Lenguajes y Compiladores

Miguel Pagano 29 de marzo de 2023

Ötra vez sopa,

donde la Ö es por "Ötra vez sopa"

¿Qué función es?

```
f :: Int -> Int
f n = if n == 0
  then 0
  else if n == 1
     then 1
     else f (n-2)
```

¿Qué función es?

```
f :: Int -> Int
f n = if n == 0
  then 0
  else if n == 1
       then 1
       else f (n-2)
ghci> import Control.Arrow ((&&&))
ghci> map (id &&& f) [0..9]
[(0,0),(1,1),(2,0),(3,1),(4,0),(5,1),(6,0),(7,1),(8,0),(9,1)]
ghci> f 9
ghci> f (-1)
```

¿Definición o Ecuación?

Lo escribamos en matemática

$$f n = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

¿Definición o Ecuación?

Lo escribamos en matemática

$$f n = \begin{cases} 0 & \sin n = 0 \\ 1 & \sin n = 1 \\ f(n-2) & \sin n \notin \{0, 1\} \end{cases}$$

Interrogantes

- 1. ¿Se corresponde esta "definición" con la de Haskell?
- 2. ¿Define esta ecuación una función? ¿Qué dominio y qué rango tiene?
- 3. ¿Define una única función?
- 4. ¿Por qué las ecuaciones [_] no tenían problemas?

¿Definición o Ecuación?

Lo escribamos en matemática

$$f n = \begin{cases} 0 & \sin n = 0 \\ 1 & \sin n = 1 \\ f(n-2) & \sin n \notin \{0,1\} \end{cases}$$

Encontrás dependendiendo de dónde buscás

- 1. ¿Qué sucede si asumimos $f: \mathbb{N} \to \mathbb{N}$?
- 2. ¿Por qué sería distinto si quisiéramos $f: \mathbb{Z} \to \mathbb{Z}$?
- 3. ¿Qué sucede si nos conformamos con $f: \mathbb{Z} \to \mathbb{Z}$?
- 4. ¿Cómo podríamos elegir una u otra solución en cada uno de esos conjuntos?

La ecuación

$$f n = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

Esta ecuación *recursiva* la podemos ver como una especificación. Entonces dada una función $g\colon \mathbb{Z} \to \mathbb{Z}$ podemos ver si g satisface la ecuación probando:

- 1. g 0 = 0,
- 2. g1 = 1y
- 3. para todo $n \notin \{0,1\}$, g n = g (n-2).

La ecuación

$$f n = \begin{cases} 0 & \sin n = 0 \\ 1 & \sin n = 1 \\ f(n-2) & \sin n \notin \{0, 1\} \end{cases}$$

Soluciones

$$g_0\,n=n\,\mathrm{mod}\,2$$

La ecuación

$$f n = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

Soluciones

$$g_0 n = n \operatorname{mod} 2$$

$$g_1 n = \begin{cases} n \mod 2 & \text{si } n \geqslant 0\\ 23 & \text{si } n < 0 \end{cases}$$

La ecuación

$$f n = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

Soluciones

$$g_0 n = n \operatorname{mod} 2$$

$$g_1 n = \begin{cases} n \mod 2 & \text{si } n \geqslant 0\\ 23 & \text{si } n < 0 \end{cases}$$

1.
$$g_0(-1) = 1 \neq 23 = g_1(-1)$$

La ecuación

$$f n = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

Soluciones

$$g_0 n = n \operatorname{mod} 2$$

$$g_1 n = \begin{cases} n \mod 2 & \text{si } n \geqslant 0\\ 23 & \text{si } n < 0 \end{cases}$$

- 1. $g_0(-1) = 1 \neq 23 = g_1(-1)$
- 2. Es decir son incomparables.

La ecuación

$$f n = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

Soluciones

$$g_1 n = \begin{cases} n \mod 2 & \text{si } n \geqslant 0\\ 23 & \text{si } n < 0 \end{cases}$$

 $q_0 n = n \mod 2$

1.
$$q_0(-1) = 1 \neq 23 = q_1(-1)$$

- 2. Es decir son incomparables.
- 3. Elegir una u otra es arbitrario.

La ecuación

$$f n = \begin{cases} n0 & \text{si } n = 0\\ 1 & \text{si } n = 1\\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

La ecuación

$$f n = \begin{cases} n0 & \text{si } n = 0\\ 1 & \text{si } n = 1\\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

Soluciones

$$h_0 n = n \operatorname{mod} 2 \operatorname{si} n \geqslant 0$$

La ecuación

$$f n = \begin{cases} n0 & \text{si } n = 0\\ 1 & \text{si } n = 1\\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

Soluciones

$$h_0 n = n \operatorname{mod} 2 \operatorname{si} n \geqslant 0$$

$$h_1 n = n \operatorname{mod} 2$$

1. ¿Cómo comparamos funciones parciales?

