Introduction to Econometrics 2: Recitation 3

Seung-hun Lee

Columbia University

February 5th, 2020

Limited Information Maximum Likelihood (LIML)

• Assume a data generating process

$$y_i = \beta_1' x_{1i} + \beta_2' x_{2i} + e_i, \ (x_{1i} \in \mathbb{R}^{k_1}, x_{1i} \in \mathbb{R}^{k_2})$$

where
$$E(x_{1i}e_i) = 0$$
, but $E(x_{2i}e_i) \neq 0$

- A limited information maximum likelihood (LIML) estimator derives the maximum likelihood estimator for the joint distribution of (y_i, x_{2i}) using structural equation of y_i and the reduced form equation for x_{2i} .
 - Full information maximum likelihood (FIML) requires structural equation for x_{2i} as well.

So why do we want to use them?

- When the number of the instruments are fixed, 2SLS and LIML have the same asymptotic distribution
- When there is a problem of weak instrument variable or too many instrumental variables, it can be shown that 2SLS becomes biased towards OLS
 - Pischke's lecture slides (link to it in the recitation notes and here: http://econ.lse.ac.uk/staff/spischke/ec533/Weak%20IV.pdf) show that LIML performs better, whereas 2SLS bias approaches that of OLS in presence of weak IV or too many IV

Derivation

- Assume that there is a $z_i = \begin{pmatrix} x_{1i} \\ z_{2i} \end{pmatrix} \in \mathbb{R}^I$ where $E(z_i e_i) = 0$.
- The reduced for for x_{2i} can be shown as

$$x_{2i} = \Gamma'_{12}x_{1i} + \Gamma'_{22}z_{2i} + u_{2i}, \ (\Gamma'_{12} \in \mathbb{R}^{k_2 \times k_1}, \Gamma'_{22} \in \mathbb{R}^{k_2 \times (l-k_1)}, z_{2i} \in \mathbb{R}^{l-k_1})$$

 By putting the structural and reduced form equation together in a matrix form, we get

$$\underbrace{\begin{pmatrix} 1 & -\beta_2' \\ 0 & I_{k_2} \end{pmatrix}}_{=A} \underbrace{\begin{pmatrix} y_i \\ x_{2i} \end{pmatrix}}_{=w_i} = \underbrace{\begin{pmatrix} \beta_1' & 0 \\ \Gamma_{12}' & \Gamma_{22}' \end{pmatrix}}_{=B} \underbrace{\begin{pmatrix} x_{1i} \\ z_{2i} \end{pmatrix}}_{z_i} + \underbrace{\begin{pmatrix} e_i \\ u_{2i} \end{pmatrix}}_{=\eta_i}$$

• To use the maximum likelihood approach, we need some assumptions on η_i . Specifically, we assume that η_i is conditionally IID normal and

$$\eta_i|z_i \sim N(0,\Sigma_\eta)$$

If we apply these facts, then we can derive the log-likelihood function for η_i

4/25

Step-by-step: 1.**Re-express the PDF**

• The PDF pf η_i is

$$(2\pi)^{-rac{k_2+1}{2}}\det(\Sigma)^{-rac{1}{2}} imes e^{-rac{1}{2}(\eta_i)'\Sigma_{\eta}^{-1}(\eta_i)}$$

- Also, since $w_i|_{Z_i} \sim N(A^{-1}Bz_i, A^{-1}\Sigma_{\eta}A^{-1})$, note that $\chi_i = w_i A^{-1}Bz_i$ is also another normal distribution. (conditional on z_i), we can write the pdf for χ_i
- Lastly, notice that $\eta_i = A\chi_i$, Then we can apply Jacobian transformation to write a PDF for w_i as

$$(2\pi)^{-\frac{k_2+1}{2}}\det(\Sigma)^{-\frac{1}{2}} \times e^{-\frac{1}{2}(Aw_i-Bz_i)'\Sigma_{\eta}^{-1}(Aw_i-Bz_i)}|A|$$

- Since det(A) = 1, we can omit |A|
- By IID assumption, the log likelihood for i = 1, ..., n becomes

$$C - \frac{n}{2}\log(\det(\Sigma_{\eta})) - \frac{1}{2}\sum_{i=1}^{n}(Aw_{i} - Bz_{i})'\Sigma_{\eta}^{-1}(Aw_{i} - Bz_{i})$$

Step-by-step: 2. Concentrating out:

• To find A, B that maximizes the log - likelihood, we concentrate out the Σ_{η} term by using its estimator,

$$\widehat{\Sigma}_{\eta} = \frac{1}{n} \sum_{i=1}^{n} (Aw_i - Bz_i)(Aw_i - Bz_i)'$$

Then plug this estimator into the log-likelihood function to get

$$C - \frac{n}{2}\log(\det(\widehat{\Sigma}_{\eta})) - \frac{1}{2}\sum_{i=1}^{n}(Aw_i - Bz_i)'\widehat{\Sigma}_{\eta}^{-1}(Aw_i - Bz_i)$$

Step-by-step: 2. Concentrating out:

• Since the last term is a scalar, we can take

$$(Aw_i - Bz_i)'\widehat{\Sigma}_{\eta}^{-1}(Aw_i - Bz_i) = tr\left((Aw_i - Bz_i)'\widehat{\Sigma}_{\eta}^{-1}(Aw_i - Bz_i)\right)$$

• Also, using the fact that tr(AB) = tr(BA),

$$tr\left((Aw_i - Bz_i)'\widehat{\Sigma}_{\eta}^{-1}(Aw_i - Bz_i)\right) = tr\left(\widehat{\Sigma}_{\eta}^{-1}(Aw_i - Bz_i)(Aw_i - Bz_i)'\right)$$

This reduced the likelihood function to

$$C - \frac{n}{2}\log(\det(\widehat{\Sigma}_{\eta})) - \frac{1}{2}tr\left(\widehat{\Sigma}_{\eta}^{-1}\sum_{i=1}^{n}(Aw_{i} - Bz_{i})(Aw_{i} - Bz_{i})'\right)$$
$$= C - \frac{n}{2}\log(\det(\widehat{\Sigma}_{\eta})) - \frac{n(k_{2} + 1)}{2}$$

Step-by-step: 3. Maximize

• The only thing left to maximize over now is $-\frac{n}{2}\log(\det(\widehat{\Sigma}_{\eta}))$. This is equivalent to maximizing

$$-\det\left(\frac{1}{n}\sum_{i=1}^{n}(Aw_{i}-Bz_{i})'(Aw_{i}-Bz_{i})\right)$$

$$=-\det\left(\frac{1}{n}\sum_{i=1}^{n}\binom{y_{i}-\beta_{1}'x_{1i}-\beta_{2}x_{2i}}{x_{2i}-\Gamma_{12}'x_{1i}-\Gamma_{22}'z_{2i}}\binom{y_{i}-\beta_{1}'x_{1i}-\beta_{2}x_{2i}}{x_{2i}-\Gamma_{12}'x_{1i}-\Gamma_{22}'z_{2i}}\right)'$$

The combination of β and Γ that maximizes this is the LIML estimator.

k-class Estimators

 Another way to compute the LIML estimator is to use a k-class estimator with a particular choice for k. In general, k-class estimator is defined as

$$\hat{\beta}_k = \arg\min_{\beta} (y - X\beta)' (I_n - kM_Z)(y - X\beta)$$

where
$$M_Z = I - Z(Z'Z)^{-1}Z' = I - P_Z$$
.

