Appunti di Algebra

Quel ragazzo con la maglia blu ${\rm May}\ 12,\ 2022$

Contents

1 Divisione nei numeri naturali e nei numeri interi

Insieme dei numeri naturali:

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

Insieme dei numeri interi:

$$\mathbb{Z} = \{\dots -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$$

1.1 Divisione in \mathbb{N}

 $\forall a, b \in \mathbb{N}, b \neq 0$

$$\exists ! \mathbf{q}, r \in \mathbb{N} \qquad | \qquad \begin{cases} a = bq + r \\ 0 \le r < b \end{cases}$$

q = quoziente

r = resto

| = tale che

Esempio 1
$$a = 137 \ b = 55$$
 $137 = 55 \cdot 2 + 27 \ r$

Esempio 2
$$a = 137 \ b = 142$$
 $137 = 142 \cdot 0 + 137 \atop a = 142 \cdot 0 + 137 \atop r$

 $\mathbf{NB1}$ per provare che q ed r esistono si usa il principio di induzione

 $\mathbf{NB2}$ q ed r sono unici significa:

$$\begin{cases} a = bq_1 + r_1 \\ a = bq_2 + r_2 \end{cases} \qquad 0 \le r_1 < b \\ 0 \le r_2 < b \end{cases} \Longrightarrow \begin{cases} q_2 = q_1 \\ r_2 = r_1 \end{cases}$$

1.2 Divisione in \mathbb{Z}

La definizione è uguale per i numeri interi $\forall a,\,b\in\mathbb{Z},\,b\neq0\,\,\exists!q,\,r\in\mathbb{Z}\,\,\text{tali che}\,\,a=bq+r$ con unica differenza $0\leq r<|b|$

$$|r| = \begin{cases} r \text{ se } r \ge 0\\ -r \text{ se } r < 0 \end{cases}$$

NB Se non si impone la condizione $\begin{cases} r \geq 0 \\ r < |b| \end{cases}$ non si ha l'unicità di q e r

Ad esempio

$$a = 137 \ b = -55$$
 $137 = (55) \ -2 \ +27$ ma anche $137 = (-55) \ -3 \ +-28$

NB1 la dimostrazione dell'esistenza di q ed r è simile a quella che si fa in \mathbb{N} , ottenuta sempre col principio di induzione.

2

NB2 q, r sono unici perché si richiede $0 \le r < |b|$

NB3
$$a, b \in \mathbb{Z}, b \neq 0 \text{ in } \mathbb{Z} : a = bq_1 + r_1, 0 \leq r - 1 < |b|$$

 $|a|, |b| \in \mathbb{N}, |b| \neq 0 \text{ in } \mathbb{N} : |a| = |b| \cdot q_2 + r_2 \cdot 0 \leq r_2 < |b|$

ATTENZIONE Non c'è un nesso tra il quoziente ed il resto della divizione di a e b in \mathbb{Z} ed il quoziente ed il resto della divizione di |a| e |b| in \mathbb{N}

Ad esempio

1.3 Divisibilità in \mathbb{N} e \mathbb{Z}

Divisibilità in \mathbb{N} $a, b \in \mathbb{N}, b \neq 0$

$$\begin{array}{ccc} b|a \text{ se } a = bq \ \exists q \in \mathbb{N} \ ^{(1)} & b \not | a \\ & \text{divide} & \text{non divide} \\ & \text{Es. } 6|18 & \text{Es. } 4|18 \end{array}$$

Per esempio 6|18

Divisibilità in \mathbb{Z} $a, b \in \mathbb{Z}, b \neq 0$

$$b|a$$
 se $\exists q \in \mathbb{Z}|a = bq$ altrimenti $b \not|a$

NB
$$a, b \in \mathbb{N}, b \neq 0, a \neq 0$$

$$\begin{cases} b|a \\ a|b \end{cases} \implies a \in \{b, -b\}$$

1.4 Massimo Comun Divisore in $\mathbb N$ ed in $\mathbb Z$

MCD In
$$\mathbb{N}$$
 $\forall a, b \in \mathbb{N}, (a,b) \neq (0,0)$

(almeno uno dei due deve essere diverso da 0)

Un $d \in \mathbb{N}$ è un MCD(a, b) se

- 1. $d|a \in d|b$ (è un divisore comune di $a \in b$)
- 2. se $z|a \in z|b \Longrightarrow z|d$

Ossia, se d è un divisore comune di $a \to B$ CHE

NB 1 MCD(a,b) è! in \mathbb{N} è il MCD(a,b)

$$60 = 2^{2} \cdot 3 \cdot 5$$

$$60|2$$

$$30|2$$

$$15|3$$

$$5|5$$

$$d = 2 \cdot 3 = 6$$

$$18 = 2 \cdot 3^{2}$$

$$9|3$$

$$3|3$$

NB 2 MCD(a,b) = MCD(b,a)

NB 3

$$\begin{cases} b|a \\ b \neq 0 \end{cases} \implies MCD(a,b) = b \tag{1}$$

$$\begin{array}{ll} \mathbf{NB} \ \mathbf{4} & a, \ b \in \mathbb{N} \ b \neq 0 \\ a = bq + r^{\ (2)} & 0 \leq r < b \end{array}$$

Perciò

$$MCD(a, b) = MCD(b, r)$$

Per provarlo, proviamo che i due insiemi $A \in B$ sono uguali: $A = \{z \mid z | a \in z | b\} = \text{insieme dei divisori comuni di } a \in b$ $B = \{w \mid w | b \in w | r\} = \text{insieme dei divisori comuni di } b \in r$

$$z \in A \Longrightarrow \begin{cases} z|a \\ z|b \end{cases} \begin{cases} z|a-bq=r \\ z|b \end{cases} \Longrightarrow z \in B \Longrightarrow A \subseteq B$$

$$w \in B \Longrightarrow \begin{cases} w|b & \begin{cases} w|b \\ w|r & \end{cases} w|bq+r=a \Longrightarrow w \in A \Longrightarrow B \subseteq A$$

In \mathbb{Z} $\forall a, b \in \mathbb{Z}$ con $(a, b) \neq (0, 0)$ $d \in \mathbb{Z}$ è un MCD(a, b) se

- 1. $d|a \in d|b$ dè un divisore comune di $a \in b$
- 2. $\begin{cases} z|a\\ z|b \end{cases} \implies z|d \qquad d \text{ è un multiplo di ogni divisore comune di } a \text{ e } b$

Abbiamo già visto che d = MCD(a, b) è unico in \mathbb{N} Anche in \mathbb{Z} scrivo d = MCD(a, b) anche se la nozione è "impropria".

NB In \mathbb{Z} d è individuale e non ha segno.

Se d è un massimo comun divisore di a e b allora anche -d è un massimo comun divisore di a e b.

Quindi in $\mathbb{Z}\ MCD(a,b)$ non indica un solo numero, ma 2: d e -d. Es. -6=MCD(-12,18)=+6

Perché per parlare di MCD(a, b) è **necessario** supporre $(a, b) \neq (0, 0)$

$$(2) \ r = a - bq$$

$$\begin{array}{lll} \mathbf{NB} & 2|0 & 0 & 0 & 0 \\ 3|0 & 142|0 & \forall b \neq 0 & b|0 \end{array}$$

Ecco perché è importante quando si parla di MCD(a,b) se fosse (a,b)=(0,0) allora $\forall z\neq 0$ z|0

L'insieme dei divisori comini di (a, b) = (0, 0) è

$$\{z|z\in\mathbb{Z},z\neq0\}$$

Dunque non c'è un MCD(a, b) nel casi in cui (a, b) = (0, 0)

$$\begin{array}{ll} \mathbf{NB} & a,b \in \mathbb{Z}, \ b \neq 0 \\ a = bq + r & 0 \leq r < |b| \end{array}$$

$$\Longrightarrow MCD(a,b) = MCD(b,r)$$

è la stessa osservazione che abbiamo fatto per MCD(a,b) nel caso $a,b\in\mathbb{N},\,b\neq0$

NB
$$a, b \in \mathbb{Z}$$
, non entrambi nulli allora $MCD(a, b) = MCD(-a, b) = MCD(a, -b) = MCD(-a, -b)$

1.5 Calcolo MCD in N: Algoritmo di Euclide

1.5.1 In \mathbb{N}

$$a, b \in \mathbb{N}, b \neq 0 \neq a$$

1º **passaggio**
$$a = bq_1 + r_1$$
 $0 \le r_1 < b$

SE
$$r_1 = 0$$
 $MCD(a, b) = MCD(b, r_1) = MCD(b, 0) = b$
STOP

Esempio 1
$$MCD(36, 12) =$$
P1 $36 = 12 \cdot 3 + 0 \Longrightarrow MCD(36, 12) = MCD(12, 0) = 12$
1°P $a = bq_1 + r_1 \Longrightarrow 0 \le r_1 < b$

SE $r_1 \neq 0$ continua.

 $\mathbf{2}^o$ passaggio SI DIVIDE b per r_1

$$b = r_1 q_2 + r_2 = \le r_2 < r_1$$

SE
$$R_2 = 0$$
 STOP

$$\begin{split} \text{MCD}(a,b) &= \text{MCD}(b,r_1) = \text{MCD}(r_1,r_2) = \text{MCD}(r_1,0) = r_1 \\ b &= r_1q_2 + r_2 \qquad \text{se } r_2 = 0 \end{split}$$

Potevo vederlo così: se $r_2 = 0$ allora $b = r_1q_2 + r_2 = r_1q_2$ per cui $MCD(b, r_1) = r_1$ quindi $MCD(a, b) = MCD(b, r_1) = r_1$

$$\underline{\text{Esempio 2}} \quad \text{MCD}(\underset{a}{42},\underset{b}{12}=6)$$

MCD(A, B) è l'ultimo resto non nullo della sequenza di divisioni successive

Es 1
$$MCD(36, 28) = 4$$

$$1^{\circ}p$$
 $36 = 28 \cdot 1 + 8$

$$2^{\circ} p \quad 28 = 8 \cdot 3 + 4$$

$$3^{\circ}p$$
 $8 = 4 \cdot 2 + 0$ $r_3 = 0 \Longrightarrow r_2 = MCD$

Es 2 MCD(2420, 1386) = 22

$$1^{\circ}p$$
 $2420 = 1386 \cdot 1 + 1034$

$$2^{o}p$$
 $1386 = 1034 \cdot 1 + 352$

$$3^{\circ}p \qquad 1034 = 352 \cdot 2 + 330$$

$$\frac{1}{4^{o}p} \qquad \begin{array}{c} r_{1} & r_{2} & q_{3} & r_{3} \\ 352 & = 330 \cdot 1 + 22 \end{array}$$

$$\begin{array}{ll} \frac{1^{o}p}{2^{o}p} & 2420 = 1386 \cdot \frac{1}{q_{1}} + 1034 \\ \frac{2^{o}p}{3^{o}p} & 1386 = 1034 \cdot \frac{1}{q_{2}} + 352 \\ \frac{3^{o}p}{3^{o}p} & 1034 = 352 \cdot 2 + 330 \\ \frac{4^{o}p}{r_{1}} & \frac{352}{r_{2}} = 330 \cdot \frac{1}{r_{3}} + 22 \\ \frac{7}{r_{2}} & \frac{7}{r_{3}} & \frac{q_{3}}{q_{3}} & \frac{r_{4}}{r_{4}} \\ \frac{5^{o}p}{r_{3}} & \frac{330}{r_{3}} = 22 \cdot \frac{15}{r_{5}} + 0 \\ \frac{7}{r_{3}} & \frac{7}{r_{4}} & \frac{7}{r_{5}} \end{array}$$

1.5.2 In \mathbb{Z}

1º modo consigliato

•
$$|a|, |b| \in \mathbb{N}$$

•
$$MCD(|a|, |b|) = d \in \mathbb{N}$$

•
$$d-d$$
 boh illeggibile

MCD(a,b) in \mathbb{Z}

 $\mathbf{2}^o$ modo Algoritmo di Euclide in $\mathbb Z$

Esempio MCD(-274, 110)

$$|a| = |-274| = 274$$

 $|b| = |110| = 110$

1º Modo svolgimento

$$2^{o}p$$
 $110 = 54 \cdot 2 + 2$

$$rac{-F}{b}$$
 r_1 q_2 r_2

$$3 p 54 = 2 \cdot 27 + 0$$

$$\frac{GP}{mCD(|a|,|b|)} = \frac{r_1}{r_2} = \frac{r_3}{q_3} + \frac{r_3}{r_3}$$

 $MCD(|a|,|b|) = d = 2 \Longrightarrow 2 \text{ e } -2 \text{ sono i } MCD(-274,110)$

$\mathbf{2}^o$ **Modo** Algoritmo di Euclide in \mathbb{Z}

$$\underline{1^{o}p}$$
 $\underline{274} = 110 \cdot (-3) + 56$

$$|b| > r_1 \ge 0$$

$$2^{o}p$$
 $110 = 56 \cdot 1 + 54$

$$3^{o}p \qquad 56 = 54 \cdot 1 + 2$$

2e-2sono i due massimi comuni divisori di-274e110

$$\begin{array}{lll} \frac{1^o p}{2^o p} & 274 = 110 \cdot (-3) + 56 \\ \frac{2^o p}{a} & 110 = 56 \cdot 1 + 54 \\ \frac{3^o p}{2^o p} & 56 = 54 \cdot 1 + 2 \\ \frac{4^o p}{2^o p} & 54 = 2 \cdot 27 + 0 \\ \frac{4^o p}{2^o p} & \frac{110}{2^o p} &$$

Polinomi 2

$$S \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$$

S[x] =Insieme dei polinomi a coefficienti in S nella indeterminata x

 $f(x) \in S[x]$ se $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ Robette che non ho capito bene

Se $a_n \neq 0$ IL GRADO DI f(x) è

 $\overline{n = \deg f}(x)$; a_n si chiama **coefficiente direttore** di f(x), a_0 si chiama **termine noto** di f(x)

$$\mathbf{NB} \ \mathbf{1} \quad \begin{cases} c \in S \\ c \neq 0 \end{cases} \longrightarrow \deg c = 0$$

NB 2 $c = 0 \in S$

per convenzione di pone deg $0=-\infty$

2.1Somma di polinomi

 $\forall f(x), g(x) \in S[x] \text{ definisco } f(x) + g(x) \in S[x]$

Es
$$f(x) = 2 - x^3 + 3x^2$$
 $g(x) = 7x + x^3 + 12$

$$2 + 0x + 3x^2 - x^3 + \deg f(x) = 3$$

$$f(x) = a_0 + a_1 x + \dots + a_n x^n = \sum_{i=0}^n a_i x^i \qquad a_n = 0, \deg f(x) = n$$

$$g(x) = b_0 + b_1 x + \dots + b_m x^m = \sum_{i=0}^m b_i x^i \qquad b_n = 0, \deg g(x) = m$$

Per fissare le idee si ponga che $m \leq n$

$$f(x) + g(x) = \sum_{i=0}^{m} (a_i + b_i)x^i + \sum_{i=m+1}^{n} a_i x^i$$

 $\deg (f(x) + g(x)) \le \max\{\deg f(x), \deg g(x)\}\$

2.2Prodotto di polinomi

 $\forall f(x), g(x) \in S[x] \text{ definisco } f(x), g(x) \in S[x]$ nel seguente modo:

se $f(x) = \sum_{i=0}^{n} a_i x^i$ e $g(x) = \sum_{i=0}^{m} b_i x^i$ allora

$$f(x)g(x) = \left(\sum_{i=0}^{n} a_i x^i\right) \left(\sum_{i=0}^{m} b_i x^i\right) =$$

$$= (a_0 + a_1x + a_2x^2 + \dots + a_nx^n)(b_0 + b_1x + b_2x^2 + \dots + b_mx^m) =$$

$$= a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_a + a_2b_0)x^2 + \dots = \sum_{i=0}^{i} a_kb_{i-k} \left(\sum_{k=0}^{i} a_kb_{i-k}\right)x^i$$

NB
$$\deg (f(x) \cdot g(x)) = \deg f(x) + \deg g(x)$$

Esempio
$$f(x) = 2 - x + 6x^2$$
 $g(x) = 1 + 4x$ $(2 - x + 6x^2)(1 + 4x) = \dots = 2 + 7x - 4x^2 + 6x^4 + 24x^5$

DA QUESTO MOMENTO $S \neq \mathbb{Z}$: $S \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$

2.3 Divisioni di polinomi

$$\forall f(x), g(x) \in S[x], g(x) \neq 0 \ \exists ! q(x), r(x) \in S[x] \ \text{tale che} \begin{cases} f(x) = g(x)q(x) + r(x) \\ \deg r(x) < \deg g(x) \end{cases}$$

Esempio Divido $f(x) = 7x^4 + 3x - 2 \in \mathbb{Q}[x]$ per $g(x) = x^2 + x + 1 \in \mathbb{Q}[x]$

$$\begin{array}{c|c}
7x^4 & x^2 + x + 1 \\
-7x^4 - 7x^3 - 7x^2 & 7x^2 - 7x \\
-7x^3 - 7x^2 & 7x \\
\hline
-7x^3 + 7x^2 + 7x & 7x
\end{array}$$

2.4 Radici di un polinomio

Sia $f(x) \in S[x]$.

