연구 소개

• 적은 학습데이터로 더 좋은 성능을 낼 수 있는 의존구조 분석 모델 연구

The slide bases on two papers:

- (1) "Semi-Supervised Learning on Meta Structure: Multi-Task Tagging and Parsing in Low-Resource Scenarios" presented in AAAI 2020.
- (2) "SEx BiST: A Multi-Source Trainable Parser with Deep Contextualized Lexical Representations" presented in CoNLL 2018 shared task.

07. Jan. 2020

Presenter: 임경태

한국원자력연구원 지능형컴퓨팅연구실

Contents

I. 연구분야 소개 II. 연구개요 Ⅲ. 제안방법 IV. 실험결과 V. 마치면서 V. 참조 (수식)

대표 연구 소개

- Bootstrap Methods based on Semi-supervised and Meta Structure for Dependency Parsing in Low-resource scenarios
- 적은 데이터로 더 좋은 성능을 낼 수 있는 의존구조 분석 (기계학습) 모델 연구

- ♪ 자연어처리(Natural Language Processing)란?
 - 자연어 처리는 컴퓨터가 인간의 말을 이해할 수 있도록 처리하는것을 의미
 - 음악 틀어달라고 시키고 (음성인식)
 - 번역 숙제 대신해달라고 시키고 (기계번역)
 - 궁금한걸 물어보고 (질의응답)
 - 심심하면 대화도하고 (Discourse)

그래서 인공지능의 완성은 기계가 "언어를 완벽히 이해" 하는것이 라고함

0

자연어처리의 예제 (질의응답)?

자연어처리: 기계가 "언어를 이해할 수 있도록" 분석/처리 하는 것

예를들어 영화(데이터)만 본 echo에게 질문을 하면

- 질문: 아부지 뭐 하시노?

4

> 자연어처리의 어려움

- 기계가 인간의 언어를 이해하기 위해 두 가지 큰 문제점을 해결해야함.
 - 문법적(Syntatic) 모호성: 확률적 관점에서 생각해 봤을때, 문장이 길어질수록 단어조합이 문법적으로 엄청나게 복잡해질수 있음. 예제) "철수가방에 들어간다"의 의미는?
 - 의미적(Semantic) 모호성: 앞서말한 문법적 모호성과 더불어, 같은 말도 주변 상황, 그리고 상식에 따라 의미가 달라질수 있다. (Contextual Information and Common Sense)
 - 두 가지 문제를 해결하기 위한 좋은 방법이 없을까? - 절 문제를 작게 쪼개보자!

- 질문: 아부지 뭐 하시노 ?

🕥 자연어처리의 전통적 방식

• 인간이 먼저 지식과 규칙을 명시해둠.

지식: 아부지=아버지=주체...

Rule: 주체 "has a" 행위...

🕥 자연어처리의 전통적 처리방식

• 인간이 먼저 지식과 규칙을 명시해둠. 기계는 잘못이 없음

지식: 아부지=아버지=주체...

Rule: 행위 "needs a" 주체...

🕥 자연어처리의 기계학습 방식

• 기계가 지식과 규칙을 스스로 찾음. 틀리면 혼나면서 배움

학습된Rule: 입니더 "needs a" (주체)

하지만, 기계가 "아버지 뭐 하시노?" 를 단 한번도 듣지 못했다면?

"아버지"가 주체가 될 수 없고 따라서 **아버지는 건달이 될 수 없다**...

🕥 자연어처리의 기계학습 방식

• 기계가 지식과 규칙을 스스로 찾음. 틀리면 혼나면서 배움

하지만, 기계가 "아버지 뭐 하시노?" 를 단 한번도 보지 못했다면?

주체(추상적의미) = 주어 로 일반할 경우, "아버지"는 하나의 주체로 파악가능

• 기계가 (많은 데이터로부터) 지식과 규칙을 스스로 찾음. 틀리면 혼나면서 배움

기계가 "아버지 뭐 하시노?" 를 단 한번도 듣지 못했다 하더라도!

입니더 "needs a" (사람) = (주어) 을 통해 유추가 가능해짐.

학습된Rule: 입니더 "needs a" (주어)=(사람)

연구 소분류 개요

> 무엇에 관한 연구인가?

