Mathematics 1A HSLU, Semester 1

Matteo Frongillo

September 23, 2024

Contents

Ι	Week 1	3							
1	The set theory 1.1 Definition of a set	3 3 3 3 3 3 4							
2	Intervals in the real line 4								
	2.1 Examples 2.1.1 Interval sets 2.1.2 Graphical examples	4							
3	The extended line 5								
	3.1 Properties	5 5 5							
4	Intervals including $\pm\infty$								
-	4.1 Examples	6 6							
5	Propositional logic 6								
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6 7 7							
6	Union ∪ and Intersection ∩								
	6.1 Universe symbol	7 7							

		6.2.4	Difference between sets \setminus	9
		6.2.5	Symmetrical difference \triangle	
		6.2.6	Disjoined sets (Empty sets) \emptyset	10
7	The	absolı	ite value function	10
			of absolute value functions	10
			ties	
			ular inequalities	
Π	W	eek 2	1	2
8	Cond	cept o	f functions	12
	8.1	Image	(Range)	12
9	Linea	ar fun	ction	13
	9.1	Cartes	ian diagram	13
			nt line	
		_		
		Slope-1	ntercept equation	13
			ntercept equation	
		9.3.1	Slope	13
		9.3.1 9.3.2		13 13
10	9.4	9.3.1 9.3.2 Vertica	Slope	13 13

Part I

Week 1

1 The set theory

1.1 Definition of a set

A set is a collection of objects or elements.

Remark: The collection of all sets is not a set.

1.2 Logical symbols

1.2.1 Definition

Braces and the definition symbol ":=" are used to define a set giving all its elements:

$$A := \{a, b, c, d, e\}$$

1.2.2 Equal

In this case, the equal symbol means that the set A is equal to the set B:

$$A = B$$

1.2.3 Belongs to

The symbols \in and \ni describe an element which is part of the set:

$$a \in A \Longleftrightarrow A \ni a$$

1.2.4 Does not belong to

The symbols \notin mean that an element does not belong to the set:

$$f \notin A$$

1.2.5 Inclusion and contains

The symbols \subset and \supset mean that a set has another set included in its set:

$$\mathbb{N} \subset \mathbb{Z} \Longleftrightarrow \mathbb{Z} \supset \mathbb{N}$$

1.2.6 For all/any

The symbol \forall means that we are considering any type of element:

$$\forall x \in \mathbb{R}, \ x > 0$$

In this case, we've defined a new set.

1.3 Numerical sets

- $\mathbb{N} := \text{Natural numbers (including 0)};$
- $\mathbb{Z} := \text{Integer numbers};$
- $\mathbb{Q} := \text{Rational numbers};$
- $\mathbb{R} := \text{Real numbers} := \mathbb{Q} \cup \{ \text{irrational numbers} \}$.

Notation: The "*" symbol means that the set does not include 0.

1.3.1 Inclusion of sets

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

$$\begin{split} B &:= \{\pi, 1, -1, 0\}\,;\\ C &:= \{\pi, 1\}\,;\\ D &:= \{\pi\}\,. \end{split}$$

Then we write some examples: $\pi \in B$, $D \subset B$, $C \subset B$, $B \not\subset C$, $0 \in B$, $0 \notin C$.

2 Intervals in the real line

Intervals describe what happens between two or more elements.

2.1 Examples

2.1.1 Interval sets

We have 4 cases:

- $(a,b) = \{ \forall x \in \mathbb{R} \mid a < x < b \};$
- $[a,b) = {\forall x \in \mathbb{R} \mid a \le x < b};$
- $(a,b] = \{ \forall x \in \mathbb{R} \mid a < x \le b \};$
- $[a,b] = \{ \forall x \in \mathbb{R} \mid a \le x \le b \}.$

Notation: a and b are often called the "end points" of the interval;

2.1.2 Graphical examples

$$\forall x \in \mathbb{R}, \ x \in [a, b]$$

3 The extended line

In the real line \mathbb{R} we add $\pm \infty$.

Real line: $(-\infty, +\infty) = \mathbb{R}$

Extended real line: $[-\infty, +\infty] = \overline{\mathbb{R}}$

 $\underline{Remark}\colon \pm\infty\notin\mathbb{R}$

3.1 Properties

$$\boxed{\forall x \in \mathbb{R} \mid \infty > x \mid -\infty < 0}$$

3.2 Operation in the extended line

If $a, b \in \mathbb{R}$, then a + b, a - b, $a \cdot b$, $\frac{a}{b}$ (with $b \neq 0$) stay the same

3.2.1 Additions

Let $\forall a \in \mathbb{R}$:

- $a + \infty := \infty$;
- $a-\infty:=-\infty$;
- $+\infty + \infty := +\infty$;
- $-\infty \infty := -\infty$;
- $+\infty \infty :=$ undefined.

