Semantic Measures and Ontology Matching: an Overview and some Examples

Jorge Gracia del Río

Ontology Engineering Group (OEG)

Departamento de Inteligencia Artificial Facultad de Informática

Universidad Politécnica de Madrid (UPM), Spain

2nd December 2009

Outline

- Introduction
- Semantic Measures
- Ontology Matching
- References

- The heterogeneity problem [Euzenat & Shvaiko, 2007]:
 - Resources being expressed in different ways must being reconciled before being used
 - Mismatch between different formalized knowledge may occur when:
 - Different languages are used
 - Different terminologies are used
 - Different modelling is used

Ontology Matching (OM) is the task of discovering correspondences between terms from different ontologies.

- Semantic Measures
 - Evaluate numerically how semantically related are two entities (words, ontology terms, etc.):

- Semantic Measures. Applications:
 - Ontology matching
 - Word sense disambiguation
 - Information retrieval
 - Annotation
 - Automatic indexing
 - Analysis of structure of texts
 - Spelling correction

- Semantic similarity
 - Hierarchy-based relationships
 - doctor is highly similar to nurse
 - doctor is not similar to hospital
- Semantic relatedness
 - Considers similarity + any other relationship
 - doctor is highly related to hospital
- Semantic distance
 - Inverse of relatedness

Semantic relationships

Exercise: Put in the right places...

Name	Example
Identity	
Hypernymy	
Hyponymy	
Synonymy	
Compatibility	
Taxonomical connection	
Disjointness	
Antonymy	
Holonymy	
Meronymy	
Positive association	

Semantic relationships

Semantic relatedness measure

Symbol	Name	Example
R _i	Identity	(person, person)
R_{H}	Hypernymy	(vehicle, car)
R_h	Hyponymy	(hospital, building)
R _{syn}	Synonymy	(doctor, physician)
R _{com}	Compatibility	(resort, private accommodation)
R _{conn}	Taxonomical connection	(hospital, monastery)
R _{dis}	Disjointness	(liquid, solid)
R _{ant}	Antonymy	(hot, cold)
\mathbf{R}_{hol}	Holonymy	(keyboard, key)
\mathbf{R}_{mer}	Meronymy	(finger, hand)
R _{assoc}	Positive association	(penguin, Antarctica)

Semantic similarity measure

Some definitions [Gracia 09]

- Considering the previous semantic relationships as mathematical binary relations, and given E a set of entities with an associated semantics, we define:
- Semantic relatedness relation: set of ordered pairs R ⊆ E x E such that

$$\mathbf{R} = \mathbf{R_i} \cup \mathbf{R_H} \cup \mathbf{R_h} \cup \mathbf{R_{syn}} \cup \mathbf{R_{conn}} \cup \mathbf{R_{com}} \cup \mathbf{R_{ant}} \cup \mathbf{R_{dis}} \cup \mathbf{R_{hol}} \cup \mathbf{R_{mer}} \cup \mathbf{R_{assoc}}$$

• Semantic similarity relation: set of ordered pairs $R_S \subseteq E \times E$ such that

$$R_S = R_i \cup R_H \cup R_h \cup R_{syn} \cup R_{conn} \cup R_{com}$$

Semantic relatedness measure. Given R, E

rel: $E \times E \to \mathbb{R}$ such that:

```
\forall x, y \in E, rel(x,y) \ge 0 (positiveness)<br/>
\forall x, y, z \in E, rel(x,x) \ge rel(y,z) (maximality)<br/>
\forall x, y \in E, rel(x,y) = rel(y,x) (symmetry)<br/>
\forall x, y \in E, (x, y) \notin R, rel(x,y) = 0
```

Semantic similarity measure. Given R_S, E

sim: $E \times E \rightarrow \mathbb{R}$ such that:

```
\forall x, y \in E, sim(x,y) \ge 0 (positiveness)<br/>
\forall x, y, z \in E, sim(x,x) \ge sim(y,z) (maximality)<br/>
\forall x, y \in E, sim(x,y) = sim(y,x) (symmetry)<br/>
\forall x, y \in E, (x, y) \notin R_S, sim(x,y) = 0
```

Use of external resources

Few named entities: "The Rolling Stones" | Few very specialized terms: "exocitosys" | Many relations remain hidden: "aspirin" + "stomach disease"

Lexical resources (WordNet, corpus, ...)

