Cervicalbläschens, unternommen worden war. Wie gleich an dieser Stelle bemerkt sein möge, kam Ruben auch zu demselben Resultate. Er untersuchte 18 Meerschweinchenembryonen zwischen 8 und 40 mm Länge, von denen neun rekonstruiert wurden. Von diesen neun Modellen beziehen sich vier (von Embryonen von 8, 10, 12 und 14 mm Länge) auf jene Entwicklungsperiode, die auf den folgenden Blättern eine eingehende Beschreibung erfahren wird. Leider sind aber die Abbildungen der Modelle, teils wegen der geringen Vergrösserung, teils wegen der Art der Reproduktion, nicht ganz klar. Auch ist die Beschreibung so knapp, dass es kaum möglich ist, den Inhalt der Arbeit in noch weniger Sätzen zusammenzufassen, als es seitens des Autors geschehen ist. Ich glaube daher am besten zu tun, wenn ich auf ein zusammenfassendes Referat seiner Arbeit verzichte und seine Befunde erst bei Gelegenheit der Stadienbeschreibung zur Sprache bringe. Nur möchte ich schon jetzt darauf hinweisen, dass Ruben manche mir wichtig erscheinende Tatsachen gar nicht erwähnt hat.

¹ Ähnliches berichtet Ruben, der die Serien Maximows bei seiner Untersuchung benutzte. N\u00e4heres dar\u00fcber, sowie meine gegenteilige Anschauung s. S. 117

Material und Methode.

Die dieser Untersuchung zugrunde liegenden Meerschweinchenembryonen sind in der folgenden Tabelle zusammengestellt.

Nummer des Muttertieres	Alter in Tagen	Grösse (Scheitel- Steisslänge) mm	Nummer des Diapositives ¹)	Fixierung Zenkersche Flüssigkeit (Z)				
7	18	3,2	1410					
y	5	3,5	-	3				
7	18	3,8	1424	Z.				
7	18	4	1134	Z.				
9	2	4,5		3				
5	19	4.8	379	Z.				
ő	19	5 2)	-	Z.				
å .	19	5,1	380	Z.				
11	20	5,2	1495	Z.				
11	20	6	1494	Z.				
28	20	6,5	1713	1 Teil Z. + 2 Teile 10% Form. (F.)				
8	21	7.8	1425	Z.				
8	21	8.2	1427	Z.				
29	21 1/2	8,5	1714	1 Z. + 2 F.				
2	2	8,8		Z.				
9	2	9		9				
26	22	9,23)	****	$Z_{\cdot} + F_{\cdot}$				
3	20	9.7	1115	2 Z. + 1 F.				
10	22	10	1428	Z.				
10	22	10,7	1429	7.				
7	7	11	~~	2				
30	22	11,23)	-	Z. + F.				
9	23	12	1430	Z.				
17	19	12,5	_	Z + F.				
13	24	13	-	Z.				
13	24	14	_	Z.				
17	19	14		Z. + F.				
13	24	14.5	1493	Z.				

¹⁾ Herr Mechaniker Dümler, Wien IX, Schwarzspanierstr. 4—6, hatte die Gefälligkeit, stereoskopische Aufnahmen von der Mehrzahl der Embryonen zu machen. Die in obiger Kolumne angeführten Zahlen sind die Nummern, welche die von diesen Aufnahmen gewonnenen Diapositive in seinem "Verzeichnisse wissenschaftlicher Diapositive" tragen. Sie können von ihm bezogen werden.

²⁾ Sagittalschnittserie.

³ Frontalschnittserie.

Die grössere Zahl der Embryonen habe ich selbst geschnitten; nur jene Serien, worüber die Angaben in der vorstehenden Tabelle unvollständig sind, wurden erst nach meinem Abgange vom Wiener Embryologischen Institut hergestellt und mir freundlichst zur Durchsicht überlassen. Die Schnittdicke betrug meist 10 μ , seltener 12, 15 oder 5 μ . Eingebettet wurde ausschliesslich in Celloidin. Die Färbung geschah in Delafields Hämatoxylin und alkoholischer Eosinlösung.

Bezüglich der Grösse der Embryonen habe ich zu bemerken, dass die angegebenen Maße genommen wurden, als die Embryonen in 95 % Alkohol lagen. Bekanntlich tritt in geeigneten Fixierungsflüssigkeiten (die Zenkersche Flüssigkeit mit und ohne Formolzusatz muss als eine solche bezeichnet werden) keine Schrumpfung, oder höchstens nur eine sehr geringe, ein. Sie lässt sich erst bei der nachträglichen Alkoholbehandlung mit Sicherheit nachweisen und wird um so stärker, je stärker der einwirkende Alkohol ist. In absolutem Alkohol erscheint die Scheitel-Steisslänge der Embryonen aus der hier behandelten Entwicklungsperiode um etwa 8 % kleiner als jene, die man unmittelbar nach Entnahme aus dem Uterus in Zenkerscher Flüssigkeit feststellen kann.

Das Alter der Embryonen ist vielleicht in einigen Fällen zu hoch angegeben, in keinem aber ist es zu niedrig bestimmt worden, da die Trächtigkeit stets vom letzten Geburtsakt an gerechnet wurde. Denn bekanntlich werden die Weibchen sofort wieder belegt, sobald sie geboren haben. Da aber in den meisten Fällen mehrere Begattungsakte stattfanden, und da ferner die Geburt wiederholt in die Nacht fiel, so liess sich das Alter der Embryonen nicht nach Stunden bestimmen, sondern konnte nur ungefähr nach Tagen angegeben werden. Worauf die im Verhältnis zur Grösse der Embryonen abnorm kurze Trächtigkeitsdauer in zwei Fällen (Muttertier Nr. 3 und 17) zurückzuführen ist, muss ich dahingestellt sein lassen.

Bei der folgenden Stadienbeschreibung wurde für jedes Stadium ein Embryo ausgewählt, der durch seinen Entwicklungsgrad, die Schnittrichtung, Schnittdicke u. s. w. als günstigster Repräsentant desselben erschien. Angaben betreffend die übrigen Embryonen wurden nur dort eingeflochten, wo es zur Klärung der behandelten Verhältnisse von Vorteil erschien.

Beschreibung der Stadien.

Stadium L.

Dieser Embryo besitzt ein Alter von 18 Tagen und eine Scheitel-Steisslänge von 3,8 mm. Zwei andere Embryonen desselben Uterus sind 3,2 und 4 mm lang. Wie zu erwarten, ist der kleinere von diesen wesentlich weniger weit als der zur Rekonstruktion gewählte entwickelt. Er besitzt nur zwei Kiementaschen und noch keine Thyreoidea. Dagegen sind die Embryonen von 3,8 und 4 mm nur wenig voneinander verschieden.

An ihnen war schon von aussen ein dritter Kiemenbogen als kleiner Wulst zu erkennen. An der Ventralseite des Kopfes erscheinen die beiden Unterkieferbögen fast in der ganzen Ausdehnung ihres medialen Endes noch voneinander getrennt. Nur am hintersten Punkt desselben fliessen sie miteinander zusammen. Die ersten Taschen (Fig. 1. Taf. VI) besitzen ihre weiteste seitliche Ausladung in der Verlängerung der dorsalen Fläche des Schlundes. Von hier aus zieht die Kante, an der entlang jederseits das Entoderm der Tasche an das Ektoderm der Furche grenzt,2) einerseits dorsal zum Gipfel des dorsalen Divertikels. andererseits ventro-medial bis knapp vor die Anlage der Thyreoidea. Daher erscheint die Tasche aus zwei Abschnitten, einem dorsalen und einem ventralen, zusammengesetzt. Doch müssen in diesem Stadium beide Abschnitte noch als Ausstülpungen der seitlichen Schlundwand betrachtet werden, die, wie aus den Verhältnissen im Bereiche der Mandibular- und Hyoidbogen ersichtlich ist, in schräger Richtung von dorsal-aussen noch ventral-innen verläuft. Der Querschnitt des Schlundes besitzt daher in dieser Region die Gestalt eines Dreieckes mit dorsaler Basis und ventraler Spitze.

Ganz analog sind die zweiten Taschen gebaut. Nur erreichen sie in keiner Dimension die Grösse der ersten. Auch sie bestehen aus einem dorsalen Divertikel und einem ventralen Abschnitt. Doch ist der letztere tiefer und seine Kante, die sich an das Ektoderm anlegt, mehr zugeschärft, als dies bei der ersten Tasche der Fall ist.

Die dritte Tasche wird am Modell durch eine tiefe, vom dritten Schlundbogen herrührende Grube von der zweiten ge-

¹⁾ Ebenso fehlte dieselbe bei einem Embryo von 3,5 mm Länge.

²) Diese Kante ist nicht als Linie, sondern als schmales Feld zu denken. Es ist an sämtlichen Abbildungen durch eine gestrichelte Linie konturiert.

schieden. Sie ist wesentlich kürzer als diese. Immerhin kann man an ihr dieselben beiden Abschnitte wie an den vorhergehenden Taschen unterscheiden. Auch sie steht bereits mit dem Ektoderm in Berührung.

Nur eine kurze Distanz hinter ihr befindet sich das kaudale Pharynxdivertikel, welches die gemeinsame Anlage der vierten Tasche und des ultimobranchialen Körpers darstellt.¹) Sie hat

1) In meiner Arbeit über den ultimobranchialen Körper der Vögel (42) habe ich zuerst darauf aufmerksam gemacht, dass bei diesen die kaudalen Taschen, infolge der geringen Entwicklung der zwischen ihnen liegenden Bögen, vermittels einer gemeinsamen, weiten Öffnung mit dem Schlunde kommunizieren. Diese in ihrem medialen Teile daher einheitliche, nach aussen aber in drei Zipfel, entsprechend der vierten bis sechsten Tasche. auslaufende Ausbuchtung des Schlundes habe ich als kaudales Pharynxdivertikel bezeichnet. Bei den Säugetieren liegen die Verhältnisse analog. Grosser (16) spricht hier von einem kaudalen Schlundtaschenkomplex. Ein Unterschied besteht nur darin, dass bei ihnen fünfte und sechste Tasche in den meisten Fällen eine einheitliche Grube bilden. Diese wurde von den älteren Autoren Piersol (37), Prenant (39), Soulié und Verdun (48) als Divertikel der vierten Tasche aufgefasst und mit dem ventralen Divertikel der dritten Tasche homologisiert. Neuere Autoren, zu denen ich mich selbst bekennen muss (43), ferner Getzowa (10), Tandler (49), Nierstrasz (35) u. a. haben sie als die fünfte Tasche bezeichnet. Ich bin aber jetzt der Meinung, dass auch diese Ansicht dem Sachverhalt nicht entspricht, sondern dass jene Grube, bezw. das sich aus ihr entwickelnde, anfangs gestielte Säckchen - wie gesagt - durch die primäre Vereinigung zweier Taschen zustande kommt. Dies lehren nämlich die Verhältnisse beim Menschen, die ich früher nicht genügend berücksichtigt habe. Denn hier gliedert sich, wenn auch nur vorübergehend, jene Grube in zwei Teile: in eine fünfte Tasche, die sogar das Ektoderm erreichen kann (Hammar in Keibel und Elze [26]) und in den ultimobranchialen Körper. Dieser darf aber nicht etwa, wie dies die Auffassung mancher Autoren zu sein scheint, bloss als Divertikel der fünften Tasche aufgefasst werden, sondern stellt den Rest einer selbständigen Tasche, i. e. der sechsten, dar, wie wohl mit Sicherheit aus den Befunden von Greil (12) bei Anamniern, von Peter 36) bei Reptilien und von mir bei Vögeln geschlossen werden darf.

Dass bei den anderen, bis jetzt untersuchten Säugetieren fünfte und sechste Tasche als einheitliche Grube angelegt werden, ist die Folge des Fehlens des sechsten Schlundbogens, der schon bei den Sauropsiden ausserordentlich klein ist. Es ist übrigens nicht ausgeschlossen, dass, wie die Entwicklung des sechsten Schlundbogens, so auch die der fünften Tasche in vielen Fällen ganz unterdrückt ist. Die Annahme, dass sie in den übrigen Fällen in die grosse Grube hinter der vierten Tasche einbezogen ist. gründet sich noch — abgesehen von den erwähnten Verhältnissen beim Menschen — auf die Produktion verschiedenartiger Epithelformationen aus jener Grube.

die Gestalt eines kurzen, horizontal gerichteten Zapfens, dem jede Andeutung eines dorsalen Divertikels fehlt. Zwischen ihm und dem Ektoderm befindet sich eine Mesodermlage von zirka 0,095 mm Dicke.

Was die Abstände der Taschen voneinander betrifft, so konnte ich darüber durch Messungen am Modell folgendes feststellen: Die Distanz des dorsalen Divertikels der ersten Tasche von dem der zweiten beträgt 0,4 mm; ebenso gross ist die Distanz des dorsalen Divertikels der zweiten Tasche von jenem der dritten. Dagegen liegt die vierte Tasche nur 0,17 mm hinter der letzteren. In querer Richtung beträgt die Distanz der beiden dorsalen Divertikel der ersten Tasche voneinander 0,7 mm, die der zweiten Tasche 0,6 mm, jene der dritten Tasche 0,55 mm und die Distanz der beiden letzten Pharynxdivertikel voneinander 0,5 mm. Vergleicht man diese Zahlen mit jenen Maßen, die ich für die analogen Entfernungen beim jüngsten Maulwurfembryo, den ich in meiner Arbeit (41) beschrieben habe, ermittelte, so ergibt sich, dass der Schlund des Meerschweinchens von 3,8 mm

Zu den Säugetieren, bei welchen derartiges zur Beobachtung kommt, gehört auch das Meerschweinchen, wie aus der Beschreibung von Stadium VII und VIII hervorgeht. Da hier aber nur Ansätze zur Bildung einer Parathyreoidea V vorhanden sind, ohne tatsächtlich eine solche zu liefern, werde ich im folgenden jene Grube nur als die Anlage des ultimobranchialen Körpers allein bezeichnen.

Bekanntlich bestreitet Maurer, der sich gerade durch die Erforschung der Derivate der Kiemenspalten bei den Wirbeltieren grosse Verdienste erworben hat, die Kiementaschennatur dieses Körpers. In der Diskussion zu meinem Vortrag (44) betonte er, dass der Körper auch deshalb etwas von den Schlundspalten Verschiedenes sein dürfte, weil er in der Wirbeltierreihe eine fortschreitende Weiterbildung zeige, während die Schlundspalten schwinden. Es muss Maurer ohne weiteres zugestanden werden, dass der postbranchiale. nach meiner Meinung ultimobranchiale Körper, etwas von den Kiemenspalten Verschiedenes ist: aber nur hinsichtlich seiner histologischen Differenzierung. nicht hinsichtlich seiner ersten Entstehung. Nach meiner Meinung handelt es sich um die Lokalisierung einer bestimmten Organanlage (Glandula postbranchialis. Getzowa) in der jeweilig letzten Schlundtasche. Wie die dritte und vierte Kiementasche der Amnioten, im Vergleiche mit jenen niederer Wirbeltiere, rudimentär angelegt werden und nur in jenen Bezirken eine mächtigere Ausbildung erfahren, welche Epithelkörperchen und Thymus liefernso ist auch die jeweilig letzte Kiementasche bei allen Wirbeltieren unterentwickelt und nur hinsichtlich jenes Anteils ausgebildet, welcher den Mutterboden der spezifischen Drüsenanlage liefert.

Länge im ganzen etwas grössere Dimensionen als jener des Maulwurfes von 3,5 mm aufweist. Diesen Umstand könnte man vielleicht lediglich als den Ausdruck eines allgemeinen Fortschrittes in der Entwicklung gegenüber dem kleineren Maulwurfembryo auffassen. Dem widerspricht jedoch der Befund betreffend die noch fast unvereinigten Unterkieferbogen und ferner die Tatsache, dass sich die Thyreoidea noch in ihrer ersten Anlage befindet.

Diese besteht aus einer Gruppe kurzer (ca. 0,1 mm langer) Schläuche, die — auffallenderweise — nicht aus einem gemeinsamen Stiele, sondern aus einer 0,075 mm langen Strecke des rinnenförmig vertieften Mundhöhlenbodens selbst entspringen (Fig. 9). Die Schläuche besitzen eine ganz enge Lichtung und werden von einem einschichtigen Zylinderepithel von 14 μ Höhe ausgekleidet. Der ganze Komplex liegt knapp hinter der Ebene der ersten Taschen, im vorderen Ende des kopularen Teiles der zweiten Kiemenbogen, deren nach der Medianebene zu abfallende Wülste die Wand der Grube bilden. Die Schläuche erscheinen als Sprossen des Epithels der Medianlinie und dringen teils in rein vertikaler Richtung, teils in schräg nach aussen gewendetem Verlauf in das Bindegewebe ein.

So stellt sich das verschiedene Aussehen des Schlundes bei zwei Embryonen von nur geringem Grössenunterschiede als Folge der spezifischen Entwicklung der beiden Säugetierarten dar.

Ich möchte auch an die Schilderung erinnern, die Hammar (18) von dem Schlunde eines 3 mm langen, menschlichen Embryo gegeben hat. Es geht aus ihr hervor, dass hier ähnliche Verhältnisse wie beim Meerschweinchen bestehen. Als Unterschied verdient hervorgehoben zu werden, dass der zweiten und dritten Tasche das dorsale Divertikel fehlt, dass ferner nur der ventrale Abschnitt der zweiten Tasche ihre Furche erreicht, während jener der ersten und dritten vom Ektoderm durch Bindegewebe geschieden wird und dass endlich schon in diesem Stadium eine rein epitheliale Verschlussmembran der vierten Tasche zur Bildung gelangt ist. Von einer solchen habe ich — wie gleich hier bemerkt sei — beim Meerschweinchen überhaupt nichts beobachtet. Ich will aber trotzdem nicht behaupten, dass bei dieser Spezies die vierte Tasche niemals das Ektoderm erreicht, da dieses jedenfalls nur ganz kurz dauernde Stadium meiner Beobachtung auch entgangen sein kann. Haben doch beispielsweise Born (6),

Kastschenko (27) und Kallius (25) auf Grund eines reichen Materials von Schweineembryonen übereinstimmend angegeben, dass hier die Verschlussmembran der vierten Tasche stets Mesoderm enthalte. Erst kürzlich aber wurde von E. Reinke (45) ein 6 mm langer Schweineembryo beschrieben, bei dem, abgesehen von einem zweifellosen fünften Aortenbogen, auch eine rein epitheliale Verschlussmembran der vierten Spalte vorhanden war.

Auch der von Grosser (15) als Stadium VI beschriebene menschliche Embryo von 4¹/₄ mm Länge steht meinem Stadium I nahe. Doch hat sein Schlund — abgesehen von der Thyreoidea, deren Anlage beim Menschen besonders frühzeitig als tiefes und weites Säckchen hervortritt ¹) — noch nicht jene Dimensionen wie der des Meerschweinchenembryo von nahezu gleicher Grösse erreicht.

Was die Kiemenspaltenorgane betrifft, so stellt jenes der ersten Tasche eine ziemlich grosse, seichte Grube dar, die von einem hohen, mehrreihigen Zylinderepithel ausgekleidet wird und mit ihrer Spitze das hinterste Ende des Facialisganglion berührt. Das Organ der zweiten Tasche weist ähnliche Charaktere auf. doch ist die Grube hier nur an einem Schnitte deutlich ausgesprochen und so wenig charakteristisch, dass sie nur bei Kenntnis der Verhältnisse an der ersten Tasche identifizierbar ist. Das dritte Kiemenspaltenorgan ist in diesem Stadium noch nicht scharf abgegrenzt. Seine Anlage glaube ich in jenem ganzen Streifen erhöhten Epithels erblicken zu müssen, welcher gegenüber der dritten Tasche beginnt und sich nach rückwärts bis jenseits des kaudalen Pharvnxdivertikels erstreckt. Die Ganglien der Nerven VII. IX und X lassen sich niemals über die zugehörigen Kiemenspaltenorgane hinaus als abgegrenzte Zellgruppen nach rückwärts verfolgen.

Stadium II.

Der nächste Embryo, der modelliert wurde, stammt vom Muttertier Nr. 5, das unmittelbar nach dem Wurfe belegt worden war und 19 Tage später getötet wurde. Er war also um einen Tag älter als der eben beschriebene. Seine Länge betrug 5,1 mm. Zwei andere Embryonen desselben Uterus, die ich ebenfalls in Schnittserien zerlegt habe, massen 4,8 und 5 mm.

¹) Einen Versuch, das eigentümliche Aussehen der menschlichen Schilddrüse in ihrer ersten Anlage zu erklären, findet man S. 98.

Entsprechend der beträchtlichen Grössendifferenz zeigt auch der Schlund (Fig. 2 und 3) wesentlich andere Verhältnisse als beim jüngeren Embryo. Vergleicht man Fig. 3 mit Fig. 1, so fällt vor allem die beträchtliche Abnahme des dorso-ventralen Durchmessers auf. Der Breitendurchmesser hat dagegen zugenommen. Denselben Unterschied konnte ich auch beim Maulwurfe beim Vergleich der Stadien I und II (5 mm Länge) feststellen. Die Vorgänge, die nach meiner Meinung diese Gestaltsveränderung bedingen, habe ich bereits dort (S. 11 [559]) auseinandergesetzt.

Das dorsale Divertikel der ersten Tasche ist ausserordentlich stark entwickelt. Es stellt sich nach dem Modell als ein schräg zur Mittellinie verlaufender Wulst von 0,5 mm Länge und 0,085 mm Breite dar, der seine grösste Höhe von 0,2 mm nahe seinem lateralen Rande erreicht, so dass er hier ziemlich steil zur Oberfläche des Schlundes abfällt, während er sich nach der Mitte zu ganz allmählich senkt. Infolge der starken Verbreiterung des Schlundes gehört das dorsale Divertikel bei diesem Embryo zum grössten Teile der dorsalen Schlundwand selbst an; nur sein lateraler Rand ragt über die durch die Konvexitäten des ersten und zweiten Kiemenbogens bedingten seitlichen Einkerbungen des Schlundes nach aussen vor. Aus der Ebene des Schlundes biegt die an das Ektoderm grenzende Kante der Tasche auf seine ventrale Seite ab und läuft hier der ventralen Schlundwand nahezu parallel, da infolge der starken Kompression des Schlundes in der dorsoventralen Richtung die früher seitliche Schlundwand zur ventralen geworden ist. Wie aus Fig. 2 ersichtlich ist, besitzen diese ventralen Taschenabschnitte die Gestalt von flachen Bögen, deren orale Wand konvex, deren kaudale konkav ist. Sie erreichen. wie im früheren Falle, beinahe die Mittellinie. Kaudal von ihnen, genau in der Medianebene, den ersten Taschen näher als den zweiten, befindet sich der Stiel der Thyreoidea.

Die zweiten Taschen haben eine ähnliche Gestalt wie die ersten. Doch ist das dorsale Divertikel wesentlich niederer als bei diesen. Es ragt in seiner ganzen Ausdehnung über den seitlichen Schlundrand hinaus und hängt mit dem dorsalen Divertikel der ersten Tasche durch eine dem Schlundrande folgende Rinne zusammen. Der ventrale Abschnitt der Tasche erscheint durchaus als Ausstülpung der ventralen Wand des Pharynx.

Bemerkenswert ist das Verhältnis der Tasche zur äusseren Furche. Während die epitheliale Verschlussmembran der zweiten Kiemenspalte beim Embryo des Stadiums I grösstenteils sagittal steht und nur an ihrem kaudalen Ende in die Transversalebene umbiegt (ähnlich den Verhältnissen bei Stadium I des Maulwurfs). liegt in diesem Stadium die Membran in ihrer ganzen Ausdehnung beinahe quer. Hierbei bildet das Entoderm — wie dies bei allen daraufhin untersuchten Säugetieren der Fall ist - die orale, das Ektoderm die kaudale Fläche der Platte. Diese Verhältnisse sind in Fig. 10, Taf. VIII, wiedergegeben. 20 µ kaudal (Fig. 11) erscheint der äussere Teil der Tasche infolge der anliegenden Furche etwas nach der oralen Seite zu verschoben, so dass die Tasche eine leichte Biegung darbietet. Ihr am Schnitte längerer, äusserer Teil liegt der Furche an, der kürzere, innere hingegen zieht der Spitze der Furche gerade entgegen. Am folgenden Schnitt (Fig. 12) ist der äussere Teil der Tasche nur mehr flach angeschnitten, der innere bildet die geradlinige Fortsetzung der Furche. Am letzten Bilde endlich (Fig. 13) sind die Epithelzellen am lateralen Rande der Tasche und am medialen Ende der Furche verschwunden und die Lichtungen der beiden Räume demzufolge in Zusammenhang. 1)

Ebenso wie beim Meerschweinchen konnte ich den Durchbruch der zweiten Tasche im Stadium III des Maulwurfs (4 mm) feststellen, und zwar ist es auch hier die Ventralseite, an der sich die Furche in die Tasche öffnet. Da auch bei menschlichen Embryonen von 3 und 5 mm Länge durch Hammar (18) ein beiderseitiger, allerdings nicht symmetrischer Durchbruch der Verschlussmembran der zweiten Spalte beobachtet wurde, halte ich es nicht für zweifelhaft, dass die Eröffnung der zweiten Spalte zu den normalen Vorkommnissen bei den Säugetieren gehört. Ob aber dieses Ereignis in allen Fällen eintritt, muss dahingestellt bleiben, da beispielsweise an den von Grosser (15) untersuchten menschlichen Embryonen von den gleichen Entwicklungsstadien,

¹) Der Umstand, dass an den Schnitten durch das ventrale Ende der Tasche ihre laterale Grenze nicht zu erkennen ist, bildete bei der Anfertigung des Modells eine Schwierigkeit. Ich suchte sie dadurch zu umgehen, dass ich für den durchgebrochenen Teil der Tasche eine fortschreitende Verkürzung um dieselbe Grösse annahm, um die sich die Tasche in ihrem gegen das Ektoderm zu abgeschlossenen Teile verkürzt.

wie sie Hammar vorlagen, keine Kommunikation der Furche mit dem Schlunde vorhanden war. Betreffs eines Durchbruches im Bereiche der ersten Tasche verweise ich auf das bei Stadium IV Gesagte. An anderer Stelle, ausser der dort näher beschriebenen. habe ich niemals einen Durchbruch gefunden. Ebensowenig an irgendeinem Punkte der dritten. Daher schliesse ich mich bei Beurteilung der in der Literatur niedergelegten, anders lautenden Angaben, die über Eröffnung auch der ersten und dritten Schlundspalte berichten, der skeptischen Beurteilung von His (23) und Mall (29) an, die alle derartigen Bilder für Kunstprodukte, entstanden bei der Präparation und Fixierung, erklärten. Nur die von Maurer (30) beschriebenen Durchbrüche aller drei ersten Taschen bei Echidna verdienen mit Rücksicht auf die primitive Stellung dieses Säugetieres von dieser Ablehnung ausgenommen zu werden. — Über einen Durchbruch der zweiten Furche an anderer Stelle werde ich bei Stadium V berichten.

An der dritten Tasche ist ein dorsales Divertikel nicht mehr deutlich ausgebildet, so dass sie eigentlich nur dem ventralen Abschnitt der kranialen Taschen entspricht. Im Gegensatz zu diesen springt sie beinahe zur Hälfte über den seitlichen Rand des Pharvnx vor (Fig. 2). Ihre orale Fläche ist tief eingebuchtet. ihre kandale nahezu eben. Der ventrale Grund der Tasche ist von ansehnlicher Weite. An ihrer lateralen Spitze besitzt er einen kranio-kaudalen Durchmesser von 0,125 mm, nach einwärts zu verschmälert sich dieser auf 0,075 mm, am medialen Ende der Tasche verbreitert er sich aber wieder auf 0,1 mm. Indem das Entoderm im ganzen Bereiche dieses erweiterten Grundes an das Ektoderm grenzt, besteht keine lineare, sondern eine breite, flächenhafte Verbindung der beiden Keimblätter. Diese ist darauf zurückzuführen, dass sich das Entoderm nicht nur in Kontakt mit dem Epithel der dritten Furche befindet, sondern dass es sich auch eine Strecke weit über die kaudale Fläche des dritten Bogens vorgeschoben hat. — Das Epithel der Tasche ist mit Ausnahme ihres medialsten Anteils, der ihre Verbindung mit dem Schlunde herstellt, ein mehrreihiges, hohes Zylinderepithel, in dem die Mitosen aufs dichteste gedrängt liegen. Stellenweise trifft man in ihm Körnchen, die sich teils mit Eosin, teils mit Hämatoxylin färben. Ich werde auf diese noch bei späterer Gelegenheit ausführlicher zu sprechen kommen.

Am kaudalen Pharvnxdivertikel sind bereits die Anlagen der vierten Tasche und des ultimobranchialen Körpers zu unterscheiden. Ihr gemeinsamer Stiel besitzt eine Länge von etwa 0.075 mm und ist unter einem Winkel von 45° schräg nach aussen und rückwärts gerichtet. Er verlängert sich seitlich in die Anlage der vierten Tasche, kaudalwärts in die des ultimobranchialen Körpers. Doch ist die Längsachse des letzteren mehr kaudal als lateral gerichtet, so dass sie mit jener des Stiels einen nach innen offenen Winkel bildet, indessen die Anlage der vierten Tasche mit dem Stiele einen nach vorn und aussen offenen, ebenfalls sehr stumpfen Winkel begrenzt. Trotz dieser starken lateralen Entwicklung des kaudalen Pharynxdivertikels ist es jedoch dem Ektoderm nicht nähergerückt. Die Bindegewebsschicht zwischen Entoderm und Ektoderm hat sich vielmehr von 0,095 mm beim jüngeren Embryo auf 0,15 mm verdickt. Die Anlage der vierten Tasche besitzt eine weite Lichtung, die sich nach rückwärts gegen den ultimobranchialen Körper zu immer mehr verengt. Dieser ist stark abgeplattet. Seine dorsale Wand wird von einem kubischen, seine ventrale von einem hochzylindrischen Epithel gebildet.

Die Maße des Schlundes sind bei diesem Embryo, am Modell gemessen, folgende: Distanz der dorsalen Divertikel der ersten Tasche voneinander 1,58 mm, die gleiche Distanz bei den zweiten Taschen 1,45 mm, Abstand der äussersten Enden der dritten Taschen voneinander 1,2 mm, der vierten Taschen 0,7 mm. — Abstand der ersten Tasche von der zweiten ca. 0,45 mm, der zweiten von dritten 0,3 mm und der dritten von der vierten 0,25 mm. Demnach lehrt der Vergleich mit dem jüngeren Embryo, dass sich zweite und dritte Tasche genähert, dritte und vierte Tasche aber — offenbar infolge Wachstums des vierten Bogens — voneinander entfernt haben.

Was die Kiemenspaltenorgane betrifft, so steht das der ersten Furche in voller Ausbildung. Seine beiden Komponenten: die in das Mesoderm des zweiten Kiemenbogens versenkte Plakode und das anliegende Ganglion des N. facialis, bedürfen keiner weiteren Beschreibung. Ich verweise diesbezüglich auf Fig. 14.

Weniger klar ist am ersten Blick das Verhalten des zweiten Organes. Das der linken Seite ist in Fig. 15 abgebildet. Verglichen mit Fig. 14 könnte man geneigt sein, die hier vorhandene spitze

Einsenkung mit dem Grübchen an der ersten Furche zu homologisieren und daraus den Schluss zu ziehen, dass beide Wände der Einsenkung von Sinnesepithel überzogen werden. Dem widerspricht jedoch der Befund an Embryonen von 5,5 und 6 mm Länge, bei denen die Einsenkung viel schwächer als im vorliegenden Falle ausgesprochen ist. Wie sich aus der Beschreibung älterer Stadien ergeben wird, verschwindet jene Einsenkung später vollkommen. so dass die Plakode schon im Stadium IV offen auf der Wölbung des dritten Bogens gelegen ist. - Andererseits könnte man auch daran denken, dass die Einsenkung nichts anderes als den dorsalen Anfang der dritten Furche darstellt. Hierzu könnten besonders die Fig. 10--13 Veranlassung geben, an denen jene Einsenkung der dritten Tasche annähernd gegenüber liegt. Aber die Verfolgung der Serie lehrt sowohl in diesem Falle wie bei den anderen Embryonen ähnlicher Grösse, dass die wirkliche, sehr seichte dritte Furche erst weiter kaudal auftritt. Meiner Meinung nach muss jene Einsenkung als Folge der starken Entwicklung der benachbarten Partie des dritten Kiemenbogens betrachtet werden, welche in Form eines Höckers vorspringt, der das Kiemenspaltenorgan teilweise nach aussen bedeckt. Dieser Höcker besitzt, wie aus dem Vergleiche der Fig. 15 und 16 erhellt, eine grosse Ahnlichkeit mit der Retrobranchialleiste. Wie jener dorsal vom Organe des Glossopharvngens, so befindet sich die letztere dorsal von dem des Vagus. Aus dieser Übereinstimmung der Form darf wohl auf die gleiche physiologische Bedeutung der beiden Bildungen geschlossen werden. Diese kann nur in einem mechanischen Schutze des unter dem Höcker zur Anlage kommenden Sinnesorgans erblickt werden, so dass die Retrobranchialleiste von diesem Gesichtspunkte aus als Schutzorgan des Kiemenspaltenorgans III gedeutet und ihre mächtige Entwicklung durch die Grösse dieses letzteren erklärt werden muss. - Der Höcker auf dem dritten Bogen verschwindet später dadurch, dass das Bindegewebe unter dem Kiemenspaltenorgane zunimmt und es ins Niveau des Bogens emporhebt. Die Funktion des Höckers wird von der Retrobranchialleiste übernommen, die unterdessen an Mächtigkeit zugenommen hat und den in der Tiefe der Halsbucht liegenden Bogen nun selbst überdeckt.

Die Anlage für das Organ des Vagus erstreckt sich, wie im früheren Stadium, über den ganzen Bezirk erhöhten Epithels, Archiv f. mikr. Anat. Bd. 82. Abt. L.

das vom dritten Kiemenbogen bis zur Retrobranchialleiste reicht. In diesem war an dem noch unzerlegten Embryo ein fünfter Kiemenbogen als kleiner Wulst von der halben Länge des vierten unter dem stereoskopischen Mikroskop deutlich zu erkennen.¹) Er tritt an den Schnitten an jener Seite, von der die Fig. 10—13 stammen, nicht klar hervor, wohl aber auf der linken. Ich gebe von ihm in Fig. 16 eine Abbildung. Der Schnitt ist annähernd frontal durch die Kiemenbogenregion geführt. Er trifft die Kuppe des ersten und zweiten Schlundbogens und schneidet den vierten und fünften durch deren Mitte. Das dorsale Ende des letzteren geht in den vierten Kiemenbogen über, sein unteres verschmilzt mit der nach der Ventralseite umgebogenen Retrobranchialleiste. Ein eigentlicher Arterienbogen fehlt in ihm, sein dichtzelliges Gewebe wird durch Kapillaren, die einerseits aus dem vierten Arterienbogen, andererseits aus der Aorta dorsalis stammen, versorgt.

Mit Rücksicht auf die Gestalt der Retrobranchialleiste kann in diesem Stadium bereits von einem wohl ausgebildeten Sinus cervicalis gesprochen werden. Das Ektoderm des dritten Bogens ist mit Ausnahme des zweiten Kiemenspaltenorgans und seiner Umgebung von ungefähr der gleichen Dicke wie das des zweiten. Dieselbe schwankt zwischen 12 und 16 µ. Dagegen werden vierter und fünfter Bogen durchwegs von einem 32-40 u hohen, mehrreihigen Zylinderepithel überzogen. Ein gleiches Epithel bedeckt auch die dem Sinus cervicalis zugekehrte Seite der Retrobranchialleiste. Dieses eigentümliche Verhalten des Ektoderms scheint mir - wie ich bereits bei Stadium I bemerkt habe - durch seine Beziehung zum dicht anliegenden Vagusganglion bedingt. Es liegen hier ähnliche Verhältnisse vor, wie sie zuerst von Froriep (9) bei Selachiern (Torpedo) beschrieben wurden, wo anfangs, abgesehen von der dorsalen Anlage der Organe der Seitenlinie, auch eine ventrale Verbindung der Ganglien des Vagus mit dem Ektoderm existiert. Nach der Angabe Frorieps löst sich dieses später vom Nerv ab und wuchert als Teilanlage der Thymus gegen das Bindegewebe. Die nachfolgenden Autoren Antipa (3), Beard (4), Hofmann (24) und neuestens Maximow (33) haben dem allerdings widersprochen und finden

¹) Wie hier, war ein fünfter Kiemenbogen auch an den übrigen Embryonen dieses Stadiums, sowohl bei der Besichtigung in toto, als an den Schnitten nachweisbar.

in älteren Stadien eine deutliche Sonderung der ektodermalen Plakode von der entodermalen Thymusknospe. Immerhin bleibt die räumliche Beziehung der beiden Epithelmassen bei dieser tief stehenden Wirbeltierklasse mit Rücksicht auf das Schicksal des Cervicalbläschens bei einigen Säugetieren eine bemerkenswerte Erscheinung.

Die Schilddrüse hängt in diesem Stadium, wie bereits erwähnt wurde und auch aus der Abbildung des Modells ersichtlich ist, mit dem Schlunde noch zusammen. Ihr Stiel stellt ein Röhrchen von ca. 0.08 mm Länge dar, dessen Wand von einem einschichtigen, kurz zylindrischen Epithel gebildet wird, das ein enges Lumen einschliesst, welches sich am Ursprung des Stiels trichterförmig nach der Pharvnxhöhle erweitert. Er besitzt eine ventro-kaudale Verlaufsrichtung und erstreckt sich unverästelt bis zum Ursprung der zweiten Arterienbögen aus den ventralen Aorten. Hier löst er sich, wie die Fig. 10-13 zeigen, in ein Netz von grösstenteils soliden, nur hie und da die Andeutung einer Lichtung zeigenden Schläuchen auf, die von kleinen, dicht gedrängten, kubischen Zellen mit runden, basal liegenden Kernen aufgebaut werden. Sie breiten sich ventral von den im kranialen Teile unvereinigten, weiterhin zum unpaaren Truncus arteriosus verschmolzenen ventralen Aorten aus und erreichen ihr Ende am Ursprung der dritten Arterienbögen. Der Körper der Schilddrüse selbst besitzt eine Länge von 0,12 mm.

Vergleicht man diesen Befund mit dem Verhalten der Thyreoidea beim Embryo von 3,8 mm Länge, so ergibt sich, dass ihr Stiel, der Ductus thyreoglossus, durch Vertiefung jener Grube zustande gekommen sein dürfte, deren Boden beim jüngeren Embryo die Schläuche geliefert hatte. Denn wäre er aus der Verlängerung der Schläuche selbst hervorgegangen, so müsste er in der Mehrzahl vorhanden sein, was ich jedoch in keinem Falle beobachtete.

Eine ähnliche Grube wie beim Meerschweinchen ist auch beim Kaninchen vorhanden. Guthzeit (17), der die Entwicklung der Schilddrüse an den Serien von C. Rabl studierte, schreibt diesbezüglich: "Hier bildet sich die Anlage der Thyreoidea als flache einheitliche Epithelverdickung, die den aboralen Teil einer tiefen Grube zwischen den beiden Hälften des zweiten Kiemenbogens einnimmt." Das Schicksal dieser Grube ist jedoch von dem

des gleichen Gebildes beim Meerschweinchen verschieden, indem sie später durch wucherndes Epithel ausgefüllt wird. Bei weiterer Zellproliferation tritt an ihre Stelle sogar ein kleiner Hügel (Tuberculum thyreoideum), der erst schwindet und sogar durch eine abermalige Einziehung des Mundhöhlenbodens abgelöst wird, wenn sich die kompakte Schilddrüsenanlage von letzterem abtrennt.¹)

Eine besondere Ausdehnung und Tiefe besitzt jene Grube beim Menschen. Grosser (15) fand sie hier bei Embryonen mit 9-10 und 13-14 Urwirbeln als ein Divertikel, das einen grossen Teil der ventralen Schlundwand zwischen erster und zweiter Tasche einnimmt. Bei einem Embryo mit 23 Urwirbeln. von 2,5 mm grösster Länge, hat sich das Säckchen in eine ungestielte Blase umgewandelt; 2) bei einem Embryo von 5 mm sind bereits ein solider Ductus thyreoglossus von 100 u Länge und ein ebenso langes dickwandiges Bläschen zu unterscheiden. Meiner Meinung nach dürfte jener aus dem proximalen, dieses aus dem distalen Teile des Divertikels hervorgegangen sein. Die Grösse des letzteren erklärt sich dann daraus, dass die Anlage des Ganges beim Menschen von Anfang an deutlich vom Mundhöhlenboden abgesetzt ist, während er bei anderen Säugetieren erst nachträglich in dem Maße zur Ausbildung kommt, als die mit dem Schlunde noch verbundene Schilddrüse in die Tiefe rückt.

Stadium III.

Embryo 6,5 mm, 20 Tage alt. — Von dem Schlunde desselben wurde das in Fig. 4 abgebildete Modell angefertigt, demzufolge seine Maße betragen: Abstand der äussersten Enden der ersten Taschen voneinander 1,7 mm, der zweiten 1,6 mm, der dritten 1,3 mm, der vierten 0,8 mm. Es haben sich demnach die Taschen in querer Richtung abermals verlängert. — Abstand des

¹) Eine ältere Arbeit über die Entwicklung der Schilddrüse des Kaninchens stammt von Kallius (25), der in derselben die Bezeichnung "Tuberculum thyreoideum" zuerst verwendet. Kallius hat offenbar das 1. Stadium, die Grube zwischen den zweiten Kiemenbögen nicht gekannt, da er seine Beschreibung sofort mit der Schilderung des epithelialen Hügels beginnt.

³) Diese liegt knapp unter dem Mundhöhlenboden, so dass derselbe dadurch vorgewölbt wird. Es existiert demnach auch beim Menschen ein Tuberculum thyreoideum, wenn es auch in anderer Weise als beim Kaninchen zustande kommt. Grosser bezeichnet es — einem älteren Brauche noch folgend — als Tuberculum impar.

dorsalen Endes der ersten Tasche von jenem der zweiten 0,65 mm. der ventralen Enden derselben Taschen voneinander 0,3 mm. Abstand der zweiten von der dritten ca. 0,3 mm, des unteren Endes der dritten von der vierten ca. 0,2 mm. Die Zunahme der Distanz zwischen den dorsalen Divertikeln der beiden vordersten Taschen ist, wie aus dem Vergleiche der Fig. 3 und 4 hervorgeht, durch die sehr starke Schräglagerung der ersten Tasche bedingt. welche ihrerseits wieder die Folge von Wachstumsvorgängen im Gebiete des ersten und zweiten Kiemenbogens ist. Die bedeutende Verbreiterung des letzteren bildet auch die Ursache der aus dem Vergleiche der Fig. 1, 3 und 4 ersichtlichen fortschreitenden Annäherung der zweiten an die dritte Tasche. Da sich aber der dritte Bogen nicht im gleichen Maße zurückbildet, bezieht sich jene Annäherung nur auf die Randbezirke der Tasche, so dass diese im ganzen am Modell eine nach rückwärts konkave Platte darstellt.

An der dritten Tasche, die annähernd senkrecht zum Schlund gerichtet ist, fällt die bedeutende Länge ihres freien Randes auf. Sie beträgt 0.35 mm gegen 0.25 mm in Stadium II und 0.15 mm in Stadium I. — Was bei Stadium II von der Lage der Verschlussplatte der zweiten Spalte gesagt wurde, gilt hier auch für die dritte. Die Verschlussplatte steht nicht parallel, sondern senkrecht zur Achse des Schlundes, eine Folge davon, dass die Tasche nicht mit zugeschärftem Rande an der Berührungsstelle mit der äusseren Furche endigt, sondern sich noch ein Stück weit über die kaudale Fläche des dritten Bogens nach aussen vorgeschoben hat. Ihr Durchmesser beträgt ca. 0,072 mm, wovon je 32 u auf die Dicke der beiden Epithelflächen und 8 µ auf die Lichtung entfallen. Die Epithelzellen besitzen eine sehr deutliche Längsstreifung. Da die Zahl ihrer Einschlüsse, die bereits beim Embryo des vorigen Stadiums erwähnt wurden, zugenommen hat, so mögen hier einige nähere Angaben über sie eingeschoben werden.

Zunächst sei hervorgehoben, dass sie sich, wie in der dritten Tasche, auch an anderen Stellen des Schlundes, z.B. in seinem dorsalen, rinnenförmig vertieften Grunde, an der Mündung der zweiten Tasche, im ultimobranchialen Körper usw., vorfinden. Am häufigsten trifft man sie in der Tiefe von Buchten und auf der Kuppe von Vorsprüngen, seltener dort, wo das Epithel eine

ebene Fläche überzieht. Aber auch im Bindegewebe der Kiemenbogen sind sie enthalten. Die Gestalt der Einschlüsse ist im allgemeinen kugelig, ihre Grösse schwankend. Bei Hämatoxylin-Eosin-Färbung erscheinen sie in allen Übergängen von blassrosa bis zu einem leuchtenden Rot. Ausserdem enthalten viele noch Kügelchen, Fasern oder unregelmässige Brocken von blauer Farbe. Sie sind bald nur einzeln in den Zellen enthalten und liegen dann meist an ihrer freien Seite, bald füllen sie die Zellen aufs dichteste aus.

Maximow betont, dass diese Einschlüsse von derselben Natur wie jene sind, die ihm schon gelegentlich seiner ersten Untersuchungen über Blut und Bindegewebe bei Säugetierembryonen (Kaninchen) aufgefallen waren (31). Damals beschrieb er sie in Mesenchymzellen und hob ihr Vorkommen in jenen des Kopfes, der Kiemenbogen, gewisser Teile des Septum transversum, ferner in den Zellen zwischen den Urnierenkanälchen und neben der Allantois hervor. Gelegentlich seiner Untersuchungen über die Histogenese der Thymus fand er sie in besonderer Menge im Epithel des Sinusbläschens bei Meerschweinchenembryonen auf und betonte bei dieser Gelegenheit, dass sie sich vor allem dort anzuhäufen scheinen, "wo Epithelschichten oder -falten sich abschnüren oder verschmelzen". An einer solchen Stelle wurden sie auch bereits von C. Rabl (41) beschrieben: Es ist die Ablösungsstelle des Linsensäckchens von der Epidermis. Die Beobachtung meines Vetters bezieht sich auf Kaninchenembryonen.1) Ich finde beim Meerschweinchen dasselbe. Hier liegen die Körner im vorliegenden Stadium gerade in jenen Zellen, welche die Verbindung der vorderen Linsenwand mit der Epidermis vermitteln und später aus ihrem Verbande ausgestossen werden, um im Innern der

¹) Seine diesbezügliche Angabe lautet: "Schon zur Zeit, wenn die Einstülpungsöffnung noch sehr weit ist, bemerkt man in den Zellen, welche die Öffnung begrenzen, einzelne sehr stark lichtbrechende, homogene Körner: dieselben verhalten sich gegen Färbemittel (Boraxkarmin, Hämatoxylin, Alaunkochenille) ganz so, wie die chromatische Substanz der Kerne, sind aber von dieser leicht zu unterscheiden, da sie ganz ausserhalb der Kerne liegen. Ich glaube nicht, dass sie auf den Zerfall von Kernen zu beziehen sind, sondern halte sie für Zelleinlagerungen oder Zellprodukte mehr sekundärer Art. Sie kommen zwar auch an anderen Stellen der Linsenanlage vor, sind aber nirgends so konstant und zahlreich, wie an den Rändern der Einstülpungsöffnung."

Linse zugrunde zu gehen. — Erwähnenswert erscheint mir ferner. dass man dieselben Kugeln wie im Innern der Zellen auch frei im Schlunde, als Auflagerung auf das Epithel, antrifft. Diese extrazellulären Kugeln finden sich am häufigsten dort, wo die Epithelzellen unter ihnen mit Einschlüssen vollgepfropft sind, und unterscheiden sich nur dadurch von den intrazellulären, dass sie eine viel geringere Affinität zu den Farbstoffen als diese besitzen. Zusammengehalten mit dem Vorkommen der Einschlüsse in Zellen, die für den Körper nachweislich nicht in Betracht kommen, darf aus dem Befunde freier Kugeln wohl geschlossen werden, dass sie Anhäufungen von Exkretionsstoffen darstellen. die, wenn sie nicht eliminiert werden, einen schädigenden Einfluss auf die Zellen auszuüben vermögen. Eine ähnliche Ansicht hat auch Maximow, allerdings nur vermutungsweise, geäussert, indem er schreibt (31); "Es ist möglich, dass die Substanz der Einschlüsse nachträglich als ein besonderes Sekret von den Zellen ausgeschieden wird; dafür sprechen die weiter unten beschriebenen Befunde bei der Entwicklung der Gefässanlagen im Körperparenchym".

Maximow glaubte, dass jene Gebilde in der Literatur noch unbekannt seien. Dass dies irrtümlich war, beweist das Zitat aus der Arbeit C. Rabl's. Ferner scheint es mir auch nicht zweifelhaft, dass die hier behandelten Zelleinschlüsse mit den "chromatophilen Körnchen" identisch sind, die Bonnet (5) in der Region der ventralen Urmundlippe, in der Kloakenhaut und a. a. O. bei Schaf- und Hundeembryonen beschrieben und als den "Ausdruck lebhaften Stoffumsatzes" betrachtet hat. Bonnet verweist 1. c. auf Strahl, der sie in der Wand des Augenbechers gefunden hatte. Mir selbst sind sie noch aus der Gegend des Canalis neurentericus bei Entenembryonen bekannt. Hierher dürften auch jene roten und blauen Kugeln gehören, die von vielen Autoren in der Epidermis von Amphibienlarven beobachtet wurden und eine grosse, nicht gerade günstige Rolle in der Pigmentfrage gespielt haben. Ob die nach der Angabe von v. Schumacher (47) in der Bursa Fabricii der Vögel vorkommenden Einschlüsse gleichfalls hier angereiht werden dürfen, muss noch dahingestellt bleiben, obgleich die Beschreibung, die v. Schumacher von ihnen gibt, sehr dafür spricht. v. Schumacher selbst rechnet seine Einschlüsse den tingiblen Körperchen

zu, welche bekanntlich von Flemming zuerst in Lymphdrüsen beschrieben wurden.¹)

Betrachten wir nach dieser Abschweifung noch das kaudale Pharynxdivertikel (Fig. 4), so sehen wir vierte Tasche nnd ultimobranchialen Körper aufs deutlichste geschieden. Die sie trennende Mesodermmasse entspricht dem fünften Bogen (Taf. VIII, Fig. 17). der als ansehnlicher Wulst nach der Lichtung des Schlundes zu vorspringt, aber auch an der äusseren Oberfläche als kleiner Höcker zutage tritt. Das Gefäss knapp unter dem Entoderm (s. Abb.) steht dorsalwärts in nachweislichem Zusammenhang mit dem sechsten Aortenbogen. Ventralwärts aber, gegen den vierten Arterienbogen zu, liess es sich nicht weiter verfolgen. Immerhin ist es wahrscheinlich, dass es dem fünften Arterienbogen entspricht oder zumindest einem jenen ersetzenden Kapillarbezirke angehört. — Die vierte Tasche kommt nach Lage und Gestalt der dritten näher als im vorigen Stadium. Der ultimobranchiale Körper bildet, wie beim jüngeren Embryo, einen kaudal- und ventralwärts gerichteten Zapfen. Dieser ist rechts kurz und breit, links länger und schmäler.

Die Thyreoidea hat bereits durch Rückbildung des Ductus thyreoglossus ihre Verbindung mit dem Boden der Mundhöhle verloren. Da sie bei einem Embryo, der mit einer Länge von 6 mm zwischen Stadium II und III steht, noch mit ihm zusammenhängt, dürfte die Unterbrechung erst vor kurzem erfolgt sein. Auch ist die Abschnürungsstelle noch zu erkennen, indem von der der Thyreoidea nächst gelegenen Region des Schlundes ein kurzer hohler Zapfen in Richtung auf die Thyreoidea abgeht. Das Organ besteht — wie im vorigen Stadium — aus Schläuchen, die teils netzartig miteinander verbunden sind, teils als Sprossen dieses Netzes blind endigen. Die Schläuche sind von einem einschichtigen Epithel ausgekleidet und enthalten stellenweise eine ganz enge Lichtung.

Die Kiemenspaltenorgane dieses Embryo zeigen sich auf beiden Seiten nur um weniges gegen das jüngere Stadium vorgeschritten. Am Facialisorgane lässt sich erkennen, dass der Eingang in das Grübchen, welches die Plakode enthält, enger geworden ist. — Das Glossopharvngeus-Organ wird aboralwärts

¹) Vielleicht sind übrigens auch die "tingiblen Körperchen" und "chromatrophilen Körnchen" identische Gebilde.

nur mehr von einem ganz unbedeutenden Wulste begrenzt, dessen Epithel niedriger und mit Eosin schwächer färbbar ist als das Organ selbst, so dass man über die Ausdehnung des letzteren nicht in Zweifel sein kann. — Im Bereiche des vierten und fünften Schlundbogens breitet sich das kaudale Ende des Vagus-Ganglions noch flächenhaft unter dem erhöhten Epithel aus.

Stadium IV.

Der Embryo, den ich im folgenden beschreiben will, besass eine Länge von 8,2 mm. Das Muttertier hatte 21 Tage vorher geworfen und war darauf sofort belegt worden. Ausser diesem Embryo war nur noch einer von 7,8 mm im Uterus enthalten gewesen.

Vom Schlunde des Embryo wurde wieder ein Modell angefertigt (Fig. 5 und 6), doch unterblieb die Darstellung der ersten Tasche, da diese in den folgenden Auseinandersetzungen keine weitere Berücksichtigung erfahren soll. Nur auf ihr Kiemenspaltenorgan werde ich noch zurückkommen. Die Maße des Schlundes sind folgende: Abstand der seitlichsten Punkte der zweiten Taschen voneinander 1,8 mm, der dritten Taschen 1,5 mm. der vierten 0,75 mm. Es sind demnach die vorderen Taschen in transversaler Richtung weiter gewachsen, die vierten Taschen aber sind etwas zusammengerückt. Sie haben offenbar eine Kompression in querer Richtung erfahren, derzufolge ihre Längsachse in die Sagittalebene abgelenkt wurde, während sie früher, wie bei den anderen Taschen, in der Transversalebene lag. — Der Abstand des lateralsten Punktes der zweiten von dem vordersten Punkte des Randes der dritten Tasche beträgt 0,2 mm, jener des hintersten Punktes des Randes der dritten Tasche von der ventralen Spitze der vierten ebenfalls 0,2 mm. von ihrer Mitte 0,25 mm und vom dorsalen Ende derselben 0,3 mm. Somit haben sich die Kiemenbogen von Stadium III auf IV ebenso wie von Stadium II auf III in kranio-kaudaler Richtung verbreitert. Überdies erfuhren sie auch eine Veränderung ihrer Gestalt, wie aus der Veränderung der Gestalt der Taschen geschlossen werden muss.

In dieser Beziehung verdient vor allem hervorgehoben zu werden, dass die Verlängerung der zweiten Tasche in kaudaler Richtung weitere Fortschritte gemacht hat. Wie aus Fig. 6 hervorgeht, ist es derjenige Punkt, in dem sich lateraler und ventraler Rand treffen, welcher am weitesten kaudalwärts vorgerückt ist. Infolgedessen verläuft ihr ventraler Rand nicht mehr transversal, sondern schräg von innen und vorn nach aussen und rückwärts, und man sieht bei Betrachtung des Schlundes von der Ventralseite nicht, wie in Fig. 2, auf die Kante, sondern auf die Fläche der Tasche. Auch hat sich die ventrale Kante vollkommen vom Ektoderm abgelöst, das jetzt nur mehr mit der lateralen Kante innerhalb eines schmalen Streifens zusammenhängt.

Eine Entwicklung in ähnlicher Richtung hat auch die dritte Tasche eingeschlagen. Während sie beim Embryo des Stadium II so gelagert ist, dass sie bei Betrachtung des Schlundes von der Ventralseite dem Beschauer ihre aborale Fläsche zuwendet, im Stadium III hinwiederum nahezu senkrecht zur Schlundwand liegt, sieht man in Fig. 6 auf ihre orale Fläche. Diese Gestaltsveränderung ist offenbar dadurch bedingt, dass sich ihr mediales Ende nach rückwärts stark verbreitert hat, während ihre laterale Spitze (Fig. 2, 1. Sp.) die frühere Lage beibehielt. Infolgedessen verläuft auch die mit dem Ektoderm zusammenhängende Kante der Tasche (l. R. Fig. 6) nicht mehr annähernd 'senkrecht zur Längsachse des Schlundes, sondern bildet mit ihr einen nach vorne offenen Winkel von 45%, indem sie dem Schlundrand parallel zieht. Aus dem gleichen Grunde erscheint die Tasche in ihrer ganzen Ausdehnung als rein seitliche Ausbuchtung des Schlundes. da eben ihr medialer Abschnitt aus diesem herausgerückt ist.

Aus dem Modell, sowie aus dem Querschnittsbild der Tasche (Fig. 18) ergibt sich, dass ihre orale Fläche nahezu plan ist, während sich ihre kaudale Wand gegen das Bindegewebe zu vorwölbt. Diese Konvexität der kaudalen Fläche nimmt vom dorsalen zum ventralen Rande zu. Daher ist auch die Tasche in ihrer dorsalen Partie schmäler, sie misst dort nur ca. 64 μ , während sie in ihrer ventralen Region breiter ist (bis zu 90 μ). Da die Lichtung durchwegs nur 10—12 μ beträgt, erscheint diese Verbreiterung der Tasche nur als eine Folge der Zunahme der Höhe des Epithels. — Die bei Schilderung des vorigen Stadium eingehend erörterten chromatophilen Körner sind auch hier in der dritten Tasche zu finden. Ausserdem werden sie im dorsalen Divertikel der ersten, im kaudalen Pharynxdivertikel, in der

Epidermis über dem dritten Bogen, über der Retrobranchialleiste usw. angetroffen.

Das kaudale Pharynxdivertikel entspringt aus dem hintersten Ende des Schlundes. 0,12 mm dahinter trennt sich dieser bereits in Kehlkopf und Speiseröhre. Den gemeinsamen Stiel der vierten Tasche und des ultimobranchialen Körpers bildet der ventralwärts etwas ausgebuchtete Schlundrand (Fig. 5). An der vierten Tasche lässt sich ein dorsales Divertikel und ein ventraler Abschnitt aufs deutlichste unterscheiden. In ähnlicher Gestalt, jedoch eines dorsalen Divertikels entbehrend, erscheint die Anlage des ultimobranchialen Körpers. Sein erweitertes Ende liegt ventraler als das Ende der vierten Tasche, die er in allen Dimensionen an Grösse übertrifft. Der zwischen beiden Bildungen befindliche Mesodermwulst, den ich in Fig. 19 abgebildet habe, stellt den fünften Kiemenbogen dar.¹)

Von den Kiemenspaltenorganen weist jenes des Facialis ein höchst interessantes Verhalten auf, da es in diesem Stadium einerseits von der Epidermis abrückt, andererseits sich nach der ersten Kiementasche zu eröffnet. Bei der Entfernung von der Epidermis verwandelt sich sein hohler Zugang in einen kurzen, soliden Zellstrang. Der Durchbrüch in die Tasche ist beim vorliegenden Embryo erst auf der linken Seite eingetreten. Daher erscheint das Organ auf der rechten Seite als kleines, etwas abgeplattetes Bläschen, das dem dorsalen Divertikel der ersten Tasche aufgelagert ist. Links hingegen bildet es die gegen das Ganglion geniculi gekehrte Kuppe der ersten Tasche selbst. Dieses letztere Verhalten zeigen die Fig. 20—22. Beim zweiten, etwas kleineren Embryo desselben Muttertieres liegen die gleichen Verhaltnisse

¹⁾ Am Modell dieses Embryo ist beiderseits zwischen dritter Tasche und kaudalem Pharynxdivertikel eine kleine Ausbuchtung des Schlundes zu bemerken (Fig. 5 und 6 bei *). Sie gleicht jener, die von Tandler (49) an dem Modell eines menschlichen Embryo von 9,5 mm grösster Länge noch hinter der letzten Schlundtasche beobachtet wurde. Die von Tandler ins Auge gefasste Möglichkeit, dass dieselbe vielleicht als sechste Schlundtasche aufzufassen wäre, wurde bereits von Grosser (16) mit Rücksicht auf ihre Lage kaudal vom ultimobranchialen Körper abgelehnt. Da die im vorliegenden Stadium vorhandene Ausbuchtung an den Modellen der älteren Stadien fehlt, wird durch diesen Fall die Richtigkeit der Anschauung des letzteren Forschers bewiesen, "dass solche Divertikel wahrscheinlich bedeutungslos und rasch vergänglich sind".

wie auf dieser Seite vor. Von einem Embryo von 8 mm (20 Tage alt) stammen die in Fig. 23-25 wiedergegebenen Schnitte. Am ersten Bild erscheint das Kiemenspaltenorgan von der Epidermis durch eine ansehnliche Bindesubstanzschicht getrennt: von der ihm anliegenden ersten Tasche ist nur deren dorsale Wand zu sehen, die flach getroffen ist. In Fig. 24 liegt die Öffnung vor, durch welche an diesem Embryo das Organ noch nach aussen kommuniziert. Am folgenden Schnitt befindet sich an ihrer Stelle die ziemlich breite Verschlussmembran der ersten Tasche, während sich ihre Lichtung ohne Unterbrechung bis in das Kiemenspaltenorgan erstreckt. Bei einem Embryo von 8,5 mm Länge aus dem Anfang des 22. Tages zeigt das Organ auf der rechten Seite noch das ursprüngliche Aussehen, nur ist der Eingang in seinen Hohlraum wesentlich enger als in jüngeren Stadien. Dagegen ist es links bereits mit dem dorsalen Divertikel der ersten Tasche in Verbindung getreten, indem die sie trennende Epithellamelle in einen losen Zellhaufen zerfallen ist.

Aus diesen Befunden ergibt sich, dass beim Meerschweinchen nicht nur ein Durchbruch der zweiten, sondern auch der ersten Tasche nach aussen stattfindet, der jedoch mit jenem nicht in Parallele gestellt werden darf, sondern nur eine Folge der Beziehungen der Tasche zum Kiemenspaltenorgane ist. Das letztere wird dadurch in das dorsale Divertikel aufgenommen und zu einem Teil der Anlage des tubo-tympanalen Raumes.

In der Literatur über die Kiementaschen der Säugetiere habe ich keine gleich lautende Angabe entdecken können. Beim Menschen, dessen Mittelohrentwicklung von Hammar (18) genau verfolgt wurde, scheint die erste Kiementasche immer allseits geschlossen zu bleiben. Beim Rinde hat Froriep (8) wohl in einem Falle den Durchbruch der ersten wie der beiden folgenden Taschen nach aussen beobachtet, doch besass hier die Durchbruchstelle eine grössere Ausdehnung und war nicht auf das oberste Ende der Furche beschränkt. Wahrscheinlich lag übrigens ein Artefakt vor. Das Schicksal der Kiemenspaltenorgane selbst hat Froriep mangels Materials nicht näher untersucht. Bei einem Rinderembryo von 12 mm Länge beschreibt er das Facialisorgan als einen "sich konisch verengernden Epithelschlauch, der aber fast bis zur Berührungsstelle mit dem Ganglion ein offenes Lumen besitzt. Bei Embryonen von 15.5 mm Körperlänge scheint es,

"dass sich die trichterförmige Einsenkung der Epidermis vom Ganglion abgelöst und zurückgezogen hat". Jene ist zwar noch vorhanden, doch sind "am Ganglion keine Reste rückgebildeten Epidermisgewebes" zu finden.

Beim Maulwurf habe ich gelegentlich meiner Untersuchungen über das thyreo-thymische System dieses Tieres auch die Kiemenspaltenorgane berücksichtigt. Doch klafft auch bei mir eine - wenn auch wesentlich kleinere - Lücke wie bei Froriep. Im Stadium IV (Embryo von 6 mm) erscheint das Facialisorgan noch in voller Ausbildung, von oberflächlicher Ahnlichkeit mit einer Geschmacksknospe, und mit dem Ganglion geniculi durch einen dünnen, ganglienzellhaltigen Nervenstrang verbunden. In Stadium V hingegen (Embryo ebenfalls nur von 6 mm Länge. aber in jeder Beziehung weiter entwickelt als im früheren Stadium) war es restlos verschwunden. Möglicherweise geht es in der Tat beim Rinde wie beim Maulwurf zugrunde, ohne sich in die Hvomandibulartasche eröffnet zu haben. Immerhin laden jedoch die Befunde beim Meerschweinchen zu einer ergänzenden Untersuchung ein. Die meisten anderen Autoren, die sich mit der Entwicklung und dem Schicksale der Kiementaschen beschäftigten. haben der Kiemenspaltenorgane überhaupt keine Erwähnung getan. Erst in der allerletzten Zeit wurden sie wieder beachtet (Hammar und seine Schüler), ohne dass jedoch interessante Befunde über jene Organe beschrieben worden wären. Sie werden wohl, wie Maximow (33) ausführt, von der Mehrzahl der Forscher für Epidermisbezirke gehalten, deren alleinige Aufgabe es ist. den Ganglien der Hirnnerven nachträglich noch Zellmaterial zuzuführen. Dass ihnen jedoch diese Bedeutung nicht, oder wenigstens nicht ausschliesslich, zukommt, lehrt das Aussehen jener Organe bei gewissen Klassen niederer Wirbeltiere. Unter diesen verdienen vor allem die Dipnoer genannt zu werden.

Wie Greil (13) an Ceratodus (Stadium 43—48 des Semonschen Materiales) nachweisen konnte, entwickeln sich hier an allen sechs Schlundtaschen Kiemenspaltenorgane, die mit den benachbarten Ganglien der Kopfnerven in Verbindung treten, und von denen das erste eine besondere Ausbildung erfährt. Im Stadium 45 beginnt es sich von der Epidermis abzuschnüren und liegt einem quergestellten, taschenförmigen Divertikel an, das aus dem dorsolateralen Ende der ersten Schlundtasche hervorgegangen ist. Bei

Embryonen aus dem Stadium 48 ist die Verbindung mit der Epidermis unterbrochen "und es erscheint dann der mit dem dorsolateralen Ende der ersten Schlundtasche in unmittelbarem Zusammenhange stehende ektodermale Zellkomplex in die Tiefe gerückt, woselbst er in einer kleinen, grübchenförmigen Einsenkung der lateralen Wand des Chondrokraniums seine Lage hat". - Leider konnte das weitere Verhalten an älteren Embryonen nicht festgestellt werden. Ob es bei erwachsenen Formen noch erhalten ist, muss im Hinblick darauf, dass in der Literatur keinerlei Angaben darüber vorliegen, bezweifelt werden. Dagegen ist es bei Protopterus und Lepidosiren in voller Funktion. Bei der ersteren Art wurde es von Pinkus (38) entdeckt, der in ihm ein "Derivat des Seitenkanales" erblickte. Agar (1) untersuchte seine Entwicklung, aber gleichfalls ohne den Verdacht zu schöpfen, dass hier ein Kiemenspaltenorgan vorliege, obwohl er den Nachweis erbrachte, dass es vom Epithel der ersten Schlundfurche seinen Ausgang nimmt und keine Beziehung zu den Organen der Seitenlinie besitzt. Bei beiden letztgenannten Dipnoerarten stellt es sich schliesslich als ein Bläschen dar, aus dem mehrere dünne, blind endigende Kanäle entspringen, und das an einer Stelle ein hohes Sinnesepithel trägt, während es im übrigen von einem einschichtigen Epithel ausgekleidet wird.

Auch bei einigen Selachier- und Ganoidenarten scheint sich das Organ der ersten Schlundtasche zu einem bleibenden Sinnesorgan auszugestalten.¹)

Was sein Schicksal beim Meerschweinchen anbelangt, so kann ich darüber vorläufig keine Aufschlüsse geben. Vielleicht würde man solche erhalten, wenn man Rekonstruktionen der ersten Schlundtasche älterer Stadien anfertigen würde. Es sei nur bemerkt, dass man noch bei Embryonen zwischen 9 und 10 mm Scheitel-Steisslänge einerseits die Verbindung der Spitze des dorsalen Divertikels mit der Epidermis vermittels eines kurzen, breiten Epithelstranges, andererseits die Zusammensetzung des Divertikels aus einem entodermalen Anteile und einer ektodermalen Kuppe erkennen kann, da diese letztere gegen den entodermalen Anteil winkelig abgeknickt und gleich dem Kiemenspaltenorgane früherer Stadien nach dem Ganglion zu gerichtet ist. Erst bei Embryonen von 10 mm wird der Epithelstrang so stark gedehnt, dass er seine

¹⁾ Vergl. Greil (13).

Kontinuität einbüsst, während sich die Kuppe an Schnitten nicht mehr länger gegen das übrige Divertikel abgrenzen lässt.

Das zweite Kiemenspaltenorgan dürfte in diesem Stadium den Höhepunkt seiner Ausbildung erreicht haben. Wie das erste Kiemenspaltenorgan der kaudalen Wand der ersten Furche, so gehört dieses — wie wir sahen — der gleichen Wand der zweiten an.

Hier bildet es eine auf der konvexen Aussenfläche des dritten Bogens sitzende Plakode (Fig. 26), die sich durch die Höhe ihrer Zellen (28 µ) und deren starke Färbbarkeit als eine besondere Area vom umgebenden Epithel unterscheidet. Sie wird von zwei kleinen Erhebungen des Mesoderms flankiert, von denen die dorsale (kaudale) den Rest des grossen in Fig. 15 dargestellten Vorsprunges bildet. In Übereinstimmung mit den Verhältnissen an der ersten Tasche ist das Kiemenspaltenorgan nur auf den dorsalen Ursprung des dritten Bogens beschränkt, während dieser im übrigen von einem 20 µ hohen Epithel überzogen wird. Ein Epithel von gleicher Höhe bedeckt den gegenüberliegenden Hvoidbogen in seiner ganzen Ausdehnung. So erscheint die zweite Schlundfurche in ihrem ventralen Abschnitte von gleichmässiger Beschaffenheit, während dorsal ihre Wände ein verschiedenes Epithel tragen. — Der bei weitem grösste Teil der Plakode liegt kaudal vom Ganglion petrosum und ist von diesem durch eine nicht unbeträchtliche Menge von Bindegewebe geschieden. Verfolgt man aber die Serie von dem in Fig. 26 abgebildeten Schnitte oralwärts, so findet man, dass die Furche röhrenförmigen Charakter annimmt und sich schliesslich vom Entoderm trennt, um unter einem stumpfen Winkel gegen das Ganglion petrosum abzubiegen. In dem Grunde dieser divertikelartigen Ausbuchtung des dorsalen Endes der Furche liegt die Berührungsstelle der Plakode mit den Ganglienzellen.

Was das Organ der Vagus anbelangt, so hat auch dieses gegen früher eine wesentliche Veränderung erfahren. Da der vierte und fünfte Kiemenbogen, die noch im vorigen Stadium offen zutage lagen, im vorliegenden Falle durch die stark verbreiterte Retrobranchialleiste nach aussen zu überlagert werden, begrenzen sie jetzt mit dieser eine tiefe Bucht, den Fundus cervicalis, der — am Modell gemessen — eine dorso-ventrale Länge von 0,2 mm besitzt und sich als Divertikel der Halsbucht darstellt. Der fünfte

Bogen ist beiderseits nur an zwei Schnitten als unscheinbares Höckerchen im Grunde des Divertikels zu unterscheiden. Der ganze Fundus cervicalis wird von demselben hohen Epithel ausgekleidet, das früher die freie Oberfläche der genannten Bögen sowie der Retrobranchialleiste bedeckte. Seine Spitze liegt dem Ganglion nodosum unmittelbar an.

Die Schilddrüse besteht bei diesem Embryo einerseits aus lumenlosen Röhrchen, die von einem einschichtigen Epithel ausgekleidet werden und miteinander netzartig verbunden sind, andererseits aus mit diesen zusammenhängenden Platten, die aus zwei Lagen unregelmässig gestalteter Zellen aufgebaut sind. Ihr oraler Anfang liegt in der Gabel der Carotidenbögen, ihr Ende reicht noch etwas über den Abgang der vierten Arterienbögen kaudalwärts.

Stadium V.

Von diesem Stadium habe ich zwei Modelle angefertigt. Das eine gehört einem Embryo von 9,7 mm, das andere einem Embryo von 10 mm Scheitel-Steisslänge an. Sie stammen von verschiedenen Muttertieren, deren Gravidität etwa $21^{1/2}$ Tage gedauert hatte. Da sich das Modell des kleineren Embryo nur wenig von dem des grösseren unterscheidet, habe ich bloss dieses abgebildet (Fig. 7).

Die wichtigsten Maße desselben sind: Abstand der lateralen Enden der zweiten Schlundtaschen voneinander 1.85 mm. der dritten 1.67 mm, der vierten Taschen 0.72 mm. Diese Zahlen beweisen, dass sich die Schlundtaschen im gleichen Sinne wie im vorigen Stadium weiter entwickelt haben, indem sich die zweite und dritte Tasche nach aussen verlängert, die vierte aber dem Schlunde genähert hat. Dagegen ist bei Betrachtung des Abstandes der Schlundtaschen voneinander in der Längsrichtung des Embryo auffallend, dass sich der laterale Rand der zweiten Tasche dem oralsten Punkte des Randes der dritten bis auf 0.06 mm genähert hat. Der aborale Rand der lateralen Fläche der dritten Tasche ist vom freien ventralen Ende des ultimobranchialen Körpers 0,5 mm, vom freien dorsalen Ende der vierten Tasche 0.6 mm entfernt. Diese Entfernungen haben somit zugenommen, weil einerseits der Abstand der dritten Tasche vom Schlunde zu-, andererseits der Abstand des kaudalen Pharvnxdivertikels vom Schlunde abgenommen hat.

Die zweite Tasche hat sich im Sinne der früheren Wachstumsrichtung kaudalwärts verlängert. Gleichzeitig rückte aber auch, infolge Erweiterung des Pharvnx, die Übergangsstelle ihres ventralen Randes in die Schlundwand kaudalwärts, ähnlich wie im vorigen Stadium eine kaudale Verschiebung des medialen Endes der dritten Tasche beobachtet werden konnte. Infolgedessen zieht der ventrale Rand nicht mehr, wie im Stadium IV, schräg von innen und vorne nach aussen und hinten, sondern liegt nahezu quer. Nur am lateralen Ende biegt er ziemlich plötzlich nach rückwärts ab und begrenzt mit dem in gleicher Richtung verlaufenden, lateralen Rande der Tasche ein kurzes, an seinem Ursprung trichterförmiges Röhrchen. 1) Diesem liegt das innere Ende der zweiten Furche an, das ebenfalls das Aussehen eines Röhrchens angenommen hat. Die beiderseitigen Epithelflächen, mit denen sich die Kanäle berühren, entsprechen der ehemaligen Verschlussmembran der Schlundspalte. Der kaudale. jenseits des Endes der Tasche gelegene Teil der zweiten Kiemenfurche ist in diesem Stadium von nur geringer Ausdehnung. Er verbreitert sich an seinem Übergang in die Halsbucht, ist aber hier solid. Ebenso fehlt in dem oralen Anfang, der von der Tasche durch etwas Bindegewebe geschieden wird, eine Lichtung. Dieses Divertikel scheint zuerst der Rückbildung zu verfallen. Dagegen weist der noch hohle Abschnitt der Furche keine Zeichen von Degeneration auf. Ja, es lässt sich in ihrem, der Tasche anliegenden Teile derselbe Unterschied zwischen den Zellen der oralen und aboralen Wand wahrnehmen, wie im früheren Stadium. Während die ersteren eine Höhe von nur 20 u besitzen, misst das übrige Epithel 30 u. und seine Zellen scheinen an ihrer Oberfläche Stäbchen zu tragen. Daher wird man nicht fehl gehen, in ihm den Rest des Kiemenspaltenorgans des Glossopharvngeus zu erblicken. — Ich will aber gleich hier bemerken, dass schon im nächsten Stadium dieser Unterschied in den Zellen der Furche nicht mehr nachweisbar ist, indem ihre enge Lichtung allseits von einem auffallend hohen zweireibigen Zylinderepithel umgeben wird. Ob dieses Verhalten dadurch bedingt ist, dass die niederen Zellen von den höheren verdrängt werden oder sich zu jenen umgestaltet haben, muss dahingestellt bleiben. — In Stadium VII verliert die Furche infolge starker Dehnung ihre Lichtung zunächst im oralen Teile.

¹) Der Beginn der Bildung desselben ist bereits im vorigen Stadium wahrzunehmen.

während die Zellen niederer werden. Ihre Rückbildung schreitet von hier nach dem aboralen Ende zu fort, so dass sie bei einem Embryo von 13 mm nur mehr in obliterierten Resten und bei einem solchen von 14,5 mm vollkommen verschwunden ist. Der kandale Schenkel der zweiten Schlundtasche ist diesem Schicksal schon früher verfallen, sein transversaler aber wird durch allmähliche Erweiterung vom Schlunde aus in diesen selbst einbezogen. Vielleicht darf die lange Persistenz der zweiten Furche bei allen näher untersuchten Säugetieren dadurch erklärt werden, dass sie den röhrenförmigen Zugang zu dem in ihrer Tiefe eingebetteten Sinnesorgane darstellt. Leider sind ähnliche Verhältnisse, zum mindesten ein von der zweiten Schlundspalte ausgehendes und gegen das Ganglion petrosum gerichtetes Divertikel, bei niederen Wirbeltieren bisher noch nicht beschrieben worden. Durch einen solchen Befund erhielte natürlich diese Hypothese eine kräftige Stütze.

Aus dieser Darstellung ergibt sich, dass die Veränderungen der zweiten Tasche und der dazu gehörigen Furche beim Meerschweinchen in vollkommenem Parallelismus zu jenen stehen, die ich beim Maulwurf (l. c. S. 33 [581]) feststellen konnte. Hier wie dort wird die ventro-kaudale Ecke der zweiten Tasche in einen dünnen Fortsatz ausgezogen, dessen aborales Ende dem oralen Ende der Furche eine Strecke weit anliegt. Dieser Fortsatz entspricht dem "Kiemengang" C. Rabls und dem fadenförmigen Fortsatz (filiform process). welchen Fox bei Schweineembryonen als kaudalen Ausläufer der zweiten Tasche beschrieben hat. Im Gegensatz zu den Befunden dieser beiden Forscher erscheint bei den von mir untersuchten Arten, ferner beim Kaninchen (Piersol) und beim Menschen (Hammar) der Anteil, den die ektodermale Furche an der Verbindung der zweiten Tasche mit der Epidermis beisteuert, grösser als jener des entodermalen Ganges. Jedenfalls ist die Überlegung von Fox vollkommen richtig, dass hier zwei Röhren zu unterscheiden sind. von denen bald die eine, bald die andere von grösserer Länge ist.

Alle Autoren betonen, dass zum mindesten in diesen Spätstadien keine offene Verbindung zwischen Tasche und Furche vorhanden sei. Auch nach meinen Erfahrungen ist die Verschlussmembran der zweiten Spalte bei älteren Meerschweinchenembryonen meist unversehrt. Ihr bei Stadium II beschriebener Durchbruch am ventralen Ende ist nur von kurzem Bestande. Nur in einem Falle, welcher die rechte Seite des Embryo von 9,7 mm Länge betraf (Fig. 27), lag eine offene Kommunikation zwischen Tasche und Furche vor. In bezug auf die Umgestaltung der Rinnen zu Röhren war dieser Embryo noch nicht so weit wie jener von 10 mm Länge entwickelt. Auch liess sich der kaudale, röhrenförmige Fortsatz der Tasche vom breiten Flügel derselben weder seiner Lage noch seinem Epithel nach scharf abgrenzen. In diesem Umstande darf wohl die Ursache erblickt werden, dass es in der abgebildeten Figur den Anschein hat, als ob die äussere Furche in den transversalen, statt in den kaudalen Schenkel ein-Mit Rücksicht auf die geschilderten Verhältnisse bei älteren Embryonen, bei denen die äussere Furche niemals bis zum transversalen Flügel hinaufreicht, glaube ich aber, dass auch hier die Einmündungsstelle im Bereiche des künftighin kaudalen Taschenabschnittes gelegen ist. Das Präparat ist aber weniger wegen der Tatsache eines Durchbruches an und für sich, als wegen der Region der Furche, an der sich jener Vorgang abspielt. von Interesse. Es ist dies nämlich ihre orale, ehemals dorsale Spitze, unmittelbar hinter der Einmündung des gegen den Glossopharyngeus gerichteten Divertikels, deren Wand den Rest des Kiemenspaltenorgans trägt. Daher darf der hier vorliegende Durchbruch der zweiten Spalte mit dem regelmässig erfolgenden Durchbruche des ersten Kiemenspaltenorganes homologisiert werden. Eine Einverleibung des Kiemenspaltenorganes in die Tasche findet jedoch hier — im Gegensatz zu den Verhältnissen im Gebiete der ersten Schlundtasche - niemals statt.

Was die dritte Tasche anbelangt, so lässt sich an ihr gegen früher eine Reihe von Veränderungen nachweisen. Vor allem fällt die Verschmälerung ihres medialen Anfangsstückes auf, welche bereits zur Ausbildung des Ductus pharyngo-branchialis III geführt hat (Fig. 7). Seine Entwicklung hängt zweifellos mit der Dehnung der ganzen Tasche in transversaler Richtung zusammen. Da er aber noch mit dem Schlunde in fester Verbindung steht, wird durch diesen Prozess auch jener Teil des Randes, aus dem er entspringt, in Form eines dreieckigen Feldes aus dem Schlundbereich herausgezogen. Der Gang besitzt an seiner dünnsten Stelle nur eine kranio-kaudale Ausdehnung von $45~\mu$, und da er in dorso-ventraler Richtung einen Durchmesser von $44~\mu$ besitzt,

kann er hier als drehrund bezeichnet werden. Seine Wand besteht aus einer Schicht schmaler Zylinderzellen, die ein spaltförmiges Lumen umschliessen, und deren Kerne in verschiedener Höhe liegen. Am Modell des 9,7 mm langen Embryo ist die Bildung des Ganges erst angedeutet.

An der sekundären Tasche (wie ich [42] die ursprüngliche primare Tasche nach Abzug des Ductus pharvngo-branchialis bezeichne) lässt sich, wie in den jüngsten Stadien, eine orale und kaudale Fläche und eine dorsale und ventrale (abgerundete) Kante unterscheiden. Es scheint mir aber, um die Beschreibung der Schnittbilder verständlicher zu machen, zweckmässig, von nun an von einer ventralen und dorsalen Fläche und einer oralen und kaudalen Kante zu sprechen. Hiezu gibt einerseits die bereits im vorigen Stadium eingetretene Anderung im Aussehen der dritten Tasche, andererseits die Verschiebung der Abknickungsstelle des Schlundes in oraler Richtung Veranlassung. Bezüglich des ersten Punktes brauche ich nur nochmals auf Fig. 6 zu verweisen. Infolge des bei Beschreibung von Stadium IV bereits erwähnten Vordringens des medialen Taschenendes in lateraler und kaudaler Richtung hat sich schon bei diesem Embryo die Lage der Tasche soweit geändert, dass ihre ehemals kraniale Fläche, die vordem zur Ebene des Schlundes senkrecht stand. nunmehr nahezu in der letzteren gelegen ist Bei diesem Embryo befindet sich die Abknickungsstelle des Schlundes in der Region des kaudalen Pharynxdivertikels. Im Falle der Fig. 7 aber liegt die Abknickungsstelle zwischen dem Abgange der zweiten und dritten Tasche. Daher stellt sich hier die dritte Tasche bei Betrachtung in der Richtung, in der das Modell gezeichnet wurde. nahezu in der Kantenansicht dar. Die Kante, auf die man blickt, ist aber jetzt die kaudale. Die Fläche, welche dem ventralen Rande des Larvnx parallel liegt, erscheint als ventrale; und da die Schnitte senkrecht zu Larvnx und Osophagus geführt wurden. ist für sie die letztere Bezeichnung die sinngemässe; man darf aber nicht aus den Augen verlieren, dass sie auf die ursprünglichen Verhältnisse nicht anwendbar ist.

Wie Fig. 7 zeigt, wird das kaudale Ende der rechten Tasche durch eine Einkerbung in zwei ovale Wülste zerlegt, einen kleineren medialen und einen grösseren lateralen. Die Besichtigung des Modells und das Studium der Schnitte lehrt,

dass diese Einkerbung der Ausläufer einer seichten Furche ist, die sich über die dorsale Wand vom kranialen zum kaudalen Rande hinzieht. Schon bei Beschreibung des Stadium IV habe ich erwähnt, dass sich die dorsale Wand - dort war sie als die kaudale bezeichnet — nach dem Bindegewebe zu vorwölbt, während die ventrale (orale) nahezu plan ist. Dasselbe lässt sich auch im vorliegenden Falle beobachten, nur dass die Konvexität noch zugenommen hat. Nur handelt es sich wegen dem Auftreten der Furche nicht mehr um eine einheitliche Vorwölbung, sondern um zwei getrennte Erhebungen. So zerfällt die Tasche in zwei, beziehungsweise in drei Teile; in die beiden an den Enden gelegenen Abschnitte mit ventral ebener und dorsal konvexer Wand und in eine mittlere Zone, welche die beiden Taschenteile verbindet. Diese ist in der kranialen Partie der Tasche von ansehnlicher Breite, verschmälert sich nach rückwärts und ist schliesslich (Fig. 7) auf eine Rinne beschränkt, welche mediale und laterale Taschenhälfte voneinander trennt. - Schliesslich ist noch ein kranial gerichtetes Divertikel zu nennen, das aus der mittleren Taschenzone entspringt und von einem einschichtigen Zylinderepithel von 24 µ Dicke, mit alternierend stehenden Kernen, ausgekleidet wird. Es ist trotz seiner dem Beschauer abgekehrten Lage in Fig. 7 an der linken Tasche zu erkennen. Dieser Höcker wurde auch von Ruben an einem Embryo der gleichen Grösse gesehen und als die Anlage der Parathyreoidea gedeutet. Diese Auffassung ist — wie die Untersuchung älterer Stadien lehrt richtig. Doch muss hinzugefügt werden, dass nicht nur dieser Höcker, sondern auch das ganze mediale Bläschen samt einem Teile des Mittelstückes, welches dieses mit dem lateralen Taschenabschnitt verbindet, zum Epithelkörperchen wird. Der laterale Taschenabschnitt hingegen samt dem anderen Teil des Mittelstückes stellt die Anlage der Thymus dar.

Die beiden Anlagen unterscheiden sich im vorliegenden Stadium nur wenig. Immerhin findet man schon jetzt die Zellen im lateralen Taschenabschnitt dichter gedrängt als im medialen. Auch ist die Wand der Tasche im ersteren Bezirk etwas höher (ca. $40-50~\mu$) als im letzteren, wo sie durchschnittlich nur eine Höhe von $30-40~\mu$ besitzt. Die mittlere Zone ist durch eine niedere dorsale und auffallend dicke ventrale Wand ausgezeichnet. In die letztere dringt sogar ein enger Spalt aus dem Lumen ein.

Der Sinus cervicalis ist in diesem Stadium infolge Aneinanderlagerung seiner Wände zu einem nahezu soliden Körper geworden. Sein Eingang, der Ductus cervicalis, erscheint als ein Röhrchen, dessen Breite in sagittaler Richtung nur 40 µ beträgt, und dessen Wandungen sich — ausser an einem Schnitte — bereits in ganzer Ausdehnung berühren. Die Epithelien, welche die Halsbucht selbst auskleiden, setzen sich aus dem Überzug des dritten, vierten und fünften Bogens und der gegenüberliegenden Retrobranchialleiste zusammen. Das Epithel des dritten Bogens liegt der äusseren Abdachung der dorsalen Wand der dritten Tasche flächenhaft aufda sich die letztere schon in früheren Stadien mit ihrem äusseren Ende unter das Epithel dieses Bogens geschoben hat. Das Epithel über dem Reste des vierten Bogens nimmt den grössten Teil der medialen Wand ein. Ihm folgt das Epithel im Grunde des Fundus cervicalis, welches früher den fünften Bogen, der aber jetzt nicht mehr nachweisbar ist, überkleidete. Dieses Ende des Fundus liegt in einem Grübchen des Ganglion nodosum vagi und ist somit jenem Divertikel homolog, das von der Spitze der zweiten Schlundfurche gegen das Ganglion petrosum zieht.

Vergleicht man den Sinus cervicalis des Meerschweinchens. der einen Bautypus repräsentiert, wie wir ihn bei den meisten Säugetieren finden, mit dem des Maulwurfs, so ergibt sich ein wesentlicher Unterschied in der Gestalt, der vor allem dadurch bedingt ist, dass beim Maulwurf die dritte Tasche dem Ektoderm nur mit ihrer lateralen Kante anliegt. Daher wird diese Verbindung leicht gelöst und erscheint schon bei Maulwurfembryonen von 8-9 mm unterbrochen. Ferner ist beim Maulwurf auch das Epithel an der Mündung der zweiten Furche an der Bildung des Sinus cervicalis beteiligt, so dass dieser als ein ovales Bläschen erscheint, von dem sich der gegen das Ganglion nodosum gerichtete Fortsatz, der Fundus cervicalis, deutlich absetzt. Beim Meerschweinchen dagegen und bei den meisten anderen Säugetieren ist der Fundus cervicalis in späteren Stadien nicht kleiner als sein Eingang, welcher der dritten Tasche anliegt. Dieser letztere Teil setzt sich, wie das Modell zeigt, durch eine winkelige Knickung vom Fundus ab, da er durch die sich erweiternde Tasche nach aussen gedrängt wird. Eine zweite Knickung, die manchmal zu beobahcten ist, liegt unmittelbar vor dem blinden Ende des Fundus und ist eine Folge davon, dass sich dieses auf kürzestem Wege dem Ganglion zuwendet. Einen Durchbruch der die Lichtungen der dritten Tasche und des angelagerten Sinus cervicalis trennenden dicken Epithellamellen, welche von Ruben für dieses sowie für mehrere ältere Stadien beschrieben wurde, konnte ich niemals beobachten.¹)

Die vierte Tasche und der ultimobranchiale Körper hängen mit dem Schlunde, sowie miteinander noch zusammen. Erstere ist, wie das Modell deutlich zeigt, dorsalwärts, der ultimobranchiale Körper ventral- und kaudalwärts gerichtet. Die vierte Tasche wird von einem einschichtigen, höchstens zweireihigen Epithel von 20 u Dicke ausgekleidet. Ihre Länge beträgt in dorsoventraler Richtung 0.085 mm, in kranio-kaudaler Ausdehnung ca. 0.05 mm und in transversaler 0.048 mm. Der ultimobranchiale Körper misst bis an sein Ende 0,22 mm. In seinem Anfangsstück ist er eng und in transversaler Richtung zusammengedrückt. Hier ist das Epithel von derselben Dicke wie in der vierten Tasche. Gegen das Ende zu erweitert es sich zu einem Bläschen, das am Querschnitt dreiseitig erscheint, und dessen Epithel eine Höhe von 40 μ erreicht. Man kann in ihm drei Kernreihen übereinander unterscheiden. Das Bläschen endet beiderseits mit nur wenig gewölbter Fläche.

Die Schilddrüse besitzt dieselbe Lage und Gestalt wie im vorigen Stadium; sie besteht aus Platten und Strängen, deren kraniales Ende beiderseits an jenem Schnitte zu sehen ist, welcher die Teilung der ventralen Aorta in den zweiten Aortenbogen, der bereits seine Verbindung mit der dorsalen Aorta verloren hat, und den Carotidenbogen enthält. Kaudalwärts reicht sie ca. 50 μ über den Ursprung der vierten Arterienbögen aus dem Truncus arteriorus hinab. Hinsichtlich ihres feineren Baues weist sie einen Fortschritt auf, der darin besteht, dass die Röhrchen und Platten, deren virtuelle Lichtung im vorigen Stadium von einer einzigen Zellage begrenzt war, nunmehr an vielen Stellen, besonders am kranialen Ende und an den lateralen Rändern, von einem mehrschichtigen Epithel aufgebaut werden. Dadurch verschwindet die Anordnung der Zellen um eine virtuelle Lichtung

¹⁾ Nierstrasz (35) beschreibt sogar einen Durchbruch des Cervicalbläschens in die vierte Tasche. Doch erscheint mir die Deutung, die er den in Fig. 20 abgebildeten Hohlräumen zuteil werden lässt, nicht über jeden Zweifel erhaben.

vollkommen, und es treten vielfach an Stelle der Röhrchen und zweischichtigen Platten Zellhaufen, die aus dichtstehenden kubischen Elementen an der Oberfläche und polygonalen im Inneren aufgebaut sind. Wie die Thyreoidea durch diese Form des Dickenwachstums ihren ursprünglichen, drüsigen Bau verliert, so geschieht dies auch durch ihr Wachstum nach aussen, indem von den lateralen Kanten der Platten aus schmale, nur aus einer einzigen Zellage bestehende Lamellen ins Bindegewebe vordringen.

Stadium VI.

Dieser Embryo (10,7 mm) stammt von demselben Muttertiere wie der eben beschriebene. Doch zeigt er ihm gegenüber einen Fortschritt in einigen wichtigen Punkten, so dass ich ihn als ein Stadium für sich beschreiben will. In bezug auf die Maße des Schlundes besteht allerdings fast gar kein Unterschied zwischen ihm und dem 10 mm langen Embryo. Dagegen hat sich die Gestalt der Taschen etwas geändert.

Bezüglich der zweiten Tasche genügt es, diesbezüglich auf die Abbildung des Modells zu verweisen, aus welcher hervorgeht, dass der kaudale Schenkel in rein sagittaler Richtung verläuft und an Länge zugenommen hat. Er enthält durchgehends noch eine Lichtung und grenzt mit seinem hinteren Ende an die zweite Furche, deren kraniale Spitze wie im früheren Falle dorsal vom Ende der Tasche gelegen ist. Die Spitze der Furche ist kompakt; darauf folgt ein kurzer, noch hohler Abschnitt, zum Schluss wieder eine kompakte Zellmasse, die in den Sinus cervicalis übergeht.

Der letztere erscheint als abgeplatteter Sack mit enger Lichtung, von einem Epithel von 40 μ und darüber ausgekleidet. Die Kerne liegen an den meisten Stellen in mehreren Reihen übereinander, die Mitosen in grosser Zahl ausschliesslich an der inneren Oberfläche. Manche Zellen führen chromatophile Körnchen. Von diesem Aussehen der Wand des Sinus cervicalis macht nur die durch einen Zellstrang mit dem Ganglion nodosum verbundene Spitze eine Ausnahme, indem hier bloss eine einzige Lage hoher Zylinderzellen vorhanden ist. Die Abknickung der Spitze gegen den übrigen Teil des Fundus, auf welche ich bei dem kleineren Embryo aufmerksam gemacht habe, fehlt beiderseits. Die zweite dort beschriebene Abknickung, deren Scheitel sich an jener Stelle befindet, wo die mediale Sinuswand ihren Kontakt mit der dritten

Tasche verliert, ist rechts nur angedeutet (Fig. 28), links dagegen sehr klar ausgesprochen (Fig. 29). In Fig. 8 erscheint allerdings jene Abknickung als Ausdruck der Zuspitzung des dorsalen Endes des Sinussackes. Doch ist dies nur die Folge davon, dass der Rand in Verkürzung erscheint, da man nicht senkrecht, sondern schräg auf die kaudale Sinuswand blickt. Hält man jedoch das Modell so, dass diese Wand dem Beschauer gegenüber liegt, so sieht man, dass der freie mediale Rand von der halben Länge des der dritten Tasche anliegenden Teiles ist, und dass der Winkel, welchen die beiden Abschnitte miteinander bilden, etwa 130° beträgt. — Der Ductus cervicalis ist im vorliegenden Falle ein drehrunder Strang, der auf beiden Seiten nur an je einem Schnitte nachweisbar ist.

Von grosser Bedeutung ist die Veränderung, welche die dritte Tasche im Vergleich mit dem vorigen Stadium erfahren hat. Dort war an ihr lediglich eine schmale Abflachung zu erkennen, durch welche die Tasche in einen scheinbar kleineren medialen und grösseren lateralen Teil zerlegt wurde. Seither hat die Tasche sowohl in kranio-kaudaler wie in dorso-ventraler Richtung an Masse zugenommen. Dadurch wurde auch die Richtung, in der die Furche verläuft, welche die Anlage des Epithelkörperchens von der der Thymus trennt, deutlicher. Aus Fig. 8 geht hervor, dass sie schräg zur Sagittalebene liegt, indem sie von der Aussen- und Ventralseite ein- und dorsalwärts zieht. Daher liegt die Anlage des Epithelkörpers nicht rein medial. sondern ventro-medial von der der Thymus, welche ihrerseits dieser gegenüber eine dorso-laterale Lage einnimmt. Abgesehen von dieser wesentlichen Gliederung der Tasche sind auch noch einige andere Furchen an ihrer Oberfläche wahrzunehmen, durch welche kleine Höcker voneinander getrennt werden, die aber allesamt als Teile des Epithelkörpers anzusprechen sind. Zu dieser Behauptung ist man durch das Aussehen der einzelnen Taschenabschnitte berechtigt, da in diesem Stadium die histologische Verschiedenheit von Epithelkörper und Thymusanlage bereits zu stärkerem Ausdrucke gelangt ist. In der ersteren ist nämlich das Epithel der Taschenwand geschichtet, die Kerne sind rundlich, das Plasma hell, zwischen den einzelnen Zellterritorien sind an günstigen Stellen blass rosenrote Grenzlinien wahrzunehmen; in der letzteren wird die Wand noch wie früher von einem mehr-

reihigen Epithel gebildet, in welchem sämtliche Kerne längs-oval, die Zellkonturen senkrecht zur Oberfläche gerichtet sind. Zwischen diesen beiden wohl charakterisierten Taschenabschnitten befindet sich dorsal wie ventral eine schmale, noch nicht scharf differenzierte Übergangszone, in der jene aneinandergrenzen. verdient hervorgehoben zu werden, dass die Taschenwand an verschiedenen Stellen eine verschiedene Dicke zeigt, indem an einzelnen Punkten eine stärkere Proliferation einsetzt. Dies gilt sowohl für ihre mediale wie ihre laterale Partie; insbesondere fällt die starke Verdickung der ersteren im Bereiche ihrer ventralen Seite auf (Fig. 29), durch welche ein hier stark vortretender Höcker gebildet wird. Den diesem gegenüberliegenden Teil der dorsalen Taschenwand glaube ich der Thymusanlage zuweisen zu müssen: die Höhe dieses letzteren beträgt ca. 30 µ; dagegen misst der aussen an den erwähnten ventralen Höcker anschliessende Wandabschnitt gegen 50 u. Der im vorigen Stadium als Produkt einer Wucherung der kranialen Wand erwähnte Fortsatz ist auch bei diesem Embryo nachweisbar, allerdings nicht in grösserer Länge als dort. Auch jener von der Lichtung in das verdickte Epithel der ventralen Wand eindringende Spalt ist vorhanden. Aus der Struktur dieses Epithels erkennt man nunmehr, dass es im Begriffe steht, sich zu Epithelkörpergewebe zu differenzieren. Es wäre daher unrichtig, aus jener beginnenden Divertikelbildung schliessen zu wollen, dass beim Meerschweinchen eine, wenn auch nur rudimentare Anlage eines ventralen Schenkels der dritten Tasche erfolgt. Möglicherweise ist Ruben in diesen Irrtum verfallen, da er bei Embryonen von 8 und 10 mm Länge ausdrücklich die Gegenwart eines ventralen Divertikels als Homologons der bei der Mehrzahl der Säugetiere nachgewiesenen ventralen Ausbuchtung der Tasche hervorhebt. Doch erscheint ienes Divertikel an den von Ruben angefertigten Modellen dieser beiden Stadien als abgerundete Vorwölbung der ganzen kaudalen, bezw. ventralen Taschenwand. Es ist daher auch möglich, dass er die eben beschriebene Gliederung dieser Taschenwand ganz übersehen hat. Gerade diese letztere lehrt aufs klarste, dass beim Meerschweinchen das ventrale Divertikel nicht einmal angelegt wird, und dass die Thymus zum grösseren Teile aus jenem lateralen Taschenabschnitt hervorgeht, der sich in früheren Stadien oralwärts unter das Epithel des dritten Bogens vorgeschoben hat. An diesen Teil

schliesst sich nur noch eine kleine Zone der dorsalen Wand an, während der übrig bleibende Teil zum Epithelkörper wird. In dieser Anordnung spricht sich eine bedeutungsvolle Ähnlichkeit mit den Verhältnissen bei den niederen Wirbeltieren aus.

Wie das Modell zeigt, sind die beiden Ductus pharyngobranchiales III und IV noch vorhanden. Der erstere verläuft transversal, der letztere kaudalwärts. Dieser besitzt, an den Schnitten gemessen, eine Länge von 105 μ . An seinem Ende teilt er sich links in die dorso-lateral gelegene vierte Tasche und den seine kaudo-ventrale Fortsetzung bildenden ultimo branchialen Körper. Rechts ist die vierte Tasche bereits isoliert. Sie besitzt eine sagittale Länge von ca. 60 μ und erscheint als ein in transversaler Richtung komprimiertes Bläschen mit spaltförmiger Lichtung, das von einem einschichtigen, nicht mehr als 16 μ Höhe messenden Zylinderepithel ausgekleidet wird. Fig. 30 zeigt die vierten Taschen und die kraniale Spitze der ventro-medial von diesen gelegenen ultimobranchialen Körper bei einem 11 mm langen Embryo.

Der ultimobranchiale Körper stellt sich als Sack dar, der ohne scharfe Grenze aus dem Ductus pharyngo-branchialis hervorgeht, indem die Wand desselben allmähltch an Dicke zunimmt. Sie besteht in ihrem Anfang aus zwei Zellschichten, späterhin aus drei bis vier. Die Lichtung ist eng. Auch er ist in transversaler Richtung etwas zusammengedrückt. Seine grösste Breite beträgt ca. 90 μ , wovon je 40 auf die beiden Epithellagen entfallen.

Die Schilddrüse hat gegen früher keine auffallende Veränderung erfahren. Höchstens lässt sich für den kranialen Teil feststellen, dass die Verdickung der Stränge und Platten weiter zugenommen hat, so dass diese jetzt stellenweise aus fünf bis sechs Zellreihen bestehen, während die gleichen Gebilde im kaudalen Teile noch zweischichtig sind. Innerhalb der verdickten Partien treten zwischen den Zellen Lücken auf.

Stadium VII.

Embryo von 12 mm Scheitel-Steisslänge, 23 Tage alt. Ich habe von diesem und den folgenden Stadien keine Plattenmodelle angefertigt, sondern mich begnügt, graphische Rekonstruktionen auf Millimeterpapier auszuführen, wobei stets eine Projektion auf die Frontalebene angenommen wurde. Diese Rekonstruktionen zeigen nicht nur die topographischen Beziehungen, sondern auch die

Grenzen der Organe an ihrer lateralen und medialen, kranialen und kaudalen Seite ebenso richtig wie jene. Bei jüngeren Embryonen würde diese Methode infolge der starken Krümmung der Halsregion natürlich zu fehlerhaften Ergebnissen führen. Dass solche Fehler bei älteren Embryonen, wo die in Frage kommende Region in ganzer Ausdehnung senkrecht geschnitten werden kann, nicht zu befürchten sind, lehrt am besten der Vergleich meiner Textfig. 1 mit Fig. 3 bei Ruben (Plattenmodell nach einem 12 mm langen Embryo), die — abgesehen von Einzelheiten die in den Bereich individueller Variationen fallen — eine schöne Übereinstimmung erkennen lassen.

Der Fortschritt gegenüber dem eben beschriebenen Stadium äussert sich zunächst im beiderseitigen Fehlen des Ductus pharyngobranchialis III. Wie schon beim Embryo von 10 mm Länge entsendet auch hier, aber nur rechts, die dritte Tasche kranialwärts einen Zapfen von beträchtlicher Länge, der an seinem Ende noch

Fig. 1.

Embryo 12 mm. Rekonstruktion des thyreo-thymischen Organkomplexes auf Millimeterpapier in der Projektion auf die Frontalebene. Vergr. 50. Die Thyreoidea ist mit gestrichelter, der Epithelkörper III mit punktierter Konturlinie dargestellt. Vesicula cervicalis radiär, Thymus horizontal, Epithelkörper IV vertikal und ultimobranchialer Körper schräg gestreift. Arterienbogen rot. Von den Lichtungen der verschiedenen Organe wurde nur die zentrale Lichtung der dritten Taschen und der Cervicalbläschen eingetragen.

eine von Zylinderzellen umgebene Lichtung enthält, weiter hinab aber den geschichteten Bau des Epithelkörpergewebes aufweist. Fig. 31 zeigt ihn an seiner Basis, unmittelbar vor seiner Vereinigung mit dem medialen Ende der Tasche. Verfolgt man die

Serie noch weiter kandalwärts, so erscheint die Anlage der Thymus mit der des Epithelkörpers in Zusammenhang und auch das Lumen von aussen nach einwärts verlängert. Einen Schnitt durch diese kandale Partie der Tasche habe ich in Fig. 32 bei starker Vergrösserung dargestellt. Sie zeigt deutlich das verschiedene Verhalten der Wand, indem das laterale Ende viel dichtzelliger als das mediale ist. Auch die Kerne der ersteren Region sind chromatinreicher als an letzterer Stelle. Wie im jüngeren Stadium (Fig. 29) liegen jedoch die Übergangszonen an der dorsalen und ventralen Wand einander nicht gegenüber. Denn man muss der Thymusanlage mit Rücksicht auf das Aussehen der Zellen nicht nur den lateralen dicken, sondern auch den medial angrenzenden. dünnen Teil der dorsalen Wand zurechnen. Nach diesem Schnitt zu urteilen, würde demnach die Thymus aus der ganzen dorsalen, lateralen und dem äusseren Abschnitt der ventralen Wand hervorgehen, während nur der innere Abschnitt der ventralen Wand Epithelkörpergewebe zu liefern scheint. Diese Bildungsweise trifft jedoch nur für das kaudale Taschenende zu. Im kranialen und mittleren Teile derselben differenziert sich auch die dorsale Wand — natürlich immer nur in ihrem medialen Teile — zu Epithelkörpergewebe. Wie aus Textfig. 1 hervorgeht, ist die Anlage des Epithelkörpers in diesem Stadium links von der gleichen Grösse wie die der Thymus, rechts sogar entschieden größer. Vergleicht man aber diese Figur mit den Rekonstruktionen älterer Stadien, die ich in der folgenden Arbeit publizieren werde, so ergibt sich wie zu erwarten -, dass sich dieses Verhältnis bald ändert, indem die Thymus rasch, der Epithelkörper aber nur langsam wächst. Dass es so kommen muss, lässt sich übrigens auch aus dem vorliegenden Stadium erschliessen, da weder links noch rechts im Epithelkörper irgend eine Mitose vorhanden ist. Dagegen weist jeder Schnitt in der Thymus ein bis zwei Zellteilungen auf. Die Mitosen liegen hier noch alle an der inneren Oberfläche des Bläschens, die Teilungsachsen stehen teils parallel, teils mehr oder weniger schräg zu der letzteren.

Die Schilderung, welche Maximow vom Epithelkörper des Kaninchens, der Maus, der Ratte, des Meerschweinchens und der Katze für jenes Stadium gibt, in dem die Unterscheidung von der Thymusanlage eben durchführbar wird, deckt sich nicht ganz mit dem hier Gesagten. Zunächst hebt Maximow das Fehlen eines Lumens in der Epithelkörperchenanlage hervor. Dies trifft wohl in der Regel, nicht aber ausnahmslos zu. Im vorliegenden Falle enthält nicht nur der oben beschriebene Zapfen der rechten Seite an seinem Ende eine Lichtung, sondern ein zweiter lumenhaltiger, allerdings ganz kurzer Schlauch ist auch links, hier am kaudalen Ende der Epithelkörperanlage, vorhanden. Dieser Schlauch liegt der ventralen Wand des Thymussäckchens an. Es ist nicht ausgeschlossen, dass diese Röhrchen die Anlagen jener Hohlgebilde darstellen, welchen man bei älteren Embryonen oftmals neben den kompakten Stücken aus echtem Epithelkörpergewebe begegnet.

Weiter findet Maximow die Grenzen zwischen den Zellen oft nicht deutlich definiert, "man sieht vielmehr eine mehr einheitliche, fein retikuläre, meist leicht basophile Protoplasmamasse mit zahlreichen, in ziemlich gleichen Abständen voneinander eingestreuten Kernen". Auch dem muss ich widersprechen. Wie ich schon bei Schilderung des Stadium VI erwähnte, kann man an nicht zu dünnen Schnitten (10 µ) vom ersten Augenblicke an an vielen Stellen zwischen den Zellen Scheidewände nachweisen. Möglich, dass an dünneren Schnitten diese zarten Linien das gleiche Aussehen wie die Gerüstfäden im Innern der Zellkörper besitzen. An den mir vorliegenden Präparaten aber kann man durch Heben und Senken des Tubus leicht unterscheiden, was eine durch die Dicke des Schnittes gehende Zellwand, und was bloss ein Faden ist. Dagegen sehe ich wie Maximow im Plasma einzelner Zellen, und zwar stets im basalen Teil, Vakuolen, von denen es mir nicht unwahrscheinlich ist, dass sie intra vitam Glycogen enthalten. Bezüglich der Kerne sagt dieser Autor: "Diese letzteren sind stets kleiner als die Kerne der Thymusanlage, von runder, ovaler oder unregelmässiger Form, oft mit Einschnürungen versehen und enthalten meist nur einige, sechs bis acht Chromatinstückchen, die der Membran von innen kalottenförmig anliegen; der ganze übrige Kernraum erscheint ganz blass, gleichmässig, fein staubförmig granuliert, ohne Nukleolus." Ich habe dazu zu bemerken, dass in meinen Schnitten die Kerne wohl etwas kürzer, dafür aber breiter als jene der Thymusanlage sind, dass unregelmässige Kerne nur ganz vereinzelt vorkommen und dass neben den kleinen Körnchen gelegentlich auch grössere Chromatinbrocken im Kerninnern vorhanden sind.

Was die Thymusanlage betrifft, so ergibt sich als Fortschritt gegenüber dem früheren Stadium eine umschriebene Verdickung der ventralen Wand (Fig. 31). sowie eine Erweiterung des Lumens in dorsaler Richtung. Das spitze Divertikel, das in Fig. 32 zu sehen ist, ist die Folge davon, dass sich die medio-dorsale Wand in die Lichtung vorgestülpt hat. Auf der linken Seite fehlt diese Vorstülpung, daher ist die Lichtung hier halbmondförmig, die untere Fläche plan, die obere dorsalkonvex. Am Schnitt erscheint daher ein ähnliches Bild wie früher, nur dass die Vorwölbung der dorsalen Wand zugenommen hat. Da die Zellen hier sehr dicht liegen, überlagern sich vielfach die Kerne, und sind Zellgrenzen nur ausnahmsweise zu erkennen. Wahrscheinlich infolge des Druckes, der im Gewebe herrscht, sind die Kerne schmäler und länger als in der Epithelkörperchenanlage und ihr Gerüst ist dichter, weil auf kleineren Raum zusammengerückt.

Der anliegende Sinus cervicalis, der mit Rücksicht auf die beginnende Erweiterung seiner Lichtung und seine vollkommene Abtrennung von der Epidermis (durch Schwund des Ductus cervicalis) jetzt besser als Vesicula cervicalis zu bezeichnen ist, enthält ebenfalls zahlreiche Mitosen. Seine äussere Wand ist breiter als die innere. Die Abknickung des dorsalen Endes, des Fundus. gegen die ventrale, mit der Thymusanlage verbundene Portion. ist bei diesem Embryo weder rechts noch links deutlich ausgesprochen. Die Spitze des Bläschens steht durch eine Kette von Zellen, die wahrscheinlich als Nervenzellen zu deuten sind, mit der kaudalen Spitze des Ganglion nodosum in Verbindung. Ob diese Zellen aus dem Epithel oder aus dem Ganglion stammen. muss ich dahingestellt sein lassen. Denn wenn man auch wiederholt auf Bilder stösst, die im Sinne einer Auswanderung der Zellen aus dem Epithel sprechen, so muss man doch in ihrer Deutung vorsichtig sein, da es sich fast stets um Schrägschnitte durch die mehr oder weniger stark gewölbte Wand des Sinus cervicalis handelt. Immerhin darf nicht übersehen werden, dass vierter und fünfter Bogen bei jüngeren Embryonen grösser als bei älteren sind, bei denen der letztere sogar vollkommen von der Oberfläche verschwindet, während das Epithel des vierten nur mehr in der medialen Wand des Fundus cervicalis erhalten bleibt. Und da die Epithelzellen über dem vierten und fünften Bogen nicht an Ort und Stelle degenerieren und sich auch nicht

in vielen Lagen übereinander schieben, bleibt nur die Alternative übrig, dass sie entweder in das Bindegewebe auswandern und zur Vergrösserung des Vagusganglions beitragen¹), oder dass sie nach aussen rücken und sich an der Überkleidung der wachsenden benachbarten Partien beteiligen.

Die Vesicula cervicalis setzt sich kranialwärts in die zu einer Röhre umgewandelte zweite Kiemenfurche fort, welche jedoch — entgegen dem Verhalten jüngerer Stadien — den Schlund nicht mehr erreicht, da sich der kaudale Schenkel der zweiten Tasche bereits vollkommen zurückgebildet hat. Maximow und Ruben haben ein massenhaftes Vorkommen der chromatophilen Körner im "Sinusbläschen" gerade während dieser Periode beschrieben. Im vorliegenden Embryo ist jedoch ihre Zahl eine geringe. Man darf daraus wohl ohne weiteres schliessen, dass ihre Produktion der Zeit nach beträchtlichen Schwankungen unterworfen ist, und dass sie nur eine unregelmässige Begleiterscheinung des Wachstums dieses Organs darstellen.

Bezüglich der vormals im kaudalen Pharynxdivertikel vereinigt gewesenen Taschen ist zu bemerken, dass sich nun auch der ultimobranchiale Körper vom Schlunde abgelöst hat. Die vierte Tasche ist gegen früher stark in die Länge gewachsen; sie stellt jetzt einen in sagittaler Richtung verlaufenden Strang von ca. 150 μ Länge dar, der nur in seinem mittleren Teile auf eine kurze Strecke hohl, im übrigen aber solid ist. Die Lichtung wird von einem einschichtigen Zylinderepithel umschlossen. Im soliden Abschnitt hat der Strang das gleiche Aussehen wie das kraniale Epithelkörperchen. Die Zellen sind teilweise vakuolisiert und zwischen ihnen erscheinen deutliche Grenzen.

Der ultimobranchiale Körper misst ca. 300 μ sagittaler Länge und besitzt durchwegs den Charakter eines Schlauches. Er ist an seiner Spitze dünn und drehrund, nimmt jedoch bald an Dicke der Wand und Weite des Lumens zu, wobei die mediale und laterale Fläche an Ausdehnung überwiegen, so dass er einen elliptischen Querschnitt erhält. Gegen das kaudale Ende hin rückt er etwas ventralwärts und dreht sich dabei mit seiner ventralen Kante etwas medialwärts. An der Stelle seiner

¹) Dass dieses Verhalten mit dem Charakter jenes Zellagers als eines rudimentären Sinnesorgans nicht unvereinbar ist, hat bereits Froriep (8) betont.

grössten Weite besitzt der Schlauch einen Durchmesser in schräg sagittaler Richtung von 185 μ , senkrecht darauf von 105 μ . Hier liegen in der Wand zwei bis vier Kernreihen übereinander. Er endigt mit breiter Basis, die in die Ebene der Einmündungsstelle des nahezu quer verlaufenden vierten Arterienbogens in die dorsale Aorta fällt. Das Aussehen der Zellen ist im grösseren, kranialen Abschnitt von jenem im Endstücke verschieden. Dort handelt es sich um sehr lange, schmale, nur in einfacher Reihe liegende Zylinderzellen mit relativ kleinem und schmalem Kerne und stark vakuolisiertem Zellkörper. In letzterer Region hingegen, wo wie eben erwähnt wurde, die Kerne in mehrfachen Lagen übereinander stehen, sind die letzteren grösser und von ovaler Form. Der Zellkörper ist gänzlich frei von Vakuolen und sieht daher bei schwacher Vergrösserung kompakt aus, während er bei starker Vergrösserung ein feines Gerüstwerk von Fäden erkennen lässt. Zwischen den beiden Abschnitten befindet sich eine Übergangszone (Fig. 33), welche beide Epithelformen enthält. In dieser besteht der grössere Teil der Wand aus Zellen von dem letzt beschriebenen Aussehen; eine kleine, dorso-laterale Partie aber wird von den vakuolisierten Zellen gebildet.

An der Schilddrüse zeigt sich die beginnende Spaltung des Organs in eine rechte und linke Hälfte dadurch zum ersten Male. dass ihre vordere Grenzfläche oralwärts leicht konkav ist, indem sie zu beiden Seiten der Carotiden weiter nach vorne reicht, als im übrigen Teile. Nur in der Mitte befindet sich ein ziemlich breiter Zapfen, der in der Serie unmittelbar hinter den seitlichen Spitzen getroffen erscheint. Die mehrfachen, in der Medianebene gelegenen, isolierten, kleinen Partikelchen (Textfig. 1) sind Reste des Ductus thyreoglossus, welcher bei diesem Embryo offenbar lange persistierte und erst spät in getrennte Stücke zerfiel. Diese sind. gleich den beiden rechts gelegenen Körperchen, welche wohl als zurückgebliebene Aste jenes Ganges aufgefasst werden müssen, längliche Bläschen, die ein deutliches Lumen enthalten und von einer einfachen Lage zylindriger Zellen gebildet werden. Die vordersten liegen dort, wo sich in Stadium II die ganze Schilddrüse befand. Es ist dies jene Region, wo sich die ventrale Aorta, die spätere

¹) Das Verhältnis der transversalen Durchmesser zur Länge kommt bei Projektion auf die Frontalebene wegen der Drehung des Schlauches um die sagittale Achse nicht zum gebührenden Ausdruck.

A. carotis externa, in ihre Endäste auflöst. Von diesen verläuft einer mit dem Hypoglossus zur Zunge, ein anderer direkt zur Anlage des Meckelschen Knorpels, und ausserdem werden mehrere Zweige lateral- und medialwärts abgegeben. Das kaudale Ende der Schilddrüse erscheint der Wand des vierten Arterienbogens angelagert. Eine Fortsetzung auf den Truncus, wie in jüngeren Stadien, ist hier nicht vorhanden, offenbar weil das Herz mit den grossen Gefässen noch rascher als die Schilddrüse nach rückwärts gewandert ist.

Wie bezüglich ihrer Form, liegt auch eine Änderung ihrer Struktur vor, da keine grossen Platten mehr in ihr vorkommen, sondern — wie zu Anfang ihrer Entwicklung — bloss zahlreiche, netzförmig verbundene Stränge vorhanden sind. Diese unterscheiden sich jedoch dadurch von den Strängen der ersten Stadien, dass sie nicht wie jene aus bloss zwei Zellagen bestehen, sondern grösstenteils vier Reihen aufweisen. Von diesen bestehen die äusseren Lagen, wie dies schon bei Stadium VI angegeben wurde, aus eng aneinander schliessenden, kurz zylindrischen, die inneren aus lockerer liegenden Zellen. Auffallend ist der grosse Reichtum an Blutgefässen, die schon jetzt die Lücken zwischen den Zellsträngen ausfüllen. Dabei hat es den Anschein, als ob die in das Bindegewebe vorwachsenden Epithelmassen die Blutgefässe geradezu aufsuchen würden, um sich ihnen aufs dichteste anzulagern, ja in manchen Fällen, um sie vollkommen einzuschliessen.

Stadium VIII.

Mit diesem Stadium will ich den ersten Teil meiner Arbeit abschliessen, weil hiermit die Trennung von Epithelkörper und Thymus normalerweise vollzogen ist, und die letztere bis hierher keine Spur von freien Rundzellen zwischen ihren typischen epithelialen Elementen erkennen lässt. Es handelt sich um einen Embryo, der eine Länge von 14,5 mm besass.

Das Verhalten der einzelnen Teile des thyreo-thymischen Organkomplexes ist wieder aus der Frontalrekonstruktion, Textfigur 2, ersichtlich. Vergleicht man diese Abbildung mit Textfigur 1, so fällt vor allem der Mangel einer Vergrösserung der Thymus und des Cervicalbläschens auf. Doch ist dieser nur scheinbar, dadurch bedingt, dass infolge der dichten Zusammenlagerung der beiden Derivate der dritten Kiementasche und des

Cervicalbläschens diesen Gebilden der Raum zu einer ausgiebigen Entwicklung in transversaler Richtung fehlt. Das Wachstum der Thymus erfolgt dorsal- und ventralwärts und konnte daher bei Projektion auf die Frontalebene nicht zur Darstellung kommen. Anders verhält sich der Epithelkörper III, der in kranialer und kaudaler Richtung auswächst und dessen Vergrösserung daher ohne weiteres sichtbar ist. Übrigens ist die Massenzunahme der Thymus auch an und für sich keine beträchtliche. Ihre Gestalt ist die eines kegelförmigen Bläschens mit ventraler Basis und dorsaler Spitze, das sich ohne Schwierigkeit aus den früheren Entwicklungsstadien der Tasche ableiten lässt, als sie eine ventrale plane und

Embryo 14,5 mm. Rekonstruktion derselben Art wie Textfig. 1. Darstellung der Organe in gleicher Weise wie dort. Gleiche Vergrösserung. Die Lichtung im Thymussäckehen wurde hier nicht eingetragen.

eine dorsale, konvexe Fläche besass. Diese dorsalwärts gerichtete Konvexität hat im vorliegenden Falle so zugenommen, dass die Thymusanlage im Querschnitte (Fig. 34) dreiseitig erscheint, indem mediale und laterale Wand unter spitzem Winkel zusammenstossen. Der in der Abbildung rechts vom Bläschen gelegene, isolierte Zellkomplex erscheint schon am nächsten Schnitte in die Wand von jenem eingefügt. Er ist nichts anderes, als ein von der medialen Seite des Bläschens ausgehender, kranial gerichteter Zapfen. Seine Länge beträgt 30 μ .

Ähnliche Fortsätze entsendet die Wand auch nach den übrigen Richtungen. Sie sind die Vorstufen jener grossen, fingerförmigen Fortsätze, welche die Thymus von Meerschweinchen-

embryonen von 20-30 mm Länge charakterisieren, und die Anlagen der Läppchen darstellen. Die Zapfen sind im vorliegenden Stadium bald kurz, bald länger (bis zu 0,1 mm), bald nur drei bis vier Zellen breit, bald grosse, halbkugelförmig vorspringende, die Hälfte der Blasenwand einnehmende Wucherungen. Entsprechend ihrer Bedeutung für die Vergrösserung des Organs findet man in ihnen stets relativ mehr Mitosen als im zentralen Bläschenkörper. Ich füge hier ein, dass ich deren in der rechten Thymusanlage 37, in der linken 45 gezählt habe. Die Epithelzellen liegen sowohl innerhalb jener Fortsätze als im Bereiche der glatten Blasenwand zumeist in zahlreichen Schichten übereinander. Demgemäss sind auch die Mitosen in der ganzen Dicke des Epithels gleichmässig zerstreut und ihre Achsen in jeder denkbaren Lage orientiert. Nur ab und zu dringt die zentrale Lichtung so weit peripheriewarts, dass sie von einer einzigen Schicht begrenzt wird, deren Elemente von zvlindrischer Gestalt sind. Dieselbe Form haben die Zellen der äussersten Lage der geschichteten Wandabschnitte. Ebenso sind jene, welche dort den Hohlraum unmittelbar umgeben, meistens zylindrisch, während die Zellen zwischen äusserster und innerer Lage eine polyedrische Gestalt besitzen.

Der Körper der Thymuszellen enthält allenthalben ein Netzwerk feiner, mit Körnchen besetzter Fäden, vereinzelt auch chromatophile Körner, die bald kompakt, bald halbkugel- oder becherartig sind. Ab und zu findet man in einer Zelle auch einen grossen, scharf umschriebenen, kugeligen Hohlraum, wie ihn Maximow als Zeichen der beginnenden Vakuolisation beschrieben hat. Die Kerne sind grösstenteils rundlich, mit einem ungefähren Durchmesser von 8 μ , selten sind sie ausgesprochen elliptisch und besitzen dann eine lange Achse von 12—16 μ und eine kurze von 6 μ . Natürlich gibt es zwischen den runden und langgestreckten Kernen alle möglichen Zwischenformen. Die Anordnung ihrer Gerüstsubstanz zeigt keinerlei auffallende Eigentümlichkeit. — Schliesslich sei noch der Kittsubstanz zwischen den Zellen Erwähnung getan, die sich im vorliegenden Objekte durch ihre dunkle, braunblaue Farbe auszeichnet.) Ein

¹) Das Hämatoxylin, in dem diese Serie gefärbt wurde, befand sich in Nickelschälchen. Wie sich nachträglich herausstellte, wurde das Metall vom Hämatoxylin angegriffen und gleichzeitig das Hämatoxylin dadurch verändert.

Gerinsel von gleicher Eigenschaft ist in der Lichtung des Thymusbläschens enthalten, das vielleicht als ein Sekret der Epithelzellen betrachtet werden darf.

Was die Abgrenzung der Thymus gegen das Bindegewebe betrifft, so lässt sich an vielen Stellen die bereits von Maximow hervorgehobene Tatsache feststellen, dass die Oberfläche der Läppchenanlagen nicht glatt ist, sondern dass jede Zelle für sich mit ganz leichter Konvexität nach aussen vorragt. Die Mesenchymzellen liegen, in mehrfachen Reihen eng zusammengelagert. der Blasenwand dicht an. Sie sind parallel der Oberfläche der letzteren in die Länge gestreckt und enthalten Kerne, die mit einer Länge von 8-10 µ und einer Breite von 4-5 µ im ganzen etwas kleiner als die Kerne der benachbarten Epithelzellen sind. Die Grenze zwischen diesen, die Anlage der Kapsel darstellenden bindegewebigen Elementen und den epithelialen ist an den meisten Stellen ganz scharf; nur in den Buchten zwischen den Läppchenanlagen ist es auch bei genauer Handhabung der Mikrometerschraube schwer, die Zugehörigkeit jeder einzelnen Zelle einwandfrei festzustellen. Diesen Übelstand möchte ich aber lediglich auf eine ungünstige Schnittführung beziehen, wenn auch zugegeben werden muss, dass es gerade die Furchen zwischen den Läppchen sind, in denen Bindegewebszellen und Blutgefässe zuerst in die Thymus eindringen, und wenn auch gerade jene Regionen in älteren Stadien zu allererst von Lymphocyten überflutet sind.

Das mit der Thymus verbundene Cervicalbläschen zeigt, wie der Vergleich der Fig. 34 und 35 lehrt, an Schnitten durch den hinteren und vorderen Teil ein verschiedenes Aussehen, indem es an ersterer Stelle kugelig, an letzterer aber sichelförmig erscheint. Es hängt dies damit zusammen, dass einerseits die mediale Wand des Bläschens am oralen Ende weit ins Lumen vorspringt, andererseits die Spitze der Vorwölbung im Innern des Bläschens nach rückwärts ablenkt und nahezu bis zur kaudalen Wand desselben vordringt. So ergibt sich das in Fig. 34 abgebildete Verhalten, welches das Epithel dieser Spitze flach angeschnitten im Innern des Bläschens zeigt. Die gleiche Gestalt wie das Cervicalbläschen der rechten Seite besitzt auch jenes links. Im Gegensatz hierzu findet Ruben bei einem Embryo von 14 mm die laterale Wand hügelig verdickt und ins Lumen vorgebuchtet, "ein Verhältnis, das auch in den nächstfolgenden Stadien wieder-

zufinden ist". In letzterem Punkte muss ich ihm zustimmen. Daher liegt hier ein Ausnahmefall vor, der sich jedoch leicht aus den in Fig. 28 und 31 abgebildeten Formen des Sinus cervicalis erklären lässt. Denn man braucht nur anzunehmen, dass der zwischen der dorsalen Wand der dritten Tasche und dem Sinus eingeschlossene Bindegewebskeil gegen diesen vordringt, um die in Fig. 35 vorliegende Sichelform zu erhalten. Die gewöhnliche Gestalt des Cervicalbläschens, die nach aussen konkave Sichel, ist dagegen die Folge jener stärkeren Abknickung des Sinus, die in Fig. 29 zur Darstellung gelangt ist, und auf deren Vorkommen bei jüngeren Embryonen ich bereits mehrmals aufmerksam gemacht habe.

Die Dicke der Wand der Vesicula cervicalis schwankt in diesem Stadium zwischen 24 μ in der dorsalen und 44 μ in der kaudalen Region. Demzufolge besteht die dorsale Wand aus einer einzigen Lage von Zylinderzellen, während sich in der kaudalen drei Kernreihen übereinander befinden. Die mediale Wand steht mit ca. 30 μ Dicke in der Mitte. Ventralwärts lässt sich das Bläschen gegen die Thymus nicht scharf abgrenzen. Die Mitosen sind sehr zahlreich und liegen auch innerhalb der dicken Wandabschnitte fast ausschliesslich am Lumen. 1

Der Epithelkörper ist gegen früher bedeutend in die Länge gewachsen. Er besteht, wie aus der Rekonstruktion ersichtlich, beiderseits aus einem breiten Mittelstück, das sich kranialwärts in einen kurzen, kaudalwärts in einen längeren Strang fortsetzt. Der letztere reicht bereits so weit nach rückwärts, dass er zum grösseren Teile in Berührung mit der Schilddrüse tritt. Das Ende des ersteren liegt beiderseits in der Höhe der Teilung der A. carotis communis in C. externa und interna.²) Von hier zieht er lateral von der Carotis communis, medial von der Thymus kaudalwärts, anfangs dünn, später dicker und den Raum zwischen den beiden Organen ganz ausfüllend. In der mittleren Region erstreckt sich der Epithelkörper vom medialen Thymusrand über die dorsale Wand der Carotis hinweg, ventral vom Vagus, bis an den schräg ventralwärts verlaufenden N. laryngeus superior. In seinem letzten Drittel rückt er etwas ventralwärts,

Eine Ausnahme zeigt Fig. 34.

²) Da die Teilung genau in der Sagittalebene erfolgt, konnte sie in der Rekonstruktion nicht dargestellt werden.

so dass er hier nicht rein lateral, sondern seitlich und ventral von der Carotis gelegen ist.

Wie aus dem Vergleiche mit dem früheren Stadium hervorgeht, entspricht das Mittelstück dem medialen Teile der dritten Kiementasche, während der kraniale und kaudale Fortsatz als Wucherungen derselben zu betrachten sind, von denen der erstere schon bei jüngeren Stadien, wenigstens auf einer Seite, nachgewiesen werden konnte. Die eigentümliche Gestalt des Mittelstückes in Fig. 25 ist — wie eine einfache Überlegung lehrt die Folge davon, dass die Carotis dorsalwärts gerückt ist. Denn man braucht sich bloss in Fig. 31, in der die Derivate der Kiementasche annähernd in einer Geraden liegen, die von der ventralen Schlundbucht zur äussersten Spitze der Tasche verläuft, die Carotis in ein drehrundes Rohr verwandelt dorsalwärts verschoben zu denken, so kommt der eine Teil des Epithelkörpers lateral, der andere dorsal von der Arterie zu liegen. Ein Schnitt, an dem beide Teile in Verbindung stehen, muss demnach das Gefäss von einer hackenförmigen Zellmasse zur Hälfte umgriffen zeigen. -Dass die mediale Spitze des Mittelstückes keine selbständige Wucherung darstellt, sondern dem medialen Ende der Tasche entspricht, geht daraus hervor, dass es auch im Stadium VII bis an den N. larvngeus s. heranreicht.

Da der N. hypoglossus bei manchen Säugetieren eine wichtige Rolle bei der Zerlegung des Organkomplexes der dritten Tasche spielt, sei erwähnt, dass er im vorliegenden Fall seinen Platz neben dem Vagus erst jenseits des hinteren Endes der Thymus verlässt, um sich nach kurzem, ventro-medialem Verlaufe wieder oralwärts, zur Zunge empor, zu begeben. Ruben glaubte, bei einem Embryo von 14 mm Länge eine Achteldrehung der Thymusanlage samt dem anliegenden Cervicalbläschen annehmen zu müssen, "so dass die vorher medio-dorsale Grenze zwischen den betreffenden ekto- und entodermalen Gebilden nun in sagittaler Richtung geht, und das frühere innere Ende der Kiementasche nun rein dorsalwärts sieht". Nach seiner Meinung "beruhtdiese Lageveränderung vielleicht darauf, dass der Hypoglossus bei seiner kranialen Wanderung nun in das Niveau des Komplexes heranreicht und sich dicht an seiner medialen Fläche hineingedrängt hat".

Diese Beobachtung kann ich auf Grund meiner Präparate nicht bestätigen. Denn wie aus Fig. 34 hervorgeht, besitzt die Grenzebene zwischen Vesicula cervicalis und Thymus in diesem Stadium nahezu dieselbe Lage wie in Stadium VII. Und das gleiche Verhalten zeigen auch noch ältere Embryonen. Das von Ruben in Fig. 5 abgebildete Modell kann nicht als Beweis für die Richtigkeit seiner Anschauung dienen, da an demselben nur die Lage des freien Teiles des Cervicalbläschens, nicht aber die der Grenzebene sichtbar ist. — Auch den zweiten Grund Rubens kann ich nicht gelten lassen, da das innere Ende der Kiementasche seine Lage wenigstens vorläufig beibehält. Es lässt sich auch nicht einsehen, wie die behauptete Drehung durch den Hypoglossus erzeugt werden könnte.

Dagegen könnte man geneigt sein, in der späteren Verlaufsrichtung des Nervs die mechanische Ursache für die vollständige Sonderung der Thymus vom Epithelkörper zu erblicken. Denn ich finde ihn bei einem Embryo von 15,5 mm Länge genau zwischen jenen beiden Organen hindurchziehend. Dennoch kann ihm auch in dieser Hinsicht keine Bedeutung zukommen, da der erwähnte Fall den einzigen dieser Art und somit eine Ausnahme darstellt, während der Regel nach der Hypoglossus weiter medial verläuft und infolgedessen von Epithelkörpergewebe allein umgeben wird. Gelegentlich verläuft er sogar zwischen Epithelkörper und Carotis. Genauere Angaben über die Topographie jener Region werde ich im zweiten Teile dieser Arbeit machen.

Was die feinere Struktur des Epithelkörpers anbelangt, so sind die Zellgrenzen jetzt noch deutlicher als früher zu erkennen, da die Zellen grösser geworden sind, die Vakuolen im Plasma zugenommen haben und das letztere teils auf die zarten Scheidewände zwischen jenen, teils auf einen körnig-fädigen Rest reduziert ist, in dem der Kern exzentrisch gelegen ist. Die Zahl der Mitosen ist ausserordentlich gering. Das Organ ist noch rein epithelial, Bindegewebszellen und Blutgefässe fehlen in ihm vorläufig. Ebenso fehlt eine dichtere kapselartige Anhäufung der Mesenchymzellen an seiner Oberfläche, wie sich eine solche im grösseren Teile des Umfanges der Thymus und des Cervicalbläschens findet.

Der aus der vierten Tasche hervorgegangene Epithelkörper, der innere Epithelkörper nach dem Vorschlage Kohns, bildet einen Strang von 45—60 μ Breite und beträchtlicher Länge. Auf der rechten Seite hängt er, was in der Rekonstruktion nicht

zur Darstellung gelangte, mit dem kranialen Ende des ultimobranchialen Körpers zusammen (Fig. 36). Hier ist demnach die von der ersten Anlage her bestehende Verbindung zwischen vierter und letzter Tasche erhalten geblieben. Aus der Lage dieser Verbindung erkennt man, dass der grösste Teil des Stranges als kandaler Fortsatz der vierten Tasche angesehen werden muss. Er ist dem kaudalen Fortsatz, den das Mittelstück des Epithelkörpers III entsendet, homolog, und nur deshalb nicht ohne weiteres hinsichtlich seiner Abstammung zu deuten, weil die vierte Tasche, die sich im ganzen zu Epithelkörpergewebe umbildet, so klein angelegt wird, dass sie sich von ihrem Fortsatz nicht durch eine grössere Breite absetzt. Die erwähnte Verbindung ist, entsprechend den Verhältnissen bei jüngeren Embryonen, nur an zwei Schnitten zu sehen. In den folgenden schiebt sich Bindegewebe zwischen die beiden Organe. Der Epithelkörper rechts, anfänglich rein dorsal vom ultimobranchialen Körper gelegen, rückt allmählich medialwärts und erscheint jenseits des Endes des letzteren der lateralen Seite des N. larvngeus inferior unmittelbar angelagert. Links besitzt der Epithelkörper diese Lage von Anfang an, wahrscheinlich deshalb, weil er hier wie aus Textfig. 2 hervorgeht — eine Verschiebung in kaudaler Richtung erfahren hat. Zwischen ihm und der Schilddrüse findet sich beiderseits kranial der ultimobranchiale Körper, kaudal in gleicher Breite wie dieser Bindegewebe. Bezüglich seiner histologischen Struktur besteht völlige Übereinstimmung mit dem äusseren Epithelkörper.

Schon bei Schilderung des Stadium VII habe ich erwähnt, dass sich die Zellen des kranialen Teiles des ultimobranchialen Körpers von jenen des kaudalen durch ihre starke Vakuolisation unterscheiden. In Fig. 36, welche diesen Teil des ultimobranchialen Körpers mit dem Epithelkörper IV in Zusammenhang zeigt, ist das gleiche Verhalten ersichtlich. Zugleich fällt auf derselben die grosse Übereinstimmung auf, welche dadurch hinsichtlich der histologischen Struktur zwischen dem Derivate der vierten Tasche und dem kranialen, jetzt dorsalen Teile des ultimobranchialen Körpers herrscht. Aus dieser Übereinstimmung glaube ich die Berechtigung zu der bereits S. 87 ausgesprochenen Ansicht ableiten zu dürfen, dass der ultimobranchiale Körper des Meerschweinchens auch Reste der rudimentären fünften

Schlundtasche enthält, indem er Ansätze zur Bildung eines Epithelkörpers V erkennen lässt. Dass es in dieser Hinsicht nur zu einer unvollständigen histologischen Differenzierung kommt, die bald wiederum einer rückgängigen Metamorphose unterliegt, wobei zahlreiche chromatophile Körnchen auftreten, nimmt nicht wunder, da es ja auch niemals zu einer morphologischen Differenzierung der fünften Schlundtasche, d. h. zur Abgliederung derselben vom ultimobranchialen Körper kommt. Anders liegen die Dinge beim Menschen, indem hier von S. Getzowa in mehreren Fällen in nächster Nachbarschaft vom ultimobranchialen Körper ein kleiner Epithelkörper und sogar Streifen von Thymusgewebe gefunden wurden. Diese betrachtet die Autorin mit Rücksicht auf die Anwesenheit der Epithelkörper III und IV an normaler Stelle mit Recht als Derivate einer fünften Tasche. Dass hier jene Organe eine weitere Ausbildung als beim Meerschweinchen erlangen, steht in Beziehung zur Tatsache, dass hier die fünfte Tasche schon bei ihrer ersten Anlage (bei Embryonen von ca. 5 mm Länge) eine grössere Selbständigkeit als an unserem Objekt besitzt.

Der an den Rest der fünften Tasche ventral und kaudal angrenzende Teil des ultimobranchialen Körpers ist durch eine ausserordentlich dicke Wand ausgezeichnet, welche mehrere Zellschichten enthält, in denen allen Mitosen in reicher Zahl vorkommen. An mehreren Stellen hat es den Anschein, als ob die Wand kurze Fortsätze vom Aussehen der Schilddrüsenstränge aussenden würde. Doch glaube ich daraus nicht eine Beteiligung des ultimobranchialen Körpers am Aufbaue der Schilddrüse ableiten zu dürfen, sondern betrachte vielmehr jene scheinbaren Fortsätze der Blasenwand als Teile der Schilddrüse, die der Blasenwand unmittelbar anliegen und sich nur wegen der in diesem Objekt herrschenden eigentümlichen braunroten Färbung der meisten Elemente von der Blasenwand nicht abgrenzen lassen. Denn ich finde bei Embryonen von ähnlichem Entwicklungsgrad (14 und 15 mm Länge), bei denen die Hämatoxylin-Eosin-Färbung zum normalen Resultat geführt hat, die Blasenwand aufs deutlichste von den benachbarten Schilddrüsenanlagen abgesetzt, obwohl die beiden Organe einander auch hier unmittelbar berühren.

Was schliesslich die Thyreoidea betrifft, so besitzt sie, wie die Rekonstruktion zeigt, bereits eine ausgesprochene Sichelform. Die kraniale Spitze ihrer Hörner liegt beiderseits knapp hinter dem Mittelstück des äusseren Epithelkörpers, das kaudale Ende des Isthmus befindet sich noch oral von der Abgangsstelle der Carotiden aus dem Aortenbogen. Mit dem früheren Stadium verglichen, liegt hier die Spitze der Hörner weiter oral als dort, jedenfalls als Folge ihres Wachstums in dieser Richtung; das hintere Ende dürfte seine Lage bewahrt haben und hat nur deshalb seine Verbindung mit dem Aortenbogen verloren, weil dieser nunmehr in die Brusthöhle hineinzurücken beginnt.

Bezüglich ihrer histologischen Struktur zeigt sie eine weitere Entwicklung in der bereits eingeschlagenen Richtung, indem sie aus einem Netzwerk von Strängen mit zahlreichen freien Ausläufern zusammengesetzt erscheint, welchen zahlreiche weite Blutgefässe (Sinusoids nach Minot [34]) unmittelbar angelagert sind (Fig. 37). Die Stränge sind teils als lumenlose Röhrchen, von einem einschichtigen Epithel ausgekleidet, aufzufassen, teils sind sie Züge, aus einer einzigen Zellreihe bestehend, teils breite Balken, in welchen 3-6 Zellen nebeneinander in der Querrichtung liegen (Fig. 36). Die erstere Form findet man in der Mitte des Organs, während die Enden desselben, sowohl seine Hörner wie das kaudale Ende des Isthmus, aus grösseren Zellkomplexen bestehen. Diese Anordnung ist wohl darauf zurückzuführen, dass die breite Zellanhäufung als das jüngere, das lumenlose Röhrchen als das ältere Entwicklungsstadium zu betrachten ist, wofern das letztere nicht von Anfang an als solches persistierte. Die Zerlegung der grösseren Zellkomplexe in kleine Gruppen und dünne Stränge dürfte sich in Zusammenhang mit dem Vordringen der Blutgefässe vollziehen.

Das Plasma der Zellen zeigt eine feine Netzstruktur. Chromatophile Körner habe ich stets vermisst. Die Zahl der Mitosen ist ausserordentlich gross. Im Zentrum mancher Röhrchen erscheint an einzelnen, voneinander getrennten Stellen eine kompakte, dunkelrot gefärbte Masse, die nach aussen zarte Fortsätze zwischen die Zellen entsendet. Es kann sich da nur um Colloid handeln, das schon in diesem frühen Stadium von den Zellen ausgeschieden wird, noch ehe sich aus den Strängen Blasen differenziert und noch ehe sich in ihnen eine freie Lichtung gebildet hat. Das Sekret schafft sich hier selbst Raum. Mit Rücksicht auf die grosse Zahl der Blutgefässe und deren unmittelbaren

Kontakt mit den Epithelzellen erscheint der Beginn der Colloidbildung schon in diesem Stadium nicht unbegreiflich. Dieses frühzeitige Funktionieren der Schilddrüse dürfte für das Wachstum und die weitere Differenzierung des Organismus von wesentlicher Bedeutung sein.

Zusammenfassung.

- 1. Die Schilddrüse entwickelt sich aus dem Epithel einer medianen Grube des Mundhöhlenbodens in der Region der zweiten Schlundbögen, indem ihr Grund in mehrere kurze Schläuche auswächst. Diese verbinden sich untereinander und bilden eine netzförmige Anlage mit freien, leicht kolbig verdickten Enden. Während der ganze Komplex kaudalwärts rückt, verdicken sich die Drüsenschläuche zu breiten Zellsträngen oder wachsen flächenhaft zu Zellplatten aus. Frühzeitig erscheinen zwischen ihnen zahlreiche weite Bluträume, deren Endothel den Epithelzellen unmittelbar anliegt, und die dadurch die Veranlassung bilden, dass die Zellen schon in diesen Frühstadien in Sekretion eintreten.
- 2. Die zweite Schlundtasche entwickelt sich in kaudaler und ventraler Richtung. Sie liefert einen breiten transversalen Flügel und ein von dessen kaudo-lateraler Ecke entspringendes, sagittal gestelltes Rohr, den Kiemengang. Dieser ist von kurzem Verlauf und atrophiert frühzeitig. Bei Embryonen von 5—6 mm besteht eine offene Verbindung zwischen dem medialen Ende der Tasche und dem ventralen Ende der Furche.
- 3. Die dritte Tasche zerfällt durch Einschnürung in einen medialen Abschnitt, die Anlage des Epithelkörpers und einen lateralen, die Anlage der Thymus. Doch steht die Grenze zwischen den beiden Teilen nicht senkrecht auf der Längsachse der Tasche, sondern bildet mit ihr einen spitzen Winkel, demzufolge zwar das laterale Taschenende im ganzen zur Thymus, das mediale zum Epithelkörper wird; in der mittleren Region aber differenziert sich die dorsale Wand zu Thymus-, die ventrale zu Epithelkörpergewebe. Ein nicht differenzierter, später atrophierender Schlundtaschenrest, wie er neuestens von Hammar beim Menschen (21), von Hansen beim Kaninchen (22) beschrieben wurde, fehlt hier

⁾ Leider geben diese Autoren keine Schnittbilder der Tasche in den einzelnen Stadien; man kann daher aus ihren, so sorgfältigen Arbeiten keine ganz klare Vorstellung über die Beziehung der Lichtung und der Wand des

ebenso wie beim Maulwurf. Dasselbe wurde auch von Ruben hervorgehoben.

- 4. Der mediale Abschnitt verliert, nachdem er sich vom lateralen getrennt hat, alsbald sein Lumen. Durch Wachstum in kaudaler Richtung liefert er den Parathyreoideastrang (Hammar); einen gleichen, aber inkonstanten und wesentlich kürzeren Strang entsendet er oralwärts. Die Differenzierung seiner Zellen setzt bereits bei Embryonen von 10 mm Länge ein.
- 5. Die laterale Taschenpartie wandelt sich unter lebhafter Vermehrung ihrer Elemente in loco in ein Säckchen um, in dessen geschichteter Wand noch bei Embryonen von 14,5 mm keinerlei Rundzellen unterscheidbar sind. Aus ihr sprossen an verschiedenen Stellen bald breitere, bald schmälere Buckeln und Zapfen hervor, welche die Anlagen der späteren, fingerförmigen Fortsätze darstellen, aus denen die Läppchen hervorgehen.
- 6. Die Vesicula cervicalis setzt sich aus dem Oberflächenepithel des dritten bis fünften Schlundbogens und der Retrobranchialleiste zusammen. Ihre feste Verbindung mit der Thymus ist durch den Umstand bedingt, dass schon bei Embryonen von 5—6 mm Länge die kaudale Wand der dritten Schlundtasche in innigen Kontakt mit der Epidermis über dem dritten Bogen tritt, und dass gerade dieser Teil der Tasche es ist, welcher den grössten Teil der Thymusanlage liefert. Der dorsal von der Berührungszone zwischen Cervicalbläschen und dritter Schlundtasche, bezw. Thymusanlage gelegene Teil der ersteren, welcher ringsum an Mesoderm grenzt und dem Ganglion nodosum vagi zugekehrt ist, bildet den Fundus cervicalis. Nach Obliteration des Ductus erweitert sich der anfangs spaltförmige Hohlraum des Bläschens; später erscheint er häufig sichelförmig, indem er von der lateralen, seltener von der medialen Seite aus eingebuchtet wird.
- 7. Die vierte Kiementasche wird im Zusammenhang mit dem ultimobranchialen Körper angelegt. Sie ist klein, ragt aber sowohl dorsal wie ventral über die Schlundwand hinaus und wandelt sich im ganzen in einen Epithelkörper um. Sie entwickelt, ebenso wie der Epithelkörper III, einen kaudalen Fortsatz, den man als Parathyreoideastrang IV bezeichnen kann.

"Schlundtaschenrestes" zur Anlage der Parathyreoidea und der Thymus gewinnen, da hiefür die sehr knappe Beschreibung und die Abbildungen der Modelle nicht ausreichen.

- 8. Dasselbe Aussehen der Zellen, durch das sich die Epithelkörperanlagen auszeichnen, kann man auch in jenem Abschnitt des ultimobranchialen Körpers nachweisen, welcher der vierten Kiementasche benachbart ist, eventuell mit ihr zusammenhängt. Aus diesem Grunde glaube ich in diesem Teile der Wand des ultimobranchialen Körpers den Rest der rudimentären fünften Schlundtasche erblicken zu dürfen.
- 9. Der ultimobranchiale Körper ist als sechste Schlundtasche aufzufassen. Er stellt ein ziemlich grosses, dickwandiges Bläschen mit platter Oberfläche dar, das bei jüngeren Embryonen dorsal von der Schilddrüse liegt. Im letzten Stadium aber wird seine kraniale Partie bereits von den Strängen der Schilddrüsenhörner umgriffen. Doch tritt es mit den letzteren an keiner Stelle in organische Verbindung.
- 10. Das erste Kiemenspaltenorgan bildet eine kleine, in das Ganglion des Facialis eingesenkte Grube, die sich am dorsalen Ende der ersten Kiemenfurche in deren aborale Wand, d. h. in das Mesoderm des zweiten Schlundbogens hinein entwickelt. Später wird das Grübchen durch Bindegewebe vom Ganglion geschieden, sein Eingang verengt sich, schliesslich wird seine Verbindung mit der Epidermis zu einem soliden Strange, der degeneriert. Ungefähr zur gleichen Zeit bricht es in die Schlundtasche durch und wird auf diesem Wege zu einem Bestandteile des dorsalen Divertikels von jener. Eine besondere Bedeutung dürfte diesem kleinen, ektodermalen Wandanteil jedoch nicht zukommen.
- 11. Das zweite Kiemenspaltenorgan liegt auf der der zweiten Schlundfurche zugekehrten Oberfläche des dritten Bogens. So lange jene noch seicht ist, liegt es frei zutage, nur unvollständig durch einen kleinen, der Retrobranchialleiste homologen Höcker dorsalwärts überragt. Infolge der stärkeren Entwicklung des Hyoidbogens gelangt es in die Tiefe und bildet einen vom übrigen Epithel der Furche verschiedenen Streifen, dessen inneres Ende das Ganglion des Glossopharyngeus berührt. Ausnahmsweise erfolgt ein Durchbruch in die zweite Schlundtasche. Bei Embryonen von 12—14 mm, manchmal auch schon früher, verfällt es der Atrophie.
- 12. Die Anlage des dritten Kiemenspaltenorgans muss in dem erhöhten Epithel über dem vierten und fünften Schlundbogen erblickt werden, unter dem sich das Ganglion nodosum

tlächenhaft ausbreitet. Dadurch, dass diese Bögen von der Retrobranchialleiste überwachsen und in die Tiefe verlagert werden, bildet jenes Epithel später den Überzug der medialen Wand des Fundus cervicalis. Dieser muss demnach mit Froriep als das von der Oberfläche abgerückte Kiemenspaltenorgan des Vagus aufgefasst werden. Die Spitze des Fundus ist durch einige Zeit mit dem kaudalen Ende des Vagus-Ganglions verbunden, ähnlich wie ich dies beim Maulwurf gefunden haben. Der diese Verbindung vermittelnde Zellstrang, dessen Differenzierung erst in dem Maße erfolgt, als das Kiemenspaltenorgan durch einwachsendes Bindegewebe vom Ganglion abgedrängt wird, stellt den Rest der anfänglich breiten Aneinanderlagerung von Epidermis und Ganglion dar. Er verschwindet bei Embryonen von 14—15 mm Länge.

Literaturverzeichnis.

- Agar, W. E.: The spiracular Gill Cleft in Lepidosiren and Protopterus. Anat Anz., 28. Bd., 1906.
- Anikiew, Ars.: Zur Frage über die Entwicklung der Vena anonyma sinistra. Anat. Anz., 34. Bd., 1909.
- Antipa, Gr.: Über die Beziehungen der Thymus zu den sog. Kiemenspaltenorganen bei Selachiern. Anat. Anz., 7. Bd., 1892.
- Beard, J.: The Origin and Histogenesis of the Thymus in Raja batis. Zool. Jahrb., Abt. f. Anat. u. Ontog. d. Tiere, Bd. 17, 1903.
- Bonnet, R.: Beiträge zur Embryologie des Hundes. Anat. Hefte, I. Fortsetzung, 16. Bd., 1901.
- Born, G.: Über die Derivate der embryonalen Schlundbogen und Schlundspalten bei den Säugetieren. Arch. f. mikr. Anat., Bd. 22. 1888.
- Fox, H.: The Pharyngeal Pouches and their Derivatives in the Mammalia. The American Journal of Anatomy, Vol. VIII, 1908.
- Froriep, A.: Über Anlagen von Sinnesorganen am Facialis, Glossopharyngeus und Vagus, über die genetische Stellung des Vagus zum Hypoglossus und über die Herkunft der Zungenmuskulatur. Arch. f Anat. u. Entwicklungsgesch., 1885.
- Derselbe: Zur Entwicklungsgeschichte der Kopfnerven. Verhandl, der Anat. Gesellsch. auf der 5. Versammlung zu München, 1891.
- Getzowa, S.: Über die Glandula parathyreoidea, intrathyreoideale Zellhaufen derselben und Reste des postbranchialen Körpers. Virchows Archiv, Bd. 188, 1907.
- Dieselbe: Zur Kenntnis des postbranchialen Körpers und der branchialen Kanälchen des Menschen. Ebenda. Bd. 205, 1911.

- Greil, A.: Über die Anlage der Lungen, sowie der ultimobranchialen (postbranchialen, suprapericardialen) Körper bei anuren Amphibien. Anat. Hefte, Bd. 29, 1905.
- Derselbe: Über die Entstehung der Kiemendarmderivate von Ceratodus F. Verhandl. d. Anat. Gesellsch. auf d. 20 Versammlung zu Rostock, 1906.
- 14. Groschuff, K.: Bemerkungen zu der vorläufigen Mitteilung von Jakoby: Über die Entwicklung der Nebendrüsen der Schilddrüse und der Carotisdrüse. Anat. Anz., 12. Bd., 1896.
- Grosser, O.: Zur Entwicklung des Vorderdarmes menschlicher Embryonen bis 5 mm grösster Länge. Sitzber. d. Kaiserl. Akad. d. Wissensch., mathem.-naturw. Kl., Bd CXX, Abt. III, 1911.
- Derselbe: Die Entwicklung des Kiemendarmes und des Respirationsapparates, in: Handbuch d. Entwicklungsgesch. d. Menschen, herausgegeben von Keibel und Mall. Leipzig 1911.
- Guthzeit: Über die Bedeutung des Tuberculum impar. Inaug.-Dissert., Leipzig 1912.
- 18. Hammar, A.: Studien über die Entwicklung des Vorderdarms und einiger angrenzender Organe. I. Abteilung: Allgemeine Morphologie der Schlundspalten beim Menschen. Entwicklung des Mittelohrraumes und des äusseren Gehörganges. Arch. f. mikr. Anat., 59. Bd., 1902.
- Derselbe: II. Abteilung. Das Schicksal der zweiten Schlundspalte. Zur vergleichenden Embryologie und Morphologie der Tonsille. Arch. f. mikr. Anat. 61. Bd., 1903.
- Derselbe: Ein beachtenswerter Fall von kongenitaler Halskiemenfistel nebst einer Übersicht über die in der normalen Ontogenese des Menschen existierenden Vorbedingungen solcher Missbildungen. Beiträge zur pathol. Anat. n. allgem. Pathol., 36. Bd., 1904.
- Derselbe Zur gröberen Morphologie und Morphogenie der Menschenthymus Anat Hefte, 43. Bd., 1912.
- Hansen, E. R.: Über die Entwicklung der Parathyreoideae accessoriae und der Thymus beim Kaninchen. Anat. Anz., 34, Bd., 1911.
- His, W.: Schlundspalten und Thymusanlage. Arch. f. Anat. u. Physiol., Anat. Abt., 1889.
- Hoffmann, C. K.: Beiträge zur Entwicklungsgeschichte der Selachii. Morphol. Jahrb., 27. Bd., 1899.
- Kallius, E.: Die mediane Thyreoideaanlage und ihre Beziehung zum Tuberculum impar. Verhandl. d. Anat. Gesellsch. auf d. 17. Versammlung in Heidelberg, 1903.
- Derselbe: Beiträge zur Entwicklung der Zunge. III. Teil, Säugetiere.
 I. Sus scrofa domestica Anat. Hefte, 41. Bd., 1910.
- Kastschenko, N.: Das Schicksal der embryonalen Schlundspalten bei Säugetieren. Arch. f. mikr. Anat., 30. Bd., 1887.
- Keibel, F. und Elze, C.: Normentafel zur Entwicklung des Menschen. Jena 1908.
 Heft der Normentafeln zur Entwicklung der Wirbeltiere.
- Mall, F.: The branchial clefts of the dog with special reference of the Thymus Gland Studies from the biological Laboratory of John Hopkins University in Baltimore, Vol. IV., 1889.

- Maurer, F.: Schilddrüse, Thymus und sonstige Schlundspaltenderivate bei Echidna. Jenaische Denkschriften, VI., Semon, Zool. Forschungsreisen III, 1899.
- Maximow, A.: Untersuchungen über Blut und Bindegewebe. I. Die frühesten Entwicklungsstadien der Blut- und Bindegewebszellen beim Säugetierembryo bis zum Anfang der Blutbildung in der Leber. Arch. f. mikr. Anat., 73. Bd., 1909.
- Derselbe: II. Über die Histogenese der Thymus bei Säugetieren. Ebenda,
 74. Bd., 1909.
- Derselbe: V. Über die embryonale Entwicklung der Thymus bei Selachiern. Ebenda, 80. Bd., 1912.
- Minot, Ch. Sedgwick: On a hitherto unrecognized form of blood circulation without capillaries in the organs of Vertebrata. Proceedings of the Boston Society of Natural History, Vol. 29, 1900.
- Nierstrasz, H. F.: Die Embryonalentwicklung von Thymus und ultimobranchialem Körper bei Tarsius und Nycticebus. Zool. Jahrb., Supplement XV, 2. Bd., 1912.
- * 36. Peter, C.: Mitteilungen zur Entwicklungsgeschichte der Eidechse. II. Die Schlundspalten in ihrer Anlage, Ausbildung und Bedeutung. Arch. f. mikr. Anat., 57. Bd., 1901.
 - Piersol, G. A.: Über die Entwicklung der embryonalen Schlundtaschen und ihre Derivate bei Säugetieren. Zeitschr. f. wissensch. Zool., 47. Bd., 1888.
 - Pinkus, F.: Die Hirnnerven von Protopterus annectens. Morphol. Arbeiten IV. Bd., 1895.
 - Prenant, A.: Développement organique et histologique du thymus et de la glande thyroide et de la glande carotidienne. La Cellule, T. X, 1894.
 - Rabl, C.: Zur Bildungsgeschichte des Halses. Prager medizin. Wochenschrift 1886.
 - Derselbe: Über den Bau und die Entwicklung der Linse. III. Teil: Die Linse der Säugetiere, Rückblick und Schluss. Zeitschr. f. wissensch. Zool., 67. Bd.
 - Rabl, H.: Über die Anlage der ultimobranchialen Körper bei den Vögeln. Arch. f. mikr. Anat. u. Entwicklungsgesch., 70. Bd., 1907.
 - Derselbe: Die Entwicklung des thyreo-thymischen Systems beim Maulwurf, in: Das thyreo-thymische System des Maulwurfs und der Spitzmaus von J. Schaffer und H. Rabl. Sitzungsber. d. Kaiserl. Akad. d. Wissensch., mathem.-naturw. Kl., Bd. CXVIII, Abt. III, 1909.
 - Derselbe: Über die Abkömmlinge der Kiementaschen und das Schicksal der Halsbucht beim Meerschweinchen. Verhandl. d. Anat. Gesellsch. auf d. 25. Versammlung in Leipzig 1911.
 - Reinke, E. E.: Note on the Presence of the fifth aortic Arch in a 6 mm Pig Embryo. Anat. Record, Vol. 4, 1910.
 - Ruben, R.: Zur Embryologie der Thymus und der Parathyreoidea beim Meerschweinchen. Anat. Anz., 39. Bd., 1911.
 - v. Schumacher, S.: Über die Entwicklung und den Bau der Bursa Fabricii. Sitzungsber. d. Kaiserl. Akad. d. Wissensch., mathem.-naturw. Kl., Bd. CXII. Abt. III, 1903.

- 48. Soulié, A. et Verdun, P.: Développement de la thyroïde, du thymus et des glandes parathyroïdiennes chez le lapin et chez la taupe. Journal de l'anatomie et de la physiologie, 33. année, 1897.
- Tandler, J.: Über die Entwicklung des 5. Aortenbogens und der 5. Schlundtasche beim Menschen. Anat. Hefte, 38. Bd., 1909.

Erklärung der Abbildungen auf Tafel VI-X.

Buchstabenbezeichnung.

A. d. = Aorta dorsalis.

A. v = Aorta ventralis.

Ab. = Kiemenarterienbogen (Aortenbogen).

c. Phd. = kaudales Pharynxdivertikel.

d. D. = dorsales Divertikel der Kiementasche.

D. c. = Ductus cervicalis.

D. ph. br. = Ductus pharyngo-branchialis.

Epk., Epk. A. = Epithelkörper, Epithelkörperanlage.

F. c. = Fundus cervicalis.

G.g. = Ganglion geniculi.

G. n. v. = Ganglion nodosum vagi.

G. s. = Ganglion sympathicum.

Hf. = Halsfurche.

Hy. = Hypophyse.

Kb. = Kiemenbogen.

Kf. = Kiemenfurche.

Kspo. = Kiemenspaltenorgan.

Kt. = Kiementasche.

L. = Larvnx.

l. R. = lateraler Rand der Kiementasche.

1. Sp. = laterale Spitze der Kiementasche,

Msp. = Mundspalte.

N. hy. = Nervus hypoglossus.

N. l. i. = Nervus laryngeus inferior.

N. l. s. = Nervus laryngeus superior.

N. v. = Nervus vagus.

Oe. = Ösophagus.

Pch. = Pericardialhöble.

Ph. = Pharvnx.

Rbr. L. = Retrobranchialleiste.

R. n. hy. = Ramus nervi hypoglossi.

S. c. = Sinus cervicalis.

s. Gz. = sympathische Ganglienzellen.

Th = Thyreoidea.

Thy., Thy. A. = Thymus, Thymusanlage.

Tr. = Trachea.

Tr. a. = Truncus arteriosus.

ubr. K. = ultimobranchialer Körper.

V. = Vene.

V. j. = Vena jugularis.

v. R. = ventraler Rand der Kiementasche.

Ves. c. = Vesicula cervicalis.

Die auf Taf. VI abgebildeten Modelle wurden bei 200 facher Vergrösserung angefertigt. Die Originalzeichnungen zeigen sie in ½ nat. Grösse. Behufs Reproduktion wurden jene abermals auf ½ verkleinert. Die Vergrösserung beträgt demnach 50. — Die Oberfläche sämtlicher Modelle entspricht der Grenzfläche zwischen dem Entoderm des Schlundes, bezw. dem Ektoderm des Sinus cervicalis und dem darunter liegenden Bindegewebe.

Die Schnittbilder auf den Taf. VII—X sind durchaus so orientiert, dass ihr oberer Rand nach der dorsalen, ihr unterer nach der ventralen Seite des Embryo gerichtet ist.

Tafel VI.

- Fig. 1. Modell des Schlundes des Embryo von 3,8 mm Scheitel-Steisslänge (Stadium I). Ansicht von rechts.
- Fig. 2. Modell des Schlundes des Embryo von 5,1 mm (Stadium II). Ansicht der Ventralseite. Der in der Mittellinie am hinteren Ende der ersten Kiementaschen gelegene Zapfen stellt den Beginn des Ductus thyreoglossus dar.
- Fig. 3. Dasselbe Modell von rechts.
- Fig. 4. Modell des Schlundes des Embryo von 6,5 mm (Stadium III). Ansicht von rechts.
- Fig. 5. Modell des Schlundes des Embryo von 8,2 mm (Stadium IV). Ansicht von rechts.
- Fig. 6. Dasselbe Modell, Ansicht von der Ventralseite. Links wurde auch das Ektoderm des Sinus cervicalis modelliert. Es ist in dunklerem Ton als das Entoderm dargestellt.
- Fig. 7. Modell des Schlundes samt dem linken Sinus cervicalis des Embryo von 10 mm (Stadium V). Ventralseite.
- Fig. 8. Modell der hinteren Partie des Schlundes samt dem linken Sinus cervicalis mit Kehlkopf und Beginn der Speiseröhre des Embryo von 10,7 mm (Stadium VI). Von der zweiten Tasche wurde nur das aborale Ende dargestellt. Die vierte Tasche der rechten Seite liegt bereits isoliert. Die Grenze des Fundus cervicalis gegen den übrigen Teil des Sinus wird durch die Fusspunkte der beiden Verweisstriche F. c. angezeigt.

Tafel VII.

- Fig. 9. Embryo 3,8 mm (Stadium I). Anlage der Schilddrüse. Vergr. 150.
- Fig. 10-13. Embryo 5,1 mm (Stadium II). Schnittserie durch die zweite Tasche der rechten Seite und die angrenzenden Kiemenbögen. Fig. 10 zeigt den oralsten Schnitt, die anderen folgen in kaudaler

Richtung. Schnittdicke 10 μ . Zwischen Fig. 10 und 11 wurde ein Schnitt als unwesentlich nicht abgebildet. Vergr. 85.

Fig. 14. Derselbe Embryo. Erstes Kiemenspaltenorgan, linke Seite. Vergr. 150.

Tafel VIII.

- Fig. 15. Derselbe Embryo. Zweites Kiemenspaltenorgan, linke Seite. Vergr. 150.
- Fig. 16. Derselbe Embryo. Kaudales Pharynxdivertikel, vierter und fünfter Bogen und Retrobranchialleiste. Vergr. 85.
- Fig. 17. Embryo von 6,5 mm (Stadium III). Zweiter bis fünfter Kiemenbogen und die dazwischen liegenden Taschen der rechten Seite. Vergr. 50.
- Fig. 18. Embryo von 8,2 mm (Stadium IV). Dritte Tasche und Sinus cervicalis, linke Seite. Vergr. 70.
- Fig. 19. Derselbe Embryo. Kaudales Pharynxdivertikel, links. Vergr. 85.
- Fig. 20-22. Derselbe Embryo. Drei aufeinander folgende Schnitte durch das erste Kiemenspaltenorgan der rechten Seite. Vergr. 150.

Tafel IX.

- Fig. 23—25. Embryo 8 mm. Schnittserie durch das erste Kiemenspaltenorgan der linken Seite. Zwischen Fig. 23 und 24 befindet sich in der Serie ein Schnitt, der aber nicht abgebildet wurde, weil das Kiemenspaltenorgan noch dasselbe Aussehen wie in Fig. 23 besitzt. Vergr. 50.
- Fig. 26. Embryo 8,2 mm. Region des dritten Kiemenbogens; zweites Kiemenspaltenorgan und Sinus cervicalis, linke Seite. Vergr. 70.
- Fig. 27. Embryo 9,7 mm. Frontalschnittserie. Region der zweiten Kiementasche mit der Einmündung der zweiten Furche. Vergr. 50.
- Fig. 28. Embryo 10,7 mm (Stadium VI). Dritte Tasche und Vesicula cervicalis mit beginnender Gliederung der ersteren in Epithelkörper und Thymusanlage, rechte Seite. Aus zwei Schnitten kombiniert. Vergr. 80.
- Fig. 29. Derselbe Embryo. Dritte Schlundtasche mit anliegender Vesicula cervicalis, linke Seite. Der Vagus ist an seinem Austritt aus dem Ganglion nodosum getroffen; daher sind zwischen seinen Faserbündeln noch grössere Ganglienzellgruppen eingestreut. Vergr. 125.
- Fig. 30. Embryo 11,2 mm. Die beiden vierten Kiementaschen und die Spitzen der ultimobranchialen Körper.
- Fig. 31. Embryo 12 mm (Stadium VII). Die dritte Schlundtasche bezw. ihre Abkömmlinge, samt Vesicula cervicalis. Vergr. 80.

Tafel X.

- Fig. 32. Embryo 12 mm. Dritte Tasche mit beginnender Differenzierung in Thymus- und Epithelkörperanlage. Der Schnitt liegt 40 "hinter dem in Fig. 31 abgebildeten. Vergr. 170.
- Fig. 33. Derselbe Embryo. Ultimobranchialer Körper und Epithelkörper IV der rechten Seite. Vergr. 100.

- Fig. 34. Embryo 14,5 mm (Stadium VIII). Thymussäckchen, Epithelkörper und Vesicula cervicalis der rechten Seite. Die Gerüstsubstanz in den Kernen gelangte mit Absicht nicht zur Darstellung Vergr. 200.
- Fig. 36. Derselbe Embryo. Querschnitt der Schilddrüse der rechten Seite nahe ihrer Spitze. Der Schilddrüse liegt lateral der Epithelkörper III, medial der ultimobranchiale Körper an, der sich hier in Verbindung mit dem Epithelkörper IV befindet. Die dorsale Wand des ultimobranchialen Körpers zeigt ebenfalls Epithelkörperstruktur: Epithelkörper V. Vergr. 120.
- Fig. 37. Derselbe Embryo. Kaudales Ende der Schilddrüse und der Epithelkörper IV. Die Lücken zwischen den Schilddrüsensträngen werden von weiten Bluträumen eingenommen, deren Endothel den Drüsenzellen direkt anliegt. Vergr. 80.

Aus dem zoologischen Institut der Universität Halle.

Zur Analyse der Rassenmerkmale der Axolotl. 1. Die Pigmentierung junger Larven.

Von

Fritz Pernitzsch.

Hierzu Tafel XI-XIII und 5 Textfiguren.

Einleitung.

Zur Erklärung der Mendelschen Vererbungsvorgänge nimmt man allgemein an, dass hinter den mendelnden äusseren Merkmalen selbständige Faktoren stehen, und zwar herrscht gegenwärtig die Ansicht vor, die Bateson zuerst vertreten und als "presence-and-absence"-hypothese bezeichnet hat, dass das dominierende Merkmal durch Vorhandensein eines Faktors bestimmt wird, der den rezessiven Tieren fehlt.

Man wird kaum bezweifeln können, dass zum vorläufigen Verständnis dieser Vererbungsweise diese Annahme notwendig ist. Trotzdem bleiben die Erbfaktoren zunächst hypothetisch; denn einen positiven Beweis für ihr Dasein gibt es nicht. Geben wir aber einmal zu, dass die zugrunde liegenden Vererbungserscheinungen es sehr wahrscheinlich machen, dass die Faktorenhypothese der Wirklichkeit entspricht, dann erhebt sich die Frage: wie sind diese Faktoren denn beschaffen? Sind es wirkliche Anlagen, die nur noch wachsen müssen im Verlauf der Ontogenese? Oder sind es Reizkörper physikalischer oder chemischer Art?

Die Beantwortung dieser Fragen steht noch aus. Wohl nehmen Cuénot und Bateson¹) an, dass es sich um "fermentartige, chemische" Substanzen handelt. Auch Plate (1910, S. 544) hält es für wahrscheinlich, dass die Faktoren "Enzyme oder Reizkörperchen" sind. Aber dies sind nur Vermutungen. Irgend eine sichere Kenntnis von ihrem Wesen haben wir nicht, da wohl noch keine direkt darauf gerichteten Untersuchungen vorliegen.

¹⁾ Vgl. Haecker, Allgemeine Vererbungslehre, 2. Aufl., 1912, S. 263

Dies ist um so bemerkenswerter, als es von allgemeinem Interesse wäre, genaues über die Natur der Faktoren zu erfahren. Ihre vollkommene Kenntnis würde nicht nur eine unmittelbare Bestätigung der Annahme von Faktoren überhaupt bedeuten, sondern sie würde auch viele andere Unsicherheiten, die heute in der experimentellen Vererbungslehre bestehen, beseitigen.

So würde sie uns Gewissheit bringen in der Frage, ob wirklich die presence-and-absence-hypothese zu Recht besteht, oder ob zwei antagonistischen mendelnden äusseren Merkmalen auch zwei antagonistische Faktoren entsprechen.

Weiterhin hat Baur (1911, S. 100) darauf hingewiesen, dass man unter Zugrundelegung der presence-and-absence-hypothese durchaus nicht immer wissen kann, welches von zwei antagonistischen mendelnden Merkmalen durch Vorhandensein eines Faktors und welches durch dessen Fehlen hervorgerufen wird. Wenigstens in solchen Fällen, wo die Fi-Generation intermediären Charakter hat, wird man den Faktor hinter jedem der beiden Merkmale in gleicher Weise vermuten können. Auch diese Frage würde man beantworten können, wenn die Natur der Erbfaktoren bekannt wäre.

Fragt man sich, wie man diese wichtige Kenntnis erlangen kann, so scheint festzustehen, dass die Kreuzungsversuche, die jetzt die Hauptrolle spielen, hier versagen. Sie werden viele nützliche Schlüsse auf die Natur der Faktoren ermöglichen, aber uns kaum instand setzen, den Boden der Hypothese zu verlassen. Eine völlige Sicherheit ist wohl nur auf einem anderen Wege erreichbar, indem man nämlich die Unterschiede zweier Rassen. die durch mendelnde äussere Merkmale verschieden sind, möglichst genau morphologisch und physiologisch untersucht und ihre Entstehung und allmähliche Divergenz im Verlauf der Ontogenese bis zum Ei zurückverfolgt. Natürlich müssen hierbei stets. auch in Fällen, wo scheinbar vollkommene Dominanz vorliegt. homozygote Tiere mit dominierender Eigenschaft und heterozygote gesondert betrachtet werden. Auf diese Weise könnte es schliesslich gelingen, die äusserlich sichtbaren Unterschiede der ausgewachsenen Tiere allmählich auf Verschiedenheiten in der Beschaffenheit der befruchteten Eizelle zurückzuführen (entwicklungsgeschichtliche Faktorenanalyse). (Vgl. Haecker, Verh. Deutsch. Zool. Ges. 1912 und Z. I. A. u. V., Bd. 8, 1912.) Dabei kann es sich freilich bis auf weiteres nur um Verschiedenheiten struktureller Art handeln, nicht aber um solche rein chemischer Art, wie solche von Cuénot, Bateson, Plate und anderen angenommen werden; denn die chemische Methode der Zellforschung ist viel zu wenig ausgebildet, als dass es möglich wäre, die Unterschiede in der chemischen Zusammensetzung des Eiplasmas naheverwandter Rassen einer Art festzustellen.

Man muss zugeben, dass diese Einseitigkeit ein grosser Mangel der angegebenen Untersuchungsweise ist, und er macht es verständlich, dass bisher noch niemand diesen Weg der Forschung betreten hat. Wenn aber auch das letzte Ziel, die vollständige Kenntnis vom Wesen der Faktoren, vorläufig nicht erreichbar ist, kann uns unser Weg diesem Ziele immerhin beträchtlich nähern. An einem Beispiel will ich zeigen, welche Aussichten er uns bietet.

Wie Haecker in seiner Allgemeinen Vererbungslehre (1912. S. 231) mitteilt, verhält sich bei einigen Tieren (Mäuse, Ratten und Hunde) die Scheckzeichnung rezessiv gegenüber gleichmässiger Färbung; die betreffenden Autoren nehmen daher einen Uniformitätsfaktor an, der Einfarbigkeit bewirkt, bei dessen Fehlen Scheckzeichnung auftritt. Die gescheckten Tiere werden nun in vielen Fällen, nämlich wenn sie neben gefärbten auch weisse. farblose Hautpartien aufweisen, nicht nur durch die Verteilung des Pigments, sondern auch durch die Pigmentmenge von den einfarbigen unterschieden sein. Hier muss man sich fragen, ob die Schecken weniger pigmentproduzierende Zellen (Pigmentbildner) hervorbringen, die letzteren aber denen der Einfarbigen gleichen, oder ob die Schecken in der Zahl ihrer Pigmentbildner mit den Einfarbigen übereinstimmen und der Unterschied dadurch zustande kommt, dass die Pigmentbildner erstens anders verteilt sind auf die einzelnen Hautpartien und zweitens kleiner sind oder weniger Pigmentkörner produzieren als bei den Einfarbigen. Sicherlich sind noch mehr Fälle denkbar: ich greife nur zwei extreme Fälle zur Erläuterung heraus. Ahnlich verhält es sich mit dem Faktor D, der bei Mäusen Dichtigkeit des Pigments bewirkt (Plate 1910, S. 548).

Die Wichtigkeit der Fragen wird man leicht einsehen, wenn man bedenkt, dass es von ihrer Lösung abhängt, ob wir annehmen müssen, dass 1. der unterscheidende Erbfaktor rein chemischphysiologisch wirksam ist, indem er die Pigmentsekretion innerhalb der Zellen beeinflusst, oder 2. dass er zellwachstumsphysiologischer Art ist, indem er Wachstum und Teilung der Pigmentbildner beeinflusst, oder 3. dass er beide Fähigkeiten in sich vereinigt.

Bei allen derartigen Untersuchungen wird es fernerhin wünschenswert sein, festzustellen, ob sich der Unterschied zwischen den betreffenden Rassen im Verlauf der Ontogenese ändert oder nicht. Bleiben wir bei dem obigen Beispiel, den durch die Intensität der Färbung verschiedenen Tieren, und nehmen an, dass der Unterschied zellwachstumsphysiologischer Art sei, dann sind zwei Fälle denkbar: entweder gehen Wachstum und Teilung der Pigmentbildner von Anfang an bei beiden Rassen verschieden schnell vor sich, oder die Pigmentbildner wachsen und teilen sich anfangs bei beiden Rassen gleich schnell, und erst in einem bestimmten Alter treten Unterschiede auf.

Im folgenden werde ich eigene Untersuchungen schildern. die ich auf Grund der hier mitgeteilten Überlegungen an schwarzen und hellen Axolotla begonnen habe, welche sich in bezug auf die Färbung nach den bisherigen Untersuchungen durch ein Paar antagonistischer, mendelnder Merkmale unterscheiden, Schwarzfärbung und (partieller) Albinismus (siehe Haecker, Zool. Anz., 31, 1907). Meine vollständige Aufgabe wäre gewesen, die Unterschiede zwischen den beiden Rassen im ausgebildeten Zustand zu untersuchen und in der Entwicklung rückwärts zu verfolgen. Da die zur Lösung der ganzen Aufgabe nötigen Arbeiten jedoch zu viel Zeit beansprucht hätten, konnte ich vorläufig nur einen kleinen Teil davon durchführen. Ich habe mich in der Hauptsache auf die frisch ausgeschlüpften Larven beschränkt. Auch musste ich die Frage, ob zwischen heterozygoten und homozygoten schwarzen Larven Unterschiede vorhanden sind, beiseite lassen, besonders weil mir Larven, die durch ihre Abstammung sicher homozygot sein mussten, nicht zur Verfügung standen.

Schwarze und helle Larven kann man beim Ausschlüpfen schon gut unterscheiden; darum ist es offenbar gleichgültig, ob man die Untersuchungen in diesem Stadium beginnt und bis zu den ausgewachsenen Tieren fortführt, oder umgekehrt. Nur in den früheren Altersstufen, solange man die beiden Rassen äusserlich nicht erkennen kann, ist es besser, die Entstehung der Unterschiede von den ausgeschlüpften Larven aus rückwärts zu verfolgen, damit man die Verschiedenheiten der jüngeren Stadien im sicheren Zusammenhang mit denen der bekannten älteren richtig deuten

kann. Ich habe darum meine Untersuchungen bei ausgeschlüpften Larven begonnen, da mir diese in grosser Zahl zu Gebote standen.

Um den Plan der Arbeit darlegen zu können, will ich zuvor erörtern, auf welche verschiedene Weise man sich den Färbungsunterschied entstanden denken kann. Dazu ist es nötig, einige Angaben über die Art der Pigmentierung bei den Axolotln vorauszuschicken.

Abgesehen von den Fällen, wo Färbung bei Tieren durch die Struktur bestimmter Zellen bewirkt wird (z. B. Vogelfedern), kann solche bekanntlich durch gelöste oder durch feste Farbstoffe hervorgerufen werden. Dieselben lieg a bald in beliebigen Zellen. bald in besonderen Farbzellen, den Chromatophoren.

Bei den Axolotllarven kommen Farbstoffe in gelöstem Zustande nicht vor. Vielmehr sind, wenn man von den erst bei älteren ca. 18 mm langen Larven auftretenden Leukophoren absieht, das Melanin und ein gelbes Lipochrom, die einzigen vorhandenen Pigmente, in geformtem Zustand da, nämlich in Gestalt von Körnchen bezw. Tröpfchen¹), welche in besonderen Zellen, den Melanophoren bezw. Xanthophoren, aufgespeichert sind. Diese gehören dem Bindegewebe an und sind am zahlreichsten unter der Coriumanlage (vgl. S. 175, Anmerkung 1); Melanophoren kommen auch in der Epidermis vor.

Während das gelbe Lipochrom auf die Xantophoren beschränkt ist, finden sich Melaninkörnchen ausser in den Melanophoren regelmässig in den Xanthophoren und Epidermiszellen vor. Auch viele Bindegewebszellen beherbergen Häufchen von Melaninkörnchen (vgl. Schuberg 1903, S. 264).

Abgesehen von einigen sehr pigmentreichen Epidermiszellen, deren Natur fraglich ist und von denen Schapitz (1912, S. 57) vermutet, dass sie in Bildung begriffene epidermale Pigmentzellen seien, sind die Melaninkörnchen in den Epidermiszellen sowohl wie in den Bindegewebszellen so spärlich, dass sie auf das Aussehen der Larven keinen nennenswerten Einfluss haben (vgl. Anmerkung 1, S. 157). Für dieses sind nur die Melanophoren (epidermale und im Bindegewebe gelegene) und Nanthophoren von Bedeutung. Darum ist es freilich nicht ausgeschlossen, dass auch in

¹) Gaupp (Die Anatomie des Frosches, 3. Teil, S. 498) gibt vom Frosch an, das Melanin bilde "Körner" und das gelbe Lipochrom finde sich in Form von "Tropfen".

bezug auf das in den Epidermis- und Bindegewebszellen enthaltene Pigment Rassenverschiedenheiten bestehen; aber bestimmt zu erwarten sind solche Unterschiede nur bei den Pigmentzellen. Da die hier etwa vorhandenen Verschiedenheiten auch die wichtigeren sein werden, habe ich das Hauptaugenmerk auf sie gerichtet.

Fragen wir nunmehr nach dem Zustandekommen der Rassenunterschiede, so kann der verschiedene Pigmentgehalt bei schwarzen und hellen Larven beruhen auf: Verschiedenheit in der Fähigkeit der Pigmentzellen, Pigment zu bilden, Verschiedenheit in deren Zahl oder in deren Grösse. Die Abweichung im Aussehen der Larven kann ausserdem teilweise durch verschiedene Reizbarkeit der Pigmentzellen bedingt sein.

Wenn wir von der letzteren Möglichkeit absehen, sind von der grossen Zahl der denkbaren Fälle drei wesentlich verschiedene als hauptsächlichste zu nennen. Es ist denkbar, dass beide Rassen die gleiche Anzahl von Pigmentzellen enthalten, dass aber bei denen der hellen Larven die Fähigkeit zur Pigmentabscheidung zum Teil geringer ausgebildet, zum Teil verloren gegangen ist. Zweitens ist es möglich, dass die Pigmentzellen der beiden Rassen in Grösse und Pigmentbildungsfähigkeit übereinstimmen und nur durch ihre Zahl verschieden sind. Schliesslich kann man sich denken, dass der Rassenunterschied auf Grössenverschiedenheit der Pigmentzellen beruht, während die Gesamtanzahl derselben innerhalb der ganzen Larve bei Schwarzen und Hellen dieselbe ist; dann müssen die kleineren, aber gleich zahlreichen Pigmentzellen der hellen Larven in dichterer Lage angeordnet sein.

Die Zahl der möglichen Fälle ist natürlich viel grösser. Vor allem kann der Unterschied verwickelter sein als in den eben genannten Fällen, dadurch dass mehrere Verschiedenheiten zusammenwirken, oder dass diese die Melanophoren und Kanthophoren in verschiedenem Maße betreffen. Es ist z. B. denkbar, dass die Zahl der Melanophoren bei hellen Larven geringer ist, die der Kanthophoren aber ebenso gross wie bei den schwarzen. Die Untersuchungen müssen darum das Zahlenverhältnis zwischen Melanophoren und Kanthophoren mitberücksichtigen.

Welcher Art nun der Unterschied sein mag, um ihn kennen zu lernen, wird es genügen, die Pigmentzellen beider Rassen nach den vier genannten Eigenschaften (Pigmentbildungsfähigkeit, Zahl, Grösse und Reizbarkeit) zu vergleichen. Ich werde im ersten Kapitel das Aussehen der erwachsenen Axolotl, im zweiten Kapitel das frisch ausgeschlüpfter Larven darstellen. Es folgt im dritten Kapitel eine Beschreibung der Pigmentzellen. In diesem Kapitel finden sich auch Angaben über mögliche Verschiedenheit der Reizbarkeit der Pigmentzellen beider Rassen; diese lassen sich, wie man erkennen wird, nicht von der Beschreibung derselben trennen. Danach teile ich die Untersuchungen mit, welche die Pigmentbildungsfähigkeit der Pigmentzellen, viertes Kapitel, ihre Zahl, fünftes Kapitel, und ihre Grösse, sechstes Kapitel, betreffen.

Herrn Prof. Dr. Haecker, der diese Arbeit veranlasst hat, spreche ich für seine Hilfe und für das zur Verfügung gestellte Material meinen herzlichsten Dank aus. Auch Herrn Prof. Dr. Brüel bin ich für wertvolle Ratschläge zu grossem Danke verpflichtet.

Methode.

Zur Konservierung der Larven benutzte ich Zenkers Gemisch, in dem ich dieselben anfangs 24 Stunden, später nur 2 Stunden liess. Ausgewaschen wurde mit destilliertem Wasser, jeweils ebensolange, als fixiert worden war. Danach entwässerte ich mit Alkohol 60 %, 70 % mit Jodjodkali, 80 %, 90 %, 96 % und Alk. abs. Eingebettet habe ich mit Chloroform oder Xylol in Paraffin. Vielfach habe ich mit Zenker-Formol fixiert, d. i. Zenkers Gemisch, welches statt Eisessig die gleiche Menge Formol enthielt. Die Anwendung war die gleiche wie oben. Gefärbt wurden die Schnitte meist mit Dahlia, nach der von Schuberg (1903) angegebenen Methode. Diese Färbung gelingt bei solchem Material, das lange in Zenkers Gemisch fixiert worden ist oder das lange Zeit in Alkohol aufbewahrt worden ist, nur schwer. Aus diesem Grunde habe ich zuletzt nur 2 Stunden fixiert.

Die Zeichnungen habe ich selbst hergestellt, mit Ausnahme der Tafelabbildungen 1—6, welche Frl. M. H. Mülberger gemalt hat und die mir Herr Prof. Dr. Haecker in liebenswürdiger Weise zur Verfügung gestellt hat.

I. Kapitel. Das Aussehen der erwachsenen Axolotl.

Die Angehörigen der schwarzen Rasse von Amblystoma tigrinum sind am ganzen Körper dunkelschokoladebraun bis tiefschwarz gefärbt; dabei lassen sich bald auf einem etwas helleren, grauen oder braungrauen, Grunde dunkelschwarze Flecke, die schon Schuberg (1903, S. 262) erwähnt hat, gut erkennen, bald sind diese so undeutlich, dass die Haut gleichmässig gefärbt erscheint. Der Bauch ist meist heller als der übrige Körper und sieht gewöhnlich hellgrau aus.

