

$\tau_{1}^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$
${\mathfrak l}_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2} k(t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
	,	3 (3(
$\sigma_{1}^{\#2}$	1 01	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2} \frac{\bar{b}}{3(1+k^2)^2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2} \frac{k}{3(t_1+k_2)^2}$	0	0	0	0
$\sigma_{1}^{\#1}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#2}$	$\frac{2(t_1+t_2)}{3t_1t_2} \qquad \frac{\sqrt{2}(t_1-2t_2)}{3(1+k^2)t_1t_2}$			$\sigma_{1}^{\#1} \dagger^{lpha} = 0$ 0	$\sigma_{1}^{\#2} \dagger^{\alpha}$ 0 0	$t_1^{\#1} + \alpha$ 0 0	$\tau_{1}^{\#2} + \alpha$ 0 0

ω_1^*	$\omega_1^{\#1}{}_+\alpha\beta$	$\omega_1^{\#_2}$	$f_{1}^{\#1}$	$\omega_{1^{\bar{-}}\alpha}^{\#1}$	$\omega_{1}^{\#2}{}_{lpha}$	$\omega_{1^{-}}^{\#2}{}_{\alpha}\ f_{1^{-}}^{\#1}{}_{\alpha}\ f_{1^{-}}^{\#2}{}_{\alpha}$	$f_{1^-}^{\#2}\alpha$
t ₁ +	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
- t1- 3	$\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}$ \bar{l} k $(t_1 + t_2)$	0	0	0	0
k(t ₁ 3 1	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
)	(0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$i k t_1$
)	(0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
)	(0	0	0	0	0	0
)	(0	0	$-\bar{\imath}kt_1$	0	0	0

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{lphaeta\chi}$
$\omega_{\scriptscriptstyle 2}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$ au_{0^{+}}^{#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

_					
$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$	
$f_{0}^{\#2}$	0	0	0	0	
$f_0^{\#1}$	$i\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0	
$\omega_{0}^{\#1}$	$-t_1$	$-i\sqrt{2}kt_1$	0	0	
,	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{#2}$ †	$\omega_{0}^{\#1}\dagger$	

Source constraints				
SO(3) irreps	#			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 ik\sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5			
Total #:	16			

(No massless particles)

Unitarity conditions

 $\overline{r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0}$