FCC RF Test Report

APPLICANT : Corporativo Lanix S.A. de C.V.

EQUIPMENT: Mobile Phone

BRAND NAME : LANIX

MODEL NAME : Ilium S106
MARKETING NAME : Ilium S106
FCC ID : ZC4S106

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on May 26, 2014 and testing was completed on Jun. 12, 2014. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P. R. C.

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 1 of 62
Report Issued Date : Jun. 13, 2014

Testing Laboratory 2353

Report No.: FR452607C

TABLE OF CONTENTS

RE'	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	
	1.4	Product Specification subjective to this standard	
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Pre-Scanned RF Power	8
	2.3	Test Mode	9
	2.4	Connection Diagram of Test System	10
	2.5	Support Unit used in test configuration and system	11
	2.6	EUT Operation Test Setup	11
	2.7	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	6dB Bandwidth Measurement	12
	3.2	Output Power Measurement	14
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	19
	3.5	Radiated Band Edges and Spurious Emission Measurement	32
	3.6	AC Conducted Emission Measurement	54
	3.7	Antenna Requirements	60
4	LIST	OF MEASURING EQUIPMENT	61
5	UNCE	ERTAINTY OF EVALUATION	62
AP	PEND	IX A. SETUP PHOTOGRAPHS	

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Report No.: FR452607C

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR452607C	Rev. 01	Initial issue of report	Jun. 13, 2014

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 3 of 62
Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges	< 20dDa	Pass	-
3.4	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 1.83 dB at 2388.840 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 6.32 dB at 0.390 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 4 of 62
Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

1 General Description

1.1 Applicant

Corporativo Lanix S.A. de C.V.

Carretera Internacional Hermosillo-Nogales Km 8.5, Hermosillo Sonora, Mexico

1.2 Manufacturer

Tinno Mobile Technology Corp.

4/F, H-3 Building, OCT Eastern industrial Park, No.1 XiangShan East Road., Nan Shan District, Shenzhen, P.R. China

Report No.: FR452607C

1.3 Product Feature of Equipment Under Test

Product Feature							
Equipment	Mobile Phone						
Brand Name	LANIX						
Model Name	Ilium S106						
Marketing Name	Ilium S106						
FCC ID	ZC4S106						
	GSM/GPRS/EGPRS/WCDMA/HSPA/HSPA+(Downlink Only)/						
EUT supports Radios application	WLAN2.4GHz 802.b/g/n HT20/HT40/						
	Bluetooth v3.0+EDR/Bluetooth v4.0 LE						
HW Version	v1.0						
SW Version	ILIUMS106_PE_CLARO_SW_01_V05						
EUT Stage	Identical Prototype						

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification subjective to this standard

Product Spe	Product Specification subjective to this standard								
Tx/Rx Channel Frequency Range	802.11b/g/n : 2412 MHz ~ 2462 MHz								
	802.11b : 17.42 dBm (0.0552 W)								
Maximum (Peak) Output Power to	802.11g : 23.01 dBm (0.2000 W)								
Antenna	802.11n HT20 : 23.42 dBm (0.2198 W)								
	802.11n HT40 : 23.26 dBm (0.2118 W)								
Antenna Type	PIFA Antenna with gain 0.60 dBi								
Type of Modulation	802.11b: DSSS (DBPSK / DQPSK / CCK)								
Type of Modulation	802.11g/n : OFDM (BPSK / QPSK / 16QAM / 64QAM)								

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 5 of 62TEL: 86-755-3320-2398Report Issued Date: Jun. 13, 2014FCC ID: ZC4S106Report Version: Rev. 01

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.								
	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan								
Test Site Location	warehouse, Nanshan District, Shenzhen, Guangdong, P. R. C.								
	TEL: +86-755-3320-2398								
Toot Site No		Sporton Site No.		FCC Registration No.					
Test Site No.	TH01-SZ	03CH01-SZ	CO01-SZ	831040					

Note: The test site complies with ANSI C63.4 2003 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- ANSI C63.4-2003

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 6 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400 2492 5 MH=	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 7 of 62
Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

	WLAN 2.4GHz 802.11b Peak Power (dBm)											
Р	ower vs. Chanr	nel		Power vs. [Data Rate							
Channel Frequency Data Rate (MHz) 1Mbps		Channel	2Mbps	5.5Mbps	11Mbps							
CH 01	2412 MHz	16.23										
CH 06	2437 MHz	16.87	CH 11	17.41	17.34	17.23						
CH 11	2462 MHz	<mark>17.42</mark>										

	WLAN 2.4GHz 802.11g Peak Power (dBm)										
Po	wer vs. Cha	nnel			Po	ower vs. [Data Rate				
Channel	Frequency (MHz)	Data Rate 6Mbps	Channel	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps	
CH 01	2412 MHz	22.41									
CH 06	2437 MHz	<mark>23.01</mark>	CH 06	22.94	22.91	22.93	22.98	22.94	22.89	22.93	
CH 11	2462 MHz	22.95									

	WLAN 2.4GHz 802.11n-HT20 Peak Power (dBm)										
Po	ower vs. Cha	nnel			Po	wer vs. M	1CS Index				
Channel	Frequency (MHz)	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
CH 01	2412 MHz	22.79									
CH 06	2437 MHz	23.02	CH 11	23.33	23.22	23.19	23.24	23.11	23.20	23.18	
CH 11	2462 MHz	<mark>23.42</mark>									

	WLAN 2.4GHz 802.11n-HT40 Peak Power (dBm)									
Po	wer vs. Cha	nnel			Po	wer vs. N	1CS Index			
Channel	Frequency	MCS Index	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
Ondinion	(MHz)	MCS0	Onamo		002			mood	mood	WOO!
CH 03	2422 MHz	22.54								
CH 06	2437 MHz	22.86	CH 09	22.37	22.35	22.39	22.33	22.36	22.76	22.41
CH 09	2452 MHz	<mark>23.26</mark>								

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 8 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

2.3 Test Mode

Final results of test modes, data rates and test channels are shown as following table.

		Test Cases		
	Test Items	Mode	Data Rate	Test Channel
		802.11b	1 Mbps	1/6/11
	6dB BW	802.11g	6 Mbps	1/6/11
	Power Spectral Density	802.11n HT20	MCS0	1/6/11
		802.11n HT40	MCS0	3/6/9
		802.11b	1 Mbps	1/6/11
	0.4.45	802.11g	6 Mbps	1/6/11
	Output Power	802.11n HT20	MCS0	1/6/11
Conducted		802.11n HT40	MCS0	3/6/9
TCs		802.11b	1 Mbps	1/11
		802.11g	6 Mbps	1/11
	Conducted Band Edge	nducted Band Edge 802.11n HT20 MCS0		1/11
		802.11n HT40	MCS0	3/9
		802.11b	1 Mbps	1/6/11
	Conducted Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	MCS0	1/6/11
		802.11n HT40	MCS0	3/6/9
		802.11b	1 Mbps	1/11
	Dadieted David Edua	802.11g	6 Mbps	1/11
	Radiated Band Edge	802.11n HT20	MCS0	1/11
Radiated		802.11n HT40	MCS0	3/9
TCs		802.11b	1 Mbps	1/6/11
	Radiated Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	MCS0	1/6/11
		802.11n HT40	MCS0	3/6/9
AC Conducted	Mode 1 : GSM850 Idle +	Bluetooth Link + WLAN Link -	· USB Cable (Charging from A	dapter) + Earphone
Emission				

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 9 of 62
Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 10 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
	System Simulator	R&S	CMW 500	N/A	N/A	Unshielded, 1.8 m
	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
	Notebook	Lenovo	G480	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
	Bluetooth Earphone	Lenovo	LBH301	PYAHS-107W	N/A	N/A

Report No.: FR452607C

2.6 EUT Operation Test Setup

For WLAN function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Page Number

Report Version

: 11 of 62

: Rev. 01

Report Issued Date: Jun. 13, 2014

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7.5 dB and 10dB attenuator.

