18-661 Introduction to Machine Learning

Nearest Neighbors

Fall 2020

ECE - Carnegie Mellon University

Midterm Information

Midterm will be on Tuesday, 10/20 in-class.

- Conducted as an online exam on Gradescope, with multiple-choice and short-answer questions
- Closed-book except for one double-sided letter-size handwritten page of notes that you can prepare as you wish.
- We will provide formulas for relevant probability distributions.
- You will not need a calculator. Only pen/pencil and scratch paper are allowed.

Will cover all topics up to and including Nearest Neighbors (10/15)

- (1) point estimation/MLE/MAP, (2) linear regression, (3) naive Bayes, (4) logistic regression, (5) SVMs, (6) Graphical Models, (7) Nearest Neighbors.
- Practice Midterm exam has been posted on Gradescope

Outline

1. Nearest Neighbor Classifier

2. Practical Aspects of NN

• So far, we've discussed parametric machine learning models:

- So far, we've discussed parametric machine learning models:
 - Linear regression

- So far, we've discussed parametric machine learning models:
 - Linear regression
 - Naive Bayes

- So far, we've discussed parametric machine learning models:
 - Linear regression
 - Naive Bayes
 - Logistic regression

- So far, we've discussed parametric machine learning models:
 - Linear regression
 - Naive Bayes
 - Logistic regression
 - Linear SVMs

- So far, we've discussed parametric machine learning models:
 - Linear regression
 - Naive Bayes
 - Logistic regression
 - Linear SVMs
 - Graphical Models

- So far, we've discussed parametric machine learning models:
 - Linear regression
 - Naive Bayes
 - Logistic regression
 - Linear SVMs
 - Graphical Models

- So far, we've discussed parametric machine learning models:
 - Linear regression
 - Naive Bayes
 - Logistic regression
 - Linear SVMs
 - Graphical Models
- Now we will discuss two *nonparametric* models:

- So far, we've discussed parametric machine learning models:
 - Linear regression
 - Naive Bayes
 - Logistic regression
 - Linear SVMs
 - Graphical Models
- Now we will discuss two *nonparametric* models:
 - Nearest neighbors

- So far, we've discussed parametric machine learning models:
 - Linear regression
 - Naive Bayes
 - Logistic regression
 - Linear SVMs
 - Graphical Models
- Now we will discuss two *nonparametric* models:
 - Nearest neighbors
 - Decision trees

Key difference:

• Parametric models assume that the data can be characterized via some *fixed* set of parameters θ . Given this set of parameters, our future predictions are independent of the data \mathcal{D} , i.e., $P(x|\theta,\mathcal{D})=P(x|\theta)$.

- Parametric models assume that the data can be characterized via some *fixed* set of parameters θ . Given this set of parameters, our future predictions are independent of the data \mathcal{D} , i.e., $P(x|\theta,\mathcal{D}) = P(x|\theta)$.
 - Often simpler and faster to learn, but can sometimes be a poor fit

- Parametric models assume that the data can be characterized via some *fixed* set of parameters θ . Given this set of parameters, our future predictions are independent of the data \mathcal{D} , i.e., $P(x|\theta,\mathcal{D}) = P(x|\theta)$.
 - Often simpler and faster to learn, but can sometimes be a poor fit

- Parametric models assume that the data can be characterized via some *fixed* set of parameters θ . Given this set of parameters, our future predictions are independent of the data \mathcal{D} , i.e., $P(x|\theta,\mathcal{D}) = P(x|\theta)$.
 - Often simpler and faster to learn, but can sometimes be a poor fit
- ullet Nonparametric models instead assume that the model features depend on the data $\mathcal{D}.$ The number of features tends to grow with the size of the dataset.

