- 20. 一定条件下,水气变换反应 $CO_1 + H_2O$ $CO_2 + H_2$ 的中间产物是 HCOOH 。为探究该反应过程,研究 HCOOH 水溶液在密封石英管中的分子反应:
- I. HCOOH CO+H,O(快)
- II. HCOOH $CO_2 + H_2$ (慢)

研究发现,在反应I、II中,H⁺仅对反应I有催加速作用;反应I速率远大于反应II,近似认为反应I建立平衡后始终处于平衡状态。忽略水电离,其浓度视为常数。回答下列问题:

- (1) 一定条件下,反应I、II的焓变分别为 ΔH_1 、 ΔH_2 ,则该条件下水气变换反应的焓变 $\Delta H = ____($ 用含 ΔH_1 、 ΔH_2 ,的代数式表示)。
- (2) 反应I正反应速率方程为: $\mathbf{v} = \mathbf{kc} \left(\mathbf{H}^+ \right) \cdot \mathbf{c} \left(\mathbf{HCOOH} \right)$, \mathbf{k} 为反应速率常数。 \mathbf{T}_1 温度下, \mathbf{HCOOH} 电离平衡常数为 \mathbf{K}_a ,当 \mathbf{HCOOH} 平衡浓度为 $\mathbf{xmol} \cdot \mathbf{L}^{-1}$ 时, \mathbf{H}^+ 浓度为_____ $\mathbf{mol} \cdot \mathbf{L}^{-1}$,此时反应I应速率 $\mathbf{v} = \mathbf{mol} \cdot \mathbf{L}^{-1} \cdot \mathbf{h}^{-1}$ (用含 \mathbf{K}_a 、 \mathbf{x} 和 \mathbf{k} 的代数式表示)。
- (3) T_3 温度下,在密封石英管内完全充满 $1.0 \text{mol} \cdot L^{-1} \text{HCOOH}$ 水溶液,使 HCOOH 分解,分解产物均完全溶于水。含碳物种浓度与反应时间的变化关系如图所示(忽略碳元素的其他存在形式)。 t_1 时刻测得 CO、 CO_2 的浓度分别为 $0.70 \text{mol} \cdot L^{-1} 0.16 \text{mol} \cdot L^{-1}$,反应II达平衡时,测得 H_2 的浓度为 $\text{ymol} \cdot L^{-1}$ 。体系达平衡后 $\frac{c(CO)}{c(CO_2)} =$ _____(用含 y 的代数式表示,下同),反应II的平衡常数为_____。

相同条件下,若反应起始时溶液中同时还含有 $0.10 \mathrm{mol} \cdot \mathrm{L}^{-1}$ 盐酸,则图示点 \mathbf{a} 、 \mathbf{b} 、 \mathbf{c} 、 \mathbf{d} 中, \mathbf{CO} 的浓度峰值点可能是_____(填标号)。与不同盐酸相比, \mathbf{CO} 达浓度峰值时, \mathbf{CO}_2 浓度_____(填"增大""减小"或"不变"), $\frac{\mathbf{c}(\mathbf{CO})}{\mathbf{c}(\mathbf{HCOOH})}$ 的反应_____(填"增大""减小"或"不变")。