The other way to express this, after some matrix differentiation, is

$$-2X'y + 2kX'M_Zy + 2(X'X)\beta - 2k(X'M_ZX)\beta = 0$$

$$\iff (X'(I_n - kM_Z)X)\beta = X'(I_n - kM_Z)y$$

$$\implies \hat{\beta}_k = (X'(I_n - kM_Z)X)^{-1}(X'(I_n - kM_Z)y)$$

k-class Estimators

- In fact, we can show that OLS (k = 0) and 2SLS (k = 1) are k-class estimators.
- LIML is a k-class estimator with a parameter choice of some k > 1. What we need to do find the associated value of k
- To do so, define

$$W = (y \ X_2) \in \mathbb{R}^{n \times (k_2 + 1)}, \ M_1 = I - X_1 (X_1' X_1)^{-1} X_1'$$

Then we compute the minimum eigenvalue of

$$(W'M_1W)(W'M_ZW)^{-1}$$

k-class Estimators

• This minimum eigenvalue will be our choice of k, which will be denoted as \hat{k} , and the LIML estimator would be

$$\hat{\beta}_{LIML} = (X'(I_n - \hat{k}M_Z)X)^{-1}(X'(I_n - \hat{k}M_Z)y)$$

 From here, we can also find that LIML is also a type of an IV estimator. We can see that by rewriting above equation as

$$\hat{\beta}_{LIML} = (\tilde{X}'X)^{-1}(\tilde{X}'y)$$

where $\tilde{X} = (I_n - \hat{k}M_Z)X$. This also hints that the asymptotic properties of LIML and some other types of IV estimators are similar.

Asymptotics of LIML

• Given
$$\hat{\beta}_{LIML} = (X'(I_n - \hat{k}M_Z)X)^{-1}(X'(I_n - \hat{k}M_Z)y)$$

$$\hat{\beta}_{LIML} - \beta = (X'(I_n - \hat{k}M_Z)X)^{-1}(X'(I_n - \hat{k}M_Z)e)$$

$$= (X'(P_Z - (\hat{k} - 1))M_Z)X)^{-1}(X'(P_Z - (\hat{k} - 1))e)$$

$$(\because I - M_Z = P_Z, \implies I - \hat{k}M_Z = P_Z - (\hat{k} - 1)M_Z)$$

$$\sqrt{n}(\hat{\beta}_{LIML} - \beta) = \left(\frac{X'P_ZX}{n} - (\hat{k} - 1)\frac{X'M_ZX}{n}\right)^{-1}\left(\frac{X'P_ZX}{\sqrt{n}} - (\hat{k} - 1)\frac{X'M_Ze}{\sqrt{n}}\right)$$

Asymptotics of LIML

- Note that
 - Anderson and Rubin (1949) shows that $\hat{k} 1 \xrightarrow{p} 0$, which we accept as given.
 - $\frac{X'M_ZX}{n} = \frac{X'X}{n} \frac{X'P_ZX}{n} = \frac{X'X}{n} \frac{X'P_ZP_ZX}{n} = \frac{X'X}{n} \frac{(P_ZX)'(P_ZX)}{n} \le \frac{X'X}{n} \xrightarrow{P} E(x_i x_i')$. Therefore, $\frac{X'M_ZX}{n}$ is bounded (and thus $O_p(1)$)
 - $\frac{\chi^{''}M_Ze}{\sqrt{n}}$ converges in distribution to a normal distribution (CLT), so it is $O_p(1)$
 - ullet From the third and first points, we can infer that $(\hat{k}-1)rac{X'M_Ze}{\sqrt{n}}=o_p(1)$
- Combining these leads to the result that

$$\sqrt{n}(\hat{\beta}_{LIML} - \beta) = \left(\frac{X'P_ZX}{n}\right)^{-1} \frac{X'P_ZX}{\sqrt{n}} + o_p(1)$$

which is equivalent to $\sqrt{n}(\hat{\beta}_{2SLS} - \beta) + o_p(1)$

Control Function Method

- This is another way to derive a 2SLS estimator.
- will assume $E(x_{1i}e_i) = 0$, $E(x_{2i}e_i) \neq 0$ and write the structural and reduced form regression as

$$y_i = x'_{1i}\beta_1 + x'_{2i}\beta_2 + e_i$$
 (Structural)
 $x_{2i} = \Gamma'_{12}x_{1i} + \Gamma'_{22}z_{2i} + u_{2i}$ (Reduced Form)

