Reguescion Analysis (predictive Dota Analysis) predict real valued output for green input. Amount of spend for Ad sales (profit) Amount of combon-14 Age of Possil Rainfall in previous month Rainfall in Current previous stock parkes Toture stockprires wung capacity No of agarettes size of hoose, assea, no. House price of moony location Types of Regression humear Regression -(1) sumple linear Regressios (Unwardate) @ Multiple Union Reguession (Hillinaniale) Polynomial Regression Pata: - pain of variables Cone 4. one ofp) D= 5(x1, y1)/2=1603 x; = Today's temperature 21 = Tomorrow's Rainfall 21 is independent Variable y to dependent Variable.

No of cigonethic (x1)	lung capacity (24;)
^	45
5	42
10	33
15	31
20	29
Mark. 25	· Commented in
predict real valued	y for gives need valued ,
using a negreusion ma	del f.
Model of tructure: - f(x)	= lon+wix
25 Large Pied	scatter plot is slightly varied brown oraginal

-

Model Parameter - 0 = 2 coo, co, 3 Escrit function: - sum Absolute Error = = / y:-foo) sum Squared Bros = \(\frac{1}{2} (yp - for)) Training given a briaining set find the value of regression parameters such that model being fits the for toraining data from there a choose the one which how least earnor CK). Ex: w, de =0 -> select if zero. -> wa F = Sum squared enzor = E (29? - fext)) = E (49. - 600-101) [derivatue) DE =-2 = (7:- WO-WIX) =0 => => = y = - \(\omega Wo = 7 - 6,27

$$\frac{\partial F}{\partial \omega_{i}} = -2 \stackrel{?}{\neq} (\gamma_{i} - \omega_{0} - \omega_{i} \chi_{i}^{2}) \cdot \chi_{i}^{2} = 0 \qquad \bar{\chi} = \chi_{i}^{2}$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - \omega_{0} \sum \chi_{i}^{2} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\gamma} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\gamma} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\gamma} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i} \sum \chi_{i}^{2} \chi_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} \bar{\chi}) n \bar{\chi} - \omega_{i}^{2} = 0$$

$$\Rightarrow \sum \chi_{i}^{2} \gamma_{i}^{2} - (\bar{\chi} - \omega_{i} - \omega_{i} - \omega_{i}^{2} = 0$$

$$\Rightarrow$$

$$\overline{\chi} \Rightarrow 0+5+10+15+20$$
 $\overline{\chi} \Rightarrow 50 = 10$
 $\overline{y} = 45+42+33+31+29$
 $\overline{5} = 180$
 $\overline{5} = 180$
 $\overline{5} = 180$

$$\frac{\partial E}{\partial \omega_{i}} = -2 \stackrel{?}{=} (2! - \omega_{0} - \omega_{i} \times 1) \times 1 = 0 \qquad \bar{\chi}_{0} \times 1$$

$$\Rightarrow \sum x_{1}^{2} y_{1}^{0} - \omega_{0} \sum x_{1}^{0} - \omega_{1} \sum x_{1}^{0} \times 20$$

$$\Rightarrow \sum x_{1}^{0} y_{1}^{0} - (\bar{y} - \omega_{1}\bar{x}) n\bar{x} - \omega_{1} \sum x_{1}^{0} \times 20$$

$$\Rightarrow \sum x_{1}^{0} y_{1}^{0} - (\bar{y} - \omega_{1}\bar{x}) n\bar{x} - \omega_{1} \sum x_{1}^{0} \times 20$$

$$\Rightarrow \sum x_{1}^{0} y_{1}^{0} - n\bar{x}\bar{y} - n\bar{x}^{0} \times 10 = 0$$

$$\Rightarrow \sum x_{1}^{0} y_{1}^{0} - n\bar{x}\bar{y} - n\bar{x}^{0} \times 10 = 0$$

$$\Rightarrow \sum x_{1}^{0} y_{1}^{0} - n\bar{x}\bar{y} - n\bar{x}^{0} \times 10 = 0$$