Offset (dB) = RF cable loss (dB) + attenuator factor (dB).
=
$$7.5 + 10 = 17.5$$
 (dB)

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 12 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

3.1.5 Test Result of 6dB Bandwidth

Test Band :	2.4GHz	Temperature :	22~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
11b	1Mbps	1	1	2412	9.60	0.5	Pass
11b	1Mbps	1	6	2437	9.12	0.5	Pass
11b	1Mbps	1	11	2462	9.56	0.5	Pass
11g	6Mbps	1	1	2412	16.40	0.5	Pass
11g	6Mbps	1	6	2437	16.40	0.5	Pass
11g	6Mbps	1	11	2462	16.40	0.5	Pass
HT20	MCS0	1	1	2412	17.60	0.5	Pass
HT20	MCS0	1	6	2437	17.60	0.5	Pass
HT20	MCS0	1	11	2462	17.64	0.5	Pass
HT40	MCS0	1	3	2422	36.32	0.5	Pass
HT40	MCS0	1	6	2437	36.32	0.5	Pass
HT40	MCS0	1	9	2452	36.16	0.5	Pass

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 13 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 14 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

3.2.5 Test Result of Peak Output Power

Test Mode :	2.4GHz	Temperature :	22~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	RF Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	16.23	30	0.60	Pass
11b	1Mbps	1	6	2437	16.87	30	0.60	Pass
11b	1Mbps	1	11	2462	17.42	30	0.60	Pass
11g	6Mbps	1	1	2412	22.41	30	0.60	Pass
11g	6Mbps	1	6	2437	23.01	30	0.60	Pass
11g	6Mbps	1	11	2462	22.95	30	0.60	Pass
HT20	MCS0	1	1	2412	22.79	30	0.60	Pass
HT20	MCS0	1	6	2437	23.02	30	0.60	Pass
HT20	MCS0	1	11	2462	23.42	30	0.60	Pass
HT40	MCS0	1	3	2422	22.54	30	0.60	Pass
HT40	MCS0	1	6	2437	22.86	30	0.60	Pass
HT40	MCS0	1	9	2452	23.26	30	0.60	Pass

Note: Measured power (dBm) has offset with cable loss.

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 15 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

3.2.6 Test Result of Average output Power (Reporting Only)

Test Mode :	2.4GHz	Temperature :	22~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Duty Factor (dB)	Average Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	0.08	13.27	30	0.60	Pass
11b	1Mbps	1	6	2437	0.08	13.60	30	0.60	Pass
11b	1Mbps	1	11	2462	0.08	14.20	30	0.60	Pass
11g	6Mbps	1	1	2412	0.48	12.00	30	0.60	Pass
11g	6Mbps	1	6	2437	0.48	12.37	30	0.60	Pass
11g	6Mbps	1	11	2462	0.48	12.26	30	0.60	Pass
HT20	MCS0	1	1	2412	0.50	11.96	30	0.60	Pass
HT20	MCS0	1	6	2437	0.50	12.14	30	0.60	Pass
HT20	MCS0	1	11	2462	0.50	12.53	30	0.60	Pass
HT40	MCS0	1	3	2422	1.00	10.98	30	0.60	Pass
HT40	MCS0	1	6	2437	1.00	11.18	30	0.60	Pass
HT40	MCS0	1	9	2452	1.00	11.30	30	0.60	Pass

Note: Measured power (dBm) has offset with cable loss and duty factor.

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 16 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

Report No.: FR452607C

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- Measure and record the results in the test report.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Test Mode :	2.4GHz	Temperature :	22~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Peak Power Density (dBm/3kHz)	Max. Limits (dBm/3kHz)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	-8.79	8	0.60	Pass
11b	1Mbps	1	6	2437	-8.83	8	0.60	Pass
11b	1Mbps	1	11	2462	-9.47	8	0.60	Pass
11g	6Mbps	1	1	2412	-13.96	8	0.60	Pass
11g	6Mbps	1	6	2437	-13.25	8	0.60	Pass
11g	6Mbps	1	11	2462	-13.75	8	0.60	Pass
HT20	MCS0	1	1	2412	-13.66	8	0.60	Pass
HT20	MCS0	1	6	2437	-13.10	8	0.60	Pass
HT20	MCS0	1	11	2462	-13.27	8	0.60	Pass
HT40	MCS0	1	3	2422	-17.13	8	0.60	Pass
HT40	MCS0	1	6	2437	-18.02	8	0.60	Pass
HT40	MCS0	1	9	2452	-18.66	8	0.60	Pass

Note: Measured power density (dBm) has offset with cable loss.

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 18 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

3.4 Conducted Band Edges and Spurious Emission Measurement

Limit of Conducted Band Edges and Spurious Emission Measurement 3.4.1

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 4. kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

FCC ID: ZC4S106

: 19 of 62 Page Number Report Issued Date: Jun. 13, 2014

Report No.: FR452607C

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	22~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Blithe Li

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 20 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	22~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Blithe Li

Page Number : 21 of 62
Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

Test Mode :	802.11b	Temperature :	22~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Blithe Li

Page Number : 22 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	22~26 ℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Blithe Li

Page Number : 23 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	22~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Blithe Li

Page Number : 24 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	22~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Blithe Li

Page Number : 25 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	22~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Blithe Li

Page Number : 26 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	22~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Blithe Li

Page Number : 27 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	22~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Blithe Li

Page Number : 28 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	22~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	03	Test Engineer :	Blithe Li

Page Number : 29 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	22~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Blithe Li

Page Number : 30 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Page Number : 31 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 32 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle (%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	98.13	-	-	10Hz
802.11g	89.47	1.410	0.709	1kHz
2.4GHz 802.11n HT20	89.16	1.316	0.760	1kHz
2.4GHz 802.11n HT40	79.37	0.654	1.529	3kHz

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Report No.: FR452607C

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 35 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

3.5.6 Test Result of Radiated Spurious at Band Edges

Test Mode :	802.11b	Temperature :	24~25°C
Test Band :	Low	Relative Humidity :	48~49%
Test Channel :	01	Test Engineer :	Leo Liao