- We have a $z_i \in (x_{1i} \ z_{2i})' \in \mathbb{R}^I$ that satisfies $E(z_i e_i) = 0$
- The key driving idea for the control function method is that we can write $E(x_{2i}e_i)$ differently. Specifically,

$$E[x_{2i}e_i] = E[(\Gamma'_{12}x_{1i} + \Gamma'_{22}\beta_2 + u_{2i})e_i]$$

$$= \Gamma'_{12}E(x_{1i}e_i) + \Gamma'_{22}E(z_{2i}e_i) + E(u_{2i}e_i)$$

$$= E(u_{2i}e_i) \implies \therefore E[x_{2i}e_i] \neq 0 \iff E[u_{2i}e_i] \neq 0$$

Control Function Method

• We consider a linear projection of e_i onto u_{2i} , which we write as

$$e_i = u'_{2i}\alpha + \epsilon_i$$
 (LP)

where $E(u_{2i}\epsilon_i) = 0$ and the population analogue of $\alpha = E(u_{2i}u'_{2i})^{-1}E(u_{2i}e_i)$

• Substitute the e_i term in the (Structural) equation with the (LP) equation to get

$$y_i = x'_{1i}\beta_1 + x'_{2i}\beta_2 + u'_{2i}\alpha + \epsilon_i \tag{CFA}$$

where the following are satisfied

$$E[x_{1i}\epsilon_i] = E[x_{2i}\epsilon_i] = E[u_{2i}\epsilon_i] = 0$$

Why? Separate slide!

Control Function Method

- So the key takeaway is that now x_{2i} is exogenous with ϵ_i . In words, x_{2i} is correlated with e_i through u_{2i} and ϵ_i is the error after e_i has been projected onto u_{2i} .
- Usual Steps
 - **① Obtain** \hat{u}_{2i} : This is done by regressing (Reduced Form) equation.
 - **2** Work with (CFA): However, instead of u_{2i} , use \hat{u}_{2i} . Then we can run an OLS on the REWRITTEN (CFA) equation.
- Once this is done, we can show that the estimates from control function approach is numerically identical to 2SLS

Control Function Method

 One thing to note is that with this setup, we can conduct a test of endogeneity. Formally we want to test

$$H_0: E(x_{2i}e_i) = 0, \ H_1: E(x_{2i}e_i) \neq 0$$

• If it is the case that $E(x_{2i}e_i)=0$, then $E(u_{2i}e_i)=0$. Then, by how we constructed α , this implies that $\alpha=0$. We can then show that the Wald statistics, under H_0 , is distributed as

$$\hat{\alpha}'(var(\hat{\alpha}))^{-1}\hat{\alpha} \xrightarrow{d} \chi^2_{k_2}$$

• To test the null against the alternative hypothesis, define $C_{1-\alpha}$ as $\Pr(\chi^2_{k_2} \leq C_{1-\alpha}) = 1 - \alpha$. Then, we can reject the H_0 hypothesis if $\hat{\alpha}'(var(\hat{\alpha}))^{-1}\hat{\alpha} > C_{1-\alpha}$

Hausmann Tests

• Assume the following data generating process

$$y_i = x'_{1i}\beta_1 + x'_{2i}\beta_2 + e_i$$

and we are interested in checking the exogeneity / endogeneity of x_{2i} .

- So we test $H_0: E(x_{2i}e_i) = 0$ against $H_1: E(x_{2i}e_i) \neq 0$. Consider these properties of 2SLS and OLS estimators
 - $\hat{\beta}_{OLS}$: Consistent and minimal variance under H_0 , inconsistent under H_1
 - $\hat{\beta}_{2SLS}$: Consistent in either H_0 or H_1 . Inefficient under H_0 .
- Under H_0 , $\sqrt{n}(\hat{\beta}_{2SLS} \hat{\beta}_{OLS})$ converges in distribution to $N(0, var(\hat{\beta}_{2SLS} \hat{\beta}_{OLS}))$
- Hausmann also shows that in H_0 , $var(\hat{\beta}_{2SLS} \hat{\beta}_{OLS}) = var(\hat{\beta}_{2SLS}) var(\hat{\beta}_{OLS})$ holds in general

