

Ayudantía 2 - Lógica Proposicional

23 de agosto de 2024

Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

• ¿Qué es la lógica proposicional?:

Es un sistema que busca obtener conclusiones a partir de premisas. Los elementos más simples (letras 'p', 'q' u otras) representan proposiciones o enunciados. Los conectivas lógicas $(\neg, \land, \lor y \rightarrow)$, representan operaciones sobre proposiciones, capaces de formar otras proposiciones de mayor complejidad.

• Semántica:

Una valuación o asignación de verdad para las variables proposicionales en un conjunto P es una función $\sigma: P \to \{0,1\}$, donde '0' equivale a 'falso' y '1' a verdadero.

• Tablas de verdad:

Las fórmulas se pueden representar y analizar en una tabla de verdad.

)	q	$p \to q$	p	q	$p \wedge q$
p	$\neg p$	(1	0	0	0
0	1	()	1	1	0	1	0
1	$\begin{array}{c} 1 \\ 0 \end{array}$	-	1	0	0	1	0	0
'		-	l	1	1	1	1	1

Equivalencia lógica ≡

Dos fórmulas son lógicamente equivalentes (denotado como $\alpha \equiv \beta$) si para toda valuación σ se tiene que $\sigma(\alpha) = \sigma(\beta)$

Leyes de equivalencia

- 1. Doble negación: $\neg(\neg\alpha) \equiv \alpha$
- 4. Asociatividad: $\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$ $\alpha \vee (\beta \vee \gamma) \equiv (\alpha \vee \beta) \vee \gamma$
- 7. Absorción: $\alpha \wedge (\alpha \vee \beta) \equiv \alpha$ $\alpha \vee (\alpha \wedge \beta) \equiv \alpha$

2. De Morgan:

$$\neg(\alpha \land \beta) \equiv (\neg \alpha) \lor
(\neg \beta)
\neg(\alpha \lor \beta) \equiv
(\neg \alpha) \land (\neg \beta)$$

5. Distributividad:

$$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)
\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

8. Implicancia: $\alpha \to \beta \equiv (\neg \alpha) \lor \beta$

3. Conmutatividad:

$$\alpha \wedge \beta \equiv \beta \wedge \alpha$$
$$\alpha \vee \beta \equiv \beta \vee \alpha$$

6. Idempotencia:

$$\alpha \wedge \alpha \equiv \alpha$$
$$\alpha \vee \alpha \equiv \alpha$$

9. Doble implicancia:

$$\alpha \leftrightarrow \beta \equiv (\alpha \to \beta) \land (\beta \to \alpha)$$

Conectivos funcionalmente completos

Un conjunto de conectivos lógicos se dice funcionalmente completo si toda fórmula en L(P) es lógicamente equivalente a una fórmula que sólo usa esos conectivos.

Ejemplos:

- {¬, ∧, ∨}{¬, ∧}

1. Inducción Estructural

Demuestre que el conectivo ↑ (también conocido como NAND) es funcionalmente completo. Su tabla de verdad es la siguiente:

p	q	$p \uparrow q$
0	0	1
0	1	1
1	0	1
1	1	0

Solución

Sabemos que el conjunto $C = \{\neg, \land\}$ es funcionalmente completo (demostrado en clases, se puede usar). Demostraremos por inducción estructural que toda fórmula construida a partir de los conectivos del conjunto C tiene una fórmula equivalente que solo usa conectivos de $C' = \{\uparrow\}$, con ello demostrando que $\{\uparrow\}$ es funcionalmente completo.

BI: Con $\varphi = p$, se cumple trivialmente que φ puede ser construida con conectivos de C'.

HI: Supongamos que $\varphi, \psi \in \mathcal{L}(P)$ son fórmulas construidas con los conectivos de C, y que existen $\varphi', \psi' \in \mathcal{L}(P)$ construidas con los conectivos de C' tales que $\varphi \equiv \varphi'$ y $\psi \equiv \psi'$.

