

### CMT2310A寄存器说明

#### 概要

本应用文档为使用 CMT2310A 进行产品开发的用户提供寄存器介绍,以方便用户在使用过程查阅各寄存器的说明及用法。

本文档涵盖的产品型号如下表所示。

表 1. 本文档涵盖的产品型号

| 产品型号     | 工作频率           | 调制方式          | 主要功能  | 配置方式 | 封装    |
|----------|----------------|---------------|-------|------|-------|
| CMT2310A | 117 - 1050 MHz | (4)(G)FSK/OOK | 收发一体机 | 寄存器  | QFN24 |

用户需要结合阅读以下的应用文档,以了解全部的信息来辅助软硬件开发。

《AN238 CMT2310A 射频参数配置指南》

《AN235 CMT2310A FIFO 和包格式使用指南》

《AN237 CMT2310A 快速上手指南》

《AN239 CMT2310A 自动收发功能使用指南》

# 目 录

| 1 | 芯片寄 | ·存器介绍            |            | 3  |
|---|-----|------------------|------------|----|
|   | 1.1 | PAGE 0, 控制寄存器(0x | 00 - 0x27) | 3  |
|   | 1.2 | PAGE 0, 配置寄存器(0x | 28 - 0x77) | 13 |
|   | 1.3 | PAGE 1, 配置寄存器(0x | 00 - 0x68) | 25 |
|   |     |                  |            | 26 |
| 3 | 联系方 | 式                |            | 27 |

# 1 芯片寄存器介绍

#### 1.1 PAGE 0, 控制寄存器(0x00 - 0x27)

这个区域的寄存器,主要用于控制芯片的模式跳转,和操作芯片的中断机制。

表 2. PAGE 0 (0x00 - 0x27) 控制寄存器说明

| 寄存器名      | 位数  | R/W  | 比特名                  | 功能说明                       |
|-----------|-----|------|----------------------|----------------------------|
| CTL_REG_0 | 7.0 | \\\  | PU_BOOT <7:0>        | 发送 0x03 会让芯片从 IDLE 状态进行上电, |
| (0x00)    | 7:0 | W    | FU_BOO1 <7.0>        | 上电完成后停留在 SLEEP 状态。         |
|           |     |      |                      | 芯片切换状态的命令:                 |
|           |     |      |                      | 00000001: go_sleep         |
|           |     |      |                      | 00000010: go_ready         |
| CTL_REG_1 | 7:0 | w    | CHIP_MODE_SW<7:0>    | 00000100: go_tx            |
| (0x01)    | 7.0 | VV   | CHIP_IVIODE_SVV<7.0> | 00001000: go_rx            |
|           |     |      |                      | 00010000: go_tfs           |
|           |     |      |                      | 00100000: go_rfs           |
|           |     |      |                      | 除了以上的6个值,其余的值无效。           |
| CTL_REG_2 | 7:0 | W    | FIFO_RW_PORT<7:0>    | 这不是一个寄存器,而是进行 FIFO 读写操     |
| (0x02)    | 7.0 | VV   | FIFO_RW_FORT<7.0>    | 作的端口,详情请参阅串口操作说明。          |
| CTL_REG_3 | 7:0 | 10/  | W REG CRW PORT<7:0>  | 这不是一个寄存器,而是进行寄存器批量读        |
| (0x03)    | 7.0 | VV   | REG_CRW_PORT<7:0>    | 写操作的端口,详情请参阅串口操作说明。        |
|           | 6   | RW   | TX_DIN_EN            | 0: 屏蔽发射数据从 GPIO 输入         |
|           |     |      |                      | 1: 使能发射数据从 GPIO 输入         |
|           |     |      | RW GPIO1_SEL<2:0>    | 选择 GPIO1 的功能:              |
|           |     | DW.  |                      | 000: DCLK                  |
|           | 5:3 |      |                      | 001: INT1                  |
|           | 5.5 | KVV  |                      | 010: INT2                  |
| CTL_REG_4 |     |      |                      | 011: DOUT                  |
| (0x04)    |     |      |                      | 其余选项: NA                   |
|           |     |      |                      | 选择 GPIO1 的功能:              |
|           |     |      |                      | 000: DOUT                  |
|           | 2:0 | RW   | GPIO0_SEL<2:0>       | 001: INT1                  |
|           | 2.0 | IXVV | GI IOU_GLE\2.02      | 010: INT2                  |
|           |     |      |                      | 011: DCLK                  |
|           |     |      |                      | 其余选项: NA                   |
|           |     |      |                      | 选择发射数据从哪个 GPIO 输入:         |
| CTL_REG_5 | 7:6 | RW   | TX_DIN_SEL<1:0>      | 00: GPIO3                  |
| (0x05)    | 7.0 | 1200 | IX_DIN_SEL<1:0>      | 01: GPIO4                  |
|           |     |      |                      | 10: NA                     |

| 寄存器名      | 位数  | R/W  | 比特名            | 功能说明                           |
|-----------|-----|------|----------------|--------------------------------|
|           |     |      |                | 11: NIRQ                       |
|           |     |      |                | 选择 GPIO3 的功能:                  |
|           |     |      |                | 000: INT2                      |
|           |     |      |                | 001: INT1                      |
|           | 5:3 | RW   | GPIO3_SEL<2:0> | 010: DCLK                      |
|           |     |      |                | 011: DOUT                      |
|           |     |      |                | 101: DIN                       |
|           |     |      |                | 其余选项: NA                       |
|           |     |      |                | 选择 GPIO2 的功能:                  |
|           |     |      |                | 000: INT1                      |
|           | 0.0 | D\A/ | 00,00          | 001: INT2                      |
|           | 2:0 | RW   | GPIO2_SEL<2:0> | 010: DCLK                      |
|           |     |      |                | 011: DOUT                      |
|           |     |      |                | 其余选项: NA                       |
|           |     |      |                | 将 GPIO4 设置为数字时钟输出:             |
|           |     | DW   | DIG_CLKOUT_EN  | 0: 屏蔽                          |
|           | 6   | RW   |                | 1: 输出                          |
|           |     |      |                | 该功能的优先级高于 GPIO4 的其它配置。         |
|           |     | RW   | GPIO5_SEL<2:0> | 选择 GPIO5 的功能:                  |
|           |     |      |                | 000: RSTn                      |
|           |     |      |                | 001: INT1                      |
|           | 5:3 |      |                | 010: INT2                      |
| CTL_REG_6 |     |      |                | 011: DOUT                      |
| (0x06)    |     |      |                | 100: DCLK                      |
|           |     |      |                | 其余选项: NA                       |
|           |     |      |                | 选择 GPIO4 的功能:                  |
|           |     |      |                | 000: DOUT                      |
|           |     |      |                | 001: INT1                      |
|           | 2:0 | RW   | GPIO4_SEL<2:0> | 010: INT2                      |
|           |     |      |                | 011: DCLK                      |
|           |     |      |                | 101: DIN                       |
|           |     |      |                | 其余选项: NA                       |
|           |     |      |                | 选择从 GPIO 输出 INT1 的模式:          |
|           | 7   | RW   | INT1_TYPE_SEL  | 0: 模式 1, 输出某一个中断源              |
|           |     |      |                | 1: 模式 2, 输出全部中断源相或的结果          |
| CTL_REG_7 |     |      |                | 选择从 GPIO 输出 INT2 的模式:          |
| (0x07)    | 6   | RW   | INT2_TYPE_SEL  | 0: 模式 1, 输出某一个中断源              |
| (0x07)    |     |      |                | 1: 模式 2, 输出全部中断源相或的结果          |
|           |     |      |                | 将 GPIO2 和 GPIO3 设为 LFXO 的两只管脚: |
|           | 5   | RW   | LFXO_PAD_EN    | 0: 屏蔽                          |
|           |     |      |                | 1: 使能                          |

| 寄存器名       | 位数  | R/W   | 比特名                  | 功能说明                       |
|------------|-----|-------|----------------------|----------------------------|
|            |     |       |                      | 该功能优先级高于 GPIO2 和 GPIO3 的其它 |
|            |     |       |                      | 配置。                        |
|            |     |       |                      | 让芯片正在执行的 API 停止。           |
|            | 4   | RW    | API_STOP             | 0: API 进行                  |
|            |     |       |                      | 1: API 停止                  |
|            |     |       |                      | 将芯片的 SPI 接口切换为 3 线模式:      |
|            | 3   | RW    | SPI_3W_EN            | 0: 4 线模式                   |
|            |     |       |                      | 1: 3 线模式                   |
|            |     |       |                      | 选择 NIRQ 的功能:               |
|            |     |       |                      | 000: INT1                  |
|            |     |       |                      | 001: INT2                  |
|            | 2:0 | RW    | NIRQ_SEL<2:0>        | 010: DCLK                  |
|            |     |       |                      | 011: DOUT                  |
|            |     |       |                      | 101: DIN                   |
|            |     |       |                      | 其余选项: NA                   |
| CTL_REG_8  | 0.0 | 147   | 151 0145 0.0         | API 命令输入接口                 |
| (0x08)     | 6:0 | W     | API_CMD<6:0>         |                            |
| CTL_REG_9  | 7   | R     | API_CMD_FLAG         | API 命令标志                   |
| (0x09)     | 6:0 | R     | API_RESP<6:0>        | API 命令执行后的反馈或应答            |
|            |     |       |                      | 芯片当前状态:                    |
|            |     |       |                      | 00000000: IDLE             |
|            |     |       |                      | 10000001: SLEEP            |
|            |     |       |                      | 10000010: READY            |
| CTL_REG_10 |     |       | OUUD 140DE 074 70    | 10000100: RFS              |
| (0x0A)     | 7:0 | R     | CHIP_MODE_STA<7:0>   | 10001000: TFS              |
|            |     |       |                      | 10010000: RX               |
|            |     |       |                      | 10100000: TX               |
|            |     |       |                      | IDLE 状态为芯片接通电源后, 无任何操作的    |
|            |     |       |                      | 状态。其余值无效。                  |
| CTL_REG_11 |     | D)4/  |                      | 自动跳频完成次数。                  |
| (0x0B)     | 7:0 | RW    | FREQ_DONE_TIMES<7:0> | 有效范围是 0 到 63               |
| CTL_REG_12 | 7.0 | D) 47 | EDEO 0040E 7.0       | 自动跳频的频道间隔。                 |
| (0x0C)     | 7:0 | RW    | FREQ_SPACE<7:0>      |                            |
| CTL_REG_13 | 7.0 | Ditt  | EDEO TIMEO 7.0       | 自动跳频次数。                    |
| (0x0D)     | 7:0 | RW    | FREQ_TIMES<7:0>      | 有效范围是 1 到 64               |
|            |     |       |                      | RX 自动跳频设置:                 |
|            | 1   | RW    | RX_HOP_PERSIST       | 0: 完成设定的次数                 |
| CTL_REG_14 |     |       |                      | 1: 一直进行                    |
| (0x0E)     |     |       |                      | RX 自动跳频时,每次进入 RX 状态超时后,    |
|            | 0   | RW    | FREQ_SW_STATE        | 用户可选择退回到某个状态,再重新回到RX       |
|            |     |       |                      | 状态继续下一个频道的接收:              |

