Table 1: Some Fourier Transform Pairs

	g(t)	$G(\omega)$
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega} \qquad \qquad a>0$
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$ $a>0$
3	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2} \qquad a > 0$
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2} \qquad \qquad a>0$
5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}} \qquad a>0$
6	$\delta(t)$	1
7	1	$2\pi\delta(\omega)$
8	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
10	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
11	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
12	sgn t	$\frac{2}{j\omega}$
13	$\cos \omega_0 t \ u(t)$	$rac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+rac{j\omega}{\omega_0^2-\omega^2}$
14	$\sin \omega_0 t \ u(t)$	$rac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+rac{\omega_0}{\omega_0^2-\omega^2}$
15	$e^{-at}\sin\omega_0t\ u(t)$	$\frac{\omega_0}{(a+j\omega)^2 + \omega_0^2} \qquad a > 0$
16	$e^{-at}\cos\omega_0 t\ u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2} \qquad a>0$
17	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$
18	$\frac{W}{\pi}$ sinc (Wt)	$\operatorname{rect}\left(\frac{\omega}{2W}\right)$
19	$\Delta \left(\frac{t}{\tau}\right)$	$\frac{\tau}{2} \operatorname{sinc}^2 \left(\frac{\omega \tau}{4} \right)$
20	$\frac{W}{2\pi} \operatorname{sinc}^2 \left(\frac{Wt}{2} \right)$	$\Delta\left(rac{\omega}{2W} ight)$
21	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$ $\omega_0 = \frac{2\pi}{T}$

 Table 2: Some properties of Fourier Transform

Operation	g(t)	$G(\omega)$
Addition	$g_1(t) + g_2(t)$	$G_1(\omega) + G_2(\omega)$
Scalar multiplication	kg(t)	$kG(\omega)$
Symmetry (Duality)	$\overline{G}(t)$	$2\pi g(-\omega)$
Scaling	g(at)	$\frac{1}{ a }G\left(\frac{\omega}{a}\right)$
Time shift	$g(t-t_0)$	$G(\omega)e^{-j\omega t_0}$
Frequency shift	$g(t-t_0)$ $g(t)e^{j\omega_0t}$	$G(\omega-\omega_0)$
Time convolution	$g_1(t) * g_2(t)$	$G_1(\omega)G_2(\omega)$
Frequency convolution	$g_1(t)g_2(t)$	$\frac{1}{2\pi}G_1(\omega)*G_2(\omega)$
Time differentiation	$\frac{d^n g}{dt^n}$	$(j\omega)^n G(\omega)$
Time integration	$\int_{0}^{t} g(x) dx$	$\frac{G(\omega)}{j\omega} + \pi G(0)\delta(\omega)$

Some trigonometric identities:

 $2\sin\alpha\cos\beta = \sin(\alpha - \beta) + \sin(\alpha + \beta)$

 $2\sin\alpha\sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$

 $2\cos\alpha\cos\beta = \cos(\alpha - \beta) + \cos(\alpha + \beta)$