REV	DATA	ZMIANY	
0.1	10.01.2025	Jakub Marchewczyk	
		marchewczyk@student.agh.edu.pl	
0.2	19.01.2025	Jakub Marchewczyk	
		marchewczyk@student.agh.edu.pl	
0.3	25.01.2025	Jakub Marchewczyk	
		marchewczyk@student.agh.edu.pl	

KALKULATOR DLA ELEKTRONIKÓW/INFORMATYKÓW

Autor: Jakub Marchewczyk Akademia Górniczo-Hutnicza

Kraków (C) 2025

Jan 2025

Spis treści

1.	WST	ręp	4
2.	FUN	KCJONALNOŚĆ (<i>FUNCTIONALITY</i>)	5
		ALIZA PROBLEMU (PROBLEM ANALYSIS)	
4.	PRO	OJEKT TECHNICZNY (TECHNICAL DESIGN)	
4	4.1	DIAGRAMY UML	
4	1.2	ROLE KLAS W PROJEKCIE	10
5.	OPIS	S REALIZACJI (IMPLEMENTATION REPORT)	11
6.	OPIS	S WYKONANYCH TESTÓW (<i>TESTING REPORT</i>)	
7.	POD	ORECZNIK UŻYTKOWNIKA (USER'S MANUAL)	

Jan 2025

Lista oznaczeń

DEC	Dziesiętny system liczbowy
BIN	Dwójkowy system liczbowy
OCT	Ósemkowy system liczbowy
HEX	Heksadecymalny system liczbowy
UML	Unified Modeling Language

Jan 2025

1. Wstęp

Dokument dotyczy opracowania kalkulatora dla elektroników/programistów wykonującego podstawowe operacje matematyczne oraz logiczne w systemie dziesiętnym, binarnym, ósemkowym i heksadecymalnym oraz konwersje pomiędzy tymi systemami.

Jan 2025

2. Funkcjonalność (functionality)

2.1 Możliwości kalkulatora

Kalkulator posiada możliwość wykonywania podstawowych operacji matematycznych na liczbach w systemie dziesiętnym (w tym możliwość obliczeń na liczbach zmiennoprzecinkowych), binarnym, ósemkowym oraz heksadecymalnym. Możliwe jest również wykonywanie operacji logicznych bitowo, takich jak: OR, AND, NOR, NAND, XOR, XNOR.

2.2 Działanie przycisków kalkulatora

Przycisk	Działanie		
Cyfry 0-9, litery A-F, znak '.'	Wprowadzenie danych do wyświetlacza		
Przycisk +, -, *, /	Wybór działania matematycznego do		
	wykonania		
Przycisk OR, AND, NOR, NAND, XOR,	Wybór funkcji logicznej		
XNOR			
Przycisk =	Wykonanie wcześniej wybranego równania,		
	wyświetlenie wyniku.		
Przycisk Backspace	Usunięcie ostatniego znaku z wyświetlacza		
Przycisk +/-	Zmiana znaku wyświetlanej liczby		
Przycisk DEC, BIN, OCT, HEX	Wybór systemu liczbowego		
Przycisk CE	Wyczyszczenie wyświetlacza, rozpoczęcie		
	nowego równania		
Przycisk ANS	Wyświetlenie wyniku ostatniego równania		

3. Analiza problemu (problem analysis)

Konwersja pomiędzy systemami liczbowymi. Przedstawienie liczby jest pojęciem abstrakcyjnym, gdyż zależy od systemu, z którego korzystamy. Działania matematyczne odbywają się w taki sam sposób dla różnych systemów, różnią się one tylko przedstawieniem liczby.

System dwójkowy (binarny) – system o podstawie 2, zapis liczb przy użyciu dwóch cyfr: 0 i 1 wskazujących kolejne potęgi liczby 2 (system pozycyjny).

Przykładowy zapis liczby 22 w systemie binarnym prezentuje się następująco: 10110. Można to sprawdzić przemnażają cyfry liczby w BIN przez odpowiadające im potęgi cyfry 2 i sumując.