Von den schwarzen oder dominierenden Axolotlu unterscheide ich helle oder rezessive; unter dem Namen "Helle" fasse ich die extrem akromelanistischen, rotäugigen, oder kurz gesagt "weissen" einerseits und die Schecken andererseits zusammen (vgl. Haecker, Z. Ind. Abst. Vererb., 1912).

Die weissen Axolott haben infolge mangelnden Farbstoffes ein licht fleischfarbiges Aussehen (Haecker, 1908). Ganz frei von Pigment sind sie freilich nie. Die Kopfoberseite ist in allen Fällen teilweise grau bestäubt; die Spitzen der Zehen sind gewöhnlich tiefschwarz gefärbt.

Neben diesen sogenannten weissen Tieren kommen gescheckte Axolotl vor, die Haecker 1908 (S. 200, Fig. 2) beschrieben und abgebildet hat. Bei ihnen dehnt sich die graue Bestäubung über den ganzen Kopf und den Rücken aus. Ausser der leichten Bestäubung können stark dunkle Flecken auftreten, die bei manchen Tieren metamer angeordnet sind.

Näher gehe ich auf das Aussehen der erwachsenen Axolotl nicht ein, da die vorliegenden Untersuchungen nur Larven betreffen, deren Zeichnung ich im folgenden Abschnitt beschreibe.

II. Kapitel. Die Zeichnung frisch ausgeschlüpfter Larven.

Die einzigen bisherigen Angaben über die Zeichnung von Axolotllarven hat Haecker (Zool. Anz. 31, 1907) gemacht. Er hat jedoch keine genaue Beschreibung gegeben, da es ihm nur darauf ankam, zu zeigen, dass man die schwarzen und weissen Larven gut unterscheiden kann.

Weil es möglich ist, dass sich heterozygote und homozygote schwarze Larven hinsichtlich ihrer Zeichnung unterscheiden, bemerke ich, dass die folgenden Angaben schwarze Larven im allgemeinen, ohne Rücksicht auf die Erbformel betreffen. Ein Teil der zur Untersuchung benutzten Larven war sicher heterozygot. Von den übrigen war es unbekannt, ob sie heterozygot oder homozygot waren.

Frisch ausgeschlüpfte schwarze Larven, 11 bis 13 mm lang, sind ausser an der völlig pigmentlosen Bauchseite überall durch schwarze und gelbe Pigmentzellen gefärbt, am Kopf und Rumpf am stärksten. Im Schwanz nimmt die Zahl der Pigmentzellen nach dem Rand zu allmählich ab, und zwar enthält der ventrale Schwanzsaum weniger Pigment als der dorsale. Kopf und Rumpf zeigen einen hellgelben, manchmal schmutziggelben Grundton, den eine fast lückenlose Schicht von Xanthophoren verursacht, die unter der Coriumanlage liegt und nur durch die dazwischen liegenden Melanophoren unterbrochen wird.

Am Kopf sind die zahlreichen schwarzen Pigmentzellen (= Melanophoren) regellos über die gelbe Grundfläche zerstreut; jedoch gibt es einige Stellen, die sich oft durch besonderen

Fig. 1. Schema der Kopfzeichnung bei schwarzen Larven.

Reichtum an schwarzem Pigment auszeichnen. So liegen bei manchen Tieren (Schema Textfig. 1) die Pigmentzellen am seitlichen Kopfrand (sKr) und an der Basis der Kiemenfähnchen (Kfb) so dicht, dass sie zu grösseren Pigmentstreifen zusammenfliessen (st, Textfig. 2). Schon weniger dicht liegen sie gewöhnlich in der Mitte des Kopfes hinter der Augengegend (M) und am vorderen

Kopfrand (vKr), während die Fläche zwischen den Augen (Z) und zwei symmetrische Flecke hinter denselben (sy) ganz frei von schwarzen Pigmentzellen sein können.¹) In diesem Falle scheinen von der Mitte des Kopfes zwei deutliche Pigmentstreifen (A. st.) nach den Augen hinzuführen.²) Die eben geschilderte Pigmentver-

Fig. 2.

Kopfzeichnung einer frisch ausgeschlüpften schwarzen Larve. Nur die Verteilung des schwarzen, nicht des gelben Pigments wurde angegeben.

teilung ist zwar sehr häufig, bildet aber keineswegs die Regel; es gibt ebensowohl Larven, bei denen die Pigmentzellen ohne

¹) Die Epidermiszellen enthalten alle mehr oder weniger Melaninkörnchen; diese kommen für die Zeichnung jedoch nicht in Betracht, trüben vielmehr nur den gelben Grundton.

³) Zuweilen werden solche Streifen durch das durchscheinende Gehirn vorgetäuscht.

Ordnung über den Kopf verteilt sind, während von diesen zahlreiche Übergänge zu solchen hinführen, deren Zeichnung dem Schema fast gleicht (Textfig. 2).

Die Kiemen sind schwach gelb gefärbt und haben einige schwarze Flecken.

Am Rumpf sind die schwarzen Pigmentzellen in vier (selten fünf oder sechs) Querbändern jederseits angeordnet, so dass eine Zeichnung entsteht, welche an die des Barsches erinnert (Taf. XI, Abb. 1, 2). Diese Bänderung ist fast immer vorhanden; es kommt jedoch vor. dass die schwarzen Bänder sehr breit sind und dazwischen das gelbe Pigment weniger hervortritt als sonst (Abb. 3). Nur selten ist diese regelmässige Zeichnung am Rumpf fast ganz verwischt. Die Bänderung reicht bis in die Aftergegend.

Dahinter liegen schwarze und gelbe Pigmentzellen ungeordnet nebeneinander. Dass auf den Abb. 1 und 3 die gelben Zellen im Schwanzsaum fehlen, kommt daher, dass sie hier infolge der Durchsichtigkeit des Saumes schwerer zu sehen sind als die schwarzen und erst unter dem Mikroskop deutlich werden. Nach dem Rande und dem Schwanzende zu wird das Pigment, wie schon erwähnt, immer spärlicher.

Im Gegensatz zur schwarzen Larve ist die gleichalte weisse, akromelanistische am grösseren Teile ihres Körpers ungefärbt und hauptsächlich durch einige scharf hervortretende Farbenflecke ausgezeichnet, nämlich durch eine Pigmentzellenansammlung am Kopf und durch "distinkte" Flecke am Rumpf (Abb. 4—6).

Die Grundfarbe der Kopfoberseite ist gelb; ausgenommen ist ein farbloser Randstreifen, der durch eine Linie begrenzt wird, die ungefähr parallel zum Rand durch die Mitte der Augen verläuft. Jedoch ist die Zeichnung der weissen Larven, ebenso wie die der schwarzen, sehr variabel. Zuweilen tritt das gelbe Pigment zwischen den Augen bis an den vorderen Rand heran (Abb. 4), und in anderen Fällen ist sehr viel weniger gelbes Pigment am Kopfe zu finden (Abb. 5 und 6). Das schwarze Pigment ist auf denselben Bezirk beschränkt wie das gelbe; am dichtesten liegen die schwarzen Pigmentzellen in der Mitte der Kopfoberseite bis zum Rumpfansatz hin (Abb. 4, 5 und 6), also an einer Stelle, die auch bei den schwarzen Larven durch Pigmentreichtum ausgezeichnet ist. Diese Stelle der stärksten Pigmentanreicherung am Kopf nenne ich den "Mittelfleck".

Am Rumpf sieht man, wenn man eine Larve von der Seite betrachtet, einen Pigmentstreifen an der unteren Grenze des Rückensaumes verlaufen, etwa in der Höhe des Medullarrohres: unterhalb dieses Streifens ist der Rumpf ebenso wie der obere Teil des Rückensaumes ungefärbt. Die genannte Rückenpigmentierung ist bei den Tieren im einzelnen sehr verschieden; meistens treten vier bis fünf "distinkte" Flecke hervor (Abb. 4 und 5), dichte Ansammlungen von Pigmentzellen, in denen die Xanthophoren zahlreicher sind als die Melanophoren und zwischen denen nur wenig schwarze, aber niemals gelbe Pigmentzellen liegen. Die Zahl dieser Flecke schwankt zwischen zwei und acht. In vielen Fällen sind die Lücken zwischen ihnen so gering und die schwarzen Pigmentzellen über den ganzen Rückenstreifen so gleichmässig verteilt, dass man die Flecke nur unter dem Mikroskop erkennen kann, während der Rückenstreifen dem blossen Auge als ein ungefähr gleichmässiges Band erscheint. Sieht man sich die Larven von oben an (Abb. 6), so erkennt man, dass die Pigmentzellen des Rückenstreifens nicht alle dicht unter der Haut, sondern teilweise im Grunde des Rückensaumes im lockeren Bindegewebe liegen und nach beiden Seiten ihre Ausläufer unter die Haut entsenden, wie die in Abb. 18 wiedergegebene Melanophore. Betrachtet man lebende Larven von oben, so erscheinen diese Zellen als verschwommene, schattenhafte schwarze Bänder (Abb. 6, b). Die Reihe der distinkten Flecke reicht ungefähr bis zum After.

Ihre Fortsetzung bildet ein Streifen, welcher gleichmässig nebeneinander schwarze und gelbe, zuweilen ziemlich dicht gelagerte Pigmentzellen enthält. Im dorsalen Saum liegen nur in der hinteren Schwanzhälfte — wenn man den Schwanz am After beginnen lässt — Pigmentzellen, deren Zahl nach dem Rand und nach vorn zu abnimmt. Ventral von der Chorda liegen, auch an der Spitze des Schwanzes, nur wenig Pigmentzellen.

Die Kiemen erscheinen dem blossen Auge ungefärbt, auch wenn sie zwei bis drei gelbe Pigmentzellen enthalten, was oft der Fall ist.

Weisse Axolotllarven aus dem Tübinger Zoologischen Institut, von denen ich 20 untersucht habe, haben im wesentlichen dieselbe Zeichnung. Ich habe sie allerdings nur in konserviertem Zustande gesehen, so dass ich lediglich die Verteilung der schwarzen Pigmentzellen angeben kann, da der gelbe Farbstoff durch Alkohol ausgezogen wird.

Am Kopf findet sich der Mittelfleck und eine kleine Pigmentanreicherung vorn zwischen den Augen (Abb. 7). Am Rumpf sind im Rückenstreifen einige dunkle Flecke vorhanden, die offenbar den distinkten Flecken entsprechen. Von den weissen Larven aus der hiesigen Zucht sind die Tübinger nur dadurch verschieden, dass überall, auch in dem Randbezirk des Kopfes und dem Teil des Rumpfes und Schwanzes, der bei jenen pigmentfrei ist, pigmentreiche Epidermiszellen, wie ich sie oben erwähnt habe (S. 152 unten), sehr häufig sind. Dadurch erscheinen die Larven (Abb. 7) am ganzen Körper gleichmässig leicht bestäubt.

Im April 1911 wurde im hiesigen Institut ein gemischter Laich abgelegt, welcher Eier mit dominantem und solche mit rezessivem Charakter enthielt. Die weissen Larven waren beim Ausschlüpfen als solche wohl sicher zu erkennen, zeigten aber durch ihren Pigmentreichtum und durch ihre Zeichnung eine deutliche Annäherung an schwarze Larven. Es handelte sich, wie sich inzwischen herausgestellt hat, um die Larven von Schecken. Die sechs Tiere von diesem Laich, die aufgezogen worden sind, sind noch immer stark pigmentiert, so dass man sie im Gegensatz zu extrem akromelanistischen Tieren als Schecke bezeichnen muss. Ich konnte die Zeichnung von 23 ausgeschlüpften Scheckenlarven, die 13—15 mm lang waren, untersuchen.

Den schwarzen Larven näherten sie sich am meisten durch die Zeichnung des Kopfes. Ihre ganze Kopfoberseite zeigte auf gelbem Grundton viele grosse, intensiv schwarze Chromatophoren, so dass sie von der einer schwarzen Larve nur durch die weniger dichte Lagerung der Melanophoren unterschieden war. Bei einigen war der bei den rein weissen ungefärbte Rand frei von gelben Pigmentzellen, während er schwarze stets reichlich enthielt. Im Rand, hinter den Augen zu beiden Seiten des Mittelflecks und dicht hinter dem Nacken fielen grössere bandartige Pigmentflecken auf, die sonst nur bei schwarzen Larven vorkommen (Textfig. 2, st).

Im Rückenstreifen, der wie bei den weissen Larven regelmässig vorhanden war, waren eben noch einige Stellen zu finden, die weniger gelbe, aber kaum weniger schwarze Pigmentzellen enthielten als der übrige Teil, so dass man, freilich nur schwach, an die distinkten Flecke der weissen erinnert wurde; im ganzen entstand ein Bild, wie es auch bei einem Teil der weissen Larven auftritt und welches ich vorher beschrieben habe. Am Rumpf lagen ferner vereinzelt in der Höhe der Seitenlinie, also unter dem Rückenstreifen, breite schwarze, seltener auch gelbe Pigmentzellen.

Auch der Schwanz war gewöhnlich durch reichlichere Pigmentierung vor dem der weissen ausgezeichnet. Ein schmales Pigmentzellenband verlief vom Schwanzende entlang der Kaudalvene bis etwa zur Mitte zwischen Schwanzspitze und After: ausserdem lagen die Pigmentzellen überall etwas dichter als bei den weissen Larven.

Die Kiemen enthielten nur wenig mehr Pigment als die der weissen Tiere.

Da nach dem Mitgeteilten eine Unterscheidung von weissen und Schecklarven nach ihrer Zeichnung möglich ist, ist eine gesonderte Betrachtung der beiden Gruppen bei den folgenden Untersuchungen notwendig. Doch will ich nicht unterlassen. darauf hinzuweisen, dass hier eine gewisse Unklarheit besteht. Da wie ich oben erwähnt habe, zwischen der Kopfzeichnung von weissen und Schecklarven hauptsächlich ein gradueller Unterschied besteht und die distinkten Flecke nicht nur bei Schecklarven sondern auch bei manchen weissen verwischt sind, kann man keine scharfe Grenze zwischen beiden ziehen. Andererseits kann man auch nicht sicher wissen, ob wirklich alle rezessiven Larven des Laichs, aus dem die sechs Schecken stammen, zu Schecken herangewachsen wären. Weder die Zeichnung noch die Abstammung ermöglicht also vorläufig eine vollkommen sichere Unterscheidung von weissen und Scheckenlarven. Wenn ich bei meinen Untersuchungen gleichwohl Weisse und Schecken immer trenne, so geschieht das unter dem ausdrücklichen Hinweis auf die bestehende Unsicherheit und darauf, dass der Hauptwert jedenfalls vorläufig auf die Untersuchung der Unterschiede der dominierenden (schwarzen) von den rezessiven (hellen im weiteren Sinne) zu legen ist.

III. Kapitel. Beschreibung der Pigmentzelltypen.

Da die folgenden Abschnitte ausschliesslich von Pigmentzellen handeln, ist es notwendig, vorher die verschiedenen Typen derselben systematisch zu beschreiben. Es ist dies auch deshalb wichtig, weil die hier herrschende, erstaunliche Mannigfaltigkeit noch nicht genügend bekannt ist.

Die hierauf gerichtete Untersuchung habe ich an lebenden Larven vorgenommen. Sehr bequem konnte ich die Pigmentzellen am überlebenden Schwanz betrachten. Veränderungen treten erst etwa drei bis vier Stunden nach der Trennung des Schwanzes vom Rumpf auf. Um die Pigmentzellen vom Kopf und Rumpf kennen zu lernen, musste ich die unverletzten Larven untersuchen: denn es gelang nicht, die ganze Haut unversehrt abzuziehen. Einzelne Hautfetzen, die leicht abgerupft oder abgeschnitten werden können, nützen natürlich nichts, da es ja darauf ankommt. alle vorkommenden Pigmentzellformen zu sehen. Wenn nun auch die Betrachtung lebender Larven unter dem Deckglas oder im Kompressorium für den Kopfrand und die Rumpfseiten erschwert ist, so dass stärkere Vergrösserungen nicht anwendbar sind, so ist es doch nicht schwer, die hier vorkommenden Zellformen festzustellen, wenn man vorher die Pigmentzellen am Schwanz kennen gelernt hat. Die Zeichnungen habe ich meist nach Zellen, die im Schwanz lagen, hergestellt.

Bekanntlich haben die Pigmentzellen der Amphibien die Fähigkeit, unter dem Einfluss verschiedener Faktoren ihre Form zu ändern; z. B. ziehen sie sich im Licht zusammen und dehnen sich im Dunkeln aus. Um der Gefahr zu entgehen, dass ich verschieden stark ausgedehnte Zellen für verschiedene Zellformen hielte, durfte ich nur die Zellen von solchen Larven, die unter gleichen Bedingungen lebten, zum Vergleich benutzen und musste von jeder Zellform beide Extreme, der Dilation und Kontraktion, kennen lernen. Darum habe ich einen Teil der Larven in völligem Dunkel, einen anderen Teil in hellem Licht aufgezogen.

Die ersteren wurden in Aquarien gehalten, die vollkommen von dickem, schwarzem Papier umschlossen waren und in einem dunklen geschlossenen Schrank standen. Für Sauerstoffzufuhr wurde durch täglichen Wasserwechsel gesorgt.

Die zweite Gruppe von Larven wurde auf weissen Tellern gehalten; und zwar ohne Pflanzen, damit die Tiere nicht deren Schatten aufsuchen konnten.

Obwohl die Pigmentzellen der verschiedensten Tiergruppen seit langem für eine grosse Zahl von Forschern im Mittelpunkt des Interesses stehen, sei es, dass sie die Entstehung des Pigments, die Bedeutung der Chromatophoren für den Farbenwechsel oder anderes zu ergründen suchen, so ist doch nur in selteneren Fällen die Form der Zellen zum Gegenstand einer genauen Untersuchung gemacht worden. Die allermeisten (von neueren Autoren z. B.

Éternod und Robert [1908, S. 121], Golovine [1907, S. 859] und Meirowsky [1908]) begnügen sich mit der kurzen Angabe, dass die Pigmentzellen in dilatiertem Zustand mit zahlreichen Plasmafortsätzen versehen und im allgemeinen sternförmig seien.

Speziell über die Pigmentzellen des Axolotls liegen noch nicht viele Untersuchungen vor. Carrière (Arch. f. mikr. Anat., Bd. 24), der die Entwicklung der Epidermis von Siredon pisciformis darstellt, erwähnt Pigmentzellen überhaupt nicht. Die epidermalen Pigmentzellen scheinen ihm vollständig entgangen zu sein, obwohl sie schon bei frisch ausgeschlüpften Larven vorkommen und kaum anzunehmen ist, dass sie den mehrere Zentimeter langen Tieren, die er untersucht hat, gefehlt haben. Paulicki (Arch. f. mikr. Anat., Bd. 24), dessen Untersuchung der Haut eines älteren, 8 cm langen Axolotls gilt und an die Carrièresche anknüpft, bezeichnet (S. 123) die epidermalen Chromatophoren als "verästelte schwarze Gebilde", die (S. 140) "ihre Ausläufer zwischen die Epidermiszellen hinein oft auf weite Entfernungen verbreitet fortschickten. An vielen Stellen erschienen aber die Chromatophoren nicht als verästelte Figuren, sondern als ein rundlicher, schwarzer, völlig undurchsichtiger Klumpen." Auch die Chromatophoren der Cutis stellen nach ihm (S. 145) "verästelte schwarze Zellen dar, an denen man einen mittleren Teil, den Zellenleib, und von demselben nach verschiedenen Richtungen hin sich erstreckende Fortsätze, die sich meist noch weiterhin verästeln, unterscheiden kann. Die Enden der Aste verbreiterten sich häufig und liefen in mehrere, verschieden gestaltete Zacken aus. Mitunter waren einige Aste auffallend lang. Es waren dies besonders solche Aste, die sich senkrecht zur Hautoberfläche erstreckten."

Ehrmann (1896, Bibliotheca medica D. II, Heft 6), der die Entstehung des melanotischen Pigmentes bei mehreren Amphibien, darunter Siredon pisciformis, behandelt, teilt nur gelegentlich etwas über die Form der Pigmentzellen mit, als es notwendig wird, den Unterschied zwischen denen der Epidermis und der Cutis zu besprechen. Er sagt (8, 30): "Die Melanoblasten der Epidermis bekommen nun ein Aussehen, welches von dem der Cutismelanoblasten einigermassen different ist. Ihr Körper wird im Gegensatze zu dem unregelmässigen, platten der letzteren mehr kugelig oder oval, die Fortsätze werden schlanker, gleichmässiger, umgeben in ziemlich regelmässigen Maschen die oberflächlichen Epithellagen " und auf S 33: "Vor allem wird die Form des Maschenwerks der Ausläufer bei den Melanoblasten der Cutis, welche zwischen den Fasern ziemlich unregelmässig sich durchwinden, dem Faserverlauf entsprechen und die Fortsätze unregelmässig, zackig, wie zerfliessend aussehen."

Wie die früheren Autoren hat auch Schuberg (1903) die Form der Pigmentzellen nur nebenbei berücksichtigt. So sagt er (1903, S. 261) von den an der Grenze zwischen innerer Coriumlage und Unterhautbindegewebe liegenden Zellen, sie seien "stark abgeplattet und entsenden ihre Ausläufer ausschliesslich in der Begrenzungsebene". Weiterhin betont er vor allem (S. 264) den Einfluss, den das umgebende Gewebe "auf die Form der Pigmentzellen und die Anordnung ihrer Ausläufer ausübt", ohne jedoch auf die Gestalt der Zellen einzugehen.

Als letzter Autor, der die Chromatophoren bei Axolothn behandelt, ist Ogneff (Anat. Anz., Bd. 32) zu nennen. Auch er hat wenig über deren Form gesagt (S. 593): "Beim Betrachten mittels eines Mikroskops erscheinen diese Melanoblasten sternförmig und gewöhnlich durch ihre Fortsätze netzartig verbunden. Die Anzahl der schwarzen Körnchen in der Zelle ist dabei so gross, dass sowohl ihr eckiger Körper als auch dessen mehr oder weniger längliche, gezweigte Vorsätze durch derartige Körnchen vollständig überfüllt zu sein scheinen."

Ich wende mich nun zu meinen eigenen Beobachtungen und zwar zunächst zu den Melanophoren von dunkel gehaltenen schwarzen Larven (hierzu Taf. XII und XIII, Abb. 19—30). Unter diesen kann man vier Formengruppen unterscheiden, die ich α -, β -, γ - und δ -Zellen nenne.

Die α-Zellen haben eine abgerundete Form (Abb. 19-21). Sie entsenden zahlreiche Fortsätze, die nach allen Seiten ausstrahlen und sich stark verästeln. Durch Zusammenfliessen der Nebenäste entsteht ein meist sehr dichtes Maschenwerk, das sich gewöhnlich parallel zur Oberfläche ausbreitet, sonst unregelmässigere Gestalt hat. Im übrigen sehen die Zellen dieser Gruppe sehr verschieden aus, je nachdem die Fortsätze sich schon nahe am Kern, im Zentrum der Zelle, verästeln und zusammenfliessen (Abb. 19) oder ob diese Verästelung der Hauptfortsätze erst in einiger Entfernung vom Zellkörper statthat (Abb. 21). Ausserdem wechselt das Aussehen der Zellen mit dem Grad der Verästelung der Fortsätze. Die in Abb. 21 wiedergegebenen Zellen haben z. B. viel mehr und viel feinere Nebenäste höheren Grades als die in Abb. 20 dargestellte. Hier ist allerdings die Möglichkeit zuzugeben, dass die letztere Zelle weniger vollkommen dilatiert ist, obwohl sie sich unter genau denselben Bedingungen befand wie die ersteren, indem sich die beiden Tiere in demselben Gefäss befanden und gleicher Herkunft waren.

Für die β -Zellen ist charakteristisch, dass ihre Fortsätze an Zahl geringer sind (Abb. 22, 23), sich weniger verästeln (Abb. 24) und entweder gar nicht oder jedenfalls viel weniger zusammenfliessen (Abb. 22—25). Die Zellfortsätze verlaufen wie bei den α -Zellen im allgemeinen parallel zur Hautoberfläche.

Diese Gruppe ist nicht scharf abgegrenzt gegen die erste, vielmehr durch alle Übergänge mit ihr verbunden. Abb. 26 stellt eine Zelle dar, die deutlich in der Mitte steht zwischen

α-Zellen (Abb. 21) und β-Zellen (Abb. 22). Die grosse Zahl der Fortsätze hat sie mit den ersten gemeinsam. Andererseits gibt ihr die Form ihrer Fortsätze und deren Verästelung eine durchaus vermittelnde Stellung. Der eben beschriebenen Abb. 26 sind viele Zellen (Abb. 27) ähnlich, die in der Form der Fortsätze nur wenig von ihnen abweichen. Ihre Verästelung stimmt an manchen Stellen vollkommen mit der in Abb. 26 dargestellten überein, teilweise (Abb. 27 rechts und unten) ist sie aber noch dichter und reicher an Anastomosen.

Unter den β-Zellen sind zweipolige sehr häufig. So nenne ich diejenigen (Abb. 22, 24), deren Zellkörper, aus einem ovalen Kern mit dünnem Plasmabezug bestehend, nur an den beiden Enden seiner Längsachse Fortsätze entsendet, jederseits mehrere (Abb. 24) oder einen, der sich bald gabelt (Abb. 22 links). Die Richtung der Längsachse liegt in derselben Ebene, in der sich die Zellfortsätze ausbreiten und verläuft parallel zur Hautoberfläche. Zellen, deren Fortsatz sich in einiger Entfernung vom Zellkörper (Abb. 22) oder dicht daran (Abb. 28 c) gabelt, leiten zu dreipoligen (Abb. 28 b) über, und damit zu solchen, die an beliebigen Stellen eine grössere Zahl von Ausläufern entsenden (Abb. 28 a).

Eine lückenlose Reihe von Zwischenformen führt von den 8-Zellen, insbesondere der in Abb, 27 gezeichneten, zu y-Zellen hin. Diese finden sich stets im Schwanzsaum. Ihr Zellkörper liegt mitten im Bindegewebe und sendet nach beiden Seiten unter die Epidermis Fortsätze, die sich hier jederseits in einem flächenartigen Netz verzweigen (Taf. XII, Abb. 18). Die beiden Ausläufernetze liegen also symmetrisch zum Zelleib, und sind einander parallel oder neigen sich gegeneinander wie die Epidermis der beiden Seiten, unter der sie verlaufen. Abb. 29 zeigt eine ausserordentlich lange, zweikernige Zelle dieser Art in Flächenansicht. Dunkel gezeichnet (Abb. 29 b) ist das Fortsatzmaschenwerk der einen, dem Beschauer zugekehrten Seite: darunter sieht man undeutlich den eigentlichen Zellkörper mit den Kernen, der in Abb. 29a noch einmal besonders gezeichnet ist. Die Kerne waren in diesem Fall nicht sicher zu erkennen. Das zweite flächenartige Maschenwerk fehlt auf diesem Bild; es würde unter den Kernen liegen und sich in derselben Weise wie das dargestellte ausbreiten.

Das Geäst dieser Zellen ist dem der vorher beschriebenen ganz gleich (Abb. 27). Die β - und γ -Zellen sind miteinander verbunden durch solche Zellen, deren Zellkörper und Kern zwar auch nicht in einer Ebene liegen mit dem Maschenwerk ihrer Fortsätze, die aber entweder überhaupt nur nach einer Seite Fortsätze ausschicken, oder deren Fortsätze sich jedenfalls nur auf einer Seite reichlich flächenhaft ausbreiten.

Bei allen untersuchten schwarzen, im Dunkeln gehaltenen Larven fand ich am Bauch vor dem Enddarm Melanophoren, ich nenne sie δ -Zellen, die trotz der Dunkelheit mehr oder weniger, meist stark, zusammengezogen waren; zwei solche dicht nebeneinander liegende Zellen zeigt Abb. 30. Nur bei drei Larven, in deren Aquarien ich den Boden mit Sand belegt hatte, der sonst fehlte, waren auch diese Zellen dilatiert; ob in diesen Fällen der Sandbelag die Dilation bedingte, oder ob diese andere Ursachen hatte, konnte ich nicht feststellen, da ich keine Gelegenheit hatte, diese Versuche fortzusetzen.

Ich will noch bemerken, dass die Melanophoren verschieden dunkel aussehen. Viele sind tiefschwarz, andere mehr oder weniger dunkelgrau, ohne dass man dunkle und helle scharf scheiden könnte. Diese Verschiedenheit der Farbintensität ist innerhalb aller vier Zellgruppen vorhanden.

Die verschiedenen Pigmentzellformen sind in einer bestimmten Weise über die Haut der Larven verteilt (Textfig. 3). Die Zellen der α -Gruppe bedecken den Kopf und Rumpf fast völlig, finden sich in der hinteren Körperhälfte nur in der Nähe der Chorda und fehlen an der Schwanzspitze. An der Bauchseite, vor dem Enddarm, liegen die θ -Zellen. Zellen der β -Gruppe und Übergänge dazu finden sich im Rückensaum und im Schwanz. In der Nähe des Enddarmes liegen stets besonders typische β -Zellen, wie sie in Abb. 22 und 28 b, c wiedergegeben worden sind. Die Zellen der γ -Gruppe schliesslich liegen im Randbezirk des Schwanzsaumes.

Im allgemeinen sind benachbarte Pigmentzellen einander ähnlich; daher ist es verständlich, dass an den Grenzen der angegebenen Bezirke, d. h. zwischen den typischen Vertretern zweier Gruppen, stets deren Zwischenformen liegen.

Bei schwarzen Larven, die in hellem Licht gehalten worden sind (hierzu Abb. 31-34), sind die Melanophoren grossenteils kontrahiert, am stärksten die am Kopf, besonders auf der Oberseite (Abb. 31) und diejenigen am Enddarm, die ja auch bei dunkel gehaltenen schon kontrahiert sind. Jedoch auch die Zellen am Rumpf und Schwanz sind mehr oder weniger zusammengezogen

(Abb. 32 und 33). Niemals fand ich ein Tier, unter 40 untersuchten, dessen Zellen alle kontrahiert waren. Abb. 33 und 34 zeigen zwei Melanophoren aus der hinteren Schwanzhälfte einer schwarzen Larve, die 20 Tage hell gehalten wurde; von den Zellen, die dicht beieinander lagen, ist eine (33) stark kontrahiert, die andere (34) gar nicht. Ob sich niemals alle Zellen kontrahieren, oder unter welchen Bedingungen das geschieht, weiss ich nicht. Soviel bisher bekannt, bewirken Licht, Wärme und Anämie starke Kontraktion der Pigmentzellen bei Amphibien. Bei meiner Versuchsanordnung kamen aber sowohl helles Licht, wie hohe Temperatur zur Wirkung, da die Larven im Sommer auf weissen Porzellantellern ins Sonnenlicht gestellt wurden, ohne Pflanzen, damit ihnen deren Schatten kein Versteck bot.

Nunmehr beschreibe ich die Melanophoren von dunkel gehaltenen rezessiven Larven. Diese Untersuchungen wurden an Schecklarven vorgenommen, da mir zur Zeit dieser Versuche weisse Larven nicht zur Verfügung standen.

Ich gehe aus von der oben vorgenommenen Einteilung der Melanophoren. Einige Formen der α-Gruppe finden sich auch bei den Schecklarven, solche Melanophoren (Abb. 35 und 36; vgl. Abb. 19), deren Ausläufernetz reich an Anastomosen und

überall, auch in der nächsten Nähe des Kerns, so dicht ist, dass die Zellen bei geringer Vergrösserung einer lückenlosen, schwarzen Fläche gleichen. Ausserdem sind Zwischenformen zwischen der α - und β -Gruppe (Abb. 37 und 38; vgl. Abb. 27) häufig, Zellen mit zarten Ausläufern, die sich reich verzweigen und zusammenfliessen.

Während die typischen Formen der β -Gruppe fehlen, sind meist einige echte γ -Zellen da; öfter als diese finden sich solche, die von ihnen dadurch verschieden sind, dass sich ihre Ausläufer weniger verzweigen und nicht zusammenfliessen (Abb. 39). 1)

Sehr zahlreich sind einige Zellformen, die bei den schwarzen Larven nicht vorkommen. Diese Zellen (Abb. 40—43) haben mit denen der α-Gruppe die grosse Zahl der Ausläufer gemeinsam und stehen der β-Gruppe durch die geringe Zahl von Verzweigungen und Anastomosen nahe. Letztere können ganz fehlen (Abb. 42 und 43). Die Zellfortsätze sind bald schmal, sich verjüngend (Abb. 40), bald breit und lappig (Abb. 42).

Auffällig ist die grosse Zahl von scheinbar stark kontrahierten Melanophoren (Abb. 44—46), die bei allen Schecklarven, auch nach mehrwöchentlichem Aufenthalt im Dunkeln, regelmässig in grosser Zahl vorhanden sind. Ob diese Zellen in völlig ausgestrecktem Zustand sind und sich unter allen Umständen durch kleine, kaum nennenswerte Plasmafortsätze auszeichnen, oder ob sie stark kontrahiert sind, kann ich nicht entscheiden (vgl. Anmerkung 1).

Wie bei den schwarzen Larven liegen die verschiedenen Pigmentzellformen an bestimmten Stellen der Haut (Textfig. 4). Typische Vertreter der α -Gruppe (Abb. 35) kommen nur am Kopf und an der Seite des Rumpfes vor, bis in die Gegend des Enddarms. Zwischenformen zwischen den α - und β -Zellen (Abb. 37, 38 und 40—43) und die scheinbar stark kontrahierten Zellen sind an allen pigmentierten Stellen zahlreich. In der hinteren Schwanzhälfte überwiegen die letzteren. Die Zellen mj

¹) Diese Zellen ähneln kontrahierten Zellen der dritten Gruppe. Obsie wirklich kontrahiert sind, oder ob sie selbständige Formen sind, die sie unter allen Umständen durch geringe Verzweigung auszeichnen, kann ich nicht entscheiden. Vielleicht dehnen sich diese Zellen unter geeigneter Veränderung der Lebensumstände aus; leider konnte ich derartige Versuche bisher nicht vornehmen, da es lebenskräftige Larven nur während kurzer Zeit zu Beginn des Sommers gibt.

zwei symmetrischen, flächenhaften Ausläufernetzen, d. h. die γ -Zellen und die diesen ähnlichen (Abb. 29 und 39), sind auf den Rand des Schwanzsaumes beschränkt.

Fig. 4.
Schema der Verteilung der Pigmentzellenformen bei hellen
Axolotllarven.

Schecklarven, die hellem Licht ausgesetzt worden sind. unterscheiden sich nicht wesentlich von dunkel gehaltenen. Abgesehen von den, auch bei dunkel gehaltenen vorhandenen, scheinbar kontrahierten Zellen, sind vorn am Kopf die Zellen der a-Gruppe teilweise kontrahiert, während die weiter hinten am Rumpf liegenden dilatiert sind. Alle anderen Zellen zeigen keine Veränderung.

Die Xanthophoren sind durch dieselbe Formenmannigfaltigkeit ausgezeichnet wie die Melanophoren (Taf. XI, Abb. 8 und 9). Sie haben bei beiden Rassen fast stets dieselbe Form wie die gerade benachbarten Melanophoren.

Ein Vergleich der Pigmentzellformen, die bei den schwarzen und bei den Schecklarven auftreten, zeigt überraschende Verschiedenheiten. Einige Zellformen der schwarzen Tiere, und zwar diejenigen aus der α -Gruppe, deren zahlreiche Ausläufer sich 'rst in einiger Entfernung vom Kern verzweigen (Abb. 21), und die typischen Vertreter der β -Gruppe (Abb. 22, 23 und 25) fehlen den Schecklarven vollkommen, γ -Zellen sind in geringer Zahl oder gar nicht vorhanden.

Andererseits finden sich bei Schecklarven einige Zellformen, die den schwarzen fehlen. Hierher gehören mehrere Zwischenformen zwischen a- und β -Zellen (Abb. 40—43), zweitens die

dem γ -Typus ähnlichen (Abb. 39) und schliesslich die kleinen fortsatzlosen Zellen (Abb. 44 und 45).

Welche Ursache und welche Bedeutung hat nun die Bildung von Zellformen, die nur einer Rasse zukommen? Folgende Erklärungen scheinen mir möglich zu sein. Entweder ist die Verschiedenheit der Pigmentzellformen als eine Begleiterscheinung zu betrachten, die bei den recessiven Axolotln im Zusammenhang mit der Rückbildung der Zahl der Pigmentzellen steht, oder 2.: sie ist eine Folge davon, dass bei den hellen Axolotln die Pigmentzellen alle oder zum Teil verkümmert sind, oder 3.: diese Verschiedenheit beruht wenigstens zum Teil auf verschiedener Reizbarkeit der Pigmentzellen bei beiden Rassen, oder 4.: die verschiedenen Pigmentzellformen sind im Erbgut jeder Rasse jede für sich schon als Anlage vorhanden.

Ich erörtere zunächst die erste Möglichkeit. Offenbar ist die Form der Pigmentzellen in hohem Grade von dem umgebenden Gewebe abhängig. Z. B. können sich y-Zellen nur im äusseren Teil des Schwanzsaumes entwickeln, weil sie nur in diesem Körperabschnitt sich von einer Epidermis bis zur gegenüberliegenden ausbreiten können, ungehindert durch feste Organe oder durch zu grosse Ausdehnung. Umgekehrt können sich Zellen, die an der Seite des Rumpfes zwischen Haut und Muskeln eingeschlossen liegen, nur in einer Ebene ausbreiten. Ehrmann und Schuberg haben (an den oben, S. 163, angeführten Stellen) auf den Einfluss hingewiesen, den das einschliessende Gewebe auf die Form der Pigmentzellen hat. Wenn aber ein solches Abhängigkeitsverhältnis zwischen Zelle und Umgebung besteht, ist es klar, dass alle diejenigen Zellformen den Schecken fehlen müssen, welche bei den schwarzen Larven auf eine Körperregion beschränkt sind, die bei Schecken überhaupt unpigmentiert ist. Diese Annahme gilt für diejenige Sorte der a-Zellen, welche nach obigem den Schecklarven fehlt (Abb. 21): denn Zellen von dieser Form liegen bei den Schwarzen hauptsächlich an der Seite des Rumpfes unter dem Rückensaum, also in einer Gegend, die bei den Schecken fast pigmentfrei ist, da ihr Pigmentstreifen höher, am Grunde des Rückensaums verläuft. Sie trifft auch für die fehlenden \(\beta\)-Zellen zu; denn diese kommen bei den Schwarzen dicht am Enddarm und etwas dahinter vor; diese Stelle ist bei Schecken unpigmentiert. Schliesslich

gilt die Annahme auch für die γ -Zellen, die bei den Schwarzen und, wenn vorhanden, auch bei den Schecken auf den äusseren Rand des Schwanzsaumes beschränkt sind. Das Fehlen der α -, β - und γ -Zellen ist demnach durch den Hinweis auf die Abhängigkeit der Zellform von der Umgebung hinreichend erklärt als eine Begleiterscheinung von der Einschränkung der Pigmentierung bei hellen Larven auf kleinere Bezirke. Dagegen bedarf es weiterer Annahmen, um das Auftreten neuer Formen bei den Hellen verständlich zu machen.

Zweitens könnte man sich denken, dass bei den Pigmentzellen der Hellen eine Art Verkümmerung auftritt, die sich unter anderem darin äussert, dass ihre Ausläufer vielfach nicht den Grad von Ausbildung und Verästelung erreichen wie bei den Schwarzen. Diese Annahme halte ich deshalb für sehr wahrscheinlich, weil alle die Zellformen, die nur den Schecken zukommen — also einige Formen, die zwischen der α - und β -Gruppe stehen (Abb. 40—43), die γ -ähnlichen (Abb. 39) und die fortsatzlosen (Abb. 44 und 45) — eine auffallend geringe Verästelung zeigen und meist der Anastomosen zwischen Fortsätzen ganz entbehren.

Wenn aber die y-ähnlichen (Abb. 39) und die kleinen fortsatzlosen Zellen (Abb. 44 und 45), was ich oben (S. 168 Anmerkung) als möglich bezeichnet habe, nicht normal ausgedehnte, sondern stark kontrahierte Zellen wären, würde die gegebene Erklärung für sie nicht ausreichen. Vielmehr müsste man dann an die 3. der oben erwähnten Hauptmöglichkeiten (S. 170 oben) denken und einen reizphysiologischen Unterschied zwischen den Larven beider Rassen annehmen. Damit würde die Beobachtung im Einklang stehen, dass, obwohl die schwarzen und hellen Larven in denselben Gefässen, also unter genau denselben Bedingungen, aufgezogen wurden, bei dunkel gehaltenen schwarzen Larven stets nur ein Teil der vor dem Enddarm gelegenen Melanophoren jene gedrungene, anscheinend kontrahierte Gestalt aufwiesen, während bei Schecken derartige Zellen zahlreich über den grössten Teil des Körpers verstreut waren.

Wie ich schon kurz sagte (4. der angeführten Möglichkeiten), kann man sich den vorliegenden Rassenunterschied aber noch auf ganz andere Weise erklären, nämlich durch die Annahme, dass den einzelnen Zellformen im Erbgut gesonderte Anlagen zugrunde liegen. Freilich könnten diese nicht selbständig vererbbar sein; sonst müssten diese Anlagen ja unabhängig von den Rassenmerkmalen aufspalten und alle Pigmentzellformen sowohl bei Schwarzen wie bei Hellen vorkommen können.

Von diesen Möglichkeiten, kommt die letzte nicht in Betracht; denn wenn man bedenkt, dass alle Formengruppen der Pigmentzellen durch lückenlose Reihen von Zwischenformen miteinander verbunden sind, so dass man viele Zellen mit gleichem Recht zwei verschiedenen Gruppen zuordnen könnte (siehe oben S. 164 und 165), wird die Annahme doch sehr unwahrscheinlich, dass eine grössere Anzahl besonderer Erbanlagen vorliegt. Vielleicht spielt die dritte Möglichkeit eine gewisse Rolle, indem sich die Pigmentzellen der hellen Axolotl (Schecken und Weissen) durch höhere Reizbarkeit auszeichnen als die der Schwarzen. Als eigentliche Ursache für die Verschiedenheit der Form der Pigmentzellen wird aber die Entwicklungshemmung zu betrachten sein, welche man, was schon Haecker (Verh. D. Z. G., 1908) als Vermutung ausgesprochen hat, als Grund des partiellen Albinismus bei den hellen Axolotln anzunehmen hat.

Die Frage, worauf nun die Entwicklungshemmung beruht, können wir allerdings vorläufig nicht beantworten. Jedenfalls ist aber als Ergebnis der angestellten Betrachtungen zu betonen, dass das Auftreten verschiedener Pigmentzellformen bei den beiden Axolotlrassen wahrscheinlich keiner besonderen Erklärung bedarf, sondern eine Begleiterscheinung der den partiellen Albinismus verursachenden Entwicklungshemmung ist.

Ich halte es für angezeigt, an dieser Stelle einige Bemerkungen über die Vermehrung der Pigmentzellen einzufügen.

Flemming (Arch. f. mikr. Anat., 35, S. 275) hat als erster beobachtet, dass sich die Pigmentzellen mitotisch teilen, und diese Tatsache ist nach ihm immer wieder bestätigt worden. Soviel mir bekannt, ist er der einzige geblieben, der den Vorgang der mitotischen Teilung von Pigmentzellen bei einem meinem Objekt verwandten Tier näher beschrieben hat.

Auch ich habe sehr zahlreiche Mitosen bei Melanophoren und Xanthophoren zu sehen bekommen, andererseits habe ich niemals Bilder angetroffen, die auf amitotische Teilung hinweisen könnten, so dass ich die mitotische Teilung bei den Pigmentzellen der Axolotllarven jedenfalls für die gewöhnliche halte.

In Übereinstimmung mit Flemming habe ich gefunden, dass die Pigmentzellen der Axolotllarven auch im Zustande der Teilung ihre Ausläufer nicht einziehen (Taf. XII, Abb. 13 und 14). Deren Fehlen bei der in Abb. 15 wiedergegebenen Melanophore hängt nicht mit dem Teilungsvorgang zusammen; diese Zelle entstammt vielmehr aus dem Pigmentmantel des Auges, wo alle Melanophoren fortsatzlos sind.

Flemming hat weiterhin mitgeteilt, dass bei bestimmten Pigmentzellen der Salamanderlarven nach vollzogener Kernteilung die Zellteilung zunächst ausbleibt. Gegenüber der Vermutung, dass auf diese Weise zweikernige Zellen entstünden, glaubt er, zu der Annahme berechtigt zu sein, dass die Zellteilung nachträglich stattfindet, weil (S. 280) "die Zahl der doppelkernigen Pigmentzellen, im Verhältnis zu den einkernigen, bei älteren Salamanderlarven keineswegs vermehrt zu finden ist". Sodann aber glaubt er, Formen genug zu finden, "welche deutlich eine nachträgliche, der abgelaufenen Mitose erst lange nachfolgende Zertrennung des Zellkörpers dartun (Fig. 14b. Fig. 10)".

Der erste Grund scheint mir deshalb nicht stichhaltig zu sein, weil die Angabe über das Zahlenverhältnis zwischen zweikernigen und einkernigen Zellen, wie man annehmen muss, auf Schätzung beruht. Auch die zum Beweis der nachträglichen Zellteilung berangezogenen Bilder, mit denen meine Abb. 21 gut übereinstimmt, scheinen mir anderer Auslegung fähig zu sein. Wenn man nämlich mit Flemming die benachbarten Pigmentzellen, z. B. in Abb. 21 (in seinen Fig. 14b und 10). als zwei selbständige Geschwisterzellen ansieht, ist kein Grund zu der Annahme vorhanden, dass die Mutterzelle sich erst nachträglich, nach vollendeter Kernteilung, zerschnürt hat. Nun sind aber zweikernige Pigmentzellen bei verschiedenen Tieren bekannt geworden, u. a. hat Flemming sie bei Salamanderlarven gefunden, und auch ich habe bei Axolotllarven eine grosse Zahl von zweikernigen Melanophoren (Abb. 19, 21, 29 und 36) beobachtet: darum scheint es mir wahrscheinlicher zu sein, dass tatsächlich Kernteilung ohne gleichzeitige Zellteilung zur Bildung dauernd zweikerniger Zellen führen kann; sicher entscheiden kann ich diese Frage natürlich nicht, da auch ich keine Zählungen angestellt habe.

Schliesslich sei erwähnt, dass Flemming eine Veränderung der Pigmentzellausläufer während der Kernteilung gefunden hat. Er sagt (S. 280 unten): "Im Verlauf der Mitose verschmälern sich die Ausläufer, indem sie aus platter Form in mehr eine drehrunde übergehen und dabei an vielen Orten längliche oder eckige, knotige Verdickungen bekommen." "Bei der nachträglichen Trennung des Zelleibes, welche oben geschildert wurde, tritt keine Wiederverschmälerung der Ausläufer auf."

Ich habe nichts dem Ähnliches gefunden; alle von mir bisher beobachteten Mitosen sprechen dafür, dass bei den Axolotllarven der Vorgang der Pigmentzellenteilung keine Veränderung in der Gestalt der Zelle oder ihrer Ausläufer bewirkt.

IV. Kapitel. Die Fähigkeit der Pigmentzellen, Pigmentkörnchen zu bilden.

Sind die Pigmentzellen der hellen Axolotl in geringerem Maße als die der schwarzen fähig, Pigment abzuscheiden? Eine Verringerung dieses Vermögens könnte sich in verschiedener Weise äussern. Entweder haben die Pigmentzellen alle oder zum Teil diese Fähigkeit vollkommen verloren, oder sie ist bei ihnen nur weniger ausgebildet, so dass sie eine geringere Anzahl oder auch kleinere Pigmentkörnchen abscheiden. Ich werde zuerst die Frage behandeln, ob bei Axolotllarven Pigmentzellen vorkommen, die überhaupt kein Pigment mehr bilden.

Da ist nun eine Angabe Schubergs für uns von grosser Bedeutung. Er hat nämlich bei seinen Untersuchungen über Zellverbindungen (Z. f. w. Z., Bd. 74, S. 276) im Corium der erwachsenen Axolot Zellen gefunden, die in ihrer Gestalt, vor allem der Verästelung der Plasmafortsätze und ihrer Grösse, den Pigmentzellen völlig gleichen; in ihrem Plasma liegen ausserdem Körnchen, die ebenso gross und ebenso dicht gelagert sind wie die Melaninkörnchen der Melanophoren und die durch verschiedene Farbstoffe, sehr leicht durch Dahlia, sichtbar gemacht werden können. Der Pigmentmangel macht demnach den einzigen Unterschied von echten Pigmentzellen aus. Da ferner derartige Zellen zuweilen mehr oder weniger Melaninkörnchen beherbergen, nimmt

er an, dass es sich um Vorstadien der echten Pigmentzellen handelt in dem Sinne, dass die farblosen Körnchen zu Melanin-körnchen werden. Später (Z. f. w. Z., Bd. 90, S. 46, Anm.) hat er dieselben Zellen, die er "farblose Pigmentzellen" nennt, bei jungen Larven beobachtet und ebenso wie früher die Vermutung ausgesprochen, dass es Pigmentzellen mit noch farblosen Pigmentgranulis seien.

Nach diesen Befunden Schubergs könnte man sich die Vorstellung machen, dass die farblosen Pigmentzellen unter Umständen überhaupt nicht zur Pigmentbildung kommen; dass weiterhin ihre Zahl bei den weissen Larven grösser ist als bei den schwarzen und dass die Summe der farblosen und der echten Pigmentzellen bei beiden Rassen übereinstimmt. Meine nächste Aufgabe ist es daher, festzustellen, ob wirklich "farblose Pigmentzellen" beim Axolotl vorkommen, insbesondere Schubergs Angaben zu prüfen.

Was nun meine eigenen Befunde anbelangt, so finde ich am konservierten Material unter der Coriumanlage 1) Zellen, die sich von den Melanophoren dadurch unterscheiden, dass sie stets nur eine ganz geringe Zahl von Melaninkörnchen enthalten (vgl. Abb. 10, 14 und 16 mit 17). Dagegen schliessen sie Körnchen anderer Art ein, welche in ungefärbtem Zustand nicht hervortreten (Abb. 14), dagegen durch Dahlia blauviolett (Abb. 10 und 16) und durch Delafieldsches Hämatoxylin gewöhnlich blau gefärbt werden. Im übrigen erkennt man diese Zellen auch an ihren den Pigmentzellen eigentümlichen, breiten, zusammenfliessenden Ausläufern (Abb. 14 und 16). Von den Bindegewebszellen, die ihnen freilich nur selten durch ihre Form ähnlich sind, sind sie durch die Anwesenheit von einzelnen Melaninkörnchen, die durch die ganze Zelle sparsam verstreut sind und niemals fehlen (Abb. 10, 14 und 16), verschieden.

Zweifellos handelt es sich um die gleichen Elemente, welche Schuberg gesehen hat; denn sie stimmen in allen wesentlichen Merkmalen (Gestalt, geringe Zahl der Melanin-

¹⁾ Wie Schuberg 1908 mitgeteilt hat, ist das Corium bei frisch ausgeschlüpften Axolotllarven noch nicht ausgebildet, sondern erst in Form einer zellfreien, faserigen Schicht unter der Epidermis angelegt, in welche später Bindegewebszellen einwandern. Diese Coriumanlage ist an meinen Abb. 10 und 17 (co) zu sehen.

körnchen, mit Dahlia färbbare Körnchen) mit diesen überein (vgl. besonders Abb. 16 mit Schubergs Bildern).

Man kann aber auch weiterhin zeigen, dass sie mit den Xanthophoren identisch sind, und zwar geht dies aus dem Vergleich zwischen den Bildern am lebenden Objekt und am konservierten Material ohne weiteres hervor.

Am lebenden Kopfhautfetzen sieht man unter dem Mikroskop die Melanophoren und Xanthophoren sich zu einem fast lückenlosen Netzwerk zusammenschliessen, wobei die Xanthophoren in ihrer Grösse und Gestalt den Melanophoren gleichen. Ein Querschnitt durch den Kopf zeigt nun deutlich, dass unter der Coriumanlage, ausser den Melanophoren, zahlreiche der körnchenhaltigen melaninarmen Zellen liegen, dagegen weder direkt unter der Coriumanlage noch sonst irgendwo im Bindegewebe irgendwelche andere Zellen, die den am lebenden Material beobachteten Xanthophoren entsprechen könnten (vgl. Abb. 11). Es müssen also offenbar die Schubergschen "farblosen Zellen" den Xanthophoren entsprechen.

Zu dem gleichen Schluss wird man geführt, wenn man weisse Larven, deren Zeichnung man sich genau angesehen und skizziert hat, in Frontalschnitte zerlegt. Hierzu eignen sich weisse Larven wegen ihrer scharf abgegrenzten Farbflecke besser als schwarze, die überall pigmentiert sind. Man findet an den Stellen, die den distinkten Flecken entsprechen, symmetrische Anhäufungen von Melanophoren und "farblosen Pigmentzellen". Zwischen den distinkten Flecken fehlen die fraglichen Zellen (vgl. Textfig. 5 mit

Fig. 5. Schematische Skizze einer weissen Larve. Zeigt die Verteilung der distinkten Flecken (a. b. c. d).

Abb. 12). Dieser Umstand, dass die Schubergschen Zellen auch hier gerade an den Stellen liegen, wo die Kanthophoren gesucht werden müssen, und nirgends sonst, zwingt zu der Annahme, dass sie mit diesen identisch sind; ganz abgesehen davon, dass es gar

keine Zellen weiter gibt, die man als Xanthophoren deuten könnte. Es ist somit ausser Zweifel, dass Schubergs Annahme von "farblosen Pigmentzellen" auf einem Irrtum beruht und dass die fraglichen Zellen in Wahrheit Xanthophoren sind. Schuberg selbst hat gar nicht an die Möglichkeit gedacht, dass er Xanthophoren vor sich habe, offenbar weil er, wie es scheint, niemals lebende Larven zu Gesicht bekommen hat. An diesen fällt das gelbe Pigment sofort auf, während konservierte Tiere bekanntlich von gelber Farbe keine Spur mehr zeigen, weil das gelbe Lipochrom durch Alkohol, Ather und Chloroform aufgelöst wird. Zu der Annahme, die "farblosen Pigmentzellen" seien Vorstufen von Melanophoren, wurde Schuberg vor allem durch das oben erwähnte Vorhandensein der Melaninkörnchen in denselben geführt. Auch jetzt ist die Möglichkeit, dass die Xanthophoren Bildungsstufen von Melanophoren sind, nicht vollkommen ausgeschlossen. Jedenfalls besteht eine gewisse Verwandtschaft zwischen beiden Zellformen; denn sie sind sehr häufig durch Ausläufer miteinander verbunden, was man an Schnitten und am lebenden Schwanz deutlich sehen kann.

Wenn sich nun auch herausgestellt hat, dass die bisherigen Angaben von farblosen Pigmentzellen nicht zutreffen, so bleibt trotzdem noch die Möglichkeit, dass solche neben den Melanophoren und Xanthophoren vorkommen. Dass jedoch tatsächlich nirgends Zellen vorhanden sind, deren Natur fraglich ist, und die man als farblose Pigmentzellen deuten könnte, davon kann man sich mit Leichtigkeit überzeugen, indem man von Larven den Schwanz und Hautfetzen von Rumpf und Kopf in überlebendem Zustand mit starker Vergrösserung untersucht. Ich habe in dieser Weise zahllose Schwänze und Hautstücke, zumeist von weissen Larven kurz nach dem Ausschlüpfen, durchsucht und niemals derartige fragliche Zellen gefunden. Dass sie mir entgangen sein könnten, halte ich deshalb für ausgeschlossen, weil die Haut von frisch ausgeschlüpften Larven noch sehr einfach gebaut ist, so dass man nicht leicht Zellen übersehen kann, und ausserdem, weil die Haut derartig durchsichtig ist, dass jede einzelne Zelle klar zu erkennen ist.

Kommen demnach farblose, d. h. solche Pigmentzellen, die die Fähigkeit zur Pigmentabscheidung ganz verloren haben, nicht vor, so bleibt noch die Möglichkeit, dass diese Fähigkeit bei den Pigmentzellen beider Rassen verschieden stark ausgebildet ist. Diese Verschiedenheit müsste äusserlich durch einen verschiedenen Pigmentgehalt der Zellen sichtbar werden. Um Pigmentzellen in dieser Hinsicht exakt miteinander zu vergleichen, müsste man die Pigmentkörnchen zählen und ihre Grösse messen. Diese Art der Untersuchung ist aber bei der geringen Grösse der Körnchen unmöglich. Darum muss ich mich vorläufig begnügen, die Zellen nach ihrem Gesamtaussehen zu beurteilen.

Bei den Larven beider Rassen kommen ausser dunkelschwarzen Melanophoren (Abb. 20 und 40) hellere, graue Zellen vor (Abb. 27 und 38). Man könnte den Unterschied beider Zellformen darin suchen, dass vielleicht die Pigmentkörnchen in den helleren Zellen weniger dicht gelagert sind oder dass sie bei relativ gleicher Zahl (d. h. bei gleicher Zahl in der gleichen Plasmamenge) kleiner sind, als in dunklen Zellen, d. h. es wäre möglich, dass der relative Pigmentgehalt der hellsten Zellen (bezogen auf das Volumen der Zelle) am geringsten ist. Es wäre aber auch möglich, dass der Unterschied im Aussehen der dunklen und hellen Zellen lediglich auf verschiedener Dicke der Zellfortsätze, also auf der Dicke der vom Licht passierten Pigmentschicht beruht. Im letzteren Falle würde nur eine Verschiedenheit der absoluten Pigmentmasse, nicht der relativen, vorliegen. Eine Möglichkeit, diese Frage zu entscheiden, sehe ich nicht. Doch verliert sie für uns dadurch an Bedeutung, dass bei beiden Rassen dunkle und hellere Zellen nebeneinander vorkommen.

Noch weniger als bei den Melanophoren lässt sich bei Xanthophoren etwas über die Grösse oder Dichte der Körner aussagen; denn die gelben Lipochromkörnchen sind wegen ihrer helleren Färbung und ihres starken Glanzes der Beobachtung noch schwerer zugänglich als die Melaninkörnchen.

Die Frage, ob die Fähigkeit, Pigmentkörner abzuscheiden, bei den Pigmentzellen der schwarzen und hellen Axolotl verschieden stark ausgebildet ist, können wir also nicht mit vollkommener Sicherheit beantworten. Man kann nur soviel sagen, dass keine Bilder vorliegen, welche zugunsten der Annahme eines solchen Unterschiedes gedeutet werden könnten. Im Gegenteil spricht die Tatsache, dass bei keiner Rasse Pigmentzellen vorkommen, die diese Fähigkeit ganz oder auch nur in sehr erheblichem Maße eingebüsst haben, gegen diese Annahme.

V. Kapitel. Die Zahl der Pigmentzellen.

Um etwaige Rassenverschiedenheiten in der Zahl der Pigmentzellen festzustellen, musste ich diese bei schwarzen und hellen Larven zählen. Sollte ein einwandfreier Vergleich möglich sein, dann durften nur gleich grosse Larven ¹) benutzt werden. Zweitens wäre es wünschenswert gewesen, jedesmal die Gesamtzahl der Pigmentzellen in der ganzen Larve zu kennen. Die erste Forderung habe ich erfüllt, soweit es bei dem zur Verfügung stehenden Material anging. Die zweite erschien dagegen undurchführbar, da eine mehrmonatige Arbeit nötig sein würde, um alle Pigmentzellen einer einzigen Larve zu zählen.

Infolgedessen habe ich bei jeder Larve nur die Pigmentzellen eines bestimmten, des zwischen Augen und Kiemenfähnchen liegenden, Körperabschnitts gezählt. In diesem Teil ist eine verhältnismässig grosse Zahl von Pigmentzellen enthalten, da sich bei allen Larven (schwarzen und hellen) auf dem Kopfrücken hinter den Augen eine starke Pigmentansammlung findet. Man wird annehmen dürfen, dass die Zahl der hier gelegenen Pigmentzellen innerhalb jeder Rasse nicht in grösserem Maße schwankt als die Gesamtzahl der Pigmentzellen, da nach meinen Erfahrungen bei stärkerer oder geringerer Ausbildung dieser Pigmentansammlung auch die übrige Zeichnung stärker oder geringer ausgebildet ist.

Daher kann man das hier gefundene Zahlenverhältnis zwischen den verschiedenen Pigmentzellarten wohl für die ganzen Larven gelten lassen. Anders ist es mit den absoluten Zahlen. Der durchzählte Körperabschnitt ist bei beiden Rassen eine besonders pigmentzellenreiche Stelle. Bei den Schwarzen sind diejenigen Körperteile, welche ausser diesem Abschnitt noch Pigmentzellen enthalten, wie aus den Abbildungen (3 und 5) ohne weiteres hervorgeht, viel grösser als bei Hellen. Selbst dann, wenn in dem durchzählten Kopfabschnitt bei beiden Rassen gleichviel Pigmentzellen lägen, müssten also die Schwarzen im ganzen Körper eine grössere Zahl davon besitzen. Wenn aber schon in dem untersuchten Teil Zahlenverschiedenheiten aufträten zuungunsten der Hellen, so wäre anzunehmen, dass die Gesamtzahlen der ganzen Larven in noch höherem Grade verschieden wären.

Da die Kerne, die als Vertreter der Zellen gezählt werden mussten, am Totalpräparat oft nicht deutlich und viele sehr tief

¹) Im Winter schlüpfen die Larven 4—6 Wochen nach dem Ablaichen aus, im Sommer dagegen bei günstigem Wetter 10 Tage danach. Da auch Larven vom selben Laich sehr verschieden schnell wachsen, kann nicht das Alter, sondern nur die Länge der Tiere als Maßstab dienen, wenn man Larven vom gleichen Stadium braucht.

im Bindegewebe gelegene Pigmentzellen am Totalpräparat überhaupt nicht zu sehen sind, habe ich die Zählungen an Querschnitten vorgenommen. Diese ermöglichen auch ohne weiteres eine sichere Abtrennung eines bestimmten Bezirks. Ich habe immer die Pigmentzellen vom ersten Schnitt hinter den Augen bis zum letzten, auf dem noch keine Kiemenfähnchen getroffen waren, gezählt.

Der einzelne Kern ist fast stets auf mehrere Schnitte verteilt. Damit er trotzdem nur einmal gerechnet wurde, habe ich in jedem Fall durch Vergleich festgestellt, ob er schon auf dem vorhergehenden Schnitt getroffen und daher gezählt worden war oder nicht. Diese Arbeit war zwar sehr zeitraubend; aber sie war immer durchführbar, so dass die gefundenen Zahlen, da nur Schnittserien von gut konservierten Larven benutzt wurden und da die Melanophoren sowohl wie die Xanthophoren stets sicher kenntlich sind, richtig sein müssen, abgesehen von sehr kleinen Fehlern, die durch Versehen herbeigeführt worden sein können.

Verwechslungen der Pigmentzellen mit anderen Zellformen, welche die Zählungen fehlerhaft machen würden, sind ausgeschlossen, da den Melanophoren ähnliche Zellen nicht vorkommen und die Xanthophoren durch ihre Gestalt, die mit Dahlia gefärbten Körnchen und durch Anwesenheit von nur sparsam verstreuten Melaninkörnchen stets sicher gekennzeichnet sind.

In der beigegebenen Tabelle I habe ich ausser den gefundenen Zahlen Angaben über Abstammung und Grösse der benutzten Larven zusammengestellt.

Aus der zweiten Vertikalreihe ist ersichtlich, welche Larven von gleicher Abstammung sind. Jeder Buchstabe bedeutet ein Elternpaar. In der dritten Reihe habe ich die Länge der untersuchten Larven, die in konserviertem Zustand gemessen wurden, angegeben. Teils weil anfangs die Absicht bestand, verschiedene Stadien zu vergleichen, ein Plan, der aus Zeitmangel vorläufig aufgegeben werden musste, teils weil Larven von der gewünschten Grösse fehlten, sind die Larven verschieden gross. Dieser Umstand wird bei den aus den Zahlen zu ziehenden Schlüssen gebührend berücksichtigt werden.

In der Tabelle habe ich dann weiterhin die Gesamtzahl der Pigmentzellen (X + M), die Zahl der Xanthophoren (X), die Gesamtzahl der Melanophoren (M), die Zahl der im Bindegewebe, dicht unter der Coriumanlage und in tieferen Schichten gelegenen (Mb) und die der epidermalen (Mep) aufgeführt. Zuletzt habe ich noch angegeben, wieviel Xanthophoren bei den einzelnen Tieren auf 100 Melanophoren überhaupt und wieviel auf 100 im Bindegewebe gelegene Melanophoren kommen.

Tabelle I

				1	abene	1.			
I.	II.	III.	IV.	v.	VI.	VII.	VIII.	IX.	X.
Nr.	Abst.	mm lg.	X + M	X	M	Mb	Мер	100 X	100 X
	Aust.	man 1g.	24 24	4.5		24 0	in cp	M	M b
			5	Schwa	rze L	arven	1.		
1	A	10,0	470	255	215	149	66	119	171
2	В	10.2	456	278	178	148	30	156	188
3	В	10,2	624	340	284	216	68	120	157
4	В	10,2	437	221	216	162	54	102	136
5	A	11.0	1000	557	443	269	174	126	207
				Sch	ecklar	ven.			
6	A	11.0	450	295	155	152	3	190	194
7	A	11,0	343	210	133	132	1	158	159
				Weis	se La	rven.			
8	C	10,5	322	232	90	90	0	258	258
9	T	11.2	702	436	266	263	3	164	164
10	T	11.2	634	408	226	225	1	181	181

Betrachtet man die bei den schwarzen Larven gefundenen Zahlen, so fallen in allen Rubriken grosse Schwankungen auf, die nur zum Teil auf die Grössenverschiedenheit zurückgeführt werden dürfen. Dass die Zahl der Pigmentzellen auch bei gleich grossen Tieren von gleicher Abstammung (Ex. 2—4) sehr verschieden ist, weist auf eine grosse Variationsbreite hin.

Wie zu erwarten war, hat die grössere Larve (Ex. 5) bedeutend mehr Pigmentzellen als die kleineren. Nicht nur die Gesamtzahl ist grösser, sondern alle Pigmentzellsorten, Xanthophoren und Melanophoren, von diesen die im Bindegewebe gelegenen sowohl als die epidermalen, sind zahlreicher als bei den kleineren. Diese Tatsache kommt auch darin zum Ausdruck, dass die relative Zahl der Xanthophoren (bezogen auf 100 Melanophoren überhaupt) dieselbe (126) ist wie im Durchschnitt bei den kleineren

Tieren ($\frac{100 \text{ X}}{\text{M}}$ ist bei den Ex. 1—4 im Durchschnitt = 124,25).

Während das Verhältnis von Xanthophoren zu Melanophoren überhaupt bei der grössten schwarzen Larve (Ex. 5) dasselbe ist wie bei den kleineren (Ex. 1—4), ist bei ihr die Zahl der Xanthophoren im Verhältnis zu 100 Bindegewebsmelanophoren (Kolumne X: 207) grösser als bei jenen ($\frac{100 \, \mathrm{X}}{\mathrm{M} \, \mathrm{b}}$ ist bei Ex. 1—4 im Durchschnitt: = 163). Doch kann man daraus wegen des geringen Unterschiedes, der in dieser Hinsicht zwischen Ex. 5 und Ex. 2 (207 und 188) besteht, und in Anbetracht der grossen Variabilität keine weiteren Schlüsse ziehen. Immerhin stimmt dieser Befund gut damit überein, dass die epidermalen Melanophoren später auftreten als die im Bindegewebe, so dass wenigstens eine gewisse Zeit lang die relative Zahl der ersteren wachsen muss.

Das hauptsächliche Resultat der Zählungen bei den schwarzen Larven ist vorläufig, dass die Zahl der Xanthophoren grösser ist als die der Melanophoren. Das zwischen beiden Zellarten bestehende Zahlenverhältnis ist wie die übrigen Zahlen sehr verschieden gross; es schwankt zwischen 156/100 und 102/100 (Ex. 2 und 4, Kolumne IX).

Von hellen Tieren wurden zwei Schecklarven und drei weisse Larven untersucht. Die ersteren entstammen dem oben (S. 160) erwähnten Laich, von dem sechs erwachsene Schecken noch erhalten sind und dessen Larven der Beschreibung der Zeichnung zugrunde gelegt wurden. Eine weisse Larve (Ex. 8) stammt von zwei weissen Tieren des hiesigen Instituts. 1) Die beiden anderen weissen Larven (Ex. 9 und 10) entstammen einer rein weissen Zucht des Tübinger Zoologischen Instituts. Da in derselben noch niemals Schecken aufgetreten sind, müssen sie als rein weiss gelten; die Zeichnung der Tübinger Larven wurde oben erwähnt (S. 159).

Bei den Schecken finden wir dieselben Erscheinungen wie bei den Schwarzen. Obwohl die beiden Larven (Ex. 6 und 7) gleich lang und von gleicher Abstammung waren (Vertikalreihe III und II), ist die Zahl ihrer Pigmentzellen, sowohl die der Xanthophoren als die der Melanophoren, sehr verschieden. Dass auch die relativen Zahlen der Xanthophoren ziemlich verschieden sind (Reihe IX: 190 und 158), ist bei den grossen Schwankungen, die wir bei den Schwarzen kennen gelernt haben, nicht ver-

¹) Da diese beide Kinder eines Schecken sind, so ist die Möglichkeit vorhanden, dass das untersuchte Tier, obwohl beide Eltern weiss sind, eine Schecklarve ist, da ja die Vererbungsweise der Scheckung bei Axolotla noch nicht genügend bekannt ist.

wunderlich. Nun ist allerdings ein um so grösseres Material wünschenswert, je mehr die zu untersuchenden Objekte variieren. Aber auch aus den wenigen Zählungen, auf die ich mich wegen der Langwierigkeit der Untersuchung vorläufig beschränken musste, wird man folgende Schlüsse ziehen können.

Erstens ist die absolute Zahl der Pigmentzellen bei den Schecken kleiner als bei Schwarzen, und zwar sowohl die Zahl der Xanthophoren als auch die der Melanophoren. Die Zahlen der Schecken dürfen allerdings ohne weitere Voraussetzungen nur mit denen der gleich langen Larve 5 verglichen werden, welche mehr als zweimal soviel Pigmentzellen hat als die Schecken (1000:450 bezw 343). Wenn auch die übrigen Schwarzen, mit einer Ausnahme (Ex. 4: 437), mehr Pigmentzellen aufweisen, obwohl sie bedeutend kleiner sind, so wird es dadurch nur noch gewisser, dass die Pigmentzellen im Durchschnitt bei Schwarzen zahlreicher sind. Es kommt noch hinzu, dass aus vorher dargelegten Gründen (S. 179) der Unterschied noch viel stärker hervortreten müsste, wenn man nicht bloss eine Stelle am Kopf, sondern den ganzen Körper durchzählen würde.

Als zweite Verschiedenheit in der Zahl der Pigmentzellen ist festzustellen, dass die Xanthophoren (gegenüber den Melanophoren) bei den Schecken relativ häufiger sind als bei den Schwarzen (Vertikalreihe IX). Da die relative Zahl der Xanthophoren bei den Schwarzen zwar variiert, aber so, dass die Zahl der grösseren Larve gerade in der Mitte liegt (der Durchschnittswert von Ex. 1—5: 124,6 stimmt annähernd mit der Zahl der von Ex. 5: 126 überein), so wird man in dieser Hinsicht die Schecken trotz der Grössenunterschiede mit allen Schwarzen vergleichen dürfen. Es ergibt sich: bei den Schecken entsprechen 100 Melanophoren durchschnittlich 174 Xanthophoren, bei den Schwarzen dagegen der gleichen Anzahl von Melanophoren nur 125 Xanthophoren.

Drittens ist anzuführen, dass die Schecken fast gar keine Epidermis-Melanophoren haben (nach Vertikalreihe VIII: 3 und 1), deren Zahl bei der schwarzen Larve 5 ziemlich gross ist (174). Aber auch die kleineren schwarzen Larven haben schon bedeutend mehr epidermale Melanophoren (30—68).

Die weissen Larven finden wir zum Teil übereinstimmend mit den Schecken. Die Zahl der Pigmentzellen ist wiederum kleiner als bei den Schwarzen (Vertikalreihe IV). Die weisse Larve 8 hat sogar weniger Pigmentzellen als die kleineren schwarzen Larven Nr. 1—4. Die Pigmentzellenzahl der beiden anderen weissen Larven (702 und 634) bleibt hinter der der schwarzen Larve 5 bedeutend zurück, obwohl die Larven noch grösser sind. Dass sie die übrigen schwarzen Larven an Pigmentzellenzahl übertreffen, ist bei dem Grössenunterschied nicht merkwürdig. Verwunderlich ist allerdings der auffällige Unterschied der Pigmentzellenzahl zwischen den Schecken und den letztgenannten Weissen (450, 343 — 702, 634). Für diesen Unterschied kann man sicher nur zum Teil den geringen Grössenunterschied verantwortlich machen. Zum Teil muss man ihn aber wohl mit der individuellen Variabilität in Zusammenhang bringen, wie eine solche auch bei den schwarzen Larven besteht.

Die relative Zahl der Xanthophoren ist bei den Weissen ebenfalls grösser als bei den Schwarzen und stimmt mit der bei den Schecken im ganzen überein. Bei einer Larve (Ex. 8) ist sie sogar noch erheblich grösser als bei diesen.

Die Zahl der epidermalen Melanophoren ist wie bei den Schecken sehr niedrig. Mithin lassen sich zwischen Weissen und Schecken in Hinsicht auf die Zahl der Pigmentzellen auf Grund des vorliegenden Materials keine wesentlichen Verschiedenheiten erkennen.

Als Hauptunterschiede zwischen den Dominierenden (Dunkeln) und den Rezessiven (Hellen, d. h. Schecken und Weissen) sind zu nennen:

1. Die Xanthophoren sowohl wie die Melanophoren sind bei den Dominierenden, wenn man Tiere von gleicher Länge ins Auge fasst, zahlreicher. Dies geht insbesondere daraus hervor, dass eine 11 mm lange schwarze Larve (Nr. 5) mehr als doppelt so viel Pigmentzellen aufweist, als zwei gleich grosse Schecklarven (Nr. 6 und 7) und ungefähr anderthalb mal soviel als zwei etwas grössere weisse Larven (Nr. 9 und 10), und ferner daraus, dass die 11 mm langen Schecklarven (Nr. 6 und 7) im Durchschnitt eine wesentlich geringere Zahl aufweisen als vier nur 10 und 10,2 mm lange schwarze Larven (Nr. 1—4). Es ist dabei zu beachten, dass sich frisch ausgeschlüpfte Larven, wie die grosse Zahl der beobachteten Mitosen zeigt, durch sehr rasche Zellvermehrung auszeichnen, so dass schon geringe Grössenunterschiede

mit einer beträchtlichen Vermehrung der einzelnen Zellformen verbunden sein müssen.

- Die Xanthophoren sind bei den Rezessiven im Verhältnis etwas häufiger (bezogen auf die gleiche Anzahl von Melanophoren) als bei den Dominierenden.
- Die epidermalen Melanophoren, die bei den Dominierenden ziemlich zahlreich sind, fehlen den Rezessiven fast ganz.

VI. Kapitel. Die Grösse der Pigmentzellen.

Nunmehr komme ich zu der Frage, ob die Pigmentzellen der beiden Rassen durch ihre Grösse verschieden sind. Bei der Untersuchung der Zellformen gewann ich den Eindruck, dass die Pigmentzellen der Schwarzen die der Hellen an Grösse übertreffen. Dasselbe scheinen mit gleicher Vergrösserung hergestellte, also unmittelbar vergleichbare Zeichnungen zu beweisen; man vergleiche Abb. 21, 22 mit 38—41 und 43—45. Freilich kommen auch bei Schwarzen sehr kleine Pigmentzellen (Abb. 33, 34) vor, solche scheinen aber weniger zahlreich zu sein als bei den Schecken, während umgekehrt bei den Schecken die Zellen niemals so gross werden dürften, wie die grössten der Schwarzen.

Zur Entscheidung dieser Frage wäre eine möglichst genaue Messung der Pigmentzellengrösse bei beiden Rassen notwendig. Nun ist es aber völlig ausgeschlossen, das Volumen der Pigmentzellen zu bestimmen, weil ihre Gestalt dazu viel zu unregelmässig ist. Man könnte vielleicht am Totalpräparat die zwei grössten Ausdehnungen des Ausläufernetzes messen und das Produkt derselben als Maßstab für das Zellvolumen benutzen, wenn nicht auch in der Beschaffenheit des Ausläufernetzes zu grosse Verschiedenheiten vorhanden wären. Bald kann man von einem Ausläufernetz überhaupt kaum sprechen (Abb. 22), da die Verzweigungen sehr gering sind; bald ist das Netz so dicht (Abb. 36), dass es eine ununterbrochene Fläche zu sein scheint. Ausserdem sind die das Netzwerk bildenden Ausläufer bald sehr fein und schmal (Abb. 27, 29, 37), bald verhältnismässig breit (Abb. 20 und 21), so dass der vom Ausläufernetz erfüllte Raum schon deshalb nicht als Maßstab für die Zellgrösse dienen könnte.

Somit bleibt nur ein Ausweg. Nach R. Hertwigs Lehre von der Kernplasmarelation (Biolog. Zentralblatt 23, Bd. 1903 und Arch, f. Zellforsch., Bd. I, 1908) besteht bei jeder Zellart unter

gleichbleibenden Bedingungen ein konstantes Verhältnis zwischen der Kern- und Plasmamasse. Ich kann hier nicht nebenbei untersuchen oder auch nur erörtern, ob diese Annahme für unseren Fall begründet ist oder nicht, sondern möchte sie einstweilen für richtig halten und meiner eigenen Untersuchung nutzbar machen. da sie von Hertwig, der sich ausser auf eigene Untersuchung, hauptsächlich auf Versuche von Gerasimoff und Boveri stützt, eingehend begründet und später von Boveri (Zell-Studien Heft 5, Jena 1905) bestätigt worden ist. Wenn aber zwischen Kern und Plasma ein bestimmtes Verhältnis besteht, kann die Kerngrösse als Indikator der Zellgrösse dienen. Dieses Umstandes habe ich mich bedient. Da die Pigmentzellen durch ihre ungünstige Form der unmittelbaren Messung unzugänglich sind, habe ich ihre Kerne gemessen; denn es kommt nicht auf die Kenntnis der absoluten Grösse der Zellen, sondern nur auf einen Vergleich der beiden Rassen in dieser Hinsicht an. Nach der Lehre von der Kernplasmarelation hat man ja anzunehmen, dass das Verhältnis k/p für eine bestimmte Zellart bei einer bestimmten Tierart unter gleichbleibenden Bedingungen konstant ist. Natürlich ist es möglich, dass dieser Quotient für dieselbe Zellgruppe bei anderen Tierarten ein anderer ist; ebenso kann man sich aber denken. dass dieser Quotient für dieselbe Zellart (z. B. Chromatophoren) bei mehreren zu einer Art gehörigen Rassen (z. B. schwarzen und hellen Axolotln) verschieden gross ist. In diesem Falle könnte die Kerngrösse bei einem Vergleich der Rassen nicht als Maßstab für die Zellgrösse dienen. Auf diese Möglichkeit komme ich unten zurück (S. 199 unten).

Anfangs habe ich die Kerngrösse auf eine sehr einfache Weise festzustellen gesucht, indem ich am Totalpräparat vom überlebenden Schwanz Länge und Breite der Pigmentzellkerne mit dem Okularmikrometer mass. Um die Messungen möglichst genau werden zu lassen, benutzte ich eine starke Vergrösserung; Zeiss Comp.-Ocular 12 und Reichert Objektiv 6a†. Ein stärkeres Objektiv konnte bei der Dicke des Präparats nicht angewandt werden.

Die Gestalt der Kerne ist oftmals sehr unregelmässig gelappt (Abb. 26, 35 und 40 links); solche Kerne habe ich nicht berücksichtigt, sondern nur diejenigen von regelmässiger, ovaler Gestalt (Abb. 29, 40 rechts, 42, 43) gemessen.

Diese Methode hat hauptsächlich zwei Mängel. Erstens bleibt die dritte Dimension der Kerne unberücksichtigt, da uns als Maßstab für die Kerngrösse das Produkt aus Länge und Breite dient. Es ist freilich wahrscheinlich, dass Kerne, die in der Flächenansicht eine regelmässige, ovale Gestalt zeigen, auch einen regelmässigen Querschnitt haben. Aber der dritte ungemessene Durchmesser wird bald grösser, bald kleiner gewesen sein als die gemessene Breite. Da die Grösse der dritten Achse unbekannt bleibt, ist von vornherein eine Berechnung der Kernoberfläche ausgeschlossen, die allein nach Boveris Untersuchungen bei Seeigellarven (Zell-Studien Heft 5, Jena 1905, S, 43) als zuverlässiger Maßstab für die Zellgrösse dienen kann; denn die Kernoberfläche. nicht das Kernvolumen, ist der Zellgrösse proportional. Trotzdem wird man mit Hilfe des Produktes aus Länge und Breite, als Maßstab für die Kerngrösse, und damit für die Zellengrösse, imstande sein, wenigstens zu entscheiden, ob sich die schwarzen und hellen Axolotl in dieser Hinsicht überhaupt unterscheiden. Eine genaue Berechnung des Verhältnisses zwischen der Zellgrösse der beiden Rassen ist natürlich so nicht möglich.

Der zweite Fehler dieser Methode beruht darauf, dass immer nur eine verhältnismässig geringe Anzahl von Kernen gemessen wurde, weil alle unregelmässig geformten unberücksichtigt blieben. Nun kann man sich aber kaum denken, dass bei den Schwarzen gerade die grösseren Kerne häufiger eine regelmässige Gestalt haben und die kleineren eine unregelmässige, und dass es sich bei den Schecken umgekehrt verhielte. Darum ist es wahrscheinlich, dass dieser Fehler beim Vergleich der Rassen mindestens nur von geringer Bedeutung ist.

Messungen dieser Art habe ich an vier schwarzen und zwölf Schecklarven vorgenommen; weisse Larven standen mir damals nicht zur Verfügung.

In der folgenden Tabelle (Nr. II) habe ich in der II. Vertikalreihe zunächst die Längenmaße der benutzten Larven angegeben. Aus denselben ist zu ersehen, dass die Tiere nicht genau gleich gross sind. Doch sind die Grössenverschiedenheiten sehr gering — der grösste Unterschied beträgt 0,6 mm — und zweitens ist die Durchschnittsgrösse der Schwarzen und Schecken fast genau die gleiche (13,38 und 13,27 mm).

Tabelle II. Schwarze Larven.

I.	II.	III.	IV.	V.	VI.
Nr.	mm lg.	kleinstes	Produkt grösstes	mittleres	Zahl der gemessener Kerne
11	13.2	32,0	110,0	66,2	42
12	13,3	40.0	110,0	72.6	53
13	13,4	35,0	120,0	72.6	35
14	13.6	40,5	180,0	64.5	60

Durchschnitt: 13,38 Durchschnitt: 68,6

= 317.25 "2

Schecken-Larven.

I.	II.	III.	IV.	V.	VI. Zahl der
Nr.	mm lg.	kleinstes	Produkt grösstes	mittleres	gemessener Kerne
15	13,0	44.0	75,0	60,6	16
16	13,1	35,0	77,0	56,7	14
17	13,2	32,0	99.0	63,9	19
18	13,2	34,0	68,0	55,4	14
19	13,2	24,0	78.0	51.7	8
20	13,3	40,0	60,0	50,6	11
21	13,3	36,0	80.0	48.5	14
22	13,3	30,0	80.0	54.6	12
23	13,3	32,0	55,0	45.0	20
24	13,3	28.0	91,0	50.8	24
25	13,4	35,0	77,0	53.5	20
26	13,6	36,0	71,5	50.9	11

Durch-

Durchschnitt: 53,6

schnitt: 13,27

= 247,88 µ3

Die Zahl der bei jedem Tier gemessenen Kerne habe ich in der letzten Spalte (VI) mitgeteilt, weil je nach der Grösse dieser Zahl den Durchschnittsmaßen ein verschiedener Wert zukommt. Natürlich fanden sich bei den Schwarzen mehr Kerne von regelmässiger, messbarer Gestalt, entsprechend ihrem grösseren Reichtum an Pigmentzellen überhaupt. Darum habe ich die Kerne bei einer grösseren Anzahl von Schecken gemessen, damit die

Gesamtzahl der bei jeder Rasse gemessenen Kerne annähernd übereinstimmte, um so einen Vergleich der Durchschnittswerte zu ermöglichen. Ich habe von jeder Larve das kleinste, grösste und das durchschnittliche Produkt mitgeteilt, und zwar stellen die Zahlen das direkte Produkt der in Einheiten des Ocularmikrometers (bei der oben mitgeteilten Vergrösserung) ausgedrückten Länge und Breite dar. Nur die Durchschnittswerte habe ich in μ umgerechnet. Bei Benutzung von Zeiss Comp.-Ocular 12, Reichert Obj. 6 a $\dot{\tau}$, Tubus bis 160 ausgezogen, entspricht ein Teilstrich des Ocularmikrometers 2,1505 μ . Also erhält man die Werte in μ durch Multiplikation der Produkte mit 2,1505 2 .

Betrachten wir die schwarzen Larven, so zeigen die Zahlen, dass bei jeder Larve bedeutende Schwankungen auftreten: das grösste gefundene Produkt (180) ist fast sechsmal so gross als das kleinste (32). Die Durchschnittswerte (Kolumne V) sind dagegen nur wenig verschieden.

Bei den Schecken sind die Differenzen zwischen den grössten und kleinsten Werten nicht so gross, wie bei den Schwarzen; das kommt hauptsächlich daher, dass auch ihre grössten Kerne bei den meisten Larven beträchtlich hinter den grössten der Schwarzen zurückbleiben, während ihre kleinsten nicht viel kleiner sind als die der Schwarzen. Dass die Durchschnittswerte bei ihnen in höherem Maße schwanken (zwischen 64 und 45), ist wohl darauf zurückzuführen, dass hier jeder Durchschnittszahl eine geringere Zahl von Messungen zugrunde liegt.

Aus den Messungen geht hervor, dass die Kerne der Schwarzen im Durchschnitt (68,8 = 317,25 μ^2) grösser sind, als die der Schecken (53,6 = 247,88 μ^2). Diese Verschiedenheit beruht wesentlich darauf, dass die Kerne der Schecken niemals solche Grösse erreichen wie die der Schwarzen in vielen Fällen, während sehr kleine Kerne bei beiden Tieren vorhanden sind.

Es ist aber wichtig, dass die beiden Rassen nicht durch eine unüberbrückte Kluft getrennt sind. Sondern so wie der grösste bei Schecken gefundene Durchschnittswert (63,9) an den kleinsten bei den Schwarzen beobachteten (64,5) heranreicht, so steht auch der grösste bei den Schecken überhaupt gefundene Kern (99) nur wenig hinter den grössten Werten der schwarzen Larven Nr. 11—13 (110, 120) zurück. Das bei Nr. 14 erhaltene grösste Produkt (180) ist vielleicht auch bei den Schwarzen als

eine seltene Ausnahme zu betrachten, da das nächstgrössere Produkt derselben Larve nur 110 beträgt. Doch weise ich hier besonders darauf hin, dass es keinen grossen Unterschied ausmacht, wenn man das grösste Produkt als Ausnahme bei der Berechnung unberücksichtigt lässt; der Durchschnittswert für diese Larve (Ex. 14) ist dann 62,5 und für alle schwarzen Larven 68,0 statt 64,5 und 68,6.

Diese Ergebnisse bestärkten mich natürlich in dem Glauben, dass die Pigmentzellen bei den Schwarzen durchschnittlich grösser sind als bei den Schecken.

Ebenso hat sich Herr Prof. Haecker in einer vorläufigen Mitteilung dieser Befunde (1912, Z. f. ind. Abst. u. Vererb., Bd. s. Die dort mitgeteilten Maße für die Kernlänge bei den Pigmentzellen von schwarzen und hellen Larven entstammen den obigen Messungen.) für die Annahme eines Pigmentzellgrössenunterschiedes zwischen den beiden Axolothrassen ausgesprochen.

Immerhin schien mir diese Tatsache noch nicht genügend bewiesen zu sein, darum habe ich weitere Messungen auf eine zuverlässigere Art angestellt.

Während ich es für unmöglich halte, es zu vermeiden, dass nur ein Teil der Kerne gemessen wird — denn ich kann mir nicht vorstellen, wie man das Volumen von gänzlich unregelmässig gelappten Kernen messen könnte — habe ich bei späteren Messungen auch die dritte Ausdehnung der Kerne berücksichtigt, um zuverlässigere Resultate zu erhalten.

Zu diesem Zweck habe ich mit einem guten Junckschen Mikrotom Schnittserien von $5~\mu$ durch den Kopf der Larven hergestellt. Die Dicke eines jeden Kerns berechnete ich aus der Zahl der Schnitte, auf die er verteilt war. Am genauesten konnte das bei solchen Kernen geschehen, die sich gerade durch einige Schnitte ganz hindurch erstreckten, wo also sowohl die vordere wie die hintere Endfläche des Kerns mit einer Schnittebene zusammenfiel. In diesem Fall ergab sich die Dicke einfach als das Produkt der Dicke und Zahl der Schnitte. Ich musste aber in bestimmten Fällen auch solche Kerne benutzen, bei denen diese Forderung nur zur Hälfte erfüllt war, wo nämlich nur die vordere oder die hintere Endfläche in eine Schnittebene fiel. Die Dicke des Kernrestes am entgegengesetzten Ende musste dann geschätzt werden. Um bei der Schatzung einen Anhalt zu haben, habe ich den betreffenden Schnitt langsam mit Hilfe der

Mikrometerschraube durchmessen. Diese Schätzungen gelingen nach einiger Übung mit grosser Sicherheit. Füllte der Kern z. B. drei Schnitte vollständig aus und reichte er noch mit einem Teil in einen vierten hinein, so bestand die Möglichkeit, dass er 16, 17, 18 oder 19 μ dick war, und es war dann bei einiger Übung sehr gut möglich, Fehler von beträchtlicher, d. h. über 1 μ hinausgehender, Grösse zu vermeiden.

Die Länge und Breite des Kerns habe ich auf eine, wie ich glaube, zuverlässigere Weise als mit dem Okularmikrometer. das ich zu den früheren Messungen benutzte, festgestellt, indem ich nach dem Vorgang von Boveri (Zell-Studien Heft 5, 1905) den Umriss der Kerne bei starker Vergrösserung mit der Kamera zeichnete und die Längen- und Breitenmaße der Zeichnung entnahm. Ich verwandte Reichert Ölimmersion 1/12 und Zeiss Comp.-Ocular 12, Tubus auf 160 ausgezogen. Diese Linsen bewirken mit der Reichertkamera zusammen eine 2175 fache Vergrösserung, so dass 1 mm in der Zeichnung = 0.46μ ist. Mit diesem Faktor 0,46 habe ich die in der Zeichnung gefundenen Maße multipliziert, um die Länge und Breite in μ zu finden. Auch hier habe ich nur solche Kerne benutzt, die einen Durchschnitt von regelmässiger Form hatten, und die derart vom Messer getroffen waren, dass die Schnittrichtung parallel zu einer der Achsen verlief; das muss dann der Fall sein, wenn die einzelnen Schnitte des Kerns gleiche oder ähnliche Gestalt haben (Abb. 47). Das Volumen der Kerne lässt sich dann annähernd berechnen nach der Formel für ein Ellipsoid mit drei verschiedenen Achsen: $v = 4 \ 3 \ \pi \ a \ b \ c$, wobei a, b, c die Achsen sind. Ich habe der Einfachheit halber, weil es nur auf den Vergleich ankommt, den konstanten Faktor 4/3 a unberücksichtigt gelassen und ausserdem das Produkt der drei Durchmesser (2a.2b.2c) berechnet, nicht der Achsen. Ich wies schon darauf hin, dass die Zellengrösse eine Funktion der Kernoberfläche. nicht des Kernvolumens ist. Trotzdem habe ich das letztere als Maßstab benutzt. weil die Berechnung der Oberfläche eines dreiachsigen Ellipsoids ungeheuer verwickelt, mit Hilfe der höheren Mathematik, geschieht. Bei der Besprechung der Resultate werde ich hieran erinnern.

Auch diese Methode ist keineswegs unbedingt zuverlässig. Aber soweit Fehlerquellen da sind, sind sie für beide Rassen in gleichem Maße vorhanden, so dass sie einen etwa konstant wieder-

Archiv f. mikr. Anat. Bd. 82. Abt I.

kehrenden Unterschied zwischen schwarzen und hellen Axolotln nicht erklären würden.

Ich teile in Tabelle III Angaben über Abstammung und Grösse der so untersuchten Larven (Nr. 27—35, 9 und 10) mit und in Tabelle IV—VI die Originalzahlen für die Produkte aus den Durchmessern der Kerne. Es folgt in Tabelle VII eine Zusammenstellung der bei jeder Larve gefundenen grössten und durchschnittlichen Werte. Tabelle VIII enthält eine Zusammenstellung der Durchschnittswerte durch die Zahlen aller gemessenen Kerne jeder Pigmentzellklasse bei beiden Rassen.

Die Abstammung habe ich in Tabelle III in derselben Weise wie in Tabelle I (S. 180 unten) durch Buchstaben angegeben, und zwar bedeuten in beiden Tabellen wiederkehrende Buchstaben an beiden Stellen dasselbe Elternpaar.

Über die Herkunft der schwarzen Larven ist nichts zu bemerken. Unter den Schecken ist ein Tier (Ex. 33), das dem mehrfach erwähnten Laich (S. 160) von einem schwarzen und einem weissen Elterntier entstammt. Die anderen Larven (Ex. 31, 32 und 33) sind die Nachkommen zweier rein weisser Tiere, von denen eins von einem Schecken abstammt. Es mag mit dem letzteren Umstand zusammenhängen, dass sie in ihrer Zeichnung vollkommen typischen Schecklarven glichen, weshalb ich sie ohne Rücksicht auf die Abstammung in den Tabellen als Schecken aufgeführt habe. Die weisse Larve 35 ist gleicher Herkunft wie die zur Zählung verwandte Nr. 8; sie besitzt also ebenfalls in ihrer Aszendenz einen Schecken (vgl. die oben S. 182 gemachte Bemerkung), hatte aber im wesentlichen die Zeichnung rein weisser Larven. Die beiden anderen weissen Larven 9 und 10 sind identisch mit den unter gleicher Nummer im 4. Kapitel angeführten: sie entstammen einer Tübinger rein weissen Zucht.

Die meisten Tiere waren 10,2 mm lang; nur einige grösser: zwei Schecken (Ex. 33 und 34) 11 mm und zwei weisse (9 und 10) 11,2 mm lang.

Tabelle III.

	Schwa	rze	ĺ.	Schee	ken		Weis	sse
Nr.	Abst.	mm lg.	Nr.	Abst.	mm lg.	Nr.	Abst.	mm lg
27	В	10,2	31	E	10.2	35	C	10,2
28	В	10,2	32	E	10.2	9	T	11.2
29	D	10.2	33	A	11.0	10	T	11.2
30	A	10,2	34	E	11.0			

Tabelle IV. Kerngrösse bei Schwarzen.

1. Xanthophoren.

2540	8	27. Sa.b.c	8	28. a . b . c	8	29. a . b . c	. 8	30. (a. b. c	8	30.
10 2290 10 2110 10 1570 10 1880 2540 2400 1580 1940 1940 2570 2400 1590 1980 2000 2680 3480 1680 2000 2000 2760 4380 1830 2020 15 2790 15 6400 15 1850 15 2110 2840 2190 2190 2290 2440 290 2440 3230 2240 2480 2480 2480 20 3270 20 2280 20 2620 2440 2650 2570 2680	5	1780 1840 1890 1980 2030 2130 2200	5	1640 1790 1860 1860 1870 1930 1940	5	860 980 1000 1150 1290 1370 1440	5	1280 1370 1480 1580 1740 1840 1860	30	3370 3520 3750 3900 6160
15 2790 15 6400 15 1850 15 2110 2840 2180 2180 2160 3030 2190 2290 3220 2220 2440 3230 2240 2480 20 3270 20 2280 20 2620 5080 2440 2650 2570 2680	10	2290 2540 2570 2680	10	2110 2400 2400 3480	10	1570 1580 1590 1680	10	1880 1940 1980 2000		
20 3270 5080 20 2280 20 2620 2440 2650 2570 2680	15	2840 3030 3220	15		15	1850 2180 2190 2220	15	2110 2160 2290 2440		
2830 3310	20				20	2280 2440	20	2620 2650 2680 2830		

2. Melanophoren.

81	27. a . b . c	8:	28. a.b.c	8:	29. a . b . c	. 82	30. a . b . c
5	1290 1360 1450 1520 1710 1720 1730 1900 1960	5	820 890 1200 1200 1300 1310 1380 1380	õ	690 910 910 980 1090 1180 1230 1240	5	660 860 880 900 940 1000 1110 1170 1210

8:	27. a.b.c	8:	27. a . b . c	8 8	28. a.b.c	80	29. . b . c	8 8	30. a.b.c
10	2020 2030 2100 2280 2360 2440 2450 2530 2610 2630	25 30	2790 2900 3150 3220 3450 3470 3620 5050 5600	15	1480 1630 1920 1940 2130 2310 2340 2550 2560 2570	15	1240 1270 1300 1380 1400 1470 1580 1730 1940 2120	15	1240 1240 1290 1310 1330 1360 1370 1420 1440
20	2660 2670 2700 2730 2740			20	2600 2770 3110 3350	20	2560 3310	20	1640 1700 2030 2140 2280 2430 2620

Tabelle V. Kerngrösse bei Schecken.

1. Xanthophoren.

			0.1		20		33.
	31. i.h.e	8:	31. a.b.e		32.		. b . с
	770		1350		810		700
	850		1360		860		1010
	880		1370		890	4	1040
	910		1390		(3(3()		1190
5	990	25	1410	5	900	5	1220
	990		1420		950		1320
	990		1460		1090		1330
	1010		1480	Li.	1100		1380
	1050		1490		1110		1400
10	1050	30	1550	10	1130	10	1440
	1060		1580		1130		1450
	1070		1640		1140		1490
	1100		1640	1	1140		1560
	1140		1670		1290		1560
15	1190	35	1700	15	1330	15	1630
	1200		1740		1390		1680
	1200		2060		1410		1720
	1220		2530		1510		2420
	1270		2720		1540	1	2640
20	1300			20	1980	20	2650
							2800

2. Melanophoren.

	31. . b . c	1	31. . b . c		32. . b . c		32. . b . c		33. . b . c	88	34. i . b . c
	550		990		590		1070		840	-	440
	590		1000		610		1080		870		496
	710		1000		750		1170		950		610
	740		1050		820		1170		1000		616
å	740	20	1100	à	830	20	1210	ā	1010	å	690
	790		1110		900		1220		1030		690
	790		1120		910		1240		1160		700
	810		1130		910		1260		1230		710
	850		1130		930		1270		1260		SUR
10	890	25	1140	10	940	25	1280	10	1270	10	860
	920		1170		1020		1390		1280		870
	930		1270		1030		1550		1320		870
	960		1410		1030		1720		1490		59650
	970		1430		1060				1600		1010
5	980	30	1560	15	1060			15	1660	15	1040
									1930		1060
									2060		1090
											1100
											1146
										20	1150
											1260
											1490

Tabelle VI. Kerngrösse bei Weissen.

1. Xanthophoren.

	35.	1	9.		10.	
8	a . b . c	8	a . b . c	8a.b.c		
	780	ff .	1610	ľ	990	
	880		1670		1120	
	920		1840	Ž1	1180	
	1040		1930		1280	
ā	1070	ă	2020	5	1470	
	1090		2030	11	1620	
	1100		2220	1	1700	
	1200		2320		1730	
	1220		2330	1	1770	
0	1240	10	2430	10	1780	
	1280		2450	1	1780	
	1280		2590		2050	
	1350		2660		2280	
	1360		2840	1	2340	

35 8a.b.c		8	9. 8a.b.c		10. a . b . c
15	1570	15	2940	15	2540
	1620		3250	[2680
	1800		3940		2710
	1800		5190		2920
	1890		5210	,	3030
20	2190	20	5460	. 20	3310
	2210	1			
	2350				

2. Melanophoren.

	9.		10.		10.
8	a , b . c	1	8a.b.c	8	a , b , c
	1200		720		1280
	1290		910		1320
	1740	4	1050		1370
	1800	j	1060		1380
ō	1900	i	1080	15	1450
	2500	-	1160		1600
	2530	1	1160		1720
	2590	1	1180		1790
	2700	1	1190		1960
()	3260	10	1260	20	2070

Tabelle VII.

			100011				
1.	П.	III.	IV.	V.	VI.	VII.	
	Zahl		Pro	dukt	Durchschnittswerte		
Nr.	der ger	nessenen	der gröss	ten Kerne	von (8 a . b . c)		
	M	X	M	X	M	X	
			Schwa	rze.			
27	33	21	5600	5080	2570	2570	
28	23	15	3350	6400	1920	2490	
29	21	22	3310	2570	1470	1570	
30	26	30	2620	6160	1430	2430	
			Schec	ken.			
31	30	39	1560	2720	990	1350	
32	28	20	1720	1980	1070	1180	
33	17	21	2060	2800	1290	1600	
334	22		1490	- !	890	-	
			Weis	se.			
35 5		22	-	2350	-	1420	
19	10	20	3260	5460	2150	2850	
10	21	20	2150	3310	1370	2010	

Tabelle VIII.

		I								11.	III.	IV.	V.
									Zahl der gemessenen		Durchschnittswert von (8a.b.c)		
										М	X	М	X
Schwarze									ı	103	88	1910	2260
Schecken .									1	97	80	1050	1380
Weisse .									1	31	62	1630	2070
Helle (Sche	cker	1 1	ind	1	Ve	is	se)		1	128	142	1190	1680

Wie aus Tabelle IV—VI hervorgeht, schwankt die Kerngrösse bei allen Larven in hohem Maße. Der grösste Kern einer Larve ist stets mehr als doppelt so gross als der kleinste, in vielen Fällen, besonders bei Schwarzen, beträgt sein Volumen das Vielfache, in einem Fall (Tab. IV, 1, Ex. 30: 610 und 6160) das Zehnfache von dem des kleinsten Kerns. Es ist höchst merkwürdig, dass so beträchtliche Verschiedenheiten bei einer Larve vorkommen: es ist aber nicht an ihrem Dasein zu zweifeln, da sie viel zu gross sind, als dass sie durch Ungenauigkeiten der Methode vorgetäuscht werden könnten. Möglich ist nur, dass sie durch Fehler der Messung noch grösser erscheinen, als sie in Wirklichkeit schon sind. Im allgemeinen sind die Kerne von mittlerer Grösse am häufigsten.

Vergleicht man die Tiere untereinander, so sind bei Schwarzen. Schecken und Weissen und bei Melanophoren wie Xanthophoren grosse Unterschiede da. Obwohl die schwarzen Larven 27-30 gleich gross sind, schwanken bei Melanophoren die grössten Werte zwischen 5600 bei Nr. 27 und 2620 bei Nr. 30, und die mittleren Werte zwischen 2570 und 1430 (Tab. VII. Kolumne VI). Ebenso verhält es sich mit beiden Zellarten bei allen Tieren. Bei der verhältnismässig nicht sehr grossen Zahl von Messungen, die bei den einzelnen Tieren vorgenommen werden konnten, ist es natürlich nicht ausgeschlossen, dass die wirklichen Maximalzahlen sehr stark von den gefundenen abweichen. Es ist z. B. sehr gut möglich, dass auch bei der Larve 29 wie bei den anderen Schwarzen, in dem durchmessenen Kopfabschnitt Kerne vorkamen, deren Produkt aus den Durchmessern noch grösser war als 2570 µ3. diese aber zufällig unregelmässige Gestalt hatten, oder beim Schneiden ungünstig getroffen worden waren. Umgekehrt ist sehr wahrscheinlich, dass den Larven 27 und 28 in Wirklichkeit sehr kleine Kerne (von der Grösse 600 bis 1300), wie sie bei Ex. 29 und 30 gefunden wurden, nicht gefehlt haben, sondern dass sie aus dem gleichen Grunde ungemessen blieben.

Darum darf man nur mit grosser Vorsicht aus diesen Zahlen Schlüsse ziehen. Lassen sie nun einen Unterschied zwischen schwarzen und hellen Larven erkennen?

Da es bei den hellen Larven zum Teil (Ex. 31, 32, 34, 35) unsicher ist, ob sie Weisse oder Schecken sind, wollen wir die rezessiven Tiere insgesamt den Dominierenden gegenüberstellen.

Da scheint nun zunächst festzustehen, dass die grössten Kerne und damit auch wohl die grössten Pigmentzellen der Hellen zum Teil dieselbe Grösse erlangen wie die der Schwarzen. Wenigstens ist der Unterschied zwischen den grössten Kernen, welche überhaupt, einerseits bei hellen, andererseits bei schwarzen, gefunden wurden (Tab. VII, Kolumne V: Ex. $9=5460~\mu^3$ und Ex. $28=6400~\mu^3$) verhältnismässig sehr gering; so dass man ihm keine Bedeutung beilegen kann, besonders wenn man beachtet, dass der nächstgrössere Kern von Ex. 28 (Tab. IV, $1, 28=4380~\mu^3$) kleiner ist als der zweitgrösste von Ex. 9 (Tab. VI, $1, 9=5210~\mu^3$).

Nun ist allerdings darauf aufmerksam zu machen, dass nur bei den Tübinger weissen Larven Kerne gefunden wurden, die in der Grösse an die grössten von schwarzen Larven heranreichen, und man könnte vielleicht die Frage erheben, ob etwa die verschiedenen Zuchtbedingungen eine Rolle spielen. Indessen scheint mir kein ernstlicher Grund vorzuliegen, der für diese Annahme spricht.

Man könnte vielleicht auch vermuten, dass die Grösse der Larven eine Rolle spielt, weil die Tübinger Larven (11.2 mm) erheblich grösser sind als die Schwarzen (10,2 mm). Doch können die Grössenunterschiede der Larven in bezug auf die Kerngrösse keine so grosse Rolle spielen; denn dann hätten auch bei den Schecken (Ex. 33 und 34) grössere Kerne gefunden werden müssen, da diese ja fast ebenso gross (11 mm) sind wie die Tübinger Larven. So möchte ich es denn für wahrscheinlich halten, dass bei sämtlichen hellen Larven Kerne vorhanden sind, welche in ihrer Dimension die Dimension der grössten Kerne der schwarzen Larven erreichen, dass sie mir aber wegen der verhältnismässig geringen Zahl von Messungen entgangen sind. Nun fragt es sich

nur noch, ob nicht bei gleicher Variationsbreite die Kerne der Schwarzen im Durchschnitt grösser sind.

Hierüber können uns am sichersten die Durchschnittszahlen Aufschluss geben, denen alle Messungen bei einer Zellart von sämtlichen Tieren einer Rasse zugrunde liegen (Tab. VIII). Es zeigt sich, dass das Kernvolumen von Melanophoren und Kanthophoren bei hellen Larven (Schecken und Weissen) im Durchschnitt (1190 μ^3 und 1680 μ^3) ungefähr $^2/_3$ bezw. $^3/_4$ so gross ist wie bei den Schwarzen (1910 μ^3 und 2260 μ^3). Es ist klar, dass bei solch grossem Unterschied auch die Oberflächen der Kerne und damit die Zellen selbst verschieden gross sein müssen, da ja die Kerne bei beiden Rassen die gleiche, regelmässige Gestalt hatten. So scheinen auch diese Messungen unsere frühere Annahme zu bestätigen, dass die Pigmentzellen der Schwarzen im Durchschnitt grösser sind als bei den Hellen.

Damit kann man aber die Durchschnittswerte, die bei den Weissen allein genommen (1630 μ^3 und 2070 μ^3) gefunden wurden, schlecht in Einklang bringen. Sie stehen so wenig hinter denen der Schwarzen zurück, dass man darauf schwerlich die Annahme eines Rassenunterschiedes gründen könnte.

Trotzdem halte ich diese Annahme für wahrscheinlich, da ja auch die mitgeteilten Beobachtungen über die Grösse der Zellen selber (S. 185) und die Messungen am überlebenden Schwanz für sie sprechen.

Das abweichende Verhalten der weissen Larven wäre dann so zu erklären, dass bei ihnen zufällig verhältnismässig viel grosse Kerne gemessen wurden, die in Anbetracht der geringen Zahl der verwerteten Messungen (31 bezw. 62) den Durchschnittswert unnatürlich gross erscheinen lassen. Durchschnittswerte durch eine grössere, genügende Anzahl von Messungen bei Weissen würden wahrscheinlich nicht grösser sein als die bei den Schecken. Natürlich könnte man auch hier die oben (S. 198) angeführte Hypothese zur Erklärung heranziehen, dass bei den Tübinger Axolotln allgemein die Zellen grösser sind als bei denen der hiesigen Zucht. Wie ich schon sagte, halte ich sie jedoch für unwahrscheinlich. Es sei hier daran erinnert (vgl. S. 186), dass der Schluss von verschiedener Kerngrösse auf verschiedene Zellgrösse nur dann berechtigt ist, wenn das Verhältnis von Kern zu Plasma bei beiden Rassen dasselbe ist. Wenn das nicht der

Fall wäre, könnten allerdings trotz der Verschiedenheit der Kerngrösse die Pigmentzellen bei beiden Rassen gleich gross sein. Diese Möglichkeit darf aber ausser acht gelassen werden, solange kein Fall bekannt ist, wo der Quotient $\frac{\mathrm{Kern}}{\mathrm{Plasma}}$ bei nahe verwandten Rassen verschieden gross ist.

Ich habe in diesem Kapitel immer von Pigmentzellen im allgemeinen gesprochen. Das konnte deshalb geschehen, weil das Verhältnis zwischen Melanophoren und Xanthophoren bei Schwarzen und Hellen das gleiche ist. Bei beiden Rassen sind die Xanthophoren etwas grösser als die Melanophoren (vgl. Tab. VII und VIII).

Das Ergebnis der Grössenmessungen lässt sich in folgende Sätze zusammenfassen:

- Es ist sehr wahrscheinlich, dass die Pigmentzellen bei den hellen Axolotln zum Teil ebenso gross werden, wie die grössten der schwarzen.
- 2. Es geht aber aus der Gesamtzahl der Messungen mit Wahrscheinlichkeit hervor, dass die Pigmentzellen im Durchschnitt bei den schwarzen Axolotln grösser sind als bei den hellen.

Mit völliger Sicherheit wird man die vorliegende Frage nur auf Grund sehr viel umfangreicherer Messungen beantworten können.

Schluss.

Die wichtigsten Ergebnisse meiner Untersuchungen sind folgende:

- Die Pigmentzellen sind bei den schwarzen und hellen Axolotllarven verschieden über den Körper verteilt, so dass, auch abgesehen von der Pigmentmenge, eine verschiedenartige Zeichnung bewirkt wird.
- 2. Es kommen bei jeder Rasse Pigmentzellentypen vor, die der anderen fehlen.
- Es ist kein Grund zu der Annahme vorhanden, dass die Fähigkeit der Pigmentzellen, Pigment abzuscheiden, bei beiden Rassen verschieden ausgebildet ist.
- 4. Die Zahl der Pigmentzellen ist bei schwarzen Larven grösser als bei hellen, und zwar betrifft dieser Unterschied die einzelnen Pigmentzellarten in verschiedenem Grade.

 Es ist wahrscheinlich, dass die Pigmentzellen der schwarzen Larven durchschnittlich grösser sind als die der hellen.

Die wichtigste Frage ist nun die, ob für die vorhandenen Unterschiede verschiedene Ursachen angenommen werden müssen, oder ob sie einheitlich erklärt werden können.

Ebenso wie es mir unmöglich scheint (Kapitel 3), für die verschiedenen Pigmentzellformen verschiedene Faktoren anzunehmen, halte ich es auch für ausgeschlossen, dass etwa die Verteilung der Pigmentzellen, ihre Zahl und Grösse jeweils von selbständigen Anlagen abhängig sind. Die einzig mögliche Erklärung scheint mir die schon im Schluss des 3. Kapitels angedeutete zu sein, dass der partielle Albinismus der Axolotl auf einer Entwicklungshemmung beruht, welche die Wachstums- und Teilungsgeschwindigkeit der Pigmentzellen verlangsamt, so dass die durchschnittliche Grösse und die Zahl der Zellen geringer bleibt als bei den Schwarzen. Dass dann zwischen den beiden Rassen auch Verschiedenheiten betreffs der Pigmentzellenform auftreten müssen, habe ich oben (S. 170) eingehend besprochen.

Es muss noch der Unterschied in der Zeichnung erklärt werden. Von der obigen Ansicht ausgehend möchte ich vermuten, dass die Stellen, die bei den hellen Larven stark pigmentiert sind, also hauptsächlich der Mittelfleck und die distinkten Flecke, die eigentlichen Herde oder Ausgangszentren für die Pigmentzellbildung darstellen. Bei den schwarzen Tieren bilden nun die Pigmentzellen infolge ihrer grossen Wachstums- und Teilungsgeschwindigkeit in dem untersuchten Stadium schon eine im ganzen Tier fast lückenlose Schicht unter der Coriumanlage, so dass die ursprünglichen Herde der Pigmentzellbildung nicht mehr deutlich hervortreten; dagegen sind sie bei den hellen Larven noch kenntlich, da die Pigmentzellen sich hier ja langsamer vermehren und darum nur die nähere Umgebung der ersten Bildungsstätten erfüllen.

Um zu entscheiden, ob die Entwicklungshemmung nur das Wachstum und die Teilungsgeschwindigkeit der Pigmentzellen betrifft, oder ob sie sich in allgemeinerer Weise äussert, sind besondere Untersuchungen nötig. Da die Fähigkeit, Pigmentkörner zu bilden, den Pigmentzellen beider Rassen in gleichem Maße eigen zu sein scheint, muss man vorläufig annehmen, dass die Entwicklungshemmung jedenfalls nicht ganz allgemeiner Natur

ist, sondern nur bestimmte Lebensäusserungen des Plasmas, und zwar in erster Linie die Teilungs- und Wachstumsenergie speziell der Pigmentzellen, betrifft.

Es würde sich also beim Unterschied zwischen hellen und dunklen Axolotllarven wesentlich um eine Verschiedenheit entwicklungsmechanischer Natur handeln, die nur insofern als eine chemisch-physiologische angesehen werden kann, als ja in letzter Linie auch der spezifische Teilungsrhythmus im Chemismus des Artplasmas begründet ist.

Literaturverzeichnis.

Bateson: Mendel's Principles of Heredity. Cambridge, Univ. Press., 1909. Baur, E.: Einführung in die experimentelle Vererbungslehre. Berlin 1911.

Boveri, Th.: Über die Abhängigkeit der Kerngrösse und der Zellenzahl der Seeigel-Larven von der Chromosomenzahl der Ausgangszellen. Zellenstudien, H. 5. Jena 1905.

Carrière, J.: Die postembryonale Entwicklung der Epidermis des Siredon pisciformis. Arch. f. mikr. Anat., Bd. 24.

Ehrmann: Das melanotische Pigment usw. Bibliotheca medica D II, H. 6, 1896

Ecker-Gaupp: Die Anatomie des Frosches. 2. Auflage. Braunschweig 1896-1904.

Éternod und Robert: Les chromatocytes. Anatomie, Physiologie. Verh. Anat. Ges. 22. Vers., 1908.

Flemming, W.: Über die Teilung von Pigmentzellen und Capillarwandzellen. Arch. f. mikr. Anat., 35. Bd., S. 275.

Golovine, E.: Etudes sur les cellules pigmentaires des Vertébrés. Ann. Inst. Pasteur, 21. Annee 1907, T. 21.

Haecker: a) Über Mendelsche Vererbung bei Axolotln. Zool. Anz., 31, 1907.
Derselbe: b) Über Axolotlkreuzungen. II. Mitteilung. Verh. Deutsch. Zool. Ges., 1908.

Derselbe: c) Allgemeine Vererbungslehre. 2. Auf lage. Braunschweig 1912. Derselbe: d) Untersuchungen über Elementareigenschaften. Verh. Deutsch. Zool. Ges., 1912.

Derselbe: e) Untersuchungen über Elementareigenschaften I. Zeitschr. f. Ind. Abst. u. Vererb., 1912, Bd. VIII, H. 3.

Hertwig, R.: Über Korrelation von Zell- und Kerngrösse und ihre Bedeutung für die geschlechtliche Differenzierung und die Teilung der Zelle. Biol. Zentralbl., 23, 1903.

Derselbe: Über neue Probleme der Zellenlehre. Arch. f. Zellforsch., Bd. I, 1908. Meirowsky, E.: Über den Ursprung des melanotischen Pigments der Haut und des Auges. Leipzig 1908.

- Ogneff, J. F.: Über die Veränderungen in den Chromatophoren bei Axolotin und Goldfischen bei dauernder Lichtentbehrung und Hungern. Anat. Anz., Bd. 32.
- Paulicki: Über die Haut des Axolotls, Arch. f. mikr. Anat., Bd. 24.
- Plate: Vererbungslehre und Deszendenztheorie. Festschr. z. 60. Geburtst. R. Hertwigs, Bd. II, 1910.
- Schapitz: Die Urgeschlechtszellen von Amblystoma. Arch. f. mikr. Anat., Bd. 79, 1912.
- Schuberg: Untersuchungen über Zellverbindungen. Zeitschr. f. wiss. Zool., 74, 1903.
- Derselbe: Beiträge zur vergleichenden Anatomie und zur Entwicklungsgeschichte der Lederhaut der Amphibien. Zeitschr. f. wiss. Zool., Bd. 90, 1908.

Erklärung der Abbildungen auf Tafel XI-XIII.

Abkürzungen:

co = Coriumanlage. mk = Melaninkörnchen.
ep = Epidermis. pk = mit Dahlia gefärbte
melph = Melanophore. Körnchen,
n = Kern. xanthph = Xanthophore.

- Abb. 1. Frisch ausgeschlüpfte schwarze Larve. Vergrösserung 1:3.
- Abb. 2. Schwarze Larve, 8 Tage nach dem Ausschlüpfen. Vergrösserung 1:12.
- Abb. 3. Frisch ausgeschlüpfte schwarze Larve. Vergrösserung 1:3.
- Abb. 4 und 5. Zwei weisse Larven, 3 Tage nach dem Ausschlüpfen. Vergrösserung 1; 3.
- Abb. 6. Weisse Larve, 5 Tage nach dem Ausschlüpfen. Vergrösserung 1:12.
- Abb. 7. Weisse Larve (Tübinger Zucht), in konserviertem Zustand gezeichnet. Vergrösserung etwa 1:8.
- Abb. 8. Xanthophore einer 12,5 mm langen, hell gehaltenen Schecklarve. Vergrösserung etwa 330.
- Abb. 9 Xanthophore einer 12 mm langen, hell gehaltenen schwarzen Larve. Vergrösserung etwa 330.
- Abb. 10. Querschnitt durch den Kopf einer 11,2 mm langen weissen Larve. Xanthophore unter der Coriumanlage. Zenker (Formol) 2 Stunden, Dahlia. Vergrösserung etwa 770.
- Abb. 11. Querschnitt durch den Kopf einer 10,2 mm langen schwarzen Larve. Zenker (Eisessig) 3 Stunden, Dahlia. Zeigt die Verteilung der Melanophoren und Xanthophoren (gelb dargestellt) unter der Coriumanlage.

- Abb. 12. Schema eines Längsschnittes durch die in Textfig. 5 wiedergegebene Larve. Zeigt die Verteilung der Melanophoren und der mit Dahlia färbbare Körnchen enthaltenden Zellen, die der Lage der distinkten Flecke entspricht.
- Abb. 13. Querschnitt durch den Kopf einer schwarzen 10,2 mm langen Larve. Melanophore unter der Coriumanlage in Mitose. Zenker (Eisessig) 24 Stunden, Delafieldsches Hämatoxylin. Vergrösserung etwa 2175.
- Abb. 14. Querschnitt durch den Kopf einer 9 mm langen schwarzen Larve. Zenker (Eisessig), 24 Stunden, Dahlia. Zeigt eine Xanthophore in Mitose. Da die Larve zu lange fixiert worden ist, sind die Körnchen nicht gefärbt, darum nicht sichtbar. Vergrösserung etwa 1100.
- Abb. 15. Querschnitt durch den Kopf einer schwarzen, 10,2 mm langen Larve. Melanophore aus dem Pigmentmantel des Auges in Mitose. Zenker (Eisessig) 24 Stunden, Delafieldsches Hämatoxylin, Vergrösserung etwa 2175.
- Abb. 16. Flächenschnitt durch die Kopfspitze einer 11,2 mm langen weissen Larve. Xanthophore. Zenker (Formol) 2 Stunden, Dahlia. Vergrösserung etwa 770.
- Abb. 17. Querschnitt durch den Kopf einer 10,2 mm langen schwarzen Larve. Melanophore unter der Coriumanlage. Zenker (Eisessig) 3 Stunden, Dahlia. Vergrösserung etwa 770.
- Abb. 18. Querschnitt durch den dorsalen Schwanzsaum einer schwarzen Larve. Zeigt Melanophore, die nach zwei Seiten unter die Epidermis Ausläufer entsendet. Zenker (Eisessig) 24 Stunden, Böhmers Hämatoxylin und Eosin. Vergrösserung etwa 770.
 - Abb. 19-30. Melanophoren von dunkel gehaltenen schwarzen Larven.

Abb. 19.	Vergrösserung	etwa	248.	
Abb. 20.			264.	
Abb. 21.			264.	
Abb. 22.		**	264.	
Abb. 23.			248.	
Abb. 24.			248.	
Abb. 25.			248.	
Abb. 26.	9	99	248.	
Abb. 27.			248	

Abb. 31-34. Melanophoren von hell gehaltenen schwarzen Larven.

Abb. 31. Vergrösserung etwa 248.

Abb. 32. _ _ 248.

Abb. 35—37, 39-42 und 44-46. Melanophoren von dunkel gehaltenen, Abb. 38 und 43 solche von hell gehaltenen Schecklarven.

Abb. 35.	Vergrösserung	etwa	320.
Abb. 36.			264.
Abb. 37.			248.
Abb. 38.		27	264.
Abb. 39.		**	264.
Abb. 40.			264.
Abb. 41.			264.
Abb. 42.	**	45	248.
Abb. 43.		**	264.
Abb. 44			264.
Abb. 45.	-		264.
Abb. 46.			248.

Abb. 47. Umrisszeichnungen zweier aufeinander folgender Schnitte durch einen Pigmentzellenkern; Vergrösserung 2175.

Über Erythrophoren besonderer Art in der Haut von Knochenfischen.

Von

Prof. Dr. med. et phil. E. Ballowitz,

Direktor des Anatomischen Instituts der Westfälischen Wilhelms-Universität Münster i. W.

Hierzu Tafel XIV.

Die in kleinsten Tröpfchen und Körnchen auftretenden roten Pigmente der Erythrophoren der Knochenfische gehören, ebenso wie die gelben Farbstoffe der Xanthophoren, zu der Gruppe der Fettfarbstoffe oder Lipochrome.1) Wie bekannt, lösen sich diese Farbstoffe leicht in fettlösenden Reagentien und lassen sich durch diese, vor allem durch Alkohol, schnell und vollständig aus den Chromatophoren extrahieren. Präpariert man z. B. von einem Goldfisch ein rotes Hautstückehen ab und bringt es in stärkeren Alkohol, so verschwindet binnen kurzer Zeit die goldrote Farbe und geht in den Alkohol über, so dass das Hautstück die rote Farbe vollständig verliert. Untersucht man dieses Hautstück alsdann mikroskopisch, so ist von den Erythrophoren nichts mehr zu sehen, da ihr Protoplasma nur durch die Farbstoffeinlagerung sichtbar gemacht wurde, und der Zellkörper mit allen seinen Ausläufern ohne Pigment so zart und durchsichtig ist, dass man ihn nach der Entfernung des Pigmentes so ohne weiteres nicht mehr wahrnehmen kann. Aus diesem Grunde sind auch die Erythrophoren und Xanthophoren in mikroskopischen Balsampräparaten nicht zu konservieren, da dem Balsameinschluss die Behandlung mit Alkohol vorausgehen muss. Da die roten Farbstoffmassen sich auch in Glycerin und anderen Einschlussmitteln bald verändern und hierin meist zu grösseren Tröpfchen zusammenfliessen, so dass das Strukturbild der Erythrophoren zerstört wird, ist die Herstellung guter Dauerpräparate von den

¹) Vgl. z. B. C. Fr W. Krukenberg: Vergleichend-physiologische Vorträge. III. Grundzüge einer vergleichenden Physiologie der Farbstoffe und der Farben. Heidelberg 1886. Hoppe-Seylers Handbuch der physiologisch- und pathologisch-chemischen Analyse. Bearbeitet von H. Thierfelder. O. Hammarsten, Lehrbuch der physiologischen Chemie.

gelben und roten Farbstoffzellen nicht recht möglich. Durch diese Vergänglichkeit der Farbstoffe wird das Studium der Ervthrophoren ausserordentlich erschwert und ist nur bei Untersuchung der lebensfrischen Gewebe in physiologischer Kochsalzlösung ausführbar.

Bei meinen Studien über Chromatophoren und Chromatophorenkombinationen 1) zog ich auch eine grosse Zahl verschiedener Zierfischarten in den Kreis meiner Untersuchungen. Hierbei entdeckte ich Erythrophoren besonderer Art, deren rotes und rotbraunes Pigment durch Alkohol nicht extrahiert wird, vielmehr alkoholbeständig ist. Andauerndes Liegen in starkem Alkohol, Behandlung kleiner Hautstücke mit absolutem Alkohol und Xvlol. sogar Monate währender Aufenthalt von Hautstücken in einer Mischung von Schwefeläther und absolutem Alkohol zu gleichen Teilen vermochten nicht, den Farbstoff zu verändern und aufzulösen.

Von diesen Erythrophoren lassen sich daher sehr beguem tadellose Balsampräparate herstellen, wie die Figuren der Taf. XIV zeigen, welche mit Ausnahme der Fig. 18-23 sämtlich nach Balsampräparaten angefertigt worden sind. Der rote Farbstoff muss daher bei diesen Fischen wohl von anderer chemischer Zusammensetzung sein, als die gewöhnlichen roten Lipochrome der Fischhaut; auch ist er an Körnchen gebunden. Ich will hier indessen nicht näher auf weitere chemische Reaktionen dieser alkoholbeständigen roten Pigmente eingehen. Ihre genaue chemische Untersuchung überlasse ich den physiologischen Chemikern, um so mehr, als meiner Ansicht nach das Studium der noch wenig erforschten, so mannigfachen Pigmente der Fischhaut sehr vielversprechend sein dürfte.

Mich als Anatomen interessieren naturgemäss in erster Linie die morphologischen und histologischen Eigenschaften der von mir aufgefundenen Erythrophoren. Da diese mancherlei Abweichungen von den gewöhnlichen Erythrophoren zeigen, will

1) E. Ballowitz: Über chromatische Organe in der Haut von Knochenfischen. Mit 15 mikrophotographischen Abbildungen. Anat. Anz., 42. Bd., Nr. 7,8, 1912. Vgl. auch E. Ballowitz: Zur Kenntnis der Pigmentzellen. Verhandl. d. 84. Vers. deutsch. Naturf. u. Arzte in Münster i. W. 1912.

Derselbe: Die chromatischen Organe in der Haut von Trachinus ripera Cuy. Ein Beitrag zur Kenntnis der Chromatophoren-Vereinigungen bei Knochenfischen. Mit 7 Figuren im Text und Taf, XIV-XVIII. Zeitschr. f. wiss. Zool., Bd. 104, 1913,

ich Form und Bau der neuen Pigmentzellen in der folgenden Abhandlung eingehender schildern.

Zunächst ist hervorzuheben, dass die alkoholbeständigen roten Pigmente in zwei sehr verschiedenen Farbennuancen auftreten, nämlich als karminrote und als braunrote. Die beiden Farbenunterschiede sind in den Figuren der Tafel wiedergegeben. Die Fig. 1, 2, 5, 6 und 24-31 illustrieren die karminroten, die Fig. 3, 4 und 7-23 die braunroten Zellen. Der auffälligste Farbenton ist derjenige, welchen ich als den karminroten bezeichnet habe, da er der Karminfarbe am nächsten steht, wenn auch die eigentliche Karminfarbe ein wenig satter ist und etwas ins Bläuliche spielt. In den Präparaten schwankt die Farbe zwischen einem dunkleren, mit einem Stich ins Bläuliche oder Violette gehenden, dem Weinrot sich nähernden Farbenton (Fig. 25-27) und mehr helleren, leuchtend roten Farbentönen. die der Malerfarbe Hell-Rosalack nahekommen. Das hängt auch etwas von der Art der Behandlung ab. In den in Balsam eingeschlossenen Präparaten erscheinen diese Chromatophoren leuchtend hell karminrot (Fig. 1, 2, 5, 6, 28-31) bis tief weinrot (Fig. 25-27), wenn auch letzteres seltener ist. Diese Farbe weicht sehr ab von dem Rot, Orange und Rotbraun der gewöhnlichen, in Alkohol nicht beständigen Erythrophoren der Fische. Bei den letzteren, z. B. bei den Gobiiden, habe ich höchstens ein leuchtendes Feuerrot angetroffen mit deutlichem Stich in das Gelbliche. Der karminroten Färbung bin ich dagegen bis jetzt nur bei diesen alkoholbeständigen Pigmenten begegnet.

Die andere Farbennuance ist ein davon recht verschiedenes, helleres oder dunkleres Rotbraun, das sich nicht sehr unterscheidet von dem Farbenton, den die gewöhnlichen, nicht alkoholbeständigen Erythrophoren unter dem Mikroskope oft darbieten.

Die karminroten, alkoholbeständigen Pigmentzellen, welche ich zuerst schildern will, konnte ich bei mehreren Gattungen von Zierfischen feststellen und zwar unter den Cyprinodonten bei Fundulus gularis Boulenger und Fundulus Sjöstedti und bei Haplochilus chaperi Sauvage, ferner unter den Cichliden bei Hemichromis bimaculatus Gill. Vereinzelt und in kleinen Gruppen traf ich sie auch bei Pantodon Buchholzi Peters an, bei letzterem Fisch, von welchem ich aber nur ein Alkoholexemplar untersuchen konnte, waren sie bisweilen recht gross.

Besonders schön und zahlreich sind sie bei Fundulus Sjöstedti, bei welchem Knochenfisch ich sie auch zuerst auffand, dann auch bei Fundulus gularis; bei beiden Arten zeichnen sich die Männchen durch schöne dunkelrote Flecken und Streifen aus. Auch die Flossen sind mit solchen Flecken und Binden versehen. Alle diese roten Schmuckfarben der Männchen werden bei den beiden Fundulusarten durch die karminroten Erythrophoren erzeugt. Dabei ist hervorzuheben, dass die roten Zellen bei nahe verwandten Arten vermisst werden; so konnte ich sie bei Fundulus chrysotus und Haplochilus rubrostigma nicht auffinden, obwohl der letztere Teleostier, wie schon sein Name sagt, auch leuchtend rote Flecken aufweist. Diese Flecken werden hier aber durch Chromatophoren mit gewöhnlichem, alkohollöslichem, braunrotem Pigment verursacht.

Die Fig. 1 und 2 der Taf. XIV geben Übersichtsbilder über die Chromatophorenverteilung in den roten Hautstellen von Fundulus Sjöstedti bei schwacher. 80 facher Vergrösserung.

Zwischen den roten Zellen finden sich Melanophoren ausgestreut, welche meist in den Lücken zwischen den Erythrophoren liegen und die letzteren zum Teil überdecken, wenn ihr Melanin ausgeströmt ist. Da in den Melanophoren der Fig. 1 und 2 das Melanin centralwärts zusammengeballt ist, so liegen fast alle Erythrophoren frei vor und bringen ihre prächtig leuchtend rote Farbe zur Geltung. In Fig. 1 sind sie spärlicher und erscheinen durch breitere, hellere Lücken meist voneinander getrennt. Ihr rotes Pigment ist fast in allen zentralwärts zusammengeballt

In Fig. 2, welche einem Hautstück entnommen wurde, welches dunkler rot gefärbt war als dasjenige der Fig. 1, sind dagegen die roten Pigmentmassen in den Zellplatten ausgebreitet, auch liegen hier die Zellen dichter. Infolgedessen sind nur schmale, helle Trennungslinien zwischen den einzelnen roten, unregelmässigen Farbflecken übrig geblieben, so dass das Ganze eine leuchtend rote, dichte Chromatophorenschicht bildet. Betont sei, dass diese roten Zellen, auch wenn sie noch so dicht zusammenliegen, nicht zusammenfliessen und niemals Netze bilden, vielmehr stets deutlich voneinander getrennt bleiben, wie es ja auch für die Melanophoren der Knochenfische gilt.

Die Fig. 5 und 6, gleichfalls Übersichtsbilder bei 80 facher Vergrösserung, stammen aus der Rumpfhaut eines anderen Zierfisches, des Haplochilus chaperi, bei welchem die Erythrophoren nur zu kleinen Gruppen und Streifen angeordnet sind. oberflächliche, aus vereinzelt liegenden Melanophoren bestehende Chromatophorenschicht ist nicht mitgezeichnet, um das Bild nicht zu komplizieren und undeutlich zu machen. In Fig. 5 ist die rote und schwarze Pigmentmasse mässig ausgedehnt, so dass die einzelnen Rotzellen mit ihren Fortsätzen noch deutlich abgegrenzt werden können. In Fig. 6 dagegen ist das rote Pigment maximal ausgedehnt, so dass blasser und mehr gleichmässig gefärbte, karminrote, kleine Flächen entstanden sind, wie ich das bei Haplochilus chaperi öfter gesehen habe. Auch in den zierlichen Melanophorensternen ist das Melanin in die Peripherie geströmt und besonders in den Enden der Fortsatzstrahlen angehäuft; die Mitte der Zellen erscheint daher heller. Infolgedessen hat sich ein Teil des schwarzen Pigmentes über die roten Zellen gelagert und verdeckt sie zum Teil. Nur unten rechts haben vier Ervthrophoren ihr Pigment zusammengeballt; dadurch sind, ähnlich wie in Fig. 1, kleine, kreisrund begrenzte, pünktchenartige Flecken entstanden. Die flächenhafte Ausbreitung und Zusammenballung des Pigmentes findet also in gleicher Weise statt wie bei den sternförmigen Melanophoren.

Schon diese, bei schwacher Vergrösserung gezeichneten Übersichtsbilder zeigen, dass unsere Erythrophoren kleine, platte Zellen mit nur wenigen kurzen, sehr spärlich verzweigten Fortsätzen bilden.

Die Fig. 25—31 führen uns nun einzelne Rotzellen mit ausgebreitetem Pigment bei stärkerer, ca. 450 facher Vergrösserung zur Erläuterung ihrer Gestalt vor. Die Zellen gleichen dünnen, meist etwas unregelmässigen Sternen mit nur wenigen (bis zehn), breiten und kurzen Fortsätzen; die letzteren sind meist keilförmig, häufig etwas unregelmässig und nur sehr wenig durch hier und da eintretende Spaltungen geteilt. Dadurch erlangen die Zellen ein mehr gelapptes Aussehen. Wo die Zellen dichter liegen und aneinander stossen, wird ihre Form dadurch beeinflusst, wie die beiden dicht zusammenliegenden Zellen der Fig. 25 rechts zeigen. Aber auch dann findet niemals eine direkte Verbindung je zweier Zellen statt; wie die Melanophoren, so bleiben auch sie stets durch eine schmale, helle Trennungslinie voneinander getrennt, auch wenn bei maximal ausgebreitetem Pigment die Fortsätze einander sich fast bis zur Berührung genähert haben.

Eine Sphäre fand ich in diesen Zellen an meinen Balsampräparaten nur selten als hellere zentrale Stelle angedeutet (Fig. 26). Auch die Kerne waren nur in sehr vereinzelten Zellen als zwei helle, ovale oder kreisrunde Flecke zu erkennen (Fig. 29 und 30; in Fig. 31 ist nur ein Kernfleck vorhanden).

Sehr wohl ist aber schon bei dieser schwächeren. 400- bis 500 fachen Vergrösserung (Fig. 25-31) festzustellen, dass das rote Pigment von ziemlich groben, roten Körnern gebildet wird, die sich überall dort finden, wo in den Zellen die karminrote Färbung hervortritt. Die Körner sind im Zellenleib und in den lappenartigen Fortsätzen meist gleichmässig verteilt (Fig. 25) und 27-31). Nicht selten fand ich sie aber auch mehr in den peripherischen Teilen der Fortsätze angehäuft. Alsdann erschien bei schwächeren Vergrösserungen das Innere der Erythrophoren mehr diffus gefärbt und heller (Fig. 5 und besonders Fig. 26).

Den Aufschluss über diese Erscheinung gab mir das Studium der Zellen bei Untersuchung mit Immersionssystemen. In Fig. 24 sehen wir eine Zelle bei Zeiss, homogene Immersion 2 mm, Apt. 1,30, Comp.-Ocul. 12 (1500 fache Vergrösserung) dargestellt. Die unregelmässigen, lappenartigen Fortsätze des Sternes sind erfüllt mit groben, rundlichen, leuchtend roten Körnern, denselben, die wir, wie oben erwähnt, schon bei schwacher Vergrösserung wahrnehmen konnten. Sie sind stark lichtbrechend und glänzend, ihr Inneres erscheint gewöhnlich etwas heller. Diese Körner haben nicht alle die gleiche Grösse, hier und da sind etwas kleinere darunter, die aber im übrigen dasselbe Aussehen zeigen wie die grossen. Unten rechts ist in der Fig. 24 das Stück eines Melanophorenarmes mit ausgebreiteten Melaninkörnchen daneben gezeichnet, um die Grössenunterschiede der Körnchen zu illustrieren. Wir erkennen, dass die Durchschnittsgrösse der Melaninkörnchen wesentlich geringer ist als die der roten Farbstoffkörner unserer Rotzellen, wobei bemerkt sei, dass die Melaninkörner in ihrer Grösse auch ein wenig variieren.

Die Untersuchung mit Immersion ergibt nun, dass diese grossen, roten Körner nicht die einzigen Körnchenbildungen in der Zelle sind und nicht allein ihre rote Färbung hervorrufen. Vielmehr finden sich ausserdem noch weit kleinere Körnchen in grosser Zahl vor allem an den Stellen der Zellen, welche bei schwacher Vergrösserung vorher mehr diffus rot erschienen (vgl. das Innere der Fig. 26). Auch diese feinen, zarten Körnchen sind rot gefärbt, ihre Färbung ist aber blasser, matter als die der grossen Körner, wohl auch hauptsächlich infolge ihrer geringeren Grösse. Sie sind auch nicht so stark lichtbrechend wie die grossen. Diese Körnchen sind an den Stellen am besten zu sehen und fallen dort am meisten auf, wo die groben Körner spärlicher sind oder ganz fehlen, wie z. B. in der Mitte der Zelle der Fig. 24 Aber auch zwischen den gröberen Körnern in den Fortsätzen und ganz am Rande, z. B. in Fig. 24 rechts oben, findet man sie bei genauer Einstellung, nur werden sie hier von den groben Körnern gewöhnlich mehr verdeckt.

Diese feinen, blassen, roten Körnchen habe ich nicht allein bei den beiden Fundulusarten und Haplochilus, sondern auch bei Hemichromis angetroffen. Ihre Zahl scheint aber zu schwanken. Einige Male habe ich in gut fixierten Präparaten unter den in dünner Lage ausgebreiteten groben Körnern vergeblich danach gesucht. Auch wird ihr Sichtbarwerden wohl durch die verschiedene Art der Behandlung der Präparate beeinflusst. Entnimmt man die Hautstücke Fischen, welche schon längere Zeit abgestorben waren, so sind die Unterschiede verwischt, auch die groben Körnchen büssen alsdann für gewöhnlich ihr starkes Lichtbrechungsvermögen ein und erscheinen bei starker Vergrösserung blass, wenn auch die Zellen bei schwacher Vergrösserung noch prachtvoll rot gefärbt aussehen. Ich glaube nun nicht, dass die kleinen, blassen Körnchen aus den gröberen dadurch hervorgegangen sind, dass infolge der Behandlung in den Balsampräparaten vielleicht ein Teil des roten Pigmentes aus ihnen extrahiert wurde, und sie dadurch kleiner und blasser erscheinen. Vielmehr bin ich der Ansicht, dass sich in diesen Zellen, wie Fig 24 zeigt, zwei Arten roter Farbkörnchen vorfinden, grosse, stark lichtbrechende und kleine blasse. Beide erscheinen allerdings durch Übergänge der Grösse nach miteinander verbunden: auch trifft man kleine rote Körnchen mit starkem Glanze an.

Aus obigem geht mithin hervor, dass in den karminroten Erythrophoren zwei verschiedene Arten von Farbstoffkörnchen vorhanden sind, welche beide zusammen die karminrote Färbung hervorrufen, das sind grosse, leuchtend rot gefärbte Körner und kleine, blasser 10t tingierte Körnchen. Beide sind alkoholbeständig. Es sei noch erwähnt, dass die Fig. 1, 2, 5, 6 und

24-31 nach Präparaten gezeichnet worden sind, welche teils mit Eisessig-Sublimat (5% Eisessig), teils mit Alkohol, teils mit Alkohol und Ather zu gleichen Zeiten fixiert waren; in letzterer Flüssigkeit hatten die Präparate monatelang gelegen. Auch die mit Eisessig-Sublimat fixierten, alsdann mit Jodalkohol behandelten Präparate hatten sich vor ihrer Verarbeitung wochenlang in Alkohol befunden; in ihnen erschienen die Zellen oft besonders hell (Fig. 28-31). Auch machte ich einige Male die Beobachtung. dass nach zu langem Aufenthalt in Jodalkohol die rote Färbung der Körnchen verschwand.

Die andere Art der alkoholbeständigen roten Pigmente, die ich auffand, waren, wie oben schon erwähnt, die braunroten. Die Farbennuance der damit beladenen Chromatophoren veranschaulichen die Fig. 3, 4 und 7-23; die Fig. 3, 4 und 7-17 wurden nach mit Alkohol behandelten Balsampräparaten, Fig. 18 -23 nach lebensfrischen, in physiologischer (0.75 proz.) Kochsalzlösung unter dem Deckglas eingeschlossenen Hautstücken gezeichnet.

Die Farbe dieser Pigmente unterscheidet sich wesentlich von der der karminroten dadurch, dass sie ausgesprochen braun erscheint. Der braune Farbenton tritt besonders hervor, wenn das Pigment zusammengeballt ist und sich dadurch in dickerer Lage befindet. Fig. 8-11, 16 und 17 nach Alkoholpräparaten. Ganz besonders dunkel und gesättigt, einem hellen Kaffeebraun sich nähernd, wird die Farbe des zusammengeballten Pigmentes in den lebensfrischen Zellen (Fig. 18-20). Breitet sich das Pigment aus, so dass es sich in dünner Lage verteilt, so wird die braune Farbe heller und erhält oft, besonders in den Balsampräparaten. einen sehr deutlichen Stich ins Rosa (Fig. 4, 12 und 13).

So gefärbte Chromatophoren stellte ich gleichfalls bei mehreren Zierfischen aus verschiedenen Familien fest und zwar unter den Cyprinodontidae bei Xiphophorus helleri Heckel, unter den Anabantidae bei Betta rubra und unter den Nandidae bei Badis badis.

Die Fig. 3 gibt nach einem mit Alkohol behandelten Balsampräparat ein Übersichtsbild der Rumpfhaut von Badis badis. Man sieht braunrote, etwas gelappte, unregelmässig sternförmige Zellen in zierlicher Weise einzeln zwischen den Melanophoren verteilt. so dass jeder Melanophor von einem Erythrophorenkranze umstellt ist. Die regelmässige Sterne bildenden Melanophoren überdecken mit den Enden ihrer Fortsätze, die maximal mit Pigment gefüllt sind, zum Teil die Rotzellen. Ähnliche Bilder liefert nach Alkoholpräparaten die Haut von Betta rubra.

Ganz anders dagegen sehen die Balsampräparate aus, welche von den schön braunroten Seitenstreifen angefertigt wurden, welche die Männchen des prächtigen Xiphophorus zieren. In Fig. 4 haben wir ein Stück dieses Seitenstreifens in einem Übersichtspräparat bei schwacher. 80 facher Vergrösserung vor uns. Das dem frisch getöteten Fisch entnommene Hautstück hatte wochenlang in einem Gemisch von Ather sulfur, und Alkohol absol, zu gleichen Teilen gelegen. Der grösste Teil der Chromatophoren hat sein Pigment radiär ausströmen lassen, so dass es maximal ausgebreitet ist Da die Chromatophoren in dichter Schicht liegen, erhalten diese Hautstellen unter dem Mikroskop bei schwacher Vergrösserung eine fast gleichmässige braunrote, ins Rosa spielende Färbung. Fig. 4 links und besonders rechts. Die einzelnen Zellbezirke geben sich aber gewöhnlich dadurch kund, dass ihre meist strahlenartig angeordneten Pigmentmassen einem Zentrum zustreben, und dass sich in diesen Zentren ein heller Sphärenfleck vorfindet (vgl. Fig. 4 rechts und links). Schon bei schwacher Vergrösserung (Fig. 4) fällt oft die bedeutende Grösse dieses Sphärenfleckes auf. Hier und da trifft man in den roten Seitenstreifen aber auch Gruppen von Erythrophoren an, deren Pigment zusammengeballt ist. Aber auch dann ist die Sphäre als kleinerer, hellerer, oft verschwommener Fleck meist noch sichtbar geblieben (Fig. 4, Mitte der Zeichnung).

Darüber ausgestreute Melanophoren verschiedener Grösse zeigen gleichfalls alle möglichen Phasen der Ausstrahlung und der Zusammenballung des Pigmentes (Fig. 4).

Untersucht man diese Balsampräparate bei etwas stärkerer, 400–500 facher Vergrösserung, so erhält man Bilder der einzelnen Erythrophoren, wie sie in den Fig. 7—17 dargestellt sind. Dabei ist zunächst die verschiedene Grösse der zusammengeballten Pigmentmassen zu beachten, die auch schon in dem Übersichtsbild der Fig. 4 hervortritt. Während bei manchen der Sphärenfleck nur angedeutet ist, erscheint er bei anderen, oft dicht daneben liegenden Zellen auffällig gross und kreisrund (Fig. 7, 14 und 15). Auch ist die Anzahl der braunen Pigmentkörnchen in gleich grossen Zellen sehr verschieden, wie aus der ver-

schiedenen Intensität der braunen Farbe geschlossen werden muss, und wie ein Vergleich der Fig. 7, 8, 9, 11, 14 und 16 zeigt. Kernflecke habe ich in dem zusammengeballten Pigment niemals angetroffen; ich vermute daher, dass die Kerne bei dem zentralen Rückströmen des Pigmentes ebenso ausserhalb des letzteren im pigmentfrei werdenden Protoplasma liegen bleiben. wie ich dies für die Melanophoren¹) kürzlich nachgewiesen habe.

Um so deutlicher treten oft die Kerne in den Erythrophoren mit ausgebreitetem Pigment als gewöhnlich zwei rundliche oder elliptische, helle Flecke hervor (Fig. 13). Schon bei schwacher Vergrösserung stellt man fest, besonders deutlich an dem ausgeströmten Pigment, dass die braunrote Farbe an kleine, etwas verschieden grosse Körnchen gebunden ist (Fig. 12 und 13, auch Fig. 7-11 und 14-17).

Die Untersuchung der lebensfrischen Zellen führt nun zu dem bemerkenswerten Resultat, dass die braunroten Körnchen nicht die einzigen Pigmentkörnchen dieser Zellen sind; vielmehr finden sie sich stets vergesellschaftet mit reichlichem, gelbem Pigment. Dies gilt sowohl für Xiphophorus als auch für Betta Die Fig. 18-22 stammen aus lebensfrischen, in und Badis. physiologischer Kochsalzlösung untersuchten Hautstücken von Xiphophorus (roter Seitenstreifen) und sind bei derselben 450fachen Vergrösserung gezeichnet, wie Fig. 7-17 nach Alkoholpräparaten. In Fig. 18-20 ist das braunrote Pigment zusammengeballt und erscheint fast kaffeebraun. In Fig. 21 und 22 dagegen hat es sich in radiären Bahnen ausgebreitet. In beiden Figuren ist die Sphäre als kleiner, zentraler, heller Fleck sehr deutlich. In Fig. 22 sieht man auch sehr gut die beiden exzentrisch gelagerten Kerne als ovale, helle Flecke, über welche das braune Pigment hinweg zieht. In den beiden letzteren Figuren ist nun die ganze Zelle in ihrem mittleren Teil sowohl wie auch in ihren sämtlichen Fortsätzen erfüllt mit einem hellgelben Pigment, welches sich in die Fortsätze weiter gegen die Peripherie erstreckt als das braune. Auch in den in Fig. 18-20 abgebildeten Farbstoffzellen mit zusammengeballtem braunrotem Pigment ist der gelbe Farbstoff meist noch in einem Teil der Fortsätze liegen

¹⁾ E. Ballowitz: Das Verhalten der Zellkerne bei der Pigmentströmung in den Melanophoren der Knochenfische. Nach Beobachtungen am lebenden Objekt. Biologisches Zentralblatt, 1913.

geblieben, so dass diese intensiv gelb erscheinen, während die braunroten Pigmentkörnchen aus den Fortsätzen vollständig verschwunden sind.

Studiert man dieses frische Objekt nun mit Immersions-Systemen, so erkennt man, dass auch der gelbe Farbstoff an Körnchen gebunden ist, welche dadurch, dass sie dicht nebenund übereinander liegen, die gelbe Farbe hervorrufen. Fig. 23 zeigt das Endstück eines Fortsatzes mit braunem und gelbem Pigment bei Untersuchung mit der Zeissschen homogenen Immersion 2 mm, Apt. 1,30, Comp.-Ocul. 12 bei 1500 facher Vergrösserung; es sind nur die Körnchen gezeichnet, die bei einer bestimmten Einstellung sichtbar waren. Der Fortsatz ist erfüllt mit zwei verschieden gefärbten Körnchenarten, braunroten und gelblichgrauen. Die ersteren sind weniger zahlreich und bedingen die braunrote Färbung. Ihre Grösse ist verschieden. Die grössten Körnchen erreichen die Grösse der oben bei den karminroten Farbzellen geschilderten groben Körner, wie der Vergleich mit der bei derselben Vergrösserung gezeichneten Fig. 24 dartut. Zahlreicher als diese grösseren sind aber kleinere braune Körnchen. Zwischen den braunroten Farbkörnern befinden sich nun sehr zahlreiche und sehr feine, gelblichgraue Körnchen, welche bei dieser Vergrösserung einen schwachen Schimmer ins Grünliche zeigen. Sie erzeugen die gelbe Färbung. Ein diffuser. gelber Farbstoff ist daneben nicht nachweisbar. Es will bisweilen scheinen, als ob kleinere Körnchen den Übergang zwischen den roten und gelben Körnchen vermitteln.

Wir haben es hier demnach mit einer Kombination von braunroten und gelben Farbstoffkörnchen zu tun. Ich will daher diese Chromatophoren als Xantho-Erythrophoren bezeichnen. Das Interessante und Eigenartige dabei ist nun, dass der gelbe, in den kleinen Körnchen sitzende Farbstoff zu den Lipochromen gehört, die in Alkohol sehr leicht und vollständig löslich sind. In den in gewöhnlicher Weise hergestellten, zuvor mit Alkohol behandelten Balsampräparaten ist daher von dem gelben Farbstoff keine Spur mehr vorhanden, wie uns die oben besprochenen Fig. 7—17 ja gezeigt haben. Nur wenn man die frischen Präparate sehr schnell mit Alkohol und Xylol behandelt, bleibt von dem gelblichen Farbstoff noch eine geringe Spur als gelblicher Schimmer zurück.

Die Xantho-Erythrophoren der oben aufgeführten Fische enthalten mithin zwei an verschiedenartige Körnchen gebundene, auch chemisch differente Farbstoffe, einen alkoholbeständigen, braunroten und einen alkohollöslichen, gelben.

Nicht unerwähnt will ich lassen, dass ich einige Male unter den Zellen des rotbraunen Seitenstreifens von Xiphophorus auch spärliche, kleine, gelappte, karminrote Zellen antraf.

Leider ging mir zu Beginn des Winters das, nebenbei bemerkt. recht kostspielige Fischmaterial aus, so dass ich die Untersuchung der Xantho-Erythrophoren nicht noch weiter fortsetzen konnte.

Es sei nur noch bemerkt, dass mir die Beziehungen der Xanthophoren zum roten, allerdings in Alkohol löslichen Pigment von anderen Untersuchungen her schon längst bekannt waren. So trifft man regelmässig, z. B. in den Xanthophoren des Dorsches, rote Pigmentkörnchen an. Auch konnte ich bei Gobiiden nachweisen, dass die grossen, leuchtend feuerroten Erythrophoren dieser Fische direkt aus den Xanthophoren hervorgehen. Hierüber hoffe ich demnächst weitere Mitteilungen machen zu können.

Die gelben und roten Farbstoffzellen der Knochenfische sind. wohl infolge der Schwierigkeit, die sich ihrer Untersuchung entgegenstellen, von den Histologen recht stiefmütterlich behandelt worden. Nur K. W. Zimmermann¹) hat mit Bezug auf ihre Kerne und Sphäre etwas nähere Angaben gemacht. Bei Mittelmeerfischen konnte dieser Autor in den gelben und roten Zellen. ebenso wie in den Melanophoren, die "gewöhnliche Form der Attraktionssphäre mit minimalem, kugeligem und anscheinend homogenem Centrosoma" nachweisen. Von den Xanthophoren der Larven des Blennius trigloides bildet er die Sphäre ab, in welcher sich das gewöhnliche, minimale, rundliche Zentralkörperchen befindet. Die Kerne, welche der Autor in diesen Gelbzellen gewöhnlich zu zweien, ausnahmsweise auch zu dreien und einmal sogar zu vieren, antraf, liegen in der Zelle so, dass sie gleiche Abstände vom Centrosoma besitzen. Die Farbstoffeinlagerungen hat K. W. Zimmermann unberücksichtigt gelassen.

¹⁾ K. W. Zimmermann: Studien über Pigmentzellen. I. Über die Anordnung des Archiplasmas in den Pigmentzellen der Knochenfische. Arch. f. mikr. Anat., Bd. XXXXI.

Erklärung der Abbildungen auf Tafel XIV.

Die Figuren stellen bei verschiedenen Vergrösserungen Erythrophoren mit alkoholbeständigem Pigment aus der äusseren Haut des Rumpfes von Knochenfischen in Flächenansicht dar, und zwar die Fig. 1, 2, 5, 6 und 24—31 Erythrophoren mit karminrotem Pigment, die Fig. 3, 4 und 7—23 solche mit braunrotem Pigment. Die Fig. 1—17 und 24—31 sind nach mit absolutem Alkohol (mit und ohne vorhergehende Fixierung durch Eisessig-Sublimatlösung) resp. mit Äther-Alkohol behandelten, in Kanadabalsam eingeschlossenen Präparaten, die Fig. 18—23 nach lebensfrischen, in physiologischer Kochsalzlösung unter dem Deckglas untersuchten Präparaten gezeichnet. Die Übersichtspräparate Fig. 1—6 wurden bei 80 facher, Fig. 22 und 25—31 bei ca. 450 facher, und Fig. 23 und 24 bei 1500 facher Vergrösserung dargestellt.

- Fig. 1 und 2. Flächenansicht von Hautstücken der roten Flecken hinter dem Kopfe von männlichen Exemplaren des Fundulus Sjöstedti bei schwacher Vergrösserung, Leitz, Obj. 3, Ocul. III. In Fig. 1 sind die Pigmentmassen der schwarzen und roten Farbzellen zusammengeballt. In Fig. 2 ist das Pigment der zahlreich und dicht nebeneinander liegenden Erythrophoren meist ausgeströmt.
- Fig. 3. Hautstück des Rumpfes von Badis badis bei schwacher Vergrösserung, Leitz, Obj. 3, Ocul. III. Das Pigment der sternförmigen Melanophoren ist maximal ausgebreitet und überdeckt zum Teil die dazwischen zerstreut liegenden Zellen mit braun-rotem Pigment.
- Fig. 4. Hautstück aus dem roten Seitenstreifen eines Männchens von Xiphophorus helleri Heckel bei schwacher Vergrösserung, Leitz, Obj. 3. Ocul. III. Das braunrote Pigment ist zum Teil ausgeströmt, zum Teil zusammengeballt. Das gleiche gilt für die vereinzelten Melanophoren.
- Fig. 5 und 6. Zwei Hautstücke von verschiedenen Teilen des Rumpfes von Haplochilus chaperi Sauvage bei schwacher Vergrösserung, Leitz, Obj. 3, Ocul. III. In Fig. 6 ist das rote Pigment zum Teil maximal ausgeströmt, zum Teil (unten rechts) zusammengeballt; es wird zum Teil überdeckt von dem vollständig ausgebreiteten Melanin der Melanophoren.
- Fig. 7—17. Einzelne braunrote Pigmentzellen in verschiedenen Ausdehnungszuständen des braunroten Pigmentes; das ursprünglich vorhandene gelbe Pigment ist durch die Alkoholbehandlung völlig aufgelöst und verschwunden. Aus Hautstücken der roten Längsstreifen am Rumpf von männlichen Exemplaren des Xiphophorus helleri. Leitz, Obj. 7, Ocul. III. In den Fig. 7—11 und 14—17 ist das braunrote Pigment zusammengeballt. Die Sphäre erscheint als zentraler, heller, pigmentfreier Fleck, der in den Fig. 7 (zwei nebeneinander liegende Zellen), 14 und 15 auffällig gross und kreisrund begrenzt ist. In den Fig. 12 und 13 ist das alkoholbeständige, braunrote Pigment radiär ausgeströmt. Während in Fig. 12 die Sphäre nur undeutlich ist, erscheint sie in Fig. 13 als grosser kreisrunder Fleck, neben welchem zwei exzentrisch gelegene, heile Kernflecke sehr deutlich sind.

- Fig. 18-22. Xantho-Erythrophoren aus Hautstücken der roten Seitenstreifen des Rumpfes von männlichen Exemplaren des Xiphophorus helleri Heckel nach lebensfrischen, in physiologischer Kochsalzlösung unter dem Deckglas untersuchten Präparaten. Leitz, Obj. 7, Ocul. III. In den Fig. 18-20 ist das braunrote, alkoholbeständige Pigment zentralwärts zusammengeballt; die Sphäre ist nur an vier Erythrophoren als hellere, verwaschene Stelle zu erkennen. Das gelbe Pigment ist noch zum Teil in den Protoplasmafortsätzen enthalten.
- Fig. 21 und 22. Zwei Xantho-Erythrophoren mit ausgeströmtem, rotem und gelbem Pigment. Die Sphäre ist als zentraler Punkt deutlich. Anordnung der roten Pigmentkörnchen in radiären Reihen. In Fig. 22 sind zwei exzentrisch gelagerte Kerne als ovale, helle Flecken sehr deutlich.
- Endstück eines Fortsatzes von einem Xantho-Erythrophoren mit Fig. 23. ausgeströmtem braunrotem und gelbem Pigment bei starker, 1500facher Vergrösserung, Zeiss, homogene Immersion 2 mm, Apt. 1.30. Comp.-Ocul. 12. Man sieht die grösseren braunroten Körnchen und dazwischen die kleinen, zarteren, gelblichgrau erscheinenden Pigmentkörnchen, welche letzteren die gelbe Färbung verursachen.
- Erythrophor mit alkoholbeständigem, karminrotem Pigment aus einem Hautstück, welches mehrere Wochen in einem Gemisch von Alkohol absol, und Ather sulfur, zu gleichen Teilen gelegen hatte. Das Hautstück stammt vom Rumpfe eines männlichen Fundulus gularis. 1500 fache Vergrösserung, Zeiss, homogene Immersion 2 mm, Apt. 1,30, Comp.-Ocul. 12. In der Peripherie der gelappten Zelle befinden sich hauptsächlich die grossen, gröberen, roten Farbkörner, während die kleinen, blassen, roten Körnchen vorwiegend die zentralen Teile der Zellen ausfüllen. Zum Vergleich ist das Stück eines Melanophoren-Fortsatzes mit ausgebreitetem Pigment rechts darunter gezeichnet, um die Grössenunterschiede zwischen den wesentlich kleineren Melaninkörnchen und den grossen roten Körnern zu zeigen.
- Fig. 25-27. Fünf Erythrophoren aus der Haut von Fundulus gularis mit ausgebreitetem Pigment. In Fig. 26 sind die groben, roten Körner aus der Mitte in die Peripherie der Fortsätze ausgeströmt (vgl. Fig. 24). Leitz, Obj. 7. Ocul. III. Zum Teil nach Präparaten. welche wochenlang in einem Gemisch von Alkohol absol. und Äther sulfur. zu gleichen Teilen gelegen hatten, zum Teil aus mit Eisessig-Sublimat fixiertem Material.
- Vier Erythrophoren mit ausgebreitetem Pigment aus der Haut von männlichen Exemplaren des Fundulus Sjöstedti. In den Fig. 29-31 sind hellere, abgegrenzte Flecke sichtbar, die wohl den Kernen entsprechen. Leitz, Obj. 7, Ocul. III. Nach mit Eisessig-Sublimat fixierten, in Balsam eingeschlossenen Präparaten.

Berichtigung.

Durch ein Versehen sind in der Arbeit Adloff "Zur Entwicklungsgeschichte des menschlichen Zahnsystems usw." (Archiv f. mikr. Anat., Bd. 82, Abt. I, Seite 1) die Figuren auf den beiden zugehörigen Tafeln zum Teil falsch bezeichnet und müssen wie folgt abgeändert werden.

Auf Tafel I

für	Fig.	4 a	und	b	Fig.	3a	und	b
**	,,	åа	22	b		4a	22	h
51		9			11	5		
	**	10			**	6		
**	**	11 a	**	b	11	7 a	22	b
,,	**	14 a	**	b	**	Sa	22	b
**	35	15 a	**	b	**	9 a	.,	b
**	2.5	16			11	10		

Auf Tafel II

für	Fig.	12	Fig.	11
**	**	13	**	12
9.0	0.0		**	13

Studien zur allgemeinen Entwicklungsgeschichte des Blutgefäßsystems.

I. Teil:

Anatomische und physiologische Grundlagen.

Vor

Curt Elze, Heidelberg.

Hierzu Tafel XV und 7 Textfiguren.

Einleitung.

Über die Entwicklungsgeschichte des Blutgefäßsystems herrscht in den letzten Jahren fast allgemein eine Meinung, welche in ihren Konsequenzen dazu führen würde, die Resultate aller bisherigen Untersuchungen zum grössten Teile illusorisch zu machen und vor allem der vergleichenden Entwicklungsgeschichte des Gefäßsystems ihre Grundlagen zu entziehen.

Wohl nur dem Umstande, dass diese Konsequenzen nicht gezogen wurden, verdankt diese Lehre ihre Existenzmöglichkeit. Sie besagt, dass das Blutgefäßsystem in Form eines "indifferenten Kapillarplexus" angelegt werde, aus dem erst sekundar Arterien und Venen infolge Bevorzugung einzelner Bahnen durch den Blutstrom herausgebildet würden. - Ohne hier auf die, einem späteren Abschnitte vorbehaltene historische Entwicklung dieser Theorie einzugehen, welche ich der Kürze halber als die "Netztheorie" bezeichnen möchte, will ich erwähnen, dass sie ihre kräftigste Stütze durch die Untersuchungen von Evans erhalten hat, welcher mit einer glänzenden Injektionsmethode das gesamte embryonale Gefäßsystem einschliesslich der Kapillaren zur Darstellung brachte. So hoch ich den Wert dieser Methode einschätze — ich habe sie selbst vielfach geübt, nachdem mich Evans in sie eingeführt hatte, wofür ich ihm zu grossem Danke verpflichtet bin -, so bin ich doch der Überzeugung, dass sie die alte Methode der Beobachtung des Kreislaufes im lebenden Embryo nicht entbehrlich machen kann. Den Forschern, welche

die Entwicklung des Gefäßsystems an lebenden Embryonen untersuchten, waren ausser den Arterien und Venen die Kapillarnetze wohl bekannt, wie die Lektüre der Arbeiten, z. B. K. E. von Baers oder Rathkes, hinlänglich zeigt. Bei der modernen Art der Untersuchung an Schnittserien konnten freilich dem weniger aufmerksamen Beobachter die Kapillarnetze entgehen, und nur so ist es wohl erklärlich, dass man, als in den Injektionspräparaten die Kapillarnetze wieder mit allen Einzelheiten hervortretend gefunden wurden, zu der unberechtigten Meinung gelangen konnte. dass den früheren Untersuchern die Existenz dieser Kapillarnetze unbekannt gewesen sei. - Weiterhin haben sich die Anhänger der "Netztheorie" einer voreiligen Verallgemeinerung schuldig gemacht. Sie untersuchten nur Vogel- und Säugerembryonen. Hätten sie einmal eine lebende Tritonlarve unter dem Mikroskop beobachtet, so hätten ihnen sofort starke Bedenken gegen ihre Theorie aufkommen müssen.

Beobachtungen und Überlegungen, an verschiedenartigen Objekten angestellt, im Verein mit vielfältigen Literaturstudien, haben mich zu den nachstehenden Ausführungen veranlasst, in welchen ich glaube zeigen zu können, dass die "Netztheorie" nur zu einem geringen Teile und auch dann nur in wesentlich veränderter Form beibehalten werden kann.

Da die Netztheorie besagt, dass die Blutgefäßstämme sich entwickeln aus indifferenten Kapillarnetzen durch die mechanische Wirkung des Blutstromes, so muss die kritische Prüfung vor der Erörterung der Einzelheiten von den beiden Grundfragen ausgehen: 1. werden die Blutgefässe in Form eines indifferenten Netzes angelegt? und 2. haben die mechanischen Faktoren des Blutstromes Einfluss auf die Entwicklung, oder genauer gesagt, auf die Morphogenese des Blutgefäßsystems?

Die Beantwortung der ersten Frage führt zu dem Ergebnisse, dass nur die Amnioten, nicht aber die Anamnier, in frühen Embryonalstadien Kapillarnetze aufweisen. Es ergibt sich damit die Notwendigkeit, nachzuforschen, wodurch dieser Unterschied wohl bedingt sein könne. — Der Beantwortung der zweiten Frage, für welche wesentlich die Abhandlungen von Roux und R. Thoma in Betracht kommen, werden zur Erleichterung der Darstellung einige Bemerkungen über allgemeine Erscheinungen der Morphogenese des Blutgefäßsystems, wie über die sogenannten

Wanderungen, Wachstumsverschiebungen usw., in einem besonderen Abschnitte vorausgeschickt. — Mit diesen Ausführungen sind dann die Grundlagen für die nähere Kritik der "Netztheorie" selbst gewonnen.

Die vorliegenden Studien sind ein Resultat meiner Tätigkeit im II. Anatomischen Institut in Wien. Ich empfinde es als eine angenehme Pflicht, Herrn Prof. Hochstetter, der meinen Arbeiten in entgegenkommendster Weise jegliche Förderung hat angedeihen lassen, meinen aufrichtigsten Dank zu sagen.

I. Die Formen des Überganges zwischen Arterie und Vene.

Zunächst ist die Frage nach dem allgemeinen Charakter des Blutgefäßsystems bei den Embryonen zu erörtern, oder, anders ausgedrückt, die Frage, wie das Übergangsgebiet zwischen Arterien und Venen sich darstellt. Es zeigt sich nämlich bei näherer Betrachtung, dass die übliche Einteilung der Blutgefässe in Arterien, Venen und Kapillaren nicht allen Befunden gerecht wird, am wenigsten denen, welche die Embryonen in frühen Stadien zeigen. Vielmehr erweist es sich als erforderlich, drei verschiedene Formen des Überganges zwischen Arterie und Vene zu unterscheiden, wie dies von älteren Autoren geschah, ausführlich z.B. von Österreicher (1826), am präzisesten von Johannes Müller (1832, Bd. 4, S. 188).

Des Interesses halber möchte ich die Stelle wörtlich zitieren. Sie lautet: "Die hauptsächlichsten Verschiedenheiten, welche man am Übergange der Arterien in die Venen bemerkt, sind die folgenden. 1. Das arterielle Strömchen biegt sich um und wird ohne weiteres zur Vene. Dies haben besonders Haller, Döllinger und Österreicher bei jungen Fischen bemerkt, wo der arterielle Strom gegen Ende des Schwanzes ohne weitere Schlingen zur Vene umbiegt. 2. In den Kiemen der Fische und der Larven von Salamandern, Fröschen und Kröten bestehen die feinsten Kiemenblättchen aus einem aufsteigenden und einem niedersteigenden Strömchen, welche unmittelbar ineinander umbiegen und durch regelmässige Quergefässe ébenfalls miteinander kommunizieren, wie Configliachis und meine eigenen Untersuchungen ergeben. Rusconi hat die Quergefässe zwischen arteriellen und venösen Stämmchen übersehen und bloss die vordere Umbiegung abgebildet. 3. Der häufigste Fall ist, dass sich die feinsten Arterien dendritisch verzweigen, untereinander anastomosieren, zuletzt netzartig werden, und dass sich aus den Netzen wieder die dendritischen Anfänge der Venen sammeln. Zu diesen Netzen führen teils parallel aneinander liegende, teils nahe, aber nicht aneinander liegende Arterien und Venen."

Diese drei Formen können bezeichnet werden als:

- 1. die einfache Schlinge,
- 2. die mehrfache Schlinge,
- 3. das Kapillarnetz.

Bei der ersten Form (Textfig. 1) geht die Arterie unmittelbar in die Vene über, und zwar, je nach den gegebenen Raum-

Aorta dors. dext. V. card. post. dext.

Fig. 1.

Segmentale Gefässe aus dem Rumpfgebiet eines Hühnerembryos von 32 Ursegmentpaaren. Nach E v a n s , 1911, Fig. 392.

Fig. 2.

Kiemengefässe von Pelobates
fuscus.

Nach Fr. Eilh. Schulze, 1892.

verhältnissen, in geradem oder gebogenem Verlaufe, so dass im extremen Falle Arterie und Vene parallel zueinander liegen.

Bei der zweiten Form (Textfig. 2) findet der Übergang in gleicher Weise statt, jedoch kann man primäre und sekundäre, oder Haupt- und Nebenschlingen unterscheiden, wobei Arterie und Vene ausser durch die jeweilige Endschlinge noch durch ein Quergefäss verbunden sein können.

Bei der dritten Form (Textfig. 3a und b) ist zwischen Arterie und Vene ein Kapillarnetz eingeschaltet, in welches die Arterie sich auflöst, entweder unvermittelt (Fig. 3a), oder nach vorheriger Teilung in Äste (Fig. 3b). Das gleiche Verhalten zeigt gewöhnlich auch die entsprechende Vene.

Neben dem Kapillarnetze können unmittelbare Übergänge zwischen Arterie und Vene bestehen: arterio-venöse Anastomosen (siehe z. B. Fig. 3a).

Ferner kommen beim Embryo wie beim Erwachsenen Inselbildungen im Verlaufe der Arterien und Venen vor, ebenso Anastomosen zwischen zwei und mehr Arterien oder Venen. Diese Bildungen haben natürlich mit den Kapillarnetzen beim Embryo ebensowenig zu tun wie beim Erwachsenen. — Erwähnt sei auch noch, dass häufig unmittelbarer Ursprung von Kapillaren

aus dem Stamme der Arterie und unmittelbare Einmündung in den Stamm der Vene gefunden wird, z.B. in der Area vasculosa der Sauropsiden. Von Erwachsenen ist ein Beispiel dafür das Verhalten der Leberkapillaren zur Vena centralis.

Während in den beiden ersten Fällen die Abgrenzung der Arterie gegen die Vene auf keine nennenswerten Schwierigkeiten stösst — man wird den hinläufigen Schenkel der Schlinge als Arterie, den rückläufigen als Vene zu bezeichnen haben — liegen die Verhältnisse im dritten Falle verwickelter, und es ist nötig, näher auf diesen Punkt einzugehen, da gerade durch die mangelhafte Unterscheidung zwischen Kapillarnetz einerseits und Arterie und Vene andererseits eine Anzahl von Irrtümern entstanden ist. Bei den Formen, welche durch Textfig. 3 a versinnbildlicht werden,

Fig. 3 a.

Gefässe der rechten Flügelanlage eines Hühnerembryos von 31 Ursegmentpaaren. Nach Evans.

1909, Fig. 6.

A. carotis int. V. card ant.

Fig. 3b.

Ein Teil der Gehirngefässe eines Schweine-Embryos von 7,5 mm

Länge. Nach Evans, 1911, Fig. 400.

ist es freilich wohl nicht zweifelhaft, was als Arterie und als Vene zu bezeichnen ist, und wo die Grenzen gegen das Kapillarnetz liegen, obwohl, wie sich später zeigen wird, auch solche Befunde zu irrtümlichen Deutungen Anlass gegeben haben. Es bleiben somit nur die Fälle besonders zu erörtern, welche der Textfig. 3 b entsprechen, und welche die weitaus häufigste Art des Überganges darstellen.

Die folgende Ausführung berücksichtigt in der Hauptsache nur die Verhältnisse bei jungen Embryonen. Dass sie trotz dieser Einschränkung nicht erschöpfend ist, liegt im Wesen ihres Gegenstandes begründet.

Gegenüber den Kapillaren sind die Arterien — das gleiche gilt mit den sinngemässen Änderungen auch für die Venen — charakterisiert zunächst durch ihren Ursprung aus der Aorta oder einem ihrer grossen Äste. Sie stellen ferner in ihrem Verlaufe gegenüber dem Kapillar-"Netz" einen "Stamm" dar, der "Äste" abgibt. Im allgemeinen zeichnen sich der "Stamm" und seine "Äste" durch ihre grössere Weite vor den Kapillaren aus; ferner dadurch, dass sie die ursprüngliche Verlaufsrichtung mehr oder weniger unverändert beibehalten.

Im Gegensatze dazu stellen die Kapillaren ein gewöhnlich in seiner Form nicht näher bestimmbares Maschenwerk dar, das je nach dem vorhandenen Raume in zwei oder drei Dimensionen ausgedehnt ist.

Ich vermeide absichtlich den sonst vielfach gebrauchten Ausdruck "in differentes" Kapillarnetz. Ein frühembryonales Kapillarnetz ist, wie die Ausführungen des zweiten Abschnittes zeigen werden, vergleichend entwicklungsgeschichtlich oder biologisch betrachtet, keineswegs eine "indifferente" Bildung. Trotzdem könnte es als "Kapillarnetz" gestaltlich "indifferent" sein. Aber auch das trifft meiner Meinung nach nicht zu. Zwar fehlen noch nähere Untersuchungen über die Kapillarnetze der einzelnen embryonalen Organe, doch lehrt ein Blick auf die verschiedenen Gefässgebiete eines und desselben Embryos, dass die Kapillarnetze der einzelnen Organe sehr voneinander "differieren" (vgl. auch Taf. XV, Fig. 2 und 3). "Indifferent" könnte ein Kapillarnetz als Gefässformation höchstens insofern genannt werden, als in ihm nicht einzelne Bahnen als Haupt- und Nebenbahnen, wie bei Arterien und Venen, unterschieden werden können. Aber dieses Merkmal ist ja gerade für das Kapillarsystem charakteristisch. Daher ist der Ausdruck "indifferentes Kapillarnetz" in dem einzig zulässigen Falle der Anwendung ein Pleonasmus. - Jedenfalls wird man gut tun, diesen Ausdruck als irreführend zu vermeiden.

Über die räumliche Ausdehnung der embryonalen Kapillarnetze liest man bei Oppel (1910, S. 10) folgenden, mir unverständlichen Passus: "Eine rein netzförmige Anlage mit zu- und ableitenden grösseren Gefässen entspricht.... funktionell wohl in erster Linie einem mehr flächenhaft ausgedehnten Versorgungsgebiet, wie wir dasselbe etwa im embryonalen Gefässhof oder in Häuten und Schleimhäuten des Erwachsenen in die Erscheinung treten sehen, während es sich in den Extremitätenanlagen um mehr dreidimensionale Formen handelt, deren funktioneller Versorgung durch Netze wohl nur vorübergehend genügt werden kann, so dass hernach eintretende Änderungen funktionell und daher auch kausal verständlich erscheinen."

Die Winkel, unter denen die vielfältig miteinander anastomosierenden Kapillaren sich verbinden, sind innerhalb eines und desselben Kapillarnetzes meist sehr verschieden gross. Entsprechend verschieden geformt sind die zwischen den Maschen stehenden Substanzinseln. Dabei ist es unmöglich, von einzelnen "Kapillaren" zu sprechen, sie existieren nicht einzeln als solche, sondern nur in Form des Maschenwerkes, an dem man wohl einzelne "Bahnen", nicht aber einzelne "Kapillaren" herausheben kann. Während also Arterie und Vene als wohl gegeneinander abgrenzbare Gefässe von einer bestimmten Länge sich darstellen, sind die Kapillaren immer in der Mehrzahl vorhanden und nicht gegeneinander abgrenzbar. Es löst sich eben eine Arterie in eine Menge von Kapillaren, ein Kapillar-"Netz", auf und aus dieser Menge von Kapillaren führt wieder eine Vene zurück.

Diese eben aufgestellten Unterschiede gelten nur im allgemeinen. Natürlich können sich z.B. mehrere Arterien in ein gemeinsames Kapillarnetz ergiessen und mehrere Venen sich daraus sammeln. Der Unterschied zwischen Arterien und Venen einerseits und Kapillaren andererseits ist aber auch in solchen Fällen hinreichend gross.

Anhangsweise möchte ich noch einige andere Prinzipien kurz erörtern, nach denen man die Unterscheidung von Arterien, Venen und Kapillaren durchführen könnte.

Man könnte daran denken, die Kapillaren nach topischen Gesichtspunkten gegen Arterien und Venen abzugrenzen, indem man die Kapillaren nach dem Organ bestimmt, in dem sie liegen, also z. B. die Kapillaren des Magens gegenüber den zu- und abführenden Arterien und Venen. Dies stösst jedoch auf sehr grosse Schwierigkeiten, da die "Organe" junger Embryonen vielfach Gebilde sind, welche bei fortschreitender Differenzierung in mehrere Organe getrennt werden. So enthält der embryonale Magen mit seinem dorsalen Gekröse, in welchem sich später die Milz entwickelt, ursprünglich nur ein Kapillarnetz. In gleichem Sinne sind embryonale "Organe" mit einem Kapillarnetze die "Extremitätenhöcker", die seitliche Rumpfwand usw.

Ferner besteht die Möglichkeit, die Richtung des Blutstromes als Unterscheidungsmerkmal heranzuziehen. Man könnte sagen, dass in Arterien und Venen die Strömung nur in einer bestimmten Richtung erfolgt, während in den Kapillaren gerade das Gegenteil getroffen wird: das Blut strömt in vielen verschiedenen Richtungen, auch in einer und derselben Kapillarbahn wechselnd. Dies würde jedoch stets lebende Embryonen als Untersuchungsobjekte voraussetzen.

Auch an die intermittierende Strömung in den Arterien und die kontinuierliche in den Kapillaren wäre zu denken. Ausser den Arterien pulsieren aber beim Embryo auch die grösseren Venen und dem Herzen nahe gelegene Kapillaren (z. B. die der Leber, was schon Johannes Müller [1829] bekannt war). Sonst habe ich Pulsationen in den Kapillaren bei Embryonen nur beim Eintreten der Asphyxie gesehen. Auch für den Erwachsenen kommt der Puls als Charakteristikum der Arterien gegenüber den Kapillaren nicht unbedingt in Betracht: die präkapillaren Arterien pulsieren nicht, und es gibt auch grosse Arterien, die keinen Puls zeigen, z. B. die Aorta der Fische.

Die Lage in den "Organen" und die Richtung und Art des Blutstromes können also zur Abgrenzung der Kapillaren höchstens in vereinzelten Fällen herangezogen werden. Das gleiche gilt von der chemischen Beschaffenheit des Blutes und von dem histologischen Bau der Gefässwand. Das erstere bedarf keiner näheren Ausführung, und bezüglich des letzteren genügt der Hinweis darauf, dass die Gefässe selbst noch in einem Entwicklungsstadium, in welchem es längst schon nötig und möglich ist, Arterien, Venen und Kapillaren zu unterscheiden, sich alle rücksichtlich des Baues ihrer Wand auf dem Stande von Kapillaren befinden.

Es ist ferner auf die bemerkenswerte Erscheinung hinzuweisen, dass in einer und derselben Arterie das Blut nicht zu allen Zeiten der Entwicklung

Fig. 4 a. Fig. 4 b.

Fig. 4a und b. Schemata für die Richtung des Blutstromes in dem System der Kiemenarterien in verschiedenen Entwicklungsstadien. Die durchflossenen Gefässe sind durch dunkleren Ton gekennzeichnet. Die Pfeile geben die Richtung des Blutstromes an. Fig. 4a. Anfangsstadium, in welchem nur die beiden ersten Arterienbogen durchflossen sind. Fig. 4b. Endstadium, unter Berücksichtigung der Varietät der A. subclavia dextra, bei welcher diese als letzter Ast des Aortenbogens entspringt und hinter dem Ösophagus vor der Wirbelsäule nach rechts verläuft.

in gleicher Richtung fliesst. So macht schon K. E. von Baer (1828) auf Grund seiner Beobachtungen an lebenden Hühnerembryonen darauf aufmerksam, dass nach und schon während der Obliteration des ersten und zweiten Kiemenarterienbogens der Blutstrom im Anfangsstück der dorsalen Aorta sich umkehrt, d. h. anstatt, wie bisher in kaudaler, jetzt in kranialer Richtung geht (vgl. Textfig. 4a und b). Das Gleiche muss naturgemäss an den dorsalen Aorten der Reptilien und Säuger eintreten. Sicher ist die Erscheinung auch nicht auf den Anfangsteil der Aortenwurzel, also einen Teil der späteren Arteria carotis interna, beschränkt. Wenn z. B. beim Menschen die Arteria subclavia dextra als letzter Ast des Aortenbogens entspringt, muss eine solche Umkehr des Blutstromes im Anfangsstück der abnormen Subclavia, d. h. im kaudalen Teile der rechten Aortenwurzel erfolgt sein (vgl. Textfig. 4b). Ahnliches muss ferner z. B. stattfinden in einem Abschnitte der sekundären Subclavia der Vögel, ferner in einem Teile der Hirnarterien bei denjenigen Säugern, bei welchen die inneren Carotiden rückgebildet werden (cf. de Vriese). Diese wenigen Beispiele mögen genügen, um die Häufigkeit dieses Vorganges zu erläutern.

Ich muss aber eines noch bemerkenswerteren Vorganges gedenken: während es sich in den eben erwähnten Fällen lediglich um die Umkehr des Blutstromes handelte, ohne dass dabei das betreffende Gefäss seinen Charakter als Arterie eingebüsst hätte, werden die vorderen Dottervenen von Torpedo nach Rückerts Angaben (1906) in Arterien umgebildet, indem der Blutstrom seine Richtung dadurch wechselt, dass die Venen sekundär Anschluss an die Aorta gewinnen, und damit den Charakter von Arterien erhalten. Diese Angaben sind allerdings nicht an lebenden Embryonen geprüft worden. Dagegen konnte Hochstetter (1891) mit aller Sicherheit in den Extremitäten lebender Eidechsenembryonen die regelmässige zweimalige Umkehr des Blutstromes in einem Abschnitte der radialen bezw. tibialen Randvene feststellen: der Blutstrom war anfänglich proximalwärts gerichtet, nach der ersten Umkehrung distalwärts und nach der zweiten wieder proximalwärts. Bei der gleichen Untersuchung stellte dann Hochstetter gleichfalls am lebenden Objekt die Umwandlung der Arterienreiser des interdigitalen Gefässnetzes durch Umkehr des Blutstromes in Venenwurzeln fest.

Es ist nun wichtig, festzustellen, wo bei den Wirbeltieren die drei unterschiedenen Formen des Überganges zwischen Arterien und Venen vorkommen. Ich sehe dabei an dieser Stelle ab von den Befunden bei den erwachsenen Tieren und beschränke mich auf die Embryonen. Da sich nun bei älteren Embryonen und Feten im wesentlichen die gleichen Verhältnisse wie beim Erwachsenen finden, so ziehe ich nur die jungen Embryonalstadien in Betracht. Obwohl an den Frühstadien des Gefäßsystems auch der höheren Wirbeltiere an einigen Stellen diejenige Form vorkommt, welche als die "einfache Schlinge" bezeichnet wurde, so lassen sich doch

die Embryonen aller Wirbeltiere in zwei grosse Gruppen einteilen, welche durch die allgemeine Anordnung, in der das Blutgefäßsystem gefunden wird, charakterisiert sind. In der ersten Gruppe, zu welcher die Fische und Amphibien gehören, findet sich anfänglich nur die einfache oder mehrfache Schlinge, und erst in späteren Stadien das Kapillarnetz, bei der zweiten Gruppe, welche die Sauropsiden und Säuger umfasst, findet sich, von wenigen Stellen abgesehen, von vornherein das Kapillarnetz. Beim Vergleiche des Kreislaufes einer lebenden Tritonlarve mit dem eines lebenden Vogelembryos ist dieser Unterschied ohne weiteres deutlich.

Betrachtet man nun die äusseren Entwicklungsbedingungen bei den beiden Gruppen, so fällt ein weiterer bedeutungsvoller Unterschied auf: die Embryonen der Fische und Amphibien entwickeln sich im Wasser, die der Sauropsiden und Säuger an der Luft bezw. im mütterlichen Organismus. Unter Berücksichtigung des weiteren Unterscheidungsmerkmales, welches durch die Eihäute gegeben ist, kommt man danach zu folgender Gegenüberstellung:

Embryonen der Fische, Amphibien. Entwicklung im Wasser. Einfaches Gefäßsystem (Schlinge).

Anamnier.

Embryonen der Sauropsiden, Säuger. Entwicklung an der Luft. Kompliziertes Gefäßsystem (Kapillarnetz). Amnioten.

Es konnte damit der bereits von Semon (1894) gegebenen Tabelle ein weiteres Unterscheidungsmerkmal eingefügt werden, welches den allgemeinen Charakter des Blutgefäßsystems betrifft. Ich werde auf diese Unterschiede noch zurückkommen und begnüge mich hier damit, festzustellen, dass die nähere Betrachtung der Formen des Überganges zwischen Arterie und Vene unter anderem dazu geführt hat, einen charakteristischen Unterschied in der allgemeinen Form des Blutgefäßsystems zwischen Anamniern und Amnioten erkennen zu lassen.

II. Die Beziehungen zwischen Atmung und Blutgefäßsystem.

Die eben gegebene Gegenüberstellung enthält auf der einen Seite die gemeinsamen Momente "Leben im Wasser und ein-

faches Blutgefäßsystem", auf der anderen Seite "Leben an der Luft und kompliziertes Gefäßsystem".

Diese Beziehungen bedürfen einer näheren Betrachtung, denn sie weisen auf einen wichtigen Faktor in der Ausbildung des Blutgefäßsystems hin: auf die Abhängigkeit von der Respiration. Die Annahme eines solchen Abhängigkeitsverhältnisses ist keineswegs neu. So weist z. B. Viktor Carus (1862) ausdrücklich und ausführlich darauf hin. Und noch in neuester Zeit hat Richard Hertwig (1912, S. 100) dieser Anschauung ganz allgemein mit den Worten Ausdruck gegeben: "Für alle Tiere gilt der Satz, dass das Blutgefäßsystem in Anordnung und Bau mehr von der Respiration beeinflusst wird, als von der Nahrungsaufnahme im engeren Sinne. Es besteht eine Korrelation zwischen Respirations- und Zirkulationsorganen."