3.2.2 Moltiplications

Let $\forall a \in \mathbb{R}$:

- $+\infty \cdot +\infty := +\infty;$
- $-\infty \cdot +\infty := -\infty;$
- $-\infty \cdot (-\infty) := \infty;$

•
$$a \cdot \infty := \begin{cases} a > 0 & +\infty \\ a < 0 & -\infty \\ a = 0 & \text{undefined} \end{cases}$$

•
$$a \cdot (-\infty) := \begin{cases} a > 0 & -\infty \\ a < 0 & +\infty \\ a = 0 & \text{undefined} \end{cases}$$

•
$$\frac{a}{+\infty} = \frac{a}{-\infty} := 0;$$

$$\bullet \quad \frac{+\infty}{a} := \begin{cases} a > 0 & +\infty \\ a < 0 & -\infty \\ a = 0 & +\infty \end{cases}$$

$$\bullet \quad \frac{-\infty}{a} := \begin{cases} a > 0 & -\infty \\ a < 0 & +\infty \\ a = 0 & -\infty \end{cases}$$

•
$$\frac{\infty}{\infty}$$
 := undefined.

4 Intervals including $\pm \infty$

Intervals describe what happens between two or more elements, including $\pm \infty$.

4.1 Examples

4.1.1 Interval sets

Let $a \in \mathbb{R}$, then:

- $(-\infty, a) = \{ \forall x \in \mathbb{R} \mid x < a \};$
- $(a, +\infty) = \{ \forall x \in \mathbb{R} \mid x > a \};$
- $(-\infty, a] = \{ \forall x \in \mathbb{R} \mid x \le a \};$
- $[a, +\infty] = \{ \forall x \in \mathbb{R} \mid x \ge a \};$
- $(-\infty, +\infty) = \mathbb{R};$
- $[-\infty, +\infty] = \overline{\mathbb{R}}$.

4.1.2 Graphical examples

 $\forall x \in \mathbb{R}, \ x \in [a, b] \cup [c, +\infty[$

<u>Notation</u>: The union of two or more intervals where $x \in \mathbb{R}$ is denoted by the symbol \cup .

5 Propositional logic

Propositional logic is a branch of mathematics that deals with propositions and logical operations.

5.1 Logical connectives

A	В	$\neg B$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Т	Т	F	Т	Т	Т	Т
Т	F	Т	F	Т	F	F
F	Т	F	F	Т	Т	F
F	F	Т	F	F	Т	Т

5.1.1 Logical conjunction \wedge

Given two statements P and Q, $P \wedge Q$ is true if both P and Q are true.

Let
$$P = (x > 0)$$
 and $Q = (y > 0)$, then:

$$P \land Q = (x > 0 \land y > 0)$$

5.1.2 Logical disjunction \lor

Given two statements P and Q, $P \vee Q$ is true if at least one of P or Q is true.

Let
$$P = (x = 0)$$
 and $Q = (y \neq 0)$, then:

$$P \lor Q = (x = 0 \lor y \neq 0)$$

6

5.1.3 Logical negation \neg

The negation of a statement P, denoted as $\neg P$, is true if P is false, and false if P is true.

Let $P = (x \ge 5)$, then:

$$\neg P = (x < 5)$$

5.1.4 Implication \Rightarrow

The symbol \Rightarrow indicates that if statement P is true, then statement Q must also be true (i.e., P implies Q). Warning: It does not require that Q implies P.

$$P = (x = 1) \Rightarrow Q = (x \in \mathbb{N})$$

5.1.5 Inference \Leftarrow

The symbol \Leftarrow means that a conclusion or result implies the truth of an earlier statement. If Q is true, then P must be true.

$$Q = (x > 0) \Leftarrow P = (x \in \mathbb{R}^+)$$

5.1.6 If and only if \Leftrightarrow

The symbol \Leftrightarrow indicates that two statements P and Q are logically equivalent, meaning P is true if and only if Q is true.

$$P = (x \in \mathbb{N}, \ x \neq 0) \Longleftrightarrow Q = (x \in \mathbb{N}^*)$$

6 Union \cup and Intersection \cap

6.1 Universe symbol

The symbol \bigcup := Universe describes a big set which contains all sets involved in our discussions (not always).

