TARGET BUSINESS CASE STUDY

TOPIC - SQL

Business Problems & Solution Queries along with output Tables: -

• <u>1.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset</u>

Q.1.1) Data type of columns in a table

Quer	y results			
JOB IN	JOB INFORMATION RESULTS		JSON	EXECUTION DETAILS
Row	column_name	1.	Data_type	
1	order_id		STRING	
2	order_item_id		INT64	
3	product_id		STRING	
4	seller_id		STRING	
5	shipping_limit_date		TIMESTAMP	
6	price		FLOAT64	
7	freight_value		FLOAT64	
8	seller_id		STRING	
9	seller_zip_code_prefix		INT64	
10	seller_city		STRING	

Q.1.2) Time period for which the data is given

```
ANS:- Query-
```

select

```
concat(min(EXTRACT(year from order_purchase_timestamp)), " - ",
max(EXTRACT(year from order_purchase_timestamp))) as time_period
```

from `Target_Buisness_case.orders`;

Q.1.3) Cities and States of customers ordered during the given period

ANS:- Query-

limit 10;

```
c.customer_id,
c.customer_city,
c.customer_state
from `Target_Buisness_case.customers` c
join `Target_Buisness_case.geolocation`g
on c.customer_city = g.geolocation_city
```


• <u>2. In-depth Exploration:</u>

Q.2.1) Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Qu	ery	resu	lts

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	
Row /	year //	month	order_count1 //	rank	
1	2016	9	4	2	
2	2016	10	324	5	
3	2016	12	1	1	
4	2017	1	800	6	
5	2017	2	1780	7	
6	2017	3	2682	9	
7	2017	4	2404	8	
8	2017	5	3700	11	
9	2017	6	3245	10	
10	2017	7	4026	12	

Q.2.2) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
ANS:- Query-
with t as
select
case
when extract(hour from order_purchase_timestamp) between 4 and 8 then "Dawn"
when extract(hour from order_purchase_timestamp) between 8 and 12 then "Morning"
when extract(hour from order_purchase_timestamp) between 12 and 17 then "Afternoon"
when extract(hour from order_purchase_timestamp) between 17 and 21 then "Evening"
else "Night"
end as time of buy,
count(order_id) as order_count
from `Target_Buisness_case.orders`
group by order_purchase_timestamp
)
select
t.time_of_buy, sum(order_count) as order_count1,
from t
group by time_of_buy
order by 2 desc;
```

Quer	y results		
JOB IN	IFORMATION	RESULTS	JSON
Row /	time_of_buy	1.	order_count1 /
1	Afternoon		32366
2	Evening		24161
3	Morning		23535
4	Night		14285
5	Dawn		5094

• <u>3. Evolution of E-commerce orders in the Brazil region:</u>

Q.3.1) Get month on month orders by states

```
ANS:- Query-
with t as
(select
        customer_id,
        order_id,
        EXTRACT(month from order_purchase_timestamp) as order_month,
from `Target_Buisness_case.orders`),
a as
(select
        customer_id,
        customer state
from `Target_Buisness_case.customers`)
select
        a.customer_state,
        t.order_month,
        count(order_id) as order_count1
from t
join a on t.customer_id = a.customer_id
group by a.customer_state, t.order_month
order by t.order_month asc, order_count1 desc;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	1.	order_month //	order_count1
1	SP		1	3351
2	RJ		1	990
3	MG		1	971
4	PR		1	443
5	RS		1	427
6	SC		1	345
7	BA		1	264
8	GO		1	164
9	ES		1	159
10	DF		1	151

Q.3.2) Distribution of customers across the states in Brazil

ANS:- Query-

select

customer_state, count(customer_id) as customer_count from `Target_Buisness_case.customers`

group by customer_state

order by count(customer_id) desc;

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	1.	customer_count	
1	SP		41746	
2	RJ		12852	
3	MG		11635	
4	RS		5466	
5	PR		5045	
6	SC		3637	
7	BA		3380	
8	DF		2140	
9	ES		2033	
10	GO		2020	

• <u>4. Impact on Economy: Analyze the money movement by e-commerce by looking</u> at order prices, freight and others.

