105 學年第二學期 普通物理 B 第二次期中考試題 Wolfson Ch 25-28 (第三版); 2017/05/02, 8:20 am - 09:50 am

- (i) 依空格號碼順序在第二張**正面**寫下所有填充題答案,不要寫計算過程。
- (ii) 依計算題之順序在第二張<u>反面</u>以後寫下演算過程與答案,<u>每題從新的一頁寫起</u>。 Constants: $\mu_0=4\pi\times10^{-7}$ N/A², g=9.8 m/s²

Part I. Filling the blank (5 points per blank)

• A transformer consists of N_1 -turn primary coil and N_2 -turn secondary coil. The secondary circuit is completed by a resistor R, as shown in right figure. If the current and terminal voltage in the primary coil are I_1 and V_1 , the ratio $V_1/I_1 = I_1 I_2 R$.

• A pair of parallel conducting rails, a resistor R across the rails, and a conducting bar of negligible resistance are arranged in a uniform field B as shown in right figure. The bar is pulled along the rails with velocity v to the left. Take L = 10 cm, B = 0.50 T, R = 2.0 Ω , and v = 2.0 m/s, the magnetic force on the bar is 2 N. (direction must be included).

• A series *RLC* circuit, has $R = 18 \text{ k}\Omega$, $C = 14 \mu\text{F}$, and L = 0.20 H, is connected across an AC power at 120 V rms and 60 Hz. The resonance frequency is __[3]_ Hz. The average power delivered to the entire circuit is __[4]_ W.

• The right diagram shows a network of resistances and capacitances. The total resistance is **[5a]** R and the total capacitance **[5b]** C.

• A rectangular coil with sides a=5 cm and b=10 cm and carrying a current of 1 A is placed inside a magnetic field of 1 T. The maximum torques acting on the coil is:

[8] Nm

• In a MRI Scanner, a coil generates a magnetic field of 1.5 T. The coil has a length of 3 m and a diameter of 1 m. The coil wire has a diameter of 1 mm and is densely packed. The required current to create the magnetic field is $I = \{9\}$ A.

• The switch S in the circuit shown in right figure is closed for a long time. It is opened at time t = 0, the current through 8.0 Ω -resistor I(t) = 10 A.

• A current of 70 A is driven through the shown structure. The upper bar (m = 30g) can vertically move. The equilibrium position h is **[11]** cm. Note: consider gravitational force and the magnetic interaction between the lower and upper bar.

• A square conducting loop of side 1.0 m lies in a plane containing a long, straight wire as shown in right figure. The current in the long wire I(t) comes from a charging RC circuit with a time constant 2.0 s, and at time t = 2.0 s, I = 4.0 A. The induced emf in the loop at time t = 4.0 s is [12] V.

- A capacitor is connected across a 60-Hz, 110-V rms power line, and an rms current of 0.20 A flows. If the capacitor is replaced by an inductor, and the same current flows. The inductance is **[13]** H.
- The right figure shows a double pipe system (Radius in units of r). Each tube carries a current I. If the two currents are flowing into the same direction, the magnetic field at point (0 r) is __[15a]_, at point (3 r) __[15b]_ and at point (6 r) __[15c]_. If the two currents flow into opposite directions the respective values are __[15d]_, __[15e]_, and __[15f]_

Part II Problems (10 points per problem)

1. The right image shows the geometry of a Hall probe: a current I flows through a semiconductor (length L, width w, thickness t) and a magnetic field B is applied perpendicular to I. If the charge carrier in the semiconductor has density n (number/volume), and each carrier has charge q, what is the Hall Voltage V_H in terms of I, B, n and other given quantities?

- 2. A conducting disk with radius a, volume V, and resistivity ρ is inside a solenoid of circular cross section. The axis of disk coincides with that of the solenoid. The magnetic field in the solenoid is given by B(t) = bt, where b is a constant. Find (a) the magnitude of induced electric field E(r) in the disk as a function of the distance r from the disk center. (b) the power dissipation in the entire disk.
- (*Hint*: You may use the microscopic version of Ohm law $E = \rho J$, where J is the current density.)
- 3. (a) Evaluate the current I_C (as a function of time), which flows into the capacitor with time t after closing the switch. The battery has emf ε . (*Hint:* use Kirchhoff's Law to write down equations for loops and nodes, and solve for the charge Q in the capacitor using $I_C = dQ/dt$.)

(b) What is the time constant τ for charging the capacitor?

Part I Answer (有效位數不扣分)

A [1]	(d) (g) (多選一個或少一個給三 分)	= B [6]	В	[1]	$(N_1/N_2)^2$
A [2]	$\mu_0 \cdot e^{-1} \cdot \ln 3/\pi = 1.6 \times 10^{-7}$	= B 【12】	В	[2]	2.5×10 ⁻³ N, toward right(方向沒寫扣一分)
A [3]	$3.0e^{-8.0t}$, $(3 給分,題目似乎是問 at t=0)$	= B 【10】	В	[3]	95 Hz (寫 598 扣一分,因當成ω)
A [4]	$110/(24\pi) = 1.46$	= B 【13】	В	[4]	0.8
A [5]	2.5×10 ⁻³ N, toward right (方向 沒寫扣一分)	= B 【2】	В	[5]	(a): 2R (b): 4/5C (各 2.5 分)
A [6]	$(N_1/N_2)^2$	= B [1]	В	[6]	(d) (g) (多選一個或少一個給三分)
A [7]	95 Hz (寫 598 扣一分,因當成 ω)	= B [3]	В	[7]	(a): 75 V (b): 71.4 V (各 2.5 分)
A [8]	0.8	=B [4]	В	[8]	0.005
A [9]	(a): 2R (b): 4/5C (各 2.5 分)	=B [5]	В	[9]	1200 (or 1194)
A [10]	(a): 75 V (b): 71.4 V(各 2.5 分)	= B 【7】	В	[10]	$3.0e^{-8.0t}$, (3 給分, 題目似乎是問 at $t=0$)
A [11]	(a) 0.16 MW (b) 16 MW(各 2.5 分)	= B 【14】	В	[11]	0.32
A [12]	a=d=f=0 b=c=e=μ ₀ I/(6πr) (錯一個扣一分,扣到五分完 為止)	= B 【15】	В	[12]	$\mu_0 \cdot e^{-1} \cdot \ln 3/\pi = 1.6 \times 10^{-7}$
A [13]	0.005	=B [8]	В	[13]	$110/(24\pi) = 1.46$
A [14]	1200 (or 1194)	=B [9]	В	[14]	(a) 0.16 MW (b) 16 MW(各 2.5分)
A [15]	0.32	= B 【11】	В	[15]	a=d=f=0 b=c=e=μ ₀ I/(6πr) (錯一個扣一分,扣到五分完為 止)

Part II Answer

[A1 = B2]

- (a) 五分, (b) 五分。(b)部分視情況部份給分。
- (a) In the loop of radius r,

$$|\mathcal{E}(r)| = \left| -\frac{d\Phi_B}{dt} \right| = \left| -\frac{d}{dt} (\pi r^2 \cdot bt) \right| = \pi b r^2 = \left| \oint \vec{E}(r) \cdot d\vec{r} \right| = E(r) \cdot 2\pi r$$

Therefore, E(r) = br/2.

(b) The current density in the loop of radius r is $J(r) = E(r)/\rho = br/2\rho$.

The power dissipated in this loop is

$$dP = J(r) \cdot dA(r) \cdot |\mathcal{E}(r)| = \frac{b}{2\rho} r \cdot h dr \cdot \pi b r^2 = \frac{\pi h b^2}{2\rho} r^3 dr$$
, where h is the height of disk.

The total power dissipation in the disk $P = \int_0^a dP = \frac{\pi h a^4 b^2}{8\rho} = \frac{a^2 b^2}{8\rho} V$.

A2 = B3

式子正確列出得五分,解出 Ic(t)得三分,正確寫出 time constant 得二分。

 $\varepsilon - I_1 R_1 - I_2 R_2 = 0 - - - (1)$

 $Q/C+I_2R_2=0----(2)$

 $I_1 = I_2 + I_C - - - (3)$

Eliminate I_2 by $I_2=I_1-I_C$, into (1) and (2), you get $\epsilon-I_1-(I_1-I_C)=0---(4)$ and $Q/C+(I_1-I_C)R_2=0----(5)$

From (4) (5), eliminate I_1 , get $\epsilon - I_C R_1 = (R_1 R_2 / R_2 C)Q$ -----(6)

Differentiate both side of (6) and use $I_C = dQ/dt$, find $\frac{dI_C}{dt} = -\frac{R_1 + R_2}{R_1 R_2 C} I_C$, this is a differential equation for I_C , and

the solution is $I_C = I_0 e^{-\frac{R_1 + R_2}{R_1 R_2 C}t}$, at t = 0, $I_C = \varepsilon/R_1 = I_0$, and the time constant $\tau = R_1 R_2 C / (R_1 + R_2)$

[A3 = B1]

$$qE = qvB; V_H = E*_W => V_H = wvB$$
 -----(1)

$$I = qnvA = qnv w*t -----(2)$$

$$(1) + (2) \Rightarrow V_H = IB / (qnt)$$