

Dr. N MEHALA

Department of Computer Science and Engineering

Module 4 [Unsupervised Learning]

Dr. N MEHALA

Department of Computer Science and Engineering

Supervised Vs Unsupervised Learning

Supervised Learning

We train our model using the independent variables in the supervision of the target variable and hence the name supervised learning.

Unsupervised Learning

Independent Variables

Dependent Variable

- There might be situations when we do not have any target variable to predict.
- Such problems, without any explicit target variable, are known as unsupervised learning problems.
- We only have the independent variables and no target/dependent variable in these problems.

UnSupervised Learning

 Divide the entire data (X) into a set of groups. These groups are known as clusters and the process of making these clusters is known as clustering.

Supervised Vs Unsupervised Learning

Why Supervised Learning?

- •Supervised learning allows you to collect data or produce a data output from the previous experience.
- •Helps you to optimize performance criteria using experience
- •Supervised machine learning helps you to solve various types of real-world computation problems.

Supervised Vs Unsupervised Learning

Clustering

PES UNIVERSITY ONLINE

Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Clustering: Example Applications

- Marketing
- Insurance
- City-planning
- Earth-quake studies

Clustering: Approaches

Partitional Clustering

Original Points

A Partitional Clustering

Hierarchical Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Hierarchical Clustering

PES UNIVERSITY ONLINE

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Hierarchical Clustering: Strength

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level

Agglomerative Hierarchical Clustering

- Popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Agglomerative Hierarchical Clustering

• Start with clusters of individual points and a proximity

matrix

Proximity Matrix

Intermediate Situation

• After some merging steps, we have some clusters

Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and

update the proximity matrix.

C5

Intermediate Situation: After Merging

• The question is "How do we update the proximity matrix?"

_		C1	C2 U C5	C3	C4	
<u>(</u>	C1		?			
C2 U	C5	?	?	?	?	
<u>(</u>	С3		?			
_	C4		?			
	P	roxim	nity N	<u>/la</u> trix	(
]	

Inter-Cluster Similarity: Methods

	p1	p2	р3	p4	p5	<u>.</u>
<u>p1</u>						_
<u>p2</u>						
<u>p2</u> p3						
<u>p4</u> <u>p5</u>						_

Proximity Matrix

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Inter-Cluster Similarity: Methods

- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Inter-Cluster Similarity: Methods

- _
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Inter-Cluster Similarity: Methods

- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Inter-Cluster Similarity: Methods

	p1	p2	р3	p4	p5	<u> </u>
p1						
<u>p2</u> p3						
<u>р4</u> р5						
•						

Proximity Matrix

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function

Inter-Cluster Similarity: Methods (Example)

assume that there are two clusters: C1: {a, b} and C2: {c, d, e}.

	а	b	С	d	е
Feature	1	2	4	5	6

1. Calculate the distance matrix . 2. Calculate three cluster distances between C1 and C2.

Single link

	а	b	С	d	е	
а	0	1	3	4	5	
b	1	0	2	3	4	
С	3	2	0	1	2	C
d	4	3	1	0	1	

$$dist(C_1, C_2) = min\{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)\}$$
$$= min\{3, 4, 5, 2, 3, 4\} = 2$$

Complete link

$$dist(C_1, C_2) = \max\{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)\}$$
$$= \max\{3, 4, 5, 2, 3, 4\} = 5$$

Average

0 dist(C₁, C₂) =
$$\frac{d(a,c) + d(a,d) + d(a,e) + d(b,c) + d(b,d) + d(b,e)}{6}$$

= $\frac{3+4+5+2+3+4}{6} = \frac{21}{6} = 3.5$

Dr. N MEHALA

Department of Computer Science and Engineering

Module 4 [Unsupervised Learning]

Dr. N MEHALA

Department of Computer Science and Engineering

Example1: Hierarchical Clustering

Example1: Hierarchical Clustering

Problem: clustering analysis with agglomerative algorithm

$$d_{AB} = \left((1 - 1.5)^2 + (1 - 1.5)^2 \right)^{\frac{1}{2}} = \sqrt{\frac{1}{2}} = 0.7071$$

$$d_{DF} = \left((3 - 3)^2 + (4 - 3.5)^2 \right)^{\frac{1}{2}} = 0.5$$
Euclidean distance

distance matrix

Dist	Α	В	C	D	E	F	ė i
A	0.00	0.71	5.66	3.61	4.24	3.20	
В	0.71	0.00	4.95	2.92	3.54	2.50	
c	5.66	4.95	0.00	2.24	1.41	2.50	
0	3.61	2.92	2.24	0.00	1.00	0.50	
E	4.24	3.54	1.41	1.00	0.00	1.12	
F	3.20	2.50	2.50	0.50	1.12	0.00	

Example1: Hierarchical Clustering

Merge two closest clusters (iteration 1)

Example 1: Hierarchical Clustering

Update distance matrix (iteration 1)

$$d_{(D,F)\to A} = \min(d_{DA}, d_{FA}) = \min(3.61, 3.20) = 3.20$$

$$d_{(D,F)\to B} = \min(d_{DB}, d_{FB}) = \min(2.92, 2.50) = 2.50$$

$$d_{(D,F)\to C} = \min(d_{DC}, d_{FC}) = \min(2.24, 2.50) = 2.24$$

$$d_{E \to (D,F)} = \min(d_{ED}, d_{EF}) = \min(1.00, 1.12) = 1.00$$

Min Distance (Single Linkage)

Example1: Hierarchical Clustering

Merge two closest clusters (iteration 2)
 Min Distance (Single Linkage)

Example1: Hierarchical Clustering

Update distance matrix (iteration 2)

Min Distance (Single Linkage)

Example1: Hierarchical Clustering

Merge two closest clusters/update distance matrix

(iteration 3)

Example1: Hierarchical Clustering

 Merge two closest clusters/update distance matrix (iteration 4)

Example1: Hierarchical Clustering

Final result (meeting termination condition)

Hierarchical Clustering: Time and Space Requirement

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering: Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

Summary

PES UNIVERSITY ONLINE

- Supervised Vs Unsupervised Learning
- Clustering
- Clustering Types
- Partitional Vs Hierarchical Clustering
- Agglomerative Vs Divisive Clustering
- Agglomerative Hierarchical Clustering: Variants
- Example: Agglomerative Hierarchical Clustering Variants

Resources

- http://www2.ift.ulaval.ca/~chaib/IFT-4102 7025/public html/Fichiers/Machine Learning in Action.pdf
- http://wwwusers.cs.umn.edu/~kumar/dmbook/.
- ftp://ftp.aw.com/cseng/authors/tan
- http://web.ccsu.edu/datamining/resources.html

THANK YOU

Dr. N MEHALA

Department of Computer Science and Engineering mehala@pes.edu