Decision Tree In Machine Learning

Present By Ahmed Abdo

Agenda

- Why do use we Decision Tree?
- How Decision Trees Look like?
- How Decision Trees make a decision?
- How to Determine the Best Split to DT?
- Issues In Decision Tree
- Pruning
- Lab

Why do use we Decision Tree?

- Be a kind of non-parametric models.
- can be used for both classification and regression.
- They are easy to understand.
- Good exploratory method to detect the influential features are in your dataset.

How Decision Trees Look like

How Decision Trees make a decision

How Decision Trees make a decision

How Decision Trees make a decision

How to Determine the Best Split?

- Gini Index
- Entropy
- Misclassification error

Example: Gini Index

$$Gini = 1 - \sum_{i=1}^{C} (p_i)^2$$

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, $n_i = number$ of records at child i, n = number of records at node p.

1. Calculate

P(Hiking-labels) 2

P (Yes) =
$$\frac{3}{10}$$
, P (No) = $\frac{7}{10}$

2. Calculate P(~) All features

Table 1:				
Weather	Temperature	Humidty	Wind	Hiking
(F1)	(F2)	(F3)	(F4)	(Labels)
Cloudy	Cool	Normal	Weak	No
Sunny	Hot	High	Weak	Yes
Rainy	Mild	Normal	Strong	Yes
Cloudy	Mild	High	Strong	No
Sunny	Mild	High	Strong	No
Rainy	Cool	Normal	Strong	No
Cloudy	Mild	High	Weak	Yes
Sunny	Hot	High	Strong	No
Rainy	Cool	Normal	Weak	No
Sunny	Hot	High	Strong	No

Weather (F1)	Temperature (F2)	Humidty (F3)	Wind(F4)
$P(F1 = Cloudy) = \frac{3}{10}$	$P(F2 = Cool) = \frac{3}{10}$	$P(F3=Normal) = \frac{4}{10}$	$P(F4 = Weak) = \frac{4}{10}$
$P(F1 = Sunny) = \frac{4}{10}$			$P(F4 = Strong) = \frac{6}{10}$
_	$P(F2 = Mild) = \frac{4}{10}$		

3. Get Gini Index All features to select the best root

Weather (F1) $P(F1 = Cloudy \text{ and Hiking = Yes}) = \frac{1}{3} \qquad P(F1 = Cloudy \text{ and Hiking = No}) = \frac{2}{3}$ $P(F1 = Sunny \text{ and Hiking = Yes}) = \frac{1}{4} \qquad P(F1 = Sunny \text{ and Hiking = No}) = \frac{3}{4}$ $P(F1 = Rainy \text{ and Hiking = Yes}) = \frac{1}{3} \qquad P(F1 = Rainy \text{ and Hiking = No}) = \frac{2}{3}$

Gini Index of Cloudy =
$$1 - ((\frac{1}{3})^2 + (\frac{2}{3})^2) = 0.44$$

Gini Index of Sunny =
$$1 - ((\frac{1}{4})^2 + (\frac{3}{4})^2) = 0.375$$

Gini Index of Rainy =
$$1 - ((\frac{1}{3})^2 + (\frac{2}{3})^2) = 0.44$$

Weighted sum of the Gini Indices can be calculated as follow

Gini Index of Weather (F1) =
$$\frac{3}{10}$$
 * 0.44 + $\frac{4}{10}$ * 0.375 + $\frac{3}{10}$ * 0.44 = 0.414

Temperature (F2)				
P(F2 = Cool and Hiking = Yes) = $\frac{0}{3}$	P(F2 = Cool and Hiking = No) = $\frac{3}{3}$			
P(F2 = Hot and Hiking = Yes) = $\frac{1}{3}$	P(F2 = Hot and Hiking = No) = $\frac{2}{3}$			
P(F2 = Mild and Hiking = Yes) = $\frac{2}{4}$	$P(F2 = Mild and Hiking = No) = \frac{2}{4}$			

Gini Index of Cool =
$$1 - ((\frac{0}{3})^2 + (\frac{3}{3})^2) = 0$$

Gini Index of Hot =
$$1 - ((\frac{1}{3})^2 + (\frac{2}{3})^2) = 0.44$$

Gini Index of Mild =
$$1 - ((\frac{2}{4})^2 + (\frac{2}{4})^2) = 0.5$$

Weighted sum of the Gini Indices can be calculated as follows:

