CDA0017: Operating Systems

Donghyun Kang (donghyun@changwon.ac.kr)

NOSLab (https://noslab.github.io)

Changwon National University

Introduction

- When
 - Tuesday
 - #00: 12:00 13:30
 - #01: 13:30 15:00
 - Thursday
 - #00: 13:30 15:00
 - #01: 12:00 13:30
- Where
 - Lecture room #55110, 55 Engineering Bldg.
- Course homepage
 - https://noslab.github.io/pages/teaching/os.html

About me

- Donghyun Kang (강동현)
 - Professor @ CE Dept.
 - NOSlab (Next-generation Operating Systems Laboratory)
 - Operating systems, storage systems, distributed systems, embedded systems, ...
 - Email: <u>donghyun@changwon.ac.kr</u>
 - URL: https://noslab.github.io/
 - Tel: 055-213-3811
 - Office: #55412(4th floor), 55 Engineering Bldg.
 - Office hours: Monday Friday
 - The best way to contact me is by email

Textbook

- Operating Systems: Three Easy Pieces
 - Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau
 - CreateSpace Independent Publishing Platform
 - 2018
 - WebSite
 - https://pages.cs.wisc.edu/~rem zi/OSTEP/

Textbook (Korean)

- 운영체제 아주 쉬운 세 가지 이야기
 - 원유집 외 옮김
 - 홍릉과학출판사
 - 2017
 - WebSite
 - https://github.com/remziarpacidusseau/osteptranslations/tree/master/kore an

Reference 1

- Operating System Concepts
 - Abraham Silberschatz, Greg Gagne, and Peter B. Galvin
 - 10th edition
 - Wiley
 - 2018

Reference 2

- Linux Kernel Development,
 - Robert Love
 - 3rd Edition
 - Addison-Wesley Professional
 - 2010

Reference 3

- Website
 - The Linux Kernel Archives
 - Linux Cross Rereference

Prerequisites

- CDA0156: Open Source Software
- CDA0006: System Programming

You should be fluent in C programming!

Where are we?

Grading Policy

- Class attendance 10%
 - Must otherwise you will get 'F' grade
 - Attend 12 weeks and more
 - May
 - From an absent, it will be reflected on your grade (-2 point per absent)
 - Attending after lecture will be counted by late (-0.5 point per late)
 - ~ 15 minutes before
 - 2 lates = 1 absence

Grading Policy

- Projects / Quizzes: 40%
 - You will get '0' score for each project
 - Not run
 - No submission
 - More than 80% similarity
 - You will get '0' score for each quiz that is performed without prior notice
 - No submission

Grading Policy

- Mid exam 25%
 - You will get '0' score for the exam if you would not submit
- Final exam 25%
 - You will get '0' score for the exam if you would not submit

- If you get less than 60, you will fail this course.
 - There is no exception
- Grading policy is subject to change.

Lecture notes & Projects

- Lecture notes will be uploaded at LMS
 - Some of slides for this lecture are based on materials provided by the textbook publisher
 - They will be made in Korean
- Projects (xv6)
 - A teaching OS developed by MIT
 - Port of the Sixth Edition Unix (v6) in ANSI C
 - Runs on multi-core x86 systems
 - We are preparing 4 ~ 5 projects
 - These will be individual projects

Today's Talk

Briefly describing how to study operating systems

Topics

Intro	Virtualization		Concurrency	Persistence	Security
Preface	3 <u>Dialogue</u>	12 <u>Dialogue</u>	25 <u>Dialogue</u>	35 <u>Dialogue</u>	52 <u>Dialogue</u>
<u>TOC</u>	4 <u>Processes</u>	13 Address Spaces code	26 Concurrency and Threads code	36 <u>I/O Devices</u>	53 <u>Intro Security</u>
1 <u>Dialogue</u>	5 <u>Process API</u> code	14 Memory API	27 <u>Thread API</u> <u>code</u>	37 <u>Hard Disk Drives</u>	54 <u>Authentication</u>
2 Introduction code	6 Direct Execution	15 Address Translation	28 <u>Locks</u> <u>code</u>	38 Redundant Disk Arrays (RAID)	55 Access Control
	7 CPU Scheduling	16 <u>Segmentation</u>	29 Locked Data Structures	39 Files and Directories	56 <u>Cryptography</u>
	8 Multi-level Feedback	17 Free Space Management	30 Condition Variables code	40 File System Implementation	57 <u>Distributed</u>
	9 <u>Lottery Scheduling</u> code	18 Introduction to Paging	31 <u>Semaphores</u> code	41 Fast File System (FFS)	
		19 Translation Lookaside Buffers	32 <u>Concurrency Bugs</u>	42 FSCK and Journaling	Appendices
	11 <u>Summary</u>	20 Advanced Page Tables	33 Event-based Concurrency	43 <u>Log-structured File System (LFS)</u>	<u>Dialogue</u>
		21 Swapping: Mechanisms	34 <u>Summary</u>	44 <u>Flash-based SSDs</u>	Virtual Machines
		22 Swapping: Policies		45 Data Integrity and Protection	<u>Dialogue</u>
		23 <u>Complete VM Systems</u>		46 <u>Summary</u>	<u>Monitors</u>
		24 <u>Summary</u>		47 <u>Dialogue</u>	<u>Dialogue</u>
				48 <u>Distributed Systems</u>	Lab Tutorial
				49 <u>Network File System (NFS)</u>	Systems Labs
				50 Andrew File System (AFS)	xv6 Labs
				51 <u>Summary</u>	

Shedule

Week	Topics			
Week 1	Introduction to Operating Systems			
Week 2	Process			
Week 3	Scheduling & Multiprocessor Scheduling			
Week 4	Memory & Address Translation			
Week 5	Paging			
Week 6	TLB			
Week 7	Swapping & Concurrency			
Week 8	Midterm			
Week 9	Locks			
Week 10	Condition Variables & Semaphores			
Week 11	I/O Devices			
Week 12	File System			
Week 13	Locality & Crash Consistency			
Week 14	Log-structured Filesystems & Flash-base d SSD			
Week 15	Final Exam			

Q&A