NUS-ISSIntelligent Sensing and Sense Making

Module 3 - Workshop on sensor signal processing

by Nicholas Ho

© 2020 National University of Singapore. All Rights Reserved.

Problem

•How similar are these two signals?

•In which manners are they similar?

Similarity

How similar are these two signals

•In what ways are these two signals similar to each other?

Similarity

How similar are these two signals

....?

•In what ways are these two signals similar to each other?

Similarity

How similar are these two signals

•In what ways are these two signals similar to each other?

Can we try ...

Euclidean, Manhattan?

- •We can measure the similarity of two signals by calculating the distance between the *i*-th point on one signal and the *i*-th point on another signal
- Simple concept, but could not capture the similarity in shape

Source: "Dynamic Time Warping Algorithm", by Elena Tsiporkova

How about ...

non-linear alignment?

- Elastic alignment between points of two signals produces a better, more intuitive similarity measure
- Allow similar shapes to match even if they are out of phase

Tsiporkova

Distance

Another term to say 'similiarity'

Consider two distinct signals

$$\mathbf{x} = [x_1, x_2, \dots, x_i, \dots x_m]$$
$$\mathbf{y} = [y_1, y_2, \dots, y_i, \dots y_n]$$

 The distance between the two signals is defined as

$$d_{s}(\mathbf{x},\mathbf{y})$$

 Euclidean distance between two signals:

$$d_s(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_i (x_i - y_i)^2}$$

Problem: two signals must be of same length!

- An algorithm to measure similarity between two temporal sequences (signal), which may vary in speed
- DTW calculates an optimal match between two given sequences
- Sequences are warped along time dimension to determine similarity independent of variations in time
- DTW produces warping path, which enables alignment between two signals

Source: https://th.wikipedia.org/wiki/Dynamic_time_warping#/media/Fil e:Euclidean_vs_DTW.jpg

Usage

Commonly used in speech recognition

 Individual never pronounces one word twice in exact way

 People never pronounce one word with the same timing

Source: "Speech Recognition - Intro and DTW", by Jan Černocky

Dynamic signature recognition

Source: "Speech Recognition - Intro and DTW", by Jan Černocky

issm/m1.3/v1.0

- Users sign their signature on digital tablet
- Dynamic information captured:
- x position
- y position
- pressure
- azimuth
- inclination

Use DTW to check / match signature

Stroke detection (rowing)

- Use DTW to detect stroke (used in rowing competitions)
- With strokes detected, predict boat's movement and position when sensor transmission lost

Source: "Movement prediction in rowing using a dynamic time warping base stroke detection", by Groh et al.

issm/m1.3/v1.0

Peak alignment in DNA sequencing

- Use DTW to align peaks in electropherogram (a plot generated by DNA sequencer)
- Accurate alignment gives better interpretation (e.g. better RNA secondary structure prediction)

issm/m1.3/v1.0

Overview of algorithm

•Start by constructing *n* x *m* matrix *D*, in which

$$D_{i,j} = d_s(y_i, x_j)$$

where

$$d_s(y_i, x_j) = (y_i - x_j)^2$$

- •Create a warping path w that maps points between x and y, the path w must satisfy the following:
 - Boundary conditions
 - Monotonicity
 - Continuity

15 of 37

Source: "Dynamic time warping algorithm", by Elena Tsiporkova

Overview of algorithm

- DTW algorithm consists of mainly 3 parts:
 - 1. Compute distance matrix
 - 2. Compute accumulated cost matrix
 - 3. Search the optimal path
- To start the code, import the necessary libraries, and setup a bit

```
> import numpy as np
> import matplotlib.pyplot as plt
> import pandas as pd

> plt.style.use('ggplot')
> plt.rcParams['ytick.right'] = True
> plt.rcParams['ytick.labelright'] = True
> plt.rcParams['ytick.left'] = False
> plt.rcParams['ytick.labelleft'] = False
```

1. Compute distance matrix

Define two simple short signals:

```
> x = np.array([0.5,0.5,2.0,3.0,2.0,0.0])
> y = np.array([0.0,1.5,1.5,1.5,3.0,2.5,1.0])
```

Plot the two signals

1. Compute distance matrix

dists

 Compute the distance matrix is straightforward, since the matrix is defined as

$$D_{i,j} = d_s(y_i, x_j)$$

and

$$d_s(y_i, x_j) = (y_i - x_j)^2$$

The corresponding code

```
> dists = np.zeros((len(y),len(x)))
```

```
> for i in range(len(y)):
    for j in range(len(x)):
        dists[i,j] = (y[i]-x[j])**2
```

