Probleem 1:

(a)

$$\frac{dy}{dt} = y+t$$

$$\frac{dy}{dt} - y = t$$
Int. faktor $T(t) = e^{\int -1 dt} = e^{-t}$

$$e^{-t} \frac{dy}{dt} - e^{-t}y = e^{-t}t$$

$$\frac{d}{dt} \left(e^{-t}y \right) = e^{-t}t$$

$$e^{-t}y = \int e^{-t}t dt$$

$$\frac{decluyse}{decluyse} \text{ integrasie} = t\left(-e^{-t}\right) - \int \left(-e^{-t}\right) dt + C$$

$$= -te^{-t} - e^{-t} + C$$

$$y = -t - 1 + Ce^{t}$$

$$\Rightarrow y(t) = 2e^{t} - t - 1$$

	t	Numeriese oplossing	Werklike oplossing	Fout
	0.25	1.2500	1.3181	0.0681
(b)	0.50	1.6250	1.7974	0.1724
	0.75	2.1562	2.4840	0.3278
	1.00	2.8828	3.4366	0.5538

(c)

% TW244: Implementering van Euler se metode

```
F = inline('y+t');
                              % Definieer regterkant,
Tmaks = 1; alpha = 1;
                              % interval, en aanvangswaarde
M = 4; h = Tmaks/M;
                              % M = aantal intervalle, h = staplengte
y = alpha;
                              % Stel y0 = aanvangsvoorwaarde
T = 0; Y = y;
                              \%   
Die vektore T en Y word gebruik om
                              % (t,y) waardes te stoor
for j = 0:M-1
                              % Bereken waarde van t_j
   t = j*h;
   y = y +h*F(t,y);
                              % Euler se metode
   Y = [Y; y];
                              % Voeg nuwe y waarde by lys van oues
    T = [T; (j+1)*h];
                              % Voeg nuwe t waarde by lys van oues
end
```

t	Numeriese oplossing	Werklike oplossing	Fout
0	1.0000	1.0000	0
0.2500	1.2500	1.3181	0.0681
0.5000	1.6250	1.7974	0.1724
0.7500	2.1562	2.4840	0.3278
1.0000	2.8828	3.4366	0.5538

t	Numeriese oplossing	Werklike oplossing	Fout
0	1.0000	1.0000	0
0.1000	1.1000	1.1103	0.0103
0.2000	1.2200	1.2428	0.0228
0.3000	1.3620	1.3997	0.0377
0.4000	1.5282	1.5836	0.0554
0.5000	1.7210	1.7974	0.0764
0.6000	1.9431	2.0442	0.1011
0.7000	2.1974	2.3275	0.1301
0.8000	2.4872	2.6511	0.1639
0.9000	2.8159	3.0192	0.2033
1.0000	3.1875	3.4366	0.2491

(d)

t	Numeriese oplossing	Werklike oplossing	Fout $1.0e - 09*$
0	1.0000	1.0000	0
0.025	1.0256	1.0256	6.7838e-09
0.050	1.0525	1.0525	9.4459e-09
0.075	1.0808	1.0808	4.0530e-09
0.100	1.1103	1.1103	5.1537e-10
0.125	1.1413	1.1413	8.0257e-09
0.150	1.1737	1.1737	1.0981e-08
0.175	1.2075	1.2075	5.0348e-09
0.200	1.2428	1.2428	1.1391e-09
0.225	1.2796	1.2796	9.4538e-09
0.250	1.3181	1.3181	1.2735e-08
0.275	1.3581	1.3581	6.1782e-09
0.300	1.3997	1.3997	1.8884e-09
0.325	1.4431	1.4431	1.1093e-08
0.350	1.4881	1.4881	1.4736e-08
0.375	1.5350	1.5350	7.5065e-09
0.400	1.5836	1.5836	2.7827e-09
0.425	1.6342	1.6342	1.2973e-08
0.450	1.6866	1.6866	1.7017e-08
0.475	1.7410	1.7410	9.0458e-09
0.500	1.7974	1.7974	3.8442e-09
0.525	1.8559	1.8559	1.5126e-08
0.550	1.9165	1.9165	1.9615e-08
0.575	1.9793	1.9793	1.0826e-08
0.600	2.0442	2.0442	5.0982e-09
0.625	2.1115	2.1115	1.7588e-08
0.650	2.1811	2.1811	2.2571e-08
0.675	2.2531	2.2531	1.2880e-08
0.700	2.3275	2.3275	6.5735 e - 09
0.725	2.4045	2.4045	2.0401e-08
0.750	2.4840	2.4840	2.5932e-08
0.775	2.5662	2.5662	1.5247e-08
0.800	2.6511	2.6511	8.3026e-09
0.825	2.7388	2.7388	2.3611e-08
0.850	2.8293	2.8293	2.9750e-08
0.875	2.9228	2.9228	1.7969e-08
0.900	3.0192	3.0192	1.0323 e-08
0.925	3.1187	3.1187	2.7270e-08
0.950	3.2214	3.2214	3.4085 e-08
0.975	3.3273	3.3273	2.1096e-08
1.00	3.4366	3.4366	1.2676e-08
	1	· '	

Probleem 2:

(a)

Die DV het ewewigstoestande waar

$$\frac{dy}{dt} = 0$$

$$dws - 6ty + t = 0$$

$$t(-6y + 1) = 0$$

$$eusewig most \Rightarrow -6y + 1 = 0$$

$$wees vir alle t$$

$$waardes$$

(b)

(c)

(d)

```
%
% A script file to implement the trapesium rule method for the
% differential equation
%
%
       dy/dt = -6*t*y+t, y(0) = 1
%
Tmaks = 10; alpha = 0;
                                    % interval, en aanvangswaarde
M = 100; h = Tmaks/M;
                                    % M = aantal intervalle, h = staplengte
                                    % Stel y0 = aanvangsvoorwaarde
y = alpha;
T = 0; Y = y;
                                    \% Die vektore T en Y word gebruik om
                                    % (t,y) waardes te stoor
for j = 0:M-1
                                    % Bereken waarde van t_j
    t_old = j*h;
    t_{new} = (j+1)*h;
                                    % Bereken waarde van t_{j+1}
    y = (y +0.5*h*(t_old+t_new-6*y*t_old))/(1+3*h*t_new); % Trapesiumreel
    Y = [Y; y];
                                    % Voeg nuwe y waarde by lys van oues
    T = [T; t_new];
                                    % Voeg nuwe t waarde by lys van oues
end
```


(e)

(f)

Probleem 3:

