Yeminar 3

Observatie. Fie \(\sum \text{\$\pi n \} \si \sum \text{\$\pi n \} \dou a \text{ serie de} numere reale. 1) Daca Exp este convergentà si Eyn este convergentà. L'entyn) este convergentà. 2) Daca Zxn este convergentà si Zyn este divergentà (sau Zxn este divergentà si Zyn este convergentà), atunci Z(xn+yn) n este divergentà. 3) Daca Z *m este divergentà și Z yn este divergentà, atunci \(\sum (\text{\text{xn+yn}} \) poate fi convergentà sau divergentà. 1. Stadiati natura seriei $\sum_{n=1}^{\infty} \frac{a^n + n}{3^n + n^3}$, a > 0. Solution. $\times_n = \frac{a+n}{3^n+n^3} = \frac{a}{3^n+n^3} + \frac{n}{3^n+n^3} \in \mathbb{N}^*$

 $\frac{n}{3^{n}+n^{3}} \leq \frac{n}{n^{3}} = \frac{1}{n^{2}} + n \in \mathbb{N}^{*}.$ ∑ 1/2 convergentà (serie armonicà gl-n=1 mralizatà en x=2). Conform Chriteriului de comparatie cu inega-litati rezultà cà $\sum_{n=1}^{\infty} \frac{n}{3^n + n^3}$ este convergen-ta. Bin whose $\sum_{n=1}^{\infty} x_n \sim \sum_{n=1}^{\infty} \frac{a}{3^n + n^3}$. The $a_n = \frac{a^n}{3^n + n^3} + n \in \mathbb{N}^*$ is $k_n = \frac{a^n}{3^n} + n \in \mathbb{N}^*$. $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{a^n}{3^n + n^3} \cdot \frac{3^n}{a^n} =$ = $\lim_{n \to \infty} \frac{3^n}{3^n + n^3} = \lim_{n \to \infty} \frac{3^n}{3^n (1 + \frac{n^3}{3^n})} = 1$, deoare--ce lim $\frac{n^3}{3^{n}}=0$. Pentre a demonstra cà lim $\frac{n^3}{3^n} = 0$ putem folori Criteriul rapottului pentru siruri.

Scanned with CamScanner

2. a) tratati sa lim $\frac{1-cosx}{x^2} = \frac{1}{2}$.

b) Studiați natura seriei $\sum_{n=1}^{\infty} (1-\cos\frac{1}{n}) x^n x>0$. Solution a) lim $\frac{1-\cos x}{x^2}$ lim $\frac{\sin x}{2x} = \frac{1}{2}$, b) Fie $a_n = (1-cos \frac{1}{n}) x^n + n \in \mathbb{N}^+$ si $b_n = \frac{x^n}{n^2} + n \in \mathbb{N}$ $\lim_{n\to\infty} \frac{\alpha_n}{\delta_n} = \lim_{n\to\infty} \frac{(1-\cos\frac{1}{n})x^n}{\frac{1}{n^2} \cdot x^n} = \lim_{n\to\infty} \frac{1-\cos\frac{1}{n}}{\frac{1}{n^2}} = \lim_{n\to\infty} \frac{1-\cos\frac{1$ $=\frac{1}{T}\in(0,\infty).$ bonform briteriului de comparatie cu limita rezulta că $\sum_{n=1}^{\infty} a_n \sim \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$. $\lim_{n\to\infty}\frac{b_{n+1}}{b_n}=\lim_{n\to\infty}\frac{x^{n+1}}{(n+1)^2}\cdot\frac{n^2}{x^n}=\lim_{n\to\infty}x\cdot\frac{n^2}{(n+1)^2}=x.$ Bonform britariulai raportulai avem: 20 bn este 1) Daca *<1 (i.e. *(0,1)), atanci =1 bn este convergentà.

Scanned with CamScanner

2) Daca €>1 (i.l. X∈(1,∞)), attenci ≥ l'in lette di- vergenta.
vergenta.
3) Daca x=1, attenci britarial raportului mu decide
3) Dacă $x=1$, attenci britariul raportului sur decide Dacă $x=1$, seria devine $\sum_{n=1}^{\infty} \frac{1}{n^2}$ convergentă
(serie armonica generalizata eu x=2). H
s. Studiati convergenta scribs:
$\alpha) \stackrel{\sim}{=} \frac{\sin \frac{1}{n(n+1)}}{\cos 1}$
Studiati convergenta suilos: a) $\frac{\sin \frac{1}{n(n+1)}}{\cos \frac{1}{n} \cos \frac{1}{n+1}}$ Solutie. $x_n = \frac{\sin \frac{1}{n(n+1)}}{\cos \frac{1}{n+1} \cos \frac{1}{n+1}}$ $+ n \in \mathbb{N}^*$.
$\frac{1}{n}$, $\frac{1}{n+1}$, $\frac{1}{n(n+1)} \in (0,1] \subset (0,\frac{\pi}{2}) + n \in \mathbb{N}$
=> sin 1 (n+1) > 0 + n ∈ H*, cos 1 > 0 + n ∈ H*,
$\frac{1}{1000} > 0 + nept = \sum_{n=1}^{\infty} \frac{\sin \frac{1}{n(n+1)}}{\cos \frac{1}{n+1}} $ are
termenie strict pozitivi.

Vom folosi limita remarcabilà: lim sin = 1.

Scanned with CamScanner

Fie $y_n = \frac{1}{n(n+1)}$

 $\lim_{n\to\infty} \frac{x_n}{y_n} = \lim_{n\to\infty} \frac{\sin \frac{1}{n(n+1)}}{\frac{1}{n(n+1)}}$

 $\frac{1}{-\cos\frac{1}{n}\cos\frac{1}{n+1}} =$

 $=1\in(0,\infty).$

bonforn briteriului de comparație cu limită, $\underset{n=1}{\overset{*}{\sum}} \times_n \sim \underset{n=1}{\overset{*}{\sum}} y_n = \underset{n=1}{\overset{*}{\sum}} \frac{1}{n(n+1)}$ (vezi burs 2). \square

 $k) \sum_{n=1}^{\infty} \frac{\cos nx}{n^{\lambda}}, x \in \mathbb{R}, \lambda > 0.$

Solutie. Vom folosi Chiteriul Abel-Dirichlet (I). File $x_n = \frac{1}{n^2} + n \in \mathbb{N}^*$, is $y_n = cosnx + n \in \mathbb{N}^*$.

Youl $(x_n)_n$ este descrescator si lim $x_n = 0.(1)$

? 3 M> 0 Q. 2. + NEH*, aven | y, +...+ yn | \le M.

|y,+...+ yn |= | cosx + ... + cosnx /.

Motion Z=cosx+isinx.

them: == LOS2X+ RSin2X

Z = colmx + isinnx.

Z+ 22+ ... + 2 =?

Busymen ca Z+1, i.e. cosxtisinx+1, i.l. X ∈ R\ {2kT | k ∈ Z}.

 $z+z^2+...+z^n=z\cdot\frac{z^{n-1}}{z-1}=\frac{z^{n+1}-z}{z-1}=$

= $\frac{\cos(n+1)x + \lambda\sin(n+1)x - \cos x - \lambda\sin x}{\cos(n+1)\cos x}$ cosx+isinx-1

cos(m+1)x-cosx + i (sin(m+1)x-sinx) (-cosx -1)+ i sinx

- 2 sin m+2 x sin m x + i. 2. cos m+2 x sin m x

-2 sin2 = + i. 2. sin = cos =

 $= \frac{\sin \frac{\pi}{2} + \frac{-\lambda \sin \frac{\pi + 2}{2} + \lambda \cos \frac{\pi + 2}{2} + \lambda \cos \frac{\pi}{2}}{-\sin \frac{\pi}{2} + \lambda \cos \frac{\pi}{2}}$

