CORDIC Coordinate Rotation Digital Computer

Introducción

- > Fue descripto por primera vez en 1959 por Jack E. Volder
- Desarrollado en el departamento de aeroelectrónica de Convair
- Más tarde John Stephen Walther, en Hewlett-Packard, generalizó el algoritmo
- Originalmente fue implementado usando el sistema binario. En los 70's su variante decimal se empezó a usar fuertemente en calculadoras de mano

Introducción

- Es utilizado sobre todo en dispositivos en los que no hay disponibilidad de multiplicadores, por ejemplo en microcontroladores y FPGA's pequeñas
- Sólo utiliza las operaciones de suma, resta y desplazamiento
- Se lo utiliza para la rotación de vectores, el cálculo de funciones trigonométricas (sen, cos, tan, etc), la transformación de coordenadas, etc

$$x_1 = A.cos(\alpha)$$

$$y_1 = A.sen(\alpha)$$

$$x_2 = A.\cos(\alpha + \beta)$$
$$y_2 = A.\sin(\alpha + \beta)$$

Desarrollando el coseno y el seno de la ecuación 2:

$$\begin{vmatrix} x_2 = A.\cos(\alpha).\cos(\beta) - A.\sin(\alpha).\sin(\beta) \\ y_2 = A.\sin(\alpha).\cos(\beta) + A.\cos(\alpha).\sin(\beta) \end{vmatrix}$$

Sacando $cos(\beta)$ como factor común en la ecuación 3:

$$\begin{cases} x_2 = \cos(\beta).(A.\cos(\alpha) - A.\sin(\alpha).tg(\beta)) \\ y_2 = \cos(\beta).(A.\sin(\alpha) + A.\cos(\alpha).tg(\beta)) \end{cases}$$

Sustituyendo la ecuación 1 en 4:

Sustituyendo la ecuación 1 en 4:

Sustituyendo la ecuación 1 en 4:

$$x_2 = cos(\beta).(x_1 - tg(\beta).y_1)$$

$$y_2 = cos(\beta).(y_1 + tg(\beta).x_1)$$
 Givens

Hasta este momento no hemos llegado a nada interesante. Ahora, pensemos por un momento qué pasaría si los ángulos en los que puede rotar el vector se restringen de tal manera que:

$$tg(\beta) = \pm 2^{-i}$$

¿Se lograría algún beneficio con esto?

iLa multiplicación en el término que incluye la tangente se reduce a una simple operación de desplazamiento!

Por lo dicho:

$$tg(\beta) = \pm 2^{-i} \Rightarrow \beta = tg^{-1}(\pm 2^{-i}) \Rightarrow cos(\beta) = cos(tg^{-1}(\pm 2^{-i}))$$
$$\Rightarrow cos(\beta) = cos(tg^{-1}(2^{-i}))$$

Teniendo en cuenta que: $cos(tg^{-1}(x))) = \frac{1}{\sqrt{1+x^2}}$

$$\Rightarrow \cos(\beta) = \cos(tg^{-1}(2^{-i})) = K_i = \frac{1}{\sqrt{1 + 2^{-2i}}}$$

Luego, reemplazando en las ecuaciones de Givens:

$$x_{i+1} = K_i.(x_i - y_i.d_i.2^{-i})$$

$$y_{i+1} = K_i.(y_i + x_i.d_i.2^{-i})$$

Donde: $d_i = \pm 1$

Si retiramos la constante de las ecuaciones se tiene un algoritmo que tiene sólo operaciones de desplazamiento y suma

$$x_{i+1} = x_i - y_i \cdot d_i \cdot 2^{-i}$$
$$y_{i+1} = y_i + x_i \cdot d_i \cdot 2^{-i}$$

De esta manera el algoritmo sufre una ganancia que está dada por la productoria de la inversa de cada uno de los Ki's

$$A_n = \prod_n \sqrt{1 + 2^{-2i}}$$

La ganancia depende de la cantidad de iteraciones. Cuando se tiende a infinito se aproxima a 1,647

Ecuaciones (Ganancia del CORDIC)

