Project 2: Unconstrained Optimization

Faezeh Habibi and Ye Zheng.

We present the convergence results for the given three functions by Gradient Descent, Newton Method, and Quasi-Newton, and by our implemented Adam optimizer.

Function 1

Backtracking Line Search: ho=0.9, c=0.1, initial step lpha=1.

Start point: x = ones(100, 1).

Method	Gradient Descent	Newton Method	Quasi-Newton
Founded Minimum	0	0	0
Iteration Number	373	1	117

with convergence figures:

Analysis

For function 1, its gradient and Hessian are:

$$abla f_i = 2ix_i, \quad H_{ij} = egin{cases} 2i & ext{if } i=j \ 0 & ext{otherwise} \end{cases}$$

the gradient function has single zero-point $[0;0;0;\ldots;0]$ and the Hessian function is strict positive, so the global minimum is 0. It is also a quadratic function that satisfying the assumption of Newton Method, so Newton Method can find its minima in one step.

Function 2

Backtracking Line Search: ho=0.9, c=0.1, initial step lpha=1.

Start point: x = zeros(100, 1).

Method	Gradient Descent	Newton Method	Quasi-Newton
Founded Minimum	-2.4432×10^3	-2.4432×10^3	-2.4432×10^3
Iteration Number	659	12	266

with convergence figures:

Analysis

If we fix n=2, c=[1;1], A=[1,1;1,1], b=[1;1] for function 2, i.e.

$$f = x_1 + x_2 - (\ln(1 - x_1) + \ln(1 - x_2))$$

its value plot w.r.t x_1, x_2 is:

Real part

Imaginary part

Under the strict definition of \log function, the above function is only defined on the $x_1 < 1 \land x_2 < 1$.

For the original 100-dimensional function, it is not defined on the whole R^{100} domain. Under some inputs, log will output complex number (log a negative x). To address this, we:

- find zeros(100, 1) is an acceptable start point.
- lower the step α if b-Ax<0 , until $\log b-Ax$ is defined.
- lower the tolerance to 10^{-5} and the maximum iteration number 10^3 for gradient descent.

The following figure is the 12 chosen α in Newton method:

It can be found that even for Newton Method, the first four steps are very small.

Function 3

Backtracking Line Search: ho=0.9, c=0.1, initial step lpha=1.

Start point: [100; 100].

Method	Gradient Descent	Newton Method	Quasi-Newton
Founded Minimum	85	0	0
Iteration Number	$10^4\mathrm{(max)}$	205	396
Minima $\left[x_{1},x_{2} ight] =% {\displaystyle\int\limits_{0}^{\infty}} \left[\left(x_{1},x_{2} ight) \left(x_{2},x_{2} ight) \left$	[10.2, 104.8]	[1,1]	[1,1]

with convergence figures:

We also tried other start points for Gradient Descent:

Start Point	Founded Minimum	Iteration Number	Minima $\left[x_{1},x_{2} ight] =% {\displaystyle\int\limits_{0}^{\infty }} \left[x_{1}^{2},x_{2}^{2}\right] =% {\displaystyle\int\limits_{0}^{\infty }} \left[x_{1}^{2},x_{2}^{$
[10, 10]	4.9	1000 (max)	[3.2, 10.3]
[1, 10]	4.2	1000 (max)	[3.0, 9.2]

Generally, smaller step means slower convergence. We test smaller steps in backtracking line search (c = 0.001 and different ρ), the following is the first 10 steps:

Analysis

The following is the plot figure of function 3:

It is a non-convex function. In fact, this function has global minima at [1,1], we find this under the help of Wolfram Alpha. Here we can see the drawback of Gradient Descent: once it stuck into a local minima, it can not escape.

Adam Optimizer

Adam (Adaptive Moment Estimation) optimizer is used for highly non-convex problem. Such optimizers does not very believe the local gradients. They use "momentum" to add noise to the gradient to escape local minimum. For example, the trace of SGD+Momentum may be like the following: (picture from Google)

An interesting thing is there exist a so-called best learning rate (step length) of Adam optimizer:

So we implement Adam for solving the above three closed-from functions, with the famous parameter lpha=3e-4. Following is the results:

	Function 1	Function 2	Function 3
Founded Minimum	0	$-1.5 imes 10^3$	0
Iteration Number	$4.0 imes 10^3$	$1 imes 10^4$ (max)	$3.3 imes10^5$

with the convergence figures:

Due to the very small step length (and even decreasing), the convergence rate of Adam is much slower than the above fully gradient-guided methods. And it does not guarantee decreasing the value of objective function at each step (as backtracking line search).

We then tried much bigger learning rate:

We can see the decreasing learning rate of Adam (increasing point density). Due to the complex definition domain, it seems hard for Adam to get the "correct" direction.