PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTREPRENEURSHIP

TEAM ID:	PNT2022TMID07240	
TEAM LEAD:	BAVYAA R	(711519BCS010)
TEAM MEMBERS:		
	ARUNKUMAR P	(711519BCS007)
	SATHYANARAYANAN K	(711519BCS302)
	PONRAJ S	(711519BCS040)
INSTITUTION:	KIT- KALAIGNARKARUN INSTITUTE	ANIDHI
	OF TECHNOLOGY	

ESTIMATE THE CROP YIELD USING DATA ANALYTICS

(DOMAIN: DATA ANALYTICS)

PROJECT REPORT

November 2022

TABLE OF CONTENTS

1.		INTRODUCTION
	1.1.	PROJECT OVERVIEW
	1.2	PURPOSE
2.		LITERATURE REVIEW
	2.1.	EXISTING PROBLEM
	2.2.	REFERENCES
	2.3.	PROBLEM STATEMENT DEFINITION
3.		IDEATION & PROPOSED SOLUTION
	3.1.	EMPATHY MAP CANVAS
	3.2.	IDEATION & BRAINSTORMING
	3.3.	PROPOSED SOLUTION
	3.4.	PROBLEM SOLUTION FIT
4.		REQUIREMENT ANALYSIS
	4.1.	FUNCTIONAL REQUIREMENT
	4.2.	NON-FUNCTIONAL REQUIREMENTS
5.		PROJECT DESIGN
	5.1.	DATA FLOW DIAGRAMS
	5.2.	SOLUTION & TECHNICAL ARCHITECTURE
	5.3.	USER STORIES
6.		PROJECT PLANNING & SCHEDULING
	6.1.	SPRINT PLANNING & ESTIMATION
	6.2.	SPRINT DELIVERY SCHEDULE
	6.3.	BURNDOWN CHART
7.		CODING & SOLUTIONING
	7.1.	DASHBOARD CREATION
	7.2.	DASHBOARD CREATION
	7.3.	REPORT CREATION
	7.4.	STORY CREATION
8.		ADVANTAGES
9.		DISADVANTAGES
10.		CONCLUSION
11.		FUTURE SCOPE
12.		APPENDIX

1. INTRODUCTION

Predicting crop yields is one of the most difficult problems in agriculture. It is crucial to decision-making at the international, regional, and local levels. Agricultural, soil, climatic, environmental, and other characteristics are used to predict crop yield.

Agriculture fulfils a fundamental need, which makes it crucial for human survival. It is a well-known fact that in India, agriculture employs the bulk of the population (about 55%). There are obstacles to expanding crop production in India because of weather changes. The way modern farms and agricultural enterprises operate differs greatly from how they did a few decades ago, largely due to technological developments in the form of sensors, machinery, devices, and information technology.

1.1. PROJECT OVERVIEW

It has become a challenging task to achieve desired targets in Agriculture based crop yield. Various factors are to be considered which have direct impact on the production, productivity of the crops. Crop yield prediction is one of the important factors in agriculture practices. Farmers need information regarding crop yield before sowing seeds in their fields to achieve enhanced crop yield.

The use of technology in agriculture has increased in recent years and data analytics is one such trend that has penetrated into the agriculture field. To reach desired crop yield goals has become a difficult undertaking in agriculture.

Numerous elements that directly affect the yield and productivity of the crops must be taken into account. One of the crucial aspects of agricultural techniques is the forecast of crop

production. Before planting seeds in their fields, farmers require knowledge about crop yield in order to increase agricultural output. In recent years, the use of technology in agriculture has increased, and one such development is the use of data analytics.

Thus, a project that would suit the needs of a farmer and at least help them over a borderline to understand and predict or estimate the crop yield was the main aim and was brought to life.

1.2. PURPOSE

Estimation of Crop yield has become the need of the hour and one easy tool/method that can be used is Data Analytics. The term "data analytics" describes the methods used to analyse data in order to increase productivity and financial gain. In order to examine different behavioural patterns, data is extracted from a variety of sources, cleaned up, and classified. The methods and resources employed change depending on the group or person.

The purpose behind this project is to understand the variation in crop yield due to various parameters that can be natural or non-natural.

