processing the second s				
TOTAL TAX TO THE TAX TO	1 1 1	1 1 1	1 1 1	1 1 1
Lear No.	1 1 1	1 1 1	1 1	6 5 6
	1 1 1	1 1	1 1 1	4 1 1

B.Tech/M.Tech(Integrated) DEGREE EXAMINATION, DECEMBER 2023

Third Semester

21ASC205T - AERO ENGINEERING THERMODYNAMICS

(For the candidates admitted during the academic year 2022-2023 onwards)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

ii. P	art - B and Part - C should be answered in a	nswer booklet.			
Time: 3 Hours		Max. Marks: 75			
	PART - A $(20 \times 1 = Answer all Que$,	Marl	ks BL	CO
1.	The macroscopic approach to the study of knowledge of the behavior of individual partial (A) Statistical thermodynamics (C) Analytical thermodynamics		1	2	**************************************
2.	The mass or region outside the system is ca (A) Boundary (C) Surroundings	(B) Atmosphere (D) Stratosphere	Person	2	henned
3.	An open system is also called as (A) Control volume (C) Control surface	(B) Control mass (D) Control area	jenne)	2	1
4.	are those that are income (A) Extensive properties (C) Extrusive properties	lependent of the mass of a system (B) Intrusive properties (D) Intensive properties	proset.	2	1
5.	5. The complete conversion of low grade energy into high grade energy in a cycle is				2
	(A) Possible (C) Both	(B) Impossible (D) None of the above			
6.	A hypothetical body with a relatively larg heat) that can supply or absorb finite a change in temperature. Such a body is called (A) Storage reservoir (C) Thermal energy reservoir	mounts of heat without undergoing any	1	2	2
7.	The is defined as the energy required a	red to raise the temperature of a unit mass (B) Latent heat (D) Pressure energy reservoir	1	2	2
8.	In boiler, the steam is condensed to water	er in the condenser in amount of heat is	II.	2	2
	(A) Rejected (C) Neither rejected nor absorbed	(B) Absorbed (D) None of the above			
9.	The cyclic integral of $\delta Q/T$ is always less the (A) 0 (C) 2	nan or equal to (B) 1 (D) 3	1	2	3
10.	The Clausius inequality is valid for(A) Reversible cycle (C) Refrigeration cycle	(B) Irreversible cycle (D) All of the above	1	2	3

permed jerment.	Entropy is an property of a system (A) Intensive (C) Intrusive	m (B) Extensive (D) Both intensive and extensive	1	2	3
12.	The entropy generated during a process is c (A) Total entropy (C) Entropy formation	(B) Differential entropy (D) Entropy generation		2	3
13.	The premature ignition of the fuel is called (A) Detonation (C) Knocking	(B) Autoignition(D) Pyrotechnic ignition	quand	2	4
14.	Which process is not involved in the Ideal (A) Isentropic compression (C) Isentropic expansion	Otto cycle (B) Constant-volume heat addition (D) Constant-pressure heat rejection		2	4
15.	The Carnot cycle is composed of tota (A) 1 (C) 3	ally reversible processes: (B) 2 (D) 4	1	2	4
16.	Reversible isothermal heat transfer is very would require very large (A) Heat pumps (C) Heat engines	(B) Heat exchangers (D) All of the above	1	2	4
17.	A radiant heating lamp has a surface temper a surface area is needed to provide 250 W or (A) 0.0035 m ² (C) 0.0055 m ²	erature of 1000 K with $\varepsilon = 0.8$. How large of radiation heat transfer? (B) 0.0045 m2 (D) 0.0065 m2	1	3	5
18.	The rate at which energy is radiated by a bla	ack body at temperature T (K) is given by]	2	5
	a (A) Newtons law (C) Stefan-Boltzmann law	(B) Kirchoff's law (D) Avagadro law			
19.	The property of the material through which (A) Thermal contraction (C) Thermal expansion	heat is being conducted and is known as (B) Thermal conductivity (D) Thermal diffusion	1	2	5
20.	Fourier's law of heat conduction states proportional to the (A) Temperature gradient	(B) Pressure gradient	heren	2	5
	(C) Velocity gradient	(D) Volume gradient			
	PART - B ($5 \times 8 = 40$) Answer all Ques		Mark	s BL	CO
21.	(a) Write short notes on (i) Point and Path properties (iii) Microscopic and macro (OF	oscopic view of thermodynamics	8	2	pro-p
	(b) Derive the steady flow energy equation gas turbine and a compressor.	,			
22.	(a) State and prove Carnot theorem.		8	3	2
	the house is estimated to lose heat at under these conditions has a COP of 2				

3 (a) Derive the Clapeyron equation and point out its utility. 23. (b) Derive Maxwell's equations and write down the first and second Tds equations. (a) An ideal Diesel cycle with air as the working fluid has a compression ratio 3 24. of 18 and a cutoff ratio of 2. At the beginning of the compression process, the working fluid is at 14.7 psia, 80°F, and 117 in³. Utilizing the cold-air standard assumptions, determine (a) the temperature and pressure of air at the end of each process, (b) the net work output and the thermal efficiency, and (c) the mean effective pressure. (b) Explain the ideal Otto cycle with the help of P-V and T-S diagrams. 3 (a) Mention and define the three modes of Heat transfer. Explain in detail the 25. conduction through a wall. (OR) (b) A cold storage room has walls made of 0.23 m of brick on the outside, 0.08 m of plastic foam, and finally 1.5 cm of wood on the inside. The outside and inside air temperatures are 22°C and - 2°C respectively. If the inside and outside heat transfer coefficients are respectively 29 and 12 W/m² K, and the thermal conductivities of brick, foam, and wood are 0.98, 0.02, and 0.17 W /mK respectively, determine (a) the rate of heat removed by refrigeration if the total wall area is 90 m², and (b) the temperature of the inside surface of the brick. Marks BL CO $PART - C (1 \times 15 = 15 Marks)$ Answer any 1 Questions 26. In a steady flow apparatus, 135 kJ of work is done by each kg of fluid. The specific 3 volume of the fluid, pressure and velocity at the inlet are 0.37 m³/kg, 600kPa and 16 m/s. The inlet is 32 m above the floor, and the discharge pipe is at floor level. The discharge conditions are 0.62 m³/kg, 100 kPa, and 270 m/s. The total heat loss between the inlet and discharge is 9 kJ/kg of fluid. In flowing through this apparatus, does the specific internal energy increase or decrease, or by how much? 27. Derive (i) the steady flow energy equation (ii) A cyclic heat engine operates between a source temperature of 800°C and a sink temperature of 30°C. What is the least rate of heat rejection per kW net output of the engine?

* * * * *