CSC 226

Algorithms and Data Structures: II More Discrete Math

Tianming Wei twei@uvic.ca
ECS 466

Discrete Math

The Pigeonhole Principle

If m pigeons occupy n pigeonholes and m > n, then at least one pigeonhole has two or more pigeons roosting in it.

Examples

- 1. If I draw 14 cards from a standard deck of 52, will there be a pair?
- 2. Given a text file with 500,000 words of size 4 or less, is it possible that the words are distinct?
- 3. While on a 4-week vacation I will drink at least 1 beer a day but no more than 40 total. Will there be a span of consecutive days in which I drink exactly 15 beers?

Cartesian Product

For sets A and B, the <u>Cartesian product</u> (or <u>cross product</u>) of A and B is

$$A \times B = \{(a,b) : a \in A, b \in B\}$$

Relation

For sets A and B, any subset of $A \times B$ is called a <u>relation</u> from A to B.

Partial Order

- A relation \Re on a set A is called a <u>partial</u> order if \Re is
- i. Reflexive: For all $x \in A$, $(x, x) \in \Re$
- ii. Antisymmetric: For all $x, y \in A$, if $(x, y), (y, x) \in \Re$, then x = y.
- iii. Transitive: For all $x, y, z \in A$, if $(x, y), (y, z) \in \Re$, then $(x, z) \in \Re$.

Partially Ordered Set

Let A be a set and \Re a relation on A. The pair (A, \Re) is called a partially ordered set (or poset) if \Re on A is a partial order.

Hasse Diagram

If \Re is a partial order on A, we construct a Hasse diagram for \Re on A by connecting x "up" to y if and only if $(x, y) \in \Re$ and there are no other $z \in A$ such that $(x, z) \in \Re$ or $(z, y) \in \Re$.

Examples

4. Let $A = \{1,2,3,4\}$. Define \Re on A by $\Re = \{(x,y): x,y \in A \text{ and } x|y\}$ Draw a relation diagram and a Hasse

diagram for \Re .

5. Consider the power set, P(A), where $A = \{1,2,3\}$. Draw the Hasse diagram to illustrate the subset relation.

Total Order

If (A, \Re) is a poset, it is a total order if for all $x, y \in A$, either $(x, y) \in \Re$ or $(y, x) \in \Re$.