2. LITERATURE SURVEY

2.1. EXISTING PROBLEM

With the changing of climate, agriculture faces increasing problems with extreme weather events leading to considerable yield losses of crops. Most often, crop plants are sensitive to stresses since they were mostly selected for high yield, and not for stress tolerance. The four most important factors that influence crop

yield are soil fertility, availability of water, climate, and diseases or pests.

With such varying parameters, to understand or estimate the patterns with no technological involvements is very difficult. Thus, a solution that is technological and cater to the alterations and provide the predicted solution in a form that can be easily understood by end customers is essential.

2.2. REFERENCES

- i. How data analytics is transforming agriculture ScienceDirect https://doi.org/10.1016/j.bushor.2017.09.011
- ii. https://www.researchgate.net/publication/329467349_Agricultur
 e_Data_Analytics_in_Crop_Yield_Estimation_A_Critical_Revie
 w
- iii. https://www.researchgate.net/publication/359131334_Data_anal_ytics_platforms_for_agricultural_systems_A_systematic_literatu_re_review
- iv. N. Chergui, M. -T. Kechadi and M. McDonnell, "The Impact of Data Analytics in Digital Agriculture: A Review," 2020 International Multi-Conference on: "Organization of Knowledge and Advanced Technologies" (OCTA), 2020, pp. 1-13, doi: 10.1109/OCTA49274.2020.9151851.
- v. D. Elavarasan and P. M. D. Vincent, "Crop Yield Prediction Using Deep Reinforcement Learning Model for Sustainable Agrarian

Applications," in IEEE Access, vol. 8, pp. 86886-86901, 2020, doi: 10.1109/ACCESS.2020.2992480.

2.3. PROBLEM STATEMENT DEFINITION

The following instances define the problem of notice. Ram is a farmer who needs a way to understand and predict climatic conditions because he can decide on the safety measures to be followed with regards to the field setup.

Raj is a farmer who needs a way to decide what to grow and when to grow because he is uncertain of his environmental conditions.

Ranil is a grocer and crop distributor who needs to know the overall crop yield turnover because he has to understand his monetary turnover for the year.

Thus, a solution that can cater to all the needs put forth is being formulated.

3. IDEATION & PROPOSED SOLUTION

3.1. EMPATHY MAP CANVAS

A team of four members sat together to discuss on and empathize about the problem that people have been facing with regards to understanding and predicting the yield of crops.

As a part of what the customers or target audience felt, a conclusion was made such that they were concerned about elements like finances, monetary support, heavy unexpected losses, proper yield of crop and certain other unpredictable factors.

Under the concepts of what they see and on the basis of environment, friends and what the market offers, digital solutions for ever changing natural setup with the difficulty of moving from traditional to modern farming was sought.

The specifics of pain and gain along with speculations of the influence of affluent land buyers, self-doubt and fright added with this comes the fear to quit agriculture under the section of what they hear.

3.2. IDEATION & BRAINSTORMING

Ideation and the process of brainstorming was done by initially tracing the problem and defining it. This was followed by pushing in individual ideas about the problem and then grouping it in together under common grounds and making a graph out of the priority provided.

PROBLEM STATEMENT:

PROBLEM

A farmer should predict climatic conditions, decide what to grow & when to grow, should know the overall crop yield turnover

BRAINSTORMING:

BAVYAA R

Types of soil

Monsoons that alter Quality of soil

Interval between crops

SATHYANARAYANAN K

Crop Type

Yield prediction

Pests and Control

Crop Diseases

PONRAJS

Environmental Condition Crop Growth Rate Irrigation type

Varied Crop Growth

ARUNKUMAR

Resistance of crop to disease

Soil Fertility

Usage of organic manure

Crop Rotation

GROUPING:

PRIORITIZATION:

3.3. PROPOSED SOLUTION

A farmer should predict climatic conditions, decide what to grow & when to grow, should know the overall crop yield turnover and must be able to be sure of the crop yield inspite of the environmental and other parameters. Analysis of important visualization using the previous years' data, creating a dashboard and by going the datasets to obtain most of the insights of Crop production in India is chosen and proposed as the solution.

