Note del corso di Geometria 1

Gabriel Antonio Videtta

10 maggio 2023

Quadriche e classificazione affine delle coniche

Nota. Nel corso del documento si assume char $\mathbb{K} \neq 2$.

Definizione (quadriche). Si dice **quadrica** il luogo di zeri di un polinomio $p \in \mathbb{K}[x_1, \dots, x_n]$ con deg p = 2.

Definizione (coniche). Si dice **conica** una quadrica relativa ad un polinomio in due variabili.

Osservazione.

- ▶ Una quadrica è invariante per la relazione \sim su $\mathbb{K}[x_1,\ldots,x_n]$, dove $p_1 \sim p_2 \iff \exists \alpha \in \mathbb{K}^* \mid p_1 = \alpha p_2$. Infatti il luogo di zeri di un polinomio non varia se esso viene moltiplicato per una costante non nulla di \mathbb{K}
- ▶ Una quadrica può essere vuota (come nel caso della conica relativa a $x^2 + y^2 + 1$ in \mathbb{R}).
- ▶ Si identifica con la notazione $p(\underline{x})$ con $\underline{x} \in \mathbb{K}^n$, la valutazione del polinomio p nelle coordinate di \underline{x} . Per esempio, se $\underline{x} = (1,2)$ e $p(x,y) = x^2 + y^2$, con $p(\underline{x})$ si identifica il valore $p(1,2) = 1^2 + 2^2 = 5$.

Osservazione (riscrittura di p mediante matrici). Sia $p \in \mathbb{K}[x_1, \dots, x_n]$ di grado due. Allora p si può sempre scrivere come $p_2 + p_1 + p_0$, dove p_i è un polinomio omogeneo contenente soltanto monomi di grado i

In particolare, $p_2(x_1, \ldots, x_n)$ può essere sempre riscritto come $\sum_{i=1}^n \sum_{j=1}^n a_{ij}$ con $a_{ij} \in \mathbb{K}$ con $a_{ij} = a_{ji}$. È infatti sufficiente "sdoppiare" il coefficiente c_{ij} di x_ix_j in due metà, in modo tale che $c_{ij}x_ix_j = \frac{c_{ij}}{2}x_ix_j + \frac{c_{ij}}{2}x_ix_j = \frac{c_{ij}}{2}x_ix_j + \frac{c_{ij}}{2}x_jx_i$. Inoltre, anche $p_1(x_1, \ldots, x_n)$ può essere riscritto come $\sum_{i=1}^n b_{ij}$.

Si possono allora considerare la matrice $A \in M(n, \mathbb{K})$ ed il vettore $b \in \mathbb{K}^n$, definiti in modo tale che:

$$A = (a_{ij})_{i,j=1-n}, \qquad \underline{b} = (b_i)_{i=1-n} \in \mathbb{K}^n.$$

Infatti, A e \underline{b} soddisfano la seguente identità:

$$p(\underline{x}) = \underline{x}^{\top} A \underline{x} + \underline{b}^{\top} \underline{x} + c,$$

che, riscritta tramite l'identificazione di $\mathcal{A}_n(\mathbb{K})$ come l'iperpiano $H_{n+1} \in \mathcal{A}_{n+1}(\mathbb{K})$, diventa:

$$p(\underline{x}) = \hat{\underline{x}}^{\top} \hat{A} \hat{\underline{x}}, \text{ dove } \hat{A} = \begin{pmatrix} A & \underline{b}/2 \\ \underline{b}^{\top}/2 & c \end{pmatrix}.$$

Si osserva che \hat{A} è una matrice simmetrica di taglia n+1 a elementi in \mathbb{K} , e in quanto tale essa induce un prodotto scalare su \mathbb{K}^{n+1} . Pertanto la quadrica relativa p è esattamente l'intersezione tra H_{n+1} e $CI(\hat{A})$, identificando \mathbb{K}^{n+1} come H_{n+1} , ossia la quadrica è esattamente $\iota^{-1}(H_{n+1} \cap CI(\hat{A}))$.

Definizione (matrice associata ad una quadrica). Si definisce la costruzione appena fatta di A come la **matrice associata alla quadrica relativa a** p, e si indica con $\mathcal{M}(p)$. In particolare, A è detta la matrice che rappresenta la *parte quadratica*, e si indica con $\mathcal{A}(p)$, mentre b/2 rappresenta la *parte lineare*, indicata con $\mathcal{L}(p)$, e c = c(p) è detto termine noto.

