PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-286637

(43)Date of publication of application: 19.10.1999

(51)Int.Cl.

C09D 11/00 B41J 2/01 B41M 5/00 // C09B 55/00 C09B 69/10

(21)Application number: 11-025130

(71)Applicant: AGFA GEVAERT AG

(22)Date of filing:

02.02.1999 (72)Invento

(72)Inventor: HELLING GUENTER DR

HERRMANN STEFAN DR

(30)Priority

Priority number: 98 19804123

Priority date: 03.02.1998

Priority country: DE

(54) INK JET INK

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain an ink which can give an image having a high gloss and excellent resistance to smearing and water by using a dispersion of polymer particles containing an ionically modified pigment.

SOLUTION: This ink comprises a dispersion of particles of an ionically modified polymer which is an ionomeric polyadduct or polycondensate containing a pigment and having, desirably, 4–180 milliequivalents/100 g of ionic groups or groups convertible thereinto. This is obtained by combining a dispersion of an ionically modified polymer obtained by reacting an NCO–containing prepolymer obtained from hexanediol/neopentyl glycol polyadipate and 1,6–diisocyanatohexane with sodium 2–aminoethyl– β – aminopropionate with a yellow pigment of the formula to form a pigment latex, adding an organic solvent such as diethylene glycol, a nonionic surfactant, and deionized water to the latex, and agitating the resulting mixture in an ultrasonic bath.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A) (II)特許出願公開番号

特開平11-286637

(43)公開日 平成11年(1999)10月19日

(51) Int.Cl. 6	識別記号	庁内整理番号	FΙ	技術表示箇所
C09D 11/00			CO9D 11/00	
B41J 2/01			B41M 5/00	E
B41M 5/00			C09B 55/00	В
// CO9B 55/00			69/10	
69/10			B41J 3/04	101 Y
			審査請求	未請求 請求項の数2 OL (全21頁)
(21)出願番号	特願平11-25	1 3 0	(71)出願人	3 9 0 0 2 3 6 1 8
				アグフアーゲヴエルト・アクチエンゲゼル
(22)出願日	平成11年(19	99)2月2日		シヤフト
				AGFA-GEVAERT AKTIEN
(31)優先権主張番号	19804123	. 3		GESELLSCHAFT
(32)優先日	1998年2月3	В		ドイツ連邦共和国デー51373レーフエ
(33)優先権主張国	ドイツ (DE)			ルクーゼン・カイザー-ビルヘルム-アレ
				一(番地なし)
			(72)発明者	ギユンター・ヘリング
				ドイツ51519オーデンタール・インデ
				アヒルトシヤイト16
			(74)代理人	弁理士 小田島 平吉 (外1名)
				最終頁に続く

(54) 【発明の名称】 インキジエツトインキ

(57)【要約】

【課題】 高い光沢ならびに汚れ及び水に対する優れた 抵抗性ならびに高い光安定性及び暗所安定性を有する印 刷画像を与えるインキジェット印刷法のためのインキを 提供すること。

【解決手段】 色素が配合されたイオン的に修飾された ポリマーの粒子の分散液から成るインキジェットインキ は、向上した汚れ抵抗性において傑出している。

2.0

【特許請求の範囲】

【請求項1】 イオン的に修飾された色素配合ポリマーの粒子の分散液から成ることを特徴とするインキジェットインキ。

【請求項2】 イオン的に修飾された色素配合ポリマー の粒子の分散液でコーティングされた支持体材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はインキジェット画像の形成のためのインキに関し、それは画像通りに変調された微細なジェットとして適当な記録材料上に噴射される。記録材料は透明、半一透明又は不透明支持体及びその上に位置する受像層から成る。

[0002]

【従来技術及びその課題】インキジェット法は既知である(例えばChemistry & Technology of Printing & Imaging Systems, editor Peter Gregory, Blackie Academic & Professional, Chapman & Hall, 1996, pp. 113-138のR. W. Kenyonによる章、"Ink jetprinting"及びそこに引用されて入る文献を参照されたい)。

【0003】インキジェット画像に伴う1つの問題は安定性及び汚れ(smudge)抵抗性である。

【0004】EP 672 538から、耐水性及び汚れ抵抗性インキジェットプリントの作製のために基質コーティング組成物に反応性成分を加えることが既知である。統いて画像を照射すると、これらの添加物はコーティング組成物を架橋させ、前にこれらの結合剤中に転移 30 されている色素の汚れ抵抗性を向上させる。

【0005】この方法の欠点は、印刷操作の後にUV光を用いる照射などのさらに別の経費のかかる処理段階が必要なことである。さらに、例えば光開始剤などのさらなる添加剤を加えることが必要であり、それは保存すると黄色くなり、画像の白を魅力的でなくする傾向を有する。さらに、UV光を用いる短時間の照射はプリントの洗い出しにおいて所望の向上をもたらさない。

【0006】本発明の基礎となる目的は、特別な準備のない種々の基質上に高い光沢ならびに汚れ及び水に対する優れた抵抗性ならびに高い光及び暗所(dark)安定性を有する印刷画像を与えるインキジェット印刷法のためのインキを提供することである。

【0007】さらに、耐水性を向上させるためあるいは 天候にさらされる用途のために、例えばResearch Disclosure (RD) 30 887 (1989)に記載されて入るような水中に不溶性の疎 水性色素を用いることが既知である。不利なことに、これらの色素は水性インキを製造するために分散されねば ならず、通常の水性分散液は過度に大きな粒子を有し、 印刷の後に過度に広い吸収線を示し、結局劣った色再現 を示す。

