Problem Statement

The company wants to understand and process the data coming out of data engineering pipelines:

- 1. Clean, sanitize and manipulate data to get useful features out of raw fields.
- 2. Make sense out of the raw data and help the data science team to build forecasting models on it.

Setting up environment

```
In [1]: # importing important Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt
import warnings
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
warnings.filterwarnings('ignore')
from scipy.stats import ttest_ind,ttest_ind_from_stats,ttest_1samp,levene,shapiro,t,f_oneway,f,chi2_contingency,chi2,ttest_rel,k
```

!python -m wget https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/551/original/delhivery_data.csv (https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/551/original/delhivery_data.csv)

```
In [2]: df = pd.read_csv('delhivery_data.csv')
```

In [3]: df.head(5)

Out[3]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_center	destination_
C	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdD (G
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdD (G
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdD (G
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdD (G
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdD (G

5 rows × 24 columns

4

EDA-1

```
In [4]: # shape of data
    print('Total number of rows:',df.shape[0])
    print('Total number of columns:',df.shape[1])
```

Total number of rows: 144867 Total number of columns: 24

```
In [5]: # data info
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 144867 entries, 0 to 144866
        Data columns (total 24 columns):
            Column
                                            Non-Null Count
                                                             Dtvpe
         0
             data
                                            144867 non-null object
                                            144867 non-null object
            trip creation time
         1
            route schedule uuid
                                            144867 non-null object
             route type
                                            144867 non-null object
            trip uuid
                                            144867 non-null object
             source center
                                            144867 non-null object
                                            144574 non-null object
             source name
                                            144867 non-null object
         7
             destination center
             destination name
                                            144606 non-null object
             od start time
                                            144867 non-null object
         10 od end time
                                            144867 non-null object
         11 start_scan_to_end_scan
                                            144867 non-null float64
         12 is cutoff
                                            144867 non-null bool
         13 cutoff factor
                                            144867 non-null int64
         14 cutoff timestamp
                                            144867 non-null object
         15 actual distance to destination 144867 non-null float64
         16 actual time
                                            144867 non-null float64
         17 osrm time
                                            144867 non-null float64
         18 osrm distance
                                            144867 non-null float64
         19 factor
                                            144867 non-null float64
         20 segment actual time
                                            144867 non-null float64
         21 segment osrm time
                                            144867 non-null float64
         22 segment osrm distance
                                            144867 non-null float64
         23 segment factor
                                            144867 non-null float64
        dtypes: bool(1), float64(10), int64(1), object(12)
        memory usage: 25.6+ MB
In [6]: # data type correction for date time columns
        df['trip_creation_time'] = pd.to_datetime(df['trip_creation_time'])
        df['od start time'] = pd.to datetime(df['od start time'])
        df['od end time'] = pd.to datetime(df['od end time'])
        df['cutoff timestamp'] = pd.to datetime(df['cutoff timestamp'])
```

```
In [7]: # data type conversion to category

df['data'] = df['data'].astype('category')

df['route_type'] = df['route_type'].astype('category')
```

Out[8]:

segment_actual_tim	factor	osrm_distance	osrm_time	actual_time	actual_distance_to_destination	cutoff_factor	start_scan_to_end_scan	
144867.00000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	count
36.19611	2.120107	284.771297	213.868272	416.927527	234.073372	232.926567	961.262986	mean
53.57115	1.715421	421.119294	308.011085	598.103621	344.990009	344.755577	1037.012769	std
-244.00000	0.144000	9.008200	6.000000	9.000000	9.000045	9.000000	20.000000	min
20.00000	1.604264	29.914700	27.000000	51.000000	23.355874	22.000000	161.000000	25%
29.00000	1.857143	78.525800	64.000000	132.000000	66.126571	66.000000	449.000000	50%
40.00000	2.213483	343.193250	257.000000	513.000000	286.708875	286.000000	1634.000000	75%
3051.00000	77.387097	2326.199100	1686.000000	4532.000000	1927.447705	1927.000000	7898.000000	max
•								4

In [9]: # statistical summary of categorical data
df.describe(include='category')

Out[9]:

	data	route_type
count	144867	144867
unique	2	2
top	training	FTL
freg	104858	99660

Out[10]:

	trip_creation_time	od_start_time	od_end_time	cutoff_timestamp
count	144867	144867	144867	144867
unique	14817	26369	26369	93180
top	2018-09-28 05:23:15.359220	2018-09-21 18:37:09.322207	2018-09-24 09:59:15.691618	2018-09-24 05:19:20
freq	101	81	81	40
first	2018-09-12 00:00:16.535741	2018-09-12 00:00:16.535741	2018-09-12 00:50:10.814399	2018-09-12 00:02:09.740725
last	2018-10-03 23:59:42.701692	2018-10-06 04:27:23.392375	2018-10-08 03:00:24.353479	2018-10-06 23:44:12

In [11]: # check for null values df.isna().sum()

Out[11]: data 0 trip_creation_time route_schedule_uuid route_type 0 trip_uuid source_center 0 293 source_name destination_center 0 destination_name 261 od_start_time 0 od_end_time 0 start_scan_to_end_scan is_cutoff cutoff_factor 0 cutoff_timestamp 0 actual_distance_to_destination 0 actual_time 0 osrm_time 0 osrm_distance factor 0 segment_actual_time 0 segment_osrm_time 0 segment_osrm_distance 0 segment_factor 0 dtype: int64

```
In [12]: # checking for duplicated values
df.duplicated().sum()
```

Out[12]: 0

Observations:

- Data has no duplicate values.
- data has 144867 rows and 24 columns.
- for same trip_uuid step wise rows are available which wil be aggregated to create the whole picture
- around 293 source and 261 destination info is missing.
- missing values can be treated better after aggregation
- there 2 category data types (data and route_type)

