3.3 双曲線関数

双曲線関数を, 三角関数 (円関数と呼ぶべき?) と類比しながら紹介してゆく.

Myperbolic function 双曲線関数

定義 1.

$$\cosh x = \frac{e^{x} + e^{-x}}{2} ,$$

$$\sinh x = \frac{e^{x} - e^{-x}}{2} ,$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} .$$

これら以外にも、 $\operatorname{sech} x$, $\operatorname{csch} x$, $\operatorname{coth} x$ がある.

定義 2. "単位双曲線" $x^2 - y^2 = 1$ 上の点を $(x, y) = (\cosh t, \sinh t)$ と定める (x > 0).

- 相互関係 $\cosh^2 x \sinh^2 x = 1$ など.
 - 問 これ(ら)を示せ.
- **偶奇性** sinh x は奇関数, cosh x は偶関数, tanh x は奇関数.
 - 問 これらを示せ.

☑ frigonometric function 三角関数 (円関数)

定義 1.

$$\cos x = \frac{e^{ix} + e^{-ix}}{2} ,$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i} ,$$

$$\tan x = \frac{\sin x}{\cos x} = \frac{1}{i} \cdot \frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}} .$$

これら以外にも, $\sec x$, $\csc x$, $\cot x$ がある.

定義 2. 単位円 $x^2 + y^2 = 1$ 上の点を $(x, y) = (\cos \theta, \sin \theta)$ と定める.

- 相互関係 $\cos^2 x + \sin^2 x = 1$ など.
- **偶奇性** sin x は奇関数, cos x は偶関数, tan x は奇関数.

数学 AI (奈須田) 第 5 週 ②

• グラフ

 $y = \sinh x$

 $y = \cosh x$

 $y = \tanh x$

• 加法定理 (複合同順)

 $\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$ $\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$ $\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$

問 これらを示せ.

• グラフ

 $y = \sin x$

 $y = \cos x$

 $y = \tan x$

• 加法定理 (複合同順)

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$
$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

• 導関数

$$(\sinh x)' = \cosh x$$

$$(\cosh x)' = \sinh x$$

$$(\tanh x)' = \frac{1}{\cosh^2 x}$$

これらを導出せよ.

• 逆双曲線関数

$$\sinh^{-1} x = \ln (x + \sqrt{x^2 + 1}), \quad x \in \mathbb{R}$$

$$\cosh^{-1} x = \ln (x + \sqrt{x^2 - 1}), \quad x \in [1, \infty)$$

$$\tanh^{-1} x = \frac{1}{2} \ln \frac{1 + x}{1 - x}, \quad x \in (-1, 1)$$

これらを示せ. また、グラフの概形を描け.

また逆双曲線関数の導関数は,

$$(\sinh^{-1} x)' = \frac{1}{\sqrt{1 + x^2}},$$

$$(\cosh^{-1} x)' = \frac{1}{\sqrt{x^2 - 1}} \qquad (x \neq 1),$$

$$(\tanh^{-1} x)' = \frac{1}{1 - x^2}.$$

問 これらを導出せよ.

• 導関数

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

• 逆三角関数

$$\sin^{-1} x$$
, $x \in [-1, 1]$
 $\cos^{-1} x$, $x \in [-1, 1]$
 $\tan^{-1} x$, $x \in \mathbb{R}$

また逆三角関数の導関数は,

$$(\sin^{-1} x)' = \frac{1}{\sqrt{1 - x^2}} \qquad (x \neq \pm 1),$$

$$(\cos^{-1} x)' = -\frac{1}{\sqrt{1 - x^2}} \qquad (x \neq \pm 1),$$

$$(\tan^{-1} x)' = \frac{1}{1 + x^2}.$$

問題3.5

 $\sinh x = a$ のとき, $\cosh x$, $\tanh x$ の値を求めよ. $\sin x = a$ のとき, $\cos x$, $\tan x$ の値を求めよ.