ANÁLISIS MATEMÁTICO II (LC) - CÁLCULO II (LMA) Examen Final 10 de diciembre de 2020

Ejercicio 1 (20 pts.)

- (a) Calcule la siguiente integral indefinida $\int \frac{x-2}{x(x+1)^2} dx$.
- (b) Determine si la siguiente integral impropia es convergente o divergente $\int_0^4 \frac{1}{|x-3|^{3/2}} dx$.

Ejercicio 2 (20 pts.)

(a) Determine si la siguiente serie es absolutamente convergente, condicionalmente convergente o divergente

$$\sum_{n=3}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n-2}}.$$

(b) Determine el mayor intervalo donde está definida la función $f(x) = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{(x+1)^n}{3^n}$.

Ejercicio 3 (20 pts.)

- (a) Sea $f(t) = 3\sin(t)$. Determine el orden n del polinomio de Taylor de f, centrado en a = 0, que se necesita para aproximar $3\sin(0.1)$ con un error menor que 10^{-3} .
- (b) Considere la curva $\gamma(t) = (3\sin(t), t, 3\cos(t))$. Dibuje aproximadamente la imagen de γ para $t \geq 0$ y calcule el vector tangente a la curva en $t_0 = \pi/2$.

Ejercicio 4 (20 pts.)
Sea
$$f(x,y) = x^3 - 3x - y^2 + 4y$$
.

- (a) Encuentre todos los puntos críticos de la función f y determine cuáles son máximos locales, mínimos locales o puntos de silla.
- (b) Considere la función $g(t) = f(1 + t^2u_1, 1 + tu_2)$, donde $\mathbf{u} = (u_1, u_2)$ es un vector unitario. Use la regla de la cadena y encuentre la dirección \mathbf{u} para la cual la derivada g'(0) es máxima.

Ejercicio 5 (20 pts.)

- (a) Encuentre la ecuación del plano tangente al gráfico de la función $f(x,y) = 2x^2 xy + y^4 + 4$ en el punto $p_0 = (1,0,6)$.
- (b) Encuentre el volumen del sólido que está debajo del plano hallado en el inciso (a) y arriba del rectángulo $R = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\}.$

La resolución de cada ejercicio debe ser subida por separada. En total debe subir 6 archivos en formato pdf (1 por cada ejercicio y 1 correspondiente a la Declaración Jurada).

Ejercicio 6 solo para alumna/os libres. (20 pts.)

Elija la o las opciones correctas. Si la serie $\sum_{n=0}^{\infty} c_n (x-1)^n$ es convergente en x=4 entonces:

- es convergente en x = -4
- es convergente para $x \in [0, 4]$
- $\bullet\,$ es convergente para $x\in(-4,4)$
- $\bullet\,$ es convergente para $x\in[-4,4]$
- $\bullet\,$ es convergente para $x\in[-1,1]$

Este cuestionario debe ser resuelto en el Aula Virtual (no es necesario subir archivos de la resolución).