Un numero $x_0 \in S$ si dice una **radice** (3) di f(x) se $f(x_0) = 0$ (4) Quindi x_0 è una radice di f(x) se e solo se x_0 è una soluzione dell'equazione f(x) = 0

Esempio
$$f(x) = x^2 + 2x + 1 = (x+1)^2$$

 $x_0 = -1$ è una radice di $f(x)$: $f(-1) = (-1+1)^2 = 0$
 $x_0 = 1$ è soluzione dell'equazione $x^2 + 2x + 1 = 0$ (5)

2.4.1 Teorema di Ruffini

Se
$$f(x) \in S[x]$$
 ed $x_0 \in S$ $(x_0 \text{ è una radice di } f(x)) \iff (x - x_0) \mid_{(divide)} f(x) \iff f(x) = (x - x_0)q(x)$ dividendo $f(x)$ per $x - x_0$ si ha $r(x) = 0$

2.4.2 Radici di polinomi di 2º grado a coefficienti reali

$$ax^2+bx+c=0$$

$$a,b,c\in\mathbb{R} \qquad a\neq 0$$
 $\Delta=b^2-4ac$ è il discriminante dell'equazione

• SE $\Delta > 0$ ci sono due soluzioni REALI distinte

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} \qquad \qquad x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

• SE $\Delta = 0$ l'equazione ha UNA soluzione REALE "contata due volte"

$$(x^{2} + 2x + 1) = (x + 1)(x + 1)$$
 $x_{1} = x_{2} = \frac{-b}{2a}$

• SE $\Delta < 0$ l'equazione non ha soluzioni reali, ma ha 2 soluzioni complesse

$$x_1 = \frac{-b + i\sqrt{-\Delta}}{2a} \qquad \qquad x_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$$

Poiché $\sqrt{-\Delta} \neq 0 \Longrightarrow x_1 \neq x_2$

L'equazione ha 2 soluzioni complesse **coniugate** (l'una coniugata dell'altra)

$$x_1 = \overline{x_2}$$

⁽³⁾ oppure uno zero

^{(4) &}quot;f valutato in $x_0 = 0$ "

⁽⁵⁾ ovvero f(x)

$$x_2 = \overline{x_1}$$

Equivalentemente dato
$$f(x) = ax^2 + bx + c$$
, $a, b, c \in \mathbb{R}$, $a \neq 0$ $f(x) = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)$ e $x^2 + \frac{b}{a}x + \frac{c}{a}$ ha due radici complesse x_1, x_2

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = (x - x_{1})(x - x_{2})$$

e quindi

$$f(x) = ax^2 + bx + c = a(x - x_1)(x - x_2)$$

 $\exists x_1, x_2 \in \mathbb{C}$ $a, b, c \in \mathbb{R}, a \neq 0$

2.5 Teorema fondamentale dell'algebra

$$\forall f(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n$$

$$a_0,a_1,a_2,\ldots,a_n\in\mathbb{C}$$
 polinomio di grado $n>0$
$$(a_n\neq 0)$$

 $\exists z_1, z_2, ..., z_n \in \mathbb{C}$ tale che

$$f(x) = a_n(x - z_1)(x - z_2)...(x - z_n)$$

potrebbero esserci ripetizioni

Ad esempio se $f(x) = (x-1)^n = (x-1)(x-1)...(x-1)$ allora $z_1 = z_2 = ... = z_n = 1$ Ogni polinomio di grado n > 0 e coefficienti complessi è prodotto di n polinomi di grado 1

Se $z_0, z_1, ..., z_x$ (6) sono quegli z_i DISTINTI, allora

$$f(x) = a_n(x - z_1)^{m_2}(x - z_2)^{m_2}...(x - z_k)^{m_k}$$

$m_i =$ la molteplicità algebrica di z_i

È equivalente a: $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$

L'equazione f(x) = 0 (7) ha n soluzioni:

 z_1 contata m_1 volte

 z_2 contata m_2 volte

 z_3 contata m_3 volte

 $m_1 + m_2 + \dots + m_k = n$

...

 z_k contata m_k volte

Esempio
$$f(k) = (x^2 + 2x + 1)(x - 3) = (x - 1)^2(x - 3)$$

 $z_1 = -1$ $m_1 = 2$
 $z_2 = 3$ $m_2 = 1$

Ogni equazione a coefficienti complessi di grado n ha n soluzioni complesse contate con le loro molteplicità

⁽⁶⁾ sono le radici di f(x)

⁽⁷⁾ cioè $a(x-z_n)^{m_1}(x-z_2)^{m_2}...(x-z_k)^{m_k}=0$

Ritorniamo alle divisioni in \mathbb{Z}

Se
$$a, b \in \mathbb{Z}$$
,

$$(a,b) \neq (0,0),$$

d = MCD(a, b) Vogliamo trovare

 $m, n \in \mathbb{Z}$ tali che

$$d = ma + nb$$

Esempio
$$a = 10$$

$$b = 4$$
 $d = 2$

cerco $m, n \in \mathbb{Z}$ tali che

$$d = am + bn$$

Calcolo d usando l'algoritmo di Euclide:

$$\begin{array}{l}
 10 = 4 \cdot 2 + 2 \\
 a \quad b \quad q_1 \quad r_1 \\
 4 = 2 \cdot 2 + 0
 \end{array}$$

$$\begin{array}{ll} 10 = 4 \cdot 2 + 2 \\ a = b \cdot q_1 & r_1 \\ 4 = 2 \cdot 2 + 0 \\ a = b \cdot q_1 & r_1 \end{array} \quad d = 2 = \begin{array}{ll} 10 \\ a \uparrow \end{array} + \begin{array}{ll} 4 \cdot (-2) \\ n \end{array}$$

NB m, n non sono univocamente individuati da $a \in b$

Esempio
$$2 = m10 + n4$$
 ma anche $2 = 10 \cdot 3 + 4 \cdot (-7)$

$$m = 1, n = -2$$

Identità di Bezout (teorema)

$$\forall a, b \in \mathbb{Z}, (a, b) \neq (0, 0), \text{ posto } d = (a, b) \exists m, n \in \mathbb{Z} \text{ tali che}$$

$$d = ma + nb$$

NB m, n non sono unici

Per trovarli posso:

- 1. Applico l'algoritmo di Euclide in \mathbb{Z} e lo "ripercorro" all'indietro" **OPPURE**
- 2. (a) calcolo $|a|, |b| \in \mathbb{N}$
 - (b) osservo MCD(a, b) = MCD(|a|, |b|)
 - (c) prendo d il MCD(|a|, |b|)**positivo** calcolato con l'algoritmo di Euclide in $\mathbb N$ Lo ripercorro all'indietro e ottengo $m^*, n^* \in \mathbb{Z}$

$$d = m^*|a| + n^*|b|$$

(d) se
$$a \ge 0 \Rightarrow |a| = a$$
 e $m = m^*$, se $a \le 0 \Rightarrow |a| = -a$ e $m = -m^*$ se $b \ge 0 \Rightarrow |b| = b$ e $n = n^*$, se $b \le 0 \Rightarrow |b| = -b$ e $n = -n^*$

a=-36 b=28 se d=MCD(a,b), cerco $m,n\in\mathbb{Z}$ tale che d=ma+nbEsempio

$\mathbf{1}^o$ Modo Algoritmo di Euclide in $\mathbb Z$ e calcolo d

$$-36 = 28 \cdot (-2) + 20 \Rightarrow 20 = -36 + 2 \cdot 28$$

a b
$$q_1$$
 r_1 N.B. $0 \le r_1 < |b| = 28$

$$28 = 20 \cdot q_2 1 + r_2 8 \Longrightarrow 8 = 28 + 20 \cdot (-1)$$

$$28 = 20 \cdot \underline{q_2} 1 + \underline{r_2} 8 \Longrightarrow 8 = 28 + 20 \cdot (-1)$$

$$20 = 8 \cdot \underline{q_3} 2 + 4 \Longrightarrow d = 4 = 20 + 8 \cdot (-2) = 20 + (-2)[28 + 20 \cdot (-1)] = 20 + (-2)[2$$

```
= 20 + (-2) \cdot 28 + 20 \cdot 2 =
= 3 \cdot 20 + (-2) \cdot 28 =
3 \cdot [-36 + 2 \cdot 28] + (-2) \cdot 28
= 3 \cdot (-36) + 6 \cdot 28 + (-2) \cdot 28 == 3 \cdot (-36) + 4 \cdot 28
```

 $\mathbf{2}^o$ Modo Cerco $m,n\in\mathbb{Z}$ tali che d=am+bndove $d=MCD(a,b)\ |a|=|-36|=36$ NB MCD(|a|,|b|)=MCD(a,b)=d $|b|=|28|=28 \text{ Intanto (PAOLO) l'algoritmo di Euclide a } |a| \text{ e } |b| \text{ e trovo } m*,n*\in\mathbb{Z}$ tali che $d=|a|\cdot m*+|b|\cdot n*$

PAOLO

3 Classi di Congruenza

Siano $a, b \in \mathbb{Z}, n \in \mathbb{N}, n > 0$ Si dice che a è **congruo** (o congruente) a b modulo n se

$$n|(a-b)$$

Si scrive $a \equiv b \mod n$; oppure $a \equiv b \pmod n$ oppure $a \equiv_n b$

 $\mathbf{NB} \quad a \equiv b \mod n \iff \quad \mbox{il resto della divisione} \quad = \quad \mbox{il$ di a per ndi b per n

Dimostrazione ipotesi: $a \equiv b \mod n$ tesi: i due resti sono uguali divido a per $n: a = nq_1 + r_1, 0 \le r_1 < n$

divido b per $n: b = nq_2 + r_2, 0 \le r_2 < n$

So che $a \equiv b \mod n \Longrightarrow n | (a - b)$

Da $a - b = nq_1 + r_1 - (nq_2 + r_2) = n(q_1 - q_2) + (r_1 - r_2)$

 $a = nq_1 + r_1$

 $b = nq_2 + r_2$

Si ottiene: $r_1 - r_2 = (a - b) - n(q_1 - q_2)$

$$\begin{cases} n|n(q_1-q_2) \\ \frac{n|a-b} \end{cases} \implies n|(a-b)-n(q_1-q_2) \Longrightarrow n|r_1-r_2$$

Perché per ipotesi $a \equiv b \mod n$

se
$$r_1 \ge r_2 \Longrightarrow \begin{cases} 0 \le r_1 - r_2 < n \\ n|r_1 - r_2 \end{cases} \Longrightarrow r_1 - r_2 = 0 \Longrightarrow r_1 = r_2$$

se
$$r_2 \ge r_1 \Longrightarrow \begin{cases} 0 \le r_2 - r_1 < n \\ n|(r_1 - r_2) \Rightarrow n|(r_2 - r_1) \end{cases} \Longrightarrow r_2 - r_1 = 0 \Longrightarrow r_2 = r_1$$

Viceversa

Ipotesi Considero

$$a = nq_1 + r_1$$
 $0 \le r_1 < n$
 $b = nq_2 + r_2$ $0 \le r_2 < n$
 $r_2 = r_1$

Tesi $a \equiv b \mod n$

Dimostrazione Voglio arrivare a dire che n|(a-b)

$$\begin{cases} a = nq_1 + r_1 \\ r_1 = r_2 \end{cases} \implies a = nq_1 + r_2 \implies a - b = (nq_1 + r_2) - (nq_2 + r_2) = nq_1 + \gamma / 2 - nq_2 - \gamma / 2 = nq_1 - nq_2 = n(q_1 - q_2) \implies n|(a - b)$$

NB 2 Fisso $n \in \mathbb{N}$

La relazione di congruenza gode delle seguenti proprietà:

- 1. è riflessiva: $a \equiv a \mod n \forall a$ (infatti n|(a-a)=0)
- 2. è simmetrica: $a \equiv b \mod n \Longrightarrow b \equiv a \mod n$ (infatti $n|(a-b) \Longrightarrow n|(b-a)$)
- 3. È transitiva: $\begin{cases} a \equiv b \mod n \\ b \equiv c \mod n \end{cases} \implies a \equiv c \mod n$ Infatti $\begin{cases} a \equiv b \mod n \implies n | (a b) \\ b \equiv c \mod n \implies n | (b c) \end{cases} \implies n | [(a b) + (b c)] = (a c) \implies n | [(a b) +$

Ogni relazione che dove delle proprietà 1., 2., 3. si dice una relazione di equivalenza.

