PREDICTION MODEL 1

February 13, 2025

```
[1]: # Import necessary libraries
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.model selection import train test split
     from sklearn.preprocessing import StandardScaler
     from sklearn.linear_model import LogisticRegression, Lasso
     from sklearn.tree import DecisionTreeClassifier, plot_tree
     from sklearn.metrics import (
         classification_report, confusion_matrix, roc_auc_score, accuracy_score,
         precision_score, recall_score, f1_score, roc_curve
     from sklearn.decomposition import PCA
     from sklearn.ensemble import VotingClassifier
     from imblearn.over_sampling import SMOTE
     import tensorflow as tf
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Dense
     # 1. Load the dataset
     print("Loading dataset...")
     df = pd.read csv('diabetes.csv')
     print("\nDataset successfully loaded!")
     # 2. Data Exploration
     print("\nDataset Overview:")
     print(df.head())
     print("\nMissing Values:")
     print(df.isnull().sum())
     print("\nStatistical Summary:")
     print(df.describe())
     # Correlation heatmap
     plt.figure(figsize=(10, 6))
     sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt='.2f')
     plt.title('Correlation Heatmap')
```

```
plt.show()
# Histograms for feature distributions
df.hist(figsize=(12, 10), bins=20, edgecolor='black')
plt.suptitle('Feature Distributions')
plt.show()
# Boxplots for key features
plt.figure(figsize=(10, 6))
sns.boxplot(data=df[['Glucose', 'BMI', 'Insulin']])
plt.title('Boxplot of Key Features')
plt.show()
# 3. Data Preprocessing
# Handling missing values
print("\nHandling missing values...")
df.fillna(df.mean(), inplace=True)
print("Missing values handled.\n")
# Splitting features and target
X = df.drop('Outcome', axis=1)
y = df['Outcome']
# Normalizing data
print("Normalizing data...")
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Addressing class imbalance using SMOTE
print("Addressing class imbalance using SMOTE...")
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_scaled, y)
print("Class imbalance addressed.\n")
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(
    X_resampled, y_resampled, test_size=0.3, random_state=42
# 4. Dimensionality Reduction with PCA
print("Applying PCA...")
pca = PCA(n_components=2)
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)
# Visualizing PCA
plt.figure(figsize=(8, 6))
```

```
plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=y_train, cmap='coolwarm',_u
 \hookrightarrowedgecolors='k', alpha=0.7)
plt.title('PCA Visualization of Training Data')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.colorbar(label='Outcome')
plt.show()
print(f'Explained Variance Ratio by PCA Components: {pca.
 ⇔explained_variance_ratio_}\n')
# 5. Logistic Regression Model
print("Training Logistic Regression model...")
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
y_pred_log_reg = log_reg.predict(X_test)
print("\nLogistic Regression Metrics:")
print(f"Accuracy: {accuracy_score(y_test, y_pred_log_reg)}")
print(f"Precision: {precision_score(y_test, y_pred_log_reg)}")
print(f"Recall: {recall_score(y_test, y_pred_log_reg)}")
print(f"F1 Score: {f1_score(y_test, y_pred_log_reg)}")
print(f"ROC-AUC: {roc_auc_score(y_test, log_reg.predict_proba(X_test)[:, 1])}")
print(confusion_matrix(y_test, y_pred_log_reg))
# 6. Decision Tree Model
print("\nTraining Decision Tree model...")
dt = DecisionTreeClassifier(max depth=5, min samples split=5)
dt.fit(X_train, y_train)
y_pred_dt = dt.predict(X_test)
print("\nDecision Tree Metrics:")
print(f"Accuracy: {accuracy_score(y_test, y_pred_dt)}")
print(f"Precision: {precision_score(y_test, y_pred_dt)}")
print(f"Recall: {recall_score(y_test, y_pred_dt)}")
print(f"F1 Score: {f1_score(y_test, y_pred_dt)}")
print(f"ROC-AUC: {roc_auc_score(y_test, dt.predict_proba(X_test)[:, 1])}")
print(confusion_matrix(y_test, y_pred_dt))
# Visualizing the Decision Tree
plt.figure(figsize=(12, 8))
plot_tree(dt, filled=True, feature_names=df.columns[:-1],__
 ⇔class_names=['Non-diabetic', 'Diabetic'], rounded=True)
plt.title('Decision Tree Visualization')
plt.show()
# 7. Neural Network Model
print("\nTraining Neural Network model...")
```

```
model = Sequential([
    Dense(16, input_dim=X_train.shape[1], activation='relu'),
    Dense(8, activation='relu'),
    Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy',_
 →metrics=['accuracy'])
history = model.fit(X train, y train, epochs=50, batch size=10,,,
 →validation_data=(X_test, y_test), verbose=0)
# Neural Network Evaluation
nn accuracy = model.evaluate(X test, y test, verbose=0)[1]
print(f"\nNeural Network Accuracy: {nn_accuracy}\n")
# 8. Ensemble Model: Voting Classifier
print("\nTraining Voting Classifier...")
voting_clf = VotingClassifier(estimators=[('log_reg', log_reg), ('dt', dt)],__
 ⇔voting='soft')
voting_clf.fit(X_train, y_train)
y_pred_voting = voting_clf.predict(X_test)
print("\nVoting Classifier Metrics:")
print(f"Accuracy: {accuracy score(y test, y pred voting)}")
print(f"ROC-AUC: {roc_auc_score(y_test, voting_clf.predict_proba(X_test)[:,__
 →1])}")
print(classification_report(y_test, y_pred_voting))
# 9. Feature Importance Using Lasso Regularization
print("\nApplying Lasso Regularization...")
lasso = Lasso(alpha=0.1)
lasso.fit(X_train, y_train)
lasso_coefficients = pd.Series(lasso.coef_, index=df.columns[:-1])
# Plot Lasso coefficients
plt.figure(figsize=(10, 6))
lasso_coefficients.plot(kind='bar', color='skyblue')
plt.title('Lasso Regularization Feature Importance')
plt.ylabel('Coefficient Value')
plt.show()
# 10. Insights and Conclusions
print("\nKey Insights:")
print("1. Logistic Regression and Decision Tree models highlight Glucose, BMI, u
 ⇔and Insulin as key predictors.")
print("2. PCA visualization shows good separability between diabetic and
 ⇔non-diabetic classes.")
```

```
print("3. Ensemble models provide improved accuracy and robustness.")
print("4. Lasso Regularization identifies the most important features for

diabetes prediction.")
print("\nAnalysis complete!")
```

