HW II

Reza Shisheie

Due 2/19/19

PROBLEM 1

Rotx_o
$$(\frac{\Pi}{a})$$
 \longrightarrow Roty_o $(-\Pi)$ \longrightarrow Roty $(\frac{\Pi}{a})$ \longrightarrow Rotz_o $(-\frac{\Pi}{a})$

FIXED FIXED CURRENT FIXED

The solution is as computed by MATLAB CODE

$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$\Theta = atan 2 (\sqrt{1-r_{33}}^2, r_{33})$$

 $\Phi = atan 2 (r_{23}, r_{13})$
 $\Psi = atan d (r_{32}, r_{31})$

$$[\theta=180, \phi=180, \psi=0] \quad [\theta=0, \phi=0, \psi=180]$$

$$\theta = a \tan d \left(-\sqrt{1-r_{33}^2}, r_{33} \right)$$

 $\Phi = a \tan d \left(-r_{23}, -r_{13} \right)$
 $\Psi = a \tan d \left(-r_{32}, r_{31} \right)$

$$[\theta=0 , \phi=0 , \psi=180]$$

PLEASE CHECK MATLAB LODE FOR VAUDATION

Both results yield the same rotation matrix so ther are 2 solutions

```
Code
clc;clear all; close all;
format short
format compact
%% computing rotations
syms q1 q2 q3 q4
R1 = Rx(q1)
R2 = Ry(q2)
R3 = Ry(q3)
R4 = Rx(q4)
%% computing final rotation
Rot = R4*R2*R1*R3
%% evaluating rotation matrix
q1=pi/2
q2=-pi
q3=pi/2
q4=-pi/2
Rot = eval(Rot)
Res_{deg} = radtodeg(tr2eul(Rot))
%% computing euler angles
theta1 = atan2( sqrt(1-Rot(3,3)^2), Rot(3,3));
phi1 = atan2(Rot(2,3),Rot(1,3));
psi1 = atan2(Rot(3,2),-Rot(3,1));
res1 = [phi1, theta1, psi1]
%res1_d = radtodeg([phi1, phi1, psi1])
theta2 = atan2( -sqrt(1-Rot(3,3)^2), Rot(3,3));
phi2 = atan2(-Rot(2,3),-Rot(1,3));
psi2 = atan2(-Rot(3,2),Rot(3,1));
res2 = [phi2, theta2, psi2]
%res2_d = radtodeg([phi2, phi2, psi2])
%% checking to see if the same rotation is resulted
Rot_check_1 = Rz(phi1)*Ry(theta1)*Rz(psi1) - Rot
Rot\_check\_2 = Rz(phi2)*Ry(theta2)*Rz(psi2) - Rot
Result
R1 =
[ 1,
             Θ,
[ 0, cos(q1), -sin(q1)]
[ 0, sin(q1), cos(q1)]
[ cos(q2), 0, sin(q2)]
          0, 1,
[-\sin(q2), 0, \cos(q2)]
R3 =
[ cos(q3), 0, sin(q3)]
          0, 1,
[ -\sin(q3), \theta, \cos(q3)]
R4 =
[ 1,
            Θ,
                        0]
```

```
[0, \cos(q4), -\sin(q4)]
[ 0, sin(q4), cos(q4)]
Rot =
[
                                           cos(q2)*cos(q3) - cos(q1)*sin(q2)*sin(q3),
sin(q1)*sin(q2),
                                                               cos(q2)*sin(q3) +
cos(q1)*cos(q3)*sin(q2)
[\sin(q3)*(\cos(q4)*\sin(q1) + \cos(q1)*\cos(q2)*\sin(q4)) + \cos(q3)*\sin(q2)*\sin(q4),
\cos(q1)*\cos(q4) - \cos(q2)*\sin(q1)*\sin(q4), \sin(q2)*\sin(q3)*\sin(q4) -
 \cos(q3)*(\cos(q4)*\sin(q1) + \cos(q1)*\cos(q2)*\sin(q4))] \\ [\sin(q3)*(\sin(q1)*\sin(q4) - \cos(q1)*\cos(q2)*\cos(q4)) - \cos(q3)*\cos(q4)*\sin(q2), 
cos(q1)*sin(q4) + cos(q2)*cos(q4)*sin(q1), - cos(q3)*(sin(q1)*sin(q4) -
cos(q1)*cos(q2)*cos(q4)) - cos(q4)*sin(q2)*sin(q3)
q1 =
    1.5708
q2 =
   -3.1416
q3 =
    1.5708
q4 =
   -1.5708
Rot =
   -0.0000
               -0.0000
                          -1.0000
    0.0000
               -1.0000
                           0.0000
   -1.0000
               -0.0000
                           0.0000
res1 =
    3.1416
                1.5708
                          -0.0000
res2 =
   -0.0000
              -1.5708
                           3.1416
                                            THEY GENERATE THE SAME
Rot_check_1 =
   1.0e-31 *
                     0
          0
                                 0
                                              MATRIX
          0
                     0
                                 0
                     0
                          -0.1233
Rot check 2 =
   \overline{1.0e} - 3\overline{1} *
                     0
          0
                                 0
          0
                     0
                                 0
          0
                     0
                          -0.1233
```

