

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

Q.11

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas):	
NIGNY		
Axel		
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +275/1/xx+···+275/5/xx+.		
Q.2 Un alphabet est toujours muni d'une relation d	'ordre :	
■ faux	□ vrai	
Q.3 Pour $L_1 = \{a, b\}^*, L_2 = \{a\}^* \{b\}^*$:		
$\Box L_1 = L_2 \qquad \Box L_1 \subseteq L_2$	\blacksquare $L_1\supseteq L_2$ \square $L_1 \not\supseteq L_2$	
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{a, b\}$?		
$\langle a, b, aa, ab, ba, bb \rangle$ \Box $\langle aa, ab, ba \rangle$ \Box $\langle \epsilon, a, b, ba \rangle$	a,bb}	
Q.5 Que vaut Suff({ab, c}):		
\square (a,b,c) \square \emptyset \blacksquare $\{ab,$	$[b,c,\varepsilon]$ $[b,\varepsilon]$ $[b,c,\varepsilon]$	
Q.6 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$		
	$\Box \{a\}\{b\}^* \cup \{b\}^* \qquad \Box \{a,b\}^*\{b\}\{a,b\}^*$	
Q.7 Pour toute expression rationnelle e , on a $\emptyset e \equiv e \emptyset$	$ \mathfrak{D} \equiv e. $	
□ vrai	■ faux	
Q.8 Pour toutes expressions rationnelles e, f , on a ($e+f)^* \equiv (e^*+f)^*.$	
vrai	☐ faux	
	d.	
$\Box L(e) \subseteq L(f) \qquad \Box L(e) \supseteq L(f)$	$\Box L(e) \stackrel{\not\subseteq}{\not\supseteq} L(f) \qquad \qquad \blacksquare \qquad L(e) = L(f)$	
Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L \subseteq \Sigma^*$, or	n a $\{a\}.L = \{a\}.M \implies L = M.$	
☐ faux	⊠ vrai	

L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas :

2/2	
2/2	Q.12 Pour qu'un mot soit accepté par un automate fini non-déterministe il faut qu'il mène l'automate d'un état initial à tous les états finaux d'un état initial à un état final de tous les états initiaux à tous les états finaux de tous les états initiaux à un état final Q.13 &
	Quels états appartiennent à la fermeture avant de l'état 2 :
0/2	
	Q.14 Combien d'états n'a pas l'automate de Thompson de l'expression rationnelle à laquelle je pense?
2/2	□ 4812 □ 2481 □ 8124 □ 1248
	Quel est le résultat d'une élimination arrière des transitions spontanées?
2/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Q.16 ® Parmi les 3 automates suivants, lesquels sont équivalents?
2/2	$\square \qquad \square \qquad$
	Q.17 Le langage $\{ \square^n \square^n \square^n \mid \forall n \in \mathbb{N} : 42! \le n \le 51! \}$ est
2/2	🗌 rationnel 📳 fini 🔲 non reconnaissable par automate fini 🔲 vide
2/2	 Q.18 Un langage quelconque □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle □ est toujours inclus (⊆) dans un langage rationnel □ n'est pas nécessairement dénombrable □ peut avoir une intersection non vide avec son complémentaire Q.19 Si L₁ ⊆ L ⊆ L₂, alors L est rationnel si :
2/2	L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_2 est rationnel \square L_1 est rationnel \square L_1, L_2 sont rationnels

Q.20 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a,b,c,d\}$ dont la n-ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):

2/2

Il n'existe pas.

Déterminiser cet automate.

Soit Rec l'ensemble des langages reconnaissables par DFA, et Rat l'ensemble des langages définissables par expressions rationnelles.

2/2

2/2

 \square Rec $\stackrel{\not\subset}{\rightarrow}$ Rat \bigotimes Rec = Rat

Rec ⊇ Rat

 \square Rec \subseteq Rat

Quelle(s) opération(s) préserve(nt) la rationnalité?

1.2/2

Union

Intersection

Différence

Aucune de ces réponses n'est correcte. Complémentaire

Q.24 Quelle(s) opération(s) préserve(nt) la rationnalité?

0/2

Suff

Transpose ☐ Aucune de ces réponses n'est correcte.

Sous − mot

□ Pref

Q.25 On peut tester si un automate déterministe reconnaît un langage non vide.

-1/2

Seulement si le langage n'est pas rationnel

Cette question n'a pas de sens Oui

□ Non

En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il. . .

 \times

2/2

accepte un langage infini

 a des transitions spontanées accepte le mot vide

est déterministe

Si L_1, L_2 sont rationnels, alors: Q.27

2/2

 $\square \quad \overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2}$

 $L_1 \subseteq L_2$ ou $L_2 \subseteq L_1$

Combien d'états a l'automate minimal qui accepte le langage {a, b}+? Q.28

2/2

 \Box 1

2 2

☐ Il en existe plusieurs!

□ 3

Si L et L' sont rationnels, quel langage ne l'est pas nécessairement? Q.29

\sim	10
u	//

- Q.30 Combien d'états a l'automate minimal qui accepte le langage $\{a, b, c, \dots, y, z\}^+$?

2/2

- ☐ Il en existe plusieurs!
- □ 52
- 2
- □ 26 □ 1

Q.31 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

2/2

- \square Il existe un NFA qui reconnaisse ${\cal P}$
- \square Il existe un ε -NFA qui reconnaisse $\mathcal P$
- \square Il existe un DFA qui reconnaisse \mathcal{P} \blacksquare \mathcal{P} ne vérifie pas le lemme de pompage

Q.32

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

- ☐ (abc)*
- a*b*c*
- \Box $a^* + b^* + c^*$
- \Box $(a+b+c)^*$

Q.33 & Quels états peuvent être fusionnés sans changer le langage reconnu.

- 3 avec 4
- ☐ 1 avec 3
- ☐ 2 avec 4
- 1 avec 2
- 0 avec 1 et avec 2
- ☐ Aucune de ces réponses n'est correcte.

Q.34 Sur $\{a, b\}$, quel est le complémentaire de _

2/2

2/2

Q.36

 $Quel \, est \, le \, r\'esultat \, de \, l'application \, de \, BMC \, en \, \'eliminant$ 1, puis 2, puis 3 et enfin 0?

268

+275/6/55+

•