A computational framework for analysis of functional MRI data for developing imaging-derived biomarkers for HIV Associated Neurocognitive Disorders

PhD Thesis Proposal

<u>Anas Zainul Abidin</u> <u>Supervised by : Dr. Axel Wismüller</u>

Proposed research

- Computational approach for analysis of functional MRI data
- Focus on improved characterization of information flow within the brain
- Network analysis approaches for identifying changes in the brain during neurologic diseases
- Study of HIV Associated Neurocognitive disorders

Functional Magnetic Resonance Imaging (fMRI)

- A technique for measuring brain activity over time using MRI
- Detects the changes in oxygenated blood flow, hence referred to as BOLD fMRI
- Resting state fMRI without any stimulus has been used to capture explicit patterns in brain activity
- Reproducible resting state networks have been observed

Specific Aims

Directed Connectivity

Network Analysis

Brain Network in HAND

fMRI time series

fMRI time series

Information Theory and Causality

- Methods in information science enable us to quantify the information flow between such time series
- Can one time series be helpful in forecasting another?

Measuring such a prediction ability indicates the presence of

a directional influence

HIV Associated Neurocognitive Disorder (HAND)

- Reports estimate that about 1.2 million Americans and 40 million people worldwide live with HIV/AIDS
- HIV is capable of invading the brain soon after seroconversion and causing continuous neuronal injury
- Can eventually lead to deficits in multiple cognitive domains commonly referred to as HIV-associated neurocognitive disorders (HAND)
- Difficult to detect, particularly when mild impairment persists

Specific Aims

Directed Connectivity

Network Analysis

Brain Network in HAND

Outline

Directed Connectivity

Specific Aims

- To develop and evaluate novel time-series analysis methods for exploring connectivity in high-dimensional time-series ensemble.
 - Develop the framework utilizing state-space reconstruction and radial basis function networks, for capturing non-linear pair-wise interactions in time-series.
 - Explore the applicability of multivariate time-series analysis methods for recovery of underlying network interactions using large-scale Granger causality.
 - Systematically test and evaluate the performance of the methods for adequate recovery of underlying network structure via the use of benchmark datasets and functional MRI simulations.

- Existing methods have certain disadvantages owing to *α priori* assumptions, linear models
- Can the use of non-linear techniques enhance the characterization of connectivity?
- Mutual Connectivity Analysis using Generalized Radial Basis Function network (MCA-GRBF)

- According to dynamical systems theory, the state of a system at every instant is controlled by its state variables
 - Two time-series are causally linked if they share a common state space
- fMRI time-series are not the actual state variables, but only a projection on a lower dimensional space
- Interactions can be better understood using state-space reconstruction
 - A time-delayed sequence of observations can be used to represent/understand the original state-space of systems

• We can construct a *d*-dimensional state space

For a given time-series, say x(t)

$$\mathbf{x}_{t} = (x(t), x(t+1), ..., x(t+d)), t = 1, 2, ..., l-d,$$

where, d is the embedding dimension

& l is the length of the time-series

 Exact embedding dimensions of a system are not known but can be estimated quantitatively (Cao's criterion)

Lotka-Volterra 2 species models*

$$x(t+1) = x(t)(r_x - r_x x(t) - \beta_{xy} y(t))$$

$$y(t+1) = y(t)(r_y - r_y y(t) - \beta_{yx} x(t))$$

where, $r_x = 3.7, r_y = 3.8, \beta_{yx} = 0.01$

Lotka-Volterra 2 species models

$$x(t+1) = x(t)(r_x - r_x x(t) - \beta_{xy} y(t))$$

$$y(t+1) = y(t)(r_y - r_y y(t) - \beta_{yx} x(t))$$

where, $r_x = 3.7, r_y = 3.8, \beta_{yx} = 0.01$

$$\beta_{xy} = 0.3$$

$$\beta_{xy} = 0.15$$

$$\beta_{xy} = 0.01$$

Lotka-Volterra 2 species models

$$x(t+1) = x(t)(r_x - r_x x(t) - \beta_{xy} y(t))$$

$$y(t+1) = y(t)(r_y - r_y y(t) - \beta_{yx} x(t))$$

where, $r_x = 3.7, r_y = 3.8, \beta_{yx} = 0.01$

$$\beta_{xy} = 0.3$$

$$\beta_{xy} = 0.15$$

$$\beta_{xy} = 0.01$$

$$\mathbf{y}_t = \mathbf{f}(\mathbf{x}_t)$$

- Using a radial basis function neural network (Mutual Connectivity Analysis *)
- An input, hidden and output layer
- Can the past of x be used to predict/cross-map a future y

Approach – MCA GRBF

Validation(s)

Lotka-Volterra 2 species models

$$x(t+1) = x(t)(r_x - r_x x(t) - \beta_{xy} y(t))$$

$$y(t+1) = y(t)(r_y - r_y y(t) - \beta_{yx} x(t))$$

where,
$$r_x = 3.7, r_y = 3.8$$

Indirect interactions

Granger Causality

Vector Auto-Regressive (VAR) Modelling

Consider a system, **X**, with *N* time series.

$$x(t) = \sum_{j=1}^{m} \mathbf{AR}_{j} x(t-j) + e(t)$$

We get an estimate $\widehat{\mathbf{X}}$ using VAR modelling. $\mathbf{AR}_j \in \mathbb{R}^{N \times N}$ are the model parameters. m is the order of the process.

Granger Causality*

If the prediction quality of **b** improves when the past of **a** is used in its prediction as compared to its quality of prediction in the absence of **a**, then **a** *Granger Causes*

$$F_{\mathbf{a} \to \mathbf{b}} = \log \frac{\sigma(e_{\mathbf{b}_{\mathbf{X}\setminus \mathbf{a}}})}{\sigma(e_{\mathbf{b}_{\mathbf{X}}})} \text{ where, } e_{\mathbf{b}_{\mathbf{X}\setminus \mathbf{a}}} = \mathbf{b} - \hat{\mathbf{b}}_{\mathbf{X}\setminus \mathbf{a}}$$

Directed Connectivity

Network **Analysis**

Brain Network in **HAND**

Limitation(s)

Background

- Cannot be extended to a full brain analysis as $N\gg T$
 - As Nincreases number of parameter increase by N^2
 - This results in an underdetermined problem.
- Granger causality is generally applied on fMRI datasets through
 - a priori ROI selection
 - Longer time series

Large scale Granger Causality (IsGC)*

- We try to circumvent the $N \gg T$ problem
- Incorporate an additional step of invertible dimension reduction
- We can obtain the directional information scores at voxel level, in a multivariate sense

Specific Aims

Directed Connectivity

Network Analysis

Brain Network in HAND

Large scale Granger Causality (IsGC)

Dimension reduction using PCA on \mathbf{X} . We take 1^{st} P components. $\mathbf{Z}=\mathbf{W}\mathbf{X}$

VAR results in estimating $\hat{\mathbf{Z}}$. Obtain $\hat{\mathbf{X}} = \mathbf{W}^{-1}\hat{\mathbf{Z}}$

Time series ensemble without **a**.

$$\mathbf{X}_{\setminus \mathbf{a}} \in \mathbb{R}^{N-1 \times T}$$

Dimension reduction using PCA on $\mathbf{X}_{\backslash \mathbf{a}}$. We take 1^{st} P components. $\mathbf{Z}_{\backslash \mathbf{a}} = \mathbf{W}_{\mathbf{a}} \mathbf{X}_{\backslash \mathbf{a}}$

VAR results in estimating $\hat{\mathbf{Z}}_{\mathbf{a}}$.

Obtain
$$\hat{\mathbf{X}_{\mathbf{a}}} = \mathbf{W}_{\mathbf{a}}^{-1} \hat{\mathbf{Z}_{\mathbf{a}}}$$

Background

Large scale Granger Causality (IsGC)

- To validate this IsGC we generated a system of timeseries with known structure
- 50-dimensional stationary multivariate autoregressive (MVAR) processes of order two were generated
- Corresponding AR parameters were chosen according to Baccala et. al.
- Network consists of 5 clusters

Large scale Granger Causality (IsGC)

Network Structure

Thresholded

AUC = 0.91 csen = 0.87

Validation(s) – fMRI simulations

- Realistic fMRI simulations
 - As proposed by Smith et. al.* specifically for validation of network modelling methods
 - Based on the dynamic causal modelling with non-linear hemodynamic response on top of a neural network
- Network of varied complexity can be used for simulation of BOLD time-series