1. Compute distance matrix

 Create a function to do a plot on the distance matrix

```
> def pltDistances(dists,xlab="X",ylab="Y",clrmap="viridis"):
      imgplt = plt.figure()
      plt.imshow(dists,
                  interpolation='nearest',
                  cmap=clrmap)
      plt.gca().invert yaxis()
      plt.xlabel(xlab)
      plt.ylabel(ylab)
      plt.grid()
      plt.colorbar()
                                                                      - 2
      return imgplt
                                                                         - 2
                                                           3
                                                       2
                                               0
                                                   1
> pltDistances(dists,clrmap='Reds')
```

1. Compute distance matrix

- Do take note, in the plot, the y axis is inverted
- Thus, first row of the matrix corresponds to the last row in the figure

2. Compute accumulated cost matrix

 $A_{i,j}$ equals to $D_{i,j}$ plus either $A_{i-1,j-1}$, $A_{i,j-1}$ or $A_{i-1,j}$, whichever has the lowest value

The accumulated cost matrix is defined

$$A_{i,j} = D_{i,j} + min(A_{i-1,j}, A_{i,j-1}, A_{i-1,j-1})$$

•When *i* and *j* equals to 0

$$A_{0,0} = D_{0,0}$$

•When *i* equals to 0 (first row)

$$A_{0,j} = D_{0,j} + A_{0,j-1}$$

•When *j* equals to 0 (first column)

$$A_{i,0} = D_{i,0} + A_{i-1,0}$$

2. Compute accumulated cost matrix

•When *i* equals to 0 (first row)

$$A_{0,j} = D_{0,j} + A_{0,j-1}$$

•When *j* equals to 0 (first column)

$$A_{i,0} = D_{i,0} + A_{i-1,0}$$

0.25	0.25	1	4	1	1	D
4	4	0.25	0.25	0.25	6.25	
6.25	6.25	1	0	1	9	
1	1	0.25	2.25	0.25	2.25	
1	1	0.25	2.25	0.25	2.25	
1	1	0.25	2.25	0.25	2.25	†
0.25	0.25	4	9	4	0	i

2. Compute accumulated cost matrix

•When *i* equals to 0 (first row)

$$A_{0,j} = D_{0,j} + A_{0,j-1}$$

•When *j* equals to 0 (first column)

$$A_{i,0} = D_{i,0} + A_{i-1,0}$$

	\boldsymbol{j}					
0.25	0.25	1	4	1	1	D
4	4	0.25	0.25	0.25	6.25	
6.25	6.25	1	0	1	9	
1	1	0.25	2.25	0.25	2.25	
1	1	0.25	2.25	0.25	2.25	
1	1	0.25	2.25	0.25	2.25	†
0.25	0.25	4	9	4	0	i

2. Compute accumulated cost matrix

Else

$$A_{i,j} = D_{i,j} + min(A_{i-1,j}, A_{i,j-1}, A_{i-1,j-1})$$

 $\longrightarrow j$

().25	0.25	1	4	1	1	D
	4	4	0.25	0.25	0.25	6.25	
6	6.25	6.25	1	0	1	9	
	1	1	0.25	2.25	0.25	2.25	
	1	1	0.25	2.25	0.25	2.25	
	1	1	0.25	2.25	0.25	2.25	†
().25	0.25	4	9	4	0	

2. Compute accumulated cost matrix

Else

$$A_{i,j} = D_{i,j} + min(A_{i-1,j}, A_{i,j-1}, A_{i-1,j-1})$$

---- J

0.25	0.25	1	4	1	1	D
4	4	0.25	0.25	0.25	6.25	
6.25	6.25	1	0	1	9	
1	1	0.25	2.25	0.25	2.25	
1	1	0.25	2.25	0.25	2.25	
1	1	0.25	2.25	0.25	2.25	†
0.25	0.25	4	9	4	0	

13.7 5					
13.5					
9.5	9.5	2.25	1.25	2.25	
3.25	3.25	1.25	3.25	3.25	5.5
2.25	2.25	1	3	3.25	5.5
1.25	1.25	0.75	3	3.25	5.5
0.25	0.5	4.5	13.5	17.5	17.5

