Midterm 2 • Graded

## Student

Sampad Mohanty

#### **Total Points**

37 / 60 pts

# Question 1

**Problem 1** 15 / 20 pts

- + 20 pts Correct
- - **+ 6 pts** (a) minor error. We ask  $I_X(\mu)$  for one variable X not for  $X_1,\dots,X_n$
  - + 3 pts (a) Partial credit for incorrect answers
- - + 5 pts (b) minor error
  - +7 pts (c) correct
- ullet + **2 pts** Only stated a CLT for  $\sum_{i=1}^n X_i$ 
  - + **4 pts** (c) used the fact  $X_i^2$  are i.i.d., and tried to prove a CLT, but the variance is not correctly computed or (ii) directly claim  $\chi^2(n)$  is Gaussian without justification
  - **+ 6 pts** (c) almost correct except showing  $\mathrm{Var}(X_i^2)=2$  in details.

- + 5 pts (a) Correct
- + 1 pt (a) no theorem is used. Only match the expectation
- - + 5 pts (b) Correct
  - + 4 pts (b) minor mistake
  - **+ 2 pts** partial correct for trying to compute  $R(p, \delta(X))$
  - + 10 pts (c) correct
- → + 3 pts (c)Used Lehmann-Scheffe's thm but the complete suffciient statistics is incorrect or didn't write down a correct, explicit anwer
  - + 9 pts (c) only minor mistake
  - **+ 2 pts** (c) only showed  $\phi$  is unbiased.
  - **+ 5 pts** (c) correct application of Lehmann-Scheffe and suffient statistics is correct. Error in computing  $\mathbb{E}[X_1X_2|\sum_i X_i]$ .
  - + 0 pts Incorrect



why? WLLN you need a sum of i.i.d. random variables.

## Question 3

**Problem 3** 16 / 20 pts

- + 20 pts Correct
- → + 7 pts (a) correct
  - **+ 4 pts** (a) incorrect answer involving  $Y_i$
  - +7 pts (b) correct
  - + 6 pts (b) minor error in the final answer
- $\checkmark$  +3 pts partial credit for taking the derivative with respect to  $\lambda$
- → + 6 pts (c) correct
  - + 5 pts (c) only one minor error in the final answer
  - + 4 pts (c)one answer is correct
  - + 2 pts (c) both answers are incorrect but with some correct intermediate steps
  - + 0 pts (c) incorrect

ic mann

# Math 541 A - Spring 2025 Midterm 2 April 9, 2025 11:00-11:50 AM

| Name:         | Sampao. | B. MOHONTY   |  |
|---------------|---------|--------------|--|
| Student ID Nu | mber.   | 5679528317 . |  |

- There are 3 problems in total. Make sure your exam contains all these questions.
- You are allowed to use one page of double-sided hand-written 8.5 by 11 inch notes.
- You must show your work on all problems. The correct answer with no supporting work may result in no credit.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.

| Problem 1 | 20 |
|-----------|----|
| Problem 2 | 20 |
| Problem 3 | 20 |
| Total     | 60 |

Sarper

Name:

ID:

1. (20 pts) Let  $X_1, \ldots, X_n \sim N(\mu, 1)$  be i.i.d. samples. Recall the PDF for  $N(\mu, 1)$  is

$$f(x|\mu) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2}}.$$

(a) (7 pts) For one random variable  $X \sim N(\mu, 1)$ , compute its Fisher information

$$I_X(\mu) = \mathbb{E}\left(\frac{d}{d\mu}\log f(X|\mu)\right)^2.$$

- (b) (6 pts) Find the the Cramé-Rao lower bound for any unbiased estimator (as a function of  $X_1, \ldots, X_n$ ) of  $\mu$ .
- (c) (7 pts) Assume  $X_1, \ldots, X_n \sim N(0,1)$  be i.i.d. random variables. Show the following convergence in distribution holds:

$$\frac{\sum_{i=1}^{n}(X_{i}^{2}-1))}{\sqrt{2n}} \xrightarrow{d} N(0,1).$$

- a)  $\frac{d}{dr} \log f(x|r) = \frac{d}{dr} \left[ \log \frac{1}{2r} + \frac{(x-r)^2}{2} \right] = \frac{f(x-r)^2}{2} = \frac{f(x-r)^2}{2} + \frac{1}{2} = \frac{\pi r}{2}$   $E\left[ \left( \frac{d}{dr} \log f(x|r) \right)^2 \right] = E_{\chi} \left[ \left( \chi \mu \right) \right] \circ E\left[ \chi \right] = \frac{f(x-r)^2}{2} = \frac{\pi r}{2}$   $= \frac{1}{2} \operatorname{Von}(\chi) = \frac{1}{2}$
- b) C.R lower bound = 1 1 1 n.1 n.1
- c) By CLT

Name:

ID:

Name:

ID:

- 2. (20 pts) Let  $X_1, \ldots, X_n$  be i.i.d. Ber(p).
  - (a) (5 pts) Show that the following convergence in probability holds:

$$\frac{1}{n^2}(X_1+\cdots+X_n)^2 \xrightarrow{p} p^2.$$

(b) (5 pts) Consider a risk function for any estimator  $\delta(X)$  of p given by

$$R(p, \delta(\mathbf{X})) = \mathbb{E}_p |\delta(\mathbf{X}) - p|.$$

Let  $\delta(\mathbf{X}) = X_1$  be the estimator, and  $\pi(p) = \text{Uniform}(0,1)$  be the prior distribution on p. Find the Bayes risk

 $\int_0^1 R(p, \delta(\mathbf{X})) \pi(p) dp.$ 

(c) (10 pts) Show that  $\phi(\mathbf{X}) = X_1 X_2$  is an unbiased estimator of  $p^2$ . Based on  $\phi(\mathbf{X})$  and the Lehmann-Scheffé Theorem, find the best unbiased estimator  $W = W(X_1, \ldots, X_n)$  of  $p^2$  with an explicit form.

a)  $E[\frac{1}{h^2}(x_1+...x_n)^2] = Vor(\frac{1}{h^2}(x_1+...x_n)) + E[\frac{1}{h^2}(x_1+...x_n)]^2$ =  $\frac{1}{h^2}p(1-p) + \frac{1}{h^2}p^2 = p^2 + \frac{p(1-p)}{n}$ .