Da diese "Korrelation" den Schlüssel zum Verständnisse einer Anzahl von Erscheinungen beim Embryo an die Hand gibt. so muss ich auf diese Frage näher eingehen. Zunächst ist es dabei freilich nötig, den Begriff der "Atmung" etwas näher zu bestimmen. Will man den Begriff für die vergleichend-physiologische Betrachtung brauchbar machen, so kann man nur davon ausgehen, dass nicht der Organismus als Ganzes assimiliert und also des Sauerstoffes bedarf, sondern die einzelne Zelle. Denn nur dann ist es möglich, die Atmung als einen beim höchsten Metazoon und beim niedersten Protozoon übereinstimmenden Vorgang zu betrachten. Sieht man in der Atmung die Sauerstoffaufnahme und Kohlensäureabgabe von seiten der einzelnen Zelle. dann verhält sich die von sauerstoffhaltigem Wasser umgebene Amoebe und die von sauerstoffhaltiger Gewebsflüssigkeit umgebene Zelle des Säugetieres prinzipiell gleich. Da der Gasaustausch dabei unmittelbar zwischen Zelle und umgebendem Medium stattfindet, so wird der Vorgang am einfachsten als "unmittelbare Atmung" zu bezeichnen sein, und es ist wichtig, im Auge zu behalten, dass das umgebende Medium stets Wasser, richtiger: eine wässrige Lösung ist, so dass man also zu dem Schlusse kommt: die Atmung im engeren Sinne, die Atmung der Zelle, die "unmittelbare Atmung" findet immer in einer Lösung statt.

Wie im Wasser der Gewässer, so muss auch in der Gewebsflüssigkeit der Sauerstoff ständig ersetzt werden. — In den Gewässern geschieht dies teils durch Absorption aus der atmosphärischen Luft, zum grössesten Teile aber durch die Tätigkeit der grünen Wasserpflanzen. In der Gewebsflüssigkeit erfolgt die Sauerstofferneuerung entweder durch das Epithel der äusseren Oberfläche und eventuell des Darmes hindurch oder durch Vermittlung des Blutes. Während die eine Zelle, welche den Körper eines Protozoons bildet, "unmittelbar" aus dem Wasser atmet, atmet die einzelne Zelle des Säugetierkörpers zwar "unmittelbar" aus der Gewebsflüssigkeit, — aus der atmosphärischen Luft aber nur "mittelbar" durch Vermittlung des Blutes.

Ich habe bei der Feststellung der Begriffe "unmittelbare" und "mittelbare" Atmung zunächst das Wort "Atmung" beibehalten. Man sieht jedoch, dass dieses Wort im gewöhnlichen Sprachgebrauche in einem ganz anderen Sinne verwendet wird.

Während ich vorhin die einzelne Zelle als das eigentlich Atmende angenommen habe, und also gesagt: die Zelle atmet, sagt der Sprachgebrauch, aus Gründen, welche im Entwicklungsgange der Physiologie der Atmung liegen, das Tier atmet. Da also der Ausdruck "Atmen" in zweierlei recht verschiedenem Sinne angewendet werden müsste, so werde ich ihn der Einfachheit halber und um Missverständnisse zu vermeiden, weiterhin nur in der gewöhnlichen Bedeutung gebrauchen, und für die oben festgestellten Begriffe einsetzen die "mittelbare und unmittelbare Deckung des Sauerstoffbedürfnisses". Wenngleich diese Bezeichnung nur einem Teile des sich an der Zelle abspielenden Vorganges entnommen ist, so dürfte er doch hinreichend klar sein, da man sich die Kohlensäureabgabe etc. leicht in Gedanken dazufügen kann. - Der eben aufgestellte Satz erhält also in der nunmehr beizubehaltenden Namengebung den Wortlaut: Während die eine Zelle, welche den Körper eines Protozoons bildet, ihren Sauerstoffbedarf "unmittelbar" aus dem Wasser deckt, deckt ihn die einzelne Zelle des Säugetierkörpers zwar "unmittelbar" aus der Gewebsflüssigkeit, aber nur "mittelbar" — durch Vermittlung des Blutes — aus der atmosphärischen Luft, welche das Tier "atmet".

Den Ausdruck "innere" Atmung, der für die Gewebe- und Zellenatmung häufig benutzt wird, vermeide ich absichtlich. Dieser Begriff ist nur für die höheren Metazoen anwendbar. Bei niederen Metazoen und Protozoen fallen die Begriffe "innere" und "äussere" Atmung zusammen,

Während die "Atmung" im Sinne des gewöhnlichen Sprachgebrauches — bei "Land"- und "Wasser"tieren — in der Luft und im Wasser erfolgen kann, wobei wiederum, je nach dem Orte der Sauerstoffaufnahme von Lungen-, Kiemen-, Haut-, Darmusw.-Atmung gesprochen wird, deckt die einzelne Zelle ihren Sauerstoffbedarf stets nur aus einer Lösung. Die Versorgung der einzelnen Zelle mit Sauerstoff geschieht also in der ganzen Tierreihe auf einheitliche Weise, eben aus einer Lösung, dagegen sind mannigfaltig die Wege, auf welchen dieses Ziel erreicht wird.

Diese Mannigfaltigkeit im einzelnen aufzuzeigen, würde über den Rahmen der vorliegenden Arbeit hinausgehen. Doch möchte ich wenigstens einige wenige Beispiele aus der Reihe auch der Wirbellosen anführen. Es wurde schon erwähnt, dass die Protozoen ihren Sauerstoffbedarf unmittelbar aus dem sie umgebenden Wasser decken. Die gleiche Möglichkeit bietet sich den einzelnen Körperzellen der Cnidarien, z. B. Hydra, deren Körperwand nur aus zwei Zellschichten besteht. Ist diese Möglichkeit durch das Auftreten des Mesoderms und das damit einhergehende Dickenwachstum der Körperwand aufgehoben, so findet sich ein "Gastrovaskularsystem" (Spongien): der Sauerstoff gelangt durch Diffusion von der äusseren Oberfläche und von dem verzweigten Darmsystem aus in die Gewebsflüssigkeit, aus der ihn die Zellen aufnehmen. — Im Prinzipe die gleiche Einrichtung findet sich bei vielen parenchymatösen Würmern, z. B. Planaria. — Sehr interessante Verhältnisse zeigen die Insekten, an denen jüngst Riede (1912) die Sauerstoffversorgung eines Organes, der Ovarien, eingehend studiert hat. Er gelangt zur Aufstellung von zwei Typen: dem der "direkt" und dem der "indirekt mit Sauerstoff versorgten Eiröhren". Bei dem ersten Typus ist die einzelne Eiröhre von der eng anliegenden und mit zahlreichen Tracheenkapillaren durchsetzten Peritonealhülle überzogen. Bei dem zweiten Typus liegen mehrere Eiröhren in einer gemeinsamen Peritonealhülle, die entweder nur wenige oder gar keine Atemröhrchen enthält und durch einen Blut enthaltenden Hohlraum von den Eiröhren getrennt ist. Die Übertragung des Sauerstoffes findet durch Vermittlung des Blutes statt, wobei durch Ausbildung besonderer Muskulatur und anderer Einrichtungen Bewegung des Blutes und damit bessere Verteilung des Sauerstoffes in ihm ermöglicht ist. - Schon Bergmann und Leuckart (1855) hatten gesagt (S. 170), "dass die Entwicklung des Gefäßsystems bei den Arthropoden in umgekehrtem Verhältnis zu der Ausbreitung der Atmungsapparate durch den Körper stehe".

Als ein charakteristisches Beispiel für die Beziehungen zwischen Atmung und Blutgefäßsystem von einem erwachsenen Wirbeltiere erwähne ich das weite, buchtige Kapillarnetz der Mund- und Rachenschleimhaut beim Frosche.

Dass für die Wirbeltiere schon längst ein Abhängigkeitsverhältnis zwischen Blutgefäßsystem und Atmung angenommen wird, darauf deuten allgemein gebräuchliche Ausdrücke, wie "respiratorischer Kreislauf" und "respiratorisches Kapillarnetz". Über die Anordnung der feineren Verzweigungen der Blutgefässe, besonders der Kapillarnetze in den einzelnen Organen, liegen jedoch zu wenig spezielle Untersuchungen vor, als dass es möglich wäre, Genaueres über dieses Abhängigkeitsverhältnis zu sagen. Die Umbildungen des Herzens und der grossen Gefässe aber, welche wir in der Reihe der Wirbeltiere sehen, wären ohne eine solche Annahme unverständlich, die Umbildungen, welche schliesslich dazu führen, dass Lungen- und Körperkreislauf so voneinander getrennt werden, dass der eine Teil der Gefässe nur sauerstoffreiches, der andere nur kohlensäurereiches Blut enthält, und dass nirgends eine Mischung beider stattfindet.

Von den - physiologisch - gänzlich belanglosen Anastomosen z. B. des nutritiven Gefäßsystems der Lunge mit dem respiratorischen beim Säuger kann füglich abgesehen werden. Dagegen ist es wichtig, sich vor Augen zu halten, dass bei den Reptilien und besonders bei den Amphibien die strenge Scheidung zwischen sauerstoff- und kohlensäurereichem Blute nicht stattfindet. Die Trennung erfolgt bei den höheren Wirbeltieren — das kann wohl nicht zweifelhaft sein — im Zusammenhange mit der strengen Lokalisierung der Atmung auf die Lungen. Ausserdem spielt eine wichtige Rolle die Wärmeregulierung: nur die Homoiothermen haben die völlige Trennung zwischen arteriellem und venösem Blute. wobei es einstweilen eine offene Frage bleibt, ob die völlige Trennung durch die Anforderungen zur Erhaltung der Eigenwärme veranlasst wurde, oder ob sie - umgekehrt - erst die Erhaltung einer konstanten Körpertemperatur ermöglichte. Wichtig ist, dass bei den Homoiothermen der gesamte Stoffwechsel lebhafter ist als bei den Poikilothermen, also auch der Sauerstoffbedarf der einzelnen Zellen und damit des ganzen Organismus ein höherer.¹)

Auf ein weiteres Moment soll gleich hier hingewiesen werden, da es bei dem Sauerstoffwechsel gewiss eine nicht unwichtige Rolle spielt: das Verhalten des osmotischen Druckes des Blutes zu dem des umgebenden

¹⁾ Anmerkung. Während der Drucklegung ist der Vortrag von O. Warburg "Über die Wirkung der Struktur auf chemische Vorgänge in Zellen" (Jena, G. Fischer, 1913) erschienen, in welchem unter anderem nach Untersuchungen an sich furchenden Seeigeleiern ausgeführt wird, dass mit Vermehrung der Struktur die Oxydationsgeschwindigkeit zunimmt, d. h. dass ein Zellkomplex intensiver atmet, wenn er aus vielen kleinen Zellen besteht, als wenn er von wenigen grossen Zellen gebildet wird. — Dieses Resultat erscheint mir für die hier zur Rede stehenden Fragen deshalb wichtig, weil im allgemeinen die Embryonen der Anamnier bezw. Poikilothermen grössere Zellen haben als die der Amnioten bezw. Homoiothermen, was somit zur Folge haben würde, dass in einem Amniotenembryo die Oxydationsvorgänge schneller und intensiver ablaufen als in einem gleich grossen Anamnierembryo, dass also auch der Sauerstoffbedarf des Amniotenembryo grösser ist.

Mediums. Nach den bisher vorliegenden Untersuchungen wechselt der osmotische Druck des Blutes bei meerbewohnenden Wirbellosen und niederen Wirbeltieren mit dem des Meerwassers, wohingegen er bei den höheren Wirbeltieren konstant bleibt. "Das vollkommene Analogon zur "Eigenwärme" scheint also der "Eigendruck" zu sein; ich habe deshalb den bekannten Bezeichnungen Homoiotherme und Poikilotherme die Namen "homoiosmotische" und "poikilosmotische" Tiere zur Seite gestellt." (Höber [1911], S. 35.)

Um für die Frage der Deckung des Sauerstoffbedarfes bei den Embryonen, die uns hier in erster Linie interessiert, einige Vergleichspunkte zu gewinnen, muss ich zunächst auf die Verhältnisse bei den urodelen Amphibien etwas eingehen. Bei den Urodelen ist die Atmung nicht auf ein bestimmtes Organ beschränkt, am wenigsten auf die Lungen, welche ja bei einer Anzahl von Salamandern sogar vollständig fehlen, woraus wohl mit Recht der Schluss zu ziehen ist, dass bei den Urodelen die Lungenatmung. wenn sie überhaupt stattfindet, nur eine ganz untergeordnete Rolle spielt. (Näheres siehe besonders bei Camerano [1851] und Bethge [1898].) Dafür spricht auch, dass die rein aquatilen Formen zeitlebens ihre Kiemen beibehalten, trotz des Vorhandenseins von Lungen. Die Atmung ist bei den aquatilen Formen hauptsächlich Kiemen- und Hautatmung, bei den amphibischen und terristischen Buccopharyngeal- und Hautatmung. - Daraus ergibt sich ohne weiteres, dass das Blut in einem grossen Teile der Gefässe weder rein venös, oder gar rein arteriell sein kann, sondern auch dann gemischt sein müsste, wenn, was ja tatsächlich niemals der Fall ist, die Teilung des Herzens in zwei getrennte Hälften vollkommen wäre, wie bei den Säugern. Ich weise auf diesen Umstand hin, weil man sich bei der Beurteilung des embryonalen Gefäßsystems davor hüten muss, etwa mit Ausnahme des allzu bekannten Beispieles der Arteria und Vena pulmonalis, mit dem Begriffe der Arterie den des sauerstoffreichen Blutes, mit dem Begriffe der Vene den des kohlensäurereichen bezw. des sauerstoffarmen notwendig, ich möchte sagen reflektorisch zu verbinden.

Für die Beurteilung der Sauerstoffaufnahme bei den Embryonen am wichtigsten sind die folgenden Momente, welche den Atmangsbedingungen der Perennibranchiaten entnommen sind: Leben im Wasser, Aufnahme des Sauerstoffes durch die — unbeschuppte — Haut und durch Kiemen, deren Gefässe, im Vergleich mit denen der Fische, einfache Anordnung zeigen (siehe z. B. Calori [1851], Tab. 25, Fig. 17), nicht durch die Lungen; gemischtes Blut; geringer Stoffwechsel.

Die Embryonen der Fische und Amphibien, die oben zu der ersten der beiden Gruppen von Wirbeltierembryonen gestellt wurden, finden sich im wesentlichen unter den gleichen Bedingungen, wie die Perennibranchiaten.¹)

¹) Die Perennibranchiaten k\u00f6nnen ja auch als Formen aufgefasst werden, die zeitlebens larvare Charaktere beibehalten. Die Art der Atmung und die durch sie bedingte allgemeine Form des Blutgef\u00e4\u00dfsystems f\u00fchrte

Das Blutgefaßsystem junger Fischembryonen (vgl. z.B. die Beschreibungen und Figuren von Vogt [1842] und Hochstetter [1888] sowie Textfig. 5, welche ein bereits etwas weiter vorgeschrittenes Stadium zeigt) ist ausserordentlich einfach. Die aus dem Truncus arteriosus entspringenden Kiemenarterien ziehen unverzweigt durch die Kiemenbogen hindurch, teilen sich in die

Rekonstruktion der Gefässe eines Gobius-Embryo. Nach Wenckebach, 1886.

Carotiden und die Aortenwurzeln, die sich zur einfachen Aorta vereinigen. Diese läuft astlos ventral von der Chorda dorsalis kaudalwärts und biegt in der Analgegend in die Vene um, welche sich in zwei Gefässe teilt, von denen je eines an jeder Seite des Embryos als Vena vitellina kranialwärts zum Herzen verläuft. Zwischen Aorta und Vena vitellina finden sich jederseits höchstens einige wenige quer verlaufende Verbindungen. Im übrigen gibt es im Rumpfe keinerlei Gefässverzweigungen, und der Schwanz ist gänzlich gefässlos. Im Kopfgebiete finden sich nur ganz wenige Gefäßschlingen, welche durch die Umbiegung der Carotisäste in die entsprechenden Wurzeln der Vena cardinalis anterior entstehen.

Man kann also sagen, dass in dem beschriebenen Stadium eines Fischembryos nur die wenigen Hauptstämme des Blutgefässsystems vorhanden sind, und dass der grösste Teil des Embryokörpers und -Kopfes gefässlos ist.

Dass der Embryo trotz dieses sehr unvollkommen erscheinenden Gefäßsystems lebt und wächst, beweist, dass das mich zu dieser Auffassung, ehe ich die, auf ganz andere Momente gegründete Ansicht von Boas kennen lernte, "dass die Perennibranchiaten Larven sind", "Larven, welche die Fähigkeit, sich umzuwandeln, verloren haben" (1882, S. 563). Blut und somit auch das Gefäßsystem, für seinen Stoffwechsel, speziell für den Transport des Sauerstoffes, einstweilen nebensächlich ist.

Dies wird auch durch die Experimente von J. Loeb (1893) bestätigt, in denen Fundulusembryonen, deren Blutzirkulation durch Zusatz eines Herzgiftes zum Seewasser von vornherein unterbunden war, sich durch eine Anzahl von Tagen wie normal gehaltene Embryonen entwickelten. Offenbarhaben also die ersten Blutgefässe der Fischembryonen keine nennenswerte Bedeutung für die Atmung und den Stoffwechsel, sie bilden nur das notwendige Fundament für die Ausbildung des in den späteren Stadien dann unentbehrlichen Gefäßsystems.

Man wäre in der Tat in grosser Verlegenheit, wenn man angeben sollte, in welchen Gefässen sich sauerstoff-, und in welchen sich kohlensäurereiches Blut findet, denn ein wirkliches Atmungsorgan fehlt noch vollkommen. Daraus ist zu schliessen, dass der zweifellos vorhandene Sauerstoffbedarf der Zellen unmittelbar aus dem umgebenden Wasser gedeckt wird, in dem das Fischchen lebt, wie dies auch in den vorangegangenen Entwicklungsstadien geschah, als überhaupt noch keine Blutgefässe und keine Blutzirkulation da waren. Diese Deckung des Sauerstoffbedarfes geschieht von der Darm- und vor allem von der Hautoberfläche aus, und zwar auf dem Wege der Diffusion. Der Diffusionsstrom in der Gewebsflüssigkeit muss dabei natürlich von der Oberfläche bis zur Körpermitte, also etwa bis zur Chorda dorsalis reichen, da die dort gelegenen Zellen ebenso wie die oberflächlichen des Sauerstoffes bedürfen.

Dass der Sauerstoffbedarf der Zellen bei dieser unmittelbaren Aufnahme aus dem umgebenden Wasser nicht sehr gross sein darf, ist wohl selbstverständlich. Daher kann auch der Stoffwechsel nur gering sein. Es sind mir keine Untersuchungen über diesen Punkt bekannt geworden. Vielleicht kann man einen Hinweis darauf in dem Umstande sehen, dass junge Fischembryonen sich im allgemeinen, von dem Flossenspiel abgesehen, sehr wenig bewegen. Der Stoffwechsel ist an sich gering wegen der niederen Temperatur des Körpers, und er kann offenbar, wegen der langsamen Sauerstoffzufuhr zu den Zellen, nur sehr vorübergehend einmal gesteigert werden.

Zweifellos ist wichtig der Umstand, dass die Aufrechterhaltung einer konstanten Körpertemperatur und somit die Beschaffung der dazu erforderlichen Menge Sauerstoffs entfällt. Übrigens muss betont werden, dass auch beim erwachsenen Fische die Sauerstoffzufuhr nicht sehr vollkommen ist Archiv f. mikr. Anat. Bd. 82. Abt. I.

da das Blut nur mangelhaft arterialisiert wird (Paul Trendelenburg [1912]), wofür ich ebensowenig wie Trendelenburg eine anatomische Erklärung zu geben vermag, da ich mich vergeblich bemüht habe, in der Literatur genauere Angaben über das Kiemenkapillarsystem zu finden und meine eigenen Beobachtungen über diesen Gegenstand noch zu unvollkommen sind. Die genaueste Beschreibung der Kiemengefässe fand ich bei Hyrtl (1838).

Solange die Haut des jungen Fischchens nackt ist, kann die Deckung des Sauerstoffbedarfes durch sie hindurch erfolgen. Bevor also diese Möglichkeit durch die Entwicklung der Schuppen ganz oder wenigstens fast ganz aufgehoben wird, muss für einen anderen Modus der Sauerstoffzufuhr gesorgt werden. Dies geschieht durch die Ausbildung eines bisher fehlenden Atmungsorganes in Gestalt der Kiemen mit ihren Fransen, und durch die Ausgestaltung des Blutgefäßsystems, speziell der Kiemenkapillaren. Denn nun erhält ja das Blut die Aufgabe, den Sauerstoff allenthalben im Körper der Gewebsflüssigkeit und damit den Zellen zuzuführen, was früher von der ganzen Oberfläche geschah. Die Ausgestaltung des Blutgefäßsystems geht dabei vor sich unter Bildung einfacher Schlingen (Moroff [1902]). die dann später weiterhin umgestaltet werden. Jedenfalls ist es wichtig, vor Augen zu behalten, dass das Gefäßsystem sehr einfach gestaltet ist - es enthält nur die "einfachen Schlingen" —, solange die Sauerstoffaufnahme von der Körperoberfläche her erfolgen kann und nicht das durch die Atmungsorgane getriebene Blut die ausschliessliche Sauerstoffquelle der Gewebsflüssigkeit ist.

Absichtlich habe ich das Dottersack gefäßsystem ausser Betracht gelassen. Es ist, selbst innerhalb der einzelnen Ordnungen, nach den freilich recht lückenhaften Angaben in der Literatur sehr verschieden ausgebildet. Am besten bekannt sind die Verhältnisse bei den Teleostiern und Selachiern. Bei den Teleostiern (vgl. Textfig. 5; Literatur bei Hochstetter [1906] und Rückert [1906]; zahlreiche Abbildungen bei Ryder [1885, 1886]) finden sich die verschiedensten Formen von einem, bis auf die "Vena vitellina media" völlig gefässlosen Dottersack (siehe Fig. 5), bis zu einem ausgedehnten Dotterkapillarnetz, welches aber stets sekundär aus früher sehr einfachen Gefässen hervorwächst, während bei den Selachiern von vornherein die Dottersackgefässe in der Form des Netzes aufzutreten scheinen. — Das morphologisch wichtige Merkmal der Dottersackzirkulation der Teleostier, dass sie rein venös ist (Hochstetter [1906], S. 123), im Gegensatze zu der der Selachier, spielt natürlich für die physiologische Betrachtung, speziell für die Dottersackatmung, keine Rolle. — Ob die Form des Dottersackgefäss-

netzes mit den Lebensbedingungen der Embryonen (Entwicklung im mütterlichen Organismus oder ausserhalb) und also mit den verschiedenen Bedingungen der Sauerstoffaufnahme zusammenhängt, wage ich nach den vorhandenen Literaturangaben nicht zu entscheiden.

Ahnlich wie bei den Fischembryonen liegen die Verhältnisse bei denen der urodelen Amphibien. Der Körper des Urodelenembryo ist lang und schmal wie beim Fische und enthält ein nur aus "einfachen Schlingen" bestehendes Blutgefäßsystem. Nach dem Beginne der Zirkulation sind noch die meisten Teile des Embryos vollkommen gefässlos, und die Sauerstoffzufuhr erfolgt zweifellos in der Hauptsache in der gleichen Weise wie bei den Fischembryonen. Mit der Ausbildung der Kiemen kommt zu der Hautatmung 1) die Kiemenatmung hinzu, während die Lungenatmung während der ganzen Larvenzeit keine Rolle spielt (siehe Boas [1882], S. 560ss, und die dort auch zitierten Angaben von Rusconi [1817], S. 29 ss). Ein charakteristischer Unterschied gegenüber den Fischembryonen zeigt sich bei der weiteren Entwicklung an den Gefässen der Kiemen. Während bei den Fischen in den Verlauf der Kiemenarterien ein ausserordentlich feines Kapillarnetz eingeschaltet wird, bleibt das Kiemengefäßsystem der Urodelenlarven auf dem Stadium der "mehrfachen Schlinge" stehen und erfährt auch bei den Perennibrachiaten keine sehr weitgehende Umbildung (siehe die von Boas für richtig erklärte Figur von Configliachi und Rusconi, Tab. 4, Fig. 18, ferner Calori [1851]), wie überhaupt die Kiemen bei den Urodelen niemals eine solche Ausbildung erfahren wie bei den Fischen. Zweifellos hängt dies damit zusammen, dass die Haut unbeschuppt bleibt und also die Hautatmung fortbestehen kann. Dabei tritt die Hautatmung durch Ausbildung eines besonderen Blutgefässapparates (System der Arteria cutanea magna) zugleich in den Dienst der "mittelbaren" neben dem der natürlich fortbestehendeu "unmittelbaren" Sauerstoffzufuhr.

Etwas anders als bei den Urodelenembryonen liegen die Dinge bei den Embryonen der Anuren, insofern, als bei ihnen

¹⁾ Die Atmung durch äussere Kiemen als modifizierte Hautatmung zu bezeichnen, wie es vielfach geschieht, geht bei den Embryonen nur an unter rein morphologischen Gesichtspunkten; denn das Wesentliche der Hautatmung besteht in der "unmittelbaren" Sauerstoffzufuhr an die Gewebsflüssigkeit, wohingegen die Kiemen der "mittelbaren" Sauerstoffzufuhr durch das Blut dienen.

das Blutgefäßsystem, wenn auch nur wenig, komplizierter gestaltet ist, was wohl darauf zurückzuführen ist, dass der Körper der Kaulquappe dicker ist, so dass die "unmittelbare" Deckung des Sauerstoffbedarfes der im Innern gelegenen Zellen von der Hautoberfläche her nicht möglich ist.

Denn diese "unmittelbare" Sauerstoffzufuhr geht offenbar. was hier auch bezüglich der Urodelenembryonen noch nachzutragen ist, nur bis zu einer geringen Tiefe. Es deuten wenigstens die Beobachtungen darauf hin, welche man am Schwanze dieser Embryonen machen kann. Anfänglich ist der Schwanz ganz gefässlos, dann folgt eine Zeit, in der nur die astlose Aorta mit ihrer einfachen Umbiegung in die gleichfalls astlose Vene vorhanden ist, und erst verhältnismässig spät treten feine Gefässe - zunächst in Form einfacher Schlingen - in die Ruderkämme des Schwanzes ein, die allmählich immer weiter gegen die Peripherie vordringen. Die Grenzlinie des mit Gefässen versorgten Bezirkes ist dabei immer parallel dem Rande des Schwanzes (Clark [1909], S. 184). Es scheint mir unzweifelhaft, dass dieses Verhalten der Gefässe mit dem Dickenwachstum des Schwanzes zusammenhängt, indem sie die "mittelbare" Sauerstoffzufuhr dort übernehmen, wohin die "unmittelbare" nicht mehr oder nur noch unvollkommen reicht.

Es zeigt sich in diesem Punkte deutlich die Abhängigkeit des Blutgefäßsystems von den Bedingungen der Sauerstoffaufnahme, wofür freilich unter den oben besprochenen Befunden das beste Beispiel die Wechselbeziehungen zwischen Hautbeschaffenheit und Kiemengefäßsystem bleibt: bei den Fischen, bei denen die Sauerstoffaufnahme von der Haut her durch die Ausbildung von Schuppen unmöglich gemacht wird, wird ein kompliziertes Kiemenkapillarsystem gebildet; bei den Urodelen, bei welchen die Hautatmung bestehen bleibt, bleibt das Kiemengefäßsystem sehr viel einfacher.

Der Vollständigkeit halber möchte ich erwähnen, dass nach den Angaben von Knower (1907) sich Froschembryonen, denen die Herzanlage exstirpiert worden war, vier Tage lang normal entwickelten.

Im Gegensatze zu dem einfachen Gefäßsystem junger Fischund Amphibienembryonen ist das der Sauropsidenembryonen ausgezeichnet durch das frühzeitige Auftreten von Kapillarnetzen am Übergange der Arterien in die Venen. Es gibt zwar von dieser Regel Ausnahmen, welche unter dem Gesichtspunkte der Phylogenese der Kapillarnetze grosse Bedeutung gewinnen, besonders an den segmentalen Gefässen (siehe Textfig. 1), aber diese Ausnahmen beeinträchtigen nicht den Gesamtcharakter des Gefäßsystems.

Betrachtet man einen jungen Sauropsidenembryo (vgl. hierzu Taf. XV, Fig. 1, und vor allem die Figuren von Evans 1909 und 1909 a)), so findet man, dass die Arterie des Kiemenbogens diesen astlos durchzieht, dass sie an der Umbiegung in die Aortenwurzel mehrere kurze Aste abgibt, welche sich an der Gehirnanlage in ein Kapillarnetz auflösen, dass dann die Aorta, ohne weitere Aste abzugeben, kaudalwärts zieht und sich gegen das Schwanzende des Embryos in der Abgabe der Dottersackarterien erschöpft. Bei Lacertaembryonen und wahrscheinlich auch bei Hühnerembryonen ist das Kapillarnetz an der Gehirnanlage schon beim Beginne des regulären Kreislaufes ausgebildet. Die Aortenäste, welche dann zunächst auftreten, sind, wie auch beim Vogelembryo, die vordersten segmentalen Arterien, welche in Form einfacher Schlingen in die entsprechenden Venen übergehen, die in die Vena cardinalis anterior einmünden. Von dieser Ausnahme abgesehen, treten sonst stets die ersten Gefässe einer Körpergegend sofort in Form von Kapillarnetzen auf, z. B. in der Extremitätenleiste (siehe Evans).

Ich werde auf die intraembryonalen Kapillarnetze später zurückkommen. Zunächst möchte ich auf dasjenige Kapillarnetz etwas näher eingehen, welches früher als alle anderen angelegt wird: das Kapillarnetz des Dottersackes. Der Gefässhof des Dottersackes enthält ein Gefäßsystem, das ausserordentlich reich verzweigt ist. Beim Huhn ist es, wie die Injektionen von Popoff (1894) gezeigt haben, zunächst mehr ein System von weiten Lakunen als von eigentlichen Gefässen, bei Lacerta agilis gibt es, wie mich Injektionen gelehrt haben, dieses Lakunenstadium nicht, wie mir überhaupt der Vergleich von Eidechsenund Hühnerembryonen gezeigt hat, dass bei den ersteren der Gefässhof während der ganzen Dauer der Entwicklung im Ei weniger gefässreich ist, d. h. dass zwischen den einzelnen Gefässmaschen sich grössere Substanzinseln finden als bei den letzteren. Auch die Gefässverzweigungen innerhalb des Embryonalkörpers sind bei Lacerta nicht so zahlreich wie beim Huhn.

Dass der Gefässhof der jungen Stadien in erster Linie der Sauerstoffaufnahme dient, ist wohl die allgemeine Ansicht, und gewisse Veränderungen, welche die Form seines Kapillarsystems im weiteren Verlaufe der Entwicklung erfährt, können nur in diesem Sinne gedeutet werden. Als Beispiel dafür möchte ich drei Stadien von Lacerta heranziehen, die auf Taf. XV bei gleicher Vergrösserung abgebildet sind. Die erste Figur zeigt ein Stadium kurz nach dem Beginne der Blutzirkulation, die zweite ein Stadium, in welchem die Allantois begonnen hat an der Respiration teilzunehmen, und die dritte ein Stadium, in welchem die Allantois den Dottersack umwachsen hat und das alleinige Respirationsorgan darstellt. Betrachtet man nun das Dottersackkapillarsystem im ersten und im dritten Stadium, so fällt sofort auf, dass die Kapillarröhren im dritten Stadium wesentlich enger und die von ihnen gebildeten Maschen wesentlich weiter sind als im ersten, dass hingegen das Kapillarsystem im äusseren Blatte der Allantois in seiner reichen Ausgestaltung dem Dotterkapillarsystem im ersten Stadium sehr nahe steht. Dieses hatte die Funktionen eines respiratorischen Kapillarnetzes zu erfüllen, bis das der Allantois sie übernahm. Im Zusammenhange mit dem Schwinden der respiratorischen Funktion steht die Verengerung seiner Röhren und die Vergrösserung seiner Maschen. Dass dieser Zusammenhang wirklich besteht, lässt sich aus der Analogie mit dem Verhalten der Gefässe im äusseren und inneren Blatte der Allantois bekräftigen. Während anfänglich die blasenförmige Allantois gleichmässig von einem engen Gefässnetze bedeckt ist, tritt nach der Anlagerung an die Eischale und der damit einhergehenden Abflachung und Bildung eines inneren und äusseren Blattes, welches letztere allein die respiratorische Funktion übernimmt, eine wesentliche Veränderung ein, welche dahin führt, dass das äussere Blatt ein äusserst reiches, das innere dagegen ein äusserst armes Kapillarnetz aufweist (Fig. 3), ein Unterschied, welcher so gross ist, dass, wenn man die beiden Gefäßsysteme zum ersten Male sieht, man nicht glauben möchte. dass sie einem und demselben Organe angehören.

Bei den Vögeln liegen die Verhältnisse offenbar ebenso wie bei den Eidechsen (Näheres siehe bei Fülleborn, 1895). Ich brauche deshalb nicht näher auf sie einzugehen. Jedoch möchte ich auf eine Eigentümlichkeit aufmerksam machen, welche gleichfalls dafür spricht, dass zwischen Blutgefäßsystem und Atmung ein Zusammenhang besteht. Betrachtet man den Gefässhof eines drei- oder viertägigen Hühner- oder Entenembryos, so fällt die zentrale Partie durch die Weite der Maschen gegenüber den engmaschigen peripheren Teilen auf. Der Übergang zwischen beiden Formen der Gefässanordnung ist fast unvermittelt, so dass die zentrale Partie ziemlich scharf abgegrenzt ist. Die Begrenzungslinie läuft fast genau parallel dem Umriss des Embryos, so dass man sagen kann, dass der vom Embryo bedeckte, von der Eischale abgedrängte und somit von der respiratorischen Funktion ausgeschlossene zentrale Teil der Area vasculosa beträchtlich gefässärmer ist als die peripheren Teile. Das gleiche Verhalten, wenn auch nicht so deutlich ausgesprochen, zeigen die Keimscheiben von Lacerta.

Es deuten die mitgeteilten Befunde einerseits darauf hin, dass das Kapillarnetz des Dottersackes bis zur Ausbildung der Allantois respiratorische Funktionen hat, andererseits zeugen sie für die innigen Beziehungen, welche zwischen allgemeiner Form des Blutgefäßsystems und Atmung bestehen.

Es wurde früher gezeigt, dass bei jungen Fisch- und Amphibienembryonen der Sauerstoff, dessen die einzelnen Zellen bedürfen, der Gewebsflüssigkeit auf dem Wege der Diffusion aus dem umgebenden Wasser zugeführt wird. Die Diffusion erfolgt also aus der einen Lösung in die andere.

Wesentlich anders liegen die Bedingungen für die Sauerstoffaufnahme bei den an der Luft sich entwickelnden Embryonen der Sauropsiden.

Das Ei, in welchem sich der Sauropsidenembryo entwickelt, besitzt eine poröse Kalk- oder lederartige äussere Schale, deren Innenfläche die membranöse Schalenhaut anliegt. Das Embryonalgebilde ist, ausser bei den Schildkröten, in den frühen Entwicklungsstadien von der Schalenhaut durch eine mehr oder weniger dünne Schicht einer Eiweisslösung getrennt.

Dass die äussere Schale für Sauerstoff durchgängig ist, ist eine schon vor langer Zeit durch Experimente festgestellte Tatsache. Es erhebt sich jedoch die Frage, in welcher Form der Sauerstoff durch sie hindurchtritt, ob in gasförmigem oder in gelöstem Zustande, d. h. nach vorheriger Absorption in Wasser. Diese Frage kann, glaube ich, einstweilen nicht endgültig entschieden werden, da es an speziellen Untersuchungen darüber fehlt. Es scheint auch, dass sich die verschiedenen Gruppen der Sauropsiden nicht ganz übereinstimmend verhalten, dass bei der einen der erste Modus eine wichtige Rolle spielt, bei der anderen der zweite, bei anderen wieder beide zusammen vorkommen. Auch scheint das Verhalten bei einer und derselben Form nicht während der ganzen Dauer der Entwicklung das gleiche zu bleiben. Da die Frage aber für den vorliegenden Gegenstand von einiger Bedeutung ist, so will ich wenigstens versuchen, einige Punkte zusammenzustellen, die eine annähernde Entscheidung zulassen.

Ob die Schale des Vogeleies bei intakter fenchter Kutikula für gasförmige Körper durchgängig ist, ist mir zweifelhaft. Dagegen scheint dies der Fall zu sein bei Schildkröten-, speziell Emyseiern. Wenigstens dürfte die Trübung der Kalkschale an der Stelle des "weissen Fleckes" auf dem Eindringen von Luft beruhen (Mehnert [1895], Fussnote S. 253/254, spricht von einer "Art physiologischer Eintrocknung"). Der "weisse Fleck" breitet sich im Verlaufe der Entwicklung immer weiter aus, bis schliesslich die ganze Eischale weiss, bezw. lufthaltig wird. — Bei Lacertaeiern scheint, wenn die Allantois sich an der Schale ausbreitet, ein gleicher Vorgang stattzufinden.

Da sich der "weisse Fleck" der Schildkröteneier an derjenigen Stelle der Schale findet, an welche sich von innen her das Embryonalgebilde unmittelbar angelagert hat, so könnte man daran denken, dass sein Zustandekommen auf eine spezifische Tätigkeit der Embryonalzellen zurückzuführen sei, wie man ja auch in letzter Zeit vielfach eine solche Tätigkeit der Epithelzellen in den Lungenalveolen bei der Sauerstoffaufnahme angenommen hat. Der Streit darüber, ob der Übertritt des Sauerstoffes aus der Luft bezw. dem Wasser in das Blut lediglich auf Grund physikalischer Gesetze erfolge, oder ob eine spezifische Tätigkeit der Zellen an der respirierenden Oberfläche notwendig sei, scheint sich auf Seite der Physiologen zugunsten der ersteren Auffassung zu entscheiden. Die Befunde an den Embryonen scheinen mir gleichfalls in diesem Sinne zu sprechen, doch könnten immerhin die erwähnten Erscheinungen an den Eiern von Emys vielleicht auch im entgegengesetzten Sinne gedeutet werden.

Mit grösserer Sicherheit als der Durchtritt von Gasen, lässt sich der von Flüssigkeiten behaupten. Schon der Umstand, dass für das Leben des Embryos ein gewisser Feuchtigkeitsgehalt der umgebenden Luft erforderlich ist, würde den Schluss erlauben, dass Wasser durch die Schale hindurch aufgenommen wird. Mit

Bestimmtheit lässt sich dieser Schluss ziehen aus der Gewichtsund eventuell Grössenzunahme des Eies während der Entwicklung. Sehr schön lassen sich diese Verhältnisse an den äusseren Veränderungen beobachten, welche die Eier von Lacerta agilis während ihrer Entwicklung aufweisen. Unter normalen Bedingungen nehmen diese Eier beträchtlich an Grösse zu, was durch die Elastizität der Schale ermöglicht wird. Wenn man nun die Eier anstatt in feuchtem Boden in feuchtigkeitsarmer Luft oder in trockenem Sande liegen lässt, so wird die vorher straff gespannte Eischale schlaff und bekommt Falten. Es geschieht dies ohne Zweifel infolge von Wasserabgabe. Ich glaube, dass diese Wasserabgabe auch unter normalen Bedingungen erfolgt, worauf ich weiter unten noch zurückkommen werde, nur wird sie normalerweise durch Wasseraufnahme kompensiert, ja, wie die allmähliche Vergrösserung des Eies und die Zunahme der Spannung der Eischale beweist, auch überkompensiert. Ich glaube also, dass nicht nur ständig Wasser aufgenommen wird, sondern, dass ein fortwährender Wasseraustausch stattfindet. Dabei ist allerdings für das Leben des Embryos wohl die Wasseraufnahme das Wichtigere, denn der Embryo vermag nur eine kurzdauernde und nicht sehr weitgehende Austrocknung ohne Schaden zu ertragen.

Auch bei dem Flüssigkeitswechsel erhebt sich, wie beim Gaswechsel, die Frage, ob aktive Beteiligung der Embryonalzellen dabei eine Rolle spielt. Mit Sicherheit kann ich soviel sagen, dass auch Eier, deren Embryonen abgestorben sind, wenn sie nur von der Infektion mit Mikroorganismen verschont bleiben, an Grösse allmählich zunehmen, was nur auf Wasseraufnahme zurückgeführt werden kann. Für eine rein auf physikalischen Gesetzen ohne aktive Beteiligung der Embryonalzellen vor sich gehende Wasseraufnahme spricht auch der Umstand, dass Eier, welche durch Austrocknung gefaltet waren, in Fixierungsflüssigkeit (z. B Pikrin-Sublimat) gebracht, gewöhnlich nach einigen Stunden wieder prall gespannt sind. Häufig habe ich dann beim Eröffnen der Eischale beobachtet, dass sich Flüssigkeit in beträchtlicher Menge zwischen Lederschale und innerer Schalenhaut befand, die infolgedessen abgehoben war. Es war jedoch stets auch Flüssigkeit durch die innere Schalenhaut hindurchgedrungen, wie die mit Pikrin-Sublimat inprägnierten Eihäute zeigten. Dass bei diesem Vorgange die Differenz im osmotischen Drucke der embryonalen und der Fixierungsflüssigkeiten eine wichtige Rolle spielt, ist wohl anzunehmen, doch muss ich hervorheben, dass die gleichen Erscheinungen auch auftreten, wenn man die Eier mit abgestorbenen Embryonen in eine 0,7 proz. Kochsalzlösung bringt.

Wichtig scheint mir auch der im Einnern herrschende hohe Druck zu sein, der besonders in den späteren Entwicklungsstadien eine beträchtliche

Höhe erreicht. Das normale Eidechsenei ist in einem Zustande, den man als "prall elastisch" zu bezeichnen pflegt. Eröffnet man die Eischale, so quillt sofort das äussere Blatt der Allantois bezw. bei dessen Verletzung die zähe Allantoisflüssigkeit hervor. Es wäre gewiss nicht sehr schwer, diesen Druck zu bestimmen. Er ist sicher sehr beträchtlich, wie aus folgender Beobachtung hervorgeht. In meinem Terrarium war ein unter einem Steine verborgenes Gelege unberührt geblieben. Als ich anfangs September - die jungen Eidechsen schlüpften 1-2 Wochen später aus - den Stein abhob, lagen die Eier fest aneinander gepresst und gegeneinander abgeplattet in einer Mulde im Sande darunter, und zwar die mittleren tiefer als die randständigen. Das ganze Gelege stand also sozusagen unter einem "Gewölbedruck". Als ich nun ein am Rande befindliches Ei herausnehmen wollte und es über den Rand der Mulde aufhob, schnellte das ganze Gelege unter der Erscheinung plötzlicher Druckentlastung mit einem Ruck in die Höhe und bedeckte nach dem Niederfallen eine beträchtlich grössere Bodenfläche, dadurch, dass die vorher gegeneinander abgeplatteten Eier rundliche Form annahmen.

Die Wasseraufnahme erfolgt auf Grund des hohen osmotischen Druckes der Lösungen im Einnern. In dem eben mitgeteilten Falle, in welchem die Eier zwischen hartem Boden und einem Steine gepresst lagen, muss die geleistete osmotische Arbeit einen höheren Wert gehabt haben als unter normalen Bedingungen. Es würde also diese Beobachtung zu dem Schlusse führen, dass den Eidechsenembryonen bis zu einem gewissen Grade die Fähigkeit der Osmoregulation zukäme.

Jedenfalls findet ständig Aufnahme von Wasser durch die Schale hindurch aus dem umgebenden feuchten Medium statt. Von allem anderen abgesehen könnte die Bedeutung dieser Erscheinung gerade für die Aufnahme des Sauerstoffes auf zwei Momenten beruhen: erstens auf der Möglichkeit, dass mit dem Wasser zugleich auch der in ihm absorbierte Sauerstoff in das Ei gelangt, und zweitens auf der Feuchthaltung der Oberfläche. besonders der inneren Schalenhaut. Auf den ersten Punkt werde ich weiter unten zurückgreifen. Den Wert des zweiten kann ich nicht besser charakterisieren, als mit den Worten Burdachs: "Schon Priestley erkannte, dass die Wechselwirkung von Luft und Blut weder durch eine angefeuchtete Blase, noch auch durch eine über letzterem stehende Schicht Serum gehindert wurde. . . . Mit Löschpapier abgetrockneter Blutkuchen rötet sich an der Luft weniger, als feuchter, und so scheint denn die Anfeuchtung der Luftröhrenzweige durch ihre wässrige Ausdünstung, wie auch ein gewisser Grad von Feuchtigkeit der Luft für das Atmen von Bedeutung zu sein, da auch die Endosmose von Gasen durch Feuchtigkeit begünstigt wird. Auch bei niederen Tieren sind

die Atmungsorgane immer feucht. Dies gilt von der Haut der Frösche und mancher Anneliden, inwiefern sie Luft atmen. Bei den Insekten geschieht die Atmung, da sie meist in trockner Luft leben, nicht an der Oberfläche sondern innerhalb der immer feuchten Luftröhren. Die Kiemen der Crustaceen sind bedeckt. so dass sie nicht leicht austrocknen, und geschieht dies, so sterben sie: manche Landkrabben haben nach Audouin und Milne Edwards verschiedene Organe, um Wasser aufzunehmen und zur Befeuchtung der Kiemen zurück zu behalten. Fische können Luft atmen und sterben in derselben, wenn ihre Kiemen trocken werden" (Bd. 6, S. 453 und 454). Mit modernen Worten würde man etwa sagen können, dass aus diesen Beobachtungen hervorgeht, dass eine tierische Membran — bei den Sauropsideneiern also zunächst die innere Schalenhaut - nur in feuchtem Zustande für Sauerstoffgas permeabel ist, d. h. also nur dann, wenn der Sauerstoff an ihrer Oberfläche gelöst werden kann.

Bevor ich nunmehr die Verhältnisse der Sauerstoffaufnahme der Sauropsidenembryonen erörtere und versuche, das frühzeitige Auftreten der Kapillarnetze mit ihnen in Zusammenhang zu bringen, muss ich noch kurz auf einen Unterschied in den Entwicklungsbedingungen der Anamnier und Amnioten hinweisen. der durch die Temperatur gegeben ist, unter welcher die Entwicklung abläuft. Die Bruttemperatur ist bei den Sauropsiden wesentlich höher, als bei den Amphibien und Fischen. Damit geht naturgemäss ein lebhafterer Stoffwechsel und somit ein höherer Sauerstoffbedarf einher. Bei Vögeln und Säugern ist die Bruttemperatur fast konstant, in den Embryonen brauchen also für die Aufrechterhaltung der Körpertemperatur keine besonderen Stoffumsetzungen stattzufinden, welche Sauerstoff erfordern, wie denn auch nach Prever (1885) die Embryonen bis gegen Ende der Fetalzeit die Fähigkeit der Wärmeregulierung gar nicht besitzen. Aus dem Minderbedarf an Sauerstoff gegenüber dem wärmeregulierenden geborenen Tiere erklärt sich auch der Umstand, dass der Embryo und Fetus mit gemischtem, d. h. nicht vollkommen arterialisiertem Blute leben kann. - Auch die Reptilienembryonen besitzen gewiss nicht die Fähigkeit, ihre Körpertemperatur durch Erhöhung des Stoffumsatzes konstant zu erhalten. Wohl aber scheinen sie, wie auch die erwachsenen

Reptilien, das Ansteigen der Körpertemperatur über ein gewisses Maß durch Wasserverdunstung verhindern zu können.

Dass die erwachsenen Reptilien eine, wenn auch unvollkommene, Fähigkeit besitzen, ihre Körpertemperatur innerhalb gewisser Grenzen zu regulieren, ist durch die Untersuchungen von Krehl und Soetbeer (1899) sichergestellt. Es liegt natürlich der Gedanke nahe, dass den Embryonen, besonders in vorgeschrittenen Entwicklungsstadien, wenn auch in geringerem Maße, diese Fähigkeit gleichfalls zukommt. Jedenfalls begegnet die Vorstellung, dass die Wärmeregulierung durch vermehrte oder verminderte Wasserausscheidung durch Verdampfung an der Oberfläche geschehen könnte, keiner prinzipiellen Schwierigkeit. Die Beobachtungen Mehnerts an Emyseiern (1895, S. 250 ss) scheinen mir dafür sprechen, und ich glaube auch aus meinen eigenen Beobachtungen an Lacertaeiern schliessen zu dürfen, dass der Wasserbedarf bei höherer Temperatur grösser ist. Sicher findet bei höherer Temperatur eine vermehrte Wasserabscheidung statt.

Ich glaube wenigstens beobachtet zu haben — leider habe ich versäumt, spezielle Versuche mit genauen Protokollen in dieser Richtung anzustellen —, dass bei höherer Aussentemperatur, auch unabhängig vom Feuchtigkeitsgehalte der Luft, die prall gespannten Eier in kürzerer Zeit schlaff werden, als bei niederer Temperatur.

Betrachtet man nach diesen Vorerörterungen die Möglichkeiten der Sauerstoffzufuhr an die Gewebsflüssigkeit und an die einzelnen Zellen des Sauropsidenembryos, so ergeben sich deren zwei, welche als die unmittelbare und die mittelbare Sauerstoffzufuhr bezeichnet werden können. Für beide Arten ist gemeinsam der Weg des Sauerstoffes durch die äussere Schale und die innere Schalenhaut. Die letztere stellt jedenfalls die Membran dar, an deren Oberfläche der Sauerstoff gelöst werden muss, um in die Eiweisslösung usw. zu diffundieren. Es erscheint deshalb als eine Erleichterung des Diffusionsvorganges, wenn er bereits in gelöster Form an sie herantritt, mit anderen Worten, die oben behauptete Möglichkeit der Sauerstoffaufnahme bei dem Wasseraustausche des Eies gewinnt unter diesem Gesichtspunkte eine grosse Bedeutung.

Durch die Schalenhaut hindurch gelangt der Sauerstoff bei der ersten der aufgestellten Möglichkeiten in die unter ihr be-

findliche Eiweisslösung, aus dieser in jungen Embryonalstadien an das äussere Keimblatt und durch dieses an das innere - die Dotterhaut kann dabei ausser Betracht gelassen werden, da sie sich wie die übrigen Membranen verhält -, in den älteren Stadien zunächst noch durch das Amnion in die Amnionflüssigkeit und aus dieser zu den Zellen des Keimes. Dies wäre der Modus bei der "unmittelbaren" Sauerstoffzufuhr an die embryonalen Zellen. Bei den Schildkröten, deren Keim sich der Schalenhaut dicht anlegt, fällt der Weg durch die Eiweisslösung natürlich weg. -Die "mittelbare" Sauerstoffzufuhr erfolgt in der Weise, dass der Sauerstoff zunächst in der Area vasculosa, in späteren Stadien im äusseren Blatte der Allantois von dem Blute aufgenommen, durch die Venen in das Herz und von da aus in die embryonalen Gefässe geführt wird, aus denen er in die Gewebsflüssigkeit gelangt. Während des weitaus grössten Teiles der Entwicklungszeit findet die "mittelbare" Sauerstoffzufuhr statt, - der ausschliessliche Modus ist sie von der Zeit an, zu welcher die Allantois den Dottersack annähernd vollständig umwachsen hat. Bis zu diesem Zeitpunkte kann auch der erste Modus noch fortbestehen. vielleicht auch noch länger, insofern als die Möglichkeit gegeben ist, dass aus der Amnionflüssigkeit der Sauerstoff unmittelbar aufgenommen wird, der vielleicht durch Diffusion aus den Amnionoder benachbarten Allantoisgefässen 1) in sie gelangt ist.

Vielleicht steht mit der unmittelbaren Sauerstoffaufnahme der Lückenreichtum des äusseren Keimblattes in Zusammenhang, welcher die Bezeichnung "Leiterepithel" veranlasste (Näheres siehe bei Mehnert, 1895, S. 208 ss), vielleicht auch, wenigstens zum Teil, die Erscheinung der "gefässlosen Zone" unter dem Ektoderm, auf welche besonders Evans (1909, S. 296) hingewiesen hat.

Die mittelbare Sauerstoffversorgung durch Vermittlung des Blutes spielt, besonders, wenn man das frühzeitige Auftreten der Kapillarnetze mit in Betracht zieht, schon in viel früheren Stadien und in viel grösserem Umfange eine Rolle, als bei den Fisch-

¹⁾ An die dem Amnion benachbarten Gefässe des inneren Allantoisblattes ist hier deshalb zu denken, weil die Sauerstoffversorgung der Membrana amnii offenbar von ihnen aus geschieht. Denn diese erhält eigene Gefässe beim Hühnerembryo (Fülleborn, 1895, S. 13) erst sehr spät und nur unvollkommen, da eine bestimmte Zone gefässlos bleibt. Bei Lacertaembryonen habe ich bisher überhaupt keine Amniongefässe gefunden, doch habe ich von den allerletzten Entwicklungsstadien noch keine Injektionspräparate untersuchen können.

und Amphibienembryonen. Offenbar ist dies in erster Linie bedingt durch die höhere Temperatur. Mit der Steigerung der Temperatur steht einerseits, wie schon oben erwähnt wurde, ein grösserer Sauerstoffbedarf im Zusammenhange. Andererseits wird aber das Absorptionsvermögen des Wassers für Sauerstoff herabgesetzt. Dies trifft in noch höherem Maße für die Blut- und die Gewebsflüssigkeit zu, da in diesen schon an sich weniger Sauerstoff absorbiert wird, als in Wasser. (Siehe z. B. die Tabelle bei Loewy, 1911, S. 14.) Es trifft also höherer Sauerstoffbedarf mit geringerem Absorptionsvermögen der embryonalen Flüssigkeiten für Sauerstoff zusammen. Von dieser Erwägung aus wird das frühzeitige Auftreten eines Atmungsorganes in Gestalt der Area vasculosa und die Ausbildung von Kapillarnetzen im Embryo zur Erleichterung des Gaswechsels bei den Sauropsidenembryonen gegenüber denen der Fische und Amphibien verständlich, also auch hier wieder ein Hinweis auf die engen Beziehungen zwischen Art der Sauerstoffaufnahme und Blutgefäßsystem.

Ich habe eben dafür, dass Kapillarnetze im Sauropsidenembryo schon in sehr frühen Stadien auftreten, nur die höhere Bruttemperatur herangezogen. Es kommt aber sicherlich noch ein weiteres Moment in Betracht, welches allerdings vorwiegend das Kapillarsystem der Allantois betrifft. Wenn man die "respiratorischen Kapillarnetze" bei den erwachsenen Formen betrachtet, so findet man, dass sie am höchsten entwickelt sind, wenn es sich um die Aufnahme des Sauerstoffes aus atmosphärischer Luft handelt. Die Befunde sprechen dafür, dass der Übertritt des Sauerstoffes aus Luft in Blut schwieriger erfolgt als aus Wasser in Blut. Ob das lediglich daraus erklärt werden könnte, dass dabei der Sauerstoff erst an der feuchten Oberfläche, z. B. der Lungenalveolen, gelöst werden muss, ehe er durch die verschiedenen Membranen bis zum Blute diffundieren kann, wobei ein gewisser Druck (Bohrs "Differenzdruck") aufgewendet werden muss, der also von der Differenz der Sauerstoffpartialdrucke in Alveolarluft und Blut zu subtrahieren ist, scheint mir sehr zweifelhaft. Die anatomischen Befunde sprechen dafür, dass überhaupt die Diffusion des Sauerstoffes aus einer Lösung in die andere, z. B. aus Wasser in die Gewebsflüssigkeit eines Perennibranchiaten, leichter von statten geht, als aus Luft in eine Lösung: eine Erscheinung, welche den Physikern vielleicht

längst bekannt ist. Insofern befindet sich jedenfalls der Sauropsidenembryo in einer ungünstigeren Lage als der Fischembryo, und deshalb habe ich auch die Möglichkeit betont, dass der Sauerstoff schon in gelöster Form mit dem Wasser in das Ei gelangt.

Noch ist daran zu denken, dass der hohe hydrostatische Druck im Eiinnern, der ja wesentlich höher ist als der atmosphärische, die Diffusion des Sauerstoffes erschweren könnte.

Ehe ich die für die späteren Abschnitte wichtigen Resultate zusammenfasse, habe ich zur Ergänzung noch auf einige Punkte hinzuweisen. Die Erschwerung der Sauerstoffbeschaffung kann auch ohne Änderung des allgemeinen Charakters des Blutgefässsystems kompensiert werden durch Vergrösserung der respirierenden Oberfläche, z. B. bei den lebendig gebärenden Urodelen durch Vergrösserung der Kiemen. Es erklärt sich diese Ausnahme wohl dadurch, dass die Viviparität eine sekundäre Erwerbung ist.

Nicht unerwähnt darf ich ferner lassen, dass eine Anurenform bekannt ist, deren Larven in ihren embryonalen Atmungsorganen ein echtes respiratorisches, engmaschiges Kapillarnetz aufweisen, ähnlich dem in der Allantois der Sauropsiden. Ich habe dabei die merkwürdigen Kiemenanhänge der Embryonen des südamerikanischen Beutelfrosches, Nototrema oviferum, im Auge, welche sich an die Wand der unter der Rückenhaut des Weibchens befindlichen Bruttasche anlegen. Leider sind die Kenntnisse über diese Embryonen (Weinland [1854]) und die der übrigen brutpflegenden Batrachier (Brandes und Schoenichen [1901]) nur sehr lückenhaft. Dies ist um so mehr zu bedauern, als wir ganz allgemein über das Blutgefässsystem der Embryonen aller tropischen Formen gar nichts wissen. Nach dem, was oben über den indirekten Einfluss höherer Temperatur auf den allgemeinen Charakter des Gefäßsystems ausgeführt wurde, wäre es sehr wichtig und interessant, in dieser Hinsicht Näheres über die Embryonen, besonders der Amphibien und Fische, zu erfahren, die sich in den Tropen entwickeln.

Die Embryonen der Säuger habe ich absichtlich bei den vorausgegangenen Erörterungen nicht berücksichtigt. So nahe es liegt, bei ihnen ähnliche Beziehungen zwischen Blutgefässsystem und Sauerstoffversorgung anzunehmen, wie bei den Sauropsiden, so muss doch berücksichtigt werden, dass die allgemeine Anordnung des Gefäßsystems, wie viele andere Eigentümlichkeiten der Säugerentwicklung, lediglich durch die Abstammung von reptilienähnlichen Vorfahren und nicht durch die Art der Sauerstoffaufnahme bedingt sein könnte. Die Reichweite dieses Momentes aber abzuschätzen, scheint mir vorläufig nicht möglich.

Die tierische Zelle deckt ihren Sauerstoffbedarf aus dem umgebenden Medium, welches stets eine Lösung ist: entweder aus dem Wasser, in welchem das Tier lebt, oder aus der Gewebsflüssigkeit. Der Gewebsflüssigkeit wird der Sauerstoff zugeführt, entweder unmittelbar aus dem das Tier umgebenden Wasser oder mittelbar, durch Vermittlung des Blutes, aus dem umgebenden Wasser oder der atmosphärischen Luft. Bei denjenigen Tierformen, insbesondere bei den Embryonen, bei welchen der Sauerstoffbedarf der Zellen und der Gewebsflüssigkeit grossenteils unmittelbar aus dem umgebenden Wasser gedeckt werden kann. findet sich ein sehr einfaches Blutgefäßsystem. Mit hohem Sauerstoffbedarf der Zellen und gleichzeitig bestehender Unmöglichkeit. diesen auch nur annähernd hinreichend unmittelbar zu decken, findet sich ein kompliziertes Gefäßsystem. Weiterhin werden stets zusammen angetroffen: Lokalisation der Sauerstoffaufnahme auf einen umschriebenen Körperbezirk und komplizierte Anordnung der Blutgefässe dieses Bezirkes. Aufhören der respiratorischen Funktion eines Bezirkes und Einfachwerden seines Gefäßsystems.

Aus diesen immer wiederkehrenden Formen typischen Zusammentreffens darf wohl der Schluss gezogen werden, dass zwischen Blutgefäßsystem und Atmung enge Beziehungen bestehen, der Art, dass die allgemeine Anordnung des Gefässsystems im wesentlichen abhängig ist von der Grösse des Sauerstoffbedarfes der einzelnen Zellen und von der Möglichkeit, diesen Bedarf zu decken. ¹)

Dafür, dass auch andere Momente als die Atmung Einfluss auf die Gestaltung des Blutgefäßsystems haben, genügt der Hinweis auf die Gefässformation, welche durch einen Nierenglomerulus dargestellt wird. Es dient das Blut und damit das Gefäßsystem

¹) Hiervon werden die speziellen Anpassungen des Blutgefäßsystems der Wassersäuger an das lang anhaltende Tauchen (grosse Weite des ganzen Gefäßsystems, Wundernetze etc.) natürlich nur teilweise berührt.

ja nicht ausschliesslich der Respiration, und seine allgemeine Anordnung ist gewiss beeinflusst durch viele Funktionen des Blutes zugleich. Aber unter allen diesen nimmt die respiratorische die erste und massgeblichste Stelle ein.

Wenn ich somit auf das Bestimmteste den Einfluss der respiratorischen Funktion des Blutes auf die allgemeine Anordnung des Gefäßsystems feststelle, so möchte ich mich doch ausdrücklich dagegen verwahren, dass damit etwa ein streng kausales Verhältnis ausgesprochen werden soll, in dem sich Sauerstoffbedarf und Blutgefäßsystem verhalten wie Ursache und Wirkung. Es ist keineswegs so zu denken, dass jeweils bei dem sich entwickelnden Embryo der etwa eintretende Sanerstoffmangel der Zellen das Auftreten von Blut, Blutgefässen und Kreislauf bedingt, dass also die Ausbildung eines Blutgefäßsystems an den Sauerstoffbedarf bezw. -Mangel der Zellen geknüpft ist, wie etwa bei einer Reihe von Amphibien die Bildung der Linse an die Berührung des Ektoderms durch die Augenblase. Deshalb erscheint es mir auch, besonders im Hinblick auf die S. 251 erwähnten Verhältnisse bei viviparen Urodelen, aussichtslos, etwa auf dem Wege des Experimentes einen Fischembryo zur Bildung eines von Anfang an mit Kapillarnetzen versehenen Gefäßsystems veranlassen zu wollen, wie es ein Vogelembryo zeigt. Man muss sich also einstweilen damit begnügen, festzustellen, dass der respiratorischen Funktion des Blutes im Laufe der Phylogenese ein bestimmender Einfluss auf das Gefäßsystem zugekommen ist. über dessen Vermittlungsweise freilich vorläufig nichts Sicheres ausgesagt werden kann.

Für die vorliegenden Fragen ist das Wichtigste, dass es verständlich erscheint, warum der Sauropsiden- und Säugerembryo von vornherein ein durch Kapillarnetze kompliziertes Gefäßsystem aufweist.

Literaturverzeichnis.

Das im Erscheinen begriffene "Handbuch der vergleichenden Physiologie", herausgegeben von Winterstein, konnte ich leider nicht benutzen, da die betreffenden Teile noch nicht vollständig vorlagen.

- 1828 37. v. Baer, K. E.: Über Entwicklungsgeschichte der Tiere.
- 1855. Bergmann und Leuckart: Anatomisch-physiologische Übersicht des Tierreiches. Neue Ausgabe.
- 1898. Bethge, Emil: Das Blutgefäßsystem von Salamandra maculata. Triton taeniatus und Spelerpes fuscus; mit Bemerkungen über den Ort der Atmung beim lungenlosen Spelerpes fuscus Zeitschr. f. wiss. Zool., Bd. 63.
- 1882. Boas, J. E. V.: Über den Conus arteriosus und die Arterienbogen der Amphibien. Morph. Jahrb., Bd. 7.
- 1901. Brandes, G. und Schoenichen, W.: Die Brutpflege der schwanzlosen Batrachier. Abhandl. d. Naturforsch. Ges. zu Halle, Bd. 22.
- 1835 40. Burdach, K. F.: Die Physiologie als Erfahrungswissenschaft 1. und 2. Aufl, 6 Bde.
- 1841. Calori, Luigi: Sulla anatomia dell' Axolotl. 4 Taf. Memorie della Accad. della Scienze dell' Istituto di Bologna, Tom. 3, S. 269-361.
- 1896. Camerano: Nuove ricerche intorno di Salamandridi normalmente apneumoni. Atti della R. Accad. delle Scienze di Torino, Vol. 31.
- 1853. Carus, J. Viktor: System der tierischen Morphologie.
- 1909. Clark, Elliot R.: Observations on living growing Lymphatics in the tail of the frog larva. Anat. Record. Vol. 3.
- 1819. Configliachi e Rusconi: Del Proteo anguino di Laurenti Monografia.
- 1909. Evans, Herbert M.: On the earliest blood-vessels in the anterior limb buds of birds and their relation to the primary subclavian artery. 20 Fig. Americ. Journ. of Anatomy. Vol. 9, S. 281-319.
- 1909 a. Derselbe: On the development of the Aortae, cardinal and umbilical veins and the other blood vessels of vertebrate embryos from capillaries. Anat. Record, Vol. 3.
- 1911. Derselbe: Die Entwicklung des Blutgefäßsystems. Handb. d. Entw. d. Menschen, herausgeg. v. Keibel u. Mall, Bd. 2.
- 1895. Fülleborn, F.: Beiträge zur Entwicklung der Allantois der Vögel. Diss. med. Berlin.
- 1912. Hertwig, Richard: Lehrbuch der Zoologie. 10. Aufl.
- 1888. Hochstetter, F.: Beiträge zur vergleichenden Anatomie und Entwicklungsgeschichte der Amphibien und Fische. Morph. Jahrb., Bd. 13.
- 1891. Derselbe: Über die Entwicklung der Extremitätenvenen bei den Amnioten. Morph. Jahrb., Bd. 17.
- Derselbe: Die Entwicklung des Blutgefäßsystems. Hertwigs Handb. d. Entwicklungsl., Bd. 3, 2. Teil.
- 1838. Hyrtl, Jos.: Beobachtungen aus dem Gebiete der vergleichenden Gefässlehre. Med. Jahrb. d. österr. Staates, Bd. 24 (N. F. Bd. 15), Wien.

- 1907. Knower, H. Mc. E.: Effects of early removal of the heart and arrest of the circulation on the development of frog embryos. Anat. Record, Nr. 7, Amer. Journ. of Anat., Vol. 7, Nr. 3
- 1899. Krehl und Soetbeer: Untersuchungen über die Wärmeökonomie der poikilothermen Wirbeltiere. Pflügers Arch. f. d. ges. Phys., Bd. 77.
- 1893. Loeb, Jacques: Über die Entwicklung von Fischembryonen ohne Kreislauf. Pflügers Arch. f. d. ges. Phys., Bd. 54.
- 1911. Loewy, A.: Die Gase des Körpers und der Gaswechsel. Oppenheimers Handb. d. Biochemie, 4. Bd., 1. Hälfte.
- 1895. Mehnert, E.: Über Entwicklung, Bau und Funktion des Amnion und Amnionganges nach Untersuchungen an Emys lutaria taurica (Marsilii). Morph. Arbeiten, herausgeg. von G. Schwalbe, Bd. 4.
- 1902. Moroff, Theodor: Über die Entwicklung der Kiemen bei Knochenfischen. Arch. f. mikr. Anat., Bd. 60.
- 1829. Müller, Johannes: Über den sichtbaren Kreislauf des Blutes in der Leber junger Salamanderlarven. Meckels Arch. f. Anat. u. Phys., Bd. 4.
- 1832. Derselbe: In Burdachs Physiologie als Erfahrungswissenschaft. Bd. 4.
- 1826. Oesterreicher, J. Heinrich: Versuch einer Darstellung der Lehre vom Kreislaufe des Blutes. Nürnberg.
- 1910. Oppel, A.: Über die gestaltliche Anpassung der Blutgefässe, unter Berücksichtigung der funktionellen Transplantation. Mit einer Originalbeigabe von Professor W. Roux, enthaltend seine Theorie der Gestaltung der Blutgefässe einschliesslich des Kollateralkreislaufes. Vorträge u. Aufsätze über Entw.-Mech. d. Organ., herausgegeben von W. Roux, H. 10.
- 1894. Popoff, D.: Die Dottersackgefässe des Huhnes.
- 1885. Preyer, W.: Spezielle Physiologie des Embryo.
- 1906. Rückert, J.: Die Entwicklung von Blut und Gefässen der Selachier. Hertwigs Handb. d. Entwicklungsl., Bd. 1, Teil 1, 2. Hälfte.
- 1817. Rusconi, Mauro: Descrizione anatomica degli organi della circolazione delle larve delle Salamandre acquatiche.
- 1885. Ryder, John A.: On the development of viviparous osseous fishes and of the atlantic salmon. Proc. United States National Museum.
- 1886. Derselbe: On the development of the osseous fishes, including marine and fresh-water forms. Annual Report of the Commissioner of Fish and Fisheries for 1885, Washington.
- 1892. Schulze, Fr. Eilh.: Über die inneren Kiemen der Batrachierlarven.
 2. Mitteilung. Skelett, Muskulatur, Blutgefässe, Filterapparat, respiratorische Anhänge und Atmungsbewegungen erwachsener Larven von Pelobates fuscus. Abhandl. Königl. Akad. Wiss., Berlin, phys.-math. Kl., Abt. 3.
- 1894. Semon, R.: Die Embryonalhüllen der Monotremen und Marsupialier. Eine vergleichende Studie über die Foetalanhänge der Amnioten. Zool. Forschungsreisen i. Australien, Bd. 2 (Denkschr. d. med.-naturw. Ges., Jena, Bd. 5).

- 256 Curt Elze: Studien zur allgemeinen Entwicklungsgeschichte etc.
- 1912. Trendelenburg, Paul: Über die Sauerstofftension im Blute von Seefischen. Zeitschr. f. Biol., Bd. 57.
- 1842. Vogt, C.: Embryologie des Salmones. Histoire naturelle des poissons d'eau douce par L. Agassiz, Livr. 2. Neuchâtel.
- 1904. de Vriese, Bertha: Sur la signification morphologique des artères cérébrales. Archives de biologie, T. 21.
- 1854. Weinland, Dav. Friedr.: Über den Beutelfrosch. Müllers Arch. f. Anat., Phys. u. wiss. Med., Jahrg. 1854.
- 1886. Wenckebach, K. F.: Beiträge zur Entwicklungsgeschichte der Knochenfische. Arch. f. mikr. Anat., Bd. 28.

Erklärung der Abbildungen auf Tafel XV.

Drei Stadien der Entwicklung von Lacerta agilis. Blutgefässe nach der Methode von H. M. Evans mit chinesischer Tusche injiziert. Photogramme ohne Retouche. Vergrösserung: 15 fach.

Abkürzungen:

All. = Allantois.

All, äuss. Bl. = Gefässnetz im äusseren Blatte der Allantois.

All. inn. Bl. := Gefässnetz im inneren Blatte der Allantois.

Dott. = Gefässnetz des Dottersackes.

- Fig. 1 und 2. Vom Dottersack abpräparierte Keimscheiben. Aufnahmen mit durchfallendem Licht. Fig. 1 von der Ventral-, Fig. 2 von der Dorsalseite.
- Fig. 3. Embryo in den Eihüllen. Das äussere Blatt der Allantois ist bei dem Herausnehmen aus der Eischale verletzt worden und hat sich bei der Konservierung zurückgezogen, so dass das innere Blatt und durch dieses hindurch der Dottersack und die Amnionhöhle mit dem Embryo teilweise sichtbar sind. — Aufnahme mit auffallendem Licht.

Aus dem Biologischen Laboratorium der Universität Bonn.

Experimentelle und histologische Studien an Turbellarien.

I. Mitteilung.

Heteromorphose und Polarität bei Planarien.

Von

Paul Lang.

Hierzu Tafel XVI.

Seit dem Abschluss einer im vorigen Jahre veröffentlichten experimentellen und histologischen Arbeit über Regeneration bei Planarien (2) habe ich mich noch weiter mit der Lösung von Fragen beschäftigt, die auf experimentellem Wege an diesen Tieren fruchtbare Ergebnisse versprechen. Und da ich auch fernerhin diese Arbeiten noch einige Zeit weiterzuführen gedenke, wähle ich diese Form, um einige Versuchsreihen zu veröffentlichen, die während des Winters 1912/13 im hiesigen Laboratorium durchgeführt wurden.

T. H. Morgan (4), der überhaupt die Planarien zu einem "klassischen" Versuchsobjekt der experimentellen Morphologie gemacht hat, konnte auch zum ersten Mal (1898) unzweifelhafte "Heteromorphosen" bei diesen Tieren feststellen; denn diejenigen an Planarien künstlich erzeugten Bildungen, die van Duyne (1) als "Heteromorphosen" bezeichnet hatte, waren, wie W. Voigt (7) zum mindesten sehr wahrscheinlich machte, nur verlagerte, aber durchaus polar regenerierte Kopf- und Schwanzbildungen, waren also keine "Heteromorphosen" im Sinne van Duynes und Morgans, bei denen der Begriff der Heteromorphose den der Polarität einschloss.

Nun sind freilich, wie insbesondere M. Nussbaum (5 und 6) hervorgehoben hat, "Heteromorphose" und "Umkehrung der Polarität" an und für sich zwei ganz verschiedene Begriffe. Loeb (3) hat den Begriff der Heteromorphose in die experimentelle Morphologie eingeführt mit der Definition, sie sei eine Erscheinung, bei der an Stelle eines Organs ein nach Form und Lebens-

erscheinungen typisch anderes Organ tritt. Natürlich ist in dieser Definition zunächst von Polarität keine Rede; und trotzdem wird die Polarität der Polypen, bei denen Loeb die Heteromorphose beobachtete, für diese Erscheinung verantwortlich gemacht. Nun machte M. Nussbaum (5) darauf aufmerksam, dass die Polarität, die den Polypen sicher zukommt, doch bei der Regeneration wahrscheinlich gar nicht zur Geltung kommen kann. Bei der Regeneration befinden sich die Polypen in einem Hungerzustand; es geht demgemäss eine grosse Zahl von Zellen zugrunde und dient anderen zur Nahrung. Diejenigen Zellen aber, die erhalten bleiben und das Regenerat aufbauen, müssen, ehe sie dazu befähigt sind, ihre histologische Differenzierung, also insbesondere auch ihre Polarität verlieren. Wir haben also in der Regenerationszone eine Zellenmasse vor uns, deren einzelne amöboide Elemente keine Polarität aufweisen. "Diese Zellen orientieren sich erst unter dem Einfluss der äusseren Bedingungen zur Zeit ihrer geweblichen Differenzierung" (5, S. 90). Es ist daher nicht a priori sicher, dass in dem neu regenerierten Teil dieselbe Polarität auftritt, wie sie vor der Operation dort herrschte. Denn: "Die Umwandlung der Polarität vollzieht sich . . . nicht an einem Gewebe mit polarer Differenzierung, sondern an einem embryonalen Zellhaufen, der noch in keiner Weise polarisiert ist" (6, S. 131). Es wird also nach dieser Nussbaumschen Theorie der Heteromorphose und Polarität hauptsächlich von den äusseren Bedingungen abhängen, welcher Art die Polarität ist, die in dem neuen Regenerat auftritt. Diese äusseren Bedingungen aber kann man bis zu einem gewissen Grade experimentell abändern.

Dass nun die Erscheinungen der "heteromorphen" Köpfe bei Planarien zunächst Heteromorphosen im Loebschen Sinne sind, kann nicht zweifelhaft sein. Ob man dagegen berechtigt ist, bei diesen Köpfen von einer Umkehr der Polarität zu sprechen, scheint mir zum mindesten recht zweifelhaft zu sein. Die Ausführungen Nussbaums über die Regeneration bei Polypen können zum Teil auch auf Planarien angewendet werden. Auch bei den Planarien bildet sich an der Wundfläche zuerst ein Regenerationskegel, der wesentlich aus Zellen besteht, die einen mehr oder weniger embryonalen Charakter angenommen haben. Bei diesen Zellen hat man keinen Anhaltspunkt von Polarität zu sprechen. Wenn daher aus diesem Material ein "heteromorpher" Kopf ge-

bildet wird, so darf man füglich nicht ohne weiteres sagen, er stelle eine Umkehrung der Polarität dar. Weshalb sich in diesem Falle, wenn der Kopf direkt hinter den Augen abgeschnitten wird, ein Kopf und nicht das abgetrennte Hinterende bildet, dies ist dann eine besondere Frage, die nicht identisch ist mit der anderen Frage, ob der Körper der Planarie polar differenziert ist oder nicht. Diese beiden Probleme müssen, wie mir scheint, scharf auseinandergehalten werden.

Nehmen wir einmal an, die Bedingungen seien bekannt, unter denen sich bei dem genannten Experiment ein Kopf entwickelt. Dass dann der sich an dem hinter den Augen abgeschnittenen Kopf entwickelnde "heteromorphe" Kopf in bezug auf eine durch ihn gelegte Längsachse die umgekehrte Richtung einnehmen muss, wie der alte Kopf, ist nach meiner Auffassung selbstverständlich; diese Richtung ist eben rein mechanisch bedingt. Es ist ja in dem gegebenen Falle nach hinten die einzige Wachstumsmöglichkeit. Was auch immer an dem hinter den Augen abgeschnittenen Kopf regeneriert werden mag, stets muss es in derselben Richtung, nämlich nach hinten in bezug auf den alten Kopf wachsen, ob es nun ein Schwanz ist oder ein Kopf oder nicht unterscheidbares Gewebe.

Die im Folgenden mitgeteilten Untersuchungen dürften zur Lösung des Problems der Heteromorphose und der Polarität wesentlich beitragen.

Die Experimente und der gefundene Tatbestand waren kurz folgende: Zur Operation diente Planaria polychroa. Es wurden die Planarien direkt hinter den Augen senkrecht zur Längsrichtung durchschnitten. Die Regeneration der abgeschnittenen Köpfe wurde kontinuierlich von Tag zu Tag verfolgt. Einige von diesen Köpfen regenerierten Schwänze, die meisten aber bekamen typische "heteromorphe" Köpfe. Die ersten "heteromorphen" Augen erschienen etwa 3 Wochen nach der Operation. Diese "heteromorphen Köpfe" wurden nun weiter täglich unter dem Mikroskop beobachtet. Nach einiger Zeit (meistens nach mehreren Wochen, seltner schon nach 1 Woche) wurde nun die auffallende Beobachtung gemacht, dass bei vielen heteromorphen Köpfen an der rechten oder linken Seite ein Schwänzchen hervorsprosste. Diese Schwanzanlage entsteht an der Stelle, wo der alte Kopf mit dem "heteromorphen" zusammenstösst. Die Stelle

kann man an der Pigmentierung scharf bestimmen, besonders wenn man die Tiere täglich beobachtet. Es fragt sich nun zunächst, entstammt der Schwanz dem alten oder dem "heteromorphen" Kopf? Soweit sich ohne Schnitte entscheiden lässt, liefern beide Köpfe Material zu seinem Aufbau. Ich schliesse das aus den Bildern, die ich bei kontinuierlicher Beobachtung sah und aus dem Umstand, dass sich die hellere Pigmentierung des "heteromorphen" und die dunklere des alten Kopfes je zur Hälfte auf den Schwanz fortsetzen. Das wird durch Schnitte bestätigt (siehe unten). Der Schwanz wuchs nun heran, natürlich auf Kosten des vorhandenen Materials, da die Tiere keine Nahrung aufnehmen konnten. Nach einiger Zeit erschien in dem Schwanz ein deutlicher Pharynx.

Es sollen nun zunächst die Protokolle der Untersuchung besprochen werden. Die Versuche wurden ausgeführt im Winter 1912 13. Durch eine Infektion wurden fast alle Versuchstiere nach 2—3 Monaten vernichtet, so dass noch mehrere Probleme weiter zu verfolgen bleiben. Der wichtigste Punkt in der ganzen Frage konnte aber in der gegebenen Zeit schon festgestellt werden. Die Versuche sofort (Januar 1913) wiederaufzunehmen, wurde ich teils durch Mangel an Material, teils durch andere Arbeiten verhindert. Inzwischen sind aber wieder einige Versuchsreihen in Angriff genommen.

Wie erwähnt, wurden die Versuche einfach so ausgeführt, dass die Tiere direkt hinter den Augen quer durchschnitten wurden. Die Köpfe kamen in Schalen mit Leitungswasser. Sehr wichtig erscheint mir, dass alle Köpfe täglich beobachtet wurden. Aus dem dabei geführten Protokoll gebe ich einen kurzen Auszug:

H K 1.

- 5. November. 7 Köpfe hinter den Augen abgeschnitten.
- November. 3 Köpfe haben Schwänze entwickelt, 2 haben weder heteromorphen Kopf noch Schwanz, 2 sind eingegangen.
- Dezember. Von den 2 "unentschiedenen" Köpfen ist einer eingegangen. Der andere zeigt heute zum erstenmal einen deutlichen Schwanz.

H K 2.

- 5. November. 5 Köpfe hinter den Augen abgeschnitten.
- 26. November. 3 Köpfe haben heteromorphe Augen; die 2 anderen unentschieden.

- November. Einer der 2 "unentschiedenen" Köpfe hat einen Schwanz entwickelt.
- 1. Dezember. 1 het. Kopf eingegangen. Die beiden anderen werden zu einem anderen Versuch gebraucht.
- Januar. Der noch übrige Kopf ist noch immer "unentschieden". Ein Regenerationskegel ist nicht mehr zu sehen, aber auch kein Schwanz. Der Kopf kriecht nach vorn.
- 2. Januar. Eingegangen.

H K 3.

- 5. November. 6 Köpfe hinter den Augen abgeschnitten.
- 26. November: 2 Köpfe mit Schwanz, 2 mit het. Augen (Fig. 1), 2 eingegangen.
- 30. November. 1 het. Kopf zu anderem Versuch gebraucht.
 - Dezember. Der übrige het. Kopf scheint an der Seite zwischen den alten und den het. Augen einen Schwanz mit Pharynx zu entwickeln.
- Dezember. Pharynx nicht mehr zu sehen. Der het. Teil des Kopfes etwas seitlich nach hinten ausgezogen (Fig. 1 a). Ob daraus ein Schwanz wird, ist zweifelhaft.
- 9. Dezember. Das rechte het. Auge ist nicht mehr zu sehen.
- Dezember. Das rechte het. Auge heute wieder ganz schwach gesehen.
- 14. Dezember. Eingegangen.

H K 4.

- 6. November. 5 Köpfe hinter den Augen abgeschnitten.
- 26. November. 4 het. Köpfe.
- 29. November. 1 het. Kopf hat nicht nur 2 het. Augen mit hellen Höfen, sondern noch 1 het. "Nebenauge".

H K 8.

- 8. November. 6 Köpfe hinter den Augen abgeschnitten.
- 26. November. Mehrere het. Köpfe entwickelt (Fig. 2).
- 2. Dezember. Ein het. Kopf bildet an der rechten Seite einen Schwanz, dort, wo das dunkel pigmentierte Gewebe des alten Kopfes an das hell pigmentierte des het. Kopfes anstösst (Fig. 2a). Der kleine Schwanz ist zur Hälfte dunkel, zur Hälfte hell pigmentiert, scheint also zur Hälfte von dem alten Kopf sein Gewebe bezogen zu haben, zur anderen Hälfte von dem het. Kopf.

- Dezember. Der seitliche Schwanz wird grösser. Zwei andere Köpfe eingegangen.
- Dezember. Die het. Augen haben helle Höfe bekommen, der seitliche Schwanz ist weitergewachsen (Fig. 2b). Die Pfeile deuten die Richtung an, in der sich die 3 Teile zu bewegen suchen.
- Dezember. Die het. Augen haben fast die Grösse der alten Augen erreicht.
- 14. Dezember. Eingegangen.

H K 10.

- 8. November. 10 Köpfe hinter den Augen abgeschnitten.
- November. Mehrere het. Köpfe (Fig. 5). Einige Köpfe eingegangen.
- 3. Dezember. 1 het. Kopf entwickelt an der Seite einen Schwanz.
- Dezember. In dem seitlichen Schwanz erscheint ein Pharynx (Fig. 5a). 2 andere het. Köpfe zeigen je 1 het. "Nebenauge".
- 7. Dezember. Die het. Nebenaugen zeigen hellen Hof. Einer von diesen Köpfen beginnt ebenfalls Schwanzbildung
- Dezember. 1 het. Kopf mit seitlichem Schwanz in Sublimat abgetötet und auf Schnitten untersucht (wird weiter unten besprochen, Fig. 5b und 5c).

H K 11.

- 8. November. 10 Köpfe hinter den Augen abgeschnitten.
- 26. November. 4 het. Köpfe (Fig. 3 und 4).
- 3. Dezember. 2 het. Köpfe mit seitlichem Schwanz (Fig. 3a und 4a). In 3a sieht man noch die Verschiedenheit des alten und des neuen Gewebes an der verschiedenen Pigmentierung. Ebenso in 4a. In dem folgenden Stadium 4b ist dagegen schon gleiche Pigmentierung eingetreten. Ausserdem ist dieses Stadium von besonderer Bedeutung, weil es zeigt, wie der het. Kopf allmählich schwindet. Er ist bereits ziemlich flach geworden. In Fig. 3b hat eines der het. Augen an Grösse stark abgenommen.
- 4. Dezember. Besonders deutlich ist jetzt der Rückgang des het. Kopfes und das gleichzeitige Heranwachsen des seitlichen Schwanzes zu beobachten (Fig. 4c). Dieses Stadium stellt die Weiterentwicklung des Kopfes von Fig. 4b dar. Das het. Auge, welches schon im Stadium der Fig. 4b klein war, ist jetzt ganz geschwunden, der het. Kopf ist noch mehr

abgeflacht. Der Schwanz hat sich weiterentwickelt. Er zeigt zunächst die Andeutung eines Pharynx. Ferner hat er mehr die Richtung in der Verlängerung des Kopfes nach hinten angenommen.

10. Dezember. Die Rückbildung des het. Kopfes ist immer weitergegangen (Fig. 4d). Die het. Augen sind ganz geschwunden. Der het. Kopf ist so sehr abgeflacht, dass man niemals auf die Vermutung gekommen wäre, an dieser Stelle einen het. Kopf zu suchen; nur weil die Beobachtung dieser rückschreitenden Entwicklung eine durchaus kontinuierliche war, kann ich mit voller Gewissheit angeben, dass dort ein het Kopf gewesen war. Der Pharynx in dem Schwanz wurde heute nicht gesehen, ist aber sicher vorhanden; wegen starker Pigmentierung schimmert er nicht durch. Um so besser konnte ich einen Pharynx in zwei anderen seitlichen Schwänzen an het. Köpfen derselben Serie beobachten. Später ist die ganze Reihe H K 11 eingegangen.

Diese im Auszug mitgeteilten Protokolle bestätigen zunächst das oben Gesagte. Sie gestatten insbesondere noch folgende Schlüsse und Bemerkungen.

Wenn der Schnitt durch das Tier so geführt ist, dass überhaupt heteromorphe Köpfe sich entwickeln können, so erscheinen dieselben doch nach sehr verschiedenen Zeiten. Das mag verschiedene Gründe haben, z. B. Ernährung und Alter der Tiere; sehr wesentlich ist aber besonders die Höhe, in der das Tier durchschnitten ist. Je näher den Augen der Schnitt geführt wird, um so sicherer und schneller wird im allgemeinen ein heteromorpher Kopf erzielt. Analoges gilt in bezug auf die Entwicklung eines Schwanzes. So zeigt z. B. der Versuch H K 1, dass, wenn ein Schwanz entwickelt wird, dieser mitunter sehr spät erscheint. An einem der Köpfe von H K 1 bildete sich erst nach einem Monat ein Schwanz, während bis dahin das Regenerat vollkommen indifferent gewesen war.

Der Verlauf der Regeneration an den abgeschnittenen Köpfen scheint demnach folgender zu sein: Ist der Schnitt weit genug von den Augen entfernt, so wird ziemlich schnell ein Schwanz regeneriert. Ist der Schnitt den Augen näher, so dauert es sehr lange, bis es zur Entwicklung eines Schwanzes kommt, weil dann die "Tendenz", einen heteromorphen Kopf zu bilden, bereits sich

geltend macht. So erscheint denn auch in einem gewissen Schnittbereich bald ein heteromorpher Kopf, bald ein Schwanz, aber erst nach längerer Zeit. Ist der Schnitt ganz nahe den Augen, so erscheint ziemlich schnell nach der Operation ein heteromorpher Kopf.

Es braucht kaum besonders erwähnt zu werden, dass die Linie durch die Augen lediglich als Koordinatenachse für die gemachten Angaben dient, dass die Augen also in keiner kausalen Beziehung stehen zu der Verschiedenheit der Regeneration.

Diese scheint mir vielmehr vorzugsweise durch das Nervensystem bedingt zu sein. Hat die in einem abgeschnittenen Stück vorhandene Nervenmasse eine bestimmte Grösse, die ziemlich beträchtlich sein muss im Verhältnis zu der Masse des Stückes, so entsteht ein heteromorpher Kopf. Ist die Nervenmasse im Verhältnis zu dem abgeschnittenen Stück kleiner, so entsteht ein Schwanz. Bei einem mittleren Verhältnis tritt das oben charakterisierte "Schwanken" zutage, das schliesslich damit endet, dass nach längerer Zeit ein Schwanz oder ein heteromorpher Kopf regeneriert wird; in einigen Fällen dieser Art kam es überhaupt zu keiner bestimmten Regeneration. Es bildete sich ein stumpfes Regenerat, das sich weder zu einem Schwanz, noch zu einem Kopf differenzierte. Diese Tiere gingen dann stets nach längerer Zeit zugrunde.

Diese Hypothese zur Erklärung der Heteromorphose bedarf noch einer Ergänzung. Weder die absolute, noch auch, wie oben vorläufig gesagt wurde, allein und genau die relative Masse des Nervensystems dürfen wir für die Erscheinung der Kopfheteromorphose verantwortlich machen. Im grossen und ganzen allerdings wird das Verhältnis der Masse des Nervensystems zu derjenigen des ganzen regenerierenden Stückes ausschlaggebend sein. Daneben aber mögen das Vorhandensein oder Fehlen bestimmter Gehirnnerven oder Ganglienkomplexe einen Einfluss ausüben. Ferner werden auch gewisse äussere Bedingungen eine Rolle spielen.

Nimmt man diese Hypothese an, so wird es verständlich, weshalb ein heteromorpher Kopf erscheint, wenn der Schnitt ziemlich hoch geführt wird. Dann ist ja die übriggebliebene Gehirnmasse sehr gross im Verhältnis zu dem ganzen regenerierenden Stück. Insbesondere ist auch die angeschnittene Fläche des Gehirns ziemlich gross, so dass das Gehirn in grosser Breite regeneriert.

Natürlich ist mit dem Gesagten eine Erklärung der Heteromorphose ganz allgemein nicht erreicht; eine solche wird erst möglich, wenn man den einfacheren Prozess der Regeneration verstehen gelernt hat. In bezug auf die Heteromorphose ist es daher zunächst unsere erste Aufgabe, die Bedingungen festzustellen, unter denen sie auftritt. Zweitens haben wir zu untersuchen, in welchem Verhältnis sie zur "Polarität" steht. Die Lösung dieser beiden Punkte glaube ich in den oben angedeuteten Richtungen suchen zu sollen.

Die Bedingungen, unter denen die Heteromorphose auftreten kann, sind in den verschiedenen Fällen sehr verschieden, wenn sie auch zum Teil identisch sein mögen. In dem uns hier speziell interessierenden Fall halte ich neben äusseren Einflüssen das Gehirn für ausschlaggebend. Was den zweiten Punkt anbetrifft, so halte ich daran fest, dass die Erscheinung der Heteromorphose mit Polarität nichts zu tun hat. Die Gründe dafür wurden oben auseinandergesetzt. Bemerkenswert ist hier besonders noch der Aufbau des seitlichen Schwanzes aus dem alten und dem heteromorphen Kopf zugleich.

Als Beispiel zur Beschreibung des anatomischen Baues eines solchen heteromorphen Kopfes, der einen seitlichen Schwanz entwickelt hat, diene ein Exemplar der Reihe H K 10. In der dritten Woche nach der Operation hatte der betreffende Kopf einen "heteromorphen Kopf" entwickelt. Er ist in Fig. 5 dargestellt. Man sieht an der Abbildung deutlich, dass es sich um einen heteromorphen Kopf handelt, wie er seit Morgan öfters beschrieben worden ist. Bisher war die Meinung verbreitet, diese heteromorphen Köpfe müssten dem Hungertode notwendig erliegen, da sie keinen Mund und Pharvnx entwickeln könnten. Durch das Ergebnis unserer Experimente ist das Irrige dieser Ansicht nachgewiesen worden. Beobachtet man lange genug, so zeigt sich, dass der heteromorphe Kopf doch einen Schwanz mit Pharynx und Mundöffnung entwickelt. Hier kann also jedenfalls die Erscheinung der Heteromorphose nicht gegen die teleologische Naturauffassung verwertet werden.

Bei dem angeführten Tiere erschien der Schwanz etwa 4 Wochen nach der Operation. Er zeigte sich zunächst in Form eines kleinen Höckers seitlich in der Gegend, wo der alte und der heteromorphe Kopf aneinanderstossen. Liegt das Tier ruhig und unbehelligt da, so ist der Höcker nur eben angedeutet zu sehen. Sobald man nun aber das Tier unter das Mikroskop in

starke Beleuchtung bringt, beginnt es sich zu bewegen; der alte Kopf zieht nach vorn, der heteromorphe nach hinten. Jetzt wird auch der Schwanz weiter ausgezogen; man erkennt dann sofort seine Schwanznatur, wenn man seine Bewegung mit der Bewegungsart eines normalen Schwanzes vergleicht. Nach einiger Zeit erscheint in diesem Schwanz ein Pharvnx. Ein solches schon weiter vorgerücktes Stadium ist in Fig 5a dargestellt. Man sieht hier, dass durch die Entwicklung des Schwanzes der "heteromorphe" Kopf mechanisch zur Seite gedrängt wird. Wie schon erwähnt, und wie unten genauer ausgeführt wird, beteiligen sich an der Bildung des Schwanzes der alte und der "heteromorphe" Kopf. Dass trotzdem der Schwanz nicht senkrecht zur Longitudinalachse, die man (etwa in Fig. 5) durch die beiden Köpfe legen kann, sich entwickelt, dass er vielmehr sich mehr und mehr in der Verlängerung des alten Kopfes nach hinten ausbildet, scheint mir rein mechanisch bedingt zu sein. Wie ich schon früher (2) beschrieben habe, bildet die Fortbewegung des ganzen heteromorphen Kopfes die Resultante aus der Bewegung des alten Kopfes und des neu regenerierten heteromorphen Teiles Da der alte Kopf an Grösse, an Entwicklung und insbesondere an Masse und Ausbildung des Gehirns den "heteromorphen" Kopf überwiegt, so geht die resultierende Bewegung des Doppelkopfes natürlich in der ursprünglichen Bewegungsrichtung des unverletzten Tieres. Das gilt nun auch noch, wenn sich ein seitlicher Schwanz entwickelt hat. Dieser Schwanz wird demnach durch die grössere Bewegungskraft des alten Kopfes nach vorn gezogen.

Eben dadurch wird nun ebenfalls ganz mechanisch die Verkümmerung des heteromorphen Kopfes bedingt. Wie man an Fig. 5 a sehr gut sieht, wird der heteromorphe Kopf durch die Bewegungsrichtung des alten Kopfes und die dadurch bedingte Entwicklung des Schwanzes nach hinten zu immer mehr nach der Seite gedrängt. Dadurch, dass der alte Kopf die Bewegung des ganzen Tieres dank seiner stärkeren "Komponente" beherrscht, wird der heteromorphe Kopf nachgezogen, d. h. er wird passiv in entgegengesetzter Richtung fortbewegt, als er aktiv sie einschlagen würde. Dass durch diese Störung seiner "Bewegungstendenz" seine Entwicklung gehemmt wird, liegt auf der Hand.

Dazu kommt noch ein zweites: Dadurch, dass der neuentstandene Schwanz mehr und mehr in die Richtung der Verlängerung des alten Kopfes zu liegen kommt, gewinnt der alte Kopf viel mehr regenerativen "Einfluss" auf den Schwanz als der "heteromorphe" Kopf, d. h. also schliesslich auf den ganzen Körper, da der Schwanz alles übrige liefert; denn insbesondere die Regeneration des Nervensystems und des Darmes, die, wie wir sogleich sehen werden, von beiden Köpfen aus in den Schwanz hinein regenerieren, geht doch im allgemeinen naturgemäss in der Verlängerung des Kopfes in gerader Richtung nach hinten vor sich, wird also von dem heteromorphen Kopf viel schlechter zu bewerkstelligen sein als von dem alten Kopf. Das Studium des Tieres an Schnitten gibt darüber weiteren Aufschluss.

Anatomisch interessiert natürlich am meisten das Verhalten des Nervensystems und des Darmes. In heteromorphen Köpfen ohne seitlichen Schwanz hängt das Gehirn des heteromorphen Teiles mit dem alten Gehirn kontinuierlich zusammen. Das gilt auch für heteromorphe Köpfe mit seitlichem Schwanz, wie man z. B. in Fig. 5b erkennen kann. Sowohl von dem alten wie von dem neugebildeten Gehirn des "heteromorphen" Kopfes geht nun je ein breiter Nervenstrang in den seitlichen Schwanz hinein. Diese Nervenstränge verlaufen ziemlich parallel durch den Schwanz. können aber in dem dargestellten Stadium der Entwicklung jedenfalls nicht mit den Längsnerven des normalen Tieres verglichen werden; dafür sind sie zu breit und zu unregelmässig in ihrer Gestalt. Es ist wahrscheinlicher, dass sie sich zu dem Teil des Gehirns des alten Kopfes entwickeln, der bei der Operation abgeschnitten worden war. 1) Dafür spricht auch folgender Umstand. Die beiden Längsstämme, von denen der eine von dem alten, der andere von dem "heteromorphen" Gehirn herkommt, vereinigen sich kurz vor dem Pharynx median. Und zwar ist die Vereinigungsbrücke ziemlich breit. Es ist anzunehmen, dass diese Kommissur als hintere Gehirnkommissur Verwendung findet. Dann müsste also das weitere Wachstum des Körpers in der Zone zwischen dieser Kommissur und dem Pharynx vor sich gehen, und ferner natürlich hinter dem Pharynx Von der Kommissur aus verläuft an jeder Seite des Pharvnx ein Nervenstrang in den hinteren Teil des Schwanzes; diese beiden Nerven würden also die Längsnerven repräsentieren.

¹⁾ Über die weitere Entwicklung dieser "heteromorphen Köpfe" wird eine besondere Untersuchung Aufschluss geben.

Ähnlich wie das Nervensystem verhält sich der Darm. Die äussersten Darmäste erstrecken sich bei Pl. polychroa normalerweise zwischen den Augen hindurch nach vorn. Mit diesen Darmzweigen hängen in dem vorliegenden Kopf andere zusammen, die sich in den "heteromorphen" Kopf hinein erstrecken. Von dem normalen sowohl wie von dem heteromorphen Kopf aus geht nun ie ein breiter Darmast in den Schwanz hinein. Beide vereinigen sich vor dem Pharvnx; ihre Lumina verschmelzen dort zu einem Lumen. Von diesem gemeinsamen Lumen führt nun ein Gang in den Pharynx, ein zweiter Gang in den Darmast, der rechts am Pharynx vorbei nach hinten verläuft, und ein dritter Gang in den linken Darmast Von diesem gemeinsamen Lumen an gerechnet nach hinten verhält sich das Darmsystem also genau wie beim normalen Tier. Die beiden Aste vor dem Pharvnx haben Seitenzweige nach den Seiten des Körpers zu, nicht aber an den medianen Seiten; dort verlaufen ihre Ränder ziemlich parallel.

Dass der "heteromorphe Kopf" jedenfalls in manchen Fällen verkümmert und gänzlich verschwindet, dafür diene ein Exemplar der Reihe H K 11 als Beispiel. Einige Entwicklungsstadien dieses Kopfes sind in den Fig. 4-4d dargestellt. Etwa 21/2 Wochen nach der Operation hatte sich ein heteromorpher Kopf (Fig 4) entwickelt. Eine Woche später begann bereits die Entwicklung eines seitlichen Schwanzes, der bald sehr deutlich wurde (Fig. 4a). Zugleich damit fing der "heteromorphe Kopf" an, zu verkümmern. In Fig. 4b ist er bereits flacher geworden als in dem Stadium der Fig. 4a. Auch beginnt ein Auge zu zerfallen. Der Prozess ist weiter vorgerückt in Fig. 4c. Der Schwanz ist bedeutend kleiner geworden und hat einen Pharynx entwickelt, der ganz schwach durchschimmert. Der "heteromorphe Kopf" ist als solcher kaum noch zu erkennen. Ein Auge ist ganz geschwunden, das andere ist viel kleiner geworden. Fig. 4d sieht beinahe so aus wie die Abbildung eines normalen Tieres. Die Stelle, an der der "heteromorphe Kopf" gesessen hat, ist nur noch durch eine kleine Vorwölbung angedeutet. Auch diese wird bald schwinden.

Ob der "heteromorphe Kopf" in allen Fällen verloren geht, oder ob mitunter zweiköpfige Tiere entwickelt werden, diese und andere noch zu lösende Fragen sollen einer weiteren bereits in Angriff genommenen Untersuchung vorbehalten bleiben.

Zitierte Literatur.

- Duyne, S. van: Über Heteromorphose bei Planarien. Arch. f. ges. Physiol., Bd, 64, 1896.
- Lang, P.: Über Regeneration bei Planarien. Arch. f. mikr. Anat., Bd. 79, 1912, S. 361—426, Taf. XX und XXI
- Loeb. J.: Untersuchungen zur physiologischen Morphologie der Tiere. Über die Heteromorphose. Würzburg 1891.
- Morgan, T. H.: Experimental Studies of the Regeneration of Planaria maculata. Arch. f. Entw.-Mech., Bd. 8, 1898.
- Nussbaum, M.: Die mit der Entwicklung fortschreitende Differenzierung der Zellen. Vortrag. Sitzungsber. d. Niederrhein. Ges. f. Nat.- u. Heilkunde zu Bonn, 1894.
- 6. Derselbe: Lehrbuch der Biologie für Hochschulen. Leipzig 1911, S. 119 ff
- Voigt, W.: Künstlich hervorgerufene Neubildung von Körperteilen bei Strudelwürmern. Sitzungsber. d. Niederrhein. Ges. f. Nat - u. Heilkunde zu Bonn, 1899.

Erklärung der Abbildungen auf Tafel XVI.

Die Fig. 5a, 5b und 5c sind mit dem Abbeschen Zeichenapparat entworfen; die übrigen Figuren sind nach dem Leben ohne Apparat skizziert.

- Fig. 1 und 1 a. Zwei Entwicklungsstadien desselben Kopfes, der hinter den Augen abgetrennt war. Fig. 1, ein segenannter het. Kopf. Fig. 1 a, derselbe nach einiger Zeit mit einem Auswuchs nach hinten, der sich vielleicht zu einem Schwanz entwickelt hätte.
- Fig. 2—2 b. Der "het. Kopf" (Fig. 2) entwickelt an einer Seite einen Schwanz, dort, wo das dunkel pigmentierte Gewebe des alten Kopfes an das hell pigmentierte des het. Kopfes anstösst (Fig. 2a). Fig. 2b ist ein späteres Entwicklungsstadium. Der Schwanz ist grösser geworden. Die Pfeile deuten die Richtung an, in der sich die drei Teile zu bewegen suchen.
- Fig. 3—3b. Ähnlich wie 2. In 3b hat eines der het. Augen an Grösse stark abgenommen; der het. Kopf beginnt zu schwinden.
- Fig 4-4d. Zeigt besonders den Rückgang und das gänzliche Verschwinden des het. Kopfes. Die fünf Fig. 4-4d sind verschiedene aufeinanderfolgende Entwicklungsstadien desselben Tieres. Man sieht deutlich, wie der het. Kopf kleiner wird und die het. Augen schwinden, während gleichzeitig der seitliche Schwanz wächst und nach hinten rückt.
- Fig. 5 und 5 a. Zwei Entwicklungsstadien desselben Tieres. Fig. 5 ein "het. Kopf", der in 5 a einen seitlichen Schwanz entwickelt hat. In beiden zerstreute Pigmentflecken (Auflösung der Augen infolge Hungers).

- 270 Paul Lang: Experimentelle und histologische Studien etc.
- Fig. 5b und 5c. Zwei Schnitte durch das Tier von 5a in verschiedener Höhe, so dass der eine das Nervensystem in grösster Ausdehnung getroffen hat, der andere das Darmsystem. In 5b sind auch die Augen getroffen; das eine het. Auge ist allerdings nur eben angeschnitten. NK = alter Kopf, HK = heteromorpher Kopf, Ph = Pharynx, HA = het. Augen. Vergrösserung: Zeiss, Obj. 16 mm, Ok. 4.

Aus dem Laboratorium der II. Frauenklinik Wertheim (Vorstand Prof. Dr. J. Schottlaender).

Findet im Chorion junger menschlicher Eier eine Blutgefäss- und Blutbildung statt?

Von

Dr. B. H. Jägerroos aus Finland.

Hierzu Tafel XVII.

Gelegentlich von Plazentaruntersuchungen sind mir bei jungen menschlichen Eiern im Stroma der Zotten und der Chorionmembran Bilder aufgefallen, die ich geneigt bin zu dem in der Überschrift genannten Thema in Beziehung zu bringen und daher im folgenden mitteilen möchte.

Mein Material besteht grösstenteils aus Eiern oder Eiteilen, welche entweder spontan ausgestossen oder künstlich entfernt worden sind; einige Male konnten exstirpierte Uteri mit eingeschlossenen Eiern untersucht werden. In vier Fällen hat das Alter der Eier nach der Fruchtlänge geschätzt werden können. Bei den übrigen (neun Fällen) war ich genötigt, eine Reihe anderer Merkmale, wie die Grösse des Eiumfanges, die Plazentargrösse, die Anamnese, ferner eine Vergleichung der histologischen Gesamtbilder bei den verschiedenen Präparaten heranzuziehen, um mit einiger Wahrscheinlichkeit das Alter derselben zu bestimmen. Das nähere hierüber findet sich in einer zweiten Arbeit. 1

Das Material wurde frisch in 4 pCt. Formollösung gebracht, in Paraffin eingebettet; die Dicke der Schnitte, zu deren Färbung Hämatoxylin-Eosin benutzt wurde, beträgt unter $10~\mu$.

Sieht man sich das Stroma der Zotten und der Chorionmembran von Eiern an, die etwa einen bis eineinhalb Monate alt sind, so zeigt sich teils ein zellarmes, maschiges Grundgewebe, teils fallen reichliche Zellanhäufungen auf, welche je nachdem sie quer oder längs getroffen sind, als Zellhäufchen, Zellsäulen oder Zellstränge imponieren. Die quer getroffenen Stellen eignen sich am besten dazu, die gegenseitigen Beziehungen der gleich zu besprechenden verschiedenen Zellarten zu verfolgen.

¹) Schottlaender, Zentralbl. f. Gyn. 1913 Nr. 6 und die demnächst erscheinende Arbeit von Jägerroos: Inwieweit lässt sich das Alter der ausgestossenen Frucht durch histologische Plazentarbefunde bestimmen?

Es zeigen sich nämlich innerhalb des Maschenwerkes sowohl wie innerhalb der Zellhäufchen Elemente, die von den übrigen Mesenchymzellen zu unterscheiden sind.

Es finden sich erstens (Fig. 1 a) solche, deren Kerne rund- oval sind und mit denjenigen der Mesenchymzellen grosse Ähnlichkeit besitzen, bei denen aber im Gegensatz zu den Mesenchymzellen ein deutlicher, dichter, rotgefärbter Protoplasmahof kenntlich ist.

Man sieht zweitens Elemente (Fig. 2b), die den eben geschilderten sehr verwandt sind, sich aber dadurch von ihnen unterscheiden, dass ihr Kern durchaus rund ist, und dass das Protoplasma nicht mehr eine so dichte Zone bildet. Bei einigen von diesen Elementen ist das Protoplasma reichlicher und zeigt aussen eine mehr oder weniger deutliche Konturierung (Fig. 9b₁)

Endlich sind drittens in diesen Präparaten Elemente kenntlich (vgl. Fig. 2c), die gegenüber den unter 2 beschriebenen einen zwar runden, aber bedeutend kleineren Kern aufweisen und deren Chromatinnetz deutlich gekörnt erscheint. Der Zelleib ist relativ gross und zeigt peripherisch einen ausgesprochenen Kontur. Das Protoplasma ist fast farblos (mitunter macht sich ein leicht bläulicher Farbenton bemerkbar, der auf der Figur nicht wiedergegeben werden konnte), 1) nur in der nächsten Umgebung des Kernes findet sich ähnlich, wie bei den Elementen unter 2, ein schmaler Saum von dichtem, gekörntem, rötlichem Protoplasma. Letzteres ist manchmal strahlenkranzähnlich gestaltet.

Sind auch die 3 bisher geschilderten verschiedenen Arten von Elementen in ziemlich grosser Anzahl vorhanden, so finden sich viertens doch unvergleichlich viel zahlreicher andere, die einerseits den zuletzt unter 3 geschilderten ähnlich sind, andererseits von ihnen abweichen. Wie nämlich Fig. 1 d. 3 d und 4 d lehren, sind bei den nunmehr in Betracht kommenden Elementen die Kerne noch kleiner und dunkler, als oben geschildert, die Körnelung des Chromatinnetzes ist nicht überall mehr so deutlich; das Protoplasma ist nicht mehr durchweg farblos, vielmehr ist hier und da (vgl. besonders Fig. 4 d) eine rötliche Färbung nachzuweisen. Der schmale rote Saum in der Umgebung der Kerne ist bald vorhanden, bald fehlt er.

Sehr wichtig erscheint, dass die eben geschilderten Elemente sich in grosser Zahl auch innerhalb von völlig ausgebildeten ohne weiteres erkennbaren Gefässen finden (Fig. 4). Daraus folgt, dass wir es hier mit jungen kernhaltigen Blutzellen zu tun haben.

Studiert man das Stroma der Zotten oder der Chorionmembran von etwas älteren Eiern (solcher der Mitte des zweiten Monats oder etwas späteren), so findet man die oben geschilderten Zellhäufchen reduziert und auch die bisher geschilderten Elemente nur spärlich. Dagegen trifft man fünftens (Fig. 5 e) solche an, deren Form, obgleich weniger unregelmässig,

¹) Für das Studium dieser frühen Stadien empfiehlt sich am meisten das Tageslicht, weil die künstliche Beleuchtung dem Protoplasma eine gelbliche Schattierung gibt. Dadurch wird der Unterschied zwischen den verschiedenen Stadien leicht verwischt. zwar annähernd derjenigen der d-Elemente entspricht, die jedoch ein sehr deutlich rotgefärbtes Protoplasma besitzen; bei den in bezug auf die Grösse kaum abweichenden Kernen fällt das sehr dunkle, im einzelnen kaum mehr entwirrbare Chromatinnetz auf. Die geschilderten Elemente liegen ausser in Gefässen teils frei in den Gewebsmaschen, teils in deutlichen Hohlräumen, welche ihrerseits streckenweise entweder von langgedehnten, schmäleren Zellen oder von solchen begrenzt sind, die sich von den Mesenchymzellen nicht unterscheiden lassen. Auch die vom ersten Monat und von der ersten Hälfte des zweiten Monats stammenden Eier enthalten reichlich solche Hohlräume, in denen Elemente von dem unter 4 beschriebenen Typus gefunden werden.

Bei den Eiern der zweiten Hälfte des zweiten Monats fallen sechstens wieder andere Elemente auf. Mit Bezug auf den Kern den zuletzt beschriebenen völlig analog, zeichnen sie sich vor allem durch den ausgesprochen gelblichen Farbton, den das Protoplasma augenommen hat, aus; ihre Form ist ausserdem regelmässiger, rundlicher (Fig. 6f). Sie liegen meistens (vgl. Figur) in gut kenntlichen Gefässen, seltener sieht man sie freiliegend in Gewebsmaschen.

Bei Eiern um den Anfang des dritten Monats finden sich die bisher beschriebenen Elemente überhaupt nicht mehr. Dagegen sind kurz vorher siebentens neue aufgetreten, die von den zuletzt beschriebenen, denen sie im übrigen fast völlig gleichen, nur dadurch differieren, dass hier (Fig. 7g) das Protoplasma des Zelleibes einen wiederum anderen Farbenton und zwar einen ausgesprochen orangegelben aufweist und dass die Kerne oft ein wenig kleiner und vielleicht noch etwas dunkler sind. Der Farbenton des Protoplasmas entspricht durchaus demjenigen, den die zu dieser Zeit schon sehr reichlich vorhandenen kernlosen Blutzellen besitzen.

Überblicken wir zunächst die Befunde, die wir bei den zweifellos kenntlichen Blutzellen erhoben haben, so ergibt sich eine zusammenhängende Reihe, bei welcher alle nur denkbaren Übergänge nachweisbar sind. In Fig. 9d-i ist diese Reihe mit ihren verschiedenen Formen dargestellt. Es bleibt nur nachzutragen, dass h und i verschiedene Zerfallsprodukte von g darstellen (vgl. auch Fig. 8g, h, i).

k, I und m zeigen kernlose Blutzellen in verschiedener Grösse. Um die Mitte des zweiten Monats kommen zuerst kernlose Blutzellen und zwar vom Typus k, später vorwiegend vom Typus I, seltener m vor.

Typus g findet sich zuerst am Ende des zweiten Monats und ist bis zum Ende des dritten zu verfolgen. Um die Mitte des dritten Monats treten die ersten Zerfallsformen h, i auf, um dann immer reichlicher zu werden, bis die kernhaltigen Blutzellen im Anfang des vierten Monats ganz verschwunden sind, auch aus den Gewebsmaschen, wo man sie während der zweiten Hälfte des dritten Monats noch vereinzelt findet.

Typus f zeigt sich, wie schon hervorgehoben wurde, hauptsächlich von der Mitte bis zum Ende des zweiten Monats. Typus e um seine Mitte, endlich Typus d im allgemeinen nicht länger als bis zur Mitte.

Nach allem, was wir bis jetzt wissen, werden die Typen d-g (von h und i sehen wir natürlich ab) von sämtlichen Autoren als fertiggebildete kernhaltige Blutzellen betrachtet.

In bezug auf die verschiedenen Stadien sind wir, um Näheres zu erfahren, einerseits auf klinische Berichte andererseits wesentlich auf die Angaben von Embryologen angewiesen.

Mit einigen Ausnahmen, auf die ich später zurückkommen werde, scheinen alle Autoren darüber einig zu sein, dass die ersten Blutelemente sich sämtlich in rote Blutkörperchen verwandeln. Wir finden, dass in der Bezeichnung dieser letzteren eine bessere Übereinstimmung obwaltet, als in der Bezeichnung der farblosen Blutelemente, obgleich auch auf dem ersten Gebiet viel zu wünschen übrig bleibt.

Ganz allgemein werden die kernhaltigen roten Blutkörperchen Erythroblasten genannt; durch Entkernung werden sie in Erythrozyten verwandelt. Einige Autoren, wie Jolly, Maximoff, Dantschakoff, Schridde, Türk u. a. unterscheiden die zuerst auftretenden, temporären oder primitiven Erythroblasten von den späteren, permanenten. Unter diesen werden die jüngeren Megaloblasten, die älteren Normoblasten, indessen auch die primitiven Erythroblasten zuweilen Megaloblasten genannt. Eine einheitliche Nomenklatur besitzen wir also noch lange nicht. Sie wird in ihrer Gesamtheit von Minot einer Kritik unterworfen, die ich für vollkommen berechtigt halte.

Er ist der Meinung, dass durch die Kliniker gewisse Missbräuche in der Nomenklatur geschaffen worden sind, denen auch die Embryologen nicht genügend entgegengetreten sind. Schon differenzierte rote Blutzellen als Erythroblasten zu bezeichnen, hält er für verkehrt; wird doch niemand, meint er, z. B. die ganz homologen fertigen Blutzellen bei Amphibien Erythroblasten nennen. Der Ausdruck Erythroblast wurde von Löwit eingeführt, und zwar als Bezeichnung für farblose Zellen als Vorstufen der gefärbten Blutzellen, die damit treffend charakterisiert waren. Dem "Normoblast" entspricht nach Minot die "sauroide Zelle". Der Terminus Normoblast erscheint unglücklich gewählt, da er nicht nur vom Standpunkte der vergleichenden Anatomie aus zu verurteilen, sondern auch für den Kliniker

eigentlich bedeutungslos ist. Die besondere Stufe des Normoblasts ist weder mehr noch weniger normal als die früheren oder späteren. Da sie bei Reptilien die Dauerform darstellt, so muss die Anhangssilbe "blast" fallen. Vielmehr ist "Erythrozyt" nach Minot eine treffende Benennung für alle Blutkörperchen, seien sie gekörnt oder nicht. "Der Versuch der Kliniker, den Namen auf die kernlosen Blutzellen der Säugetiere zu beschränken, ist schwer zu rechtfertigen." Ähnliche Überlegungen sprechen gegen den Gebrauch der Ausdrücke "Megaloblast" und "Mikroblast". Minot schlägt, um der wissenschaftlich-morphologischen Interpretation zu ihrem Recht zu verhelfen, die folgende Nomenklatur vor:

Die Erythrozyten, die sämtlichen roten Blutzellen, die wahrscheinlich ausschliesslich von "Mesamöboiden" abstammen, charakterisieren sich durch ihren Hämoglobingehalt und das homogene Aussehen ihres Protoplasmas. Folgende drei Hauptstufen können hinsichtlich der Genese bei den Säugetieren unterschieden werden:

- 1. Die ichthyoiden Blutzellen, die erste Form der echten Erythrozyten, die bei allen Wirbeltieren vorkommt, bei Ichthyopsiden die Dauerform, bei Amnioten dagegen eine vergängliche Entwicklungsstufe darstellen. Die Zellen in diesem Stadium kennzeichnen sich durch ihren Hämoglobingehalt, homogenes Aussehen und granulierten Kern.
- 2. Die sauroiden Blutzellen, die sich als nächste Stufe aus den ichthyoiden entwickeln und bei allen Amnioten zu beobachten sind. Die Zellen in diesem Stadium unterscheiden sich von den Ichthyoiden durch ihren durchschnittlich geringeren Durchmesser, und besonders durch ihren verkleinerten, sich sehr dunkel färbenden (pyknotischen) Kern. Die Sauroiden sind bei Säugetieren atrophierende Zellen, eine Durchgangsform.
- 3. Endlich folgen die Blutplastiden, die Erythrozyten, die ihren Kern verloren haben; sie kommen nur bei Sängetieren vor.

Meine Befunde lassen sich mit dieser Einteilung im grossen Ganzen wohl in Einklang bringen. Nur scheinen mir ausser den obigen Kriterien noch andere nicht unwichtige angeführt werden zu können.

Es kommen ohne Zweifel sehr viel Zellen vor, die, obwohl sie schon als Blutzellen zu bezeichnen sind, sehr spärliches Hämoglobin, d. h. beinahe farbloses Protoplasma besitzen, während andererseits die Kerne schon so dunkel sind, dass das Chromatinnetz als solches nur schwer erkennbar ist (Fig. 4d). Fast noch geringer ist der Unterschied der auf den Fig. 6-8 und 9 dargestellten Typen f und g, wobei f dem zweiten und g dem dritten Stadium Minots entsprechen würde. Ob es angebracht ist, die Kerne, welche hier doch noch ganz scharfe, regelmässige Grenzen und noch keine Zerfallserscheinungen zeigen, schon als "pyknotisch" zu bezeichnen, muss dahingestellt bleiben. Dagegen erleichtern,

wie mich dünkt, hier die Unterschiede der Protoplasmafärbung die Trennung der verschiedenen Formen bedeutend. Um den Farbenwechsel kurz anzugeben, ohne die Nomenklatur mit neuen Bezeichnungen zu belasten, könnte man vielleicht einfach von schwachfarbigen roten und gelbroten ichthyoiden Blutzellen sprechen. Es lassen sich danach die in Fig. 9 dargestellten Erythrozyten folgendermassen gruppieren:

Erythrozyten	Kernhaltige Blut-	Ichthyoide Blutzellen	(d) Schwachfarbige ichthyoide Blutzellen (e) Rote , , , (f) Gelbrote
	körperchen	Sauroide Blutzellen	g) Sauroide Blutzelle (orangegelb) h, i) Zerfallende sauroide Blutzellen
	Kernlose Blut- körperchen	Blut- plastiden	k) Frühe Blutplastide I, m) Spätere Blutplastide

Die auf Fig. 9 dargestellten Typen a, b, b₁ und c sind bisher absichtlich ausser acht gelassen worden. Es lässt sich eine ihre Deutung behandelnde Erörterung nicht von derjenigen der ersten Gefäss- und Blutbildung trennen.

Man weiss, dass bei einigen Säugetieren sowie auch bei mehreren tiefer stehenden Tieren die ersten Gefässanlagen als solide Mesodermanschwellungen in der Dottersackwand entstehen. Diese sogenannten Blutinseln konfluieren und wandeln sich in Gefässe um, indem sich die zentral liegenden Mesenchymzellen zu Jugendformen gefärbter Blutzellen umbilden, während die oberflächlichen Mesenchymzellen die Endothelwand der Gefässe herstellen

Es kann wohl zurzeit als sichergestellt angesehen werden, dass sowohl die endo- wie exoembryonalen Gefässe in loco aus den Mesenchymzellen entstehen. Die früheren Lehren von dem direkten Einwachsen der exoembryonalen Gefässe in den Körper oder umgekehrt von dem Auswachsen der intraembryonalen Gefässe, sind, so viel ich aus den neuesten embryologischen Lehrund Handbüchern ersehen kann, verlassen worden.

Über die Abstammung der verschiedenen Blutkörperchen wird aber zurzeit ein erbitterter Kampf geführt. Bekanntlich stehen vor allem die dualistische oder die polyphyletische und die unitarische oder monophyletische Theorie einander unversöhnlich gegenüber. Diese Theorien beziehen sich zwar meistenteils auf die Blutbildung im erwachsenen Organismus, werden aber auch auf die embryonalen Entwicklungsvorgänge ausgedehnt.

Die Dualisten erklären die verschiedenen Zellarten des Blutes (entweder das sogenannte myeloide und lymphoide Gewebe oder auch die Erythrozyten und die Leukozyten wie die Lymphozyten) für ebensoviele mehr oder weniger selbständige, genetisch nicht zusammenhängende Zellstämme. Die Unitarier sehen demgegenüber die verschiedenen Zellarten des Blutes als verschiedene Entwicklungszweige einer einzigen gemeinsamen Stammzelle an.

Die ersten Blutelemente werden, mag ihre weitere Entwicklung sein, wie sie will, im allgemeinen aus dem Mesoblast resp. Mesenchym hergeleitet.
In dieser Beziehung sind die meisten, sowohl Dualisten wie Unitarier, einig. Teils werden aber die freien Mesenchymzellen, teils die zentralen Zellen der Blutinseln, teils die schon endothelartig oder sonst veränderten peripheren Zellen der sich bildenden Gefässe als das früheste Blutzellenmaterial angesehen.

So z. B. hebt Saxer die Existenz besonderer primärer Wanderzellen im Mesenchym des Embryo hervor. Aus ihnen entstehen die sämtlichen Blutkörperchen. Bonnet und Schridde leiten die ersten Blutelemente ausschliesslich von den Gefässwandzellen (die Bonnet Angiothelien nennt) her. Die übrigen in neuerer Zeit embryologisch beschäftigten Hämatologen, wie Jolly, Naegeli, v. d. Stricht, Maximow, Dantschakoff, sind weniger exklusiv.

Die Verwandlung der sämtlichen frühesten, in dem Dottersack auftretenden Blutzellen in junge rote Blutkörperchen wird von den Dualisten und speziell nachdrücklich von Schridde als ein schwerwiegender Beweisfür die Rassenverschiedenheit des myeloiden und lymphoiden Gewebes ins Feld geführt. Selbst wenn die sekundären Erythroblasten, die Myeloblasten und die Riesenzellen schon in der Leber als drei isolierte Zellstämme gebildet werden, sollen nach Schridde die Lymphozyten noch nicht zu finden sein, sondern viel später an anderen Orten entstehen.

Am entschiedensten ist Maximow gegen eine solche Auffassung aufgetreten. Er führt an, dass weder die angegebene Reihenfolge des ersten Auftretens der verschiedenen Blutzellen die richtige ist, noch die ersten Blutelemente sich sämtlich in rote Blutkörperchen verwandeln. Maximow hat über die früheste Blutentwicklung bei Säugern schöne Untersuchungen ausgeführt. Seine Befunde stimmen mit denen von Dantschauen der fund Bryce an anderen Tierspecies gewonnenen gut überein. Auch in anderer Beziehung tritt Maximow nun den herrschenden Anschauungen entgegen.

Die ersten zelligen Elemente des Blutes, die primitiven Blutzellen, bestehen nach seiner Ansicht aus indifferenten, freien, runden Mesenchymzellen. In der Area vasculosa der Dottersackwand differenzieren sich aus den Mesenchymzellen in bekannter Weise die Gefässendothelzellen, welche die primitiven Blutzellen umschliessen. Die zuletztgenannten Zellen vermehren

¹) Minot leitet die Gefässendothelien und die Blutzellen von einem Angioblast her, der zeitlebens seine vollständige Unabhängigkeit behält.

sich selbständig durch Karyokinese. Ausserdem entstehen neue primitive Blutzellen aus den Gefässendothelien, indem sie sich abrunden und von den Wänden loslösen. Dieser Vorgang soll sich indessen nicht nur auf die Dottersackwand beschränken. Überall im Mesenchym kann man Andeutungen von Blutinselbildung antreffen, obgleich dies nur als eine gewissermassen rudimentäre Form der Blutbildung von dem eigentlichen ersten erythropoetischen Organ, der Area vasculosa aus, anzusehen sei. Weiter hat Maximow gefunden, dass sich ausserhalb der Blutinseln aus dem indifferenten Mesenchym Zellen ablösen können, welche dann den primitiven Blutzellen gleichzusetzen sind und gelegentlich auch denselben Entwicklungsgang einschlagen.

Der morphologische Charakter der primitiven Blutzellen soll kurz gefasst der folgende sein: Die Zellen sind regelmässig kugelförmig, glatt konturiert, besitzen grosse, blasskörnige, meistens etwas exzentrisch gelegene Kerne und spärliches, fein retikuläres, ziemlich stark basophiles Protoplasma, das stets feinste, helle, runde Vakuolen enthält.

Der Hauptsache nach werden die Vorstufen der Blutkörperchen von verschiedenen Seiten ungefähr ähnlich beschrieben. Die weitere Differenzierung der primitiven Blutzellen gestaltet sich nach Maximow folgendermassen:

Der eine Teil, und zwar entschieden der grössere, verwandelt sich in hämoglobinhaltige Elemente, in primitive Erythroblasten; der andere, kleinere bleibt hämoglobinlos und verändert sich in ganz anderer Weise. Das erste Produkt dieser Veränderung ist der (grosse) Lymphozyt, die Stammzelle der gesamten farblosen Blutkörperchen und der definitiven Erythroblasten resp. Erythrozyten.

Die primitiven Erythroblasten — verhältnismässig grosse Zellen mit homogenem, immer stärker hämoglobinhaltigem Protoplasma und kleinem, dunklem, rundem Kern — stellen einen vollständig isolierten, spezifischen Zellstamm vor. Die älteren Exemplare werden zuerst in die Zirkulation getrieben, die jüngeren länger in der Area vasculosa zurückgehalten. Bald erlischt ihre Wucherungsfähigkeit und sie werden durch die definitiven Erythroblasten resp. Erythrozyten verdrängt, indem sie meistens ohne entkernt zu werden zugrunde gehen.

Die Lymphozyten wuchern in der Area vasculosa kräftig weiter, wo sie bald an Zahl die primitiven Erythroblasten übertreffen: in den übrigen Gefässen werden sie nur vereinzelt angetroffen. Ein Teil dieser Zellen verwandelt sich jetzt in definitive Erythroblasten. Die jüngeren von diesen entsprechen den als Megaloblasten, die älteren den als Normoblasten bekannten Blutzellen. Sie sind kleiner, als die primären Erythroblasten und jederzeit leicht von diesen zu unterscheiden, besitzen aber dieselben Hauptcharaktere. In der Area vasculosa verdrängen sie die primären Erythrozyten am frühesten, dann auch im zirkulierenden Blut. Hier erscheinen sie aber in der Regel nur als entkernte "rote Blutzellen", als fertige Erythrozyten.

Wir haben hier also wieder eine Anschauung, die von derjenigen vieler anderer Forscher, z. B. Jollys, Molliers und Schriddes, wesentlich abweicht. Diese Autoren lassen den definitiven oder sekundären Erythroblastenstamm in der Leber entstehen, die bekanntlich bei den Säugern eine Zeitlang als das wichtigste hämatopoetische Organ tätig ist. Dagegen wird nach Maximow schon in der Area vasculosa der endgültige Typus der Blutbildung erreicht: er will von qualitativ scharf zu unterscheidenden Etappen im Verlauf der embryonalen Hämatopoese nichts wissen, weshalb er auch eine verschiedene prämedulläre und medulläre Periode der Blutentwicklung leugnet. Dagegen gibt auch er an, dass die sekundären Erythroblasten bei Ratte und Maus erst in der Leber entstehen, weil ihre Entstehung bei diesen Tieren auf spätere Stadien verschoben ist. Dies darf aber nicht als eine ganz neue Phase der Blutbildung angesehen werden, denn auch hier entstehen ja die sekundären Erythroblasten und Granulozyten aus den ubiquitären lymphozytoiden Wanderzellen. "Auch beim Menschen mag gerade dieser Unterschied existieren."

Kürzlich hat Minot folgendes Gesamturteil über unsere Kenntnisse der Anfangsstadien der Blutbildung ausgesprochen: "Wenn wir leider schon zugeben müssen, dass unsere Kenntnisse der frühesten Blutentwicklung bei Wirbeltieren wenig befriedigend sind, weil vieles wesentliche fehlt, so müssen wir sagen, dass die betreffenden Vorgänge beim Menschen eigentlich unbekannt sind."

Freilich ist es wahr, dass der Anfang der Blut- und Gefässbildung beim Menschen noch nicht beobachtet worden ist: doch fand Keibel bei einem etwa 1 mm langen menschlichen Embryo die Gefässanlagen und junge, kernhaltige Blutkörperchen in der Dottersackwand bereits differenziert, während im Embryo selbst keine Gefässanlagen sichtbar waren. Bei einem etwas älteren. 1,54 mm langen menschlichen Embryo hatte schon vorher Graf Spee Blut- und Gefässbildung im Dottersack beobachtet. Auch bei diesem Embryo fanden sich noch nirgends Gefässendothelröhrchen in der Embryonalanlage. Die paarige Herzanlage war jederseits nur durch ein kompaktes Häufchen von Mesodermzellen markiert. Es darf also nicht wunder nehmen, wenn man als feststehend angesehen hat, dass auch im menschlichen Ei die ersten zirkulierenden Blutzellen aus der Dottersackwand stammen. Es gibt aber embryologische Beobachtungen aus der jüngsten Zeit, die uns vermuten lassen, dass dem nicht so ist. Evans, der in der Keibel-Mallschen Entwicklungsgeschichte über die Entstehung des Blutgefäßsystems berichtet, führt an, dass das Chorion ausserordentlich frühzeitig mit reichlichen Gefässanlagen versorgt ist. Er gibt weiter eine Übersicht über das Verhalten der Gefässentwicklung der frühesten menschlichen Eier. Der Eternodische Embryo (Länge des Keimschildes 1,3 mm) ist der

jüngste menschliche Embryo, bei dem ein Blutkreislauf zu finden war. Er wird durch die Umbilikalvenen, das Herz, die Aorten, die Umbilikalarterien und die Chorionkapillaren gebildet. Zwischen dem Dottersackkreislauf und den Aorten war eine Verbindung nicht zu konstatieren. "Dieses, das überraschendste Resultat von Eternods Untersuchung", sagt Evans, "gibt dem Menschen dadurch, dass ein Plazentarkreislauf vor dem Dottersackkreislauf entsteht, ein einzigartige Stellung unter den Säugern."

Durch das Studium eines zweiten Embryo von 2 mm Länge ist auch Dandy zu einem ähnlichen, wie er selbst sagt, "unorthodoxen" Resultat gekommen. Die Blutkörperchen des primitiven Kreislaufes sollen nach ihm aus endothelialen Proliferationen der Kapillaren der Chorionmembran entstehen. Näheres über diese Vorgänge teilt er nicht mit.

Das Angeführte dürfte das einzige sein, was über die Blutbildung im Chorion beim Menschen bisher bekannt gegeben worden ist. Wie sich die Entwicklungsvorgänge im einzelnen abspielen, darüber scheinen keinerlei einschlägige Beobachtungen vorzuliegen.

Was die Blutgefässbildung betrifft, so steht die Sache etwas anders. Es wurde oben angeführt, dass sowohl die endo- wie exoembryonalen Gefässe nach moderner Auffassung in loco entstehen. Obgleich dieser Vorgang nicht besonders im Chorion beobachtet worden sein dürfte, so steht doch mit dieser Auffassung in voller Übereinstimmung, dass auch die Choriongefässe in loco entstehen.

Man findet schon bei einigen Autoren aus etwas früherer Zeit diese Auffassung auf die Gefässbildung im Chorion bezogen. So hebt Knoop im Jahre 1903 gelegentlich seiner Untersuchungen über eine amniotische Missbildung ausdrücklich hervor, "dass die embryonalen Blutgefässe ohne Hilfe der Umbilikalgefässe, also selbständig im Chorion entstehen können", und Bauereisen bezeichnet ein Jahr später, in seiner Arbeit über die Hämatommole, eine derartige Gefässbildung bereits als eine anerkannte entwicklungsgeschichtliche Tatsache. Auch bei diesen Autoren werden jedoch alle Einzelheiten vermisst

Über die Vorstufen der primitiven Blutkörperchen ist in der Literatur nicht sehr viel zu erfahren. Im allgemeinen werden die näheren Vorgänge bei der Ausdifferenzierung derselben aus

dem Mesenchym nur kurz oder gar nicht erwähnt. Maximows primitive Blutzellen und ihr morphologischer Charakter sind oben beschrieben worden. Min ot fasst die Vorstufen unter dem Namen Mesamöboiden zusammen und schildert sie als ganz oder beinahe farblose Zellen, die zuerst im Blutgefäßsystem erscheinen und der Hauptsache nach durch Zerfall der Dottersackblutinseln entstehen. Schridde spricht von den primitiven Erythroblasten - Zellen mit grossem, hellem Kern und einem völlig homogenen, hämoglobinhaltigen Protoplasma, das vielfach in mässigem Grade basophile Farbstoffe annimmt — die aus den spindeligen Gefässwandzellen entstehen, ohne dabei besondere Vorstufen zu nennen. Die sekundären, in der Leber entstehenden Erythroblasten sollen dagegen aus den Gefässwandzellen durch eine hämoglobinfreie. stark basophile Zwischenstufe entstehen. Ziemlich genaue Angaben über die Vorstufen der sekundären Erythroblasten teilt Mollier mit. In der Leber sollen sich schon am Ende des ersten Embryonalmonats gewisse Mesenchymzellen zu Stammzellen kommender Blutelemente, zu Hämogonien, andere zu Gefässendothelzellen ausdifferenzieren. Die fertigen Hämogonien sollen vor allem dadurch charakterisiert sein, dass sich der Kern weniger als das grobwabige Protoplasma färbt. Durch wiederholte Teilungen sollen dann erst Hämoblasten I. Ordnung, mittelgrosse Zellen mit noch kräftig basophilem, feinwabigem Protoplasma und nicht sehr dunkel gefärbtem Kern und dann Hämoblasten II. Ordnung, kleine Zellen mit homogenem Protoplasma und dunklem Kern entstehen. Diese Zellen sollen ihr Protoplasma vermehren und in demselben Hämoglobin ausbilden, wodurch sie sich in Erythroblasten umbilden. aus welchen nach erfolgter Entkernung die Ervthrozyten hervorgehen. In der Regel gelangen nur diese letzteren in den Kreislauf.

Es ist wohl ohne weiteres klar, dass unter unseren drei ersten Typen in Fig. 9 (vgl. auch die übrigen Figuren) der Typus c, obgleich er in ausgebildeten Blutgefässen nicht gefunden wird, eine Vorstufe der Elemente d darstellt. Es fällt sofort die grosse Ähnlichkeit der Form auf und auch die Ähnlichkeit des Kernes, obwohl bei d der letztere ein dichteres Chromatinnetz besitzt. Das Protoplasma erscheint hier trotz auftretender Spuren von Hämoglobin oft beinahe ebenso hell wie bei c.

Dass ferner die Typen a und b von einander abzuleiten sind, unterliegt fast keinem Zweifel, da zwischen beiden alle

erforderlichen Übergänge zu finden sind. Etwas schwieriger ist der Nachweis, dass Typus b eine Vorstufe von Typus c ist. In b1 scheint eine solche vorzuliegen. Das Protoplasma nimmt an Masse bedeutend zu (vgl. die höher oben gelegene Zelle b in Fig. 2, die ein früheres Stadium darstellt) und erhält einen undeutlichen Kontur. Dann erst beginnt das Protoplasma sich aufzuhellen und schliesslich folgt Typus c. So möchte man wenigstens die verschiedenen Bilder deuten und man kann sich des Eindrucks nicht erwehren, dass die vier unter a—c dargestellten Typen aufeinanderfolgende Vorstufen der Erythrozyten sind.

Ich kann meine Bilder nicht direkt mit denen früherer Forscher vergleichen, die eine Färbung, welche die Basophilie hervortreten lässt, angewendet haben. Es lassen sich jedoch einige Parallelen auffinden.

Wahrscheinlich entsprechen meine mit b bezeichneten Vorstufen Minots Mesamöboiden. Jedenfalls ist die Formähnlichkeit in den Zeichnungen auffallend (Minots entsprechende Bilder sind ungefärbt). Mit Maximows primitiven Blutzellen sind wohl am ehesten die dem Typus bi zugehörigen Zellen zu vergleichen, welche noch verhältnismässig protoplasmaarm, schon aber mit einem Kontur versehen sind. Ich möchte a als frühe Vorstufe, b als Mesamöboid, bi als primitive Blutzelle, c als (primitiven) Erythroblast bezeichnen.

Ob jetzt die primitiven Blutzellen nur in Erythroblasten oder auch in andere Blutzellenvorstufen verwandelt werden, darüber lässt mein Material keine Schlüsse zu. Ohne mich an der zytologischen Streitfrage zu beteiligen, kann ich jedenfalls auf Grund der angeführten Befunde die Möglichkeit einer Blut- und Gefässbildung im Chorion ernstlich in Erwägung ziehen.

Es erhebt sich dabei erstens die Frage, woher die Blutzellenvorstufen stammen. Es wurde oben bereits hervorgehoben, dass das Stroma der Zotten und der Chorionmembran Zellanhäufungen birgt, in welchen die gesamten Vorstufen hauptsächlich angetroffen werden. In manchen von diesen Häufchen unterscheiden sich nun die Zellen gar nicht von den umgebenden Mesenchymzellen und zeigen keine besondere Anordnung. In anderen, welche die geschilderten Blutzellenvorstufen enthalten, findet man, dass die peripheren Zellen ringförmig um die letzteren angeordnet sind und sich diesen eng anschliessen, während sie im übrigen

durchaus den Mesenchymzellen gleichen. In wieder anderen sind die peripheren Zellen nur teilweise den Mesenchymzellen ahnlich, teilweise sind sie endothelartig abgeflacht und umgeben ein kleines Lumen, in welchem Vorstufen oder schon fertige Erythrozyten frei liegen. Alle diese Befunde, wie auch die Bilder in Fig. 1—4, scheinen mir dafür zu sprechen, dass ebenso wie in der Dottersackwand auch im Chorion die Zellanhäufungen in Blutinseln und schliesslich in junge Blutgefässe umgewandelt werden.

Selbstverständlich kann man immer einwenden, dass die Zellanhäufungen gar nicht in loco entstanden zu sein brauchen, dass sie vielmehr hineingewachsen oder wie die Blutzellen bezw. deren Vorstufen von aussen her in das Chorion hineingewandert sein können.

Gegen diese Auffassung lassen sich indessen Gegengründe geltend machen, teils solche allgemeiner Art, teils, wie ich glaube, auch solche, die aus meinen Befunden abgeleitet werden können. Es lässt sich die Theorie von einem Hineinwachsen der embryonalen Gefässe aus einem Gewebe ins andere kaum mehr aufrechterhalten. Wenn im allgemeinen eine Entstehung in loco anzunehmen ist, so gilt dies auch für das Chorion. Wir haben gesehen, dass in sehr früher Zeit im menschlichen Embryo ein Chorionkreislauf ohne Zusammenhang mit dem Dottersackkreislauf zu existieren scheint. Ist dies richtig, so muss man sich fragen, woher die Blutkörperchen in den Kreislauf kommen sollen, wenn nicht aus dem Chorion. Die Leber ist noch nicht als blutbildendes Organ tätig und liefert (vgl. oben) ausserdem in der Regel nur kernlose Erythrozyten; ein weiteres blutbildendes Organ existiert, soweit bekannt, zu dieser Zeit nicht.

Bei meinen Befunden kann im übrigen, wie mir scheint, für die Entstehung der Gefässe und der Vorstufen der Blutzellen im Chorion selbst folgendes verwertet werden:

Der Umstand, dass die Zellen der ganz undifferenzierten Anhäufungen sich in keiner Beziehung von den umgebenden Mesenchymzellen unterscheiden und dass die peripheren Zellen diesen Charakter sehr lange beibehalten, scheint dafür zu sprechen, dass sie in loco entstanden sind. Die Vorstufen der Blutzellen werden in den weiter differenzierten Zellanhäufungen, nicht aber in den fertigen Gefässen angetroffen. Sie sind dabei von den peripheren

Zellen eng umschlossen und werden erst als Erythroblasten oder fertige Erythrozyten (nach Minots und meiner Bezeichnung) frei in dem sich bildenden Lumen gefunden. Wo sie in den Gewebsmaschen vorkommen, hängen sie oft durch feine Fasern mit der Zwischensubstanz zusammen.

Es bedarf wohl kaum der Erwähnung, dass ich weit entfernt davon bin, zu glauben, durch meine Untersuchungen einen strikten Beweis für das Gesagte geliefert zu haben. Ich bin mir vollkommen klar, dass dazu viel eingehendere Studien notwendig sind, vor allem auch Serienschnitte durch ganze sehr junge Eier, ferner verschiedene für hämatologische Zwecke geeignetere Färbungen. Durch das Bekanntgeben meiner Bilder und Befunde soll wesentlich nur zu weiteren Forschungen angeregt werden, die, sehr notwendig, meine hier niedergelegten Anschauungen vielleicht besser zu begründen imstande sind. Solche Forschungen habe ich selbst bereits begonnen.

Noch einige Worte über die weiteren Schicksale der vermutlich endogen entstandenen kernhaltigen Blutzellen. Wie aus meinen Bildern hervorgeht, dürfte ihr Protoplasma zunächst peripherisch, wo es wie angenagt aussieht, und dann allmählich zentralwärts einschmelzen. Es bleiben schliesslich nur einige gelbliche Schollen in der Umgebung des Kerns zurück (Fig. 8 und Fig. 9 h, i). Diese Bilder deuten darauf hin, dass eine Ausstossung der Kerne mit Erhaltung des Protoplasmas auszuschliessen ist. Die kernhaltigen Blutkörperchen des primitiven Kreislaufes werden - jedenfalls in der Regel - nicht entkernt und in kernlose umgewandelt; sie zerfallen vielmehr als solche. Um die Mitte des zweiten Monats erscheinen, wie schon hervorgehoben wurde, die ersten kernlosen Erythrozyten im Kreislauf. Diese sind grösser als die später zu findenden, welche in immer dichteren Haufen die Gefässe füllen, während die kernhaltigen Erythrozyten ihrem Untergang entgegengehen, bis sie im Anfang des vierten Monats ganz verschwunden sind.

Was wird nun aber aus den Blutkörperchen, welche allem Anschein nach vereinzelt auch in den Gewebsmaschen entstehen? Teilweise dürfte sie in ganz junge, nicht vollkommen abgeschlossene Gefässe gelangen, grösstenteils aber wohl nicht. Minot gibt an, dass man massenhaft Erythrozyten in dem Plazentarstroma finde: er will sie sogar bis zu der Geburt in grossen Mengen beobachtet haben. Nach meiner Erfahrung nehmen sie jedoch schon im zweiten Monat stark ab und stellen am Ende der Schwangerschaft in normalen Plazenten recht seltene Befunde dar.

Nach Minot, der ja eine Entstehung in loco gar nicht in Rechnung zieht, sollen die aus den Gefässen in das Stroma auswandernden Erythrozyten eine Quellung, an der sowohl Kerne wie Protoplasma teilnehmen, erfahren; dann soll das Protoplasma vakuolisiert werden und verschwinden, bis schliesslich die ganze Zelle zerfallen ist. Die mysteriösen grossen gequollenen Zellen, die man reichlich im Zottenstroma fast jeder Plazenta findet, Zellen, auf die neuerdings auch Hofbauer und Grosser aufmerksam gemacht haben, sollen nach Minot aus ausgewanderten Erythrozyten entstehen.

Es ist gewiss möglich, dass auch die fertigen kernhaltigen Blutzellen bei ihrem Zerfall mitunter diese Formen annehmen; aber wenn man mit Minot die aus den Gefässen ausgewanderten Erythrozyten als Matrix für die genannten Zellen ansieht, so kann man kaum befriedigend erklären, wie sie nach dem dritten Schwangerschaftsmonat noch Kerne enthalten. Sind doch, wie wir gesehen haben, die Erythrozyten um diese Zeit schon kernlos. Und im Zerfall begriffene Zellen aus früherer Zeit werden sich gewiss nicht Monate hindurch als solche konservieren.

Daher gelange ich zu der Überzeugung, dass die genannten Zellen einen etwas anderen Ursprung haben. Nicht die fertigen Blutzellen, sondern hauptsächlich deren Vorstufen nehmen meines Erachtens öfters diese Form an und zwar dann, wenn sie ausserhalb der Blutinseln frei in den Gewebsmaschen entstehen. Ich glaube wiederholt beobachtet zu haben, dass sich bei den Zellen der frühesten Vorstufe (Fig. 9a und b) das Protoplasma vermehrt, ohne sich aufzuhellen. So kann ohne weiteres eine Umwandlung in die in Frage stehenden Zellen erfolgen. Auch wenn die Bildung der kernhaltigen Blutkörperchen schon längst abgeschlossen ist, scheinen sich immer noch Zellen des Typus a aus dem Chorionstroma abzulösen und diesen abgelenkten Entwicklungsgang einzuschlagen. So kommt es vielleicht, dass man sie bis zum Ende der Schwangerschaft in der Plazenta findet.

Literaturverzeichnis.

- Bauereisen, A.: Über die Hämatommole. Zeitschr. f. Geburtsh. u. Gynäk., Bd. 51, 1904, S. 309.
- Bonnet, R.: Lehrbuch der Entwicklungsgeschichte. Berlin 1907, S. 332.
- Bromann, J.: Normale und abnorme Entwicklung des Menschen. Wiesbaden 1911.
- Dandy, W. E.: A human embryo with seven paires of somites measuring about 2 mm in length. The american journal of Anatomy, Vol. X, 1910. S. 85.
- Dantschakoff, W.: Untersuchungen über die Entwicklung des Blutes und Bindegewebes bei Vögeln. I. Die erste Entstehung der Blutzellen beim Hühnerembryo und der Dottersack als blutbildendes Organ. Anat. Hefte, H. 113, 1908, S. 473.
- Derselbe: Untersuchungen über die Entwicklung von Blut und Bindegewebe bei Vögeln. Das lockere Bindegewebe des Hühnchens im fetalen Leben. Arch. f. mikr. Anat., Bd. 73, 1908. S. 117.
- Evans, H. M.: Die Entwicklung des Blutgefäßsystems. Im Handbuch der Entwicklungsgeschichte des Menschen von Keibel, F. und Mall, F. P., II. 1911, S. 551.
- Grosser, O.: Vergleichende Anatomie und Entwicklungsgeschichte der Eihäute und der Plazenta. Wien und Leipzig 1909.
- Derselbe: Die Entwicklung der Eihäute und der Plazenta. In Keibels und Malls Handbuch I. S. 97.
- Hofbauer, S.: Grundzüge einer Biologie der menschlichen Plazenta mit besonderer Berücksichtigung der Frage der fötalen Ernährung. Wien und Leipzig 1905.
- Derselbe: Die menschliche Plazenta als Assimilationsorgan, 1907.
- Jolly, J.: Sur l'évolution des globules rouges dans le sang des mammifères. Compt. rend. soc. biol., T. 57, 1905, S. 593.
- Knoop, H.: Über eine frühzeitige amniotische Missbildung nebst Bemerkungen über das Wachstum der Eihäute nach dem Fruchttode und die Bildung der sogenannten freien Allantois. Beitr. z. Geburtsh. u. Gynäk., Bd. 7, 1903, S. 284.
- Maximow, A.: Untersuchungen über Blut und Bindegewebe. I. Die frühesten Entwicklungsstadien der Blut- und Bindegewebszellen beim Säugetierembryo, bis zum Anfang der Blutbildung in der Leber. Arch. f. mikr. Anat., Bd. 73, 1908, S. 444.
- Derselbe: Über embryonale Blutbildung. Centralbl. f. allgem. Path. u. path. Anat., Bd. XX, 1909, S. 145.
- Derselbe: Über die embryonale Blutbildung. Centralbl. f. allgem. Path. u. path. Anat., Bd. XX, 1909, S. 817.
- Derselbe: Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. Folia hämat., Bd. VIII, 1909, S. 125.

- Minot, C. S.: Die Entstehung des Angioblastes und die Entwicklung des Blutes. In Keibels und Malls Handbuch der Entwicklungsgeschichte, II, S. 483.
- Mollier, S.: Die Entwicklung der Gefässe im Embryo. Im Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere von Hertwig, O., Bd. I, Teil I, zweite Hälfte, 1906, S. 1261.
- Derselbe: Die Blutbildung in der embryonalen Leber des Menschen und der Säugetiere. Arch. f. mikr. Anat., Bd. 74, 1909, S. 474.
- Naegeli, O.: Beiträge zur Embryologie der blutbildenden Organe. Verh d. 23. Kongresses f. innere Med., München 1906, S. 580.
- Pappenheim, A.: Über Entwicklung und Ausbildung der Erythrobiasten Virchows Arch., Bd. 145, 1896, S. 587.
- Derselbe: Abstammung und Entstehung der roten Blutzelle. Virchows Arch., Bd. 151, 1898, S. 89.
- Derselbe: Über lymphoide basophile Vorstufen der Erythroblasten. Folia hämat., Bd. 5, 1908, S. 511.
- Rückert, J.: Entwicklung der extraembryonalen Gefässe der Säugetiere. In Hertwigs Handbuch der Entwicklungslehre, Bd. I. T. I. zweite Hälfte, S. 1244.
- Saxer, F.: Über die Entwicklung und Bau der normalen Lymphdrüsen und die Entstehung der roten und weissen Blutkörperchen. Anat. Hefte, H. 19, 1896.
- Schridde, H.: Die Entstehung der ersten embryonalen Blutzellen des Menschen. Verh. d. Deutsch. Path. Ges., 11. Tagung, Dresden. 16. bis 19. Sept. 1907. Jena 1908, S. 360.
- Derselbe: Über Regeneration des Blutes unter normalen und krankhaften Verhältnissen, Centralbl. f. allgem. Path. u. path. Anat., Bd. XIX, 1908, S. 865.
- Derselbe: Die embryonale Blutbildung. Centralbl. f. allgem. Path. u. path. Anat., Bd. XX, 1909, S. 433.
- Derselbe: Schlussbemerkung an Herrn Prof. A. Maximow. Centralbl. f. allgem, Path. u. path. Anat., Bd. XX, 1909, S. 824.
- v. d. Stricht, O.: Nouvelles recherches sur la génèse des globules rouges et des globules blancs du sang. Arch. de Biologie, Tome XII, 1892, S. 199.
- Derselbe: De la première origine du sang et des capillaires sanguins dans l'aire vasculaire du lapin. Compt. rend. soc. biol., Série X, T. 2, Bd. 47, 1895, S. 181.
- Derselbe: L'origine des premières cellules sanguines et des premiers vaisseaux sanguins dans l'aire vasculaire de chauve-souris. Bulletin de l'académie royale de médecine de Belgique, IV e série, T. XIII, 1899, S. 336-
- Türk, W.: Über Regeneration des Blutes unter normalen und krankhaften Verhältnissen. Centralbl. f. allgem. Path. u. path. Anat., Bd. XIX, 1908, S. 895.
- Weidenreich, F.: Die roten Blutkörperchen. II. Ergebnisse der Anatomie und Entwicklungsgeschichte von Merkel und Bonnet, Bd. 14, 1904, Wiesbaden 1905, S. 345.

Erklärung der Abbildungen auf Tafel XVII.

Vergrösserung in allen Figuren 650:1.

- Fig. 1—4. Aus dem Zottenstroma oder Stroma der Chorionmembran eines etwa einen Monat alten menschlichen Eies. a = Frühe Vorstufen; b = Mesamöboiden; c = Erythroblast; d = schwachfarbige ichthyoide Blutzellen. Über das Nähere siehe Text.
- Fig. 5. Aus dem Zottenstroma eines menschlichen Eies von der Mitte des zweiten Embryonalmonats. e = Rote ichthyoide Blutzellen frei in einem kleinen Lumen, welches teils von endothelartigen, teils von mesenchymähnlichen Zellen umgeben ist.
- Fig. 6. Aus dem Zottenstroma eines menschlichen Eies von der zweiten Hälfte des zweiten Embryonalmonats. Reifes Gefäss mit rot-gelben ichthyoiden Blutzellen f.
- Fig. 7. Aus dem Stroma der Chorionmembran eines etwas über zwei Monate alten, menschlichen Eies. Reifes Gefäss mit sauroiden Blutzellen g und Blutplastiden k, l, m.
- Fig. 8. Aus dem Zottenstroma eines fast drei Monate alten, menschlichen Eies. Reifes Gefäss mit sauroiden Blutzellen g, ihren Zerfallsformen h, i und vielen Blutplastiden.
- Fig. 9. Vorstufen a, b, b₁, c, kernhaltige d bis i und kernlose Erythrozyten k bis m.

Aus dem Neurologischen Institut zu Frankfurt a. M. (Direktor: Prof. Dr. L. Edinger.)

Zur vergleichenden Anatomie und Histologie der Hypophysis cerebri.

Von

Dr. W. Stendell, Assistent am Institute.

Hierzu Tafel XVIII-XX und 18 Textfiguren.

Einleitung.

Über die funktionelle Bedeutung der Hypophysis cerebri haben uns die Arbeiten, welche aus der Klinik und der experimentellen Physiologie hervorgegangen sind und sich demgemäss auf den Menschen oder auf Säugetiere beziehen. Befunde mitgeteilt. welche dem Organ in der Hauptsache zwei gänzlich verschiedene Eigenschaften zuschreiben. Als besonders auffällig sind die Beziehungen der Hypophyse zum Körperwachstum zuerst erkannt worden. Diese Eigenschaft wird dem "Darmteil" zugeschrieben, dessen Hypertrophie zu exzessivem Wachstum, zum Riesenwuchs oder zur Akromegalie führt. Was den Hirnteil anbetrifft, so ruft eine Injektion mit seinem Extrakt eine erhebliche Erhöhung des Tonus der glatten Muskulatur hervor, so dass man dieses Mittel vielfach zur Steigerung des Blutdruckes und der Uteruswehen anwendet. Die meisten Autoren nehmen daher an, dass es sich in diesem Extrakt um ein von dem Hirnteil produziertes Sekret handele. Danach würde also in dem Hirnteil eine zweite Drüse neben dem Darmteil zu suchen sein. Die drüsige Natur des Darmteiles ist seit langer Zeit erwiesen. Im Hirnteil jedoch haben sich nur Glia der Hirnmasse, Binde- und Lymphgewebe und Blutgefässe nachweisen lassen. Es ist also schwer einzusehen, wie dieser Teil aus sich, durch Sekretion, so besondere physiologische Eigenschaften entwickeln sollte. Zudem haben die Injektionsversuche von Edinger gezeigt, dass die perivaskulären Lymphspalten des Darmteiles in die des Hirnteiles übergehen. In diese Perivaskularräume des Darmteiles aber münden nach ihm die perizellulären Spalten des Drüsenparenchyms, in die sich

das Zellsekret ergiesst. Edinger sieht darin den Nachweis, dass das Sekret des Darmteiles durch die perivaskulären Spalten in den Hirnteil gelange, der somit das Rezeptionsorgan des Sekretes würde.

Bei allen Tieren ist dem Hirnteil am nächsten gelegen ein Abschnitt des Darmteiles, der sich bei näherer Untersuchung als eine besondere Drüse darstellt. Der vergleichenden Anatomie ist auf Grund der Verhältnisse bei niederen Vertebraten seine Bedeutung als eines für sich gesonderten Abschnittes längst bekannt. Die Kliniker aber und Physiologen haben ihn, da er beim Menschen ausserordentlich wenig entwickelt ist, als den sogenannten "Epithelsaum" nur wenig beachtet. Gerade dieser "Zwischenlaßpen", wie wir den Abschnitt, weil er stets zwischen Hirnteil und "Hauptlappen" des Darmteiles liegt, nennen wollen, soll uns die Erklärung für die eigenartige Lage des Darmteiles am Hirn und die innige Verbindung der beiden heterogenen Teile miteinander geben. Er nämlich ist es, der mit dem Hirnteil die innigste Verbindung eingeht und, wie ich zeigen werde, in ihn sezerniert. Dann also ist der Zwischenlappen die zum Hirnteil als dem Rezeptionsorgan zugehörige Drüse.

Wir hätten also nunmehr die Hypophysis einzuteilen in den Hirnteil oder Hirnlappen und den Darmteil, welcher wieder in den Zwischenlappen und den Hauptlappen zerfällt.

Im folgenden soll zunächst eine kurze Literaturübersicht uns die Geschichte der Hypophysenforschung vor Augen führen.

Die erste Arbeit, welche die Kenntnis von der Hypophysis auf eine sichere Basis stellte, war die von Rathke (1838), in der er nachwies, dass der drüsige Abschnitt des Organs von der Mundbucht aus seine Entstehung durch Einstülpung nach dem Gehirn zu nimmt und dann mit dessen Zwischenhirnboden innig verwächst. Die eingestülpte Tasche wird nach ihrem Entdecker die Rathkesche Tasche genannt, ihr Lumen wird die spätere Hypophysenhöhle, welche durch Ausstülpungen von Schlauchform mehr oder weniger kompliziert werden kann. Durch Verdickung oder Verzweigung des Abschnittes des Zwischenhirnbodens, an welchen sich der Darmteil der Hypophyse anlegt, entsteht dann der Hirnteil dieses Organs. Bald erschienen auch Mitteilungen über den histologischen Bau der Hypophysis. Hannover (1842)

und Virchow (1857) konstatieren, dass das Gewebe nicht aus gleichmässigen Zellen zusammengesetzt ist. Auch die im Gewebe enthaltenen homogenen rundlichen Einschlüsse, das Colloid, wurden von ihnen erkannt. Luschka (1860) beschreibt bereits die Anordnung der Zellen in blasen- oder schlauchförmigen Anhäufungen. innerhalb deren granulierte polygonale Zellen sowie in eine Grundsubstanz eingebettete nackte Kerne unterschieden werden. Eine grundlegende Einteilung des ganzen Organs gab dann Peremesch ko (1867), indem er den Hauptlappen als Korkschicht, den Zwischenlappen als Markschicht, die Hypophysenhöhle und den nervösen Hirnteil der Hypophyse unterschied. Er konstatierte schon Färbungsbeziehungen zwischen dem Colloid und den Drüsenzellen. In der Hypophysenhöhle des Menschen findet er Flimmerepithel. Eine wichtige Arbeit brachte W. Müller (1871), indem er auf vergleichender Basis die Ontogenesis und Anatomie der Hypophysis von Vertretern aller Wirbeltierklassen brachte. Er unterscheidet bei allen Formen zwei verschiedene Teile der Hypophysis, abgesehen vom Hirnteil, den er auf Grund seiner embryologischen Studien folgerichtig nicht zur eigentlichen Hypophyse rechnet. Seine beiden Teile entsprechen im grossen und ganzen unseren heutigen Zwischenlappen und Hauptlappen. Abgesehen davon, dass er diese Teile bei Selachiern gerade umgekehrt, als es in der vorliegenden Arbeit geschehen soll, anspricht, ein Fehler, in den noch einige andere Autoren verfallen sind, und dass er beim Menschen den Zwischenteil nicht völlig richtig erkennt, homologisiert er die Abschnitte der einzelnen Klassen ganz richtig. Bei Selachiern sieht er schon den in die Sella turcica eingesenkten, durch einen hohlen Stiel ventral dem Hauptlappen anhängenden Hypophysenteil. Bei Amphibien ist ihm sogar die histologische Verschiedenheit der beiden Drüsenlappen nicht entgangen, wie er bei ihnen auch den Hirnlappen mit seiner starken Vaskularisierung gut abbildet. Die bekannte Arbeit von Goette über die Entwicklung der Unke (1874) bestätigt und ergänzt Rathkes und W. Müllers Befunde bezüglich der Hypophysenentstehung. Einige Bemerkungen zum histologischen Aufbau der Hypophyse bringt Rohon (1879). Bei Selachiern beschreibt er stark gewundene Tubuli mit freiem Lumen und geschichtetem Epithel. Mehrere Beiträge zur Kenntnis des Organs verdanken wir Rabl-Rückhard (1880/88), der sich besonders mit der Entwicklungs-

geschichte der Hypophyse bei Selachiern und Teleostiern befasst. Deutlich unterscheidet er in der Hypophyse der letzteren zwei Teile. Die wichtigen Untersuchungen von Flesch (1884), dem darin sein Schüler Lothringer (1886) folgte, brachten eine Scheidung der gesamten Zellen in helle, wenig tingierbare, die chromophoben, und in solche, welche die Farbstoffe lebhafter annehmen, die chromophilen. Auch Lothringer erkennt die Verwandtschaft in der Färbung des Colloids und der Zellen. Unabhängig von den beiden Forschern kam Dostojewsky (1886) zu demselben Resultat der Zelleinteilung. In dieselbe Zeit fällt die Entdeckung des Zusammenhanges zwischen der Hypophysis und der Akromegalie durch Pierre Marie (1886). Eine Bestätigung der Befunde von Flesch, Lothringer und Dostojewsky erfolgt bald darauf durch Rogowitsch (1888), der ausserdem noch (beim Kaninchen) ein Gewebsterritorium findet, welches in einer Grundsubstanz Kerne eingelagert enthält und von ihm daher als "Kernhaufen" bezeichnet wird. Diese Kernhaufenzone bildet den "dreieckigen Raum", welcher von Bindegewebssepten abgegrenzt im mittleren vorderen Teil des Drüsenabschnittes gelegen In den "Cysten" erkennt Rogowitsch beim Kaninchen Flimmerepithel. Er glaubt, dass das Colloid, das Produkt des Drüsenteiles, in die Blutbahnen gelange. Diese letzte Ansicht sprechen auch Pisenti und Viola (1890) aus, welche in den Gefässen Colloid finden. Sie glauben, dass das Colloid aus den Follikeln in die interfollikulär gelegenen Bindegewebslymphräume trete und dann in die Gefässe gelange. Das Vorhandensein von Colloid in den Gefässen konnte Stieda (1890) nicht konstatieren. Sonst gelangte er zu den nämlichen Resultaten wie Rogowitsch. wobei er die Kernhaufen für gut differenzierte Zellen vom Gepräge der Hauptzellen, für chromophobe, anspricht. In den Untersuchungen von Schönemann (1892) wird zuerst mit Sicherheit konstatiert, dass die chromophilen Zellen wieder in eosinophile und baso-(cvano-)phile einzuteilen sind. Einen weiteren Fortschritt bezeichnet die Deutung der verschiedenen Zelltypen als Funktionszustände einer und derselben Zellart, für welche sich Saint-Remy (1892) auf Grund seiner Untersuchungen an Amphibien ausspricht. Eine Bestätigung der Befunde Müllers und Rohons bezüglich der Gruppen der Selachier und Amphibien bringen die Untersuchungen von Edinger (1892). Hier wird

der Aufbau der Plagiostomenhypophyse aus hohlen und soliden Schläuchen, die zum Teil symmetrisch angeordnet sind, dargestellt. Auch die Einteilung der Hypophysis der Amphibien in zwei Drüsenteile und den Hirnteil finden wir mit voller Klarheit beschrieben und abgebildet. Mit seinen eingehenden Methoden konnte Ramón y Cajal (1893/94) auch bezüglich des Hirnlappens. der bis dahin weniger untersucht worden war, interessante Feststellungen machen. Er sieht in ihm spindelförmige, dreieckige und sternförmige Gliazellen mit kurzen Dendriten. Dazu kommen die Endaufzweigungen von Achsenzvlindern, welche hinter dem Chiasma n. opt. entspringen. Am Infundibulum bereits verästeln sie sich und ziehen so herab in den Hirnteil. Die letzten Ausläufer dringen auch noch in den Zwischenlappen ein. Zu ganz ähnlichen Resultaten kommt Retzius (1893/94), der die Gliazellen im Hirnteil der Hundehypophysis näher beschreibt. Auch er kann keine Ganglienzellen feststellen. Kupffer (1894), der besonders die phylogenetische Bedeutung der Hypophysis diskutiert, gelingt es in der Cyclostomenhypophyse zwei Teile zu unterscheiden. Zu den Beobachtungen Goettes über die Ontogenese der Anurenhypophyse fügt er einiges zu. Einen bedeutenden Fortschritt für die Kenntnis der vergleichenden Entwicklungsgeschichte und feineren Anatomie der Hypophysis bedeutet die Arbeit von B. Haller (1894). Bei allen Tieren werden die einzelnen Teile auch in histologischer Hinsicht geschieden. Unzutreffend allerdings ist die Homologisierung der Teile zwischen den verschiedenen Gruppen. Einen Rückschritt bedeutet auch die Auffassung des schon von früheren Autoren richtig erkannten Zwischenlappens der Amphibien als einen Teil des Saccus vasculosus. Haller entdeckte eine Ausfuhröffnung der Hypophyse, in welche sich alle Drüsenschläuche ergössen. Die Offnung lässt das Sekret nach aussen in den Subduralraum treten. Die Beobachtung, die sich auf alle von ihm untersuchten Formen bezieht, ist von keinem anderen Autor vorher oder nachher wieder gemacht worden. Nun folgen verschiedene Arbeiten, die sich mit dem feineren Aufbau des Drüsenteiles und seinen funktionellen Veränderungen beschäftigen. Benda (1900/04) hält an der von Saint-Remy angenommenen Einheit der Drüsenzellen (Mensch) fest und glaubt. dass die körnchenlosen, chromophoben Zellen als Jugend- oder Ruheform aufzufassen seien. "Aus ihnen gehen durch Ansammlung

acidophiler Körnchen die gewöhnlichen chromophilen, acidophil gekörnten Zellen hervor. Die cvanophilen (amphophil) gekörnten wären als Reifungsformen aufzufassen, aus denen die Körner durch Lösung schwinden. Ein Übergang der Körnchen als solche in ein Sekret ist nicht nachzuweisen. Die Aufnahme des gelösten Sekretes durch Diffusion in die Blutgefässe ist als wahrscheinlich vorauszusetzen." Gemelli (1900, 1903/04) dagegen unterscheidet ein durch die cyanophilen Zellen geliefertes granuläres Sekretionsprodukt, das wichtiger ist als das von den acidophilen Zellen produzierte. Auch nach Thom (1901) liefern die chromophoben und chromophilen Zellen ein verschiedenartiges Sekret, das sich mischt, um ein dünnflüssiges Colloid zu bilden. Die Zelltypen hält er demnach nicht für vereinbar. Das Colloid trennt er in dünneres inter- und konzentrierteres intrafollikuläres. Studnička (1901) fand in den Blutgefässen Colloid. Im Hirnteil des Menschen fand Erdheim (1903) neben Colloid auch Zwischenlappensubstanz. Nach ihm sind im mittleren Lebensalter die chromophilen Zellen reichlicher als in älteren Jahren. Im Alter findet er degeneriert erscheinende kleine ungranulierte Zellen. Durch die Färbung mit Orange-G- und Säurefuchsin unterscheidet Scaffidi (1904) zwei fundamentale Zelltypen, die ihm unvereinbar erscheinen. Auf umfangreichen vergleichenden Untersuchungen baut sich die Arbeit von Sterzi (1904) auf, in der er die Befunde von Haller vielfach bestätigt und richtig stellt. Zum ersten Male finden wir hier die verschiedenen Teile in der Hauptsache richtig homologisiert. Er nennt nach der Allgemeinfärbbarkeit den Zwischenlappen den chromophoben und den Hauptlappen den chromophilen. Eine abermalige Bestätigung dieser Befunde bringt Gentes (1905), der sich der Terminologie Sterzis anschliesst. Diese Arbeit kann als die umfassendste angesehen werden, besonders was das Material anbetrifft. An der Hypophyse der Cyclostomen werden sehr klar drei Teile des Drüsenabschnittes unterschieden, während die Darstellung von nur zwei Drüsenabschnitten bei Teleostiern gegenüber Sterzis Befunden, in denen drei dargestellt werden, einen Rückschritt bedeutet. Er beschreibt den Blutgefässreichtum des Hirnlappens und das völlige Fehlen von Ganglienzellen in demselben. Auch die enge Angliederung des Zwischenlappens an den Hirnteil bei allen Vertebraten hebt er hervor. Wegen seiner geringen Färbbarkeit nennt er diesen Abschnitt des Darmteiles den

chromophoben. Das Drüsengewebe des Hauptlappens des chromophilen besteht meist aus soliden Zellsträngen, deren Elemente "sont orientés vers les capillaires sanguins dilatés". Das Colloid hält Gentes nicht für das normale Produkt der Drüse. Einen direkten Zusammenhang der Zellen mit den Gefässen nimmt Thaon (1907) an, da er in den Gefässen Colloid konstatiert. Derartige Massen findet er auch im Hirnteil. In älteren Jahren ist nach ihm der Drüsenabschnitt reicher an acidophilem Sekret und Colloidcysten. Histologische Beiträge zur Kenntnis der Hypophysis sind in der Arbeit von Herring (1908) niedergelegt. Nach ihm sind die Zellen des Hauptlappens als Funktionsstadien einer Zellart anzusehen, die wahrscheinlich in Blutgefässe sezernieren. Derselbe Forscher hat auch (1908) Mitteilungen über die Entwicklung der Säugerhypophyse gemacht. Für unsere Haussäugetiere bringt Trautmann (1909) feinere histologische Einzelheiten und diskutiert namentlich die Sekretion und Colloidbildung. Er glaubt, dass die baso- und acidophilen Zellen zwei unvereinbare Drüsenzellarten darstellen. Das Colloid hält auch er für ein Drüsenprodukt und findet es in Gefässen sehr reichlich. Die Gefässe verlieren nach ihm streckenweise ihre Wandung, so dass ein inniger Austausch zwischen dem Drüsenparenchym und dem Gefässlumen stattfinden kann. Dann bringt Creutzfeldt (1909) eine ausführliche Studie an der Hypophyse des Menschen, in der die Colloideinteilung Thoms übernommen und die Einheit der Zellen als Funktionsstadien einer Art vertreten wird. Zahlreiche Befunde an Vertretern der verschiedensten Gruppen enthält auch das Lehrbuch von Edinger (1910) über die vergleichende Anatomie des Gehirns. Der gleiche Forscher hat auch die schon eingangs erwähnten Injektionen an einigen Hypophysen unternommen, um so die Sekretwege darzustellen. Die letzte Arbeit ist die von Tilney (1911), welcher, wie ich dem Referat von Herrick (Folia Neuro-Biologica, VI) entnehme, ebenfalls die Teile des Organs unterscheidet und an der Einteilung der basound acidophilen Zellen, denen er eine verschiedene Funktion zuschreibt, festhält.

Die pathologisch-anatomische Literatur ist am besten bei Fischer (Hypophysis, Akromegalie und Fettsucht, Wiesbaden 1910) gesammelt. Für die sehr reiche klinische ist wesentlich auf das bekannte Handbuch von Biedl zu verweisen. (Vergl. ausserdem namentlich noch Cushings verschiedene dort zitierte Arbeiten.)

Die vorliegende Studie stützt sich auf Untersuchungen an Vertretern aller Klassen. Von Selachiern konnten nicht weniger als zwölf verschiedene Arten herangezogen werden, wozu mir die reiche Sammlung unseres Institutes an Schnittserien wertvolle Dienste leistete. Auch von Säugern ist die Untersuchung einer Elefanten- und Kamelshypophyse hervorzuheben. Im übrigen sind die Objekte die üblichen, auch von früheren Autoren bearbeiteten. Fixiert wurde das Material, das teils herauspräpariert, teils im Knorpel oder entkalkten Schädel belassen wurde, in Carnov, Zenker oder Zenker-Formol, doch stand auch Alkohol und Formolmaterial zur Verfügung. Gefärbt wurde mit Hämatoxylin nach Delafield oder Hämalaun unter Nachfärbung von Giesons-Gemisch oder Eosin, Weigertmethode, Eisenhämatoxylin nach Heidenhain, Resorcin und Sudan III. Geschnitten wurde, wenn nicht gefrorenes frisches Material in Betracht kam, in Paraffin oder Celloidin-Paraffin.

Die folgenden Zeilen sollen sich vornehmlich mit den beiden Drüsenlappen beschäftigen und sie in ihren Eigenarten darstellen. Weiterhin sollen dann die funktionellen Beziehungen der einzelnen Hypophysisteile zueinander besprochen werden.

1. Der Hirnteil.

Die trichterförmige Einsenkung des Zwischenhirnbodens ist das Infundibulum. Während sich dessen meist ventralwärts gerichtete Ausstülpung, der Recessus infundibuli, bei allen Vertebraten vorfindet, hat sich bei den niederen noch eine kaudaler gelegene, der Recessus sacci, gebildet. Bei den meisten im Wasser lebenden Formen entwickelt sich aus letzterem ein plexusartiges Gebilde mit reicher Blutversorgung, der Saccus vasculosus. Vielleicht entspricht ihm der Recessus mamillaris höherer Vertebraten. Im folgenden soll nur von dem Recessus infundibuli, dem eigentlichen Trichter, die Rede sein.

Wenn wir die Reihe der einfachen Schemata und Übersichtsbilder im Text betrachten, so erkennen wir überall das trichterförmige Infundibulum, das sich bei vielen Tieren am Boden verdickt und dadurch den Hirnteil der dort angelagerten epithelialen Hypophysis bildet. Bei Petromyzon (Fig. 3) bleibt der Boden

des Recessus infundibuli zeitlebens eine ziemlich gleichmässige unverdickte Lamelle, welche nach dem Darmteil zu als glatte Wand verläuft, innen jedoch, besonders lateral, leichte Einkerbungen aufweist. Diese Einkerbungen deuten vielleicht die bei den Fischen vorhandenen Ausstülpungen des Recessus infundibuli an. Die bei den meisten höheren Vertebraten vorhandenen Infundibularbildungen, die in Form von Schläuchen, Zapfen oder starken Anschwellungen des Trichterbodens auftreten, gehen meist erst im Laufe der Ontogenesis, entsprechend der mehr und mehr fortschreitenden Vereinigung der beiden heterogenen Teile. Hirnund Darmteil, vor sich. So zeigen Selachierembryonen den Infundibularboden, an den ein schon in allen Teilen entwickelter Darmteil anstösst, noch als dünne und ebene Lamelle, während er später Fortsätze nach dem an ihn unmittelbar angrenzenden Zwischenlappen hervortreibt. Diese Fortsätze bleiben bisweilen auch bei älteren Tieren klein und stellen sich dann als kurze solide Zapfen Sterzi bildet solche Zapfen von Acanthias ab und schreibt davon: "il tessuto dell' area ipofisaria sembra infatti addentarsi con dei prolungamenti entro al lobo dorsale" der Hypophysis. Bei einem grossen Exemplar von Heptanchus dagegen fand ich schon längere hohle Schläuche, die sich weit in den Zwischenlappen hinein erstreckten. In diese Schläuche setzt sich der Trichterhohlraum fort (Fig. 1). Auf solche Weise wird natürlich eine ungemein innige Verbindung hergestellt. Andere Selachier wieder, wie Mustelus und Scyllium, scheinen überhaupt keine Fortsätze des Trichters zu bilden. Durch die Ineinanderstülpung kommt es zu Bildungen, die an eine zottenartige plazentale Vereinigung erinnern. Eine solche weitgehende Verbindung durch Ineinanderlagerung des Hirnteiles und Zwischenlappens findet sich unter den Fischen allgemein. Ganoiden und Teleostier zeigen sie sogar noch mehr als Selachier. So sehen wir an der Hypophyse des Störs (Fig. 10 und 11) lange Schläuche. die das Infundibulum durch den Zwischenlappen entsendet, durchaus ähnlich denen von Heptanchus. Bei den Teleostiern handelt es sich nicht um Hohlschläuche, sondern um solide, weitverzweigte Stränge, die besonders den Zwischenlappen durchziehen. Diese Stränge, in denen meist reichlich Blutgefässe verlaufen, waren bei allen untersuchten Formen stark entwickelt. Die Abbildung der Hechthypophyse (Fig. 1 und 15) zeigt deutlich, wie fein zer-

Fig. 1.

Schemata von Sagittalschnitten durch die Hypophysis cerebri mehrerer Vertebraten. Schwarz: Hauptlappen; hell und punktiert: Zwischenlappen; schraffiert: Hirnteil; dunkel und punktiert: Mittel- oder Übergangsteil bei Cyclostomen und Teleostiern. — Der Hauptlappen überall reichlich mit Blutgefässen versehen.

fasert sich die Stränge des Hirnteiles, einem Wurzelwerk gleich, im Zwischenlappen verbreitet haben. Bei Lophius wächst im Laufe der Ontogenese der Trichterstiel derartig in die Länge, dass die Hypophysis ganz vorn vor das Chiasma gelagert wird. Eine gute Abbildung dieser Verhältnisse bringt Edinger (1911). Bei dem Mormyriden Gnathonemus kommt es (Fig. 2) weniger zu einer Verzweigung als zu einer ausserordentlichen Verdickung des Infundibularbodens und dadurch zur Bildung eines ausserhalb des Darmteiles gelegenen Hirnlappens, der an die gleichen Bildungen

Fig. 2.

Sagittalschnitt durch den Infundibularteil und die Hypophyse eines Gnathonemus.

bei Säugern erinnert. Auch hierin also entfernen sich die Mormyriden von den übrigen Teleostiern. Entschieden erweist sich die Verzweigung und Zergliederung des Zwischenhirnbodens und damit die Vereinigung des Darmteiles — es kommt hierbei stets der Zwischenlappen desselben in Betracht — mit dem Gehirn bei den Fischen am weitgehendsten, wie denn überhaupt das Infundibulum der Fische die Fähigkeit zu Ausstülpungen und komplizierten Verzweigungen in besonders hohem Maße zu haben scheint, — sehen wir doch auch hier den Saccus vasculosus in vollster Ausbildung. Kein höherer Vertebrat zeigt wieder solche innige Vereinigung zwischen Hirnteil und Zwischenlappen.

Bei den Amphibien (Fig. 1 und 5) hat das Infundibulum nach dem Darmteil zu eine durchaus ebene unverzweigte Wand. Diese Wand bildet streckenweise eine ganz dünne epitheliale Lamelle. In ihrem kaudalen oberen Abschnitt dagegen weist diese Trichterwand einen stark verdickten Hirnteil auf. Zu diesem gesellt sich dann bei den Anuren, Rana und Bufo, noch jederseits am Infundibularboden eine starke Verdickung der Wand, die auch als Rezeptionsorgan für das Sekret in Frage kommt. Diese Anschwellungen der Trichterwand bei den Amphibien sind wie überall rein gliöser Natur und erweisen sich als echte Hirnteile. Wie schon die Untersuchungen W. Müllers und Edingers (1892) zeigen, zeichnet sich der Hirnteil der Anurenhypophyse durch eine sehr starke Vaskularisation aus. Er dokumentiert sich schon hierdurch als wohl geeignet, ein Rezeptionsorgan für das Sekret des Zwischenlappens darzustellen. Auch Nervenfasern wurden in ihm festgestellt.

Eine solche Verdickung kommt auch dem Infundibularboden der Sauropsiden zu, bei denen sich an der Reptilienhypophyse leichte Buchtungen des Hirnteiles nach dem Zwischenlappen zu konstatieren lassen, die indessen nie zu stärkeren Verzweigungen ausarten (Fig. 1 und 14). In diese Buchten zwischen den Infundiburlarausstülpungen wuchert dann das Gewebe des Zwischenlappens hinein.

Weitaus am stärksten hat sich der Zwischenhirnboden bei den Säugern verdickt (Fig. 1, 7, 8, 17 und 18). Bei diesen kommt es zu einer kolbigen Anschwellung des Hirnteiles, der an Grösse fast den Drüsenteil erreicht, ja ihn bisweilen übertrifft. Auch hier ist eine innige Verbindung des Hirnteiles mit dem Zwischenteil zustande gekommen, indem dieser in jenen hineingewuchert und dort häufig in versprengten Inseln anzutreffen ist. Bisweilen liegt der Darmteil dem Hirnteil in ziemlich gerader Wand an (Fig. 7), bei anderen wieder, wie beim Hunde (Fig. 1), ist der Hirnteil ein rundes knopfartiges Gebilde, das vom Darmteil umgriffen wird. Auch bei den Säugern zeigt sich dieser Teil ziemlich vaskularisiert.

Was den feineren Bau dieses Hirnlappens anbetrifft, so stimmen die Beschreibungen aller Autoren darin überein, dass er sehr wenig nervöses Gewebe enthält. Es handelt sich in der Hauptsache um Bindegewebe und Neuroglia. Daneben wurden vielfach Nervenfasern festgestellt, die sich als Endaufzweigungen von hinter dem Chiasma n. opt. entspringenden Achsenzylindern darstellen. Sie ziehen sich verästelnd vom Infundibulum herab durch den ganzen Hirnteil und dringen auch mit ihren letzten Verzweigungen in den Zwischenlappen ein. Für Rana konstatierte besonders Bochenek (1902) Nervenfasern im Hirnteil und Zwischenlappen, die er beide zusammenfasst als Glandula infundibuli, wobei er den kaudaleren Anteil offenbar nicht mit dem überall sonst vorkommenden Zwischenlappen der epithelialen Hypophyse identifiziert. So nennt er ihn "ein neues Gebilde, das noch bei den Urodelen nicht aufzufinden war". Wir wissen, dass es dort allerdings sehr klein ist. Ganz verfehlt ist daher sein Schluss, dass es "bei den Anuren phylogenetisch neu angelegt zu sein" scheine. Er teilt die Ansicht Boekes, dass die Glandula infundibuli ein Sinnesorgan darstelle.

Ganglienzellen waren im Hirnteil in keinem Falle sicher nachweisbar. Reich erwies sich der Hirnlappen an Gefässen und Lymphspalten. Bei Selachiern und Ganoiden ist das nicht der Fall, da es ja bei ihnen nicht zur Ausbildung eines soliden oder gar verdickten Hirnteiles, sondern zu schlauchartigen oder zapfenförmigen Vortreibungen kommt, die ja auch einen viel innigeren Austausch zwischen Hirnteil und Zwischenlappen ermöglichen. Bei allen übrigen Vertebraten mit umfangreicherem Hirnteil dagegen muss die Vaskularisation dieses kompakten Gebildes für Sekretaufnahme und -transport sorgen. Bei besonders alten Individuen verschiedener Gruppen wurden in den Spaltenräumen dieses Teiles Ballen von eingedicktem Sekret oder Degenerate von Sekretzellen konstatiert. Über diese Verhältnisse wird später bei Darstellung der Sekretionsvorgänge noch eingehender gesprochen werden.

Wir erkennen also aus allem, dass der Trichterboden, an welchen sich in Gestalt des Zwischenlappens der Hypophyse eine Drüse angelegt hat, die verschiedensten Formen und Bildungen eingegangen ist, um seiner Aufgabe, das Sekret dieser Drüse aufzunehmen, gerecht zu werden. Bei niederen Vertebraten hat er Ausstülpungen und Verzweigungen, bei höheren Verdickungen mit starker Vaskularisation gebildet.

2. Der Darmteil.

A. Der Zwischenlappen.

An den Hirnteil gliedert sich bei allen Tieren unmittelbar derjenige Teil des Darmteiles an, den wir den Zwischenlappen Archiv! mikr. Anat. Bd. 82. Abt. L. 20 nennen. Die bei der ontogenetischen Bildung des Darmteiles auftretende Höhle der Rathkeschen Tasche, die spätere Hypophysenhöhle, bleibt bei einigen Tieren zeitlebens erhalten, verschwindet aber auch bei anderen völlig. Durch Bildung der Drüsenschläuche der beiden Teile verzweigt sie sich bisweilen weitgehend, doch verlieren diese Schläuche in weiter vorgerücktem Alter die Lumina. Wenn die Hypophysenhöhle persistiert, so kann das im Zwischenlappen oder im Hauptlappen, in beiden zugleich oder zwischen ihnen, kurzum überall, der Fall sein. Ich werde daher, um Wiederholungen zu vermeiden, auf die Hypophysenhöhle im folgenden bei den betreffenden Drüsenabschnitten zu sprechen kommen.

Eingangs muss hier hervorgehoben werden, dass bei den Cyclostomen und Teleostiern sich im Darmteil nicht zwei, sondern drei Teile unterscheiden lassen (Fig. 1, 3 und 15). Von diesen entspricht einer dem Zwischenlappen, ein anderer dem Hauptlappen, während der dritte, zwischen ihnen gelegene, gewissermassen einen Übergang vom einen zum anderen darstellt. Wir wollen ihn als Mittelteil oder Übergangsteil bezeichnen. Er ist bei beiden Klassen, so bei Petromyzon fluviatilis, bei Esox lucius und Cyprinus carpio sehr stark entwickelt. Die Verhältnisse werden dadurch bei diesen Formen etwas kompliziert. Die Teleostier scheinen sich also hier mehr den Cyclostomen zu nähern, während die Selachier entschieden etwas abseits stehen. Augenscheinlich ist bei den Teleostiern der Mittelteil dem Hauptlappen höherer Vertebraten, der am weitesten frontal gelegene "Hauptlappen" der Teleostier demselben Abschnitt bei Selachiern ähnlich. Sonach könnten aus der Hypophyse der Knochenfische. die gemeinsame Charaktere aufweist, die Hypophyse der Selachier einer- und die der höheren Vertebraten andererseits ableitbar sein.

Der Zwischenlappen wird, wie eine vergleichende Übersicht der ganzen Reihe zeigt (Fig. 1), im Verhältnis zum Hauptlappen stetig kleiner. Während er bei den Fischen noch an Grösse dem Hauptlappen mindestens gleichkommt, ja ihn bisweilen bedeutend überwiegt, ist er schon bei den Amphibien erheblich kleiner, bei Salamandra sogar sehr winzig. Ebenso zeigt er sich bei den Sauropsiden durchgehend als eine ganz schmale Lamelle. Bei den Säugern endlich treffen wir ihn in verschiedener Grösse an, doch scheint er hier mit der zunehmenden Höhe in der

phylogenetischen Reihe kleiner zu werden. Sehr gross verhältnismässig kann der Zwischenlappen bei Kaninchen und Ratte (Fig. 7) genannt werden, kleiner ist er schon bei den Raubtieren, während er sich beim Menschen (Fig. 18) endlich auf ein Minimum reduziert hat. Das sind Verhältnisse, die schon die Arbeiten von Haller, Sterzi und Gentes beleuchtet haben. Ausser bei Selachiern ist der Zwischenlappen bei allen Formen weniger von Blutgefässen durchströmt als der Hauptlappen (siehe Schema 1 und Taf. XX, Fig. 11), wie sich die Zellen des ersteren weniger ausgeprägt zu Strängen oder gar zu Schläuchen epithelartig anordnen als bei dem letzteren, was eben auch mit dem geringeren oder grösseren Gehalt an Blutbahnen zusammenhängt.

