

Project Initialization and Planning Phase

Date	15 JULY 2024
Team ID	740075
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) template

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overview	
Objective	 Individuals with ASD: Children and adults with Autistic Spectrum Disorder. Clinical features: Behavioral observations, medical history, and symptom profiles. Neuroimaging data: MRI, fMRI, EEG, and other neuroimaging modalities to study brain structure and function. Genetic data: Genetic mutations, variants, and expression profiles. Behavioral data: Observations of social interactions, communication patterns, and repetitive behaviors.
Scope	 Diagnosis: Accurate detection and classification of ASD. Phenotyping: Characterization of ASD subtypes and severity levels. Biomarker discovery: Identification of reliable biomarkers for ASD diagnosis and monitoring. Personalized interventions: Development of tailored treatment plans based on individual characteristics. Prognostic modeling: Prediction of treatment outcomes and long-term prognosis.
Problem Statement	
Description	 Accurate detection and classification of ASD using machine learning algorithms and neural networks. Development of personalized diagnostic models incorporating clinical, behavioral, and neuroimaging features.

	- Identification of novel biomarkers and risk factors for ASD.
Impact	Improved diagnostic accuracy and earlier intervention for individuals with ASD. - Enhanced personalized treatment plans and better treatment outcomes. - Increased understanding of ASD's neural mechanisms and underlying causes.
Proposed Solution	
Approach	Machine Learning: Using algorithms to analyze behavioral, clinical, and neuroimaging data to detect patterns and predict diagnoses. Deep Learning: Utilizing neural networks to learn complex representations of ASD features from large datasets. Natural Language Processing: Analyzing speech and language patterns to identify potential indicators of ASD.
Key Features	Age,results,symtomps

Resource Requirements

Resource Type Description		Specification/Allocation	
Hardware Requirements:			
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU	
Memory	RAM specifications	16 GB	
Storage	Disk space for data, models, and logs	512 SSD	
Software Requirements:			
Frameworks	Python frameworks	Flask	
Libraries	Additional libraries	Scikit-learn, pandas, NumPy, Seaborn, matplotlib	
Development Environment	IDE, version control	Google colab, VS code	

Data		
Data	Source, size, format	Kaggle, dataset, csv

Initial Project Planning Template

Date	15 JULY 2024	
Team ID	740075	
Project Name	Detection Of Autistic Spectrum Disorder:	
	Classification	
Maximum Marks	4 Marks	

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create a product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members	Sprint Start Date	Sprint End Date (Planned)
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, and password, and confirming my password.	2	High	Jayanth	2024/03/15	2024/03/22
Sprint-1		USN-2	As a user, I will receive a confirmation email once I have registered for the application	1	High	Jayanth	2024/03/22	2024/03/29
Sprint-2		USN-3	As a user, I can register for the application through Facebook	2	Low	Nagaraju	2024/03/22	2024/03/29
Sprint-1		USN-4	As a user, I can register for the application through Gmail	2	Medium	Nagarani	2024/03/29	2024/04/05
Sprint-1	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	Sathwika	2024/03/29	2024/04/05

Project Initialization and Planning Phase

Date	15 JULY 2024
Team ID	740075
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) template

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overview	
Objective	 Individuals with ASD: Children and adults with Autistic Spectrum Disorder. Clinical features: Behavioral observations, medical history, and symptom profiles. Neuroimaging data: MRI, fMRI, EEG, and other neuroimaging modalities to study brain structure and function. Genetic data: Genetic mutations, variants, and expression profiles. Behavioral data: Observations of social interactions, communication patterns, and repetitive behaviors.
Scope	 Diagnosis: Accurate detection and classification of ASD. Phenotyping: Characterization of ASD subtypes and severity levels. Biomarker discovery: Identification of reliable biomarkers for ASD diagnosis and monitoring. Personalized interventions: Development of tailored treatment plans based on individual characteristics. Prognostic modeling: Prediction of treatment outcomes and long-term prognosis.
Problem Statement	
Description	 Accurate detection and classification of ASD using machine learning algorithms and neural networks. Development of personalized diagnostic models incorporating clinical, behavioral, and neuroimaging features.