Data Cleaning

Merging of rows and aggregation of fields

```
In [13]: # 1st aggregation
         # grouping the data based on trip uuid, destination and source
         process1 = {
             'data' : 'first',
              'trip creation time' : 'first',
              'route schedule uuid' : 'first',
              'route type' : 'first',
              'source name' : 'first',
              'destination name' : 'last',
             'od_start_time': 'first',
              'od end time': 'first',
              'start scan to end scan': 'first',
              'actual_distance_to_destination' : 'last'.
              'actual time' : 'last',
              'osrm time' : 'last',
              'osrm distance' : 'last',
             'segment_actual_time' : 'sum',
              'segment_osrm_distance' : 'sum',
              'segment osrm time' : 'sum',
         df1 = df.groupby(['trip_uuid','source_center','destination_center']).agg(process1).reset_index()
```

```
In [14]: # sorting the data based on time stamps to keep it in the order
df1.sort_values(by = ['trip_uuid','od_start_time'],inplace = True,ignore_index=True)
```

```
In [15]: # 2nd aggregation
         # aggregating to the level of unique trip id
         process2 = {
             'source_center':'first',
             'destination center':'first',
             'data' : 'first',
             'trip creation time' : 'first',
             'route schedule uuid' : 'first',
             'route type' : 'first',
             'source name' : 'first',
             'destination name' : 'last',
             'od start time': 'first',
             'od end time': 'last',
             'start_scan_to_end_scan':'sum',
             'actual distance to destination' : 'sum',
             'actual_time' : 'sum',
             'osrm_time' : 'sum',
             'osrm_distance' : 'sum',
             'segment_actual_time' : 'sum',
             'segment_osrm_distance' : 'sum',
             'segment_osrm_time' : 'sum',
         df2 = df1.groupby(['trip_uuid']).agg(process2).reset_index()
         df2
```

	trip_uuid	source_center	destination_center	data	trip_creation_time	route_schedule_uuid	route_type	source_name	(
0	trip- 153671041653548748	IND462022AAA	IND209304AAA	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	Bhopal_Trnsport_H (Madhya Pradesh)	Gur
1	trip- 153671042288605164	IND572101AAA	IND561203AAB	training	2018-09-12 00:00:22.886430	thanos::sroute:3a1b0ab2- bb0b-4c53-8c59- eb2a2c0	Carting	Tumkur_Veersagr_I (Karnataka)	Chikl
2	trip- 153671043369099517	IND562132AAA	IND00000ACB	training	2018-09-12 00:00:33.691250	thanos::sroute:de5e208e- 7641-45e6-8100- 4d9fb1e	FTL	Bangalore_Nelmngla_H (Karnataka)	Chandiç
3	trip- 153671046011330457	IND400072AAB	IND401104AAA	training	2018-09-12 00:01:00.113710	thanos::sroute:f0176492- a679-4597-8332- bbd1c7f	Carting	Mumbai Hub (Maharashtra)	N
4	trip- 153671052974046625	IND583101AAA	IND583201AAA	training	2018-09-12 00:02:09.740725	thanos::sroute:d9f07b12- 65e0-4f3b-bec8- df06134	FTL	Bellary_Dc (Karnataka)	Bella
14812	trip- 153861095625827784	IND160002AAC	IND140603AAA	test	2018-10-03 23:55:56.258533	thanos::sroute:8a120994- f577-4491-9e4b- b7e4a14	Carting	Chandigarh_Mehmdpur_H (Punjab)	Chandiç
14813	trip- 153861104386292051	IND121004AAB	IND121004AAA	test	2018-10-03 23:57:23.863155	thanos::sroute:b30e1ec3- 3bfa-4bd2-a7fb- 3b75769	Carting	FBD_Balabhgarh_DPC (Haryana)	Farid
14814	trip- 153861106442901555	IND209304AAA	IND208006AAA	test	2018-10-03 23:57:44.429324	thanos::sroute:5609c268- e436-4e0a-8180- 3db4a74	Carting	Kanpur_Central_H_6 (Uttar Pradesh)	Ka
14815	trip- 153861115439069069	IND627005AAA	IND628801AAA	test	2018-10-03 23:59:14.390954	thanos::sroute:c5f2ba2c- 8486-4940-8af6- d1d2a6a	Carting	Tirunelveli_VdkkuSrt_I (Tamil Nadu)	Tiru
14816	trip- 153861118270144424	IND583201AAA	IND583119AAA	test	2018-10-03 23:59:42.701692	thanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	FTL	Hospet (Karnataka)	Bella

14817 rows × 19 columns

4

```
In [16]: # checking for the null values in the final data
         df2.isna().sum()
Out[16]: trip uuid
                                            0
         source center
                                            0
         destination_center
         data
         trip creation time
         route schedule uuid
         route type
         source_name
                                           10
         destination name
                                            8
         od start time
         od end time
         start scan to end scan
         actual distance to destination
         actual_time
         osrm_time
         osrm_distance
         segment_actual_time
         segment_osrm_distance
         segment_osrm_time
         dtype: int64
```

observations:

- after aggregation we have only 10 null value in source and 8 in destination data.
- · there are no duplicated values.
- after aggregation we are left with 14817 unique trip_uuids

Missing Value Treatment

```
In [17]: # dropping the null values from the data set
df2.dropna(how='any',inplace = True)
```

```
In [18]: # data information post merging the data and treating null values
# shape of data
print('Total number of rows:',df2.shape[0])
print('Total number of columns:',df2.shape[1])

Total number of rows: 14800
Total number of columns: 19
```

Feature Creation

creating feature from source and destination data

```
In [19]: # creating function for feature extraction from the source and destination data
         def place(x):
             return x.split('_')[0]
         def state(x):
             return x.split('_')[-1]
         def place1(x):
             return x.split('_')[1]
In [20]: df2['source name'] = df2['source name'].str.replace('\s\(',' ')
         df2['source name'] = df2['source name'].str.replace('\)','')
         df2['destination name'] = df2['destination_name'].str.replace('\s\(','_')
         df2['destination_name'] = df2['destination_name'].str.replace('\)','')
         df2['source city'] = df2['source name'].apply(lambda x: place(x))
         df2['source_state'] = df2['source_name'].apply(lambda x: state(x))
         df2['source_place'] = df2['source_name'].apply(lambda x: place1(x))
         df2['destination city'] = df2['destination name'].apply(lambda x: place(x))
         df2['destination state'] = df2['destination name'].apply(lambda x: state(x))
         df2['destination place'] = df2['destination name'].apply(lambda x: place1(x))
```

```
In [21]: df2.iloc[:,-6:]
```

Out[21]:

	source_city	source_state	source_place	destination_city	destination_state	destination_place
0	Bhopal	Madhya Pradesh	Trnsport	Gurgaon	Haryana	Bilaspur
1	Tumkur	Karnataka	Veersagr	Chikblapur	Karnataka	ShntiSgr
2	Bangalore	Karnataka	Nelmngla	Chandigarh	Punjab	Mehmdpur
3	Mumbai Hub	Maharashtra	Maharashtra	Mumbai	Maharashtra	MiraRd
4	Bellary	Karnataka	Dc	Bellary	Karnataka	Dc
14812	Chandigarh	Punjab	Mehmdpur	Chandigarh	Punjab	Mehmdpur
14813	FBD	Haryana	Balabhgarh	Faridabad	Haryana	Blbgarh
14814	Kanpur	Uttar Pradesh	Central	Kanpur	Uttar Pradesh	Central
14815	Tirunelveli	Tamil Nadu	VdkkuSrt	Tirunelveli	Tamil Nadu	VdkkuSrt
14816	Hospet	Karnataka	Karnataka	Bellary	Karnataka	Dc