La ecuación

$$f n = \begin{cases} n0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

Soluciones

$$h_0 n = n \operatorname{mod} 2 \operatorname{si} n \geqslant 0$$

$$h_1 n = n \operatorname{mod} 2$$

- 1. ¿Cómo comparamos funciones parciales?
- 2. ¿Cuál preferimos?

La ecuación

$$f n = \begin{cases} n0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

Soluciones

$$h_0 n = n \operatorname{mod} 2 \operatorname{si} n \geqslant 0$$

$$h_1 n = n \operatorname{mod} 2$$

- 1. ¿Cómo comparamos funciones parciales?
- 2. ¿Cuál preferimos?
- 3. ¿Cuál representa mejor a la f de Haskell?

¡El bottom del orden!

Introduciendo parcialidad explícitamente

De $\mathbb{Z}
ightharpoonup \mathbb{Z}$ a $\mathbb{Z}
ightharpoonup \mathbb{Z}_{\perp}$

Lo que vamos a hacer es totalizar las funciones parciales agregando un nuevo elemento, \perp que llamamos *bottom*, al codominio.

Repaso de órdenes parciales

Un conjunto X junto con un orden parcial \leq sobre X es un **poset**. Un orden parcial es una relación reflexiva, anti-simétrica y transitiva.

Introduciendo parcialidad explícitamente

Repaso de órdenes parciales

Un conjunto X junto con un orden parcial \leq sobre X es un **poset**. Un orden parcial es una relación reflexiva, anti-simétrica y transitiva.

Ejemplos

- 1. (\mathbb{Z}, \leqslant) .
- 2. $(\mathcal{P}(X),\subseteq)$.
- 3. (X, =) es el poset *discreto*.

Introduciendo parcialidad explícitamente

Repaso de órdenes parciales

Un conjunto X junto con un orden parcial \leq sobre X es un **poset**. Un orden parcial es una relación reflexiva, anti-simétrica y transitiva.

Poset de Funciones Parciales

Como $X \rightharpoonup Y \subseteq \mathcal{P}(X \times Y)$, podemos ordenar las funciones parciales usando la contención de conjuntos.

Explicitamente tenemos que $f\leqslant g$ si para todo $x\in X$, $f(\{x\})\subseteq g(\{x\})$, que es equivalente a si f(x) está definido entonces g(x) también lo está y f(x)=g(x).

¿Cuál es el menor elemento de $X \rightarrow Y$?

Construcciones sobre Posets

Lifting

- Sea X un conjunto $y \perp \notin X$, entonces $X_{\perp} = X \cup \{\perp\}$.
- Si (X, \preccurlyeq) es un poset, entonces $(X_{\perp}, \preccurlyeq_{\perp})$ también lo es: $x \preccurlyeq_{\perp} x'$ si y sólo si $x = \bot$ o $x \preccurlyeq x'$.
- El poset $(X_{\perp}, =_{\perp})$ se llama el poset *llano*.

- Está claro que \perp es el mínimo del poset $(X_{\perp}, \leq_{\perp})$.
- Otras veces nos referimos al poset sólo mediante su conjunto.

Construcciones sobre Posets

Topping

- Sea X un conjunto y $\top \notin X$, entonces $X^{\top} = X \cup \{\top\}$.
- Si (X, \preceq) es un poset, entonces $(X^{\top}, \preceq^{\top})$ también lo es: $x \preceq^{\top} x'$ si y sólo si $x' = \top$ o $x \preceq x'$.
- Ejemplo: \mathbb{N}_{∞} que deberíamos escribirlo como \mathbb{N}^{∞} .

Producto de posets

Si (X, \preccurlyeq_X) y (Y, \preccurlyeq_Y) son posets, entonces $(X \times Y, \preccurlyeq_{X \times Y})$ también lo es:

$$\langle x, y \rangle \preccurlyeq_{X \times Y} \langle x', y' \rangle$$
 si y sólo si $x \preccurlyeq_X x'$ e $y \preccurlyeq_Y y'$.

Construcciones sobre Posets

Espacio de funciones

Si
$$(Y, \preccurlyeq)$$
 es un poset, entonces $(X \to Y, \preccurlyeq^{\to})$ también lo es $f \preccurlyeq^{\to} g$ sii para todo $x \in X$, $f x \preccurlyeq g x$.

Observaciones

- 1. Notemos que acá tenemos un único poset (Y, \preccurlyeq) ; X es sólo un conjunto.
- 2. Ejercicio: $(X \rightharpoonup Y, \subseteq)$ es isomorfo a $(X \to Y_{\perp}, \preccurlyeq^{\rightarrow})$.

Predominios y Dominios

Más repaso

Supremo

Dado un poset (X, \preccurlyeq) y $Q \subseteq X$, decimos que

- $b \in X$ es una cota superior para Q si $x \leq b$ para todo $x \in Q$.
- $a \in X$ es el **supremo de** Q si es la menor de las cotas superiores.

Observaciones

- 1. El supremo de ${\cal Q}$ no necesariamente pertenece a ${\cal Q}.$
- 2. Si tomamos (\mathbb{N},\leqslant) y Q como los números pares, tenemos que Q no tiene supremo.
- 3. ¿Cambia la respuesta si nos pasamos a \mathbb{N}^{∞} ?
- 4. Supongamos que *X* es finito, ¿todo subconjunto de *X* tiene supremo?

Predominio

Cadena

Dado un poset (X, \preccurlyeq) decimos que una secuencia $x_0, x_1, \ldots, x_n, \ldots$ es una *cadena* si $x_i \preccurlyeq x_{i+1}$, para todo $i \in \mathbb{N}$.

Decimos que una cadena es *interesante* si tiene infinitos elementos distintos.

Ejemplos en \mathbb{N}

- 1. $23 \le 23 \le \ldots \le 23 \le 23 \le \ldots$
- 2. i*2 para $i \in \mathbb{N}$ (los pares vistos como cadena),

Ejemplos en \mathbb{N}_{\perp}

- 1. $23 \leqslant 23 \leqslant \ldots \leqslant 23 \leqslant 23 \leqslant \ldots$,
- 2. En $\bot \preccurlyeq \bot \preccurlyeq \ldots \preccurlyeq \bot \preccurlyeq 4 \preccurlyeq x \preccurlyeq \ldots \preccurlyeq y \preccurlyeq \ldots$, qué pueden ser x e y?

Predominio

Cadena

Dado un poset (X, \preccurlyeq) decimos que una secuencia $x_0, x_1, \dots, x_n, \dots$ es una *cadena* si $x_i \preccurlyeq x_{i+1}$, para todo $i \in \mathbb{N}$.

Decimos que una cadena es *interesante* si tiene infinitos elementos distintos.

Definición

Un poset (P, \preccurlyeq) es un **predominio** si toda cadena tiene supremo.

- 1. Si *P* es finito, ¿toda cadena tiene supremo?
- 2. Más en general, una cadena no interesante tiene supremo?
- 3. En X_{\perp} , hay cadenas interesantes?

Predominio

Definición

Un poset (P, \preccurlyeq) es un **predominio** si toda cadena tiene supremo.

Caracterización

 ${\cal P}$ es un predominio si todas las cadenas interesantes de ${\cal P}$ tienen supremo.

Corolario: X_{\perp} es un predominio siempre.

Ejemplo y contra-ejemplo

- 1. (\mathbb{Z}, \leq) no es un predominio (de hecho \mathbb{N} tampoco).
- 2. $(\mathbb{Z}^{\infty}, \preceq)$ es un predominio.
- 3. $(\mathcal{P}(X), \subseteq)$ es un predominio, cuál es el supremo de Q_i ?

Construcciones sobre predominios

- 1. Ya vimos que X_{\perp} es un predominio.
- 2. También vimos que \mathbb{N}^{∞} es dominio;
- 3. más en general si P es un predominio, entonces P^{\top} también lo es, pero
- 4. por ejemplo $(\mathbb{R}\setminus\{2\})^\infty$ no es un predominio porque 2-(1/i) es una cadena interesante sin supremo.
- 5. ¿Qué pasa con $P \times Q$? Si ambos son predominios, lo es $P \times Q$?

Construcciones sobre predominios

Espacio de funciones

Sea Y es un predominio y X un conjunto. ¿Cómo es una cadena de funciones en $X \to Y$?

Sea f_i una cadena de funciones, entonces podemos definir $\bigsqcup_{X\to Y}(f_i)\,x=\bigsqcup_Y(\{f_i\,x|i\in\mathbb{N}\}).$

Ejercicio: probar que está bien esa definición.

Dominios

Un predominio P es un dominio si tiene mínimo. Vamos a empacar la definición en una tupla de cuatro cosas: $D=(D,\sqsubseteq,\sqcup,\bot)$

Lema

Si D es un dominio, entonces $X \to D$ también lo es:

1. $\perp_{X\to D}$ está definido como:

2. El supremo de una cadena de funciones ya lo definimos.

Funciones entre posets, predominios,

dominios

Definiciones

Funciones monótonas

Dados dos posets (P,\leqslant) , (Q,\sqsubseteq) y una función $f\colon P\to Q$, decimos que f es **monótona** si $x\leqslant y$ implica f $x\sqsubseteq f$ y.