| 寄存器名       | 位数  | R/W | 比特名           | 功能说明                                       |
|------------|-----|-----|---------------|--------------------------------------------|
|            |     |     |               | 0: 退回 READY 状态                             |
|            |     |     |               | 1: 退回 RFS 状态                               |
|            |     |     |               | INT1 为模式 1 时,中断源头的选择:                      |
|            |     |     |               | 000000: NA                                 |
|            |     |     |               | 000001: NA                                 |
|            |     |     |               | 000010: RSSI_PJD_VALID                     |
|            |     |     |               | 000011: PREAM_PASS                         |
|            |     |     |               | 000100: SYNC_PASS                          |
|            |     |     |               | 000101: ADDR_PASS                          |
|            |     |     |               | 000110: CRC_PASS                           |
|            |     |     |               | 000111: PKT_DONE                           |
|            |     |     |               | 001000: SLEEP_TMO                          |
|            |     |     |               | 001001: RX_TMO                             |
|            |     |     |               | 001010: RX_FIFO_NMTY                       |
|            |     |     |               | 001011: RX_FIFO_TH                         |
|            |     |     |               | 001100: RX_FIFO_FULL                       |
|            |     |     |               | 001101: RX_FIFO_WBYTE                      |
|            |     |     |               | 001110: RX_FIFO_OVF                        |
|            |     |     |               | 001111: TX_DONE                            |
| CTL_REG_16 | 5:0 | RW  | INT1_SEL<5:0> | 010000: TX_FIFO_NMTY                       |
| (0x10)     | 0.0 |     |               | 010001: TX_FIFO_TH                         |
|            |     |     |               | 010010: TX_FIFO_FULL                       |
|            |     |     |               | 010011: STATE_IS_READY                     |
|            |     |     |               | 010100: STATE_IS_FS                        |
|            |     |     |               | 010101: STATE_IS_RX                        |
|            |     |     |               | 010110: STATE_IS_TX                        |
|            |     |     |               | 010111: DC_FREE_ERR                        |
|            |     |     |               | 011000: LBD_STATUS                         |
|            |     |     |               | 011001: NA                                 |
|            |     |     |               | 011010: API_CMD_FAILED                     |
|            |     |     |               | 011011: API_DONE                           |
|            |     |     |               | 011100: TX_DC_MAX                          |
|            |     |     |               | 011101: ACK_RECV_FAILED                    |
|            |     |     |               | 011110: TX_RESEND_MAX<br>011111: NACK_RECV |
|            |     |     |               |                                            |
|            |     |     |               | 100000: SEQ_MATCH                          |
|            |     |     |               | 100001: CSMA_MAX<br>100010: CCA_STATUS     |
|            |     |     |               |                                            |
| OTL DEC 47 | 7   | DW  | INT1 DOLAD    | 中断 1 的极性:                                  |
| CTL_REG_17 | 7   | RW  | INT1_POLAR    | 0: 高有效<br>1: 低有效                           |
| (0x11)     |     | DW  | INTO DOLAD    |                                            |
|            | 6   | RW  | INT2_POLAR    | 中断 2 的极性:                                  |

| 寄存器名       | 位数  | R/W  | 比特名                  | 功能说明                    |
|------------|-----|------|----------------------|-------------------------|
|            |     |      |                      | 0: 高有效                  |
|            |     |      |                      | 1: 低有效                  |
|            |     |      |                      | INT2 为模式 1 时,中断源头的选择:   |
|            |     |      |                      | 000000: NA              |
|            |     |      |                      | 000001: NA              |
|            |     |      |                      | 000010: RSSI_PJD_VALID  |
|            |     |      |                      | 000011: PREAM_PASS      |
|            |     |      |                      | 000100: SYNC_PASS       |
|            |     |      |                      | 000101: ADDR_PASS       |
|            |     |      |                      | 000110: CRC_PASS        |
|            |     |      |                      | 000111: PKT_DONE        |
|            |     |      |                      | 001000: SLEEP_TMO       |
|            |     |      |                      | 001001: RX_TMO          |
|            |     |      |                      | 001010: RX_FIFO_NMTY    |
|            |     |      |                      | 001011: RX_FIFO_TH      |
|            |     |      |                      | 001100: RX_FIFO_FULL    |
|            |     |      |                      | 001101: RX_FIFO_WBYTE   |
|            |     |      |                      | 001110: RX_FIFO_OVF     |
|            |     |      | INT2_SEL<5:0>        | 001111: TX_DONE         |
|            | 5:0 | RW   |                      | 010000: TX_FIFO_NMTY    |
|            | 5.0 | KVV  |                      | 010001: TX_FIFO_TH      |
|            |     |      | 010010: TX_FIFO_FULL |                         |
|            |     |      |                      | 010011: STATE_IS_READY  |
|            |     |      |                      | 010100: STATE_IS_FS     |
|            |     |      |                      | 010101: STATE_IS_RX     |
|            |     |      |                      | 010110: STATE_IS_TX     |
|            |     |      |                      | 010111: DC_FREE_ERR     |
|            |     |      |                      | 011000: LBD_STATUS      |
|            |     |      |                      | 011001: NA              |
|            |     |      |                      | 011010: API_CMD_FAILED  |
|            |     |      |                      | 011011: API_DONE        |
|            |     |      |                      | 011100: TX_DC_MAX       |
|            |     |      |                      | 011101: ACK_RECV_FAILED |
|            |     |      |                      | 011110: TX_RESEND_MAX   |
|            |     |      |                      | 011111: NACK_RECV       |
|            |     |      |                      | 100000: SEQ_MATCH       |
|            |     |      |                      | 100001: CSMA_MAX        |
|            |     |      |                      | 100010: CCA_STATUS      |
|            | 7   | RW   | SLEEP_TMO_EN         | 0: 屏蔽 SLEEP_TMO 中断      |
| CTL_REG_18 |     | LVAA | OLLEI _ I WO_EIN     | 1: 使能 SLEEP_TMO 中断      |
| (0x12)     | 6   | D\\/ | RX_TMO_EN            | 0: 屏蔽 RX_TMO 中断         |
|            | 0   | RW   |                      | 1: 使能 RX_TMO 中断         |