Sterzi und Gentes unterscheiden die beiden Teile durch die Allgemeinfärbung und nennen den Zwischenlappen den chromophoben, den Hauptlappen den chromophilen Teil. Das mag in einigen Fällen und bei gewissen Färbungen zutreffen, dürfte aber häufig schwer entscheidbar sein, besonders wenn der Zwischenlappen wie bei den Sauropsiden so ungemein schmal, höchstens 5-6 Zellreihen breit, ist. Jedenfalls sind niemals die Kerne des Zwischenlappens schwächer, sondern, eher umgekehrt, häufig in gewissen Zuständen weit stärker färbbar als die der Hauptlappenzellen. Sonst haben diese Forscher wie auch Haller überall deutlich den Zwischenlappen und Hauptlappen der Drüse Merkwürdigerweise hat Haller, wie das auch unterschieden. Müller schon getan hatte, bei Selachiern die beiden Teile gerade umgekehrt angesprochen und bezeichnet und ist so auch zu einer abweichenden Homologisierung der Drüsenteile derselben mit denen höherer Vertebraten gekommen. Meine Befunde jedoch können die der vorgenannten Forscher durchaus bestätigen.

Der Zwischenlappen der Cyclostomenhypophyse (Fig. 1 und 3) ist ein verhältnismässig einfach gebautes Gebilde, welches sich napfförmig um die Hervorbuchtung des Infundibulartrichters herumlegt und ihn innig umschmiegt. Vor diesem Teil liegt, durch ein Bindegewebsseptum von ihm geschieden, ein Abschnitt, den Sterzi zu ihm hinzuzieht. Beiden gibt er gemeinsam den Namen "parte chromofoba" und homologisiert sie dem Zwischenlappen der anderen Vertebraten. Schon Gentes widerspricht dieser Auffassung. Auch ich glaube, dass allein der hintere dünne Abschnitt dem Zwischenlappen höherer Vertebraten entspricht, während der mittlere ein

Gebilde darstellt, das einen Übergang zum Hauptlappen, der ganz vorn gelegen ist, bildet, aber entschieden eher zu diesem gehört als zum Zwischenlappen. Die Verhältnisse bei Knochenfischen sind

Zwischenlappen

Mittelteil

Fig. 3.

Sagittalschnitt durch den Infundibularteil und die Hypophyse von Petromyzon fluviatilis.

sehr ähnlich und wurden von Sterzi wieder in derselben Weise wie bei Cyclostomen gedeutet. Ich werde also diesen Abschnitt der Cyclostomen und der Teleostier erst bei der Darstellung des Hauptlappens besprechen.

Bei den Teleostiern ist die Verbindung von Zwischenlappen und Infundibularteil durch die langen, weit verzweigten Stränge des letzteren, welche das Zwischenlappendrüsengewebe durchziehen, sehr innig geworden. Dies mag eine der Ursachen sein, weshalb der Zwischenlappen fast ohne ein Blutgefäss ist. So kann hier ein unmittelbarer Austausch des Sekretes zwischen Hirnteil und Zwischenlappen stattfinden, wie er sonst nirgends anzutreffen ist. Die Drüsenzellen dieses Teiles der Teleostierhypophyse sind vorwiegend polygonal gestaltet und basophil gefärbt. Doch zeigen sich besonders bei einem alten Hecht viele, die schwach acidophil reagieren. Diese Zellen, die sich augenscheinlich in lebhaft sezernierender Tätigkeit befinden, finden sich besonders an den Stellen des Drüsenparenchyms, welche den eingesprengten Hirnteilinseln und -strängen anliegen. Die Zellen sitzen dort meist

in Form eines Epithels von schlanken Zylinderzellen der Wand des Hirnteiles auf. Ihr Kern liegt an der der Hirnsubstanz abgewandten Seite. Im Gewebe des Hirnteiles aber, das sehr gelockert erscheint, liegen ausserordentlich reichlich schmutzig gefärbte Tropfen, die als Sekret offenbar dem Zwischenlappen, in dessen Gewebe sie ebenfalls zu finden sind, entstammen. Während im Zwischenlappen Blutgefässe so gut wie gänzlich fehlen, sind die Stränge des Hirnteiles sehr reichlich von solchen durchzogen. Auch in den Blutgefässen finde ich eine blasse homogene Masse, in welche die Blutkörperchen eingebettet erscheinen.

Den Zwischenlappen der Selachier durchziehen reichlich Blutsinusoide im Gegensatze zu dem der meisten anderen Vertebraten, wo man ihn als höchst blutgefässarm bezeichnen kann. Dadurch zeigt sich das Drüsengewebe bei Selachiern in Stränge zerlegt, welche vielfach in der dorso-ventralen Richtung streichen. Die den Blutgefässen anliegenden Zellen zeigen eine ziemlich regelmässige zylindrische Form und bieten so den Anblick eines Epithels, in dessen Zellen die Kerne meist an der dem Blutgefässe abgewandten Seite gelegen sind. Innerhalb der Stränge sind die Zellen

Fig. 4.
Sagittalschnitt durch den Infundibularteil und die Hypophyse von Scyllium canicula.

regellos angeordnet und polygonal gegeneinander abgeplattet. Die Kerne sind meist gross und blasig und enthalten unregelmässig und wenig dicht verteilte Chromatinkörnchen, sowie ein, zuweilen auch mehrere, grössere Kernkörperchen. Neben diesen normalen Kernen kommen auch kleinere intensiver gefärbte vor, die den Eindruck machen, als hätten sie sich zusammengezogen. Der Plasmaleib ist von sehr lockerem Gefüge und nimmt Farbe nur ausserordentlich wenig an.

Innerhalb der Zellen wird im Plasma in Form kleiner Tröpfchen ein Sekret produziert, das in der Reife intensiv acidophil reagiert (Taf. XVIII, Fig. 1). Es ist nun nicht sicherlich nachweisbar, ob das Sekret normalerweise später in ziemlich diffusem, mikroskopisch schwer darstellbarem Zustande in den Interzellularlücken und perivaskulären Lymphräumen weitertransportiert wird und dann in das Infundibulum gelangt. Jedenfalls lässt es sich nur im Zwischenlappen als grosse, glänzende Tropfen und Schollen darstellen. In diesem Zustande erscheint es mit Pikrinsäure leuchtend gelb gefärbt und vielfach Vakuolen aufweisend, also vermutlich von zähflüssiger Konsistenz. So liegt es in den hellen Höfen des Plasmas, meist aber in interzellulären Räumen und besonders dicht gehäuft um die Blutgefässe herum. Es handelt sich dann um das Produkt des Zusammenflusses vieler kleinerer Tröpfchen, häufig aus mehreren Zellen. So scheint es besonders bei älteren Tieren anzutreffen zu sein. Vermutlich zeigt dies Vorkommnis also nicht den normalen Ablauf der Sekretion an, der wohl in gelöstem Zustande in den Lymphspalten nach dem Infundibulum zu verläuft, sondern es handelt sich dann um eingedicktes und gestautes Sekret, das in dieser Konsistenz als Colloid angesprochen werden darf. Die Sekretstauung um die Blutgefässe herum wird bisweilen so stark, dass zwischen Blutgefässendothel und Drüsenzellen ein weiter, von Sekretschollen erfüllter Raum entsteht.

In gleicher Form wie bei den Selachiern lässt sich bei den Amphibien wieder eine Sekretion feststellen (Fig. 5 und Taf. XIX, Fig. 6). Der Zwischenlappen ist hier ein sehr einheitliches, unverzweigtes Stück, das dem Hirnteil fest angeschmiegt liegt. Hier fand sich bei allen erwachsenen Tieren in sehr reichlicher Menge Sekret im Gewebe. Die Zellen sind hier zum Teil sehr intensiv cyanophil tingierbar, so dass die Bezeichnung "chromophob" entschieden wenig am Platze erscheint. Einige aber lassen sich stets deutlich unterscheiden, sie sind acidophil gefärbt. Dieses Verhalten tritt nur bei guter Färbung und Fixierung hervor, zeigt aber ohne

Zweifel, dass wir es mit Zellen zu tun haben, die mit einem acidophilen Sekret diffus erfüllt sind. In voller Deutlichkeit ist das Sekret auch hier, wie bei den Selachiern, in eingedicktem

Rostraler Hypophysenteil Trichterhöhle

Hauptlappen Zwischenlappen Hirnteil

Fig. 5.

Sagittalschnitt durch den Infundibularteil und die Hypophyse von Rana temporaria.

Zustande zu konstatieren. Es bildet dann ebenfalls Tropfen und Schollen, die schmutzig bräunlich bei weniger alten bis leuchtend gelb bei sehr alten Tieren gefärbt erscheinen und Vakuolen aufweisen. Sie liegen in Vakuolen des Zellplasmas oder in Interzellularlücken. Besonders reichlich finden sie sich an der Grenze nach dem Hirnlappen zu, wo sie sich in die Spalten um dessen Blutgefässe sammeln. Der Zwischenlappen selbst enthält nur sehr wenige Blutgefässe. Sehr bemerkenswert erscheint es hier, dass sich im Hirnteil, der sehr lockeres Gefüge hat und offenbar reichlich von Lymphspalten durchsetzt ist, sekretähnliche Ballen vorfinden. Diese sind schmutzig bräunlich gefärbt und bilden dichte reichliche Anhäufungen um die Blutgefässe herum, vereinzelt auch im übrigen Gewebe (Taf. XIX, Fig. 8). Einige solche Sekretballen lassen sich auch in der oben erwähnten Verdickung im unteren Teil des Infundibularbodens konstatieren (Taf. XIX, Fig. 9). Diese Sekretansammlungen im Hirnteil wurden nur bei sehr alten Tieren, bei Bufo, aufgefunden, dann aber reichlich und regelmässig. Es ist sicher, dass es sich dann ebenfalls um gestautes Sekret handelt. Niemals wurde es in anderen Hirnteilen als nur in den Verdickungen der Trichterwand angetroffen. Höchst wahrscheinlich hat sich das Sekret vom Zwischenlappen aus in den Hirnteil ergossen und wurde hier bei den alten Tieren gestaut und etwas eingedickt. An einigen Stellen lassen

sich solche Sekretstrassen noch gut erkennen (Taf. XIX, Fig. 9). Da es sich um verschiedene Altersgerinnungsstufen des Sekretes handelt, zeigen die verschiedenen Abschnitte, Zwischenlappen und Hirnteile, auch starke Färbungsdifferenzen der Sekrettropfen, welche in der Taf. XIX, Fig. 9, möglichst getreulich wiedergegeben werden.

Fig. 6. Sagittalschnitt durch den Trichter und die Hypophysis von Columba domestica.

Der Zwischenlappen der Sauropsiden ist so schwach entwickelt, dass darüber nur wenig gesagt zu werden braucht. Die Zellen sind polygonal gegeneinander abgeplattet und enthalten normale blasige Kerne. In der Färbung zeigt sich der Zwischenlappen nicht besonders blass und entschieden cyanophil gefärbt, wodurch er sich auch hier von dem vornehmlich gelblich tingierten Hauptlappen abhebt. Es ist anzunehmen, dass auch hier, besonders bei den Reptilien, wo die Verbindung des Drüsenzwischenlappens mit den Infundibularausstülpungen ziemlich innig ist, von der Drüse aus zum Hirnteil eine Sekretion stattfindet. Sicherlich aber dürfte diese Funktion der Hypophyse bei den Sauropsiden, und sonderlich bei den Vögeln, den niederen Vertebraten gegenüber stark zurückgegangen sein.

Recht verschiedenartig gestaltet erweist sich der Zwischenlappen der Säuger. Man kann im allgemeinen wohl sagen, dass er mit der Höhe der stammesgeschichtlichen Stellung mehr reduziert erscheint. Er wird, wie schon erwähnt, vom Hauptlappen durch die Hypophysenhöhle getrennt und liegt dem Hirnteil, der hier ja sehr stark entwickelt ist, dicht an, wobei beide teilweise ineinander gestülpt erscheinen. Die Hypophysenhöhle verzweigt sich häufig nach dem Zwischenlappen zu, indem sie Ausstülpungen von Schlauchform bildet, die sich vielfach abschnüren und dann bläschenförmige Hohlräume darstellen. Überhaupt verkleinert sich bei den meisten Säugerformen die Hypophysenhöhle im Laufe der Ontogenese, um bei einigen gänzlich zu schwinden. Beim Pferd wurde eine Hypophysenhöhle beim ausgewachsenen Tier nicht gefunden. Schon Lothringer hat diesen Mangel konstatiert und neuerdings bestätigte auch Trautmann diesen Befund, der nach ihm auch für den Esel Geltung hat.

 ${\bf Fig.~7.}$ Sagittalschnitt durch den Infundibularteil und die Hypophyse von Mus decumanus.

Einen primitiven Typus der Säugerhypophyse stellt die der Nager, insbesondere die der Ratte dar. Hier erhält sich die Hypophysenhöhle zeitlebens. Der Zwischenlappen ist verhältnismässig gross (Fig. 7) und kompakt gebaut. Weder in ihm, noch in dem ihm anliegenden Hirnteil war Sekret nachweisbar. Es wäre anzunehmen, dass es sich hier wohl nicht um das Fehlen von Sekret handelt, vielmehr dass es sich nicht staut oder eindickt, und so wohl nicht sichtbar gemacht werden kann. Schon weiter entwickelt oder vielmehr etwas mehr reduziert ist der Drüsenzwischenlappen beim Kaninchen. In der Grösse gegenüber dem Hauptlappen steht er im Verhältnis zu dem der Ratte bereits erheblich zurück. Dazu kommen aber vereinzelte Sekretstauungen. die sich in Interzellularlücken sammeln, wobei auch ein Schwund von Zellen vor sich geht. Es entstehen dann cystenartige Hohlräume, welche von colloidalem, eingedicktem Sekret erfüllt sind. Solche Massen finden sich auch in der Hypophysenhöhle. Die

"Colloidcysten", wie die infolge der Sekretion auftretenden Hohlräume genannt wurden, sind nicht zu verwechseln mit den oben erwähnten Resten der Hypophysenhöhlenausstülpungen. letzteren zeigen ein deutliches Epithel, welches hier beim Kaninchen mit Wimpern besetzt ist. Es ist möglich, dass Lothringer diese Höhlenrudimente mit den durch Colloidstauung im höheren Alter entstehenden Cystenräumen verwechselt hat. Er schreibt: "Die Auskleidung der Cysten ist ein Flimmerepithel mit sehr langen und verhältnismässig starken Flimmerhaaren." Die Cysten jedenfalls entstehen infolge von Alter als Erscheinungen, die durch Hypersekretion mit Zerstörung der Zellen oder Sekretstauung gebildet werden. Beim Kaninchen ist diese Cystenbildung noch wenig erheblich, wir werden ihr aber bei den höheren Säugern weit intensiver begegnen. Immer jedoch ist sie wohl eine Folge des zunehmenden Alters, eine Abnutzungserscheinung, so dass regelmässig die Hypophysis des jungen Tieres wenige oder keine, die des älteren oder greisenhaften mehr bis sehr viele aufweist. Auch Trautmann, der die Colloidbildung selbst wenig diskutiert, schreibt, er habe "bei jüngeren und jüngsten Tieren weniger Colloid als bei älteren gefunden", wie er auch bei jenen "weniger zahlreiche Cysten" konstatiert. Vom Menschen schreibt Creutzfeldt: "Im höheren Alter nimmt man häufig wieder grosse Kolloidkysten, die fast den ganzen Vorderlappen einnehmen können, wahr". Bei einer Katze fand ich zahlreiche Cystenhohlräume erfüllt mit Ballen degenerierter Zellen. Dieses Verhalten erklärt sich daraus, dass gewisse abgenutzte Zellen eines Distriktes zugrunde gehen und hierbei als Klumpen in einen rundlichen Hohlraum, eine Cyste, zu liegen kommen. Solche Zellklumpen erwiesen sich im Gegensatz zu den noch intakten Zellterritorien als dunkler. tief cyanophil, chromatisch gefärbt und enthielten hie und da Histiolyten. Einige Klumpen waren im Innern schon rötlich gefärbt. Wir haben also einen deutlichen typischen histiolytischen Zerfall von Zellen vor uns, der vielleicht durch Hypersekretion hervorgerufen wurde. Es resultieren auch hier zum Schluss acidophil färbbare homogene Colloidklumpen, welche in Cysten eingeschlossen sind. In die Nähe dieser degenerierenden Zellklumpen bei der Katze sind sicherlich auch die Riesenzellen von Creutzfeldt zu stellen, die dieser im Hauptlappen der menschlichen Hypophyse im vorgerückten Alter konstatieren konnte.

Sie sind amphophil, stark vakuolisiert und mehrkernig. Creutzfeldt bezeichnet sie ebenfalls als Degenerationsformen. Sehr viele Cysten enthält der schmale Zwischenlappen der Hypophysis eines erwachsenen Hundes. Eine ausgezeichnete Darstellung der Hundehypophyse finden wir neben der älteren von Lothringer bei Trautmann. Der Zwischenlappen sendet beim Hunde (Schema, Fig. 1) viele halbinselartige Fortsätze in den Hirnteil hinein, die sich auch zu Inseln abschnüren können. Beim Hunde besonders liegen die Cysten stark vermischt mit abgeschnürten Ausstülpungsräumen der Hypophysenhöhle. Regelmässig finden sich die Cysten mit Colloid angefüllt, das meist homogen und bläulich färbbar erscheint. Daneben sehen wir auch Cystenräume, welche mit degenerierten Zellen, die zum Teil schon homogene Colloidklumpen zu sein scheinen, vollgefüllt sind (Taf. XX, Fig. 12). Es zeigt sich hier also nebeneinander eine Sekretion und eine Degeneration der Zellen. Da letztere vermutlich erst auf eine Überhandnahme der ersteren erfolgt, und die beiden Erscheinungen also ursächlich zusammenhängen, sehen wir auch bei beiden ein ganz übereinstimmendes Ergebnis, die Colloidbildung. Recht gut liess sich beim Hund auch Sekret im Hirnteil feststellen Die Bilder erinnern sehr an die bei alten Kröten gefundenen. In den Lücken und Spalten des lockeren Gewebes fanden sich reichlich homogene schmutzig braun tingierte Ballen, welche höchst wahrscheinlich als gestautes Sekret anzusehen sind. Ausgezeichnet liessen sich solche Sekretballen beim Igel darstellen. Hier lagen sie im Zwischenlappen und im Hirnteil, besonders reichlich aber gerade an der Grenze der beiden. Einige Stellen boten den Anblick, als wenn an ihnen besonders reichliche Sekretinvasionen stattgefunden hätten. Solche Ballen sind beim Menschen von Cohn, Stumpf und neuerdings von Vogel untersucht worden. Sie werden als Pigment bezeichnet. Diese Autoren zeigen, dass die "Pigmentballen" Reste oder Umwandlungsprodukte von in den Hirnteil eingewanderten Zellen sind. Wir hätten also auch hier es mit dem Restprodukte, der "Schlacke", wie Vogel sagt, von vermutlich verbrauchten Drüsenzellen zu tun. Solche mit Sekretprodukten überladene, nicht mehr lebensfähige Zellen sind ohne Zweifel Gebilde, die ebenfalls colloidale Massen darstellen. Sehr wahrscheinlich bin ich also berechtigt, die Klumpen von eingedicktem Sekret und die sekretdurchtränkten

Zellen unter einem Gesichtspunkt zu betrachten. Die Colloide der Hypophysis sind sicherlich chemisch unterscheidbar, hier aber soll nur auf ihre Übereinstimmung als Abkömmlinge plasmatischer Substanzen Bezug genommen werden.

Fig. 8.
Sagittalschnitt durch den Trichter und die Hypophysis von Camelus bactrianus.

Von den Huftieren kamen Pferd, Schaf, Kamel und Elefant zur Untersuchung. Beim Pferd und auch beim Schaf liess sich im Zwischenlappen eine verschiedene Tingierbarkeit der Zellen feststellen, die wohl mit der sezernierenden Funktion in Zusammenhang steht. Während bei beiden, besonders dem Pferde, im Zwischenlappen grosse Cysten vorhanden sind, trägt der des Kamels reichliches Colloid innerhalb der Blutgefässe, allerdings auch zwischen den Zellen. Solche Gefässe sind dann häufig prall gefüllt und zeigen die Blutkörperchen als Einschlüsse der homogenen, rotgelb gefärbten Colloidmasse. Diese Bilder sind durchaus ähnlich den durch Trautmann vom Esel abgebildeten.

Sehr interessant war der Zwischenlappen der Hypophyse eines alten Elefanten. Hier wurde sehr reichlich Colloid produziert. Bei diesem alten Tier scheint es sich häufig nicht nur um gestautes Sekret, sondern auch um das Umwandlungsprodukt degenerierender altersschwacher Zellen zu handeln. Die bindegewebigen Septen, die den Zwischenlappen durchziehen, sind ungemein dick. In den von ihnen gebildeten Maschen liegen die

Drüsenzellen. Das Colloid konnte als gelbe Kugeln zwischen den Drüsenzellen überaus häufig angetroffen werden (Taf. XX, Fig. 10). Es hatten sich so gewissermassen Cysten gebildet. Viele der Drüsenzellen selbst aber schienen bereits der Histolyse verfallen zu sein. Dieses Colloid nun unterlag vielfach einer chemischen Umwandlung, die wohl als Degeneration, nicht als eine Reifung oder Nachreifung zu betrachten ist. Es zeigen sich nämlich im Innern solcher Colloidballen blaue Zentren in Form von kompakteren oder auch blasig wabigen Gebilden. Diese Zentren vergrössern sich und zeigen dabei konzentrische Schichtung. Nun greift diese Umwandlung mehr und mehr um sich und erstreckt sich nicht selten auch auf die bereits durch Histolyse zerstörten Drüsenzellen, welche die Cyste umschlossen. So sehen wir als Endprodukte grosse, sehr gelockerte und entweder konzentrisch geschichtete oder wabenartige blaue Massen, welche nur selten noch von Drüsenzellen umgeben sind, vielmehr meist direkt in den Bindegewebsmaschen liegen.

In der Hypophyse des Menschen tritt der Zwischenlappen an Grösse so sehr hinter den anderen Hypophysenteilen zurück, dass er in seiner Eigenart bisher nur so wenig berücksichtigt wurde (Fig. 18). Beim Fötus ist er eine flache Platte, welche dem Hirnteil innig anliegt und in seiner ganzen Breite vom Hauptlappen durch die Hypophysenhöhle getrennt ist, nur an den Rändern in ihn übergehend. Im Laufe der Entwicklung verengert sich die Höhle beträchtlich und schrumpft zu wenigen kleinen Resten zusammen. Hierbei zieht sich auch der Zwischenteil mehr zusammen und erscheint dann als eine Ansammlung von Drüsenzellen mit grossen Cysten durchsetzt, welche hauptsächlich die Mitte des Organs zwischen Hirnteil und Hauptlappen einnimmt und noch schmale Drüsenzellstreifen zwischen dieselben einkeilt. Die Cysten werden mitunter sehr gross. Die sie umgebenden Zellen sind gewöhnlich in Form eines einschichtigen Epithels geordnet. Das Colloid ist gelblich gefärbt. — Obwohl also beim Menschen dieser Hypophysenteil so reduziert erscheint, muss er nach Homologie mit dem gleichen Gebilde bei allen anderen Vertebraten auch hier unbedingt als besondere Drüse in Anspruch genommen werden. Besonders die embryonale Anlage dieses Teiles lässt ihn als ein gesondertes Gebilde erkennen (Fig. 17).

B. Der Hauptlappen des Darmteiles.

Der Drüsenhauptlappen der Hypophyse ist derjenige Abschnitt, der häufig als alleinige Drüse angesprochen, von Sterzi und Gentes als chromophiler Teil, beim Menschen als Vorderlappen bezeichnet wurde. Überall ist der Hauptlappen ungemein reich mit Blutbahnen durchzogen, welche die Drüsenschläuche und-stränge voneinander sondern und so ausgezeichnet für eine Sekretabgabe und Fortschaffung sorgen können (siehe Schema 1).

Zuweilen bewahrt dieser Teil noch Reste des bei der ursprünglichen Entstehung gebildeten Lumens der Rathkeschen Tasche. Das ist der Fall bei den Selachiern und Ganoiden, wo man auch bei erwachsenen Tieren noch von einem eigentlichen Lumen sprechen kann. Bei beiden sind Drüsenhohlschläuche vorhanden, die sich von dem ursprünglichen Hauptlumen aus durch Ausstülpung gebildet haben. Der Hauptlappen der Selachier zieht sich als schmaler, flach zungenförmiger Schlauch in der Medialebene des Hirns fast bis zum Chiasma n. opt. Dabei hat das Lumen viele Schläuche, besonders lateral und ventral, ausgestülpt. Wie schon die Abbildung Edingers (1892) von einer Hypophyse von Raja zeigt, sind bei diesem Tier auch in der frontalen Richtung zwei symmetrische Schläuche vorgestülpt. Die Schläuche zeigen sich anfangs durchaus symmetrisch und gleichmässig. So zeigte der Hauptlappen der Hypophyse eines Heptanchusembryo regelmässig zweizeilig angeordnete Ausstülpungen, welche von hinten nach vorn immer kleiner wurden, so dass der Hauptschlauch an seinem frontalsten Ende nur ganz leichte Vorbuchtungen aufwies. Die Komplizierung dieses Teiles durch Verzweigung scheint also von hinten nach vorn fortschreitend vor sich zu gehen. Bei ausgewachsenen Tieren ist die symmetrische Anlage durchaus verwischt, indem hier durch reichliches Wachstum der Schläuche und Verflechtung derselben durch Blutgefässe ein schwammiges Gebilde entsteht. Stets jedoch ist die dorsale Wand des Schlauches, die dem Hirn anliegt, unverzweigt geblieben oder sie weist, wie Haller das beschreibt, nur winzige Faltungen auf.

Regelmässig — ich konnte etwa zwölf verschiedene Formen untersuchen — findet sich ein ventrales Säckchen, das durch einen hohlen Stiel mit dem Hauptlumen in Verbindung ist und in die Höhlung des Schädels, mehr oder weniger tief, eingesenkt erscheint (Fig. 1, 4 und 9). Dieses Ventralsäckchen stellt sich

bei einigen Tieren, Scyllium, Mustelus, als ein recht einfaches, bei Heptanchus dagegen recht kompliziert gebautes, beim Embryo noch ziemlich symmetrisch verzweigtes, später schwammiges Gebilde dar, das eine nicht unbeträchtliche Grösse erreicht. Nicht selten steht dasselbe durch einen bindegewebig erscheinenden Strang ventralwärts mit der Mundbucht in Verbindung. Dieser Strang erfüllt den Rest des ursprünglichen Ganges der Rathkeschen Tasche. Ein endokranialer Hypo-

Verkleinerte Wiedergabe des Modells eines Infundibularteiles und der Hypophysis von einem Embryo von Heptanchus einereus.

Hirnteil Zwischenlappen Hauptlappen Fig. 10. Sagittalschnitt durch den Trichter und die Hypophysis von Accipenser sturio.

physenteil in Form eines Ventralsäckchens ist nur bei Selachiern zu finden. Alle früheren Autoren, wie Müller, Haller, Sterzi und Gentes, haben ihn erkannt.

Fig. 11.

Hauptlappen mit Hypophysenhöhle und Drüsenschläuchen Fig. 12.

Hauptlappen mit Drüsenschläuchen und Blutgefässen Fig. 13.

Fig. 11—13. Drei Frontalschnitte durch den Zwischenhirnboden und die Hypophysis von Accipenser sturio. In Fig. 11 durchzieht der Hirnteil mit seinen Schläuchen den Zwischenlappen. In Fig. 12 (mehr kaudal als Fig. 11) ist der Hauptlappen mit der Hypophysenhöhle, in Fig. 13 (mehr kaudal als Fig. 12) der Hauptlappen mit seinen Drüsenschläuchen abgebildet.

Der Hauptteil der Störhypophyse ist weniger lang gestreckt und erscheint durch stärkere Dickenentwicklung kompakter. Das Hauptlumen hat ebenfalls zahlreiche Schläuche, die dicht nebeneinander liegen und durch Blutgefässe getrennt werden, ausgestülpt. Die Schläuche sind hier in der dorso-ventralen Richtung gelagert, woher die mächtigere Dicke des Teiles im Gegensatze zu dem der Selachier resultiert. Diese Verhältnisse sind leicht aus den Fig. 10—13 zu ersehen.

Bei den meisten anderen Formen, das gilt auch bereits für die Cyclostomen, erweist sich beim erwachsenen Tier der Hauptlappen im grossen und ganzen als ein aus soliden Strängen zusammengesetztes Gebilde. Vielleicht mit alleiniger Ausnahme der Selachier, denn die Ganoiden zeigen schon einen Übergang, ist der Hauptlappen und überhaupt die ganze Hypophyse ein kompaktes, abgerundetes Gebilde, das nach aussen von einer Kapsel umgeben ist, die nicht selten eine mächtige Dicke erreicht. Bei den Selachiern dagegen sind die verschiedenen Ausstülpungen noch sehr isoliert und geben so dem Ganzen ein mehr lockeres, verzweigtes Gefüge.

Durch die stärkere Entwicklung des Hauptlappens und die damit Hand in Hand gehende Vermehrung und stärkere Aneinanderlagerung der Drüsenstränge kommt es, dass diese bei den ausgewachsenen Tieren meist nicht mehr das ursprüngliche Lumen zeigen, welches sich nur in einzelnen Fällen erhält. Solche Lumina in den Schläuchen wurden denn auch mehrfach beschrieben, scheinen aber in vielen Fällen nur eine durch Sekretstauung entstandene Erweiterung von Gewebsstücken darzustellen.

Hirnteil Hauptlappen Zwischenlappen

Fig. 14.
Sagittalschnitt durch den Infundibularteil und die Hypophysis von Lacerta agilis.

Bei vielen Sauropsiden und Säugern jedoch erhält sich ein grosser Teil des Hauptlumens, der dann allgemein als Hypophysenhöhle bezeichnet wurde. Haller sieht in dieser Höhle den Sammelraum des Sekretes, das ihm aus den hohlen Schläuchen, deren Lumen aber nur bei Sekretfüllung sichtbar werde, zufliesse. Die Höhle selbst habe eine Ausfuhröffnung in den Subduralraum, die Haller bei allen Vertebraten finden konnte. Es ist mir jedoch ebensowenig wie anderen Autoren gelungen, diese Öffnung, die sich nach Haller nur bei Sekretausfluss erweitern soll, zu finden. — Die Hypophysenhöhle treibt vielfach Aussackungen

hervor, die zunächst noch mit dem ursprünglichen Hauptlumen in Verbindung bleiben, wie ich das auch beim menschlichen Fötus konstatieren konnte. Bei der mit zunehmendem Alter allmählich erfolgenden Verkleinerung der Höhle jedoch werden diese Ausstülpungen dann meist abgeschnürt und bleiben dann als blasenförmige Hohlräume, nicht mit den Colloidcysten zu verwechseln, zurück. Der Hauptlappen der Amphibienhypophyse ist ein eiförmiger kompakter Körper, der kaudal vom Zwischenlappen, mit diesem in keiner näheren Verbindung, liegt. Der Hauptlappen scheint in der Tat völlig isoliert zu sein, da man ihn an den verschiedenen Hypophysen fast bei jedem Individuum in anderer Lage findet. Auch Gentes stellt ihn isoliert liegend dar.

An der Hypophyse der Sauropsiden, besonders der Reptilien, ist der Hauptlappen mit einem schmalen Stück, das auf dem Sagittalschnitt als dünner Stiel erscheint, mit dem Zwischenlappen verbunden, und liegt nach vorn umbiegend und mit der Spitze nach dem Chiasma n. opt. weisend, dem Zwischenlappen und Hirn so nahe an, dass ein nur schmaler spaltartiger Raum entsteht, den man natürlich nicht als Lumen bezeichnen darf (Fig. 14). Bei den Säugern endlich ist der Hauptlappen ein kompakter rundlicher Körper, der von dem Zwischenlappen meist durch die dazwischen liegende Hypophysenhöhle getrennt ist (Fig. 1, 7, 8, 17, 18).

Ganz allgemein lässt sich im wohlausgebildeten Drüsenhauptlappen — das gilt auch in der Hauptsache für den Zwischenlappen — ein Bindegewebe und ein Drüsenzellparenchym unterscheiden. Das bindegewebige Stützgerüst hängt mit der Hypophysenkapsel zusammen und zieht sich von dieser aus durch den ganzen Drüsenteil. Dabei kommt es häufig zur Bildung verschieden grosser Maschen, in welchen die Drüsenzellen zu follikulären Gruppen vereinigt liegen. Diese Bindegewebsmaschen treten meist erst bei älteren Tieren hervor, erscheinen aber auch dann gewöhnlich sehr zart. Ausserordentlich stark entwickelt zeigen sie sich beim Elefanten. In diesen Bindegewebszügen streichen viele Blutgefässe und Lymphbahnen.

Im Drüsenparenchym sind die Zellen meist regellos geordnet, wenn nicht deutliche Stränge oder gar Schläuche entwickelt sind. Häufig sitzen die Zellen dem Endothel der die Stränge sondernden Blutgefässe epithelartig auf. Doch wird man auch hier perivaskuläre Lymphspalten anzunehmen haben.

Unter den Zellen des Hauptlappens zeigen sich viele durch die Färbbarkeit unterscheidbare Abstufungen, und zwar lässt sich dies bei der van Giesonschen Methode ausgezeichnet konstatieren. Die Färbung ist hauptsächlich gebunden an Granula, die ausserordentlich fein und dicht verteilt den Zelleib erfüllen. In den Granulis haben wir sicherlich Ergatochondren des Plasmas, Sekret. zu erblicken. Da gibt es nun Zellen, die deutlich acidophil reagieren, also mit van Giesonfärbung gelb erscheinen. Von diesen finden sich Übergänge von Amphophilie zu Zellen, welche basophile Granula, also violett-rötlich bis bläulich gefärbte, enthalten. Ein dritter Zelltyp endlich hat einen lichten, vakuolisierten, der Granula entbehrenden und den vorerwähnten "chromophilen" Zellen gegenüber "chromophoben" Zelleib. verschiedenen Färbungsabstufungen haben wir wohl die Anzeichen sezernierender Tätigkeit bei einer und derselben Zellart zu sehen. Ich erblicke danach in den basophilen Zellen solche, welche unreife Granula enthalten. Bei der allmählichen Reife sehen wir dann mehr und mehr Granula acidophil werden, woher denn nicht wenige Zellen Sekretkörnchen von beiderlei Farbstoffaffinität enthalten. Die Zellen mit voll reifem Sekret endlich sind die intensiv acidophilen. Diese Zellen erscheinen auch regelmässig umfangreicher, praller gefüllt als die rein basophilen. Nach Ausstoss der Sekretkörnchen bleiben dann Zellen mit blassem Plasmanetz zurück. Dass wir es mit einer einzigen Zellart in ihren verschiedenen Funktionsstadien zu tun haben, wird schon dadurch wahrscheinlich, dass wir allenthalben acidophile, basophile und chromophobe Zellen regellos durcheinander, bei derselben Tierart in der Hypophyse jedes Individuums durchaus wechselnd antreffen.

Die verschiedene Färbbarkeit der Zellen war lange bekannt und wurde, wie in der Literaturübersicht dargestellt worden ist, Veranlassung, verschiedene Zellarten als chromophobe und chromophile, diese wieder als eosinophile und cyanophile zu unterscheiden. Nicht wenige Autoren nehmen daher an, dass zwei verschiedene Sekrete, ein basophiles und ein acidophiles, produziert würden. Hierhin sind besonders die Untersuchungen Thoms zu zählen, dem sich in neuester Zeit Scaffidi und auch Trautmann und Tilney anschließen. Andere Autoren dagegen glauben verschiedene Funktionszustände einer Zellart vor sich zu haben. Als erster sprach eine dahingehende Vermutung Schönemann aus.

Dann bekannte sich Benda zu dieser Ansicht und bezeichnete bereits die basophilen Zellen als Reifungsformen. Ganz klar spricht sich auch Creutzfeldt für diesen Entwicklungsgang der Zellsekretion aus.

Es möge nun etwas spezieller auf die einzelnen Formen eingegangen werden. Wie schon oben erwähnt wurde, sind hier für Cyclostomen und Teleostier zwei Abschnitte zu besprechen.

Bei Petromyzon, wo die drei Drüsenteile der Hypophyse hintereinander liegen, ist der hinterste als Zwischenlappen bereits besprochen worden. Der vor ihm gelegene, der Mittelteil, nun zeigt Zellstränge, welche von Blutgefässen geschieden werden. Seine Zellen sind aber erheblich schwächer tingierbar als die des vordersten Teiles. Dieser, der eigentliche Hauptlappen, ist nicht sehr stark entwickelt. Er ist aufgebaut aus unregelmässigen Zellsträngen, deren Elemente Farbstoffe lebhaft aufnehmen. Die Tingierung ist an Granula gebunden. Unter den Zellen sind grössere und kleinere unterscheidbar, die vielleicht verschiedene Funktionsstadien vorstellen. Dieser Teil ist reichlich vaskularisiert, wobei die Blutbahnen die Zellstränge voneinander trennen.

Fig. 15

Sagittalschnitt durch den Trichter und die Hypophyse von Esox lucius.

Bei den Teleostiern (Fig. 15) ist der Mittelteil besonders gross. Er wird von Strängen des Hirnteils durchzogen, die aber auf den Schnitten nur als verstreute Inseln und bei weitem vereinzelter als im Zwischenlappen auftreten. Ich vermag Sterzi nicht recht zu geben, wenn er von diesem Abschnitt behauptet, er sei beim Hecht der am meisten mit Hirngewebe durchsetzte. Ich finde vielmehr, dass bei Esox lucius sowohl, wie in noch stärkerem Maße beim Karpfen dieser Mittelteil viel weniger Ausläufer des weitverzweigten Infundibularbodens enthält als der Zwischenlappen. Der Mittelteil enthält dagegen mehr Blutgefässe als dieser, immerhin aber noch ziemlich vereinzelte und enge. Seine Zellelemente sind polygonal gegeneinander abgeplattet, in den Schnitten, besonders bei Cyprinus carpio, dreieckig erscheinend. Sie stellen so gewöhnlich Zellhaufen dar, in denen es kaum zu ausgeprägteren epithelialen Bildungen kommt. Dieser Drüsenabschnitt scheint sehr lebhaft zu sezernieren. Beim Karpfen enthielt er neben lichten sekretentleerten Zellen stark acidophile. Im Mittelteil der Hechthypophyse liessen sich auch reichlich unreife basophile Elemente unterscheiden, welche schlank keulenförmig aussehen und offenbar von den dazwischen gelegenen prall gefüllten und daher abgerundeten acidophilen Zellen mit reifem Sekret zusammengedrückt erscheinen. Bei einem sehr alten Hecht. fand sich hier auch im Gewebe gestautes Sekret von colloidalem Charakter. Dieser Mittelteil gleicht also sehr dem Hauptteil höherer Vertebraten (Taf. XVIII, Fig. 4).

Etwas abweichend stellt sich der vorderste Abschnitt der Knochenfischhypophysis dar. Er ist dicht durchsetzt von weiten Blutsinusoiden. Dazwischen liegen Zellterritorien, welche nach den Blutgefässen zu durchaus epithelialen Aufbau haben. Im Innern zeigen diese Zellstränge jedoch beim ausgewachsenen Tier kein Lumen. Sonst jedoch gleicht dieser Abschnitt ausserordentlich dem Hauptteil der Selachier. Man vergleiche die Tafelfig. 2 und 5. Auch hier treten nach den Blutgefässen zu vorwiegend mit Pikrinsäure schmutzig gelb färbbare Zellen hervor, während nach den Zentren der Zellstränge zu basophile Zellen überwiegen. Hier fand ich mit Sicherheit in Blutgefässen Colloid, also offenbar gestautes Sekret. Der Mittelteil der beiden Gruppen zeigt also in der Tat einen völligen Übergang von dem Zwischenlappen zum Hauptlappen. Mit ersterem hat er die Durchwachsung mit Hirn-

gewebe, mit letzterem das Vorhandensein von Blutbahnen und stark acidophilen Zellen gemeinsam. Es ist, als hätte sich das Gewebe dieses zwischenliegenden Teiles noch nicht entschieden, nach welcher Seite hin es sich endgültig in seiner Ausbildung richten solle.

Eine solche Zweiteilung des Hauptteiles wie hier bei den Teleostiern und Cyclostomen finden wir bei keinem Vertreter der anderen Vertebraten wieder vor. Dagegen scheint der Typus des Mittelabschnittes, welcher die Mischcharaktere an sich trug, sich in dem Hauptlappen der meisten Vertebraten in der Hauptsache wiederzufinden, während der kleine vordere Teil der Teleostierhypophyse nur im Hauptlappen der Selachier ein Homologon findet.

Die Verhältnisse bei den Selachiern am Hauptlappen sind sehr interessant und lehrreich (Fig. 4 und Taf. XVIII, Fig. 2). Die Drüsenschläuche sind durch Blutgefässe voneinander getrennt, so dass überall ein inniger Kontakt zwischen beiden stattfindet. Nun sehen wir hier deutlich, wie eine Sekretion nach den Blutgefässen zu stattfindet, ganz ähnlich wie im "Hauptteil" der Knochenfische. Stets sind die Zellen an der Aussenseite der Schläuche ausgesprochen acidophil. Zwischen der Schlauchperipherie aber und der Blutgefässwand häufen sich reichlich Ballen von acidophilem Sekret, bezw. sekretdurchtränktem Plasma, das wohl von Zellen herrührt, die durch eine Hypersekretion zugrunde gegangen sind. Höchst wahrscheinlich nämlich hat der Hauptteil beim Selachier noch keine sehr wichtige Bedeutung und ist daher noch nicht ganz vollendet ausgebildet. so dass er, besonders bei vorgeschrittenem Alter, leicht ähnliche Abnutzungserscheinungen zeigt, wie der Nebenlappen bei den höheren Vertebraten. Nach dem Schlauchinnern zu treffen wir regelmässig basophile Zellen oder solche, die nicht deutlich reagieren, also wohl amphophil genannt werden können. Jedenfalls sind diese inneren Zellen stets intakt, und niemals finden wir innen derartige Brocken wie aussen. Da die persistierende Hypophysenhöhle stets ein ursprünglicheres Moment ist, so glaube ich in der Erklärung nicht falsch zu gehen, dass die sie auskleidenden Epithelien aus wenig differenzierten Zellen zusammengesetzt sind, eine Behauptung, die auch für die anderen Vertebraten Geltung haben mag. Die für Selachier typische Erscheinung lehrt also mit grosser Wahrscheinlichkeit, dass die Sekretion nicht in das Lumen der Hypophyse, welches vielmehr nur ontogenetische

Bedeutung hat, sondern nach aussen in die Lymph- und Blutbahnen stattfindet. Da aber im übrigen kein Grund vorliegt, diese Erscheinung als gegensätzlich der bei anderen Vertebraten gegenüber zu stellen, so glaube ich, dass wir überall in dem acidophilen Sekret das reife zu erblicken haben, und wohl nur eine Zellart im Drüsenparenchym des Hypophysishauptlappens vorkommt, wie auch, dass die Sekretion in die Gefässe stattfindet.

Ein sehr normales Verhalten zeigt die Hypophyse der Amphibien (Taf. XIX, Fig. 7). In ziemlich regelmässigen Epithelien sitzen die Drüsenzellen den Blutgefässen auf. Ob perivaskuläre Lymphspalten vorhanden sind, lässt sich hier ebensowenig wie bei den meisten anderen Formen entscheiden. Vermutlich ist es, da das Sekret in den Blutgefässen selbst nicht wiederzufinden ist. Gerade hier sieht man gut, wie die acidophilen Zellen infolge von Sekretdruck abgerundet sind und die schlankeren basophilen zusammenzudrücken scheinen. Überhaupt sind hier die Färbungsunterschiede der Zellen sehr prägnant darstellbar.

Fig. 16.

Stück aus dem Hauptlappen der Hypophysis von Emys europaea. Gestautes Sekret (Colloid) im Drüsenparenchym.

Die Hypophysis der Sauropsiden weist keine Besonderheiten auf. Interessant waren die Befunde an dem Hauptlappen bei einer sehr alten Emys. Dieser war reichlich vollgefüllt mit gestautem Sekret, das auch hier als Alterserscheinung aufzufassen ist. Es war charakteristisch, dass es sich in durchaus Cysten ähnlichen runden Hohlräumen fand, welche in grosser Anzahl das Gewebe durchsetzten. Diese Hohlräume waren durch die Sekretstauung

entstanden und wurden nirgends ohne Inhalt getroffen (Fig. 16). Bei jüngeren Tieren fand sich solche Stauung nie, bei einem mässig alten ganz vereinzelt.

Die Hypophysis der Säuger ist in ihrem Hauptlappen so oft näher beschrieben worden, dass ich mich hier recht kurz fassen kann. Ich weise besonders hin auf die ausgezeichneten Darstellungen von Creutzfeldt unter anderen für den Menschen und Trautmann für die Säugetiere. Gerade die Abhandlung Creutzfeldts muss ich bezüglich der Bemerkungen über die Sekretion der Hauptlappenzellen rückhaltlos unterschreiben.

Die Verteilung acidophiler, basophiler und chromophober Zellen ist auch hier bei Säugern sehr verschieden. Merkwürdigerweise zeigen einige Tiere, wie die Nager z. B., die Färbungsunterschiede weniger prägnant als Raubtiere, Huftiere und Primaten. Gelegentlich liessen sich Colloidcysten auch hier im Hauptlappen feststellen und zwar bei allen Ordnungen, die untersucht wurden (Taf. XX, Fig. 13). Auch von den meisten anderen Autoren wurde Colloid im Hauptlappen angetroffen. Dort liegt es entweder zwischen den Drüsenzellen (intrafollikulär) oder im bezw.

interstitiellen Bindegewebe (interfollikulär). In allen Fällen handelt es sich um ältere Individuen. Bei der Ratte und beim Hund waren solche Hohlräume nur ganz vereinzelt zu finden. Zahlreicher waren solche Colloidtropfen schon beim Menschen. Recht häufig. wenn auch nicht in demselben Maße wie bei der oben erenthielt der Hauptteil der

Hauptlappen Zwischenlappen Fig. 17.

Maße wie bei der oben erwähnten alten Schildkröte, Sagittalschnitt durch den Trichter und die Hypophysis von einem menschlichen Embryo vom Ende des vierten Monats.

Elefantenhypophysis Colloidballen. Das Tier war ohne Zweifel sehr alt. An diesen Staumassen liessen sich ebenso wie im Nebenteil viele Färbungsabtönungen konstatieren. Hierbei erwies sich wiederum die Elefantenhypophyse als ausgezeichnetes Objekt.

Hier muss ein Fall von Degeneration ganzer Zellterritorien erwähnt werden, der bei einer sehr alten Ratte, wahrscheinlich als Alterserscheinung, konstatiert wurde. Bei diesem Tiere zeigte sich die Hypophysenhöhle zum grossen Teil erfüllt mit Massen degenerierten Drüsengewebes des Hauptlappens, von dem aus sich dieselben unter Umfärbungserscheinungen losgelöst hatten. Es ist eigentümlich, dass diese Degeneration stattfand, während der Zwischenlappen, der bei der Ratte gar kein Colloid bildet, noch durchaus intakt blieb.

Fig. 18. Sagittalschnitt durch die Hypophysis eines erwachsenen Menschen.

Zusammenfassung.

Aus den vorstehenden Betrachtungen geht die grosse Verschiedenheit der beiden Drüsenteile hervor. Das muss in Hinsicht auf ihre gemeinsame Herkunft wundernehmen, um so mehr, als beide vereint als ein Organ, von einer Hülle umschlossen, dem Hirn angegliedert erscheinen. Und in der Tat kommen ihnen auch gemeinsame Züge zu. Beide sind Drüsen ohne Ausführgang. Bei beiden verbrauchen sich die Drüsenzellen sehr leicht, was mit der starken Inanspruchnahme, mit Hypersekretion, in Zusammenhang

steht. Es kommt so zu Colloidbildung oder zu Zelldegeneration, die meist in dem Teil stärker sind, der noch nicht genügend entwickelt ist oder seinen phylogenetischen Höhepunkt bereits überschritten hat. Bei sehr alten Tieren verleugnen natürlich beide Teile diese Fähigkeit nicht. Trotz dieser gemeinsamen Züge jedoch zeigen sich Zwischenlappen und Hauptlappen als grundverschiedene Drüsen.

Schon die rein topographische Anlage des ganzen Organs. die Verbindung der einzelnen Hypophysenteile untereinander, die bei allen Typen eine durchaus gleichartige ist, weist auf die verschiedenartige Rolle von Zwischen- und Hauptlappen hin. Es gilt allgemein als Regel, dass sich der Zwischenlappen eng an den Hirnteil anschliesst. Beide Abschnitte sind durch mannigfache Bildungen miteinander verschmolzen, wobei der Hirnteil sich als das Rezeptionsorgan für das Sekret des drüsigen Zwischenlappens darstellt. Der Hirnteil entsendet entweder Schläuche und Stränge durch den Zwischenlappen oder er ist stark verdickt und in diesem Falle reich vaskularisiert. Der Zwischenlappen dagegen ist ausser bei einigen Selachiern sehr blutgefässarm. Bei den Säugern ist es der Zwischenlappen, der meist in den stark entwickelten Hirnteil einwuchert. Ferner wurden vielfach Sekretinvasionen vom Zwischenlappen in den Hirnteil beschrieben. Das Sekret benutzt hierbei Lymphspalten, diffundiert aber möglicherweise später auch in die Gefässe des Infundibularteils. Sehen wir also den Zusammenhang von Zwischenlappen und Hirnteil in jeder Beziehung auf das innigste ausgebildet, so erscheint demgegenüber die Verbindung der ursprünglich genetisch zusammengehörigen beiden Drüsenabschnitte, des Zwischen- und Hauptlappens, beim ausgebildeten Tier meistens erheblich lockerer, ja häufig gänzlich aufgehoben. Nirgends greifen dieselben derartig ineinander über wie Zwischenlappen und Hirnteil. Dagegen hat sich nicht selten eine bindegewebige Scheidewand zwischen Haupt- und Zwischenlappen ausgebildet. Bei einigen liegen beide Drüsenteile unverbunden nebeneinander, wie bei den Amphibien. Bei den Sauropsiden wieder ist nur die oben erwähnte stielartige Verbindungsbrücke zwischen ihnen vorhanden. Zwischen den Drüsenabschnitten der Säuger endlich dehnt sich die Hypophysenhöhle aus, die erst in der späten Ontogenesis, und zwar auch nur bei einigen Tieren, verschwindet oder zum Teil reduziert wird. Gegenüber der Blutgefässarmut

des Zwischenlappens ist der Hauptlappen überall auffallend stark mit Blutgefässen versorgt. Dieser Umstand stempelt ihn zu einer wahren Blutdrüse. Stets sitzen seine Drüsenzellen dem Blutgefässendothel auf, ja es wurden sogar offene Verbindungen zwischen Zellparenchym und Gefässlumen konstatiert. In vielen Präparaten zeigten sich die Blutgefässe mit geronnenem Sekret erfüllt. Die in Betracht kommenden Gefässe gehören den Carotidenbahnen an, welche sich hier in der Sattelgrube in feine Verzweigungen auflösen. Eine Sekretion des Hauptlappens in diese Gefässe und damit in den allgemeinen Kreislauf erscheint nach allem höchstwahrscheinlich.

Wenn man also bisher dem Hirnteil und dem Darmteil eine verschiedene Funktion zuschrieb, so geschah das nicht mit Unrecht, allerdings mit der Richtigstellung, dass der Hirnteil im Zwischenlappen des Darmteiles seine besondere Drüse hat, während der Hauptlappen die andere, gesondert funktionierende darstellt. Nunmehr wird es auch verständlich, wie die Extrakte von Hirnteil und "Darmteil" — es ist nur der Hauptlappen des letzteren, da der Zwischenlappen bei einer mechanischen Trennung stets am Hirnteil verbleibt - so verschiedenartige Reaktionen ergeben, was nicht möglich wäre, wenn der Hauptlappen sein Sekret gleichfalls in den Hirnteil ergösse. Wenn der Hauptlappen gar nicht in das Hirn sezerniert, ist es nicht mehr unerklärbar, warum er akromegalische Erscheinungen erzeugen kann, auch wenn er ontogenetisch gar nicht an das Hirn gelangt ist und als sogenannte Rachendachhypophyse im Cranium stecken geblieben ist. Das Sekret des Hauptlappens müsste auch, um in den Hirnteil zu gelangen, erst durch den Zwischenteil hindurchfliessen. Dann aber würde eine Trennung der beiden Sekrete nicht möglich sein, was auch im Hirnteil selbst nicht denkbar wäre. Zudem ist der Hauptteil ja, wie oben mehrfach erwähnt, auf mancherlei Art und Weise von den beiden anderen Teilen separiert.

Ich glaube also, dass der Zwischenlappen der Hypophyse sein Sekret in den Hirnteil ergiesst, um von da aus vielleicht durch Reizung von Sympathikuszentren den Tonus der glatten Muskulatur und den Blutdruck zu beeinflussen, während der Hauptlappen durch Sekretion in die Blutbahnen dem allgemeinen Kreislauf einen für das Körperwachstum wichtigen Bestandteil zuführt.

Literaturverzeichnis.

- Aschner, B.: Demonstration von Hunden nach Exstirpation der Hypophyse. Münchner med. Wochenschr., 1909, S. 2668.
- Biedl: Innere Sekretion. Wien, Urban und Schwarzenberg, 1910.
- Benda: Über den normalen Bau und einige pathologische Veränderungen der menschlichen Hypophysis cerebri. Arch. f. Anat. u. Phys., Phys. Abt., 1900, S, 373.
- Derselbe: Pathologische Anatomie der Hypophysis. Handb. d. path. Anat. d. Nervensystems, Kap. 39, 1903.
- Cagnetto, G.: Per la colorazione delle cellule cromofile dell' Hypophysis cerebri. Zeitschr. f. wiss. Zool., Bd. 22, 1905.
- Creutzfeldt, H. G.: Ein Beitrag zur normalen und pathologischen Anatomie der Hypophysis cerebri des Menschen. Jahrb. d. Hamburger Staatskrankenanst., Bd. 13, S. 273, 1909.
- v. Cyon, E.: Die Gefässdrüsen als regulatorische Schutzorgane des Zentralnervensystems. Berlin 1910.
- Delamare: Coloration de l'hypophyse par le triacide d'Ehrlich. C. R. Soc. biol., Paris 1904.
- Dostojewski, A.: Über den Bau des Vorderlappens des Hirnanhangs. Arch. f. mikr. Anat., Bd. 26, 1886.
- E dinger, L.: Untersuchungen über die vergleichende Anatomie des Gehirns.
 2. Das Zwischenhirn. I Teil. Frankfurt a. M. 1892.
- Derselbe: Vorlesungen über den Bau der nervösen Zentralorgane des Menschen und der Tiere, Bd. 2, Leipzig 1908.
- Derselbe: Die Ausführwege der Hypophyse. Arch. f. mikr. Anat., Bd. 78, S. 496, 1911.
- Derselbe: Vorlesungen über den Bau der nervösen Zentralorgane, Bd. 1, 8 Aufl., 1911.
- Erdheim, J.: Beitrag zur normalen und pathologischen Histologie der Glandula thyreoidea, parathyreoidea und Hypophysis. Beitr. z. path. Anat. u. allg. Path., Bd. 33, S. 220, 1903.
- Fischer, B.: Hypophysis, Akromegalie und Fettsucht. Wiesbaden, Bergmann, 1910.
- Flesch, M.: Über den Bau der Hypophysis. Tagebl. d. 57. Vers. deutsch. Naturf. u. Ärzte, Magdeburg, S. 195, 1884.
- Derselbe: Über die Hypophyse einiger Säugetiere. Tagebl. d. 58. Vers. deutsch. Naturf. u. Ärzte, Strassburg, S. 411, 1885.
- Gemelli, A.: Contributo alla conoscenza sulla struttura della ghiandola pituitaria nei mammiferi. Boll. Soc. med.-chir., Pavia 1900.
- Derselbe: Ulteriori osservazioni sulla struttura dell' ipofisi. Anat. Anz., Bd. 28, 1906.
- Gentes, L.: Recherches sur l'hypophyse et le sac vasculaire des vertébrés. Soc. scient. d'Arcachon, Stat. biolog., 10, Bordeaux 1907.
- Haller, B.: Untersuchungen über die Hypophyse und die Infundibularorgane. Morph. Jahrb., Bd. 25, 1898.

Derselbe: Über die Hypophyse niederer Placentalier und den Saccus vasculosus der urodelen Amphibien. Arch. f. mikr. Anat. u. Entwicklungsgeschichte, Bd. 74, 1909.

Hannover: Recherches microscopiques. Paris 1844.

Herring: The histological appearances of the mammalian pituitary body. Quart. Journ. exper. Phys., Bd. 1, 8, 121, 1908.

Derselbe: The development of the mammalian pituitary and its morphological significance. Ibid., S. 161, 1908.

Joris: Contribution à l'étude de l'hypophyse. Mém. cour. autr. publ. Acad. Roy. Med. Belgique, 1907.

v. Kupffer, C.: Die Deutung des Hirnanhangs. Sitzungsber. Ges. Morph. Phys., München 1894.

Lothringer, S.: Über die Hypophyse des Hundes. Inaug.-Dissert., Bern 1886.

Derselbe: Untersuchungen an der Hypophyse einiger Säugetiere und des Menschen. Arch. f. mikr. Anat., Bd. 28, 1886.

Luschka: Der Hirnanhang und die Steissdrüse des Menschen. Berlin 1860.

Müller, W.: Über Entwicklung und Bau der Hypophysis und des Processus infundibuli cerebri. Jenaische Zeitschr. f. Med. u. Naturw., Bd. 6, 1871.

Peremeschko: Über den Bau des Hirnanhangs. Virchows Arch. f. path. Anat. u. Phys., Bd. 38, 1866.

Pisenti, G. und Viola, G.: Beiträge zur normalen und pathologischen Histiologie der Hypophyse. Zentralbl. f. med. Wiss., Bd. 28, 1890.

Ramón y Cajal, S.: Alcunas contribuciones al conoscimiento de los ganglios del cerebro. III. Hypophysis. Ann. Soc. espan. Histor. nat., ser. 2. Bd. 3, 1894.

Rathke, H.: Über die Entstehung der Glandula pituitalis. Müllers Arch., 1838.

Derselbe: Entwicklungsgeschichte der Natter. Königsberg 1839.

Retzius, G.: Die Neuroglia der Neuro-Hypophyse der Säugetiere. Biol. Unters., N. Folg., Bd. 3, S. 21, 1894.

Rogowitsch, N.: Die Veränderungen der Hypophyse nach Entfernung der Schilddrüse. Zieglers Beitr. z. path. Anat. u. allg. Path., Bd. 4, S. 455, 1889.

Rohon, J. V.: Das Zentralorgan des Nervensystems der Selachier. Denkschrift K. Akad Wiss., Wien, math.-naturw. Kl., 1879.

Saint-Remy, G.: Contribution à l'histologie de l'hypophyse. Arch. biol., Paris, Bd. 12, 8, 425, 1892.

Salviolo und Carraro: Sur la physiologie de l'hypophyse. Arch. ital. biol., Bd. 49, 1908.

Scaffidi: Über den feineren Bau und die Funktion der Hypophyse des Menschen. Arch. f. mikr. Anat., Bd. 64,

Schönemann, A.: Hypophysis und Thyreoidea. Virchows Arch. f. path. Anat. u. Phys., Bd. 129, 1892.

Sterzi, G.: Intorno alla struttura dell'ipofisi nei vertebrati. Atti Acad. sci. Veneto-trent. -istr., Vol. 1, S. 70, 1904.

- Derselbe: Morfologia e sviluppo della regione infundibulare dell' ipofisi nei Petromizonti. Arch. ital. anat. embriol., Vol. 3, 1904.
- Derselbe: Hypophysis in: Il sistema nervoso centrale dei vertebrati. Vol. 1, Ciclostomi, 1907, Vol. 2, Pesci, Libro 1 Selaci, 1909 und 1912.
- Stieda, L.: Studien über das zentrale Nervensytem der Knochenfische. Zeitschr. f. wiss. Zool., Bd. 25, 1868.
- Stieda, H.: Über das Verhalten der Hypophyse des Kaninchens nach Entfernung der Schilddrüse. Zieglers Beitr. path. Anat. allg. Path., Bd. 8, 1890.
- Studnička, F. K.: Einige Bemerkungen zur Histologie der Hypophysis cerebri. Sitzungsber. K. böhm. Ges. Wiss., Prag. math.-naturw. Kl., 1901.
- Suchannek: Ein Fall von Persistenz des Hypophysenganges. Anat. Anz., Bd. 2, 1887.
- Thaon, P.: Note sur la sécrétion de l'hypophyse et ses vaisseaux évacuateurs. C. R. Soc. biol., Paris 1907.
- Thom, W.: Untersuchungen über die normale und pathologische Hypophysis cerebri des Menschen. Arch. f. mikr. Anat. u. Entwicklungsgesch., Bd. 57, 1901.
- Trautmann, A.: Die makroskopischen Verhältnisse der Hypophyse der Haussäugetiere. Arch. f. wiss. prakt. Tierheilk., 1909.
- Derselbe: Anatomie und Histiologie der Hypophysis cerebri einiger Säuger.

 Arch. f. mikr. Anat. u. Entwicklungsgesch., Bd. 74, 1909.
- Virchow, R.: Untersuchungen über die Entwicklung des Schädelgrundes. Berlin 1857.
- Weitere Literatur siehe in den Arbeiten von Greutzfeldt, Fischer, Gentes, Trautmann u.a.

Erklärung der Abbildungen auf Tafel XVIII-XX.

Tafel XVIII.

- Fig. 1. Stück aus dem Zwischenlappen der Hypophysis von Scyllium canicula. Im Gewebe, besonders nach dem Blutgefäss zu. gelb gefärbtes, eingedicktes Sekret.
- Fig. 2. Anschnitt eines Drüsenschlauches aus dem Hauptlappen desselben Tieres. Während die Zellen nach dem Schlauchinnern nicht in Tätigkeit zu sein scheinen, finden sich nach der Peripherie, nach dem Gefäss zu viele acidophil färbbare Zellen und Sekretballen.
- Fig. 3. Ein Stück aus dem Zwischenlappen von Cyprinus carpio. Eine Hirnteilinsel, in welcher sich ein Blutgefäss befindet, liegt in diesem.
- Fig. 4. Aus dem Mittel- oder Übergangsteil desselben Tieres. Reife sekretgefüllte und sekretleere chromophobe Zellen umlagern das Blutgefäss.
- Fig. 5. In dem Hauptlappen von Esox lucius haben sich wie bei Scyllium (Fig. 2) nach dem Gefäss zu ebenfalls alle Zellen mit reifem Sekret gefüllt.

Tafel XIX.

- Fig. 6. Grenze von Hirnteil und Zwischenlappen bei Rana temporaria. Im Zwischenlappen haben sich Sekrettropfen gesammelt.
- Fig. 7. Aus dem Hauptlappen desselben Tieres. Deutlich sind acidophile. basophile und chromophobe Zellen unterscheidbar.
- Fig. 8. Im Hirnteil von Bufo vulgaris hat sich um die Gefässe sehr reichlich Sekret gesammelt.
- Fig. 9. Oben der Zwischenlappen, unten die Verdickung am lateralen Trichterboden bei demselben Tier. Im Zwischenlappen liegt stark gelb gefärbtes Sekret. Auch zwei acidophil reagierende Zellen sind sichtbar. Nach dem Hirnabschnitt zu muss eine Sekretion stattgefunden haben, da sich im Übergang der beiden Teile eine Sekretstrasse zu finden scheint. Das Sekret im Hirnabschnitt dürfte schon alt und eingedickt sein.

Tafel XX.

- Fig. 10. Aus dem Zwischenlappen der Hypophysis von Elephas indicus, Die gelben reifen Colloidballen unterliegen einer späteren Degeneration, bei welcher sie sich allmählich blau färben. Einige solche Stadien sind hier dargestellt.
- Fig. 11. Can is familiaris. Oben der Zwischenlappen, mit basophilen Zellen, Colloidcyste und sehr wenig Blutgefässen, unten, von ersterem durch die Hypophysenhöhle getrennt, der Hauptlappen, mit vielen Gefässen und acidophilen Zellen neben den basophilen.
- Fig. 12. Dasselbe Tier. Zwischenlappen mit Cysten, die mit homogenem blass blauem Colloid erfüllt sind. Eine solche Cyste aber ist durch Zerfall eines Territoriums degenerierender Zellen gerade in Bildung.
- Fig. 13. Hauptlappen des Menschen. In dem aus acidophilen und basophilen Zellen gebildeten Drüsenparenchym liegt ein Colloidballen.

Aus der Universitäts-Augenklinik Freiburg i. Br. (Direktor: Geheimrat Prof. Dr. Th. Axenfeld).

Erwiderung auf die Bemerkungen von E. Meirowsky zu meiner Arbeit:

Über die Entstehung des melanotischen Pigmentes im Auge etc.

Von

Dr. A. v. Szily Privatdozent und I. Assistent.

In seinen zwei Jahre nach meiner oben erwähnten Arbeit veröffentlichten Bemerkungen erhebt Meirowsky gegen meine Kritik der von ihm gebotenen Beweise für die Entstehung des Melanins im Pigmentepithel den unberechtigten Vorwurf, dass ich seine persönliche Ehre angriffe. Das tue ich nirgends und das hat mir gänzlich ferngelegen. Wenn ich seine technischen Leistungen als "wenig vertrauenerweckend" bezeichne, so liegt darin in keiner Weise ein Angriff auf die persönliche Ehre und die subjektive Glaubwürdigkeit, sondern dieser Ausdruck richtet sich nur gegen die Beweiskraft der Meirowskyschen Befunde. Ich werde mich auch im folgenden nur auf eine kurze Ablehnung der in den Bemerkungen Meirowskys enthaltenen sachlichen Unrichtigkeiten beschränken.

Zunächst weise ich die Darstellung zurück, als würde durch meine Kritik Meirowskys gesamte Arbeiten zur Pigmentfrage in den Augen der Fachkollegen (absichtlich oder nicht) herabgesetzt. Diese Darstellung von Meirowsky ist unberechtigt, denn sein Standpunkt ist in dem einleitenden Abschnitt meiner Arbeit ohne die geringste Kritik meinerseits ausführlich wiedergegeben (2. S. 18).

Ganz anders verhält es sich in bezug auf die an den einzelnen Stellen zu erbringenden Beweise für die Richtigkeit seiner Auffassung. Hier kommt es nicht darauf an, ob die schon vor Meirowsky aufgestellten Theorien, dass der Zellkern mit der Pigmentgenese in ursächlicher Beziehung steht (Mertschnig, Jarisch, Kodis, Lukjanow, R. Hertwig, Rössle, Staffelu.a., im Prinzip richtig sind oder nicht. Hier handelt es sich lediglich darum, wie die Beweise bewertet werden müssen, die der Autor selbst an den einzelnen Stellen, für die er ein derartiges Entstehen des Pigmentes vertritt, auf Grund seiner eigenen Untersuchungen anzuführen imstande ist. Es sei gleich an dieser Stelle darauf hingewiesen, dass dieser Beweis kein Archiv f. mikr. Anat. Bd. 82. Abt. I.

genereller sein kann; und es vollzieht sich in der Tat die Pigmentgenese an den verschiedenen Stellen sowie den verschiedenen Tierarten sogar auf prinzipiell durchaus verschiedene Weise, was Meirowsky vollkommen entgangen war.

Meirowsky wendet sich gegen meine Kritik seiner Beweise für die Entstehung des Melanins im Pigmentepithel, indem er angibt, dass ich "nicht etwa gegen seine Resultate polemisiere, sondern sie bis auf geringfügige Abweichungen bezüglich der Benennung der nukleogenen Muttersubstanz des Pigmentes vollinhaltlich bestätige".

Diese Behauptung ist durch aus ungerecht fertigt. — Um sie zu widerlegen, sei daran erinnert, dass bekanntlich auch Meirowsky zu den Autoren gehört, die, wie Jarisch, Galeotti u. a. aus "dem Verhalten" der Zellen gewissen roten Farbstoffen (Safranin, Fuchsin, Pyronin) gegenüber "darauf schliessen, dass die rote Kernsubstanz in Pigment übergeht" (1, S. 99). Es dreht sich bei diesen Autoren stets um den Nachweis, dass der Pigmentbildung eine Vermehrung der sich mit ihrer Technik rot färbenden Kernsubstanz (der "pyroninroten Kernsubstanz" nach Meirowsky) vorausgeht. Später soll nach Meirowsky die rote Substanz in die Kernmembran überfliessen, schliesslich aus dem Kern ins Protoplasma übergehen und sich dort vom Rande her in Pigment umwandeln.

Um diese Ansicht einigermassen berechtigt erscheinen zu lassen, müsste bewiesen werden, dass die sich rot färbenden Einschlüsse im Plasma mit der "roten Kernsubstanz" identisch seien, d. h. nachgewiesen werden, dass sie in der Tat ausnahmslos im Kern entstehen und von da in das Zellplasma übertreten.

Sehen wir, welche Beweise dafür Meirowsky im Pigmentepithel des Auges erbracht hat.

Ich reproduziere hiermit wörtlich die Beweise Meirowskys. Er sagt (1, S. 97):

"Die Fig. 277—281 zeigen die Retina eines Rinderembryos. Die rote Substanz ist fast in allen Zellen vermehrt. In Fig. 277 liegt sie auf der Grenze zwischen Kern und Protoplasma. Es ist ferner auffallend, dass das Pigment fast immer in der Nähe des Kerns auftritt und der Kernmembran anliegt. Man findet es in der Retina entweder in Form von Nadeln oder von Kugeln."

In diesen, im Original 51/2 Zeilen ist alles enthalten, was Meirowsky über die Entstehung des Melanins im Pigmentepithel des Auges zu sagen hat!

Zunächst ist dazu zu bemerken, dass Meirowsky statt von Pigmentepithel in Text und Figurenerklärung von der Retina spricht, wo bekanntlich bei diesen Tieren Pigment überhaupt auf keiner Entwicklungsstufe vorkommt.

Ausserdem ist die Hauptsache, nämlich der Übergang der "roten Substanz" aus dem Kern ins Protoplasma, in dieser an und für sich unvollkommenen, nach meinen Feststellungen aber auch unrichtigen Beschreibung mit keinem Wort erwähnt. Wollte man von jedem Beweis an dieser Stelle absehen und sich einfach auf den (übrigens keineswegs erwiesenen) Standpunkt Meirowskys stellen, dass alles, was sich mit Pyronin rot färbt, eine Vorstufe des Pigmentes darstellen kann, so trifft die von Meirowsky auf Grund von Analogien mit anderen Stellen angenommene und gezeichnete (im Text gar nicht berührte) Herausrieselung der roten Kernsubstanz nicht einmal andeutungsweise den tatsächlichen Vorgang bei der Pigmentgenese im Augenbecher der Säuger. Bei diesen kommt nach meinen Feststellungen, die ich inzwischen wiederholt bestätigen konnte, nebst der Abstossung von Kernbestandteilen im Verlaufe der Mitosen in erster Linie der von Meirowsky übersehene degenerative Typus mit vollständigem Aufbrauch der Kernsubstanz in Betracht.

Auch die bildliche Darstellung erkläre ich mit meinen Befunden bei Säugern für nicht übereinstimmend. Es handelt sich um die drei Schrägschnitte (Fig. 277, 280, 281). Der Autor sagt: "die rote Substanz ist fast in allen Zellen vermehrt" (1, S. 97). Ich glaube nicht, dass man diesen Beweis als erbracht ansehen darf, wo doch ein jeder Vergleich mit der "roten Kernsubstanz" einer normalen (rubenden) Zelle des Pigmentblattes fehlt und der Autor selbst sagt, dass bei der angewendeten Fixierung der Embryonen in Hermannscher Flüssigkeit die für andere Gewebe benützte Pappenheimsche Farblösung eine Differenzierung zwischen Kern und roter Substanz nicht ergab. Meirowsky hat daher an dieser Stelle gesättigte Pyroninlösungen angewendet, um den Kern von den Nukleolen zu differenzieren. "Leider war dieser Erfolg nicht konstant und es überwog mitunter, besonders an dickeren Schnitten, die gesamte Rotfärbung aller Zellbestandteile" (1, S. 97).

Ich zweifle an der Berechtigung, in so prinzipiellen Fragen, wie die Pigmentgenese, sich in erster Linie auf eine Farbenreaktion zu verlassen, noch dazu auf eine so inkonstante, wie nach den eigenen Angaben des Autors die Meirowskysche Modifikation es ist. Dasselbe gilt auch für die ausserhalb des Kerns liegenden roten Gebilde. Denn wenn sich das eine Mal mit derselben Methode alle Zellbestandteile rot färben können, wird man bei einer partiellen Rotfärbung wohl niemals mit Sicherheit behaupten können, dass jetzt eben nur noch die farblosen Vorstufen des Pigmentes tingiert blieben.

Was nun den an den Figuren sichtbaren (im Text gar nicht berührten) Übertritt der roten Kernsubstanz ins Protoplasma anbelangt, so muss ich folgendes feststellen: Von den 93 Kernen der oben erwähnten drei Schrägschnitte, die alle etwa das gleiche Quantum rote Substanz in grösseren resp. kleineren Flecken enthalten, könnte man bei dreien annehmen, dass der Autor an ihnen den Übertritt ins Protoplasma zeigen will. Aus einem dieser Kerne (Fig. 277) rieselt die "rote Substanz" in Form eines feinen Fädchens heraus, wodurch ein flagellatenähnliches Gebilde entsteht. In Fig. 281 liegt neben zwei Kernen rote Substanz", von den ersteren jedoch durch die überall sichtbare Kernmembran getrennt.

Ich muss jedoch die Darstellung von Meirowsky nicht nur in bezug darauf, was er selbst beweisen will, für unzureichend erklären, sondern möchte nochmals betonen, dass der tatsächliche Vorgang von ihm vollkommen unerkannt geblieben ist. Da aber meines Erachtens in so strittigen Fragen, wie die Pigmentgenese bei Säugern eine ist, strengste Kritik nottut, so halte ich mein Urteil über Meirowskys Beweisführung am Pigmentepithel nach wie vor für durchaus gerechtfertigt.

Vor allem weise ich aber die Behauptung Meirowskys, dass er die nukleogene Entwicklung des Pigmentes im Augenbecher drei Jahre vor mir "festgelegt habe", als irrig zurück. Für seine Beweisführung ist vollkommen zutreffend, was ich seinerzeit in meiner Arbeit (2. S. 21) gesagt habe: "Ein Versuch, den Zellkern mit der Entstehung des Melanins im Pigmentepithel des Auges in Beziehung zu bringen, stammt von Meirowsky".

Meirowsky behauptet weiterhin im allgemeinen (3, S. 323), dass ich seine technischen Leistungen "als wenig vertrauenerweckend" bezeichnet habe. Ich muss gegen diese ungenaue Wiedergabe von Form und Sinn meiner Äusserung, noch dazu in Anführungszeichen, Verwahrung einlegen.

Die Bemerkung, dass es "wenig vertrauenerweckend in bezug auf die technischen Leistungen dieses Autors klingt" wenn er behauptet, dass man Hühnerembryonen nicht exakt fixieren kann, ist meines Erachtens durchaus statthaft, um den Leser darüber aufzuklären, dass Meirowsky die gewöhnliche embryonale Technik nicht geläufig ist. Über seine dermatologische Technik habe ich mir kein Urteil erlaubt.

An diesem Umstand wird auch durch die folgende, nachträglich abgegebene Erklärung Meirowskys nichts geändert. Er sagt (3, S. 323—324): "Wenn man bedenkt, dassich meine Arbeit nicht wie v. Szily in staatlichen Universitätsinstituten, sondern in Graudenz (Westpreussen), neben dem Getriebe einer grossen Praxis ausgeführt habe (im Original nicht gesperrt), so wird man mein offenes Geständnis, dass meine Versuche am bebrüteten Hühnerei misslangen, anerkennen und es bedauerlich finden müssen, dass es zu einem meine wissenschaftliche Ehre herabsetzenden Angriff benützt wird".

Demgegenüber ist zunächst zu sagen, dass es wohl nicht angeht, wissenschaftliche Arbeiten mit einem anderen, als dem allgemeinen und absoluten Maßstab zu messen. Ausserdem steht im direkten Gegensatz zu dem eben zitierten Ausspruch Meirowskys sowohl in der Überschrift ("Aus der königl. Universitätsklinik etc.") als im Vorwort die Angabe: "In den richtigen Fluss kamen meine Studien jedoch erst, als ich an der königl. Klinik etc." (im Original gesperrt), "die Vorteile eines grossen Laboratoriums etc. . . . genoss . . . "

Ich weise daher diese neue Darlegung, weil sie mich auf Grund von Angaben, deren direktes Gegenteil mir aus der Originalarbeit nur bekannt sein konnte, des beabsichtigt herabsetzenden Urteils bezichtigt, entschieden zurück.

Endlich habe ich noch einige Angaben Meirowskys richtigzustellen, die infolge ihrer Fassung falsch gedeutet werden könnten.

Der Ausspruch, dass Meirowsky die Pigmententstehung in der Haut sechs Jahre vor mir "festgelegt habe", ist unmotiviert und könnte zu der irrtümlichen Auslegung Veranlassung geben, als hätte ich diesbezüglich für eigene Befunde die Priorität in Anspruch genommen. Ich konstatiere einfach, dass ich niemals auch nur ein Wort über die Pigmentierung der Haut gesagt habe.

Desgleichen könnte der Umstand, dass Meirowsky "ganz besonders darauf aufmerksam" macht, dass ich seine Befunde an der Chorioidea bei Rinderembryonen nicht ausführlich erwähne, beim Leser den Eindruck eines absichtlichen Verschweigens meinerseits hervorrufen. Diese Befunde für sich zu erörtern, lag kein Grund vor, weil Meirowskys Bilder aus der Chorioidea mit denen von anderen Stellen aufs Haar übereinstimmen und weil sich meine eigenen ausführlich mitgeteilten Befunde und Schlussfolgerungen lediglich auf den Augenbecher (Pigmentblatt) und die Sarcome beziehen.

Zum Schluss sei noch richtig gestellt, dass die in Frage stehende Monographie Meirowskys nicht, wie in meinem Literaturverzeichnis steht, im Jahre 1910, sondern 1908 erschienen ist. Aus dem Umstande, dass einige Zeilen weiter unten die Polemik Meirowsky-Jäger mit der Jahreszahl 1909 angeführt ist, hätte Meirowsky entnehmen können, dass es sich dabei lediglich um einen Druckfehler handelt.

Literaturverzeichnis.

 Meirowsky, E.: Über den Ursprung des melanotischen Pigmentes der Haut und des Auges. Bibliothek mediz. Monographien. W. Klinkhardt, Leipzig 1908.

 Szily, A. v.: Über die Entstehung des melanotischen Pigmentes im Auge der Wirbeltierembryonen und in Chorioidealsarkomen. Arch. f.

mikroskop. Anatomie, 77. Band, 1911.

 Meirowsky, E.: Bemerkungen zu der Arbeit Aurel v. Szilys: Über die Entstehung des melanotischen Pigmentes im Ange der Wirbeltierembryonen und in Chorioidealsarkomen. Arch. für mikroskop. Anatomie, 81. Band. S. 323-324, 1913.

Fig. 1.

Fig. 2.

Aus dem Biologischen Laboratorium der Universität Bonn.

Experimentelle und histologische Studien an Turbellarien.

II. Mitteilung.

Epithelregeneration.
 Über die Nebenaugen von Planaria polychroa.
 Experimentelles und Histologisches vom Tricladenpharynx.

Von

Paul Lang.

Hierzu Tafel XXI und 2 Textfiguren.

Inhalt:			Seite
Einleitung			. 339
1. Regeneration des Epithels			
Ergebnis			. 344
2. Über die Nebenaugen von Planaria polychroa			. 345
Ergebnis		o	. 354
3. Experimentelles und Histologisches vom Tricladenpharynx .			. 355
a) Regeneration des Pharynx			. 355
b) Anatomie des Pharynx von Pl. polychroa			. 357
c) Bau und Regeneration der Pharynxtasche			. 358
d) Zur Polypharyngie	*		. 359
Ergebnis	,		. 361
Literatur			. 362
Figurenerklärung			. 363

Einleitung.

Sämtliche Experimente und Untersuchungen wurden ausgeführt an Planaria polychroa Schmidt. Die Versuchstiere bezog ich stets nach Bedarf frisch aus dem Botanischen Garten zu Bonn, so dass immer kurz vor der Operation gefangenes Material benutzt werden konnte. Fixiert wurden die Tiere meist in konzentrierter Sublimat-Kochsalzlösung, die auf 50—60° C erhitzt war. Daneben gab auch die Flemming sche Flüssigkeit sehr gute Resultate. Beim Studium der Amitosen wurde zur Kontrolle stets auch diese Fixierung angewandt. Die Schnittdicke betrug meist

5 µ. Färbung: Hämalaun-Kongorot, Alkoholisches Hämatoxylin, Hämatoxylin-Heidenhain.

1. Regeneration des Epithels.

In einer früheren Arbeit (Lang, P. [8], S. 375 ff.) habe ich bereits die Epithelregeneration bei Pl. polychroa studiert. Damals konnte ich feststellen, dass zweifellos Parenchymzellen aus dem Regenerationskegel in das feine Epithelhäutchen einwandern, das sich schon einige Stunden nach der Operation über die Wunde ausgestreckt hat. Zunächst strecken sich die am Wundrande gelegenen alten Epithelzellen ausserordentlich in die Breite, wobei sie sich stark abflachen. Durch diesen Prozess wird ein schneller, vorläufiger Wundverschluss erreicht. Die von allen Seiten von der Peripherie über die Wunde sich hinstreckenden alten Epithelzellen treffen schliesslich über der Wunde zusammen und wir haben dann ein ganz dünnes Häutchen, das aus relativ wenigen platten Zellen besteht. Über der Wunde finden sich daher auch nur verhältnismässig wenige Kerne. Diese Kerne aber haben dieselbe Grösse wie die Kerne des normalen Epithels, wie ja nicht anders zu erwarten; sind es doch die Kerne der alten Epithelzellen selbst. Schon während dieses vorläufigen Wundverschlusses findet man beim Durchmustern der Präparate, dass aus dem unter der Wunde liegenden Regenerationskegel Parenchymzellen, die einen mehr oder weniger embryonalen Charakter angenommen haben, und die meist mit Rhabditen beladen sind, in das dünne Epithel, das sich über der Wunde hinzieht, eindringen. Man kann alle Stadien dieser Einwanderungen feststellen, und ich verweise bezüglich genauerer Stützen für diese Behauptung auf die zitierte Arbeit.

Dort wurde indes auch schon darauf hingewiesen, dass man diese Einwanderungen nicht so häufig beobachten kann, wie man erwarten dürfte, wenn sie allein, wenigstens zunächst den ganzen Bedarf an neuen Zellen decken sollten. Es wurde damals bereits aufmerksam gemacht auf die starken Kernanhäufungen, die sich klumpenweise in dem dünnen Häutchen finden. Noch verschiedene andere Überlegungen wiesen darauf hin, dass hier wohl Amitose im Spiel sein möchte Da mir aber damals genügende beweisende Präparate mit Zerschnurungen der Kerne usw. nicht zur Verfügung standen, so drückte ich mich zurückhaltend so aus: "Ein

provisorischer Wundverschluss wird dadurch erreicht, dass das alte Epithel sich vom Wundrande her über die Wunde hin auszieht und in der Mitte derselben zusammenschliesst. Der weitere Ausbau dieses dünnen Epithels geschieht sicher durch einwandernde Parenchymzellen. Ob daneben noch amitotische Teilungen in dem dünnen Epithel vorkommen, ist nicht mit gleicher Sicherheit nachzuweisen, obwohl die Bilder dafür sprechen" (S. 419).

Diese Frage habe ich nun einer eingehenden Prüfung unterzogen Die Operationen wurden einfach so ausgeführt, dass die Tiere mit scharfem Messer zwischen Pharynx und Kopf durchschnitten wurden. Dann kamen die Hinterteile in flache Schalen mit Wasser und wenig Pflanzen. Wasser und Pflanzen wurden nach Bedarf gewechselt. Das erste Regenerat wurde bereits 20 Stunden nach der Operation abgetötet. Das folgende nach 23 Stunden usw. Auf diese Weise erhielt ich eine Serie von verschiedenalterigen Regeneraten, vom ersten Tage an bis zu acht Tagen.

Die frühere Beobachtung über die Einwanderungen von Parenchymzellen in das dünne Epithel konnte ich bestätigen. Das Hauptinteresse galt jetzt aber den amitotischen Kernteilungsbildern, die sich ziemlich häufig zeigten. Bei der Kleinheit der Zellen und Kerne ist eine starke Immersion unumgänglich nötig: ich benutzte Zeiss Im. 2 mm, Comp.-Ok. 6,8 und 12. Eine Anzahl von Beispielen für Bilder, wie ich sie relativ häufig gesehen habe, sind in den Figuren 1—14, Taf. XXI wiedergegeben. Diese Bilder zeigten merkliche Verschiedenheiten, von denen auch die Abbildungen Beispiele geben. Man findet hantelförmige Kerne, in denen die Durchschnürung nicht in einer Ebene vor sich geht. die sich vielmehr etwas in die Länge strecken und dann in einer breiten Ringzone eingeschnürt werden (Fig. 1-3). Andere Kerne sind wie durch scharfen Schnitt in der Mitte eingefurcht (Fig. 4, 7. 8). Weiter finden wir Kerne, die nur an einer Seite eine Furchung aufweisen (Fig. 10-12).

In dem 20 stündigen Regenerat fand ich bereits ziemlich viel Amitosen. Aus einem Schnitt dieses Präparates ist in Fig. 1 ein Stück Epithel mit einer Amitose dargestellt. Wie Fig. 1 auch zeigt, sind hier die Kerne in dem dünnen Epithel bereits ausserordentlich dicht aneinander gedrängt. Auf diesen Punkt machte

ich bereits bei früherer Gelegenheit aufmerksam. Die Tatsache, dass sich schon in ganz jungen Stadien, wenn sich die peripheren alten Epithelzellen noch nicht über die ganze Wunde hin erstreckt haben, bereits so ausserordentlich viele Kerne in diesem Häutchen finden, ist zunächst ganz unverständlich. Wenn sich die peripheren Zellen in die Breite ausziehen, so müssten im Gegenteil die Kerne in der dünnen Epithellage weiter auseinander zu liegen kommen als im normalen Epithel. Tatsächlich finden wir aber in allen Stadien von etwa 20 Stunden an in diesem Epithelhäutchen die Kerne viel zahlreicher als im normalen Epithel. Beweise dafür habe ich früher (8) gegeben. Hier seien nur zwei Beispiele angeführt: Fig. 13 und 14. Fig. 13 stammt aus einem Regenerat von 20 Stunden, Fig. 14 aus einem etwas älteren Regenerat. Die abgebildeten Epithelstücke fanden sich unmittelbar über der Wunde. Die Kerne liegen besonders in Fig. 14 zu Klumpen gehäuft. Diese Anhäufung kann durch Einwanderungen von Parenchymzellen nicht hinreichend erklärt werden; denn abgesehen davon, dass diese Einwanderungen nicht zahlreich genug sind, um solche Mengen von Kernen zu erklären, würde auch nicht verständlich sein, wo das Plasma dieser Einwanderungszellen und die Rhabditen, die sie mit sich führen, geblieben sein sollten. Auch können die Kernanhäufungen nicht so zustande kommen, dass von den Seiten nach einzelnen Punkten hin die Kerne zusammenwandern; beim genauen Durchmustern aller Schnitte eines Regenerates zeigt sich nämlich, dass die Kerne überall in der ganzen Regenerationszone mindestens ebenso dicht liegen, wie im normalen Epithel, an vielen Stellen aber wie gesagt viel dichter. Auch in dem normalen Epithel, das die Regenerationszone begrenzt, findet man keine Kernlichtung. Zur Erklärung bleibt nur Amitose übrig, da ich beim genauen Studium von einigen hundert Regeneraten ebensowenig wie bei normalen Tieren im Epithel eine Mitose gesehen habe.

Sehen wir uns nun die verschiedenen Formen der Kernteilungen etwas näher an. Sehr häufig fanden sich hantelförmige Kerne, wie sie in den Figuren 1, 2, 3, 6 dargestellt sind. In Fig. 3 ist beachtenswert der Abstand der vier Kerne; er ist so ziemlich der gleiche. Die drei nicht in Teilung befindlichen Kerne haben ungefähr dieselbe Grösse wie die beiden Hälften des sich teilenden Kernes zusammen. Das alles deutet darauf hin, dass

wir es mit einem der normalen Epithelkerne zu tun haben. In Fig. 6 ist ein Kern bei drei verschiedenen Einstellungen zur Darstellung gebracht. a ist das Bild bei etwas tieferer, b bei mittlerer, c bei hoher Einstellung der optischen Ebene. Der hantelförmige Kern lag also schräg zur Schnittebene.

Sehr viele amitotische Bilder hatten folgendes Aussehen: Der sich teilende Kern war weniger als in den obigen Fällen oder auch gar nicht in die Länge gezogen. Die Einschnürung des Kernes war eine mehr oder weniger tiefe, aber stets schmale Furche. die rings um den Kern herumlief. So z. B. in den Figuren 4, 5, 7. In Fig. 4 ist ein Kern bei zwei verschiedenen Einstellungen dargestellt, rechts in der Mitte des Kernes, links etwas höher. Geht man von oben mit der Mikrometerschraube an den Kern heran, so kann man den ganzen Verlauf der Einkerbung verfolgen. Abnlich in Fig. 5. Hier ist bei a das Kernbild einer optischen Ebene dargestellt, die relativ noch etwas höher lag als das entsprechende Bild von Fig. 4. Daher sieht man die zwei Hälften des einen Kernes hier getrennt. Besonders deutlich ist auch Fig. 7. Es sind zwei amitotische Kerne dargestellt, je bei zwei verschiedenen Einstellungen (aa' und bb'). a und b sind etwa die Bilder der Kerne, wenn die optische Ebene mitten durch die Kerne hindurchgeht; a' und b', wenn sie etwas höher liegt. Bei b' ist die Furche so schmal, dass nur ein sehr kleiner Zwischenraum zwischen den zwei Hälften übrig bleibt. Bei a' stossen die beiden Hälften sogar dicht aneinander.

Am häufigsten waren Bilder in der Art, wie sie in den Figuren 8, 9, 13, 14 dargestellt sind. Es waren keine deutlichen Furchen nachweisbar, vielmehr lagen anscheinend selbständige Kerne dicht aneinander, meist noch gegeneinander abgeplattet (Fig. 7, 13, 14). Man darf wohl annehmen, dass sie durch amitotische Teilung entstanden und noch nicht auseinandergerückt sind.

Endlich sind noch solche Formen zu erwähnen, bei denen sich die Einschnürungen nur auf einer Seite des Kernes befinden. So z. B. in den Figuren 10, 11, 12. Derartige Formen kommen nicht häufig vor. Man könnte bei ihnen sehr leicht den Verdacht hegen, es handle sich um Schrumpfungen der Kerne. Dagegen spricht indes folgendes: Zunächst waren verschiedene Fixierungen angewandt worden (auch Flemming) und stets zeigten sich derartige Bilder. Insbesondere aber ist der Umstand bemerkenswert,

dass die amitotischen Bilder ausschliesslich in der Regenerationszone zu finden waren. Es dürfte sich also in allen beschriebenen Fällen um wirkliche Amitosen handeln. Eine volle Sicherheit ist natürlich nicht möglich, da man den Ablauf des Prozesses nicht im Leben beobachten kann.

Noch immer währt der alte Streit, ob die Amitose der Mitose ebenbürtig ist, oder ob sie nur in alternden Zellen auftritt, in Zellen, die dem Untergang geweiht sind, also insbesondere in Drüsenzellen, in Epithelzellen, die keiner weiteren Vermehrung fähig sind, sondern absterben, um durch andere ersetzt zu werden. Letzteres passt in gewisser Beziehung für den oben beschriebenen Fall. Jedenfalls sind auch hier die Zellen, die durch die amitotische Teilung entstanden sind, insofern dem Untergang geweiht, als sie keine mitotische Teilung mehr eingehen können. Nun sieht man aber auch im normalen Epithel niemals Mitosen. Die durch Amitose entstandenen Zellen sind demnach nicht unbeständiger als alle normalen Epithelzellen. Ganz sicher aber ist, dass auf die amitotischen Kernteilungen Zellteilungen folgen, wie man nachweisen kann, wenn man Schnitte aus verschieden alten Regeneraten untersucht. In dem jungen, neu regenerierten Epithelhäutchen liegen die Kerne, die dicht angehäuft und zum Teil, wie oben beschrieben, in amitotischer Teilung begriffen sind, in einem Syncytium, wie ja auch die gegebenen Bilder zeigen, insbesondere die Figuren 2, 8, 10, 11, 12. Selten kommen amitotische Teilungen vor in Zellen, die an der Peripherie der Wunde liegen und die gegen die Nachbarzellen abgegrenzt sind, wie z. B. in Fig. 9. Untersucht man nun ältere Regenerate, so findet man, dass mit dem Wachstum des Epithels über die Wunde die Kerne auseinander gerückt werden. Allmählich beginnen sich einzelne Zellen voneinander abzugrenzen, und zwar schreitet der Prozess von der Peripherie der Wunde an über die Wunde hin vorwärts, bis schliesslich wieder ein normales Zylinderepithel zustande gekommen ist.

Diese durch Amitose entstandenen Epithelzellen können sich nicht mehr weiter mitotisch vermehren, sind aber ebenso leistungsfähig wie die normalen Epithelzellen.

Ergebnis.

Die künstlich durch eine Verwundung hervorgerufene Epithelregeneration bei Pl. polychroa beginnt damit, dass sich die an die Wunde angrenzenden Zellen über die Wundfläche hinschieben, bis sie sich in der Mitte berühren. In dieses dünne Epithel mit spärlichen Kernen beginnen alsbald Parenchymzellen einzuwandern, indem sie sich zwischen die lang ausgestreckten alten Zellen einzwängen. Zugleich aber teilen sich die alten und auch die von unten eingewanderten Kerne so lebhaft auf amitotischem Wege (Fig. 1—14), dass die Kerne stellenweise zu Klumpen gehäuft erscheinen. Durch allmähliches Auswachsen des Regenerates und spätere Zellteilungen wird das typische Zylinderepithel wiederhergestellt.

2. Über die Nebenaugen von Planaria polychroa.

Über die "Nebenaugen", die bei gewissen Planarienarten vorkommen, sind in der Literatur nur einige, mehr gelegentliche Bemerkungen verstreut. Eine systematische Bearbeitung haben diese Organe bisher nicht erfahren. Und doch könnte eine solche, wie mir scheint, für die vergleichende Anatomie und die Phylogenese recht ertragreich sein. Seit einiger Zeit bin ich damit beschäftigt, Beobachtungen in dieser Hinsicht anzustellen. Da aber eine systematische Bearbeitung dieses Gegenstandes längere Zeit in Anspruch nehmen wird, sollen hier zunächst die Resultate mitgeteilt werden, die über die Nebenaugen von Pl. polychroa festgestellt wurden.

Vorauszuschicken sind einige Angaben der Literatur. Die erste grössere Arbeit über Dendrocoelen-Augen, in der unsere Frage behandelt wird, ist die von Carrière (1). Aus Regenerationsversuchen folgert Carrière, dass die zusammengesetzten Augen der Planarien durch die Vereinigung von Einzelaugen, wie sie z. B. Polycelis aufweist, hervorgegangen seien. Die Erscheinung von überzähligen Augen bei Pl. polychroa usw. will er darauf zurückführen: Rücken die Zellen, die den Pigmentbecher bilden sollen, näher zusammen, so beginnen die einzelnen Pigmenthüllen miteinander zu verschmelzen. Wenn nun alle diese umgewandelten. pigmentierten Zellen sich um ein Zentrum vereinigen, so wird sich ein von gemeinsamer Pigmenthülle umschlossenes Auge bilden, das normale Auge. Gruppieren sich aber diese Einzelaugen um zwei, drei oder noch mehr Zentren, so müssen Doppelaugen und Nebenaugen entstehen. Diese Nebenaugen sind nicht einfach "verkleinerte Augen", sondern ihr geringerer Umfang rührt immer

daher, dass sie nur aus wenigen, bezw. aus einer Zelle bestehen oder entstanden sind. Ist gar kein Vereinigungszentrum vorhanden, so wird auch kein Auge gebildet werden können, sondern wir finden statt dessen einen sog. diffusen Pigmentfleck.

Jijima (6) beobachtete Nebenaugen bei Dendrocoelum lacteum und Pl. polychroa. Jänichen (5) beschreibt Nebenaugen bei Pl. gonocephala. Hesse (3) bringt verschiedene Angaben. An einer Pl. alpina bemerkte dieser Forscher auf einer Seite ein überzähliges Auge mit einer Sehzelle. Das andere Auge dieser Seite hatte dafür nur zwei Sehzellen anstatt drei, "so dass wir es offenbar mit einer Teilung eines normalen dreizelligen Auges zu tun haben". Bei einem Exemplar von Rhynchodemus terrestris fand Hesse, "dass sich von dem einen Auge ein kleinerer vorderer Teil abgetrennt hatte und selbständig geworden war". Hesse vertritt also die entgegengesetzte Ansicht wie Carrière. Dieser würde die Erklärung gegeben haben, in dem vorliegenden Fall hätten sich nicht alle "Zentren" zu einem gemeinsamen Auge vereinigt, sondern seien getrennt geblieben.

Die gleiche Erklärung wie oben hat Hesse für die Nebenaugen von Pl. gonocephala. Von 42 Exemplaren hatten 15 "solche gespaltene Augen und fast ausnahmslos auf beiden Seiten" (S. 544). Entsprechend lässt Hesse auch die Polycelisaugen aus den Planarienaugen durch Teilung entstehen, im Gegensatz wieder zu Carrière. "Ein einzelliges Auge dürfte das ursprüngliche sein; dieses kompliziert sich zunächst durch Vermehrung der Sinneszellen; dabei erfolgt ein Ausweiten des einzelligen Pigmentbechers. Wird die Zahl der Sinneszellen dann so gross, dass die Pigmentbecherzelle einer Ausweitung nicht mehr fähig ist, so teilt sich auch die Pigmentzelle und es entsteht ein mehrzelliger Pigmentbecher" (S. 549). Durch Teilung dieses mehrzelligen Auges entstehen dann drei, vier oder mehr Augen. Hesses Ansicht über die Verwandtschaft der Turbellarien ist gekennzeichnet durch den Satz: Das veranlasst mich, Stellung zu nehmen gegen die (Arnold) Langsche Hypothese, dass die tricladen und rhabdocoelen Turbellarien von den Polycladen abzuleiten seien; ich stimme mehr mit von Graff überein, der umgekehrt die Tricladen und Polycladen von Rhabdocoelen ableiten will" (S. 574).

E. Schultz (14) sah "oft bei Regeneration von Dendrocoelum lacteum statt zweier Augen deren drei, vier und selbst fünf auftreten". "Was die Erklärung dieser Tatsache betrifft, so sehe ich mit Hesse darin kein atavistisches Merkmal, wie es Carrière tat, sondern glaube, dass wir es hier mit einem teratologischen Faktum zu tun haben, wie ja solche Abnormitäten oft bei Regeneration auftreten, eine Abnormität, die bei manchen Arten erblich fixiert werden konnte und so zu vieläugigen Arten führte." Bezüglich der Verwandtschaft der Turbellarien teilt Schultz die Ansicht Graffs und Hesses.

In der umfassenden Behandlung der Rhabdocoelen durch Graff (2) ist auch das über die Nebenaugen dieser Tiere Bekannte enthalten: Die meisten haben zwei Augen. Unter diesen zweiäugigen gibt es solche, deren Augen aus je zwei hintereinander liegenden Pigmentbechern bestehen, die durch eine longitudinale Pigmentbrücke verbunden sind. Diese Brücke kann sehr fein werden und bei manchen Individuen ganz verschwinden, so dass dann typische zweiäugige Formen vier Augen erhalten. Auf diese Weise mag die Vieräugigkeit solcher Arten sich herausgebildet haben, bei welchen die vier Augen scharf getrennt sind. Bisweilen zeigen die hinteren Augen solcher Arten die Tendenz, in zwei Stücke zu zerfallen, und dann kann es, wie bei Allostoma pallidum, zur Bildung von sechs Augenflecken kommen. Formen mit drei Augen entstehen nach Graff (S. 2213) dadurch, dass der Zerfall der Augen in je zwei hintereinander liegende auf der einen Seite schon durchgeführt ist, auf der anderen nicht.

Über die Nebenaugen bei Polycladen berichtet Wilhelmi (21, S. 61 f.). Er fand oft "Augenmissbildung, Auflösung, Schwund oder Doppelbildung eines Auges". Auch Doppelbildung beider beobachtete er bei verschiedenen paludicolen und mericolen Arten, so bei Procerodes lobata, Planaria olivacea und Proc. wheatlandi. In der Annahme, dass die Ursache der Doppelbildung der Augen wohl in den in natura häufig vorkommenden Kopfverletzungen zu suchen seien, versuchte er sie bei Proc. lobata durch Abschneiden oder Absaugen des präocellaren Kopfendes künstlich zu erzeugen; aber stets wurde ein normales Vorderende regeneriert. Ebenso bei prä- oder postocellaren seitlichen Einschnitten. Die Ursachen einseitiger Doppelmissbildungen liegen nach Wilhelmi "zweifellos in Verletzungen", insbesondere Verletzung eines Auges, Verletzung des Sehnerven, seitliche schräge Einschnitte in dem präpharyngealen Körperteil und Spaltung des Kopfes bis zur

Augengegend. Auch über Auflösung und Zerfall der Augen berichtet Wilhelmi und sagt S. 62: "Künstlich lässt sich die Augenauflösung und der Augenschwund durch Verletzung des Auges erzeugen".

Alle diese in der Literatur erwähnten Beobachtungen und gelegentlichen Bemerkungen über überzählige Augen, Missbildung der Augen, Zerfall und Schwinden der Augen, über Nebenaugen usw. gehen von der Voraussetzung aus, diese Bildungen seien die Folgen irgendwelcher Verletzungen entweder der Augen selbst oder auch anderer Teile der betreffenden Tiere. Ich möchte dieser Voraussetzung im folgenden entgegentreten und sie berichtigen. Meine bisherigen Beobachtungen gelten, wie erwähnt, nur für Pl. polychroa; andere Formen gedenke ich später zu untersuchen.

Zunächst ist darauf hinzuweisen, dass die Nebenaugen bei Pl. polychroa durchaus nichts Seltenes und Aussergewöhnliches sind. Mehrere statistische Beobachtungsreihen ergaben, dass etwa 50 % aller ausgewachsenen, geschlechtsreifen Tiere mehr als zwei Augen (drei oder vier) besitzen. Unter 41 frisch gefangenen Tieren waren zwanzig mit zwei, neun mit drei und zwölf mit vier Augen. Also über 50 % der Tiere hatten mehr als zwei Augen. Es muss hinzugefügt werden, dass diese 41 Exemplare ausgewachsene Tiere waren. Von drei jungen Tieren ist gelegentlich notiert, dass sie zwei Augen haben.

In einer anderen Beobachtungsreihe wurden 56 normale erwachsene geschlechtsreife Tiere auf ihre Augenzahl hin untersucht. Das Ergebnis zeigt die folgende Tabelle.

Diesmal waren etwas weniger als 50% der Tiere mit mehr als zwei Augen versehen. Dabei war noch folgendes bemerkenswert. Die meisten Tiere, die zwei Augen aufwiesen, waren kleiner als die mit einer grösseren Augenzahl versehenen. Obwohl auch sie vollkommen normal und geschlechtsreif waren, kann man aus dem Grössenunterschied, der im grossen und ganzen beobachtet wurde, schliessen, dass diese Tiere mit nur zwei Augen meist jünger waren als diejenigen, welche mehr als zwei Augen besassen. Eine Beobachtung, die ich mehrfach anstellte, bestätigte diese

Ansicht: Es wurden z. B. von den zuletzt genannten Tieren, die nur zwei Augen hatten, zwei Exemplare isoliert weiterbeobachtet. Die Tiere waren ursprünglich zu Regenerationsversuchen bestimmt und hatten daher normale Grösse. Während der Beobachtungszeit wurden sie stets gefüttert, so dass Hunger ausgeschlossen ist. Nach 10 Tagen bereits zeigte ein Tier links einen Pigmentfleck an der Stelle, wo das linke Nebenauge zu liegen pflegt. Das andere Tier hatte beiderseits ganz feine Pigmentflecke an den entsprechenden Stellen. Nach weiteren 12 Tagen zeigten beide Tiere zwei Nebenaugen in Form von ziemlich grossen schwarzen Pigmentflecken ohne helle Höfe. Auf letzteren Umstand komme ich nachher zu sprechen. Es wird durch diese Beobachtungen gezeigt, dass wahrscheinlich die meisten Tiere mehr als zwei Augen erhalten, wenn sie nur lange genug am Leben bleiben. Im Einklang damit steht die Tatsache, dass ich bei jungen Tieren niemals mehr als zwei Augen gesehen habe. So finde ich z. B. Notizen über etwa 40 zu diesem Zwecke zu verschiedenen Zeiten und an verschiedenen Orten gesammelte junge Planarien, die etwa ein halb bis zwei Drittel so gross waren wie normal ausgewachsene Tiere. Alle 40 Tiere waren zweiängig.

Gemäss diesen Tatsachen vertrete ich die Ansicht, dass die Mehrzahl der Art Pl. polychroa vier Augen erhält, wenn nur die Tiere das genügende Alter erreichen. Dass dieses so ausserordentlich häufige Vorkommen von "überzähligen" Augen in der Literatur nicht genug gewürdigt worden ist, kann man wohl nur so erklären, dass viele Beobachter die Tiere entweder mit unbewaffnetem Auge oder doch nur mit der Lupe betrachtet haben. Die Nebenaugen sind aber oft so klein, dass man sie nur mit stärkerer Vergrösserung nachweisen kann. Es sind sehr oft lediglich kleine schwarze Punkte, Pigmentflecke; dass es sich dabei aber nicht etwa um zufällige Pigmentbildungen handelt, wird durch ihre stets symmetrische und sich überall gleichbleibende Lage hinlänglich bewiesen.

Über solche Pigmentflecke wurde beiläufig die Beobachtung gemacht, dass sie sich nach längerer Zeit zu vollkommenen Augen mit Sehkolben entwickelten. Ob dies stets der Fall ist, muss dahingestellt bleiben.

Um die gewöhnliche Lage der Nebenaugen zu den Hauptaugen zu demonstrieren, gebe ich die Textfig. 1. Mitunter liegen sie noch dichter an den Hauptaugen und tiefer als in der Figur; immer aber ist ihre Lage eine symmetrische zur Mittellinie.

Was den histologischen Bau der Nebenaugen angeht, so unterscheiden sie sich von den Hauptaugen nur durch die geringere Zahl der Sehkolben. Mitunter fehlen, wie schon erwähnt, die Sehkolben gänzlich. Die Nebenaugen stehen durch besondere Sehnerven mit dem Gehirn in Verbindung. Diese Sehnerven treten vor den Sehnerven der Hauptaugen ins Gehirn ein. Ein günstiger Schnitt ist in Fig. 18, Taf. XXI dargestellt. Es ist ein Sagittalschnitt durch das Vorderende eines Tieres. Das Hauptauge ist in dem Schnitt nicht getroffen, wohl aber sein Sehnerv (NO). Weiter nach vorn liegt das Nebenauge, das gerade durch die Mitte getroffen ist. Man sieht, wie sein Sehnerv (NON), durch einen Darmast (D) unterbrochen, in das Gehirn (G) einmündet. Die beiden Sehnerven haben eine ungefähr parallele Richtung ihres Verlaufes. Der ganze Verlauf kann in den Nachbarschnitten nachgewiesen werden. Es ist wichtig zu bemerken, dass die beiden Sehnerven miteinander durchaus keine Gemeinschaft haben.

Um speziell zu untersuchen, ob die Bildung der Nebenaugen auf Verletzungen der Hauptaugen oder auch nur des Kopfes der Planarien zurückzuführen sei, habe ich viele Versuche angestellt. Bei sehr vielen Tieren, denen der Kopf abgeschnitten war, erschienen nach 2 Wochen mehr als zwei Augen. Zum Beispiel regenerierten von 14 Tieren: sechs vier Augen, sechs drei Augen und zwei Tiere zwei Augen. Die beiden letzteren Tiere hatten auch 3 Wochen nach der Operation noch keine Nebenaugen entwickelt (sie wurden nicht länger beobachtet). Beachten wir noch, welche Augenzahl diese 14 Tiere vor der Operation hatten, so ergibt sich folgendes: Von den Tieren, die vier Augen regenerierten, hatten zwei vor der Operation vier Augen, zwei drei Augen und eins zwei Augen: von einem Tier ist die Zahl der Augen nicht notiert. Von denen, die drei Augen regenerierten, hatten eins vor der Operation vier Augen, zwei drei Augen und zwei zwei Augen. Von einem Tier ist wieder die Zahl nicht bekannt. Von denen endlich, die zwei Augen regenerierten, hatte eins zwei Augen vor der Operation, während bei dem anderen die Zahl nicht notiert ist.

Noch weitere Versuche werden zeigen, dass die Verletzung der Augen in keinem kausalen Zusammenhang mit dem Auftreten der Nebenaugen steht.

Versuch I.

Eine Planarie mit zwei Augen wird geköpft. Nach 5 Tagen zeigt der Kopf noch einen Augenfleck vor dem linken Hauptauge. Das Hinterstück regeneriert in 6 Tagen zwei Augen, nach weiteren 9 Tagen vor dem linken Auge noch einen Augenfleck. Am 25. Tage nach der Operation wird das Hinterstück geköpft. Der Kopf geht ein; das Hinterstück hat nach 8 Tagen zwei Augen regeneriert. Es wird nun zum dritten Male geköpft. Der Kopf zeigt nach 2 Tagen, also am 10. Tage seiner Entwicklung, noch einen Augenfleck vor dem rechten Auge und nach weiteren 2 Tagen einen Fleck links. Das Hinterstück regenerierte in 4 Tagen zwei Augen und ging später ein.

Dass in diesem Versuch der abgeschnittene Kopf nach 6 Tagen vor den zwei Augen noch einen Augenfleck erhielt, ist schon deshalb ursächlich nicht auf die Operation zurückzuführen. weil der Schnitt eine Strecke weit hinter den Augen her geführt wurde; die Augen also bei der Operation nicht verletzt waren. Man darf daher annehmen, dass auch das nichtoperierte Tier dies Auge bekommen hätte.

Versuch II.

- 31. Mai. Ein Tier hinter den Augen durchschnitten. Vor jedem Hauptauge steht noch ein Nebenauge (Pigmentfleck).
- 9. Juni. Das abgetrennte Hinterstück hat zwei Augen regeneriert.
- 28. Juni. Das abgetrennte Hinterstück hat vor einem der Augen noch einen Augenfleck wie am ursprünglichen Kopf.
- 8. Juli. Das Hinterstück hinter den drei Augen durchschnitten.
- 17. Juli. Der hintere Teil hat zwei Augen regeneriert.
- 18. Juli. Vor einem Auge zeigt sich wieder ein Nebenauge. Später eingegangen.

Obwohl hier die Operationen nicht genau gleich sein konnten. erschien doch stets ein Nebenauge an derselben Stelle, wo das entsprechende Nebenauge des unverletzten Tieres gelegen war.

Versuch III.

- 11. Juni. Ein Tier, das ein Nebenauge besitzt, direkt vor dem Pharvnx durchschnitten.
- 23. Juni. Hinterteil zwei Augen regeneriert.

31. Juni. Ein Nebenauge an der Stelle regeneriert, wo das ursprüngliche Nebenauge stand.

Von Verletzung der Augen kann hier natürlich nicht die Rede sein.

Versuch IV.

- 8. Juni. Eine Pl. polychroa hinter ihren vier Augen durchschnitten.
- 16. Juni. Hinterstück zwei Hauptaugen regeneriert.
- 8. Juli. Hinterstück zwei Nebenaugen regeneriert.

Bemerkenswert ist, dass bei allen Versuchen stets zuerst die Hauptaugen regeneriert werden; später erst die Nebenaugen.

Versuch V.

- 4. Juni. Pl. polychroa hinter den drei Augen durchschnitten.
- 8. Juni. Hinterstück zwei Hauptaugen regeneriert.
- 27. Juni. Hinterstück zwei Nebenaugen regeneriert.
- 8. Juli. Hinterstück hinter den vier Augen durchschnitten.
- 16. Juli. Der hintere Teil zwei Augen regeneriert: er wird hinter diesen zwei Augen durchschnitten.
- 20. Juli. Der abgeschnittene hintere Teil hat zwei Hauptaugen und ein Nebenauge regeneriert.

Der Versuch zeigt, dass die Tiere, auch wenn der regenerierte Kopf mehrere Male wieder abgeschnitten wird, doch stets Nebenaugen regenerieren, wenn sie nur lange genug am Leben bleiben.

Versuch VI.

- Juni. Eine Planarie mit nur zwei Augen wird vor dem Pharynx durchschnitten.
- 15. Juni. Das Hinterstück zwei Hauptaugen regeneriert.
 - 6. Juli. Das Hinterstück ein Nebenauge regeneriert.

Also regenerieren auch solche Tiere Nebenaugen, die vor der Operation keine Nebenaugen besassen; und doch sind hier sicher die Augen nicht verletzt worden. Ähnliche Versuchsergebnisse habe ich öfters gesehen.

Versuch VII.

Es ist ein vergleichender Versuch mit dreimal zwei Planarien, die alle sechs nur zwei Augen hatten. Sie waren unversehrt, gleich groß und wurden in gleicher Weise gut gefüttert.

a	b	c
13. Aug. Zwei Tiere werden in einiger Entfernung hinter den Augen durchschnitten, so dass die Augen nicht verletzt werden.	13. Aug. Wie bei a.	13. Aug. Zwei Tiere werden so durch- schnitten, dass der Schnitt schräg d u r c h beide Augen geht. Die Augen werden also ganz unregel- mässig verletzt.
24. Aug. Keine Augen regeneriert.	24. Aug. Zwei Haupt- augen regene- riert.	24. Aug. Zwei Haupt- augen regene- riert.
26. Aug. Zwei Haupt- augen regene- riert.	26. Aug. Ein Tier hat zwei, das andere ein Nebenauge regeneriert.	26. Aug. Kein Neben- auge regeneriert.

Noch länger wurden die Tiere beobachtet, ohne dass sich die Augenzahl änderte. Der Versuch zeigt mit aller wünschenswerten Deutlichkeit, dass das Auftreten der Nebenaugen mit der Verletzung und der nachträglichen Regeneration nichts zu tun hat. Denn bei a und b kann von Verletzung der Augen nicht die Rede sein und doch erschienen bei b Nebenaugen. Und das Wichtigste ist, dass bei c, wo die Augen gründlich verletzt wurden, wo man also sicher Nebenaugen erwarten sollte, gar keine Nebenaugen entstehen. Also wieder: die Verletzung kann nicht Ursache des Auftretens der Nebenaugen sein.

Versuch VIII.

Es wurden zwecks Studium der Heteromorphose (Paul Lang [10]) mehrere Köpfe so abgeschnitten, dass "heteromorphe Köpfe" entstehen konnten. Unter den nach längerer Zeit gebildeten "heteromorphen Köpfen" waren auch solche, die nicht nur "zwei heteromorphe Augen" regenerierten, sondern auch "heteromorphe Nebenaugen". In Fig. 19 ist ein derartiger heteromorpher Kopf mit einem heteromorphen Nebenauge dargestellt. Das Nebenauge hat im heteromorphen Kopf die normale Lage wie in dem alten Kopf.

Ergebnis.

Durch diese Experimente ebenso wie durch die statistischen Beobachtungen glaube ich nachgewiesen zu haben, dass das Auftreten der Nebenaugen bei Pl. polychroa nichts Teratologisches ist. Ausser den beiden Hauptaugen der Planaria polychroa können bei dieser Spezies noch zwei Arten von Augen auftreten:

1. Nebenaugen: Sie liegen stets vor den Hauptaugen und der Medianlinie mehr genähert als diese. (Textfig. 1.) Stets

Vorderende einer Planaria polychroa mit zwei Haupt- und zwei Nebenaugen. Zeiss Obj. A. Ok. 1.

sind sie kleiner als die Hauptaugen. Sie können denselben Bau aufweisen wie die Hauptaugen, nur mit kleinerem Pigmentbecher und mit geringerer Zahl der Sehzellen. Oder sie stellen einfache Pigmentflecke dar ohne Sehkolben. Diese Pigmentflecke entwickeln sich oft zu Nebenaugen mit Sehzellen; doch scheint dies nicht stets der Fall zu sein. Die Nebenaugen treten sowohl bei der normalen Entwicklung wie bei der Regeneration später als

die Hauptaugen auf. Bei der normalen Entwicklung dauert es oft sehr lange, bis die Nebenaugen erscheinen. Etwa 50 Prozent aller ausgewachsenen Tiere zeigen ein oder zwei Nebenaugen. Die Nebenaugen stehen mit dem Gehirn durch besondere Nerven in Verbindung, die vor den Nervi opt. der Hauptaugen ins Gehirn einmünden (Taf. XXI, Fig. 18).

2. Anormale oder überzählige Augen: Sie haben keine konstante Lage, Form und Ausbildung und kennzeichnen sich eben dadurch als anormale Augen. So z. B. das in Textfig. 2 gezeichnete Auge. das hinter dem rechten Hauptauge liegt. Für die Entstehung dieser Augen mache ich alle jene Bildungsmöglichkeiten verantwortlich, die in der Literatur für die Bildung der "Nebenaugen" beansprucht werden, also Verletzung der Hauptaugen (oder auch der Nebenaugen), Versprengung von Augenpigment bei der Embryonalentwicklung, Spaltung der Augen bei Verletzungen und nachträgliche Regeneration. Besonders wichtig erscheint mir auch für die Entstehung der überzähligen Augen der Hungerzustand zu sein, der oft mit der Regeneration

verbunden ist; infolge dieses Hungerzustandes wird das Auge auseinandergesprengt und das Pigment zerstreut. Wird dann nach einiger Zeit der Hungerzustand beseitigt, so können sich versprengte Teile zu Augen entwickeln.

Über eine etwaige phylogenetische Bedeutung der "Nebenaugen" bei Pl. polychroa kann erst nach dem Studium dieser Augen bei anderen Turbellarien gesprochen werden.

Fig. 2.

Vorderende einer Pl. polychroa.

Hinter dem rechten Hauptauge liegt ein grosses anormales Auge. Die Sehzellen dieses Auges haben dieselbe Ausbildung wie die Hauptaugen und stehen mit dem Gehirn durch Nervenfasern in Verbindung. Dieser Nerv steht in keiner Verbindung mit den N. opt. des Hauptauges; er mündet hinter jenem ins Gehirn. "Nebenaugen" sind bei diesem Tier nicht vorhanden.

Vergr. Zeiss Obj. A. Ok. 1.

3. Experimentelles und Histologisches vom Tricladenpharynx.

a) Regeneration des Pharynx.

In seiner grossen Arbeit vom Jahre 1897 hat R. Jander (4) nicht nur die Anatomie und Entwicklungsgeschichte des Tricladenpharynx klargestellt, sondern auch die Vorgänge bei der Regeneration des abgeschnittenen Pharynx histologisch verfolgt. Seitdem sind seine Untersuchungen vielfach bestätigt worden. Eine ganz abweichende Darstellung dagegen gibt A. Korotneff (7). Korotneff hat bis ins Einzelne die Entwicklung des eingesenkten Pharynxepithels bei Pl. angarensis, Sorocelis usw. studiert. Auch er findet anfangs in der Embryonalentwicklung ein typisches Epithel mit Kernen. Diese Kerne sollen sich nun aber in der Folge ganz verschieden verhalten von dem, was alle

anderen Autoren darüber berichtet haben. Bei der Entwicklung des Epithels unterscheidet Korotneff zwei Arten von Kernen. von denen eine in drüsenhaltigen, die andere in drüsenfreien Pharvnxteilen zu beobachten ist. In letzteren teilen sich die Kerne rasch hintereinander und bleiben zu Klumpen vereinigt, die in die Tiefe sinken. Andere Kerne bleiben oben, gehen zugrunde oder wandern nach der Oberfläche, wo sie herausgestossen werden. Die eingesenkten Kerne teilen sich amitotisch weiter und erzeugen teils Radialmuskeln, teils Ringmuskeln; deshalb hält Korotneff die ursprünglichen Pharynxepithelzellen auch für Myoblasten. In drüsenhaltigen Pharynxteilen teilen sich die Kerne des ursprünglichen Epithels ebenfalls amitotisch. Ein Kern wandert nach unten, wo er sich rasch weiter teilt. So "entsteht ein Schlauch, eine komplizierte Drüse, die als eine Anhäufung von Zellen mit einem Ausführungsgang zu betrachten ist". Die in der oberen Platte zurückbleibenden Kerne liegen zunächst an der Stelle, wo die Drüse mündet; sie verstopfen den Ausführungsgang und werden schliesslich mit einem Pfropfen Schleim ausgestossen.

Da diese Angaben allem widersprechen, was bisher in der Literatur über die Pharynxentwicklung und -anatomie bekannt geworden ist, habe ich die Vorgänge bei der Regeneration noch einmal untersucht, um so mehr, als auch meine Beobachtungen über die Anatomie mit denen Korotneffs nicht ganz harmonieren. Zweierlei Versuche wurden angestellt, um das Verhalten der den Pharynx bekleidenden Zellen zu studieren: 1. über die Neuentwicklung des Pharynx in kurzen Querstücken, Kopf- und Schwanzstücken, und 2. über die Regeneration des durchschnittenen Pharynx.

Durch beide Arten von Versuchen wurden die Angaben Janders vollkommen bestätigt. Allerdings fand ich öfters Kerne und Zellen im Pharynxlumen und in der Pharynxtasche liegen, glaube dies aber folgendermassen erklären zu können: Beim Abtöten legt sich der Pharynx häufig, indem er sich schnell in die Tasche zurückzieht, in Falten; dann treffen insbesondere Sagittalschnitte oft neben dem ganzen Pharynx auch kleine Zipfel, oder schneiden nur einige Kerne ab, die dann im Bilde isoliert liegen und in der Tasche verstreut scheinen.

Über die Regeneratiou des durchschnittenen Pharynx brauche ich nichts Näheres zu sagen, da meine Beobachtungen genau mit

denen Janders übereinstimmen. Dagegen möchte ich eine Bemerkung über die Neuentwicklung des Pharynx in kurzen Querstücken anführen. Sie geht, wie bekannt ist, so vor sich, dass sich im Parenchym ein Lumen bildet (die Pharynxtasche), in das der neue Pharynx hineinwächst. Während die meisten Pharynxregenerate, die ich unter meinen Präparaten gesehen habe, diese Ansicht bestätigen, fand ich in einigen jungen Regeneraten das caudale Ende des Pharynx, der wie gewöhnlich in der Tasche lag, mit der hinteren Wand der Pharynxtasche verwachsen. Ob diese Verwachsung erst sekundär vor sich gegangen ist, oder ob sich Pharynx und Pharynxtasche zugleich durch Auftreten von Spalten im Parenchym gebildet haben, wobei dann der Prozess am hinteren Ende des Pharynx am spätesten eingetreten sein würde, ist an den vorliegenden Präparaten nicht zu entscheiden.

b) Anatomie des Pharynx von Pl. polychroa.

Mit den vorzüglichen Angaben von Jijima (6), Jander (4), Micoletzky (11), Ude (19) stimmt diese Schilderung in den meisten, aber nicht in allen Punkten überein: um aber die Darstellung nicht zu weitläufig zu machen, will ich auf einen Literaturvergleich verzichten.

Die Reihenfolge der Schichten des Pharynx von aussen nach innen ist:

- 1. Epithelplattenschicht mit Cilien, aussen dunkler und homogener als innen. Diese Platte sieht auf Schnitten wie ein Syncytium aus. Isoliert man aber einen Pharynx und bringt ihn 1 Stunde lang in 0,6 Prozent Kochsalzlösung, so kann man sehr deutlich die Zellgrenzen nachweisen (Fig. 15). Es gelingt auch recht gut, mit 0,25 Prozent Essigsäure die ganzen Epithelzellen mit ihren Kernen (Schicht 4) zu isolieren (Fig. 16). Dann erkennt man, dass die einzelnen Epithelplatten gezackte Ränder haben, mittels deren sie fest aneinanderhaften. Man sieht in der Figur neben dem Zellfortsatz noch mehrere andere Fortsätze, deren Bedeutung noch immer unklar ist.
 - 2. Feine, aber scharfe, stark lichtbrechende Basalmembran.
- Äussere Muskularis: Eine Schicht L\u00e4ngsmuskeln, zwei Lagen Ringmuskeln.
 - 4. Kerne des Epithels.

- 5. Schicht der Drüsenausführgänge: a) äussere Drüsenschicht, ziemlich schmal, von Kongorot stark rot, von Eisenhämatoxylin schwarz gefärbt. Die Drüsenausführgänge münden distal am äusseren Rande; b) Nervenplexus (entgegen Jijima, der ihn bei Pl. polychroa direkt auf die Aussenmuskulatur folgen lässt); c) innere Drüsenschicht, dreibis viermal so breit wie a, mit Hämatoxylin-Kongorot nicht so stark gefärbt wie bei a, mit Eisenhämatoxylin blau. Dazwischen finden sich überall noch mit Hämatoxylin-Kongorot blaugefärbte Gänge.
 - 6. Epithelkerne des Innenepithels.
- Innere Muskularis: mehrschichtige L\u00e4ngs-, mehrschichtige Ringmuskeln (Fig. 20).
- S. Epithelplatten mit Cilien. Diese Innencilien sind doppelt so hoch wie die "Aussencilien" und starrer als jene. Sie gehen ein Stück in die Epithelplatte hinein. Von der anderen Seite treten die Radiärmuskeln in diese Platte ein (Fig. 20 RM).

c) Bau und Regeneration der Pharynxtasche.

Die ganze Pharynxtasche ist von einer eigenen Muskularis umgeben, die nichts mit der Körpermuskulatur gemein hat und auch dort scharf von jener getrennt ist, wo der Zwischenraum zwischen Pharynxtasche und Epithel sehr gering ist. Die Muskulatur enthält zunächst eine sehr feine Längsschicht, die mit der Längsmuskulatur des Pharynx zusammenhängt und die Tasche auch an dem hinteren Teil umkleidet. Sie ist besonders gut mit Eisenhämatoxylin auf Querschnitten zu erkennen. Die sie bildenden Muskelfasern sind etwa nur halb so dick wie die Fasern des Pharynx. Auf die Längsschicht folgt eine Lage von Ringmuskeln. Diese sind am vorderen und hinteren Ende der Tasche dichter nebeneinander angeordnet als in der Mitte, wo sie in grösseren oder kleineren Intervallen ziemlich unregelmässig aufeinander folgen.

Jijima (6, S. 387) spricht von einer Muskulatur nur in dem vorderen Teil der Tasche, die gegen die Mitte zu aufhöre. Micoletzky (11) beschreibt bei Pl. alpina eine Muskularis in der ganzen Tasche.

Was das Epithel der Pharynxtasche betrifft, so musste es befremdlich erscheinen, dass in ihm nur sehr wenig Kerne zu finden sind. Es stellt ein ganz dünnes Häutchen dar, das auch keine Zellgrenzen aufweist. Mit Hilfe der Regeneration konnte ich den Sachverhalt klarstellen (Fig. 22). Wie das Pharynxepithel (Ph) in jungen Regenerationsstadien noch seine Kerne enthält, die dann später in die Tiefe wandern, so sind auch in dem Epithel der Tasche die Kerne in diesen Stadien noch sehr gut nachweisbar (Pt). Auch von ihnen beginnt allmählich ein grosser Teil ins Innere des Gewebes einzusinken. Fig. 22 ist ein Regenerat von 7 Tagen. Bei a ist noch ein Kern im Epithel; bei b beginnt ein anderer mit einem Teil des Zelleibes unter das Epithel herabzusinken; bei c ist der Prozess vollendet. Man erkennt den Unterschied von dem Vorgang beim Pharynxepithel. Dort bleibt der Kern mit der Epithelplatte stets durch einen Zellfortsatz in Verbindung, während die Verbindung hier (e) ganz aufgehoben wird. In Pt $_{1-3}$ sind noch verschiedene Stadien der Ablösung dargestellt.

d) Zur Polypharyngie.

Einige Süsswasserturbellarien, z. B. Phagocata gracilis und gewisse Formen vom Pl. alpina-Typus haben in einer Pharynxhöhle mehrere oder zahlreiche Pharynge. Gelegentlich kommen auch bei anderen Tricladen des Süss- und Meerwassers mehrere Pharvnge in einer Tasche vor. Nach Mrazek (12, 13) beruht die Entstehung der Polypharyngie auf vorzeitiger Regeneration des Pharvnx bei Unterdrückung der Querteilung, die eine Form der ungeschlechtlichen Fortpflanzung bei den betreffenden Arten bildet. Steinmann (15-18) hat diese Theorie weiter ausgebaut, während Wilhelmi (20-22) eine andere Erklärung dieser Erscheinung gegeben hat. Wilhelmi (20, S. 676) macht darauf aufmerksam, dass sich Polypharyngie gelegentlich künstlich erzeugen lässt durch Exstirpation des Pharynx an der Pharynxwurzel, "indem das durch Verletzung zur Regeneration angeregte Parenchym Wucherungen bildet, die leicht zur Entstehung von zwei oder drei Pharyngen führen". Diese gelegentliche teratogene Oligopharvngie soll nun bei einigen Formen durch Häufigkeit erblich geworden sein.

Diese Erklärung scheint auch mir annehmbarer als die Mrazek-Steinmannsche Hypothese. Bei Pl. polychroa habe ich niemals Oligopharyngie beobachtet; dagegen gelang es mehrere Male, einen Doppelpharynx durch Einschnitte in die Pharynxgegend künstlich zu erzeugen. Folgende Fälle, in denen ein Doppel-

pharynx entstand, werden vielleicht zur Lösung der Frage beitragen können.

Eine Planarie wurde in der Mitte quer durchschnitten, so, dass der Pharynx durch den Schnitt noch eben mit abgetrennt wurde. In den vorderen Teil des Hinterendes wurde ein longitudinaler Einschnitt in die Pharynxhöhle gemacht. Nach kurzer Zeit war der so entstandene vordere Spalt wieder verwachsen. Nach zwölf Tagen wurde das Tier abgetötet und untersucht (Fig. 21). Augen waren noch nicht regeneriert, wohl aber ein ziemlich grosses Gewebstück vor der Pharynxkammer neugebildet. Ferner waren zwei Pharynge in die alte Pharynxtasche hinein regeneriert worden. Die beiden Pharynge liegen dicht nebeneinander und haben so ziemlich dieselbe Grösse. Sie hängen beide mit dem Darm zusammen, der noch nicht vollkommen regeneriert ist.

Bei einem anderen ebenso vorbehandelten Tier blieb der vorn hergestellte Spalt zum Teil offen; es entstand ein doppelköpfiges Tier (Fig. 17). Dort, wo das Tier verwachsen ist, liegen zwei Pharynge in einer Tasche. An diesem Präparat ist sehr deutlich zu sehen, wie es möglich ist, dass zwei Pharvnge, die ie in einer Pharvnxtasche getrennt voneinander liegen, in eine gemeinsame Pharvnxtasche zu liegen kommen können. Zunächst hat jeder der beiden Köpfe einen neuen Darmast und im Anschluss daran einen neuen Pharvnx regeneriert. Jeder Pharvnx lag in einer besonderen Tasche. Die dünne Gewebslamelle, die die beiden Taschenlumina voneinander trennte, ist aber in vorliegendem Stadium im Begriff zu schwinden. In der unteren Hälfte ist bereits ein einheitliches Lumen hergestellt, während in der oberen Hälfte die zwei Pharvnge noch durch ein dünnes Gewebsblatt getrennt sind. Würde nun, was oft bei doppelköpfigen Individuen vorkommt (besonders leicht bei Hungerzuständen), der linke kleinere Kopf allmählich schwinden, so läge ein Tier vor mit zwei Pharyngen in einer Pharynxtasche, wie in dem zuerst beschriebenen Fall.

Durch diese Experimente können jedenfalls auch manche in der Natur vorkommende Fälle von mehrfachen Pharynxbildungen erklärt werden. Indem ein Tier mehrere Einschnitte irgend welcher Art bis in die Pharynxgegend erhält, beginnt in jedem dadurch gebildeten Endstück die Neubildung eines Pharynx.

361

Bald aber verwachsen die Enden wieder miteinander noch ehe sie vollkommen regenerieren konnten (so geschah es bei meinen Versuchen tatsächlich meistens); da aber die Neubildung der Pharynge schon begonnen hat, wird sie weiter durchgeführt, da ja die Pharynge selbst nicht miteinander verwachsen. So entstehen zwei- und mehrfache Pharynxbildungen, zunächst in besonderen Kammern. Die diese Kammern trennenden Wände schwinden später, so dass die Pharynge in eine Pharynxtasche zu liegen kommen.

Ergebnis.

Gegenüber Korotneff (7) werden die Angaben Janders (4) über Regeneration des Pharynxepithels vollkommen bestätigt.

Abweichend von der gewöhnlichen Ansicht ist eine Beobachtung über die Neubildung des Pharynx bei der Regeneration (S. 357).

Anatomie des Pharynx (S. 357, Fig. 15, 16, 20) und der Pharynxtasche (S. 358) von Pl. polychroa.

In jungen Regeneraten enthält das Epithel der Pharynxtasche Kerne, die alsbald mit einem Teil ihres Zelleibes in die Tiefe wandern. Im Gegensatz zum Pharynxepithel bleiben sie aber mit der Epithelplatte nicht in Verbindung, sondern lösen sich ganz von ihr ab (Fig. 22).

Oligopharyngie kann künstlich dadurch hergestellt werden, dass die Planarien durch Abschneiden des Vorderendes bis zur Pharynxgegend und longitudinale Einschnitte in den so entstandenen Stumpf zur Bildung mehrerer Köpfe und Pharynge angeregt werden. Durch frühes Verwachsen der Spalte oder späteres Schwinden der kleineren Köpfe entsteht wieder ein einköpfiges Tier. Die Pharynge werden entweder in die alte Tasche hinein regeneriert oder in gesonderte Taschen; letztere können durch Schwinden der Zwischenlamelle zu einer Kammer werden (Fig. 17 und 21).

Literaturverzeichnis.

- Carrière, J.: Die Augen von Planaria polychroa Schmidt und Polycelis nigra Ehrb. Arch. f. mikr. Anat., 20, 1882, S. 160.
- Graff, L. von: Turbellaria in: Bonn, Klassen und Ordnungen. Vermes,
 Abt., Acoela u. Rhabdoecelida, 1904—1908, S. 1733—2599, T. 1—30.
- Hesse, R.: Untersuchungen über die Organe der Lichtempfindung bei niederen Tieren. II. Die Augen der Plathelm., insbesondere der tricladen Turbellarien. Zeitschr. f. wiss. Zool., 62, 1897.
- Jander, R.: Die Epithelverhältnisse des Tricladenpharynx. Zool. Jahrb., Abt. Anat., 10, 1897.
- Jänichen, E.: Beiträge zur Kenntnis des Turbellarienauges. Zeitschr. f. wiss. Zool., 62, 1897.
- Jijima, J.: Untersuchungen über den Bau und die Entwicklungsgeschichte der Süsswasser-Dendrocoeen (Tricladen). Zeitschr. f. wiss. Zool., 1884.
- Korotneff, A.: Cytologische Notizen (Tricladenpharynx). Zeitschr. f. wiss. Zool., 89, 1908.
- Lang, P.: Über Regeneration bei Planarien. Arch. f. mikr. Anat., 79, 1912.
- Derselbe: Beiträge zur Anatomie und Histologie von Planaria polychroa. Zeitschr. f. wiss. Zool., 55, 1913.
- Derselbe: Experimentelle und histologische Studien an Turbellarien.
 Mitteilung: Heteromorphose und Polarität bei Planarien. Arch. f. mikr. Anat., Bd 82.
- Micoletzky, H.: Zur Kenntnis des Nerven- und Excretionssystems einiger Süsswassertricladen nebst anderen Beiträgen zur Anatomie von Planaria alpina. Zeitschr. f. wiss. Zool., 87, 1907.
- Mràzek, A.: Über eine neue polypharyngeale Planarienart aus Montenegro (Pl. montenegrina). Sitzungsber. d. böhm. Ges. d. Wiss., Math.-nat. Kl., 1903.
- Derselbe: Eine zweite polypharyngeale Planarienform aus Montenegro. Sitzungsber. d. böhm. Ges. d. Wiss., Prag 1906 ed. 1907.
- Schultz, E.: Aus dem Gebiete der Regeneration. 2. Über Regeneration der Turbellarien. Zeitschr. f. wiss. Zool., 72, 1902.
- Steinmann, P.: Eine polypharyngeale Planarie aus der Umgebung von Neapel. Zool. Anz., 32, 1907, S. 364.
- Derselbe: Die polypharyngealen Planarienformen und ihre Bedeutung für die Descendenztheorie, Zoogeographie und Biologie. Internat. Revue Hydrobiol., Leipzig 1908.
- Derselbe: Untersuchungen über das Verhalten des Verdauungssystems bei der Regeneration der Tricladen. Arch. f. Entw.-Mech., 25, 1908.
- Derselbe: Zur Polypharyngie der Planarien. Zool. Anz., 35, 1910.
- Ude, J.: Beiträge zur Anatomie und Histologie der Süsswassertricladen. Zeitschr. f. wiss. Zool., 89, 1908.

- Wilhelmi, J.: Zur Regeneration und Polypharyngie der Tricladen. Zool. Anz., 32. Bd.
- 21. Derselbe: Fauna und Flora Golf Neapel. 32. Monographie: Tricladen 1909.
- Derselbe: Nachtrag zur Mitteilung über die Polypharyngie der Tricladen. Zool. Anz., 35, 1910.

Erklärung der Abbildungen auf Tafel XXI.

- Fig. 1—14. Amitosen in jungen Epithelregeneraten. Zeiss Imm. 2 mm, Comp.-Ok. 6.8 oder 12.
- Fig. 1. Regenerat von 20 Stunden. Stück Epithel dicht an der Wunde mit mantelförmiger Amitose.
- Fig. 2. Bei a Amitose. Rechts liegen die Kerne dicht aneinander.
- Fig. 3. Wie Fig. 1.
- Fig. 4. Kern in Amitose; bei zwei verschiedenen Einstellungen der Mikrometerschraube gezeichnet. Man kann die Einschnürung mit der Mikrometerschraube verfolgen.
- Fig. 5. Wie 4.
- Fig. 6. Regenerat sieben Tage alt. Im regenerierten Epithel Amitose in drei verschiedenen Einstellungsebenen gezeichnet. b ist die mittlere Einstellung, a etwas tiefere, c etwas h\u00f6here Einstellung. Der Kern liegt also schr\u00e4g zur Schnittebene.
- Fig. 7. Regenerat 43 Stunden. Zwei Amitosen in verschiedenen Einstellungsebenen gezeichnet: aa' und bb'.
- Fig. 8. Regenerat 20 Stunden. Zwei Amitosen im Epithel.
- Fig. 9. Amitose im Epithel dicht an der Wunde.
- Fig. 10. Regenerat zwei Tage und 19 Stunden. Amitotische Kerneinschnürung.
- Fig. 11. Wie 10.
- Fig. 12. Regenerat von 20 Stunden. Amitose im Epithel.
- Fig. 13. Kerne liegen dicht aneinander; sie haben sich wahrscheinlich amitotisch geteilt.
- Fig. 14. Wie 13.
- Fig. 15. Oberflächenstück eines Pharynx, der eine Stunde lang in 0,6% Kochsalzlösung gelegen hat. Man sieht die Zellgrenzen in der kernlosen Epithelplatte. Zeiss Imm. 2 mm, Comp.-Ok. 6.
- Fig. 16. Mit 0,25% Essigsäure isolierte Epithelzelle des Pharynx. Die Ränder der kernlosen Epithelplatte sind gezackt. Ausser dem kernhaltigen Fortsatz sieht man noch sechs Fortsätze, die allem Anschein nach Röhren sind, wie auch ihre Ausmündungen oben auf der Platte andeuten. Zeiss Imm. 2 mm, Ok. 4.
- Fig. 17. Vorderteil einer doppelköpfigen Planarie. Eine normale Planarie wurde so durchschnitten, dass der Pharynx an seiner Wurzel noch eben mit abgeschnitten wurde. Dann wurde von vorn in die Pharynxtasche hinein ein Schnitt geführt. Die Schnittflächen sind

- Fig. 18. Sagittalschnitt durch das Vorderende einer Pl. polychroa, die zwei Haupt- und zwei Nebenaugen besass. NO = Sehnerv des Haupt-auges, das selbst nicht getroffen ist. NON = Sehnerv des Nebenauges NA. D = Darmäste. G = Gehirn.
- Fig. 19. "Heteromorpher Kopf" einer Pl. polychroa. AK = alter Kopf der normalen Planarie, mit zwei Haupt- (HA) und zwei Nebenaugen (NA). Er wurde abgeschnitten und regenerierte einen "heteromorphen" Kopf (HK) mit zwei Hauptaugen und einem Nebenauge (HNA). Zeiss Obj. 16 mm, Ok. 1.
- Fig. 20. Längsschnitt durch den Pharynx von Pl. polychroa. JE = Innenepithelplatte. RM = Radiärmuskeln, RiM = Ringmuskeln, K = Kerne des Innenepithels. Zeiss Imm. ¹ 18, Ok. 1.
- Fig. 21. Ähnlich wie bei Fig. 17. Nur sind hier die Schnittflächen ganz verwachsen, ehe es zur Bildung eines Doppelkopfes kommen konnte. V = regeneriertes Vorderende. D = Darmgrenze: zwei Pharynge liegen in einer Kammer. Zeiss 16 mm, Ok. 1.
- Fig. 22. Junges Regenerat des Epithels von Pharynx (Ph) und Pharynx-tasche (Pt). Bei a ist noch ein Kern im Epithel der Tasche. b, c und d sind Stadien, wo Kerne ins unterliegende Gewebe einsinken. Ebenso in Pt2 und Pt3. Bei c sieht man, dass die Kerne mit dem untersinkenden Teil des Zelleibes mit der Epithelplatte nicht im Zusammenhang bleiben. Zeiss Imm. 2 mm, Comp.-Ok. 6 (Pt3 mit Ok. 12).

Die Verbindung des Vorderhirns mit dem metameren Hirn.

Von

B. Haller.

Hierzu Tafel XXII und 1 Textfigur.

Der erste, der die Grosshirn- oder Vorderhirnbahnen der Fische verfolgt hatte, war bekanntlich 1888 Edinger (2). In einer zweiten Schrift (3) gab er dann drei Jahre später Ergänzungen zu seinen früheren Befunden.

Es verbindet sich nach ihm das Vorderhirn durch mehrere Bahnen mit dem Zwischenhirn, nämlich durch das basale Vorderhirnbündel, das Mantelbündel und das Habenularbündel. Das basale Vorderhirnbündel entspringt bei den Knochenfischen mit drei Wurzeln im Vorderhirn, und zwar mit zweien aus dem dorsalen Vorderhirngebiet, mit einer dritten aus dem medianen. Bei den Selachiern aus dem Stammganglion entspringend, gelangt das basale Vorderhirnbündel basalwärts und da die Chiasma optica und die Commissura postoptica überschreitend, begibt es sich in das Zwischenhirn. Zum Teil endet es da im Thalamusgebiet, ein Bündel davon zieht aber weiter kaudalwärts und konnte bis in die Oblongata verfolgt werden.

Eine teilweise Kreuzung der Bündel der basalen Vorderhirnbahn erfolgt in der Commissura postoptica.

Aus der dorsalen Mantelregion entspringend, zieht die jederseitige Mantelbahn ziemlich senkrecht am hinteren Vorderhirnrande hinab zur Basis hinter das Chiasma, dort kreuzen sich die beiderseitigen Bündel in der Commissura postoptica, um dann von hier aus kaudalwärts zu ziehen. Heute ist es festgestellt, dass sie im thalamalen Gebiete verbleiben.

Die Habenularbahn verbindet das Vorderhirn mit dem Habenularganglion.

1898 habe ich im ersten Teil (7) meines Hirnwerkes auch über das basale Vorderhirnbündel bei Fischen berichtet und mitgeteilt, dass es, wie Edinger angab, entspringend und verlaufend innerhalb des Lobus inferior in meinem Vereinsgebiete endet. Eine

Kreuzung von Vorderhirnfasern in der Commissura anterior geht diese Bahn nichts an, aber es gelangt von ihr aus auch zu keiner Kreuzung in der Commissura postoptica. Bestritten hatte ich eine Verlängerung in das metamere Hirn aber auch. An dem Mantelbündel unterschied ich einen dorsalen und einen ventralen Abschnitt; ersterer ist die Habenularbahn. Der ventrale kommt peripher ventralst von der Opticuswurzel gelegen zur Commissura postoptica, sich dort kreuzend, aber ein Teil bleibt ungekreuzt. Dieses gesamte untere Mantelbündel endet im Vereinsgebiet des Zwischenhirns und gelangt — wie ich dies auch jetzt vertrete — nicht in das metamere Gehirn.

Inzwischen hat sich die Sache dahin gestaltet, dass bezüglich des basalen Vorderhirnbündels meine Angaben, wonach aus diesen kein Nebenbündel in das metamere Gehirn gerät (Edinger, 1888) allgemein angenommen und das ganze Bündel infolgedessen den Namen Tractus strio-thalamicus erhalten hat. Auch bezüglich des Mantelbündels wird angegeben - ich führe nur Edinger (4, 5), Kappers (12) und Goldstein (6) an — dass nach der Kreuzung in der Commissura postoptica die Fasern im Vereinsgebiet verbleiben. Bezüglich des Mantelbündels bin ich auch jetzt derselben Meinung und Edingers Irrtum wäre somit beseitigt. Gleichzeitig möchte ich aber einen Irrtum auch meinerseits feststellen bezüglich des basalen Vorderhirnbündels. denn Edinger hatte 1888 recht, als er eine Verlängerung eines Nebenbündels vom Hauptbündel in das metamere Hirn (er sagt in die Oblongata) behauptete. Er bestand aber damals nicht fest genug auf seinem Befund und heute hat er ihn fallen lassen. Der einzige ist, soviel mir bekannt, Friedr. Maver in Prag (14), der darauf besteht, dass bei Ammocoetes Fasern aus dem Vorderhirn direkt, also ohne Unterbrechung, allerdings gekreuzt in der Commissura anterior, was unrichtig ist, Fasern in das metamere Gehirn geraten.

Ähnlich steht es bezüglich der Reptilien. Da war es mir auch nicht gelungen (8), einen direkten Übergang des basalen Vorderhirnbündels in das metamere Hirn festzustellen, denn wie es sich weiter unten zeigen wird, habe ich am unrichtigen Orte darnach gesucht. So scheint es auch Unger (15) sieben Jahre später ergangen zu sein. Ich liess alle Fasern des basalen Vorderhirnbündels nur vermittelst des Vereinsgebietes mit dem

metameren Gehirn in Verbindung treten. Dies schien mir um so sicherer zu sein, als es mir gelungen war, eine Endigung der Pyramidenbahn im Vereinsgebiet, speziell im Lobus inferior festzustellen.

Bei den Säugetieren besteht das basale Vorderhirnbündel, das auch als Grosshirnschenkel bezeichnet wird, aus vier verschiedenen Bahnen: 1. dem Tractus cortico-spinalis, 2. dem Tractus cortico-pontinus, 3. dem Tractus cortico-bulbaris und 4. dem Tractus strio-thalamicus.

Die drei ersteren werden den Fischen gegenüber von Edinger (5) als Neubildungen erklärt. Denn er nimmt heute an, dass die Grosshirnrindenbahnen, "erst relativ spät in der Reihe auftreten und noch viel später erst eine gewisse Volkommenheit erreichen; ja, dass solche Bahnen erst bei den Säugern zu der Mehrzahl der anderen Hirnteile in Beziehung treten", (4, S. 242).

Der Tractus cortico-spinalis entsteht in der Grosshirnrinde aus der vorderen Zentralwindung bei dem Menschen und wird zur Pyramidenbahn. Der Tractus cortico-pontinus stammt aus dem Stirnlappen, dann aus dem Temporal- und Occipitallappen und soll in der Brücke enden. Der Tractus cortico-bulbaris gelangt aus der unteren Frontalwindung als Sprachbahn zum Hypoglossuskern. Der Tractus strio-thalamicus verbindet das Striatum mit dem Thalamus.

Zum grössten Teil aber sind diese Verbindungen nur aus klinischen und experimentellen Beobachtungen erschlossen — deren Bewertung durchaus nicht verringert werden soll — und die morphologischen Beweise für eine direkte und nicht vermittelte Verbindung stehen aus. So wie die Sache bei den Nichtsäugern lag, war es nicht möglich mit Bestimmtheit zu behaupten. ob diese Bahnen sich durch das Vereinsgebiet ohne Unterbrechung in das metamere Gehirn fortsetzen oder erst durch dessen Vermittlung jener Zusammenhang erzielt wird, wie dies ja für viele andere Bahnen feststeht.

Zum Teil darum verhielt ich mich 1906 (10) skeptisch der ersten Annahme gegenüber und meine Skepsis konnte selbst durch eigene Beobachtungen am Putorius-Hirn, nach denen das kaudale Ende des basalen Vorderhirnbündels bis an die Brücke gelangt und welches Präparat ich auch abbildete (1. c. Textfig. 22) nicht beseitigt werden. Bei der Maus (9) und Fledermäusen (11) war es mir nämlich damals nicht gelungen den direkten Übergang des hintersten Endes von der basalen Vorderhirnbahn in das metamere Hirn zu erkennen, wie denn auch niemand dafür bisher den morphologischen Beweis erbracht hat. Man möge hierüber nur die Lehr- und Handbücher Köllikers (13), Bechterews (1) und Edingers (4.5) u. a. vergleichen. Nirgends findet sich eine beweisende Abbildung dafür und selbst die Halbschemata vom Nagergehirn in diesen Werken versagen, nur die Vollschemata, insbesondere von Bechterew, stehen dafür ein. Aber so steht es auch in den Einzelabhandlungen.

Hier nun einmal Ordnung zu schaffen, war somit guter Rat teuer und als ich auf neuen Präparaten von Scyllium jene von Edinger 1888 gesehene Fortsetzung des basalen Vorderhirnbündels in das metamere Hirn neulich wiederfand, ging ich auch an die Aufsuchung derselben bei Reptilien und bei den Säugetieren. Die Amphibien mögen diesmal wegbleiben, der Reptilienbefund gilt auch für sie.

Für die Fische wählte ich abermals Scyllium und Salmo. Für ersteren habe ich die Vorderhirnbahnen, soweit sie sich auf das Zwischenhirn und das metamere Hirn erstrecken, auf ein Halbschema (Fig. 2) übersichtlich eingetragen.

Es sammelt sich das Mantelbündel (mb) aus allen drei Teilen des Vorderhirns (I, II, III), — welche Teile ich andern Orts ausführlich beschrieben habe (10) — und indem die drei Bündel dann, peripherst an dem Vorderhirn gelegen, nach ventrokaudal gerichtet nach dem Zwischenhirn zu ziehen, vereinigen sie sich dort, wo sie das Zwischenhirn, das Brachium cerebri, hinter dem Velum transversum erreichen, zu einem einheitlichen Bündel. Dieses trennt sich aber alsbald in zwei Hälften, wovon die eine dorsal, an der Kante des Brachium, die andere lateral von der ersten, fest an ihr gelegen, im vorderen Teil des Zwischenhirns über den die Tela choroidea anterior lagert. Etwas vor dem Ganglion habenulae (gh) weichen die beiden Bündel auseinander, wobei das dorsale (mb') als Vorderhirn-Habenularbahn in das Habenularganglion tritt.

Das untere Bündel, das eigentliche Mantelbündel, erreicht, wie ich schon früher geschildert und abgebildet habe (7, Fig. 28 C.), die Opticuswurzel und liegt ihr von aussen ganz fest an. Dies

ist aus der zitierten Abbildung zu ersehen, denn in das Halbschema konnte man es so nicht eintragen. Sofort hinter der Opticuswurzel zerfällt das Bündel in zwei Nebenbündel. Davon kreuzt das innere in der Commisura postoptica und das äussere gerät ungekreuzt in das Vereinsgebiet, wo dann beide enden. Dies war bisher bekannt, unbekannt blieb es aber bisher, dass etwas vor der obengenannten Teilung in zwei Unterbündel das Mantelbündel ein Nebenbündel (b) in das Tectum opticum abgibt. Es tritt somit durch diese Vorderhirn-Tektalbahn das Vorderhirn mit dem metameren Hirn in Verbindung.

Das basale Vorderhirnbündel sammelt seine Fasern sowohl aus der medianen Wand der Vorderhirnhemisphären (10, Fig. 9), als auch aus dem striatalen und dem ganzen dorsolateralen Teil derselben (l. c. Textfig. 2, byhb) und das so an der Basis einheitlich gewordene Bündel (l. c. Fig. 10) liegt nun basalwärts in dem vorderen Teil des Zwischenhirns, im Bindearm. Es liegt unterhalb der eigentlichen Rindenlage, indessen der mit ihm parallel hinziehende Funiculus olfactorio-corticalis (Fig. 2 f. oei) über jener Rindenlage in der Plexiformschichte der Rinde lagert. Das basale Vorderhirnbündel gibt keine Fasern an die Commissura anterior (ca) ab. Diese hat selbständige Bündelsysteme.

In der angegebenen bekannten Lage erreicht das basale Vorderhirnbündel das Chiasma opticum, um, soweit es nicht über und median von demselben liegt (vgl. 7, Fig. 74), auch durch seine Bündelsysteme durchzudringen. Damit ist dann die Bahn bis kaudal von dem Chiasma geraten, wo es nun am Vereinsgebiet (Fig. 2 vg) in viele Einzelbündel auseinander stiebt. vielen Einzelbündelchen gelangen dann in das Vereinsgebiet, dem sog. Hypothalamus, und enden dort, und nur ein stärkeres Bündel macht davon eine Ausnahme. Es liegt dieses an der medianen Seite des Vereinsgebietes (Fig. 3 byhb"), doch nicht immer in gleicher Höhe, manchmal auch ventraler (Fig. 1 bvhb"), und hier auch nicht immer als kompaktes Bündel, sondern erst noch aus mehreren Bündeln bestehend, somit diffus. Hinter dem Vereinsgebiet aber, an der Mündung des Saccus vasculosus (Fig. 4 sv), ist es stets ein kompaktes Bündel (bvhb") und lagert basalwärts und über jener Mündung. In dieser Weise erreicht es die Oculomotoriuswurzel (Fig. 1, 5 om) und liegt ihr basalwärts von der äusseren Seite an (bvhb"), es kann aber sein medianer Teil von

der Oculomotoriuswurzel auch durchzogen sein, was wohl die Regel ist. Kompakt bleibt diese Bahn bis in die Gegend des Trochlearis (Figg. 2, 6 bvhb"), wo sie in basomedianer Lage über dem Ganglion interpedunculare (g. ip) lagert. Mit der Kreuzung hierselbst (Fig. 1, 6 k) hört aber diese Bahn als kompaktes Bündel auf, viele ihrer Fasern werden nach erfolgter Kreuzung zu Fibrae arcuatae, ohne dass man entscheiden könnte, dass alle ihre Fasern auf diese Weise sich verhalten würden. Tatsache ist bloss, dass diese Bahn als geschlossenes Bündel hinter der Trochlearisgegend nicht mehr besteht, was aber durchaus die Möglichkeit nicht ausschliesst, dass diffus gelagerte Fasern von ihr ungekreuzt nicht weiter kaudalwärts zögen.

Ich will nicht unterlassen, darauf hinzuweisen, dass diese Bahn in ihrem kaudalsten Verlauf schon öfter auf Querschnitten gesehen und von Edinger (4) als Tractus bulbo-thalamicus bezeichnet wurde, in der Oculomotoriusgegend aber für ihn als Tractus cerebello-thalamicus gilt (vgl. 4, Fig. 91, 138). Als beweisend aber dafür, dass Edinger sich hierin geirrt, ist doch immerhin die Abbildung des sagittalen Längsschnittes (von mir auf Fig. 1), aus dem deutlich die Natur dieser Bahn, als Vorderhirnbahn, hervorgeht.

Hier möchte ich noch hinzufügen, dass ich diesbezüglich das gleiche Verhalten auch bei Salmo gefunden habe. Auf Fig. 9, 10, 11, 12 habe ich diese Bahn im I. Teil meines Hirnwerkes (7) mit vsb bezeichnet und als die gekreuzte ventrale Assoziationsbahn des Tectum opticum genannt. Dies möchte ich jetzt dahin verbessern, dass letztere Bahn jenem Bündel aus dem Vorderhirn auswärts in diffuser Form anlagert, wie auch bei Scyllium (Fig. 5 vsb).

Für die Reptilien benutzte ich meine alten Präparate von Emys und neue von grossen Exemplaren dieser Schildkröte.

Auf einem mediosagittalen Längsschnitte, der den Thalamus opticus in seiner Mitte traf, aber nach auswärts von dem Habenularganglien hinzieht und welcher Schnitt (Fig. 7) zwischen den im zweiten Teil meines Hirnwerkes (8) abgebildeten zwei Schnitten (Fig. 6 und 7) liegt, sehe ich die Verbindung zwischen Vorderhirn und der Pyrämidenkreuzung (p) so deutlich, dass ich mich wundern muss, wie dieses Bündelsystem (byhb") mir früher entgehen konnte. Es ist ja wohl wahr, dass an kleinen Exemplaren, wie das mein früheres Material war, der Zusammenhang in der

Thalamusgegend lange nicht so deutlich ist, da das ganze Bündel von hier an nach frontalwärts zu weniger tief geschwärzt erscheint auf Markscheidenfärbungen, allein dies entschuldigt doch nicht.

Es durchzieht dieses Bündel mit den übrigen Fasern des basalen Vorderhirnbündels (bvhb) das ganze Striatum und ist dann frontal bis an die Rinde zu verfolgen. Ich verweise diesbezüglich auf einen Sagittalschnitt im zweiten Teil meiner Hirnschicht auf Fig. 2. Es ist dies Bündel hier jenes, das ich auf jener Abbildung mit r bezeichnet habe und welches als Fasciculus corticalis anterior (f. sc. a) in die Stirnrinde hineinzieht. Ich sagte darüber: "Es zieht nämlich aus der Markrinde des Cortex, aus der Grenze zwischen Pallium und der Area parolfactoria. den Sulcus coronalis und die Ganglienzellschicht des Gycus coronalis durchsetzend, ein ansehnliches markhaltiges Bündel ventralwärts und versenkt sich zwischen die Fasern jener Bündel im Striatum" (l. c. S. 331). Es lässt sich dann dieses Bündel nach meinen letzten Befunden (Fig. 7 byhb") bis in die Oblongata verfolgen. Dabei möchte ich bemerken, dass der Fasciculus corticalis anterior nur ein Teil jenes Bündelsystems ist, das Unger (15) als Fasciculus tegmenti anführt, und von dem er einen Teil als markloses Bündel in die Commissura fornicata treten sah.

Innen liegt das Bündel dorsal (Fig. 7 byhb") in dem basalen Vorderhirnbündel (bvhb) und erreicht so das Vereinsgebiet (vg). Hier zwischen dem Thalamus (tho) und dem Vereinsgebiet (vg) gelegen, biegt es hinter dem Vereinsgebiet nach oben und beschreibt im metameren Hirne bis zum Kleinhirn einen nach dorsalwarts zu konvexen Bogen (bvhb"). Dabei ist diese ganze Bahn im Zwischenhirn und dem metameren Hirnboden kein einheitlich kompaktes Bündel, sondern ein auseinandergelegenes Bündelsystem, das eben darum auf sagittalen Längsschnitten gut erkennbar, auf Querschnitten aber mit dem Fasersystem der sogenannten Haubenbahn (gemischtem Längsfasersystem des metameren Hirnes mihi) so verwoben ist, dass ich es davon nicht zu unterscheiden vermag. So zieht denn dieses Bündel, nachdem es die Commissura ansulata passiert, in der Kleinhirngegend abwärts und verdichtet sich hier, um sich hinter dem Kleinhirn ganz basalwärts mit jener Bahn zu vereinigen, die ich als Pyramidenbahn (pyb) bezeichnet hatte. Letztere entspringt, wie ich gezeigt hatte. im Vereinsgebiet speziell im Lobus inferior (l. c. Fig. 9 pvb).

Dass diese Bahn in der Commissura ansulata Kreuzungsfasern abgibt, erhellt wohl daraus, dass sie später weniger faserreich zu sein scheint.

Bezüglich der Säugetiere möchte ich mich vorerst nur an die Maus halten und gleich bemerken, dass ich das meiste. was über das basale Vorderhirnbündel gesagt werden soll, im dritten Teil meiner Hirnarbeit bereits beschrieben und abgebildet habe. Nur einen sagittalen Längsschnitt hatte ich nicht genügend gewürdigt. Es fällt dieser zwischen die beiden Schnitte auf Fig. 8 und 9 (9). Ich hatte dort über das basale Vorderhirnbündel gesagt (l. c. S. 431), dass "sobald es das Ganglion hypothalamicum laterale erreicht, teilen sich lateralwärts seine Bündel auf und umgreifen so von der ganzen lateralen Seite das Ganglion schalenförmig. Hierbei biegen die distalst gelegenen Fasern des Bündels im Ganglion nach aufwärts und vermengen sich vielfach mit den Pyramidenfasern. Nur ein Teil dieser Fasern verbleibt aber in dem Ganglion derselben Seite, der andere durchsetzt bloss das gleichseitige Ganglion, um dann durch die Commissura infundibularis hindurch in das anderseitige Ganglion zu gelangen Gerade dort, wo das Vorderhirnbündel das Ganglion erreicht, zweigt sich etwas medianwärts von der früheren Stelle ein starkes Bündel aus dem ventralsten Teil des Hauptbündels in höchst charakteristischer Weise, unter fast rechtem Winkel, ab, und begibt sich dorsomedianwärts Es entspringt aber dieses Bündel nicht im Grosshirn, sondern seine Fasern sind blosse Kollateraläste solcher Fasern, die aus Ganglienzellen des Ganglion hypothalamicum laterale entspringend, im basalen Vorderhirnbündel grosshirnwärts ziehen (Kölliker)". Bezüglich jener Stelle, wo ich über die Vermengung der Fasern des basalen Vorderhirnbündels mit jenen der Pyramidenbahn im Ganglion hypothalamicum laterale sprach. sagte ich dann in einer Fussnote, dass "diese innige Aneinanderlagerung, besonders bei so gedrängten Zuständen, wie sie sich im Mäusegehirn finden, konnte es freilich leicht veranlassen, dass ein direkter Übergang von Pyramidenfasern und anderen Bahnen in die Grosshirnrinde angenommen wird." Hieran nun möchte ich anknüpfen.

Jener sagittale Schnitt, den ich oben genannt habe, und der zwischen die abgebildeten Schnitte (9, Fig. 8 und 9) des dritten Teiles meines Hirnwerkes fällt (Fig. 8, vorl. Arb.), ist so geführt (Textfig. 1 y, y), dass das basale Vorderhirnbündel in seiner Mitte der Länge nach durchschnitten ist und ist der zweite Schnitt der nach aussen zu dem auf der Fig. 8 des zitierten Werkes abgebildeten folgt. Jenes nach dorsalwärts hinaufziehende Bündel (Fig. 8 byhb') aus der gemeinsamen Bahn (byhb) ist noch da.

Maus. Horizontalschnitt durch das Grosshirn an dessen bodenwärtigem Teil. Die Schnittrichtung zeigt auf Fig. 8 yy. ca = Commissura anterior; g. ip = Ganglion interpedunculare; m = metameres Hirn; c = Commissur der basalen Vorderhirnbahn (bvhb); P = Pons; bvhb" = cerebrale Pyramidenbahn; ga = Gyrus ammonis; st = Striatum; op = Opticus.

Die ganze Bahn tritt in das Ganglion hypothalamicum laterale (ghy') ein, ohne dasselbe, wie weiter auswärts, korbförmig zu umgreifen.

Allein nur in der dorsalen Hälfte dieser Eintrittsstelle lassen sich die Fasern in das Ganglion verfolgen; es sind dies jene Bündel, die, wie wir oben sahen und wie Kölliker uns belehrt hatte, als Zellfortsätze von Ganglienzellen aus dem Ganglion hypothalamicum laterale stirnwärts zu ziehen und nach dorsalwärts zu ihre Kollateralfasern zu einem Bündel (byhb') zusammentreten lassen. Unter dem Ganglion hypothalamicum laterale zieht aber das Bündel (byhb') hinweg, macht dann kaudalwärts vom Ganglion, entsprechend der Krümmung des Hirnbodens, hier gleichfalls eine nach dorsalwärts konvexe Krümmung und gelangt damit aus dem Zwischenhirn in das metamere Hirn. Hier stets bodenwärts und somit peripher gelegen, hat es gleich die Brücke (P) erreicht. Ein guter Teil seiner Fasern versenkt sich in die Brücke, der bodenwärtigste aber, gering an der Zahl, zieht unter der Brücke weiter kaudalwärts zu.

Oberhalb der Knickungsstelle des Hirnbodens vor der Brücke liegt hier über dem beschriebenen Bündel jener Teil der Pyramidenbahn (pyb'), welcher etwas mehr medianwärts in voller Mächtigkeit (9, Fig. 8 pyb') in das Ganglion hypothalamicum laterale einbiegt und wie ich für die Maus, Igel und Chiropteren, dann für die Reptilien gezeigt hatte, in jenem Ganglion endigt oder beginnt. Oberhalb dieser Stelle zieht die gekreuzte laterale Assoziationsbahn der Vierhügel (amb) nach oben zu. Diese Bahn wird gekreuzt durch die sogenannte Haubenbahn (M).

Diese Bahn verliert sich im Vereinsgebiete etwas von oben nach unten zu biegend. Hier in gleicher Biegung nach kaudalwärts zu liegt vor ihr jenes Bündel des basalen Vorderhirnbündels (byhb'), welches als Kollateraläste aus dem Ganglion hypothalamicum laterale durch Kölliker erkannt ward.

Ich habe nun nach dem Befund bei Fischen und Reptilien gedacht, vielleicht hängen hier (x) diese Bahnen zusammen und suchte nach einer solchen Verbindung, allein vergebens. Es splittern sich hier beide Enden der Bündel völlig auf, indem sie vorher schon marklos geworden sind.

Kaudalwärts von der Brücke sieht man die Pyramidenbahn aus nebeneinander verlaufenden Faserbündeln bestehen (pyb), die aber, wie Querschnitte zeigen (siehe 9, Fig. 30, 33—38 pyb) medianst ein dichtes Hauptbündel bilden, was aber für uns das Wichtigste ist, besteht in der Tatsache, dass in der Pyramidenbahn der Säugetiere hauptsächlich zwei Bündelsysteme nebeneinander verlaufen, von denen das eine im

Ganglion hypothalamicum laterale, das andere in der Grosshirnrinde sein vorderes Endgebiet hat.

Wir wollen von den verschiedenen Kaudalendgebieten der Pyramidenbahn, gekreuzten und ungekreuzten Fasern und dem Verhalten in der Brücke einstweilen absehen und nur das Ende in der Grosshirnrinde etwas näher betrachten. Dabei glaube ich mich doch keinem abermaligen Tadel auszusetzen, wenn ich die beiden Hauptbündelsysteme in der Pyramidenbahn mit verschiedenen Namen, je nach ihrem frontalen Endgebiet, bezeichne. Es sind die hypothalamale und die cerebrale Pyramidenbahn.

Auf horizontalen Längsschnitten erkennt man, wie ich dies auf Fig. 27 des dritten Teiles meines Hirnwerkes abgebildet habe, das basale Vorderhirnbündel aus zwei Teilen bestehen, aus einem äusseren und einem inneren, diesem fest anliegenden. Textfig. 1 stellt hier eine vereinfachte Kopie dieser Abbildung dar, wobei das innere Bündel, das nur als cerebrale Pyramidenbahn erkannt wurde, schwarz gezeichnet (byhb") und schematisch in die Brücke (P) verlängert wurde. Was aussen von dieser Bahn vom basalen Vorderhirnbündel liegt, ist indessen jener Teil, der teilweise im gleichseitigen Ganglion hypothalamicum laterale (ghy) endet oder durch die Commissur (c) in das jenseitige Ganglion gerät. Von diesem Bündelteil können wir mit Sicherheit heute aussagen. dass seine Fasern doppelleitend sind, insofern ein Teil im Ganglion hypothalamicum laterale aus Ganglienzellen entsteht und in der Grosshirnrinde oder im Striatum aufsplittert, der andere aber in Grosshirnrinden- und Striatumzellen entsteht und im Ganglion hypothalamicum laterale aufsplittert. Hierauf hatte schon Kölliker hingewiesen (13). Das Striatum zum Teil wenigstens als ein Abkömmling der Grosshirnrinde (Fische, Reptilien, Vögel) aufzufassen, darf aber nicht in starken Gegensatz zur Rinde gestellt werden. Der Bündelteil also kann nur den Namen Tr. cerebrohypothalamicus führen.

Es bezieht die Grosshirnpyramidenbahn den grössten Teil ihrer Fasern bei den Nagern noch aus dem Stirnhirn (Textfigur), allein ein geringerer Teil gerät auch hier, wie Sagittalschnitte zeigen (Fig. 8), aus temporalen und vielleicht auch occipitalen Teilen des Grosshirnmantels in das Bündel. Letztere Fasersysteme erfahren dann eine ungemein grössere Vermehrung mit der zunehmenden Vergrösserung des Grosshirn-

mantels bei Putorius, wie ich dies gezeigt habe (9, besonders Textfig. 18), und erlangen ihre grösste Vermehrung bei dem Menschen. Als ein frontales (Arnoldsches) Bündel und kaudales (Türcksches) Bündel die Tractus cortico-pontini umfassen sie im Hirnschenkel den Tractus cerebro-hypothalamicus. Das Arnoldsche Bündel fasst bei dem Menschen als Weiterdifferenzierung, die Sprachbahn in sich. Doch setzt man noch eine weitere Differenzierung jenes Bündels voraus, den Tr. cortico-spinalis. Dieser nur soll die Brücke passieren.

Wie wir nun in vorliegender Schrift sahen, ist jene einheitliche cerebrale Pyramidenbahn schon bei den Fischen aufgetreten und erhält sich in gleicher Weise bei den Reptilien. Sie hat hier scheinbar eine andere Lage wie bei den Säugetieren, eine höhere, und erreicht die basalwandige Lage erst im kaudaleren Verlauf. Dieses Verhalten ändert sich mit den Säugetieren, indem das cerebrale Bündel der Pyramidenbahn eine basalwärtigere Lage gewinnt, was wohl mit der völligen Differenzierung eines Thalamus und des Vereinsgebietes erzielt wurde. Denn erst jetzt von den Reptilien an kann die Bezeichnung Hypothalamus mit der Differenzierung eines Thalamus aus dem Vereinsgebiet eine Geltung haben, da bei den Fischen mit der völligen Entfaltung eines Lobus opticus kein Thalamus bestand. Dies hatte ich bewiesen (7).1

Mit der starken Vorwärtsschiebung, verursacht durch Konzentration, war wieder die massige Entfaltung des Vorderhirns bedingt, und nun gelangte nicht nur das Ganglion interpedunculare weiter frontalwärts, sondern auch die Brücke entfaltete sich aus früheren Anfängen bei den Fischen. Weit hinten liegt bei diesen jene Kreuzungsstelle (Fig. 1 k), die später der Brücke angehört und bis wohin einstweilen die Pyramidenbahn bei diesen niederen Chordaten verfolgt werden konnte. Es versteht sich wohl von selbst, dass die bis zur Brückenkreuzung reichende Pyramidenbahn der Fische bei de Bündel in sich schliesst.

Es ist die Pyramidenbahn ein gemischtes System von Längsbahnen, insofern sowohl Fasern aus Grosshirnrindenzellen als auch

¹) Die Bezeichnung Hypothalamus und hypothalamal müsste konsequenterweise doch wegfallen, wenn es nicht Unvorsichtigkeit genug noch gäbe, die selbst — es ist wahr — sogar von einem Balkensystem bei Ichthyden gesprochen hätte!

solche aus Zellen des Vereinsgebietes in sie gelangen. Es handelt sich aber jedesmal um von frontal nach kaudal, also um eine zentrifugale Leitung. Es tritt durch die Pyramidenbahn die Grosshirnrinde mit allen drei Kerngebieten (oberes, mittleres, unteres) in Beziehung. Soweit es sich aber um den Beginn im Ganglion hypothalamicum laterale handelt, dürfte es sich vielleicht auch um zentripetale Leitung nach der Grosshirnrinde zu handeln. Denn ich erinnere daran, dass die Grosshirnrinde mit einer grossen Zahl von metameren Hirnbahnen vermittelst des Vereinsgebietes mit der Grosshirnrinde in Beziehung steht. So z. B. mit dem Vorderstrang-Grundbündel, dessen fontales Ende im Vereinsgebiet verbleibt. In diesem Falle handelt es sich dann nur um Zuleitungen zur Grosshirnrinde und zum Striatum.

Ich schliesse somit mit der Bemerkung, dass auch die Pyramidenbahn ihren Vorläufer bei den Fischen hat, die mit der Entfaltung der Grosshirnrinde in entsprechender Weise zunimmt. Eine völlig grundlose und der Entwicklungsidee, die doch genügendlich begründet ist, widersprechende ist jene Annahme, dass eine bei den höheren Säugetieren oder Säugetieren über haupt dominierende Bahn sei ein Neuerwerb ohne Vorläufer sei.

Heidelberg, im April 1913.

Literaturverzeichnis.

- Bechterew, v. W.: Die Leitungsbahnen im Gehirn und Rückenmark. Leipzig 1899.
- Edinger, L.: Das Vorderhirn. Abhandl. d. Senckenbergschen naturf. Ges., Bd. XV.
- 3. Derselbe: Das Zwischenhirn. Ebendort, Bd. XVIII.
- Derselbe: Vorlesungen über den Bau der nervösen Zentralorgane. Bd. II, Leipzig 1908.
- 5. Derselbe: Dieselben. Bd. I, Leipzig 1911.
- Goldstein, K.: Untersuchungen über das Vorderhirn und Zwischenhirn einiger Knochenfische Arch. f. mikr. Anat., Bd. LXVI, 1905.
- 7. Haller, B.: Vom Bau des Wirbeltiergehirns I. Morph. Jahrb., Bd. XXVI.
- 8. Derselbe: Vom Bau des Wirbeltiergehirns II. Morph. Jahrb., Bd. XXVII.
- 9. Derselbe: Vom Bau des Wirbeltiergehirns III. Morph. Jahrb., Bd. XXVIII.
- Derselbe: Die phyletische Entfaltung der Grosshirnrinde, Arch. f. mikr. Anat., Bd. LXXI.
- Derselbe: Beiträge zur Phylogenese des Grosshirns der Säugetiere. Arch. f. mikr. Anat.. Bd. LXIX, 1906.

- Kappers, A.: The Strukture of the Teleostean and Selachian Brain. Journal of Comp. Neurologie and Physiologie, Bd. XVI, 1906.
- Kölliker, A.: Handbuch der Gewebelehre des Menschen. 6. Aufl., Bd. II, Leipzig 1896.
- Mayer, Fr.: Das Zentralnervensystem von Ammocoetes. Anat. Anz., Bd. VIII, 1897.
- Unger, L.: Das Vorderhirn des Geckos. Merkels Anat. Hefte, Bd. 31, 1906.

Erklärung der Abbildungen auf Tafel XXII.

Vh = Vorderhirn.

st = Striatum.

gao = Ganglion areae olfactoriac.

bof = Bulbus olfactorius.

f. oci = Funiculus olfactorius inferior.

tho = Thalamus opticus.

op = Nervus opticus.

lo = Lobus opticus.

vg = Vereinsgebiet.

ghy' = Ganglion hypothalamicum laterale.

1. inf = Lobus inferior.

P = Brücke.

n. ol = Nucleus opticus lateralis.

v. sb = gekreuzte ventrale Assoziationsbahn des Tectum opticum.

kh = Kleinhirn.

ca = Commissura anterior.

cp = Commissura posterior.

c. po = Commissura postoptica.

byhb = basales Vorderhirnbündel.

byhb' = dessen dorsalwärts ziehendes Bündel.

byhb" = cerebrale Pyramidenbahn.

pyb = Pyramidenbahn.

pyb' = deren Ende im Ganglion hypothalamicum laterale.

p = Gegend der Pyramidenkreuzung.

k = Brückenkreuzung.

mb = Mantelbündel.

b = dessen dorsaler Ast.

mb = Vorderhirn-Habenularbündel.

gh = Ganglion habenulae.

M = Haubenbahn

dmb = gekreuzte laterale Assoziationsbahn der Vierhügel (Lobus opticus).

om = Oculomotorius.

tr = Trochlearis.

IV onk = Trochleariskern.

g. ip = Ganglion interpedunculare.

sv = Saccus vasculosus.

- Fig. 1. Scyllium cat. Sagittaler Längsschnitt durch das Zwischen- und Mittelhirn.
- Fig. 2. Scyllium. Auf einem sagitto-lateralen Längsschnitt des ganzen Gehirns sind Vorderhirnbahnen halbschematisch eingetragen.
- Fig. 3. Scyllium. Querschnitt aus der Gegend der Commissura posterior.
- Fig. 4. Scyllium. Ebenso aus der Mündungsgegend des Saccus vasculosus.
- Fig. 5. Scyllium. Ebenso durch die Oculomotoriusgegend.
- Fig. 6. Scyllium. Ebenso durch die Trochlearisgegend.
- Fig. 7. Emys. Sagitto-lateraler Längsschnitt durch das ganze Gehirn.
- Fig. 8. Hausmaus. Ebenso.

Aus dem histologischen und embryologischen Institute der k. und k. Tierärztlichen Hochschule in Wien. (Vorstand: Prof. Dr. v. Schumacher.)

Über die Einwirkung der Röntgenstrahlen auf die Bursa Fabricii und einige andere Organe junger Hühner.

Von Tierarzt Dr. Hans Unzeitig,

Hierzu Tafel XXIII und 2 Textfiguren

Über die Bursa Fabricii sind in neuerer Zeit mehrere Arbeiten erschienen, die sich mit der Lösung von zum Teil noch strittigen histologischen und funktionellen Fragen beschäftigen. Im allgemeinen gilt die Bursa als lymphoides Organ, das mit steigendem Alter der Rückbildung anheimfällt. Infolge ihres Reichtums an Lymphozyten scheint sie funktionell dem übrigen adenoiden Gewebe des Darmes zu entsprechen. Bekanntlich ist die Bursa Fabricii ein Anhangsorgan der Kloake. Das Kloakenepithel erstreckt sich in die Bursa und bildet dort zahlreiche Einbuchtungen, die mit Follikeln im Zusammenhange stehen. Jeder Follikel besteht aus Mark- und Rindensubstanz, welch letztere die Marksubstanz beim Huhn mantelartig umgibt. Die erwähnten Epitheleinbuchtungen hängen mit der Marksubstanz direkt zusammen; ist doch die Marksubstanz aus dem Epithel hervorgegangen. Bezüglich ihres Baues vertritt Schumacher die Ansicht, dass die Lymphozyten der Marksubstanz epithelialen Ursprungs seien, während die der Rindensubstanz bezüglich ihrer Herkunft noch nicht genügend erforscht seien, um einen sicheren Schluss zu gestatten. Das zellige Retikulum der Rindensubstanz geht nach Schumacher aus der Lamina propria hervor. während der Marksubstanz nach Schumacher im Gegensatz zu Retterer ein eigentliches Retikulum fehlt; zwischen den lymphoiden Zellen der Marksubstanz breitet sich nach Wenckebach und Schumacher nur ein Protoplasmanetz aus, welches Gerüst man nach seinem Aussehen wohl als Retikulum und zwar, um seine Abstammung anzudeuten, als "epitheliales Retikulum" bezeichnen könnte.

Bezüglich der Lymphozyten der Rindensubstanz hält Schumacher einerseits ihre Abstammung aus der epithelialen Marksubstanz, andererseits die Herkunft aus den mesodermalen Zellen der Lamina propria für möglich. Eine Zufuhr von aussen scheint ihm unwahrscheinlich; wenigstens beobachtete er keine Bilder an den zwischen Rinden- und Marksubstanz ein förmliches Netzwerk bildenden Gefässen, die auf reichlichere Diapedese schliessen liessen, d. h. auf eine Einwanderung von Lymphozyten auf dem Wege der Blutbahn. Osawa tritt für die mesodermale Abstammung der Bursalymphozyten ein und Jolly bezeichnet die Bursa in analoger Weise wie die Thymus als lympho-epitheliales Organ.

Rudberg nun hat die Frage über die Entstehung der kleinen Rundzellen der Thymus zu lösen versucht, indem er die von Heineke entdeckte Eigenschaft der Röntgenstrahlen, die Lymphozyten des Organismus zu zerstören, auf die Thymus von Kaninchen anwandte. Schon Heineke hatte nach Zerstörung von Milz, Lymphdrüsen etc. auch Restitution des lymphoiden Gewebes eintreten gesehen und Rudberg hoffte deshalb, dass auch die Thymus nach Zerstörung aller Lymphozyten regenerieren werde und die Restitutionsbilder Klarheit in die Frage des Ursprungs der Lymphozyten bringen könnten. Nun wollte es Rudberg auch unter Anwendung streng lokalisierter Bestrahlung nicht gelingen, die Lymphozyten der Thymus völlig zu zerstören, ohne gleichzeitig Inanition der jungen Tiere und sekundäre Involution des Organes zu erzeugen. Er kombinierte deshalb die Bestrahlung mit Jonsons Methode, der durch Hunger Thymusinvolution erzeugte, die nach genügender Nahrungsaufnahme völlig schwand; und tatsächlich erreichte er nach zwölftägigem Fasten und vierstündiger partieller Bestrahlung der Tiere schon nach zwei Tagen in einigen Fällen fast völlige Freiheit der Thymus von Lymphozyten. Nach 2—3 Wochen bevölkerte sich das Organ wieder mit Lymphozyten, nach Rudbergs Ansicht auf dem Wege der Lymphbahn, ohne dass jedoch die Thymus das ursprüngliche Gewicht erreichte.

Auch Jolly bestätigte die Brauchbarkeit der Jonsonschen Methode bei seinen Versuchen über die Bursa Fabricii junger Hühner und Tauben; sowohl Involution wie Regeneration der Bursa trat prompt ein.

Ich bin nun daran gegangen, die Einwirkung der Röntgenstrahlen auf die Bursa Fabricii festzustellen und auf diese Weise

vielleicht zur Klärung der Frage über die Entstehung der Lymphozvten beitragen zu können. Dieser Weg reizte mich um so mehr, als eingehendere Versuche über die Einwirkung der Röntgenstrahlen auf Hühner und Vögel überhaupt in der Literatur nicht aufzufinden waren. Lediglich Kienböck beschreibt nach Bestrahlung einer Taube die allgemeinen Symptome: übelriechende. dünne Exkremente und nach 14 Tagen Auftreten von Effluvium an der Unterseite von Bauch und Flügeln, also bedeutende Tiefenwirkung, die Kienböck auf den grossen Luftgehalt des Vogelkörpers zurückführt. Sonderliche Beeinflussung des Appetits fand er nicht, hingegen vermehrten Durst. Die Sektion ergab ausser den erwähnten Erscheinungen einer Dünndarmreizung leichte Nierenhyperämie. Hida und Kuga hinwiederum haben die Wirkung von Röntgenbestrahlung auf die Hoden von Hähnen untersucht: fünf Hähne wurden in gleich bleibenden Dosen von täglich 10 Minuten durch im Maximum 42 Tage, i. e. 420 Minuten bestrahlt und Degeneration der Samenzellen vorgefunden. Im Vergleich zu gleichfalls bestrahlten Kaninchenhoden wurde relativ starke Radiosensibilität konstatiert, da die Hoden beim Hahne eine ganz wesentlich geschütztere Lage besitzen, ein Befund, der Kienböcks Notiz bestätigt.

Diese Mitteilung, sowie die Erwähnung, dass die Bestrahlung gut vertragen wurde, liessen mich von vornherein auf eine Kombination mit Jonsons Hungermethode verzichten. Da es mir aber ebenso wie R u d b e rg bei dessen Thymusversuchen nicht nur darauf ankam, die Lymphozyten der Bursa zu zerstören, sondern andererseits eine überflüssige Schädigung des Organismus wegen der Gefahr des Auftretens einer sekundären Involution, mithin des Ausbleibens der erhofften Regeneration des Organs zu vermeiden, war ich vorerst gezwungen, den Einfluss einer bestimmten Bestrahlung, sowie den Grad der Einwirkung auf den Organismus der zur Verwendung kommenden Versuchshühner in Vorversuchen festzustellen.

I. Eigene Versuche.

Serie I (Vorversuch).

Rudberg hatte gefunden, dass nach zwei Tagen im grossen und ganzen die Lymphozyten der Thymus zugrunde gegangen waren; deshalb ordnete ich den Vorversuch auf zwei Tage ein. Um jedoch zu sehen, welche Bestrahlung genüge, die erhoffte Wirkung zu erzielen bei möglichster Schonung der Kräfte des Individuums, verwendete ich verschiedene Bestrahlungsdauer unter sonst gleichen Verhältnissen.

Zur Verfügung standen mir 11 sechsmonatliche Hühner einer Brut; jüngere konnte ich mir der frühen Jahreszeit halber nicht verschaffen. Davon verwendete ich vier zum Vorversuch: eines sollte mir als Kontrolle dienen, drei wollte ich je eine halbe, eine und zwei Stunden bestrahlen; nach zwei Tagen dann alle vier töten und sowohl die allgemeinen wie mikroskopischen Veränderungen von Bursa, Milz etc. untersuchen.

Vier sechsmonatliche Hühner.

Tier Nr.	Ge- wicht am Vor- tage gr	Ge- wicht am Tag der Be- strah- lung gr	Art und Dauer der Be- strah- lung 1)	Ge- wicht I Tag nach der Be- strah- lung gr	Ge- wicht 2 Tage nach der Be strah- lung gr	ge-	Bursa- ge- wicht	Leber- ge- wicht	Klinische Be- obach- tungen wäh- rend der 2 Tage	Sektion	
1	1000	990 troll- tier 998 96				1,72	0,98	21,55	em Durste.	nausser dünnem. Indarminhatt bei Tieren und Ver- Mitz und Bursa	
2	1040	1020	1 ₂ h 1012		934	1,18	86,0	17,75	enorme Irieche	ausse ndarm lieren Milz t	
3	1000	1030	1030 1 h 966 9			1.01	0,759	22.1	tit bei er.	malien m Dun hlten 1	
4	1140	1130	2 h	1091	1019	0,621	0,761	20,3	Guter Appetit bei enormem Durste viel dünner, übelriechender Kot	Keine Anomalien ausser dünnem schäumigem Dünndarminhatt bei den bestrahlten Tieren und Ver- kleinerung von Mitz und Bursa	
s	Serie I Grössenumriss de Milz und Bursa					Serie I	1	Grössenumriss der Mılz und Bursa			
	Nr. 1		M) (B		Nr. 3		M	В)	
1	Nr. 2		M	B		Nr. 4		M	B		

¹⁾ Röntgenbestrahlung, Müllerséhe Wasserkühlröhre (hart), Focusdistanz 30 cm, 5 Ampère, 105 Volt, Quecksilberstrahlunterbrecher.

Die Bestrahlung erfolgte in einer durchlöcherten Pappschachtel, in welche die drei gefesselten Tiere mit dem Steiss gegen die Mitte gesetzt wurden, um möglichst gleichen Fokusabstand, d. h. gleiche Intensität der Bestrahlung zu erzielen.

Aus der Tabelle geht hervor, dass auch das Kontrolltier eine Gewichtsabnahme zeigt. Die Hühner, die bisher im Freien lebten, waren den engen Käfig ungewohnt. Ausserdem sind die Wägungen roh, weil keine Rücksicht darauf genommen werden konnte, ob die Tiere vor oder nach der Fütterung, die ad libitum erfolgte, standen. Immerhin ist die Abnahme des Körpergewichtes der bestrahlten Tiere wesentlich grösser (Nr. 4 über 100 Gramm). Als Kontrolltier wurde absichtlich das schwächste ausgesucht, um nicht irregeführt zu werden.

Organgewicht: Gesamtlebendgewicht.

