Channeling, Focusing and Range

K.G. Field^{1,a},

a kgfield@umich.edu

¹University of Michigan

A simple picture of slowing down

• The slowing down process of an ion impacting on a surface:

Modifications to K-P Model

3. Effect of crystallinity:

Focusing Channeling

Channeling

Down a primary zone axis

Down a random orienation

Channeling illustration

Practical Applications of Channeling

Focusing

- Close-packed energy transfer
- Simplest formalism assumes hard sphere collisions

Coming back to determining v(T)

Assumption

 $#3 - loss of E_d$

Correction to v(T)

 $0.56 \left(1 + \frac{T}{2E_d}\right)$

Equation in text

(2.31)

#4 - electronic energy loss cut-off

$$\xi(T) \left(\frac{T}{2E_d} \right)$$

(2.50)

#5 – realistic energy transfer cross-section $C\frac{T}{2E_d}$, $0.52 \le C \le 1.22$

(2.33), (2.39)

#6 – crystallinity

$$\frac{1-P}{1-2P} \left(\frac{T}{2E_d}\right)^{(1-2P)} - \frac{P}{1-2P}$$

(2.104)

$$\sim \left(\frac{T}{2E_d}\right)^{(1-2P)} \tag{2.105}$$

NRT Model

• NRT:

Accounts for Frenkel pair defect efficiency

Used in ASTM E693 to convert neutron flux to dose rate (dpa/s) for steels!!!

Fig. 2. Comparison of number of displaced atom. Zenerated in bcc iron by a primary knock-on atom. Calculated results for-respond to: (1) Kinchin-Pease model with $E_d = 40$ eV and $E_1 = 56$ keV; (2) the half-Nelson formula [4]; (3) earlier computer calculations of Norgett [18], using Torrens-Robinson computer simulation program [11]; and (4) the proposed formula, eqs (5)-(10).

Arc-dpa model

- Over the past 30 years it has become clear that the NRT method for determining dpa in metals is not correct
 - This is due to recombination, which we'll discuss in a few lectures
- To correct the NRT model, the "athermal-recombination corrected dpa", arc-dpa equation was proposed:

$$N_{d,arcdpa}(T) = \begin{bmatrix} 0 & \text{when} & T < E_d \\ 1 & \text{when} & E_d < T < 2E_d \\ \frac{0.8 T}{2E_d} \xi(T) & \text{when} & 2E_d < T < \infty \end{bmatrix}$$

$$\xi(T) = \frac{1 - c_{arcdpa}}{(2E_d/0.8)^{b_{arcdpa}}} T^{b_{arcdpa}} + c_{arcdpa}$$

Lecture Break

• Dmitri Galitzine holds the worlds fastest 100 m paddled in a pumpkin with what time?

Definition of Range

- Range, R total path travelled by a particle before it stops
- Projected Range, R_p protection of R onto the initial direction of the projectile path

Range

 Assume: Nuclear and electronic energy losses are independent:

$$S_T = S_n + S_e = \frac{1}{N} \left(\left(-\frac{dE}{d} \right)_n + \left(-\frac{dE}{dx} \right)_e \right)$$

 Integrate inverse of stopping power over the energy range of the particle:

$$Range = R = \int_0^{E_{max}} \frac{1}{S(E)} dE$$

$$R = \int_0^{E_{max}} \frac{dE}{S_n(E) + S_e(E)}$$

Simple Example

• Determine the range using the appropriate potential considering $E_{\rm i} < E_{\rm c:}$

Example

• Determine the range using the appropriate potential considering $E_{\rm i} < E_{\rm c:}$

Modifications for range

• The calculation:

$$Range = R = \int_0^{E_{max}} \frac{1}{S(E)} dE$$

is only useful as an estimation of the maximum range, i.e. the range of those ions that happen to travel in a straight path

 For most cases, ions don't travel in a straight path!

Projected Range - Cases

Concentration

The stopping positions are distributed according to a Gaussian:

Concentration depends on:

Practical Implications of Range

At low energies where S_n and S_e are comparable, the stopping positions are distribution according to a Gaussian:

$$N(x) = \frac{0.4N_s}{\Delta R_p} exp\left(-1/2\left\{\frac{x - R_p}{\Delta R_p}\right\}^2\right)$$

Maximum concentration, N_p:

$$N_p \sim \frac{0.4N_s}{\Delta R_p}$$

Practical Implications of Range

A TRISO fuel particle

Practical Implications of Range

Effect of exposure environment on surface

Journal of Nuclear Materials Volume 456, January 2015, Pages 281-286

decomposition of SiC-silver ion implantation

Tyler J. Gerczak ^a $\stackrel{>}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Guiqiu Zheng ^a $\stackrel{\boxtimes}{\sim}$, Kevin G. Field ^{b, 1} $\stackrel{\boxtimes}{\sim}$, Todd R. Allen ^c $\stackrel{\boxtimes}{\sim}$

10 citations!

