Чем вам может быть полезен это курс...

Обучение и технический прогресс

До 60-х годов студент технического вуза изучал "аналитическую геометрию"

(Евклид + Декарт на плоскости без матриц и прочей линейной алгебры)

Бурный рост вычислительной техники заставил ввести такой курс в вузах

Это прошло гладко – большинство преподавателей это знали

этому давно учили в университетах

заодно решили ввести дифференциальное исчисление в школы

но там не было людей готовых этому учить

в результате в школ настоящая геометрия заменилась фиктивной производной

но навык учить производной все же есть

сложнее с программированием

Кемени Ввеение...

программисты без компьютера

"аналоговое обучение"

Линейные нормированные пространства

аналог \mathbb{R}^n

должно быть: сложение элементов, умножение на число

Пример (из рядов Фурье – равенство Парсевля)

функции на отрезке $[-\pi, \pi]$ такие, что $\int_{-\pi}^{\pi} |f(x)|^2 dx < \infty$

коэффициенты Фурье $\{c_n\}: \sum |c_n|^2 < \infty$

Функциональный анализ — наследник математического анализа.

Должны быть определены пределы

здесь (!) рассматриваются нормированные пространства

Определение

Нормой в линейном пространстве X называется любая функция, отображающая пространство X в множество вещественных неотрицательных чисел $x \to ||x||$ такая, что

- 1) для любого $x \in X$ и для любого $k \in K$ выполнено равенство ||kx|| = |k|||x||;
- 2) для любых $x, y \in X$ справедливо неравенство $||x + y|| \le ||x|| + ||y||$;
- 3) для любого $x \in X$ справедливо неравенство $||x|| \ge 0$, причем равенство ||x|| = 0 возмож но только для x = 0.

Норма позволяет измерять расстояние ||x-y|| между парой элементов линейного пространства $x,y\in X$. Следовательно, можно говорить о пределах последовательностей $x_n\in X: x_n\to x_0$, если $||x_n-x_0||\to 0$.

Множество рациональных чисел \mathbb{Q} образует линейное пространство. Норма там есть. Но последовательность рациональных чисел, сходящуюся к числу $\sqrt{2}$, нельзя назвать сходящейся в смысле нашего определения.

Определение

Последовательность $\{x_n\}$ называется фундаментальной, если

$$\forall \epsilon > 0 \quad \exists N : \quad \forall n, k > N \quad ||x_n - x_k|| < \epsilon.$$

Приняв такое определение, всегда можно **расширить** исходное пространство так, что всякая фундаментальная последовательность в нем имеет предел.

Определение нормы допускает множество реализаций в одном и том же линейном пространстве.

Примеры

1)
$$l_n^1 = \{x = (x_1, \dots, x_n) : ||x|| = |x_1| + \dots + |x_n|\}.$$

2) $l_n^2 = \{x = (x_1, \dots, x_n) : ||x|| = (x_1^2 + \dots + x_n^2)^{1/2}\}$ — это стандартное n-мерное ев-клидово пространство.

3)
$$l_{\infty}^1 = \{x = (x_1, \dots, x_n) : ||x|| = \max\{|x_k|, k = 1, \dots, n\}\}.$$

В этих примерах для малых размерностей легко изобразить шары графически.

Конечномерные пространства (то есть **пространства с конечным базисом**) играют в ФА вспомогательную роль.

Главный предмет изучения бесконечномерные пространства.

1a)
$$l^1 = \{x = (x_1, \dots, x_n, \dots) : ||x|| = \sum_{n=1}^{\infty} |x_n| < \infty \}.$$

2a) $l^2 = \{x = (x_1, \dots, x_n, \dots) : ||x|| = \left(\sum_{n=1}^{\infty} x_n^2\right)^{1/2} < \infty \}$
3a) $l^\infty = \{x = (x_1, \dots, x_n, \dots) : ||x|| = \sup\{|x_k|, k = 1, \dots, n, \dots\} < \infty \}.$

Необходимо проверить что введенные в примерах функции являются нормами — удовлетворяют свойствам, перечисленным в определении. Первое и третье свойство очевидны. Проверка неравенства треугольника в первом и третьем примерах переводится на координаты и сводится к числовым неравенствам

$$|a+b| \le |a| + |b|$$
, $\max\{|a|, |b|\} \le |a| + |b|$.

Свойство 3 – неравенство треугольника в l^2 легко вывести из неотрицательности нормы :

$$0 \le ||x - \lambda y||^2 = \sum_{k=1}^n (x_k - \lambda y_k)^2 = \sum_{k=1}^n x_k^2 - 2\lambda \sum_{k=1}^n x_k y_k + \lambda^2 \sum_{k=1}^n y_k^2.$$

Из неотрицательности квадратного трехчлена следует, что его дискриминант меньше либо равен 0. Это дает оценку (неравенство Коши-Буняковского)

$$\left(\sum_{k=1}^{n} x_k y_k\right)^2 \le \left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} y_k^2\right)$$
 и далее

$$||x+y||^2 = \left(\sum_{k=1}^n x_k^2\right)^2 + 2\left(\sum_{k=1}^n x_k y_k\right)^2 + \left(\sum_{k=1}^n y_k^2\right)^2 \le$$

$$\le \left(\sum_{k=1}^n x_k^2\right)^2 + 2\left(\sum_{k=1}^n x_k^2\right)\left(\sum_{k=1}^n y_k^2\right) + \left(\sum_{k=1}^n y_k^2\right)^2 = (||x|| + ||y||)^2.$$

Переход к бесконечной размерности вносит специфику в работу с таким объектами большие трудности.

Например, приходится заменять максимум на супремум.

$$A = \sup\{x_n\}, \ \text{если} \ \forall n \ x_n \leq A \ \text{и} \ \forall \ \epsilon > 0 \ \exists \ n : A - x_n < \epsilon.$$

Еще одно отличие заключается в том, что эти пространства существенно различаются по составу элементов:

если
$$x=(1,\ldots,1,\ldots),$$
 то $x\in l^{\infty},$ но $x\notin l^{1},\ x\notin l^{2};$ если $x=(1,1/2,\ldots,1/n,\ldots),$ то $x\in l^{2},$ но $x\notin l^{1}.$

Это обстоятельство естественно увязывается с геометрией шаров.

Все возможные нормы можно описать в геометрических терминах — они соответствуют выпуклым множествам, для которых 0 является внутренней точкой и центром симметрии.

Определение

Пусть W - выпуклое множество

0 является его внутренней точкой и точкой симметрии.

Нормой Минковского, порожденной множеством W, называется

$$||x|| = \inf \left\{ \lambda : \frac{x}{\lambda} \in W, \ \lambda > 0 \right\}$$

В бесконечномерных пространствах требуется более аккуратное описание множества. Например, в конечномерном пространстве открытое выпуклое множество W, в котором существует такая точка w, что для любого $x \in X$ найдется число $\epsilon(x) > 0$ такое, что множество W содержит отрезок w + tx, при всех $t \in (-\epsilon(x); \epsilon(x))$ является выпуклым. Однако в бесконечномерных пространствах это не такпример

Теорема Минковского

Если W — выпуклое ограниченное тело и 0 является его внутренней точкой,

W – симметрично относительно точки 0

то выражение $||x||==\inf\left\{\lambda:\frac{x}{\lambda}\in W,\ \lambda>0\right\}$ задает норму в пространстве X.

Верно и обратное, единичный шар в линейном нормированном пространстве является выпуклым ограниченным множеством и 0 является его внутренней точкой.

Доказательство теоремы имеется в методичке.

Домашнее задание 1. Норма, заданная многогранником в \mathbb{R}^3

Простой пример: вычисление нормы в R^2 , заданной шести угольником

Теорема Минковского

Алгоритм вычисления нормы

Для точки в "угле" алгоритм понятен

Надо выяснить, в каком из "углов" находится точка

Разложение точки по базису угла

Точка в угле тогда и только тогда, когда коэффициенты положительны

Техника разложения – биортогональный базис

Докажите: ||А||=u+v

В задание входит построение выпуклого, центрально симметричного многогранника на мудле будет папка «Условия», куда надо отправить список вершин на проверку

Стоим многоугольник симметричны относительно координатных плоскостей ГЛАВНОЕ построить вершины в первом квадранте

Первый шаг: выбираем три точки A_1 , A_2 , A_3 в координатных плоскостях, это первая грань многоугольника