$$\Rightarrow \sum x_{1}^{0} y_{1}^{0} - n\bar{x}\bar{y} - n\bar{x}^{0} \times 10 = 0$$

$$7 \Rightarrow 0+5+10+15+20$$

$$7 \Rightarrow 50 = 10$$

$$7 = 45+42+33+31+29$$

$$= 180$$

$$= 180$$

$$= 186 + 836$$

100% variation coll not be explained as the wall be noise to all the time. Adjusted R= 1- (N-1) (1-R) N= no of data points = 5 d = no of feature = 1 ((xi) input] 1 - (5-1) (1- (0.9245)) 1 - (1-0.85470025) 1- (0-14529975) features 1_ adjusted R" it r = pearson comelation coefficient = -0.9(15) 7 = (-0.96151) = 0.9245 This will work for a variable only. De Multiple linear Regression

Oda 5x,, x12, x1d, y, 1

5x21, x2---- x1, y21

5 2m1, 2n2 - - 2nd, yol

D= 2 (x11, x12, ... x1d, 47)/2-12,3. 0) Jake - predicting the value of y Model Structural g=fy = f(x1, x2 x1) - wo + w, x, + w, x, + . . + 200 x0 a Lanot polynomials (power), so Uniables = WO + 5 W72; Parameter: d+1 parameters 0 = 5 wo, w, , , wd? we have to And there parameter such that expa forcher is morman 8 = sse = = (29 - f (x, m2 . 20) Training d+1 parameter =) d+1 equation Materix Notation is useful to find the Parameter wo, w, . . . wd. 3x+4y = 6 9x + 22y = 26 [34][7]-[6]. [4] - [3 42] [26]

Use the simplest model which gives acceptable according on braining set 1/1/19 Complexity of model Vs Generalization tous high whatance -> model Complexity O Bias of a model = = = b low Variance Simple model high bias. b=60000 = E+E3+ E2 Complex model @ Variance model = b = 15 (+ 1/2 + 1/3 low bras high Variance

Bias :-
Bias of a model is the average cross of makes on work
bilaining sale
B = (\$ E)/n
Variance :-
Variation of a model existed of makes on different branks
seh v= = (E1-b)
hie need to find a
Find a model that numerises both becar and Vision
Regularization : bi
12.
Model Validation:
1) Holdrut method:
Training
1ct 1
2.1.1.
Validator
Testsch
purpose of training set
use this data to tocin each model
Peapare of Validation set was this data to test the models and select the model
with minimum eroson.
Propose of leated unbicued enous for the Setecter
madel

122 Clasefica	tion - e	appraised.	learning			
	- Deaston Trees					
Veasion	Chulos					
- baye's	Clauffer	bound				
- be Nec	st vector m	blos				
- ecopo	a vector u	Expuse				
- ANN	able methor	4		ale ti		
Engen				spans not span		
Tark	1	P Extoracle	,	o/p		
1 Categositung	Feature	es belotate	d	ebour tou lands		
Email	Asom (Content	100			
				Approve / Reject		
@ Lean Approval		ation Abou	1	Libbaro oct vala		
The same of the sa	perior		-1-1	Benign/Haligton		
(Bildentifying Tumowicell	Fechus	HRI SCOI	Ched	200		
Decision Jane	es te	a honee	storo	chosed classifier.		
Pata:- 2 x	11, 12	x,d,	, 29.1			
Han, 5			Tla	uc label		
	noput le	churei				
JD Home	Hasilal	Annual	Defoul	नेला		
an owner	etatus	Income	.1	NAME OF TAXABLE PARTY.		
1 7	+1	125k	N			
2 N	N	22010	y	The latest of		
cat	cat	nombor		To proper ser		
				100		

