Министерство науки и

высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Иформатика и системы управления
КАФЕДРАПрограммное об	беспечение ЭВМ и информационные технологи
ОТЧЕТ ПО ЛАБОРАТО	ОРНОЙ РАБОТЕ № 1 <вариант 2>
«Дл	инная арифметика»
Ступоли	IIIanyyyy Tanay
Студент	Шавиш Тарек
Группа	ИУ7и-31Б

Преподаватель _____Силантьева А.В.

1. Условие задачи

Смоделировать операцию умножения действительного числа в форме \pm m.nE \pm K, где суммарная длина мантиссы (m + n) - до 40 значащих цифр, а величина порядка K - до 5 цифр, на целое число длиной до 30 десятичных цифр. Результат выдать в форме \pm 0.m1 E \pm K1 , где m1 - до 30 значащих цифр, а K1 - до 5 цифр

2. Техническое задание

Программа принимает две входные строки, каждая из которых содержит два действительных десятичных числа в пределах указанного диапазона. Десятичное число может быть представлено без десятичной точки, например 123. Когда в числе присутствует десятичная точка, возможны следующие представления: .00036, +165002., -456.321. Кроме того, число может быть представлено в экспоненциальной форме: 9632587E–20, 9632587E20 или 369.5248E23.

2.2 Описание задачи, реализуемой программой

умножение переднных ей действительных чисел и вывести его результат в форме $\pm 0.m1 \; E \pm K1$, где m1 - до 40 значащих цифр, а K1 - до 5 цифр.

2.3 Способ обращения к программе

_С помощью команд в терминале.

2.4 Описание возможных аварийных ситуаций и ошибок пользователя

- Введенные числа находятся за пределами допустимого диапазона для обработки.
- Цифры введены в неправильном формате.
- При умножении числа значение показателя степени превысило допустимый диапазон [-99999, 99999].

3. Описание структур данных

В программе действительные числа представлены с использованием структуры number_attributes. Эта структура включает следующие компоненты числа: • Знак числа (0: положительное, 1: отрицательное) • Мантисса числа • Позиция десятичной точки • Порядок числа

Каждый байт в массиве мантиссы может содержать значение от 0 до 9, представляющее один разряд мантиссы в десятичной системе счисления. Цифры хранятся в массиве с порядком от старших к младшим (Big-Endian). Степень экспоненты ограничена программно в пределах допустимого диапазона от -99999 до 99999.

Структура, содержащая характеристики числа

```
#define LEN 100
typedef struct
{
    int mantissa[LEN];
    int sign_number;
    int power;
    int exp;
} number_attributes;
```

4. Описание алгоритма

Шаги алгоритма умножения следующие:

В программе используется классический алгоритм умножения "столбиком". Процесс выглядит следующим образом:

- 1. Берется вторая строка, которая посимвольно обходится с конца к началу (то есть каждый символ извлекается из массива, в котором хранятся цифры числа).
- 2. На каждой итерации символ (цифра) умножается на первую строку, при этом результат умножения добавляется к "накопителю" (третья строка).
- 3. После завершения полного прохода по числу в "накопителе" будет содержаться результат умножения.

```
void multiplication(int arr1[LEN], int arr2[LEN], int len1, int len2, int
arr_result[LEN])
{
   int resultLen = len1 + len2; // Length of the result array

   // Initialize the result array with zeros
   for (int i = 0; i < resultLen; i++) {
      arr_result[i] = 0;
   }

   // Perform multiplication and addition
   for (int i = len1 - 1; i >= 0; i--) {
      for (int j = len2 - 1; j >= 0; j--) {
        int product = arr1[i] * arr2[j];
        int sum = arr_result[i + j + 1] + product;

      arr_result[i + j + 1] = sum % 10; // Update the current digit
      arr_result[i + j] += sum / 10; // Carry over to the next digit
    }
}
```

int correctness_number(char number[LEN]):

Назначение: Эта функция проверяет правильность ввода строки в виде числа с плавающей запятой.

Пояснение: Он проверяет, что входная строка содержит допустимое число с плавающей запятой, и сообщает о различных ошибках, если ввод неверен.

int correctness_number_int(char number[LEN])

Назначение: Эта функция проверяет правильность ввода строки в виде целого числа.

Пояснение: Это гарантирует, что входная строка представляет собой допустимое целое число, и сообщает об ошибках, если есть какие-либо проблемы с вводом.

int number_int(char number[MAX_LEN_INT])

Назначение: Преобразует строковое представление целого числа в числовую структуру.

Пояснение: Он анализирует входную строку и извлекает компоненты мантиссы и экспоненты, сохраняя их в структуре для дальнейшей обработки.

int int_to_number(char str_number[LEN], number_attributes *number)

Назначение: Преобразует строковое представление числа с плавающей запятой в числовую структуру.

