INTRODUCTION TO Study design in clinical trials

TIM HOLLAND-LETZ

Department of Biostatistics
Deutsches Krebsforschungszentrum Heidelberg

Overview

Causality: Three requirements

The three pillars of interpretable comparisons
 Equality in structure
 Equality in observation
 Equality in analysis

False Discovery Rates

Causality

Does smoking cause lung cancer?

Do smokers get lung cancer more often?

Interpretation?

Requirements for Causality

Chronology: exposure first, disease later

Change: a change in exposure will change

frequency of disease

No confounding: the association between

exposure and disease is not just

a result of a confounding variable

Causality

Size of kidney stone

Confounding

Causality

"The effect of any treatment for a given patient is the difference between what happened to the patient as a result of giving him the treatment and what would have happened had treatment been denied."

"would have happened" is not observable, instead we can compare groups of different patients

Evaluation only through time-parallel comparison

3 Pillars of Interpretable Comparisons

3 Pillars of Interpretable Comparisons

Equality in structure

Randomisation

Randomised trial

Randomisation Plan

PatNr.	Unbalanced	Balanced (1 Block à 16)	Balanced (2 Blocks à 8)	
1	В	А	Α	
2	В	В	Α	Block 1
3	В	В	В	
4	А	А	Α	
5	A	А	Α	
6	В	В	В	
7	Α	В	В	
8	В	В	В	
9	В	Α	В	Block 2
10	В	Α	Α	
11	Α	А	Α	
12	В	В	Α	
13	Α	В	В	
14	А	А	В	
15	В	А	Α	
16	В	В	В	

3 Pillars of Interpretable Comparisons

Equality in structure

Randomisation

- stratified randomisation (for small sample sizes und major prognostic factors)
- cluster randomisation (z.B. doctors offices, hospitals, regions)
 - **Important:** Has to be included in the analysis!
- external randomisation, especially in unblinded trials
 "Concealment" (of the randomisation result)
 - \rightarrow e.g. by telephone randomisation

Pseudo-randomised Trials

Alternating allocation

e.g. by last name, year of birth, day of inclusion, etc.

⇒Selection might be different for the groups

Not random!

⇒Concealment might be violated

Not random!

Interpretation of Inclusion Criteria

Oxytocin for birth facilitation vs. amniotomy

",randomised study"

(even / uneven day of birth of mother)

Bishop score	Even (Oxytocin)	Uneven (Amniotomy)	
≤ 3	28	7	
4 or 5	56	58	
≥ 6	29	45	
	110	113	

Bakos et al. (1987): Acta Obstet Gynecol Scand, 534

Concealment

Randomization is important
Unpredictable randomization is more important!

("concealment")

Empirical Evidence of Bias*

Randomisation plan:

Adequate Concealment

(Therapy-) Effect=1.00

Description unclear

Effect=1.33

Inadequate Concealment

Effect=1.41

^{*}Schulz KF et al; JAMA 1995; 273: 408-12

Achieving Concealment

Achieving Concealment

Three Pillars of Interpretable Comparisons

Equality in structure

- Randomisation
- in unblinded trials: by telephone/fax (Concealment)

Equality in observation

- Double blinded
- blinded assessment of study endpoint especially important

Blinding

As comprehensive as possible

Double-blind Physician and patient blinded

possible mainly in drug studies

Single-blind Patient blinded, treating physician unblinded,

physicians responsible for medical care and

endpoint assessment blinded

possible in most cases

Single-blind Patient unblinded, treating physician unblinded,

physicians responsible for medical care and

endpoint assessment blinded

(almost) always possible

Open all participants unblinded

20

Empirical Evidence of Bias*

Blinding:

Double blind

(Therapy-) Effect=1.00

Not double blind

Effect=1.17

dkfz.

21

Three Pillars of Interpretable Comparisons

Equality in structure

- Randomisation
- in unblinded trials: by telephone/fax (Concealment)

Equality in observation

- Double blinded
- blinded assessment of study endpoint especially important
- Double dummy

Equality in analysis

- Intention-to-treat-principle: Every patient included in the trial (i.e. randomized) will be included in the analysis
- if necessary, missing values have to be replaced conservatively

Equality in Analysis

- Patient undergoing therapy
 - Patient without therapy

Exclusions from Analysis

6-weeks-mortality of patients with infarction (β-Blockers)

	Propranolol	Atenolol	Placebo
Regular treatment	3.4%	2.6%	11.2%
Treatment stopped (side effects etc.)	15.9%	17.6%	12.5%
All	7.6%	8.7%	11.6%

Wilcox RG et al.; BMJ: 280: 885-8 (1980)

",pragmatic" approach \rightarrow close to practical situation

Exclusion of Patients*

^{*}Jocham D et al. (2004): Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet, 363 (9409): 594-599.

Late randomisation avoids patient losses

Three Pillars of Interpretable Comparisons

Equality in structure

Randomisation

- external randomisation in unblinded trials
- best via telephone/fax

Equality in observation

Double-blinded

- double-dummy-technique
- blinded (external) assessment of endpoints
- endpoint not dependent on observer

"Equality in analysis"

Intention-to-treat

- all randomized patients in the trial are analyzed in the group they were randomized to
- missing values are replaced to disfavor the new treatment (conservative replacement)

dkfz.

Levels of Evidence

- Ia At least one systematic review based on high quality randomized controlled trials (Randomised Controlled Trials, RCT's)
- Ib At least one high quality randomised controlled trial (RCT) of sufficient sample size

- Ila High quality controlled clinical trials without randomisation (e.g. cohort trials)
- Ilb Other quasi-experimental trials
- III Uncontrolled / non-experimental trials
- IV Expert opinions

Cochrane Collaboration

- Network of working groups (Cochrane Review Groups)
- → Creates and updates systematic reviews according to a detailed standard
- Cochrane Library
- → Cochrane Controlled Clinical Trial Register (CCTR, about 680 000 Entries)
 - Cochrane Database of Systematic Reviews (CDSR, about 5000 complete, 2.000 protocols)

New discoveries are published daily. How many of these are actually true?

For a single trial the false positive rate is 5%. Does this answer the question?

Example:

Assume 200 trials are conducted, each with power=90% and alpha=5%. In 100 of these the null hypothesis is actually true:

Truth:

Now assume the null hypothesis is actually true in 180 of the 200 trials:

Truth:

Trials about "unlikely" hypotheses result in many false discoveries.

Important in trials about risk factors and genetic/epigenetic markers.

Probability for truth of hypotheses depends on the a-priori probability!

Reality: Study by Ioannidis(2005)*

All first reports of discoveries in Top 3 medicine journals 1990-2003 were investigated

Comparison with results from later trials

16% of results were contradicted entirely, 16% showed much weaker effects.

*Ioannidis, JPA (2005): Contradicted and Initially Stronger Effects in Highly Cited Clinical Research, JAMA 294 (2), p218-228

=> FDR=16%

34

Next lecture:

Multiple Testing

Tim Holland-Letz

December 16, 2020, 9:00 am