Parameters of model
- which Attribute to select for splt ?
- when to stopp one
emorall attalbates belongs to the class
O All Albribules are abready word (no more lest,
3 Too Aw examples to make softmative splt
Form Fundan: Heasure of Mode Empushy.
T+ 9 [+:6]
- 15
more par les pars.
O fini vider :
3 Minularification Foots
above & one med for anhabiting inharching gir
Training will done by holes Algorithms.
Hali Alantha
- Hunt's Algorithm - CART
-103, 645
- CIJQ, IPFINI
Barie outfre of ID3 Algorithe: Top down Pipperson
A = 5 A, , A2, A3, A4?
to the allest amore all restective North
@ Assign the selected Attendate as Decision Attendate
Por the Node

a regard value of the Athribule coeater new descendent

@ sort the towning tramples to least nodes according attribute value

elaushed then stop due sterate over new leaf Modes.

which advanbale to select?

- which attribute gives smallest ermos
- greedy Approach
- Hearwise of Impurity
 - Enhorapy
 - GAR
 - Musclassification From .

3 Information gain

+	29	Alteribute	= 5A, B?
-	35	P=Impe	only


```
Measure of Improvidy
Entropy -
     Expediction: It is the farry name for Average
     Team (x): A B C D
Probability of wins 0-3 0-4 0-2 0-1
Reward (V(x)): 10k 5k 10k - 30k
 what is the Expeded Recoond?
 Expeded Reward = 3×10+4×5+2×10+1×(-30)
                      = 3 x10 + 4 x5 + 2 x10 + 10 x (-30)
                      = 0-3x10 + 0.4x5 + 0.2x10 + 0.1x-30
  For any Random Vacuable: -

\[ \int A, B, C, D. \]

\[ \int \text{2 \text{probability} of (v(\text{20}) * value of \text{x}} \]

\[ \int \text{2 \text{p(x)} - v(\text{x})} \]

\[ \int \text{4. B, C, D.} \]
 Information content =
                                               I(A) = - log (pa)
    JC(A) & TO
   ICCA) = P(p(A)) = log (FID) = - log (p(A)
 Information content of Independent Events:
  X = which team is going to win
  X bunch is going to be good in mess
 3C(Xny) = I(CX)+ICCY)
 f(b(x0x)) = f(b(x)) + f(b(x))
                                                   1x, y core In]
 +(p00) - fcp00) = fcp00) - fcp00)
                                                     pendent
 leg (p(x) - p(y)) = leg (p(x)) + leg (p(x))
```


play of not?

not					-
Day	outlook	Ter	p Humidly	wind	play
1	sunny	Hot	High '	weak	No
2	gunny	Hot	High	chrong	No
3	overcont	Hot	High	W	yes
4	Roiny	HIL	High	W	yes
5	Rainy	cool	Normal	W	yes
6	Rainy	cool	Normal	2	no
7	overcut	cool	Normal	2	yes
8	cunny	HUH	thigh	w	00
9	conny	(00)	Normal	w	yes
to	Rainy	mil Lim	Normal	W	yed
11	runny	mila	Normal	2	yes
12	overal	mill	High	2	yes
13	evencont	Hot	Nevnal	w	Yea
14	Rainy	HIL	High	2	No

(A)
$$y_{ain} = 0.99 - (\frac{26}{64} \times 0.71 + \frac{38}{64} \times 0.74)$$

$$= 0.99 - 0.73$$

$$= 0.26$$
(B) $y_{ain} = 0.99 - (\frac{51}{64} \times 0.62 + \frac{13}{64} \times 0.62)$
(B) $y_{ain} = 0.99 - (\frac{51}{64} \times 0.62 + \frac{13}{64} \times 0.62)$
Redshor to impury = 0.62