| 寄存器名       | 位数  | R/W  | 比特名                                   | 功能说明                                                     |
|------------|-----|------|---------------------------------------|----------------------------------------------------------|
|            | 5   | RW   | TX_DONE_EN                            | 0: 屏蔽 TX_DONE 中断                                         |
|            |     | IXVV | TA_DONE_EN                            | 1: 使能 TX_DONE 中断                                         |
|            | 4   | RW   | PREAM_PASS_EN                         | 0: 屏蔽 PREAM_PASS 中断                                      |
|            |     | IXVV | T REAW_I AGG_EN                       | 1: 使能 PREAM_PASS 中断                                      |
|            | 3   | RW   | SYNC_PASS_EN                          | 0: 屏蔽 SYNC_PASS 中断                                       |
|            |     | 1000 | 01110_17100_E11                       | 1: 使能 SYNC_PASS 中断                                       |
|            | 2   | RW   | ADDR_PASS_EN                          | 0: 屏蔽 ADDR_PASS 中断                                       |
|            |     |      | , , , , , , , , , , , , , , , , , , , | 1: 使能 ADDR_PASS 中断                                       |
|            | 1   | RW   | CRC_PASS_EN                           | 0: 屏蔽 CRC_PASS 中断                                        |
|            | •   | 1    | 0.00_1.700_2.10                       | 1: 使能 CRC_PASS 中断                                        |
|            | 0   | RW   | PKT_DONE_EN                           | 0: 屏蔽 PKT_DONE 中断                                        |
|            |     | 1    | THI_BONE_EN                           | 1: 使能 PKT_DONE 中断                                        |
|            | 6   | RW   | PD_FIFO                               | 0:在 SLEEP 状态下保存 FIFO 内容                                  |
|            |     | 1    |                                       | 1:在 SLEEP 状态下不保存 FIFO 内容                                 |
|            | 5   | RW   | FIFO_TH<8>                            | FIFO_TH 的第 8 位。                                          |
|            |     |      | FIFO_AUTO_CLR_RX_EN                   | 配置进入RX前是否自动清除RXFIFO的内                                    |
|            | 4   | RW   |                                       | 容:                                                       |
|            |     |      |                                       | 0: 不清除                                                   |
|            |     |      |                                       | 1: 清除                                                    |
|            | 3   | RW   | FIFO_AUTO_RES_TX_EN                   | 每次发完一个包自动 restore TX FIFO, 如果                            |
|            |     |      |                                       | 每次进入 TX 要重复发送超过 1 个包                                     |
| CTL_REG_19 |     |      |                                       | (TX_PKT_NUM> 0),这个比特必须设成                                 |
| (0x13)     |     |      |                                       | 1.                                                       |
|            |     | RW   | FIFO_TX_TEST_EN                       | 0: TX FIFO 只能用 SPI 写,1: TX FIFO 可                        |
|            | 2   |      |                                       | 被 SPI 读取。该比特只对 TX FIFO 有效,除                              |
|            |     |      |                                       | 了给用户测试时可以使用,其余时候都应该                                      |
|            |     |      |                                       | 设成 0。                                                    |
|            | 1   | RW   | FIFO_MERGE_EN                         | 0: 分成 2 个独立的 128-byte 的 FIFO, 1:                         |
|            |     |      |                                       | 合并成 1 个 256-byte 的 FIFO。                                 |
|            |     |      |                                       | 当 FIFO 为合并模式时,                                           |
|            | 0   | RW   | FIFO_TX_RX_SEL                        | 0: FIFO 用作 TX FIFO                                       |
|            |     |      |                                       | 1: FIFO 用作 RX FIFO                                       |
|            |     |      |                                       | FIFO 的填入阈值,单位是 byte,对 RX 来说,                             |
| CTL_REG_20 |     |      |                                       | 当未读数据超过这个阈值时,                                            |
|            |     |      |                                       | RX_FIFO_TH_FLG 会置 1; 对 TX 来说, 当                          |
|            | 7:0 | RW   | FIFO_TH<7:0>                          | 未发数据小过这个阈值时,<br>TX_FIFO_TH_FLG 会置 0。                     |
| (0x14)     | 1.0 | 1244 | 1 11 0_111<1.02                       | TX_FIFO_TH_FLG 会直 U。<br>  当 FIFO_MERGE_EN = 0 时, 有效范围是 1 |
|            |     |      |                                       | 到 127;                                                   |
|            |     |      |                                       | 当 FIFO_MERGE_EN = 1 时,有效范围是 1                            |
|            |     |      |                                       | 到 255。                                                   |
|            |     | l .  |                                       | ×1 =00°                                                  |

| 寄存器名       | 位数   | R/W  | 比特名                | 功能说明                           |
|------------|------|------|--------------------|--------------------------------|
|            | 6    | DW   | DOCL DID VALID EN  | 0: 屏蔽 RSSI_PJD_VALID 中断        |
|            | 0    | RW   | RSSI_PJD_VALID_EN  | 1: 使能 RSSI_PJD_VALID 中断        |
|            | 5    | RW   | OP_CMD_FAILED_EN   | 0: 屏蔽 API_CMD_FAILED 中断        |
|            | 5    | KVV  | OF_CMD_FAILED_EN   | 1: 使能 API_CMD_FAILED 中断        |
|            | 4    | RW   | RSSI_COLL_EN       | 0: 屏蔽 RSSI_COLL 中断             |
|            | 4    | NVV  | N33I_COLL_EIN      | 1: 使能 RSSI_COLL 中断             |
| CTL_REG_21 | 3    | RW   | DC_FREE_ERR_EN     | 0: 屏蔽 DC_FREE_ERR 中断           |
| (0x15)     | 3    | IXVV | DO_I NEE_ERN_EN    | 1: 使能 DC_FREE_ERR 中断           |
|            | 2    | RW   | LBD_STATUS_EN      | 0: 屏蔽 LBD_STATUS 中断            |
|            |      | 1000 | EBB_GIMICO_EN      | 1: 使能 LBD_STATUS 中断            |
|            | 1    | RW   | LBD_STOP_EN        | 0: 屏蔽 LBD_STOP 中断              |
|            |      | 100  | 255_0101_211       | 1: 使能 LBD_STOP 中断              |
|            | 0    | RW   | LD_STOP_EN         | 0: 屏蔽 LD_STOP 中断               |
|            | Ů    | 100  |                    | 1: 使能 LD_STOP 中断               |
|            | 4    | RW   | TX_DATA_INV        | 0: GPIO 发射数据输入不取反              |
|            |      | 100  | TA_DATA_INV        | 1: GPIO 发射数据输入取反               |
|            | 3    | RW   | PA_DIFF_SEL        | 0: PA 单端模式                     |
|            |      |      |                    | 1: PA 差分模式                     |
| CTL_REG_22 | 2    | RW   | TRX_SWT_INV        | 控制 TX/RX 天线开关的两个输出值:           |
| (0x16)     |      |      |                    | 0: 不取反                         |
|            |      |      |                    | 1: 取反                          |
|            | 1 R\ |      |                    | 将 GPIO0 和 GPIO1 设置为 TX/RX 天线开关 |
|            |      | RW   | TRX_SWT_EN         | 的控制输出。该功能的优先级比                 |
|            |      |      |                    | GPIO0_SEL 和 GPIO1_SEL 要高。      |
|            | 7    | RW   | API_DONE_EN        | 0: 屏蔽 API_DONE 中断              |
|            |      |      |                    | 1: 使能 API_DONE 中断              |
|            | 6    | RW   | CCA_STATUS_EN      | 0: 屏蔽 CCA_STATUS 中断            |
|            |      |      | )                  | 1: 使能 CCA_STATUS 中断            |
|            | 5    | RW   | CSMA_MAX_EN        | 0: 屏蔽 CSMA_MAX 中断              |
|            |      |      |                    | 1: 使能 CSMA_MAX 中断              |
|            | 4    | RW   | TX_DC_MAX_EN       | 0: 屏蔽 TX_DC_MAX 中断             |
| CTL_REG_23 |      |      |                    | 1: 使能 TX_DC_MAX 中断             |
| (0x17)     | 3    | RW   | ACK_RECV_FAILED_EN | 0: 屏蔽 ACK_RECV_FAILED 中断       |
|            |      |      |                    | 1: 使能 ACK_RECV_FAILED 中断       |
|            | 2    | RW   | TX_RESEND_MAX_EN   | 0: 屏蔽 TX_RESEND_MAX 中断         |
|            |      |      |                    | 1: 使能 TX_RESEND_MAX 中断         |
|            | 1    | RW   | NACK_RECV_EN       | 0: 屏蔽 NACK_RECV 中断             |
|            |      |      |                    | 1: 使能 NACK_RECV 中断             |
|            | 0    | RW   | SEQ_MATCH_EN       | 0: 屏蔽 SEQ_MATCH 中断             |
|            |      |      |                    | 1: 使能 SEQ_MATCH 中断             |
| CTL_REG_24 | 5    | R    | SLEEP_TMO_FLG      | SLEEP_TMO 中断标志                 |

| 寄存器名                 | 位数 | R/W | 比特名             | 功能说明                                                                                    |
|----------------------|----|-----|-----------------|-----------------------------------------------------------------------------------------|
| (0x18)               | 4  | R   | RX_TMO_FLG      | RX_TMO 中断标志                                                                             |
|                      | 3  | R   | TX_DONE_FLG     | TX_DONE 中断标志                                                                            |
|                      | 2  | W   | SLEEP_TMO_CLR   | SLEEP_TMO 中断清零<br>0: 无动作<br>1: 清零                                                       |
|                      | 1  | W   | RX_TMO_CLR      | RX_TMO 中断清零<br>0: 无动作<br>1: 清零                                                          |
|                      | 0  | W   | TX_DONE_CLR     | TX_DONE 中断清零<br>0: 无动作<br>1: 清零                                                         |
|                      | 4  | W   | PREAM_PASS_CLR  | PREAM_PASS 中断清零<br>0: 无动作<br>1: 清零                                                      |
|                      | 3  | W   | SYNC_PASS_CLR   | SYNC_PASS 中断清零<br>0: 无动作<br>1: 清零                                                       |
| CTL_REG_25<br>(0x19) | 2  | W   | ADDR_PASS_CLR   | ADDR_PASS 中断清零<br>0: 无动作<br>1: 清零                                                       |
|                      | 1  | W   | CRC_PASS_CLR    | CRC_PASS 中断清零<br>0: 无动作<br>1: 清零                                                        |
|                      | 0  | W   | PKT_DONE_CLR    | PKT_DONE 中断清零<br>0: 无动作<br>1: 清零                                                        |
|                      | 5  | R   | SYNC1_PASS_FLG  | SYNC1_PASS 中断标志                                                                         |
|                      | 4  | R   | PREAM_PASS_FLG  | PREAM_PASS 中断标志                                                                         |
| CTL_REG_26           | 3  | R   | SYNC_PASS_FLG   | SYNC_PASS 中断标志                                                                          |
| (0x1A)               | 2  | R   | ADDR_PASS_FLG   | ADDR_PASS 中断标志                                                                          |
|                      | 1  | R   | CRC_PASS_FLG    | CRC_PASS 中断标志                                                                           |
|                      | 0  | R   | PKT_DONE_FLG    | PKT_DONE 中断标志                                                                           |
|                      | 2  | W   | TX_FIFO_RESTORE | 提供用户手动 restore TX FIFO 功能。restore 的意思是复位读指针,维持写指针不变,这样 TX FIFO 又回到未读状态,可以再次重复发射之前填入的数据。 |
| CTL_REG_27<br>(0x1B) | 1  | W   | RX_FIFO_CLR     | 0: 无效, 1: 清零 RX FIFO。<br>用户将这个比特设成 1 之后, 无需将它再设<br>回 0, 这个比特在内部会自动设回为 0。                |
|                      | 0  | W   | TX_FIFO_CLR     | 0: 无效, 1: 清零 TX FIFO 用户将这个比特设成 1 之后, 无需将它再设回 0, 这个比特在内部会自动设回为 0。                        |

