CS3061 Artificial Intelligence I

Introduction

www.scss.tcd.ie/Tim.Fernando/AI

Key Phrases:

Can machines think?

- Turing test & ELIZA effect
- Al-complete

Agent & environment

- Cognitive Revolution & Big Data

Levels of intelligence

Can machines think? (Turing 1950)

Turing test: can C tell A from B?

From Wikipedia, (Juan Alberto Sánchez Margallo)

Intelligence operationalized: subject to testing

Can machines think? (Turing 1950)

Turing test: can C tell A from B?

From Wikipedia, (Juan Alberto Sánchez Margallo)

Intelligence operationalized: subject to testing ... cheating?

- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans e.g. when ATM says "thank you"

- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans e.g. when ATM says "thank you"

An Al problem is **Al-complete** if any Al problem is mechanically reducible to it (i.e., it is at least as hard as any other).

E.g. Natural Language Understanding

The town councilors refused to give the demonstrators a permit because they feared violence.

T. Winograd Who feared violence?

- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans e.g. when ATM says "thank you"

An AI problem is **AI-complete** if any AI problem is mechanically reducible to it (i.e., it is at least as hard as any other).

E.g. Natural Language Understanding

The town councilors refused to give the demonstrators a permit because they advocated violence.

Who advocated violence?

T. Winograd

- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans e.g. when ATM says "thank you"

An AI problem is **AI-complete** if any AI problem is mechanically reducible to it (i.e., it is at least as hard as any other).

E.g. Natural Language Understanding

The town councilors refused to give the demonstrators a permit because they advocated violence.

T. Winograd

Caution: Programs may appear to work better than they do **Siri rage** (Urban dictionary):

When you get enraged because Siri just doesn't get it.

Locating intelligence (black box)

Intelligence: (abilities, goals, ..., experience) \mapsto action

Locating intelligence (black box)

Intelligence: (abilities, goals, ..., experience) \mapsto action Turing test: what to say \rightsquigarrow what to do

Between agent and environment

agent	environment
program	data
Cognitive Revolution	Big Data
hard-wired	experienced
rationalist	empiricist
nativist	behaviorist
innate	tabula rasa
nature	nurture

Turing machine & specialized automaton

Between agent and environment

agent	environment
program	data
Cognitive Revolution	Big Data
hard-wired	experienced
rationalist	empiricist
nativist	behaviorist
innate	tabula rasa
nature	nurture

Turing machine & specialized automaton

Learning (from environment) trial & error: "data as oil"

Between agent and environment

agent	environment
program	data
Cognitive Revolution	Big Data
hard-wired	experienced
rationalist	empiricist
nativist	behaviorist
innate	tabula rasa
nature	nurture

Turing machine & specialized automaton

Learning (from environment) trial & error: "data as oil"

Moving target: changing agent & environment e.g. change in state

What & how

unstructured information $\,\leadsto\,$ actionable knowledge Demis Hassabis

From web.stanford.edu/class/cs221 (Autumn 2016, 2017)

From web.stanford.edu/class/cs221 (Autumn 2016, 2017)

Back in Trinity

Undergraduate ML modules

- CS4404 Machine Learning Michaelmas Term (5 ECTS)
- CS4LL5 Advanced Computational Linguistics Michaelmas Term (5 ECTS) unsupervised ML for natural language processing

Back in Trinity

Undergraduate ML modules

- CS4404 Machine Learning Michaelmas Term (5 ECTS)
- CS4LL5 Advanced Computational Linguistics Michaelmas Term (5 ECTS) unsupervised ML for natural language processing

CS3061: a taste building on CS3011 (Prolog)

- ▶ logic & agents as Turing machines
- search
- + Q-learning & Markov decision processes
- Constraint satisfaction
- + Bayesian networks