Proyecto de Clase: Clasificación de Textos para Problemas Reales

Descripción del Proyecto:

Abordar un problema práctico de clasificación de textos de su interés. Este proyecto incluye la definición del problema, exploración de datos, implementación de modelos de clasificación y análisis de resultados.

Requerimientos:

1. Selección y planteamiento del problema:

- Cada equipo debe proponer un problema de clasificación de textos. Ejemplos sugeridos:
 - Determinar si una publicación en redes sociales contiene opiniones negativas.
 - Clasificar correos electrónicos como spam o no spam.
 - Detectar noticias falsas.
 - Identificar emociones en textos (alegría, tristeza, enojo, etc.).
- o El equipo debe justificar su elección, explicando:
 - Relevancia del problema.
 - Potenciales aplicaciones prácticas.
- Definir claramente las clases a predecir (binarias o múltiples) y las métricas para evaluar el modelo.

2. Análisis descriptivo:

- o Realizar un análisis exploratorio del dataset, incluyendo:
 - Estadísticas descriptivas (longitud de textos, frecuencia de palabras, etc.).
 - Visualización de datos (nubes de palabras, histogramas de clases).
 - Patrones relevantes o hallazgos iniciales.

3. Búsqueda y selección del dataset:

- Deben encontrar un dataset relacionado con el problema seleccionado.
 Fuentes sugeridas:
 - Kaggle.
 - <u>UCI Machine Learning Repository</u>.
 - Conjuntos de datos públicos extraídos de APIs (por ejemplo, Twitter, Reddit).

 Limpiar y preprocesar el dataset (tokenización, eliminación de stopwords, etc.).

4. Implementación de dos modelos distintos:

- Seleccionar dos modelos de clasificación de textos. Ejemplos:
 - Naive Bayes y Logistic Regression.
 - Random Forest y Support Vector Machine.
 - Un modelo clásico y un modelo basado en embeddings (e.g., usando Word2Vec o TF-IDF con Logistic Regression).
- Los modelos deben implementarse como clases en Python, siguiendo un estilo estructurado y bien documentado.

5. Explicación teórica:

- Incluir una breve explicación teórica de cada modelo en el reporte, citando referencias confiables (libros, artículos, capítulos).
- o Relacionar la implementación en Python con la teoría descrita.

6. Evaluación de los modelos:

- o Entrenar ambos modelos con el dataset seleccionado.
- Evaluarlos usando métricas como precisión, recall, F1-score, y matriz de confusión.
- Comparar los resultados de los modelos y discutir sus fortalezas y limitaciones.

7. Entregables:

- o Análisis descriptivo: Visualizaciones y conclusiones sobre el dataset.
- Implementación en Python: Código bien documentado y funcional de las clases para ambos modelos.
- Reporte final: Documento que incluya:
 - Descripción del problema.
 - Análisis descriptivo y exploratorio.
 - Explicación de los modelos seleccionados.
 - Comparación de resultados y conclusiones.
- o Presentación oral: Resumen del proyecto, duración máxima: 20 minutos.

Evaluación:

- Planteamiento del problema y justificación (10%)
- Análisis descriptivo y exploración de datos (20%)
- Calidad de las implementaciones (30%)
- Reporte final (20%)
- Presentación oral (20%)

Fecha de Entrega: segunda semana después de regresar de vacaciones

Recursos de apoyo:

- An Introduction to Statistical Learning para modelos clásicos.
- Artículos sobre clasificación de textos en arXiv.
- Guías de preprocesamiento de textos y modelado en Python (e.g., Scikit-learn, NLTK, SpaCy).