

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

Mid Semester Examination

Aug 2017

Duration: 90 Min

Branch: Computer

Semester: VII

Max. Marks: 30

Class: B.E.

Course Code: CPC 701

Name of the Course: Digital Signal Processing

Instructions:

(1) Draw neat diagrams wherever required

(2) Assume suitable data if necessary and justify the same

Q No.		Max. Marks	СО
Q.1	A digital communication link carries binary-coded words represent- ing samples of an input analog signal	5	CO
	$x_a(t) = 3\cos 2000\pi t + 5\sin 6000\pi t + 10\cos 12,000\pi t$		
	(a) What is the Nyquist rate for this signal $x_a(t)$?		
	(b) Evaluate sampling, suppose the signal is sampled at the sampling rate Fs = 5000 samples/s.		
Q.2	Let $x[n] = \{2, 3, 4, 5, 6, 7\},\$	5	CO1
	Evaluate and sketch the following Discrete Time signals:		
	y[n] = x [n - 3], f [n] = x [n + 2]		
Q.3	Perform linear convolution of the following two sequences:	5	CO ₂
	$x[n] = \{2, 5, 0, 4\} \text{ and } h[n] = \{4, 1, 3\}$	100.0	002
	OR		
*	Perform linear convolution from circular convolution of the following two sequences:		
	x[n] = [2, 5, 0, 4] and h[n] = [4, 1, 3]		
2.4	Determine the DFT of the sequence $x(n) = (1, 2, 3, 4)$. Sketch the magnitude spectrum.	5	СОЗ
	OR		
	Determine the IDFT of X (K) = $(10, -2+2j, -2, -2-2j)$		
Q.5	invariant system with impulse response.	5	CO2
	$h(n) = a^n$ $n \ge 0$ and n even = 0 otherwise is stable		

Q.6	Check whether the following system $y(n) = x(n)$. $u(n)$ is: 1. Linear or non-linear 2. Casual or anti-casual.	5	CO2
	OR		
	Check whether the following system $y(n)=y(n)=nx(n)+bx^2(n)is:$ 1. Time Varient or invarient 2. Static or Dynamic		