

SEQUENCE LISTING

<110> O'Reilly, Michael S.

Folkman, M. Judah

<120> Nucleic Acid Molecules Encoding Endostatin Protein and Peptide Fragments Thereof

<130> 05213-0380 (43170-249874)

<140> US 10/042,347

<141> 2002-01-11

<150> US 09/315,689

<151> 1999-05-20

<150> US 60/106,343

<151> 1998-10-30

<150> US 09/154,302

<151> 1998-09-16

<150> US 08/740,168

<151> 1996-10-22

<150> US 60/005,835

<151> 1995-10-13

<150> US 60/023,070

<151> 1996-08-02

<150> US 60/026,263

<151> 1996-09-17

<160> 6

<170> PatentIn version 3.1

<210> 1

<211> 20

<212> PRT

<213> Murinae sp.

<400> 1

His Thr His Gln Asp Phe Gln Pro Val Leu His Leu Val Ala Leu Asn
1 5 10 15

Thr Pro Leu Ser
20

<210> 2

<211> 10

<212> PRT

<213> Murinae sp.

<400> 2

Met Ala Arg Arg Ala Ser Val Gly Thr Asp
1 5 10

<210> 3

<211> 182

<212> PRT

<213> Homo sapiens

<400> 3

His Ser His Arg Asp Phe Gln Pro Val Leu His Leu Val Ala Leu Asn
1 5 10 15

Ser Pro Leu Ser Gly Gly Met Arg Gly Ile Arg Gly Ala Asp Phe Gln
20 25 30

Cys Phe Gln Gln Ala Arg Ala Val Gly Leu Ala Gly Thr Phe Arg Ala
35 40 45

Phe Leu Ser Ser Arg Leu Gln Asp Leu Tyr Ser Ile Val Arg Arg Ala
50 55 60

Asp Arg Ala Ala Val Pro Ile Val Asn Leu Lys Asp Glu Leu Leu Phe
65 70 75 80

Pro Ser Trp Glu Ala Leu Phe Ser Gly Ser Glu Gly Pro Leu Lys Pro
85 90 95

Gly Ala Arg Ile Phe Ser Phe Asp Gly Lys Asp Val Leu Arg His Pro
100 105 110

Thr Trp Pro Gln Lys Ser Val Trp His Gly Ser Asp Pro Asn Gly Arg
115 120 125

Arg Leu Thr Glu Ser Tyr Cys Glu Thr Trp Arg Thr Glu Ala Pro Ser
130 135 140

Ala Thr Gly Gln Ala Ser Ser Leu Leu Gly Gly Arg Leu Leu Gly Gln
145 150 155 160

Ser Ala Ala Ser Cys His His Ala Tyr Ile Val Leu Cys Ile Glu Asn
165 170 175

Ser Phe Met Thr Ala Ser
180

<210> 4

<211> 546

<212> DNA

<213> Homo sapiens

<400> 4

cacagccacc gcgacttcca gcccgggtgtc caatgggttg cgctcaacag cccccctgtca 60
 ggccggcatgc ggggcattccg cggggcccgac ttccatgtgtt tccagcaggc gccccccgtg 120
 gggtgggggg gcaatcttccg cgccttcttg tccatggcc tgcaggacat gtcacggcatc 180
 gtgcggccgtg cccaccggcgc agccgtgcgc atcgtaacc tcaaggacga gctgtgttt 240
 cccatgtggg aggtctgttt ctcaaggctt gagggtccgc tgaagccccgg ggcacggcatc 300
 ttcttccttg aaggcaagga cgtccctgagg caccccacct ggccccagaa gagcgtgtgg 360
 catggctcgg accccaacgg ggcaggctg accgagaggt actgtgagac gtggccggacg 420
 gaggtccct cggccacggg ccaggccctcc tccgtgtgtgg gggcaggct cctggggcag 480
 aatgcggcga gctgccatca cgcctacatc gtgtctgtca ttgagaacag cttcatgact 540
 gctcc 546

<210> 5

<211> 178

<212> PRT

<213> Homo sapiens

<400> 5

Asp Phe Gln Pro Val Leu His Leu Val Ala Leu Asn Ser Pro Leu Ser
 1 5 10 15

Gly Gly Met Arg Gly Ile Arg Gly Ala Asp Phe Gln Cys Phe Gln Gln
 20 25 30

Ala Arg Ala Val Gly Leu Ala Gly Thr Phe Arg Ala Phe Leu Ser Ser
 35 40 45

Arg Leu Gln Asp Leu Tyr Ser Ile Val Arg Arg Ala Asp Arg Ala Ala
 50 55 60

Val Pro Ile Val Asn Leu Lys Asp Glu Leu Leu Phe Pro Ser Trp Glu
65 70 75 80

Ala Leu Phe Ser Gly Ser Glu Gly Pro Leu Lys Pro Gly Ala Arg Ile
35 90 95

Phe Ser Phe Asp Gly Lys Asp Val Leu Arg His Pro Thr Trp Pro Gln
 100 105 110

Lys Ser Val Trp His Gly Ser Asp Pro Asn Gly Arg Arg Leu Thr Glu
 115 120 125

Ser Tyr Cys Glu Thr Trp Arg Thr Glu Ala Pro Ser Ala Thr Gly Gln
 130 135 140

Ala Ser Ser Leu Leu Gly Gly Arg Leu Leu Gly Gln Ser Ala Ala Ser
145 150 155 160

Cys His His Ala Tyr Ile Val Leu Cys Ile Glu Asn Ser Phe Met Thr
165 170 175

Aia Ser

<10> 6

111. 534

4212 > DNA

•113. *Homo sapiens*

· 400 · 6

ggcatccggg gggccgactt ccagtgttcc tggcggggcc gggccgtggg gtcggggcc 120

acatttccgtt ctttcattgtt cttccgggttttgg caggacatgtt acatgtatgtt gggccgtttt 180

gaccggccggcag cgttgtccat cgtcaacccs aaggaggagcc tggtgtttcc cagctggggg 240

300

ccccaaacccggcc cccaaaggcttggcc cccaaaggcttggcc ttgttggatccgttggccaaatggccatggcc 420

cccccccccccc agggccctccca gatctatgggg aacccatgttcc tggggcaaaa taccggcggc 480

tgccatcacg cctacatcgt gctctgcatt gagaacagct tcatgactgc ctcc

534