A_4 выбираем на оси oX

для дальнейшей работы потребуется формула, переводящая a,b,c в d

$$A_5$$
 выбираем на оси oY , $A_4 = (0, a_{52}, 0)$, $a_{52} > a_{12}$

кроме того A_5 должна находится под прямой A_1, A_4

аналогично строим точку на оси oZ, $A_6 = (0, 0, a_{63})$

$$a_{63} > a_{23}, \ a_{63} > a_{33}$$

кроме того A_6 должна находится под прямыми A_2, A_4 и A_3, A_5

многоугольник в первом квадранте построен

Продолжение по симметрии из x, y, z > 0 в x < 0, y, z > 0

$$(x, y, z) \rightarrow (-x, y, z)$$

 A_3, A_5, A_6 – неподвижны

$$A_1 \rightarrow A_7, A_2 \rightarrow A_8, A_4 \rightarrow A_9$$

Продолжение по симметрии из $x \in R, y, z > 0$ в $x, y \in R, z > 0$

$$(x,y,z) \rightarrow (x,-y,z)$$

 $A_2, A_4, A_6, A_8, A_9, !y = 0$ – неподвижны

$$A_1 \to A_{10}, \ A_3 \to A_{11}, \ A_4 \to A_{12}, \ A_7 \to A_{13}$$

Продолжение по симметрии из $x, y \in R, z > 0$ в $x, y, z \in R$

$$(x, y, z) \rightarrow (x, y, -z)$$

 $A_1, A_3, A_4, A_7, A_9, A_{11}, !z = 0$ – неподвижны

$$A_2 \to A_{14}, A_5 \to A_{15}, A_6 \to A_{16}, A_8 \to A_{17}$$

многоугольник

построен

Проверка выпуклости

условие выпуклости равносильно

Все вершины должны лежать по одну сторону каждой из граней (там же где и ноль)

В силу симметрии конструкции достаточно проверить грани первого квадранта

Для плоскости точек A_1, A_2, A_3 это очевидно

Рассмотрим плоскость точек A_1, A_2, A_4

Ее уравнение L(x) = 0, L(x) -смешанное произведение – определитель

$$L: ax_1 + bx_2 + cx_3 + d = 0$$

Надо проверить, что числа L(0), $L(A_k)$, k=1,...,17 имеют одинаковый знак

Алгоритм вычисления нормы аналог конструкции в R^2

надо разбить пространство на углы образованные гранями

например, угол отвечающий грани A_1 , A_2 , A_4 описывается как множество точек вида

$$\vec{w} = p\vec{OA_1} + q\vec{OA_2} + r\vec{OA_4}, \quad p, \ q, \ r \ge 0$$

вектора образуют базис, поэтому любой вектор допускает разложение $\vec{w} = p \vec{OA}_1 + q \vec{OA}_2 + r \vec{OA}_4, \quad p, \ q, \ r \in R$

чтобы вычислить коэффициенты, достаточно найти биорогональный базис

$$\vec{n_1}$$
 — векторное произведение $\vec{OA_1}$ и $\vec{OA_2}$ такой, что $(\vec{n_1}, \vec{OA_4}) = 1$

 $\vec{n_2}$ – векторное произведение $\vec{OA_1}$ и $\vec{OA_4}$

такой, что $(\vec{n_2}, \vec{OA_2}) = 1$

 $\vec{n_3}$ – векторное произведение $\vec{OA_2}$ и $\vec{OA_2}$

такой, что $(\vec{n_3}, \vec{OA_1}) = 1$

тогда,
$$p = (\vec{w}, \vec{n_3}), q = (\vec{w}, \vec{n_2}), r = (\vec{w}, \vec{n_1})$$

для того, чтобы вычислить норму \vec{w} надо найти тот угол, в котором

$$p, q, r \ge 0$$

тогда
$$||\vec{w}|| = p + q + r$$

Заключительная часть задания

сформировать пару точек $\vec{w_1} = (w_{11}, -w_{12}, w_{13})$ и $\vec{w_2} = (w_{21}, w_{22}, -w_{23})$,

где w_{kj} случайные натуральные числа

и вычислить $||\vec{w_1}||$, $||\vec{w_2}||$, $||\vec{w_1} + \vec{w_2}||$