

Relativistic time of arrival (Thesis proposal)

Philip Caesar M. Flores

pmflores2@up.edu.ph
Theoretical Physics Group, National Institute of Physics,
University of the Philippines Diliman, Quezon City

05 October 2021

Introduction

Classical time of arrival Quantum time of arrival Time operators

Non-relativisti TOA operators

Free case Interacting case

Relativistic TOA operators

Motivation

Related studies

proposa Comments

1 Introduction

- Classical time of arrival
- Quantum time of arrival
- Time operators
- 2 Non-relativistic TOA operators
 - Free case
 - Interacting case
- 3 Relativistic TOA operators
 - Motivation
 - Related studies
- 4 Research proposal
 - Comments
 - Goals

Classical time of arrival

Time operators

Free case Interacting case

Motivation

- Classical mechanics treats time only as a parameter:
 - Newton's equations
 - Maxwell's equations
- Time is absolute.

Classical time of arrival

Time operators

Free case Interacting case

- Time in relativity is dynamical
 - SR treats time and space as components of a 4-vector
 - Time in GR is influenced by the geometry of spacetime

ntroduction

Classical time of arrival Quantum time of arrival

Time operators

Non-relativisti TOA operators

Free case Interacting case

Relativistic TO/

Related studio

Related studies

proposa Comments

- Quantum mechanics treats time as an external parameter which governs the evolution of the system
- Quantization schemes lack any fundamental notion of time

ntroduction

Classical time of arrival Quantum time of arrival

Time operators

TOA operato Free case

Interacting cas

Relativistic TO

Motivation

Related studies

proposa

Classical mechanics Quantum mechanics Quantum field theory

- Different treatment of time then poses a problem in attempts to unify general relativity and quantum theory
- This constitutes one aspect of the problem of time in quantum gravity

Time of arrival in classical physics

Introduction

Classical time of arrival Quantum time of arrival

Time operators

Non-relativisti

Free case

Interacting case

Relativistic TO/ operators

Motivation

Related studies

proposa

Researc proposa

Method 1:

We invert the classical equation of motion

$$x = q + \frac{p}{\mu}t \Rightarrow t = \mu \frac{(x - q)}{p} \tag{1}$$

where, μ is the mass of the particle and p is the initial momentum

Time of arrival in classical physics

Introduction

Classical time of arrival Quantum time of arrival

Non-relativis TOA operato

Free case

Relativistic TO

operators

Related studie

proposa

Commer Goals

Method 2:

Use a detector to record the instant of time t_q at which the particle leaves q and another detector to record its arrival t_x at x.

The difference $\Delta t = t_x - t_q$ is the time of arrival.

Methods 1 and 2 will always yield the same result.

4/39

Time of arrival in classical physics

Classical time of arrival Time operators

Free case

Interacting case

Interacting case:

Given the Hamiltonian $H(q, p) = \frac{p^2}{2u} + V(q)$, the time of arrival is

$$T_X(q,p) = -\operatorname{sgn}(p)\sqrt{\frac{\mu}{2}}\int_x^q \frac{dq'}{\sqrt{H(q,p)-V(q')}}$$
 (2)

Time of arrival in quantum physics

Introduction

Classical time of arrival Quantum time of arrival Time operators

Non-relativisti TOA operators

Free case Interacting case

Relativistic TOA

Related studies

proposa

Comme

We cannot use method 1

In the Heisenberg picture, the equation of motion of the position operator is

$$\frac{d\hat{x}}{dt} = \frac{i}{\hbar} \left[\hat{H}, \hat{x} \right] \tag{3}$$

- We can quantize the classical expression of the time of arrival but this leads to ordering ambiguity.
- The classical TOA may be complex and/or multiple valued

Time of arrival in quantum physics

Introduction

Quantum time of arrival
Time operators

Non-relativisti TOA operators

Interacting case

Relativistic TO operators

Related studies

Research

Comments

We cannot use method 2

The first detector will collapse the wavefunction and the state of the particle upon arrival at x is no longer causally related to the state during preparation.

- The standard formulation of quantum mechanics has no standard solution to the time of arrival of a particle.
- It is non-sensical to ask the time of arrival of the particle because time is not an observable in quantum mechanics.

Time operators

Classical time of arrival

Time operators

Free case Interacting case

Comments

Pauli's theorem:1

There is no self-adjoint time operator that is canonically conjugate with its corresponding bounded system Hamiltonian.