Loading dataset...

Dataset successfully loaded!

Dataset Overview:

	Pregnancies	Glucose	${ t BloodPressure}$	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1

Missing Values:

Pregnancies	0
Glucose	0
BloodPressure	0
SkinThickness	0
Insulin	0
BMI	0
DiabetesPedigreeFunction	0
Age	0
Outcome	0

dtype: int64

Statistical Summary:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	\
count	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	
std	3.369578	31.972618	19.355807	15.952218	115.244002	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	

BMI DiabetesPedigreeFunction Age Outcome

count	768.000000	768.000000	768.000000	768.000000
mean	31.992578	0.471876	33.240885	0.348958
std	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.078000	21.000000	0.000000
25%	27.300000	0.243750	24.000000	0.000000
50%	32.000000	0.372500	29.000000	0.000000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

Feature Distributions

Handling missing values... Missing values handled.

Normalizing data... Addressing class imbalance using SMOTE... Class imbalance addressed.

Applying PCA...

Explained Variance Ratio by PCA Components: [0.26889982 0.21347626]

Training Logistic Regression model...

F1 Score: 0.75

ROC-AUC: 0.8327036757189209

[[115 34] [40 111]]

Training Decision Tree model...

Decision Tree Metrics:

Accuracy: 0.736666666666667 Precision: 0.711764705882353 Recall: 0.8013245033112583 F1 Score: 0.7538940809968847 ROC-AUC: 0.804080181341393

[[100 49] [30 121]]

Decision Tree Visualization

Training Neural Network model...

/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Neural Network Accuracy: 0.7633333206176758

Training Voting Classifier...

Voting Classifier Metrics: Accuracy: 0.746666666666667 ROC-AUC: 0.8447931019156407

precision recall f1-score support

0	0.75	0.73	0.74	149
1	0.74	0.76	0.75	151
accuracy			0.75	300
macro avg	0.75	0.75	0.75	300
weighted avg	0.75	0.75	0.75	300

Applying Lasso Regularization...

Key Insights:

- 1. Logistic Regression and Decision Tree models highlight Glucose, ${\tt BMI},$ and Insulin as key predictors.
- 2. PCA visualization shows good separability between diabetic and non-diabetic classes.
- 3. Ensemble models provide improved accuracy and robustness.
- 4. Lasso Regularization identifies the most important features for diabetes

prediction.

Analysis complete!