

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчёт

по лабораторной работе №1

Название:	Решение задачи Ког	ши численнымі	и методами.
Дисциплина	Моделирование.		
Студент	ИУ7-64Б		Л.Е.Тартыков
_	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			В.М.Градов
		(Подпись, дата)	(И.О. Фамилия)

Цель работы

Целью работы является получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге-Кутта).

1 Теоретические сведения

Пусть дано ОДУ (Обыкновенное Дифференциальное уравнение) n-ого порядка по формуле (1.1).

$$F(x, u', u'', ..., u^{(n)} = 0)$$
(1.1)

ОДУ любого порядка может быть сведено к системе ОДУ 1-ого порядка.

1.1 Задача Коши

Задача Коши состоит в нахождении решения дифференциального уравнения, удовлетворяющего начальным условиям. Это одна из основных задач теории дифференциальных уравнений.

Имеется задача Коши по формуле (1.2).

$$\begin{cases} u'(x) = f(x, u) \\ u(\xi) = \eta \end{cases}$$
 (1.2)

Методы решения ОДУ в задачи Коши:

- 1. аналитические;
- 2. приближенно-аналитические;
- 3. численные.

1.2 Методы решения задачи Коши

При отсутствии аналитического решения можно воспользоваться приближенно аналитическим методом Пикара. Заменив дифференциальное уравнение интегральным получим (1.3).

$$y(x)^{(s)} = \eta + \int_{\xi}^{x} f(t, y^{s-1}(t))dt$$
 (1.3)

$$y^{(0)} = \eta$$

Метод сходится если:

- 1. правая часть непрерывная;
- 2. выполнено условие Липшица (1.4)

$$|f(x, u_1) - f(x, u_2)| \le L|u_1 - u_2| \tag{1.4}$$

где L - константа Липшица.

Метод Эйлера (1.5).

$$y_{n+1} = y_n + h \cdot f(x_n, y_n)$$
 (1.5)

Метод Рунге-Кутты (1.6).

$$y_{n+1} = y_n + h \cdot [(1 - \alpha)k_1 + \alpha \cdot k_2] \tag{1.6}$$

Где k_1 и k_2 представлены как (1.7) и (1.8) соответственно. А $\alpha=1$ или $\frac{1}{2}$

$$k_1 = f(x_n, y_n) \tag{1.7}$$

$$k_2 = f(x_n + \frac{h}{2\alpha}, y_n + \frac{h}{2\alpha}k_1)$$
 (1.8)

2 Задание и вычисления приближений для метода Пикара

Дана формула 2.1.

$$\begin{cases} u'(x) = u^2 + x^2 \\ u(0) = 0 \end{cases}$$
 (2.1)

Используя описанные выше методы построить таблицу для:

- 1. Метода Пикара I-IV приближений.
- 2. Метод Эйлера.
- 3. Метод Рунге-Кутты.

Приближения представлены в формулах (2.2), (2.3), (2.4) и (2.5):

$$y^{(1)} = 0 + \int_0^x t^2 dt = \frac{x^3}{3}$$
 (2.2)

$$y^{(2)} = 0 + \int_0^x \left[\left(\frac{t^3}{3} \right)^2 + t^2 \right] dt = \frac{x^3}{3} + \frac{x^7}{63}$$
 (2.3)

$$y^{(3)} = 0 + \int_0^x \left[\left(\frac{t^7}{63} + \frac{t^3}{3} \right)^2 + t^2 \right] dt = \int_0^x \left[\frac{t^{14}}{63^2} + \frac{2}{63 * 3} t^{10} + \frac{t^6}{9} + t^2 \right] = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$

$$(2.4)$$

$$y^{(4)} = 0 + \int_0^x \left[\left(\frac{t^3}{3} + \frac{t^7}{63} + \frac{2t^{11}}{2079} + \frac{t^{15}}{59535} \right)^2 + t^2 \right] dt =$$

$$\frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{13x^{15}}{218295} + \frac{82x^{19}}{37328445} + \frac{662x^{23}}{10438212015} + \frac{4x^{27}}{3341878155} + \frac{x^{31}}{109876903905}$$

$$(2.5)$$

3 Листинги программы

На листинге 3.1 представлен листинг алгоритмов численных методов.

Листинг 3.1 – Код вычисления численных методов

```
def f(self, x, y):
       11 11 11
2
       \mathit{Исxod}ная функция u(x) = x^2 + u^2
3
       return x * x + y * y
5
6
  def calc euler method (self, last x, last u) -> None:
7
       Метод Эйлера
       || || ||
10
       return last u + self.step * self.f(last x, last u)
11
12
  def calc picard 1 method(self, x):
13
       Метод Пикара І порядка точности
15
16
       return pow(x, 3) / 3
17
  def calc picard 2 method(self, x):
19
       11 11 11
20
       Метод Пикара II порядка точности
21
       return self.calc picard 1 method(x) + pow(x, 7) / 63
24
  def calc_picard_3_method(self, x):
25
26
       Метод Пикара III порядка точности
27
       return self.calc picard 2 method(x) + 2 * pow(x, 11) / 2079 + 
29
       pow(x, 15) / 59535
30
31
  def calc picard 4 method(self, x):
32
       11 11 11
33
       Метод Пикара IV порядка точности
34
35
       return pow(x, 31) / 109876902975 +
```

```
4 * pow(x, 27) / 3341878155 + 
37
       4 * pow(x, 23) / 99411543 + 
38
       2 * pow(x, 23) / 86266215 + 
39
       82 * pow(x, 19) / 37328445 + 
40
       13 * pow(x, 15) / 218295 + 
41
       2 * pow(x, 11) / 2079 + 
42
       self.calc_picard_2_method(x)
43
   def calc_runge_kutt_method(self, last_x, last_u):
45
46
       Memo \partial Рунге-Kymma
47
       npu значении alpha=1
48
       !! !! !!
49
       return last_u + self.step * self.f(last_x + self.step / 2,
50
       last\_u \; + \; self.step \; / \; 2 \; * \; self.f(last\_x \; , \; last\_u))
51
```

4 Результаты работы

На рисунке 4.1 представлена зависимость решения уравнения от методов.

Рисунок 4.1 – Зависимость решения уравнения от методов.

На рисунке 4.2 представлена таблица полученных значений методов с точностью до двух знаков после запятой.

x	Пикар I порядка	Пикар II порядка	Пикар III порядка	Пикар IV порядка	Эйлер	Рунге-Кутт
0.000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.050	0.000041	0.000041	0.000041	0.000041	0.000041	0.000041
0.100	0.000332	0.000332	0.000332	0.000332	0.000332	0.000332
0.150	0.001125	0.001125	0.001125	0.001125	0.001124	0.001125
0.200	0.002667	0.002667	0.002667	0.002667	0.002665	0.002667
0.250	0.005208	0.005209	0.005209	0.005209	0.005206	0.005209
0.300	0.009000	0.009003	0.009003	0.009003	0.008999	0.009003
0.350	0.014292	0.014302	0.014302	0.014302	0.014296	0.014302
0.400	0.021333	0.021359	0.021359	0.021359	0.021351	0.021359
0.450	0.030375	0.030434	0.030434	0.030434	0.030424	0.030434
0.500	0.041667	0.041791	0.041791	0.041791	0.041778	0.041791
0.550	0.055458	0.055700	0.055701	0.055701	0.055686	0.055701
0.600	0.072000	0.072444	0.072448	0.072448	0.072429	0.072448
0.650	0.091542	0.092320	0.092328	0.092328	0.092306	0.092328
0.700	0.114333	0.115641	0.115660	0.115660	0.115634	0.115660
0.750	0.140625	0.142744	0.142785	0.142785	0.142755	0.142785
0.800	0.170667	0.173995	0.174079	0.174080	0.174045	0.174080
0.850	0.204708	0.209797	0.209959	0.209963	0.209923	0.209963
0.900	0.243000	0.250592	0.250897	0.250906	0.250860	0.250907
0.950	0.285792	0.296876	0.297431	0.297452	0.297398	0.297453
1.000	0.333333	0.349206	0.350185	0.350230	0.350169	0.350232
1.050	0.385875	0.408210	0.409890	0.409985	0.409917	0.409989
1.100	0.443667	0.474599	0.477414	0.477606	0.477533	0.477617
1.150	0.506958	0.549181	0.553793	0.554174	0.554101	0.554200
1.200	0.576000	0.632876	0.640282	0.641016	0.640960	0.641077
1.250	0.651042	0.726730	0.738407	0.739786	0.739786	0.739924
1.300	0.732333	0.831934	0.850035	0.852572	0.852715	0.852880
1.350	0.820125	0.949842	0.977468	0.982048	0.982517	0.982718
1.400	0.914667	1.081990	1.123560	1.131680	1.132866	1.133113
1.450	1.016208	1.230120	1.291853	1.306024	1.308735	1.309044
1.500	1.125000	1.396205	1.486771	1.511146	1.517052	1.517448
1.550	1.241292	1.582470	1.713849	1.755231	1.767766	1.768285
1.600	1.365333	1.791421	1.980024	2.049464	2.075721	2.076423
1.650	1.497375	2.025878	2.294012	2.409318	2.464108	2.465096
1.700	1.637667	2.288998	2.666774	2.856462	2.971335	2.972797
1.750	1.786458	2.584317	3.112102	3.421585	3.666022	3.668337
1.800	1.944000	2.915778	3.647363	4.148638	4.684098	4.688130

Рисунок 4.2 – Таблица значений.

5 Контрольные вопросы

1. Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара, т.е. для каждого приближения указать свои границы применимости. Точность результата оценивать до второй цифры после запятой.

Границы каждого из приближений определяются путем сравнивания результатов со следующим приближением с точностью до двух знаков после запятой. Если они при определенном значении аргумента отличаются, то верхняя граница не входит в интервал.

Применимость метода Пикара I порядка: [0; 0.85]

Применимость метода Пикара II порядка: (0.85; 1.15]

Применимость метода Пикара III порядка: (1.15; 1.30]

Применимость метода Пикара IV порядка: для определения верхней границы, необходимо вычислить приближение V порядка точности.

2. Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

Правильность полученного значения в численных методах можно доказать следующим образом:

$$h \to 0; |y_i - u(x_i)| \to 0,$$

где $u(x_i)$ – точное значение, y_i – приближенное.

3. Каково значение решения уравнения в точке x=2, т.е. привести значение u(2).

Используя метод Рунге-Кутта II порядка ввиду его высокой точности относительно других, получаем значение $\mathrm{u}(2) \approx 317$.

4. Дайте оценку точки разрыва решения уравнения.

5	. Пока	ажите,	что мез	год Пи	кара с	ходится	к то	чному	аналитич	I
		у реше								