| 寄存器名       | 位数 | R/W | 比特名               | 功能说明                         |
|------------|----|-----|-------------------|------------------------------|
|            |    |     | RX_FIFO_FULL_FLG  | 指示 RX FIFO 填满的中断。            |
|            | 7  | R   |                   | 0: 无效                        |
|            |    |     |                   | 1: 有效                        |
|            |    |     |                   | 指示 RX FIFO 非空的中断标志位。         |
|            | 6  | R   | RX_FIFO_NMTY_FLG  | 0: 无效                        |
|            |    |     |                   | 1: 有效                        |
|            |    |     |                   | 指示 RX FIFO 未读内容超过 FIFO TH 的中 |
|            | _  | _   | DV FIEO TH FLO    | 断。                           |
|            | 5  | R   | RX_FIFO_TH_FLG    | 0: 无效                        |
|            |    |     |                   | 1: 有效                        |
| OT! DEC 00 |    |     |                   | 指示 RX FIFO 溢出的中断。            |
| CTL_REG_28 | 3  | R   | RX_FIFO_OVF_FLG   | 0: 无效                        |
| (0x1C)     |    |     |                   | 1: 有效                        |
|            |    |     |                   | 指示 TX FIFO 非空的中断。            |
|            | 2  | R   | TX_FIFO_FULL_FLG  | 0: 无效                        |
|            |    |     |                   | 1: 有效                        |
|            | 1  | R   | TX_FIFO_NMTY_FLG  | 指示 TX FIFO 非空的中断。            |
|            |    |     |                   | 0: 无效                        |
|            |    |     |                   | 1: 有效                        |
|            | 0  | R   | TX_FIFO_TH_FLG    | 指示 TX FIFO 未读内容超过 FIFO TH 的中 |
|            |    |     |                   | 断。                           |
|            |    |     |                   | 0: 无效                        |
|            |    |     |                   | 1: 有效                        |
|            |    |     |                   | OP_CMD_FAILED 中断清零           |
|            | 3  | W   | OP_CMD_FAILED_CLR | 0: 无动作                       |
|            |    |     |                   | 1: 清零                        |
| CTL_REG_29 |    |     |                   | DC_FREE_ERR 中断清零             |
| (0x1D)     | 1  | W   | DC_FREE_ERR_CLR   | 0: 无动作                       |
| (OXID)     |    |     |                   | 1: 清零                        |
|            |    |     |                   | LBD_STATUS 中断清零              |
|            | 0  | W   | LBD_STATUS_CLR    | 0: 无动作                       |
|            |    |     |                   | 1: 清零                        |
|            | 3  | R   | OP_CMD_FAILED_FLG | OP_CMD_FAILED 中断标志           |
| CTL_REG_30 | 2  | R   | RSSI_COLL_FLG     | RSSI_COLL 中断标志               |
| (0x1E)     | 1  | R   | DC_FREE_ERR_FLG   | DC_FREE_ERR 中断标志             |
|            | 0  | R   | LBD_STATUS_FLG    | LBD_STATUS 中断标志              |
|            |    |     |                   | API_DONE 中断清零                |
| CTL_REG_31 | 7  | W   | API_DONE_CLR      | 0: 无动作                       |
| (0x1F)     |    |     |                   | 1: 清零                        |
| (0,117)    | 6  | \// | CCA_STATUS_CLR    | CCA_STATUS 中断清零              |
|            | 6  | W   | CCA_STATUS_CLK    | 0: 无动作                       |

| 寄存器名                 | 位数  | R/W | 比特名                 | 功能说明                                                                                                                                                                                                                         |
|----------------------|-----|-----|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |     |     |                     | 1: 清零                                                                                                                                                                                                                        |
|                      |     |     |                     | CSMA_MAX 中断清零                                                                                                                                                                                                                |
|                      | 5   | W   | CSMA_MAX_CLR        | 0: 无动作                                                                                                                                                                                                                       |
|                      |     |     |                     | 1: 清零                                                                                                                                                                                                                        |
|                      |     |     |                     | TX_DC_MAX 中断清零                                                                                                                                                                                                               |
|                      | 4   | W   | TX_DC_MAX_CLR       | 0: 无动作                                                                                                                                                                                                                       |
|                      |     |     |                     | 1: 清零                                                                                                                                                                                                                        |
|                      |     |     |                     | ACK_RECV_FAILED 中断清零                                                                                                                                                                                                         |
|                      | 3   | W   | ACK_RECV_FAILED_CLR | 0: 无动作                                                                                                                                                                                                                       |
|                      |     |     |                     | 1: 清零                                                                                                                                                                                                                        |
|                      |     |     |                     | TX_RESEND_MAX 中断清零                                                                                                                                                                                                           |
|                      | 2   | W   | TX_RESEND_MAX_CLR   | 0: 无动作                                                                                                                                                                                                                       |
|                      |     |     |                     | 1: 清零                                                                                                                                                                                                                        |
|                      |     |     |                     | NACK_RECV 中断清零                                                                                                                                                                                                               |
|                      | 1   | W   | NACK_RECV_CLR       | 0: 无动作                                                                                                                                                                                                                       |
|                      |     |     |                     | 1: 清零                                                                                                                                                                                                                        |
|                      |     | 147 | OFO MATOULOUP       | SEQ_MATCH 中断清零                                                                                                                                                                                                               |
|                      | 0   | W   | SEQ_MATCH_CLR       | 0: 无动作<br>1: 清零                                                                                                                                                                                                              |
|                      | 7   | R   | API_DONE_FLG        |                                                                                                                                                                                                                              |
|                      | 6   | R   | CCA_STATUS_FLG      | API_DONE 中断标志  CCA_STATUS 中断标志                                                                                                                                                                                               |
|                      | 5   | R   | CSMA_MAX_FLG        | CSMA_MAX 中断标志                                                                                                                                                                                                                |
| CTI DEC 22           | 4   | R   | TX_DC_MAX_FLG       | TX_DC_MAX 中断标志                                                                                                                                                                                                               |
| CTL_REG_32<br>(0x20) | 3   | R   | ACK_RECV_FAILED_FLG | ACK_RECV_FAILED 中断标志                                                                                                                                                                                                         |
| (0,20)               | 2   | R   | TX_RESEND_MAX_FLG   | TX_RESEND_MAX 中断标志                                                                                                                                                                                                           |
|                      | 1   | R   | NACK_RECV_FLG       | NACK_RECV 中断标志                                                                                                                                                                                                               |
|                      | 0   | R   | SEQ_MATCH_FLG       | SEQ_MATCH 中断标志                                                                                                                                                                                                               |
| CTL_REG_33           | U   | K   | SEQ_MATCH_FLG       | 在进行自动应答时,载荷已经收到的标志位。                                                                                                                                                                                                         |
| (0x21)               | 1:0 | R   | PAYLOAD_READY<1:0>  | 在近11日初应合时, 软何 L 经收到的你心也。                                                                                                                                                                                                     |
| CTL_REG_34           |     |     |                     | RSSI 的读取值,单位是 dbm。                                                                                                                                                                                                           |
| (0x22)               | 7:0 | R   | RSSI_VALUE<7:0>     | NOSI 的 医巩固, 平也是 ubill。                                                                                                                                                                                                       |
| CTL_REG_35           |     |     |                     | 低电压检测的值。                                                                                                                                                                                                                     |
| (0x23)               | 7:0 | R   | LBD_DATA<7:0>       | 队 电压 便 例 印                                                                                                                                                                                                                   |
| CTL_REG_36           |     |     |                     | 温度检测的值。                                                                                                                                                                                                                      |
| (0x24)               | 7:0 | R   | TEMP_DATA<7:0>      | 価/文位例17日。                                                                                                                                                                                                                    |
| CTL_REG_37           |     |     |                     | 当自动跳频执行时,当前使用的频道值。                                                                                                                                                                                                           |
| (0x25)               | 7:0 | R   | FREQ_CHANL_ACT<7:0> | 一日でないカンスカス日では、一日の区/月日の外担日の                                                                                                                                                                                                   |
| CTL_REG_38           |     |     |                     | RX 模式时接收到的包序列号低 8 位。                                                                                                                                                                                                         |
| (0x26)               | 7:0 | R   | RX_SEQNUM<7:0>      | THE DOCUMENT OF THE OFFICE OF THE OFFI |
| CTL_REG_39           |     |     |                     | RX 模式时接收到的包序列号高 8 位。                                                                                                                                                                                                         |
| (0x27)               | 7:0 | R   | RX_SEQNUM<15:8>     | Dec 135 Marin Chi 71 d In C Ex                                                                                                                                                                                               |
| (OALI)               |     |     |                     |                                                                                                                                                                                                                              |

