Brief Description

In this notebook, we will predict scores based on the other parameters using Linear Regression

Import Libraries

```
In [42]: import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
   import matplotlib
   %matplotlib inline
   from sklearn.model_selection import train_test_split
```

Import the data

spi_matches.csv contains match-by-match SPI ratings and forecasts back to 2016.

Out[43]:

	date	league_id	league	team1	team2	spi1	spi2	prob1	prob2	probtie	
0	2016- 08-12	1843	French Ligue 1	Bastia	Paris Saint- Germain	51.16	85.68	0.0463	0.8380	0.1157	
1	2016- 08-12	1843	French Ligue 1	AS Monaco	Guingamp	68.85	56.48	0.5714	0.1669	0.2617	
2	2016- 08-13	2411	Barclays Premier League	Hull City	Leicester City	53.57	66.81	0.3459	0.3621	0.2921	
3	2016- 08-13	2411	Barclays Premier League	Crystal Palace	West Bromwich Albion	55.19	58.66	0.4214	0.2939	0.2847	
4	2016- 08-13	2411	Barclays Premier League	Everton	Tottenham Hotspur	68.02	73.25	0.3910	0.3401	0.2689	

5 rows × 22 columns

Remove unwanted features

Out[44]:

	spi1	spi2	prob1	prob2	probtie	proj_score1	proj_score2	importance1	importance
0	51.16	85.68	0.0463	0.8380	0.1157	0.91	2.36	32.4	67.
1	68.85	56.48	0.5714	0.1669	0.2617	1.82	0.86	53.7	22.
2	53.57	66.81	0.3459	0.3621	0.2921	1.16	1.24	38.1	22.
3	55.19	58.66	0.4214	0.2939	0.2847	1.35	1.14	43.6	34.
4	68.02	73.25	0.3910	0.3401	0.2689	1.47	1.38	31.9	48

There are 32292 records in the dataset. Let's see how many of them contain NaN

```
In [45]: df.isna().sum()
                              0
Out[45]: spi1
                              0
          spi2
          prob1
                              0
                              0
          prob2
          probtie
                              0
          proj_score1
                              0
          proj_score2
                              0
          importance1
                           8385
          importance2
                           8385
          score1
                           4113
          score2
                           4113
          xq1
                          16835
          xq2
                          16835
          nsxq1
                          16835
          nsxg2
                          16835
          adj score1
                          16835
                          16835
          adj_score2
          dtype: int64
```

```
In [46]: df=df.dropna()
    df.head()
```

Out[46]:

_		spi1	spi2	prob1	prob2	probtie	proj_score1	proj_score2	importance1	importance
_	0	51.16	85.68	0.0463	0.8380	0.1157	0.91	2.36	32.4	67.
	1	68.85	56.48	0.5714	0.1669	0.2617	1.82	0.86	53.7	22.
	2	53.57	66.81	0.3459	0.3621	0.2921	1.16	1.24	38.1	22.
	3	55.19	58.66	0.4214	0.2939	0.2847	1.35	1.14	43.6	34.
	4	68.02	73.25	0.3910	0.3401	0.2689	1.47	1.38	31.9	48.

```
In [47]:
         df.isna().sum()
Out[47]: spi1
                          0
          spi2
                          0
         prob1
                          0
         prob2
                          0
         probtie
                          0
         proj_score1
                          0
         proj_score2
          importance1
                          0
                          0
          importance2
                          0
          score1
         score2
                          0
         xg1
                          0
         xq2
         nsxq1
                          0
                          0
         nsxq2
          adj score1
                          0
          adj score2
                          0
          dtype: int64
In [48]: | dataframe_minus_score = df.drop(columns=['score1','score2'])
```

Split the test and train data

```
In [49]: T1X_train, T1X_test, T1Y_train, T1Y_test = train_test_split(datafra
    me_minus_score, df.score1, random_state=1)

In [50]: from sklearn.linear_model import LinearRegression
    T1_LR = LinearRegression()
    T1_LR.fit(T1X_train,T1Y_train)

Out[50]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
```

normalize=False)

```
In [51]: T1Predict_train = T1_LR.predict(T1X_train)
    T1Predict_test = T1_LR.predict(T1X_test)
```

Print Linear Regression Mean Square Error for Team 1

```
ict_train) ** 2),3)
print(LRTrainT1_Error)
LRTestT1_Error = round(np.mean(np.subtract(T1Y_test.values,T1Predict_test) ** 2),3)
print(LRTestT1_Error)

0.028
0.03

In [53]: plt.title('Residual Plot for Team 1 - Train:Green and Test:Yellow')
plt.scatter(T1Predict_train,np.subtract(T1Predict_train,T1Y_train.values),c='g')
plt.scatter(T1Predict_test,np.subtract(T1Predict_test,T1Y_test.values),c='y')
```

