

3D Vision and Machine Perception

Prof. Kyungdon Joo

3D Vision & Robotics Lab.

Al Graduate School (AIGS) & Computer Science and Engineering (CSE)

This lecture is jointly developed with **Kyungdon Joo (UNIST)** and **Tae-Hyun Oh (POSTECH)**. Some materials, figures, and slides (used for this course) are from textbooks, published papers, and other open lectures

Logistics

- Instructor: Kyungdon Joo (kyungdon@unist.ac.kr)
 - Office: #801-10, E106 (제3공학관 106동 801-10호)
 - Office hours: Monday/Wednesday, 2:30-4:00 PM (send an email to avoid conflicts)

TA: Three TAs

- Dongjun Gu (구동준; <u>djku1020@unist.ac.kr</u>)
- Junsu Kim (김준수; joonsu0109@unist.ac.kr)
- Hyungyu Park (박현규; hyungyu@unist.ac.kr)

Course page

- Main platform: Blackboard
- Lecture material, program assignments, announcements, etc.

- Classroom: 106-T201
 - Unless mentioned, this lecture will be an offline lecture

• Class hours:

Monday & Wednesday 1:00 PM~2:15 PM

No exam:

• The mid-term/final exam will be replaced with the PAs and projects

Grading

• Attendance (5%) + PAs (50%) + Final project with a presentation (45%)

PAs and Projects

- Submitted reports should be compiled in a PDF format from the CVPR latex template
 - https://github.com/cvpr-org/author-kit/releases/tag/CVPR2024-v2
 - Author Guidelines > Paper formatting (using overleaf)
 - If this does not hold, your report may not be graded at all
- All the PAs and projects will be conducted in Python
 - Even if PAs are not related to deep learning,
 it is required to use PyTorch as a matrix computation library.

Late policy

- A late PA (or project) will be penalized by 30% for each day
- ONE ticket for PA (NOT final project)— A ticket allows a one-day delay

Policy

- All the PAs will be done SOLO / A term project will be done by a TEAM
- Please do not leave any code public on GitHub (or the like) at the end of the semester!
- We reserve the right to run an automated code copying service on submitted code

Warning! One-strike Out policy

- Please comply with the academic honor code
- Be honest

• Target: Graduate students in AIGS and Dept. of CSE, but proficient in Python

Prerequisites

- I assume that you know
- Linear algebra
- Calculus
- Probability & statistics or probability theory
- Programming (Python)
- Signal processing, digital signal processing
- Machine learning & deep learning

Course overview (tentative)

NO lecture on holidays

Week	Topic
1	Intro
2	Imaging Pipeline
3	Feature and Matching
4	Image Transform
5	Camera Models
6	Camera Models II
7	Epipolar Geometry
8	Project Proposal
9	Stereo Systems
10	Dense Correspondence
11	Structure from Motion
12	Multi-view Stereo
13	3D Scene Understanding
14	Guest Lecture
15	Final Project Presentation I
16	Final Project Presentation II

Textbook

- Multiple View Geometry in Computer Vision
 Hartley and Zisserman, Cambridge University Press
- Computer Vision: Algorithms and Applications, 2nd ed.
 R. Szeliski, Springer (online draft: https://szeliski.org/Book)
- Machine Learning: A Probabilistic Perspective Murphy, MIT Press
- Pattern Recognition and Machine Learning Bishop, Springer

Or ask keywords (you are interested in) to Google God! (or chatGPT...?)

What is "Perception"?

• It's (input, output) data

- It's (input, output) data
- As humans grow, we learn the world by interacting with it

- It's (input, output) data
- As humans grow, we learn the world by interacting with it
- Gather informative signal from multi-modal association like human

- It's (input, output) data
- As humans grow, we learn the world by interacting with it
- Gather informative signal from multi-modal association like human

- It's (input, output) data
- As humans grow, we learn the world by interacting with it
- Gather informative signal from multi-modal association like human

- It's (input, output) data
- As humans grow, we learn the world by interacting with it
- Gather informative signal from multi-modal association like human
- Developing machine perception is still open research area

Why is Visual Perception Important?

- Cambrian explosion
 - The most important evolutionary event in the history of life on Earth
 - Placed about 542 million years ago
 - A unique event when all major animal categories started appearing in the fossil record

Why is Visual Perception Important?

- Cambrian explosion
 - The most important evolutionary event in the history of life on Earth
 - Placed about 542 million years ago
 - A unique event when all major animal categories started appearing in the fossil record
- One of possible cause (hypothesis): Evolution of eyesight [A. Parker]
 - Predator-prey relationships changed dramatically

Why is Visual Perception (Computer Vision) Important?

- Visual information is the most dominant information source to humans
 - A picture is worth a thousand words
 - More than 50% of brain is devoted to processing visual info. -- William G. Allyn

Safety

Health

Fun

Security

Access

Visual Perception (Computer Vision)

- Visual perception & intelligence
 - Input: visual data (image or video)

- Visual perceptions
 - Color perception
 - Motion perception
 - 3D perception
 - Semantic object-level perception
 - Social perception (Emotion perception)
 - Etc.

The example image from [Kim et al., Dense Relational Captioning, CVPR 2019] The other images are under CC-license

bу

LAWRENCE GILMAN ROBERTS

S.B., Massachusetts Institute of Technology (1961)

M.S., Massachusetts Institute of Technology (1961)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1963

Larry Roberts (Father of ARPANET), 1st Computer Vision thesis, 1963

- Difference with image processing
 - Image processing is techniques that processes low-level signals (intensity, color, frequency, etc.)

- Difference with image processing
 - Image processing is techniques that processes low-level signals (intensity, color, frequency, etc.)

- Difference with graphics
 - From semantic info. (physical values), it renders images

- Difference with graphics
 - From semantic info. (physical values), it renders images

Computer vision: inferring semantic info. from images

Output	Image	Semantic model (e.g., physical values, high-level knowledge, etc.)
Image	Image processing	Computer Vision
Semantic model	Computer Graphics	_

• Color-texture perception — Neural Image Stylization (style transfer)

Photograph of Tübingen

Van Gogh's Starry Night

Output of Neural Image Stylization

Image credit: Leon Gatys et al.

• Motion perception — Subtle video motion magnification

Oh et al., Learning-based Video Motion Magnification, ECCV 2018

• 3D perception

Given a single photo

• 3D perception

Rematas et al., Soccer On Your Tabletop, CVPR 2018

• 3D perception (by implicit model)

• Semantic object-level perception

Base: image-level

VPSNet

• 3D & Semantic object-level perception

Li et al., RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving, Arxiv

• Multi-modal perception – WiFi signal to human body pose

Zhao et al., Through-Wall Human Pose Estimation Using Radio Signals, CVPR 2018

• Multi-modal perception – WiFi signal to human body (dense) pose

Academic Research Fields

	Name (Abbr.)	Impact factor	Description	
	TPAMI	24.314	1st rank in all CS/EE/AI (Top 0.2%)	
	IJCV	13.369		
Journals	TIP	11.041		
	TOG (SIGGRAPH)	7.403	1 st rank in Graphics (Top 2.4% in CS)	
	NeurlPS		Acceptance rate ~20% (oral accept. rate ~2%)	
	ICML			
	ICLR			
Conference	AAAI	In BK top CS conference list, recognized as IF 4.0		
	CVPR (1st rank in CS) ICCV ECCV			

카테고리 ▼			영어 ▼
	발행처	<u>h5-색인</u>	<u>h5-중앙값</u>
1.	Nature:	<u>444</u>	667
2.	The New England Journal of Medicine	<u>432</u>	780
3.	Science	401	614
4.	IEEE/GVF Conference on Computer Vision and Pattern Recognition	389	627
5.	The Lancet	<u>354</u>	635
6.	Advanced Materials	312	418
7.	Nature Communications	307	428
8.	Cell	300	505
9.	International Conference on Learning Representations	286	533
10.	Neural Information Processing Systems	278	436
11.	JAMA	<u>267</u>	425
12.	Chemical Reviews	<u>265</u>	444
13.	Proceedings of the National Academy of Sciences	<u>256</u>	364
14.	Angewandte Chemie	<u>245</u>	332
15.	Chemical Society Reviews	244	386
16.	Journal of the American Chemical Society	<u>242</u>	344
17.	JEEE/CVF International Conference on Computer Vision	239	415
18.	Nucleic Acids Research	238	550
19.	International Conference on Machine Learning	237	421
20.	Nature Medicine	<u>235</u>	389

Course overview

How to build machine perception capability

- like human, or
- beyond human (super-human performance)
- Mostly computer vision
 + other modalities
- Classic + Modern deep learning in 3D