### 1.2 PAGE 0, 配置寄存器(0x28 - 0x77)

这个区域的寄存器,主要用于配置芯片的包格式,FIFO,和系统运行机制。

表 3. PAGE 0 (0x28 - 0x77) 配置寄存器说明

| 寄存器名                 | 位数  | R/W | 比特名                 | 功能说明                                                                                                                                              |
|----------------------|-----|-----|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | 7:3 | RW  | RX_PREAM_SIZE<4:0>  | RX 模式 Preamble 的长度,可配置为 0-31<br>个单位长度, 0 表示不检测 Preamble, 1<br>表示检测 1 个长度单位的 Preamble, 如此<br>类推。                                                   |
| CTL_REG_40<br>(0x28) | 2   | RW  | PREAM_LENG_UNIT     | Preamble 的长度单位,TX 和 RX 共用:  0: 单位为 8 bits  1: 单位为 4 bits                                                                                          |
|                      | 1:0 | RW  | DATA_MODE<1:0>      | 选择接收和发射的数据模式: 0: Direct 模式 (默认) 1: NA 2: Packet 模式 3: NA                                                                                          |
| CTL_REG_41<br>(0x29) | 7:0 | RW  | TX_PREAM_SIZE<7:0>  | TX 模式 Preamble 的长度,可配置为 0-65535 个单位长度,0 表示不发送                                                                                                     |
| CTL_REG_42<br>(0x2A) | 7:0 | RW  | TX_PREAM_SIZE<15:8> | Preamble,1 表示发送 1 个长度单位的<br>Preamble,如此类推。                                                                                                        |
| CTL_REG_43<br>(0x2B) | 7:0 | RW  | PREAM_VALUE<7:0>    | Preamble 的值,TX 和 RX 共用: 当 PREAM_LEN_UNIT =0 时 8bit 有效, 当 PREAM_LEN_UNIT =1 时只有<3:0>有 效                                                            |
|                      | 7   | RW  | SYNC_MODE_SEL       | Sync 的检测模式:<br>0: 兼容 S2LP 模式<br>1: 兼容 802.15.4 模式                                                                                                 |
| CTL_REG_44<br>(0x2C) | 6:4 | RW  | SYNC_TOL<2:0>       | RX 模式对 Sync Word 检测的容错比特数: 0:不允许有错 1:允许 1bit 接收错误 2:允许 2bits 接收错误 3:允许 3bits 接收错误 4:允许 4bits 接收错误 5:允许 5bits 接收错误 6:允许 6bits 接收错误 7:允许 7bits 接收错误 |
|                      | 3:1 | RW  | SYNC_SIZE<2:0>      | Sync Word 长度:                                                                                                                                     |

| 寄存器名                 | 位数  | R/W | 比特名                   | 功能说明                                           |
|----------------------|-----|-----|-----------------------|------------------------------------------------|
|                      |     |     |                       | 0: 1 byte                                      |
|                      |     |     |                       | 1: 2 bytes                                     |
|                      |     |     |                       | 2: 3 bytes                                     |
|                      |     |     |                       | 3: 4 bytes                                     |
|                      |     |     |                       | 4: 5 bytes                                     |
|                      |     |     |                       | 5: 6 bytes                                     |
|                      |     |     |                       | 6: 7 bytes                                     |
|                      |     |     |                       | 7: 8 bytes                                     |
|                      | 0   | RW  | SYNC_MAN_EN           | Sync Word 的曼切斯特编解码使能:  0: 不使能  1: 使能           |
| CTL_REG_45<br>(0x2D) | 7:0 | RW  | SYNC_VALUE<7:0>       | Sync Word 的值,根据不同的 SYNC_SIZE 设置来填入不同的寄存器,详见下表。 |
| CTL_REG_46<br>(0x2E) | 7:0 | RW  | SYNC_VALUE<15:8>      |                                                |
| CTL_REG_47<br>(0x2F) | 7:0 | RW  | SYNC_VALUE<23:16>     |                                                |
| CTL_REG_48<br>(0x30) | 7:0 | RW  | SYNC_VALUE<31:24>     |                                                |
| CTL_REG_49<br>(0x31) | 7:0 | RW  | SYNC_VALUE<39:32>     |                                                |
| CTL_REG_50<br>(0x32) | 7:0 | RW  | SYNC_VALUE<47:40>     |                                                |
| CTL_REG_51<br>(0x33) | 7:0 | RW  | SYNC_VALUE<55:48>     |                                                |
| CTL_REG_52<br>(0x34) | 7:0 | RW  | SYNC_VALUE<63:56>     |                                                |
| CTL_REG_53<br>(0x35) | 7:0 | RW  | SYNC_FEC_VALUE<7:0>   | Sync_fec 的值,根据不同的 SYNC_SIZE 设置来填入不同的寄存器,详见下表。  |
| CTL_REG_54<br>(0x36) | 7:0 | RW  | SYNC_FEC_VALUE<15:8>  |                                                |
| CTL_REG_55<br>(0x37) | 7:0 | RW  | SYNC_FEC_VALUE<23:16> |                                                |
| CTL_REG_56<br>(0x38) | 7:0 | RW  | SYNC_FEC_VALUE<31:24> |                                                |
| CTL_REG_57<br>(0x39) | 7:0 | RW  | SYNC_FEC_VALUE<39:32> |                                                |
| CTL_REG_58<br>(0x3A) | 7:0 | RW  | SYNC_FEC_VALUE<47:40> |                                                |
| CTL_REG_59<br>(0x3B) | 7:0 | RW  | SYNC_FEC_VALUE<55:48> |                                                |

| 寄存器名                 | 位数  | R/W | 比特名                   | 功能说明                                                                                                                                      |
|----------------------|-----|-----|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| CTL_REG_60<br>(0x3C) | 7:0 | RW  | SYNC_FEC_VALUE<63:56> |                                                                                                                                           |
| CTL_REG_61<br>(0x3D) | 7:0 | RW  | PAYLOAD_LENGTH<7:0>   | 包格式里除 PREAMBLE 和 SYNC 外其他域的长度。payload = length(可选)+                                                                                       |
| CTL_REG_62<br>(0x3E) | 7:0 | RW  | PAYLOAD_LENGTH<15:8>  | address (可选) + fcs1 (可选) + fcs2 (可选) + data。data 收发目的地和数据源都是 FIFO。这个配置可用于定长包和变长包。                                                         |
|                      | 7   | RW  | INTERLEAVE_EN         | 交织使能:<br>0: 不使能<br>1: 使能                                                                                                                  |
|                      | 5   | RW  | LENGTH_SIZE           | 可变包的长度选择: 0: 1 字节, 支持最大长度 255-byte 的可变包 1: 2 字节, 支持最大长度 65535-byte 的可变包                                                                   |
| CTL_REG_63           | 4   | RW  | PAGGYBACKING_EN       | <ul><li>自动应答包是否搭载 payload:</li><li>0: 不搭载</li><li>1: 搭载</li></ul>                                                                         |
| (0x3F)               | 2   | RW  | ADDR_LEN_CONF         | 在可变包中, Node ID 和 Length Byte 的位置关系 0: Node ID 在 length Byte 之前 1: Node ID 在 length Byte 之后                                                |
|                      | 1   | RW  | PAYLOAD_BIT_ORDER     | 0: 先对 payload+CRC 每个 byte MSB 进行编解码<br>1: 先对 payload+CRC 每个 byte LSB 进行编解码                                                                |
|                      | 0   | RW  | PKT_TYPE              | 包长类型<br>0: 固定包长<br>1: 可变包长                                                                                                                |
|                      | 7   | RW  | SYNC_VALUE_SEL        | SYNC_MODE_SEL 为 0 时有效。<br>0:选择 SYNC_VALUE<br>1:选择 SYNC_FEC_VALUE                                                                          |
| CTL_REG_64<br>(0x40) | 6   | RW  | ADDR_SPLIT_MODE       | 地址分离模式配置 0: 仅 DEST ADDR 域。这时 NODE_ADDR 仅用于 DEST ADDR; 1: DEST ADDR 域+SRC ADDR 域。这时 NODE_ADDR 高 16 比特用于配置 DEST ADDR; 低 16 比特用于配置 SRC ADDR。 |
|                      | 5   | RW  | ADDR_FREE_EN          | 在 RX 模式下, 让 ADDR 检测电路独立出来的使能位。  0: 不使能                                                                                                    |

| 寄存器名                 | 位数  | R/W | 比特名                  | 功能说明                                                                                                                                                                                                            |
|----------------------|-----|-----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |     |     |                      | 1: 使能                                                                                                                                                                                                           |
|                      | 4   | RW  | ADDR_ERR_MASK        | ADDR 检测错误,会输出 PKT_ERR 中断,同时可同步复位解码电路,该比特控制是否进行同步复位。 0: 允许同步复位 1: 不同步复位                                                                                                                                          |
|                      | 3:2 | RW  | ADDR_SIZE<1:0>       | ADDR 的长度: 0: 1 byte 1: 2 bytes 2: 3 bytes 3: 4 bytes ADDR_SPLIT_MODE 为 1 时,表示 DEST ADDR 域 + SRC ADDR 域各占 1~2 bytes                                                                                              |
|                      | 1:0 | RW  | ADDR_ DET_MODE <1:0> | ADDR 的检测模式: 0: 不检测 1: TX 模式发送 ADDR_VALUE 的内容; RX 模式仅识别 ADDR_VALUE 的内容 2: TX 模式发送 ADDR_VALUE 的内容; RX 模式仅识别 ADDR_VALUE 的内容和全 0 3: TX 模式发送 ADDR_VALUE 的内容; RX 模式仅识别 ADDR_VALUE 的内容; RX 模式仅识别 ADDR_VALUE 的内容,全0和全 1 |
| CTL_REG_65<br>(0x41) | 7:0 | RW  | ADDR_VALUE<7:0>      | ADDR 的值,可配置 1~4bytes 长度内容                                                                                                                                                                                       |
| CTL_REG_66<br>(0x42) | 7:0 | RW  | ADDR_VALUE<15:8>     |                                                                                                                                                                                                                 |
| CTL_REG_67<br>(0x43) | 7:0 | RW  | ADDR_VALUE<23:16>    |                                                                                                                                                                                                                 |
| CTL_REG_68<br>(0x44) | 7:0 | RW  | ADDR_VALUE<31:24>    |                                                                                                                                                                                                                 |
| CTL_REG_69<br>(0x45) | 7:0 | RW  | ADDR_BITMASK<7:0>    | 地址比特掩码。设置的掩码比特,对应的<br>ADDR 不做比较。                                                                                                                                                                                |
| CTL_REG_70<br>(0x46) | 7:0 | RW  | ADDR_BITMASK<7:0>    | ADDR_SPLIT_MODE 为 0 时,仅用于<br>DEST ADDR 域;                                                                                                                                                                       |
| CTL_REG_71<br>(0x47) | 7:0 | RW  | ADDR_BITMASK<7:0>    | ADDR_SPLIT_MODE 为 1 时, 高 16 比特用于配置 DEST ADDR; 低 16 比特用于配                                                                                                                                                        |
| CTL_REG_72<br>(0x48) | 7:0 | RW  | ADDR_BITMASK<7:0>    | 置 SRC ADDR。                                                                                                                                                                                                     |
| CTL_REG_73<br>(0x49) | 7:6 | RW  | CRC_SIZE<1:0>        | CRC 域校验码字节数 0: 1 字节                                                                                                                                                                                             |

