Segmentación de imágenes a través de lógica difusa y funciones REF, de Dombi y penalti

Iñigo Aguas Ardaiz

Humberto Bustince Sola Fco. Javier Fernández Fernández

Trabajo Fin de Grado Grado en Ingeniería Informática E.T.S. de Ing. Industrial, Informática y de Telecomunicación Universidad Pública de Navarra

25 de junio de 2015

Outline

Introducción

Conceptos básicos

Experimentos con funciones de Dombi

Experimentos con funciones OWA

Conclusiones y líneas futuras

Introducción

Motivación

"¿Cómo podríamos siquiera *empezar* a explicar la substancia de tales problemas a una entidad que no sea ella misma consciente...?"

 ${\rm R.~Penrose} \\ {\it La~nueva~mente~del~emperador}$

Definición del problema

Figura: Distinguir el molino del pueblo del fondo no es difícil para un humano aunque sí para una máquina.

Definición del problema

Definición

Dada una imagen Q que se puede subdividir en n regiones R_1, \ldots, R_n , y conocida P que es una cierta propiedad booleana que cumplen todos los píxeles de la región $R_i, \forall i=1,\ldots,n$, se deberá cumplir siempre que:

- **2** En una región R_i , $\forall i = 1, ..., n$ todos sus píxeles están conectados;
- $R_i \cap R_j = \emptyset, \forall i, j : i \neq j;$
- 4 $P(R_i) = VERDADERO, \forall i = 1, ..., n;$
- **5** $P(R_i \cup R_i) = \text{FALSO }, \forall i = 1, ..., n.$

Ejemplos

Figura: Segmentación de una imagen de próstata.

Ejemplos

Figura: Utilización de técnicas de segmentación para extraer la información de una matrícula y poder ser procesada por un sistema de IA.

Objetivos

- Investigar y conocer técnicas actuales de segmentación de imagen.
- 2 Implementar diferentes algoritmos de segmentación evaluando su mejora y tratando de generalizarlos.
 - Analizar y evaluar las funciones de J. Dombi. Sustituir por funciones REF construcción de los conjuntos difusos para conocer sus efectos.
 - 2 Umbralizar a través de la agregación de resultados y obtención del mejor con funciones penalti.
 - 3 Implementar algoritmos que incluyan la agregación OWA de la función original (media aritmética).
- 3 Analizar todos los puntos anteriores a fin de concluir los resultados del trabajo así como dirimir si se ha podido conseguir cumplir el propósito inicial.

Fuentes

"Image thresholding using restricted equivalence functions and maximizing the measures of similarity"

H. Bustince, E. Barreneche y M. Pagola Fuzzy Sets and Systems 158 (2007) pág. 496-516 Conceptos básicos

Imágenes digitales

$$\begin{pmatrix} 87 & 192 & 178 \\ 255 & 65 & 227 \\ 57 & 129 & 0 \end{pmatrix} \quad \begin{pmatrix} 0.3412 & 0.7529 & 0.6980 \\ 1 & 0.2549 & 0.8902 \\ 0.2235 & 0.5059 & 0 \end{pmatrix}$$
 (c)
$$(a) \text{ Niveles de }$$
 (b) Normalizada (c)
$$Gráfica$$

Figura: Imagen digital en diferentes representaciones.

Definición (Definición)

Se define el histograma de una imagen Q con niveles de gris en el intervalo [0, 255] como la función $h(q) = n_q$ donde n_q es el número de píxeles en la imagen con la intensidad q.

Contraste

(a) Imagen original

(b) Imagen con poco contraste

(c) Imagen con muy poco contraste

Figura: Imagen del fotógrafo con diferentes contrastes

Ruido

(a) Imagen original

(b) Imagen con ruido 'sal y pimienta'

(c) Imagen con ruido gausiano

Figura: Imagen de Lena con diferentes tipo de ruido

Funciones de Equivalencia Restringida (REF)

Definición

Una función $REF: [0,1] \rightarrow [0,1]$ es llamada de equivalencia restringida cuando cumple que:

