Lab4-1 Report

Student: 311511010, 310581019, 311505023

- Explanation of your firmware code
 - How does it execute a multiplication in assembly code 根據 firmware code 轉換後的 RISC-V assembly code "counter_la_fir.out",其中定義了 fir 的乘法函數如下:

```
38000000 < mulsi3>:
38000000: 00050613
                                  a2, a0
38000004: 00000513
                              li
                                  a0,0
38000008: 0015f693
                              andi a3,a1,1
3800000c: 00068463
                              beqz a3,38000014 < mulsi3+0x14>
38000010: 00c50533
                              add a0,a0,a2
38000014: 0015d593
                              srli a1,a1,0x1
38000018: 00161613
                              slli
                                    a2,a2,0x1
3800001c: fe0596e3
                                    a1,38000008 < mulsi3+0x8>
                              bnez
38000020: 00008067
```

其中 a1 是乘數, a2 是被乘數,以迴圈方法每次將 a1 右移、a2 左移, 直到 a1 為 0,過程中累加結果位於 a0。

What address allocate for user project and how many space is required to allocate to firmware code

根據 sections.lds 中 MEMORY 之定義:

flash : ORIGIN = 0x100000000, LENGTH = 0x010000000

mprj : ORIGIN = 0x30000000, LENGTH = 0x001000000

mprjram : ORIGIN = 0x38000000, LENGTH = 0x00400000

user-project 地址為 0x30000000~0x30100000, 以及

0x38000000~0x38400000

firmware code 可用地址為 0x10000000~0x11000000, 共 10MB

- Interface between BRAM and wishbone
 - Waveform from xsim

■ FSM

- Synthesis report

■ BRAM

2. Memory					
			Prohibited	•	++ Util%
Block RAM Tile RAMB36/FIFO* RAMB36E1 only RAMB18	1 1 1 0	0 0 0	0 0 0	140 140 280	0.71 0.71 0.71 0.00

Primitives

7. Primitives					
+	H	++ Functional Category			
+	03Eu 				
OBUF	176	10			
IBUF	67	10			
OBUFT	64	10			
LUT2	20	LUT			
FDRE	17	Flop & Latch			
LUT4	8	LUT			
CARRY4	4	CarryLogic			
LUT6	3	[Ιυτ			
LUT3	2	LUT			
RAMB36E1	1	Block Memory			
LUT5	1	LUT			
+	+	+			