机器学习的数学笔记

目录

Notation		
1	逻辑回归 1.1 二项逻辑回归模型	
2	主成分分析 2.1 主成分分析的算法	6 6 7
3	附录:信息熵 3.1 相关概念	10 10 12
参	≽考文献	17
索	35	18

符号声明

本节提供了对整个文档中使用的数学符号的简要参考。如果你对其中任何相应的数学概念不熟悉,大部分内容可参照Goodfellow *et al.* (2016)的2-4章节中的描述。

数字和数组

a 标量(整数或实数)

a 矢量

A 矩阵

A 张量

 I_n n 行 n 列的单位矩阵

I 上下文所指示维度的单位矩阵

 $e^{(i)}$ 标准基向量 [0, ..., 0, 1, 0, ..., 0], 其中第 i 位为 1

 $\operatorname{diag}(a)$ 正方形对角矩阵,其中对角线元素为 a

a 标量随机变量

a 矢量随机变量

A 矩阵随机变量

集合和图象

▲ 集合

聚 实数集合

{0,1} 包含 0 和 1 的集合

 $\{0,1,\ldots,n\}$ 从 0 到 n 的所有整数的集合

[a,b] 包含 a 和 b 的实数区间

(a, b) 不包含 a 但包含 b 的实数区间

A\B 差集,即集合包含了在 A 中但不在 B 中的元素

G 图象

 $Pa_{\mathcal{G}}(\mathbf{x}_i)$ \mathcal{G} 中 \mathbf{x}_i 的母元素

角标

 a_i 矢量 a 的第 i 个元素, 其中角标从 1 开始

 a_{-i} 矢量 a 除 i 以外的所有元素

 $A_{i,j}$ 矩阵 **A** 的第 i 行第 j 列元素

 $A_{i,:}$ 矩阵 A 的第 i 行

 $A_{:,i}$ 矩阵 A 的第 i 列

 $A_{i,j,k}$ 3-D 张量 **A** 的元素 (i,j,k)

A:..,i 3-D 张量的 2-D 切片

 a_i 随机矢量 a 的第 i 个元素

线性代数运算

 A^{\top} 矩阵 A 的转置

 A^+ 矩阵 A 的摩尔彭罗斯伪逆(广义逆)

 $A \odot B$ 矩阵 A 和 B 的元素积 (Hadamard乘积)

 $\det(\mathbf{A})$ 矩阵 \mathbf{A} 的行列式

微积分

$$\frac{dy}{dx}$$
 y 关于 x 的导数

$$\frac{\partial y}{\partial x}$$
 y 关于 x 的偏导数

$$\nabla_{\boldsymbol{x}} y$$
 y 关于 \boldsymbol{x} 的梯度

$$\nabla_{\boldsymbol{X}} y$$
 y 关于 \boldsymbol{X} 的矩阵导数

$$\nabla_{\mathbf{X}} y$$
 y 关于 \mathbf{X} 的张量导数

$$rac{\partial f}{\partial m{x}}$$
 $f: \mathbb{R}^n o \mathbb{R}^m$ 的雅克比矩阵 $m{J} \in \mathbb{R}^{m imes n}$

$$abla_{m{x}}^2 f(m{x})$$
 or $m{H}(f)(m{x})$ f 在输入点 $m{x}$ 的海森矩阵

$$\int f(x)dx$$
 在全域上关于 x 的定积分
 $\int_{\mathbb{S}} f(x)dx$ 在集合 \mathbb{S} 上关于 x 的定积分

概率论与信息论

	a⊥b	随机变量 a 与	i b 相互独立
--	-----	----------	----------

$$p(\mathbf{a})$$
 连续变量的概率分布或类型不确定的变量的概率分布

$$a \sim P$$
 随机变量 a 服从 P 分布

$$\mathbb{E}_{\mathbf{x} \sim P}[f(x)]$$
 or $\mathbb{E}f(x)$ $f(x)$ 关于 $P(\mathbf{x})$ 的期望

$$Var(f(x))$$
 $f(x)$ 在 $P(x)$ 下的方差

$$Cov(f(x), g(x))$$
 $f(x)$ 和 $g(x)$ 在 $P(x)$ 下的协方差

$$D_{\mathrm{KL}}(P||Q)$$
 P和Q的相对熵

$$\mathcal{N}(x; \mu, \Sigma)$$
 均值为 μ 方差为 Σ 的 x 的高斯分布

函数

 $f: \mathbb{A} \to \mathbb{B}$ 定义域为 \mathbb{A} 值域为 \mathbb{B} 的函数 f

 $f \circ g$ 函数 f 和 g 的合成

 $f(x; \theta)$ 参数为 θ 的 x 的函数. (有时我们写作 f(x) 而忽略 参数 θ 来简化符号)

