

主讲人: 李全龙

### 本讲主题

### 虚电路网络

## 连接服务与无连接服务

- ❖数据报(datagram)网络与虚电路(virtual-circuit)网络是典型两类分组交换网络
- \*数据报网络提供网络层无连接服务
- ❖虚电路网络提供网络层连接服务
- ❖类似于传输层的无连接服务(UDP)和面向连接服务(TCP),但是网络层服务:
  - 主机到主机服务 ◆
  - 网络核心实现

和传输层的主要 区别 传输层是应用进 程之间的服务

\_传输层是端到端 实现



## 虚电路(Virtual circuits)

虚电路: 一条从源主机 到目的主机,类似于 电路的路径(逻辑连接)

分组交换 就是每个分组利用链路的全部带宽

每个分组的传输利用链 真实的电路传输 路的全部带宽 会有复用技术

源到目的路径经过的网 络层设备共同完成虚电 路功能



# 虚电路(Virtual circuits)

#### ❖ 通信过程:

- 呼叫建立(call setup)→数据传输 →拆除呼叫
- ❖ 每个分组携带<u>虚电路标识(VC</u> ID),而不是目的主机地址
- ※虚电路经过的每个网络设备 (如路由器),维护每条经过 它的虚电路连接状态
- \*链路、网络设备资源(如带宽、缓存等)可以面向VC进行预分配
  - 预分配资源=可预期服务性能
  - 如ATM的电路仿真(CBR)



### VC的具体实现

#### 每条虚电路包括:

- 1. 从源主机到目的主机的一条路径
- 2. 虚电路号(VCID),沿路每段链路一个编号
- 3. 沿路每个网络层设备(如路由器),利用转发表记录 经过的每条虚电路
- \* 沿某条虚电路传输的分组, 携带对应虚电路的 VCID,而不是目的地址
- ❖ 同一条VC,在每段链路上的VCID通常不同
  - 路由器转发分组时依据转发表改写/替换虚电路号



#### VC转发表



#### 路由器R1的VC转发表:

| 输入接口 | 输入 <b>VC</b> # | 输出接口 | 输出VC# |
|------|----------------|------|-------|
| 1    | 12             | 3    | 22    |
| 2    | 63             | 1    | 18    |
| 3    | 7              | 2    | 17    |
| 1    | 97             | 3    | 87    |
|      | •••            |      |       |
|      |                |      |       |

VC路径上每个路由器都需要维护VC连接的状态信息!



#### 虚电路信令协议(signaling protocols)

- ❖用于VC的建立、维护与拆除
  - 路径选择
- \*应用于虚电路网络
  - 如ATM、帧中继(frame-relay)网络等
- ❖目前的Internet不采用





