ディジタル第12回演習

氏名:205728A

学籍番号:チン シュクトク

演習1 3ビット8進カウンタ

JK フリップフロップ使って、3ビットカウンタ 8進カウンタを設計する。

JKフリップフロップ3つで構成した次の回路の動作を検討する.

JKフリップフロップを3段に接続すれば、8進カウンタを構成することができる.

出力 (Q_2, Q_1, Q_0) を3ビットの2進数と見なして

 $000 \to 001 \to 010 \to 011 \to 100 \to 101 \to 110 \to 111 \to 000 \to 001 \to ...$ と変化するには、

 (Q_1, Q_0) を 4 進カウンタとして構成し、

さらに、 Q_2 は $Q_1=Q_0=1$ の場合に 出力が反転するように構成する.

8進カウンタの動作

	n での状態			クロック信号入力前後		
n	Q ₂ ⁿ	Q ₁ ⁿ	Q ₀ ⁿ	$Q_2^{n} \rightarrow Q_2^{n+1}$	$Q_1^{n} \rightarrow Q_1^{n+1}$	$Q_0^{n} \rightarrow Q_0^{n+1}$
0	0	0	0	0→0(保持)	0→0(保持)	0→1(反転)
1	0	0	1	0→0(保持)	0→1(反転)	1→0(反転)
2	0	1	0	0→0(保持)	1→1(保持)	0→1(反転)
3	0	1	1	0→1(反転)	1→0(反転)	1→0(反転)

4	1	0	0	1→1(保持)	0→0(保持)	0→1(反転)
5	1	0	1	1→1(保持)	0→1(反転)	1→0(反転)
6	1	1	0	1→1(保持)	1→1(保持)	0→1(反転)
7	1	1	1	1→0(反転)	1→0(反転)	1→0(反転)
8	0	0	0	0→0(保持)	0→0(保持)	0→1(反転)

JK フリップフロップの動作特性は

• J=K=0 の場合: 保持動作

• J=K=1の場合: 反転動作

であるから, $J_0 = K_0 = 1$ $J_1 = K_1 = Q_0$ $J_2 = K_2 =$

 $Q_1\cdot Q_0$ と回路を構成する.

3ビット8進カウンタ以上です。

演習2 5進カウンタ

Dフリップフロップ使って、5進カウンタを設計する。

真理表

現在の出力値		次回の出力値			
Q2	Q1	Q0	Q2	Q1	Q0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	×	×	×
1	1	0	×	×	×
1	1	1	×	×	×

Dフリップフロップを使用して、真理値表の条件で入力信号を作り出せば、良いことが分かりま

す。

回路の概要は、次のようになります。

現在の状態から次回の状態を作り、フリップフロップに入力するため、入力設定回路の入力信号は、フリップフロップの出力信号(Q0,Q1,Q2)になります。

真理値表を分解して、各入力設定回路の真理値表を作成します。

現在	出力			
Q2	Q1	Q0	DO	
0	0	0	1	
0	0	1	0	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	1	×	
1	1	0	×	
1	1	1	×	

現在	出力			
Q2	Q1	Q1 Q0		
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	1	×	
1	1	0	×	
1	1	1	×	

現在	出力			
Q2	Q2 Q1		D2	
0	0	0	0	
0	0 0		0	
0 1		0	0	
0 1		1	1	
1	0	0	0	
1	0	1	ж	
1	1	0	×	
1	1	1	×	

このまま、回路を設計しても良いですが、簡略化できそうなら論理式を作成してから、ブール 代数やカルノー図を使用して簡略化します。

カルノー図を使用する際には、真理値表の×の部分も1として使用します。

ただし、×だけのグルーピングはしません。

論理式から回路設計をすれば完成です。

演習 3 10 進カウンタ

JKフリップフロップ使って、5進カウンタを設計する。

最初は、あんまし細かいコト気にせずに、素直に作って見る。

各 bit の反転条件は、下記のとおり。

Q0 は、常に反転	J 入力と K 入力は、常時'1'
Q1 は、Q0='1'で、Q3='0'の条件で反転	J 入力と K 入力は、(Q0 and QC3)を接続
Q2 は、Q0=Q1='1'の条件で反転	J 入力と K 入力は、(Q0 and Q1)を接続
Q3 は、Q0=Q1=Q2='1'の条件と、Q0	J 入力と K 入力は、(Q0 and Q1 and Q2)
=Q3='1'の条件で反転	or(Q0 and Q3)を接続

この反転条件が理解できない人は、まず「こういう動作になるハズ!」っていうタイミングチャートを作って、

そのタイミングチャートを見ながら、各 bit がどういう条件で反転してるかを観察すればイイ。 回路図は以下となる。

演習4 5タイミングチャットを持つカウンタを設計し、回路図を描け

演習 4

真理值表

0	0	1	1	0	1	1	0
0	1	1	0	1	1	0	0
1	1	0	0	1	0	0	1
1	0	0	1	0	0	1	1

2 進 \sim 1 6 進まで Logisim で作りました。

第12回の演習は以上です。