Пояснение: Эта функция анализирует входную строку, разделяя компоненты мантиссы и экспоненты, и сохраняет их в структуре для дальнейших вычислений.

int float_to_number(char str_number[LEN], number_attributes *number):

Назначение: Преобразует строковое представление числа в экспоненциальной системе счисления в числовую структуру.

Пояснение: Аналогично предыдущим функциям, она анализирует входную строку, извлекает мантиссу и показатель степени и сохраняет их в структуре для дальнейшего использования.

void print_result(number_attributes number, int len)

Назначение: Выводит результат обработки чисел.

Пояснение: Он принимает числовую структуру и печатает отформатированный результат в научной нотации (например, "0.123e4").

Тесты

N	input	Output	Объяснение ошибки
1	99999999999999999999999999999999999999	0.1999999999 99999999999 999998E30	-
2	1e1 * 0	0.0e0	_
3	0 * 0	0.0e0	-
4	10 * 10	0.1e3	-
5	4 * 9999999999999999	0.399999999 99999996E19	_
6	-12 * 12	-0.144e3	_
7	0.01e-99999 * 100	0.1e-99998	-
8	-12 * -12	-0.144e3	-
9	12 * 12	0.144e3	-
10	0.0001e-999999 * 1	Error	Переполнение порядка

11	Ert	Invalid	Некорректный формат ввода
12	1e1 * 999999999999999999999999999999999999	Big mantisa	Больше 30 цифр в целом числе
13	1e9999999999 * 1	Order big	Больше 5 цифр в порядке
14	99999999999999999999999999999999999999	Big mantissa	Больше 40 цифр в мантиссе

6. Контрольные вопросы:

Каков возможный диапазон чисел, представляемых в ПК?

Целые числа:

- 8-битные (byte): от -128 до 127 (с знаком) или от 0 до 255 (без знака).
- 16-битные (short): от -32,768 до 32,767 (с знаком) или от 0 до 65,535 (без знака).
- 32-битные (int): от -2,147,483,648 до 2,147,483,647 (с знаком) или от 0 до 4,294,967,295 (без знака).
- 64-битные (long): от -9,223,372,036,854,775,808 до 9,223,372,036,854,775,807 (с знаком) или от 0 до 18,446,744,073,709,551,615 (без знака).
- 2. Числа с плавающей запятой:

- 32-битные (float): приближенно от -3.4x10^38 до 3.4x10^38 с плавающей точкой.
- 64-битные (double): приближенно от -1.7x10\308 до 1.7x10\308 с плавающей точкой.

Какова возможная точность представления чисел, чем она определяется?

Точность представления вещественных чисел зависит от максимальногоколичества разрядов, отведенных под хранение мантиссы. При выходе мантиссы из разрядной сетки происходит округление и точность теряется. Под хранение мантиссы числа типа double отводится 52 двоичных разряда, что соответствует не более, чем 20 десятичным разрядам.

Какие стандартные операции возможны на числами?

Сложение, вычитание, умножение, деление, сравнение, деление нацело, взятие остатка.

Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Самым выгодным по памяти вариантом является массив элементов типа char. Так же можно использовать целые типы (int, short int), однако по сравнению с массивом символов массив целых чисел будет занимать больше памяти.

Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Производить действия над числами поэлементно, заранее сохранив цифры числа в массив. Для выполнения операций использовать алгоритм

«столбиком или его модификации.

7. Вывод

Для работы с числами в компьютере существуют разные методы. Если требуемый диапазон обрабатываемых целых значений находится в пределах диапазона значений машинного слова, предпочтительно использовать встроенную целочисленную арифметику, которая находится внутри процессора. В противном случае, необходимо создавать так называемую "длинную арифметику", которая позволяет программно выполнять арифметические операции над большими числами. Длинная арифметика с целыми числами может быть реализована в виде арифметики "в столбик".

При обработке действительных чисел существуют два основных метода: числа с фиксированной точностью и числа с плавающей запятой. Числа с фиксированной точностью обрабатываются аналогично целым числам, с дополнительным соглашением о местоположении десятичной точки. Числа с плавающей запятой могут быть обработаны аппаратно в соответствии с спецификацией FPU (чаще всего это стандарт IEEE754). Если нет поддержки FPU или требуется оперировать числами, выходящими за пределы представимых значений, то также необходима реализация длинной арифметики.

Для хранения и обработки таких чисел удобно использовать структуру, имеющую поля: знак, мантисса и экспонента. Мантисса и экспонента могут быть представлены как длинные целые числа. Операции над такой структурой включают в себя обработку её частями: мантисса и экспонента обрабатываются отдельно в арифметических операциях, а затем приводятся к общему виду при нормализации числа.