ТЕМА 3. МНОЖЕСТВО КОМПЛЕКСНЫХ ЧИСЕЛ КАК РАСШИРЕНИЕ МНОЖЕСТВА ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ

Рассмотрим комплексное число вида (a,0). Множество таких чисел обозначим C^* . Очевидно, что $C^* \subset C$. Если каждому действительному числу a сопоставить комплексное число (a,0), т.е. $a \to (a,0)$, то получим взаимнооднозначное соответствие между множеством R и множеством C^* . Действительно, для любых двух чисел a и b из R числу (a+b) соответствует комплексное число (a+b,0) или $(a+b) \to (a+b,0)$ Но, согласно формуле (2), (a+b,0) = (a,0) + (b,0), следовательно, сумме действительных чисел a и b отвечает сумма соответствующих им комплексных чисел, т.е. $a+b \to (a,0) + (b,0)$.

Аналогично, для произведения: действительному числу (ab) соответствует комплексное число (ab,0) или. $(ab) \rightarrow (ab,0)$. Но, с учетом формулы (3), $(ab,0) = (a,0) \cdot (b,0)$, следовательно, произведению действительных чисел a и b отвечает произведение соответствующих им комплексных чисел, т.е. $ab \rightarrow (a,0) \cdot (b,0)$

Из сказанного следует то, что, если отождествлять каждое действительное число a с комплексным числом (a,0), то тем самым множество действительных чисел R с его обычной арифметикой окажется как бы вложенным в множество комплексных чисел C. То есть, множество комплексных чисел является расширением множества действительных чисел. Это позволяет нам всегда полагать (a,0) = a, а пары (0,0) и (1,0) считать обычными действительными числами 0 и 1.