Select A for split since high gain

Juni under

Grins (b) = 1 -
$$\frac{1}{2}$$
 $\left[P(7/6)\right]^{3}$
 $\frac{1}{5}$, $P = \frac{1}{2}$ $1 - \left[\frac{1}{2}\right]^{3} + \left(\frac{1}{2}\right)^{3} = 0.5$
 $\frac{1}{5}$, $P = \frac{1}{2}$ $1 - \left[\frac{1}{2}\right]^{3} + \left(\frac{1}{2}\right)^{3} = 0.5$
 $\frac{1}{5}$, $P = \frac{1}{2}$ $1 - \left[\frac{1}{2}\right]^{3} + \left(\frac{1}{2}\right)^{3} = 0.5$
 $\frac{1}{5}$, $P = \frac{1}{2}$ $1 - \left[\frac{1}{2}\right]^{3} + \left(\frac{1}{2}\right)^{3} = 0.5$
 $\frac{1}{5}$, $P = \frac{1}{2}$ $1 - \left[\frac{1}{2}\right]^{3} + \left(\frac{1}{2}\right)^{3} = 0.5$
 $\frac{1}{5}$, $P = \frac{1}{2}$ $1 - \left[\frac{1}{2}\right]^{3} + \left(\frac{1}{2}\right)^{3} = 0.5$
 $\frac{1}{5}$, $P = \frac{1}{2}$ $1 - \left[\frac{1}{2}\right]^{3} + \left(\frac{1}{2}\right)^{3} = 0.5$
 $\frac{1}{5}$, $\frac{1}{$

Metre to evaluate model porformance (classification):

play?

[yes] [no]

chate labels.

Confusion Materie :-

O Accuracy = # consiect Priediction # total prediction

= TP+TBJ (TP+TN+FN+FP)

@ Esour Rate = # Error inconsect prediction # total prediction

cat? Rabbit? + 52 + 35 + 11/1 - 21

Precision=
$$\frac{5}{7}$$
 precision= $\frac{3}{8}$ Precision= $\frac{11}{12}$

Recall = $\frac{5}{8}$ Recall = $\frac{3}{6}$ Recall = $\frac{11}{12}$
 $F_1 = 2 \times \frac{5}{7} \times \frac{5}{8}$ $F_1 = 2 \times \frac{3}{8} \times \frac{3}{6}$ $F_2 = 2 \times \frac{11}{12} \times \frac{11}{13}$
 $\frac{5}{7} + \frac{5}{8}$ $\frac{5}{8} + \frac{3}{6}$ $\frac{3}{8} + \frac{3}{6}$ $\frac{11}{12} + \frac{11}{13}$
 $\frac{5}{7} + \frac{5}{8}$ $\frac{5}{8} + \frac{3}{6}$ $\frac{3}{8} + \frac{3}{6}$ $\frac{11}{12} + \frac{11}{13}$

HA66'19

A model in ic said to overfit the toraining data if there Is another model m', such that m' has more error than m on tordining data but m' has less ensor than m on test data

- there may be noise in the training data

- There may not be sufficient data to take decision

- over Alting snewlk in a decision force that is more complex than necrescary

- Training ensus doesnot provide good estimate

Pre powning :-

- max -depth

-min-samples - split

-min-samples - teaf

-max-leaf-nodes

- main-impurity-split

an psioning, we stop growing the toree

Coros Validation:

E(t) E(T- STD), E(T- ST2)

select the node whose stemoval gives least validation

joint Distribution

GI	3	p(0=9, 2=9
A	H	6-3
A	L	0+1
B	H	0.15
8	L	0.15
(H	0.05
c	L	0.25

	A	В	C	
High	30	15	5	-
low	10	15	25	
				100

Conditional Destribution

P(or(a)

