Kinematics

Surat Equations

$$V^2 = u^2 + 2as$$
 $S = displacement$
 $S = ut + \frac{1}{2}at^2$
 $u = initial velocity$
 $u = initial velocity$
 $u = initial velocity$
 $v = u + at$
 $v = initial velocity$
 $v = u + at$
 $v = initial velocity$
 $v = u + at$
 $v = initial velocity$
 $v = u + at$
 $v = initial velocity$
 $v = u + at$
 $v = initial velocity$
 $v = u + at$
 $v = initial velocity$
 $v = init$

· Horizontal and vertical components should be calculated seperately for a projective (time will be the same)
· Horizontal is usually constant so use distance = speed x time
· Vertical acceleration, g = 9.8 ms-2

e.g. A ball is thrown biorizontally at 20ms-1, 30m above ground.

How far does it travel?

Vertical, S=30 u=0 a=9.8 t=?

20 ms -1

 $40.43 = ut + \frac{1}{2}at^{2}$ $30 = 4.9t^{2}$ $t = \int_{4.9}^{30}$ = 2.53

distance =
$$20 \text{ ms}^{-1} \times 2.5 \text{ s}$$

= 50 m

· If thrown up, at the highest point there will be no velocity

Centres of Mass

lo find the centre of mass of a set of particles, deal with and y Seperately

m, x, + m, x, + m, x, + ... m, y, + m2 of2 + m3 y3 + ... = Mootal y

e.g. Find the coordinates of the centre of mass of the following System of particles: 2kg at (1,2), 3kg at (3,1), 5kg at (4,3)

$$\frac{M_{\text{total}} = 10}{2} = \frac{(2 \times 1) + (3 \times 3) + (5 \times 4)}{10} = \frac{348}{10} = \frac{(2 \times 2) + (3 \times 1) + (5 \times 3)}{10} = \frac{22}{10} = 2.2$$

A lamina is a two-dimensional model of an object A lamina is uniform if its mass is spread evenly throughout its area There are certain lamina shapes where the centre of mass should be

· Circular Lamina: at centre of circle

· Rectangular Lamina: at centre of cectangle, half se and y

Triangular Lamina: at point (2014)

· Iriangular Lamina: at point

· Sector of Circle: on axis of symethy, 200 from centre where

r is radius and or is angle with axis of Symmetry

. The centre of mass of a composite shape can be found by finding the centres of mass for individual Shapes and then treating those as particles.

for a circular arc where the centre of mass is a

When a lamina is suspended from a fixed point the centre of mass will rest below the point

When a lamina rests on an incline, the line of action of the centre of mass must be through the Side in contact with the plane or it will topple

Work, Energy and Power

- · Work Done = Force x Distance in direction of force
- · Work Done against Gravity = mgh
- · Work Done is measured in jacles (T)
- · Kinethic Energy; Ex = 1 mv2
- Potential Energy, Ep = mgh
- · Work Done = Change in Kinetic Energy
 - The principle of conservation of mechanical energy States that when no external forces do work on a particle the Sum of its kinetic and potential energy must remain constant
 - The work-energy principle States the change in total energy is equal to work done
- Power is the rate of doing work, measured in Watts (w)
 Power = Energy
 Time
- Power = Driving Force x Velocity
 - Force = Mass x Acceleration

egg. a van of mass 1250kg trevels along a road and its engine works at 24kW. The constant resistance to motion is 600 N. Find the maximum Good of the van.

Speed =
$$\frac{\text{Power}}{\text{Speed}}$$
 = $\frac{24000}{600}$

= 40

- maximum speed is 40 ms-1

e.g. find the acceleration at 6 ms-1 Driving Force = velocity

Acceleration 1250

= 2.72 ms-2

e.g. a Skier weighing 55kg begins to go downhill at 6ms-1.

After travelling 1400m they have lost a height of 25m and are only travelling at 4ms-1. The resistance to motion is constant at 12N. Find the work done by the skier

Loss of $E_{K} = \frac{1}{2} \text{ mv}^{2} - \frac{1}{2} \text{ mv}^{2}$ $= \frac{1}{2} \times 55 \times (6^{2} - 4^{2})$ = 550 J

Loss of Ep = mgh, - mghe = 55 x 9.8 x 25

= 13475 J

: total energy loss = 550 + 13475 = 14025 J

Work Done against Resistance = Force × Distance = 12 × 1400

= 16800J

Work Done By Skier = 16800 - 14025 = 2775 J

Statics of Rigid Bodies

- The moment of a force from point P is the distance from P multiplied by the perpendicular force
 - Whether it turns clockwise or anticlockwise must be taken into account
- If a body is in equilibrium:
 - . There is no resultant force in any direction
 - . The sum of moments about any point is zero

If a body is in limiting equilibrium it is on the point of moving

· Friction, F & uR

In limiting equilibrium F= MR

e.g. Given the body is in limiting equilibrium find the value of u R = 80 - (2013)(cos30) F = (2053) (Sin 30)