$$J_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \, \Gamma(\nu+k+1)} \left(\frac{z}{2}\right)^{2k}$$
 (17.1.2a)

$$j_n(z) = \sqrt{\frac{\pi}{2z}} \left(\frac{z}{2}\right)^{n+\frac{1}{2}} \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \,\Gamma((n+\frac{1}{2})+k+1)} \left(\frac{z}{2}\right)^{2k}$$
(17.1.12a)

$$J_{\nu}(z) = \frac{e^{-Iz} \left(\frac{z}{2}\right)^{\nu}}{\Gamma(\nu+1)} \sum_{k=0}^{\infty} \frac{\left(\nu + \frac{1}{2}\right)_{k} (2i)^{k} z^{k}}{(2\nu+1)_{k} k!}$$
(17.1.22)

$$j_n(z) = \frac{\sqrt{\pi}}{(2n+1)\Gamma(n+\frac{1}{2})} \left(\frac{z}{2}\right)^n \sum_{k=0}^{\infty} \frac{\frac{1}{(n+\frac{3}{2})_k} \left(\frac{-z^2}{4}\right)^k}{k!}$$
(17.1.25)

$$j_n(z) = \frac{\sqrt{\pi}e^{-Iz}}{(2n+1)\Gamma(n+\frac{1}{2})} \left(\frac{z}{2}\right)^n \sum_{k=0}^{\infty} \frac{\frac{(n+1)_k}{(2n+2)_k} (2iz)^k}{k!}$$
(17.1.26)

$$J_{\nu}(z) = \sqrt{\frac{2}{\pi z}} \left(\frac{(-1)^{k} (\nu, 2k)}{(2z)^{2k}} \cos \left(z - \left(\frac{\nu}{2} + \frac{1}{4} \right) \pi \right) - \frac{(-1)^{k} (\nu, 2k+1)}{(2z)^{2k+1}} \sin \left(z - \left(\frac{\nu}{2} + \frac{1}{4} \right) \pi \right) \right), z \to \infty$$
(17.1.28)

$$Y_{\nu}(z) = \sqrt{\frac{2}{\pi z}} \left(\frac{(-1)^{k} (\nu, 2k)}{(2z)^{2k}} \sin\left(z - \left(\frac{\nu}{2} + \frac{1}{4}\right)\pi\right) + \frac{(-1)^{k} (\nu, 2k+1)}{(2z)^{2k+1}} \cos\left(z - \left(\frac{\nu}{2} + \frac{1}{4}\right)\pi\right) \right), z \to \infty$$
(17.1.29)

$$\frac{J_{\nu+1}(z)}{J_{\nu}(z)} = \frac{\frac{z}{2\nu+2}}{1} + \prod_{m=2}^{\infty} \frac{\frac{(iz)^2}{4(\nu+m-1)(\nu+m)}}{1}$$
(17.1.38)

$$\frac{\mathbf{j}_{n+1}(z)}{\mathbf{j}_n(z)} = \frac{\frac{z}{2n+3}}{1} + K \sum_{m=2}^{\infty} \frac{\frac{(iz)^2}{4(n+\frac{1}{2}+m-1)(n+\frac{1}{2}+m)}}{1}$$
(17.1.39)

$$\frac{J_{\nu+1}(z)}{J_{\nu}(z)} = -1 \prod_{m=1}^{\infty} \frac{-1}{\frac{2(\nu+m)}{z}}$$
(17.1.40)

$$\frac{H_{\nu+1}^{(1)}(z)}{H_{\nu}^{(1)}(z)} = \frac{-1}{1} + \prod_{m=2}^{\infty} \frac{\frac{m-3-2\nu}{-2iz}}{1}$$
(17.1.44)

$$\frac{J_{\nu+1}(z)}{J_{\nu}(z)} = \frac{z}{2\nu + 2 - iz} + \prod_{m=2}^{\infty} \frac{(2\nu + 2m - 1)iz}{2\nu + m + 1 - (2i)z}$$
(17.1.48)

$$\frac{\mathbf{j}_{n+1}(z)}{\mathbf{j}_n(z)} = \frac{z}{2n+3-iz} + \prod_{m=2}^{\infty} \frac{2(n+m)iz}{2n+m+2-(2i)z}$$
(17.1.49)

$$\frac{H_{\nu+1}^{(1)}(z)}{H_{\nu}^{(1)}(z)} = \frac{2\nu + 1 - 2iz}{2z} - \frac{1}{z} \prod_{m=1}^{\infty} \frac{\nu^2 - \frac{(2m-1)^2}{4}}{2(iz - m)}$$
(17.1.51)