Validation(s) – fMRI simulations

Results over 50 iterations for each simulation

Comparative Analysis

- Conventional Methods
 - Correlation based analysis (linear, bivariate)
 - Mutual information (non-linear, bivariate)
 - Partial correlation (linear, multi-variate)

Specific Aims

- To model a suitable network analysis framework for identifying changes in the brain connectivity profiles.
 - Quantitatively characterize the network profiles (at a global as well as regional level) based on graph theoretic approaches with the aim of developing imaging-derived biomarkers for disease.
 - Apply and adapt the network based statistic framework for analyzing connectivity profiles to detect edge level effects of disease.
 - Develop a statistical framework for performing seedbased connectivity in a non-linear and multivariate sense for studying whole-brain connectivity maps.

Approach

- The connectivity matrices obtained in Aim 1 can be considered as representative network graphs
- A graph consists of nodes and edges (pair-wise interactions)
- A system with N nodes results in a graph with N(N-1) edges.

Approach – Graph Theoretic Measures

- Can characterize local or global properties
- Can be specific to nodes or the actual links
- If these are based on nodes then they are characterized by a distribution (based on the number of nodes).
- Functional Segregation
- 2. Functional Integration
- 3. Small World Properties
- 4. Network Motifs & Centrality
- 5. Resilience

- **Degree**: Number of nodes connected to an individual node
- <u>Distribution</u>: Degrees of all nodes comprise this. Mean is measure of density or the total wiring cost of the network.

Global Graph Measures

Measure	Undirected definition	Explanation
Characteristic Path Length	$L = \frac{1}{n} \sum_{i \in N} L_i = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq 1} d_{ij}}{n - 1}$ where, L _i is the distance between node <i>i</i> , and all other nodes	Characteristic Path Length is a measure of functional integration and is primarily influenced by long paths. The inverse (global efficiency) measure is considered a superior measure and is primarily influenced by
Global Efficiency	$E = \frac{1}{n} \sum_{i \in N} E_i = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq 1} d_{ij}^{-1}}{n - 1}$	short paths.
Clustering Coefficient	$C = \frac{1}{n} \sum_{i \in N} C_i = \frac{1}{n} \frac{2t_i}{k_i(k_i - 1)}$ where C_i is the clustering coefficient of node i ($C_i = 0$ for $k_i < 2$).	The mean clustering coefficient represents the presence of clustered connectivity around individual nodes
Modularity	$Q = \sum_{u \in M} e_{uu} - (\sum_{v \in M} e_{uu})^2$ where, the network is fully subdivided into M non overlapping modules and e_{uv} is the proportion of all links that connect nodes in module u to those in v	Measures size and composition of individual smaller networks.
Small Worldness	$S = \frac{C/C_{rand}}{L/L_{rand}}$ where, C and C_{rand} are the clustering coefficients, and L and L_{rand} are the characteristic path lengths of the respective tested network and a random network.	Describes how well a network is clustered when compared to a random graph of the same size. Smallworld networks often have $S\gg 1$

Regional Characteristics

Measure	Undirected definition	Explanation
Degree	$k_i = \sum_{j \in N} a_{ij}$	Defined for each node <i>i</i> ; Represents the total number of links connected to a node. It is a marker of network development and resilience.
Local Efficiency	$\begin{split} E_{loc} &= \frac{1}{n} \sum_{i \in N} E_{loc,i} = \frac{1}{n} \frac{\sum_{j,h \in N, j \neq 1} a_{ij} a_{ih} [d_{jh} N_i]^{-1}}{k_i (k_i - 1)} \\ &\text{where, } E_{loc,i} \text{ is the local efficiency of node } i, \\ &\text{and } d_{jh} \left(N \bar{i} \right) \text{ is the length of the shortest path between } j \text{ and } h, \text{ that contains only neighbors of } i. \end{split}$	Characterizes the efficiency of node connections at a smaller scale.
Clustering Coefficient	$C = \frac{1}{n} \sum_{i \in \mathbb{N}} C_i = \frac{1}{n} \frac{2t_i}{k_i(k_i - 1)}$ where C_i is the clustering coefficient of node i ($C_i = 0$ for $k_i < 2$).	The mean clustering coefficient represents the presence of clustered connectivity around individual nodes
Betweenness Centrality	$b(i) = \frac{1}{(n-1)(n-2)} \sum_{\substack{h,j \in \mathbb{N} \\ h \neq j, h \neq i, i \neq j}} \frac{\rho_{hj}(i)}{\rho_{hj}}$ where, ρ_{hj} is the number of shortest paths between h and j , and $\rho_{hj}(i)$ is the number of shortest paths between h and j passing through node i	Summarizes the importance of a particular node in the full network

Directed Connectivity

Network Analysis

Brain Network in HAND

Edge-specific differences

Edge-specific differences

Network-Based Statistic*

- The NBS approach offers better control over Family wise error when multiple comparisons are required.
- It seeks to identify connected nodes or clusters instead of focusing only on individual links.