Gini Index of Temperature (F2) =
$$\frac{3}{10}$$
 * 0 + $\frac{3}{10}$ * 0.44 + $\frac{4}{10}$ * 0.5 = 0.332

	Table 1:				
Weather	Temperature	Humidty	Wind	Hiking	
(F1)	(F2)	(F3)	(F4)	(Labels)	
Cloudy	Cool	Normal	Weak	No	
Sunny	Hot	High	Weak	Yes	
Rainy	Mild	Normal	Strong	Yes	
Cloudy	Mild	High	Strong	No	
Sunny	Mild	High	Strong	No	
Rainy	Cool	Normal	Strong	No	
Cloudy	Mild	High	Weak	Yes	
Sunny	Hot	High	Strong	No	
Rainy	Cool	Normal	Weak	No	
Sunny	Hot	High	Strong	No	

3. Get Gini Index All features to select the best root

Humidty (F3)		
P(F3 = Normal and Hiking = Yes) = $\frac{1}{4}$	P(F3 = Normal and Hiking = No) = $\frac{3}{4}$	
P(F3 = High and Hiking = Yes) = $\frac{2}{6}$	P(F3 = High and Hiking = No) = $\frac{4}{6}$	

Gini Index of Normal =
$$1 - ((\frac{1}{4})^2 + (\frac{3}{4})^2) = 0.375$$

Gini Index of High =
$$1 - ((\frac{2}{6})^2 + (\frac{4}{6})^2) = 0.44$$

Weighted sum of the Gini Indices can be calculated as follows:

Gini Index of Humidty (F3) =
$$\frac{4}{10}$$
 * 0.375 + $\frac{6}{10}$ * 0.44 = 0.414

Wind(F4)		
P(F4 = Weak and Hiking = Yes) = $\frac{2}{4}$	$P(F4 = Weak and Hiking = No) = \frac{2}{4}$	
P(F4 = Strong and Hiking = Yes) = $\frac{1}{6}$	P(F4 = Strong and Hiking = No) = $\frac{5}{6}$	

Gini Index of Weak =
$$1 - ((\frac{2}{4})^2 + (\frac{2}{4})^2) = 0.5$$

Gini Index of Strong = $1 - ((\frac{1}{6})^2 + (\frac{5}{6})^2) = 0.278$

Weighted sum of the Gini Indices can be calculated as follows:

Gini Index of Wind (F4) =
$$\frac{4}{10}$$
 * 0.5 + $\frac{6}{10}$ * 0.278 = 0.367

		Гable 1:		
Weather	Temperature	Humidty	Wind	Hiking
(F1)	(F2)	(F3)	(F4)	(Labels)
Cloudy	Cool	Normal	Weak	No
Sunny	Hot	High	Weak	Yes
Rainy	Mild	Normal	Strong	Yes
Cloudy	Mild	High	Strong	No
Sunny	Mild	High	Strong	No
Rainy	Cool	Normal	Strong	No
Cloudy	Mild	High	Weak	Yes
Sunny	Hot	High	Strong	No
Rainy	Cool	Normal	Weak	No
Sunny	Hot	High	Strong	No

4. Select the smallest Gini Index

Gini Index attributes or features

Weather (F1)	0.414
Temperature (F2)	0.332
Humidty (F3)	0.414
Wind (F4)	0.367

		Гable 1:		
Weather	Temperature	Humidty	Wind	Hiking
(F1)	(F2)	(F3)	(F4)	(Labels)
Cloudy	Cool	Normal	Weak	No
Sunny	Hot	High	Weak	Yes
Rainy	Mild	Normal	Strong	Yes
Cloudy	Mild	High	Strong	No
Sunny	Mild	High	Strong	No
Rainy	Cool	Normal	Strong	No
Cloudy	Mild	High	Weak	Yes
Sunny	Hot	High	Strong	No
Rainy	Cool	Normal	Weak	No
Sunny	Hot	High	Strong	No

Weather (F1)

P(F1 = Sunny and Hiking = Yes) =
$$\frac{1}{3}$$
 P(F1 = Sunny and Hiking = No) = $\frac{2}{3}$

Gini Index of Sunny =
$$1 - ((\frac{1}{3})^2 + (\frac{2}{3})^2) = 0.44$$

Weighted sum of the Gini Indices can be calculated as follows:

Gini Index of Weather (F1) =
$$\frac{3}{3}$$
 * 0.44 = 0.44

Humidty (F3)

P(F3 = High and Hiking = Yes) =
$$\frac{1}{3}$$
 P(F3 = High and Hiking = No) = $\frac{2}{3}$

