

Roman

23 de abril de 2025

Índice

Ìn	ndice	1								
Ín	ndice de figuras	1								
Ín	ndice de tablas	1								
1	Introducciótttn	2								
2	Metodología	3								
3	Resultados	3								
4	Conclusiones	3								
5	5 Recomendaciones									
\mathbf{R}	teferencias	3								
6	· · F · · · · · · · ·	7 8 9								
Ír	ndice de figuras									
	Discriminación horaria de seis periodos DH6									
Ír	ndice de tablas									
	1 Término de potencia del peaje de transporte (EUR/kW año)	10								

6.1. Facturación por potencia

	P1	P2	P3	P4	P5	P6
2.0 TD 3.0 TD 6.1 TD 6.2 TD 6.3 TD	23.469833 10.646876 21.245192 15.272489 11.548232	0.961130 9.302956 21.245192 15.272489 11.548232	3.751315 11.530748 7.484607 6.320362	2.852114 8.716048 6.767931 3.694683	1.145308 0.560259 0.459003 0.708338	1.145308 0.560259 0.459003 0.708338
6.3 TD 6.4 TD	$11.548232 \\ 12.051156$	$\frac{11.548232}{9.236539}$	$\begin{array}{c} 6.320362 \\ 4.442575 \end{array}$	3.694683 3.369751	$0.708338 \\ 0.628452$	$0.708338 \\ 0.628452$

Tabla 1: Término de potencia del peaje de transporte (EUR/kW año)

La Circular 3/2020 establece que la facturación por potencia contratada será:

$$FP = \sum_{p=1}^{i} T_{ppp} \times P_{cp}$$

Donde:

- ullet FP: Facturación de la potencia
- lacktriangle Precio del término de potencia del periodo horario p, en \mathfrak{C}/kW y año
- $lacktriangleq P_{cp}$: Potencia contratada en el período horario p, en kW [2]
- i: Número de periodos horarios del término de facturación de potencia

Figura 1: Discriminación horaria de seis periodos DH6

La facturación se prorrateará por el número de días del año que comprende el periodo de facturación.

1. Introducciótttn

Este informe tiene como objetivo analizar y optimizar la potencia contratada en la factura eléctrica de una empresa dedicada a la fabricación de mallas electrosoldadas. La empresa actualmente tiene contratada una potencia de 200 kW en todos los periodos de la tarifa 6.1TD, lo que genera costes elevados debido a excesos de potencia. El objetivo es ajustar la potencia contratada para minimizar los costes anuales.

2. Metodología

Para optimizar la potencia contratada, se siguieron los siguientes pasos:

1. Recopilación de datos: Se utilizó la curva de carga de consumos horarios del año 2022 y los costes asociados a la tarifa de acceso y excesos de potencia publicados en enero de 2022.

- 2. Análisis de la tarifa: Se identificaron los costes del término de potencia y los excesos de potencia para la tarifa 6.1TD.
- 3. Uso de herramientas de optimización: Se empleó una hoja de cálculo con la función Solver para determinar la potencia óptima de contratación en cada periodo.

3. Resultados

Tras el análisis, se obtuvieron los siguientes resultados:

El coste total anual con la potencia optimizada es de 20,704.5 €, lo que representa un ahorro de aproximadamente 13,000 € al año en comparación con la configuración anterior.

4. Conclusiones

- La optimización de la potencia contratada permite reducir significativamente los costes energéticos.
- La herramienta Solver proporciona una solución aproximada pero efectiva para determinar la potencia óptima.
- Es fundamental analizar periódicamente la curva de consumo y ajustar la potencia contratada para evitar excesos y minimizar costes.

5. Recomendaciones

- Implementar un sistema de monitorización continua del consumo para ajustar la potencia contratada de manera dinámica.
- Realizar este análisis anualmente o cuando haya cambios significativos en el consumo energético de la empresa.
- Considerar otras medidas de eficiencia energética para complementar la optimización de la potencia contratada.

Referencias

[1]

[2] Anexo I. ACUERDO POR EL QUE SE CONTESTAN CONSULTAS RELATIVAS A LA APLICACIÓN DE LA CIRCULAR 3/2020, DE 15 DE ENERO, POR LA QUE SE ESTABLECE LA METODOLO-GÍA PARA EL CÁLCULO DE LOS PEAJES DE TRANSPORTE Y DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA.

6. Variables para insertar en el latex

6.1. ppp. Parametros

 $ppp.\ Parmetros P1 Potencia contrata dak W$ 200 $ppp.\ Parmetros P1 Grupotarifario$ $2.0~\mathrm{TD}$ $ppp.\ Parmetros P2 Potencia contrata dak W$ 200.0 $ppp.\ Parmetros P2 Grupotarifario$ $ppp.\ Parmetros P3 Potencia contrata dak W$ 200.0 $ppp.\ Parmetros P3 Grupotarifario$ $ppp.\ Parmetros P4 Potencia contratada kW$ 200.0 $ppp.\ Parmetros P4 Grupotarifario$ $ppp.\ Parmetros P5 Potencia contrata dak W$ 200.0ppp. Parmetros P
5 Grupotarifario $ppp.\ Parmetros P6 Potencia contratada kW$ 200.0 $ppp.\ Parmetros P6 Grupotarifario$

