Command	Explanation	Abbreviation
correlate y x	gives correlation of <i>x</i> and <i>y</i>	corr
regression y x	regresses y on x	reg
predict yhat	creates vector of predicted values yhat after reg	
predict e, resid	creates vector of residuals e after reg	
test x = c	tests $H_0: x = c$ against $H_a: x \neq c$	

The following regresses the price of an automobile on its mileage-per-gallon using heteroskedasticity robust standard errors.

```
. sysuse auto (1978 Automobile Data)
```

. regress price mpg, vce(robust)

 price	Coef.				Interval]
mpg	-238.8943 11253.06	57.47701	0.000	-353.4727 8509.272	-124.316 13996.85

You test the claim that one more mile per gallon is associated with a lower price by \$400. Specifically, $H_0: \beta_2 = -400$ against $H_a: \beta_2 \neq -400$.

. test mpg =
$$-400$$

(1) mpg = -400
F(1, 72) = 7.86
Prob > F = 0.0065

 $F(1,72) = t^2$ when there is only one regressor, so the *t*-statistic is $\sqrt{7.86} = 2.803$, which can be confirmed by manually calculating

$$t = \frac{-238.8943 - (-400)}{57.47701} = 2.803.$$

The p-value shown is 0.0065, which can be confirmed with di 2*ttail(72,2.803), so reject the null hypothesis at any conventional significance level.

Note that the residual has mean zero, as it always will.

- . predict e, resid
- . sum e

Variable	1	0bs	Mean	Std.	Dev.	Min	Max
	+						
e	1	74 -	-6 29e-06	2605	621 -3184	1 174	9669 721