Idaho National Laboratory

Time Dependent Data Mining

RAVEN Workshop

Overview

- Time-series post-processors
- Time dependent basic statistics
- Time slice clustering
- Time dependent clustering
 - Approach 1: time series transformation (K-Means)
 - Approach 2: time dependent metrics (Hierarchical)
 - Euclidean
 - Dynamic Time Warping

Clustering: Time-Dependent Data

- Objective: analyze time-dependent data
- Similarity can be subjective

- Challenges
 - Different time lengths
 - Different sample rates
 - Presence of noise or missing data
 - Time delays

Data Pre-Processing: Smoothing

Data filtering (e.g., KDE regression)

$$Q' = smooth(Q)$$

Data Pre-Processing: Normalization

Data Pre-Processing: Re-Sampling

- Objective: reduce memory space of each time series
- Method: re-sampling the time series
 - Smartly locate sample points on strategically important regions
 - e.g. high derivative (gradient) regions

Uniform sampling

First-order derivative sampling

RAVEN Time-Series Post-Processors

- Class: Interfaced Post-Processors
 - RAVEN provides a generic interface to create user-defined generic Post-Processors
 - Act on both PointSets and HistorySets

RAVEN Time-Series Post-Processors: Examples

- HSPS: it converts an HistorySet into a PointSet
 - Each history is converted into a multi-dimensional vector
- HistorySetSampling
 - Original HistorySet is re-sampled accordingly to a specific sampling strategy
- HistorySetSync
 - Time series contained in the original HistorySet are synchronized in time
 - Identical initial and final time
 - Identical number of samples
- dataObjectLabelFilter
 - Filter the dataObject for a specific value of the clustering label

RAVEN Example 1 Time Dependent Basic Statistics

- Steps
 - Generate time-dependent data
 - Post-Process the data
 - 3. Create a dataObject (PointSet) from processed data

Distributions	Models	Samplers	Databases	DataObjects	Steps
---------------	--------	----------	-----------	-------------	-------

```
<Models>
<PostProcessor name="timeDepBasicStat" subType="BasicStatistics">
  <pivotParameter>time</pivotParameter>
  <expectedValue>x,y,z</expectedValue>
  <percentile 5>x,y,z</percentile 5>
  <percentile 95>x,y,z</percentile 95>
</PostProcessor>
 <PostProcessor name="readStats" subType="RavenOutput">
   <dynamic>true</dynamic>
  <File ID="0" name="output TD BS.xml">
     <output name="mean"</pre>
                           >x | expectedValue </output>
    <output name="percentile 5" >x | percentile 5 </output>
     <output name="percentile 95" >x | percentile 95 </output>
  </File>
</PostProcessor>
</Models>
```