14800 rows × 6 columns

```
In [22]: # calculating time difference between od end time and od start time
          df2['time diff'] = (df2['od end time']-df2['od start time'])/np.timedelta64(1,'m')
         df2.iloc[:,-1:]
Out[22]:
                   time_diff
              0 2260.109800
                  181.611874
              2 3934.362520
                 100.494935
                 718.349042
          14812
                  405.485842
          14813
                   60.590521
                  422.119867
          14814
          14815
                  348.512862
          14816
                 354.407571
          14800 rows × 1 columns
In [23]: # extracting data from timestamps to
         df2['day'] = df2['trip_creation_time'].dt.day
         df2['month'] = df2['trip_creation_time'].dt.month
         df2['year'] = df2['trip_creation_time'].dt.year
         df2['time_of_day'] = df2['trip_creation_time'].dt.time
         df2.iloc[:,-4:].head()
In [24]:
Out[24]:
             day month year
                                 time_of_day
          0 12
                      9 2018 00:00:16.535741
              12
                      9 2018 00:00:22.886430
          1
          2 12
                      9 2018 00:00:33.691250
          3
              12
                      9 2018 00:01:00.113710
```

12

9 2018 00:02:09.740725

Observations:

- city, place and state are extracted from location data.
- day, month, year and time of day is extracted from timestamp when the trip was created.

Dropping columns which will not be used

```
In [25]:
          df2.drop(columns=['route schedule uuid',
                              'source center',
                              'destination center',
                              'source name',
                              'destination name',
                              'od start time',
                              'od end time'],
                    inplace = True)
In [26]: # data information post deleting the unused columns
          # shape of data
          print('Total number of rows:',df2.shape[0])
          print('Total number of columns:',df2.shape[1])
          Total number of rows: 14800
          Total number of columns: 23
          df2.describe(include=["object"])
In [27]:
Out[27]:
                               trip_uuid source_city source_state source_place destination_city destination_state destination_place
                                                                                                                              time_of_day
                                  14800
                                             14800
                                                         14800
                                                                      14800
                                                                                     14800
                                                                                                     14800
                                                                                                                     14800
                                                                                                                                    14800
            count
                                  14800
                                               672
                                                            29
                                                                        652
                                                                                       766
                                                                                                        32
                                                                                                                       736
                                                                                                                                    14800
           unique
              top trip-153671041653548748
                                           Gurgaon
                                                    Maharashtra
                                                                     Central
                                                                                  Bengaluru
                                                                                                Maharashtra
                                                                                                                    Central 00:00:16.535741
```

1039

1056

2591

921

1

Unique data analysis

1

1022

2682

freq

```
In [28]: df2.groupby('data')['trip_uuid'].nunique().to_frame().T
Out[28]:
                   test training
              data
          trip_uuid 4153
                          10647
         df2.groupby('route_type')['trip_uuid'].nunique().to_frame().T
In [29]:
Out[29]:
          route_type Carting FTL
            trip_uuid
                      8906 5894
         df2.groupby('month')['trip_uuid'].nunique().to_frame().T
In [30]:
Out[30]:
                           10
            month
                       9
          trip_uuid 13020 1780
```

Observations:

- 1. 60% of the order delivered through carting and for rest of the Full truck load (FTL) is preferred.
- 2. Dataset is of two months only that is September and October.

Busy corridors (based on number of trip ids)

```
In [31]: # top 10 states
    display(df2.groupby('source_state')['trip_uuid'].nunique().sort_values(ascending=False).to_frame().head(10))
    display(df2.groupby('destination_state')['trip_uuid'].nunique().sort_values(ascending=False).to_frame().head(10))
```

	trip_uuid
source_state	
Maharashtra	2682
Karnataka	2229
Haryana	1681
Tamil Nadu	1085
Delhi	791
Telangana	779
Gujarat	746
Uttar Pradesh	720
West Bengal	677
Punjab	630

trip_uuid

destination_state

Maharashtra	2591
Karnataka	2275
Haryana	1667
Tamil Nadu	1072
Telangana	838
Gujarat	746
Uttar Pradesh	732
West Bengal	708
Punjab	693
Delhi	675
West Bengal Punjab	708 693

trip_uuid

source_city	
Gurgaon	1022
Bengaluru	1015
Bhiwandi	811
Bangalore	755
Delhi	618
Mumbai	579
Hyderabad	562
Pune	445
Chandigarh	418
Kolkata	339

trip_uuid

destination_city

Bengaluru	1056
Mumbai	891
Gurgaon	869
Bangalore	646
Hyderabad	630
Bhiwandi	604
Delhi	576
Chandigarh	463
Chennai	388
Sonipat	375

```
In [33]: 2.groupby(['source_city','destination_city']).agg({'trip_uuid':'count'}).sort_values(by = ['trip_uuid'],ascending=False).head(10)
```

Out[33]:

:rı	n	uuid
	v	uuiu

source_city	destination_city	
Bengaluru	Bengaluru	549
Bangalore	Bengaluru	455
Hyderabad	Hyderabad	398
Bhiwandi	Mumbai	332
Bengaluru	Bangalore	326
Mumbai	Mumbai	264
Chandigarh	Chandigarh	250
Gurgaon	Delhi	240
Mumbai Hub	Mumbai	227
Mumbai	Bhiwandi	207

In [34]: df2.groupby(['source_state','destination_state']).agg({'trip_uuid':'count'}).sort_values(by = ['trip_uuid'],ascending=False).hea

Out[34]:

trip_uuid

source_state	destination_state	
Maharashtra	Maharashtra	2406
Karnataka	Karnataka	2015
Tamil Nadu	Tamil Nadu	1016
Haryana	Haryana	871
Telangana	Telangana	655
Gujarat	Gujarat	624
West Bengal	West Bengal	610
Uttar Pradesh	Uttar Pradesh	545
Punjab	Punjab	491
Rajasthan	Rajasthan	422

Observations:

- most number of orders are booked and recieved in Maharashtra.
- maharashtra, karnataka and haryana are the top 3 busy states.
- bengalore and Gurugram are the two most busiest cities.
- a lot of orders are moving in the same city.

