Reinforcement Learning

Studiengang: Data Science and Business Analytics

Vortragender: Sebastian Eresheim

Ort, Datum: St. Pölten, 05.12.2021

Organizational

Lecture is based on:

Reinforcement Learning: An Introduction
 Richard Sutton, Andrew Barto

 www.incompleteideas.net/book/the-book.html

Machine Learning Supervised Learning **Unsupervised Learning** Reinforcement Learning

Reinforcement Learning is motviated by learning:

- like a human
- via interaction (Trial and Error)
- "learning what to do!" not "how to do it".

In reinforcement learning an agent learns how to map actions to observations in order to maximise a numerical reward, which it receives from an environment.

In reinforcement learning an **agent** learns how to map <u>actions</u> to <u>observations</u> in order to maximise a numerical <u>reward</u>, which it receives from an **environment**.

Tabular Methods Direct Policy Methods Approximate Solution Methods

Delayed Reward

Credit Assignment Problem

Non-Stationarity

Partial Observability

Multi-Agent

 ${\color{red}\textbf{Image:}}\ \underline{\textbf{https://deepmind.com/blog/article/capture-the-flag-science}}$

Milestones of RL

Atari Games

Source: Two Minute Papers https://www.youtube.com/watch?v=V1eYniJ0Rnk

Milestones of RL

AlphaGo – AlphaZero

Image: https://cdn-images-1.medium.com/max/1600/0*J2HH4TDqGCuKbufS.png

Milestones of RL

Open AI 5

Milestones of RL

AlphaStar

Source: Youtube https://www.youtube.com/watch?v=cUTMhmVh1qs

Milestones of RL

INTERACTIVE PART I

Multi-armed Bandits

n choices of k different actions

After each choice: numerical reward from stationary distribution

Objective: maximize total reward over n choices

Multi-armed Bandits

 A_t ... Action at timestep t

 R_t ... Reward at timestep t

optimal action-value function:

(for the multi-armed bandit problem)

$$q_*(a) \coloneqq \mathbb{E}[R_t|A_t = a]$$

We usually don't know that value!

 $q_t(a)$... Estimate of $q_*(a)$ at timestep t

INTERACTIVE PART II

Multi-armed Bandits

Estimator of action-value function:

$$q_t(a) \coloneqq \frac{\text{sum of rewards when } a \text{ taken before } t}{\text{number of times } a \text{ taken before } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{[A_i = a]}}{\sum_{i=1}^{t-1} \mathbb{1}_{[A_i = a]}}$$

Indicator function:

$$\mathbb{1}_{[A_i=a]}(a) \coloneqq \begin{cases} 1 & \text{if } A_i = a \\ 0 & \text{if } A_i \neq a \end{cases}$$

complicated way of saying: average of rewards

Action Selection Methods

Random action selection method:

Randomly select one of the possible actions.

Graph of a probability mass function (pmf) of the distribution:

No exploitation - Only exploration

Action Selection Methods

Greedy action selection method:

Always select the action with the highest action-value according to the action-value function.

$$A_t = \operatorname*{argmax}_{a} q_t(a)$$

Action Selection Methods

Graph of a probability mass function(pmf) of the distribution:

Only exploitation - no exploration

Action Selection Methods

ε -Greedy action selection method:

In most $(1-\epsilon)$ cases select the best action an in a small amount of cases select a random action.

$$A_t = \begin{cases} \operatorname{argmax} q_t(a) & \text{in } (100 - \varepsilon) \% \text{ cases} \\ a & \text{random action} & \text{in } \varepsilon \% \text{ cases} \end{cases}$$

Mostly exploitation - small exploration

Action Selection Methods

Graph of a probability mass function (pmf) of the distribution:

Mostly exploitation - small exploration

Multi-armed Bandits

Simplified: only one action

$$q_n = \frac{R_1 + R_2 + \dots + R_n}{n}$$

$$q_{n} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} (R_{n} + \sum_{i=1}^{n-1} R_{i})$$

$$= \frac{1}{n} (R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i})$$

$$= \frac{1}{n} (R_{n} + (n-1)Q_{n-1})$$

$$= \frac{1}{n} (R_{n} + nQ_{n-1} - Q_{n-1})$$

$$= Q_{n-1} + \frac{1}{n} (R_{n} - Q_{n-1})$$

$$q_{n+1} = q_n + \frac{1}{n+1}(R_n - q_n)$$

$$NewEstimate \leftarrow OldEstimate + StepSize[Target - OldEstimate]$$

$$Error$$

Error

$$R_1 = 1,93$$
 $Q_1 = 0 + \frac{1}{1}[1,93 - 0] = 1,93$
 $R_2 = 2,35$ $Q_2 = 1,93 + \frac{1}{2}[2,35 - 1,93] = 2,14$
 $R_3 = 3,32$ $Q_3 = 2,14 + \frac{1}{3}[3,32 - 2,14] = 2,53$

Incremental Implementation

 $NewEstimate \leftarrow OldEstimate + StepSize[Target - OldEstimate]$ Error

$$R_4 = 2,43$$
 $Q_4 = 2,53 + \frac{1}{4}[2,43 - 2,53] = 2,505$

$$R_5 = 3.28$$
 $Q_5 = 2.505 + \frac{1}{5}[3.28 - 2.505] = 2.66$

$$R_6 = 3.91$$
 $Q_6 = 2.66 + \frac{1}{6}[3.91 - 2.66] = 2.868$

Incremental Implementation

 $NewEstimate \leftarrow OldEstimate + StepSize[Target - OldEstimate]$ **Error**

$$R_7 = 2,34$$
 $Q_7 = 2,868 + \frac{1}{7}[2,34 - 2,868] = 2,793$
 $R_8 = 3,42$ $Q_8 = 2,793 + \frac{1}{8}[3,42 - 2,793] = 2,871$
 $R_9 = 2,64$ $Q_9 = 2,871 + \frac{1}{9}[2,64 - 2,871] = 2,845$

Incremental Implementation

 $NewEstimate \leftarrow OldEstimate + StepSize[Target - OldEstimate]$ Error

Constant step-size Parameter $\alpha \in (0,1]$

$$Q_{n+1} := Q_n + \alpha (R_n - Q_n)$$

$$\begin{split} Q_{n+1} &= Q_n + \alpha (R_n - Q_n) \\ &= \alpha R_n + (1 - \alpha) Q_n \\ &= \alpha R_n + (1 - \alpha) [\alpha R_{n-1} + (1 - \alpha) Q_{n-1}] \\ &= \alpha R_n + (1 - \alpha) \alpha R_{n-1} + (1 - \alpha)^2 Q_{n-1} \\ &= \alpha R_n + (1 - \alpha) \alpha R_{n-1} + (1 - \alpha)^2 \alpha R_{n-2} + \dots + (1 - \alpha)^{n-1} \alpha R_1 + (1 - \alpha)^n Q_1 \\ &= (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i \end{split}$$

Contextual Bandits

- Synonym for the full reinforcement learning problem
- Multiple situations in contrast to only one
- Action also affects the next situation not only the reward (Return)

Multi-armed Bandits

- In which subfields can RL be devided into? What are the major differences?
- What is the mulit-armed bandit problem? What is the difference to the full RL problem?
- What is an acition-value function? How is it's estimator defined?
- What is the incremental notation of an action-value function estimator?
- Which action selecton methods exist?

Tic-Tac-Toe

MDP – Example

State Space:
$$S = \{ \begin{array}{c} S_1 \\ \hline \end{array}, \begin{array}{c} S_2 \\ \hline \end{array}, \begin{array}{c} S_3 \\ \hline \end{array}, \begin{array}{c} S_4 \\ \hline \end{array}, \begin{array}{c} S_5 \\ \hline \end{array}, \dots \}$$

Action Space:
$$\mathcal{A} = \{ \begin{array}{c} a_1 & a_2 & a_3 & a_4 & a_5 \\ \hline + & + & + & + & + \\ a_6 & a_7 & a_8 & a_9 \\ \hline + & + & + & + & + \\ \end{array}$$

MDP – Example

Time Step t 0 a_6 $\overline{a_5}$ a_7 a_8 $oldsymbol{S}_{30}$ S96 s_{37} a_2 a_4 a_5 a_8 a_9 S_{41} S_{83} . S₉₁ S_{55} S_{74}

Time Step t

3

4

Time Step t

3

MDP – Example

 $A_0 R_1 S_1$

 A_1 R_2 S_2 A_2 R_3 S_3

0 📉 🔀

 R_4

MDP – Example

 S_t , A_t , R_t are random variables

Like dice rolls or coin flips, they can have different results for separate executions.

$$S_3 = S_{124}$$

$$A_2 = a_2$$

$$S_3 =$$

$$A_2 =$$

$$\mathbb{P}(S_{t+1} = s_{124} | S_t = s_{75}, A_t = a_4) = ?$$

Markov Decision Process

State Space: $S = \{s_1, s_2, ..., s_N\}$

Action Space: $\mathcal{A} = \{a_1, a_2, ..., a_M\}$

Set of Rewards: $\mathcal{R} \subset \mathbb{R}$

State-Transition

Probability Function: $p: S \times S \times A \rightarrow [0,1]$

Reward Function: $R: \mathcal{R} \times \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$

