Extreme F-measure Maximization

Kalina Jasinska¹ Karlson Pfannschmidt² Róbert Busa-Fekete² Krzysztof Dembczyński¹

 $^{\rm 1}$ Intelligent Decision Support Systems Laboratory (IDSS), Poznań University of Technology, Poland

 $^{2}\,$ Department of Computer Science, Paderborn University, Germany

XC15: Extreme Classification, The NIPS Workshop, 2015

F-measure maximization in binary classification

Outline

- Extreme multi-label classification
- 2 The F-measure
- 3 Efficient sparse probability estimators
- 4 Experimental results
- 5 Summary

Outline

- 1 Extreme multi-label classification
- 2 The F-measure
- 3 Efficient sparse probability estimators
- 4 Experimental results
- 5 Summary

Multi-label classification

• For a feature vector x predict a binary vector y using a function h(x):

$$\boldsymbol{x} = (x_1, x_2, \dots, x_p) \in \mathbb{R}^p \xrightarrow{\boldsymbol{h}(\boldsymbol{x})} \boldsymbol{y} = (y_1, y_2, \dots, y_m) \in \mathcal{Y} = \{0, 1\}^m$$

	x_1	x_2	 x_p	y_1	y_2	 y_m
\overline{x}	4.0	2.5	-1.5	?	?	?

Multi-label classification

• For a feature vector x predict a binary vector y using a function h(x):

$$\boldsymbol{x} = (x_1, x_2, \dots, x_p) \in \mathbb{R}^p \xrightarrow{\boldsymbol{h}(\boldsymbol{x})} \boldsymbol{y} = (y_1, y_2, \dots, y_m) \in \mathcal{Y} = \{0, 1\}^m$$

	x_1	x_2	 x_p	y_1	y_2	 y_m
\boldsymbol{x}	4.0	2.5	-1.5	1	1	0

• Extreme $\Rightarrow m \gg 10^4$

- Extreme $\Rightarrow m \gg 10^4$
 - ▶ time and space complexity

- Extreme $\Rightarrow m \gg 10^4$
 - ▶ time and space complexity
 - ► #examples vs. #features vs. #labels

- Extreme $\Rightarrow m \gg 10^4$
 - ▶ time and space complexity
 - ► #examples vs. #features vs. #labels
 - ► training vs. validation vs. prediction

Outline

1 Extreme multi-label classification

2 The F-measure

3 Efficient sparse probability estimators

4 Experimental results

5 Summary

• Let $y = (y_1, \dots, y_m)$ be a binary label vector to be predicted.

- Let $y = (y_1, \dots, y_m)$ be a binary label vector to be predicted.
- Let $\hat{\pmb{y}}=(\hat{y}_1,\ldots,\hat{y}_m)$ be a prediction of $\pmb{y}.$

- Let $y = (y_1, \dots, y_m)$ be a binary label vector to be predicted.
- Let $\hat{\boldsymbol{y}} = (\hat{y}_1, \dots, \hat{y}_m)$ be a prediction of \boldsymbol{y} .
- The F-measure:

$$F(\mathbf{y}, \hat{\mathbf{y}}) = \frac{2\sum_{i=1}^{m} y_i \hat{y}_i}{\sum_{i=1}^{m} y_i + \sum_{i=1}^{m} \hat{y}_i} \in [0, 1],$$

where 0/0 = 1 by definition.

- Let $y = (y_1, \dots, y_m)$ be a binary label vector to be predicted.
- Let $\hat{\boldsymbol{y}} = (\hat{y}_1, \dots, \hat{y}_m)$ be a prediction of \boldsymbol{y} .
- The F-measure:

$$F(\mathbf{y}, \hat{\mathbf{y}}) = \frac{2\sum_{i=1}^{m} y_i \hat{y}_i}{\sum_{i=1}^{m} y_i + \sum_{i=1}^{m} \hat{y}_i} \in [0, 1],$$

where 0/0 = 1 by definition.

• It is a harmonic mean of precision prec and recall recl:

$$prec(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{\sum_{i=1}^{m} y_i \hat{y}_i}{\sum_{i=1}^{m} \hat{y}_i}, \quad recl(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{\sum_{i=1}^{m} y_i \hat{y}_i}{\sum_{i=1}^{m} y_i}.$$

• The F-measure is better suited to **imbalanced** data than **accuracy**.

- The F-measure is better suited to **imbalanced** data than **accuracy**.
- Example:

- The F-measure is better suited to imbalanced data than accuracy.
- Example:
 - ► Let P(y = 1) = 0.1 and P(y = 0) = 0.9,

- The F-measure is better suited to imbalanced data than accuracy.
- Example:
 - ► Let P(y = 1) = 0.1 and P(y = 0) = 0.9,
 - ▶ Majority classifier h(x) predicting always 0 will perform quite well in terms of accuracy, i.e., P(y = h(x)) = 0.9,

- The F-measure is better suited to imbalanced data than accuracy.
- Example:
 - ► Let P(y = 1) = 0.1 and P(y = 0) = 0.9,
 - ► Majority classifier h(x) predicting always 0 will perform quite well in terms of accuracy, i.e., P(y = h(x)) = 0.9,
 - ▶ But the F-measure will be 0 in this case.

 The F-measure in binary problems ⇒ solved by thresholding conditional probabilities:

$$F(\tau) = \frac{2 \int_{\mathcal{X}} \eta(\boldsymbol{x}) \mathbb{I}\{\eta(\boldsymbol{x}) \geq \tau\} \, \mathrm{d}\mu(\boldsymbol{x})}{\int_{\mathcal{X}} \eta(\boldsymbol{x}) \, \mathrm{d}\mu(\boldsymbol{x}) + \int_{\mathcal{X}} \mathbb{I}\{\eta(\boldsymbol{x}) \geq \tau\} \, \mathrm{d}\mu(\boldsymbol{x})}.$$

