NUREG/CR-0346 UL-USNC 75 Q4

DEVELOPMENT AND VERIFICATION OF FIRE TESTS FOR CABLE SYSTEMS AND SYSTEM COMPONENTS

Quarterly Report 4 March 1 - May 31, 1978

L.J. Przybyla and W.J. Christian

Underwriters Laboratories, Inc.

19960229 001

Prepared for U.S. Nuclear Regulatory Commission

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, nor represents that its use would not infringe privately owned rights.

Available from
National Technical Information Service
Springfield, Virginia 22161
Price: Printed Copy \$5.20; Microfiche \$3.00

The price of this document for requesters outside of the North American Continent can be obtained from the National Technical Information Service.

DEVELOPMENT AND VERIFICATION OF FIRE TESTS FOR CABLE SYSTEMS AND SYSTEM COMPONENTS

Quarterly Report 4 March 1 - May 31, 1978

L.J. Przybyla and W.J. Christian

Manuscript Completed: July 1978

Date Published: September 1978

Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook, IL 60062

Division of Reactor Safety Research Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Under Contract No. NRC-04-77-122

ABSTRACT

Experiments were conducted to establish data on the sensitivity of the results to variations of several parameters of the vertical cable tray fire test described in the IEEE Standard 383. Parameters varied were burner-to-cable distance, air input rate and fuel input rate. As a result of these experiments and previous experience, suggestions for revision of IEEE 383 are made with respect to 1) construction of cable trays, 2) test enclosure, 3) type, size and spacing of cable ties, 4) burner position, 5) mesurement of fuel and air rates, 6) flame temperature, 7) initial room temperature, and 8) reporting of results.

TABLE OF CONTENTS

Abstr	act	ii
List	of I	Figuresvii
List	of T	Tableix
Previ	lous	Reportsxi
I.	Intr	roduction1
II.	Expe	erimental Procedure2
,	A. B. C. D. E.	Facility 2 Apparatus 2 Enclosure 3 Samples 3 Instrumentation 3 Method 3
III.	Resu	alts5
	A. B. C.	Visual Observations During Experiments5 Cable Jacket Temperatures6 Observations After Test6
IV.	Disc	cussion7
V .	Reco	ommendations10

LIST OF FIGURES

Figure	Description	Page
1	Facility	29
2	Cable Tray and Cable Insulation	
3	Enclosure	•••31
4	Cable Jacket Thermocouples	••• 32
5 6	Maximum Flame Height vs Time Experiments 1-4	• • • 33
Ь	Maximum Flame Height vs Time Experiments 5, 6,	الد
F7	11, 12	25
7 8	Maximum Flame Height vs Time Experiments 7, 0 Maximum Flame Height vs Time Experiments 9,	• • • 5 5
, 0	10, 14	36
9	Maximum Flame Height vs Time Experiments 15,	•••
9	16, 17	37
10	Maximum Flame Height vs Time Experiments 18,	•••
10	19, 20	38
11	Cable Jacket Temperature (Height vs Time)	
	Experiment 1	39
12	Cable Jacket Temperature (Height vs Time)	·
	Experiment 2	40
13	Cable Jacket Temperature (Height VS Time)	
	Experiment 3	41
14	Cable Jacket Temperature (Height vs Time)	
	Experiment 4	42
15	Cable Jacket Temperature (Height vs Time)	
	Experiment 15	43
16	Cable Jacket Temperature (Height vs Time)	
	Experiment 16	44
17	Cable Jacket Temperature (Height vs Time)	l. =
	Experiment 17	• • • 45
18	Cable Jacket Temperature (Height vs Time)	11.6
4.0	Experiment 18	40
19	Cable Jacket Temperature (Height vs Time)	J1 7
20	Experiment 19	• • • 4 /
20	Experiment 20	д. 8
21	Maximum Height of Cable Damage vs Fuel	••••
۷. ۱	Input	49
	Tubace estimate the transfer of the transfer o	

LIST OF TABLES

Table	Description	Page
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Cable Description	14 15 16 17 18 19 20 21 22 23 24 25

PREVIOUS REPORTS

Quarterly Report 1

- November 10, 1977

Quarterly Report 2-3

- June 1, 1978

NUREG/CR-0152 (UL-USNC 75 Q2-3)

<u>Development And Verification Of</u> Fire Tests For Cable Systems and Components

I. Introduction

This is the fourth quarterly report covering the period from March 1 through May 31, 1978. During this period, separate-effects experiments which were conducted as a part of Task A of the contract work scope. Specifically, twenty experiments were conducted to refine parameters of the IEEE 383 cable fire test method.

Several separate-effects experiments were conducted previously and described in Report NUREG/CR-0152 (UL-USNC 75 Q2-3). These experiments were conducted retaining similarity to the IEEE 383 test method, but with full cable trays (nominally 40 percent fill) and two burner ignition sources in order to more closely simulate a severe fire condition. However, experiments with one cable type produced results which were extremely variable because of random movements of the cable during burning and therefore, experiments with full fill cable trays were terminated for the present time.

One criticism about the present test method has been that results obtained are not repeatable between tests or reproducible between testing facilities.

Since a need exists for a reproducible cable fire test method, experiments were conducted to refine the values specified in the present IEEE 383 test method. The object of these experiments was to provide a data basis to establish tolerances for various test parameters and to define a test method with more reproducible results.

The parameters which were varied were 1) burner-to-tray distance, 2) air input rate, and 3) fuel input rate. The plan was to observe the effect of changing the parameters from the values specified in present IEEE 383. Also, since the only measure of cable performance described in the present IEEE 383 test method is the extent of cable damage, the use of cable-jacket temperatures developed during the experiment as a supplemental performance measure was investigated. Cable jacket temperatures might be used to determine actual extent of cable damage, and might also provide a measure of the linear rate of cable deterioration.

II. Experimental Procedure

A. Facility

The cable experiments were conducted inside a heated brick building 37 ft wide, 67 ft long and 21 to 24 ft high as shown in Figure 1. The building was ventilated and free from excessive drafts and spurious air currents, although no specific draft measurements were made.

During the cable experiments all exterior doors were closed and all roof vents in the building were opened. The roof vents were ducted to an exhaust and smoke incineration system. The nominal volumetric flow rate through the afterburner system was 16,000 cfm, which corresponds to one air change every 4 min. There was sufficient air leakage that atmospheric pressure was maintained inside the building while the incinerators were in operation.