- This has lead to a diverse treatment of time within and beyond the standard formulation of quantum mechanics to bypass Pauli's theorem².
- Classical mechanis is always a fundamental reference for all approaches.

Wolfgang Pauli et al. "Handbuch der physik". In: Geiger and scheel 2 (1933), pp. 83-272.

²Juan Gonzalo Muga and C Richard Leavens. "Arrival time in quantum mechanics". In: *Physics* Reports 338.4 (2000), pp. 353-438; Iñigo L. Egusquiza J. Gonzalo Muga Rafael Sala Mayato. Time in quantum mechanics Volume 1, 2nd ed. Lecture Notes in Physics 734, Springer-Verlag Berlin Heidelberg, 2007, ISBN: 9783540734727; 3540734724; Adolfo Campo Gonzalo Muga Andreas Ruschhaupt. Time in Quantum Mechanics - Vol. 2. 1st ed. Lecture Notes in Physics 789. Springer-Verlag Berlin Heidelberg,

Time operators

Classical time of arrival

Time operators

Free case Interacting case

Relativistic TOA

Comments

Pauli's proof was only formal, without regard to the domains of the operators involved and to the validity of the operations leading to his conclusion³.

Several studies on time of arrival operators have also been made.

³Eric Galapon. "Pauli's theorem and quantum canonical pairs: the consistency of a bounded, self-adjoint time operator canonically conjugate to a Hamiltonian with non-empty point spectrum. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458.2018 (2002), pp. 451-472.

troduction

Classical time of arrival Quantum time of arrival Time operators

Ion-relativistic

Free case

Interacting case

Relativistic TOA operators

Related studies

proposa

Comments

Aharonov-Bohm operator⁴

Symmetric quantization of the classical TOA yields

$$\hat{T}_{AB} = -\frac{\mu}{2} \left(\hat{p}^{-1} \hat{q} + \hat{q} \hat{p}^{-1} \right) \tag{4}$$

This is a maximally symmetric operator.

eigenfunctions". In: Physical Review A 58.6 (1998), p. 4336.

■ The eigenfunctions are complete but non-orthogonal⁵

$$\langle \boldsymbol{p}|t,\pm\rangle = \sqrt{\frac{|\boldsymbol{p}|}{\mu\hbar}} \exp\left(\frac{i}{\hbar} \frac{\boldsymbol{p}^2}{2\mu} t\right) \Theta(\pm \boldsymbol{p})$$
 (5)

⁴ Yakir Aharonov and David Bohm. "Time in the quantum theory and the uncertainty relation for time and energy". In: *Physical Review* 122.5 (1961), p. 1649.

⁵JG Muga, CR Leavens, and JP Palao. "Space-time properties of free-motion time-of-arrival

Classical time of arrival Time operators

Free case

Interacting case

Grot-Rovelli-Tate operator⁶

Regularize \hat{T}_{AB} at the point p=0 which yields

$$\hat{T}_{GRT} = -\mu \sqrt{f_{\epsilon}(\hat{p})} \hat{q} \sqrt{f_{\epsilon}(\hat{p})}$$
 (6)

$$f_{\epsilon}(\hat{p}) = \begin{cases} \hat{p}^{-1}, & |p| > \epsilon \\ \epsilon^{2} \hat{p}, & |p| < \epsilon \end{cases}$$
 (7)

- This is a self-adjoint operator.
- Regularization introduces negative energies to bypasses Pauli's theorem.

⁶Norbert Grot, Carlo Rovelli, and Ranjeet S Tate. "Time of arrival in quantum mechanics". In: *Physical* Review A 54.6 (1996), p. 4676.

Time operators

Free case

Interacting case

Grot-Rovelli-Tate operator⁶

Regularize \hat{T}_{AB} at the point p = 0 which yields

$$\hat{T}_{GRT} = -\mu \sqrt{f_{\epsilon}(\hat{p})} \hat{q} \sqrt{f_{\epsilon}(\hat{p})}$$
 (6)

$$f_{\epsilon}(\hat{p}) = \begin{cases} \hat{p}^{-1}, & |p| > \epsilon \\ \epsilon^{2} \hat{p}, & |p| < \epsilon \end{cases}$$
 (7)

The eigenfunctions are

$$\langle p|t,\pm\rangle_{\epsilon} = \sqrt{\frac{1}{\mu\hbar f_{\epsilon}(p)}} \exp\left(\frac{i}{\hbar}\frac{t}{\mu}\int_{+\epsilon}^{p}\frac{dp'}{f_{\epsilon}(p')}\right)\Theta(\pm p)$$
 (8)

⁶Norbert Grot, Carlo Rovelli, and Ranjeet S Tate. "Time of arrival in quantum mechanics". In: *Physical* Review A 54.6 (1996), p. 4676.

