CHAPTER 8

Bilinear and quadratic forms

Contents

8.1	Bilinear forms	1
8.2	Symmetric bilinear forms	3
8.3	Quadratic forms	3
8.4	Diagonalizing quadratic forms	4

8.1 Bilinear forms

Definition 8.1. Let **V** be a vector space over **K**. A map

$$b: \mathbf{V} \times \mathbf{V} \to \mathbf{K}$$

is a bilinear form on V if it is linear in each of its arguments. That is, if it satisfies

(BF1)
$$b(\mathbf{v} + \mathbf{v}', \mathbf{w}) = b(\mathbf{v}, \mathbf{w}) + b(\mathbf{v}', \mathbf{w})$$

(BF2)
$$b(\mathbf{v}, \mathbf{w} + \mathbf{w}') = b(\mathbf{v}, \mathbf{w}) + b(\mathbf{v}, \mathbf{w}')$$

(BF3)
$$b(c\mathbf{v}, \mathbf{w}) = b(\mathbf{v}, c\mathbf{w}) = cb(\mathbf{v}, \mathbf{w})$$

for every \mathbf{v} , \mathbf{v}' , \mathbf{w} , $\mathbf{w}' \in \mathbf{V}$ and $c \in \mathbf{K}$. The set of all bilinear forms on \mathbf{V} is denoted by $\mathrm{Bil}(\mathbf{V})$. The bilinear form is called *symmetric* if

$$b(\mathbf{v}, \mathbf{w}) = b(\mathbf{w}, \mathbf{v})$$
 for every $\mathbf{v}, \mathbf{w} \in \mathbf{V}$.

Example 8.2. Let $A = (a_{ij}) \in \text{Mat}_{n \times n}(\mathbf{K})$. One obtains a bilinear form on \mathbf{K}^n by putting

$$b(\mathbf{x}, \mathbf{y}) = \mathbf{x}^t A \mathbf{y} = \sum_{i, i=1}^n a_{ij} x_i y_j$$

for every $\mathbf{x} = (x_1, \dots, x_n)^t$ and $\mathbf{y} = (y_1, \dots, y_n)^t$. So, to a matrix we can associate a bilinear form. The converse is also true.

Definition 8.3. Let **V** be a **K**-vector space of dimension n, let $e = (e_1, ..., e_n)$ be a basis of **V** and let $b : \mathbf{V} \times \mathbf{V} \to \mathbf{K}$ be a bilinear form on **V**. The *matrix of the bilinear form b with respect to the basis e* is the matrix $A = (a_{ij}) \in \operatorname{Mat}_{n \times n}(\mathbf{K})$ defined by

$$a_{ij} = b(\mathbf{e}_i, \mathbf{e}_i), \quad 1 \le i, j \le n.$$

Example 8.4. If $e = (e_1, ..., e_n)$ is the canonical basis of K^n and b is the bilinear form defined in the previous example with the matrix $A = (a_{ij})$, then, for each i and j

$$b(\mathbf{e}_i,\mathbf{e}_j)=a_{ij}.$$

If A is the identity matrix Id_n then one obtains the standard symmetric form on K^n :

$$b(\mathbf{x}, \mathbf{y}) = \mathbf{x}^t \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Proposition 8.5. Let **V** be a finite dimensional vector space with basis $e = \{e_1, ..., e_n\}$. Associating to each bilinear form its matrix with respect to e gives rise to a bijection between the set Bil(V) of bilinear forms on **V** and the set $Mat_{n\times n}(K)$. This bijection induces a bijection of the set of symmetric bilinear forms with the set of symmetric matrices.

• The bijection in Proposition 8.5 depends on the choice of basis.

Definition 8.6. Two matrices $A, B \in \operatorname{Mat}_{n \times n}(\mathbf{K})$ are *congruent* if there exists $M \in \operatorname{GL}_n(\mathbf{K})$ satisfying

$$B = M^t A M$$
.

• The congruency of matrices is an equivalence relation in $Mat_{n\times n}(\mathbf{K})$.

Proposition 8.7. Let **V** be a **K**-vector space of dimension n. Two matrices represent the same bilinear form b on **V** with respect to two bases if and only if they are congruent.

• It follows that two congruent matrices have the same rank.

Definition 8.8. By Proposition 8.7, the rank r of a matrix which represents a bilinear form b with respect to some basis does not depend on the basis, but only on b. We call r the rank of the bilinear form b.

If b has rank $r = \dim(\mathbf{V})$, we say that the bilinear form b is non-degenerate. Otherwise it is a degenerate bilinear form.

