Siddharth Mishra-Sharma (MIT/IAIFI) | IAIFI Summer School

The reverse SDE

The reverse process satisfies a reverse-time SDE that can be derived from the forward SDE and the score of the marginal distribution, $\nabla_{x_t} \log q(x_t)$

 $dx_t = \left| -\frac{1}{2}\beta(t)x_t - \beta(t)\nabla_{x_t}\log q(x_t) \right| dt + \sqrt{\beta(t)}dw_t$

[Song et al 2021]

https://yang-song.net/blog/2021/score/

The reverse SDE

The reverse process satisfies a reverse-time SDE that can be derived from the forward SDE and the score of the marginal distribution, $\nabla_{x_t} \log q(x_t)$

$$dx_t = \left[-\frac{1}{2} \beta(t) x_t - \beta(t) \nabla_{x_t} \log q(x_t) \right] dt + \sqrt{\beta(t)} dw_t$$

Denoising score matching

Need to compute the score $\nabla_{x_t} \log q(x_t)$

The *conditional* score $\nabla_{x_t} \log q(x_t \mid x)$ can be computed using the diffusion kernel

$$\nabla_{x_t} \log q(x_t \mid x) = -\frac{(x_t - x)}{\sigma_t^2} = -\frac{\epsilon}{\sigma_t}$$