MDP – Transition Function

State-Transition Probability Function: $p: S \times S \times A \rightarrow [0,1]$

$$p(s', s, a) \coloneqq \mathbb{p}(S_{t+1} = s' | S_t = s, A_t = a)$$

- Defines how the <u>environment</u> behaves
- Function is usually not known
- Tic-tac-toe: contains rules of the games, as well as the opponents behavior

MDP - Reward Function

Reward Function: $R: S \times A \times S \rightarrow \mathbb{R}$

- Defines what the environment rewards
- Function is usually designed by a human and therefore known
- Tic-tac-toe: contains rules of the games, as well as the opponents behavior

The probability of each possible value of S_t and R_t depends **only** on the **immediately preceding** state and action and **not on earlier** states and actions.

"The future only depends on the present and not on the past"

$$p(S_{t+1} = s' | S_t = s, A_t = a) =$$

$$p(S_{t+1} = s' | S_t = s, A_t = a, ..., S_0 = s'', A_0 = a'',)$$

Policy:
$$\pi: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$$

- defines how the <u>agent</u> behaves
- Rows are probability functions over the action space
- Example: random policy

π	a_1	a_2	a_3	a_4
s_1	0.11	0.8	0.06	0.03
s_2	0.01	0.1	0.7	0.19
s_3	1.0	0.0	0.0	0.0
s_4	0.65	0.32	0.01	0.02
s ₅	0.25	0.25	0.25	0.25
s ₆	0.4	0.1	0.2	0.4

Value Functions: $V: S \to \mathbb{R}$

$$Q \colon \mathcal{S} \times \mathcal{A} \to \mathbb{R}$$

indicate how "good" a state or an action given a state is

$$V(\frac{800}{100}) = 0.64$$

$$Q(\bigcirc, \bigcirc) = 1.0$$

	V	Q	a_1	a_2	a_3	a_4
s_1	2.3	s_1	-0.1	4.3	0.3	1.8
s_2	-6.8	s_2	7.5	3	8.2	-5.7
s_3	10.0	s_3	0.0	10.0	0.0	0.0
s ₄	-5.4	s_4	6.5	0.32	0.01	-0.2
s ₅	4.1	<i>s</i> ₅	3.0	0.21	-7.2	0.25
<i>s</i> ₆	-0.4	<i>s</i> ₆	4.5	0.1	-2.0	0.4

Value Function

State:

Greedy Actions:

You are:

Your opponent is:

It is your turn!

You are:

Your opponent is:

It is your turn!

indicates the next move

Which Value Function to choose?

Naive approach:

5 outcomes

3 positive

$$=> V(\frac{100}{100}) = \frac{3}{5} = 0.6$$

What if intermediate reward is given?

=> Need to add all reward until the end

$$G_t \coloneqq \sum_{n=t+1}^T \gamma^n R_n$$

is also a random variable

VF

Naive approach:

5 outcomes

3 positive

$$=> V(\frac{100}{100}) = \frac{3}{5} = 0.6$$

Implies equal probability for all outcomes.

What if agent only chooses actions from the second column if possible?

$$=> V(\frac{100}{100}) = \frac{2}{3} = 0.667$$

Value function depends on current policy (which we know)

$$\Rightarrow V_{\pi}(s)$$

Value function also depends on the environment (which we don't know)

=> Sampling

Sampling targets:

$$V_{\pi}(s) \approx \mathbb{E}_{\pi}[G_t | S_t = s]$$

$$Q_{\pi}(s, a) \approx \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

VF - Monte Carlo Method

1) Initialize with random policy and 0 for value funciton Q(s, a)

Q	a_1	a_2	a_3	a_4	
s_1	0.0	0.0	0.0	0.0	
s_2	0.0	0.0	0.0	0.0	
s_3	0.0	0.0	0.0	0.0	
s_4	0.0	0.0	0.0	0.0	
S ₅	0.0	0.0	0.0	0.0	
s ₆	0.0	0.0	0.0	0.0	

π	a_1	a_2	a_3	a_4
s_1	0.25	0.25	0.25	0.25
s_2	0.25	0.25	0.25	0.25
s_3	0.25	0.25	0.25	0.25
s_4	0.25	0.25	0.25	0.25
s ₅	0.25	0.25	0.25	0.25
S 6	0.25	0.25	0.25	0.25

2) Play episode with current policy π

VF – Monte Carlo Method

2) Play episode with current policy π

3) Iterate episode from back to front, calculate the return G_t and update the value function

4) Make policy ϵ -greedy with regard to value function

5) continue with step 2)