NCERT 11.9.2 Q7

EE23BTECH11204- Ashley Ann Benoy*

Question: Find the sum of n terms of the A.P. whose kth term is 5k + 1.

TABLE 0 GIVEN DATA

Symbol	Value	Parameter
x_0	1	First Term
x_k	5k + 1	kth Term
d	5	Common Difference
S_n	?	Sum of N terms

Given:

kth term of AP: $a_k = 5k + 1$

Sequence Representation: The given arithmetic progression (AP) can be represented as:

$$x(n) = (5n + 1)u(n)$$
 (1)

where u(n) is the unit step function.

Z-transform: Apply the Z-transform to x(n):

$$x(z) = \frac{5 + z^{-1}}{(1 - z^{-1})^2}$$
 (2)

Region of Convergence or R.O.C:

$$|z| > 1 \tag{3}$$

Sum of First n+1 Terms: Express the sum of the first n+1 terms (y(n)) in terms of x(n) using the convolution:

$$y(n) = x(n) * u(n)$$
 (4)

Inverse Z-transform: Apply the Z-transform on both sides to get Y(z) = X(z)U(z), where U(z) is the Z-transform of the unit step function.

$$Y(z) = \frac{5 + z^{-1}}{(1 - z^{-1})^2}$$
 (5)

Contour Integration for Inverse Z-transform: Use contour integration to find the inverse Z-transform (y(n)):

$$y(n) = \frac{1}{2\pi j} \oint_C Y(z) z^{n-1} dz \tag{6}$$

Residue Calculations: Calculate the residues R_1 and R_2 at the poles of the Z-transform.

$$R_1 = 5(n+1) (7)$$

$$R_2 = -n \tag{8}$$

$$S_n = r_1 + r_2 = 4n + 5 \tag{9}$$

