Proposition – Big Zariski Site on MSet

For $X \in \mathbb{M}\mathbf{Set}$ and $\mathcal{U} \subseteq \mathbb{M}\mathbf{Set}/X$ a collection of morphisms into X, define $\mathcal{U} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$ when " \mathcal{U} is isomorphic to an open cover", meaning there exists $\{U_i\}_{i\in\mathcal{U}}\subseteq \mathrm{Open}\,X$ such that $\{U_i\}_{i\in\mathcal{U}}$ is a cover of X and for all $i\in\mathcal{U},$ $(i:s(i)\to X)\cong (U_i\to X)$ in $\mathbb{M}\mathbf{Set}/X$. Then the above defines a Grothendieck pretopology of $\mathbb{M}\mathbf{Set}$. Specifically:

- (Isomorphisms are Covers) For $X \in \mathbb{M}\mathbf{Set}$ and $\varphi \in \mathbb{M}\mathbf{Set}(U,X)$, φ iso implies $\{\varphi\} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$.
- (Pullback of Covers) For all $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$ and $\mathcal{U} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$, $\varphi^{-1}\mathcal{U} := \{Y \times_X s(i) \to Y\}_{i \in \mathcal{U}} \in \mathrm{Cov}_{\mathbf{Zar}}(Y)$.
- (Composite of Covers) Let $X \in \mathbb{M}\mathbf{Set}$, $\mathcal{U} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$ and for each $i \in \mathcal{U}$, let $\mathcal{U}_i \in \mathrm{Cov}_{\mathrm{Zar}}(s(i))$. Then $\{s(j_i) \to s(i) \to X \mid i \in \mathcal{U}, j_i \in \mathcal{U}_i\} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$.

We will use $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ to denote the site $\mathbb{M}\mathbf{Set}$ endowed with the topology generated by the above pretopology. We will call $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ the *big Zariski site*. $\mathcal{X} \in \mathbf{Cov}_{\mathbf{Zar}}(X)$ are called *Zariski covers of* X.

Proof. Only slightly non-trivial part is pullback of covers. Use opens and covers preserved under base change. \Box

Remark – Intuition of Sheaves on $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$. For $X \in \mathbb{M}\mathbf{Set}$, if X is to be a "space" then for any other $Y \in \mathbb{M}\mathbf{Set}$ and open cover \mathcal{U} of Y, the data of a morphism $Y \to X$ should be the same as a collection of morphisms $(U \to X)_{U \in \mathcal{U}}$ that agree on pairwise intersection. This is precisely what it means for $\mathbb{M}\mathbf{Set}(-,X)$ to be a sheaf on the site $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$.

Remark. The following is a smaller site $\mathbf{Aff}_{\mathrm{Zar}}$ on affine schemes, where open covers consists only of basic opens. Since basic opens generate opens for affine schemes and affine schemes generate $\mathbb{M}\mathbf{Set}$ with compatible notion of opens, sheaves on $\mathbb{M}\mathbf{Set}_{\mathrm{Zar}}$ will be the same as sheaves of $\mathbf{Aff}_{\mathrm{Zar}}$. This gives an easier check for when $X \in \mathbb{M}\mathbf{Set}$ is a sheaf on $\mathbb{M}\mathbf{Set}_{\mathrm{Zar}}$.

Proposition - Small Zariski Site on Aff

For $X \in \mathbf{Aff}$ and $\mathcal{U} \subseteq \mathbf{Aff}/X$, $\mathcal{U} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$ when " \mathcal{U} is isomorphic to a cover of X by basic opens", meaning there exists a cover $\{X_{f_\iota}\}_{\iota \in \mathcal{U}}$ where for all $\iota \in \mathcal{U}$, $(s(\iota) \to X) \cong (D(f_\iota) \to X)$ in \mathbf{Aff}/X . Then the above defines a Grothendieck pretopology on \mathbf{Aff} , specifically:

