- **5.1** Betragt funktionen $f(x,y) = \sqrt{4xy 3y^2}$
- a) Bestemt definitionsmængden D_f . Skitser (uden Maple) D_f i et xy-diagram.

...

b) Lav (med Maple) et plot3d af funktionen $4xy - 3y^2$, og sammensæt dette med et plot af xy-planen, således at uligheden $4xy - 3y^2 \ge 0$ illustreres.

...

c) Bestem (uden Maple) $\lim_{h\to 0^+} \frac{f(h,rh)}{h}$ for alle $r\in[0,\frac{4}{3}]$.

..

- **5.2** Betragt funktionen $f(x) = x^4 + 7x^2 2$.
- a) Bestem alle Taylorpolynomierne omkring x = 1 for funktionen (uden Maple).

...

b) Indtegn (med Maple) resultatet fra (a) i et plot, som viser grafen for f samt de tre Taylorpolynomier T_1f , T_2f og T_3f . Vælg f. eks. x-intervallet [-3,3].

...

- 5.3 Betragt den naturlige logaritmefunktion $f(x) = \ln x$, og lad $T_n \ln x$ være Taylorpolynomiet af grad n omkring x = 1. Benyt formlen (side 586) for den n-te afledte af $\ln x$, $f^{(n)}(x) = (-1)^{n-1}(n-1)!x^{-n}$.
- a) Plot (med Maple) graferne for ln, T_9 ln og T_{49} ln i et fælles plot.

...

b) Argumentér, ud fra Taylors formel med restled, for at $|R_n \ln x| = |\ln x - T_n \ln x| \le \frac{1}{n+1}(x-1)^{n+1}$ for x > 1. Udregn (med Maple), for x = 2, x = 1.9 og x = 2.1, værdien af $T_{49} \ln x$ og sammenlign med $\ln x$ (også udregnet i Maple). Check uligheden ovenfor. Forklar forskellen mellem tilfældene x < 2 og x > 2.

...