| 寄存器名       | 位数  | R/W  | 比特名              | 功能说明                |
|------------|-----|------|------------------|---------------------|
|            |     |      |                  | 1: 2字节              |
|            |     |      |                  | 2: 3字节              |
|            |     |      |                  | 3: 4字节              |
|            |     |      |                  | CRC 的收发顺序:          |
|            | 5   | RW   | CRC_BYTE_SWAP    | 0: 先收发高字节           |
|            |     |      |                  | 1: 先收发低字节           |
|            |     |      |                  | CRC 码是否取反:          |
|            | 4   | RW   | CRC_BIT_INV      | 0: CRC code 不取反     |
|            |     |      |                  | 1: CRC code 逐位取反    |
|            |     |      |                  | CRC 的计算范围:          |
|            | 3   | RW   | CRC_RANGE        | 0: 整个 payload       |
|            |     |      |                  | 1: 仅为 data          |
|            | 2   | RW   | CRC_REFIN        | CRC 计算时输入字节的比特顺序反转。 |
|            |     |      |                  |                     |
|            |     |      |                  | CRC 收发的高低比特顺序:      |
|            | 1   | RW   | CRC_BIT_ORDER    | 0: 先收发高 bit         |
|            |     |      |                  | 1: 先收发低 bit         |
|            |     |      |                  | CRC 使能              |
|            | 0   | RW   | CRC_EN           | 0: 不使能              |
|            |     |      |                  | 1: 使能               |
| CTL_REG_74 | 7:0 | RW   | CRC_SEED<7:0>    | CRC 多项式的初始值         |
| (0x4A)     |     |      | _                |                     |
| CTL_REG_75 | 7:0 | RW   | CRC_SEED<15:8>   |                     |
| (0x4B)     |     |      |                  |                     |
| CTL_REG_76 | 7:0 | RW   | CRC_SEED<23:16>  |                     |
| (0x4C)     |     |      |                  |                     |
| CTL_REG_77 | 7:0 | RW   | CRC_SEED<31:24>  |                     |
| (0x4D)     |     |      | _                |                     |
| CTL_REG_78 | 7:0 | RW   | CRC_POLY<7:0>    | CRC 计算的多项式          |
| (0x4E)     |     |      |                  |                     |
| CTL_REG_79 | 7:0 | RW   | CRC_POLY <15:8>  |                     |
| (0x4F)     |     |      | 55 02            |                     |
| CTL_REG_80 | 7:0 | RW   | CRC_POLY <23:16> |                     |
| (0x50)     |     | .,,, | 55 5             |                     |
| CTL_REG_81 | 7:0 | RW   | CRC_POLY <31:24> |                     |
| (0x51)     |     |      | 55 52. 35212     |                     |
|            |     |      |                  | CRC 计算时输出所有字节的比特顺序反 |
| CTL_REG_82 | 7   | RW   | CRC_REFOUT       | 转。                  |
| (0x52)     | '   |      | ONO_REFOUT       | 0:从MSB到LSB;         |
| (0,02)     |     |      |                  | 1: 从 LSB 到 MSB。     |
|            | 6   | RW   | WHITEN_SEED<8>   | WHITEN_SEED 的最高位    |

| 寄存器名       | 位数  | R/W    | 比特名                 | 功能说明                           |
|------------|-----|--------|---------------------|--------------------------------|
|            |     |        |                     | 白化编解码多项式为 PN7 时的种子类型:          |
|            | 5   | RW     | WHITEN_SEED_TYPE    | 0: 按 A7139 的方式计算 PN7 seed      |
|            |     |        |                     | 1: PN7 seed 为 whiten_seed 定义的值 |
|            |     |        |                     | 白化编解码的方式:                      |
|            |     |        |                     | 0: PN9 CCITT 编解码               |
|            | 4:3 | RW     | WHITEN_TYPE<1:0>    | 1: PN9 IBM 编解码                 |
|            |     |        |                     | 2: PN7 编解码                     |
|            |     |        |                     | 3: 无效                          |
|            |     |        |                     | 白化编解码的使能:                      |
|            | 2   | RW     | WHITEN_EN           | 0: 无 whiten 编解码                |
|            |     |        |                     | 1: 有 whiten 编解码                |
|            |     |        |                     | 曼切斯特编解码的方式:                    |
|            | 1   | RW     | MANCH_TYPE          | 0: 01 表示 1; 10 表示 0            |
|            |     |        |                     | 1: 10 表示 1; 01 表示 0            |
|            |     |        |                     | 曼切斯特编解码的使能:                    |
|            | 0   | RW     | MANCH_EN            | 0: 不使能                         |
|            |     |        |                     | 1: 使能                          |
| CTL_REG_83 | 7:0 | RW     | WHITEN_SEED<7:0>    | 白化编解码多项式的种子                    |
| (0x53)     |     |        |                     | PN9 时取全 9bit                   |
| (0x33)     |     |        |                     | PN7 时取低 7bit                   |
|            | 7   | RW     | CRCERR_CLR_FIFO_EN  | 接收 CRC 发生不匹配时:                 |
|            |     |        |                     | 0:不清零 RX FIFO                  |
|            |     |        |                     | 1: 清零 RX FIFO                  |
|            |     |        | FCS2_EN             | 是否包含 FCS2 域                    |
|            | 6   | RW     |                     | 0: 无 FCS2                      |
|            |     |        |                     | 1: 有 FCS2                      |
|            |     |        |                     | TX ack 模式下发射端是否需要将收到的序         |
|            | 5   | RW     | SEQNUM_MATCH_EN     | 列号与本地发射出去的序列号作比较               |
|            | 3   |        |                     | 0: 不需要比较                       |
|            |     |        |                     | 1: 需要比较                        |
| CTL_REG_84 |     |        |                     | SEQNUM 域的大小。                   |
| (0x54)     | 4   | RW     | SEQNUM_SIZE         | 0: 1 字节;                       |
|            |     |        |                     | 1: 2 字节。                       |
|            |     |        |                     | TX 的 SEQNUM 是否自动递增。            |
|            | 3   | RW     | SEQNUM_AUTO_INC     | 0: 不累加                         |
|            |     |        |                     | 1: 每包自动加 1                     |
|            |     | DW     | SEONIM EN           | 0: 无 SEQNUM 域 (即 FCS1 域)       |
|            | 2   | RW     | SEQNUM_EN           | 1: 使能 SEQNUM 域(即 FCS1 域)       |
|            |     |        |                     | TX Prefix 是指在 Packet 模式下,进入发   |
|            | 1:0 | 1:0 RW | TX_PREFIX_TYPE<1:0> | 射状态后,由于 FIFO 数据还没有准备好,         |
|            |     |        |                     | <br>  但是 PA 已经开始发射了,就需要定义预发    |
|            |     |        |                     |                                |

| 寄存器名                 | 位数  | R/W  | 比特名                   | 功能说明                                      |
|----------------------|-----|------|-----------------------|-------------------------------------------|
|                      |     |      |                       | 射的内容,可以定义为:                               |
|                      |     |      |                       | 0: 发送 0                                   |
|                      |     |      |                       | <br>  1: 发送 1                             |
|                      |     |      |                       | 2:发送 Preamble                             |
|                      |     |      |                       | 3: NA                                     |
| CTL_REG_85           | 7:0 | RW   | TX_PKT_NUM<7:0>       | TX 模式下每次重复发的包个数:                          |
| (0x55)               |     |      |                       | 0-255 表示发送 1-256 个包                       |
| CTL_REG_86<br>(0x56) | 7:0 | RW   | TX_PKT_GAP<7:0>       | TX 模式下重复发包时,包与包之间的间隔: 0-255 表示包与包之间的发送间隔为 |
| OTI DEC 07           |     |      |                       | 1-256 个 Symbol                            |
| CTL_REG_87<br>(0x57) | 7:0 | RW   | SEQNUM_TX_IN<7:0>     | TX 的 SEQNUM 初始化值。                         |
| CTL_REG_88           | 7:0 | RW   | SEQNUM_TX_IN<15:8>    |                                           |
| (0x58)<br>CTL_REG_89 |     |      |                       | 当前 TX 的序列号的值。                             |
| (0x59)               | 7:0 | RW   | SEQNUM_TX_OUT<7:0>    | コロ (人口)/1/01 4口) 但。                       |
| CTL_REG_90<br>(0x5A) | 7:0 | RW   | SEQNUM_TX_OUT<15:8>   |                                           |
| CTL_REG_91           | 7:0 | RW   | FCS2_TX_IN<7:0>       | TX 侧 FCS2 域发送值。                           |
| (0x5B)               | 7.0 | 1000 | 1 332_1/(_11/47.0)    |                                           |
| CTL_REG_92<br>(0x5C) | 7:0 | RW   | FCS2_RX_OUT<7:0>      | FCS2 域使能的情况下,将收到的 FCS2 域的值输出到该寄存器         |
|                      | 6:2 | RW   | FEC_PAD_CODE<12:8>    | FEC 的 padding 码配置高 5 位                    |
|                      |     |      |                       | FEC 选择 RSC 或者 NRNSC。                      |
| CTL_REG_93           | 1   | RW   | FEC_RSC_NRNSC_SEL     | 0: RSC;                                   |
| (0x5D)               |     |      | /                     | 1: NRNSC.                                 |
| (0.102)              |     |      |                       | FEC 的使能位:                                 |
|                      | 0   | RW   | FEC_EN                | 0: 无 FEC 编解码                              |
| OTI - DEG - 0.4      |     |      |                       | 1: 有 FEC 编解码                              |
| CTL_REG_94<br>(0x5E) | 7:0 | RW   | FEC_PAD_CODE<7:0>     | FEC 的 padding 码配置低 8 位                    |
|                      | 7:6 | RW   | MAP_4FSK_3_LEVEL<1:0> | 4FSK 接收模式下,最高电平代表的码值。                     |
| CTL_REG_95           | 5:4 | RW   | MAP_4FSK_2_LEVEL<1:0> | 4FSK 接收模式下,第二高电平代表的码值。                    |
| (0x5F)               | 3:2 | RW   | MAP_4FSK_1_LEVEL<1:0> | 4FSK 接收模式下,最三电平代表的码值。                     |
|                      | 1:0 | RW   | MAP_4FSK_0_LEVEL<1:0> | 4FSK 接收模式下,最四高电平代表的码值。                    |
| CTL_REG_96           | 6:4 | RW   | TX_EXIT_STATE<2:0>    | 完成发射后自动退出到设定的状态: 1: SLEEP                 |

