ADS 506 Final Project: Time Sereis Analysis of U.S. Road Traffic Injuries from 2002-2010

Team 3: Anusia Edward & Harini Lakshmanan

GitHub Link: https://github.com/edwardam5/506_Final_Project.git

Appendix A

Preprocessing/EDA

reportyear county_name

```
#loading in the dataset
traffic_1 = read.csv("~/Desktop/road-traffic-injuries-02-10.csv")
#skim(traffic_1)
# dimensionality reduction
keep <- c("reportyear", "county_name", "region_name", "mode",</pre>
          "totalpop", "poprate", "severity", "injuries")
traffic_1 = traffic_1[keep]
head(traffic 1)
                                    region name
##
    reportyear county_name
                                                      mode totalpop poprate
## 1
           2002
                     Orange Southern California All modes 2914663
                                                                        6.62
## 2
           2002
                     Orange Southern California All modes 2914663
                                                                       24.74
## 3
           2002
                     Orange Southern California Bicyclist 2914663
                                                                        0.24
## 4
           2002
                     Orange Southern California Bicyclist 2914663
                                                                        1.68
## 5
           2002
                     Orange Southern California
                                                       Bus 2914663
                                                                        0.03
## 6
           2002
                     Orange Southern California Car/Pickup 2914663
                                                                        4.46
##
         severity injuries
## 1
           Killed
                        193
## 2 Severe Injury
                        721
                         7
           Killed
## 4 Severe Injury
                         49
## 5 Severe Injury
                         1
## 6
          Killed
                        130
# removing redundant rows
traffic_1 <- traffic_1[!is.na(traffic_1$totalpop), ]</pre>
head(traffic_1)
```

region_name

mode totalpop poprate

```
2002
## 1
                    Orange Southern California All modes 2914663
                                                                    6.62
## 2
          2002
                    Orange Southern California All modes 2914663
                                                                   24.74
## 3
          2002
                                                                    0.24
                    Orange Southern California Bicyclist 2914663
## 4
          2002
                    Orange Southern California Bicyclist 2914663
                                                                    1.68
## 5
          2002
                    Orange Southern California
                                                    Bus 2914663
                                                                    0.03
## 6
          2002
                    Orange Southern California Car/Pickup 2914663
                                                                    4.46
##
         severity injuries
          Killed
## 1
                      193
## 2 Severe Injury
                       721
                       7
## 3
          Killed
## 4 Severe Injury
                        49
## 5 Severe Injury
                        1
          Killed
                       130
```

summary/descriptive stats of data summary(traffic 1)

```
reportyear
               county name
                                region name
                                                    mode
##
## Min. :2002 Length:37828
                                Length: 37828
                                                 Length: 37828
## 1st Qu.:2004
               Class :character Class :character
                                                 Class : character
## Median: 2006 Mode: character Mode: character Mode: character
## Mean :2006
## 3rd Qu.:2008
## Max. :2010
##
                                     severity
##
     totalpop
                     poprate
                                                       injuries
## Min. :
                0 Min.: 0.01 Length:37828
                                                    Min. : 1.0
## 1st Qu.:
            26218 1st Qu.:
                              2.96 Class :character
                                                     1st Qu.:
                                                               1.0
                             7.34 Mode :character
## Median : 61773 Median :
                                                     Median :
                                                               4.0
## Mean : 516464 Mean : 24.77
                                                     Mean : 41.2
## 3rd Qu.: 145438
                   3rd Qu.: 18.65
                                                     3rd Qu.:
                                                              12.0
## Max. :37253956 Max. :10679.61
                                                     Max. :13578.0
##
                   NA's :573
                                                     NA's :469
```

```
# formatting adjustments
traffic_2 <- traffic_1
traffic_2$county_name <- sub(" ", "_", traffic_1$county_name)
traffic_2$severity <- sub(" ", "_", traffic_1$severity)
traffic_2$mode <- sub(" ", "_", traffic_1$mode)
traffic_2$mode <- sub("/", "_", traffic_1$mode)
traffic_2$region_name <- sub("/", "_", traffic_1$region_name)
traffic_2$region_name <- sub("/", "_", traffic_1$region_name)</pre>
```

```
# dropping region category as its all soCAL
traffic_2s <- subset(traffic_2s, select = -(region_name))</pre>
```

```
# filling missing variables for poprate and injuries using knn imputation
traffic_fill <- kNN(traffic_2s, variable = c("injuries", "poprate"), k=5)</pre>
```

double checking that all NAs were handled summary(traffic fill)

```
##
     reportyear
                 county_name
                                       mode
                                                       totalpop
##
          :2002
                 Length: 14606
                                   Length: 14606
                                                     Min.
                                                          :
##
  1st Qu.:2004
                 Class : character
                                   Class :character
                                                     1st Qu.:
                                                               34119
## Median :2006
                Mode :character
                                   Mode :character
                                                     Median :
                                                               63166
## Mean
        :2006
                                                     Mean : 444042
##
   3rd Qu.:2008
                                                     3rd Qu.: 117275
        :2010
##
  Max.
                                                     Max.
                                                           :18051534
                                         injuries
                                                       injuries_imp
      poprate
                       severity
                                            : 1.00 Mode :logical
## Min.
                     Length: 14606
        :
              0.01
                                       Min.
                    Class :character
                                                 2.00 FALSE:14520
## 1st Qu.:
              2.79
                                       1st Qu.:
                                                4.00
                                                       TRUE:86
## Median :
              6.35
                   Mode :character
                                       Median :
## Mean :
             35.54
                                       Mean : 33.84
## 3rd Qu.:
            16.23
                                       3rd Qu.: 10.00
        :10679.61
                                             :6006.00
## Max.
                                       Max.
## poprate_imp
## Mode :logical
## FALSE:14425
## TRUE :181
##
##
##
```

```
# removing poprate_imp and injuries_imp
traffic_fill <- subset(traffic_fill, select = reportyear:injuries)</pre>
```

```
# boxplots of numeric variables to check for outliers:totalpop,poprate,injuries
par(mfrow=c(1,3))
boxplot(traffic_fill$totalpop, xlab="Total Population", ylab = "Frequency",
     main = "Boxplot of Total Population")
boxplot(traffic fill$poprate, xlab="Population Rate", ylab = "Frequency",
     main = "Boxplot of Population Rate")
boxplot(traffic_fill$injuries, xlab="Total Injuries", ylab = "Frequency",
    main = "Boxplot of Total Injuries")
```



```
# handling outliers using IQR for totalpop
Q1_totalpop <- quantile(traffic_fill$totalpop, .25)</pre>
Q3_totalpop <- quantile(traffic_fill$totalpop, .75)
IQR_totalpop <- IQR(traffic_fill$totalpop)</pre>
#only keep rows in dataframe that have values within 1.5*IQR of Q1 and Q3
traffic_out12 <- subset(traffic_fill, traffic_fill$totalpop> (Q1_totalpop- 1.5*IQR_totalpop) & traffic_
# handling outliers using IQR for poprate injuries
Q1_poprate <- quantile(traffic_out12$poprate, .25)</pre>
Q3_poprate <- quantile(traffic_out12$poprate, .75)
IQR_poprate <- IQR(traffic_out12$poprate)</pre>
#only keep rows in dataframe that have values within 1.5*IQR of Q1 and Q3
traffic_out1 <- subset(traffic_out12, traffic_out12$poprate> (Q1_poprate- 1.5*IQR_poprate) & traffic_ou
# handling outliers using IQR for injuries
Q1_injuries <- quantile(traffic_out1$injuries, .25)
Q3_injuries <- quantile(traffic_out1$injuries, .75)
IQR_injuries <- IQR(traffic_out1$injuries)</pre>
#only keep rows in dataframe that have values within 1.5*IQR of Q1 and Q3 \,
```

traffic_out <- subset(traffic_out1, traffic_out1\$injuries> (Q1_injuries- 1.5*IQR_injuries) & traffic_ou

