Customer Churn Modeling

Chetana Vyas November 2021

Agenda

1 Introduction

4 Classification Models

2 Data

5 Result Analysis

3 Workflow

6 Future Work

1. Introduction

Why do we care about the Customer Churn?

- 80% of your future profits will come from just 20% of your existing customers
- Acquiring a new customer is five times as expensive as retaining an existing customer
- Increasing customer retention rates by 5% increases profits by 25-95%

2. Data

It's all about the data!

3. Workflow

Machine Learning Workflow

1

2

3

4

5

Data

- Macro level explorations
- Performance metric

Train-Test Split

- No Data Leakage
- Train: 80%
- Test: 20%

Feature Engineering

- Encode Categorical
- Features
- Standardize Features

ML Classification Models

- Dummy Classifier
- Logistic Regression
- KNN
- Decision Trees
- Random Forest
- Gradient Boosting

Finalize & Interpret

- Takeaways and recommendations
- Next Steps

Data

Sanity Check

Are feature values plausible?

Metric - Recall

Identify customers most likely to churn

EDA: Breaking down the Churn

Feature Engineering

- 1. Categorical predictors encoded using One-Hot Encoding
- 2. Standardized features
- 3. Drop irrelevant / confidential features CustomerID, Surname

4. Classification Models

Baseline Model - Dummy Classifier

Classify everything as Majority Class (Not-Churn)

Customers Lost: 20.4%

Building Classification Models

- Cross Validation
- Hyperparameters tuning
- Scoring the model

XGBoost

❖ Recall: 0.87

XGBoost - Feature Importance

Final Model - Random Forest

❖ Recall: 0.84

Random Forest - Feature Importance

5. Result Analysis

Comparison - Model Performance

Receiver Operating Characteristic (ROC) Curves for Customer Churn Models

- Random Forest:
 0.859
- **❖** XGBoost: **0.863**

Understanding the Churn

Source: Bain & Company

Recommendations

Churn Detection

Weekly run the Churn Model to identify customers at risk of churning

Churn Prevention

Loyalty and Customer Retention Programs

Continuous Optimization

Refine offered services

Marketing Techniques

Digital / offline marketing

6. Future Work

Next Steps

Build combination of Models:

- Target Profitable / Elite Customers
 Focus on maximizing Recall
 Eg. Bank Balance > 500,000
 Credit Score > 750
- 1. Handling non-elite Customers
 Focus on minimizing Precision
 Eg. Bank Balance < 500
 Credit Score < 580

Next Steps

Gather additional information

- Churn Date
- Frequency and time of user logins
- Customer background (education, employment, etc.)
- Bank services
- Mobile banking, app reviews
- New govt. policies (demonetization)

Re-train models

 Learn more about hyperparameter tuning

- Class Imbalance

Thank you!

References

Prescription for Cutting Costs | Bain & Company

Breaking the Back of Customer Churn | Bain & Company

80/20 principle in Customer Churn | Gartner Group

Bank Customer Churn | Kaggle data set

Appendix

Precision Recall curve - Random Forest

	Coefficients	Features
1	0.382248	Age
4	0.324913	NumOfProducts
6	0.098136	IsActiveMember
8	0.073533	Germany
3	0.066545	Balance
0	0.018418	CreditScore
10	0.013252	Male
7	0.013119	EstimatedSalary
2	0.006787	Tenure
9	0.001706	Spain
5	0.001341	HasCrCard

Precision Recall curve - XGBoost

	Coefficients	Features
4	0.301469	NumOfProducts
6	0.169982	IsActiveMember
1	0.163032	Age
8	0.089339	Germany
3	0.056229	Balance
9	0.047886	Spain
10	0.044737	Male
2	0.033435	Tenure
0	0.032193	CreditScore
7	0.031748	EstimatedSalary
5	0.029949	HasCrCard

Sample Data set

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
RowNumber											
50	776	Germany	Female	37	2	103769.22	2	1	0	194099.12	0
2328	644	France	Male	30	5	44928.88	1	1	1	10771.46	0
9425	689	France	Female	40	1	0.00	2	1	1	119446.64	0
8438	781	France	Male	29	9	0.00	2	0	0	172097.40	0
5102	622	Spain	Female	58	2	0.00	2	1	1	33277.31	0
8847	571	France	Female	53	2	0.00	2	1	0	28045.77	0
2707	696	France	Male	22	9	149777.00	1	1	1	198032.93	0
8087	593	France	Male	50	6	171740.69	1	0	0	20893.61	0
8900	584	France	Female	41	3	0.00	2	1	1	160095.48	0
8428	753	France	Female	40	0	3768.69	2	1	0	177065.24	1
7789	551	Spain	Male	76	2	128410.71	2	1	1	181718.73	0
7091	601	France	Male	47	1	64430.06	2	0	1	96517.97	0
8296	722	France	Male	40	6	0.00	2	1	1	111893.09	0
7801	698	Germany	Female	52	1	107906.75	1	1	0	168886.39	1
7473	448	France	Female	36	6	83947.12	2	1	0	81999.53	0
2330	850	France	Male	35	3	162442.35	1	1	0	183566.78	0

XGBoost Hyperparameter Tuning

```
random_cv.fit(X_trainsc,y_train)
In [57]:
             print("Best params: ", random cv.best params )
             print("Best estimator: ", random cv.best estimator_)
             print("Best score: ", random cv.best score )
             Fitting 5 folds for each of 10 candidates, totalling 50 fits
             Best params: {'min child weight': 7, 'max depth': 4, 'learning rate': 0.3, 'gamma': 0.1}
             Best estimator: XGBClassifier(base score=0.5, booster='gbtree', colsample bylevel=1,
                           colsample bynode=1, colsample bytree=1, enable categorical=False,
                           eval_metric='auc', gamma=0.1, gpu_id=-1, importance_type=None,
                           interaction constraints='', learning rate=0.3, max delta step=0,
                           max depth=4, min child weight=7, missing=nan,
                           monotone constraints='()', n estimators=100, n jobs=8,
                           num parallel tree=1, predictor='auto', random state=0,
                           reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,
                           tree method='exact', use label encoder=False,
                           validate_parameters=1, verbosity=None)
             Best score: 0.48098159509202454
```