Fissato $n \in \mathbb{N}$, n > 0, $a_1, a_2, b_1, b_2 \in \mathbb{Z}$

4. $\begin{cases} a_1 \equiv b_1 \mod n \\ a_2 \equiv b_2 \mod n \end{cases} \implies (a_1 + a_2) \equiv (b_1 + b_2) \mod n$ le congruenze modulo n si possono "sommare"

5. $\begin{cases} a_1 \equiv b_1 \mod n \\ a_2 \equiv b_2 \mod n \end{cases} \implies a_1 \cdot a_2 \equiv b_1 \cdot b_2 \mod n$ le congruenze modulo n si possono "moltiplicare" PAOLO qui però ho copiato

parecchio dalle slide vecchie

In generale

1. $\forall n \in \mathbb{N}, \forall a, k \in \mathbb{Z}$

$$[a]_n = [a + kn]_n$$

- $2. \ c \in [a]_n \Longrightarrow [a]_n = [c]_n$
- 3. In particolare (dividevo) a per:

$$a = qn + r \cos 0 \le r < n$$

Si ha $[a]_n = [r]_n$

Perché, essendo $r = a + n \cdot (-q)$, si ha che $r \in [a]_n$, quindi si può usare [z]??? con c = r

Def. $a \in \mathbb{Z}, n \in \mathbb{Z}, n > 0$, si chiama

classe di congruenza a modulo n e si indica $[a]_n$ oppure [a] mod n

 $[a]_n$ = insieme di tutti i numeri interi che sono congrui ad a modulo n $= \{b \in \mathbb{Z} | b \equiv a \mod n \}$

NB 1 $\forall b \in \mathbb{N}, n > 0, a, b \in \mathbb{Z}$ Voglio vedere che $[a]_n = [b]_n$ oppure che $[a]_n \cap [b]_n = \emptyset$ (8) Infatti o $[a]_n = [b]_n$

Oppure
$$[a]_n = [b]_n$$

Oppure $[a]_n \neq [b]_n$. Suppongo $[a]_n \cap [b]_n \neq \emptyset$
 $\Rightarrow \exists c \in [a]_n \cap [b]_n \Rightarrow \begin{cases} c \in [a]_n \Rightarrow [a]_n = [c]_n \\ c \in [b]_n \Rightarrow [b]_n = [c]_n \end{cases}$
 $\Rightarrow [a]_n = [c]_n = [b]_n \Rightarrow [a]_n = b_n$ è una contraddizione

(8) $[a]_n$ e $[b]_n$, pensati come insiemi di numeri interi, sono **insiemi disgiunti**

NB 2 $\forall n, n > 0$

Considero le classi di congruenza $[a]_n$ con $0 \le a < n$ se $b \in \mathbb{Z}$, dividendo b su n si ha: b = nq + r con $0 \le r < n \Longrightarrow [b]_n = [r]_n \Longrightarrow b \in [r]_n$ Quindi

$$\mathbb{Z} = [0]_n \cup [1]_n \cup [2]_n \cup \ldots \cup [n-1]_n$$
$$\mathbb{Z} = \bigcup_{0 \le a < n} [a]_n$$

Queste classi sono a due a due **disgiunte**, l'insieme delle classi $[0]_n, [1]_n, ..., [n-1]_n$ sono una **partizione** di \mathbb{Z}

Def. L'insieme degli interi modulo n, indicato con il simbolo \mathbb{Z}_n è:

$$\mathbb{Z}_n = \{[0]_n, [1]_n, [2]_n, ..., [n-1]_n\}$$

In \mathbb{Z}_n si definiscono + e · nel seguente modo:

DA QUI RIPRENDO LEZIONE LIVE 6

Teorema 1 (*) ha soluzione \iff d = MCD(a, n)|bse d|b una soluzione $x_0 = \alpha q$ dove $\begin{cases} d = \alpha a + bn \\ b = \alpha q \text{ per cui } q = \frac{b}{d} \end{cases}$

Teorema 2 se (*) ha soluzione e x_0 è una soluzione allora l'insieme di **tutte** le

 $\{x_k=x_0+k\cdot \frac{n}{d}|k\in\mathbb{Z}\}$ si ripartiscomno nelle classi: $[x_0]_n,[x_1]_n,...,[x_{d-1}]_n$ **ESERCIZI**

- 1. $2x \equiv 5 \mod 8$
 - (a) Calcolo d = MCD(a, n) = MCD(2, 8) = 2
 - (b) d|b| PAOLO
- 2. $3 \equiv 4 \mod 7$
 - (a) Calcolo d = MCD(a, n) = MCD(3, 7) = 1
 - (b) d|b

La congruenza ha ∞ numeri come soluzioni:

 $\{x_0 + 7k | x \in \mathbb{Z}\} = [x_0]_7$ dove x_0 è una particolare soluzione.

Soluzione:

$$d = \alpha a + \beta n$$

$$1 = \alpha \cdot 3 + \beta \cdot 7$$

Bezout:

$$7 = 3 \cdot 2 + 1 \Longrightarrow d = 1$$

bezont:

$$7 = \underbrace{3 \cdot 2}_{n} + \underbrace{1}_{r_{1}} \Longrightarrow d = 1$$

$$1 = \underbrace{7}_{d} + \underbrace{3 \cdot (-2)}_{\beta=1} \Longrightarrow \alpha = -2$$

$$\begin{array}{l}
 4 & \beta = 1 \\
 4 & = 7 \cdot 4 + 3 \cdot (-2) \cdot 4
 \end{array}$$

Le soluzioni sono tutte nella classe

Le soluzioni sono tutte nena ciasse
$$[(-2) \cdot 4]_7 \Longrightarrow [-8]_7 = [-8+7]_7 = [-1]_7 = [-1+7]_7 = [6]_7$$

 $3. \ 2x \equiv 10 \mod 12$

PAOLO La congruenza ha infiniti numeri interi come soluzioni, che si ripartiscono in d=2 classi di congruenza modulo n=12

```
(a) calcolo x_0 (poi prendero anche x_1 = x_0 + 6) 2x \equiv 10 \mod 12 \ d = \alpha \cdot 2 + \beta \cdot 122 = \alpha \cdot 2 + \beta \cdot 122 = 12 \cdot 0 + 2 \implies Continua2 = 2 \cdot \alpha 1 + 12 \cdot 0 \mod 12 2 = 2 \cdot \alpha 1 + 12 \cdot 0 \mod 12 5 \cdot 2 = 5 \cdot 2 \cdot 1 + 5 \cdot 12 \cdot 0 \mod 12 1 = 10 \mod 12 1 = 10 \mod 12 1 = 10 \mod 12 2 \mod 12
```

3.1 Invertibili in \mathbb{Z}_n e il loro calcolo

 $n \in \mathbb{Z}, n > 0, a \in \mathbb{Z}$ si dice **invertibile modulo** n se la congruenza $ax \equiv 1 \mod n$ ha soluzioni.

quindi $\iff MCD(a, n) = d|b = 1 \iff MCD(a, n) = 1$ Si dice PAOLO.

```
Def. n \in \mathbb{N}, n > 0 [a]_n \in \mathbb{Z}_n si dice invertibile in \mathbb{Z}_n se \exists [b]_n \in \mathbb{Z}_n tale che [a]_n[b] - n = [1]_n In questo case [b]_n si dice un inverso di [a]_n [a]_n = [1]_n ax \equiv 1 \mod n d = MCD(a, n) = 1 Essendo [b]_n unico (Perché d = 1) Allora [b]_n è l'inverso di [a]_n PAOLO
```

Esempio 1 6 non è invertibile modulo 9 perché $MCD(6,9) \neq 1$ $(6x \equiv 1 \mod 9 \text{ non ha soluzioni})$

se
$$a=0$$
 allora $[a]_p=[0]_p$
$$\mathcal{A}[b]_p|[0]_p[b]_p=[1]_p$$

$$\exists [0]_p^{-1}$$

se $a \neq 0$ Siccome p è un numero primo PAOLO

Di \mathbb{Z}_p tutti di elementi $\neq [0]_p$ sono invertibili. Quanti sono? Sono p-1Il numero degli elementi invertibili in \mathbb{Z}_p è p-1Quanti sono gli invertibili in \mathbb{Z}_n ? PAOLO

3.2 La funzione di Eulero

La funzione di Eulero ϕ li "conta" $\phi: \mathbb{N} \longrightarrow \mathbb{N}$

è definita da $\phi(n)$ =il numero dei naturali k tali che $\begin{cases} 0 \le k < n \\ MCD(k,n) = 1 \end{cases}$ Se p è un numero primo (PAOLO) $\phi(p) = p - 1$

$$n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_m^{\alpha_m} \Longrightarrow \phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2} ... (1 - \frac{1}{p_m})$$

Finisci slide

3.3 Sistema di congruenze

UN sistema di congruenze è

 $a_1 x \equiv c_1 \mod m_1$

 $a_2 x \equiv c_2 \mod m_2$

• • •

 $a_k x \equiv c_k \mod m_k$

Dove $a_i, c_i \in \mathbb{Z}$ i = 1, ..., k

PAOLO

"Risolvere" il sistema significa

- Dire se ha soluzioni oppure no
- nel caso le abbia, trovarle tutte

Un $x_0 \in \mathbb{Z}$ è UNA SOLUZIONE del sistema se è contemporaneamente soluzione di ogni congruenza del sistema.

 ${f NB~1}~$ Se una congruenza non ha soluzioni allora l'intero sistema non ne ha. $^{(9)}$

 ${\bf NB~2}~$ Anche se tutte le congruenze del sistema hanno soluzione, non è detto che il sistema abbia soluzione.

Ad esempio

 $\begin{cases} x \equiv 1 \mod 2 \\ x \equiv 0 \mod 6 \end{cases}$ non ha soluzioni anche se ogni sua configurazione ha soluzioni

⁽⁹⁾ come avviene in tutti i sistemi

3.4 Il teorema cinese dei resti

Il teorema cinese dei resti da una condizione **sufficiente** affinché **particolari** sistemi di congruenze abbiano soluzioni.

Dati $n_1, n_2, ..., n_k \in \mathbb{N}, n_i > 0$ i = 1, ..., k a due a due coprimi⁽¹⁰⁾

 $\forall b_1, b_2, ..., b_k \in \mathbb{Z}$ si ha che \exists infinite soluzioni del sistema

$$\begin{cases} x \equiv b_1 \mod n_1 \\ x \equiv b_2 \mod n_2 \\ \dots \end{cases}$$
 Esse si trovano tutte nella stessa classe di congruenze modulo $n = n_1 \cdot n_2 \cdot \dots \cdot n_k$ $x \equiv b_k \mod n_k$

 ${\bf NB}~$ La condizione che gli n_1 siano a due a due coprimi non è una condizione neccessaria affinché il sistema abbia soluzioni:

Esempio 1
$$\begin{cases} 5x \equiv 3 \mod 7 & n_1 = n_2 \Longrightarrow MCD(n_1, n_2) \neq 0 \\ 3x \equiv 6 \mod 7 & \text{Però il sistema ha soluzione } [2]_7 \end{cases}$$

Esempio 2
$$\begin{cases} x \equiv 0 \mod 2 & MCD(n_1, n_2) \neq 0 \\ x \equiv 2 \mod 4 & \text{Però il sistema ha soluzione in } [2]_4 \end{cases}$$

Cominciamo a studiare Il caso k=2

$$\begin{cases} A \to & \begin{cases} x \equiv b_1 \mod n_1 \\ B \to & \end{cases} & MCD(n_1, n_2) = 1$$

3.4.1 Metodo di Newton

- 1. $x_1 = b_1$
- 2. Cerco $t_2 \in \mathbb{Z}$ tale che $x_1 + t_2 n_1 \equiv x_2$ sia soluzione di B Così cerco $t_2 \in \mathbb{Z}$ tale che $b_1 = t_2 n_1 \equiv b_2 \mod n_2$ $t_2 n_1 \equiv (b_2 b_1) \mod n_2$ dove t_2 è il numero intero che cerco in modo tale che: $x_2 \equiv b_2 \mod 4$ (siccome cerco t_2) $x_2 = x_1 + t_2 n_1 \equiv x 1 = b_1 \mod n_1$
- 3. x_2 è una soluzione di $\begin{cases} A \\ B \end{cases}$
- 4. Per il teorema cinese dei resti, le soluzioni del sistema sono esattamente tutti i numeri interi nella classe $[x_2]_n = \{\}$ PAOLO

Esempio
$$\begin{cases} x \equiv 4 \mod 6 \\ b_1 & n_1 \\ x \equiv 3 \mod 5 \\ mCD(n_1, n_2) = MCD(6, 5) = 1 \end{cases}$$

Posso applicare il teorema dinese dei resti e concludere che il sistema ha infinite soluzioni: tutti i numeri in $[x_2]_30 = \{x_2 + 30k | k \in \mathbb{Z}\}$

(10) cioè se $i \neq j$ allora $MCD(n_i, n_j) = 1$

1.
$$x_1 = 4$$

2. cerco
$$t_2 \in \mathbb{Z}$$
 tale che $x_2 = x_1 + t_2 n_1 \equiv b_2 \mod n_2$, ovvero $4 + t_2 \cdot 6 \equiv 3 \mod 5$
Facendo i conti in \mathbb{Z}_5 : $[4]_5 + t_2[6]_5 = [3]_5$
 $t_2 \cdot 6 \equiv 3 - 4 \mod 5$
 $6t_2 \equiv -1 \mod 5 \Longrightarrow t_2 \equiv 4 \mod 5$

3. ad esempio prendo
$$t_2 = 4 \Longrightarrow$$

 $\Longrightarrow x_2 = x_1 + t_2 n_1 = 4 + 4 \cdot 6 = 28$

Per il teorema cinese dei resti tutte le soluzioni di $\begin{cases} A \\ B \end{cases}$ sono gli interi nell'insieme [28] $_{30}=\{28+30k|k\in\mathbb{Z}\}$

Il caso k = 3 Consideriamo

$$\begin{array}{ccc} A \longrightarrow & \begin{cases} x \equiv b_1 \mod n_1 \\ X \equiv b_2 \mod n_2 \\ C \longrightarrow & \\ x \equiv b_3 \mod n_3 \end{cases}$$

E lo risolviamo col teorema cinese dei resti con l'ipotesi:

$$MCD(n_1, n_2) = 1$$

 $MCD(n_1, n_3) = 1$
 $MCD(n_2, n_3) = 1$

Per trovare x_3 :

- 1. Scelgo una soluzione di $A: x_1 = b_1$
- 2. Cerco $t_2 \in \mathbb{Z}$ tale che $x_2 = x_1 + t_2 n_1 \equiv b_2 \mod n_2$

3.
$$x_2$$
 è soluzione di $\begin{cases} A \\ B \end{cases}$

4. Cerco
$$t_3 \in \mathbb{Z}$$
 tale che $x_2 + t_3(n_1 \cdot n_2) = x_3 \ x_3$ è soluzione di
$$\begin{cases} A \\ B \\ C \end{cases}$$

$$x_3 \equiv x_2$$
 è soluzione di A
 $x_3 \equiv x_2$ è soluzione di B
 a

$$n = n_1 \cdot n_2 \cdot n_3$$

5.
$$x_3$$
 è una soluzione del sistema
$$\begin{cases} A \\ B \\ B \end{cases}$$

Per il teorema cinese dei resti la soluzione del (*) sono i numeri interi nell'insieme $\{x_2 + nk | k \in \mathbb{Z}\}$

Esempio 2 considero

$$\begin{cases} x \equiv 10 \mod 11 \\ x \equiv 5 \mod 6 \\ x \equiv 10 \mod 7 \\ \end{cases} MCD(11,6) = 1 \\ MCD(11,7) = 1 \\ MCD(6,7) = 1$$

$$n = 11 \cdot 6 \cdot 7 = 462$$

- 1. $x_1 = 10$
- 2. Cerco $t_2 \in \mathbb{Z}$ tale che $x_2 = x_1 + t_2 n_1 \equiv b_2 \mod n_2$ $10 = t_2 \cdot 11 \equiv 5 \mod n$ $11t_2 \equiv 5 - 10 \mod 6$ $11t_2 \equiv -5 \mod 6$ [1]₆ = [5]₆ [-5]₆ = [1]₆ PAOLO, e anche bello grosso
- 3. Cerco $t_3 \in \mathbb{Z}$ tale che $x_3 = x_2 + t_3(n_1 \cdot n_2)$ sia soluzione di C: $x \equiv 5 \mod 7$ $x_2 + t_3(n_1 \cdot n_2) \equiv 5 \mod 7$ $65 + t_3(11 \cdot 6) \equiv 5 \mod 7$ $66t_3 \equiv -60 \mod 7$ $3t_3 \equiv 3 \mod 7$

$$x_3 = x_2 + t_3 \cdot n_1 \cdot n_2$$

= 65 + 1 \cdot 11 \cdot 6
= 65 + 66 = 131

PAOLO

In generale se $k \ge 4$ e $\begin{cases} x \equiv b_1 \mod n_1 \\ x \equiv b_2 \mod n_2 \\ x \equiv b_k \mod n_k \end{cases}$ Con $MCD(n_i, n_j) = 1 \ \forall i \ne j$