Mso var ( to Kit ... xn) Los ... by WLL, to (x1 - xn) + p2.

to the plant = 1 (pix). The = f(x) plants) = 1: the the

Bayes on for absolute lever loss is redice of posterior; is all

b)  $\pi(p|x) = L(p, |x|, \pi(p)) = f(x, |p)\pi(p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = f(x, |p)\pi(p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = f(x, |p)\pi(p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = f(x, |p)\pi(p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = f(x, |p)\pi(p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = f(x, |p)\pi(p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = f(x, |p)\pi(p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = f(x, |p)\pi(p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = f(x, |p)\pi(p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]} f(x, |p) = x + (1-x)^{1-p} \cdot \sum_{p \in [q, p]$ 

The minimizer is the median of posterior.

Name:

ID:

- 3. (20 pts) Let  $X_1, \ldots, X_n$  be i.i.d.  $\operatorname{Exp}(\lambda)$  with pdf  $f(x; \lambda) = \lambda e^{-\lambda x}$  for x > 0. For each  $i = 1, \ldots, n$ , define the indicator  $Y_i = 1\{X_i > 1\}$ .
  - (a) (7 pts) Compute the log-likelihood function

$$\log L(\lambda) = \log f(X_1, \dots, X_n | \lambda).$$

(b) (7 pts) Consider the t-th iteration of an EM algorithm for approximating the MLE of  $\lambda$ . For the E-step, expected log-likelihood satisfies

$$Q(\lambda|\lambda^{(t)}) = n \log \lambda - \lambda \sum_{i=1}^{n} \mathbb{E}[X_i|Y_i, \lambda^{(t)}]. \quad \in 9^{\text{ver}}$$
 (1)

Given Equation (1), find the explicit solution for  $\lambda^{(t+1)}$  in the M-step:

$$\lambda^{(t+1)} = rg \max_{\lambda} Q(\lambda | \lambda^{(t)}).$$

Your answer should be a function of  $\mathbb{E}[X_i|Y_i,\lambda^{(t)}]$ .

(c) (6 pts) Compute  $\mathbb{P}(Y_1 = 1|\lambda)$  and  $\mathbb{E}[X_1|Y_1 = 1,\lambda]$ .

(c) (6 pts) Compute 
$$\mathbb{P}(Y_1 = 1|\lambda)$$
 and  $\mathbb{E}[X_1|Y_1 = 1,\lambda]$ .  
a)  $\log L(\lambda) = \log f(X_1 - - \times_n |\lambda)$  odg  $\sum_{i=1}^n \log \lambda = \sum_{i=1}^n \log \lambda = \lambda \times_i$ 

Elxite state cooperate of 6) d Q(X1X(x)) = 7 - [x:1x:1x:1x)]

c)  $P(Y_1=1|\lambda) = P(X_1>1|\lambda) = \int_0^\infty Je^{-\lambda x} dx = Je^{-\lambda x} dx$  $=\lambda \stackrel{e^{-\lambda x}}{=} \stackrel{7}{=} e^{-\lambda x} \stackrel{1}{]}_{\infty} = e^{-\lambda}$ 

$$E[X_1|Y_1=1,\lambda] = \int x f_X(x|Y_1=1,\lambda) dx = \int x f_X(x|x_1,\lambda) dx$$

$$f_X(x|x_1) = \frac{\lambda e^{-\lambda x}}{e^{-\lambda}} = \lambda e^{-\lambda(x-1)}$$

$$\int_1^{\infty} \lambda e^{-\lambda(x-1)} dx$$

.√ame:

ID:

$$= \lambda \int_{\infty}^{\infty} e^{-\lambda(x-1)} dx = \lambda \left[ \alpha \int_{0}^{\infty} e^{-\lambda(x-1)} dx - \int_{0}^{\infty} e^{-\lambda(x-1)} dx \right]$$

$$= \lambda \left[ \alpha \int_{0}^{\infty} e^{-\lambda(x-1)} \int_{0}^{\infty} e^{-\lambda(x-1)} dx \right]$$

$$= \lambda \left[ \frac{1}{\lambda} + \frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda(x-1)} dx \right]$$

$$= \left[ 1 + \int_{0}^{\infty} e^{-\lambda(x-1)} dx \right]$$

$$= \left[ 1 + \left[ e^{-\lambda(x-1)} \right]_{0}^{\infty} - \left[ 1 + \left[ e^{-\lambda(x-1)} \right]_{0}^{\infty} - \left[ 1 + \left[ e^{-\lambda(x-1)} \right]_{0}^{\infty} \right] \right]$$

$$= \left[ 1 - \left( 0 - \frac{1}{\lambda} \right) = 1 + \frac{1}{\lambda} \right]$$