Visual Analysis

```
In [35]: fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    ax = sns.countplot(df2['data'])
    for p in ax.patches:
        ax.annotate("{:,.2f}".format(p.get_height()),
        (p.get_x() + p.get_width()/2, p.get_height()/2),ha = 'center', va = 'bottom')
    plt.subplot(1, 2, 2)
    ax = sns.countplot(df2['route_type'])
    for p in ax.patches:
        ax.annotate("{:,.2f}".format(p.get_height()),
        (p.get_x() + p.get_width()/2, p.get_height()/2),ha = 'center', va = 'bottom')
```


Observations

- 1. Top 5 source states are Maharashtra, Karnataka, Haryana Tamil Nadu and Delhi.
- 2. Source States with less than 10 orders are Nagaland, Mizoram, and Arunachal Pradesh.
- 3. Top 5 source cities are Gurgaon, Bengaluru , Mumbai, Bhiwandi and Bangalore
- 4. Top 5 destination states are Maharashtra, Karnataka, Haryana, Tamil Nadu, and Telangana.
- 5. Destination states with less than 10 orders are Meghalaya, Mizoram Daman & Diu, Nagaland, and Tripura
- 6. Top 5 destination cities are Mumbai, Bengaluru, Gurgaon, Bangalore and Hyderabad.

Histplot for continuous variables

```
In [38]: fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    sns.histplot(df2['start_scan_to_end_scan'],kde = True)
    plt.subplot(1,2, 2)
    sns.histplot(df2['time_diff'],kde = True)
    plt.show()
```



```
In [39]: fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 3, 1)
    sns.histplot(df2['actual_distance_to_destination'],kde = True)
    plt.subplot(1, 3, 2)
    sns.histplot(df2['segment_osrm_distance'],kde = True)
    plt.subplot(1, 3, 3)
    sns.histplot(df2['osrm_distance'],kde = True)
    plt.show()
```



```
In [40]: fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 4, 1)
    sns.histplot(df2['actual_time'],kde = True)
    plt.subplot(1, 4, 2)
    sns.histplot(df2['osrm_time'],kde = True)
    plt.subplot(1, 4, 3)
    sns.histplot(df2['segment_actual_time'],kde = True)
    plt.subplot(1, 4, 4)
    sns.histplot(df2['segment_osrm_time'],kde = True)
    plt.show()
```


Observations:

• all of the numerical data is right skewed.

Outlier Detection and treatment

```
In [41]: # outliers in time difference data
fig = plt.figure(figsize=(20,5))
plt.subplot(1, 2, 1)
sns.boxplot(y = df2['start_scan_to_end_scan'])
plt.subplot(1,2, 2)
sns.boxplot(y = df2['time_diff'])
```

Out[41]: <AxesSubplot:ylabel='time_diff'>


```
In [42]: # outliers in distance data
fig = plt.figure(figsize=(15,10))
plt.subplot(2,2, 1)
sns.boxplot(y = df2['actual_distance_to_destination'])
plt.subplot(2,2, 2)
sns.boxplot(y = df2['osrm_distance'])
plt.subplot(2,2, 3)
sns.boxplot(y = df2['segment_osrm_distance'])
```

Out[42]: <AxesSubplot:ylabel='segment_osrm_distance'>


```
In [43]: # outliers in time data
fig = plt.figure(figsize=(15,10))
plt.subplot(2,2, 1)
sns.boxplot(y = df2['actual_time'])
plt.subplot(2,2, 2)
sns.boxplot(y = df2['osrm_time'])
plt.subplot(2,2, 3)
sns.boxplot(y = df2['segment_actual_time'])
plt.subplot(2,2, 4)
sns.boxplot(y = df2['segment_osrm_time'])
```

Out[43]: <AxesSubplot:ylabel='segment_osrm_time'>

Observations

• all data of time and distance have high number of outliers, it was evident from right skewness of the data.

Outlier Treatment using IQR method

Total number of columns: 23

```
In [44]: # copying the data to keep the original safe
         df out = df2.copy()
In [45]: # removing outliers from the data
         numerical columns = ['start scan to end scan', 'actual distance to destination',
                'actual time', 'osrm time', 'osrm distance', 'segment actual time',
                'segment osrm distance', 'segment_osrm_time','time_diff']
         for x in numerical columns:
             Q25 = df out[x].quantile(0.25)
             Q75 = df out[x].quantile(0.75)
             IOR = 075-025
             upper limit = Q75 + 1.5*IQR
             lower_limit = Q25 - 1.5*IQR
             df out = df out[(df_out[x] > Q25 - 1.5*IQR) & (df_out[x] < Q75 + 1.5*IQR)]
In [46]: # data information post merging the data and treating null values
         # shape of data
         print('Total number of rows:',df out.shape[0])
         print('Total number of columns:',df_out.shape[1])
         Total number of rows: 8968
```

Distribution of numerical data after removing outliers

```
In [47]: fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    sns.boxplot(y = df_out['start_scan_to_end_scan'])
    plt.subplot(1,2, 2)
    sns.boxplot(y = df_out['time_diff'])
```

Out[47]: <AxesSubplot:ylabel='time_diff'>


```
In [48]: fig = plt.figure(figsize=(15,10))
plt.subplot(2,2, 1)
sns.boxplot(y = df_out['actual_distance_to_destination'])
plt.subplot(2,2, 2)
sns.boxplot(y = df_out['osrm_distance'])
plt.subplot(2,2, 3)
sns.boxplot(y = df_out['segment_osrm_distance'])
```

Out[48]: <AxesSubplot:ylabel='segment_osrm_distance'>


```
In [49]: fig = plt.figure(figsize=(15,10))
    plt.subplot(2,2, 1)
    sns.boxplot(y = df_out['actual_time'])
    plt.subplot(2,2, 2)
    sns.boxplot(y = df_out['osrm_time'])
    plt.subplot(2,2, 3)
    sns.boxplot(y = df_out['segment_actual_time'])
    plt.subplot(2,2, 4)
    sns.boxplot(y = df_out['segment_osrm_time'])
```

