Class 3: Well-Ordering Principle

Schedule

This week, you should read MCS Chapter 2 and MCS Chapter 3 (at least through the end of Section 3.4).

Problem Set 1 is due Friday at 6:29pm.

Office hours started Monday. There are upcoming office hours: today (Tuesday) 3:30-5pm and 7:30-9:30pm; Wednesday 10am-1pm, 2:30-4pm, 6:30-9:30pm (all of these are in Rice 436), and Dave has office hours Wednesday 1-2pm (in Rice 507). See the course calendar for the full office hours schedule.

Notes and Questions

Definition. A set is *well-ordered* with respect to an ordering function (e.g., <), if any of its non-empty subsets has a minimum element.

What properties must a sensible ordering function have?

Trichotomy. A relation, \prec , satisfies the axiom of trichotomy if exactly one of these is true for all elements a and b: $a \prec b$, $b \prec a$ or a = b.

Which of these are well-ordered?

- The set of non-negative integers, comparator <.
- The set of integers, comparator <.
- The set of integers, comparator |a| < |b|.
- The set of integers, comparator if |a| = |b|: a < b, else: |a| < |b|.
- The set of national soccer teams, comparator winning games.

Prove the set of positive rationals is *not* well-ordered under <.

Provide a comparison function that can be used to well-order the positive rationals.

Template for Well-Ordering Proofs (Section 2.2)

To prove that $P(n)$	is true for all $n \in \mathbb{N}$:

- 1. Define the set of counterexamples, $C := \{n \in \mathbb{N} | NOT(P(n)) \}$.
- 2. Assume for contradiction that *C* is ______.
- 3. By the well-ordering principle, there must be ______, $m \in C$.
- 4. Reach a contradiction (this is the creative part!). One way to reach a contradiction would be to show P(m). Another way is to show there must be an element $m' \in C$ where m' < m.
- 5. Conclude that C must be empty, hence there are no counter-examples and P(n) always holds.

Example: Betable Numbers. A number is *betable* if it can be produced using some combination of \$2 and \$5 chips. Prove that all integer values greater than \$3 are betable.

Example: Division Property. Given integer a and positive integer b, there exist integers q and r such that: a = qb + r and $0 \le r < b$.

The whole problem with the world is that fools and fanatics are always so certain of themselves, and wiser people so full of doubts. Bertrand Russell