Network-Based Statistic*

- A t-statistic is computed for each link to define a set of links above a threshold of (p=0.05).
- A non-parametric permutation approach (5000 permutations) is used to estimate the significance of the individual components (each of size M_i).
- The null distribution of the maximal component size for each iteration is obtained
- The corrected p-value is determined by calculating the proportion of the 5000 permutations for which the maximal connected component was larger than $M_{\rm i}$.

Network-Based Statistic

- The critical step here is the detection of connected components
- In the case of undirected networks, it is done via a simple breadth first search
- For directed networks, 'strongly' connected components can be obtained using Kosaraju's algorithm

Seed Based Connectivity

- Define a seed or a region of interest in the brain
- Compute connectivity with all other voxels
- Gives an option of quantifying the extent of connections
- A more interpretable notion of connectivity
- With methods developed in Aim 1 we can also detect the notion of directed connectivity

Seed Based Connectivity – MCA-GRBF

Preliminary Result

Seed – Anterior Cingulate Gyrus

Blue/Light Blue – Correlation Map

Red/Yellow – MCA-GRBF

Simple Mean Effect p<0.05, FDR corrected

Seed Based Connectivity – MCA-GRBF

Preliminary Result

Seed – Posterior Cingulate Gyrus

Blue/Light Blue – Correlation Map

Red/Yellow – MCA-GRBF

Simple Mean Effect p<0.05, FDR corrected

Seed Based Connectivity

- Conventionally, most studies are based on a correlation analysis
 - Bivariate in nature
- Directional information (seed-to-voxel as well as voxel to seed) effects can be studied
- Multivariate techniques for such an analysis are less explored
- The IsGC framework can enable a purely multivariate seed based analysis, not performed previously

Specific Aims

- 3. To quantitatively evaluate our system in a clinical pilot study by performing an in-depth assessment of changes in resting-state brain activity in subjects with HIV infection.
 - Preprocess and analyze clinical, neuropsychological testing and neuroimaging data acquired in a pilot study for identifying subjects with HAND based on current clinical standards.
 - Evaluate relationships between neuropsychological testing scores and connectivity derived summary measures, for assessing their applicability as clinical biomarkers.
 - Assess regional changes in brain networks occurring as a result of neural injury caused by HIV infection.

HIV Associated Neurocognitive Disorder (HAND)

- Synpato-dendritic complex has been shown to loose its densely branched structure during HIV infection
- Can occur long before symptoms manifest in an individual
- Such damage can trigger changes in global connectivity
- The efficacy of treatment paradigm (particularly cART combined anti-retroviral therapy) has helped dramatically control viral loads HIV+ individuals leading to longer life expectancy

HIV Associated Neurocognitive Disorder (HAND)

- Before cART severe dementia could affect ~20% of the individuals
- Following cART, the incidence of severe disabling dementia has reduced however milder forms of the disorder are prevalent
- Neuropsychologic performance testing is the clinical standard for both diagnosis and monitoring
 - It can miss subtle effects of disease

Approach – Data

- 40 subjects were recruited at the University of Rochester Medical Center, as part of a NIH funded study (Ro1-DA-034977).
- Imaging Protocol:
 - MPRAGE scan (TI = 950 ms, TE/TR = 3.87 ms/1,620 ms, 1-mm isotropic resolution)
 - 4 gradient echo (GE) EPI sequences, with the following parameters: 25 contiguous axial slices, 4mm slice thickness, TR=1650 ms, TE= 23ms, 96x96 matrix – 240 time points
- Detailed neuropsychological testing
 - executive function, information processing speed, attention and working memory, learning, memory, motor function etc.

