

Bio-Hacking:

Evolution as a Tool

A short talk on a new technology for protein engineering

and

Building a PhageStat

A longer talk on building the necessary devices

Peter Reintjes

Evolution as a Tool

PACE - Phage Assisted Continuous Evolution
 (Esvelt et al. Nature, April 2011)

 Use a virus to evolve a custom protein

This requires you to **build a PhageStat** to maintain a population of evolving virus (Husimi 1989)

Off the shelf hardware for about \$30,000

- or -

DIY hardware + open source software ~\$1000

Motivation

- Shigella kills 1,000,000 people mostly children in the developing world – every year
- Shigella without the extracellular proteases Pic and SepA is harmless
- Hypothesis: We can evolve protease inhibitors with strong binding affinity to Pic and SepA to diminish Shigella's virulence
- Hypothesis: Engineered proteases produced by lactobacillus or other probiotic could provide inexpensive, long-term immunity

Protein-based pharmaceuticals

- Large proteins have reduced side-effect potential over small-molecule drugs which cross metabolic barriers and have more interaction potential
- Proteins can be more easily metabolized without stressing renal function
- Proteins degrade more quickly in the waste stream
- Binding affinity is the principal characteristic of metabolic processes and pharmaceuticals
- Increased binding affinity would lower dosage for any protein therapeutic

Evolution = Mutation + Selection

 Virus replicates inside E. coli which uses an error-prone DNA polymerase to increase mutations

 E. coli rewards improvements to evolving protein by providing the fusion protein that increases viral infection

PACE: Phage Assisted Continuous Evolution

 M13 virus (phage) with the sequence to evolve replacing its fusion gene

- E. coli with two extra plasmids (chromosomes)
 - Mutation: Arabinose activated mutagenesis (error-prone DNA polymerase)
 - Selection: M13 fusion gene activated by a particular protein interaction
 - E. coli host cells flow through "lagoons" with populations of evolving viruses

Experiments can run from four to six days requiring reliability and automation

(10³ generations X 10⁹ mutations)

Off-the-shelf solution requires integration as well as more hands-on oversight

(three shifts of lab personnel?)

Building a PhageStat

A device to maintain a stable population of bacterial phage (virus)

To build a **Phagestat**, you need:

- 1. A Cellstat to produce (E. coli) host cells
- 2. Control of output and multiple input flows

Inputs: Host cells and inducers

Output: Sampling and waste output

Building a CellStat

A device to maintain a continuous supply of host cells (E. coli)

- 1. A **Thermostat** to maintain the culture at 37°C
- 2. A **Turbidostat** to maintain cell density with nutrient dilution
- 3. Isolation from bacterial phage:

Cellstat output is the Phagestat input

Flow rate control

The ideal **Phagestat** has:

- 1. A flow rate high enough to force host cells through in one cell lifetime, so the only mutations are in the phage sequence
- 2. A flow rate slow enough to prevent washout of phage even with large variations in the viral reproduction rate

Design Principle

Replace **expensive**, precision equipment which is not fixable / hackable by team members with extremely simple hardware and sensors and then produce the required precision with computer control

Raw materials

Arduino micro-controller Raspberry Pi / Linux Webcam Python programming language OpenCV image processing software PIR (Passive InfraRed) temp sensor LEDs, resistors, motors, magnets Discarded flatbed scanner Styrofoam shipping containers PVC plumbing hardware 3D printer

Turbidostat version 1.0

Non-contact level-sensing

Material Costs for a "PACE capsule" \$1035*

- Raspberry PI main computer (\$40)
- Wide-angle USB or IP Camera (\$100)
- Arduino Mega 2650 (\$35)
- PIR (non contact) Temperature Sensor (\$50)
- Laser, LEDs, Photo transistor (\$20)
- Insulated boxes (Uline Styrofoam) (\$70 X 2)
- Heating Elements (\$30 + \$60)
- Stirring Motors w/magnets (\$10 X 5)
- Aquarium air pump (\$35)
- Rotary valve motor, valves, peristaltic pumps (\$150)
- Miscellaneous Hardware-PVC (\$100)
- 5V and 12V Power Supplies (\$20)
- Glassware (\$200)
- Tubing + Nutrient (operating cost)

* Retail, single quantity prices

More like a 'lander' after the adding \$80 worth of PVC

Hardware Projects

- A multi-channel Autosampler from a flatbed scanner plus 3D printed parts
- Computer controlled heater and magnetic mixer for biological samples
- Using a 3D printer to create a 16-channel computer-controlled valve for ~\$50
- Low-voltage heating for liquid environments

Software Projects

Measuring fluid levels with OpenCV

 Detecting bioluminescence with OpenCV and a USB camera

Writing an Arduino PID controller
 (PID = Proportional / Integral / Differential)

Summary:

Styrofoam boxes for thermal isolation Black garbage bags for optical isolation Stovetop coils, printer power supplies, 50 ohm 10W power resistors for low-voltage heating (up to 40°C) motor(\$1),T-nut,2 magnets = Magnetic stirrer Camera + image processing = sensors Pizza crisper pan, motor, 3D parts = valves Flatbed scanner, motor, 3D parts = sampler \$10 Ardweeny controlling a heat gun

Bioluminescence detection requires expensive high-voltage photomultiplier tubes and complex plumbing

3D printers can't make stainless steel parts

DIY electronic sensors must be sterile, but fail after being autoclaved repeatedly

The \$10,000 environmental chamber failed catastrophically mid-experiment

Silicon/Tyvek tubes ruptured after several days in a constantly running peristaltic pump

Bioluminescence detection requires expensive high-voltage photomultiplier tubes and complex plumbing

Solution:

In a dark room, point a heat gun at a \$20 webcam and take a picture, this is your camera's noise image

Take 100 pictures in total darkness and add the frames up using: +Green–(Red+Blue)/2 finally, subtract the noise image

3D printers can't make stainless steel parts

Solution:

Perhaps you simply need parts with stainless steel edges or surfaces

Buy uncoated stainless steel welding rods \$6/lb and design plastic 3D parts with openings for rods and/or plates

DIY electronic sensors must be sterile, but fail after being autoclaved repeatedly

Solution:

Use non-contact sensing

PIR (passive InfraRed) Temperature sensor

Camera, laser and LED lighting, OpenCV image processing for turbidity(cloudiness), bioluminescence, and level sensing

The \$10,000 environmental chamber failed catastrophically mid-experiment

Solution:

LM35DZ temperature sensor (\$1.50)
Ardweeny (\$10) running PID algorithm
1500W heat gun from Lowes (\$25)
with a solid-state relay (\$10)

Tyvek tubes ruptured after several days in a constantly running peristaltic pump

Solution:

Design the system for gravity/siphon flow and use peristaltic pumps for priming Peristaltic pumps now only run for a fraction of the total experiment duration

BioHacking

- ApE an Open Source plasmid editor
- PCR Thermocycler (\$25): Ardweeny, Peltier Junction, Fan, drilled aluminum block
- Gibson and Gateway assembly reagents
- Phage Assisted Continuous Evolution
- SPATEs*: The Achilles Heel of Microbial Pathogens?

 Tendon

^{*}Serine Protease AutoTransporters of Enterobacteriaceae

Know Wonder Moment

Language

Programmer

PICStart-Plus

Electroporator 2510

Details

"Fractal" Magnetic Mixer 2" and ¾" PCV pipe

Heat-form clamp around metal template and allow to cool.

Motor Clamp Disk-drive magnet

low voltage DC motor

Minimize pressure and stress required for tube-valve

