Confidential					
	Kawasaki	Robot Mani	pulator Pa	rameter Sheet	-
		RS	S020N		
СОРҮ	JOB NO.				
				Kaw Kaw	asaki
	NOTE			t Division	
	A:2017/2/16 B:2017/3/2		Rese	arch and Developm	ent Department
	C:2018/3/15 D:2021/08/03	3	Approved	*****	*****
	E:2021/10/13		Approved	2021/10/13	M. Yamamoto
			Checked	*****	*****
			Designed	2021/10/13	N. Higashida
	DATE	2021/10/13	DRAWING NO.	'	1

SUM

FILING NO.

91610-3020DEE

1 . Kinematics & Dynamics Parameter

(1) Coordinate system

Fig.1 R-type

(2)Link length Unit:[m]

Link No.	L0*	L1*	L2*	L3*	L4*	L5*	L6*
Li	0.465	0.15	0.77	0.161	0.644	0.095	0
Liy	0	0	0	0	0	0	0

(3) Link mass

Unit:[ka]

Omiti [Rg]							
Link No.	M0	M1	M2	M3	M4	M5	M6
Mi	-	105.819	34.056	24.361	17.376	2.699	-

(4) Center of mass Unit:[m]

Link No.	S0*	S1*	S2*	S3*	S4*	S5*	S6*
Six	-	-1.0844.E-02	4.3170.E-01	4.2155.E-02	2.6980.E-03	4.1683.E-02	-
Siy	-	5.5887.E-02	5.2490.E-03	6.1750.E-03	-1.1550.E-03	7.6000.E-05	-
Siz	-	-1.3208.E-01	-1.3668.E-01	-4.4200.E-03	2.9188.E-01	-1.2370.E-03	-

(5) Principal moment of inertia

Unit·[ka·m²]

Offit. TKG T	<u> </u>						
Link No.	10*	l1*	12*	13*	14*	15*	l6*
lixx	-	2.4662.E+00	1.8643.E-01	2.7260.E-01	9.9186.E-01	3.2000.E-03	-
liyy	-	2.3289.E+00	3.8671.E+00	3.3739.E-01	1.0047.E+00	5.6700.E-03	-
lizz	-	1.7986.E+00	3.9003.E+00	2.4438.E-01	4.6490.E-02	5.8800.E-03	

2 . Arm Parameter

(6) Total Reduction Gear Ratio

out/in

Joint No.	1	2	3	4	5	6	7
Rg*	1110/7	1880/13	4897/29	1175/13	100	119/2	-

(7)手首軸誘起係数

out=A· in

$$_{5} = _{5in}$$
 $_{6} = K_{56} \cdot _{5in} + _{6in}$

K56 = -0.021008403

(8) Motion Range Unit:[deg]

Ornt.[dog]							
Joint No.	1	2	3	4	5	6	7
UpperLimit	180	155	150	270	145	360	-
LowerLimit	-180	-105	-163	-270	-145	-360	-

(9) Max. Speed Unit:[deg/s]

Offic Laber	<u> </u>						
Joint No.	1	2	3	4	5	6	7
Vmax.	190		210	1 400	360	610	-

(10) Max. Current command

Unit:[A(rms)]

Joint No.	1	2	3	4	5	6	7
Imax.	29.5	26.5	15	£ 2.9	<u>∕</u> €\ 3.1	£ 3.6	-

(11) Over Load Time at Max. Current command

Unit:[sec]

0							
Joint No.	1	2	3	4	5	6	7
Tol	7.4	9.4	4.8	£ 15.6	£ 13.3	£ 9.4	-

3 . Motor Parameter

(1) Specification

Parameter		Unit	Jt.1	Jt.2	Jt.3	Jt.4	Jt.5	Jt.6
Rated	Nominal	Vac	200 ~ 240	200 ~ 240	200 ~ 240	200 ~ 240	200 ~ 240	200 ~ 240
Voltage	LowerLimit	%	-15	-15	-15	-15	-15	-15
(Vm)	UpperLimit	%	10	10	10	10	10	10
Pole Pairs			10	10	10	10	10	10
RatedOutp	out (Pr) ^{*2}	W	2000	2000	675	200	200	200
RatedToro	jue (Tr) ^{*2}	$N \cdot m$	9.5	9.5	2.15	0.637	0.637	0.637
Max.Torqu		$N \cdot m$	30	30	8.5	2.2	2.2	2.2
RatedSpee	ed (Nr) ^{*2}	r/min	2000	2000	3000	3000	3000	3000
Max.Speed	d (Nmax)	r/min	5000	5000	6000	6000	6000	6000
RatedCurr	ent (Ir)*2	A(rms)	11	11	4.6	1.5	1.5	1.5
Max.Curre	nt (lp)	A(rms)	35	35	15.5	5.6	5.6	5.6
TorqueCons	stant (Kt) ^{*3}	N·m/A(rms) ± 10%	0.97	0.97	0.559	0.476	0.476	0.476
Back-emfCor		V/rpm ± 10%	0.101	0.101	0.585	0.0498	0.0498	0.0498
Resistance	e (Ra) ^{*3}		0.66	0.66	1.2	8.1	8.1	8.1
Inductance	e (La) ^{*3}	mΗ	12.3	12.3	2.07	0.279	0.279	0.279
MotorInert	tia (Jm) ^{*1}	10^{-4} kg·m ²	13.5940	12.7600	2.6411	0.7822	0.5495	0.7800
Insulation	Class		F	F	F	F	F	F
MotorMan			SANYO DENKI					
MotorMod	el		R2AA13200L	R2AA13200L				
MotorAllowable	eTemperature		*6	- *6	- *6	- *6	- *6	- *6
Abs.Encod	lerFormat		Nikon A-format					
EncoderRe			17bit	17bit	17bit	17bit	17bit	17bit
EncoderCom	nm.Baudrate	Mbps	4	4	4	4	4	4
EncoderAllov tTemperature			85	85	85	85	85	85
Encoder Ten Data Thresh			95	95	95	95	95	95