- Dependency Parser란?: 문장의 의존구조 분석기. 단어의 관계를 분석하여 기계가 문장의 의미를 파악 할 수 있게 돕는다.
- 왜 중요한가?: 기계 독해, 정보추출, 챗봇 등 하위 task의 핵심적인 전처리 분석기로 쓰임
- 어떻게 만드는가?: 지도학습 (Supervised learning)을 통한 의존관계 모델링

• Dependency Parsing 예제

개요

🕥 기존 시계열기반 데이터의 Supervised learning의 문제점

- 시계열 데이터 모델링은 대부분 지도학습 (Supervised learning)에 의존하고 있음
 - 학습 데이터가 필요하며 자연어 처리는 데이터 제작에 많은 시간과 비용이 소요

문제의 제기

적은 데이터로 더 좋은 성능을 낼 수 없을까?

- 시계열 데이터 모델링은 대부분 지도학습 (Supervised learning)에 의존하고 있음
 - 학습 데이터가 필요하며 자연어 처리는 데이터 제작에 많은 시간과 비용이 소요

```
# sent id = 2
text = I have no clue.
                               Case=Nom|Number=Sing|Person=1
                                                                   nsubj
                          PRP
                  PRON
                               Number=Sing|Person=1|Tense=Pres
                                                                    root
  have
          have
                  VERB
                          VBP
                  DET
                               PronType=Neg
                                                                    det
  no
          no
                               Number=Sing
                                                                    obj
                                                                                SpaceAfter=No
 clue
          clue
                  NOUN
                  PUNCT
                                                                    punct
```

- Parser의 학습데이터 (labeled) 예제
- 본 연구에서는 두 가지 방법을 제시
 - 학습 데이터의 자질(feature)을 최대한으로 활용하자 (Multi-view learning)
 - Unlabeled 데이터를 활용하자 (Co-training)

제안 1: Multi-view learning

🚺 Multi-view Learning으로 학습 데이터의 자질을 최대한 활용해보자

- Multi-view: 각 데이터의 자질(feature) 을 의미, (예, 센서노이즈, 감도, 자력)
- Multi-view learning: 자질들을 조합해 각기 다른 view(관점)의 분류기를 학습하는 방법
- 자연어처리의 멀티뷰: 단어(enjoyed), 문자열(en, joy, e,d..), 형태소(동사)

▶ 언어처리에서 Multi-view learning의 역할은?

• 각 자질은 서로다른 의미 (semantic), 문법 (syntactic) 정보를 내포하며, 단어자질은 의미역 정보 전달에 효과적이고, 문자열 자질은 문법적 정보 전달에 효과적임

	In Vocabulary				
	while	his	you	richard	trading
LSTM-Word	although	your	conservatives	jonathan	advertised
	letting	her	we	robert	advertising
	though	my	guys	neil	turnover
	minute	their	i	nancy	turnover
LSTM-Char (before highway)	chile	this	your	hard	heading
	whole	hhs	young	rich	training
	meanwhile	is	four	richer	reading
	white	has	youth	richter	leading
LSTM-Char (after highway)	meanwhile	hhs	we	eduard	trade
	whole	this	your	gerard	training
	though	their	doug	edward	traded
	nevertheless	your	i	carl	trader

Reference: Stanford CS 224n 강의자료

어떤 Multi-view Learning 구조가 좋을까?

- Multi-view 기반의 자질을 연결하는 meta-LSTM 구조를 도입해 feature 활용을 최대화함
- 각 분류기는 제한된 자질로부터 최대한 높은 성능의 분류기를 학습하려고 노력함 따라서 미세한 변화에도 민감한 문맥 정보 (Context)를 학습

🚺 최적의 multi-view 모델

- Multi-view 기반의 meta-LSTM 구조를 도입해 feature 활용을 극대화
- Multi-task learning을 활용해 Parser 학습 중 예측된 형태소 분석 정보를 포함

제안 2: Co-training

•

제안 2 (Co-training)

적은 데이터로 더 좋은 성능을 낼 수 없을까?

