

```
Binary Operations Ex 3.1 Q2
```

(i) On \mathbf{Z}^+ , * is defined by a * b = a - b.

It is not a binary operation as the image of (1, 2) under * is 1 * 2 = 1 - 2 $= -1 \notin Z^{+}$.

(ii) On \mathbf{Z}^+ , * is defined by a * b = ab.

It is seen that for each $a, b \in \mathbf{Z}^+$, there is a unique element ab in \mathbf{Z}^+ . This means that * carries each pair (a, b) to a unique element a * b = ab in Z^+ .

Therefore, * is a binary operation.

(iii) On \mathbf{R} , * is defined by $a * b = ab^2$. It is seen that for each $a, b \in \mathbf{R}$, there is a unique element ab^2 in \mathbf{R} .

This means that * carries each pair (a, b) to a unique element $a * b = ab^2$ in **R**. Therefore, * is a binary operation.

(iv) On Z^+ , * is defined by a * b = |a - b|.

It is seen that for each $a, b \in \mathbb{Z}^+$, there is a unique element |a - b| in \mathbb{Z}^+ .

This means that * carries each pair (a, b) to a unique element a * b =|a - b| in Z^+ .

Therefore, * is a binary operation.

(v) On \mathbf{Z}^+ , * is defined by a * b = a.

* carries each pair (a, b) to a unique element a * b = a in \mathbf{Z}^+ . Therefore, * is a binary operation.

(vi) on R, * is defined by a * b = a + $4b^2$

it is seen that for each element a, b \in R, there is unique element a + 4b in R This means that * carries each pair (a, b) to a unique element a * b =

a + 4b2 in R.

Therefore, * is a binary operation.

Binary Operations Ex 3.1 Q3

It is given that, a*b = 2a + b - 3

Now

$$3*4=2\times3+4-3$$

$$=10-3$$

Binary Operations Ex 3.1 Q4

The operation * on the set A = $\{1, 2, 3, 4, 5\}$ is defined as

$$a * b = L.C.M.$$
 of a and b.

2*3 = L.C.M of 2 and 3 = 6. But 6 does not belong to the given set.

Hence, the given operation * is not a binary operation.

Binary Operations Ex 3.1 Q5

We have,

$$S = \{a, b, c\}$$

We know that the total number of binary operation on a set S with n element is η^{n^2}

Total number of binary operation on $S = \{a, b, c\} = 3^3 = 3^9$

$$S = \{a, b, c\} = 3^{3^2} = 3^9$$

Binary Operations Ex 3.1 Q6

We have,

$$S = \{a,b\}$$

The total number of binary operation on $S = \{a, b\}$ in $2^{2^2} = 2^4 = 16$