Classical time of arrival Time operators

Free case Interacting case

Kijowski-Delgado-Muga operator⁷

Self-adjoint extension of \hat{T}_{AB} is obtained using the combination

$$\hat{T}_{KDM} = \hat{T}_{AB}\Theta(\hat{\rho}) - \hat{T}_{AB}\Theta(\hat{-\rho}) \tag{9}$$

Bypasses Pauli's theorem because \hat{T}_{KDM} is not canonically conjugate to \hat{H} , instead

$$\left[\operatorname{sgn}(\hat{p})\hat{H},\hat{T}_{KDM}\right] = i\hbar \tag{10}$$

Philip Caesar M. Flores Relativistic time of arrival 05 October 2021 11/39

⁷Jerzy Kijowski. "On the time operator in quantum mechanics and the Heisenberg uncertainty relation for energy and time". In: Reports on Mathematical Physics 6.3 (1974), pp. 361-386; V Delgado and JG Muga. "Arrival time in quantum mechanics". In: Physical Review A 56.5 (1997), p. 3425.

Classical time of arrival Time operators

Free case Interacting case

Motivation

Comments

Confined time of arrival operator⁸

The operator in position space is

$$\hat{T}_{\gamma}\varphi(q) = \int_{-I}^{I} dq' T_{\gamma}(q, q') \varphi(q')$$
 (11)

$$T_{\gamma}(q,q') = -\mu \frac{(q+q')}{4\hbar \sin \gamma} \left(e^{i\gamma} \Theta(q-q') + e^{-i\gamma} \Theta(q'-q) \right)$$
(12)

Self adjointness was addressed by spatial confinement and imposing non-vanishing boundary conditions $\varphi(-I) = e^{-2i\gamma}\varphi(I)$ in the system Hilbert space.

⁸ Eric A Galapon, Roland F Caballar, and Ricardo T Bahague Jr. "Confined quantum time of arrivals". In: Physical review letters 93.18 (2004), p. 180406; Eric A Galapon, Roland F Caballar, and Ricardo Bahague. "Confined quantum time of arrival for the vanishing potential". In: Physical Review A

Confined time of arrival operator

ntroduction

Classical time of arriva Quantum time of arriva Time operators

Non-relativist TOA operator

Free case Interacting case

Relativistic TO

Motivation

Helated studies

proposal

Comments Goals In the limit of large confining length, the eigenfunctions become two-fold degenerate and are related to the Aharonov-Bohm TOA eigenfunctions as

$$\langle \boldsymbol{p}|t\rangle_{non} = \frac{1}{\sqrt{2}} \left(\langle \boldsymbol{p}|t,+\rangle - \langle \boldsymbol{p}|t,-\rangle\right)$$
 (13)

$$\langle p|t\rangle_{nod} = \frac{1}{\sqrt{2}} \left(\langle p|t,+\rangle + \langle p|t,-\rangle\right)$$
 (14)

- Non-nodal: arrival with detection⁹
- Nodal: arrival with non-detection

Philip Caesar M. Flores Relativistic time of arrival 05 October 2021 13/39

⁹Denny Lane B Sombillo and Eric A Galapon. "Particle detection and non-detection in a quantum time of arrival measurement". In: *Annals of Physics* 364 (2016), pp. 261–273.

Confined time of arrival operator

Time operators

Free case Interacting case

- The eigenfunctions exhibit unitary collapse 10
- The peaks occur at at time equal to the CTOA eigenvalue where the position uncertainty is minimum.

¹⁰Eric A Galapon. "Theory of quantum arrival and spatial wave function collapse on the appearance of particle". In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465.2101 (2009), pp. 71–86.

