1 Langage des statistiques descriptives

Exemple 1. Résultats au dernier contrôle d'une classe de 22 élèves.

< données de l'exercice 17 p. 257 sous forme de fonction>

On considère un ensemble à N éléments appelé la population, et une fonction appelée variable statistique de cet ensemble dans un ensemble fini de valeurs (numériques ou pas) $x_1, x_2, ..., x_p$:

< variable statistique>

Une série statistique est un résumé de la variable statistique, on ne s'intéresse pas à la correspondance complète, mais seulement au nombre d'antécédents de chaque valeur prise. On note n_i le nombre d'antécédents de x_i , et on l'appelle l'effectif de la valeur x_i . Le nombre $f_i = \frac{n_i}{N}$ est appelé la fréquence de la valeur x_i .

< données de l'exercice 17 p. 257 sous forme de série statistique>

On peut aussi regrouper les valeurs par classes :

< données de l'exercice 17 p. 257 regroupées par classes>

Exercice 1. 5 et 9 p. 256

vg JVD Argenteuil, 2^{nde} 8

Théorème 1

Une série statistique pour une population de N individus :

Valeur	x_1	x_2	 x_p
Effectif	n_1	n_2	 n_p
Fréquence	f_1	f_2	 f_p

étant donnée, on a les relations :

$$\sum_{i=1}^{n} f_i = f_1 + f_2 + \dots + f_p = 1$$

$$\sum_{i=1}^{n} n_i = n_1 + n_2 + \dots + n_p = N$$

Démonstration : On a :

$$f_1 + f_2 + \dots + f_p = \frac{n_1}{N} + \frac{n_2}{N} + \dots + \frac{n_p}{N} = \frac{n_1 + n_2 + \dots + n_p}{N} = \frac{N}{N} = 1.$$

Exercice 2. 35 1. p. 259

2 Effectifs et fréquences cumulés croissants

Exemple 2. Exercice 17 p. 257.

Définition 1

Le 1^{er} quartile Q_1 est la plus petite valeur de la série pour laquelle la fréquence cumulée croissante dépasse 25%. Une médiane Me est une valeur comprise entre les deux fréquences cumulées croissantes successives qui encadrent 50%. Le 3^e quartile Q_3 est la plus petite valeur de la série pour laquelle la fréquence cumulée croissante dépasse 75%.

Exercice 3. 10, 11, 13 p. 257

Exercice 4. 51 p. 261.

Remarque 1. La calculatrice donne tout directement : voir p. 326 dans le manuel.

3 Indicateurs de tendance centrale et de dispersion

3.1 Moyenne

Définition 2

vg

Une série statistique pour une population de N individus :

Valeur	x_1	x_2	 x_p
Effectif	n_1	n_2	 n_p
Fréquence	f_1	f_2	 f_p

JVD Argenteuil, 2^{nde} 8

étant donnée, la moyenne \overline{x} est la valeur qui donne le même total lorsqu'on l'attribue à tous les individus :

$$N\overline{x} = n_1 x_1 + n_2 x_2 + \dots + n_p x_p.$$

Théorème 2

Dans le contexte de la définition précédente, on a :

$$\overline{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{N}$$
$$\overline{x} = f_1 x_1 + f_2 x_2 + \dots + f_p x_p$$

DÉMONSTRATION : La première s'obtient en divisant par N les deux membres de la définition, la deuxième s'obtient à partir de la première :

$$\overline{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{N}$$

$$= \frac{n_1 x_1}{N} + \frac{n_2 x_2}{N} + \dots + \frac{n_p x_p}{N}$$

$$= f_1 x_1 + f_2 x_2 + \dots + f_p x_p.$$

Exercice 5. 38, 41 p. 260

Théorème 3 (Associativité de la moyenne)

Si plusieurs population d'effectifs N_1 , N_2 , ..., N_P ont pour moyennes respectives $\overline{x_1}$, $\overline{x_2}$, et N_p , alors la réunion de ces populations, d'effectif $N=N_1+N_2+\cdots+N_p$ a pour moyenne

$$\overline{x} = \frac{N_1 \overline{x_1} + N_2 \overline{x_2} + \dots + N_p \overline{x_p}}{N_1 + N_2 + \dots + N_p}.$$

DÉMONSTRATION: D'après la définition de la moyenne, on doit avoir:

$$(N_1 + N_2 + \dots + N_p)\overline{x} = N_1\overline{x_1} + N_2\overline{x_2} + \dots + N_p\overline{x_p}.$$

Exercice 6. 39 p. 260.

3.2 Médiane

de manière informelle, une médiane d'une série statistique est une valeur qui partage l'effectif total en deux.

3.3 Étendue

vg JVD Argenteuil, 2^{nde} 8