TI: Demostraremos que toda fórmula θ construida con los pasos inductivos del conjunto C tiene una fórmula θ' construida con conectivos de C' tal que $\theta \equiv \theta'$. Notemos, en primer lugar, que para dos fórmulas α, β cualquiera se tiene que $\neg(\alpha \land \beta) \equiv \alpha \uparrow \beta$. Como C tiene dos conectivos, hay dos casos:

- $\theta = \neg \varphi \stackrel{HI}{\equiv} \neg \varphi' \equiv \neg (\varphi' \land \varphi') \equiv \varphi' \uparrow \varphi'$. Luego, $\theta' = \varphi' \uparrow \varphi'$ cumple la propiedad.
- $\theta = \varphi \wedge \psi \stackrel{HI}{\equiv} \varphi' \wedge \psi' \equiv \neg(\neg(\varphi' \wedge \psi')) \equiv \neg(\varphi' \uparrow \psi') \equiv (\varphi' \uparrow \psi') \uparrow (\varphi' \uparrow \psi')$. Luego, $\theta' = (\varphi' \uparrow \psi') \uparrow (\varphi' \uparrow \psi')$ cumple la propiedad.

Concluímos que toda fórmula construida con conectivos de C tiene una equivalente construida con conectivos de C', y con ello que $\{\uparrow\}$ es funcionalmente completo.

B. Lógica

Sea $\varphi \in \mathcal{L}(P)$ una fórmula construida usando los conectivos del conjunto $C = \{\neg, \land, \lor\}$. Llamamos φ' a la fórmula obtenida desde φ reemplazando todas las ocurrencias de \land por \lor , las de \lor por \land , y todas las variables proposicionales por sus negaciones.

Demuestre que φ' es lógicamente equivalente a $\neg \varphi$.

Solución

Demostraremos por inducción estructural.

BI: Con $\varphi = p$ se tiene que $\varphi' \equiv \neg p \equiv \neg \phi$ con lo que la propiedad se cumple.

HI: Supongamos que $\varphi, \psi \in \mathcal{L}(P)$ son fórmulas construidas usando los conectivos de C.

TI: Demostraremos que una fórmula $\theta \in \mathcal{L}(P)$ construida inductivamente a partir de φ y/o ψ también cumple la propiedad. Hay tres casos posibles:

1.
$$\theta = \neg \varphi$$
:

En este caso se tiene que $\theta' \equiv (\neg \varphi)' \stackrel{\text{HI}}{\equiv} (\varphi')' \equiv \varphi$ Doble negación $\neg (\neg \varphi) \equiv \neg \theta$, con lo que la propiedad se cumple.

2.
$$\theta = \varphi \vee \psi$$
:

En este caso se tiene que $\theta' \equiv (\varphi \lor \psi)' \equiv \varphi' \land \psi' \stackrel{\text{HI}}{\equiv} \neg \varphi \land \neg \psi \stackrel{\text{De Morgan}}{\equiv} \neg (\varphi \lor \psi) \equiv \neg \theta$, con lo que la propiedad se cumple.

3.
$$\theta = \varphi \wedge \psi$$
:

En este caso se tiene que $\theta' \equiv (\varphi \wedge \psi)' \equiv \varphi' \vee \psi' \stackrel{\text{HI}}{\equiv} \neg \varphi \vee \neg \psi \stackrel{\text{De Morgan}}{\equiv} \neg (\varphi \wedge \psi) \equiv \neg \theta$, con lo que la propiedad se cumple.

Concluímos entonces por inducción estructural que para toda fórmula $\varphi \in \mathcal{L}(P)$ construida mediante los conectivos de C se cumple que $\varphi' \equiv \neg \varphi$.

2. Modelamiento

Considere el funcionamiento de un semáforo en instantes discretos de tiempo que llamaremos estados, tal que la cantidad de estados totales es finita.

1. Defina un conjunto P de variables proposicionales adecuadas que permitan definir un lenguaje $\mathcal{L}(P)$ de fórmulas proposicionalnes para modelar este escenario. Explique brevemente el significado de cada variable definida. Sugerencia: examine los incisos (2), (3) y (4) para determinar qué necesita incluir en su diseño.

Con el lenguaje definido en (1), proponga una fórmula proposicional φ para cada uno de los siguientes incisos. Su fórmula debe ser satisfacible si y solo si la propiedad descrita se cumple para un semáforo dado. Explique brevemente el significado de las partes de su fórmula. No necesida demostrar la correctitud de su fórmula.

