Zadania

Zad. 1.1

Napisz program size sprawdzający, ile bajtów zajmują typy: char, short, int, long, long int, long long oraz float, double, long double.

```
https://en.wikipedia.org/wiki/C_data_types
```

Zad. 1.2 *

Napisz program size2 sprawdzający, ile bajtów zajmują typy: char, short, int, long, long int i long long bez znaku.

Zad. 1.3 *

Napisz program limits wypisujący maksymalne wartości, jakie mogą przechowywać typy bez znaku: char, short, int, long, long oraz minimalne i maksymalne wartości dla tych samych typów ze znakiem oraz dla typów float, double, long double. Przykład:

```
UCHAR_MAX = 255
CHAR_MIN = -128
CHAR_MAX = 127
```

Zad. 1.4

Która z poniższych odpowiedzi jest prawdziwa:

- system 32 bitowy pozwala na uruchamianie programu 32 bitowego
- system 32 bitowy pozwala na uruchamianie programu 64 bitowego
- system 64 bitowy pozwala na uruchamianie programu 32 bitowego
- system 64 bitowy pozwala na uruchamianie programu 64 bitowego

Zad. 1.5 *

Która z poniższych odpowiedzi jest fałszywa:

- na systemie 32 bitowym można skompilować program do kodu 32 bitowego
- na systemie 32 bitowym można skompilować program do kodu 64 bitowego
- na systemie 64 bitowym można skompilować program do kodu 32 bitowego
- na systemie 64 bitowym można skompilować program do kodu 64 bitowego

Zad. 1.6

Napisz program bits rozpoznający do ilu bitowego kodu został skompilowany.

Zad. 1.7

Napisz program process umieszczający na stosie kolejno dwie zmienne x i y typu intoraz odczytaj adresy tych zmiennych. Skopiuj poniższy schemat do komentarza w programie oraz wypełnij go odpowiednimi wartościami. Czy adresy zmiennych są zgodne z mapą pamięci dla procesu?

Zad. 1.8 *

W programie process umieść w sekcji danych kolejno dwie zmienne a i b typu int oraz odczytaj adresy tych zmiennych. Rozpatrz następujące przypadki:

- zmienne a i b są zainicjowane
- zmienne a i b są niezainicjowane
- zmienna a jest zainicjowana i zmienna b jest niezainicjowana
- zmienna a jest niezainicjowana i zmienna b jest zainicjowana

Czy adresy zmiennych są zgodne z mapą pamięci dla procesu?

Zad. 1.9 *

W programie process umieść na stercie dwie zmienne c i d typu int oraz odczytaj adresy tych zmiennych. Czy adresy zmiennych są zgodne z mapą pamięci dla procesu? Na ile sposobów można rozwiązać to zadanie?

Zad. 1.10

Załóżmy, że typ int zajmuje 4 bajty. Na ile sposobów można umieścić w pamięci pod adresem p wartość 1 typu int?

```
p \rightarrow [][][][] *p = 1
```

Zad. 1.11

Procesory w architekturze little-endian czytają młodsze bajty (LSB – least significant byte) od prawej do lewej. Procesory w architekturze big-endian czytają starsze bajty (MSB – most significant byte) od lewej do prawej. Załóżmy, że pod adresem p znajduje się liczba 5 typu int. Wypełnij komórki pamięci odpowiednimi wartościami dla obu architektur.

```
little-endian
```

```
p -> [ ][ ][ ][ ]  *p = 5
big-endian
p -> [ ][ ][ ][ ]  *p = 5
```

Zad. 1.12

W pliku szereg.txt rozwiń w szereg i wyznacz wartości dziesiętne dla liczb:

```
1011 - liczba binarna
8732 - liczba dziesiętna
[2][2][1][1] - reprezentacja bajtowa liczby typu int *

1234 - liczba ósemkowa *
3A5B - liczba szesnastkowa *
ZZTOP - liczba w systemie opartym o alfabet angielski (A..Z) *
*) w alfabetach z literami wielkość liter nie ma znaczenia
```