In [52]: LRTrainT1 Error = round(np.mean(np.subtract(T1Y train.values,T1Pred

Out[53]: <matplotlib.collections.PathCollection at 0x1a1a2875f8>

Print Linear Regression Mean Square Error for Team 2

```
In [54]: T2X_train, T2X_test, T2Y_train, T2Y_test = train_test_split(datafra
    me_minus_score, df.score2, random_state=1)
    T2_LR = LinearRegression()
    T2_LR.fit(T2X_train,T2Y_train)
```

0.017 0.018

Residual Plot

```
In [56]: plt.title('Residual Plot for Team 2 - Train:Red and Test:Yellow')
#plt.scatter(T2Y_train,np.subtract(T1Predict_train,T2Y_train.values
),c='b')
plt.scatter(T2Predict_train,np.subtract(T2Predict_train,T2Y_train.v
alues),c='r')
plt.scatter(T2Predict_test,np.subtract(T2Predict_test,T2Y_test.values),c='y')
```

Out[56]: <matplotlib.collections.PathCollection at 0x1a1a22f5f8>

Analysing the work done

SEEN DATA (Training Set)

I have chosen a team(team 1) and summarized the actual score, predicted score, the error that came up with linear regression and the root mean square error too.

```
In [57]: Team1_Score_predictor_seen = pd.DataFrame({ "Actual_Score": T1Y_tra
in, "Predicted_score": T1Predict_train})
Team1_Score_predictor_seen['Error']= abs(Team1_Score_predictor_seen
.Predicted_score-Team1_Score_predictor_seen.Actual_Score)
Team1_Score_predictor_seen['RMS_Error']= np.sqrt(((Team1_Score_pred
ictor_seen.Predicted_score-Team1_Score_predictor_seen.Actual_Score)
**2).mean())
Team1_Score_predictor_seen.head()
```

Out[57]:

	Actual_Score	Predicted_score	Error	RMS_Error
15337	3.0	3.138893	0.138893	0.168435
8677	1.0	1.037737	0.037737	0.168435
11113	3.0	3.082295	0.082295	0.168435
8501	1.0	0.927809	0.072191	0.168435
18456	0.0	0.014899	0.014899	0.168435

Analysis of errors

```
In [67]: m=Teaml_Score_predictor_seen['Error'].min()
k=Teaml_Score_predictor_seen['Error'].max()
n=Teaml_Score_predictor_seen['Error'].mean()
print(f"Min Error on prediction of seen data for team 1 scores: {m}
")
print(f"Max Error on prediction of seen data for team 1 scores: {k}
")
print(f"Mean Error on prediction of seen data for team 1 scores: {n}
}")
```

```
Min Error on prediction of seen data for team 1 scores: 2.49974125 5590493e-05

Max Error on prediction of seen data for team 1 scores: 1.96709978 44090934

Mean Error on prediction of seen data for team 1 scores: 0.1066628 6142508104
```

UNSEEN DATA (Test Set)

I have chosen a team(team 1) and summarized the actual score, predicted score, the error that came up with linear regression and the root mean square error too.

Out[59]:

	Actual_Score	Predicted_score	Error	RMS_Error
700	3.0	3.100006	0.100006	0.174641
17213	2.0	2.146320	0.146320	0.174641
17376	3.0	3.141952	0.141952	0.174641
15318	1.0	1.093803	0.093803	0.174641
25988	2.0	2.138932	0.138932	0.174641

Analysis of errors

```
In [60]: a=Team1_Score_predictor_unseen['Error'].min()
b=Team1_Score_predictor_unseen['Error'].max()
c=Team1_Score_predictor_unseen['Error'].mean()
print(f"Min Error on prediction of unseen data for team 1 scores: {
    a}")
    print(f"Max Error on prediction of unseen data for team 1 scores: {
    b}")
    print(f"Mean Error on prediction of unseen data for team 1 scores: {
    c}")
Min Error on prediction of unseen data for team 1 scores: 7.395870
```

Min Error on prediction of unseen data for team 1 scores: 7.395870 38012246e-06

Max Error on prediction of unseen data for team 1 scores: 2.055267 187256323

Mean Error on prediction of unseen data for team 1 scores: 0.10746 5800088584

```
In [ ]:
```

In []: