Informatica Teorica

Mauro Tellaroli

Indice

0	Intr	$\mathbf{roduzione}$													2	2
1	Pre	requisiti mate	matici												;	3
2	Teo	ria della calcol													ţ	
	2.1	Sistema di calc	olo $\mathscr C$		 									 		
	2.2	Potenza compu	tazionale di $\mathscr C$		 									 		
	2.3	Cardinalità di i	insiemi infiniti		 									 		
		2.3.1 Relazion	ne binaria		 									 	. (6
		2.3.2 Relazion	ne di equivalenza	a.	 									 	. (Ć
		2.3.3 Classe of	li equivalenza .		 									 	. (Ć
			isomorfi													
			numerabili													
		2.3.6 Insiemi	non numerabili		 									 		1
	2.4	Esistono funzio	ni non calcolabi	li?	 									 	. 8	
		2.4.1 DATI n	umerabile		 									 	. (

0 Introduzione

L'informatica è la disciplina che studia l'informazione e la sua elaborazione **automatica**. L'elaborazione in questione non è legata a nessun mezzo, si tratta quindi di una qualsiasi elaborazione che può avvenire con o senza un computer.

Obiettivo di questo corso è rispondere a due domande:

- 1. Cosa è calcolabile automaticamente? \rightarrow Teoria della calcolabilità
- 2. Quanto "costa" risolvere un problema? \rightarrow Teoria della complessità

1 Prerequisiti matematici

Classi di funzioni $f: A \to B$

Iniettive

f è iniettiva se $\forall a_1, a_2 \in A : a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$

Surjettive

f è suriettiva se $\forall b \in B \ \exists a \in A : f(a) = b$

Biettive

f è biettiva se è sia iniettiva che suriettiva.

Composizione di funzioni

Date $f:A\to B$ e $g:B\to C$, si definisce f composto g come la funzione $g\circ f:A\to C$ come:

$$g \circ f(a) = g(f(a))$$

La composizione non è un operatore commutativo.

Funzioni parziali e totali

La notazione $f(a)\downarrow$ indica che la funzione è definita su a, ovvero che esiste un valore b del codominio tale che f(a)=b.

Al contrario, la notazione $f(a)\uparrow$ indica che la funzione **non** è definita su a.

Una funzione $f:A\to B$ definita su tutto il suo dominio è detta totale. Se invece esistono dei valori del dominio nei quali f non è definita, f è detta parziale:

$$f \text{ è totale se } \forall a \in A \quad f(a) \downarrow$$

$$f$$
 è **parziale** se $\exists a \in A : f(a) \uparrow$

Campo di esistenza

Dalla definizione di funzione parziale si intuisce come l'insieme di tutti i valori nel quale la funzione $f: A \to B$ è definita, non sempre coincide con il dominio A. Questo insieme è detto campo di esistenza di f e si denota con Dom_f :

$$Dom_f = \{a \in A : f(a)\downarrow\} \subseteq A$$

Totalizzazione di una funzione parziale

Presa una funzione $f: A \to B$ parziale, la si può totalizzare, ovvero rendere totale, aggiungendo al codominio un valore \bot che rappresenta il caso indefinito:

$$f: A \to B \xrightarrow{\text{totalizzazione}} f: A \to B \cup \{\bot\}$$

$$f(a) = \begin{cases} f(a) & a \in Dom_f \\ \bot & \text{altrimenti} \end{cases}$$

L'insieme $B \cup \{\bot\}$ viene abbreviato con B_{\bot} .

Prodotto cartesiano

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

L'operatore \times non gode della proprietà commutativa.

$$\underbrace{A \times A \times \cdots \times A}_{n \text{ volte}} = A^n$$

Insiemi di funzioni

Tutte le funzioni che vanno da A a B è detto B^A :

$$B^A = \{f : A \to B\}$$

$$B_{\perp}^{A} = \{ f : A \to B_{\perp} \}$$

Funzione di valutazione

Si definisce funzione di valutazione $\omega: B_\perp^A \times A \to B$ con:

$$w(f, a) = f(a)$$

- Fissando a provo tutte le funzioni su a;
- Fissando f ottengo il suo grafico.

2 Teoria della calcolabilità

Sistema di calcolo $\mathscr C$

Si vuole modellare matematicamente un calcolatore o sistema di calcolo \mathscr{C} :

$$x \in \mathrm{DATI} \longrightarrow \\ P \in \mathrm{PROG} \longrightarrow \mathscr{C} \longrightarrow y \ / \ \bot$$

La figura mostra il sistema di calcolo $\mathscr C$ che, preso un programma P su input x, restituisce in output il risultato y o il valore \perp se il programma va in loop.

DATI è l'insieme di tutti i possibili dati di input e PROG l'insieme di tutti i possibili programmi.

Il sistema di calcolo $\mathscr C$ non fa altro che eseguire il programma P su input x ricavandone il risultato

$$\mathscr{C}: PROG \times DATI \to DATI_{\perp} \tag{1}$$

Quello che fa il programma P è trasformare il dato di input x in un dato di output y; si può quindi dire che un programma non è altro che una funzione che agisce da DATI in DATI:

La funzione associata al programma P è detta semantica di P.

Da (1) e (2) si ottiene che:

$$\mathscr{C}: \mathrm{DATI}^{\mathrm{DATI}}_{\perp} \times \mathrm{DATI} \to \mathrm{DATI}_{\perp}$$

 \mathscr{C} è una funzione di valutazione; $\mathscr{C}(P,x)$ è infatti la semantica di P.

2.2 Potenza computazionale di \mathscr{C}

Si definisce potenza computazionale di \mathscr{C} :

$$F(\mathscr{C}) = {\mathscr{C}(P, \underline{\ }) : P \in PROG} \subseteq DATI_{\bot}^{DATI}$$

 $F(\mathscr{C})$ contiene tutto ciò che un qualsiasi sistema di calcolo \mathscr{C} può calcolare. Quindi, per stabilire cosa l'informatica può risolvere, basta stabilire il carattere dell'inclusione:

- $F(\mathscr{C}) \subset \mathrm{DATI}^{\mathrm{DATI}}_{+} \Rightarrow$ esistono problemi che l'informatica non può risolvere;
- $F(\mathscr{C}) = \mathrm{DATI}^{\mathrm{DATI}}_{\perp} \Rightarrow$ l'informatica può risolvere tutto.

Cardinalità di insiemi infiniti

Per riuscire a capire se l'inclusione $F(\mathscr{C})\subseteq \mathrm{DATI}^{\mathrm{DATI}}_{\perp}$ sia propria o meno, si confronterà la cardinalità dei due insiemi. Infatti dalla cardinalità si può ricavare che:

• Se
$$|F(\mathscr{C})| < |DATI_{\perp}^{DATI}| \Rightarrow F(\mathscr{C}) \subset DATI_{\perp}^{DATI};$$

$$\begin{split} \bullet & \text{ Se } |F(\mathscr{C})| < \left| \text{DATI}_{\perp}^{\text{DATI}} \right| \quad \Rightarrow \quad F(\mathscr{C}) \subset \text{DATI}_{\perp}^{\text{DATI}}; \\ \bullet & \text{ Se } |F(\mathscr{C})| = \left| \text{DATI}_{\perp}^{\text{DATI}} \right| \quad \Rightarrow \quad F(\mathscr{C}) = \text{DATI}_{\perp}^{\text{DATI}}. \\ \end{split}$$

Il concetto di cardinalità è semplice quando si tratta di insiemi finiti: basta contare il numero di elementi che compongono l'insieme. Tuttavia, in presenza di insiemi infiniti le cose si complicano.

Per esempio, si confrontino \mathbb{N} e \mathbb{R} : entrambi hanno cardinalità infinita ($|\mathbb{N}| = |\mathbb{R}| = \infty$) eppure $\mathbb{N} \subset \mathbb{R}!$ Per comprendere quindi meglio la cardinalità di insiemi infiniti si dovrà andare più nel dettaglio.