 $\log x$ x 的自然对数

 $\sigma(x)$ Logistic sigmoid 函数, $\frac{1}{1 + \exp(-x)}$

 $\zeta(x)$ Softplus 函数, $\log(1 + \exp(x))$

 $||\boldsymbol{x}||_p$ \boldsymbol{x} 的 L^p 范数

||x|| x 的 L^2 范数

 x^+ x 的正值部分, 即 $\max(0,x)$

1_{condition} 如果条件为真则值为1,条件为假则值为0

有时我们把参数为标量的函数 f 应用到矢量,矩阵,或张量中: $f(\mathbf{x})$, $f(\mathbf{X})$, 或 $f(\mathbf{X})$ 。这代表将 f 应用到数组元素层面,例如,如果 $\mathbf{C} = \sigma(\mathbf{X})$,那么对所有 i, j 和 k 的有效值,有 $C_{i,j,k} = \sigma(X_{i,j,k})$

数据集和分布

p_{data} 数据生成分布

 \hat{p}_{data} 由训练集定义的经验分布

™ 一组训练用例

 $x^{(i)}$ 数据集中的第 i 个 (输入) 用例

 $y^{(i)}$ or $y^{(i)}$ 有监督学习下 $x^{(i)}$ 对应的目标值

X $m \times n$ 的矩阵, 其中输入用例 $x^{(i)}$ 在 $X_{i:}$ 行

Chapter 1

逻辑回归

1.1 二项逻辑回归模型

二项逻辑回归模型是如下的条件概率分布

$$P(Y = 1|\mathbf{x}) = \frac{\exp(\boldsymbol{\theta}^T \mathbf{x} + b)}{1 + \exp(\boldsymbol{\theta}^T \mathbf{x} + b)}$$
$$P(Y = 0|\mathbf{x}) = \frac{1}{1 + \exp(\boldsymbol{\theta}^T \mathbf{x} + b)}$$

其中 $x \in \mathbb{R}^n$ 是输入变量, $Y \in \{0,1\}$ 是输出变量, $\theta \in \mathbb{R}^n$ 和 $b \in \mathbb{R}$ 是参数。 x和 θ 为n维列向量。

若令
$$\boldsymbol{\theta} = (\theta^{(1)}, ..., \theta^{(n)}, b)^T$$
, $\boldsymbol{x} = (x^{(1)}, ..., x^{(n)}, 1)^T$, 那么条件概率可以表示为
$$P(Y = 1 | \boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}^T \boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x})}$$

$$P(Y = 0 | \boldsymbol{x}) = \frac{1}{1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x})}$$
 (1.1)

1.1.1 模型的参数估计

对于给定的训练集 $\mathbb{X} = \{(\boldsymbol{x}_1, y_1), ..., (\boldsymbol{x}_N, y_N)\}$,可应用极大似然估计法估计模型参数。

为表示方便,令
$$P(Y=1|\mathbf{x})=\pi(\mathbf{x}), P(Y=0|\mathbf{x})=1-\pi(\mathbf{x})$$
,似然函数为
$$L(\boldsymbol{\theta})=\prod_{i=1}^{N}\left(\pi(\mathbf{x}_{i})\right)^{y_{i}}\left(1-\pi(\mathbf{x}_{i})\right)^{1-y_{i}}$$

那么对数似然函数为

$$\log L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \left(y_i \log \pi(\boldsymbol{x}_i) + (1 - y_i) \log(1 - \pi(\boldsymbol{x}_i)) \right)$$

$$= \sum_{i=1}^{N} \left(y_i \log \frac{\pi(\boldsymbol{x}_i)}{1 - \pi(\boldsymbol{x}_i)} + \log(1 - \pi(\boldsymbol{x}_i)) \right)$$

$$= \sum_{i=1}^{N} \left(y_i (\boldsymbol{\theta}^T \boldsymbol{x}_i) - \log(1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x}_i)) \right)$$
(1.2)

1.1.1.1 参数估计:梯度下降法

根据公式 (1.2), 对数似然函数对 θ 的偏导为

$$\nabla_{\boldsymbol{\theta}} \log L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \left(y_i \boldsymbol{x}_i - \frac{\exp(\boldsymbol{\theta}^T x_i) \boldsymbol{x}_i}{1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x}_i)} \right)$$
$$= \sum_{i=1}^{N} \left(y_i - \pi(x_i) \right) x_i$$