Gini Index of High =
$$1 - ((\frac{1}{3})^2 + (\frac{2}{3})^2) = 0.44$$

Weighted sum of the Gini Indices can be calculated as follows:

Gini Index of Humidty (F3) = $\frac{3}{3}$ * 0.44 = 0.44

Wind (F4)

P(F4 = Weak and Hiking = Yes) =
$$\frac{1}{1}$$

P(F4 = Strong and Hiking = No) =
$$\frac{2}{3}$$

Gini Index of Weak = 1-
$$((\frac{1}{1})^2) = 0$$

Gini Index of High = 1-
$$((\frac{2}{2})^2)$$
 = 0

Weighted sum of the Gini Indices can be calculated as follows:

Gini Index of Wind (F4) =
$$\frac{1}{3} * 0 + \frac{2}{3} * 0 = 0$$

Weather (F1)	Temperat ure (F2)	Humidty (F3)	Wind(F4)	Hiking
Sunny	Hot	High	Weak	Yes
Sunny	Hot	High	Strong	No
Sunny	Hot	High	Strong	No

Weather (F1)	Humidty (F3)	Wind(F4)
$P(F1 = Sunny) = \frac{3}{3}$	$P(F3 = High) = \frac{3}{3}$	$P(F4 = Weak) = \frac{1}{3}$
Ū		$P(F4 = Strong) = \frac{2}{3}$

Gini Index attributes or features

Weather (F1)	0.44
Humidty (F3)	0.44
Wind (F4)	0

Example: *Entropy*

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2(1/6) - (5/6) \log_2(5/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy = $-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$

Information Gain: Choose the split that achieves most reduction (maximizes GAIN)

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, ${\sf p}$ is split into k partitions; n_i is number of records in partition i

Example *Information Gain*:

1. Calculate

P(Hiking-labels): P (Yes) =
$$\frac{3}{10}$$
, P (No) = $\frac{7}{10}$

Entropy (Hiking)

$$= -\frac{3}{10} \log_2(\frac{3}{10}) - \frac{7}{10} \log_2(\frac{7}{10}) = 0.881$$

2. Calculate P(~) All features

	a.a.c , , ,	····	
Weather (F1)	Temperature (F2)	Humidty (F3)	Wind(F4)
$P(F1 = Cloudy) = \frac{3}{10}$	$P(F2 = Cool) = \frac{3}{10}$	$P(F3=Normal) = \frac{4}{10}$	$P(F4 = Weak)$ $= \frac{4}{10}$
$P(F1 = Sunny) = \frac{4}{10}$	$P(F2 = Hot) = \frac{3}{10}$	$P(F3 = High) = \frac{6}{10}$	$P(F4 = Strong)$ $= \frac{6}{10}$
$P(F1 = Rainy) = \frac{3}{10}$	$P(F2 = Mild) = \frac{4}{10}$		

Weather	Temperature	Fable 1: Humidty	Wind	Hiking
(F1)	(F2)	(F3)	(F4)	(Labels)
Cloudy	Cool	Normal	Weak	No
Sunny	Hot	High	Weak	Yes
Rainy	Mild	Normal	Strong	Yes
Cloudy	Mild	High	Strong	No
Sunny	Mild	High	Strong	No
Rainy	Cool	Normal	Strong	No
Cloudy	Mild	High	Weak	Yes
Sunny	Hot	High	Strong	No
Rainy	Cool	Normal	Weak	No
Sunny	Hot	High	Strong	No

Cont.....Example Information Gain:

Weather (F1)					
P(F1 = Cloudy and Hiking = Yes) = $\frac{1}{3}$	P(F1 = Cloudy and Hiking = No) = $\frac{2}{3}$				
P(F1 = Sunny and Hiking = Yes) = $\frac{1}{4}$	P(F1 = Sunny and Hiking = No) = $\frac{3}{4}$				
P(F1 = Rainy and Hiking = Yes) = $\frac{1}{3}$	P(F1 = Rainy and Hiking = No) = $\frac{2}{3}$				

GAIN (Hiking, Weather (F1)) =
$$0.881 - \frac{\frac{|Hiking_{Clody}|}{10}}{\frac{|Hiking_{Sunny}|}{10}}$$
 Entropy ($Hiking_{Sunny}$) Entropy ($Hiking_{Sunny}$) $\frac{|Hiking_{Rainy}|}{10}$ Entropy ($Hiking_{Rainy}$)