- Parametric models assume that the data can be characterized via some *fixed* set of parameters θ . Given this set of parameters, our future predictions are independent of the data \mathcal{D} , i.e., $P(x|\theta,\mathcal{D}) = P(x|\theta)$.
 - Often simpler and faster to learn, but can sometimes be a poor fit
- ullet Nonparametric models instead assume that the model features depend on the data $\mathcal{D}.$ The number of features tends to grow with the size of the dataset.
 - More complex and expensive, but can learn more flexible patterns

- Parametric models assume that the data can be characterized via some *fixed* set of parameters θ . Given this set of parameters, our future predictions are independent of the data \mathcal{D} , i.e., $P(x|\theta,\mathcal{D}) = P(x|\theta)$.
 - Often simpler and faster to learn, but can sometimes be a poor fit
- ullet Nonparametric models instead assume that the model features depend on the data ${\cal D}.$ The number of features tends to grow with the size of the dataset.
 - More complex and expensive, but can learn more flexible patterns
- Both parametric and non-parametric methods can be used for either regression or classification.

Nearest Neighbor Classifier

Recognizing flowers

Types of Iris: setosa, versicolor, and virginica

Measuring the properties of the flowers

Features: the widths and lengths of sepal and petal

Often, data is conveniently organized as a table

Ex: Iris data (click here for all data)

- 4 features
- 3 classes

Fisher's <i>Iris</i> Data				
Sepal length +	Sepal width +	Petal length +	Petal width +	Species +
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa
4.4	2.9	1.4	0.2	I. setosa
4.9	3.1	1.5	0.1	I. setosa

Pairwise scatter plots of 131 flower specimens

Visualization of data helps to identify the right learning model Which combination of features separates the three classes?

Figure 1: Each colored point is a flower specimen: setosa, versicolor, virginica

Different types seem well-clustered and separable

Using two features: petal width and sepal length

Labeling an unknown flower type

Labeling an unknown flower type

Closer to red cluster: so labeling it as setosa

Multi-class classification

Classify data into one of the multiple categories

- Input (feature vectors): $\mathbf{x} \in \mathbb{R}^{D}$
- Output (label): $y \in [C] = \{1, 2, \dots, C\}$
- Learning goal: y = f(x)

Multi-class classification

Classify data into one of the multiple categories

- Input (feature vectors): $\mathbf{x} \in \mathbb{R}^{D}$
- Output (label): $y \in [C] = \{1, 2, \dots, C\}$
- Learning goal: y = f(x)

Recall special case: binary classification

- Number of classes: C = 2
- Labels: $\{0,1\}$ or $\{-1,+1\}$

More terminology

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{\tiny TRAIN}} = \{(\pmb{x}_1, y_1), (\pmb{x}_2, y_2), \cdots, (\pmb{x}_N, y_N)\}$
- They are used for learning $f(\cdot)$.

More terminology

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used for learning $f(\cdot)$.

Test (evaluation) data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well $f(\cdot)$ will do in predicting an unseen $\mathbf{x} \notin \mathcal{D}^{\text{TRAIN}}$.

Training data and test data should *not* overlap: $\mathcal{D}^{\text{TRAIN}} \cap \mathcal{D}^{\text{TEST}} = \emptyset$

Nearest neighbor of a (training or test) data point

$$\mathbf{x}(1) = \mathbf{x}_{\mathsf{nn}(\mathbf{x})}$$

where $nn(x) \in [N] = \{1, 2, \dots, N\}$, i.e., the index to one of the training instances

Nearest neighbor of a (training or test) data point

$$x(1) = x_{nn(x)}$$

where $nn(x) \in [N] = \{1, 2, \dots, N\}$, i.e., the index to one of the training instances

$$\operatorname{nn}(\boldsymbol{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2^2 = \operatorname{argmin}_{n \in [\mathbb{N}]} \sum_{d=1}^{\mathsf{D}} (x_d - x_{nd})^2$$

Nearest neighbor of a (training or test) data point

$$\boldsymbol{x}(1) = \boldsymbol{x}_{\mathsf{nn}(\boldsymbol{x})}$$

where $nn(\mathbf{x}) \in [N] = \{1, 2, \cdots, N\}$, i.e., the index to one of the training instances

$$\operatorname{nn}(\boldsymbol{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2^2 = \operatorname{argmin}_{n \in [\mathbb{N}]} \sum_{d=1}^{D} (x_d - x_{nd})^2$$

