Verdi

- Verilog Debugging Tool

Introduction to Verdi

- The Verdi Automated Debug System is an advanced open platform for debugging digital designs with powerful technology that helps you:
 - 1. Comprehend complex and unfamiliar design behavior.
 - 2. Automate difficult and tedious debug processes.

Basic Function

nTrace

- A source code viewer and analyzer that operates on the knowledge database to display the design hierarchy and source code for selected design blocks.
- The main window of Verdi.

nSchema

 A schematic viewer and analyzer that generates interactive debug-specific logic diagrams showing the structure of selected portions of a design.

nWave

 A state-of-the-art graphical waveform viewer and analyzer that is fully integrated with Verdi's source code, schematic, and flow views.

Start Verdi

- Type the following command on the terminal:
 - verdi &

Example: ee01 [Lab05/01_RTL]% verdi &

- Also, the token "&" enable you to use the terminal while Verdi is running in the

background.

Import Design

nTrace – Error checking

- After importing all code files, Verdi will compile your code first, and you can check the syntax errors in message window.
 - Because pattern.sv contains nonsynthesizable syntax, just ignore the error messages about pattern.
- Through Verdi, you can debug your code before simulation.

nTrace – Hierarchy tracing

- (1) You can trace which top module calling this submodule.
- (2) You can trace the definition of the called submodule.

(2) Find the definition of this submodule

nTrace – Signal tracing

- (1) You can trace this signal is loading to which signals.
- (2) You can trace this signal is driven by which signals.

nSchema

nSchema

nSchema

nSchema - FSM

nSchema – FSM

- You can watch the FSM transition diagram here.
- Keep your mouse cursor on the transition arrows, it will show you the state transition condition.

Verdi – Active Annotation

Verdi – Active Annotation

• The values stored in variables will be shown as same as the waveform where marker points to.

nWave - Saving waveform

- You can save the signal order for next time using nWave.
 - Naming it as "debug.rc".

nWave - Saving waveform

- Next time you using nWave, you can simply restore the signals instead of choosing signal again and again.
 - Don't forget you have to import .fsdb first.

nWave - Saving waveform

Reference

- 1. "Introduction to Verdi" by Abel Hu
- 2. "Verdi³ datasheet" by Synopsys
- 3. Verilog Simulation & Debugging Tools by NTU