B. Apparatus

The burner apparatus consisted of one burner head and a Venturi air-fuel mixer as described in IEEE 383-1974. The burner head was a 10 in. wide, 11-55 drilling, ribbon burner, and the mixer was a No. 14-18. Both were manufactured by the American Gas Furnace Co. Bottled commercial grade propane and laboratory compressed air were used in the experiments. The heating value of the commercial grade propane was 2,514 BTU/ft3.*

Cable experiments were conducted using open-ladder type cable trays, 8 ft long and 12 in. wide. The side channels were 3-3/8 in. deep with 1 in. flanges and fabricated from No. 16 MSG (0.060 in. thick) cold-rolled steel. The nominal 0.125 in. thick (No. 10 MSG) ladder rungs were 1 in. wide with 1/2 in. legs, and were tack-welded to the side rails at 9 in. intervals. Steel wire ties formed from No. 16 SWG (0.062 in. thick) were used to fasten each cable to various rungs of the cable trays as shown in Figure 2.

*Value obtained by test with a recording calorimeter and a sample of propane from the same lot used in testing.

C. Enclosure

An enclosure 8 by 8 by 8 ft high was used to isolate the sample from extraneous environmental effects as shown in Figure 3. It was formed by four steel-framed wall sections, 8 ft square, to which 1/2 in. Marinite boards were fastened. The sections were clamped together at the four corners so that each could easily be raised or lowered independently. The interior surfaces of the enclosure were painted flat black. Several observation windows and an access door were provided.

D. Samples

The cables used in these experiments were stranded seven (copper) conductor, No. 12 AWG with three combinations of insulation and jacket materials. Identification of cable materials was on the basis of information provided by the suppliers. The cables are identified in this report only by a code number in the description of the experiments to avoid association of the results with proprietary products at this time. Descriptions of the cables, without identification of the code numbers, are given in Table I.

E. Instrumentation

Type K, Chromel-Alumel thermocouples were used to measure the air and propane temperatures before the mixer and the cable jacket temperatures.

Pressures of the fuel and air within the burner piping before the mixer were measured with differential pressure manometers. Volumetric flow meters were used to monitor propane and combustion-air flow rate.

A thermometer and a barometer were used to measure the ambient air temperature and barometric pressure of the test room prior to each experiment.

F. Method

The experiments were conducted in the sequence shown in Table 2 and in general accordance with the method described in IEEE-383-1974, paragraph 2.5.

Cables were installed in a single layer filling the center 6 in. portion of the tray, and spaced approximately 1/2 cable diameter apart. Since the cable diameter was different for each cable type, the number of lengths of cables installed into the tray was different for each cable type. Each length of cable was fastened to ladder rungs with No. 16 SWG (0.062 in. thick) steel wire at approximately 18 in. O.C. The number of cables per tray and location of fasteners are shown in Figure 2.

The tray was installed vertically in a steel base frame with the rear surface of the cable tray rungs facing the burner. The burner face was positioned 3 in. away from (except in Experiments 5, 6, 11 and 12) and perpendicular to the rear of the cable tray. The center of the burner face was located 24 in. above the base of the tray and midway between ladder rungs.

The temperatures of the cable jacket material were measured in ten experiments. In each of these experiments one cable was instrumented with 12 thermocouples as shown on Figure 4. Each thermocouple was recessed into a notch in the cable jacket, with the notch then filled with a one-part silicone adhesive to fasten the thermocouple to the cable.

The test room was heated to approximately 63 F before the afterburner system was operated in Experiments 1-17. However, no heat was supplied to the test room for Experiments 18-20 since the natural outside air conditions produced the desired room temperature.

To initiate each experiment, a pilot burner flame was ignited. The propane gas and air flows were adjusted to obtain pressures within the specifications outlined in IEEE 383-1974 and/or to obtain the desired volumetric air and fuel inputs under consideration. After the required flows were obtained the experiment was initiated. Specimens were subjected to the burner flame for a 20 min duration after which the burner flame was extinguished.

Throughout each experiment, visual observations were made of the condition of the cable material, flame travel, and other developments pertinent to the fire performance of the cables. Each experiment was concluded when all fire activity had ceased.

III. Results

A. Visual Observations During Experiments

A summary of visual test observations for each cable type are given below. Graphs of maximum flame height versus time are shown in Figures 5-10.

Type I

The cable jacket material melted in advance of the propagating flame. Although the cable jacket material melted, the cable did not fuse together into a single cable mass in the fire region. No fall off of flaming material or other dripping or sparking was observed. As the flames traveled up the tray, the burning cable jacket/insulation material produced white ash. Small pieces of the ash gradually fell to the floor.

Type II

The cable jacket material discolored, blistered and cracked in advance of the flame. No melting of the cable jacket was observed. The outer surface of the cable jacket formed small scales, approximately 1/16 in. in diameter and smaller. A small amount of expansion of the cable insulation and/or jacket materials was observed to occur, although not sufficient to close the space between adjacent cables. While the cable material was flaming crackling noise issued from the burning cable, although no noticable loss of surface particles occurred. As the flames traveled up the tray, the burning cable jacket/insulation material produced white ash. Small pieces of the ash gradually fell to the floor.

Type III

The cable jacket/insulation material swelled in the fire area closing the space between the cables. The ignition flame was then unable to penetrate through the cable mass to the cable front surface. The ignition flame was able to curl about the sides of the cable mass to the front surface of the end cables. In the fire area crackling and popping sounds were audible as some small (approximately 1/16 in. diameter) particles popped away from the cable. The color of the burned cable jacket was a light gray.

Cable Jacket Temperatures - Temperature records for each experiment in which cable jacket thermocouples were installed are shown in Tables 3-12. Isothermal graphs for each instrumented cable experiment are shown in Figures 11-20.

Observations After Test - Maximum cable damage height for each cable was recorded as shown in Table 13. The maximum and average cable damage heights for each experiment is summarized in Table 14.

IV. Discussion

Several effects were observed when the test parameters were varied.

Experiments 1 through 4 were conducted to provide an estimate of the repeatability of the results for fixed test conditions. Heights of damage on individual cables in each experiment are shown in Table 3, and the maximum height of damage for each experiment is shown in Table 14. It is seen that for Experiments 1-3, the variation of the maximum damage height was from 68 to 71 in., whereas the maximum damage height in Experiment 4 was 87 in. However, Experiment 4 is suspect for the following reason. Room temperature prior to the experiment had inadvertantly been allowed to rise to about 95 F, and then cooled to 64 F by admitting outside air. It is possible that parts of the cable, cable tray, and enclosure were still above room temperature at the start of the experiment, thus increasing the height of damage in that experiment. For this reason, only Experiments 1-3 are being used to estimate the basic repeatibility of the height of damage, which is estimated to be +1-1/2 in.