GAIN (Hiking, Weather (F1)) =
$$0.881 - \frac{3}{10} \left(-\frac{1}{3} \log_2 \left(\frac{1}{3} \right) - \frac{2}{3} \log_2 \left(\frac{2}{3} \right) \right)$$

$$-\frac{4}{10} \left(-\frac{1}{4} \log_2 \left(\frac{1}{4} \right) - \frac{3}{4} \log_2 \left(\frac{3}{4} \right) \right)$$

$$-\frac{3}{10} \left(-\frac{1}{3} \log_2 \left(\frac{1}{3} \right) - \frac{2}{3} \log_2 \left(\frac{2}{3} \right) \right)$$

$$= 0.881 - 0.275 - 0.234 - 0.275 = 0.097$$

Temperature (F2)				
P(F2 = Cool and Hiking = Yes) = $\frac{0}{3}$	P(F2 = Cool and Hiking = No) = $\frac{3}{3}$			
P(F2 = Hot and Hiking = Yes) = $\frac{1}{3}$	P(F2 = Hot and Hiking = No) = $\frac{2}{3}$			
$P(F2 = Mild and Hiking = Yes) = \frac{2}{4}$	$P(F2 = Mild and Hiking = No) = \frac{2}{4}$			

		Гable 1:		
Weather	Temperature	Humidty	Wind	Hiking
(F1)	(F2)	(F3)	(F4)	(Labels)
Cloudy	Cool	Normal	Weak	No
Sunny	Hot	High	Weak	Yes
Rainy	Mild	Normal	Strong	Yes
Cloudy	Mild	High	Strong	No
Sunny	Mild	High	Strong	No
Rainy	Cool	Normal	Strong	No
Cloudy	Mild	High	Weak	Yes
Sunny	Hot	High	Strong	No
Rainy	Cool	Normal	Weak	No
Sunny	Hot	High	Strong	No

GAIN (Hiking, Temperature (F2))
$$= 0.881 - \frac{3}{10} \left(-\frac{0}{3} \log_2(\frac{0}{3}) - \frac{3}{3} \log_2(\frac{3}{3}) \right) \\ -\frac{3}{10} \left(-\frac{1}{3} \log_2(\frac{1}{3}) - \frac{2}{3} \log_2(\frac{2}{3}) \right) \\ -\frac{4}{10} \left(-\frac{2}{4} \log_2(\frac{2}{4}) - \frac{2}{4} \log_2(\frac{2}{4}) \right) \\ = 0.881 - 0 - 0.275 - 0.4 = 0.206$$

Cont.....Example Information Gain:

Humidty (F3)				
P(F3 = Normal and Hiking = Yes) = $\frac{1}{4}$	P(F3 = Normal and Hiking = No) = $\frac{3}{4}$			
P(F3 = High and Hiking = Yes) = $\frac{2}{6}$	P(F3 = High and Hiking = No) = $\frac{4}{6}$			

GAIN (Hiking, Humidty (F3)) =
$$0.881 - \frac{4}{\frac{10}{10}} \left(-\frac{1}{4} \log_2(\frac{1}{4}) - \frac{3}{4} \log_2(\frac{3}{4}) \right) - \frac{6}{\frac{6}{10}} \left(-\frac{2}{6} \log_2(\frac{2}{6}) - \frac{4}{6} \log_2(\frac{4}{6}) \right) = 0.881 - 0.324 - 0.551 = 0.006$$

Wine	d(F4)
P(F4 = Weak and Hiking = Yes) = $\frac{2}{4}$	P(F4 = Weak and Hiking = No) = $\frac{2}{4}$
P(F4 = Strong and Hiking = Yes) = $\frac{1}{6}$	P(F4 = Strong and Hiking = No) = $\frac{5}{6}$

GAIN (Hiking, Wind (F4)) = 0.881 -
$$\frac{4}{10} \left(-\frac{2}{4} \log_2(\frac{2}{4}) - \frac{2}{4} \log_2(\frac{2}{4}) \right)$$

- $\frac{6}{10} \left(-\frac{1}{6} \log_2(\frac{1}{6}) - \frac{5}{6} \log_2(\frac{5}{6}) \right)$
= 0.881 - 0.4 - 0.39 = **0.091**

Information Gain attributes or features

Weather (F1)	0.097
Temperature (F2)	0.206
Humidty (F3)	0.006
Wind (F4)	0.091

		Table 1:		
Weather	Temperature	Humidty	Wind	Hiking
(F1)	(F2)	(F3)	(F4)	(Labels)
Cloudy	Cool	Normal	Weak	No
Sunny	Hot	High	Weak	Yes
Rainy	Mild	Normal	Strong	Yes
Cloudy	Mild	High	Strong	No
Sunny	Mild	High	Strong	No
Rainy	Cool	Normal	Strong	No
Cloudy	Mild	High	Weak	Yes
Sunny	Hot	High	Strong	No
Rainy	Cool	Normal	Weak	No
Sunny	Hot	High	Strong	No

Information Gain:

- **Disadvantage**: Tends to prefer splits that result in large number of partitions, each

being small but pure.

$$Entropy(Date) = -(\frac{1}{7}log_2\frac{1}{7} + ... + \frac{1}{7}log_2\frac{1}{7})$$

$$Entropy(Date) = -(\frac{1}{7}log_2\frac{1}{7}) \times 7$$

$$Entropy(Date) = 2.807$$

Information Gain of Weather is **0.592**Information Gain of Temperature is **0.522**Information Gain of Wind Level is **0.306**

Training Data						
Date	Weather	Temperature	Wind Level	Go out for running?		
2020-01-01	Sunny	High	Low	No		
2020-01-02	Sunny	Medium	Medium	Yes		
2020-01-03	Cloudy	High	Medium	Yes		
2020-01-04	Cloudy	Medium	High	Yes		
2020-01-05	Rainy	High	Low	No		
2020-01-06	Rainy	High	Medium	No		
2020-01-07	Sunny	Low	High	No		

• Gain Ratio: Designed to overcome the disadvantage of Information Gain

$$GainRATIO = \frac{GAIN}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$$

It is simply adding a penalty on the Information Gain by dividing with the entropy of the parent node.

• Classification error

Error
$$(t) = 1 - \max_{i} P(i \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Error = 1 - max(0, 1) = 1 - 1 = 0$

P(C2) = 5/6

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3$

Issues In Decision Tree

Overfitting Due to Noise

An example training set for classifying mammals. Asterisks denote mislabelings.

Name	Body Temperature	Gives Birth	Four-legged	Hibernates	Class Label
Porcupine	Warm-blooded	Yes	Yes	Yes	Yes
Cat	Warm-blooded	Yes	Yes	No	Yes
Bat	Warm-blooded	Yes	No	Yes	No*
Whale	Warm-blooded	Yes	No	No	No*
Salamander	Cold-blooded	No	Yes	Yes	No
Komodo dragon	Cold-blooded	No	Yes	No	No
Python	Cold-blooded	No	No	Yes	No
Salmon	Cold-blooded	No	No	No	No
Eagle	Warm-blooded	No	No	No	No
Guppy	Cold-blooded	Yes	No	No	No

Issues In Decision Tree

Overfitting Due to lack of Samples

An example training set for classifying mammals.

Name	Body Temperature	Gives Birth	Four-legged	Hibernates	Class Label
Salamander	Cold-blooded	No	Yes	Yes	No
Guppy	Cold-blooded	Yes	No	No	No
Eagle	Warm-blooded	No	No	No	No
Poorwill	Warm-blooded	No	No	Yes	No
Platypus	Warm-blooded	No	Yes	Yes	Yes

- Although the model's training error is zero, its error rate on the test set is 30%.
- Humans, elephants, and dolphins are misclassified because the decision tree classifies all warmblooded vertebrates that do not hibernate as non-mammals.

Pruning

- Pruning is a technique that controls the parts of the Decision Tree to prevent overfitting.
- There are two types of pruning: Pre-pruning and Post-pruning.
- Pre-prunting: involves the heuristic known as 'early stopping' which stops the growth of the decision tree preventing it from reaching its full depth.
- Post-pruning: allows the Decision Tree model to grow to its full depth by using ccp_alphas gives minimum leaf value of decision tree and each ccp_aphas will create different - different classifier and choose best out of it.

Decision Tree

Lab

https://colab.research.google.com/drive/1YtcvzH x397yfOdIkNfW 6h5Zv8sOKqew?usp=sharing

Resources

- Stephen Marsland, "Machine Learning: An Algorithmic Perspective" second edition 2014
- https://towardsdatascience.com/decision-trees-explained-3ec41632ceb6
- https://slideplayer.com/slide/5028947/
- https://towardsdatascience.com/do-not-use-decision-tree-like-this-369769d6104d#:~:text=The%20major%20drawbacks%20of%20using,that%20has%20more%20unique%20values