Die Parameter Θ_i , $i=1,\ldots,6$ eines HIV-Modells sollen mittels eines Erweiterten Kalman-Filters (EKF) online geschätzt werden. Das entsprechende kontinuierliche physiologische Zustandsraummodell [1] ist gegeben durch

$$\dot{x}'_{1}(t) = -\Theta_{1}x'_{1}(t) - \Theta_{2}x'_{1}(t)x'_{3}(t) + \Theta_{1}x'_{1RL}
\dot{x}'_{2}(t) = -\Theta_{3}x'_{2}(t) + \Theta_{4}x'_{2}(t)x'_{3}(t) + \Theta_{3}x'_{2RL}
\dot{x}'_{3}(t) = \Theta_{5}x'_{1}(t)x'_{3}(t) - \Theta_{6}x'_{2}(t)x'_{3}(t) - u(t).$$
(1)

Hiebei ist x_1 die Anzahl der CD4-Lymphozyten, $x_2(t)$ die Anzahl der CD8-Lymphozyten und x_3 die Virenpolulation (entspricht 10^7 mal der Viruslast gemessen in HIV-RNA-Kopien pro ml). Alle Modellparameter sind positiv. Die Stellgröße u(t) entspricht der Dosierung des Medikaments zur Behandlung von AIDS. Die Zeit t ist in Jahren. $x'_{\rm IRL}$ und $x'_{\rm 2RL}$ beschreiben die Ruhelagen der Lymphozytenzahlen, wenn kein Viren aktiv ist.

Für die Planung der Therapie und Prognose des Therapieerfolgs ist es wichtig, das Modell individuell an einen Patienten anzupassen. Hierfür stehen verrauschte Messungen der Zustände x_1' bis x_3' alle 0,01 Jahre (ca. 3-4 Tage) zur Verfügung. Es wird zunächst angenommen, dass keine Therapie stattfindet (u(k)=0). Die Varianzen des Messrauschens sind 100, 100 und 10^{-5} für x_1' , x_2' und x_3' entsprechend.

1. Stellen Sie zunächst das zeit diskrete zusammengesetzte Zustandsraummodell mit den Vektorfunktionen \boldsymbol{f} und \boldsymbol{h} für den EKF-Entwurf auf.

$$\chi' = (\chi_i \chi_2 \chi_3')^{T}$$

$$G = (G_1 \dots G_6)^{T}$$

$$L, \chi \in X^2 = \begin{pmatrix} \chi_1' \in X^2 \\ \chi_3' \in K^2 \\ G_1 \in K^2 \end{pmatrix}$$

$$G_6 \in X^2$$

$$G_5^{1^2} = (10^2, 10^3, 10^{-5})$$

$$f = \begin{bmatrix} \chi'_{k} + \Delta f'(\chi'_{k}, \mathcal{O}_{k}, \mathcal{U}_{k}) \\ \mathcal{O}_{k} \end{bmatrix} + \mathcal{W}$$

$$\begin{bmatrix} \chi'_{k} + \Delta \left[\mathcal{O}_{n}(\chi'_{n}R_{k} - \chi'_{n}k) - \mathcal{O}_{k} \chi_{n}k' \chi_{n}k' \right] + \mathcal{W}_{n} \\ \chi'_{k} + \Delta \left[\mathcal{O}_{3}(\chi'_{n}R_{k} - \chi'_{n}k) + \mathcal{O}_{k} \chi_{n}k' \chi_{n}k' \right] + \mathcal{W}_{n} \\ \chi'_{n} + \Delta \left[\mathcal{O}_{3}(\chi'_{n}R_{k} - \chi'_{n}k) + \mathcal{O}_{k} \chi_{n}k' \chi_{n}k' - \mathcal{U}_{k}k' \right] + \mathcal{W}_{n} \\ \chi'_{n} + \Delta \left[\mathcal{O}_{3} \chi'_{n}k \chi'_{n}k' - \mathcal{O}_{k} \chi_{n}k' \chi'_{n}k' - \mathcal{U}_{k}k' \right] + \mathcal{W}_{n} \\ \mathcal{O}_{n} \\ \end{pmatrix}$$

$$h = \begin{bmatrix} \chi_{n}k & \chi_{n}k & \chi_{n}k & \chi_{n}k' \end{bmatrix}^{T}$$

2. Bestimmen Sie anschließend die Matrizen $\boldsymbol{A}(k)$, $\boldsymbol{B}(k)$, $\boldsymbol{C}(k)$.

$$A_{k} = \begin{bmatrix} 1 - \Delta(O_{1} - O_{2} \times x_{15}) & 0 & \Delta O_{5} \times x_{3k} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 - \Delta(O_{3} + O_{4} \times x_{15}) & - \Delta O_{6} \times x_{3k} & 0 & 0 & 0 & 0 & 0 & 0 \\ - O_{2} \times x_{1k} & + O_{4} \times x_{2k} & 1 + \Delta(O_{5} \times x_{1k} - O_{6} \times x_{2k}) & 0 & 0 & 0 & 0 & 0 \\ \Delta(X_{10k} - X_{1k}) & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ X_{1k} \times x_{3k} & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \Delta(X_{2k} - X_{2k}) & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & X_{2k} \times x_{3k} & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & \Delta(X_{2k} - X_{2k}) & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & \Delta(X_{2k} - X_{2k}) & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & \Delta(X_{2k} - X_{2k}) & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & -\Delta(X_{2k} - X_{2k}) & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$B_{k} = \begin{bmatrix} 0 & 0 & -\Delta & 0 & ... & 0 \end{bmatrix}^{T}$$
 $C_{k} = \begin{bmatrix} 1 & 0 & 0 & 0 & ... & 0 \\ 0 & 1 & 0 & 0 & ... & 0 \\ 0 & 0 & 1 & 0 & ... & 0 \end{bmatrix}$

3.	Impleme Level-2																	
	am 7. M						`					٠	٠	٠	٠	•	٠	
•	•	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	
•		•	٠		٠	•							•		•	•		
dι	ıalen Sch	ätzung	der Zu	stände	und Par	ameter.	. Das w	ahre Sy	stem m	it den z	JLINK zur u bestim-							
be	en (Paran	neter u	nd Anfa	angswer	te in de	n Tabel	len 1 ur	nd 2). D	em Blo	ck werd	reits gege- en als Pa-		•	•	•	•	•	
\mathbf{m}		uhelage	en der I	ympho	zytenza	hlen üb	ergeben				ein Vektor AB-Skript		٠	٠	٠	٠	٠	
. 11	ıı.ı., da	is zuvo.	ausger	um we	ruen in	uss, den	mert.											
•	•	•	٠	•	٠	٠	•	•	٠	•	•		٠	•	٠	٠		
	•	•	٠		٠	٠	•		•		٠	٠	٠		٠	٠	٠	
				·	·	•	•	·		·			•	·	•	•		
•	•	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	
	•	•	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	
			٠										•					
,																		
•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•	٠	٠	
		•				•									•	•		
•	•					•					•	٠	•		•	•		
	٠	•				•					٠	•	•		•	•		