As shown in results of Experiments 5 and 6, varying the burner distance $\pm 1/2$ in. from the specified 3 in. has a significant effect on cable performance. About a 10 in. difference in height of cable damage was recorded between Experiments 5 and 6. However, little difference in height of cable damage was observed between Experiments 11 and 12 where the burner distance was varied $\pm 1/8$ in.

In Experiments 7 and 8, the air input rate was varied plus 10 percent and minus 6 percent, respectively. The results of these tests show that little difference in cable damage is produced by such a variation in the supply air. This is to be expected, since the air/fuel ratio of the standard ignition flame is approximately 6/1, whereas the stoichiometric air/fuel ratio is about 23/1. With such a fuel-rich mixture, slight variations in the amount of air should not have a significant effect on the nature of the flame heat output.

The fuel input rate was varied in Experiments 9, 10, 13 and 14. A plot of height of cable damage for each of the experiments is shown in Fig. 21. As shown, there is a tendency for increasing cable damage with decreasing fuel input. Approximately a 10 in. difference in cable damage was observed between Experiments 9 and 10 in which the fuel input was varied from 65,000 to 70,000 Btu/hr. However, only a 1 in. difference in cable damage was observed when the fuel input was varied between 71,650 and 67,800 Btu/hr.

As shown in Table 15, initial room temperature for all of the experiments was between 57 and 69 F. Additional room heating was required to obtain the desired room temperatures in Experiments 1-17. Weather conditions produced initial room temperatures in the 60 F range without additional heating in Experiments 18-20.

Visual observations and cable damage in previous cable fire tests suggest that a significant difference in results may be caused by a large variation in initial room temperature. Four cable fire tests according to IEEE 383 were conducted as part of another investigation, and are described in UL Reports, Subject 1277 dated April 18, 1978; and Subject 1277-2, dated June 23, 1978. A summary of the results is shown in Table 16.

The four tests were conducted on one cable type with samples obtained from one cable reel. Besides the variations of initial room temperatures, barometric pressure and humidity, the only difference between Experiments 1-2 and 3-4 was the spacing of cable ties and burner height. However, after allowance for the burner height, Experiments 3 and 4 sustained greater cable damage than did Experiments 1 and 2, which were conducted at lower initial starting temperatures.

In ten of the experiments, cable jacket temperatures were recorded. In Figures 11-20, cable jacket temperatures are plotted on a height versus time graph. These plots may provide information as to the rate of cable burning in each experiment. A comparison of this data with the observed maximum flame height versus time graphs, as shown in Figures 5-10, indicates that there may be a useful correlation between the recorded cable jacket temperature and the observed cable burning. Also, Figures 11-20 suggest that cable damage corresponds with cable jacket temperatures in the 300-400 F range.

Since only a limited number of experiments were conducted, additional experiments would be required to investigate the significance of quantitative measurements of cable jacket temperature. However, the qualitative data on jacket damage is sufficient for establishing test parameter tolerances.

V. Recommendations

It is suggested that the fire test procedure described in NRC Regulatory Guide 1.131 be revised to better define, and elaborate on certain items which presently are only mentioned or excluded entirely. These items are A) construction of cable trays, B) test enclosure, C) type, size and spacing of cable ties, D) tolerance on burner position, E) monitoring of fuel and air input rates, F) flame temperature, G) initial room temperature, and H) reporting of results.

A. Cable Trays

The type of cable tray used has a significant effect on the fire performance of the cables. The cable tray to be used should be completely specified as to its size and construction, including the shape, dimensions and spacing of ladder rungs. Although any standard ladder tray would be adequate, the cable tray described in this Report has been used extensively with good results, and is a reasonable choice for standardization.

B. Enclosure

Since the tests should be free from excessive drafts and spurious air currents, the document should be revised to define the test enclosure. The enclosure used in this investigation seems to provide adequate shelter from superficial air currents within the test room. Also, the rate exhaust from the room should be established. A value to 1800 cfm is suggested as a conservative value, based upon the results of previous experiments in this investigation as reported in NUREG/CR-0152.

C. Cable Ties

The spacing and type of cable ties is very important in obtaining reproducible test results. It is necessary that steel tie wire be specified as the fastening means. When plastic or other low melting temperature material is used as fasteners, the cable usually breaks loose in the fire area. The ensureing random movements of the cables produce significant variability in the results. It is suggested that No. 16 SWG steel wire ties be used to fasten each cable every 18 in. along the cable tray.

D. Burner Position

Presently, the IEEE test method specifies that the burner face shall be 3 in. behind and approximately 2 ft above the bottom of the tray. The sensitivity tests have shown that variations of $\pm 1/8$ in. in the burner-to-tray distance do not produce significant changes in the maximum height of damage. It is therefore suggested that the Standards specify a distance of $3 \pm 1/8$ in. between the burner face and the cable tray.

Although the effect of burner height was not investigated, it seems certain that proximity of the burner to a ladder rung would have a significant effect on the results. Additionally, the height above the bottom of the tray to which damage extends will obviously depend on the height of the burner above the bottom of the tray. For both reasons, it is suggested that the height of the burner be specified in the Standard as 24 + 1/8 in.

E. Fuel and Air Input Rates

The present method of monitoring fuel and combustion air input rate is by measuring the pressure of each in the supply lines before the mixer and measuring the flame temperature. Previous experience has shown that monitoring pressure is a coarse means of regulating the ignition flame since any restrictions in the line, changes in density of the fuel and air, and the heat produced by the burning cable have significant effects on the recorded pressures. Use of rotameters in lieu of the manometers, with compensation for the gas densities provides an accurate means of monitoring fuel and air flow rates.

The Standard should specify that the tests are to be conducted with a fuel input rate of 70,000 (\pm 1,600) Btu/hr and an air input rate of 163 (+10) SCFH.

F. Flame Temperature

The flame temperature requirement should be deleted since it is a very difficult quantity to measure.

G. Initial Room Temperature

Although we presently do not have a great quantity of data, it is suspected that initial room temperature has a significant effect on results.

The present tests, conducted with initial room temperatures between about 58 and 69 F, suggest that variations over this range do not significantly affect the results. Until further information becomes available, it is suggested that the Standard specify a tolerance of ± 5 F for initial room temperature, which should correspond with initial cable temperature. The center value of the initial room temperature should probably be specifed as 75 F for maximum convenience.