Q.4.1) Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
ANS:- Query -
with t1 as
        select
                 EXTRACT(year from order_purchase_timestamp) as order_year_2017,
                 EXTRACT(month from order_purchase_timestamp) as order_month_2017,
                 round(sum(payment value)) as cost order1
        from 'Target Buisness case.orders' o
        join `Target_Buisness_case.payments` p
        on o.order_id = p.order_id
        where EXTRACT(month from order_purchase_timestamp) in(1,2,3,4,5,6,7,8)
                 and EXTRACT(year from order_purchase_timestamp) = 2017
        group by 1,2
        order by 2
        ),
t2 as
        select
                 extract(year from order purchase timestamp) as order year 2018,
                 extract(month from order_purchase_timestamp) as order_month_2018,
                 round(sum(payment_value)) as cost_order2
        from 'Target Buisness case.orders' o
        join `Target_Buisness_case.payments` p
        on o.order id = p.order id
        where extract(month from order purchase timestamp) in(1,2,3,4,5,6,7,8)
                 and extract(year from order_purchase_timestamp) = 2018
        group by 1,2
        order by 2
select
        t1.order month 2017 as order month,
        t1.cost order1 as cost order 2017,
        t2.cost order2 as cost order 2018,
        round((((t2.cost order2 - t1.cost order1) / (t1.cost order1)) * 100))
        as percent_increase_in_cost
from t1
ioin t2
on t1.order_month_2017 = t2.order_month_2018
order by 1;
```

JOB IN	IFORMATION	RESULTS	JSON E	EXECUTION DETAILS
Row /	order_month/	cost_order_2017	cost_order_2018	percent_increase_in_cost_/
1	1	138488.0	1115004.0	705.0
2	2	291908.0	992463.0	240.0
3	3	449864.0	1159652.0	158.0
4	4	417788.0	1160785.0	178.0
5	5	592919.0	1153982.0	95.0
6	6	511276.0	1023880.0	100.0
7	7	592383.0	1066541.0	80.0
8	8	674396.0	1022425.0	52.0

Q.4.2) Mean & Sum of price and freight value by customer state

ANS:-

```
Query - 1 for Mean & sum of price -
```

JOB IN	FORMATION	RES	ULTS	JSON	EXECUTION	N DETAILS
Row /	customer_state	1.	Mean_price	1.	sum_price	//
1	PB			191.0		115268.0
2	AL			181.0		80315.0
3	AC			174.0		15983.0
4	PA			166.0		178948.0
5	RO			166.0		46141.0
6	AP			164.0		13474.0
7	PI			160.0		86914.0
8	ТО			158.0		49622.0
9	RN			157.0		83035.0
10	CE			154.0		227255.0

Query -2 for Mean & sum of freight value -

Quer	y results				
JOB IN	IFORMATION	RES	SULTS	JSON	EXECUTION DETAILS
Row	customer_state	1.	Mean_fr	eight_value //	sum_freight_value
1	PB			43.0	25720.0
2	RR			43.0	2235.0
3	RO			41.0	11417.0
4	AC			40.0	3687.0
5	PI			39.0	21218.0
6	MA			38.0	31524.0
7	SE			37.0	14111.0
8	то			37.0	11733.0
9	PA			36.0	38699.0
10	RN			36.0	18860.0

5. Analysis on sales, freight and delivery time

Q.5.1) Calculate days between purchasing, delivering and estimated delivery

```
ANS:- Query-

select

order_id,
order_purchase_timestamp as purchase_date,
order_delivered_customer_date as delivery_date,
order_estimated_delivery_date as estimated_delivery_date,
date_diff(order_delivered_customer_date, order_purchase_timestamp, day)
as day_diff_bet_purchase_and_delivery,
date_diff(order_estimated_delivery_date, order_delivered_customer_date, day) as day_diff_estimated_
delivery_and_order_delivery

from `Target_Buisness_case.orders`
where order_status = "delivered"
order by day_diff_bet_purchase_and_delivery_desc;
```



```
Q.5.2) Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

time_to_delivery = order_purchase_timestamp-order_delivered_customer_date

diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

ANS :-

Query - 1 for time to delivery : -

select

order_id,

order_purchase_timestamp as purchase_date,

order_delivered_customer_date as delivery_date,

date_diff(order_delivered_customer_date, order_purchase_timestamp, hour)