Classification rule

$$y = f(\mathbf{x}) = y_{\mathsf{nn}(\mathbf{x})}$$

Nearest neighbor of a (training or test) data point

$$\boldsymbol{x}(1) = \boldsymbol{x}_{\mathsf{nn}(\boldsymbol{x})}$$

where $nn(x) \in [N] = \{1, 2, \dots, N\}$, i.e., the index to one of the training instances

$$\operatorname{nn}(\boldsymbol{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2^2 = \operatorname{argmin}_{n \in [\mathbb{N}]} \sum_{d=1}^{D} (x_d - x_{nd})^2$$

Classification rule

$$y = f(\mathbf{x}) = y_{\mathsf{nn}(\mathbf{x})}$$

Example: if nn(x) = 2, then

$$y_{\operatorname{nn}(x)} = y_2,$$

which is the label of the 2nd data point.

Visual example

In this 2-dimensional example, the nearest point to x is a red training instance, thus, x will be labeled as red.

Example: classify Iris with two features

Training data

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setosa
2	1.4	7.0	versicolor
3	2.5	6.7	virginica

Example: classify Iris with two features

Training data

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setosa
2	1.4	7.0	versicolor
3	2.5	6.7	virginica

Flower with unknown category

petal width = 1.8 and sepal length = 6.4

Example: classify Iris with two features

Training data

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setosa
2	1.4	7.0	versicolor
3	2.5	6.7	virginica

Flower with unknown category

petal width = 1.8 and sepal length = 6.4

Calculating distance from (x_1, x_2) to (x_{n1}, x_{n2}) : $(x_1 - x_{n1})^2 + (x_2 - x_{n2})^2$

ID	distance
1	4.25
2	0.52
3	0.58

Thus, the predicted category is 2 (versicolor)

How to measure "nearness" with other distances?

Previously, we used Euclidean distance

$$\mathsf{nn}(\boldsymbol{x}) = \mathsf{argmin}_{n \in [\mathbb{N}]} \, \|\boldsymbol{x} - \boldsymbol{x}_n\|_2^2$$

We can also use alternative distances

• E.g., the ℓ_1 distance (i.e., city block distance, or Manhattan distance):

$$\begin{aligned} & \mathsf{nn}(\boldsymbol{x}) = \mathsf{argmin}_{n \in [\mathsf{N}]} \, \| \boldsymbol{x} - \boldsymbol{x}_n \|_1 \\ &= \mathsf{argmin}_{n \in [\mathsf{N}]} \sum_{d=1}^{\mathsf{D}} |x_d - x_{nd}| \end{aligned}$$

$$\mathsf{nn}(\boldsymbol{x}) = \mathsf{argmin}_{n \in [\mathsf{N}]} \max_{d} |x_d - x_{nd}|$$

How to measure "nearness" with other distances?

Previously, we used Euclidean distance

$$\mathsf{nn}(\boldsymbol{x}) = \mathsf{argmin}_{n \in [\mathbb{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2^2$$

We can also use alternative distances

• E.g., the ℓ_1 distance (i.e., city block distance, or Manhattan distance):

$$\begin{aligned} &\mathsf{nn}(\boldsymbol{x}) = \mathsf{argmin}_{n \in [\mathsf{N}]} \, \|\boldsymbol{x} - \boldsymbol{x}_n\|_1 \\ &= \mathsf{argmin}_{n \in [\mathsf{N}]} \sum_{d=1}^{\mathsf{D}} |x_d - x_{nd}| \end{aligned}$$

 \bullet Or, the ℓ_{∞} (supremum) distance:

$$\mathsf{nn}(\boldsymbol{x}) = \mathsf{argmin}_{n \in [\mathsf{N}]} \max_{d} |x_d - x_{nd}|$$

Figure 2: Green line is Euclidean distance. Red, Blue, and Yellow lines are L_1 distance

Decision boundary

For every point in the space, we can determine its label using the NNC rule. This gives rise to a *decision boundary* that partitions the space into different regions.

