PCB sub sampling simulation 2

Xuelong Wang 2019-09-13

Contents

1	Motivation and issues	1
2	Standardization	1
	Simulation result for the main effect 3.1 PCB main effect	
	Simulation study on the small small values 4.1 Normal	

1 Motivation and issues

Based on the PCB data simulation results, if we don't do the standardization then there tends to have a larger bias for the estimated total effect than the standardized covariates. So for the following section, we try to figure out what are the exact reasons.

The one feature and issues is that the values of each PCB is very small, which lead to small values in its covariance matrix. However, the correlation coefficients among those PCBs are very large. When I fit the model with those small values of PCBs we have found that the total variance estimation tends to have a bigger bias than I use the stanardized covariates.

I suspected that the small values of the PCBs and their covariance matrix may affect the performance of the main and interaction variance estimation

2 Standardization

- $Var(X^Ta) = 8$, rescale a based on the $a^T \Sigma_{emp} a$
- Σ_{emp} is calcuated by all the PCBs from 1999 with $n=4*10^3$ In here the standardization means to normalization:

$$\tilde{Z} = D(X - \mu_x),$$

Where D is the scaling matrix, $d_{11} = SD(X_1)$. So after the standardization, the variance explained by \tilde{Z} should be same as X, as following shows

$$Y = a_0 + X^T a + \epsilon \Rightarrow Y = b_0 + \tilde{Z}^T b + \epsilon$$

$$Y = b_0 + \tilde{Z}^T b + \epsilon = b_0 + (X^T Db - \mu_x^T Db) + \epsilon$$

In order to have the same model, we only need take linear tranformation of the previous parameters

$$a = Db$$
 and $a_0 = b_0 - \mu_x^T Db$.

After the reparameterization, we found that the $Var(\tilde{Z}^Tb) = Var(X^Ta)$, so that it should not affect performance of variance estimation as following shows.

3 Simulation result for the main effect

3.1 PCB main effect

3.1.1 original scale without decorrelation

	<pre>var_main_effect</pre>	decor	x_dist	n	MSE	est_var	est_mean	${\tt NA_main}$	${\tt method}$
1:	8	FALSE	1999	100	18	15.7	6.5	0	GCTA
2:	8	FALSE	1999	150	22	20.7	6.7	0	GCTA
3:	8	FALSE	1999	231	11	6.6	5.8	0	GCTA
4:	8	FALSE	1999	500	11	4.3	5.4	0	GCTA
5:	8	FALSE	1999	1000	10	2.0	5.1	0	GCTA

3.1.2 original scale decorrelation

	${\tt var_main_effect}$	decor	x_dist	n	MSE	est_var	est_mean	${\tt NA_main}$	method
1:	8	TRUE	1999	100	17.0	13.4	6.1	0	GCTA
2:	8	TRUE	1999	150	17.9	16.7	6.8	0	GCTA
3:	8	TRUE	1999	231	8.7	7.5	6.9	0	GCTA
4:	8	TRUE	1999	500	5.7	5.3	7.4	0	GCTA
5:	8	TRUE	1999	1000	2.9	2.9	7.8	0	GCTA

3.1.3 std covariate without decorrelation

	var_main_effect	decor	x_dist	n	MSE	est_var	est_mean	${\tt NA_main}$	${\tt method}$
1:	8	FALSE	1999	100	67	46.1	13	0	GCTA
2:	8	FALSE	1999	150	76	52.8	13	0	GCTA
3:	8	FALSE	1999	231	33	22.5	11	0	GCTA
4:	8	FALSE	1999	500	22	12.6	11	0	GCTA
5:	8	FALSE	1999	1000	11	5.5	10	0	GCTA

3.1.4 std covariate decorrelation

	${\tt var_main_effect}$	${\tt decor}$	x_dist	n	MSE	${\tt est_var}$	est_mean	${\tt NA_main}$	method
1:	8	TRUE	1999	100	15.3	15.2	7.5	0	GCTA
2:	8	TRUE	1999	150	16.2	16.3	8.1	0	GCTA
3:	8	TRUE	1999	231	7.2	7.1	7.7	0	GCTA
4:	8	TRUE	1999	500	4.3	4.3	7.7	0	GCTA
5:	8	TRUE	1999	1000	2.3	2.3	8.0	0	GCTA

3.2 PCB total effect

After adding the interaction terms, the difference between original and standardized scores are different.