- (Isomorphisms are Covers) For all $X \in \mathbf{Aff}$ and $\iota \in \mathbf{Aff}(U,X)$, ι isomorphism implies $\{\iota\} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$.
- (Pullback of Covers) For all $\varphi \in \mathbf{Aff}(Y, X)$ and $\mathcal{U} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$, $\varphi^{-1}\mathcal{U} := \{Y \times_X s(\iota) \to Y \mid \iota \in \mathcal{U}\} \in \mathrm{Cov}_{\mathrm{Zar}}(Y)$.
- (Composite of Covers) Let $\mathcal{U} \in \text{Cov}_{\text{Zar}}(X)$ and for each $i \in \mathcal{U}$, let $\mathcal{U}_i \in \text{Cov}_{\text{Zar}}(s(i))$. Then $\{s(j_i) \to s(i) \to X \mid i \in \mathcal{U}, j_i \in \mathcal{U}_i\} \in \text{Cov}_{\text{Zar}}(X)$.

We will use $\mathbf{Aff}_{\mathrm{Zar}}$ to denote the site \mathbf{Aff} with the topology given by the above pretopology. We will call $\mathbf{Aff}_{\mathrm{Zar}}$ the *small Zariski site*. $\mathcal{X} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$ will be called *basic Zariski covers of X*. a

 $[^]a$ This is non-standard terminology, but helps avoid confusion between the topology on **Aff** just defined and the induced topology from $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$.

Proof. UP of tensor products and localization.

Proposition – Sheaves on Big and Small Zariski Site are the Same Let $X \in \mathbb{M}\mathbf{Set}$. Then $\mathbb{M}\mathbf{Set}(-,X) \in \mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\mathrm{Zar}})$ if and only if $\mathbb{M}\mathbf{Set}(-,X) \in \mathbf{Sh}(\mathbf{Aff}_{\mathrm{Zar}})$.

Proof. Forward implication follows since the covers in \mathbf{Aff}_{Zar} are covers in $\mathbb{M}\mathbf{Set}_{Zar}$.

Now let $\mathbb{M}\mathbf{Set}(-,X) \in \mathbf{Sh}(\mathbf{Aff}_{\mathbf{Zar}})$. Let $U \in \mathbb{M}\mathbf{Set}$ and $\mathcal{U} \in \mathbf{Cov}_{\mathbf{Zar}}(U)$. Then for $(A,\alpha) \in \mathbf{Sp} \downarrow U$, the pullback $\alpha^{-1}\mathcal{U}$ of \mathcal{U} is a cover of Sp A in the big Zariski site. The chain of isomorphisms to be justified is:

$$\begin{split} \mathbb{M}\mathbf{Set}(U,X) &\overset{(1)}{\cong} \varprojlim_{(A,\alpha) \in \operatorname{Sp} \downarrow U} \mathbb{M}\mathbf{Set}(\operatorname{Sp} A,X) \overset{(2)}{\cong} \varprojlim_{(A,\alpha) \in \operatorname{Sp} \downarrow U} \varprojlim_{V,W \in \mathcal{U}} \mathbb{M}\mathbf{Set}(\alpha^{-1}V \cap \alpha^{-1}W,X) \\ &\overset{(3)}{\cong} \varprojlim_{V,W \in \mathcal{U}} \varprojlim_{(A,\alpha) \in \operatorname{Sp} \downarrow U} \mathbb{M}\mathbf{Set}(\alpha^{-1}V \cap \alpha^{-1}W,X) \overset{(4)}{\cong} \varprojlim_{V,W \in \mathcal{U}} \mathbb{M}\mathbf{Set}(V \cap W,X) \end{split}$$

- (1) Density of representables. (3) Limits commute with limits.
- (4) We know $\alpha^{-1}(V \cap W) = \alpha^{-1}V \cap \alpha^{-1}W$, so it suffices to prove the following.

Lemma. For $U \in \mathbb{M}\mathbf{Set}$ and $Z \in \mathbf{SubMSet}(U)$, we have $Z = \varprojlim_{(A,\alpha) \in \operatorname{Sp} \downarrow U} \alpha^{-1} Z$

Proof. The forgetful functor $\mathrm{Sp}\downarrow Z\to \mathrm{Sp}\downarrow U$ is a "section" of the pullback functor $\mathrm{Sp}\downarrow U\to \mathrm{Sp}\downarrow Z$, meaning for $(A, \alpha) \in \operatorname{Sp} \downarrow Z$, the following is a pullback diagram :

$$Z \longrightarrow U$$

$$\stackrel{\alpha}{\uparrow} \qquad \uparrow$$

$$\operatorname{Sp} A \stackrel{\mathbb{1}}{\longrightarrow} \operatorname{Sp} A$$

This implies pulling the diagram $\mathrm{Sp} \downarrow U$ back to $\mathrm{Sp} \downarrow Z$ only introduces duplicate objects with identity morphisms in between them. Hence $\varprojlim_{(A,\alpha)\in\mathrm{Sp}\downarrow U}\alpha^{-1}Z=\varprojlim_{(A_1,\alpha_1)\in\mathrm{Sp}\downarrow Z}\mathrm{Sp}\,A=Z$ by the density of representables.

(2) We need to show that MSet(-, X) is a sheaf for Aff with covers from the big Zariski site $MSet_{Zar}$. The key is that basic opens cover opens for affine schemes.

Let $A \in \mathbb{M}^{op}$ and \mathcal{U} be a $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ -cover of $\operatorname{Sp} A$. For each $i \in \mathcal{U}$, let $I_i \in \operatorname{Ideal} A$ with $i = D(I_i)$. Let $I := \bigsqcup_{i \in \mathcal{U}} I_i$. Then since $\{D(f)\}_{f \in I_i}$ is a $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ -cover of i for every $i \in \mathcal{U}$, $\{D(f)\}_{f \in I}$ is also a $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ cover of $\operatorname{Sp} A$. We then have the commutative diagram :

$$\begin{split} \mathbb{M}\mathbf{Set}(\operatorname{Sp} A, X) & \longrightarrow \varprojlim_{i,j \in \mathcal{U}} \mathbb{M}\mathbf{Set}(i \cap j, X) \\ & \downarrow_{\mathbb{T}} & \downarrow_{\sim} \\ \mathbb{M}\mathbf{Set}(\operatorname{Sp} A, X) & \stackrel{\sim}{\longrightarrow} \varprojlim_{f,g \in I} \mathbb{M}\mathbf{Set}(D(f) \cap D(g), X) \end{split}$$

where the horizontal isomorphism to due to MSet(-, X) being a sheaf on Aff_{Zar} .

It remains to justify the vertical isomorphism. To do this, we apply the same argument as we're trying to do now, but on $i \cap j$. It's easy to see that $\{D(f) \cap D(g)\}_{f \in I_i, g \in I_j}$ covers $i \cap j$, so we get

$$\begin{split} \mathbb{M}\mathbf{Set}(i\cap j,X) &\cong \varprojlim_{(A_{1},\alpha_{1})\in \operatorname{Sp}\downarrow(i\cap j)} \mathbb{M}\mathbf{Set}(\operatorname{Sp}A_{1},X) \cong \varprojlim_{(A_{1},\alpha_{1})\in \operatorname{Sp}\downarrow(i\cap j)} \varprojlim_{f\in I_{i},g\in I_{j}} \mathbb{M}\mathbf{Set}(D(\alpha_{1}^{\flat}(f))\cap D(\alpha_{1}^{\flat}(g)),X) \\ &\cong \varprojlim_{f\in I_{i},g\in I_{j}} \varprojlim_{(A_{1},\alpha_{1})\in \operatorname{Sp}\downarrow U} \mathbb{M}\mathbf{Set}(\alpha_{1}^{-1}\left(D(f)\cap D(g)\right),X) \overset{(4)}{\cong} \varprojlim_{f\in I_{i},g\in I_{j}} \mathbb{M}\mathbf{Set}(D(f)\cap D(g),X) \end{split}$$

where (4) is as before.