Hausmann Tests

• Given this, we can write the Hausmann test statistic as

$$(\hat{\beta}_{2SLS} - \hat{\beta}_{OLS})'(var(\hat{\beta}_{2SLS}) - var(\hat{\beta}_{OLS}))^{-}(\hat{\beta}_{2SLS} - \hat{\beta}_{OLS}) \xrightarrow{d} \chi^{2}_{k_{2}}$$

where $(var(\hat{\beta}_{2SLS}) - var(\hat{\beta}_{OLS}))^-$ indicates a generalized inverse.

- We can use the test statistic, construct a critical value and reject/not reject H_0 based on comparison.
- Note that generalized inverse is required since $(var(\hat{\beta}_{2SLS}) var(\hat{\beta}_{OLS}))$ is usually not a full (column) rank matrix. I leave further explanation to my recitation notes.

Subset Endogeneity Tests

- We break down x_{2i} into two parts one that is 'potentially' endogenous (x_{2i}) and one that is endogenous for sure (x_{3i})
- Then, we again test for $H_0: E(x_{2i}e_i) = 0$ against $H_1: E(x_{2i}e_i) \neq 0$
- Using a control function approach, with following setup

$$\begin{aligned} y_i &= x_{1i}'\beta_1 + x_{2i}'\beta_2 + x_{3i}'\beta_3 + e_i \\ x_{2i} &= \Gamma_2'z_i + u_{2i} \\ x_{3i} &= \Gamma_3'z_i + u_{3i} \end{aligned} \qquad \text{(Structural)}$$
 (Reduced Form 2)

• We then project e_i onto u_{2i} , u_{3i} to obtain

$$e_i = u'_{2i}\alpha_2 + u'_{3i}\alpha_3 + \epsilon_i \tag{LP2}$$

Subset Endogeneity Tests

We can show that the following is satisfied

$$\begin{pmatrix} E(u_{2i}u'_{2i}) & E(u_{2i}u'_{3i}) \\ E(u_{3i}u'_{2i}) & E(u_{3i}u'_{3i}) \end{pmatrix} \begin{pmatrix} \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} E(u_{2i}e_i) \\ E(u_{3i}e_i) \end{pmatrix}$$

Control function approach would require us to apply an OLS to

$$y_i = x'_{1i}\beta_1 + x'_{2i}\beta_2 + x'_{3i}\beta_3 + u'_{2i}\alpha_2 + u'_{3i}\alpha_3 + \epsilon_i$$
 (CFA2)

• As before, $E(x_{2i}e_i)=0$ implies $E(u_{2i}e_i)=0$. This allows us to replace the H_0 with

$$H_0: E[u_{2i}u'_{2i}]\alpha_2 + E[u_{2i}u'_{3i}]\alpha_3 = 0$$

• This is a special case of $R\beta=c$ type of hypothesis test. However, since we cannot usually know what the true value of u_{2i}, u_{3i} are, we use the residuals, and replace R with \widehat{R} constructed from the sample analogue using residuals.

Overidentification Test

• Consider the following setup

$$y_i = x_i'\beta + e_i$$
, $(\dim(x_i) = k < \dim(z_i) = l)$

- We can test for the validity of the instruments by testing $H_0: E(z_i e_i) = 0$ vs. $H_1: E(z_i e_i) \neq 0$.
- To do this, we construct a linear projection equation by projecting e_i onto z_i , obtaining

$$e_i = z_i' \alpha + \epsilon_i$$

Thus,
$$\alpha = E(z_i z_i')^{-1} E(z_i e_i)$$

• Therefore, $H_0: \alpha = 0$ vs. $H_1: \alpha \neq 0$

Overidentification Test

- \bullet This leaves us with the challenge of estimating α
 - **① Obtain** \hat{e}_i : This can be done using 2SLS estimates of β . As a result,

$$\hat{e}_i = y_i - x_i' \hat{\beta}_{2SLS} \implies \hat{e} = y - X \hat{\beta}_{2SLS}$$