Cr	P(C)=9/1=H
A	06
8	
. 6	

$$P(G(1)) = \frac{P(G(3))}{P(1)}$$

joint Dichalbution of Random Variable
71, 1/2 X3 xn p(x,x, x4, x4 - xn)
20; Assuming each mandom Variables take 2 values
p(x,x, x0) = p((x2, 3, x4. 20) /x1) -p(x1)
= P((x3, x4, - xn)/x, x1) - p(x, /x,) p(x)
= p ((x4 xn)/x, x2 x3) - p(x3/x, x) > p(x3/x)
general Equation -
The street we have
p(x;)=== (x;/x, x;-1)
Calculating Marginal distribution from joint Destribution.
Galculating marying
G [a p(cr,5)
A L 0.1 B H 0.15 B L 0.15 C H 0.05 C L 0.05
A L 0-1 5
B H 0-15 3 0-3
B L 0-15 3
C H 005 30.3
[C L 0.03]
P(G=A) = = p(G=9.5=1)
P(G=9) = \(\frac{1}{49} \) p(G=9, I=9) p(I=9) = \(\frac{1}{49} \) p(G=9,50)
ti, ti
$p(G) = \sum_{i} p(G_{i}, i)$ $p(G) = \sum_{G_{i}} p(G_{i}, i)$
I Or
- Standom Vasilables :-
$p(x_i) = \leq p(x_i, x_i, \dots, x_n)$
$p(x_i) = \sum_{x_1, x_2, \dots, x_n} p(x_i, x_1, \dots, x_n)$

x, x, x, x4 y
Toutlook Temp Homely word play
3 2 2 2 2
p(y,x,x,x,x,x4)
P(4/21, 22 x3, x4)= P(4, x1, x2, x5, x4)
= p(y, x,
P1 d.
Baye's classification
p(ca), p(a) >thanginal
P(G1, I) -> Joint
P(orla) -> conditional
P((1,1) = P(1/4) P(1)
toco = bealds or
$p(x,y) = p(x y) \cdot p(y)$
=> p(x,y) = p(x/y).p(y)
p(x) p(x) tkellhood probability
p(y/x) = p(x/y).p(y) -> posion probability
p(x)
-> posterior probability
3 3 1/p variables x, x, x, x, and one o/p variable y
10/21 x x x x x

 $P(y|x_1, x_2, x_3) = \frac{p(x_1, x_1, x_2, x_3)}{p(x_1, x_2, x_3)}$ $= \frac{p(x_1, x_2, x_3)}{p(x_1, x_2, x_3)}$ $= \frac{p(x_1, x_2, x_3)}{p(x_1, x_2, x_3)}$ $= \frac{p(x_1, x_2, x_3)}{p(x_1, x_2, x_3)}$

= p(x2,x3/yx) p(x/y) p(y)
p(x, x ₂ , x ₃)
= p(xx/yx,x)p(xx/yx)p(x/y)p(y)
p(x, x, x3)
= p(x3/y) p(x2/y). p(x,ly) p(x)
p(x, x, x)
y=0 colebard factor of Naive Bayes classifier
Two Appswaches:
1 Native Bayes
@ Bayes Belief N/w.
O Noive Baye's clausifier
-> conditional andependence
(antelligence)
KX XX
Grade Gelescose
20 20
P(Cos/I, co) = P(Cos/I) P(X/1000) }2
Ly Naive Assumption P(1X/Inner) = =
P(x,/yx) = p(x,/y) P(/ mnen)= 2/9
Line and x, are independent Gromerach of
10 the class wastable 2, Casimohan
conditional independent Assembly about the the
features are independent of each other given class label

Eq: day = & R. C. H. & S play = ? Y-yes; n=no

P (2y/x) = P(outlook/y) P(Temply) P(Humi/y) -P(Wind/y)xy

P(outlook, Temp, Hum, wind)

p(N/e) = p(at/n) p(T/n) p(H/n) p(W/n) p(n)
p(o, F, H, w).

Lieketihood tables:

outlook.

	4	N	pcy	pino
2	2	3	29	3
0	4	0	70	05
R	3	2	5	寺
tok	9	5	11	1

10		
-	-	-

14		4	h.
Hu	(Z)	a	rry.

	y	N	p(y)	p(N)
H	3	4	3	2/6
N	6	-	6 0	4
(Ope)	9	5	1	1

world

Temperature:

1	41	N	hoh	pen
2	3	3	200	3
w	6	2	69	25
66	9	5	1	1

prilon table;

clau	Farey	prob
9	9	9/14
N	5	5/14
Total	14	1

p Cylo = p(Rly) p(cly) p(Hhy) p(cly) p(y) = 0.00793

$$p(w/x) = \frac{p(x/n) p(c/n) p(x/n) p(x/n) p(n)}{2}$$

$$= \left(\frac{1}{5}\right) \left(\frac{1}{5}\right) \left(\frac{1}{5}\right) \left(\frac{3}{5}\right) \left(\frac{5}{14}\right) = \frac{0.013714285}{2}$$

$$= \frac{1}{5} \frac{1$$

Eg day= &s, H, N, w1.