Itero di procedimento

- $x_1 = b_1$ è una soluzione di 1
- impongo che $x_1 + n_1 t_2 = x_2$ Sia soluzione di 2 PAOLO Cerco t_2 ...
- Impongo che $x_2+n_1n_2t_3=x_3$ sia soluzione di 3 (Cerco $t_3\in\mathbb{Z}$ tale che ...) allora x_3 è soluzione di $\begin{cases} 1\\2\\3 \end{cases}$
- Impongo che $x_3+n_1n_2n_3t_4=x_3$ sia soluzione di 4 (Cerco $t_4\in\mathbb{Z}$ tale che ...) allora x_4 è soluzione di $\begin{cases} 1\\2\\3\\4 \end{cases}$

PAOLO

Torniamo al caso
$$k=2$$
 $\begin{cases} x\equiv b_1 \mod n_1 \\ x\equiv b_2 \mod n_2 \end{cases}$ Metodo di Lagrange $MCD(n_1,n_2)=1$ Da $MCD(n_1,n_2)=1$, usando Bezout trovo: $\alpha_1,\alpha_2\in\mathbb{Z}$ tali che $\alpha_1n_1+\alpha_2n_2=1$ Allora $z=\alpha_1n_1b_2+\alpha_2n_2b_1$ è una PAOLO $z=\alpha_1n_1b_2+\alpha_2n_2b_1$ $z\equiv b_1 \mod n_1$ $a_1n_1+\alpha_2n_2\Longrightarrow \alpha_2n_2=1-\alpha_1n_1$ $z=\alpha_1n_1b_2+(1-\alpha_1n_1)b_1$ (2)

(3)

PAOLO, c'è da finire la slide

$$\begin{cases} x \equiv 4 \mod 6 \\ x \equiv 4 \mod 6 \\ x \equiv 4 \mod 6 \\ mCD(6, 5) = 1 \text{ cerco } \alpha_1, \alpha_2 \in \mathbb{Z}| \end{cases}$$

PAOLO

Ridurre un generico sistema di congruenze

Vediamo come "ridurre", se si può, un generico sistema di congruenze:

 $=\alpha_1 n_1 b_2$

liamo come "ridurre", se si può, un generico sistema di congruenze:
$$\begin{cases} a_1x \equiv c_1 \mod m_1 \\ a_2x \equiv c_2 \mod m_2 \\ \dots \\ a_kx \equiv c_k \mod m_k \\ a_i, c_i \in \mathbb{Z}, m_i \in \mathbb{N}, m_i > 0 \end{cases} \text{ ad un sistema nella forma} \begin{cases} x \equiv b_1 \mod n_1 \\ x \equiv b_2 \mod n_2 \\ \dots \\ x \equiv b_k \mod n_k \\ b_i \in \mathbb{Z}, n_i \in \mathbb{Z}, n_i > 0 \end{cases}$$

Ridurre significa "sostituire con un sistema equivalente" Equivalente significa "con le stesse soluzioni"

Motivazione Abbiamo

$$A \to \begin{cases} 2x \equiv 4 \mod 8 \\ 3x \equiv 6 \mod 9 \end{cases}$$

$$A = MCD(2, 8) = d = 2|4\begin{cases} [2]_8 & 2 \cdot 2 = 4 \equiv 4 \mod 8 \\ [6]_8 & 2 \cdot 6 = 12 \equiv 4 \mod 8 \end{cases}$$

$$A\begin{cases} x \equiv 2 \mod 8 & C \\ x \equiv 6 \mod 8 & D \end{cases}$$

$$B: MCD(3, 9) = d = 3|6\begin{cases} [2]_9 & 3 \cdot 2 = 6 \equiv 6 \mod 9 \\ [5]_9 & 3 \cdot 5 = 15 \equiv 6 \mod 9 \\ [8]_9 & 3 \cdot 8 = 24 \equiv 6 \mod 9 \end{cases}$$

$$B \begin{cases} x \equiv 2 \mod 9 & E \\ x \equiv 5 \mod 9 & F \\ x \equiv 8 \mod 9 & G \end{cases}$$

sono l'unione delle soluzioni di 6 sistemi:

$$\begin{cases} C & \cup \begin{cases} C & \cup \begin{cases} C & \cup \begin{cases} D & \cup \begin{cases} D & \cup \\ F & 0 \end{cases} \end{cases} \end{cases}$$

E noi vorremmo non dover risolvere sei sistemi.

Passaggio 1 Calcolo $d_i = MCD(a_i, m_i) \ \forall i = 1, ..., k$

- $\exists d_i$ tale che $d_i \not| c_i$ allora $a_i x \equiv c_i \mod m_i$ Non ha soluzioni, allora (*) non ha
- se $d_i|c_i \ \forall i=1,...,k$ allora ogni congruenza di (*) ha soluzione e
 - se $d_i = 1$ mantengo la congruenza $a_i x \equiv c_i \mod m_i$
 - se $d_i \neq 1$ sostituisco la congruenza $a_i x \equiv c_i \mod m_i$ con la congruenza

$$\frac{a_i}{d_i} x \equiv \frac{c_i}{d_i} \mod \frac{m_i}{d_i}$$

NB 1 La congruenza $\frac{a_i}{d_i}x\equiv\frac{c_i}{d_i}\mod\frac{m_i}{d_i}$ è equivalente alla congruenza $a_ix\equiv c_i$ $\mod m_i$

NB 2 La congruenza $a_i x \equiv c_i \mod m_i$

Infatti

Sia $z \in \mathbb{Z}$

NB 3 Siccome $d_i = MCD(a_i, m_i)$ allora

$$MCD(\frac{a_i}{d_i}, \frac{m_i}{d_i}) = 1$$

Quindi le soluzioni della congruenza $\frac{a_i}{d_i}x\equiv\frac{c_i}{d_i}\mod\frac{m_i}{d_i}$ stanno tutte in un'unica classe di congruenza modulo $\frac{m_i}{d_i}$ Alla fine del **passaggio 1** ottengo che (*) non ha soluzioni, oppure che (*) è equiva-

$$(**) \begin{cases} \frac{a_1}{d_1} x \equiv \frac{c_1}{d_1} \mod \frac{m_1}{d_1} \\ \vdots \\ \vdots \\ \frac{a_k}{d_k} x \equiv \frac{c_k}{d_k} \mod \frac{m_k}{d_k} \end{cases}$$

Passaggio 2 Risolvo ciascuna congruenza di (**)

$$\frac{a_i}{d_i}x \equiv \frac{c_i}{d_i} \mod \frac{m_i}{d_i} \Longrightarrow x \equiv \frac{b_i}{d_i} \mod \frac{m_i}{d_i}$$

Dove $[b_i]_{\frac{m_i}{d_i}}=\{b_i+\frac{m_i}{d_i}t|t\in\mathbb{Z}\}$ è l'insieme delle soluzioni della congruenza

Posto $n_i = \frac{m_i}{d_i}$ ottengo un sistema

$$(***) \begin{cases} x \equiv b_1 \mod n_1 \\ x \equiv b_2 \mod n_2 \\ \dots \\ \dots \\ x \equiv b_k \mod n_k \end{cases}$$

SE $MCD(n_i, n_j) = 1 \ \forall i \neq j$ posso applicare il Teorema cinese dei resti. In tal caso:

Passaggio 3 Con newton trovo x_k una particolare soluzione di (***) e per il teorema cinese dei resti l'insieme di tutte le soluzioni (***), e quindi anche di (*) è $[x_k]_n = \{x_k + nt | t \in \mathbb{Z}\}$

dove
$$n = n_1 \cdot n_2 \cdot \ldots \cdot n_k$$

3.6 Esercizio tipo

Risolvere il sistema

$$\begin{cases} 3x \equiv 4 \mod 5\\ a_1 & c_1 \mod 6\\ 2x \equiv 4 \mod 6\\ a_2 & c_2 \end{cases}$$

$$\begin{array}{ll} \textbf{Passaggio 1} & a_1 = MCD(a_1, m_1) = MCD(3, 5) = 1 | 4 = c_1 \\ a_2 = MCD(a_2, m_2) = MCD(2, 6) = 2 | 4 = c_2 \end{array}$$

 $a_1 = 1 \Longrightarrow \text{mantengo } 3x \equiv 4 \mod 5$ $a_2 = 2 \neq 1 \text{ sostituisco } 2x \equiv 4 \mod 6$ $\text{Con } \frac{2}{2}x \equiv \frac{4}{2} \mod \frac{6}{2} \colon x \equiv 2 \mod 3$

arrivo a (**)
$$\begin{cases} 3x \equiv 4 \mod 5 \\ x \equiv 2 \mod 3 \end{cases}$$

Passaggio 2 Risolvo ciascuna congruenza PAOLO

$$3x \equiv 4 \mod 5$$

$$d = MCD(a, n) = 1|4 = b$$

$$d = 1 = \alpha a + \beta n$$

$$1 = \alpha + \beta \cdot 5$$

$$\alpha = 2$$

$$x_0 = \alpha q = 2 \cdot 4 = 8$$

$$5 = 3 \cdot 1 + 2 \Longrightarrow 2 = 5 + 3 \cdot (-1)$$

$$3 = 2 \cdot 1 + 1$$

$$a \quad r_1 \quad q_2 \quad r_2$$

$$\Rightarrow 1 = 3 + 3 \cdot (-1) = 3 + (-1)[5 + 3 \cdot (-1)] = 3 + (-1) \cdot 5 + 3 = 3 \cdot 2 + 5 \cdot (-1)$$

$$\Rightarrow 3x \equiv 4 \mod 5$$

$$[8]_5 = [8-5]_5 = [3]_5$$

Sostituisco $3x \equiv 4 \mod 5$ con $x \equiv 3 \mod 5$

Per puro caso la congruenza $x = 2 \mod 3$ è già risolta.

$$(***) \begin{cases} x \equiv 3 \mod 5 \\ b_1 & n_1 \end{cases}$$
$$x \equiv 2 \mod 3 \\ b_2 & n_2 \end{cases}$$

Siccome $MCD(n_1, n_2) = MCD(5, 3) = 1$,

Allora posso applicare il teorema cinese dei resti e concludere che (***) e quindi anche il sistema da cui sono partito ha infinite soluzioni (numeri interi) tutte nella stessa classe di congruenza modulo

$$n = n_2 \cdot n_2 = 5 \cdot 3 = 15$$

Passaggio 3 Trovo x_2 una particolare soluzione di (***)

- 1° Modo per trovare $x_2 \begin{cases} x \equiv 3 \mod 5 \\ x \equiv 2 \mod 3 \\ n-2 \end{cases}$
 - 1. $x_1 = 3$
 - 2. cerco $t_2 \in \mathbb{Z}$ tale che $x_2 = x_1 + t_2 n_1 \equiv 2 \mod 3$ $x_2 \to 3 + t_2 \cdot 5 \equiv 2 \mod 3$

$$5t_2 \equiv (2-3) \mod 3$$

$$5t_2 \equiv -1 \mod 3 \equiv 2 \mod 3A$$

$$[5]_3 = [2]_3 \rightarrow 5t_2 = 2t_2$$

$$2t_2 \equiv 2 \mod 3$$

Ad esempio $t_2 = 1$ $x_2 = 3 + 1 \cdot 5 = 3 + 5 = 8$ tutte le soluzioni del (*) sono $[8]_5 = \{8 + 15k | k \in \mathbb{Z}\}$

2° Modo per trovare $x_2 = z \ MCD(n_1, n_2) = 1 \ \exists \alpha_1, \alpha_2 \in \mathbb{Z}$ tale che

$$\alpha_1 n_1 + \alpha_2 n_2 = 1$$

$$\begin{array}{ccc} \alpha_1 & \cdot 5 + \alpha_2 & \cdot 3 = 1 \\ -1 & & 2 \end{array}$$

$$z = \frac{\alpha_1 n_1}{-5} b_2 + \frac{\alpha_2 n_2}{6} b_1 = \\ = -5 \cdot 2 + 6 \cdot 3$$

$$= -5 \cdot 2 + 6 \cdot 3$$

$$=-10+18=8$$

$$[z]_n = [8]_{15} = \{8 + 15k | k \in \mathbb{Z}\}$$

4 Matrici e loro operazioni

Una **matrice** è una tabella di numeri (o di simboli) disposti in righe e colonne, detti **coefficienti** della matrice

$$A = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 4 & 1 \end{bmatrix} \qquad A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 4 & 1 \end{pmatrix} \qquad A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 4 & 1 \end{pmatrix}$$

Altri tipi di notazioni sono sbagliati, inoltre:

$$\begin{bmatrix} 2 \\ 1 & 4 \end{bmatrix}$$
non è una matrice

Il numero che si trova nella i-esima riga e nella j-esima colonna si chiama **coefficiente** di posto (i,j)

 $A \stackrel{.}{e} m \times n$ se ha m righe e n colonne (A ha "dimensioni $m \times n$ ")

$$\mathbf{A} = \begin{array}{c} \rightarrow \\ \rightarrow \\ - \rightarrow \\ 1 \quad 4 \quad 1 \end{array} \right] \stackrel{\triangleright}{\mathbf{e}} 2 \times 3 \qquad \qquad \begin{array}{c} \begin{bmatrix} 1 & \frac{1}{2} \\ i & 7 \\ 0 & 3 \\ \end{bmatrix} \stackrel{\triangleright}{\mathbf{e}} 3 \times 2$$

Le posizioni sono:

$$(2,2)$$
 $(1,3)$ $(3,2)$

Le matrici si indicano con lettere latine maiuscole in stampatello

I Coefficienti si indicano con le lettere latine minuscole in corsivo

$$a_{ij} = \text{il coefficiente di posti } (i, j) \text{ di A}$$

Per scrivere in modo compatto la matrice:

La indico:

$$\mathbf{A} = (a_{ij})$$
 oppure $\mathbf{A} = (a_{ij})_{i=1,\dots,m}$ PAOLO

4.1 Operazioni

4.1.1 Prodotto di una matrice per uno scalare

Dato $A = (aij), m \times n$ e dato uno scalare α , si definisce **Prodotto dello scalare** α per la matrice A la matrice B_{$m \times n$} = (bij) dove $b_{ij} = \alpha \cdot a_{ij}$

si indica
$$B = \alpha \cdot A$$

Esempio
$$\alpha = 1 - i$$
 $A = \begin{bmatrix} 7 & 0 & 3i \\ 1 + 2i & -i & -4 \end{bmatrix}$

$$\Longrightarrow \alpha {\bf A} = (1-j) \begin{bmatrix} 7 & 0 & 3i \\ 1+2i & -i & -4 \end{bmatrix} =$$

$$\begin{array}{c|c} (1-i)7 = 7 - 7i \\ (1-i) \cdot 3i = 3i - 3i^2 \\ = -3i - 3(-1) \\ = 3i + 3 \end{array} | \begin{array}{c} (1-i)(1+2i) = 1 - i + 2i + 2i^2 = 1 - i + 2i + 2 = 3 + i \\ (1-i)(-i) = -i + i^2 = -i - 1 \\ (1-i)(-4) = -4 + 4i \end{array}$$

NB 1 vale la legge di cancellazione

$$\alpha \cdot A = || \Longrightarrow \alpha = 0$$
 oppure $A = ||$

Indico con || la matrice con tutti i coefficienti = 0

NB 2

1.
$$\alpha A = A\alpha$$
 $\forall \alpha \text{ scalare } \forall A$

2.
$$1 \cdot A = A$$
 $\forall A$

3.
$$0 \cdot A = ||$$
 $\forall A$

4.
$$(\alpha \cdot \beta) \cdot A = \alpha(\beta A)$$

 $\forall \alpha, \beta \text{ scalari } \forall A$

Notazioni $(-1)\cdot A = -A$

 $\mathbf{A} = [a_{ij}]$ $(-1)\cdot\mathbf{A} = [(-1)a_{ij} - \mathbf{A} \text{ si chiama la matrice opposta della matrice } \mathbf{A}$

4.2 Somma di due matrici

Date almeno due matrici $A = (a_{ij})m \times n$ e $B = (b_{ij})r \times s$ aventi le stesse dimensioni, cioè $\begin{cases} r = m \\ s = n \end{cases}$ si definisce $A + B = (a_{ij} + b_{ij})$ la somma delle due matrici

Esempio Siano A =
$$\begin{bmatrix} 1+i & 3 & 2 \\ i & 0 & 7 \end{bmatrix}$$
, B = $\begin{bmatrix} 7 & 2 \\ 3i & 0 \end{bmatrix}$, C = $\begin{bmatrix} 0 & i & 2-i \\ i & 7+i & i \end{bmatrix}$

Non posso sommare A con B, né B con C, ma posso sommare A con C:

Proprietà della somma Siano A, B, C $m \times n$, α, β scalari

1.
$$A+(B+C) = (A+B)+C$$

$$2. A+B=B+A$$

3.
$$A+||=A$$

4.
$$A+(-A) = ||$$

5.
$$\alpha(A+B) = \alpha A + \alpha B$$

6.
$$(\alpha + \beta) = \alpha A + \beta A$$

4.3 Prodotto di un vettore riga per un vettore colonna

Sono chiamati **vettori riga** matrici con una sola riga e **vettori colonna** matrici con una sola colonna.

