Segunda Lista de Preparação para a LII IMO e XXVI Olimpíada Iberoamericana de Matemática

Nível III

▶ PROBLEMA 1

Prove que existe um real c > 0 com a seguinte propriedade: entre quaisquer n números inteiros positivos distintos, $n \ge 3$, existem três cujo mmc é maior ou igual a $c \cdot n^{2,99}$.

▶PROBLEMA 2

São dados um círculo ω , uma corda AB de ω e quatro pontos C, D, E e F no interior da corda AB. As cordas X_1X_2 passando por C, Y_1Y_2 passando por D, Z_1Z_2 passando por E e W_1W_2 passando por F são tais que X_1 , Y_1 , Z_1 e W_1 estão do mesmo lado de AB e satisfazem

$$\frac{AX_1 \cdot BX_2}{X_1 X_2} = \frac{AY_2 \cdot BY_1}{Y_1 Y_2} = \frac{AZ_1 \cdot BZ_2}{Z_1 Z_2} = \frac{AW_2 \cdot BW_1}{W_1 W_2}$$

Sejam U a interseção das retas X_1X_2 e Y_1Y_2 e V a interseção das retas Z_1Z_2 e W_1W_2 . Prove que todas as retas UV obtidas variando as cordas X_1X_2 , Y_1Y_2 , Z_1Z_2 e W_1W_2 têm um ponto comum ou são todas paralelas entre si.

▶PROBLEMA 3

Sejam a, b e n inteiros positivos e C um conjunto finito de inteiros. Suponha que todo inteiro positivo pode ser representado na forma $ax^n + by^n + c$ para alguns x, y inteiros positivos e $c \in C$. Encontre todos os possíveis valores de n.

▶PROBLEMA 4

No plano cartesiano, definimos faixa como a região compreendida entre duas retas paralelas, incluindo as retas. A largura da faixa é o (único) tamanho do lado do quadrado que tem lados paralelos aos eixos coordenados e pelo menos um vértice sobre cada uma das retas que definem a faixa. Prove que se a união de uma quantidade finita de faixas cobre o quadrado $0 \le x, y \le 1$ então a soma das suas larguras é maior ou igual a 1.

▶PROBLEMA 5

Prove que o polinômio

$$f(x) = \frac{x^m + x^n - 2}{x^{mdc(m,n)} - 1}$$

é irredutível em Q.

▶PROBLEMA 6

Os círculos $\omega_1, \omega_2, \ldots, \omega_6$ são tangentes externamente ao círculo ω_0 , nessa ordem (ou seja, sendo C_i o centro do círculo i, os segmentos $C_0C_1, C_0C_2, \ldots, C_0C_6$ aparecem no sentido anti-horário, considerando C_0 como referência). Além disso, os círculos ω_i e ω_{i+1} são tangentes externamente para $i=1,2,3,\ldots,6$, sendo $\omega_7=\omega_1$. Sendo c_i o raio do círculo c_i 0, temos c_i 1 e c_i 2 e c_i 3. Prove que c_i 4 e c_i 5 e c_i 6, sendo c_i 6 e c_i 7 e c_i 8 e c_i 9 e c_i 9

▶PROBLEMA 7

Considere uma sequência infinita de 1s e 2s com as seguintes propriedades:

- (i) O primeiro número na sequência é 1;
- (ii) Não há três 1s consecutivos nem dois 2s consecutivos;
- (iii) Se trocarmos pares de 1s consecutivos por um 2, deixarmos os 1s isolados e retirarmos os 2s originais, obtemos a mesma sequência.

Determine, em função de n, a quantidade de 2 entre os n primeiros elementos da sequência.

▶PROBLEMA 8

Seja R^+ o conjunto dos reais não negativos. Encontre todas as funções não decrescentes $f: R^+ \to R^+$ tais que para todos $x, y \in R^+$

$$f\left(\frac{x+f(x)}{2}+y\right) = 2x - f(x) + f(f(y))$$

Obs: f é não decrescente quando $x < y \Longrightarrow f(x) \le f(y)$ para todos x, y em seu domínio.