Circuit Simplification: Boolean Algebra

What is Boolean Algebra?

Boolean Algebra is a mathematical technique that provides the ability to algebraically simplify logic expressions. These simplified expressions will result in a logic circuit that is equivalent to the original circuit, yet requires fewer gates.

George Boole

My name is George Boole and I lived in England in the 19th century. My work on mathematical logic, algebra, and the binary number system has had a unique influence upon the development of computers. Boolean Algebra is named after me.

Single Variable - Invert Function

Theorem #9

X	\overline{X}	X
0	1	0
1	0	1

Commutative Law

<u>Theorem #11</u> – AND Function

$$X \cdot Y = Y \cdot X$$

Theorem #12 – OR Function

$$X + Y = Y + X$$

Associative Law

<u>Theorem #13</u>– AND Function

$$X(YZ) = (XY)Z$$

Theorem #14 – OR Function

$$X + (Y + Z) = (X + Y) + Z$$

Distributive Law

<u>Theorem #15</u> – AND Function

$$X(Y+Z) = XY + XZ$$

Theorem #16 – OR Function

$$(X + Y)(W + Z) = XW + XZ + YW + YZ$$

Consensus Theorem

Theorem #16

$$X + \overline{X} Y = X + Y$$

Summary

Boolean Theorems

$$1) \quad X \cdot 0 = 0$$

$$2) \quad X \cdot 1 = X$$

$$3) \quad X \cdot X = X$$

$$4) \quad X \cdot \overline{X} = 0$$

$$5) \quad X + 0 = X$$

6)
$$X + 1 = 1$$

$$7) \quad X + X = X$$

8)
$$X + \overline{X} = 1$$

9)
$$\overline{X} = X$$

10)
$$X \cdot Y = Y \cdot X$$
 Commutative

11) $X + Y = Y + X$ Law

12) $X(YZ) = (XY)Z$ Associative

13) $X + (Y + Z) = (X + Y) + Z$ Law

14) $X(Y + Z) = XY + XZ$ Distributive

15) $(X + Y)(W + Z) = XW + XZ + YW + YZ$ Law

16) $X + \overline{X}Y = X + Y$ Consensus

Theorem

Duality Principle

- A Boolean equation remains valid if we take the dual of the expressions on both sides of the equals sign
- Dual of expression it means,
 - Interchange 1's with 0's (and Vice-versa)
 - Interchange AND (.) with OR (+) (and Vice-versa)

$$X+0=X \xrightarrow{\text{Duality}} X\cdot 1=X$$

$$X + X \cdot Y = X \xrightarrow{\text{Duality}} X \cdot (X + Y) = X$$

$$X+X=X$$
 Duality $X \cdot X=X$

$$X + X \cdot Y = X \xrightarrow{\text{Duality}} X \cdot (X + Y) = X$$

Find the complement of the functions

$$F_1 = x'yz' + x'y'z$$

$$F_2 = x(y'z' + yz).$$

- 1. $F_1 = x'yz' + x'y'z$. The dual of F_1 is (x' + y + z')(x' + y' + z). Complement each literal: $(x + y' + z)(x + y + z') = F_1'$.
- 2. $F_2 = x(y'z' + yz)$. The dual of F_2 is x + (y' + z')(y + z). Complement each literal: $x' + (y + z)(y' + z') = F_2'$.

DeMorgan's Law

Theorem 1: NAND = Bubbled OR Complement of product is equal to addition of the compliments.

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

$$= \bigcirc$$

Theorem 2: NOR = Bubbled AND

Complement of sum

is equal to product of the compliments.

$$\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$$

Simplify the following Boolean functions to a minimum number of literals.

1.
$$x(x' + y) = xx' + xy = 0 + xy = xy$$
.

2.
$$x + x'y = (x + x')(x + y) = 1(x + y) = x + y$$
.

3.
$$(x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x$$
.

4.
$$xy + x'z + yz = xy + x'z + yz(x + x')$$

= $xy + x'z + xyz + x'yz$
= $xy(1 + z) + x'z(1 + y)$
= $xy + x'z$.

Sum-of-products

- ANDed product—input combination for which output is true
- Each variable appears exactly once, in true or inverted form (but not both)

From the pervious example:

A	В	С		minterms	F in canonical form:
0	0	0	0	A'B'C' m0	$F(A, B, C) = \Sigma m(1,3,5,6,7)$
0	0	1	1	A'B'C m1	= m1 + m3 + m5 + m6 + m7
0	1	0	0	A'BC' m2	= A'B'C + A'BC + AB'C + ABC' + ABC
0	1	1	1	A'BC m3	
1	0	0	0	AB'C' m4	canonical form ≠ minimal form
1	0	1	1	AB'C m5	F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'
1	1	0	1	ABC' m6	= (A'B' + A'B + AB' + AB)C + ABC'
1	1	1	1	ABC _ m7	= ((A' + A)(B' + B))C + ABC'
				/	= C + ABC'
shor	·t-ha	nd n	ιοt	ation for	= ABC' + C
				variables	= AB + C

Product-of-sums

- Sum term (or maxterm)
- ORed sum of literals –input combination for which output is false
- Each variable appears exactly once, in true or inverted form (but not both)

Α	В	C	maxterms		
0	0	0	A+B+C	MO	F in canonical form:
0	0	1	A+B+C'	M1	$F(A, B, C) = \Pi M(0,2,4)$
0	1	0	A+B'+C	M2	= MO · M2 · M4
0	1	1	A+B'+C'	M3	= (A + B + C) (A + B' + C) (A' + B + C)
1	0	0	A'+B+C	M4	
1	0	1	A'+B+C'	M5	canonical form ≠ minimal form
1	1	0	A'+B'+C	M6	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
1	1	1	A'+B'+C'	<i>∗</i> M7	= (A + B + C) (A + B' + C)
					(A + B + C) (A' + B + C)
			/ .		= (A + C) (B + C)

short-hand notation for Maxterms of 3 variables

SOP and POS Represent the same function

Α	В	C	F	
0	0	0	0	
0	О	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	Ō	1	
ī	ī	1	1	

$$F=\Sigma m(1,3,5,6,7)$$
 $F=\Pi M(0,2,4)$

Conversion Procedure for Standard SOP

Example: Convert the expression into the standard SOP form

$$Y = AB + AC' + BC$$

Solution:

Given expression
$$Y = AB + AC' + BC$$

Step 1: Find the missing literals

$$Y = AB + AC' + BC$$

Step 2: AND each term with (Missing literal + its compliment)

$$Y = AB(C + C') + AC'(B + B') + BC(A + A')$$

Simplify the expression to get the standard SOP form

$$Y = ABC + ABC' + ABC' + AB'C' + ABC + A'BC$$

$$Y = ABC + ABC' + AB'C' + A'BC$$

(Each term consists of all literal)

Conversion Procedure for Standard POS

Example: Convert the expression into the standard SOP form
 Y = (A+B)(A+C)(B+C')

```
Step 1: Find the missing literals
```

Step 2: OR each term with (Missing literal + its compliment)

$$Y = (A + B + CC')(A + BB' + C)(AA' + B + C')$$

$$Y = (A + B + C)(A + B + C')(A + B' + C)(A' + B + C')$$