Pravděpodobnost a Statistika 1

Poznámky z přednášek

Letní semestr 2020/2021

Viktor Soukup, Lukáš Salak

Obsah

1 První přednáška 2

1 První přednáška

 $\mbox{Modely n\'ahody} \rightarrow \mbox{Pravděpodobnost} \rightarrow \mbox{Pozorovan\'a data} \rightarrow \mbox{Modely n\'ahody}$

Model náhody např. kostka 1,...,6,

Pozorovaná data: 1,5,4,3,3

otázka na pravděpodobnost: jaká je pravděpodobnost. . . hodně pozorovaných dat \to statistika na model náhody.

Příklad (Schwartz-Zippel algoritmus): Máme dány dva polynomy f(x), g(x) stupně d. Chceme zjistit, zda jsou stejné, a to co nejrychleji.

Problém: g(x) je součin několik polynomů stupně $\leq \frac{d}{4}$, dostávame víc než lineární čas.

Řešení: Algoritmus: zvolíme náhodně $x \in \{1, 2, ..., 100d\}$, ověříme, zda $f(x_1) = g(x_1)$. Když $f \neq g$, tak x_1 je kořen polynomu f - g. ... takových x_1 je $\leq d$.

$$P(f(x_1) = g(x_1) : f \neq g) \le \frac{1}{100}$$

Pokud jsme spokojeni s 1%, končíme, když ne, volíme $x_2, x_3 \dots \in \{1, 2, \dots, 100d\}$, pak

$$P(Prox_1, x_2, x_3 \dots f(x_i) = g(x_i) : f \neq g) \le \left(\frac{1}{3}\right)^3 = 10^{-6}$$

... aproximační algoritmy

Některé jevy neumíme/nechceme popsat kauzálně

- 1. hod kostkou
- 2. tři hody kostkou, nekonečně mnoho hodů kostkou
- 3. hod šipkou na terč
- 4. počet emailů za den
- 5. dobu běhu programu (v reálnem počítači)...

Důvody:

- 1. fyzikální vlastnost přírody?
- 2. komplikovaný proces (počasí, medicína, molekuly plynu...)
- 3. neznáme vlivy (působení dalších lidí, programů...)
- 4. randomizované algoritmy (test prvočíselnosti, quicksort)
- 5. náhodné grafy (Ramsayovy čísla)

Pro popis pomocí teorie pravděpodobnosti napřed vybereme množinu elementárních jevů (sample space) Ω

$$\Omega = \{1,2\dots,6\} = [6] \implies \text{hod kostkou}$$

$$\Omega = [6]^3 \implies \text{hod třemi kostkami}$$

Definice: Prostor jevů

 $\mathbb{F} \subset \mathbb{P}(\Omega)$

Často $\mathcal{F} = \mathcal{P}(\Omega)$, to je možné vždy, když je Ω spočetná. Např. pro $\Omega = \mathbb{R}$ to už nejde. $\mathbb{F} \subseteq \mathbb{P}(\Omega)$ je prostor jevů (též σ -algebra), Pokud

1.
$$\emptyset \in \mathcal{F} \implies \Omega \backslash A \in \mathcal{F}, a$$

2. **TODOOT**

Definice: P: $\mathcal{F} \to [0,1]$ se nazývá pravděpodobnost (probability), pokud:

1.
$$P(\emptyset) = 0, P(\Omega) = 1$$
, a

2.
$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$
, pro libovolnou posloupnost po dvou disjunktních jevů **TODOOT**

Šance (odds) jevu A je $O(A) = \frac{P(A)}{P(A^c)}$. Např. šance na výhru je 1 ku 2 znamená, že pravděpodobnost výhry je $\frac{1}{3}$; šance, že na kostce padne šestka je 1 ku 5.

Příklad: "A je jistý jev"znamená P(A) = 1. Také se říká, že A nastáva skoro jistě (almost surely), zkráceně s.j. (a.s.).