TOA operators in the interacting case

Time operators

Free case Interacting case

Comments

Quantizing the classical TOA

$$T_{x}(q,p) = -\mathrm{sgn}(p)\sqrt{rac{\mu}{2}}\int_{x}^{q}rac{dq'}{\sqrt{H(q,p)-V(q')}}$$

has been deemed not meaningful because it is not generally real and single valued everywhere 11 but can be addressed on physical grounds¹²

- The TOA of a quantum particle is always real and single valued because
 - it can tunnel through the classically forbidden region
 - measuring the first TOA will collapse the wavefunction

¹¹ Asher Peres. Quantum theory: concepts and methods. Vol. 57. Springer Science & Business Media, 2006

¹²Eric A Galapon and John Jaykel P Magadan. "Quantizations of the classical time of arrival and their dynamics". In: Annals of Physics 397 (2018), pp. 278-302.

Quantized time of arrival operators

Classical time of arrival

Time operators

Free case Interacting case

Motivation Related studies

Comments

Sum of the Bender-Dunne basis operators¹³

$$\hat{T}_{m,n} = \frac{1}{\sum_{k=0}^{n} a_k^{(n)}} \sum_{k=0}^{n} a_k^{(n)} \hat{q}^k \hat{p}^m \hat{q}^{n-k}$$
 (15)

$$= \frac{1}{\sum_{j=0}^{m} a_{j}^{(m)}} \sum_{j=0}^{n} a_{j}^{(m)} \hat{p}^{j} \hat{q}^{n} \hat{p}^{m-j}$$
 (16)

$$a_k^{(n)} = \begin{cases} \binom{n}{k}, & \text{Weyl ordering} \\ 1, & \text{Born-Jordan ordering} \\ \delta_{n,0} + \delta_{n,n}, & \text{simple symmetric ordering} \end{cases}$$
(17)

¹³Carl M. Bender and Gerald V. Dunne. "Polynomials and Operator Orderings". In: Journal of Mathematical Physics 29.8 (Aug. 1988), pp. 1727-1731, ISSN: 0022-2488, 1089-7658, DOI: 10.1063/1.527869; Carl M. Bender and Gerald V. Dunne, "Exact Solutions to Operator Differential Equations". In: Physical Review D 40.8 (Oct. 15, 1989), pp. 2739–2742. ISSN: 0556-2821. DOI: 10.1103/PhysRevD.40.2739; Carl M. Bender and Gerald V. Dunne, "Integration of Operator Differential Equations". In: Physical Review D 40.10 (Nov. 15, 1989), pp. 3504-3511. ISSN: 0556-2821. DOI:

Quantized time of arrival operators

Classical time of arrival Time operators

Free case Interacting case

Comments

In position space, the TOA operators are integral operators¹⁴

$$(\hat{T}\phi)(q) = \frac{\mu}{i\hbar} \int_{-\infty}^{\infty} dq' T(q, q') \operatorname{sgn}(q - q') \phi(q')$$
 (18)

where.

$$T_{W}(q,q') = \frac{1}{2} \int_{0}^{\frac{q+q'}{2}} ds_{0} F_{1} \left[; 1; \frac{\mu}{2\hbar^{2}} (q-q')^{2} V\left(\frac{q+q'}{2}, s\right) \right]$$

¹⁴Eric A Galapon and John Jaykel P Magadan. "Quantizations of the classical time of arrival and their dynamics". In: Annals of Physics 397 (2018), pp. 278-302.

Quantized time of arrival operators

Classical time of arrival

Free case Interacting case

Comments

$$T_{BJ}(q, q') = \frac{1}{2(q - q')} \int_{0}^{q} ds \int_{0}^{s} du$$

$$\times {}_{0}F_{1} \left[; 1; \frac{\mu}{2\hbar^{2}} (q - q')^{2} V(s, u) \right]$$

$$- \frac{1}{2(q - q')} \int_{0}^{q'} ds \int_{0}^{s} du$$

$$\times {}_{0}F_{1} \left[; 1; \frac{\mu}{2\hbar^{2}} (q - q')^{2} V(s, u) \right]$$

$$T_{SS}(q, q') = \frac{1}{4} \int_0^q ds_0 F_1 \left[; 1; \frac{\mu}{2\hbar^2} (q - q')^2 V(q, s) \right]$$
$$- \frac{1}{4} \int_0^{q'} ds_0 F_1 \left[; 1; \frac{\mu}{2\hbar^2} (q - q')^2 V(q', s) \right]$$

where, V(x, y) = V(x) - V(y). Philip Caesar M. Flores

Supraquantized time of arrival operators

Introduction

Classical time of arriva Quantum time of arriva Time operators

TOA operators Free case

Interacting case

Relativistic T operators

Related studies

Helated Studies

Proposa Comments

Supraquantization

Method of constructing quantum observables without quantization.

