I Questions de cours

- 1 Donner et démontrer la nature des intégrales de Riemann sur [0;1] et $[1;+\infty[$
- 2 Exercice 29 banque CCINP:

On pose : $\forall x \in]0; +\infty[, \ \forall t \in]0; +\infty[, \ f(x,t) = e^{-t}t^{x-1}]$.

a) Démontrer que pour tout $x \in]0; +\infty[$, la fonction $t \longmapsto f(x,t)$ est intégrable sur $]0; +\infty[$.

On pose alors:

$$\forall x > 0, \ \Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$$

- b) Pour tout $x \in]0; +\infty[$, exprimer $\Gamma(x+1)$ en fonction de $\Gamma(x)$ et en déduire une expression de $\Gamma(n)$ pour tout entier naturel non nul n.
 - 3 Exercice 26 banque CCINP :

Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{+\infty} \frac{1}{(1+t^2)^n} dt$.

- a) Montrer que I_n est bien définie.
- b) Étudier la monotonie de la suite $(I_n)_{n\in\mathbb{N}^*}$ et en déduire qu'elle converge.

II Exercices axés sur le calcul

Exercice 1

Montrer que l'intégrale $\int_0^{+\infty} \frac{1}{1+t^2} dt$ converge et déterminer sa valeur.

Exercice 2:

- 1 Montrer que $x \mapsto \frac{\ln(x)}{(1+x)^2}$ est intégrable sur $[1; +\infty[$.
- 2 Pour b > 0, calculer $\int_1^b \frac{\ln(x)}{(1+x)^2} dx$ en fonction de b.
- 3 En déduire la valeur de $\int_1^{+\infty} \frac{\ln(x)}{(1+x)^2} dx$.

Exercice 3:

- 1 Montrer que pour tout $n \in \mathbb{N}$, $x \longmapsto x^n e^{-x^2}$ est intégrable sur $[0; +\infty[$.
- 2 Calculer $\int_0^{+\infty} xe^{-x^2} dx$.
- 3 Pour tout $n \in \mathbb{N}$, exprimer la valeur de $\int_0^{+\infty} x^{2n+1} e^{-x^2} dx$ en fonction de n.

Exercice 4:

On étudie ici, en fonction de $(\alpha, \beta) \in \mathbb{R}^2$, la nature de l'intégrale de Bertrand :

$$B_{\alpha,\beta} = \int_{2}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}(\ln(t))^{\beta}}$$

- 1 Établir la convergence de $B_{\alpha,\beta}$ pour $\alpha > 1$.
- 2 Établir la divergence de $B_{\alpha,\beta}$ pour $\alpha < 1$.
- 3 Faire l'étude de $B_{\alpha,\beta}$ pour $\alpha=1$.

III Exercices axés sur le raisonnement

Exercice 5:

1 - Étudier le domaine de définition de la fonction f définie par :

$$f(x) = \int_{1}^{+\infty} \frac{1}{(1+t)t^{x}} dt$$

- 2 Calculer f(1).
- 3 Préciser la monotonie de la fonction f.
- 4 Montrer que pour tout $x \in]0; +\infty[, f(x) + f(x+1) = \frac{1}{x}]$
- 5 Donner la limite, puis un équivalent de f(x) quand x tend vers $+\infty$.

Exercice 6:

- 1 Montrer que la fonction $t \mapsto \frac{t-1}{t \ln(t)}$ est intégrable sur $\left[\frac{1}{2}; 1\right]$.
- 2 Montrer que $\lim_{x\to 1^-}\int_x^{x^2} \frac{t-1}{t\ln(t)} dt = 0.$
- 3 En déduire que $\lim_{x\to 1^-} \int_x^{x^2} \frac{1}{\ln(t)} dt = \ln(2)$.

IV Exercice d'approfondissement

Exercice 7:

Soit f une fonction continue et intégrable sur \mathbb{R} .

1 - Montrer que
$$\int_0^{+\infty} |f(t-x) - f(t+x)| dt \xrightarrow[x \to +\infty]{} \int_{-\infty}^{+\infty} |f(t)| dt$$
.

2 - Pour
$$a \in \mathbb{R}$$
, on pose $F(a) = \int_{-\infty}^{+\infty} |f(t-a) - f(t)| dt$.

a) Montrer que pour tout $a \in \mathbb{R}$, on a :

$$F(a) = \int_{-\infty}^{+\infty} \left| f\left(t - \frac{a}{2}\right) - f\left(t + \frac{a}{2}\right) \right| dt$$

b) En déduire que :

$$F(a) \underset{a \to +\infty}{\longrightarrow} 2 \int_{-\infty}^{+\infty} |f(t)| dt$$