【0008】DE 28 45 375から、ピニルボリマーラテックスに色素を含浸させ、インキジェット法のためにそれらを用いることが既知である。含浸されたラテックス粒子の低いコロイド安定性及びノズルを目詰まりさせる傾向がこの方法の欠点である。

【0009】さらなる目的はこのノズルの目詰まりを避けることである。

[0010]

【課題を解決するための手段】今回、色素が配合された イオン的に修飾されたポリマーの分散液から成るインキ が上記の要求を満たすことが見いだされた。

【0011】イオン的に修飾されたポリマーは好ましくはイオノマー性付加重合又は重縮合生成物である。

【0012】本発明に従って用いられるイオノマー性付加重合もしくは重縮合生成物の各100gが4~180ミリ当量、好ましくは4~100ミリ当量のイオン性基もしくはイオン性基に転換可能な基及び場合により1~20重量%のポリエーテル鎖内に挿入された式ーCH:--O-のアルキレンオキシド単位を含有し、ポリエーテル鎖は横の位置にあるか又は主鎖中に含まれていることができる。

【0013】本発明に従って有用なイオノマー性付加重合もしくは重縮合生成物(下記においては「イオノマー性生成物」と呼ぶ)の中には、ポリウレタン、ポリエステル、ポリアミド、ポリウレア、ポリカーポネート、ポリアセタール又はポリエーテル、ならびにさらに2つもしくはそれ以上のポリマーの型に同時に属するイオノマー性生成物、例えばポリエステルポリウレタン、ポリエステルポリウレアが含まれる。

【0014】本発明に従って用いることができるイオノマー性生成物はそれ自体既知であり、例えばAngewandte Makromolekulare Chemie 26 (1972)、pp. 45-106:Angewandte Makromolekulare Chemie 82 (1979) pp. 53以下:J. Oil. Col. Chem. Assoc. 53 (1970)、p. 363に記載されて入る。適したイオノマー性生成物のさらに別の記載はドイツ特許公開出願(DE-A-)26 37 690、26 42 973、26 51 505、26 51 506、26 59 617、27 29 245、27 30 514、27 32 131、27 34 576及び27 11 148に見いだすことができる。

【0015】イオン性基を有するイオノマー性生成物が 好ましい。本発明の方法に特に適したイオノマー性生成 物はDE-B2-1 472 746に記載されてい 30 る。これらのイオノマー性生成物は2つもしくはそれ以

30

上の反応性水素原子を有し、300~1000の分子 **量を有する化合物、ポリイソシアナート及び場合により** 反応性水素原子を有する連鎖延長剤から得られるポリウ レタンに基づいている。これらのポリウレタンの製造の 間もしくはその後、まだその中に存在するイソシアナー トは少なくとも1つの活性水素及び少なくとも1つの塩 一様基又は塩形成することができる基を有する化合物と 反応する。塩形成することができる基を有する化合物が 用いられる場合、得られるアニオン性ポリウレタンは続 いて少なくとも部分的に、それ自体既知の方法で塩の形 10 態に転換される。

【0016】「塩ー様基」という用語は好ましくは以下 の基: $-SO_1$ 、-COO を意味すると理解される。

【0017】アニオン性ポリウレタンの製造のために適 した出発成分は例えば下記の化合物である.

【0018】1. 活性水素原子を有する化合物 これらの化合物は実質的に直鎖状であり、約300~1 0000、好ましくは500~4000の分子量を有す る。それ自体既知の化合物は末端ヒドロキシル及び/又 はアミノ基を有する。ポリエステル、ポリアセタール、 ポリエーテル、ポリアミド及びポリエステルアミドなど のポリヒドロキシル化合物が好ましい。これらの化合物 のヒドロキシル価は約370~10、特に225~28 である。

【0019】挙げることができるポリエーテルは、例え ばエレチンオキシド、プロピレンオキシド、テトラヒド ロフラン、ブチレンオキシドの重合生成物及びそれらの 共一もしくはグラフト重合生成物ならびに多価アルコー ルもしくはその混合物の縮合生成物及び多価アルコール のアルコキシル化により得られる生成物である.

【0020】考慮することができるポリアセタールは、 例えばヘキサンジオールとホルムアルデヒドから製造す ることができる化合物である。適したポリエステル、ポ リエステルアミド及びポリアミドは、多塩基性飽和カル ポン酸及び多価飽和アルコール、アミノアルコール、ジ アミン及びその混合物から得られる主に直鎖状の縮合生 成物である。

【0021】すでにウレタン又はウレア基を含有してい るポリヒドロキシル化合物ならびに場合により修飾され ていることができる天然のポリオール、例えばヒマシ油 40 又は炭水化物も用いることができる。

【0022】該方法の生成物の親油性又は疎水性及び機 械的性質はもちろん種々のポリヒドロキシル化合物の混 合物を用いることにより変えることができる.

【0023】11. <u>ポリイソシアナート</u>

適したポリイソシアナートは、例えば1、5-ナフタレ ンジイソシアナート、4、4 ージフェニルメタンジイ ソシアナート、4、4'ージフェニルジメチルメタンジ イソシアナート、ジー及びテトラアルキルジフェニルメ タンジイソシアナート、4、4°~ジベンジルジイソシ 50 スルホ安息香酸、p~スルホ安息香酸、1~安息香酸

アナート、1, 3-フェニレンジイソシアナート、1, 4-フェニレンジイソシアナート、トリレンジイソシア ナートの異性体、場合によりプレンドされていることが できる好ましくは脂肪族のジイソシアナート、1、4-ブタンジイソシアナート、1,6-ヘキサンジイソシア ナート、ジクロヘキシルメタンジイソシアナート、1. 4-シクロヘキサンジイソシアナート及びイソホロンジ イソシアナートなどのいずれの芳香族及び脂肪族ジイソ シアナートであることもできる。

