Sorting Competition: Group 3

Ash Plasek and Mason Eischens

Score and times

Small(er) data set (final1.txt) results:

Test #	Runtime (ms)		
1	265		
2	188		
3	302		
Average	251		

Placement: 1st

Large data set (final2.txt) results:

Test #	Runtime (ms)		
1	1933		
2	1855		
3	1464		
Average	1750		

Placement: 1st

Description - General outline

- Divides input into three arrays, one for each of the set of positive decimals, negative decimals, and rationals. These values are stored in either DecimalPair or RationalPair objects
- Sorts negative/positive decimals using a helper method, recombines the resulting arrays into one decimal array
- Sorts rationals using a helper method
- Merges the two sorted arrays

Description - Primary helper functions

void sort rationals(RationalPair[])

- Determines bucket size based on the number of rationals
- Distributes rationals into buckets
- Sorts each bucket using timsort with RationalPairCompare() as the comparator
- Reassembles original array in sorted order

void sort decimals(DecimalPair[])

- Determines bucket size based on the number of decimals
- Distributes decimals into buckets
- Sorts each bucket using radix sort which uses counting sort as it's stable sort
- Reassembles original array in sorted order

Description - Primary helper classes

- BigRational
 - represents a fraction or decimal
 - constructor takes a string
 - contains important comparator
- RationalPair
 - represents a fraction
 - stores a numerator/denominator, decimal value, and BigRational
 - o compare method allows us to compare fractions to decimals
- DecimalPair
 - represents a decimal
 - o stores its decimal value, a BigRational, and other values useful for bucket sort

Data Storage

Data Storage

Rational Number:

32 Bit Integer

32 Bit Integer

Rational Number:

64 Bit Integer

2^{Exponent}

Rational Number:

64 Bit Integer

2^{Exponent}

Double Precision Float:

± 11 Bit Exponent*

52 Bit Integer*

Floating Point Magic

Floating Point Numbers Aren't Numbers

Floating Point Numbers Aren't Numbers*

Comparing Rationals and Decimals

Decimal-ish Rational-ish

Comparing Rationals and Decimals

Decimal-ish Rational-ish

Comparing Rationals and Decimals