 $\frac{\sin \frac{m}{2} \times -\cos \frac{m+2}{2} \times + i \sin \frac{m+2}{2} \times}{\sin \frac{x}{2}}$ Los = + i sin =

$$= \frac{\sin \frac{n}{2} \times}{\sin \frac{x}{2}} \cdot \frac{\left(\cos \frac{x}{2} + i \sin \frac{x}{2}\right)^{n+1}}{\cos \frac{x}{2} + i \sin \frac{x}{2}} =$$

$$= \frac{\sin \frac{n}{2} \times}{\sin \frac{x}{2}} \cdot \left(\cos \frac{x}{2} + i \sin \frac{x}{2}\right)^{n+1} =$$

$$= \frac{\sin \frac{n}{2} \times}{\sin \frac{x}{2}} \cdot \left(\cos \frac{n+1}{2} \times + i \sin \frac{n+1}{2} \times\right)$$

$$= \frac{\sin \frac{n}{2} \times}{\sin \frac{x}{2}} \cdot \left(\cos \frac{n+1}{2} \times + i \sin \frac{n+1}{2} \times\right) =$$

$$= \frac{\sin \frac{n}{2} \times}{\sin \frac{x}{2}} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{n+1}{2} \times\right| \leq \frac{1}{|\sin \frac{x}{2}|} \cdot$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times\right| \leq \frac{1}{|\sin \frac{x}{2}|} \cdot$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times\right| \leq \frac{1}{|\sin \frac{x}{2}|} \cdot$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{x}{2} \times\right| \leq \frac{1}{|\sin \frac{x}{2}|} \cdot$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{x}{2} \times\right| + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\cos \frac{n+1}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|\sin \frac{x}{2}|} \cdot \left|\sin \frac{x}{2} \times + i \sin \frac{x}{2} \times$$

$$= \frac{\sin \frac{n}{2} \times}{|$$

Na Mitam sa am tratat doar carul XERI (2RX REZ). Seria din enunt devine: $\sum_{n=1}^{\infty} \frac{1}{n^2} \left\{ \frac{daca}{daca} \right\} \in (1, \infty)$ daca $\lambda \in (0, 1]$. \square Fie xe {2kx | keZ}. $C) \sum_{n=1}^{\infty} \frac{\cos n \cdot \cos \frac{1}{n}}{\cos n}$ Solutie. Fie $x_n = \cos \frac{1}{n} + n \in \mathbb{N}^*$ si $y_n = \frac{\cos n}{n} + n \in \mathbb{N}^*$ $-1 \leq x_n \leq 1 + n \in \mathbb{N}^* \Rightarrow (x_n)_n \text{ marginit.}$ * --> cos * descrescatoare tor. $\left(0,\frac{\pi}{2}\right)$ 1 C (0, E) + nE 1/* (n) descrescator Deci $(x_n)_n$ est monoton ji marginit (1) $\sum_{n=1}^{\infty} y_n = \sum_{n=1}^{\infty} \frac{\cos n}{n}$ convergentà (vezi b): x = 1,

 $\lambda=1$). (2)

Din (1) si (2) rezultà, conform Briteriulei Abel-
Dirichlet (11), ca seria =
= \(\sum_{n=1}^{\infty} \times_n \text{y}_n \) este -convergentà. \(\pi \)
$\frac{d}{dt} = \frac{(-1)^n \sqrt{n} + 1}{n}.$
Solutie. Fie Xn = (-1)^n \sqrt{n} +1 + n \in \text{*},
an= (-1)^n /n +ne H* si bn= 1 +ne H*.
$ \chi_{n} = \alpha_{n} + \beta_{n} + n \in \mathbb{N}^{*}. $ $ \chi_{n} = \alpha_{n} + \beta_{n} + n \in \mathbb{N}^{*}. $ $ \chi_{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} + \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} +$
n=1 n=1 (Guitariul lui Seibniz).
$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n} divergentà (serie armonicà generalizatà en \alpha = 1).$
Deci $\sum_{n=1}^{\infty} x_n = \sum_{n=1}^{\infty} (a_n + b_n)$ divergentà. \square