

General information

Designation

Polyamideimide (Unfilled)

Tradenames

Duratron, Quadrant, Tecator, Torlon

Typical uses

Valves; bearings; electrical connectors; gears; parts for jet engines and internal combustion engines; printed circuit boards

Composition overview

Compositional summary

(-N-[CO2]-C6H3-CO-NH-R)n

Material family	Plastic (thermoplastic, amorphous)
Base material	PAI (Polyamide-imide)
Polymer code	PAI

Composition detail (polymers and natural materials)

Polymer	100	%
---------	-----	---

Price

Price	* 40	-	60	USD/kg	
				9	

Physical properties

Density	1.4e3	-	1.45e3	kg/m^3		
---------	-------	---	--------	--------	--	--

Mechanical properties

inechanical properties				
Young's modulus	4.78	-	5.02	GPa
Yield strength (elastic limit)	38	-	42	MPa
Tensile strength	182	-	202	MPa
Elongation	13.9	-	16.1	% strain
Compressive modulus	3.9	-	4.1	GPa
Compressive strength	* 210	-	230	MPa
Flexural modulus	4.88	-	5.12	GPa
Flexural strength (modulus of rupture)	228	-	252	MPa
Shear modulus	* 1.65	-	1.73	GPa
Shear strength	122	-	134	MPa
Poisson's ratio	0.44	-	0.46	
Shape factor	9.42			
Hardness - Vickers	11.4	-	12.6	HV
Hardness - Rockwell M	105	-	115	

Hardness - Rockwell R	* 120 - 130
Fatigue strength at 10^7 cycles	* 73 - 81 MPa
Mechanical loss coefficient (tan delta)	* 0.008 - 0.00832
Impact & fracture properties	
Fracture toughness	3.68 - 4.48 MPa.m^0.5
Impact strength, notched 23 °C	13.3 - 14.7 kJ/m^2
Impact strength, unnotched 23 °C	90.9 - 110 kJ/m^2
Thermal properties	
Glass temperature	264 - 286 °C
Heat deflection temperature 0.45MPa	* 278 - 340 °C
Heat deflection temperature 1.8MPa	250 - 306 °C
Maximum service temperature	200 - 220 °C
Minimum service temperature	* -195185 °C
Thermal conductivity	0.25 - 0.27 W/m.°C
Specific heat capacity	994 - 1.03e3 J/kg.°C
Thermal expansion coefficient	29.8 - 31.4 μstrain/°C
Electrical properties	
Electrical resistivity	2e22 - 2e24 μohm.cm
Dielectric constant (relative permittivity)	3.8 - 4.3
Dissipation factor (dielectric loss tangent)	0.026 - 0.031
Dielectric strength (dielectric breakdown)	22.8 - 24.8 MV/m
Comparative tracking index	100 - 250 V

Magnetic properties

Magnetic type	Non-magnetic

Optical properties

Refractive index	1.65 - 1.66
Transparency	Opaque

Absorption & permeability

Water absorption @ 24 hrs	0.31	-	0.35	%
Water absorption @ sat	3.8	-	4.2	%
Humidity absorption @ sat	2.6	-	3	%

Processing properties

Polymer injection molding	Limited use
Polymer extrusion	Limited use
Polymer thermoforming	Unsuitable

Linear mold shrinkage	* 0.025	-	0.03	%
Melt temperature	305	-	370	°C
Mold temperature	* 200	-	215	°C
Molding pressure range	40	-	55	MPa

Durability

Excellent
Excellent
Excellent
Limited use
Excellent
Limited use
Excellent
Unacceptable
Excellent
Self-extinguishing

Primary production energy, CO2 and water

Embodied energy, primary production	* 274	-	302	MJ/kg
CO2 footprint, primary production	* 15.2	-	16.8	kg/kg
Water usage	* 700	-	774	l/kg

Processing energy, CO2 footprint & water

Polymer extrusion energy	* 5.85	-	6.46	MJ/kg
Polymer extrusion CO2	* 0.439	-	0.485	kg/kg
Polymer extrusion water	* 4.84	-	7.26	l/kg
Polymer molding energy	* 19.4	-	21.5	MJ/kg
Polymer molding CO2	* 1.46	-	1.61	kg/kg
Polymer molding water	* 12.9	-	19.4	l/kg
Coarse machining energy (per unit wt removed)	* 1.94	-	2.14	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.146	-	0.161	kg/kg
Fine machining energy (per unit wt removed)	* 15.1	-	16.7	MJ/kg
Fine machining CO2 (per unit wt removed)	* 1.13	-	1.25	kg/kg
Grinding energy (per unit wt removed)	* 29.8	-	32.9	MJ/kg
Grinding CO2 (per unit wt removed)	* 2.23	-	2.47	kg/kg

Recycling and end of life

Recycle	✓			
Embodied energy, recycling	* 92.9	-	103	MJ/kg
CO2 footprint, recycling	* 5.16	-	5.7	kg/kg
Recycle fraction in current supply	0.1			%

Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 25 - 26.3 MJ/kg
Combustion CO2	* 2.44 - 2.56 kg/kg
Landfill	✓
Biodegrade	×

Notes

Other notes

Torlon PAI grades must be cured by heat treatment after molding to achieve full mechanical properties.

Reference sources

Torlon 4203L

Links

ProcessUniverse	
Producers	
Reference	
Shape	