Frequency

Boxplot of Total Population without Outliers

Boxplot of Total Population

Total Population

Total Population

Boxplot of Population Rate without Outliers

Boxplot of Population Rate

Population Rate

Population Rate

Boxplot of Total Injuries without Outliers

Boxplot of Total Injuries

Total Injuries

Total Injuries

Histogram of Total Population Histogram of Population Rate Histogram of Total Injuries Frequency Frequency Frequency 0 50000 2 4 6

```
# handling skewness using box-cox transformation
traffic_norm <- traffic_out

bct_totalpop <- BoxCoxTrans(traffic_norm$totalpop)
hcv_totalpop <- predict(bct_totalpop, traffic_norm$totalpop)
traffic_norm$totalpop <- hcv_totalpop

bct_poprate <- BoxCoxTrans(traffic_norm$poprate)
hcv_poprate <- predict(bct_poprate, traffic_norm$poprate)
traffic_norm$poprate <- hcv_poprate

bct_injuries <- BoxCoxTrans(traffic_norm$injuries)
hcv_injuries<- predict(bct_injuries, traffic_norm$injuries)
traffic_norm$injuries <- hcv_injuries</pre>
```

Population Rate

Total Injuries

Total Population

```
main = "Normalized Histogram of Total Injuries")
hist(traffic_out$injuries, xlab="Total Injuries", ylab = "Frequency",
    main = "Histogram of Total Injuries")
```

Normalized Histogram of Total Population

Histogram of Total Population

Normalized Histogram of Population Rate

Histogram of Population Rate

Normalized Histogram of Total Injuries

Histogram of Total Injuries

2002-2010 Traffic Incidents in California


```
traffic_decomp <- stl(traffic.ts, s.window = 5, t.window=15)
plot(traffic_decomp,
    main = "Systematic Components of Traffic Incidents in California")</pre>
```

Systematic Components of Traffic Incidents in California


```
1 0.04-0.040.020.040.040.010.010.010.010.010.01 0 -0.010.01-0.040.01 0 -0.030.03
                               totalpop 0.04 1 -0.5 0.22-0.040.060.09-0.1 20.070.08-0.1 20.1 0.05-0.070.1 0.09 0.1-0.090.11-0.1
                                                                                                            0.8
                                poprate -0.040.51 1 0.650.01-0.040.040.1-0.040.050.3-0.280.080.17-0.23-0.2-0.210.22-0.220.22
                                injuries -0.020.220.65 1 -0.050.040.040.020.02-0.010.23-0.230.060.15-0.180.160.170.18-0.160.15
                                                                                                            0.6
                     county_name_Imperial -0.040.040.01-0.05 1 -0.160.080.070.040.01-0.010.02-0.040.030.010.05 0 -0.02 0
                 county_name_Los_Angeles _0.040.060.040.040.16 1 _-0.440.370.360.210.02-0.040.01 0 _-0.030.01-0.020.01-0.070.06
                                                                                                            0.4
                     county_name_Orange -0.010.09-0.040.04-0.080.44 1 -0.2-0.190.11 0 0.01-0.01 0 0.01-0.040.02 0 -0.010.01
                    county_name_Riverside 0.01-0.120.1 0.02-0.070.37-0.2 1 -0.160.09 0 -0.010.010.02 0 -0.040.010.010.05-0.05
                                                                                                            0.2
              county_name_San_Bernardino 0.010.07-0.010.02-0.070.360.190.16 1 -0.090.03 0 0.01-0.010.030.020.03-0.020.05-0.05
                     0
                         mode_All modes 0.01-0.120.3 0.230.010.02 0 0 -0.03 0 1 -0.150.030.230.190.240.080.230.13-0.13
                          mode_Bicyclist 0.01 0.1-0.280.230.040.010.01-0.01 0 0.02-0.15 1 -0.020.160.130.150.050.160.130.13
                                                                                                            -0.2
                             mode_Bus 0 0.05-0.080.060.02-0.040.010.010.01 0 -0.030.02 1 -0.030.020.030.040.030.040.04
                        mode_Car_Pickup =0.040.070.170.15-0.01 0 0 0.02-0.040.040.230.160.03 1 -0.190.220.080.240.05-0.04
                                                                                                            -0.4
                        mode_Motorcycle 0.01 0.1-0.230.180.030.030.01 0 0.030.02-0.190.130.020.19 1 -0.180.060.190.110.11
                        mode_Pedestrian -0.010.09-0.2-0.160.010.01-0.040.010.02 0 -0.240.150.030.220.18 1 -0.070.220.030.03
                                                                                                            -0.6
                            mode_Truck =0.010.1=0.240.170.05-0.020.020.010.03-0.040.080.050.040.080.060.07 1 =0.080.060.07
                          mode_Vehicles 0 -0.090.220.18 0 0.01 0 0.01-0.020.040.230.160.030.240.190.220.08 1
                                                                                                            -0.8
                           # splitting into train and test
nValid_f <- 9
nTrain_f <- length(traffic.ts) - nValid_f</pre>
train_f.ts <- window(traffic.ts, start = c(2002, 1), end = c(2002, nTrain_f))
valid_f.ts <- window(traffic.ts, start = c(2002, nTrain_f + 1),</pre>
                           end = c(2002, nTrain_f + nValid_f))
```

