

تاریخ برگزاری ۱۵ تیر ۱۴۰۱ زمان ۱۵۰ دقیقه

۱. سیستم شکل ۱ را در نظر بگیرید که در آن

$$G(s) = \frac{-ae^{-4s}}{s+a}$$

و مقدار عددی پارامتر a برابر با $-\frac{1}{4}\ln(3)$ است.

شکل ۱: بلوک دیاگرام یک سیسنم کنترلی

با در نظر گرفتن دوره نمونه برداری T=4 سیستم زمان گسسته آن به صورت شکل ۲ در می آید که در آن

$$G(z) = \frac{2z^{-2}}{1 - 3z^{-1}}$$

ست.

- رآ) با استفاده از مکان هندسی ریشه ها بررسی کنید که آیا کنترل کننده تناسبی (یعنی $G_D(z)=K$) می تواند سیستم حلقه بسته را پایدار کند؟
- $(G_D(z) = \frac{K}{1-z^{-1}}$ با استفاده از مکان هندسی ریشه ها بررسی کنید که آیا یک کنترل کننده انتگرالی (یعنی شدسی ریشه ها بررسی کنید؟ میتواند سیستم حلقه بسته را پایدار کند؟
- (ج) محل صفرها و قطبهای ساده ترین کنترل کنندهای که می تواند سیستم حلقه بسته را پایدار و خطای حالت ماندگار به ورودی پله را صفر کند (به صورت تقریبی در صفحه z) مشخص کنید.

شكل ٢: بلوك دياگرام معادل زمان گسسته شكل ١

۲. سیستم شکل ۱ که در آن

$$G(s) = \frac{-a}{s+a}$$

است را در نظر بگیرید. مقدار عددی پارامتر a برابر با $\ln(3)$ و دوره نمونه برداری T=4 فرض می شود. کنترلکنندهای طراحی کنید که برای ورودی پله در کمترین زمان ممکن به پاسخ نهایی برسد، خطای حالت ماندگار صفر باشد و بین لحظات نمونه برداری در خروجی موجکی دیده نشود(کنترل کننده مرده نوش طراحی کنید).

۳. سیستم توصیف شده در فضای حالت به صورت

$$x[k+1] = Gx[k] + Hu[k],$$

$$y[k] = Cx[x] + Du[k]$$

که در آن

$$G = \begin{bmatrix} 0 & 1 \\ a & b \end{bmatrix}, \quad H = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} c_1 & c_2 \end{bmatrix}, \quad D = 0$$

را در نظر بگیرید.

رسید؟
$$x[2] = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 به $x[0] = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ رسید (آ) برای چه مقادیری از پارامترهای a و b میتوان از شرایط اولیهی

(ب) برای
$$a=b=0$$
 در صورت امکان $[0]$ و $[1]$ را بیابید که بتوان از شرایط اولیهی $a=b=0$ به $x[0]=[0]$ به $x[2]=[0]$ رسید.

(ج) آیا نقطه ی $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ در فضای حالت، می تواند یک نقطه تعادل برای سیستم حلقه بسته باشد؟ اگر جواب مثبت است کنترل کننده ی فیدبک حالتی پیشنهاد دهید که نقطه مدنظر، نقطه تعادل سیستم حلقه بسته باشد، در غیر این صورت دلیل آن را بیان کنید.

۴. سیستم توصیف شده در فضای حالت به صورت

$$x[k+1] = Gx[k] + Hu[k],$$

$$y[k] = Cx[x] + Du[k]$$

که در آن

$$G = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & 0 & 0 \end{bmatrix}, \quad H = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} c_2 & c_1 & c_0 \end{bmatrix}, \quad D = 0$$

را در نظر بگیرید.

- (آ) تابع تبدیل پالسی سیستم را به دست آورید.
- $\frac{1}{2}$ و 0 ، $-\frac{1}{2}$ را به نحوی طراحی کنید که مقادیر ویژه ی سیستم حلقه بسته در u=-Kx قرار گیرد.
- (ج) فیدبک حالت u = -Kx را به نحوی طراحی کنید که حالتهای سیستم حلقه بسته از هر حالت اولیهای پس از u گام به مبدا برسد و در آن مستقر شود (کنترل کننده مرده نوش).