PAT-NO:

•

JP02002088325A

DOCUMENT-IDENTIFIER:

JP 2002088325 A

TITLE:

METHOD FOR PRODUCING ADHESIVE FILM FOR

SEMICONDUCTOR AND

SEMICONDUCTOR DEVICE

PUBN-DATE:

March 27, 2002

INVENTOR-INFORMATION:

NAME COUNTRY
NAGOYA, TOMOHIRO N/A
MATSUURA, SHUICHI N/A
KAWAI, AKIYASU N/A

ASSIGNEE-INFORMATION:

NAME HITACHI CHEM CO LTD COUNTRY

N/A

APPL-NO:

JP2000284553

APPL-DATE:

September 20, 2000

INT-CL (IPC): C09J007/02, H01L021/52

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a method for producing an adhesive film for semiconductors by a ready process and a semiconductor device using this method.

SOLUTION: This method for producing an <u>adhesive</u> film for semiconductors

comprises (1) a step for preparing a monolayer $\underline{adhesive}$ film by forming a layer

of a thermoplastic <u>adhesive</u> agent having 0.1-10 MPa <u>storage elastic</u> <u>modulus</u> at

180°C and -80 to 50°C peak temperature of loss modulus on a substrate

and (2) a step for superposing an <u>adhesive</u> layer surfaces of the above <u>adhesive</u>

film to both sides of a heat-resistant film and pressing the adhesive

layer

surfaces at a <u>temperature</u> higher by 50-200°C than the <u>peak</u> temperature of

loss modulus of the thermoplastic adhesive agent. This semiconductor device is

obtained by using the above \mbox{film} .

COPYRIGHT: (C) 2002, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-88325 (P2002-88325A)

(43)公開日 平成14年3月27日(2002.3.27)

(51) Int.CL ⁷		識別記号	ΡI		รี	-73-ト*(多考)
C 0 9 J	7/02		C 0 9 J	7/02	Z	4J004
H01L	21/52		H01L	21/52	E	5 F O 4 7

審査請求 未請求 請求項の数5 OL (全 7 頁)

(21)出願番号	特顧2000-284553(P2000-284553)	(71)出頭人	000004455 日立化成工業株式会社	
(22)出旗日	平成12年9月20日(2000.9.20)	, ,		
(ee) migr	TM124 3 720 H (2000. 3. 20)	東京都新馆区西新馆2丁目1番1号		
		(72)発明者	名児耶 友宏	
			千葉県市原市五井南海岸14番地 日立化成	
			工業株式会社五井事業所内	
		(72)発明者	松浦 秀一	
			千葉県市原市五井南海岸14番地 日立化成	
			工業株式会社五井事業所内	
		(70) 94HB-16		
		(亿)免明省	河合 紀安	
			千葉県市原市五井南海岸14番地 日立化成	
			工業株式会社五井事業所内	

(54) 【発明の名称】 半導体用接着フィルムの製造方法及び半導体装置

(57)【要約】

【課題】 容易な工程による半導体用接着フィルムの製造方法及びこれを用いた半導体装置を提供する。

【解決手段】 (1)180℃での貯蔵弾性率が0.1 ~10MPaで損失弾性率のピーク温度が-80~50 ℃である熱可塑性接着剤の層を基材に形成して単層の接着フィルムを作製する工程及び(2)耐熱性フィルムの両面に前記接着フィルムの接着剤層面を重ね合わせて、熱可塑性接着剤の損失弾性率のピーク温度より50~200℃高い温度で圧着する工程からなる半導体用接着フィルムの製造方法及びこのフィルムを用いた半導体装置。 1

【特許請求の範囲】

【請求項1】 (1)180℃での貯蔵弾性率が0.1 ~10MPaで損失弾性率のピーク温度が-80~50 ℃である熱可塑性接着剤の層を基材に形成して単層の接 着フィルムを作製する工程及び(2)耐熱性フィルムの 両面に前記接着フィルムの接着剤層面を重ね合わせて、 熱可塑性接着剤の損失弾性率のピーク温度より50~2 00℃高い温度で圧着する工程からなることを特徴とす る半導体用接着フィルムの製造方法。

に記載の半導体用接着フィルムの製造方法。

【請求項3】 熱可塑性接着剤が、テトラカルボン酸二 無水物とジアミン又はジイソシアナートとポリエステル とを反応させて得られる共重合体を含む請求項1に記載 の半導体用接着フィルムの製造方法。

【請求項4】 熱可塑性接着剤が、テトラカルボン酸二 無水物とジアミン又はジイソシアナートとポリエーテル とを反応させて得られる共重合体を含む請求項1に記載 の半導体用接着フィルムの製造方法。

【請求項5】 請求項1~4のいずれかに記載の製造方 20 法によって得られた半導体用接着フィルムを用いた半導 体装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体用接着フィ ルムの製造方法及び半導体装置に関する。

[0002]

【従来の技術】従来、半導体チップをセラミック基板等 の実装用基板、リードフレーム、銅板等の放熱板に接着 する接着剤として、銀ペーストに代表される液状の接着 30 剤が使われているが、銀フィラーの分散が均一でないこ と、ペーストの保存安定性に留意しなければならないこ と、半導体チップ実装の作業性がLOC等に比較して劣 ること等の問題から、近年、接着フィルムの需要が高ま っている。

【0003】接着フィルムは、接着剤層のみからなる単 層のものと、支持フィルムの両面に接着剤層を形成した 3層のものに大別できる。単層のものは、伸びたり、打 ち抜き性に劣る等して取扱いが困難であるため、3層の 接着フィルムが好まれる。支持フィルムの両面に熱可塑 40 性接着剤層を有する3層の接着フィルムは、一般的に、 支持フィルムの両面に熱可塑性接着剤のワニスを塗布、 乾燥することにより製造される。しかしながら、熱可塑 性接着剤が乾燥温度付近でタック性を有する場合や損失 弾性率のピーク温度(Tg)が乾燥温度よりも著しく低 い場合、この方法での3層の接着フィルムの製造は、乾 燥炉の中で接着剤がロールに付着する等して困難であっ た。

[0004]

題を解決する半導体用接着フィルムの製造方法及びこれ を用いた半導体装置を提供するものである。

【課題を解決するための手段】本発明は、下記の半導体 用接着フィルムの製造方法及び半導体装置に関する。

- (1) 180℃での貯蔵弾性率が0.1~10MPaで 損失弾性率のピーク温度が-80~50℃である熱可塑 性接着剤の層を基材に形成して単層の接着フィルムを作 製する工程及び(2)耐熱性フィルムの両面に前記接着 【請求項2】 圧着温度が180℃以下である請求項1 10 フィルムの接着剤層面を重ね合わせて、熱可塑性接着剤 の損失弾性率のピーク温度より50~200℃高い温度 で圧着する工程からなる半導体用接着フィルムの製造方 法。
 - (2) 圧着温度が180℃以下である(1) に記載の半 導体用接着フィルムの製造方法。
 - (3) 熱可塑性接着剤が、テトラカルボン酸二無水物と ジアミン又はジイソシアナートとポリエステルとを反応 させて得られる共重合体を含む(1)に記載の半導体用 接着フィルムの製造方法。
 - (4) 熱可塑性接着剤が、テトラカルボン酸二無水物と ジアミン又はジイソシアナートとポリエーテルとを反応 させて得られる共重合体を含む(1)に記載の半導体用 接着フィルムの製造方法。
 - (5) (1)~(4) のいずれかの製造方法によって得 られた半導体用接着フィルムを用いた半導体装置。 [0006]

【発明の実施の形態】本発明において、単層の接着フィ ルムは180℃での貯蔵弾性率が0.1~10MPaで 損失弾性率のピーク温度が−80~50℃である熱可塑 性接着剤を適当な有機溶剤に溶解して接着剤ワニスと し、基材に接着剤ワニスを塗布した後、乾燥して有機溶 剤を除去することにより得られる。 図1に単層の接着フ ィルムの構成を示す。図において1は熱可塑性接着剤 層、2は基材である。