$$A_n = \prod_n \sqrt{1 + 2^{-2i}}$$

i	x=2^-2i	Raiz(1+x)	An	i	x=2^-2i	Raiz(1+x)	An
0	1	1.4142135623731000	1.414213562	14	3.7253E-09	1.0000000018626400	1.64676025709862000000
1	0.25	1.1180339887498900	1.58113883	15	9.3132E-10	1.0000000004656600	1.64676025786545000000
2	0.0625	1.0307764064044200	1.629800601	16	2.3283E-10	1.0000000001164200	1.64676025805716000000
3	0.015625	1.0077822185373200	1.642484066	17	5.8208E-11	1.0000000000291000	1.64676025810509000000
4	0.00390625	1.0019512213675900	1.645688916	18	1.4552E-11	1.0000000000072800	1.64676025811707000000
5	0.00097656	1.0004881620988800	1.646492279	19	3.638E-12	1.000000000018200	1.64676025812007000000
6	0.00024414	1.0001220628628300	1.646693254	20	9.0949E-13	1.0000000000004500	1.64676025812082000000
7	6.1035E-05	1.0000305171124800	1.646743507	21	2.2737E-13	1.000000000001100	1.64676025812100000000
8	1.5259E-05	1.0000076293654300	1.64675607	22	5.6843E-14	1.0000000000000300	1.64676025812105000000
9	3.8147E-06	1.0000019073468100	1.646759211	23	1.4211E-14	1.0000000000000100	1.64676025812106000000
10	9.5367E-07	1.0000004768370400	1.646759996	24	3.5527E-15	1.00000000000000000	1.64676025812106000000
11	2.3842E-07	1.0000001192092800	1.64676019268469000000	25	8.8818E-16	1.00000000000000000	1.64676025812107000000
12	5.9605E-08	1.0000000298023200	1.64676024176197000000	26	2.2204E-16	1.00000000000000000	1.64676025812107000000
13	1.4901E-08	1.0000000074505800	1.64676025403129000000	27	5.5511E-17	1.00000000000000000	1.64676025812107000000

El algoritmo incluye una tercera ecuación que describe el acumulador angular:

i	radianes	grados	
0	0.78539816	45	
1	0.46364761	26.5650512	
2	0.24497866	14.0362435	
3	0.12435499	7.12501635	
4	0.06241881	3.57633437	
5	0.03123983	1.78991061	
6	0.01562373	0.89517371	
7	0.00781234	0.44761417	
8	0.00390623	0.2238105	
9	0.00195312	0.11190568	
10	0.00097656	0.05595289	
11	0.00048828	0.02797645	
12	0.00024414	0.01398823	
13	0.00012207 0.006994		
14	6.1035E-05 0.0034970		
15	3.0518E-05	0.00174853	

Modos de operación

El algoritmo puede operar en dos modos diferentes:

Modo rotación

- Rota un vector en un ángulo especificado
- El acumulador angular se inicializa con el ángulo a rotar
- La decisión de rotación en cada iteración se lleva a cabo de tal manera de disminuir el ángulo residual en el acumulador angular (se utiliza su signo)

Modo vector

- Rota un vector hacia el eje de coordenadas x, guardando los ángulos requeridos para lograrlo
- Busca minimizar la componente y del vector residual
- La dirección de rotación se decide por el signo de la componente y residual

Modos de operación

Modo rotación

$$x_{i+1} = x_i - y_i \cdot d_i \cdot 2^{-i}$$

$$y_{i+1} = y_i + x_i \cdot d_i \cdot 2^{-i}$$

$$z_{i+1} = z_i - d_i \cdot t g^{-1} (2^{-i})$$

Donde: $d_i = -1 \text{ si } z_i < 0$, en otro caso +1

Finalmente se tiene:

$$x_n = A_n(x_0.cos(z_0) - y_0.sen(z_0))$$

 $y_n = A_n(y_0.cos(z_0) + x_0.sen(z_0))$
 $z_n = 0$

Modos de operación

Modo vector

$$x_{i+1} = x_i - y_i \cdot d_i \cdot 2^{-i}$$

$$y_{i+1} = y_i + x_i \cdot d_i \cdot 2^{-i}$$

$$z_{i+1} = z_i - d_i \cdot t g^{-1}(2^{-i})$$

Donde: $d_i = +1 \text{ si } y_i < 0$, en otro caso -1

Finalmente se tiene:

$$x_n = A_n \cdot \sqrt{x_0^2 + y_0^2}$$

$$y_n = 0$$

$$z_n = z_0 + tg^{-1} \left(\frac{y_0}{x_0}\right)$$

i	radianes	grados	
0	0.78539816	45	
1	0.46364761	26.5650512	
2	0.24497866	14.0362435	
3	0.12435499	7.12501635	
4	0.06241881	3.57633437	
5	0.03123983	1.78991061	
6	0.01562373	0.89517371	
7	0.00781234	0.44761417	
8	0.00390623	0.2238105	
9	0.00195312	0.11190568	
10	0.00097656	0.05595289	
11	0.00048828	0.02797645	
12	0.00024414	0.01398823	
13	0.00012207	0.00699411	
14	6.1035E-05	0.00349706	
15	3.0518E-05	0.00174853	

i	radianes	grados	
0	0.78539816	45	
1	0.46364761	26.5650512	
2	0.24497866	14.0362435	
3	0.12435499	7.12501635	
4	0.06241881	3.57633437	
5	0.03123983	1.78991061	
6	0.01562373	0.89517371	
7	0.00781234	0.44761417	
8	0.00390623	0.2238105	
9	0.00195312	0.11190568	
10	0.00097656	0.05595289	
11	0.00048828	0.02797645	
12	0.00024414	0.01398823	
13	0.00012207	0.00699411	
14	6.1035E-05	0.00349706	
15	3.0518E-05	0.00174853	

