Unidad 2: Gestión de Procesos

Tema 5: Planificación de procesos.

- 5.1 Criterios y tipos de planificación.
- 5.2 Algoritmos de planificación.
- 5.3 Métodos multicolas y multiprocesadores.
- 5.4 Evaluación de políticas de planificación.

Introducción:

- Objetivo de la multiprogramación:
 - Tener un proceso en ejecución en todo momento para un mayor aprovechamiento de la CPU.
- En un sistema monoprocesador nunca habrá más de un proceso en ejecución. Si hay más procesos, tendrán que esperar a que la CPU quede libre para reasignarse.
- Para un mayor aprovechamiento, se mantienen varios procesos en memoria a la vez. Cuando un proceso necesita esperar, el SO le quita la CPU y se la da a otro proceso.
- Casi todos los recursos del computador se planifican antes de usarse; la planificación es fundamental en el diseño de un SO.

- Ciclo de ráfagas de CPU y E/S:
 - La ejecución de un proceso consiste en un ciclo de ejecución alternando de manera sucesiva:
 - Ráfagas de CPU (que inician el proceso), durante las cuales el proceso ejecuta instrucciones.
 - Ráfagas de E/S, durante las cuales el proceso utiliza o espera por la E/S.
 - Se ha medido la duración de las ráfagas de CPU y resulta que varían considerablemente de un proceso a otro y de un procesador a otro, sin embargo tienden a tener una curva de frecuencia bien tipificada.

- Ciclo de ráfagas de CPU y E/S:
 - Histograma de tiempos de ráfaga de CPU:
 - Se observa:
 - Gran nº de ráfagas de CPU cortas y pocas ráfagas de CPU largas.
 - Ráfagas de CPU cortas: programas limitados por E/S.
 - Ráfagas de CPU largas: programas limitados por CPU.

Escuela Universitaria de Informática (Segovia)

- Planificación expropiativa:
 - Las decisiones de planificación de CPU se toman según las cuatro situaciones siguientes:
 - 1. Cuando un proceso pasa del estado en ejecución a en espera.
 - 2. Cuando un proceso pasa del estado en ejecución a listo.
 - 3. Cuando un proceso pasa del estado en espera al estado listo.
 - 4. Cuando un proceso termina.
 - Los casos 1 y 4 corresponden a una planificación no expropiativa (a la fuerza hay que escoger un nuevo proceso).
 - Los casos 2 y 3 corresponden a una planificación expropiativa.

- Criterios de planificación:
 - Utilización de CPU: % de tiempo que la CPU está ocupada.
 - Rendimiento: nº de procesos, trabajos, que se completan por unidad de tiempo.
 - **Tiempo de retorno:** tiempo transcurrido entre la llegada de un proceso y su finalización.
 - **Tiempo de espera:** tiempo que un proceso permanece en la cola de preparados.
 - **Tiempo de respuesta:** tiempo que un proceso bloqueado tarda en entrar en la CPU desde que ocurre el suceso que lo bloquea.

- Criterios de planificación:
 - Posibles objetivos de la planificación:
 - Minimizar el tiempo medio de espera o de retorno.
 - Maximizar la utilización de CPU.
 - Mantener el tiempo de respuesta por debajo de un valor máximo.
 - En sistemas interactivos, como los sistemas de tiempo compartido, se consideran también la estadística (las medias) de esas magnitudes.
 - No existe ninguna política de planificación óptima. La bondad de un método depende de:
 - Tipo de procesos.
 - Criterio.

- FCFS (First Come, First Served).
- SJF (Shortest Job First) o SPN (Shortest Process Next).
- SRTF (Shortest Remaining Time First).
- Planificación por prioridad.
- Planificación por turno circular, RR (Round Robin).
- Realimentación.
- HRRN (Highest Response Ratio Next).

- FCFS (First Come, First Served), ejemplo:
 - Planificación de servicio por orden de llegada.
 - Calcular el tiempo de espera, tiempo de retorno y tiempo medio de espera si aplicamos el algoritmo FCFS suponiendo que los procesos siguientes llegan en el mismo instante y en el orden: P1, P2, P3.
 - ¿Y si el orden de llegada es: P2, P3, P1?.

