Italian & Asian Gourmet (IAG)

Restaurant Chain in Toronto

Andrija Mihoci

Motivation

- Company aims expanding to a new city
- Data science team supports management
- Data on restaurants in Toronto
- □ Priority: extracting sufficient and relevant information

Objectives

- (i) Identifying restaurant clusters
 - Expansion strategy, city of Toronto
 - Economic and geographical data
- (ii) Finding central interest areas
 - Three focal points potential restaurant locations
 - Properties: location, connectivity, distance

Benefits

- Enhancing customer experience: culinary variety
- ☐ Finding precise locations of three potential restaurants
- Supporting the IAG inter-culinary expansion strategy

Outline

- 1. Motivation ✓
- 2. Data
- 3. Methodology
- 4. Results & Discussion
- 5. Conclusion

Data — 2-1

Location Data

Figure 1: Neighborhoods in Toronto

Location Data

Postal Code	Latitude	Longitude
M3A	43.75	-79.33
M4A	43.73	-79.32
M5A	43.65	-79.36
M6A	43.72	-79.46
M7A	43.66	-79.39

Table 1: Selected neighborhoods in Toronto

Business Data

Restaurant Type	Attractiveness	
Italian Restaurant	0.11	
Japanese Restaurant	0.06	
Sushi Restaurant	0.06	
Indian Restaurant	0.06	
Middle Eastern Restaurant	0.05	

Table 2: Average proportion across 98 neighborhoods

Methodology

- \Box Cluster analysis, k nearest neighbors algorithm
- Data matrix: attractiveness & geographical features, all neighborhoods
- Neighborhood names important for area identification

Algorithm

- Finding the best k (high-dimensional) data points in the data cloud, distance matrix
- \odot Selecting k based on experience

3 - 2

Clusters

Figure 2: Restaurant clusters in Toronto

Attractiveness

Restaurant Type	Cluster 1	Cluster 2
Italian Restaurant	0.30	0.05
Japanese Restaurant	0.05	0.07
Sushi Restaurant	0.06	0.06

Table 3: Average attractiveness of restaurant types.

Focal Points

Figure 3: Identified focal points for IAG expansion in Toronto

Key Findings

- Restaurant type: core Italian, flexible Japanese and/or Sushi
- Clusters: Italian vs Asian restaurants
- 3 Locations: Oakwood and Bayview Avenue, Avenue Road all 3 are connected to the Eglinton Avenue

Conclusion — 5-1

Conclusion

- (i) Identifying restaurant clusters ✓
 - Expansion strategy, city of Toronto: Italian and Japanese/Sushi restaurant
 - Economic and geographical data: k-means clustering
- (ii) Finding central interest areas ✓
 - ► Three focal points/streets identified
 - Properties: locations connected, relatively short distance

Italian & Asian Gourmet (IAG)

Restaurant Chain in Toronto

Andrija Mihoci