- 시계열 데이터 모델링은 대부분 지도학습 (Supervised learning)에 의존하고 있음
 - 학습 데이터가 필요하며 자연어 처리는 데이터 제작에 많은 시간과 비용이 소요
- 두 가지 가능성 제시
 - 제안1: 학습 데이터의 자질을 최대한으로 활용하자 (Multi-view learning)
 - 제안2: Unlabeled 데이터를 활용하자, Co-training:
 - Co-training은 준지도 학습 (Semi-supervised learning) 방법 중 하나로 여러 개의 분류기가 서로 협동하여 학습하는 모델로 unlabeled 데이터를 학습데이터로 활용함.
 - 예를들어, 분류기1이 unlabeled 데이터로부터 예측한 정보를 정답으로 설정하고 분류기2를 학습!

제안 2 (Co-training)

🕥 두 모델중 누가 더 똑똑할까? (경쟁모델)

- Co-training을 적용할 때 누가 누구를 가르칠 것인가를 판단 하는 것이 중요
- Entropy 기반의 경쟁모델을 제안 $vi^* = \operatorname{argmax}_{vi \in V} P(\hat{y}^{vi}|x, \theta^{vi})$
- Entropy 점수는 "문장 A에 대해 해당 모델이 얼마나 confident 한가?"
 - When the **word** model is confident than the **char**: set \hat{y}^{word} as a temporal gold label \hat{y}^* and update the **chat** model.

Entropy model

제안 2 (Co-training)

🕟 어떤 예측이 최적일까? 문제를 셋이 같이풀어보자 (협동모델)

• 세 모델이 합동하여 최적의 예측 결과를 찾고, 이를 정답으로 설정하고 학습

• Learns from the best possible probability: $\hat{y}^* = softmax(\sum_{vi \in V} P(\hat{y}^{vi}|x, \theta^{vi}))$ Or from the most voted tree.

• Set \hat{y}^* as a temporal gold label and update each model comparing to each prediction.

Ensemble or Voting model

실험결과 (Official Results)

🕟 CoNLL 2018 shared task의 57개 언어에 대한 실험결과

- CoNLL shared task: 자연어처리 경진대회로 87개의 언어 모델에 대한 종합평가로 순위 책정
 - 6개월의 준비 기간 (코딩)
 - 2달간의 본선평가 (모델 학습)
 - 132개의 참가 팀 중 27개 팀이
 모든 결과 제출
 - 언어마다 자질, 데이터 수, 띄어쓰기 등 변수 존재
 - UAS 2등으로 마감

All treebanks

1. HIT-SCIR (Harbin)		80.51
2. LATTICE (Paris)	software1-P	78.71
3. ICS PAS (Warszawa)	software1-P	78.22
4. TurkuNLP (Turku)	software1-P	77.97
5. UDPipe Future (Praha)	software1-P	77.90
6. Uppsala (Uppsala)	software1-P	77.53
7. CEA LIST (Paris)	software1-P	77.39
8. Stanford (Stanford)	software2	76.78
9. AntNLP (Shanghai)	software1-P	76.31
10. NLP-Cube (București)	software1-P	76.16
11. ParisNLP (Paris)	software1-P	75.96
12. SLT-Interactions (Bengaluru)	software2-P	75.46
13. IBM NY (Yorktown Heights)	software1-P	74.72
14. UniMelb (Melbourne)	software1-P	74.16
15. LeisureX (Shanghai)	software1-P	74.03
16. KParse (İstanbul)	software1-P	72.75
17. Fudan (Shanghai)	software5-P	72.13
18. BASELINE UDPipe 1.2 (Praha)	software1-P	71.64
19. Phoenix (Shanghai)	software1-P	71.27
20. CUNI x-ling (Praha)	software1-P	70.87
21. BOUN (İstanbul)	software2-P	69.99
22. ONLP lab (Ra'anana)	software3-P	69.56
23. iParse (Pittsburgh)	software1-P	60.04
24. HUJI (Yerushalayim)	software1-P	59.93
25. ArmParser (Yerevan)	software1-P	50.86

Results (CoNLL shared 2018)

Corpus	Method	UAS(Rank)	LAS(Rank)
af_afribooms		87.42 (7)	83.72 (8)
grc_perseus	tr	79.15 (4)	71.63 (8)
grc_proiel	tr	79.53 (5)	74.46 (8)
ar_padt		75.96 (8)	71.13 (10)
hy_armtdp	tr, mu	53.56 (1)	37.01 (1)
eu_bdt		85.72 (7)	81.13 (8)
br_keb	tr, mu	43.78 (3)	23.65 (5)
bg_btb		92.1 (9)	88.02 (11)
bxr_bdt	tr, mu	36.89 (3)	17.16 (4)
ca_ancora		92.83 (6)	89.56 (9)
hr_set		90.18 (8)	84.67 (9)
cs_cac	tr	93.43 (2)	91 (2)
cs_fictree	tr	94.78 (1)	91.62 (3)
cs_pdt	tr	92.73 (2)	90.13 (7)
cs_pud	tr	89.49 (7)	83.88 (9)
da_ddt	540524	85.36 (8)	80.49 (11)
nl_alpino	tr	90.59(2)	86.13 (5)
nl lassysmall	tr	87 83 (2)	84.02 (4)
en_ewt	tr, el	86.9 (1)	84.02 (2)
en_gum	tr; el	88.57 (1)	85.05 (1)
en lines	tr; el	86.01(1)	81.44 (2)
en_pud	tr; el	90.83 (1)	87.89 (1)
et_edt		86.25 (7)	82.33 (7)
fo_oft	tr, mu	48.64 (9)	25.17 (17)
fi_ftb	tr	89.74 (4)	86.54 (6)
fi_pud	tr	90.91 (4)	88.12 (6)
fi_tdt	tr	88.39 (6)	85.42 (7)
fr_gsd	tr; el	89.5 (1)	86.17 (3)
fr_sequoia	tr; el	91.81 (1)	89.89 (1)
fr_spoken	tr; el	79.47 (2)	73.62 (3)
gl_ctg	tr	84.05 (7)	80.63 (10)
gl_treegal	tr	78.71 (2)	73.13 (3)
de_gsd	1	82.09 (8)	76.86 (11)
got_proiel		73 (6)	65.3 (8)
el_gdt		89.29 (8)	86.02 (11)
he_htb		66.54 (9)	62.29 (9)
hi_hdtb		94.44 (8)	90.4 (12)
hu_szeged		80.49 (8)	74.21 (10)
zh_gsd	tr, el	71.48 (5)	68.09 (5)
id_gsd	W-8007000	85.03 (3)	77.61 (10)
ga_idt		79.13 (2)	69.1 (4)

Corpus	Method	UAS(Rank)	LAS(Rank)
it_isdt	tr	92.41 (6)	89.96 (8)
it_postwita	tr	77.52 (6)	72.66 (7)
ja_gsd	tr, el	76.4 (6)	74.82 (6)
ja_modern	30.00011.0000	29.36 (8)	22.71 (8)
kk ktb	tr. mu	39.24 (15)	23.97 (9)
ko_gsd	tr, el	88.03 (2)	84.31 (2)
ko kaist	tr, el	88.92 (1)	86.32 (4)
kmr_mg	tr, mu	38.64 (3)	27.94 (4)
la_ittb	tr	87.88 (8)	84.72 (8)
la_perseus	tr	75.6 (3)	64.96(3)
la_proiel	tr	73.97 (6)	67.73 (8)
lv_lvtb	tr	82.99 (8)	76.91 (11)
pcm_nsc	tr, mu	18.15 (21)	11.63 (18)
sme_giella	tr, mu	76.66 (1)	69.87 (1)
no_bokmaal		91.4 (5)	88.43 (11)
no_nynorsk	tr	90.78 (8)	87.8 (11)
no_nynorsklia	tr	76.17 (2)	68.71(2)
cu_proiel		77.49 (6)	70.48 (8)
fro_srcmf		91.35 (5)	85.51 (7)
fa_seraji		89.1 (7)	84.8 (10)
pl_lfg	tr	95.69 (8)	92.86 (11)
pl_sz	tr	92.24 (9)	88.95 (10)
pt_bosque		89.77 (5)	86.84 (7)
ro_rrt		89.8 (8)	84.33 (10)
ru_syntagrus	tr	93.1 (4)	91.14(6)
ru taiga	tr	79.77 (1)	74 (2)
sr_set		90.48 (10)	85.74 (11)
sk_snk		86.81 (11)	82.4 (11)
sl_ssj	tr	87.18 (10)	84.68 (10)
sl_sst	tr	63.64 (3)	57.07 (3)
es_ancora	(5.00)	91.81 (6)	89.25 (7)
sv_lines	tr	85.65 (4)	80.88 (6)
sv_pud	tr	83.44 (3)	79.1 (4)
sv_talbanken	tr	89.02 (4)	85.24 (7)
th_pud	tr, mu	0.33 (21)	0.12(21)
tr_imst	300000000000000000000000000000000000000	69.06 (7)	60.9 (11)
uk_iu		85.36 (10)	81.33 (9)
hsb_ufal	tr, mu	54.01 (2)	43.83 (2)
ur_udtb	7.0	87.4 (7)	80.74 (10)
ug_udt		75.11 (6)	62.25 (9)
vi_vtb		49.65 (6)	43.31 (8)

Table 1: Official experiment results for each corpus, where *tr* (*Treebank*), *mu* (*Multilingual*) and *el* (*ELMo*) in the column Method denote the feature representation methods used (see Section 2 and 3).

Results on Extrinsic Parsing Evaluation (EPE 2018)

Task	Precision	Recall	F1(Rank)
Event Extraction	58.93	43.12	49.80 (1)
Negation Resolution	99.08	41.06	58.06 (12)
Opinion Analysis	63.91	56.88	60.19 (9)

Task	LAS	MLAS	BLEX
Intrinsic Evaluation	84.66 (1)	72.93 (3)	77.62 (1)

Table 4: Official evaluation results on three EPE task (see https://goo.gl/3Fmjke).

끝 마치면서

🕥 기계학습과 도메인 지식을 겸비한 시계열 데이터 처리 전문가

- 여러 도메인의 전문가와 함께 일하고 싶습니다.
 - 전산학분야 외의 전자, 기계공학 지식은 전무한 수준이며 해당 분야로 도메인 지식을 넓히는게 저의 개인적인 비전입니다.
 - 큰 욕심없이, NIPS, AAAI, ACL best paper한번 받아보는게 소원입니다.
 - 경진대회 공동 참가 및 새로운 Al관련 문제해결을 위한 Co-work은 언제나 환영합니다. jujbob@gmail.com으로 연락주세요!

감사합니다!

Q/A

Technical details

Co-meta Training (Meta-LSTM)

Objective function of META-BASE (Meta-LSTM model)

 We applied a negative log-likelihood objective function for each of three taggers and parsers where x is a sentence and y denote a set of labels (POS tag, Dependency head, dependency relation)

$$S_loss = \sum_{(x_j, y_j) \in T} -\log P(y_j | x_j, \theta)$$

which is simply the standard cross entropy loss in this case and $\log P(y_j|x_j,\theta)$ stands for $\sum_{vi\in V} \log P(y_j|x_j,\theta^{vi})$ for brevity.

$$V = \{ word, char, meta \}$$

Co-meta Training (Co-Training)

Objective function of Co-training

When we have Unsupervised set U then the loss only for Co-training is:

are"

Co-meta Training (Co-Training)

Objective function of Joint-Loss

When we have Training set T and Unlabeled set U, our Joint-loss is as:

$$\begin{split} & \mathbf{J}_\mathrm{loss} = \sum_{(x_j,y_j) \in T} -\log P(y_j|x_j,\theta) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*, \hat{y}_k^{vi}) \log P(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} \sum_{x_k \in U} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_{vi \in V} g(\hat{y}_k^*|x_k,\theta^{vi}) \\ & - \sum_$$

where U, T might be $T \subseteq U$ when using T without labels. We call training with J_loss on the meta-LSTM structure as Co-meta.

Co-meta Training (Co-Training)

0

Investigation of VOTING and ENSEMBLE approach

- (Voting-based) selects the most voted label among the three models for each word.
- (Ensemble-based) selects the most possible label by the average sum of the probabilities from three models i.g, $softmax(\sum_{vi \in V} P(\hat{y}^{vi}|x, \theta^{vi}))$

[An example of two approaches when we have three models]

Results based on the proposed approach

- We used only 50 sentences as the labeled set and the remaining sets as the unlabeled set among the training set.
- Our approach (co-meta) outperforms BASELINE (LATTICE shown in the second best in 2018 CoNLL shared Task), with -0.9~9.3 LAS score.

