

PRACOWNIA FIZYCZNA 1

Instytut Fizyki Centrum Naukowo Dydaktyczne

SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO

Temat: Wyznaczanie ładunku właściwego elektronu metodą poprzecznego pola						
magnetycznego (lampa Thomsona)						
Wydział	Wydział AEil Kierunek Informatyka					
Nr grupy 1 Rok akademicki 2023/2024						
Rok studiów	Rok studiów 2 Semestr 3					

Oświadczam, że niniejsze sprawozdanie jest całkowicie moim/naszym dziełem, że żaden z fragmentów sprawozdania nie jest zapożyczony z cudzej pracy. Oświadczam, że jestem świadoma/świadom odpowiedzialności karnej za naruszenie praw autorskich osób trzecich.

L.P.	Imię i nazwisko
1.	Karol Pitera
2.	Dominik Kłaput
3.	

Data pomiarów	13.12.2023
---------------	------------

Ocena poprawności elementów sprawozdania

data oceny	wstęp i cel ćwiczenia	struktura sprawozdania	obliczenia	rachunek niepewnośc	wykres	zapis końcowy	wnioski
,				i	,	,	

Ocena końcowa:

Ocena lub liczba punktów	
Data i podpis	

Wstęp teoretyczny

Lampa Thomsona to szklana bańka, wypełniona powietrzem pod szczątkowym ciśnieniem. Głównym elementem lampy jest działo elektronów, widocznych w ciemni jako smuga, gdy oddziałują z ekranem pokrytym luminoforem. Ekran jest kwadratem o boku A = 80 mm, oznaczonym skalą milimetrową na każdym z boków.

Rys.1: Lampa Thomsona [1]

Trajektorię strumienia elektronów emitowanych z katody zakrzywia w okrąg zewnętrzne, jednorodne pole magnetyczne, którego źródłem są dwie cewki w tzw. układzie Helmholtza, czyli na wspólnej osi, w odległości równej promieniowi cewek. Regulując napięcie przyspieszające (a więc prędkość elektronów) lub prąd płynący przez cewki (indukcję pola magnetycznego obecnego w obszarze lampy), można uzyskać różne promienie okręgów R.

Zadaniem eksperymentatora jest znalezienie takich par prądu cewki I_H oraz napięcia przyspieszającego U, dla których promień okręgu R jest jednakowy.

Długość R wyznacza się na podstawie śladu strumienia elektronów na luminoforze, w oparciu o odczytaną ze skali ekranu odległość L punktu przecięcia wiązki z krawędzią ekranu (rys. 1). Układ pomiarowy składa się z lampy Thomsona, zasilacza lampy umożliwiającego regulację napięcia przyspieszającego elektrony U, i z zasilacza prądu stałego płynącego w cewkach Helmholtza I_H

Powyższy wstęp teoretyczny w większości został zapożyczony z instrukcji do laboratorium [1]

Opracowanie pomiarów:

1. Obliczanie wartość promienia R dla każdej wartości L.

Dzięki posiadanym danym L oraz A (długości boku ekranu), skorzystaliśmy z twierdzenia Pitagorasa aby obliczyć podstawę trójkąta równoramiennego o bokach R, oznaczoną zmienną Z:

$$Z = \sqrt{A^2 + L^2}$$

Następnie wyznaczyliśmy jego kąt β przy podstawie:

$$\beta = \arccos\left(\frac{A}{Z}\right)$$

Obliczyliśmy wartość kąta α :

$$\alpha = 45^{\circ} + \beta$$

Który pozwolił nam na wyznaczenie wysokości trójkąta H o bokach R ze wzoru:

$$H = \frac{Z}{2} \cdot \tan \alpha$$

Następnie znając H obliczono długość boku R będącego równocześnie szukanym promieniem:

$$R = \sqrt{H^2 + \left(\frac{Z}{2}\right)^2}$$

L [mm]	40	35	30
R [mm]	141,4	119,8	103,2
β[°]	26,6	23,6	20,6

2. Przeliczanie wartości prądu cewek Helmholtza I_H na wartość indukcji pola magnetycznego. Do obliczeń użyto wzoru:

$$B = kI_H$$

Gdzie:

•
$$k = \left(\frac{4}{5}\right)^{\frac{3}{2}} \cdot \mu_o \cdot \frac{N}{R_H} = 0,0034669 \frac{T}{A}$$

 μ_o - bezwzględna przenikalność magnetyczna, N – liczba zwojów w cewkach Helmholtza, R_H - promień cewek (równy odległości między cewkami)

Wyniki znajdują się w tabeli poniżej:

11 147	L=4	0mm	L=3	L=35mm)mm
U, kV	I _{H,} A	B, mT	I _{H,} A	B, mT	I _H [A]	B, mT
2.4	0.447	1.549704	0.527	1.827056	0.596	2.066
2.6	0.47	1.629443	0.539	1.868659	0.627	2.174
2.8	0.491	1.702248	0.57	1.976133	0.66	2.288
3	0.5	1.73345	0.583	2.021203	0.68	2.357
3.2	0.512	1.775053	0.602	2.087074	0.693	2.403
3.4	0.531	1.840924	0.614	2.128677	0.711	2.465
3.6	0.54	1.872126	0.63	2.184147	0.731	2.534
3.8	0.566	1.962265	0.659	2.284687	0.752	2.607
4	0.581	2.014269	0.67	2.322823	0.773	2.680
4.2	0.588	2.038537	0.684	2.37136	0.79	2.739
4.4	0.611	2.118276	0.71	2.461499	0.806	2.794
4.6	0.619	2.146011	0.718	2.489234	0.821	2.846

3. Wyznaczenie zależności między napięciem U przyspieszającym elektrony a indukcją B pola magnetycznego.

Z zasady zachowania energii:

$$1^{\circ} \ eU_A = \frac{mV^2}{2}$$

$$2^{\circ} \frac{e}{m} \cdot U_A = \frac{V^2}{2}$$

Następnie z prawa dynamiki ruchu po okręgu:

$$3^{\circ} \ \frac{mV^2}{R} = e \cdot V \cdot B$$

$$4^{\circ} \frac{e}{m} = \frac{V}{B \cdot R}$$

$$5^{\circ} \frac{e}{m} = \frac{V^2}{2U_A}$$

$$6^{\circ} \ \frac{e}{m} = \frac{1}{2U_A} \cdot \left(\frac{e}{m} \cdot B \cdot R\right)^2$$

$$7^{\circ} \frac{e}{m} = \frac{2U_A}{B^2 \cdot R^2}$$

$$8^{\circ} \ U_A = \frac{e \cdot B^2 \cdot R^2}{2m}$$

4. Wykreślanie zależności $U(R^2B^2)$:

	r ² x B ² , mm ² T ²			
U[kV]	r = 141mm	r = 120mm	r = 103mm	
2.4	48.02	47.91	45.47	
2.6	53.09	50.12	50.32	
2.8	57.94	56.05	55.76	
3	60.08	58.63	59.19	
3.2	63.00	62.52	61.48	
3.4	67.76	65.03	64.71	
3.6	70.08	68.47	68.40	
3.8	76.99	74.91	72.39	
4	81.12	77.44	76.49	
4.2	83.09	80.71	79.89	
4.4	89.71	86.96	83.16	
4.6	92.08	88.93	86.28	

Rys.2: Wykres przedstawiający zależność napięcia U od współczynnika $\rm r^2x~B^2~dla~r=0,141m$

Rys.3: Wykres przedstawiający zależność napięcia U od współczynnika r^2x B² dla r = 0,12m

Rys.4: Wykres przedstawiający zależność napięcia U od współczynnika r^2x B² dla r = 0,103m

5. Następnie wyznaczyliśmy współczynniki kierunkowe prostych korzystając z metody regresji liniowej.

Dla R = 141 mm:

$$a_1 = 4,99 \times 10^{10}$$

$$b_1 = -1.8$$

$$u(a_1) = 1,28 \times 10^9$$

$$u(b_1) = 91,6$$

zatem:

$$a_1 = 4,99(13) \times 10^{10}$$

$$b_1 = -1,8(92)$$

Dla R = 120 mm:

$$a_2 = 5,22 \times 10^{10}$$

$$b_2 = -56$$

$$u(a_2) = 1,22 \times 10^9$$

$$u(b_2) = 84.8$$

zatem:

$$a_2 = 5,22(12) \times 10^{10}$$

$$b_2 = -56(85)$$

Dla R = 103 mm:

