

Yuzhi Liu Jing Cheng Guanyu Qu Meixu Chen

Analyzing Different Factors Impacting the Unemployment Rate

INTRODUCTION

OVERVIEW OF THE DATA STRUCTURE

Dataset Source: U.S. Bureau of labor statistics

Dataset Composition

- Rows: Each row represents a year, starting from 1974.
- Columns: The first column lists the years, and the subsequent columns represent months from January to December, with data recorded for each month.

Relevance in Analysis

- Time Series Data: long-term view of economic levels, making it suitable for trend analysis over time
- Economic Indicators: unemployment level, unemployment rate, CPI are key indicators, useful for assessing economic conditions.

Application

Forecasting: Economists and analysts can use historical unemployment trends to forecast future labor market conditions.

Economic Research: Researchers can use this data to study the impact of economic policies, recessions, and expansions on employment levels.

Policy Making: Government agencies can analyze this data to inform policy decisions related to labor markets, unemployment benefits, and workforce development programs.

		unemployment_rate											
	Labor Force Statistics from the Current Population Survey												
	Original Data Value												
	Series Id:	LNS14000000											
	Seasonally Adjusted												
	Series title:	(Seas) Unemployment Rate											
	Labor force status:	Unemployment rate											
	Type of data:	Percent or rate											
	Age:	16 years and over											
	Years:	1973 to 2023											
	Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	De
	1973	4.9	5.0	4.9	5.0	4.9	4.9	4.8	4.8	4.8	4.6	4.8	4.
	1974	5.1	5.2	5.1	5.1	5.1	5.4	5.5	5.5	5.9	6.0	6.6	7.
	1975	8.1	8.1	8.6	8.8	9.0	8.8	8.6	8.4	8.4	8.4	8.3	8.
	1976	7.9	7.7	7.6	7.7	7.4	7.6	7.8	7.8	7.6	7.7	7.8	7.
	1977	7.5	7.6	7.4	7.2	7.0	7.2	6.9	7.0	6.8	6.8	6.8	6.
	1978	6.4	6.3	6.3	6.1	6.0	5.9	6.2	5.9	6.0	5.8	5.9	6.
	1979	5.9	5.9	5.8	5.8	5.6	5.7	5.7	6.0	5.9	6.0	5.9	6.
	1980	6.3	6.3	6.3	6.9	7.5	7.6	7.8	7.7	7.5	7.5	7.5	7.
	1981	7.5	7.4	7.4	7.2	7.5	7.5	7.2	7.4	7.6	7.9	8.3	8.
	1982	8.6	8.9	9.0	9.3	9.4	9.6	9.8	9.8	10.1	10.4	10.8	
	1983	10.4	10.4	10.3	10.2	10.1	10.1	9.4	9.5	9.2	8.8	8.5	8.
	1984	8.0	7.8	7.8	7.7	7.4	7.2	7.5	7.5	7.3	7.4	7.2	7.
	1985	7.3	7.2	7.2	7.3	7.2	7.4	7.4	7.1	7.1	7.1	7.0	7.
	1986	6.7	7.2	7.2	7.1	7.2	7.2	7.0	6.9	7.0	7.0	6.9	6.
7	1987	6.6	6.6	6.6	6.3	6.3	6.2	6.1	6.0	5.9	6.0	5.8	5.

- Data loading
- Removing irrelevant rows
- Column selection
- Renaming Columns
- Reshaping data
- Data creation and filtering
- Sorting

CLEAN DATA

10	Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
11	1974	5.1	5.2	5.1	5.1	5.1	5.4	5.5	5.5	5.9	6.0	6.6	7.2
12	1975	8.1	8.1	8.6	8.8	9.0	8.8	8.6	8.4	8.4	8.4	8.3	8.2
13	1976	7.9	7.7	7.6	7.7	7.4	7.6	7.8	7.8	7.6	7.7	7.8	7.8
14	1977	7.5	7.6	7.4	7.2	7.0	7.2	6.9	7.0	6.8	6.8	6.8	6.4
15	1978	6.4	6.3	6.3	6.1	6.0	5.9	6.2	5.9	6.0	5.8	5.9	6.0
16	1979	5.9	5.9	5.8	5.8	5.6	5.7	5.7	6.0	5.9	6.0	5.9	6.0
17	1980	6.3	6.3	6.3	6.9	7.5	7.6	7.8	7.7	7.5	7.5	7.5	7.2
18	1981	7.5	7.4	7.4	7.2	7.5	7.5	7.2	7.4	7.6	7.9	8.3	8.5

Nearly the SAME

Relationship between COVID-19 and Unemployment Level

Relationship between COVID-19 and Consumer Price Index (CPI)

- Data: CPI for all consumers
- X Label: Date (2004-2023)
- Y Label: consumer price index
- Train: 2004-2019
- Linear Regression
- First-Order Difference

Unemployment Rate VS. Education Data

The regression line was found to be decreasing, but overall in a horizontal line.

SO DOES THE EDUCATION RATE!!

