Proiectarea Algoritmilor

Curs 6 – Introducere în grafuri

Bibliografie

- Giumale Introducere în Analiza Algoritmilor cap 5 și 5.1
- Cormen Introducere în Algoritmi cap Algoritmi elementari de grafuri (23) – Reprezentări + Căutări
- http://www.h3c.com/portal/res/200706/01/20070601 108959_image001_201240_57_0.gif
- http://ashitani.jp/gv/
- http://www.graphviz.org
- http://en.wikipedia.org/wiki/PageRank

Plan curs

Introducere

Modalități de reprezentare

Exemple de probleme practice

- Algoritmi de parcurgere
 - BFS
 - DFS

Introducere

- Circa 6 cursuri în care sunt prezentați algoritmii cei mai importanți pentru prelucrarea grafurilor:
 - Parcurgere
 - Sortare topologică
 - Componente tare conexe
 - Puncte de articulație
 - Punţi
 - Arbori minimi de acoperire
 - Drumuri de cost minim
 - Fluxuri maxime
- Încercăm să legăm algoritmii de aplicații cât mai practice.

Tipuri de grafuri

Orientate: noduri (A-L) + arce (AB, BC, CD...).

Neorientate: noduri (A-L) + muchii (AB, BC, CD...).

Exemplu graf neorientat

 Exemplu graf generat cu neato (graphviz).

http://ashitani.jp/gv/

http://www.graphviz.org

 Biblioteci pentru vizualizare (Prefuse.org).

Modalități de descriere ale grafurilor

- Reprezentare în memorie:
 - Liste de adiacenţă;
 - Matrice de adiacență.

- Reprezentarea datelor de intrare:
 - Tupluri (sursă, destinație);
 - Întâlnite mai ales în descrierile folosind baze de date.
 - Limbaje specializate (ex: dot, GraphML, rdf). /

Formate de reprezentare

- Listă adiacență :
 - Eroilor: Politehnica, Grozăvești, Izvor
 - Muncii: Dristor2, lancului...
- Matrice adiacență:
- Tupluri:
 - (Dristor1; Dristor2)
 - (Eroilor; Grozăvești)
 - ...

	Unirii2	Tineretului	Romană	
Unirii2	-	1	1	
Tineretului	1	-		
Romană	1		-	

- Dot:
 - graph G {node;
 - Dristor2--Muncii--lancului—Obor;
 - Piata Victoriei1--Gara de nord--Crangasi--Grozavesti--Eroilor;
 - Pacii--Lujerului--Politehnica--Eroilor;
 - Republica--Titan--Dristor1--Timpuri Noi--Unirii1--Izvor--Eroilor;
 - Dristor1--Dristor2;
 - Unirii1--Unirii2;
 - Piata_Victoriei1--Piata_Victoriei2;
 - Piata_Sudului--Eroii_Revolutiei--Tineretului--Unirii2--Romana--Piata_Victoriei2--Aviatorilor--Pipera;
 - }

Formate de reprezentare - GraphML

GraphML

- <graphml xmlns="http://graphml.graphdrawing.org/xmlns">
- <graph edgedefault="undirected">
- <!-- data schema -->
- <key id="name" for="node" attr.name="name" attr.type="string"/>
- <key id="gender" for="node" attr.name="gender" attr.type="string"/>
- <!-- nodes -->
- <node id="1">
- <data key="name">Jeff</data>
- <data key="gender">M</data>
- </node>
- <node id="2">
- <data key="name">Ed</data>
- <data key="gender">M</data>
- </node>
- <edge source="1" target="2"></edge>
- </graph>
- </graphml>

Matrice de adiacență

Cum se determină matricea de adiacență?

Matrice de adiacență

Matricea este rară?

- G rar
- G dens

	A	В	C	D	E	F	G	Н	I	J	K	L
A		1					1					
В								1				
C				1	1							
D												
E						1						
F												
G		1	1									
Н	1											
I	1									1	1	
J											1	
K												1
L												

Vector de adiacență

Vector de adiacență

A	В	G	
В	Н		
C	D	E	
D			
E	F		
F			
G	В	C	
Н	A		
I	A	J	K
J	K		
K	L		
L			

Utilizări practice - Rețele sociale

Utilizări practice – Rețele de calculatoare

http://www.h3c.com/portal/res/200706/01/20070601 108959 image001 201240 57 0.gif

Utilizări practice - Web

Utilizări practice

- Hărţi, reţele (calculatoare, instalaţii, etc.), reţele sociale, analiza fluxurilor (semaforizare, proiectarea dimensiunii ţevilor de apă).
- Exemple simple:
 - Cel mai scurt drum între punctele A şi B pe o hartă.
 - Radialitate în rețele sociale: gradul în care rețeaua socială a unui individ se întinde în rețeaua globală pentru a schimba date și influență.
 - Page Rank (Google).