Out[49]: <AxesSubplot:ylabel='segment_osrm_time'>

Hypothesis Testing

Test1: Compare the difference between time diff and start_scan_to_end_scan.

```
In [50]: # Data Extraction for the analysis
    start_scan_to_end_scan = df_out['start_scan_to_end_scan']
    diff = df_out['time_diff'] # data of timestamp difference
```

```
In [51]: # checking the data distribution using histograms
    fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    sns.histplot(start_scan_to_end_scan,kde = True)
    plt.xlabel('start scan to end scan',fontsize=10)
    plt.subplot(1, 2, 2)
    sns.histplot(diff,kde = True)
    plt.xlabel('time_diff (end-start)',fontsize=10)
    plt.show()
```



```
In [52]: # Validation of Assumption 1 by performing Quantile-Quantile Plot Test:
    # H0: The sample has a Gaussian distribution.
    # H1: The sample does not have a Gaussian distribution.
    fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    stats.probplot(start_scan_to_end_scan,dist="norm",plot=plt)
    plt.xlabel('distribution of start_scan_to_end_scan',fontsize=10)
    plt.subplot(1, 2, 2)
    stats.probplot(diff,dist="norm",plot=plt)
    plt.xlabel('distribution of time_diff',fontsize=10)
    plt.show()
```



```
In [53]: # Transforming data by using boxcox transformation:
         original data1=start scan to end scan
         original data2=diff
         fitted data1, fitted lambda1 = stats.boxcox(start scan to end scan)
         fitted data2, fitted lambda2 = stats.boxcox(diff)
         fig = plt.figure(figsize=(15,10))
         plt.subplot(2, 2, 1)
         sns.histplot(original data1, kde=True, stat="density")
         plt.title('Original Data')
         plt.subplot(2, 2, 2)
         sns.histplot(fitted_data1, kde=True, stat="density")
         plt.title('Data distribution after box-cox transformation')
         plt.subplot(2, 2, 3)
         sns.histplot(original_data2, kde=True, stat="density")
         plt.subplot(2, 2, 4)
         sns.histplot(fitted_data2, kde=True, stat="density")
         plt.show()
```



```
In [54]: # Quantile-Quantile Plot post data transformation:
    fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    stats.probplot(fitted_data1,dist="norm",plot=plt)
    plt.xlabel('distribution of start_scan_to_end_scan',fontsize=10)
    plt.subplot(1, 2, 2)
    stats.probplot(fitted_data2,dist="norm",plot=plt)
    plt.xlabel('distribution of time_diff',fontsize=10)
    plt.show()
```



```
In [55]: # Validation of variance assumption:
    # H0:variance of the sample is same.
    # Ha:variances of the sample is not same.
    alpha=0.05
    levene_stat,p_value=levene(start_scan_to_end_scan, diff)
    print("alpha:",0.05)
    print("p_value:",p_value)
    if p_value<alpha:
        print("Reject Null Hypothesis: Variance of the input datasets is not same")
    else:
        print('Accept Null Hypothesis: Variance of the input datasets is Same/Close')</pre>
```

p_value: 0.0025573994985197534

Reject Null Hypothesis: Variance of the input datasets is not same

Observations on the assumption:

- 1. with confidence level 0.05 both data sets have statistically different variance.
- 2. after outlier removal the data is slightly right skewed which is converted to normal using box cox transformation.

Hypothesis setup for ttest:

- 1. **Null Hypothesis:** mean of both samples are equal.
- 2. Alternate: mean of both samples is different.

```
In [56]: print('start scan to end scan Mean:', start scan to end scan.mean())
         print('diff Mean:', diff.mean())
         start scan to end scan Mean: 190.7164362176628
         diff Mean: 194.9273568628434
In [57]: # Paired Student's t-test
         t stat,p value=ttest ind(start scan to end scan,diff)
         alpha = 0.05
         print("Alpha:",alpha)
         print("p value:",p value)
         print("t statistics:",t_stat)
         if p_value<alpha:</pre>
             print("Reject Null Hypothesis: The means of the samples are different")
         else:
             print('Accept Null Hypothesis: The means of the samples are equal')
         Alpha: 0.05
         p value: 0.006411717541824584
         t statistics: -2.726268007838676
         Reject Null Hypothesis: The means of the samples are different
In [58]: # correlation tets
         print('pearson correlation coefficient:', stats.pearsonr(start scan to end scan,diff)[0])
         pearson correlation coefficient: 0.9824981004420749
```

Observations:

- 1. both data have statistically different mean value (p_val = 0.006)
- 2. but both the data are very highly correlated (cc = 0.98)

Test-2: Do hypothesis testing/ visual analysis between actual_time aggregated value and OSRM time aggregated value

```
In [59]: actual_agg = df_out['actual_time']
    osrm_agg = df_out['osrm_time']

In [60]: fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    sns.histplot(actual_agg,kde = True)
    plt.xlabel('Count distribution on trip uuid',fontsize=10)
    plt.subplot(1, 2, 2)
    sns.histplot(osrm_agg,kde = True)
    plt.xlabel('Count distribution on trip uuid',fontsize=10)
    plt.xlabel('Count distribution on trip uuid',fontsize=10)
    plt.show()
```


Assumptions under t-test:

- Observations in each sample are normally distributed.
- Observations in each sample have close to same variance.

```
In [61]: # Validation of Assumption 2 by performing Quantile-Quantile Plot Test:
    # H0: The sample has a Gaussian distribution.
    # H1: The sample does not have a Gaussian distribution.
    fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    probplot(actual_agg,dist="norm",plot=plt)
    plt.xlabel('distribution of actual_time',fontsize=10)
    plt.subplot(1, 2, 2)
    probplot(osrm_agg,dist="norm",plot=plt)
    plt.xlabel('distribution of osrm_time',fontsize=10)
    plt.show()
```



```
In [62]: # Transforming data by using boxcox transformation:
         original data1=actual agg
         original data2=osrm agg
         fitted data1, fitted lambda1 = boxcox(actual agg)
         fitted data2, fitted lambda2 = boxcox(osrm agg)
         fig = plt.figure(figsize=(15,10))
         plt.subplot(2,2, 1)
         sns.histplot(original data1, kde=True, stat="density")
         plt.title('Original Data')
         plt.subplot(2,2, 2)
         sns.histplot(fitted data1, kde=True, stat="density")
         plt.title('Data distribution after box-cox transformation')
         plt.subplot(2,2, 3)
         sns.histplot(original data2, kde=True, stat="density")
         plt.subplot(2,2, 4)
         sns.histplot(fitted_data2, kde=True, stat="density")
         plt.show()
```



```
In [63]: # Quantile Plot after data transformation:
    fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    probplot(fitted_data1,dist="norm",plot=plt)
    plt.xlabel('distribution of actual_time',fontsize=10)
    plt.subplot(1, 2, 2)
    probplot(fitted_data2,dist="norm",plot=plt)
    plt.xlabel('distribution of osrm_time',fontsize=10)
    plt.show()
```



```
In [64]: # Validation of Assumption 3:
    # H0:variance of the sample is same.
    # Ha:variances of the sample is not same.
    alpha=0.05
    levene_stat,p_value=levene(osrm_agg, actual_agg)
    print("alpha:",0.05)
    print("p_value:",p_value)
    if p_value<alpha:
        print("Reject Null Hypothesis: Variance of the input datasets is not same")
    else:
        print('Accept Null Hypothesis: Variance of the input datasets is Same/Close')</pre>
```

alpha: 0.05 p_value: 0.0

Reject Null Hypothesis: Variance of the input datasets is not same

Observations on the assumption:

- 1. with confidence level 0.05 both data sets have statistically different variance.
- 2. after outlier removal the data is slightly right skewed which is converted to normal using box cox transformation.