由此此处求对数似然函数的最大值,故需要沿着梯度上升的方向进行迭代,迭代公式为

$$\theta := \theta + \alpha \frac{\partial}{\partial \theta} \log L(\theta)$$

$$= \theta + \alpha \sum_{i=1}^{N} (y_i - \pi(\mathbf{x}_i)) \mathbf{x}_i$$
(1.3)

其中α称为学习率,是一个正常数。

公式 (1.3)可以用矩阵表示

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} + \alpha X^T \boldsymbol{\Lambda} \tag{1.4}$$

其中
$$\mathbf{\Lambda} = \begin{pmatrix} y_1 - \pi(\mathbf{x}_1) \\ y_2 - \pi(\mathbf{x}_2) \\ \dots \\ y_N - \pi(\mathbf{x}_N) \end{pmatrix}_{N \times 1}$$
 , X 是由训练数据构成的 $N \times (n+1)$ 矩阵(每一行对应一

1.1.1.2 参数估计: 随机梯度下降法

梯度下降算法在每次更新回归系数时需要遍历整个数据集,当数据集数量庞大或者

特征过多时,该方法的计算复杂度太高。改进方法是每次迭代仅用一个样本来更新回归 系数,称为随机梯度下降法。

具体而言,对于训练集中的每一个样本 (x_i, y_i) ,计算该样本梯度,并依据迭代公式:

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} + \alpha \left(y_i - \pi(\boldsymbol{x}_i) \right) \boldsymbol{x}_i \tag{1.5}$$

与公式 (1.3)相比,随机梯度下降的迭代公式 (1.5)中

- 误差变量是数值,而不是向量
- 不再有矩阵变换的过程

所以随机梯度下降算法的计算效率较高,缺点是存在解的不稳定性(如解存在周期性波动)的问题。为了解决这一问题,并进一步加快收敛速度,可以通过随机选取样本来更新回归系数。

1.2 Softmax回归模型

Softmax模型是二项回归模型在多分类问题上的推广,在多分类问题中,类标签Y可以取两个以上的值。

假设Y的取值集合是 $\{1,2,...,K\}$,Softmax模型是如下的条件概率分布

$$P(Y = k | \boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_k^T \boldsymbol{x})}{\sum_{j=1}^K \exp(\boldsymbol{\theta}_j^T \boldsymbol{x})}$$
(1.6)

其中 $\theta_1,...,\theta_K \in \mathbb{R}^{n+1}$ 是模型的参数。

为方便起见,下文用矩阵 $\Theta_{K\times(n+1)}$ 表示全部的模型参数

$$oldsymbol{\Theta} = \left[egin{array}{c} oldsymbol{ heta}_1^T \ dots \ oldsymbol{ heta}_K^T \end{array}
ight]$$

1.2.1 模型的参数估计

令 $P(Y = k | x) = \pi_k(x)$,与二项逻辑回归类似,Softmax的似然函数可以表示为

$$L(\boldsymbol{\Theta}) = \prod_{i=1}^{N} \prod_{k=1}^{K} (\pi_k(\boldsymbol{x}_i))^{\mathbf{1}_{y_i = k}}$$

对数似然函数为

$$\log L(\boldsymbol{\Theta}) = \sum_{i=1}^{N} \sum_{k=1}^{K} \mathbf{1}_{y_i = k} \log \pi_k(\boldsymbol{x}_i)$$
(1.7)

1.2.1.1 参数估计:梯度下降法

首先求

$$\frac{\partial \pi_k(\boldsymbol{x}_i)}{\partial \boldsymbol{\theta}_k} = \frac{\boldsymbol{x}_i \exp(\boldsymbol{\theta}_k^T \boldsymbol{x}_i) \left(\sum_{j=1}^K \exp(\boldsymbol{\theta}_j^T \boldsymbol{x}) - \exp(\boldsymbol{\theta}_k^T \boldsymbol{x}_i)\right)}{\left(\sum_{j=1}^K \exp(\boldsymbol{\theta}_j^T \boldsymbol{x})\right)^2}$$
(1.8)