Process of quantization is circular

No quantization exists such that for all classical observables f and g, the Dirac condition is satisfied

$$\{f,g\}\Rightarrow\left[\hat{Q}_{f},\hat{Q}_{g}\right]=i\hbar$$

Supraquantized time of arrival operators

ntroduction

Classical time of arrival Quantum time of arrival Time operators

Non-relativistic

Free case Interacting case

Polotiviotic T

operators

Related studies

proposa

Supraquantized kernel¹⁵

The time kernel function must satisfy the PDE

$$-\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial q^2} - \frac{\partial^2}{\partial q'^2} \right) T(q, q') + \left(V(q) - V(q') \right) T(q, q') = 0$$
(19)

with the boundary conditions $T(q,q) = \frac{q}{2}$ and T(q,-q) = 0

- The supraquantized kernel is unique, in contrast to the quantized kernel.
- Supraquantization uses the classical observable as a boundary condition.

Philip Caesar M. Flores

Relativistic time of arrival

¹⁵Eric A Galapon. "Shouldn't there be an antithesis to quantization?" In: *Journal of mathematical physics* 45.8 (2004), pp. 3180–3215.

Supraquantized time of arrival operators

Introduction

Classical time of arrival Quantum time of arrival Time operators

Non-relativist FOA operator:

Interacting case

Relativistic 1

operators

Related studies

Research

Proposa Comments

Linear systems

For potentials of the form $V(q) = aq^2 + bq + c$, the supraquantized kernel is equal to the Weyl-ordered kernel

Non-linear systems

The supraquantized kernel is equal to the Weyl-ordered kernel plus corrections terms which arise due to the obstruction to quantization.

Why relativistic TOA operators?

Introduction

Classical time of arrival Quantum time of arrival Time operators

TOA operators

Free case Interacting case

Relativistic TO/

Motivation Related studies

Research

proposa Comments If position can be treated as an observable then it is natural to promote time, e.g. TOA, as an observable with a corresponding operator¹⁶.

There are 'negative energies' and 'negative probabilities'

Additional problem

Although the presence of anti-particles naturally bypasses Pauli's theorem, we are now faced with the problem that we do not know if the particle that arrived is the same particle we started with.

¹⁶ Joseph Bunao and Eric A Galapon. "A one-particle time of arrival operator for a free relativistic spin-0 charged particle in (1+1) dimensions". In: *Annals of Physics* 353 (2015), pp. 83–106.

Classical time of arrival Time operators

Free case Interacting case

Related studies

Earlieast construction of a relativistic free TOA operator was done by Razavi¹⁷

Construction

The classical TOA is first calculated

$$t = \left\{ \int dq \left(\frac{\partial H}{\partial p} \Big|_{p=p(q,H)} \right)^{-1} \right\}_{H=H(p,q)}$$
 (20)

then quantized using simple-symmetric quantization.

¹⁷M Razavy. "Quantum-mechanical conjugate of the hamiltonian operator". In: *Il Nuovo Cimento B* (1965-1970) 63.1 (1969), pp. 271-308.

ntroduction

Classical time of arrival Quantum time of arrival Time operators

Non-relativistic

Free case Interacting case

Relativistic TOA operators

Motivation Related studies

Research

Comments

Spin-0

The positive-energy solution of the Klein-Gordon equation is generated by $H=\sqrt{p^2c^2+\mu^2c^4}$ which leads to the operator

$$\hat{T}_{Ra}^{(0)} = \frac{1}{2} \left(\frac{\sqrt{\hat{p}^2 c^2 + \mu^2 c^4}}{\hat{p} c^2} \hat{q} + \hat{q} \frac{\sqrt{\hat{p}^2 c^2 + \mu^2 c^4}}{\hat{p} c^2} \right)$$
(21)

This looks like the relativistic version of the Aharonov-Bohm TOA operator

Introduction

Classical time of arrival Quantum time of arrival Time operators

Non-relativisti TOA operators

Free case Interacting case

Relativistic TOA operators

Related studies

proposa

Spin-0

The eigenfunction is given as

$$\varphi_{\tau}(p) = N \sqrt{\frac{|p|c}{\sqrt{p^2c^2 + \mu^2c^4}}} \exp\left(\frac{i}{\hbar}\tau\sqrt{p^2c^2 + \mu^2c^4}\right)$$
(22)

- Not square integrable unless τ is complex where $\operatorname{Im}(\tau) < 0$
- If τ is real then the eigenfunction becomes

$$\varphi_{\tau}(\boldsymbol{p}, \epsilon) = \int_{\tau - \epsilon}^{\tau + \epsilon} d\tau' \varphi_{\tau'}(\boldsymbol{p})$$
 (23)

Classical time of arrival Time operators

Free case Interacting case

Motivation Related studies

Spin-1/2

Apply a Foldy-Wouthuysen transformation to $H = \alpha \cdot \hat{p} + \beta \mu c^2$ where

$$H \to \hat{U}H\hat{U}^{-1} = \beta\sqrt{p^2c^2 + \mu^2c^4}$$
 (24)

where, $\hat{U}^{\pm 1} = \cos \theta \pm \beta \alpha \cdot \hat{p} \sin \theta$ such that $\tan 2\theta = \frac{|p|}{uc}$. Since the unitary transform preservers the commutation relation, then

$$\hat{T}_{Ra}^{(1/2)} = \hat{U}\hat{T}_{Ra}^{(0)}\hat{U}^{-1}$$
 (25)

León TOA operator

Classical time of arrival Time operators

Free case Interacting case

Related studies

Extended the Grot-Rovelli-Tate TOA operator to the positive energy solutions of the Klein-Gordon equation¹⁸

Spin-0

The operator is given as

$$\hat{T}_{Le} = -\frac{\sqrt{E_p}}{c}\hat{p}^{-1/2}\hat{Q}_{NW}\hat{p}^{1/2}\frac{\sqrt{E_p}}{c}$$
 (26)

where $E_p = \sqrt{p^2c^2 + \mu^2c^4}$ and \hat{Q}_{NW} is the Newton-Wigner position operator¹⁹

¹⁸Juan León. "Time-of-arrival formalism for the relativistic particle". In: Journal of Physics A:

¹⁹Theodore Duddell Newton and Eugene P Wigner. "Localized states for elementary systems". In: Reviews of Modern Physics 21.3 (1949), p. 400.

León TOA operator

Classical time of arrival Time operators

Free case Interacting case

Motivation Related studies

The Newton-Wigner position operator is

$$\hat{Q}_{NW} = \hat{x} - i\hbar \frac{\rho c^2}{2E_p^2} \tag{27}$$

- By construction, its eigenfunctions are not Lorentz covariant
- The localized state in position space is not a Dirac delta

Wang-Xiong TOA operator

Classical time of arrival Time operators

Free case Interacting case

Related studies

Direct extension of the non-relativistic TOA operator²⁰

$$t = -\mu \frac{q}{p} \Rightarrow -\frac{E_p}{c^2} \frac{q}{p} \tag{28}$$

Spin-1/2

Total symmetrization of the TOA yields the operator

$$\hat{T}_{WX} = -\frac{1}{4c^2}(\hat{H}\hat{T}_{AB} + \hat{T}_{AB}\hat{H}) = -\alpha_1\frac{\hat{q}}{c^2} + \beta\hat{T}_{AB} \qquad (29)$$

where $\hat{H} = \alpha_1 \hat{p} + \beta \mu c^2$

²⁰Zhi-Yong Wang and Cai-Dong Xiong. "Relativistic free-motion time-of-arrival". In: *Journal of Physics*

Wang-Xiong TOA operator

Introduction

Quantum time of arriva

Non-relativistic TOA operators

Free case Interacting case

Relativistic TOA operators

Related studies

Research proposal

Comments Goals The proper-time eigenfunctions are solved by

$$\hat{T}_{WX}\varphi(p) = t\varphi(p) \tag{30}$$

$$t=-\lambda rac{E_p}{pc^2}q$$
 and $au=\mu rac{q}{p}$ (31)

which yields

$$\varphi(p) = N \left(\frac{q^2/c^2}{q^2/c^2 + \tau^2} \right)^{1/4} \xi(x) e^{-ipx/\hbar}$$
 (32)

$$\xi(\rho) = \sqrt{\frac{\tau + bt_x}{2bt_x}} \begin{bmatrix} \eta_s \\ \frac{\sigma_1 x/c^2}{t_s} \eta_s \end{bmatrix}$$
(33)