【0024】 III. 連鎖延長剤

反応性水素原子を有する連鎖延長剤には次のものが含ま れる:

1. 通常のグリコール類、例えばエレチングリコール又 はエレチングリコールの縮合生成物、ブタンジオール、 1, 2-プロパンジオール、1, 3-プロパンジオー ル、ネオペンチルグリコール、ヘキサンジオール、ピス ヒドロキシメチルシクロヘキサン:

2. 脂肪族、環状脂肪族及び芳香族ジアミン、例えばエ レチンジアミン、ヘキサメチレンジアミン、1,4-シ クロヘキシルジアミン、ベンジジン、ジアミノジフェニ ルメタン、フェニレンジアミンの異性体、ヒドラジン、 アンモニア:

3. アミノアルコール類、例えばエタノールアミン、プ ロパノールアミン、ブタノールアミン:

4. 多官能基性アミン又はヒドロキシル化合物、例えば ジエレチントリアミン、トリエチレンテトラミン、テト ラエチレンペンタミン、ペンタエチレンヘキサミン、ヘ キサエチレンヘプタミン、グリセロール、ペンタエリト リトール、1、3-ジアミノイソプロパノール、1、2 - ジアミノプロパノール、モノーオキシアルキル化ポリ アミン類、例えばN-オキシエチルエチレンジアミン、 N-オキシエチルヒドラジン、N-オキシエチルヘキサ メチレンジアミン: 5. 水.

【0025】 IV. <u>塩形成することができる化合物</u>

1. すでに形成された酸基を有する化合物

a) ヒドロキシ酸、例えばグリセリン酸、乳酸、トリク ロロ乳酸、リンゴ酸、ジオキシマレイン酸、ジオキシフ マル酸、酒石酸、ジオキシ酒石酸、クエン酸、ジメチロ ールプロピオン酸及びジメチロール酪酸、脂肪族、環状 脂肪族、芳香族及び複素環式モノ一及びジアミノカルボ ン酸、例えばグリシン、α-及びβ-アラニン、6-ア ミノカプロン酸、4-アミノ酪酸、異性体モノ-及びジ アミノ安息香酸、異性体モノー及びジアミノナフトエ

b) ヒドロキシー及びカルボキシスルホン酸:1-ヒド ロキシエタンスルホン酸、2-フェノールスルホン酸、 3-フェノールスルホン酸、オーフェノールスルホン 酸、2、4-フェノールスルホン酸、スルホ酢酸、m-

3. 5-ジスルホン酸、2-クロロ-1-安息香酸4-スルホン酸、2-ヒドロキシ-1-安息香酸5-スルホン酸、1-ナフトールスルホン酸、1-ナフトールジスルホン酸、1-ナフトールジスルホン酸、1-ナフトールジスルホン酸、1-ナフトールジスルホン酸、2-ナフトール-1-スルホン酸及び2-ナフトールトリスルホン酸;

c) アミノスルホン酸;アミドスルホン酸、ヒドロキシ アミンモノスルホン酸、ヒドラジンジスルホン酸、スル 10 ファニル酸、N-フェニルアミノメタンスルホン酸、 4, 6-ジクロロアニリン-2-スルホン酸、1, 3-フェニレンジアミンー4、6-ジスルホン酸、1-ナフ チレンアミンスルホン酸、2-ナフチルアミンスルホン 酸、ナフチルアミンジスルホン酸、ナフチルアミントリ スルホン酸、4、4'-ジー(p-アミノペンゾイルア ミノ) -ジフェニルウレア-3,3'-ジスルホン酸、 フェニルヒドラジンー2、5-ジスルホン酸、タウリ ン、メチルタウリン、ブチルタウリン、3-アミノ-1 -安息香酸 5 - スルホン酸、 3 - アミノトルエン **-** N - 20 チロラクトン: メタンスルホン酸、4,6-ジアミノベンゼン-1,3 - ジスルホン酸、2、4 - ジアミノ-5 - トルエンスル ホン酸、4,4'-ジアミノジフェニルー2,2'-ジ スルホン酸、2-アミノフェノール-4-スルホン酸、 4, 4'-ジアミノジフェニルエーテル2-スルホン 酸、2-アミノア二ソール-N-メタンスルホン酸、2 - アミノジフェニルアミノスルホン酸、エチレングリコ ールスルホン酸、2,4-ジアミノペンゼンスルホン 酸、N-スルホナトエチルエチレンアミン:

ルホン酸、ポリカルポン酸及び一スルホン酸の中に含ま れるのは、(場合によりけん化されていることができ る)不飽和酸、例えばアクリル酸、メタクリル酸、ビニ ルスルホン酸、スチレンスルホン酸及び不飽和二トリル 類、例えばアクリロニトリルの、環状ジカルボン酸無水 物、例えばマイレン酸、フタル酸、コハク酸の、スルホ カルボン酸無水物、例えばスルホ酢酸、o-スルホ安息 香無水物の、ラクトン、例えばβ-プロピオラクトン、 ァーブチロラクトンの付加生成物、オレフィンと三酸化 疏黄との反応生成物、例えばカルビルサルフェートの、 エポキシカルボン酸及び-スルホン酸、例えばグリシド ール酸、2、3-エボキシプロバンスルホン酸の、スル トン、例えば1.3-プロパンスルトン、1.4-ブタ ンスルトン、1、8-ナフチルスルトンの、環状サルフ ェート、例えばグリコールサルフェートの、ジスルホン 酸無水物、例えばベンゼン-1,2-ジスルホン酸無水 物の脂肪族及び芳香族アミン、例えば1、2-エチレン ジアミン、1、6-ヘキサメチレンジアミン、異性体フ ェニレンジアミン、ジエチレントリアミン、トリエチレ

d) やはりヒドロキシー及びアミノカルボン酸及び一ス 30

成物、ならびに亜硫酸水素ナトリウムのオレフィン性不 飽和化台物、例えばアリルアルコール、マレイン酸、マ レイン酸ピスーエチレン及びピスープロピレングリコー ルエステルへの付加生成物である;