		VOT	ING	ENTI	ROPY	ENSE	MBLE	META	-BASE	BASE	LINE
corpus	unlabeled	LAS	POS	LAS	POS	LAS	POS	LAS	POS	LAS	POS
cs_cac (Czech)	23478	47.4	79.4	47.4	79.7	48.7	81.4	45.9	79.0	39.4	74.6
fi_ftb (Finnish)	14981	21.7	43.2	22.0	44.7	21.8	43.5	21.9	44.6	22.6	39.2
en_ewt (English)	12543	45.1	75.7	46.3	76.7	46.5	76.3	45.4	75.2	42.8	71.1
grc_perseus (Ancient Greek)	11460	30.8	70.1	31.7	70.9	31.3	70.7	30.9	70.4	29.5	65.8
he_htb (Hebrew)	5240	47.9	76.9	47.8	77.2	48.4	77.4	47.6	76.7	45.1	75.2
zh_gsd (Chinese)	3997	36.1	70.7	35.1	70.8	36.9	71.1	35.1	70.6	34.8	68.7
el_bdt (Greek)	1162	60.0	84.3	60.6	83.2	60.5	84.2	57.8	82.6	51.7	80.0
kk_ktb (Kazakh)*	12000*	27.6	56.9	27.9	57.0	28.7	57.1	27.8	57.7	26.2	53.0
Average	=	39.6	69.6	39.9	70.0	40.3	70.2	39.0	69.6	36.5	65.9

Results on each model and confidence score

- Depending on the type of language, the char model shows better result than the word model (cs, el, grc), and vice versa (zh, en)
- A high CONFIDENCE (Function g) denotes both the *word* and *char* model predict the similar structure of a tree.

Method	WORD	CHAR	META	CONFIDENCE
ENTROPY	61.8	66.7	69.1	0.871
ENSEMBLE	61.4	66.9	69.0	0.879
WITHOUT	57.6	65.2	67.4	0.799

Table 2: LAS on el_bdt corpus for each model, with the average confidence score $g(\hat{y})$ comparing $M^{(word)}$ and $M^{(char)}$ over entire test set.

Results based on the domain of unsupervised data

- The result shows that selecting the same domain of unlabeled data is the most important for Greek (Quality-based).
- However, in the case of Chinese, the number of unlabeled set is still important (Quantity-based) since it has a bigger number of vocabulary than others.

Labeled	Unlabeled	size	LAS	UAS	POS
el_bdt	el_bdt	1162	69.0	75.6	88.5
(Greek)	wikipedia	12000	68.7	75.1	88.7
	crawl	12000	68.3	74.8	88.4
zh_gsd	zh_gsd	3997	45.3	57.9	76.9
(Chinese)	crawl	12000	46.1	59.0	77.8

Table 3: Scores of $M^{(meta)}$ with the ENSEMBLE method depending on the domain of unlabeled data.

Impact on Co-meta learning

• Char and word model from Co-meta learns each other so the performance gap between two model is smaller than meta-base.

Results on High-resource scenarios

Table 4: LAS on the English (en_ewt) corpus for each model, with the external language models over the entire test set.

Model	LAS	UAS	POS
UDPIPE (2019)	86.97	89.63	96.29
BASELINE (2018)	86.82	89.63	96.31
METABASE	86.95	89.61	96.19
Со-мета	87.01	89.68	96.17
BASELINE+ELMO (2018)	88.14	91.07	96.83
METABASE+ELMO	88.28	91.19	96.90
CO-META+ELMO	88.25	91.19	96.84
UDIFY (BERT-MULTI) (2019)	88.50	90.96	96.21
UUPARSER (BERT-MULTI) (2019)	87.80	1.7	-
BASELINE+BERT-MULTI	89.34	91.70	96.66
CO-META+BERT-MULTI	89.52	91.99	96.80
CO-META+BERT-BASE	89.98	92.25	97.03