Models + Model Evaluations

```
# Linear Regression Model
train_f.lm.trend.season <- tslm(train_f.ts ~ trend + I(trend^2) + season)</pre>
summary(train_f.lm.trend.season)
##
## Call:
  tslm(formula = train_f.ts ~ trend + I(trend^2) + season)
##
## Residuals:
##
                1Q Median
                                 3Q
                                        Max
   -4.3987 -1.9034 -0.6092 0.6928 10.8576
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept) 3.9357731 1.2817705 3.071 0.00283 **
## trend
              -0.1105296  0.0401694  -2.752  0.00719 **
## I(trend^2) 0.0011016 0.0003744 2.943 0.00415 **
## season2
             0.4459179 1.4044455 0.318 0.75160
              3.5562994 1.4045519 2.532 0.01310 *
## season3
## season4
             0.4422555 1.4047269 0.315 0.75362
## season5
             1.6593417 1.4049698 1.181 0.24073
             0.0964470 1.4052812 0.069 0.94544
## season6
             1.8646825 1.4056628 1.327 0.18805
## season7
## season8
             1.6289730 1.4497785 1.124 0.26420
## season9
             0.1282433 1.4499408
                                     0.088 0.92972
             2.6253105 1.4501300
                                    1.810 0.07361 .
## season10
## season11
             1.3701745 1.4503456 0.945 0.34736
## season12
             1.1128354 1.4505881 0.767 0.44502
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.979 on 89 degrees of freedom
## Multiple R-squared: 0.1974, Adjusted R-squared: 0.08018
## F-statistic: 1.684 on 13 and 89 DF, p-value: 0.07815
# predictions
train_f.lm.trend.season.pred <- forecast(train_f.lm.trend.season, h = nValid_f,
                                     level = 0)
# actual vs. forecast plot
plot(train_f.lm.trend.season.pred, ylim = c(0, 20),
    ylab = "Traffic Related Injuries in Southern CA", xlab = "Time", bty = "l",
    xaxt = "n", xlim = c(2002,2011), main = "Actual vs. Forecasted Plot",
axis(1, at = seq(2002, 2011, 1), labels = format(seq(2002, 2011, 1)))
lines(train_f.lm.trend.season.pred$fitted, lwd = 2, col = "blue")
lines(valid_f.ts)
```