^{*1:}include Brake Inertia, etc.

^{*4:}Equivalent and, Line, Phase char.

Equivalent DC mac	hine	Line		Phase
I [A(rms)]	=	II [A(rms)]	=	I [A(rms)]
Ke [V(rms)]	=	(3) x Kel [V(rms)]	=	$3 \times \text{Ke}$ [V(rms)]
Ra	=	1.5 × RI	=	3 × R
La	=	1.5 × LI	=	3 × L
	I [A(rms)] Ke [V(rms)] Ra	Ke [V(rms)] = Ra =	$I [A(rms)] = II [A(rms)]$ $Ke [V(rms)] = (3) \times Kel [V(rms)]$ $Ra = 1.5 \times RI$	$I [A(rms)] = II [A(rms)] = Ke [V(rms)] = 1.5 \times RI = 1.5 \times RI$

^{*5:}The encoder's ambient temperature indicates the ambient temperature of a encoder board.

These values varies depending on the optional setting of the mounted encoder model.

^{*2:}Indicate typical values after temperature rise saturation when used with a standard servo amplifier of motor maker.

^{*3:}Indicates a typical value when the winding temperature is 20 .

^{*6:}The motor must be used by the condition that the encoder temperature is less than its allowable temperature shown in the table.

^{*7:}These values indicate limited threshold of temperature date read by Encoder.

These threshold are determined as a result of evaluation by Kawasaki Robot system.

(2) Speed-Torque characteristic

These values are for when the input power supply is a 3-phase AC 200 V circuit.

The area of the instantaneous zone decreases when the power supply voltage is less than 200 $\ensuremath{\text{V}}.$

Indicate typical values after temperature rise saturation when used with a standard servo amplifier of motor maker.

(3) Relations with the motor Back-emf and the encoder data

Fig. 3 Relations with the motor Back-emf and the encoder data (Case of 5 Pairs)

4 . Brake Parameter

(1) Specification

() Opcomoducion							
Parameter	Unit	Jt.1	Jt.2	Jt.3	Jt.4	Jt.5	Jt.6
RatedVoltage (VB)	$V_{DC} \pm 10\%$	24	24	24	24	24	24
ConsumptionCurrent	A(rms)	0.66	0.66	0.37	0.32	0.32	0.32
Min.StaticFrictionTorque	N⋅m	13	13	2.55	1.37	1.37	1.37
Max.ArmaturePullInVoltage	V	15	15	15	15	15	15
Max.ArmaturePullInTime	ms	70	70	40	30	30	30
Min.ArmatureReleaseVoltage	V	1.3	1.3	1.3	1.3	1.3	1.3
Max.ArmatureReleaseTime	ms	100	100	200	120	120	120

Do not use this brake for mechanical braking as the common exciting brake because this brake is holding brake.

Fig. 4 Brake characteristics measurement circuit diagram

5 . ReductionGear parameter (1) Specification

Unit	Jt.1	Jt.2	Jt.3	Jt.4	Jt.5	Jt.6
kg·m ²	23.797	0.962	5.881	0.168	0.977	0.516
N·m	1534	1225	412	42.93	52	33
r/min	15	15	29.66	22.13	20	40
N∙m	2914	3062	1030	96.17	107	73
	0.76	0.80	0.76	0.80	0.69	0.72
	kg·m² N·m r/min	kg·m² 23.797 N·m 1534 r/min 15 N·m 2914	kg·m² 23.797 0.962 N·m 1534 1225 r/min 15 15 N·m 2914 3062	kg·m² 23.797 0.962 5.881 N·m 1534 1225 412 r/min 15 15 29.66 N·m 2914 3062 1030	kg·m² 23.797 0.962 5.881 0.168 N·m 1534 1225 412 42.93 r/min 15 15 29.66 22.13 N·m 2914 3062 1030 96.17	kg·m² 23.797 0.962 5.881 0.168 0.977 N·m 1534 1225 412 42.93 52 r/min 15 15 29.66 22.13 20 N·m 2914 3062 1030 96.17 107

^{*1:}Value of the inertia for the output shaft.

 $[\]begin{tabular}{l} \star 2:Value of the torque for the output shaft. \end{tabular}$