故根据公式(1.7),得到Softmax模型的对数似然函数的梯度

$$\nabla_{\boldsymbol{\theta}_{k}} \log L(\boldsymbol{\Theta}) = \sum_{i=1}^{N} \mathbf{1}_{y_{i}=k} \frac{1}{\pi_{k}(\boldsymbol{x}_{i})} \frac{\partial \pi_{k}(\boldsymbol{x}_{i})}{\partial \boldsymbol{\theta}_{k}}$$

$$= \sum_{i=1}^{N} \mathbf{1}_{y_{i}=k} \frac{1}{\pi_{k}(\boldsymbol{x}_{i})} \frac{\boldsymbol{x}_{i} \exp(\boldsymbol{\theta}_{k}^{T} \boldsymbol{x}_{i}) \left(\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x}_{i}) - \exp(\boldsymbol{\theta}_{k}^{T} \boldsymbol{x}_{i})\right)}{\left(\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x}_{i})\right)^{2}}$$

$$= \sum_{i=1}^{N} \mathbf{1}_{y_{i}=k} \frac{\boldsymbol{x}_{i} \left(\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x}) - \exp(\boldsymbol{\theta}_{k}^{T} \boldsymbol{x}_{i})\right)}{\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x})}$$

$$= \sum_{i=1}^{N} \mathbf{1}_{y_{i}=k} \boldsymbol{x}_{i} \left(1 - \pi_{k}(\boldsymbol{x}_{i})\right)$$

$$= \sum_{i=1}^{N} \mathbf{1}_{y_{i}=k} \boldsymbol{x}_{i} \left(1 - \pi_{k}(\boldsymbol{x}_{i})\right)$$

对于任意第k个分类的参数 θ_k ,可沿着梯度上升的方向进行迭代

$$\boldsymbol{\theta}_k := \boldsymbol{\theta}_k + \alpha \sum_{i=1}^N \mathbf{1}_{y_i = k} \boldsymbol{x}_i \left(1 - \pi_k(\boldsymbol{x}_i) \right)$$
 (1.10)

公式 (1.10)的迭代关系用矩阵可以表示为

$$\boldsymbol{\theta}_k \coloneqq \boldsymbol{\theta}_k + \alpha X^T \boldsymbol{\Lambda} \tag{1.11}$$

其中
$$\Lambda = \begin{pmatrix} \mathbf{1}_{y_1=k} \left(1 - \pi_k(\boldsymbol{x}_1)\right) \\ \mathbf{1}_{y_2=k} \left(1 - \pi_k(\boldsymbol{x}_2)\right) \\ \dots \\ \mathbf{1}_{y_N=k} \left(1 - \pi_k(\boldsymbol{x}_N)\right) \end{pmatrix}_{N \times 1}$$
, X 是由训练数据构成的 $N \times (n+1)$ 矩阵(每一行对应一个样本,每一列对应样本的一个维度,其中还包括一维常数项)。

Chapter 2

主成分分析

主成分分析(Principal Component Analysis, PCA)是一种常见的**数据降维**方法,其目的是在信息量损失较小的前提下,将高维的数据转换到低维,从而减小计算量。实质就是找到一些投影方向,使得数据在这些投影方向上包含的信息量最大,而且这些投影方向是相互正交的。选择其中一部分包含最多信息量的投影方向作为新的数据空间,同时忽略包含较小信息量的投影方向,从而达到降维的目的。

样本的**信息量**可以理解为是样本在特征方向上投影的方差。方差越大,则样本在该特征上的差异就越大,因此该特征就越重要。参见《机器学习实战》上的图,在分类问题里,样本的方差越大,越容易将不同类别的样本区分开。

PCA的数学原理,就是对原始的空间中顺序地找一组相互正交的坐标轴,第一个轴是使得方差最大的,第二个轴是在与第一个轴正交的平面中使得方差最大的,第三个轴是在与第1、2个轴正交的平面中方差最大的,这样假设在N维空间中,可以找到N个这样的坐标轴,取前r个去近似这个空间,这样就从一个N维的空间压缩到r维的空间了,但是最终选择的r个坐标轴能够使得数据的损失最小。

2.1 主成分分析的算法

假设

- 存在n个原始数据,每个数据有p个特征,用矩阵表示为 $\mathbf{Z}_{n\times p}=(\mathbf{z}_1,\mathbf{z}_2,...,\mathbf{z}_n)^T$,其中 \mathbf{z}_i 为p维列向量。
- 1. 去除平均值,即中心化,将数据中心化变换为 $X_{n\times p}=(x_1,x_2,...,x_n)^T$, 其中X=

$$oldsymbol{Z} - \mathbb{E} oldsymbol{Z}($$
具体而言 $oldsymbol{x}_i = oldsymbol{z}_i - oldsymbol{\mu}, \, oldsymbol{\mu} = rac{1}{n} \sum_{i=1}^n oldsymbol{z}_i)$ 。

2. 计算X的协方差矩阵,用 $\Sigma_{p \times p}$ 表示

$$\operatorname{Var} X = \operatorname{Var} (Z - \mathbb{E} Z) = \operatorname{Var} Z = \Sigma$$