Actual vs. Forecasted Plot

accuracy(train_f.lm.trend.season.pred\$mean, valid_f.ts)

```
##
                   ME
                        RMSE
                                   MAE
                                             MPE
                                                   MAPE
                                                               ACF1 Theil's U
## Test set -2.666936 3.7779 3.344353 -243.2166 251.09 0.06443753
# Holt-Winter's Exponential Smoothing w/additive error+trend no seasonality
hwin_AANf <- ets(train_f.ts, model = "AAN")</pre>
hwin_AANf.pred <- forecast(hwin_AANf, h = nValid_f, level = 0)</pre>
accuracy(hwin_AANf.pred$mean, valid_f.ts)
##
                   ΜE
                           RMSE
                                     MAE
                                               MPE
                                                       MAPE
                                                                   ACF1 Theil's U
## Test set -2.489284 4.043031 3.604656 -249.1688 259.3437 0.04041304 1.343364
plot(hwin_AANf.pred, ylim = c(0, 20),
     ylab = "Traffic Injuries in Southern CA",
     xlab = "Time", bty = "l", xaxt = "n", xlim = c(2002,2011),
     main = "Holt-Winter's Exponential Smoothing with AAN",
     flty = 2)
axis(1, at = seq(2002, 2011, 1), labels = format(seq(2002, 2011, 1)))
lines(hwin_AANf.pred$fitted, lwd = 2, col = "blue")
lines(valid_f.ts)
```

Holt-Winter's Exponential Smoothing with AAN


```
# Holt-Winter's Exponential Smoothing w/additive error, additive trend,
# and additive seasonality
hwin_AAAf <- ets(train_f.ts, model = "AAA")</pre>
hwin_AAAf.pred <- forecast(hwin_AAAf, h = nValid_f, level = 0)</pre>
accuracy(hwin_AAAf.pred$mean, valid_f.ts)
##
                    ME
                           RMSE
                                      MAE
                                                MPE
                                                        MAPE
                                                                   ACF1 Theil's U
## Test set -0.6383865 2.860662 2.748507 -122.3321 151.4223 0.1207304 0.8691627
plot(hwin_AAAf.pred, ylim = c(0, 20),
     ylab = "Traffic Injuries in Southern CA",
     xlab = "Time", bty = "l", xaxt = "n", xlim = c(2002,2011),
     main = "Holt-Winter's Exponential Smoothing with AAA",
axis(1, at = seq(2002, 2011, 1), labels = format(seq(2002, 2011, 1)))
lines(hwin_AAAf.pred$fitted, lwd = 2, col = "blue")
lines(valid_f.ts)
```

Holt-Winter's Exponential Smoothing with AAA

Holt-Winter's Exponential Smoothing with ANA


```
accuracy(hwin_ANAf.pred$mean, valid_f.ts)
##
                    ME
                           RMSE
                                     MAE
                                               MPE
                                                        MAPE
                                                                  ACF1 Theil's U
## Test set -0.683908 2.797637 2.716476 -124.6425 152.8209 0.1026866 0.8755918
# trailing moving average model
ma_f.trailing <- rollmean(train_f.ts, k = 12, align = "right")</pre>
last_f.ma <- tail(ma_f.trailing, 1)</pre>
ma_f.trailing.pred <- ts(rep(last_f.ma, nValid_f),</pre>
                         start = c(2002, nTrain_f + 1),
                         end = c(2002, nTrain_f + nValid_f), freq = 12)
plot(train_f.ts, ylim = c(0, 20), ylab = "Traffic Injuries in Southern CA",
     xlab = "Time", bty = "l", xaxt = "n", xlim = c(2002, 2011), main = "")
axis(1, at = seq(2002, 2011, 1), labels = format(seq(2002, 2011, 1)))
lines(ma_f.trailing, lwd = 2, col = "blue")
lines(ma_f.trailing.pred, lwd = 2, col = "blue", lty = 2)
lines(valid_f.ts)
```


accuracy(ma_f.trailing.pred, valid_f.ts)

Test set -0.3055556 3.21563 2.694444 -120.4545 148.9899 0.05087015 0.8841529

Model Evaluations

accuracy(train_f.lm.trend.season.pred\$mean, valid_f.ts)

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -2.666936 3.7779 3.344353 -243.2166 251.09 0.06443753 1.231781

accuracy(hwin_AANf.pred\$mean, valid_f.ts)

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -2.489284 4.043031 3.604656 -249.1688 259.3437 0.04041304 1.343364

accuracy(hwin_AAAf.pred\$mean, valid_f.ts)

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -0.6383865 2.860662 2.748507 -122.3321 151.4223 0.1207304 0.8691627

```
accuracy(hwin_ANAf.pred$mean, valid_f.ts)
##
                   ME
                          RMSE
                                    MAE
                                              MPE
                                                       MAPE
                                                                 ACF1 Theil's U
## Test set -0.683908 2.797637 2.716476 -124.6425 152.8209 0.1026866 0.8755918
accuracy(ma_f.trailing.pred, valid_f.ts)
##
                    ME
                          RMSE
                                    MAE
                                              MPE
                                                       MAPE
                                                                  ACF1 Theil's U
## Test set -0.3055556 3.21563 2.694444 -120.4545 148.9899 0.05087015 0.8841529
##ARIMA
traffic_dum.ts=ts(traffic_dum$injuries, start = c(2001,1), end = c(2010,5),
                  freq=5)
n=floor(length(traffic_dum.ts)/10)
train.ts <- window(traffic_dum.ts, start = c(2001, 1), end = c(2009, n))
valid.ts <- window(traffic_dum.ts, start = c(2010, 1), end = c(2010, n))</pre>
library(forecast)
train.trend <- tslm(train.ts ~ trend + I(trend^2) + season)</pre>
train.trend.arima <- Arima(train.trend$residuals, order = c(3,2,3))
train.trend.arima.pred <- forecast(train.trend.arima, h = n)</pre>
summary(train.trend.arima)
## Series: train.trend$residuals
## ARIMA(3,2,3)
##
## Coefficients:
##
            ar1
                                       ma1
                                               ma2
                                                         ma3
                     ar2
                              ar3
##
         0.6060 - 0.1452 - 0.2918 - 2.6524 2.3089 - 0.6556
## s.e. 0.2242 0.1669 0.1544
                                    0.5592 0.9929
                                                      0.4384
## sigma^2 = 0.3582: log likelihood = -43.69
## AIC=101.37
              AICc=104.57
                             BIC=113.7
##
## Training set error measures:
                        ME
                                RMSE
                                           MAE
                                                     MPE
                                                             MAPE
                                                                       MASE
## Training set 0.04595489 0.5427023 0.4581148 94.35942 187.4523 0.5262178
##
                       ACF1
## Training set -0.05106203
```

acf(train.trend.arima\$residuals)

Series train.trend.arima\$residuals

pacf(train.trend.arima\$residuals)