A one-stop solution for understanding and to get an insight about the previous years' data related to the harvest and cultivation. There is no other setup that's required to be installed as an adage;

Availability to all the farmers who need help and as this is a simple approach, understanding issues will not arise. A profit can be made by promoting the solution as an easily available mobile application for anyone to access and benefit out of it. Venture joints with government can be made to pull out monetary benefits. There is no issue with regards to storage of datasets and collection of data. Hence, the solution can be easily scaled to handle data needs, traffic and increased number of users.

3.4. PROBLEM SOLUTION FIT

There were multiple segments considered under the Problem Solution Fit and is illustrated below.

4. REQUIREMENT ANALYSIS

4.1. FUNCTIONAL REQUIREMENT

Following are the functional requirements of the proposed solution.

FR	Everational Description and (Evia)	Sub Requirement (Story / Sub-
No.	Functional Requirement (Epic)	Task)
ED 1	Tigor Signun	Registration through Gmail
FR-1 User Signup	Registration through IBM	
FR-2	User Confirmation	Confirmation via Email
FK-Z	User Commination	Confirmation via OTP
FR-3	Data Collection	
FR-4	Doto Processina	Data cleaning, removal of noise and
гк-4	Data Processing	obsolete data
FR-5	Visualization Tool	Graphical visualization choices

4.2. NON-FUNCTIONAL REQUIREMENTS

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Ease of usage along with ease in- access of tools and features
NFR-2	Security	Access to resources through two factor authentication and credentials
NFR-3	Reliability	There should be no crashes or loss of data or processes
NFR-4	Performance	High speed rendering of visualization and other readily available features
NFR-5	Availability	Should be available on demand
NFR-6	Scalability	Should be able to incorporate as many visualizations and datasets as possible

5. PROJECT DESIGN

5.1. DATA FLOW DIAGRAMS

5.2. SOLUTION & TECHNICAL ARCHITECTURE

5.3. USER STORIES

User Type Customer (Mobile user)	Functional Requirement (Epic) Registration	User Story Number	User Story / Task As a user, I can register for the application by entering my email, password, and confirming my password.	Acceptance criteria I can access my account / dashboard	Priority	Release Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
\$		USN-3	As a user, I can register for the application through Google	I can register & access the dashboard with Google Login	Low	Sprint-2
		USN-4	As a user, I can register		Medium	Sprint-1

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task for the application	Acceptance criteria	Priority	Release
			through Gmail			
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboard	USN-6	As a user, I can freely use my dashboard and explore the features		High	Sprint-1
Ś	Access of Resources	USN-7	As a user, I can use the credentials to access the resources of my application	I can securely access my resources	High	Sprint-2
Administr ator	Control over the application	USN-8	I can control the users of the application		High	Sprint-2

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer	Tools	USN-9	I can perform the required tasks on the application		High	Sprint-1

6. PROJECT PLANNING & SCHEDULING

6.1. SPRINT PLANNING & ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Arun Ponraj
Sprint-1		USN-2	As a user, I will receive confirmation email once I have registered for the application	1	High	Bavyaa Sathyanarayanan
Sprint-		USN-3	As a user, I can register for the application through Google	2	Low	Arun Bavyaa

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-		USN-4	As a user, I can register for the application through Gmail	2	Low	Arun Ponraj
Sprint-	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	Bavyaa Sathyanarayanan
Sprint-	Dashboard	USN-6	As a user, I can freely use my dashboard and explore the features	2	High	Bavyaa Ponraj
Sprint-		USN-7	As a user, I can use the credentials to access the resources of my application	2	High	Arun Sathyanarayanan
Sprint-		USN-8	Performance of Data manipulations on the application	1	High	Bavyaa Arun
Sprint-	Visualizations	USN-9	I can create dashboards with particular datasets	2	High	Ponraj Sathyanarayanan
Sprint-		USN-10	Predictive analysis can be done	1	High	Bavyaa Ponraj
Sprint-3		USN-11	I can create stories with particular datasets	2	High	Arun Sathyanarayanan

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-		USN-12	I can deliver and export reports according to the dashboards and stories created	2	High	Ponraj Sathyanarayanan