P(y/x) = pcoullook/y)p(T/y) p(H/y) p(w/y)p(y)

P(o, T, H, w)

p(N/W) = pco/m) p(T/N) p(H/N) p(W/N) p(N)
p(0, T, H, W)

likelihood tables:-

outlook:

١		4	0	ράψ	pho
1	2	2	3	2	30
-	0	4	0	4/9	0/5
1	R	3	2	79	2/5
	Fole	9	5	1	1

Humid hy				
David he			-	
	ш	1	1	k,

T	y	0	ply	pin
1+	3	4	3/9	4/5
N	6	t	4/9	1/5
Total	9	5	1	t

prior table:

class	F	P
4	9	9/4
0	5	7/14
tofel	14	1

Temp:

		100		-	-
		4	0	pry	pla
	H	2	2	2/9	215
1	H	4	2	419	2/5
ŀ	-	3	1	3/9	45
ŧ	Total	9	5		1

Wind.

1		y	0	pay	pho
1	2	5	3	3/4	3/5
	W	6	2	49	265
	Total	9	5	1	1


```
est Feb19
 day = 2 overcout, mild, normal, showing 3
  play = ?
  p(y/x) = P(o/y)p(m/y)p(n/y)p(s/y)p(y)
                P(0, m, n, s)
         = (4)(4)(6)(3)(2) = 0.282
   p(n/x) = p(o(n) p(m/n)p(n/n) p(s/n) p(n)
                 p(0,m,n,s)
          = (号)(号)(号)(号)(码) = 0
  at one of the conditional probability is 'o', then
  enture exp becomes 'o' which we don't want.
     original: p(x9/y) = NXX NXI y
  Laplace & moothing :-
     p (20/2) = N2/2/11
Ny+((0)m)
         c = no. of classes
         m = no of features
    p(N/w) = 1+1 = = = ; p(s/N) = 3+1 = +
    P(NO/x)=(+)(辛)(辛)(午)(元)=0-00356
    PCYel/x) = (新)(新)(元)(光)(元) = 0.03)
```

Text Classification: -

	Doc	Words	daus
	0	India Delhi India	1
Train	1	India India Hyderabas	ĵ
	2	andia Hombai	Z
	3	Beijng china India	C
Test !	4	India, India, India, Beigns	?

mail - spam / not spam

Reviews - tue / - ve

News - sports/politics/Entertainment

Bog of words Representation

Nocabulary 7 = 2 india, Delhi, Hyd, mumbai, china, Bejt

	0	1	2	3	4	5			
0	1	1	0	0	0	0			
1	t	0	1	0	0	0			
2	1	0	0	1	0	0			
3	1	0	0	0	1	1			
4	1	0	0	0	1	1			
	B	010	ooli	N	aive	Ba	ye's		
0 (7/0) =	P	Con	12)	pCo	14	3)p	(w3/1) p(1)		
f. Calby	-	p(w,	, 4	32 /	Wy)			
pcwle) =									
	,		1.41						
			-0		0.00	de	no the documents of class		
No = tota) 1	00-	01	-	200				
News = tota	al	00	of	th	nei	100	ord w appears in the		
dou	omi	enk	of	d	au	·c			
1v/ = size									
PCindia /2	1 -	5	+1		6	6	3		
PC4/xarce / 4.	1 =	8	+6	2	14		7		
P (360) = 1	0 (8	Indi	a/1	2	0(8	وأال	ng /1) p(china/1) p(2)		
	_				pco	0	3 0.000301		
=	C-	事)3	x 7	4 '	1	y X	$\frac{3}{4} = \frac{0.0030}{\rho(0)}$		
PCO)									
p(40) = p(chrole) p (andrale) p(Beising/ c) p(0)									
			2)	024	(0))			
2	(3	f)(-	2)	1-9	X	1)	= 0.0027		
			PCO			-	PCD		

