•				
	~	м	•	

Statements	Reasons		
In an isosceles $\triangle ABC$ with $m \overline{AB} = m \overline{AC}$. If $\angle C$ is acute,			
then $(\overline{AB})^2 = (\overline{AC})^2 + (\overline{BC})^2 - 2m\overline{AC}.m\overline{CE}$,	By Theorem 2		
$(\overline{AC})^2 = (\overline{AC})^2 + (\overline{BC})^2 - 2 \text{ m} \overline{AC} \cdot \text{m} \overline{CE}$	Given mAB = mAC		
$\Rightarrow (\overline{BC})^2 - 2m\overline{AC}.m\overline{CE} = 0$	Cancel (AC) ² on bath sides		
or $(\overline{BC})^2 = 2m\overline{AC}$, $m\overline{CE}$	•		

SOLVED EXERCISE 8.2

Q1. In a $\triangle ABC$ calculate m \overline{BC} when m \overline{AB} = 6cm, m \overline{AC} = 4cm and m $\angle A$ = 60°.

Solution:

Required: $m\overline{CB} = ?$

A (dd) (dd) (dd) (dd)

In
$$\triangle$$
 ABC, we have

$$(\overline{BC})^{2} = (\overline{AB}) + (\overline{AC})^{2} - 2(\overline{AB}) \cdot (\overline{AD})$$

$$= (6)^{2} + (4)^{2} \times 2(6)(x) \qquad \because \cos 60^{\circ} = \frac{x}{4}$$

$$= 36 + 16 - 2(6)(2) \qquad \qquad \frac{1}{2} = \frac{x}{4}$$

$$= 52 - 24 \qquad 2x = 4$$

$$= 28 \qquad \Rightarrow \qquad x = 2$$

$$m \overline{BC} = \sqrt{28}$$

= $2\sqrt{7}$ cm \Rightarrow = .5.29 cm

Q2. In $\triangle ABC$, $\overrightarrow{AB} = 6$ cm, $\overrightarrow{BC} = 8$ cm, $\overrightarrow{AC} = 9$ cm and D is the mid point of side \overrightarrow{AC} . Find length of the median \overrightarrow{BD} .

Solution:

According to the figure, we have

We know that

$$(\overline{AC})^{2} + (\overline{BC})^{2} = 2[(\overline{AD})^{2} + (\overline{BD})^{2}]$$

$$(6)^{2} + (8)^{2} = 2[(4.5)^{2} + (\overline{BD})^{2}]$$

$$36 + 64 = 2(4.5)^{2} + 2(\overline{BD})^{2}$$

$$100 = 40.5 + 2(\overline{BD})^{2}$$
Or
$$2(\overline{BD})^{2} = 100 - 40.5$$

$$2\overline{BD}^{2} = 59.5$$

$$\Rightarrow \overline{BD}^{2} = 29.75$$

$$\Rightarrow \overline{BD} = \sqrt{29.75} = 5.45 \text{ cm}$$

Q3. In a quadrilateral \overline{AB} CD prove that $(\overline{AC})^2 + (\overline{AD})^2 = 2[(\overline{AB})^2 + (\overline{BC})^2]$

Adding (1) and (2), we get

$$(\overline{AC})^2 + (\overline{BD})^2 = (\overline{CD})^2 + (\overline{BC})^2 + 2(\overline{BC})\overline{CE} + (\overline{AB})^2 + (\overline{BC})^2 - 2(\overline{BC})(\overline{BF})$$
$$= (\overline{AB})^2 + (\overline{CD})^2 + 2(\overline{BC})^2 + 2(\overline{BC})(\overline{CE})^2 - 2(\overline{BC})(\overline{BF})$$

In parallelogram opposite sides are congruent, so

$$\overrightarrow{AB} = \overrightarrow{DC}$$
, $\overrightarrow{AD} = \overrightarrow{BC}$, and $\overrightarrow{BF} = \overrightarrow{CE}$
 $(\overrightarrow{AC})^2 + (\overrightarrow{BD})^2 = 2(\overrightarrow{AB})^2 + (\overrightarrow{AB})^2 2(\overrightarrow{BC})^2 + 2(\overrightarrow{CE}) - 2(\overrightarrow{BC})\overrightarrow{CE}$
 $(\overrightarrow{AC})^2 + (\overrightarrow{BD})^2 = 2(\overrightarrow{AB})^2 + 2(\overrightarrow{BC})^2$
 $(\overrightarrow{AC})^2 + (\overrightarrow{BD})^2 = 2[(\overrightarrow{AB})^2 + (\overrightarrow{BC})^2]$

Hence Proved.

Q4. Prove that the sum of the squares of the sides of a parallelogram is equal to sum of the squares of its diagonals. Given:

ABCD is a parallelogram with \overline{AC} and \overline{BD} are its diagonals.

To Prove

$$\overline{AB}^2 + \overline{BC}^2 + \overline{CD}^2 + \overline{DA}^2 = \overline{AC}^2 + \overline{BD}^2$$

In AACD

$$\overline{DC}^2 + \overline{AD}^2 = 2\overline{OD}^2 + \overline{OA}^2$$
 (i)

And In AABC

$$\overline{AB}^2 + \overline{BC}^2 = 2\overline{OB}^2 + \overline{OA}^2$$
 (ii)

Adding (i) & (ii)

$$\overline{DC}^2 + \overline{AD}^2 + \overline{AB}^2 + \overline{BC}^2 = 4\overline{OA}^2 + 2\overline{OD}^2 + 2\overline{OB}^2$$

$$\overline{AB}^2 + \overline{BC}^2 + \overline{CD}^2 + \overline{AD}^2 = 4\overline{OA}^2 + 2\overline{OD}^2 + 2\overline{OD}^2$$
 $\left[: \overline{OB} = \overline{OD} \right]$

$$\overline{AB}^2 + \overline{BC}^2 + \overline{CD}^2 + \overline{AD}^2 = 4\overline{OA}^2 + 4\overline{OD}^2$$

$$\overline{AB}^2 + \overline{BC}^2 + \overline{CD}^2 + \overline{AD}^2 = (2\overline{OA})^2 + (2\overline{OD})^2$$

$$\overline{AB}^2 + \overline{BC}^2 + \overline{CD}^2 + \overline{AD}^2 = \overline{AC}^2 + \overline{BD}^2$$

Hence proved

SOLVED MISCELLANEOUS EXERCISE 8

Q1. In a $\triangle ABC$, $m \angle A = 60^{\circ}$, prove that $(\overline{BC})^2 = (\overline{AB})^2 + \overline{AC}^2 - m \overline{AB} \cdot m \overline{AC}$.

Solution:

In a $\triangle ABC$, m $\angle A = 60^{\circ}$,

Given:

In a △ABC, m∠A = 60°

Required:

$$(\overline{BC})^2 = (\overline{AB})^2 + (\overline{AC})^2 - \overline{AB}.\overline{AC}$$

Draw $\overline{CD} \perp \overline{AB}$, so that the Projection of \overline{AC} on \overline{AB} .

Proof:

In right angle AACD

$$\angle A = 60^{\circ}$$
 and $\angle ACD = 30^{\circ}$ (being complement of \overline{CA})