【0007】熱可塑性接着剤を構成する樹脂としては、 ポリアミド、ポリアセタール、ポリカーボネート、変性 ポリフェニレンエーテル、熱可塑性ポリエステル、ポリ テトラフルオロエチレン等のフッ素樹脂、ポリフェニレ ンスルフィド、ポリスルホン、非晶質ポリアリレート、 ポリエーテルイミド、ポリエーテルスルホン、ポリエー テルケトン、液晶ポリエステル、ポリアミドイミド、ポ リエーテルアミドイミド、ポリエステルイミド、ポリエ ステルアミドイミド、ポリイミド、ポリアリルエートル ニトリル、ポリベンゾイミダゾール等があるが、テトラ カルボン酸二無水物とジアミン又はジイソシアナートと ポリエステルとを反応させて得られる共重合体及びテト ラカルボン酸二無水物とジアミン又はジイソシアナート とポリエーテルとを反応させて得られる共重合体が好ま LW.

【発明が解決しようとする課題】本発明はこのような問 50 【0008】テトラカルボン酸二無水物としては、ピロ

メリット酸二無水物、3,3′,4,4′ーベンゾフェ ノンテトラカルボン酸二無水物、3,31,4,41-ビフェニルテトラカルボン酸二無水物、2,2-ビスフ タル酸ヘキサフルオロイソプロピリデン二無水物、ビス (3,4ージカルボキシフェニル)スルホン二無水物、 4, 4'-ビス(3, 4-ジカルボキシフェノキシ)ジ フェニルスルホン二無水物、2,2-ビス[4-(3, 4-ジカルボキシフェノキシ) フェニル] プロパン二無 水物、エチレングリコールビストリメリテート二無水物 (EBTA)、デカメチレングリコールピストリメリテ 10 ート二無水物 (DBTA)、ビスフェノールAビストリ メリテート二無水物(BABT)、2.2-ビス「4-(3,4-ジカルボキシフェニルベンゾイルオキシ)フ ェニル] ヘキサフルオロプロパン二無水物、4,4′-[1,4-フェニレンビス(1-メチルエチリデン)] ビスフェニルビストリメリテート二無水物等が使用で き、2種以上を併用してもよい。これらのテトラカルボ ン酸二無水物は、遊離酸(テトラカルボン酸)、ジエス テル、ジクロライド等の誘導体を使用することもでき 3.

【0009】なお、これらの中でも、エチレングリコー ルピストリメリテート二無水物 (EBTA)、デカメチ レングリコールビストリメリテート二無水物 (DBT A) 又はビスフェノールAビストリメリテート二無水物 (BABT) が好ましく、BABTがより好ましい。こ れらの量はテトラカルボン酸二無水物成分の総量に対し て、EBTA、DBTA及びBABTから選ばれるテト ラカルボン酸二無水物を50モル%以上とすることが好 ましい。50モル%より少ないと、得られる共重合体の Tgが高くなり、接着性が低下するので好ましくない。 また、接着剤の接着性、耐熱性等の特性は損なわない範 囲で、テトラカルボン酸二無水物のほかに、無水トリメ リット酸等のトリカルボン酸無水物を併用してもよい。 【0010】用いることができるジアミンとしては、 $1, 2-\tilde{y}$ \tilde{y} $\tilde{$ ン、1, 2-ジアミノ-2-メチルプロパン、<math>1, 4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9 ージアミノノナン、1,10ージアミノデカン、1,1 2-ジアミノドデカン等のアルキレンジアミン、イソホ 40 ロンジアミン、フェニレンジアミン、トルイレンジアミ ン、キシリレンジアミン、ナフタレンジアミン、ジシク ロヘキシルメタンジアミン、4,4'ージアミノジフェ ニルメタン、4,4'ージアミノジフェニルエーテル、 4,4'-ジアミノジフェニルスルホン、4,4'-ジ アミノジベンズアニリド、3,3'-ジアミノフェニル スルホン、3,3'ージアミノベンゾフェノン、3, 3'ージメチルジフェニルー4,4'ージアミン、3, 3', 5, 5' ーテトラメチルー4, 4' ージアミノジ フェニルメタン、3,3',5,5'ーテトライソプロ 50 よい。