| 寄存器名       | 位数  | R/W | 比特名                | 功能说明                       |
|------------|-----|-----|--------------------|----------------------------|
| (0x60)     |     |     |                    | 2: READY                   |
|            |     |     |                    | 3: TFS                     |
|            |     |     |                    | 4: TX                      |
|            |     |     |                    | 5: RFS                     |
|            |     |     |                    | 6: RX                      |
|            |     |     |                    | Others: SLEEP              |
|            |     |     |                    | 只在 Packet 模式下发射完成后才会自动     |
|            |     |     |                    | 退出 TX,否则芯片会等待 MCU 发 go_*   |
|            |     |     |                    | 命令来切换状态。                   |
|            |     |     |                    | TX 模式下使能 ACK 功能            |
|            | 2   | RW  | TX_ACK_EN          | 0: 不使能                     |
|            |     |     |                    | 1: 使能                      |
|            |     |     |                    | TX 模式下,duty cycle 发射的配置    |
|            |     |     |                    | 0:完成 TX_DC_TIMES 配置的次数就退   |
|            | 1   | RW  | TX_DC_PERSIST_EN   | 出                          |
|            |     |     |                    | 1: 一直进行,直到这个比特配置为 0        |
|            |     |     |                    | TX Duty Cycle 的使能          |
|            | 0   | RW  | TX_DC_EN           | 0: 不使能                     |
|            |     |     |                    | 1: 使能                      |
|            | 7   | RW  | CSMA_EN            | CSMA 的使能                   |
|            |     |     |                    | 0: 不使能                     |
|            |     |     |                    | 1: 使能                      |
|            |     |     |                    | 完成接收后自动退出到设定的状态,           |
|            |     |     |                    | 1: SLEEP                   |
|            |     |     |                    | 2: READY                   |
|            |     |     |                    | 3: TFS                     |
|            |     |     |                    | 4: TX                      |
|            | 6:4 | RW  | RX_EXIT_STATE<2:0> | 5: RFS                     |
|            |     |     |                    | 6: RX                      |
| CTL_REG_97 |     |     |                    | Others: SLEEP              |
|            |     |     |                    | 只在 Packet 模式下才会在接收完成后自     |
| (0x61)     |     |     |                    | 动退出 RX, 否则芯片会等待 MCU 发 go_* |
|            |     |     |                    | 命令来切换                      |
|            |     |     |                    | RX TIMER 的使能               |
| 0.         | 3   | RW  | RX_TIMER_EN        | 0: 不使能                     |
|            |     |     |                    | 1: 使能                      |
|            |     |     |                    | RX ACK 的使能                 |
|            | 2   | RW  | RX_ACK_EN          | 0: 不使能                     |
|            |     |     |                    | 1: 使能                      |
|            |     |     |                    | RX AUTO HOP 的使能            |
|            | 1   | RW  | RX_AUTO_HOP_EN     | 0: 不使能                     |
|            |     |     |                    | 1: 使能                      |

| 寄存器名                  | 位数  | R/W | 比特名                  | 功能说明                                                                                                                 |
|-----------------------|-----|-----|----------------------|----------------------------------------------------------------------------------------------------------------------|
|                       | 0   | RW  | RX_DC_EN             | RX Duty Cycle 的使能<br>0:不使能<br>1:使能                                                                                   |
| CTL_REG_98<br>(0x62)  | 7   | RW  | PKT_DONE_EXIT_EN     | 芯片成功收到 PKT_DONE 信号时是保持<br>当前状态还是立即退出返回到<br>RX_EXIT_STATE 对应的状态<br>0: 芯片保持当前状态<br>1: 芯片根据 RX_EXIT_STATE 配置返回<br>到对应状态 |
|                       | 6:4 | RW  | RX_HOP_SLP_MODE<2:0> | 低功耗自动跳频接收选项配置<br>一共有7种模式可选,详见表4。                                                                                     |
|                       | 3:0 | RW  | SLP_MODE<3:0>        | 低功耗接收选项配置<br>一共有 14 种模式可选,详见表 5。                                                                                     |
| CTL_REG_99<br>(0x63)  | 7:0 | RW  | SLEEP_TIMER_M<7:0>   | 定义了 SLEEP TIMER 的计时时间,公式如下:                                                                                          |
| CTL_REG_100           | 7:5 | RW  | SLEEP_TIMER_M<10:8>  | T = M x 2^(R+1) x 31.25 us                                                                                           |
| (0x64)                | 4:0 | RW  | SLEEP_TIMER_R<4:0>   | R 的取值范围是 0-26                                                                                                        |
| CTL_REG_101<br>(0x65) | 7:0 | RW  | RX_TIMER_T1_M<7:0>   | 定义了 RX T1 TIMER 的计时时间,公式如下:                                                                                          |
| CTL_REG_102           | 7:5 | RW  | RX_TIMER_T1_M<10:8>  | T = M x 2^(R+1) x 20 us                                                                                              |
| (0x66)                | 4:0 | RW  | RX_TIMER_T1_R<4:0>   | R 的取值范围是 0-21                                                                                                        |
| CTL_REG_103<br>(0x67) | 7:0 | RW  | RX_TIMER_T2_M<7:0>   | 定义了 RX T2 TIMER 的计时时间,公式如下:                                                                                          |
| CTL_REG_104           | 7:5 | RW  | RX_TIMER_T2_M<10:8>  | $T = M \times 2^{(R+1)} \times 20 \text{ us}$                                                                        |
| (0x68)                | 4:0 | RW  | RX_TIMER_T2_R<4:0>   | R 的取值范围是 0-21                                                                                                        |
|                       | - 1 |     |                      | 配置 CSMA 模式下, CSMA SLEEP TIMER 的随机模式: 00: 随机 R 值                                                                      |
|                       | 5:4 | RW  | TIMER_RAND_MODE<1:0> | 01: 随机 M 值 10: R 值和 M 值都随机 11: 使用配置的固定值                                                                              |
| CTL_REG_105<br>(0x69) | 3   | RW  | SLEEP_TIMER_EN       | SLEEP TIMER 的使能:<br>0: 不使能<br>1: 使能                                                                                  |
|                       | 1   | RW  | LFCLK_SEL            | 低频时钟源的选择:<br>0: LFOSC<br>1: LFXO                                                                                     |
|                       | 0   | RW  | LFCLK_OUT_EN         | 低频时钟输出到 GPIO4 的使能:<br>0: 不使能<br>1: 使能<br>该功能的优先级低于 DIG_CLKOUT_EN,<br>高于 GPIO4_SEL。                                   |

| 寄存器名                  | 位数     | R/W  | 比特名                   | 功能说明                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|--------|------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CTL_REG_106<br>(0x6A) | 7:5 RW | RW   | CSMA_CCA_MODE<2:0>    | CSMA 模式下信道忙的判断条件: 000: 认为信道一直空闲 001: 4 个检测窗口有大于等于 1 次检测到 RSSI 有效 010: 4 个检测窗口有大于等于 1 次检测到 PJD 有效 011: 4 个检测窗口有大于等于 1 次检测到 RSSI 有效或 PJD 有效 100: 检测到 1 次 SYNC_PASS 101: 检测到 1 次 SYNC_PASS, 或 4 个检测窗口有大于等于 1 次检测到 RSSI 有效 110: 检测到 1 次 SYNC_PASS, 或 4 个检测窗口有大于等于 1 次检测到 RSSI 有效 110: 检测到 1 次 SYNC_PASS, 或 4 个检测窗口有大于等于 1 次检测到 PJD 有效 111: 检测到 1 次 SYNC_PASS, 或 4 个检测窗口有大于等于 1 次检测到 PJD 有效 111: 检测到 1 次 SYNC_PASS, 或 4 个检测窗口有大于等于 1 次检测到 RSS 有效或 PJD 有效 |
|                       | 4      | 4 RW | CSMA_PERSIST_EN       | CSMA 运行选项: 0: CSMA 如果达到最大检测次数信道仍繁忙则退出 CSMA 模式 1: CSMA 一直检测信道闲忙情况直至信道空闲将数据发射出去                                                                                                                                                                                                                                                                                                                                                                       |
|                       | 3:2    | RW   | RSSI_PJD_SEL<1:0>     | RSSI_PJD_VALID 中断产生条件: 00: PJD 有效 01: RSSI 有效 10: PJD 和 RSSI 都有效 11: NA                                                                                                                                                                                                                                                                                                                                                                             |
|                       | 1:0 RW |      | CSMA_CCA_WIN_SEL<1:0> | CSMA 单个检测时间窗口大小:<br>00: 32-symbol<br>01: 64-symbol<br>10: 128-symbol<br>11: 256-symbol                                                                                                                                                                                                                                                                                                                                                              |
| CTL_REG_107<br>(0x6B) | 7:0    | RW   | RX_TIMER_CSMA_M<7:0>  | 定义了 RX CSMA TIMER 的计时时间,公式如下:                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CTL_REG_108           | 7:5    | RW   | RX_TIMER_CSMA_M<10:8> | T = M x 2^(R+1) x 20 us                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (0x6C)                | 4:0    | RW   | RX_TIMER_CSMA_R<4:0>  | R 的取值范围是 0-21                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CTL_REG_109<br>(0x6D) | 7:0    | RW   | LBD_TH<7:0>           | 配置低电压检测阈值,低于该阈值认为是<br>低电压状态。                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CTL_REG_110<br>(0x6E) | 7:0    | RW   | TX_DC_TIMES<7:0>      | TX Duty Cycle 模式下,非 Persistent 模式下,规定的最大发射次数。                                                                                                                                                                                                                                                                                                                                                                                                       |
| CTL_REG_112<br>(0x70) | 7:0    | R    | TX_DC_DONE_TIMES<7:0> | TX Duty Cycle 模式下已经完成的发射次数。                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 寄存器名                  | 位数  | R/W | 比特名                      | 功能说明                                |
|-----------------------|-----|-----|--------------------------|-------------------------------------|
| CTL_REG_113<br>(0x71) | 7:0 | RW  | TX_RS_TIMES<7:0>         | TX ACK 模式下,规定的最大重发次数。               |
| CTL_REG_114<br>(0x72) | 7:0 | R   | TX_RS_DONE_TIMES<7:0>    | TX ACK 模式下已经重发的次数                   |
| CTL_REG_115<br>(0x73) | 7:0 | RW  | CSMA_TIMES<7:0>          | CSMA 模式下,非 persistent 模式下,规定的最大检测次数 |
| CTL_REG_116<br>(0x74) | 7:0 | RW  | CSMA_DONE_TIMES<7:0>     | CSMA 模式下已经检测的次数                     |
| CTL_REG_118<br>(0x76) | 7:0 | RW  | SLEEP_TIMER_CSMA_M<7:0>  | 定义了 SLEEP CSMA TIMER 的计时时间,公式如下:    |
| CTL_REG_119           | 7:5 | RW  | SLEEP_TIMER_CSMA_M<10:8> | T = M x 2^(R+1) x 31.25 us          |
| (0x77)                | 4:0 | RW  | SLEEP_TIMER_CSMA_R<4:0>  | R 的取值范围是 0-26                       |

#### 表 4. RX\_HOP\_SLP\_MODE<2:0>定义的7种低功耗接收选项

| 编号 | RX 的延长方式                        | RX 的延长条件                 |
|----|---------------------------------|--------------------------|
| 0  | 如果配置成 0,就不做任何延长,T1 计时结束         | 无                        |
|    | 就离开 RX                          | 7.                       |
| 1  |                                 | RSSI_VLD 有效              |
| 2  | T1 内一旦满足检测条件,就离开 T1,将控制 权交给 MCU | PREAM_OK 有效              |
| 3  | 次文· MOO                         | RSSI_VLD 与 PREAM_OK 同时有效 |
| 4  | T1 内一旦满足检测条件,就切换到 T2, T2 内      | RSSI_VLD 有效              |
| 5  | 一旦检测到 SYNC 就退出 T2 并将控制权交给       | PREAM_OK 有效              |
| 6  | MCU,否则 T2 计时结束后就退出 RX           | RSSI_VLD 与 PREAM_OK 同时有效 |

表 5. SLP\_MODE<2:0>定义的 14 种低功耗接收选项

| 编号 | RX 的延长方式                                | RX 的延长条件                          |  |
|----|-----------------------------------------|-----------------------------------|--|
| 0  | 如果配置为 0,不做任何延长, T1 计时结束就 离开 RX          | 无                                 |  |
| 1  | 1477 100                                | RSSI_VLD 有效                       |  |
| 2  | 若 T1 内一旦满足检测条件,则离开 T1,将控                | PREAM_OK 有效                       |  |
| 3  | 制权交给 MCU                                | RSSI_VLD 与 PREAM_OK 同时有效          |  |
| 4  | 若 T1 内只要检测到 RSSI 有效,则退出 T1 并            | RSSI_VLD 有效                       |  |
|    | 一直处于 RX,直到 RSSI 不满足则退出 RX               |                                   |  |
| 5  |                                         | RSSI_VLD 有效                       |  |
| 6  |                                         | PREAM_OK 有效                       |  |
| 7  |                                         | RSSI_VLD 与 PREAM_OK 同时有效          |  |
| 8  | 若 T1 内一旦满足检测条件,则切换到 T2, T2 计时结束后则退出 RX  | PREAM_OK 或 SYNC_OK 任意一个有效         |  |
| 9  | N H H M M M M M M M M M M M M M M M M M | PREAM_OK 或 NODE_OK 任意一个有效         |  |
| 10 |                                         | PREAM_OK 或 SYNC_OK 或 NODE_OK 任意一个 |  |
|    |                                         | 有效                                |  |
| 11 | 若 T1 内一旦满足检测条件,切换到 T2, T2 内             | RSSI_VLD 有效                       |  |
| 12 | 一旦检测到 SYNC 就退出 T2 并将控制权交给               | PREAM_OK 有效                       |  |
| 13 | MCU,否则 T2 计时结束后退出 RX                    | RSSI_VLD 与 PREAM_OK 同时有效          |  |

# 1.3 PAGE 1, 配置寄存器(0x00 - 0x68)

表 6. PAGE 1 (0x00 - 0x68) 控制寄存器说明

| 寄存器名                     | 位数  | R/W | 比特名                  | 功能说明                                                                                                              |
|--------------------------|-----|-----|----------------------|-------------------------------------------------------------------------------------------------------------------|
| CMT 配置区                  |     |     |                      | CMT 专用寄存器, 内容由 RFPDK 导出,                                                                                          |
| (0x00 - 0x0F)            |     |     |                      | 由出厂测试决定其值。                                                                                                        |
| TX 配置区                   | 7.0 | DW  | 无工计                  | TX 参数配置寄存器,内容有 RFPDK 导                                                                                            |
| (0x10 - 0x27)            | 7:0 | RW  | 不开放                  | 出,根据用户配置生成。                                                                                                       |
| RX 配置区                   | 1   |     |                      | RX 参数配置寄存器,内容有 RFPDK 导                                                                                            |
| (0x30 - 0x61)            |     |     |                      | 出,根据用户配置生成。                                                                                                       |
| RX_RSSI_REG_00<br>(0x62) | 3:2 | RW  | RSSI_UPDATE_SEL      | RSSI 值(单位是 dbm)更新的条件:<br>00: 一直实时更新<br>01: 收到 PREAM_OK 时更新<br>10: 收到 SYNC_OK 时更新<br>11: 收到 PKT_DONE 时更新           |
| RX_RSSI_REG_01<br>(0x63) | 7:0 | RW  | RSSI_ABS_TH<7:0>     | RSSI 有效的判定门限,单位是 dbm                                                                                              |
| RX_DOUT_REG_00<br>(0x64) | 4:2 | RW  | DOUT_ADJUST_SEL<2:0> | 占空比调整的百分比: 0: 3.33% 1: 6.66% 2: 9.99% 3: 13.32% 4: 16.65% 5: 19.98% 6: 23.21% 7: 26.64% 占空比调整的方向:                 |
|                          | 1   | RW  | DOUT_ADJUST_MODE     | 0:增加1的占空比<br>1:减少1的占空比                                                                                            |
|                          | 0   | RW  | DOUT_ADJUST_EN       | 使能调整解调输出占空比:<br>0: 不使能<br>1: 使能                                                                                   |
| DY ANTO DEC 00           | 3:2 | RW  | ANT_WAIT_PMB<1:0>    | 天线校正时等待 Preamble 的长度: 00: RX_PREAM_SIZE x 1.5 01: RX_PREAM_SIZE x 2 10: RX_PREAM_SIZE x 2.5 11: RX_PREAM_SIZE x 3 |
| RX_ANTD_REG_00<br>(0x67) | 1   | RW  | ANT_SW_DIS           | 使能跳过天线切换: 0: 进行天线切换 1: 不进行天线切换                                                                                    |
|                          | 0   | RW  | ANT_DIV_EN           | 天线分集使能:<br>0: 不使能<br>1: 使能                                                                                        |

# 2 文档变更记录

表 7. 文档变更记录表

| 版本号 | 章节 | 变更描述   | 日期         |
|-----|----|--------|------------|
| 0.5 | 所有 | 初始版本发布 | 2020-09-17 |

#### 3 联系方式

无锡泽太微电子有限公司深圳分公司 深圳市南山区西丽街道万科云城 3 期 8 栋 A 座 30 楼

邮编: 518055

电话: +86-755-83231427 销售: <u>sales@cmostek.com</u>

技术支持: <u>support@cmostek.com</u>

网址: <u>www.cmostek.com</u>

版权所有 © 无锡泽太微电子有限公司,保留一切权利。

无锡泽太微电子有限公司(以下简称: "CMOSTEK")保留随时更改、更正、增强、修改 CMOSTEK 产品和/或本文档的权利,恕不另行通知。非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。由于产品版本升级或其他原因,本文档内容会不定期进行更新。CMOSTEK 的产品不建议应用于生命相关的设备和系统,在使用该器件中因为设备或系统运转失灵而导致的损失,CMOSTEK 不承担任何责任。

**CMOSTEK**商标和其他 CMOSTEK 商标为无锡泽太微电子有限公司的商标,本文档提及的其他所有商标或注册商标,由各自的所有人拥有。