H. Reporting of Results

A definition of cable damage should be included in the Standard. Although more or less sophisticated determinations of jacket and insulation properties might be conceived for assessing damage, these do not appear to be necessary. A definition of damage as melting, blistering, or charring appears to be sufficient for this test.

These suggestions are based on results of a limited number of experiments. If greater detailed quantitative results are desired concerning the repeatability and reproducibility of the test, further experimentation would be required. It is recommended, therefore, that round-robbin testing be undertaken to obtain this additional data.

Although reporting of cable jacket temperatures appears to be beneficial, more experimentation would have to be conducted before any specific proposal could be made. However, the techniques and time required for proper placement of the cable jacket temperatures may be too demanding for inclusion of this measurement in a standard test of this nature at this time.

Table 1 Cable Description

Approximate Cable Jacket Thickness, In.	0.134	0.050	0.068
Cable Jacket Material	Chlorosulphonated polyethylene	Polyvinyl chloride	Polychloroprene rubber
Approximate Conductor Insulation/ Jacket Thickness, In.	0.028/0.017	0.022/0.006	0.044/-
Insulation/Jacket Material	Ethylene propylene rubber/chloro- sulphonated poly- ethylene	Polyvinyl chloride/ nylon	Crosslinked poly- ethylene
Cable Cross Section Diameter, In.	0.785	0.515	0.618
Designation	EPR-Hypalon/Hypalon	PVC-Nylon/PVC	XLPE/Neoprene

Table 2 IEEE 383 Cable Experiments

Experiment	Caple Type	Fuel Input (BTU/Hr)	Air Input (SCFH)	Air/Fuel Ratio	Burner Distance (In.)	Cable Jacket Temperature Measurement
1	I	70,000	163	5.9/1	3	Yes
2	I	70,000	163	5.9/1	3	Yes
3	I	70,000	163	5.9/1	3	Yes
4	I	70,000	163	5.9/1	3	Yes
5	I	70,000	163	5.9/1	3-1/2	No
6	I	70,000	163	5.9/1	2-1/2	No
7	I	70,000	180	6.5/1	3	No
8	I	70,000	153	5.5/1	3	No
9	I	65,000	163	6.3/1	3	No
10	I	75,000	163	5.5/1	3	No
11	I	70,000	163	5.9/1	3-1/8	No
12	I	70,000	163	5.9/1	2-7/8	No
13	I	71,650	163	5.7/1	3	No
14	I	67,800	163	6.0/1	3	No
15	II	70,000	163	5.9/1	3	Yes
16	II	70,000	163	5.9/1	3	Yes
17	II	70,000	163	5.9/1	3	Yes
18	III	70,000	163	5.9/1	3	Yes
19	III	70,000	163	5.9/1	3	Yes
20	III	70,000	163	5.9/1	3	Yes

Table 3 Cable Jacket Temperatures Experiment 1 (Degrees F)

					,							
Time (Min)	30	36	42	48	54	09	Height 66	(In.)	78	84	90	96
Pre- test	19	57	49	24	99	119	23	99	57	57	55	55
\dashv	1349	348	\vdash	9	$\overline{}$	<u></u>	6	_	0	ı	0	
ν c	φ φ α	9 (\mathcal{D}	\mathcal{L}	\sim 0	— Г	0	\sim -	\sim -	1 (-1 :	
٥Ħ	3 4 6	n α	403 403	529 639	T03	4/7	171		1 4 2 4 3 4	9 ر 1 ه و ر	141 762	<u>ς</u> α
. rv	57.	_	$^{\prime}$	0	∞) ~	- 0	\sim	\sim	123	\sim	
9	61	\sim	7	$^{\circ}$	\Rightarrow	~-	3	(טן נ	1 ~	0	0
7	22	9	~	- 1	0	9		0	5	\sim	0	
∞	30	∞	\sim	ı	9	\vdash	/	6	α	\sim	5	0
6	43	∞	0	1	\Rightarrow	0	7	84		2	∞	6
10	95	∞	0	ı	$\overline{}$	9	9	77	0	\neg	∞	
11	42	<u></u>	0	ı	0	⇉	5	73	9	\vdash	7	
12	21	_	\circ	,	6	∞	5	29	9	\vdash	~	
13	34	9	9	ı	∞	$\overline{}$	7	69	∞	\vdash	7	
14	49	\mathcal{L}	9	ł	∞	$\overline{}$	4	49	∞	\vdash	7	
15	20	\sim	2	ı	_	9	7	61	∞	\neg	9	
16	9 †	\sim	9	1	_	9	\sim	29	\sim	\vdash	9	
17	33	\sim	_	ł	7	∞	3	52	~	0	9	
18	52	\vdash	0	1	7	~	\sim	55	~	0	9	
19	43	0	∞	1	7	\sim	∞	55	∞	0	9	
20	31	0	9	1	9	7	3	55	∞	0	9	

	96	99	98	-	m_{l}	177	- 00	∞	1	Ĺ	9	9	9	9	9	9	9	\mathcal{C}	5	5
	06	64	90	オ	~ c		\sim	∞	~	\sim	~	9	9	9	9	9	5	5	S	5
	84	51	104	2	9	21 (S LO	\sim	\sim	_	0	0	9	9	∞	∞	∞	∞	∞	∞
ment 2	78	77	130	\vdash	∞ -	1 C	<u></u>	2	3	\sim	\sim	$\overline{}$	0	0	9	9	9	9	0	9
Experi	(In.)	57	99 134	9	α	3.54 3.64 3.64	~	\sim	0	∞	7	<u></u>	5	\mathcal{C}	5	\mathcal{C}	α	\sim	\sim	\sim
tures	Height 66	1	121	0	∞	こす	. W	9	⇉		0	9	7	9	9	\Box	∞	\sim	ω	2
empera rees F	09	09	174 217		S	\circ	2	=	\pm	9	9	∞	7	\sim	9	$\overline{}$	9	9	9	9
cket T (Deg	54	29	161 217	0	2	01	\sim	0	∞	7	5	9	\sim	\vdash	$\overline{}$	9	\vdash	-4	9	\sim
lble Ja	48	57	714 808	94	0 4															
e 4 Ca	42	99	373 607	98	16	0 0	8	\circ	9	\sim	7	∞		⇉	\sim	∞	∞	0	0	0
Tabl	36	09	1549 1624	57	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60	61	54	60	69	43	65	52	61	61	50	50	43	9 †	51
	30	09	1504 1579	53	50	900	6 I.	48	51	20	05	25	22	48	20	39	50	54	50	57
	Time (Min)	Pre- test		Μ.	 	റയ	7	œ	6										19	