实际上X的协方差矩阵就是原始数据Z的协方差矩阵。

- 3. 计算协方差矩阵 Σ 的特征向量 $\{\xi_i\}$ 和特征值 $\{\lambda_i\}, j=1..p$ 。
- 4. 将特征值从小到大排序。
- 5. 保留前若干个特征值对应的特征向量,假设保留的特征值为 $\{\lambda_{j}^{*}\}$, j=1..q, 对应的特征向量构成的矩阵为 $\Xi_{p\times q}=(\xi_{1}^{*},\xi_{2}^{*},...,\xi_{q}^{*})$
- 6. 将数据集X转换到上述q个特征向量构建的新的空间中, 得到新的数据集 $X_{n\times q}^* =$

$$m{X}m{\Xi} = \left(egin{array}{c} m{x}_1 \ m{x}_2 \ ... \ m{x}_i \ ... \ m{x}_n \end{array}
ight) (m{\xi}_1^*, m{\xi}_2^*, ..., m{\xi}_q^*)$$

2.2 主成分分析的数学原理

2.2.1 几个重要的定理

Theorem 2.2.1. Σ为对称矩阵,如下优化问题的解 u^* 是**Σ**的最大特征值对应的特征向量。

$$oldsymbol{u}^* = rg \max_{\|u\|=1} \left(oldsymbol{u}^T oldsymbol{\Sigma} oldsymbol{u}
ight)$$

证明. 实际上约束条件 $\|u\| = 1$ 等价于 $u^T u = 1$ 利用拉格朗日乘子法,得到

$$G(\boldsymbol{u};\lambda) = \boldsymbol{u}^T \boldsymbol{\Sigma} \boldsymbol{u} + \lambda (\boldsymbol{u}^T \boldsymbol{u} - 1)$$

对G求u的偏导得到

$$\nabla_{\boldsymbol{u}}G(\boldsymbol{u};\lambda) = 2\boldsymbol{\Sigma}\boldsymbol{u} + 2\lambda\boldsymbol{u}$$

如果 u^* 是优化问题的解,那么 u^* 满足

$$\nabla_{\boldsymbol{u}} G(\boldsymbol{u}; \lambda) \mid_{\boldsymbol{u} = \boldsymbol{u}^*} = 0$$

$$\Rightarrow \boldsymbol{\Sigma} \boldsymbol{u}^* = -\lambda \boldsymbol{u}^*$$

$$\Rightarrow \boldsymbol{\Sigma} \boldsymbol{u}^* = \lambda^* \boldsymbol{u}^* \quad (\diamondsuit \lambda^* = -\lambda)$$

所以 u^* 是矩阵 Σ 的特征向量,对应的特征值为 λ^* 。

当 $u = u^*$ 时,目标函数

$$\boldsymbol{u}^{*T}\boldsymbol{\Sigma}\boldsymbol{u}^* = \lambda^* \tag{2.1}$$

为使得公式 (2.1)最大,必须使得 λ^* 最大,即 λ^* 等于矩阵 Σ 最大的特征值,那么对应的特征向量便是真正的解 u^* 。

2.2.2 最大方差投影

用 $u_{p\times 1}$ 表示某投影方向上的单位向量,那么 x_i 在u 上的投影可以表示为

$$=oldsymbol{x}_i^Toldsymbol{u}$$

那么数据集X在u 上的投影向量为Y = Xu, 可知Y的均值和方差为

$$\mathbb{E} Y = \mathbb{E} X u$$

 $\operatorname{Var} Y = \operatorname{Var} X u = u^T (\operatorname{Var} X) u = u^T \Sigma u$

主成分分析就是要到一个方向,使得数据集X在该方向上投影方差最大。如果用单位向量 u_1 来表示这个方向,那么 u_1 是如下优化问题的解

$$\underset{\|u\|=1}{\operatorname{arg\,max}} \quad \boldsymbol{u}^T \boldsymbol{\Sigma} \boldsymbol{u}$$

根据定理 2.2.1, u_1 就是 Σ 的最大特征值对应的特征向量,也是第一个**主成分**的单位向量。

随后要求第二个主成分,用单位向量 u_2 表示这个方向。根据原理,第二个主成分依然是要最大化投影的方差,但是约束条件要多一个,即 u_2 与 u_1 正交。所以 u_2 是如下优化问题的解

$$\arg \max_{\|u\|=1} \quad \boldsymbol{u}^T \boldsymbol{\Sigma} \boldsymbol{u}$$

$$s.t. \quad \boldsymbol{u}^T \boldsymbol{u}_1 = 0$$

为求解上述优化问题,继续使用拉格朗日乘子法,得到

$$G(\boldsymbol{u};\boldsymbol{u}_1,\lambda,\gamma) = \boldsymbol{u}^T\boldsymbol{\Sigma}\boldsymbol{u} + (\boldsymbol{u}^T\boldsymbol{u} - 1) + \gamma\boldsymbol{u}^T\boldsymbol{u}_1$$