Series train.trend.arima\$residuals

${\tt train.trend.arima.pred}$

```
##
           Point Forecast
                               Lo 80
                                         Hi 80
                                                   Lo 95
                                                            Hi 95
## 2010.00
               0.07518628 -0.7190385 0.8694111 -1.139476 1.289848
## 2010.20
               0.17165516 -0.6216040 0.9649143 -1.041530 1.384840
## 2010.40
               0.20353546 -0.5928253 0.9998963 -1.014393 1.421464
## 2010.60
               0.12023097 -0.7167992 0.9572611 -1.159896 1.400358
## 2010.80
               0.03857271 -0.8076417 0.8847871 -1.255601 1.332746
plot(train.trend$residuals, ylab = "Injury Normalized",
     xlab = "Time", bty = "l", xaxt = "n", xlim = c(2001,2011), ylim=c(-1.5,2),
     main = "")
axis(1, at = seq(2001, 2011, 1), labels = format(seq(2001, 2011, 1)))
lines(train.trend.arima.pred$fitted, lwd = 2, col = "blue")
lines(valid.ts, col = 'red', lwd=2,)
lines(train.trend.arima.pred$mean, lwd = 2, col = "green")
legend(2001,2,c("Train data","Arima model train", "Validation data",
                "Arima Validation pred"), lty=c(1,1,1,1),
       lwd=c(2,2,2,2), bty = "n", col =c("black","blue","red","green"))
```



```
valid.trend.arima.pred <- forecast(train.trend.arima, newdata=vaild.ts)</pre>
```

Warning in forecast_forecast_ARIMA(train.trend.arima, newdata = vaild.ts): The
non-existent newdata arguments will be ignored.

valid.trend.arima.pred

```
##
           Point Forecast
                               Lo 80
                                          Hi 80
## 2010.00
              0.075186275 -0.7190385 0.8694111 -1.139476 1.289848
## 2010.20
              0.171655159 -0.6216040 0.9649143 -1.041530 1.384840
## 2010.40
              0.203535464 - 0.5928253 \ 0.9998963 - 1.014393 \ 1.421464
## 2010.60
              0.120230968 -0.7167992 0.9572611 -1.159896 1.400358
## 2010.80
              0.038572713 -0.8076417 0.8847871 -1.255601 1.332746
## 2011.00
             -0.006517952 -0.8526842 0.8396483 -1.300618 1.287582
## 2011.20
              0.003922381 -0.8517020 0.8595468 -1.304642 1.312487
## 2011.40
              0.042224911 -0.8245906 0.9090404 -1.283455 1.367905
## 2011.60
              0.078679303 -0.7925898 0.9499484 -1.253812 1.411170
## 2011.80
              0.093764918 -0.7774051 0.9649349 -1.238575 1.426104
```

Forecast from ARIMA

autoplot(train.trend.arima.pred)

Forecasts from ARIMA(3,2,3)


```
##
## Forecast method: NNAR(5,1,7)[5]
##
## Model Information:
##
## Average of 20 networks, each of which is
## a 5-7-1 network with 50 weights
## options were - linear output units
##
## Error measures:
                                     RMSE
                                                                              MASE
##
                            ME
                                                 MAE
                                                          MPE
                                                                   MAPE
## Training set -0.0002047017 0.02624207 0.01314175 -2.95566 6.946195 0.01509539
```

```
ACF1
## Training set 0.1644987
## Forecasts:
       Point Forecast
## 2010.00 0.6962091
## 2010.20
             0.4307866
## 2010.40 -0.4336651
## 2010.60 -0.5616935
## 2010.80 -0.3190286
train.trend.nnet.pred
          Point Forecast
##
## 2010.00 0.6962091
## 2010.20
              0.4307866
           -0.4336651
## 2010.40
## 2010.60
             -0.5616935
## 2010.80
             -0.3190286
plot(train.trend$residuals, ylab = "Injury Normalized",
    xlab = "Time", bty = "l", xaxt = "n", xlim = c(2001,2011),
    ylim=c(-1.5,2), main = "")
axis(1, at = seq(2001, 2011, 1), labels = format(seq(2001, 2011, 1)))
lines(train.trend.nnet.pred$fitted, lwd = 2, col = "blue")
lines(valid.ts, col = 'red', lwd=2,)
lines(train.trend.nnet.pred$mean, lwd = 2, col = "green")
legend(2001,2,c("Train data","NN model train",
               "Validation data", "NN Validation pred"), lty=c(1,1,2,2),
```

lwd=c(2,2,2,2), bty = "n", col =c("black","blue","blue","red"))

Forecast from NN
autoplot(train.trend.nnet.pred)

