On Cosine and Tanimoto Near Duplicates Search among Vectors with Domains Consisting of Zero, a Positive Number and a Negative Number

> Marzena Kryszkiewicz Institute of Computer Science Warsaw University of Technology

ZPN-vectors

◆ A ZPN-vector is a vector each domain of which may contain at most three values: zero, a positive value and a negative value.

2

Example application of ZPN-vectors...

◆ Search of documents that cite similar papers in a similar way – a paper cited as valuable could be graded with a positive value; the paper cited as invaluable could be graded with a negative value; not cited paper could be graded with 0.

Paper	Cited {-2,0,1}
#1	1
#2	1
#3	-2
#4	0
#5	1

Example application of ZPN-vectors

◆ Some teachers grade answers to test questions in three ways - a positive answer is graded with a positive value, a negative answer is graded with a negative value and lack of an answer is graded with 0. Such grading might discourage students from guessing answers.

Student	Question 1 {-1,0,1}	Question 2 {-4,-,4}	Question 3 {-2,0,5}
#1	1	4	5
#2	1	4	-2
#3	-1	-4	5
#4	0	0	-2
#5	1	-4	0

Goal

To derive bounds on lengths of ZPN-vectors such that:

- \square $cosSim(u, v) \ge \varepsilon$,
- \Box $T(u, v) \ge \varepsilon$,

for $\varepsilon > 0$.

Bounds on Length of Neighbor Vectors...

Let the domain of an *i*-th dimension be equal to $\{0, a, b\}$, where a > 0 and b < 0. Then:

1	u;	ν_i	$u_i v_i$	u_i^2	u_i	v_i	$u_i v_i$	u_i^{-2}	u_i	v_i	$u_i v_i$	u_i^2
			0	0	a	0	0	a^2	b	0	0	b^2
	0	а	0	0	a	a	a^2	a^2	b	а	ab	b^2
	0	b	0	0	a	b	ab	a^2	b	b	b^2	b^2

Proposition. For any *ZPN*-vectors u and v:

- $u_i v_i \le u_i^2$ for any dimension i;
- $u \cdot v \leq |u|^2$.

Deriving Bounds on Lengths of Cosine Similar ZPN-Vectors

Theorem. Let *u* and *v* be non-zero *ZPN*-vectors, $cosSim(u, v) \ge \varepsilon$ and $\varepsilon \in [0,1]$. Then:

$$|v| \in \left[\varepsilon |u|, \frac{|u|}{\varepsilon} \right] \text{ and } |v|^2 \in \left[\varepsilon^2 |u|^2, \frac{|u|^2}{\varepsilon^2} \right].$$

Proof. Since $cosSim(u, v) \ge \varepsilon$ and $u \cdot v \le |u|^2$, then

 $\varepsilon \leq cosSim(u, v) = \frac{u \cdot v}{|u||v|} \leq \frac{|u|^2}{|u||v|} = \frac{|u|}{|v|}. \text{ So, } \varepsilon \leq \frac{|u|}{|v|}.$

Analogously, one may derive that $\varepsilon \leq \frac{|v|}{|v|}$

Hence,
$$|v| \in \left[\varepsilon |u|, \frac{|u|}{\varepsilon} \right]$$
. \square