	ANTENNA POLARITY : HORIZONTAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2379.39	56.8	-17.2	74	47.05	31.9	5.59	27.74	128	101	Peak
2358.15	44.15	-9.85	54	34.54	31.81	5.56	27.76	128	101	Average

ANTENNA POLARITY : VERTICAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2380.56	52.75	-21.25	74	43	31.9	5.59	27.74	155	60	Peak
2380.92	39.1	-14.9	54	29.35	31.9	5.59	27.74	155	60	Average

Test Mode :	802.11b	Temperature :	24~25°C
Test Band :	High	Relative Humidity :	48~49%
Test Channel :	11	Test Engineer :	Leo Liao

ANTENNA POLARITY : HORIZONTAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2497.39	58.35	-15.65	74	47.76	32.5	5.74	27.65	100	88	Peak
2484.01	46.82	-7.18	54	36.37	32.41	5.71	27.67	100	88	Average

ANTENNA POLARITY: VERTICAL										
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2496.7	54.23	-19.77	74	43.64	32.5	5.74	27.65	100	60	Peak
2487.73	42.39	-11.61	54	31.85	32.5	5.71	27.67	100	60	Average

Test Mode :	802.11g	Temperature :	24~25°C
Test Band :	Low	Relative Humidity :	48~49%
Test Channel :	01	Test Engineer :	Leo Liao

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2383.17	66.22	-7.78	74	56.47	31.9	5.59	27.74	128	101	Peak		
2389.92	47.6	-6.4	54	37.72	31.98	5.62	27.72	128	101	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.02	59.11	-14.89	74	49.28	31.98	5.59	27.74	100	60	Peak		
2389.92	45.02	-8.98	54	35.14	31.98	5.62	27.72	100	60	Average		

Test Mode :	802.11g	Temperature :	24~25°C
Test Band :	High	Relative Humidity :	48~49%
Test Channel :	11	Test Engineer :	Leo Liao

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2484.7	69.75	-4.25	74	59.3	32.41	5.71	27.67	100	93	Peak		
2484.37	50.68	-3.32	54	40.23	32.41	5.71	27.67	100	93	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2484.52	67.09	-6.91	74	56.64	32.41	5.71	27.67	126	63	Peak		
2483.98	46.98	-7.02	54	36.53	32.41	5.71	27.67	126	63	Average		

Test Mode :	802.11n HT20	Temperature :	24~25°C
Test Band :	Low	Relative Humidity :	48~49%
Test Channel :	01	Test Engineer :	Leo Liao

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.56	68.8	-5.2	74	58.97	31.98	5.59	27.74	100	101	Peak		
2389.74	48.61	-5.39	54	38.78	31.98	5.59	27.74	100	101	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2387.85	63.85	-10.15	74	54.02	31.98	5.59	27.74	131	61	Peak		
2389.92	43.96	-10.04	54	34.08	31.98	5.62	27.72	131	61	Average		

Test Mode :	802.11n HT20	Temperature :	24~25°C
Test Band :	High	Relative Humidity :	48~49%
Test Channel :	11	Test Engineer :	Leo Liao

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2485.81	69.92	-4.08	74	59.47	32.41	5.71	27.67	100	100	Peak		
2483.74	50.76	-3.24	54	40.31	32.41	5.71	27.67	100	100	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2485.15	66.6	-7.4	74	56.15	32.41	5.71	27.67	100	61	Peak		
2483.5	46.33	-7.67	54	35.88	32.41	5.71	27.67	100	61	Average		

Test Mode :	802.11n HT40	Temperature :	24~25°C
Test Band :	Low	Relative Humidity :	48~49%
Test Channel :	03	Test Engineer :	Leo Liao

	ANTENNA POLARITY : HORIZONTAL													
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark				
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos					
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)					
2388.21	64.63	-9.37	74	54.8	31.98	5.59	27.74	100	98	Peak				
2388.84	52.17	-1.83	54	42.34	31.98	5.59	27.74	100	98	Average				
2484.43	54.66	-19.34	74	44.21	32.41	5.71	27.67	100	98	Peak				
2487.94	42.82	-11.18	54	32.28	32.5	5.71	27.67	100	98	Average				

	ANTENNA POLARITY: VERTICAL												
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark			
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos				
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2388.21	62.87	-11.13	74	53.04	31.98	5.59	27.74	100	60	Peak			
2388.93	47.18	-6.82	54	37.35	31.98	5.59	27.74	100	60	Average			
2487.76	51.54	-22.46	74	41	32.5	5.71	27.67	100	60	Peak			
2484.82	40.23	-13.77	54	29.78	32.41	5.71	27.67	100	60	Average			

Page Number : 39 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~25°C
Test Band :	High	Relative Humidity :	48~49%
Test Channel :	09	Test Engineer :	Leo Liao

	ANTENNA POLARITY : HORIZONTAL													
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark				
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos					
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)					
2388.3	54.17	-19.83	74	44.34	31.98	5.59	27.74	100	98	Peak				
2388.93	42.43	-11.57	54	32.6	31.98	5.59	27.74	100	98	Average				
2486.17	67.98	-6.02	74	57.53	32.41	5.71	27.67	100	98	Peak				
2483.83	47.58	-6.42	54	37.13	32.41	5.71	27.67	100	98	Average				

	ANTENNA POLARITY: VERTICAL												
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark			
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos				
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2389.83	50.38	-23.62	74	40.5	31.98	5.62	27.72	100	60	Peak			
2389.02	40.56	-13.44	54	30.73	31.98	5.59	27.74	100	60	Average			
2486.26	63.98	-10.02	74	53.53	32.41	5.71	27.67	100	60	Peak			
2488.57	43.77	-10.23	54	33.23	32.5	5.71	27.67	100	60	Average			

Page Number : 40 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Test Mode :	802.11b		Temperature :	24~25°C		
Test Channel :	01		Relative Humidity :	48~49%		
Test Engineer :	Leo	Liao	Polarization :	Horizontal		
	1.	2412 MHz is fundamental signal which can be ignored.				
Remark :	2.	Average measurement	t was not performed if	peak level went lower than the		
		average limit.				

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	108.66	-	-	98.69	32.07	5.62	27.72	128	101	Peak
2412	106.37	-	-	96.4	32.07	5.62	27.72	128	101	Average
4824	42.07	-31.93	74	57.41	33.82	8.36	57.52	105	198	Peak

Test Mode :	802.11b	Temperature :	24~25°C
Test Channel :	01	Relative Humidity :	48~49%
Test Engineer :	Leo Liao	Polarization :	Vertical
	1. 2412 MHz is fundamenta	al signal which can be	ignored.
Remark :	2. Average measurement	was not performed if	peak level went lower than the
	average limit.		