 $A \cup U = \{ \forall x \in \bigcup \mid x \in A \lor x \in B \}$

6.2 Venn diagram

6.2.1 Union $A \cup B$

If A and B are sets, then their union is:

$$\bigcup_{A \cup B}$$

6.2.2 Intersection $A \cap B$

If A and B are sets, then their intersection is:

$$A \cap B = \{ \forall x \in \bigcup \mid x \in A \land x \in B \}$$

6.2.3 Complement \bar{A}

If A is a set, its complement is:

$$|\bar{A} = \{ \forall x \in \bigcup | x \notin A \}|$$

6.2.4 Difference between sets \setminus

If A and B are sets, then their difference is:

$$A \setminus B = \{ \forall x \in \bigcup \mid x \in A, \ x \notin B \}$$

6.2.5 Symmetrical difference \triangle

If A and B are sets, then their symmetrical difference is:

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

6.2.6 Disjoined sets (Empty sets) \emptyset

 $\emptyset :=$ the set containing zero elements:

$$A \cap B = \emptyset$$

7 The absolute value function

The absolute value is an operator that returns the positive value of a number, regardless of its original sign. Let $x \in \mathbb{R}$, then:

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ x & \text{if } -x < 0 \end{cases}$$

7.1 Graph of absolute value functions

Let's plot the function y = |x|:

7.2 Properties

Let $a, b \in \mathbb{R}$, then:

- $|a \cdot b| = |a| \cdot |b|$;
- $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$ for $b \neq 0$;
- $|a \pm b| \neq |a| \pm |b|$.

7.3 Triangular inequalities

Let $a, b \in \mathbb{R}$, then:

$$|a|+|b| \ge |a+b|$$

$$|a|-|b| \le |a-b|$$

Part II

Week 2

8 Concept of functions

Let's take any two sets $A\{a, b, c, d, e, f, g\}$ and $B\{a_1, b_1, c_1, d_1, e_1, f_1, g_1\}$.

$$f: A \to B$$
$$a \longmapsto f(a)$$

A function is a relation between the sets A and B, according to which we associate to each element of A one and only one element of B:

Notation: $f(a) = b_1$, $f(b) = a_1$, $f(c) = c_1$, $f(d) = d_1$, ...

Each point in set A is associated with one element of B. However, it is possible for more than two elements of A to point to the same element of B.

The set A is called domain of f. The set B is called the *codomain* of f.

8.1 Image (Range)

Let $f: X \to Y$ be a function. The image of f is defined as:

$$\boxed{\operatorname{Im}(f) = \{ y \in Y \mid y = f(x), \ x \in X \}}$$

Easily, the image is the set containing all the elements of the set B associated with the elements of the set A.

9 Linear function

9.1 Cartesian diagram

9.2 Straight line

Let A and B be any two distinct points, then there is one and only one line passing through A and B.

9.3 Slope-intercept equation

Let $m, q \in \mathbb{R}$, then

$$y = mx + q$$

- *m*: slope;
- q: vertical intercept.

9.3.1 Slope

The slope of a line can be calculated with the equation

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{\Delta y}{\Delta x} = \tan(\theta)$$

We have three different slope outcomes:

- m > 0, the line is increasing;
- m = 0, the line is stable;
- m < 0, the line is decreasing.

Warning: This works only if $x_B \neq x_A$.

9.3.2 Drawing

9.4 Vertical lines

The more the value of m increases, the closer the line will get to the vertical, without ever reaching it.

Let $c \in \mathbb{R}$, then x = c.

Vertical lines cannot be written as a function.

10 Equation of a line

Let $m, x_A, y_A \in \mathbb{R}$ and $A(x_A, y_A)$, then

$$y - y_A = m(x - x_A)$$

e.g.: Find the line with m = -1 and A(2, -1).

$$y - 1 = -1(x + 2) \Rightarrow y = -x + 1$$

Points: A(2,-1); B(0,1)

10.1 General equation in a cartesian diagram

$$ax + by + c = 0$$

Remark:

- All the lines can be described with this kind of equation;
- When b = 0, $a \neq 0$, then $ax = -c \Rightarrow x = \frac{-c}{a} \in \mathbb{R}$;
- When $b \neq 0$, then $y = -\frac{a}{b}x \frac{c}{b}$, where $m = -\frac{a}{b}$ and $q = -\frac{c}{b}$.