Math 217 Fall 2025 Quiz 22 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Let V be a d-dimensional vector space, with two bases $\mathcal{B} = (b_1, \ldots, b_d)$ and $\mathcal{A} = (a_1, \ldots, a_d)$. The *change-of-basis matrix from* \mathcal{B} *to* \mathcal{A} is ...

Solution: The unique $d \times d$ matrix $S_{\mathcal{B} \to \mathcal{A}}$ that converts \mathcal{B} -coordinates into \mathcal{A} -coordinates; i.e., for every $v \in V$,

$$[v]_{\mathcal{A}} = S_{\mathcal{B} \to \mathcal{A}} [v]_{\mathcal{B}}.$$

Equivalently, the j-th column of $S_{\mathcal{B}\to\mathcal{A}}$ is the \mathcal{A} -coordinate vector of b_j :

$$S_{\mathcal{B}\to\mathcal{A}} = \begin{bmatrix} | & | \\ [b_1]_{\mathcal{A}} & \cdots & [b_d]_{\mathcal{A}} \\ | & | \end{bmatrix}.$$

(b) Let $T: V \to V$ be a linear transformation of a vector space V and let $\mathfrak{B} = (v_1, \ldots, v_n)$ be an ordered basis of V. The matrix of T with respect to \mathfrak{B} is ...

Solution: The $n \times n$ matrix $[T]_{\mathfrak{B}}$ whose j-th column is the \mathfrak{B} -coordinate vector of $T(v_j)$; i.e.,

$$[T]_{\mathfrak{B}} = \begin{bmatrix} | & | \\ [T(v_1)]_{\mathfrak{B}} & \cdots & [T(v_n)]_{\mathfrak{B}} \\ | & | \end{bmatrix}.$$

Equivalently, for every $v \in V$, $[T(v)]_{\mathfrak{B}} = [T]_{\mathfrak{B}} [v]_{\mathfrak{B}}$.

2. Suppose V is a vector space and $v_0 \in V$. Suppose also that v_1, \ldots, v_m are linearly independent vectors in V. Show that

$$v_0 \in \operatorname{Span}(v_1, \dots, v_m) \iff \{v_0, v_1, \dots, v_m\}$$
 is linearly dependent.

Solution: (\Rightarrow) If $v_0 = \sum_{i=1}^m c_i v_i$ for some scalars c_i , then

$$v_0 - \sum_{i=1}^m c_i v_i = 0$$

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

is a nontrivial linear relation among v_0, v_1, \ldots, v_m , so they are linearly dependent.

(\Leftarrow) If v_0, v_1, \ldots, v_m are linearly dependent, there exist scalars a_0, a_1, \ldots, a_m , not all zero, with $a_0v_0 + \sum_{i=1}^m a_iv_i = 0$. If $a_0 = 0$, then $\sum_{i=1}^m a_iv_i = 0$ is a nontrivial relation among v_1, \ldots, v_m , contradicting their independence. Hence $a_0 \neq 0$, and

$$v_0 = -\sum_{i=1}^m \frac{a_i}{a_0} v_i \in \operatorname{Span}(v_1, \dots, v_m).$$

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) Let $\mathcal{B} = (\vec{v}_1, \dots, \vec{v}_n)$ be an orthonormal ordered basis for \mathbb{R}^n . If $\vec{x} \in \mathbb{R}^n$, then

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} \vec{x} \cdot \vec{v}_1 \\ \vec{x} \cdot \vec{v}_2 \\ \vdots \\ \vec{x} \cdot \vec{v}_n \end{bmatrix}.$$

Solution: TRUE. Writing $\vec{x} = \sum_{j=1}^{n} c_j \vec{v}_j$ and taking dot products with \vec{v}_i , $\vec{x} \cdot \vec{v}_i = \sum_{j=1}^{n} c_j (\vec{v}_j \cdot \vec{v}_i) = c_i$ since \mathcal{B} is orthonormal. Thus the \mathcal{B} -coordinates are the listed dot products.

(b) For any $S \subseteq \mathbb{R}^n$, S^{\perp} is a subspace of \mathbb{R}^n .

Solution: TRUE. By definition, $S^{\perp} = \{x \in \mathbb{R}^n : x \cdot s = 0 \text{ for all } s \in S\}$. We have $0 \in S^{\perp}$ since $x \cdot 0 = 0$, and if $x, y \in S^{\perp}$ and $\alpha, \beta \in \mathbb{R}$, then for all $s \in S$, $(\alpha x + \beta y) \cdot s = \alpha(x \cdot s) + \beta(y \cdot s) = 0$, so $\alpha x + \beta y \in S^{\perp}$. Hence S^{\perp} is a subspace.