ピルー4, 4′ージアミノジフェニルメタン、1, 4-ビス (4-アミノクミル) ベンゼン、1、3-ビス (4 ーアミノクミル) ベンゼン、1,4ービス(4ーアミノ フェノキシ) ベンゼン、1, 4-ビス (3-アミノフェ ノキシ) ベンゼン、1,3-ビス(3-アミノフェノキ シ) ベンゼン、2, 2-ビス [4-(4-アミノフェノ キシ) フェニル] プロパン、2, 2-ビス [4-(3-アミノフェノキシ) フェニル] プロパン、ビス [4-

(4-アミノフェノキシ)フェニル]スルホン、ビス [4-(3-アミノフェノキシ)フェニル]スルホン、 ビス [4-(4-アミノフェノキシ) フェニル] エーテ ル、2, 2ービス [4ー(4ーアミノフェノキシ) フェ ニル] ビフェニル、次式で表されるシロキサンジアミン [0011]

【化1】

20

【0012】(式中、R1 及びR2 は2価の有機基、R 3 及びR4 は1価の有機基を示し、mは1~100の整 数を示す。) 等があり、これらは2種以上併用してもよ い。また、用いることができるジイソシアナートとして は、上に示したジアミンにおいて、「アミノ」を「イソ シアナト」と読み替えたもの、あるいは「アミン」を 「イソシアナート」と読み替えたものを挙げることがで

30 【0013】また、用いることができるポリエステル は、ジカルボン酸とジオールとの反応によって得ること ができる。ジカルボン酸としては、コハク酸、グルタル 酸、アジピン酸、スペリン酸、アゼライン酸、セバチン 酸、デカンジカルボン酸等の脂肪族カルボン酸や、テレ フタル酸、イソフタル酸、フタル酸、ナフタレンジカル ボン酸等の芳香族ジカルボン酸等が挙げられる。これら のジカルボン酸は単独で用いてもよいし、2種以上を組 み合わせて用いてもよい。得られる共重合体を柔軟にす るためには脂肪族ジカルボン酸が好ましい。

【0014】ジオールとしては、エチレングリコール。 プロピレングリコール、ブタンジオール、1、3-ブチ レングリコール、2-メチル-1,3-プロパンジオー ル、ネオペンチルグリコール、3-メチル-1,5-ペ ンタンジオール、ヘキサンジオール、2,2-ジエチル −1,3−プロパンジオール、2−エチル−1,3−へ キサンジオール、3,3-ジメチロールヘプタン、ノナ ンジオール、2-メチル-1,8-オクタンジオール、 デカンジオール等が挙げられる。これらのジオールは単 独で用いてもよいし、2種以上を組み合わせて用いても 【0015】上記ポリエステルの使用量(重量)は、樹脂原料の総重量、すなわち、テトラカルボン酸二無水物とジアミン又はジイソシアナートとポリエステルとの合計重量に対して30~70重量%が好ましい。この場合に、接着性及び耐熱性の良好なものが得られるからである。また、用いることのできるポリエーテルとしては次式で示した化合物が挙げられる。

 $[0016]R-Q^1-O-[Q^2-O-], -Q^3-R$

(ここで、 Q^1 , Q^2 及び Q^3 は炭素数 $1\sim10$ のアルキレン基、RはOHまたはCOOH、pは $0\sim100$ の整数を示す。)

両末端がヒドロキシル基を有するポリエーテルとしては、HO-[(CH2),-O]n-H(Mw=250、650、1000、1800、2900または4500)

等が挙げられる。これらのポリエーテルを単独で用いて もよいし、2種以上を組み合わせて用いてもよい。

【0017】両末端がカルボキシル基を有するポリエー テルとしては、

HOOC-(CH₂)₂-O-[(CH₂)₄-O]_n-(CH₂)₂-COOH(Mw=350、1100または2100)