Table 5 Cable Jacket Temperatures Experiment 3 (Degrees F)

96	77	90	117	1	S	Ω	⇉	\Rightarrow	⇉	7	7	α	α	α	α	α	α	α	3
90	09	95		9	9	9	9	9	5	5	⇉	=	+	4	\Rightarrow	\Rightarrow	#	7	7
84	57	100	9	∞	9	9	∞	9	9	9	9	9	5	S	5	⇉	7	⇉	7
78	09	112	∞	\vdash	\sim	∞	\vdash	9	6	∞	∞	∞	~	2	9	9	9	9	9
In.)	55	121	9 7	⇉	9	Ĺ	9	5	\propto	\sim	\sim	\sim	-	0	0	0	0	0	9
ight (1	51	143	σ	S	9	<u></u>	0	7	\mathcal{L}	5	∞	3	3	\sim	α	\vdash		\vdash	0
He j	55	173	0 0	T	9	⇉	9	∞	∞	9	∞	7	9	9	5	5	5	5	
54	49	190	$\omega \omega$	\sim	7	_	\sim	\sim	∞	9	⇉	\sim	\sim	-	$\overline{}$	0	0	9	9
48	09	300	104	598	812	705	276	909	475	475	611	0 † †	431	431	435	413	417	413	408
42	1	453 598	7	9	5	-	\vdash	9	⇉	7	ā	\vdash	0	∞	ō	$\tilde{\infty}$	_	7	m
36	09	795	\neg	48	37	20	90	α	0	オ	∞	-	~	_	7	9	5	\sim	\dashv
30	09	1593	4 52	43	32	57	22	35	39	70	52	26	Ω	27	43	22	22	75	∞
Time (Min)	Pre- test	120	ν4	Ω.	9	<u>_</u>	0 0	0	10	11	12	13	14	15	16	17	18	19	20

Table 7 Cable Jacket Temperatures Experiment 15 (Degrees F)

96	52				0	104	\dashv	\sim	\sim	α	$^{\circ}$	⇉	₽	7	⇉	⇉	7	7	⇉	⇉	
06	55			0	0	121	\sim	α	4	5	5	α	5	5	5	5	5	5	5	\mathcal{C}	2
84	55		0	$^{\circ}$	$^{\circ}$	135	\sim	S	9	9	7	7	9	~	<u>~</u>	7	_	7	<u></u>	7	7
78	23	108	$\overline{}$	α	∞	117	7	2	9	~	∞	∞	∞	∞	$\overline{\infty}$	∞	ã	∞	∞	∞	∞
(In.)	55	9	0	\vdash	\sim	135	\sim	\mathcal{D}	9	7	∞	∞	σ	σ	9	9	9	9	9	6	9
ght 66	48	\sim	\sim	\propto	7	160	9	9	0	α	\sim	α	\sim	∞	\sim	\mathcal{C}	\sim	\sim	$^{\circ}$	\sim	\sim
Hei 60	54	7	9	7	9	204	2	ュ	9	∞	9	2	\vdash	0	0	0	0	9	9	φ	∞
54	57	7	9	<u>~</u>	9	212	$^{\circ}$	9	9	$^{\circ}$	⇉	\mathcal{O}	9	5	2	2	=	⇉	\sim	\sim	\sim
8 1	55		\sim	5	7	296	\dashv	∞	#	9	\sim	⇉	⇉	\sim	Н	\vdash	\vdash	$\overline{}$	$\overline{}$	\vdash	\vdash
42	99	243	9	0	\vdash	\sim	9	9	\sim	$^{\circ}$	0	\sim	\sim	94	01	04	07	60	10	_	20
36	09	454	7	5	\vdash	85	03	01	90	94	00	07	10	10	15	16	17	18	20	7	28
30	57	1011	18	90	9	9	99	01	13	14	15	23	30	33	33	33	32	13	34	7	35
Time (Min)	Pre- test	٦	7	<u>د</u>	4	ر م	9	7	∞											19	

Table 8 Cable Jacket Temperatures Experiment 16. (Degrees F)

	96	56	95	_	112		\cap	\sim	\sim	-	-	-			\circ	\circ	\circ	\circ	\mathbf{c}	$^{\circ}$	\mathcal{L}
	90	53	7.7	95	66	\circ	$\overline{}$	$\overline{}$	α	\sim	_		_		\mathbf{c}	\mathbf{c}	\mathbf{c}	S	S.	151	- 7
	84	55	95		108	α	α	\sim		_	10	VO.	S.	\circ	o.	S.	\mathbf{o}	$^{\circ}$	ω	ω	\mathcal{Q}
	78	55	117	$I \cap I$	\sim	\sim	_	_	\circ	S	_	\sim	α	\circ	∞	∞	∞	∞	∞	∞	∞
	(In.)	55	99	117	α	∞	-	\rightarrow	\circ	\sim	α	\sim	0	\Box	\circ	\circ	\circ	\circ	\circ	\circ	\circ
	ght 66	55	138	1=	_	10	9	~	\circ	\circ	-	\vdash	\circ	α	α	α	α	$\overline{}$	\circ	-	\circ
(S F.)	Hei 60	73	1637	10	29	/	_		\sim	_	=	ന	\circ	_	LO	∞	\circ	∞	\circ	\sim	Q
(Degree	54	54	134	- 10	1			O.I.	_	\sim	9		ΩI.	ന	\sim	\sim	α	\neg	$\overline{}$	\circ	\circ
	848	99	199	$+\infty$	1 =+	S	α	$\overline{}$	0	$\overline{}$	\sim		$^{\circ}$	∞	LO	T)	LC)	$\overline{}$	T.	7	¬
	42	1	238	<u>-</u> Ω	α	\circ	CΙ	LO	_	9	$\overline{}$	70	9	\sim	5	\Rightarrow	S	9	∞	0	\sim
	36	99	431	10	-	(2)	~	05	\sim	9	9	N	9	∞	$^{\circ}$	02	04	70	05	α	0 7
	30	09	1460	\sim	α	α	9	\sim	_	85	\circ		$^{\circ}$	(Y)	J	α	\mathcal{C}	9	\mathcal{C}	9	ω
	Time (Min)	Pre-	מ טרד כ	1 V) #	5	9	_	8	6	10	11	12	13	14	15	16	17	18	19	20