22nd Feb 17 Advantages :-0) very fast, requires less storage (2) It is subject to noise and is xelowant to feature so It is very good / cool in a domain with many implation (4) It is optimal when the independent assumptions hold Ruaduantager ;on independence accomption may not hold in steality a) (The distribution) Because of finite dataset, we may not be able to estimate the distribution accountery. K- Nearest Neighboror Classifier: - It It walks the a duck and quarks like a duck then! 17 probability a dixt 1-NN => lemon 3-NIU =) lemon 5- NN - Tomato -> diameter Neghbow assigning the majority value '+' Requires: - (a) set of levelled data (b) distance metalic (to compute distance blus (c) value of "k"

To clarify an eviknown record: - compute distances to other seconds - Identify to neasent neighborn - assign majority class level of the nowand neighborasto the best mecoad Janes: - The value of k (deciding) - choice of distance metalic - computation of complex unit + If Ic is tool small, then the Jawither is sensitive to * If k is very / toot large, the neighbourhood may include points bean other clauses * 'F' is a hypor passameter Rule of thumb te = In ; N is no. of datapoints. Distance Metrics :-- Euclidean Distance - Manhattan Dictance / City Block - connelation - Cambersia - Mahalnobis - Quadratic - Rank consideration) -> categorital - chiequoie - value difference metalic - HOWN + Actorogeneous

25/2/2019

Phitance Metros: - - scriple attribute Curigle attributes - Vectors (multiple Attributes)

* 1/

2/4/2

Simple Attribute 5-

Attoribute Type	Diesimilarity	similarity
Normal	1 = 50 if p=9	d-20 18p=9
Ordinal	d = 12-41 values are mapped to 0 to 0-1	8=1-d
Interval /Ratro	d= (x-4)	8=-d 5=1+d 5=e-d

A-0 B-1 C-2 0-3 B-4 d(B,E)=[4-]

19 ectors :-

1 Estidean Distance

$$d(p,q, 1) = (x_2 - x_1)^{\frac{1}{2}} + (y_2 - y_3)^{\frac{1}{2}} dd$$

$$d(p,q, 1) = (x_2 - x_1)^{\frac{1}{2}} + (y_2 - y_3)^{\frac{1}{2}} + (2x - 2x)^{\frac{1}{2}}$$

$$d(p,q) = \sqrt{\frac{2}{k}} \left(P_k - q_k \right)^{\frac{1}{2}}$$

n = no of dimension (Attrible)
Pk and 9k are both attribute

Hinkowski Dehance

Generalization of Exectidean Destance

$$d(p,q) = \left(\frac{2}{k-1}|p_k-q_k|^2\right)^{1/2}$$
 $r = parameter choosen by user

 $r = 2 \Rightarrow Euclidean Distance$
 $2 = 1 \Rightarrow SlyBlock / Habathan Distance$

GetyBlock Distance (Manhalton Distance)

 $d(p,q) = \frac{2}{k-1}|p_k-q_k|$
 $= |5-1|+|5-1|$
 $\Rightarrow y+y=8$

Euclidean properties:-

 $0 d(p,q) = 0$ (distance is always the)

 $0 d(p,q) = 0$ (distance at the particular point is 0)

 $0 d(p,q) = 0$ (distance from $p \Rightarrow q$ is equal to $q \Rightarrow p$)

 $0 d(p,q) = d(p,k) + d(k,q)$ [Tribangulary Integrality]

 $0 d(p,q) = d(p,k) + d(k,q)$

Juice with Euclidean Distance?-

 $0 scale Effect$

4ncome Hower ise Joseph Howe the Tribangulary property

 $0 d(p,q) = 0$
 $0 d(p,q$$

d = 23000

d= 201. 2

d= 23.07

* Different features may have different measurement

on Distance - It may bear the performance of dawher.