Recall: Multi-class classification

Previously, we learned a multi-class classifier by combining binary, linear decision boundaries to partition the feature space.

Recall: Multi-class classification

Previously, we learned a multi-class classifier by combining binary, linear decision boundaries to partition the feature space. Nearest neighbors can *naturally* learn multiple decision boundaries depending on which points are closest to which class's training data.

Nearest neighbors for regression

Recall the nearest neighbor of a (training or test) data point:

$$\boldsymbol{x}(1) = \boldsymbol{x}_{\mathsf{nn}(\boldsymbol{x})}$$

where $nn(\textbf{\textit{x}}) \in [N] = \{1, 2, \cdots, N\}$ indexes a training instance

$$\operatorname{nn}(\boldsymbol{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2^2 = \operatorname{argmin}_{n \in [\mathbb{N}]} \sum_{d=1}^{D} (x_d - x_{nd})^2$$

Nearest neighbors for regression

Recall the nearest neighbor of a (training or test) data point:

$$x(1) = x_{\mathsf{nn}(x)}$$

where $\operatorname{nn}(\textbf{\textit{x}}) \in [\mathsf{N}] = \{1, 2, \cdots, \mathsf{N}\}$ indexes a training instance

$$\operatorname{nn}(\boldsymbol{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2^2 = \operatorname{argmin}_{n \in [\mathbb{N}]} \sum_{d=1}^{D} (x_d - x_{nd})^2$$

Regression rule

$$y = f(\mathbf{x}) = y_{\mathsf{nn}(\mathbf{x})}$$

Label **x** with the label of its nearest neighbor!

Parametric vs. Nonparametric, revisited

Nonparametric models instead assume that the model features depend on the data \mathcal{D} . The number of features tends to grow with the size of the dataset.

- Parametric models are often simpler and faster to learn, but can sometimes be a poor fit.
- Nonparametric models are more complex and expensive, but can learn more flexible patterns.

Parametric vs. Nonparametric, revisited

Nonparametric models instead assume that the model features depend on the data \mathcal{D} . The number of features tends to grow with the size of the dataset.

- Parametric models are often simpler and faster to learn, but can sometimes be a poor fit.
- Nonparametric models are more complex and expensive, but can learn more flexible patterns.

How does this manifest for nearest neighbors?

Nearest neighbors often learns a highly nonlinear decision boundary.

Parametric vs. Nonparametric, revisited

Nonparametric models instead assume that the model features depend on the data \mathcal{D} . The number of features tends to grow with the size of the dataset.

- Parametric models are often simpler and faster to learn, but can sometimes be a poor fit.
- Nonparametric models are more complex and expensive, but can learn more flexible patterns.

How does this manifest for nearest neighbors?

- Nearest neighbors often learns a highly nonlinear decision boundary.
- But, we need to compare the test data point to every sample in the training dataset.

Increase the number of nearest neighbors to use?

• 1-nearest neighbor: $\operatorname{nn}_1(x) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|x - x_n\|_2^2$

Increase the number of nearest neighbors to use?

- 1-nearest neighbor: $\operatorname{nn}_1(\mathbf{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\mathbf{x} \mathbf{x}_n\|_2^2$
- 2nd-nearest neighbor: $\operatorname{nn}_2(x) = \operatorname{argmin}_{n \in [\mathbb{N}] \operatorname{nn}_1(x)} \|x x_n\|_2^2$

Increase the number of nearest neighbors to use?