Table 9 Cable Jacket Temperatures Experiment 17 (Degrees F)

	96	99	66	108	\sim	\sim	\sim	\sim	オ	9	9	7	<u></u>	7	∞							
	90	62	66	108	\dashv	\sim	\sim	ω	⇉	\mathbf{c}	9	\sim	<u>_</u>	∞	∞	∞	က	∞	∞	∞	∞	∞
	84	99	0	121	α	=	7	2	9	∞	∞	9	6	0	0	0	0	9	9	9	9	9
	78	62	2	138		7	2	9	\sim	9	0	$^{\circ}$	\sim	\sim	\vdash	0	0	0	9	0	9	9
	(In.)	1	⇉	164	∞	9	9	0	S	4	5	~	~	_	_	~	7	~	~	~	7	_
	ght 66	ħ9	N	143	9	9	\sim	∞	0	3	5	9	~	<u></u>	<u></u>	9	9	9	2	S	S	コ
S F.	Hei 60	49	\sim	164	∞	∞	9	\vdash	\Rightarrow	~	0	α	4	4	\sim	2	Н	\vdash	0	0	9	0
(Degree	54	49	オ	182	9	0	3	7	7	\sim	9	0	\sim	0	9	∞	7	9	5	5	⇉	4
	48	99	6	238	9	9	∞	-	∞	_	9	\sim	<u></u>	S	0	∞	7	∞	9	7	~	⇉
	112	55	\Rightarrow	301	\sim	α	5	0	\vdash	$^{\circ}$	9	\sim	-	99	00	Н	02	99	01	91	Н	⇉
	36	99	\vdash	511	~	0	9	∞	∞	9	S	01	07	18	15	16	13	15	15	14	\vdash	1,8
	30	49	61	1544	71	63	61	71	68	99	59	57	58	47	53	48	51	46	43	30	38	3
	Time (Min)	Ó	test 1	8	Υ	†	Ŋ	9	7	· ∞	6	10	11	12	13	14	15	16	17	18	19	20

		Table	10 Ca	ble Jac	cket Tem (Degree	perat s F)	ures E	Experime	iment 18			
Time						ı H) h	_ n				
(Min)	30	36	42	48	54		999	72	78	84	9.0	96
Pret	i	1	1	69	69	69	68	68	61	19	61	69
) 	45	0	\sim	~	\vdash	\sim		0	81	46	75	89
ν ο	ひ n こ	\supset \cap	_=	$\supset 0$	7) 6	す =	\sim -	0 -	χ (χ (9 -	0 0 0	σ
∩⊅	1549	324	242	225	171	149 160	154	178	103	100	<u>,</u> 6	00T
5	55	\sim	2	\sim	. 6	~	9	\sim	110	107	80	\vdash
9	9 †	3	7	⇉	0	∞	~	1	\vdash	\vdash	0	\sim
_	57	3	∞	9	S	9	∞	S	$^{\circ}$	-	108	\sim
∞	51	2	0	~	∞	0	9	9	2	\sim	\vdash	α
	49	9	3	∞	⇉	\vdash	0	\sim	α	S	\vdash	⇉
	26	-	3	9	5	\sim	0	∞	9	9	\sim	⇉
	90	∞	コ.	σ	9	α	Н	∞	7	9	S	5
	14	∞	⇉	0	7	$^{\circ}$	\sim	9	7	\sim	S	\mathcal{S}
	05	δ	2	\vdash	∞	⇉	\sim	0	∞	9	9	9
	α	-	~	3	9	⇉	\sim	0	∞	\sim	9	9
	$\overline{}$	\vdash	∞	\sim	0	S	\sim	\vdash	9	∞	~	9
	_	2	∞	\sim	0	S	⇉	$\overline{}$	9	∞	<u>, </u>	~
	\circ		9	⇉.	\vdash	9	7	\sim	0	∞	_	7
	_	\mathcal{O}	0	⇉	\vdash	_	S	\sim	0	9	<u></u>	7
19	=	Ω	0	⇉	α	7	\mathcal{D}	\sim	0	0	∞	7
	Н	വ	0	⇉	3	7	5	3	一	9	∞	7

	96	70	86		110		~ 1	α	\sim	ന.	_+ .	_	IO.	יחו	SO.	ഥ	ω	ω	\mathbf{v}	ω	S.
	90	69	90	\sim	113	_	α	\sim	ന.	_	_	10	LO.	$^{\circ}$	\mathbf{c}	\mathbf{c}	\mathbf{v}	_	ŗ-	_	
	84	65	96	116	-	\sim	\sim	-	\sim	10	10	S	\sim	\sim	\sim	യ	α	യ	w.	ω	w
ent 19	78	65	101			\sim	_	10	10	\sim		_	α	α	α	CD	Γ	())	(J)	() 1	C) \
регіше	In.)	70	103		1 ~	-	10	\sim	_	\sim	\sim	\sim	$\overline{}$	$\overline{}$	\sim	$\overline{}$			$\overline{}$	$\overline{}$	
res Ex	ght (I	70	121	139 159	\sim	_	\sim		\sim	\sim	$\overline{}$	_	α	(1)	(Y)	(T)	(T)		(1)	,,,	(,)
peratur s F)	Hei 60	69	A 1 .	143	· · ·		\sim		$\overline{}$			α	\sim	=			10	ш,	111	4	u_{I}
ket Tem (Degree	54	69	128	150	\sim	\sim		\sim	_	IO	NO.	\sim	ന	α	$-\infty$	C)	יטי	\cdot	\sim	\sim	\circ
le Jack (48	69	100	182	~ ~	\sim	-	\cdot	\sim	\sim	. ന	ന	\sim	\sim	_			l (V	{ Y) (')	(1)
11 Cab	7 7	ı	\sim	226	\sim	- 10	\ N	- ന		\sim	-	\sim) =	- LC) LC	ω	· [~	- W	ω	w	_
Table	36	1	-	372	- ~	~ ~	\rightarrow	+		\cdot	· ~	_ (T	$\overline{}$	_	ın	Iα) _	. п.	1 W	-	\mathbf{v}
	30	ı	9	1639	5 4	0	J 00	7.0	- 10	$\frac{\infty}{1}$		17	. (/		1 (/	7	שי	יי	2 (5	9	ייי נ
	Time (Min)	Pre-	test 1	0.0	m=	, ц	۰ د	o 6-	-αc) O	, ,) - - -	10	1 -	7 T	- LC	٦ ر ا	2 -	- &	0 1	20

	96	29	89	98	$\overline{}$	-	-	N.	\sim	3	\sim	寸	オ	7	5	5	5	2	9	9	161	Q
	90	29	85		100	0	1	ı	ŀ		α	⇉	オ	コ	5	\mathcal{L}	5	9	9	9	165	9
	84	29	0	104	_	α	α	\sim	∞	_	_	LO	10	9	9	9	\sim	\sim	\sim	\sim	_	~
ent 20	78	29		112	α	QΙ.	\sim	_	⇉	10	9	9	/	_	\sim	∞	∞	∞	∞	9	\circ	σ
perim	In.)	29	\circ	111	QL	\sim	\sim	_	LO	9	/	/	∞	\circ	\circ	σ	\circ	\circ	\vdash	_	\vdash	П
tures Ex	ght (68	\neg	131	=	2	9	_	∞	∞	9	0	$\overline{}$	\vdash	α	α	α	$^{\circ}$	$^{\circ}$	$^{\circ}$	α	α
pera s F)	Hei 60	89		134		2	9	∞	9	0	\neg	α	α	$^{\circ}$	7	コ	→	\mathcal{L}	S	9	9	O
ket Tem (Degree	54	89	\sim	150	0	\sim	9	$\overline{}$	Q1	$_{\infty}$	LO	9	/	/	∞	∞	9	9	0	0	0	0
le Jacke	148	89	10	190	0	\vdash	3	4	9	9	∞	9	0	0	\vdash	α	α	$^{\circ}$	\sim	オ	ユ	コ
12 Cab	42	89	O.I.	257	_	\cap	9	α	9	$\overline{}$	α	_	5	9	\sim	∞	∞	9	9	σ	σ	9
Table	36	89	=	1361	_	CI.	9	~	=	9	9	\Rightarrow	\sim	$^{\circ}$	0	9	\sim	5	9	0	9	\circ
	30	89	7	1452	34	97	36	36	34	21	H	13	18	22	99	70	20	88	11	77	17	7.1
	Time (Min)	- 1	υ	2	ന.	≉	IJ	9	_	∞	6	10	11	12	13	14	15	16	17	18	19	20

Table 13 Maximum Height Of Cable Damage

20		65.0 66.0 62.5 78.0 70.5 60.0 63.0 65.0 72.0 64.0 74.0 70.0 66.0 72.0 46.5 47.5 48.0 41.0 47.0 38.0 67.0 67.5 64.0 84.0 71.0 61.0 65.0 68.0 75.5 64.0 74.0 74.0 69.5 72.0 47.5 47.5 49.0 39.0 40.0 37.0 68.5 71.0 65.5 85.0 72.0 63.0 64.0 68.0 76.0 66.0 74.0 76.0 70.0 72.0 48.0 47.5 50.5 39.0 37.0 37.0 69.0 71.0 66.2 85.0 72.0 63.0 66.0 68.0 78.0 66.0 74.0 76.0 70.5 72.0 48.0 47.5 50.0 39.0 39.0 37.0 68.0 71.0 66.2 85.0 72.5 63.0 67.5 68.0 78.0 66.0 74.0 76.0 71.0 72.0 48.0 48.0 51.0 39.0 42.0 40.0 68.0 70.5 68.0 78.0 68.0 73.0 76.0 71.0 72.0 48.5 48.0 53.0 45.0 47.0 48.0 69.0 64.0 84.0 72.0 63.0 67.5 68.0 78.0 68.0 73.0 76.0 71.0 70.0 50.0 48.0 52.5 72.0 68.0 77.0 68.0 77.0 69.0 69.0 63.5 81.0 71.0 60.0 65.0 65.0 74.0 66.0 70.0 76.0 69.0 69.0 69.0
Experiment No. 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		47.0 40.0 37.0 39.0 42.0
18		41.0 39.0 39.0 39.0 39.0 45.0
17		48.0 49.0 50.5 50.0 51.0 53.0
16		47.5 47.5 47.5 47.5 48.0 48.0 48.0
15		46.5 47.5 48.0 48.0 48.0 48.5 50.0
14		72.0 72.0 72.0 72.0 72.0 72.0 70.0
13		66.0 69.5 70.0 70.5 71.0 70.5 71.0
Experiment No. 10 11 12		70.0 74.0 76.0 76.0 76.0 76.0 76.0
perime 11	e)	74.0 74.0 74.0 74.0 74.0 73.0 73.0
Ex. 10	Front Surface	64.0 64.0 66.0 66.0 67.0 68.0 68.0
6	ront	72.0 75.5 76.0 78.0 78.0 78.0 76.0
8	됩	65.0 68.0 68.0 68.0 68.0 68.0
7		63.0 65.0 64.0 66.0 67.5 67.5 69.0
9		60.0 61.0 63.0 63.0 63.0 63.0
		70.5 71.0 72.0 72.0 72.5 71.5 71.0
3 4 5		78.0 84.0 85.0 85.0 87.5 85.0 84.0
3		62.5 64.0 65.5 66.2 68.0 67.5 64.0
2		66.0 67.5 71.0 71.0 70.5 69.5 70.0
-1		65.0 67.0 68.5 69.0 68.0 68.0 69.0
Cable No.		1 7 6 7 7 8 7 8 7 8 8 7 9 9 7 8

Rear Surface

	55.0 57.0	ı	79.0 67.0 51.0 55.0 57.0 71.0 61.0 73.0 72.0 64.0 72.0 46.5 46.0 46.0 45.0 49.0 44.5
2	55.0 62.0	1	81.0 67.0 54.0 54.0 58.0 69.0 63.0 73.0 72.0 64.5 72.0 46.5 46.0 46.0 43.0 49.0 46.0
3	60.0 63.0	ı	82.0 70.5 54.0 57.0 60.0 72.5 64.0 73.0 74.0 68.5 72.0 47.5 46.5 46.0 46.0 45.5 46.0
4	61.0 63.0	ı	86.0 70.5 54.5 60.0 60.0 72.0 64.0 73.0 74.0 69.5 72.0 48.0 47.5 48.0 46.0 45.5 46.0
2	62.0 63.0	ı	82.0 69.0 54.0 59.0 60.0 72.0 64.0 73.0 74.0 69.5 72.0 48.0 47.5 48.0 46.0 45.5 47.0
9	60.0 63.0	ı	81.0 69.0 53.0 59.0 60.0 72.0 64.0 73.0 74.0 69.0 72.0 48.5 47.5 50.0 46.0 45.5 49.0
7	56.5 63.0	1	81.0 67.5 53.0 58.0 60.0 72.0 60.0 73.0 74.0 67.5 68.0 48.5 47.5 50.0
∞	55.5 63.0	ı	81.0 62.0 50.0 60.0 58.0 70.5 60.0 73.0 72.0 67.0 65.0