Distribution	ns	Models	Sa	mplers	Databases	DataObje	ects	Steps
Steps>								
<multirun n<="" td=""><td>ame=</td><td>"FirstMRun"></td><td></td><td></td><td></td><td></td><td></td><td></td></multirun>	ame=	"FirstMRun">						
<pre><input <="" <model="" class="Models" pre=""/></pre>		ts"	type="Po	intSet" ternalModel"	>inputPla >PythonMo		der 	
<sampler< td=""><td>clas</td><td>ss="Samplers"</td><td></td><td>type="Mo.</td><td>nteCarlo"</td><td>>MC_exter</td><td>nal<!--</td--><td>'Sampler></td></td></sampler<>	clas	ss="Samplers"		type="Mo.	nteCarlo"	>MC_exter	nal </td <td>'Sampler></td>	'Sampler>
<output< td=""><td>clas</td><td>ss="DataObjec</td><td>ts"</td><td>type="Hi</td><td>storySet"</td><td>>HistoryS</td><td>et<!--0</td--><td>Output></td></td></output<>	clas	ss="DataObjec	ts"	type="Hi	storySet"	>HistoryS	et 0</td <td>Output></td>	Output>
<postproces< td=""><td>s nai</td><td>me="timeDepBa</td><td>sicSt</td><td>atPP"></td><td></td><td></td><td></td><td></td></postproces<>	s nai	me="timeDepBa	sicSt	atPP">				
<input< td=""><td>clas</td><td>ss="DataObjec</td><td>ts"</td><td>type="Hi</td><td>storySet"</td><td>>HistoryS</td><td>et<!--1</td--><td>Input></td></td></input<>	clas	ss="DataObjec	ts"	type="Hi	storySet"	>HistoryS	et 1</td <td>Input></td>	Input>
<model< td=""><td>clas</td><td>ss="Models"</td><td></td><td>type="Po</td><td>stProcessor"</td><td>>timeDepB</td><td>asics</td><td>Stat</td></model<>	clas	ss="Models"		type="Po	stProcessor"	>timeDepB	asics	Stat
<output< td=""><td>clas</td><td>ss="Files"</td><td></td><td>type=""</td><td></td><td>>output_T</td><td>D_BS.</td><td>csv</td></output<>	clas	ss="Files"		type=""		>output_T	D_BS.	csv
<output< td=""><td>clas</td><td>ss="Files"</td><td></td><td>type=""</td><td></td><td>>output_T</td><td>D_BS .</td><td>xml</td></output<>	clas	ss="Files"		type=""		>output_T	D_BS .	xml
<output< td=""><td>clas</td><td>ss="DataObjec</td><td>ts"</td><td>type="Hi</td><td>storySet"</td><td>>HistoryS</td><td>et<!--0</td--><td>Output></td></td></output<>	clas	ss="DataObjec	ts"	type="Hi	storySet"	>HistoryS	et 0</td <td>Output></td>	Output>
<td>ss></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ss>							
<postproces< td=""><td>s nai</td><td>me="readStats</td><td>"></td><td></td><td></td><td></td><td></td><td></td></postproces<>	s nai	me="readStats	">					
<input< td=""><td>clas</td><td>ss="Files"</td><td></td><td>type=""</td><td></td><td>>output_T</td><td>D_BS.</td><td>xml</td></input<>	clas	ss="Files"		type=""		>output_T	D_BS.	xml
<input< td=""><td>clas</td><td>ss="DataObjec</td><td>ts"</td><td>type="Hi</td><td>storySet"</td><td>>HistoryS</td><td>et<!--1</td--><td>Input></td></td></input<>	clas	ss="DataObjec	ts"	type="Hi	storySet"	>HistoryS	et 1</td <td>Input></td>	Input>
<model< td=""><td>clas</td><td>ss="Models"</td><td></td><td>type="Po</td><td>stProcessor"</td><td>>readStat</td><td>s<td>odel></td></td></model<>	clas	ss="Models"		type="Po	stProcessor"	>readStat	s <td>odel></td>	odel>
<output< td=""><td>clas</td><td>ss="DataObjec</td><td>ts"</td><td>type="Po</td><td>intSet"</td><td>>stats<!--0</td--><td>utput</td><td>:></td></td></output<>	clas	ss="DataObjec	ts"	type="Po	intSet"	>stats 0</td <td>utput</td> <td>:></td>	utput	:>
<output< td=""><td>clas</td><td>ss="OutStream</td><td>s"</td><td>type="Pl</td><td>ot"</td><td>>Plotdata</td><td><!--0ut</td--><td>:put></td></td></output<>	clas	ss="OutStream	s"	type="Pl	ot"	>Plotdata	0ut</td <td>:put></td>	:put>
<output< td=""><td>clas</td><td>ss="OutStream</td><td>s"</td><td>type="Pl</td><td>ot"</td><td>>PlotRawd</td><td>ata<!--</td--><td>'Output></td></td></output<>	clas	ss="OutStream	s"	type="Pl	ot"	>PlotRawd	ata </td <td>'Output></td>	'Output>
<td>ss></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ss>							

Input file name: time_dep.xml

</Steps>

- Steps:
 - 1. Generate time-dependent data
 - 2. Cluster time-dependent data

Distributions	Models	Samplers	Databases	DataObjects	Steps
				,	

```
<Steps>
  <MultiRun name="FirstMRun">
              class="DataObjects"
                                     type="PointSet"
                                                              >inputPlaceHolder</Input>
    <Input
              class="Models"
    <Model
                                     type="ExternalModel"
                                                              >PythonModule</Model>
    <Sampler class="Samplers"</pre>
                                     type="MonteCarlo"
                                                              >MC external</Sampler>
    <Output
              class="DataObjects"
                                     type="HistorySet"
                                                              >outMC</Output>
  </MultiRun>
  <PostProcess name="clustering">
    <Input
              class="DataObjects"
                                     type="HistorySet"
                                                              >outMC</Input>
              class="Models"
    <Model
                                     type="PostProcessor"
                                                              >KMeans1</Model>
    <SolutionExport class="DataObjects"</pre>
                                           type="HistorySet" >clusterInfo
                     </SolutionExport>
              class="DataObjects"
                                     type="HistorySet"
    <Output
                                                              >outMC</Output>
  </PostProcess>
</Steps>
```


Distributions	Models	Samplers	Databases	DataObjects	Steps
---------------	--------	----------	-----------	-------------	-------

RAVEN Example 3 Time Dependent Clustering Approach 1: Time Series Transformation

- Objective
 - Analyze time series not at each time step
 - Consider the whole time series as a whole
- Recall clustering
 - Operate on PointSets
- Consider each time series as a "data-point"

- Approach:
 - Convert each time series as a multi-dimensional vector
 - Convert HistorySet into PointSet
 - Perform Clustering
 - Convert clustering results from PointSet to HistorySet

Distributions	Models	Samplers	Databases	DataObjects	Steps
---------------	--------	----------	-----------	-------------	-------

```
<Models>
  <PostProcessor name="dataPreProc" subType="InterfacedPostProcessor">
    <method>HS2PS</method>
    <pivotParameter>time</pivotParameter>
  </PostProcessor>
  <PostProcessor name="KMeans1" subType="DataMining">
    <PreProcessor class="Models" type="PostProcessor">dataPreProc</preProcessor>
    <KDD lib="SciKitLearn">
      <SKLtype>cluster|KMeans</SKLtype>
      <Features>output</Features>
      <n clusters>2</n clusters>
      <tol>1E-10</tol>
      <random state>1</random state>
      <init>k-means++</init>
      compute distances>True</precompute distances>
    </KDD>
  </PostProcessor>
</Models>
```


