Please include your name (with your last name underlined) and your netid at the top of the first page. No credit will be given without supporting work.

- 1. Let W_n denote a random variable with mean μ and variance b/n^p , where p > 0, μ , and b > 0 are constants (not functions of n). Prove that $W_n \stackrel{P}{\to} \mu$.
- 2. Suppose $X_1, ..., X_n$ is a random sample from a Uniform $(0, \theta)$ distribution. Let $Y_n = \max(X_1, ..., X_n)$.
 - a. Show that $Y_n \stackrel{P}{\to} \theta$.
 - b. Show that $\left(\frac{n+1}{n}\right)Y_n \stackrel{P}{\to} \theta$.
- 3. Let $X_n \sim Exponential(\lambda = n)$. Show that $X_n \stackrel{P}{\to} 0$.
- 4. Let $X_1, ..., X_n$ be iid U(0,1) and let $Y_1 = \min(X_1, ..., X_n)$ and $Y_n = \max(X_1, ..., X_n)$. Show that $Y_1 + Y_n \stackrel{P}{\to} 1$. (Hint: See Theorem 5.1.2).
- 5. Let Y_1 denote the minimum of a random sample of size n from a distribution that has pdf $f(x) = e^{-(x-\theta)}$, $\theta < x < \infty$, zero elsewhere. Let $Z_n = n(Y_1 \theta)$. Find the cumulative distribution function (cdf) for $Z_n = n(Y_1 \theta)$, and find the limiting cdf of Z_n as $n \to \infty$.
- 6. Let \bar{X}_n denote the mean of a random sample of size n from a Poisson distribution with parameter $\mu = 1$.
 - a. Show that the mgf of $Y_n = \sqrt{n}(\bar{X}_n 1)$ is given by

$$M_{Y_n}(t) = \exp\left[-t\sqrt{n} + n\left(e^{t/\sqrt{n}} - 1\right)\right]$$

b. Show that the limiting moment generating function of Y_n as $n \to \infty$ is that of the standard normal distribution. Hint: Approximate $e^{t/\sqrt{n}}$ in the exponent of the mgf of Y_n using the second order Taylor series expansion

$$e^{\delta} = 1 + \delta + \frac{1}{2}\delta^2 + o(\delta^2) \text{ as } \delta \to 0.$$

7. As in the previous problem, let \bar{X}_n denote the mean of a random sample of size n from a Poisson distribution with parameter $\mu = 1$. Use the Δ -method to find the limiting distribution of $\sqrt{n} \left(\sqrt{\bar{X}_n} - 1 \right)$.

- 8. Let $X_1, X_2, ..., X_n$ be iid random variable from a distribution with mean 0, variance σ^2 and 4^{th} moment $E(X^4) = \mu_4 < \infty$. Let $T_n = \frac{1}{n} \sum_{i=1}^n X_i^2$. Citing any theorems that you use, find the limiting distribution of $\sqrt{n} (T_n \sigma^2)$ as $n \to \infty$.
- 9. Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with the following pdf:

$$f(x; \theta) = \theta x^{\theta-1}$$
, $0 < x < 1$, zero elsewhere,

where θ is an unknown fixed parameter in the range $0 < \theta < \infty$.

- a. Derive an explicit expression for the maximum likelihood estimator (MLE) $\hat{\theta}_n$ based on the sample.
- b. Derive an explicit expression for a method of moments (MoM) estimator of $\tilde{\theta}_n$ based on the sample (equate the theoretical mean and sample mean, and solve for θ).
- 10. Consider the same setup as in Problem 9.
 - a. Show that the MoM estimator $\tilde{\theta}_n$ is a consistent estimator of θ .
 - b. Show that the MLE $\hat{\theta}_n$ is a consistent estimator of θ .

11. Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with one of two possible pdfs:

$$f(x;\theta) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, & -\infty < x < \infty, \ \theta = 1\\ \frac{1}{\pi(1+x^2)}, & -\infty < x < \infty, \ \theta = 2 \end{cases}$$

Find the MLE $\hat{\theta}$ for $\theta \in \{1,2\}$.

- 12. Suppose $X_1, X_2, ..., X_n$ are iid with the pdf $f(x; \theta) = \frac{2x}{\theta^2}, 0 < x \le \theta$, zero elsewhere.
 - a. Find the MLE $\hat{\theta}$ for θ .
 - b. Find a constant c so that $E(c\hat{\theta}) = \theta$.
 - c. Find the MLE for the median of the distribution, i.e. the value $m(\theta)$ such that

$$F(m(\theta);\theta)=1/2,$$

where $F(x; \theta)$ is the cumulative distribution function.