- 2. La luz del semáforo en todo estado es, o verde, o roja, o amarilla.
- 3. Los únicos cambios de color de luz del semáforo ocurren entre estados sucesivos y pueden ocurrir de verde a amarilla, de amarilla a roja y de roja a verde.
- 4. La luz puede tener el mismo color en, a lo más, 3 estados sucesivos.

Solución

a) Vamos a considerar un total de T tiempos o estados, además de los tres colores típicos de un semáforo, verde, rojo y amarillo. Definimos entonces las siguientes variables

proposicionales para modelar un semáforo:

- v_t : 1 si el semáforo es verde en el tiempo $t \in \{1, \ldots, T\}$
- r_t : 1 si el semáforo es rojo en el tiempo $t \in \{1, \ldots, T\}$
- $a_t: 1$ si el semáforo es amarillo en el tiempo $t \in \{1, \ldots, T\}$
- b) Lo denotamos por la siguiente fórmula, que indica lo anterior en todo tiempo

$$\varphi_1 := \bigwedge_{t=1}^{T} (v_t \vee r_t \vee a_t)$$

c) Lo denotamos por la fórmula $\varphi_2 \wedge \varphi_3$ donde φ_2 denota que solo hay un único estado de un color en un tiempo dado, y φ_3 denota que la transición respeta la secuencia descrita, según las definimos a continuación:

$$\varphi_2 := \bigwedge_{t=1}^T ((v_t \to (\neg r_t \land \neg a_t)) \land (r_t \to (\neg v_t \land \neg a_t)) \land (a_t \to (\neg v_t \land \neg r_t)))$$

$$\varphi_3 := \bigwedge_{t=1}^T ((v_t \to (v_{t+1} \lor a_{t+1})) \land (r_t \to (r_{t+1} \lor v_{t+1})) \land (a_t \to (a_{t+1} \lor r_{t+1})))$$

d) Lo denotamos por la fórmula φ_4 según definimos a continuación:

$$\varphi_4 := \bigwedge_{t=1}^T (((t \wedge v_{t+1} \wedge v_{t+2}) \to \neg v_{t+3}) \wedge ((r_t \wedge r_{t+1} \wedge r_{t+2}) \to \neg r_{t+3}) \wedge ((a_t \wedge a_{t+1} \wedge a_{t+2}) \to \neg a_{t+3}))$$

\mathbf{B}

El conectivo ternario EQ se define como:

$$EQ(p,q,r) = \begin{cases} 1 & \text{si y solo si } 3(q+r) - 5p \ge 0\\ 0 & \text{en otro caso} \end{cases}$$

Determine la tabla de verdad de EQ

Solución

p	q	r	3(q+r) - 5p	EQ(p,q,r)
0	0	0	0	1
0	0	1	3	1
0	1	0	3	1
0	1	1	6	1
1	0	0	-5	0
1	0	1	-2	0
1	1	0	-2	0
1	1	1	1	1
	1			

3. Equivalencia Lógica

Demuestre que

$$(p \lor (p \to q)) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q) \equiv p \land q$$

```
Solución
   (p \lor (p \to q)) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q)
    \equiv (p \vee (\neg p \vee q)) \wedge \neg (r \wedge \neg p) \wedge (p \wedge (r \vee q)) \wedge (r \to q) \quad \text{/Ley de implicancia}
    \equiv ((p \vee \neg p) \vee q) \wedge \neg (r \wedge \neg p) \wedge (p \wedge (r \vee q)) \wedge (r \rightarrow q) \quad / \text{Asociatividad de } \vee
    \equiv \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q)
                                                                                                  /((p \vee \neg p) \vee q) es una tautología
    \equiv (\neg r \lor p) \land (p \land (r \lor q)) \land (r \to q)
                                                                                                   /De Morgan
    \equiv (\neg r \lor p) \land (p \land (r \lor q)) \land (\neg r \lor q)
                                                                                                   Ley de implicancia
    \equiv p \wedge (\neg r \vee p) \wedge (r \vee q) \wedge (\neg r \vee q)
                                                                                                   /Asociatividad de∧
    \equiv p \wedge (r \vee q) \wedge (\neg r \vee q)
                                                                                                   /Absorción∧
    \equiv p \wedge ((r \wedge \neg r) \vee q)
                                                                                                   /Distributiva
                                                                                                   /r \wedge \neg r es una contradicción
    \equiv p \wedge q
```

 \exists