

Number Systems

Number system	Base	Coefficients
Decimal	10	0 – 9
Binary	2	0,1
Octal	8	0 – 7
Hexadecimal	16	0 - 9, $A - F$

Binary Shop

Base conversion

- From any base-r to Decimal
- From Decimal to any base-r
- From Binary to either Octal or Hexadecimal
- From either Octal or Hexadecimal to Binary

Binary to octal or hexadecimal

Binary To Octal

Procedure:

Partition binary number into groups of 3 digits

Example:

• (10110001101011.111100000110)₂

Binary to octal or hexadecimal 10 110 001 101 011 . 111 100 000 110 2

Binary to octal or hexadecimal

Binary To Hexadecimal

Procedure:

Partition binary number into groups of 4 digits

Example:

• (10110001101011.111110010)₂

= ______ 1*c*

Binary to octal or hexadecimal

Octal or hexadecimal to binary

Octal To Binary

Procedure:

 Each octal digit is converted to its 3digit binary equivalent

Example: $(673.124)_8 = _____2$

Octal or hexadecimal to binary

Hexadecimal to Binary

Procedure:

 Each hexadecimal digit is converted to its 4-digit binary equivalent

Example: $(306.D)_{16} = _____2$

Any Other Number System

In general, a number expressed in base-r has
r possible coefficients multiplied by powers of
r:

$$a_n r^n + a_{n-1} r^{n-1} + a_{n-2} r^{n-2} + ... + a_0 r^0 + a_{-1} r^{-1} + a_{-2} r^{-2} + ... + a_{-m} r^{-m}$$

where n = position of the coefficientcoefficients = 0 to r-1

Example Base 5 number

Base 5 number coefficients: 0 to r-1 (0, 1, 2, 3, 4)

• (324.2)₅

Example

Base 5 number coefficients: 0 to r-1 (0, 1, 2, 3, 4)

•
$$(324.2)_5$$

= $3 \times 5^2 + 2 \times 5^1 + 4 \times 5^0 + 2 \times 5^{-1}$
= 89.4_{10}

Example

Base 5 number coefficients: 0 to r-1 (0, 1, 2, 3, 4)

- $(324.2)_5$ = $3 \times 5^2 + 2 \times 5^1 + 4 \times 5^0 + 2 \times 5^{-1}$ = 89.4_{10}
- (4021)₅

Example

Base 5 number coefficients: 0 to r-1 (0, 1, 2, 3, 4)

- $(324.2)_5$ = $3 \times 5^2 + 2 \times 5^1 + 4 \times 5^0 + 2 \times 5^{-1}$ = 89.4_{10}
- $(4021)_5$ = $4 \times 5^3 + 0 \times 5^2 + 2 \times 5^1 + 1 \times 5^0$ = 511_{10}

Fixed-Point Representation

Unsigned Number

- leftmost bit is the most significant bit
- Example:
 - 01001 = 9
 - 11001 = 25

Fixed-Point Representation

Unsigned Number

- leftmost bit is the most significant bit
- Example:
 - 01001 = 9
 - 11001 = 25

Signed Number

- leftmost bit represents the sign
- Example:
 - 01001= +9
 - 11001= 9

Systems Used to Represent Negative Numbers

Signed-Magnitude Representation

 A number consists of a magnitude and a symbol indicating whether the magnitude is positive or negative.

Examples:

$$+85 = 01010101_{2}$$
 $-85 = 11010101_{2}$
 $+127 = 011111111_{2}$ $-127 = 111111111_{2}$

Systems Used to Represent Negative Numbers

Signed-Complement System

- This system negates a number by taking its complement as defined by the system.
- Types of complements:
 - Radix-complement
 - Diminished Radix-complement

Complements

Diminished RadixComplement

General Formula:

$$(r-1)$$
's C of N = $(r^n - r^{-m}) - N$

where

n = # of digits (integer)

m = # of digits (fraction)

r = base/radix

N =the given # in base-r

Radix Complement

General Formula:

r's C of
$$N = r^n - N$$

where

$$n = \#$$
 of bits

$$r = base/radix$$

Complements

Examples

- 9's C
 - 012390 = 987609
 - 54670.5 = 45329.4
- 10's C
 - 012390 = 987610
 - 54670.5 = 45329.5

Complements

Examples

- 9's C
 - 012390 = 987609
 - 54670.5 = 45329.4
- 10's C
 - 012390 = 987610
 - 54670.5 = 45329.5

Examples

- 1's C
 - 1101100 = 0010011
 - 0110111 = 1001000
- 2's C
 - 1101100 = 0010100
 - 0110111 = 1001001

Binary Codes

Code – a set of n-bit strings in which different bit strings represent different numbers or other things.

Binary codes are used for:

- Decimal numbers
- Character codes

Binary codes for decimal numbers

At least four bits are needed to represent ten decimal digits.

Some binary codes:

- BCD (Binary-coded decimal)
- Excess-3
- Biquinary

Binary codes for decimal numbers

BCD

- straight assignment of the binary equivalent
- weights can be assigned to the binary bits according to their position

Excess-3 Code

- unweighted code
- \bullet BCD + 3

Biquinary Code

- seven-bit code with error detection properties
- each decimal digit consists of 5 0's and 2 1's

Binary codes for the decimal digits

Decimal	BCD	Excess-3	84-2-1	2421	Biquinary
Digit	8421				5043210
0	0000	0011	0000	0000	0100001
1	0001	0100	0111	0001	0100010
2	0010	0101	0110	0010	0100100
3	0011	0110	0101	0011	0101000
4	0100	0111	0100	0100	0110000
5	0101	1000	1011	1011	1000001
6	0110	1001	1010	1100	1000010
7	0111	1010	1001	1101	1000100
8	1000	1011	1000	1110	1001000
9	1001	1100	1111	1111	1010000

Differences between Binary and BCD

- BCD is not a number system
- BCD requires more bits than Binary
- BCD is less efficient than Binary
- BCD is easier to use than Binary

Coding vs Conversion

Conversion

- bits obtained are binary digits
- Example: 13 = 1101

Coding

- bits obtained are combinations of 0's and 1's
- Example: 13 = 00010011

Character Code

American Standard
Code for Information
Exchange

- 7-bit code
- contains 94 graphic chars and 34 nonprinting chars

Extended Binary Coded Decimal Interchange Code

- 8-bit code
- last 4 bits range from 0000-1001

Gray code

It is a binary number system where two successive values differ in only one digit, originally designed to prevent spurious output from electromechanical switches.

Decimal	Binary code	Gray code
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

Number Representations

- No representation method is capable of representing all real numbers
- Most real values
 must be represented
 by an approximation

- Various methods can be used:
 - Fixed-point numbersystem
 - Rational numbersystem
 - Floating point number system
 - Logarithmic numbersystem

Fixed-point representation

- It is a method used to represent integer values.
- Disadvantages
 - Very small real numbers are not clearly distinguished
 - Very large real numbers are not known accurately enough

Floating-point Representation

- It is a method used to represent real numbers
- Notation:
 - Mantissa x Base exponent
- Example
 - 1 1000011 000100101100000000000000
 - = -300.0

Activity

01110111 01100101 01101100 01100011