- e) ヒドラジンカルボン酸。
- 2. 塩ー様基又は開環の後に塩形成することができる基を有する3~7個の環メンバーを有する反応性化合物: a) ジカルボン酸無水物、例えばコハク酸無水物、マレイン酸無水物、場合により水素化されていることができるフタル酸無水物;
- b) テトラカルボン酸二無水物、例えば1, 2, 4, 5 - ペンゼンテトラカルボン酸無水物;
- c) ジスルホン酸無水物、例えばペンゼン-1, 2-ジ スルホン酸無水物;
- d) スルホカルボン酸無水物、例えばスルホ酢酸無水物、o-スルホ安息番酸無水物;
- e) スルトン類、例えば1, 3-プロパンスルトン、
- 1, 4-プタンスルトン、1,8-ナフトスルトン;
- f) ラクトン類、例えばβ プロピオラクトン、ァーブ チロラクトン;
- g)場合によりそのアルカリ金属塩の形態であることができるエポキシカルボン酸、例えばグリシドール酸;
- h)場合によりそのアルカリ金属塩の形態であることができるエポキシスルホン酸、例えば2、3-エポキシプロパン-1-スルホン酸ならびにエポキシアルデヒドとアルカリ亜硫酸水素塩の付加生成物、例えばグリシドアルデヒドの重亜硫酸塩化合物。

【0026】上記の酸基は通常の方法で、下記の化合物との反応により塩の形態に転換することができる:無機塩基、塩基的に反応する化合物もしくは塩基一脱離化合物、例えば1官能基性金属ヒドロキシド、炭酸塩及び酸化物、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム。ならびに有機塩基、例えば1ert、アミン類、例えばトリメチルアミン、トリエチルアミン、ジメチルアミノエタノール、ジメチルアミノブロパノール、アンモニアなど

【0027】さらに別の適した合成成分は、例えばポリエーテル鎖内に挿入されたエチレンオキシド単位を有す 40 る1-もしくは2個アルコールである。

【0028】そのような1官能基性非イオン性親水性ポリエーテルが用いられる場合、2官能基より多い官能基性である台成成分も用いることにより、早期の連鎖停止を妨げるのが多くの場合に有利であり得る。上記の一般式の1官能基性ポリエーテルは例えばUS特許3 905 929、4 190 566又は4 237 264に記載されているようなそれ自体既知の方法を用いて製造される。

ェニレンジアミン、ジエチレントリアミン、トリエチレ 【0029】そのような台成成分は、本発明に従って用 ンテトラミン、テトラエチレンペンタミン上への付加生 50 いられるべきポリウレタンに追加の局部的親水化、電解

質安定性、凍結安定性及び向上した滑り性を与える。 【0030】ポリイソシアナートの量は好ましくはイソ シアナート基と反応することができるすべての基が反応 するように選ばれる.

【0031】反応は場合によりさらに溶媒を用いて行わ れ、その場合好ましくは120℃未満の沸点を有し、場 合によりある割合の水も含有することができる低沸点溶 媒、例えばアセトン、メチルエチルケトン、アセトニト リル、テトラヒドロフラン、ジオキサンが適している。 水を、場合により有機溶媒を加えずに、無機塩基ならび 10 に少なくとも1つのイソシアナート-反応性水素及び少 なくとも1つの塩-様基もしくは塩形成することができ る基を有する化合物のための溶媒として用いることがで きる.

【0032】主に直鎖状の高分子量ポリウレタンは一般 に上記の極性溶媒中で透明からわずかに乳光性の溶液の 形態をとる。その固体含有率はイオン性ポリウレタンの 約5~50重量%である。ポリエステルポリウレタン又 はポリエーテルポリウレタンが好適に用いられる.

【0033】以下の例は本発明に従って用いられるイオ ノマー性生成物のための製造法を例示することを目的と する.

ポリマー1

アジピン酸と1、4-ブタンジオール(脱水)から製造 される800g(0、356モル)のポリエステル及び 95g(0.546モル)の2,4-トリレンジイソシ アナートから75~85℃において1.5時間でNCO プレポリマー (1.78%NCO)を製造する。熱時に プレポリマーを1060gのテトラヒドロフランに溶解 し、50℃において100mlの水中のN-スルホナト 30 エチルエチレンジアミンのナトリウム塩の53g(0. 13モル)の水溶液の溶液と合わせる。5分後、急激な 粘度の上昇のために混合物をさらに500gのテトラヒ ドロフランと合わせる。以下の特性データを有する透明 なポリウレタンポリウレア溶液が得られる:

固体含有率:35.3%

粘度 (24℃):1000mPa·s

テトラヒドロフランを用いて30%に調節された溶液の 試料の粘度 (24℃):400mPa·s

スルホナト基含有率: 14. 1ミリ当量/100g ポリマー2

溶媒としてテトラヒドロフランの代わりにアセトンを用 いる以外はポリマー1の場合に記載したと同じ方法を用 いる。1060gのアセトン及び42.5 (0.104 モル)のN-スルホナトエチルエチレンジアミンのナト リウム塩の水溶液を用い、43.6%の固体含有率及び 5 7 0 0 m P a's (2 4 ℃) の粘度を有する透明なポ リウレタンポリウレア溶液が得られる。30%の固体含 有率に調節された溶液は300mPa゚s(24℃)の 粘度を有する。スルホナト基含有率は14.1ミリ当量 50 率に調節し、152g(1.350モル)のアセトンケ

