QF602 - Homework 7

Question

- Part A. Consider the event that exactly one asset jump arrives in a interval [0,T]. Determine the probability of this event happening. The arrival intensity is λ .
- Part B. This event is the same as the event that there is exactly one asset jump in the interval $[0, \frac{T}{2})$ and no jumps in the interval $[\frac{T}{2}, T]$, or no jumps in $[0, \frac{T}{2})$ and exactly one in $[\frac{T}{2}, T]$. Confirm that this calculation gives rise to exactly the same probability.

gives rise to exactly the same probability.

$$\begin{array}{lll}
OP \mid K=1 \rangle &=& \frac{| \nearrow \top \rangle^{K} e^{- \nearrow \top}}{| \cancel{K} |} &=& \nearrow \top e^{- \nearrow \top} \\
OP (o \ first \ half \ | \ Second \) &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{C} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{M} \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}}{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{L}}} &=& \frac{| \cancel{L} |^{\circ} e^{- \nearrow \cancel{$$