Rýchly bilaterálny filter

Karol Troška, Tomáš Pelka

7. ledna 2018

Optimalizácia základného bilaterálneho filtru

Bilaterálny filter je nelineárny, hrany zachovávajúci, šum redukujúci filter, ktorý pracuje na princípe konvolúcie. Konkrétny popis filtru je

$$I^{f}(x) = \frac{1}{W_{p}} \sum_{x_{i} \in \Omega} I(x_{i}) f_{r}(||I(x_{i}) - I(x)||) g_{s}(||x_{i} - x||),$$

kde

$$W_p \sum_{x_i \in \Omega} f_r(||I(x_i) - I(x)||) g_s(||x_i - x||)$$

Konvolúcia má však zložitosť $O(n^2)$, čo môže byť nevyhovujúce pre veľké obrázky, prípadne pre veľké okno filtru. Táto zložitosť dokáže byť redukovaná použitím FFT na prevod priestorového signálu obrázku do frekvencie. Konvolúcia v priestore je vo frekvencií obyčajné násobenie, čo má zložitosť O(n). Samotná FFT a spätná FFT majú zložitosť O(nlog(n)), čo je, tým pádom, aj celková zložitosť algoritmu.

Táto optimalizácia však nemôže byť aplikovaná priamo na bilaterálny filter, v dôsledku použitia funkcie g_s , ktorá vytvára závislosť filtrácie priestor. Výsledná optimalizácia v prvom kroku diskretizuje intenzitu do $NB_SEGMENT$ hodnôt i^j a spočíta sa lineárny filter pre každú intenzitu zvlášť.

$$J_s^j = \frac{1}{k^j(s)} \sum_{p \in \Omega} f(p-s)g(I_p - i^j)I_p$$

a

$$k^{j}(s) = \sum_{p \in \Omega} f(p - s)g(I_{p} - i^{j}).$$

Výsledok filtrácie pre pixel s je lineárna interpolácia medzi výstupom J_s^j a dvoch najbližších hodnôt i^j .