where
$$b = \pm 1$$
 and $t_x = \sqrt{x^2/c^2 + \tau^2}$

Wang-Xiong TOA operator

Introduction

Classical time of arrival Quantum time of arrival Time operators

Non-relativisti TOA operators

Free case

Relativistic TOA

operators

Related studies

Research

Comments

Dual relations

$$t^2 = q^2/c^2 + \tau^2 \leftrightarrow E_p^2 = p^2c^2 + \mu^2c^4$$

$$\hat{T}_{WX} = -\alpha_1 \hat{q}/c^2 + \beta \hat{T}_{AB} \leftrightarrow \hat{H} = \alpha_1 \hat{p} + \beta \mu c^2$$

$$-i\hbar\partial_{\mathsf{E}}\varphi = \hat{T}_{\mathsf{WX}}\varphi \leftrightarrow i\hbar\partial_{t}\psi = \hat{H}\psi$$

 They have also applied this operator to quantum field theory²¹

²¹ZY Wang, B Chen, and CD Xiong. "Time in quantum mechanics and quantum field theory". In: *Journal of Physics A: Mathematical and General* 36.18 (2003), p. 5135; Zhi-Yong Wang, Cai-Dong Xiong, and Bing He. "Arrival time in quantum field theory". In: *Physics Letters B* 666.4 (2008), pp. 382–385; Zhi-Yong Wang, Qi Qiu, and Cai-Dong Xiong. "Time operator in QFT with Virasoro constraints". In: *Physics Letters B* 718.4-5 (2013), pp. 1515–1518.

Bauer-Aguillon TOA operator

Classical time of arrival Time operators

Free case

Related studies

Applies Lorentz and Born's reciprocity^{22,23} invariance to the canonical quantization of special relativity

$$lacktriangledown
ho_{\mu} p^{\mu} = p_o^2 - ec{p}^2 = (m_o c)^2$$
 leads to

$$\left(\hat{\rho}_{\mu}\hat{\rho}^{\mu}-(\textit{m}_{o}\textit{c})^{2}\right)\left|\psi\right\rangle = 0 \Rightarrow \textit{c}\hat{\rho}_{o}\left|\psi\right\rangle = \left(\textit{c}\alpha\cdot\hat{\rho}+\beta\textit{m}_{o}\textit{c}^{2}\right)\left|\psi\right\rangle$$

provided
$$[\hat{p}_{\mu},\hat{p}_{\nu}]=0$$

 $x_{\mu}x^{\mu}=x_{o}^{2}-\vec{r}^{2}=s_{o}^{2}$ leads to

$$\left(\hat{\mathbf{x}}_{\mu}\hat{\mathbf{x}}^{\mu} - \mathbf{s}_{o}^{2}\right)|\psi\rangle = 0 \Rightarrow \frac{\hat{\mathbf{x}}_{o}}{c}|\psi\rangle = \left(\frac{\alpha \cdot \hat{\mathbf{r}}}{c} + \beta \tau_{o}\right)|\psi\rangle$$

provided
$$[\hat{x}_{\mu}, \hat{x}_{\nu}] = 0$$

²²Max Born. "A suggestion for unifying quantum theory and relativity". In: Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences 165,921 (1938), pp. 291-303; Max Born. "Reciprocity theory of elementary particles". In: Reviews of Modern Physics 21.3 (1949), p. 463.

²³The transformation $x \to p$ and $p \to -x$ leaves the Hamilton equations invariant

Bauer-Aguillon TOA operator

Classical time of arrival Time operators

Free case Interacting case

Motivation

Related studies

Comments

Spin-1/2

The time operator is

$$\hat{T}_{BA} = \frac{\alpha \cdot \hat{r}}{c} + \beta \tau_o \tag{34}$$

where τ_0 is a real-valued constant²⁴

This time operator is not canonically conjugate to the Hamiltonian.

²⁴ Mariano Bauer. "A dynamical time operator in Dirac's relativistic quantum mechanics". In: International Journal of Modern Physics A 29.06 (2014), p. 1450036; M Bauer, "A time operator in the simulations of the Dirac equation". In: International Journal of Modern Physics A 34.22 (2019). p. 1950114; CA Aquillón, M Bauer, and GE García. "Time and energy operators in the canonical quantization of special relativity", In: European Journal of Physics 41.3 (2020), p. 035601; M Bauer, CA Aguillón, and GE García. "Conditional interpretation of time in quantum gravity and a time operator in relativistic quantum mechanics". In: International Journal of Modern Physics A 35.21 (2020), p. 2050114.