Dense and sparse representations of an example data set													
				ex	Cam	DIE	u a	ila s	sei	,			
Id	1	2	3	4	5	6	7	8	9				
v1	-3,0	4,0			3,0	5,0	3,0	6,0		NZD(-2) (1.2.6.9)			
v2	3,0	-2,0				5,0		6,0		$NZD(v2) = \{1,2,6,8\}.$			
v3			Id		(non-ze	ero dii	nensio	n, value) pair	rs			
v4		-2,0	v1		{(1,-3.0	0), (2,	4.0), (5	, 3.0), (6	5, 5.0)), (7, 3.0), (8, 6.0)}			
v5			v2	:	{(1, 3.0), (2,-	2.0), (6	, 5.0), (8	3, 6.0)	1}			
v6			v3		{(3, 6.0	{(3, 6.0), (4, 4.0)}							
			v4		{(2,-2.0	0), (4,	4.0), (6	5, 5.0), (8	3,-5.0)}			
v7			v5		{(4, 4.0), (5,-	3.0), (7	(, 3.0)}					
v8		4,0	v6		{(3,-9.0	0), (4,	4.0), (9	, 5.0)}					
v9		4,0	v7		{(3, 6.0), (4, 4	1.0)}						
			v8		{(2, 4.0), (4, 4.0), (9, 5.0)}								
v10		-2,0	v9		{(4,-2.0), (5, 3.0), (7, 3.0), (9, 5.0)}								
v10 {(2,-2.0), (3,-9.0)}													

Example: Using bounds on lengths for searching cosine similar ZPN-vectors

Id	(non-zero dimension, value) pairs	length	
v5	{(4, 4.0), (5,-3.0), (7, 3.0)}	5.83	
v9	{(4,-2.0), (5, 3.0), (7, 3.0), (9, 5.0)}	6.86	
v3	{(3, 6.0), (4, 4.0)}	7.21	
v7	{(3, 6.0), (4, 4.0)}	7.21	
v8	{(2, 4.0), (4, 4.0), (9, 5.0)}	7.55	
v2	{(1, 3.0), (2,-2.0), (6, 5.0), (8, 6.0)}	8.60	
v4	{(2,-2.0), (4, 4.0), (6, 5.0), (8,-5.0)}	8.37	L
v10	{(2,-2.0), (3,-9.0)}	9.22	Vector length
v1	$\{(1,-3.0),(2,4.0),(5,3.0),(6,5.0),(7,3.0),(8,6.0)\}$	10.20	[8.67, 12.00]
v6	{(3,-9.0), (4, 4.0), (9, 5.0)}	11.05	(0.007, 12.007)

Let us consider vector u = v1 and let $\varepsilon = 0.85$. Then, only vectors the lengths of which belong to the interval $\left[\varepsilon \mid u\mid, \frac{\mid u\mid}{\varepsilon}\right] = \left[0.85 \times 10.20, \frac{10.20}{0.85}\right] \approx \left[8.67, 12.00\right]$ have a chance to be sought near cosine duplicates of u; that is vectors v1, v6 and v10.

The Tanimoto Similarity of Vectors

The Tanimoto similarity between vectors u and v is denoted by T(u, v) and is defined as: that is.

$$T(u,v) = \frac{u \cdot v}{u \cdot u + v \cdot v - u \cdot v} = \frac{u \cdot v}{|u|^2 + |v|^2 - u \cdot v}$$

- $u \cdot v$ is a standard vector dot product of u and v and equals $\sum_{i=1..n} u_i v_i$; |u| is the length of vector u and equals $\sqrt{u \cdot u}$.

Property [Willett, Barnard, Downs]. $T(u, v) \in [-1/3, 1]$.

The Tanimoto Similarity of Binary Vectors

Property. In the case of binary vectors with domains restricted to $\{0, 1\}$, the Tanimoto similarity between two vectors determines the ratio of the number of non-zero dimensions shared by both vectors to the number of non-zero dimensions occurring in either vector.

Then, the **Tanimoto similarity** (T) coincides with the **Jaccard coefficient** (J). **Example.** Let u = [01101] and v = [10101]. Then:

$$T(u,v) = \frac{u \cdot v}{u \cdot u + v \cdot v - u \cdot v} = \frac{u \cdot v}{|u|^2 + |v|^2 - u \cdot v} = \frac{2}{3 + 3 - 2} = \frac{2}{4}.$$

Eq., let $U=\{\mathbf{bce}\}$ and $V=\{\mathbf{ace}\}$. Then, $J(U,V)=\frac{|U\cap V|}{|U\cup V|}=\frac{|U\cap V|}{|U|+|V|-|U\cap V|}=\frac{2}{4}$