As you see both of the checked results yield 0 matrix which means that both solutions are valid

A = Rotz, 0 * Tranz, d * Transx, a * Rotx, x

	Rot Z, O	Tranz,d	Trans x,a	Rota, a
AO	17/2	91	application of the control of the co	TI/2
A	Π/2	92		Π/2
A3	93			11/2
Ay	94			_71/2
A5	95	-	1	0

PART 2.2:

```
clc;clear all; close all;
format short
format compact
%% computing rotations
syms q1 q2 q3 q4 q5
H10 = Rotz(pi/2)*Transz(q1)*Transx(0)*Rotx(pi/2);
H21 = Rotz(pi/2)*Transz(q2)*Transx(0)*Rotx(pi/2);
H32 = Rotz(q3)*Transz(0)*Transx(0)*Rotx(pi/2);
H43 = Rotz(q4)*Transz(0)*Transx(0)*Rotx(-pi/2);
H54 = Rotz(q5)*Transz(0)*Transx(1)*Rotx(0);
vpa(H10,2)
vpa(H21,2)
vpa(H32,2)
vpa(H43,2)
vpa(H54,2)
H50 = H10*H21*H32*H43*H54;
vpa(H50,2);
%% PART A
q1 = 1;
q2 = 1;
q3 = pi;
q4 = 0;
q5 = pi/2;
%% PART B
% q1 = 1;
% q2 = -1;
% q3 = pi/2;
% q4 = pi/2;
% q5 = 0;
%% RESULTS
H50 = eval(H50)
p55 = [0,0,0,1]
p05 = (H50*p55')'
```

As you see all 4 transformations Rotz, Transz, Transx, Rotx are included in each line. It must be noted that if the value corresponding to each 4x4 matrix is zero, it yields a 4x4 identity matrix which has not effect on the final outcome.

$$PART 2.3 - A$$
 $q_1 = 1$, $q_2 = 1$, $q_3 = 77$, $q_4 = 0$, $q_6 = 71/2$

PART 2.3.A:

Solution for q1 = 1; q2 = 1; q3 = pi; q4 = 0; q5 = pi/2;

```
ans =
[ 6.1e-17, -6.1e-17,
                      1.0, 0]
    1.0, 3.7e-33, -6.1e-17, 0]
           1.0, 6.1e-17, q1]
     0,
     0,
                  0, 1.0]
ans =
[ 6.1e-17, -6.1e-17,
                      1.0, 0]
    1.0, 3.7e-33, -6.1e-17, 0]
          1.0, 6.1e-17, q2]
     0,
                  0, 1.0]
           0,
ans =
(\cos(q3), -6.1e-17*\sin(q3),
                             sin(q3), 0]
[ sin(q3), 6.1e-17*cos(q3), -1.0*cos(q3), 0]
     0,
               1.0,
                       6.1e-17, 0]
     0,
[
                0,
                          0, 1.0]
ans =
[ cos(q4), -6.1e-17*sin(q4), -1.0*sin(q4), 0]
[sin(q4), 6.1e-17*cos(q4), cos(q4), 0]
     0,
              -1.0,
                       6.1e-17, 0]
     0.
                0,
                          0, 1.0]
ans =
[ cos(q5), -1.0*sin(q5), 0, cos(q5)]
[ sin(q5),
            cos(q5), 0, sin(q5)]
     0,
              0, 1.0,
                        0]
     Ω,
              0, 0,
                      1.0]
H50 =
 -1.0000 -0.0000 0.0000
                             0.0000
  0.0000
           0.0000
                   1.0000
                             0.0000
 -0.0000
           1.0000 -0.0000
                              1.0000
                  0 1.0000
p55 =
   0
       0
           0
               1
p05 =
  0.0000 0.0000 1.0000
```