 The F-measure in binary problems ⇒ solved by thresholding conditional probabilities:

$$F(\tau) = \frac{2 \int_{\mathcal{X}} \eta(\boldsymbol{x}) \mathbb{I}\{\eta(\boldsymbol{x}) \geq \tau\} d\mu(\boldsymbol{x})}{\int_{\mathcal{X}} \eta(\boldsymbol{x}) d\mu(\boldsymbol{x}) + \int_{\mathcal{X}} \mathbb{I}\{\eta(\boldsymbol{x}) \geq \tau\} d\mu(\boldsymbol{x})}.$$

• The optimal threshold is

$$\tau^* = \operatorname*{max}_{\tau \in [0,1]} F(\tau)$$

 The F-measure in binary problems ⇒ solved by thresholding conditional probabilities:

$$F(\tau) = \frac{2 \int_{\mathcal{X}} \eta(\boldsymbol{x}) \mathbb{I}\{\eta(\boldsymbol{x}) \geq \tau\} d\mu(\boldsymbol{x})}{\int_{\mathcal{X}} \eta(\boldsymbol{x}) d\mu(\boldsymbol{x}) + \int_{\mathcal{X}} \mathbb{I}\{\eta(\boldsymbol{x}) \geq \tau\} d\mu(\boldsymbol{x})}.$$

• The optimal threshold is

$$\tau^* = \operatorname*{arg\,max}_{\tau \in [0,1]} F(\tau)$$

• The **optimal F-measure** is $F(\tau^*)$: no binary classifier can have a performance better than this.

• Interestingly, the optimal solution satisfies the following condition:¹

$$F^*(\tau) = 2\tau^*.$$

- Hence, it always holds that $\tau^* \leq 0.5$.
- This justifies the use of the F-measure in imbalance problems.

Ming-Jie Zhao, Narayanan Edakunni, Adam Pocock, and Gavin Brown. Beyond Fano's inequality: Bounds on the Optimal F-Score, BER, and Cost-Sensitive Risk and Their Implications. Journal of Machine Learning Research, pages 1033–1090, 2013

Practical approaches

- Tune the threshold on class probability estimates (CPEs).
- At least three approaches:
 - ► Fixed thresholds approach (FTA),
 - ► Sorting-based threshold optimization (STO),
 - ► Online F-measure optimization (OFO).

• Validate a **predefined set** of thresholds.

- Validate a **predefined set** of thresholds.
- Performance depends on the number of thresholds used.

- Validate a predefined set of thresholds.
- Performance depends on the number of thresholds used.
- Implementations with different trade-offs between computational and space costs:

- Validate a predefined set of thresholds.
- Performance depends on the number of thresholds used.
- Implementations with different trade-offs between computational and space costs:
 - ► Compute and optionally store CPEs for all examples in the validation set and check the F-measure by passing the set of CPEs once for each predefined threshold.

- Validate a **predefined set** of thresholds.
- Performance depends on the number of thresholds used.
- Implementations with different trade-offs between computational and space costs:
 - ► Compute and optionally store CPEs for all examples in the validation set and check the F-measure by passing the set of CPEs once for each predefined threshold.
 - ► Compute the F-measure for all thresholds simultaneously by passing the validation set only once (auxiliary variables needed for each of predefined thresholds).

Sorting-based threshold optimization

• No predefined thresholds.

- No predefined thresholds.
- Two steps:

- No predefined thresholds.
- Two steps:
 - ► Compute CPEs for validation examples and sort them.

- No predefined thresholds.
- Two steps:
 - ► Compute CPEs for validation examples and sort them.
 - ► Verify potential thresholds as values between consecutive CPEs.

- No predefined thresholds.
- Two steps:
 - ► Compute CPEs for validation examples and sort them.
 - ► Verify potential thresholds as values between consecutive CPEs.
- Requires one pass over CPEs.

Theoretical results

 Estimation of the threshold on a validation set is statistically consistent with provable regret bounds.²

N. Nagarajan, S. Koyejo, R. Ravikumar, and I. Dhillon. Consistent binary classification with generalized performance metrics. In NIPS 27, pages 2744–2752, 2014
H. Narasimhan, R. Vaish, and Agarwal S. On the statistical consistency of plug-in classifiers for non-decomposable performance measures. In NIPS, 2014
Shameem Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. Optimizing f-measures by cost-sensitive classification. In NIPS 27, pages 2123–2131, 2014
Wojciech Kotłowski and Krzysztof Dembczynski. Surrogate regret bounds for generalized classification performance metrics. In ACML, 2015

• Online update of the threshold by exploiting that $F^*(\tau) = 2\tau^*$.

³ Róbert Busa-Fekete, Balázs Szörényi, Krzysztof Dembczynski, and Eyke Hüllermeier. Online f-measure optimization. In NIPS 29, 2015

- Online update of the threshold by exploiting that $F^*(\tau) = 2\tau^*$.
- Converges to the optimal threshold.³

Róbert Busa-Fekete, Balázs Szörényi, Krzysztof Dembczynski, and Eyke Hüllermeier. Online f-measure optimization. In NIPS 29, 2015

- Online update of the threshold by exploiting that $F^*(\tau) = 2\tau^*$.
- Converges to the optimal threshold.³
- Requires to store only a small constant number of auxiliary variables.

Róbert Busa-Fekete, Balázs Szörényi, Krzysztof Dembczynski, and Eyke Hüllermeier. Online f-measure optimization. In NIPS 29, 2015

- Online update of the threshold by exploiting that $F^*(\tau) = 2\tau^*$.
- Converges to the optimal threshold.³
- Requires to store only a small constant number of auxiliary variables.
- Can be either applied on a validation set or run simultaneously with training of the class probability model.

Róbert Busa-Fekete, Balázs Szörényi, Krzysztof Dembczynski, and Eyke Hüllermeier. Online f-measure optimization. In NIPS 29, 2015

- Online update of the threshold by exploiting that $F^*(\tau) = 2\tau^*$.
- Converges to the optimal threshold.³
- Requires to store only a small constant number of auxiliary variables.
- Can be either applied on a validation set or run simultaneously with training of the class probability model.
- For large validation sets one pass over data should get an accurate estimate of the threshold.

