CUBE SAT

ANSYS PROJECT

DONKADA SURESH KUMAR

Ph: 7893604906

Sureshkumardonkada2003@gmail.com

Statement of the Project

 Designing the one unit cube sat satellite for that our aim to perform first phase analysis on Cubesat satellite frame

Basic Analysis

Objectives

Identify Material

Try to Finalize one structure for that material frame

Analysis should Perform

Static Structural

Modal Analysis

Pre-stressed Modal Analysis

Buckling Analysis

Material	Aluminium 5052-H32	Aluminium 6061-T6	Aluminium 7075-T6
Density	2680 kg/m**3	2700 kg/m**3	2810 kg/m**3
Ultimate Tensile strength	228 Mpa	310 Mpa	572 Mpa
Tensile Yield strength	193 Mpa	278 Mpa	503 Mpa
Modulus of Elasticity	70.3 Gpa	68.9 Gpa	71.9 Gpa
Poission ratio	0.33	0.33	0.33

Boundary Condition

•

O

LOAD: 100N compressive load on all the faces

Constraint: Fixed constraint on the support faces

Result Required

• Static structural analysis: Total Deformation

Directional Deformation

Equivalent stress

Equivalent Strain

Modal Analysis and Pre-stressed Modal Analysis:

> First 6 Mode Shapes

>Corresponding Natural Frequencies

Buckling Analysis

>Buckling Load Factor

>Buckling Load shapes

Software

ANSYS WORKBENCH

> Static structural

> Modal

> Eighen Value

Final Result obtained(static structural)

Material	Aluminium 5052-H32	Aluminium 6061-T6	Aluminium 7075-T6
Total Deformation	0.25484	0.26002	0.24987
X Deformation(max) X Deformation(min)	+0.2005	+0.20457	0.19658
	-0.19579	-0.19977	-0.19197
Y Deformation(max)	0.25484	0.26002	0.24987
Y Deformation(Min)	-0.21974	-0.2242	-0.21545
Z Deformation(Max)	0.19311	0.19704	0.18934
Z Deformation(Min)	-0.19457	-0.19852	-0.19077
Equivalent stress(max) (min)	82.513	82.513	82.513
	0.02356	0.02356	0.02356
Equivalent Strain(max) (min)	0.0011828	0.0012068	0.0011597
	9.3371e-7	9.5268e-7	9.1547e-7

Final Result(Modal , Pre-stressed Analysis)

Frequencies	Aluminium 5052-H32	Aluminium 6061-T6	Aluminium 7075-T6
Modal 1	1395	1375.8	1375.9
Modal 2	1519.7	1498.8	1498.9
Modal 3	1642.3	1619.8	1619.8
Modal 4	1675.9	1652.8	1652.9
Modal 5	1693.7	1670.4	1670.5
Modal 6	1871.5	1845.8	1845.9

Load factor	Aluminium 5056-H32	Aluminium 6061-T6	Aluminium 7075-T6
1	156.46	153.34	159.58
2	158.1	154.95	161.25

Selected Material is AL 7075-T6

Al 7075-T6

High buckling load factor, especially for a CUBESAT satellite where structural stability is crucial.

High modal frequencies: Reduces the risk of resonance and structural damage

Low deformation: Maintains satellite shape and functionality under various loads.

THANK YOU