

Workshop 8

COMP90051 Statistical Machine Learning Semester 2, 2024

Learning Outcomes

By the end of this workshop you should be able to:

- 1. Be able to define and fit models in PyTorch
- 2. Be able to explain the architecture of a basic convolutional neural network
- 3. Be able to implement autoencoder

Convolutional neural nets

- Convolutional layers
 - Complex input representations based on convolution operation
 - Filter weights are learned from training data
- Downsampling, usually via Max Pooling
 - * Re-scales to smaller resolution, limits parameter explosion
- Fully connected parts and output layer
 - * Merges representations together

Convolutional in 2D

 Use kernel to perform element-wise multiplication and sum for every local patch

Convolutional in 2D

 Use kernel to perform element-wise multiplication and sum for every local patch

Max Pooling in 2D

 Use kernel to perform element-wise multiplication and sum for every local patch

Max Pooling in 2D

Use kernel to perform element-wise multiplication

Convolutional neural nets

- Local connectivity pattern between adjacent layers
- Shared weights—filters are replicated across the spatial dimensions of the input

