```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing,svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn.preprocessing import StandardScaler
```

In [3]: df=pd.read_csv(r"C:\Users\LENOVO\Downloads\Advertising.csv")

In [4]: df

Out[4]:

		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9
19	5	38.2	3.7	13.8	7.6
19	6	94.2	4.9	8.1	14.0
19	7	177.0	9.3	6.4	14.8
19	8	283.6	42.0	66.2	25.5
19	9	232.1	8.6	8.7	18.4

200 rows × 4 columns

In [5]: df.head(18)

Out[5]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
5	8.7	48.9	75.0	7.2
6	57.5	32.8	23.5	11.8
7	120.2	19.6	11.6	13.2
8	8.6	2.1	1.0	4.8
9	199.8	2.6	21.2	15.6
10	66.1	5.8	24.2	12.6
11	214.7	24.0	4.0	17.4
12	23.8	35.1	65.9	9.2
13	97.5	7.6	7.2	13.7
14	204.1	32.9	46.0	19.0
15	195.4	47.7	52.9	22.4
16	67.8	36.6	114.0	12.5
17	281.4	39.6	55.8	24.4

```
In [6]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 4 columns):
             Column
                        Non-Null Count Dtype
             TV
                        200 non-null
                                        float64
         0
                        200 non-null
                                        float64
         1
             Radio
             Newspaper 200 non-null
                                        float64
             Sales
                        200 non-null
                                        float64
        dtypes: float64(4)
        memory usage: 6.4 KB
```

In [7]: df.describe()

Out[7]:

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

```
In [8]: df=df[['Sales','TV','Radio','Newspaper']]
df.columns=['sales','tv','radio','newspaper']
```

In [9]: df.head(23)

Out[9]:

	sales	tv	radio	newspaper
0	22.1	230.1	37.8	69.2
1	10.4	44.5	39.3	45.1
2	12.0	17.2	45.9	69.3
3	16.5	151.5	41.3	58.5
4	17.9	180.8	10.8	58.4
5	7.2	8.7	48.9	75.0
6	11.8	57.5	32.8	23.5
7	13.2	120.2	19.6	11.6
8	4.8	8.6	2.1	1.0
9	15.6	199.8	2.6	21.2
10	12.6	66.1	5.8	24.2
11	17.4	214.7	24.0	4.0
12	9.2	23.8	35.1	65.9
13	13.7	97.5	7.6	7.2
14	19.0	204.1	32.9	46.0
15	22.4	195.4	47.7	52.9
16	12.5	67.8	36.6	114.0
17	24.4	281.4	39.6	55.8
18	11.3	69.2	20.5	18.3
19	14.6	147.3	23.9	19.1
20	18.0	218.4	27.7	53.4
21	17.5	237.4	5.1	23.5
22	5.6	13.2	15.9	49.6

In [10]: | sns.lmplot(x='sales',y='tv',data=df,order=2)

Out[10]: <seaborn.axisgrid.FacetGrid at 0x1bbc58d4ed0>


```
In [11]: df.describe()
```

Out[11]:

	sales	tv	radio	newspaper
count	200.000000	200.000000	200.000000	200.000000
mean	15.130500	147.042500	23.264000	30.554000
std	5.283892	85.854236	14.846809	21.778621
min	1.600000	0.700000	0.000000	0.300000
25%	11.000000	74.375000	9.975000	12.750000
50%	16.000000	149.750000	22.900000	25.750000
75%	19.050000	218.825000	36.525000	45.100000
max	27.000000	296.400000	49.600000	114.000000

```
In [12]: df.fillna(method='ffill',inplace=True)
```

```
In [13]: x=np.array(df['sales']).reshape(-1,1)
y=np.array(df['tv']).reshape(-1,1)
```

```
In [14]: | df.dropna(inplace=True)
```

```
In [15]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

```
In [16]: sns.pairplot(df)
```

Out[16]: <seaborn.axisgrid.PairGrid at 0x1bbd8879590>

In [17]: sns.displot(df['sales'])

Out[17]: <seaborn.axisgrid.FacetGrid at 0x1bbdbdeb810>


```
In [18]: sns.displot(df['tv'])
```

Out[18]: <seaborn.axisgrid.FacetGrid at 0x1bbdbec6cd0>


```
In [19]: df500=df[:][50:500]
sns.lmplot(x='sales',y='tv',data=df500,order=1)
```

Out[19]: <seaborn.axisgrid.FacetGrid at 0x1bbdbc72210>


```
In [20]: df500.fillna(method='ffill',inplace=True)
    x=np.array(df['sales']).reshape(-1,1)
    y=np.array(df['tv']).reshape(-1,1)
    df.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='r')
    plt.show()
```

Regression: 0.7405370859996265


```
In [21]: df.shape
Out[21]: (200, 4)

In [22]: df.isnull().sum()
Out[22]: sales    0
    tv     0
    radio    0
    newspaper    0
    dtype: int64
```

In [23]: sns.displot((y_test),bins=50);

In [24]: sns.pairplot(df,x_vars=['tv','radio','newspaper'],y_vars='sales',height=7,aspect=0.7,kind='reg')

Out[24]: <seaborn.axisgrid.PairGrid at 0x1bbdc489590>

In []: