

## **Red-Black Trees**

- ◆ A red-black tree can also be defined as a binary search tree that satisfies the following properties:
  - Root Property: the root is black
  - External Property: every leaf is black
  - Internal Property: the children of a red node are black (red rule)
  - Depth Property: all the leaves have the same black depth (path rule)
  - (Question) How is balancing enforced here?



## From (2,4) to Red-Black Trees

- A red-black tree is a representation of a (2,4) tree by means of a binary tree whose nodes are colored red or black
- In comparison with its associated (2,4) tree, a red-black tree has
  - same logarithmic time performance
  - simpler implementation with a single node type



#### **Red Black Tree?**



#### Red Back Tree?



What if we attach a child to node 0?

5

## Intuition about "rough balancing"

- ◆ The longest path <= 2 \* the shortest path
  - Rough balancing → guarantees log(n) height
- Why?
  - From "red rule" and "path rule" shortest path = only black nodes longest path = inserting a red node between two black nodes

Root Property: the root is black External Property: every leaf is black

Internal Property: the children of a red node are black (red rule)
Depth Property: all the leaves have the same black depth (path rule)

#### **Implications**

- Root Property: the root is black
- External Property: every leaf is black
- Internal Property: the children of a red node are black (red rule)
- Depth Property: all the leaves have the same black depth (path rule)
- 1. If a red node has any children, it must have two children and they must be black
  - Why? Depth property
- 2. If a black node has only one "real" child then it must be a "last" red node
  - If the child is black?
  - If the child is not the last red?
- ◆ (Question) How is balancing enforced in R-B tree?

Height of a Red-Black Tree

- Theorem: A red-black tree storing n entries has height  $O(\log n)$  Proof:
  - Omitted
- The search algorithm for a binary search tree is the same as that for a binary search tree
- By the above theorem, searching in a red-black tree takes O(log n) time

# Insertion

Insertion

- To perform operation put(k, o), we execute the insertion algorithm for binary search trees and color red the newly inserted node z unless it is the root
  - We preserve the root, external, and <u>depth properties</u>
  - If the parent v of z is black, we also preserve the internal property and we are done
  - Else (v is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree
  - Goal: Removing double read without breaking the depth property
- Example where the insertion of 4 causes a double red:



10

12

9

## Remedying a Double Red

 $\bullet$  Consider a double red with child z and parent v, and let w be the sibling of v

Case 1: w is black

- Viewpoint
   The double red is an incorrect replacement of a 4-node
- Restructuring: we change the 4-node replacement



Case 2: w is red

- Viewpoint
   The double red corresponds to an overflow
- Recoloring: we perform the equivalent of a split



#### Restructuring

- A restructuring remedies a child-parent double red when the parent red node has a black sibling
- ♦ It is equivalent to restoring the correct replacement of a 4-node
- The internal property is restored and the other properties are preserved



## Restructuring (cont.)

There are four restructuring configurations depending on whether the double red nodes are left or right children





## Recoloring

13

15

- ◆ A recoloring remedies a child-parent double red when the parent red node has a red sibling
- lacklack The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root
- ◆ It is equivalent to performing a split on a 5-node
- ightharpoonup The double red violation may propagate to the grandparent u





### **Analysis of Insertion**

#### Algorithm *put(k, o)*

- 1. We search for key *k* to locate the insertion node *z*
- 2. We add the new entry (k, o) at node z and color z red
- 3. while doubleRed(z)
  if isBlack(sibling(parent(z)))
  z ← restructure(z)

return

else { sibling(parent(z) is red ) $z \leftarrow recolor(z)$ 

- Recall that a red-black tree has O(log n) height
- ◆ Step 1 takes *O*(log *n*) time because we visit *O*(log *n*) nodes
- ◆ Step 2 takes *O*(1) time
- Step 3 takes O(log n) time because we perform
  - $O(\log n)$  recolorings, each taking O(1) time, and
  - at most one restructuring taking *O*(1) time
- Thus, an insertion in a red-black tree takes O(log n) time

17

19

# **RB-Tree:** Deletion

18

### Deletion: Example 1

To perform operation erase(k), we first execute the deletion algorithm for binary search trees





Just delete the copied 35, and color the remaining node in black. Then, we are done.

Implication:

If the node to be deleted is red, removing it is fine

## Deletion: Example 2

◆ To perform operation erase(k), we first execute the deletion algorithm for binary search trees



5 32

-5 7 20 38

null null null null 32 41

Copy inorder successor null 35 null null

Just delete the copied 32, and color 35 with black.