等が挙げられる。これらのポリエーテルを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。上記ポリエーテルの使用量(重量)は、樹脂原料の総重量、すなわち、テトラカルボン酸二無水物とジアミン又はジイソシアナートとポリエーテルとの合計重量に対して30~70重量%が好ましい。この場合に、接着性及び耐熱性の良好なものが得られるからである。

【0018】本発明に用いる熱可塑性接着剤は180℃での貯蔵弾性率が0.1~10MPaとされ、1~8MPaであることが好ましい。0.1MPaより低いと、圧着時に柔らかくなりすぎるために圧着後の接着剤層の厚み精度が落ちて生産性が低下し、10MPaより高いと、接着性が低下して圧着不良となる問題が生じる。また、本発明に用いる熱可塑性接着剤は、損失弾性率のピーク温度が-80~50℃とされ、-60~30℃であることが好ましい。-80℃より低いと耐熱性に劣り、半導体用接着フィルムとしての信頼性が低下する。50℃より高いと、本発明で規定する圧着温度範囲内での圧着性が低下し、圧着により3層の接着フィルムを製造するメリットがなくなる。

【0019】本発明に用いる熱可塑性接着剤を溶解する 有機溶剤は、接着剤を構成する樹脂の種類により適宜選 択する必要がある。好ましい有機溶剤としては、Nーメ チルピロリドン、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド等の非プロトン性極性溶剤、 テトラヒドロフラン、ジオキサン、モノグライム、ジグ ライム等のエーテル系有機溶剤、ベンゼン、トルエン、 キシレン、メチルエチルケトン、シクロヘキサノン、メ チルセロソルブ、セロソルブアセテート、これらの混合 溶剤等が挙げられる。基材に接着剤ワニスを塗布する方 法としては、特に制限はなく、例えば、コンマコート、 ロールコート、リバースロールコート、グラビアコー

ト、バーコート等による塗布が挙げられる。 【0020】基材としては、ポリテトラフルオロエチレ ンフィルム、ポリエチレンテレフタレートフィルム、ポ リエチレンナフタレートフィルム、ポリエチレンフィル 10 ム、ポリプロピレンフィルム、ポリメチルペンテンフィ ルム、ポリイミドフィルム、ポリアミドフィルム、ポリ サルフォンフィルム、ポリフェニレンサルファイドフィ ルム、ポリエーテルエーテルケトンフィルム、ポリアリ レートフィルム等が使用できるが、表面処理を施した前 記フィルムが好ましく、離型処理を施したポリエチレン テレフタレートフィルムがより好ましい。また、用いる 基材は溶融温度が圧着温度よりも高いものを用いるのが 好ましい。前記の基材としては、例えば、ユービレック ス(宇部興産株式会社製商品名)、カプトン(東レ・デ 20 ュポン株式会社製商品名)、アピカル(鐘淵化学工業株 式会社製商品名)等のポリイミドフィルム、ルミラー (東レ・デュポン株式会社製商品名)、ピューレックス (帝人株式会社製商品名) 等のポリエチレンテレフタレ ートフィルム等を使用することができる。接着剤の厚み は、接着性等から2~150µmの範囲が好ましく、特 に制限するものではない。塗布した接着剤ワニスの乾燥 は、特に制限するものではないが、例えば、約60~1 50℃で数分~数時間加熱した後、約150~250℃ で数分~数時間加熱して溶剤を除去するのが好ましい。 【0021】本発明において、塗工、乾燥した後の単層 の接着フィルムにタック性がある場合や、汚染を防ぐた めに保護フィルムを貼り付けてもよい。保護フィルムと しては、ポリテトラフルオロエチレンフィルム、ポリエ チレンテレフタレートフィルム、ポリエチレンナフタレ ートフィルム、ポリエチレンフィルム、ポリプロピレン フィルム、ポリメチルペンテンフィルム、ポリイミドフ ィルム、ポリアミドフィルム、ポリサルフォンフィル ム、ポリフェニレンサルファイドフィルム、ポリエーテ ルエーテルケトンフィルム、ポリアリレートフィルム等 が使用できる。

