

Psicoacustica Parte 2

Prof. Filippo Milotta milotta@dmi.unict.it

Il suono – Percezione umana

In che modo le grandezze fisiche che caratterizzano le onde (frequenza, ampiezza o l'intero spettro), influiscono sulla percezione del suono?

Grandezza	Percezione
Frequenza	Suono acuto o grave
Ampiezza	Volume alto o basso
Spettro	Timbro o armonia del suono

 In realtà ogni grandezza influenza in misura minore le percezioni legate alle altre due grandezze.

Percezione...

Un esempio con la luce

- In astronomia si distingue la luminosità delle stelle in apparente ed assoluta
 - Accade così che stelle tanto luminose ma lontane possano essere percepite come meno luminose rispetto a stelle poco luminose ma vicine

Ampiezza – Decibel SIL

L'ampiezza di un'onda sonora può anche essere misurata in funzione dell'intensità attraverso una superfice di un metro quadro. In questo caso si utilizzano i decibel SIL (Sound Intensity Level), simbolo dB_{SIL}

In particolare, sia I l'intensità di un suono $(\frac{W}{m^2})$, si definisce livello di intensità sonora:

$$SIL = 10 \log_{10} \frac{I}{I_0}$$

Dove I_0 è l'intensità associata alla soglia minima di udibilità, pari a $10^{-12} \frac{W}{m^2}$. Sebbene in alcuni casi i valori SPL e SIL coincidano, essi hanno comunque un significato fisico differente.

Volume percepito

- L'ampiezza si può misurare in termini di intensità tramite il Sound Intensity Level (SIL)
- La soglia minima di udibilità in termini di intensità è $I_0 = 10^{-12} \frac{W}{m^2}$ per un suono di 1000 Hz
 - La percezione del volume è legata anche alla frequenza!
- L'unità di misura del volume percepito sono i foni (phons)
 - Ovviamente non ha nulla a che fare con i foni per asciugare i capelli... ma così è facile ricordarli

Volume percepito – Il phon (dal testo)

- Un suono ha un volume di x phon, se un suono di 1000 Hz che viene percepito con lo stesso volume ha un'intensità di x dB
 - Per esempio il valore della pressione sonora corrispondente alla curva isofonica di 40 phon, per un suono puro con frequenza pari a 1000 Hz, equivale a 40 dB mentre alla frequenza di 500 Hz equivale a circa 38 dB
- Diagramma di Fletcher-Munson delle curve isofoniche (o isofone), costruito in maniera statistica ed empirica

Curve isofoniche (dal testo)

- Nel punto (x,y) del diagramma viene rappresentato un tono di frequenza x Hz a un'intensità di y dB
- I punti che fanno parte della stessa curva vengono percepiti come aventi lo stesso volume

Harvey Fletcher (1884 – 1981)

Noto come Il padre della Stereofonia

 Fisico, contribuì agli studi sulla percezione sonora. Lavorò nei Bell Labs, dove fu autore della prima trasmissione stereofonica dal vivo. Morì per un ictus.

Altezza percepita (dal testo)

- Il parametro percettivo dell'altezza corrisponde in generale alla nozione di frequenza fondamentale di un suono
- Nel caso di segnali complessi, individuare la frequenza fondamentale potrebbe non essere immediato e si procede per inferenza
 - Altezza residua o frequenza fantasma
 - Si cerca cioè di stimare quale poteva essere la frequenza fondamentale

Forma d'onda

Altezza percepita

- Dal punto di vista percettivo, si rimanda al concetto di ottava già definito nelle precedenti lezioni
- Lez 3 Acustica 3, slide 4 e seguenti

Timbro percepito

(dal testo)

- Il timbro descrive la qualità di un suono, cioè quel parametro che permette di distinguere due suoni con la stessa altezza e volume
 - Il principale determinante fisico del timbro è la forma d'onda, cioè il contenuto armonico del suono (inviluppo, transitori, e fenomeni di vibrato/tremolo)
 - Il contenuto armonico è particolarmente importante per il timbro soprattutto per suoni che rimangono costanti (sostenuti)
 - Nella lingua parlata, quali suoni possono essere sostenuti?