Proceso	Duración		
P1	9		
P2	4		
P3	2		

FCFS, ejemplo:

Proceso	Duración
P1	9
P2	4
P3	2

Tiempos de espera: P1=0; P2=9; P3=13 Tiempos de retorno: P1=9; P2=13; P3=15

t. espera medio: (0+9+13)/3 = 7.3

Si P1 hubiera llegado el último, los tiempos hubieran mejorado bastante (espera media=3.3):

- FCFS:
 - Planificación de servicio por orden de llegada.
 - Es el algoritmo más sencillo, el primer proceso que solicita la CPU es el primero en recibirla.
 - Fácil de implementar con una política FIFO para la cola de preparados.
 - Tiempo de espera promedio bastante largo.

- SJF (Shortest Job First), ejemplo:
 - Primero el trabajo más corto.
 - Calcular el tiempo medio de espera que resulta de aplicar:
 - Un algoritmo SJF no expulsivo.
 - Un algoritmo SJF expulsivo (SRTF, Shortest Remaining Time First).

Proceso	Llegada	Duración	
P1	0	7	
P2	2	4	
Р3	4	1	
P4	5	4	

■ SJF, ejemplo:

Proceso	Llegada	Duración	espera SJF	espera SRTF
P1	0	7	0	9
P2	2	4	6	1
P3	4	1	3	0
P4	5	4	7	2

SJF:

- Entra en la CPU el proceso con la ráfaga de CPU más corta.
- Minimiza el tiempo de espera medio.
- Riesgo de inanición de los procesos de larga duración.
- No es implementable. Se pueden estimar las duraciones de los procesos, según su historia reciente.
- Versión expulsiva (SRTF): el proceso en CPU es desalojado si llega a la cola un proceso con duración más corta.

- Planificación por prioridad:
 - Cada proceso tiene una prioridad, entrará primero en la CPU el que tenga mayor prioridad.
 - Política de prioridades expulsiva o no.
 - La prioridad se puede definir:
 - De forma interna, la define el SO.
 - De forma externa, la definen los usuarios.
 - SJF es un caso de planificación por prioridad.
 - Los procesos de prioridad más baja tienen riesgo de inanición.
 - Solución: envejecimiento. Ir aumentando de forma progresiva la prioridad de los procesos en espera.

- Planificación por turno circular:
 - RR (Round Robin):
 - Adecuado para implementar tiempo compartido.
 - Comportamiento como FCFS, con la diferencia de que cada proceso dispone de un cuanto de tiempo máximo.
 - Si cuando expira el cuanto de tiempo el proceso continúa en CPU, el planificador lo desaloja y lo ingresa al final de la cola de preparados.
 - La cola de preparados se gestiona como FIFO.
 - Según sea el cuanto de tiempo, Q:
 - Si Q es muy grande, los procesos terminan sus ráfagas de CPU antes de que termine el cuanto: se comporta como un FCFS.
 - Si Q=>0, se tiende a un sistema en el que cada proceso dispone de un procesador a 1/N de la velocidad del procesador real (procesador compartido).
 - Si Q es muy pequeño se suceden constantemente los cambios de contexto y del rendimiento disminuye mucho.

- Planificación con colas de múltiples niveles:
 - Distinguimos entre procesos que pueden tener distintas necesidades en cuanto al tiempo de respuesta y por tanto distintas necesidades de planificación.
 - Procesos que se ejecutan en primer plano o interactivos.
 - Procesos que se ejecutan en segundo plano o por lotes.

Escuela Universitaria de Informática (Segovia)

- Planificación con colas de múltiples niveles:
 - Un algoritmo de planificación con colas de múltiples niveles divide la cola de procesos listos en varias colas.
 - Cada cola tiene su propio algoritmo de planificación.
 - Existirá, por tanto, una planificación entre colas.
 - Las colas se pueden planificar según:
 - Planificación expropiativa de prioridades fijas.
 - Dividiendo el tiempo de CPU entre las colas.