The location of origin in the 5^{th} coordinate which is [0,0,0] is mapped to [0,0,1] in the world frame. This proves the sketch in previous page

9 = 1 $9_2 = -1$ $9_3 = 11$ $9_4 = \frac{11}{2}$ $9_5 = 0$

Yo

Y5

Y5

Y5

Y7

Y4

$$24$$
 $45=0$

Y4

 24
 $45=0$

Y4

 24
 $45=0$
 $45=0$

Y4

 24
 $45=0$
 $45=0$

Y4

 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$
 $45=0$

$$P_{5} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow P_{5} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

NUMERICAL PROOF IS IN NEXT PAGE

NO DISTANCE

PART 2.3.B:

Solution for q1 = 1; q2 = -1; q3 = pi/2; q4 = pi/2; q5 = 0;

```
ans =
[6.1e-17, -6.1e-17, 1.0, 0]
   1.0, 3.7e-33, -6.1e-17, 0]
     0,
          1.0, 6.1e-17, q1]
     0,
                  0, 1.0]
           0,
ans =
[ 6.1e-17, -6.1e-17,
                      1.0, 0]
   1.0, 3.7e-33, -6.1e-17, 0]
          1.0, 6.1e-17, q2]
     0.
     0,
           0,
                  0, 1.0]
ans =
[\cos(q3), -6.1e-17*\sin(q3),
                             sin(q3), 0
[ sin(q3), 6.1e-17*cos(q3), -1.0*cos(q3), 0]
     0,
               1.0,
                      6.1e-17, 0]
[
     0,
                0,
                         0, 1.0]
ans =
[\cos(q4), -6.1e-17*\sin(q4), -1.0*\sin(q4), 0]
[\sin(q4), 6.1e-17*\cos(q4), \cos(q4), 0]
     0,
              -1.0
                      6.1e-17, 0]
     0,
                0,
                         0, 1.0]
ans =
[\cos(q5), -1.0*\sin(q5), 0, \cos(q5)]
[ sin(q5),
           cos(q5), 0, sin(q5)]
    0,
             0, 1.0,
                        0]
     0,
             0 0 1.01
H50 =
  0.0000
          0.0000 -1.0000 -1.0000
  1.0000 -0.0000 0.0000 1.0000
 -0.0000 -1.0000 -0.0000 1.0000
     0
           0
                  0 1.0000
p55 =
               1
= 20a
 -1.0000 1.0000 1.0000 1.0000
```

The location of origin in the 5^{th} coordinate which is [0,0,0] is mapped to [-1,1,1] in the world frame. This proves the sketch in previous page

PART 2.4: COMPUTE 9 as a function

```
clc;clear all; close all;
format short
format compact
%% computing rotations
syms q1 q2 q3 q4 q5
H10 = Rotz(pi/2)*Transz(q1)*Transx(0)*Rotx(pi/2);
H21 = Rotz(pi/2)*Transz(q2)*Transx(0)*Rotx(pi/2);
H32 = Rotz(q3)*Transz(0)*Transx(0)*Rotx(pi/2);
H43 = Rotz(q4)*Transz(0)*Transx(0)*Rotx(-pi/2);
H54 = Rotz(q5)*Transz(0)*Transx(1)*Rotx(0);
H50 = H10*H21*H32*H43*H54:
x(1) = 0:
y(1) = 0;
z(1)=0;
i = 1;
for t=0:.01:20
  q1 = sin(2*t);
                     · 9(+)
  q2 = cos(t);
  q3 = t;
  q4 = sin(2*t);
  q5 = t;
H = eval(H50);
  p55 = [0,0,0,1];
  p05 = (H*p55')';
  x(i) = p05(1,1);
  y(i) = p05(1,2);
  z(i) = p05(1,3);
  time(i)=t;
  i = i+1;
  t
end
%% PART 2.5
subplot(2,2,1);
plot(x,time,'.')
xlabel('Time(s)')
ylabel('X')
title('X-time plot')
grid on
subplot(2,2,2);
plot(y,time,'.')
xlabel('Time(s)')
ylabel('Y')
title('Y-time plot')
grid on
subplot(2,2,3);
plot(z,time,'.')
xlabel('Time(s)')
ylabel('Z')
```

```
title('Z-time plot')
grid on
subplot(2,2,4);
plot3(x,y,z,'.')
xlabel('X')
ylabel('Y')
zlabel('Z')
title('XYZ plot')
grid on
%% PART 2.6
figure
plot3(x,y,z,'.')
xlabel('X')
ylabel('Y')
zlabel('Z')
title('XYZ plot')
grid on
%% PART 2.7
figure
subplot(2,2,1);
plot(x,y,'.')
xlabel('X')
ylabel('Y')
title('XY projection')
grid on
subplot(2,2,2);
plot(x,z,'.')
xlabel('X')
ylabel('Z')
title('XZ projection')
grid on
subplot(2,2,3);
plot(y,z,'..')
xlabel('Y')
ylabel('Z')
title('YZ projection')
grid on
subplot(2,2,4);
plot3(x,y,z,'.')
xlabel('X')
ylabel('Y')
zlabel('Z')
title('XYZ plot')
grid on
```

