Position Based Fluid Simulation

CIS 565: GPU Programming & Architecture

Harmony Li harmoli@seas.upenn.edu Univ. of Pennsylvania Philadelphia, PA Joseph Tong josephto@seas.upenn.edu Univ. of Pennsylvania Philadelphia, PA

1. PROJECT PROPOSAL

We want to implement a GPU based PBD fluid simulation stable enough to support large time steps for real-time applications. Through the enforcement of constant density positional constraints, the simulation will allow for incompressibility and convergence similar to smooth particle hydro-dynamic solvers. Our project will be largely based on Muller and Macklin's paper "Position Based Fluids." We propose implementing the following features:

- Particle-based position based dynamics fluid simulator that runs on the GPU
- Uses the density constraint to enforce incompressibility
- Artificial pressure term to simulate surface tension
- Vorticity confinement to replace energy
- Viscosity term
- GPU Hash Grid for optimization of finding particle neighbors
- Meshless rendering (bilateral Gaussian or curvature flow)

2. PROJECT TIMELINE

- Mon, 11/25 (Alpha): Set up framework for simulation. Set up visualization for particles.
- Mon, 12/9 (Last Day of Class): Begin writing paper. Simulator finished with optimizations using GPU Hash Grid.
- TBD (Final): Meshless screen space rendering. Paper finished.

3. EVALUATION

We will be keeping progress and posting our work on github. The repository will be visible to everyone, and is located at https://github.com/harmoli/FinalProject-PBDWater. We will also be tweeting and blogging about the progress of our project throughout its entirety. While this project has a narrow scope, we are hoping to go in depth, focusing first on the real-time simulation and then real-time rendering using screen space techniques.

4. EXTERNAL LIBRARIES

The implementation of the simulator calls for the use of a parallel Jacobi iterative solver. While this would be a good academic exercise and in and of itself, we will be using an open source Jacobi iterative solver.

5. REFERENCES

- [1] Miles Macklin and Matthias Müller. Position based fluids. *ACM Trans. Graph.*, 32(4):104:1–104:12, July 2013
- [2] Wladimir J. van der Laan, Simon Green, and Miguel Sainz. Screen space fluid rendering with curvature flow. In *Proceedings of the 2009 Symposium on Interactive* 3D Graphics and Games, I3D '09, pages 91–98, New York, NY, USA, 2009. ACM.
- [3] Jihun Yu and Greg Turk. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '10, pages 217–225, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Association.

^{*}Advisor: Patrick Cozzi (pcozzi@siggraph.org).