Róbert Busa-Fekete, Balázs Szörényi, Krzysztof Dembczynski, and Eyke Hüllermeier. Online f-measure optimization. In NIPS 29, 2015

• In each round t:

- In each round t:
 - lacktriangledown Example x_t is observed,

 \boldsymbol{x}_1

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to ${m x}_t$ to get $\hat{\eta}({m x}_t) = \hat{P}(y_t = 1\,|\,{m x}_t)$,

$$egin{aligned} oldsymbol{x}_1 \ \hat{\eta}(oldsymbol{x}_1) \end{aligned}$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$

$$egin{aligned} oldsymbol{x}_1 \ \hat{\eta}(oldsymbol{x}_1) \ \hat{y}_1 \end{aligned}$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\![\hat{\eta}(x_t) \geq \tau_{t-1}]\!]$
 - ▶ Label y_t is revealed.

```
egin{array}{l} oldsymbol{x}_1 \ \hat{\eta}(oldsymbol{x}_1) \ \hat{y}_1 \ y_1 \end{array}
```

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

with $a_t = a_{t-1} + y_t \hat{y}_t$ and $b_t = b_{t-1} + y_t + \hat{y}_t$ (a_0 and $b_0 \rightarrow$ prior).

$$egin{aligned} oldsymbol{x}_1 \ \hat{\eta}(oldsymbol{x}_1) \ \hat{y}_1 \ y_1 \end{aligned}$$

 au_1

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

$$egin{array}{ll} oldsymbol{x}_1 & oldsymbol{x}_2 \ \hat{\eta}(oldsymbol{x}_1) & & & & \\ \hat{y}_1 & & & & & \\ y_1 & & & & & \\ au_1 & & & & & \end{array}$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(\boldsymbol{x}_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - ▶ Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(\boldsymbol{x}_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

$$egin{array}{lll} oldsymbol{x}_1 & oldsymbol{x}_2 \ \hat{\eta}(oldsymbol{x}_1) & \hat{\eta}(oldsymbol{x}_2) \ \hat{y}_1 & \hat{y}_2 \ y_1 \ & au_1 \end{array}$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - ▶ Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(\boldsymbol{x}_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ightharpoonup Threshold au_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

$$egin{array}{lll} oldsymbol{x}_1 & oldsymbol{x}_2 \ \hat{\eta}(oldsymbol{x}_1) & \hat{\eta}(oldsymbol{x}_2) \ \hat{y}_1 & \hat{y}_2 \ y_1 & y_2 \ au_1 \end{array}$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - ▶ Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(\boldsymbol{x}_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

$$egin{array}{lll} m{x}_1 & m{x}_2 \\ \hat{\eta}(m{x}_1) & \hat{\eta}(m{x}_2) \\ \hat{y}_1 & \hat{y}_2 \\ y_1 & y_2 \\ au_1 & au_2 \end{array}$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

$$egin{array}{lll} m{x}_1 & m{x}_2 & m{x}_3 \\ \hat{\eta}(m{x}_1) & \hat{\eta}(m{x}_2) & \\ \hat{y}_1 & \hat{y}_2 & \\ y_1 & y_2 & \\ au_1 & au_2 & \\ \end{array}$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

$$egin{array}{lll} m{x}_1 & m{x}_2 & m{x}_3 \ \hat{\eta}(m{x}_1) & \hat{\eta}(m{x}_2) & \hat{\eta}(m{x}_3) \ \hat{y}_1 & \hat{y}_2 \ y_1 & y_2 \ au_1 & au_2 \end{array}$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

$$egin{array}{lll} m{x}_1 & m{x}_2 & m{x}_3 \ \hat{\eta}(m{x}_1) & \hat{\eta}(m{x}_2) & \hat{\eta}(m{x}_3) \ \hat{y}_1 & \hat{y}_2 & \hat{y}_3 \ y_1 & y_2 & y_3 \ au_1 & au_2 & \end{array}$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

$$egin{array}{lll} m{x}_1 & m{x}_2 & m{x}_3 \\ \hat{\eta}(m{x}_1) & \hat{\eta}(m{x}_2) & \hat{\eta}(m{x}_3) \\ \hat{y}_1 & \hat{y}_2 & \hat{y}_3 \\ y_1 & y_2 & y_3 \\ au_1 & au_2 & au_3 \end{array}$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

Online F-measure Maximization

- In each round t:
 - ightharpoonup Example x_t is observed,
 - ▶ Model g applied to x_t to get $\hat{\eta}(x_t) = \hat{P}(y_t = 1 \mid x_t)$,
 - Prediction \hat{y}_t is computed by $\hat{y}_t = [\hat{\eta}(x_t) \geq \tau_{t-1}]$
 - ightharpoonup Label y_t is revealed.
 - ▶ Threshold τ_t is computed by

$$\tau_t = \frac{F_t}{2} = \frac{a_t}{b_t} \,,$$

with $a_t = a_{t-1} + y_t \hat{y}_t$ and $b_t = b_{t-1} + y_t + \hat{y}_t$ (a_0 and $b_0 \rightarrow$ prior).

Beyond binary problems

• All the above approaches are working well.

Beyond binary problems

- All the above approaches are working well.
- Computational issues can almost be ignored in binary problems.

Beyond binary problems

- All the above approaches are working well.
- Computational issues can almost be ignored in binary problems.
- **Scaling** to X-MLC?

 \bullet m labels.

- \bullet m labels.
- Test set of size n, $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_1^n$.