Definizione (azione di $A(\mathcal{A}_n(\mathbb{K}))$ su $\mathbb{K}[x_1,\ldots,x_n]$). Sia $f\in A(\mathcal{A}_n(\mathbb{K}))$. Allora $A(\mathcal{A}_n(\mathbb{K}))$ agisce (a destra) su $\mathbb{K}[x_1,\ldots,x_n]$ in modo tale che $p'=p\circ f$ è un polinomio per cui $p'(\underline{x})=p(f(\underline{x}))$.

Definizione (equivalenza affine tra polinomi e quadriche). Si dice che due polinomi $p_1, p_2 \in \mathbb{K}[x_1, \dots, x_n]$ sono affinemente equivalenti se e solo se $\exists f \in A(\mathcal{A}_n(\mathbb{K})) \mid p_1 = p_2 \circ f$. In tal caso si scrive che $p_1 \sim p_2$. Analogamente due quadriche si dicono affinemente equivalenti se i relativi polinomi sono affinemente equivalenti.

Osservazione.

- ▶ L'equivalenza affine è una relazione di equivalenza.
- ▶ Sia Z(p) il luogo di zeri di p. Allora, $p_1 \sim p_2 \implies \exists f \in A(\mathcal{A}_n(\mathbb{K})) \mid Z(p_2) = f(Z(p_1))$.
- ▶ In generale, se $p_1 = p_2 \circ f$, vale che $Z(p_2) = f(Z(p_1))$.
- ▶ Dal momento che $A(\mathcal{A}_n(\mathbb{K}))$ su $\mathbb{K}[x_1,\ldots,x_n]$ è un azione (destra) di gruppo, vale che $(p \circ f_1) \circ f_2 = p \circ (f_1 \circ f_2) \ \forall f_1, f_2 \in A(\mathcal{A}_n(\mathbb{K})), p \in \mathbb{K}[x_1,\ldots,x_n].$

Proposizione (formula del cambiamento della matrice associata su azione di $A(\mathcal{A}_n(\mathbb{K}))$). Sia $f \in A(\mathcal{A}_n(\mathbb{K}))$ e sia $p \in \mathbb{K}[x_1, \dots, x_n]$ di grado due. Allora vale la seguente identità:

$$\mathcal{M}(p \circ f) = \hat{M}^{\top} \mathcal{M}(p) \hat{M} = \left(\begin{array}{c|c} M^{\top} \mathcal{A}(p) M & M^{\top} (\mathcal{A}(p) \underline{t} + \mathcal{L}(p)) \\ \hline \left(M^{\top} (\mathcal{A}(p) \underline{t} + \mathcal{L}(p)) \right)^{\top} & p(\underline{t}) \end{array} \right),$$

$$\operatorname{con} \, \hat{M} = \left(\begin{array}{c|c} M & \underline{t} \\ \hline 0 & 1 \end{array} \right), \, \operatorname{dove} \, f(\underline{x}) = M\underline{x} + \underline{t} \, \, \forall \, \underline{x} \in \mathbb{K}^n \, \operatorname{con} \, M \in \operatorname{GL}(n,\mathbb{K}) \, \operatorname{e} \, \underline{t} \in \mathbb{K}^n.$$

Dimostrazione. Per definizione, $p \circ f$ è tale che $(p \circ f)(\underline{x}) = p(f(\underline{x})) = p(M\underline{x} + \underline{t})$. In particolare, $(p \circ f)(\underline{x}) = (\widehat{M}\underline{x} + \underline{t})^{\top} \mathcal{M}(p)(\widehat{M}\underline{x} + \underline{t}) = (\widehat{M}\hat{x})^{\top} \mathcal{M}(p)(\widehat{M}\hat{x})$. Pertanto vale che:

$$(p \circ f)(\underline{x}) = \hat{x}^{\top} \hat{M}^{\top} \mathcal{M}(p) \hat{M} \hat{x} \implies \mathcal{M}(p \circ f) = \hat{M}^{\top} \mathcal{M}(p) \hat{M},$$

da cui la tesi. \Box

Osservazione.

▶ Per la proposizione precedente, due matrici, associate a due polinomi di secondo grado affinemente equivalenti, variano per congruenza, così come le matrici della parte quadratica.

Pertanto $\operatorname{rg}(\mathcal{M}(p \circ f)) = \operatorname{rg}(\mathcal{M}(p))$, come $\operatorname{rg}(\mathcal{A}(p \circ f)) = \operatorname{rg}(\mathcal{A}(p))$ (così come, per $\mathbb{K} = \mathbb{R}$, non variano i segni dei vari determinanti). Allo stesso tempo, la classe di equivalenza di $\mathcal{M}(p)$ è rappresentata completamente per $\mathbb{K} = \mathbb{C}$ (tramite il rango) e per $\mathbb{K} = \mathbb{R}$ (tramite la segnatura), per il teorema di Sylvester.

 \blacktriangleright Se f è una traslazione, $M = I_n$, e dunque la formula si riduce alla seguente:

$$\mathcal{M}(p \circ f) = \left(\begin{array}{c|c} \mathcal{A}(p) & \mathcal{A}(p)\underline{t} + \mathcal{L}(p) \\ \hline \left(\mathcal{A}(p)\underline{t} + \mathcal{L}(p) \right)^\top & p(\underline{t}) \end{array} \right).$$

In particulare, non varia la matrice relativa alla parte quadratica, ossia vale che $\mathcal{A}(p \circ f) = \mathcal{A}(p)$.

- Se $\lambda \in \mathbb{K}^*$, $\mathcal{M}(\lambda p) = \lambda \mathcal{M}(p)$, dal momento che $\mathcal{A}(\lambda p) = \lambda \mathcal{A}(p)$, così come $\mathcal{L}(\lambda p) = \lambda \mathcal{L}(p)$ e $c(\lambda p) = \lambda c(p)$. Tuttavia, a differenza del cambio di matrice per equivalenza affine, per $\mathbb{K} = \mathbb{R}$ la segnatura non è più un invariante (infatti, in generale $\sigma(-S) = (\iota_-(S), \iota_+(S), \iota_0(S))$, se $S \in \text{Sym}(n, \mathbb{R})$). Ciononostante non varia, in valore assoluto, la differenza tra l'indice di positività e quello di negatività, ossia $S(\mathcal{M}(p)) := |\iota_+ \iota_-|$ continua ad essere invariante.
- ▶ Vale sempre la disuguaglianza $\operatorname{rg}(\mathcal{M}(p)) \ge \operatorname{rg}(\mathcal{A}(p)) \ge 1$, dal momento che $\mathcal{A}(p)$ è una sottomatrice di $\mathcal{M}(p)$ e che p, per definizione di quadrica, contiene sempre un termine quadratico (e dunque la matrice $\mathcal{A}(p)$ non è mai nulla).

Definizione (quadrica non degenere). Una quadrica relativa a $p \in \mathbb{K}[x_1, \dots, x_n]$ si dice **non degenere** se $\operatorname{rg}(\mathcal{M}(p)) = n + 1$ (ossia se $\det(\mathcal{M}(p)) \neq 0$), e altrimenti si dice degenere. In particolare, una conica si dice non degenere se $\operatorname{rg}(\mathcal{M}(p)) = 3$ e degenere altrimenti.

Definizione (quadrica a centro). Una quadrica C relativa a $p \in \mathbb{K}[x_1, \dots, x_n]$ (o p stesso) si dice **a centro** se $\exists \underline{x}_0 \in \mathbb{K}^n \mid p(\underline{x}_0 + \underline{x}) = p(\underline{x}_0 - \underline{x}) \ \forall \underline{x} \in \mathbb{K}^n$. In particolare, si dice che tale \underline{x}_0 è un **centro di simmetria** per C.

Osservazione.

- ▶ Si osserva che $\underline{0}$ è un centro di simmetria per p se $p(\underline{x}) = p(-\underline{x})$, ossia se e solo se la parte lineare $\mathcal{L}(p)$ è nulla
- ▶ Allora \underline{x}_0 è un centro di simmetria per p se e solo se $\underline{0}$ è un centro di simmetria per $p \circ f$, dove f è la traslazione che manda $\underline{0}$ in \underline{x}_0 . Infatti, in tal caso, vale che $f(\underline{x}) = \underline{x} + \underline{x}_0$ e che:

$$(p \circ f)(\underline{x}) = p(\underline{x} + \underline{x}_0) = p(\underline{x} - \underline{x}_0) = (p \circ f)(-\underline{x}).$$

▶ Per le osservazioni precedenti, vale allora che \underline{x}_0 è un centro di simmetria per p se e solo se la parte lineare di $p \circ f$ è nulla, ossia se e solo se \underline{x}_0 è tale che $\mathcal{A}(p)\underline{x}_0 + \mathcal{L}(p)$. Pertanto p è a centro se e solo se il sistema

 $\mathcal{A}(p)\underline{x} = -\mathcal{L}(p)$ è risolvibile, e quindi se e solo se $\operatorname{rg}\left(\mathcal{A}(p) \mid \mathcal{L}(p)\right) = \operatorname{rg}(\mathcal{A}(p)) \iff \mathcal{L}(p) \in \operatorname{Im}(\mathcal{A}(p))$, per il teorema di Rouché-Capelli. Vale dunque che p è sempre a centro, se $\mathcal{A}(p)$ è invertibile.

Poiché i centri di una conica sono esattamente le soluzioni del sistema lineare $\mathcal{A}(p)\underline{x} = -\mathcal{L}(p)$, essi formano un sottospazio affine. In particolare, se \underline{x}_0 è un centro, vale che tale sottospazio è esattamente \underline{x}_0 +Ker $\mathcal{A}(p)$. Pertanto, se $\mathcal{A}(p)$ è invertibile (ossia se è iniettiva), il centro è unico.

Teorema (classificazione delle coniche complesse). Sia $\mathbb{K} = \mathbb{C}$. Allora ogni conica è affinemente equivalente ad un'equazione canonica della seguente tabella, unicamente determinata dagli invarianti $\operatorname{rg}(\mathcal{M}(p))$ e $\operatorname{rg}(\mathcal{A}(p))$.

	$\operatorname{rg}(\mathcal{M}(p))$	$\operatorname{rg}(\mathcal{A}(p))$	Equazione canonica	A centro
\mathcal{C}_1	3	2	$x^2 + y^2 = 1$	Sì
\mathcal{C}_2	3	1	$x^2 = y$	No
\mathcal{C}_3	2	2	$x^2 + y^2 = 0$	Sì
\mathcal{C}_4	2	1	$x^2 = 1$	Sì
\mathcal{C}_5	1	1	$x^2 = 0$	Sì

Dimostrazione. La classificazione è completa perché sono comprese tutte le possibili scelte di rango. Inoltre tale classificazione è ben definita, dal momento che due coniche distinte della tabella differiscono di almeno un'invariante, e pertanto non possono essere affinemente equivalenti. Pertanto, se esiste, una conica è affinemente equivalente ad una sola delle coniche presenti nella tabella.

Sia allora \mathcal{C} una conica relativa al polinomio $p \in \mathbb{C}[x,y]$. Se $\operatorname{rg}(\mathcal{A}(p)) = 2$, allora, per il teorema di Sylvester complesso, esiste una matrice $M \in \operatorname{GL}(2,\mathbb{C})$ tale per cui $M^{\top}\mathcal{A}(p)M = I_2$.

Si consideri allora l'affinità $f_1 \in A(\mathcal{A}_2(\mathbb{C}))$ tale per cui $f_1(\underline{x}) = M\underline{x} + \underline{t}$, dove $\underline{t} = -\mathcal{A}(p)^{-1}\underline{b}$. Se $p_1 = p \circ f_1$, allora, per la formula di cambiamento della matrice associata, vale che:

$$\mathcal{M}(p_1) = \mathcal{M}(p \circ f_1) = egin{pmatrix} I_2 & 0 \\ \hline 0 & p(\underline{t}) \end{pmatrix}.$$

Se $\operatorname{rg}(\mathcal{M}(p)) = 2$, $c(p_1) = p(\underline{t})$ è nullo (altrimenti i ranghi di $\mathcal{M}(p)$ e $\mathcal{M}(p_1)$ sarebbero diversi; assurdo, dal momento che il rango di $\mathcal{M}(p)$ è invariante per equivalenza affine, f). In tal caso p_1 è il polinomio $x^2 + y^2$, e dunque \mathcal{C} è affinemente equivalente a \mathcal{C}_3 tramite l'identità $p_1 = p \circ f_1$.

Se invece $\operatorname{rg}(\mathcal{M}(p)) = 3$, $c' := c(p_1)$ non è nullo, e dunque p_1 è il polinomio $x^2 + y^2 + c'$. Considerando allora $f_2 \in A(\mathcal{A}_2(\mathbb{C}))$ tale che $f_2(\underline{x}) = \sqrt{-c'}\,\underline{x}$, si ottiene che $p_2 = p_1 \circ f_2$ è tale per cui:

$$\mathcal{M}(p_2) = -c' \begin{pmatrix} I_2 & 0 \\ 0 & -1 \end{pmatrix},$$

ossia p_2 è il polinomio $c'(x^2 + y^2 - 1) = 0$. Poiché c' è diverso da zero, p_2 ha lo stesso luogo di zeri di $x^2 + y^2 - 1$, ossia p_2 è legato alla conica C_1 . Si conclude dunque che p e p_2 sono affinemente equivalenti tramite l'identità $p_2 = p \circ (f_1 \circ f_2)$.

Sia ora invece $\operatorname{rg}(\mathcal{A}(p))=1$. Allora, sempre per il teorema di Sylvester complesso, esiste $M\in\operatorname{GL}(2,\mathbb{C})$ tale per cui:

$$B := M^{\top} \mathcal{A}(p) M = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Si consideri allora l'affinità $f_1 \in A(\mathcal{A}_2(\mathbb{C}))$ tale per cui $f_1(\underline{x}) = M\underline{x}$. Allora, se $p_1 = p \circ f_1$, vale che:

$$\mathcal{M}(p_1) = \mathcal{M}(p \circ f_1) = \begin{pmatrix} 1 & 0 & b_1 \\ 0 & 0 & b_2 \\ b_1 & b_2 & c(p) \end{pmatrix},$$

dove $(b_1, b_2)^{\top} = M^{\top} \mathcal{L}(p)$. Se $\operatorname{rg}(\mathcal{M}(p)) = 3$, b_2 è necessariamente non nullo (altrimenti $\operatorname{rg}(\mathcal{M}(p \circ f_1)) \leq 2$, $\boldsymbol{\ell}$). Si consideri allora l'affinità $f_2 \in A(\mathcal{A}_2(\mathbb{C}))$ tale che $f_2(\underline{x}) = \underline{x} - \underline{t}_1$, dove $\underline{t}_1 = (-b_1, 0)^{\top}$. Allora, se $p_2 = p_1 \circ f_2$, vale che:

$$\mathcal{M}(p_2) = \mathcal{M}(p_1 \circ f_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & b_2 \\ 0 & b_2 & c' \end{pmatrix},$$

dove $c' := p_1(\underline{t}_1)$. Pertanto p_2 è il polinomio $x^2 + 2b_2y + c'$. Si cerca adesso di eliminare il termine noto considerando una traslazione di vettore \underline{t}_2 in modo tale che $p_2(\underline{t}_2) = 0$ e che rimanga invariata la parte lineare. Se $\underline{t}_2 = (x', y')^{\top}$, si considera x' = 0 in modo tale da lasciare invariata la parte lineare e si cerca y' in modo tale che:

$$2b_2y' + c' = 0 \implies y' = -\frac{c'}{2b_2}.$$

Sia dunque $f_3 \in A(\mathcal{A}_2(\mathbb{C}))$ tale che $f_3(\underline{x}) = \underline{x} + \underline{t}_2$. Se $p_3 = p_2 \circ f_3$, vale allora che:

$$\mathcal{M}(p_3) = \mathcal{M}(p_2 \circ f_3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & b_2 \\ 0 & b_2 & 0 \end{pmatrix}.$$

Pertanto p_3 è il polinomio $x^2 + 2b_2y$. Sostituendo allora $y \mapsto -y/2b_2$, si può normalizzare il coefficiente di y. Si considera allora $f_4 \in A(\mathcal{A}_2(\mathbb{C}))$ tale che:

$$f_4(\underline{x}) = \begin{pmatrix} 1 & 0 \\ 0 & -y/2b_2 \end{pmatrix} \underline{x}.$$

Se si pone allora $p_4 = p_3 \circ f_4$, si ottiene finalmente che:

$$\mathcal{M}(p_4) = \mathcal{M}(p_3 \circ f_4) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1/2 \\ 0 & -1/2 & 0 \end{pmatrix},$$

e dunque p_4 rappresenta il polinomio $x^2 - y$, legato alla conica C_2 . Si conclude dunque che C è affinemente equivalente a C_2 tramite l'identità $p_4 = p \circ (f_1 \circ f_2 \circ f_3 \circ f_4)$.

Se invece $\operatorname{rg}(\mathcal{M}(p)) \leq 2$, b_2 è necessariamente nullo (altrimenti $\operatorname{rg}(\mathcal{M}(p \circ f_1)) = 3$, $\boldsymbol{\ell}$). Si cerca adesso una traslazione di vettore $\underline{t} = (t_1, t_2)^{\top}$ tale che annulli la parte lineare del polinomio, ossia un vettore per cui $\mathcal{A}(p_1)\underline{t} + (b_1, 0)^{\top} = \underline{0}$. Un vettore di questo tipo è $\underline{t} = (-b_1, 0)^{\top}$.

Sia allora $f_2 \in \mathcal{A}_2(\mathbb{C})$ per cui $f_2(\underline{x}) = \underline{x} + \underline{t}$, e sia $p_2 = p_1 \circ f_2$. Vale allora che:

$$\mathcal{M}(p_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & c' \end{pmatrix},$$

dove $c' := p_1(\underline{t})$. Se $\operatorname{rg}(\mathcal{M}(p)) = 1$, c' è necessariamente nullo (altrimenti $\mathcal{M}(p_2)$ non sarebbe congruente a $\mathcal{M}(p)$, f), e dunque p_2 è il polinomio $x^2 = 0$, legato alla conica \mathcal{C}_5 (quindi \mathcal{C} è affinemente equivalente a \mathcal{C}_5 tramite l'identità $p_2 = p \circ (f_1 \circ f_2)$).

Altrimenti, se $\operatorname{rg}(\mathcal{M}(p)) = 2$, $c' \neq 0$. Sia allora $f_3 \in A(\mathcal{A}_2(\mathbb{C}))$ tale che:

$$f_3(\underline{x}) = \begin{pmatrix} \sqrt{-c'} & 0 \\ 0 & 1 \end{pmatrix} \underline{x}.$$

Se $p_3 = p_2 \circ f_3$, allora risulta che:

$$\mathcal{M}(p_3) = \mathcal{M}(p_2 \circ f_3) = -c' \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

e dunque p_3 è il polinomio $-c'(x^2-1)$. Poiché $c'\neq 0$, p_3 ha lo stesso luogo di zeri di x^2-1 , e dunque è legato alla conica \mathcal{C}_4 . Allora \mathcal{C} è affinemente equivalente a \mathcal{C}_4 mediante l'identità $p_3=p\circ (f_1\circ f_2\circ f_3)$, concludendo la classificazione delle coniche complesse.

Teorema (classificazione delle coniche reali). Sia $\mathbb{K} = \mathbb{R}$. Allora ogni conica è affinemente equivalente ad un'equazione canonica della seguente tabella, unicamente determinata dagli invarianti $\operatorname{rg}(\mathcal{M}(p))$, $\operatorname{rg}(\mathcal{A}(p))$, $S(\mathcal{M}(p)) := |\iota_{+}(\mathcal{M}(p)) - \iota_{-}(\mathcal{M}(p))|$ e $S(\mathcal{A}(p)) := |\iota_{+}(\mathcal{A}(p)) - \iota_{-}(\mathcal{A}(p))|$.

	$\operatorname{rg}(\mathcal{M}(p))$	$\operatorname{rg}(\mathcal{A}(p))$	$S(\mathcal{M}(p))$	$S(\mathcal{A}(p))$	Equazione canonica
ellisse reale (C_1)	3	2	1	2	$x^2 + y^2 - 1 = 0$
iperbole (C_2)	3	2	1	0	$x^2 - y^2 - 1 = 0$
parabola (C_3)	3	1	1	1	$x^2 - y = 0$
due rette reali incidenti (C_4)	2	2	0	0	$x^2 - y^2 = 0$
due rette reali parallele (C_5)	2	1	0	1	$x^2 - 1 = 0$
due rette reali coincidenti (C_6)	1	1	1	1	$x^2 = 0$
ellisse immaginaria (C_7)	3	2	3	2	$x^2 + y^2 + 1 = 0$
due rette complesse coniugate e incidenti in un punto reale (C_8)	2	2	2	2	$x^2 + y^2 = 0$
due rette complesse coniugate, distinte e parallele (C_9)	2	1	2	1	$x^2 + 1 = 0$

Dimostrazione. Come già visto precedentemente, la classificazione è completa perché sono comprese tutte le possibili scelte di invarianti, ed è anche ben definita, dacché due coniche distinte della tabella differiscono di almeno un'invariante.

Sia allora \mathcal{C} una conica relativa al polinomio $p \in \mathbb{R}[x,y]$. Sia $\operatorname{rg}(\mathcal{A}(p)) = 2$. Se $S(\mathcal{A}(p)) = 2$, allora, per il teorema di Sylvester, $\exists M \in \operatorname{GL}(2,\mathbb{R}) \mid M^{\top} \mathcal{A}(p)M = \pm I_2$. Sia allora $f_1 \in A(\mathcal{A}_2(\mathbb{R}))$ l'affinità tale per cui $f_1(\underline{x}) = M\underline{x} + \underline{t}$, dove $\underline{t} = -\mathcal{A}(p)^{-1}\underline{b}$. Allora, detto p_1 il polinomio monico ottenuto moltiplicando eventualmente per -1 il polinomio $p \circ f_1$, vale che:

$$\mathcal{M}(p_1) = \begin{pmatrix} I_2 & 0 \\ 0 & c \end{pmatrix},$$

dove $c \in \mathbb{R}$. Se $\operatorname{rg}(\mathcal{M}(p)) = 2$, allora c deve necessariamente essere nullo. In tal caso $p_1(x, y) = x^2 + y^2$, la cui conica corrispondente è data da due rette complesse coniugate e incidenti in un punto reale (\mathcal{C}_8) .

Altrimenti, se $\operatorname{rg}(\mathcal{M}(p)) = 3$, si discutono due casi dipendentemente dal valore di $S(\mathcal{M}(p))$. Se $S(\mathcal{M}(p)) = 3$, allora c è necessariamente positivo. Pertanto, detta $f_2 \in A(\mathcal{A}_2(\mathbb{R}))$ l'affinità tale per cui $f_2(\underline{x}) = \sqrt{c}\,\underline{x}$ e detto $p_2 = p_1 \circ f_2$, vale che $\mathcal{M}(p_2) = c\,I_3$, ossia che $p_2(x,y) = c(x^2 + y^2 + 1)$. Si è

ottenuto dunque che \mathcal{C} è affinemente equivalente all'ellisse immaginaria (\mathcal{C}_7) .

Si procede analogamente se $S(\mathcal{M}(p)) = 1$: in tal caso c è necessariamente negativo, e quindi f_2 si costruità moltiplicando per $\sqrt{-c}$: si ottiene in questo modo l'ellisse reale (\mathcal{C}_1) .

Sia ora invece $S(\mathcal{A}(p)) = 1$. Allora, per il teorema di Sylvester, $\exists M \in GL(2, \mathbb{R}) \mid M^{\top} \mathcal{A}(p) M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Si costruisca allora l'affinità $f_1 \in A(\mathcal{A}_2(\mathbb{R}))$ in modo tale che $f_1(\underline{x}) = M\underline{x} + \underline{t}$, dove $\underline{t} = -\mathcal{A}(p)\underline{b}$. Detto allora $p_1 = p \circ f_1$, vale che:

$$\mathcal{M}(p_1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & c \end{pmatrix}.$$

Se $\operatorname{rg}(\mathcal{M}(p)) = 2$, allora c è necessariamente nullo, e quindi $p_1(x,y) = x^2 - y^2$, da cui si deduce che \mathcal{C} è affinemente equivalente alla conica generata da due rette reali incidenti (\mathcal{C}_4) . Se invece $\operatorname{rg}(\mathcal{M}(p)) = 3$, c non è nullo, e quindi si può costruire l'affinità $f_2 \in A(\mathcal{A}_2(\mathbb{R}))$ data da $f_2(\underline{x}) = \sqrt{|c|}\underline{x}$. Allora, detto $p_2 = f \circ p_1$, p_2 può essere sempre ricondotto a un multiplo di $x^2 - y^2 - 1$: se infatti c < 0, p_2 lo è già, altrimenti è sufficiente applicare una terza affinità $f_3(\underline{x}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \underline{x}$ e considerare $p_3 = p_2 \circ f_3$. Pertanto \mathcal{C} è in questo caso affinemente equivalente a un'iperbole (\mathcal{C}_2) .

Sia adesso $\operatorname{rg}(\mathcal{A}(p)) = 1$. Allora, per il teorema di Sylvester, $\exists M \in \operatorname{GL}(2,\mathbb{R}) \mid M^{\top} \mathcal{A}(p) M = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Sia $\mathcal{L}(p) = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, con $b_1, b_2 \in \mathbb{R}$. Si costruisca $f_1 \in A(\mathcal{A}_2(\mathbb{R}))$ in modo tale che $f_1(\underline{x}) = M\underline{x}$. Detto $p_1 = p \circ f_1$, vale che:

$$\mathcal{M}(p_1) = \mathcal{M}(p \circ f_1) = \begin{pmatrix} 1 & 0 & b_1 \\ 0 & 0 & b_2 \\ b_1 & b_2 & c(p) \end{pmatrix}.$$

Si consideri dunque l'affinità $f_2 \in A(\mathcal{A}_2(\mathbb{R}))$ costruita in modo tale che $f_2(\underline{x}) = \underline{x} - (b_1, 0)^{\top}$. Detto quindi $p_2 = p_1 \circ f_2$, vale che:

$$\mathcal{M}(p_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & b_2 \\ 0 & b_2 & c' \end{pmatrix},$$

dove $c' \in \mathbb{R}$. Se $\operatorname{rg}(\mathcal{M}(p)) = 3$, allora b_2 è necessariamente non nullo. Si cerca adesso di eliminare il termine noto c' mediante una traslazione: si consideri $f_3 \in A(\mathcal{A}_2(\mathbb{R}))$ definita in modo tale che $f_3(\underline{x}) = \underline{x} + (0, -\frac{c}{2b_2})^{\top}$, analogamente a come era stata impostata l'affinità nel caso complesso. Allora, detto $p_3 = p_2 \circ f_2$, vale che:

$$\mathcal{M}(p_3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & b_2 \\ 0 & b_2 & 0 \end{pmatrix}.$$

Normalizzando il coefficiente di y mediante l'affinità $f_4 \in A(\mathcal{A}_2(\mathbb{R}))$ tale per cui $f_4(\underline{x}) = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{2b_2} \end{pmatrix}$, e detto $p_4 = p_3 \circ f_4$, si ottiene finalmente che $p_4(x,y) = x^2 - y$, ossia che \mathcal{C} è affinemente equivalente a una parabola (\mathcal{C}_3) .

Se $\operatorname{rg}(\mathcal{M}(p)) = 2$, allora necessariamente $b_2 = 0$ e $c \neq 0$. Si costruisce dunque l'affinità $f_3 \in A(\mathcal{A}_2(\mathbb{R}))$ definita in modo tale che $f_3(\underline{x}) = \begin{pmatrix} \sqrt{|c'|} & 0 \\ 0 & 1 \end{pmatrix}$ e si pone $p_3 = p_2 \circ f_3$. Se $S(\mathcal{M}(p)) = 0$, allora necessariamente c' < 0, e quindi vale che p_3 è multiplo di $x^2 - 1$. Pertanto \mathcal{C} è affinemente equivalente alla conica generata da due rette reali parallele (\mathcal{C}_5) . Se invece $S(\mathcal{M}(p)) = 2$, c' è strettamente positivo, e quindi p_3 è multiplo di $x^2 + 1$. In tal caso \mathcal{C} è affinemente equivalente alla conica generata da due rette complesse coniugate, distinte e parallele (\mathcal{C}_9) .

Se invece $\operatorname{rg}(\mathcal{M}(p)) = 1$, sia b_2 che c devono essere nulli. Allora $p_2(x,y) = x^2$, da cui si deduce che \mathcal{C} è affinemente equivalente alla conica generata da due rette reali coincidenti (\mathcal{C}_6) , completando la classificazione.

Osservazione. È utile osservare che la classificazione delle coniche complesse è una mera conseguenza della classificazione delle coniche reali. È possibile infatti dedurre le coniche complesse "dimenticando" il segno nelle equazioni canoniche delle coniche reali. Formalmente è sufficiente costruire un'affinità in modo tale che una variabile venga moltiplicata per i per far sì che il segno scompaia.