OPTIMIZACIÓN

Primer Cuatrimestre 2017

Práctica N° 2: Métodos de descenso.

Algoritmos y convergencia

Ejercicio 1 Dada una constante $b \in \mathbb{R}$, considerar la función punto a conjunto dada por:

$$f(x) = \{ y \in \mathbb{R}^n : y^t x \le b \}, \quad \forall x \in \mathbb{R}^n.$$

if es cerrada?

Ejercicio 2 Sean $f: X \to Y$ y $g: Y \to Z$ dos funciones punto a conjunto. Probar que si f es cerrada en el punto x, g es cerrada en el conjunto f(x) e Y es compacto, entonces $g \circ f$ es cerrada en x.

Ejercicio 3 Sean $f: X \to Y$ punto a punto y $g: Y \to Z$ punto a conjunto. Probar que si f es continua en el punto x y g es cerrada en el punto f(x), entonces $g \circ f$ es cerrada en x.

Ejercicio 4 Mostrar que si A es una aplicación punto a punto continua, en el Teorema de Convergencia Global puede eliminarse la hipótesis de que los puntos x_k caigan sobre un compacto.

Ejercicio 5 (Orden de Convergencia) Sea $\{e_k\}$ una sucesión de números no negativos convergente a 0. Decimos que $\{e_k\}$ converge linealmente (o geométricamente) si existen q > 0 y $\beta \in (0,1)$ tales que

$$e_k \le q\beta^k, \qquad \forall k \ge 0.$$

Decimos que $\{e_k\}$ converge superlinealmente si para todo $\beta \in (0,1)$ existe q>0 tal que $e_k \leq q\beta^k$. Finalmente, dado p>1, decimos que $\{e_k\}$ converge al menos superlinealmente con orden p si existen q>0 y $\beta \in (0,1)$ tales que $e_k \leq q\beta^{p^k}$ para todo $k\geq 0$.

a. Verificar que si para algún $\beta \in (0,1)$ vale que

$$\limsup_{k \to \infty} \frac{e_{k+1}}{e_k} = \beta,$$

entonces $\{e_k\}$ converge linealmente.

b. Mostrar que si

$$\limsup_{k \to \infty} \frac{e_{k+1}}{e_k} = 0,$$

entonces $\{e_k\}$ converge superlinealmente.

- c. Verificar que si $\{e_k\}$ converge superlinealmente con orden p > 1, entonces, efectivamente, converge superlinealmente.
- d. Mostrar que si

$$\limsup_{k \to \infty} \frac{e_{k+1}}{e_k^p} = \beta,$$

entonces $\{e_k\}$ converge superlinealmente con orden p.

Métodos de descenso

Ejercicio 6 Sea $f: \mathbb{R}^n \to \mathbb{R}$. El algoritmo de descenso genérico consiste en, dado $x_k \in \mathbb{R}^n$, dar una dirección d_k y un paso $t_k > 0$ tal que $f(x_k + t_k d_k) < f(x_k)$, y tomar $x_{k+1} = x_k + t_k d_k$.

- a) Probar que si f es C^1 y $\nabla f(x_k) \cdot d_k < 0$, entonces d_k es una dirección de descenso.
- b) Concluir que $-\nabla f(x_k)$ es una dirección de descenso.

Ejercicio 7 Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función cuadrática, y sea d_k una dirección de descenso en el punto x_k . Probar que el paso óptimo está dado por:

$$t_k = -\frac{d_k^t \nabla f(x_k)}{d_k^t H f(x_k) d_k}.$$

Ejercicio 8 Una función $f: \mathbb{R} \to \mathbb{R}$ se dice unimodal en el intervalo [a, b] si existe $x^* \in (a, b)$ tal que f es estrictamente decreciente en (a, x^*) y estrictamente creciente en (x^*, b) . Probar que si f es unimodal y continua en [a, b] entonces tiene un único mínimo en [a, b]. Probar además que dados α, β tales que $a < \alpha < \beta < b$ vale que:

- Si $f(\alpha) \leq f(\beta)$, entonces f es unimodal en $[a, \beta]$,
- Si $f(\alpha) \geq f(\beta)$, entonces f es unimodal en $[\alpha, b]$.

Ejercicio 9 Implementar un algoritmo que reciba como entrada una función f, un intervalo [a,b], y una tolerancia δ y calcule el mínimo de f en [a,b] con error menor o igual que δ , mediante el algoritmo de búsqueda por la razón dorada.

Ejercicio 10 Dada $\delta > 0$, sea la función punto a conjunto \mathbf{S}^{δ} definida como

$$\mathbf{S}^{\delta}(x,d) = \Big\{ y : y = x + \alpha d, \quad 0 \le \alpha \le \delta; \quad f(y) = \min_{0 \le \beta \le \delta} f(x + \beta d) \Big\}.$$

Explicar lo que hace \mathbf{S}^{δ} y probar que si f es continua entonces $\mathbf{S}^{\delta}(x,d)$ es cerrada en (x,d). ¿Por qué es importante este resultado?

Ejercicio 11 Sea $\varepsilon > 0$, sea la función punto a conjunto \mathbf{S}^{ε} definida como

$$\mathbf{S}^{\varepsilon}(x,d) = \Big\{ y : y = x + \alpha d, \quad 0 \leq \alpha; \quad f(y) \leq \min_{0 \leq \beta} f(x + \beta d) + \varepsilon \Big\}.$$

Explicar lo que hace \mathbf{S}^{ε} y probar que si f es continua y $d \neq 0$ entonces $\mathbf{S}^{\varepsilon}(x, d)$ es cerrada en (x,d). ¿Por qué es importante este resultado?

Ejercicio 12 Implementar un algoritmo que reciba como datos una función f, un punto x_k y una dirección d_k y aplique la condición de Armijo para determinar el paso del descenso, devolviendo el correspondiente x_{k+1} .

Ejercicio 13 Implementar un programa similar al del ejercicio anterior, pero utilizando la condición de Goldstein.

Ejercicio 14 Probar que la condición de Goldstein determina un algoritmo de búsqueda cerrado.

Ejercicio 15 Sea $Q \in \mathbb{R}^{nxn}$ definida positiva y sean $v_1, ...v_n$ vectores l.i. Mostrar que el método de Gram-Schmidt puede ser usado para generar una secuencia de direcciónes Q-ortogonales desde los v_i . Específicamente, muestre que

$$d_1 = v_1;$$
 $d_{k+1} = v_{k+1} - \sum_{i=1}^k \frac{v_{k+1}^t Q d_i}{d_i^t Q d_i} d_i$

forma un conjunto Q-ortogonal.

Ejercicio 16 Sea $f(x) = \frac{1}{2}x^tQx - b^tx$ con Q DP. Sea x_1 un minimizante de f en un subespacio S_1 que contiene al vector d y sea x_2 un minimizante de f en un subespacio S_2 que contiene a d. Mostrar que si $f(x_1) < f(x_2)$ entonces $\overline{x} = x_1 - x_2$ es Q-ortogonal a d.

Ejercicio 17 Implementar el método del Gradiente Conjugado para minimizar una función cuadrática $f(x) = \frac{1}{2}x^tQx - b^tx$:

- (1) A partir de un x_0 tomar $d_0 = -g_0 = b Qx_0$
- (2) Para k = 0, 1, ...n 1 hacer:
 - (a) Hacer $x_{k+1} = x_k + \alpha_k d_k$ con

$$\alpha_k = \frac{-g_k^T d_k}{d_k^T H(x_k) d_k}, \qquad g_k = Q x_k - b.$$

(b) Hacer $d_{k+1} = -g_{k+1} + \beta_k d_k$ con

$$\beta_k = \frac{g_{k+1}^T Q d_k}{d_k^T Q d_k}.$$

Ejercicio 18 Si definimos $\mathcal{B}_k = \langle d_0, \cdots, d_{k-1} \rangle$ el subespacio generado por las primeras k direcciones conjugadas, mostrar que el método de las direcciones conjugadas, en cada x_k minimiza la función objetivo tanto en la recta $L: x_{k-1} + \alpha d_{k-1} : \alpha \in \mathbb{R}$, como en la variedad lineal $x_0 + \mathcal{B}_k$.

Ejercicio 19 Implementar el siguiente algoritmo que generaliza el del gradiente conjugado a funciones no cuadráticas:

- (1) A partir de un x_0 tomar $g_0 = \nabla f(x_0)^T$ y hacer $d_0 = -g_0$.
- (2) Para k = 0, 1, ...n 1 hacer:

(a) Hacer
$$x_{k+1} = x_k + \alpha_k d_k$$
 con $\alpha_k = \frac{-g_k^T d_k}{d_k^T H(x_k) d_k}$.

- (b) Hacer $g_{k+1} = \nabla f(x_{k+1})^T$.
- (c) Si $k \neq n-1$, hacer $d_{k+1} = -g_{k+1} + \beta_k d_k$ con

$$\beta_k = \frac{g_{k+1}^T H(x_k) d_k}{d_k^T H(x_k) d_k}.$$

y repetir (a).

(3) Hacer $x_0 = x_n$ y volver a (1).