- m labels.
- Test set of size n, $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_1^n$.
- The true label vector: $\boldsymbol{y}_i = (y_{i1}, \dots, y_{im}).$

- m labels.
- Test set of size n, $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_1^n$.
- The true label vector: $\boldsymbol{y}_i = (y_{i1}, \dots, y_{im})$.
- The predicted label vector: $\hat{\boldsymbol{y}}_i = (\hat{y}_{i1}, \dots, \hat{y}_{im}).$

- m labels.
- Test set of size n, $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_1^n$.
- The true label vector: $\boldsymbol{y}_i = (y_{i1}, \dots, y_{im}).$
- The predicted label vector: $\hat{\boldsymbol{y}}_i = (\hat{y}_{i1}, \dots, \hat{y}_{im}).$
- The macro F-measure:

$$F_M = \frac{1}{m} \sum_{j=1}^m F(\boldsymbol{y}_{.j}, \hat{\boldsymbol{y}}_{.j}) = \frac{1}{m} \sum_{j=1}^m \frac{2 \sum_{i=1}^n y_{ij} \hat{y}_{ij}}{\sum_{i=1}^n y_{ij} + \sum_{i=1}^n \hat{y}_{ij}}.$$

True labels

y_{11}	y_{12}	y_{13}	y_{14}
y_{21}	y_{22}	y_{23}	y_{24}
y_{31}	y_{32}	y_{33}	y_{34}
y_{41}	y_{42}	y_{43}	y_{44}
y_{51}	y_{52}	y_{53}	y_{54}
y_{61}	y_{62}	y_{63}	y_{64}

i realeced labels				
\hat{y}_{11}	\hat{y}_{12}	\hat{y}_{13}	\hat{y}_{14}	
\hat{y}_{21}	\hat{y}_{22}	\hat{y}_{23}	\hat{y}_{24}	
\hat{y}_{31}	\hat{y}_{32}	\hat{y}_{33}	\hat{y}_{34}	
\hat{y}_{41}	\hat{y}_{42}	\hat{y}_{43}	\hat{y}_{44}	
\hat{y}_{51}	\hat{y}_{52}	\hat{y}_{53}	\hat{y}_{54}	
\hat{y}_{61}	\hat{y}_{62}	\hat{y}_{63}	\hat{y}_{64}	

- m labels.
- Test set of size n, $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_1^n$.
- The true label vector: $\boldsymbol{y}_i = (y_{i1}, \dots, y_{im}).$
- The predicted label vector: $\hat{\boldsymbol{y}}_i = (\hat{y}_{i1}, \dots, \hat{y}_{im}).$
- The macro F-measure:

$$F_M = \frac{1}{m} \sum_{j=1}^m F(\boldsymbol{y}_{.j}, \hat{\boldsymbol{y}}_{.j}) = \frac{1}{m} \sum_{j=1}^m \frac{2 \sum_{i=1}^n y_{ij} \hat{y}_{ij}}{\sum_{i=1}^n y_{ij} + \sum_{i=1}^n \hat{y}_{ij}}.$$

True labels

y_{11}	y_{12}	y_{13}	y_{14}
y_{21}	y_{22}	y_{23}	y_{24}
y_{31}	y_{32}	y_{33}	y_{34}
y_{41}	y_{42}	y_{43}	y_{44}
y_{51}	y_{52}	y_{53}	y_{54}
y_{61}	y_{62}	y_{63}	y_{64}

1 redicted labels				
\hat{y}_{11}	\hat{y}_{12}	\hat{y}_{13}	\hat{y}_{14}	
\hat{y}_{21}	\hat{y}_{22}	\hat{y}_{23}	\hat{y}_{24}	
\hat{y}_{31}	\hat{y}_{32}	\hat{y}_{33}	\hat{y}_{34}	
\hat{y}_{41}	\hat{y}_{42}	\hat{y}_{43}	\hat{y}_{44}	
\hat{y}_{51}	\hat{y}_{52}	\hat{y}_{53}	\hat{y}_{54}	
\hat{y}_{61}	\hat{y}_{62}	\hat{y}_{63}	\hat{y}_{64}	

- m labels.
- Test set of size n, $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_1^n$.
- The true label vector: $\boldsymbol{y}_i = (y_{i1}, \dots, y_{im}).$
- The predicted label vector: $\hat{\boldsymbol{y}}_i = (\hat{y}_{i1}, \dots, \hat{y}_{im}).$
- The macro F-measure:

$$F_M = \frac{1}{m} \sum_{j=1}^m F(\boldsymbol{y}_{.j}, \hat{\boldsymbol{y}}_{.j}) = \frac{1}{m} \sum_{j=1}^m \frac{2 \sum_{i=1}^n y_{ij} \hat{y}_{ij}}{\sum_{i=1}^n y_{ij} + \sum_{i=1}^n \hat{y}_{ij}}.$$

True labels

y_{11}	y_{12}	y_{13}	y_{14}
y_{21}	y_{22}	y_{23}	y_{24}
y_{31}	y_{32}	y_{33}	y_{34}
y_{41}	y_{42}	y_{43}	y_{44}
y_{51}	y_{52}	y_{53}	y_{54}
y_{61}	y_{62}	y_{63}	y_{64}

	i iculcica labels				
\hat{y}	11	\hat{y}_{12}	\hat{y}_{13}	\hat{y}_{14}	
$ \hat{y} $	21	\hat{y}_{22}	\hat{y}_{23}	\hat{y}_{24}	
$ \hat{y} $	31	\hat{y}_{32}	\hat{y}_{33}	\hat{y}_{34}	
$ \hat{y} $	41	\hat{y}_{42}	\hat{y}_{43}	\hat{y}_{44}	
$ \hat{y} $	51	\hat{y}_{52}	\hat{y}_{53}	\hat{y}_{54}	
$ \hat{y} $	61	\hat{y}_{62}	\hat{y}_{63}	\hat{y}_{64}	

- m labels.
- Test set of size n, $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_1^n$.
- The true label vector: $\boldsymbol{y}_i = (y_{i1}, \dots, y_{im}).$
- The predicted label vector: $\hat{\boldsymbol{y}}_i = (\hat{y}_{i1}, \dots, \hat{y}_{im}).$
- The macro F-measure:

$$F_M = \frac{1}{m} \sum_{j=1}^m F(\boldsymbol{y}_{.j}, \hat{\boldsymbol{y}}_{.j}) = \frac{1}{m} \sum_{j=1}^m \frac{2 \sum_{i=1}^n y_{ij} \hat{y}_{ij}}{\sum_{i=1}^n y_{ij} + \sum_{i=1}^n \hat{y}_{ij}}.$$

