زبان ماشین و اسمبلی

حميدرضا رضاپور

نحوه ارزشیابی

حضور در کلاس 2 غره

پروژه 3 غره

امتحان میان ترم 4 \dot{a} ره

امتحان پایان ترم 11 غره

HamidReza.Rezapour@Yahoo.com

🗱 شماره تماس:

09033339291

نال تلگرام: Official_Rezapour

فهرست

- ۱ مبناها معماری داخلی ۸۰۸۶
 - ۲– دستور mov و ...
 - BCD slael T
 - ۴ وقفه ها
 - ۵- اعداد علامت دار
 - ۶- رشته ها
 - ٧- ماكرو پروسيجر
 - ۸- برنامه نویسی ۳۲ بیتی

مبناها

مبنای ۱۰ به ۲

Ex. Convert 25 ₁₀ to binary					
		Quotient	Remainder		
25/2	=	12	1	LSB (least significant bit)	
12/2	=	6	0 🛉		
6/2	=	3	0		
3/2	=	1	1		
1/2	=	0	1	MSB (most significant bit)	
Theref	fore	$25_{10} = 110$	012		

مبنای ۱۰ به ۲

Ex. Convert
$$39_{10}$$
 to binary $32 + 0 + 0 + 4 + 2 + 1 = 39$
Therefore, $39_{10} = 100111_2$

مبنای ۲ به ۱۰

Ex. Convert 11001 ₂ to decimal					
Weight:	24	2 ³	2 ²	2 ¹	20
Digits:	1	1	0	0	1
Sum:	16 +	8 +	0 +	0 +	$1 = 25_{10}$

مبنای ۱۶

Decimal	Binary	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

مبنای ۲ به ۱۶

```
Ex. Represent binary 100111110101 in hex

1001 1111 0101

= 9 F 5
```

مبنای ۱۶ به ۲

```
Ex. Convert hex 29B to binary
2 9 B
= 0010 1001 1011
```

مبنای ۱۰ به ۱۶

$$\frac{32}{10}$$
 $\frac{16}{8}$ $\frac{4}{1}$ $\frac{2}{1}$ $\frac{1}{1}$ \frac

$$45_{10} = 0010 \ 1101_2 = 2D_{16}$$

Ex. Convert 629₁₀ to hex

$$\frac{512}{1} \quad \frac{256}{0} \quad \frac{128}{0} \quad \frac{64}{0} \quad \frac{32}{1} \quad \frac{16}{0} \quad \frac{8}{0} \quad \frac{4}{0} \quad \frac{2}{1} \quad \frac{1}{0}$$

$$1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1$$

$$629_{10} = 512 + 64 + 32 + 16 + 4 + 1 = 0010 \quad 0111 \quad 0101_2 = 275_{16}$$

DARAD

مبنای ۱۶ به ۱۰

Ex.
$$6B2_{16} = 0110 \ 1011 \ 00 \ 10_{2}$$

$$1024 \ 512 \ 256 \ 128 \ 64 \ 32 \ 16 \ 8 \ 4 \ 2 \ 1$$

$$1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$$

$$1024 + 512 + 128 + 32 + 16 + 2 = 1714_{10}$$

جمع در مبنای ۱۶

تفریق در مبنای ۱۶

Ex. Perform hex subtraction: 59F - 2B8

59F LSD:
$$15-8=7$$

- $2B8$ 9 + $16-11=14=E_{16}$
2E7 5 - $1-2=2$

تفریق در مبنای ۱۶

Ex. Perform hex subtraction: 59F – 2B8

59F LSD:
$$15-8=7$$

- $288 \over 2E7$ $9+16-11=14=E_{16} \over 5-1-2=2$

درون کامپیوتر

سازمان درونی کامپیوتر

Internal Organization of Computers

نمودار بلوكى داخل يك CPU

Internal Block Diagram of a CPU

MARAO

CISC در مقایسه با CISC

- Complex Instruction Set Computer (CISC)
 - Many different instructions with many different formats
 - But, only small subset encountered with Linux programs

- Reduced Instruction Set Computers (RISC)
- But, Intel has done just that!

ريزپردازنده 80x86

Intel 8086 (1978)

1 MB addressable RAM

16-bit registers

16-bit data bus

- Intel 80286 (1982)
 - 16 MB addressable RAM
 - Protected memory
 - introduced IDE bus architecture
 - Up to 20MHz

Intel 8088 (1979)

1 MB addressable RAM

16-bit registers

8-bit data bus

- Intel 386 (1985)
 - · 4 GB addressable RAM
 - 32-bit registers
 - paging (virtual memory)
 - Up to 33MHz

Intel 486 (1989) instruction pipelining 8K cache

- Pentium (1992)
- Pentium Pro (1995)
- Pentium II (1997)
- Pentium III (1999)
- Pentium 4 (2000)
- Pentium D (2005, Dual core)

درون 8086

DX - data register

CX - count register

• IP - the instruction pointer. 20

ثبات ها

Category	Bits	Register Names
General	16	AX, BX, CX, DX
	8	AH, AL, BH, BL, CH, CL, DH, DL
Pointer	16	SP (stack pointer), BP (base pointer)
Index	16	SI (source index), DI (destination index)
Segment	16	CS (code segment), DS (data segment) SS (stack segment), ES (extra segment)
Instruction	16	IP (instruction pointer)
Flag	16	FR (flag register)

مثال

AX = 0011000000111001

AH = 00110000

AL = 00111001

ثبات های قطعه

- CS points at the segment containing the current program.
- **DS** generally points at segment where variables are defined.
- SS points at the segment containing the stack.
- ES extra segment register, it's up to a coder to define its usage.

segment: value in segment register (CS, DS, SS, ES).

offset : value in purpose register (BX, SI, DI, BP).

آدرس فيزيكي

$$DS = 1234$$

$$SI = 7890$$

1234: 7890

آدرس فیزیکی:

$$1234 * 10h + 7890 = 19BD0$$

$$DS = 1230$$
$$SI = 0045$$

ثبات های پرچم

• Flags Register - determines the current state of the processor.

15 0
Overlow — Direction — Interupt — Trace
Sign
Auxiliary Carry ———————————————————————————————————

Control flags: TF, IF, DF

مثال (ثبات پرچم)

1001 1100 + <u>0110 0100</u> 0000 0000

$$PF = 1$$

$$AF = 1$$

$$ZF = 1$$

$$SF = 0$$

مثال (ثبات پرچم)

0101010000111001 + 0100010101101010 1001100110100011

ZF=0

CF=0

SF=1

AF=1

PF=1

تمام بیتهای نتیجه 0 نیستند.

carry در بیت شماره 15 وجود ندارد.

MSB نتیجه برابر با یک میباشد.

در بیت شماره 3 یک carry وجود دارد.

تعداد بیتهای یک در بایت مرتبه پائین نتیجه زوج است.

مثال (ثبات پرچم)

FFFFh +
FFFFh

1 FFFEh
1111 1111 1110

SF = 1

PF = 0

ZF = 0

CF = 1

ثبات های ۳۲ بیتی

i386 Programmer's Model

خط لوله

nonpipelined (e.g., 8085)

fetch 1 exec 1 fetch 2 exec 2

pipelined (e.g., 8086)

سیکل اجرای دستورات

- Fetch
- Decode
- · Fetch operands
- Execute
- Store output