对G求u的偏导得到,

$$\nabla_{\boldsymbol{u}}G(\boldsymbol{u};\boldsymbol{u}_1,\lambda,\gamma) = 2\boldsymbol{\Sigma}\boldsymbol{u} + 2\lambda\boldsymbol{u} + \gamma\boldsymbol{u}_1$$

如果 u^* 是优化问题的解,那么 u^* 满足

$$2\Sigma u^* + 2\lambda u^* + \gamma u_1 = 0 \tag{2.2}$$

对公式 (2.2)两边同乘以 u_1^T , 得到

$$2\Sigma u^* u_1^T + 2\lambda u^* u_1^T + \gamma u_1 u_1^T = 0$$

$$\Rightarrow \quad \gamma u_1 u_1^T = 0 \quad (因为u_1, u^* 正交)$$

$$\Rightarrow \quad \gamma = 0 \quad (因为u_1 u_1^T = 1)$$

于是公式 (2.2)等于

$$\Sigma u^* + \lambda u^* = 0$$

$$\Rightarrow \Sigma u^* = -\lambda u^*$$

$$\Rightarrow \Sigma u^* = \lambda^* u^* \quad (\diamondsuit \lambda^* = -\lambda)$$
(2.3)

 u^* 也是矩阵 Σ 的特征值,与定理 2.2.1的证明类似,优化问题的目标函数等于 λ^* ,为了使目标函数最大,要使 λ^* 尽量大,而 λ^* 最大可取所有特征值中第二大的,对应的特征向量就是优化问题的解,即**第二主成分**的方向向量。

后面的主成分算法同理类推。

Chapter 3

附录:信息熵

假设 1X 是一个取有限值的离散随机变量(本文只考虑离散情况),概率分布为P。

那么 $I(X = x_i) = -\log P(X = x_i)$ 称为事件 x_i 的自信息量,随机变量X的熵定义为X的自信息量的数学期望,即

$$H(X) = \mathbb{E}(I(X)) = -\sum_{x} P(x) \log P(x)$$

熵反映的是随机变量不确定程度的大小:熵的值越大,不确定程度越高。

3.1 相关概念

3.1.1 条件熵

条件熵是指在联合概率空间上熵的条件自信息的数学期望。在已知X时,Y的条件熵为

$$H(Y|X) = \mathbb{E}_{x,y}I(y_j|x_i) = -\sum_{x}\sum_{y}P(x,y)\log P(y|x)$$
 (3.1)

Lemma 3.1.1. 与公式 (3.1)等价的定义为给定X条件下Y的条件分布概率的熵的数学期望

$$H(Y|X) = \mathbb{E}_{\mathbf{x}} H(Y|X=x) = \sum_{x} P(x) H(Y|X=x)$$

 $^{^1}$ 本章参考了信息论与编码(http://www.docin.com/p-957983839-f6.html)和信息论基础(https://wenku.baidu.com/view/5319fed3b9f3f90f76c61b1a.html)

证明.

$$H(Y|X) = -\sum_{x} \sum_{y} P(x,y) \log P(y|x)$$

$$= -\sum_{x} \sum_{y} P(x)P(y|x) \log P(y|x)$$

$$= -\sum_{x} P(x) \sum_{y} P(y|x) \log P(y|x) \quad (P(x) - y + x)$$

$$= \sum_{x} P(x) [-\sum_{y} P(y|x) \log P(y|x)]$$

$$= \sum_{x} P(x)H(Y|X = x)$$

H(Y|X)的含义是已知在X发生的前提下,Y发生**新带来的熵**。

3.1.2 相对熵

相对熵,也称KL散度,交叉熵等,定义为两个概率分布之比的数学期望。 设Q(x), P(x)是随机变量X中取值的两个概率分布,则P对Q的相对熵是

$$D_{\mathrm{KL}}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)} = \mathbb{E}_{\mathbf{x}} \log \frac{P(x)}{Q(x)}$$
(3.2)