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	103.54	-	-	93.57	32.07	5.62	27.72	155	60	Peak
2412	101.31	-	-	91.34	32.07	5.62	27.72	155	60	Average
4824	40.01	-33.99	74	55.35	33.82	8.36	57.52	105	198	Peak

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 41 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~25°C
Test Channel :	06	Relative Humidity :	48~49%
Test Engineer :	Leo Liao	Polarization :	Horizontal
	1. 2437 MHz is fundament	al signal which can be	ignored.
Remark :	2. Average measurement	was not performed if	peak level went lower than the
	average limit.		

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	108.73	-	-	98.55	32.24	5.65	27.71	100	100	Peak
2437	106.66	-	-	96.48	32.24	5.65	27.71	100	100	Average
4874	40.74	-33.26	74	55.82	33.93	8.41	57.42	145	265	Peak
7311	40.66	-33.34	74	53.95	33.89	9.99	57.17	174	321	Peak

Test Mode :	802.11b	Temperature :	24~25°C				
Test Channel :	06	Relative Humidity :	48~49%				
Test Engineer :	Leo Liao	Polarization :	Vertical				
	1. 2437 MHz is fundame	ental signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	1	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2437	103.54	-	-	93.36	32.24	5.65	27.71	100	61	Peak
2437	101.44	-	-	91.26	32.24	5.65	27.71	100	61	Average
4874	36.41	-37.59	74	51.49	33.93	8.41	57.42	145	265	Peak
7311	40.14	-33.86	74	53.43	33.89	9.99	57.17	174	321	Peak

Page Number : 42 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802	2.11b	Temperature :	24~25°C					
Test Channel :	11		Relative Humidity :	48~49%					
Test Engineer :	Lec) Liao	Polarization :	Horizontal					
	1.	2462 MHz is fundament	al signal which can be	ignored.					
Remark :	2.	2. Average measurement was not performed if peak level went lower than the							
		average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	110.2	-	-	99.88	32.33	5.68	27.69	100	88	Peak
2462	107.67	-	-	97.35	32.33	5.68	27.69	100	88	Average
4924	39.49	-34.51	74	54.31	34.05	8.46	57.33	146	347	Peak
7386	40.28	-33.72	74	53.41	33.94	10.02	57.09	145	274	Peak

Test Mode :	802	2.11b	Temperature :	24~25°C				
Test Channel :	11		Relative Humidity :	48~49%				
Test Engineer :	Lec	o Liao	Polarization :	Vertical				
	1.	2462 MHz is fundament	al signal which can be	ignored.				
Remark: 2. Average measurement was not performed if peak level went lo								
		average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	105.6	-	-	95.28	32.33	5.68	27.69	100	60	Peak
2462	103.36	-	-	93.04	32.33	5.68	27.69	100	60	Average
4924	38.36	-35.64	74	53.18	34.05	8.46	57.33	146	347	Peak
7386	41.58	-32.42	74	54.71	33.94	10.02	57.09	145	274	Peak

Page Number : 43 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~25°C					
Test Channel :	01	Relative Humidity :	48~49%					
Test Engineer :	Leo Liao	Polarization :	Horizontal					
	1. 2412 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	107.2	-	-	97.23	32.07	5.62	27.72	128	101	Peak
2412	98.39	-	-	88.42	32.07	5.62	27.72	128	101	Average
4824	32.68	-41.32	74	48.02	33.82	8.36	57.52	105	198	Peak

Test Mode :	802.11g	Temperature :	24~25°C				
Test Channel :	01	Relative Humidity :	48~49%				
Test Engineer :	Leo Liao	Polarization :	Vertical				
	1. 2412 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp			Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2412	101.91	- (ub)	- -	91.94	32.07	5.62	27.72	100	60	Peak
2412	93.12	_	-	83.15	32.07	5.62	27.72	100	60	Average
4824	34.83	-39.17	74	50.17	33.82	8.36	57.52	105	198	Peak

Page Number : 44 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

Test Mode :	802.11g	Temperature :	24~25°C					
Test Channel :	06	Relative Humidity :	48~49%					
Test Engineer :	Leo Liao	Polarization :	Horizontal					
	1. 2437 MHz is fundame	ental signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	107.08	-	-	96.9	32.24	5.65	27.71	130	100	Peak
2437	97.75	-	-	87.57	32.24	5.65	27.71	130	100	Average
4874	33.58	-40.42	74	48.66	33.93	8.41	57.42	145	265	Peak
7311	34.59	-39.41	74	47.88	33.89	9.99	57.17	174	321	Peak

Test Mode :	802.11g	Temperature :	24~25°C					
Test Channel :	06	Relative Humidity :	48~49%					
Test Engineer :	Leo Liao	Polarization :	Vertical					
	1. 2437 MHz is fundament	2437 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	101.75	-	-	91.57	32.24	5.65	27.71	100	61	Peak
2437	93.42	-	-	83.24	32.24	5.65	27.71	100	61	Average
4874	33.84	-40.16	74	48.92	33.93	8.41	57.42	145	265	Peak
7311	35.13	-38.87	74	48.42	33.89	9.99	57.17	174	321	Peak

Page Number : 45 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11g		Temperature :	24~25°C				
Test Channel :	11		Relative Humidity :	48~49%				
Test Engineer :	Leo Liao		Polarization :	Horizontal				
	1. 2462 MH	lz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	108.71	-	-	98.39	32.33	5.68	27.69	100	93	Peak
2462	100.6	-	-	90.28	32.33	5.68	27.69	100	93	Average
4924	33.84	-40.16	74	48.66	34.05	8.46	57.33	146	347	Peak
7386	36.54	-37.46	74	49.67	33.94	10.02	57.09	145	274	Peak

Test Mode :	802.11g	Temperature :	24~25°C					
Test Channel :	11	Relative Humidity:	48~49%					
Test Engineer :	Leo Liao	Polarization :	Vertical					
	1. 2462 MHz is fundame	2462 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	104.78	-	-	94.46	32.33	5.68	27.69	126	63	Peak
2462	96.56	-	-	86.24	32.33	5.68	27.69	126	63	Average
4924	33.91	-40.09	74	48.73	34.05	8.46	57.33	146	347	Peak
7386	37.43	-36.57	74	50.56	33.94	10.02	57.09	145	274	Peak

Page Number : 46 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

Test Mode :	2.4GHz 802.11n HT20	Temperature :	24~25°C				
Test Channel :	01	Relative Humidity :	48~49%				
Test Engineer :	Leo Liao	Polarization :	Horizontal				
	1. 2412 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	105.73	-	-	95.76	32.07	5.62	27.72	100	101	Peak
2412	96.76	-	-	86.79	32.07	5.62	27.72	100	101	Average
4824	36.06	-37.94	74	51.4	33.82	8.36	57.52	105	198	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	24~25°C				
Test Channel :	01	Relative Humidity :	48~49%				
Test Engineer :	Leo Liao	Polarization :	Vertical				
	1. 2412 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	101.14	-	-	91.17	32.07	5.62	27.72	131	61	Peak
2412	92.08	-	-	82.11	32.07	5.62	27.72	131	61	Average
4824	35.62	-38.38	74	50.96	33.82	8.36	57.52	105	198	Peak