- **1** $REF(x, y) = REF(y, x), \forall x, y \in [0, 1];$
- 2 REF(x, y) = 1, si y sólo si, x = y;
- 3 REF(x, y) = 0, si y sólo si, x = 1 e y = 0 ó si x = 0 e y = 1;
- 4 $REF(x,y) = REF(c(x),c(y)), \forall x,y \in [0,1]$, siendo c una negación fuerte.
- 5 $\forall x, y, z \in [0, 1]$, si $x \le y \le z$, entonces $REF(x, y) \ge REF(x, z)$ y $REF(y, z) \le REF(x, z)$

Funciones de Equivalencia Restringida (REF)

Definición

Sean dos automorfismos φ_1 y φ_2 , se llamará función *REF* a la construcción que cumpla que:

$$REF(x, y) = \varphi_1^{-1}(1 - |\varphi_2(x) - \varphi_2(y)|) \quad \text{con} \quad c(x) = \varphi_2^{-1}(1 - \varphi_2(x)).$$

Además, si tenemos una REF y un automorfismo en [0,1], la aplicación de estos $(F = \varphi \circ REF)$ es otra REF.

Funciones de agregación

Definición

Se dice que $M:[0,1]^n \to [0,1]$ es una función de agregación de dimensión n siempre que satisfaga:

- **1** $M(x_1,...,x_n)=0$ si y sólo si $x_1=\cdots=x_n=0$;
- 2 $M(x_1,...,x_n) = 1$ si y sólo si $x_1 = \cdots = x_n = 1$;
- 3 *M* es una función estrictamente creciente.

Definición

Una función de agregación M será llamada media si

$$min(x_1,\ldots,x_n) \leq M(x_1,\ldots,x_n) \leq max(x_1,\ldots,x_n).$$

Funciones OWA

Definición

Una función $F:[0,1]^n \to [0,1]$ será una función OWA de dimensión n si existe un vector $w=(w_1,w_2,\ldots,w_n)\in [0,1]^n$ tal que $\sum_i w_i=1$ de forma que

$$F(x_1,\ldots,x_n)=\sum_{j=1}^n w_j x_{\sigma(j)}$$

donde $x_{\sigma(j)}$ es el j-ésimo mayor elemento del vector (x_1, \ldots, x_n) .

Funciones de agregación

$$w_i=Q\left(rac{i}{t+1}
ight)-Q\left(rac{i+1}{t+1}
ight), orall i\in\{1,\ldots,n\}, ext{ sabiendo que}$$

$$Q(r)=egin{cases} 0 & ext{si} & r<0,5 \ \\ rac{r-0,5}{0,5} & ext{si} & 0,5\leq r\leq 1 \ \\ 1 & ext{si} & r>1 \end{cases}$$

Funciones de similitud

Definición

Dada una función M de agregación (definición 5) y una función REF (definición 3) llamaremos a SM función de similitud si $SM: \mathcal{F}(X) \times \mathcal{F}(X) \to [0,1]$ está definida tal que

$$SM(A, B) = M_{i=1}^n REF(\mu_A(x_i), \mu_B(x_i))$$

y satisface las siguientes condiciones:

- 2 $SM(A, A_c) = 0$, si y sólo si A no es difuso;
- 3 SM(A, B) = 1 si y sólo si A = B;
- 4 Si $A \le B \le C$, entonces $SM(A, B) \ge SM(A, C)$ y $SM(C, B) \ge SM(C, A)$;

Funciones penalty

Definición

La función $P:[a,b]^{n+1}\to\mathbb{R}^+=[0,\infty]$ es una función penalti si y sólo si satiface que:

- $P(x,y) \ge 0, \forall x,y$
- 2 P(x, y) = 0 si $x_i = y \forall i = 1, ..., n$
- 3 P(x, y) es cuasiconvexa en y para cualquier x, esto es, $P(x, \lambda \cdot y_1 + (1 \lambda) \cdot y_2) \le max(P(x, y_1), P(x, y_2))$.

Funciones penalty

La función en la que se basan las penalti es

$$f(x) = \arg\min_{y} P(x, y)$$

si y es el único mínimo e $y = \frac{a+b}{2}$ si el conjunto de minimizadores es el intervalo (a, b).

Teorema

Todas las funciones de agregación llamadas medias pueden ser escritas como una función basada en una función penalti expresada en la definición anterior.

Funciones de Dombi

Definición

Dados $x=(x_1,x_2,\ldots,x_n)$ y $w=(w_1,w_2,\ldots,w_n)$, denotaremos D como una función de equivalencia de Dombi cuando tengamos que

$$D(w,x) = \frac{1}{2} \left(1 + \prod (1 - 2x_i)^{w_i} \right)$$

La función de equivalencia de Dombi, *D*, cumple las siguientes propiedades:

- **1** $D: [0,1] \times [0,1] \to [0,1]$ es continua;
- $D((w_1, w_2), (0, 0)) = 1; D((w_1, w_2), (1, 1)) = 1;$
- 3 $D((w_1, w_2), (0, 1)) = 0$; $D((w_1, w_2), (1, 0)) = 0$;
- 4 $D((w_1, w_2), (x, c(x))) = 0.$

Algoritmo 1 Maximización de la similitud

Entrada: Una imagen Q en escala de grises donde sus píxeles estén entre 0 y L-1.

Salida: El umbral t a partir del cual se divide Q en objeto y fondo.

- 1: para t := 0 hasta L 1 hacer
- 2: Divisón de la imagen en dos clases $C_b(t)$ y $C_o(t)$. Para cada una de estas clases, calcular su media: $m_b(t)$ y $m_o(t)$.
- 3: Construcción del conjunto difuso Q_t .
- 4: Calcular la $SM(\tilde{1}, Q_t)$.
- 5: fin para
- 6: **devolver** $\{t \mid \max(SM)\}$

Definición

Teniendo en cuenta la definición de la media de una imagen que se ha dado, y disponiendo del histograma de la imagen h(q) para un cierto nivel $q, \forall q \in Q$, se define la media de los píxeles del fondo como:

$$m_b(t) = rac{\sum_{q=0}^t qh(q)}{\sum_{q=0}^t h(q)};$$

y para los píxeles del objeto como:

$$m_o(t) = rac{\sum_{q=t+1}^{L-1} qh(q)}{\sum_{q=t+1}^{L-1} h(q)}.$$

Definición

Dada Q, una imagen en la escala de L niveles de gris, y t, un nivel de gris de forma que $0 \le t \le L-1$. Teniendo en cuenta que F es una función REF ya que la $REF \circ \varphi$ lo es, se define el conjunto

$$Q_t = \{(q, \mu_{Q_t}(q)|q \in \{0, 1, \dots, L-1\}\}\$$

teniendo en cuenta que

$$\mu_{Q_t}(q) = \begin{cases} \varphi\left(\textit{REF}\left(\frac{q}{L-1}, \frac{m_b(t)}{L-1}\right)\right) & \text{si } q \leq t, \\ \varphi\left(\textit{REF}\left(\frac{q}{L-1}, \frac{m_o(t)}{L-1}\right)\right) & \text{si } q > t. \end{cases}$$

$$\mu_{Q_t}(q) = \begin{cases} \frac{1}{2} \left(1 + \left(1 - 2\frac{q}{L-1}\right)^w \cdot \left(1 - 2\frac{m_b(t)}{L-1}\right)^w \right) & \text{si } q \leq t, \\ \frac{1}{2} \left(1 + \left(1 - 2\frac{q}{L-1}\right)^w \cdot \left(1 - 2\frac{m_o(t)}{L-1}\right)^w \right) & \text{si } q > t. \end{cases}$$

Algoritmo 2 Umbralización del área

Entrada: Una imagen Q en escala de grises donde sus píxeles estén entre 0 y L-1.

Salida: El umbral t a partir del cual se divide Q en objeto y fondo.

1: para t := 0 hasta L - 1 hacer

2:

$$A(Q_t) = \sum_{q=0}^{t} h(q)\varphi_1^{-1} \left(1 - \left| \varphi_2 \left(\frac{q}{L-1} \right) - \varphi_2 \left(\frac{m_b(t)}{L-1} \right) \right| \right) + \sum_{q=t+1}^{L-1} h(q)\varphi_1^{-1} \left(1 - \left| \varphi_2 \left(\frac{q}{L-1} \right) - \varphi_2 \left(\frac{m_o(t)}{L-1} \right) \right| \right)$$

- 3: fin para
- 4: **devolver** $\{t \mid \max(A(Q_t))\}$

Algoritmo 3. Selección del umbral óptimo.