Bunao-Galapon one-particle TOA operator

Introduction

Classical time of arrival Quantum time of arrival Time operators

TOA operators Free case

Interacting case

Relativistic TO/ operators

Related studies

proposal

Goals

- A TOA operator was constructed by solving the commutation relation $\left[\hat{H}, \hat{T}\right] = i\hbar$
- The one-particle TOA operator was constructed by taking transform $\hat{T}_{\Phi} = \hat{U}\hat{T}\hat{U}^{-1}$ where²⁵

$$\hat{U}^{\pm} = \frac{(\mu c^2 + E_p)\hat{\sigma}_0 \mp (\mu c^2 - E_p)\hat{\sigma}_1}{\sqrt{4\mu c^2 E_p}}$$
(35)

²⁵Herman Feshbach and Felix Villars. "Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles". In: *Reviews of Modern Physics* 30.1 (1958), p. 24; Walter Greiner et al. *Relativistic quantum mechanics*. Vol. 2. Springer, 2000.

Bunao-Galapon one-particle TOA operator

Introduction

Classical time of arrival Quantum time of arrival Time operators

Non-relativisti TOA operators

Free case Interacting case

Relativistic TOA operators

Related studies

Research

Comments

Spin-0

The one particle operator is²⁶

$$\hat{T}_{BG}^{(\Phi)} = \hat{\sigma}_3 \left[-\frac{1}{2E_p} \left(\frac{\hat{p}\hat{q} + \hat{q}\hat{p}}{2} \right) - \left(\frac{\mu^2 c^2}{E_p} + \frac{p^2}{2E_p} \right) \left(\frac{\hat{p}^{-1}\hat{q} + \hat{q}\hat{p}^{-1}}{2} \right) \right]$$
(36)

- Reduces to the $\hat{\sigma}_3 \hat{T}_{AB}$ as $c \to \infty$
- Not self-adjoint but maximally symmetric

Philip Caesar M. Flores

Relativistic time of arrival

05 October 2021

²⁶Joseph Bunao and Eric A Galapon. "A one-particle time of arrival operator for a free relativistic spin-0 charged particle in (1+1) dimensions". In: *Annals of Physics* 353 (2015), pp. 83–106.

Bunao-Galapon one-particle TOA operator

Introduction

Classical time of arrival Quantum time of arrival Time operators

Non-relativisti TOA operators

Free case Interacting case

Relativistic TO

Motivation

Related studies

proposa Comments

Spin-1/2

The one particle operator is²⁷ the same as that for the spin-0

- There is an extra term but it was dropped to impose parity inversion symmetry to the operator
- The extra term commutes with the Hamiltonian

36/39

²⁷ Joseph Bunao and Eric A Galapon. "A relativistic one-particle Time of Arrival operator for a free spin-1/2 particle in (1+ 1) dimensions". In: *Annals of Physics* 356 (2015), pp. 369–382.

Philip Caesar M. Flores

Relativistic time of arrival

05 October 2021

Comments

Philip Caesar M. Flores

Classical time of arrival Time operators

Free case

Interacting case

Relativistic TOA

Comments

There is still no consensus on the status of time in non-relativistic quantum mechanics

- Additional problems arise because of special relativity
 - Lorentz invariance: Hamiltonian formulation of only works in some specific Lorentz frame and the TOA is also measured in that frame²⁸
 - Identity of the particle upon arrival
 - Klein-Gordon and Dirac equation cannot provide a well-defined local probability distribution²⁹

05 October 2021

37/39

²⁸Herbert Goldstein, Charles Poole, and John Safko. Classical mechanics. 2002.

²⁹AJ Kálnay. The localization problem. in "Problems in the Foundations of Physics" (M. Bunpe. Ed.). Vol. 4. pp. 93-J 10, 1971; Donald Reed, "Lawrence P. Horwitz: Relativistic Quantum Mechanics". In: Foundations of Physics 47.11 (2017), pp. 1498–1502; Theodore Duddell Newton and Eugene P Wigner, "Localized states for elementary systems". In: Reviews of Modern Physics 21.3 (1949), p. 400. Relativistic time of arrival

Problem

Introduction

Classical time of arriva Quantum time of arriva Time operators

Non-relativisti FOA operators

Free case Interacting case

Relativistic TO/ operators

Related studies

proposa Comments

Goals

- Given a relativistic particle with a certain initial state, what is the TOA probability distribution?
- Does this TOA distribution have an underlying ideal distribution generated by a corresponding TOA operator?
- How do we construct the TOA operator?

Thank You