INTRODUÇÃO AO DESEMPENHO DE AERONAVES PARTE 02

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra

TRAÇÃO DISPONÍVEL (T_A)

A T_R depende da aerodinâmica e do peso da aeronave Já a tração disponível (T_A) está associado ao grupo moto-propulsor da anv, tração ofertada pelo motor turbojato, turbohélice, turbofan, motor-foguete ou motor à pistão e hélice

 T_A varia com a V_∞ e com o tipo de sistema propulsivo Numa anv á hélice, a tração máxima é desenvolvida qdo V_∞ = 0, diminuindo com o aumento da velocidade

Com o aumento da V_{∞} tem início a formação de ondas de choque nas pontas da pá da hélice reduzindo a sua eficiência e a tração produzida

Já o motor a jato apresenta uma tração praticamente cte em função da V_{∞}

TRAÇÃO DISPONÍVEL (T_A)

TRAÇÃO DISPONÍVEL (T_A) E V_{MAX}

Numa anv voando reto, nivelado e V_∞ cte

$$D = T$$
 logo $T_R = T_A$

Em vôo o piloto ajusta a tração do GMP para que a anv mantenha uma determinada velocidade

Como o GMP produz uma T_{MAX} então existe uma V_{MAX} que a anv não é capaz de superar em vôo reto e nivelado Para anv a hélice é conveniente considerar a P_{MAX} do GMP

Assim, ao invés do estudo basear-se na T_A e na T_R é preferível considerar a P_A e a P_R

TRAÇÃO DISPONÍVEL (T_A) E V_{MAX}

Além disso, as curvas de P_A e a P_R são adequadas para o estudo da razão de subida e da altitude absoluta, tanto para anv a hélice quanto para anv a jato

Potência é definida como "energia por unidade de tempo", logo

$$P = F \cdot V$$

Estando uma anv em vôo reto, nivelado e V_∞ cte, tem-se

$$P_R = T_R \cdot V_{\infty}$$

Assim,

$$P_R = T_R V_{\infty} = \frac{W}{C_L / C_D} V_{\infty}$$

Lembrando que,

$$L = W = q_{\infty} SC_L = \frac{1}{2} \rho_{\infty} V_{\infty}^2 SC_L$$

$$V_{\infty} = \sqrt{\frac{2W}{\rho_{\infty}SC_L}}$$

Obtém-se:

$$P_R = \frac{W}{C_L/C_D} \sqrt{\frac{2W}{\rho_{\infty}SC_L}}$$

$$P_{R} = \sqrt{\frac{2W^{3}C_{D}^{2}}{\rho_{\infty}SC_{L}^{3}}} \propto \frac{1}{C_{L}^{3/2}/C_{D}}$$

Se a T_R varia com C_L/C_D , a P_R varia com $C_L^{3/2}/C_D$ Se a anv voa na V_∞ onde a P_R é mínima, então está num AOA onde o parâmetro aerodinâmico $C_L^{3/2}/C_D$ é máximo

A P_R pode tb ser decomposta em duas parcelas:

- ✓ Potência requerida parasita (P_{R0})
- ✓ Potência requerida induzida (P_{Ri})

$$P_R = T_R V_\infty = DV_\infty = q_\infty S \left(C_{D,0} + \frac{C_L^2}{\pi e A R} \right) V_\infty$$

$$P_R = q_{\infty} SC_{D,0} V_{\infty} + q_{\infty} SV_{\infty} \frac{C_L^2}{\pi e AR}$$
Parasite power required Induced power required

Lembrando que:

$$q_{\infty} = \frac{1}{2}\rho V_{\infty}^2$$
 and $C_L = W/\frac{1}{2}\rho_{\infty}V_{\infty}^2 S$.

Tem-se:

$$P_{R} = \frac{1}{2} \rho_{\infty} V_{\infty}^{3} S C_{D,0} + \frac{1}{2} \rho_{\infty} V_{\infty}^{3} S \frac{\left(W / \frac{1}{2} \rho_{\infty} V_{\infty}^{2} S\right)^{2}}{\pi e A R}$$

$$P_{R} = \frac{1}{2} \rho_{\infty} V_{\infty}^{3} S C_{D,0} + \frac{W^{2} / \frac{1}{2} \rho_{\infty} V_{\infty} S}{\pi e A R}$$

Para que a P_R seja mínima então dP_R /dV_∞ = 0. Logo

$$\frac{dP_R}{dV_\infty} = \frac{3}{2} \rho_\infty V_\infty^2 S C_{D,0} - \frac{W^2 / \frac{1}{2} \rho_\infty V_\infty^2 S}{\pi e A R}$$

$$= \frac{3}{2} \rho_\infty V_\infty^2 S \left(C_{D,0} - \frac{W^2 / \frac{3}{4} \rho_\infty^2 S^2 V_\infty^4}{\pi e A R} \right)$$

$$= \frac{3}{2} \rho_\infty V_\infty^2 S \left(C_{D,0} - \frac{\frac{1}{3} C_L^2}{\pi e A R} \right)$$

$$= \frac{3}{2} \rho_\infty V_\infty^2 S \left(C_{D,0} - \frac{1}{3} C_{D,i} \right) = 0 \quad \text{for minimum } P_R$$

Portanto, a condição aerodinâmica para a P_R mínima é

$$C_{D,0} = \frac{1}{3}C_{D,i}$$

O ponto 1 representa a T_R mínima, ou seja $C_{D0} = C_{Di}$, que pode ser determinado através de uma reta tangente a curva P_R partindo da origem ou matematicamente:

$$\frac{d(P_R/V_\infty)}{dV_\infty} = \frac{d(T_RV_\infty/V_\infty)}{dV_\infty} = \frac{dT_R}{dV_\infty} = 0$$

Para anv que voam no regime subsônico compressível $(0,3 \le M \le 0,9)$ P_R deve ser corrigida, aplicando a correção PrandIt-Glauert:

 $P_{r_{CORR}} = \frac{P_r}{\sqrt{1 - M_{\infty}^2}}$

EXERCÍCIO: Construa a curva P_R x V_∞

POTÊNCIA DISPONÍVEL (PA) E VMAX

Deve-se lembrar que a P_R depende de $C_L^{3/2}/C_D$ e do peso da anv (W) enquanto que a P_A depende somente do GMP

MOTOR A PISTÃO E HÉLICE

Motores à pistão são ensaiados em dinamômetros onde sua potência é medida na saída do eixo de manivelas

A potência (P_{MOT}) é apresentada em SHP (*shaft horse power*) ou BHP (*brake horse power*)

P_{MOT} é entregue a hélice que aproveita parte desta potência para tracionar a aeronave e parte é dissipada

Logo, a potência disponibilizada pelo GMP (P_A) para tracionar a anv

$$P_A = \eta_H \cdot P_{MOT}$$

η_H: eficiência da hélice (~ 80%)

Eficiência da hélice é um parâmetro importante que depende diretamente da sua aerodinâmica e da V_{∞}

Normalmente, seu valor é em torno de 80% mas, algumas configurações mais modernas podem alcançar 92%

POTÊNCIA DISPONÍVEL (PA) E VMAX

MOTOR A JATO

O motor à jato produz a tração através do escoamento dos gases de combustão em alta velocidade através do bocal A P_A produzida por um motor a jato é

$$P_A = T_A \cdot V_{\infty}$$

Considerando que a T_A é praticamente cte em relação a V_{∞} então a P_A varia linearmente com a V_{∞}

Tanto para anv à hélice qto para anv à jato, a velocidade máxima (V_{MAX}) é determinada através da interseção entre as curvas da potência requerida (P_R) e da potência disponível (P_Δ), no trecho de alta velocidade

MOTOR A JATO

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra

MOTOR A PISTÃO E HÉLICE

EXERCÍCIO: Determine a V_{MAX} com as curvas P_A e P_R

DÚVIDAS??

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra