Coordenadas esféricas y cilíndricas

Al igual que lo que ocurría en el plano, las coordenadas cartesianas o rectangulares, no siempre son las más adecuadas para representar objetos en el espacio.

A continuación veremos dos formas de representar puntos y objetos en el espacio, que en cierto modo, generalizan las coordenadas polares del plano.

1 Coordenadas esféricas

El sistema de coordenadas esféricas1 se basa en la misma idea que las coordenadas polares y se utiliza para determinar la posición espacial de un punto mediante una distancia y dos ángulos.

Las coordenadas esféricas de un punto $P(r, \theta, \varphi)$ están determinadas por

- su distancia r al origen O (distancia radial).
- el ángulo θ entre el eje z y el vector \overrightarrow{OP} que conecta el origen con el punto (ángulo polar o colatitud).
- el ángulo φ entre el eje x y la proyección de \overrightarrow{OP} en el plano xy (ángulo azimutal o acimut).

Al igual que con las coordenadas polares en el plano, debemos acotar el valor de las coordenadas para obtener una representación unívocamente determinada:

Las coordenadas esféricas de un punto $P(r, \theta, \varphi)$ son únicas si

1.
$$r > 0$$
,

2.
$$\theta \in [0, \pi]$$
,

3.
$$\varphi \in [0, 2\pi)$$
.

1.1 Cambio a coordenadas rectangulares

El cambio de variables entre un sistema esférico $P(r, \theta, \varphi)$ y uno cartesiano P(x, y, z) que comparten el origen, el eje z y el brazo azimutal (eje x), está dado por

- 1. $x = r \sin(\theta) \cos(\varphi)$, $y = r \sin(\theta) \sin(\varphi)$, $z = r \cos(\theta)$ (esféricas a cartesianas).
- 2. $r=\sqrt{x^2+y^2+z^2}$, $\cos(\theta)=\frac{z}{\sqrt{x^2+y^2+z^2}}$, $\tan(\varphi)=\frac{y}{x}$ con $x\neq 0$ (cartesianas a esféricas).

Observación sobre θ : Como en el rango $[0,\pi)$ en el que toma valores θ la función coseno es biyectiva, el resultado único de calcular $\theta = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$ está garantizado.

Observación sobre φ : Tal como ya vimos al estudiar las coordenas polares en el plano, dentro del rango $[0,2\pi]$ siempre hay dos valores distintos $\varphi_1 \neq \varphi_2$ que comparten el valor de su tangente $\tan(\varphi_1) = \tan(\varphi_2)$, por eso debemos analizar el cuadrante del plano xy sobre el que se proyecta el punto P(x,y,z).

Para obtener φ en el intervalo $[0, 2\pi)$, se deben usar el siguiente criterio (los cuadrantes referidos son los del plan xy):

$$\varphi = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{si} \quad x > 0, y \geq 0 \quad \text{(primer cuadrante)} \\ \frac{\pi}{2} & \text{si} \quad x = 0, y > 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{si} \quad x < 0 \quad \text{(segundo y tercer cuadrante)} \\ \frac{3}{2}\pi & \text{si} \quad x = 0, y < 0 \\ \arctan\left(\frac{y}{x}\right) + 2\pi & \text{si} \quad x > 0, y < 0 \quad \text{(cuarto cuadrante)}. \end{cases}$$

1.2 Algunas superficies en coordenadas esféricas

Ahora veremos cuáles son las superficies coordenadas (aquellas que se obtienen de dejar constante una varible) del sistema esférico:

 $\mathbf{r} = \mathbf{cte.}$: Si el radio es constante, entonces al escribirlo en coordenadas cartesianas tendremos $r = \sqrt{x^2 + y^2 + z^2}$, es decir $r^2 = x^2 + y^2 + z^2$.

Luego, las superficie con r constante son esferas de radio r.

 $\theta = \text{cte.:}$ Si la colalitud θ es constante, tomando la ecuación de cambio de variables correspondiente tendremos que $\cos{(\theta)} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$. Notemos que si θ es una constante, también lo es $\cos{(\theta)}$.

