ML - Capstone Project

- Project Phases: Data Exploration and Understanding: Dive into the dataset to understand the landscape of laptop specifications. Visualize trends in laptop prices and identify potential influential features. Data
- Preprocessing: Handle missing values, outliers, and encode categorical variables. Ensure the dataset is ready for model training.
- Feature Engineering: Extract meaningful features to enhance model performance. Consider creating new features that capture the essence of laptop pricing. Model Development: Employ machine learning algorithms such as Linear Regression, Random Forest, and Gradient Boosting to predict laptop prices. Evaluate and choose the model that aligns best with the project's objectives.
- Hyperparameter Tuning: Fine-tune the selected model to achieve optimal performance. Real-time Predictions: Implement a mechanism for the model to make predictions for new laptops entering the market.
- Interpretability and Insights: Uncover insights into which features play a pivotal role in pricing decisions. Ensure that SmartTech Co. can interpret and trust the model's predictions.

1. Introduction	Objective: Develop a machine learning model to predict laptop prices based on various features.	Scope: Provide insights into factors influencing laptop prices and support SmartTech Co. in market positioning and strategy.	2. Data Exploration and Un derstanding	Dataset Overview: Describe the dataset, including key features and their types (e.g., categorical, numerical).	Exploratory Data Analysis (EDA): Share visualizations and statistics that highlight patterns, correlations, and distributions in the data.	3. Data Preprocessing
Handling Missing Values: Explain how missing values were addressed.	Feature Encoding: Detail the one-hot encoding process for categorical features.	Feature Scaling: Discuss any scaling techniques applied.	4. Model Development	Algorithms Used: Linear Regression: Explain its role and how it was implemented. XGBoost: Describe its usage and advantages over other algorithms.	Model Training: Discuss how the models were trained, including hyperparameter tuning.	5. Model Performance
Evaluation Metrics: Present metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), R- squared, and any other relevant metrics.	Comparison of Models: Compare the performance of Linear Regression and XGBoost.	6. Insights	Feature Importance: Identify which features have the most significant impact on laptop prices.	Brand Influence : Analyze whether the brand significantly influences the price.	Specification Impact: Compare how well the model performs for high-end vs. budget laptops.	Performance on Lesser- Known Brands: Evaluate the model's accuracy for laptops from lesser-known brands.
New Releases: Discuss the model's performance on newly released laptops not in the training dataset.	7. Challenges and Limitations	Data Limitations : Address any gaps or limitations in the dataset.	Model Limitations: Discuss any challenges faced during model development and limitations in predictions.	8. Feedback and Improvements	Gather Feedback: Ask stakeholders for their insights and concerns about the model's performance and applicability.	Future Improvements: Propose potential improvements based on feedback and observed limitations.

Feature Encoding

from sklearn.preprocessing import OneHotEncoder

import pandas as pd

Example for one-hot encoding categorical features

encoder = OneHotEncoder(drop='first')

encoded_features = encoder.fit_transform(data[['Brand', 'Category']]).toarray()

encoded_df = pd.DataFrame(encoded_features, columns=encoder.get_feature_names_out())

data = data.join(encoded_df).drop(['Brand', 'Category'], axis=1)

Model Training

- from sklearn.linear_model import Linear Regression
- from xgboost import XGBRegressor
- from sklear n.model_selection import train_test_split
- from sklearn.metrics import mean_squared_error, r2_score

Split data

- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
- · # Train Linear Regression model
- lr_model = Linear Regression()
- lr_model.fit(X_train, y_train)

Train XGBoost model

- xgb_model = XGBRegressor()
- xgb_model.fit(X_train, y_train)

Predictions

- lr_predictions = lr_model.predict(X_test)
- xgb_predictions = xgb_model.predict(X_test)

Evaluation

- lr_mse = mean_squared_error(y_test, lr_predictions)
- xgb_mse = mean_squared_error(y_test, xgb_predictions)
- lr_r2 = r2_score(y_test, lr_predictions)
- xgb_r2 = r2_score(y_test, xgb_predictions)
- print (f'Linear Regression MSE: {lr_mse}, R2: {lr_r2}')
- print (f'XGBoost MSE: {xgb_mse}, R2: {xgb_r2}')

Final Presentation Tips

- **Visualizations**: Use charts and graphs to make your data and results more comprehensible.
- Clarity: Ensure that your explanations are clear and tailored to the audience's level of technical expertise.
- Interaction: Encourage questions and discussions to engage stakeholders and gather valuable feedback.
- This structure should help you deliver a comprehensive and insightful presentation to SmartTech Co.