True labels

y_{11}	y_{12}	y_{13}	y_{14}
y_{21}	y_{22}	y_{23}	y_{24}
y_{31}	y_{32}	y_{33}	y_{34}
y_{41}	y_{42}	y_{43}	y_{44}
y_{51}	y_{52}	y_{53}	y_{54}
y_{61}	y_{62}	y_{63}	y_{64}

i realeted labels				
\hat{y}_{11}	\hat{y}_{12}	\hat{y}_{13}	\hat{y}_{14}	
\hat{y}_{21}	\hat{y}_{22}	\hat{y}_{23}	\hat{y}_{24}	
\hat{y}_{31}	\hat{y}_{32}	\hat{y}_{33}	\hat{y}_{34}	
\hat{y}_{41}	\hat{y}_{42}	\hat{y}_{43}	\hat{y}_{44}	
\hat{y}_{51}	\hat{y}_{52}	\hat{y}_{53}	\hat{y}_{54}	
\hat{y}_{61}	\hat{y}_{62}	\hat{y}_{63}	\hat{y}_{64}	

- m labels.
- Test set of size n, $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_1^n$.
- The true label vector: $\boldsymbol{y}_i = (y_{i1}, \dots, y_{im}).$
- The predicted label vector: $\hat{\boldsymbol{y}}_i = (\hat{y}_{i1}, \dots, \hat{y}_{im}).$
- The macro F-measure:

$$F_M = \frac{1}{m} \sum_{j=1}^m F(\boldsymbol{y}_{.j}, \hat{\boldsymbol{y}}_{.j}) = \frac{1}{m} \sum_{j=1}^m \frac{2 \sum_{i=1}^n y_{ij} \hat{y}_{ij}}{\sum_{i=1}^n y_{ij} + \sum_{i=1}^n \hat{y}_{ij}}.$$

True labels

y_{11}	y_{12}	y_{13}	y_{14}
y_{21}	y_{22}	y_{23}	y_{24}
y_{31}	y_{32}	y_{33}	y_{34}
y_{41}	y_{42}	y_{43}	y_{44}
y_{51}	y_{52}	y_{53}	y_{54}
y_{61}	y_{62}	y_{63}	y_{64}

i redicted labels				
\hat{y}_{11}	\hat{y}_{12}	\hat{y}_{13}	\hat{y}_{14}	
\hat{y}_{21}	\hat{y}_{22}	\hat{y}_{23}	\hat{y}_{24}	
\hat{y}_{31}	\hat{y}_{32}	\hat{y}_{33}	\hat{y}_{34}	
\hat{y}_{41}	\hat{y}_{42}	\hat{y}_{43}	\hat{y}_{44}	
\hat{y}_{51}	\hat{y}_{52}	\hat{y}_{53}	\hat{y}_{54}	
\hat{y}_{61}	\hat{y}_{62}	\hat{y}_{63}	\hat{y}_{64}	

 Can be solved by reduction to m independent binary problems of F-measure maximization.⁴

Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, and Inderjit S. Dhillon. Consistent multilabel classification. In NIPS 29. dec 2015

- Can be solved by reduction to m independent binary problems of F-measure maximization.⁴
- Can we use the above threshold tuning methods?

Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, and Inderjit S. Dhillon. Consistent multilabel classification. In NIPS 29. dec 2015

- Can be solved by reduction to m independent binary problems of F-measure maximization.⁴
- Can we use the above threshold tuning methods?
- The naive adaptation of them can be costly!!!

Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, and Inderjit S. Dhillon. Consistent multilabel classification. In NIPS 29. dec 2015

- Can be solved by reduction to m independent binary problems of F-measure maximization.⁴
- Can we use the above threshold tuning methods?
- The naive adaptation of them can be costly!!!
 - ▶ We need CPEs for all labels and examples in the validation set.

Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, and Inderjit S. Dhillon. Consistent multilabel classification. In NIPS 29. dec 2015

- Can be solved by reduction to m independent binary problems of F-measure maximization.⁴
- Can we use the above threshold tuning methods?
- The naive adaptation of them can be costly!!!
 - ▶ We need CPEs for all labels and examples in the validation set.
 - ► For $m > 10^5$ and $n > 10^5$, we need at least 10^{10} predictions to be computed and potentially stored.

Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, and Inderjit S. Dhillon. Consistent multilabel classification. In NIPS 29. dec 2015

- Can be solved by reduction to m independent binary problems of F-measure maximization.⁴
- Can we use the above threshold tuning methods?
- The naive adaptation of them can be costly!!!
 - ▶ We need CPEs for all labels and examples in the validation set.
 - For $m>10^5$ and $n>10^5$, we need at least 10^{10} predictions to be computed and potentially stored.
- Solution:

Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, and Inderjit S. Dhillon. Consistent multilabel classification. In NIPS 29. dec 2015

- Can be solved by reduction to m independent binary problems of F-measure maximization.⁴
- Can we use the above threshold tuning methods?
- The naive adaptation of them can be costly!!!
 - ▶ We need CPEs for all labels and examples in the validation set.
 - For $m>10^5$ and $n>10^5$, we need at least 10^{10} predictions to be computed and potentially stored.

Solution:

▶ To compute the F-measure we need only true positive labels $(y_{ij} = 1)$ and predicted positive labels $(\hat{y}_{ij} = 1)$.

Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, and Inderjit S. Dhillon. Consistent multilabel classification. In NIPS 29. dec 2015

- Can be solved by reduction to m independent binary problems of F-measure maximization.⁴
- Can we use the above threshold tuning methods?
- The naive adaptation of them can be costly!!!
 - ▶ We need CPEs for all labels and examples in the validation set.
 - For $m > 10^5$ and $n > 10^5$, we need at least 10^{10} predictions to be computed and potentially stored.

Solution:

- ▶ To compute the F-measure we need only true positive labels $(y_{ij} = 1)$ and predicted positive labels $(\hat{y}_{ij} = 1)$.
- ► Therefore to reduce the complexity we need to deliver **sparse probability estimates** (SPEs).

Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, and Inderjit S. Dhillon. Consistent multilabel classification. In NIPS 29. dec 2015

Outline

- 1 Extreme multi-label classification
- 2 The F-measure
- 3 Efficient sparse probability estimators
- 4 Experimental results
- 5 Summary

Efficient sparse probability estimators

• Sparse propability estimates (SPEs):

CPEs of top labels or CPEs exceeding a given threshold

Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In KDD, pages 263–272. ACM, 2014

⁶ Kalina Jasinska and Krzysztof Dembczynski. Consistent label tree classifiers for extreme multilabel classification. In *The ICML Workshop on Extreme Classification*, 2015

Efficient sparse probability estimators

• Sparse propability estimates (SPEs):

CPEs of top labels or CPEs exceeding a given threshold

• We need multi-label classifiers that efficiently deliver SPEs:

Efficient sparse probability estimators

Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In KDD, pages 263–272. ACM, 2014

⁶ Kalina Jasinska and Krzysztof Dembczynski. Consistent label tree classifiers for extreme multilabel classification. In *The ICML Workshop on Extreme Classification*, 2015

Efficient sparse probability estimators

• Sparse propability estimates (SPEs):

CPEs of top labels or CPEs exceeding a given threshold

We need multi-label classifiers that efficiently deliver SPEs:

Efficient sparse probability estimators

• Two examples: FastXML⁵ and PLT⁶

Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In KDD, pages 263–272. ACM, 2014

⁶ Kalina Jasinska and Krzysztof Dembczynski. Consistent label tree classifiers for extreme multilabel classification. In *The ICML Workshop on Extreme Classification*, 2015

- Based on standard decision trees.⁷
- Uses an **ensemble** of trees to improve predictive performance.
- Sparse linear classifiers trained to maximize nDCG in internal nodes.
- Empirical distributions in leaves.
- Very efficient training procedure.

⁷ L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984

• Most importantly: FastXML delivers SPEs.

- Most importantly: FastXML delivers SPEs.
 - ► Leaf nodes cover only small feature space

- Most importantly: FastXML delivers SPEs.
 - ► Leaf nodes cover only small feature space ⇒ small number of training examples in each leaf

- Most importantly: FastXML delivers SPEs.
 - ► Leaf nodes cover only small feature space ⇒ small number of training examples in each leaf ⇒ small number of positive labels assigned to a leaf

- Most importantly: FastXML delivers SPEs.
 - ► Leaf nodes cover only small feature space ⇒ small number of training examples in each leaf ⇒ small number of positive labels assigned to a leaf
 - ▶ Test example passes one path from the root to a leaf.

- Most importantly: FastXML delivers SPEs.
 - ► Leaf nodes cover only small feature space ⇒ small number of training examples in each leaf ⇒ small number of positive labels assigned to a leaf
 - ▶ Test example passes one path from the root to a leaf.

- Most importantly: FastXML delivers SPEs.
 - ► Leaf nodes cover only small feature space ⇒ small number of training examples in each leaf ⇒ small number of positive labels assigned to a leaf
 - ▶ Test example passes one path from the root to a leaf.

- Most importantly: FastXML delivers SPEs.
 - ► Leaf nodes cover only small feature space ⇒ small number of training examples in each leaf ⇒ small number of positive labels assigned to a leaf
 - ▶ Test example passes one path from the root to a leaf.

- Most importantly: FastXML delivers SPEs.
 - ► Leaf nodes cover only small feature space ⇒ small number of training examples in each leaf ⇒ small number of positive labels assigned to a leaf
 - ▶ Test example passes one path from the root to a leaf.
 - ► Prediction based on the leaf node label distribution (zero probability for labels outside the leaf node).

- Most importantly: FastXML delivers SPEs.
 - ► Leaf nodes cover only small feature space ⇒ small number of training examples in each leaf ⇒ small number of positive labels assigned to a leaf
 - ► Test example passes one path from the root to a leaf.
 - ► Prediction based on the leaf node label distribution (zero probability for labels outside the leaf node).
 - ► The leaf node label distributions can be averaged over all trees in the ensemble.

• PLT are based on the label tree approach.8

- Each leaf node corresponds to one label.
- Internal node classifier decides whether to go down the tree.
- Leaf node classifier makes the final prediction about \hat{y}_i .
- A test example may follow many paths from the root to leaves.
- Each node j contains a class probability estimator $\eta(j)$ such that:

$$\eta_i(\boldsymbol{x}) = \prod_{j \in \text{Path}(i)} \eta(j).$$

S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. In NIPS, pages 163–171. Curran Associates, Inc., 2010 $_{24/36}$

- Similar to conditional probability trees, probabilistic classifier chains, and hierarchical softmax, but constructed to estimate marginal probabilities $\eta_i(x)$.
- Give probabilistic interpretation to **Homer**. 12
- Regret bounds. 13

⁹ Alina Beygelzimer, John Langford, Yury Lifshits, Gregory B. Sorkin, and Alexander L. Strehl. Conditional probability tree estimation analysis and algorithms. In *UAI*, pages 51–58, 2009

¹⁰ K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In *ICML*, pages 279–286. Omnipress, 2010

¹¹ Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In AISTATS'05, pages 246–252, 2005

¹² G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and efficient multilabel classification in domains with large number of labels. In *Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data*, 2008

¹³ Kalina Jasinska and Krzysztof Dembczynski. Consistent label tree classifiers for extreme multilabel classification. In *The ICML Workshop on Extreme Classification*, 2015

- Most importantly: PLT delivers SPEs.
 - Prediction relies on traversing the tree from the root to leaf nodes.
 - ▶ Pruning of subtrees if $p_j \le t$ (e.g. t = 0.5):

Intermediate probability p_j : 1 Prediction \hat{y} : (0,0,0,0)

Queue Q:

- Most importantly: PLT delivers SPEs.
 - Prediction relies on traversing the tree from the root to leaf nodes.
 - ▶ Pruning of subtrees if $p_i \le t$ (e.g. t = 0.5):

Intermediate probability p_i : 1 Prediction $\hat{\boldsymbol{y}}$: (0,0,0,0)

Queue Q: [(0,1)]

- Most importantly: PLT delivers SPEs.
 - Prediction relies on traversing the tree from the root to leaf nodes.
 - ▶ Pruning of subtrees if $p_j \le t$ (e.g. t = 0.5):

Intermediate probability p_j : $\hat{\eta}(0) = 0.8$, $0.8 \ge 0.5$ Prediction \hat{y} : (0,0,0,0)

Queue Q: [(1,0.8),(2,0.8)]