Implication: For a node (with a red child) to be deleted, delete it and change the red child's color.

(35: -1 first and +1 second. So no change)

## Deletion: Example 3

What about deleting a node with a black child?



Regard this as "double black nodes",

Deletion

- To perform operation erase(k), we first execute the deletion algorithm for binary search trees
  - Enough to consider the removal of an entry at a node with an external child (To remove a node with both internal children, we first copy the inorder successor, and then ...)
- Notations



• w: the external node removed,

"my lonely child"

• r: the sibling of w

• "my other child"

• x: the parent of v

• "my father"



22

#### Questions

- How to handle "double black nodes"
- Are there some cases in handling those? Yes
- Are you ready for "cases"?
- It's really, really complex, but if you concentrate, then you can follow it.

## Deletion: Algorithm Overview (1)

First, remove v and w, and make r a child of x

If either of v or r was red, we color r black and we are done (Examples 1 and 2)

Else (*v* and *r* were both black) we color *r* double black, which is a violation of the internal property requiring a reorganization of the tree (Examples 3)



23

#### Deletion: Algorithm Overview (2)

First, remove v and w, and make r a child of x

If either of v or r was red, we color r black and we are done (Examples 1 and 2)

Else (*v* and *r* were both black) we color *r* double black, which is a violation of the internal property requiring a reorganization of the tree (Examples 3)







25

### Deletion: Algorithm Overview (2)

First, remove v and w, and make r a child of x

If either of v or r was red, we color r black and we are done (Examples 1 and 2) (Let's call this Case 0)

Else (v and r were both black) we color r double black, which is a violation of the internal property requiring a reorganization of the tree (Examples 3)

- Notations after removing v and w
  - y: sibling of r
  - z: child of y
- We now divide the cases, depending of the color of y and z

#### Recall: Example 3. Notations again!

What about deleting a node with a black child?





Copy inorder successor

Delete 20.

Problem: A path of only 2 blacks

Regard this as "double black nodes"

## Handling Double Black Nodes: Case 1

- Case 1: The sibling y of r is black, and has a red child z
  - We perform a restructuring, and we are done



Double black node solved?

27

28

#### Handling Double Black Nodes: Case 2

- Case 2: The sibling y of r is black, and y's both children are black
  - We perform a recoloring
  - Case 2-1: x (r's parent) is red



Color x black and color y red

29

## Handling Double Black Nodes: Case 2

- Case 2: The sibling y of r is black, and y's both children are black
  - We perform a recoloring
  - Case 2-2: x (r's parent) is black





Color y red (which solves r's double black), and make x "double black" (propagates the double black up), then reconsider the cases for x

30

#### Handling Double Black Nodes: Case 3

- Case 3: The sibling y of r is red
  - We perform adjustment
    - If y is the *right* child of x, then let z be the *right* child of y
    - If y is the *left* child of x, then let z be the *left* child of y

■ Case 3-1: z is the left child of y



Perform restructuring
Make y be the parent of x
Color y black and x red
(double black not yet solved)

→ The sibling of r is black (why?)

→ Case 1 or Case 2 applies

### Double Black Node Handling: Summary

The algorithm for remedying a double black node r with sibling y considers three cases

Case 1: y is black and has a red child

• We perform a restructuring, and we are done

Case 2: y is black and its children are both black

• We perform a recoloring, which may propagate up the double black violation

Case 3: y is red

- We perform an adjustment, equivalent to choosing a different representation of a 3-node, after which either Case 1 or Case 2 applies
- Deletion in a red-black tree takes  $O(\log n)$  time

## Example: Remove 3



- ♦ v is red → Case 0 (either v or r is red)
- Remove v and w and color r black

33

## Example: Remove 17





♦ v is red → Case 0

## Example: Remove 12



- None of v and r is red → Not Case 0
- y is black, which has red child
  - → Case 1, restructuring





34

## Example: Remove 18





- None of v and r is red → Not Case 0
- ♦ y is black, having both black children→ Case 2
  - x is red → Case 2-1, recoloring between x and y



## Example: Remove 15



◆ Case 0 (now you know, right?)

# Example: Remove 16



- ♦ y is red → Case 3
- y is the left child of x, thus z is node 4
   (left child of y) → Case 3-1
- Adjustment → node 14 becomes double black → new y (sibling of x)
- y has both black children, and x is red
  - → Case 2-1, recoloring, then we're done



37

# Questions?