	- Identification of novel biomarkers and risk factors for ASD.
Impact	Improved diagnostic accuracy and earlier intervention for individuals with ASD. - Enhanced personalized treatment plans and better treatment outcomes. - Increased understanding of ASD's neural mechanisms and underlying causes.
Proposed Solution	
Approach	Machine Learning: Using algorithms to analyze behavioral, clinical, and neuroimaging data to detect patterns and predict diagnoses. Deep Learning: Utilizing neural networks to learn complex representations of ASD features from large datasets. Natural Language Processing: Analyzing speech and language patterns to identify potential indicators of ASD.
Key Features	Age,results,symtomps

Resource Requirements

Resource Type Description		Specification/Allocation	
Hardware Requirements:			
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU	
Memory	RAM specifications	16 GB	
Storage	Disk space for data, models, and logs	512 SSD	
Software Requirements:			
Frameworks	Python frameworks	Flask	
Libraries	Additional libraries	Scikit-learn, pandas, NumPy, Seaborn, matplotlib	
Development Environment	IDE, version control	Google colab, VS code	

Data		
Data	Source, size, format	Kaggle, dataset, csv

Data Collection and Preprocessing Phase

Date	15 JULY 2024
Team ID	740075
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	2 Marks

Data Quality Report Template

The Data Quality Report Template will summarize data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

Data Source	Data Quality Issue	Severity	Resolution Plan
Dataset	There is no correct features in the dataset.	Medium	We check the dataset features correctly and we changed the features to get correct output.

Model Optimization and Tuning Phase Template

Date	15 JULY 2024
Team ID	740075
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Performance Metrics Comparison Report (2 Marks):

```
accuracy_df = pd.DataFrame({
    'Model': ['LogisticRegression', 'SVM', 'DecisionTree', 'Randomforest', 'KNN'],
    'Accuracy': [accuracy_LR*100, accuracy_SVC*100, accuracy_dt*100, accuracy_RF*100, accuracy_KNN*100]})
    orint(accuracy_df)

Model Accuracy

LogisticRegression 8.490566
    SVM 9.433962

DecisionTree 97.169811
Randomforest 37.264151
    KNN 55.188679
```

```
models = ['LogisticRegression', 'SVM', 'DecisionTree', 'Randomforest', 'KNN']
accuracies = [accuracy_LR*100, accuracy_SVC*100, accuracy_dt*100, accuracy_RF*100, accuracy_KNN*100]
plt.bar(models, accuracies, color='blue')
# Add title and axis Labels
plt.title('Comparison of Model Accuracies')
plt.xlabel('Models')
plt.ylabel('Accuracy')
```


Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The model Decision tree usually provides high accuracy due to
	combining the predictions of multiple decision trees. Its ability to
	handle complex relationships, minimize overfitting. It can handle both
Decision tree	classification and regression justifying its selection as the final model.

Model Development Phase Template

Date	15 JULY 2024
Team ID	740075
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	6 Marks

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model Selection Report:

Model	Description	Performance Metric (e.g., Accuracy, F1 Score)
1. K Nearest Neighbor s Model	A variable is created with name knn which has KNeighborsClassif ier() algorithm initialised in it. The knn model is trained using the .fit() function. The model is trained on the X_train and y_train data that is the training features and target variables.	Accuracy_KNN: 55.188679245283026

2. SVM Model	A variable is created with name svm which has SVC() algorithm initialised in it. The svm model is trained using the .fit() function. The model is trained on the X_train and y_train data that is the training features and training target variables.	Accuracy_SVM: 9.433962264150944
3. Decision Tree Model	A variable is created with name dt classifier which has Decision Tree Classifier() algorithm initialised in it with a parameter max_depth set to 7. The dtclassifier model is trained using the .fit() function. The model is trained on the X_train and y_train data that is the training features and training target variables.	Accuracy_DT: 97.16981132075472

Random Forest Classifier is a Bagging model which utilises multiple decision trees and takes their aggregate to give a prediction. A variable is created with name rfclassifier which 4. has Random Random ForestClassifier() Accuracy RF: 97.16981132075472 algorithm Forest initialised in it.The Model rfclassifier model is trained using the .fit() function.The model is trained on the X_train and y_train data that is the training features and training target variables.

Data Collection and Preprocessing Phase

Date	15 JULY 2024
Team ID	740075
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description
Data Overview	#Structure of the data: Structure of the data:

	<pre>sns.heatmap(data.corr(), annot=True)</pre>					
	A1_Score -1 000076.10.10.10.20.10.10.10.20.2 A2_Score -101 1.0.20.16.10.10.000035.20.06902 A3_Score -10.10.10.20.20.20.00003.30.10.02 A4_Score -1.10.10.21 10.31 10.30.00.00063.30.20.03 A5_Score -1.10.10.20.31 10.39.240.10.40.20.02 A6_Score -0.10.10.20.30.39 1 1.80.10.40.20.03 A7_Score -1.20.00.076110.20.11 10.00.01 A7_Score -1.10.00001.00081 10.10.00.10.10.00 A9_Score -1.10.20.30.30.30.40.40.10.01 1 10.20.05 A10_Score -1.10.20.30.30.30.40.40.10.10.10.00 A9_Score -1.10.20.30.30.30.40.40.10.10.10.00 A9_Score -1.10.20.30.30.30.40.40.10.10.10.00 A9_Score -1.10.20.60.10.20.20.20.20.25.10.28 1 000 A9_Score -1.10.20.60.10.20.20.20.20.25.10.28 1 000 A9_Score -1.10.20.60.10.20.20.20.20.20.25.10.28 1 000 A9_Score -1.10.20.60.10.20.20.20.20.20.25.10.28 1 000 A9_Score -1.10.20.60.10.20.20.20.20.20.25.10.28 1 000 A9_Score -1.10.20.60.10.20.20.20.20.20.25.10.28 1 000 A10_Score -1.10.20.60.10.20.20.20.20.20.25.10.28 1 000 A10_Score -1.10.20.60.10.20.20.20.20.20.25.10.28 1 000 A10_Score -1.10.20.60.10.20.20.20.20.25.10.28 1 000 A10_Score -1.10.20.20.20.20.20.20.25.10.28 1 000 A10_Score -1.10.20.20.20.20.20.20.20.25.10.28 1 000 A10_Score -1.10.20.20.20.20.20.20.20.25.10.28 1 000 A10_Score -1.10.20.20.20.20.20.20.20.20.20.20.20.20.20					
Outliers and Anomalies	There is no Outliers in our project.					
Outliers and Anomalies	There is no Outliers in our project.					
Data Preprocessing Code Sc	reenshots					
Loading Data	#Loading the data					

For checking the null values . isnull() function is used. To sum those null values we use. sum() function. From the below image we found that there are no null values present in our dataset. So we can skip handling the missing values step.	• da	Al_Score	A2_score A3_ False False False False False False False False False		core A5_score False	A6_Score // False	A7_score Al False False False False False False False False	False	False	False	gender et False False False False False False False False	hnicity ju False	False False False False False False False	False False False False False False False False False	"_res used_app_" False False False False False False False False	False	False
	Fo su be in	r che m the low	ecki nose ima	nul ge v	l valu ve fo	ies und	we d th	use at t	e. su here	m() e ar	fun e no	ctic o nu	on. ull v	Fron value	n the s pre	ser	

Data Collection and Preprocessing Phase

Date	15 JULY 2024
Team ID	740075
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	2 Marks

Data Collection Plan & Raw Data Sources Identification Template

Elevate your data strategy with the Data Collection plan and the Raw Data Sources report, ensuring meticulous data curation and integrity for informed decision-making in every analysis and decision-making endeavor.

Data Collection Plan Template

Section	Description
Project Overview	Develop a machine learning model to detect and classify Autistic Spectrum Disorder (ASD) using neuroimaging and clinical data. Improve diagnostic accuracy and enable earlier intervention for individuals with ASD. Identify novel biomarkers and risk factors for ASD. Enhance understanding of ASD's neural mechanisms and underlying causes.
Data Collection Plan	Kaggle

	1. Clinical data:		
	- Electronic Health Records (EHRs)		
	- Clinical interviews and assessments		
	- Behavioral observations		
	- Medical history		
	2. Neuroimaging data:		
	- Magnetic Resonance Imaging (MRI)		
Raw Data Sources	- Functional MRI (fMRI)		
Identified	- Electroencephalography (EEG)		
	- Magnetoencephalography (MEG)		
	3. Behavioral data:		
	- Parent-reported behavioral questionnaires		
	- Teacher-reported behavioral questionnaires		
	- Direct behavioral observations		
	- Wearable sensors (e.g., actigraphy, GPS)		

Raw Data Sources Template

Source					Access
Name	Description	Location/URL	Format	Size	Permissions

Dataset 1	The dataset consists single CSV file. This dataset is mainly concerning Indian climatic conditions. There are seven input features only one output features.	/content/Aut ism_Data.Csv	CSV	146KB	Public
	features.				

Model Development Phase Template

Date	15 JULY 2024
Team ID	740075
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	5 Marks

Feature Selection Report Template

In the forthcoming update, each feature will be accompanied by a brief description. Users will indicate whether it's selected or not, providing reasoning for their decision. This process will streamline decision-making and enhance transparency in feature selection.

