Restricted Boltzmann Machines

GRAHAM TAYLOR

VECTOR INSTITUTE

SCHOOL OF ENGINEERING UNIVERSITY OF GUELPH

CANADIAN INSTITUTE FOR ADVANCED RESEARCH

Scaling ML to the Challenges of Al

Classification algorithms take an input from a high-dimensional distribution and summarize it with a category label

 During this process, the classifier discards most of the information in the input and produces a single output

It is possible to ask our ML models to do many other tasks

- Some of which require them to produce multiple outputs
- Most require a complete understanding of the entire structure of the input, with no option to ignore sections of it

Structured Probabilistic Models for Machine Learning

Modeling a rich distribution over random variables is a challenging task, both computationally and statistically

Structured probabilistic models (graphical models) provide a formal framework for modeling only direct interactions between random variables

- significantly fewer parameters
- estimated reliably from less data

directed graphical model

undirected graphical model

Restricted Boltzmann Machine

 Undirected graphical model with bipartite structure and restricted connectivity to make inference and learning easier

Energy function:

$$E(\boldsymbol{v}, \boldsymbol{h}) = -\boldsymbol{b}^{\mathsf{T}} \boldsymbol{v} - \boldsymbol{c}^{\mathsf{T}} \boldsymbol{h} - \boldsymbol{v}^{\mathsf{T}} \boldsymbol{W} \boldsymbol{h}$$

Distribution:

$$P(\mathbf{v} = \mathbf{v}, \mathbf{h} = \mathbf{h}) = \frac{1}{Z} \exp(-E(\mathbf{v}, \mathbf{h}))$$

$$Z = \sum_{\boldsymbol{v}} \sum_{\boldsymbol{h}} \exp \left\{ -E(\boldsymbol{v}, \boldsymbol{h}) \right\}$$

partition function (intractable)

Markov Network View

Markov network with vector nodes:

$$P(\mathbf{v} = \mathbf{v}, \mathbf{h} = \mathbf{h}) = \exp(-E(\mathbf{v}, \mathbf{h}))/Z$$

$$= \exp(\mathbf{b}^{\top} \mathbf{v} + \mathbf{c}^{\top} \mathbf{h} + \mathbf{v}^{\top} \mathbf{W} \mathbf{h})/Z$$

$$= \exp(\mathbf{b}^{\top} \mathbf{v}) \exp(\mathbf{c}^{\top} \mathbf{h}) \exp(\mathbf{v}^{\top} \mathbf{W} \mathbf{h})/Z$$
factors

The notation based on an energy function is simply an alternative to the representation as the product of factors

h

Markov Network View (2)

Markov network with scalar nodes:

This scalar visualization is more informative of the structure within the vectors

Inference in RBM

Though P(v) is intractable, the bipartite graph structure of the RBM has the special property of its conditional distributions P(h|v) and P(v|h) being factorial and relatively simple to compute and sample:

$$egin{aligned} P(m{h}|m{v}) &= \prod_{j} P(h_j = 1|m{v}) \ P(h_j = 1|m{v}) &= rac{1}{1 + \exp(-(c_j + m{v}^ op m{W}_{:,j}))} \ &= \sigma(c_j + m{v}^ op m{W}_{:,j}) & igg(m{j}^ ext{th column of } m{W} \end{aligned}$$

$$egin{align} P(oldsymbol{v}|oldsymbol{h}) &= \prod_k P(v_k = 1|oldsymbol{h}) \ P(v_k = 1|oldsymbol{h}) &= rac{1}{1 + \exp(-(b_k + oldsymbol{W}_{k,:}oldsymbol{h}))} \ &= \sigma(b_k + oldsymbol{W}_{k,:}oldsymbol{h}) \ \end{pmatrix}$$

Free Energy

- Many algorithms that operate on probabilistic models need to compute not $p_{
 m model}({m x})$ but only $\log ilde{p}_{
 m model}({m x})$
- For energy-based models with latent variables h, these algorithms are sometimes phrased in terms of the negative of this quantity, called the free energy:

$$\mathcal{F}(\boldsymbol{x}) = -\log \sum_{\boldsymbol{h}} \exp(-E(\boldsymbol{x}, \boldsymbol{h}))$$

For the RBM:

$$P(\boldsymbol{v}) = \sum_{\boldsymbol{h} \in \{0,1\}^m} P(\boldsymbol{v}, \boldsymbol{h}) = \sum_{\boldsymbol{h} \in \{0,1\}^m} \exp(-E(\boldsymbol{v}, \boldsymbol{h}))/Z$$
$$= \exp\left(\boldsymbol{b}^\top \boldsymbol{v} + \sum_{j=1}^m \log\left(1 + \exp\left(c_j + \boldsymbol{v}^\top \boldsymbol{W}_{:,j}\right)\right)\right)/Z$$
$$= \exp\left(-\mathcal{F}(\boldsymbol{v})\right)/Z$$