## **EXERCÍCIOS - Conceitos Básicos**

Teoria dos Grafos- 2020

## Dupla: Natália Gama de Mattos

Considere o seguinte grafo G abaixo:



- 1. Apresente um subgrafo de G com todas as seguintes propriedades:
  - a) Ordem de H igual a 3.
  - b) Tamanho de H igual a 7.
  - c)  $\delta(H) = 2$ . No min 2 e max 3
  - d)  $\Delta(H) = 3$ .

 $H = (\{v2,v3,v5\}, \{(v2,v3), (v3,v3), (v2,v5), (v5,v2)\})$ 



- **2.** Considerando  $Y = \{ v_2, v_3, v_5 \}$ , apresente:
  - a) G[Y].

 $G[Y] = (\{v2,v3, v5\}, \{(v2,v5), (v2,v5), (v2,v3), (v3,v3)\})$ 



G-  $v_2$  = ({ $v_1,v_3,v_4,v_5$ }, {( $v_3,v_3$ ), ( $v_3,v_4$ ), ( $v_4,v_5$ )})



- **3.** Considerando  $K = \{ e_1, e_2, e_5 \}$ , apresente:
  - a) G[K].

 $G[K] = (\{v1,v2,v3,v4\},\,\{(v1,v2),\,(v2,v3),\,(v2,v4)\})$ 



b) G- e<sub>1.</sub>

 $G\text{-}\ e_1 = (\{v1, v2, v3, v4, v5\},\ \{(v2, v3),\ (v3, v3),\ (v3, v4),\ (v4, v2),\ (v4, v5),\ (v2, v5),\ (v2, v5)\})$ 



**4.** Apresente um subgrafo gerador H de G tal que H seja um grafo simples.

 $H = (\{v1, v2, v3, v4, v5\}, \{(v1, v2), (v2, v3), (v3, v4), (v4, v2), (v4, v5), (v5, v2)\})$ 



**5.** Apresente o complemento do grafo obtido na resposta do exercício 4.

$$H = (\{v1, v2, v3, v4, v5\}, \{(v1, v2), (v1, v3), (v1, v4), (v1, v5), (v2, v3), (v2, v4), (v2, v5), (v3, v4), (v3, v5), (v4, v5)\})$$

**6.** Apresente um subgrafo gerador H de G tal que sua quantidade de arestas seja mínima e que, para qualquer par { x, y } de vértices de H, exista um caminho de x para y.

$$H = (\{v1, v2, v3, v4, v5\}, \{(v1, v2), (v2, v3), (v3, v4), (v4, v5)\})$$



- 7. Apresente uma trilha em G com comprimento igual a 7.
- $P = \{v1,e1,v2,e8,v5,e7,v2,e5,v4,e4,v3,e3,v3,e2,v2\}$
- **8.** Apresente um passeio em G com comprimento igual a 6.
- $P = \{v1,e1,v2,e7,v5,e8,v2,e5,v3,e4,v3,e3,v3\}$
- 9. Apresente um caminho em G com comprimento igual a 5.
- $C = \{v1,e1,v2,e2,v3,e4,v4,e6,v5,\}$ 
  - 10. Apresente um circuito em G com comprimento igual a 4.
- $C = \{v2, e7, v5, e6, v4, e4, v3, e2, v2\}$ 
  - 11. Existe um circuito em G que tenha comprimento igual a 5? Justifique.

Não, pois um circuito é um caminho que começa e termina no mesmo vértice, e caminho tem como definição não haver repetição de vértices. Neste caso, para formar um circuito de comprimento5, seria necessário repetir vértices.

Teoria dos Grafos- 2020