2.3.1 Relazione binaria

Si definisce relazione binaria R sull'insieme A, un elenco di coppie ordinate di elementi di A: $R \subseteq A^2$. Due elementi $a, b \in A$ sono in relazione R se $(a, b) \in R$. Si usa la notazione:

- a R b: $a \grave{e}$ in relazione R con b;
- $a \not R b$: $a \text{ non } \grave{e} \text{ in relazione } R \text{ con } b$;

2.3.2 Relazione di equivalenza

 $R \subseteq A^2$ è una relazione di equivalenza se gode di:

- 1. Riflessività: $\forall a \in A \quad a \ R \ a$
- 2. Simmetria: $\forall a, b \in A \quad a \ R \ b \Leftrightarrow b \ R \ a$
- 3. Transitività: $\forall a, b, c \in A$ $a R b \land b R c \Rightarrow a R c$

2.3.3 Classe di equivalenza

Si definisce classe di equivalenza $[a]_R$ l'insieme degli elementi in relazione R con a:

$$[a]_R = \{b \in A : a \ R \ b\}$$

Tutte le classi di equivalenza di R formano una partizione di A. L'insieme A partizionato attraverso le classi di equivalenza di R è detto **quoziente** di A rispetto a R ed è denotato da A/R.

Esempio

Si consideri la relazione $\equiv_4 \subseteq \mathbb{N}^2$ di equivalenza modulo 4. Due numeri sono in relazione di equivalenza modulo 4 se il resto della divisione per 4 è uguale per entrambi.

$$5 \equiv_4 9$$
, $10 \equiv_4 2$, ...

Le classi di equivalenza sono:

$$[0]_4 = \{4k\}$$
 (Multipli di 4)
 $[1]_4 = \{4k+1\}$ (Resto 1)
 $[2]_4 = \{4k+2\}$ (Resto 2)
 $[3]_4 = \{4k+3\}$ (Resto 3)

L'insieme $\{[0]_4, [1]_4, [2]_4, [3]_4\} = \mathbb{N}/\equiv_4$ è una partizione di \mathbb{N} .

2.3.4 Insiemi isomorfi

Due insiemi A e B sono **isomorfi** (o equinumerosi) se esiste una funzione biettiva tra essi. Formalmente si indica con:

$$A \sim B$$

La relazione di isomorfismo \sim è una relazione di equivalenza in quanto:

- 1. Riflessiva: si usi la funzione identità;
- 2. Simmetrica: se esiste una funzione biettiva allora anche la sua inversa è biettiva;
- 3. Transitiva: la composizione di due funzioni biettive è una funzione biettiva.

Sia \mathscr{U} l'insieme universo, ovvero l'insieme che contiene tutti gli insiemi. Il quoziente di \mathscr{U} rispetto a $\sim (\mathscr{U}/\sim)$ definisce il concetto di cardinalità:

Ogni partizione di $^{\mathscr{U}}/\sim$ contiene gli insiemi tra loro isomorfi, ovvero che hanno la stessa cardinalità.

Insiemi finiti

Si definisca la famiglia di insiemi:

$$J_n = \begin{cases} \emptyset & n = 0 \\ \{1, \dots, n\} & n > 0 \end{cases}$$
$$J_0 = \{\}, J_1 = \{1\}, J_2 = \{1, 2\}, J_3 = \{1, 2, 3\}, \dots$$

Un'insieme A ha cardinalità finita se $\exists n \in \mathbb{N} : A \sim J_n$ e si può dire che |A| = n.

Insiemi infiniti

Un insieme che non è finito ha cardinalità infinita.

2.3.5 Insiemi numerabili

Un insieme A è numerabile se $\mathbb{N} \sim A$ (ovvero $A \in [\mathbb{N}]_{\sim}$). Vuole quindi dire che esiste una biezione $f : \mathbb{N} \to A$ che permette di listare A come:

$$A = \{f(0), f(1), f(2), \dots\}$$

senza tralasciare nessun elemento.

Esempi

PARI : f(n) = 2nDISPARI : f(n) = 2n + 1

 $\{0\} \cup 1\{0,1\}^*$: converto da binario a decimale

2.3.6 Insiemi non numerabili

Gli insiemi non numerabili sono insiemi a cardinalità infinita ma non listabili come \mathbb{N} (sono "più fitti"). Il re di questi insiemi è \mathbb{R} .