as time_to_delivery_in_hours

from `Target_Buisness_case.orders`
where order_status = "delivered"
order by time to delivery in hours desc;
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS	EXECUTION GRAPH PR	REVIEW
Row	order_id		pur	chase_date	/ 0	delivery_date	time_to_delivery_in_hours
1	ca07593549f18	16d26a572e06dc1eab	6 20	17-02-21 23:31:27 UTC	2	2017-09-19 14:36:39 UTC	5031
2	1b3190b2dfa9d	789e1f14c05b647a14	a 20°	18-02-23 14:57:35 UTC	2	2018-09-19 23:24:07 UTC	5000
3	440d0d17af552	815d15a9e41abe493	59 20	17-03-07 23:59:51 UTC	2	2017-09-19 15:12:50 UTC	4695
4	2fb597c2f772ed	ca01b1f5c561bf6cc7b	201	17-03-08 18:09:02 UTC	2	2017-09-19 14:33:17 UTC	4676
5	285ab9426d698	32034523a855f55a88	Se 201	17-03-08 22:47:40 UTC	2	2017-09-19 14:00:04 UTC	4671
6	0f4519c5f1c541	ddec9f21b3bddd533	20	17-03-09 13:26:57 UTC	2	2017-09-19 14:38:21 UTC	4657
7	47b40429ed8cd	e3aee919979227543	3f 20°	18-01-03 09:44:01 UTC	2	2018-07-13 20:51:31 UTC	4595
8	2fe324febf907e	3ea3f2aa9650869fa5	201	17-03-13 20:17:10 UTC	2	2017-09-19 17:00:07 UTC	1556
9	2d7561026d542	2c8dbd8f0daeadf67a4	3 20	17-03-15 11:24:27 UTC	2	2017-09-19 14:38:18 UTC	4515
10	c27815f7e3dd0	b926b585526284815	75 20	17-03-15 23:23:17 UTC	2	2017-09-19 17:14:25 UTC	4505

```
Query – 2 diff_estimated_delivery : -

select

order_id,
order_purchase_timestamp as purchase_date,
order_delivered_customer_date as delivery_date,
order_estimated_delivery_date as estimated_delivery_date,
date_diff(order_estimated_delivery_date,order_delivered_customer_date, hour)
as diff_estimated_delivery_in_hours

from `Target_Buisness_case.orders`
where order_status = "delivered"
order by order_delivered_customer_date_desc, order_estimated_delivery_date_desc;
```

Query results **▲** SAVE RESULTS ▼ JOB INFORMATION **EXECUTION DETAILS** EXECUTION GRAPH PREVIEW purchase_date / delivery_date / estimated_delivery_date diff_estimated_delivery_in_hours 1 7e708aed151d6a8601ce8f2eaa712bf4 2018-0 purchase_date 2018-10-17 13:22:46 UTC 2018-07-13 00:00:00 UTC 2 450cb96c63e1e5b49d34f223f67976d2 2018-05-21 06:48:46 UTC 2018-10-11 16:41:14 UTC 2018-06-27 00:00:00 UTC 2018-10-11 16:41:14 UTC 2018-06-27 00:00:00 UTC -2560 b2997e1d7061605e9285496c581d1fbd 2018-07-30 09:08:06 UTC a2b4be96b53022618030c17ed437604d 2018-07-22 09:54:03 UTC 2018-10-02 00:18:50 UTC 2018-08-14 00:00:00 UTC -1176 2018-09-27 02:24:33 UTC 2018-08-17 00:00:00 UTC -986 2018-09-25 00:47:25 UTC 2018-08-20 00:00:00 UTC 5 7d09831e67caa193da82cfea3bee7aa5 2018-08-05 17:11:44 UTC -864 2018-09-25 00:47:25 UTC 2018-08-20 00:00:00 UTC 2018-09-21 23:46:29 UTC 2018-08-06 00:00:00 UTC 2018-09-21 15:55:02 UTC 2018-08-23 00:00:00 UTC 6 f23681a0fffdb8051c674707c7e912ef 2018-07-15 02:11:15 UTC 1e7d25f611e794f9614dd3e10a8596e7 2018-08-01 19:43:06 UTC 4af2fb154881f350d8696f7f7a7f80d3 2018-07-23 10:22:26 UTC 1b3190b2dfa9d789e1f14c05b647a14a 2018-02-23 14:57:35 UTC -711 2018-09-20 16:08:33 UTC 2018-08-13 00:00:00 UTC 2018-09-19 23:24:07 UTC 2018-03-15 00:00:00 UTC -928 -4535 2018-09-19 23:24:07 UTC 2018-03-15 00:00:00 UTC 2018-09-19 16:44:44 UTC 2018-08-17 00:00:00 UTC 10 4505acb3759da6b9c7d79a80d29ab3bb 2018-08-06 14:32:27 UTC -808

Q.5.3) Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
ANS:- Query-
select
        c.customer_state,
        round(avg(oi.freight_value),2) as mean_freight_value,
        round(avg(date_diff(o.order_delivered_customer_date,
        o.order_purchase_timestamp, hour))) as avg_time_to_delivery_in_hours,
        round(avg(date_diff(o.order_estimated_delivery_date,
        o.order_delivered_customer_date, hour)))
        as avg_diff_estimated_delivery_in_hours
from `Target_Buisness_case.order_items` oi
 join 'Target Buisness case.orders' o
 on oi.order id = o.order id
 join `Target_Buisness_case.customers` c
 on o.customer_id = c.customer_id
where order status = "delivered"
group by c.customer state
order by 2 asc;
```

Query	y results				≛ SAVE RESULTS ▼
JOB IN	FORMATION RESULT	S JSON	EXEC	UTION DETAILS EXEC	CUTION GRAPH PREVIEW
Row /	customer_state	mean_freigh	nt_value /	avg_time_to_delivery_in_hours	avg_diff_estimated_delivery_in_hours
1	SP		15.12	209.0	252.0
2	PR		20.47	286.0	307.0
3	MG		20.63	287.0	303.0
4	RJ		20.91	363.0	271.0
5	DF		21.07	311.0	275.0
6	SC		21.51	359.0	260.0
7	RS		21.61	364.0	322.0
8	ES		22.03	375.0	238.0
9	GO		22.56	369.0	278.0
10	MS		23.35	372.0	252.0

Q.5.4) Sort the data to get the following:

1.Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

ANS:-

limit 5;

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	/,	avg_freight_valu	ie //
1	RR		4	2.98
2	PB		4	2.72
3	RO		4	1.07
4	AC		4	0.07
5	PI		3	9.15

JOB INFORMATION		RESULTS		JSON
Row /	customer_state	h	avg_frei	ght_value //
1	SP			15.15
2	PR			20.53
3	MG			20.63
4	RJ			20.96
5	DF			21.04

2.Top 5 states with highest/lowest average time to delivery

ANS:-

limit 5;

Query results						
JOB IN	FORMATION	RESULTS	JSON			
Row	customer_state	avg_time_to_deli	very_in_hours			
1	RR		705.0			
2	AP		652.0			
3	AM		634.0			
4	AL		589.0			
5	PA		570.0			

order by avg_time_to_delivery_in_hours desc

JOB INFORMATION		RESULTS	JSON
Row /	customer_state	avg_time_to_deli	very_in_hours //
1	SP		210.0
2	PR		287.0
3	MG		288.0
4	DF		311.0
5	SC		358.0

3.Top 5 states where delivery is really fast/ not so fast compared to estimated date

ANS:-

```
Query_1 Top 5 states whose delivery is really fast
```

Query results								
JOB IN	FORMATION	RES	ULTS	JSO	ON EXECUTION DETAILS			
Row	customer_state	1.	order_co	ount /	fast_or_not_fast			
1	SP			2387	Really fast			
2	RJ			1664	Really fast			
3	MG			637	Really fast			
4	ВА			457	Really fast			
5	RS			382	Really fast			

Query_2 Top 5 states whose delivery not so fast

JOB IN	IFORMATION	RESU	LTS JS0	N EXECUTION DETAILS
Row /	customer_state	1.	order_count	fast_or_not_fast
1	SP		38114	Not so fast
2	MG		10717	Not so fast
3	RJ		10686	Not so fast
4	RS		4963	Not so fast
5	PR		4677	Not so fast

• <u>6. Payment type analysis:</u>

Q.6.1) Month over Month count of orders for different payment types

```
ANS:- Query -

select

EXTRACT(month from order_purchase_timestamp) as order_month,
payment_type,
count(o.order_id) as order_count
from `Target_Buisness_case.orders` o
join `Target_Buisness_case.payments` p
on o.order_id = p.order_id
group by order_month, payment_type
order by order_month asc, count(o.order_id) desc;
```

Quei	ry results				
JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETA	ILS
Row //	order_month //	payment_type	1.	order_count //	
1	1	credit_card		6103	
2	1	UPI		1715	
3	1	voucher		477	
4	1	debit_card		118	
5	2	credit_card		6609	
6	2	UPI		1723	
7	2	voucher		424	
8	2	debit_card		82	
9	3	credit_card		7707	
10	3	UPI		1942	

Q.6.2) Count of orders based on the no. of payment installments

```
ANS:- Query-
select
```

payment_installments, count(order_id) as order_count from `Target_Buisness_case.payments` group by payment_installments order by count(order_id) desc;

Query results							
JOB IN	IFORMATION	RES	ULTS	JSON			
Row /	payment_installr	nents /	order_count	1.			
1		1		52546			
2		2		12413			
3		3		10461			
4		4		7098			
5		10		5328			
6		5		5239			
7		8		4268			
8		6		3920			
9		7		1626			
10		9		644			

**Actionable Insights:-

- As there is growing trend of sales over the months Target should add more and more products so that sale will go on increasing in future
- There is not much evolution of Target in states other than SP.

**Recommendations:-

- There should be less time difference between estimated and actual delivery of order so that customer will get product in time. and due to this customer will buy more products as they will have intuition that they will get product in required time period.
- As from the analysis of payment type, credit card is mostly used by customers. so, Target can provide attractive offers on credit card in terms of gift vouchers and cashback.
- Target should provide some good offers to attract crowd from the states were sale is very low.

References

- 1. BigQuery
- 2. Tableau