- Most importantly: PLT delivers SPEs.
 - Prediction relies on traversing the tree from the root to leaf nodes.
 - ▶ Pruning of subtrees if $p_j \le t$ (e.g. t = 0.5):

Intermediate probability p_j : $\hat{\eta}(1) = 0.9$, $0.9 \cdot 0.8 = 0.72 \ge 0.5$ Prediction \hat{y} : (0,0,0,0)

Queue Q: [(2, 0.8), (3, 0.72), (4, 0.72)]

- Most importantly: PLT delivers SPEs.
 - Prediction relies on traversing the tree from the root to leaf nodes.
 - ▶ Pruning of subtrees if $p_j \le t$ (e.g. t = 0.5):

Intermediate probability p_j : $\hat{\eta}(2) = 0.6$, $0.8 \cdot 0.6 = 0.48 < 0.5$ Prediction \hat{y} : (0,0,0,0)

Queue Q: [(3, 0.72), (4, 0.72)]

- Most importantly: PLT delivers SPEs.
 - Prediction relies on traversing the tree from the root to leaf nodes.
 - ▶ Pruning of subtrees if $p_j \le t$ (e.g. t = 0.5):

Intermediate probability p_j : $\hat{\eta}(3) = 0.9$, $0.72 \cdot 0.9 \ge 0.5$ Prediction \hat{y} : (1,0,0,0)

Queue Q: [(4, 0.72)]

- Most importantly: PLT delivers SPEs.
 - Prediction relies on traversing the tree from the root to leaf nodes.
 - ▶ Pruning of subtrees if $p_j \le t$ (e.g. t = 0.5):

Intermediate probability p_j : $\hat{\eta}(4) = 0.8$, $0.72 \cdot 0.8 \ge 0.5$ Prediction \hat{y} : (1, 1, 0, 0)

Queue $Q: [] \rightarrow STOP$

FastXML vs. PLT

	FastXML	PLT
tree structure	√	✓
structure learning	\checkmark	×
number of trees	≥ 1	1
number of leaves	< m	m
internal nodes models	linear	linear
leaves models	empirical distribution	linear
visited paths during prediction	1 per tree	several
sparse probability estimation	\checkmark	\checkmark

Outline

- Extreme multi-label classification
- 2 The F-measure
- 3 Efficient sparse probability estimators
- 4 Experimental results
- 5 Summary

Table: Main statistics of datasets.

	Wiki1K	WikiLSHTC
#labels	933	325056
#features	196366	1617899
#examples	108738	2365435
avg. cardinality	1.71	3.26
max cardinality	14	198
cardinality >2	41%	72%
Hamming loss (%) of	0.1833	1.003536E-05
all-zero classifier		

Table: Results on Wiki1K.

τ	macro-F	HL
$FastXML + FTA \ \tau = 0.05$	0.303	3.038E-03
$FastXML + FTA \ \tau = 0.10$	0.326	1.680E-03
$FastXML + FTA \ \tau = 0.15$	0.315	1.285E-03
$FastXML + FTA \ \tau = 0.20$	0.298	1.128E-03
$FastXML + FTA \ \tau = 0.25$	0.277	1.058E-03
$FastXML + FTA \ \tau = 0.30$	0.254	1.031E-03
$FastXML + FTA \ \tau = 0.35$	0.233	1.017E-03
$FastXML + FTA \ \tau = 0.40$	0.215	1.018E-03
$FastXML + FTA \ \tau = 0.45$	0.196	1.029E-03
$FastXML + FTA \; \tau = 0.50$	0.179	1.051E-03
FastXML + STO	0.379	3.121E-03
FastXML + OFO (10 epoch, $a_0 = 0, b_0 = 350$)	0.353	7.353E-03

	P@1	P@2	P@3	P@4	P@5
FastXML	0.785	0.548	0.415	0.330	0.274

Table: Results on Wiki1K.

τ	macro-F	HL
$PLT + FTA \; \tau = 0.05$	0.301	3.895E-03
$PLT + FTA \; \tau = 0.10$	0.313	2.155E-03
$PLT + FTA \; \tau = 0.15$	0.299	1.600E-03
$PLT + FTA \; \tau = 0.20$	0.278	1.344E-03
$PLT + FTA \; \tau = 0.25$	0.252	1.219E-03
$PLT + FTA \; \tau = 0.30$	0.229	1.151E-03
$PLT + FTA \; \tau = 0.35$	0.206	1.122E-03
$PLT + FTA \; \tau = 0.40$	0.185	1.114E-03
$PLT + FTA \; \tau = 0.45$	0.165	1.120E-03
$PLT + FTA \; \tau = 0.50$	0.147	1.136E-03
PLT + STO	0.331	1.892E-03
PLT + OFO (1 epoch, $a_0 = 20, b_0 = 200$)	0.321	1.605E-03

	P@1	P@2	P@3	P@4	P@5
PLT	0.750	0.519	0.372	0.279	0.224

Table: Results on WikiLSHTC.

au	macro-F	HL
$FastXML + FTA \ \tau = 0.05$	0.076	1.592E-05
$FastXML + FTA \ \tau = 0.10$	0.060	1.058E-05
$FastXML + FTA \ \tau = 0.15$	0.048	9.395E-06
$FastXML + FTA \ \tau = 0.20$	0.039	8.985E-06
$FastXML + FTA \ \tau = 0.25$	0.033	8.834E-06
$FastXML + FTA \ \tau = 0.30$	0.028	8.789E-06
$FastXML + FTA \ \tau = 0.35$	0.023	8.798E-06
$FastXML + FTA \ \tau = 0.40$	0.019	8.838E-06
$FastXML + FTA \ \tau = 0.45$	0.016	8.893E-06
$FastXML + FTA \; \tau = 0.50$	0.014	8.964E-06
FastXML + STO	0.080	8.121E-05
$FastXML + OFO \ (1 \ epoch, \ a_0 = 18, b_0 = 360)$	0.078	1.080E-05

	P@1	P@2	P@3	P@4	P@5	
FastXML	0.492	0.390	0.322	0.272	0.235	

Table: Results on WikiLSHTC.