@ spansity in the High Dimensional Ada

11/11/11/11/0 }d=1.4142 ->more com/as

3 Collinearity Issue: -

_×,	X2	X3
2	1	1
4	6	3
6	8	5

oil have more impact on dictance measure than ind pendent variables. Handling:

Feature Sading: - O Normalization - Hinmax taling

(2) Standardization

1) Normalization: Data is scaled in the mange of o

- problem is Normalization supportence the authorise

@ Standarization :-

X = mean of the ada

5 = standed deviation of late

```
Z- siere Normalization
        Hanks
 59:-
              -0-0823 0-08
          90
                0.7438
                          0.74
                          0-24
            0.2479
            0-4/322
                          0+41
         93
                 1-2377 1-24
         98
                0-7438 0-74
                        1-234
                1-2397
         98
                -0-0826-0.08
       X = 90.5
  (0)
  ZNOOD A Normalization
           La Mono
spanny 10 High Dimonerana Data: - Handling,
(a) Course Similarity 5.
   Cox 0° = 1 (most sombo)

Cox 0° = 0

Cox 0° = 0

Cox 180° = 4 (least contlas)

magnifiche of p
                          cos o" = 1 (most somba)
      Cos 0 = 11 P11 - 17 311-11 B11
      11PII = A.B. SAI-BE
                       VEAY VE BY - TRY6
           A= 53,2,0, 5,0,0,0,2,0,07 , 15-57
           B = 51, 90,0,0,0,0,1,0,21 30.3149
```

Mahalmotin Relation:
$$d(p,q) = \sqrt{(p-q)^T} \stackrel{?}{\leq} (p-q)$$

$$\stackrel{?}{\leq} = covariance mahorix of later$$

$$\stackrel{?}{\sim} \stackrel{?}{\sim} \stackrel{$$

```
Binary Attribute :-
  9= 0100110
 Tackcord Coefficient:
    Moo =# of p = 0 9=0
    Ho = # of p=0 9=1
    HII = # of p=1 9=1

Theatime of similarly in precione

HII = # of p=1 9=1

The property in precione
          Mo1+Ho+H11 3 212+1
     0 - absent
     so Hoo deeind have impostance
     Assymptotic Birecty Attoribute of gives more important
to presence (1)
    Symmetric Binosy Attribute & Both outcomes are
 equally impostent measure of dissimilarity-
    Simple Binary Coefficient = Hoi + Mio
                                   HOO + MoI + MIO + HL
    Neminal Attribute :-
    simple matching coefficient = mm
     n= total no of attoributes
    mm= # of mismother
```

text	6	las				-	-	· cla	us cosine Distance
	-	2	1	-		40		1	0.81
1	0			1	-	_	0	E	0.81
)	2	-		10			0	1	0.69
)	3	1	0	0	0	1	1	C	0.87
(3	0	0	0	1	1	2	
	(_	-	200	de	1		

S-MO	Name	Buth	can Fly?	lives in water	Have	clas	Distance
1	Human	y	0	n	0	m	2/4
2	salmon	n	0	3	0	om	1/4
3	plython	0	0	n	n	DID	2/4
4	imbale	y	n	y	0	m	0
5	Forog	0	0	y	y	nm	2/4
6	komado	0	0	n	y	nm	3/4
7	Bat	y	y	n	y	m	3/4
8	piegeon	0	y	0	y	nm	1
9	Cat	y	0	0	y	m	2/4
10	Dolphin	y	0	y	2	m	0
11	-	y	n	3	0	2	
						+	

k= V10 = 3 2m

2-mammals we there (majority)

The Decision Boundary seperates the class Region of Vannol NN Decision Rule

landwhedge of the Decision boundary is softens clausly new Pata. Betain only those points necessary is generate an identical boundary. This is called Conduction

Two types:- O Decusion Boundary Condensation

This can densation is subject who to Newrest Neighbow Decision boundary

- A subset whose nearest neighbour decision boundary is identical to the boundary of the entire triaining is

Minimum considert set condensation

The smallest subject of toriaining data that cossedy classifies all the original data