END Semester Examination QP for subject AI & ML for Mechanical Engineers at COEP Technological University Pune Set A

(An Autonomous Institute of Government of Maharashtra)

END Semester Examination

Programme: Final Year B.Tech Semester: VIII

Course Name: Al & ML for Mechanical Engineers Course Code: ME(DE)-22016

Branch: Mechanical Engineering Academic Year: 2022-23

Duration: 3 hours Max Marks: 60

Student PRN No.

Instructions:

Figures to the right indicate the full marks.

- Mobile phones and programmable calculators are strictly prohibited.
- Writing anything on question paper is not allowed.
- Exchange/Sharing of stationery, calculator etc. not allowed.

		Mrk	РО	CO
Q.1	A decision tree classifier is to be trained to predict the likelihood of a vehicle rolling	6	1,	1,
	over during a sharp turn based on input features: vehicle speed during the turn (mph),		2,	2,
	angle of the turn (degrees), type of vehicle (e.g., sedan, SUV, pickup truck), weight		3,	3,
	(lbs), road surface conditions (e.g., dry, wet, icy), tire tread, driver behavior (e.g.,		4,	5
	aggressive, cautious).		5,	
	Observe the dataset: Identify discrete & continuous attributes along with their		8	

- Observe the dataset; Identify discrete & continuous attributes along with their features.
- Calculate information gain of attribute 'Vehicle Type' & 'Road Surface'.
- Compare them and comment on which one of these two is suitable for the best split.

Speed	Turn	Vehicle	Weight	Road	Tire	Driver	Rollover	
(mph)	Angle	Type	(lbs)	Surface	Tread	Behavior		
35	50°	SUV	4000	Wet	Good	Aggressive	Yes	
25	30°	Sedan	3200	Dry	Good	Cautious	No	
40	70°	Pickup	5000	Icy	Poor	Aggressive	Yes	
30	45°	SUV	4500	Wet	Good	Cautious	No	
50	80°	Pickup	5500	Dry	Good	Aggressive	Yes	
20	20°	Sedan	2800	Dry	Good	Cautious	No	
30	60°	SUV	4200	Wet	Good	Aggressive	Yes	
40	75°	Pickup	5100	lcy	Poor	Cautious	Yes	
35	55°	SUV	4100	Wet	Good	Cautious	No	
45	90°	Pickup	5800	Dry	Good	Aggressive	Yes	

(An Autonomous Institute of Government of Maharashtra)

Q.2 Use PCA to find the principal components of a heat transfer problem on a heat exchanger with the training data consisting of 4 attributes i.e. inlet temperature of fluid A, inlet temperature of fluid B, flow rate of fluid A and overall heat transfer coefficient.

3	1,	1

- 2, 2,
- 3, 3,
- 5 4,

5

Sample	Inlet temperature	Inlet temperature	Flow rate	Overall HT
Campic	of fluid A (°C)	of fluid B (°C)	of fluid A	coefficient
0	300	200	20	0.1
1	350	150	22	0.2
2	325	180	21	0.3
3	310	190	25	0.4
4	275	225	19	0.5
5	290	210	23	0.6

Q.3 In dataset given below, there are 3 attributes - 'Location', 'Type of Solar Panel', and 'Efficiency' and 6 samples of different solar energy systems. Using Bayes classifier, calculate the probability of a solar panel being a Monocrystalline panel given that it has an efficiency of 0.18 and is installed at location California.

6	1	1
U	1,	1,

- 2, 2,
- 3, 3,
- 4, 5
- 5,
- 6,
- 7

Sample	Type of Solar Panel	Efficiency	Location
1	Monocrystalline	0.18	California
2	Polycrystalline	0.16	Texas
3	Thin Film	0.14	Florida
4	Monocrystalline	0.18	New York
5	Polycrystalline	0.16	Ontario
6	Thin Film	0.14	Quebec

- Q.4 A confusion matrix for a cutting tool faults classification is shown below. Observe this 2 matrix and calculate.
 - 1, 2,

Correctly classified samples (considering all classes and per class)

3,

Incorrectly classified samples (considering all classes and per class)

