

CCNA 2 – Conceitos Básicos de Roteadores e Roteamento

Capítulo 6 - Roteamento e Protocolos de Roteamento

Objetivos do Capítulo

- Entender o conceito de protocolo de roteamento;
- Conhecer o roteamento estático;
- Conhecer as várias classes de protocolos de roteamento;
- Conhecer os fatores relevantes que se deve considerar na escolha do protocolo de roteamento.

Introdução ao Roteamento

- O roteamento é o processo realizado por um roteador para encaminhar dados entre redes e subredes.
- Para realizar o roteamento corretamente, o roteador utiliza o IP de destino para orientar os dados na rede e rotas configuradas estaticamente ou por um protocolo de roteamento dinâmico para definir o caminho dos dados.

Estático

Usa uma rota programada que um administrador de rede insere no roteador.

Dinâmico

Usa uma rota que um protocolo de roteamento ajusta automaticamente para modificações de tráfego e topologia

Modo de Operação de Rotas Estáticas

- Rotas estáticas são rotas configuradas manualmente pelo administrador da rede, porém para o roteador acrescentar a rota na tabela de roteamento é necessário que a interface de saída esteja ativa.
- As rotas estáticas são geralmente utilizadas para fins de backup de um roteamento dinâmico e para isso, é necessário configurar a rota com uma distância administrativa superior ao processo de roteamento dinâmico.

Configurando Rotas Estáticas

- Ao configurar rotas estáticas é aconselhável que o administrador siga as seguintes etapas:
 - Definir a interface local ou o endereço do próximo salto que leva ao destino desejado;
 - Entrar no modo de configuração global;
 - Digitar o comando ip route [rede de destino][máscara de destino] [interface local | ip do próximo salto] | [distância administrativa];
 - Repetir o item anterior para todas as redes de destino;
 - Sair do modo de configuração global;
 - Salvar as configurações com o comando copy running-config startup-config.

Configurando Rotas Default

- Uma rota padrão é configurada como um caminho para as redes de destino que não possuam uma entrada na tabela de roteamento.
- Uma rota padrão é geralmente configurada em roteadores que acessam as demais redes por apenas uma interface, ou para o tráfego destinado à Internet.

Sterling (config) **#ip route 0.0.0.0 0.0.0.0 S0**Esse comando aponta para todas as redes não diretamente conectadas

Verificando as Rotas Estáticas

- O comando **show running-config** é usado para visualizar a configuração ativa na RAM e verificar se as rotas estáticas foram configuradas corretamente.
- O comando **show ip route** é usado para confirmar se a rota estática está presente na tabela de roteamento.

Router#show ip route

```
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
```

P - periodic downloaded static route

Gateway of last resort is not set

```
C 11.0.0.0/8 is directly connected, Ethernet0 S 12.0.0.0/8 is directly connected, Serial1 S 13.0.0.0/8 is directly connected, Ethernet0 C 15.0.0/8 is directly connected, Serial1
```


Problemas de uma Rota Estática

- O comando show interfaces verifica o status da interface.
- O comando ping testa a conectividade física dos equipamentos.
- O comando traceroute testa a conectividade física dos equipamentos e exibe o caminho feito pelos pacotes.

```
Sterling#ping 172.16.5.1
Type escape sequence to abort.
Sending 5,100-byte ICMP Echos to 172.16.5.1,timeout is 2 seconds:
....
Success rate is 0 percent (0/5)

Sterling#traceroute 172.16.5.1
Type escape sequence to abort.
Tracing the route to 172.16.5.1

1 172.16.2.2 16 msec 16 msec 16 msec
2 172.16.4.2 32 msec 28 msec *
3 * * * *
4 * * * *
5 * * * *
```


- Os **protocolos de roteamento** permitem ao roteador compartilhar informações com outros roteadores sobre as redes que ele conhece.
- São exemplos de protocolos de roteamento o RIP, IGRP, EIGRP e o OSPF.
- Os **protocolos roteados** fornecem informações suficientes para os protocolos de roteamento encontrarem rotas para as redes de destino.
- São exemplos de protocolos roteados o IP e o IPX.

Sistemas Autônomos

Roteadores sob administração comum.

- Sistema autônomo é um conjunto de redes sob uma administração comum, compartilhando o mesmo processo de roteamento e sendo visto pelo mundo externo como uma única entidade.
- O ARIN, um provedor, ou um administrador atribui um número de 16 bits que identifica o sistema autônomo.

Protocolo e Sistema Autônomo

- Os **protocolos de roteamento** são repensáveis por construir e manter as tabelas de roteamento atualizadas, se os roteadores dentro de um AS estiverem operando com as mesmas informações sobre a topologia da rede, diz-se que a rede convergiu.
- O **AS** propicia a divisão de redes maiores para facilitar o gerenciamento, permitindo que cada sistema autônomo trabalhe de forma independente.

Classes de Protocolos de Roteamento

- Os algoritmos dos protocolos de roteamento são classificados em duas categorias:
 - Vetor de Distância: determina a distância e a direção para redes conhecidas;
 - Estado de Enlace: constrói a topologia exata de todo o grupo de redes interconectadas.