Table 14 Cable Damage Summary

Experiment No.	Maximum Cable Damage Height (In.)	Average Cable Damage Height (In.)
1	69.0*	67.7*
2	71.0*	69.3*
3	68.0*	65.2*
4	87.0*	83.6*
5	72.5*	71.6*
6	63.0*	62.0*
7	69.0*	65.9*
8	68.0*	67.2*
9	78.0*	75.8*
10	68.0*	66.1*
11	74.0*	73.2*
12	76.0*	75.0*
13	71.0*	69.7*
14	72.0*	71.4*
15	50.0*	48.0*
16	48.0*	47.7*
17	53.0*	50.6*
18	46.0**	45.3**
19	49.0**	46.6**
20	49.0**	46.4**
	*Front surface	e

^{*}Front surface
**Rear Surface

Table 15 Initial Temperatures

Experiment No.	Average Initial Cable Jacket Temperature	Initial Room Air Temperature
. 1	60	64
2	62	58
3	60	59
	63	64
5	-	64
6	_	63
7	_	64
8	_	65
9	_	61
10	_	65
11	_	65
12		64
13	_	64
14	_	62
15	56	63
16	57	64
17	63	64
18	66	67
19	68	69
20	68	67
	• •	. • 1

Table 16 Summary of Supplemental Cable Experiments

	Exp. 1*	Exp. 2*	Exp. 3*	Exp. 4*
Cable tie spacing (in.) Initial room temperature (F) Barometric pressure (In./Hg) Relative humidity Maximum height of cable	27 42 29.58 38	27 43 29.60 38	18 70 29.34 48	18 72 29.35 46
damage (in.)**	72	78	82	83

^{*}Experiment numbering from Reports Subjects 1277 and 1277-2.

^{**}Adjusted to allow for differences in burner height.

ELEVATION VIEW

Figure 1 - Facility

Figure 2 - Cable Tray and Cable Installation

Each Wall May Be Raised Or Lowered Independently

Figure 3 - Enclosure

Front Surface

• Thermocouple Location

Instrumented cable installed along the center line of the cable tray in Experiments 15-17, or 1/4 the cable diameter from cable tray center line in Experiments 1-4 and 18-20.

Figure 4 - Cable Jacket Thermocouples

Figure 5 - Maximum Flame Height vs Time
Experiments 1-4

Figure 6 - Maximum Flame Height vs Time
Experiments 5, 6, 11 and 12

Figure 7 - Maximum Flame Height vs Time
Experiments 7 and 8

Figure 8 - Maximum Flame Height vs Time
Experiments 9, 10 and 14

Figure 9 - Maximum Flame Height vs Time
Experiments 15, 16 and 17

Figure 10 - Maximum Flame Height vs Time Experiments 18, 19 and 20

* - Maximum cable damage height.

Figure 11 - Cable Jacket Temperature Experiment 1

* - Maximum cable damage height.

Figure 12 - Cable Jacket Temperature

Experiment 2

* - Maximum cable damage height.

Figure 13 - Cable Jacket Temperature

Experiment 3

* - Maximum cable damage height.

Figure 14 - Cable Jacket Temperature

Experiment 4

* - Maximum cable damage height.

Figure 15 - Cable Jacket Temperature

Experiment 15

* - Maximum cable damage height.

Figure 16 - Cable Jacket Temperature

Experiment 16

* - Maximum cable damage height.

Figure 17 - Cable Jacket Temperature

Experiment 17

* - Maximum cable damage height.

Figure 18 - Cable Jacket Temperature

Experiment 18

* - Maximum cable damage height.

Figure 19 - Cable Jacket Temperature

Experiment 19

* - Maximum cable damage height.

Figure 20 - Cable Jacket Temperature

Experiment 20

Fuel Input Rate - Btu/Hr

Figure 21 - Maximum Height of Cable Damage Versus Fuel Input

NRC FORM 335		1. REPORT NUMBER (Assigned by DDC)
U.S. NUCLEAR REGULATORY COMMISSION BIBLIOGRAPHIC DATA SHEET		NUREG/CR-0346
4. TITLE AND SUBTITLE (Add Volume No., if appropriate) Development And Verification Of Fire Tests For Cable Systems and System Components		2. (Leave blank)
		c
		3. RECIPIENT'S ACCESSION NO.
7. AUTHOR(S)		5. DATE REPORT COMPLETED
L. J. Przybyla and W. J. Christian		July 1978
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code)		
Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook, Illinois 60062		MONTH YEAR
		August 1978
		6. (Leave blank)
		8. (Leave blank)
12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code) Division of Reactor Safety Research U. S. Nuclear Regulatory Commission Washington, DC 20555		10. PROJECT/TASK/WORK UNIT NO.
		NA
		11. CONTRACT NO.
		NRC-04-77-122
13. TYPE OF REPORT	PERIOD	COVERED (Inclusive dates)
Quarterly Report 4	1	3/1/78-5/31/78
15. SUPPLEMENTARY NOTES		14. (Leave blank)
16. ABSTRACT (200 words or less)		
Experiments were conducted to est of the results to variations of several cable tray fire test described in the varied were burner-to-cable distance, rate. As a result of these experiment suggestions for revision of IEEE 383 at 1) construction of cable trays, 2) test spacing of cable ties, 4) burner position and air rates, 6) flame temperature, and 8) reporting of results.	al parame IEEE Sta air inpu ts and pr are made st enclos tion, 5)	ters of the vertical andard 383. Parameters it rate and fuel input evious experience, with respect to ure, 3) type, size and measurement of fuel
		46
17. KEY WORDS AND DOCUMENT ANALYSIS	17a. DESCRIPTORS	
		a)
•		. *
17b. IDENTIFIERS/OPEN-ENDED TERMS		
18. AVAILABILITY STATEMENT	19 8	ECURITY CLASS (This report) 21. NO. OF PAGES
Unlimited	UN	CL
OHTTHE COU	20. SE UN	ECURITY CLASS (This page) 22. PRICE S