Demographics & Clinical characteristics

	HIV-	HIV+
Number of Patients	20	20
Age - in years	41.45 (9.98)	41.60 (15.42)
Gender (Num. female/male)	9/11	5/15
Nadir CD4 (cells/mm³)	-NA-	314.63 (211.94)
CD4 (cells/mm³)	-NA-	702.8 (464.5)
VL (log ₁₀ scale)	-NA-	1.76 (1.79)
HIV - in years	-NA-	11.44 (9.11)
NP Z-scores		
Attention	0.432 (0.8)	-0.541 (1.042)
Executive	0.284 (0.982)	-0.36 (0.953)
Learning	0.363 (0.915)	-0.323 (0.878)
Memory	0.345 (1.04)	-0.254 (0.76)
Motor	0.536 (0.664)	-0.54 (0.957)
Speed of Information Processing	0.366 (0.769)	-0.42 (1.066)
Overall	2.327 (2.842)	-2.41 (3.711)
HAND Classification (%)		
WNL	-NA-	6 (30%)
ANI	-NA-	12 (60%)
MND	-NA-	2 (10%)

Approach – Data

- Standard preprocessing
 - Motion correction
 - Linear detrending
 - Correction for interleaved acquisition
 - Normalization the MNI template
- Anatomic Parcellation
 - AAL template (90 regions)
 - Dosenbach template (160 regions)

Approach

Non-Linear Connectivity

Mean Group Matrices – MCA GRBF

Global Graph Statistics

 Comparison between subjects with and without HIV infection

 Regression analysis when controlled for age and gender

Global Graph Statistics

Associations with NP assessment scores

Directed Connectivity

Network Analysis

Brain Network in HAND

Regional Properties (Preliminary Data)

- The properties of each node or region being analyzed can be quantified.
- Can the directional properties show differences?

NBS – Expected outcome

Seed Based Analysis

- Certain regions of the brain are more susceptible to damage by HIV
- Clinical presentation of HAND has changed due to the efficacy of cART
- Primarily affects the FSTC (fronto-striato-thalamocortical) circuits
- Candidate seed regions
 - Basal Ganglia
 - Inferior Frontal Cortex
 - Posterior Cingulate Cortex

Expected Goals

- Novel time-series analysis methods for improved characterization of brain connectivity
- Statistical framework for analysis of network data
- Insights for improved diagnosis of HAND

2.

Current Progress

 To develop and evaluate novel time-series analysis methods for exploring connectivity in highdimensional time-series ensemble.

Background

- Develop the framework
 utilizing state-space
 reconstruction and radial basis
 function networks, for
 capturing non-linear pair-wise
 interactions in time-series.
- Explore the applicability of multivariate time-series analysis methods for recovery of underlying network interactions using large-scale Granger causality.
- Systematically test and evaluate the performance of the methods for adequate recovery of underlying network structure via the use of benchmark datasets and functional MRI simulations.

- To model a suitable network analysis framework for identifying changes in the brain connectivity profiles.
- Quantitatively characterize the network profiles (at a global as well as regional level) based on graph theoretic approaches with the aim of developing imaging-derived biomarkers for disease.
- Apply and adapt the network based statistic framework for analyzing connectivity profiles to detect edge level effects of disease.
- Develop a statistical framework for performing seed-based connectivity in a non-linear and multivariate sense for studying wholebrain connectivity maps.

- 3. To quantitatively evaluate our system in a clinical pilot study by performing an in-depth assessment of changes in resting-state brain activity in subjects with HIV infection.
 - Preprocess and analyze clinical, neuropsychological testing and neuroimaging data acquired in a pilot study for identifying subjects with HAND based on current clinical standards.
 - Evaluate relationships
 between neuropsychological
 testing scores and
 connectivity derived
 summary measures, for
 assessing their applicability
 as clinical biomarkers.
 - Assess regional changes in brain networks occurring as a result of neural injury caused by HIV infection.

Acknowledgements

- National Institute of Health (NIH) Award Ro1-DA-034977
- CTSI Upstate New York Translational Research Network
- Dr. Axel Wismueller
- Adora D'Souza
- Uday Chockanathan
- Dr. Mahesh Nagarajan

- Bernstein Group for Computational Neuroscience Jena, Institute of Medical Statistics, Computer Science, and Documentation Jena, Germany
 - Lutz Leistritz
- University of Rochester
 - Dr. Xing Qiu
 - Wang Lu

- Dr Kevin Parker
- Dr Jianhui Zhong
- Dr. Giovanni Schifitto