1 0,178 100 0,101 100 2,23 2 0,126 68 0,062 59 1,9	Nr.	Mi	lz o/a	Bu	Leber	
2 0,126 68 0,062 59 1,9		0.170		0.101	100	a an
	-					-,-
	3	0.109	58.6	0.082	77.4	2,39

Die Milz reagiert mit Verkleinerung, die der Bestrahlungsdauer proportional ist und bis zu $36\,^{\circ}\,_{\circ}$ des Kontrollorgans geht. Nicht so gleichmässig reagiert die Bursa, fast unverändert bleibt die Leber. Die nebenstehenden Prozentzahlen beziehen sich auf die entsprechenden Organgewichte der Kontrolltiere, die als $100\,^{\circ}/_{\circ}$ angenommen sind.

Serie II (1. Hauptversuch).

Hierzu wurden die restlichen sieben Hühner verwendet, die während der Dauer des Vorversuches im Freien gehalten wurden und pro Kopf und Tag eine durchschnittliche Zunahme von 6 gr zeigten.

Das Durchschnittsgewicht der Tiere betrug 963 gr, die Extreme 870—1090 gr. Da beim Vorversuch in der Bursa des zwei Stunden bestrahlten Tieres Nr. 4 noch einige Lymphozyten vorgefunden wurden und eine separate Bestrahlung von sechs Hühnern unmöglich war, wurde die Dauer der Bestrahlung auf 2½ Stunden erhöht. Die Möglichkeit ungleichmässiger Bestrahlung musste dabei in den Kauf genommen werden, trotzdem ich sie durch kreisförmige Gruppierung der gefesselten Hühner in der erwähnten Pappschachtel zu verringern suchte. Die Antikathode kam in die Mitte des Kreises, so dass die Fokusdistanz für jedes Tier wenigstens annähernd gleich war.

Nr. 1 wurde als das schwächste Tier zum Kontrolltier bestimmt. Die sechs Versuchstiere wurden allesamt durch 2½ Stunden bestrahlt und nach Massgabe ihres Gewichtes am Versuchstage in bestimmten Zeiträumen getötet, um Involutions- wie eventuelle Regenerationsbilder der Bursa zu erhalten.

Sieben zirka 61/2 Monate alte Hühner.

Pr	Ge- wicht	Art	G	e w	i e h	t d	e r	Tie	re	n a	c h	der	Ве	str	ah	lun	g
Nummer	Tage der Be- strah- lung gr	Dauer der Be- strah- lung	д 1. Так	F 2. Tag	7 3. Tag	a t. Tag	я 5. Так	я 6. Таg	7. Tag	a S. Tag	F 9. Tag	F 10. Tag	F 11. Tag	7 12. Tag	д 13. Так	я 14. Так	F 15. Tag
1	Kont S70	rolltier	870	S90	940	900	930	970	960	+ nu	eh 7	Tag	en				
2	900	mittelweiche Fokusdistanz Die sechs ge- geordnet.	900	+ na	ch 2	0 Stu	nde	n									
3	930		940	880	† na	eh 40	Stu	ndei	1								
4	950	Müllerscho, 5 Ampère nterbrecher, unter dem	970	930	970	† na	eh 70	Stu	ndei	n.							
5	952	o Volt. trahlunt	950	940	940	920	920	⊹ na	ch 5	Tage	en						
6	1050	Bestrahlung röhre, 110 V ceksilberstrah i Höhner radi	1040	1000	970	920	890	930	1000 st. g	† na efüll Trop	ch 7	Tag	en				nach Tagen
7	1090	29/stündige Bestrahlung: Müllersche Wasserkühlecher. 110 Volt. 5 Ampère ca.30 cm, Quecksilberstrahlunterbrecher. fesselten Hühner radiär unter dem	1070	1010	950	900	880	870				950	1000	1020	nac an Unt	kt. S Aft erba	+12 1000 en v

Die Tiere zeigten nach der Bestrahlung grossen Durst (enge und trotz der Atmungslöcher heisse Pappschachtel) sowie guten Appetit, frassen auch in den nächsten Tagen viel; auffällig war der reichliche dünne, stinkende Kot!

Das Gewicht der Tiere, das wohl womöglich zur gleichen Tageszeit bestimmt wurde, zeigt dennoch ziemliche Schwankungen, die zum Teil darauf zurückzuführen sind, dass die Tiere manchmal exzessiv gefüllte Kröpfe hatten. Immerhin ist das Steigen des Kontrolltieres im Gewicht deutlich, bei den bestrahlten hingegen eine merkliche Abnahme bis zum 5.—6. Tage (79%) des Anfangsgewichtes), worauf wieder allmähliches Steigen eintritt. Bei Nr. 6 wurde die Bursa beim Entnehmen lädiert, das Bursagewicht demnach zu gering bestimmt. Bei Nr. 7 hingegen fand sich keine Bursa vor: lediglich zwei Gewebsknoten dorsal von der Kloake, die ich für Reste der Bursa hielt, wurden aufgehoben.

Der Versuch zeigt recht anschaulich die verheerende Wirkung der Röntgenstrahlen; wenn das Zahlenverhältnis auch nicht mathematisch stimmt, so sind die Fehlerquellen jedenfalls: ungleichmässige Bestrahlung, verschiedene individuelle Empfindlichkeit, Abweichungen von dem als Durchschnitt angenommenen Gewicht der Kontrollorgane. Jedenfalls reagiert in diesem Versuche die Bursa viel stärker als die Milz; sie kam in einem Falle fast zum Schwinden, in dem die Milz allerdings auch noch nicht völlige Restitution zeigt. Die Restitution scheint also in späterer Zeit erst völlig zu erfolgen. Das Verhalten der Bursa des Tieres Nr. 7 bestimmte mich, in den nächsten Versuchen jüngere Tiere zu verwenden, denn es ist immerhin denkbar, dass das bei der Tötung doch schon fast 7 Monate alte Tier infolge

Serie II	Grössenumriss von Milz und Bursa	Serie II	Grössenumriss von Milz und Bursa
Nr. 1	M	Xr. 5	M B
Nr. 2	(M) (B)	Nr. 6	M B
Nr. 3	M (B)	Nr. 7	M Bursa mauriindbar, daffir gehaltene Reste eingelegt.
Nr. 4	M B		

	Gewicht der M		Milz	Ger	wicht der	Bursa	Gewicht der Leber			
Nr.	abso-	relatives Organ- gewicht	imVerhält- nis zum Körper- lebend- gewicht	abso- lutes	relatives Organ- gewicht	imVerhält- nis zum Körper- lebend- gewicht	abso- lutes	imVerhält- nis zum Körper- lebend- gewicht		
	gr	n/R	0/0	gr	0 0	0 0	gr	0,0		
1	1.57	100	0,163	1.37	100	0,142	23,87	2,48		
2	0.79	50	0,087	0,338	25,4	0,037	25,12	2,79		
3	0.64	40.7	0,072	0,23	16,7	0,026	19,43	2,2		
4	0,96	61	0,099	0,66	48	0,068	27,0	2,78		
5	0.82	52	0,089	0,57	41,6	0,061	21,4	2,32		
6	0,87	55	0.087	0,38?	27,7?	0,038	32,25	3,225		
7	1,05	66	0,105	5	9		20,2	2,02		

der Neigung zur natürlichen Involution keine Anzeichen zur Regeneration zeigte, zumal es das schwerste von allen Tieren war und die Bursa immerhin schon in der Involution begriffen sein konnte.

Serie III (Vorversuch).

Um eine vielleicht vorhandene Neigung der Bursa zur natürlichen Involution und dadurch stärkere Reaktion auf die Bestrahlung auszuschalten, verschaffte ich mir jüngere Hühner, was in der mittlerweile vorgerückten Jahreszeit möglich war. Ich verschaffte mir in einer Mastanstalt 17 Hühner gleicher Brut im Alter von 6 Wochen, darunter mehrere Hähnchen, was mir deshalb erwünscht war, weil ich gleichzeitig das Verhalten der Hoden prüfen konnte. Vier Hühner bestimmte ich zum Vorversuche — ich hoffte, bei jüngeren Tieren mit geringerer Bestrahlungszeit auszukommen — die restlichen 13 Stück hielt ich in gewöhnlichem Futter; sie sollten bis zum Hauptversuche ca. 2 Monate zählen.

Vier zirka 6 Wochen alte Hühner.

Tier Nr.	Gewicht am Tage nach der Bestrahlung gr		nd Dauer der trahlung	Gewicht nach dem 1. Tage	Klinische Symptome	Gewicht nach dem 2. Tage	Sektion
1	380		trolltier irehm.	380		370	nhalt.
masc.)	420	1 2 h	nl. klein. 110 Volt 5Strahl- anz 35 cm	420	Serie I.	420	Dünndarminhalı
3	430	1 h	L. gewöh hre bei Quecks kusdiste	400	wie bei	400	
4 masc.)	430	2 h	estrahlt m reicher R6 . 4% Amp. nterbr. Fo	390	W	380	schäumiger

Tier Nr.	Gewicht der Milz			Gewicht der Bursa		Gewicht beider Hoden			Gewicht der Leber		
	abs.	Abnahme in	Verhältnis zum Körper- lebendg.	abs.	0/0	Bursa: Kõrper- gewicht	abs.	0 0	Hoden: Körper- gewicht	abs.	relat.
1 masc.	0,71	100	0,191	0,82	100	0,221	0,78 0.4+0.38	100	0,21	12.8	3,46
2	0,74	104	0,176	0,67	81,7	0,159	-	-		14,2	3,38
3	0,52	73	0,13	0,70	85,3	0,175	-	-	_	10,5	2,62
4 masc.	0,26	36,6	0,068	0,56	68	0,147	0,28	36	0,073	11,2	2,94

Die erste Tabelle zeigt, dass das am stärksten bestrahlte Tier in den 2 Tagen auf 90,7 % seines Gewichtes fiel, also weniger an Gewicht verlor Archiv f. mikr. Anat. Bd. 82. Abt. I. 26 als bei Serie I. Die zweite Tabelle zeigt uns, dass Milz und Hoden nach 2 Tagen beinahe gleich reagierten. Interessant ist, dass die Milz des Kontrolltieres absolut wie relativ kleiner ist wie das der Bursa, wie überhaupt sämtliche gewogenen Organe ein grösseres relatives Gewicht zeigen, als bei Serie I, woran die Jugend der Tiere Ursache sein dürfte.

Serie III	Grössenumriss von Milz, Bursa und Hoden	Serie III	Grössenumriss von Milz, Bursa und Hoden
Nr. 1	M B H	Nr. 3	M B
Nr. 2	M B	Nr. 4	M B M

Um mich über die normalen Schwankungen im Gewichte der mich interessierenden Organe zu informieren, verschaffte ich mir möglichst viele von 2 Monate alten Hühnern derselben Provenienz (wohl aber nicht der gleichen Brut).

Bei 28 Bursen weiblicher Tiere war das Durchschnittsgewicht 1,32 gr. Bei 12 Bursen männlicher Tiere war das Durchschnittsgewicht 1,16 gr. Bei 29 Bursen von Hühnern unbekannten Geschlechts war das Durchschnittsgewicht 1,24 gr, somit hatten 69 gewogene Bursen das Durchschnittsgewicht 1,24 Gramm (relativ $0.275\,^{\circ}/_{\circ}$ des Durchschnittskörpergewichtes).

Die Bursa ist somit absolut zumindest gleich, relativ (im Verhältnis zum Körpergewicht) fast doppelt so gross als bei den in Serie I und II zum Versuche gelangten 6-7 monatigen Hühnern. Bei 13 ungefähr gleich schweren und gleich alten Hühnern betrug das Gewicht der Milz im Mittel 1,457 gr mit einer Spannung von 0.75-2.1 gr (relativ $0.28\,^{\circ}$). Bei acht Hähnen die Hodenpaare im Mittel 1,03 gr mit einer Spannung von 0.14-2 gr (relativ $0.23\,^{\circ}$).

Diese ermittelten Durchschnittszahlen sind den Prozentberechnungen bei Serie IV als normaler Durchschnitt zugrundegelegt und gelten als $100\,^\circ$ o.

Serie IV.

Dreizehn achtwöchentliche Hühner.

Die klinischen und pathologisch-anatomischen Beobachtungen weichen von denen der früheren Serien nicht wesentlich ab.

Nr. 11 und 12 zeigen vom 12. Tage Federnausfall am Rücken, besonders stark aber an der Unterseite der Flügel und am Bauche. Das Kontrolltier Nr. 13, das von den beiden Hähnen 11 und 12 sehr gequält wurde, versagte vom 16. Tage an das Futter, war traurig, apathisch und am 20. Tage

moribund; der Präparate halber wurde es getötet und ausser akuter Enteritis mehrere abnorm grosse Steine im Muskelmagen vorgefunden, die die Passage versperrten.

Das Körpergewicht fällt in den meisten Fällen unwesentlich, um am 5.—6. Tage wieder das Anfangsgewicht zu erreichen. Auch die Kontrolltiere nehmen nicht wesentlich zu; Nr. 1 war sehr zart, Nr. 8 hingegen kräftig, während Nr. 13 direkt krank war und auch tatsächlich am 20. Tage moribund geschlachtet werden musste. Da alle Hühner Futter ad libitum erhielten, mag die Ursache vielleicht in der ungewohnten Haltung im engen Käfige liegen. Auch in diesem Falle wurden die schwächsten Tiere zu Kontrolltieren bestimmt, um keine Fehlresultate zu erhalten. Nr. 12 als dasjenige Tier, das 3 Wochen überleben sollte, war ein starker Hahn; ich hoffte durch diese Wahl die Regeneration zu erleichtern.

Tier	M	ilzgewi	cht	Bu	rsagewi	icht	bd. H	odenge	wicht	Lebergew.	
Nr.	absol.	proz.¹) 1,45 g = 100°/a	relat.	absol.	Proz. ¹) 1,24 g = 100 °/ ₀	relat.	absol.	proz. ¹) 1,03 g = 100 ° °	relat.	absol.	relativ
1	0,42	28	0,11	1,33	107	0,35	_		_	12,8	3,36
Kontrol	itier										
2	0,42	28	0,097	0,65	52	0,151	-	-	-	15,3	3,55
3 masc.	0,45	31	0,1	0,35	28	0,077	0,07	7	0,015	14,7	3,26
4	0,44	30	0,119	0,45	36	0,121	-	-		19,9	5,37
ā	0,78	54	0,177	0,7	56	0,159		-	-	15,3	3,47
6 masc.	0,58	40	0,138	0,72	58	0,171	0,12	12	0.028	14,8	3,52
7 masc.	0,65	45	0,166	0,35	28	0,089	0,35	35	0.089	16,75	4.29
8 Kontrol	1,48	102	0,336	0,93	75	0,211	_			16,2	3,68
9	0,42	28	0,131	0,31	25	0,096				12,8	4.00
10	0,65	45	0,185	0,58	46	0,166	water to	-		12,4	3,54
11 masc.	0,41	28	0,108	0,32	25,8	0,084	0,06	6	0,0157	12,4	3,26
12 masc.	0,71	49	0,133	1.82	146	0,343	0,23	23	0,043	13,4	2,52
13 Kontrel	0,28	19	0,093	0,23	18,5	0,077			- Calcare	11,6	3,86

Interessant ist bei den Kontrolltieren 1 und 8 das Verhalten von Bursa und Milz, das direkt reziprok zu sein scheint. Die Bursen, Milzen und Hoden bestrahlter Tiere sind stark im Gewicht verringert, die Bursenwandungen schlaff. Bei Nr. 13 (Kontrolltier) ist infolge Inanition sekundäre Involution eingetreten.

¹) Die Gewichtsprozente beziehen sich auf die ermittelten Durchschnittsgewichte von Milz, Bursa und Hoden.

Kontroll- tier	(masc.)	(mase.)	10	9	8 Kontrolltier	(masc.)	(mase.)	51	4	(mase.)	10	1 Kontrolltier	Nr.	Tier
	Mit . strah mitte Que	Ausna lung elweic ecksill	in a	der zwei Röntg rahlu	Kont Part enrö ntert	rollti ien (hre, or, 21.	ere 2 à 3 l 4 ^{1/2} A Fokt	weis Hühn Impè usdis	tündi er). re, 11 tanz	Klei O Vo 30 cm	e- ne lt,		lung	Art der Bestrah-
370	500	430	400	360	400	430	410	4110	360	450	430	380	5	
350	450	100	380	330	400	400	100	420	350	120	430	380	ic	
350	470	390	400	330	390	410	400	440	350	450	130	380	90	
ŝ	3	380	400	340	390	370	400	440	360	450	getöt	getö	+	
360	180	400	390	340	100	370	100		370 getötet vier Tage nach der Bestrahlung	450 getötet drei Tage nach	430 getötet zwei Tage nach der Bestrahlung	getötet am Anfange	91	
350	500	400	t00	350	400	370	120	440 440 getötet fünf Tage nach	getöt	et dr	ei Ta	m An	6.	
360	500	440	33	350	420	380		getöt	et vi	ei Ta	ige n	fange	:1	
350	500	400	390	340	440	390	getör	et fü	er Ta	ge na	ach d	des	œ	
350	500	380	370	320	440 getötet inmitten des Versuches	390 getötet sieben Tage nach der Bestrahlung	420 getötet sechs	nf Ta	иде п	ch de	er Be	Vers	9	Ge
340	500	370	350	getöt	et in	et sie	hs T	ge n	ach d	er Be	stral	Versuches	10.	wiel
350	500	38	350 getötet neun Tage nach der Bestrahlung	320 getötet acht Tage nach der Bestrahlung	mitte	ben 7	Tage nach der Bestrahlung		ler B	der Bestrahlung	lung		F	Gewicht am
360	195	370	et ne	ht T	n des	age	ach d	der Bestrahlung	stral	lung			12	m T
360	510	370	un T	age n	Ver	nach	ler Bo	estral	dung				13.	Tage
360	520	380	uge n	ach d	such	ler B	stral	nlung					14.	
33	530	380	ach d	er Be	SE .	estra	nlung						15.	
390	530	get. I	er Be	strah		dung							16,	
390	530	380 get. 14 Tage nach d.	strah	lung									17.	
3630	520	re na	lung										×	
320	530	ch d.											19.	
300	520	Bestr.											20.	
-	530	Geti	itet er B	21 T	age ahlur	nach	1						21	

Serie IV	Grössenumriss von Milz, Bursa, Hoden	Serie IV	Grössenumriss von Milz, Bursa, Hoden
Nr. 1	M (B)	Nr. 8	M B
Nr. 2	(M) (B)	Nr. 9	(M) (B)
Nr. 3	M B θ	Nr. 10	M B
Nr. 4	M B		
Nr. 5	$\binom{M}{B}$	Nr. 11	(M) (B) (H)
Nr. 6	M B θ	Nr. 12	(M) (B) (H)
Nr. 7	(M) (B) (M)	Nr. 13	m B

II. Mikroskopische Untersuchung.

Herstellung der mikroskopischen Präparate.

Die Organe, auf deren Untersuchung es mir ankam, wurden unmittelbar nach der Tötung der Versuchshühner gewogen und in kleineren Stücken in Zenkerscher Flüssigkeit fixiert. Die Härtung erfolgte in steigendem Alkohol, die vollständige Entwässerung in absolutem Alkohol. Die Einbettung erfolgte zumeist in Zelloidin, nur bei den Vorversuchen wurde zur Schnelldiagnose ausserdem Paraffineinbettung angewandt. Gefärbt wurde mit Delafieldschem Hämatoxylin unter Nachfärbung von Eosin; ausserdem mit Mallorys Bindegewebsfärbung. Ich fand letztere bei J. Bartel und R. Stein (Arch. f. Anat. und Phys. 1905, Anat. Abt. H. 2/3, S. 145) folgendermassen angegeben: die Schnitte werden in ½100% wässeriger Säurefuchsinlösung durch 2—3 Minuten vorgefärbt und hierauf mit Wasser abgespült; dann durch 5—7 Minuten der Einwirkung einer 10% wässerigen Phosphormolybdänsäurelösung ausgesetzt und nach abermaligem gründlichen Abspülen mit Wasser einem Farbgemisch durch 20 Minuten ausgesetzt, dessen Zusammensetzung Bartel und Stein folgendermassen angeben:

Anilinblau 0,5, Orange G. 0,2, Oxalsäure 2,0 und Aqua dest. 200,0. Bei der Angabe bezüglich des Orange scheint ein Druckfehler unterlaufen zu sein, denn mir gelang die Färbung erst dann, wenn ich Orange auf 2,0 g. verstärkte. Nach Entwässerung der Schnitte in absolutem Alkohol und Differenzierung mit einem ää-Gemisch Anilinöl-Xylol erfolgte der Einschluss. Von anderen Färbungsmethoden verwendete ich in etlichen Fällen noch die Heiden ha in sche Eisenhämatoxylinfärbung.

A. Befunde an den Präparaten der Bursa Fabricii.

Serie I.

Nr. 1 (Kontrolltier) zeigt das von Schumacher ausführlich beschriebene Bild der normalen Hühnerbursa (Fig. I): der ziemlich stark entwickelten Muscularis folgt nach innen ein Bindegewebsmantel, von dem Septa in das Innere des Organs ausstrahlen, die sich verästeln und so ein Stützgerüst bilden, in dem die Follikel aufgenommen sind. Die feinen bindegewebigen Septa zwischen den einzelnen Follikeln sind sehr schmal. Die Follikel sind gross und es finden sich deshalb im Schnitt nur wenige Stellen, wo sich das Epithel zur Papille des Follikels einsenkt; das Epithel erscheint dadurch geradlinig, von wenig Einbuchtungen unterbrochen. Trifft man im Serienschnitt auf einen zentral getroffenen Follikel. der sich dadurch charakterisiert, dass die dem Follikel aufsitzende Epithelkappe zugleich mit dem Follikel halbiert ist, so findet man diesen infolge der Anlagerung benachbarter Follikel oft polyedrisch abgeplattet. Schon bei Hämatoxylin-Eosinfärbung und schwacher Vergrösserung bemerkt man eine Scheidung in die bedeutend zellreichere und daher intensiver gefärbte Rindensubstanz, die in ziemlich gleicher Breite die zentral gelegene, hellere Marksubstanz umgibt. Die Rindensubstanz ist dicht gefüllt mit Lymphozyten,

die das zellige Retikulum ausfüllen; sie grenzt an einen einschichtigen Epithelsaum, der der Marksubstanz angehört. Kapillaren findet man sowohl in der Rindensubstanz als an ihren Grenzen nach aussen gegen das Bindegewebe zu und besonders gegen den Epithelsaum hin, wo sie nach Schumacher ein förmliches Netzwerk bilden. Die Marksubstanz besteht deutlich aus zweierlei Zellformen: Epithelzellen mit hellen Kernen, deren Protoplasmafortsätze ein im normalen Follikel allerdings fast unsichtbares, weil durch die eingelagerten Zellen verdecktes Gerüst bilden und in diesem eingeschlossen viele Lymphozyten. Kapillaren scheinen in der Marksubstanz nur vereinzelt vorzukommen. Das Epithel der Bursa erscheint hoch und zvlindrisch. An zahlreichen Stellen findet man Durchwanderungsbilder von Lymphozyten durch das Epithel; diese sind teils noch deutlich konturiert oder bereits zerfallen und ins Lumen ausgetreten. An den Stellen, wo sie austraten, ist das Epithel aufgelockert. Im Epithel findet man vereinzelt Vakuolen, die mit einer homogenen Masse gefüllt sind und eine sekretorische Tätigkeit des Epithels andeuten (siehe Fig. I).

Nr. 2 († 2 stündige Bestrahlung) zeigt merkliche Verkleinerung der Follikel, wobei besonders die Rindensubstanz stellenweise bedeutend verschmälert erscheint. Die Marksubstanz erscheint etwas aufgelockert, so dass die Retikulumzellen deutlich hervortreten. Lymphozyten sind in Mark- und Rindensubstanz noch reichlich vorhanden. Die Kapillaren der letzteren sind teilweise stark gefüllt :Hyperämie), die Durchwanderung von Lymphozyten durch das Epithel erscheint vermehrt.

Nr. 3 (einstündige Bestrahlung) zeigt kein wesentlich anderes Aussehen als Nr. 2, nur fällt die Füllung der Kapillaren noch mehr ins Auge.

Nr. 4 (zweistündige Bestrahlung) hingegen zeigt ein ganz wesentlich geändertes Bild. Die Follikel sind sehr stark verkleinert, spärlich, die Hauptmasse des Organs bildet ein lockeres Bindegewebe. Die Rindensubstanz der Follikel ist stellenweise geschwunden, stellenweise in Resten erhalten, darin vereinzelt noch Lymphozyten vorkommen. Die Marksubstanz ist aufgelockert; Lymphozyten sind wenige mehr vorhanden, das epitheliale Stützgerüst tritt infolgedessen deutlich hervor und färbt sich bei Malloryfärbung blau. Die Ausläufer der Retikulumzellen stehen sowohl untereinander wie mit dem der Marksubstanz peripher gelegenen Epithelsaum deutlich in vielästiger Verbindung. Infolge der Verkleinerung der Bursa rücken die Follikel aneinander und das Epithel, das mit jedem einzelnen Follikel zusammenhängt, zeigt deshalb viele Einbuchtungen. Durchwanderung des Epithels durch Lymphozyten sieht man vielfach, das subepitheliale Bindegewebe ist mit eosinophilen Leukozyten infiltriert (siehe Fig. II).

Die mikroskopischen Messungen der Follikel ergaben folgendes:

Nr.	Maximale Höhe des Follikels	Maximale Breite des Follikels	Breite der Rindensub- stanz im Durchschnitt	Breite der Marksub- stanz im Durchschnitt	Epithelhöhe max. bis
	u	"	и	и	и
1	600	530	60	400	50
2	450	230	50	150	60
3	600	200	50	200	60
4	350	180	Nur in Resten verschiedener Breite (unter- brochen) vor- handen	150	40

Zur Messung wurden die im Serienschnitt grössten Follikel gewählt, deren Epithelkappe mitgetroffen war.

Serie I zeigt also, dass 2 stündige Röntgenbestrahlung innerhalb zweier Tage ganz verheerende Wirkung auf die Bursa Fabricii ausübt. In erster Linie leidet das lymphoide Gewebe: denn die fast nur aus Lymphozyten bestehende Rindensubstanz schwindet fast völlig. Aber auch der epitheliale Anteil der Bursafollikel wird in Mitleidenschaft gezogen; die in dem epithelialen Retikulum der Marksubstanz suspendierten Lymphozyten gehen zugrunde, so dass das epitheliale Gerüst deutlich sichtbar wird. Es reagiert auf Mallorysche Färbung genau so wie das Bindegewebe der Die gleiche Reaktion zeigt der Epithelsaum, der mit ienem Gerüst vielfach zusammenhängt. Die reichliche Zelldurchwanderung im Epithel legt die Annahme nahe, dass die zerstörten Zelltrümmer durch die Epithelkappe eliminiert werden. Rudbergs Annahme einer intrazellulären Digestion der Zelltrümmer erscheint mir nach den gesehenen Bildern unwahrscheinlich; jedenfalls wird ein Grossteil der Zelltrümmer durch das Epithel ausgestossen.

Serie II.

Nr. 1 (Kontrolltier) zeigt das vorhin geschilderte Bild einer normalen Bursa mit scharfer Trennung von Mark- und Rindensubstanz. Etliche Stellen zeigen Vakuolen im Epithel: Bläschen, bei Hämatoxylin-Eosinfärbung gleichmässig blau gefärbt. Sie liegen teils am basalen Rande des Epithels, teils liegen sie in verschiedener Höhe im Epithel oder öffnen sich gegen das Lumen der Bursa. Auch die von Jolly beobachteten "Epithelzysten zweiter Ordnung", die er als Involutionszeichen erklärt, beobachtete ich vereinzelt in Präparaten

normaler Bursen: es sind dies Sekretionskonglomerate, den Prostatasteinen vergleichbar, die sich in dem Epithelschlauch, der vom Lumen zum Follikel führt, ansammeln. Sie zeigen häufig zwiebelschalenähnliche konzentrische Anordnung und färben sich bei Hämatoxylin-Eosinfärbung ungleichmässig blau. Der Epithelschlauch, in dem sie liegen, zeigt ein einfaches, zylindrisches Epithel.

Nr. 2. Als ersten Eindruck erhält man die starke Verkleinerung der Follikel und infolgedessen ein besonders bei Mallory färbung deutlich wahrnehmbares Hervortreten des interfollikulären Bindegewebes. Der Follikelschwund ist vor allem auf Kosten der Rindensubstanz erfolgt; diese ist bedeutend verschmälert und umgibt die Marksubstanz wie ein dünner Reif. Spärliche Lymphozyten sind in Rinden- und Marksubstanz vorhanden, welch letztere aufgelockert erscheint. Im subepithelialen Bindegewebe liegen eosinophile Leukozyten. Das Epithel zeigt zahlreiche Vakuolen und ist infolge der Follikelverkleinerung stark gebuchtet, da viel mehr Ausführungsgänge resp. Einsenkungen des Epithels zur Papille in einen Schnitt fallen.

Nr. 3 zeigt schwere Degeneration. Die Bursa zeigt einen bedeutend verringerten Durchmesser; viele Follikel sind geschwunden und nur die resistenteren Epithelschläuche zurückgeblieben. Das Bindegewebe tritt in den Vordergrund, scheint jedoch weniger neugebildet als vielmehr durch das Veröden der Follikel enger aneinandergerückt und deshalb kompakter aussehend.

Die noch erhaltenen Follikel charakterisieren sich durch fast völligen Schwund der Rindensubstanz. Der epitheliale Saum grenzt oft direkt an das Bindegewebe: Lymphozyten sind in den Resten der Rindensubstanz nicht vorhanden. Diese besteht vielmehr nur aus den Zellen ihres Retikulums, dessen Fasern sich infolge der Zerstörung der eingelagerten Zellen eng aneinanderlegen und so einem straffen Bindegewebe ähneln, das als praller Gürtel die Marksubstanz umgibt. Aber auch diese hat schwer gelitten; im Gegensatz zur Rindensubstanz erscheint sie aufgelockert, maschig; die eingelagert gewesenen Zellen sind verschwunden. Deshalb tritt das epitheliale Retikulum deutlich hervor, dessen Zusammenhang mit dem einschichtigen Epithelsaum namentlich bei Mallory-Färbung unverkennbar ist. Sogenannte primäre Cysten, wie sie Jolly bei degenerierenden Follikeln im Zentrum der Marksubstanz beschreibt, sah ich nie; wohl aber Zellücken, die dadurch entstanden sind, dass Zellen bereits ausgestossen wurden oder zugrunde gegangen sind. Im Epithel fällt vorerst die vermehrte Buchtenbildung auf. Auch Vakuolenbildung ist häufig zu sehen, ja die Sekretkonglomerate, die ich auch in Serienschnitten normaler Bursen vereinzelt sah, sind hier direkt massenhaft vorhanden. Sie sind entweder homogen und zeigen dann zwiebelschalenähnliche Anordnung, oder aber sie sind aus Zelltrümmern gebildet (siehe Fig. VI). Das Epithel wird vielfach von Zellen durchwandert; an manchen Stellen erscheint das Epithel direkt verletzt, es klafft und durch die rupturierte Stelle ergiessen sich meist schon degenerierte Zellen ins Lumen. Eosinophile Leukozyten sah ich nicht mehr.

Nr. 4 zeigt bereits beginnende Regeneration. Denn wenngleich noch die Follikel wesentlich verkleinert sind und das Bindegewebe vermehrt erscheint, so ist doch das Verhalten der Rindensubstanz wesentlich anders als bei Nr. 3. Ihre Schrumpfung und damit das gürtelartige Aussehen ist fast geschwunden; sie hat eine wesentliche Zelleneinlagerung erfahren, so dass sie prall, kernreich, intensiv gefärbt, sich wesentlich von der allerdings noch weitmaschigen, aufgelockerten Marksubstanz abhebt. Der Epithelsaum ist deutlich ausgeprägt und neben ihm, wie überhaupt in der Rindensubstanz, findet man namentlich bei Mallory-Färbung massenhaft Kapillaren, die auf den Hauptursprung der neueingelagerten Lymphozyten hindeuten.

Auch in das noch deutlich in seinem Zusammenhang mit dem Epithelsaum erkennbare epitheliale Retikulum der Marksubstanz haben sich zahlreiche Lymphozyten eingelagert, ohne dass jedoch Kapillaren nachweisbar wären. Ganz auffallend ist das Verhalten des Bursaepithels. Vor allem fällt der Reichtum an Vakuolen auf, die in verschiedener Tiefe das Epithel durchsetzen, auch an der Oberfläche mit dem Lumen kommunizieren und ihren Inhalt in dasselbe ergiessen. Hingegen ist die Ausstossung von Zellen durch das Epithel selbst auffallend vermindert, dagegen hat das Epithel an Mächtigkeit ohne Zweifel zugenommen, zeigt mehrere Kernreihen und proliferiert in das subepitheliale Gewebe reichlich Zellen, die sich zu Nestern zusammenballen und die vom Epithel ausgehenden Knospen, die Epithelkappen, rings umgeben. Es scheint dies dafür zu sprechen, dass neben unvollständig zerstörten Follikeln, die sich allmählich wieder bevölkern, auch völlig zerstört gewesene vom Epithel aus sich neu bilden. Eosinophile Leukozyten kommen vereinzelt vor.

Nr. 5 lässt ebenfalls beginnende Regeneration erkennen; die Befunde decken sich mit den bei Nr. 4 erwähnten, doch fehlen Vakuolen im Epithel.

Nr. 6 zeigt ein weit früheres Stadium. Nur an einzelnen Stellen zeigt die Rindensubstanz Anlauf zur Regeneration, im übrigen ist sie schmal und von bindegewebigem Charakter. Interessant ist die Blutung um einen Follikel.

Bei Nr. 7 war die Bursa nur in zwei Resten vertreten, die ich nach ihrer Lage dorsal der Kloake zwischen ihr und der Wirbelsäule, der Serosa des Darmes anliegend für Bursareste hielt. Die histologische Untersuchung bestätigte diese Vermutung. Der Rest a zeigt in direkt massenhaft neugebildetem Bindegewebe, das mit auffallend reichlichen Gefässen, namentlich mit starkwandigen Arterien durchsetzt ist, die Reste des epithelialen Anteils der Bursa; das Epithel zeigt vereinzelt kleine Vakuolen und durchwandernde Lymphozyten. Eingesprengt in das Narbengewebe findet man ganz vereinzelt total degenerierte Follikel, stellenweise wiederum solche, die um Marksubstanz und Epithelsaum noch eine verschieden starke Rindensubstanz aufweisen, während wieder andere nur mehr aus Marksubstanz bestehen, die mit ihrem epithelialen Saum direkt an das umgebende Bindegewebe angrenzt.

Rest b enthält einige wenige Follikel, deren Rindensubstanz erhalten ist, was wohl auf teilweise eingetretene lokale Regeneration schliessen lässt, zumal sowohl Lymphozyten wie Kapillaren auftreten. Andere Follikel wiederum sind in vollem Zerfall begriffen; hier wächst Bindegewebe in die gesprengte Marksubstanz und beraubt den Follikel seiner normalen Struktur. Massenhafte Neubildung von Gefässen und straffen Bindegewebes beherrscht das Bild; vom Bursaepithel sind hier nur wenige Reste vorhanden. Eosinophile Leukozyten werden herdweise in Mengen beobachtet.

Das Organ von Nr. 7 zeigt also, trotzdem in einzelnen, noch erhaltenen Follikeln der Anlauf zu lokaler Regeneration unverkennbar ist, das Bild totaler, höchstgradiger Atrophie des lymphoiden Anteils der Bursa (siehe Fig. III).

Nr.	Maximale Höhe des Follikels	Maximale Breite des Follikels	Durchschnitt- liche Breite der Rinden- substanz	Durchschnitt- liche Breite der Marksub- stanz	Epithelhöhe
1	700	530	90	300	70
Kontr	olltier				
2	370	170	30	100	40
3	340	200	30	160	50
4	300	200	40	150	80
ā	400	250	30	170	50
6	480	300	30	200	40
7	300	180	30 (wo erhalten)	100	40

Aus Serie II folgt demnach, dass durch zweistündige Röntgenbestrahlung die Zerstörung der Bursalymphozyten möglich ist. Sie ist nach 2-3 Tagen beendet. Am meisten leidet dabei die Rindensubstanz, die direkt zum Schwinden gebracht werden kann. Aber auch die Marksubstanz leidet; sie reagiert später, erholt sich aber auch langsamer als die Rindensubstanz. Am widerstandsfähigsten erscheint das Epithel, das an der Regeneration beteiligt zu sein scheint (Nr. 4). Lokale Regeneration trat ein (Nr. 4, 5, 6 und teilweise Nr. 7), doch war die Bestrahlung augenscheinlich zu intensiv, um totale Regeneration zuzulassen; denn trotz Anlaufes zur Regeneration atrophierte die Bursa von Nr. 7 binnen 14 Tagen vollständig. Für die Regeneration, respektive Wiederbelebung des Follikels mit Lymphozyten scheinen die in der Rindensubstanz hervortretenden, stark gefüllten und wahrscheinlich vermehrten Kapillaren von Bedeutung zu sein, die für eine Einwanderung der Lymphozyten aus der Blutbahn sprechen.

Serie III

war wieder als Vorversuch gedacht, in dem bei den hierbei verwendeten viel jüngeren Versuchshühnern festgestellt werden sollte, ob nicht schonendere Bestrahlung zum Ziel führen würde. Denn in Serie II war sie zu heftig erfolgt und mein Streben ging dahin, wenigstens in Serie IV völlige Regeneration der Bursa zu erreichen.

Das Kontrolltier Nr. 1 zeigte eine sehr schön entwickelte Bursa normaler Beschaffenheit. Bei Nr. 2 und 3, die eine halbe, respektive eine Stunde bestrahlt waren, war der Effekt zu gering. Nr. 4 hingegen, das zwei Stunden bestrahlt wurde, zeigte nach zwei Tagen wesentliche Verkleinerung der Follikel mit deutlichem Vortreten des Bindegewebes; die Rindensubstanz der Follikel war teilweise zerstört, indem der epitheliale Saum direkt an das umliegende Bindegewebe grenzte. Auch in den erhaltenen Resten der Rindensubstanz waren die Lymphozyten grösstenteils zugrunde gegangen, während die Marksubstanz keine wesentlichen Veränderungen zeigte. Das Epithel erschien vielfach gebuchtet, häufig mit Vakuolen durchsetzt und zeigte massenhaft Durchwanderung von Lymphozyten. Eosinophile Leukozyten waren vereinzelt nachweisbar.

Diese Intensität der Bestrahlung erschien mir für den folgenden Versuch geeignet.

Nr.	Maximale Follikelhöhe	Maximale Follikelbreite	Durchschnitt- liche Breite der Rinden- substanz	Durchschnitt- liche Breite der Mark- substanz µ	Epithelhöhe
1 Kontro	650	360	50	250	60
4	450	280	30 (stellenweise Durchm.)	220	80

Serie IV.

Nr. 1 bietet das Bild einer normalen Bursa mit prallen Follikeln und spärlichem interfollikulären Bindegewebe. Mallory-Färbung zeigte auch hier deutliche Blaufärbung und Konnex des epithelialen Retikulums der Marksubstanz mit dem Epithelsaum derselben. Das Bursaepithel besitzt eine einfache Kernreihe, ist geradlinig und zeigt Durchwanderungsbilder.

Nr. 2 zeigt starke Verkleinerung der Follikel, Vermehrung resp. Hervortreten des interfollikulären Bindegewebes, Atrophie der Lymphozyten enthaltenden Rindensubstanz und lockere Struktur der Marksubstanz. Letztere ist bedeutend zellenärmer und ist von der Rindensubstanz nicht gleichmässig umgeben, sondern von ihr in wechselnder Mächtigkeit durchsetzt, so dass sie am Durchschnitt gleichsam aus mehreren Nestern besteht.

Nr. 3 ist hochgradig atrophiert, das Epithel vielfach gebuchtet und von vereinzelten Vakuolen durchsetzt.

Nr. 4 zeigt beginnende Regeneration.

Desgleichen Nr. 5, das eosinophile Leukozyten im subepithelialen Bindegewebe enthält.

Nr. 6 zeigt ebenfalls Ansätze zur Regeneration; es finden sich eosinophile Leukozyten sowie zahlreiche Kapillaren in der Rindensubstanz vor. Nr. 7 zeigt noch Degeneration: die Follikel sind klein; die Rindensubstanz schmal, gürtelförmig, wenig Lymphozyten enthaltend, zumeist aus Retikulumzellen bestehend; die Marksubstanz ist aufgelockert, ihr epitheliales Retikulum deutlich sichtbar, die darin eingelagert gewesenen Zellen verschwunden. Eosinophile Leukozyten wurden beobachtet.

Nr. 8 (Kontrolltier) zeigt normalen Bau. Doch ist die Rindensubstanz ebenfalls an einem und demselben Follikel von stark wechselnder Breite, eine Eigenschaft, die vielleicht mit der Jugend der Versuchstiere im Zusammenhange stehen dürfte.

Nr. 9, 10 und 11 stehen im Zeichen deutlicher Regeneration. Das Bindegewebe ist spärlich, die Follikel sind wohl klein, aber dicht mit Lymphozyten gefüllt. Das Epithel ist noch vielfach gebuchtet und wird häufig von Zellen durchwandert. Nr. 10 zeigt vereinzelt Vakuolen im Epithel; Nr. 10 und 11 weisen eosinophile Leukozyten auf.

Nr. 12 zeigt eine 21 Tage nach zweistündiger Bestrahlung gewonnene, fast völlig regenerierte Bursa (siehe Fig. IV). Die Follikel sind zum Grossteil fast von normaler Grösse, prall mit Lymphozyten gefüllt. zeigen aber die schon bei Nr. 8 erwähnte unregelmässige Breite der Rindensubstanz. An der Grenze zwischen dieser und der Marksubstanz verlaufen. den epithelialen Saum aussen begleitend, zahlreiche Kapillaren. Das interfollikuläre Bindegewebe scheint noch vermehrt; in ihm liegen neben Follikeln von fast normalem Charakter wiederum solche, die noch in Regeneration begriffen sind, sowie Haufen von Lymphozyten, die einen regelmässigen Bau noch nicht erkennen lassen. Diese Lymphozytenanhäufungen findet man stets im Zusammenhang mit dem Epithel, das an diesen Stellen eineausserordentliche Zellvermehrung zeigt. Diese Zellen dringen knospenförmig gegen das subepitheliale Bindegewebe vor und bilden derart einen kugelförmigen Komplex, um den die bei Mallory-Färbung blaugefärbte Basalmembran des Epithels sich herumschlägt; nach aussen liegen dann je nach dem Stadium mehr oder minder zahlreiche Lymphozyten an (siehe Fig. VII). Bedenkt man, dass bei der normalen Entwicklung der Bursa die Follikel auf analoge Weise entstehen, indem kugelige Komplexe von Epithelzellen, die sogenannten Follikelkeime, gegen die Lamina propria wuchern; dass aus diesen Follikelkeimen, die von der Basalmembran des Epithels und den im Gewebe der Lamina propria reichlich vorhandenen Blutgefässen umgeben werden, die Marksubstanz entsteht, um welche sich beim Huhn mantelartig Lymphozyten ansammeln, die in ihrer Gesamtheit die Rindensubstanz bilden, so muss angenommen werden, dass auch hier ein analoger Vorgang eintritt. Gewiss sind nicht alle Follikel zugrunde gegangen; sie sind oft nur verödet und füllen sich verhältnismässig schnell mit Lymphozyten, deren Herkunft bezüglich der Rindensubstanz aus den im Regenerationsstadium stark gefüllten Kapillaren, die entlang des Epithelsaumes ziehen, möglich, ja wahrscheinlich ist. Dass die Lymphozyten der Marksubstanz ebenfalls aus diesen Kapillaren stammen, erscheint unwahrscheinlich, da in allen Fällen der Epithelsaum unverletzt erscheint und eine Durchsetzung mit Lymphozyten nicht erkennen lässt. Ausserdem müssen aber viele Follikel zugrunde gegangen sein: dafür sprechen die zahlreichen isolierten Epithelschläuche, die mit keinerlei ausgebildeten Follikeln in Verbindung stehen. Dafür sprechen auch in erster Linie die beschriebenen Epithelknospen, die noch 21 Tage nach der Bestrahlung ziemlich zahlreich auftreten, als Follikelkeime aufzufassen sind und sich tatsächlich mit Lymphozyten umgeben, die sich dem Epithelsaum aussen anlagern; schon der Umstand, dass neben nackten Epithelknospen auch solche vorkommen, die in verschiedener Stärke und Mächtigkeit von Lymphozyten umlagert werden, so dass an einem Präparat gleichsam alle Phasen dieser Entwicklung zu sehen sind, spricht dafür, dass hier Follikel neugebildet werden. Zieht man die Jugend der Tiere, die lange Zeit nach der Bestrahlung, das normale Gewicht der Bursa und den histologischen Gesamteindruck in Betracht, so ist der Einwurf, es könnte sich um Degenerationsbilder handeln, von vornherein widerlegt, abgesehen davon, dass die Degeneration in ganz anderer Weise verläuft.

Hingegen lässt sich auch hier nicht mit Gewissheit sagen, woher die Lymphozyten der Mark- und Rindensubstanz stammen. Die direkt massenhaft auftretenden und stark gefüllten Kapillaren in der Rindensubstanz regenerierender Follikel lassen zwar bezüglich der Lymphozyten der Rindensubstanz eine Einwanderung auf dem Wege der Blutbahn vermuten, aber nicht beweisen.

Das Epithel ist überall dort, wo die Follikel ihre ursprüngliche Grösse ungefähr erreicht haben, geradlinig, einschichtig und einreihig, zeigt also hier normales Verhalten. Hingegen ist es in den Buchten, wo die Neubildung und Regeneration der Follikel noch nicht abgeschlossen ist, stark gebuchtet und zeigt mitunter zahlreiche Kernreihen. Vakuolen sind im Epithel vereinzelt zu bemerken. Eosinophile Leukozyten sind im subepithelialen Gewebe recht häufig; vereinzelt liegen sie in Haufen auch im Zentrum der Follikel.

Nr. 13 stammt von einem ursprünglich zum Kontrolltier bestimmten, nicht bestrahlten Tiere, das am 20. Versuchstage, weil moribund, getötet wurde. Die Bursa zeigt das Bild einer akzidentellen Involution, durch Kachexie des kranken Tieres hervorgerufen (siehe Fig. V).

Die hochgradig atrophierte Bursa zeigt ein wesentlich anderes histologisches Bild, als die durch Bestrahlung atrophierten übrigen Organe. Die ganz unregelmässig, meist dreieckig oder länglichoval geformten Follikel sind bedeutend verkleinert: ihr Umriss ist unscharf, so zwar, dass die Retikulumzellen der lymphozytenarmen Rindensubstanz förmlich in das interfollikuläre, scheinbar vermehrte Bindegewebe ausstrahlen und die Lymphozytenansammlung sich ganz allmählich im Bindegewebe verliert. Mark- und Rindensubstanz sind ziemlich gleichmässig in Mitleidenschaft gezogen; ihre Grenze verläuft ganz unregelmässig und die Gürtelform der künstlich involutionierten Rindensubstanz fehlt. Sehr auffällig ist das Verhalten der Marksubstanz: sie erscheint aufgelockert, maschig, zellenarm, ist lymphozytenfrei und hat ein namentlich bei Mallory-Färbung auffälliges, netzförmiges Aussehen. Die Fasern dieses Netzes sind ebenso wie das Bindegewebe und der epitheliale Saum blaugefärbt, zeigen also die gleiche Reaktion wie diese. Der Epithelsaum ist deutlich sichtbar und wird zentralwärts noch verstärkt durch einen Kranz von eng aneinander liegenden, abgeplatteten, epithelialen Zellen, die lebhaft von der maschigen Marksubstanz kontrastieren.

Das Epithel ist vielfach gebuchtet, auffallend hoch und zeigt zahlreiche Kernreihen sowie ausserordentlich viel Vakuolen, die in verschiedener Höhe das Epithel durchsetzen und teilweise Zelltrümmer, zum anderen Teil eine homogene, bei Hämatoxylin- wie bei Mallory-Färbung bläulich gefärbte Substanz enthalten. Auch die Durchwanderung von noch deutlich konturierten oder bereits zerfallenen Zellen durch das Epithel ist stark vermehrt.

Nr.	Maximale Follikelhöhe	Maximale Follikelbreite	Durchschnitt- liche Breite der Rinden- substanz	Durchschnitt- liche Breite der Mark- substanz	Epithelhöhe
	"	u	**	u	bis a
1 Kontro	800 olltier	500	70	350	60
2	760	260	50	200	80
3	400	280	30	200	60
4	600	350	40	240	50
5	600	300	40	240	50
6	750	300	60	180	40
7	500	270	50	160	40
8 Kontro	900 Olltier	450	80	250	60
9	420	300	40	220	40
10	600	400	50	300	70
11	360	450	40	350	40
12	750	460	60	300	60
13 Kontro	400	180	30	120	60

B. Nebenbefunde.

a) An den untersuchten Hoden.

Serie III.

Nr. 1 (Kontrolltier) lieferte mir einen normalen geschlechtsreifen Hoden. Bei spärlichem interstitiellen Bindegewebe, das auf Mallory-Färbung nicht reagierte (es reagierte bloss die Tunica propria und das perivaskuläre Gewebe mit Bindegewebsfärbung), waren die quergetroffenen Tubuli contorti von einem durchschnittlichen Durchmesser von 180 μ . Interstitielle Zellen, sogenannte Zwischenzellen, fanden sich reichlich. Im Tubulus contortus selbst

konnte man alle Phasen der Spermienbildung verfolgen bis zur Bildung von Samenähren, Spermatoblasten; auch freie Spermatozoen fanden sich reichlich im Lumen (siehe Textfig. 1).

Fig. 1. Normaler Tubulus contortus vom Hoden des Hahnes.

Serie III, Nr. 4 lieferte Präparate eines vor zwei Tagen zwei Stunden lang bestrahlten Tieres: Die Tubuli contorti sind auf durchschnittlich 60 µ Durchmesser verkleinert. Wenn Hida und Kuga den Spermatozoen eine vermehrte Resistenz zuschreibt, so fand ich wenigstens kein Bild, das diese Annahme bekräftigt. Denn schon in diesem Präparate fand sich kein einziges Spermatozoon; auch jede andere höhere Zellenstufe, Spermatozyten I. und II. Ordnung, Spermatiden etc. waren verschwunden. Lediglich die wandständigen Sertolischen Zellen, dazwischen wenige Spermatogonien waren erhalten. Bindegewebe war zwischen den Tubulis nicht vermehrt eingelagert, die Zwischenzellen schienen aber eher vermehrt als vermindert (siehe Textfig. 2).

Serie IV, Nr. 3, 6, 11 und 12 zeigten 3, 6, 14 und 21 Tage nach erfolgter zweistündiger Bestrahlung das gleiche Bild, wie das bei Serie II Nr. 4 nach zwei Tagen beobachtete. Ein Ansatz

Fig. 2.

Tubuli contorti eines zwei Stunden bestrahlten und zwei Tage nachher getöteten Hahnes bei gleicher Vergrösserung wie Fig. 1 (1:250).

zur Regeneration war auch bei Nr. 12, das sind 21 Tage nach erfolgter Bestrahlung, während welcher Zeit Bursa und Milz desselben Tieres fast völlig regeneriert waren, nicht zu beobachten.

b) An den übrigen untersuchten Organen.

Die Milz weist nach der Bestrahlung hauptsächlich eine starke Verminderung der Lymphozyten auf und erscheint stark hyperämisch. Die Leber und die Niere wiesen gleichfalls eine 3-4 Tage währende stärkere Füllung namentlich der peripheren Gefässe auf.

Zusammenfassung

Zweistündige Röntgenbestrahlung von bei den einzelnen Versuchen angegebener Intensität wird von Hühnern im allgemeinen gut vertragen. In den der Bestrahlung folgenden Tagen tritt gewöhnlich eine merkliche Körpergewichtsverminderung ein, die vom 5. Tage ab einer allmählichen Gewichtszunahme weicht.

Am 12. Tage nach erfolgter Bestrahlung tritt Federnausfall ein, der, wie dies schon Kienböck erwähnt, namentlich die geschützten Stellen unter den Flügeln und am Unterbauch betrifft und sehr umfangreich werden kann; 21 Tage nach der Bestrahlung ist ein Nachwachsen des Gefieders noch nicht bemerk-Archiv f. mikr. Anat. Bd. 82. Abt. I.

27

bar. Den geringfügigen Symptomen körperlichen Unbehagens steht eine tiefgreifende Beeinflussung der inneren Organe gegenüber.

Die Bursa Fabricii reagiert prompt mit Verkleinerung des Umfanges und Gewichtes, die in allen Fällen zur Atrophie, in einem Falle zum fast völligen Schwund des Organs führte.

Die histologischen Veränderungen betreffen in erster Linie die Rindensubstanz der Bursafollikel, deren Lymphozyten oft vollständig zerstört wurden. Auch die Marksubstanz erscheint in Mitleidenschaft gezogen. Die Zahl der Follikel nimmt wesentlich Während die Degenerationsvorgänge in der Rindensubstanz nach 2-3 Tagen beendigt sind, kommen sie in der Marksubstanz erst 4-5 Tage nach der Bestrahlung zum Stillstand. Die Regeneration beginnt in der Rindensubstanz meist am vierten Tage. in der Marksubstanz einige Tage später; sie ist nach 14 respektive 21 Tagen wohl der Hauptsache nach, jedoch nicht vollständig beendet. Sie besteht in einer Neubelebung des verödeten Follikels durch Neueinlagerung von Lymphozyten in Mark- und Rindensubstanz, deren Herkunft nicht geklärt werden konnte. Wahrscheinlich stammen die Lymphozyten der Rindensubstanz aus den Kapillaren. Ausser dieser Neubelebung kommt es aber auch zur Neubildung von Follikeln, die in der gleichen Weise erfolgt, wie während der natürlichen Entwicklung.

Die durch Kachexie hervorgerufene Involution der Bursa ist von der durch Röntgenbestrahlung erzeugten bezüglich des histologischen Bildes wesentlich verschieden.

Die beim Hahn ausserordentlich geschützten Hoden werden durch die gleiche Bestrahlungsintensität und -dauer meist noch heftiger berührt als die Bursa. Sie reagieren mit weit grösserem Gewichtsverlust als jene; die samenbildenden Zellen sind mit Ausnahme weniger Spermatogonien bereits am zweiten Tage verschwunden, ebenso sämtliche Spermatozoen. Den Befund von Hida und Kuga, dass die Spermatozoen durch längere Zeit widerstandskräftig bleiben, fand ich somit nicht bestätigt, wohl aber die starke Radiosensibilität der Hoden des Hahnes. Die Zwischenzellen erscheinen nicht beeinflusst. Ein Anlauf zur Regeneration der Hoden war auch nach 21 Tagen nicht zu konstatieren.

Die Milz reagiert regelmässig durch grossen Gewichtsverlust bis tief unter $50\,^{\rm o}/_{\rm o}$ von Kontrollorganen. Regeneration tritt in allen Fällen ein, erfolgt jedoch langsam und ist nach 21 Tagen

noch nicht abgeschlossen. Histologisch konnte ich eine starke Verminderung der Lymphozyten sowie eine stellenweise starke Hyperämie konstatieren, die auch in Leber und Niere auftrat. Eine Gewichtsverminderung der Leber trat nicht ein.

Herrn Hofrat Prof. Dr. Armin v. Tschermak, der mir in der liebenswürdigsten Weise das Röntgenlaboratorium des Physiol. Institutes zur Verfügung stellte und Herrn Prof. Dr. Siegmund v. Schumacher, der mir in der ganzen Anlage der Arbeit und bezüglich des histologischen Teiles mit Rat und Tat förderlich zur Seite stand, sei auch an dieser Stelle mein aufrichtiger Dank ausgesprochen.

Literaturverzeichnis.

- Ellenberger und Baum: Handbuch der vergleichenden Anatomie der Haustiere. S. 1035.
- 2. Heineke, H.: Zitiert nach Rudberg.
- Hida, S. und Kuga, K.: Einfluss der Röntgenstrahlen auf den Hoden des Kaninchens und Hahnes. Fortschritte auf dem Gebiete der Röntgenstrahlen. XVII, S. 92.
- Jolly, J.: Sur les modifications histologiques de la bourse de Fabricius à la suite du jeune. C. R. Soc. Biol., Paris 1911, S. 71.
- Derselbe: La bourse de Fabricius et les organes lympho-épithéliaux. Assoc. Anat. Congrès de Paris 1911.
- Jonson, A.: Studien über die Thymusinvolution. Die akzidentelle Involution nach Hunger. Arch. f. mikr. Anat., Bd. 73, 1909.
- 7. Kienböck, R.: Radiotherapie 1907.
- Derselbe: Zur Pathologie der Hautveränderungen durch Röntgenbestrahlung bei Mensch und Tier. Wr. med. Presse Nr. 19 ff., ex 1901.
- Osawa, G.: Über die Bursa Fabricii der Vögel. Mitteilung aus der med. Fakultät der kaiserl. japanischen Universität Tokio, Bd. 9, H. 3, 1910.
- 10. Retterer, E.: Zitiert nach Schumacher.
- Rudberg, H.: Die Thymusinvolution nach Röntgenbestrahlung. Arch. f. Anat. u. Phys., 1907, Suppl.-Bd. zur Anat. Abt., S. 127.
- Schumacher, S. v.: Über die Entwicklung und den Bau der Bursa Fabricii. Aus den Sitzungsberichten der kaiserl. Akademie der Wissenschaften in Wien. Math.-naturw. Kl., Bd. CXII, Abt. 3, Juli 1903.
- 13. Wenckebach, K. F.: Zitiert nach Schumacher.

Erklärung der Abbildungen auf Tafel XXIII.

Sämtliche Abbildungen sind mit dem Prisma entworfen, Fig. 1-5 bei 100facher, Fig. 6 und 7 bei 160 facher Vergrösserung gezeichnet.

- Fig I. Zeigt eine normale Bursa eines sechsmonatlichen Huhnes auf der Höhe der Entwicklung. R = Rindensubstanz; M = Marksubstanz; G = die Grenze, durch Bindegewebe und Kapillaren gebildet. Die Follikel sind gross und durch E = Epithelkappe mit dem Bursaepithel in Verbindung.
- Fig. II. Zeigt das Bild einer stark atrophierten Bursa, 2 Tage nach 2 ½ stündiger Bestrahlung. Das Bindegewebe zwischen den Follikeln erscheint vermehrt, die Follikel sind spärlich und stark verkleinert. M = die bedeutend zellenärmere Marksubstanz; B = der Rest der Rindensubstanz, der nur mehr aus den Retikulumzellen besteht; E = die Epithelkappe; e. L = eosinophile Leukozyten, wie sie im subepithelialen Bindegewebe ausserordentlich reichlich auftreten. Das Epithel erscheint stark gebuchtet, die Grenze zwischen Rinden- und Marksubstanz ist häufig peripher gelegen, bisweilen durchdringt sie unregelmässig die Marksubstanz.
- Fig. III. Zeigt die Bursa 14 Tage nach 2½ stündiger Bestrahlung. FR = Follikelreste, deren Rindensubstanz gänzlich verloren gegangen ist; ES = Epithelschläuche, deren zugehörige Follikel zugrunde gegangen sind. Das Bild wird von neugebildetem Bindegewebe beherrscht, das ausserordentlich reich vaskularisiert erscheint, auffallend sind die starkwandigen Arterien = A.
- Fig. IV. Zeigt eine in voller Regeneration begriffene Bursa eines 2 Monate alten Hahnes, 21 Tage nach 2 stündiger Bestrahlung.

Die Follikel haben an Grösse fast ihre normale Ausdehnung erreicht, das Bindegewebe erscheint wesentlich verdrängt. $\mathbf{M} = \mathbf{M}$ arksubstanz; $\mathbf{R} = \mathbf{die}$ Rindensubstanz der Follikel; ihre Grenze verläuft noch unscharf.

Das Epithel zeigt, dass der Regenerationsprozess noch nicht beendet ist; es ist noch stark gebuchtet, kernreich und zeigt häufig EK = Epithelknospen, das sind Follikelkeime, aus denen neue Follikel entstehen.

Fig. V. Zeigt die natürlich involutionierte Bursa eines an Kachexie zugrunde gegangenen Kontrolltieres. Das Bild ist wesentlich anders geartet als jenes nach Röntgenbestrahlung. Die unregelmässig geformten Follikel sind nicht scharf begrenzt, ihre R = Rindensubstanz geht in das interfollikuläre Bindegewebe über. M = die Marksubstanz erscheint maschig; ihr Grenzsaum ist zentralwärts durch einen Kranz epithelialer Zellen verstärkt. Das Epithel ist stark gebuchtet und zeigt zahlreiche Vakuolen = V.

- Fig. VI. Stammt von einem 40 Stunden nach 2½ stündiger Bestrahlung getöteten Huhn. C = Conglomerat in der erweiterten Bucht, die den Follikel mit dem Lumen der Bursa verbindet; M = die aufgelockerte Marksubstanz; R = die gürtelförmige Rindensubstanz.
- Fig. VII. Zeigt die Art der Neubildung der Follikel und stammt von dem
 21 Tage nach 2 stündiger Bestrahlung getöteten Hahn. FK =
 Follikelkeim, aus dem die Marksubstanz entsteht; L = Lymphozyten, die sich ringsum ansammeln und aus denen die Rindensubstanz entsteht.

Über das Stroma der Nebennierenrinde.

Vor

Dr. med. P. Snessarew, Oberarzt der Irrenanstalt "Nikolskoë", Kostroma, Russland.

Mit 3 Textfiguren.

Zu meinen Untersuchungen bediente ich mich der neurofibrillären Methode von Bielschowsky, die ich zur Darstellung der bindegewebigen fibrillären Reticuli¹) modifiziert habe. Das reticuläre Gewebe der Nebenniere wird der Hauptgegenstand unserer Darstellung sein.

Mit der Frage über das Nebennierenstroma verband sich bei den früheren Forschern stets die Frage über die Existenz von Schläuchen und Blasen in der Rinde, umgeben von einer eigenen Membran (Tunica propria). Der Zusammenhang dieser Fragen ist sehr charakteristisch, und wir werden uns bemühen, denselben zu erklären. Die Geschichte dieser Fragen können wir, da sie schon oft genug dargestellt worden ist, übergehen.

In den letzten Jahren erschienen einige russische Dissertationen (von Blumenau, Landau, Bogomoletz, Moltschanow und Dserschinsky), die den verschiedenen Seiten der wichtigen Nebennierenfrage gewidmet sind, in denen aber das Stroma nur beiläufig erwähnt wird.

In unserer Beschreibung werden wir nur das Nebennierenstroma des Menschen behandeln. Das Grundschema des Rindenbaues wurde schon so oft beschrieben, dass wir uns auf die Erwähnung der charakteristischen Eigenschaften beschränken wollen. Die Hülle des Organs ist die Bindegewebsquelle für Rinde und Marksubstanz. Von hier aus ziehen einzelne Fasern und Bündel, stellenweise auch ganze Züge von Bindegewebsfasern, in die Tiefe des Organs; die letzten dringen zusammen mit grossen Blutgefässen bis in das Innere der Nebenniere, man kann sie als Trabekel bezeichnen. Das Verhältnis der Rindenzellen zu denselben ist sehr charakteristisch: sie bilden für diese eine Art Kapsel. Die Peripherie der Rinde ist da, wo die Trabekel

¹⁾ Anat. Anz., Bd. XXXVI, 1910, und Anat. Anz., Bd. XL, 1912.

in die Rinde eintreten, etwas trichterförmig eingezogen, die Zellstränge, die sich zur Peripherie gewöhnlich radiär stellen, ändern weiterhin ihre Anordnung, sie suchen die radiäre Stellung zu erhalten, aber nicht mehr zur Peripherie, sondern zu den Trabekeln. Kurz, die Rindenperipherie wird auf die Trabekel übertragen. Die Rindenbreite (vom Trabekel aus gerechnet) verschmälert sich und je tiefer, desto mehr. Ausserdem bilden sich an den Stellen,

Fig 1

Stroma der Nebennierenrinde. Zf = Zona fasciculata; Zr = Zona reticularis.

wo die Trabekel verlaufen, Einziehungen von Rindenzellenelementen bis in die Tiefe der Marksubstanz. Die beschriebenen Trabekel führen der Marksubstanz eine Masse von Bindegewebe, Blutgefässen und Nerven zu, wodurch ein Zusammenhang mit der Kapsel gebildet wird. Wir halten auch das für wesentlich, dass die Ganglienzellen sich in der Tiefe der Nebenniere jeweils an einem solchen Trabekel befinden, was für ihre Zugehörigkeit zur Kapsel spricht. Nicht nur Trabekel allein, sondern auch einzelne Bündel von Bindegewebsfasern dringen aus der Kapsel in die Marksubstanz ein.

Aber die meisten der gesondert von der Kapsel ausgehenden Faserbündel werden nicht zur Bildung von Marksubstanzstroma, sondern zur Bildung des Stromas der Rinde verwendet. Sich verzweigend und miteinander anastomosierend, bilden sie grosse Räume für Zellanhäufungen der Rinde, aus dünnen Endfibrillen und dünnen Seitenästchen bildet sich ein Reticulum, welches einzelne Zellen umhüllt. Sehr auffallend ist die Tatsache, dass, je näher die radiär verlaufenden Faserstränge und Bündel sich an der Peripherie befinden, sie um so dicker werden, und je

Fig. 2.
Reticulares Stroma Zonae fasciculatae et reticularis.

weiter dieselben in die Tiefe ziehen, sie um so mehr sich verdünnen; endlich besteht das Stroma in der Zona reticularis und in den nächsten Teilen der Zona fasciculata aus einem Netz von feinsten annähernd gleich dicken Fibrillen (s. Fig. 1). Ein anderes charakteristisches Merkmal ist, dass alle diese Netze miteinander in Verbindung stehen, so dass das Faserstroma ein Ganzes bildet. Man bekommt sogar den Eindruck, als ob das Parenchym von einem dichten Netz umgeben und an der Kapsel sozusagen aufgehängt sei. Im Speziellen kann man von dem Bau der äusseren Rindenteile das wiederholen, was schon längst von einer Reihe Autoren beschrieben worden ist (Kölliker, Leydig, Moers,

Joesten, Arnold, v. Brunn). Man kann v. Brunn beistimmen, dass es nicht notwendig sei, dass jede Zelle eine besondere Masche einnehme. Was aber die inneren Rindenteile anbetrifft (wir haben nicht nur die Zona reticularis, sondern auch die Nachbarteile der Zona fasciculata im Sinn), wo man nur wenige dicke Zweige sieht, und wo das Stroma aus feinsten Netzfasern besteht, so drängen sich in unseren Präparaten einige strukturelle Eigentümlichkeiten auf, die, wie es uns scheint, die Möglichkeit bieten, sich in dem alten Streite über die "Membrana propria" der Zellanhäufungen in der Nebennierenrinde zu orientieren.

Die von uns modifizierte Methode von Bielschowsky lässt sehr gut das feinste fibrilläre Bindegewebsnetz darstellen. Einige Maschen desselben sind bedeutend kleiner als ein Zellleib, ja sogar kleiner als ein Zellkern, was man auf den beigelegten photographischen Aufnahmen, auf denen die Zellkerne das Aussehen dunkler Flecken haben, feststellen kann. Solch ein feines Netz haben die früheren Forscher nicht gesehen, sie halten diejenigen Maschen für die feinsten, in denen nur eine Zelle Platz hat. Das zu beschreibende fibrilläre Netz beteiligt sich an der Bildung der einzelnen Zellager, indem es diese voneinander abgrenzt (s. Fig. 2). Wir wollen die Rolle dieses Reticulums eine stützende nennen. Dasselbe Fibrillarnetz umgibt aber die Zellstränge und einzelne Zellanhäufungen von aussen und umgibt an der innersten Marksubstanzgrenze auch einzelne Zellen, so dass die letzten das Aussehen runder Körper oder Klümpchen bekommen (s. Fig. 1). Diese sekundäre Rolle des Reticulums ist besonders hervorzuheben; dieselbe ist eine umhüllende und isolierende.

Hierbei muss man sich daran erinnern, dass sich an der Bildung der typischen Isolationshüllen (Membranae propriae, Membranae terminales) anderer Organe dieselben feinsten Terminalnetze kollagener Fasern beteiligen, wie wir sie im Anatomischen Anzeiger 1910, Bd. 36 und 1912, Bd. 40, besprochen haben, und deren Bestätigung wir in den Arbeiten von Merkel¹), Farrado²) und anderen finden. Als Beispiel kann man die Struktur der Membrana propria der Nierenkanälchen, sowie die Gitterfasern der Leber nennen. Wenn das so ist, so wird man den alten

¹⁾ Anat. Hefte 1909, H. 115.

²⁾ Internat. Monatsschr. f. Anatomie und Physiologie, XXVI, 1909.

Angaben von der Existenz von blasenförmigen Membranae propriae in den Nebennieren die grösste Aufmerksamkeit zuwenden müssen, denn das Vorhandensein eines fibrillären Netzes braucht die Existenz einer Membrana propria nicht auszuschliessen, sondern kann sie eher stützen. Es gibt in der Nebennierenrinde keine hohlen Schläuche oder Blasen einer strukturlosen Membran (Ecker, Frey, Henle, Grandry u. a.). In den oberen

Fig 3. Substantia medullaris der Nebennieren.

Schichten sehen wir das Reticulum als Stroma von Zellanhäufungen und nur in den tieferen Schichten umhüllt es dieselben von aussen; aber auch hier können wir nicht von einer typischen Membrana propria reden. Es fehlt hier die homogene Substanz, welche das fibrilläre netzartige Stroma der Membrana propria gleichsam durchtränkt. Wir können noch auf ein anderes Beispiel hinweisen, wo das Reticulum die gleiche, das Parenchym einhüllende Rolle des Isolators und des Schutzes gegen den Aussendruck spielt, — das ist in den sympathischen Ganglien des Darmtractus z. B. in der Gegend des Pylorus der Fall. Wenn wir jetzt lesen, dass ein so objektiver Forscher wie Kölliker, der die Eckerschen

Schläuche kühn leugnete, die Existenz von Blasen in den innersten Rindenteilen anerkennen musste, und dass ein anderer aufmerksamer Beobachter, Joesten, ihm beistimmte, so verstehen wir, weshalb das geschehen ist: beide Forscher sahen ein Reticulum, welches die Umhüllung von Zellhaufen und einzelnen Zellen bildete; aber sie konnten wegen Mangel an technischen Mitteln nicht sehen, dass sie keine strukturlose Membran, sondern nur ein feinmaschiges Fibrillarnetz vor Augen hatten.

Oben erwähnten wir, dass wir in der Marksubstanz der Nebenniere eine zerstreute Gruppe von Ganglienzellen sehen; ein Teil davon ist in Kapseln für die typischen Zellen dieses Nebennierenabschnittes gelegen. Sie sind von seiten der Trabekel, an die sie anschliessen, durch ein feinstes Fibrillarnetz begrenzt, dieses aber bildet einen Bestandteil der Wände der nächstliegenden Kapseln.

Was stellt denn eigentlich das Reticulum dar? Das ist ein Netz, in welches Fibrillen aus Kollagenfasern übergehen, indem sie ihr Kollagen verlieren. Die früheren Forscher stellten sich deren Natur folgendermassen vor: Joesten hielt es für dasselbe Gewebe, welches Frey und andere für das Stroma der Lymphdrüsen annahmen. Später unterstützte Flint eigentlich dieselbe Meinung, indem er auf deren Verschiedenheit von elastischen Fasern, von Gitterfasern der Leber und anderen hinwies. Interessant ist ihr Verhältnis zu Zellelementen. Arnold verneinte darin das Vorhandensein von Kernen, Moers im Gegenteil nahm solche an und schilderte dieselben. Ihm folgte auch Dostoewsky, der die dunkleren Stellen im Netze, die sich stark mit Hämatoxylin und Pikrokarmin färbten, für Kerne hielt. Wir sind auch geneigt, einen genetischen Zusammenhang des Reticulums mit den Stromazellen anzunehmen.

Aus dem Laboratorium für allgemeine Pathologie und Histologie der Kgl. Universität Pavia. (Leiter Prof. C. Golgi.)

Zur Kenntnis der neurofibrillären Apparate der Hirudineen.

Von

G. Ascoli.

Hierzu 10 Textfiguren.

In einer vor etwa 2 Jahren erschienenen Arbeit zur Neurologie der Hirudineen¹) habe ich einige Tatsachen von vielleicht allgemein histologischem Interesse mitgeteilt. Ich sehe mich heute veranlasst, in Kürze auf jene Studien zurückzukommen, um dieselben durch die Mitteilung einiger weiterer Belege zu festigen und im besonderen die Zweifel zu beseitigen, die aus Cajals Laboratorium gegen meine Untersuchungen geltend gemacht wurden.²)

Ich habe in meiner Arbeit, entgegen der geläufigen Anschauung, den gitterartigen Bau der Achsenzylinder einzelner Gruppen von Nervenfasern festgestellt und durch die Abbildung einiger neurofibrillärer Achsenzylindernetze belegt.

In den Arbeiten der Cajalschen Schule ist von dieser verwickelten Struktur der Nervenfasern des Egels keine Rede und wird, so weit ersichtlich, ein isolierter Verlauf der Fibrillen angenommen; wie denn überhaupt die Darstellung der Nerven, wie sie Sanchez gibt, von meinen Bildern in grellster Weise absticht. Ich führe zur Beleuchtung des Gegensatzes die entsprechenden Abbildungen nebeneinander vor (Fig. 1).

Über diesen Gegensatz kann man nicht etwa mit der Annahme hinweg, die netzigen Strukturen in meinen, aus Isolationspräparaten stammenden, Bildern seien aus einer Zerzupfung und künstlichen Verknäuelung der Fibrillen zu erklären. Die Nerven sind gar nicht zerzupft, sondern einfach und unversehrt aus ihren lockeren Scheiden ausgelöst und in optischem Längsschnitt dargestellt.

¹⁾ Zoolog. Jahrbücher, 1911.

²) Sanchez. Trabajos etc. 1911—1912; vgl. auch Cajal, Sanchez ibid. 1907, 1909.

Es entspricht den tatsächlichen Verhältnissen viel mehr, eine verschiedene Wertigkeit der Methoden anzuerkennen, die zwar offenbar gleichartige Elemente, dieselben jedoch mit sehr ungleicher Vollständigkeit, aufdecken. Wenn aber infolge der angewandten Methodik eine Anzahl der zarteren Fibrillen der Färbung entgeht, wenn ihre meist dünnen Verbindungsäste nicht

Nach Ascoli.

Fig. 1. (Nervenstamm.)

Nach Sanchez.

zur Darstellung kommen, wenn die Bündel demnach weit lockerer erscheinen, dann kann es — wie ich schon ausgeführt habe (l. c.) — nicht wundernehmen, dass die Fibrillen der Kolossalfasern als gegenseitig unabhängige Gebilde beschrieben und dargestellt werden; dann wird das von Sanchez gegebene Bild und sein Gegensatz zu unserem Befunde einfach und zwanglos verständlich.

Es lässt sich aber auch unmittelbar belegen, dass die Neurofibrillen der kolossalen Nervenfasern oder Bündel nicht voneinander unabhängige Gebilde darstellen. In ausnahmsweise gut gelungenen Gangliennervenpräparaten, die ein vollständig erhaltenes Ganglion samt den eintretenden Nervenstämmen unter schärfster Differenzierung der Neurofibrillen der Beobachtung zugänglich machen,

Fig. 2.

hat man Gelegenheit, jene Netzfasern aus dem Nerven in das Ganglion zu ihrem zentralen Ende zu verfolgen. man (Fig. 2) die Kolossalfasern zunächst bei ihrem Durchtritte durch die straffe Ganglienkapsel sich etwas verschmächtigen und ihre Maschen langgestreckter und weniger dicht gestalten, dann verstricken sich ihre Fibrillen abermals inniger untereinander und sammeln sich endlich um einige stärker und stärker werdende Stämme, bis sie sämtlich in wenige Stränge aufgehen, in die sich die Netzfaser unter auffälligster Vereinfachung ihrer Struktur gabelt. Die Endstränge der Faser verlieren sich nach vereinzelten Teilungen in der zentralen Faserung der Ganglienkette.

Durch diese Art der Endigung unter Verschmelzung in einzelnen grobgitterig untereinander verbundenen Sammelsträngen wird das Fibrillenbündel der Kolossalfasern noch schärfer zu einer anatomischen Einheit gestempelt, als dies durch die netzartige Struktur, die ich beschrieben habe, geschehen konnte. Die beiden Befunde ergänzen einander in bemerkenswerter Weise und sind besonders geeignet, sich wechselseitig zu stützen.

Ein Blick auf die mit ihrem zentralen Ende dargestellten Netzfasern genügt aber weiter zur Feststellung ihrer Identität mit den kolossalen Nervenfasern, die schon seit geraumer Zeit von Biedermann, Dogiel, Retzius, Apathy u. a. bei Hirudineen durch die Methylenblaumethoden dargestellt und als sensorische Bündel oder Schläuche beschrieben sind (Fig. 3): ihre Anzahl - je drei in jedem Segmentalnerven von Hirudo -, ihre Dimensionen, ihre gabelige oder hirschgeweihartige Spaltung, ihre topographische Verteilung im Ganglion geben keinem Zweifel Raum. Es ist aber gewiss bemerkenswert, dass jenen Fasern, denen ich auf Grund ganz unabhängiger Erfahrung ein gemeinsames Neurofibrillennetz zugeschrieben habe, andererseits eine gemeinsame Grundsubstanz und damit ein weiteres Moment anatomischer Einheitlichkeit zuokmmt.

Fig. 3. (Nach Retzius.)

Verwunderlich ist nur, dass die Cajalsche Schule sich dagegen sträubt, den hier vertretenen Standpunkt anzunehmen, der, wenn ich die Tatsachen nicht durchaus verkenne, mit ihren eigenen Befunden an den Ganglien des Blutegels in bestem Einklange steht. Denn, wie auch immer Sanchez die Nervenstämme darstellt, es ist ihm, wie aus seinen zahlreichen Bildern hervorgeht (Fig. 4), nicht entgangen, dass die Nerven in der Nähe der

Fig. 4. (Ganglion nach Sanchez.)

Ganglien ungemein dichte Fibrillenbündel enthalten, die gegen die anderen Fasern eigentümlich abstechen und sich nach ihrem Eintritte in die Fasermasse und ihrer Gabelung unter auffallender Herabminderung ihrer Faserzahl rasch verschmächtigen. Von der Schärfe der Zeichnung abgesehen, erkennt man in diesen Bildern unschwer die von mir eben gegebene Darstellung der Kolossalfasern: es fragt sich nur, wie angesichts der verworrenen und sichtlich verstrickten Struktur des Faserbündels und seiner Endigung in einzelnen Fäden die Annahme der gegenseitigen Unabhängigkeit der Fibrillen vertreten werden kann, ohne den sicheren Untergrund der Tatsachen für das Reich der willkürlichen Behauptungen zu verlassen.

Tatsache ist bloss, dass die Fibrillen der sensorischen Schläuche peripher unter Netz-, zentral unter Strangbildung zu einer anatomischen Einheit zusammenfliessen.

Die Tatsache des Bestandes der Netzfasern beleuchtet die Notwendigkeit des Gegensatzes meiner Befunde mit den Ergebnissen der Cajalschen Schule. Wenn dieselbe die grobkalibrigen Achsenzylindernetze als parallelfaserige Bündel beschreibt, kann es nicht wundernehmen, dass sie meine Auffassung minder einfach auflösbarer Gebilde rundweg ablehnt.

Es ist aber meines Erachtens diese ablehnende Haltung aus prinzipiellen Gründen ungerechtfertigt und unzulässig; denn Archiv f. mikr. Anat. Bd. 82. Abt. I. 28 sie fusst auf Befunden und Angaben, welche die Tatsachen mehrfach nur in sehr unvollständiger und ungenauer Weise wiedergeben. Es geht dies beispielsweise aus den Beobachtungen hervor, welche ich nicht so sehr zur Beleuchtung dieses Umstandes, als vielmehr deswegen hier anfüge, weil sie an sich einen kleinen Beitrag zur Cytologie und Struktur des Nervensystems bedeuten mögen.

Wenn Sanchez angibt, er habe bei Hirudineen nur im Inneren von Nervenzellen den Bestand von Fibrillengittern nachweisen können, und wenn er in seinen Bildern die Ganglienzellen meist in trotz einiger Spaltungen ungemein einfach, selten in verworren, aber nicht gitterartig gezeichnete mehrfaserige Fortsätze auslaufen lässt, so werden die Tatsachen gewiss nur ungenau wiedergegeben (Fig. 4).

Fig. 6.

Lassen wir hier nur die Netzfasern und die Frage ihrer Beziehung zu den etwaigen Ursprungszellen ganz beiseite. Aber die Ganglienzellen der Hirudineen gehen überaus häufig in sehr verwickelt gitterartig gebaute Fortsätze über; und treten netzartige Bildungen auch im weiteren Verlaufe ihrer Verästelung und ohne unmittelbare Beziehung zum Zellgitter auf. In den Ganglien breiten sich solche Netze gleich einer gitterigen Stützplatte auf der Oberfläche der zentralen Fasermasse aus, in die und über die sie wurzelartig weiterstrebende Fasern entsenden, während von der Aussenseite her die Zelle mit ihrem Fortsatze sich blumenartig in sie einpflanzt (Fig. 5).

Es ist mindestens fraglich, ob diese Bildungen in dem Begriff der dem Zellinnern zugehörigen Netze enthalten sind;

Fig. 7.

gewiss findet man in den Bildern und Beschreibungen der Cajalschen Schule keine Andeutung davon, während sie vom cytologischen Standpunkt wohl erwähnenswert erscheinen. Die flächenhafte Ausbreitung auf dem Faserkern der Ganglien kommt aber nicht nur den mit Gitterplatten versehenen und aufsitzenden Elementen zu; auch die einfacheren Zellen spalten regelmässig von ihrem Fortsatze einzelne Fasern ab, die sich mit den Gitterplatten über die zentrale Fasermasse hin verästeln. Es

Fig. 8.

kommt auf diese Weise zwischen der äusseren Zellschicht und dem inneren Faserkern der Ganglien zur Ausbildung eines ziemlich wirren Fibrillengeflechtes, welches die zentrale Fasermasse umscheidet (Fig. 6).

Auf die Auflösung des Geflechtes dieser Hüllschicht wird besser verzichtet; die sichere Entscheidung, ob im allgemeinen

Fig. 9.

blosse Verstrickung oder auch echte Netzbildung vorliegt, liegt wohl zu hart an den aktuellen Grenzen mikroskopischen Sehens.

Gewiss treten aber in diesem Geflechte einzelne Gruppen von Zellen in eigentümlich innige Beziehungen zueinander.

Es streben dann die Fortsätze verschiedener Zellen zur Bildung eines gemeinsamen Geflechtes gegeneinander, um erst aus diesem die Ausläufer in die allgemeine Faserung der Hüllschicht zu entsenden. Die Geflechte sind in den einfachsten Fällen verhältnismässig locker (Fig. 7). Man bekommt aber auch Gruppen zur Beobachtung, in denen das Sammelgeflecht der zahlreichen und verwickelt gebauten Fortsätze schon eine ungemein wirre Struktur darstellt (Fig. 8). In anderen Systemen endlich lässt die Aneinanderlegung und Verquickung von Gitterplatten neurofibrilläre Gebilde entstehen, die jeden Versuch einer Auseinanderhaltung der Fibrillen als aussichtslos hinstellen und das Gepräge typischer anatomischer und physiologischer Sammelapparate zur Schau tragen (Fig. 9 u. 10). Diese Bildungen finden

Fig. 10. (Detail aus Fig. 9.)

sich in gelungenen Präparaten regelmässig im Kaudalteil der Segmentalganglien und heben sich von dessen allgemeiner Faserung ab. Sie sind gewiss einiger Beachtung wert; ihrer anatomischen Sonderstellung entspricht wohl eine bestimmte funktionelle Aufgabe und Bedeutung. Sie scheinen bis jetzt der Beobachtung entgangen zu sein, vielleicht weil sie auf Schnitten nur bruchstückweise zur Anschauung kommen können.

Es kommt demnach dem Nervensystem der Hirudineen eine minder einfache Struktur zu, als aus den Darstellungen der Cajalschen

Schule hervorgeht. In dieser Darstellung werden Gebilde vermisst, welche als sehr charakteristisch bezeichnet werden dürfen und einerseits das Vorkommen von Fibrillengittern weit über die Grenzen des Zelleibes und seiner unmittelbaren Ausläufer feststellen, andererseits das Zusammentreten der Neurofibrillen verschiedener Zellen zu wohlgekennzeichneten verwickelten Apparaten belegen.

Die wichtigsten einschlägigen Tatsachen bestehen:

- in dem in den Kolossalfasern gegebenen Vorkommen von Fasernetzen, die zentral zu einzelnen strangartigen Fibrillen verschmelzen, wo die Cajalsche Schule parallelfaserige Fibrillenbündel annimmt;
- 2. in dem Vorkommen der vom Zellnetze unabhängigen Neurofibrillengitter in dem Verlaufe der Zellfortsätze;
- 3. in dem Vorkommen anatomisch unterschiedener Neurofibrillenapparate unter Zusammentritt der gegitterten Fortsätze mehrerer Zellen.

Diese Tatsachen möchte ich durch vorliegende Mitteilung beleuchtet haben. Es will mir scheinen, dass eine wohlgegründete Darstellung des allgemeinen Baues des Nervensystems ihrer nicht entraten dürfte.

Berichtigung.

In der in Band 82, Abt. I, erschienenen Abhandlung von E. Ballowitz, Münster i. W., "Über Erythrophoren besonderer Art in der Haut von Knochenfischen" muss es heissen:

Auf Seite 207, Anmerkung dritte Reihe von unten statt ripera vipera.

Auf Seite 208 müssen in der vierten und fünften Reihe von unten die Worte "ferner unter den Cichliden bei Hemichromis bimaculatus Gill" gestrichen werden.

Kymil 17

Rana temporaria

Rana temporaria Hauptlappen

Bufo vulgaris

Hirnteil mit Secretansammlung

Bufo vulgaris

ARCHIV

für

Mikroskopische Anatomie

I. Abteilung

für vergleichende und experimentelle Histologie und Entwicklungsgeschichte

II. Abteilung

für Zeugungs- und Vererbungslehre

herausgegeben

von

O. Hertwig und W. Waldeyer in Berlin

> Zweiundachtzigster Band II. Abteilung

Mit 15 Tafeln und 35 Textfiguren

BONN

Verlag von Friedrich Cohen 1913

Inhalt.

Abteilung II.

Erstes Heft. Ausgegeben am 31. März 1913.	Seite
Versuche an Tritoneiern über die Einwirkung bestrahlter Samenfäden auf die tierische Entwicklung. Zweiter Beitrag zur experimen- tellen Zeugungs- und Vererbungslehre. Von Oscar Hertwig. (Aus dem Biologischen Institut der Universität Berlin. Hierzu Tafel I—III und 4 Textfiguren	1
Zweites Heft. Ausgegeben am 30. Mai 1913.	
Über künstliche Entwicklungserregung bei Amphibien. Von Fritz Levy. (Aus dem Biologischen Institut der Universität Berlin.) Hierzu 8 Textfiguren.	65
merzu 8 fextuguren	();)
Drittes Heft. Ausgegeben am 24. Juni 1913.	
Beiträge zur Kenntnis des Zeugungskreises der Microsporidien Glugea anomala Moniez und hertwigi Weissenberg. Von Richard Weissenberg. (Aus dem Anatomisch-biologischen Institut der	
Universität Berlin) Hierzu Tafel IV—VII und 6 Textfiguren . Die Fußsohle des Menschen. Eine Studie über die unmittelbare und die erbliche Wirkung der Funktion Von Richard Semon. Hierzu Tafel VIII—X und 10 Textfiguren	164
Literarisch-kritische Rundschau	213
Viertes Heft. Ausgegeben am 26. Juli 1913.	
Über das Verhalten des plastomatischen Bestandteiles des Spermiums bei der Befruchtung des Eies von Phallusia mamillata. Von Friedrich Meves, Kiel. Hierzu Tafel XI—XIV und 7 Text-	
figuren	215
der Universität Bonn.) Hierzu Tafel XV	261

Versuche an Tritoneiern über die Einwirkung bestrahlter Samenfäden auf die tierische Entwicklung.

Zweiter Beitrag zur experimentellen Zeugungs- und Vererbungslehre.

Von

Oscar Hertwig.

Hierzu Tafel I-III und 4 Textfiguren

Inhalt:	Seite
Einleitung	2
I. Teil. Die Bestrahlung der Samenfäden von Triton mit Radium oder Mesothorium und Benutzung derselben zur künstlichen Befruchtung	
normaler Tritoneier (B-Serie) a) Erste Versuchsreihe. Bestrahlung der Samenfäden während	4
5 Minuten mit 5,3 mg reinem Radiumbromid	ò
15 Minuten mit 5,3 mg reinem Radiumbromid	11
strahlung der Samenfäden zwischen zwei Mesothoriumkapseln II. Teil. Kreuzung der Eier von Triton vulg. mit Samenfäden von Salamandra maculata, die 2 resp. 2 ¹ 4 Stunden zwischen zwei starken	14
Mesothoriumpräparaten bestrahlt wurden	19
III. Teil. Mikroskopische Untersuchung der auf parthenogenetischem Wege entwickelten Tritonlarven	24
a) Chromosomenzählung	24
b) Kerngrösse und Kernplasmarelation bei Radiumlarven mit	
haploider Chromosomenzahl	29
1. Maße von Nervenzellen	32
2. Maße von Leberzellen	34
3. Maße von roten Blutscheiben und ihren Kernen	35
4. Maße der Kerne der embryonalen Muskelfasern 5. Grössen- und Zahlenverhältnisse der Gallertzellen im	37
Flossensaum	39
c) Grössenverhältnisse der Larven und ihrer einzelnen Organe	
1. der ganzen Larven	40
2. einzelner Organe	41
Archiv f. mikr. Anat. Bd. 82. Abt. II.	

		Seite
d)	Abnorme Befunde bei mikroskopischer Untersuchung der	
	Organe der parthenogenetisch entwickelten Tritonlarven	42
	1. Allgemeines Krankheitsbild	42
	2. Hypertrophie des Gallertgewebes	44
	3. Missbildungen am Zentralnervensystem	44
	4. Das Vorkommen embryonaler Geschwülste im Gehirn, im Rückenmark und Retina	47
IV. Teil.	Zusammenfassung und Besprechung der wichtigsten Versuchs-	
ergeb	misse	50
1.	Direkte Beeinflussung und Schädigung der Kernsubstanzen	
	durch Radiumstrahlen	50
2.	Die Entwicklungskurve, hervorgerufen durch verschieden intensive Bestrahlung der Keimzellen	54
3.	Die Bestrahlung der Samenfäden mit radioaktiven Substanzen, ein Mittel, das tierische Ei zur experimentellen Parthenogenese	
	zu veranlassen	55
4.	Die falschen Bastarde	58

Einleitung.

In mehrjährigen Studien ist ein neues Forschungsgebiet durch die Radiumbestrahlung männlicher und weiblicher Keimzellen vor der Befruchtung und durch die Untersuchung der hierdurch im Entwicklungsprozess hervorgerufenen Veränderungen eröffnet worden. Es schien mir wünschenswert, die überraschenden Resultate, welche bisher nur an den Eiern vom Frosch und von Seeigeln gewonnen worden waren, durch neue Experimente an anderen Tierarten noch weiter zu ergänzen, sicher zu stellen und dabei zugleich in dieser und jener Richtung noch neue Einblicke zu gewinnen.

So veranlasste ich zwei Herren, in meinem Laboratorium die Wirkungen zu untersuchen, welche die verschieden starke Bestrahlung der Samenfäden mit Mesothoriumpräparaten auf die Entwicklung der Eier von Teleostiern ausübt. — Mein Sohn Günther wandte sich dem Studium der Bastardbefruchtung zu, in der Absicht, die Einwirkung intensiv bestrahlter Samenfäden auf die Befruchtung und Entwicklung artfremder Eier zu untersuchen. Er wählte hierzu in einer Versuchsreihe die Bastardierung des Eies von Bufo vulgaris mit bestrahltem Samen von Rana

fusca und in einem zweiten Versuch die Bastardierung des Eies von Rana viridis mit Rana fusca-Samen. Die interessanten, von ihm im voraus erwarteten Ergebnisse, welche für die Richtigkeit der Idioplasmakerntheorie eine wichtige Stütze liefern, sind soeben in diesem Archiv (Bd. 81, Abt. II) mit den Belegfiguren veröffentlicht worden.

Ich selbst habe das Tritonei für Bestrahlungsversuche gewählt, einmal um eine Parallelreihe aus der Gruppe der geschwänzten Amphibien zu der Versuchsreihe über Anurenentwicklung zu erhalten, dann aber auch noch ganz besonders durch den Gesichtspunkt bestimmt, dass die Zellkerne bei Triton durch ihre stattliche Grösse und gute Färbbarkeit sich zu genaueren mikroskopischen Untersuchungen besser eignen als die kleinen und schlecht färbbaren Froschkerne. Zur Stütze und Erweiterung der von Günther Hertwig erhaltenen Ergebnisse nahm ich auch eine Bastardierung der Tritoneier mit bestrahltem Samen von Salamandra maculata vor. Das in beiden Versuchsreihen erhaltene Material ist im letzten Sommer auch an Schnittserien durchgearbeitet worden; seine Veröffentlichung schliesst sich jetzt als Fortsetzung an die Untersuchungen an, welche vor einem Jahre unter dem Titel: "Die Radiumkrankheit tierischer Keimzellen" im Band 77 dieses Archivs erschienen sind. Die neue Abhandlung zerfällt in vier Teile: der eine handelt über die Entwicklung des Tritoneies nach Befruchtung mit bestrahltem Tritonsamen, der zweite über die Ergebnisse der Bastardbefruchtung mit intensiv bestrahlten Samenfäden von Salamandra maculata, der dritte Teil bringt eine mikroskopische Analyse der auf parthenogenetischem Wege entwickelten Tritonlarven, im vierten Teil endlich folgt eine Zusammenfassung und Besprechung der wichtigsten Versuchsergebnisse.

Ehe ich zur Besprechung der Versuchsergebnisse übergehe, ist es mir eine angenehme Pflicht, den Herren, die mir durch Überlassung verschiedener wertvoller Präparate von Radiumbromid und von Mesothorium die Ausführung der oben erwähnten Arbeiten im Anatomisch-biologischen Institut ermöglicht haben, der Preussischen Akademie der Wissenschaft, der Direktion der Auer-Gesellschaft, in erster Reihe Herrn Geheimrat Koppel und dem Direktor des Physikalischen Instituts, Herrn Rubens, meinen verbindlichsten Dank auszusprechen.

I. Teil.

Die Bestrahlung der Samenfäden von Triton mit Radium oder Mesothorium und Benutzung derselben zur künstlichen Befruchtung normaler Triton-Eier. B-Serie.

Die Versuche wurden Anfang Mai angestellt. Der Samen wurde den prall gefüllten Samenleitern mit einer Glaskapillare entnommen und mit einer Spur 0.3 proz. Kochsalzlösung zur Verhütung des Eintrocknens verdünnt; ein kleiner Tropfen davon wurde sofort auf einen hohlgeschliffenen Objektträger gebracht und in der Weise, die in meiner ersten Abhandlung genauer beschrieben worden ist, durch Auflegung einer Radiumkapsel bestrahlt. Gleichzeitig wurde zur Kontrolle ein zweiter Tropfen derselben Samenflüssigkeit auf einen anderen Objektträger übertragen, ohne bestrahlt zu werden. Beide Präparate wurden, um das Eintrocknen zu verhindern, in der feuchten Kammer aufbewahrt.

Zur Ausführung der künstlichen Befruchtung musste bei jedem Versuch eine grössere Anzahl frisch eingefangener Weibchen getötet werden, um das für ihn erforderliche Eimaterial (40 bis 60 Stück) zu gewinnen. Nach dem von mir zuerst angewandten. 1883 beschriebenen Verfahren wurden die Eier aus den Oviducten durch vorsichtiges Zerschneiden derselben mit scharfer Schere in querer Richtung auf kleinen Uhrschälchen ohne jede Zusatzflüssigkeit isoliert, nur durch öfteres Anhauchen vor Eintrocknung geschützt und dann befruchtet, wobei zuerst das Radiumexperiment und nach ihm die Kontrolle vorgenommen wurde. Wie sich von selbst versteht, wurden hierbei alle Vorsichtsmassregeln ergriffen, damit keine Verunreinigung mit Samenfäden des anderen Versuchs bei der Befruchtung erfolgen konnte. Zur Vornahme der Befruchtung wurde der in der feuchten Kammer aufbewahrte Samentropfen noch durch einen zweiten, aber auch nur geringen Zusatz von 0,3 proz. Kochsalzlösung ein wenig weiter verdünnt und von dieser Mischung ein kleines Tröpfchen mit einer feinen Glaskapillare auf jedes Ei gebracht. Wenn der Samen für alle Eier nicht reichte. wurde von den zuerst befeuchteten Eiern die Flüssigkeit nach kurzer Zeit mit dem Kapillarröhrchen wieder abgesaugt und zur Besamung weiterer Exemplare verwandt. Nach 10-15 Minuten wurden alle besamten Eier mit gewöhnlichem Wasser übergossen.

Nach dieser Methode wurden vier Versuchsreihen ausgeführt, in denen der Samen verschieden lange Zeit und mit ungleich starken Präparaten bestrahlt worden war. In einem Versuch dauerte die Bestrahlung des Samens mit einer Kapsel von 5,3 mg reinem Radiumbromid fünf Minuten, in einem zweiten Versuch wurde sie unter sonst gleichen Bedingungen auf 15 Minuten ausgedehnt. Im dritten und vierten Experiment wurde beabsichtigt, die Samenfäden so stark und so lang als möglich. das heisst bis zu der Grenze zu bestrahlen, wo sie noch genügend beweglich geblieben sind, um durch die Gallerte und in das Ei zu dringen: zu dem Zweck wurde in derselben Weise, welche in der ersten Abhandlung beschrieben worden ist, verfahren. Anstatt auf einen hohlen Objektträger wurde der Samentropfen auf ein sehr dünnes Glimmerplättchen gebracht und zwischen zwei Kapseln von unten und oben bestrahlt. Die eine Kapsel war mit Mesothorium in der Stärke von 51 Milligramm reinem Radiumbromid, die zweite mit Mesothorium (gleich 20 Milligramm Radiumbromid) gefüllt. Im dritten Versuch wurde der Samen auf diese Weise drei Stunden lang bestrahlt. Bei mikroskopischer Untersuchung einer kleinen Stichprobe, die in einem Tropfen 0,3 proz. Kochsalzlösung auf den Objektträger gebracht wurde, zeigte ein Teil der Samenfäden schon eine Abnahme in der Bewegung des undulierenden Flossensaums. Als daher mit dem drei Stunden bestrahlten Samen die Eier nach dem oben erwähnten Verfahren besamt wurden, trat Zweiteilung und weitere Entwicklung nur bei einem kleinen Teil von ihnen ein. Daher wurde im vierten Versuch die intensive Bestrahlung unter denselben Verhältnissen schon nach zwei Stunden unterbrochen. Jetzt zeigten die Samenfäden bei mikroskopischer Untersuchung noch gute Beweglichkeit, und die mit ihnen vorgenommene Besamung lieferte ein sehr günstiges Ergebnis.

a) Erste Versuchsreihe. Bestrahlung der Samenfäden während fünf Minuten mit 5,3 mg reinem Radiumbromid.

Mit dem fünf Minuten bestrahlten Samen wurde eine Partie Eier am 5. Mai 11 Uhr früh befruchtet. In der Zeit von 6 bis 7 Uhr abends waren 17 Stück von ihnen in normaler Weise zweigeteilt. Sie wurden von den übrigen getrennt und in einer besonderen Schale weitergezüchtet. Normale Vierteilung begann von 7 Uhr an aufzutreten. Die Kontrolleier, die um 1 Uhr 20 Minuten desselben Tages befruchtet wurden, waren um 8 Uhr Abends mit wenigen Ausnahmen zweigeteilt. Dass die künstliche Befruchtung bei einer bald grösseren, bald kleineren Zahl von Tritoneiern nicht gelingt, ist bei der angegebenen Methode wohl nie ganz zu vermeiden. In dieser Beziehung ist bei Rana fusca und R. viridis das Prozentverhältnis ein besseres.

Schon auf dem Stadium der Zweiteilung lässt sich bei den Radiumeiern eine geringe Verzögerung im Vergleich zu den Kontrollen wahrnehmen. Dieselbe führt von Tag zu Tag zu immer grösser werdenden Differenzen. Schon am 8. Mai ist der Unterschied in der Entwicklung ein sehr auffälliger. Die mit Radiumsamen befruchteten Eier befinden sich noch auf dem Stadium der Gastrulation; zum grossen Teil lassen sie bei Untersuchung mit der Lupe eine kleine hufeisenförmige Einstülpung als Urmundöffnung erkennen. Die Kontrollen dagegen, bei denen die Gastrulation schon am vorausgegangenen Tag zum vollen Abschluss gekommen war, zeigen bereits das Stadium der deutlich entwickelten Medullarplatte, mit vorspringenden Wülsten, wie es in meiner Arbeit über die Entwicklung des mittleren Keimblatts der Tritonen 1 (Taf. I, Fig. 8 und 9) abgebildet ist.

Von dem entwickelten Ausgangsmaterial (17 Stück) wurden jetzt die 13 besten Eier zur Weiterzucht ausgelesen, der Rest, der zum Teil noch gar nicht den Beginn einer Gastrulation erkennen liess, in Chrom-Sublimat-Essigsäure eingelegt.

Die später vorgenommene Schnittuntersuchung lehrte auf das deutlichste, dass die starke Verzögerung in der Entwicklung in einer Schädigung des Zellmaterials ihre ursächliche Erklärung findet. Die Schädigung tritt auf dem in Fig. 1 (Taf. II) abgebildeten Durchschnitt durch ein Ei, welches auch am dritten Tag noch auf dem Keimblasenstadium steht, in verschiedenen Merkmalen hervor. Von den zahlreichen, kleinen Embryonalzellen haben viele die Neigung, eine reine Kugelform anzunehmen, wie es nach der Entdeckung von Herbst die Furchungszellen von Seeigeleiern tun, wenn sie während eines Furchungsstadiums auf kurze Zeit in kalkfreies Meerwasser gebracht werden. Infolgedessen ist namentlich nach der Keimblasenhöhle ihr normaler

Oscar Hertwig, Die Entwicklung des mittleren Keimblatts der Wirbeltiere. Jena, G. Fischer, 1883.

Zusammenhang, der bei gesunden Eiern besteht, in dem Maße gelockert, dass sie sich aus dem Verband mit den übrigen ganz abtrennen und frei in die Keimblasenhöhle zu liegen kommen. Eine solche Ablösung ist in unserem Durchschnitt in der gesamten Innenfläche eingetreten. Grössere und kleinere Zellkugeln, von denen einzelne auch Zerfallserscheinungen darbieten, finden sich infolgedessen in der Binnenhöhle zerstreut. Auch ihre Kerne sind pathologisch verändert; sie sind aus der Mitte der Zelle meist an ihre Oberfläche gewandert, sind zu grösseren Bläschen ausgedehnt, in denen häufig ein sehr grosser, stark sich färbender. kugeliger Nucleolus wahrgenommen wird. Dieser wird zuweilen auch ganz frei zwischen den Zellen vorgefunden, sei es, dass er beim Schnitt künstlich aus der Zelle herausgerissen wurde, sei es, dass er durch Zerfall des Kernbläschens und der Zelle frei geworden ist, was mir mehrfach der Fall zu sein schien. Dass derartig veränderte Eier sich nicht mehr viel weiter entwickeln können und bald zugrunde gehen müssen, wird niemand überraschen und ist auch durch die weitere Beobachtung bestätigt worden. Von den 13 Eiern, welche bei der am 8. Mai vorgenommenen Auswahl noch das normale Aussehen darboten, war am 9. Mai noch ein Ei weiss geworden, also abgestorben, so dass es entfernt werden musste. Der Abstand gegen die Kontrolleier hat sich jetzt noch mehr vergrössert. Diese zeigen einen Befund. wie er in meiner älteren Tritonarbeit (loco citato) auf Taf. I. Fig. 10-12 dargestellt ist. Das Nervenrohr ist geschlossen und am Kopfende im Begriff, sich in drei Hirnblasen zu sondern. Da schon eine nicht unerhebliche Streckung des Eies in der späteren Längsachse stattgefunden hat, beginnen sich die Embryonen in der Gallerthülle mit ihrem Kopf- und Schwanzende zu einem Halbring zusammenzukrümmen. Die Krümmung gleicht sich nach Isolation aus der Gallerte wieder aus. Ein derartig gestreckter, 4 Tage alter Kontrollembryo ist auf Taf. I dieser Abhandlung in Fig. 3 nach einer photographischen Aufnahme abgebildet.

Dagegen befinden sich die Versuchseier teils noch in Gastrulation, teils lassen sie erst eine noch wenig ausgeprägte oder richtiger, eine geradezu kümmerliche Anlage der Medullarplatte erkennen. Schon an den lebenden Objekten liess sich dies bei Lupenvergrösserung feststellen, wie in dem über sie geführten Protokoll bemerkt wurde. Eine sichere Bestätigung dieser Angabe

lieferten aber zwei Eier, die am 9. Mai in Zenkerscher Flüssigkeit konserviert wurden. Nachdem sie vermittelst Eau de Javelle aus ihren Hüllen befreit worden waren, ergaben sie den in den Fig. 1 und 2 auf Taf. I abgebildeten Befund. Fig. 2 zeigt noch einen grossen freiliegenden Dotterpfropf, umgeben von abnorm verlaufenden Urmundlippen. Das andere Ei in Fig. 1 ist etwas weiter entwickelt. Es lässt nach beendeter Gastrulation eine nur wenig ausgeprägte Anlage der Medullarplatte unterscheiden, an welcher sich der vordere quere Hirnwulst allein deutlicher markiert. In einiger Entfernung von ihm ist eine kleine, unregelmässige Einbuchtung in der Wand der Eiblase zu bemerken. Sie stellt einen abnormen Befund dar, der in irgend einer Weise mit dem verzögerten Verlauf der Entwicklung und mit der Ausbildung einer dünneren Stelle in der Blasenwand zusammenhängt. Häufig wurden auch kleine Mengen ausgestossener Dottersubstanz im perivitellinen Raum (z. B. in Fig. 2, dr) beobachtet, wie solche bei Radiumeiern des Frosches regelmässig und in grösserer Masse gefunden werden und von mir schon früher beschrieben worden sind (1911, 1. c., S. 31 und 32).

Am folgenden Tag (10, Mai) sind in der Kontrolle die Embryonen (Taf. I. Fig. 5) erheblich weiter gestreckt und zusammengekrümmt. Das Kopfende setzt sich schärfer ab und gliedert sich, indem zum Beispiel die Augenblasen schon ausgestülpt und an der Oberfläche als kugelige Vorwölbungen zu erkennen sind. Auch die Mesodermsegmente können bei der Untersuchung mit der Lupe bereits gut wahrgenommen werden. Dagegen sind die zehn Versuchsobiekte noch runde Blasen, auf deren Oberfläche das Zentralnervensystem in mehr oder minder verkümmerter Weise angelegt ist. Am deutlichsten ist noch die Hirnplatte mit deutlich vortretenden Wülsten markiert (Taf. I. Fig. 4), setzt sich aber nach hinten in einen schmäleren Zellstreifen fort, an dessen Seiten die Begrenzung von Rückenwülsten vermisst wird, und der nur durch seine trübere Beschaffenheit sich von der übrigen mehr durchscheinenden Blasenwand abhebt. Bei normaler Entwicklung wird ein derartiger Befund niemals beobachtet. Auch hat sich schon jetzt im Inneren der Keimblase Flüssigkeit in aussergewöhnlicher Weise angesammelt, wie ein Vergleich des Durchmessers von Fig. 4 mit den um einen Tag jüngeren Eiern der Fig. 1 und 2 sofort lehrt. Mit Recht kann

man daher schon jetzt von einer sehr früh aufgetretenen Wassersucht der Eiblase sprechen.

Eine Querschnittserie durch das in Fig. 4 abgebildete Ei trägt noch Einiges zur Ergänzung dieses Befundes bei. Sie zeigt in der Tat den inneren Hohlraum weit über das Normale ausgedehnt (Taf. II. Fig. 14). Infolgedessen ist die dorsale Wand stark verdünnt und aus sehr abgeplatteten Zellen zusammengesetzt. Infolge einer nicht günstigen Orientierung des Objektes beim Einbetten in Paraffin wurde der kleine Bezirk, der bei Flächenbetrachtung als verkümmertes vorderes Ende der Medullarplatte gedeutet wurde, nur in Flachschnitten getroffen, so dass er keine zur Wiedergabe geeigneten Bilder lieferte. Auch in diesem Ei haben wieder viele in der Umgebung des inneren Hohlraumes gelegene Zellen (z) Kugelform angenommen, sich von den übrigen abgelöst und liegen teils als grössere Haufen, teils vereinzelt auf dem Boden der noch in festerem Zusammenhang gebliebenen, vegetativen Dotterzellen.

Da am 10. Mai fünf Eier konserviert wurden, blieben nur fünf zur Weiterzucht übrig. Diese begannen sich am 11. Mai auch etwas zu strecken. Das Zentralnervensystem ist, wie Fig. 6 (Taf. I) lehrt, in der Rückengegend als ein kümmerlicher Zellenstrang angelegt, der nur wenig an der Oberfläche hervortritt und vorn eine feine Rinne erkennen lässt. An seinem vorderen und hinteren Ende sind Kopf- und Schwanzhöcker auch kaum angedeutet. Auf diesem Stadium werden drei Eier eingelegt, so dass jetzt vom Versuch nur noch zwei überleben. Eine Schnittserie durch den in Fig. 6 abgebildeten Embryo bestätigt die schon bei der Oberflächenuntersuchung gemachte Wahrnehmung, dass die weitere Entwicklung nur zu stark verkümmerten Organanlagen geführt hat. Bei einer 100 fachen Vergrösserung ist ein Querschnitt durch das vordere Ende der Anlage des Zentralnervensystems (Fig. 8, Taf. II) und ein zweiter Schnitt durch die Mitte desselben (Fig. 9) abgebildet. In beiden ist am deutlichsten die Chorda dorsalis (ch) als ein runder, gut abgegrenzter Zellstrang wahrzunehmen. Die über ihm gelegene Medullarplatte (mp) hängt noch mit dem Hornblatt zusammen, ist in hohem Maße verkümmert und nur aus wenigen kleinen Zellen zusammengesetzt. In Fig. 9 zeigt sie eine unregelmässige Rinne mit einer linkerseits vorspringenden Falte. Das Hornblatt besteht aus einer

einzigen Lage stark abgeplatteter Zellen. In demselben Maße wie die Nervenplatte, ist auch das ganze mittlere Keimblatt (mk) verkümmert; denn es besteht zum Teil nur aus einer dünnen Zellanlage, zum Teil aus kleinen abgetrennten Zellenhaufen zu beiden Seiten der Chorda. In der Darmhöhle sind auch wieder einige wenige kugelige, isolierte Zellen und Haufen von Dotterplättchen, die wohl von zerfallenen Zellen herrühren, zu beobachten.

Wenn also in diesem Fall auch die Entwicklung noch über das Keimblasen- und Gastrulastadium, allerdings in sehr stark verlangsamter Weise, ihren Fortgang genommen hat, trägt sie doch einen so stark pathologischen Charakter und hat zu so kümmerlichen und rudimentären Organanlagen geführt, dass der ganze Befund auf einen bald eintretenden vollständigen Stillstand und einen sich anschliessenden Zerfall hindeutet.

Wie gross jetzt der Kontrast zu den gleichalterigen Kontrollembryonen geworden ist, zeigt Fig. 7 (Taf. I). Der normale Embryo ist stark in die Länge gewachsen, sehr deutlich segmentiert. Das Schwanzende tritt schärfer hervor. Am Kopf hat die feinere Gliederung Fortschritte gemacht. Die Augenblasen sind zum Becher umgewandelt; die Kieferbogen werden sichtbar.

Am 12. Mai sind die in den Eihüllen zusammengerollten Kontrollembryonen, wenn sie frei präpariert und gestreckt sind, mehr als doppelt so lang im Vergleich zu den mit bestrahlten Spermien befruchteten Eiern. Sie beginnen schon, da sich in den Mesodermsegmenten Muskelfasern gebildet haben. Bewegungen auszuführen. Einer von ihnen ist in Fig. 10 (Taf. I) auf photographischem Wege aufgenommen; doch ist er ebenso wie die in den Fig. 8 und 9 abgebildeten Embryonen nur 8 mal vergrössert, während die Vergrösserung der vorher beschriebenen jüngeren Stadien das 12 fache beträgt. Die Versuchseier sind noch immer wenig gestreckt von ovaler Form mit vortretendem Kopf- und Schwanzhöcker.

Ein Embryo wurde eingelegt, zeigte aber später bei mikroskopischer Untersuchung, dass er schon vor dem Einlegen abgestorben und in Zerfall begriffen war.

Am 14. Mai haben die Embryonen ein Alter von 9 Tagen erreicht. Im Radiumversuch ist der einzige, jetzt noch überlebende Embryo zwar sehr klein, aber besser gegliedert (Taf. I, Fig. 8). Er befindet sich jetzt etwa auf dem Stadium, welches die Kontrollen schon am 5. Tag (Taf. I, Fig. 5) erreicht hatten.

Der Kopfhöcker ist besser abgesetzt und lässt zum erstenmal eine Gliederung erkennen. Auch der Schwanz tritt als Höcker über die Oberfläche weiter hervor. Der Dottersack ist ventralwärts infolge beginnender Wassersucht blasenartig vorgetrieben und grösser als es bei normaler Entwicklung der Fall ist. Infolgedessen haben sich Kopf- und Schwanzende nicht ventralwärts einander nähern und zu einem Halbring zusammenkrümmen können, wie bei normaler Entwicklung (Taf. I, Fig. 5). Die mehr als doppelt so langen Kontrollarven sind viel schlanker und gut beweglich (Taf. I, Fig. 9). Am Kopf sind die Kiemenhöcker hervorgesprosst. Der Rücken und das schon ansehnlich gewordene Schwanzende beginnen sich mit einer durchsichtigen Hautfalte, einem Flossensaum. zu umgeben.

Der Versuch a wird auf diesem Stadium abgeschlossen und der letzte Embryo (Fig. 8) zum Zweck mikroskopischer Untersuchung in Chrom-Sublimat-Essigsäure eingelegt.

b) Zweite Versuchsreihe. Bestrahlung der Samenfäden während 15 Minuten mit 5,3 mg reinem Radiumbromid.

Auch der zweite Versuch wurde am 5. Mai ausgeführt. Mit den Samenfäden, die sich nach der viertelstündigen Bestrahlung noch kräftig bewegten, wurde die Besamung der Eier um 12 Uhr 30 Minuten vorgenommen. Die Zweiteilung begann von 6 Uhr 30 Minuten an nach und nach einzutreten. Das Prozentverhältnis gestaltete sich in diesem Versuch sehr günstig, da 45 Eier sich in normaler Weise teilten. Der Furchungsprozess nahm zunächst seinen normalen Verlauf. Aber schon nach 2 Tagen (am 7. Mai) sahen die Eier nicht gut entwickelt aus. Ihre Oberfläche gewann eine feinhöckerige Beschaffenheit, was darauf zurückzuführen ist, dass die Embryonalzellen sich abrunden und ihren festen Zusammenhang untereinander verlieren. Es wird daher ein Teil des Materials teils mit der Gallerthülle, teils nach Entfernung derselben eingelegt. Die Gastrulation hat noch nicht begonnen; dagegen lassen die Kontrolleier - zur Kontrolle diente dasselbe Material wie bei der ersten 11/2 Stunden früher begonnenen Versuchsreihe - schon einen runden Blastoporus mit kleinem Dotterpfropf erkennen.

Die mikroskopische Untersuchung der konservierten Eier auf Schnittserien bestätigte die schon bei der Betrachtung des

lebenden Materials gewonnene Auffassung. Zur Bildung einer ganz normal aussehenden Keimblase ist es gewöhnlich nicht mehr gekommen. Zwar sind durch den Furchungsprozess viele Hunderte von kleinen Zellen entstanden. Aber es fehlt der normale, feste Zusammenhalt zwischen ihnen, wenn nicht überall, so doch an vielen Stellen. Die in hohem Maße geschädigten Zellen haben noch mehr als in der ersten Versuchsreihe die Neigung, Kugelform anzunehmen. In schöner Weise ist dies in Fig. 3 (Taf. II) zu sehen. Die ganze Oberfläche zeigt nirgends eine Lage fest zu einem Epithel zusammengefügter Zellen, sondern sieht feinhöckerig aus, wie auf dem Stadium der groben Morula, obwohl dieses schon längst abgelaufen ist. Bei dem losen Zusammenhang fast aller Elemente haben sich viele Zellen von den übrigen ganz abgetrennt und liegen vereinzelt der Oberfläche frei auf oder haben sich in einem Hohlraum angesammelt, wie ein solcher unter der Dotterhaut an einer Stelle der Fig. 3 zu sehen ist.

In etwas modifizierter Weise ist der Auflösungsprozess in einem anderen Fall verlaufen, von welchem ein Durchschnittsbild in der Fig. 12 (Taf. II) wiedergegeben ist. An der Oberfläche des feinzelligen Haufens, der am oberen Rand auch eine kleine Einbuchtung erkennen lässt, ist zwar im allgemeinen eine festere Grenzschicht von Zellen mit pigmentierter Oberfläche vorhanden, aber diese weist hier und da, und zwar in unserer Figur an zwei Stellen, x¹ und x², kleine Unterbrechungen auf, an welchen der Zusammenhang gelockert ist. Hier nimmt man vereinzelte kugelige Zellen wahr, die sich von den übrigen abgetrennt haben und in dem perivitellinen Spaltraum unter die Dotterhaut geraten sind. Von derartigen Stellen stammen offenbar die grösseren und kleineren Zellkugeln (z) ab, die sich fast überall auf der Oberfläche, auch dort, wo noch eine festere Begrenzungsschicht vorhanden ist, verbreitet finden. Ausser ihnen ist aber der perivitelline Spalt noch von einem Detritus (d) feiner Körnchen und Dotterplättchen ausgefüllt. Diese sind ohne Frage auf einen nachträglichen weiteren Zerfall der abgelösten Zellkugeln zurückzuführen. Hierdurch findet auch die graue Verfärbung von der Oberfläche vieler Eier, die am zweiten Tage beobachtet und als eine Absterbungserscheinung gedeutet wurde, ihre Erklärung. Sie rührt von dem Zelldetritus her, der sich über grösseren Abschnitten der Oberfläche unter der Dotterhaut gebildet hat.

Eine Kombination von Entwicklungs- und Zerfallserscheinungen bietet uns ein Durchschnitt durch ein drittes Ei dar (Fig. 13, Taf. II). Hier hat sich in einem Bezirk in sehr unregelmässiger Weise eine Einstülpung gebildet. Zwei abnorm gestaltete Urmundlippen umfassen einen kleinen Hohlraum. Dagegen hat an der entgegengesetzten vegetativen Hälfte nicht nur eine Lockerung und Ablösung der Dotterzellen, sondern zugleich auch schon ein Zerfall derselben in einen körnigen Detritus begonnen; dieser hat sich bereits im perivitellinen Spaltraum unter der Dotterhaut über die noch besser erhaltene Hälfte des Eies herübergeschoben.

Aus den mitgeteilten Ergebnissen der Untersuchung des konservierten Materials auf Durchschnitten wird es jetzt leicht begreiflich sein, dass am folgenden Tag, dem dritten nach der Befruchtung, viele Versuchseier weiss geworden und abgestorben sind, obwohl sie sich bis zum Morulastadium anscheinend normal entwickelt hatten. Bei ihnen hat der Zerfall der Zellen, der schon am zweiten Tage begann, noch weitere Fortschritte gemacht. Der andere Teil der Eier, der offenbar durch das Experiment weniger geschädigt war, sah zwar noch lebend aus, war aber im Vergleich zum vorausgegangenen Tag in seiner Entwicklung nur wenig weiter fortgeschritten und hinter den Kontrollen, bei denen schon die Gastrulation beendet und die Medullarplatte angelegt war, weit zurückgeblieben. Der Rest des Versuchsmaterials wird daher nach Aussortierung der weiss gewordenen und abgestorbenen Eier in Chrom-Sublimat-Essigsäure für mikroskopische Untersuchung eingelegt. So hat in diesem Fall der Versuch b schon am 8. Mai, dem dritten Tag nach seinem Beginn, sein Ende gefunden. Die später vorgenommene mikroskopische Untersuchung aber lehrte, dass in manchen Fällen der Beginn der Gastrulation noch eingetreten war. Einen solchen Befund gibt der in Fig. 2 (Taf. II) abgebildete Querschnitt. Zwei relativ normal aussehende Urmundlippen haben sich entwickelt und umschliessen einen kleinen Urdarm, an dessen Boden das in die Tiefe gedrängte Dottermaterial liegt. Ein äusseres Keimblatt ist überall angelegt, auch stehen seine Elemente noch in festem Zusammenhang untereinander. Dagegen ist im Inneren des Eies noch eine geräumige Keimblasenhöhle vorhanden und mit zahlreichen grösseren und kleineren, kugelig gewordenen, vegetativen

Zellen erfüllt, die wieder ihren Zusammenhang untereinander verloren haben und auch pathologische Veränderungen ihrer Kerne aufweisen. Mit Recht lässt sich hieraus wohl schliessen, dass sogar bei derartigen besser entwickelten Eiern der Beginn des Zerfalls in der Abkugelung und Isolierung vieler vegetativer Zellen schon eingeleitet ist und dass er rasch fortgeschritten und zum Absterben geführt haben würde, wenn der Versuch nicht abgebrochen worden wäre.

c) Dritte Versuchsreihe. Intensive, zwei- und dreistündige Bestrahlung der Samenfäden zwischen zwei Mesothoriumkapseln.

In dieser Weise wurde der Versuch zweimal ausgeführt, einmal am 16., das zweite Mal am 17. April: im ersten Fall mit dreistündiger, im zweiten Fall mit zweistündiger Bestrahlung. Die Bestrahlungsdauer wurde hier etwas abgekürzt, weil nach 3 Stunden schon die Bewegung der Samenfäden vielfach stark abgeschwächt und der Prozentsatz der mit ihnen befruchteten Eier daher nur ein kleiner war. Da in beiden Experimenten der Verlauf ein übereinstimmender war, will ich ihn nach den Protokollen gemeinsam besprechen.

In dem Versuch vom 16. April entwickelten sich aus dem schon hervorgehobenen Grund nur sechs Eier; fünf teilten sich in normaler, das sechste in pathologischer Weise. Im zweiten Versuch (am 17. April) dagegen waren von 32 Eiern 24 Stück durch die Besamung zur Entwicklung angeregt worden: von ihnen machten 22 nach 6-7 Stunden eine normale Zweiteilung durch. In beiden Fällen befanden sich die Eier am folgenden Tag auf dem Stadium der groben Morula. 24 Stunden später liess sich der Beginn der Gastrulation am Auftreten der hufeisenförmigen Urmundrinne (1883, l. c. Fig. 2), zugleich aber auch eine geringe Verspätung im Vergleich zum Kontrollmaterial beobachten. Denn bei diesem ist jetzt schon ein ringförmiger Blastoporus mit rundem, bald grösserem bald kleinerem Dotterpfropf (etwa wie in Fig. 3 l. c., 1883) zustande gekommen, ein Stadium, das bei den Versuchseiern erst am dritten Tag erreicht wird. Am vierten Tag haben die mit intensiv bestrahlten Samenfäden befruchteten Eier eine normale Medullarplatte mit vorspringenden Medullarwülsten gebildet; diese stehen entweder noch weiter auseinander, oder sie haben sich bei einem Teil des Versuchsmaterials schon mehr oder minder

zum Verschluss zusammengelegt, wie in den Fig. 7—9 meiner früher zitierten Arbeit (1883). In der Kontrolle dagegen ist zu dieser Zeit das Nervenrohr schon geschlossen und vorn im Begriff, sich in drei Hirnblasen zu sondern. Die Embryonen haben sich schon etwas gestreckt und über die Bauchfläche mit ihrem Kopfund Schwanzende zu einem Halbring zusammengekrümmt (1883, 1. c. Fig. 11 und 12, oder Fig. 3, Taf. I dieser Abhandlung).

Ein entsprechendes Aussehen bieten die Versuchseier erst einen Tag später dar. Mit einem Wort, es ist bei ihnen die Entwicklung bis zum fünften Tag ganz normal, nur infolge der etwas später und langsamer abgelaufenen Gastrulation ein wenig verzögert; sie nimmt also einen ausserordentlich viel besseren Verlauf als bei den Eiern, deren Samenfäden nur 5 Minuten und mit einem schwachen Präparat bestrahlt worden waren. Denn bei diesen war die Entwicklung, abgesehen von der Verzögerung. von vornherein auch eine pathologische; wurde doch zum Beispiel die Medullarplatte gleich von vornherein in einem ganz verkümmerten Zustand angelegt. In unserer dritten Versuchsreihe tritt daher auch kein Verlust durch Absterben einzelner Embryonen ein; alle beginnen sich in einer der Norm sich annähernden Weise Schritt für Schritt weiter zu entwickeln, sich mehr und mehr in die Länge zu strecken und ein Organ nach dem anderen anzulegen. Trotzdem sind sie weit entfernt, als normal bezeichnet werden zu können. Je älter sie werden, um so mehr tritt der pathologische Charakter der Radiumlarven zutage, wie schon allein die nähere Betrachtung und Vergleichung der lebenden Tiere lehrt.

Ich fahre in der Mitteilung der Protokolle weiter fort:
Am Ende der zweiten Woche sind im Versuch vom 17. April
zwei und im Versuch vom 16. April ein Embryo wassersüchtig geworden, d. h. sie zeigen einen stark aufgetriebenen, blasenförmigen
Bauch mit durchscheinender, weil stark verdünnter Rumpfwand.
Sie werden daher aus den Hüllen, in welchen sie zu diesem
Termin ebenso wie die Kontrollen noch eingeschlossen sind,
herauspräpariert. Sie führen jetzt schon schwach zuckende Bewegungen aus, vermögen sich aber nicht gerade zu strecken, wie
es die gleichalterigen Kontrolltiere nach ihrer Befreiung aus der
Gallerte tun. Sie bleiben so zum Halbring zusammengekrümmt
am Boden des Glasgefässes unbeweglich liegen und zucken nur bei

Berührung zusammen, während die Kontrolltiere schon Schwimmbewegungen ausführen. Auf Taf. I. Fig. 12 und 13 sind zwei dieser Radiumlarven nebst der dazu gehörigen Kontrolle (Fig. 11) abgebildet. Bei dieser ist der Kopf der breiteste Körperteil, er setzt sich in einen schmäleren Rumpf und einen längeren gestreckten Schwanz fort, der schon oben und unten von einem Flossensaum umhüllt ist. Die beiden Augäpfel, deren durchsichtige Hornhaut von einem dunklen Pigmentring umgeben ist. sind deutlich zu sehen; die Kiemen sind schon als längere Fäden entwickelt. Vor ihnen findet sich jederseits ein feiner, tentakelförmiger Anhang, der von dem hinteren Rand des Unterkiefers entspringt und ein für Tritonlarven charakteristisches Gebilde ist. Bei den zwei Radiumlarven dagegen (Fig. 12 und 13) sind Kopf und Rumpf nicht gegeneinander abgesetzt, weil dieser durch Wassersucht aufgetrieben und infolgedessen umgekehrt wie bei der Kontrolle breiter als der Kopf ist. Der Kopf ist überhaupt viel weniger gegliedert. Die Augen sind bei der äusserlichen Untersuchung nicht zu unterscheiden. Die Kiemenfäden sind bei dem einen Exemplar (Fig. 12) sehr kümmerlich, bei dem anderen (Fig. 13) noch gar nicht entwickelt. Dagegen sind die beiden oben erwähnten tentakelartigen Anhänge des Kopfes ebensogut wie bei der Kontrolle zu sehen.

Sehr frühzeitig während ihrer Entwicklung, bilden sich bei den Tritonen vier charakteristische Pigmentlinien in der Rückenund Seitenfläche des Körpers aus und zwar bei den Radiumlarven und den dazugehörigen Kontrollen in gleichartiger Weise. Schon in den Fig. 11-13, noch deutlicher aber in den Fig. 17-19, 23-27, welche älteren Stadien entsprechen, sind sie wahrzunehmen. Zwei schwarze dorsale Pigmentstreifen beginnen am Kopf, oberhalb des Mundes und verlaufen parallel und in geringem Abstand voneinander etwas median von der Augengegend und dehnen sich über den Rücken bis zur Schwanzspitze aus: sie liegen links und rechts vom Flossensaum. Zwei weitere, weniger ausgeprägte Pigmentlinien nehmen hinter den Augen ihren Anfang und verlaufen oberhalb der Kiemenbüschel und der Extremitäten, wenn dieselben entwickelt sind, an der Seite des Rumpfes ebenfalls nach hinten. Ausserdem finden sich auch noch vereinzelte Pigmentzellen zerstreut in der Haut verteilt, so auch an den Kiemenbüscheln und den Extremitäten. Zuweilen sind

die Radiumlarven noch reichlicher und dunkler, als es der Norm entspricht, pigmentiert.

Der wichtigste Unterschied zwischen Radium- und Kontrolllarven besteht indessen, abgesehen von der Bauchwassersucht der
ersteren, in sehr auffälligen Grössenverhältnissen. Die Eier,
welche mit intensiv bestrahlten Spermatozoen besamt worden
sind, liefern ohne Ausnahme viel kleinere Tiere als die normal
befruchteten. Jene erreichen im Durchschnitt nur zwei Drittel
der Länge wie diese. Schon bei den 2 Wochen alten Exemplaren,
die in den Fig. 12 und 13 dargestellt sind, ist dies der Fall, wenn
wir sie uns gestreckt denken und mit der daneben abgebildeten
Kontrolle (Fig. 11) vergleichen. Und dasselbe wiederholt sich
bei allen Tieren bis zum Ende der vierten Woche, wo die beiden
Versuche beendet wurden. Man vergleiche Fig. 15 und 16 mit
Fig. 14, Fig. 18 und 19 mit Fig. 17, Fig. 21 und 22 mit Fig. 20,
Fig. 24 und 25 mit Fig. 23, endlich Fig. 26 mit Fig. 27.

Am deutlichsten nimmt man die erhebliche Grössendifferenz bei den älteren pathologischen Individuen wahr, welche sich nach dem Ausschlüpfen aus der Gallerthülle, wie es zuweilen geschieht, noch gerade strecken und daher auch äusserlich am besten entwickelt erscheinen. In den Fig. 22, 26 und 33 sind solche neben den gleichalterigen Kontrollen (Fig. 20, 27 und 32) abgebildet. Zum Teil fällt die geringere Länge auf die Verkümmerung ihres Schwanzendes. Im Zusammenhang hiermit ist bei den Radiumlarven auch der Flossensaum weniger gut entwickelt. Meist bleibt auch nach dem Ausschlüpfen oder nach der künstlichen Befreiung aus der Gallerthülle das Schwanzende hakenförmig umgekrümmt (Fig. 21 und 25).

Ein deutlicher Unterschied zwischen den normalen und den Versuchstieren zeigte sich auch in der Zeit des Ausschlüpfens. Die ersteren verliessen ziemlich gleichzeitig am 4. Mai, dem 17. Tage nach der Befruchtung, mit Ausnahme eines einzigen Exemplares die Eihüllen und begannen dann auch gleich sich in gerader Richtung hurtig durch das Wasser fortzubewegen. In dem Radiumversuch schlüpften die Larven nach und nach während mehrerer Tage aus; am 4. Mai nur drei in jedem Versuch; andere folgten erst am nächsten Tage nach. Am 6. Mai lagen immer noch einige in der Gallerthülle zusammengerollt, da sie dieselbe wegen der Schwäche ihrer Bewegungen wohl nicht zu

sprengen vermochten. Sie wurden daher künstlich mit Nadeln freipräpariert.

Gewöhnlich sind die Larven des Radiumversuchs nicht imstande, sich nach dem Ausschlüpfen gerade zu strecken, sondern behalten die in den Hüllen entstandene Krümmung bei, so dass das Schwanzende bald nach rechts, bald nach links stärker oder schwächer umgeschlagen ist (Taf. I, Fig. 12, 13, 18, 19, 15—16, 24—25). Infolgedessen beginnen sie sich im Kreise herumzudrehen, wenn sie zu schwimmen versuchen. Nur ein kleiner Teil, der am normalsten und kräftigsten entwickelt ist, vermag sich gerade zu strecken (Fig. 22, 26 und 33) und in diesem Falle auch in gerader Richtung wie normal durch das Wasser zu eilen. In der Regel aber bleiben die Radiumlarven unbeweglich auf dem Boden des Gefässes liegen und führen nur bei Berührung mit der Nadel vorübergehend einige zuckende Bewegungen aus.

Während sich die Bauchwassersucht bei einigen sehr frühzeitig, während sie noch in den Hüllen sind, einstellt (Fig. 12, 13 und 15), entwickelt sie sich bei anderen erst nach dem Ausschlüpfen (Fig. 21, 22, 25 und 26), erreicht aber nie den hohen Grad, den wir bei den Kaulquappen mit ballonartig aufgetriebenem Leibe kennen gelernt haben; zuweilen ist sie überhaupt nur wenig aufgetreten (Fig. 24 und 26).

Auch noch in anderer Beziehung sind einige Unterschiede zwischen den Versuchstieren und den Kontrollen zu bemerken. So sind bei jenen (Fig. 12, 13, 15, 18, 19, 21 und 22) die Kiemen kümmerlicher als bei diesen (Fig. 11, 14, 17 und 20) entwickelt. Am Ende der dritten Woche tritt dies am meisten hervor. So zeigen die Fig. 18, 19, 21 und 22 eine kleine Zahl kurzer, unverzweigter Fäden, dagegen die Fig. 17 und 20 längere und reichlicher verzweigte, seitwärts und nach hinten weit vorspringende Kiemenbüschel. Auch bei 4 Wochen alten Tieren ist noch ein Unterschied zu sehen. (Vergleiche Fig. 24—26 mit Fig. 23 und 27.) Übrigens konnte die Blutzirkulation in den Kiemenfäden 26 Tage alter Radiumlarven bei schwacher Vergrösserung gut beobachtet werden.

Auch in der Ausbildung der vorderen Extremitäten sind die 3 Wochen alten Radiumlarven hinter den normalen Tieren etwas zurückgeblieben. Bei jenen sind die Vorderbeine seitwärts vorstehende, kurze Höcker mit wenig ausgeprägter Sonderung der Zehen (Fig. 15, 16, 18, 19, 21 und 22), bei diesen sind sie fast doppelt so lang und am Ende durch tiefe Einschnitte in drei Zehen gegliedert (Fig. 17 und 20). Auch bei den 4 Wochen alten Tieren ist in der Länge und besseren Gliederung der vorderen Extremitäten ein deutlicher Unterschied zwischen den Fig. 24—26 auf der einen Seite und den Fig. 23 und 27 auf der anderen Seite nicht zu verkennen.

II. Teil.

Kreuzung der Eier von Triton vulgaris mit Samenfäden von Salamandra maculata, die 2 resp. 2¹/₄ Stdn. zwischen zwei starken Mesothoriumpräparaten bestrahlt wurden.

Bekanntlich lassen sich bei vielen Wirbeltierarten zwar die Eier mit artfremdem Samen befruchten, sterben dann aber nach regelmässigem Verlauf des Furchungsprozesses auf dem Stadium der Keimblase oder spätestens mit Beginn der Gastrulation unfehlbar ab. Dagegen entwickeln sich dieselben Objekte, wie in einer soeben erschienenen Abhandlung von meinem Sohn nachgewiesen worden ist, in annähernd normaler Weise weiter, wenn der artfremde Samen vor seiner Verwendung zur künstlichen Befruchtung längere Zeit mit kräftigen Mesothoriumpräparaten bestrahlt wurde. Derartige Versuche wurden von ihm an Eiern von Bufo vulgaris und von Rana viridis ausgeführt, die mit Samen von Rana fusca bastardiert wurden. In beiden Fällen unterblieb jetzt, einzig und allein infolge der Bestrahlung der Samenfäden, der Zerfall des Eies auf dem kritischen Stadium. Es liessen sich Larven züchten, die mit allen Organen ausgestattet waren und ein Alter von 3-4 Wochen erreichten. Ihre Entwicklung muss als eine parthenogenetische bezeichnet werden. Denn wie in der erwähnten Abhandlung in verschiedener Weise festgestellt ist, hat der artfremde Samen durch die Bestrahlung seine Wirksamkeit im Ei eingebüsst und ist gleich nach dem Eindringen und nach Anregung des Furchungsprozesses aus dem weiteren Entwicklungsverlauf gewissermassen ausgeschaltet worden.

Es lag daher nahe, bei meiner Untersuchung des Tritoneies den Versuch zu machen, ob nicht auch hier durch Vornahme einer Fremdbefruchtung ein ähnliches Ergebnis zu erreichen sei. Der Versuch wurde mit Samen von Salamandra maculata ausgeführt. Dass diese Kreuzung möglich ist und zu einem gleichen Endergebnis wie die Kreuzung des Kröteneies mit Froschsamen führt, hat bereits in diesem Frühjahr H. Poll durch Experimente im Biologischen Institut ermittelt und darüber in der Gesellschaft naturforschender Freunde kurz berichtet. "Samenfäden von Salamandra maculosa", bemerkt er, "bringen das Ei von Molge vulgaris unter auffallend regelmässiger Furchung bis zur Blastula, niemals über diese Phase hinaus". Also war auch hier, da die bastardierten Eier auf dem Keimblasenstadium ausnahmslos absterben und zerfallen, die Vorbedingung für ein Mesothorium-experiment in der oben angedeuteten Richtung gegeben. Der Verlauf desselben war auch in diesem Fall der von vornherein erwartete.

Drei Versuche wurden ausgeführt, zwei am 19. April, der dritte am 19. Mai. Die künstliche Befruchtung geschah in der früher angegebenen Weise. Am 19. April war von den getöteten Salamandermännchen nur wenig Milch aus den Samenleitern zu erhalten. Sie wurde ebenso, wie es schon für den Tritonsamen beschrieben worden ist, $2^{1}/4$ Stunden zwischen zwei starken Mesothoriumpräparaten bestrahlt.

Nach dieser Zeit hatten schon viele Samenfäden ihre Beweglichkeit eingebüsst; der undulierende Saum liess unter dem Mikroskop nur noch schwache Wellenbewegungen wahrnehmen. Infolgedessen und bei der geringen Quantität der zur Verfügung stehenden Milch lieferte die Besamung einer kleinen Anzahl von Eiern nur eine geringe Ausbeute. Viele Eier blieben unbefruchtet. einige wenige teilten sich unregelmässig, wohl infolge einer beim Herauspräparieren eingetretenen mechanischen Schädigung durch Zerrung und dadurch verursachter Polyspermie; nur sechs Eier teilten sich in normaler Weise. Von ihnen begannen am 21. April vier Stück in Gastrulation einzutreten. Sie wurden vom übrigen Material behufs weiteren genaueren Studiums isoliert. Sie begannen sich von Tag zu Tag, ähnlich wie die Kontrollen, weiter zu entwickeln. Also auch hier war infolge der Bestrahlung des Samens der Zerfall der in Entwicklung begriffenen Eier auf dem kritischen Stadium vor der Gastrulation verhütet worden. Am 15. Tag nach der Befruchtung (4. Mai) sind zwei Larven aus den Gallerthüllen ohne künstliche Beihilfe ausgeschlüpft. Eine von ihnen sieht ziemlich normal aus, ist gestreckt und beginnt herumzuschwimmen, die andere dagegen hat schon starke Bauchwassersucht, so dass die Bauchhaut glashell durchsichtig ist (Taf. I, Fig. 28); sie ist nur imstande, kreisförmige und zitternde, wenn auch ziemlich lebhafte Bewegungen auszuführen; gewöhnlich bleibt sie ruhig auf dem Boden des Gefässes liegen und wird nur durch Berührung mit der Nadel zu den Kreisbewegungen veranlasst. Behufs weiterer Untersuchung wird sie am Tage des Ausschlüpfens gleich in Flemmingscher Flüssigkeit konserviert (Fig. 28).

Der Unterschied zu dem normalen, nur vier Tage älteren Kontrolltier (Fig. 14) ist auffällig genug. Zwischen dem gestreckten und schlanken Körper mit dem langen Schwanzende und mit den langen, am Kopf seitlich vorspringenden Kiemenfäden hier, und der plumpen Larve des Versuchs (Fig. 28) mit dem stark aufgetriebenen Bauch, mit den kurzen Kiemenstummeln, dem wenig entwickelten Kopf und dem kurzen Schwanz besteht ein grosser Kontrast. Auch beträgt ihre Länge nur wenig mehr als die Hälfte des Kontrolltieres.

Am nächsten Tag haben auch die beiden anderen Larven ihre Hüllen verlassen. Von ihnen hat eine das Schwanzende nach der rechten Seite eingekrümmt (Taf. I, Fig. 29). Da sie nur schwache Bewegungen ausführt, wird sie am 7. Mai in Pikrin-Sublimat-Essigsäure im Alter von 18 Tagen eingelegt. Sie sieht der nur einen Tag älteren Tritonlarve der Fig. 18 ausserordentlich ähnlich aus. Bei dieser war das Ei mit eigenem stark bestrahlten Samen befruchtet worden. Bei beiden ist das kurze Schwanzende, das von einem durchscheinenden Flossensaum umgeben ist, nach der rechten Seite scharf umgebogen. Bei beiden ist der Bauch durch Wassersucht, wenn auch nicht in dem hohen Grad wie in Fig. 28, aufgetrieben. Am Rücken des Kopfes sind hier wie dort die beiden Augen als helle, von einem schwarzen Pigmentring umgebene Flecken zu erkennen, hier wie dort springen ventralwärts zwei dünne Tentakeln und seitwärts kurze Kiemenfäden hervor. Auch die Extremitäten sind als kurze, ungegliederte Stummel angelegt. In der Haut sind zahlreiche schwarze Pigmentzellen in der schon früher besprochenen Weise in Linien angeordnet. Man vergleiche mit den Versuchstieren die normale, gerade gestreckte Larve (Fig. 17), die um ein Drittel länger ist, einen besser entwickelten Schwanz, einen breiteren und dünneren Flossensaum, einen scharf abgegliederten Kopf.

schön verzweigte Kiemenfäden, grössere, schon gegliederte Extremitäten mit Zehen etc. darbietet.

Die jetzt noch überlebenden zwei Larven des Versuchs sind gerade gestreckt, gut beweglich und schwimmen ziemlich hurtig durch das Wasser. Da aber am 16. Mai eine von ihnen in ihren Bewegungen schwächer zu werden anfängt, wird sie mit einer Kontrollarve wieder in Pikrin-Sublimat-Essigsäure konserviert, nachdem sie ein Alter von 27 Tagen erreicht hat (Fig. 31). Sie sieht viel normaler als die beiden anderen schon früher abgebildeten Larven (Fig. 28 und 29) aus. Denn sie ist nicht nur gerade gestreckt, sondern auch schlank, weil sich in diesem Fall keine Bauchwassersucht gebildet hat. Daher ist denn auch der Kopf viel breiter als der Rumpf. Auch die beiden Augen sind gut entwickelt. Die Unterschiede der Versuchslarve (Fig. 31) gegen die gleichalterige, daneben abgebildete Kontrolle (Fig. 30) bestehen nur in folgenden Momenten: Die erstere ist auch wieder etwa um ein Drittel kleiner. Das Schwanzende zumal ist weniger in die Länge entwickelt. Auch der Kopf ist etwas schmäler und kürzer, die Kiemen sind an ihm infolge ihrer mangelhaften Ausbildung kaum zu sehen. Die vorderen Extremitäten sind erheblich kleiner und stehen weniger weit vom Rumpf ab, als bei dem Kontrolltier (Fig. 30).

Die letzte Larve, welche sich noch gut bewegte, wurde weiter gezüchtet, doch nur drei Tage. Denn schon am 19. Mai wurde sie bei der Durchsicht des Gefässes tot im Wasser aufgefunden und war schon im Zerfall begriffen, so dass eine Konservierung nicht mehr vorgenommen werden konnte.

Der zweite, an demselben Tag wie der erste ausgeführte Versuch hatte wenig Erfolg. Von dem geringen Eimaterial teilten sich nur zwei Stück normal, drei unregelmässig, der Rest von zehn Eiern war nicht befruchtet worden. Am zweiten Tag begann bei den beiden normal geteilten Eiern die Gastrulation, am nächsten Tage wurde die Medullarplatte sichtbar. Im weiteren Verlauf trat bei einem Embryo, nachdem sich schon das Nervenrohr geschlossen und Kopf- und Schwanzende angelegt hatte, starke Bauchwassersucht auf, infolgedessen die Bauchwand zu einer dünnen Blase ausgedehnt wurde. Es schien daher zweckmässig, am 30. April den jetzt 11 Tage alten Embryo einzulegen. Zu dem Zweck musste er aus den Hüllen herauspräpariert werden.

Dabei platzte die dünne, durch Wassersucht aufgetriebene Bauchwand; doch führte der freigelegte Embryo noch Bewegungen mit seinem Rumpfe aus, besonders als er in die Konservierungsflüssigkeit, als welche in diesem Fall Zenkersche Lösung diente, gebracht wurde.

Der dritte Versuch wurde am 12. Mai ausgeführt. Er missglückte, da die Tritonweibehen schon am Mittwoch den 8. Mai eingefangen worden waren und aus Mangel an Zeit nicht gleich zum Experiment verwandt werden konnten. Infolgedessen hatten sie schon einen Teil der Eier unbefruchtet in das feuchte Moos, in welchem sie getrennt von den Männchen aufgehoben wurden, abgesetzt. Der andere Teil aber, welcher sich noch in den Oviducten befand und beim Töten der Tiere in der üblichen Weise herauspräpariert wurde, war schon in das Stadium der Überreife getreten. Dies lässt sich daraus schliessen, dass nach der Besamung nur anormale Entwicklung eintrat. Es kann daher jedem, der Tritoneier künstlich befruchten will, nur geraten werden, womöglich gleich oder bald nach dem Einfangen der Tiere das Material zu verarbeiten.

Der Samen von Salamandra maculosa, der diesmal in reicher Menge aus dem Vas deferens beim Ausschneiden hervorquoll. wurde 2 Stunden lang zwischen den beiden Mesothoriumkapseln bestrahlt. Die mit ihm vorgenommene Besamung von 60 Eiern hatte, wie schon gesagt, ein schlechtes Ergebnis, obwohl sich die Spermatozoen noch gut bewegten und die verwandte Milch reichlicher als in den beiden vorausgegangenen Versuchen war. Der grösste Teil zeigte zur Zeit, wo der Furchungsprozess hätte beginnen sollen, gar keine Veränderung. Einige liessen am animalen Pol zackige Pigmentlinien oder tiefe kraterförmige Einziehungen erkennen, woraus sich wohl ein Schluss auf das Eindringen von einem oder von mehr Samenfäden machen lässt. Nur wenige Eier teilten sich um 7 Uhr abends durch eine Einschnürung, aber unter ihnen auch nur ein einziges in zwei gleich grosse Zellen. Sie wurden zur weiteren Beobachtung von den übrigen getrennt. Nur das eine regelmässig zweigeteilte Ei entwickelte sich in normaler Weise weiter, und war um 8 Uhr abends in vier und 2 Stunden später in acht Zellen geteilt, während bei den übrigen die Entwicklung bald zum Stillstand kam. Am anderen Tag ist die Morula, später die Blastula entstanden.

Während der Gastrulation, die mit ziemlichen Verzögerungen eintrat, wurden Dotterkörnchen in den perivitellinen Raum entleert, was schon im Zusammenhang mit der Verlangsamung der Prozesse ein Anzeichen ist, dass eine grössere Störung vorlag. In der Folgezeit trat dies auch immer deutlicher hervor. Die stark verzögerte Entwicklung glich in vielen Beziehungen der Entwicklung der Eier, die mit 5 Minuten lang bestrahlten Samenfäden von Triton befruchtet wurden: die Medullarplatte war nur schwach ausgebildet. Sehr spät begannen Kopf- und Schwanzende als Höcker über die Oberfläche des Eies hervorzutreten. Da keine Aussicht vorhanden schien, die Larve noch zum Ausschlüpfen zu bringen, wurde sie am 21. Mai in Chrom-Sublimat-Essigsäure eingelegt. Sie hatte also ein Alter von 9 Tagen erreicht.

Die stark verzögerte und anormale Entwicklung wird wohl in diesem Fall auch als eine Folge der Überreife des Eies aufzufassen sein.

III. Teil.

Mikroskopische Untersuchung der auf parthenogenetischem Wege entwickelten Tritonlarven.

a) Chromosomenzählung.

Auf Grund meiner in sehr verschiedener Weise variierten Experimente mit Radium und Mesothorium hatte ich schon in früheren Arbeiten die relativ gute Entwicklung der Eier, die mit sehr intensiv und lange Zeit bestrahlten Samenfäden befruchtet werden, dadurch zu erklären versucht, dass das Chromatin des Samenkernes in diesem Falle stark geschädigt und zu weiterer Vermehrung unfähig geworden ist, dass es nach dem Eindringen des Samenfadens an der Karvokinese nicht mehr teil nimmt. also gewissermassen aus dem Entwicklungsprozess als ein kranker und unbrauchbar gewordener Bestandteil wieder ausgeschieden wird. Inzwischen ist die Richtigkeit dieser Ansicht durch eine Untersuchungsreihe am Froschei, welche auf diesen Punkt besonders gerichtet war, durch meine Tochter Paula auf das vollständigste bestätigt worden. In einer soeben in Bd. 81, H. 4 dieses Archivs veröffentlichten Arbeit konnte an Schnittserien von ihr gezeigt werden, dass während der Zweiteilung des Eies der Samenkern sich noch getrennt von den aus der ersten Karvokinese entstandenen Tochterkernen der beiden ersten Furchungskugeln nachweisen lässt, dass er also die Verschmelzung mit dem Eikern nicht hat bewerkstelligen können, und dass er später nur in eine der beiden Halbkugeln und nach der Vierteilung nur in einen der vier Quadranten wie ein passiver Bestandteil mit übernommen wird.

Die Entwicklung der Froscheier, die mit stark bestrahlten Spermien besamt worden sind, muss daher, wie ich schon in meiner Radiumkrankheit tierischer Keimzellen und bei anderen Gelegenheiten erklärt hatte, als eine experimentell hervorgerufene Parthenogenese bezeichnet werden. Die Kerne derartiger Larven müssen haploide sein, wie ich mit Bestimmtheit glaubte voraussagen zu können.

Die Absicht, für diese Vorhersage nun auch den wirklichen Nachweis zu bringen, hatte mich hauptsächlich bestimmt, an die Untersuchung des Froscheies noch eine Paralleluntersuchung am Tritonei anzuschliessen. Denn die Grösse der Kernteilungsfiguren und der Chromosomen liess erwarten, dass es beim Studium geeigneter Körpergegenden möglich sein würde, die Anzahl der Chromosomen auf dem Stadium des Muttersternes genau zu bestimmen und so die Frage zu entscheiden, ob in Wahrheit die Kerne diploid wie nach normaler Befruchtung oder haploid infolge Ausschaltung des Samenkernes und bei künstlicher Parthenogenese sind.

Von der Untersuchung der Kernteilungsfiguren, die sich auf Querschnitten besonders am Hirn und Rückenmark in grosser Zahl finden, wurde von vornherein Abstand genommen, da man hier den Einwand erheben kann, dass durch den Schnitt ein Teil der Chromosomen entfernt sein könne. Sehr geeignet zur Entscheidung der aufgeworfenen Frage sind dagegen die feinen durchsichtigen Flossensäume, die schon Flemming in seinen klassischen Untersuchungen mit Vorliebe für das Studium der karvokinetischen Figuren benutzt hat.

An ausgeschlüpften, 3—4 Wochen alten Larven (Taf. I, Fig. 17—33) sind die Flossensäume schon breit und durchsichtig genug, um in ganzer Ausdehnung im Flächenpräparat mit der stärksten homogenen Immersion untersucht werden zu können. Es wurden daher von den Larven, die zu Querschnittserien verwandt wurden, die Schwanzenden gewöhnlich kurz vor der Gegend, wo der Enddarm ausmündet, quer abgeschnitten, mit Boraxkarmin

gut durchgefärbt und in Kanadabalsam entweder zwischen zwei Deckgläschen oder zwischen Objektträger und Deckgläschen in Balsam eingeschlossen. In derselben Weise wurde mit den Schwanzenden der Kontrollarven verfahren. Bei so jungen Larven findet sich im dünnen und ganz durchsichtigen Flossensaum nur eine feine Platte von Gallertgewebe, in welcher die sternförmigen Zellen noch in einer einfachen Lage verteilt sind (Taf. III, Fig. 8 und 9). Die Epidermis, die beide Flächen überzieht, besteht aus ein bis zwei Lagen stark abgeplatteter Zellen, deren grosse Kerne sehr unregelmässig geformt und häufig mit tiefen Einschnitten versehen sind. Die Flossensäume sind wenigstens in einem breiten Randbezirk dünn genug, um eine Durchmusterung sowohl der nach oben, als der nach unten gelegenen Epidermisflächen nach Kernteilungsfiguren zu gestatten. Von ihnen wird man in jedem Schwanzende, bei einiger Aufmerksamkeit auch bei den Radiumlarven, gewöhnlich eine grössere Anzahl auf den verschiedenen Stadien als Knäuel, Mutterstern und Tochterstern Für die Chromosomenzählung sind günstig gelagerte Muttersterne weitaus am geeignetesten.

Schon bei schwächerer Vergrösserung gewinnt man den Eindruck, dass die Muttersterne bei den Radiumlarven an Chromosomen ärmer sind als bei den gleichalterigen Kontrolltieren. Bekanntlich beläuft sich bei den Amphibien, soweit bei ihnen Zählungen vorgenommen worden sind, die Chromosomenzahl im Mutterstern der Mitosen von somatischen Zellen auf 24. Die in der Literatur mitgeteilten Angaben hierüber beziehen sich gewöhnlich auf Larven und auf Samenmutterzellen von Salamandra maculata; ich verweise nur auf die Untersuchungen von Flemming, von Rabl, Meves u. a. Dasselbe Zahlenverhältnis, welches ja auch für Anuren angegeben wird, kehrt auch bei Triton wieder.

Da bei den Radiumlarven, wie ich gleich vorausgreifend hervorheben will, die Zahl der Chromosomen im Mutterstern unter der Norm bleibt, was schon bei schwacher Vergrösserung und bei Vergleichung dieser Kernteilungsbilder mit denen von Kontrolltieren dem Beobachter auffällt, so wird die Feststellung zwar etwas erleichtert, bleibt aber in manchen Fällen noch immer schwierig. Denn bei ungünstiger und dichter Lage einzelner Kernschleifen, über- und nebeneinander, und bei verschiedenartiger Überkreuzung ihrer Schenkel ist zuweilen eine genaue optische Isolierung

derselben durch Einstellung der Objektivlinse auf verschiedenen Ebenen mit der Mikrometerschraube doch nicht möglich. So blieb ich bei der Analyse einiger Muttersterne aus den angegebenen Gründen unsicher, ob zehn, elf oder zwölf Chromosomen vorhanden sind. Doch liess sich immerhin auch an solchen ungünstigen Fällen feststellen, dass jedenfalls die Zahl Zwölf nicht überschritten wird.

Zur genauen Ermittelung des wirklichen Sachverhalts wird der Beobachter unter gewöhnlichen Verhältnissen immerhin darauf angewiesen sein, unter einer grösseren Zahl von Kernteilungsfiguren sich günstige Muttersterne mit gut gelagerten und orientierten Kernschleifen auszuwählen und die Zählung vorzunehmen. Zwei derartige Musterfälle sind in den Fig. 34 und 35a und b (Taf. I) dargestellt. Wegen der günstigen Lagerung der Chromosomen schien es möglich, eine photographische Aufnahme vom Mutterstern bei 1000 facher Vergrösserung zu gewinnen. Herr Professor Poll hatte die Freundlichkeit, eine solche mit Hilfe des photographischen Apparats des Biologischen Instituts zu versuchen, was ihm auch in jeder Beziehung gut gelungen ist. Schon die unretuschierten Abzüge der photographischen Platten, die in den Fig. 34 a und 35 a wiedergegeben sind, lassen die Zahl und Form der Chromosomen mit einer annähernden Genauigkeit erkennen. Die noch bestehenden Zweifel über einzelne Punkte der Photographie waren leicht dadurch zu beseitigen, dass der Beobachter bei mikroskopischer Analyse des Präparates bei jeder Schleife ihre Form und Lage durch verschiedene Einstellung genau feststellt, auf dem photographischen Abzug die betreffende Schleife genauer nachzeichnet und auf diese Weise die Stellen, wo zwei oder drei Fäden sich in verschiedenen Ebenen schneiden, naturgetreu wiedergibt. Nach diesem Verfahren sind die zwei Figuren 34 b und 35 b gewonnen worden, auf denen jede Schleife durch Überzeichnung der Photographie in allen Details auf das klarste zu unterscheiden ist.

Besonders weit auseinander, wie es nur sehr selten beobachtet wird, liegen die Chromosomen in der Fig. 35 b (Taf. I). Nur wenige von ihnen kreuzen sich in ihrem Verlauf; die meisten von ihnen liegen fast vollständig isoliert. Bei der Zählung, die sich bei einer Vergrösserung mit Zeiss' Ölimmersion Apochromat 2 mm auf das leichteste bewerkstelligen lässt, ergibt sich sofort die Zahl

Zwölf. Dabei gewinnt man den Eindruck, dass die einzelnen Chromosomen, wie dies durch sorgfältige Messungen an Muttersternen von Spermatogonien des Erdsalamanders von Meves nachgewiesen worden ist, nicht unbeträchtliche Unterschiede in ihrer Länge darbieten.

Eine mehr der Norm entsprechende dichte Anordnung der einzelnen Segmente eines Muttersterns findet sich in dem zweiten, auf photographischem Wege erhaltenen, und durch Überzeichnung in grösserer Deutlichkeit wiedergegebenen Bild (Fig. 34b). Hier sind die einzelnen Schleifen mit ihren Umbiegungsstellen mehr kranzförmig um das helle Polfeld angeordnet, liegen dichter neben- und in zwei Ebenen übereinander und kreuzen sich in ihrem Verlauf. Trotzdem macht es keine Schwierigkeit, eine jede von einem Ende zum anderen durch verschiedene Einstellung mit der Mikrometerschraube zu verfolgen und den ganzen Stern in seine Bestandteile aufzulösen. Auch in diesem zweiten Beispiel konnte nicht der geringste Zweifel darüber bestehen, dass die Zahl der Chromosomen nicht mehr und nicht minder als 12 beträgt und daher um die Hälfte hinter der Norm von 24 zurückbleibt.

Wie ich selbst, haben auch die Herren Poll und Scheffer durch mehrfach vorgenommene Zählung die Überzeugung von der Richtigkeit dieses Tatbestandes gewonnen. Ich betone dies um so mehr, als die hier mitgeteilte Beobachtung der erste Fall in der Literatur ist, dass im Stamm der Wirbeltiere eine Verringerung der Zahl der Chromosomen auf die Hälfte der üblichen in somatischen Zellen sicher nachgewiesen worden ist. Von dem so fest begründeten Zahlengesetz der Chromosomen liegt hier eine wichtige Ausnahme vor, die durch unseren experimentellen Eingriff, durch die intensive Bestrahlung der zur Befruchtung verwandten Samenfäden. allein verursacht sein kann. Wenigstens für die Epidermiszellen kann es keinem Zweifel unterliegen, dass ihre Kerne nach der Terminologie der Botaniker anstatt diploid nur noch haploid sind. Diese wichtige Feststellung ist entscheidend für unsere Auffassung. dass die Entwicklung der einen Gruppe von Radiumlarven als eine experimentell parthenogenetische gedeutet und erklärt werden muss.

Die haploiden, in den Fig. 34 und 35 abgebildeten Kernteilungsfiguren gehören Radiumlarven an, die mit D⁵ im Protokolle beziffert wurden und bei der Konservierung ein Alter von 24 Tagen erreicht hatten. Sie entsprechen in ihrer Grösse und in dem Grad ihrer Entwicklung im grossen und ganzen der in Fig. 26 abgebildeten, aber drei Tage älteren Larve D⁶. Auch der Unterschied zu der normalen Kontrollarve ist der gleiche, wie ihn ein Vergleich von Fig. 26 mit dem kräftiger entwickelten und längeren Kontrolltiere. Fig. 27, darbietet.

b) Kerngrösse und Kernplasmarelation bei Radiumlarven mit haploider Chromosomenzahl.

Im Laufe der letzten Jahre sind zahlreiche Untersuchungen erschienen, durch welche für einige Pflanzen und für wirbellose Tiere der Nachweis erbracht worden ist, dass die Grösse der ruhenden Kerne von der Zahl der Chromosomen, die bei der Karvokinese sie zusammensetzen, wesentlich mit bestimmt wird. Nach den am Seeigelei von Boveri angestellten Experimenten sind die Kerne der Embryonalzellen, die sich aus einem kernlosen Eifragment nach Befruchtung mit einem einzelnen Samenfaden entwickelt haben, in auffälliger Weise kleiner, als bei normal befruchteten Eiern, deren Kerne nach vorausgegangener Verschmelzung von Ei- und Samenkern entstanden sind. Die Ursache für die Grössendifferenz ist hier eben einfach in dem Umstand zu suchen, dass die einen Kerne haploid, die anderen diploid sind. Und dementsprechend wurden auch Kerne erhalten, welche diejenigen normaler Eier an Grösse übertrafen, wenn infolge experimenteller Eingriffe die Chromosomenzahl auf das Doppelte der Norm, so bei Strongylocentrotus von 36 auf 72, vermehrt worden war.

Sowohl im Tier- wie im Pflanzenreich gibt es einzelne Arten, die in zwei oder drei Varietäten auftreten und bei denen das unterscheidende Hauptmerkmal in der verschiedenen Zahl ihrer Chromosomen besteht, die das Einfache, Doppelte oder Dreifache beträgt. Der zuerst bekannt gewordene Fall ist Ascaris megalocephala mit seinen beiden Varietäten, die ich mit den Namen univalens und bivalens nach ihrer einfachen oder doppelten Chromosomenzahl unterschieden habe.

In der vierten Auflage meiner Allgemeinen Biologie habe ich im zehnten Kapitel die Mehrzahl der bis jetzt bekannt gewordenen Fälle kurz zusammengestellt und über sie bemerkt: "Ein ähnliches Verhältnis wie zwischen Ascaris megalocephala

univalens und bivalens hat Gates bei den Mutationen von Oenothera aufgefunden, und zwar zwischen Oenothera gigas und Oenothera Lamarckiana. Oenothera Lamarckiana hat 14, Oenothera gigas dagegen 28 Chromosomen; ihre Kerne sind daher nach der Nomenklatur der Botaniker als tetraploide zu bezeichnen. Ebenso unterscheiden sich, wie Tischler festgestellt hat, die einzelnen Rassen der Essbanane (Musa sapientium) als var. univalens, bivalens und trivalens. "Dole" hat 8, "Radjat Siam" 16, "Kladi" 24 Chromosomen in den Zellen nach erfolgter Reduktion. Dementsprechend verhalten sich auch ihre Kernvolumina wie 1:2:3. Ebenso findet man im Genus Dahlia nach der Angabe von Ishika wa Varietäten mit einfacher und doppelter Chromosomenzahl. Sehr mannigfaltige Zustände in bezug auf die Chromosomenzahl beobachteten El. und Em. Marchal bei mehreren Moosen. Sie beschreiben, je nachdem Aposporie besteht oder geschlechtliche Formen vorliegen, haploide, diploide und tetraploide Zellkerne und eine diesen Chromosomenzahlen entsprechende proportionale Zunahme im Volum der Kerne und der Zellen."

Die bis jetzt vorliegende Literatur über das Verhältnis von Chromosomenzahl und Kerngrösse hat Günther Hertwig in seiner soeben erschienenen Abhandlung: "Durch artfremden, radiumbestrahlten Samen induzierte Parthenogenesis bei Wirbeltieren", eingehend in kritischer Weise besprochen und zugleich einen neuen Beitrag für sie durch Vergleich der Kerngrössen von parthenogenetisch entwickelten Krötenlarven mit normalen Kontrolltieren geliefert. Ich kann daher, indem ich auf die dort gegebene Darstellung (Arch. f. mikr. Anat., Bd. 81, H. Abt., S. 87) verweise, gleich auf die Ergebnisse eingehen, die ich durch das Studium der Kern- und Zellgrössen bei den Tritonlarven der Radiumexperimente, verglichen mit denjenigen der Kontrolltiere, gewonnen habe.

Bei dem Vergleich sind folgende Punkte im Auge zu behalten:

1. Die in bezug auf Kern- und Zellgrösse miteinander verglichenen Tiere sind in genau dem gleichen Alter, vom Moment der Befruchtung an gerechnet. Doch bestehen zwischen ihnen in bezug auf den Entwicklungsgrad einzelner Organe zuweilen geringe Unterschiede, da die Radiumlarven nicht nur kleiner,

 $^{^{1})}$ Oskar Hertwig, Allgemeine Biologie, IV. Aufl. 1912, Kapitel X. II. Die Kernplasmarelation, S. 276 – 280.

sondern auch in ihrer Ausbildung, allerdings nur wenig, zurückgeblieben sind, z. B. in der Entwicklung der Kiemen, der Schichtung in der Retina, dem Zustand des Primordialcraniums etc.

- 2. Die miteinander verglichenen Radium- und Kontrollarven sind bis zum Einschluss der Schnittserien in Kanadabalsam in absolut der gleichen Weise behandelt worden. Sie wurden in ein und demselben Glas zur gleichen Zeit in derselben Konservierungsflüssigkeit, entweder in Pikrin-Sublimat-Essigsäure oder in Zenkerscher oder in Flemming scher Flüssigkeit konserviert, sie wurden gleichzeitig durch Alkohol von verschiedener Konzentration hindurchgeführt und eventuell in Boraxkarmin durchgefärbt, wenn nicht die Färbung erst später an den Schnitten vorgenommen wurde; sie wurden gleichzeitig in absoluten Alkohol, Xylol und Paraffin gebracht und zuletzt in gleich dicke Schnitte, gewöhnlich von 10 µ, zerlegt. Veränderungen durch Schrumpfung etc. müssen daher an den verglichenen Objekten in genau derselben Weise erfolgt sein.
- 3. Zur vergleichenden Messung wurden Kerne desselben Gewebes von genau entsprechenden Körpergegenden gewählt; z.B. wurden Nervenkerne am Übergang von der Medulla oblongata in das Rückenmark zwischen den letzten Schnitten der Ohrbläschen gemessen.
- 4. Die Messungen wurden an genau ausgeführten Zeichnungen des auf das Tausendfache vergrösserten mikroskopischen Präparates ausgeführt. Es wurde hierzu der Leitzsche Zeichenapparat benutzt, der sich für solche Zwecke in vorzüglicher Weise eignet und ein genaueres Resultat als die Zeichnung mit Hilfe des Zeichenspiegels und selbst als die direkte Messung mit dem Okularmikrometer zu liefern scheint. Beide Vergleichsobjekte wurden immer auf dasselbe Zeichenblatt bei unveränderter Einstellung des Leitzschen Apparates unmittelbar nacheinander aufgezeichnet und später mit Zirkel und Millimetermaßstab gemessen.
- 5. Um einen Durchschnittswert zu gewinnen, wurden immer 10 bis 20 Kerne ohne oder mit den zugehörigen Zellkörpern gemessen: aus den Messungen wurde in üblicher Weise das Mittel festgestellt. Denn wie sich jeder leicht überzeugen kann, sind Zellen und Kerne eines Gewebes niemals von absolut der gleichen Grösse, sondern bieten mehr oder minder geringe Schwankungen um einen Mittelwert dar.

6. Alles in allem kann daher behauptet werden, dass die mitgeteilten Maße den Grad von Exaktheit besitzen, der nach dem gegenwärtigen Stand unserer Hilfsmittel zu erreichen ist.

Zur Vornahme von Messungen eignen sich bei Tritonlarven am besten die Kerne von Nervenzellen, von Leberzellen, von roten Blutkörperchen. Dagegen sind Epidermiszellen vom Flossensaum, die bei Frosch- und Krötenlarven empfehlenswert sind, weil man sie am Totalpräparat der Schwanzflosse studieren kann, bei Triton nicht geeignet; denn ihre Kerne sind hier zum grössten Teil lappig und mit tiefen Einschnitten versehen und bieten daher sehr unregelmässige Konturen dar. Zum Vergleich von Kern und Zellgrösse sind wohl die roten Blutkörperchen die besten Objekte. Meine jetzt mitzuteilenden Messungen betreffen daher 1. die Kerne von Nervenzellen, 2. die Kerne von Leberzellen, 3. die Kerne von Blutkörperchen und die Zellgrösse derselben, 4. die Kerne von Muskelfasern, 5. die Dimensionen der Gallertzellen und ihre Zahl in einem bestimmten Flächenbezirk.

Die in Millimetern wiedergegebenen Maße beziehen sich auf Kerne und Zellen, die genau bei 1000 facher Vergrösserung gemessen sind. Sie müssen daher mit 1000 dividiert werden, um die wirklichen Werte für die Durchmesser zu erhalten. In den Tabellen stehen in der ersten Reihe die Ziffern für die gemessenen Kerne, in der zweiten Reihe die Zahlen für ihren längsten und kleinsten Durchmesser, in der dritten Reihe das Produkt beider, in der vierten Reihe die Hälfte desselben zur Verwertung als mittleren Durchmesser; Kerne und Zellen werden in schematischer Weise als Kugeln behandelt, um Annäherungswerte für Oberfläche und Inhalt nach dem auch von Gates, Tischler und Günther Hertwig geübten Verfahren berechnen zu können.

 Maße von Kernen der Nervenzellen aus dem hinteren Abschnitt der Medulla oblongata.

Die Messungen wurden an Durchschnitten der 19 Tage alten Larve D³, die in Pikrin-Sublimat-Essigsäure konserviert worden war, vorgenommen. Wer bei starker Vergrösserung Querschnitte durch das Zentralnervensystem einer Radium- und einer Kontrollarve (Taf. I, Fig. 19 und 17) vergleicht, wird bei einiger Aufmerksamkeit sofort auf die Verschiedenheit der Kerngrösse aufmerksam werden. Die Textfig. 1 A und B zeigt uns je sieben Stück von Nervenkernen in je einer Gruppe, in A von der Kontrolle (Taf. I, Fig. 17), in B von der Radiumlarve (Fig. 19) zusammengestellt.

Tabelle I. Nervenkerne der Medulla oblongata.

A.	Kon	trolla	rve	D^3	B. Radiumlarve D³				
Nr. 1	13	u. 10	23	11,5	Nr. 1	10,5 u. 9	0,5 20	10	
, 2	11,5	5 u. 9,5	21	10,5	, 2	11 u. 8	3 19	9,5	
,, 3	14	u. 11	25	12,5	, 3	11 u. 8	8 19	9,5	
, 4	12	u. 11	23	11,5	,, 4	10 u. 9	19	9,5	
, 5	12	u. 10	22	11	" 5	11 u. 8	19	9,5	
, 6	14	u. 10	24	12	" 6	13 u. 8	21	10,5	
. 7	13	u. 9	22	11	7	10 u. 8	18	9	

Produkt der Durchmesser

aller 7 Kerne = 80

=67.5

Demnach beträgt der mittlere Durchmesser des einzelnen Kernes: für die Kontrollarve 80 dividiert durch 7 = 11,4, für die Radiumlarve 67,5 dividiert durch 7 = 9,6.

Fig 1 A.

Fig. 1 B.

Hiernach lassen sich dann weiter aus dem mittleren halben Durchmesser oder dem Radius (r) durch Erhebung zur 2. oder 3. Potenz annähernd richtige Vergleichswerte einerseits für die Kernoberflächen, andererseits für die Kernvolumina berechnen. Wir erhalten also in unserem Fall:

> A. Controllarve r = 5.7 $r^2 = 32.5$

> > $r^3 = 185$

Archiv f. mikr. Anat. Bd. 82. Abt. II.

B. Radiumlarve

 $\begin{array}{rcl}
 r &=& 4.8 \\
 r^2 &=& 23
 \end{array}$

 $r^3 = 110$.

3

2. Maße von Kernen der Leberzellen.

Die Messungen wurden an Serien von 10 μ dicken Frontalschnitten (Taf. III, Fig. 4—7) durch 24 Tage alte Larven (D⁵) ausgeführt. Es sind dies dieselben Objekte, welche uns später auf Seite 41 zur Vergleichung der Grössenverhältnisse verschiedener Organe dienen werden.

Die Kerne von Leberzellen sind in mancher Beziehung noch besser als solche von den Nervenzellen für unsere Frage geeignet, da sie sich am meisten der Kugelform nähern und daher am ehesten eine zutreffende Ermittelung ihres Volums möglich erscheinen lassen. Von je 14 Leberzellenkernen wurden folgende Maße bei dem Kontrolltier und der Radiumlarve erhalten und zur Berechnung der mittleren Radiuslänge, der mittleren Kernoberfläche und des mittleren Volumens verwertet.

Tabelle II. Leberzellenkerne.

A.	Kontrolla	rve	D^5	B. Radiumlarve D ⁵					
Nr. 1	12 u. 10	22	11	Nr. 1	9 u. 7	16	8		
, 2	12 u. 11	23	11,5	., 2	11 u. 9	20 10)		
., 3	11 u. 10	21	10,5	, 3	10 u. 8,5	18,5	9,25		
, 4	12 u. 12	24	12	" 4	10 u. 8	18	9		
. 5	14 u. 11	25	12,5	" 5	9,5 u. 8	17,5	8,75		
. 6	12 u. 11	23	11,5	, 6	10 u. 8	18	9		
., 7	13 u. 12	25	12,5	,, 7	10 u. 9	19	9,5		
. 8	13 u. 10	23	11,5	, 8	10 u. 9	19 9	9,5		
., 9	13 u. 9	22	11	, 9	11 u.10	21 10	0,5		
, 10	13 u. 12	25	12,5	,, 10	11 u.11	22 1	1		
, 11	12 u. 10	22	11	,, 11	11 u. 9	20 10)		
12	14 u. 11	25	12,5	,, 12	9,5 u. 8	17,5 8	3,75		
, 13	13 u. 10	23	11,5	,, 13	9 u. 8	17 8	8,5		
. 14	13 u. 11	24	12	,, 14	9 u. 9	18 !)		

Produkt der Durchmesser

aller 14 Kerne = 163.5

= 130,75

Hieraus lassen sich dann weiter folgende Werte für den einzelnen Kern berechnen:

A. I	Kontro		B. Radiumlarve						
mittlerer	Durchme	esser	=	11,7	mittlerer l	Durchme	esser	-	9,3
mittlerer	Radius	(\mathbf{r})	=	5,85	mittlerer	Radius	(r)	=	4,65
		\mathbf{r}^2		34,2			Γ^2	=	21,6
		\mathbf{r}^3	==	200			\mathbf{r}^3]	100,4

Zur Veranschaulichung der Grösse der Leberzellkerne sind von den 14 gemessenen und in der Tabelle aufgeführten Exemplaren je fünf von der Kontrollarve (Textfig. 2A) und je fünf von der Radiumlarve (Textfig. 2B) bei tausendfacher Vergrösserung abgebildet werden. Die Ziffern der einzelnen Kerne 10, 11 und 7, 8 etc. entsprechen den in der Tabelle aufgeführten Nummern der ersten Reihe.

3. Maße von roten Blutscheiben und deren Kernen.

Da die roten Blutkörperchen der Amphibien ellipsoide Scheiben sind, muss man unter ihnen zur Messung nur solche auswählen, welche mit ihrem Längs- und Breitendurchmesser genau in der Schnittfläche liegen. Hierzu wurde von mir an den Frontalschnitten von Larve D⁵ das in den Herzventrikeln enthaltene Blut benutzt.

Tabelle IIIa. Kerne von Blutkörperchen.

	A.	Kont	roll	arve D)5	B. Radiumlarve D ⁵				
Nr.	1	12	: 7	19	9,5	Nr.	1	10:6	16	8
**	2	12,5	: 7	19,5	9,75	,,	2	10:6	16	8
**	3	11	: 7	18	9	,,	3	11:6	17	8,5
.00	4	12	: 7	19	9,5	,,	4	8:6	14	7
25	5	13	: 6	19	9,5	29	5	8:5	13	6,5
22	6	11,5	: 7	18,5	9,25	,,,	6	8:5	13	6,5
	7	. 12	: 6	18	9	,,	7	8:5	13	6,5
**	8	12,5	: 7	19,5	9,75	,,	8	10:6	16	8
29	9	12	: 7	19	9,5	,,	9	8:5	13	6,5

Produkt der Durchmesser

aller 9 Kerne = 84.75

Hieraus lassen sich dann weiter folgende Werte für den einzelnen Kern berechnen:

A.	Kontro	llarve		В.	Radium	larve	
mittlerer	Durchme	sser =	9,4	mittlerer	Durchme	esser =	7,28
mittlerer	Radius	$(\mathbf{r}) =$	4,7	mittlerer	Radius	$(\mathbf{r}) =$	3,64
		$r^2 =$	22,1			$r^2 =$	13,25
		$r^3 =$	104			$r^3 =$	48,23

Um die Kernplasmarelation zu ermitteln, wurden auch noch die Längs- und Querdurchmesser von sechs roten Blutkörperchen ausgemessen.

Die bei 1000 facher Vergrösserung gezeichneten und gemessenen, in der Tabelle III a und b aufgeführten neun Blut-

Fig. 3 B.

körperchen mit ihren Kernen sind in der Textfig. 3 A und 3 B in genau entsprechender Grösse reproduziert. Die Zahlen der einzelnen Blutkörperchen entsprechen den in den Tabellen angebenen Nummern der ersten Reihe. In Textfig. 3 A sind von drei Blutkörperchen (1—3) nur die Kerne gezeichnet worden.

Tabelle IIIb. Maße von ganzen Blutkörperchen.

A. 1	Kontrollarve	D ⁵	B. Radiumlarve D ⁵				
Nr. 4	22 u. 14,5	36,5	Nr. 1	14,5 u. 9,5	24		
, 5	22 u. 11,5	33,5	, 2	16 u. 10	26		
" 6	20 u. 13	33	, 3	16,5 u. 10,5	27		
., 7	20 u. 12	32	. 4	14,5 u. 11	25,5		
, 8	21 u. 13	34	7	14,5 u. 9,5	24		
, 9	22 u. 14	36	. 9	15 u. 9	24		

Produkt der Durchm, aller

6 Blutkörperchen = 205

=150.5

Daher der Mittelwert des Produktes beider Durchmesser für ein einzelnes rotes Blutkörperchen:

A. Kontrollarve
B. Radiumlarve
205 durch 6 dividiert = 34.1 150.5 durch 6 dividiert = 25.1

Maße der Kerne der embryonalen Muskelfasern.
 Auf dem Frontalschnitt durch die Larven D⁵ (Taf. III, Fig. 6 und 7) sind die Muskelsegmente in regelmässiger Folge getroffen.

Ihre embryonalen quergestreiften Fasern enthalten noch wenige Kerne, doch sind diese von ansehnlicher Grösse, sie sind erheblich länger wie breit und zum Teil von unregelmässiger Form. Zwischen Kontrolltier und Radiumlarve ergibt sich wieder ein erheblicher Unterschied auch in der Grösse ihrer Muskelkerne, wie ein Vergleich der beiden Textfig. 4 A von der Kontrolle und 4 B von der Radiumlarve lehrt.

Tabelle IV. Kerne von quergestreiften Muskelfasern.

A.	Kontrollarve	D ⁵	B. Radiumlarve D ⁵				
Nr. 1	21 u. 11	32	Nr. 1	16 u. 9.5	25,5		
. 2	21 u. 11	32	, 2	17 u. 8	25		
. 3	26 u. 9,5	35,5	. 3	16 u. 9	25		
4	30 u. 11	41	., 4	18 u. 9	27		
., 5	23 u. 11	34	" 5	15,5 u. 11	26,5		
6	26 u. 9	35	, 6	15 u. 8	23		
. 7	26 u. 7	33	., 7	18 u. 8	26		

Produkt der Durchmesser

aller 7 Kerne
$$= 242.5$$

= 178.0

Daher der Mittelwert des Produktes beider Durchmesser für einen einzelnen Muskelfaserkern:

A. Kontrollarve

B. Radiumlarve

$$242,5$$
 durch 7 dividiert = $34,6$ 178 durch 7 dividiert = $25,4$

Die geringere Kerngrösse bei der Radiumlarve hat dann wieder eine geringere Länge ihrer Muskelfasern zur Folge und diese findet wieder in einer entsprechenden Kürze des Muskelsegmentes und schliesslich der ganzen Radiumlarve im Vergleich zur Kontrolle ihren adaquaten Ausdruck (Taf. III, Fig. 6 und 7). Vom Muskelsegment in der Nachbarschaft des Schultergürtels an gerechnet nach hinten nehmen etwa sieben Segmente der Kontrolle (Fig. 7) denselben Raum ein wie acht Segmente der Radiumlarve (Fig. 6) und sind zusammen in den beiden bei genau derselben Vergrösserung photographierten und reproduzierten Figuren etwa 6.2 mm lang. Da die Radiumlarve etwas nach der Seite gekrümmt ist, macht sich dies auch in dem Ausmaß ihrer Segmente an der konkaven und konvexen Körperseite geltend. Denn an der konkaven Seite messen fünf Segmente an dem Chordarand 3,5 mm. am Hautrand 3.3 mm, dagegen an der konvexen Seite infolge der hier stattfindenden Dehnung neben der Chorda 3,7 mm und

an der Hautseite 4 mm. Dagegen beträgt das Ausmaß für fünf Segmente der Kontrolle beiderseits sowohl am Chorda- wie am Hautrand gleichmässig 4,4 mm.

5. Grössen- und Zahlenverhältnisse der Gallertzellen im Flossensaum.

Die Gallertplatte im Rand des Flossensaumes ist bei Tritonlarven im Alter von 2-4 Wochen so dünn, dass sich in ihr nur eine Lage von Gallertzellen, die fast alle in einer Ebene ausgebreitet sind, vorfindet. Bei Flächenpräparaten von Schwanzflossen, die zur Zählung der Chromosomen von Kernteilungsfiguren benutzt wurden, fiel mir beim Vergleich der Radiumlarven mit ihren Kontrollen öfters auf, dass die Gallertzellen bei ersteren viel kleiner und zugleich zahlreicher sind als bei den Kontrolltieren. Dies veranlasste mich, bei mittelstarker Vergrösserung eine photographische Aufnahme des Flossensaumes von der Larve E (Taf. I, Fig. 32 und 33) zu machen, bei welcher mir die Unterschiede besonders gut ausgeprägt erschienen. Bei richtiger Einstellung der Obiektivlinse auf die Schicht der Gallertzellen kommen diese ohne Ausnahme in voller Zahl mit ihren Ausläufern zum Vorschein. Zwei gleich grosse Bezirke vom Flossenrand sind in den Fig. 8 und 9 (Taf. III) reproduziert. Der Gegensatz zwischen beiden muss jedem Beobachter sofort in die Augen fallen. Bei dem Kontrolltiere sind in dem abgebildeten Bezirk (Fig. 8) nur 25 sternförmig verzweigte, gleichmässig verteilte Zellen vorhanden. bei der Radiumlarve (Fig. 9) beträgt dagegen ihre Zahl etwas mehr als das Doppelte, nämlich 56. Auch ist, da die Vergrösserung ein und dieselbe ist, leicht zu erkennen, dass im ersten Fall die Sternzellen viel grösser und protoplasmareicher sind und dickere und längere Ausläufer aussenden, die ein viel grösseres Feld der Gallertplatte für sich in Anspruch nehmen, als im zweiten Fall, wo sich die viel feineren Fäden nur in einem viel kleineren Umkreis des Kernes verfolgen lassen.

Da jeder der beiden abgebildeten Bezirke 49 qmm enthält, fällt beim Kontrolltier auf jede der 25 Gallertzellen ein Territorium von 2 qmm, bei der Radiumlarve auf jede der 56 Zellen aber nur ein Territorium von 0,87 qmm, also von kaum halber Grösse.

Zur Vervollständigung gebe ich auch noch ein paar Maße von der Kerngrösse. Allerdings ist hierbei zu berücksichtigen, dass die Kerne der Gallertzellen für Messungen recht ungeeignete Objekte sind, da sie im allgemeinen sehr lang gestreckt und schmal, zugleich aber mit unregelmässigen Ausbuchtungen und Einschnürungen, je nach der Abgangsstelle grösserer Protoplasmaäste, bedeckt sind. Ich gebe wieder von drei Kernen den Längsund Quermesser, letzteren an seiner breitesten Stelle.

Tabelle V. Kerne von Gallertzellen.

A.	Kontrollarv	e E	В. І	Radiumlarv	e E
Nr. 1	24 u. 7	31	Nr. 1	14 u. 6	20
. 2	21 u. 7	28	, 2	14 u. 8	22
3	18 u. 7	25	, 3	13 u. 7	20

Produkt der 2 Durchmesser

aller Kerne . . = 84

= 62

Daher der Mittelwert des Produktes beider Durchmesser für einen einzelnen Gallertzellenkern:

A. Kontrollarve

B. Radiumlarve

84 durch 3 dividiert = 28

62 durch 3 dividiert = 21

c) Grössenverhältnisse der Larven und ihrer einzelnen Organe.

Wenn, wie nicht zu bezweifeln ist, in unseren Experimenten die Reduktion der Chromosomenzahl auf die Hälfte zu einer entsprechenden Volumverminderung der Kerne und diese wieder nach dem Lehrsatz der Kernplasmarelation zu einer entsprechenden Abnahme der Zellengrösse geführt hat, so lässt sich wohl als eine weitere Folgeerscheinung hiervon auch das mit grosser Regelmässigkeit wiederkehrende Missverhältnis betrachten, das sowohl zwischen der Grösse der Radiumlarven und ihrer Kontrollen, als auch zwischen der Grösse von einzelnen ihrer Organe in auffälliger Weise besteht. Wir wollen versuchen, uns auch über die hier bestehenden Unterschiede einen zahlenmässigen Ausdruck zu verschaffen.

1. Maßverhältnisse der ganzen Larven.

Dass die Radiumlarven ganz erheblich kleiner sind als die ihnen entsprechenden, genau gleichalterigen Kontrollarven, hat uns die auf S. 17 gegebene Beschreibung schon für alle Experimente gelehrt. Auch wird uns hierüber ein Blick auf Taf. I und ein Vergleich der Fig. 11 mit 12 und 13, der Fig. 14 mit 15 und 16, der Fig. 17 mit 18 und 19, der Fig. 20 mit 21 und 22, der Fig. 23 mit 24 und 25, der Fig. 27 mit 26, der Fig. 30 mit 31 und der Fig. 32 mit 33 sofort überzeugen. Eine genaue Maßangabe ist indessen in den meisten Fällen nicht möglich, da die Radiumlarven gewöhnlich zu einem Halbring stark zusammengekrümmt sind, so dass Kopf- und Schwanzende sich fast berühren (Fig. 12, 13, 18, 29). Genaue Längenmaße lassen sich daher nur von den wenigen Larven nehmen, die ganz gerade gestreckt sind. Es kann dies direkt an den auf Taf. I zusammengestellten Figuren geschehen, da immer eine Radiumlarve und ihre Kontrolle gleichzeitig in demselben Uhrschälchen auf eine Platte photographiert worden sind. Ihre Vergrösserung ist daher absolut dieselbe.

Beifolgende Tabelle gibt die Maße von vier Fällen:

Radiumlarve						Längs- durchmesser		Kontrolle	Längs- durchmesser		
E	(F	ìig.	32)	Alter	17	Tage	39	mm	Fig. 33	66 mm
D^4		(,77	22)	**	20	**	50	mm	, 20	66 mm
$\tilde{\mathrm{D}}^6$	-	(,,	26)	27	27	,,	56	mm	" 27	77 mm
T.S	a ³	(,,	30)	**	27	••	58	mm	., 31	82 mm

Im Durchschnittswert sind daher die Radiumlarven um ein Viertel bis ein Drittel kürzer als die normalen, gleichalterigen Tiere.

2. Maße einzelner Organe.

Ähnliche Proportionen ergeben sich beim Vergleich einzelner Organe. Am geeignetsten hierfür sind der Kopf, das Hirn- und Rückenmarksrohr, das Auge mit der Linse, die Muskelsegmente. Bei den in Fig. 4 und 5 (Taf. III) abgebildeten Frontalschnitten durch den Kopf von zwei Larven im Alter von 24 Tagen tritt dies schon in mehreren Richtungen hervor. So beträgt der Längsdurchmesser von der Mitte der Nasengegend bis zur vorderen Fläche der Kiemenhöhle in Fig. 4, dem Schnitt durch die Radiumlarve, nur 55 mm, in Fig. 5 dagegen 65 mm. Der Querdurchmesser des Zwischenhirns zwischen den Augenblasen gemessen liefert die Zahlen 13 und 18 mm. Noch deutlicher zeigt sich der Unterschied an den beiden Augen; hier 21, dort 28 mm

Querdurchmesser. Die Linse als ein nahezu kugeliger Körper misst 5, resp. 7,5 mm im Querdurchmesser.

Von den Muskelsegmenten derselben Larven wurde schon früher bei Besprechung der Kerne erwähnt, dass in der Gegend des Schultergürtels etwa sieben Segmente der Kontrolle den gleichen Raum wie acht Segmente der Radiumlarve einnehmen.

Lehrreich für die verschiedenartigen Grössenverhältnisse sind auch die Querschnittsbilder durch die Orbitalregion von 19 Tage alten Larven, wie sie in den Fig. 1—3 (Taf. III) bei gleicher Vergrösserung wiedergegeben sind. Bei der Kontrolle (Fig. 2) beträgt der Abstand der linken von der rechten Hornhautoberfläche 56 mm, der Durchmesser des rechten Auges von oben nach unten gemessen 19 mm, der Querdurchmesser des Hirns ebenfalls 19 mm; für die entsprechenden Messungen bei der Radiumlarve (Fig. 1) ergeben sich die Werte 41 mm, 14 mm und 15 mm. Noch kleiner fällt der Querdurchmesser in der Augengegend und der Umfang des Augapfels bei der 18 Tage alten Tritonlarve aus, deren Eier mit bestrahlten Samenfäden von Salamandra maculosa befruchtet worden waren. Sehr auffällig ist endlich auch die verschiedene Grösse der Linsen, wenn wir Fig. 2 mit den Fig. 1 und 3 vergleichen.

Alles in allem genommen, kann man auch für viele Organe der Radiumlarven sagen, dass sie in ihren Ausmessungen ein Viertel bis ein Drittel kleiner als bei den Kontrollarven sind.

d) Abnorme Befunde bei mikroskopischer Untersuchung der Organe der parthenogenetisch entwickelten Tritonlarven.

1. Allgemeines Krankheitsbild.

Bei unseren parthenogenetischen Tritonlarven, die durch einen experimentellen Eingriff in eigenartiger Weise gewonnen worden sind, werden alle Organe wie bei den Kontrolltieren, aber gewöhnlich in etwas geringerer Grösse angelegt. Ferner sind sie im grossen und ganzen normaler als bei den in entsprechender Weise entstandenen Froschlarven gebildet, deren pathologische Befunde ich in meiner Abhandlung "Die Radiumkrankheit tierischer Keimzellen" (Seite 97—116) eingehender beschrieben habe. Doch kann man immerhin auch hier bei Durchmusterung von Schnittserien durch zahlreiche Larven auf diesen und jenen abnormen Befund stossen, der durch die Besamung mit einem bestrahlten

Spermium und durch die hiermit zusammenhängende Veränderung der Kerne (reduzierte Chromosomenzahl, verändertes Kern- und Zellenvolumen) in unbekannter Weise verursacht worden sein muss.

Auch die Tritonlarven unserer Experimente sind bald mehr bald minder geschwächt und befinden sich in einem krankhaften Zustand. Sehr selten schwimmt ein Exemplar nach dem Ausschlüpfen, wie es alle Kontrolltiere tun, mit hurtigen Bewegungen im Wasser umher, vielmehr gleichen sie in ihrem physiologischen Verhalten den Radiumlarven unserer entsprechenden Experimente am Froschei; sie bleiben meist unbeweglich stunden- und tagelang auf dem Boden des Gefässes liegen, geraten nur bei Berührung mit der Nadel in konvulsivische Zuckungen, führen auch eventuell einige Schwimmbewegungen aus und drehen sich bei diesen meist im Kreise herum.

Eine andere, zwar nicht immer, aber doch häufiger zu beobachtende, krankhafte Erscheinung ist die Ausbildung von Wassersucht. Der Leib ist von der Herzgegend an bis zur Mündung des Enddarms aufgetrieben. So werden unsere Larven, während sie auf der einen Seite viel kürzer sind als die Kontrollen, auf der anderen Seite viel dicker als dieselben. Gewöhnlich ist hierbei das vom Flossensaum umgebene Schwanzende nach einer Seite umgeschlagen, so dass die Larve die Form eines Halbrings annimmt. Man vergleiche in diesen beiden Beziehungen die Fig. 12 und 13 mit 11, Fig. 18 und 19 mit 17, Fig. 15 mit 14, Fig. 21 und 22 mit 20. Bei höheren Graden der Wassersucht gehen Kopf und Vorderrumpf ohne Grenze ineinander über und ist die Herzgegend nach unten blasig vorgewölbt. Besonders bei den in Fig. 15, 21 und 22 abgebildeten Larven ist dieser Zustand stärker ausgeprägt. Indessen erreicht bei den Tritonlarven die Wassersucht nie jenen Grad wie bei den ausgeschlüpften Kaulquappen, bei denen ja zuweilen der kolossal aufgetriebene Bauch sich einem Ballon und einer Tonne vergleichen liess und ganz dünne, durchsichtige Wandungen erhalten hatte. Auch sind bei Triton manche parthenogenetische Zwerglarven fast ganz frei von Wassersucht, wie die in den Fig. 33, 31, 26 und 24 abgebildeten Exemplare.

Einen Querschnitt durch den stark aufgetriebenen Bauch in der Herzgegend am Übergang zum Kopf zeigt uns Fig. 7

(Taf. II). Sie gehört einer 18 Tage alten Tritonlarve (Fig. 29, Taf. I) an, entstanden aus einem Ei, das mit stark bestrahlten Salamanderspermien besamt worden war.

Zur Vervollständigung des Krankheitsbildes gehört ferner die meist kümmerliche Entwicklung der Kiemenfäden, und diese ist wohl wieder durch die mangelhafte Entwicklung des Herzens und die schwache Herzaktion verursacht worden.

2. Hypertrophie des Gallertgewebes.

Nicht immer, aber öfters stösst der Beobachter bei der Durchmusterung der Serienschnitte auf Larven, bei welchen das Gallertgewebe sich übermässig entwickelt hat und dann auch zur Auftreibung der Rumpfwandung wesentlich mit beiträgt. Im Zusammenhang hiermit stehen auffällige Veränderungen der Muskelsegmente. Bei normalen, drei bis vier Wochen alten Larven liegen die guergestreiften Muskelfasern zu beiden Seiten von Rückenmark und Chorda als kompakte Massen dichtgedrängt zusammen und sind nur durch kaum sichtbare Hüllen von Grundsubstanzgewebe voneinander getrennt; vom Rücken her schieben sie sich dann weiter ventralwärts in die Bauchwand im Zusammenhang hinein. Bei unseren Larven mit abnormer, pathologischer Gallertentwicklung dagegen liegen die Muskelfasern weit auseinander, teils einzeln, teils zu kleinen Bündelchen vereint, getrennt und eingebettet in das übermässig gewucherte Gallertgewebe. Infolgedessen bietet ein Vergleich der Querschnitte, die durch den Rumpf von Kontrolltieren und von Larven mit Hypertrophie der Gallerte geführt worden sind, ganz überraschende Unterschiede dar.

3. Missbildungen am Zentralnervensystem.

Schon in meiner Schrift über die Radiumkrankheit tierischer Keimzellen habe ich bei Besprechung des Nervensystems eine "typische Missbildung" beschrieben, "die bei der Betrachtung der Schnittserien in mehreren Fällen aufgefunden wurde". "Es handelt sich", wie es dort heisst, "um eine vollkommene Trennung des Nervenrohrs in zwei Hälften. Sie wird meist in der Gegend der Medulla oblongata oder etwas nach hinten von ihr bald in grösserer, bald in kleinerer Ausdehnung vorgefunden und ist als der Rest einer in Rückbildung begriffenen Spina bifida zu beurteilen, die auf jüngeren Stadien hier bestanden hat." An vier Beispielen,

die einige Abweichungen voneinander darbieten, wird die Missbildung besprochen und durch vier Figuren (l. c. Textfig. 22 a und b auf Seite 105, ferner Fig. 4, 3 und 2 auf Taf. VI) erläutert. Der in Fig. 2 und 3 dargestellte Befund hat am meisten Ahnlichkeit mit dem auch bei Triton jetzt wieder beobachteten Verhalten. Von ihm heisst es in meiner älteren Abhandlung: "In Fig. 3 ist die Medulla oblongata in grosser Ausdehnung von vorn bis in das vordere Bereich des Rückenmarks in zwei Hälften gespalten; jede von ihnen ist mit einer Höhle (hv) versehen, in der grosse und kleine ausgestossene Zellen liegen. Dem vorgerückteren Alter (der achttägigen Larve) entsprechend ist schon ein dicker Schleier von Neurofibrillen (nf) entstanden. Zwischen beide Hälften schiebt sich eine Scheidewand mit gelben und schwarzen Pigmentzellen und endothelialen Blutgefässröhren." Auch im zweiten Fall (Fig. 4) wird der vierte Ventrikel durch eine Scheidewand in zwei grosse Höhlen getrennt, von denen die linke eine Anzahl isolierter Zellkugeln einschliesst. In der Umgebung der Medulla sind auffallend grosse, sinusartige Gefässräume (gf) anzutreffen. Durchsicht der Schnittserie nach hinten wird die Trennung in zwei Hälften immer deutlicher und vollständiger und wie in Fig. 3 auch durch eine Scheidewand von pigmentiertem Mesenchym bewirkt (l. c. S. 104-106).

Einen neuen ähnlichen Fall habe ich auch in der diesjährigen Reihe von Experimenten zu beobachten Gelegenheit gehabt. Ich stiess auf ihn bei Durchmusterung der Schnittserie einer 18 Tage alten Tritonlarve, die sich aus einem Ei entwickelt hatte, das mit stark bestrahlten Spermien von Salamandra maculata besamt worden war. Während die Medulla oblongata in ihrer vorderen Hälfte zwischen den beiden Ohrbläschen noch einfach ist und einen geräumigen vierten Ventrikel einschliesst, beginnt sie sich plötzlich nach hinten in zwei Hälften zu trennen. Die Decke, die normalerweise aus einer einfachen Lage von Ependymzellen bestehen sollte, beginnt sich zu verdicken; dabei wird sie nicht nur aus mehreren Zellenlagen zusammengesetzt, sondern hat auch an ihrer äusseren Oberfläche eine dünne Lage von Neurofibrillen differenziert. Was aber noch merkwürdiger ist, es macht sich auf mehreren Querschnitten an ihr eine Einfaltung bemerkbar, die in der Medianebene sich von oben in den vierten Ventrikel herabsenkt. Dieser nimmt, wie Fig. 4 (Taf. II) lehrt, dadurch eine quergestellte

Achterfigur an. Bei weiterer Verfolgung der Schnittserie hat die Falte bald den Boden des vierten Ventrikels erreicht und ist mit ihm verschmolzen (Fig. 5). Die Medulla oblongata erhält daher jetzt zwei Höhlen, die durch eine breite Scheidewand von embryonaler Nervensubstanz getrennt sind. Die Nervensubstanz besteht einerseits aus Neuroblasten, die nach den beiden Ventrikelhöhlen zu liegen, andererseits aus Neurofibrillen, die sich von oben und unten als feines Septum zwischen die embryonalen Zellen hineinsenken und sie in zwei die Ventrikelhöhlen begrenzende Schichten trennen (Fig. 5).

Die so in der Medulla beginnende Sonderung in zwei Hälften hat sich auch auf den Anfang des Rückenmarks fortgesetzt. Die Fig. 6 und 7 (Taf. II) geben hierüber weiteren Aufschluss. In Fig. 6 sind noch zwei zentrale Hohlräume im Querschnittsbild zu sehen, haben aber an Grösse im Verhältnis zu Fig. 5 erheblich abgenommen. Namentlich auf der linken Seite ist nur noch eine Spur von einer Höhlung vorhanden. Der Querschnitt hat daher jetzt mehr eine kompakte Beschaffenheit angenommen. Die Trennung in zwei Hälften findet abgesehen von dem doppelten, wenn auch einerseits sehr verkümmerten Zentralkanal noch einen Ausdruck in einer medianen Scheidewand von Neurofibrillen, die hier noch besser als in Fig. 5 entwickelt ist.

Noch weiter abwärts im Halsmark sind auch die letzten Reste von Hohlräumen ganz geschwunden (Fig. 7). Das Querschnittsbild ist ganz kompakt geworden und setzt sich nur aus embryonalen Neuroblasten und Nervenfibrillen zusammen. Diese bilden erstens eine an der Oberfläche, namentlich ventralwärts, differenzierte dickere Lage und zweitens eine breite, in vertikaler Richtung verlaufende, mediane Schicht, die eine Halbierung in eine linke und eine rechte Hälfte bewirkt.

Bei der Obliteration des doppelten Zentralkanals ist in dieser Gegend des Rückenmarks die vertikale Scheidewand von Neurofibrillen das einzige Merkmal, welches noch auf die Verdoppelung des Nervenrohres hindeutet, deren Entstehung sich in der hinteren Hälfte der Medulla oblongata in so deutlicher Weise verfolgen liess. Bei den vier in meiner älteren Arbeit beschriebenen Fällen war die Verdoppelung besser als hier ausgeprägt, insofern sich zwischen beide Hälften noch eine besondere schmale Mesenchymschicht schob. Von einer solchen aber ist hier keine Spur vorhanden.

Das Vorkommen embryonaler Geschwülste im Gehirn-. in Rückenmark und Retina.

Eine zweite am Zentralnervensystem zu beobachtende Abnormität ist die Entwicklung embryonaler Tumoren. Auf diese interessanten Befunde werde ich hier nur ganz kurz eingehen, da ich sie zum Gegenstand einer besonderen Mitteilung machen und anderen Orts veröffentlichen werde. Es handelt sich um eine Geschwulstbildung, die von der innersten Zellenlage der Ventrikel oder des Zentralkanals ihren Ausgang nimmt und daher wohl als Ependymom bezeichnet werden kann. Sie wurde in zwei Fällen beobachtet, erstens bei der 4 Wochen alten Tritonlarve C³ und zweitens bei den 19 Tage alten Larven D³. Beidesmal waren die Eier mit Samenfäden von Triton nach sehr intensiver Bestrahlung befruchtet worden; denn im einen Fall wurden die Spermien 3, im anderen 2 Stunden zwischen zwei starken Mesothoriumpräparaten bestrahlt. Beide Fälle unterscheiden sich von einander, so dass sie uns gewissermassen zwei Entwicklungsstadien der Geschwulstbildung vor Augen führen, D3 den allerersten Anfang, C3 ein schon weit vorgeschrittenes Stadium.

Aus dem schon angeführten Grund beschränke ich mich auf eine kurze Zusammenstellung einiger charakteristischer und auch für die weitere Beurteilung wichtiger Momente:

Einmal ist hervorzuheben, dass die Geschwulstbildung erst beginnt, nachdem sich Hirn und Rückenmark in üblicher Weise entwickelt und schon die ersten Stadien der Sonderung in eine innere Lage von Neuroblasten und eine ziemlich dicke Schicht von Nervenfibrillen, den Randschleier, durchaus normal zurückgelegt haben. Wir finden daher bei den Larven C3 und D3 sowohl an Schnitten durch das Gehirn wie an Querschnitten durch das Rückenmark dieselben Bilder wie bei gesunden Kontrollarven (Fig. 2. Taf. III), nach aussen eine Schicht von Neurofibrillen, deren Dicke dem Alter der Larve entspricht, nach innen von ihr regelmässig in vielen Lagen übereinander geordnete Neuroblasten mit ovalen Kernen von gleicher Grösse (Fig. 10, Taf. II). Es muss hieraus geschlossen werden, dass das Neuralrohr nach seiner Abfaltung vom äusseren Keimblatt sich längere Zeit durchaus, wie es der Norm entspricht, weiter entwickelt und differenziert hat: denn es hat zuerst ein ganz gesundes, embryonales Nervengewebe geliefert.

Die Geschwulstbildung — und das ist der zweite beachtenswerte Punkt — setzt daher plötzlich nach anscheinend normalem Beginn der Entwicklung später ein. Hierbei zeigt sie sich auf das deutlichste an die innerste Zellenschicht gebunden, welche die Ventrikel und den Zentralkanal begrenzt. Auch bei der normalen Entwicklung spielt diese eine wichtige Rolle. Wie schon oft beschrieben ist, geht von ihr allein die Vermehrung des Zellenmaterials aus. Nur in der nächsten Nachbarschaft der zentralen Höhlen werden Mitosen oft in sehr reicher Menge vorgefunden, während sie in der dicken Zellenlage nach der Neurofibrillenschicht zu, im Bereich des Neuroblasten, ganz fehlen. An der Innenfläche von Hirn- und Rückenmark liegen also embryonale, einer lebhafteren Vermehrung fähige Zellen, und diese sind es, welche zum Ausgangspunkt der Geschwulstbildung werden, nachdem sie sich vorher in normalen Entwicklungsbahnen bewegt haben.

Der an ihnen sich abspielende, pathologische Prozess lässt sich in dieser vorläufigen Mitteilung in folgende Sätze kurz zusammenfassen:

- Einzelne Kerne nehmen im ruhenden Zustande eventuell infolge vorausgegangener Verschmelzungsprozesse oder pluripolarer Mitosen ohne nachfolgende Zellteilung an Grösse zu. Sie erreichen den doppelten, den dreifachen Durchmesser und mehr. Ihr Zelleib wird gleichzeitig protoplasmareicher.
- 2. Die Kernteilungsfiguren haben an Zahl ausserordentlich zugenommen, sie erreichen viel grössere Dimensionen, als es bei normalen Larven der Fall ist, und scheinen viel chromatinreicher zu sein. Die Chromosomen sind allem Anschein nach stark vermehrt, doch wurde auf eine Zählung derselben verzichtet, da sie bei ihrer gedrängten Aneinanderlagerung nicht durchführbar zu sein schien.
- 3. Die Zell- und Kernvermehrung ist ohne Frage in ein beschleunigtes Tempo geraten und hat eine Nachkommenschaft geliefert, die sich der normalen Organisation von Gehirn und Rückenmark nicht mehr einfügt und einer ungeordneten Vermehrungsweise unterliegt. Anstatt sich der bereits bestehenden Schicht normaler Neuroblasten anzufügen, wachsen die durch Wucherung der Ependymzellen vermehrten Zellen von mehreren Stellen aus in den Ventrikelhohlraum und in den Zentralkanal hinein (Fig. 10, Taf. II) und verbinden sich hier zu einer un-

geordneten Masse locker zusammengefügter Zellen, zu einer Geschwulst, welche ich auf Grund ihrer Genese als embryonales Ependymom zu bezeichnen vorschlage.

4. In der Geschwulst beobachtet man noch eine sehr lebhafte Zellvermehrung. Oft grenzt Mitose an Mitose; von ihnen erreichen viele eine solche Grösse, dass man geradezu von Riesenmitosen sprechen kann. Auch die ruhenden Kerne zeichnen sich durch variable Grösse, einige von ihnen durch einen Riesenumfang aus. Ab und zu trifft man in der Geschwulst auch pyknotische Kerne an, ferner Ablagerung schwärzlicher Pigmentkörnchen im Protoplasma einzelner Zellen.

Die Geschwulst geht von den verschiedensten Stellen an der Innenwand des Nervenrohres aus. Bei Larve C³ findet sie sich im dritten Ventrikel, in der Medulla oblongata, in einer langen Strecke des Zentralkanals. Im vorderen Teil der Rautengrube stellt sie einen gestielten Lappen dar, der von der linken Seite am Boden entspringt und hauptsächlich auf diese Hälfte beschränkt bleibt (Fig. 10, Taf. II). Sie nimmt daher nur einen Teil der Ventrikelhöhle ein, die im übrigen auch durch seröse Flüssigkeit stark ausgedehnt ist. Im hinteren Teil der Medulla oblongata (Fig. 11, Taf. II) ist der Ventrikel vollständig von der Geschwulstmasse ausgefüllt, die bis an die Epidermis heranreicht und sie zu einem Hügel emporgehoben hat.

5. Ein Anfangsstadium der Geschwulstbildung konnte bei der nur 19 Tage alten Larve D³ beobachtet werden. Bei ihr trat gleichzeitig auch die Bildung von Zellen mit pyknotischen Kernen mehr in den Vordergrund.

6. Als letzter Punkt von besonderem Interesse mag noch kurz erwähnt sein, dass der krankhafte Prozess auch auf die Retina des Auges übergreift. Die Vorbedingung hierzu ist ja schon dadurch gegeben, dass die primäre Augenblase als Ausstülpung der Seitenwand des primären Vorderhirnbläschens entsteht und daher genetisch einem Teil der Hirnwand entspricht. Auch für das Auge lässt sich zeigen, dass seine Entwicklung aufangs in normaler Weise begonnen hat. Denn nach der Umwandlung der primären Blase zum Becher hat sich das eingestülpte, zur Retina werdende Blatt bei seiner Entwicklung in normalen Bahnen bewegt. Es ist aus vielen kleinkernigen Neuroblasten zusammengesetzt und zeigt an unserer Larve C³ bereits

schon eine Differenzierung in die bekannten Retinaschichten, indem feine Zwischenstreifen von Neurofibrillen sich gebildet haben und eine Sonderung in einzelne Körnerschichten anzubahnen beginnen. Aus dem äusseren Blatt des Bechers ist bereits durch Ablagerung von Melaninkörnchen ein Tapetum nigrum entstanden. Nur von der am spätesten zur Ausbildung gelangenden Stäbchenund Zapfenschicht fehlt noch jede Spur. Auch scheint es an unserem Objekt nach dem sich darbietenden Befund überhaupt in Frage gestellt, ob noch eine Möglichkeit für ihre spätere Bildung gegeben ist. Denn die an das Pigmentepithel angrenzende Zellschicht, welche ja ihrer Lage und Genese nach der innersten Zellenlage der embryonalen Hirnwand entspricht, hat genau dieselben Veränderungen wie dort erfahren. Zellen mit Riesenkernen sind entstanden, zahlreiche Mitosen von auffälliger Grösse und offenbar vermehrter Chromosomenzahl oft eine neben der anderen. werden beobachtet und unterscheiden sich von den Zellen mit kleinen Kernen der Körnerschichten, die sich bereits auf den vorausgehenden Entwicklungsstadien normal gebildet hatten. Auch einzelne Zellen mit pyknotischen Kernen werden gefunden und ferner solche, in denen kleine Haufen schwärzlicher Pigmentkörnchen abgelagert sind.

Alles in allem kann man daher auch von der Augenanlage sagen, dass in ihrer innersten Zellschicht, in ähnlicher Weise wie in der Wand des embryonalen Nervenrohrs, ein Wucherungsprozess eingetreten ist, welcher nicht nur die Ausbildung einer Stäbchenund Zapfenschicht unmöglich macht, sondern bei weiterem Fortschreiten auch auf die bereits gebildeten Retinaschichten und dadurch auf das ganze Auge zerstörend einwirken muss.

IV. Teil.

Zusammenfassung und Besprechung der wichtigsten Versuchsergebnisse.

Direkte Beeinflussung und Schädigung der Kernsubstanzen durch Radiumstrahlen.

Durch die hier mitgeteilten Mesothoriumexperimente ist eines der Hauptergebnisse, welches ich in meiner Abhandlung über die Radiumkrankheit tierischer Keimzellen gewonnen hatte, noch weiter bestätigt worden. In den β - und γ -Strahlen von Radiumund Mesothoriumpräparaten besitzen wir ein Reagens, das auf

die Kernsubstanzen der lebenden Zelle Wirkungen ausübt, die sich auf das feinste abstufen lassen in einer Weise, wie es von keiner anderen Substanz bis jetzt bekannt geworden ist. Namentlich das Chromatin wird schon durch kleinste Dosen radioaktiver Strahlung in seinen Lebenseigenschaften verändert und durch grössere Dosen so geschädigt, dass es die Fähigkeit zu wachsen und sich durch Mitose in der gesetzmässigen Weise zu vermehren verliert, dass es einem allmählichen Zerfall unterliegt und in denselben auch den es einschliessenden Zellkörper hineinzieht.

Ich stelle die in meinem Institut gewonnenen, wichtigeren Tatsachen, auf die sich diese Anschauung gründet, kurz zusammen:

- 1. Befruchtete Ascariseier, die mehrere Stunden mit einem Radiumpräparat bestrahlt werden, liefern pathologische Kernteilungsfiguren, in denen die bekannten chromatischen Schleifen durch unregelmässige Haufen von Chromatinkörnchen vertreten werden; sie teilen sich in sehr verlangsamter Weise und beginnen schliesslich unter Karyolyse zu zerfallen (Paula Hertwig).
- 2. Durch intensive, über mehrere Stunden fortgesetzte Bestrahlung von Samenfäden des Seeigels kann bewirkt werden, dass bei ihrer Verwendung zur Befruchtung zwar noch ein Samenkern im Ei entsteht und den Eikern zur Umwandlung in eine Spindel anregt, selbst aber die Fähigkeit, normale Chromosomen zu bilden, verloren hat und auf diese Weise aus dem Entwicklungsprozess teilweise oder ganz, früher oder später, je nach dem Grad der bei ihm eingetretenen Schädigung wieder ausgeschaltet wird (Günther Hertwig).
- 3. Eine Ausschaltung des Samenkerns, der von intensiv bestrahlten Samenfäden abstammt, ist schon während der ersten und zweiten Teilung auch beim Froschei (Paula Hertwig) und beim Forellenei (Oppermann) auf Schnittpräparaten in einwandfreier Weise beobachtet worden.
- 4. Für die Ausschaltung des radiumbestrahlten, entwicklungsunfähig gewordenen Samenchromatins aus dem Entwicklungsprozess spricht nicht minder überzeugend die bei Radiumlarven von Triton über jeden Zweifel festgestellte Tatsache, dass ihre somatischen Kerne nur noch die halbe Chromosomenzahl wie reduzierte Kerne besitzen. Da die männliche Chromosomengarnitur infolge der Bestrahlung in der Entwicklung ausgefallen ist, findet sich in den Somakernen nur noch die weibliche Garnitur (Oskar Hertwig).

- 5. Mit der im vierten Satz erwähnten Tatsache steht in gutem Einklang der bei Frosch-, Kröten-, Triton- und Forellenlarven in übereinstimmender Weise gewonnene Befund, dass nach maximaler Bestrahlung des zur Befruchtung verwandten Samens die Kerne der verschiedensten Zellen auffällig kleiner als bei gleichalterigen Kontrollarven sind und dass entweder ihre Oberflächen oder ihre Volumina sich zu den Vergleichsobjekten wie 1:2 verhalten. Denn es lässt sich aus diesem annähernd auf die Hälfte herabgesetzten Volumen der Kerne der Schluss ziehen, der durch mehrfache Erfahrungen wohl begründet ist, dass auch die Chromosomenzahl der Kerne eine haploide ist (Oskar Hertwig, Günther Hertwig, Oppermann).
- 6. Die durch cytologische Forschung gewonnenen Ergebnisse bieten uns die Möglichkeit dar, eine physiologisch höchst merkwürdige und auf den ersten Blick völlig rätselhafte Tatsache zu erklären, die Tatsache nämlich, dass Eier, die mit artfremden Spermien besamt worden sind, und an den Folgen dieser disharmonischen Idioplasmaverbindung auf dem Keimblasenstadium zugrunde gehen, von dem Zerfall verschont bleiben und zur Larvenentwicklung befähigt werden, wenn die artfremden Spermien vor ihrer Verwendung intensiv bis zum Maximum bestrahlt worden sind. Das Rätsel löst sich durch die einfache Überlegung, dass durch die Schädigung des bestrahlten Samenchromatins, wenn auch der Samenfaden noch in das Ei eindringt und entwicklungserregend wirkt, doch das Zustandekommen einer disharmonischen Idioplasmaverbindung mit ihren schädlichen Folgen verhütet wird. Durch Ausschaltung des Radiumchromatins ist eine parthenogenetische Entwicklung des Eies angebahnt worden. Unter diesen Umständen hat die Bestrahlung artfremden Samens zwar auf diesen selbst zerstörend, dagegen auf die Entwicklung des mit ihm besamten Eies förderlich gewirkt, ähnlich wie ein Arzneimittel, durch welches eine in den lebenden Körper gebrachte giftige Substanz wieder entgiftet wird.

Damit sind neue Beweise für die Unrichtigkeit der von Schwarz aufgestellten, von Werner, Schaper, Exner u. a. befürworteten Lecithinhypothese in so reicher Zahl erbracht, dass sie wohl jetzt als definitiv erledigt gelten kann. Fügen sich doch zu diesen biologischen Einwänden auch solche von chemischer Seite hinzu. Denn wie in dem Handbuch der Radiumbiologie Neuberg bemerkt, hat die Lecithinhypothese auch einer Kritik auf chemischer Basis nicht Stand gehalten. Neuberg "misst Experimenten mit einem so von selbst zersetzlichen Körper wie Lecithin wenig Wert bei, wenn mit dem Auftreten von Zersetzungsprodukten der Nachweis der Radiumwirkung geführt werden soll".

Die Unhaltbarkeit der Lecithinhypothese musste hier gleichwohl noch einmal nachgewiesen werden, da manche Forscher noch immer an ihr festhalten und unter ihrem Einfluss bestimmt werden. Zerfallsprodukte des Lecithins, wie Cholin, als Ersatz der Radiumstrahlen bei der Geschwulsttherapie zu verwenden. So berufen sich Czerny und Caan in ihrer eben erschienenen Abhandlung über die Radiumwirkung bei Karzinomen und Sarkomen auf die Lecithinhypothese und bezeichnen sie als die Vorstellung, die man sich nach den neueren Forschungen über das Zustandekommen der Radiumwirkung auf die Körperzellen gebildet hat. Denn durch die Untersuchungen von Schwarz, Werner etc. sei gezeigt worden, "dass die Strahlen, insbesondere die α-Strahlen des Radiums, imstande sind. Lipoide in vitro wie auch im Hühnerei zu zerstören". "Von den Zersetzungsprodukten des Lecithins sei es aber besonders das Cholin, welches als Base wie auch als Salz in Verbindung mit schwachen Säuren imstande sei, den Komplex der biologischen Strahlenwirkung nachzuahmen (Imitation der Strahlenwirkung nach Werner)."

Von dieser Grundlage ausgehend, nehmen Czerny und Caan an, "dass die Strahlen an verschiedenen Punkten der Zelle angreifen, an den Lipoiden sowohl wie auch an den Fermenten, vielleicht auch noch andere uns bisher unbekannte Primärläsionen verursachen", und sie fügen hinzu: "Letztere dürften insbesondere nach schwachen Bestrahlungen an und für sich sehr geringfügig sein, stehen aber zueinander im Verhältnis eines Circulus vitiosus, indem z. B. Zersetzungsprodukte der Lipoide die Zellen angreifen und die Autolyse fördern, während andererseits die Auslösung der letzteren durch Beeinflussung der autolytischen Fermente die Lipoidzersetzung steigert. Auf diese Weise kann man sich erklären, dass gerade nach schwachen Bestrahlungen erst nach langer Latenzzeit die Schädigung an den Zellen so stark wird, dass sie deutlich in Erscheinung tritt."

Die Wirkungen der Radiumtherapie bei Geschwülsten haben nach unserer Ansicht ebensowenig wie die Wirkungen der β-Strahlen auf die Keimzellen irgend etwas mit der Zersetzung von Lecithin und Lipoiden zu tun, sondern sind auf biologischem Gebiete zu suchen, auf welchem die direkte Schädigung der Kernsubstanzen auf experimentellem Wege mit aller Sicherheit nachgewiesen worden ist.

Die Entwicklungskurve, hervorgerufen durch verschieden intensive Bestrahlung der Keimzellen.

Die an den Keimzellen von Triton angestellten Mesothoriumexperimente haben einen Parallelfall zu der Versuchsreihe geliefert. deren Gegenstand früher das Froschei gebildet hatte. Zwar ist diesmal die Zahl der Versuche, besonders derjenigen mit schwachen Präparaten und kurzer Bestrahlungsdauer, eine viel geringere geblieben, aber sie scheint uns schon vollkommen zu genügen, um auch für Triton die Ergebnisse in einer Kurve mit einem absteigenden und einem aufsteigenden Schenkel darzustellen, ferner mit einem Tiefpunkt, in welchem der eine in den anderen Schenkel umbiegt. In der Tat ist bei Bestrahlung der Samenfäden während 5 Minuten die Entwicklung der mit ihnen befruchteten Eier eine bessere, als wenn die Bestrahlung auf 15 Minuten ausgedehnt wird. Wir befinden uns auf dem absteigenden Teil der Kurve. Ihr Tiefpunkt ist wahrscheinlich bei 15 Minuten Bestrahlung erreicht, da die Eier schon als Maulbeerkugel oder Keimblase absterben und zerfallen. Wer noch günstigere Ergebnisse in der Entwicklung der Eier als bei der Bestrahlung von 5 Minuten erhalten will, wird mit noch schwächeren Radiumpräparaten als den benutzten arbeiten müssen. Ich verwandte solche nicht, da ich auf diesen Teil der Experimente keinen besonderen Wert legte und da Zeit gespart werden musste.

Der bei maximaler Bestrahlung der Samenfäden erzielte aufsteigende Teil der Kurve liefert dann wieder 3-4 Wochen alte Larven, die im ganzen besser ausgebildet sind als die entsprechenden Kaulquappen, aber ebenso wie diese eine Reihe ähnlicher pathologischer Erscheinungen und krankhafte Veränderungen darbieten (Zwergwuchs, Neigung zu Bauchwassersucht, zu Missbildungen im Bereich des Zentralnervensystems und des Auges, zu embryonalen Geschwülsten).

Der vorliegende Parallelversuch hat uns aber zugleich einen bedeutenden Schritt in der Erklärung der Erscheinungen vorwärts

geführt, und somit das Ziel erreicht, welches ich mir bei seiner Ausführung gesetzt hatte. Es konnte der bestimmte Nachweis geführt werden, dass der aufsteigende Teil der Kurve durch eine Ausschaltung des geschädigten Spermachromatins ermöglicht worden ist. Denn wie durch die mikroskopische Untersuchung der Kernteilungsfiguren somatischer Zellen von Radiumlarven gezeigt werden konnte, bestehen die Muttersterne anstatt aus 24 nur aus 12 Chromosomen. Die Chromosomenzahl ist also infolge des Radiumexperimentes eine reduzierte, aus einer diploiden ist sie eine haploide geworden. Die in meiner Radiumkrankheit tierischer Keimzellen und in den zwei Abhandlungen von Günther Hertwig gegebene Erklärung, dass die Entwicklung in der aufsteigenden Kurve auf einer experimentell hervorgerufenen Parthenogenese beruhe, hat dadurch ihre volle Bestätigung gefunden. Inzwischen ist auch für das Froschei selbst auf einem anderen Weg der tatsächliche Nachweis, dass der intensiv bestrahlte Samenkern entwicklungsunfähig wird, in einer soeben erschienenen Arbeit erbracht worden (Paula Hertwig, dieses Archiv, Bd. 81, Abt. II).

3. Die Bestrahlung der Samenfäden durch radiaktive Substanzen, ein Mittel, das tierische Ei zu experimenteller Parthenogenese zu veranlassen.

Unter den Naturforschern hat bis in die Neuzeit die Überzeugung vorgeherrscht, dass das Ei der Wirbeltiere zu selbständiger Entwicklung unfähig sei und immer erst einer Befruchtung bedürfe, um wieder entwicklungsfähig zu werden. Beim natürlichen Verlauf der Dinge wird ja auch Parthenogenese in keiner einzigen Abteilung der Wirbeltiere beobachtet; sie zeigt sich nur auf eine verhältnismässig geringe Anzahl von Wirbellosen beschränkt und kann hier sogar zu einer wichtigen Einrichtung im Leben der Art werden.

Jetzt lässt sich wohl mit Erfolg die Behauptung verteidigen, dass jedes tierische Ei die Fähigkeit zu selbständiger Entwicklung, seiner Organisation nach, in sich trägt, gleich wie die jugendliche Zelle sich durch Teilung zu vermehren befähigt ist. Dass beim normalen Verlauf der Dinge die Fähigkeit sich nicht äussern kann und daher, wie man sagt, latent bleibt, ist eine Folge uns unbekannter, im Ei gelegener Hemmungseinrichtungen. Diese sind das Mittel, dessen sich die Natur gleichsam als eines Kunstgriffs bedient, um

die parthenogenetische Entwicklung durch die geschlechtliche Zeugung zu ersetzen. Was die Natur durch Hemmungen zu verhüten sucht, kann der experimentierende Naturforschei auf Umwegen durch Beseitigung der Hemmungen erzwingen. In der Theorie erscheint es mir daher nicht im geringsten zweifelhaft, dass sich die Eier aller Wirbeltiere, also auch die Eier der Säugetiere und selbst des Menschen, zu parthenogenetischer Entwicklung durch Eingriffe werden bringen lassen

Fast gleichzeitig als Bataillon seine Methode erfand. durch Einstich mit feiner Platinnadel das Froschei zu künstlicher Parthenogenese anzuregen, entdeckten ich und mein Sohn in den gemeinsam begonnenen und im Archiv veröffentlichten Radiumexperimenten einen sehr abweichenden Weg, der viel sicherer und ungleich wirksamer ist und zu dem gleichen Ziel führt. Es ist dies die Besamung des Eies mit Spermien, die bei maximaler Bestrahlung zwar noch lebenskräftig genug zum Eindringen in das Ei geblieben sind, aber wegen ihrer hierbei erlittenen Schädigung bald wieder aus dem Entwicklungsprozess ausgeschaltet werden, So spielen die bestrahlten Samenfäden in unseren Experimenten nur die Rolle der Bataillonschen Platinnadel, sie beseitigen nur auf eine Weise, die dem natürlichen Verlauf genau entspricht, das der Entwicklung des Eies noch entgegenstehende Hemmnis. Da aber hiermit ihre Wirksamkeit infolge der Radiumbestrahlung erschöpft ist, da ihr geschädigtes und zur Vermehrung unfähig gewordenes Chromatin nicht mehr eine Verbindung mit dem Eikern (Amphimixis) eingehen kann, muss logischerweise die durch sie angeregte Entwicklung des Eies als eine parthenogenetische bezeichnet werden. Eine zweigeschlechtliche Zeugung liegt ja nicht vor, aus dem einfachen Grund, weil die väterliche Keimsubstanz an dem Zeugungsprodukt nicht teil nimmt.

Da unser Verfahren sich des Befruchtungsvorganges als eines natürlichen Mittels bedient, um durch Modifikation desselben Parthenogenese zu erzwingen, besteht zwischen ihm und der Methode von Bataillon in ihren Erfolgen ein erheblicher Unterschied. Während Bataillon von 10000 angestochenen Eiern von Rana fusca nur 120 Larven zum Ausschlüpfen aus den Gallerthüllen bringen konnte und während andere Forscher, die seitdem mit seiner Methode gearbeitet haben, auch nicht von günstigeren Ergebnissen berichten können, entwickeln sich nach unserer

Methode alle Eier, sofern ein radiumbestrahlter Samenfaden in sie eingedrungen ist, überaus gleichmässig zu Larven, die bis zum Ausschlüpfen gebracht werden können. Ein Absterben während der Furchung oder Gastrulation findet nicht statt. Während ferner die Methode von Bataillon sich nur bei einem beschränkten Kreis von Eiern mit Erfolg ausführen lässt, scheint unser Verfahren in allen den zahlreichen Fällen anwendbar, in denen eine künstliche Befruchtung gelingt. Es lässt daher eine sehr verbreitete Verwendung erwarten. Bis jetzt ist auch in meinem Institut das Verfahren schon bei einer grösseren Zahl von Tierarten, immer mit dem gleichen Erfolg, erprobt worden, bei den Eiern von Rana fusca, Rana esculenta, Bufo variabilis, Triton vulgaris, ferner bei zwei Teleostiern, bei der Forelle (Oppermann) und beim Stichling (Entzian).

Künstliche Befruchtung des Eies gelingt auch bei vielen Säugetieren, wie die über viele Jahre ausgedehnten und in grösstem Maßstab ausgeführten Versuche von Iwanow gelehrt haben. Daher hege ich keinen Zweifel, dass durch Bestrahlung des zur künstlichen Befruchtung verwandten Samens sich auch in diesen Fällen parthenogenetische Entwicklung von Säugetiereiern wird herbeiführen lassen.

Dass in den verschiedenen Klassen der Wirbellosen ein ausgedehntes Feld zur weiteren Erprobung der Methode und zum Studium der experimentellen Parthenogenese infolge Besamung des Eies mit bestrahlten Spermien vorliegt, ist wohl ebensowenig zu bezweifeln.

Beim Vergleich unserer Methode mit der von Bataillon geübten tritt uns noch ein bemerkenswerter Unterschied entgegen. Von den 120 Froschlarven, die aus den Gallerthüllen ausschlüpften, konnte Bataillon drei Stück bis zum Eintritt der Metamorphose am Leben erhalten. Ebenso brachte stud. Levy bei Versuchen, die im hiesigen Biologischen Institut ausgeführt wurden, unter vielen Larven, die aus angestochenen Froscheiern erhalten wurden, 2 Exemplare bis zur Metamorphose. Sie starben erst einige Wochen nach Vollendung derselben aus unbekannter Ursache, als Fröschchen, die hinter den Kontrolltieren an Grösse zurückgeblieben waren. Dagegen ist es in unseren Experimenten, wobei allerdings auch nicht mit einer entsprechend grossen Zahl von Eiern gearbeitet wurde, nicht gelungen, parthenogenetische Larven

bis zur Metamorphose zu bringen. Auch bieten dieselben, wie früher eingehender beschrieben worden ist, bald mehr bald minder verschiedenartige Krankheitssymptome und pathologische Veränderungen einzelner Organe dar. Ob dieses in ähnlicher Weise auch an den Larven, die durch Anstich des Eies gewonnen wurden. der Fall ist, lässt sich zurzeit nicht entscheiden, da genauere Untersuchungen hierüber von Bataillon nicht veröffentlicht worden sind. Daher muss auch die Frage noch ungeklärt bleiben, ob die Störungen in der Entwicklung der parthenogenetischen Radiumlarven schon allein als Begleiterscheinungen der Parthenogenese aufzufassen sind, oder ob dabei auch der Umstand eine Rolle spielt, dass die bestrahlte Substanz des Samenfadens, wenn sie auch nur ein ausserordentlich kleiner Fremdkörper ist, doch eine schädliche Wirkung in irgend einer Weise im Ei ausübt. Ein genaueres Studium der durch traumatische Parthenogenese entstandenen Larven und ein Vergleich mit den von mir schon genau beschriebenen pathologischen Befunden bei parthenogenetischen Radiumlarven würde über diese Frage wohl Aufklärung geben müssen.

4. Die falschen Bastarde.

In der botanischen Literatur findet sich die Bezeichnung faux hybrids oder falsche Bastarde. Sie wurde in einigen Fällen für Keimlinge gebraucht, die bei künstlicher Bestäubung der Eianlagen mit artfremdem Pollen erhalten wurden, aber trotzdem nur rein mütterliche Eigenschaften darboten. Auch in den von Günther Hertwig zuerst ausgeführten Kreuzungsexperimenten von Eiern der Kröte und des grünen Wasserfrosches, die mit intensiv bestrahlten Spermien von Rana fusca besamt wurden. und ebenso bei der von mir nach der gleichen Methode ausgeführten Kreuzung zwischen Triton 2 und Salamandra mac. 3 könnten die hierbei erzielten 3-5 Wochen alten Larven als falsche Bastarde bezeichnet werden. Denn insofern man Eier und Samen von zwei verschiedenen Species miteinander gekreuzt und dadurch auch Entwicklung der Eier hervorgerufen hat, könnte man von einer vollzogenen und auch geglückten Kreuzung reden. Man bleibt dann aber bei der Obertläche der Erscheinungen stehen. Es gehört ein genaues Studium des Vorganges dazu, um zu erkennen, dass man in Wirklichkeit eine wahre Bastardierung gar nicht erzielt hat. Denn wenn auch der fremde Samenfaden in das Ei eingedrungen ist, hat er doch an der Entwicklung desselben gar nicht teilnehmen können, da er infolge der erlittenen Radiumschädigung von vornherein zugrunde gegangen ist.

Das aus dem besamten Ei entstandene Produkt ist daher rein mütterlicher Herkunft. Da es keine lebensfähige Substanz vom Vater bekommen hat, kann es auch keine Eigenschaften von ihm ererbt haben. In Wirklichkeit handelt es sich also in den Kreuzungsexperimenten mit bestrahlten, artfremden Samenfäden um Fälle einer besonderen Art von künstlicher Parthenogenese.

Uns erscheint die Annahme eine wohl begründete zu sein, dass auch die faux hybrids der Botaniker nur eigenartige Fälle von Parthenogenese sind, die durch Fremdbestäubung angeregt worden sind.

Zum Schluss sei noch auf die Betrachtungen hingewiesen, die Günther Hertwig über dasselbe Thema in seiner Abhandlung: Parthenogenesis bei Wirbeltieren etc. in den Abschnitten 6 und 7 angestellt hat. Der Abschnitt 6 trägt die Überschrift: Die Entwicklung durch Radiumbestrahlung entkernter Kröteneier nach ihrer Befruchtung mit artfremdem Froschsamen. Der letzte Abschnitt 7 behandelt: Das Gesetz der Kurvenbildung bei Radium- und bei Kreuzungsexperimenten.

Erklärung der Abbildungen auf Tafel I-III.

Tafel I.

- Fig. 1-10. Eier und Embryonen aus einer Versuchsreihe, in welcher die Samenfäden 5 Minuten lang mit 5,3 mg reinem Radiumbromid bestrahlt wurden. Fig. 1-7 12 mal, Fig. 8-10 nur 8 mal vergr.
- Fig. 1 und 2. Zwei Tritoneier, die am 5. Mai mit Samen, der 5 Minuten lang mit 5.3 mg reinem Radiumbromid bestrahlt worden ist, künstlich befruchtet und am 9. Mai abends auf dem Gastrulastadium eingelegt wurden. Konservierung in Zenkerscher Flüssigkeit. Bezeichnung A².
- Fig. 3. Dazu gehöriger normaler, 4 Tage (5. Mai bis 9. Mai) alter Kontrollembryo. Konservierung in Zenkerscher Flüssigkeit.
- Fig. 4. 5 Tage (5, Mai bis 10. Mai) altes Ei derselben Versuchsreihe mit rudimentärer Entwicklung der Medullarplatte. Konservierung in Chrom-Sublimat-Essigsäure. Bezeichnung A⁴.
- Fig. 5. Zu Fig. 4 gehörender 5 Tage (5. Mai bis 10. Mai) alter normaler Kontrollembryo. Konservierung in Chrom-Sublimat-Essigsäure.

- Fig. 6. 6 Tage (5. Mai bis 11. Mai) altes Ei derselben Versuchsreihe mit verkümmerter Anlage des Zentralnervensystems und wenig ausgebildetem Kopf- und Schwanzhöcker. Konservierung in Chrom-Sublimat-Essigsäure. Bezeichnung A⁴.
- Fig. 7. Zu Fig. 6 gehörender 6 Tage alter normaler Kontrollembryo. Konservierung in Chrom-Sublimat-Essigsäure.
- Fig. 8. 9 Tage (5. Mai bis 14. Mai) alter, am besten und längsten entwickelter Embryo derselben Versuchsreihe mit vortretendem Kopfhöcker, der Augenblasen zeigt, und mit Schwanzhöcker. Im Vergleich zu den 12 mal vergrösserten Fig. 1—7 ist Fig. 8, ebenso wie Fig. 9 und 10. nur Smal vergrössert. Konservierung in Chrom-Sublimat-Essigsäure. Bezeichnung A⁶.
- Fig. 9. Zur Fig. 8 gehörender 9 Tage alter, aus der Gallerthülle vor der Fixation herauspräparierter normaler Kontrollembryo. Konservierung Chrom-Sublimat-Essigsäure. Vergr. 8 mal.
- Fig. 10. 7 Tage 5. Mai bis 12. Mai alter normaler Kontrollembryo. Konservierung in Flemmingscher Flüssigkeit. Vergr. 8 mal.
- Fig. 11-33. Alle Larven sind bei 8 facher Vergrösserung photographiert.
- Fig. 11. 13 Tage (17. April bis 30. April) alte normale Kontrollarve, Konservierung in Zenkerscher Flüssigkeit. Bezeichnung D¹.
- Fig. 12 und 13. 13 Tage (17. April bis 30. April) alte Larven, aus Eiern gezüchtet, die mit Samenfäden befruchtet wurden, nachdem dieselben 2 Stunden lang zwischen zwei Mesothoriumkapseln von 50 mg Radiumbromid bestrahlt worden waren. Konservierung in Zenkerscher Flüssigkeit. Bezeichnung D¹.
- Fig. 14. 19 Tage (17. April bis 6. Mai) alte normale Kontrollarve. Konservierung in Flemming scher Flüssigkeit. Bezeichnung D².
- Fig. 15 und 16. 19 Tage 17. April bis 6. Mai) alte Larven, aus Eiern gezüchtet, die mit Samenfäden befruchtet wurden, nachdem dieselben 2 Stunden lang, wie in Fig. 12 angegeben, bestrahlt worden waren. Konservierung in F1e m m i n g scher Flüssigkeit. Bezeichnung D².
- Fig. 17. 19 Tage (17. April bis 6, Mai) alte normale Kontrollarve. Konservierung in Pikrin-Sublimat-Essigsäure. Bezeichnung D³.
- Fig. 18 und 19. 19 Tage (17. April bis 6. Mai) alte Larven, deren Eier in der bei Fig. 12 angegebenen Weise befruchtet wurden. Konservierung in Pikrin-Sublimat-Essigsäure. Bezeichnung D³.
- Fig. 20. 20 Tage (17. April bis 7. Mai) alte normale Kontrollarve. Konservierung in Flemmingscher Flüssigkeit. Bezeichnung D⁴.
- Fig. 21 und 22. 20 Tage (17. April bis 7. Mai) alte Larven, deren Eier in der bei Fig. 12 angegebenen Weise befruchtet wurden. Konservierung in Flemming scher Flüssigkeit. Bezeichnung D*.
- Fig. 23. 28 Tage (16. April bis 14. Mai) alte normale Kontrollarve. Konservierung in Pikrin-Sublimat-Essigsäure. Bezeichnung C³.
- Fig. 24 und 25. 28 Tage (16, April bis 14, Mai) alte Larven, deren Eier mit Samenfäden befruchtet wurden, nachdem dieseiben 3 Stunden zwischen zwei Mesothoriumkapseln von 50 mg Radiumbromid bestrahlt worden waren. Konservierung in Pikrin-Sublimat-Essigsäure. Bezeichnung C³.

- Fig. 26. 27 Tage (17. April bis 14. Mai) alte Larve, deren Ei mit Samenfäden befruchtet wurde, nachdem dieselben 2 Stunden zwischen zwei Mesothoriumkapseln bestrahlt worden waren. Konservierung in Zenkerscher Flüssigkeit. Bezeichnung D⁶.
- Fig. 27. 27 Tage (17. April bis 14. Mai) alte normale Kontrollarve. Konservierung in Zenkerscher Flüssigkeit. Bezeichnung D*.
- Fig. 28, 29 und 31. Tritonlarven, deren Eier mit Samenf\u00e4den von Salamandra maculata bastardiert wurden, nachdem dieselben 2 1/4 Stunden lang zwischen zwei Mesothoriumkapseln bestrahlt worden waren.
- Fig. 28. 15 Tage (19. April bis 4. Mai) alte Larve. Konservierung in Flemmingscher Flüssigkeit. Bezeichnung Trit. Salam. A.
- Fig. 29. 18 Tage (19. April bis 7. Mai) alte Larve. Konservierung in Pikrin-Sublimat-Essigsäure. Bezeichnung Trit. Salam. A².
- Fig. 30. 27 Tage (19. April bis 16. Mai) alte normale Kontrollarve.
- Fig. 31. 27 Tage (19. April bis 16. Mai) alte Radiumlarve. Konservierung in Pikrin-Sublimat-Essigsäure. Bezeichnung Trit. Salam. A⁴.
- Fig. 32. 17 Tage (7. Mai bis 24. Mai) alte normale Kontrollarve. Konservierung in Pikrin-Sublimat-Essigsäure. Bezeichnung Trit. E.
- Fig. 33. 17 Tage (7. Mai bis 24. Mai) alte Tritonlarve, entstanden aus einem Ei, das mit Samenfäden von Triton, nachdem sie 2 Stunden lang (9 Uhr 10 Minuten bis 11 Uhr 10 Minuten) zwischen zwei Mesothoriumkapseln bestrahlt worden waren, befruchtet wurde.
- Fig. 34 und 35. Photographien zweier Muttersterne bei 1000 facher Vergrösserung von Epidermiszellen der Schwanzflosse. Das mit Boraxkarmin gefärbte Totalpräparat des Schwanzendes entstammt einer 24 Tage alten Radiumlarve D³. Sie entwickelte sich aus einem Ei, das mit Samenfäden befruchtet wurde, nachdem sie 2 Stunden lang zwischen zwei starken Mesothoriumpräparaten bestrahlt worden waren.
- Fig. 34 und 35a sind die unveränderten Abzüge der von Herrn Professor Poll angefertigten photographischen Platten.
- Fig. 34 und 35 b wurden erhalten, indem die einzelnen Chromosomen auf Grund des genaueren Studiums des Canadabalsampräparates genauer ausgezeichnet und mit Tusche übermalt wurden, worauf auf chemischem Weg das photographische Bild entfernt wurde.

Tafel II.

- Fig. 1. Durchschnitt durch ein 3 Tage altes Tritonei (5. Mai bis 8. Mai), das mit bestrahlten Samenfäden befruchtet worden war. (Serie A.) Die Samenfäden wurden 5 Minuten mit 17½ mg (= 5,3 mg reinem Radiumbromid) bestrahlt. Keimblasenstadium. Konservierung in Chrom-Sublimat-Essigsäure. Vergr. 40 mal.
- Fig. 2. Durchschnitt durch ein 3 Tage altes Tritonei (5. Mai bis 8. Mai), das mit bestrahlten Samenfäden befruchtet worden war. (Serie B.) Der Samen wurde 15 Minuten mit 17½ mg (= 5,3 mg reinem Radiumbromid) bestrahlt. Beginn der Gastrulation. Konservierung in Chrom-Sublimat-Essigsäure. Vergr. 40 mal.

- Fig. 3. Durchschnitt durch ein der Serie B angehörendes, aber nur 2 Tage altes Ei (5. Mai bis 7. Mai). Beginnender Zerfall der Zellen auf dem Keimblasenstadium. Konservierung in Chrom-Sublimat-Essigsäure. Vergr. 40 mal.
- Fig. 4—7. Schnittserie durch das hintere Ende der Medulla oblongata und den Anfang des Rückenmarks einer 18 Tage alten Tritonlarve (19. April bis 7. Mai). Die Eier wurden gekreuzt mit Samen von Salamandra maculata, nachdem er 2 Stunden 15 Minuten zwischen zwei starken Mesothoriumpräparaten bestrahlt worden war. (Serie Trit. Salam, A².) Konservierung Pikrin-Sublimat-Essigsäure. Vergr. 68mal. Die Schnittserie zeigt eine Trennung der Medulla und des Anfangs des Rückenmarks in zwei Hälften durch Einfaltung.
- Fig. 4. Beginn der Einfaltung.
- Fig. 5. Trennung des vierten Ventrikels in zwei Höhlen durch eine Scheidewand.
- Fig. 6. Anfang des Rückenmarks mit zwei sehr kleinen Höhlen an Stelle des Zentralkanals und einer mittleren Scheidewand von Nervenfbrillen.
- Fig. 7. Fast vollständiger Schwund der zentralen Höhlen; mediane Scheidewand von Nervenfibrillen. Starke Bauchwassersucht in der Herzgegend.
- Fig. 8 und 9. Zwei Querschnitte durch einen 6 Tage alten Tritonembryo der Serie A mit verkümmerter Anlage des Zentralnervensystems (5. Mai bis 11. Mai). Die Eier wurden mit Samen befruchtet, der mit 17½ mg (= 5,3 reinem Radiumbromid) bestrahlt worden war. Konservierung in Chrom-Sublimat-Essigsäure. Vergr. 100mal. Ch. = Chorda; mp. = Verkümmerte Medullarplatte; mk. = Schlecht ausgebildetes mittleres Keimblatt.
- Fig. 10 und 11. Zwei Querschnitte durch die Mitte (Fig. 10) und das Ende (Fig. 11) der Medulla oblongata von einer 4 Wochen alten Tritonlarve C³. Entwicklung vom 16. April bis 14. Mai. Die Eier wurden mit Tritonsamen befruchtet, der 3 Stunden lang zwischen zwei starken Mesothoriumpräparaten bestrahlt worden war. Von Ependymzellen aus hat sich eine Geschwulstmasse in den vierten Ventrikel entwickelt. Konservierung Pikrin-Sublimat-Essigsäure. Vergr. 68 mal.
- Fig. 12 und 13. Schnitte durch zwei Tritoneier im Alter von 2 Tagen (5. Mai bis 7. Mai) mit ausgeprägten Zerfallserscheinungen. Serie B¹. Die Eier wurden mit Samen befruchtet, der 15 Minuten lang mit Radiumpräparat (17 ¹/2 mg) bestrahlt worden war. Konservierung Chrom-Sublimat-Essigsäure. Vergr. 40 mal.
- Fig. 14. Schnitt durch eine 5 Tage alte Keimblase von Triton (A³). Das Ei wurde mit Samen befruchtet, der 5 Minuten mit Radiumpräparat (17½ mg) bestrahlt worden war. Losgelöste und durch Radiumwirkung geschädigte Zellen am Boden der Keimblasenhöhle. Konservierung Chrom-Sublimat-Essigsäure. Vergr. 40 mal.

Tafel III.

- Fig. 1. Querschnitt durch die Augengegend einer 19 Tage alten Radiumlarve D³, die in Fig 19 abgebildet ist. Bestrahlung des zur Befruchtung verwandten Samens während 2 Stunden zwischen zwei starken Mesothoriumpräparaten. Konservierung in Pikrin-Sublimat-Essigsäure. Vergr. 43 mal.
- Fig. 2. Querschnitt durch die Augengegend der zu Fig. 1 gehörenden, in Fig. 17 (Taf. I) abgebildeten Kontrollarve D³. Vergr. 43 mal.
- Fig. 3. Querschnitt durch die Augengegend einer 18 Tage alten Tritonlarve, deren Ei mit bestrahlten Samenfäden von Salamandra maculata besamt wurde. 2 1/4 stündige Bestrahlung zwischen zwei starken Mesothoriumpräparaten. (Trit. Salam. A².) Konservierung Pikrin-Sublimat-Essigsäure. Vergr. 43 mal.
- Fig. 4. Frontalschnitt durch den Kopf einer 24 Tage alten Radiumlarve D⁵. Das Ei wurde mit Spermien besamt, die 2 Stunden lang zwischen zwei starken Mesothoriumpräparaten bestrahlt worden waren. Konservierung Pikrin-Sublimat-Essigsäure. Vergr. 43 mal.
- Fig. 5. Entsprechender Frontalschnitt durch die zu Fig. 4 gehörige Kontrolllarve D⁵ gleichen Alters bei derselben Vergrösserung.
- Fig. 6. Frontalschnitt durch die Rückengegend des Rumpfes derselben Larve, deren Kopfschnitt in Fig. 4 abgebildet ist bei gleicher Vergrösserung.
- Fig. 7. Entsprechender Frontalschnitt durch den Rücken des Rumpfes der hierzu gehörigen Kontrollarve D⁵ bei gleicher Vergrösserung wie Fig. 5.
- Fig. 8. Photographie der Gallertplatte mit Gallertzellen vom Rand des dorsalen Flossensaumes in der Gegend vis-à-vis der Ausmündung des Afterrohres. Präparat von einer 17 Tage alten Kontrolllarve (E) (Taf. I, Fig. 32). Konservierung Pikrin-Sublimat-Essigsäure.
- Fig. 9. Photographie der entsprechenden Gallertplatte mit Zellen aus derselben Gegend wie in Fig. 8 von einer 17 Tage alten Radiumlarve (Taf. I, Fig. 33). Das Ei wurde mit Spermien besamt, die 2 Stunden lang zwischen zwei starken Mesothoriumpräparaten bestrahlt worden waren. Konservierung in Pikrin-Sublimat-Essigsäure.

Aus dem Biologischen Institut der Universität Berlin.

Über künstliche Entwicklungserregung bei Amphibien.¹⁾

Von Fritz Levy.

Hierzu 8 Textfiguren.

Im Jahre 1762 entdeckte der Genfer Naturforscher und Philosoph Bonnet die Parthenogenese bei der Reblaus Phylloxera vastatrix. Seine briefliche Mitteilung, die der berühmte Physiker Réaumur der Pariser Akademie vorlegte, erregte damals grosse Bedenken: "gegen eine Entdeckung, welche einem allgemeinen und durch alle bisherigen Erfahrungen einmütig bestätigten Gesetz entgegen wäre". Seit dieser wichtigen Beobachtung haben sich viele Biologen mit den Vorgängen bei der Parthenogenese beschäftigt. Die Literatur ist auf botanischem wie zoologischem Gebiete beträchtlich angewachsen: aber erst in den letzten Dezennien beginnt eine Klärung der Vorgänge einzutreten. Nach den grundlegenden Arbeiten von R. Hertwig, Loeb, Delage u. a. kam zu der bis dahin bekannten "natürlichen" Parthenogenese auch noch die sogenannte "künstliche" Parthenogenese. Untersuchungen darüber befassten sich fast alle mit Avertebraten, vorwiegend Echinodermen, dann auch Würmern und Mollusken. Ich darf es mir versagen, näher auf ältere Arbeiten über Parthenogenese bei Wirbeltieren, wie die von Schenk, Oellacher u. a. einzugehen, da es sich dort zumeist um Reifungserscheinungen des Eies handelt.

Bataillon, der sich schon seit vielen Jahren mit der künstlichen Entwicklungserregung bei Amphibien befasste, gelang es im Jahre 1910 diese Entwicklungserregung auszulösen. Nach ihm haben Dehorne, Henneguy, Brachet und Mc Clendon diese Versuche wiederholt. Bis jetzt ist es anscheinend nur Delage bei seinen zwei Seeigeln gelungen, durch künstliche Entwicklungserregung erzeugte Embryonen durch das kritische

Nach einem in der Gesellschaft naturforschender Freunde in Berlin in der Sitzung vom 17. Dezember 1912 gehaltenen Vortrage. Archiv f. inikr. Anat. Bd. 82. Abt. II.

Stadium der Metamorphose hindurchzubringen. Im Jahre 1912 gelang es mir, zwei nach der Methode von Bataillon erzeugte Frösche zu erzielen. Ich habe diese Versuche neben meinen Lichtversuchen über Teilentwicklungen aufgenommen, da mir die Versuchsanordnung die Aussicht zu bieten schien, in mancherlei Beziehung theoretisch wichtige Aufschlüsse zu geben. Leider sind die Versuche noch nach keiner Richtung hin vollständig abgeschlossen: trotzdem glaube ich, da meine bisherigen Ergebnisse in nicht unwesentlichen Punkten über die anderer Autoren hinausgehen, schon heute berechtigt zu sein, als vorläufige Mitteilung das zu veröffentlichen, was ich in diesem Jahre gefunden habe. Ich hoffe im nächsten Jahre bereits in der Lage zu sein. nach einem weit grösseren Materiale umfassendere und vielleicht auch zwingendere Angaben zu machen. Es wird aber, dessen bin ich mir wohl bewusst, noch vieler Versuche und Untersuchungen bedürfen, bis es gelingen wird, alle Lücken der Beweisführung in dem Bauplan auszufüllen, dessen Entwurf ich im Anschluss an meine Versuchsergebnisse versucht habe.

Methode.

Bei allen Versuchen wurde mit Einhaltung peinlichster Asepsis gearbeitet, nach den Vorschriften, wie sie in der operativen Medizin und Bakteriologie üblich sind. Alle Instrumente wurden durch Kochen, die Tücher und Glassachen durch strömenden Dampf sterilisiert. Die Versuchstiere trennte ich, sobald sie mir gebracht wurden, aus der Copula und bewahrten sie nach Geschlechtern getrennt bis zum Versuche auf. Zuerst wurden die Weibchen decapitiert, auf ein steriles Tuch gelegt und, wie es heute in der Chirurgie üblich ist, zu gründlicher Desinfektion und sicherer Abtötung aller Spermatozoen, die etwa am Leibe hafteten, über den ganzen Leib mit Jodtinktur angestrichen. Besondere Aufmerksamkeit wurde auf den Anstrich der Kloakengegend verwandt. Mit steriler Schere und Pinzette öffnete ich dann die Bauchhaut, mit einer zweiten sterilen Schere und Pinzette, die also sicher weder mit Spermatozoen, noch mit Jodtinktur an der Bauchhaut in Berührung gekommen waren. den sogenannten Uterus. Mit einem sterilen Glasstabe wurden 50-60 Eier in kleinen Gruppen auf einen sterilen Objektträger verteilt und unter einem binokularen Mikroskop angestochen.

Das Hauptinstrument (Fig. 1) ist ein rechtwinklig gebogener Glasstab, dessen kürzerer Schenkel in eine kleine Kugel endet. In diese Kugel ist ein 20, 30 oder 50 μ dicker Draht aus Platin oder Platin mit 10 $^0/_0$ Iridium eingeschmolzen. Bei einer grossen

Anzahl von Versuchen wurden die Drähte in 0,3% NaCl oder in Blut der Mutter eingetaucht. Bataillon glaubt dadurch günstigere Ergebnisse zu erzielen; ich kann darüber heute noch kein abschliessendes Urteil abgeben.

Nach dem Anstechen wurden die Eier in sterile Satten mit Leitungswasser abgespült. Das Leitungswasser habe ich nicht sterilisiert, da es sicher in den Leitungen keine lebenden Spermatozoen enthält. Eine Serie Kontrolleier wurde, ohne dass ihnen irgend etwas geschah, aus dem Uterus in Wasser gelegt, um zu beweisen, dass sicher an die Eier keine Spermatozoen herangekommen waren. Das erwies sich auch so; denn in keinem Versuche konnte ich in diesen Kontrollsatten auch nur eine Furchung sehen. Wenn bei den Eiern der Versuche und der Kontrolle die Gallerte schon stark aufgequollen war, legte ich eine zweite Kontrolle an. Die Eier dieser Serie wurden in üblicher Weise künstlich befruchtet, um einen Anhalt zu liefern, ob die Eier überhaupt entwicklungsfähig waren. Dieser zweiten Kontrolle verdankte ich die Erklärung, warum in einigen Versuchen die Resultate vollkommen negativ ausfielen. Erst wenn Furchungen aufgetreten waren, also nach etwa 31/2-4 Stunden bei 150 C., legte ich zu besserer Durchlüftung Elodea in die Satten: so kann also die Elodea keine Spermatozoen übertragen haben.

Versuche und Ergebnisse.

Wir haben im ganzen etwa 8000 Eier¹) angestochen von: Rana temporaria (fusca), arvalis, esculenta, Bufo vulgaris, Triton cristatus und taeniatus. Bei den Tritonarten war es wegen der Festigkeit der Gallerte nicht möglich, das Anstechen der Eier

¹) Es wäre mir kaum möglich gewesen, die Versuche in diesem Umfange durchzuführen, wenn ich nicht die hingebende Unterstützung des Herrn stud. med. Heinrich Strohmann gehabt hätte, dem ich auch an dieser Stelle noch einmal meinen herzlichsten Dank aussprechen möchte.

ohne zu starke Schädigung auszuführen. Bei Bufo vulgaris erzielte ich einige Furchungen, die aber zumeist mehr oder minder Barockfurchungen waren. Die Schuld daran ist wohl zu nicht geringem Teil dem Umstande zuzuschreiben, dass die Eier beim Herausziehen der Schnüre etwas gezerrt werden. Die Froscheier stellten sich fast alle nach dem Anstich polar ein, von ihnen haben sich in manchen Versuchen bis zu 20 % gefurcht, in anderen 2 % oder auch fast gar nichts, durchschnittlich etwa 9,75 %. Diese Ergebnisse sprechen sehr dafür, wie es auch Delage bei Echinodermen annahm, dass das Ei Stadien hat, in denen es mit mehr

Erfolg als in anderen zu künstlicher Entwicklungserregung gebracht werden kann. So erhielt ich etwa 800 Furchungen, von denen viele anscheinend normal, die übrigen aber barock gestaltet

waren. Fig. 2 und 3 geben davon einen Überblick. Die kleinen Spitzen in Fig. 2 sind Extraovate, die immer an den Stichstellen austreten und später wie Fremdkörper durch die Gallerte ausgestossen werden. Fig. 2 f zeigt

eine bis auf das Extraovat vollkommen normal aussehende Furchung; es erhellt daraus auch, dass das Extraovat nichts mit der ersten Furchungsebene zu tun zu haben scheint. In Fig. 3 habe ich zwei sehr interessante Barockfurchungen bei Rana esculenta skizziert. Bei 3 a verläuft die erste Furchungsebene gerade an der Grenze von animalem und vegetativem Pol. bei 3 b hat sich nur der animale Pol gefurcht. Im ganzen haben sich 24 Embryonen über die Gastrula hinaus entwickelt, aber nur 11 von ihnen verliessen die Gallerthülle und wurden frei schwimmende Kaulguappen, die auch mehr oder minder bald starben. Es zeigten sich verschiedene Missbildungen, wie Spina bifida. Verkrümmungen u. a. Eine Kaulouappe starb während der Metamorphose, als die Hinterbeine schon gut entwickelt waren und Stummel von Vorderbeinen gerade sichtbar zu werden anfingen. Zwei wurden Frösche, die an Land gingen, davon eine Rana temporaria (fusca) und eine Rana esculenta var. ridibunda. Die Rana esculenta lebte nur drei Tage auf dem Lande und starb als sie noch einen kleinen Schwanzstummel hatte. Die Rana temporaria lebte etwa einen Monat als Frosch. Die Aufzucht dieser Jungfrösche ist ungemein schwer, so habe ich zwar Kontrolltiere von Rana temporaria, die jetzt noch leben, aber leider keine von Rana esculenta. Die Aufzucht wurde mir sehr erleichtert durch Anlegen einer Anzahl Kulturen von Drosophila.1)

Fig. 4. b

Rana temporaria (fusca). Am 21. März 1912 a in üblicher Weise künstlich befruchtet, b durch Anstich des Eies mit einem in das Blut der Mutter eingetauchten Platindraht von 20 "Durchmesser erzeugt. Am 26. Juli 1912 unmittelbar nach dem Tode in natürlicher Grösse photographiert.

Wie Fig. 4 zeigt, ist der durch künstliche Entwicklungserregung erzeugte Frosch nur etwa halb so gross als das gleich

¹) Für die freundliche Sendung der Stammkultur bin ich Herrn Dr. Paul Kammerer in Wien zu grossem Danke verpflichtet.

alte Kontrolltier. Schon während der ganzen Entwicklung als freilebende Kaulquappen wurde an ihnen die Beobachtung gemacht, dass die Versuchstiere hinter den Kontrollen an Grösse zurückblieben. Die Tiere stammen aus reifen Eiern, d. h. aus Eiern, die durch Reduktionsteilungen ihre Kernmasse auf die Hälfte vermindert haben. Es ist natürlich von grossem Interesse, zu erfahren, ob sich die Chromosomenzahl reguliert, und ob die Chromatinmasse ergänzt wird, ob also die künstlich erzeugten Embryonen dieselben Kerngrössen wie die normalen Kontrolltiere haben. Zur Bestimmung der Chromosomenzahl schnitt ich von einigen der oben erwähnten 11 Kaulquappen wie den gleichalterigen Kontrollen die äusserste Schwanzspitze ab. Dieser kleine Eingriff erwies sich als vollkommen harmlos. Es stösst auf grosse Schwierigkeiten, genaue Chromosomenzahlen anzugeben, ich glaube aber doch nach mehreren günstig liegenden Äquatorialplatten sagen zu können, was auch Bataillon angibt, dass in den Versuchstieren kaum mehr als 12, sicher aber nicht etwa 24 wie bei den Kontrollen zu sehen waren. Nach Boveri steht die Zahl der Chromosomen im direkten Verhältnis zur Kerngrösse. Zur richtigen Deutung der Messungsbefunde ist eine kleine mathematische Erwägung nötig. Der Kern ist aller Wahrscheinlichkeit nach zumeist als ein körperliches und nicht als ein flächenhaftes Gebilde zu

Knorpelkerne. 1000 fache Vergröss. a = Kontrolltier, b = Versuchstier.

betrachten. Wenn man sich die Kerne, um sich die Verhältnisse klarzumachen, der Einfachheit halber als Kugeln vorstellt, wobei ϱ den Radius im Kerne des Kontrolltieres, r den Radius im Kerne des Versuchstieres bezeichnen möge, so ergibt sich folgende Berechnung:

Angenommen, die Kernvolumina verhalten sich

dann ist

$$\frac{4\pi}{3} \mathbf{r}^3 : \frac{4\pi}{3} \varrho^3 = \frac{1}{2}$$

$$\frac{\mathbf{r}^3}{\varrho^3} = \frac{1}{2} ; \mathbf{r} = \sqrt[3]{\frac{\varrho^3}{2}} = \frac{\varrho}{2} \sqrt[3]{4} = \varrho \cdot 0,7937$$

$$\frac{\mathbf{r}}{\varrho} = 0,7937$$

$$\frac{\mathbf{r}^2}{\varrho^2} = 0,6299$$

 ϱ^3 — 0.5 Aus dieser Berechnung ergibt sich nun praktisch: Wenn die Kerne sich in ihrer Gestalt der Kugelform nähern, verhalten

sich die Durchmesser etwa wie 4:5. Bei der Zeichnung wie

Kerne aus der den Ependymzellen am nächsten liegenden Kernschicht der grauen Substanz des Rückenmarkes. 1000 fache Vergrösserung.

a = Kontrolltier, b = Versuchstier.

bei der Photographie kann ein einzelner Kern, sei es ungünstig liegen, sei es im Schnitt oder in der photographischen Einstellung nicht mit seinem grössten Umfange getroffen sein. Bei den Zeichnungen haben wir von jedem Kern immer den grössten Umfang gezeichnet, bei der Mikrophotographie ist natürlich nur auf eine Ebene scharf eingestellt. Die wahren Vergleichswerte ergeben die Integrale über die Gesamtheit der Flächen auf jeder Seite. Die Zeichnungen sind mit Zeiss' Apochromat-Immersion 2 mm N. A. 1,30 und Kompensationsokular 8 bei einem Abstand von 25 cm vom Okular zur Zeichenfläche mit Hilfe des Edinger-

Fig. 7.

Mikrophotographien von Kernen aus der den Ependymzellen am nächsten liegenden Kernschicht der grauen Substanz des Rückenmarkes. 1000 fache Vergr. a — Kontrolltier, b — Versuchstier. Es ist beachtenswert, dass bei gleich grossem Gesichtsfeld bei b bedeutend mehr Kerne sichtbar sind als bei a.

schen Zeichenapparates entworfen; die Vergrösserung ist also etwa 1000 fach. Auch Fig. 7, eine Mikrophotographie aus der den Ependymzellen am nächsten liegenden Kernschicht der grauen Substanz des Rückenmarkes, die auch bei etwa 1000 facher Vergrösserung hergestellt ist, bestätigt bei Berücksichtigung aller Fehlerquellen wie die Zeichnungen die Annahme, dass die durch Anstich mit dem Platindraht erzeugten Tiere nur die halbe Kernmasse enthalten. Fig. 8 stellt ganze Erythrozyten mit ihren

Erythrozyten mit ihren Kernen. 1000 fache Vergröss. a = Kontrolltier. b = Versuchstier.

Kernen dar. Die Zellgrössen bei Kontroll- und Versuchstieren verhalten sich infolge der von Richard Hertwig beschriebenen Kernplasmarelation wie die Kerngrössen. Wenn ich diese Befunde unter Berücksichtigung der Boverischen Regel mit den gesehenen Mitosenbildern zusammen betrachte, glaube ich mit Sicherheit annehmen zu dürfen, dass die Versuchstiere nur die halbe Chromosomenzahl haben, also "haploid" sind. Die in dieser Arbeit abgedruckten Photographien und Zeichnungen sind nach Schnitten durch die in Fig. 4 abgebildeten Frösche gemacht. Natürlich habe ich auch eine grosse Anzahl Zeichnungen von anderen Versuchstieren gemacht, die entsprechende Werte ergeben.

Besprechung.

Bisher war es gelungen, im normalen Befruchtungsvorgange zwei Faktoren zu erkennen: die Entwicklungserregung und die Vererbung elterlicher Erbmassen. Die erfolgreichen Versuche mit künstlicher Entwicklungserregung und die zytologischen Befunde weisen uns, glaube ich, noch auf einen dritten recht wesentlichen Faktor hin: die Erhaltung der Fortpflanzungsfähigkeit. Genaue und zwingende Erörterungen über künst-

liche Entwicklungserregung, Parthenogenese und normale Befruchtung können nur bei Tierarten gemacht werden, bei denen wir die Kerngeschichte. den normalen Verlauf der Reifungsvorgänge in den Geschlechtszellen genau kennen. Aus diesem Grunde habe ich auch die Spermiogenese der verschiedenen Rana-Arten zu untersuchen unternommen. Leider sind diese Untersuchungen erst für eine Art, Rana esculenta, soweit gefördert, dass ich hoffe, sie in wenigen Wochen veröffentlichen zu können. Es würde zu weit führen, hier auch nur eine kurze Darstellung des Reduktionsproblems, um das es sich hier handelt, zu geben. Die Literatur ist bereits ins Ungemessene gewachsen. Vortreffliche Zusammenstellungen darüber finden sich bei Korschelt und Heider, bei Fick und in Oskar Hertwigs Allgemeiner Biologie. möchte hier nur kurz aus meiner demnächst zu veröffentlichenden Mitteilung vorwegnehmen, dass bei Rana, ähnlich wie es King bei Bufo beschreibt, nach dem Synapsisstadium sich je zwei Chromosomen Ende an Ende zusammenfinden. Diese ringförmigen Tetraden gehen in eine nach Flemmings Bezeichnung "heterotypische" Mitose; diese zeigt die sogen, "Tonnenform". Aus ihr gehen durch Querteilung Dyaden hervor. Die Dyaden bilden keinen Ruhekern, sondern gehen gleich wieder in Mitose, aus der Monaden entstehen. Betreffs der Einzelheiten verweise ich auf meine demnächst in diesem Archiv erscheinende Arbeit.

Wir fanden, dass die durch künstliche Entwicklungserregung erzeugten Kaulquappen und Frösche in ihren Kernen haploid sind. Dieselbe Beobachtung beschreibt Günther Hertwig. Bei seinen Versuchen mit Radiumschädigungen von Ei oder Sperma hat er bis zu 10 Tage alte Larven bekommen, die, wie er angibt, haploide Kerne hatten. Er sagt dazu: "Der haploide Kern kann sowohl von der Mutter, als auch vom Vater geliefert werden." Der erste Fall entspricht meinen Versuchen, der zweite dem Vorgange, den wir mit Delage als Merogonie zu bezeichnen pflegen. Auch Oppermann hat, wie er mir freundlichst mitteilte, bei seinen Bestrahlungen an Forelleneiern ähnliche Befunde wie Günther Hertwig erhoben. Hier müssen noch zwei Arbeiten in Erwägung gezogen werden, die von Kupelwieser: "Entwicklungserregung bei Seeigeleiern durch Molluskensperma", und die von G. Hertwig: "Über das Schicksal des mit Radium bestrahlten Spermachromatins".

Auf das Verhältnis der normalen Parthenogenese komme ich später zu sprechen. Bei Günther Hertwigs und Oppermanns Versuchen geht der Spermakern aus wenig geschädigten Spermatozoen noch eine Amphimixis ein: G. Hertwig weist mit Recht darauf hin, dass wir es hier mit ähnlichen Verhältnissen zu tun haben wie bei den Bastarden. Aber lediglich die Tiere, die aus schwach geschädigtem Sperma entstanden sind, entsprechen den echten Bastarden, denn Günther Hertwig gibt ferner an. dass das stark beschädigte Spermachromatin ausgeschieden wird. wie bei Kupelwieser der Mytilusspermakern. Dadurch haben wir in diesen Fällen praktisch auch eine asperme Entwicklungserregung. Die Tiere entwickeln sich rein monokaryotisch. Mit vollem Recht glaube ich, können wir dazu auch noch die Merogonie rechnen, die ja durch das Fehlen des Eikerns auf dasselbe herauskommt. Leider liegen keine neueren Untersuchungen über die Reifeteilungen bei Echinodermen vor. Nach meinen Befunden bei der Spermiogenese bei Rana glaube ich, dass es nicht allzu gewagt ist, folgende Hypothese, die ich vorläufig aber selbst noch als Arbeitshypothese betrachte, aufzustellen:

Eikern wie Spermakern sind gleichwertige Gebilde, die jedes für sich bei Vorhandensein einer geeigneten Plasmamenge durch verschiedene zur Zeit ihrer Wirkung nach unbekannt Reize zur Entwicklung eines Embryo mit haploiden Kernen angeregt werden können. Tritt im normalen Verlauf der Reifeteilungen bei der betreffenden Tierart eine Reduktion ein, so muss das Tier, das schon in den Somazellen haploide Kerne hat (was wenig wahrscheinlich ist), unter Anderung des Reifungsmodus die Reduktion ausfallen lassen oder es wird nicht geschlechtsreif. Leider ist es mir bisher nicht gelungen, einen Frosch bis zu dem Alter zu bringen, in dem er geschlechtsreif werden müsste, ich hoffe dabei in späteren Versuchen mehr Glück zu haben. Als Einwand könnte gegen diese Hypothese erhoben werden, dass der eine Seeigel von Delage Spermatozoen entwickelt hat. Dagegen ist zu bemerken, dass bei Echinodermen vielleicht auch normal Parthenogenese vorkommt; ihre Spermiogenese ist zudem nicht genügend bekannt. Im Gegensatze zu Wilson, Morgan u.a. beschreibt Delage, dass seine durch künstliche Entwicklungserregung erzeugten Seeigel diploid waren. Kernmessungen hat er nicht vorgenommen, wie er mir mitzuteilen, die Liebenswürdigkeit hatte. Über die Verhältnisse bei normaler Parthenogenese verweise ich auf die einschlägige Literatur. Mit vortrefflicher Klarheit hat jüngst Schleipp die Resultate der Untersuchungen über Reifeteilungen bei Parthenogenese zusammengestellt:

"Obligatorisch parthenogenetische Eier, d. h. solche, die nicht befruchtet werden können, verhalten sich bei ihren Reifungsteilungen verschieden; stets aber unterbleibt die Reduktion der Chromosomenzahl. Fakultativ parthenogenetische Eier, d. h. solche, die sich befruchtet oder unbefruchtet entwickeln können, erfahren stets eine Zahlenreduktion: sie entwickeln sich mit der halben Chromosomenzahl zu Männchen, in deren Spermatogenese dann die Reduktion der Chromosomenzahl ausfällt. Bei jeder ist nicht nur eine fortdauernde Verminderung der Chromosomenzahl schlechtweg, sondern auch der Zahl der verschiedenen Chromatineinheiten verhütet, falls eine Verschiedenheit zwischen denselben besteht."

In ähnlicher Weise äussern sich die Botaniker. Eine Aufregulierung in der Art. wie sie Brachet gesehen zu haben glaubt, erscheint mir wenig wahrscheinlich. Es ist sicher recht schwer, nach Schnitten die genaue Chromosomenzahl zu bestimmen. da durch Anschneiden der Schleifenchromosomen oder Überdeckungen leicht Irrtümer möglich sind. Unverständlich bleiben mir Dehornes Befunde, der beim normalen Frosch zwölf, bei den durch Anstechen gewonnenen Larven sechs gezählt hat: Aus der hoch interessanten Arbeit von Kostanecki über Mactra ersehen wir, ähnlich wie aus Bataillons Arbeiten, wie seltsame, meist wohl als pathologisch aufzufassende Mitosenformen bei der Bildung von Larven durch künstliche Entwicklungserregung auftreten. Er hat sicher recht, dass es ebenso wichtig ist, den Weg zur Larve, wie deren Kernverhältnisse kennen zu lernen. Weder bei Tieren noch bei Pflanzen ist bis jetzt ein Fall von Aufregulierung sichergestellt.

Die Anschauung von Loeb und vielen anderen Autoren bringt die künstliche Entwicklungserregung in Verbindung mit der Parthenogenese. Diese hängt sicher eng mit der normalen Befruchtung zusammen aus der sie wohl auch hervorgegangen ist. Bestätigt es sich nun weiterhin, dass auch bei den meta-

morphosierten Fröschen die Kerne haploid bleiben und dass diese Frösche nicht einen neuen Reifungsmodus einführen, sozusagen "ihre Spermiogenese umlernen", dann haben wir es hier nicht mit einer "künstlichen Parthenogenese" zu tun. Bei der echten Parthenogenese bleibt das normale Chromatinverhältnis gewahrt: deswegen können diese Tiere alle auch zeugungsfähige Nachkommen liefern. Bei der Bastardbildung kommt es durch Amphimixis auch zur Erhaltung der normalen Chromatinmasse, hier treten aber oft in der "Intimfusion" (Haecker) in der Reifung Störungen auf. Ich verweise hier auf die grundlegenden Arbeiten von Haecker und Poll. Ihrer Kernmasse nach könnten die Bastarde geschlechtsreif werden, wenn sie die Schwierigkeiten bei der Intimfusion überwinden. Die durch stammfremdes Sperma erzielten Tiere sind aber keine Bastarde. Sie entwickeln sich. wie oben besprochen, rein monokarvotisch, praktisch gehören sie also zur aspermen Entwicklungserregung. Wenn nun aus dem oben angeführten Grunde die F1-Generation bei aspermer Entwicklungserregung und Befruchtung mit stammfremdem Sperma nur aus Abortivformen besteht, die nicht geschlechtsreif werden können, dann haben wir es hier nicht mit einer künstlichen Parthenogenese, sondern mit einer degenerativen Entwicklungserregung zu tun. Diese ist auch etwas Grundverschiedenes von der "generativen". haploiden Parthenogenese, denn sie liefert, wie z. B. bei Apis, wegen des veränderten Reifungsmodus geschlechtsreife Nachkommen.

Vorläufig ist das hier Entwickelte nur eine Hypothese, ich hoffe aber bald nach weiteren und umfassenderen Versuchen mehr Material zur Klärung der Verhältnisse beizubringen.

Literaturverzeichnis.

- Bataillon, E.: Le problème de la fécondation circonscrit par l'imprégnation sans amphimixe et la parthénogenèse traumatique. Arch. de Zool. expér., 5e sér., T. V. 1910. (Viel Literaturhinweise!)
- Boveri, Th.: Zellenstudien V. Über die Abhängigkeit der Kerngrösse und Zellenzahl der Seeigellarven von der Chromosomenzahl der Ausgangszellen. Jena 1905.
- Brachet, A.: Etudes sur les localisations germinales et leur potentialité réelle dans l'oeuf parthénogénétique de Rana fusca. Arch. de Biologie, XXVII. 1911.
- Clendon, Mc.: The relation of permeability change to cleavage in the Froggs egg. Science, XXXIII, 1911.
- Dehorne, A.: Le nombre des chromosomes chez les Batraciens et chez les larves parthénogénétique de Grenouille. C. r. ac. d. sc., 1910.
- Del a ge, Y.: Les vraies facteurs de la parthénogenèse expérimentale. Élevage des larves parthénogénétiques jusqu'à la forme parfaite. Arch. de Zool. expér., T. VII, 4e sér., 1908.
- Fick, R.: Vererbungsfragen, Reduktions- und Chromosomenhypothesen, Bastardregeln. Ergebn. d. Anat. u. Entwicklungsgesch., Bd. 16, 1907.
- Haecker, V.: Bastardierung und Geschlechtszellenbildung. Festschrift f. Weismann. Zool. Jahrb., Suppl. 7, 1904.
- Henneguy, E.: Sur la parthénogenèse expérimentale des Amphibiens. C. R. de l'acad. d. sc., 1911.
- Hertwig, Günther: Radiumbestrahlung unbefruchteter Froscheier und ihre Entwicklung nach Befruchtung mit normalem Samen. Arch. f. mikr. Anat., Bd. 77, 1911.
- Derselbe: Über das Schicksal des mit Radium bestrahlten Spermachromatins im Seeigelei. Arch. f. mikr. Anat., Bd. 79, Abt. II, 1912.
- Hertwig, Oskar: Allgemeine Biologie, 4. Aufl., Jena 1912.
- Hertwig, Richard: Über Korrelation von Zell- und Kerngrössen und ihre Bedeutung für die geschlechtliche Differenzierung und die Teilung der Zelle. Biol. Zentralbl., Bd. 23, 1903.
- King, Helen Dean: The spermatogenesis of Bufo lentiginosus. Americ. Journal of anatomy, Vol. VII. 1907.
- Korschelt und Heider: Lehrbuch der vergleichenden Entwicklungsgeschichte. Allgemeiner Teil.
- v. Kostanecki, K.: Über künstliche Befruchtung und künstliche parthenogenetische Furchung bei Mactra. Bull. ac. soc., Krakau 1912.
- Derselbe: Über parthenogenetische Entwicklung der Eier von Mactra mit vorausgegangener oder unterbliebener Ausstossung der Richtungskörper, Arch. f. mikr. Anat., Bd. 78, 1911.
- Kupelwieser, H.: Versuche über Entwicklungserregung und Membranbildung bei Seeigeleiern durch Molluskensperma. Biolog. Zentralbl., Bd. 26, 1906.
- Derselbe: Entwicklungserregung bei Seeigeleiern durch Molluskensperma. Arch. f. Entw.-Mech., Bd. 27, 1909.

- Levy, Fritz: Untersuchungen über den Einfluss ultravioletter Strahlen auf Sperma und Eier von Amphibien. Zeitschr. f. allgem. Physiologie. Bd. 13, 1911.
- Loeb, J.: Untersuchungen über künstliche Parthenogenese. Übers. von Sehwalbe. Leipzig 1906.
- Derselbe: Die chemische Entwicklungserregung des tierischen Eies (künstliche Parthenogenese). Berlin 1909.
- Poll, H.: Mischlingsstudien V. Vorsamenbildung bei Mischlingen. Arch, f. mikr. Anat., Bd. 77, 1911.
- Schleipp, W.: Die Reifung des Eies von Rhodites rosae L. und einige allgemeine Bemerkungen über die Chromosomen bei parthenogenetischer Fortpflanzung. Zool. Anz., Bd. 35, 1909.
- Winkler, H.: Parthenogenesis und Apogamie im Pflanzenreich. Jena 1908.

 Dieses Literaturverzeichnis enthält nur die in der vorliegenden Arbeit angeführten Arbeiten.

Anmerkung bei der Korrektur: Während der Drucklegung wurden mir die folgenden für hier behandelte Fragen wichtige Arbeiten zugänglich. Ich muss es auf eine spätere Mitteilung versparen, näher auf sie einzugehen.

- Bataillon, E.: La parthénogénèse et la "fécondation chimique" de Loch. Annales d. sc. natur., 9º sér., 1912.
- Conclin, E. G.: Cell-size and body-size. Journal of Morphology, Vol. 23, 1912.
- Derselbe: Cell-size and nuclear-size. Journ. of experiment. Zoology, Vol. 12, 1912. Erd mann, Rh.: Quantitative Analyse der Zellbestandteile bei normalem,
- experimentell verändertem und pathologischem Wachstum. Ergebn.
 d. Anat. u. Entwicklungsgesch., Bd. XX, 2. Hälfte, 1912.
- Erhard, H.: Studien über Nervenzellen. I. Allgemeine Grössenverhältnisse, Kern, Plasma und Glia. Arch. f. Zellforsch., Bd. VIII, 1912.
- Hertwig, Günther: Parthenogenesis bei Wirbeltieren, hervorgerufen durch artfremden, radiumbestrablten Samen. Arch. f. mikr. Anat., Bd. 81, Abt. II, 1913.
- Hertwig, Paula: Das Verhalten des mit Radium bestrahlten Spermachromatins im Froschei. Arch. f. mikr. Anat., Bd. 81, Abt. II, 1913.
- Kupelwieser, H.: Weitere Untersuchungen über Entwicklungserregung durch stammfremde Spermien, insbesondere über die Befruchtung der Seeigeleier durch Wurmsperma. Arch. f. Zellforsch., Bd. VII, 1912.
- Morgulis, S.: Studies of inanition in its bearing upon the problem of growth. Arch. f. Entw.-Mech., Bd. 32, 1911.

Aus dem Anatomisch-biologischen Institut der Universität Berlin.

Beiträge zur Kenntnis des Zeugungskreises der Microsporidien Glugea anomala Moniez und hertwigi Weissenberg.

Van

Richard Weissenberg.

Hierzu Tafel IV-VII und 6 Textfiguren.

	Inhalt:	Seite
I.	Einleitung und historischer Überblick	82
11.	Material und Methoden	89
III.		91
	Zusammenfassung	95
IV.		95
	Zusammenfassung	101
V.	Über Infektionsversuche an Stichlingen	101
	Zusammenfassung	104
VI.	Über den Bau eines Primärstadiums einer Glugea anomala-Cyste	104
	Zusammenfassung	113
VII.		
	die Aufteilung derselben in Vakuolenzellen	114
	Zusammenfassung	121
VIII.	Über eine Modifikation in der Entwicklung der Vakuolenzellen.	
	die für ältere Cysten charakteristisch ist	121
	Zusammenfassung	125
IX.		
	bildung von Glugea anomala und hertwigi	126
	Zusammenfassung	131
Χ.	Das Verhalten des Kernes in den beschalten Sporoblasten und	
	der Sporen nebst Bemerkungen über die durch die Präparations-	
	methoden bewirkten Veränderungen dieser Stadien	131
	Zusammenfassung	141
XI.	Die Entwicklung der "vegetativen Kerne" der Glugeacysten	142
	Zusammenfassung	150
XII.	Generalübersicht der Entwicklungsvorgänge in den Cysten	151
XIII.	Kritik der älteren Befunde an Glugea anomala	154
XIV.	Schlussbetrachtung	157

I. Einleitung und historischer Überblick.

Unter den Endoparasiten kann man bezüglich der Anpassung an das Leben im Wirtsorganismus drei Hauptstufen unterscheiden. Die niedrigste Stufe repräsentieren diejenigen Parasiten, die rücksichtslos Gewebe und Organe des Wirtes zerstören und dadurch schnell den Tod desselben herbeiführen.

Einen höheren Grad der Anpassung zeigt die Hauptmasse der Endoparasiten, die grosse Zahl von Formen, die sich auf ganz bestimmte Gewebe oder Organe beschränken und hier dem Wirte Säfte entziehen, ohne unmittelbar sein Leben zu bedrohen. Sie können sich stark vermehren oder zu bedeutender Grösse heranwachsen, ehe sie — sei es durch mechanische Schädigung, sei es durch die Zerstörung einer zu grossen Zahl von Zellen oder schliesslich durch die Masse ihrer Stoffwechselprodukte — gefährlich werden.

Biologisch am interessantesten ist schliesslich die höchste Stufe des Parasitismus. Für sie ist nicht so sehr das geschickte Ausnutzen der normalen Lebensvorgänge des Wirtes charakteristisch als vielmehr der Umstand, dass der Parasit den Wirt darüber hinaus zu Reaktionen reizt, die in erster Linie dem Eindringling zunutze kommen, dass er Teile des Wirtsorganismus zwingt, nicht mehr im Interesse des Ganzen, sondern lediglich zu Nutzen des Parasiten zu arbeiten.

Eine Reihe markanter Beispiele hierfür bietet das Pflanzenreich in den Gallbildungen. Die sich in der Blattknospe entwickelnde Gallwespenlarve reizt die Blattzellen zu einer mächtigen Geschwulstbildung, die als etwas der Blattorganisation Fremdes dem Baum zu nichts nutze ist, der Cynipidenlarve dagegen reiche Nahrung und eine sichere Wohnung bietet.

Gallbildungen, die durch den Reiz einzelliger Parasiten hervorgerufen werden, sind die Kohlhernie oder die Kropfkrankheit des Kohles. Umfangreiche Geschwülste kommen an den Wurzeln zahlreicher Kohlarten dadurch zustande, dass Zellen des Rindenparenchyms von der Myxamoebe Plasmodiophora brassicae Worbefallen werden. Die Parasiten zerstören die Zellen nicht sogleich, sondern reizen sie zu lebhafter Wucherung und beträchtlicher Hypertrophie. Hand in Hand mit der Vergrösserung der befallenen Zellen vermehren sie sich selber und erfüllen schliesslich ihre Wirtszellen vollkommen.

Von wesentlichem Interesse ist der Umstand, dass Zeilvermehrung und Zellhypertrophie unter dem Reize von parasitischen Protozoen nicht auf das Pflanzenreich beschränkt sind. Bei tierischen Objekten sind es die zur Gruppe der Sporozoen gehörigen Microsporidien, die die auffälligsten Erscheinungen dieser Art hervorbringen. Einer der markantesten Fälle ist die von Mräzek entdeckte und 1911 von mir eingehender untersuchte kolossale Hypertrophie, die die Ganglienzellen eines Fisches, des Lophius piscatorius, unter dem Reize der Microsporidie Glugea (richtiger Nosema) lophii erleiden.

An Ganglienzellen, in deren Plasma sich Microsporidiencysten entwickelt haben, konnte hier ein Längsdurchmesser von 900 u. eine Breite von 800 u und eine Höhe von 300 u festgestellt werden, während der grösste Durchmesser normaler Ganglienzellen bei Fischen entsprechender Körperlänge in den gleichen Ganglien nie 100 µ überschritt. Die genauere Untersuchung ergab, dass sich ein von den Ganglienzellen abgehender Neurit nicht nachweisen liess und dass auch die feinere Struktur reichliche Veränderungen erfahren hat. Eine normale Funktion der Riesenzellen ist demnach ganz ausgeschlossen. Sie sind völlig in den Dienst des Parasiten gestellt, der sie befallen hat und durch ihre Vermittelung einen reichen Strom von Nahrungssäften aus dem Wirt aufnimmt. Da sie somit nur zugunsten des Parasiten wachsen, so verhalten sie sich selbst wie ein dem Körper feindliches Element. Morphologisch wäre noch zu bemerken, dass die Hypertrophie sich gleichmässig auf alle Teile der Zelle, insbesondere auch auf den Kern und die Nukleolarsubstanz erstreckt. So kommt es zur Bildung eines riesenhaften bläschenförmigen Kernes, der von einem Chromatinnetz durchsetzt wird und mehrere Nukleolen einschliesst.

Ein anderer eklatanter Fall von Zell- und Kernhypertrophie und hier auch Zellvermehrung unter dem Einfluss von Microsporidien ist von Mräzek bei oligochaeten Würmern aufgefunden worden. Bereits im Jahre 1897 hatte er bei Limnodrilus frei in der Leibeshöhle flottierende Zellen mit grossen bläschenförmigen Kernen entdeckt, die in grosser Menge Entwicklungsstadien einer Microsporidie enthielten. Er hatte damals den Plasmakörper und die grossen Kerne gleichfalls zur Microsporidie gerechnet und somit das ganze als einen einzigen Organismus aufgefasst, der durch innere

Knospung Sporen erzeuge. Die weiteren Untersuchungen an Limnodrilus und anderen Tubificiden führten jedoch Mrázek (1910) zu dem wichtigen Resultat, dass es sich auch hier um eine hypertrophische Wirtszelle mit intrazellulären Microsporidien, handelt und zwar liess sich in manchen Fällen, namentlich bei Potamothrix, der sichere Beweis erbringen, dass es Leukozyten sind, die unter dem Reiz der in sie eingedrungenen Keime sich lebhaft vermehren und darauf hypertrophieren. Namentlich der bläschenförmige Kern vergrössert sich beträchtlich und zerschnürt sich schliesslich in mehrere Fragmente. Gleichzeitig vermehren sich die Parasiten und erfüllen schliesslich das ganze Plasma.

Den bei Lophius piscatorius und den Oligochaeten beobachteten besonders prägnanten Beispielen einer Zell- und Kernhypertrophie unter dem Einfluss von Microsporidien schliessen sich noch eine Reihe Befunde anderer Autoren an. So beschrieb bereits 1892 Korotneff eine Vergrösserung der Kerne in Spermatoblasten der Bryozoe Alcyonella fungosa, die durch Microsporidien — eine Nosemaart — infiziert waren. 1905 beobachtete Schröder bei der Untersuchung einer zur Gattung Thélohania gehörigen Microsporidienart, die in einem Oligochaeten der Gattung Chaetogaster schmarotzt, eine Vergrösserung der Wirtszellenkerne und ihr Erhaltenbleiben in den Microsporidiencysten. Auch hier kommt es zu lebhafter amitotischer Vermehrung der Kerne.

Grosse gelappte und verzweigte Wirtszellenkerne innerhalb von Microsporidienmassen beschrieb schliesslich 1910 Schuberg im Hoden der Barbe bei der Infektion durch die Microsporidie Plistophora longifilis. Die Hodenkanälchen erfahren hier durch die Entwicklung der Parasiten eine beträchtliche Anschwellung. Das Querschnittsbild eines infizierten Kanälchens kann dabei das Achtfache der Grösse eines normalen Kanälchens erreichen.

Durch den allmählichen Übergang der Kerne normaler Hodenepithelzellen in die bläschenförmigen Riesenkerne, die sich in Menge zwischen den Parasitenhaufen finden, konnte Schuberg den sicheren Nachweis führen, dass auch hier ein Fall von Hypertrophie des Wirtsgewebes unter dem Reiz von Microsporidien statthat. Von besonderem Interesse ist die Beobachtung Schubergs, dass nicht nur die Wirtszellen selber, sondern auch die benachbarten nicht infizierten Zellen eine Vergrösserung ihrer Kerne erfahren.

In allen bisher besprochenen Fällen stellen die Microsporidien kleine, nur wenige μ erreichende einkernige Elemente dar, die sich als intrazelluläre Parasiten durch Teilung vermehren und darauf entweder direkt (Gattung Nosema) oder nach Einschaltung einer Sporonten-Generation (Thélohania und Plistophora) Sporen liefern. Die Sporonten pflegen zwar meist zu vielkernigen Zellen heranzuwachsen, doch bleibt auch in diesen Zell- und Kerngrösse nur eine sehr geringe.

In schroffem Gegensatz hierzu steht die Beschreibung, die Stempell im Jahre 1904 von Glugea anomala, einer im Stichling umfangreiche Cystengeschwülste hervorrufenden Microsporidie gab. Seiner Überzeugung nach repräsentiert hier die ganze, oft einen Durchmesser von mehreren Millimetern erreichende Cyste ein einziges grosses Protozoenindividuum. Dasselbe besitzt somit wie manche Myxosporidien einen Protoplasmakörper von makroskopischer Grösse. In ihm finden sich ausser Millionen von Sporen und Sporenentwicklungsstadien Tausende von Kernen, die eine verschiedene Grösse besitzen. Neben kleinen Kernen von kompakter Struktur treten grosse bläschenförmige Kerne auf, die einen Durchmesser von 10 μ und mehr erreichen können.

Wie eine Reihe von Abbildungen Stempells demonstrieren, heben sie sich durch ihre helle Grundfärbung und eine deutliche Kernmembran sehr deutlich vom Protoplasma ab. Die färbbare Kernsubstanz ist in ihnen, wie Stempell beschreibt, teils an der Kernmembran, teils an einem im Innern des Kernes ausgespannten grobmaschigen Netzwerk von Fäden angeordnet, teils bildet sie auch im Zentrum der Kerne eine grössere kompakte Masse. Die Kerne vermehren sich amitotisch und stellen, wenn die Teilungen unvollständig bleiben, oft rosenkranzförmige Gebilde dar.

Diese Kerne erinnern in ihrem Bau zweifellos sehr an bläschenförmige Metazoenkerne, sie werden jedoch ebenso wie die kompakten kleinen Kerne von Stempell als Microsporidienkerne gedeutet. Im Gegensatz zu den Kernen der sporenbildenden Zellen, die Stempell als die Geschlechtsgeneration auffasst, bezeichnet er sie als die "vegetativen Kerne" der Cyste.

Dass es sich hier tatsächlich um Protozoenkerne handelt und die gesamte Cyste wirklich einen grossen Protozoenplasmakörper und nicht etwa eine hypertrophische Wirtszelle mit eingelagerten Microsporidien darstellt, dafür führt Stempell hauptsächlich vier Gründe an. Er beruft sich zunächst auf das einheitliche Aussehen, das das Cystenplasma darbietet. Ein zweites Argument besteht darin, dass rings um die Cyste eine dicke, kernlose Eigenmembran herumgeht, die sich deutlich von der weiter nach aussen folgenden Bindegewebshülle absetzt. Eine dritte Stütze für seine Ansicht erblickt Stempell in dem Aussehen von Jugendstadien der Cysten, die nach seiner Beschreibung einen einheitlichen Plasmakörper und kleine kompakte Kerne besitzen. Vor allem aber sollen nach Stempell die Kerne der Sporontenzellen, die sich unmittelbar oder nach Teilungen in Sporen umwandeln, direkt von den vegetativen Kernen abstammen.

Von den angeführten Argumenten würden zweifellos die beiden letzten am meisten ins Gewicht fallen. Der Befund der Jugendstadien verliert jedoch an Beweiskraft erheblich dadurch, dass er sich auf altes nur mit vierprozentigem Formalin konserviertes Material bezieht, dessen Erhaltungszustand die Beobachtung feinerer Einzelheiten unmöglich machte. Somit bliebe als wichtigste Stütze für die Stempellsche Auffassung die von ihm behauptete direkte Abstammung der Kerne der Sporonten von den vegetativen Kernen. Liesse sich dieselbe wirklich nachweisen, so könnte an der Zugehörigkeit der vegetativen Kerne zum Protozoon allerdings nicht der geringste Zweifel mehr bestehen.

Jedoch gerade für diesen wichtigsten Punkt kann Stempell keine beweiskräftigen Beobachtungen anführen. Die jungen Sporonten besitzen nach ihm einen zarten Plasmakörper mit einem nur schwer färbbaren Kern, der ein feines Gerüstwerk, jedoch kein Karyosom aufweist. Sie liegen in einer Flüssigkeitsvakuole, die häufig unmittelbar an einen der grossen bläschenförmigen vegetativen Kerne grenzt "und seine direkte Fortsetzung zu bilden scheint". Aus dieser topographischen Beziehung schliesst Stempell auf eine genetische und überbrückt den offenbaren Gegensatz in der Struktur der Sporonten und des vegetativen Kernes durch die Annahme, dass der vegetative Kern bei der Umwandlung in den Kern des Sporonten sein Karvosom ausstosse oder dass dieses als Restkörper zurückbleibe. In anderen Fällen nimmt Stempell eine Auflockerung resp. Umgestaltung des Karvosoms an. "Man hat bei der Beobachtung vieler Stellen den Eindruck" — bemerkt Stempell — "als ob die vegetativen Kerne sich geradezu in Sporonten umwandeln, wobei der karvosomartige Körper und die anderen stark färbbaren Körnchen am Aufbau des Sporontenkernes mehr oder minder direkt beteiligt sind. Die Herkunft des Sporontenplasmas ist dabei schwer zu ermitteln, doch ist seine Entstehung aus Bestandteilen der vegetativen Kerne nicht von der Hand zu weisen."

Erscheint angesichts der nicht unbeträchtlichen Strukturdifferenz zwischen den vegetativen Kernen und den Sporonten Stempells der von Stempell behauptete Übergang schon fraglich, so kann vor allem die Sporontennatur der betreffenden Elemente keineswegs als sichergestellt gelten. Sie sollen durch multiple Teilung in die sporenbildenden Zellen (Sporoblasten) zerfallen, in anderen Fällen aber auch direkt in eine Spore übergehen können. Figuren, die den Zerfall der Sporonten in Sporoblasten einwandsfrei demonstrieren, gibt Stempell jedoch nicht.

Somit scheint gerade der wichtigste Punkt in der Beweisführung der Protozoennatur der Glugeacysten nur schwach gestützt zu sein. Es ist daher nicht zu verwundern, dass Schröder, Schuberg und Mräzek sich skeptisch über die Deutung Stempells aussprachen, als sie in den folgenden Jahren bezüglich des Verhaltens von Microsporidien und Wirtszellen zu ihren ganz abweichenden Resultaten kamen. Da sie für ihre Objekte den sicheren Nachweis liefern konnten, dass die grossen Kerne nichts anderes als hypertrophische Wirtszellenkerne darstellen, so hielten sie die Auffassung Stemmpells für verfehlt und es für sehr wahrscheinlich, dass auch bei Glugea anomala die grossen bläschenförmigen Kerne von hypertrophischen Wirtszellen abzuleiten seien.

Andererseits ist Pérez 1905 bei der Untersuchung der Microsporidie Glugea stempelli, die in Balanus amaryllis Cysten bildet, zu Resultaten gelangt, die er ganz im Sinne Stempells deutet. Ebenso hat Woodcock sich auf den Boden der Stempellschen Auffassung gestellt.

Unter diesen Umständen erschien mir bei dem grossen biologischen Interesse, das die Frage der Hypertrophie der Wirtszellen unter dem Einfluss der Microsporidien bietet, eine neue Untersuchung der von Stempell studierten eigentümlichen Microsporidie des Stichlings wünschenswert, um so mehr, als auch in der Morphologie der Sporen und der Sporenentwicklung vieles unaufgeklärt schien. Nachdem ich im Sommer 1911 mit der Untersuchung von Glugea anomala begonnen hatte, erschien im

September 1911 eine kurze Mitteilung von Awerinzew und Fermor über das gleiche Thema, in der sie zu einer vollständigen Bestätigung der Ansichten Stempells gelangten.

Insbesondere sind die beiden russischen Autoren der Meinung. den von Stempell vermuteten Ursprung der Sporonten aus den vegetativen Kernen direkt beobachtet zu haben. Allerdings kann aus den beigefügten Textfiguren nicht entnommen werden, dass Awerinzew und Fermor wirklich die so ausserordentlich metazoenkernähnlichen grossen bläschenförmigen Kerne, die Stempell beschrieb, vor Augen hatten. Ihren Abbildungen nach besitzen die Kerne eine dichte Chromatinstruktur, kein Karvosom und sind erheblich kleiner. Ebenso entsprechen die Sporonten der russischen Autoren offenbar nicht den Sporonten Stempells, sondern ihren Teilungsprodukten, den Sporoblasten. Man wird daher nicht von einer Bestätigung der Angaben Stempells sprechen können, sondern von der Beobachtung, dass Sporoblasten aus relativ kleinen chromatinreichen Kernen hervorgehen, die als die vegetativen Kerne des Plasmakörpers aufgefasst werden. Jedoch auch in dieser Form würden die Befunde von Awerinzew und Fermorein gewichtiges Indizium für die Protozoennatur der Cysten von Glugea anomala bilden.

Die Umwandlung der vegetativen Kerne in die Sporoblasten vollzieht sich nach Awerinzew und Fermor in sehr eigentümlicher Weise. Wie ihre Abbildungen demonstrieren, beginnt der Kern an einem Ende stark in die Länge zu wachsen. Unter Zerfall seines Chromatins in einzelne Abschnitte verlängert er sich hier in ein chromatinarmes wurstförmiges Gebilde, das sich allmählich in eine Protoplasmamasse mit Chromatineinschlüssen umwandelt. Das andere Ende dagegen behält noch die typische Kernstruktur bei. Die Chromatineinschlüsse der Plasmamasse werden dann unter Auftreten eines hellen Hofes in ihrer Umgebung zu sekundären Kernen, den Kernen der Sporonten. Diese teilen sich noch einmal und nun beginnen die vielkernigen wurstförmigen Gebilde in so viele Zellen zu zerfallen, als sie Kerne enthalten. Eine jede derartige Zelle gibt einem Sporonten den Ursprung, welcher sich allmählich in eine Spore umwandelt.

Nicht alle Kerne erfahren die eigentümlichen Umwandlungsprozesse in sporenbildende Zellen, sondern die kleineren von ihnen bleiben als vegetative Kerne erhalten. Somit kommen Awerinzew und Fermor zu demselben Resultat wie Stempell, dass Glugea anomala einen vielkernigen Plasmakörper von makroskopischer Grösse besitzt.

Auch Stempell selbst hatte auf die Kritik Schubergs und Mräzeks hin im Jahre 1910 mit Bestimmtheit seinen Standpunkt aufrecht erhalten, jedoch neue Tatsachen nicht beigebracht.

II. Material und Methoden.

Das Material, das zu der vorliegenden Untersuchung diente, bezieht sich zu einem grossen Teile auf Glugea anomala Monz., den Parasiten des Stichlings, also dieselbe Art, die auch Stempell und Awerinzew und Fermor studierten. Der Parasit tritt sowohl bei der Süsswasser- wie bei der Seewasserform von Gasterosteus aculeatus auf. Mein Material besteht teils aus Süsswasserstichlingen der Umgebung Berlins, teils aus Ostseestichlingen. 1) Ein grosser Teil wurde in Lietzow auf Rügen in den Bodden, die Ausbuchtungen der Ostsee sind, gefangen. Irgend ein Unterschied im Verhalten der Ostsee- und der Süsswasserparasiten war nicht zu konstatieren. Die Form der Sporen ist eine plump ovale. Der eine Pol ist etwas schmäler als der andere. Die Länge beträgt meist 3,5 μ , die Breite durchschnittlich 2,3 μ . Die Zahl der gesammelten infizierten Fische dürfte sich auf 50 belaufen, auf Schnitten wurden 15 möglichst junge Fälle untersucht.

Eine sehr wertvolle Bereicherung erfuhr das Material dadurch, dass ich während eines Aufenthaltes in Lietzow noch eine zweite anomala sehr nahe stehende Glugeaart im Stint (Osmerus eperlanus) auffand. Während beim Stichling die Cystengeschwülste sich meist auf einzelne Knoten beschränken, sind die infizierten Stinte häufiger von einer sehr grossen Zahl von Cysten durchsetzt. Die ungemein zarte Beschaffenheit der Haut des Stintes, die selbst bei zirka 10 cm langen Exemplaren innere Organe. z. B. das Gehirn, deutlich durchschimmern lässt, ermöglicht es, die weissen Glugeacysten, auch wenn sie nicht in der Haut, sondern in der Leibeshöhle sitzen, bereits am unverletzten Fisch zu erkennen. Da zum Bestecken der Aalangel täglich viele Tausende von Stinten in Lietzow gefangen werden, so lässt sich in kurzer

¹) Allen denen, die mich bei der Beschaffung des Materiales freundlichst unterstützten, spreche ich auch an dieser Stelle meinen herzlichen Dank aus, ganz besenders Herrn Eduard Wothke in Lietzew.

Zeit ein grosses Material sammeln, trotzdem die Erkrankung an und für sich nicht sehr häufig ist, sondern nur etwa in 1—2 Prozent der Fälle auftritt.

1911 habe ich die Art als Glugea hertwigi kurz beschrieben. Die Sporen unterscheiden sich von den von Glugea anomala durch ihre grössere Länge, die sich zur Länge von anomala wie 4:3 verhält, während der grösste Breitendurchmesser etwa der gleiche wie bei jener Art ist. Am spitzen Pol sind die Hertwigisporen schmäler, so dass sie gegenüber der stumpf ovalen Form von anomala im ganzen mehr gestreckt birnförmig erscheinen. Die absoluten Maße betragen bei Glugea hertwigi meist $4.6-5.4~\mu \times 2.3~\mu$. Präpariert und für frische Untersuchungen verwandt wurden an 100 infizierte Stinte, geschnitten 14 verschiedene Fälle.

Von dem Anfertigen von Ausstrichen bin ich bald zugunsten der Schnittmethode abgekommen. Die Reihenfolge der Entwicklungsstadien in den Cysten kann nur richtig beurteilt werden, wenn der topographische Zusammenhang gewahrt bleibt. Fixationstechnisch wäre zu bemerken, dass die noch nicht von einer Sporenhülle umgebenen Entwicklungsstadien der Parasiten ungemein schwierig zu konservieren sind — eine Erfahrung, die auch schon bei der Untersuchung von Nosema lophii gemacht wurde. Nur Flemmingsche Flüssigkeit gibt hier gute Resultate. Die beschalten Formen und grossen Kerne können auch durch zehnprozentiges Formalin gut konserviert werden.

Präparate, die mit Alkohol-Eisessig¹) und Sublimat-Alkohol-Eisessig²) konserviert wurden, entfernen sich zweifellos mehr von den im Leben zu beobachtenden Verhältnissen. Doch haben diese Methoden den grossen Vorzug, gute Giemsa- und Biondifärbungen zu ermöglichen. Für den Nachweis des Kernes in den Sporen leistete mir weniger die von Schuberg angegebene Modifikation der Giemsafärbung als die Biondimethode in der Vorschrift von Rudolf Krause³) gute Dienste. Nach Formolkonservierung bewährte sich Delafieldsches Hämatoxylin. Die Flemmingpräparate wurden meist mit Eisenhämatoxylin nach Heidenhain, bisweilen auch mit Safranin-Lichtgrün gefärbt.

Absoluter Alkohol 95 Teile + Eisessig 5 Teile (nach Schuberg 1909).

²) Konzentr. wässr. Sublimatlösung 22 Teile + absoluter Alkohol 10 Teile + Eisessig 1 Teil (nach Schaudinn).

³) Rudolf Krause: Kursus der normalen Histologie. Berlin 1911, pag. 78.

III. Der Bau der Cysten von Glugea anomala und hertwigi.

Sehe ich von den jüngsten Fällen ab, die eine gesonderte Betrachtung erfordern, so herrscht im Habitusbild der Cysten eine grosse Gleichartigkeit vor. Die Form ist meist kugelig oder eiförmig. Wenn Cysten dicht zusammen liegen, so platten sie sich häufig an den Berührungsflächen ab. Die Cysten können einen Durchmesser von 3 bis 4 mm erreichen.

Eine intrazelluläre Lage in hypertrophischen Wirtszellen, wie sie oben für die in Riesenganglienzellen eingelagerten Cysten von Nosema lophii beschrieben wurde, kommt bei den Stichlingsund Stintcysten nie zur Beobachtung. Stets werden sie unmittelbar von einer Kapsel von konzentrisch geschichtetem kleinzelligem Bindegewebe umgeben. In der Kapsel breitet sich ein dichtes Kapillarnetz aus, das für die Ernährung der Cysten zweifellos von grosser Bedeutung ist.

Die Cystenwand selber wird zu äusserst von einer gegen das Bindegewebe scharf abgesetzten Eigenmembran gebildet, die von Stempell bereits genauer beschrieben wurde. Es handelt sich um eine kernlose Membran von starkem Lichtbrechungsvermögen, die den Eindruck einer Kutikula macht. Sie erscheint bald ganz homogen, bald aus übereinander geschichteten Lamellen zusammengesetzt. Ihre Dicke nimmt mit Grösse und Alter der Cysten zu. Bei gleichem Cystendurchmesser ist sie beim Stichling immer erheblich stärker als beim Stint. So wurde in Anomala-Cysten von 2 mm Durchmesser eine Membrandicke von 15 μ festgestellt. In ebenso grossen Cysten von Glugea hertwigi beträgt die Membrandicke nur 2 μ .

Die Angabe Stempells, dass die Membran sich mit Kernfarbstoffen ziemlich intensiv und nach Giemsa rot färbt, kann ich bestätigen. In Fig. 4 Taf. IV (cy) ist sie an einer Anomalacyste durch Hämatoxylin blau gefärbt und zwar haben die einzelnen Schichten den Farbstoff mit verschiedener Intensität angenommen. Am intensivsten ist die tiefste Lage gefärbt. Nach der Färbung mit Pikrofuchsin oder nach Calleja nimmt die Membran einen ähnlichen Farbenton an wie kollagenes Bindegewebe.

Die Cystenmembran liegt unmittelbar der plasmatischen Rindenschicht der Cyste auf. Dass sie aus dem Plasma als kutikulare Bildung entstanden und nicht vom Bindegewebe der Umgebung abzuleiten ist, darauf weisen unregelmässige Verdickungen auf der Innenfläche der Cystenmembran hin, die sich stellenweise weit in die Plasmarinde hinein erstrecken und bereits von Stempell genauer beschrieben wurden.

Innerhalb der Cystenmembran folgt der Plasmakörper der Cyste, in dessen Bau ein auf Taf. IV, Fig. 2, dargestellter Schnitt durch eine junge Stintcyste einen Einblick gewährt. Wie die Figur zeigt, ist nur die schmale Rindenschicht (p) von solidem Bau. Weiter nach innen schliesst das Plasma zahlreiche Flüssigkeitsvakuolen (v) ein und diese konfluieren dann zu einem grossen zentralen Hohlraum, in den nur noch schmale Plasmasepten hineinragen. In den Vakuolen der Plasmarinde finden sich Sporenentwicklungsstadien und junge Sporen, im zentralen Hohlraum Millionen von reifen Sporen. Die in dem Präparat angewandte kurze Delafield-Färbung lässt bei der schwachen Vergrösserung die Sporen nicht hervortreten. Daher scheinen hier die Flüssigkeitsvakuolen leer zu sein. Nur bei e ist in der Zeichnung die Einlagerung von Sporen durch dunkle Pünktchen markiert worden. Um so deutlicher tritt der fächerige Bau des Plasmakörpers hervor. Je grösser die Cyste wird, um so mehr erscheint die Plasmarinde auf einen schmalen Streifen reduziert. In ganz alten Cysten fehlt sie vollkommen und diese bestehen dann fast nur aus Sporen.

Die Struktur des Plasmas variiert etwas. Bald erscheint dasselbe fein granuliert, bald von wabigem Bau. Im Gegensatz zu der ganz homogenen Cystengrundsubstanz von Nosema lophii handelt es sich hier jedenfalls um unverändertes typisches Protoplasma.

Im Plasmakörper finden sich erstens eine grosse Menge der mannigfaltigsten Stadien der Sporenbildung, die später an der Hand von Flemming-Präparaten eingehend geschildert werden sollen. (Bei der schwachen Vergrösserung der Fig. 2 und der angewandten Formolfixation sind sie nicht deutlich zu erkennen.) Zweitens aber ist in das Plasma eine beträchtliche Zahl von Kernen eingelagert, die die Bindegewebskerne der Umgebung an Grösse erheblich übertreffen und sich in dem Übersichtsbild in Fig. 2 als dunkelblaue Scheiben (k) deutlich markieren. Sie entsprechen zweifellos den grossen vegetativen Kernen Stempells. In Fig. 4, Taf. IV, sind sie bei starker Vergrösserung von anomala abgebildet (k). Ihre Struktur entspricht genau der von Stempell

gegebenen Beschreibung. Es sind Kerne von ausgesprochen bläschenförmigem Typus. Durch eine sich intensiv mit Kernfarbstoffen tingierende Membran sind sie aufs schärfste gegen das Plasma abgesetzt. Ihr Inhalt erscheint heller und wird von Chromatinkörnchen durchsetzt, die einem weitmaschigen Liningerüst aufgelagert sind. Am auffallendsten sind jedoch ein oder mehrere grosse Nukleolen in den Kernen. Dass es sich hier um echte Nukleolen handelt, beweist die Biondi-Färbung, die sie im Gegensatz zu den das Methylgrün annehmenden Chromatinkörnchen deutlich rot färbt. Der Durchmesser der Kerne kann 20 μ und mehr erreichen. Ihre Zahl scheint sich durch Durchschnürung zu vermehren.

Die entsprechenden Kerne der hertwigi-Cysten sind aus einer jungen Cyste, die wie die in Fig. 2 abgebildete einen Durchmesser von etwa 500 μ besitzt, in Fig. 5 in annähernd gleicher Vergrösserung dargestellt. Ihre Struktur unterscheidet sich in zwei Punkten von der der Kerne der Stichlingscysten. Die Nukleolen sind im allgemeinen erheblich kleiner, das Netzwerk dagegen viel engmaschiger.

In den jungen Stintcysten sind die Kerne in lebhafter amitotischer Vermehrung begriffen. Wie Fig. 5 demonstriert, entstehen durch Einschnürung gelappte Kernformen (k) oder Bilder, bei denen, wie z. B. bei a, einem grossen kugeligen Kern kleine Kerne wie Knospen aufsitzen. Auch wenn die Tochterkerne auseinanderrücken, scheint es nicht immer sogleich zu einer völligen Abschnürung zu kommen, sondern sich eine Zeitlang eine Verbindungsbrücke in Gestalt eines sich intensiv mit Kernfarbstoffen tingierenden Fadens zu erhalten (Fig. 5 bei b und c).

Sowohl in den Stichlings- wie in den Stintcysten liegen die Kerne häufig den mit Sporoblasten gefüllten Vakuolen unmittelbar an. Auch im Plasma finden sich in ihrer nächsten Nähe unzweifelhafte Microsporidienstadien. Von einem genetischen Zusammenhang, von einer Umwandlung oder einem Übergang der Kerne in sie habe ich mich jedoch in keinem einzigen Falle überzeugen können. Meine Befunde stehen hier in vollstem Gegensatz zu der Ansicht Stempells und den Befunden von Awerinzew und Fermor.

Durch das Erscheinen der Mitteilung der russischen Autoren veranlasst, habe ich das abweichende Ergebnis im Oktober 1911 in einer vorläufigen Mitteilung hervorgehoben, bei dieser Gelegenheit jedoch auch bemerkt, dass ein negativer Befund in dieser Beziehung noch nicht gegen die Möglichkeit einer Protozoenableitung überhaupt beweisend ist.

Der Schilderung des normalen Baues der Cysten müssen noch einige Worte über regressive Prozesse in ihnen hinzugefügt werden. Bisweilen trifft man sowohl ausgewachsene wie kleine Cysten an, deren Cystenmembran nicht mehr intakt ist, sondern Unterbrechungen zeigt oder sich nur noch in Trümmern nachweisen lässt. Es handelt sich dann stets um im Zerfall begriffene Cysten, in die das kleinzellige Wirtsgewebe zerstörend eindringt. Bald lassen sich Wanderzellen mit bläschenförmigen Kernen inmitten der Sporenansammlungen nachweisen und an günstigen Stellen kann man erkennen, dass ein Teil der Sporen durch Phagozytose in sie aufgenommen worden ist. Es liegen hier sehr ähnliche Verhältnisse vor, wie sie beim Zerfall junger Cysten von Nosema lophii im Innern derselben angetroffen werden. Auch dort unterliegt es keinem Zweifel, dass die kleinen bläschenförmigen Kerne inmitten der Sporenmassen zu eingedrungenen Wirtszellen gehören.

Zu einer ganz anderen Auffassung ist Stempell gelangt. Nach ihm sollen sich in solchen Cysten sehr eigentümliche Bildungsprozesse abspielen. Die grossen vegetativen Kerne sind in ihnen bereits früher in kleine Körnchen ("Chromiolen") zerfallen. Wenn nun die Cystenmembran zugrunde geht, so zerfällt die Plasmarinde in kugelige Stücke, die Chromiolen einschliessen. Unter dem Einfluss des unmittelbaren Kontaktes mit den Säften des Wirtsgewebes soll es nun in den Plasmakugeln zu einer Rekonstruktion bläschenförmiger vegetativer Kerne aus den Chromiolen kommen. Wie die vegetativen Kerne des Mutterorganismus, so sollen auch die neu entstandenen Kerne direkt Sporonten aus sich hervorgehen Auf diese Weise soll es zu einer sekundären Sporenbildung in den kleinen Plasmakugeln kommen können. Stempell bildet hierzu eine Anzahl Figuren ab, die einen Haufen Sporen oder Sporenbildungsstadien von einer Plasmaschale umgeben zeigen. in der sich ein kleiner bläschenförmiger Kern befindet.

Es kann keinem Zweifel unterliegen, dass es sich hier um dieselben Objekte handelt, die von mir als sporenerfüllte Phagozyten aufgefasst werden. Auch Stempell erwähnt die Ähnlichkeit mit Leukozyten und den bei Nosema lophii beschriebenen Verhältnissen, hält jedoch seine Auffassung angesichts der Rekonstruktion der bläschenförmigen Kerne aus Chromiolen für unanfechtbar und vermutet, dass auch bei Nosema lophii die Bilder in seinem Sinne gedeutet werden müssen. Von dem eigentümtümlichen Vorgang einer Reorganisation typischer bläschenförmiger Kerne aus Chromiolen habe ich mich jedoch noch nie überzeugen können.

Zusammenfassung.

Die Hauptresultate der histologischen Untersuchung ausgebildeter Cysten können in folgenden Sätzen zusammengefasst werden:

Die Cysten von Glugea anomala und hertwigi werden von einer Eigenmembran umgeben, die den Eindruck einer Kutikula macht. Unmittelbar um dieselbe folgt eine Bindegewebskapsel. Das Cystenplasma — hauptsächlich als Rindenschicht entwickelt — zeigt typische Protoplasmastruktur. In der Plasmarinde kommen neben Sporenentwicklungsstadien in Menge grosse bläschenförmige Kerne vor, die in ihrem Bau an Metazoenkerne erinnern und sich amitotisch vermehren. Eine Umwandlung derselben in Sporenbildungszellen findet entgegen der Lehre von Stempell, Awerinzew und Fermor nicht statt. Dieser negative Befund kann jedoch nicht als Beweis gegen die Möglichkeit einer Protozoenableitung der Kerne überhaupt angesehen werden.

IV. Zur Pathologie der Glugeaerkrankung.

Vergleicht man die Grösse, die die Cysten von Glugea anomala und hertwigi erreichen, mit den bei anderen Microsporidien beobachteten Verhältnissen, so muss sie als eine ausserordentliche bezeichnet werden. Denn während zum Beispiel die Cysten von Nosema lophii im allgemeinen nur selten einen Durchmesser von 2 mm erreichen, sind bei den beiden Glugeaarten Cysten von 3 und 4 mm Durchmesser keine Seltenheit. Haben die Cysten in der Haut ihren Sitz, so bedingen sie bei dieser beträchtlichen Grösse eine erhebliche Deformation des Fisches. Sie verursachen beulenartige Auftreibungen, die meist einen silberweissen Glanz aufweisen und daher weithin durch das Wasser leuchten. Meist sitzen die Knoten den Fischen mit breiter Basis auf, seltener erscheinen sie gestielt.

Entwickeln sich die Cysten in der Leibeshöhle, so können sie eine starke Auftreibung des Leibes bewirken. Fig. 3 auf

Taf. IV zeigt an einem jungen, 4 cm langen Stichling auf dem Querschnittsbild fast die ganze Leibeshöhle von einer grossen anomala-Cyste (c) eingenommen. Das Ovarium (o) und der Darm (d) sind hier ganz an die Wand gedrückt, und die Cyste erreicht mit einem Durchmesser von 3 mm fast die gleiche Flächenausdehnung wie der ganze übrige Teil des Querschnittes.

Abgesehen von ihrer beträchtlicheren Grösse unterscheiden sich die Glugeacysten von den Cysten von Nosema lophii sehr wesentlich dadurch, dass sie nicht an ein bestimmtes Organsystem gebunden sind. Während dort ohne Ausnahme stets die ganglienzellenhaltigen Teile des Nervensystems die Träger der Infektion sind, finden sich die Cysten von Glugea anomala und hertwigi bald im Bindegewebe der Haut, bald in der Substantia propria der Cornea, in der Wand des Darmes wie in der Leber, im Bindegewebe des Ovariums, wie des Hodens. Bei grossen Leibeshöhlencysten lässt sich ihr ursprünglicher Sitz oft nur vermutungsweise bestimmen. Die in Fig. 3 abgebildete ist zum Beispiel sowohl mit der Darmwand als auch ventralwärts mit dem parietalen Peritonealblatt verlötet.

Auch in den einzelnen Organen ist der Sitz der Geschwülste ein sehr variabler, namentlich beim Stichling. In der Haut sitzen die Cysten bald am Kopf, bald an der Seiten- oder Bauchwand des Körpers. In anderen Fällen war die Wurzel der Schwanzflosse oder die Flossenhaut selber Träger der Cysten. Auch in der Wand der Kiemenhöhle unter dem Kiemendeckel verborgen, wurden einmal zwei anomala-Cysten gefunden.

Bei der Verbreitung der Hautcysten im Stint herrscht insofern eine grössere Regelmässigkeit vor, als hier die ventrale

Fig. 1. Stint mit einer grossen Cyste von Glugea hertwigi in der Mitte der Bauchwand. Natürliche Grösse.

Kante des Fischkörpers eine Prädilektionsstelle für den Sitz der Geschwülste bildet (Textfig. 1 und 4). Wohl am häufigsten finden sich die Knoten hier in der Mitte des Fisches, doch können sie auch bald mehr kopf-, bald mehr schwanzwärts in der Mittellinie der Bauchwand ihren Sitz haben.

Bei Nosema lophii kommen in der Regel nicht einzelne Cysten, sondern Konglomeratgeschwülste von zahlreichen Cysten zur Beobachtung. Bei Glugea anomala sind die Geschwulstknoten der Haut
meist von einer einzigen Cyste gebildet. Treten mehrere Cysten auf,
so haben sie in der Haut meist eine getrennte Lage. So zeigt der
in Textfig. 2 dargestellte Fisch fünf isoliert liegende Cysten, zu
denen auf der nicht abgebildeten Seite noch zwei hinzukommen.¹)

Fig. 2. Stichling mit zahlreichen Hautcysten von Glugea anomala Natürliche Grösse.

Bei den im ganzen selteneren Fällen, in denen anomala-Cysten in der Leibeshöhle ihren Sitz haben, wird die Entwicklung mehrerer Cysten nebeneinander häufiger beobachtet.

Beim Stint ist der charakteristische Knoten der Bauchwand häufig von mehreren Cysten gebildet (Textfig. 4). Bald sitzen dieselben hier im subkutanen Bindegewebe, bald durchsetzen sie die Muskelschicht der Bauchwand in ihrer ganzen Dicke und wölben sich von dem silbern glänzenden Bauchfell überzogen in die Leibeshöhle vor. Auch in den inneren Organen pflegen die hertwigi-Cysten in weit grösserer Anzahl als die anomala-Cysten aufzutreten. Von ihrer reichen und mächtigen Entwicklung gibt das in Textfig. 3 dargestellte Präparat einen Begriff. Nach dem Abpräparien der seitlichen Bauchwand ist hier ein Konglomerat von Leibeshöhlencysten sichtbar, bei dem allein in der obersten Lage schon 33 Cysten gezählt werden. Die bis 3,5 mm grossen Cysten erfüllen hier die Leibeshöhle ähnlich wie grosse dotterreiche Eier einen laichreifen Fisch.²)

¹ Nur bei zwei grossen Stichlingen, die längere Zeit im Aquarium bei guter Ernährung gehalten waren, erwiesen sich die Hautknoten als aus mehreren kleinen Cysten zusammengesetzt.

²) Beim Stint selbst lässt sich übrigens dieser Vergleich nicht durchführen, da die reifen Stinteier nur eine winzige Grösse besitzen.

Das in Textfig. 3 abgebildete Präparat stellt jedoch noch keineswegs das Maximum in der Zahl der beobachteten Cysten dar. So werden im Hochsommer bisweilen Stinte von 6-7 cm Länge gefangen, deren Bauchwand und Eingeweide von vielen

Fig. 3. Stint mit zahlreichen Cysten von Glugea hertwigi in der Leibeshöhle.

Hunderten kleiner Glugeacysten durchsetzt sind. Nur ein kleines Stück eines solchen Fisches ist in Fig. 1, Taf. IV, im Längsschnitt bei Lupenvergrösserung abgebildet. Trotzdem sind in der aus wenigen Schnitten kombinierten Zeichnung schon über 140 Cysten (c) zu erblicken, die teils in der Bauchwand (b), teils in grosser Menge subperitoneal oder in der Leibeshöhle liegen, gleichzeitig aber auch die Leber (1) durchsetzen und sich im Hoden (h) wie in der Magenwand (m) vorfinden.

Das Präparat ist noch in mannigfacher anderer Hinsicht von Interesse, so zunächst was die verschiedene Cystengrösse anbetrifft. Unter den zahlreichen kleinen Cysten, die auf medianen Schnitten einen Durchmesser von 300 – 600 u besitzen, fällt in Fig. 1 sofort die dunkler gefärbte grosse Cyste (r) auf, die eine Länge von über 2 mm und eine Breite von über 1 mm erreicht. Nun ist zwar im Gegensatz zu den Befunden an Nosema lophii, die ohne Ausnahme in allen intakten Cysten eines Fisches denselben Entwicklungszustand und annähernd die gleiche Cystengrösse ergaben, bei dem multiplen Auftreten von Glugeacysten eine verschiedene Cystengrösse nichts Seltenes. So beträgt in Textfig. 2 der grösste Durchmesser der Hautknoten teils 4, teils nur 2 mm. In der grossen Cystengeschwulst des Stintes in Textfig. 3 kommen neben 3 bis 3.5 mm grossen Cysten sogar solche von nur 1 mm Durchmesser vor. Die genauere Untersuchung solcher Fälle auf Schnittpräparaten hat jedoch ergeben, dass es sich hier nicht um das Auftreten jüngerer Cysten neben älteren handelt, sondern dass die kleinen nur in der Entwicklung zurückgebliebene Formen darstellen, die vielleicht zufällig ungünstiger ernährt wurden.

Anders liegt es in dem in Fig. 1, Taf. IV, abgebildeten Falle, von dem ausgegangen wurde. Hier repräsentieren die kleinen Cysten zweifellos nicht verkümmerte, sondern in vollster Entwicklung begriffene Geschwülste. Stärkere Vergrösserungen (Fig. 2, Taf. IV) zeigen in ihnen eine deutlich entwickelte Plasmarinde mit zahlreichen Kernen und noch stärkere Linsen lassen alle Stadien der Sporenentwicklung und wie Fig. 5 demonstriert, eine lebhafte Knospung der grossen Kerne erkennen. Die grosse Cyste (r) der Fig. 1 dagegen ist ebenso unzweifelhaft als alte reife Cyste zu bezeichnen, die einen weiteren Zuwachs nicht mehr erfahren kann. Starke Vergrösserungen zeigen hier, dass Plasma und Kerne bereits vollkommen fehlen, und dass fast die ganze Cyste aus fertig ausgebildeten Sporen besteht. Mit dem grösseren Reifegrad derselben mag es auch zusammenhängen, dass sie sich nach Delafield viel leichter und intensiver als die in den kleinen Cysten gelegenen Sporen färben lassen. (Die grosse Cyste ist darum in Fig. 1 aus dunklen Körnchen aufgebaut, während die kleinen Cysten im Innern hell - gleichsam leer - erscheinen.1) Nach alledem kann man nicht umhin, hier entweder eine zweite selbständige Infektion anzunehmen oder an einen erneuten Ausbruch der Krankheit von einem alten Herde aus zu denken.

Bemerkenswert ist die Tatsache, dass so junge, z. T. kaum 300 µ messende Cysten lediglich im Juli in den Stinten gefunden werden. Mit dem Fortschreiten der Jahreszeit nimmt die Cystengrösse zu (Textfig. 4). Im September kann sie bereits einen Durchmesser von

Fig. 4.

Stint im Hochsommer gefangen mit einer Geschwulst in der Mitte der Bauchwand, die aus zahlreichen jungen Cysten von Glugea hertwigi besteht.

3-4 mm erreichen (Textfig. 1 und 3). Im Winter scheint ein weiteres Wachstum nicht zu erfolgen. Die im März gefangenen Fische

¹⁾ Vergleiche hierzu die Bemerkung Seite 92, Zeile 14.

zeigen etwa das gleiche Verhalten wie die im September beobachteten. Auch im Mai kommen noch lediglich grosse, fertig ausgebildete Cysten zur Beobachtung, bis dann im Juli überraschenderweise die ganz jungen Cysten neben den alten auftreten. Gleichzeitig werden kleine 3.5 cm lange Stinte mit relativ jungen Cysten (1/2-1 mm im Durchmesser) gefangen, junge Fische, die wahrscheinlich aus der Märzlaichperiode desselben Jahres stammen. Es wird die Aufgabe weiterer Untersuchungen sein, durch systematisches Sammeln der grossen Stinte vom Mai bis Juli festzustellen, ob von den vorjährigen Knoten neue Keime abgegeben werden und zu einer Weiterverbreitung der Infektion im Fischkörper führen oder ob sich zu dieser Jahreszeit nicht nur die ganz jungen Stinte zum ersten Male, sondern auch bereits erkrankte ältere Fische von neuem infizieren. Hinsichtlich der zuerst genannten Möglichkeit ist es von Interesse, dass das in Fig. 1, Taf. IV abgebildete Präparat nicht nur eine ganz reife aber intakte Cyste neben den jungen Cysten zeigt, sondern sich in ihrer Umgebung auch deutliche Trümmer zerfallener Cysten auffinden lassen. In der Nähe der reifen Cyste r bei s1 und s2, aber auch an anderen nicht abgebildeten Stellen finden sich in grosser Menge Sporen, die teils frei im Gewebe liegen, teils in Leukozyten aufgenommen sind.

Das Studium des in Fig. 1 abgebildeten Präparates ist schliesslich noch in anderer Hinsicht von wesentlichem Interesse. Die ungeheure Zahl der jungen Cysten und ihre Verbreitung in den verschiedensten Organen fordert naturgemäss zur Prüfung auf, ob überall prinzipiell das gleiche Bild der Cystenmembran, des Plasmas. der Kerne vorliegt. Unter dem Gesichtspunkt, dass es sich hier um Wirtszellen handle, die unter dem Reiz der intrazellulären Parasiten hypertrophisch geworden wären, könnte man in den einzelnen Organen ein recht verschiedenes Verhalten erwarten. Dies ist jedoch, wie eine genaue Untersuchung mit starken Vergrösserungen ergibt, keineswegs der Fall. Ob die Cysten, wie es Fig. 1 demonstriert, in der Leber (1), im Hoden (h), in der Magenwand (m), in der Muskelschicht der Bauchwand (b) oder subperitoneal gelegen sind, stets bieten sie in ihrem Aufbau und ihrer Abgrenzung gegen das Wirtsgewebe genau das gleiche Bild dar.

Der Versuch, die Cystengeschwülste auf hypertrophische Wirtszellen zurückzuführen, kann demnach überhaupt nur noch unter zwei ganz bestimmten Voraussetzungen in Frage kommen. Entweder muss man annehmen, dass als Wirtszelle ein Element fungiert, das in allen Organen in gleicher Weise angetroffen wird, also entweder eine Bindegewebszelle oder ein Leukozyt, oder es bleibt nur noch die Möglichkeit übrig, dass von der hypertrophischen Wirtszelle eines Organes aus die Cysten der übrigen Organe als Metastasen entstanden sind. Tatsächliche Befunde, die als Stütze dieser Hypothese dienen könnten, haben sich jedoch in keinem der Präparate ergeben. Unter diesen Umständen wird die andere Auffassung, die in der ganzen Cyste einen einzigen grossen Parasiten erblickt, als die ungezwungenere erscheinen. Eine sichere Entscheidung aber darüber, welche von beiden Theorien zutrifft, kann nur eine Untersuchung der ersten Stadien der Infektion herbeiführen.

Zusammenfassung.

Die Cysten von Gl. anomala und hertwigi sind an kein bestimmtes Organ gebunden, sondern haben einen sehr variablen Sitz im Fischkörper. In den Cystenkonglomeraten weisen die einzelnen Cysten bisweilen einen ganz verschiedenen Alterszustand auf. Es ist in diesen Fällen entweder an eine zweite Infektion eines schon einmal erkrankten Fisches zu denken oder an ein Weitergreifen der Erkrankung von den alten Herden aus. Auftreten und Wachstum der Cysten zeigt beim Stint eine regelmässige Jahresperiode.

In welchem Organ die Cysten auch auftreten mögen, stets zeigen sie prinzipiell den gleichen Bau, insbesondere was Cystenmembran, Plasma und Kerne anbetrifft. Angesichts dieses Umstandes erscheint die Parasitentheorie der Cysten ungezwungener als der Versuch, sie auf hypertrophische Wirtszellen zurückzuführen.

V. Über Infektionsversuche an Stichlingen.

Eine Gelegenheit, die Jugendstadien der Erkrankung zu beobachten, die für die Auffassung der Cysten von entscheidender Bedeutung sind, musste sich am ehesten bei der Untersuchung ganz junger Fische oder bei Infektionsexperimenten bieten. Beim Stint gelang es bisher nicht, jüngere Fische als solche von 3 cm Länge zu erhalten. Offenbar halten sich die jungen aus der Märzlaichperiode stammenden Fische an anderen Stellen als die grossen Stinte auf und gesellen sich erst im Juli allmählich zu ihren Schwärmen. Zu dieser Zeit sind sie bereits 3 bis 4 cm lang und, soweit infiziert, bereits mit Glugeacysten von ¹/₂ bis 1 mm Durchmesser behaftet.

Viel günstiger liegen die Verhaltnisse beim Stichling, dessen Laichperiode in den Mai bis Juli fällt. Aus dem süssen Wasser lassen sich junge Stichlinge leicht erhalten und sowie sie etwa 1 cm lang sind, auch ohne Schwierigkeit im Aquarium aufziehen. Ferner ist es beim Stichling möglich, künstliche Befruchtung zu erzielen und durch Aufzucht der Eier in reinem Wasser junge Fische zu erhalten, die sicherlich noch keine Glugeakeime in sich bergen. 1

Zunächst wurde der Versuch gemacht, im Aquarium zum Ausschlüpfen gebrachte Stichlinge schon kurz nach Verlust des Dottersackes zu infizieren. Zu diesem Zweck wurden Sporen in feiner Emulsion im Wasser verteilt. Ausserdem wurden ausschliesslich kleine Copepoden und Daphniden als Futter verwandt, die zuvor in einer dicken Sporenemulsion den Darmkanal dicht mit Sporen angefüllt hatten. Es zeigte sich jedoch bald, dass bei dieser Ernährung die ausgeschlüpften Fischchen nur wenig an Grösse zunahmen und noch vor der Metamorphose, bei der an Stelle des zarten Flossensaumes die stachelige Rückenflosse erscheint, eingingen.

Unter diesen Umständen erwies es sich als zweckmässig, die Versuche erst auf einem etwas älteren Stadium zu beginnen und die jungen Stichlinge zunächst in Plankton zu kultivieren, das ihnen tierische und pflanzliche Nahrung der verschiedensten Art in reicher Fülle bot. Nachdem es auf diese Weise gelungen war, zwei junge Stichlinge zu lebhaftem Wachstum und zur Absolvierung der Metamorphose zu bringen, wurde dem Plankton täglich eine Sporenemulsion beigemischt. Drei Wochen nach Beginn des Versuches wurde an der Kehlhaut des einen Stichlings eine kleine gallertig durchsichtige Kugel bemerkt, die nur schwer

¹) Von einem Übergang der Glugeainfektion auf die Eier des Stichlings habe ich mich nie überzeugen können, so dass die Möglichkeit einer Vererbung der Krankheit wohl kaum in Betracht gezogen zu werden braucht. Stempell gibt zwar an, infizierte Ovarialeier beobachtet zu haben. Doch wurde das Material bloss auf Ausstrichen, nicht auf Schnitten untersucht. Es ist daher nicht ganz ausgeschlossen, dass es sich nicht um erkrankte Eier, sondern um Cysten des Ovariums von der Grösse der Eier gehandelt hat.

im Wasser zu sehen war und bei ihrer Entdeckung bereits einen Durchmesser von etwa 300 μ besass. Auf Schnitten erwies sie sich als echte junge Glugeacyste mit noch sehr breiter Plasmarinde und kleinem zentralem Sporenraum. Somit war an einem vom Ei ab im Aquarium gezogenen Stichling die Möglichkeit einer experimentellen Infektion durch die Sporen nachgewiesen.

Der Erfolg ermutigte dazu, die Infektionsversuche in grösserem Maßstabe fortzusetzen. Allerdings konnten wegen der vorgeschrittenen Jahreszeit (August) nicht mehr künstlich gezüchtete Stichlinge als Versuchsobjekte dienen, sondern nur junge im Freien gefangene Fische, bei denen es sich nicht ausschliessen liess, ob sie nicht schon auf natürlichem Wege den Keim akquiriert hatten. Doch kam es zunächst ja nur darauf an, möglichst junge Stadien der Erkrankung — gleichviel ob durch natürliche oder künstliche Infektion entstanden - für die morphologische Untersuchung zu erhalten. 20 Stichlinge, die eine Länge von nicht ganz 2 cm besassen, als sie in meinen Besitz kamen, wurden in Wasser, dem häufig Sporenemulsionen beigemengt wurden, kultiviert. Bei vier Exemplaren traten 1 bis 3 Wochen nach Beginn der Versuche junge Glugeacysten auf. Dieselben hatten, als sie mit der Lupe entdeckt wurden, meist etwa einen Durchmesser von 250 u. Gegenüber dem oft schneeweissen Aussehen älterer Cysten waren sie gallertig durchsichtig und nur in der Mitte etwas getrübt. Offenbar wird die weisse Farbe erst durch die Sporenansammlung bedingt.

Das Wachstum der Cysten ist zunächst ein sehr schnelles. So traten die jungen Cysten bei Fischen auf, die 2 Tage zuvor bei sorgfältiger Lupenuntersuchung noch keine Tumoren erkennen liessen. Um einen exakten Anhalt für die Wachstumsgeschwindigkeit zu gewinnen, wurde eine junge Glugeacyste 10 Tage lang im Leben beobachtet. Als sie aufgefunden wurde, erreichte sie im optischen Durchschnitt eine Länge von 750 μ und eine Breite von 600 μ . Als der Fisch nach 10 Tagen reichlicher Ernährung konserviert wurde, hatte die Cyste eine grösste Länge von 1500 μ und eine Breite von 1050 μ erreicht. Die Flächendimension des optischen Durchschnittes war also in zehn Tagen auf das 3,5 fache angewachsen.

Soweit aus den diesjährigen Versuchen ein Schluss gezogen werden kann, ist es am wahrscheinlichsten, dass die Infektion durch den Darmkanal erfolgt, wie das für Nosema bombycis, den Erreger der Pébrinekrankheit, mit Sicherheit nachgewiesen ist (Stempell 1909). Der Versuch, junge oder alte Stichlinge subkutan mit Sporen zu impfen, führte zu keinem positiven Resultat. Ebenso misslangen Versuche, eine Infektion durch Injektion von Sporen in die Leibeshöhle zu erzielen.

Es ist möglich, dass die Sporen, um im Darm des Fisches infektionsfähig zu sein, erst eine Zeitlang im Wasser sich befinden oder von niederen Tieren aufgenommen werden müssen, die den Fischen als Nahrung dienen. Denn durch Verfütterung ganz frisch exzidierter Cysten an junge Stichlinge konnte eine Übertragung der Krankheit nicht erzielt werden. Den Infektionsmodus genauer festzustellen, wird die Aufgabe künftiger Untersuchungen sein. Insbesondere wird festgestellt werden müssen, ob unter der Einwirkung des Magen- oder Darmsaftes der Fische Amöboidkeime aus den Sporen ausschlüpfen.

Zusammenfassung.

Wie Experimente an im Aquarium aus dem Ei gezogenen Stichlingen beweisen, ist es möglich, bei jungen Fischen Cysten von Glugea anomala durch Beimengung von Sporen zum Aquariumwasser zu erzeugen. Die Sporen werden aller Wahrscheinlichkeit nach von den Fischen mit der Nahrung aufgenommen, so dass die Infektion vom Darmkanal aus erfolgt. Der Versuch, die Sporen subkutan einzuimpfen, hatte keinen Erfolg. Das Wachstum der Cysten ist ein sehr schnelles.

VI. Über den Bau eines Primärstadiums einer Glugea anomala-Cyste.

Was den Bau der bei den Infektionsversuchen erzielten jungen anomala-Cysten anbetrifft, so ergaben Schnitte durch die 250 μ grossen Cysten im Prinzip schon ähnliche Verhältnisse wie bei ausgewachsenen Cysten. Für die Entscheidung der Streitfrage, ob die ganze Cyste als Parasit aufzufassen ist oder ob sie zum Teil zum Wirtsgewebe gehört, erwiesen sich demnach auch die jungen Cysten als noch zu alt. Es musste sich somit darum handeln, in den jungen Stichlingen Stadien von noch mikroskopischer Kleinheit aufzufinden.

Bei dem sehr variablen Sitz der Cysten wäre hier die Schnittmethode eine sehr zeitraubende gewesen, da sie sich auf das Anfertigen umfangreicher Serien hätte erstrecken müssen. Bei dieser Sachlage ist es als ein glücklicher Umstand zu begrüssen, dass die Cysten bisweilen auch in der zarten Flossenhaut, die sich zwischen den Flossenstrahlen ausspannt, ihren Sitz haben und somit an Stellen auftreten, die auch schon im Totalpräparat und im Leben der mikroskopischen Untersuchung zugänglich sind. Insbesondere ist die Schwanzflosse ein sehr geeignetes Untersuchungsobjekt. Bei zwei jungen Stichlingen war hier das Auftreten von Glugeacysten beobachtet worden. Daraufhin begann ich bei allen Fischen, die den Infektionsversuchen dienten, systematisch in Intervallen von wenigen Tagen mit dem Mikroskop die Flossenhaut abzusuchen. Dieser Methode allein ist das Auffinden eines Primärfalles zu verdanken, der wegen seiner Bedeutung für die Gesamtauffassung der Glugeageschwülste im folgenden Gegenstand einer eingehenden Beschreibung werden soll.

Der junge, 2 cm lange Stichling, bei dem am 19. August die Primärcyste entdeckt wurde, war seit dem 7. August in meinem Besitz. Ob er zu dieser Zeit bereits den Keim der Erkrankung in sich trug oder ob er künstlich durch die im Aquariumswasser verteilten anomala-Sporen infiziert wurde, muss ich dahingestellt lassen. Am 17. hatte die Lupenuntersuchung noch keinen besonderen Befund ergeben. Zwei Tage darauf wurde mit der Lupe zunächst oberhalb des rechten Kiemendeckels eine zarte Gallertcyste mit weisslichem Kern entdeckt, die schon einen Durchmesser von etwa 250 u besass und sich auf dem Schnitt später als typische anomala-Cyste mit breiter plasmatischer Rinde und zentraler Sporenanhäufung erwies. Die auf diesen Befund hin besonders sorgfältig vorgenommene mikroskopische Untersuchung der Schwanzflossenhaut führte nun zur Entdeckung eines Primärstadiums einer Cyste, das bei eiförmiger Gestalt erst einen grössten Durchmesser von 80 µ aufwies und noch in allen Teilen gleichmässig durchsichtig war.

Dass es sich hier tatsächlich um nichts anderes als um einen ganz jungen Fall einer Cyste von Glugea anomala handelt, ergab die Untersuchung auf einer lückenlosen Schnittserie. Das genauere

¹) Der Fisch wurde dabei durch einen Gummifaden auf einem Objektträger fixiert. Der Objektträger wurde dann schräg in eine Schale mit Wasser gestellt, so dass der Kopf des Fisches sich unter Wasser, die Schwanzflosse über Wasser befand.

Verhalten sei an einer Reihe von Zeichnungen (Fig. 6-10 auf Taf. V) illustriert.

Über den Sitz der jungen Cyste und das Verhalten zum Wirtsgewebe orientiert am besten Fig. 6, die bei 1000-facher Vergrösserung gezeichnet ist. Das Bild stellt ein Stück eines Längsschnittes durch die Flossenhaut dar. Die obere und untere Kante des Schnittes werden von dem die Schwanzflosse überziehenden Epithel eingenommen (ep). In der zarten Bindegewebsplatte, die sich zwischen den beiden Epithelmembranen ausbreitet, liegt die junge Cyste (c), die sich auf dem Schnitt als ovale Scheibe ganz scharf von der Umgebung absetzt. Um sie herum hat sich eine Reihe von Bindegewebszellen gelagert, die jedoch nirgends eine innigere Verbindung mit der Cystenwand eingehen, sondern stets ohne Mühe als ganz unabhängige Hüllzellen erkannt werden können.

Das Primärstadium der anomala-Cyste stellt sich nicht nur auf den Randschnitten (Fig. 6 und 8) als vielkerniger solider Plasmakörper dar, sondern auch auf medianen Schnitten (Fig. 10) ist noch nichts von der Bildung eines zentralen Flüssigkeitsraumes zu bemerken. Das Protoplasma der jungen Cyste ist von fein granulierter Beschaffenheit. Am deutlichsten kommt die Zusammensetzung aus feinen Körnchen in dem in Fig. 9 abgebildeten Präparat zum Ausdruck, einem Schnitt, der durch Druck ein wenig gepresst ist. Wohl als Einlagerungen in das Plasma sind gröbere Körnchen aufzufassen, die in Heidenhainpräparaten bei mässiger Differenzierung (Taf. V. Fig. 7) sich dunkel färben und in netzartig verschlungenen Reihen das Bild durchziehen. Somit gewinnt das Plasma im ganzen ein recht ungleichmässiges Gefüge. Von homogener Beschaffenheit und frei von Einschlüssen ist es dagegen in der nächsten Umgebung der Kerne — ein Verhalten. das jedoch erst genauer geschildert werden kann, nachdem über die Kerne selbst das Nötige gesagt ist. Zuvor sei noch mit einigen Worten auf die äussere Begrenzung des Plasmakörpers eingegangen. Wie am deutlichsten der in Fig. 8 abgebildete Schnitt demonstriert, schliesst das Plasma nach aussen mit einer feinen homogenen Membran ab, die offenbar den ersten Anfang der später bei Gl. anomala ja so sehr starken Cystenmembran repräsentiert. Die vollkommen scharfe Grenze, die überall zwischen dem Bindegewebe und der dem Plasmakörper unmittelbar aufliegenden

Membran erkennbar ist, lässt die Membran mit aller Deutlichkeit als zum Plasmakörper selbst zugehörig erscheinen.

Was die im Plasma eingeschlossenen Gebilde betrifft, die auf Heidenhainpräparaten intensiv dunkel hervortreten, so sind unter ihnen drei Kategorien zu unterscheiden. Es handelt sich erstens um zahlreiche Kerne, deren Gesamtmenge im Plasmakörper sich wohl auf einige Hunderte veranschlagen lässt, zweitens um eigentümliche gestreckte schlauchförmige Zellen, die sich auf Fig. 8, Taf. V. in fünf Exemplaren repräsentieren, und schliesslich um ganz unregelmässige dunkel gefärbte Körper, die den Eindruck kleinerer und grösserer Chromatinbrocken machen und hauptsächlich auf medianen Schnitten (Fig. 10) hervortreten.

Was zunächst die zahlreichen Kerne anbetrifft, so stellen dieselben annähernd kugelförmige kompakte Chromatinkörper dar, deren Durchmesser sich auf 1—1,7 μ beläuft. Ihre Struktur ist offenbar eine sehr dichte und nur bei genauerer Betrachtung kann man in ihnen ganz dunkle von ein wenig helleren Partien unterscheiden. Ihre Anordnung im Plasma ist eine derartige, dass sie auf die Rindenzone beschränkt sind. Denn wie der mediane, in Fig. 10, Taf. V, abgebildete Schnitt beweist, bleibt die zentrale Partie des Plasmakörpers ganz frei von ihnen. Auch in der äussersten Rindenschicht finden sie sich nicht, so dass man eine kernfreie Randzone und eine tiefer gelegene Kernzone unterscheiden kann. In der Kernzone selbst liegen sie teils ziemlich gleichmässig (Fig. 8), teils in unregelmässigen Gruppen (Fig. 6 und 10) verteilt.

Rings um die Kerne lässt sich zunächst meist eine schmale Aufhellungszone im Plasma erkennen. Um diese herum ist das Plasma ein wenig verdichtet und von homogener Beschaffenheit und bildet so eine schmale, von dem benachbarten granulierten Plasma abgrenzbare homogene Schale. Dieses Verhalten ist in den Präparaten im allgemeinen nicht ganz leicht zu erkennen und somit in Fig. 8 auch nur angedeutet zur Darstellung gekommen. Viel klarer lassen sich diese Verhältnisse an dem in Fig. 9 abgebildeten Präparat erkennen, das durch Druck eine mechanische Läsion erlitten hat. Von dem zarten granulierten Teil des Plasmas erscheinen hier sehr deutlich die festeren homogenen Plasmaschalen der Kerne (z) gesondert. An unverletzten Präparaten ist diese Sonderung nie eine so weitgehende, dass man etwa daran denken

könnte, es handele sich um selbständige Zellen, die in einen grossen Plasmakörper eingelagert wären. Vielmehr herrscht durchaus der Eindruck vor, dass Kerne und Plasmakörper zueinander gehören.

Das zweite in den in Fig. 6 und 8 abgebildeten Schnitten durch die Heidenhainfärbung sogleich auffallende Element im Plasmakörper sind eigentümliche schlauchartige Zellen. Ihre Länge beträgt durchschnittlich 8 µ. Im optischen Querschnitt zeigen sie eine annähernd kreisförmige Begrenzung mit einem Durchmesser von 2 µ. Ihr Protoplasma hält das Eisenhämatoxylin viel stärker fest als das Plasma der Umgebung. Sie heben sich daher als grauschwarze Zellen auf das deutlichste vom hellen Grunde ab. Es gibt zwei Arten unter ihnen. Die einen besitzen in ihrer Mitte einen einzigen grossen Kern (Fig. 8 e). Die anderen zeigen hier eine ringförmige Einkerbung, die die Zusammensetzung des ganzen Schlauches aus zwei halb so grossen zylindrischen Zellen markiert, deren jede in ihrer Mitte einen kleineren Kern besitzt (Fig. 8 ps).

Es sind demnach einkernige und zweikernige Schläuche zu unterscheiden. Erstere schliessen einen etwa doppelt so grossen Kern ein als letztere. In der Länge können die zweikernigen Schläuche die einkernigen etwas übertreffen Die Kerne weisen den gleichen kompakten Bau wie die Kerne des Plasmakörpers auf. Auch in der Grösse entsprechen sie jenen und zwar die der einkernigen Schläuche den grösseren, die der zweikernigen den kleineren Formen. Das Plasma der Schläuche ist nicht von ganz gleichmässigem Gefüge, sondern in den Randpartien und oft an den Enden etwas dichter. In den zweikernigen Schläuchen deutet ferner der Einkerbung entsprechend eine dunkler tingierte Zone die Zusammensetzung aus den beiden einkernigen Zellen halber Grösse an.

Die Gesamtzahl der Schläuche im Plasmakörper dürfte mit 100 eher zu gering als wie zu hoch veranschlagt sein. Die zweikernigen Schläuche übertreffen, wie es auch Fig. 8. Taf. V., demonstriert, an Menge erheblich die einkernigen. In ihrer Lage sind alle Schlauchzellen auf die Kernzone beschränkt. Ihre Orientierung ist dabei in den meisten Fällen, wie es Fig. 6 und 8 zeigen, derartig, dass sie mit ihrer Längsachse in die Richtung des längsten Durchmessers des eiförmigen Plasmakörpers eingestellt sind. Diese gleichmässige Orientierung bringt es mit

sich, dass sie häufig in Ketten hintereinander liegen. Auf einem besonders dicken Schnitte wurden Ketten bis zu vier Gliedern beobachtet. Es entsteht dabei durchaus das Bild von Sprossketten, wie sie bei Pilzen oder Bakterien gefunden werden.

Die soeben geschilderten Schläuche sind es, die sich in Glugeatumoren auch noch auffinden lassen, die bereits mit der Sporenbildung begonnen haben und somit als solche auf den ersten Blick diagnostiziert werden können. Es lässt sich dort mit aller Sicherheit zeigen, dass sie den Mutterboden für die ersten Sporenbildungszellen darstellen. Aus diesem Grunde sei bereits hier für sie der Name "Primärschläuche" eingeführt. Sie sind es also, die als sichere Glugeastadien die Brücke zwischen jungen Glugeacysten und dem auf der Schwanzflosse aufgefundenen Plasmakörper bilden und denselben mit aller Sicherheit zu einem Primärfall einer Glugea anomala-Cyste stempeln.

Von grundlegender Bedeutung für die Gesamtauffassung der Glugeacysten ist der Umstand, dass sich die Primärschläuche mit aller Sicherheit auf die Kerne des Plasmakörpers und die sie umgebenden Plasmaschalen zurückführen lassen. Eine zunehmende Verdichtung der Plasmaschalen, die sich dabei gleichzeitig in die Länge strecken und Schlauchform annehmen, also ein innerer Knospungsprozess führt offenbar zur Ausbildung der Primärschläuche. Übergangsstadien, die dies beweisen, sind auf Fig. 8, Fig. 9 bei b, ganz besonders zahlreich und in verschiedenen Abstufungen auf Fig. 6, Taf. V bei b, dargestellt. Man erkennt deutlich, dass die zweikernigen Schläuche sich auf zwei benachbarte Kerne des Plasmakörpers zurückführen lassen, deren Plasmaschalen sich verdichtet und etwas in die Länge gezogen haben und sich nun in der Mitte berühren. Durch immer stärkere Verdichtung der Plasmaschalen, die zu einer stärkeren Tingierbarkeit führt, heben sich die Primärschläuche, wie es Fig. 6 in einer ganzen Reihe von Stadien (b1, b2, b3) demonstriert, immer schärfer von dem blass gefärbten Protoplasma der Umgebung ab. Schliesslich ist ihre Plasmastruktur eine so dichte, dass die Kerne nur bei Anwendung sehr intensiver Lichtquellen durchschimmern. In ähnlicher Weise wie die zweikernigen Schläuche sich auf zwei benachbarte kleine Kerne zurückführen lassen, können die einkernigen Schläuche von einer Plasmaverdichtung, die sich um einen einzelnen besonders grossen Kern bildet, abgeleitet werden.

Als Belege für diese Auffassung können die um einen einzigen Kern sich bildenden Verdichtungen dienen, die bei a in Fig. 6, bei a₁ und a₂ in Fig. 9, Taf. V, dargestellt sind.

Da die soeben gegebene Deutung der Präparate für die Gesamtauffassung der Glugeacysten sehr wesentlich ist, wird es nicht überflüssig erscheinen, zu prüfen, ob die erhaltenen Bilder nur in diesem Sinne oder nicht auch noch anders gedeutet werden können. Man könnte vielleicht die Frage aufwerfen, ob nicht die vermeintlichen Übergangsstadien nur stärker differenzierte Primärschläuche wären. Dem widerspricht jedoch der Umstand, dass die einmal ausgebildeten Primärschläuche die Farbe ausserordentlich festhalten. So zeigte sich bei einer absichtlich besonders lange ausgeführten Differenzierung eines Schnittes das Plasma der Schläuche noch deutlich dunkel gefärbt, während bereits die Kerne des Plasmakörpers ganz abgeblasst waren.

Ein weiterer Einwand könnte darin bestehen, dass man die Frage aufwirft, ob nicht die verschieden stark tingierten "Übergangsstadien" nur ganz dünne Anschnitte von schon fertig ausgebildeten Primärschläuchen wären. Einer solchen Auffassung steht jedoch nicht nur der Umstand entgegen, dass die Kerne in ihnen in ihrer ganzen Grösse getroffen sind, sondern in einer Reihe von Fällen konnte ich mich auch durch Bewegung der Mikrometerschraube mit aller Sicherheit davon überzeugen, dass die fraglichen Gebilde nicht an der Oberfläche des Schnittes, sondern mitten in demselben gelegen sind, so dass sie nur bei mittlerer Einstellung sichtbar werden.

Unter diesen Umständen scheint mir die Deutung der Bilder im Sinne von Übergangsstadien zu Primärschläuchen die einzig berechtigte zu sein. Mit diesem Nachweis ist aber auch gleichzeitig die Zugehörigkeit der Kerne des Plasmakörpers zum Parasiten sichergestellt und sie können fortan als die "Primärkerne" der Glugeacyste bezeichnet werden. Dass der vom Wirtsgewebe scharf abgesetzte Plasmakörper mit aller Wahrscheinlichkeit als Zellplasma zu den Kernen gehört, wurde bereits oben hervorgehoben.

Das Primärstadium einer Glugeacyste würde sich demnach als ein vielkerniger Plasmakörper repräsentieren, in dem durch innere Knospung die Primärschläuche als die Vorstufe der sporenbildenden Zellen ihren Ursprung nehmen. Es fragt sich nun, ob sich diese Auffassung auch gegenüber dem letzten mit Kernfarbstoffen intensiv tingierbaren Element des Plasmakörpers aufrecht erhalten lässt, gegenüber den ganz unregelmässigen Chromatingebilden, zu deren Schilderung nunmehr übergegangen sei.

Ab und zu in den Randschnitten, ganz besonders reichlich aber in dem in Fig. 10, Taf. V, abgebildeten Medianschnitt, finden sich im Bereich der Kernzone, vor allem aber in der zentralen Partie des Plasmakörpers ganz unregelmässig gestaltete nach Heidenhain intensiv wie Chromatin färbbare Gebilde (v). Sie erscheinen bald als mannigfaltig gestaltete zackige Brocken, bald als unregelmässige Stränge oder Körnerhaufen. Manchmal sind sie von geringerer Grösse als die kugelförmigen Kerne, bisweilen übertreffen sie diese aber auch an Ausdehnung. Es muss dabei berücksichtigt werden, dass sie zweifellos eine weniger dichte Struktur als jene besitzen. Wie auf Fig. 10 dargestellt, kann man neben tiefschwarzen Stellen öfters in ihnen einen helleren Grundton erkennen und bisweilen wie in Taf. V. Fig. 6 Mitte, einer Partie, die in Fig. 7 noch einmal stärker vergrössert abgebildet ist, sieht man sie in sehr lockerer Verteilung. Sie erscheinen dann als ein Haufen tiefdunkel gefärbter Kügelchen, die durch weniger intensiv gefärbte Stränge zusammengehalten werden.

Besonders beachtenswert ist es, dass sie in der Nähe der Kernzone oder noch im Bereiche derselben (Fig. 10) auch in Formen auftreten, die als Umwandlungsstadien aus den Primärkernen gedeutet werden können. Man braucht nur eine geringe Lockerung ihrer Struktur anzunehmen, die zu Unregelmässigkeiten der bis dahin annähernd kugelförmigen oder polyedrischen Oberfläche führt, um die Bilder zu erhalten, wie sie zum Beispiel in Fig. 10 bei r in vier Fällen sichtbar sind. Auch der viereckige Kern in der Mitte von Fig. 6, der bei n in der stärker vergrösserten Fig. 7 noch besser zu erkennen ist, könnte als ein Primärkern im Beginn der Teilung in kleinere Brocken aufgefasst werden.

Nur in seltenen Fällen sind die unregelmässigen Chromatingebilde von einer Aufhellungszone im Plasma umgeben (Fig. 8v und 6x). Meist erscheint vielmehr das Protoplasma in ihrer Nähe dunkler tingiert, von einer dichten und ziemlich homogenen Beschaffenheit, die an das Verhalten des Plasmas der Primärschläuche in den ersten Stadien ihrer Entwicklung erinnert. Die Plasmaverdichtungen umgeben jedoch die Chromatinbrocken nicht immer allseitig, sondern hängen ihnen bisweilen wie eine Fahne an, so bei ein Fig. 10. Sehr häufig bilden sie, wie dieselbe Figur und Fig. 9 bei w demonstriert, Stränge, die eine ganze Reihe grosser und kleiner Chromatinbrocken miteinander in Verbindung setzen. Die Stränge, die den blass gefärbten Grund des Plasmakörpers in grosser Ausdehnung durchsetzen, können auch miteinander verschmelzen und mannigfache Anastomosen bilden.

Auf einen Teil der eigentümlichen Chromatinbrocken und der Plasmaverdichtungen in ihrer Umgebung glaube ich, wie die Beobachtung weiterer Entwicklungsstadien ergibt, in letzter Linie die "vegetativen Kerne", die schon so mannigfache Deutung in der Literatur erfahren haben, zurückführen zu müssen. Die Beobachtung der als Übergangsstadien deutbaren Bilder scheint mir eine Ableitung der Chromatinbrocken von den Primärkernen wohl möglich zu machen.

Das Hauptgewicht möchte ich hier jedoch weniger auf diesen speziellen Ableitungsmodus, der möglichst noch an jüngeren Primärstadien erhärtet werden müsste, als wie darauf legen, dass es ungemein unwahrscheinlich wäre, die Chromatinbrocken in den Plasmasträngen nicht als Protozoenbestandteile, sondern im entgegengesetzten Sinne zu deuten, sie demnach auf Wirtsgewebsreste zu beziehen.

Wollte man nämlich versuchen, noch den Standpunkt zu wahren, dass der ganze Plasmakörper eine einzige hypertrophische Wirtszelle darstellen könnte, so würde man wohl am ehesten die grauen Stränge mit den tiefschwarz gefärbten Brocken als einen grossen verzweigten Wirtskern mit diffus gefärbtem Grund und eingelagerten Chromatinkörpern zu deuten suchen. Wenn jedoch die sehr starke, ungefähr 2500 fache Vergrösserung von Fig. 8 und 9 in Betracht gezogen wird, so bieten die grauen Stränge mit den Chromatinbrocken zweifellos von vornherein kaum ein Bild, das an Metazoenkerne gemahnen würde. Aber auch die Annahme einer tiefgreifenden Umwandlung eines wohlstrukturierten Metazoenkernes unter dem Einfluss der Parasiten würde, ohne sich auf analoge Verhältnisse bei anderen Microsporidienerkrankungen stützen zu können, in der Luft schweben.

In allen Fällen nämlich, in denen bisher Hypertrophie und Sprossung von Wirtskernen unter dem Einfluss von Microsporidien

beobachtet wurde, haben die Kerne, welchem Gewebe sie auch entstammen mögen, doch stets ihre Kernmembranen aufs deutlichste bewahrt. Ob in dem Falle hypertrophischer Kerne der Hodenzellen der Barbe, der Ganglienzellen von Lophius, der Lymphozyten von Limnodrilus, stets treten die Kerne als fest abgegrenzte geschlossene Gebilde im Plasma auf. Und gerade für die jüngeren Stadien der Einwirkung von Microsporidien auf Zellen - und um ein junges Stadium, sollte man erwarten, müsste es sich hier in der nur 80 u im Durchmesser erreichenden Primärcyste doch jedenfalls handeln - ist es charakteristisch, dass die Kerne in ihrer Struktur ganz unbeeinflusst bleiben und nur allmählich hypertrophisch werden. Es scheint mir demnach in keiner Weise die Berechtigung vorzuliegen, in den grau gefärbten Strängen mit ihren Chromatinbrocken etwa einen reich verzweigten Metazoenkern erblicken zu wollen. Vielmehr glaube ich, auch diese Komponente des Plasmakörpers und damit die Primärcyste in allen ihren Teilen zum Protozoon stellen zu müssen.

Resümiere ich die erhaltenen Ergebnisse, so stellt sich demnach die Primärcyste dar als ein vom Wirtsgewebe scharf abgesetzter Plasmakörper mit vielen Kernen, die zum Teil in unregelmässige Chromatinbrocken überzugehen scheinen, zum Teil die Kristallisationspunkte darstellen, um die sich durch einen inneren Knospungsprozess die Primärschläuche bilden. Auf eine von Parasiten durchsetzte Wirtszelle weist nichts hin.

Aufgabe der weiteren Darstellung wird es sein, zu zeigen, wie aus Primärkernen und Primärschläuchen die Sporenbildungsstadien hervorgehen und andererseits aus den unregelmässigen Chromatinbrocken in den Plasmasträngen sich die vegetativen Kerne bilden. Im Gegensatz zu der Auffassung von Stempell, Awerinzew und Fermor wird sich dabei ergeben, dass es sich um zwei aller Wahrscheinlichkeit nach völlig getrennte Entwicklungsreihen handelt, die ausser an ihrer Wurzel in keiner genetischen Verbindung mehr miteinander stehen, und dass jedenfalls die vegetativen Kerne in keiner Weise als Mutterboden für die Sporenentwicklung in Betracht kommen.

Zusammenfassung.

Auf der Schwanzflosse eines jungen 2 cm langen Stichlings wurde eine 80 µ im grössten Durchmesser erreichende Primärcyste Archiv f. mikr. Annt. Bd. 82. Abt. II. aufgefunden. Dieselbe stellt sich als ein vielkerniger solider Plasmakörper dar, der gegen das Bindegewebe durch eine feine Cystenmembran abgesetzt ist. Eine Sporenbildung hat noch nicht stattgefunden. Dagegen finden sich im Plasma an 100 ein- und zweikernige Primärschläuche, aus denen sich später die sporenbildenden Zellen entwickeln. Wie sich mit Bestimmtheit nachweisen lässt, entstehen die Primärschläuche aus den kompakten Kernen des Plasmakörpers durch Verdichtung des Protoplasmas in ihrer unmittelbaren Umgebung. Es folgt hieraus, dass die Kerne des Plasmakörpers gleich falls zu Glugea anomala gehören. Sie können als die "Primärkerne" der Glugea bezeichnet werden.

Ausserdem finden sich in der Primärcyste noch unregelmässige Chromatinbrocken, die in Strängen dichten Plasmas liegen. Sie stellen zum Teil die Vorstufen der grossen bläschenförmigen Kerne älterer Stadien dar, die von Stempell als vegetative Kerne beschrieben wurden. Übergangsbilder sprechen dafür, sie von den Primärkernen abzuleiten. Jedenfalls besteht keine Möglichkeit, sie auf Reste des Wirtsgewebes zu beziehen.

Die Primärcyste von Gl. anomala ist somit als ein grosser Protozoenplasmakörper mit vielen Kernen aufzufassen, die zum Teil in unregelmässige Chromatinbrocken (die späteren vegetativen Kerne) überzugehen scheinen, zum Teil die Zentren darstellen, um die durch einen inneren Knospungsprozess die Primärschläuche als die Vorstufen der sporenbildenden Zellen entstehen.

VII. Die Entwicklung der Primärschläuche zu Sekundärschläuchen und die Aufteilung derselben in Vakuolenzellen.

Der Fall, der sich unter meinem Material am besten an das soeben geschilderte Primärstadium anschliesst, betrifft eine junge Glugeacyste, die gleichfalls in der zarten Schwanzflossenmembran ihren Sitz hat. Ihr Durchmesser erreicht jedoch fast 200 µ, sie stellt keinen soliden Plasmakörper mehr dar, sondern enthält bereits zahlreiche mit Sporen und Sporenentwicklungsstadien gefüllte Flüssigkeitsräume. Das Protoplasma, das hauptsächlich als breite Rindenschicht entwickelt ist, schliesst eine grosse Menge intensiv nach Heidenhain färbbarer Kügelchen ein, die ziemlich gleichmässig verteilt sind und die feinere Plasmastruktur verdecken (Taf. VI, Fig. 11 c). Sie können einen Durchmesser von

etwa $^{1}/_{3}$ μ erreichen und entsprechen wohl den feineren dunkel tingierten Granula des Primärfalles.

In grosser Anzahl finden sich in der Rindenschicht der Cyste kleine kompakte Kerne (Taf. VI Fig. 11 p. Fig. 16 p), die völlig den an dem jüngeren Fall beschriebenen Primärkernen entsprechen. Auch das Verhalten des Plasmas in ihrer Umgebung ist ein ähnliches. Unmittelbar um sie findet sich eine Zone, in der das Plasma stark aufgehellt erscheint. Diese wird von einer Schale dichten homogenen Plasmas umgeben. Gegenüber dem Befunde in dem jüngeren Falle ist jedoch zu konstatieren, dass die äussere Plasmaschale sich jetzt deutlicher gegen das Uvstenplasma absetzt. Da überdies sowohl die helle Plasmazone wie die dichte Plasmaschale ganz frei von Einschlüssen bleiben, so hebt sich die Umgebung der Kerne sehr deutlich aus der plasmatischen Grundsubstanz der Cyste heraus, die die intensiv färbbaren Granula einschliesst. Man gewinnt somit den Eindruck, dass sich um die Primärkerne Zellterritorien abgrenzen. Statt von Primärkernen und ihren Plasmahöfen erscheint es jetzt richtiger, von "Primärzellen" zu sprechen. Diese Abgrenzung gegen das Cystenplasma ist jedoch noch keine sehr scharfe. Wie in dem jüngeren Falle kann die Verdichtung des Plasmahofes sich bisweilen auf einen grösseren Bezirk ausdehnen, wobei man den Eindruck gewinnt, dass die Grössenzunahme durch Apposition neuer Schichten, durch ein Weitergreifen der Verdichtung erfolgt Indem gleichzeitig eine Längsstreckung stattfindet, entstehen wie in dem jüngeren Falle Übergangsstadien zu Primärschläuchen (Taf. VI, Fig. 11 u). Allerdings scheint eine Neubildung von Primärschläuchen nur noch selten stattzufinden.

Fertig ausgebildete Primärschläuche findet man in grosser Menge teils in der Rindenschicht, teils in den Plasmasepten der zentralen Cystenpartie (Fig. 11 ps). Sie zeigen genau dieselbe Gestalt und ähnliche Dimensionen wie die Primärschläuche des jüngeren Falles. Ein geringfügiger Unterschied liegt nur darin, dass die äusserste Plasmaschicht der Schläuche sich jetzt öfters als Membran abgrenzen lässt, und dass die Kerne nun von einer deutlicheren Aufhellungszone umgeben werden.

Neben einkernigen Formen (Taf. VI, Fig. 11 ps, Textfig. 5 a) treten auch hier zweikernige auf (Textfig. 5 b), die aller Wahrscheinlichkeit nach wie in der Primärcyste auf das Verschmelzen

zweier kleinerer Zellen zurückzuführen sind. Dafür sprechen die Grössenverhältnisse, denn während die einkernigen Schläuche nicht ganz die Länge von 7 µ erreichen, ist die Länge der zweikernigen beträchtlicher und variiert zwischen 8,8 und 9,4 µ. Die somit ziemlich erhebliche Grössendifferenz zwischen den zweikernigen und einkernigen Schläuchen lässt es als ausgeschlossen erscheinen, dass die ersteren aus den einkernigen einfach durch Teilung des Kernes hervorgegangen wären. In diesem Sinne werden vielmehr nur solche zweikernigen Formen gedeutet werden können, die dieselbe Länge wie die einkernigen Schläuche besitzen (Textfig. 5c). Während im Primärfalle die Zahl der zweikernigen Schläuche erheblich überwog, treten hier einkernige und auf Verschmelzen zurückzu führende zweikernige etwa in gleicher Menge auf. An die in der Primärcyste beobachtete Kettenbildung erinnert es, dass in den Septen häufig zwei Schläuche hintereinander liegen. Bisweilen ist an den zweikernigen Schläuchen, wie Textfig. 5 b demonstriert. eine Einkerbung, die die Zusammensetzung aus zwei ursprünglich getrennten Zellen andeutet, nicht mehr zu erkennen.

Von besonderer Wichtigkeit ist die der Beschreibung zugrunde gelegte junge Cyste dadurch, dass sie die gesamte weitere Entwicklung der Primärschläuche zu verfolgen gestattet. Dieselbe wird zunächst durch eine lebhafte Vermehrung ihrer Kerne eingeleitet. Dafür, dass diesem Prozess in den eben geschilderten zweikernigen Schläuchen zunächst ein Verschmelzen der beiden Kerne vorausgeht, wurde ein Anhaltspunkt nicht gefunden. Auf diese Frage musste besonders geachtet werden, da für eine grosse Reihe von Protozoen das Verschmelzen von Tochterkernen im Sinne eines reduzierten Befruchtungsvorganges (Autogamie) beschrieben worden ist. Abgesehen davon, dass ein Verschmelzen der Kerne nicht beobachtet wurde, ist es auch nicht sehr wahrscheinlich, dass ein Befruchtungsvorgang an dieser Stelle des Entwicklungskreises stattfinden sollte.

Den Ausgangspunkt der weiteren Entwicklung bilden somit neben einkernigen Primärschläuchen die etwas längeren Doppelschläuche mit zwei getrennt bleibenden Kernen. In den einkernigen Primärschläuchen erfolgt zunächst die Teilung des Kernes in zwei Tochterkerne. Die resultierenden zweikernigen Schläuche (Textfig. 5 c) sind an ihrer geringen, der Länge der Mutterschläuche (7 μ) entsprechenden Grösse leicht von den

zweikernigen Doppelschläuchen (Textfig. 5 b) zu unterscheiden. Auch wenn die beiden Tochterkerne von neuem in Teilung eintreten, und wie es Fig. 12, Taf. VI, und Textfig. 5 e demonstrieren, zwei regelmässig hintereinander liegende hantelartige Teilungs-

Fig. 5.

 $\label{eq:continuous} \begin{tabular}{ll} Entwicklung & von & vielkernigen Sekundärschläuchen & aus Primärschläuchen. \\ a, c, e, g, i. Entwicklungsreihe eines einkernigen Primärschlauches. \\ b, d. f, h, k, \\ & Entwicklungsreihe eines zweikernigen Primärschlauches. \\ \end{tabular}$

Aus einer Schnittserie durch eine Cyste von 0,2 mm Durchmesser (cf. Taf. VI. Fig. 11—15). Konservierung mit Flemmingscher Flüssigkeit. Färbung nach Heidenhain. Vergr. ca. 1300:1.

figuren liefern, bleibt die Länge des Mutterschlauches noch fast die gleiche. Mit der weiteren Kernvermehrung kommt es zu einer ausgesprochenen Längsstreckung. So wurden acht Kerne hintereinander nur in Schläuchen gefunden, die im Mindestfalle eine Länge von 12 μ besitzen (Textfig. 5 g). Oft sind dieselben erheblich länger und dann meist von weniger dichtem Plasmagefüge. Schläuche mit vier Teilungsfiguren, die bereits auf dem Stadium der Durchschnürung der Kerne eine Länge von 17 μ besitzen (Textfig. 5 f), dürften wohl auf die Doppelschläuche als Ausgangspunkt zurückzuführen sein, desgleichen solche, in denen die vier Teilungsfiguren nicht in einer Reihe hintereinander liegen, sondern wie Fig. 13, Taf. VI. zeigt, etwas unregelmässig, in zwei Gruppen angeordnet sind. In den achtkernigen Schläuchen liegen die Kerne oft noch paarweise, offenbar so, wie sie durch die Teilung der vier Mutterkerne entstanden sind.

Die weitere Entwicklung scheint nach einem doppelten Modus erfolgen zu können. Entweder streckt sich der Schlauch unter Vermehrung der Kerne auf 16 weiter in die Länge und stellt nun einen 20-30 µ langen Schlauch mit einer einzigen Reihe von Kernen dar (Textfig. 5 i). Oder Kernteilung und Plasmaausdehnung erfolgen nun nicht mehr genau in der Richtung der Längsachse des Schlauches, so dass zweireihige 16 kernige Schläuche von bisweilen 18 n nur Länge, aber dafür fast 4 n Dicke gebildet werden (Textfig. 5 k). Als ein Entwicklungsstadium eines solchen Schlauches ist vielleicht der in Taf. VI. Fig. 15, abgebildete Schlauch aufzufassen, bei dem die Kerne nicht kugelförmig, sondern spindelförmig erscheinen, wie zu einer Teilung auseinander gezogen und zwar in Richtungen, die öfters schräg zur Längsachse des Schlauches stehen. Der in Fig. 14, Taf. VI, abgebildete Schlauch mit fünf vollständig getroffenen und zwei nur angeschnittenen Kernteilungsfiguren, die zum Teil quer zur Längsachse des Schlauches eingestellt sind, lässt sich hier unmittelbar anschliessen.

Die dünne Schnittführung bringt es natürlich mit sich, dass in den längs geschnittenen Schläuchen nicht immer alle Kerne in die Schnittebene fallen. Aber die Zahlen von 4,8 und 16 Kernen lassen sich doch so häufig feststellen, dass an dem geschilderten Entwicklungstypus mit seiner regelmässigen Kernvermehrung nicht gezweifelt werden kann. Wenn daher nach Awerinzew und Fermor, wie oben S. 88 ausgeführt, offenbar

hierher gehörige Gebilde durch Umwandlung von Kernen entstehen sollen, deren Chromatin nach und nach in einzelne Abschnitte zerfällt, so müssen wohl diese Autoren entweder durch ungünstig konserviertes Material oder degenerierende Formen zu ihrer Ansicht gelangt sein.