- 1-nearest neighbor: $\operatorname{nn}_1(\mathbf{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\mathbf{x} \mathbf{x}_n\|_2^2$
- 2nd-nearest neighbor: $\operatorname{nn}_2(x) = \operatorname{argmin}_{n \in [\mathbb{N}] \operatorname{nn}_1(x)} \|x x_n\|_2^2$
- 3rd-nearest neighbor: $\operatorname{nn}_2(\mathbf{x}) = \operatorname{argmin}_{n \in [\mathbb{N}] \operatorname{nn}_1(\mathbf{x}) \operatorname{nn}_2(\mathbf{x})} \|\mathbf{x} \mathbf{x}_n\|_2^2$

Increase the number of nearest neighbors to use?

- 1-nearest neighbor: $\operatorname{nn}_1(\mathbf{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\mathbf{x} \mathbf{x}_n\|_2^2$
- 2nd-nearest neighbor: $\operatorname{nn}_2(x) = \operatorname{argmin}_{n \in [\mathbb{N}] \operatorname{nn}_1(x)} \|x x_n\|_2^2$
- 3rd-nearest neighbor: $\operatorname{nn}_2(\mathbf{x}) = \operatorname{argmin}_{n \in [\mathbb{N}] \operatorname{nn}_1(\mathbf{x}) \operatorname{nn}_2(\mathbf{x})} \|\mathbf{x} \mathbf{x}_n\|_2^2$

Increase the number of nearest neighbors to use?

- 1-nearest neighbor: $\operatorname{nn}_1(\boldsymbol{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\boldsymbol{x} \boldsymbol{x}_n\|_2^2$
- 2nd-nearest neighbor: $\operatorname{nn}_2(x) = \operatorname{argmin}_{n \in [\mathbb{N}] \operatorname{nn}_1(x)} \|x x_n\|_2^2$
- 3rd-nearest neighbor: $\operatorname{nn}_2(\mathbf{x}) = \operatorname{argmin}_{n \in [\mathbb{N}] \operatorname{nn}_1(\mathbf{x}) \operatorname{nn}_2(\mathbf{x})} \|\mathbf{x} \mathbf{x}_n\|_2^2$

The set of K-nearest neighbors

$$\mathsf{knn}(\boldsymbol{x}) = \{\mathsf{nn}_1(\boldsymbol{x}), \mathsf{nn}_2(\boldsymbol{x}), \cdots, \mathsf{nn}_K(\boldsymbol{x})\}$$

Let
$$x(k) = x_{nn_k(x)}$$
, then

$$\|\mathbf{x} - \mathbf{x}(1)\|_{2}^{2} \leq \|\mathbf{x} - \mathbf{x}(2)\|_{2}^{2} \cdots \leq \|\mathbf{x} - \mathbf{x}(K)\|_{2}^{2}$$

Classification rule

• Every neighbor votes: suppose y_n (the true label) for x_n is c, then

Classification rule

- Every neighbor votes: suppose y_n (the true label) for x_n is c, then
 - vote for *c* is 1

Classification rule

- Every neighbor votes: suppose y_n (the true label) for x_n is c, then
 - vote for c is 1
 - vote for $c' \neq c$ is 0

Classification rule

- Every neighbor votes: suppose y_n (the true label) for x_n is c, then
 - vote for c is 1
 - vote for $c' \neq c$ is 0

Classification rule

- Every neighbor votes: suppose y_n (the true label) for x_n is c, then
 - vote for c is 1
 - vote for $c' \neq c$ is 0

We use the *indicator function* $\mathbb{I}(y_n == c)$ to represent the votes.

Aggregate everyone's vote

$$v_c = \sum_{n \in knn(x)} \mathbb{I}(y_n == c), \quad \forall \quad c \in [C]$$

Classification rule

- Every neighbor votes: suppose y_n (the true label) for x_n is c, then
 - vote for c is 1
 - vote for $c' \neq c$ is 0

We use the *indicator function* $\mathbb{I}(y_n == c)$ to represent the votes.

• Aggregate everyone's vote

$$v_c = \sum_{n \in knn(x)} \mathbb{I}(y_n == c), \quad \forall \quad c \in [C]$$

· Label with the majority, breaking ties arbitrarily

$$y = f(\mathbf{x}) = \operatorname{arg\,max}_{c \in [C]} v_c$$

How to choose an optimal K?

When K increases, the decision boundary becomes smooth.

• We need a way to aggregate labels from each of the neighbors.

- We need a way to aggregate labels from each of the neighbors.
- Average the labels associated with the K points.

$$\hat{y} = \frac{1}{K} \sum_{n \in knn(\mathbf{x})} y_n$$

- We need a way to aggregate labels from each of the neighbors.
- Average the labels associated with the K points.

$$\hat{y} = \frac{1}{K} \sum_{n \in knn(\mathbf{x})} y_n$$

- We need a way to aggregate labels from each of the neighbors.
- Average the labels associated with the K points.

$$\hat{y} = \frac{1}{K} \sum_{n \in knn(\mathbf{x})} y_n$$

Why use nearest neighbors?

Advantages of NNC

- Computationally, simple and easy to implement just compute distances, no optimization required
- Can learn complex decision boundaries

Why use nearest neighbors?

Advantages of NNC

- Computationally, simple and easy to implement just compute distances, no optimization required
- Can learn complex decision boundaries

Disadvantages of NNC

- Computationally intensive for large-scale problems: O(ND) for labeling a data point.
- We need to "carry" the training data around. Without it, we cannot do classification. This type of method is called *nonparametric*.
- Choosing the right distance measure and *K* can be difficult.

When should we not use nearest neighbors?

Relies on the existence of training data points "close" to test points.
 Choose your distance wisely!

- Relies on the existence of training data points "close" to test points.
 Choose your distance wisely!
- Can break down if the classes are unbalanced.

- Relies on the existence of training data points "close" to test points.
 Choose your distance wisely!
- Can break down if the classes are unbalanced.
- Can break down if we have irrelevant features. Solution–feature selection!

- Relies on the existence of training data points "close" to test points.
 Choose your distance wisely!
- Can break down if the classes are unbalanced.
- Can break down if we have irrelevant features. Solution–feature selection!
 - Essentially, we want to measure the "information" contributed by each feature.

- Relies on the existence of training data points "close" to test points.
 Choose your distance wisely!
- Can break down if the classes are unbalanced.
- Can break down if we have irrelevant features. Solution–feature selection!
 - Essentially, we want to measure the "information" contributed by each feature.
 - More on this in the next lecture on decision trees.

Practical Aspects of NN

Two crucial choices for NN

• Choosing K, i.e., the number of nearest neighbors (default is 1)

Two crucial choices for NN

- Choosing K, i.e., the number of nearest neighbors (default is 1)
- Choosing the right distance measure (default is Euclidean distance), for example, from the following generalized distance measure

$$\|\mathbf{x} - \mathbf{x}_n\|_p = \left(\sum_d |x_d - x_{nd}|^p\right)^{1/p}$$

for $p \ge 1$.

Two crucial choices for NN

- Choosing K, i.e., the number of nearest neighbors (default is 1)
- Choosing the right distance measure (default is Euclidean distance), for example, from the following generalized distance measure

$$\|\mathbf{x} - \mathbf{x}_n\|_p = \left(\sum_d |x_d - x_{nd}|^p\right)^{1/p}$$

for $p \ge 1$.

Two crucial choices for NN

- Choosing K, i.e., the number of nearest neighbors (default is 1)
- Choosing the right distance measure (default is Euclidean distance), for example, from the following generalized distance measure

$$\|\mathbf{x} - \mathbf{x}_n\|_p = \left(\sum_d |x_d - x_{nd}|^p\right)^{1/p}$$

for $p \ge 1$.

These are not specified by the algorithm itself — resolving them requires empirical studies and are task/dataset-specific.

Hyperparameter tuning on a validation dataset

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\}$
- ullet They are used for learning $f(\cdot)$

Hyperparameter tuning on a validation dataset

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used for learning $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well $f(\cdot)$ will do in predicting an unseen $\mathbf{x} \notin \mathcal{D}^{\text{TRAIN}}$

Hyperparameter tuning on a validation dataset

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used for learning $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well $f(\cdot)$ will do in predicting an unseen $\pmb{x} \notin \mathcal{D}^{\text{TRAIN}}$

Validation data

- L samples/instances: $\mathcal{D}^{\text{VAL}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyperparameter(s).

Training data, validation and test data should *not* overlap!

 For each possible value of the hyperparameter (say $K=1,3,\cdots,100$)

- For each possible value of the hyperparameter (say $K=1,3,\cdots,100$)
 - ullet Train a model using $\mathcal{D}^{\scriptscriptstyle \mathrm{TRAIN}}$ (we don't need this step for NNC)

- For each possible value of the hyperparameter (say $K=1,3,\cdots,100$)
 - ullet Train a model using $\mathcal{D}^{ ext{\tiny TRAIN}}$ (we don't need this step for NNC)
 - ullet Evaluate the performance of the model on $\mathcal{D}^{\scriptscriptstyle{\mathrm{VAL}}}$

- For each possible value of the hyperparameter (say $K = 1, 3, \dots, 100$)
 - ullet Train a model using $\mathcal{D}^{^{\mathrm{TRAIN}}}$ (we don't need this step for NNC)
 - ullet Evaluate the performance of the model on $\mathcal{D}^{\scriptscriptstyle{\mathrm{VAL}}}$
- ullet Choose the model with the best performance on $\mathcal{D}^{ ext{VAL}}$

- For each possible value of the hyperparameter (say $K = 1, 3, \dots, 100$)
 - ullet Train a model using $\mathcal{D}^{^{\mathrm{TRAIN}}}$ (we don't need this step for NNC)
 - ullet Evaluate the performance of the model on $\mathcal{D}^{\scriptscriptstyle{\mathrm{VAL}}}$
- ullet Choose the model with the best performance on $\mathcal{D}^{ ext{VAL}}$
- ullet Evaluate the model on $\mathcal{D}^{ ext{TEST}}$

Cross-validation

What if we do not have validation data?

- We split the training data into S equal parts.
- We use each part in turn as a validation dataset and use the others as a training dataset.
- We choose the hyperparameter such that the model performs the best (based on average, variance, etc.)
- We re-train the model on the full training dataset with the best hyperparameter.

Figure 3: S = 5: 5-fold cross validation

Cross-validation

What if we do not have validation data?

- We split the training data into S equal parts.
- We use each part in turn as a validation dataset and use the others as a training dataset.
- We choose the hyperparameter such that the model performs the best (based on average, variance, etc.)
- We re-train the model on the full training dataset with the best hyperparameter.

Figure 3: S = 5: 5-fold cross validation

Special case: when S = N, this will be leave-one-out.

But how do we choose the distances?

Distances depend on units of the features!

Preprocess data

Normalize data to have zero mean and unit standard deviation in each dimension

• Compute the means and standard deviations in each feature

$$\bar{x}_d = \frac{1}{N} \sum_n x_{nd}, \qquad s_d^2 = \frac{1}{N-1} \sum_n (x_{nd} - \bar{x}_d)^2$$

• Scale the feature accordingly

$$x_{nd} \leftarrow \frac{x_{nd} - \bar{x}_d}{s_d}$$

Preprocess data

Normalize data to have zero mean and unit standard deviation in each dimension

• Compute the means and standard deviations in each feature

$$\bar{x}_d = \frac{1}{N} \sum_n x_{nd}, \qquad s_d^2 = \frac{1}{N-1} \sum_n (x_{nd} - \bar{x}_d)^2$$

Scale the feature accordingly

$$x_{nd} \leftarrow \frac{x_{nd} - \bar{x}_d}{s_d}$$

Many other ways of normalizing data — you would need/want to try different ones and pick among them using (cross) validation

Summary so far

- Described a simple nonparametric learning algorithm
- Discussed a few practical aspects, such as tuning hyperparameters, with cross-validation

Good luck on the midterm! Please come to office hours and/or the recitation with questions.