$$a_3 = 5,49 \times 10^{10}$$

$$b_3 = -181,64$$

$$u(a_3) = 1,09 \times 10^9$$

$$u(b_3) = 74,34$$

zatem:

$$a_3 = 55,2(11)$$

$$b_3 = -182(74)$$

6. Wyznaczyliśmy ładunek właściwy elektronu e/m.

Do obliczenia e/m wykorzystaliśmy wzór:

$$U_A = \frac{e \cdot B^2 \cdot R^2}{2m}$$

Który można przekształcić do:

$$U_A = \frac{e}{2m} \cdot (B^2 \cdot R^2)$$

Gdzie:

-
$$U_A$$
 to X

-
$$B^2R^2$$
 to Y

Powyższą postać można przekształcić do:

$$Y = \frac{e}{2m} \cdot X$$

$$\frac{e}{2m} = a$$

Zatem:

$$\frac{e}{m} = 2a$$

R, mm	141	120	103
e/m, C/kg x 10 ¹¹	0,99	1,04	1,09

Zatem średnia wartość ładunku właściwego wynosi:

$$\frac{e}{m}$$
 fr = 1,04 C/kg x 10¹¹

7. Obliczyliśmy niepewności u(e/m) oraz zapisaliśmy wyniki w odpowiednim formacie.

Korzystamy ze wzoru na propagację niepewności:

$$u(\frac{e}{m}) = \sqrt{\left(\frac{\partial \frac{e}{m}}{\partial a}u(a)\right)^2}$$

R, mm	141	120	103
u(e/m), C/kg x 10 ⁹	2,56	2,44	2,18
e/m, C/kg x 10 ¹¹	0,990(26)	1,040(24)	1,090(22)

8. Wyznaczyliśmy niepewność rozszerzoną U(e/m):

$$U\left(\frac{e}{m}\right) = k \cdot u_{\text{s}r}\left(\frac{e}{m}\right)$$
 gdzie k=2 (współczynnik poziomu ufności)

$$U\left(\frac{e}{m}\right) = 2 \cdot 2,39 \cdot 10^9 = 4,78 \cdot 10^9$$

Wartość tablicowa [2] ładunku właściwego elektronu wynosi:

$$\frac{e}{m} = 1,759 \cdot 10^{11}$$

Wartość bezwzględna z różnicy pomiędzy wartością tablicową ładunku właściwego elektronu, a tą obliczoną przez na wynosi:

$$| 1,759 \cdot 10^{11} - 1,04 \cdot 10^{11} | = 7,19 \cdot 10^{10} \text{ C/kg}$$

Obliczona wartość jest większa od wyznaczonej przez nas niepewności rozszerzonej.

Wnioski:

W trakcie badania wyraźnie zaobserwowaliśmy zależność między energią strumienia elektronów a siłą indukcji pola magnetycznego, zmieniając jeden z tych parametrów natychmiast widzieliśmy znaczącą zmianę w torze ruchu elektronów.

Linia którą na luminoforze znaczyły przelatujące cząstki, była dość szeroka co bez wątpienia wpłynęło na dokładność pomiarów. Jednak mimo tego zależności U(R²xB²) okazały się mieć w przybliżeniu oczekiwany charakter liniowy.

Podczas testu zgodności różnica tablicowego wyniku ładunku właściwego elektronu i wyniku obliczonego przez nas okazała się większa od niepewności rozszerzonej. Zatem doświadczenie należy uznać za niezgodne. Przypuszczamy, że głównymi przyczynami niepowodzenia były błąd ludzki oraz nasze niewielkie doświadczenie.

Bibliografia:

[1] Instrukcja do powyższego laboratorium:

https://platforma.polsl.pl/rif/pluginfile.php/126/mod resource/content/12/P2-E1-InstrukcjaStrona.pdf

[2] Wartości tablicowe ładunku właściwego elektronu:

https://physics.nist.gov/cgi-bin/cuu/Value?esme

[3] Ruch cząstki naładowanej w polu magnetycznym – OpenStax:

https://openstax.org/books/fizyka-dla-szk%C3%B3%C5%82-wy%C5%BCszych-tom-2/pages/11-3-ruch-czastki-naladowanej-w-polu-magnetycznym