6.2. SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3. BURNDOWN CHART

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

7. CODING & SOLUTIONING

7.1. DATA COLLECTION AND PREPARATION

7.2. DASHBOARD CREATION

Average Crop Production by Seasons	Yearly usage of Area in Crop Produ	uction Top 10 states with most area	State with Crop Production	States with Seasonal Crop Production +	
Season, State_Name and Crop					
Crop	Sta	ate_Name	Sea	ason	
Apple	Tar	ımil Nadu	Wh	ole Year	^
Arcanut (Processed)	Ka	arnataka	Wh	ole Year	
			Kha	arif	
	An	ndaman and Nicobar Islands	Rab	Rabi	
			Wh	ole Year	
		ndhra Pradesh	Kha	arif	
	An	nonra Pracesn	Wh	ole Year	
	2-	ssam	Rab	ic	
	ASS	ssam			
Arecanut	Go	Goa		Whole Year	
Arecanut	Ka	arnataka	4411	ole real	
	Kei	erala			
	Mo	eghalaya	Rab	ic	
	Me	egnataya	Wh	ole Year	
	D.	uduah aras	Kha	arif	
	Pu	uducherry			

7.3. REPORT CREATION

STATES WITH	SEASONAL CR	OP PRO
Сгор	State_Name	Season
Other Kharif pulses	Andaman and Nicobar Islands	Kharif
Rice	Andaman and Nicobar Islands	Kharif
Cashewnut	Andaman and Nicobar Islands	Whole Year
Horse-gram	Andhra Pradesh	Kharif
Tobacco	Andhra Pradesh	Kharif
Ragi	Andhra Pradesh	Rabi
Onion	Andhra Pradesh	Whole Year
other misc. pulses	Andhra Pradesh	Kharif
Sweet potato	Andhra Pradesh	Whole Year
Turmeric	Andhra Pradesh	Whole Year
Soyabean	Andhra Pradesh	Kharif
Beans & Mutter(Vegetable)	Andhra Pradesh	Whole Year
Bhindi	Andhra Pradesh	Whole Year
Grapes	Andhra Pradesh	Whole Year
Cowpea(Lobia)	Andhra Pradesh	Kharif
Arecanut	Andhra Pradesh	Kharif
Coriander	Andhra Pradesh	Kharif
Linseed	Andhra Pradesh	Kharif
Sapota	Andhra Pradesh	Kharif
Tomato	Andhra Pradesh	Kharif

7.4. STORY CREATION

Estimation of Crop Yield

Using Data Analytics

States	with Seasonal	Crop Production
Season, State_Name and Crop_Year		<u>-</u>
Crop_Year	State_Name	Season
	Andhra Pradesh	Kharif
	Andria Pradesh	Rabi
		Kharif
	Arunachal Pradesh	Rabi
		Whole Year
		Autumn
		Kharif
1997	Assam	Rabi
	Wp9qIII	Summer
		Whole Year
		Winter
		Autumn
		Kharif
	Bihar	Rabi
	Dilla	

8. ADVANTAGES

Productivity is boosted by technology. Agriculture has seen a significant boost in productivity as a result of technology; farmers can now do more work with less effort and in less time.

Technology saves money. Using current agricultural technology can help farmers save money. With the help of modern technologies, farmers may work more efficiently, with less effort, and in less time.

With modern technology, work that formerly required a big number of people and a lengthy period of time may now be accomplished swiftly and cheaply. Farmers are not compelled to pay a separate price for their services.

9. DISADVANTAGES

High costs of maintenance. One of the downsides of agriculture technology is its high maintenance costs. The hefty maintenance costs of the technology make it tough for small enterprises and farmers to handle.

Farmers find it difficult to keep up with technology since they cannot afford the high maintenance costs of contemporary technical gadgets and machines. Farmers Who Are Undereducated are illiterate, and understanding how to use current technologies in farming is challenging.

10. CONCLUSION

Agriculture yield data is used to analyse and improve the crop yield and represent in the form of a Graphs through data visualization technique.

The visualization methods presented include interactive charts to enable our data users to drill down and focus on more detailed views of these data displays.

11. FUTURE SCOPE

In the future, we expect to extend the same as an even more easily accessible mobile application and further enhancements on the user experience is aimed to be implemented.

12. APPENDIX

Link to the GitHub Repository:

https://github.com/IBM-EPBL/IBM-Project-29026-1660120250

Project Demo Video Link:

 $\underline{https://drive.google.com/file/d/19ovHnY7Mzbli1AvswtFcupITbv4ntCSF/v}\\\underline{iew?usp=sharing}$