Przykład 1.

$$1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 22$$

System ósemkowy – podstawie 8, zapis liczb przy użyciu cyfr 0-7. Podobnie jak system binarny jest to system pozycyjny więc ciąg cyfr w liczbie jest ciągiem mnożników odpowiednich potęg podstawy w tym przypadku cyfry 8. Przykładowy zapis liczby 22 w systemie ósemkowym prezentuje się następująco: 26. Można to sprawdzić przemnażają cyfry liczby w OCT przez odpowiadające im potęgi cyfry 8 i sumując.

Przykład 2.

$$2.8^1 + 6.8^0 = 22$$

Konwersję liczby z systemu dwójkowego do systemu ósemkowego dokonujemy dzieląc ciąg binarny w "trójki" z czego każda trójka reprezentuję jedną cyfrę w systemie ósemkowym.

Przykład 3.

Aby przekształcić z BIN na OCT należy uzupełnić ilość cyfr tak aby otrzymać wielokrotność 3.

$$10110 = 010 \ 110$$

Dzieląc powyższy ciąg binarny na dwie liczby po 3 cyfry otrzymamy

$$0.2^2 + 1.2^1 + 0.2^0 = 2$$

$$1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 4$$

$$010110_2 = 24_8$$

Jan 2025

System szesnastkowy (heksadecymalny) – pozycyjny system o podstawie 16, zapis liczb przy użyciu cyfr: 0-9 oraz liter A-F, system ten zatem wykorzystuje 15 znaków wskazujących kolejne potęgi liczby 16.

Przykładowy zapis liczby 22 w HEX prezentuje się następująco: 16. Można to sprawdzić przemnażają cyfry liczby w HEX przez odpowiadające im potęgi cyfry 16 i sumując.

Przykład 4.

$$1 \cdot 16^1 + 6 \cdot 16^0 = 22$$

Konwersję liczby z systemu dwójkowego do systemu szesnastkowego dokonujemy dzieląc ciąg binarny w "czwórki" z czego każda czwórka reprezentuję jeden symbol w systemie szesnastkowym.

Przykład 5.

Aby przekształcić z BIN na HEX należy uzupełnić ilość cyfr tak aby otrzymać wielokrotność 4.

$$10110 = 0001\ 0110$$

Dzielac powyższy ciąg binarny na dwie liczby po 4 cyfry otrzymamy

$$0 \cdot 2^4 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 1$$
$$0 \cdot 2^4 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 6$$
$$00010110_2 = 16_{16}$$

W celu wykonania powyższych konwersji za pomocą aplikacji kalkulatora, wprowadzane dane są typu **string**, a następnie odpowiednio konwertowane za pomocą funkcji **stod**() jeśli wprowadzane dane są w DEC, bądź **stoll**() jeśli wprowadzane dane są w innym systemie liczbowym. Dane wejściowe są następnie zapisywane do zmiennych typu **double**, na których wykonywane są wszystkie operacje przez kalkulator. Uzyskany wynik następnie jest ponownie konwertowany do **string** w odpowiednim systemie liczbowym, za pomocą funkcji **std;:bitset, std::oct i std::hex.**

4. Projekt techniczny (technical design)

4.1 Diagramy

Rysunek 4-1. UML artifact diagram przestawiający relacje i zależności między plikami w projekcie Kalkulator. Kolorem fioletowym oznaczono pliki z biblioteki standardowej c++ oraz pakiet QT odpowiedzialny za interfejs graficzny. Niebieskie pliki to pliki nagłówkowe zawierające deklaracje klas oraz funkcji. Pełne definicje wraz z komentarzami opisującymi kod znajdują się w plikach źródłowych oznaczonych kolorem pomarańczowym, do których również należy plik main. Linia ciągła oznacza, że plik jest załączony w innym pliku, do którego skierowany jest grot strzałki. Linia przerywana wskazuję na pośrednie wykorzystywanie calculator.h przez main.cpp poprzez załączenie pliku mainwindow.h, do którego calculator.h został bezpośrednio załączony.

Rysunek 4-2. Diagram klas UML przedstawiający zależności pomiędzy klasami ich zmienne, metody oraz prawa dostępu (znak "-" private, znak "+" public). Klasa mainWindow ma w sobie klasę Calculator (relacja agregacji).

Jan 2025

4.2 Role klas w projekcie

Klasa Calculator odpowiedzialna jest za wykonywanie wszelkich operacji matematycznych, logicznych, przechowywanie ostatniego wyniku, konwersji pomiędzy systemami oraz przekształceniem ciągu binarnego do czytelnej dla użytkownika postaci (dzielenie ciągu binarnego po 4 znaki).

Klasa mainWindow odpowiada za wyświetlanie znaków, obsługę przycisków (w tym wywoływanie odpowiednich metod klasy Calculator) oraz całe okienko aplikacji.

5. Opis realizacji (implementation report)

Platforma testowa – komputer PC z windows 10 64 bit, procesor x64.

Oprogramowanie:

- Visual Studio 2022
- Pakiet QT
- CMake
- Kompilator MVSC2022 64 bit

6. Opis wykonanych testów (testing report).

Kod usterki	Data	Autor	Opis	Stan
1	20.01.2025	Jakub	Po wykonaniu operacji	Naprawiona
		Marchewczyk	logicznej w HEX wynik	
			zwracany jest w DEC	
2	21.01.2025	Jakub	Przycisk ANS wyświetla	Naprawiona
		Marchewczyk	zawsze odpowiedz w DEC	

Wykonane testy z wykorzystaniem GTest dla klasy Calculator – testy seterów, getterów, operacji dodawania, odejmowania, mnożenia, dzielenie dla danych wejściowych w różnych systemach liczbowych, konwersje pomiędzy wszystkimi z 4 zaimplementowanych systemów liczbowych.

Kod testów umieszczony w folderze tests w repozytorium projektu.

7. Podręcznik użytkownika (user's manual)

Rysunek 7-1. Główne okienko programu kalkulatora w trybie DEC (wyłączone operacje bitowe oraz znaki A-F).

Domyślnie kalkulator wyświetla 0 i czeka na wprowadzenie pierwszej liczby przez użytkownika za pomocą przycisków w okienku. Po wprowadzeniu pierwszej liczby użytkownik wybiera jaka operacja ma zostać wykonana i wprowadza drugą liczbę w taki sam sposób jak pierwszą. Po wciśnięciu przycisku "=" na ekranie zostaje wyświetlony wynik.

Tryb DEC – wprowadzanie danych w DEC, możliwość wykonywania operacji na liczbach zmiennoprzecinkowych oraz ujemnych.

Tryb BIN – wprowadzanie danych w BIN możliwość wykonywania podstawowych działań matematycznych oraz operacji bitowych (włączone przyciski z ostatniej kolumny). Brak wsparcia dla liczb zmiennoprzecinkowych (cyfry po przecinku zostaną ucięte). W odróżnieniu do trybu DEC przyciski 2-9, '.', +/- wyłączone.

Tryb OCT – w odróżnieniu do trybu DEC przyciski 8-9, '.', +/- wyłączone, reszta funkcjonalności jak w trybie BIN.

Tryb HEX - w odróżnieniu do trybu DEC przyciski '.', +/- wyłączone, przyciski A-F włączone, reszta funkcjonalności jak w trybie BIN.

Szczegółowy opis działania poszczególnych przycisków znajduję się w rozdziale 2 dokumentacji.

Jan 2025

Bibliografia

- [1] Cyganek B.: Programowanie w języku C++. Wprowadzenie dla inżynierów. PWN, 2023.
- [2] https://stackoverflow.com/
- [3] <u>https://en.cppreference.com/w/</u>