Wikipedia

The Web

increasing coverage

- Two examples of semantic measures, designed for its use on the Semantic Web [Gracia 09, Gracia & Mena 08, Trillo et al. 07]:
 - Context and inference-based semantic similarity measure
 - Web-based semantic relatedness measure

Semantic Measures: Similarity

- Semantic similarity between two classes
 - 1st) Extract Ontological Contexts
 - 2nd) Enrich them by applying inference
 - 3rd) Compute the following:

```
sim(t_1, t_2) = Linear Combination of
```

- lexical_similarity (synonyms₁, synonyms₂)
- VSM (description₁, description₂)
- VSM (properties₁, properties₂)
- Graph_similarity (graph₁, graph₂)

```
Graph_similarity (graph<sub>1</sub>, graph<sub>2</sub>) = Linear Combination of
```

- VSM (hyper₁ \forall directHyper₁, hyper₂ \forall directHyper₂)
- VSM (hypo₁ \biguplus directHypo₁, hypo₂ \biguplus directHypo₂)

Semantic Measures: Similarity

- Analogously to compute similarity between properties and between individuals.
- Example of Semantic Similarity between Classes:

• Hypothesis [Cilibrasi and Vitànyi 07] : For each $x, y \in S$

x, y are semantically related \Leftrightarrow x, y appear on the same web page

Semantic relatedness between two words

$$relWeb(x, y) = e^{-2NWD(x,y)}$$

where NWD is Cilibrasi and Vitànyi's Google distance

An example of web-based relatedness computation

http://horus.cps.unizar.es:28080/Relatedness/Relatedness.html

- Semantic relatedness between two ontology terms
 - Level 0: Labels and synonyms

```
rel_0(a, b) = average of relWeb between synonyms of a and b
```

■ Level 1: OC^m Minimal Ontological Context

E.g.: Java
$$\rightarrow$$
 Island \rightarrow Land \rightarrow Thing

 $rel_1(a, b)$ = average of rel_0 between the elements of the OC_a^m and OC_b^m

 $rel(a, b) = linear combination of <math>rel_0(a, b)$ and $rel_1(a, b)$

Example: relatedness between ontology terms

- Experiment: relatedness between words
 - Web-based (blue), WordNet-based (yellow) measures

This supports the use of web frequencies for relatedness computation

- Semantic Measures: other approaches
 - Based on Thesauri and Lexical Resources [Jiang and Conrath, Banerjee and Pedersen, Resnik, etc.]
 - Based on Wikipedia [Gabrilovich and Markovitch, Strube and Ponzetto, etc.]
 - Based on the Web [Bollegala et al., Chen et al., Sahami et al., OntoNL, etc.]
 - Based on DL constructs [D'Amato, et. al., Borgida et al., Janowicz et al., Hu et. al., etc.]

A couple of definitions [borrowed from Euzenat & Shvaiko's OM tutorial]

Definition (Correspondence)

Given two ontologies o and o', a **correspondence** between o and o' is a 5-uple: $\langle id, e, e', r, n \rangle$ such that:

- ▶ id is a unique identifier of the correspondence
- ightharpoonup e and e' are entities of o and o' (e.g., XML elements, classes)
- ▶ r is a relation (e.g., equivalence (=), more general (\supseteq), disjointness (\perp))
- n is a confidence measure in some mathematical structure (typically in the [0 1] range)

Definition (Alignment)

Given two ontologies o and o', an **alignment** (A) between o and o':

- ightharpoonup is a set of correspondences on o and o'
- with some additional metadata (multiplicity: 1-1, 1-*, method, date, properties, etc.)

General scheme of an Ontology Matching process, being O and O' are the input ontologies, A an initial set of known correspondences (optional), and A' the resultant alignment (the found correspondences):

Matching techniques [Euzenat & Shvaiko, 2007]

- Matching techniques [borrowed from Euzenat & Shvaiko's OM tutorial]:
 - Name of the entities
 - comments, alternate names, names of related entities
 - \implies NLP, IR, etc.
 - Structure
 - internal structure: constraints on relations, typing
 - external structure: relations between entities
 - ⇒ Data mining, Discrete mathematics
 - Extension
 - Instances themselves
 - Related resources: annotated documents, exchanges messages or queries
 - ⇒ Statistics, data analysis, data mining, machine learning
 - ► Semantics (models)
 - ⇒ Reasoning techniques
 - ► Background knowledge
 - the web
 - ontologies
 - wordnet, etc.

How does an alignment looks like? E.g. (in RDF):

```
<Alignment>
<xml>yes</xml>
<level>0</level>
<type>11</type>
<onto1>./models/Nitrogen cycling.owl</onto1>
<onto2>./ models/Phosphorus cycling.owl</onto2>
<map>
<Cell>
   <entity1 rdf:resource='http://www.dynalearn.eu/models/Nitrogen#plant'/>
   <entity2 rdf:resource=' http://www.dynalearn.eu/models/Phosphorus#plantas'/>
   <relation>=</relation>
   <measure rdf:datatype='http://www.w3.org/2001/XMLSchema#float'>0.8</measure>
</Cell>
</map>
</Alignment>
```

Two examples of ontology matching systems, designed for its use on the Semantic Web:

CIDER [Gracia & Mena 08b]: Context and Inference baseD alignER

- Based on our semantic similarity measure
- Identifies semantic equivalences
- Scarlet [Sabou et al. 08]
 - Background knowledge-based ontology alignment
 - Identifies various types of semantic relationships
 - Hampered by semantic ambiguity problems

Ontology Matching: CIDER

CIDER: Context and Inference baseD alignER

Ontology Matching: Spider

Scarlet system (KMi, Open University, United Kingdom): uses online ontologies as background knowldege for ontology matching

- Ontology Matching. Other approaches [Euzenat & Shvaiko 07]
 - Falcon-AO
 - ASMOV
 - Lily
 - Glue
 - S-Match
 - etc.

References

Cilibrasi & Vitányi 07	Rudi L. Cilibrasi and Paul M.B. Vitányi. The Google Similarity Distance. IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 3, pages 370{383, March 2007.
Euzenat & Shvaiko 07	Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag, 2007.
Gracia 09	Jorge Gracia, "Integration and Disambiguation Techniques for Semantic Heterogeneity Reduction on the Web", PhD Thesis, October 2009
Gracia & Mena 08a	Jorge Gracia and Eduardo Mena, "Web-based Measure of Semantic Relatedness", Proc. of 9th International Conference on Web Information Systems Engineering (WISE 2008), Auckland (New Zealand), Springer Verlag LNCS, volume 5175, pp. 136-150, September 2008.
Gracia & Mena 08b	Jorge Gracia and Eduardo Mena, "Ontology Matching with CIDER: Evaluation Report for the OAEI 2008", Proc. of 3rd Ontology Matching Workshop (OM'08), at 7th International Semantic Web Conference (ISWC'08), Karlsruhe (Germany), CEUR-WS, volume 431, pp. 140-146, October 2008.

References

Sabou et al. 08	Marta Sabou, Mathieu d'Aquin and Enrico Motta. Exploring the Semantic Web as Background Knowledge for Ontology Matching. Journal of Data Semantics, vol. 11, pages 156-190, 2008.
Trillo et al. 07	Raquel Trillo, Jorge Gracia, Mauricio Espinoza and Eduardo Mena, "Discovering the Semantics of User Keywords", Journal on Universal Computer Science (JUCS). Special Issue: Ontologies and their Applications, vol. 13(12):, pages 908-1935, Springer Verlag, December 2007

Further Readings

- Alexander Budanitsky & Graeme Hirst. Evaluating WordNet-based measures of semantic distance. Computational Linguistics, vol. 32, no. 1, pages 13-47, March 2006.
- Zharko Aleksovski, Michel C. A. Klein, Warner ten Kate & Frank van Harmelen. Matching Unstructured Vocabularies Using a Background Ontology. In EKAW, volume 4248 of LNSC, pages 182-197, October 2006.
- Danushka Bollegala, Yutaka Matsuo & Mitsuru Ishizuka. Measuring semantic similarity between words using web search engines. In Proceedings of the 16th International Conference on World Wide Web (WWW 2007) Ban, Alberta, Canada, pages 757-766. ACM, May 2007.
- Ted Pedersen, Satanjeev Banerjee & Siddharth Patwardhan. Maximizing Semantic Relatedness to Perform Word Sense Disambiguation. Technical report, University of Minnesota Supercomputing Institute Research Report UMSI 2005/25, 2005.
- Yuzhong Qu, Wei Hu & Gong Cheng. Constructing Virtual Documents for Ontology Matching. In Proc. of 15th International World Wide Web Conference (WWW'06), Edinburgh, UK, May 2006.

END of presentation