5

- Overall accuracy of classification
- True positive, True negative, False positive, False negative, Precision, F1 Score

Actual					
Normal	Inner Race Fault	Outer Race Fault	Ball Fault		
140	00	00	00	Normal	_
00	10	05	00	Inner Race Fault	Predicted
00	00	20	03	Outer Race Fault	icte
00	00	02	08	Ball Fault	ď

(An Autonomous Institute of Government of Maharashtra)

- Q.5 Answer the following questions.
- A. How does following decision tree algorithm work for controlling combustion engine? Why is partial overlapping of drag start and hybrid drive observed in bottom center decision node? Also, identify various nodes, attributes and features.
- 30 1, 1,
 - 2, 2,
 - 3, 3,
 - 4, 5
 - 5

B. Following graphs represent change in vibration signal (in terms of acceleration) with respect to time that depicts 2 conditions i.e. healthy and faulty cutting tool.

In order to develop machine learning based classification model, which statistical features will you extract from these vibration plots so as to depict difference between two. Draw a flowchart showing step by step procedure involved in developing classification model.

1, 1,

2,

2 2

2,

- 3, 3,
- 4, 5
- 5

(An Autonomous Institute of Government of Maharashtra)

- C. Compare bagging and boosting ensemble techniques. Does the Random forest tree algorithm fall into any of these categories? Justify.
- 5 2 2,

1,

2,

3

1,

2,

3

D. What is the scope of machine learning in this picture?

- 3, 4,
- 5,

5

- 6,
- о, 7

Economic factors
 At least one hub city
 with GDP >\$30 billion

Criteria for creating

- by 2030
 Urban population in cluster not exceeding 50 million in 2030
- Efficiency factor
 - Distance: radius of not more than 500 km
- Consumer demographics
 - Age
 - Education
 - Other productcategory-specific demographics such as media preference and attitude toward pricing¹

1 Not included.

F. Match the terms with respect to their role in reinforcement learning.

Term	Role
1. Agent	a. A situation in which an agent is present or surrounded by.
2. Environment	b. An entity that can perceive/explore the environment and act
	upon it
3. Action	c. A situation returned by the environment after each action
	taken by the agent.
4. State	d. The moves taken by an agent within the environment.
5. Reward	e. A strategy applied by the agent for the next action based on
	the current state.
6. Policy	f. A feedback returned to the agent from the environment to
	evaluate the action of the agent.
7. Value	g. An expected long-term retuned with the discount factor and
	opposite to the short-term reward.
8. Q-value	h. Takes one additional parameter as a current action

5 2 4

(An Autonomous Institute of Government of Maharashtra)

E. What's the significance of these kernelized models in SVM based classification/ regression?

5 2 2,

3

Q.6 Answer in one line. (Any 6)

6

A. Which ML based technique will you recommend for Dahihandi task during Janmashtami? Justify your answer.

2, 1,

3, 2

5,

6

- B. How does deep learning differ from shallow learning?
- C. How do neural networks work in deep learning?

2 1

2 4

COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra)

D.	Draw a general labeled architecture of a Convolutional Neural Network.		
E.	What's the use of Markov Decision process in reinforcement learning?	2	4
F.	Identify activation functions.	2	4
G.	Draw a flowchart showing steps in Q-leaning.	2	4
Н.	What is the difference between KNN and K means?	2	2
l.	What is the maximum margin hyperplane for a dataset with 10 data points in a two-	2	2
	dimensional space using SVM?		
J.	Given a dataset with 100 data points and 3 features, how many hyperplanes are there	2	2
	in a linear SVM with binary classification?		
K.	What is the maximum number of support vectors in a binary SVM with 100 data	2	2
	points?		
L.	Consider a dataset with three classes: red, blue, and green. Draw a scatter plot of the	2	2
	data points in a two-dimensional feature space, where the x-axis represents feature 1		
	and the y-axis represents feature 2. Suppose we want to train a support vector		
	machine (SVM) to classify this data using both the one-vs-all and the one-vs-one		
	multi-class strategies. Draw a diagram showing the decision boundaries and the		
	support vectors for both strategies. Label the decision regions for each class and		
	indicate which strategy is more suitable for this dataset.		
