模型调优与融合

Syllabus

■ 前序工作流程

- 1. 数据处理
- 2. 特征工程
- 3. 模型选择
- 4. 交叉验证
- 5. 寻找最佳超参数

■ 模型优化

- 1. 模型状态
- 2. 权重分析
- 3. bad-case分析
- 4. 模型融合

- □ 数据清洗
 - 不可信的样本丢掉
 - 缺省值极多的字段考虑不用
- □ 数据采样
 - 下/上采样
 - 保证样本均衡

- □ 特征处理
 - 数值型
 - ② 类别型
 - ₿ 时间类
 - 4 文本型
 - 6 统计型
 - 6 组合特征

- □ 特征选择
 - 过滤型
 - sklearn.feature_selection.SelectKBest
 - ② 包裹型
 - sklearn.feature_selection.RFE
 - ❸ 嵌入型
 - feature_selection.SelectFromModel
 - ▶ Linear model, L1正则化

- □ 交叉验证(cross validation)
 - 交叉验证集做参数/模型选择
 - 测试集只做模型效果评估

□K折交叉验证(K-fold cross validation)

train data					test data	
†						
fold 1	fold 2	fold 3	fold 4	fold 5	test data	

□ 对模型有何影响

sklearn.linear_model.LogisticRegression

class sklearn.linear_model. LogisticRegression (penalty="12", dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1) [source]

□ 交叉验证选取

sklearn.grid_search.GridSearchCV

The grid search provided by **GridSearchCV** exhaustively generates candidates from a grid of parameter values specified with the **param_grid** parameter. For instance, the following **param_grid**:

```
param_grid = [
    {'C': [1, 10, 100, 1000], 'kernel': ['linear']},
    {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},
]
```

□ 模型状态

过拟合(overfitting/high variance) 欠拟合(underfitting/high bias)

□ 模型状态验证工具: 学习曲线

□ 不同模型状态处理

- 过拟合
 - 找更多的数据来学习
 - ▶ 增大正则化系数
 - 减少特征个数(不是太推荐)

注意:不要以为降维可以解决过拟合问题

- 2 欠拟合
 - 找更多的特征
 - ▶ 减小正则化系数

- □ 线性模型的权重分析
 - 过线性或者线性kernel的model
 - Linear Regression
 - Logistic Regression
 - LinearSVM
 - **>** ...
 - ② 对权重绝对值高/低的特征
 - 做更细化的工作
 - 特征组合

□ Bad-case分析

- 分类问题
 - 哪些训练样本分错了?
 - 我们哪部分特征使得它做了这个判定?
 - 这些bad cases有没有共性
 - 是否有还没挖掘的特性
 - **>** ...
- 2 回归问题
 - 哪些样本预测结果差距大,为什么?
 - **>** ...

□ Bad-case分析

- 分类问题
 - 哪些训练样本分错了?
 - 我们哪部分特征使得它做了这个判定?
 - 这些bad cases有没有共性
 - 是否有还没挖掘的特性
 - **>** ...
- 2 回归问题
 - 哪些样本预测结果差距大,为什么?
 - **>** ...

□ 模型融合 (model ensemble)

- 是什么
 - ➤ Ensemble Learnig 是一组individual learner的组合
 - 如果individual learner同质, 称为base learner
 - 如果individual learner异质, 称为component learner
- ② 为什么

- □ 模型融合 (model ensemble)
 - ✓ 简单说来,我们信奉几条信条
 - 群众的力量是伟大的,集体智慧是惊人的
 - Bagging
 - ▶ 随机森林/Random forest
 - ② 站在巨人的肩膀上,能看得更远
 - ▶ 模型stacking
 - ❸ 一万小时定律
 - Adaboost
 - ▶ 逐步增强树/Gradient Boosting Tree

□ Bagging

- 模型很多时候效果不好的原因是什么?
 - 过拟合啦!!!
- 2 如何缓解?
 - > 少给点题,别让它死记硬背这么多东西
 - 多找几个同学来做题,综合一下他们的答案

□ Bagging

- 用一个算法
 - 不用全部的数据集,每次取一个子集训练一个模型
 - 分类:用这些模型的结果做vote
 - 回归:对这些模型的结果取平均
- ❷ 用不同的算法
 - ▶ 用这些模型的结果做vote 或 求平均

□ Stacking

> 用多种predictor结果作为特征训练

Concept Diagram of Stacking

☐ Stacking

用多种predictor结果作为特征训练

$$\hat{y}_1 = f_1(x_1, x_2, \cdots)$$
 $\hat{y}_2 = f_2(x_1, x_2, \cdots)$
 \vdots
 $\hat{y}_e = sign(\sum \alpha_i \hat{y}_i)$
 $f_e() = majority - 等价于vote(majority vote)$
 $f_e() = linear - 等价于加权平均$

□ Stacking

用多种predictor结果作为特征训练

$$\hat{y}_1 = f_1(x_1, x_2, \cdots)$$
 $\hat{y}_2 = f_2(x_1, x_2, \cdots)$
 \vdots
 $\hat{y}_e = sign(\sum \alpha_i \hat{y}_i)$
 $f_e() = majority - 等价于vote(majority vote)$
 $f_e() = linear - 等价于加权平均$

☐ Adaboost

- 考得不好的原因是什么?
 - 还不够努力,练习题要多次学习
 - 重复迭代和训练
 - > 时间分配要合理,要多练习之前做错的题
 - 每次分配给分错的样本更高的权重
 - 我不聪明,但是脚踏实地,用最简单的知识不断积累, 成为专家
 - 最简单的分类器的叠加

☐ Adaboost

☐ Adaboost

Combined classifier

1-node decision trees "decision stumps" very simple classifiers

☐ Gradient Boosting Tree

● 和Adaboost思路类似,解决回归问题

Learn a simple predictor...

100 50 -100 -100 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

Then try to correct its errors

☐ Gradient Boosting Tree

Bagging Methods vs. Boosting Methods

	learner弱依赖Methods eg.Bagging	learner强依赖Methods eg.Boosting
方法	1.部分数据/部分参数/1或N个算法训练model 2.上述多个model的组合	1.训练基础算法,后续算法利用前面算法结果重点处理错误case 2.上述多个stage的组合
流程	$\{w_n^{(1)}\}\} \qquad \{w_n^{(2)}\}\} \qquad \cdots \qquad \{w_n^{(M)}\}\}$ $y_1(\mathbf{x}) \qquad y_2(\mathbf{x}) \qquad y_M(\mathbf{x})$ $Y_M(\mathbf{x}) = \operatorname{sign}\left(\sum_{m}^{M} \alpha_m y_m(\mathbf{x})\right)$	$\{w_n^{(1)}\}$ $\{w_n^{(2)}\}$ \dots $\{w_n^{(M)}\}$ $y_1(\mathbf{x})$ $y_2(\mathbf{x})$ $y_M(\mathbf{x})$ $Y_M(\mathbf{x}) = \operatorname{sign}\left(\sum_{m}^{M} \alpha_m y_m(\mathbf{x})\right)$
偏差-方差分析	Bagging主要关注 降低方差 因此在不剪枝DT,Neural Network等易受样本扰动影响learner效果更明显	Boosting主要关注 降低偏差 因此Boosting基于泛化能力相当弱的learner构建很强的集成
适用范围	高噪声	低噪声
串行并行	并行 Bagging的各个预测函数没有权重,各个预测函数可以并行生成	串行 Boosting是有权重的,各个预测函数只能顺序生成
样例	Random Forest	AdaBoost GDBT