Ob auch nach dem Sechzehnkernstadium die Kernvermehrung weiter eine so regelmässige ist, dass alle Kerne annähernd gleichzeitig in Teilung eintreten, muss ich dahingestellt lassen. Bei so grossen Schläuchen wird es sich naturgemäss meist um Teilstücke in den Schnitten handeln, so dass die Gesamtzahl der Kerne sich schwer feststellen lässt. Es sei daher nur erwähnt, dass als grösste Kernzahl in den Schläuchen des vorliegenden Falles 24 beobachtet wurde. In anderen Fällen konnten auch 32 und mehr Kerne gezählt werden. Man wird vielleicht in der Annahme nicht fehl gehen, dass die ganz besonders langen Schläuche auf die ja von vornherein schon etwas längeren zweikernigen Primärschläuche zurückzuführen sind.

Schon von dem achtkernigen Stadium an können die Sekundärschläuche, wie die vielkernigen Schläuche im Gegensatz zu den Primärschläuchen genannt seien, indem nun weitere Kernteilungen unterbleiben, zum Ausgangspunkt andersartiger Entwicklungsprozesse werden. Greife ich zunächst den mir in erster Linie als typisch erscheinenden Fall heraus, so wäre hervorzuheben, dass sich um die bisher im Cystenplasma eingeschlossenen 8-, 16- oder mehrkernigen Sekundärschläuche ein Flüssigkeitshohlraum bilden kann. Die so entstehenden Vakuolen können noch ganz die langgestreckte Form der Schläuche besitzen. In anderen Fällen haben die Sekundärschläuche mit dem Beginn der Flüssigkeitsabscheidung in ihrer Umgebung sich mehr und mehr der Kugelgestalt genähert. Dementsprechend besitzen dann auch die Vakuolen einen kreisförmigen Umriss.

In den Vakuolen erfolgt nun bald eine Aufteilung des Schlauches, die zu einem restlosen Zerfall in eine so grosse Anzahl von Zellen führt, als Kerne vorhanden sind. Aus einem achtkernigen Schlauch müssen also acht, aus einem 16 kernigen 16 Zellen hervorgehen. Das in Taf. VI, Fig. 16, abgebildete Präparat macht es wahrscheinlich, dass grosse Schläuche dabei zuerst in gröbere Stücke zerfallen. Ein jedes der vielkernigen Teilstücke unterliegt dann einer weiteren Aufteilung.

Die durch den successiven oder simultanen Zerfall der Schläuche schliesslich resultierenden einkernigen Zellen seien wegen ihrer Lage in den Vakuolen kurz als Vakuolenzellen bezeichnet. Ihre Gestalt ist eine sich der Kugelform nähernde polyedrische. Sie besitzen in dem vorliegenden Falle (Fig. 16) kugelige Kerne von genau dem gleichen kompakten Typus, wie er in den Primärzellen und Primärschläuchen zu beobachten war. Die Vakuolenzellen stellen die Mutterzellen der Sporoblasten dar. Als Ausgangspunkt der Sporenbildung werden sie daher später (Abschnitt IX) noch eine eingehendere Beschreibung erfahren.

Kehre ich zu den Umbildungsprozessen, die sich an den Sekundärschläuchen abspielen, zurück, so möchte ich es nicht für ganz ausgeschlossen halten, dass neben dem soeben geschilderten Entwicklungstypus noch eine Entwicklung in anderem Sinne erfolgen kann. Es muss dabei davon ausgegangen werden, dass bisweilen Sekundärschläuche sich finden, deren Plasma sich auffallend schwach färbt und offenbar ein wenig dichtes Gefüge besitzt. Vielleicht können nun acht- oder mehrkernige Schläuche dieser Art, ehe sie in eine Vakuole aufgenommen werden, schon wenn sie noch im Cystenplasma gelegen sind, Zellen aus sich hervorgehen lassen, sei es durch völligen Zerfall, sei es manchen Figuren von Awerinzew und Fermor entsprechend durch successive Abspaltung an dem einen Schlauchende. Jedenfalls würden die so entstehenden Zellen mit ihrem wenig dichten Plasmagefüge eine grosse Ähnlichkeit mit den Primärzellen (Taf. VI, Fig. 11 p und 21 p) aufweisen. Es ist wohl möglich. dass auf diese Weise eine Vermehrung in der Zahl der Primärzellen stattfindet.1) Sekundärschläuche, die einem solchen Entwicklungstypus folgen, würden den Schizontenketten anderer Microsporidien, diejenigen dagegen, die in Vakuolen aufgenommen werden, den Pansporoblasten anderer Formen verglichen werden können.

Eine ungewöhnlich weitgehende Ausbildung von Sekundärschläuchen wurde in einer jungen, durch künstliche Infektion erzeugten 300 µ grossen Cyste beobachtet (cf. S. 103). Während die zentrale Partie der Cyste noch relativ wenig Sporen und Sporenentwicklungsstadien enthielt, erwies sich die plasmatische

¹) Von einer Vermehrung der Primärzellen durch einfache Zweiteilung habe ich mich bisher nicht mit Sicherheit überzeugen können.

Rinde fast ganz in Sekundärschläuche beträchtlicher Länge aufgeteilt. U. a. konnte hier ein zweireihiger Schlauch, in dem 42 Kerne gezählt wurden, von 35 μ und ein einreihiger sogar von der Länge von 47 μ beobachtet werden.

Schliesslich kann es keinem Zweifel unterliegen — und das gilt namentlich für Befunde in noch etwas älteren Cysten — dass auch Sekundärschläuche vorkommen können, die eine weitere Entwicklung nicht erfahren und aller Wahrscheinlichkeit nach degenerieren. Es sind dies Gebilde, die meist eine deutliche äussere Membran, aber nur schwach färbbares Plasma besitzen und deren Kerne stark gelockert sind und in unregelmässige Granula und Chromatinstränge zu zerfallen scheinen.

Mit zunehmender Grösse der Cyste trifft man die Primärschläuche in den Schnitten immer seltener an. Dagegen finden sich in den wachsenden Cysten trotz lebhafter Sporenbildung stets in grosser Menge Sekundärschläuche und die vielkernigen Plasmakugeln, die in den Vakuolen in Vakuolenzellen zerfallen. Es muss demnach in älteren Cysten noch einen anderen Ursprung für sie geben als die Entstehung aus Primärschläuchen. Tatsächlich lässt sich hier eine direkte Entstehung aus Primärzellen als Regel nachweisen, wie im folgenden Abschnitt genauer ausgeführt werden wird.

Zusammenfassung.

In jungen Cysten von Gl. anomala, in denen bereits die Sporenbildung begonnen hat, grenzen sich die Primärkerne mit ihren Plasmahöfen als "Primärzellen" schärfer gegen das Cystenplasma ab.

Die ein- und zweikernigen Primärschläuche wachsen unter wiederholten synchron verlaufenden Kernteilungen zu 8-, 16- oder mehrkernigen Sekundärschläuchen aus.

In typischen Fällen erfolgt um diese eine Flüssigkeitsabscheidung. Innerhalb der Flüssigkeitsvakuole zerfallen sie simultan oder successiv in so viele Zellen als sie Kerne enthalten. Es sind dies die "Vakuolenzellen", die Mutterzellen der Sporoblasten.

VIII. Über eine Modifikation in der Entwicklung der Vakuolenzellen, die für ältere Cysten charakteristisch ist.

Der Beschreibung der Entwicklungsprozesse, die sich an älteren Cysten abspielen, seien hauptsächlich zwei annähernd 1 mm

und 2 mm im Durchmesser erreichende Cysten zugrunde gelegt, die in der Haut von zwei 2 cm bezw. 2,5 cm langen Stichlingen ihren Sitz hatten. Sie werden bereits von einer dicken Cystenmembran und einer starken, reich mit Blutgefässen durchsetzten Bindegewebshülle umgeben. Eine grosse Menge Sporen ist in ihnen gebildet, die teils in den Vakuolen der Rindenschicht, teils in einem gemeinsamen zentralen Hohlraum liegen, der durch Konfluenz zahlreicher Vakuolen entstanden ist. Die in den jüngeren Cysten angebahnte Abgrenzung der Plasmahöfe der Primärkerne gegen das Cystenplasma, mit der die Ausbildung der Primärzellen begann, ist in den grösseren Cysten bedeutend schärfer ausgeprägt. Die Primärzellen erscheinen jetzt durch eine feine Membran aufs deutlichste gegen das Cystenplasma abgesetzt, und es kann nicht dem geringsten Zweifel unterliegen, dass sie nunmehr ganz selbständige Elemente darstellen.

Die Struktur des Cystenplasmas variiert etwas. In der kleineren Cyste erscheint die plasmatische Grundsubstanz annähernd homogen, in der grösseren bisweilen ausgesprochen wabig. Wie in dem jüngeren Falle (Seite 114) finden sich als Einschlüsse gleichmässig oder in Gruppen verteilte Granula, die sich jedoch nach Heidenhain nicht mehr so intensiv färben lassen und jetzt auch eine geringere Grösse besitzen. Die Primärzellen heben sich daher nicht so sehr dadurch, dass sie keine Kügelchen einschliessen, als durch ihre ganz scharf ausgeprägte Membran vom Cystenplasma ab. Neben Zellen, die mit 3 µ etwa noch denselben Durchmesser wie in dem jüngeren Falle aufweisen (cf. Taf. VI, Fig. 11 p und 21 p), kommen grössere Formen von etwa 4 µ Durchmesser zur Beobachtung (Taf. VI. Fig. 17a und b). Die Struktur des Kernes erscheint weiter differenziert. Er stellt nicht mehr einen kompakten Chromatinkörper dar, sondern nähert sich mehr dem bläschenförmigen Typus. Am dunkelsten färbt sich die Kernperipherie, von der einige intensiv gefärbte Stränge und Brocken in das Innere des Kernes vorspringen, das im übrigen hell erscheint. Das Plasma ist von sehr zartem Bau. Mit dem Auftreten der intensiv färbbaren Zellmembran hat es ein lockeres wabiges Gefüge angenommen.

Wie eine Reihe von Abbildungen (Taf. VI, Fig. 17 a bis e, Fig. 18) demonstrieren, kommt es in einem Teil der Primärzellen zu einer schnellen Kernvermehrung, die mit einer Volumenzunahme der ganzen Zelle Hand in Hand geht. Unter den Kernteilungsstadien findet sich wie bei der Entwicklung der Primärschläuche besonders häufig das schon oft für Microsporidien beschriebene hantelartige Bild, ein Stadium, bei dem die Tochterkerne noch durch einen oft gekrümmt verlaufenden Verbindungsfaden zusammenhängen. Die erste Kernteilung ist in Fig. 17 c dargestellt. Ein Stadium mit vier ruhenden Kernen repräsentiert Fig. 17 d. In Fig. 18 sind drei vollständig getroffene und eine vierte angeschnittene Kernteilungsfigur zu erkennen. Fig. 17 e demonstriert ein Stadium mit acht ruhenden Kernen. In den Abbildungen tritt deutlich die erhebliche Volumenzunahme hervor, die die Vermehrung der Kernzahl begleitet. Die ungemein zarte, grobwabige Plasmastruktur macht es dabei sehr wahrscheinlich, dass das schnelle Wachsen unter Flüssigkeitsaufnahme erfolgt.

Gegenüber dem Wachstum der Primärschläuche fällt besonders auf, dass die Größenzunahme nicht wie dort vorwiegend in einer Richtung, sondern von vornherein in verschiedenen Dimensionen erfolgt. So können achtkernige Stadien (Fig. 17e, Fig. 18) noch dieselbe polyedrische, annähernd kugelförmige Gestalt besitzen wie die Primärzelle, die den Ausgangspunkt der Entwicklung bildete. Und während bei der Kernvermehrung in den Primärschläuchen die starre und lange Form des Schlauches eine regelmässige Einstellung der Kernteilungsfiguren annähernd in der Richtung der Längsachse des Schlauches zur Folge hatte, kommt es hier zu einer Orientierung der Kernteilungsfiguren in den verschiedensten Richtungen.

Mit Zunahme der Kernzahl, die von 8 auf 16 und mehr Kerne steigt, verwischen sich jedoch die Unterschiede gegenüber dem Verhalten der Sekundärschläuche. Einmal kann es auch hier zu einer ausgesprochenen Längsstreckung kommen (Taf. VI, Fig. 21s). Andererseits wurde bereits oben erwähnt, dass vielkernige Sekundärschläuche nach Beginn einer Flüssigkeitsabscheidung in ihrer Umgebung sich öfters der Kugelgestalt nähern.

Dass es sich bei den Entwicklungsprozessen in den Primärzellen und Primärschläuchen nicht um prinzipiell verschiedene Dinge handelt, geht offensichtlich daraus hervor, dass auch die von den Primärzellen abzuleitenden vielkernigen Kugeln und Schläuche vom achtkernigen Stadium ab in Flüssigkeitsvakuolen

aufgenommen werden und hier genau so wie die Sekundärschläuche durch Aufteilung Vakuolenzellen liefern.

Wie Fig. 21 bei v demonstriert, verschwindet mit dem Beginn der Ausbildung einer Flüssigkeitsvakuole die Zellmembran, und das Plasma nimmt ein dichtes, ziemlich homogenes Gefüge an. Auch die in Fig. 19 und 20 dargestellten vielkernigen Kugeln mit dichtem Plasma waren bereits in Vakuolen gelegen.

In den vielkernigen Stadien, die aus den Primärzellen hervorgehen, zeigen die Kerne genau den gleichen bläschenförmigen Bau wie die Primärzellenkerne, von denen sie abstammen (Taf. VI, Fig. 17, 19, 20, 21). Bisweilen tritt im Zentrum des Kernes ein dunkel färbbares Körnchen hervor, das an die Centriolen erinnert, die von Hartmann und seinen Schülern in vielen Protozoenkernen beschrieben wurden. Auch die Vakuolenzellen, die durch Aufteilung der vielkernigen Stadien in den Vakuolen entstehen, zeigen, wie Fig. 22, demonstriert, den gleichen bläschenförmigen Kerntypus, während die aus den Sekundärschläuchen entstandenen Vakuolenzellen den kompakten Bau der Primärkerne junger Cysten aufwiesen.

In beiden Fällen stellen die Vakuolenzellen die Mutterzellen der Sporoblasten dar, die genau die gleichen Sporen in den jungen wie in den alten Cysten liefern. Somit führen die beiden Entwicklungstypen: auf der einen Seite die Kernvermehrung in den Primärschläuchen, auf der anderen Seite in den Primärzellen schliesslich genau zu dem gleichen Produkt.

Naturgemass erhebt sich die Frage, warum überhaupt um ein und dasselbe Ziel zu erreichen, zwei verschiedene Wege in den jüngeren und den älteren Cysten eingeschlagen werden. Wie mir scheint, ist die Ausbildung des zweiten Entwicklungsmodus nur eine Folge der vollständigen Abgrenzung der Primärzellen gegen das Cystenplasma. So lange in den jungen Cysten eine scharfe Grenze noch nicht bestand, konnten die Plasmahöfe der Primärkerne durch eine weiter um sich greifende Verdichtung des Plasmas, gewissermassen durch Auflagerung neuer Schichten, an Volumen zunehmen und unter Längsstreckung die Primärschläuche formieren. Sowie die Primärzellen jedoch durch eine feste Membran gegen das Cystenplasma abgegrenzt waren, konnte ihr Wachstum nicht mehr durch Apposition, sondern nur noch durch Intussuszeption erfolgen. Während der erste Entwicklungs-

modus den Charakter einer Aufteilung der Plasmarinde in Primärschläuche trägt, entspricht der zweite Modus einem mehr unmittelbaren Wachstum der abgekapselten Zellen. Sie nehmen nicht auf Kosten des Plasmakörpers, sondern offenbar vermöge der vom Wirte zuströmenden Nahrungssäfte an Volumen zu.

In diesem Zusammenhang erscheint es wohl möglich, dass die Ausbildung der beiden Entwicklungsmodi in naher Beziehung zu den verschiedenen Ernährungsbedingungen steht, wie sie in den jungen Plasmakörpern einerseits, den grösseren Cysten andererseits obwalten. Die innige Verbindung mit dem Wirtskörper, die in der Entwicklung eines dichten Kapillarnetzes um die Cyste ihren Ausdruck findet, tritt erst bei einer gewissen Cystengrösse ein. Vielleicht geht man in der Annahme nicht fehl, dass nach Ausbildung des Blutgefässnetzes die Ernährungsbedingungen für die Glugeacysten noch günstiger sind als in den Jugendstadien, und dass eine reiche Zufuhr von Nahrungssäften nunmehr ein rapides Wachstum der Cystenbestandteile ermöglicht.

Soweit die Untersuchung von Cysten mittlerer Grösse von Glugea hertwigi ergeben hat — von ganz jungen Cysten stand mit Flemmingscher Flüssigkeit konserviertes Material noch nicht zur Verfügung — verlaufen hier die zur Bildung der Vakuolenzellen führenden Entwicklungsprozesse in ähnlicher Weise wie bei Glugea anomala.

Zusammenfassung.

In älteren Cysten von Glugea anomala ist eine Entwicklung von Primärschläuchen durch Verdichtung des Cystenplasmas um eine Primärzelle und Längsstreckung derselben nicht mehr zu beobachten. Die Primärzellen sind vielmehr jetzt durch eine Membran scharf gegen das Cystenplasma abgesetzt. Doch werden auch hier 8-, 16- und mehrkernige Schläuche und Kugeln gebildet, die wie die Sekundärschläuche junger Cysten in Flüssigkeitsvakuolen aufgenommen werden und durch Aufteilung Vakuolenzellen liefern. Sie entstehen in den älteren Cysten durch unmittelbares Wachstum der Primärzellen. Dasselbe scheint unter Flüssigkeitsaufnahme zu erfolgen und kann einer Aufblähung verglichen werden. Hand in Hand mit der Grössenzunahme erfolgt eine successive Kernteilung in ihnen, so dass aus den einkernigen Primärzellen erst zwei-, dann vier-, acht-, sechzehn- und mehr-

kernige Zellen werden. Von dem achtkernigen Stadium an kann eine Bildung von Vakuolenzellen erfolgen. Dieselben entsprechen ganz den Vakuolenzellen junger Cysten, nur besitzen sie keinen kompakten, sondern einen bläschenförmigen Kern.

Ein prinzipieller Unterschied zwischen den beiden Entwicklungsmodi ist nicht anzunehmen. Die Ausbildung des für die älteren Cysten charakteristischen Typus ist wahrscheinlich nur die Folge der vollkommenen Abgrenzung der Primärzellen gegen das Cystenplasma und steht vielleicht mit günstigeren Ernährungsbedingungen in den grösseren Cysten in Zusammenhang.

IX.

Die Teilung der Vakuolenzellen in Sporoblasten und die Sporenbildung von Glugea anomala und hertwigi.

Die weiteren Entwicklungsprozesse, die zur Sporenbildung führen, spielen sich sämtlich innerhalb der Vakuolen des Plasmakörpers ab. Sie können in jeder wachsenden Glugeacyste verfolgt werden. Bei Glugea hertwigi verlaufen sie im Prinzip genau so wie bei Glugea anomala. Der Beschreibung sei jedoch zunächst wie bisher die letztere Art zugrunde gelegt.

Als Ausgangspunkt dienen die Vakuolenzellen, die durch den Zerfall der vielkernigen Plasmakörper entstanden sind, sei es dass diese in jungen Fällen aus Primärschläuchen, sei es in älteren Cysten aus Primärzellen ihren Ursprung nahmen. Es wurde bereits oben erwähnt, dass im allgemeinen die Kernstruktur der Vakuolenzellen einen Rückschluss auf ihre Genese gestattet. Sind sie von Primärschläuchen abzuleiten, so besitzen sie noch den ausgesprochen kompakten Bau der jungen Primärkerne, stellen in älteren Cysten Primärzellen in letzter Linie ihren Mutterboden dar, so zeigt der Kern mehr einen bläschenförmigen Typus (Taf. VI, Fig. 22). Sein Binnenraum erscheint hell. Von der dunkel gefärbten Kernperipherie springen einige intensiv gefärbte Brocken ins Innere vor, das bisweilen von schwächer tingierten Strängen durchsetzt wird. Häufig lässt sich ausserdem im Innern des Kernes ein besonders intensiv gefärbtes Körnchen erkennen, das in seiner Lage an das in vielen Protozoenkernen beschriebene Zentriol erinnert. Sehr regelmässige Bilder kommen dann zustande, wenn das intensiv gefärbte Körnchen genau zentral liegt und sich an der Kernperipherie fünf bis sechs dunkel gefärbte

Brocken regelmässig rosettenartig darum gruppieren. Dass die Begrenzung des Kernes im optischen Durchschnitt meist keine kreisförmige ist, sondern einem Vieleck entspricht, tritt in diesen Fällen besonders deutlich hervor, da dann die Ecken durch die dunkel gefärbten Brocken markiert werden. Auch die Gestalt der Zellen ist oft keine genau kugelförmige, sondern eine polyedrische (Fig. 22). Das Plasma zeigt namentlich nach dem Rande zu ein ziemlich dichtes Gefüge. In der Umgebung des Kernes erscheint es häufig heller. Für den Kerndurchmesser wurde auf Schnitten meist 1.4 μ , für den Zelldurchmesser 3—3,5 μ gefunden.

Die Vakuolenzellen stellen die Mutterzellen der Sporoblasten dar. Einige Zeit nach ihrer Entstehung durch Aufteilung der vielkernigen Plasmakörper in den Vakuolen beginnen die Vakuolenzellen, wie es Fig. 23, Taf. VI, demonstriert, synchron in Teilung einzutreten. Zunächst teilt sich der Kern, wieder unter Ausbildung einer typischen Hantelfigur, da die beiden Tochterkerne längere Zeit durch einen sich intensiv tingierenden Verbindungsfaden verbunden bleiben. In der Umgebung der kompakten Tochterkerne, die an die Pole der Zelle gerückt sind, erscheint das Plasma aufgehellt. Es konzentriert sich hauptsächlich in der äquatorialen Randpartie der Zelle. Hand in Hand mit einer Verlängerung des Verbindungsfadens der Tochterkerne streckt sich die Zelle dann mehr und mehr in die Länge. Der Verbindungsfaden beginnt sich blasser zu färben und schliesslich ganz zu schwinden. Gleichzeitig schneidet in der Aquatorebene der Zelle eine Furche ein, die die Vakuolenzelle in zwei Tochterzellen halber Grösse zerlegt.

Wie Fig. 24, Taf. VI, demonstriert, beginnt sich die kompakte Struktur der Tochterkerne jetzt etwas zu lockern. Die Kerne behalten die exzentrische polständige Lage, die sie unmittelbar nach der Teilung aufweisen, auch weiterhin bei. Auch die Aufhellungszone in ihrer Umgebung bleibt bestehen, so dass das Plasma vorwiegend am anderen Pole konzentriert ist. Man kann somit von einem Kern- und einem Plasmapole der kugeligen Zelle sprechen.

Ein Umformungsprozess führt bald darauf zu einer Verlängerung der die beiden Pole verbindenden Achse. Unter Verringerung des Breiten- und Höhendurchmessers beginnt die Zelle eine gestreckt ovale Form anzunehmen und sich damit der Gestalt der Spore zu nähern. Sie dokumentiert sich bald immer deutlicher als sporenbildende Zelle oder Sporoblast. Bei dem Umformungsprozess erreicht das dem Plasmapol entsprechende Endstück der Zelle schliesslich einen etwas grösseren Umfang als das gegenüber liegende Endstück, an dem der Kern liegt. Es kommt somit die charakteristische Eiform der Spore zustande, bei der der Plasmapol dem stumpfen, der Kernpol dem spitzen Pol des Eies entspricht. Bei Glugea hertwigi sind die Sporoblasten von vornherein etwas grösser als bei anomala. Die Sporen werden dadurch hier länger. Auch nehmen sie eine etwas andere Form an, indem der spitze Pol relativ schmäler wird als bei anomala (cf. S. 90).

Schon kurz nach ihrer Entstehung durch Teilung der Vakuolenzellen lässt sich in den Sporoblasten im Bereich des Plasmabezirkes nach der Mitte der Zelle zu eine punktförmige Verdichtung im Protoplasma auffinden, die sich etwas intensiver nach Heidenhain färbt. Die Verdichtung liegt in der Achse der Zelle, also dort, wo vorher der Verbindungsfaden der Tochterkerne sichtbar war. Die verdichtete Stelle markiert sich bei der weiteren Umbildung der Sporoblasten immer stärker. Zuerst nur vom Umfang eines kleinen Körnchens, erscheint sie später als ein dunkler, schärfer abgesetzter Körper von halber Kerngrösse, der stets in der Achse des Sporoblasten in der Nähe des Plasmapoles liegt (Taf. VI, Fig. 11 sp). Bald scheint derselbe direkt im Plasma zu liegen, bald sieht man ihn von einer länglichen Vakuole umgeben, die ein wohlabgesetztes Bläschen im Plasma darstellt. Bemerkenswert erscheint, dass man bisweilen ganz am Rande des Sporoblasten am Plasmapole noch ein zweites kleineres dunkles Kügelchen sieht, das mit dem grösseren intensiv gefärbten Körper durch einen schwächer tingierten Strang in Verbindung stehen kann, so dass ein Bild entsteht, als sei vom Pole eine Einstülpung in den Sporoblasten hinein erfolgt.

In Ausnahmefällen kann der dunkle Körper sogar die ganze Grösse des Kernes erreichen. Dass es sich hier jedoch nicht um einen zweiten Kern handelt, dafür spricht erstens die allmähliche Entstehung nach Art einer stärker und stärker werdenden Plasmaverdichtung, zweitens aber auch der Umstand, dass der Körper sich bisher nur an den mit Flemmingscher Flüssigkeit konservierten Präparaten mit der Heidenhainfärbung nachweisen liess. Schnitte durch dieselben Cysten, mit Safranin-

Lichtgrün gefärbt, zeigen in den Sporoblasten wohl den Kern leuchtend rot, aber keine Safraninfärbung des eigentümlichen Körpers am Plasmapol.

Dagegen glaube ich, dass die beobachteten Strukturen zu der Anlage des Polfadens in Beziehung stehen können. In dem Bezirk, in dem sie beobachtet werden, breitet sich später die grosse Vakuole der Spore aus, die nach der allgemeinen Ansicht den ausschnellbaren Polfaden in vielen Windungen aufgerollt enthält. Auch die bei nahestehenden Sporozoen, den Myxosporidien, für die Genese des Polfadens gegebenen Beschreibungen erinnern in mancher Beziehung an die hier beobachteten Strukturen. Wie Auerbach in seiner Monographie der Unidosporidien (1910) zusammenfassend bemerkt, wird bei der Polfadenbildung der Myxosporidiensporen in ein Vakuolenbläschen ein Plasmazapfen eingestülpt, der eine birnförmige Gestalt hat und schliesslich abgeschnürt in die Vakuole zu liegen kommt. Um den Körper scheidet sich dann eine Membran ab und sein Inneres wandelt sich in einen spiralig aufgerollten Faden um.

Leider entziehen sich die weiteren Umbildungsprozesse am Plasmapole der Beobachtung dadurch, dass wohl in Zusammenhang mit dem Auftreten der Sporenhülle sich die ganze Zelle nach Heidenhain tiefschwarz färbt und bei länger fortgesetzter Differenzierung die Farbe gleichmässig abgibt, so dass innere Strukturen sich nicht zur Darstellung bringen lassen (Taf. VI. Fig. 11b).

Nachdem somit die Bildungsprozesse am Plasmapol, soweit es möglich war, verfolgt wurden, muss auf das Verhalten des am anderen Pol gelegenen Kernes eingegangen werden. Bei der Streckung des Sporoblasten verliert der Kern allmählich das kompakte Gefüge und wird wieder mehr bläschenförmig (Taf. VI, Fig. 11 sp). Im Innern kann ein intensiv farbbares Korn wie in dem Ruhekern der Vakuolenzellen hervortreten. Auch die hauptsächlich an der Kernperipherie gelegenen Chromatinbrocken können wieder sichtbar werden. Nach Alkohol-Eisessig-Fixation treten sie sogar bei Gl. hertwigi bisweilen allein deutlich hervor und liegen dann scheinbar isoliert in der den Kern umgebenden Aufhellungszone. Es kann dadurch leicht die Vorstellung erweckt werden, dass der Kern in mehrere Stücke, so in Fig. 25, Taf. VI, in drei Stücke zerfällt. In den nach F1emming konservierten Präparaten

ist es jedoch in keinem Stadium zweifelhaft, dass der Kern als ein allseitig scharf begrenztes geschlossenes Bläschen persistiert.

Späterhin verschwindet die Aufhellungszone in der Umgebung des Kernes und gleichzeitig damit beginnt der Kern seine Lage zu verändern und vom Pole mehr nach der Mitte des Sporoblasten zu zu rücken. Ein entsprechendes Stadium von Gl. hertwigi, mit Alkohol-Eisessig fixiert, ist in Fig. 26 dargestellt. Der Kern erscheint hier als ein einheitlicher Körper in der Mitte des Sporoblasten. Die starke Vakuolarisierung, die in Fig. 26 ebenso wie in Fig. 25 am Plasmapol hervortritt, muss wohl durch die Fixation bedingt sein. Denn nach Flemmingkonservierung sieht man hier vielmehr die oben beschriebenen Strukturen, die aller Wahrscheinlichkeit nach mit der Polfadenbildung im Zusammenhang stehen (Fig. 11 sp).

Nachdem der Kern als einheitlicher Körper eine mehr zentrale Lage angenommen hat, lässt sich leider seine weitere Entwicklung in den Flemmingpräparaten, die zweifellos die Strukturen am getreuesten fixiert zeigen, nicht mehr verfolgen. Denn wie bereits oben erwähnt, beginnt nunmehr die äussere Zellmembran sich zur Sporenhülle zu verdicken und wohl im Zusammenhang damit sowohl bei der Heidenhain- wie bei der Safraninmethode eine nicht differenzierbare Überfärbung der ganzen Zelle einzutreten (Taf. VI, Fig. 11b).

Bezüglich der weiteren Entwicklung des diffus gefärbten Stadiums kann man an Flemmingpräparaten nur noch konstatieren, dass späterhin am stumpfen Pole eine grosse Vakuole auftritt, deren Inhalt schon bei kurzer Differenzierung farblos erscheint. Sie hebt sich somit aufs schärfste aus der im übrigen noch ganz schwarz gefärbten Zelle heraus. Damit hat sich das diffus gefärbte Stadium des Sporoblasten in eine junge Spore umgewandelt. Die Vakuole kann sich vom stumpfen Pol fast bis zur Mitte der Spore erstrecken. Ihre Grenzfläche gegen das Plasma erscheint im optischen Durchschnitte meist als gerade quer verlaufende Linie oder wölbt sich ein wenig gegen das Plasma vor.

An etwas älteren Sporen kann man im ungebleichten Flemmingpräparat eine intensive Braunfärbung konstatieren, die wie bei den jungen Sporen von Nosema lophii durch eine Osmiumbräunung der Sporenhülle bedingt erscheint. Auf diesem

Stadium tritt bisweilen auch am spitzen Pol eine zweite Vakuole auf, die jedoch nur ein geringes Volumen erhält und daher stets als die "kleine Vakuole" deutlich von der "grossen" am stumpfen Pol unterschieden werden kann.

Zusammenfassung.

Die Sporenbildung vollzieht sich in den Vakuolen der Rindenschicht der Cysten. Jede Vakuolenzelle teilt sich in zwei Sporoblasten. Die Teilung der Zellen einer Vakuole vollzieht sich dabei synchron. Die Sporoblasten sind zunächst kugelförmig, strecken sich dann in die Länge und nehmen die Eiform der Spore an. Der Kern bewahrt zunächst eine exzentrische Lage an dem einen Pol der Zelle. Dieser wird zum spitzen Pol der Spore. - Der Kern stellt einen einheitlichen kugeligen Körper dar, der auf Flemming präparaten einen bläschenförmigen Typus zeigt. In der Nähe des stumpfen Poles des Sporoblasten tritt eine Verdichtung auf, die wahrscheinlich zu der Ausbildung des Polfadens in Beziehung steht. Allmählich rückt der Kern mehr nach der Mitte der Zelle zu. Die weiteren Veränderungen in den Sporoblasten lassen sich an Flemming präparaten nicht verfolgen. Wahrscheinlich im Zusammenhang mit dem Auftreten der Sporenhülle beginnt sich nämlich die ganze Zelle diffus zu färben. Die Umwandlung des Sporoblasten in die Spore markiert sich dann lediglich durch das Auftreten einer grossen Vakuole am stumpfen Pol. Etwas ältere Sporen weisen nach Flemmingfixation eine intensive Braunfarbung auf. Bisweilen wird auf diesem Stadium eine kleine Vakuole am spitzen Pol sichtbar.

X. Das Verhalten des Kernes in den beschalten Sporoblasten und den Sporen nebst Bemerkungen über die durch die Präparationsmethoden bewirkten Veränderungen dieser Stadien.

Es kann keinem Zweifel unterliegen, dass die bei Flemming-Fixation beobachteten Bilder der Sporen sich relativ wenig von den im frischen Präparat konstatierbaren Verhältnissen entfernen. Die grosse Vakuole ist, wie Fig. 28, Taf. VII, demonstriert, stets auch schon an den lebenden Sporen zu erkennen und zwar in einer Grösse, die den im Flemming-Präparat beobachteten Volumenverhältnissen gut entspricht. Eine kleine Vakuole am spitzen Pole tritt erst nach Zusatz von Reagenzien, zum Beispiel verdünnter Essigsäure, auf. Ein solches Präparat ist in Fig. 29 dargestellt. Die kleine Vakuole stellt somit offenbar ein Kunstprodukt dar. Bei der Fixation nach Flemming zeigen aber nur wenig Sporen eine kleine Vakuole und falls dieselbe auftritt, bleibt sie stets von so geringer Ausdehnung, dass die Chrom-Osmium-Essigsäure hier zweifellos als eine Fixationsflüssigkeit bezeichnet werden kann, die die natürlichen Verhältnisse nur wenig abändert. Noch als ein relativ gutes Fixationsmittel für die Sporen wird zehnprozentiges Formalin gelten können.

Erheblich mehr entfernen sich dagegen zweifellos von den natürlichen Verhältnissen Präparate, die mit Sublimatalkohol nach Schaudinn oder Alkohol-Eisessig konserviert sind. Die Vakuole am spitzen Pol tritt hier bisweilen in solcher Ausdehnung auf, dass es auf dünnen Schnitten manchmal zweifelhaft sein kann, welches die "grosse" und welches die "kleine" Vakuole ist. Das Sporenplasma scheint dann im wesentlichen auf eine schmale zentrale Zone reduziert. Die starken Veränderungen, die durch die genannten Fixationsmittel hervorgerufen werden, erscheinen angesichts des Umstandes sehr bedauerlich, dass gerade diese Gemische in ausgezeichneter Weise die Anwendung der Biondi-Färbung gestatten, die wie keine zweite geeignet ist, die Kern- und Plasmaverhältnisse auch in den beschalten Stadien distinkt zur Darstellung zu bringen. Man wird die nach diesen Methoden erhaltenen Präparate unter diesen Umständen nur mit Vorsicht verwerten können. Immerhin vermögen sie einen Einblick in Stadien zu gewähren, die nach Flemming-Fixation überhaupt nicht auflösbar sind. Somit wird es gerechtfertigt erscheinen, wenn an der Hand einer Reihe von Abbildungen etwas genauer auf sie eingegangen wird.

Was zunächst das Stadium des jung beschalten Sporoblasten anbetrifft, in dem auf Flemming-Präparaten die diffuse Färbung einzutreten beginnt (Taf. VI, Fig. 11b), so habe ich entsprechende Bilder, in denen noch nichts von einem Hervortreten der grossen Sporenvakuole zu sehen ist, in Alkohol-Eisessig-Präparaten nicht auffinden können. Vielmehr zeigen die in Fig. 31, Taf. VII, und Fig. 30 bei b abgebildeten beschalten Formen, die ich am ehesten auf dieses Stadium beziehen möchte, immer schon eine grosse Vakuole am stumpfen Pol, der, wie oben ausgeführt, mit dem Plasmapole jüngerer Stadien identisch ist.

Allerdings könnte es zunächst fraglich erscheinen, ob die grosse Vakuole tatsächlich bereits der grossen Sporenvakuole entspricht oder nicht lediglich ein Schrumpfungsphänomen ist. Im ersteren Falle würde man anzunehmen haben, dass der Polfaden, der der herrschenden Anschauung nach in Spiraltouren in der grossen Vakuole aufgerollt ist, auf Flemmming-Präparaten sich zu dieser Zeit noch mitfärbt, nach der anderen Methode dagegen entweder gar nicht oder nicht färbbar fixiert ist. Es sei hier daran erinnert, dass auch bereits jüngere Sporoblastenstadien mit Alkohol-Eisessig fixiert im Bereich des Plasmapoles an Stelle der auf die Polfadenbildung bezogenen Struktur der Flemming-Präparate eine Vakuolenbildung aufwiesen (Taf. VI, Fig. 25 und 26).

Aber auch die zweite Möglichkeit, dass es sich lediglich um ein Schrumpfungsphänomen handeln könnte, ist in Betracht zu ziehen, um so mehr als wesentliche Teile des Sporoblasten zweifellos geschrumpft sind. Zu einer genaueren Analyse dieser Verhältnisse wird am besten Fig. 31, Taf. VII — ein mit Alkohol-Eisessig fixierter Sporoblast eines Schnittpräparates — mit der in Fig. 28 gegebenen Abbildung frischer Sporen verglichen.

Es sei dabei ganz davon abgesehen, dass der Sporoblast auch im ganzen offenbar durch die Paraffineinbettung an Volumen verloren hat. Wesentlich erscheint nur, dass die Zelle vor allem ungleichmässig geschrumpft ist und sich ihr protoplasmatischer Inhalt grösstenteils von der in den Figuren als graue Linie markierten Membran zurückgezogen hat. Eine ähnliche Schrumpfung ist auch an den Sporen des gleichen Falles (Fig. 30s) zu konstatieren.

Dass die Bilder als in diesem Sinne verändert gedeutet werden müssen, und nicht etwa als Stadien mit besonders dicker doppelt konturierter Membran aufgefasst werden können, lehrt ein Blick auf frische Präparate lebender Sporen, wie sie in der Fig. 28, Taf. VII, dargestellt sind. Bei der Untersuchung in Wasser lässt sich an ihnen, wie die Abbildung demonstriert, ausnahmslos nur eine schmale Membran erkennen.¹)

In diesem Zusammenhang also könnte man daran denken, dass auch die grosse Vakuole des Sporoblastenstadiums nichts anderes sei als eine besonders starke Schrumpfungserscheinung am stumpfen Pole, dass sie somit gar nicht innerhalb, sondern

¹⁾ Von einer dicken Sporenhülle, wie sie Stempell beschrieb, habe ich mich in den Präparaten nie überzeugen können.

ausserhalb des Plasmakörpers zwischen diesem und der Membran gelegen sei.

Der Vergleich mit den sich anschliessenden Sporenbildern der gleichen Fixation macht es jedoch wahrscheinlicher, dass sich vom Zellkörper ein schmaler Plasmaüberzug auf die Vakuole fortsetzt, sie allseitig umgibt und sich dabei der äusseren Membran dicht anschmiegt. Somit gelange ich zu der zuerst erörterten Anschauung, dass die Vakuole des beschalten Sporoblastenstadiums der grossen Vakuole der Spore homolog ist, in der sich nach den meisten Autoren der aufgerollte Polfaden befindet. Da der zusammengezogene protoplasmatische Inhalt des Sporoblasten mit der Vakuole darüber das Bild eines Bechers darbietet, so mag das ganze Stadium kurz als das "Becherstadium" bezeichnet werden.

Es ist nun von wesentlichem Interesse, dass der Kern nach der Biondi-Methode dargestellt, sich auch auf dem Becherstadium noch als ein einheitlicher runder Körper repräsentiert (Fig. 31, 30 b. Taf. VII). Mit Methylgrün gefärbt, schimmert er als blaugrüne Scheibe deutlich durch das je nach der Lichtquelle mehr orange oder ziegelrot erscheinende Plasma durch. Die enorme Überlegenheit, die die Biondi-Methode bei der Färbung beschalter Stadien gegenüber dem Eisenhämatoxylin nach Heidenhain besitzt, geht aufs deutlichste durch einen Vergleich der Fig. 31 (Biondi-Präparat) mit Abbildung 27, Taf. VI, hervor, die ein Becherstadium des gleichen Falles nach Heidenhain tingiert darstellt. Auch bei stärkerer Differenzierung ist hier lediglich der schwarze Protoplasmabecher innerhalb einer stark lichtbrechenden, als graue Konturlinie erscheinenden Membran zu erkennen.

Der Übergang des Becherstadiums in die Spore markiert sich in den nach der Alkohol-Eisessig-Methode konservierten und in Paraffin eingebetteten Präparaten durch Ausbildung der kleinen Vakuole am spitzen Pol. Gleichzeitig zieht sich der Plasmaüberzug der Spore jetzt meist auch am stumpfen Pole etwas von der Sporenmembran zurück (Fig. 37 s. Taf. VII). Von besonderem Interesse ist die Aufdeckung der Kernverhältnisse in den Sporen mittels der Biondi-Färbung. Ehe jedoch auf die erhaltenen Befunde näher eingegangen werden kann, müssen einige Worte über die bisherigen Ergebnisse der Kerndarstellung in den Sporen vorausgeschickt werden.

Die Frage der Kernverhältnisse der Microsporidiensporen muss zurzeit als eine noch recht offene bezeichnet werden. Nur für wenige Formen liegen bisher eingehende und einwandsfreie Untersuchungen vor. Unter dem Einfluss der Beobachtungen an Myxosporidiensporen, die übereinstimmend eine Vielkernigkeit dieser Gebilde ergaben, haben sich zunächst die meisten Microsporidienforscher bemüht, auch in den Mikrosporidiensporen mehrere Kerne aufzufinden. So sind u. a. in Glugea anomala von Stempell 1904 vier Kerne beschrieben worden, die im optischen Längsschnittsbild der Spore an den vier Ecken des Plasmagürtels ihren Sitz haben sollten. Zu ähnlichen Resultaten ist Stempell (1909) an den Sporen von Nosema bombycis, dem Pébrine-Erreger, gelangt, und auch Schröder hat 1909 an Thélohania chaetogastris sich mit Wahrscheinlichkeit für den Befund mehrerer Kerne in den Sporen ausgesprochen. Desgleichen hat Mercier (1908) mehrere Kerne in den Sporen von Thélohania giardi beschrieben. Die Kerne wurden in diesen Fällen teils als Amöboidkeim-, Polkapsel- und Schalenkerne, teils als in der Mehrzahl vorhandene Amöboidkeimkerne aufgefasst.

Einen Markstein in der Microsporidienforschung bedeutet die Arbeit von Schuberg (1910) über Plistophora longifilis. An dem durch besonders grosse Sporen ausgezeichneten Objekt konnte er mittels einer modifizierten Giemsa-Färbung stets nur einen einzigen Kern im Plasmagürtel auffinden. Sein Verdienst ist es, dass er damit durch klare vorurteilsfrei erhobene Befunde den Bann durchbrach, es müssten unbedingt bei allen Microsporidien entsprechend Verhältnisse wie bei den Myxosporidiensporen gefunden werden, dass er namentlich auf die Notwendigkeit hinwies, bei der Sporenfärbung regressive Färbemethoden möglichst zu vermeiden, und eine bisher nicht genügend beachtete Fehlerquelle für die Beurteilung der Kernverhältnisse in den "metachromatischen Körnern" der Microsporidiensporen aufdeckte. Es handelt sich dabei um in den Vakuolen auftretende Körner und Klumpen, die sich nach Giemsa wie der Kern purpurrot und auch nach manchen anderen Methoden ebenso wie die Kerne färben, offenbar aber nichts mit ihnen zu tun haben. Metachromatische Körner sind auch bei zahlreichen anderen Protisten u. a. von Erdmann in den Sporen von Sarcosporidien aufgefunden worden.

Mit der von Schuberg angegebenen Giemsa-Methode konnte ich an den Glugeasporen, obwohl die gleiche Alkohol-Eisessig-Fixation angewandt worden war, keine Kernfarbung erzielen. Dagegen glückte es, in der Färbung nach Biondi (cf. Seite 90) eine Methode aufzufinden, die eine klare Kerndarstellung in den Sporen ermöglicht. Mit grosser Konstanz wurden dabei Resultate erhalten, die sich gut den Schubergschen Ergebnissen von der Einkernigkeit der Microsporidiensporen anschließen. Bezüglich der Lage und Form des Kernes ergeben sich allerdings einige Abweichungen.

Der Kern von Plist, longifilis stellt nach Schuberg einen kugeligen Körper dar, der in dem hier gürtelartig angeordneten Plasma gelegen ist. Mit diesem Befund liesse sich am ehesten der runde Kern des Becherstadiums von Glugea vergleichen (Taf. VII, Fig. 31, 30b). In den Sporen von Glugea anomala und hertwigi ergibt sich nach der Biondi-Färbung meist ein anderes Bild. Wie Fig. 30 s, in fünf Fällen, sowie Fig. 32, demonstriert, stellt sich der Kern als ein quer verlaufender Streifen dar, der regelmässig an der Grenze des Protoplasmas und der grossen Vakuole gelegen ist. Durch seine blaugrüne Färbung mit Methylgrün hebt er sich im optischen Längsschnittsbild der Spore deutlich vom Protoplasma ab, das durch Säurefuchsin und Orange einen rötlichen Farbenton angenommen hat. Schwieriger ist das Querschnittsbild der Spore zu beurteilen. Der blaugrüne Schimmer des Methylgrüns wird hier zu sehr durch die kräftigere Färbung des darunter liegenden Protoplasmas beeinträchtigt. Somit wäre es an Biondi-Präparaten allein kaum zu entscheiden, ob der Kernstreifen im optischen Längsschnittsbilde der Spore die Kantenansicht einer Scheibe, eines Stabes oder eines Ringes darstellt.

Unter diesen Umständen ist es von wesentlichem Interesse, dass die Kerndarstellung auch noch auf eine andere Methode, nämlich durch Färbung mit Delafieldschem Hämatoxylin gelingt. Eine Färbung der Schnitte von zehn Minuten ergibt — am besten ohne weitere Differenzierung — bei Alkohol-Eisessig-Präparaten, ganz besonders deutlich aber bei Sporen, die mit zehnprozentigem Formalin konserviert sind, ein Bild, das sich auf das Beste dem nach der Biondi-Methode erhaltenen anschliesst.

Auf Taf. VII, in Fig. 34, ist dasselbe für die Sporen von Glugea hertwigi dargestellt. Während das Plasma eine zarte blaue

Färbung angenommen hat, findet sich an der Grenze zur grossen Vakuole ein tief dunkelblauer Streifen, der in seiner Lage und Form völlig dem in den Biondi-Präparaten mit Methylgrün gefärbten Kern entspricht.

Die Delafield-Präparate bestätigen jedoch nicht nur den nach der Biondi-Methode erhaltenen Befund, sondern ergänzen ihn in wertvoller Weise. Einmal ist es möglich, an den Formalin-Delafield-Präparaten, die weniger geschrumpft sind als die mit Alkohol-Eisessig konservierten Sporen, zu erkennen, dass der Kern zwar an der Grenze von Plasma und grosser Vakuole, aber doch noch deutlich innerhalb der Plasmazone gelegen ist. Dann ermöglicht aber auch vor allem die intensivere Färbung des Kernes ein genaueres Studium des optischen Querschnittsbildes der Spore. Die dabei erhaltenen Bilder sprechen dafür, dass der Sporenkern in den meisten Fällen einen geschlossenen Ring darstellt (Taf. VII, Fig. 35 r), der in das Plasma an der Grenze zur grossen Vakuole eingelagert ist und an ungeschrumpften Präparaten unmittelbar unter der Sporenhülle liegt. Dass innerhalb des Kernringes auch das Protoplasma noch eine zentrale Durchbohrung besitzt, vermöge deren grosse und kleine Vakuole, wie es Schuberg beschreibt, kommunizieren würden, habe ich nicht mit Sicherheit aus dem Querschnittsbilde entnehmen können. Freilich liegen die Verhältnisse für die Beobachtung hier viel ungünstiger als bei den bedeutend grösseren Sporen von Plist. longifilis mit ihrem nur auf eine schmale Zone beschränkten Plasma. Eine dritte wertvolle Ergänzung der Ergebnisse der Biondi-Praparate liegt darin, dass die Delafieldsche Hämatoxylinfärbung gleichzeitig auch die metachromatischen Körner zur Darstellung bringt (Taf. VII, Fig. 35), auf die in den Microsporidiensporen Schuberg aufmerksam gemacht hat. Wie bereits erwähnt, wies Schuberg darauf hin, dass sie leicht zu Verwechslungen mit dem Kern Veranlassung geben können. So fand er bei Plist. longifilis Kern und metachromatische Körner nach Giemsa in dem gleichen purpurroten Farbenton gefärbt.

Eine Gefahr, die metachromatischen Körner mit dem Kern zu verwechseln, liegt bei der Anwendung von Delafieldschem Hämatoxylin nach der oben angegebenen Methode für die Glugeasporen nicht vor. Denn hier färben sich die Körner im Gegensatz zu dem tiefblauen Kern ausgesprochen rot. Diese Metachromasie ist in undifferenzierten Präparaten bereits deutlich zu konstatieren. Eine noch kräftigere Rotfärbung wurde in Präparaten erhalten, die in salzsaurem Alkohol differenziert und darauf mit ammoniakalischem Alkohol bis zur Blaufärbung des Schnittes behandelt worden waren (Taf. VII, Fig. 35 g).

Die metachromatischen Granulationen bilden meist einen einheitlichen Klumpen in der grossen Vakuole. Nach Giemsa färben sie sich aufs intensivste purpurrot, während der Kern in diesen Fällen wie das Plasma eine blaue Färbung annimmt und sich nur manchmal als dunklerer Streifen markiert (Taf. VII, Fig. 33). An den Alkohol-Eisessig-Giemsa-Präparaten ist dabei häufig der Innenrand der abgehobenen Membran rings um die metachromatischen Klumpen gleichfalls rot gefärbt — eine Erscheinung, die sich durch Schrumpfung der metachromatischen Masse, die zunächst bis an die Membran heranreichte, ohne weiteres erklärt. Ein schmaler Belag der metachromatischen Substanz ist offenbar der Membran resp. dem sie bekleidenden Plasmaüberzug noch anhaften geblieben.

Stempell hat in Präparaten, die nach einer kombinierten Delafield-Giemsa-Methode gefärbt waren, gleichfalls 1—2 purpurrote Körper in der grossen Vakuole gefunden, die roten Klumpen jedoch als Kerne junger Sporen beschrieben. Aus den Abbildungen Stempells scheint es mir klar hervorzugehen, dass er, wie auch schon Schuberg vermutete, durch die metachromatischen Granulationen getäuscht wurde.

In älteren Sporen hat Stempell durch lang ausgedehnte und dann stark mit salzsaurem Alkohol differenzierte Delafield-Färbung vier Kerne gefunden, die im optischen Längsschnittsbild die vier Ecken der Plasmazone einnehmen. Es ist möglich, dass die beiden nach der grossen Vakuole zu gelegenen "Kerne" den optischen Durchschnitt des Kernringes darstellen. Bei schwacher Färbung mögen sich wohl die annähernd senkrecht zur Ebene des Objektträgers verlaufenden Bogenstücke noch am deutlichsten markieren. Was die beiden entsprechenden an den Ecken der Plasmazone nach der kleinen Vakuole zu gelegenen "Kerne" anbetrifft, so kann nicht bestritten werden, dass sich bisweilen in den Delafield-Präparaten an dieser Stelle, meist aber nur einseitig, etwas dunkler gefärbte Verdichtungen im Plasma zeigen (Taf. VII, Fig. 34 v). Davon aber, dass es sich hier um einen

oder zwei separate kleine Kerne handeln könnte, habe ich mich bisher nicht überzeugen können, denn einmal sind sie in meinen Delafield-Präparaten nicht so intensiv gefärbt wie der Kerngürtel, zweitens habe ich in Biondi-Präparaten eine Methylgrünfärbung an dieser Stelle der Spore bisher nicht beobachtet. Auch muss berücksichtigt werden, dass die kleine Vakuole der Glugeasporen doch im wesentlichen ein Kunstprodukt darstellt und dass Strukturen auf dieser Seite daher mit besonderer Vorsicht zu beurteilen sind. Schliesslich hat die Beobachtung der Sporenentwicklung bisher keinen Anhalt dafür gegeben, dass der einheitliche Kern des Becherstadiums späterhin in einen grossen und ein oder zwei kleine Kerne zerfiele.

Freilich kann das Studium der letzten Phasen der Sporenentwicklung, da es bisher lediglich an Alkohol-Eisessig-Präparaten erfolgen konnte, noch nicht als ein abgeschlossenes betrachtet werden. Die Vorstellung, die ich aus Präparaten nach dieser Methode gewonnen habe, geht dahin, dass das Becherstadium sich unter Auftreten der kleinen Vakuole und Zurückziehen der grossen von der äusseren Sporenmembran in eine junge Spore umwandelt. Diese besitzt zunächst noch den kugeligen zentral gelegenen Kern des Becherstadiums. Derselbe scheint dann zu einem Bügel auszuwachsen, der, wie ein Hufeisen gekrümmt, sich an der Grenze von Plasma und grosser Vakuole der Membran dicht anschmiegt, das Plasma umwächst und sich schliesslich zu einem Ring schliesst. Das Stadium, auf dem der Kern Bügelgestalt durchläuft, scheint, wenn nur auf die Spitzen des Bügels eingestellt wird, besonders geeignet, den Eindruck von zwei getrennten Kernen an der grossen Vakuole im Sinne Stempells hervorzurufen.

Die Ausführungen über die Kernverhältnisse in den Glugeasporen lassen sich kurz dahin zusammenfassen, dass sich nur ein unzweifelhafter Kern nachweisen lässt, der in den ausgebildeten Sporen die Gestalt eines Gürtels besitzt. Seine Chromatinnatur kann durch die Methylgrünfärbung als sichergestellt gelten.

Die eigentümliche Gestalt des Kernes scheint in Beziehung zur Lage und zum Ausgeschnelltwerden des Polfadens zu stehen. Nach der herrschenden Auffassung (Schuberg, Stempell) ist nämlich einerseits der Polfaden — im allgemeinen optisch nicht darstellbar — in spiraligen Windungen in der grossen Vakuole

aufgerollt. Andererseits unterliegt es keinem Zweifel, dass der Austritt des Polfadens beim Ausschnellen am spitzen und nicht am stumpfen Pol erfolgt. So kann man bisweilen in Cysten von Glugea hertwigi und anomala, die erst einige Stunden nach dem Tode des Fisches untersucht werden, sowie in Präparaten, zu denen etwas verdünnte Jodlösung zugesetzt wurde, konstatieren, dass am spitzen Pol ein etwa 100 µ langer Faden ausgetreten ist. Die Austrittsstelle liegt ein wenig symmetrisch, wie auch schon Stempell angab. Dass nicht etwa nach dem Ausschnellen des Fadens die Sporen ihre Form verändert haben, sondern der Austritt ganz sicher am spitzen Pol erfolgt, geht aus Ausstrichpräparaten hervor, die nach der Biondimethode gefärbt wurden. Stets wurde hier der Austritt des Fadens an dem dem Kern abgewandten Pole konstatiert. Damit nun der in der grossen Vakuole am stumpfen Pole aufgerollte Faden am spitzen Pole austreten kann, muss er die Achse der Spore durchsetzen. Nach den Beobachtungen Schubergs findet sich eine entsprechende zentrale Durchbohrung des Plasmas bei den Plistophorasporen. Für die Glugeasporen, bei denen im Querschnittsbild eine Kommunikation der grossen und kleinen Vakuole sich nicht mit Sicherheit nachweisen liess, wird man, wenn eine zentrale Durchbohrung des Plasmas tatsächlich fehlen sollte, annehmen können, dass das Plasma für den Durchtritt des Polfadens kein Hindernis bildet.1) Anders stünde es, wenn der Kern als eine solide Scheibe die grosse Vakuole gegen das Plasma absperren würde. Dass er in Wirklichkeit eine zentral durchbohrte Scheibe, einen Gürtel, darstellt, scheint somit als zweckmässige Einrichtung für den Durchtritt des Polfadens aufgefasst werden zu können.

Zum Schluss noch einige Worte über die Ausbildung der Sporen in Gruppen, die aus dem Zerfall der vielkernigen Schläuche innerhalb der Vakuolen resultiert. Da jede Vakuolenzelle zwei Sporoblasten liefert, so wird eine Vakuole schliesslich stets die doppelte Anzahl von Sporen enthalten, als Kerne in dem sich auf-

¹) Es sei hier erwähnt, dass wie Fig. 34, Taf. VII, in drei Fällen demonstriert, sich in den mit Formalin konservierten und mit Hämatoxylin gefärbten Sporen öfters ein Strang nachweisen lässt, der vom spitzen Pol durch die kleine Vakuole zum Plasma zieht. Ein ganz entsprechendes Bild hat Schuberg bei Plist longifilis als das Anfangsstück des Polfadens gedeutet.

teilenden Schlauche vorhanden waren. Während man auf Schnittpräparaten die Abgrenzungen der einzelnen Vakuolensporengruppen nicht immer deutlich erkennen kann und die Sporen namentlich in der zentralen Partie oft in grosser Menge ungeordnet durcheinander zu liegen scheinen, kann man an frischen Zupfpräparaten in der ausquellenden Cystenflüssigkeit häufig nicht isolierte Sporen, sondern regelmässige Sporenballen konstatieren, die in der Zahl der sie zusammensetzenden Elemente den Sporengruppen der einzelnen Vakuolen zu entsprechen scheinen.

Unter diesem Gesichtspunkte habe ich in einer vorläufigen 1911 erschienenen Mitteilung den Zusammenschluss der Sporen in Sporenkugeln als das natürliche, die isolierte Lage im Schnitt als das künstlich abgeänderte Verhalten aufgefasst. Weitere Untersuchungen an ganz frischen, dem lebenden Fisch exstirpierten Knoten haben jedoch gezeigt, dass in lebensfrischen Präparaten in der Cystenflüssigkeit noch keine Sporenballen, sondern nur isolierte Sporen anzutreffen sind. Erst nach einigen Minuten legen sich die Sporen zu regelmässigen Kugelhaufen zusammen. Vielleicht liegt hier ein ähnliches Phänomen vor, wie es die roten Blutkörperchen in der bekannten "Geldrollenbildung" schon kurze Zeit nach dem Anfertigen eines frischen Blutpräparates zeigen.

Der Zusammenschluss der benachbarten Zellen zu Kugelballen erfolgt indessen auch in der ungeöffneten Glugeacyste kurze Zeit nach dem Sistieren der Zirkulation des Fisches, und soweit überhaupt noch Vakuolenabgrenzungen vorhanden waren, wird dann tatsächlich jeder Ballen den Zellen einer einzigen Vakuole entsprechen. Untersucht man den Inhalt einer solchen Cyste, so besteht zweifellos die im vorigen Jahre ausgesprochene Ansicht zu Recht, "dass der genetische Zusammenhang unter den Sporen einer Vakuole auch äusserlich durch den Zusammenschluss in einer Sporenkugel offensichtlich zum Ausdruck kommt".

Zusammenfassung.

An frischen Präparaten lebender Sporen ist nur die grosse Vakuole am stumpfen Pol zu erkennen, die kleine Vakuole am spitzen Pol tritt erst nach Zusatz von Reagenzien auf. Sporen, die mit Alkohol-Eisessig konserviert sind, zeigen eine Vakuole am spitzen Pol oft in grosser Ausdehnung und entfernen sich somit zweifellos beträchtlich von den natürlichen Verhältnissen. Sie

bieten jedoch gegenüber den besser konservierten Flemming-Präparaten den grossen Vorteil, mittels der Biondi-Färbung auch in den beschalten Stadien eine Kerndarstellung zu ermöglichen.

Nach diesen Methoden repräsentiert sich der Kern in den beschalten Sporoblasten ("Becherstadium") als ein einheitlicher runder Körper, der in der Mitte der Zelle gelegen ist. In den Sporen stellt er im optischen Längsschnittsbild einen an der Grenze von Plasmazone und grosser Vakuole gelegenen Streifen dar. Wie das Studium von mit Delafieldschem Hämatoxylin gefärbten, mit Formalin konservierten Sporen ergibt, handelt es sich hier um die Kantenansicht eines Kernringes.

In der grossen Vakuole finden sich öfter metachromatische Klumpen, die offenbar von Stempell für die Kerne junger Sporen angesehen wurden. — Der Polfaden kann durch verdünnte Jodlösung am spitzen Pol zum Ausschnellen gebracht werden. — In exzidierten Cysten oder in frischen Präparaten auf dem Objektträger tritt nach kurzer Zeit ein Zusammenballen der in den einzelnen Vakuolen enthaltenen Sporen oder Sporoblasten zu regelmässigen Kugelhaufen ein.

XI. Die Entwicklung der "vegetativen Kerne" der Glugeacysten.

Wie in den Abschnitten VI—IX ausgeführt wurde, stellen in den Glugeacysten den ersten Ausgangspunkt der Sporenbildung lediglich die Primärschläuche resp. die Primärzellen dar. Die vegetativen Kerne, von denen Awerinzew und Fermor und vor ihnen Stempell die Elemente der Sporenbildung ableiten wollten, kommen meinen Befunden nach für kein Entwicklungsstadium der Sporogonie als Mutterboden in Betracht. Vielmehr scheinen sie eine ganz selbständige Entwicklungsreibe zu bilden und ihren Ausgangspunkt in den unregelmässigen Brocken färbbarer Kernsubstanz zu besitzen, die aus dem jüngsten der beobachteten Fälle (S. 111) genauer beschrieben wurden. Wie an Fig. 10 auf Taf. IV demonstriert werden konnte, liegen die Chromatinbrocken¹) hier meist in Stränge von verdichtetem Plasma

¹) Der Ausdruck Chromatinbrocken sei hier nur der Kürze halber für "Brocken färbbarer Kernsubstanz" gebraucht. Es soll damit nicht behauptet werden, dass sie ganz aus echtem Chromatin bestehen. Auf Grund der weiteren Entwicklung ist es sogar wahrscheinlicher, dass sie sowohl Basichromatin wie Nukleolarsubstanz entbalten.

eingeschlossen, die eine Länge von 30 μ , eine Breite von 1,7 μ erreichen und miteinander mannigfach anastomosieren können.

In der jungen, Seite 114 genauer beschriebenen Glugeacyste. die durch ihren reichen Gehalt an Primärschläuchen den unmittelbaren Anschluss an den jüngsten Fall ermöglichte, können mit leichter Mühe Gebilde aufgefunden werden, die ausserordentlich an jene Chromatinbrocken und Plasmastränge der Primärcyste erinnern. Wie die Figuren 11 und 36 (e) Taf. VI, demonstrieren. treten auch hier mit Kernfarbstoffen intensiv tingierbare Körper auf, die sich von den kugelförmigen Primärkernen durch ihre unregelmässige und ganz variable Gestalt unterscheiden. Bald erreichen sie eine beträchtlichere Grösse als jene, bald treten sie als kleine Körnchen auf und sind dann offenbar auf einen Zerfall der grossen Brocken zurückzuführen. Auch das Plasma zeigt in ihrer Umgebung ein dem Primärfalle entsprechendes Verhalten. Wie dort bildet es um die Chromatinbrocken unregelmässige verzweigte Stränge von dichter, annähernd homogener Struktur, die sich um so deutlicher von dem Cystenplasma der Umgebung abheben, als sich die für diesen Fall so charakteristische dichte Einlagerung von intensiv nach Heidenhain färbbaren Kügelchen lediglich auf das Cystenplasma beschränkt. Im ganzen entsteht ein Bild, als seien in das Cystenplasma grosse unregelmässig verzweigte Zellen eingelagert mit vielen unregelmässigen kompakten Kernen, die manchmal an chromatolytische Figuren erinnern.

Die in Fig. 36, Taf. VI, abgebildeten anastomosierenden Stränge erreichen zusammen eine Länge von 38 μ bei einer Breitendimension von etwa 9 μ . Die Grösse des Chromatinkörpers e in ihnen, die als Durchschnittsmass für die grösseren Brocken dienen kann, wurde auf $2.4 \times 1.6~\mu$ bestimmt. Die Chromatinbrocken in den Plasmasträngen finden sich hauptsächlich im Bereiche der Rindenschicht, aber auch noch in der zentralen Cystenpartie in den Plasmasepten der Vakuolen. Im Primärfalle waren sie vorwiegend im Innern der Cyste zu finden. Ihre Lageveränderung dürfte sich durch die immer mehr zunehmende Entwicklung von Flüssigkeitsvakuolen in den mittleren Teilen und durch Wachstumsvorgänge erklären.

In der kleineren unter den beiden älteren Cysten, die, wie S. 122 ausgeführt, das Stadium repräsentieren, auf dem bereits

die Primärschlauchbildung durch die Entwicklung von Primärzellen abgelöst wird, sind die unregelmässigen verzweigten Plasmagebilde zum Teil noch grösser. Sie erreichen beispielsweise im Schnitt Dimensionen von $46 \times 9.5 \mu$ und schliessen dann zahlreiche Chromatinklumpen ein, zum Teil sind sie jedoch auch kleiner als in den jüngeren Fällen und erreichen z. B. lediglich eine Ausdehnung von 6×5 u. Offenbar sind die kleineren Formen durch Aufteilung der grossen Stränge entstanden. Dafür spricht einmal der Umstand, dass sie meist nur ein bis zwei Chromatinklumpen einschliessen, ferner lassen sich in den Schnitten ab und zu Bilder auffinden, wie das in Fig. 37, Taf. VI, abgebildete Präparat, die direkt auf eine Abschnürung einkerniger Stücke von vielkernigen Ketten hindeuten. Im allgemeinen ist eine erhebliche Vergrösserung der meisten Chromatinbrocken zu konstatieren. Im Schnitt erreichen sie jetzt häufig die doppelte Flächenausdehnung wie in dem jüngeren Falle und bisweilen, wenn sie einzeln in den kleineren Plasmastücken liegen, sogar die vierfache Flächendimension. Das die Chromatinklumpen umgebende Plasma ist nicht mehr ganz so dicht gefügt wie bisher und von fein granulierter Beschaffenheit. Gegen das Cystenplasma besteht nunmehr durch Ausbildung einer feinen Membran eine deutliche Abgrenzung.

Da auf diesem Stadium sich bereits die Plasmahöfe sämtlicher Primärkerne aufs deutlichste gegen das Cystenplasma abgekapselt haben — ein Vorgang, der zur Entstehung der selbständigen Primärzellen führt — so werden die Primärkerne kaum noch als die funktionierenden Kerne des Cystenplasmas angesehen werden dürfen. Aller Wahrscheinlichkeit nach müssen vielmehr jetzt in den immer grösser werdenden Chromatinklumpen, um die das Plasma ein besonderes Verhalten zeigt, die Kerne des gesamten Organismus erblickt werden. Die feine Membran, die die Plasmahöfe der Chromatinbrocken nunmehr gegen das Cystenplasma abgrenzt, wird sich physiologisch wie eine Kernmembran verhalten müssen. Ja. man würde zweifellos geneigt sein, die durch die Membran abgegrenzten Gebilde auch morphologisch als Kerne aufzufassen, die dann durch besonders grosse Kernkörper ausgezeichnet wären, wenn nicht der die Chromatinklumpen umgebende Hof sich in seiner Struktur und seinem färberischen Verhalten ganz wie Plasma ausnehmen würde.

Mit zunehmender Grösse der Cysten ändert sich jedoch dieses Verhalten bald mehr und mehr. In einer bereits 2 mm erreichenden anomala-Cyste (cf. S. 122) sind ausschliesslich ein oder zwei Chromatinklumpen einschliessende Stücke vorhanden. von denen angenommen werden kann, dass sie durch Aufteilung der grossen Plasmastränge entstanden sind. Während nun ihre äussere Membran scharf ausgeprägt erscheint, nimmt die sich wie Plasma färbende Substanz in ihnen immer mehr ein lockeres Gefüge an und stellt schliesslich ein zartes Maschenwerk dar, das eine helle Saftzone durchzieht. In der Mitte ist in dem Netzwerk der Chromatinklumpen suspendiert, der noch mehr an Masse zugenommen hat (Fig. 38, Taf. VI). The entsteht damit ein Bild, das im Prinzip mit dem Kerntypus vieler niederer Protozoen verglichen werden kann. Bei zahlreichen Amoeben z. B. wird bekanntlich der Kern durch einen chromatischen Innenkörper (Karvosom) repräsentiert, der von einer hellen Saftzone umschlossen wird. Diese kann von einem Netzwerk von Lininfäden durchzogen und gegen das Plasma durch eine Membran abgegrenzt werden.

Das geschilderte Stadium bleibt jedoch offenbar nur kurze Zeit bestehen. Bald nachdem das dichte plasmatische Gefüge zu einem zarten Netzwerk aufgelockert ist, beginnt aus dem grossen Innenkörper chromatische Substanz auszutreten, die sich in Gestalt feiner Chromatinkörnchen bald auf den Fäden des Netzwerkes und an der Innenfläche der Membran niederschlägt. Die beginnende Auflockerung des Innenkörpers ist bereits in Fig. 38 zu erkennen, den Austritt chromatischer Substanz demonstrieren die Fig. 39 und 40 auf Taf. VI. Der Innenkörper bleibt in etwas verringerter Grösse in einem oder mehreren Stücken erhalten. So entsteht schliesslich das Bild grosser bläschenförmiger Kerne, die von einem Chromatinnetz durchzogen sind und grosse Nukleolen einschliessen (Fig. 41). Es sind dies die Kerne, die als die "vegetativen Kerne" von Glugea bereits eine so grosse Rolle in der Literatur gespielt haben.

Die eigentümliche Art ihrer Ausbildung entspricht einer Entwicklungsreihe, wie sie sich in den niederen Protozoengruppen

¹) Die im Schnitt messbare Flächenausdehnung beträgt jetzt in der Regel das Vier- bisweilen sogar das Zehnfache der Flächendimension, die an den Chromatinbrocken der jungen Cyste (Fig. 36, Taf. VI) festgestellt worden war.

bei einem Vergleich der einfacheren mit den differenzierteren Formen aufstellen lässt. So schliessen sich an die einfach gebauten Amoeben, die den oben geschilderten einfachen Karyosomkern besitzen, höhere Formen (z. B. Amoeba proteus Ehrbg.) an, bei denen in der Kernsaftzone rings um den Binnenkörper "Aussenchromatin" aufgetreten ist.

Dass bei der Entwicklung der vegetativen Kerne nach diesen Befunden die achromatischen Bestandteile des Kernes, insbesondere die wegen ihres festeren Gefüges am leichtesten identifizierbare achromatische Kernmembran vom Protoplasma gebildet werden. ist ein Umstand, der sich mit der Vorstellung vom Aufbau der Protozoenkerne durchaus vereinigen lässt. So kommt Awerinzew (1910) in Zusammenfassung seiner langjährigen Untersuchungen über den Kernapparat der Protozoen zu dem Resultat, dass die Kernmembran, wo überhaupt eine solche Hülle vorhanden ist, durchaus nicht einen Grundbestandteil des Kernes bildet, sondern eine besondere verdichtete Schicht des Protoplasmas darstellt. Es sei hier ferner daran erinnert, dass auch die verschiedenen Entstehungsarten der Kernspindeln bei der Teilung von Metazoenkernen, die bald (Pterotrachea, Phyllirhoë) mit Sicherheit von dem achromatischen Kerngerüst abgeleitet werden können, bald zweifellos im Protoplasma ihren Ursprung nehmen, offensichtlich dokumentieren, dass das Linin des Kernes und manche Substanzen des Protoplasmas sich in ihren Eigenschaften sehr ähnlich, wenn nicht identisch sind (cf. Oscar Hertwig: Allgemeine Biologie, Kap. 8, IVe).

Ergänzend wäre noch hinzuzufügen, dass nicht alle Bilder auf eine Umwandlung des Plasmahofes um die Chromatinklumpen in das Lininnetz des Kernes hinweisen. In manchen Fällen scheint vielmehr ein völliger Schwund des Plasmahofes stattzufinden, sei es durch Auflösung desselben in einer Saftzone, die rings um die Chromatinklumpen entsteht, sei es durch ein Verlorengehen der Abgrenzung gegen das Cystenplasma. Im ersteren Falle würde die Ausbildung eines typischen vegetativen Kernes dann nur so vor sich gehen können, dass nicht nur die Chromatinkörnchen, sondern auch die Lininfäden aus dem Innenkörper entstehen würden. Im zweiten Falle kommt der Innenkörper fast direkt in das Cystenplasma zu liegen und wird von ihm nur durch eine schmale Saftzone getrennt. Ob auch hier noch eine

Weiterentwicklung in dem Sinne stattfinden könnte, dass die Saftzone sich vergrössert, eine neue Membranabgrenzung gegen das Plasma erfolgt und darauf ein Lininnetz mit Chromatin-körnchen aus dem Innenkörper entsteht, oder ob es sich hier nicht vielmehr um degenerierende Elemente handelt, muss ich dahingestellt lassen.

Das in Fig. 41, Taf. VI, dargestellte Bild der vegetativen Kerne findet sich in gleicher Weise auch in noch grösseren Cysten. Es kann hier auf die in Fig. 4, Taf. IV, dargestellten Kerne aus einer 3 mm grossen Cyste verwiesen werden, die bereits S. 93 genauer beschrieben wurden. Charakteristisch für die Art anomala ist das weitmaschige Lininnetz, auf dem die Chromatinkörnchen abgelagert sind und die bedeutende Grösse der Innenkörper, die in der Einzahl oder zu mehreren vorkommen.

Im ganzen erinnern die anomala-Kerne auf diesem Stadium zweifellos sehr an bläschenförmige Metazoenkerne, die grosse Nukleolen einschliessen. Die Innenkörper verhalten sich jetzt auch färberisch ganz wie echte Nukleolen. Nach Biondi färben sie sich rot, während die kleinen nach Heidenhain tiefschwarz tingierten Körnchen, die in Reihen die Kernsaftzone durchsetzen und sich hauptsächlich der Kernmembran auflagern, durch intensive Methylgrünfärbung sich als echtes Chromatin dokumentieren. Mit zunehmendem Wachstum der Cysten vermehrt sich auch die Zahl der vegetativen Kerne, wie es scheint durch unregelmässige Durchschnürung zunächst der Innenkörper und dann der ganzen Kerne. In alten anomala-Cysten, die ihr Wachstum eingestellt haben, gehen sie, wie schon Stempell hervorhob, zugrunde.

Die komplizierte Stadienreihe, die die vegetativen Kerne durchlaufen, findet eine Erklärung durch die Annahme, dass zunächst die Primärkerne die funktionierenden Kerne des Plasmakörpers darstellen und dass dieselben erst allmählich durch die "vegetativen Kerne" in ihrer Funktion abgelöst werden. Die grossen Plasmastränge mit den zahlreichen Chromatinbrocken junger Cysten können unter diesem Gesichtspunkte als die Anlagen einer grossen Zahl erst später in Funktion tretender vegetativer Kerne aufgefasst werden. Die Ausbildung eines funktionsfähigen Zustandes der vegetativen Kerne beginnt dann mit der Aufteilung der grossen Plasmastränge in einzelne Territorien und der Abgrenzung der letzteren gegen das Cystenplasma durch eine

Membran. Diese Entwicklungsprozesse treten auf demselben Cystenstadium ein, auf dem die Primärzellen sich als selbständige Elemente gegen das Cystenplasma absetzen und in grosser Zahl die zur Sporenbildung führenden Umformungen erfahren. Von diesem Zeitpunkte ab können ihre Kerne, die Primärkerne, nicht mehr die funktionierenden Kerne des Plasmakörpers darstellen, und an ihre Stelle treten nun die sich entwickelnden vegetativen Die weiteren Umformungsprozesse derselben, die zur Ausbildung des bläschenförmigen Typus führen, vollziehen sich offenbar sehr schnell und sind in ein und derselben Cyste nebeneinander anzutreffen. Es dürfte sich hier um funktionelle Umformungen handeln. Mit dem Übergang in die bläschenförmigen von Chromatinsträngen durchsetzten Kerne haben die vegetativen Kerne dann die ihrer vollen Funktion entsprechende Ausbildungsstufe erreicht und sie behalten sie bei, solange sich überhaupt ein vegetatives Leben in den Cysten abspielt.

Die vegetativen Kerne von Glugea hertwigi unterscheiden sich von den anomala-Kernen, wie bereits S. 93 hervorgehoben wurde, deutlich durch ihr viel dichteres Chromatinnetz und durch die wohl im Zusammenhang damit im allgemeinen bedeutend kleineren Nukleolen. In jungen Cysten vermehren sie sich, wie Fig. 5, Taf. IV, demonstriert, lebhaft durch amitotische Durchschnürung. Die Tochterkerne bleiben dabei öfters noch durch Verbindungsstränge zu rosenkranzartigen Ketten vereinigt. Ein so junges Material, dass an ihm die Entwicklungsgeschichte der vegetativen Kerne wie bei Glugea anomala hätte studiert werden können, habe ich mir bisher von Glugea hertwigi nicht beschaffen können. Immerhin kann dafür, dass die Entwicklungsvorgänge wohl im Prinzip ähnlich verlaufen werden, der Umstand angeführt werden, dass bisweilen auch hertwigi-Kerne mit so grossem Innenkörper wie bei anomala angetroffen werden.

Neben den grossen Kernen mit netzförmiger Struktur finden sich allerdings auch ab und zu in den mit Formalin konservierten relativ jungen hertwigi-Cysten, auf die sich die Fig. 1, 2 und 5 auf Taf. IV beziehen, einige bedeutend kleinere Kerne von etwa 3 μ Grösse und mehr kompaktem Bau (Fig. 5 d). Sie sind besonders durch eine dicke, intensiv mit Kernfarbstoffen tingierbare Schale ausgezeichnet. Ähnliche Befunde in Cysten aus Gobius minutus deutete Stempell in dem Sinne, dass die mehr kompakten Kerne die Vor-

stufe der grösseren Kerne mit netzförmiger Struktur seien und sich gewissermassen durch Aufblähung in sie umwandeln. Flemmingpräparate entsprechender Cystenstadien, die das Verhalten des Plasmas in der Umgebung der kleinen Kerne zu studieren gestatten würden, habe ich bisher nicht untersuchen können. Angesichts der an Glugea anomala beobachteten vollständigen Entwicklungsreihe der vegetativen Kerne ist es mir jedoch wahrscheinlich, dass die kleinen Kerne mit kompakter Schale nicht jüngere Stadien. sondern verkümmerte Formen der netzförmigen Kerne von Glugea hertwigi sind. Dafür spricht auch der Umstand, dass sich in ganz grossen anomala-Cysten gelegentlich neben den typischen grossen bläschenförmigen Kernen auch viel kleinere Bläschen finden, die von einer sehr dicken, kompakten, mit Kernfarbstoffen tingierbaren Schale umschlossen werden (Fig. 4. Taf. IV d). Hier kann es keinem Zweifel unterliegen, dass es sich nicht um normale Entwicklungsstadien von Formen handelt, sondern, falls diese Gebilde mit den Kernen überhaupt etwas zu tun haben, um degenerierende Formen.

Überblickt man den gesamten Entwicklungsgang der vegetativen Kerne, wie er sich an den jungen Cysten von Glugea anomala darstellt, so scheinen mir zwei Punkte besonderer Beachtung wert. Die grosse Ähnlichkeit mit der Struktur bläschenförmiger Metazoenkerne erreichen die vegetativen Kerne erst auf der höchsten Stufe ihrer Ausbildung. Je weiter sie in der Entwicklung zurückverfolgt werden, um so unähnlicher werden sie einem Metazoenkern. Würden sie wirklich der Ansicht von Schröder und Schuberg entsprechend Wirtskerne darstellen, die unter dem Einfluss der Parasiten gewuchert sind, so müsste man gerade das umgekehrte Verhalten erwarten.

Das zweite Moment, das ich nochmals besonders betonen möchte, ist der Umstand, dass sich auf keinem Entwicklungsstadium entgegen der Lehre von Stempell, Awerinzew und Fermor ein Übergang zu den Zellen der Sporogonie feststellen liess. Nur dafür liessen sich Anhaltspunkte gewinnen, dass die beiden Entwicklungsreihen, die einerseits zu den Sporen, andererseits zu den vegetativen Kernen führen, eine gemeinsame Wurzel in den Primärkernen der jüngsten Cystenstadien besitzen. Eine Umwandlung vegetativer Kerne in Sporenbildungszellen in älteren Cysten, wie sie Stempell und die russischen Autoren beobachtet

zu haben glauben, muss ich nach meinen Befunden für ganz ausgeschlossen halten.

Präparate von hertwigi-Cysten, die nach Zenker konserviert wurden, scheinen einen Hinweis darauf zu bieten, wie leicht eine irrige Meinung in dieser Beziehung entstehen kann. Die Zenkersche Flüssigkeit hat hier das Wirtsgewebe, das Cystenplasma und die grossen netzförmigen Kerne ausgezeichnet, die Sporen leidlich konserviert, dagegen die unbeschalten Formen der Sporogonie sehr schlecht. Insbesondere ist in den Primärzellen und den aus ihnen unter Kernvermehrung hervorgehenden Schläuchen und Kugeln das Plasma kaum fixiert. Die Kerne dieser Stadien liegen somit in hellen Vakuolen, die vom Cystenplasma umgeben werden, und die Ähnlichkeit mit bläschenförmigen vegetativen Kernen vom anomala-Typus wird noch dadurch gesteigert, dass sich der Rand der Vakuolen, an dem sich vielleicht geschrumpfte Reste des Plasmas erhalten haben, stellenweise nach Heidenhain intensiv dunkel färbt. In Cysten von anomala würden diese Gebilde tatsächlich von kleinen vegetativen Kernen nicht zu unterscheiden sein und ihr allmählicher Übergang zu Stadien, die durch Aufteilung die Vakuolenzellen liefern, würde leicht zur Aufstellung einer Entwicklungsreihe im Sinne von Awerinzew und Fermor führen können. Die ausgesprochen netzförmige Struktur der hertwigi-Kerne macht dagegen im vorliegenden Fall die Unterscheidung der vegetativen Kerne und der aus den Primärzellen durch die Konservierung erzeugten Kunstprodukte ohne weiteres möglich.

Zusammenfassung.

Die vegetativen Kerne lassen sich in letzter Linie auf die unregelmässigen Brocken färbbarer Kernsubstanz zurückführen, die von dem jüngsten Falle (80 μ -Cyste) oben beschrieben wurden. Es handelt sich bei ihnen zweifellos um Protozoenelemente und zwar wahrscheinlich um Umbildungsformen von Primärkernen. Sie liegen meist in grösserer Anzahl in Stränge dichten Plasmas eingeschlossen.

Mit zunehmendem Cystenwachstum nehmen die Chromatinbrocken und die sie umgebenden und verbindenden Plasmastränge an Volumen zu, und zwar wachsen die Chromatinbrocken relativ schneller. Die umfangreichen Plasmastränge zerschnüren sich dann in kleine Plasmastücke, die nur einen einzigen oder wenige Chromatinbrocken einschliessen. Allmählich nimmt der Plasmahof rings um die sich noch vergrössernden Chromatinklumpen ein weniger dichtes Gefüge an und grenzt sich gegen das Cystenplasma durch eine deutliche Membran ab. Die Struktur des Plasmahofes geht schliesslich in ein zartes Netzwerk über. Gleichzeitig beginnt aus den kompakten Klumpen färbbare Kernsubstanz auszutreten und sich in Gestalt von Chromatinkörnchen auf dem Netzwerk und der Innenseite der Membran abzulagern. Die in der Mitte des Maschenwerkes suspendierten Reste der Klumpen färbbarer Kernsubstanz verhalten sich färberisch nunmehr wie Nukleolen.

Die komplizierte Stadienreihe, die die vegetativen Kerne durchlaufen, findet eine Erklärung durch die Annahme, dass zunächst die Primärkerne die funktionierenden Kerne des Plasmakörpers darstellen und dass dieselben erst allmählich durch die vegetativen Kerne in ihrer Funktion abgelöst werden. Auf den Übergang derselben in den funktionsfähigen Zustand können die letzten eingreifenden Differenzierungsprozesse bezogen werden.

Die Entwicklungsgeschichte der durch ein feineres Netzwerk und kleinere Nukleolen ausgezeichneten vegetativen Kerne von Gl. hertwigi konnte noch nicht untersucht werden. Doch liegen Indizien für einen im Prinzip ähnlichen Entwicklungsgang vor. Weder bei Gl. anomala, noch bei Gl. hertwigi findet ein Übergang vegetativer Kerne in Sporenbildungsstadien statt, wie es Stempell und Awerinzew und Fermor beobachtet zu haben glaubten. Die Ausbildung der vegetativen Kerne und die Sporogonie bilden vielmehr zwei divergierende Entwicklungsreihen, die nur eine gemeinsame Wurzel in den Primärkernen besitzen.

XII. Generalübersicht der Entwicklungsvorgänge in den Cysten.

Die typischen in den Cysten von Gl. anomala beobachteten Entwicklungsvorgänge sind in Textfig. 6 in einem Schema möglichst übersichtlich zusammengestellt. Den Ausgangspunkt der Entwicklung bilden die Primärkerne α auf der linken Seite der Figur. Von denselben leitet sich einerseits die innen dargestellte Entwicklungsreihe der Sporenbildung ab (a-n), andererseits die aussen gezeichnete Reihe, die zur Ausbildung der vegetativen Kerne führt (A-H).

In der als ein innerer Kreis dargestellten Stadienreihe der Sporenbildung sind zwei Phasen zu unterscheiden, von denen die erste (a-e) sich im Plasma der Cyste, die zweite Phase dagegen (f-n) in den im Plasma entstandenen Vakuolen abspielt. In der ersten Phase bildet sich durch allmähliche Plasmaverdichtung (a) um einen der Primärkerne ein Primärschlauch (b) und aus diesem entsteht durch Kernteilung (c, d) und Längsstreckung ein achtkerniger Sekundärschlauch (e). Die zweite Phase der Sporenentwicklung wird dadurch eingeleitet, dass um den achtkernigen Sekundärschlauch eine Vakuole entsteht, in der er in acht Teilstücke zu zerfallen beginnt (f). Auf diese Weise entstehen dann aus dem achtkernigen Schlauch acht Vakuolenzellen (g), die in eine Vakuole eingeschlossen liegen. Sie beginnen darauf synchron in Teilung einzutreten (h) und nach ihrer Durchschnürung sind in den Vakuolen 16 kugelige Sporoblasten anzutreffen (i). Die Sporoblasten strecken sich dann in die Länge, wobei der Kern

Fig. 6.

Schema der Entwicklungsvorgänge in den Cysten von Glugea anomala a—n Entwicklungsreihe der Sporegonie, A—H Entwicklungsreihe der vegetativen Kerne, α die Primärkerne als gemeinsame Wurzel beider Reihen.

zunächst eine exzentrische Lage bewahrt und an dem entgegengesetzten Pol eine Verdichtung auftritt, die wohl zur Anlage des Polfadens in Beziehung steht (k). Der Kern in den 16 Sporoblasten nimmt darauf eine mehr zentrale Lage ein. Es beginnt die grosse Sporenvakuole am stumpfen Pol hervorzutreten (l). In der letzten der im Schema gezeichneten Cystenvakuolen (m) sind schliesslich aus den 16 Sporoblasten 16 Sporen entstanden, deren Kern eine gürtelartige Anordnung an der Grenze von grosser Vakuole und Plasma aufweist. Durch Zusammenfliessen mehrerer Vakuolen entsteht im Innern der Cyste ein zentraler Hohlraum (n), in dem sich zahlreiche Sporen ansammeln.

Mit der soeben verfolgten Sporenbildungsreihe steht die aussen gezeichnete Entwicklungsreihe der vegetativen Kerne nur an ihrer Wurzel in Zusammenhang. Auch sie beginnen links im Schema mit den Primärkernen a. Es ist dies die einzige Stelle, an der der innen gezeichnete Kreis der Sporogonie und die aussen dargestellte Reihe der vegetativen Kerne miteinander in Zusammenhang stehen.

Bei der Entwicklung zu vegetativen Kernen gehen die Primärkerne (a) zunächst in unregelmässige Chromatinbrocken über (A). Um diese beginnt sich das Plasma zu verdichten und lange Stränge zu bilden, die mehrere Chromatinbrocken einschliessen (B). Plasmastränge und Chromatinbrocken nehmen darauf an Grösse zu und zwar wachsen die Chromatinbrocken relativ schneller (C). Bei der weiteren Cystenentwicklung nimmt das Plasma in den Strängen ein weniger dichtes Gefüge an und grenzt sich gegen das Cystenplasma durch eine feine Membran ab. Die Chromatinbrocken haben noch mehr an Grösse zugenommen und es beginnt nun eine Aufteilung der Plasmastränge in einzelne Stücke einzutreten, die meist nur einen Chromatinbrocken einschliessen (D). Der Plasmahof der isolierten Chromatinbrocken, die sich noch weiter vergrössern, nimmt dann immer mehr ein lockeres Gefüge an (E) und wandelt sich in ein zartes Maschenwerk um. in dem der Chromatinbrocken als grosser Innenkörper suspendiert ist. Die Struktur desselben beginnt sich dabei aufzulockern (F). Auf dem nächsten Stadium (G) tritt aus dem Innenkörper chromatische Substanz aus und beginnt sich in Form feiner Chromatinkörnchen auf dem Maschenwerk abzulagern. Auch auf der Innenfläche der Membran schlägt sich das Chromatin nieder und so entsteht schliesslich (H) die volle Ausbildungsstufe der vegetativen Kerne. Sie stellen nunmehr grosse bläschenförmige Kerne dar, die von einem Chromatinnetz durchzogen werden und einen oder mehrere Innenkörper (Nukleolen) einschliessen.

XIII. Kritik der älteren Befunde an Glugea anomala.

Im Laufe der Darstellung hat sich bereits einige Male Gelegenheit geboten, auf die Abweichungen der hier erhobenen Befunde von den Beobachtungen anderer Autoren einzugehen. Es war dies namentlich der Fall bezüglich der Frage der Kernverhältnisse in den Sporen, ferner bezüglich der sekundären Plasmakörper Stempells, die von mir als Phagozyten aufgefasst werden (S. 94) und schliesslich vor allem bezüglich der von Stempell, Awerinzew und Fermor behaupteten Entstehung von Sporenbildungszellen aus vegatativen Kernen, die nach meinen Befunden nicht statthaft. Da diese Fragen bereits ausführlich besprochen wurden, erübrigt es sich, die abweichenden Darstellungen der älteren Autoren, soweit sie sich auf diese speziellen Punkte beziehen, hier noch einmal kritisch zu beleuchten. Dagegen wird es nicht überflüssig erscheinen, kurz zu prüfen, wie sich im allgemeinen die Befunde der älteren Autoren zu den ermittelten Entwicklungsreihen verhalten.

Was zunächst die Befunde von Thélohan (1895) anbetrifft, so hat er offenbar von den schwierig zu konservierenden Elementen der ersten Phase der Sporogonie lediglich die Primärzellen beobachtet, dieselben jedoch als die Kerne des Plasmakörpers aufgefasst. Dass er die eigentlichen vegetativen Kerne nicht beschrieb, ist nicht so verwunderlich, als Stempell meint, da sie ja in jungem Material wenig auffallen, in reifen Cysten ganz vermisst werden und nur von einer gewissen Entwicklungsstufe der Cysten an zu den sehr auffälligen bläschenförmigen Gebilden werden.

Von der in den Vakuolen vor sich gehenden zweiten Phase der Sporenbildung hat Thélohan offenbar verschiedene Stadien gesehen. Er hat dabei die Vakuolenwand als die durch Flüssigkeitsabscheidung abgehobene Membran einer grossen Sporoblastenzelle (in der heutigen Nomenklatur: Pansporoblast, Sporont) aufgefasst und angenommen, dass die von Membran und Flüssigkeit umschlossene zunächst einkernige Zelle sich successive in kleine Zellen teile, die dann zu Sporen werden. Als Beleg hat Thélohan in Fig. 140 Vakuolen mit 4,6 und 8 kleinen Zellen sowie eine Vakuole, die eine grössere zweikernige Zelle einschliesst, abgebildet. Die kleinen Zellen enthalten zum Teil ruhende Kerne, zum Teil das charakteristische Hantelstadium der Kernteilung. Zweifellos entsprechen sie unter meinen Stadien den durch Zerfall der viel-

kernigen Schläuche in den Vakuolen entstehenden Vakuolenzellen, die sich dann in Sporoblasten teilen. Doch dürfte es sich nur in der letzten Figur Thélohans, die 8 Zellen zeigt, um sämtliche Zellen einer Vakuole handeln. Die übrigen Bilder mit einer geringeren Zahl von Zellen in den Vakuolen sind vielleicht als Anschnitte grösserer Vakuolen zu erklären.

Stempell kam 1904 zur Aufstellung einer ähnlichen Sporenbildungsreihe wie Thélohan. Auch er glaubte grosse einkernige Sporonten gefunden zu haben, die von einem Flüssigkeitsraum (Vakuole) und einer Membran umgeben werden. Durch successive Zweiteilung sollten sie innerhalb der Vakuole in eine Anzahl einkernige direkt zu Sporen werdender Teilstücke zerfallen. Nach Zerreissen der dünnen, die Vakuolen begrenzenden Sporontenmembranen sollten sich die Teilprodukte dann in dem zentralen Cystenhohlraum ansammeln.

Stempell hat, wie er ausdrücklich bemerkt, nur wenige "einkernige Sporonten" auffinden können. Sie waren jedoch für ihn von grosser Bedeutung, da sie noch das relativ beste Übergangsglied zu den grossen bläschenförmigen vegetativen Kernen darstellen, von denen er, wie auf S. 86 genauer ausgeführt, die Sporonten ableitete.

Eine sichere Deutung der von Stempell abgebildeten "einkernigen Sporonten" vermag ich meinerseits nicht zu geben. Das in Fig. 21 seiner Arbeit dargestellte Gebilde sieht noch am ehesten wie ein Entwicklungsstadium eines vegetativen Kernes aus, dessen Chromatin noch in einem Innenkörper konzentriert ist und sich noch nicht auf das in Ausbildung begriffene Lininnetz ausbreitet. Allerdings wäre das Karyosom recht klein und auffallend wenig kompakt.

Figuren, die die Ausbildung zahlreicher Sporoblasten aus dem grossen "einkernigen Sporonten", die durch successive Zweiteilung erfolgen soll, einwandsfrei demonstrieren, gibt Stempell nicht. Was die diesbezüglichen Abbildungen 15 und 16 Stempells anbetrifft, so handelt es sich hier, wie die unregelmässigen amöboiden Formen beweisen, offenbar um stark geschrumpfte Zellen, die vielleicht ungünstig konservierten Sekundärschläuchen entsprechen oder aber degenerierende Elemente darstellen. Nur unter den weiteren Stadien Stempells lassen sich mit Sicherheit Elemente der zweiten Phase der Sporenbildung erkennen, so in

Fig. 18 von Stempell, die offenbar eine Gruppe miteinander verklebter Vakuolenzellen darstellt. Fig. 19 und 20 Stempells zeigen zweifellos die Teilung einer Vakuolenzelle in zwei Sporoblasten.

Dass Stempell gelegentlich auch die vielkernigen Schläuche beobachtet hat, die nach meinen Befunden einzig und allein den Ausgangspunkt der zweiten in den Vakuolen vor sich gehenden Phase der Sporenentwicklung bilden, geht klar aus den Fig. 115 und 116 Stempells hervor. Stempell selbst deutet sie als vielkernige Sporonten, die sich aus den grossen einkernigen Sporonten durch Kernteilung entwickelt haben, ohne dass derselben eine Zellteilung gefolgt wäre.

Eine Einsicht in die wahre Genese der vielkernigen Schläuche durch Wachstum und Kernteilung der Primärschläuche resp. Primärzellen und damit die Klarstellung der gesamten ersten Phase der Sporenbildung, die sich im Cystenplasma abspielt, war Stempell wohl infolge der ungünstigen Konservierung seines jungen Materiales nicht möglich. Einige Stadien der ersten Phase der Sporenbildung hat er jedoch zweifellos beobachtet, sie indessen von der Idee der Entstehung der Sporonten aus vegetativen Kernen beherrscht sämtlich auf Entwicklungsstadien der vegetativen Kerne bezogen. So bildet Stempell in Fig. 31 aus der Plasmarinde einer jungen Cyste "verschieden grosse vegetative Kerne" ab. Von den grösseren hebt er hervor, dass sie im Bau und färberischen Verhalten sich ganz wie Zellen ausnähmen, so dass man den Eindruck gewänne, dass sie sich direkt in Sporonten umwandelten. Wie mir scheint, stellen die kleinen Elemente mit hellem Grund Primärzellen, die dunklen schlauchförmigen Anschnitte von Sekundärschläuchen dar.

Awerinzew und Fermor schliesslich haben am genauesten von den bisherigen Autoren die Sekundärschläuche als die Repräsentanten der ersten Phase der Sporenbildung beschrieben. Bezüglich ihrer Genese sind sie jedoch zu wesentlich anderen Resultaten wie wir gekommen, insofern sie sie nicht auf Primärschläuche resp. Primärzellen zurückführen, sondern sie aus Kernen auswachsen lassen (cf. S. 88). Was die zweite sich in den Vakuolen abspielende Phase anbetrifft, so scheint ihnen die schon von Thélohan und Stempell beobachtete Teilung der Vakuolenzellen in zwei Sporoblasten entgangen zu sein.

Von der Entwicklung der vegetativen Kerne ist das erste Stadium: die Primärkerne, wie es scheint, nur von Stempell gesehen und in Fig. 30 seiner Arbeit als kompakte vegetative Kerne abgebildet worden. Für unsere Beschreibung der weiteren Entwicklungsvorgänge: Plasmaverdichtung um die Primärkerne, Übergang derselben in unregelmässige Brocken, Umwandlung des Plasmas zu einem Lininnetz um das Karyosom ergeben sich in der Glugea-Literatur keine Vergleichspunkte, es sei denn, dass die einkernigen grossen Sporonten Stempells dem zuletzt genannten Stadium entsprechen sollten.

Dagegen bildet Stempell in Fig. 24 und 25 seiner Arbeit zwei Präparate ab, die dem auf Taf. VI, Fig. 39 und 40 dargestellten Stadium, in dem eine Auswanderung chromatischer Substanz in den hellen Saftraum des Kernes stattfindet, entsprechen könnten. Von Stempell sind sie als Degenerationsstadien gedeutet worden. Doch hebt er hervor, dass sie in der nächsten Nachbarschaft typischer vegetativer Kerne liegen.

XIV. Schlussbetrachtung.

Wenngleich die oben dargelegten Befunde bezüglich der Entwicklungsprozesse von Glugea anomala in zahlreichen Punkten von den Ergebnissen der Voruntersucher abweichen, so gelange ich doch zu der gleichen Gesamtauffassung wie die älteren Autoren, insbesondere Stempell. Auch nach meinen Befunden kommt Glugea ein grosser eigener Plasmakörper mit zahlreichen vegetativen Kernen zu. Die ganze Cyste gehört zum Protozoon. Wirtszellen oder hypertrophische Wirtskerne sind am Cystenauf bau nicht beteiligt.

Es kann keinem Zweifel unterliegen, dass sich Glugea damit sehr dem Verhalten der Myxosporidien nähert, andererseits erheblich von den meisten übrigen Microsporidien entfernt, so von den nur wenige μ grossen intrazellulär lebenden Formen, die aus den Gattungen Nosema, Thélohania, Myxocystis z. B. beschrieben worden sind.

Die Kluft, die sich damit zweifellos in der Gruppe der Microsporidien zwischen Glugea und den meisten übrigen Vertretern eröffnet, scheint mir indessen nicht ganz unüberbrückbar zu sein. Vielleicht trifft die Annahme das Richtige, dass der Besitz eines grösseren Plasmakörpers mit vegetativen Kernen das primäre Verhalten ist, dass dasselbe aber bei den meisten Formen durch Anpassung an Zellparasitismus Reduktionen erlitten hat. In diesem Sinne würde man zu einer einheitlichen Auffassung der Microsporidien gelangen können.

Andererseits darf nicht ausser acht gelassen werden, dass erst für wenige Formen eine eingehende und einwandsfreie Untersuchung des feineren Sporenbaues, insbesondere der Kernverhältnisse in den Sporen vorliegt. Erst wenn diesbezügliche Untersuchungen in weit grösserem Umfange, bei zahlreichen Vertretern durchgeführt sind, wird sich vielleicht endgültig entscheiden lassen, ob das, was wir heute Microsporidien nennen, tatsächlich eine natürliche, innerlich geschlossene Gruppe darstellt.

Literaturverzeichnis.1)

- 1. Auerbach, M.: Die Cnidosporidien. Leipzig 1910.
- Awerinzew, S.: Studien über parasitische Protozoen. IV. Arch. f. Protistenk., Bd. 18, 1910.
- Awerinzew, S. und Fermor, K.: Studien über parasitische Protozoen. Zur Frage über die Sporenbildung bei Glugea anomala. Arch. f. Protistenk., Bd. 23, 1911.
- Korotneff, A.: Myxosporidium bryozoides. Zeitschr. f. wiss. Zool., Bd. 53, 1892.
- Mercier, L.: Sur le développement et la structure des spores de Thélohania giardi Henneguy. C. R. Ac. Sc., Paris, T. 146, 1908.
- Mrázek, A.: Über eine neue Sporozoenform aus Limnodrilus. Sitz.-Ber. d. Kgl. Böhm. Ges. d. Wiss., Math.-Naturw. Kl., Prag 1897.
- Derselbe: Sporozoenstudien II. Glugea lophii Doflein. Sitz.-Ber. d. kgl. Böhm. Ges. d. Wiss., Math.-Naturw. Kl. Prag 1899.
- Derselbe: Sporozoenstudien. Zur Auffassung der Myxocystiden. Arch. f. Protistenk., Bd. 18, 1910.
- Pérez, Ch.: Sur une Glugea nouvelle parasite de Balanus amaryllis. C. R. Soc. Biol., Paris, T. 58, 1905.
- Schröder, O.: Thélohania chaetogastris, eine neue in Chaetogaster diaphanus Gruith schmarotzende Microsporidienart. Arch. f. Protistenk., Bd. 14, 1909.
- Schuberg, A.: Über Microsporidien aus dem Hoden der Barbe und durch sie verursachte Hypertrophie der Kerne. Arb. a. d. Kaiserl. Gesundheitsamt. Berlin. Bd. 33, 1910.

¹) Beim Abschluss der Arbeit (Oktober 1912) konnte die Publikation von Ohmori über Nosema bombycis nicht mehr berücksichtigt werden.

- 12. Stempell, W.: Über Nosema anomalum. Arch. f. Protistenk., Bd. 4, 1904.
- 13. Derselbe: Über Nosema bombycis Nägeli. Arch. f. Protistenk., Bd. 16, 1909.
- 14. Derselbe: Zur Morphologie der Microsporidien. Zool. Anz., Bd. 35, 1910.
- Thélohan, P.: Recherches sur les Myxosporidies. Bull. Scient. France et Belgique, Paris, T. 26, 1895.
- Weissenberg, R.: Beiträge zur Kenntnis von Glugea lophii Doflein.
 Über den Sitz und die Verbreitung der Microsporidiencysten am Nervensystem von Lophius piscatorius und budegassa. Sitz.-Ber. d. Ges. naturf. Fr., Berlin 1909.
- Derselbe: Beiträge zur Kenntnis von Glugea lophii Doflein. II. Über den Bau der Cysten und die Beziehungen zwischen Parasit und Wirtsgewebe. Sitz.-Ber. d. Ges. naturf. Fr., Berlin 1911.
- Derselbe: Über Microsporidien aus dem Nervensystem von Fischen (Glugea lophii Doflein) und die Hypertrophie der befallenen Ganglienzellen. Arch. f. mikr. Anat.. Bd. 78, 1911.
- Derselbe: Über einige Microsporidien aus Fischen (Nosema lophii Doflein, Glugea anomala Moniez, Glugea hertwigi nov. spec.). Sitz.-Ber. d. Ges. naturf. Fr., Berlin 1911.

Erklärung der Abbildungen auf Tafel IV-VII.

Sämtliche Figuren wurden mit dem Abbéschen Zeichenapparat entworfen. Die Abbildungen 2, 4 und 5 sind, wie unten genauer angegeben, durch die schematische Eintragung von Sporen und Sporoblasten ergänzt worden. Die stärkste Vergrösserung (2500:1) wurde mit Leitz homog. Ölimmersion 1/16, Comp.-Ocul. 12 erzielt. Die Fig. 18 und 21—32 wurden von mir gezeichnet, alle übrigen einschliesslich der Textfig 5 und 6 von Frau E. Schultz-Hencke, der ich für die gewissenhafte und sorgfältige Ausführung auch an dieser Stelle meinen besten Dank sage.

Tafel IV.

Fixation: Formalin (10 %). Färbung: Delafields Hämatoxylin.

- Fig. 1. Aus einer Längsschnittserie durch einen reich mit Gl. hertwigi-Cysten infizierten im Juli gefangenen Stint. Kombination von drei Schnitten. Vergr. 10:1.
 - c = junge Cysten; r = reife Cyste; s_1 , $s_2 = \text{frei im}$ Gewebe verstreute Sporen; b = Bauchwand; l = Leber; m = Magen; h = Hoden.
- Fig 2. Eine Gl. hertwigi-Cyste (aus derselben Serie wie Fig. 1) stärker vergrössert (150:1).
 - b = Bindegewebshülle; p = Plasmarinde; k = vegetative Kerne; v = Vakuolen der Plasmarinde. Bei e ist die Einlagerung von Sporen schematisch durch Pünktchen markiert.

- Fig. 3. Querschnitt durch einen jungen 4 cm langen Stichling mit grosser Glugeacyste in der Leibeshöhle. Verg. 15:1.
 - c = Cyste; o = Ovarium; d = Darm; ch = Chorda; r = Rückenmark; m = Muskeln.
- Fig. 4. Randpartie der in Fig. 3 im Übersichtsbild abgebildeten Cyste von Glugea anomala bei stärkerer Vergrösserung (570:1).
 - b = Bindegewebshülle; cy = Eigenmembran der Cyste; pr = Plasmarinde der Cyste; k = vegetative Kerne; d = vielleicht als Rest eines degenerierten Kern zu deuten (cf. S. 149); pi = braune Pigmentkörnchen; v = Vakuolen mit Sporenentwicklungsstadien; sp = Sporen. Die Zellen in den Vakuolen sind schematisch zugefügt.
- Fig. 5. Aus der Plasmarinde einer hertwigi-Cyste (aus derselben Serie wie Fig. 1). Vergr. 550: 1.
 - pr = Cystenplasma; k = vegetative Kerne in Knospung begriffen; a = Kern, dem zwei kleinere Kerne als Knospen aufsitzen; b und c = Verbindungsfäden zwischen Tochterkernen, die nach amitotischer Teilung auseinander gewichen sind; d = vielleicht als Rest eines degenerierten Kernes zu deuten (cf. S. 148); s = Vakuole mit Sporoblasten; sp = Vakuole mit Sporen. Die Zellen in den Vakuolen sind schematisch zugefügt.

Tafel V.

Fixation: Flemming sche Flüssigkeit. Färbung nach Heidenhain.

- Fig. 6-10. Schnitte durch ein Primärstadium einer Glugea anomala-Cyste aus der Membran der Schwanzflosse eines 2 cm langen Stichlings.
- Fig. 6. Übersichtsbild der Cyste auf einem seitlichen Schnitte durch dieselbe. Vergr. 1000: 1.
 - ep = Epithel der Schwanzflossenmembran; bg = Bindegewebe; c = junge anomala-Cyste (Plasmakörper); k = Primärkerne; ps = zweikerniger Primärschlauch; b₁, b₂, b₃ = verschiedene Stadien der Primärschlauchbildung durch allmähliche Verdichtung des Protoplasmas um Primärkerne; a = Entwicklungsstadium eines einkernigen Primärschlauches; x = Chromatinpartikel von einer Aufhellungszone umgeben.
- Fig. 7. Aus demselben Schnitt. Stärkere Vergrösserung der die Chromatinbrocken v und n enthaltenden Zentralpartie (2500:1).
- Fig. 8. Randschnitt der Cyste. Vergr. 2500:1.
 - bg = Bindegewebshülle; cg = Eigenmembran der Cyste; pr = Plasmakörper der Cyste; k = Primärkerne; ps = zweikernige Primärschläuche; e = einkerniger Primärschlauch; zwischen v und ps (unbezeichnet) ein Entwicklungsstadium eines zweikernigen Schlauches; v = kleine Chromatinbrocken.
- Fig. 9. Aus einem mittleren Schnitte durch die Cyste (der Schnitt ist durch Druck etwas l\u00e4diert). Vergr. 2500:1.

pr = Plasmakörper; \mathbf{z} = Primärkerne, um die sich ein homogener Plasmahof markiert; ps = zweikerniger Primärschlauch; b = Entwicklungsstadien zweikerniger Schläuche; a_1 und a_2 = Entwicklungsstadien einkerniger Schläuche; \mathbf{v} = Chromatinbrocken, bei w in einen Plasmastrang eingeschlossen.

Fig. 10. Medianschnitt durch die Cyste. Vergr. 2500:1.

pr = Plasmakörper; k = Primärkerne; v = Chromatinbrocken; r = Übergangsstadien von Primärkernen zu Chromatinbrocken; e = Chromatinbrocken mit fahnenartiger Plasmaverdichtung; w = anastomosierende Plasmastränge mit zahlreichen Chromatinbrocken.

Tafel VI.

Alle Präparate sind nach Heidenhain gefärbte Schnitte, die Vergrösserung ist für alle Figuren die gleiche: 2500:1.

Fig. 25—27 betreffen Gl. hertwigi, die übrigen Abbildungen Gl. anomala und zwar beziehen sich Fig. 11—16 und Fig. 36 auf eine Cyste von fast 0,2 mm Durchmesser, Fig. 19 und 20 auf eine Cyste von 0,25 mm Durchmesser, Fig. 17, 18 und 37 auf eine Cyste von 1 mm Durchmesser und Fig. 21—24 und 38—41 auf eine Cyste von 2 mm Durchmesser.

Die Cysten entstammen verschiedenen jungen Stichlingen von 2—2,5 cm Länge. Fig. 25—27 beziehen sich auf ein mit Alkohol-Eisessig fixiertes Präparat, alle übrigen Abbildungen auf mit Flemming scher Flüssigkeit konserviertes Material.

Fig. 11. Stück der Plasmarinde einer jungen anomala-Cyste.

c = Granula im Protoplasma; p = in Ausbildung begriffene Primärzellen; ps = einkernige Primärschläuche; u = Entwicklungsstadium eines Primärschlauches; von der Mitte der Figur zieht (unbezeichnet) nach rechts unten ein dunkler Plasmastrang, der 13 Chromatinbrocken einschliesst; sp = Sporoblasten; b = Sporoblasten, die bereits von der Sporenmembran umschlossen werden.

Fig. 12-15. Entwicklungsstadien von Sekundärschläuchen.

Fig. 16. Aufteilung eines Sekundärschlauches in einer Vakuole.

v = Vakuole; t = Teilstücke des Schlauches; pr = Cystenplasma, p = in Ausbildung begriffene Primärzellen.

Fig. 17-20. Entwicklung von vielkernigen Plasmakugeln aus Primärzellen.

Fig. 21. Stück der Plasmarinde einer 2 mm grossen Cyste.

pr = Cystenplasma; s = vielkerniger Schlauch aus einer Primärzelle entstanden, noch allseitig vom Plasma umschlossen; v = entsprechender achtkerniger Schlauch in eine Vakuole aufgenommen; u = Anschnitt eines entsprechenden Schlauches; p = Primärzellen.

Fig. 22. Vakuolenzellen mit Ruhekernen.

Fig. 23. Vakuolenzellen in Teilung.

Fig. 24. Zwei Sporoblasten durch Teilung einer Vakuolenzelle entstanden.

Archiv f. mikr. Anat. Bd. 82. Abt. II.

- Fig. 25—27. Glugea hertwigi. Fixation Alkohol-Eisessig. (Alkohol absol. 95 Teile, Eisessig 5 Teile.) Färbung nach Heidenhain.
- Fig. 25 Sporoblast mit polständigem Kern.
- Fig. 26. Sporoblast mit zentralem Kern.
- Fig. 27. Sporoblast nach Ausbildung der Sporenschale (Becherstadium).
- Fig. 36-41 illustrieren die Entwicklung der vegetativen Kerne von Gl. anomala.
- Fig. 36. Plasmastränge w mit Chromatinbrocken e (Anlage vegetativer Kerne). Aus derselben jungen anomala-Cyste wie das in Fig. 11 abgebildete Präparat.

pr = Cystenplasma.

- Fig. 37. Abschnürung kleiner Plasmastücke (v) mit nur einem Chromatinbrocken von grösseren Plasmasträngen in der Rinde einer 1 mm im Durchmesser erreichenden Cyste.
 - m = Grenzmembran gegen das Cystenplasma.
- Fig. 38-41 zeigen die Weiterentwicklung der vegetativen Kerne in einer 2 mm grossen anomala-Cyste.
- Fig. 38. Beginn der Entwicklung von Chromatinkörnehen (c) aus dem einen grossen Klumpen f\u00e4rbbarer Kernsubstanz darstellenden Innenk\u00f6rper (n). Auflockerung des Plasmahofes zu einem zarten Netzwerk (l).

m = Grenzmembran gegen das Cystenplasma (pr).

- Fig. 39 und 40. Austritt chromatischer Substanz aus dem Innenkörper.
- Fig. 41. Volle Ausbildungsstufe der vegetativen Kerne von Glugea anomala.
 m = Kernmembran; e = Chromatinkörnehen; n = Innen-körper (Nucleolen); l = Lininnetz.

Tafel VII.

- Sämtliche Abbildungen stellen Sporen und Sporoblasten von Glugea hertwigi bei einer Vergrösserung von 2500:1 dar.
- Fig. 28. Zwei Sporen frisch (lebend) in Wasser untersucht.
- Fig. 29. Spore durch Zusatz einiger Tropfen Flemming scher Flüssigkeit zum Wasser abgetötet.
- Fig. 30—35 beziehen sich auf Schnittpräparate und zwar Fig. 34 und 35 auf mit 10% Formalin konserviertes Material, Fig. 30—33 auf eine mit Alkohol-Eisessig konservierte Cyste, zu der auch die in Fig. 25—27, Taf. VI abgebildeten Sporoblasten gehören. Fig. 30—32 Färbung nach Biondi.
- Fig. 30. Fünf Sporen (s), zwei Sporoblasten auf dem Becherstadium (b).
- Fig. 31. Sporoblast auf dem Becherstadium.
- Fig. 32. Spore, bei der der Kontur der abgehobenen Membran nicht sichtbar ist.
- Fig. 33. Vier Sporen (drei in Längsansicht, eine in polarer Ansicht) nach Giemsa gefärbt (Vorschrift von Schuberg 1910).

g = metachromatische Granulationen.

- Fig. 34 und 35 beziehen sich auf zwei Cysten, die zwei verschiedenen Stinten entnommen sind. Fixation: 10%, Formalin. Färbung mit Delafields Hämatoxylin.
- Fig. 34. Vier Sporen, die ungewöhnlich wenig geschrumpft sind, in Längsansicht.

 $\mathbf{k} = \mathbf{Kern}$; $\mathbf{v} = \mathbf{Verdichtung}$ im Plasma am Rande der kleinen Vakuole.

Fig. 35. Vier Sporen in Längsansicht mit metachromatischen Granulationen (g) in den grossen Vakuolen.

r = Spore im optischen Querschnitt; k = Kern.

Die Fußsohle des Menschen.

Eine Studie über die unmittelbare und die erbliche Wirkung der Funktion.

Von

Richard Semon.

Hierzu Tafel VIII-X und 10 Textfiguren.

Inhalt.	Seite
Einleitung	164
Erster Abschnitt. Die Entwicklung der Haut der Sohle und der Haut	
des Fussrückens	166
Zweiter Abschnitt. Die topographischen Verschiedenheiten der Horn- schicht der Sohlenfläche	180
Dritter Abschnitt. Die unmittelbare Wirkung der Funktion und die	
Folgen des Ausbleibens der Funktion	192
Schluss	204

Einleitung.

Im Jahre 1754 schrieb Bernhard Siegfried Albin im ersten Buch seiner Academicarum annotationum S. 27: "Exuvias variis embryonibus de manibus pedibusque detraxi: detraxi etiam parvulis, qui assecuti nondum erant longitudinem digitalem. Pertenues inveni, totasque translucidas, qua parte ad dorsum manus pedisve pertinent: crassiores autem, magisque opacas, atque albicantiores, totasque firmiores, qua ad volam, quaque ad plantam, et ad partes internas digitorum. Ex quo intelligitur, natura differre cuticulam iis in locis, et non pressione tantummodo continua et attritione solidari per aetatem, et in crassitudinem crescere." Sieben Jahre später (1761) verteidigte Albin die Priorität dieser seiner interessanten Entdeckung gegen Albrecht von Haller, der sie Kaau w zugeschrieben hatte, und Haller (1763, S. 15) gestand ihm dieselbe daraufhin denn auch zu, freilich in einer etwas versteckten und nicht gerade loyalen Form.

Die Albinsche Entdeckung findet man in der älteren anatomischen Literatur nicht selten zitiert, doch verliert sich allmählich das Interesse an derselben, obwohl Darwin in seiner "Abstammung des Menschen" (1. Bd., S. 42 d. d. Übersetzung von 1875) der Tatsache, für die er Paget als Gewährsmann anführt, mit den Worten Erwähnung tut: "Bei Kindern ist schon lange vor der Geburt die Haut an den Fußsohlen dicker als an irgend einem anderen Teile des Körpers, und es lässt sich kaum zweifeln, dass dies eine Folge der vererbten Wirkungen des eine lange Reihe von Generationen hindurch stattgefundenen Drucks ist."

Die ganze Frage hat dann später kaum noch von seiten der Anatomen und Embryologen Beachtung gefunden und wird in den meisten neueren Hand- und Lehrbüchern überhaupt nicht mehr erwähnt. Neuerdings ist aber Shattock (1911) in einer von uns noch öfter heranzuziehenden Arbeit auf sie zurückgekommen, indem er sich dazu folgendermassen äussert: "It is sometimes supposed, that the epidermis of the palm is thicker at the time of birth than that, say, on the dorsum of the hand. This is true only with reservation. The essential feature of the palmar and plantar areas is their papillary complexity, and associated with this, their increased tactile sensibility. The increase in thickness of the epidermis is due to the filling in and levelling of their interpapillary spaces; on the summits of the papillae the epidermis is not thicker than it is on the dorsum of the hand. This is illustrated in the accompanying microphotographs, which show vertical sections of the palm and of the dorsum of the hand from a foetal Macacus at full term . . . A proper thickening may afterwards result in correspondence with the degree of use to which the structure is put." Wie man sieht, gründet sich diese von Albin und Darwin so abweichende Auffassung auf die Untersuchung eines einzelnen herausgegriffenen Stadiums. Der Beschaffenheit der Hornschicht, auf die es doch bei einer Schwielenbildung in erster Linie ankommt, wird überhaupt keine Erwähnung getan und auf den beiden, bei ganz schwacher Vergrösserung aufgenommenen Mikrophotographien Shattocks ist keine Spur einer Hornschicht zu erkennen.

Eine genauere Untersuchung des Gegenstandes ist also ein entschiedenes Bedürfnis. Ich hatte schon vor mehreren Jahren mit einer solchen begonnen, wurde aber immer durch andere Arbeiten unterbrochen und veröffentliche auch jetzt aus dem ansehnlichen von mir allmählich zusammengebrachten Material nur diejenigen Befunde, die mir in direkter Beziehung zu der Frage nach der Vererbung von Schwielenbildungen zu stehen scheinen. Mein embryologisches Material verdanke ich teils meinem verstorbenen Freunde Dr. Alexander Böhm, zum grösseren Teil aber Herrn Dr. F. Pinkus. Kurz vor Abschluss der Arbeit erhielt ich dann noch durch die Güte von Herrn Prof. Robert Mever eine Serie von Embryonen aus der 12.-16. Woche, und die Untersuchung dieses vorzüglich konservierten Materials ergab für die erste Entstehung der Epidermisleisten der Sohle einen neuen Befund, den ich für wichtig halte. Das Material von Säuglingen und Kindern erhielt ich vornehmlich durch die Herren Dr. Erich Aschenheim und Prof. O. Lubarsch. einiges auch durch die Herren Dr. E. Benjamin und Prof. R. Rössle: Material von Erwachsenen durch Herrn Prof. Lubarsch. Der Liberalität von Herrn Prof. C. Benda endlich verdanke ich die Möglichkeit, ein sehr schönes Präparat von hochgradigem Klumpfuss mit prachtvoller Schwielenbildung auf dem Fussrücken auf das gründlichste untersuchen zu können, ohne dabei Rücksicht auf das Aussehen des Präparats als Schauobjekt nehmen zu brauchen, was meine Arbeit in entscheidender Weise gefördert hat. Allen den genannten Herren sage ich an dieser Stelle meinen herzlichsten Dank.

Ich habe mich auf die Untersuchung der Entwicklung der Sohlenhaut des Fusses im Vergleich zur Entwicklung der Haut des Fussrückens beschränkt, nachdem ich mich überzeugt hatte, dass ein Vergleich von Handteller und Handrücken zu parallelen Ergebnissen führt und dass seine genauere Durchführung deshalb für das uns beschäftigende Hauptproblem keine neuen Gesichtspunkte liefern würde. Die Analyse der funktionellen Faktoren ist am Fusse einfacher als an der Hand.

Erster Abschnitt.

Die Entwicklung der Haut der Sohle und der Haut des Fussrückens.

Es ist natürlich nicht meine Absicht, hier eine Darstellung der Hautentwicklung der betreffenden Stellen von ihrem ersten Anfang an zu geben. Bekanntlich besteht die Epidermis in den frühesten Stadien aus zwei einschichtigen Lagen, der oberflächlichen Lage des Periderm (Epitrichium), die die Stelle der späteren Hornschicht vertritt, und einer darunter gelegenen, ebenfalls einschichtigen Lage, dem Stratum germinativum. Bei Föten aus der 13.—16. Woche (9,5—11,5 cm craniocaudal) ist am Fussrücken wie in der Planta das Periderm bereits mehrschichtig geworden, an letzterer Stelle in viel ausgiebigerem Maße als an ersterer (vgl. Taf. VIII, Fig. I drs und I pl2). Bemerkenswerter als dieser Unterschied ist aber auf den betreffenden Stadien das verschiedenartige Verhalten des Stratum germinativum. Während es am Fussrücken dann noch eine vollkommen glatte ebenmässige Schicht bildet (Fig. I drs), zeigt es an der Planta eine sehr regelmässig angeordnete Reihe von leistenförmigen Ausbuchtungen gegen das Corium hin. Durch diese Leistenbildung ist der Rahmen für das spätere Relief der Fußsohle (ebenso der Hohlhand) in einem Sinne vorgezeichnet, auf den wir unten noch näher eingehen werden.

In Fig. I pl; auf Taf. VIII gebe ich ein Oberflächenbild dieser primären Leisten (Drüsenleisten) des Fersenepithels in dem frühsten Entwicklungsstadium, das mir von ihnen hier oder an anderen Stellen überhaupt zu Gesicht gekommen ist. Das abgebildete Präparat ist ein flacher Anschnitt der Ferse, nur seine eine Fläche ist eine Schnittfläche, die andere entspricht der freien Oberfläche des Epithels, und die Dicke des Präparats ist derartig, dass die Epithelleisten als Ganzes erhalten und nicht ihrerseits angeschnitten sind. Wie man sieht, liegt auf diesem Präparat bereits fast durchweg eine kontinuierliche Beschaffenheit der Leisten vor. Überall aber nimmt man ein An- und Abschwellen jeder Leiste in ihrem Verlauf wahr, und zwar in Abständen, die den Abständen der erst später durch ihr Tiefenwachstum sich deutlicher abzeichnenden Schweissdrüsenanlagen entsprechen. (Die Durchführung einer genaueren Vergleichung in dieser Beziehung ist deshalb schwierig, weil die Dichtigkeit des Drüsenbesatzes der Leisten topographisch verschieden ist.) Diese Punkte der Leiste sind den dazwischen gelegenen Strecken ein wenig in der Entwicklung voraus, sie weisen auf eine nicht völlig kontinuierliche Entstehung der Leisten hin, und es ist wohl möglich, dass es ein ganz rasch vorübergehendes Stadium gibt, in welchem jede Leiste aus einer Reihe von untereinander nicht verbundenen Epithelanschwellungen besteht. Ein Stadium, von dem ich dies mit voller Sicherheit behaupten könnte, habe ich leider in meinem Material nicht finden können, höchstens Andeutungen davon an manchen Stellen der Präparate. Die genauere Analyse dieser Andeutungen ist aber sehr schwierig, weil es sich um sehr kleine Unterschiede der Epitheldicke handelt und diese Unterschiede bei der Untersuchung im Oberflächenpräparat (wo ich sie allein wahrgenommen habe) bei schwächeren Vergrösserungen deutlicher hervortreten als bei stärkeren. Bei der Anwendung der letzteren werden sie mehr verwischt. Vielleicht wird es gelingen, über diesen Punkt volle Klarheit zu erlangen, wenn ein glücklicher Zufall einem Untersucher einmal ein um ein ganz Geringes früheres Entwicklungsstadium der Leisten in die Hände spielt; als sie mir im abgebildeten und einigen anderen ganz ähnlichen Präparaten vorgelegen haben.

Immerhin glaube ich, dass schon der mir vorliegende und in Fig. I pl 1 abgebildete Befund zu dem Schluss berechtigt, dass die Drüsenleisten nicht als durchaus einheitliche Bildungen entstehen, sondern als perlschnurähnliche Aufreihungen der Drüsenanlagen, Aufreihungen, von denen es nur noch nicht feststeht, ob sie in der Ontogenese des Menschen von Anfang an verbunden oder in einem ganz kurzen Stadium unverbunden sind. Dass letzteres bei den Drüsenanlagen des Fussrückens für einen längeren Zeitraum der Fall ist, werden wir unten sehen.

In einer sehr interessanten, vorwiegend vergleichend anatomischen Arbeit hat J. Whipple den Nachweis zu führen gesucht und meiner Ansicht nach auch geführt, dass die Drüsenleisten are formed, phylogenetically at least, by the coalescence of simple structures". Die Verfasserin hat auch versucht, diesen Satz durch ontogenetische Tatsachen zu erhärten, aber der Befund an fortgeschrittenen menschlichen Embryonen, den sie beschreibt und (S. 309) abbildet, ist meiner Meinung nach nicht als beweisend anzusehen. Meiner Erfahrung nach werden solche Oberflächenbilder wie das ihrer Textfigur 27 lediglich durch strukturelle Eigentümlichkeiten der Hornschicht bedingt, worauf wir noch unten bei Besprechung der Hornschicht an der Sohle des Klumpfusses zu sprechen kommen. Die Oberflächenbetrachtung einer solchen Hornschicht an Stellen mit wenig oder ganz fehlendem Relief, die von mir unten in Textfig. G. S. 198 wiedergegeben ist, gibt Bilder, die in hohem Grade an die Whippelschen Textfig. 27 erinnern, ohne dass man natürlich aus ihnen auf die fragliche Verschmelzung Schlüsse ziehen dürfte. Zur ontogenetischen Untersuchung dieser Frage muss man sich unbedingt an viel frühere Stadien wenden. Auch das von Schlaginhaufen (1905, Textfig. 56, S. 641) abgebildete und zur Entscheidung der Frage herangezogene Stadium ist viel zu alt, und das Bild ebenso trügerisch wie das von Whipple vorgelegte.

In seiner grundlegenden Arbeit: Beiträge zur Anatomie der Oberhaut hat Blaschko (1887) gegen Kollmann (1883) hervorgehoben, dass die Bildung der Leisten nicht gleichzeitig für die gesamte Tastfläche der Hände und Finger, Füsse und Zehen einsetzt, sondern die Entwicklung beginnt an den Beeren der Finger und Zehen und erfolgt proximalwärts erst etwas später. Diesen Befund kann ich bestätigen, und ein Vergleich des Schnittes Fig. I pl2 senkrecht durch die Leisten der Ferse mit demjenigen Fig. I pl3 senkrecht durch die Leisten der Grosszehenbeere desselben Fusses wird dies illustrieren. Bei einem jüngeren Embryo (9.5 cm craniocaudal) fand ich die ersten Andeutungen von Leistenbildungen an den Zehenbeeren, noch nichts dergleichen aber an der Haut der proximalen Zehenglieder und der Sohle. Gross ist aber der Vorsprung, der vielleicht mit der Andauer der starken Entwicklung der distalen Tastballen (der halbkugeligen Ballen über den Endphalangen) in diesen Stadien der Embryonalentwicklung zusammenhängt, nicht, und er wird bald durch entsprechend raschere Entwicklung der etwas später angelegten proximalen Leistensysteme wieder ausgeglichen.

Ich wende mich nun zu etwas älteren Stadien aus dem 5. Monat des Fötallebens. Es standen mir von solchen ein Embryo von 13 cm (etwa 17. Woche) und ein solcher von 15,5 cm Scheitelsteisslänge zur Verfügung. Den Abbildungen der Fig. II ist der kleinere der beiden zugrunde gelegt; die Befunde bei dem grösseren zeigen keine bemerkenswerten Abweichungen.

Das System der Drüsenleisten ist, wie die Oberflächenansicht Fig. II pl₁ zeigt, jetzt zu noch schärferer Ausprägung gelangt. Von diesen Leisten aus sind jetzt die Schweissdrüsenanlagen in die Tiefe gewachsen; sie stehen auf den Leisten ähnlich den Zinken eines Rechens. Zur genaueren Orientierung habe ich Abbildungen von Schnitten senkrecht zur Oberfläche der Haut in zwei Richtungen gegeben: parallel zur Richtung der Leisten und senkrecht zu denselben. Fig. II pl₂ stellt einen Schnitt dar, der eine Leiste fast genau längs getroffen hat. Man sieht auf diesem Schnitt,

wie die Schweissdrüsen von der Leiste in ziemlich regelmässigen Abständen scharf abgesetzt entspringen. Sie dringen zunächst annähernd genau senkrecht in das Corium hinein, beginnen gegen ihr Ende sich aufzuknäueln und schwellen dabei nicht unerheblich an.

Fertigt man Schnitte senkrecht zum Verlauf der Drüsenleisten an, so erhält man das in Fig. II pl3 wiedergegebene Bild. Auf diesem Schnitt sind neun der Drüsenleisten (dl) teilweise mit den aufsitzenden Schweissdrüsen quer getroffen. Bei genauerer Betrachtung nimmt man aber mitten zwischen je zwei Drüsenleisten noch jedesmal eine minimale Hervorwölbung wahr, die ich mit fl bezeichnet habe. Diese Hervorwölbungen entsprechen einem zweiten, auf diesem Stadium eben in seiner ersten Entstehung begriffenen Leistensystem, das erst in späteren Stadien deutlicher hervortritt und bei der Oberflächenbetrachtung des vorliegenden Stadiums (Fig. II pl1) nur in ganz schwacher Andeutung wahrgenommen werden kann.

Dieses zweite Leistensystem, das parallel und jedesmal genau zwischen je zwei Drüsenleisten zur Entwicklung gelangt, ist schon im Jahre 1884 von Blaschko entdeckt und 1887 noch ausführlicher geschildert worden. Blaschko bezeichnete die zwischen den Drüsenleisten auftretenden Epithelzüge kurzweg als Falten. wogegen Unna in seiner Besprechung der Blaschkoschen Arbeit (1888) Einspruch erhob, während Krause (1888) und besonders Loewy (1891) mit Entschiedenheit für die Blaschkosche Auffassung eintraten. Die Frage, ob es sich in diesem Falle um eine Faltenbildung, oder, wie Unna betonte, mehr um eine leistenartige Proliferation des Epithels handelt, ist nicht weiter bedeutungsvoll, da beide Prozesse Hand in Hand gehen. Ontogenetisch steht bei der ersten Entstehung die Proliferation wohl im Vordergrund, aber sehr bald gesellt sich zu ihr eine leichte Einfaltung zunächst des unverhornten Epithels in der ganzen Dicke des Streifens, die sich mehr und mehr vertieft und dann zu einer entsprechenden Faltung auch der Hornschicht führt. Auf Grund dieser Einfaltung bildet sich dann das Relief der inneren Oberfläche der Haut aus. Ich bezeichne die mit einer Faltung verbundene leistenartige Epithelproliferation als Faltenleiste (fl), die Einfaltung des unverhornten Epithels und der Hornschicht als Blaschkosche Falte.

Die ausgezeichnete Arbeit Blaschkos, die, wie wir sahen, bei ihrem Erscheinen Außehen erregte und zu Diskussionen Anlass gab, ist dann in den folgenden Jahrzehnten wieder zo ziemlich in Vergessenheit geraten, und ihre Resultate haben nur in die wenigsten Lehrbücher Eingang gefunden, so dass die Duplizität des Leistensystems von M. Heidenhain (1906) am Erwachsenen sozusagen von neuem entdeckt und ohne Kenntnis der Blaschkoschen Vorgängerschaft unter Zugrundelegung neuer Bezeichnungen beschrieben worden ist. In der etwas früher erschienenen Arbeit von Schlaginhaufen (1905) wird auf die Untersuchungen Blaschkos in ausreichender Weise Rücksicht genommen, während ihre Ergebnisse in der im Jahre 1907 erschienenen Arbeit von Evatt über die Entwicklung der Papillarlinien wiederum keine Berücksichtigung gefunden haben.

Was die Verhornung des Periderms anlangt, so findet man auf diesem Stadium das Epithel der Sohle von einer dünnen durchsichtigen Schicht bedeckt, die aus zwei bis drei Lagen von schuppenartigen Zellen besteht, deren Kern sich nicht mehr mit den gewöhnlichen Kernfärbungsmitteln zur Darstellung bringen lässt. Ob in dieser Schicht auf diesem Stadium schon echtes Keratin gebildet ist, ist eine Frage, die noch weiterer Untersuchung bedarf. Es bestehen über den Zeitpunkt, wann im Embryonalleben die eigentliche Verhornung einsetzt, Meinungsverschiedenheiten zwischen den Autoren. Ernst (1896) setzt sie unter Zugrundelegung der Gramschen Methode an der Ferse erst an den Anfang des 6. Monats, Cedercreutz (1907), der mit der Ziliacusschen Epitheldifferenzierungsmethode (Pikrinsäure als Reaktivum) gearbeitet hat, setzt sie ganz ausserordentlich viel früher. Doch lässt er die Frage offen, ob es sich nicht bloss um eine Vorstufe der Hornsubstanz handle. Eine sichere Entscheidung wird sich nur durch Anwendung der von Unna¹) ausgebildeten chemischen Methoden für die Bestimmung und Unterscheidung der verschiedenen Keratine gewinnen lassen. Ich bin dieser Frage nicht weiter nachgegangen, weil ihre Entscheidung nicht leicht und für die von mir verfolgten Ziele nicht von wesentlicher Bedeutung Wenn ich also von Hornschicht spreche, so lasse ich dabei

¹⁾ Vgl. besonders die ausgezeichnete Zusammenfassung der zahlreichen bahnbrechenden Arbeiten dieses Forschers und seiner Mitarbeiter in seinem klinischen Vortrag über Verhornung (1909),

die Frage ganz unentschieden, ob dieselbe schon echte Keratine enthält oder nicht.

Wir wenden uns nun zum Vergleich der oben dargestellten Verhältnisse mit der Beschaffenheit der Haut des Fussrückens auf demselben Stadium. Während die Haut der Sohlenfläche in ihrer ganzen Ausdehnung wesentlich dieselbe Beschaffenheit darbietet, ist dies bei der Haut des Fussrückens nicht der Fall. Es gibt dort ausgedehnte Bezirke, auf denen man keine einzige Schweissdrüsenanlage findet, dann wieder Stellen, wo die Drüsenanlagen ganz vereinzelt und wieder andere, wo sie ziemlich dicht gedrängt stehen. Wo letzteres der Fall ist, fussen sie aber nicht auf den an der Sohle so scharf ausgeprägten Epithelleisten, sondern treten zunächst isoliert aus dem unverdickten Epithel heraus. Nur am Übergange der Sohlenhaut in die des Fussrückens erstrecken sich die Leisten abgeflacht noch eine kurze Strecke dorsalwärts, verstreichen aber dann sofort und geben der isolierten Aufstellung der Schweissdrüsen Raum.

Nebenbei sei erwähnt, dass in bestimmten Bezirken des Fussrückens sich Haaranlagen finden, die man durch ihre viel voluminösere Entfaltung schon in Flächenpräparaten ohne weiteres von den Drüsenanlagen unterscheiden kann. In ihrer weitaus grössten Ausdehnung ist aber die Haut des Fussrückens bei den von mir untersuchten Objekten haarlos. Auf ein Eingehen auf die speziellere Topographie der Haar- und Drüsenanlagen des Fussrückens muss ich hier verzichten.

Zum Vergleich mit den Verhältnissen der Sohlenhaut auf unserem Stadium wähle ich einen haarlosen Bezirk des Fussrückens, der verhältnismässig dicht gedrängte Schweissdrüsenanlagen besitzt und gebe in Fig. II drs einen Schnitt durch diese Region. Wie man sieht, ist hier die Entwicklung der Teile im Vergleich zu der entsprechenden der Fußsohle in jeder Beziehung stark im Rückstande. Die Oberfläche des Epithels ist nahezu eben; ebenso verhält sich, abgesehen von den Ansatzstellen der isolierten Schweissdrüsen, seine Unterfläche. Von Epithelleisten ist noch nichts wahrzunehmen. Die Längenentwicklung der Schweissdrüsen ist hier noch eine sehr viel geringere als auf der Sohlenfläche. Dem entspricht eine weit geringere Dicke des Corium, Verhältnisse, die man ohne weiteres aus dem Vergleich der Fig. II pla mit II drs ersehen kann. Eine Hornschicht von minimaler Dicke hat sich übrigens auch hier bereits gebildet.

Ich wende mich nun zur Beschreibung eines weit älteren Stadiums, nämlich eines Embryo von etwa 30 Wochen (26 cm Scheitelsteisslänge). Dies ist ein Stadium, in welchem der Fötus gerade imstande ist, als Frühgeburt extrauterin fortzuleben, wenn auch die Aussicht, ihn grosszuziehen, nur eine geringe ist. An Zwischenstadien zwischen diesem und dem oben geschilderten von 13 cm Scheitelsteisslänge lagen mir vor ein Embryo von 15,5 cm Scheitelsteisslänge (etwa 19. Woche) und ein anderer von 20 cm Scheitelsteisslänge (etwa 23. Woche), die ich nach allen für uns in Betracht kommenden Richtungen untersucht habe. Da sie blosse Zwischenstufen zwischen den Verhältnissen der 17. und der 30. Woche bilden, ist es überflüssig, sie in ihren Einzelheiten zu beschreiben.

Die Oberflächenansicht der Fersenhaut eines Fötus aus der 30. Woche (Fig. III pl₁) ergibt nun im Vergleich zu der aus der 17. Woche zunächst einen Unterschied im Volumen der Teile. Drüsen und Drüsenleisten sind massiger geworden, die Leisten sind auseinandergerückt und die Faltenleisten zwischen ihnen haben sich ebenfalls verstärkt und treten jetzt auf das deutlichste hervor. Zwischen beiden parallelen Leistensystemen haben sich epitheliale Querleisten (ql) entwickelt, und damit ist der Rahmen vorgezeichnet, in dem die weitere Entwicklung der Leistensysteme der Plantarfläche des Fusses wie der Palmarfläche der Hand sich bewegt, ein Rahmen, der erst viele Jahre später dadurch eine gewisse Erweiterung erfährt, dass sich noch sekundäre Leisten des Rete Malpighi zwischen Drüsen und Faltenleisten entwickeln (vgl. Taf. X. Fig. VIIIsl). Hand in Hand mit der Absteckung dieses Rahmens ist auch die Entwicklung der Papillen vor sich gegangen, deren jede in einen epithelialen Hohlraum hineinragt, welcher seitlich von einem Stück Drüsenleiste, einem Stück Faltenleiste und zwei Querleisten begrenzt ist.

Auf einem Querschnitt senkrecht zum System der Parallelleisten (Fig. III pl2) tritt ebenfalls die Volumenzunahme der Schweissdrüsen sowie ihr starkes Wachstum in die Tiefe — etwa um das Doppelte ihrer früheren Länge — zutage. Dem entspricht eine starke Verdickung des Corium. Die Faltenleisten tragen jetzt insofern den Charakter, der durch ihren Namen angedeutet werden soll, als sie nunmehr auch gegen die Hornschicht zu eine leichte rinnenartige Einbuchtung zeigen.

Diese Hornschicht hat ausserordentlich an Dicke zugenommen; ihr Durchmesser beträgt, je nachdem man über den Drüsenleisten oder den Einbuchtungen der Faltenleisten misst, durchschnittlich 60 bezw. 75 u.

Wenden wir uns nun zu der Weiterentwicklung der Haut des Fussrückens, so zeigt uns Fig. III drs 1, dass jetzt auch hier in enger Beziehung zu der epithelialen Basis der Schweissdrüsen die Bildung von Epithelleisten eingesetzt hat. Aus dem Oberflächenbild Fig. III drs 1 geht hervor, dass die hier sich eben bildenden Leisten dieselben Beziehungen zu den Fusspunkten der Schweissdrüsen besitzen wie an der Ferse, dass aber ihre Ausbildung eine viel schwächere und viel unregelmässigere ist als dort, entsprechend der viel unregelmässigeren Beschaffenheit dieser Bildungen im ausgebildeten Zustand.

Es verdient hervorgehoben zu werden, dass demnach am Fussrücken die Leistenbildung erst ziemlich lange nach Ausbildung der Schweissdrüsen erfolgt, während an der Sohle das Auftreten der Leisten das erste ist, was man wahrnimmt. Dennoch liegt hier im Grunde kein tieferer Gegensatz vor. Denn auch in der Sohle eilen, wie wir gesehen haben, die ersten Anlagen der Schweissdrüsen den sie untereinander verbindenden Zwischenstücken der Leisten in der Entwicklung voraus, hier allerdings nur sehr wenig, und der Grundtypus der Entwicklung ist somit in beiden Fällen der gleiche.

Die Ausbildung der Schweissdrüsen des Fussrückens hat im Laufe der mittlerweile verflossenen drei Entwicklungsmonate nur sehr geringe Fortschritte gemacht, wie der Vergleich von Fig. III drs $_2$ mit Fig. II drs ohne weiteres lehrt. Auch das Corium des Fussrückens hat während dieser Zeit nur unbedeutend an Dicke zugenommen. Dagegen hat die Ausbildung der Hornschicht Fortschritte gemacht, freilich in ausserordentlich viel geringerem Maße als an der Sohle. Ihr Durchmesser beträgt am Fussrücken auf diesem Stadium durchschnittlich $20~\mu$, also nur etwa den dritten Teil der Dicke der Hornschicht der Sohle auf dem gleichen Stadium.

In den nächsten Wochen bis zur Geburt schreitet die Entwicklung der Haut des Fussrückens beträchtlich vor, anfangs nur langsamer, so dass Präparate aus dem Anfang des 8. Monats noch keine sehr bedeutenden Unterschiede erkennen lassen, in den letzten

Wochen vor der normalen Geburt aber schneller, so dass eine Annäherung an die Verhältnisse der bisher ausserordentlich weit vorangeeilten Entwicklung der Plantarfläche erfolgt. Dies betrifft sowohl die bisher am Fussrücken so sehr verzögerte Schweissdrüsenentwicklung, als auch die ebenso rückständige Dickenentwicklung des Stratum corneum. In einer Beziehung aber bleibt ausser der für die Plantarfläche typischen Anordnung der Leistensysteme ein weiterer auffallender Unterschied auch in diesen Stadien bestehen; er betrifft die Länge der Papillen oder, was auf dasselbe hinausläuft, die Mächtigkeit der Epithelleistenentwicklung, die in der Sohlenhaut diejenige der Fussrückenhaut bedeutend übertrifft (vgl. Taf. IX, Fig. IV pl und IV drs). Bemerkenswert für später zu erörternde Fragen ist auch das Auftreten eines Oberflächenreliefs der Hornschicht an der Sohlenhaut, das in Fig. IV pl auf das deutlichste hervortritt. Die abgebildeten Präparate stammen von einem sehr grossen Fötus (Scheitelsteisslänge 37 cm), der, durch Kaiserschnitt extrahiert, gleich nach der Geburt starb. Ahnliche Bilder erhielt ich von einem etwas kleineren, aber ebenfalls geburtsreifen Fötus.

Auch strukturelle Unterschiede in der Beschaffenheit der Hornschicht, ein etwas festerer Zusammenhang der Komponenten in derjenigen der Sohle, kleine Unterschiede im Verhalten gegen Farbstoffe konnte ich besonders bei dem letzterwähnten Embryo feststellen. Sie sind indessen nicht sehr ausgesprochen, während sie bei dem gleich zu beschreibenden Neugeborenen 30 Stunden nach der Geburt an den unter dem Einflusse der Luft abschilfernden Hornschichten auf das deutlichste hervortreten. Ich komme darauf gleich zurück und wende mich nunmehr zur Betrachtung der von mir ins Auge gefassten Verhältnisse gleich nach der Geburt.

Der Geburtsakt übt, wie dies ja leicht verständlich ist, auf die mikroskopisch wahrnehmbare Beschaffenheit der Gewebsbestandteile der Haut keinen nachweisbaren Einfluss aus mit Ausnahme einer einzigen Gewebsart, der Hornschicht. Während des Fötallebens befindet sich der Organismus nach Ausbildung des Amnions andauernd in einem warmen Bade; seine Haut wird von dem die Temperatur der inneren Körperhöhlen besitzenden Fruchtwasser umspült. Infolgedessen ist der Feuchtigkeitsgehalt der Hornschicht während des Fötallebens ein maximaler, was wohl einen mazerierenden Einfluss auf die älteren, dem Mutterboden ent-

rückteren Schichten ausübt. Ausserdem ist zu dieser Zeit die Körperdecke den mechanischen Einflüssen der Abreibung so gut wie ganz entzogen, und dies hat zur Folge, dass diese älteren Schichten der im Zustande stärkster Quellung befindlichen Hornschicht, obschon längst mazeriert, doch noch grösstenteils ihre ursprüngliche Lage und den Zusammenhang mit den unteren Schichten beibehalten.

Bei der Geburt, die die Hautdecke des Kindes mit der Aussenwelt in Berührung bringt und sie dadurch sowohl den Einflüssen des veränderten Mediums (Austrocknung), als auch der mechanischen Reibung aussetzt, werden diese mazerierten Schichten. die mit Hauttalg und Wollhaaren vermischt als Fruchtschmiere. Vernix caseosa, bezeichnet werden, abgestossen. Ein grosser Teil davon wird schon durch das erste Bad abgelöst und beseitigt. Da aber die unteren Lagen oft noch stellenweise sehr fest an der Haut haften, pflegt man sie durch sanftes Abreiben des Kindes mit Ol zu beseitigen. Doch ist damit der Prozess noch nicht beendigt und eine weitere reichliche Abstossung tieferer Lagen erfolgt besonders im Laufe der nächsten zwei bis drei Tage nach der Geburt. sowie auch noch später. Bekanntlich findet bei anderen Säugetieren (z. B. den Edentaten, Delphinen, Suinen) gegen Ende des Fötallebens eine Abstossung der obersten Lagen der Hornschicht in continuo statt, was an eine typische Häutung, ähnlich der der Repitilien, erinnert (Welckers Epitrichium). Wo statt einer solchen Häutung eine mehr allmähliche und diskontinuierliche Abstossung der älteren Hornschichten nach der Geburt erfolgt, wie z. B. beim Menschen. zeitigt sie doch dasselbe Ergebnis und führt zu einer ausserordentlichen Verdünnung der gesamten verhornten Bedeckung des Körpers im Laufe der ersten Woche nach der Geburt. Dies zeigen schon die beiden Fig. V pl und V drs. die von einem Neugeborenen 30 Stunden nach der Geburt herrühren. Noch weiter fortgeschritten sehen wir diese Verdünnung bei einem 26 Tage alten Kinde am Fussrücken (Fig. VI drs), wobei hervorzuheben ist, dass auf diesem Stadium an der Ferse (Fig. VIpl) die Bildung einer neuen Hornschicht bereits begonnen hat, den Ausfall auszugleichen.

Leider ist es mir nicht gelungen, mir ein ausreichendes Material zu verschaffen, um genau festzustellen, bis in welche Tiefe hinein sich die Abstossung der alten Hornschicht erstreckt, wie sie zeitlich fortschreitet und wann der Prozess, soweit er durch die Veränderung des Milieus bedingt ist, sein Ende erreicht. Man müsste ein grosses Material an Neugeborenen aus den ersten Wochen nach der Geburt zur Verfügung haben, um dies erschöpfend festzustellen. Aus den Bildern der wenigen Neugeborenen, über die ich verfüge, möchte ich schliessen, dass überall nur die tiefsten, dem Stratum granulosum anliegenden, also jüngsten Schichten beim Aufbau der kindlichen Hornschicht Verwendung finden und also fast die ganze embryonale Hornschicht im Laufe der ersten Wochen zur Abstossung gelangt.

Bei dem 30 stündigen Neugeborenen sieht man sowohl an der Ferse (Fig. Vpl) als auch am Fussrücken (Fig. Vdrs) die Hornschicht bis in die Tiefe hinein destruiert, von grösseren und kleineren Lücken durchsetzt. Bemerkenswert dabei ist nur eine etwas grössere Widerstandsfähigkeit auf der Plantarseite und ein besonders fester Zusammenhang in einem dünnen Strich über jeder der Faltenleisten. Wir sehen hier bereits dieselbe Struktur der Hornschicht zutage treten, die von jetzt an durch das ganze Leben hindurch für die Hornschicht der Sohle charakteristisch ist. Beim Erwachsenen sind diese Verhältnisse von Unna (1909, teilweise in Gemeinschaft mit Golodetz 1909) genauer analysiert und eine chemische Verschiedenheit der Hornzellen einerseits über den Faltenleisten (Wellentälern), andererseits über den Drüsenleisten (Wellenbergen) festgestellt worden. Die Zellen in den "Wellenbergen" bestehen ausser aus Keratin A vorwiegend aus Albumosen. Unna nennt sie deshalb auch Albumosezellen. während die Zellen der Wellentäler (über den Faltenleisten) der Hauptsache nach aus Keratin A und B bestehen, also eine viel hochgradigere Verhornung erkennen lassen und deshalb von Unna als Hornzellen proprio sentu bezeichnet werden. Dieser Unterschied, der sich durch Differentialfärbungen nicht nur beim Erwachsenen, sondern wie ich nach meinen auf verschiedene Weise gefärbten Präparaten mitteilen kann, auch beim Säugling nachweisen lässt, ist, worauf die Bilder der sich nach der Geburt abstossenden Haut mit Deutlichkeit hinweisen, schon embryonal vorgebildet (vgl. Fig. Vpl). Spuren ähnlicher Struktureigentümlichkeiten zeigen sich übrigens auch in den Wellentälern der Haut des Fussrückens (Fig. V drs), aber hier nur ganz andeutungsweise, und überhaupt fehlt der Hornschicht hier in allen Phasen die straffe Gliederung, die die Hornschicht der Sohlenhaut auszeichnet.

Am 26. Tage ist der Prozess der Destruktion und Abstossung sowohl an der Sohle (Fig. VI pl) als auch am Fussrücken (Fig. VI drs) längst beendigt, und es hat sich überall bereits eine neue, unter dem Einfluss des trockenen Mediums erwachsene Hornschicht gebildet. Wie der Vergleich der beiden Figuren lehrt, ist aber auch jetzt wieder die Dicke dieser neugebildeten Schicht eine sehr viel beträchtlichere an der Ferse als am Fussrücken. Die Hornschicht der Sohle besitzt jetzt und von da an dauernd (und noch immerfort auch ohne funktionelle Beeinflussung zunehmend) eine um ein vielfaches grössere Dicke als die des Fussrückens.

Dabei tritt jetzt im trockenen Medium ein weiterer Unterschied zwischen der Hornschicht der Sohlenfläche und der des Fussrückens (wie des ganzen übrigen Körpers mit Ausschluss der Hohlhand) deutlich hervor; er betrifft die Beschaffenheit, nicht bloss das Volumen dieser Schicht. Sehr deutlich ist dies in den Fig. VII wahrzunehmen, die die Verhältnisse bei einem 3 Monate alten Säugling darstellen. Die Hornschicht der Sohlenfläche (einschliesslich der Unterseite der Zehen) zeigt eine sehr regelmässige Anordnung in ihrer Schichtung (Fig. VII pl), sie ist frei von Lücken, fasert sich nicht leicht auf und ist mit einem Wort viel widerstandsfähiger als die Hornschicht des Fussrückens (Fig. VII drs). Aus Gründen, die sich uns unten aus der Untersuchung der funktionellen Schwielen ergeben werden, sind wir zu der Annahme gezwungen, dass fortgesetzter mechanischer Druck die Festigkeit und Widerstandsfähigkeit der Hornschicht erhöht. Aber augenblicklich behandeln wir ein Lebensalter, wo diese besondere Beeinflussung noch fortfällt, nämlich das Säuglingsalter, und dennoch finden wir diese Besonderheit der Hornschicht der Sohlenfläche bereits deutlich ausgesprochen. Wir finden sie auch, wiewohl etwas abgeschwächt, an den Sohlen solcher älterer Individuen, die diese Flächen niemals zum Stehen oder Gehen benutzt haben, nämlich an den Sohlen kongenitaler Klumpfüsse höchsten Grades. Es liegt also hier eine erblich determinierte Eigentümlichkeit der Hornschicht der Plantarfläche (ebenso übrigens auch der Palmarfläche) vor.

Bekanntlich hat Zander (1888) den Satz aufgestellt, dass die Zellen der Hornschicht an Handfläche und Fußsohle in der Regel viel weniger abgeplattet sind als diejenigen an allen anderen Körperstellen, wo sie nicht nur viel flacher, sondern auch nach Zanders Ansicht ganz und gar, d. h. auch im Inneren, verhornt sein sollen. Dem hat bereits Kölliker (1889) widersprochen und an dieser Darstellung nur das für richtig erklärt, "dass die Hornschichtzellen in den Gegenden mit dünner Hornschicht im allgemeinen mehr abgeplattet sind". Von einer totalen Verhornung irgend welcher Zellen der Oberhaut kann nach den Untersuchungen von Unna (vgl. z. B. 1908, 1909) überhaupt nicht die Rede sein, da "auch die allerhärtesten Hornsubstanzen, wie z. B. die Hörner und Hufe, immer nur zu einem kleineren Teil (bis höchstens 40 %) die Umwandlung in Keratin durchmachen, dabei aber nichtverhorntes Eiweiss (Hornalbumosen) in grosser Menge fest einschliessen."

Es liegt nahe, daran zu denken, dass die verschieden grosse Festigkeit der Hornschichten in den verschiedenen Regionen durch den verschiedenen Bestand an Unnaschen Hornzellen und Albumosezellen (vgl. oben S. 177) bedingt oder wenigstens mitbedingt ist. Die Befunde beim Neugeborenen (Fig. V) legen die Vermutung nahe, dass die Hornzellen besonders fest untereinander zusammenhängen und in ihrer streifenförmigen Anordnung vielleicht wie ein versteifendes Gerüst funktionieren. Aber bis wir nicht über das Schicksal der Epithelfaserung und der Zellbrücken während der Verhornung näher unterrichtet sind (Unna [1909], S. 1730) und damit in das eigentliche Wesen des Zusammenhaltens der verhornten Zellen eingedrungen sind, lassen sich über die Ursache der mehr oder weniger festen Zusammenfügung der Hornschicht keine gut zu begründenden Vermutungen äussern. Wir müssen uns also mit der Feststellung der Tatsache begnügen, dass jene charakteristische Differenz in der Beschaffenheit der Hornschichten an Sohle und Fussrücken schon beim Säugling, also vor der verschiedenartigen funktionellen Inanspruchnahme der betreffenden Körperstellen auftritt, ja sogar schon embryonal vorgebildet ist (vgl. Fig. V), dass diese Differenz aber andererseits später durch die Wirkung des Druckes noch verstärkt wird, und dass ferner unter dem Einfluss eines langdauernden und sehr häufig wiederholten Druckes die Hornschicht auch anderer Körperstellen eine der Sohle und Handfläche ähnliche Beschaffenheit annehmen kann (funktionelle Schwielen).

Wir wollen damit unsere vergleichende Betrachtung der Entwicklung der Sohlenhaut einerseits, der Haut des Fussrückens

andererseits, abschliessen. Auf weitere Eigentümlichkeiten der Sohlenhaut im Säuglingsalter und in den späteren Lebensjahren komme ich unten noch zurück. Unsere bisherige Untersuchung hat ergeben, dass nicht nur Albin Recht hatte, als er betonte, dass im Fötalleben die Entwicklung der Haut der Palma und Planta derjenigen anderer Körperstellen bedeutend vorauseilt, sondern dass sich ein ganz paralleler Vorgang im Säuglingsalter vollzieht. Nach Abstossung der im Fötalleben gebildeten Hornschicht nach der Geburt bildet sich auf der Ferse und anderen Teilen der Planta eine sehr viel dickere Hornschicht als am ganzen übrigen Körper (mit Ausnahme der Palma), eine Hornschicht, die auch qualitativ von jener verschieden ist, und zwar geschieht dies während einer fast ein Jahr lang dauernden Periode, in welcher die Haut der Fußsohle keineswegs anderen äusseren Einflüssen unterliegt, als die des übrigen Körpers, in welcher also eine spezifische funktionelle Inanspruchnahme ebenso fortfällt wie im Embryonalleben.

Als durchaus nicht stichhaltig haben sich die oben (S. 165) zitierten Einwände Shattocks erwiesen. Da Shattock nur ein einziges, noch dazu ungünstiges Stadium untersucht hat, da er obendrein die Hornschicht der Palma und Planta in keiner Weise berücksichtigt hat, so ist ihm der eigentliche Tatbestand ganz verborgen geblieben, und die Auffassung der älteren Anatomen hat sich als richtig erwiesen und ist durch die bisher noch nicht berücksichtigten Verhältnisse während der Säuglingszeit in bedeutsamer Weise bekräftigt worden.

Eine andere Frage ist es, ob der von Darwin gezogene Schluss, dass jene Eigentümlichkeiten eine Folge der vererbten Wirkungen des eine lange Reihe von Generationen hindurch erfolgten Druckes seien, ein durchaus zwingender ist. Glücklicherweise gibt es aber zur Entscheidung dieser Frage noch andere und zwar noch wichtigere Kriterien als die bisher herangezogenen. Die Tatsachen, auf welche sie sich stützen, sollen in den folgenden Abschnitten dargestellt werden.

Zweiter Abschnitt.

Die topographischen Verschiedenheiten der Hornschicht der Sohlenfläche.

Als ich meine Untersuchungen begann, hatte ich gleich mein Augenmerk darauf gerichtet, festzustellen, ob sich etwa bei der Entwicklung der Sohlenhaut regionale Verschiedenheiten der Dicke an Rete und Hornschicht nachweisen lassen. So verglich ich vor allem diese Dickenverhältnisse in der Fersenregion mit denen des Fussgewölbes bei Embryonen, fand aber keine hinreichend ausgeprägten Unterschiede, um daraus sichere Schlüsse zu ziehen, und gab deshalb die Verfolgung dieses Gesichtspunktes zunächst auf. Glücklicherweise wurde ich aber später durch ein Untersuchungsmaterial besonderer Art wieder auf diesen wichtigen Punkt gelenkt.

Ich legte mir nämlich die Frage vor, wie denn ein durch lange Zeit fortgesetzter Druck auf Hautstellen wirkt, die normalerweise keinem solchen Druck unterliegen, z. B. auf die Haut des Fussrückens und war genötigt, da ich in der pathologisch-anatomischen Literatur keine befriedigende Antwort auf diese Frage fand, dieselbe selbst näher zu untersuchen. Das beste Objekt schien mir von vornherein die Schwielenbildung an kongenitalen Klumpfüssen zu sein, und nach längerem vergeblichen Bemühen erhielt ich endlich durch die Güte von Herrn Professor Benda ein für meine Zwecke ausserordentlich geeignetes Präparat dieser Art. Auf die Ergebnisse der Untersuchung der Schwielenbildungen werde ich im nächsten Abschnitt eingehen. Sonderbarerweise kam mir erst verspätet der naheliegende Gedanke, dass es wichtig wäre, an einem solchen Objekt nicht nur diejenigen Teile zu untersuchen, die abnormerweise einem ungewöhnlichen Druck unterliegen, sondern auch diejenigen, die dem sie normalerweise treffenden Druck dauernd entrückt sind, also nicht bloss die Schwielenbildungen des Fussrückens, sondern auch die ausser Funktion gesetzte Sohlenfläche. Diese Untersuchung hat Ergebnisse geliefert, auf die ich unten näher eingehen werde. Gleichzeitig fiel mir aber dabei auf. dass an dieser funktionslosen Sohle sich in der Volumenentfaltung der Teile topographische Verschiedenheiten bemerkbar machten, die wir von der funktionierenden Sohle her kennen und lediglich als Ergebnisse des die verschiedenen Stellen verschieden stark treffenden Druckes anzusehen gewohnt sind. Ich griff daraufhin wieder auf Jugendstadien zurück, diesmal aber auf ältere als die bisher von mir in dieser Richtung allein berücksichtigten Embryonen, und untersuchte die Frage, ob nicht auch an den Sohlen von Säuglingen vor dem Beginn der Funktion des Stehens und Gehens dieselbe Erscheinung

nachzuweisen sei. Die Antwort fiel ebenso deutlich, ja noch deutlicher in bejahendem Sinne aus wie am kongenitalen Klumpfuss, und es wird sich daher empfehlen, beide Untersuchungsreihen zusammen zu behandeln.

In Textfig. A gebe ich eine Abbildung des Klumpfusses, der mir zur Untersuchung vorgelegen hat. Es ist der rechte Fuss einer 59 jährigen Frau. Wie die Untersuchung desselben lehrt, ist beim Stehen und Gehen lediglich der Fussrücken benutzt und die Sohle, deren Kleinzehenrand sich auch äusserlich deutlich markiert (vgl. die Textfigur), von dieser Funktion völlig aus-

Fig. A. Klumpfuss einer 59 jährigen Frau.

geschaltet worden. Zwei Gegenden des Fussrückens haben beim Gehen und Stehen den Boden berührt und hier ist es zu mächtiger Schwielenbildung gekommen: erstens die Gegend über dem Talus, wo sich die Hauptschwiele entwickelt hat, und zweitens die Gegend über der fünften, vierten und dritten Zehe, wo ebenfalls echte funktionelle Schwielen (keine Clavi) entstanden sind, die zwar

schwächer als diejenigen über dem Talus, aber immerhin noch sehr beträchtlich sind. Diejenige über der fünften Zehe ist die bedeutendste, die über der dritten Zehe die schwächste. Sehr lehrreich ist es, zu sehen, wie die Patientin ganz unwillkürlich durch verschiedene Beugungen innerhalb der Gelenkverbindungen der Fussknochen, ganz besonders durch eine scharfe Abknickung in der Chopart schen Gelenklinie (Art. talo-navicularis und calcaneocuboidea), eine Form des Fussrückens hervorgerufen hat, die zusammen mit den beträchtlichen Schwielen ein förmliches Gewölbe erzeugt. Dasselbe gestattet dem Fusse beim Stehen ein Ruhen auf zwei Fusspunkten und ermöglicht beim Gehen eine Art Abwicklung. Die Abknickung prägt sich auf unserer Textfigur durch eine scharfe Falte aus. Durch den anatomischen Befund: Torsion der Unterschenkelknochen nach innen, scharfe Abknickung des Fusses in der Gegend des Chopartschen Gelenkes, ausserordentliche Straffheit der Gelenkkapseln und Bänder, Fehlen jeder Atrophie des Beines erweist sich das vorliegende Präparat wohl mit Sicherheit als ein angeborener Klumpfuss (vgl. Wolff [1913]. S. 87) und zwar höchsten Grades. Anamnestisch liess sich nichts Näheres feststellen.

Zum Vergleiche mit den Befunden an der Sohle dieses Klumpfusses zog ich erstens die Verhältnisse an der Sohle des normalen Fusses von Erwachsenen in verschiedenen Lebensaltern sowie von Kindern verschiedenen Alters nach Beginn des Gehens heran; zweitens aber untersuchte ich die Sohlen von Säuglingen vom dritten bis achten Lebensmonat, bei denen sich natürlich jede Beeinflussung der Sohlenstruktur durch die Funktion des Gehens und Stehens noch mit völliger Sicherheit ausschliessen lässt. Auch hatte ich Gelegenheit die Sohlen zweier Kinder im zweiten Lebensjahr zu untersuchen, die wegen hochgradiger Schwäche niemals gelaufen sind. Besonders genau habe ich zwei Sohlen, diejenige eines Säuglings vom Anfang und diejenige eines solchen vom Ende des sechsten Monats, topographisch durchgearbeitet und gebe eine Stichprobe der Untersuchung der letzteren auf den Abbildungen von Textfig. B₃, S. 185. Die Textfiguren B₁ illustrieren die entsprechenden Verhältnisse an der Sohle eines durchaus normalen, mit schönem Gewölbe versehenen Fusses einer 50 jährigen Frau.

Wir alle wissen, dass die Dicke der Hornschicht an verschiedenen Stellen unserer Sohle sowie der Unterfläche unserer

Zehen ausserordentlich verschieden ist. Schon beim Abtasten bemerken wir, dass die Verschwielung an der Ferse (Gegend des Tuber calcanci) am stärksten ist, dass dagegen die Sohlenhaut im Fussgewölbe verhältnismässig dünn und zart ist, sehr viel zarter als in den entsprechenden Meridianen des äusseren Fussrandes. In der Metatarsalgegend, besonders entsprechend den Capitula der Metatarsalknochen (Ballengegend), nimmt die Dicke der Hornschicht bedeutend zu. Besonders in der Gegend des Kopfes des ersten Metatarsalknochens kommt es oft zu einer abgegrenzten stärkeren Verschwielung. Ich möchte aber gleich hier hervorheben, dass wir es dabei wohl mit einer durch unser Schuhwerk bedingten Besonderheit zu tun haben, und dass diese Dinge beim zeitweilig oder dauernd barfuss gehenden Menschen anders liegen dürften. Der Lederschuh ist gewöhnlich von vornherein so gebaut, dass beim Stehen in demselben nur die Ferse und die Metatarsalgegend auf dem Boden ruht. Nimmt dann aber beim Gebrauch die lederne Sohle mehr und mehr eine starke gegen den Boden gerichtete Konvexität an, was sie infolge der Abwicklung beim Gehen regelmässig tut, so erfolgt eine vollständige Ausschaltung des Kontakts der Zehen mit dem Boden während des Stehens. Der Druck auf die verschiedenen Teile der Sohle ist infolgedessen beim Stehen im Lederschuh ein wesentlich anderer als ohne dieses Mittelglied, und auch die Druckverhältnisse beim Gehen sind dadurch entsprechend, wenn auch wohl nicht in gleichem Maße, beeinflusst. Wir können also sagen, dass beim Gehen und Stehen in unserem Schuhwerk eine ungleichmässigere Verteilung des Druckes, eine übermässige Belastung der Metatarsalgegend unter gleichzeitiger Entlastung der Zehen stattfindet. während sich der Druck beim Barfussgänger viel gleichmässiger auf Metatarsus und die Endphalangen der Zehen verteilt. werden darauf unten noch zurückzukommen haben.

Zieht man Linien auf der Sohle sagittal von der Ferse zu den Spitzen der fünf Zehen, so durchläuft die am meisten medial gelegene derselben, also diejenige, die das Fussgewölbe durchschneidend von da über das Capitulum des ersten Metatarsalknochens und dann über Grundphalange und Endphalange der grossen Zehe läuft, Stellen, welche einem sehr verschiedenartigen Druck beim Gehen und Stehen unterliegen und deshalb die verschiedensten Grade der Verschwielung zeigen. Diese Linie habe ich meinen

Fig. B₁. Normaler Fuss, 50 jähr. Frau. Fig. B₂. Klumpfuss.

Fig. B₂. Klumpfuss. Fig. B₃. 6³ 4 monat. Säugling.

topographischen Vergleichungen zugrunde gelegt und werde mich in der folgenden Darstellung im wesentlichen auf die fünf Stellen: Ferse, Gewölbe, mediale Metatarsalgegend, erstes Glied der grossen Zehe und Endglied (Beere) derselben beschränken. Untersucht habe ich natürlich auch die mehr lateral gelegenen Teile der Sohle und die anderen Zehen und habe übereinstimmende Befunde erhalten. Da ich den Gegenstand aber nicht monographisch behandeln will, so werde ich zunächst hier die Darstellung der Verhältnisse in diesem beschränkten Abschnitt in den Vordergrund stellen und erst am Schluss kürzer auf Befunde in den mehr lateral gelegenen Teilen Bezug nehmen. Ich bemerke ferner, dass ich in diesem Abschnitt die "Verschwielung" lediglich nach der Dicke der Hornschicht berechne. Die mit ihr in enger Beziehung stehende Volumenentwicklung des unverhornten Epithels wird erst im folgenden Abschnitt die gebührende Berücksichtigung finden.

Die oberste Reihe der Textfiguren Seite 185 (B₁)¹) stellt die Befunde der Verschwielung in den behandelten Abschnitten an dem normalen Fuss einer 50 jährigen Frau dar. Diese Figuren geben uns die anatomische Bestätigung dessen, was uns schon die Betrachtung und Betastung der betreffenden Hautstellen andeutet. Erwähnen will ich, dass ich für das Endglied der grossen Zehe hier wie auch bei den anderen Objekten die Dickenverhältnisse des distalen Abschnittes der Zehenbeere zur Darstellung gebracht habe, wo die Verschwielung stärker ist als am proximalen.

Wenden wir nun unsere Aufmerksamkeit von der Reihe B₁, deren Objekte während eines 50 jährigen Lebens einem sehr verschiedenartigen Druck ausgesetzt gewesen sind, zu den Reihen B₂ (Klumpfuss) und B₃ (6 ³/₄ Monate alter Säugling), so begegnen wir in den beiden unteren Reihen ganz entsprechenden topographischen Unterschieden der Verschwielung wie in der oberen, obwohl doch während des individuellen Lebens die durch Gehen und Stehen bedingten Druckunterschiede in beiden Fällen ganz fortfallen. Die absoluten Maße sind natürlich entsprechend dem Alter der Objekte und dem Druck der auf die Sohle des normalen Fusses (B₁) im Gegensatz zum Klumpfuss (B₂) gewirkt hat, sehr verschieden. So beträgt die mittlere Dicke der Hornschicht der Ferse an der unter-

 $^{^{1}}$) Die Textfiguren B1, B2, B3 sind sämtlich bei derselben, 40 fachen Vergrösserung gezeichnet.

suchten Stelle des normalen Fusses der Reihe B₁ 1,11 mm; an der Ferse des Klumpfusses 0,41 mm; an der des Säuglings 0,25 mm. Die Unterschiede in der Verschwielung entsprechen sich aber in auffallend hohem Grade, wie der Vergleich der drei Kurven Textfig. C zeigt, in denen die mittlere Dicke der Hornschicht an Ferse, Fussgewölbe, Ballen, 1. Glied und Beere der grossen Zehe 1) in der oberen Kurve für den normalen Fuss der 50 jährigen Frau, in der mittleren für den Klumpfuss, der unteren für den 6 3/4 Monate alten Säugling eingetragen ist. Beim Klumpfuss und

Fig. C.

Säuglingsfuss entsprechen sich die Verhältnisse in recht hohem Maße. Die Kurve des normalen Fusses unterscheidet sich im wesentlichen nur durch die viel erheblichere Steilheit ihrer Gefälle von den beiden anderen, und diese Eigentümlichkeit ist ohne jeden Zweifel auf den Einfluss des Druckes beim Gehen und Stehen

¹) Die Kurven sind so angelegt, dass die Abstände zwischen den fünf Punkten gleich genommen worden sind, die wirkliche topographische Lage der Punkte also im Schema keine Berücksichtigung gefunden hat.

zurückzuführen, dem sowohl die Sohle des Klumpfusses als auch des Säuglingsfusses dauernd entzogen geblieben ist.

Bei dem normalen Fuss der 50 jährigen Frau, dessen Verschwielungsverhältnisse in Textfig. B₁ dargestellt und der Kurve C1 zugrunde gelegt sind, ist die mittlere Dicke der Hornschicht über dem Cap. ossis metatarsi I und in den distalen Abschnitten des Endgliedes der grossen Zehe etwa gleich. An anderen Füssen übertrifft die Verschwielung der Ballengegend diejenige des Endes der Zehenbeere bisweilen nicht unerheblich. An den Füssen. deren Sohlenfläche während des individuellen Lebens keinem funktionellen Druck ausgesetzt war (Klumpfuss, Sänglingsfüsse). finde ich dagegen durchgehends die Hornschicht über den Enden der Zehenbeeren ein klein wenig dicker als in der Ballengegend. Die Unterschiede sind allerdings nur sehr gering: Verhältnis etwa wie 10:8 bis 10:9. Immerhin fand ich in allen untersuchten Füssen dieser Art das Verhältnis zuungunsten der Ballenverschwielung verschoben. Diese einzige, noch dazu sehr kleine Unstimmigkeit in den Verschwielungsverhältnissen der funktionsbeeinflussten Sohlen einerseits, der funktionslosen andererseits glaube ich auf den oben schon bereits behandelten Umstand zurückführen zu dürfen, dass die übermässige Verschwielung der Ballengegend eine Folge des beständigen Gebrauchs von ledernem Schuhwerk ist, und dass man höchst wahrscheinlich in diesem Punkte beim funktionierenden Fusse andere Verhältnisse finden wird, wenn man statt der Städter Menschen untersucht, die wie die bäuerliche Bevölkerung in manchen Gegenden mit Vorliebe. oder wie viele Naturvölker stets barfuss geht.

In allen übrigen Beziehungen begegnet man aber einer getreuen, wenn auch quantitativ abgeschwächten Widerspiegelung der Verschwielungsverhältnisse der funktionierenden Sohle bei der nicht funktionierenden des Klumpfusses oder Säuglingsfusses. So z. B. auch in den Verschwielungsverhältnissen der einzelnen Zehenglieder. Das erste Glied der grossen Zehe berührt beim funktionierenden Fuss noch in einem streifenförmigen Bezirk leicht den Boden und zeigt dementsprechend eine mässige Verschwielung, die sich zu derjenigen der Grosszehenbeere etwa verhält wie 1:2. Die ersten und Mittelglieder der übrigen sind dagegen durch die stärkere Einkrümmung dieser Zehen der direkten Berührung mit der Unterlage entzogen, ihre Hornschicht ist infolgedessen nicht

verdickt und entspricht etwa derjenigen des Fussgewölbes, so dass sie zu dem der Zehenbeeren in einem Verhältnis von 1:4 bis 1:5 steht. Ganz dasselbe spiegelt sich, wiederum natürlich in entsprechender Abschwächung, in den Verhältnissen der Verschwielung der einzelnen Zehenglieder bei Säuglingen wieder, und auch bei ihnen ist die Dicke der Hornschicht der proximalen Glieder der zweiten bis fünften Zehe nur gleich derjenigen des Gewölbes, zuweilen sogar noch etwas geringer, während sie an dem ersten Glied der grossen Zehe die des Gewölbes nicht unerheblich (bei dem in Textfig. B3 dargestellten Säugling z. B. um 3 10) zu übertreffen pflegt.

Was endlich die Verschwielung der Endglieder selbst, der sogenannten Zehenbeeren anlangt, so ist dieselbe am normalen funktionierenden Fuss in den distalen Abschnitten stets am stärksten ausgesprochen, was ohne Zweifel darauf zurückzuführen ist, dass die Abstossung des Körpers beim Akte des Gehens und Laufens von den Spitzen der Zehen, besonders der grossen Zehe aus erfolgt. Sagittalschnitte durch die Haut der Zehenbeeren zeigen nun auf das deutlichste auch dieses distale Anwachsen der Dicke der Hornschicht am Fusse des Säuglings vorgebildet. Dasselbe liess sich am Klumpfuss nachweisen. Ebenso fand ich bei den Säuglingen eine von der Beere der ersten bis zur Beere der fünften sukzessiv fortschreitende Abnahme der Verschwielung, wie sie sich ebenfalls am normal funktionierenden Fuss ausprägt.

Nur beim Klumpfuss fand ich die Beere der fünften Zehe, in geringerem Maße auch der vierten Zehe, stärker verschwielt als die der übrigen Zehen. Dieses zunächst unverständliche Ausnahmeverhältnis erklärt sich aber leicht durch die statischen Verhältnisse, die in diesem besonderen Falle vorliegen und von denen man sich durch Betrachtung der Textfig. A, S. 182, unterrichten kann. Beim Stehen und Gehen stützte sich dieser Fuss einerseits auf die Talusschwiele, andererseits auf die Schwielen am Rücken besonders der fünften und vierten Zehe. Dabei wurde die laterale distale Kante der Sohle stark gegen die Beere der fünften, weniger gegen diejenige der vierten Zehe gepresst, und der Druck, der beim Stehen und Gehen beständig auf diese Stellen einwirkte, hat hier zu einer mässigen lokalen Verdickung der Hornschicht geführt. Dass dies sich wirklich so verhält, konnte ich dadurch sicherstellen, dass ich die Stelle der Sohle untersuchte, die

gegen die betreffende Stelle der Zehe gepresst wurde und natürlich demselben Druck unterlag. Auch an dieser Stelle fand ich eine rein lokale Steigerung der Verschwielung.

Der vorliegende Abschnitt hat gezeigt, dass die topographischen Dickenunterschiede an der Sohle und der Unterfläche der Zehen in allen ihren wesentlichen Zügen und nur in etwas abgeschwächten Proportionen sowohl am Fusse junger Säuglinge, als auch beim kongenitalen Klumpfuss, also unter Verhältnissen anzutreffen sind, in denen die Funktion im individuellen Leben noch keinen Einfluss ausgeübt haben kann. Diese Unterschiede sind also bereits erblich determiniert. Dieser Schluss wird noch durch die Resultate des folgenden Abschnittes in hohem Maße bekräftigt werden, in dem wir untersuchen wollen, wie denn der im individuellen Leben fortgesetzt ausgeübte Druck auf nicht prädestinierte Hautstellen (z. B. Fussrücken) wirkt, und welche Erscheinungen wir umgekehrt an den prädestinierten Hautstellen beobachten, wenn der normalerweise ausgeübte Druck fortfällt. Wir werden dabei Gelegenheit haben, auch auf die Epithelverhältnisse und auf das äussere Relief, sowie auf Struktureigentümlichkeiten der Hornschicht beim Klumpfuss und bei den Säuglingsfüssen näher einzugehen, die wir bisher noch nicht berücksichtigt haben.

Hier finde zum Schluss noch ein möglicher Einwand kurze Erwähnung, dem ich besondere Aufmerksamkeit zugewendet habe. Man könnte sagen, vom Augenblick der Geburt an, also auch beim Säugling, unterliege der Fuss allerlei Druckreizen, und es müsse erst bewiesen werden, dass ihre Beteiligung an den geschilderten Unterschieden der Verschwielung der Säuglingssohle auszuschliessen sei. Dies lässt sich nun in der Tat beweisen. Die Abstufungen in der Verschwielung entsprechen, wie wir gesehen haben, genau den Druckunterschieden beim Stehen und Gehen, Druckunterschiede, die für die Sohlen von 6-7 Monate alten Säuglingen, die ich besonders genau untersucht habe, überhaupt nicht in Frage kommen. Die Druckreize, die die Sohlen der Säuglinge treffen, sind in der Regel nur schwache, vorübergehende und topographisch ganz anders abgestufte. Säuglinge, die die Gewohnheit haben, ihre Füsse aneinander zu wetzen. Ich habe mir über dieses Wetzen von pådiatrischer Seite Auskunft geholt, und Herr Dr. E. Aschenheim hat die

Güte gehabt, darüber im städtischen Säuglingsheim in Dresden Beobachtungen anzustellen. Nur bei einer Minderzahl der Säuglinge, es sind das besonders neuropathisch veranlagte Individuen oder solche mit leicht verletzlicher Haut ("exudative Kinder") mit wahrscheinlich vermehrtem Juckreiz, beobachtet man das Aneinanderwetzen der Füsse. Es handelt sich dabei natürlich auch nicht um einen einigermassen beständigen, gleichmässigen Druck der allein erfahrungsgemäss zur Verschwielung führt, sondern um ein dem Kratzen ähnliches Schaben und Jucken, das ganz andere Wirkungen ausübt, die Hornschicht abreibt, Entzündungserscheinungen hervorruft und nicht selten zu einem Dekubitus der Haut an der medialen Seite des Fusses und besonders der inneren Seite der Knöchel führt. Dazu kommt, dass die Haut des Fussgewölbes davon viel stärker betroffen wird als der ganze laterale Fussrand. Letzterer zeigt sich aber beim Säugling stets ungleich stärker verschwielt (Hornschicht durchschnittlich doppelt so dick) als das Gewölbe. Das Wetzen kann also unmöglich für diejenige Abstufungen der Verschwielung der Sohle des Säuglings, die wir kennen gelernt haben, verantwortlich gemacht werden. Seltener als dieses Aneinanderwetzen der Füsse findet bei gewissen Säuglingen beim Schreien ein Anstemmen der Füsse gegen die Unterlage statt. Der auf diese Weise ausgeübte Druck findet aber erstens gegen ein weiches, nachgiebiges Widerlager statt, ist an sich nur ein schwacher und vorübergehender und erfolgt ebenfalls in einer mit den in Frage kommenden topographischen Abstufungen nicht korrespondierenden Weise. Die Spitzen der Zehenbeeren z. B., welche im Säuglingsalter nächst der Ferse die stärkste Verschwielung aufweisen, werden von ihm so gut wie gar nicht betroffen. Ebenso ausschlaggebend für die Beurteilung ist ferner. dass dieses eigentümliche Gebahren nur bei einer sehr kleinen Zahl (5-6%) der Säuglinge beobachtet wird, während sich die geschilderten Abstufungen der Verhornung bei allen Säuglingen fanden, die ich daraufhin untersucht habe.

Wir finden also, dass keine im individuellen Leben der Säuglinge erfolgenden äusseren Einwirkungen für die Abstufungen der Verschwielung der Sohle, wie wir sie aufgefunden haben, verantwortlich gemacht werden können. Diese Abstufungen, die genau den Druckverhältnissen beim Stehen und Gehen entsprechen, aber lange vor Beginn dieser Funktionen auftreten und sich an der Sohle des Klumpfusses auch beim dauernden Ausbleiben dieser Funktionen erhalten, verdanken demnach erblich übermittelten Dispositionen ihre Entstehung.

Dritter Abschnitt.

Die unmittelbare Wirkung der Funktion und die Folgen des Ausbleibens der Funktion.

Um die unmittelbare Wirkung eines starken und sehr häufig wiederholten Druckes auf Hautstellen zu studieren, denen keine erbliche Tendenz zur Verschwielung innewohnt, wäre es am einfachsten, sich des Experiments zu bedienen. Das Experiment im gewöhnlichen Sinne mit nachfolgender anatomischer Untersuchung kann jedoch für unser Untersuchungsobjekt, die menschliche Haut. nicht in Frage kommen. Glücklicherweise besitzen wir aber gerade in diesem Falle in häufig vorkommenden "Naturexperimenten" einen Ersatz, der das planvoll vom Menschen durchgeführte Experiment gleichwertig ersetzt und jedenfalls auf die von uns zu stellenden Fragen durchaus bestimmte und eindeutige Antworten gibt. Wir wissen längst, dass an Hautstellen, die einem starken und beständig wiederholten Druck ausgesetzt sind. Schwielenbildungen entstehen. Ist dieser Druck einseitig auf einen verhältnismässig sehr kleinen Bezirk beschränkt, so bildet sich eine lokalisierte zapfenförmige Verdickung der Hornschicht von eigenartiger sehr harter Beschaffenheit, die bei stärkerer Entfaltung stempelförmig auf die unter ihm liegende Epidermisschicht und den Papillarkörper drückt, sekundar zu ihrer Abplattung führt, die Cutis zum Schwinden bringt, so dass es sogar zu ihrer Perforation kommen kann. Würde man solche Gebilde, die bekanntlich als Hühneraugen. Clavi, bezeichnet werden, in statu nascendi untersuchen, was meines Wissens bisher noch nicht geschehen ist, so würde man sicherlich als Ausgangspunkt keine Abplattung, sondern eine Verdickung des unverhornten Epithels an der betreffenden Stelle finden. Übrigens wird für die Peripherie des Clavus eine solche Verdickung des Rete Malpighi und Papillarkörpers gelegentlich angegeben.

Wichtiger für die uns beschäftigenden Fragen ist das Naturexperiment eines dauernden nicht zirkumskripten Druckes auf eine derartige Hautstelle. Wir wissen, dass sich dann unscharf begrenzte nicht schmerzhafte Schwielen bilden. Über die genauere Beschaffenheit derselben habe ich aber in der pathologischanatomischen Literatur, soweit sie mir zugänglich war, nur unzulängliche, teilweise sogar direkt irrige Angaben gefunden, so z. B. die Behauptung, in solchen Schwielen seien Epithelleisten und Papillarkörper abgeflacht (vgl. L. Jores in Aschoffs Lehrb. d. path. Anat., 2. Bd., S. 960, 1911).

Da mir diese Angaben nach dem, was ich über die unmittelbare Wirkung des Druckes an der Sohlenhaut in Erfahrung gebracht hatte, äusserst unglaubwürdig erschienen, beschloss ich einige solcher funktionellen Schwielen selbst näher zu untersuchen, wozu mir die Schwielen am Fussrücken, wie man sie bei ausgesprochenen Klumpfüssen findet, die besten Untersuchungsobjekte zu sein schienen, zumal ich vom Vergleich der Sohlenhaut mit der Haut des Fussrückens bei meinen ontogenetischen Untersuchungen ausgegangen war. Hierfür bot sich mir in dem Klumpfüss der Ben daschen Sammlung ein Untersuchungsobjekt, an dem sich alle mich interessierenden Grundfragen in befriedigender Weise beantworten liessen. Bei der Darstellung der Befunde verzichte ich hier wie in den früheren Abschnitten auf ein Eingehen in die feineren histologischen Details, das eine ganz andere Wahl der Vergrösserungen für die Abbildungen bedingt hätte.

Wie schon erwähnt, stützte sich der auf Textfig. A. S. 182 abgebildete Klumpfuss beim Stehen und beim Gehen auf zwei Schwielenbildungen des Fussrückens. Die eine, mächtigere Stützfläche hat ihr kuppelförmig gewölbtes Zentrum über dem Talus, und flacht sich von da ziemlich jäh nach der proximalen und medialen Seite, viel allmählicher nach der distalen und besonders der lateralen Seite hin ab, wo sie sich erst am lateralen Fussrande allmählich verliert. Die grösste Dicke ihrer Hornschicht, die ich gemessen habe, betrug 2,5 mm. Als zweite Stützfläche diente dem Fuss die Schwielenbildung an den Rücken der fünften. vierten und dritten Zehe, die an der fünften und vierten Zehe gut, an der dritten Zehe nur schwach entwickelt ist. Diese drei Schwielenbildungen sind vom statischen Standpunkt aus als eine Einheit aufzufassen; sie sind von der Verschwielung über dem Talus beim Stehen durch das Gewölbe getrennt, das durch die scharfe Knickung im Chopartschen Gelenk entstanden ist (vgl. oben S. 183). Auch die kräftigeren Verschwielungen der fünften und vierten Zehe stehen in ihrer Mächtigkeit weit hinter der Verschwielung des Talus zurück. Die grösste Dicke der Hornschicht, die ich z. B. über der Schwiele der vierten Zehe gemessen habe, betrug 1,1 mm.

