universität freiburg

Measure theory for probabilists

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024WS_measure_theory.html

https://www.stochastik.uni-freiburg.de/

Tutorial 10 - Theorem of Radon-Nikodym

Exercise 1 (4 Points).

Let λ , μ and ν be measures on (Ω, \mathcal{A}) . Show that:

- (a) If for all $\varepsilon > 0$ there exists an $A \in \mathcal{A}$ with $\mu(A) < \varepsilon$ and $\nu(A^c) < \varepsilon$, then $\mu \perp \nu$.
- (b) If $\lambda \ll \mu$ and $\mu \perp \nu$, then also $\lambda \perp \nu$.
- (c) If $\mu \ll \nu$ and $\mu \perp \nu$, then $\mu \equiv 0$.

Exercise 2 (4 Points).

Let μ and ν be two measures on the measure space (Ω, \mathcal{A}) and let ν be finite. Show that the following statements are equivalent:

- (a) $\nu \ll \mu$.
- (b) For every $\varepsilon > 0$ there is a $\delta > 0$, such that for all $A \in \mathcal{A}$ with $\mu(A) \leq \delta$, also $\nu(A) \leq \varepsilon$.

Exercise 3 (4 Points).

Let $\mathcal{F} = \{(a,b) \cap \mathbb{Q} : a, b \in \mathbb{R}, a \leq b\}$. Define $\mu : \mathcal{F} \to [0,\infty)$ by $\mu((a,b) \cap \mathbb{Q}) = b - a$. Clearly, as in Example 1.3, \mathcal{F} is a semi-ring. Show that μ is a content on \mathcal{F} that is continuous from below and from above but is not σ -additive. (See Remark 2.3!)

Exercise 4 (4 Points).

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space.

(a) Let $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ be measurable spaces and $f_1 : \Omega \to \Omega_1$ a $\mathcal{F}/\mathcal{F}_1$ -measurable function, and $f_2 : \Omega_1 \to \Omega_2$ a $\mathcal{F}_1/\mathcal{F}_2$ -measurable function. Show that

$$(f_2 \circ f_1) * \mu = f_2 * (f_1 * \mu).$$

(b) Let $\Omega = \mathbb{Z}^2$ and $\mathcal{F} = \mathcal{P}(\mathbb{Z}^2)$, and let $f : \mathbb{Z}^2 \to \mathbb{Z}$ be defined by f(x,y) = x + y. Determine $f * \mu$.