Hypothesis:

The spread of tertiary education has an upward impact on employment rates

Data:

High school education rate (1970 - 2021) College education rate (1970 - 2021) Unemployment rate (1974 - 2023)

```
1970
                              1980
                                     1990 \
               Name
                       NaN
                                     NaN
                NaN
                              NaN
                NaN
                     Total
                              NaN
                                     NaN
               Name
                      1970
                              1980
                                     1990
District of Columbia
                     26.2%
                            25.5%
          California
                     32.8%
            Colorado
                     34.4%
                            34.6%
         Washington
                     36.2%
                            37.4%
                                   27.9%
                     35.0%
                            37.1%
              0regon
                                   28.9%
                Utah
                     35.9%
                             36.0%
       Massachusetts
                     34.9%
            Arizona
                     31.6%
                            34.3%
           Virginia
                     25.2%
                            28.4%
                                    26.6%
                     34.5%
                            38.6%
           Minnesota
                                   33.0%
           Maryland
                     28.5%
                            32.5%
                     25.1%
                            28.8%
     North Carolina
           New York 31.2%
                            34.1%
           Illinois 31.9%
                            35.1%
                                    30.0%
           Nebraska
                     37.2%
                                    34.7%
                            40.6%
                     35.8%
                            39.2%
              Kansas
         New Mexico
                     30.0%
                            34.1%
       North Dakota
                     27.6%
                            31.3%
        Connecticut
                     31.7%
                            34.4%
                                   29.5%
         New Jersey
                     31.8%
                            35.9%
      United States
                     31.1%
                            34.6%
                     34.6%
                            36.5%
               Idaho
                     35.9%
                            35.1%
              Hawaii
                                   28.7%
            Georgia 22.4%
                            28.5%
                                   29.6%
      New Hampshire
                     34.4%
                            37.2%
                     38.9%
             Nevada
                     34.0%
                            38.0%
            Montana
       Rhode Island 29.0% 32.8%
                                   29.5%
```

After Cleaning the DATA

Name	1970	1980	1990	
Name	1970	1980	1990	
United States	10.7%	16.2%	20.3%	
Alabama	7.8%	12.2%	15.7%	
Alaska	14.1%	21.1%	23.0%	
Arizona	12.6%	17.4%	20.3%	
Arkansas	6.7%	10.8%	13.3%	
California	13.4%	19.6%	23.4%	
Colorado	14.9%	23.0%	27.0%	

Name	1970	1980	1990	1
NaN	NaN	NaN	NaN	
NaN	Total	NaN	NaN	
Name	1970	1980	1990	
District of Columbia	26.2%	25.5%	21.2%	
California	32.8%	31.4%	22.3%	
Colorado	34.4%	34.6%	26.5%	
Washington	36.2%	37.4%	27.9%	
0regon	35.0%	37.1%	28.9%	
Utah	35.9%	36.0%	27.2%	
Massachusetts	34.9%	36.4%	29.7%	

WE ARE MISSING U.S. DATA

The state that best represents the national high school education average is: California.

Code Methodology:

- Use pandas convert file into data frame / Clean the data
- Manhattan Distance
- Linear Regression

RESULT

Conclusion:

They **DON'T** have correlation with each other.

X - Features:

High school Education rate College Education Rate

Y - Label:

Unemployment rate by year

Is there a cycle in unemployment rate, civilian labor force, and employed civilians?

Hypothesis: There is an annual cycle in unemployment rate, civilian labor force, and the number of employed civilians.

Methodology:

- Take the first order difference of each data
- Plot by month
- Plot autocorrelation and lag

Data:

- Unemployment Rate (1974 2023)
- Civilian Labor Force Level (1974 2023)
- Employed Civilian Level (1974 2023)

Change in Unemployment Rate

Based on the autocorrelation plot, there is no correlation between unemployment rate and itself.

Change in Amount of Civilian Labor Force Participants

When we zoom in on the autocorrelation plot, we can see that there is a positive correlation every 72 months and a negative correlation between the change in amount of civilian labor force participants and itself every 243 months.

Change in Amount of Employed Civilians

- The original data failed to pass the ADF test.
- Hence, we had to perform First- Order differencing.

Analyzing trends for Original data

- The differentiated datapassed the ADF test. Withp-value = 0.00001
- Therefore, data is now good for ARIMA training

Analyzing trends for Differentiate data

Model Fitting and ARIMA Parameter Selection

We divided the data into two segments: 90% is allocated for training, and the remaining 10% is designated for testing

P = 0 D = 1 Q = 2

```
7304.423878
                           7300.462765
                                         00,697365
                                                      7312,920515
7634.084431
                                         7313.012658
7429, 188471
             7300.524471
                                                      7319,242155
                           /306.690920
7362.688254
             7306,663328
                           7312,977827
                                         7319.294861
                                                      7301.061814
7337.743871
             7312,950544
                           7319.254451
                                         7309.507196
                                                      7305.838512
7327.195955
             7309.216846
                           7307.417197
                                        7314.980747
                                                      7326,924467
             7325.714899
7320,682815
                                         7322.480149
                                                      7307.317635
                           7313.900106
7326,203848
             7310,404968
                           7315,921427
                                         7325.248899
                                                      7314,532136
```

5 7318.918172 7323.059521 7318.968940 7309.634910 7323.032606 7328.918837 7311.626945 7331.371962 7315.955210 7323.750536 7340.278885 7330.219276 7332.374020 7341.992170

Ljung-Box

Check Residuals

Result of the Trends

Root Mean Squared Error (RMSE): 2187.591101690848

Mean Absolute Error (MAE): 683.7228488532103

10th Percentile AFE: -821.9133937193822 25th Percentile AFE: -339.11339371938215 50th Percentile AFE: -134.61339371938215 75th Percentile AFE: 30.63660628061784 90th Percentile AFE: 212.98660628061785

THANKS!