2 Obtain $\hat{\alpha}$: Replace e with \hat{e} to get

$$\hat{\alpha} = (Z'Z)^{-1}Z'\hat{e}$$

3 Sargan Test: We will assume homoskedasticity (otherwise, the test statistic does not converge to χ^2 distribution). Then we make use of the following test statistic

$$S = \hat{\alpha}'(var(\hat{\alpha}))^{-}\hat{\alpha} = \frac{\hat{e}'Z(Z'Z)^{-1}Z'\hat{e}}{\hat{\sigma}^{2}}$$

where $\hat{\sigma}^2$ can be obtained from two paths - one using $\frac{1}{n}\hat{e}'\hat{e}$ and the other using $\frac{1}{n}\hat{e}'\hat{e}=\frac{1}{n}(\hat{e}-Z\hat{\alpha})'(\hat{e}-Z\hat{\alpha})$. While they are slightly different in that the first estimate has larger variances, they are asymptotically equal. Under the null, $S \xrightarrow{d} \chi^2_{l-k}$

Weak IV Test

 Assume that the structural and reduced form equations are (we are working with a scalar regressors)

$$y_i = x_i \beta + e_i$$
$$x_i = z_i \gamma + u_i$$

- ullet We say that there is a problem of weak instrument if $\gamma \simeq 0$.
- This can cause the 2SLS estimates to be biased and the distribution to be affected.
- Let $\gamma = \frac{\mu}{\sqrt{n}}$. For simplicity, I will assume

•
$$var\left(\begin{pmatrix}e_i\\u_i\end{pmatrix}|z_i\right)=\begin{pmatrix}1&\rho\\\rho&1\end{pmatrix}=\Sigma$$

• $E(z_i^2) = 1$

$$\bullet \ \ \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \begin{pmatrix} z_i e_i \\ z_i u_i \end{pmatrix} \xrightarrow{d} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = N(0, \Sigma)$$

Weak IV Test

- Now I will show that neither OLS nor IV estimator is not consistent.
 - OLS: Note that $\hat{\beta}_{OLS} \beta$ can be written as $\frac{n^{-1} \sum_{i=1}^{n} x_i e_i}{n^{-1} \sum_{i=1}^{n} x_i^2}$, equivalent to

$$\frac{n^{-1} \sum_{i=1}^{n} x_{i} e_{i}}{n^{-1} \sum_{i=1}^{n} x_{i}^{2}} = \frac{n^{-1} \sum_{i=1}^{n} (z_{i} \gamma + u_{i}) e_{i}}{n^{-1} \sum_{i=1}^{n} (z_{i} \gamma + u_{i})^{2}}$$
$$= \frac{n^{-1} \sum_{i=1}^{n} u_{i} e_{i}}{n^{-1} \sum_{i=1}^{n} u_{i}^{2}} + o_{\rho}(1)$$
$$\xrightarrow{P} E(u_{i} e_{i}) / E(u_{i}^{2}) = \rho$$

• IV: For $\hat{\beta}_{IV} - \beta$, we can write $\frac{n^{-1/2} \sum_{i=1}^n z_i e_i}{n^{-1/2} \sum_{i=1}^n z_i x_i}$ or equivalently

$$\hat{\beta}_{IV} - \beta = \frac{n^{-1/2} \sum_{i=1}^{n} z_i e_i}{n^{-1/2} \sum_{i=1}^{n} z_i (z_i \gamma + u_i)}$$

$$= \frac{n^{-1/2} \sum_{i=1}^{n} z_i e_i}{n^{-1/2} \sum_{i=1}^{n} z_i u_i + n^{-1} \sum_{i=1}^{n} z_i^2 \mu} \xrightarrow{d} \frac{\xi_1}{\xi_2 + \mu}$$

which is not centered at 0, making it inconsistent.