Proposition 8.9. Let **V** be a finite dimensional **K**-vector space and let $b : \mathbf{V} \times \mathbf{V} \to \mathbf{K}$ be a bilinear form. The following properties are equivalent:

- 1. *b* is non-degenerate.
- 2. For every $\mathbf{v} \neq 0$ in \mathbf{V} there is a $\mathbf{w} \in \mathbf{V}$ for which $b(\mathbf{v}, \mathbf{w}) \neq 0$.
- 3. For every $\mathbf{w} \neq 0$ in \mathbf{V} there is a $\mathbf{v} \in \mathbf{V}$ for which $b(\mathbf{v}, \mathbf{w}) \neq 0$.

8.2 Symmetric bilinear forms

Definition 8.10. Let b be a symmetric form on a vector space \mathbf{V} and let $\mathbf{v} \in \mathbf{V}$. A vector \mathbf{w} is said to be *orthogonal to* \mathbf{v} (*with respect to the bilinear form* b) if $b(\mathbf{v}, \mathbf{w}) = 0$. In this case, one also says that *the two vectors are orthogonal* (*with respect to the bilinear form* b) and we write $\mathbf{v} \perp_b \mathbf{w}$ or just $\mathbf{v} \perp \mathbf{w}$.

Let *S* be a non-empty subset of **V**. The set of vectors orthogonal to every vector in *S* is denoted by S^{\perp} :

$$S^{\perp} = \{ \mathbf{w} \in \mathbf{V} : b(\mathbf{v}, \mathbf{w}) = 0 \text{ for every } \mathbf{v} \in S \}.$$

The set S^{\perp} is a vector subspace of **V** called the *subspace orthogonal to S*. Two subspaces **U** and **W** of **V** are said to be *orthogonal* if $\mathbf{U} \subseteq \mathbf{W}^{\perp}$, which is equivalent to $\mathbf{W} \subseteq \mathbf{U}^{\perp}$.

If **V** is finite dimensional and $e = (e_1, ..., e_n)$ is a basis whose vectors are pairwise orthogonal, that is, if $b(e_i, e_j) = 0$ whenever $i \neq j$, then e is called a *diagonalizing basis for b* or *orthogonal basis for b*.

• If e is an orthogonal basis for b, then the matrix $A = (a_{ij})$ of b with respect to e is a diagonal matrix. In such a basis, the bilinear form can therefore be written in the following manner:

$$b(\mathbf{x}, \mathbf{y}) = a_{11}x_1y_1 + a_{22}x_2y_2 + \dots + a_{nn}x_ny_n.$$

• Note that if a diagonalizing basis exists, it is not unique. For example one can rescale the vectors of such a basis.

8.3 Quadratic forms

Definition 8.11. Let **V** be a **K**-vector space and let b be a symmetric bilinear form. The *quadratic* form associated to b is the map $q: \mathbf{V} \to \mathbf{K}$, defined by

$$q(\mathbf{v}) = b(\mathbf{v}, \mathbf{v})$$
 for every $\mathbf{v} \in \mathbf{V}$.

Example 8.12. The quadratic form associated to the standard symmetric bilinear form on \mathbf{K}^n is

$$q(\mathbf{x}) = x_1^2 + x_2^2 + \dots + x_n^2$$

and is called *standard quadratic form on* \mathbf{K}^n .

Proposition 8.13. Let **V** be a vector space over **K** with symmetric bilinear form $b : \mathbf{V} \times \mathbf{V} \to \mathbf{K}$. The quadratc form q associated to b satisfies the following two condition:

$$q(c\mathbf{v}) = c^2 q(\mathbf{v})$$

 $2b(\mathbf{v}, \mathbf{w}) = q(\mathbf{v} + \mathbf{w}) - q(\mathbf{v}) - q(\mathbf{w})$

for every $c \in \mathbf{K}$ and every $\mathbf{v}, \mathbf{w} \in \mathbf{V}$.

Definition 8.14. From Proposition 8.13 it follows that the quadratic form q determines the symmetric bilinear form b to which it is associated, since b can be expressed in terms of q. We call b the polar bilinear form of the quadratic form q. Consequently, assigning a symmetric bilinear form to a vector space \mathbf{V} is equivalent to assigning the associated quadratic form.

Example 8.15. If $e = (e_1, ..., e_n)$ is a basis of **V** and if $A = (a_{ij})$ is the symmetric matrix which represents the bilinear form b, then for the associated quadratic form, we have for every $\mathbf{x}(x_1, ..., x_n) \in \mathbf{V}$,

$$q(\mathbf{x}) = \mathbf{x}^t A \mathbf{x} = \sum_{i,j=1}^n a_{ij} x_i x_j.$$

Thus, we may view q as a homogeneous polynomial of degree 2 in the unknowns $x_1, ..., x_n$. Conversely, if a homogeneous polynomial

$$Q(\mathbf{x}) = \sum_{1 \le i \le j \le n} q_{ij} x_i x_j$$

is given, then Q determines a quadratic form corresponding to the symmetric bilinear form with matrix A where

$$a_{ii} = q_{ii},$$
 $i = 1,...,n$
 $a_{ij} = a_{ji} = \frac{1}{2}q_{ij}$ $i \le j.$

Thus, we will make no distinction between quadratic forms and homogeneous polynomials of degree two, due to the above identification.

- The rank of a quadratic form is by definition the rank of the corresponding polar bilinear form.
- The matrix of a quadratic form relative to a basis *e* is the matrix of the corresponding polar bilinear form relative to *e*.
- Two matrices *A* and *B* represent the same quadratic form relative to two different bases if the symmetric matrices *A* and *B* are congruent.
- Suppose that there is a symmetric bilinear form $b: \mathbf{V} \times \mathbf{V} \to \mathbf{K}$ on a vector space \mathbf{V} , and let q be the associated quadratic form. If \mathbf{W} is a vector subspace of \mathbf{V} then b induces a map

$$b': \mathbf{W} \times \mathbf{W} \to \mathbf{K}$$

which obviously satisfies the conditions given in the definition of a symmetric bilinear form. Therefore b' is a symmetric bilinear form on W. In the same manner, one has a quadratic form

$$q': \mathbf{W} \to \mathbf{K}$$

obtained by restricting q to W. It is the quadratic form associated to b'.

8.4 Diagonalizing quadratic forms

Theorem 8.16. Let V be a K-vector space and let b be a symmetric bilinear form on V. Then there exists a diagonalizing basis for b. Equivalently, any symmetric matrix is congruent to a diagonal matrix.

Theorem 8.17 (Sylvester). Let **V** be a real vector space of dimension n, and let $b : \mathbf{V} \times \mathbf{V} \to \mathbb{R}$ be a symmetric bilinear form on **V** of rank $r \le n$. Then there is an integer p with $0 \le p \le r$ depending only on p, and a basis $\mathbf{e} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ of **V** with respect to which the matrix associated to p has the form

$$\begin{bmatrix} I_p & 0 & 0 \\ 0 & -I_{r-p} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (8.1)

where 0 denotes zero matrices of appropriate sizes.

Equivalently, every symmetric matrix $A \in \operatorname{Mat}_{n \times n}(R)$ is congruent to a diagonal matrix of the form (8.1) in which $r = \operatorname{rank}(A)$ and p depends only on A.

• With respect to the basis e in the above theorem, the quadratic form q associated to b is

$$q(\mathbf{x}) = x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_r^2$$

where $\mathbf{x} = (x_1, \dots, x_n)$. This is called the *normal form* of the quadratic form q.

- The pair (p, r p) is called the *signature* of b and of q.
- We have the following notions:
 - if $q(\mathbf{v}) > 0$ for all $\mathbf{v} \neq 0$ then q is *positive definite*, in this case the signature is (n, 0) and the normal form is

$$x_1^2 + \cdots + x_n^2$$
.

- If $q(\mathbf{v})$ ≥ 0 for all \mathbf{v} ∈ \mathbf{V} then q is *positive semi-definite*, in this case the signature is (r, 0) and the normal form is

$$x_1^2 + \cdots + x_r^2$$
.

– If $q(\mathbf{v})$ < 0 for all \mathbf{v} ≠ 0 then q is *negative definite*, in this case the signature is (0, n) and the normal form is

$$-x_1^2-\cdots-x_n^2.$$

- If $q(\mathbf{v})$ ≤ 0 for all \mathbf{v} ∈ \mathbf{V} then q is *negative semi-definite*, in this case the signature is (0, r) and the normal form is

$$-x_1^2-\cdots-x_r^2.$$

– In all other cases we say that q is *indefinite*, in this case the signature is (p, r - p) and the normal form is

$$x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_r^2$$
.

• For a symmetric matrix we have the analogue terminology depending on the type of the quadratic form associated to such a matrix.

Corollary 8.18. A symmetric matrix $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is positive definite if and only if there is a matrix $M \in \operatorname{GL}_n(\mathbb{R})$ for which $A = M^T M$.

• The scalar product in \mathbf{E}^3 is a positive definite symmetric bilinear form. If q is the associated quadratic form then

$$d(A,B) = \sqrt{q(\overrightarrow{AB})}.$$

• In \mathbb{R}^4 the quadratic form

$$q(x_1, x_2, x_3, x_4) = x_1^2 + x_2^2 + x_3^2 - x_4^2$$

is called the *Minkowski form*. It is non-degenerate and indefinite of signature (3,1). The pair (\mathbb{R}^4, q) is called *Minkowski space* and is important in special relativity.

• Covariance matrices are symmetric positive semi-definite.