/100gである。

ポリマー3

アジピン酸及び1、4-ブタンジオール(脱水)から製 造される400g(0.178g)のポリエステルなら びに47、5g(0、273モル)のトリレンジイソシ アナート(65:35の異性体混合物)から、ポリマー 1の場合に記載した通りにNCOプレポリマー (NCO = 1. 68%) を製造する。 熱時にプレポリマーを98 0gのアセトンに溶解し、50℃において42.5g (O. 104モル)のN-スルホナトエチルエチレンジ アミンのナトリウム塩及び75mlの水から調製される 水溶液と合わせる。わずかに黄色のポリウレタンウレア の溶液が得られる。

固体含有率:30.0%

粘度 (23℃):2200mPa・s

スルホナト基含有率: 22. 2ミリ当量/100g ポリマー4

ピスフェノールA及びプロピレンオキシドに基づく55 0g(1.0モル)のポリエーテルならびにフタル酸、 アジピン酸及びエチレングリコール(すべて脱水)から 製造される140g(0、08モル)のポリエステルな らびにブタンジオールと重亜硫酸ナトリウムのプロポキ シル化付加生成物のトルエン中の70%溶液の145g (0. 239モル) 及び315g(1. 875モル)の 1. 6 - ジイソシアナートヘキサンから、100℃にお いて 6. 5時間でNCOプレポリマー (4. 11%NC O)を製造する。プレポリマーを77g(1.283モ ル)のウレアと合わせ、短時間135℃に加熱し、ⅠR スペクトルからNCOが検出できなくなるまで130℃ で撹拌する。冷却しながら、混合物を次いで最初に29 0mlの水及びその後290mlの水及び次いで158 2gのアセトンと合わせる。アセトン中の透明でわずか に黄色のポリウレタンポリウレアの溶液が得られる。

固体含有率: 40%

粘度 (23℃):60mPa·s

スルホナト基含有率:19ミリ当量/100g

ポリマー5

ビスフェノールA及びプロピレンオキシドに基づく22 00g(4.0モル)のポリエーテルならびにn-ブタ 40 ノール、プロピレンオキシド及びエチレンオキシドから 製造される115g(0、053モル)の1官能基性ポ リエーテルを脱水し、ボリマー4の記載からのナトリウ ム塩のトルエン中の70%溶液の160g(0.113 モル)と合わせる。次いで混合物を60℃において10 96g(6、30モル)のトリレンジイソシアナート (80:20の異性体混合物、20mgの塩化水素で不 活性化)と合わせる。冷却にもかかわらず温度は60℃ に上昇する。80℃で5時間撹拌を続け(NCO=4. 95%)、アセトンを用いて混合物を70%の固体含有

タジンと反応させる。

【0034】次いでこの溶液の900gを733mlの アセトン及び95mlの水と合わせ、室温で終夜撹拌す る。透明なポリウレタンポリウレア溶液が得られる。

固体含有率:36.5%

粘度:19000mPa·s

スルホナト基含有率: 7. 5ミリ当量/100g アセトンを用いる希釈により30%の固体含有率に調節 された溶液は3000cpの粘度を有する。

ポリマー6

407.4g(0.2396モル)のヘキサンジオール ノネオペンチルグリコールポリアジペートを水流真空下 で120℃において脱水する。該物質を77.7g

(0.4625モル)の1,6-ジイソシアナートヘキ サンと70~80℃において合わせ、100℃でさらに 1. 5時間撹拌する。プレポリマーは3. 4%のNCO 含有率を有する。アセトン中で33%に調節した後、溶 液を50℃において75.0g(0.1924モル)の 2-アミノエチル-β-アミノプロピオン酸ナトリウム 塩(水中で39. 5%)と合わせ、7分後、1160m 20 好ましくは10~100nmの範囲内である。対照的 1の完全に脱イオン化された水を用いて分散させる。水 流真空下の蒸発によりアセトンを除去すると、非常に微 細な分散液が得られる。

<u>データ</u>:%COO:1.6

%固体:30 pH: 7. 6

粒度:60nm

ポリマー 7

650g (0.3824モル) のヘキサンジオール/ネ オペンチルグリコールポリアジペート及びn-ブタノー 30 8, part II(1995), p. 80及びRD ル上で開始された分子量が2150のポリオキシエチレ ン/ポリオキシプロピレン(80:20)ポリエーテル の21gを水流真空下で120℃において脱水する。6 0℃に冷却した後、該物質を125.6g(0.747 5 モル) の1, 6 - ジイソシアナートヘキサンと合わ せ、混合物を100℃に加熱し、この温度で90分間撹 挫する。温度を60℃に下げ、反応生成物を530gの アセトンに溶解する。新しい60%溶液は3.1重量% のNCOを含有している。

【0035】水に不溶性の色素及びイオノマー性生成物 40 の水ー混和性低沸点溶媒もしくは溶媒/水混合物中の溶 液内に水を撹拌して入れることにより、本発明に従って 用いられる色素を含有する粒子分散液(色素ラテック ス)を調製する。

【0036】蒸留又は他の適した分離法、例えば透析も しくは限外濾過により、得られる分散液から溶媒を分離 する.