Page Number : 47 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	24~25°C				
Test Channel :	06	Relative Humidity :	48~49%				
Test Engineer :	Leo Liao	Polarization :	Horizontal				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	105.72	-	-	95.54	32.24	5.65	27.71	100	101	Peak
2437	96.4	-	-	86.22	32.24	5.65	27.71	100	101	Average
4874	33.58	-40.42	74	48.66	33.93	8.41	57.42	145	265	Peak
7311	34.49	-39.51	74	47.78	33.89	9.99	57.17	174	321	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	24~25°C				
Test Channel :	06	Relative Humidity :	48~49%				
Test Engineer :	Leo Liao	Polarization :	Vertical				
	1. 2437 MHz is fundament	tal signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	101.4	-	-	91.22	32.24	5.65	27.71	129	61	Peak
2437	92.64	-	-	82.46	32.24	5.65	27.71	129	61	Average
4874	33.84	-40.16	74	48.92	33.93	8.41	57.42	145	265	Peak
7311	35.13	-38.87	74	48.42	33.89	9.99	57.17	174	321	Peak

Page Number : 48 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	24~25°C					
Test Channel :	11	Relative Humidity :	48~49%					
Test Engineer :	Leo Liao	Polarization :	Horizontal					
	1. 2462 MHz is fundament	tal signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	107.88	-	-	97.56	32.33	5.68	27.69	100	100	Peak
2462	99.2	-	-	88.88	32.33	5.68	27.69	100	100	Average
4924	32.42	-41.58	74	47.24	34.05	8.46	57.33	146	347	Peak
7386	35.97	-38.03	74	49.1	33.94	10.02	57.09	145	274	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	24~25°C					
Test Channel :	11	Relative Humidity :	48~49%					
Test Engineer :	Leo Liao	Polarization :	Vertical					
	1. 2462 MHz is fundament	2462 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	1	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2462	104.06	-	-	93.74	32.33	5.68	27.69	100	61	Peak
2462	94.91	-	-	84.59	32.33	5.68	27.69	100	61	Average
4924	32.81	-41.19	74	47.63	34.05	8.46	57.33	146	347	Peak
7386	36.09	-37.91	74	49.22	33.94	10.02	57.09	145	274	Peak

Page Number : 49 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

Test Mode :	2.4GHz	802.11n HT40	Temperature :	24~25°C				
Test Channel :	03		Relative Humidity :	48~49%				
Test Engineer :	Leo Lia)	Polarization :	Horizontal				
	1. 242	2 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Ave	2. Average measurement was not performed if peak level went lower than the						
	ave	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
30.97	32.47	-7.53	40	43.23	18.4	0.77	29.93	154	231	Peak
125.06	23.54	-19.96	43.5	40.11	12	1.37	29.94	-	-	Peak
236.61	32.13	-13.87	46	49.22	11.03	1.81	29.93	_	-	Peak
363.68	26.29	-19.71	46	39.01	15.02	2.19	29.93	-	-	Peak
519.85	24.89	-21.11	46	34.92	17.3	2.59	29.92	-	-	Peak
799.21	32.25	-13.75	46	39.04	19.99	3.15	29.93	-	-	Peak
2422	101.54	-	-	91.44	32.16	5.65	27.71	100	98	Peak
2422	93.62	-	-	83.52	32.16	5.65	27.71	100	98	Average
4844	35.15	-38.85	74	50.4	33.86	8.38	57.49	126	248	Peak
7266	34.14	-39.86	74	47.5	33.87	9.98	57.21	185	252	Peak

Page Number : 50 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT40	Temperature :	24~25°C				
Test Channel :	03	Relative Humidity :	48~49%				
Test Engineer :	Leo Liao	Polarization :	Vertical				
	1. 2422 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos	Pos	
32.91	36.59	-3.41	<u>(авруліі) </u> 40	48.43	17.3	0.79	29.93	(cm) 154	(deg)	Peak
								104	200	
101.78	33.33	-10.17	43.5	50.64	11.36	1.27	29.94	-	-	Peak
202.66	22.86	-20.64	43.5	41.9	9.18	1.71	29.93	-	-	Peak
312.27	22.78	-23.22	46	37.56	13.1	2.05	29.93	-	-	Peak
612.97	24.44	-21.56	46	32.97	18.6	2.79	29.92	-	-	Peak
812.79	24.78	-21.22	46	31.12	20.4	3.19	29.93	-	-	Peak
2422	96.33	-	-	86.23	32.16	5.65	27.71	100	60	Peak
2422	88.24	-	-	78.14	32.16	5.65	27.71	100	60	Average
4844	33.55	-40.45	74	48.8	33.86	8.38	57.49	126	248	Peak
7266	34.62	-39.38	74	47.98	33.87	9.98	57.21	185	252	Peak

Page Number : 51 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT40	Temperature :	24~25°C				
Test Channel :	06	Relative Humidity :	48~49%				
Test Engineer :	Leo Liao	Polarization :	Horizontal				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	101.49	-	-	91.31	32.24	5.65	27.71	100	100	Peak
2437	92.92	-	-	82.74	32.24	5.65	27.71	100	100	Average
4874	32.64	-41.36	74	47.72	33.93	8.41	57.42	132	224	Peak
7311	34.09	-39.91	74	47.38	33.89	9.99	57.17	119	347	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	24~25°C			
Test Channel :	06	Relative Humidity :	48~49%			
Test Engineer :	Leo Liao	Polarization :	Vertical			
	1. 2437 MHz is fundament	al signal which can be	ignored.			
Remark :	2. Average measurement was not performed if peak level went lower than the					
	average limit.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2437	97.16	-	-	86.98	32.24	5.65	27.71	100	60	Peak
2437	88.39	-	-	78.21	32.24	5.65	27.71	100	60	Average
4874	32.13	-41.87	74	47.21	33.93	8.41	57.42	132	224	Peak
7311	34.48	-39.52	74	47.77	33.89	9.99	57.17	119	347	Peak

Page Number : 52 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

Test Mode :	2.4GHz 802.11n HT40	Temperature :	24~25°C				
Test Channel :	09	Relative Humidity :	48~49%				
Test Engineer :	Leo Liao	Polarization :	Horizontal				
	1. 2452 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement	2. Average measurement was not performed if peak level went lower than the					
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	102.39	-	-	92.16	32.24	5.68	27.69	100	98	Peak
2452	93.72	-	-	83.49	32.24	5.68	27.69	100	98	Average
4904	33.49	-40.51	74	48.4	34.01	8.44	57.36	125	214	Peak
7356	34.5	-39.5	74	47.69	33.92	10.01	57.12	127	315	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	24~25°C				
Test Channel :	09	Relative Humidity :	48~49%				
Test Engineer :	Leo Liao	Polarization :	Vertical				
	1. 2452 MHz is fundament	tal signal which can be	ignored.				
Remark :	2. Average measurement	2. Average measurement was not performed if peak level went lower than the					
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	99.28	-	-	89.05	32.24	5.68	27.69	100	60	Peak
2452	89.98	-	-	79.75	32.24	5.68	27.69	100	60	Average
4904	32.78	-41.22	74	47.69	34.01	8.44	57.36	125	214	Peak
7356	36.63	-37.37	74	49.82	33.92	10.01	57.12	127	315	Peak