Luego, podemos escribir

$$\underbrace{\cos(\theta)}_{\alpha} \sqrt{x^2 + y^2 + z^2} = z \quad \Rightarrow \quad \alpha^2 x^2 + \alpha^2 y^2 = z^2,$$

y obtuvimos la ecuación de un cono con vértice en O (notemos que nos quedamos con la parte superior del cono si $\theta < \frac{\pi}{2}$ y la inferior si $\theta > \frac{\pi}{2}$).

 $\varphi = \mathbf{cte}$: Si el azimut φ es constante, tomando la ecuación correspondiente tendremos $\tan(\varphi) = \frac{y}{x}$, es decir $\tan(\varphi)x = y$, que es la ecuación de un plano que pasa por el origen, perpendicular al plano xy.

2 Coordenadas cilíndricas

Las coordenadas cilíndricas de un punto $P(\rho, \varphi, z)$ están determinadas por

- su distancia ρ del punto P al eje~z (distancia radial).
- el ángulo φ entre el eje x y la proyección de \overrightarrow{OP} en el plano xy (ángulo azimutal o acimut).
- la altura z del punto respecto del plano xy (altura signada).

Al igual que lo anteriormente hecho, debemos definir rangos adecuados para garantizar rangos únicos:

La representación cilíndrica de un punto $P(\rho, \varphi, z)$ es única si

- 1. $\rho > 0$,
- 2. $\varphi \in [0, \pi)$.

Observación importante: Los valores de las dos primeras variables (ρ, φ) son las coordenadas polares del punto P proyectado sobre el plano xy.

2.1 Cambio a coordenadas cartesianas

Notemos que debemos escribir un punto $P(\rho, \varphi, z)$ de la forma P(x, y, z). Sabiendo que la tercer componente z se mantiene igual, y que las variables (ρ, φ) son las coordenadas polares de (x, y) obtenemos el siguiente cambio de variables:

Si el origen de coordenadas cartesianas y cilíndricas coinciden, y el eje azimutal Ox está sobre el semieje x positivo, el cambio de coordenadas de un punto $P(x, y, z) \equiv (\rho, \varphi, x)$ está dado por:

- 1. $x = \rho \cos(\varphi)$, $y = \rho \sin(\varphi)$ (cilíndricas a cartesianas),
- $2. \ \, \rho = \sqrt{x^2 + y^2}, \quad \tan(\varphi) = \frac{y}{x}, \, x \neq 0, \, (\text{cartesianas a cilíndricas}).$

Observación: Para determinar el valor de φ a partir del cociente $\frac{y}{x}$ procedemos de la misma manera que para determinar el azimut de las coordenadas esféricas

2.2 Algunas superficies en coordenadas cilíndricas

Analizaremos cuáles son las superficies coordenadas del sistema cilíndrico.

 $\rho = \text{cte}$: En este caso, tomamos $\rho = \sqrt{x^2 + y^2}$, lo que equivale a $\rho^2 = x^2 + y^2$, que representa un cilindro circular recto de radio r.

 $\varphi = \text{cte.:}$ En este caso, tomando la correspondiente ecuación tendremos $\tan(\varphi) = \frac{y}{x}$, y obtenemos lo mismo que en las ecuaciones esféricas al considerar el azimut constante. La superficie resultante es un plano perpendicular al plano coordenado xy.

 $\mathbf{z} = \mathbf{cte.}$: En este caso, al igual que en las coordenadas cartesianas, obtenemos un plano paralelo al "piso" (plano coordenado xy) de altura $z=z_0$.

Superficie de revolución: Sea S una superficie de revolución generada por una curva $\mathcal C$ contenida en el plano xz o yz que gira en torno al eje z (eje de rotación). Hemos visto que dicha superficie tiene como ecuación $S: f\left(\sqrt{x^2+y^2},z\right)$.

Sabiendo que $\rho = \sqrt{x^2 + y^2}$, obtenemos muy fácilmente la ecuación de la superficie de revolución en coordendas cilíndricas $S: f(\rho, z)$.

Así concluímos:

Toda superficie en coordenadas cilíndricas cuya ecuación $S: f(\rho, z)$ no contenga la variable φ representa una superficie de revolución en torno al eje z.