【0022】本発明において、単層の接着フィルムを図 2に示したように耐熱性フィルム3の両面に圧着し、基 材を除去することにより、3層の接着フィルム4が得ら れる。圧着後、接着剤層の汚染を防ぐために、基材は使 用する直前に除去してもよい。単層の接着フィルムに保 護フィルムを貼り付けた場合には保護フィルムを剥がし てから圧着する。

【0023】単層の接着フィルムを耐熱性フィルムに圧着する温度は、用いる熱可塑性接着剤の損失弾性率のピ 50 一ク温度より50~200℃高い温度とされ、100~ 150℃高い温度であることが好ましい。50℃より低いと接着性が低下し、圧着不良となり、200℃より高いと圧着温度が高くなり、例えばラミネートロールが劣化するなどの問題が生じる。また、圧着温度はラミネートロールの劣化防止から180℃以下であることが好ましく、150℃以下であることがより好ましい。

【0024】本発明に用いる耐熱性フィルムとしては、ポリイミド、ポリアミド、ポリサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリアリレート等のエンジニアリングプラスチック等のフィルムが挙げられる。上記耐熱性フィルムは、接着剤との接着性を増すために、表面処理を施すことが好ましい。表面処理の方法としては、アルカリ処理、シランカップリング剤処理等の化学処理、サンドブラスト等の物理的処理、プラズマ処理、コロナ処理等のいずれの処理も可能である。接着剤の種類に応じて最も適した処理を行えばよいが、化学処理またはプラズマ処理が好ましい。

【0025】本発明においては、単層の接着フィルムを耐熱性フィルムの両面に圧着することにより、3層の半導体用接着フィルムを製造することができる。本発明の20製造方法によって得られる半導体用接着フィルムを用いて常法により、半導体装置が製造される。

[0026]

【実施例】以下実施例により本発明をさらに詳しく説明するが、本発明の範囲を限定するものではない。貯蔵弾性率、損失弾性率の測定には動的粘弾性測定装置(レオロジー株式会社製DVE RHEO SPECTOLER DVE-V4)を用いた。

実施例1

攪拌機、温度計、窒素ガス導入管及び流出管を備えた 5,000m1の四つ口フラスコに、ヘキサンジオール と過剰量のアジピン酸を窒素気流下3時間溶融反応して 得た数平均分子量2,000の両末端がカルボキシル基 であるポリエステルを280g、ビスフェノールAビス トリメリテート二無水物 (BABT)を181g、スル ホランを4,550g加え、窒素雰囲気下、攪拌しなが ら165℃に昇温した。ジフェニルメタンジイソシアナ ートを139g、触媒として3-メチル-1-フェニル -3-ホスホレン-1-オキシドを2.9g加え、16 5℃で3.5時間反応させた後、ベンジルアルコールを 120g加えて、室温まで冷却した。 得られた反応溶液 を、0℃に冷却した30重量%メタノール水溶液に注 ぎ、これをミキサーで粉砕し、水洗した後、乾燥して、 ポリエステルを64重量%含有する共重合体の粉末を得 た。得られた共重合体粉末をゲル浸透クロマトグラフィ ー (以下、GPCと略す;溶離液はTHF、液速度は1 m 1 / 分、検出はR I 検出器)を用いて測定したとこ ろ、重量平均分子量はポリスチレン換算で86,000 であった。

