Calcolo Numerico ed Elementi di	Prof. P.F. Antonietti	Firma leggibile dello studente
Analisi	Prof. L. Dedè	
CdL Ingegneria Aerospaziale	Prof. M. Verani	
Prima Prova in Itinere		
04 maggio 2017		
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 1h 30m.

SPAZIO RISERVATO AL DOCENTE

Pre Test	
Esercizio 1	
Esercizio 2	
Totale	

Pre Test

1. (1 punto) Determinare il più grande numero x_{max} rappresentabile nell'insieme $\mathbb{F}(2,4,-2,5)$; riportare il risultato in base decimale.

10 punti

2. $(2 \ punti)$ Sia $A_{\alpha} = \begin{bmatrix} 2\alpha & \frac{\sqrt{3}\alpha}{2} \\ \frac{\alpha\sqrt{3}}{2} & \alpha \end{bmatrix}$ una matrice dipendente da un parametro $\alpha > 0$. Si riporti il valore del numero di condizionamento spettrale di A_{α} in termini di α , ovvero $K(A_{\alpha})$.

3. (2 punti) Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$ dove $\mathbf{b} = (1 \ 1)^T$ e $A = \begin{bmatrix} 3 & 8 \\ 4 & 3 \end{bmatrix}$. Assegnato $\mathbf{x}^{(0)} = (1 \ 1)^T$ si riporti la prima iterata $\mathbf{x}^{(1)}$ del metodo di Gauss-Seidel.

4. (1 punto) Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{2 \times 2}$, $\mathbf{x} \in \mathbb{R}^2$ e $\mathbf{b} \in \mathbb{R}^2$, da risolvere con un generico metodo iterativo a cui è associata la matrice di iterazione $B = \begin{bmatrix} -\frac{1}{7} & 0 \\ -1 & \frac{1}{9} \end{bmatrix}$. Il metodo iterativo converge a \mathbf{x} per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)} \in \mathbb{R}^2$? Si motivi il risultato sulla base del valore assunto dal raggio spettrale di B, ovvero $\rho(B)$.

- **5.** (2 punti) Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$ dove $\mathbf{b} = (1 \ 1)^T$ e $A = \begin{bmatrix} 2 & 5 \\ 0 & 5 \end{bmatrix}$. Assegnato $\mathbf{x}^{(0)} = (1 \ 1)^T$ si riporti la prima iterata dell'autovettore (di modulo unitario) $\mathbf{y}^{(1)}$ del metodo delle potenze inverse.
- **6.** (1 punto) Si consideri la matrice $A = \begin{bmatrix} 3 & -7 & 0 \\ 0 & -1 & 0 \\ -2 & 1 & -7 \end{bmatrix}$. Quale dei suoi autovalori $\{\lambda_i(A)\}_{i=1}^3$ può essere approssimato mediante il metodo delle potenze dirette?

 k_{min} richieste dal metodo per garantire un'errore inferiore a $tol = 10^{-9}$.

D	-1	
ESERCIZIO	- 1	

Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{n \times n}$ è una matrice non singolare (invertibile), $\mathbf{b} \in \mathbb{R}^n$ e $\mathbf{x} \in \mathbb{R}^n$, per $n \ge 1$.

11	punti

(a) (1 punto) Si riporti la condizione necessaria e sufficiente per l'esistenza e unicità della fattorizzazione LU senza pivoting di tale matrice $A \in \mathbb{R}^{n \times n}$ (si definisca la notazione utilizzata).

(b) (3 punti) Si enunci il teorema di stabilità per la stima dell'errore associato alla soluzione di un sistema lineare generico $A\mathbf{x} = \mathbf{b}$ in presenza della sola perturbazione sul dato \mathbf{b} (si definisca la notazione utilizzata). Inoltre, si commenti brevemente l'applicazione di tale teorema alla valutazione dell'accuratezza dei metodi diretti.

(c) (2 punti) Per n=30, si assegni in Matlab® la matrice $A \in \mathbb{R}^{30\times30}$ definita come $A=A_1+A_2$, dove le matrici A_1 e $A_2 \in \mathbb{R}^{30\times30}$ hanno componenti:

$$(A_1)_{i,j} = \begin{cases} 9 & \text{se } i = j, \\ 0 & \text{altrimenti,} \end{cases}$$
 e $(A_2)_{i,j} = \begin{cases} 3 & \text{se } i + j \text{ è pari,} \\ 0 & \text{altrimenti.} \end{cases}$

Si calcolino e si riportino gli autovalori di modulo minimo e massimo di A, ovvero $\lambda_{min}(A)$ e $\lambda_{max}(A)$. (Suggerimento: in Matlab® un numero s è pari se mod(s,2)==0).