Page Number : 53 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBμV)					
(MHz)	Quasi-Peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 **Test Procedures**

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

Report No.: FR452607C

FCC ID: ZC4S106

3.6.4 Test Setup

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 55 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

3.6.5 Test Result of AC Conducted Emission

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 56 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

Test Mode :	Mode 1			Ten	perati	ure :	21	21~22 ℃		
Test Engineer :	Jack Tian			Rel	ative H	lumidity:	41	1~42%		
Test Voltage :	120Vac /	60Hz		Pha	Phase: Line					
Function Type :	GSM850 + Earphoi		etooth	Link +	WLAN	Link + US	В Са	able (Charging	from Adapter)	
1	100 Level (dBuV))				Date	2014	-06-11 Time: 11:48:23	3	
	90						_			
	80									
	70									
	60							FCC 15C_QP		
		A						FCC 15C_AVG		
	50 MJ	31317	CANAL PROPERTY.	3 32 92	Water Market	Muli Elm	41.04	Maria .		
	40	9	111851719112	29 33	3 941 434	5 47	r Mako ada	A all a month of the state of t		
	30			31		49				
	20				1		++			
	10						+			
	0.15 .2		ЩЩ			5	Ш,	10 20 3] 30	
	.15 .2	.5	1	Freq	2 uency (MH	_		10 20 .	50	
Site Condi	: CO01- ition: FCC 1									
	Freq	Level 1		Limit Line	Read Level			Remark		
-	MHz	dBu∀	dB	dBu∇	dBu∀	dB	dB			
30	1.22	43.81 -	12.19	56.00	33.40	0.25 10	.16	QP		
31	1.36				19.80			_		
32 33	1.36 1.57				31.20					
34		40.21 -			29.80			_		
35	1.69							_		
36	1.69	41.21 -		56.00	30.80					
37 38	1.84	34.01 -1 42.21 -1		56.00	23.61	0.22 10		Average		
39	1.96	33.71 -		16.00	23.30			Average		
40		42.31 -						_		
41		32.34 -						_		
42						0.24 10				
43 44		32.09 -1								
44		41.29 -1 33.32 -1								
46		42.82 -								
47		32.29 -								
48						0.37 10		••		
49 50		29.42 -1 39.12 -1						_		
50	4.34	37.14 T.	10.00	JO. UU	20.30	U.35 IL	.23	VF		

Page Number : 57 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode: Temperature: 21~22°C Mode 1 Test Engineer: Jack Tian Relative Humidity: 41~42% Test Voltage: 120Vac / 60Hz Phase: Neutral GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter) Function Type: + Earphone 100 Level (dBuV) Date: 2014-06-11 Time: 11:34:39 90 20 70 FCC 15C_QP 60 FCC 15C_AVG 50 10.000 40 30 20 10 0.15 Frequency (MHz) Site : CO01-SZ Condition: FCC 15C QP LISN N 20140304 NEUTRAL Over Limit Read LISN Cable Freg Level Limit Line Level Factor Loss Remark MHz dBu∀ dB dBu∀ dBuV dB dB 1 0.16 31.28 -24.28 55.56 20.60 0.33 10.35 Average 41.88 -23.68 65.56 31.20 10.35 QP 30.80 -21.90 52.70 20.20 0.33 10.27 Average 40.70 -22.00 62.70 30.10 0.22 0.33 10.27 QP 29.46 -19.15 0.37 48.61 18.90 0.38 10.18 Average 42.16 -16.45 0.37 58.61 31.60 0.38 10.18 QP 10.18 Average 0.38 41.36 -6.85 48.21 30.80 0.38 8 0.38 48.56 -9.65 58.21 38.00 0.38 10.18 QP 9 0.43 29.76 -17.57 47.33 19.20 0.39 10.17 Average 41.96 -15.37 57.33 0.43 31.40 0.39 10.17 QP 11 0.45 36.76 -10.04 46.80 26.20 0.40 10.16 Average 38.10 12 0.45 48.66 -8.14 56.80 0.40 10.16 OP 0.51 10.16 Average 13 37.46 -8.54 46.00 26.90 0.40 44.86 -11.14 14 0.51 56.00 34.30 0.40 10.16 QP 15 0.59 30.08 -15.92 46.00 19.60 0.33 10.15 Average 16 0.59 39.68 -16.32 56.00 29.20 0.33 10.15 QP 0.64 33.54 -12.46 46.00 23.10 0.29 10.15 Average 17 41.94 -14.06 18 0.64 56.00 31.50 0.29 10.15 QP 0.71 35.80 -10.20 46.00 25.40 0.25 10.15 Average 19 43.70 -12.30 56.00 33.30 20 0.71 0.25 10.15 OP 0.79 33.63 -12.37 21 46.00 23.20 0.28 10.15 Average 22 0.79 45.03 -10.97 56.00 34.60 0.28 10.15 QP 23 0.84 32.64 -13.36 46.00 22.20 0.29 10.15 Average 24 0.84 45.64 -10.36 56.00 35.20 0.29 10.15 QP 46.00 35.35 -10.65 25 0.89 24.90 0.30 10.15 Average 26 0.89 44.05 -11.95 56.00 33.60 0.30 10.15 QP 22.50 27 0.93 32.96 -13.04 46.00 0.31 10.15 Average 0.93 44.66 -11.34 56.00 34.20 28 0.31 10.15 QP 1.03 34.08 -11.92 46.00 23.60 0.33 10.15 Average

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 58 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