セトニトリルである。

【0037】他の実施態様に従うと、水ー混和性低沸点 溶媒中の水に不溶性の色素の溶液を、まだNCO基を含 有しているウレタンプレポリマーの溶液と合わせること ができ、そうすると付加重台が色素の存在下で完結す る。色素がイソシアナートー反応性基を含有していない 場合にこの実施態様を特に有利に用いることができる。 【0038】分散液の調製のために適した水ー混和性有 機溶媒は、イオノマー性生成物と色素の両方を溶解する 10 ことができる溶媒である。そのような溶媒の例はアセト ン、テトラヒドロフラン、ジオキサン、イソプロパノー

【0039】分散液の調製に用いられる色素の量は一般 にイオン的に修飾されたポリマーに対して2~200重 量%である。色素対ポリマーの好ましい重量比は1:2 $0 \sim 1 : 1 \text{ } cms^{-1}$

ル、メタノール、エタノール、メチルエチルケトン、ア

【0040】この方法は150nm未満の粒度を有する 色素の分散液の調製を可能にする。平均粒度(直径)は に、通常のオイルフォーマーを用いて調製される分散液 の粒子は明白にもっと大きい。

【0041】該配合法に適した水に不溶性の色素は、例 えばRD 30 887 (1989)、EP 0 49 5 406, US 5 362 882, EP 465 124から既知である。写真材料において酸化により カラーカプラー及び現像薬から生成する色素は特に有利 である。カラーカプラーはRD 37 254, par t 4 (1995), p. 288, RD 37 03 38 957, part X, B (1996), p. 6 16から既知である。

【0042】適した現像薬は特にp-フェニレンジアミ ン誘導体である。式

[0043]

【化1】

の化合物が特に好ましい。

[0044]

【表1】

R¹	R ²	R³
Н	C₂H,	C ₂ H ₅
Н	C₂H₅	C ₂ H ₄ OH
CH ₃	C₂H₅	C ₂ H ₅
СН3	C ₂ H ₅	C ₂ H ₄ -NH-SO ₂ CH ₃
CH ₃	C ₂ H ₅	C ₂ H ₄ OH
CH ₃	C ₂ H ₅	C ₂ H ₄ OCH ₃
Н	C ₄ H ₉	C ₄ H ₂ SO ₃ H

色素の他に適した光安定剤及び/又は酸化防止剤をラテ ックスに配合し、得られる画像の安定性をさらに向上さ せることもできる。

【0045】適した安定剤は0-、m-及びp-ジヒド ロキシベンゼン類、ヒドロキシクロマン類、5-ヒドロ キシクマラン類、スピロクロマン類、スピロインダン 類、p-アルコキシフェノール類、立体障害のあるフェ 類、アミノフェノール類、アミノアニリン類、立体障害 のあるアミン、エステル化又はエーテル化されたフェノ ール性ヒドロキシル基を有する誘導体あるいはアシル化 又はアルキル化された芳香族アミノ基を有する誘導体、 金属錯体である。詳細な記載はRD 307 105 (1989), section VII, EP 246 766, 273 712, 304 067, 471 341, 524 540, 544 316, 544 3 17, 545305, 585 679, 586 34 3 23 477及びUS 5 294 530、5 278 039に示されている。

【0046】色素ラテックスをさらに界面活性化合物と 組み合わせることができる。

【0047】例えばサポニンなどの天然の界面活性化合 物と別に、用いられるのは主に合成界面活性化合物(界

面活性剤):非イオン性界面活性剤、例えばアルキレン オキシド化合物、グリセロール化合物もしくはグリシド ール化合物、カチオン性界面活性剤、例えば高級アルキ ルアミン、第4級アンモニウム塩、ビリジン化合物及び 他の複素環式化合物、スルホニウム化合物もしくはホス ホニウム化合物、酸基、例えばカルポン酸、スルホン 酸、リン酸、硫酸エステルもしくはリン酸エステル基を ノール類、没食子酸誘導体、メチレンジオキシベンゼン 20 含有するアニオン性界面活性剤、両性界面活性剤、例え ばアミノ酸及びアミノスルホン酸化合物ならびにアミノ アルコールの硫酸もしくはリン酸エステルである。

> 【0048】さらに別の界面活性化合物はRD 308 119 (1989) 及びEP 314 425、36 2 990,549 496.US 4 839 26 2, 4 847 186, 4 916 054, 5 2 21 603、WO 90/12 782及びWO 9 2/15 554に記載されている。

【0049】アニオン性及び非イオン性界面活性化合物 3、DE 42 09 346、4320 444、4 30 が好適に用いられ、非イオン性化合物が特に好適に用い られる。

> 【0050】色素の例は(Y=イエロー色素;M=マゼ ンタ色素:C=シアン色素)

[0051]

【化2】

13

Y-1

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 $COO-C_{12}H_{26}$
 C_2H_5
 $CH_2-CH_2-NH-SO_2-CH_3$

$$\begin{array}{c} CH_3 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_2 \\ CH_3 \\ CH$$

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_6 CH_7 CH_7 CH_7 CH_7 CH_8 CH_8

[0052]

【化3】

Y-4

$$CH_3-O$$
 $CO-CC-CO-NH$
 $COOC_{12}H_{25}$
 C_2H_5

[0053]

$$CH_{3} - C - CO - NH - CH_{3} - CH_{2} - SO_{2} - C_{12}H_{25}$$

$$CH_{3} - CH_{3} -$$

$$C_2H_5$$
 C_2H_5
 C

Y-7

Y-9

[0054]

Y-10

M-I

[0055]

【化6】

M-3

$$CH_3$$
 C_2H_5
 $CH_2-CH_2-NH-SO_2-CH_2$
 CH_3
 C

[0056]

【化7】

$$CH_3$$
 C_2H_5
 CH_2 - CH_2

$$\begin{array}{c} \text{C-CH}_{2} \\ \text{CONH} \\ \text{N} \\ \text{C}_{2}\text{H}_{4}\text{-OH} \\ \text{CI} \\ \text{CI} \\ \text{CI} \\ \end{array}$$