6.2. xxx. DataFrames

xxx. Parmetros

P1 P2 P3 P4 P5 P6 Unnamed: 0 Potencia contratada [kW] 200 200.0 200.0 200.0 200.0 200.0 Grupo tarifario 2.0 TD NaN NaN NaN NaN NaN

xxx. DH6

xxx. TP

P1 P2 P3 P4 P5 P6

xxx. Serie1

value time 2022-01-01 0:0:0 13 2022-01-01 1:0:0 14 Na
N 13 NaN 14 NaN 13 NaN 12 NaN 13 NaN 12 NaN 13 NaN 13

[8760 rows x 1 columns]

xxx. Hola Caracola

Empty DataFrame Columns: [] Index: []

xxx. Serie Temporal

valor hour month month num day of week es fin de semana tdh6 datetime 2022-01-01 00:00:00 13 0 Jan 0 5 True 6 2022-01-01 01:00:00 14 1 Jan 0 5 True 6 2022-01-01 02:00:00 13 2 Jan 0 5 True 6 2022-01-01 03:00:00 14 3 Jan 0 5 True 6 2022-01-01 04:00:00 13 4 Jan 0 5 True 6 2022-12-31 19:00:00 12 19 Dec 11 5 True 6 2022-12-31 20:00:00 13 20 Dec 11 5 True 6 2022-12-31 21:00:00 12 21 Dec 11 5 True 6 2022-12-31 23:00:00 13 23 Dec 11 5 True 6

[8760 rows x 7 columns]

xxx. Serie_Mensual_Total

 $tdh6\ 1\ 2\ 3\ 4\ 5\ 6$

 $1\ 24243.0\ 17942.0\ \text{NaN NaN NaN NaN 14798.0}\ 2\ 24459.0\ 16757.0\ \text{NaN NaN NaN 14068.0}\ 3\ \text{NaN 24356.0}\ 19539.0$ NaN NaN 14030.0 4 NaN NaN NaN 14986.0 14356.0 16094.0 5 NaN NaN NaN 18249.0 17551.0 16411.0 6 NaN NaN 16782.0 15834.0 NaN 15224.0 7 16920.0 16551.0 NaN NaN NaN 18014.0 8 NaN NaN 10558.0 8015.0 NaN 10095.0 9 NaN NaN 18624.0 18533.0 NaN 17162.0 10 NaN NaN NaN 16693.0 15660.0 19035.0 11 NaN 25176.0 18263.0 NaN NaN 14807.0 12 15806.0 11676.0 NaN NaN NaN 11728.0

6.3. x2g. DataFrames para graficos

x2g. heat043Discriminación horaria de seis periodos DH6

6.4. x2t. DataFrames para tablas

 $x2t.\ tabla10Serie_Mensual_Total\ tdh6\ 1\ 2\ 3\ 4\ 5\ 6$

 $1\ 24243.0\ 17942.0\ \text{NaN NaN NaN NaN 14798.0}\ 2\ 24459.0\ 16757.0\ \text{NaN NaN NaN 14068.0}\ 3\ \text{NaN 24356.0}\ 19539.0$ NaN NaN 14030.0 4 NaN NaN NaN 14986.0 14356.0 16094.0 5 NaN NaN NaN 18249.0 17551.0 16411.0 6 NaN NaN 16782.0 15834.0 NaN 15224.0 7 16920.0 16551.0 NaN NaN NaN 18014.0 8 NaN NaN 10558.0 8015.0 NaN 10095.0 9 NaN NaN 18624.0 18533.0 NaN 17162.0 10 NaN NaN NaN 16693.0 15660.0 19035.0 11 NaN 25176.0 18263.0 NaN NaN 14807.0 12 15806.0 11676.0 NaN NaN NaN 11728.0

x2t. tabla60 Término_de_potencia_del_peaje_de_transporte_(EUR/kW_año) P1 P2 P3 P4 P5 P6

6.5. ggg. Graficos

ggg. heat043Discriminación horaria de seis periodos DH6

Figura 2: Discriminación horaria de seis periodos DH6

6.6. ttt. Tablas

ttt. tabla10Serie_Mensual_Total

	1	2	3	4	5	6
1	24243.0	17942.0				14798.0
2	24459.0	16757.0				14068.0
3		24356.0	19539.0			14030.0
4				14986.0	14356.0	16094.0
5				18249.0	17551.0	16411.0
6			16782.0	15834.0		15224.0
7	16920.0	16551.0				18014.0
8			10558.0	8015.0		10095.0
9			18624.0	18533.0		17162.0
10				16693.0	15660.0	19035.0
11		25176.0	18263.0			14807.0
12	15806.0	11676.0				11728.0

Tabla 2: Serie Mensual Total

ttt. tabla60 Término_de_potencia_del_peaje_de_transporte_(EUR/kW_año)

	P1	P2	P3	P4	P5	P6
2.0 TD 3.0 TD 6.1 TD 6.2 TD 6.3 TD 6.4 TD	23.469833 10.646876 21.245192 15.272489 11.548232 12.051156	0.961130 9.302956 21.245192 15.272489 11.548232 9.236539	3.751315 11.530748 7.484607 6.320362 4.442575	2.852114 8.716048 6.767931 3.694683 3.369751	1.145308 0.560259 0.459003 0.708338 0.628452	1.145308 0.560259 0.459003 0.708338 0.628452

Tabla 3: Término de potencia del peaje de transporte (EUR/kW año)