Deriving Bounds on Lengths of Tanimoto Similar ZPN-Vectors

Theorem. Let *u* and *v* be non-zero *ZPN*-vectors, $T(u, v) \ge \varepsilon$ and $\varepsilon \in (0,1]$. Then:

$$|v|^2 \in \left[\varepsilon |u|^2, \frac{|u|^2}{\varepsilon}\right] \text{ and } |v| \in \left[\sqrt{\varepsilon} |u|, \frac{|u|}{\sqrt{\varepsilon}}\right].$$

Proof. Follows from the fact that $u \cdot v \le |u|^2$. \Box

Namely,
$$\varepsilon \le T(u, v) = \frac{u \cdot v}{|u|^2 + |v|^2 - u \cdot v} \le \frac{|u|^2}{|u|^2 + |v|^2 - |u|^2} = \frac{|u|^2}{|v|^2}$$
. So, $\varepsilon \le \frac{|u|^2}{|v|^2}$.

Analogously, $\varepsilon \leq \frac{|v|^2}{|v|^2}$.

Therefore, $|v|^2 \in [\varepsilon |u|^2, \frac{|v|^2}{\varepsilon}]$.

Example: Using bounds on lengths for searching Tanimoto similar *ZPN*-vectors

Id	(non-zero dimension, value) pairs	length	
v5	{(4, 4.0), (5,-3.0), (7, 3.0)}	5.83	
v9	{(4,-2.0), (5, 3.0), (7, 3.0), (9, 5.0)}	6.86	
v3	{(3, 6.0), (4, 4.0)}	7.21	
v7	{(3, 6.0), (4, 4.0)}	7.21	
v8	{(2, 4.0), (4, 4.0), (9, 5.0)}	7.55	
v2	{(1, 3.0), (2,-2.0), (6, 5.0), (8, 6.0)}	8.60	
v4	{(2,-2.0), (4, 4.0), (6, 5.0), (8,-5.0)}	8.37	
v10	{(2,-2.0), (3,-9.0)}	9.22	
v1	$\{(1,-3.0),(2,4.0),(5,3.0),(6,5.0),(7,3.0),(8,6.0)\}$	10.20	Vector length ∈
v6	{(3,-9.0), (4, 4.0), (9, 5.0)}	11.05	[9.40, 11.07]

Let us consider vector u = v1 and let $\varepsilon = 0.85$. Then, only vectors the lengths of which belong to the interval $\left[\sqrt{\varepsilon}|u|, \frac{|u|}{\sqrt{\varepsilon}}\right] \subseteq [9.40, 11.07]$ have a chance to belong to ε -neighbourhood of vector u; that is, vectors: v1 and v6. \Box

Bounds on lengths for ZPN-vectors with $\{-1, 0, +1\}$ dimensions' domains

One may easily note that if u is a ZPN-vector whose each dimension has domain $\{0,1,-1\}$, then $|u|^2=|NZD(u)|$. This observation allows us to obtain:

Corollary. Let u and v be non-zero ZPN-vectors whose each dimension has domain $\{0,1,-1\}$ and $\mathcal{E} \in [0,1]$. Then:

If
$$cosSim(u, v) \ge \varepsilon$$
, then $|NZD(v)| \in \left[\varepsilon^2 |NZD(u)|, \frac{|NZD(u)|}{\varepsilon^2}\right]$.

$$\text{If } T(u,v) \geq \varepsilon \text{, then } \mid NZD(v) \mid \ \in \left[\varepsilon \mid NZD(u) \mid, \frac{\mid NZD(u) \mid}{\varepsilon} \right].$$

References

- Kryszkiewicz, M.: On Cosine and Tanimoto Near Duplicates Search among Vectors with Domains Consisting of Zero, a Positive Number and a Negative Number. <u>FQAS</u> <u>2013</u>: 531-542
- Willett, P., Barnard, J.M., Downs, G.M.: Chemical similarity searching. J. Chem. Inf. Comput. Sci., 38 (6), pp. 983–996 (1998)

15