i	radianes	grados	
0	0.78539816	45	
1	0.46364761	26.5650512	
2	0.24497866	14.0362435	
3	0.12435499	7.12501635	
4	0.06241881	3.57633437	
5	0.03123983	1.78991061	
6	0.01562373	0.89517371	
7	0.00781234	0.44761417	
8	0.00390623	0.2238105	
9	0.00195312	0.11190568	
10	0.00097656	0.05595289	
11	0.00048828	0.02797645	
12	0.00024414	0.01398823	
13	0.00012207	0.00699411	
14	6.1035E-05	0.00349706	
15	3.0518E-05	0.00174853	

i	radianes	grados	
0	0.78539816	45	
1	0.46364761	26.5650512	
2	0.24497866	14.0362435	
3	0.12435499	7.12501635	
4	0.06241881	3.57633437	
5	0.03123983	1.78991061	
6	0.01562373	0.89517371	
7	0.00781234	0.44761417	
8	0.00390623	0.2238105	
9	0.00195312	0.11190568	
10	0.00097656	0.05595289	
11	0.00048828	0.02797645	
12	0.00024414	0.01398823	
13	0.00012207	0.00699411	
14	6.1035E-05	0.00349706	
15	3.0518E-05	0.00174853	

•			
i	radianes	grados	
0	0.78539816	45	
1	0.46364761	26.5650512	
2	0.24497866	14.0362435	
3	0.12435499	7.12501635	
4	0.06241881	3.57633437	
5	0.03123983	1.78991061	
6	0.01562373	0.89517371	
7	0.00781234	0.44761417	
8	0.00390623	0.2238105	
9	0.00195312	0.11190568	
10	0.00097656	0.05595289	
11	0.00048828	0.02797645	
12	0.00024414	0.01398823	
13	0.00012207	0.00699411	
14	6.1035E-05	0.00349706	
15	3.0518E-05	0.00174853	

i	radianes	grados	
0	0.78539816	45	
1	0.46364761	26.5650512	
2	0.24497866	14.0362435	
3	0.12435499	7.12501635	
4	0.06241881	3.57633437	
5	0.03123983	1.78991061	
6	0.01562373	0.89517371	
7	0.00781234	0.44761417	
8	0.00390623	0.2238105	
9	0.00195312	0.11190568	
10	0.00097656	0.05595289	
11	0.00048828	0.02797645	
12	0.00024414	0.01398823	
13	0.00012207	0.00699411	
14	6.1035E-05	0.00349706	
15	3.0518E-05	0.00174853	

• Preprocesamiento (90 < ang < 180)

• Preprocesamiento (90 < ang < 180)

• Preprocesamiento (180 < ang < 270)

Arquitecturas

- Iterativa
- Unrolled
- Pipeline unrolled

Arquitectura iterativa

$$x_{i+1} = x_i - y_i \cdot d_i 2^{-i}$$

$$y_{i+1} = y_i + x_i \cdot d_i 2^{-i}$$

$$z_{i+1} = z_i - d_i t g^{-1}(2^{-i})$$

Arquitectura Unrolled

Arquitectura Pipeline Unrolled

Arquitectura Pipeline Unrolled

Ejercicios

- 1) Determinar cómo calcularía el seno y el coseno de un ángulo dado utilizando el algoritmo CORDIC.
- 2) Determinar cómo transformaría coordenadas polares en cartesianas utilizando el algoritmo CORDIC.
- 3) Determinar cómo calcularía la arcotangente de un ángulo dado utilizando el algoritmo CORDIC.
- 4) Determinar cómo transformaría coordenadas cartesianas en polares utilizando el algoritmo CORDIC.

Ejercicios

OPERATION	MODE	INITIALIZE	DIRECTION
Sine, Cosine	Rotation	$x=1/A_n$, $y=0$, $z=\alpha$	Reduce z to Zero
Polar to Rect.	Rotation	$x=(1/A_n)X_{mag}, y=0, z=X_{phase}$	Reduce z to Zero
General Rotation	Rotation	$x=(1/A_n)x_0, y=(1/A_n)y_0, z=\alpha$	Reduce z to Zero
Arctangent	Vector	$x=(1/A_n)x_0, y=(1/A_n)y_0, z=0$	Reduce y to Zero
Vector Magnitude	Vector	$x=(1/A_n)x_0, y=(1/A_n)y_0, z=0$	Reduce y to Zero
Rect. to Polar	Vector	$x=(1/A_n)x_0, y=(1/A_n)y_0, z=0$	Reduce y to Zero
Arcsine, Arccosine	Vector	$x=(1/A_n), y=0,$	Reduce y to Value
		$arg = \sin \alpha \text{ or } \cos \alpha$	in arg Register

FIN