In der beistehenden Textfig. D gebe ich einen Schnitt, der die Kuppel der letzteren Schwiele getroffen hat, bei 15 facher Vergrösserung. Dieser Schnitt zeigt auf den ersten Blick, dass Epithelleisten und Papillen nicht etwa entsprechend dem Maximum

Fig. D. Schnitt durch die Schwiele der vierten Zehe des Klumpfusses bei 15 facher Vergrösserung.

des Druckes, ausgedrückt durch die maximale Dicke der Hornschicht, abgeflacht sind, sondern umgekehrt, dass sie in der Kuppe der Schwiele, wo der Druck am stärksten, die Hornschicht am dicksten ist, eine sehr starke Entfaltung zeigen, die gegen die Peripherie hin sukzessive abnimmt und in der äussersten Peripherie in die normalen Verhältnisse der Haut des Fussrückens übergeht. Textfig. E stellt diese Verhältnisse an einem Schnitt durch die Kuppe der Talusschwiele bei derselben Vergrösserung dar. Entsprechend dem viel stärkeren Druck, der hier geherrscht hat und der aus der nahezu doppelt so grossen Dicke der Hornschicht ohne weiteres abzulesen ist, ist hier die Entwicklung des Epithelialleistensystems und mit ihm die Papillenhöhe ganz ausserordentlich viel bedeutender als in der Kuppe der Zehenschwiele. Wir können also aus diesen Befunden das Gesetz ableiten, dass mit der Stärke

des Druckes sowohl die Dicke der Hornschicht als auch die Entfaltung der Epithelleisten in die Tiefe nebst entsprechender Flächenentwicklung der Leisten (Bildung zahlreicher neuer Leisten) proportional zunimmt. Wir werden unten sehen, dass an der Sohle das Walten derselben Gesetzmässigkeit durch Vergleich von

Fig. E. Schnitt durch die Kuppe der Talusschwiele des Klumpfusses bei 15 facher Vergrösserung.

funktionierenden mit nicht funktionierenden Sohlen (Klumpfuss) nachgewiesen werden kann.

Man könnte vielleicht auf den Gedanken kommen, dass es sich bei den Epithelbildungen von Textfig. D und E (vgl. auch

Fig. F. Flächenschnitt durch den Papillarkörper der Talusschwiele des Klumpfusses, aus dem sich der Leistencharakter der gegen das Corium gerichteten Epithelwucherung ersehen lässt. Vergr. 45.

Fig. X auf Taf. X) gar nicht um eine ungeheure Entwicklung des Leistensystems in der Fläche und Tiefe, sondern um ein durch den Druckreiz bedingtes Auswachsen zahlreicher Epithelzapfen in die Tiefe handle. Flächenschnitte durch den Papillarkörper einer Schwiele, besonders wenn sie die freien Enden der Epithelwucherung treffen, wie der in der Textfig. F wiedergegebene, lehren aber ohne weiteres, dass es sich nicht um Epithelzapfen sondern um ein System wirklicher Epithelleisten handelt, das freilich nicht nur ungeheuer viel höher, sondern auch sehr viel engmaschiger geworden ist als das Leistensystem des keiner Druckwirkung unterliegenden Fussrückens.

Wenden wir unsere Aufmerksamkeit von der Unterfläche des Epithels zu der Berührungsfläche zwischen unverhorntem Epithel (Rete Malpighi) und Hornschicht, so sehen wir (vgl. die Textfig. D und E), dass diese Fläche ein eigentümliches Relief besitzt, Berge und Täler bildet, wobei allerdings an Orten hochgradigerer Verschwielung, also besonders in der Kuppe der Schwiele über dem Talus den Faltungen dieser Berührungsfläche nicht mehr eine, sondern eine ganze Anzahl Leisten an der unteren Fläche des Epithels entspricht. Dies ist durch die starke sekundäre Vermehrung der Leisten an Stellen besonders hohen Druckes bedingt. Man findet dasselbe auch an den Fersen normaler Füsse beim erwachsenen Menschen, wie Fig. VIIIsl auf Taf. X zeigt. Das Auftreten solcher sekundärer Leistensysteme, die sich im Relief der Oberfläche des Rete nicht ausprägen, an den Sohlen erwachsener Menschen ist schon seit längerer Zeit bekannt und bedingt eine Komplikation der besonderem Druck ausgesetzten menschlichen Sohle im Gegensatz zu derjenigen der meisten Affen, wo sie meist ganz fehlt oder höchstens angedeutet ist (vgl. z. B. Schlaginhaufen [1905] und Heidenhain [1906].)

Auf Schnitten der Hornschicht der Schwielen, die von ausserordentlicher Härte und Festigkeit ist und dem unverhornten Epithel
auf das festeste anhaftet, nehme ich bei geeigneten Doppelfärbungen eine ähnliche, freilich schwächer angedeutete Streifung
wahr, wie wir sie an der Hornschicht der Sohle im Anschluss
an Unna bereits besprochen haben und wie sie in den Textfiguren B. S. 185 angedeutet worden ist. Auf den Textfiguren D
und E ist diese Streifung ebenfalls angedeutet. An Stellen stärkerer
Verschwielung scheint diese besondere Differenzierung der Horn-

schicht stärker ausgesprochen zu sein als an Stellen schwächerer. Die Richtung der Streifung liegt stets in der Fortsetzung der Leisten, auch da, wo sie gegen die Oberfläche eine etwas schiefe Stellung besitzen. Ich begnüge mich mit diesen Andeutungen, da ich der Frage, die ein genaueres Studium nach Unnascher Methode bedarf, nicht hinreichend Zeit widmen konnte.

Ein ausgesprochenes Oberflächenrelief von einiger Regelmässigkeit nimmt man an den Schwielen bei äusserer Betrachtung mit dem blossen Auge oder der Lupe nicht wahr. Schnitte zeigen, dass immerhin eine leichte Wellung vorhanden ist, die den Wellen der Berührungsfläche zwischen verhorntem und unverhorntem Epithel entspricht (vgl. besonders Textfig. E).

Die Untersuchung der Schwielenbildungen auf dem Fussrücken des Klumpfusses hat ergeben, dass unter der Einwirkung
eines starken, beständig wiederholten Druckes an der Haut des
Fussrückens Veränderungen der gesamten Epidermis, nicht etwa
bloss ihrer Hornschicht eintreten, die — natürlich abgesehen
von der Regelmässigkeit der Leistenanordnung an der Sohle, die
dort von Anfang an gegeben ist und nicht nachträglich am Fussrücken hergestellt werden kann — sonst für die Haut der Sohle
und Hohlhand charakteristisch sind und sie von der Haut des
Fussrückens und anderer Körperteile unterscheiden.

Ehe wir aus dieser Tatsache weitere Schlüsse ziehen, wollen wir nun die Frage untersuchen: Welche Veränderungen finden an der Haut der Sohle statt, wenn von derselben der starke und beständig wiederholte Druck dauernd ferngehalten wird, dem sie vom Ende des ersten Lebensjahres an beim Gehen und Stehen normalerweise ausgesetzt ist? Zum Teil haben wir diese Frage schon im vorigen Abschnitt bei der Beschreibung der Sohle des angeborenen Klumpfusses behandelt, aber wir haben dort mehr auf die Feststellung dessen geachtet, was an solchen Sohlen trotz des Fortfalles der Funktion erhalten bleibt, also was erblich determiniert ist, als auf das, was durch diesen Fortfall verändert wird.

Vergleichen wir die Hornschicht der Ferse des normalen Fusses einer 50 jährigen Frau mit der des Klumpfusses einer 59 jährigen Frau (vgl. Textfig. B₁ und B₂, S. 185), so finden wir die erstere nahezu dreimal so dick als die letztere. Die Dicke der Hornschicht im Fussgewölbe, dessen Kuppel auch beim

normalen Fuss keinem stärkeren Druck ausgesetzt ist, und wo also keine Verschiedenheit des Druckes im individuellen Leben vorhanden war, ist in beiden Fällen die gleiche. Nun hat uns aber die Untersuchung der Schwielenbildung am Fussrücken gelehrt, dass die Stärke einer Verschwielung sich nicht nur durch die Dicke der Hornschicht, sondern auch durch die Proliferation, besonders durch das in die Tiefe Wachsen der Reteleisten ausdrückt. Vergleichen wir die Reteleisten an der Ferse eines normalen erwachsenen Fusses mit denen an der Ferse eines Klumpfusses (Taf. X. Fig. VIII und IX), so sehen wir die letzteren

Fig. G.

Fig. H.

Fig. G. Oberflächenansicht der isolierten Hornschicht von der Ferse des Klumpfusses über dunkelem Grund. Fig. H. Oberflächenansicht des epithelialen Leistensystems, welches von der in Fig. G dargestellten Hornschicht überlagert war, nach Entfernung dieser letzteren. Beide Figuren bei 13 facher Vergrösserung.

in allen ihren Dimensionen äusserst stark reduziert, was in vollem Einklang zu dem bei der Schwielenuntersuchung gewonnenen Ergebnis steht. Leidlich erhalten sind in der Sohlenhaut des Klumpfusses nur noch die Drüsenleisten.

Textfig. H zeigt das Leistensystem der Ferse des Klumpfusses, wie es im Oberflächenbild an einem gefärbten Präparat nach Entfernung der Hornschicht zutage tritt. Die Hornschicht, die über diesem Stück gelegen hat, ist in Textfig. G dargestellt. Auf dem die Leisten darstellenden Bild sehen wir die verhältnismässig leidliche Erhaltung der Drüsenleisten, an die sich seitlich schwächere Quer- und Längsleisten angliedern. Von typischen Faltenleisten kann man überhaupt nicht mehr sprechen. Die Falten sind verstrichen und es hat nicht nur eine Volumenverkleinerung, sondern auch eine Art Auflösung des zu den Falten gehörigen Leistensystems stattgefunden, welches in der Sohle des normalen Fusses eine so deutliche Ausprägung und grosse Regelmässigkeit besitzt.

An dem Epithel der Hautdecke können wir drei Flächen unterscheiden, die sich durch ein verschiedenartiges Relief auszeichnen: 1. die Grenzfläche gegen das Corium mit ihren in letzteres dringenden Leisten; 2. die Berührungsfläche von unverhorntem Epithel (Rete Mapighi) und von Hornschicht; 3. die freie Oberfläche der Hornschicht. Was die erstgenannte dieser Flächen anlangt, so ist ihr Relief an der Sohle des Klumpfusses durch den starken Schwund der in das Corium vorspringenden Leisten, den wir eben behandelt haben, naturgemäss sehr verflacht. An der Berührungsfläche von Rete und von Hornschicht ist durch den Schwund der Blaschkoschen Faltenleisten das Relief fast ganz verschwunden und die kleinen Einkerbungen, die man hie und da wahrnimmt, entsprechen nicht diesen Faltenleisten, sondern den Mündungen der Ausfuhrgänge der Schweissdrüsen, ihrem Übergang in die Schweissporen der Hornschicht. An dieser Stelle bildet auch an der normalen Sohle das unverhornte Epithel einen kleinen abgeflachten Krater, und diese Bildung erhält sich an der der Funktion entzogenen Sohle des Klumpfusses, während, wie wir gesehen haben, die Blaschkosche Falte, die die Hauptbildnerin des Reliefs dieser Fläche an der normalen funktionierenden Sohle sowie auch an der Sohle des Säuglings darstellt, so gut wie ganz schwindet. Durch das

Schwinden dieser Falte wird endlich ein beinah völliger Schwund des Reliefs an der freien Oberfläche des Klumpfusses bedingt. Die nahezu ebene Beschaffenheit dieser Fläche wird nur durch die kleinen Dellen unterbrochen, in deren Zentrum die Schweissporen nach aussen münden.

Ich möchte an dieser Stelle darauf aufmerksam machen, dass mit dem eben geschilderten Verlust des Reliefs bei dauerndem Ausfall der Funktion auch Dinge verloren gehen, die sowohl beim Fötus als auch beim Säugling angelegt und ausgebildet werden. Wie wir sahen, wird die Blaschkosche Faltenleiste schon früh im Fötalleben angelegt, in der 30. Woche bedingt ihre Faltenform bereits eine sehr charakteristische Reliefbildung an der Berührungsfläche des unverhornten und verhornten Epithels (Tafel VIII. Fig. III pl2), und bei noch älteren Föten hat sich auf dieser Grundlage bereits ein typisches Relief der freien Oberfläche der Hornschicht gebildet (Taf. IX. Fig. IVpl). Auf der gleichen Grundlage bildet sich, nach Abstossung der im fötalen Leben gebildeten Hornschichten nach der Geburt, das gleiche Relief der freien Oberfläche der Hornschicht von neuem. So finde ich die Verhältnisse bei Säuglingen bis zum Beginn der Funktionen des Gehens und Stehens. Unter dem Einfluss dieser Funktionen vollzieht sich nun, wie ich durch Vergleich dieser Verhältnisse bei Kindern aus den ersten Lebensjahren mit älteren Kindern (4 und 7 Jahre) und Erwachsenen finde, eine ausgesprochene Steigerung der Reliefbildung. Wie nun die Verhältnisse am Klumpfuss uns lehren, bleibt die Reliefbildung bei Ausbleiben der Funktion nicht einfach auf der vor Einwirkung der individuellen Funktion erreichten Höhe stehen, sondern sie geht gegen das im Fötal- und Säuglingsleben Erreichte zurück. Ein Befund, den ich an einem Kind von 1 Jahr 7 Monaten gemacht habe, bei welchem wegen hochgradiger Schwäche Geh- und Stehversuche lebenslänglich fast ganz unterblieben waren, bestätigt dies. Die Blaschkoschen Falten befinden sich in diesem Falle bereits im Zustande ungewöhnlicher Abflachung. und das Relief der ausseren Oberfläche ist ausserordentlich viel niedriger als bei Säuglingen, die 1 Jahr jünger sind als dieses Kind. Das Aussenrelief ist also zwar eine erblich übermittelte Mitgift, zu seiner Erhaltung bedarf es aber von der Zeit an, in welcher normalerweise der funktionelle Reiz einzuwirken pflegt, der individuellen Einwirkung dieses Reizes, sonst geht die

auf Grund der erblichen Disposition entstandene Bildung wieder verloren. 1)

Wir haben zum Schluss noch zu untersuchen, ob sich in der Struktur der Hornschicht bei dauerndem Ausfall des normalerweise wirkenden Druckes Veränderungen bemerklich machen. Schon beim Abtasten zeigt es sich, dass die Hornschicht der Ferse. Ballen und Zehen des Klumpfusses nicht nur dünner, sondern auch weniger hart ist als die entsprechende normaler Füsse. Dass sie auch weniger widerstandsfähig ist als die absolut dünnere der Säuglinge, ergibt sich beim Anfertigen mikroskopischer Schnitte. Sie zerfällt beim Schneiden entschieden leichter in einzelne parallele Schichten als jene, ist aber dabei doch auch wieder viel widerstandsfähiger als die normale Hornschicht des Fussrückens und zeichnet sich vor letzterer auch durch gleichmässigere Schichtung aus. Was die von uns mehrfach (S. 177, 196) erwähnte Streifung der Hornschicht der Sohlen normaler Füsse anlangt, die bei Säuglingen und Erwachsenen sowohl bei Anwendung von gewissen Doppelfärbungen als auch bei entsprechender Behandlung mit Osmiumsäure so deutlich hervortritt und in der sich das ausdrückt, was Unna als polare Differenzierung der Hornschicht der Sohlenhaut bezeichnet, so nahm ich eine solche Streifung bei gleicher mikrochemischer Behandlung zunächst nicht wahr. Durch einen gleich zu besprechenden Befund bei Oberflächenbetrachtung vorsichtig gemacht, sah ich sie schliesslich doch. wenn ich stärkere Färbungen anwandte und vor allem die Beleuchtung von unten in hohem Grade abschwächte. Diese Differenzierung ist also immer noch vorhanden, aber viel weniger scharf ausgesprochen als an der normalen Sohle.

Eine genauere mikrochemische Untersuchung habe ich nicht angestellt, will aber noch etwas näher auf den Befund bei Oberflächenbetrachtung eingehen, der in verschiedener Beziehung lehrreich ist. Betrachtet man die Sohle des Klumpfusses mit blossem

¹) Eine ähnliche Abhängigkeit der Ausbildung erblicher Anlagen von bestimmten äusseren Reizen und eine ähnliche Rückbildung von bereits Angelegtem bei völliger Ausschaltung der betreffenden Reize beobachten wir auch in anderen Fällen. So legt sich nach Kammerer (1912) im Auge des Olms, Proteus anguinus, zwar regelmässig eine Linse an, diese Anlage bildet sich aber bei dauerndem Fernbleiben aller Lichtreize wieder zurück, während sie zu voller Ausbildung gelangt, wenn man eine dauernde Belichtung des Auges zwangsweise durchführt.

Auge oder der Lupe, so nimmt man an ihr eine deutliche Streifung wahr, die topographisch ganz derjenigen entspricht, welche wir von den Sohlen normaler Füsse kennen und gewöhnlich (nicht sehr glücklich) als Papillarlinien bezeichnen. Beim normalen Fuss wie bei der normalen Hand sind dieselben ein Ausdruck des Reliefs der äusseren Haut. Ein solches Relief fehlt aber doch, wie wir gesehen haben, an der Sohle des Klumpfusses! Man könnte nun zunächst daran denken, dass das Bild der Streifung durch die unter der Hornschicht durchschimmernden Epithelleisten des Rete Malpighi hervorgerufen sein könnte.

Diese Möglichkeit wird ohne weiteres durch die Betrachtung der beiden in den Textfig. G und H (S. 198) dargestellten Präparate ausgeschlossen. Textfig. G gibt die abpräparierte Hornschicht wieder, die über dem unverhornten Teil der Haut gelegen hat. Das genau entsprechende Stück dieses letzteren ist nach Boraxkarminfärbung und bei starker Aufhellung in Textfig. H abgebildet. Die Streifung, die man bei Betrachtung der Sohlenhaut in situ wahrnimmt, ist dieselbe, die auf Textfig. G, dem Bilde der isolierten Hornschicht, zum Ausdruck kommt. Sie hat nicht das mindeste mit der Streifung von Textfig. H zu schaffen, die von total anderer Beschaffenheit ist und zudem nur an gefärbten Präparaten und bei entsprechender Aufhellung zutage tritt, in situ also gar nicht wahrgenommen werden kann.

Die Streifung der Hornschicht, wie wir sie in Textfig. G sehen, wird unsichtbar bei starker Aufhellung, weshalb ich ihre Beobachtung in Wasser vornahm und die Präparate nicht in Balsam, sondern in Glycerin konservierte. Nimmt man ein solches Präparat und hält es über einen schwarzen Grund, so erscheinen die Streifen, welche die Mündungen der Schweissdrüsenporen tragen, hell, die Zwischenstreifen dunkel; hält man es über einen hellen Hintergrund, wie dies bei der Zeichnung Textfig. G geschehen ist, so dreht sich dieses Verhältnis um. Die Drüsenstreifen erscheinen dunkel, die Zwischenstreifen hell. Daraus ergibt sich ohne weiteres, dass die Zwischenstreifen das Licht besser durchlassen als die Drüsenstreifen, dass sie durchsichtiger sind. Unnas "polare Differenzierung" der Hornschicht der Sohle manifestiert sich also nicht nur in einer verschiedenen chemischen Zusammensetzung der Zellen, welche die Hauptmasse der Drüsenstreifen und der Zwischenstreifen bilden, sondern auch

in einem verschiedenen optischen Verhalten der beiden Arten von Streifen.

Oberflächenbilder, wie das in Textfig. G dargestellte, kann man auch von den Sohlenflächen vorgeschrittener Embryonen erhalten, besonders in der Zeit vor Auftreten eines ausgesprochenen Reliefs. (Durch ein solches kommt ein neues und deshalb verwirrendes Element in die Bilder.) Es erscheint mir beinahe als sicher, dass Whipple (1904, Textfig. 27, S. 309) solche durch die Struktur der Hornschicht bedingte Bilder bei älteren Embryonen vor sich gehabt hat. Natürlich dürfen dieselben, wie oben (S. 168) ausgeführt, nicht als Beweise für eine diskontinuierliche Entstehung der Reteleisten herangezogen werden.

Die Hauptergebnisse der im vorliegenden Abschnitt mitgeteilten Untersuchungen können wir kurz in folgenden Sätzen zusammenfassen. Bei starkem und andauerndem Druck auf Hautstellen, die normalerweise keinem solchen Druck ausgesetzt sind, (z. B. Fussrücken), vollzieht sich eine Annäherung der Hautstruktur an die Strukturverhältnisse in Sohle und Hohlhand. Bei Fortfall des normal beim Stehen und Gehen auf die Sohle ausgeübten Druckes vollzieht sich umgekehrt eine Annäherung ihrer Hautstruktur an die Verhältnisse, wie wir sie z. B. am Fussrücken finden: und zwar betrifft diese Annäherung alle Struktureigentümlichkeiten und erstreckt sich nur nicht auf die Anordnung der primären Reteleisten (Drüsenleisten), während die sekundären Reteleisten (Faltenleisten) einer teilweisen Rückbildung und Auflösung anheimfallen. Wir können auch sagen: jeder fortgesetzte Druck, ganz gleich ob er Sohle und Hohlhand oder andere normalerweise nicht einem solchen Druck ausgesetzte Hautstellen trifft, bewirkt eine mit seiner Stärke zunehmende Verschwielung, die sich ausdrückt, erstens in einer Verdickung und eigenartiger Differenzierung der Hornschicht, zweitens in einer entsprechend starken Tiefenentwicklung der Leisten des Rete Malpighi sowie einer Vermehrung der Zahl dieser Leisten. In genau entgegengesetztem Sinne wirkt der Fortfall des normalerweise auf die Fußsohle wirkenden Druckes. Bemerkenswert ist in diesem Falle ferner das Schwinden des bereits auf Grund erblicher Disposition gebildeten Reliefs und das Schwächerwerden der streifigen Differenzierung (polare Differenzierung Unnas) der Hornschicht.

Schluss.

Wir haben gefunden, dass die Verschwielung mit allen ihren charakteristischen Eigentümlichkeiten während des individuellen Lebens von der Stärke des häufig auf die Haut ausgeübten Druckes abhängig ist, proportional mit diesem steigt und fällt. Dies gilt genau so für die Sohle und die Hohlhand wie für alle übrigen Teile der Haut. Übt man durch vieles Rudern einen besonderen Druck auf die Ballen des zweiten bis fünften Fingers aus, so nimmt dort an bestimmten Stellen die Verschwielung zu; spielt man sehr viel Klavier, so verstärkt sie sich an der Spitze der Fingerbeeren, macht man häufige und grosse Fusstouren, so wächst sie an der Ferse, den Ballen (besonders dem Grosszehenballen) und den Zehenbeeren. Aber schon das gewöhnliche Stehen und Gehen, wie es das tägliche Leben mit sich bringt, genügt, um einen Zustand der Verschwielung unserer Sohle und Zehen hervorzurufen, der in seiner topographischen Abstufung genau der Abstufung des die verschiedenen Punkte verschieden stark treffenden Druckes entspricht. Wir haben also die Abstufung in der Verschwielung der Sohle als das Produkt der verschieden starken funktionellen Beeinflussung aufzufassen.

Wenn nun, wie wir gesehen haben, eine ganz entsprechende und nur in ihren Proportionen abgeschwächte Abstufung in der Verschwielung ontogenetisch bereits vor Einwirkung der Funktion auftritt und sich bei dauerndem Ausbleiben des normalen Druckes (Klumpfuss) abgeschwächt bis in das späte Lebensalter erhält, so ist dies ein Fall, in welchem man mit dem höchsten Grade von Wahrscheinlichkeit auf die Vererbung eines lediglich durch die Funktion herausgebildeten Komplexes von Charakteren schliessen kann, ein Fall, der gerade deshalb so beweisend ist, weil die feinen, rein graduellen Unterschiede der Funktionswirkung sich so getreulich in den graduellen Unterschieden der erblichen Verschwielungsdispositionen widerspiegeln.

Dass hier der von Weismann mit Vorliebe vorgebrachte Zuchtwahleinwand nicht stichhaltig ist, liegt auf der Hand. Denn vom Standpunkt der Nützlichkeit, also des Selektionswertes aus, sind diese Dispositionen zumal in ihrer feinen Abstufung bedeutungslos. Auch ohne sie würde sich, wie besonders meine Untersuchung der funktionellen Schwielen des Fussrückens gelehrt hat, lediglich durch die individuelle Funktionswirkung derselbe

Zustand herstellen, wie wir ihn beim gehenden Menschen realisiert finden. Notwendig ist nur, dass zur Zeit der ersten Gehversuche die Haut der Sohle eine Stärke der Hornschicht besitzt, die dem Maximum der an sie gestellten Ansprüche genügt. Die Ausbildung aller der mit der späteren funktionellen Inanspruchnahme korrespondierenden Abstufungen schon vor Beginn der Funktion lässt sich also vom Nützlichkeitsstandpunkt aus nicht erklären. Dies ist daher ein Fall, in dem wie bei der erblichen Disposition mancher Pflanzen, ihre Schlafbewegungen in einem 12:12 stündigen Rhythmus auszuführen, die Bedeutungslosigkeit der erblichen Disposition es unmöglich macht, ihren Erwerb auf Zuchtwahl zurückzuführen (vgl. meine diesbezüglichen Ausführungen 1912, S. 21).

Man könnte gegen die hier vertretene Auffassung ferner noch einwenden, es sei eine altbekannte Tatsache, dass sich Organe ontogenetisch, bevor sie in Gebrauch genommen würden, schon fix und fertig anlegten und die hier von mir geschilderten Befunde sagten im Grunde nichts Neues. Auch jedes Gelenk erhielte ontogenetisch, noch bevor es funktioniere, eine Ausbildung, die dem späteren Zustand im wesentlichen entspräche. Wenn man also annähme, dass die Gelenke stammesgeschichtlich rein funktionell entstanden seien, so könne man aus dieser längst bekannten Tatsache einen Beweis für Vererbung funktioneller Vererbungen ebensogut herauslesen, wie aus meinen hier mitgeteilten Befunden. Dasselbe gelte für den Nagel, den Huf und zahlreiche andere Organe, die schon vor Beginn ihrer Funktion in der Ontogenese gebrauchsfertig angelegt würden.

Hier ist aber ein wichtiger Unterschied übersehen. Aus der frühen ontogenetischen Anlage eines Gelenks lässt sich ein strikter Beweis für die Vererbung funktioneller Erwerbungen deshalb nicht führen, weil die Annahme der rein funktionellen Ausbildung der Gelenke in der Stammesgeschichte sich durchaus nicht mit Sicherheit beweisen lässt. Die vergleichende Anatomie lehrt uns, dass die phylogenetische Entwicklung unserer Gelenke bis auf die Amphibien, zum Teil bis auf die Fische zurückgeht und jedes Gelenk also eine ungeheuer lange stammesgeschichtliche Entwicklung hinter sich hat. Wenn nun auch bei derselben meiner Ansicht nach funktionelle Einflüsse die Hauptrolle gespielt haben (im Gegensatz zu manchen gelenkartigen Bildungen anderer Ge-

schöpfe, z. B. der Insekten), so ist es doch sehr wohl möglich, dass während dieser langen geschichtlichen Entwicklung auch andere Faktoren eine Rolle gespielt haben, vor allem die Auslese unter Mutationen, die auf Grund anderer, nicht gerade funktioneller Einwirkungen aufgetreten sein können, die aber zufällig Selektionswert besassen. Ob diese Annahme sehr wahrscheinlich ist, will ich hier nicht erörtern. Sie lässt sich aber jedenfalls nicht ohne weiteres ausschliessen, und deshalb ist dieser Fail kein reiner, und ist als strenger Beweis für die Vererbung einer funktionellen Einwirkung bis auf weiteres ungeeignet. Ganz ähnlich liegen die Dinge beim Nagel oder beim Huf.

Durchaus verschieden aber liegen die Dinge in unserem Falle, bei dem jene Zweifel ganz fortfallen. Die Geschichte der Erwerbung ist in diesem Falle eine verhältnismässig kurze und leicht zu übersehende, weil die Abstufungen, wie sie uns vorliegen, auf den Menschen beschränkt sind und mit dessen aufrechtem Gange und der in seinem Gefolge auftretenden Ausbildung eines Fussgewölbes zusammenhängen. Eine ausgeprägte Gewölbstruktur fehlt auch dem Fusse der anthropoiden Affen. Besonders wichtig ist es, dass in unserem Falle die Möglichkeit ganz fortfällt, die Auslese unter Mutationen von anderweitiger, nicht funktioneller Provenienz habe dabei eine Rolle gespielt. Denn wie wir gesehen haben, kann von einem Selektionswert dieser Abstufung der Dispositionen keine Rede sein. Die Dinge liegen also nicht etwa so, dass sich die Bedeutung dieses einfach und klar liegenden Falles durch den Hinweis auf jene viel verwickelter liegenden des Gelenks, des Nagels oder Hufs erschüttern lässt, sondern umgekehrt so, dass der einfachere und reinere Fall Schlüsse zu ziehen gestattet, welche nicht den Einwänden unterliegen, die man bei jenen machen könnte.

Wer ohne Vorurteil an die uns beschäftigende Frage herantritt, wird mir, wie ich glaube, Recht geben, wenn ich behaupte, dass hier der Beweis für die erbliche Fixierung einer funktionellen Erwerbung im Laufe langer Zeiträume und zahlreicher Generationen soweit geführt ist, wie er sich auf nicht experimentellem Wege überhaupt führen lässt. Die experimentelle Behandlung der Frage nach der Vererbung rein funktioneller Erwerbungen hat mit der besonderen Schwierigkeit zu kämpfen, dass bei der Schwäche gerade der funktionellen Erregungen ausserordentlich lange Zeit-

räume und entsprechend lange Generationsreihen erforderlich sind, um einen merklichen Ausschlag zu erzielen. Bisher liegen, wie ich in meiner zusammenfassenden Behandlung des ganzen Problems (1912, S. 165) ausgeführt habe, erst ganz schwache und unzureichende, weil viel zu kurz bemessene Ansätze zur experimentellen Behandlung dieser Unterfrage vor. Dagegen hat das Experimentieren mit stärkeren äusseren Reizen, das in viel kürzeren Zeiträumen schon deutliche Ausschläge zu erzielen vermag, bereits eine grosse Anzahl positiver Ergebnisse geliefert. Geduld, passende Auswahl der Objekte und Verfeinerung in der Ablesung der Ausschläge wird aber früher oder später auch diese Lücke ausfüllen.

Ich habe mich in der vorliegenden Arbeit darauf beschränkt. die menschliche Sohle einer näheren Untersuchung zu unterziehen, und diese Untersuchungen haben zu einer vollständigen Widerlegung der von Shattock aufgestellten Behauptungen (s. oben S. 165) geführt, die sich in bezug auf die Vergleichung von Hohlhand und Fußsohle mit der Rückenhaut dieser Extremitäten auf ein ganz unzureichendes Beobachtungsmaterial stützen. Ebenso unzulänglich ist Shattocks Beobachtungsmaterial aber auch in bezug auf anderweitige Schwielenbildungen (Sternal- und Extremitätenschwielen beim Kamel, Carpalschwielen bei der Giraffe). Ich habe das bereits früher (1912, S. 29-31) auseinandergesetzt und hatte ursprünglich die Absicht, in der vorliegenden Arbeit, die die Verschwielung der Sohle zum Thema hat, darauf näher einzugehen. Ich halte dies aber nunmehr für überflüssig, da aus meinen Untersuchungen zu deutlich hervorgeht, wie nichtssagend der Befund der Untersuchung eines einzelnen beliebig herausgerissenen Stadiums ist, selbst wenn diese Untersuchung viel eingehender und vollständiger wäre als diejenige Shattocks bei Macacus. Ich halte es für sicher, dass wenn beispielsweise die Schwielenbildungen beim Kamel in ihren verschiedenen Phasen wirklich anatomisch untersucht werden würden (Shattock hat anatomisch nur ein einziges Stadium beim Kamel untersucht, bei dem er übrigens die Gegend der späteren Sternalschwiele durch die Ausbildung eines ansehnlichen subkutanen Fettpolsters vorbezeichnet fand), dass dann eine solche Untersuchung die erbliche Disposition für die Schwielenbildungen ebenso deutlich, wenn auch in ganz anderen Stadien der Ontogenese erweisen würde, wie es für die Schwielenbildung bei Phacochoerus durch die Untersuchung von Leche (1902) geschehen

ist. Die Führung dieses Nachweises hat die Beschaffung entsprechenden Untersuchungsmaterials zur Vorbedingung und muss deshalb späterer Forschung vorbehalten werden. Das Endergebnis unserer an einem, wie ich glaube, ausreichenden Material vorgenommenen Studien über die Verschwielungsverhältnisse der menschlichen Sohle und die Schwielenbildung beim Menschen überhaupt, fasse ich in den Sätzen zusammen.

- dass ein vollkommener Parallelismus besteht zwischen der Wirkung der Funktion im individuellen Leben einerseits und der präfunktionellen, erblich bedingten Verschwielung andererseits;
- 2. dass sich dieser Parallelismus in diesem Falle in keiner Weise auf Parallelinduktion im Weismannschen Sinne zurückführen lässt, weil die betreffenden Druckreize wohl die Sohle in verschiedenen Abstufungen treffen können, unmöglich aber die "Determinanten" der Keimzellen ohne Vermittlung der Sohle in denselben Abstufungen;
- dass in diesem Falle auch die Ausbildung dieser erblichen Dispositionen durch Auslese unter ohne Beziehung zur Funktion aufgetretenen Mutationen vollkommen ausgeschlossen werden kann.

Literaturverzeichnis.

Albinus, B. S.: Accademicarum annotationum, L. I, Leiden 1754, S. 27. Derselbe: Accademicarum annotationum, L. V. Leiden 1761.

Blaschko, A.: Zur Anatomie und Entwicklungsgeschichte der Oberhaut. Arch. f. Phys., Jahrg, 1884, S, 173-175.

Derselbe: Beiträge zur Anatomie der Oberhaut. Arch. f. mikr. Anat., Bd. 30, 1887.

Darwin, Ch.: The Descent of Man and Selection in Relation to Sex. London 1871. Übersetzung nach der zweiten englischen Ausgabe, Stuttgart 1875, 1. Bd., S. 42.

Cedercreutz, A.: Über die Verhornung der Epidermis beim menschlichen Embryo, Arch. f. Dermat, u. Syphilis, 84, Bd., 1907, S. 173-178.

Ernst, P.: Studien über normale Vorhornung mit Hilfe der Gramschen Methode. Arch. f. mikr. Anat., 47. Bd., 1896, S. 683.

Golodetz und Unna: Zur Chemie der Haut IV. Monatshefte f. prakt. Dermat., Bd. 49, 1909.

Haller, A. v.: Elementa physiologiae corporis humani, 5. Bd., 1763, S. 15.

- Heidenhain, M.: Über die gegenseitige Entsprechung von Epidermis und Coriumleisten an der Beugefläche von Hand und Fuss beim Affen und Menschen. Anat. Hefte von Merkel und Bonnet. 30. Bd., I. Abt., 1906. S. 421—431.
- K a m m e r e r , P.: Experimente über Fortpflanzung, Farbe, Augen und Körperreduktion bei Proteus anguinus Laur. (III. Mitteil. über Vererb. erzwungener Farbveränderungen.) Arch. f. Entwicklungsmeth. 33. Bd., 1912.
- Kölliker, A.: Handbuch der Gewebelehre des Menschen, 1. Bd., Leipzig 1889.
- Kollmann, A.: Der Tastapparat der Hand der menschlichen Rassen und der Affen. Hamburg und Leipzig 1883.
- Krause, R.: Beiträge zur Kenntnis der Haut der Affen. Inaug.-Dissert., Berlin 1888.
- Leche, W.: Ein Fall von Vererbung erworbener Eigenschaften. Biol. Zentralbl., 22. Bd., 1902.
- Loewy, J.: Beiträge zur Anatomie und Physiologie der Oberhaut. Arch. f. mikr. Anat., Bd. 37, 1891.
- Schlaginhaufen, O.: Das Hautleistensystem der Primatenplanta unter-Mitberücksichtigung der Palma. Morph. Jahrb., I. Teil, Bd. 33, 1905, II. Teil, Bd. 34, 1905.
- Semon, R.: Das Problem der Vererbung "erworbener Eigenschaften". Leipzig, W. Engelmann, 1912.
- Shattock, S. G.: Lamarckism and Callosities. Proceed. R. Soc. of Med., Vol. IV. London 1911.
- Unna, P. G.: Die Fortschritte der Hautanatomie in den letzten 5 Jahren. Monatshefte f. prakt. Dermat., Bd. VII, Nr. 16, 1888, S. 762-770.
- Derselbe: Über die Zusammensetzung und die Bedeutung der Hornsubstanzen. Klinischer Vortrag, Medizinische Klinik, Bd. 4 b, 1908, S. 1277—1281.
- Derselbe: Über Verhornung, Klinischer Vortrag, Medizinische Klinik, 5. Jahrg., 1909, S. 1727—1730.
- Whipple, L. Inez: The ventral surface of the Mammalian Chiridium. Zeitschr. f. Morph. u. Anthrop., Bd. VII, 1904.
- Wolff, J.: Über die Ursachen, das Wesen und die Behandlung des Klumpfusses. Berlin 1903.
- Zander, R.: Untersuchungen über den Verhornungsprozess. II. Mitteilung. Der Bau der menschlichen Epidermis. Arch. f. Anat. n. Entwicklungsgeschichte, Jahrg. 1888.

Erklärung der Abbildungen auf Tafel VIII-X.

Alle Figuren sind bei 80facher Vergrösserung gezeichnet.

dl = Drüsenleiste. ql = Querleiste.

dr = Schweissdrüse. p = Periderm.

fl = Faltenleiste. sl = Sekundäre Leiste

h = Hornschicht. (beim Erwachsenen).

Archiv f. mikr. Anat. Bd. 82. Abt. II.

Tafel VIII.

Fig. I. Fötus 11 cm craniocaudal (etwa 15. Woche).

Fig. Ipl₁. Oberflächenansicht der eben entstehenden Drüsenleisten der Ferse.

Fig. Ipl 2. Querschnitt durch die Drüsenleisten der Ferse.

Fig. Ipls. Querschnitt durch die schon etwas weiter entwickelten Drüsenleisten der Grosszehenbeere.

Fig. I drs. Schnitt durch die Haut des Fussrückens.

Fig. II. Fötus 13 cm craniocaudal (etwa 17, Woche).

Fig. II pl.: Oberflächenansicht der Fersenhaut. Die Drüsenleisten tragen Drüsenbesatz. Erste Andeutung der Faltenleisten.

Fig. II pl 2. Längsschnitt durch eine Drüsenleiste der Ferse.

Fig. II pla. Querschnitt durch die Drüsenleisten und die eben als minimale Vorwölbung sichtbar werdenden Faltenleisten.

Fig. II drs. Schnitt durch die Haut des Fussrückens.

Fig. III. Fötus 26 cm craniocaudal (etwa 30. Woche).

Fig. III pl.: Oberflächenansicht der Fersenhaut, Faltenleisten jetzt deutlich ausgesprochen: Querleisten soeben gebildet.

Fig. III pl 2. Querschnitt durch Drüsenleisten und Faltenleisten der Ferse,

Fig. III drs 1. Oberflächenansicht der Haut des Fussrückens. Die bei ihrem ersten Auftreten unverbundenen Schweissdrüsen des Fussrückens werden nunmehr durch allerdings nur schwach angedeutete Epithelleisten untereinander verbunden.

Tafel IX.

Fig. IV. Geburtsreifer Fötus 37 cm craniocaudal (durch Kaiserschnitt extrahiert).

Fig. IV pl. Schnitt durch die Fersenhaut, Längsleisten quer getroffen.

Fig. IV drs. Schnitt durch die Haut des Fussrückens.

Fig. V. Neugeborenes, 30 Stunden nach der Geburt. Die bisher gebildete Hornschicht zum Teil bereits abgestossen, zum Teil in Abstossung begriffen.

Fig. Vpl. Schnitt durch die Fersenhaut, Längsleisten quer getroffen.

Fig. V drs. Schnitt durch die Haut des Fussrückens.

Fig. VI. Säugling von 26 Tagen.

Fig. VI pl. Schnitt durch Fersenhaut, L\u00e4ngsleisten quer getroffen. Es hat sich bereits eine neue, f\u00fcr die Sohle typische Hornschicht gebildet.

Fig. VIdrs. Schnitt durch die Haut des Fussrückens.

Fig. VII. Säugling von 3 Monaten.

Fig. VII pl. Schnitt durch die Fersenhaut, Längsleisten quer getroffen.

Fig. VII drs. Schnitt durch die Haut des Fussrückens.

Tafel X.

- Fig. VIII. Schnitt durch das Epithel der Fersenhaut eines 45 j\u00e4hrigen Mannes senkrecht zur Richtung der L\u00e4ngsleisten. Wie man sieht, haben sich zwischen den Dr\u00fcsenleisten und Faltenleisten sekund\u00e4re Leisten (sl) entwickelt. Hornschicht nicht mitgezeichnet (vgl. dar\u00e4ber Textfig. B₁, S. 185).
- Fig. IX. Schnitt durch das Epithel der Fersenhaut des Klumpfusses. Hornschicht nicht mitgezeichnet (vgl. darüber Textfig. B₄, S. 185, sowie über die Leisten Textfig. H, S. 198).
- Fig. X. Schnitt durch das Hautepithel mit seinen Leisten bei einer funktionellen Schwiele: Kuppe der Talusschwiele des Klumpfusses. Hornschicht nicht mitgezeichnet (vgl. darüber Textfig. E. S. 195).

Berichtigung.

In Band 82, Heft 2, Abt. II, Seite 75, Zeile 25 ff., wird durch Fehlen eines Kommas der Sinn in das Gegenteil entstellt. Es muss heissen:

Tritt im normalen Verlauf der Reifeteilungen bei der betreffenden Tierart eine Reduktion ein, so muss das Tier, das schon in den Somazellen haploide Kerne hat, entweder, (was wenig wahrscheinlich ist), unter Änderung des Reifungsmodus die Reduktion ausfallen lassen oder es wird nicht geschlechtsreif.

Literarisch-kritische Rundschau.

Plate, L.: Vererbungslehre mit besonderer Berücksichtigung des Menschen, für Studierende, Ärzte und Züchter. Mit 179 Figuren etc. Leipzig. Verlag von Wilhelm Engelmann. 1913. Preis geheftet M. 18.—, gebunden M. 19.—.

Nachdem der Befruchtungsprozess und die Reifevorgänge während der Oo- und Spermiogenese im Tierreich und Pflanzenreich durch bahnbrechende Entdeckungen festgestellt worden sind, nachdem ferner durch die grundlegenden Untersuchungen von Mendel und seinen zahlreichen Nachfolgern ein weites Arbeitsfeld auch für die experimentelle Forschung eröffnet worden ist, hat das Studium der Vererbungslehre einen unerwarteten und vielverheissenden Aufschwung in dem letzten Decenium erfahren. Durch Veröffentlichung zahlreicher und zum Teil sehr umfangreicher Experimente ist ein ganz neuer Zweig der biologischen Literatur entstanden. Das ihm von vielen Seiten zugewandte Interesse hat auch darin seinen Ausdruck gefunden. dass in zwei Jahren nicht weniger als vier umfangreiche Bücher erschienen sind, in denen eine Zusammenfassung der Forschungsergebnisse in lehrbuchmässiger Darstellung gegeben wird, die vortrefflichen Lehrbücher von Bateson und Baur, von Haecker und Goldschmidt. Die beiden ersten lassen mehr die Errungenschaften auf botanischem, die beiden anderen auf tierischem Gebiet in den Vordergrund treten. Ihnen schliesst sich in diesem Jahre ein neues Werk über die Vererbungslehre von Ludwig Plate. Professor der Zoologie in Jena, an. Es bildet den zweiten Band einer Sammlung von Handbüchern der Abstammungslehre, welche in W. Engelmanns grossem Verlag jetzt zu erscheinen beginnen. Wie auch andere Veröffentlichungen von Plate, empfiehlt es sich durch seine leicht verständliche Darstellungsweise und durch die Ausstattung mit zahlreichen, gut ausgewählten Abbildungen, deren Zahl sich auf 179 beläuft. Während in dem Lehrbuch von Haecker (vergleiche die Besprechung desselben in diesem Archiv Bd. LXXVII. II. Abt., S. 315) die cytologischen Ergebnisse eine breitere Darstellung gefunden haben, hat Plate mehr die experimentelle Forschung in den Vordergrund gestellt. Ein unterscheidendes Merkmal den anderen Lehrbüchern gegenüber ist aber besonders darin zu suchen, dass Plate in verschiedenen Abschnitten die Beziehungen der neuen Errungenschaften der Vererbungslehre zu der Abstammungs- und Selectionstheorie ausführlicher erörtert. Das umfangreiche Forschungsmaterial wird in übersichtlicher und zweckentsprechender Weise in 10 Kapiteln besprochen. Im ersten finden sich die allgemeinen Tatsachen über Erblichkeit, Nichterblichkeit, Variabilität und Selektion, im zweiten die Vererbungsregeln bei einem Merkmalspaar, im dritten die Vererbungsregeln bei Polyhybriden dargestellt. Das vierte Kapitel handelt von den Abweichungen von der typischen alternativen Vererbung und das fünfte von der Vererbung des Geschlechts und geschlechtsabhängiger Merkmale. Der Vererbung beim Menschen ist das siebente Kapitel ausschliesslich bestimmt. Die vier letzten Kapitel sind einer Reihe mehr allgemeiner, zum Teil hypothetischer Fragen: Kapitel VII den theoretischen Problemen der Vererbungslehre, Kapitel VIII dem Mendelismus und der Abstammungslehre, Kapitel IX der praktischen Bedeutung des Mendelismus und der Faktorentheorie für die Tier- und Pflanzenzucht gewidmet.

Über das Verhalten des plastomatischen Bestandteiles des Spermiums bei der Befruchtung des Eies von Phallusia mamillata.

Von

Friedrich Meves, Kiel.

Hierzu Tafel XI-XIV und 7 Textfiguren.

	Inhalt.	Seite
1.	Einleitung	215
	Untersuchungsmethode	
111.	Bau der Spermien mit besonderer Berücksichtigung ihres plasto-	
	somatischen Bestandteiles	218
IV.	Protoplasmastruktur der reifen Eier	
	Verhalten des plastosomatischen Bestandteiles des Spermiums bei	
	der Befruchtung	220
VI.	Die an meiner Ascarisarbeit geübten Kritiken (Retzius, Vej-	
	dovsky. Held, Romeis)	233
VII.	Weitere Einwände und Bedenken gegen die Plastosomentheorie	
	der Vererbung:	
	1. Einwände, die auf bestimmten Beobachtungen gegründet sind	
	(Vejdovsky, Montgomery, Lillie)	244
	2. Bedenken allgemeiner Art (Prenant, Lundegardh,	
	M. Heidenhain, Levi, Regaud)	247

I. Einleitung.

Bei einem Versuch, eine Beteiligung der männlichen plastosomatischen Substanz bei der Befruchtung des Seeigeleies nachzuweisen, war ich (1912) zu dem überraschenden Resultat gekommen, dass das sogenannte Mittelstück, welches die plastosomatische Substanz des Echinidenspermiums in sich vereinigt, unverändert in eine der beiden ersten Blastomeren hineingelangt. Diese Konstatierung scheint auf den ersten Blick zu der von mir vertretenen Anschauung, nach welcher die Plastosomen (Chondriosomen) erbliche Eigenschaften übertragen, in Widerspruch zu stehen. Jedoch ist bekannt, dass bei der Umwandlung des Pluteus in das fertige Tier zahlreiche Teile des Larvenkörpers abgestossen oder resorbiert werden; und es ist meines Erachtens die Möglichkeit einstweilen Archiv f. mikr. Anat. Bd. 82. Abt. II.

nicht von der Hand zu weisen, dass die Substanz des Mittelstückes ausschliesslich denjenigen Zellen reserviert wird, welche in die Anlage des jungen Seeigels übergehen.

Vordem ich die Weiterverfolgung des Mittelstückes bei der Furchung des Echinideneies in Angriff nahm, lag mir daran, eine Aussaat männlicher Plastochondrien, wie ich sie bei Ascaris beobachtet hatte, wenn möglich, noch in einem anderen Fall aufzufinden.

Auf meine Bitte gewährte mir das preussische Kultusministerium für das Frühjahr 1912 einen Arbeitsplatz in der Zoologischen Station in Neapel. Meinen dortigen Aufenthalt benutzte ich unter anderem dazu, um mit freundlicher Unterstützung von Herrn Dr. Cerruti, dem ich dafür besten Dank schulde, Material über die Befruchtung einer Ascidie, Phallusia mamillata, zu sammeln. Einige Figuren, welche Hill (1896) gegeben hatte, waren die Veranlassung gewesen, dass ich beschlossen hatte, mich mit dem Befruchtungsvorgang bei diesem Tier zu beschäftigen.

Im folgenden werde ich zunächst über meine Untersuchungsresultate bei Phallusia berichten und alsdann auf eine Anzahl Kritiken antworten, welche an meinen Ascarisbefunden (1911) und an derjenigen Anschauung geübt sind, nach welcher wir in den Plastosomen protoplasmatische Vererbungsträger zu sehen haben.

II. Untersuchungsmethode.

Phallusia mamillata ist hermaphroditisch und kann man von einem einzigen Tier zugleich reifen Samen und Eier (durch Anstechen der Ausführungsgänge der Geschlechtsdrüsen mit einer Nadel) gewinnen; jedoch habe ich bei Selbstbefruchtung, welche ich einige Male ausgeführt habe, keine Resultate erzielt.¹)

Von dem Moment der Befruchtung an bis zum Eintritt der ersten Furchungsteilung verflossen im Minimum ca. 11/4 Stunden.

Für die Untersuchung habe ich wiederum die Altmannsche Methode benutzt, welcher ich mich bereits bei zwei früheren Arbeiten (1911, 1912) zum Studium der Befruchtung bei Ascaris und Echinus mit Erfolg bedient habe. Die Eier wurden also, verschieden lange Zeit nach der Besamung, auf 24 Stunden in das Altmannsche Gemisch (2 proz. Osmiumsäure und 5 proz. Kaliumbichromatlösung zu gleichen Teilen) hineingebracht und

¹⁾ Vgl. dagegen Peter (1909, S. 205).

dann, nach gründlichem Auswaschen mit destilliertem Wasser, in allmählich steigenden Alkohol bis zu 80 prozentigen übertragen, in welchem sie bis zu meiner Rückkehr nach Kiel verblieben.

ie

1.

1.

Gerne würde ich auch noch andere Fixierungsmittel angewandt haben, welche für das Studium der Kernverhältnisse und der im Laufe der Befruchtung auftretenden achromatischen Strukturen günstiger gewesen wären; ich habe jedoch wegen der Schwierigkeiten, Material in genügender Menge zu erhalten, davon absehen müssen.

Nach Hause zurückgekehrt, habe ich dann die Eier vollständig entwässert und durch Xylol in Paraffin übergeführt, wobei ich sie in der früher (1912, S. 85) angegebenen Weise in Gelatinehülsen von rechteckigem Querschnitt gesammelt habe.

Die 4-5 μ dicken Schnitte machten zunächst die Vorbehandlung nach Rubaschkin (1910) durch und wurden dann mit Säurefuchsin-Pikrinsäure nach Altmann gefärbt.

Bei der Untersuchung zeigte es sich nun leider, dass es mir an geeignetem Material aus der Zeit von 35-45 Minuten nach der Befruchtung fehlte. Ich besass zwei grössere Eiportionen, von welchen die eine 30, die andere 50 Minuten nach der Besamung abgetötet war; aus der Zeit dazwischen jedoch nur eine einzige Portion (von 40 Minuten), deren Entwicklung sich aus mir unbekannter Ursache stark verzögert hatte. Herr Dr. Cerruti hat sich dann auf meine Bitte liebenswürdigerweise bemüht, mir das fehlende Zwischenstadium zu verschaffen, hat aber die Ausführungsgänge der Geschlechtsdrüsen im Herbst und Winter 1912 bei wiederholten Untersuchungen leer gefunden. Um so mehr war ich erfreut, als es mir schliesslich selbst gelang, die vorhandene Lücke teilweise dadurch zu überbrücken, dass ich in den beiden Portionen von 30 bezw. 50 Minuten eine grössere Anzahl Eier auffinden konnte, welche in der Entwicklung entweder den übrigen vorausgeeilt oder hinter ihnen zurückgeblieben waren. -

In Anbetracht des Zweckes meiner Untersuchung durfte ich es nicht unterlassen, auch den Bau der freien Spermien mit besonderer Berücksichtigung ihres plastosomatischen Bestandteiles zu studieren. Ich habe mir daher in Neapel Spermienausstrichpräparate hergestellt, welche ich grösstenteils mit Osmiumsäure fixiert und hinterher mit Fuchsin nach Altmann oder mit Eisen-

hämatoxylin nach M. Heidenhain gefärbt habe; andere Präparate wurden mit Sublimat fixiert und nach Ehrlich-Biondi tingiert. Schliesslich habe ich noch während eines kurzen Aufenthalts auf der schwedischen Zoologischen Station Kristineberg, wo ich im Herbst 1912 bei Herrn Dr. Östergren freundliche Aufnahme fand, die Gelegenheit wahrgenommen, um in gleicher Weise die Spermien einer anderen, dort vorkommenden Phallusiaart (wahrscheinlich Phallusia aspersa) zu untersuchen, welche sich von denjenigen von Phallusia mamillata nicht in erkennbarer Weise unterscheiden.

III. Bau der Spermien mit besonderer Berücksichtigung ihres plastosomatischen Bestandteiles.

Die Spermien von Phallusia bestehen aus einem Kopf und einem verhältnismässig kurzen Schwanz, welcher mit einem feinen, deutlich abgesetzten Endstück versehen ist. Zwischen Kopf und Schwanz ist ein kleines Körnchen eingeschaltet, das Ballowitz (1894) zuerst bei Ciona gesehen hat und welches offenbar zentriolärer Natur ist (vgl. auch Retzius [1904, S. 15]). Der Kopf ist ein schmaler, vorn und hinten zugespitzter Stab, dessen mittlerer Teil an Spermien, welche (wie diejenigen von Fig. 1) mit Osmiumsäure fixiert und mit Fuchsin nach Altmann gefärbt worden sind (ebenso übrigens bei Sublimatfixierung und Färbung nach Ehrlich-Biondi) intensiv rot erscheint. Diese Rotfärbung wird durch eine röhrenförmige Scheide bedingt, welche den mittleren Teil des Kopfes umgibt und welche offenbar plastosomatischer Natur ist (Fig. 1a). Die Scheide erscheint in zahlreichen Fällen gegen das vordere oder hintere Kopfende verschoben; ihre Enden sind vielfach schief abgeschnitten.

In Fig. 1 b ist die Scheide auf einem optischen Längsschnitt dargestellt. Auf einem solchen erscheint sie nicht selten an verschiedenen Stellen verschieden dick; in Fig. 1c ist sie an der linken Seite oben und unten dicker, in der Mitte dünner; an der rechten Seite dagegen in der Mitte verdickt, nach den Enden zu dünner. Auf dieses Bild werde ich später zurückkommen.

Zuweilen (Fig. 1d) kann man bei Einstellung auf die Längsachse des Spermienkopfes die Scheide nur auf der einen (in Fig. 1d linken) Seite, beim Heben und Senken der Mikrometerschraube jedoch auch noch oberhalb und unterhalb des Kopfes wahrnehmen, so dass sie in diesen Fällen also wohl eine Art Halbröhre bildet. Wenn man ein Ausstrichpräparat von frischen Spermien vor der Fixierung kurze Zeit in der Luft hin und her schwenkt, bis die Ränder der Spermaschicht angetrocknet sind, so konstatiert man fast regelmässig, dass die Samenfädenköpfe in diesen eingetrockneten Randpartien mehr oder weniger stark aufgeschwollen sind. Diese Schwellung scheint seltsamerweise in erster Linie die plastosomatische Scheide betroffen zu haben, welche sich auf das vier- bis fünffache ihres normalen Durchmessers verbreitern kann (Fig. 1e—g).

In denselben Ausstrichpräparaten, in denen die bisher beschriebenen Kopfformen vorkommen, findet man mitunter andere, welche das in Fig. 1h-l wiedergegebene Aussehen zeigen. An Stelle der röhrenförmigen plastosomatischen Scheide ist ein Spiralband vorhanden, welches in einer verschieden grossen Anzahl von Windungen (ca. 1¹/₂—3¹/₂) um den Kopf herumgelegt ist. In den Figuren, in denen das vordere Kopfende nach oben gerichtet ist, steigen die Windungen der Spirale auf der dem Beschauer zugekehrten Kopfseite von unten und rechts nach oben und links an. Durch diese Bilder wird, wie mir scheint, die Annahme nahe gelegt, dass die plastosomatische Scheide ihre Entstehung aus einem Spiralband nimmt, vielleicht in der Weise. dass die Windungen desselben sich verbreitern und der Länge nach untereinander verkleben; das Aussehen, welches die Scheide der Fig. 1c auf dem optischen Längsschnitt darbietet, könnte dahin zu deuten sein, dass sie in diesem Fall im Begriff steht, sich aus einem Spiralband zu bilden, welches in ca. 11/2 Windungen um den Kopf herumgelegt ist.

Nicht selten kommen Spermien vor, bei denen die Länge des Spiralbandes nur eine Windung oder weniger als eine solche beträgt (Fig. 1m), und andere, bei denen die plastosomatische Substanz die Form eines Stäbchens hat, dessen Längsachse mit derjenigen des Kopfes einen spitzen Winkel bildet (Fig. 1n) oder auch parallel derselben liegt (Fig. 1o). Das Stäbchen ist zuweilen in der Mitte verdickt, an den Enden dagegen zugespitzt; und schliesslich findet man, mitunter in zahlreichen Fällen, an Stelle des Stäbchens ein Kügelchen, welches an der Seite des Kopfes gelegen ist. Der Kopf erscheint dann fast regelmässig bogig gekrümmt; das Kügelchen wird stets an der konkaven Seite desselben angetroffen (Fig. 1g—s).

Es erhebt sich nun die Frage, ob die zuletzt beschriebenen Bilder (Fig. 1m—s) verschiedenen Stadien in der Entwicklung der plastosomatischen Scheide entsprechen oder ob sich vielleicht ein zuerst vorhanden gewesenes Spiralband unter der Wirkung der Fixierung verkürzt und dabei vom Spermienkopf abgewickelt hat. Ich habe lange Zeit das letztere für das Wahrscheinlichere gehalten; jedoch ist es schwierig, ohne Untersuchung der Spermiogenese eine bestimmte Entscheidung zu treffen. Jedenfalls scheinen mir Spermien mit den zuletzt beschriebenen Kopfformen von der Befruchtung ausgeschlossen zu sein.

Bemerkenswert ist, dass die plastosomatische Substanz, auch wenn sie in Form eines Kügelchens neben dem Kopf liegt, sich niemals von diesem ablöst. In vielen Fällen (z. B. Fig. 1s) erkennt man deutlich, dass die Verbindung zwischen beiden durch umhüllendes Cytoplasma aufrecht erhalten wird. Auf Grund derartiger Bilder darf wohl geschlossen werden, dass die plastosomatische Scheide mitsamt dem Kopf oder wenigstens einem Teil des letzteren an sämtlichen Spermien noch von einer Cytoplasmahülle umgeben ist.

Literatur. Die Spermien von Phallusia scheinen bisher noch wenig studiert zu sein. Ballowitz (1894, S. 251) fand bei einer Phallusiaart, die er auf Helgoland untersuchte, längliche, stäbchenförmige Köpfe; diese waren meist noch von einem Protoplasmarest umgeben und schienen ihm noch nicht ganz ausgereift zu sein.

Hill (1896, S. 321) sagt von den Spermien von Phallusia mamillata, dass sie aus den "gewöhnlichen drei Teilen". Kopf, Mittelstück und Schwanz zusammengesetzt seien. Er bezieht sich dafür auf ein in das Ei eingedrungenes Spermium, dessen Kopf sich bereits stark verkürzt und verdickt hat. Was er als Mittelstück bezeichnet, ist anscheinend derjenige mittlere Teil des Kopfes, welcher von der plastosomatischen Scheide umgeben ist; sein Centrosom ("at the end of the middle piece") ist wohl nichts anderes als der von dieser Scheide freie hintere Kopfteil.

Dagegen sind die Spermien einer anderen Ascidie, Ciona intestinalis, durch die Untersuchungen von Ballowitz und Retzius bereits genauer bekannt geworden.

Die Schilderung von Ballowitz (1894, S. 250), soweit sie sich auf den Kopf bezieht, lautet folgendermassen: "Der sehr kleine Kopf ist von der Fläche gesehen länglich elliptisch, bisweilen mehr rundlich und zeigt bei gewisser Einstellung einen hellen dellenartigen Fleck, der an die Delle der roten Blutkörperchen der Säugetiere erinnert. Dass hier in der Tat ein Eindruck besteht, zeigt die Kantenansicht, bei welcher der Kopf halbmondförmig oder kommaartig gebogen erscheint. Die eine Fläche des abgeplatteten Kopfes ist mithin konvex, die andere konkav. Der die Konkavität begrenzende Rand scheint dünner zu sein als der Teil des Kopfes, welcher der konvexen Fläche entspricht; wenigstens erkläre ich mir so die Erscheinung, dass an tingierten Deckglastrockenpräparaten der konvexe Rand des Kopfes dunkler gefärbt und ziemlich scharf begrenzt hervortritt." Ballowitz erwähnt ferner noch am Kopf die Existenz eines kurzen stiftartigen Spitzenstückes.

Im Gegensatz dazu beschreibt Retzius (1904, S. 15), dass der Spermienkopf bei Ciona vielmehr "schmal lanzettförmig" ist, "und zwar nicht nur von einer, sondern auch von den übrigen Seiten gesehen-: dabei ist er bald gerade, bald nach einer Seite hin umgebogen. Seitlich sitzt ihm als konstanter Bestandteil ein kugeliges oder ovales Gebilde an, das im ungefärbten Zustande ganz hell und durchsichtig ist, in Rosanilin sich aber intensiv rot färbt. "In der Regel sitzt dieses Gebilde ungefähr an der Mitte der Kopflänge und schmiegt sich mehr oder weniger eng an den Kopf an Bisweilen hat es ungefähr zwei Drittel der Länge, gewöhnlich aber nur die Hälfte oder noch weniger. Wenn der Kopf gebogen ist, befindet sich der Seitenkörper stets an seiner Konkavität, so dass es den Anschein hat, als hätte sich der Kopf um diesen Körper gekrümmt. Es kommen auch Fälle vor, wo der Seitenkörper der Spitze des Kopfes nahe gerückt ist oder sich auch nahe seinem hinteren Ende befindet. Der Seitenkörper hängt dem Kopfe sehr innig an; nur in sehr seltenen Fällen war er in den Streichpräparaten, die doch eine verhältnismässig nicht so gelinde mechanische Behandlung erfahren hatten, vom Kopf abgefallen."

"Aus der Beschreibung von Ballowitz geht deutlich hervor, dass er diesen Körper für eine Aushöhlung (einen "Eindruck") genommen hat, die "an die Delle der roten Blutkörperchen der Säugetiere erinnert"; nur an einer seiner Figuren hat diese Delle die Form des fraglichen Körpers, aber gerade diese Figur führt Ballowitz selbst als Beweis für den "Eindruck" an."

"Meiner Ansicht nach entspricht nun dieser eigentümliche Körper den am Hinterende des Kopfes der Polychaeten konstant belegenen färbbaren Körnern, deren Substanz sich aber hier zu einem einzigen grösseren Kern vereinigt hat."

Nach der Darstellung von Retzius zeigt die plastosomatische Substanz an den Spermien von Ciona demnach eine Anordnung, welche bei den Phallusiaspermien zwar ebenfalls vorkommt, hier aber wohl entweder auf Unreife oder auf Wirkung der Fixierung zu beziehen ist.

IV. Protoplasmastruktur der reifen Eier.

Von dem Ascidienei ist bekannt, dass es eine ausgesprochene Polarität besitzt; man pflegt an ihm einen oberen oder animalen Pol, an welchem die Bildung der Richtungskörper erfolgt, und einen entgegengesetzten unteren oder vegetativen Pol zu unterscheiden, an welchem das Spermium eindringt (Fig. a).

Der Körper der Eizelle ist dicht erfüllt von Dotterkügelchen, zwischen denen vereinzelte nach der Altmannschen Methode

Fig a. Schnitt durch ein Ei von Phallusia mamillata. 10 Minuten nach der Besamung, mit Richtungsspindel am oberen Pol und mit eingedrungenem Spermienkopf links vom unteren Pol.

intensiv rot färbbare Körner, Mitochondrien oder Plastochondrien, gelegen sind. Am unteren Pol des befruchteten Eies findet sich

eine dichte Anhäufung solcher Körner in Gestalt einer kuppenförmigen Masse, welche in der Regel an der oberen und unteren
Seite unregelmässige grubige Vertiefungen zeigt; dementsprechend
weist die obere und untere Begrenzung dieser Ansammlung auf
einem durch die Eiachse gelegten Schnitt einen eigentümlich
gewundenen Verlauf auf. Bis an die obere Seite reichen die
Dotterkörner unmittelbar heran; die Buchten der unteren Seite
dagegen werden von einer gewöhnlich etwas dunkler gefärbten,
protoplasmatischen Grundsubstanz ausgefüllt, welche weder Dotterkügelchen noch überhaupt Einschlüsse irgendwelcher Art enthält.

Die Plastochondrien sind etwas verschieden gross und erscheinen zum Teil auf dem optischen Durchschnitt ringförmig; d. h. es sind Bläschen, welche aus einer färbbaren Schale und hellem Inhalte bestehen (sog. "Ringkörner"). Letzteres gilt besonders für die mehr vereinzelt liegenden, welche zugleich häufig mehr länglich oval sind.

Schliesslich ist noch zu bemerken, dass die Grundsubstanz des Protoplasmas an vielen Präparaten, aber nicht an allen, eine sehr feine Vakuolisierung erkennen lässt, welche in meinen Figuren nicht mitgezeichnet ist.

Literatur. Die Existenz von Plastochondrien in den Ovarialeiern von Ascidien ist bereits von L. und R. Zoja (1891), Bluntschli (1904), Frl. Loyez (1909), Schaxel (1911) festgestellt worden. Plastochondrien von Bläschenform hat Frl. Loyez beobachtet und mit der Bildung der Dotterkügelchen in Zusammenhang gebracht.

Die Anhäufung von Plastochondrien am unteren Pol des befruchteten Ascidieneies ist ebenfalls schon von früheren Autoren, meines Wissens zuerst von Castle (1896) bei Ciona, als Kappe von feinkörnigem Protoplasma beschrieben worden. Sie entspricht ferner dem "cap of yellow protoplasm", welches Conklin (1905, 1—3) am lebenden Ei von Cynthia beobachtet hat. Am reifen Ovarialei dieses Tieres findet Conklin eine oberflächliche Protoplasmaschicht, welche gelbliche Pigmentkörnchen in gleichmässiger Verteilung aufweist. Unmittelbar nach dem Eindringen des Spermatozoons strömt das gelb gefärbte Plasma, wie er beschreibt, nach dem unteren vegetativen Pol ab, wo es sich zu einer Kappe ansammelt. Darüber lagert sich zur selben Zeit

eine Schicht von hellem Protoplasma, welches bei der Auflösung des Keimbläschens aus letzterem frei geworden ist. Der ganze übrige Teil des Eies ist schiefergrau von Farbe und von Dotterkügelchen erfüllt. Diese drei verschiedenen Protoplasmaarten, welche sämtlich in letzter Linie vom Kern des Eies abstammen sollen, stehen nach Conklin als ebensoviele "organbildende Substanzen" zu den verschiedenen Organen und Geweben des Embryos in genetischer Beziehung.

Driesch (1905, S. 661) hat demgegenüber hervorgehoben, dass das Ei von Phallusia im lebenden Zustand "glashell ist und nichts von den verschiedenen Stoffen Conklins erkennen lässt". Conklin hat dies bei einer Nachuntersuchung (1911) bestätigt gefunden, hat aber konstatiert, dass das Phallusiaei, fixiert und gefärbt, die gleichen fundamentalen Differenzierungen wie die Eier anderer Ascidien aufweist. "Just as in the cases of Ciona and Cynthia, a cap of protoplasm which stains deeply with eosin gathers at the vegetative pole immediately after the entrance of the spermatozoon into the egg...." (I. c. S. 402).

Wenn Conklin die Substanz dieser Protoplasmakuppe bei Phallusia an einer anderen Stelle (S. 394) derselben Abhandlung (1911) als "non-granular, homogeneous" bezeichnet, so ist dieses Aussehen offenbar auf die von ihm angewandte Technik zurück-Ich kann ferner am Phallusiaei von der Existenz zuführen. eines "hellen Protoplasmas", welches der Plastosomenkappe angelagert eine besondere mittlere Schicht bildet, wie Conklin es für Cynthia beschreibt, bei Phallusia während der ersten ³/₄ Stunden nach der Besamung nichts wahrnehmen. Dagegen entsteht später oberhalb des vegetativen Pols ein ausgedehnter von Dotterkügelchen freier Bezirk in der Umgebung der beiden Vorkerne und der Teilungsfigur durch Vergrösserung des "hellen Hofes", in welchem Anfangs der Spermakopf gelegen ist. Dieses "helle Protoplasma" ist aber nicht aus dem Keimbläschen frei geworden, wie Conklin annimmt, sondern ist weiter nichts als die Grundsubstanz des Eies, aus welcher die Dotterkügelchen verdrängt sind. Es verdient auch sicher nicht die Bezeichnung einer organbildenden Substanz, welche Conklin ihr beilegt. Auch auf die Plastosomen scheint mir dieser Ausdruck nicht anwendbar 1)

¹) Im Gegensatz zu dem, was ich früher (1908, Seite 849) ausgesprochen habe.

zu sein, obwohl die letzteren als materielles Substrat für alle möglichen Differenzierungen bei der Formbildung eine hervorragende Rolle spielen.

Nach den Ergebnissen der Entwicklungsmechanik kann wohl nicht bezweifelt werden, dass bei bestimmten Tieren die substantiellen Anlagen für einzelne Teile des Embryo in bestimmten Bezirken des Eiprotoplasmas lokalisiert sind. Vom descriptiv zytologischen Standpunkt aber erscheint es mir einstweilen unmöglich, besondere "organbildende Substanzen" zu unterscheiden.¹)

V. Verhalten des plastosomatischen Bestandteiles des Spermiums bei der Befruchtung.

Das Spermium dringt, wie gesagt, am unteren oder vegetativen Pol (oder in dessen Nähe) in das Ei ein. Man findet es hier einige Zeit nach dem Spermazusatz gewöhnlich dicht unter der Oberfläche in einer grösseren hellen Bucht, welche die an diesem Pol angesammelte Plastochondrienmasse an ihrer unteren Seite aufweist. Der Schwanzfaden des Spermiums wird nicht abgeworfen, sondern mit in das Ei aufgenommen. Der Kopf führt meistens eine Drehung aus, wie sie schon bei zahlreichen Tieren beobachtet wurde, in der Weise, dass er seine Spitze gegen die Peripherie, das hintere Ende gegen den Mittelpunkt des Eies kehrt. Diese Drehung ist in den Fig. 2 und 4 schon vollzogen, wie man an der Lage des noch erhaltenen Schwanzfadens erkennt (zwischen seinem vorderen Ende und dem hinteren Ende des Kopfes ist bereits eine Lücke aufgetreten).

Nach vollzogener Drehung pflegt der Spermienkopf seine Lage im Ei wenig zu verändern. Erst gegen Ende der ersten halben Stunde nach der Besamung senkt er sich tiefer in den Eikörper ein, wobei er von einem "hellen Hof" umgeben bleibt; in letzterem ist inzwischen ein Spermozentrum im Mittelpunkt einer Strahlung deutlich geworden.

Wenn man nun den Kopf des eingedrungenen Spermiums in den Fig. 2 bis 4 mit demjenigen des freien in Fig. 1a vergleicht, so kann man zunächst konstatieren, dass er sich verkürzt und verdickt hat. In Fig. 2 und 4 ist sein vorderes (in den Figuren oberes) Ende zu einem Bläschen angeschwollen, welchem ein kleines

¹⁾ Jedoch mag es sein, dass die Plastosomen bei einigen Tieren schon frühzeitig anfangen, sich in bestimmter Richtung zu spezifizieren.

in der Achse des Spermienkopfes gelegenes Körnchen ausitzt; letzteres dürfte dem von Ballowitz bei Ciona erwähnten Spitzenstück oder Perforatorium entsprechen. In Fig. 3 liess das linke und zugleich untere Ende des Kopfes eine gleiche Beschaffenheit erkennen; daraus geht hervor, dass die Drehung des Spermienkopfes in diesem Fall bisher ausgeblieben ist.

Was nun die plastosomatische Substanz anlangt, so zeigt der mittlere Teil des Kopfes an der Stelle der Scheide kurze Zeit nach der Besamung rotgefärbte Querstreifen (Fig. 2—4), deren Zahl sich meistens auf drei beläuft; es kommen aber auch vier und andererseits auch nur zwei solche Querstreifen vor; ausnahmsweise habe ich nur einen einzigen beobachtet.

Da diese Querstreifen nicht selten etwas schräg zur Längsachse verlaufen, habe ich zuerst geglaubt, dass sie der Ausdruck eines den Spermienkopf umgebenden Spiralbandes seien, wie ich es in Ausstrichpräparaten von Spermien häufig beobachten konnte. Diese Vermutung habe ich aber nicht bestätigt gefunden. Dann habe ich daran gedacht, dass es Bruchstücke eines solchen Spiralbandes seien. Schliesslich bin ich aber zu der Überzeugung gekommen, dass es sich in den meisten Fällen um in sich zurücklaufende Ringe handelt, welche um den Spermienkopf herumgelegt sind; zuweilen mögen sie allerdings nicht völlig geschlossen sein.

Der Spermienkopf quillt weiterhin immer stärker auf und wird dabei zunächst perlschnurförmig; an den Einschnürungsstellen liegen die plastosomatischen Ringe, die augenscheinlich eine festere Konsistenz besitzen und selbst unbeteiligt an der Aufquellung sind (Fig. 5, 6). Der Spermienkopf der Fig. 6 zeigt an der einen Einschnürungsstelle (unten rechts) zwei Ringe dicht nebeneinander. Bei Betrachtung der Fig. 5 und 6 fällt auf, dass die eine von beiden kugeligen Anschwellungen, die an den Enden des Kopfes liegen, wie halbiert erscheint; ob sie dem vorderen oder hinteren Ende desselben entspricht, vermag ich nicht zu entscheiden.

Im weiteren Verlauf der Aufquellung nimmt der Spermienkopf rasch an Dicke zu und nähert sich in seiner Form mehr und mehr einem kurzen Zylinder, dessen Enden rein quer abgeschnitten erscheinen (Fig. 7—10). Die aus plastosomatischer Substanz bestehenden Ringe werden dabei immer stärker gedehnt, bedingen jedoch noch längere Zeit hindurch Schnürfurchen an der Oberfläche des Zylinders. Man vergleiche Fig. 9 und 10. In Fig. 9 ist nur

ein einziger Ring vorhanden, welcher bei hoher Einstellung gezeichnet ist. Fig. 8 zeigt einen Spermienkopf, bei welchem die Plastosomenringe am unteren Ende der Ausdehnung stärkeren Widerstand als am oberen entgegengesetzt haben; daraus hat eine Kegelform des ganzen Kopfes resultiert.

Indem der Kopf sich zu einem Zylinder umwandelt, wird in der Achse des Zylinders ein blasser stabförmiger Körper sichtbar, welcher die gleiche Länge wie dieser hat (Fig. 9 und 10); das gleiche Gebilde ist übrigens schon in Fig. 6 (in den oberen zwei Dritteln des Kopfes) zu erkennen. Um was handelt es sich hier? Meines Erachtens unterliegt es nicht dem geringsten Zweifel, dass die Aufquellung zunächst hauptsächlich die den Kopf umgebende zytoplasmatische Umhüllung betrifft (vergl. oben S. 220); der Stab im Inneren ist der eigentliche Kopf oder der Kernanteil des Kopfes. Durch das Vorhandensein dieses augenscheinlich etwas festeren Stabes wird wohl die eigentümliche Form, welche der quellende Kopf als ganzes zeigt, mitbedingt.

Die Dehnung der plastosomatischen Ringe macht in der Folge weitere Fortschritte. Die Schnürfurchen verstreichen: das Seitenprofil des Kopfes erscheint jetzt als gerade Linie. Die Ringe sind nach Art von Tonnenreifen um den zylindrischen Kopf herumgelegt (Fig. 12--15). Es bedarf nunmehr eines stärkeren Wechsels der Einstellung, um sie bei Seitenansicht des Kopfes in ganzer Länge verfolgen zu können. In Fig. 12 und 14 sind die ganzen Reifen in Längsansichten von Spermienköpfen, also bei stark wechselnder Einstellung, eingezeichnet. Die Achse des zylinderförmigen Kopfes liegt jedoch in beiden Fällen der Ebene des Objekttisches nicht genau parallel, sondern etwas schräg zu ihr: in Fig. 12 ist das untere, in Fig. 14 das obere Ende des Kopfes höher gelegen. Fig. 11, ein optischer Querschnitt durch einen Spermienkopf senkrecht zur Längsachse desselben, ist bei Einstellung auf einen der vorhandenen Reifen gezeichnet; dieser Reifen ist, wie man wahrnimmt, nicht kontinuierlich, sondern zeigt an zwei Stellen Unterbrechungen, wie sie auf diesen Stadien auch sonst (man vergleiche die Längsansichten) häufig zu konstatieren sind. Fig. 13 ist wieder ein Kopf in Längsansicht, welcher bei Einstellung auf die Längsachse wiedergegeben ist; man sieht den Seitenkonturen des Kopfes rotgefärbte Körnchen, die optischen Querschnitte der Reifen, ansitzen. Ein ähnliches Bild bietet Fig. 15; jedoch sind

hier auch die unteren Hälften der Reifen noch blassrot mitgezeichnet.

Die Endflächen des Zylinders, welche früher quer abgeschnitten erschienen, springen nunmehr meistens konvex vor.

Der anfangs stabförmige Kern im Innern des Kopfes hat sich verkürzt und eine länglich ovale Form angenommen. Auch auf diesen vorgerückteren Stadien ist er keineswegs immer zu erkennen. Am besten pflegt man ihn an optischen Querschnitten durch den Kopf wahrzunehmen, an denen er als ein rundliches Scheibehen erscheint (Fig. 11).

Auf dem nächsten sich anschliessenden Stadium, welches ich in meinen Präparaten auffinden konnte, liegt der Spermienkopf dicht neben dem Strahlungszentrum (Fig. 16), welches inzwischen angefangen hat, sich als dunkler Fleck innerhalb des grösser werdenden hellen Hofes deutlicher zu markieren¹); gleich darauf (Fig. 17) ist er wieder etwas von diesem abgerückt. Die den Kopf umgebende zytoplasmatische Hülle ist zwar anscheinend noch vorhanden, dagegen sind die sie umfassenden, rot färbbaren Reifen verschwunden. Infolge davon ist der Kopf nunmehr in meinen Altmann-Präparaten, besonders nachdem er sich wieder vom Strahlungszentrum entfernt hat, sehr schwer zu entdecken.

Was ist nun aus den plastosomatischen Reifen geworden? Eine direkte Verfolgung ihrer Substanz über das Stadium der Fig. 14, 15 hinaus ist mir leider nicht möglich gewesen, da es mir gerade hierfür an Material fehlte. Auch von dem in Fig. 16 gezeichneten Stadium besass ich nur verhältnismässig wenige Eier, welche sich in den zwei oben erwähnten Eiportionen fanden, von denen die eine 30, die andere 50 Minuten nach der Befruchtung fixiert war. Ich kann also die Frage nach dem Verbleib der männlichen Plastosomensubstanz durch direkte Beobachtung nicht entscheiden und muss daher notgedrungen an Stelle der letzteren eine theoretische Betrachtung treten lassen.

An und für sich bestehen folgende zwei Möglichkeiten: Die männliche Plastosomensubstanz könnte sich (entweder an Ort und Stelle an der Oberfläche des Spermienkopfes oder nachdem sie in den Eikörper übergetreten ist) gelöst haben, oder aber sie könnte als solche im Eikörper persistieren. Für welche von beiden Möglichkeiten sollen wir uns entscheiden?

¹⁾ In der Mitte des Strahlungszentrums ist in Fig. 16 ein Zentriol erkennbar.

Sicher ist, dass die plastosomatische Substanz des Spermiums eine Bedeutung irgend welcher Art besitzen muss; denn anderenfalls würde sie am Ende der Spermiogenese mit den übrigen Zytoplasmateilen abgestossen werden. Würde sie nun einen Bestandteil des Spermiums bilden, welcher als Bewegungsorgan oder als Perforatorium für dieses diente und welcher seine Rolle nach dem Eindringen des Spermiums ausgespielt hätte, so wäre es durchaus verständlich, wenn sie im Ei keine weitere Verwendung erführe, sondern einfach resorbiert würde. Wir haben jedoch keinen Anhalt dafür, dass ihr, direkt oder indirekt, motorische oder mechanische Funktion zukommt. Ihre sehr verschiedene Lokalisierung an den Samenfäden verschiedener Tiere scheint mir entschieden dagegen zu sprechen und vielmehr darauf hinzudeuten, dass sie erst im Ei in Funktion treten soll.

Im Ei aber kann die plastosomatische Substanz keine nebensächliche Rolle spielen, sondern muss notwendigerweise eine nachhaltige Wirkung irgendwelcher Art ausüben; denn ein für das Ei bestimmter Stoff, den der Samenfaden hineintransportiert, kann nicht mehr oder weniger gleichgültig für dieses sein.

Es liegt nun nahe, anzunehmen, dass in Gestalt der plastosomatischen Substanz ein spezifischer chemischer Stoff eingeführt werde, welcher die Entwicklung anregen soll. Demgegenüber kann man aber darauf hinweisen, dass das (plastosomatische) Mittelstück des Echinidenspermiums unverändert in eine der beiden Blastomeren übergeht.

Alles, was wir von der plastosomatischen Substanz bisher wissen, scheint mir ausserdem darauf hinzudeuten, dass sie ein primitives d. h. undifferenziertes, neutrales Protoplasma darstellt; ihr Vorhandensein am Spermium und ihre Überführung in das Ei ist mir alsdann nur verständlich, wenn sie zugleich einen protoplasmatischen Erbstoff repräsentiert.

Nun gibt es ja allerdings zahlreiche Autoren, welche die Vererbung auf Chemismus beruhen lassen, welche es demnach von ihrem Standpunkt aus nicht überraschend finden würden, wenn die protoplasmatische Erbsubstanz in Lösung ginge. Ich bin demgegenüber der Meinung, für deren Begründung ich den Leser auf Hensen (1881, S. 126, 1885, S. 731—732 und S. 745, 1911, S. 380—384, 1912, S. 263) und Naegeli (1884, S. 109—111 und S. 216—218) verweise, dass es sich bei der Vererbung um

einen "morphologischen, durch geformte Substanzen getragenen Vorgang" (Hensen 1911, S. 384) handelt. Die Plastosomen stellen nach meiner Ansicht eine Substanz dar, welche Sitz der spezifischen zu vererbenden Protoplasmastruktur ist; oder, anders ausgedrückt, eine Substanz, an welche die bei der Vererbung zu übertragende Form, soweit sie sich im Protoplasma und nicht eventuell auch im Kern lokalisiert findet, gebunden ist. Daraus geht hervor, dass diese Substanz bei der Befruchtung ihre morphologische Kontinuität bewahren muss.

Ich glaube daher nicht fehlzugehen, wenn ich annehme, dass bei der Befruchtung des Phallusiaeies die Substanz der plastosomatischen Ringe sich von der Oberfläche des Spermienkopfes ablöst, in den Eikörper übertritt und hier in irgend einer Form persistiert. Ich erinnere daran, dass bei Ascaris eine Aussaat männlicher Plastochondrien jedenfalls mit Sicherheit konstatiert ist. Ihre Persistenz kann auch bei Ascaris, wie ich Retzius gern zugebe (siehe unten S. 235), nicht als sicher bewiesen gelten, wenn sie auch von mir nicht im allermindesten bezweifelt wird.

Im Phallusiaei beobachtet man nun aber eine Erscheinung, welche möglicherweise auf eine Persistenz der männlichen Plastosomensubstanz zu beziehen sein könnte.

Unmittelbar nachdem die Reifen des Spermienkopfes verschwunden sind, findet man innerhalb des das Spermozentrum umgebenden hellen Hofes einmal rotgefärbte Körner, welche meistens die Grösse von Eiplastochondrien haben und grösstenteils sicher auch solche sind, die von der Peripherie her eingedrungen sind; dazwischen liegen kurze feine Stäbchen, die zuerst nicht sehr zahlreich sind, aber weiterhin rasch an Zahl zunehmen (Fig. 16—18). Sie färben sich nach der Altmannschen Methode ebenso wie die Plastochondrien, wenn sie auch infolge ihrer Feinheit bei dem Differenzierungsverfahren die Rotfärbung sehr leicht abgeben; jedoch sehe ich meinerseits keinen Grund, weshalb ich an ihrer plastosomatischen Natur zweifeln sollte. Sie sind meistens radiär zum Spermozentrum gelegen, zwischen den Radien der Strahlung, die etwa von diesem Zeitpunkt an auch an meinen Altmann-Präparaten deutlicher hervorzutreten beginnt.

Woher stammen nun diese Stäbchen? Es ist möglich, dass sie zum Teil durch eine Umformung von Eiplastochondrien entstehen, nachdem diese sich in kleinere Körner zerlegt haben. Da aber ihr erstes Auftreten mit demjenigen Moment zusammenfällt, zu welchem die plastosomatischen Reifen als solche verschwunden sind, so darf man wohl jedenfalls daran denken, dass sie sich zum anderen Teil von diesen, sei es direkt, sei es durch das Zwischenstadium von Körnern, ableiten. Ich brauche wohl nicht nochmals hervorzuheben, dass es sich hierbei nur um eine Vermutung handelt.

Es ist nun von Interesse, das Verhalten dieser Stäbchen auf den anschliessenden Stadien bis zur ersten Furchungsteilung zu verfolgen.

Bei Betrachtung von Fig. 17 kann man bereits konstatieren, dass der im Zentrum der Spermastrahlung gelegene dunkle Fleck sich erheblich vergrössert hat. In der Folge wird er noch grösser und es wird eine hellere Mitte und eine dunklere Randzone an ihm unterscheidbar. Der Kern verliert seine zytoplasmatische Hülle, bleibt aber anfangs noch so klein, dass er auch jetzt noch — wenigstens an meinen Altmann-Präparaten — schwierig aufzufinden ist. Er behält zunächst noch eine längliche Form und liegt gewöhnlich mit seiner Längsachse radiär zum Strahlungszentrum (in Fig. 18 ist diese radiäre Lagerung wenig ausgesprochen). Weiter (Fig. 19, 20) nimmt auch er rasch an Grösse zu; dabei kann er vorübergehend ein mehr oder weniger stark lappiges Aussehen zeigen (z. B. Fig. 19). In Fig. 20 ist er schon stark herangewachsen.

Die feinen plastosomatischen Stäbchen haben inzwischen an Zahl zugenommen und sich zugleich mehr und mehr in der Zentralmasse der Spermastrahlung, und zwar hauptsächlich in der dunkleren Rindenzone derselben, angesammelt (Fig. 19, 20). Auf einem folgenden Stadium hat sich das Strahlungszentrum verdoppelt. Die Zentralmasse hat sich in zwei Hälften geteilt, welche senkrecht zu der Eiachse auseinanderrücken (d. h. senkrecht zu derjenigen Achse, welche den animalen und vegetativen Pol des Eies verbindet) und dabei jede die in ihrer Substanz eingeschlossenen Stäbchen mitführen (Fig. 21). Der von zwei Strahlungszentren begleitete männliche Vorkern mitsamt dem umgebenden "hellen Hof", welcher sich immer mehr vergrössert und dabei in die Länge gestreckt hat, senkt sich alsdann tiefer in das Eiprotoplasma ein und trifft mit dem weiblichen Vorkern zusammen. Beide Vorkerne legen sich Seite an Seite nebeneinander. In den Strahlungs-

zentren findet man nunmehr deutlich abgegrenzte Zentrosphären (Zentralkörper oder Zentrosomen), welche in ihrer Mitte ein winziges Zentriol erkennen lassen. An der von den Vorkernen abgewandten Seite der Zentrosphären liegen zwei etwa halbmondförmige dunklere Massen, welche die feinen plastosomatischen Stäbchen einschliessen; vereinzelt kommen aber auch solche Stäbe frei daneben vor (Fig. 22, man vergleiche auch Fig. 21).

Auf dem Stadium der ersten Furchungsspindel sind die beiden Halbmonde verschwunden; plastosomatische Stäbchen liegen nunmehr im ganzen Umkreis der Zentrosphären zwischen den Radien der Strahlung (Fig. 23). In der Fig. 23 konnten nur diejenigen Stäbchen gezeichnet werden, welche (ganz oder annähernd) in der Ebene der Spindelpole gelegen waren; die Zahl der überhaupt vorhandenen Stäbchen ist also noch eine sehr viel grössere und hat gegen frühere Stadien stark zugenommen. Ungefähr die gleiche Lagerung in der Umgebung der Zentrosphären wie in Fig. 23 behalten die Stäbchen bis zum Ablauf der Zelldurchschnürung bei.

Ist nun meine Vermutung zutreffend, dass diese plastosomatischen Stäbchen, wenn auch nur zu einem Teil, aus den Reifen des Spermienkopfes hervorgegangen sind, so hat es demnach wenigstens den Anschein, als ob die Verbreitung der männlichen Plastosomensubstanz in der Eizelle (und möglicherweise auch noch in den Blastomeren) auf die Gegend der Zentren beschränkt bliebe. In der Tat erscheint es kaum annehmbar, dass alle Teile der ganzen grossen Eizelle etwa schon bis zum Abschluss der ersten Furchungsteilung von männlichen protoplasmatischen Erbstoffen durchsetzt seien. Speziell auch die kompakte Plastochondrienansammlung, welche unmittelbar nach der Besamung am vegetativen Pol des Eies entstanden ist, dürfte zunächst noch von einer "Infektion" mit männlichem Material frei bleiben.

Nach den Beobachtungen Conklins bei Cynthia, welche er bei Phallusia bestätigt fand, ordnet sich diese Masse noch vor Beginn der Zelldurchschnürung zu einem Halbmond an, welcher die eine Seite des Eies dicht unter dem Äquator umgibt; die spätere Entwicklung zeigt, dass dies die hintere Seite ist. Der Halbmond behält während des ganzen Verlaufes der Furchung diese seine Lage an der hinteren Seite des Eies unter dem Äquator bei. Auf dem 32-Zellenstadium findet er sich auf sechs Zellen verteilt, welche ihrerseits den Muskel- und Mesenchymzellen des Larvenschwanzes Entstehung geben.

Erinnert man sich nun, dass die Plastosomen das Bildungsmaterial für die verschiedensten, im Laufe der Ontogenese auftretenden Differenzierungen, unter anderem auch für die Muskelfibrillen, abgeben, so kommt man zu der Vorstellung, dass das Ei die Hauptmasse seiner Plastosomen dorthin dirigiert, wo sie zunächst und in besonders grosser Menge gebraucht werden.

Literatur. Durch frühere Untersuchungen an befruchteten Ascidieneiern von Strasburger (1875), Boveri (1890), Julin (1893). Hill (1896), Castle (1896), Gólski (1899) u. a. sind keine Tatsachen zutage gefördert worden, welche sich an die von mir beobachteten anknüpfen liessen.

Hill (1896, S. 321) hat folgende Schilderung vom Verhalten des Spermakopfes im Phallusiaei gegeben, für welche ich keine Erklärung weiss. Er beschreibt, dass der Kopf im Ei heranwächst, bis er etwa das Doppelte seiner ursprünglichen Grösse erreicht hat. Dann spaltet er sich plötzlich in zwei. Die Stücke nehmen allmählich eine unregelmässige Perlschnurform an und zerfallen dann in kleine, unregelmässig gestaltete Chromosomen, deren Zahl ungefähr acht oder neun beträgt. Diese Chromosomen sind allem Anschein nach nur vorübergehende Strukturen; denn gleich darauf geht der männliche Vorkern vollständig in den ruhenden Zustand über.

VI. Die an meiner Ascarisarbeit geübten Kritiken (Retzius, Vejdovsky, Held, Romeis).

Die Darstellung, welche ich 1911 von dem Verhalten der männlichen Plastochondrien bei der Befruchtung des Ascariseies gegeben habe, lässt sich kurz folgendermassen resumieren.

Indem das eingedrungene Spermium gegen die Eimitte wandert (wobei es mehr und mehr kugelig wird), bedeckt sich seine Oberfläche mit Plastochondrien, welche aus dem Innern austreten. Auf der Oberfläche des Spermiums zerlegen sie sich in kleinere Körner; ebenso zerlegen sich auch die Plastochondrien, welche im Innern der Samenzelle zurückgeblieben sind, und zwar zuerst diejenigen im Schwanzteil, während sie im Bereich des Kopfteils zunächst noch durchweg mehr gross bleiben. Später,

bald nachdem das Spermium die Eimitte erreicht und sich völlig abgekugelt hat, sind seine sämtlichen Plastochondrien in kleine Körner, welche es dicht durchsetzen, von der Grösse der Eiplastochondrien zerfallen.

Wenn das Spermium sich dem Eizentrum nähert, dreht es seine Schwanzspitze gegen dieses. Um die Schwanzspitze als Mittelpunkt beginnen nun die Plastochondrien der Eizelle sich anzusammeln.¹) Nachdem das Spermium die Eimitte eingenommen hat, umgeben sie es auf allen Seiten, so dass sie eine vollständige Umhüllung desselben bilden; dagegen haben sie sich aus den peripheren Teilen der Eizelle gänzlich zurückgezogen.

Auf einem weiteren Stadium beginnen die männlichen Plastochondrien in das Eiprotoplasma überzutreten.²) Zunächst wird die Mitte des kugeligen Spermienkörpers von Körnern frei; dagegen häufen sie sich in der Peripherie des Spermiums und in der Umgebung desselben im Eiprotoplasma an. Auf diese Weise entsteht folgendes Bild: das körnerfreie Zentrum des Spermienkörpers wird von einer sehr körnerreichen Zone eingefasst, welche über den Rand des Spermiums in das Eiprotoplasma hinübergreift und den Kontur des Spermiums verdeckt. Nach aussen grenzt sich diese Zone mit unregelmässig zackigem Kontur gegen eine weniger körnerreiche ab, in welche wahrscheinlich erst wenig oder keine männlichen Plastochondrien gedrungen sind.

Die Auswanderung der männlichen Plastochondrien wird in der Folge immer stärker. Schliesslich hat der Spermienkörper seine sämtlichen Körner an die Eizelle abgegeben; das Spermium besteht nunmehr (abgesehen vom Kern) ausschliesslich aus cytoplasmatischer "Grundmasse" oder aus "Zwischensubstanz"; die Konturen des Spermienkörpers, welche durch die überwandernden Plastochondrien verdeckt waren, treten wieder deutlich hervor.

Nachdem die Mischung zwischen männlichen und weiblichen Plastochondrien sich vollzogen hat, konstatierte ich an meinen Präparaten, dass die Grösse der im Ei vorhandenen Plastochondrien zugenommen und vielleicht auch ihre Zahl abgenommen hat.

¹) In seltneren Fällen beobachtet man, dass sich zunächst unabhängig vom Spermium im Zentrum des Eies eine Ansammlung von Plastochondrien bildet, in welche das Spermium mit dem Schwanzteil voran hineinrückt.

^{*)} Es ist möglich, wenn es sich auch nicht konstatieren lässt, dass einzelne männliche Plastochondrien sich schon auf früheren Stadien von der Spermienoberfläche abgelöst haben.

Ich habe daran gedacht, dass diese Erscheinung möglicherweise darauf beruhen könnte, dass je ein männliches und ein weibliches Korn sich miteinander vereinigt haben; eine solche Vereinigung ist meines Erachtens aus theoretischen Gründen anzunehmen.

Diese meine Befunde am Ascarisei sind nun von verschiedenen Seiten (Retzius, Vejdovsky, Held, Romeis) nachgeprüft worden.

Retzius (1911) hat an seinem von O. Zacharias-Plön ihm überlassenen Material, welches mit einem sehr viel Säure enthaltenden Gemisch fixiert worden ist, jedenfalls nur sehr unvollkommene Bilder von Plastochondrien vor sich gehabt. "In den geeigneten Präparaten lässt sich aber", wie er sagt, "überall dartun, dass die mit den Spermien in die Eier von Ascaris megalocephala eindringenden, relativ grossen Protoplasmakörner sich in die betreffenden Eier distribuieren". Was man weiter "sicher wahrnimmt", ist, "dass die grossen, im Eiprotoplasma zerstreuten Körner bald nicht mehr als solche zu sehen sind".¹) Er hält aber die Möglichkeit nicht für ausgeschlossen, dass sie im Eiprotoplasma resorbiert werden.

Nun muss allerdings zugegeben werden, dass die Persistenz der männlichen Plastochondrien nicht positiv erwiesen ist; man kann sogar bezweifeln, ob sie überhaupt durch direkte Beobachtung demonstrierbar ist. Andererseits ist es mir aber im höchsten Grade unwahrscheinlich, dass die männlichen Plastochondrien im Ei spurlos verschwinden sollten; ich bitte hierzu das oben S. 230 Gesagte zu vergleichen.

Zu der von mir aus theoretischen Gründen angenommenen Kopulation zwischen männlichen und weiblichen Plastochondrien erklärt Retzius, es sei ihm "trotz aller Bemühung nie gelungen", etwas davon zu sehen. "Für eine solche hochwichtige Annahme", sagt er, "hat man ja doch gar keine faktischen Beweise." Ich glaube nun zwar, dass Retzius an den von ihm hergestellten Präparaten von einer solchen Kopulation selbst dann nichts wahrgenommen hätte, wenn sie tatsächlich zu beobachten wäre. Ich habe aber

¹) Retzius ist demnach offenbar ebenso wie Held (siehe unten) der Meinung, dass die männlichen Plastochodrien in den Eikörper auswandern, ohne sich vorher zerlegt zu haben. Da er aber meiner Darstellung nicht ausdrücklich widerspricht, gehe ich hier auf diesen Punkt nicht weiter ein, sondern verweise auf meine Kritik der Heldschen Angaben.

auch meinerseits niemals behauptet, diese Kopulation gesehen und bewiesen oder auch nur wahrscheinlich gemacht zu haben. Ich habe nur ausgesprochen, dass die Volumenzunahme der Plastochondrien, welche an meinen Präparaten bald nach der Auswanderung der männlichen Körner zu konstatieren ist, mit einer Kopulation zusammenhängen könnte, habe aber ausdrücklich hervorgehoben, dass die Vergrösserung möglicherweise auf Rechnung einer Quellung zu setzen sei, welche eingetreten sein könnte, weil das fixierende Reagens die auf diesen Stadien bereits stark verdickte Dotterhaut erst nach Ablauf einiger Zeit zu durchdringen vermag.

Im übrigen halte ich jedoch, unter der Voraussetzung, dass die Plastochondrien tatsächlich Erbanlagen darstellen, an dem theoretischen Postulat einer Vereinigung der bei der Befruchtung zusammenkommenden männlichen und weiblichen Plastochondrien nach wie vor fest. Ich vermag nicht zu glauben, dass die väterlichen und mütterlichen Erbanlagen sich auf die Dauer getrennt erhalten, sondern nehme an, und zwar in Übereinstimmung mit Nägeli (1884), Hensen (1885), de Vries (1889), O. Hertwig (1890) u. a., dass sie zu der kindlichen Anlage zusammentreten.

Zur Frage nach der Persistenz der männlichen Plastochondrien im Ei und zur Kopulationshypothese hat sich auch Duesberg (1912) in einem soeben erschienenen umfassenden Sammelbericht geäussert. "Man könnte immer einwenden", sagt er S. 764, "dass die männlichen Plastosomen nicht weiter verwendet werden bezw. degenerieren. eine Hypothese, die Retzius ausspricht, die aber zu dem absurden Schluss führt, dass die Plastosomen der Embryonalzellen lediglich dem Ei entstammen: was darauf hinauskommt, den Muskelfibrillen, den kollagenen Fasern, den Nervenfibrillen etc. einen ausschliesslich mütterlichen Ursprung zuzuschreiben."

Duesberg meint weiter, dass ein vollkommnerer Beweis für die Rolle der männlichen Plastosomen als der, den ich bei Ascaris geliefert habe, nicht möglich scheine. "Man sieht in der Tat nicht", fährt er fort, "welchen anderen Modifikationen die männlichen Plastosomen im Ei unterliegen könnten, als einer Zerteilung, welche ihr Kaliber dem der weiblichen nahebringt und zu ihrer innigen Vermischung führt; weitere Phänomene wie die Kopulation der männlichen und weiblichen Plastosomen scheinen für unsere Untersuchungsmittel unerreichbar zu sein. Es ist daher unerlässlich, hier mit theoretischen Schlussfolgerungen vorzugehen,

wie wir sie schon ausgesprochen haben, es müsste denn sein, dass uns eines Tages neben der mikroskopischen Untersuchung auch Experimente in diesem Punkt zu Hilfe kämen."

Dagegen haben sich ausser Retzius auch noch Held (1912, 1 und 2) und, in der Diskussion zu dem Heldschen Vortrag (1912, 2), Rückert gegen die Kopulationshypothese ausgesprochen. Rückert weist auf die Ungleichheit in der Zahl der männlichen und weiblichen Plastochondrien hin. Dass eine solche im Anfang besteht, ist wohl zweifellos: sie könnte aber nach meiner Meinung durch ein stärkeres Wachstum der männlichen Plastochondrien im Ei ausgeglichen werden.

Vejdovsky (1911—1912) hat Stellung zu meinen Befunden in einer Abhandlung genommen, welche bereits vom 30. Oktober 1910 datiert und demnach vor dem Erscheinen meiner ausführlichen Arbeit (15. Februar 1911) abgeschlossen ist. Der Inhalt der Abhandlung besteht hauptsächlich in Chromosomenstudien.

Nach Vejdovsky müssten die Plastochondrien des Ascarisspermiums, falls sie wirklich als Vererbungsträger funktionieren, unverändert mit den entsprechenden Mikrosomen des Eies vermengt werden. Nach meiner Darstellung verkleinern sie sich aber so weit, bis sie mit den Eimikrosomen übereinstimmen; daraus folgert Vejdovsky, dass sie bei der Vererbung keine Rolle spielen können. — Warum sie es unter diesen Umständen nicht können, vermag ich nicht einzusehen. Die spezifische zu vererbende ultramikroskopische Struktur kann in den Teilprodukten ebensogut wie in den grossen Körnern vorhanden sein; übrigens dürften die grossen Körner des Ascarisspermiums auch ihrerseits im Beginn der Spermiogenese durch Vereinigung kleinerer entstehen.

Ve jdovsky beschreibt dann seine eigenen Beobachtungen, nach denen nur der Kopfteil des eingedrungenen Spermiums erhalten bleibt. Dieser bildet in der Eisubstanz einen amöbenartigen Körper, welcher nach allen Richtungen unregelmässige Fortsätze treibt. Die im freien Spermium so überzeugend auftretenden Mitochondrien erscheinen nunmehr als stark aufgequollene, vakuolenartige Kügelchen, die dicht hintereinander folgend strahlenförmige Reihen bilden, welche vom Zentrum des amöbenartigen Körpers gegen die Peripherie laufen. Zwischen den Reihen der Kügelchen sieht man eine feinkörnige Substanz, die gegen das

Zentrum dichter angehäuft ist. Diese Substanz, die in den freien Spermien gar nicht zum Vorschein kam, ist nach Vejdovsky als ein weiteres Umbildungsprodukt der Plastochondrien anzusehen. Schliesslich quellen die Kügelchen noch weiter auf, die feinen Kügelchen vermehren sich. Vejdovsky kommt daraufhin zu dem Resultat, dass die Plastochondrien des Spermiums ihre Individualität in der Eisubstanz nicht bewahren, sondern von derselben assimiliert werden; sie können daher "keine plasmatischen Vererbungsträger vorstellen".

Einer Kritik, die sich auf Beobachtungen wie die eben referierten gründet, bedauere ich keine Berechtigung zuerkennen zu können. Ve j dovs ky macht über seine Untersuchungsmethode keine Angaben; jedoch hat er, nach dem Aussehen seiner Abbildungen zu urteilen, jedenfalls ein stark saures Mittel in Anwendung gebracht. Auf diese Weise fixierte Präparate sind aber für Plastosomenstudien unbrauchbar, weil in der Regel bereits geringe Säuremengen ausreichend sind, um die Plastosomen in Lösung zu bringen.

Eine weitere Nachuntersuchung rührt von Held (1912, 1 und 2) her, welcher sich ebenso wie ich selbst der Altmannschen Methode bedient hat. Mit den Schlußsätzen Helds kann ich mich im allgemeinen einverstanden erklären. Einer davon lautet: Das Wesen der Befruchtung besteht nicht nur in der Verschmelzung eines männlichen und weiblichen Vorkerns (O. Hertwig, Van Beneden), sondern auch in einer ausgiebigen und engen Vermischung männlicher und weiblicher Plastosomen; 1) und ferner: "Als unmittelbare Vererbungssubstanz wird ohne weiteres diejenige gelten müssen, welche die Eigenschaften der Kontinuität besitzt und dadurch, dass sie sich zu teilen und zu vermehren vermag, das Leben einer Generation hindurch andauert. Dementsprechend kann das Chromatin nicht als ausschliessliche Vererbungssubstanz (O. Hertwig, Strasburger) bezeichnet werden"; denn auch die Plastosomen bewahren ihre Kontinuität, wie Held

¹) Held schreibt hier und an anderen Stellen "Plasmosomen". Falls es sich dabei nicht nur um einen wiederholten lapsus calami handelt, bemerke ich, dass die Plasmosomen Arnolds nach meiner Überzeugung, welcher ich schon mehrfach Ausdruck gegeben habe, jedenfalls nur zu einem sehr geringen Teil mit Altmannschen Granulis oder mit Plastochondrien identisch sind.

in Übereinstimmung mit mir, gegen Retzius und Vejdovsky, annimmt.

Jedoch weicht Held besonders insofern von mir (1911) ab, als nach seiner Schilderung die männlichen Plastochondrien unzerlegt aus dem Spermienkörper in das Eiprotoplasma übertreten, sich in ihm zerstreuen und dann erst zerfallen.

Im einzelnen lautet die Beschreibung von Held folgendermassen: Die Ausstreuung der männlichen Plastochondrien ("Zentrifugierung oder Ausstreuung der groben Plasmosomen". Held) beginnt, nachdem das Spermium den Mittelpunkt des Eies eingenommen hat.1) Durch diesen Prozess bevölkert sich zuerst die zentrale Körnerkugel mit männlichen "Makrosomen"; nach Ausstossung des ersten Richtungskörpers findet man sie bis zur Oberfläche des Eies hin verteilt. In der letzten Phase der Zentrifugierung setzt zugleich ein neuer Prozess ein, der zur Vermehrung und Verkleinerung der männlichen Plastochondrien führt. "Die bis dahin groben und zum Teil als Ringgranula ausgestreuten Gebilde teilen sich dabei direkt schon als Vollkörner in zwei kleinere Granula, die dann zu Stäbchen ausgewachsen wieder sich zerschnüren. Im anderen Falle ist der ganze Prozess komplizierter. Aus den gebildeten Ringgranulis werden echte Ringe von grösserem Durchmesser, die dann an einer Stelle (selten an mehreren) durchreissen, nun sich strecken und dann zu längeren Fäden auswachsen, die bald körnig werden und in viele kleinere Einzelgranula sich zerlegen."

Prinzipiell scheint mir nun allerdings wenig oder gar nichts darauf anzukommen, ob meine Darstellung oder die Heldsche das richtige getroffen hat. Ich behaupte aber mit aller Bestimmtheit, dass unter normalen Verhältnissen kaum ein einziges männliches Plastochondrium in den Eikörper übertritt, ohne sich vorher zerlegt zu haben. Die meiner Schilderung (1911) zugrunde liegenden Präparate zeigen grosse Körner nur im Innern und an der Oberfläche des eingedrungenen Spermiums, kein einziges dagegen frei im Protoplasma des Eies. Auf Grund einer erneuten Durchsicht, welche ich anlässlich der Heldschen Mitteilung vorgenommen habe, kann ich es für ausgeschlossen erklären, dass ich grosse

¹) Sehr vereinzelte solcher männlichen Granula gehen gelegentlich schon "in der Bahn des in die Tiefe vordringenden Spermiums verloren, zurückbehalten im Protoplasma des Eies".

Körner, welche frei im Eikörper liegen, übersehen hätte; ich verweise auch auf meine Figuren, in denen ich die Plastochondrien mit der grössten mir möglichen Genauigkeit eingezeichnet habe. Andererseits enthält der Protoplasmakörper des eingedrungenen Spermiums in den späteren Stadien (Fig. 7—12 meiner Ascarisarbeit) neben den grösseren zahlreiche kleinere Plastochondrien in verschiedenen Grössenabstufungen und ist zuletzt ausschliesslich von kleinen Plastochondrien erfüllt. Diese kleinen Plastochondrien können nur durch einen Zerfall der grossen entstanden sein, welcher also bereits innerhalb des Spermienkörpers eingetreten ist. Die Darstellung von Held gibt nicht den geringsten Aufschluss darüber, woher diese kleinen Plastochondrien des Spermienkörpers (auf Stadien wie in meiner Fig. 12) stammen. Dass sie von vornherein neben den grösseren vorhanden gewesen sein sollten, ist völlig ausgeschlossen.

Es fragt sich nun, wie Held zu seinen abweichenden Resultaten gekommen ist. Darauf ist zu antworten, dass seine Befunde an pathologisch verändertem Material erhoben sind.

Zur Gewinnung guter Präparate ist es dringend notwendig, dass, wie ich angegeben habe, erstens die Würmer möglichst rasch nach dem Tode des Wirtes in die Hände des Untersuchers kommen und bis zum Moment der Präparation keine Abkühlung erleiden, sondern bei Körpertemperatur sorgfältig warm gehalten werden. Zweitens muss der Inhalt der Eiröhren bei der Fixierung in der Alt mannschen Mischung zerzupft werden, und zwar so, dass womöglich jedes einzelne Ei mit dem Reagens in Berührung kommt.

Dass die Abkühlung auf die reifenden Eier, welche sich normalerweise bei der Körpertemperatur des Wirtes entwickeln, schädlich einwirkt, ist bereits von Carnoy (1887, S. 283—285) und Boveri (1887, S. 20 und 1888, S. 14) konstatiert worden. Die genannten Autoren haben darauf hingewiesen, dass infolge der Abkühlung Richtungsspindeln von abnormem Habitus auftreten. Unter den gleichen Bedingungen ereignet es sich nun in der Tat auch häufig, wie ich mich schon früher selbst überzeugt habe, dass das Spermium seine Plastochondrien im Eikörper ausstreut, ohne dass diese vorher zerlegt worden sind. Ich selbst habe nämlich im Anfang die Vorsichtsmassregel, nur sorgfältig warm gebaltene Würmer möglichst rasch nach dem Tode des

Wirts zu verwenden, ausser Acht gelassen und war daher, sogar bei Abfassung meiner vorläufigen Mitteilung (1910, 2), noch nicht zu der klaren Erkenntnis der Tatsache durchgedrungen, dass die männlichen Plastochondrien sich schon vor ihrem Übertritt in den Eikörper zerlegen. Von den Präparaten, auf welche sich meine damalige Schilderung bezog, habe ich in meiner ausführlichen Ascarisarbeit (1911, S. 686) gesagt, dass sie "noch zu wünschen übrig liessen"; sie zeigten vielfach eine Auswanderung unverkleinerter männlicher Plastochondrien, wie Held sie beschreibt, daneben aber Richtungsspindeln, welche meistens mehr oder weniger stark alteriert waren.

Dass Held ein sogar stark abgekühltes Material untersucht hat, ist mir deshalb wahrscheinlich, weil er angibt, dass von dem Spermienkörper "zahlreiche Bröckel oder auch runde und tropfig zugespitzte Massen abgestossen" werden. Diese Erscheinung, die ich in meinen Präparaten niemals beobachtet habe, ist bereits von Sala (1895, S. 451) als eine Folge der Kälteeinwirkung beschrieben worden.

Sodann hat Held auch unterlassen, wie ich auf der Münchener Anatomenversammlung bei Besichtigung seiner Präparate habe feststellen können, meiner zweiten Empfehlung zu folgen und den Inhalt der Eiröhren in dem Altmannschen Gemisch zu zerzupfen, wodurch allein eine schnelle Abtötung der Eier bei Anwendung dieses Mittels gewährleistet wird. Die Eier umgeben sich bekanntlich von dem Moment der Befruchtung an mit einer immer dicker werdenden "Dottermembran", welche dem Eindringen der Reagentien ausserordentlich grossen Widerstand leistet. Fixiert man nun die ganzen Eileiter, so werden besonders die mehr zentralen Eier nur langsam absterben und Zeit haben, sich krankhaft zu verändern, bevor die Fixierungsflüssigkeit bis zu ihnen vorgedrungen ist.¹) Unter diesen Umständen kann man nach meinen Erfahrungen ebenfalls Bilder erhalten, welche eine Aussaat unzerlegter männlicher Plastochondrien zeigen.

Ich bin übrigens meinerseits nicht einmal sicher, ob die grossen Körner, welche man an solchen mangelhaft konservierten

¹) Drückt man die Eiballen aus dem Eileiter heraus, ohne sie zu zerzupfen, so werden auch dann nur die oberflächlichen Eier gut fixiert und gerade diese werden bei den weiteren Prozeduren leicht abbröckeln und, wenn man sie nicht besonders sammelt, verloren gehen.

Präparaten im Eikörper verstreut findet, tatsächlich sämtlich aus dem Spermium ausgewandert und nicht vielmehr zum Teil in loco durch Konfluenz mehrerer auf einem Haufen zusammenliegender Eiplastochondrien entstanden sind. Die von Held ausgeführte Doppelfärbung (Fuchsinfärbung nach Altmann, kombiniert mit Molybdänhämatoxylin), durch welche die grossen Körner rot, die kleinen gelb und schwarz gefärbt werden, kann kaum als Beweis des Gegenteils dienen; denn es könnte sich hierbei um weiter nichts als um eine "Konzentrations-Doppelfärbung" im Sinne von Fischer, d. h. um eine rein physikalische Erscheinung handeln. Fischer (1899) führt unter anderen Beispielen für eine solche an, dass er Granula verschiedener Grösse, die er durch Fällung einer 40% igen Albumoselösung mit Platinchlorid erhalten hatte, mit Methylgrün-Fuchsin in prachtvoller Weise doppelt färben konnte, und zwar die grösseren substanzreicheren Granula blaugrün, die kleineren rot.

Die von Held beschriebenen Eier weisen ausserdem auch noch verschiedene andere Anzeichen einer nicht einwandsfreien Fixierung auf. Hierher rechne ich z. B., wenn Held angibt, dass die Eiplastochondrien "an mehr oder minder gröberen oder auch sehr feinen Protoplasmafäden aufgereiht" seien. Solche Bilder erhält man nur, wenn die Wirkung der Osmiumsäure eine ungenügende gewesen ist; an gut osmierten Ascariseiern dagegen sieht die Grundsubstanz, abgesehen von den darin enthaltenen Vakuolen, homogen aus.

Held spricht ferner davon (1911, 2, S. 244 oben), dass die Dotterkugeln zu der inneren Perivitellinhülle ausfliessen, "in welcher das Ei schwimmt". Dass der Inhalt peripher gelegener Dotterkugeln nach aussen durchgebrochen ist, kann man in der Tat mitunter wahrnehmen, aber nur bei mangelhafter Konservierung.

Ebenfalls die von Held erwähnten "Ringgranula" und die "echten Ringe" stellen meines Erachtens nichts als Artefakte dar. Es ist eine bekannte Tatsache, dass bei den mit Flemmingscher oder Altmannscher Flüssigkeit fixierten Objekten die Plastosomen überhaupt nur in einer schmalen peripheren Zone gut konserviert werden, welche am stärksten der Einwirkung der Osmiumsäure ausgesetzt war. Im Innern etwas grösserer Objekte dagegen quellen die Plastochondrien zu Bläschen mit hellem Inhalt auf; die Plastokonten verkürzen sich mehr oder weniger stark

und fragmentieren sich in Kügelchen, welche ihrerseits ebenfalls Bläschenform annehmen können. Ich will damit nicht bestreiten, dass bläschenförmige Plastochondrien bei einigen Objekten bereits intra vitam vorkommen. Die "Ringgranula" aber, welche Held in den Ascariseiern beobachtet hat, sind meines Erachtens nur dadurch zustande gekommen, dass er den Inhalt der Eiröhren nicht, wie ich empfohlen habe, im Reagens zerzupft hat; jedenfalls fehlen sie in meinen Präparaten gänzlich.

v. Kemnitz, ein Schüler des Münchener Zoologischen Instituts, meint (1912, S. 494) gelegentlich einer Arbeit, welche sich mit dem Vorkommen von Glycogen und Fett bei Ascaris beschäftigt, man könne die Möglichkeit nicht ausschliessen, dass die von mir beschriebenen männlichen Plastochondrien Produkte des Glanzkörperzerfalls seien. In einer Nachschrift sieht er sich allerdings bereits genötigt, nachdem ihm inzwischen meine ausführliche Abhandlung zu Gesicht gekommen ist, zu erklären, dass seine Vermutung für einen Teil der männlichen Plastochondrien wohl nicht zuträfe, da sie schon bei noch intaktem Glanzkörper darzustellen seien. "Ein anderer Teil aber", sagt er. "dürfte sich dennoch vom Glanzkörper ableiten, da, wie Meves selbst angibt, bei der von ihm angewandten Altmannschen Methode der Glanzkörper sich ebenso wie die Plastochondrien intensiv rot, aber vielfach in einer etwas anderen Nuance (mehr zinnoberrot, während die Plastochondrien Karminton zeigen) tingiert"; man könne also nicht entscheiden, was Plastochondrien und was Glanzkörperprodukte seien.

Darauf möchte ich erwiedern, dass der Glanzkörper nach meinen Beobachtungen überhaupt keinen granulären Zerfall erleidet, sondern im Ei immer kleiner wird und sich dabei verflüssigt; im übrigen darf ich auf die zutreffende Kritik verweisen, welche Romeis (1912, S. 164) bereits an der v. Kemnitzschen Bemerkung geübt hat.

Romeis hat in einer weiteren kürzlich erschienenen Abhandlung (1913) auch zu dem Streit zwischen Held und mir Stellung genommen. Er hat in vielen seiner Präparate ebenso wie Held, "und zwar schon früher als dieser", grössere Körnchen in der Peripherie des Eies aufgefunden; in anderen Präparaten konnte er sie jedoch nicht wahrnehmen. Er möchte daher an die Möglichkeit glauben, dass Held und ich beide Recht haben. Ich muss demgegenüber dabei bleiben, dass für gut konservierte Eier die von mir gegebene Beschreibung die allein zutreffende ist.

VII. Weitere Einwände und Bedenken gegen die Plastosomentheorie der Vererbung.

 Einwände, die auf bestimmten Beobachtungen gegründet sind (Vejdovsky, Montgomery, Lillie).

Von mehreren Autoren sind Einwände gegen eine Beteiligung der Plastosomen bei der Vererbung auf Grund von Beobachtungen an anderen Obiekten als an den von mir studierten erhoben worden.

Vejdovsky (1911-1912) begründet seinen Widerspruch unter anderem mit der Behauptung, dass bei Diestramena marmorata, einer Heuschrecke, an den Spermien von den Plastochondrien und ihren Derivaten keine Spur vorhanden sei. Er beschreibt, dass der durch Verschmelzung der Plastochondrien entstandene Nebenkern sich bei diesem Tier bald nach Beginn der Spermiogenese in zwei bis fünf spiralig gewundene Fäden differenziert. Im weiteren Verlauf verlängern sich die Fäden, werden aber viel blasser; von dem glatten Achsenfaden unterscheiden sie sich dadurch, dass sie aus feinen Körnchen bestehen. Die Fäden oder besser Kettchen zerfallen sodann in die "ursprünglichen Komponenten", nämlich in Körner. Die Körner schwellen stark an, indem sie sich zu einer fettartigen Substanz umbilden. Die Fettropfen sind der Reihe nach am Achsenfaden entlang angeordnet. Später wandern sie weiter nach hinten und sammeln sich zu grossen Anschwellungen, die den der Reife sich nähernden Spermien seitlich ansitzen und schliesslich mit dem Cytoplasma abgestreift werden.

Diese Angaben stehen, wie ich bereits 1912, S. 83, Anmerkung, gesagt habe, zu denjenigen fast sämtlicher anderer Forscher in Gegensatz, welche mit einer in zellulären Dingen seltenen Übereinstimmung konstatieren, dass aus dem "Nebenkern" in den Spermatiden der Insekten eine Umhüllung des Achsenfadens hervorgeht. Ich will hier nur die Beschreibungen zweier Autoren anführen, welche ebenso wie Vejdovsky die Spermiogenese bei Heuschrecken untersucht haben. Otte (1907, S. 496) stellt fest,

dass der Mitochondrienkörper bei Locusta den ganzen intrazellulären Achsenfaden umgibt und ihn schliesslich so dicht einhüllt,
dass dieser "keine Farbe aufnehmen kann, also seine Färbbarkeit
verliert". Gegen das Ende der Ausbildung des Spermiums wird
ein Zytoplasmaballen abgestossen, welcher "tingierbare Körnchen"
enthält (S. 505 und 506); diese Körnchen, die früh auftreten und
sich später enorm vermehren, haben aber mit dem "Nebenkern"
nichts zu tun. Gérard (1909, S. 604 ff.) findet, dass der Mitochondrienkörper in den Spermatiden von Stenobothrus sich zu
einem Band in die Länge streckt, welches sich in Spiraltouren
um den Achsenfaden herumwindet. Dieses Band wird immer
länger und gleichzeitig immer feiner. Schliesslich zerfällt es in
Bläschen, welche dem Achsenfaden in seiner ganzen Länge ansitzen. Die Bläschen platten sich weiterhin am Achsenfaden
entlang ab, um eine kontinuierliche Hülle um ihn zu bilden.

Diese Schilderungen von Otte und Gérard muss ich im Gegensatz zu derjenigen von Vejdovsky für zutreffend halten, da sie mit meinen eigenen Beobachtungen (1900) übereinstimmen. Es kann meines Erachtens keine Rede davon sein, dass der Samenfaden sich, wie Vejdovsky behauptet, vor Abschluss der Reifung seiner Plastosomen entledigt; aber es scheint mir allerdings sicher, dass die Substanz des Nebenkernes bei vielen Insekten im Laufe der Spermiogenese eingreifende morphologische Änderungen erfährt, die zum Teil mit solchen der Färbbarkeit Hand in Hand gehen; es fragt sich jedoch, ob diese Änderungen nicht bei der Befruchtung "reversibel" sind.

Einen weiteren Fall von "complete discharge of Mitochondria from the Spermatozoon" will Montgomery (1912) bei Peripatus entdeckt haben. Er beschreibt, dass in den Tochterzellen der zweiten Reifungsteilung die Mitochondrien, welche Bläschenform haben, an der Zellperipherie, und zwar an den aneinander stossenden Seiten beider Zellen gelegen sind. Im Beginn der Spermiogenese bilden sie regelmässig eine einfache Lage an der Oberfläche des distalen Zellpoles; früher oder später rücken sie nach vorn und kommen an der Seite des Kernes zu liegen, welcher sich zum Spermienkopf verlängert. Schliesslich verschmelzen sie zu einem Nebenkern; das diesen einschliessende Zytoplasma bewegt sich gleichzeitig am Kopf entlang nach vorn. Die nahezu reifen

Spermien des Vas deferens und Samenbläschens tragen in der Nähe des vorderen Kopfendes einen Zytoplasmaballen, welcher den stark färbbaren Nebenkern enthält. Der Ovidukt des Weibchens dagegen ist mit Spermien vollgestopft, welche sämtlich den Zytoplasmaballen mitsamt dem Nebenkern abgestreift haben.

Nicht nur wegen dieses Endresultates, sondern auch auf Grund der technischen Angaben, welche Montgomery macht, möchte ich bezweifeln, dass es sich bei den von ihm gesehenen Gebilden überhaupt um Mitochondrien handelt. Montgomery gibt an, dass die Mitochondrien sich an seinem Material, welches in Flemming schem Gemisch und in Sublimat-Eisessig fixiert war, auf die verschiedenste Weise darstellen liessen; sie erschienen blassrot nach Färbung mit Safranin-Gentiana und mit Ehrlich-Biondischer Farbmischung; grau oder schwarz nach Anwendung von Eisenhämatoxylin je nach dem Grad der Entfärbung; dunkelviolett nach der Bendaschen Färbung. Ihm ist nur ein einziges Objekt bekannt, bei welchem sie sich mit gleicher Leichtigkeit färben lassen; das sind die Spermatozyten von Ascaris.

Was sich in den Spermatozyten von Ascaris leicht darstellen lässt, sind nun aber nach meinen eigenen Erfahrungen nicht die Mitochondrien, sondern die "plasmatischen oder Glanzkörpergranulationen", zu denen die Mitochondrien während der Reifungsteilungen als kleine Stäbchen in Beziehung treten (vgl. A. Mayer). Mitochondrien, die sich durch Safranin-Gentiana tingieren lassen, sind mir überhaupt noch nicht vorgekommen. Ich möchte es daher meinerseits für wahrscheinlich halten, dass es sich bei den von Montgomery beschriebenen Mitochondrien nicht um solche, sondern um "tingierbare Körnchen" handelt, wie sie z. B. auch Otte (siehe oben) bei Locusta beschrieben hat.

Lillie (1912) ist durch Studien über die Befruchtung des Nereiseies zu dem Resultat gelangt, dass meine Anschauung, nach welcher die Plastosomen eine protoplasmatische Erbsubstanz repräsentieren, nicht zutreffend sein kann. Er konstatierte bei Beobachtung des lebenden Objektes, dass der Kopf des eindringenden Spermiums an der Eimembran ein deutlich abgegrenztes Körnchen zurücklässt, von welchem der Schwanz ausgeht. Die Untersuchung an fixiertem Material lehrt nun nach Lillie, dass das Knötchen das Mittelstück ist. Dieses mitsamt

dem Schwanz gelangen bei Nereis nicht mit in das Ei hinein. Das Mittelstück bleibt nicht nur ganz deutlich draussen, es findet sich auch keine Spur irgend eines Spermienbestandteiles an der Basis des Kopfes. "An assumption that the spermatozoön introduces any differentiated structure at the base of the head could, in this case, be due only to a preconception in its favor."

Lillie hat als Fixierungsmittel meine Modifikation der Flemmingschen Lösung und für die Färbung Eisenhämatoxylin angewandt; es ist ihm jedoch nicht geglückt, eine Schwarzfärbung des Mittelstückes zu erzielen. Dass seine Figuren in bezug auf das von ihm behauptete Verhalten des letzteren überzeugend seien, kann ich nicht zugeben und halte ich Skeptizismus in dieser Sache einstweilen noch für erlaubt, besonders, wenn ich bedenke, dass Schaxel noch 1910 (S. 568) behaupten konnte, die Lebendbeobachtung am Seeigelei lehre, dass auch hier "nur der Kopf des Spermatozoons eindringt, während Mittelstück und Schwanzfaden an der Eioberfläche bleiben und degenerieren". Dabei handelt es sich in letzterem Fall um ein Material, welches dem Verfasser in fast unbegrenzter Menge zur Verfügung gestanden hat.

Bedenken allgemeiner Art (Prenant, Lundegårdh, M. Heidenhain, Levi, Regaud).

Es ist bekannt, dass von zahlreichen Seiten Bedenken gegen die Annahme einer besonderen, die Gestaltungsvorgänge beherrschenden Erbsubstanz ausgesprochen worden sind. Diese Bedenken teile ich nicht nur insofern, als sie gegen eine "Magazinierung" der Erbmasse im Kern gerichtet sind. Auch die Plastosomen fasse ich nicht als eine materia rectrix oder als ein Idioplasma im strengen Naegelischen Sinne auf, sondern im wesentlichen als eine dem Protoplasma beigegebene primitive (indifferente, neutrale) oder embryonale Substanz, welche im Lauf der Ontogenese die mannigfachsten Differenzierungen epigenetisch ausbildet und dabei die ihr innewohnenden Artcharaktere in die Erscheinung treten lässt.

Mehrere Autoren, welche die "mizellar-idioblastischen Vererbungshypothesen" (Jensen) ablehnen, haben nun schon früher den Satz aufgestellt, dass die Vererbung an die Totalität der Zelle gebunden sei; so z. B. Noll (1903), welcher erklärt, Erbmasse sei das gesamte embryonale Plasma, welches zwar für unsere Wahrnehmung noch mehr oder weniger rudimentär, morphologisch unvollkommen differenziert, aber bereits streng spezifisch (artlich) determiniert sei; ferner Jensen (1907), welcher an die Stelle der Sexual- oder Fortpflanzungszellen und sonstigen omnipotenten Zellen den allgemeineren Begriff der Keimsubstanz setzt und diese als einheitliches "lebendiges System" (im Sinne der physikalischen Chemie) bezeichnet "mit allen wesentlichen Eigentümlichkeiten eines solchen" (S. 71 und 96).

Von gleichen oder ähnlichen Ansichten ausgehend haben mir neuerdings mehrere Kritiker den Vorwurf gemacht, dass ich die neben den Plastosomen vorhandenen Bestandteile des Plasmas nicht genügend gewürdigt hätte.

Das scheint z.B. die Meinung Prenants zu sein, wenn er (1910, S. 263) seine Verwunderung darüber ausspricht, dass den "mikromeristischen" Vererbungstheorien in meinen Augen so viel Ansehen geblieben wäre, dass ich die Plastosomen zu Vererbungsträgern gemacht hätte.

Lundegårdh (1910, S. 328) sagt, es gäbe keinen Beweis dafür, dass die Plastosomen die "Qualitäten des Plasmas" repräsentieren. "Denn das, was in der lebenden Zelle als Fäden oder Körnchen hervortritt, ist nur ein Teil des ganzen chemischen Inhalts des Protoplasmas, und niemand hat wohl das Experiment gemacht, die Gerüstteile von den übrigen Bestandteilen (Enchylema) des Plasmas zu trennen, um zu zeigen, dass sie das Plasma wiederbilden können."

Auch M. Heidenhain (1911, S. 1093) kann es nicht für richtig halten, dem Prozess der Vererbung bezw. Entwicklung eine Masse — "Erbmasse" — zu "hypostasieren" und sie bestimmt zu lokalisieren, sei es im Kern, sei es in der Zellsubstanz oder in beiden zugleich; "denn bei den histogenetischen Prozessen", sagt er, "kommt die gesamte lebendige Substanz der Zelle in Frage. Es kann nur darauf ankommen, die entwicklungsphysiologische Rolle aller Teile (also z. B. des Kerns, der Zentren etc.) richtig zu ermitteln. Bei Meves fungieren die Chondriosomen als histologisch bestimmbare Anlagen der späteren Differenzierungen des Zellplasmas; mir genügt indessen — theoretisch gedacht — die Protomerenmasse des befruchteten Eies als Anlagesubstanz . . . "

Eine Antwort auf diese Einwände ergibt sich ohne Schwierigkeit, wenn wir gewisse Vorgänge bei der Histogenese der Säugetierspermien ins Auge fassen. Die älteren Autoren (v. Kölliker noch 1885) hielten die Säugetierspermien für reine Kernbildungen; der Schwanzfaden sollte aus dem Kern hervorwachsen, die Zellsubstanz gegen Schluss des Reifungsprozesses aufgelöst werden. Die neueren Untersuchungen haben dagegen gezeigt, dass protoplasmatische Bestandteile in den Aufbau der Spermien übergehen. Hals, Schwanz und Perforatorium repräsentieren jedoch keineswegs das gesamte Protoplasma der Bildungszelle, sondern nur einen relativ kleinen Teil desselben. Ein anderer, dem Volumen nach sehr erheblicher Teil wird, wie Brown (1885), v. Ebner (1888), ich selbst (1899), Regaud (1901), Duesberg (1910) u. a. beschrieben haben, abgestossen.

Die erste genauere Beschreibung des Abstossungsprozesses habe ich 1899, S. 359 beim Meerschweinchen gegeben; danach gestaltet er sich bei diesem Tier folgendermassen.

Ich beginne hier mit einem stark vorgeschrittenen Entwicklungsstadium (Fig. b), auf welchem der stark abgeplattete Kopf frei aus dem Protoplasma der Bildungszelle (Spermatide) vorragt; dieses wird von dem Anfangsteil des Schwanzfadens durchsetzt. Die "Schwanzmanschette" ist geschwunden, die Plastochondrien haben sich dem "Verbindungsstück" des Schwanzfadens aufgelagert; die tingierbaren Körner sind zu grösseren, unregelmässig gestalteten Klumpen zusammengeballt.

Auf einem folgenden Stadium buchtet sich nun die Zellsubstanz in der Richtung nach vorn über eine der beiden Flächen
des Kopfes sackförmig vor; Fig. c zeigt den Vorgang in Flächenansicht, Fig. d in der Ansicht von der Kante. Die Aussackung
wird immer stärker ausgezogen; schliesslich steht sie mit dem
Samenfaden nur noch durch einen kurzen Stiel in Zusammenhang
(Fig. e). Indem letzterer sich vollständig durchschnürt, trennt
sich von dem Samenfaden ein rundlicher Zytoplasmaballen ab,
welcher hauptsächlich aus Grundsubstanz besteht und die zusammengeklumpten tingierbaren Körner und häufig noch einen
oder mehrere dicke Fäden (Residuen der Schwanzmanschette)
einschliesst.

Etwas Grundsubstanz bleibt aber allerdings um das Verbindungsstück zurück. Jedoch ist ihre Menge so minimal, dass man an den meisten Spermien auch mit den stärksten Vergrösserungen keine Spur davon wahrnimmt. Ich habe die Existenz einer von

Fig. e. Fig. f. Fig. g. Fig. b—e. Endstadien der Spermiogenese des Meerschweinchens, Abschnürungsprozess der Zellsubstanz. Fig. f und g. Nahezu reife Samenfäden, Fig. f in Flächen-, Fig. g in Kantenansicht.

Grundsubstanz gebildeten Hülle überhaupt nur aus der Histogenese und einer allerdings nicht selten vorkommenden ovalen oder spindelförmigen Auftreibung erschliessen können.

Das Volumen des abgeschnürten Zytoplasmaballens dagegen ist mindestens ebenso gross wie dasjenige von Kopf und Schwanz des Samenfadens zusammen.

Die Grundsubstanz des Spermatidenprotoplasmas samt den eventuell in ihr vorhandenen Strukturen muss also für das Zustandekommen der Vererbung jedenfalls relativ, wenn nicht absolut wertlos sein; dagegen erhellt die Wichtigkeit der Plastochondrien daraus, dass nach meinen und Duesbergs (1910) Feststellungen kein einziges von ihnen in den abgeschnürten Zytoplasmaballen hineingelangt.

Die Natur selbst macht bei der Histogenese der Spermien das von Lundegårdhgeforderte Experiment, die Plastosomen von der Grundmasse des Plasmas zu trennen.

Um Missverständnissen vorzubeugen, möchte ich hier nochmals hervorheben, was ich bereits 1910, S. 655 ausgesprochen habe, dass ich durchaus nicht auf dem Standpunkt Altmanns stehe, nach welchem die Grundmasse des Protoplasmas als tot zu betrachten ist. Flemming, dessen "Fila" von 1882, wie ich gezeigt habe, mit Chondriokonten oder Plastokonten identisch sind, hat schon 1882, S. 80, geäussert, es bleibe die Frage, ob die in den Fäden liegenden Kräfte ohne Beisein der "Zwischensubstanz" entwickelt werden könnten. Jensen (1907, S. 73) sagt, wir müssten es als sehr wahrscheinlich annehmen, dass die Bestandteile der protoplasmatischen Grundmasse "chemisch und physikalisch am Zustandekommen der Lebensprozesse integrierend beteiligt sind, sei es durch Wirkungen wie Sauerstoffübertragung, Hydrierungen, Kondensationen etc. . . ., sei es als Träger von Oberflächenenergie, osmotischer Energie etc.".

Diesen Äusserungen stimme ich bei; auch ich bin der Meinung, dass die Lebensäusserungen der Plastosomen an das Vorhandensein der Grundmasse gebunden sind. Aber die Grundmasse der Samenbildungszelle geht jedenfalls nur in minimalster Menge mit in die Befruchtung ein; Kern und Plastosomen des Spermiums finden in der Grundmasse des Eies die geeigneten Bedingungen für ihre Tätigkeit vor. Auf diese Weise kommt man zu dem Resultat, dass die Eizelle an der Befruchtung und Entwicklung einen grösseren Anteil hat als das Spermium; ein Übergewicht der Eizelle in dieser Beziehung ist ja schon durch ihren Dottergehalt bedingt. Einen grösseren erblichen Wert vermag ich aber im Gegensatz z.B. zu A. Schreiner (1912) der Eizelle deshalb nicht zuzugestehen; "an der Keimanlage ist nicht die Masse, sondern nur die Beschaffenheit einer kleinen wirksamen Partie von Idioplasma das entscheidende" (Naegeli, 1884, S. 25).

Levi (1911) will die Berechtigung meiner Anschauung, nach welcher die Plastosomen protoplasmatische Vererbungsträger darstellen, nicht bestreiten. Dagegen hat er sich nicht davon überzeugen können, dass sie das Material für die verschiedensten paraplasmatischen Bildungen abgeben.¹) Überhaupt findet er zwischen beiden Anschauungen einen Widerspruch: "mi riesce inconcepibile che quegli stessi Autori (Regaud [1909], Mawas [1911], Hoven [1910], O. Schultze [1911] ed altri), i quali hanno cercato di dimonstrare la partecipazione attiva dei condriosomi alla secrezione nelle cellule ghiandolari ed all'elaborazione dei materiali metaplasmatici in vari elementi, si dichiarino nello stesso tempo fautori delle idee di Meves".

Levi glaubt also offenbar, dass er dem "Idioplasma" die Fähigkeit, sich im Lauf der Entwicklung zu verändern, nicht zugestehen darf; während ich (1908) meine Anschauung von der Beteiligung der Plastosomen bei der Vererbung gerade im Gegenteil zuerst hauptsächlich auf die Rolle gegründet habe, welche sie nach meiner Überzeugung in der Ontogenese spielen.

Zugunsten meiner Auffassung kann ich mich auf Pfeffer berufen, welcher das "Keimplasma" ebenfalls als "fortbildungsfähig", ansieht. Nachdem er ausgesprochen hat, dass man "durch Abstraktion ohne jede Hypothese" auf eine Masse geführt werde, welche "potentiell das Ganze in sich trägt", und welche als Erbmasse, Idioplasma, Keimplasma, embryonale Substanz bezeichnet werden möge (ohne dass mit diesen Worten eine bestimmte Theorie verknüpft sein solle), fährt er fort (Pflanzenphysiologie, Bd. I, 1897, S. 48—49): "So gut wie das embryonale Gewebe wird auch das Keimplasma zu verschiedenen Zielen und Zwecken ausgenutzt und umgestaltet und büsst damit bedingungsweise oder

¹) Man vergleiche demgegenüber Duesberg 1912, S. 760, Anm. und neuerdings Dubreuil (1913, S. 140).

gänzlich die bisherige reproduktive Fähigkeit ein. Zu solcher Auffassung drängen wenigstens die Beobachtungen an Pflanzen so unmittelbar, dass unter den Botanikern die, ich möchte sagen, dualistische Auffassung Weismanns keinen Boden fand, nach welcher das die Art erhaltende und das die Arbeit des Wachsens ausführende Plasma sich getrennt nebeneinander erhalten, also nicht in obigem Sinne einheitlichen Ursprungs sind."

Regaud, welcher die Anschauung vertritt, dass die Plastosomen die Aufgabe von Eclectosomen haben, d. h. damit betraut sind, die chemischen Stoffe, welche mit dem Protoplasma in Kontakt kommen, zu absorbieren, hat im Verein mit J. Nicolas und Favre (1912) konstatiert, dass in Talgdrüsenzellen ein Teil der Plastochondrien zu Sekretkugeln wird, ein anderer Teil dagegen bis zum Untergang der Zelle persistiert: daraus hatte er folgenden Schluss gezogen (S. 205): "C'est surtout pour les cellules sébacées, cellules holocrines et absolument stériles, qu'il est impossible d'admettre le rôle d'"organites héréditaires" que Meves a cru devoir leur attribuer, en considération de leur présence dans les cellules de l'embryon. Dans les cellules sébacées, il est clair que les mitochondries fonctionnent en vue de la cellule même qui les contient et qu'elles ne représentent ni un matériel de réserve ni une substance héréditaire destinée à des différenciations ulterieures".

Ich war daraufhin zu der Meinung gekommen, dass Regaud eine Beteiligung der Plastosomen bei der Vererbung überhaupt ablehnt. Auf eine diesbezügliche Anfrage hatte der sehr geehrte Herr Kollege die Güte, mir eine briefliche Darlegung seines Standpunktes zu übermitteln, welche ich mit seiner freundlichen Erlaubnis hier abdrucke. Herr Regaud schreibt mir folgendes:

"Je ne conteste pas que les mitochondries aient une signification héréditaire: le fait qu'elles existent dans les gamètes et qu'elles se transmettent d'une cellule-mère aux cellules-filles lors de la division, le prouve. Du moment que ces organites se transmettent au cours des générations cellulaires, elles sont héréditaires, comme les matières du novau, etc.

Je ne vous ai donc pas fait d'objections sur ce point.

Bien entendu, je suis entièrement convaincu, notamment par vos travaux, que les chondriosomes jouent un rôle essentiel dans la formation des organes qui se différencient dans les cellules au cours du développement.

Mais le point capital qui fait la différence des opinions que nous avons exprimées, c'est que je considère les mitochondries comme jouant toujours dans toute cellule un rôle actuel. Même dans l'oeuf et le spermatozoïde, elles ne sont pas simplement "en réserve", elles n'attendent pas seulement leur utilisation par des générations de cellules plus ou moins lointaines; elles sont utilisées actuellement.

Et ce rôle actuel, c'est, à mon avis, celui d'éclectosomes, c'est-à-dire d'organites chargés de l'intusception élective, ou (en d'autres termes) d'absorber les substances dissoutes dont la cellule a besoin. A ce rôle primordial, que je crois constant, les chondriosomes ajoutent (mais seulement dans certaines cellules) le rôle de plastes (cellules musculaires embryonnaires, cellules glandulaires à enclaves sécrétoires figurés, etc.).

Ainsi, si un spermatozoïde contient un chondriome, ce n'est pas seulement parce qu'il doit transmettre ce chondriome à l'oeuf fécondé, c'est avant tout parce que ce chondriome lui est immédiatement nécessaire pour son propre fonctionnement.

J'ai cité les cellules des glandes sébacées comme un exemple très démonstratif, à l'appui de l'opinion que la signification héréditaire des chondriosomes n'est pas générale, car ces cellules étant, comme disait Ranvier, holocrines, c'est à dire se detruisant complètement en sécrétant, et cela sans contestation possible, il est clair que leur mitochondries n'ont pas d'autre rôle qu'un rôle actuel. Je crois que la fonction éclectique du chondriome est générale."

Zwischen Regaud und mir besteht demnach keine erhebliche Meinungsverschiedenheit. Regaud ist ebenfalls der Ansicht, dass die Plastosomen der Sexualzellen einen für die embryonalen Differenzierungsvorgänge bereit gehaltenen Baustoff darstellen. Andererseits stimme ich ihm darin bei, dass diese Gebilde in den Talgdrüsenzellen und in den somatischen Zellen überhaupt eine "aktuelle" Bedeutung besitzen müssen. Ob dies überall ausschliesslich diejenige von "Plasten" ist, will ich gern dahin gestellt sein lassen. Dass sie sich noch in den untergehenden Talgdrüsenzellen finden, könnte allerdings wohl ausschliesslich der Ausdruck einer gewissen Materialverschwendung sein; und gegen

die Annahme, dass sie Eclectosomen darstellen, könnte man wohl einwenden, dass es im erwachsenen Organismus Zellen ohne Plastosomen gibt, das sind solche, in denen die Plastosomen völlig zu paraplastischen Bildungen aufgebraucht sind. Daraus geht meiner Meinung nach weiter hervor, dass die Plastosomen der Sexualzellen nicht notwendig eine elektive Funktion zu haben brauchen.

Literaturverzeichnis.

- Altmann, R., 1890: Die Elementarorganismen und ihre Beziehungen zu den Zellen. I. Aufl., Leipzig 1890 (II Aufl., 1894).
- Ballowitz, E., 1894: Bemerkungen zu der Arbeit von Dr. phil. Karl Ballowitz über die Samenkörper der Arthropoden nebst weiteren spermatologischen Beiträgen, betreffend die Tunikaten, Mollusken, Würmer, Echinodermen und Coelenteraten. Monatsschr. f. Anat. und Physiol., Bd. 11.
- Boveri, Th., 1887: Zellen-Studien, Heft 1. Die Bildung der Richtungskörper bei Ascaris megalocephala und Ascaris lumbricoides. Jena.
- Derselbe, 1888: Zellen-Studien, Heft 2: Die Befruchtung und Teilung des Eies von Ascaris megalocephala. Jena.
- Derselbe, 1890: Zellen-Studien, Heft 3. Über das Verhalten der chromatischen Kernsubstanz bei der Bildung der Richtungskörper und bei der Befruchtung. Jena.
- Bluntschli, H., 1904: Beobachtungen am Ovarialei der Monascidie Cynthia microcosmus. Morph. Jahrb., Bd. 32.
- Brown, H., 1885: On Spermatogenesis in the Rat. Quart. Journ. of microsc. Sc., vol. 25, N. S.
- Carnoy, J. B., 1886: La cytodiérèse de l'oeuf: La vésicule germinative et les globules polaires de l'Ascaris megalocephala. La cellule, t. 2.
- Castle, W. E., 1896: The Early Embryology of Ciona intestinalis, Flemming (L.). Bull. of the Museum of Comparative Zool. at Harvard College, vol. 27.
- Conklin, E. G., 1905, 1: The Organization and Cell-Lineage of the Ascidian Egg. Journ. of the Acad. of Natural Sc. of Philadelphia, ser. 2, vol. 13.
- Derselbe, 1905, 2: Organ-forming Substances in the Eggs of Ascidians. Biol. Bull., vol. 8.
- Derselbe, 1905, 3: Mosaic Development in Ascidian Eggs. Journ. of experimental Zool, vol. 2.
- Derselbe, 1911: The Organization of the Egg and the Development of single Blastomeres of Phallusia mamillata. Journ. of experimental Zool., vol. 10.
- Driesch, H., 1905: Die Entwicklungsphysiologie von 1902—1905. Erg. d. Anat. und Entwicklungsgesch., Bd. 14, 1904.
- Dubreuil, G., 1913: Le chondriome et le dispositif de l'activité sécrètoire etc. Arch. d'anat. micr., t. 15.

- Duesberg, J., 1910: Nouvelles recherches sur l'appareil mitochondrial des cellules séminales. Arch. f. Zellforschung, Bd. 6.
- Derselbe, 1912: Plastosomen, "apparato reticolare interno" und Chromidialapparat. Erg. d. Anat. und Entwicklungsgesch., Bd. 20.
- v. Ebner, V., 1888: Zur Spermatogenese bei den Säugetieren. Arch. f. mikr. Anat., Bd. 31.
- Fischer, A., 1899: Fixierung, Färbung und Bau des Protoplasmas. Jena.
- Flemming, W., 1882: Zellsubstanz, Kern und Zellteilung.
- Gérard, P., 1909: Recherches sur la Spermatogénèse chez Stenobothrus biguttulus (Linn.). Archives de Biologie, t. 24.
- Gélski, St., 1899: Reifung und Befruchtung des Eies von Ciona intestinalis. Bull. de l'Acad. des Sciences de Cracovie.
- Heidenhain, M., 1911: Plasma und Zelle. II. Lieferung. Die kontraktile Substanz, die nervöse Substanz, die Fadengerüstlehre und ihre Objekte.
- Held, H., 1912: Über den Vorgang der Befruchtung bei Ascaris megalocephala. 1. Ber. d. K. sächs. Ges. d. Wiss., math.-phys. Kl. und 2. Verhandlungen d. Anat. Ges. auf d. 26. Vers. in München.
- Hensen, V., 1881: Physiologie der Zeugung. Handbuch der Physiologie, Bd. 6, H. Teil.
- Derselbe, 1885: Die Grundlagen der Vererbung nach dem gegenwärtigen Wissenskreis. Landwirtschaftl. Jahrb., Bd. 14.
- Derselbe, 1911: Schlussbericht und Folgerungen aus den quantitativen Bestimmungen des Planktons im Atlantischen Ozean. Ergebnisse der 1889 ausgeführten Plankton-Expedition, Bd. V. O.
- Derselbe, 1912: Wachstum und Zeugung. Schrift. d. Naturw. Ver. f. Schleswig-Holstein, Bd. 15.
- Hertwig, O., 1890: Vergleich der Ei- und Samenbildung der Nematoden. Eine Grundlage für celluläre Streitfragen. Arch. f. mikr. Anat., Bd. 36,
- Hill, M. D., 1896: Notes on the Fecundation of the Egg of Sphaerechinus granularis, and on the Maturation and Fertilisation of the Egg of Phallusia mamillata. Quart Journ. of Microsc. Sc., N. S., vol. 38.
- Jensen, P., 1907: Organische Zweckmässigkeit, Entwicklung und Vererbung vom Standpunkte der Physiologie. Jena.
- Julin, Ch., 1893: Structure et développement des glandes sexuelles; ovogenèse, spermatogenèse et fécondation chez Styelopsis grossularia. Bull. scient. de la France et de la Belgique, t. 25.
- v. Kemnitz, G., 1912: Die Morphologie des Stoffwechsels bei Ascaris lumbricoides. Ein Beitrag zur physiologisch-chemischen Morphologie der Zelle. Arch. f. Zellforschung, Bd. 7.
- v. Kölliker, A., 1885: Die Bedeutung der Zellenkerne für die Vorgänge der Vererbung. Zeitschr. f. wiss. Zool., Bd. 42.
- Levi, G., 1911: Sulla presunta partecipazione dei condriosomi alla differenziazione cellulare. Arch. di Anat. e di Embriol., vol. 10.
- Lillie, Frank R., 1912: Studies of Fertilization in Nereis. III. The Morphology of the Normal Fertilization of Nereis. Journ. of Experiment, Zool., vol. 12.

- Loyez, Frl. M., 1909: Les premiers stades de la vitellogénèse chez quelques Tuniciers. Compt. rend. de l'assoc. des anatomistes. XI réunion, Nancy.
- Lundegårdh, H., 1910: Ein Beitrag zur Kritik zweier Vererbungshypothesen. Über Protoplasmastrukturen in den Wurzelmeristemzellen von Vicia Faba. Jahrb. f. wiss. Bot., Bd. 48.
- Mayer, A., 1908: Zur Kenntnis der Samenbildung bei Ascaris megalocephala. Zool. Jahrb., Abt. f. Anat. u. Ontog., Bd. 25.
- Meves, Fr., 1899: Über Struktur und Histogenese der Samenfäden des Meerschweinchens. Arch. f. mikr. Anat., Bd. 54.
- Derselbe, 1900: Über den von v. la Valette St. George entdeckten Nebenkern (Mitochondrienkörper) der Samenzellen. Arch. f. mikr. Anat., Bd. 56.
- Derselbe, 1908: Die Chondriosomen als Träger erblicher Anlagen. Cytologische Studien am Hühnerembryo. Arch. f. mikr. Anat., Bd. 72.
- Derselbe, 1910. 1: Zur Einigung zwischen Faden- und Granulalehre des Protoplasmas. Beobachtungen an weissen Blutzellen. Arch. f. mikr. Anat., Bd. 75.
- Derselbe, 1910. 2: Über Aussaat männlicher Mitochondrien im Ei bei der Befruchtung. Anat Anz. Bd. 36.
- Derselbe, 1911: Über die Beteiligung der Plastochondrien an der Befruchtung des Eies von Ascaris megalocephala. Arch. f. mikr. Anat., Bd. 76.
- Derselbe, 1912: Verfolgung des sogenannten Mittelstückes des Echinidenspermiums bis zum Ende der ersten Furchungsteilung. Arch. f. mikr. Anat., Bd. 80. Abt. II
- Montgomery, Th. H., jr., 1912: Complete discharge of Mitochondria from the Spermatozoön of Peripatus. Biol. Bull., vol. 22.
- v. Naegeli, C., 1884: Mechanisch-physiologische Theorie der Abstammungslehre.
- Nicolas, J., Regaud, Cl. und Favre, M., 1912: Sur les mitochondries des glandes sébacées de l'homme et sur la signification générale de ces organites du protoplasma. Compt. rend. de l'assoc. des anatomistes, XIV réunion. Rennes.
- N o 11, F., 1903: Beobachtungen und Betrachtungen über embryonale Substanz. Biol. Zentralbl., Bd. 23.
- Otte, H., 1907: Samenreifung und Samenbildung bei Locusta viridissima. Zool. Jahrb., Abt. f. Anat. u. Ontog., Bd. 24.
- Peter, K., 1909: Experimentelle Untersuchungen über individuelle Variation in der tierischen Entwicklung. Arch. f. Entw.-Mech., Bd. 27.
- Pfeffer, W., 1897: Pflanzenphysiologie. Bd. I. Stoffwechsel, Leipzig.
- Prenant, A., 1910: Les mitochondries et l'ergastoplasma. Journ. de l'anat. et de la physiol., t. 46.
- Regaud, Cl., 1901: Études sur la structure des tubes séminifères et sur la spermatogenèse chez les Mammifères. Arch. d'anat. micr., t. 4.
- Derselbe, 1909: Attribution aux "formations mitochondriales" de la fonction générale d'extraction et de fixation électives, exercée par les cellules vivantes sur les substances dissoutes dans le milieu ambiant. Compt. rend. de la Soc. de Biologie.

Retzius, G., 1904: Biologische Untersuchungen. N. F., Bd. 11.

Derselbe, 1911: Biologische Untersuchungen, N. F., Bd. 16

Romeis, B., 1912: Beobachtungen über Degenerationserscheinungen von Chondriosomen. Nach Untersuchungen an nicht zur Befruchtung gelangten Spermien von Ascaris megalocephala. Arch. f. mikr. Anat., Bd. 80, Abt. II

Derselbe, 1913: Beobachtungen über die Plastosomen von Ascaris megalocephala während der Embryonalentwicklung unter besonderer Berücksichtigung ihres Verhaltens in den Stamm- und Urgeschlechtszellen. Arch. f. mikr. Anat., Bd. 81, Abt. II.

Rubaschkin, W., 1910: Chondriosomen und Differenzierungsprozesse bei Säugetierembryonen. Anatomische Hefte, Bd. 41.

Sala, L., 1895: Experimentelle Untersuchungen über die Reifung und Befruchtung der Eier bei Ascaris megalocephala. Arch. f. mikr. Anat., Bd. 44.

Schaxel, J., 1910: Das Zusammenwirken der Zellbestandteile bei der Eireifung, Furchung und ersten Organbildung der Echinodermen. Arch. f. mikr. Anat., Bd. 75.

Derselbe, 1911: Plasmastrukturen, Chondriosomen und Chromidien. Anat. Anz., Bd. 39.

Schreiner, A., 1912: Kurze Bemerkung zur Frage von der Bedeutung des Kerns und des Zelleibes als Erblichkeitsträger. Biol. Zentralbl., Bd. 32.

Strasburger, E., 1875: Zellbildung und Zellteilung. Jena.

Vejdovský, F., 1911—1912: Zum Problem der Vererbungsträger. Prag, Verlag d. K. böhm. Ges. d. Wiss.

de Vries, H., 1889: Intracellulare Pangenesis. Jena.

Zoja, L. und R., 1891: Interno ai plastiduli fucsinofili (bioblasti dell' Altmann). Mem. Ist. Lomb. Sc. Lett., Milano, vol. 16.

Erklärung der Abbildungen auf Tafel XI-XIV.

Die Abbildungen der Tafeln XI—XIV sind mit Zeiss' Apochromat 2 mm (Apertur 1,30 oder 1,40 mm) und Kompensationsokular 12 unter Benutzung des Abbeschen Zeichenapparates entworfen. Der Abstand der Zeichenebene von der Ebene des Tisches betrug 17½ cm. Sämtlich nach Präparaten, welche mit Fuchsin-Pikrinsäure nach Altmann gefärbt worden sind. Bei den Spermien der Fig. 1 hat 1 proz. Osmiumsäure, bei den Eiern der Fig. 2—23 Altmann sches Gemisch als Fixierungsmittel gedient.

Tafel XI.

Fig. 1 a. Spermium einer bei Kristineberg vorkommenden Phallusiaart (wahrscheinlich Phallusia aspersa), deren Samenfäden sich von denjenigen von Phallusia mamillata nicht in erkennbarer Weise unterscheiden; Fig. 1 b—p Spermienköpfe derselben Art. Fig. 1 q—s Spermienköpfe von Phallusia mamillata, welche entweder unreif oder durch die Fixierung verändert sind. Beschreibung im Text S. 218—220.

- Fig. 2 und 3. Eier von Phallusia mamillata, vegetativer Pol mit eingedrungenem Samenfaden, 12 Minuten nach der Befruchtung.
- Fig. 4. Ei desselben Tieres, 20 Minuten nach der Befruchtung.
- Fig. 5, 6 und 7. Eier desselben Tieres, 1/2 Stunde nach der Befruchtung. Beschreibung im Text S. 226. Der bräunliche Stab, den man bei Fig. 6 im Innern des Spermienkopfes, allerdings nur in den oberen zwei Dritteln desselben, wahrnimmt, ist der eigentliche Kopf oder der Kernanteil des Kopfes.

Tafel XII.

- Fig. 8-13. Eier von Phallusia mamillata (vegetativer Pol), 11/2 Stunde nach der Befruchtung.
- Fig. 8. Spermienkopf von der Seite gesehen, am oberen Ende stärker als am unteren aufgequollen. Vergl. Text S. 227.
- Fig. 9 und 10. Spermienköpfe von der Seite gesehen, mit Kernstäben im Innern. In Fig. 9 ist nur ein einziger plastosomatischer Ring vorhanden, welcher bei hoher Einstellung wiedergegeben ist. Fig. 10 bei Einstellung auf die Längsachse gezeichnet.
- Fig. 11. Spermienkopf auf einem optischen Querschnitt senkrecht zur Längsachse; im Innern der bereits stärker verdickte Kernstab gleichfalls auf dem Querschnitt.
- Fig. 12 und 13. Spermienköpfe von der Seite gesehen, in Fig. 12 bei wechselnder Einstellung, in Fig. 13 bei Einstellung auf die Längsachse gezeichnet.

Tafel XIII.

- Fig. 14—16. Eier von Phallusia mamillata (vegetativer Pol) ¹/₁₂ Stunde nach der Befruchtung.
- Fig. 14 und 15. Spermienköpfe von der Seite gesehen, in Fig. 14 bei wechselnder Einstellung, in Fig. 15 bei Einstellung auf die Längsachse wiedergegeben. In letzterer Figur sind die tiefer liegenden Teile der plastosomatischen Reifen blassrot mitgezeichnet, der eiförmige Körper im Innern des Spermienkopfes (Fig. 15) ist der eigentliche Kopf oder der Spermakern.
- Fig. 16. Reifen des Spermienkopfes geschwunden. Drei plastosomatische Stäbehen nahe dem unteren Rand des das Spermozentrum umgebenden hellen Hofes.
- Fig. 17 und 18. Eier, 50 Minuten nach der Befruchtung. Die plastosomatischen Stäbchen sind zahlreicher geworden. In Fig. 18 hat der Spermakern seine zytoplasmatische Hülle verloren.
- Fig. 19. Ei, 1 Stunde nach der Befruchtung. Spermakern herangewachsen, lappig. Zahlreiche plastosomatische Stäbehen.

Tafel XIV.

- Fig. 20—23. Eier von Phallusia mamillata (vegetativer Pol), $1^4/2$ Stunden nach der Befruchtung
- Fig. 20. Zahlreiche plastosomatische Stäbchen in der Zentralmasse der Spermastrahlung versammelt.

- Fig. 21. Zentralmasse der Spermastrahlung in zwei Hälften geteilt, welche nach entgegengesetzten Seiten auseinanderrücken und die in ihrer Substanz eingeschlossenen Stäbchen mitführen.
- Fig. 22. Sperma- und Eikern haben sich nebeneinander gelegt. Zentrosphären; an den von den Vorkernen abgewandten Seiten der letzteren zwei etwas dunklere Halbmonde, welche die plastosomatischen Stäbchen zum grössten Teil einschliessen.
- Fig. 23. Stadium der ersten Furchungsspindel. Plastosomatische Stäbehen im Umkreis der Zentrosphären.

Aus dem Biologischen Laboratorium der Universität Bonn.

Über pluripolare Mitosen in Hodenregeneraten von Rana fusca.

Von

cand. med. Arnold Lauche.

Hierzu Tafel XV.

Entfernt man einem Rana fusca 3 auf beiden Seiten den grössten Teil der Keimdrüsen, so beginnt in dem zurückgelassenen Rest ein neuer Cyclus der Samenbildung. Bekanntlich verläuft dieser Vorgang bei Rana fusca in einem jährlichen Cyclus, der bald nach der Laichzeit, also etwa im Mai, beginnt und bis zum Oktober zur Bildung von Samenfäden fortgeschritten ist. Während der Wintermonate ändert sich das histologische Bild dann nicht mehr.

Wie M. Nussbaum (35) weiter fand, beginnt in kleinen transplantierten Hodenstücken von Rana fusca nach Rückbildung aller vorhandenen übrigen Stadien eine neue Samenbildung aus den zurückgebliebenen Spermatogonien; der im Normalen streng eingehaltene Jahrescyclus wird dabei nicht eingehalten.

Diese neu einsetzende Samenbildung verläuft nun nach Meyns (30, 31) um so schneller, je weiter die normale Entwicklung zur Zeit der Operation schon fortgeschritten war, am schnellsten also kurz vor der Laichzeit.

Bei den von mir im Biologischen Laboratorium ausgeführten Transplantationen von Hodenstücken und gelegentlich der Untersuchung unvollständig kastrierter Männchen von Rana fusca zeigte es sich, dass dieser bedeutende Unterschied in der Entwicklung der Samenfäden nicht der einzige zwischen dem normalen und dem regenerativen Ablauf ist.

Kastriert man kurz vor der Laichzeit männliche Rana fusca nur so weit, dass in den zurückgebliebenen Resten eine beschleunigte Samenbildung sich abspielen kann, so treten in den Regeneraten pluripolare Mitosen auf.

Ich fand sie nur in den ersten Tagen nach der Operation, während die Präparate, welche über 14 Tage post. op. fixiert wurden, keine pluripolaren Mitosen mehr zeigten. Die meisten derartigen Teilungsbilder fand ich in dem jüngsten Regenerat, 5 Tage nach der Operation; in den älteren werden sie spärlicher, nach dem 14. Tage verschwinden sie ganz.

Wie Fig. 1-7 zeigt, handelt es sich um drei- bis achtpolige Mitosen.

Pluripolare Mitosen, die nach ihrer Entdeckung durch Eberth (1876)¹) zuerst von Pathologen, unter anderen von Arnold (1), Martin (27), Waldstein (41), Cornil (8), Schottländer (37), Borrel (4), Klebs (22), v. Kostanecki (24), Nauwerck (34), Hansemann (13, 14), Ströbe (40), Galeotti (12) und Krompecher (25) in pathologisch verändertem Gewebe und vor allem in malignen Tumoren gefunden wurden, sind jetzt auch aus normalem Gewebe bekannt.

Sie treten stets auf bei der normalen Teilung mehrkerniger Riesenzellen (vgl. Meves [29]). Denys (10) beobachtete sie bei der Vermehrung der Riesenzellen im Knochenmark, Kostanecki (24) in den Riesenzellen der embryonalen Säugetierleber, Broman (6) bei der Teilung der Riesenspermatiden vom Bombinator igneus.

Ausserdem entstehen nach His (21) pluripolare Mitosen ganz allgemein in Syncytien, wo das Wirkungsgebiet der Centren nicht durch Grenzschichten abgeschlossen ist, so dass benachbarte Strahlungsgebiete ineinander übergreifen und sich zur Bildung mehrpoliger Spindelsysteme verbinden (l. c. S. 410, siehe auch Conklin [7], S. 534). Hierher gehört auch die Beobachtung Henneguys (17), der pluripolare Mitosen in der Dotterschicht der Forellenkeimscheibe auftreten sah, Raffaele (36) beschreibt ebenfalls pluripolare Mitosen im Dottersyncytium von Knochenfischeiern (cit. nach Meves [1898], S. 510).

Eine weitere Anzahl von Beobachtungen betrifft pluripolare Mitosen in anormalen Eizellen verschiedener Tiere, wie Ascaris (zur Strassen [38]), Thysanozoon (van der Stricht [39]), Seeigel (Baltzer [2]), Crepidula (Conklin [7]).

Die bekannten Arbeiten von O. und R. Hertwig (20), G. Loeb (26), T. H. Morgan (32, 33), E. B. Wilson (42) und neuerdings Konopacki (23), Conklin (7) und O. Hertwig (19) haben die Erzeugung pluripolarer Mitosen gelehrt und diese Vorgänge damit der Erforschung durch das Experiment zugänglich gemacht.

¹⁾ Zit nach Krompecher (l. c. S. 52.

Durch die verschiedensten chemischen und physikalischen Agentien sind von den genannten Forschern die Zellteilungsvorgänge derart beeinflusst worden, dass durch Ausfall der Zellteilung nach der Kernteilung oder auf andere Weise pluripolare Mitosen entstanden.

Besonders interessieren in dem vorliegenden Falle die bisherigen Beobachtungen pluripolarmitotischer Teilungsvorgänge in den Zellen der männlichen Keimdrüsen und besonders in den Hoden der Amphibien.

Bouin (5) fand zahlreiche mehrpolige Kernteilungen in den Hoden junger Ratten.

Flemming (11) beschreibt pluripolare Teilungen der Spermatocyten des Salamanderhodens. Da er diese nur einmal beobachtete und die Chromosomen in diesem Falle atypische Form zeigten, glaubt er es mit einem pathologischen Befund zu tun zu haben.

Broman (6) fand stets in den Hoden von Bombinator igneus eine wechselnd grosse Zahl von Riesenspermatocyten, die sich vermittels pluripolarer Mitose in Riesenspermatiden umwandeln. Er beobachtete drei- bis achtpolige Mitosen. Einzeln liegende Chromosomen sah er sich zu kleinen Kernen umbilden, ein Vorgang, wie ihn auch Meves (28) bei der Entwicklung vielkerniger Spermatogonien von Salamandra maculosa beschreibt. Hier entstehen aber die vielkernigen Spermatogonien nicht durch pluripolare Mitosen, sondern durch anormalen Verlauf einer bipolaren Mitose, indem nicht alle Chromosomen sich vereinigen, sondern teilweise zu selbständigen kleinen Kernen werden.

In allen diesen drei Fällen gehen die so gebildeten mehrkernigen Zellen später meist zugrunde. Nur einzelne Riesenspermatiden sah Broman zu Riesen- oder monströsen Spermien sich weiter entwickeln.

Von Rana sind derartige Abnormitäten im Verlauf der Spermatogenese meines Wissens nicht bekannt.

Die von mir beobachteten pluripolaren Mitosen sind durchaus anderer Herkunft, wie die bisher bekannten bei Salamandra und Bombinator.

In diesen Fällen handelt es sich um typische Riesenzellen. Bei ihnen liegt, wie für Riesenzellen charakteristisch (vgl. Heidenhain [16], S. 273), die Kernsubstanz peripher und lässt die Zellmitte frei. Die Vermehrung erfolgt ebenfalls in typischer Weise durch pluripolare Kernteilung (vgl. Meves [29], S. 510). Das Resultat der Teilung sind dann entweder mehrkernige Zellen oder Zellen mit Riesenkernen, die dann mehr oder weniger schnell dem Untergang verfallen.

Ganz anders ist, wie wir sehen werden, das Schicksal der hier zu beschreibenden Zellen.

Ein weiterer Unterschied besteht auch in der Entstehungsweise der mehrkernigen Zellen, die in unserem Falle, soweit mir bekannt, nicht in der Natur vorkommen, sondern ihre Entstehung nur den durch die partielle Kastration geschaffenen Bedingungen verdanken.

Soweit die Präparate ein Urteil gestatten, scheint mir folgendes vorzuliegen.

Unter den durch die Operation gesetzten Bedingungen beginnen die normalerweise noch längere Zeit in Ruhe bleibenden wandständigen Spermatogonien sich zu teilen. Diese erste Teilung verläuft in normaler Weise.

Wie die Präparate zeigen, unterbleibt die der Kernteilung sonst folgende Zellteilung; es entstehen also zweikernige Zellen.

Diese teilen sich nach kurzer Pause zum zweiten Male. Es entsteht eine vierpolige, oder da in einzelnen Fällen zwei Pole zusammenfallen, eine dreipolige Mitose (Fig. 1, 6). Auch nach dieser zweiten Kernteilung unterbleibt die Zellteilung. So entstehen drei- oder vierkernige Zellen (Fig. 10). Die nächste Mitose, die bald darauf folgt, zeigt sechs bis acht Pole (Fig. 2—5, 7). Diesmal unterbleibt ebenfalls die Zellteilung. Das Resultat sind sechs- bis achtkernige Zellen (Fig. 11).

Weiter geht nun diese Art der Kernteilung nicht mehr. Mehr als acht Kerne in einer Zelle habe ich in den Schnittserien nicht nachweisen können.

Als wesentlich hervorzuheben ist schon jetzt, dass die auf diese Weise entstandenen Kerne durchaus das Aussehen normaler Spermatogonienkerne haben. Sie sind weder hyper- noch hypochromatisch, unterscheiden sich auch in der Grösse nicht in erheblichem Grade voneinander und von normalen Kernen. Die von Bouin (5, S. 300) festgestellte Tatsache, dass hyperchromatische Kerne sich fast immer mittels pluripolarer Mitose teilen, kann

hier also zur Erklärung des Auftretens der vielpoligen Teilungsbilder nicht herangezogen werden.

Die Zahl der Chromosomen liess sich nicht mit Sicherheit feststellen. Sie scheint aber der Summe der in den beteiligten Kernen enthaltenen im grossen und ganzen zu entsprechen.

Nach der dritten Mitose scheint eine längere Pause einzutreten. Ich glaube das aus folgendem schliessen zu können:

In den meisten Spermatogonien ist diese dritte Mitose schon nach dem 5. Tage abgelaufen. Die Präparate vom 14. Tage nach der Operation zeigen wieder zahlreiche Mitosen. In den Cysten fanden sich dann nie mehr als etwa 130 Zellen. Es können in der ganzen Zwischenzeit also höchstens vier Mitosen aufgetreten sein.

Weiter ist nun auch bemerkenswert: Die Präparate über 14 Tage post. op. fixiert, zeigen keine vielkernigen Zellen mehr.

In der Zwischenzeit sind also die Zellteilungen nachgeholt worden.

Eine andere Erklärung erscheint mir aus folgenden Gründen nicht möglich, weil erstens neue wandständige Spermatogonien, die evtl. in normaler Weise sich vermehrt haben könnten, in nennenswerter Anzahl in der Zwischenzeit nicht in Teilung getreten sind und zweitens kein Anhalt dafür vorhanden ist, dass die gebildeten mehrkernigen Zellen zugrunde gegangen sind.

Degenerierende pyknotische Kerne habe ich trotz eifrigen Suchens nicht finden können, ausser einigen wenigen kleinen Fragmenten, die, wie ich glaube, versprengte Chromosomen darstellen. Wie besonders aus Fig. 1, 2c und 6 hervorgeht, treten während der pluripolaren Teilung Störungen auf, infolge deren einzelne Chromosomen isoliert bleiben und nicht mit den anderen zu den Tochterkernen verschmelzen.

Sie bilden nun nicht wie bei Salamandra (Meves) und Bombinator (Broman l. c.) selbständige kleine Kerne, sondern gehen alsbald zugrunde.

Wir finden also eine Reihe wesentlicher Unterschiede zwischen den bisher beobachteten mehrkernigen Zellen in den Amphibienhoden und den hier beschriebenen.

Es handelt sich hier nicht um typische Riesenzellen, deren charakteristische Eigenschaften ich oben angeführt habe.

In unserem Falle ist die Kernsubstanz auf eine Reihe von Kernen verteilt und im Zentrum der Zelle lokalisiert (Fig. 10 und 11).

Die aus den Teilungen hervorgehenden Kerne sind durchaus normal. Im Gegensatz zu den schon bekannten Fällen gehen die hier beschriebenen Zellen nicht zugrunde. Ist später die ausgebliebene Zellteilung nachgeholt, dann verläuft der Prozess, abgesehen von der grösseren Schnelligkeit, in durchaus typischer Weise.

Wir haben es also hier mit vorübergehend auftretenden Abweichungen zu tun, die ihre Entstehung den durch die Operation gesetzten Bedingungen verdanken.

Wie die Experimente von O. und R. Hertwig (l. c.), Loeb (l. c.), Morgan (l. c.), Wilson (l. c.), Konopacki (l. c.) und besonders Conklin (l. c.) zeigen, unterbleibt bei veränderten mechanischen und osmotischen Druckverhältnissen oft die der Kernteilung folgende Zellteilung.

Ich halte es nicht für unwahrscheinlich, dass unter anderem auch hier abnorme Druckverhältnisse eine Rolle spielen.

Ein Blick auf Fig. 8 und 9 wird meine Annahme verständlich erscheinen lassen. In Fig. 8 ist ein Hodenkanälchen aus dem 5 Tage alten Regenerat abgebildet.

Wie man sieht, sind die Lumina erfüllt von degenerierenden Samenfäden, dazwischen einzelne Leukocyten mit den Resten zerfallener Samenfadenköpfe.

Die Wand der Kanälchen wird von den in lebhafter Vermehrung befindlichen, dicht gedrängt liegenden Spermatogonien und den dazwischen liegenden Cystenwandzellen gebildet.

 Makroskopisch ist das nach der Operation stark hyperamische Organ prall gespannt und steht in starkem Gegensatz zu dem nach der Begattung schlaffen normalen Hoden.

Das schlaffe lockere Gefüge des normalen Testikels zeigt sich auch deutlich im mikroskopischen Bild.

In Fig. 9 sehen wir das Lumen der normalen Hodenkanäle nahezu frei von den Resten der letzten Samenfädengeneration.

Die wandständigen Spermatogonien, welche meist gerade ihre erste Teilung, höchstens aber schon die zweite, vollenden, liegen locker nebeneinander.

Bis zu der Zeit, wo die dritte und vierte Teilung stattfindet, ist das Lumen vollständig leer und wie Präparate aus dieser Zeit zeigen, noch erheblich weiter geworden. Es ist also ausreichend Platz für die langsam sich bildenden Cysten. Unter ganz anderen Bedingungen verläuft die Vermehrung der Spermatogonien in dem Regenerat.

Durch die Operation werden die ruhenden Spermatogonien zu schnell aufeinander folgenden Teilungen veranlasst.

Schon innerhalb der ersten 4 Tage nach der Operation wird von vielen die dritte Teilung vollendet.

Die auf diese Weise gebildeten Kerne haben keinen Platz, um auseinander zu weichen. Die der Kernteilung sonst folgende Zellteilung bleibt aus; es entstehen zwei-, vier-, dann achtkernige Zellen.

Damit ist nun aber jeder verfügbare Raum ausgefüllt. Es tritt eine Pause ein, während der das Detritusmaterial aus dem Lumen durch Phagozytose entfernt wird.

Inzwischen ist die Hyperämie geschwunden. Unter der Einwirkung der durch die partielle Kastration gesetzten Reize verläuft nun die Bildung neuen Samens im schnellsten Tempo weiter.

In keiner der späteren Serien, die überaus reich an Kernteilungsfiguren sind, habe ich pluripolare Mitosen entdecken können, ein Umstand, der dafür spricht, dass es wohl nicht das pathologisch schnelle Wachstum direkt ist, welches zur Bildung der pluripolaren Mitosen führt.

Die Schnelligkeit des Prozesses ist in den späteren Stadien die gleiche wie in den früheren, und doch treten keine derartigen Störungen auf.

Indirekt ist natürlich das schnelle Aufeinanderfolgen der Teilungen die Bedingung, die zur Bildung der mehrpoligen Teilungsbilder führt.

Nach den beobachteten und hier erörterten Tatsachen sind wahrscheinlich die starke Raumbeengung und die daraus folgenden abnormen Druckverhältnisse ein wesentliches Moment für das Zustandekommen der pluripolaren Mitosen, indem unter der mechanischen Einwirkung die Teilung des Zelleibes nach der Kernteilung ausbleibt.

Zusammenfassung.

 In den durch partielle Kastration kurz vor der Laichzeit zu schnelister Regeneration gebrachten Hodenresten von Rana fusca finden sich in den ersten 14 Tagen nach dem operativen Eingriff zahlreiche pluripolare Mitosen.

- Diese entstehen dadurch, dass bei der ersten, zweiten und dritten indirekten Kernteilung in den wandständigen Spermatogonien die Zellteilung unterbleibt.
- Im Gegensatz zu den bisher bekannten pluripolarmitotischen Vorgängen in Amphibienhoden, handelt es sich hier nicht um Teilungsbilder von typischen Riesenzellen.
- 4. Im Gegensatz zu diesen, deren Schicksal mehr oder weniger früh eintretender Untergang ist, vollenden die hier beschriebenen Zellen ihre Entwicklung zu Samenfäden, nachdem die vorerst unterbliebene Zellteilung nachgeholt wird, und vom Sechzehn-Zellenstadium der Cysten an die weiteren Teilungen normal verlaufen.
- 5. Die Bedingungen für das Auftreten dieser pluripolaren Mitosen sind indirekt durch das Auftreten der sich überstürzenden Spermatogenese nach der partiellen Kastration, direkt durch die damit im Hodengewebe entstehenden Zustände, in erster Linie wohl durch die Raumbeengung und die damit zusammenhängenden abnormen Druckverhältnisse, gegeben.

Literaturverzeichnis.

Die mit * bezeichneten Abhandlungen sind zitiert nach Bouin (5).

- Arnold, J.: Beobachtungen über Kernteilungsfiguren in Zellen der Geschwülste. Virchows Arch., Bd. LXXVIII, 1879.
- Baltzer, F.: Übermehrpolige Mitosen in Seeigeleiern. Verh. d. med.phys Ges. Würzburg. Bd. XXXIX, 1908.
- Derselbe: Zur Kenntnis der Mechanik der Kernteilungsfiguren. Arch. f. Entw.-Mech., Bd. XXXII, 1911.
- *4. Borrel: De la division du noyau et de la division cellulaire dans les tumeurs épithéliales. Journ de l'anat. et de la phys., 1892.
- Bouin: Études sur l'évolution normale et l'involution du tube séminifère. Arch. d'anat. micr., Tom. 1, 1897.
- Broman, J.: Über Riesenspermatiden bei Bombinator igneus. Anat. Anz., Bd, 17, 1900.
- Conklin, E. G.: Experimental studies of nuclear and cell division in the eggs of brepidula. Philadelphia, 1912.
- *8. Cornil: Sur la multiplication des cellules de la moelle des os par division indirecte dans l'inflammation. Arch. de phys. norm. et path., 1887.

- *9. Derselbe: Mode de la multiplication des nouyeaux et des cellules dans l'épithelioma. Journ. de l'anat. et de la phys., 1891.
- *10. Denys: La bellule. II. 1887.
- Flemming, W.: Neue Beiträge zur Kenntnis der Zelle. Arch. f. mikr. Anat., Bd. XLVI, 1895.
- *12. Galeotti, G.: Beitrag zum Studium des Chromatins in den Epithelzellen des Carcinom. Beiträge zur Path. und allgem. Path., Bd. XIV, 1893.
- Hansemann: Über pathologische Mitosen. Virchows Archiv, Bd. 122, 1891.
- Derselbe: Über asymetrische Zellteilung in Epithelkrebsen. Ibid. Bd. 119, 1890.
- Hartog, M.: Mitokinetisme in the mitotic spindle and in the polyasters. Arch. f. Entw.-Mech., Bd. 27, 1909.
- 16. Heidenhain, M.: Plasma und Zelle. 1. Abt., Bd. 8 des Handbuches der Anatomie des Menschen. Herausgeg. von K. v. Bardeleben. Jena 1907.
- Henneguy: Nouvelles recherches sur la division cellulaire indirecte. Journ. de l'anat. I., 27, 1891.
- 18. Hertwig, O.: Allgemeine Biologie. Jena 1912.
- Derselbe: Versuche an Tritoneiern über die Einwirkung bestrahlter Samenfäden auf tierische Entwicklung. Arch. f. mikr. Anat., 1913.
- Hertwig, O. und R.: Über den Befruchtungs- und Teilungsvorgang des tierischen Eies unter dem Einfluss äusserer Agentien. Jena 1887.
- His, W.: Über Zellen- und Syncytienbildung. Studien am Salmonidenkeim. Abhandl. d. math.-phys. Kl. d. k. sächs. Ges. d. Wiss., Bd. 24, 1898.
- *22. Klebs, G.: Zur Physiologie der Fortpflanzung. Biol. Zentralblatt, Bd. IX, 1889.
- Konopacki, M.: Über den Einfluss hypertonischer Lösungen auf befruchtete Echiniden-Eier. Arch. f. Zellforschung, Bd. VII, 1911.
- 24. Kostanecki, K.: Über Kernteilung bei Riesenzellen. Anat. Hefte, 1892.
- Krompecher, E.: Die mehrfache indirekte Kernteilung. Verh. d. Anat. Ges. Basel, Jena 1895.
- Loeb, J.: Über Kernteilung ohne Zellteilung. Arch. f. Entw.-Mech., Bd. II. 1895.
- *27. Martin, W. A.: Zur Kenntnis der indirekten Kernteilung. Virchows Arch., Bd. LXXXII, 1881.
- Meves, F.: Über eine Metamorphose der Attraktionssphäre in den Spermatogonien von Salamandra maculosa. Archiv f. mikr. Anat., Bd. 44, 1895.
- Derselbe: Zellteilung. Ref. in Merkel und Bonnets Ergebnissen. Bd. 8, 1898.
- Meyns, R.: Über Froschhodentransplantation. Arch. f. d. ges. Physiol., Bd. 132, Bonn 1910.
- Derselbe: Transplantation embryonaler und jugendlicher Keimdrüsen auf erwachsene Tiere bei Anuren. Arch. f. mikr. Anat., Bd. 79, II. Abt., 1912.

- Morgan, T. H.: The action of salt solutions on the infertilized and fertilized eggs of Arbacia and of other animals. Arch. f. Entw.-Mech., Bd. VIII, 1899.
- Derselbe: Further studies on the action of salt solutions and of other agents on the eggs of Arbacia, ibidem, Bd. X, 1900.
- *34. Nauwerck: Über Muskelregeneration nach Verletzungen. Jena 1890.
- 35. Nussbaum, M.: Pflügers Arch., 126, 542, 1909.
- Raffaele, F.: Osservationi intorno al suicizio perilecitico delle uova dei Teleostei. Boll. della Soc. di Naturalisti in Napoli. Vol. 12, 1898. Zitiert nach Meves (1898), S. 510.
- Schottländer, G.: Über Kern- und Zellteilungsvorgänge in dem Endothel der entzündeten Hornhaut. Arch. f. mikr. Anat., Bd. 31, 1888.
- Strassen, O. L.: Über Riesenbildung bei Ascaris-Eiern. Arch. f. Entw.-Mech., Bd. VII, 1898.
- 39. van der Stricht, N.: Étude de plusieurs anomalies intéressantes lors de la formation des globules polaires. Livre jubilaire dédié à Ch. van Bambecke Bruxelles 1899. Zitiert nach Meyes (1898), S. 511.
- *40. Ströbe: Zieglers Beiträge, Bd. XI, 1891.
- *41. Waldstein: Ein Fall von perniciöser Anämie. Virchows Arch., Bd. XCI, 1883.
- Wilson, E. B.: Experimental studies in cytologie. Arch. f. Entw.-Mech., Bd, 12 und 13, 1901.
- Ziegler, H. E.: Experimentelle Studien über die Zellteilung. Arch. f. Entw.-Mech., Bd. VI und VII, 1898.

Erklärung der Abbildungen auf Tafel XV.

Sämtliche Abbildungen wurden mit dem Abbeschen Zeichenapparat von Leitz in Höhe des Objekttisches entworfen.

Die 8 - dicken Serien sind in Flemming scher Flüssigkeit fixiert und mit Safranin-Lichtgrün gefärbt.

Abb. 9 wurde nach einem am 14. Mai 1903 fixierten Schnitt durch den normalen Hoden gezeichnet, den mir Herr Geh. Rat Nussbaum in dankenswerter Weise zur Verfügung stellte.

- Fig. 1-7. Leitz hom, Imm. 1/1., Ok. 4.
- Fig. 1a und b. Zwei aufeinander folgende Schnitte durch eine vierpolige Mitose am Ende der Teilung. Einzelne kleine Chromosomen haben sich nicht an die Pole der Spindeln begeben. 5 Tage nach der Operation.
- Fig. 2a-c. Achtpolige Mitose. Besonders in c sehr "in Unordnung geraten". 5 Tage post op.
- Fig. 3a-c. Achtpolige Mitose. 14 Tage nach der Operation. Nebst einer zweiten im Schnitt ungünstig getroffenen, die einzige pluripolare Mitose in der ganzen betr. Serie.

- Fig. 4a-c. Acht(?) polige Mitose. 5 Tage post op.
- Fig. 5a und b. Sechspolige Mitose. 5 Tage post op.
- Fig. 6 a und b. Vierpolige Mitose am Ende der Teilung. Auch hier einzelne versprengte Chromosomen.
- Fig. 7. Mittlerer Schnitt durch eine sechspolige Mitose. 5 Tage post op.
- Fig. 8 and 9. Leitz hom. Imm. 1/12, Ok. 1.
- Fig. 8. Teile dreier aneinander stossender Hodenkanälchen aus dem 5 Tage alten Regenerat. Man sieht das Lumen erfüllt von degenerierenden Spermien, die teils im Längsschnitt, teils im Querschnitt getroffen sind. Zwischen den noch relativ gut erhaltenen Köpfen die körnigen Zerfallsprodukte der Spermienschwänze. In der Mitte eine pluripolare Mitose. Darunter und rechts oben mehrkernige Zellen, die durch ähnliche Mitosen entstanden sind.
- Fig. 9. Normaler Hoden von Rana fusca im Mai. Nur mehr geringe Detritusmassen im Lumen. Das ganze Gewebe ist viel lockerer. Die Kerne liegen weiter voneinander. Die Zellen in der Cyste links oberhalb der Mitose sind deutlich voneinander abgegrenzt. Die Kerne zeigen weder in der Grösse noch in der Struktur Unterschiede gegen diejenigen in Fig. 8.
- Fig. 10 und 11. Leitz hom. Imm. 1/12, Ok. 4.
- Fig. 10. Vierkernige (der vierte Kern liegt nicht mehr im Schnitt) Spermatogonie, wie sie aus der zweiten Teilung hervorgeht.
- Fig. 11. Achtkernige Zelle. (Die drei anderen Kerne liegen im folgenden Schnitt.) Durch Teilung einer Zelle, wie in voriger Figur abgebildet, entstanden.

Kenner - Winter Turkhur *1

Western States Frankling M.

E. Schultz-Hencke gez.

Doppelton-Lichtdruck von Herrm. Hadorff & Co., Berlin.

E. Schultz-Hencke u. Weissenberg gez.

Doppelton-Lichtdruck von Herrm. Hadorff & Co., Berlin.

Vergr: 2500:1

Doppelton-Lichtdruck von Herrm. Hadorff & Co., Berlin.

S Backhammer and if Giltich gez

Buthinger and Edition get

VI pl

VI drs

VII pl

VII drs

Werner u Winter Frankfurt M.

Horld

HorM

Inhi