相对熵可以用来度量两个随机变量的"距离"。

Lemma 3.1.2. 相对熵恒大于等于零。

证明. 对于任意分布P,Q,根据公式 (3.2),可知

$$D_{\mathrm{KL}}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

$$= -\sum_{x} P(x) \log \frac{Q(x)}{P(x)}$$

$$\geq -\log(\sum_{x} P(x) \frac{Q(x)}{P(x)}) \quad (対-logx 应用Jensen 不等式)$$

$$= -\log \sum_{x} Q(x)$$

$$= -\log 1$$

$$= 0$$

3.1.3 互信息

两个随机变量X,Y的**互信息**,定义为X,Y的联合分布和独立分布乘积的相对熵

$$I(X,Y) = D_{KL}(P(X,Y)||P(X)P(Y))$$
(3.3)

Lemma 3.1.3. 互信息与条件熵满足如下关系

$$H(X|Y) = H(X) - I(X,Y) \tag{3.4}$$

证明. 根据公式 (3.2)以及互信息的定义可知

$$I(X,Y) = \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

那么

$$H(X) - I(X,Y) = -\sum_{x} P(x) \log P(x) - \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$= -\sum_{x} \left(\sum_{y} P(x,y)\right) \log P(x) - \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$= -\sum_{x,y} P(x,y) \log P(x) - \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$= -\sum_{x,y} P(x,y) \left(\log P(x) + \log \frac{P(x,y)}{P(x)P(y)}\right)$$

$$= -\sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(y)}$$

$$= -\sum_{x,y} P(x,y) \log P(x \mid y)$$

$$= H(X|Y) \quad (根据公式(3.1))$$

3.2 熵的性质

X的熵具有如下几个性质

- 非负性: H(X) > 0.
- 对称性: 当随机变量的概率取值任意互换时, 熵不变。

$$H(p_1, p_2...p_n) = H(p_2, p_1...p_n) = H(p_3, p_1...p_n) = ...$$

- 可加性: 如果随机变量X, Y相互独立,则H(X, Y) = H(X) + H(Y)。
- 极值性: 对于任意概率分布 $P(X = x_i) = p_i$ 和 $P(Y = y_i) = q_i$, i = 1...n, 都有

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i \le -\sum_{i=1}^{n} p_i \log q_i$$
 (3.5)

当X和Y的概率分布相同时,公式(3.5)取等号。

该性质表明,任意概率分布,它对其他概率分布的自信息取数学期望时,必大于它本身的熵。

• 凸性: 对于任意概率分布 $P(X=x_i)=p_i$ 和 $P(Y=y_i)=q_i$, i=1...n, 假设随机变量Z的分布为 $P(Z=z_i)=\gamma_i=\alpha p_i+(1-\alpha)q_i$, $\alpha\in[0,1]$, 那么Z的熵满足

$$H(Z) \ge \alpha H(X) + (1 - \alpha)H(Y) \tag{3.6}$$

Theorem 3.2.1 (最大熵定理). 离散随机变量X的概率分布为 $P(X=x_i)=p_i, i=1...n$,那么

$$H(X) \le \log n \tag{3.7}$$

当 $p_1 = p_2 = \dots = \frac{1}{n}$ 时,等号成立。

证明. 求熵的最大值等价于以下优化问题

$$\max \quad H(x) = -\sum_{i=1}^{n} p_i \log p_i$$

$$s.t. \quad \sum_{i=1}^{n} p_i = 1$$

利用拉格朗日乘子法构造函数

$$G(p,\lambda) = -\sum_{i=1}^{n} p_i \log p_i + \lambda \left(\sum_{i=1}^{n} p_i - 1\right)$$
 (3.8)

 $^{^2}$ 实际上这种非负性对于离散随机变量X成立,对连续随机变量X不一定成立。这是本文只考虑离散情况的原因。

公式 (3.8)中分别对 p_i 和 λ 求导,令其为零,得到

$$\frac{\partial G(p,\lambda)}{\partial p_i} = -\log p_i - 1 + \lambda = 0$$

$$\sum_{i=1}^{n} p_i - 1 = 0$$
(3.9)

由 $-\log p_i - 1 + \lambda = 0$ 可得到 $p_i = e^{\lambda - 1}, i = 1, 2..n$, 由此可知 $p_1 = p_2 = ... = \frac{1}{n}$

Lemma 3.2.1 (熵的强可加性). 当随机变量X, Y相关的情况下,联合熵满足强可加性,即

$$H(X,Y) = H(Y) + H(X|Y)$$

 $H(X,Y) = H(X) + H(Y|X)$ (3.10)

证明.

