Introduction

Thomas de Graaff & Daniel Arribas-Bel

September 5, 2014

Introduction

Why this workshop?

- ▶ In the *social sciences* few attention to what tools to use (and why they make sense)
- ► Increasing need/interest for/in openness & transparancy
 - from journals, universities and governments
 - increase in cooperation (over wider distances)
 - access to your own files
 - make yourself more visible
- Better workflows actually increases reproducability and thus
 - productivity
 - contributions to the field at large
 - visibility of errors

What we want (and don't want) with this workshop

- ▶ We are mostly interested in the principles behind a good open (scientific) workflow, aware of the facts that
 - there is no final, optimal, set of workflow tools
 - investment is very very costly
- ► However, being a practical workshop we do
 - work with a specific set of tools (R, markdown, pandoc, git)
 - which is probably most straightforward to use
 - enables us in this workshop to make a paper reproducable and open

Workflow

Open?

- ► Workflow: Progression of steps (tasks, events, interactions) that comprise a work process, involve two or more persons, and create or add value to the organization's activities (BusinessDictionary)
- ► Open workflow: One that enhances *transparency*, *collaboration* and *reproducibility*

Empirical cycle

- Read other papers
- Think of a brilliant idea
- Do:
 - 1. Collect data
 - 2. Transform data
 - 3. Analyze data
 - 4. Write up results
 - 5. Present results
 - 6. Go back to 1. until satisfied
- Send paper to journal and go back once again to i. until referees satisfied
- ▶ And... documenting throughout the entire process!!!

Theoretical cycle

- Read other papers
- Think of a brilliant idea
- Do:
 - 1. State assumptions
 - 2. Model (simulate)
 - 3. Analyze model outcome
 - 4. Write up results
 - Present results
 - 6. Go back to i. until satisfied
- Send paper to journal and go back once again to i. until referees satisfied
- ▶ And... documenting throughout the entire process!!!

Why bother about a workflow or tools?

- Good scientific practice: document how you have achieved your results
- Reproducibility
- Transparency
- Modularity
- Portability (across systems and users)
- Efficiency
- Self-sanity

Why should it be open?

- ► Open Science
- Reproducibility
- Transparency
- Modularity
- Portability (across systems and users)
- Efficiency

When should I adopt an open workflow?

- The sooner the better
- But think twice about which one (switching is costly)
- Start one step at a time

A journey of a thousand miles begins with a single step

Lao-tzu

Tools for ...

open workflows

Text editting

- ▶ Plain text is **simple**, light, cross-platform, flexible. . .
- Many academic tools are based on plain text (typesetting systems, scripting languages, bibliography managers)
- ► **Good investment** to learn a rich text editor ("learn once, use for everything"):
 - Efficient typing (command vs. insert modes)
 - Syntax highlighting and indenting
 - Shortcuts, macros and templates
 - Consistent look, feel and behaviour
- Examples: Vim, Emacs, other (TextMate, Sublime text, etc.,...)

Text editing

Vim demo...

- ► Command vs Insert mode
- Syntax highlighting
- LaTeX shortcuts
- Python indenting

Beautiful (and efficient) typesetting

- ▶ Documentation of progress, presentation of results (paper or slides) and final products depend on this
- ▶ plain text + markup languages = very powerful
 - ▶ Detach content inputting from layout and styling
 - One source, multiple outputs (paper, slides, website...)
- Examples: LaTeX, Markdown, Org

Beautiful (and efficient) typesetting

LaTeX and Beamer...

- General template
- Sectioning
- Equations (inline, outside)
- ► Table

Markdown...

Managing lists of papers

- ▶ One reference list to rule them all
- Create the reference and never worry about proper inserting
 - Bibtex
 - Reference manager
 - Online services (e.g. Mendeley)
- ▶ Bibtex demo...

Analyzing data

- ▶ Platforms for statistical analysis & scripting languages
- Examples: Python, R, STATA
- ▶ The power of code vs. point-and-click
 - ► Flexibility (Python)
 - Typically wider range of methods (STATA)
 - ► Extensible and updated more rapidly (R)
 - Reproducible and transparent (remember exactly what you did)

Analyzing data

IPython notebook demo...

- ► Load up data
- Create descriptives
- Scatter plot
- Run a model and simple print
- Print LaTeX output

Saving the workflow

Backup: "You don't need it until you really need it"

- Security copy of all your (valuable) documents
- External drive vs. Cloud solution
- Software to make the process painless or automated
- ▶ Many options: TimeMachine, Dropbox, Amazon Glacier...

Saving the workflow

Versioning control: "How did I get to that table of results?"

- Save snapshots of a project in an intelligent way
- Allows to trace the *history* of a project/document (very neat example)
- Very well developed for code development
- Examples: DropBox, git, svn...

Putting it all together