α) Είναι $P(x) = \alpha x^3 + \beta x^2 + x = x \left(\alpha x^2 + \beta x + 1\right)$, οπότε έχει μία ρίζα τη x = 0. Συνεπώς οι άλλες δύο ακέραιες ρίζες, θα είναι ρίζες του τριωνύμου $\alpha x^2 + \beta x + 1$, που επειδή έχει ακέραιους συντελεστές, θα πρέπει οι δύο αυτές ακέραιες ρίζες να είναι διαιρέτες του σταθερού όρου, δηλαδή του 1. Δεδομένου ότι οι μόνοι διαιρέτες του 1 είναι το 1 και το -1, συμπεραίνουμε ότι οι άλλες δύο ακέραιες ρίζες είναι το 1 και το -1.

Τελικά το P(x) έχει ρίζες τους αριθμούς 0 , 1 και -1.

β) Είναι
$$P(1) = 0 \Leftrightarrow \alpha + \beta + 1 = 0$$
 (1).

Eπίσης
$$P(-1) = 0 \Leftrightarrow -\alpha + \beta - 1 = 0$$
 (2).

Με πρόσθεση κατά μέλη των (1) και (2) έχουμε ότι $2\beta = 0 \Leftrightarrow \beta = 0$ και με αντικατάσταση στην (1) έχουμε ότι $\alpha = -1$.

γ) Με
$$\alpha = -1$$
 και $\beta = 0$ είναι $P(x) = -x^3 + x = x(1-x^2)$

i. Το πρόσημό του P(x) φαίνεται στον παρακάτω πίνακα.

X	-∞		-1		0	•	1	+∞
X		-		-	•	+		+
$1-\chi^2$		-	9	+		+ (-
P(x)		+	9	-	•	+		-

Συνεπώς η ανίσωση P(x) > 0 αληθεύει για κάθε $x \in (-\infty, -1) \cup (0, 1)$.

ii. Είναι
$$\log \sqrt{10} = \log 10^{\frac{1}{2}} = \frac{1}{2} \cdot \log 10 = \frac{1}{2} \cdot 1 = \frac{1}{2}$$
, οπότε $P(\log \sqrt{10}) = P(\frac{1}{2}) > 0$, αφού όπως δείξαμε παραπάνω $P(x) > 0$ για $x \in (0,1)$.