Estructuras Algebraicas Primer examen parcial	1 ^{er} Apellido:	24 de marzo de 2021 Tiempo 2 h
Dpt. Matemática Aplicada a las T.I.C. E.T.S. de Ingenieros Informáticos Universidad Politécnica de Madrid	2º Apellido: Nombre: Número de matrícula:	Calificación:

Para que sean consideradas como válidas, todas las respuestas deben estar adecuadamente justificadas. No está permitido el uso de dispositivos electrónicos.

Ejercicio 1. (2,5 puntos)

Enuncia la definición de producto directo interno.

Sea (G,*) grupo que es producto directo interno de los subgrupos H y K. Demuestra que

$$G \approx H \times K$$

Ejercicio 2. (1,5 puntos)

En el conjunto $\mathbb{Q}^* = \mathbb{Q} - \{0\}$ se define $m \circ n = 10mn$. Indica, justificando la respuesta, si la definición dada proporciona una correcta operación binaria. En caso afirmativo estudia si (\mathbb{Q}^*, \circ) es un grupo abeliano.

Ejercicio 3. (1 punto)

Se consideran las permutaciones $\alpha = (6,5,2)(3,1,4,6), \beta = (5,4,6,2)(4,2)(1,3,5)$ y $\sigma = (1,5,3)(3,5,6,1)$

- a. Calcula el orden y la paridad de cada una de las permutaciones α, β y σ
- b. Encuentra una permutación μ , expresada en forma de producto de ciclos disjuntos, tal que $\mu\sigma=\alpha\beta$

Ejercicio 4. (2,5 puntos)

Sea (G,\cdot) grupo generado por los elementos $a,b\in G$, tales que |a|=|b|=2 y $ba=(ab)^2$

1. Obtén el orden de ab y de ba. Demuestra que (G,\cdot) está formado por los elementos

$$G = \left\{ e, \ a, \ b, \ ab, \ aba, \ (ab)^2 \right\}$$

2. Calcula la tabla de operación del grupo y determinar todos sus subgrupos.

Ejercicio 5. (2,5 puntos)

En el grupo (G,+) con $G=\mathbb{Z}_4\times\mathbb{Z}_8$, se considera el subgrupo $H=\langle (2,2)\rangle$

- a. Calcula el orden de H, enumera sus elementos y justifica que $H \subseteq G$.
- b. Calcula los elementos del grupo cociente G/H y la tabla de Cayley de dicho grupo cociente.
- c. Obtén el orden de cada elemento del grupo cociente y encuentra un grupo isomorfo al grupo cociente.

Soluciones

- 1. Consultar apuntes.
- 2. a) La operación es interna: $\forall n, m \in \mathbb{Q}^*$, se verifica que $m \neq 0, n \neq 0 \Rightarrow 10mn \in \mathbb{Q}^*$.

b)
$$\forall p, q, r \in \mathbb{Q}^*$$
 $(p \circ q) \circ r = 100 \, p \, q \, r = p \circ (q \circ r)$

c)
$$e = \frac{1}{10} \in \mathbb{Q}^*$$

d)
$$\forall r \in \mathbb{Q}^*, \ r \neq 0 \ \Rightarrow \ s = \frac{1}{100 \, r} \in \mathbb{Q}^*$$
 y verifica que $\ s \circ r = \frac{1}{100 \, r} \circ r = \frac{1}{10} = e$

e)
$$\forall p, q \in \mathbb{Q}^*$$
 $p \circ q = 10 p q = 10 q p = q \circ p$

Por tanto (\mathbb{Q}^*, \circ) es grupo abeliano.

3. *a*)
$$\alpha = (1, 4, 5, 2, 6, 3), |\alpha| = 6$$
, impar. $\beta = (1, 3, 4, 5)(2, 6), |\beta| = 4$, par. $\sigma = (5, 6), |\sigma| = 2$, impar *b*) $\mu = (2, 3, 5, 6, 4)$

4. a)
$$|ab| = |ba| = 3$$
, $G = \langle a, b : |a| = |b| = 2$, $ba = (ab)^2 \rangle = \{e, a, b, ab, aba, (ab)^2 \}$

b)
$$H_0 = \{e\}, H_1 = \{e, a\}, H_2 = \{e, b\}, H_3 = \{e, aba\}, H_4 = \{e, ab, (ab)^2\}, H_5 = G$$

*	e	a	b	ab	aba	$(ab)^2$
e	e	a	b	ab	aba	$(ab)^2$
$\mid a \mid$	a	e	ab	b	$(ab)^2$	aba
b	b	$(ab)^2$	e	aba	ab	a
ab	ab	aba	a	$(ab)^2$	b	e
aba	aba	ab	$(ab)^2$	a	e	b
$(ab)^2$	$(ab)^2$	b	aba	e	a	ab

5. a)
$$H = \{(0,0), (2,2), (0,4), (2,6)\}, |H| = 4, (G,+)$$
 es abeliano por tanto $H \triangleleft G$.

$$\begin{array}{ll} b) \ \ z = [(0,0)]_H = \{(0,0),(2,2),(0,4),(2,6)\}, & a = [(0,1)]_H = \{(0,1),(2,3),(0,5),(2,7)\} \\ b = [(0,2)]_H = \{(0,2),(2,4),(0,6),(2,0)\}, & c = [(0,3)]_H = \{(0,3),(2,5),(0,7),(2,1)\} \\ d = [(1,0)]_H = \{(1,0),(3,2),(1,4),(3,6)\}, & e = [(1,1)]_H = \{(1,1),(3,3),(1,5),(3,7)\} \\ f = [(1,2)]_H = \{(1,2),(3,4),(1,6),(3,0)\}, & g = [(1,3)]_H = \{(1,3),(3,5),(1,7),(3,1)\} \end{array}$$

$+_H$	z	a	b	c	d	e	f	g
z	z	a	b	c	d	e	f	g
a	$\mid a \mid$	b	c	z	e	f	g	d
b	b	c	z	a	$\int f$	g	d	e
c	c	z	a	b	g	d	e	f
d	d	e	f	g	b	c	z	a
e	e	f	g	d	c	z	a	b
f	$\mid f \mid$	g	d	e	z	a	b	c
g	$\mid g \mid$	d	e	f	a	b	c	z

c)
$$|z| = |[(0,0)]_H| = 1$$
, $|a| = |[(0,1)]_H| = 4$, $|b| = |[(0,2)]_H| = 2$, $|c| = |[(0,3)]_H| = 4$, $|d| = |[(1,0)]_H| = 4$, $|e| = |[(1,1)]_H| = 2$, $|f| = |[(1,2)]_H| = 4$, $|g| = |[(1,3)]_H| = 2$ G/H es producto directo interno de sus subgrupos $K_1 = \langle [(1,1)]_H \rangle \approx \mathbb{Z}_2$ y $K_2 = \langle [(0,1)]_H \rangle \approx \mathbb{Z}_4$

$$\Rightarrow \qquad G/H \approx \mathbb{Z}_2 \times \mathbb{Z}_4$$