[0057]

[化8]

[0058]

【化9】

CI NH—CO—CH—O—
$$t$$
-C₄H₈

$$C_4H_9$$

$$C_4H_9$$

$$CH_2$$
-CH₂-CH₂-OH
$$C_2H_5$$

$$C-5$$

$$C-7$$

[0059]

である。

【0060】インキは高沸点の水に不溶性の溶媒を含有 していることができる。高沸点溶媒は完成されたインキ に対して0.01~50重量%の量で用いられる。0. 1~30重量%の範囲が特に好ましい。高沸点溶媒の例 はフタル酸エステル、例えばフタル酸ジプチル、フタル 50 ン、2-もしくは多価高沸点アルコールならびに140

C-6

酸ジノニル、フタル酸ジエチルヘキシル、リン酸エステ ル、例えばリン酸トリクレシル、アジピン酸エステル、 例えばアジピン酸ジオクチルエステル、エチレングリコ ール類、ジエチレングリコール類、トリエチレングリコ ール類、又部分的にエーテル化された2-ピロリジノ

でより高温で沸騰する他の完全に水に混和性の溶媒である。配合法の後に生ずる色素/ポリマー分散液は10~2000nm、好ましくは30~300nmの粒度を有する。

【0061】好ましい実施態様の場合、イオン的に修飾された色素-配合ポリマーと別に、色素/ポリマー分散液は結合剤としてポリマー分散液もしくはポリマーラテックスを含有する。

【0062】色素ラテックスの製造

色素ラテックスFL-1

72.7gのポリマーP-6を550gのアセトンと合わせ、50℃に加熱し、80gのアセトンに溶解された5.45gの色素Y-1から調製される溶液と合わせる。15分後、220gの水を滴下し、アセトンを真空蒸留により除去する。次いで配合されたラテックスを限外濾過により精製し、下記の固体含有率に濃縮する。以下のデータを有する色素ラテックスが得られた:

固体含有率: 20% 平均粒度: 95nm イオノマー/色素比:4:1

pH: 7. 0

色素ラテックスFL-2

36.4gのポリマーPー6を220gのアセトンと共に50℃に加熱し、50gのアセトン中の1.37gの色素M-3及び0.137gのフタル酸ジブチルから調製される溶液と一緒に撹拌する。次いで100gの水を加え、アセトンを真空蒸留により除去する。次いで配合されたラテックスを限外濾過により精製し、下記の固体金を実に連絡する。以下のデータを存するの表示では

10 含有率に濃縮する。以下のデータを有する色素ラテックスが得られた:

固体含有率:20.5%

平均粒度:82nm

イオノマー/色素比:8:1

pH: 7. 0

類似の方法でさらに別の色素ラテックスFL-3~FL-16を製造した(表1)。

[0063]

【表2】

表 1

色素 ラテックス	色素	イオノマー	イオノマー /色素比	添加物	重量%"	粒度 nm	国体含有率 %	
FL-3	Y-2	P-4	3:1	ST-1	70	84	19.8	
FL-4	Y-6	P-4	3:1	TCP	30	98	21.3	
FL-5	Y-3	P-5	6:1	ST-2	60	110	20.4	
FL-6	Y-5	P-5	3:1	DBP	20	76	20.1	
F1L-7	M -1	P-6	4:1	ST-3	40	62	21.8	
F1-8	м-4	P-6	4:1	DBP	20	85	20.7	
FL-9	M-6	P-6	3:1	\$T-4	30	91	19.3	
FL-10	M-7	P-6	8:1	DBP	20	63	19.9	
FL-11	M-5	P-2	2:1	ТСР	10	74	20.5	
FL-12	M-3	P-2	4:1	ST-5	30	80	20.7	
FL-13	M-3	P-6	6:1	ST-4/ST-5	30/80	85	20.1	
FL-14	C+1	P-6	3:1	ST-5	30	124	21.5	
FL-15	C-2	P-6	4:1	DBP	20	68	20.0	
FL-16	C-5	P-6	6:1	-	-	87	19.8	

り色楽に対して

色素ラテックスにおいて用いられた安定剤及び溶媒 【化11】 [0064]

ST

TCP リン酸トリクレシル DBP フタル酸ジプチル

【実施例】実施例1

[0065]

38.5m1のジエチレングリコール、1.2m1のエチレングリコールモノメチルエーテル、1gのノニオン性ノニレンオキシボリグリシドールの20重量%水溶液及び60.3m1の脱イオン水を100m1の色素溶液下Lー1に連続して加える。混合物を超音波浴中で10分間撹拌し、遠心し、 0.45μ mの孔径のマイクロフィルターを通して遮過する。調整済みのイエローインキが得られる。

【0066】 <u>実施例2</u>

40 40.2mlのジエチレングリコール、0.9mlのエチレングリコールモノメチルエーテル、1gのノニオン性ノニレンオキシポリグリシドールの20重量%水溶液及び62.9mlの脱イオン水を100mlの色素溶液FL-2に連続して加える。混合物を超音波浴中で10分間撹拌し、遠心し、0.45μmの孔径のマイクロフィルターを通して滤過する。調整済みのマゼンタインキが得られる。

【0067】 <u>実施例3</u>

37.6mlのジエチレングリコール、1.5mlのエ 50 チレングリコールモノメチルエーテル、1gのノニオン 性ノニレンオキシポリグリシドールの20重量%水溶液 及び61.9mlの脱イオン水を100mlの色素溶液 FL-15に連続して加える。混合物を超音波浴中で1 0分間撹拌し、遠心し、0.45μmの孔径のマイクロ フィルターを通して遮過する。調整済みのシアンインキ が得られる。