2. Compute accumulated cost matrix

•Name the accumulated cost matrix as acuCost. It has the same shape as dists.

```
> acuCost = np.zeros(dists.shape)
                        > acuCost[0,0] = dists[0,0]
 A_{0.0} = D_{0.0}
 A_{0,i} = D_{0,i} + A_{0,i-1}
                        > for j in range(1, dists.shape[1]):
                               acuCost[0,j] = dists[0,j]+acuCost[0,j-1]
first row
 A_{i.0} = D_{i.0} + A_{i-1,0}
                        > for i in range(1, dists.shape[0]):
first column
                               acuCost[i,0] = dists[i,0]+acuCost[i-1,0]
                        > for i in range(1, dists.shape[0]):
                               for j in range(1, dists.shape[1]):
                                    acuCost[i,j] = min(acuCost[i-1,j-1],
                                                             acuCost[i-1,j],
 A_{i,j} = D_{i,j} + min(A_{i-1,j}, A_{i,j-1}, A_{i-1,j-1})
                                                             acuCost[i,j-1])+dists[i,j]
                        > pltDistances(acuCost,clrmap='Reds')
```

2. Compute accumulated cost matrix

•Can you see the warping / optimal path?

issm/m1.3/v1.0

3. Search the optimal path

Name the warping path as path.


```
> i = len(y)-1
> j = len(x)-1
> path = [[j,i]]
> while (i > 0) and (j > 0):
     if i==0:
         j = j-1
     elif j==0:
         i = i-1
     else:
         if acuCost[i-1,j] == min(acuCost[i-1,j-1],
                                  acuCost[i-1,j],
                                  acuCost[i,j-1]):
             i
                 = i-1
         elif acuCost[i,j-1] == min(acuCost[i-1,j-1],
                                  acuCost[i-1,j],
                                  acuCost[i,j-1]):
                = j-1
         else:
               = i-1
                 = i - 1
     path.append([j,i])
> path.append([0,0])
```

issm/m1.3/v1.0

Create a function that plots the path

3. Search the optimal path

```
> def pltCostAndPath(acuCost,path,xlab="X",ylab="Y",clrmap="viridis"):
             = [pt[0] for pt in path]
    рх
             = [pt[1] for pt in path]
    ру
            = pltDistances(acuCost,
    imgplt
                             xlab=xlab,
                             ylab=ylab,
                                                                                          - 16
                             clrmap=clrmap)
                                                                                          - 14
    plt.plot(px,py)
                                                                                          - 12
    return imgplt
                                                                                          - 10
> pltCostAndPath(acuCost,path,clrmap='Reds')
                                                                                          - 8
                                                                                      - 2
                                                                                          - 6
                                                                  2
                                                                                  5
                                                       0
                                                             1
                                                                     Χ
```

3. Search the optimal path

•Calculate the cost based on dists, which can be considered as a measure for similarity / distance

issm/m1.3/v1.0

3. Search the optimal path

The implication

3. Search the optimal path

 Plot the mapping of points between two signals

```
> def pltWarp(s1,s2,path,xlab="idx",ylab="Value"):
    imaplt
                = plt.figure()
    for [idx1,idx2] in path:
                                                       Plot the connections between
        plt.plot([idx1,idx2],[s1[idx1],s2[idx2]], s1 and s2 (yellow lines)
                  color="C4",
                  linewidth=2)
    plt.plot(s1,
              '0-',
              color="CO",
              markersize=3)
    plt.plot(s2,
              's-',
                                               Value
              color="C1",
              markersize=2)
    plt.xlabel(xlab)
    plt.ylabel(ylab)
    return imgplt
                                                               2
                                                                      3
> pltWarp(x,y,path)
                                                                     idx
```

-3.0

-2.5

-2.0

- 1.5

- 1.0

- 0.5

- 0.0

Another example

Define two signals as:

```
> x = np.sin(np.linspace(0,7.85,100))
> y = np.cos(np.linspace(0,7.85,100))
```

Plot the two signals

```
> plt.figure()
> plt.plot(x,
           color="CO",
           label='x')
> plt.plot(y,
           color="C1",
           label='y')
> plt.legend()
```


issm/m1.3/v1.0

Another example

Back to the problem

How to start?

 Before we compute similarity, must segment individual heartbeat signal

 With signal segmented, perform DTW

issm/m1.3/v1.0

Workshop

To start

Load the data

 Create a function with the below signature. The output is a list consists of all the ECG segments in a ECG signal

def extractECG(ecg,pks,offset=15):

Workshop

Compute the accumulated costs, plot the optimal paths and warp

Make the comparisons between segment

1 and 2

2 and 3

2 and 6

