Ángulos, seno y coseno

Ángulos medidos en radianes

En esta materia los ángulos, a menos que se indique lo contrario, se expresarán en radianes. La medida de un ángulo α en radianes puede definirse como la longitud del arco sobre la circunferencia de radio 1, desde el semieje x positivo, en sentido antihorario, hasta el punto P tal que el ángulo entre el semieje x positivo y el segmento \overline{OP} es α .

Por ejemplo, un ángulo de 180° , que corresponde a media circunferencia, mide π radianes, ya que la longitud de la circunferencia de radio 1 es 2π . Similarmente, un ángulo recto (de 90°), que corresponde a un cuarto de circunferencia, mide $\frac{\pi}{2}$ radianes.

Más generalmente, para convertir a radianes ángulos dados en el sistema sexagesimal se utiliza la relación:

$$\frac{\alpha}{\pi} = \frac{\beta}{180^{\circ}}$$

donde α es el ángulo medido en radianes y β el ángulo medido en grados.

A cada punto de la circunferencia de radio 1 le corresponde un ángulo α tal que $0 \le \alpha < 2\pi$ y recíprocamente.

Sin embargo, podemos considerar también ángulos mayores o iguales a 2π o menores que 0 y asociarles similarmente un punto en la circunferencia de radio 1. A continuación podemos ver ejemplos gráficos de estas situaciones:

Los ángulos mayores a 2π resultan de dar más de un giro sobre la circunferencia. Por ejemplo, el ángulo $\frac{5\pi}{2}$ corresponde a una vuelta y cuarto (es decir, $2\pi + \frac{\pi}{2}$). Por lo tanto, a los ángulos $\frac{5\pi}{2}$ y $\frac{\pi}{2}$ les corresponde el mismo punto en la circunferencia de radio 1.

 $\frac{5\pi}{2}$ y $\frac{\pi}{2}$ les corresponde el mismo punto en la circunferencia de radio 1. Los ángulos negativos se definen recorriendo la circunferencia en sentido horario desde el semieje x positivo. Por ejemplo, el ángulo $-\frac{\pi}{2}$ se obtiene al hacer un cuarto de vuelta en sentido horario. Así, el punto de la circunferencia de radio 1 que le corresponde a este ángulo es el mismo que el que le corresponde al ángulo $\frac{3\pi}{2}$, que se obtiene al hacer tres cuartos de vuelta en sentido antihorario.

Seno y coseno

A partir de los ángulos y los puntos que les asociamos en la circunferencia de radio 1, podemos definir las llamadas funciones *trigonométricas* (por esto a la circunferencia de radio 1 en \mathbb{R}^2 también se la llama *circunferencia trigonométrica*).

En la figura, *P* está en el primer cuadrante, con $0 < \alpha < \frac{\pi}{2}$.

En términos de las longitudes de los catetos adyacente (\bar{CA}), cateto opuesto (CO) e hipotenusa (H) podemos definir el coseno y el seno de α como:

$$\cos(\alpha) = \frac{CA}{H}$$
 y $\sin(\alpha) = \frac{CO}{H}$

Como la hipotenusa mide 1 (es el radio de la circunferencia), resulta que $CA = \cos(\alpha)$ y $CO = \sin(\alpha)$ y, por lo tanto, las coordenadas de P son $(\cos(\alpha), \sin(\alpha))$.

Para un ángulo α al que le corresponda un punto P de la circunferencia de radio 1 ubicado en otro cuadrante, los valores para $\cos(\alpha)$ y $\sin(\alpha)$ se definen por las coordenadas del punto P asociado. Por ejemplo, $\cos(\frac{3\pi}{2}) = 0$ y $\sin(\frac{3\pi}{2}) = -1$, ya que al ángulo $\alpha = \frac{3\pi}{2}$ le corresponde el punto P = (-1,0).

De esta forma quedan definidos el coseno y el seno para cualquier ángulo $\alpha \in \mathbb{R}$ como las coordenadas x e y, respectivamente, del punto P de la circunferencia trigonométrica que le corresponde al ángulo α .

Tabla de valores de seno y coseno para algunos ángulos frecuentes

α	0° 0	$30^{\circ} \mid \frac{\pi}{6}$	$45^{\circ} \mid \frac{\pi}{4}$	$60^{\circ} \mid \frac{\pi}{3}$	$90^{\circ} \mid \frac{\pi}{2}$
$sen(\alpha)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0