$$\lambda_{min}(A) = \underline{\qquad} \qquad \lambda_{max}(A) = \underline{\qquad}$$

e la norma euclide	ea del residuo r asso	ociato alla soluzion	ne numerica del	sistema lineare in	nizia
(a	$y_2 = $		=		
ineare generico A i punti (c) e (d), l	$y_2 = $ ti l'algoritmo del m $\mathbf{x} = \mathbf{b}$. Inoltre, assu a matrice di precondore del parametro	netodo del gradien imendo la matrice dizionamento $P =$	te precondiziona A e il vettore b A_1 e l'iterata in	assegnati rispetti iziale $\mathbf{x}^{(0)} = (0,0,$	ivar ,
ineare generico A i punti (c) e (d), l	ti l'algoritmo del m $\mathbf{x} = \mathbf{b}$. Inoltre, assu a matrice di precon	netodo del gradien imendo la matrice dizionamento $P =$	te precondiziona A e il vettore b A_1 e l'iterata in	assegnati rispetti iziale $\mathbf{x}^{(0)} = (0,0,$	ivar ,
ineare generico A i punti (c) e (d), l	ti l'algoritmo del m $\mathbf{x} = \mathbf{b}$. Inoltre, assu a matrice di precon	netodo del gradien imendo la matrice dizionamento $P =$	te precondiziona A e il vettore b A_1 e l'iterata in	assegnati rispetti iziale $\mathbf{x}^{(0)} = (0,0,$	ivar ,
ineare generico A i punti (c) e (d), l	ti l'algoritmo del m $\mathbf{x} = \mathbf{b}$. Inoltre, assu a matrice di precon	netodo del gradien imendo la matrice dizionamento $P =$	te precondiziona A e il vettore b A_1 e l'iterata in	assegnati rispetti iziale $\mathbf{x}^{(0)} = (0,0,$	ivar ,
ineare generico A i punti (c) e (d), l	ti l'algoritmo del m $\mathbf{x} = \mathbf{b}$. Inoltre, assu a matrice di precon	netodo del gradien imendo la matrice dizionamento $P =$	te precondiziona A e il vettore b A_1 e l'iterata in	assegnati rispetti iziale $\mathbf{x}^{(0)} = (0,0,$	ivar ,
ineare generico A i punti (c) e (d), l	ti l'algoritmo del m $\mathbf{x} = \mathbf{b}$. Inoltre, assu a matrice di precon	netodo del gradien imendo la matrice dizionamento $P =$	te precondiziona A e il vettore b A_1 e l'iterata in	assegnati rispetti iziale $\mathbf{x}^{(0)} = (0,0,$	ivar ,
ineare generico A i punti (c) e (d), l	ti l'algoritmo del m $\mathbf{x} = \mathbf{b}$. Inoltre, assu a matrice di precon	netodo del gradien imendo la matrice dizionamento $P =$	te precondiziona A e il vettore b A_1 e l'iterata in	assegnati rispetti iziale $\mathbf{x}^{(0)} = (0,0,$	ivar ,
ineare generico A ai punti (c) e (d), l	ti l'algoritmo del m $\mathbf{x} = \mathbf{b}$. Inoltre, assu a matrice di precon	netodo del gradien imendo la matrice dizionamento $P =$	te precondiziona A e il vettore b A_1 e l'iterata in	assegnati rispetti iziale $\mathbf{x}^{(0)} = (0,0,$	ivar ,

punto) Si ripo:	rti l'algoritmo d	el metodo di	Newton per l	a ricerca dello	zero α di $f(x)$	<i>x</i>).
	cino le proprietà					li uno

11 punti

(c) (5 punti) Si implementi il metodo di Newton nella funzione Matlab[®] newton.m utilizzando il criterio d'arresto basato sulla differenza tra due iterate successive. La struttura della funzione è:

function [xvect,Nit] = newton(x0,nmax,tol,fun,dfun)

Si considerino come *inputs*: il valore dell'iterata iniziale x0; il numero massimo di iterazioni consentite nmax; la tolleranza sul criterio d'arresto tol; la funzione di cui si vuole calcolare lo zero fun; la sua funzione derivata dfun. Si considerino come *outputs*: un vettore xvect contenente tutte le iterate del metodo; il numero di iterazioni effettuate Nit.

	2 [0.0, 20]	$f(x) = -\tan(a)$	$4x)\left(x-\frac{3}{2}\pi\right)^3.$		
	Si considerino l'iterata inizia nmax= 1000. Si riportino: i zero, il residuo corrispondent	le $x^{(0)} = 1$, la tollera l numero N di itera te $r^{(N)} = f(x^{(N)}) $ e	anza tol= 10^{-4} e zioni effettuate, il i valori delle itera	valore approssimato x ate $x^{(1)}$ e $x^{(2)}$.	e ^(N) dello
	N =	$x^{(N)} = $		$r^{(N)} = $	
	$N = \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	$x^{(2)} = $			
(d)	(1 punto) Dopo aver risolto dei rapporti:	il punto (c) e sapen	do che $\alpha = \frac{3}{2}\pi$, si	calcolino e si riportino	o i valori
	$x^{(N)} - \alpha$		$x^{(N-1)} - \alpha$		
	$\frac{1}{x^{(N-1)} - \alpha} = -$		$\frac{1}{x^{(N-2)}-\alpha} =$	•	
	Si utilizzino tali rapporti per al punto (c) per la ricerca di	α motivando breve			applicato
		<i>p</i> –			
(e)	(1 punto) Si giustifichi sinte funzione $f(x)$ e lo zero α sull al punto (b).				

Si utilizzi la funzione $Matlab^{\circledR}$ newton.m implementata precedentemente per approssimare lo zero

 $\alpha \in [0.5, 10]$ della funzione