Hypothesis setup for ttest:

- 1. **Null Hypothesis:** mean of both samples are equal.
- 2. Alternate: mean of both samples is different.

```
In [65]: print('actual time mean:', actual agg.mean())
         print('osrm time mean:', osrm agg.mean())
         actual time mean: 98.47546833184657
         osrm time mean: 41.80619982158787
In [66]: alpha = 0.05
         t stat,p_value=ttest_ind(actual_agg,osrm_agg)
         print("p value:",p_value)
         print("t statistics:",t_stat)
         if p value<alpha:</pre>
             print("Reject Null Hypothesis: The means of the samples are unequal")
         else:
             print('Accept Null Hypothesis: The means of the samples are equal')
         p value: 0.0
         t statistics: 76.26012622156738
         Reject Null Hypothesis: The means of the samples are unequal
In [67]: # correlation tets
         print('pearson correlation coefficient:', stats.pearsonr(osrm agg, actual agg)[0])
```

Observations:

1. both data have statistically different mean value (p_val = 0)

pearson correlation coefficient: 0.7228021360966055

- 2. Null hypothesis Rejected
- 3. but both the data are very highly correlated (cc = 0.722)

Test3: Do hypothesis testing/ visual analysis between actual_time aggregated value and segment actual time aggregated value

```
In [68]: actual_agg = df_out['actual_time']
seg_agg = df_out['segment_actual_time']

In [69]: fig = plt.figure(figsize=(20,5))
plt.subplot(1, 2, 1)
sns.histplot(actual_agg,kde = True)
plt.xlabel('Count distribution on trip uuid',fontsize=10)
plt.subplot(1, 2, 2)
sns.histplot(seg_agg,kde = True)
plt.xlabel('Count distribution on trip uuid',fontsize=10)
```


Assumptions under t-test:

- Observations in each sample are normally distributed.
- · Observations in each sample have close to same variance

```
In [70]: # H0: The sample has a Gaussian distribution.
# H1: The sample does not have a Gaussian distribution.
fig = plt.figure(figsize=(20,5))
plt.subplot(1, 2, 1)
probplot(actual_agg,dist="norm",plot=plt)
plt.xlabel('distribution of actual_time',fontsize=10)
plt.subplot(1, 2, 2)
probplot(seg_agg,dist="norm",plot=plt)
plt.xlabel('distribution of segment_actual_time',fontsize=10)
plt.show()
```



```
In [71]: # Transforming data by using boxcox transformation:
         original data1=actual agg
         original data2=seg agg
         fitted data1, fitted lambda1 = boxcox(actual agg)
         fitted data2, fitted lambda2 = boxcox(seg agg)
         fig = plt.figure(figsize=(15,10))
         plt.subplot(2,2, 1)
         sns.histplot(original data1, kde=True, stat="density")
         plt.title('Original Data')
         plt.subplot(2,2, 2)
         sns.histplot(fitted data1, kde=True, stat="density")
         plt.title('Data distribution after box-cox transformation')
         plt.subplot(2,2, 3)
         sns.histplot(original_data2, kde=True, stat="density")
         plt.subplot(2,2, 4)
         sns.histplot(fitted_data2, kde=True, stat="density")
         plt.show()
```



```
In [72]: # Quantile Plot after data transformation:
    fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    probplot(fitted_data1,dist="norm",plot=plt)
    plt.xlabel('distribution of actual_time',fontsize=10)
    plt.subplot(1, 2, 2)
    probplot(fitted_data2,dist="norm",plot=plt)
    plt.xlabel('distribution of segment_actual_time',fontsize=10)
    plt.show()
```



```
In [73]: # H0:variance of the sample is same.
# Ha:variances of the sample is not same.
alpha=0.05
levene_stat,p_value=levene(actual_agg, seg_agg)
print("alpha:",0.05)
print("p_value:",p_value)
if p_value<alpha:
    print("Reject Null Hypothesis: Variance of the input datasets is not same")
else:
    print('Accept Null Hypothesis: Variance of the input datasets is Same/Close')</pre>
```

p_value: 0.5791411251061716

Hypothesis setup for ttest:

- 1. Null Hypothesis: mean of both samples are equal.
- 2. Alternate: mean of both samples is different.

```
In [74]: print('Actual time mean:', actual agg.mean())
         print('segment time mean:', seg agg.mean())
         Actual time mean: 98.47546833184657
         segment time mean: 97.4528322925959
In [75]: alpha = 0.05
         t stat,p value=ttest ind(actual agg,seg agg)
         print("p value:",p value)
         print("t statistics:",t stat)
         if p value<alpha:</pre>
             print("Reject Null Hypothesis: The means of the samples are unequal")
         else:
             print('Accept Null Hypothesis: The means of the samples are equal')
         p value: 0.29068292756540426
         t statistics: 1.0566558214779944
         Accept Null Hypothesis: The means of the samples are equal
In [76]: print('pearson correlation coefficient:', stats.pearsonr(actual agg,seg agg)[0])
         pearson correlation coefficient: 0.9998966577410145
```

Observations:

- 1. The calculated p-value: 0.29, which is greater than the significance level.
- 2. Null Hypothesis is accepted.
- 3. The means of the actual time and segment actual times are equal