Distributions	Models	Samplers	Databases	DataObjects	Steps
		•			

```
<Steps>
  <MultiRun name="FirstMRun">
              class="DataObjects"
                                     type="PointSet"
                                                              >inputPlaceHolder</Input>
    <Input
    <Model
              class="Models"
                                     type="ExternalModel"
                                                              >PythonModule</Model>
    <Sampler class="Samplers"</pre>
                                     type="MonteCarlo"
                                                              >MC external</Sampler>
    <Output
              class="DataObjects"
                                     type="HistorySet"
                                                              >outMC</Output>
  </MultiRun>
  <PostProcess name="clustering">
              class="DataObjects"
    <Input
                                     type="HistorySet"
                                                              >outMC</Input>
              class="Models"
    <Model
                                     type="PostProcessor"
                                                              >KMeans1</Model>
    <SolutionExport class="DataObjects"</pre>
                                           type="HistorySet"
                                                              >clusterInfo
                     </SolutionExport>
              class="DataObjects"
                                      type="HistorySet"
    <Output
                                                              >outMC</Output>
  </PostProcess>
</Steps>
```


Distributions	Models	Samplers	Databases	DataObjects	Steps
		•		•	-

```
<Steps>
 <PostProcess name="filter0">
    <Input
              class="DataObjects"
                                     type="HistorySet"
                                                            >outMC</Input>
                                                            >filter0</Model>
    <Model
              class="Models"
                                     type="PostProcessor"
              class="DataObjects"
                                    type="HistorySet"
                                                            >outMC0</Output>
    <Output
  </PostProcess>
</Steps>
```


RAVEN Example 4 Time Dependent Clustering Approach 2: Time Dependent Metrics

 Few clustering algorithms accepts as input a distance metric

E.g.: Hierarchical clustering

- Distance matrix based clustering
 - Given N time series
 - Input is a NxN dimensional matrix Δ

$$\Delta = [d(S,Q)]$$

d(S,Q) is the distance between the S^{th} and Q^{th} time series

Euclidean distance

$$S = S_0, S_2, ..., S_T$$

$$Q = q_0, q_2, ..., q_T$$

$$d^{Eucl.}(S,Q) = \sqrt{\sum_{t=0}^{T} (s_i - q_i)^2}$$

- The good
 - Fast computation

- The bad
 - Sensitive to offset translation (time delays)
 - Requires time series with identical lengths

Dynamic Time Warping (DTW)

$$S = s_0, s_2, ..., s_N$$

 $Q = q_0, q_2, ..., q_M$

- Each element of S is linked to the closest element of Q through a global minimization problem
- The good: handling of
 - Small time shifts (i.e., delays)
 - Time series with different time lengths
- The bad: much slower computation

Distributions	Models	Samplers	Metrics	DataObjects	Steps
				,	

```
<Metrics>
  <DTW name="example">
        <order>0</order>
        <localDistance>euclidean</localDistance>
            <pivotParameter>time</pivotParameter>
        </DTW>
        <Minkowski name="example">
            2
            <pivotParameter>time</pivotParameter>
        </Minkowski></Metrics>
```


Distributions Models Samplers Metrics DataObjects Steps

```
<Models>
 <PostProcessor name="hierarchical" subType="DataMining">
   <Metric class="Metrics" type="DTW">example
   <KDD lib="Scipy" labelFeature="labels">
     <Features>output</Features>
     <SCIPYtype>cluster|Hierarchical</SCIPYtype>
     <method>single</method>
     <metric>euclidean</metric>
     <level>2</level>
     <criterion>distance</criterion>
     <dendrogram>true</dendrogram>
     <truncationMode>lastp</truncationMode>
      20 
     <leafCounts>True</leafCounts>
     <showContracted>True</showContracted>
     <annotatedAbove>10</annotatedAbove>
   </KDD>
 </PostProcessor>
</Models>
```


Distributions	Models	Samplers	Metrics	DataObjects	Steps
		•		,	

```
<Steps>
  <MultiRun name="FirstMRun">
              class="DataObjects"
                                     type="PointSet"
                                                             >inputPlaceHolder</Input>
    <Input
    <Model
              class="Models"
                                     type="ExternalModel"
                                                             >PythonModule</Model>
    <Sampler class="Samplers"</pre>
                                     type="MonteCarlo"
                                                             >MC external</Sampler>
    <Output
              class="DataObjects"
                                     type="HistorySet"
                                                             >outMC</Output>
  </MultiRun>
  <PostProcess name="clustering">
              class="DataObjects"
    <Input
                                     type="HistorySet"
                                                             >outMC</Input>
              class="Models"
    <Model
                                     type="PostProcessor"
                                                             >hierarchical</Model>
              class="DataObjects"
                                     type="HistorySet"
    <Output
                                                             >outMC</Output>
  </PostProcess>
</Steps>
```

Note: no solution

export