- 1. Es una función que respeta la estructura de los posets.
- 2. Si $f : P \to P'$ es una función entre predominios, tenemos $\bigsqcup' (f x_i) \sqsubseteq' f (\bigsqcup x_i)$ para cualquier cadena $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \dots$ de P.
- 3. (Recordatorio) $x \sqsubseteq y$ define una cadena: $x \sqsubseteq y \sqsubseteq y \sqsubseteq \dots$
- 4. (Recordatorio') $x \sqsubseteq y$ si y sólo si $x \sqcup y = y$.

Definiciones

Funciones continuas

Dados dos predominios (P, \sqsubseteq, \sqcup) , $(P', \sqsubseteq', \sqcup')$ y $f : P \to P'$, decimos que f es **continua** si, para toda cadena $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \ldots$, se da $f(\sqcup x_i) = \sqcup' (f x_i)$.

- Es una función que respeta la estructura de los predominios (supremos).
- 2. Por los dos recordatorios, continua implica monótona.
- 3. Por la segunda propiedad, es equivalente a pedir que sea monótona y $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \dots$, se da $f(\bigsqcup x_i) \sqsubseteq \bigsqcup' (fx_i)$.
- 4. Para romper continuidad de una función monótona $f: P \to P'$ debemos proponer una cadena concreta de P tal que $\bigsqcup' (f x_i) \sqsubset f (\bigsqcup x_i)$.

Definiciones

Funciones estrictas

Dados dos dominios $(D,\sqsubseteq,\sqcup,\bot)$, $(P',\sqsubseteq',\sqcup')\bot'$ y $f\colon P\to P'$, decimos que f es *estricta* si se da $f\bot=\bot'$.

- 1. Es una función que respeta parte de la estructura de los dominios (supremos).
- 2. Para respetar todo, además tiene que ser continua.

Espacio de funciones

La clase pasada vimos que podíamos definir varias construcciones sobre Posets, Predominios y Dominios.

En general cuando trabajamos con estructuras queremos que el espacio de funciones sea el conjunto de las funciones que respetan la estructura. Es decir,

- En Posets, $P \to Q = \{f \colon P \to Q \, | \, f \text{ es monótona } \}.$
- En Predominios, $P \rightarrow P' = \{f \colon P \rightarrow P' \mid f \text{ es continua }\}.$
- En Dominios, $D \to D = \{f \colon D \to D' \, | \, f \text{ es continua y estricta} \}.$
- En Dominios también, $D \to D' = \{f \colon D \to D' \, | \, f \text{ es continua } \}.$

Entonces deberíamos probar que $\coprod f_i \colon P \to P'$ es continua.

Categorías (no es importante)

En cada una de esas *categorías*, posets con funciones monótonas, predominios con funciones continuas, dominios con funciones continuas (y estrictas), tenemos:

- 1. $id_P \colon P \to P$ es monótona, continua, continua y estricta.
- 2. Si $f : P \to P'$ y $g : P' \to P''$, entonces $g \circ f : P \to P''$.

Esto nos dice que tenemos un categoría de Posets y funciones monótonas, de Predominios y funciones continuas, de dominios y funciones continuas y estrictas. También una de dominios y funciones continuas (pero no necesariamente estrictas).

Las clausuras por productos y espacio de funciones nos hablan de categorías cartesianas cerradas.

Teorema del menor punto fijo

Sea $f \colon A \to A$, decimos que $a \in A$ es un **punto fijo de** f si f a = a.

Teorema del menor punto fijo

Sea $f \colon A \to A$, decimos que $a \in A$ es un **punto fijo de** f si f a = a.

Sea $F\colon D\to D$ una función continua. Entonces existe el menor punto fijo de F .

Teorema del menor punto fijo

Sea $f \colon A \to A$, decimos que $a \in A$ es un **punto fijo de** f si f a = a.

Sea $F\colon D\to D$ una función continua. Entonces existe el menor punto fijo de F .

Consideremos la cadena $\bot \sqsubseteq F \bot \sqsubseteq F^2 \bot \sqsubseteq F^3 \bot \sqsubseteq \dots$

Una posible demostración

- 1. Lema: Si x_i es una ω -cadena, entonces x_{i+1} también lo es.
- 2. Lema: Las cadenas x_i y x_{i+1} tienen el mismo supremo.
- 3. Lema: Si $x_i \sqsubseteq y$, para todo $i \in \mathbb{N}$, entonces $\bigsqcup_{i \in \mathbb{N}} x_i \sqsubseteq y$.