Test4: Do hypothesis testing/ visual analysis between osrm distance aggregated value and segment osrm distance aggregated value

```
In [77]: | osrm_dist_agg = df_out['osrm_distance']
seg_osrm_dist_agg = df_out['segment_osrm_distance']
```

```
In [78]: fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    sns.histplot(osrm_dist_agg,kde = True)
    plt.xlabel('Count distribution on trip uuid',fontsize=10)
    plt.subplot(1, 2, 2)
    sns.histplot(seg_osrm_dist_agg,kde = True)
    plt.xlabel('Count distribution on trip uuid',fontsize=10)
    plt.show()
```



```
In [79]: # Validation of Assumption 2 by performing Quantile-Quantile Plot Test:
    # H0: The sample has a Gaussian distribution.
    # H1: The sample does not have a Gaussian distribution.
    fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    probplot(osrm_dist_agg,dist="norm",plot=plt)
    plt.xlabel('distribution of osrm distance aggrigated',fontsize=10)
    plt.subplot(1, 2, 2)
    probplot(seg_osrm_dist_agg,dist="norm",plot=plt)
    plt.xlabel('distribution of segment osrm distance',fontsize=10)
    plt.show()
```



```
In [80]: # Transforming data by using boxcox transformation:
         original data1=osrm dist agg
         original data2=seg osrm dist agg
         fitted data1, fitted_lambda1 = boxcox(osrm_dist_agg)
         fitted data2, fitted lambda2 = boxcox(seg osrm dist agg)
         fig = plt.figure(figsize=(15,10))
         plt.subplot(2,2, 1)
         sns.histplot(original data1, kde=True, stat="density")
         plt.title('Original Data')
         plt.subplot(2,2, 2)
         sns.histplot(fitted data1, kde=True, stat="density")
         plt.title('Data distribution after box-cox transformation')
         plt.subplot(2,2, 3)
         sns.histplot(original data2, kde=True, stat="density")
         plt.subplot(2,2, 4)
         sns.histplot(fitted_data2, kde=True, stat="density")
         plt.show()
```



```
In [81]: # Quantile-Quantile Plot after data transformation:
    fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    probplot(fitted_data1,dist="norm",plot=plt)
    plt.xlabel('distribution of osrm distance aggrigated',fontsize=10)
    plt.subplot(1, 2, 2)
    probplot(fitted_data2,dist="norm",plot=plt)
    plt.xlabel('distribution of segment osrm distance',fontsize=10)
    plt.show()
```



```
In [82]: # H0:variance of the sample is same.
# Ha:variances of the sample is not same.
alpha=0.05
levene_stat,p_value=levene(osrm_dist_agg, seg_osrm_dist_agg)
print("alpha:",0.05)
print("p_value:",p_value)
if p_value<alpha:
    print("Reject Null Hypothesis: Variance of the input datasets is not same")
else:
    print('Accept Null Hypothesis: Variance of the input datasets is Same/Close')</pre>
```

p_value: 2.48432809181772e-06

Reject Null Hypothesis: Variance of the input datasets is not same

```
In [83]: print('osrm dist agg Mean:', osrm dist agg.mean())
         print('seg osrm dist agg Mean:', seg osrm dist agg.mean())
         osrm dist agg Mean: 46.35217801070486
         seg osrm dist agg Mean: 49.291729136931274
In [84]: alpha = 0.05
         t stat,p value=ttest ind(osrm dist agg, seg osrm dist agg)
         print("p value:",p value)
         print("t statistics:",t stat)
         if p value<alpha:</pre>
             print("Reject Null Hypothesis: The means of the samples are unequal")
         else:
             print('Accept Null Hypothesis: The means of the samples are equal')
         p value: 5.165879005140737e-09
         t statistics: -5.844600346414713
         Reject Null Hypothesis: The means of the samples are unequal
In [85]: print('pearson correlation coefficient:', stats.pearsonr(osrm dist agg, seg osrm dist agg)[0])
         pearson correlation coefficient: 0.9740636014552427
         Observations:
```

- 1. both data have statistically different mean value (p_val = 5.165879005140737e-09)
- 2. but both the data are very highly correlated (cc = 0.97)

Test5: Do hypothesis testing/ visual analysis between osrm time aggregated value and segment osrm time aggregated value

```
In [86]: osrm_time = df_out['osrm_time']
seg_osrm_time = df_out['segment_osrm_time']
```

```
In [87]: fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    sns.histplot(osrm_time,kde = True)
    plt.xlabel('Count distribution on trip uuid',fontsize=10)
    plt.subplot(1, 2, 2)
    sns.histplot(seg_osrm_time,kde = True)
    plt.xlabel('Count distribution on trip uuid',fontsize=10)
    plt.show()
```



```
In [88]: # H0: The sample has a Gaussian distribution.
# H1: The sample does not have a Gaussian distribution.
fig = plt.figure(figsize=(20,5))
plt.subplot(1, 2, 1)
probplot(osrm_time,dist="norm",plot=plt)
plt.xlabel('distribution of osrm_time',fontsize=10)
plt.subplot(1, 2, 2)
probplot(seg_osrm_time,dist="norm",plot=plt)
plt.xlabel('distribution of segment_osrm_time',fontsize=10)
plt.show()
```



```
In [89]: # Transforming data by using boxcox transformation:
         original data1=osrm time
         original data2=seg osrm time
         fitted data1, fitted lambda1 = boxcox(osrm time)
         fitted data2, fitted lambda2 = boxcox(seg osrm time)
         fig = plt.figure(figsize=(15,10))
         plt.subplot(2,2, 1)
         sns.histplot(original data1, kde=True, stat="density")
         plt.title('Original Data')
         plt.subplot(2,2, 2)
         sns.histplot(fitted data1, kde=True, stat="density")
         plt.title('Data distribution after box-cox transformation')
         plt.subplot(2,2, 3)
         sns.histplot(original_data2, kde=True, stat="density")
         plt.subplot(2,2, 4)
         sns.histplot(fitted_data2, kde=True, stat="density")
         plt.show()
```



```
In [90]: # Quantile Plot after data transformation:
    fig = plt.figure(figsize=(20,5))
    plt.subplot(1, 2, 1)
    probplot(fitted_data1,dist="norm",plot=plt)
    plt.xlabel('distribution of osrm_time',fontsize=10)
    plt.subplot(1, 2, 2)
    probplot(fitted_data2,dist="norm",plot=plt)
    plt.xlabel('distribution of segment_osrm_time',fontsize=10)
    plt.show()
```



```
In [91]: # Validation of Assumption 3:
    # H0:variance of the sample is same.
    # Ha:variances of the sample is not same.
    alpha=0.05
    levene_stat,p_value=levene(osrm_time, seg_osrm_time)
    print("alpha:",0.05)
    print("p_value:",p_value)
    if p_value<alpha:
        print("Reject Null Hypothesis: Variance of the input datasets is not same")
    else:
        print('Accept Null Hypothesis: Variance of the input datasets is Same/Close')</pre>
```

p_value: 2.888882960532929e-13

Reject Null Hypothesis: Variance of the input datasets is not same

```
In [92]: alpha = 0.05
    t_stat,p_value=ttest_ind(osrm_time, seg_osrm_time)
    print("p value:",p_value)
    print("t statistics:",t_stat)
    if p_value<alpha:
        print("Reject Null Hypothesis: The means of the samples are unequal")
    else:
        print('Accept Null Hypothesis: The means of the samples are equal')

p value: 2.1479512843092573e-12
    t statistics: -7.029458109386468
    Reject Null Hypothesis: The means of the samples are unequal

In [93]: print('pearson correlation coefficient:', stats.pearsonr(osrm_time, seg_osrm_time)[0])</pre>
```

pearson correlation coefficient: 0.9696933987545999

Observations:

- 1. both data have statistically different mean value, null hypothesis rejected
- 2. but both the data are very highly correlated (cc = 0.96)

Correlation b/w different data points

Out[94]: <AxesSubplot:>

observations:

- · mostly numerical data is highly correlated.
- min value of correlation coefficient is around 0.56.
- all the values are positively correlated.

Handling categorical values

one-hot encoding of categorical variables

```
In [95]: # applying one hot encoding on categorical variables
    one_hot_encoded_data = pd.get_dummies(df2, columns = ['data', 'route_type'])
    one_hot_encoded_data.iloc[:,-4:] # last 4 columns showing encoded data
```

Out[95]:

	data_test	data_training	route_type_Carting	route_type_FTL
0	0	1	0	1
1	0	1	1	0
2	0	1	0	1
3	0	1	1	0
4	0	1	0	1
14812	1	0	1	0
14813	1	0	1	0
14814	1	0	1	0
14815	1	0	1	0
14816	1	0	0	1

14800 rows × 4 columns

Column Normalization / Column Standardization

using StandardScaler

Out[98]:

	start_scan_to_end_scan	actual_distance_to_destination	actual_time	osrm_time	osrm_distance	segment_actual_time	segment_osrm_distance	segment_
1	-0.105422	1.357511	0.684701	0.974144	1.173938	0.674336	1.016672	
3	-0.892416	-0.706752	-0.607056	-0.996919	-0.807854	-0.595449	-0.856949	
5	-0.016885	-0.433228	-0.576300	-0.699400	-0.553896	-0.579964	-0.618406	
6	-0.912091	-1.004340	-1.145289	-1.071298	-1.039911	-1.137431	-1.085881	
7	-0.439895	-0.513306	-0.530166	-0.290311	-0.527982	-0.518023	-0.593480	
14811	-1.010465	-0.685193	-0.929996	-0.959729	-0.782821	-0.936123	-0.838598	
14812	0.652060	0.789051	-0.237983	0.751005	0.821140	-0.239290	0.453407	
14813	-1.285913	-0.767984	-1.191423	-1.108488	-0.916644	-1.183886	-0.967313	
14814	2.265398	0.085965	2.822252	0.230347	0.380164	2.842262	1.619642	
14816	1.596453	1.095648	2.714606	0.974144	1.036662	2.733866	0.911481	

8968 rows × 8 columns

Observations:

Using MinMaxScaler

```
In [99]: scaler = MinMaxScaler()
    scaler.fit(std_df1[numerical_columns])
    std_df1[numerical_columns] = scaler.transform(std_df1[numerical_columns])
```

In [100]: std_df1[numerical_columns]

Out[100]:

start	t_scan_to_end_scan	actual_distance_to_destination	actual_time	osrm_time	osrm_distance	segment_actual_time	segment_osrm_distance	segment_
1	0.315895	0.446612	0.380682	0.455224	0.433398	0.379310	0.458126	
3	0.154930	0.056869	0.142045	0.059701	0.060458	0.143678	0.065890	
5	0.334004	0.108511	0.147727	0.119403	0.108248	0.146552	0.115829	
6	0.150905	0.000682	0.042614	0.044776	0.016789	0.043103	0.017964	
7	0.247485	0.093392	0.156250	0.201493	0.113125	0.158046	0.121047	
14811	0.130785	0.060939	0.082386	0.067164	0.065169	0.080460	0.069732	
14812	0.470825	0.339284	0.210227	0.410448	0.367007	0.209770	0.340209	
14813	0.074447	0.045307	0.034091	0.037313	0.039985	0.034483	0.042786	
14814	0.800805	0.206538	0.775568	0.305970	0.284023	0.781609	0.584356	
14816	0.663984	0.397171	0.755682	0.455224	0.407565	0.761494	0.436105	

8968 rows × 8 columns

Observations:

- After Normalization of numerical dataset, all values are converted within the new range of 0 and 1.
- It is done by the help of this expression y = (x min) / (max min)

Insights

1. Delhivery provided data of 2 months with 144867 rows and 24 columns.

- 2. aggregating the data set helped us to look at the data on macro level.
- 3. overall it has 14817 unique trip ids out of which 17 are dropped because of null values.
- 4. Highest order received by Bengalore city.
- 5. Highest order received by state-wise is Maharashtra.
- 6. Top 5 source states are Maharashtra, Karnataka, Haryana, Tamil Nadu, and Delhi.
- 7. Top 5 source cities are Bangalore, Gurgaon ,Mumbai and Bhiwandi. (**To be noted Bengalore have 2 different names in dataset)
- 8. Longest Corridor between cities is Guwahati to Bhiwandi having distance of 2140 Km and taking average time around 5457 minutes to delivered order.
- 9. Based on two sample t-test, there is NO difference between mean of Actual time and segment actual time.
- 10. The difference of mean between (order start time order end time) and start scan to end scan is high.
- 11. There is significant difference between mean of Actual time and osrm time.
- 12. There is significant difference between mean of osrm distance and segment osrm distance. And mean of segment osrm distance is higher than the osrm distance.
- 13. Based on two sample t-test, the mean of the osrm time is lesser than segment osrm time.

Recommendation

- 1. As the actual time is more than the osrm time, the estimated should be done on the basis of actual time.
- 2. As the segment osrm distance is more than osrm distance, the segments are considered of higher length.
- 3. the osrm data is collected from the 3rd party maps or servers, that is why we have higher number of variation in actual and osrm data.
- 4. optimized selections of the distribution centre can reduce average travel time to the customers.
- 5. All products picked up at the same source city and destined to the same destination city must be shipped with FTL (full truck load).
- 6. all same citi orders can be shipped using carting method.
- 7. Distribution centers and check points must be linked with advanced information systems to ensure that all pickups and deliveries are made within the schedule time.

Type *Markdown* and LaTeX: α^2