Feature	Description	Selected (Yes/No)	Reasoning
Clinical Features	. Age of Diagnosis: The age at which ASD was diagnosed.	YES	Symptom Severity: A score indicating the severity of ASD symptoms. Behavioral Observations: Scores from behavioral assessments, such as the Autism Behavior Checklist (ABC).
Neuroimag ing Features	Brain Structure Volumes: Volumes of brain structures, such as the amygdala	Yes	Functional Connectivity Metrics: Measures of brain connectivity, such as default mode network (DMN) activity.

	and hippocampus	Brain Activity Patterns: EEG freque bands, such as alpha, beta, and theta waves.	
Behavioral Features	Social Skills Assessments: Scores from social skills assessments, such as the Social Responsiveness Scale (SRS).	Yes	Communication Skills Assessments: Scores from communication skills assessments, such as the Communication and Symbolic Behavior Scales (CSBS). Repetitive Behavior Assessments: Scores from repetitive behavior assessments, such as the Repetitive Behavior Scale (RBS).
Genetic Features	Genetic Variant Frequencies: Frequencies of specific genetic variants, such as SNPs and CNVs	Yes	Gene Expression Levels: Levels of gene expression, measured through RNA sequencing.
Social Media and Online Features	Social Media Usage Patterns: Frequency and duration of social media use.	Yes	Online Behavior Patterns: Search queries, browsing history, and other online behaviors.
Environme ntal Features	Exposure to Environmental Toxins: Exposure to pesticides, heavy metals, and other toxins	Yes	Nutrition and Dietary Patterns: Food preferences, nutrient intake, and other dietary metrics.

Wearable Device Features	Physical Activity Levels: Step count, exercise intensity, and other physical activity metrics		Sleep Patterns: Sleep duration, quality, and other sleep metrics.
--------------------------------	---	--	---

Model Development Phase Template

Date	15 JULY 2024
Team ID	740075
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
1. K Nearest Neighbors Model	from sklearn.neighbors import theighborsclassifier term. Rhighborsclassifier (n.meighborscs,metrics'sintouski',p = 2) km. fit(X_i train, y_i train)	55.18867	<pre>from sklearn.metrics import accuracy_score accuracy_KNN = accuracy_score (y_test, y_pred) print(f'Accuracy_KNN: {accuracy_KNN*188}')</pre>

			precision recall f1-xcore support apple 1.00 1.00 1.00 23 banana 1.00 1.00 1.00 20 blackgram 0.91 1.00 1.00 20 coconut 1.00 1.00 1.00 22 coconut 1.00 1.00 1.00 22 corftee 1.00 1.00 1.00 20 coffee 1.00 1.00 1.00 20 coffee 1.00 1.00 1.00 20 grapes 1.00 1.00 1.00 20 margo 1.00 1.00 1.00 20 margo 1.00 1.00 1.00 10 musked 1.00 1.00 1.00 12 musked 1.00 1.00 1.00 12 musked 1.00 1.00 1.00 12 papaya 1.00 1.00 1.00 1.00 12 papaya 1.00 0.90 0.91 12 papaya 1.00 0.92 0.93 12 papaya 1.00 0.93 0.93 19 precepts 1.00 1.00 1.00 1.00 12 precepts 1.00 1.00 1.00 1.00 24 papaya 1.00 0.93 0.93 19 precepts 1.00 0.93 0.93 19 precepts 1.00 0.93 0.93 19 precepts 1.00 1.00 1.00 1.00 1.00 1.00 1.00 precepts 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
2. SVM Model	<pre>from sklearn.svm import SVC svm=SVC(kernel='rbf', random_state=0) svm.fit(X_train,y_train)</pre>	9.433	y_pred_svc=svm.predict(X_test) print('Training Set:',svm.score(X_train,y_train)) print('Training Set:',svm.score(X_test,y_test)) Training Set: 0.122138221382138 Training Set: 0.09433962264150944
3.Decision Tree Model	dt=DecisionTreeClassifier() dt.fit(X_train,y_train) - DecisionTreeClassifier DecisionTreeClassifier()	97.166	y_pred_dt=dt.predict(X_test) print('Training Set:',dt.score(X_train,y_train)) print('Training Set:',dt.score(X_test,y_test)) Training Set: 1.0 Training Set: 0.971698132875472
4. Random Forest Model	rand_forest-BandomForestClassifier(random_state=42) Loading_ rand_forest.fit(X_train_y_train)	97.1669	prediction@rand_forest.predict(%_test) print('Training Set:',rand_forest.score(%_train,y_train)) print('Training Set:',rand_forest.score(%_test,y_test)) print('Training Set:',rand_forest.score(%_test,y_test)) training Set: 8.37284150943996224