Teorema 1. \mathbb{R} è un insieme non numerabile:

 $\mathbb{N} \sim \mathbb{R}$

Dimostrazione. Per dimostrarlo dimostro che:

1. $\mathbb{R} \sim (0,1)$: la biezione è rappresentata graficamente in figura:

(In realtà \mathbb{R} è isomorfo a un suo qualsiasi intervallo).

2. $\mathbb{N} \nsim (0,1)$: dimostrazione per assurdo: assumo che $\mathbb{N} \sim (0,1)$; Questo vorrebbe dire che tutti i numeri compresi tra 0 e 1 sono numerabili. Elenco tutti i numeri associandoli a un numero naturale:

 $0 \mapsto 0.a_{00} \ a_{01} \ a_{02} \ a_{03} \ a_{04} \ \dots$

 $1 \mapsto 0.a_{10} \ a_{11} \ a_{12} \ a_{13} \ a_{14} \ \dots$

 $2 \mapsto 0.a_{20} \ a_{21} \ a_{22} \ a_{23} \ a_{24} \ \dots$

 $3 \mapsto 0.a_{30} \ a_{31} \ a_{32} \ a_{33} \ a_{34} \ \dots$

 $4 \mapsto 0.a_{40} \ a_{41} \ a_{42} \ a_{43} \ a_{44} \ \dots$

: : : : : · · ·

 a_{ij} è la i-esima cifra dopo lo zero del j-esimo numero nella lista.

Se (0,1) fosse numerabile tutti i suoi numeri dovrebbero far parte della lista.

Si consideri il numero:

 $0.c_0c_1c_2c_3...$

con:

$$c_i = \begin{cases} 2 & a_{ii} \neq 2\\ 3 & a_{ii} = 2 \end{cases}$$

Chiaramente $0.c_0c_1c_2c_3\cdots \in (0,1)$ ma non appare nella lista:

- Differisce dal primo numero perchè $c_0 \neq a_{00}$;
- Differisce dal secondo numero perchè $c_1 \neq a_{11}$;
- .
- Differisce da qualunque numero nella lista sulla cifra diagonale.

Ho trovato l'assurdo quindi $\mathbb{N} \sim (0,1)$ (dimostrazione per diagonalizzazione).

Sfruttando la transitività di \sim posso si può affermare quindi che:

$$\mathbb{R} \underset{(1)}{\sim} (0,1) \underset{(2)}{\nsim} \mathbb{N} \quad \Rightarrow \quad \mathbb{R} \nsim \mathbb{N}$$

Tutti gli insiemi isomorfi a $\mathbb R$ sono detti continui. Altri insiemi non numerabili sono:

- Insieme delle parti di \mathbb{N} : $2^{\mathbb{N}} = \{\text{sottoinsiemi di } \mathbb{N}\}$
- Insieme delle funzioni da \mathbb{N} a \mathbb{N} : $\mathbb{N}^{\mathbb{N}}_{\perp} = \{f : \mathbb{N} \to \mathbb{N}_{\perp}\}$

2.4 Esistono funzioni non calcolabili?

Ora che il concetto di cardinalità è più chiaro, si riprenda il concetto di potenza computazionale di un sistema di calcolo \mathscr{C} (paragrafo 2.2):

$$F(\mathscr{C}) = \{\mathscr{C}(P, \underline{\ }) : P \in PROG\} \subseteq DATI_{\perp}^{DATI}$$

Per definizione $F(\mathscr{C})$ ha la stessa numerosità di PROG:

$$F(\mathscr{C}) \sim PROG$$

Ragionevolmente, ma non formalmente, si può notare che:

- PROG~ N: si prenda la stringa binaria con la quale il programma è salvato sul disco e si converta da binario a decimale;
- DATI $\sim \mathbb{N}$: si applichi lo stesso ragionamento del punto precedente.

