BioinformHer Mini Project – Module 2

Name: Marco Hany Maher

Date: 11/6/2025

Email: marcohany1122@gmail.com

TABLE OF CONTENTS

Sequence Retrieval & BLAST Search

04

Sequence Logo Generation

Pairwise Sequence Alignment

05

Phylogenetic Tree Construction

Multiple Sequence Alignment (MSA)

06

CONCLUSION

Sequence Retrieval & BLAST Search

Retrieve the human HBB gene (nucleotide or protein) from NCBI

I retrieved the **Hemoglobin subunit beta (HBB)** protein sequence for *Homo sapiens* from the NCBI Protein database.Represents a significant advancement in the field of medicine.

- Accession Number: NP_000509.1
- Protein Length: 147 amino acids
- Source: Homo sapiens (human)

Used BLAST to find homologs in five other species

We retrieved the human Hemoglobin Beta (HBB) protein sequence from NCBI and used BLASTp to find homologs in five other species. The table below shows the most similar sequences identified, including % identity and accession numbers.

Scientific Name	Per. ident	Accession
Pan troglodytes	100%	XP_508242.1
Bos taurus	84.72%	NP_776342.1
Mus musculus	80.27%	NP_001265090.1
Gallus gallus	69.39%	NP_990820.1
Danio rerio	50%	NP_001003431.2

	number(s), gi(s), or FASTA sequence(s) ? Clear Query subrange ?	
NP_000509.1	From	
	д То	
Or, upload file	Choose File No file chosen	
Job Title	NP_000509:hemoglobin subunit beta [Homo sapiens]	
	Enter a descriptive title for your BLAST search 😯	
Align two or me	ore sequences ?	
Choose Sear	ch Set	
Database	Standard databases (nr etc.):	
	ClusteredNR database RECOMMENDED Learn more	
	Non-redundant protein sequences (nr)	
Organism		
Optional	Pan troglodytes (taxid:9598) exclude Add organism	
	Bos taurus (taxid:9913) exclude	
	Mus musculus (taxid:10090) exclude	
	Gallus gallus (taxid:9031) exclude	
	Danio rerio (taxid:7955) exclude	
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown ?	
Exclude Optional	Models (XM/XP) Non-redundant RefSeq proteins (WP) Uncultured/environmental sample sequences	
Program Sele	ection	
Algorithm	Quick BLASTP (Accelerated protein-protein BLAST)	
	blastp (protein-protein BLAST)	
	O PSI-BLAST (Position-Specific Iterated BLAST)	
	O PHI-BLAST (Pattern Hit Initiated BLAST)	
	○ DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) Choose a BLAST algorithm (2)	
	Choose a blast algorithm &	

02 Pairwise Sequence Alignment

Pairwise Sequence with EMBOSS Needle

Closely Related Species (Chimpanzee)

- Identity: 147/147 (100.0%)
- Similarity: 147/147 (100.0%)
- Number of gaps: 0/147 (0.0%)

Distantly Related Species (Zebrafish)

- Identity: 73/147 (49.7%)
- Similarity: 105/147 (71.4%)
- Number of gaps: 0/147 (0.0%)

So, The alignment between Human and Chimpanzee HBB shows high identity and similarity, reflecting their close evolutionary relationship. In contrast, the Human-Zebrafish alignment has lower identity and similarity, indicating greater divergence. Thus, the chimpanzee HBB sequence is more conserved compared to the zebrafish.

Closely Related Species

VS

Distantly Related Species

147

147

#=======		#=========		
#	#	-		
# Aligned_sequences: 2		# Aligned sequences: 2		
# 1: NP_000509.1	# 1: NP_000509.1			
# 2: XP_508242.1	# 2: NP_001003431.2 # Matrix: EBLOSUM62			
# Matrix: EBLOSUM62				
# Gap_penalty: 10.0	# Gap penalty: 10.0			
# Extend_penalty: 0.5	# Extend penalty: 0.5			
#		# Extend_ponarty. 0.0		
# Length: 147		# Length: 147		
# Identity: 147/147 (100.0%)		-	(49.7%)	
# Similarity: 147/147 (100.0%)		# Similarity: 105/147	•	
# Gaps: 0/147 (0.0%)			(0.0%)	
# Score: 780.0		# Score: 408.0	(0.0%)	
#		#		
#		dt		
#======================================		#===========		
17		η		
NP_000509.1 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDI	_S 50	NP_000509.1 1 MVH	HLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD	
	П	11-		
XP_508242.1 1 MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD	_S 50	NP_001003431. 1 MVQ	DWSDSERKTIASVWSKINVDEIGPQTLARVLVVYPWTQRYFGAFGD	
NP 000509.1 51 TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLH	/D 100	NP_000509.1 51 TPD)AVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLH	
		-	.::::::::::::::::::::::::::::::::::::::	
XP_508242.1 51 TPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLH	•		SAIMGNPKVSEHGKTVLKALEKAVKNVDDIKTTYAKLSQLHCEKLN	
NP 000509.1 101 PENFRLLGNVLVCVLAHHFGKEFTPPV0AAYOKVVAGVANALAHKYH	147	NP_000509.1 101 PEN	IFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH	
	<u>_</u> /	_		
XP 508242.1 101 PENFRLLGNVLVCVLAHHFGKEFTPPV0AAY0KVVAGVANALAHKYH	147		IFKLLADCLSIVIATNFGPAFNPSVQSTWQKLLSVVVAALTSRYF	

Multiple Sequence Alignment to six HBB protein sequences.

We performed a Multiple Sequence Alignment (MSA) using six HBB protein sequences from the following species: Human, Chimpanzee, Cow, Mouse, Chicken, and Zebrafish. The alignment was generated using Clustal Omega tool, The alignment shows several highly conserved regions across all species, conserved regions are colored in the Table below.

NP_001003431.2	MVQWSDSERKTIASVWSKINVDEIGPQTLARVLVVYPWTQRYFGAFGDLSCASAIMGNPK	60
NP_990820.1	MVHWTAEEKQLITGLWGKVNVAECGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPM	60
NP_001265090.1	MVHLTDAEKAAVSCLWGKVNSDEVGGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNAK	60
NP_000509.1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60
XP_508242.1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60
NP_776342.1	MLTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPK	58
_	: *: :: .*.*:: * * ::*.*:*:******:* :**:** *::.*	
NP_001003431.2	VSEHGKTVLKALEKAVKNVDDIKTTYAKLSOLHCEKLNVDPDNFKLLADCLSIVIATNFG	120
NP 990820.1	VRAHGKKVLTSFGDAVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILIIVLAAHFS	120
NP 001265090.1	VKAHGKKVITAFNDGLNHLDSLKGTFASLSELHCDKLHVDPENFRLLGNMIVIVLGHHLG	120
NP 000509.1	VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG	120
_		
XP_508242.1	VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG	120
NP_776342.1	VKAHGKKVLDSFSNGMKHLDDLKGTFAALSELHCDKLHVDPENFKLLGNVLVVVLARNFG	118
	* ***.*: ::: ::*.:* *:: **:***:**:**:**: : *:. ::.	
NP_001003431.2	PAFNPSVQSTWQKLLSVVVAALTSRYF 147	
NP_990820.1	KDFTPECQAAWQKLVRVVAHALARKYH 147	
NP_001265090.1	KDFTPAAQAAFQKVVAGVATALAHKYH 147	
NP_000509.1	KEFTPPVQAAYQKVVAGVANALAHKYH 147	
XP_508242.1	KEFTPPVQAAYQKVVAGVANALAHKYH 147	
NP_776342.1	KEFTPVLQADFQKVVAGVANALAHRYH 145	
	. *! (**!) *. **! (*.	

NP_001003431.2 NP_990820.1 NP_001265090.1 NP_000509.1 XP_508242.1 NP_776342.1

Sequence Logo Generation

1. What do you observe?

The sequence logo shows the level of **amino acid conservation** across the aligned Hemoglobin Beta sequences from six species (human, chimpanzee, cow, mouse, chicken, zebrafish).

Each position in the alignment is represented by a **stack of letters**:

- The height of the stack shows how conserved that position is (measured in bits of information).
- The **size of each letter** shows the relative frequency of that amino acid at that position.
- The first few residues (e.g., MVHLTPEEKS) are highly conserved, showing tall, dominant letters.

2. Are there highly conserved residues?

Yes, several positions are highly conserved, especially near the beginning and middle of the sequence:

- Positions like M (start), V, H, L, T, P,
 E, K are nearly identical across all species.
- Later, residues such as Q, R, E, F, H, K, D also show high conservation.

3. Why might those regions be important?

Highly conserved regions are usually: **Functionally important** involved in oxygen binding or interaction with other subunits in the hemoglobin tetramer.

Structurally important necessary to maintain the correct folding and stability of the protein. For HBB, **this includes:**

- Heme-binding sites
- Alpha-beta chain interfaces
- Residues that maintain globin structure

05 Phylogenetic Tree Construction

1. Which species are most closely related based on HBB? From the tree: Human (NP_000509.1) is most closely related to Pan troglodytes (XP_508242.1) — they are in the same and are closest on the tree.

Next closest is Pos taurus (NP_776342.1), the cow

Next closest is **Bos taurus** (NP_776342.1), the cow.

Followed by **Mus musculus** (NP_001265090.1), the mouse.

Then Gallus gallus (NP_990820.1), the chicken.

Farthest from humans is **Danio rerio** (NP_001003431.2), the zebrafish.

2. Does this tree match what you expect evolutionarily? Yes, the tree is consistent with known evolutionary

relationships:

- Humans and chimpanzees (Pan troglodytes) share a very recent common ancestor.
- Cows (Bos taurus) are also mammals and closer to humans
- **Mice** (Mus musculus) are still mammals but slightly more diverged from humans than cows in this case
- Chickens (Gallus gallus) are birds and more distantly related.
- Zebrafish (Danio rerio) are fish, representing an even more ancient divergence.

CONCLUSIONS

CONCLUSIONS

- **HBB** is highly conserved among vertebrates, especially in functionally critical regions.
- The highest sequence identity was observed between humans and chimpanzees, reflecting their close evolutionary relationship.
- **Zebrafish** showed the **lowest similarity** and highlighting its early divergence from mammals.
- 4 Multiple sequence alignment revealed several highly conserved amino acids, likely essential for the structure and function of hemoglobin.

- The **sequence logo** visualized these conserved sites, confirming functional importance.
- The **phylogenetic tree** accurately reflected expected evolutionary relationships, with species grouped according to known evolutionary distances.