Test Mode :	Mode 1			Ter	nperat	ure :	21	~22 ℃	
Test Engineer :	Jack Tian			Rel	ative F	lumidity	ty: 41~42%		
Test Voltage :	120Vac / 6	60Hz		Pha	Phase:		Neutral		
Function Type :	GSM850 I + Earphor		luetooth	JSB Ca	able (Chargii	ng from Adapter)			
	100 Level (dBuV))				ı	Date: 2014	06-11 Time: 11:34:	39
	90								_
	80								
	70								
	60							FCC 15C_Q	P
	50	#10P	ti ana sala	M. U 4	0.1 h E	h		FCC 15C_AV	<u>G</u>
	40	1,00	16 8 1	32 868	12 168 X	Mar Start	Mary Mary Mary Pal	A CATALAN CARRIED AND AND A CARRIAGO	Asi
	30 3	5 9	15 7 293	²⁹ 31336 ²	2 4 2 5 7 4 5	1 535		Abdum Land Land Co.	
	20								
	10								
	.15 .2		5	1 Free	2 Juency (MH	z) 5	1	10 20	30
Site	: CO01-	-SZ				•			
Cond	ition: FCC 1	SC_QP L	ISN_N_20	140304 N	EUTRAL				
	Freq	T.evel	Over Limit	Limit Line	Read	LISN Factor	Cable	Remark	
Ì	1104	TOVOI	TIME C	штис	HOVOI				
	MHz	dBu∀	dB	dBu∇	dBuV	dB	dB		
30	1.03	43.38	-12.62	56.00	32.90	dB 0.33	dB	QP	
31	1.03 1.19	43.38 31.00	-12.62 -15.00	56.00 46.00	32.90 20.50	dB 0.33 0.34	dB 10.15 10.16	QP Average	
	1.03 1.19 1.19	43.38 31.00 40.00	-12.62	56.00 46.00 56.00	32.90 20.50 29.50	0.33 0.34 0.34	dB 10.15 10.16 10.16	QP Average QP	
31 32	1.03 1.19 1.19 1.36	43.38 31.00 40.00 30.22	-12.62 -15.00 -16.00	56.00 46.00 56.00 46.00	32.90 20.50 29.50 19.70	0.33 0.34 0.34 0.35 0.35	dB 10.15 10.16 10.16 10.17 10.17	QP Average QP Average QP	
31 32 33 34 35	1.03 1.19 1.19 1.36 1.36	43.38 31.00 40.00 30.22 43.52 30.52	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48	56.00 46.00 56.00 46.00 56.00 46.00	32.90 20.50 29.50 19.70 33.00 20.00	0.33 0.34 0.35 0.35 0.35	dB 10.15 10.16 10.16 10.17 10.17	QP Average QP Average QP Average	
31 32 33 34 35 36	1.03 1.19 1.19 1.36 1.36 1.42	43.38 31.00 40.00 30.22 43.52 30.52 39.42	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58	56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90	dB 0.33 0.34 0.35 0.35 0.35 0.35	dB 10.15 10.16 10.16 10.17 10.17 10.17	QP Average QP Average QP Average QP	
31 32 33 34 35	1.03 1.19 1.19 1.36 1.36 1.42 1.42	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48	56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10	0.33 0.34 0.34 0.35 0.35 0.35 0.35	dB 10.15 10.16 10.16 10.17 10.17 10.17	QP Average QP Average QP Average QP Average QP	
31 32 33 34 35 36 37	1.03 1.19 1.19 1.36 1.36 1.42 1.42 1.55	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63 39.73 33.04	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58 -14.37 -16.27 -12.96	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20	dB 0.33 0.34 0.35 0.35 0.35 0.35 0.36 0.36	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.17 10.17	QP Average QP Average QP Average QP Average QP Average	
31 32 33 34 35 36 37 38 39	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63 39.73 33.04 43.74	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58 -14.37 -16.27 -12.96 -12.26	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20	0.33 0.34 0.35 0.35 0.35 0.35 0.36 0.36	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.17 10.17 10.18 10.18	QP Average QP Average QP Average QP Average QP Average QP Average	
31 32 33 34 35 36 37 38 39 40	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63 39.73 33.04 43.74 32.95	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58 -14.37 -16.27 -12.96 -12.26 -13.05	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20 22.41	0.33 0.34 0.35 0.35 0.35 0.35 0.36 0.36	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.17 10.17 10.18 10.18	QP Average QP Average QP Average QP Average QP Average QP Average	
31 32 33 34 35 36 37 38 39 40 41	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70 1.83 1.83	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63 39.73 33.04 43.74 32.95 41.45	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58 -14.37 -16.27 -12.96 -12.26 -13.05 -14.55	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20 22.41 30.91	0.33 0.34 0.35 0.35 0.35 0.36 0.36 0.36	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.17 10.18 10.18 10.18	QP Average QP	
31 32 33 34 35 36 37 38 39 40	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70 1.83 1.83	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63 39.73 33.04 43.74 43.74 43.74 32.95 41.45 33.36	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58 -14.37 -16.27 -12.96 -12.26 -13.05	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20 22.41 30.91 22.80	0.33 0.34 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.17 10.18 10.18 10.18 10.18 10.18	QP Average	
31 32 33 34 35 36 37 38 39 40 41 42 43 44	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70 1.83 1.83 1.97 1.97 2.13	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63 39.73 33.04 43.74 32.95 41.45 33.36 41.86 31.57	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58 -14.37 -16.27 -12.96 -12.26 -13.05 -14.55 -14.55 -14.44	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20 22.41 30.91 22.80 31.30 21.00	dB 0.33 0.34 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.37	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.17 10.18 10.18 10.18 10.18 10.19 10.19	QP Average	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70 1.83 1.83 1.97 1.97 2.13 2.13	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63 39.73 33.04 43.74 32.95 41.45 33.36 41.86 31.57 41.57	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58 -14.37 -16.27 -12.96 -12.26 -13.05 -14.55 -14.55 -12.64 -14.14 -14.43	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20 22.41 30.91 22.80 31.30 21.00 31.00	0.33 0.34 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.36	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.18 10.18 10.18 10.18 10.19 10.19 10.19	QP Average	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70 1.83 1.83 1.97 1.97 2.13 2.13	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63 39.73 33.04 43.74 32.95 41.45 33.36 41.86 41.87	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58 -14.37 -16.27 -12.96 -12.26 -13.05 -14.55 -12.64 -14.14 -14.43 -14.43	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20 22.41 30.91 22.80 31.30 21.00 31.00 21.09	0.33 0.34 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.37 0.37	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.18 10.18 10.18 10.18 10.19 10.19 10.19 10.19	QP Average	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70 1.70 1.83 1.83 1.97 2.13 2.13 2.27 2.27	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63 39.73 33.04 43.74 43.74 53.36 41.86 31.57 41.57 41.57 31.68 42.68	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58 -14.37 -16.27 -12.96 -12.26 -13.05 -14.55 -12.64 -14.14 -14.43 -14.43 -14.32 -13.32	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20 22.41 30.91 22.80 31.30 21.00 31.00 21.09	0.33 0.34 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.37 0.37	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.18 10.18 10.18 10.19 10.19 10.19 10.20 10.20	QP Average	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70 1.70 1.83 1.83 1.97 1.97 2.13 2.13 2.27 2.27 2.82	43.38 31.00 40.00 30.22 43.52 39.42 31.63 39.73 33.04 43.74 43.74 43.74 41.57 41.57 41.57 31.68 42.68 32.92	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58 -14.37 -16.27 -12.96 -12.26 -13.05 -14.55 -12.64 -14.14 -14.43 -14.43	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20 31.30 22.41 30.91 22.80 31.30 21.00 31.00 21.00 32.09	0.33 0.34 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.37 0.37 0.37	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.18 10.18 10.18 10.19 10.19 10.19 10.20 10.20	QP Average	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70 1.83 1.83 1.97 1.97 2.13 2.13 2.27 2.27 2.27 2.82 2.82 3.06	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63 39.73 33.04 43.74 32.95 41.45 33.36 41.86 31.57 41.57 31.68 42.68 42.68 42.68 41.32 33.24	-12.62 -15.00 -16.00 -15.78 -12.48 -15.48 -16.58 -14.37 -16.27 -12.96 -12.26 -12.26 -12.26 -14.45 -14.43 -14.43 -14.43 -14.43 -14.43 -14.68 -12.76	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20 22.41 30.91 22.80 31.30 21.00 31.00 21.09 32.09 22.29 30.69 22.60	0.33 0.34 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.37 0.37 0.37 0.37	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.18 10.18 10.18 10.19 10.19 10.19 10.19 10.20 10.20 10.21	QP Average	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70 1.83 1.83 1.97 2.13 2.27 2.27 2.27 2.82 2.82 3.06 3.06	43.38 31.00 40.00 30.22 43.52 39.42 31.63 39.73 33.04 43.74 32.95 41.45 73.36 41.86 31.57 41.57 31.68 42.68 32.92 41.32 33.24 44.44	-12.62 -15.00 -16.00 -15.78 -12.48 -16.58 -14.37 -16.27 -12.96 -12.26 -13.05 -14.55 -14.43 -14.43 -14.43 -14.43 -14.32 -13.32 -13.32 -13.68 -14.56	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20 22.41 30.91 22.80 31.30 21.00 31.00 21.09 32.09 22.29 30.69 32.60 33.80	0.33 0.34 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.38 0.37 0.37 0.37 0.38 0.39 0.42 0.42 0.42	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.18 10.18 10.18 10.19 10.19 10.19 10.20 10.20 10.21 10.21	QP Average	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70 1.83 1.83 1.97 2.13 2.27 2.27 2.27 2.82 2.82 3.06 3.06 4.03	43.38 31.00 40.00 30.22 43.52 30.52 39.42 31.63 39.73 33.04 43.74 32.95 41.45 73.36 41.86 31.57 41.57 31.68 42.68 32.92 41.32 41.32 41.44 31.99	-12.62 -15.00 -16.00 -15.78 -12.48 -16.58 -14.37 -16.27 -12.96 -13.05 -14.55 -14.55 -14.43 -14.43 -14.43 -14.43 -14.68 -12.76 -11.56 -11.56 -14.01	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 22.50 33.20 22.41 30.91 22.80 31.30 21.00 31.00 21.09 32.09 22.29 30.69 32.60 33.80 21.30	0.33 0.34 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.37 0.37 0.38 0.39 0.42 0.42 0.42 0.43	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.18 10.18 10.18 10.19 10.19 10.19 10.19 10.20 10.21 10.21 10.21 10.21	QP Average	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	1.03 1.19 1.19 1.36 1.36 1.42 1.55 1.55 1.70 1.70 1.70 1.83 1.83 1.97 2.13 2.13 2.27 2.27 2.82 2.82 3.06 4.03 4.03	43.38 31.00 40.00 30.22 43.52 39.42 31.63 39.73 33.04 43.74 43.74 53.36 41.86 31.57 41.57 41.57 41.57 41.57 41.57 41.57 41.42 41.42 42.68 32.92 41.32 33.24 44.44 44.44	-12.62 -15.00 -16.00 -15.78 -12.48 -16.58 -14.37 -16.27 -12.96 -12.26 -13.05 -14.55 -14.43 -14.43 -14.43 -14.43 -14.32 -13.32 -13.32 -13.68 -14.56	56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	32.90 20.50 29.50 19.70 33.00 20.00 28.90 21.10 29.20 22.50 33.20 33.20 22.41 30.91 22.80 31.30 21.00 31.00 32.09 22.29 30.69 22.60 33.80 31.30	0.33 0.34 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.37 0.37 0.38 0.39 0.42 0.42 0.42 0.43	dB 10.15 10.16 10.16 10.17 10.17 10.17 10.17 10.18 10.18 10.18 10.19 10.19 10.19 10.19 10.20 10.20 10.21 10.21 10.21 10.21 10.23 10.23	QP Average	