【0027】この共重合体粉末400g、エポキシシラ 50 製した。作製した単層の接着剤フィルムは、180℃で

ン系カップリング剤(東レ・ダウコーニング・シリコー ン株式会社製SH-6040) 40g、イミダゾール化 合物(四国化成工業株式会社製キュアゾール2PZ-C N) 0. 4gを、シクロヘキサノン629gに溶解し、 接着剤ワニス (濃度37重量%)を作製した。作製した 接着剤ワニスを、離型処理を施したポリエチレンテレフ タレートフィルム (帝人株式会社製ピューレックスA7 1、以下の例においても同じ)上にコンマコーターを用 いて塗布し、熱風循環型乾燥機中で90℃で10分間乾 10 燥した後、200℃で10分間乾燥して、膜厚が15μ mの単層の熱可塑性接着フィルムを作製した。作製した 単層の接着剤フィルムは、180℃での貯蔵弾性率が2 MPa、損失弾性率のピーク温度が-20℃であった。 【0028】作製した単層の接着フィルムの接着剤層 を、表面処理を施したポリイミドフィルム(宇部與産株 式会社製 ユーピレックス25SGA、以下の例におい ても同じ)の両面に重ね合わせ、圧着張り合わせ装置

ても同じ)の両面に重ね合わせ、圧着張り合わせ装置 (MCK株式会社製 型番MRK-800、以下の例においても同じ)を用いて140℃に加熱した加熱ロール間をロール速度0.1m/分で通過させて圧着し半導体用接着フィルムを作製した。

【0029】実施例2

実施例1において、圧着張り合わせ装置の温度を80℃ にした以外は実施例1と同様の操作を行い、半導体用接 着フィルムを作製した。

【0030】実施例3

攪拌機、温度計、窒素ガス導入管及び流出管を備えた 5,000mlの四つ口フラスコに、スルホランを3, 600g加え、窒素雰囲気下、攪拌しながら180℃に 30 昇温した。ポリエーテル (BASF株式会社製PTHF 650S) を660g、3, 3', 4, 4' -ベンゾフ ェノンテトラカルボン酸二無水物を161g、ジフェニ ルメタンジイソシアナートを379g加え、180℃で 6.5時間反応させた後、ベンジルアルコールを328 g加えて、室温まで冷却した。得られた反応溶液を、6 0℃に加熱した水に注ぎ、これをミキサーで粉砕し、水 洗した後、乾燥して、ポリエーテルを55重量%含有す る共重合体の粉末を得た。得られた共重合体粉末をゲル 浸透クロマトグラフィー (以下、GPCと略す;溶離液 はTHF、液速度は1m1/分、検出はRI検出器)を 用いて測定したところ、重量平均分子量はポリスチレン 換算で26,000であった。

【0031】この共重合体粉末400gを、N-メチルピロリドン600gに溶解し、接着剤ワニス (濃度40重量%)を作製した。作製した接着剤ワニスを離型処理を施したポリエチレンテレフタレートフィルム上にコンマコーターを用いて塗布し、熱風循環型乾燥機中で90℃で10分間乾燥した後、200℃で10分間乾燥して、膜厚が15μmの単層の熱可塑性接着フィルムを作

の貯蔵弾性率が5MPa、損失弾性率のピーク温度が5 ℃であった。作製した単層の接着フィルムの接着剤層 を、表面処理を施したポリイミドフィルムの両面に重ね 合わせ、圧着張り合わせ装置を用いて140℃に加熱し た加熱ロール間をロール速度0.1m/分で通過させて 圧着し、半導体用接着フィルムを作製した。

【0032】比較例1

実施例1で作製した接着剤ワニスを、ポリイミドフィル ム上にコンマコーターを用いて塗布し、熱風循環型乾燥 機中で90℃で10分間乾燥した後、140℃で10分 10 性接着フィルムを作製した。作製した単層の接着フィル 間乾燥して、膜厚が15μmの単層の熱可塑性接着剤層 を作製した。ポリイミドフィルムの接着剤層を形成した 面と反対側の面にコンマコーターを用いて実施例1で作 製した接着剤ワニスを塗布し、熱風循環型乾燥機中で9 0℃で10分間乾燥した後、200℃で10分間乾燥し て、膜厚が15μmの3層の接着フィルムを作製した が、最初に形成した接着剤層が乾燥機内でロールに付着 したために、接着剤層の表面が荒れ、半導体用に使用で きる接着フィルムが得られなかった。

*【0033】比較例2

ポリアミドイミド樹脂で構成される、180℃での貯蔵 弾性率が20MPa、損失弾性率のピーク温度が165 ℃である接着剤をNーメチルピロリドンに溶解し、接着 剤ワニス (濃度25重量%) を作製した。作製した接着 剤ワニスを、離型処理を施したポリエチレンテレフタレ ートフィルム上にコンマコーターを用いて塗布し、熱風 循環型乾燥機中で90℃で10分間乾燥した後、200 ℃で10分間乾燥して、膜厚が15μmの単層の熱可塑 ムの接着剤層を表面処理を施したポリイミドフィルムの 両面に重ね合わせ、圧着張り合わせ装置を用いて180 ℃に加熱した加熱ロール間をロール速度0.1m/分で 通過させて圧着を試みたが、3層の接着フィルムを得る ことができなかった。 表1に用いた熱可塑性接着剤の特 性、圧着条件、結果をまとめた。

1.0

[0034]

【表1】

, can -/c	•	•		
項目	180℃での 貯蔵弾性率	損失弾性率の ピーク温度	圧着温度	3層の接着 フィルムの作裂
英施例 1	2 MP a	-20℃	140℃	न
実施例 2	2MP a	-20℃	80℃	म
実施例3	5 MP a	5℃	140℃	म
比較例 1	2 MP a	-20℃	_	不可
比較例 2	20MPa	165℃	180℃	不町

【0035】実施例1~3では本発明で規定した特性を 有する熱可塑性接着剤を用いて、本発明で規定した製造 較例1において、本発明で規定した特性を有する熱可塑 性接着剤を用いたが、本発明で規定した製造方法ではな かったので、3層の半導体用接着フィルムを得ることが できなかった。比較例2において、本発明で規定した特 性を有しない熱可塑性接着剤を用いたため、本発明で規 定した製造方法により3層の半導体用接着フィルムを得 ることができなかった。半導体用接着フィルムとしての 実用特性

【0036】実施例1~3で作製した接着フィルムを幅 10mm、長さ80mmの大きさに切り取り、リードフ 40 レーム材である銅合金に、180℃、0.15MPa. 1秒間の条件で圧着し、JIS C6481に準じて9 0度ピール強度 (測定温度: 25℃、引っ張り速度50 mm/分)を測定したところ、すべて500N/m以上 であった。また、実施例1~3で作製した接着フィルム を120℃の温度でリードフレームに0.15MPaの 圧力で1秒間加圧して圧着した。その上に半導体素子を 乗せ、180℃の温度で0.15MPaの圧力で1秒間 加圧して圧着した。リードフレームと半導体素子を金線 で接合し、エポキシ樹脂成型材料(日立化成工業(株)※50 4

※製商品名CEL-9200)で封止し、半導体装置を作 製した。 これを、85℃、85%RHで72時間吸湿さ 方法により3層の半導体用接着フィルムが得られた。比 30 せた後、240~245℃にセットされた赤外線リフロ 一装置((株)タムラ製作所製 TRS35-20N S)で3回処理したが、パッケージクラックは生じなか った。

[0037]

【発明の効果】以上説明したように、本発明の製造方法 により、損失弾性率のピーク温度(Tg)が低く、支持 フィルムの両面に熱可塑性接着剤のワニスを塗布、乾燥 することによる方法で作製困難な3層の半導体用接着フ ィルムを作製でき、このフィルムを用いて半導体装置が 製造される。

【図面の簡単な説明】

【図1】本発明における、単層の熱可塑性接着剤層を有 する接着フィルムの略図である。

【図2】本発明における半導体用接着フィルムの製造方 法の略図である。

【符号の説明】

- 熱可塑性接着剤層 1
- 2 基材
- 3 耐熱性フィルム
- 3層の接着フィルム

フロントページの続き

Fターム(参考) 4J004 AA06 AA11 AA14 AA15 AA16 AB03 CA03 CA06 CC02 DB02 FA05 GA01 5F047 AA02 AA11 AA17 BA37 BB03 BB16