Laboratorio DSP-FPGA Trabajo Practico Generador de PWM sobre FPGA

Enunciado

Se deberá implementar un generador de PWM en VHDL. El generador tendrá la siguiente interface:

Generador de PWM sobre FPGA

PORT

Port Descriptions

Table 2 describes the PWM generator's ports.

Table 2. Port Descriptions

Port	Width	Mode	Data Type	Interface	Description
clk	1	in	standard logic	user logic	System clock.
reset_n	1	in	standard logic	user logic	Asynchronous active low reset.
ena	1	in	standard logic	user logic	O: PWM continues outputting current duty cycle. 1: latches in the new duty cycle and adjusts the PWM outputs at the center of their pulses.
duty	M*	in	standard_logic_vector	user logic	New duty cycle.
pwm_out	N^	out	standard_logic_vector	load	Output PWM signals. The PWM modulates around the center of the the pulse. The phases are evenly spaced over the period.
pwm_n_out	N^	out	standard_logic_vector	load	Inverse of the PWM outputs.

Notes

^{*} M is the duty cycle's specified resolution in bits, set by the bits_resolution generic.

[^] N is the specified number of outputs (and phases), set by the phases generic.

Generics

Table 1. Generic Parameters

Generic	Data Type	Description	
sys_clk	integer	System clock frequency in Hz.	
pwm_freq	integer	Frequency of PWM in Hz.	
bits_resolution	integer	The number of bits of resolution setting the duty cycle.	
phases	integer	The number of output PWMs and phases.	

Valores Actuales

Param eter	Value	Туре
sys_clk	50000000	Signed Integer
pw m_freq	100000	Signed Integer
bits_resolution	8	Signed Integer
phases	1	Signed Integer

El numero de fases es la cantidad de canales PWM que salen del modulo. En el caso de ser mas de uno su separación será de 360º /numero de fases. Es decir se deben distribuirse uniformemente en un periodo. La implementación es opcional

Generador de PWM sobre FPGA

Se deberá implementar el siguiente diagrama en bloques

Aplicación: Modulación del duty cycle con una rampa periódica

DEO-Nano

Figure 3-8 Pin arrangement of the GPIO expansion headers

DE0-Nano

GPIO-1