Assignment Project Exam Help

https://powcoder.com

SchemaeReffinernest and Normal Forms

CS430/630 Lecture 16

Why Schema Refinement?

- ▶ We have learnt the advantages of relational tables ...
- ... but how to decide on the relational schema?
- Assignment Project Exam Help
 At one extreme, store everything in single table
 - Huge redundandattps://powcoder.com
 - Leads to anomalies! Add WeChat powcoder
- We need to break the information into several tables
 - How many tables, and with what structures?
 - Having too many tables can also cause problems
 - ▶ E.g., performance, difficulty in checking constraints

Sample Relation

Hourly_Emps (<u>ssn</u>, name, lot, rating, wage, hrs_worked)

- Denote relation schema by attribute initial: SNLRWH Assignment Project Exam Help
- Constraints (deputible in the process of the constraints (deputible in the constraints)
 - ssn is the key: Add WeChat powcoder
 - rating determines wage: $R \rightarrow W$
 - ▶ E.g., worker with rating A receives 20\$/hr

Anomalies

- ightharpoonup Problems due to R \longrightarrow W :
 - <u>Update anomaly</u>: Change value of W only in a tuple dependency violation
 - Insertion anomaly: How to insert employee if we don't know hourly wage for that rating?

 Assignment Project Exam Help
 - Assignment Project Exam Help

 Deletion anomaly: If we delete all employees with rating 5, we lose the information about the wage for rating 5 der.com

S Add W	e Chat po	₩c	Pele	e W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Removing Anomalies

Hourly_Emps2				Wages				
S	N	L	R	Н		R	W	
123-22-3666	Attishoo	48	8	40		8	10	
231-31-5368	Assisignm	eat	Pro	Bjec	t Exam	Йe	lp	
131-24-3650	Smethurst	35	5	30	1		/	
434-26-3751	Guldu https	351) OV 5	7 CO	ier.com			
612-67-4134	Madayand	W	E1	AA J	poweed	er2	smal	ler tables

- Updating rating of employee will result in the wage "changing" accordingly
 - Note that there is no physical change of W, just a "pointer change"
- Deleting employee does not affect rating-wages data

Dealing with Redundancy

- Redundancy is at the root of redundant storage, insert/delete/update anomalies
- Integrity constraints, in particular functional dependencies, can assignment Project Exam Help be used to identify redundancy
- Main refinement betternique. Weden position (replacing ABCD) with, say, AB and BCD, or ACD and ABD)
 Add WeChat powcoder

 Decomposition should be used judiciously:
- - Decomposition may sometimes affect performance. Why?
 - What problems (if any) does decomposition cause?
 - Incorrect data
 - Loss of dependencies

Functional Dependencies (FDs)

- A <u>functional dependency</u> X → Y holds over relation R if for every instance r of R
 - $tl, t2 \in r, \, \pi_X(tl) = \pi_X(t2) \text{ implies } \pi_Y(tl) = \pi_Y(t2)$
 - piven two tuples at r, if the X values agree, Waltes must also agree

 https://powcoder.com
- FD is a statement about of all the pable pelations.
 - Identified based on semantics of application (business logic)
 - Given an instance r of R, we can check if it violates some FD f, but we cannot tell if f holds over R!

FDs and Keys

- FDs are a generalization of keys
 - A key uniquely identifies all attribute values in a tuple
 - ▶ That is a particular case of FD ...
 - but not all Figure Project Exam Help

https://powcoder.com

- Add WeChat powcoder
 ▶ K is a key for R means that K → R
 - \rightarrow However, K \rightarrow R does not require K to be minimal!
 - K can be a superkey as well

Reasoning About FDs

- \blacktriangleright Given FD set F, we can usually infer additional FDs:
 - $F^+ = closure \ of \ F$ is the set of all FDs that are implied by FAssignment Project Exam Help

https://powcoder.com

- Armstrong's Axioms (X,Y, Z are sets of attributes):
 Reflexivity: If Y Add, WeChat powcoder

 - <u>Augmentation</u>: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - <u>Transitivity</u>: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- These are sound and complete inference rules for FDs!

Reasoning About FDs (cont'd)

- Additional rules
 - Not necessary, but helpful
- Assignment Project Exam Help
 Union and decomposition (splitting)
 - ► X → Y and X https://powcoder.com
 - $X \rightarrow YZ => X \xrightarrow{Add} Y \xrightarrow{Add} X \xrightarrow{D} Z$ Add WeChat powcoder

An Example of FD Inference

- Contracts(cid, sid, jid, did, pid, qty, value), and:
 - Contract id, supplier, project, department, part
 - ightharpoonup C is the key: C ightharpoonup CSJDPQV
 - ▶ Project purchassignmental Projectification That IP → C
 - ▶ Dept purchases at most one part from a supplier: SD → P https://powcoder.com
- ▶ JP → C, C → chatppowpoder CSJDPQV
- ▶ SD \rightarrow P implies SDJ \rightarrow JP
- ightharpoonup SDJ ightharpoonup IP, JP ightharpoonup CSJDPQV imply SDJ ightharpoonup CSJDPQV

Attribute Closure

- ▶ <u>Attribute closure</u> of X (denoted X) wrt FD set F:
 - Set of all attributes A such that $X \rightarrow A$ is in F^+
 - Set of all attributes that can be determined starting from attributes in X and using FDs in Feat Exam Help

https://powcoder.com

Apply split rule such that all FDs have single attr in RHS Add WeChat powcoder
 X = X
 Repeat Y=X

Y=X

Search all FDs in F with LHS completely included in X

Add RHS of those FDs to X

Until Y=X

Verifying if given FD in FD-set closure

- Computing the closure of a set of FDs can be expensive
 - Size of closure is exponential in number of attributes!
- ▶ But if we just want to check if a given FD X Y is in the closure of a set of the sylpowcoder.com

 - Can be done efficiently without need to know F⁺
 Compute X+ Add WeChat powcoder
 - Check if Y is in X^+

Verifying if attribute set is a key

- Key verification can also be done with attribute closure
- To verify if X is a key, two conditions needed: Assignment Project Exam Help
 - $X^+ = R$
 - X is minimal https://powcoder.com

Add WeChat powcoder How to test minimality

- - ▶ Removing an attribute from X results in X' such that $X'^+ \le R$