Page Number : 59 of 62
Report Issued Date : Jun. 13, 2014
Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 60 of 62 Report Issued Date : Jun. 13, 2014

Report No.: FR452607C

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 03, 2014	Jun. 10, 2014~ Jun. 12, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	13dBm~-20dBm	Mar. 03, 2014	Jun. 10, 2014~ Jun. 12, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	0.3GHz~40GHz	Mar. 03, 2014	Jun. 10, 2014~ Jun. 12, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
ESCIO TEST Receiver	R&S	ESCI	100724	9kHz~3GHz	Feb. 21, 2014	Jun. 11, 2014	Feb. 20, 2015	Radiation (03CH01-SZ)
Spectrum Analyzer	Agilent Technologies	N9038A	MY522601 85	20Hz~26.5GHz	May 26, 2014	Jun. 11, 2014	May 25, 2015	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 09, 2014	Jun. 11, 2014	May 08, 2015	Radiation (03CH01-SZ)
Bilog Antenna	TESEQ	CBL 6112D	23188	30MHz~2GHz	Oct. 26, 2013	Jun. 11, 2014	Oct. 25, 2014	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 26, 2013	Jun. 11, 2014	Oct. 25, 2014	Radiation (03CH01-SZ)
Double Ridged Horn Antenna	COM-POWER	AH-840	101073	18GHz~40GHz	Jan. 27, 2014	Jun. 11, 2014	Jan. 26, 2015	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz~3000MHz	Feb. 21, 2014	Jun. 11, 2014	Feb. 20, 2015	Radiation (03CH01-SZ)
Amplifier	Agilent	83017A	MY395013 02	3Hz~26.5GHz	May 08, 2014	Jun. 11, 2014	May 07, 2015	Radiation (03CH01-SZ)
AC Source(AVR)	Chroma	61601	616010001 985	100Vac~250Vac	Mar. 25, 2014	Jun. 11, 2014	Mar. 24, 2015	Radiation (03CH01-SZ)
Turn Table	EM Electronics	EM 1000	N/A	0~360 degree	NCR	Jun. 11, 2014	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM Electronics	EM 1000	N/A	1 m~4 m	NCR	Jun. 11, 2014	NCR	Radiation (03CH01-SZ)
ESCIO TEST Receiver	R&S	ESCI	100724	9kHz~3GHz	Feb. 21, 2014	Jun. 11, 2014	Feb. 20, 2015	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Mar. 04, 2014	Jun. 11, 2014	Mar. 03, 2015	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Mar. 04, 2014	Jun. 11, 2014	Mar. 03, 2015	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Dec. 17, 2013	Jun. 11, 2014	Dec. 16, 2014	Conduction (CO01-SZ)

TEL: 86-755-3320-2398 FCC ID: ZC4S106 Page Number : 61 of 62 Report Issued Date : Jun. 13, 2014

Report No. : FR452607C

Uncertainty of Evaluation 5

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of	2.24
Confidence of 95% (U = 2Uc(y))	2.31

Report No.: FR452607C

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.90
Confidence of 95% (U = 2Uc(y))	3.90

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number : 62 of 62 TEL: 86-755-3320-2398 Report Issued Date: Jun. 13, 2014

FCC ID: ZC4S106 Report Version : Rev. 01