$$\begin{split} H(Y) + H(X|Y) &= -\sum_{y} P(y) \log P(y) - \sum_{x} \sum_{y} P(x,y) \log P(x|y) \\ &= -\sum_{x} \sum_{y} P(x,y) \log P(y) - \sum_{x} \sum_{y} P(x,y) \log P(x|y) \\ &= -\sum_{x} \sum_{y} P(x,y) \log P(x,y) \\ &= H(X,Y) \end{split}$$

同理可证

$$H(X,Y) = \!\! H(X) + H(Y|X)$$

Lemma 3.2.2 (熵的凸性). 证明公式 (3.6)

证明.

$$H(Z) = -\sum_{i=1}^{n} \gamma_{i} \log \gamma_{i}$$

$$= -\sum_{i=1}^{n} \alpha p_{i} \log \gamma_{i} - \sum_{i=1}^{n} (1 - \alpha) q_{i} \log \gamma_{i}$$

$$= -\sum_{i=1}^{n} \alpha p_{i} \log \left(\gamma_{i} \frac{p_{i}}{p_{i}} \right) - \sum_{i=1}^{n} (1 - \alpha) q_{i} \log \left(\gamma_{i} \frac{q_{i}}{q_{i}} \right)$$

$$= -\alpha \sum_{i=1}^{n} p_{i} \log p_{i} - (1 - \alpha) \sum_{i=1}^{n} q_{i} \log q_{i} - \alpha \sum_{i=1}^{n} p_{i} \log \frac{\gamma_{i}}{p_{i}} - (1 - \alpha) \sum_{i=1}^{n} q_{i} \log \frac{\gamma_{i}}{q_{i}}$$

$$= \alpha H(X) + (1 - \alpha) H(Y) - \alpha \sum_{i=1}^{n} p_{i} \log \frac{\gamma_{i}}{p_{i}} - (1 - \alpha) \sum_{i=1}^{n} q_{i} \log \frac{\gamma_{i}}{q_{i}}$$

$$(3.11)$$

其中公式 (3.11)的倒数第二项

$$-\alpha \sum_{i=1}^{n} p_i \log \frac{\gamma_i}{p_i} = \alpha \left(-\sum_{i=1}^{n} p_i \log \gamma_i + \sum_{i=1}^{n} p_i \log p_i \right)$$

$$\geq 0 \quad (根据公式 (3.5)))$$

同理可知公式 (3.11)的倒数第一项

$$-(1-\alpha)\sum_{i=1}^{n} q_i \log \frac{\gamma_i}{q_i} \ge 0$$

所以得到

$$H(Z) \ge \alpha H(X) + (1 - \alpha)H(Y)$$

Theorem 3.2.2. 条件熵小于无条件熵,即 $H(X|Y) \leq H(X)$

证明.

$$H(X|Y) - H(X) = -\sum_{x,y} P(x,y) \log P(x|y) + \sum_{x} P(x) \log P(x)$$

$$= -\sum_{x,y} P(x,y) \log P(x|y) + \sum_{x} \left(\sum_{y} P(x,y)\right) \log P(x)$$

$$= -\sum_{x,y} P(x,y) \log P(x|y) + \sum_{x,y} P(x,y) \log P(x)$$

$$= -\sum_{x,y} P(x,y) \left(\log P(x|y) - \log P(x)\right)$$

$$= -\sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$= -\sum_{x,y} P(x,y) \log P(x,y) - \left(-\sum_{x,y} P(x,y) \log P(x)P(y)\right)$$

$$\leq 0 \quad (根据熵的极值性)$$

3.2.1 整理得到的公式

根据本节内容整理得到的重要公式

• 根据条件熵定义可得

$$H(X|Y) = H(X,Y) - H(Y)$$
 (3.13)

• 根据互信息定义展开可得

$$H(X|Y) = H(X) - I(X,Y)$$
 (3.14)

根据公式 (3.13)和公式 (3.14)得到的对偶形式

$$H(Y|X) = H(X,Y) - H(X)$$

$$H(Y|X) = H(Y) - I(X,Y)$$

• 多数文献将下式作为互信息的定义公式

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

• $H(X|Y) \le H(X)$

参考文献

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. ii

索引

Conditional independence, iv Tensor, ii, iii Covariance, iv Transpose, iii

Derivative, iv Variance, iv Determinant, iii Vector, ii, iii

Element-wise product, see Hadamard product

Graph, iii

Hadamard product, iii Hessian matrix, iv

Independence, iv Integral, iv

Jacobian matrix, iv

Kullback-Leibler divergence, iv

Matrix, ii, iii

Norm, v

Scalar, ii, iii

Set, iii

Shannon entropy, iv

Sigmoid, v

Softplus, v