Contents

1	01.19.21 1 1.1 Domains & Codomains 2 1.2 Strings 2
2	01.14.21 2 2.1 Automaton (automata) 2 2.2 The Mathematics of Automata 2 2.2.1 Mathematicians & History 2 2.2.2 Sequential Logic 3 2.3 Necessary Review 3 2.4 Functions 3 2.5 TODO Types of Functions - Definition & Logical Statement 4 2.6 Finite Automaton (Finite State Machine) 4
1	01.19.21
	• Tuples are sequences which are always finite in length
	• The deterministic finite automaton shown is a 5-tuple:
	 Q: finite nonempty set of states state: configuration of logic of a machine ∑ (Sigma) - input alphabet alphabet: a finite, nonempty set of symbols where symbols are an object of length 1 δ (Delta) - transition function Q₀ ∈ Q - starting state F ⊂ Q - set of final states
	• For this deterministic finite automaton,
	$-\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}_2$
	Represented as a table,
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1.1 Domains & Codomains

- Domain: set of all possible function inputs
- Codomain: set of all possible outputs

1.2 Strings

- In computer science, strings are character arrays
- In mathematics, strings are sequences of symbols
- Specifically a string over an alphabet, Σ , is a sequence of symbols belonging to Σ
- ϵ is the empty string

$2 \quad 01.14.21$

2.1 Automaton (automata)

- Self running machine requiring a continuous power source
 - Historically used power sources include water, steam, and electricity
- Course revolves around defining the mathematics powering machines

2.2 The Mathematics of Automata

2.2.1 Mathematicians & History

- Cantor defines sets as collections of objects
- Cantor also argues that infinites can be of different magnitudes there are infinitely more real numbers than natural numbers
- Goedel eventually derives his incompleteness theorem
 - No logical system that contains the natural numbers can prove its own soundness
 - Every sound logical system containing the natural numbers contains valid statements that cannot be proved or disproved

- In 1936, Turing proves The Halting Problem is not decidable, it is impossible
 - The Halting Problem is an algorithm that can analyze any other algorithm and determine whether or not it goes into an infinite loop
- Turing creates the turing machine as an object consisting of sets and processes wherein the object can use any finite process to complete an action.
- Turing machine sets the basis for a computer, which leads to a series of important questions:
 - What can & can't a machine do?
 - What does it mean for a problem of be harder than another?
 - What does it mean for a machine to be more powerfule than another?

2.2.2 Sequential Logic

- Sentential Logic- based on boolean results
 - Predicated on AND, OR, NOT
 - XOR, XAND, etc. can be derived using the above

2.3 Necessary Review

- Textbook Ch. 0
- Logic Statements
- Set Theory
- Functions

2.4 Functions

- Functions something that maps objects from one set to another
- Given f: $a \rightarrow b$;
 - Everything in a is mapped to something in b

- * For every x, such that x is an element of a, there exists a y, such that y is an element of b
- No one point in the domain can be mapped to two different points in the codomain
 - * Logically, you can't have a function that takes in one input and returns two different outputs
 - * If f maps $x \to y1$ and y2, y1 = y2
 - $\neg \forall \ x \in A \ y_1, y_2 \in B \ [f(x) = y_1 \ \land \ f(x) = y_2 \rightarrow y_1 = y_2]$

2.5 TODO Types of Functions - Definition & Logical Statement

- Injective Functions
- Surjective Functions
- Proof by Induction (\forall)
- Proof by Contradiction (¬∃)

2.6 Finite Automaton (Finite State Machine)

- States are logical confirgurations
- States are generally based upon input
- Purpose of a state machine is to make a yes/no decision