Appln. No. 10/523,920 Amd. dated March 15, 2008 Reply to Office Action of January 15, 2008

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:
Listing of Claims:

1. (Currently Amended) A process for producing 2- $0-\alpha$ -glucopyranosyl-L-ascorbic acid, comprising the steps of:

allowing α -isomaltosyl glucosaccharide-forming enzyme together with or without cyclomaltodextrin glucanotransferase (EC 2.4.1.19) to act on a solution comprising L-ascorbic acid and α -glucosyl saccharide selected from the group consisting of maltoolgosaccharide, maltodextrin, cyclodextrin, amylose, amylopectin, soluble starch, liquefied starch, gelatinized starch, and glycogen to form 2-0- α -glucopyranosyl L-ascorbic acid obtain a reaction mixture containing 2-0- α -glucopyranosyl-L-ascorbic acid in an amount of 10% (w/w) or higher wherein the reaction mixture also contains and each of 5-0- α -glucopyranosyl-L-ascorbic acid in an amount of less than 0.1% (w/w), on a dry solid basis; and

collecting the formed 2-0- α -glucopyranosyl L-ascorbic acid from the resulting reaction mixture; wherein said α -isomaltosyl glucosaccharide-forming

- 2 -

Appln. No. 10/523,920 Amd. dated March 15, 2008 Reply to Office Action of January 15, 2008

enzyme has an activity of forming a saccharide with a glucose polymerization degree of 3 or higher and bearing both the α -1,6 glucosidic linkage as a linkage at the non-reducing end and the α -1,4 glucosidic linkage other than the linkage at the non-reducing end from a saccharide with a glucose polymerization degree of 2 or higher and bearing the α -1,4 glucosidic linkage as a linkage at the non-reducing end by α -glucosyl-transferring reaction without substantially increasing the reducing power of the reaction mixture; wherein said α -isomaltosyl glucosaccharide-forming enzyme is obtained from the genera Arthrobacter and Bacillus and has a N-terminal amino acid sequence selected from the group consisting SEQ ID NO:1, SEQ ID NO:2 and SEQ ID NO:3.

- 2. (Previously Presented) The process of claim 1, wherein glucoamylase (EC 3.2.1.3) is allowed to act on the reaction mixture after the action of α -isomaltosyl glucosaccharide-forming enzyme on said solution together with or without cyclomalodextrin glucanotransferase.
- 3. (Previously Presented) The process of claim 1, wherein the reaction mixture contains, on a dry solid basis, $2\text{-}0\text{-}\alpha\text{-}\text{glucopyranosyl-L-ascorbic acid in an amount of 10\% (w/w)}$ or higher; and each of 5-0-\$\alpha\text{-}\alpha\te

Appln. No. 10/523,920 Amd. dated March 15, 2008 Reply to Office Action of January 15, 2008

and 6-0- α -glucopyranosyl- L-ascorbic acid is present in an amount of less than 0.1% (w/w).

4. (Previously Presented) The process of claim 1, wherein said α -glucosyl saccharide is one or more saccharide selected from the group consisting of maltoolgosaccharide, maltodextrin, cyclodextrin, amylose, amylopectin, soluble starch, liquefied starch, gelatinized starch, and glycogen.

Claim 5. (Cancelled)

- 6. (Previously Presented) The process of claim 1, wherein the step of collecting 2-0- α -glucopyranosyl-L-ascorbic acid comprises a step of using a strongly-acidic cation exchange resin.
- 7. (Currently Amended) The process of claim 1, wherein the formed 2-0- α -glucopyranosyl-L-ascorbic acid is collected in a—the form of a syrup, a powder, or a crystal.

Claims 8-20. (Cancelled)

21. (Previously Presented) The process of claim 6 further comprising pulverizing or crystallizing the 2-0- α -glucopyranosyl-L-ascorbic acid.

Claims 22-23. (Cancelled)