In notazione:

$$\underline{u} = \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_m \end{bmatrix}$$

$$\underline{u}^T = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$$

Il prodotto (riga per colonna) di $\underline{v}^T = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$ rer $\underline{u} = \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{bmatrix}$ è

$$\underline{v}^T \underline{u} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{bmatrix} = v_1 u_1 + v_2 u_2 + \dots + v_n u_n$$

La riga deve necessariamente avere tanti elementi quanti ne ha la colonna

Esempio $\begin{bmatrix} 7 & 1+i & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1-i \end{bmatrix}$ non esiste

$$\begin{bmatrix} 7 & 1+i & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1-i \\ 2i \end{bmatrix} = -7 + (1+i)(1-i) + 3 \cdot 2i$$
$$= -7 + 1^2 - i^2 + 6i$$
$$= -7 + 1 - (-1) + 6i$$
$$= -7 + 1 + 1 + 6i$$
$$= -5 + 6i$$

NB 1

1.
$$\underline{v}^T \cdot \underline{0}$$

2.
$$\underline{u} = \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{bmatrix}, \underline{v}^T = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

$$\underline{v} = \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{bmatrix}, \underline{u}^T = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$$

$$\underline{v}^T \underline{u} = \begin{bmatrix} v_1 & v_2 & \dots & v_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \dots & u_2 \end{bmatrix} = v_1 u_1 + v_2 u_2 + \dots + v_n u_n =$$

$$= u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \begin{bmatrix} u_1 & u_2 & \dots & u_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \dots & v_2 \end{bmatrix}$$

NB 2 non vale la legge di cancellazione

Ossia

$$\underline{u} \neq \underline{0} \in \underline{v}^T \underline{u} = 0 \Rightarrow \underline{v}^T = \underline{0}^T$$
ed anche $\underline{v}^T \neq \underline{0}^T \in \underline{v}^T \underline{u} = 0 \Rightarrow \underline{u} = \underline{0}$

Esempio
$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1 \cdot 0 + 0 \cdot 1 = 0$$

4.4 Prodotto di due matrici (riga per colonna)

 $A_{m \times n}$, $B_{r \times s}$ Il prodotto di A e B è possibile solo se

$$n = r$$

$$A_{m \times n} B_{r \times s}$$

In tal caso il prodotto $A_{m \times n}$ · $B_{r \times s} = C_{m \times s}$ dove

 $c_{ij} = (i\text{-esima riga di A}) \cdot (j\text{-esima colonna di B})$ PAOLO

Esempio
$$A_{2\times 3} = \begin{bmatrix} 2 & 3 & 7 \\ 6 & 0 & 5 \end{bmatrix}, B_{2\times 2} = \begin{bmatrix} 7 & 4 \\ 2 & 3 \end{bmatrix}, C_{2\times 3} = \begin{bmatrix} 7 & 6i & 1 \\ 3 & 4 & -2 \end{bmatrix},$$

$$E_{3\times 3} = \begin{bmatrix} 1 & 1 & -2 \\ 4 & 3i & 3 \\ 0 & -1 & 2 \end{bmatrix}, F_{3\times 2} = \begin{bmatrix} 7i & 6+i \\ -2 & 5 \\ 4 & -3 \end{bmatrix}$$

Non esiste AB, come non esiste AC.

Esiste però $AE_{2\times3}$ perche il numero delle colonne di A coincide col numero di righe di E.

Per la stessa ragione esiste anche $AF_{2\times2}$

$$AF = \begin{bmatrix} 22 + 14i & 6 + 2i \\ 20 + 42i & 21 + 6i \end{bmatrix}$$

Calcoliamo AE

$$\begin{bmatrix} 2 & 3 & 7 \\ 6 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 & -2 \\ 4 & 3i & 3 \\ 0 & -1 & 2 \end{bmatrix} = \underbrace{ \begin{bmatrix} 14 & -5+9i & 19 \\ 6 & 1 & -2 \end{bmatrix} }_{6 & 1}$$

$$c_{11} = \begin{bmatrix} 2 & 3 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} = 2 + 12 = 14$$

$$c_{12} = \begin{bmatrix} 2 & 3 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 3i \\ -1 \end{bmatrix} = 2 + 9i - 7 = -5 + 9i$$

$$c_{13} = \begin{bmatrix} 2 & 3 & 7 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \\ 2 \end{bmatrix} = -4 + 9 + 14 = 19$$

$$c_{21} = \begin{bmatrix} 6 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} = 6$$

$$c_{22} = \begin{bmatrix} 6 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 3i \\ -1 \end{bmatrix} = 6 - 5 = 1$$

$$c_{23} = \begin{bmatrix} 6 & 0 & 5 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \\ 2 \end{bmatrix} = -12 + 10 = -2$$

Proprietà di cui gode il prodotto

Supponiamo che tutte le operazioni seguenti si possano fare con A, B, C matrici e α scalare

1.
$$\underset{s \times r}{\mathbf{A}} \begin{pmatrix} \overset{r \times m}{\mathbf{B}} & \overset{m \times n}{C} \\ \overset{r \times n}{\mathbf{C}} \end{pmatrix} = \begin{pmatrix} \overset{s \times r}{\mathbf{A}} & \overset{r \times m}{\mathbf{B}} \\ \overset{s \times m}{\mathbf{S}} & \overset{m \times n}{\mathbf{B}} \end{pmatrix} \underset{m \times n}{\mathbf{C}} \text{ proprietà associativa}$$

$$2. \quad || \underset{r \times m}{|} \cdot \underset{m \times n}{\mathbf{A}} = || \underset{r \times n}{|}$$

3. Se I_nindica la matrice $n \times n$ allora la matrice

$$\mathbf{I}_n = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & \mathbf{0} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

Si chiama matrice identica di ordine n

$$I_2 = \begin{array}{|c|c|c|}\hline 1 & 0 \\\hline 0 & 1 \\\hline\\\hline\\I_M \cdot \underset{m \times n}{A} = A = \underset{m \times n}{I_n}$$
 Eccetera...

4.
$$A(B+C) = AB+AC$$

5.
$$(A+B)C=AC+BC$$

6.
$$\alpha(AB) = (\alpha \cdot A)B = A(\alpha \cdot B)$$

Questo perché α è uno scalare.

Proprietà di cui il prodotto non gode

1. non vale la legge di cancellazione

ossia
$$\begin{cases} AB = || \\ A \neq || \end{cases} \implies B = ||$$
anche
$$\begin{cases} AB = || \\ B \neq || \end{cases} \implies A = ||$$

$$AB \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} 6 & -3 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot 6 + 3 \cdot (-4) & 2 \cdot (-3) + 3 \cdot 2 \\ 4 \cdot 6 + 6 \cdot (-4) & 4 \cdot (-3) + 6 \cdot 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Dunque $AB = || che A \neq 0 e B \neq 0$ (ed anche sia A che B sono "quadrate")

- 2. Il prodotto (righe per colonne) NON è commutativo Cioè AB≠BA
 - ∃АВ⇒ВА

$$\begin{cases} \mathbf{A}_{x \times n} \\ \mathbf{B}_{n \times k} \end{cases} \implies \exists \mathbf{A} \mathbf{B}_{m \times k} \text{ , ma se } k \neq m \text{ allora } \nexists \mathbf{B} \mathbf{A}$$

$$\begin{cases} \mathbf{A}_{x\times n} \\ \mathbf{B}_{n\times k} \end{cases} \implies \exists \mathbf{A} \mathbf{B}_{m\times k} \text{ , ma se } k \neq m \text{ allora } \nexists \mathbf{B} \mathbf{A}$$

$$\bullet \begin{cases} \exists \mathbf{A} \mathbf{B} \\ \exists \mathbf{B} \mathbf{A} \end{cases} \implies \mathbf{A} \mathbf{B} \text{ e BA hanno le stesse dimensioni}$$

$$\mathbf{A}_{m\times n} \in \mathbf{B}_{n\times m} \Longrightarrow \begin{array}{c} \exists \mathbf{A}\mathbf{B} \text{ ed è } m\times m \\ \exists \mathbf{B}\mathbf{A} \text{ ed è } n\times n \end{array} \Longrightarrow \begin{array}{c} \mathbf{se} \ n\neq m \text{ allora} \\ \mathbf{A}\mathbf{B}\neq \mathbf{B}\mathbf{A} \end{array}$$

• Ma anche se A e B sono entrambe $m \times m$ per cui $\exists AB_{m \times m}$ ed $\exists BA_{m \times m}$, ma non è detto che AB sia uguale a BA

Esempio

$$AB = \begin{bmatrix} 2 & 3 \\ -1 & 6 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} 8+6 & 6+18 \\ -4+2 & -3+36 \end{bmatrix} = \begin{bmatrix} 14 & 24 \\ 8 & 32 \end{bmatrix}$$

$$BA = \begin{bmatrix} 4 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 6 \end{bmatrix} = \boxed{ \begin{array}{c|c} 8-3 & 12+18 \\ \hline 4-6 & 6+36 \end{array} } = \boxed{ \begin{array}{c|c} 5 & 30 \\ \hline -2 & 42 \end{array} }$$

29

4.5 La trasposta

Sia $A = (a_{ij}) \ m \times n$, la **trasposta di A** è $B = (b_{ij}) \ n \times m$ tale che

$$b_{ij} = a_{ji}$$

E si indica con $B=A^T$

Esempio
$$A = \begin{bmatrix} 1 & 2+3i & 1-i \\ 7 & 0 & 4 \end{bmatrix} \Longrightarrow A^T = \begin{bmatrix} 1 & 7i \\ 2+3i & 0 \\ 1-i & 4 \end{bmatrix}$$

Per questo
$$\underline{v} = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix} \Longrightarrow \underline{v}^T = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

4.6 La coniugata

Sia A= $(a_{ij})m \times n$

La **coniugata di A** è B= $(b_{ij})m \times n$ tale che $b_{ij} = a_{ij}$

Si indica
$$B = \overline{A}$$

PAOLO

Proprieta delle trasposte, delle coniugate e delle H-trasposte

Siano A,B matrici, α scalare, supponiamo che tutte le operazioni scritte siano possibili.

Trasposte

1.
$$(\alpha A)^T = \alpha \cdot A^T$$

2.
$$(A+B) = A^T + B^T$$

3.
$$(A^T)^T = PAOLO$$

4.
$$(AB)^T = B^T A^T$$

Coniugate

1.
$$\overline{\alpha A} = \overline{\alpha} \cdot \overline{A}$$

$$2. \ \overline{A + B} = \overline{A} + \overline{B}$$

$$3. \ \overline{\overline{A}} = A$$

$$4. \ \overline{AB} = \overline{A} \cdot \overline{B}$$

H-trasposte

1.
$$(\alpha A)^H = \overline{\alpha} \cdot A^H$$

2.
$$(A+B)^H = A^H + B^H$$

3.
$$(A^{H})^{H} = A$$

4.
$$(AB)^H = B^H A^H$$

4.7 Tipi di matrici

L'insieme di tutte le matrici $m \times n$ a coefficienti in $\mathbb R$ viene indicato

$$M(\mathbb{R})$$
 oppure $M(\mathbb{R})$
 $m \times n$ m,n

Stessa cosa per quanto riguarda in \mathbb{C} :

$$M(\mathbb{C})$$
 oppure $M(\mathbb{C})$
 $m \times n$

Sia $A \in M_{m \times n}(\mathbb{C})$ Diro: "una matrice" invece di "una matrice complessa", specificherò "una matrice **reale**" per dire che i coefficienti sono reali.