au	macro-F	HL
$PLT + FTA \; \tau = 0.05$		
$PLT + FTA \; \tau = 0.10$		
$PLT + FTA \; \tau = 0.15$		
$PLT + FTA \; \tau = 0.20$		
PLT + FTA $\tau = 0.25$		
$PLT + FTA \ \tau = 0.30$		
PLT + FTA $\tau = 0.35$		
$PLT + FTA \ \tau = 0.40$		
$PLT + FTA \ \tau = 0.45$		
$PLT + FTA \; \tau = 0.50$		
PLT + STO	0.038	4.115E-05
$PLT + OFO \; (1 \; epoch, a_0 =?, b_0 =?)$		

	P@1	P@2	P@3	P@4	P@5
PLT	0.387	0.295	0.220	0.165	0.132

Outline

- 1 Extreme multi-label classification
- 2 The F-measure
- 3 Efficient sparse probability estimators
- 4 Experimental results
- 5 Summary

 Presented approach can be extended to other complex performance measures.¹⁴

¹⁴ N. Nagarajan, S. Koyejo, R. Ravikumar, and I. Dhillon. Consistent binary classification with generalized performance metrics. In NIPS 27, pages 2744–2752, 2014

H. Narasimhan, R. Vaish, and Agarwal S. On the statistical consistency of plug-in classifiers for non-decomposable performance measures. In NIPS, 2014

- Presented approach can be extended to other complex performance measures.¹⁴
- Improving PLT still in progress.

¹⁴ N. Nagarajan, S. Koyejo, R. Ravikumar, and I. Dhillon. Consistent binary classification with generalized performance metrics. In NIPS 27, pages 2744–2752, 2014

H. Narasimhan, R. Vaish, and Agarwal S. On the statistical consistency of plug-in classifiers for non-decomposable performance measures. In *NIPS*, 2014

- Presented approach can be extended to other complex performance measures.¹⁴
- Improving PLT still in progress.
- Ongoing work on online threshold tuning.

¹⁴ N. Nagarajan, S. Koyejo, R. Ravikumar, and I. Dhillon. Consistent binary classification with generalized performance metrics. In NIPS 27, pages 2744–2752, 2014

H. Narasimhan, R. Vaish, and Agarwal S. On the statistical consistency of plug-in classifiers for non-decomposable performance measures. In *NIPS*, 2014

- Presented approach can be extended to other complex performance measures.¹⁴
- Improving PLT still in progress.
- Ongoing work on online threshold tuning.
- Different one dimensional optimization techniques.

¹⁴ N. Nagarajan, S. Koyejo, R. Ravikumar, and I. Dhillon. Consistent binary classification with generalized performance metrics. In NIPS 27, pages 2744–2752, 2014

H. Narasimhan, R. Vaish, and Agarwal S. On the statistical consistency of plug-in classifiers for non-decomposable performance measures. In $\it NIPS$, 2014

- Presented approach can be extended to other complex performance measures.¹⁴
- Improving PLT still in progress.
- Ongoing work on online threshold tuning.
- Different one dimensional optimization techniques.
- Other sparse probability estimators?

¹⁴ N. Nagarajan, S. Koyejo, R. Ravikumar, and I. Dhillon. Consistent binary classification with generalized performance metrics. In NIPS 27, pages 2744–2752, 2014

H. Narasimhan, R. Vaish, and Agarwal S. On the statistical consistency of plug-in classifiers for non-decomposable performance measures. In $\it NIPS$, 2014

- Take-away message:
 - ► Extreme multi-label classification: #examples, #features, #labels

- ► Extreme multi-label classification: #examples, #features, #labels
- ► Complexity: training vs. validation vs. prediction, time vs. space

- ► Extreme multi-label classification: #examples, #features, #labels
- ► Complexity: training vs. validation vs. prediction, time vs. space
- ► F-measure maximization by tuning threshold over probabilistic model.

- ► Extreme multi-label classification: #examples, #features, #labels
- ► Complexity: training vs. validation vs. prediction, time vs. space
- ► F-measure maximization by tuning threshold over probabilistic model.
- ► Naive generalization of tuning methods from binary to MLC scenario can be too expensive.

- ► Extreme multi-label classification: #examples, #features, #labels
- ► Complexity: training vs. validation vs. prediction, time vs. space
- ► F-measure maximization by tuning threshold over probabilistic model.
- ► Naive generalization of tuning methods from binary to MLC scenario can be too expensive.
- ▶ Use sparse probability estimators.

- ► Extreme multi-label classification: #examples, #features, #labels
- ► Complexity: training vs. validation vs. prediction, time vs. space
- ► F-measure maximization by tuning threshold over probabilistic model.
- ► Naive generalization of tuning methods from binary to MLC scenario can be too expensive.
- Use sparse probability estimators.
- ► FastXML decision tree-based approach.

- ► Extreme multi-label classification: #examples, #features, #labels
- ► Complexity: training vs. validation vs. prediction, time vs. space
- ► F-measure maximization by tuning threshold over probabilistic model.
- Naive generalization of tuning methods from binary to MLC scenario can be too expensive.
- Use sparse probability estimators.
- FastXML decision tree-based approach.
- ► PLT label tree-based approach.

- ► Extreme multi-label classification: #examples, #features, #labels
- ► Complexity: training vs. validation vs. prediction, time vs. space
- ► F-measure maximization by tuning threshold over probabilistic model.
- ► Naive generalization of tuning methods from binary to MLC scenario can be too expensive.
- Use sparse probability estimators.
- ► FastXML decision tree-based approach.
- ► PLT label tree-based approach.
- Promising results, but many hopes for getting more . . .

Take-away message:

- ► Extreme multi-label classification: #examples, #features, #labels
- ► Complexity: training vs. validation vs. prediction, time vs. space
- $\blacktriangleright \ \ \text{F-measure maximization by tuning threshold over probabilistic model}.$
- ► Naive generalization of tuning methods from binary to MLC scenario can be too expensive.
- Use sparse probability estimators.
- ► FastXML decision tree-based approach.
- ► PLT label tree-based approach.
- ► Promising results, but many hopes for getting more . . .
- For more check:

http://www.cs.put.poznan.pl/kdembczynski