Algoritmi de parcurgere – Notații (1)

```
• G = (V,E);
```

- V mulţimea de noduri;
- E mulțimea de muchii / arce;
- (u,v) arcul / muchia u,v;
- u..v drum de la u la v; dacă există mai multe variante notăm u..x..v, u..y..v;
- R(u) reachable(u) = mulţimea nodurilor ce pot fi atinse pe căi ce pleacă din u;

Algoritmi de parcurgere – Notații (2)

- succs(u) mulţimea succesorilor lui u (graf orientat)
 sau mulţimea nodurilor adiacente lui u (graf neorientat);
- c(u) culoarea nodului specifică starea nodului la un anumit moment al parcurgerii:
 - Alb nedescoperit;
 - Gri descoperit, în curs de prelucrare;
 - Negru descoperit şi terminat (cu semnificaţii diferite pentru BFS si DFS).
- p(u) (π(u)) "părintele lui u" identificator al nodului din I care s-a ajuns în nodul u prima oară.

Parcurgere în lățime (BFS)

- Nod de start (sursă): s.
- Determină numărul minim de arce / muchii între s şi ∀ u ∈ V = numărul de paşi între sursă şi orice alt nod din graf (acesta este cel mai scurt drum în condițiile în care nu există o funcție de cost asociată grafului).
- $\delta(s,u)$ costul optim al s..u; $\delta(s,u) = \infty <=> u \notin R(s)$.
- Dist(s,u) costul drumului descoperit s..u.
- Ex: Politehnica → restul staţiilor de autobuz (de câte bilete am nevoie?)

BFS – Structura de date

 Folosește o coadă (FIFO) pentru a reţine nodurile ce trebuie prelucrate.

- Pentru fiecare nod se reţin:
 - Părintele $\pi(u)$ (p(u));
 - Dist(s,u) distanţa până la nodul sursă;
 - Culoarea nodului.

BFS – Algoritm

- BFS(s,G)
 - Pentru fiecare nod u (u ∈ V)
 - p(u) = null; dist(s,u) = inf; c(u) = alb; // iniţializări
 - Q = (); // se folosește o coadă în care reținem nodurile de prelucrat
 - dist(s,s) = 0; // actualizări: distanța de la sursă până la sursă este 0
 - Q ← Q + s; // adăugăm sursa în coadă → începem prelucrarea lui s
 - c(s) = gri; // și atunci culoarea lui devine gri
 - Cât timp (!empty(Q)) // cât timp mai am noduri de prelucrat
 - u = top(Q); // se determină nodul din vârful cozii
 - Pentru fiecare nod v (v ∈ succs(u)) // pentru toţi vecinii
 - Dacă c(v) este alb // nodul nu a mai fost găsit, nu e în coadă
 - Atunci { dist(s,v) = dist(s,u) + 1; p(v) = u; c(v) = gri; Q ← Q + v;} // actualizăm structura date
 - c(u) = negru; // am terminat de prelucrat nodul curent
 - Q ← Q u; // nodul este eliminat din coadă

BFS – Exemplu

Sursa = A

BFS(s,G)

- Pentru fiecare nod u (u ∈ V)
 - p(u) = null; dist(s,u) = inf; c(u) = alb; // iniţializări
- Q = (); // se folosește o coadă pentru nodurile de prelucrat
- dist(s,s) = 0; // actualizări: distanța de la s la s e 0
- Q ← Q + s; // adăugăm sursa în coadă → începem cu s
- c(s) = gri; // și atunci culoarea lui devine gri

Cât timp (!empty(Q)) // cât timp am noduri de prelucrat

- u = top(Q); // se determină nodul din vârful cozii
- Pentru fiecare nod v (v ∈ succs(u)) // pentru toţi vecinii
 - Dacă c(v) este alb // nodul nu a mai fost găsit, nu e în Q
 Atunci { dist(s,v) = dist(s,u) + 1; p(v) = u; c(v) = gri;
 Q ← Q + v;} // actualizăm structura date
- c(u) = negru; // am terminat de prelucrat nodul curent
- Q ← Q u; // nodul este eliminat din coadă

BFS – Evoluţia explorării

BFS – Zona de explorare

BFS – Proprietăți (I)

- Lema 5.1. În cursul execuției BFS(s,G) $v \in Q \iff v \in R(s)$.
- → v ∈ Q → v ∈ R(s): Q conţine exclusiv noduri din R(s) (BFS parcurge toate nodurile ce pot fi atinse din s);
 - Caz de bază: s ∈ R(s) Adevărat
 - Pas inducție: Q' conține doar noduri din R(s) → Q ← Q' + v conține doar noduri din R(s) (v ∈ R(s))
 - Dacă u = $top(Q') \rightarrow u \in R(s) \rightarrow v \in succs(u) \rightarrow (u,v) \in E \rightarrow v \in R(s)$
- ← toate nodurile ce pot fi atinse din s vor fi introduse cândva în coadă. (drum s = v₀v₁...v_p = v)
- Dem prin inducție! P(i) = ∀ i ∈ 0..p, se execută Q ← Q + v_i
 - Caz de bază: i = 0, se execută Q ← Q + s Adevărat
 - Pas inducţie: P(i) Adevărat → P(i+1) Adevărat
 - Conform ipotezei inductive, la un moment dat avem Q ← Q + v_i. → cândva, v_i = top(Q) |
 → dacă c(v_{i+1}) = alb, atunci este introdus in Q (Q ← Q + v_{i+1}). Altfel, c(v_{i+1}) ≠ alb → v_{i+1} este/a fost deja în coadă pt. că un nod își schimbă culoarea numai la inserție.

BFS – Proprietăți (II)

Lema 5.2. \forall (u,v) \in E, δ (s,v) \leq δ (s,u) + 1

- δ(s,v) ≤ δ(s,u) + 1 este egalitate când v este descoperit din u; < când v deja a fost descoperit înainte să se ajungă în u.
- Dem prin reducere prin absurd! Pp. δ(s,v) > δ(s,u) + 1
 → δ(s,u) + 1 este costul unui drum optim.
- Lema 5.3. La terminarea BFS(s,G) există proprietatea dist(s,u) ≥ δ(s,u).
 - Dem prin inducție folosind Lema 5.1 și Lema 5.2!
 - Caz de bază: $dist(s,s) = 0 = \delta(s,s)$ Adevărat
 - Pas inducţie: pt. ∀ nod din Q': dist(s,u) ≥ δ(s,u).
 - Cum dist(s,v) = dist(s,u) + 1 si dist(s,u) $\geq \delta(s,u) \rightarrow dist(s,v) \geq \delta(s,u) + 1 \geq \delta(s,v)$
 - Conf. Lema 5.1, v ∈ Q <=> v ∈ R(s) și dist(s,u) ≥ δ(s,u).
 - Dacă v ∉ R(s), dist(s,v) = δ(s,v) = ∞

BFS – Proprietăți (III)

- Lema 5.4. După orice execuție a ciclului principal al BFS, Q conține v₁, v₂, ..., v_p ai:
 - $Prop(Q) = dist(s, v_1) \le dist(s, v_2) \le ... \le dist(s, v_p) \le dist(s, v_1) + 1$
 - => la un moment dat in coadă sunt elemente de pe același nivel din arborele generat de BFS (sau maxim 1 nivel diferență).
 - Dem prin inducție după numărul de elemente din Q! (demonstrăm invarianța Prop(Q) la inserare și eliminare de elemente în/din Q.)
 - Fie u = v_1 = top(Q)
 - Inserție: fie v succ lui u și cul(v) = alb → coada devine: $v_1, v_2, ..., v_p$, $v_{p+1} = v$. dist(s,v) = dist(s,v₁) + 1 → dist(s,v₁) ≤ dist(s,v₂) ≤ ... ≤ dist(s,v_p) ≤ dist(s,v_{p+1}) ≤ dist(s,v₁) + 1
 - Eliminare: $dist(s,v_1) \le dist(s,v_2) \rightarrow dist(s,v_1) + 1 \le dist(s,v_2) + 1 \rightarrow coada devine: <math>v_2, ..., v_p, \rightarrow dist(s,v_2) \le ... \le dist(s,v_p) \le dist(s,v_1) + 1 \le dist(s,v_2) + 1$
 - Cum relaţia este respectată, înseamnă că Prop(Q) este adevărată.

BFS – Proprietăți (IV)

Corolar

d(u) = momentul în care nodul u este inserat în coada
 Q. Atunci:

$$d(u) < d(v) => dist(s,u) \le dist(s,v)$$

- Teorema 5.1. BFS este corect şi după terminare δ(s,u) = dist(s,u), ∀ u din V.
 - Utilizăm notația V_k = { u ∈ V | δ(s,u) = k }
 - Dem prin inducție $P(k) = \{ u \in V_k \mid \delta(s,u) = dist(s,u) \&\& (k > 0 => \pi(u) \in V_{k-1}) \&\& (k = 0 => \pi(u) = null) \}$
 - Caz de bază: k = 0, $V_0 = \{s\}$, $\delta(s,s) = dist(s,s) = 0$ și $\pi(s) = null$ Adevărat

BFS – Proprietăți (V)

Pas de inducție: k > 0, P(k) adevărat → P(k+1) adevărat

- Alegem la întâmplare un nod $v \in V_{k+1} \rightarrow \delta(s,v) = k+1$ și fie $u \in V_k$ predecesorul lui v pe drumul cel mai scurt s..v.
- Caz 1: u este descoperit după v
 - dist(s,v) ≤ dist(s,u) (Corolar 5.1) iar dist(s,u) = δ(s,u) → dist(s,v) ≤ k
 - dist(s,v) $\geq \delta$ (s,v) = k+1 (Lema 5.3)
- Caz 2: u este descoperit înainte de v şi v e descoperit pe arcul (u,v)
 - dist(s,v) = dist(s,u) + 1 și $\pi(v) = u, u \in V_k \rightarrow P(k+1)$ este adevărat
- Caz 3: u este descoperit înainte de v şi v NU e descoperit pe arcul (u,v). Fie z ≠ u , a.î. v e descoperit pe arcul (z,v)
 - a) d(u) < d(z) < d(v) → cul(v) = alb la d(u) → v e descoperit pe arcul (u, v)
 - b) d(z) < d(u) → $dist(s,z) \le dist(s,u) = \delta(s,u)$ → $dist(s,z) \le k$ dist(s,v) = dist(s,z) + 1 şi k + 1 = $\delta(s,v)$ ≤ dist(s,v) → $dist(s,z) \ge k$ → dist(s,z) = k → $dist(s,v) = k + 1 = \delta(s,v)$ → drumul s..z,v e optim → $z \in V_k$ → $\pi(v) = z \in V_k$ → P(k+1) este adevărat

Complexitate? Optimalitate? Completitudine?

BFS – Complexitate și Optimalitate

Complexitate:

O(n+m)

n = număr noduri

m = număr muchii

Optimalitate: DA

Parcurge tot graful? NU

Parcurgere în adâncime (DFS)

 Nu mai avem nod de start, nodurile fiind parcurse în ordine.

- d(u) = momentul descoperirii nodului (se trece prima oară prin u şi e totodată şi momentul începerii explorării zonei din graf ce poate fi atinsă din u).
- f(u) = timpul de finalizare al nodului (momentul în care prelucrarea nodului u a luat sfârșit)
 - Tot subarborele de adâncime dominat de u a fost explorat.
 - Alternativ: tot subgraful accesibil din u a fost descoperit şi finalizat deja.

DFS – Structura de date

- Folosește o stiva (LIFO) pentru a reține nodurile ce trebuie prelucrate
 - În implementările uzuale, stiva este rareori folosită explicit;
 - Se apelează la recursivitate pentru a simula stiva.
- Folosește o variabilă globală timp pe baza căreia se calculează timpii de descoperire și de finalizare ai fiecărui nod.
- Pentru fiecare nod se reţin:
 - Părintele π(u) (p(u));
 - Timpul de descoperire d(u);
 - Timpul de finalizare f(u);
 - Culoarea nodului.

DFS – Algoritm

- DFS(G)
 - V = noduri(G)
 - Pentru fiecare nod u (u ∈ V)
 - c(u) = alb; p(u) = null; // inițializare structură date
 - timp = 0; // reţine distanţa de la rădăcina arborelui DFS pană la nodul curent
 - Pentru fiecare nod u (u ∈ V)
 - Dacă c(u) este alb
 - Atunci explorare(u); // explorez nodul
- explorare(u)
 - d(u) = ++ timp; // timpul de descoperire al nodului u
 - c(u) = gri; // nod în curs de explorare
 - Pentru fiecare nod v (v ∈ succs(u)) // încerc sa prelucrez vecinii
 - Dacă c(v) este alb
 - Atunci {p(v) = u; explorare(v);} // dacă nu au fost prelucrați deja
 - c(u) = negru; // am terminat de explorat nodul u
 - f(u) = ++ timp; // timpul de finalizare al nodului u

DFS – Exemplu

DFS(G)

- V = noduri(G)
- Pentru fiecare nod $u (u \in V)$
 - c(u) = alb; p(u) = null; // iniţializare structură date
- timp = 0; // reține distanța de la rădăcina arborelui
 // DFS pană la nodul curent
- **Pentru fiecare** nod $u (u \in V)$
 - Dacă c(u) este alb
 - Atunci explorare(u); // explorez nodul

explorare(u)

- d(u) = ++ timp; // timpul de descoperire al nodului u
- c(u) = gri; // nod in curs de explorare
- Pentru fiecare nod v (v ∈ succs(u)) // încerc sa // prelucrez vecinii
 - Dacă c(v) este alb
 - Atunci {p(v) = u; explorare(v);} // dacă nu au// fost prelucrați deja
- c(u) = negru; // am terminat de explorat nodul u
- f(u) = ++ timp; // timpul de finalizare al nodului u

DFS – Evoluţia explorării

Calculul timpilor

Arborele de parcurgere în adâncime

DFS – Zone de explorare

DFS – Proprietăți (I)

- I(u) = intervalul de prelucrare al nodului (d(u),f(u)).
- Lema 5.5. G = (V,E); u ∈ V; pentru fiecare v descoperit de DFS pornind din u este construită o cale v, p(v), p(p(v)),..., u.
 - Fie calea $u = v_0 v_1 ... v_n = v$. Dem prin inducție ca $\pi(v_i) = v_{i-1}!$
- Teorema 5.2. G = (V,E); DFS(G) sparge graful G într-o pădure de arbori Arb(G) = { Arb(u); p(u) = null } unde Arb(u) = (V(u),E(u));
 - $V(u) = \{ v \mid d(u) < d(v) < f(u) \} + \{u\};$
 - $E(u) = \{ (v, z) \mid v, z \in V(u) \&\& p(z) = v \}.$
 - Dem: Conform algoritmului, se pot identifica noduri în ciclul principal sau din funcția de explorare. Dacă u e descoperit în ciclul principal, atunci ∃ o cale către toți succesorii dată de părinți → V(u) = { v | d(u) < d(v) < f(u) } iar arcele sunt chiar cele ce desemnează părinții

DFS – Proprietăți (II)

- Teorema 5.3. Dacă DFS(G) generează 1 singur arbore => G este conex. (Reciproca este adevărată?)
- Teorema 5.4. Teorema parantezelor:
 - \forall u, v avem $I(u) \cap I(v) = \emptyset$ sau $I(u) \subset I(v)$ sau $I(v) \subset I(u)$.
 - Dem prin considerarea tuturor combinaţiilor posibile!
 - a) I(u) < I(v): d(u) < f(u) < d(v) < f(v): v ∉ R(u) → v rămâne alb pe durata prelucrării lui u → f(u) < d(v)
 - b) I(v) ⊂ I(u): d(u) < d(v) < f(v) < f(u): v ∈ R(u) → v este descoperit
 din u şi devine negru înaintea terminării prelucrării lui u → f(v) < f(u)
 - c) I(v) < I(u): d(v) < f(v) < d(u) < f(u) Analog a)
 - d) $I(u) \subset I(v)$: d(v) < f(u) < f(v) Analog b)

DFS – Proprietăți (III)

Teorema 5.5. ∀ u, v ∈ V, atunci v ∈ V(u) <=> I(v) ⊂ I(u).

Teorema 5.6. Teorema drumurilor albe:

- G = (V,E); Arb(u); v este descendent al lui u in Arb(u) <=> la momentul d(u) există o cale numai cu noduri albe u..v.
- Demonstrație prin inducție!
- v ∈ V(u) → la momentul d(u) există o cale numai cu noduri albe u..v
 - Dacă v ∈ V(u) → ∃ o cale unică v .. α .. u de pointeri π. Fie un nod oarecare z din calea α. → (Teorema 5.5) d(u) < d(z) < f(z) < f(u) → la d(u), c(z) = alb și cum z a fost ales la întămplare → toate nodurile de pe calea α sunt albe la d(u).
- la momentul d(u) există o cale numai cu noduri albe u..v → v ∈ V(u)
 - Fie u = $v_0v_1...v_p$ = v o cale din G, a.î. La d(u) avem c(v_i) = alb, i = 0,p. Dem prin inducție după i că v_i este descendent al lui u în Arb(u).
 - Caz de bază: $d(u) < d(v_1) < f(u) \rightarrow (Teorema 5.5) v_1$ descendent al lui u Adevărat
 - Pas inducție: v_i descendent al lui u → v_{i+1} descendent al lui u
 - v_i descendent al lui $u \to d(u) < d(v_i) < f(v_i) < f(u)$. Cum v_{i+1} este alb la d(u) și este succesorul lui $v_i \to v_{i+1}$ este descoperit după d(u), dar înainte de $f(v_i)$. $\to d(u) < d(v_{i+1}) < f(v_i) < f(u) \to v_{i+1}$ descendent al lui u

Clasificări ale arcelor grafului (I)

- Arc direct (de arbore)
 - Ce fel de noduri?
- Arc invers (de ciclu)
 - Ce fel de noduri?
- Arc înainte
 - Ce fel de noduri?
- Arc transversal
 - Ce fel de noduri?

Clasificări ale arcelor grafului (II)

- Arc direct (de arbore)
 - între nod gri şi nod alb;
- Arc invers (de ciclu)
 - între nod gri şi nod gri;
- Arc înainte
 - nod gri şi nod negru şi d(u) < d(v);
- Arc transversal
 - nod gri şi nod negru şi d(u) > d(v).

Clasificări ale arcelor grafului (III)

Arc direct (de arbore)

între nod gri și nod alb;

Arc invers (de ciclu)

între nod gri și nod gri;

Arc înainte

nod gri și nod negru și d(u) < d(v);

Arc transversal

nod gri și nod negru și d(u) > d(v).

Arc direct (de arbore):

AB, BH, AG, GC, CD, CE, EF, IJ, JK, KL

Arc invers (de ciclu):

HA

Arc înainte:

IK

Arc transversal:

GB, IA

DFS – Proprietăți (IV)

- Teorema 5.7. Într-un graf neorientat, DFS poate descoperi doar muchii directe şi inverse.
 - Dem prin considerarea cazurilor posibile!
 - Fie muchia (u,v) ∈ E şi pp. d(u) < d(v). Muchia poate fi străbătută din u sau din v:
 - Caz (u,v): c(u) = gri, c(v) = alb → muchie directă
 - Caz (v,u): la momentul d(u) ∃ o cale cu noduri albe u..v →
 (Teorema drumurilor albe) v este descendent al lui u în
 Arb(u) → (Teorema 5.5) d(u) < d(v) < f(v) < f(u) → în
 intervalul (d(v), f(v)) când se investighează (v,u) c(u) =
 c(v) = gri → muchie inversă

DFS – Proprietăți (V)

- Teorema 5.8. G = graf orientat; G ciclic <=>
 în timpul execuției DFS găsim arce inverse.
 - Dem prin exploatarea proprietăților de ciclu și de arc invers!
 - G ciclic → DFS descoperă arce inverse
 - DFS descoperă arce inverse → G ciclic
 - Fie (v,u) arc invers → d(u) < d(v) < f(v) < f(u) → (Teorema 5.5) → v este descendent al lui u în Arb(u) → ∃ calea u..v care inchide ciclul

DFS – Complexitate și Optimalitate

Complexitate:

O(n+m)

n = număr noduri

m = număr muchii

Optimalitate: NU

Parcurge tot graful? DA

ÎNTREBĂRI?