Timbro percepito Le formanti delle vocali

 Le vocali (a differenza delle consonanti) possono essere sostenute

- Il contenuto armonico delle vocali è caratterizzato dalle formanti: specifiche distribuzioni di energia sulle frequenze, che caratterizzano ciascuna vocale
- Esercizio 2.6.3 →

Esercitazione Pratica (dal testo)

- 2.6.3 Registrare una vocale e individuare le formanti In un editor audio registrare in successione le vocali usando un microfono
 - Visualizzare la traccia come sonogramma
 - Osservare le principali regioni delle frequenze formanti:

A: 800-1200 Hz

E: 400-600 Hz e 2200-2600 Hz

I: 200-400 Hz e 3000-3500 Hz

O: 400-600 Hz

U: 200-400 Hz

Timbro percepito Vibrato e Tremolo

- Oltre che dai transitori e dal contenuto armonico, i contributi fondamentali al timbro possono essere modificati dall'eventuale presenza di vibrato / tremolo
- Vibrato:
 - Variazione periodica dell'altezza di una nota (modulazione di frequenza)

Tremolo:

Variazione periodica dell'ampiezza di una nota (modulazione di ampiezza)

Risoluzione in Frequenza

- L'orecchio ha un funzionamento tonotopico
- In teoria, ogni zona dell'orecchio dovrebbe rilevare una specifica frequenza, tuttavia
 - I suoni che giungono all'organo di Corti non sono mai perfettamente puri
 - La zona di attivazione sulla membrana basilare non è puntiforme:
 - Più frequenze ricadono nella stessa regione
- Si parla allora di Risoluzione in Frequenza
 - Capacità discriminatoria del sistema uditivo

Mascheramento e Banda Critica (dal testo)

- Come calcolare l'ampiezza di banda dei filtri uditivi?
 - Il fenomeno psicoacustico che permette la rilevazione è detto
 Mascheramento
 - Un segnale forte maschera un segnale debole
 - Un effetto simile è la Cattura, che si verifica nella radio
- L'ampiezza di banda con cui lavorano i filtri uditivi ha assunto il nome di banda critica (Fletcher...)

Mascheramento e Banda Critica (dal testo)

- Un piccolo esempio:
 - Dato un tono a 2kHz, qual è la sua banda critica?
 - Generiamo un rumore composto da un insieme di frequenze in un intervallo centrato su 2kHz e raggio variabile
 - Cioè avente banda variabile attorno al tono 2kHz
 - Variazioni dell'intensità sonora del suono originale sono apprezzabili solo con rumori aventi larghezza di banda inferiore a 250Hz
 - Pertanto, la larghezza di banda critica del segnale da 2kHz è 250Hz

Esercitazione Pratica (dal testo)

- 2.6.4 Mascheramento nelle bande critiche
 In un editor audio generare i seguenti segnali
 - [T] Tono puro da 2000Hzm ampiezza 0.2
 - [R] Rumore bianco (banda larga), ampiezza 0.8
 - Testare il mascheramento in questi vari test
 - Riducendo l'ampiezza di T gradualmente fino a -30dB
 - Duplicando R e filtrandolo con questi filtri:
 - □ [R1] Passa-alto=1500, Passa-Basso=2500 (Banda=1kHz)
 - [R2] Passa-alto=1875, Passa-Basso=2125 (Banda=250Hz)
 - □ [R3] Passa-alto=1995, Passa-Basso=2005 (Banda=10Hz)

Mascheramento e Banda Critica (dal testo)

- Le bande critiche hanno larghezza di banda variabile, a seconda della frequenza
 - □ Frequenza < 500Hz</p>
 - Larghezza di banda critica: circa 100Hz
 - □ Frequenza > 500Hz
 - Larghezza di banda critica: circa Frequenza + 20%
 - Frequenze molto alte
 - Larghezza di banda critica: circa 6500Hz

Mascheramento e Banda Critica Scala di Bark

 L'intera gamma delle frequenze udibili viene ripartita in 24 bande critiche