Ne segue che:

$$\begin{split} F(\mathscr{C}) \sim \operatorname{PROG} \sim \mathbb{N} \nsim \mathbb{N}_{\perp}^{\mathbb{N}} \sim \operatorname{DATI}_{\perp}^{\operatorname{DATI}} \\ & \quad \quad \Downarrow \\ F(\mathscr{C}) \nsim \operatorname{DATI}_{\perp}^{\operatorname{DATI}} \\ & \quad \quad \Downarrow \\ F(\mathscr{C}) \subset \operatorname{DATI}_{\perp}^{\operatorname{DATI}} \end{split}$$

Quello che questa osservazione dice è che ho pochi programmi (\mathbb{N}) e troppe funzioni $(\mathbb{N}^{\mathbb{N}}_{\perp})$. Alla domanda "Esistono funzioni non calcolabili?" si può quindi rispondere con un sì!

2.4.1 DATI numerabile

Obiettivo di questa sezione è dimostrare formalmente che:

$$\mathrm{DATI} \sim \mathbb{N}$$

Vogliamo quindi trovare una biezione che è in grado di associare biunivocamente dei dati a un numero e quindi anche di ottenere i dati di partenza dal numero. Per farlo si userà il seguente teorema.

Teorema 2. $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}^+$

Dimostrazione. Si definisca la funzione coppia di Cantor \langle , \rangle :

$$\langle \ , \ \rangle : \mathbb{N} \times \mathbb{N} \to \mathbb{N}^+$$

 $\langle \ , \ \rangle$ associa biunivocamente una coppia di numeri x e y a un numero n:

$$\langle x, y \rangle = n$$

La mappa che $\langle \; , \; \rangle$ usa per assegnare i valori di ogni coppia viene descritta nelle seguenti tabelle:

$x \backslash y$	0	1	2	3	4
0	1	3	6	10	15
1	2	5	9	14	
2	4	8	13		
3	7	12			
4	11				
5	7				

Si vuole calcolare ora la forma analitica di $\langle \ , \ \rangle$; si prenda una generica coppia di numeri $\langle x,y \rangle$:

Per come è definita $\langle x,y\rangle$ (vedi tabella precedente) si ha che:

$$\langle x, y \rangle = \langle x + y, 0 \rangle + y$$
 (3)

Ora l'incognita da calcolare resta $\langle z,0\rangle$ che, si può ottenere come:

$$\langle z, 0 \rangle = \sum_{i=0}^{z} i + 1 = \frac{z(z+1)}{2} + 1$$
 (4)

Da (3) e (4) segue che:

$$\langle x,y\rangle = \langle x+y,0\rangle + y = \frac{(x+y)(x+y+1)}{2} + y + 1$$

 $\langle \ , \ \rangle$ si dimostra quindi mappare univocamente le coppie di numeri in numeri $(\mathbb{N}^2 \to \mathbb{N}^+)$. Si cercherà ora di mostrare il passaggio inverso, ovvero come riottenere la coppia di numeri dal numero risultante $(\mathbb{N}^+ \to \mathbb{N}^2)$.

Si definiscano le seguenti funzioni:

$$\langle x, y \rangle = n$$
 , $sin(n) = x$, $des(n) = y$

Da (3) si ha che:

$$y = \langle x, y \rangle - \langle x + y, 0 \rangle$$
$$= n - \langle x + y, 0 \rangle$$
$$= n - \langle \gamma, 0 \rangle$$

Il valore di γ è il più grande valore che, messo sulla prima colonna $(\langle \gamma, 0 \rangle)$ non supera n:

In conclusione:

$$des(x) = n - \langle \gamma, 0 \rangle$$

 $sin(x) = \gamma - des(x)$

La funzione coppia di Cantor $\langle \; , \; \rangle$ si è quindi mostrata essere una biezione tra \mathbb{N}^+ e \mathbb{N}^2 mostrando che i due insiemi hanno la stessa cardinalità.

È facile poi, partendo da $\langle \ , \ \rangle$, creare una biezione tra \mathbb{N} e \mathbb{N}^2 (dimostrando che $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$):

$$[,]: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$[x,y] = \langle x,y \rangle - 1$$

Il precedente risultato mette alla luce anche che:

$$\mathbb{O} \sim \mathbb{N}$$

in quanto ogni suo elemento non è altro che una coppia di numeri messi a frazione.