"A je nemožný jev"znamená P(A) = 0.

$$P(A) = 0 \implies {}^{?}A = \emptyset$$

 \leftarrow axiom

 \rightarrow platí často, ne vždy

Např. A= střed kruhu (házení šipek na terč) $\implies P(A)=0$ B spočetná (konečná, velká jako \natural) množina:

$$P(B) = 0 + 0 + 0 + \dots = 0$$

 B_i je *i*-tý bod, $B = \bigcup B_i$

Věta: V pravděpodobnostním prostoru (Ω, \mathcal{F}, P) platí pro $A, B \in \mathcal{F}$:

1.
$$P(A) + P(A^c) = 1$$

$$2. A \subseteq B \implies P(A) \le P(B)$$

3.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

4. $P(A_1 \cup A_2 \cup ...) \leq \sum_i P(A_i)$ (subaditiva, Booleova nerovnost) (nevyžadujeme disjunktnost, pak by platila rovnost)

Dk:

1.
$$\Omega = A \cup A^c$$
; A, A^c disj.,
 $1 = P(\Omega) = P(A) + P(A^c)$

2.
$$P(B) = P(A) + P(B \setminus A) \ge P(A)$$

- 3. cvičení TODOOT
- 4. trik zdisjunktnení: z $A_1, A_2...$ uděláme disjunktní množiny

$$B_1 = A_1, B_2 = A_2 \backslash A_1, B_3 = A_3 \backslash A_1 \cup A_2 \dots$$

$$B_i \subseteq A_i \implies P(B_i) \le P(A_i)$$

$$B_i \cap B_j = \emptyset : j < i \dots B_i \cap B_j \subseteq B_i \cap A_j = \emptyset$$

$$\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$$

$$\subseteq ok$$

opačná inklúziua TODOOT

$$P(\bigcup A_i = P(\bigcup B_i) = \sum P(B_i) \le \sum P(A_i)).$$

Příklad: Pravděpodobnostní prostory

- 1. Konečný s uniformní pravděpodobností Ω je libovolná konečná množina, $\mathcal{F}=\mathcal{P}(\Omega),$ $P(A)=\frac{|A|}{|\Omega|}.$
- 2. Diskrétní $\Omega = \{\omega_1, \omega_2 \dots\}$ je libovolná spočetná množina. Jsou dány $p_1, p_2 \dots \in [0, 1]$ se součtem 1. $P(A) = \sum_{i:\omega \in A} p_i \text{ (cinknutá loterie, nějaké možnosti mají jiné procenta)}$
- 3. Spojitý $\Omega\subseteq\mathbb{R}^d \text{ pro vhodné } d \text{ } (\Omega \text{ např. uzavřená nebo otevřená})$ $\mathcal{F} \text{ vhodná (obsahuje např. všechny otevřené množiny)}$ $f:\Omega\to[0,1] \text{ je funkcne taková, že } \int_{\Omega}f(x)dx=1.$ $P(A)=\int_{A}f(x)dx$ Speciální případ: $f(x)=1/V_d(\Omega)$ $P(A)=\frac{V_d(A)}{V_d(\Omega)}, \text{ kde } V_d(A)=\int_{A}1 \text{ je d-rozměrný objem A.}$
- 4. Bernoulliho krychle nekonečné opakování $\Omega = S^{\natural}$, kde S je diskrétní s pravdepodobností Q, \mathcal{F} vhodná (obsahuje např. všechny množiny tvaru $A = A_1 \times \cdots \times A_k \times S \times S \times \cdots$) $P(A) = Q(A_1) \dots Q(A_k)$

Příklad: Nepříklady:

- 1. Náhodné přirozené číslo: můžeme si vybrat mnoha způsoby, Ale všechna přirozená čísla nemají stejnou pravděpodobnost. není možné, aby měly všechny stejnou nenulovou pravděpodobnost, protože pokud $P(0) = P(1) = P(2) \cdots = P$ tak $P(\mathbb{N}) = p + p + p \cdots = \infty$.
- 2. Náhodné reálne číslo
- 3. Betranův paradox

Definice: Podmíněná pravděpodobnost

Pokud $A, B \in \mathcal{F}aP(B) > 0$, pak definujeme podmíněnou pravdě
podobnost A při B (probability of A given B) jako

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Q(A) := P(A|B). Pak (Ω, \mathcal{F}, Q) je pravděpodobností prostor.

Definice: Zřetězené podmíňování $P(A \cap B) = P(B)P(A|B)$

Věta: Pokud $A_1, \ldots A_n \in \mathcal{F}$ a $P(A_1, \cap \cdots \cap A_n) > 0$, tak

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2|A_1)...TODOOT$$

The End