(cioè nel caso $A \in M_{m \times n}(\mathbb{R})$)

1. A si dice **quadrata** se n = m

In $A_{n\times n}$, n indica l'ordine delle matrice quadrata di A

$$M_n(\mathbb{C})$$
 è preferibile a $M_{n\times n}(\mathbb{C})$

$$M_n(\mathbb{R})$$
 è preferibile a $M_{n\times n}(\mathbb{R})$

$$M_{2\times 3}(\mathbb{C})$$
 e $M_{2,3}(\mathbb{C})$ = matrici 2×3

$$M_{2\times3}(\mathbb{C}) \in M_{2,3}(\mathbb{C}) = \text{matrici } 2\times 3$$
 $M_{23}(\mathbb{C}) = \text{matrici } 23 \times 23 \text{ Esempio } A = \begin{bmatrix} 7 & 3 & 1-i \\ 0 & 2+3i & 4 \\ 5 & 1 & 2 \end{bmatrix} \in M_3(\mathbb{C})$

Diagonale principale

I coefficienti diagonali di A sono 7, 2 + 3i, 2

- 2. A si dice diagonale se
 - è quadrata $(n \times n)$
 - tutti i coefficienti che non sono diagonali sono uguali a 0 (cioè: $a_{ij} = 0 \forall i \neq j$)

Esempi
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 0 & 7 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 0 & 7 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 7 \end{bmatrix}$$
Non è quadrata È diagonale Non è diagonale È diagonale

3. A= (a_{ij}) si dice **scalare** se $m \times n$ A= Diag(d, d, ..., d)

$$\mathbf{A} = \begin{bmatrix} d & 0 & 0 & 0 & 0 & 0 \\ 0 & d & 0 & 0 & 0 & 0 \\ 0 & 0 & d & 0 & 0 & 0 \\ 0 & 0 & 0 & d & 0 & 0 \\ 0 & 0 & 0 & 0 & d & 0 \\ 0 & 0 & 0 & 0 & 0 & d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = d \cdot \mathbf{I}_n$$

 $d\mathbf{I}_n$ si chiama **scalare** perché

$$dI_nB_{n\times k} = d(I_nB) = dB$$

$$C_{m \times n}(dI_n) = C(I_n d) = (CI_n) \cdot d = C \cdot d$$

Moltiplicare per la matrice scalare indivuata dallo scalare d equivale a moltiplicare per lo scalare d

31

4.
$$\underline{v} = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix}$$
 è un vettore colonna

Un vettore colonna con n elementi si indica \mathbb{C}^n o \mathbb{R}^n

Analogamente
$$\underline{v}^T = \begin{bmatrix} v1 & v2 & \dots & v_n \end{bmatrix}$$

Un vettore riga di n elementi si indica \mathbb{C}_n o \mathbb{R}_n

- 5. Caso particolare: i vettori coordinati PAOLO
- 6. A si dice simmetrica se $A^T = A$ $\underbrace{NB}_{N \times n} A_{n \times m}^T \Longrightarrow A_{n \times m}^T$ Se $A_{n \times m}^T = A_{m \times n} \Longrightarrow A$ è quadrata
 Esempio $A = \begin{bmatrix} 1 & 3+i \\ 3+i & 2 \end{bmatrix}$
- 7. A si dice **Hermitana** se $A^{H} = A$ $\underbrace{NB}_{\text{Esempio:}} A = A \Longrightarrow_{\Leftarrow} A \text{ quadrata}$ $\underbrace{Bsempio:}_{\text{Esempio:}} A = \begin{bmatrix} 1 & 3+i \\ 3+i & 2 \end{bmatrix}$
- 8. A si dice **antisimmetrica** se $A^{T} = -A$ Se $A^{T} = -A \Longrightarrow A$ è quadrata. Esempio: $A = \begin{bmatrix} 0 & 3+i \\ -3-i & 0 \end{bmatrix}$
- 9. A si dice **antihermitana** se $A^{H} = -A$ Se $A^{H} = -A \Longrightarrow A$ è quadrata Esempio: $A = \begin{bmatrix} 2i & 3+i \\ -3+i & 7i \end{bmatrix}$

4.8 Scrittura matriciale di un sistema lineare

Dato un sistema lineare⁽¹¹⁾ con

m equazioni n incognite

$$\begin{cases} a_{11}x1 + a_{12}x_2 & a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x2 + a_{22}x_2 & a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ \dots & \dots & \dots \\ \dots & \dots & \dots \\ a_{m1}xn + a_{m2}x_n & a_{m3}x_3 + \dots + a_{mn}x_n = b_n \end{cases}$$

 $\left(11\right)$ ovvero ogni equazione ha grado 1

La matrice
$$\underline{A}_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 Si chiama la matrice dei coefficienti di (*)

Il vettore $\underline{b} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$ Si chiama il et vettore dei termini noti di (*)

Il vettore $\underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$ Si chiama il vettore delle incognite di (*)

abbiamo dunque

$$\mathbf{A}_{\substack{m \times n_{n} \times 1}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \dots \\ x_{n} \end{bmatrix} = \begin{bmatrix} a_{11}x_{1} & + & a_{12}x_{2} & + & \dots & + & a_{1n}x_{n} \\ a_{21}x_{2} & + & a_{22}x_{2} & + & \dots & + & a_{2n}x_{n} \\ \dots & & & & & \\ \dots & & & & & \\ a_{m1}x_{1} & + & a_{m2}x_{2} & + & \dots & + & a_{mn}x_{n} \end{bmatrix}$$

Per cui la scrittura $A\underline{x} = \underline{b}$ è un modo compatto per scrivere (*) Si chiama la scrittura matriciale del sistema (*)

4.9 Algoritmo di Gauss o eliminazione di Gauss (E.G.)

Data una matrica $A_{m \times n}$, l'**obiettivo** è "trasformare" A in una matrice della forma PAOLO

$$\mathbf{NB} \quad \left(\begin{array}{c} \text{il numero delle} \\ \text{colonne} \\ \text{dominanti di } \mathcal{U} \end{array} \right) \left(\begin{array}{c} \text{il numero} \\ \text{dei} \\ \text{gradi di } \mathcal{U} \end{array} \right) \left(\begin{array}{c} \text{il numero delle} \\ \text{right non} \\ \text{nulle di } \mathcal{U} \end{array} \right)$$

"Trasformare" significa "applicare ripetutamente operazioni elementari sulle righe" Le operazioni elementari sulle righe di una matrice A sono:

1. Sommare alla *i*-esima riga di A la *j*-esima riga di A moltiplicato per uno scalare c dove $j \neq i$

Esempio A=
$$\begin{bmatrix} 1 & 3 & 4 \\ 2 & 6 & 2 \end{bmatrix}$$

Sommo alla seconda riga di A (ossia $\begin{bmatrix}2&6&2\end{bmatrix}$) la prima riga di A (ossia $\begin{bmatrix}1&3&4\end{bmatrix}$) moltiplicata per c=-2

Ottengo B=
$$\begin{bmatrix} 1 & 3 & 4 \\ 0 & 0 & -6 \end{bmatrix}$$

Otterrò una matrice B e scriverò:

$$\begin{array}{l} \mathbf{A} \xrightarrow{\mathbf{E}_{ij}(c)} \mathbf{B} \\ \text{Nell'esempio A} = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 6 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_{21}(-2)} \begin{bmatrix} 1 & 3 & 4 \\ 0 & 0 & -6 \end{bmatrix} = \mathbf{B} \end{array}$$

2. Moltiplicare la *i*-esima riga di A per uno scalare $c \neq 0$

Esempio

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 0 & -6 \end{bmatrix}$$

Sostituisco la seconda riga moltiplicando la seconda riga per $c = \frac{1}{6}$

$$\begin{bmatrix} 0 & 0 & -6 \end{bmatrix} c = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

Ottengo dunque $\begin{bmatrix} 1 & 3 & 4 \\ 0 & 0 & 1 \end{bmatrix}$ Ottenuta la matrice B scriverò A $\xrightarrow{\text{E}_{ij}(c)}$ B

Nell'esempio
$$A = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 0 & -6 \end{bmatrix} \xrightarrow{E_2(-\frac{1}{6})} \begin{bmatrix} 1 & 3 & 4 \\ 0 & 0 & 1 \end{bmatrix} = B$$

3. Scambiare la i-esima riga di A con la j-esima riga di A

A=
$$\begin{bmatrix} 1 & 3 & 4 \\ 2 & 6 & 2 \end{bmatrix} \xrightarrow{E_{12}} \begin{bmatrix} 2 & 6 & 2 \\ 1 & 3 & 4 \end{bmatrix} = B$$
A= $\begin{bmatrix} 0 & 3 & 4 \\ 2 & 6 & 2 \end{bmatrix} \xrightarrow{E_{12}} \begin{bmatrix} 2 & 6 & 2 \\ 0 & 3 & 4 \end{bmatrix} = B$

$$A = \begin{bmatrix} 0 & 3 & 4 \\ 2 & 6 & 2 \end{bmatrix} \xrightarrow{E_{12}} \begin{bmatrix} 2 & 6 & 2 \\ 0 & 3 & 4 \end{bmatrix} = B$$

Otterrò una matrice B e scriverò $\mathbf{A} \underset{\mathbf{E}_{ij}}{\longrightarrow} \mathbf{B}$

$$\begin{bmatrix} 1 & 3 & 4 \\ 2 & 6 & 2 \\ 1 & 6 & 6 \end{bmatrix} \xrightarrow{\mathbf{E}_{13}} \begin{bmatrix} 1 & 6 & 6 \\ 2 & 6 & 2 \\ 1 & 3 & 4 \end{bmatrix} \qquad \mathbf{NB: E}_{ij} = \mathbf{E}_{ji}$$

5 Spazi vettoriali reali e complessi

Sia $K \in \{\mathbb{R}, \mathbb{C}\}$

Uno spazio vettoriale su K

- se $K = \mathbb{C}$ dirò uno spazio vettoriale (complesso)
- $\bullet\,$ se $K=\mathbb{C}$ dirò uno spazio vettoriale reale

è un insieme **non vuoto** V su cui sono definite due operazioni

addizione: $V \times V \longrightarrow v$

prodotto di elementi di V per uno scalare: $k \times v = v$

che verificano le seguenti condizioni:

- $\forall \underline{u}, \underline{v}, \underline{w} \in V$ (gli elementi di V si chiamano **vettori**)
- $\forall \alpha, \beta \in K$ (gli elementi di K si chiamano **scalari**)
- 1. u + (v + w) = (u + v) + w + associativa
- 2. $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ + commutativa
- 3. $\alpha(\beta \underline{v}) = (\alpha \beta) \underline{v}$
- $4. \ 1 \cdot \underline{v} = \underline{v}$
- 5. $(\alpha + \beta)\underline{v} = \alpha\underline{v} + \beta\underline{v}$
- 6. $\alpha(\underline{u} + \underline{v}) = \alpha \underline{u} + \alpha \underline{v}$
- 7. $\exists 0 \in V$ tale che v + 0 = v
- 8. $\forall \underline{v} \in V \exists \underline{w} \in V$ tale che $\underline{v} + \underline{w} = \underline{0}$, \underline{w} si indica con $-\underline{v}$

Esempi

- 1. $\mathbb{R}^2, \mathbb{R}^n, \mathbb{R}_n, M_{m \times n}(\mathbb{R})$ sono spazi vettoriali reali $\mathbb{C}^2, \mathbb{C}^n, \mathbb{C}_n, M_{m \times n}(\mathbb{C})$ sono spazi vettoriali (complessi)
- 2. $a, b \in \mathbb{R}$ a < b $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$ $f: [a, b] \longrightarrow \mathbb{R}$, $\{f | f: [a, b] = \mathbb{R}\} = \mathcal{F}([a, b])$ (12) $\mathcal{F}([a, b])$ è uno spazio vettoriale reale rispetto a:
 - $\bullet \ +: \ \mathcal{F}([a,b]) \times \mathcal{F}([a,b]) \longrightarrow \mathcal{F}([a,b])$ $(f,g) \longrightarrow f + g : [a,b] \longrightarrow \mathbb{R}$ $(f+g)(x) \stackrel{def}{=} f(x) + g(x) \qquad \forall x \in [a,b]$
 - $\bullet \cdot : \mathbb{R} \times \mathcal{F}([a,b]) \longrightarrow \mathcal{F}([a,b])$ $(\alpha, f) \longrightarrow \alpha f : [a,b] \longrightarrow \mathbb{R}$ $(\alpha f)(x) \stackrel{def}{=} \alpha \cdot f(x) \qquad \forall x \in [a,b]$

 $C([a,b]) = \{ f \in \mathcal{F}([a,b]) | f \text{ continue} \}$

con le stesse operazioni di sopra è uno spazio vettoriale reale

⁽¹²⁾ dove f è l'insieme delle funzioni definite in [a,b] ed a valori in $\mathbb R$

- 3. $\mathbb{R}[x]$ =insieme dei polinomi a coefficienti reali è uno spazio vettoriale reale (rispetto $a + e \cdot$) $\mathbb{C}[x]$ =insieme dei polinomi a coefficienti complessi è uno spazio vettoriale (rispetto $a + e \cdot$)
- 4. $\mathbb{R}_n[x] = \{ f(x) \in \mathbb{R}[x] | \deg f(x) \le n \}$ è uno spazio vettoriale reale
- 5. $\{\underline{0}\}$ contiene un unico vettore, che chiamo $\underline{0}$

$$\begin{array}{ll} \underline{0} + \underline{0} = \underline{0} \\ \alpha \in K & \alpha \cdot \underline{0} = \underline{0} \\ k \in \{\mathbb{R}, \mathbb{C}\} \end{array}$$

Rispetto a queste operazioni, $\{0\}$ è un PAOLO vettore su K

NB Sia V uno spazio vettoriale su $K \in \{\mathbb{R}, \mathbb{C}\}$ Allora

- 1. $0 \cdot v = 0, \forall v \in V$
- 2. $\alpha \cdot 0 = 0, \forall \alpha \in K$
- 3. Vale la legge di cancellazione per il prodotto per scalari $\alpha \in k, \ \underline{v} \in V \ e \ \alpha \underline{v} = \underline{0} \Longrightarrow \alpha = \underline{0} \ o \ \underline{v} = \underline{0}$
- 4. $-(\alpha v) = (-\alpha)v = \alpha(-v), \forall \alpha \in K, \forall v \in V$

5.1 Sottospazi di spazi vettoriali

Sia V uno spazio vettoriale in $K \in \{\mathbb{R}, \mathbb{C}\}$

Def Un sottoinsieme U di V si dice un sottospazio vettoriale (o semplicemente un **sottospazio**) di V se sono soddisfatte le seguenti condizioni:

- 2. $\underline{u}_1 + \underline{u}_2 \in U, \forall \underline{u}_1, \underline{u}_2 \in U \ (U \ \text{è chiuso alla somma})$
- 3. $\alpha \underline{u} \in U, \forall \underline{u} \in U, \forall \alpha \in K \ (U \text{ è chiuso al prodotto per scalari})$

NB 1 Sia V uno spazio vettoriale su $K \in \{\mathbb{R}, \mathbb{C}\}$ Sia U un sottoinsieme di V. Allora

$$\begin{bmatrix} U \text{ soddisfa le condizioni} \\ \underline{\mathbf{0}} \in \mathbf{U} \\ \underline{u}_1 = \underline{u}_2 \in U, \forall \underline{u}_1, \underline{u}_2 \in U \\ \alpha \underline{u} \in U, \forall \underline{u} \in U, \forall \alpha \in K \end{bmatrix} \Longleftrightarrow \begin{bmatrix} U \text{ soddisfa le condizioni} \\ \mathbf{U} \neq \emptyset \\ \underline{u}_1 = \underline{u}_2 \in U, \forall \underline{u}_1, \underline{u}_2 \in U \\ \alpha \underline{u} \in U, \forall \underline{u} \in U, \forall \alpha \in K \end{bmatrix}$$

"\improx" ovvia: $\underline{0} \in U \Longrightarrow U \neq \emptyset$

 $\text{``} = \text{``} U \neq \varnothing \Rightarrow \exists \underline{u} \in U \Rightarrow \alpha \underline{u} \in U \forall \alpha \in k \Rightarrow 0 \cdot \underline{u} \in U$

NB 2 Sia V uno spazio vettoriale su $K \in \{\mathbb{R}, \mathbb{C}\}$

Se U è un sottospazio di V, allora U è uno spazio vettoriale if (con le operazioni + e \cdot che si ottengono restringendo quelle di V)

Esempio 1 $V = \mathbb{R}^3$ è uno spazio vettoriale reale $(K = \mathbb{R})$

$$U = \left\{ \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} | a, b \in \mathbb{R} \right\} \subseteq V \qquad \quad U \ \text{è sottospazio di V?}$$

1.
$$\underline{0} \in U^{(13)}$$
 $\exists a, b \in \mathbb{R} | \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ 0 \\ b \end{bmatrix}$ Si: $a = 0, b = 0$

Quindi $\underline{0} \in U$

$$\begin{aligned} &2. \ \ \underline{u}_1 + \underline{u}_2 \in U \ \forall \underline{u}_1, \underline{u}_2 \in U \\ &\underline{u} = \begin{bmatrix} a_1 \\ 0 \\ b_1 \end{bmatrix} \text{ per opportuni } a_1, b_1 \in \mathbb{R} \\ &\underline{u}_2 = \begin{bmatrix} a_2 \\ 0 \\ b_2 \end{bmatrix} \text{ per opportuni } a_2, b_2 \in \mathbb{R} \\ &\underline{u}_1 + \underline{u}_2 = \begin{bmatrix} a_1 \\ 0 \\ b_1 \end{bmatrix} + \begin{bmatrix} a_2 \\ 0 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 \\ 0 \\ b_1 + b_2 \end{bmatrix} \in \mathbb{R} \\ &\frac{\exists}{2}a, b \in \mathbb{R} | \begin{bmatrix} a_1 + a_2 \\ 0 \\ b_1 + b_2 \end{bmatrix} = \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} \text{ Si } \begin{cases} a = a_1 + a_2 \\ b = b_1 + b_2 \end{cases} \end{aligned}$$

Quindi U è chiuso alla somma

3.
$$\alpha \underline{u} \in U \ \forall \underline{u} \in U \ \forall \alpha \in \mathbb{R} \ \underline{u} = \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} \qquad \alpha \underline{u} = \alpha \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} = \begin{bmatrix} \alpha a \\ 0 \\ \alpha b \end{bmatrix} \in U$$

$$\exists a^*, b^* \in \mathbb{R} \middle| \begin{bmatrix} \alpha a \\ 0 \\ \alpha b \end{bmatrix} = \begin{bmatrix} a^* \\ 0 \\ b^* \end{bmatrix}$$
Sì:
$$\begin{cases} a^* = \alpha a \\ b^* = \alpha b \end{cases}$$
 Quindi U è chiuso al prodotto per scalari

Da 1., 2. e 3. concludo che U è un sottospazio di \mathbb{R}^3

Esempio 2 Sia $A \in M_{m \times n}(\mathbb{C})$ un insieme lineare del tipo

$$Ax = 0$$

si chiama **un sistema lineare omogeneo** (ossia tale che il vettore dei termini noti sia 0), dove:

- $A = m \times n$
- $x = n \times 1$
- \bullet $0 = m \times 1$

$$\begin{array}{c|c}
\hline
(13) & \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0 \in V = \mathbb{R}^3
\end{array}$$

Un sistema lineare omogeneo ha sempre soluzioni, ad esempio la soluzione nulla PAOLO

Sia A
$$\in M_{m\times n}(\mathbb{C})$$

$$N(\mathbf{A}) = \begin{array}{c} \text{insieme delle} \\ \text{soluzioni del} \\ N(\mathbf{A}) = \begin{array}{c} \text{sistema lineare} \\ \text{omogeneo} \\ \mathbf{A}_{m \times n} \underline{x}_{n \times 1} = \underline{0}_{m \times 1} \end{array} = \{\underline{v} \in \mathbb{C}^n | \mathbf{A}\underline{v} = \underline{0} \}$$

N(A) è un sottoinsieme di \mathbb{C}^n Proviamo che N(A) è un sottospazio di \mathbb{C}^n (Quindi N(A) è a sua volta uno spazio vettoriale) Chiamiamo N(A) lo **spazio nullo** della matrice A

1.
$$\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = \underline{0} \exists N(\mathbf{A})$$
Si: $\mathbf{A} \underline{0}_{n \times 1} = \underline{0}_{m \times 1}$
Quindi $\underline{0}_{n \times 1} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \in N(\mathbf{A})$

2. $\underline{u}_1, \underline{u}_2 \in N(A) \Longrightarrow \underline{u}_1 + \underline{u}_2 \in N(A)$ Per provare che $\underline{u}_1 + \underline{u}_2 \in N(A)$ devo provare che $\frac{1}{2} \underbrace{u}_1 + \underline{u}_2 \in \mathbb{C}^n$ che $\frac{1}{2} \underbrace{u}_1 + \underline{u}_2 \in \mathbb{C}^n$ So che $\underline{u}_1 + \underline{u}_2 \in N(A)$, quindi $\frac{1}{2} \underbrace{u}_1 \in \mathbb{C}^n$ e che $\underline{u}_2 \in N(A)$, quindi $\frac{1}{2} \underbrace{u}_2 \in \mathbb{C}^n$ A $\underline{u}_1 = 0$ e che $\underline{u}_2 \in N(A)$, quindi $\frac{1}{2} \underbrace{u}_2 \in \mathbb{C}^n$ A $\underline{u}_2 = 0$ $\underline{u}_1, \underline{u}_2 \in \mathbb{C}^n \Longrightarrow \underline{u}_1 + \underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_1 + \underline{u}_2 = 0 + 00$; quindi $\underline{u}_1 + \underline{u}_2 \in N(A)$ 3. $\frac{1}{2} \underbrace{u}_1 \in N(A)$ $\underline{u}_1 \in N(A)$ $\underline{u}_2 \in N(A)$ evo provare che $\underline{u}_1 \in N(A)$ Per provare che $\underline{u}_1 \in N(A)$ devo provare che $\underline{u}_2 \in N(A)$ So che $\underline{u}_1 \in N(A)$ quindi $\underline{u}_1 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_1 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_1 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_1 \in \mathbb{C}^n$ A $\underline{u}_1 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_1 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_1 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_1 \in \mathbb{C}^n$ A $\underline{u}_2 \in \mathbb{C}^n$ A $\underline{u}_$

5.2 Insieme dei multipli di un vettore

 $\overrightarrow{A} \cdot (\alpha \underline{u}) = \alpha \cdot (A\underline{u}) = \alpha \cdot \underline{0} = \underline{0}$ Quindi $\alpha \underline{u} \in N(A)$ 1. + 2. + 3. $\Longrightarrow N(A)$ è un sottospazio di \mathbb{C}^n

Siano V uno spazio vettoriale su $K \in \{\mathbb{R}, \mathbb{C}\}$ e $\underline{v} \in V$

$$\{\alpha \underline{v} | \alpha \in K\}$$
 = insieme dei multipli di V
Si indica $<\underline{v}>$ oppure $\mathrm{Span}(\underline{v})$

1. $\langle \underline{v} \rangle$ è un sottospazio di V

(a)
$$0 \in V$$
: $0 = 0 \cdot v$ (prendo $a = 0$)

- (b) $\alpha_1 \underline{v} + \alpha_2 \underline{v} = (\alpha_1 + \alpha 2)\underline{v}$ La somma di due multipli di \underline{V} è un multiplo
- (c) $\beta(\alpha \underline{v}) = (\beta \alpha)\underline{v}$ Il prodotto di β per un multiplo di \underline{v} è un multiplo di \underline{v}
- 2. Se $\underline{\boldsymbol{v}} = \boldsymbol{0}$ allora $\langle \underline{\boldsymbol{v}} \rangle = \langle 0 \rangle = \{\alpha \cdot \underline{0} | \alpha \in K\} = \{\underline{0}\}$ e < \underline{v} > ha un unico elemento.

Se $\underline{v} \neq \underline{0}$ allora $\langle \underline{v} \rangle = \{\alpha \underline{v} | \alpha \in K\}$ ha tanti elementi quanti sono gli elementi di K

Per vederlo provo che
$$\begin{cases} \alpha \underline{v} = \beta \underline{v} \\ \underline{v} \neq 0 \\ \alpha, \beta \in K \end{cases} \iff \alpha = \beta$$

NB Sia V uno spazio vettoriale su $K \in \{\mathbb{R}, \mathbb{C}\}$, allora:

1.
$$Z \le U \le V \Longrightarrow Z \le V$$
 (14)

2.
$$\{0\} \le V, V \le V$$

Quindi se V è uno spazio vettoriale su $K \in \{\mathbb{R}, \mathbb{C}\}$ ed U è un sottospazio di V allora

• o
$$U = \{\underline{0}\}$$
 ed allora $|U| = 1$

• o
$$U \neq \{0\}$$
 ed allora $\exists u \in U, u \neq 0$

Essendo U un sottospazio di V ed $\underline{u} \in U$ allora $\alpha \underline{u} \in U \ \forall \alpha \in k$

$$\begin{cases} < u > = \{\alpha \underline{u} | \alpha \in K\} \subseteq U \\ \underline{u} \neq \underline{0} \Longrightarrow |< \underline{u} > | = \infty \end{cases} = |U| = \infty$$

Sia V uno spazio vettoriale du $k \in \{\mathbb{R}, \mathbb{C}\}$

La combinazione lineare degli n vettori è una "lista" di vettori: i vettori non sono necessariamente distinti tra loro (possono esserci ripetizioni)

 $\underline{v}_1, \underline{v}_2, ..., \underline{v}_n \in V$ con **coefficienti** o pesi $\alpha_1, \alpha_2, \ldots, \alpha_n \in K$ è il vettore

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n \in V$$

Esempio $V = \mathbb{R}^3, K = \mathbb{R}$

$$\underline{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \underline{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \underline{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \underline{v}_4 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\underline{v} = \begin{bmatrix} 27 \\ 24 \\ 12 \end{bmatrix} = \begin{bmatrix} 12 \\ 24 \\ 12 \end{bmatrix} + \begin{bmatrix} 12 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} \\
= 12\underline{v}_1 + 12\underline{v}_2 + 0\underline{v}_3 + 3\underline{v}_4 \\
\underline{v} = 12\underline{v}_1 + 15\underline{v}_2 + 0\underline{v}_3 + 0\underline{v}_4$$

⁽¹⁴⁾ dove leq sta per sottospazio di

$$\underline{v} = \sum_{i=1}^{n} \alpha i \underline{v} i \text{ con}$$

$$\alpha_1 = 12$$

$$\alpha_2 = 12$$

$$\alpha_3 = 0$$

$$\alpha_4 = 3$$

Dati $\underline{v}_1,\underline{v}_2,\ldots,\underline{v}_n\in V$ (V spazio vettoriale su K) l' insieme di tutte le loro combinazioni lineari è:

$$\{\alpha_1\underline{v}_1 + \alpha_2\underline{v}_2 + \dots + \alpha_n\underline{v}_n | \alpha_1, \alpha_2, \dots, \alpha_n \in K\} =$$

$$= \left\{ \sum_{i=1}^{n} \alpha_{i} \underline{v}_{i} \middle| \alpha_{1}, \alpha_{2}, \dots, \alpha_{n} \in K \right\}$$

Si indica $\langle \underline{v}_1, \underline{v}_2, \dots, \underline{v}_n \rangle$ oppure $Span(\underline{v}_1,\underline{v}_2,\ldots,\underline{v}_n)$ Si chiama il sottospazio (di V) generato da $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n$

 $\mathbf{NB} < \underline{v}_1, \dots, \underline{v}_n >$ è effettivamente un sottospazio di VInfatti:

1.
$$\underline{0} = 0 \cdot \underline{v}_1 + 0 \cdot \underline{v}_2 + \dots + 0 \cdot \underline{v}_n$$

 $\exists \alpha_1, \dots, \alpha_n \in K | \underline{0} = \alpha_1 \underline{v}_1 \alpha_2 \underline{v}_2 + \dots + \alpha_n \underline{v}_n$
Sì, prendiamo $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$

2.
$$\sum_{i=1}^{n} \alpha_{i} \underline{v}_{i}, \sum_{i=1}^{n} \beta_{i} \underline{v}_{i} \Longrightarrow \sum_{i=1}^{n} \alpha_{i} \underline{v}_{i} + \sum_{i=1}^{n} \beta_{i} \underline{v}_{i} = \sum_{i=1}^{n} \delta_{i} \underline{v}_{i}$$

3.
$$\beta \in K$$
, $\sum_{i=1}^{n} \alpha_i \underline{v}_i \Longrightarrow \beta(\sum_{i=1}^{n} \alpha_i \underline{v}_i) = \sum_{i=1}^{n} \delta_i \underline{v}_i$

Def Si dice che $\underline{v}_1,\ldots,\underline{v}_n$ è un sistema di generatori di V $\{\underline{v}_1,\ldots,\underline{v}_n\}$ (15) è un insieme di generatori se $V=<\underline{v}_1,\ldots,\underline{v}_n>$

$$S = \{\underline{v}_1, \dots \underline{v}_n\}$$
è un inieme di generatori di $V \iff \underline{v}_1, \dots, \underline{v}_n > = \{\sum \alpha_1 \underline{v}_i | \alpha_1, \dots, \alpha_n \in K\} \supseteq {}^{(16)}V$

$$S = \{\underline{v}_1, \dots \underline{v}_n\}$$
 è un insieme di generatori di $V \Longleftrightarrow \forall \underline{v} \in V \ \exists \alpha_1, \alpha_2, \dots, \alpha_n \in K | \ \underline{v} = \alpha_1 \underline{v}_1 + \alpha_2 \underline{v}_2 + \dots + \alpha_n \underline{n}$

Esempi

1.
$$V=\mathbb{R}^n,\ K=\mathbb{R}$$

Siano $\underline{c}_1,\underline{c}_2,\dots,\underline{c}_n$ le colonne di I_n
 $S=\{\underline{c}_1,\underline{c}_2,\dots,\underline{c}_n\}$ è un insieme di generatori di V

⁽¹⁵⁾ userò le parentesi graffe anche se i vettori $\underline{v}_1,\ldots,\underline{v}_n$ potrebbero essere tutti distinti (16) dal momento che è sempre vero (qualunque sia S che $\underline{v}_1,\ldots\underline{v}_n\subseteq V$)

$$\forall \underline{v} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R} \ \exists \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R} |$$

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \stackrel{?}{=} \alpha_1 \underline{c}_1 + \alpha_2 \underline{c}_2 + \dots + \alpha_n \underline{c}_n$$

$$= \alpha_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \dots + \alpha_n \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Sì:
$$\alpha_i = a_i \ \forall i = 1, \dots, n$$

2.
$$V = \mathbb{C}_n[x], K = \mathbb{C}, S = \{1, x, x^2, \dots, x^n\}$$

Posto $f(x) \leq n$
 $\forall f(x) \in \mathbb{C}_n[x] \ f(x) = a_0 + a_1 x + \dots + a_n x^n$
 $\exists \alpha_0, \alpha_1, \dots, \alpha_n \in \mathbb{C} \ | \ f(x) = \alpha_0 \cdot 1 + \alpha_1 x_1 + \dots + \alpha_n x^n$
Si: $\alpha_i = a_i$

3. $V = M_2(\mathbb{C})$ spazio vettoriale $k = \mathbb{C}$

$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

è un insieme di generatori di V

$$\forall \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2 \mathbb{C} \exists \alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{C}$$
tali che

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \alpha_2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \alpha_3 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \alpha_4 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{bmatrix}$$

Sì:
$$\alpha_1 = a, \ \alpha_2 = b, \ \alpha_3 = c, \ \alpha_4 = d$$

Il problema di stabilire se S è un insieme di generatopri di V si traduce nel problema di stabilire se una famiglia di sistemi lineari $A\underline{x}=\underline{b}$ dove A è fissato e \underline{b} è un vettore dai termini noti **variabile**

abbia o non abbia soluzioni.

Cioè:

 $A\underline{x} = \underline{b}$ ha soluzioni $\forall \underline{b} \in \mathbb{C}^m$? (17) $[A|\underline{b}] \stackrel{EG}{\to} [U|\underline{d}] \underline{d}$ è libera $\forall \underline{b} \in \mathbb{C}^m$?

$$\begin{array}{ll} \mathbf{Esempio} & V = M_2(\mathbb{C}), K = \mathbb{C} \\ S = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$$

È uun insieme di generatori di V?

$$\forall \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2 \mathbb{C}_? \exists \alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{C}$$

 $^{(17) \} A = m \times n$

tali che

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \alpha_2 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \alpha_3 \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \alpha_4 \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \alpha_1 + \alpha_2 + \alpha_3 & \alpha_1 \\ \alpha_3 + \alpha_4 & 0 \end{bmatrix}$$

Quindi il problema diventa:

è vero che il sistema lineare $\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = a \\ \alpha_1 = b \\ \alpha_3 + \alpha_4 = c \\ 0 = d \end{cases}$

Ha soluzioni $\forall a,b,c,d \in \mathbb{C}$

 $\forall \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ Vettori di termini noti (quindi un vettore di termini noti variabile)

$$\mathbf{A}\underline{x} = \underline{b} \qquad = [\mathbf{A}|\underline{b}] = \begin{pmatrix} 1 & 1 & 1 & 0 & a \\ 1 & 0 & 0 & 0 & b \\ 0 & 0 & 1 & 1 & c \\ 0 & 0 & 0 & 0 & d \end{pmatrix} \xrightarrow{EG}$$

$$[\mathbf{A}|\underline{b}] = \begin{pmatrix} 1 & 1 & 1 & 0 & a \\ 1 & 0 & 0 & 0 & b \\ 0 & 0 & 1 & 1 & c \\ 0 & 0 & 0 & 0 & d \end{pmatrix} \xrightarrow{E_{21}(-1)} \begin{pmatrix} 1 & 1 & 1 & 0 & a \\ 0 & -1 & -1 & 0 & b - a \\ 0 & 0 & 1 & 1 & c \\ 0 & 0 & 0 & 0 & d \end{pmatrix} \xrightarrow{E_{2}(-1)} \begin{pmatrix} 1 & 1 & 1 & 0 & a \\ 0 & 1 & 1 & 0 & a - b \\ 0 & 0 & 1 & 1 & c \\ 0 & 0 & 0 & 0 & d \end{pmatrix}$$

La colonna d non è libera $\forall a,b,c,d$ (basta prendere d=0) S non è un insieme di generatori di V

 ${f NB}$ Abbiamo definito insieme di generatori S solo nel caso S non sia una lista finita.

Def Uno spazio vettoriale V si dice **finitamente generato** (**f.g.**) se ha un insieme di generatori che è un insieme finito. ⁽¹⁸⁾. Esempi di spazi f.g.

$$\mathbb{R}^n, \mathbb{C}^n, \mathbb{C}^n[x], \mathbb{R}^n[x], \mathcal{M}_{m \times n}(\mathbb{C}), \mathcal{M}_{m \times n}(\mathbb{R})$$

NB non tutti gli spazi vettoriali sono finitamente generati.

Esempio

 $\mathbb{C}[x], R[x]$ non sono finitamente generati. (19).

Nel nostro caso, d'ora in poi, supporremmo V finitamente generato.

Proprietà degli insiemi di generatori: se V è uno spazio vettoriale su $K \in \{\mathbb{R}, \mathbb{C}\}$

 $[\]left(18\right)$ Noi, in realtà abbiamo parlato solo di insiemi di generatori finiti

⁽¹⁹⁾ anche gli spazi di funzioni non sono finitamente generati

1. Sovrainsiemi di insiemi di generatori sono insiemi di generatori.

Cioè:
$$\begin{cases} A \text{ insieme di generatori di } V \\ A \subseteq \mathcal{B} \end{cases} \implies \mathcal{B} \text{ insieme di generatoridi } V \text{ Dim}$$
 PAOLO

2. Se da un insieme di generatori S di V si toglie un vettore che è combinazione lineare dei rimanenti vettori di S si ottiene un insieme di vettori che è ancora un insieme di generatori di V Esempio:

$$V = <\underline{v}_1 = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \underline{v}_2 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \underline{v}_3 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \underline{v}_3 = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} > \le \mathbb{C}^4$$

 $S=\{\underline{v}_1,\underline{v}_2,\underline{v}_3,\underline{v}_4\}$ è un insime di generatori di Vnotiamo anche che

$$\underline{v}_2=\underline{v}_1+\underline{v}_3=1\cdot\underline{v}_1+1\cdot\underline{v}_3+0\cdot\underline{v}_4\Longrightarrow S_1=\{\underline{v}_1,\underline{v}_3,\underline{v}_4\}$$
è ancora un insieme di generatori di V

 $\begin{array}{ll} \mathbf{NB} & \underline{v}_1 = \underline{v}_2 - \underline{v}_3 \Longrightarrow S_2 = \{\underline{v}_2,\underline{v}_3,\underline{v}_4\} \\ \grave{\mathrm{e}} \text{ sempre un insieme di generatori di } V \end{array}$

$$\begin{array}{ll} \mathbf{NB} & \underline{v}_3 = -\underline{v}_1 - \underline{v}_2 \Longrightarrow S_3 = \{\underline{v}_1,\underline{v}_2,\underline{v}_4\} \\ \grave{\mathbf{e}} \text{ sempre un insieme di generatori di } V \end{array}$$

Attenzione! Invece, togliendo \underline{v}_4 da S non si ottiene più un insieme di generatori di V. Per quanto riguarda lo spazio vettoriale $V = \{\underline{0}\}$ si ha che $S_1 = \{\underline{0}\}$ è un suo insieme di generatori.

NB Per convenzione si pone che anche $S_2 = \emptyset$ è un insieme di generatori di $\{\underline{0}\}$

5.3 Insiemi di vettori linearmente indipendenti (L.I.) e insiemi di vettori linearmente dipendenti

Sia V uno spazio vettoriale su $K \in \{\mathbb{R}, \mathbb{C}\}$ e $A\{\underline{v})_1, \underline{v_2}, \dots \underline{v}_n\}$ un'"insieme" di vettori di V (20)

Def A si dice **linearmente indipendente** (**L.I.**) se l'unica combinazione lineare dei suoi elementi **nulla** è quella con i coefficienti tutti nulli, cioè

$$\begin{cases} \alpha_1 \underline{v}_1 + \alpha_2 \underline{v}_2 + \dots + \alpha_n \underline{v}_n \\ \alpha_1, \alpha_2, \dots, \alpha_n \in K \end{cases} \implies \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

Def 2 $A\{\underline{v}_1,\ldots,\underline{v}_n\}$ si dice lienarmente dipendente (L.D.) se non è linearmente indipendente

Cioè
$$\exists \alpha_1, \dots, \alpha_n$$
 non tutti nulli tali che $\alpha_1 \underline{v}_1, \alpha_2 \underline{v}_2, \dots, \alpha_n \underline{v}_n = 0$

⁽²⁰⁾ In realtà non è un insieme: è una lista (ci possono essere ripetizioni)

 \mathbf{NB} per convenzione \emptyset è L.I.

 $\begin{array}{ll} \mathbf{NB} & v \in V \\ \{\underline{v}\} \ \text{\`e L.I.} \iff \underline{v} = 0 \\ \text{Proviamo "} \iff \underline{v} \text{ : ipotesi } \underline{v}_0, \text{ tesi } \underline{v} \text{ L.D.} \end{array}$

Dim Dobbiamo provare che esiste una combinazione lineare nulla di \underline{v}_0 con coefficienti nokn tutti nulli. Eccola: prendo $\alpha=1\neq -$ coefficiente non nullo, ed ho: $\alpha\cdot\underline{v}=1\cdot\underline{v}=1\cdot\underline{0}=\underline{0}$.

Proviamo " \Longrightarrow ": ipotesi \underline{v} L.D., tesi $\underline{v} = \underline{0}$

 $\begin{array}{ll} \mathbf{Dim} & \mathrm{Siccome} \ \{\underline{v}\} \ \mathrm{\grave{e}} \ \mathrm{L.D.} \ \exists \alpha \underline{v} = \underline{0} \ \mathrm{con} \ \alpha \neq =. \ \mathrm{Da} \ \alpha \neq 0 \ \mathrm{segue} \ \mathrm{che} \ \exists \frac{1}{\alpha} \\ \begin{cases} \alpha \underline{v} = \underline{0} \\ \exists \frac{1}{\alpha} \end{cases} & \Longrightarrow \frac{1}{\alpha} \cdot (\alpha \underline{v}) = \frac{1}{\alpha} = \underline{0} \\ \mathrm{ma} \ \frac{1}{\alpha} \cdot (\alpha \underline{v}) = (\frac{1}{\alpha} \cdot \alpha) \cdot \underline{v} = 1 \cdot \underline{v} = \underline{v} \ \mathrm{e} \ \frac{1}{\alpha} \cdot \underline{0} = 0 \ \mathrm{quindi} \ \underline{v} = \underline{0} \\ \end{array}$

NB
$$\{\underline{v}\}L.D. \iff \underline{v} = \underline{0}$$

NB
$$\{v\}L.I. \iff v \neq 0$$
 (21)

- 5.4 Proprietà degli insiemi L.D. e degli insiemi L.I.
 - 1. Sovrainsiemi di L.D. sono L.D.

$$\operatorname{Cioè} \begin{cases} B \subseteq A \\ B \text{ L.D.} \end{cases} \implies A \text{ L.D.}$$

Dim *B* L.D. $\exists \alpha_1, \cdot, \alpha_n$ non tutti nulli t.c. $\alpha_1 \underline{v}_1 + \cdots + \alpha_n \underline{v}_n = \underline{0}$ $\Longrightarrow \exists \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_k$ non tutti nulli tali che $\alpha_1, \underline{v}_1 + \cdots + \alpha_n \underline{v}_n, \beta_1 \underline{w}_1, \dots, \beta_k \underline{w}_k \Longrightarrow A$ L.D.

2. Sottoinsiemi di L.I. sono L.I.

$$\begin{array}{l} {\rm cio\grave{e}} \ \begin{cases} B \subseteq A \\ A \ {\rm L.I.} \end{cases} \implies B \ {\rm L.I.} \\ \\ {\bf Dim} \ \begin{cases} \alpha_1 \underline{v}_1 + \alpha_2 \underline{v}_2 + \cdots + \alpha_n \underline{v}_n = \underline{0} \\ \alpha_1, \ldots, \alpha_n \in K \end{cases} \implies \alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 \\ \\ \alpha_1 \underline{v}_1 + \ldots \alpha_n \underline{v}_n + 0 \underline{w}_1 + 0 \cdot \underline{w}_2 + \ldots \underline{w}_k = \underline{0} \\ \\ {\rm Siccome} \ A \ \grave{e} \ {\rm L.I.} \ {\bf tutti} \ i \ {\rm coefficienti} \ {\rm della} \ {\rm combinazione} \ {\rm lineare} \ {\rm in} \ {\rm rosso} \ {\rm devono} \\ \\ \alpha_1 = \cdots = \alpha_n = 0 \\ \\ \end{array}$$

 \mathbf{Def} Sia V uno spazio vetoriale si K

Una ${\bf BASE}$ di V è un insieme di generatori di V che sia anche L.I.

(21) questo nb è equivalente a quello prima

Esempi

1. $V = \mathbb{C}^n, K = \mathbb{C}$

 $\{\underline{e}_1,\underline{e}_2,...,\underline{e}_n\}$ =insieme delle colonne di I_n è una base di V (è anche base di \mathbb{R}^n

Si chiama **la base canonica** di \mathbb{C}^n su (22)

Per verificare che \mathcal{E} è una base di \mathbb{C}^n su \mathbb{C} occorre verificare:

- (a) \mathcal{E} è un insieme di generatori di \mathbb{C}^n
- (b) $\mathcal{E} \stackrel{.}{e} L.I.$

$$\mathcal{E} = \{\underline{e}_1, \dots, \underline{e}_n\}$$

$$\begin{cases} \alpha_1 \underline{e}_1 + \alpha_2 \underline{e}_2 + \dots + \alpha_n \underline{e}_n = \underline{0} \\ \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{C} \end{cases} \implies \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \vdots \\ \alpha_n \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \dots + \alpha_n \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \implies \alpha_1 = \alpha - 2 = \dots = \alpha_n = 0 = 0$$

- 2. $V = \mathbb{C}_n[x], K = \mathbb{C} S = \{1, x, x^2, \dots, x6n\}$ è una base di V su \mathbb{C} difatti
 - (a) S è un insieme di generatori di V

$$\alpha_0 \cdot 1 + \alpha_1 \cdot x + \alpha_2 \cdot x^2 + \dots + \alpha_n x^n = 0$$

$$\Rightarrow \alpha_0 = \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

(c)
$$V=M_2(\mathbb{C}), K=\mathbb{C}$$

$$S=\left\{\begin{bmatrix}1&0\\0&0\end{bmatrix}\begin{bmatrix}0&1\\1&0\end{bmatrix},\begin{bmatrix}0&0\\1&0\end{bmatrix},\begin{bmatrix}0&0\\0&1\end{bmatrix}\right\} \text{è una base di } V$$
 Infatti

- i. S è un insieme di genertori di V
- ii. $S \in L.I.$

$$\begin{cases} \begin{bmatrix} \alpha & \beta \\ \delta & \gamma \end{bmatrix} = \alpha \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \delta \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \\ \Rightarrow \alpha = \beta = \delta = \gamma = 0 \end{cases}$$

 $V = \{\underline{0}\}$ che base ha?

 $S_1 = \{\underline{0}\}$ è un insieme di generatori.

ma è L.D.

Non è una base di $V = \underline{0}$

 $\int \emptyset$ è un insieme di generatori di V per convenzione) ∅ è L.I. per convenzione

 $\Longrightarrow \emptyset$ è (l'unica) base di $\{\underline{0}\}$

(22) anche di \mathbb{R}^n su \mathbb{R}

Teorema 1 Ogni spazio vettoriale (f.g.) ha una base

Sia V uno spazio vettoriale finitamente generato...

Si parte da un insieme di generatori S di V (che essendo V f.g. è un insieme finito di vettori) e si tolgono via via i vettori che siano combinazioni lineari di quelli rimasti al passaggio precedente.

Teorema 2 Sia V uno spazio vettoriale su $K \in \{\mathbb{R}, \mathbb{C}\}$ Siano \mathcal{B}_1 e \mathcal{B}_2 due basi di V. Allora

(il numero di elemento di \mathcal{B}_1) = (il numero di elemento di \mathcal{B}_2)

Tale numero è quindi un invariante di V, si chiama la dimensione di V e si indica dim \boldsymbol{V}

5.5 Basi ordinate e mappe delle coordinate

Sia V uno spazio vettoriale su $K \in \{\mathbb{R}, \mathbb{C}\}$

Esempio
$$V = \mathbb{R}^2, K = \mathbb{R}$$
 $\mathcal{B}_1 = \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathcal{B}_2 = \{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \}$ PAOLO

SIa $\mathcal{B} = \{\underline{v}_1; \underline{v}_2; \dots \underline{v}_n\}$ una base ordinata di V e sia $\underline{v} \in V$ \mathcal{B} 'e un insieme di generatori di $V \Longrightarrow \exists \alpha_1, \alpha_2, \dots, \alpha_n \in K \ | \underline{v} = \sum_{i=1}^n \alpha_i \underline{v}i \ \mathcal{B}$ 'e L.I. PAOLO

$$\mathcal{B}$$
 'e ordinata
$$\forall \underline{v} \in V \exists ! \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{C}^n \ \text{tale che}$$
 PAOLO

Def Siano V spazi vettoriali su $K \in \{\mathbb{R}, \mathbb{C}\}$ e $\mathcal{B} = \{\underline{v}_1, \dots, \underline{v}_n\}$ una base ordinata diu V

Sia $v \in V$.

Si chiama vettore delle coordinate del vettore $\underline{v} \in V$ rispetto alla base ordinata B il vettore

PAOLO

Esempio
$$V = \mathbb{R}^2, \underline{v} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$$

$$\mathcal{B}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathcal{B}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$C_{\mathcal{B}_1}(\begin{bmatrix} 2\\7 \end{bmatrix}) = \begin{bmatrix} \alpha_1\\\alpha_2 \end{bmatrix} \in \mathbb{R} \middle| \begin{bmatrix} 2\\7 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1\\0 \end{bmatrix}$$

PAOLO