PART 2.5:

PART 2.6:

PART 2.7:

2.8:

Here is a list of all the functions. All of these functions are available in the file directory:

Rotz(q) Transz(d) Transx(a) Rotx(q)

Rx(q)

Ry(q) Rz(q)

LET DEVIDE PROBLEM TO TWO SUB PROBLEMS:

 $A_2 \rightarrow Solve for 9, and 92$ $A_4 \rightarrow Solve for 93 and 94$

$$\beta = \cos^{-1}\left(\frac{a^{2}+b^{2}-K^{2}}{2ab}\right) \longrightarrow \beta = \pi - \beta$$

$$8_{1} = t_{9}^{-1}\left(\frac{b \sin(q_{2})}{a+b \cos(q_{2})}\right)$$

$$8_{2} = t_{9}^{-1}\left(\frac{y_{2}^{c}}{x_{2}^{c}}\right)$$

$$8_{2} - 8_{1} = q_{1}$$

$$9_{1} = t_{9}^{-1}\left(\frac{y_{2}^{c}}{x_{2}^{c}}\right) - t_{9}^{-1}\left(\frac{b \sin(q_{2})}{a+b \cos(q_{1})}\right)$$

$$q_1 = tg^{-1}\left(\frac{y_2^2}{x_2^2}\right) - tg^{-1}\left(\frac{b\sin(q_2)}{a+b\cos(q_2)}\right)$$

of is a variable which defines the angle to which window is cut.

$$x_{2} = x_{C} - (R+H) \cos \alpha$$

$$y_{2}^{\circ} = y_{C} - (R+H) \sin \alpha$$

$$y_{1} + y_{2} + y_{3} = \alpha \longrightarrow y_{3} = \alpha - y_{1} - y_{2}$$

$$y_{2} = x_{C} - (R+H) \sin \alpha$$

$$y_{2} = x_{C} - (R+H) \sin \alpha$$

$$y_{3} = x_{C} - y_{1} - y_{2}$$

$$y_{4} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{3} = x_{C} - y_{1} - y_{2}$$

$$y_{4} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} + x_{C} - x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} - x_{C} - x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} - x_{C} - x_{C} - x_{C} - x_{C} - x_{C}$$

$$y_{2} = x_{C} - x_{C} -$$

FORWARD KINEMATICS:

 $\begin{array}{l} x_{4} = \alpha \cos (q_{1}) + b \cos (q_{1} + q_{2}) + (H + R) \cos (q_{1} + q_{2} + q_{3} + \frac{1}{2}) \\ Y_{4}^{=} \quad \alpha \sin (q_{1}) + b \sin (q_{1} + q_{2}) + (H + R) \sin (q_{1} + q_{2} + q_{3} + \frac{1}{2}) \\ \mathcal{Z}_{4} = c + d - q_{4} \end{array}$

FORWARD KINEMATICS WILL BE USED TO CHECK CORRECTNESS OF INVERS KINEMATICS RESULTS Here is q1 q2 q3 q4 as outcome of the inverse kinematic.

To check the accuracy and correctness of the above results x y x of end-effector coordinates are plotted using both the DH convention and geometric approach. As you see both outcomes match each other.

Here is the location and orientation of the robot in the following configuration:

q1 = -pi/4 q2 = pi/4 q3 = 0 q4 = 100

This orientation exactly matches with analytical and DH convention solution.

The following is the solution of numerical computation. There is a perfect match between the result of analytic inverse kinematic and computational of q3 and q4 but results for q1 and q2 were diverging.

I experienced the following error which I could not resolve:

Warning: solution diverging at step 998, try reducing alpha
> In SerialLink/ikine (line 260)
In hw 3 4 (line 286)