Confidence Intervals

Jeffrey Woo

School of Data Science, University of Virginia

Confidence Intervals

2 Finding Multipliers

3 t Distributions

- We know that the sample mean, \bar{x} , describes our particular sample. However, if we select another random sample, the sample mean will probably be different.
- We do know that under some circumstances, the distribution of the sample means can be approximated by a normal distribution.
- We also know that with a larger sample size, the sample means will be closer to the population mean, on average.

Reality: we will not know the value of the population mean, μ . So we will apply the facts above to use the sample mean to estimate the population mean.

To Confidence Intervals

Goal(s) of confidence intervals:

- Provide an estimate for the unknown parameter of interest
- Provide a range of plausible values for the unknown parameter of interest
- Provide a measure of uncertainty

General Form of Confidence Intervals

Confidence intervals generally take the following form:

Estimate
$$\pm$$
 margin of error. (1)

The margin of error reflects how precise we believe our estimate is, and is calculated using the confidence level $C = 1 - \alpha$. C = 0.95 is considered the standard.

Confidence Levels and Margin of Error

- Confidence Level: If we obtain many random samples of the same sample size n, and construct a confidence interval with C% confidence level based on each sample, C% of samples will have a confidence interval that contains the population mean μ.
- Margin of Error: Suppose we obtain many random samples
 of the same sample size n, and construct a confidence interval
 with C% confidence level based on each sample. The
 difference between the sample mean and population mean in
 C% of samples will be no greater than the value of the margin
 of error.

Confidence Interval for Population Mean

The confidence interval for population mean is

$$\bar{x} \pm z_{1-\alpha/2} \times \frac{\sigma}{\sqrt{n}}$$
. (2)

- $z_{1-\alpha/2}$ denotes the value of the standard normal distribution that corresponds to the $(1-\frac{\alpha}{2})$ th percentile. In a confidence interval, this is also called a **multiplier**.
- Generally speaking, the margin of error can be viewed as multiplier × standard deviation of estimate.

Confidence Intervals

2 Finding Multipliers

3 t Distributions

Finding Multiplier in Cl

Finding Multiplier using R

Type qnorm(percentile) in R to find $z_{percentile}$.

Finding Multiplier

- Find the z multiplier at 90% confidence
- Find the z multiplier at 98% confidence
- Find the z multiplier at 99% confidence

Question: Do you notice a trend in the *z* multiplier as confidence level increases? Does this make sense?

Confidence Interval for Population Mean

Look back at (2). Do you notice anything strange about this formula?

Confidence Intervals

2 Finding Multipliers

3 t Distributions

When σ is Unknown

Recall that the population variance is

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

and the sample variance is

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}.$$

When σ is **unknown**, we use the sample standard deviation, s, to estimate σ .

Standard Error

- Previously, we computed the standard deviation of the sample mean, $sd(\bar{x})$, as $\frac{\sigma}{\sqrt{n}}$.
- When σ is unknown, we compute the **standard error** of the sample mean: $se(\bar{x}) = \frac{s}{\sqrt{n}}$.

When the standard deviation of a statistic is estimated from the data, the result is the **standard error of the statistic**.

The t Distribution

Scenario: a random sample of size n is drawn from $N(\mu, \sigma)$.

- When σ is known, $\bar{x} \sim N(\mu, \sigma/\sqrt{n})$, and so $Z = \frac{\bar{x} \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$.
- When σ is unknown and estimated using s, the sampling distribution of $\frac{\bar{x}-\mu}{s/\sqrt{n}}$ is approximated by a t distribution with degrees of freedom n-1.
- If we do not have a normal population, the approximation to the t distribution works well if we have a large enough sample size.

Degrees of Freedom

- t distributions are specified by their **degrees of freedom**.
- We specify t distributions using t_k, where k is the degrees of freedom.

t Distribution Vs Standard Normal

Both distributions are centered at 0, symmetric, bell-shaped. Their differences are:

- t_k has an associated degrees of freedom.
- *t_k* has slightly **larger spread**.

As the sample size increases, t_k approaches the standard normal.

Confidence Interval for Population Mean

We use s to estimate σ when it is unknown. The level C CI for a population mean becomes

$$\bar{x} \pm t_{1-\alpha/2,k} imes rac{s}{\sqrt{n}}$$
 (3)

where $t_{1-\alpha/2,k}$ is the value from the t_k curve with area C between $t_{\alpha/2,k}$ and $t_{1-\alpha/2,k}$. The degrees of freedom is k=n-1.

Finding Multiplier

In R, type qt(percentile, df) to find $t_{percentile,df}$.

- Find the t multiplier at 90% confidence with 10 df
- Find the t multiplier at 92% confidence with 35 df
- Find the t multiplier at 98% confidence with 50 df

Worked Example: Banks' Loan-to-Deposit Ratio (LTDR)

Question: The sample mean LTDR for 110 randomly selected American banks is 76.7 and the sample standard deviation is 12.3. Compute a 95% CI for the population mean LTDR. Based on this CI, is it reasonable to say that the average LTDR is less than 80 for the population?