Morphisms of diagrams

Two constructions

• Given a category \mathscr{C} , the **backwards category of diagrams in** \mathscr{C} has objects $(\mathscr{J}, D: \mathscr{J} \to \mathscr{C})$ and morphisms $(R: \mathscr{J}' \to \mathscr{J}, \rho: D \circ R \Rightarrow D')$; the **forwards** category has morphisms $(R: \mathscr{J} \to \mathscr{J}', \rho: D \Rightarrow D' \circ R)$

Forwards

Backwards

- If ho is the identity, then we recover (the opposite of) the slice category Cat/ $\mathscr C$
- Morphisms in the backwards category send solutions to solutions
 - thus these tend to go in the direction of *increasing generality*, e.g. from static Maxwell–Faraday *with* potentials to static Maxwell–Faraday *without* potentials

Purpose of morphisms

Why care?

- We can use morphisms for a few things, e.g.
 - steady states of diffusion processes
 - different presentations of the same physics (but this is subtle!)
 - boundary (and initial) value problems
 - this is the really nice one!