3.2.1 original scale without decorrelation

7	ar_ma	ain_e	effect va	ar_inter_e	effect co	v_main_inter	_effect	var_total_effect
1:			8		2		2.4	15
	n	MSE	est_var	est_mean	NA_total	method		
1:	100	166	149	10.5	1	EigenPrism		
2:	150	247	246	13.0	0	EigenPrism		
3:	231	150	138	11.1	0	EigenPrism		
4:	500	${\tt NaN}$	NA	NaN	100	EigenPrism		
5:	1000	${\tt NaN}$	NA	NaN	100	EigenPrism		
6:	100	95	68	9.6	0	GCTA		
7:	150	222	209	10.9	0	GCTA		
8:	231	95	70	9.7	0	GCTA		
9:	500	117	105	11.2	0	GCTA		
10:	1000	65	60	12.4	0	GCTA		

3.2.2 original scale decorrelation

•	var_ma	ain_e	effect va	ar_inter_e	effect co	$v_{\mathtt{main}}$ _inter	_effect	var_total_effect
1:			8		2		2.4	15
	n	MSE	est var	est mean	NA total	method		
1:		105	92	11.2	-	EigenPrism		
2:	150	121	107	10.9	0	EigenPrism		
3:	231	64	31	9.0	0	EigenPrism		
4:	500	NaN	NA	NaN	100	EigenPrism		
5:	1000	NaN	NA	NaN	100	EigenPrism		
6:	100	141	130	11.4	0	GCTA		
7:	150	138	127	11.3	0	GCTA		
8:	231	64	37	9.6	0	GCTA		
9:	500	53	30	10.0	0	GCTA		
10:	1000	32	16	10.7	0	GCTA		

3.2.3 std without decorrelation

_effect
11

10: 1000 576 211 30 0 GCTA

3.2.4 original scale decorrelation

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 0.62 n MSE est_var est_mean NA_total method 100 49.6 11.0 0 EigenPrism 0 EigenPrism 10.7 150 38 38.5 231 19 9.5 0 EigenPrism 16.2 500 NaN NANaN100 EigenPrism 5: 1000 NaN NA ${\tt NaN}$ 100 EigenPrism 100 53 6: 52.4 10.2 0 GCTA GCTA 7: 150 42 41.6 10.3 0 231 19 16.7 9.5 **GCTA** 8: 9: 500 12 9.9 9.8 0 **GCTA** 10: 1000 7 5.3 9.9 GCTA

4 Simulation study on the small small values

4.1 Normal

4.1.1 original scale without decorrelation

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 1: n MSE est_var est_mean NA_total method 1: 100 21.9 20.1 11.5 O EigenPrism 150 16.3 9.5 0 EigenPrism 16.1 3: 231 13.0 11.2 8.7 0 EigenPrism 500 NaN 100 EigenPrism 4: NANaN5: 1000 NaN NA $\tt NaN$ 100 EigenPrism 100 25.5 15.8 13.2 0 GCTA 7: 150 10.9 8.8 11.6 0 **GCTA** 231 6.0 5.3 11.0 0 GCTA 9: 500 3.5 2.3 9.0 0 GCTA 10: 1000 4.8 **GCTA**

4.1.2 original scale with decorrelation

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 1: n MSE est_var est_mean NA_total method 100 20.8 20.98 10.1 0 EigenPrism 1: 150 13.3 13.45 10.2 O EigenPrism 3: 231 9.4 8.30 0 EigenPrism 11.2 4: 500 NaN NA ${\tt NaN}$ 100 EigenPrism 5: 1000 NaN NA ${\tt NaN}$ 100 EigenPrism 100 26.2 25.03 8.9 0 GCTA

7:	150	17.6	16.81	9.1	0	GCTA
8:	231	8.7	6.47	8.6	0	GCTA
9:	500	2.4	2.33	10.4	0	GCTA
10:	1000	2.3	0.97	11.2	0	GCTA

4.2 Chi

4.2.1 original scale without decorrelation

7	var_ma	ain_e	effect va	ar_inter_e	effect co	v_main_inter	_effect	var_total_effect
1:			8		2		1.9	14
	n	MSE	est_var	est_mean	NA_total	method		
1:	100	139	88	21	1	${\tt EigenPrism}$		
2:	150	157	75	23	0	${\tt EigenPrism}$		
3:	231	194	67	25	0	EigenPrism		
4:	500	${\tt NaN}$	NA	NaN	100	${\tt EigenPrism}$		
5:	1000	${\tt NaN}$	NA	NaN	100	EigenPrism		
6:	100	116	102	18	0	GCTA		
7:	150	131	88	20	0	GCTA		
8:	231	146	76	22	0	GCTA		
9:	500	172	39	25	0	GCTA		
10:	1000	151	23	25	0	GCTA		

4.2.2 original scale with decorrelation

,	var_ma	ain_ei	ffect vai	r_inter_e	ffect cov	_main_inter_	effect	var_total_effect
1:			8		2		1.9	14
	n	MSE	est_var	est_mean	NA_total	method		
1:	100	22.4	21.2	13	0	EigenPrism		
2:	150	17.3	16.6	13	0	EigenPrism		
3:	231	12.5	11.4	13	0	EigenPrism		
4:	500	NaN	NA	NaN	100	EigenPrism		
5:	1000	NaN	NA	NaN	100	EigenPrism		
6:	100	16.5	15.5	13	0	GCTA		
7:	150	14.6	14.6	13	0	GCTA		
8:	231	7.1	6.8	13	0	GCTA		
9:	500	4.0	2.9	13	0	GCTA		
10:	1000	2.9	1.3	12	1	GCTA		