- Planificación con colas de múltiples niveles y realimentación:
 - Se permite que un proceso pase de una cola a otra.
 - Si un proceso gasta demasiado tiempo de CPU, se le pasa a una cola de menor prioridad.
 - Si un proceso espera mucho tiempo en una cola de baja prioridad se le puede pasar a una de mayor prioridad, evitando la inanición. (Caso del sistema UNIX)

- Planificación con colas de múltiples niveles y realimentación:
 - Un planificador de colas multinivel con realimentación está definido por los siguientes parámetros:
 - El número de colas.
 - El **algoritmo de planificación** para cada cola.
 - Los métodos para determinar cuando mover un proceso a una cola de distinta prioridad a la que ocupa.
 - El método para determinar en qué cola ingresará un proceso.

- Planificación en multiprocesadores:
 - Varias CPU => planificación más compleja.
 - Supondremos procesadores de igual funcionamiento:
 - Cualquier procesador disponible podrá ejecutar cualquier proceso de la cola.
 - Uso de cola común para todos los procesos:
 - No habrá procesadores ociosos con su cola vacía.
 - No habrá procesadores con muy alta ocupación.
 - Dos posibles estrategias:
 - Cada procesador se autoplanifica, asegurándonos de que:
 - Dos procesadores no escojan el mismo proceso.
 - No se quede ningún proceso sin escoger.
 - Un procesador actúa como planificador de los demás procesadores.

¿Cómo escoger el algoritmo de planificación a utilizar?

Criterios de evaluación de un algoritmo:

- Grado de utilización de la CPU.
- Tiempo de respuesta.
- · Rendimiento.

Evaluación de políticas:

- Modelado determinista.
- Modelos de colas (estadísticos).
- Simulaciones.
- · Implementación.

- Modelado determinista:
 - Evaluación analítica de algoritmos: se calcula el desempeño de un algoritmo teniendo en cuenta la carga de trabajo del sistema:
 - 1. Se definen los criterios de rendimiento.
 - 2. Se buscan los algoritmos candidatos.
 - 3. Se establece una carga de trabajo representativa del sistema.
 - 4. Para cada algoritmo:
 - Sometemos la carga de trabajo a su planificación.
 - Evaluamos su rendimiento en función de los criterios de 1.
 - 5. Seleccionamos el que mejor se comporte.

- Modelado determinista:
 - Características:
 - Cómodo de realizar.
 - Proporciona magnitudes exactas con las que comparar los algoritmos.
 - Limitación de su validez en cuanto a que se le somete a una carga concreta de trabajo.

- Modelos de colas:
 - Metodología:
 - Determinación de la distribución (estadística) de ráfagas de CPU y de E/S.
 - Distribución de los tiempos de llegada al sistema.
 - Resultado: probabilidad de una ráfaga de CPU dada.
 - Distribución exponencial que se describe en términos de su media.
 - · Cálculos de:
 - Rendimiento promedio.
 - Tiempo de espera ...
 - Sistema informático como:
 - Red de servidores, cada servidor con su cola de procesos en espera

Simulaciones:

- Programación de un modelo del sistema de computación.
- Generación de datos: generador de números aleatorios modificado para generar:
 - Procesos.
 - Tiempo de ráfagas de CPU.
 - · Llegadas, partidas, ...

Problemas:

- Simulaciones costosas, requieren mucho tiempo y recursos.
- Cintas de rastreo, registran secuencias de sucesos reales, requieren mucho espacio de almacenamiento.
- Tarea compleja de diseño, codificación y depuración del simulador.

- Implementación:
 - Método más fiable, forma exacta de evaluar un algoritmo de planificación.
 - Metodología:
 - · Codificarlo.
 - · Colocarlo en el SO.
 - Probar su funcionamiento.
 - Problema:
 - Coste elevado:
 - Modificación del SO.
 - Dificultar el trabajo de los usuarios, puesto que el SO está en continuo cambio.

Solución:

- Plantear un esquema híbrido del tipo:
 - 1. Análisis preliminar de las políticas candidatas mediante modelos deterministas.
 - 2. Simulación de la opción u opciones más ventajosas.
 - 3. Implementación de la opción óptima:
 - Primero en un sistema de desarrollo (pruebas).
 - Finalmente en un sistema de producción.

Problema:

- Entorno dinámico y variable (nuevos programas, nuevos problemas).
- Característica deseada: Planificación flexible, separación clara entre mecanismos y políticas.