Protocolo Vetor de Distância

- Os protocolos de roteamento de **vetor de distância** trocam tabelas de roteamento periodicamente e constroem as tabelas de roteamento com base nas informações adquiridas pelos vizinhos diretamente conectados.
- Um roteador recebe de seu vizinho diretamente conectado uma tabela de roteamento, acrescenta um custo para as redes de destino (1 salto no caso do RIP) e envia a nova tabela para o próximo vizinho.

Protocolo de Estado de Enlace

- O algoritmo de roteamento de estado de enlace mantém um banco de dados complexo sobre a topologia de redes.
- Os protocolos de roteamento de estado de enlace utilizam:
 - Anúncio dos estados dos links: LSA é um pacote de informações de roteamento enviada entre os roteadores;
 - Banco de dados topológico: informações adquiridas a partir das LSAs;
 - Algoritmo SPF: é um cálculo realizado no banco de dados e que resulta na árvore SPF;
 - Tabelas de roteamento: uma lista das interfaces e dos caminhos conhecidos

Protocolo de Estado de Enlace

• O **roteador** constrói a topologia lógica como uma árvore, tendo a si mesmo como a raiz e monta sua tabela de roteamento com os melhores caminhos calculados pelo SPF.

Os roteadores enviam LSAs aos seus vizinhos. Os LSAs são usados para criar um banco de dados topológico. O algoritmo SPF é usado para calcular a árvore de primeiro caminho mais curto na qual a raiz é um roteador individual, sendo, depois, criada uma tabela de roteamento.

Protocolo de Estado de Enlace

- Preocupações relacionadas ao uso de protocolos por estado de enlace:
 - Sobrecarga do processador: devido ao uso de algoritmos mais complexos.
 - Exigência de memória: para armazenar vários bancos de dados: a árvore de topologia e a tabela de roteamento
 - Consumo de largura de banda: a enxurrada inicial de LSA consome largura de banda.

Determinação do Caminho

- Os roteadores utilizam o roteamento e a comutação para encaminhar os pacotes entre os links de dados.
- O **roteamento** é realizado na camada de rede e determina o melhor caminho para alcançar a rede de destino.
- A **comutação** é o processo de receber um dado em uma interface e encaminhá-lo para uma segunda interface do mesmo roteador.

Configuração de Roteamento

- A configuração básica dos protocolos de roteamento envolve 02 etapas:
 - Habilitar o protocolo de roteamento no modo de configuração global;
 - Indicar as redes no modo de configuração do roteamento;
 - Exemplo de configuração:
 - GAD(config)#router rip
 - GAD(config-router)#network 172.16.0.0

- O RIP (Routing Information Protocol) foi especificado originalmente na RFC 1058. Suas principais características são as seguintes:
 - É um protocolo de roteamento de vetor de distância;
 - A contagem de saltos é usada como métrica para seleção do caminho;
 - Se a contagem de saltos for maior que 15, o pacote é descartado;
 - Por padrão, as atualizações de roteamento são enviadas por broadcast a cada 30 segundos.

- O IGRP (Interior Gateway Routing Protocol) é um protocolo proprietário desenvolvido pela Cisco. Algumas das principais características do projeto do IGRP enfatizam o seguinte:
 - É um protocolo de roteamento de vetor de distância;
 - A largura de banda, carga, atraso e confiabilidade são usados para criar uma métrica composta;
 - Por padrão, as atualizações de roteamento são enviadas por broadcast a cada 90 segundos.

- O OSPF (Open Shortest Path First) é um protocolo de roteamento por estado de link, não-proprietário. As principais características do OSPF são:
 - Protocolo de roteamento por estado de link;
 - Protocolo de roteamento de padrão aberto, descrito na RFC 2328;
 - Usa o algoritmo SPF para calcular o menor custo até um destino;
 - Quando ocorrem alterações na topologia, há uma enxurrada de atualizações de roteamento.

- O **EIGRP** (Enhanced Interior Gateway Routing Protocol) é um protocolo avançado de roteamento de vetor de distância proprietário da Cisco. As principais características do EIGRP são:
 - É um protocolo avançado de roteamento de vetor de distância;
 - Usa balanceamento de carga com custos desiguais;
 - Usa características combinadas de vetor da distância e estado de link;
 - Usa o **DUAL** (Diffused Update Algorithm Algoritmo de Atualização Difusa) para calcular o caminho mais curto;
 - As atualizações de roteamento são enviadas por multicast usando 224.0.0.10 e são disparadas por alterações da topologia.

- O BGP (Border Gateway) Protocolo è um protocolo de roteamento exterior. As principais características do BĠP são:
 - É um protocolo de roteamento exterior de vetor de distância;
 - É usado entre os provedores de serviço de Internet ou entre estes e os clientes;
 - É usado para rotear o tráfego de Internet entre sistemas autônomos.

Sistemas Autônomos e IGP X EGP

- Os protocolos de roteamento interior (**IGP**) têm a função de encontrar o melhor caminho através de uma rede, cujas partes estejam sob controle de uma única organização
- Os protocolos de roteamento exterior (**EGP**) são utilizados para encontrar o melhor caminho entre **sistemas autônomos**.