Algoritmo 3 Selección del umbral óptimo

Entrada: Una imagen Q en escala de grises donde sus píxeles estén entre 0 y L-1.

Salida: El umbral óptimo t^* a partir del cual se divide Q en objeto y fondo.

- 1: para t := 0 hasta L 1 hacer
- 2: Calcular los conjuntos Q_t como se describe en la definición 12.
- 3: Calcular los conjuntos *H* como se muestra en la definición 13.
- 4: Calcular la $SM(Q_t, H(Q_t))$.
- 5: fin para
- 6: **devolver** $\{t* \mid \max(SM)\}$

Algoritmo 3. Selección del umbral óptimo.

Definición

Dada Q, una imagen en la escala de L niveles de gris, y t, un nivel de gris de forma que $0 \le t \le L-1$, se calcula su conjunto $H(Q_t)$ como

$$H(Q_t) = \{(q, \mu_{H(Q_t)}(q)|q \in \{0, 1, \dots, L-1\}\}$$

teniendo en cuenta que

$$\mu_{Q_t}(q) = egin{cases} rac{m_b(t)}{L-1} & ext{si } q \leq t, \ rac{m_o(t)}{L-1} & ext{si } q > t. \end{cases}$$

Otros métodos de segmentación

- Umbralización global.
- Método de Otsu.
- Maximización de la entropía de Renyi.
- Clasificación K-means.

Experimentos con funciones de Dombi

Experimentos con funciones de Dombi

Explicación del experimento

Sustitución de las funciones REF en la construcción de los conjuntos difusos con funciones de Dombi.

- Experimentos con casi 30 imágenes.
- Diferentes histogramas, ruidos y contrastes.

Error cuadrático medio

$$ECM(Q, Q') = \frac{\sum_{x=1}^{N} \sum_{y=1}^{M} (q(x, y) - q'(x, y))^{2}}{N \cdot M}$$

Experimentación

Cuadro: Imágenes originales.

Resultados al sustituir la función REF en el Algoritmo 1

w	Silla	Bloques	Engranaje	Letras	Sombra
0,1	218	255	250	142	200
0, 5	226	255	250	39	230
0,75	95	119	115	103	111
1	127	123	137	160	125
1, 25	70	97	96	80	91
1,5	45	79	0	39	64
2	144	76	138	197	96
5	218	31	59	216	219

Cuadro: Umbrales de cada imagen con la función de Dombi y diferentes w.

Resultados al sustituir la función REF en el Algoritmo 1

Cuadro: Resultado de las segmentaciones para el algoritmo con REF y Dombi con varios $w = \{0, 75; 1; 1, 25\}.$

upna

Resultados al sustituir la función REF en el Algoritmo 1

	R. gausiano	R. impulsivo 0.05	R. impulsivo 0.2
0, 1	219	226	226
0, 5	234	226	242
0,75	99	95	95
1	128	127	127
1, 25	74	70	62
1,5	35	45	37
2	147	136	127
5	226	218	226

Cuadro: Umbrales para las imágenes con ruido con la función de Dombi y diferentes valores de w.

Resultados al sustituir la función REF en el Algoritmo 1

Cuadro: Umbrales para las imágenes con ruido con otras versiones de algoritmos.

Algoritmo 1 con funciones penalti

upna

Algoritmo 1 con funciones penalti

Cuadro: Resultado para el nuevo algoritmo a través de penalti con todas las funciones propuestas.

Algoritmo 3 con funciones de Dombi

	Silla	Bloques	Engranaje	Letras	Sombra
Alg. 3A	115	80	88	199	121
Alg. 3B	127	123	84	200	125
Alg. 3C	218	254	250	142	219

Cuadro: Umbrales para cada imagen con el algoritmo 3 en todas sus nuevas versiones.

Reestructuración de los algoritmos

Propiedades de funciones de equivalencia

Sea e una función de equivalencia,

1
$$e: [0,1] \times [0,1] \rightarrow [0,1]$$
 es continua;

2
$$e(0,0) = 1$$
, $e(1,1) = 1$;

3
$$e(0,1) = 0$$
, $e(1,0) = 0$;

4
$$e(x,x)=1$$
;

5
$$e(x, c(x)) = 0$$
.

Reestructuración de los algoritmos

Solución

$$\mu_{Q_t}(q) = \begin{cases} \min\left(1, \frac{\frac{1}{2}\left(1 + \left(1 - \frac{2q}{l-1}\right)\left(1 - \frac{2m_b}{l-1}\right)\right)}{\frac{1}{2}\left(1 + \left(1 - \frac{2m_b}{l-1}\right)\left(1 - \frac{2m_b}{l-1}\right)\right)}\right) & \text{si} \quad q \leq t \\ \min\left(1, \frac{\frac{1}{2}\left(1 + \left(1 - \frac{2q}{l-1}\right)\left(1 - \frac{2m_o}{l-1}\right)\right)}{\frac{1}{2}\left(1 + \left(1 - \frac{2m_o}{l-1}\right)\left(1 - \frac{2m_o}{l-1}\right)\right)}\right) & \text{si} \quad q > t \end{cases}$$

Experimentos con funciones OWA

Experimentos con funciones OWA

Explicación del experimento

Sustitución de las medias por funciones OWA para la construcción de los conjuntos difusos.

- Insertar datos normalizados.
- Utilización del OWA 'de la mayoría'.

Construcción del vector de pesos, w

Si tenemos un conjunto $C=\{c_1,\ldots,c_6\}$, entonces el vector de pesos tendrá la forma $(0,0,0,\frac{1}{3},\frac{1}{3},\frac{1}{3})$.

Algoritmo 1. Maximización de la similitud

Definición

Teniendo en cuenta la definición de la media de una imagen que se ha dado, y disponiendo del histograma de la imagen h(q) para un cierto nivel $q, \forall q \in Q$, se define la media de los píxeles del fondo como:

$$m_b(t) = rac{\sum_{q=0}^t qh(q)}{\sum_{q=0}^t h(q)};$$

y para los píxeles del objeto como:

$$m_o(t) = rac{\sum_{q=t+1}^{L-1} qh(q)}{\sum_{q=t+1}^{L-1} h(q)}.$$

Algoritmo 1 con funciones OWA

Silla	Media	OWA (1)	OWA (2)
Alg. 1 con $REF_1 = 1 - x - y $	127	50	50
Alg. 1 con $REF_1 = 1 - x - y ^2$	127	50	246
Alg. 1 con $REF_1 = 1 - x - y ^{0.5}$	119	50	50
Alg. 1 con REF ₁ = $(1 - x - y)^2$	127	50	50
Alg. 1 con $REF_1 = (1 - x - y)^{0.5}$	127	50	50

Letras	Media	OWA (1)	OWA (2)
$Alg. \ 1 \ con \ REF_1 = 1 - x - y $	187	255	239
Alg. 1 con $REF_1 = 1 - x - y ^2$	174	255	239
Alg. 1 con $REF_1 = 1 - x - y ^{0.5}$	200	255	239
Alg. 1 con $REF_1 = (1 - x - y)^2$	190	255	236
Alg. 1 con $REF_1 = (1 - x - y)^{0.5}$	186	255	255

Cuadro: Umbrales para todas las versiones del algoritmo 1 con la aplicación de OWA.

Algoritmo 2 con funciones OWA

Silla	Media	OWA (1)	OWA (2)
Alg. 2 con $\varphi_1 = \varphi_2 = x$	119	50	50
Alg. 2 con $\varphi_1 = x^2$ y $\varphi_2 = x$	119	58	50
Alg. 2 con $\varphi_1 = x^{0,5}$ y $\varphi_2 = x$	103	114	172
Alg. 2 con $\varphi_1 = 1 - \sqrt{1-x}$ y $\varphi_2 = x$	127	50	50

Letras	Media	OWA (1)	OWA (2)
Alg. 2 con $\varphi_1=\varphi_2=x$	121	46	85
Alg. 2 con $\varphi_1 = x^2$ y $\varphi_2 = x$	121	54	86
Alg. 2 con $\varphi_1 = x^{0,5}$ y $\varphi_2 = x$	101	136	136
Alg. 2 con $\varphi_1 = 1 - \sqrt{1-x}$ y $\varphi_2 = x$	123	255	231

Cuadro: Umbrales para todas las versiones del algoritmo 2 con la aplicación de OWA.

upna

Algoritmo 1 con funciones penalti y OWA

Cuadro: Resultados gráficos para la versión agregada del algoritmo 1 con la aplicación de OWA.

Algoritmo 3 con funciones OWA

Cuadro: Resultados gráficos para la versión agregada del algoritmo 1 con la aplicación de OWA.

Algoritmo 3 con funciones OWA

Cuadro: Resultados gráficos para la versión agregada del algoritmo 1 con la aplicación de OWA.

• El ruido se mantiene. Utilización de filtros.

- El ruido se mantiene. Utilización de filtros.
- Mismo w produce el mismo resultado para imágenes con y sin ruido y con diferencias de contrastes.

- El ruido se mantiene. Utilización de filtros.
- Mismo w produce el mismo resultado para imágenes con y sin ruido y con diferencias de contrastes.
- La función penlati consume el doble de tiempo.

- El ruido se mantiene. Utilización de filtros.
- Mismo w produce el mismo resultado para imágenes con y sin ruido y con diferencias de contrastes.
- La función penlati consume el doble de tiempo.
- Las funciones de Dombi no son adecuadas directamente para fuzzificar conjuntos. Pregunta abierta: ¿Existe un parámetro que entrenado podría dar buenas soluciones?

- El ruido se mantiene. Utilización de filtros.
- Mismo w produce el mismo resultado para imágenes con y sin ruido y con diferencias de contrastes.
- La función penlati consume el doble de tiempo.
- Las funciones de Dombi no son adecuadas directamente para fuzzificar conjuntos. Pregunta abierta: ¿Existe un parámetro que entrenado podría dar buenas soluciones?
- Las OWA para los conjuntos difusos que representan imágenes no son buenos.

- El ruido se mantiene. Utilización de filtros.
- Mismo w produce el mismo resultado para imágenes con y sin ruido y con diferencias de contrastes.
- La función penlati consume el doble de tiempo.
- Las funciones de Dombi no son adecuadas directamente para fuzzificar conjuntos. Pregunta abierta: ¿Existe un parámetro que entrenado podría dar buenas soluciones?
- Las OWA para los conjuntos difusos que representan imágenes no son buenos.
- La OWA sin frecuencia obtiene buenos resultados para la creación del conjunto H que se utiliza en el algoritmo 3 para el cálculo de la similitud.

- El ruido se mantiene. Utilización de filtros.
- Mismo w produce el mismo resultado para imágenes con y sin ruido y con diferencias de contrastes.
- La función penlati consume el doble de tiempo.
- Las funciones de Dombi no son adecuadas directamente para fuzzificar conjuntos. Pregunta abierta: ¿Existe un parámetro que entrenado podría dar buenas soluciones?
- Las OWA para los conjuntos difusos que representan imágenes no son buenos.
- La OWA sin frecuencia obtiene buenos resultados para la creación del conjunto H que se utiliza en el algoritmo 3 para el cálculo de la similitud.
- Pregunta abierta: ¿Problemas en la creación de los OWA cuando se tiene que h(q) = h(q')?

- El ruido se mantiene. Utilización de filtros.
- Mismo w produce el mismo resultado para imágenes con y sin ruido y con diferencias de contrastes.
- La función penlati consume el doble de tiempo.
- Las funciones de Dombi no son adecuadas directamente para fuzzificar conjuntos. Pregunta abierta: ¿Existe un parámetro que entrenado podría dar buenas soluciones?
- Las OWA para los conjuntos difusos que representan imágenes no son buenos.
- La OWA sin frecuencia obtiene buenos resultados para la creación del conjunto H que se utiliza en el algoritmo 3 para el cálculo de la similitud.
- Pregunta abierta: ¿Problemas en la creación de los OWA cuando se tiene que h(q) = h(q')?

Segmentación de imágenes a través de lógica difusa y funciones REF, de Dombi y penalti

Iñigo Aguas Ardaiz

Humberto Bustince Sola Fco. Javier Fernández Fernández

Trabajo Fin de Grado Grado en Ingeniería Informática E.T.S. de Ing. Industrial, Informática y de Telecomunicación Universidad Pública de Navarra

25 de junio de 2015