Science -I

20161170 Shubh Mahesh wari

Project-I PART-I (Groid Problem)

A labice of length L 91 Ris a grid size Nis the total no. of cells.

C * Cet and Ret are off opposible sides.

B Let L = L/R

Assumptions:

a) To simply the model, whenever both cat/rat are a proving on to wait / not move corresponding to the wall

b) Sollprobality of wait a boundary = 1/4 ii) probablity of wait at corner = 1/2

(C) N> LJZ. The number of steps should be greater than minimum required to meet.

Let us assume the cat and not to
Let us assume the cat and rat to be 2 molecules, which are doing a randow walk.
walk
Hence the probability of being at ni, nz at
the LD space. Out of Museps (an DC.
if it takes or steps in n-dir i then it takey N-x steps in y direction.
P(n) on Prohabby of being at ni after on steps.
21 = sleps taken in right, mez to steps taken in bft.
$\alpha - \alpha - n$, $\alpha_1 + n_2 = N$
$\rho(n_1) = \frac{\chi_1}{\chi_1 \chi_2 } (\beta \pi_1 g_M)^{\chi_1} (\rho b f)^{\chi_2}.$
M, J M2 !
similarly for y-axis. yr = steps up and y2 = steps down.
y,+y2= N-x , y,-y2= n2
P(n2) = (N-n) (pup) 418 (Pdown) 42
g.! y2!

As the movement is multuelly endustre $\rho(n_1,n_2) = \rho(n_1) \cap \rho(n_2) = \rho(n_1) \times \rho(n_2)$ $P(n|3n_2) = \frac{3(1)}{3(1)} \times (2)^{n} \times (2)^{n} \times (2)^{n}$ Actual perdraliber would be $P = \sum_{n=1}^{\infty} P(n_1, n_2) \Rightarrow 1$ when cat and Ral meet P(meet) = Prof (n,n2) x Platen m2) Pat (ninz) = Pret (l-ni, l-nz) grat Borrot = 7 Mi lattricle 🎉 L= L/R ** P(meet) = Prat(n,1n2) xPrat (1-n, 1-n2) Protect, at all points) = E Prat(n,n2) + Prat (1-n, 1-n2)
tor consens or Mence P(meet) = [2] = (N-31) X such! X (N-31) [4, Jet) [4, 24) [4, 24) [4, 24) Summation & Sut, a (al × Airil(Ara) where a ATTITE N Stit de = Begellation tot orial = tologet Mind - mind = Mi anab-met = L-Mi di met + yent = N-x gob y latt grab = N-diat y, not - yeard = nz year - great = 6 12

Scanned by CamScanner

By sustibuiting & everything inderms of ni,nz and N Followed by Calculating the summation. 3 2 2 2 (2) (2 not) (N-12) (N-12) ($\left(\frac{n_1+x}{2}\right)\left(\frac{\alpha(-n_1)}{2}\right)\left(\frac{\alpha+x-x}{2}\right)$ $\left(\begin{array}{c}A_{2}+N-x-n_{2}\\2\end{array}\right)$ \times (n and) (N = mad). (L-NI +Ned) (x + Nr ol) (2-n2 +N-Ncd) (N-n(26 - L+n2) We can calculate this using a PC and Hence P(Swr vival of Rat) = 1-P(meet) Hence Probality of meet depends of NGIncl L if N < 1/2 the particles will never meet.

Cax: 2

Assuming they start from center.

$$P(meet) = P(n_1, n_2) \times P(n_1 \times n_2)$$

$$= P(n_1 \times n_2)^2$$

$$= \sum_{n_1} \sum_{n_2} \left(\frac{1}{2} \right) \left(\frac{2}{2} \right) \left(\frac{N-2}{2} \right) \frac{1}{2}$$

$$= \sum_{n_1} \sum_{n_2} \left(\frac{1}{2} \right) \left(\frac{2}{2} \right) \left(\frac{2}{2} \right) \frac{1}{2}$$

P(swinval) = 1- Probably (meet)

The same of the sa

PART-2 (Sphere Peroblem) supposes > Z-axis is the Line cutting the sphere and emerging out of the sphere at another point. -> Also, there is a plane my, that has aris on it, which was the sphere into 2 hemis phere - Blind cat and a blind rat are present on the Sphere. We show their position wing 1)0: ongle with the Z-axis i) & angle with the line of indestedion of plane with the plane. Because: a set of points can have angle o with Z-axis, as in the above example, all the points are on the circumference S. The typical circles and by the say plane of the sphere will look like

Probability of being at a point which make angle & with the arp plant.

 $P(x) = \frac{rdx}{2\pi r} = \frac{dx}{2\pi}$

Perobaliby of being ab a point which makes an angle o with the Zasa's

=> Area coccupied by the circular strip tota, area of the spere.

=> (ndo) (211 ndino) = sino, do

Hence the peroballides of being at a point is.

P(O14) = sino.dode

Anology: Displacement.

A's Original postbion

B: new possiblion

C= stop length

angle of displacement = arc length (stop length)

Assumption:

i) Basically assuming that Buill be small enough so that the helior cat and not bravel individually happen to cover the total swrface of the sphere.

Probabby Densiby Function, WO, &) dock = ?

Perobality at & point = sinodock

de => LinB do = Coss

w(Ore) dodg= sing x (sing loss dodg

= c2 sinBassdock

Perobeliby of meet = \int \word \word \word \word \dock

Den 16 H2 924

Sin2 Boos2B

Sin

Probabby of Swinizal of the rab =>

1- P(meet) =>

1- C4 cos B sin 2 B

74

Con

Conclusion: Answer to Questions.
a) Swipal/moeting is going to vary with dime
according to the abore equation. Since the probality of survival decreases
Since the probability of survival decreases with increase in time it. Probability of survival (time) Because at large time, more number of stops
0
b) i) it depends of L of the square. Hences as increases; chance of survival increases.
meeting & Ju. Hence It increases, chance of survival
each eat and rat to be at a point = 1/2
Probabile of swival = 1-1/24
in Smilaily for sphere persion. If a step 18 inin ruy small probablishy of being at a point of linning small survival Perobablishy = 1- (1) = 1-1/1602 ru
(47012)