【0068】 実施例4

50. 4mlのFL-1、14. 8mlのFL-2及び 34.8mlのFL-15を一緒に激しく撹拌し、3 レングリコールモノメチルエーテルならびに60.3m 1の脱イオン水と連続して合わせる。混合物を超音波浴 中で10分間撹拌し、試料をいずれかの可能なカラーキ ャスト (colour cast) に関して調べる。次 いで混合物を遠心し、孔径が 0. 45μmのマイクロフ ィルターを通して濾過する。調整済みのブラックインキ が得られる。

【0069】実施例5

50. 9mlのFL-3、15. 1mlのFL-12及

び34.0mlのFL-14を用いる以外は実施例4と 同じ。

【0070】<u>試験:</u>インキをそれぞれEpson St ylus 500インキカートリッジ中に入れる。標準 的80g/m¹紙上に360dpiの解像度で印刷を行 う。それぞれの試験画像は10、25、50及び100 %の色濃度において10×50mm^tのカラーフィール ド (colour fields) を含有する。

【0071】<u>耐水性:</u>15分の乾燥の後に、試験画像を 8. 4 m l のジエチレングリコール、1. 3 m l のエチ 10 25℃において脱イオン水中に0. 2、1、5、10及 び60分間沈め、色が流れ落ちた程度を鑑定することに より、評価を行う。等級付け: K、可視の流れ落ちな し;L、カラーフィールドの回りにわずかな余白;S、 色の重大な流れ落ち。標準E:それぞれのEpson Stylus 500カラーインキの30%からの混合 グレー (ファイル値 (filevalue)).

[0072]

【表3】

時間	実施例1	2	3	4	5	E (標準)	
0.2 分	ĸ	ĸ	K	K	K	L	
ī 分	к	K	K	к	к	S	
5 分	K	κ	K	K	К	S	
10 S	к	κ	K	K	ĸ	S	
60 分	K	ĸ	к	κ	L	S	

試験画像を40℃/95%相対湿度において3日間保存 することにより、湿気に対する抵抗性をさらに調べた。 この試験の間、実施例1~5においては変化が起こらな かった。標準のEはすべてのカラーフィールドの回りに 明白なカラーフリンジ (colour fringe s) を示した。

【0073】 乾燥: 0、2及び5分後に1枚の標準的白

紙を印刷された試験画像の上に置き、次いでゴムローラ ーを用いて4kg/cm²で巻く。適用されたシート上 への色の転移を評価する。標準Eは上記の通りである。 等級付け: K、色の転移なし; L、わずかな色の転移; 40 S₁、カラーxの重大な色の転移。

[0074]

【表 4 】

時間	実施例 1	2	3	4	5	E(標準)
0 分	K	K	K	K	L	S _*
2分	K	K	K	K	K	S
5分	K	K	K	Ķ	K	S _{re-}

<u>光堅牢性</u>:試験画像を 14.4×10^4 ルクスの光に10/10秒の明/暗サイクルで暴露する。100%のフィールドにおける濃度の損失を測定する。標準Eは上記

実施例 1 2 ΔD(%) 12 10 の通りである。

[0075]

8

【表 5 】 3 4 5 E(標準)

ブリード: すべてのブリンターのカラーカートリッジに上記のカラーインキ $1 \sim 3$ を満たし、色が一緒に流れ落ちる程度を評価する。この目的で、それぞれの色のフィールドに第 2 の色の三角形が印刷されている特別な試験画像を印刷する(角 0 *、4 5 *及び 9 0 *)。ブリード

<u>ブリード</u>: すべてのブリンターのカラーカートリッジに 20 を 1 (非常に優れた鮮鋭な色分解) から 5 (非常に劣っ上記のカラーインキ $1 \sim 3$ を満たし、色が一緒に流れ落 た鮮鋭でない色境界) まで等級付けする。

45

[0076]

14

【表 6】

	三角形の 実施例	1	2	3	4
フィールドの 実施例	1	-	1	2	1
	2	1	-	1	1
	3	1	1	-	ľ
	4	2	2	1	-

実施例 6

色素溶液 FL-1(160m1)を40m1のアセトンで希釈し、撹拌する。得られる溶液をカスケードキャスターを用いて $160g/m^{1}$ ゲージの板紙上に流延する。適用: $5\mu m$ 湿潤。40 の温度で空気を用いて乾燥した後、片側に耐水性コーティングが設けられている黄色の板紙が得られる。

【0077】 実施例7

 $10 \mu \text{ m}$ ゲージのポリエステルフィルム上に流延を行う以外は実施例 6 と同様

【0078】実施例6及び7の材料を25℃において脱イオン水中に4時間沈める。両方の場合に色の変化も剥離も起こらない。

【0079】該材料を例えば包装の目的で用いることが 50 生成物がポリウレタン、ポリエステル、ポリアミド、ホ

できる。本発明の主たる特徴及び態様は以下の通りである

【0080】1. イオン的に修飾された色素配合ポリマ 40 一の粒子の分散液から成ることを特徴とするインキジェットインキ。

【0081】2. イオン的に修飾されたボリマーがイオノマー性付加重合もしくは重縮台生成物であることを特徴とする上記1項に記載のインキジェットインキ。

【0082】3. イオノマー性付加重合もしくは重縮台生成物の各100gが4~180ミリ当鼠のイオン性基もしくはイオン性基に転換可能な基を含有していることを特徴とする上記2項に記載のインキジェットインキ。 【0083】4. イオノマー性付加重台もしくは重縮台生は物がポリウトなショナトエステリーギリストを

リウレア、ボリカーボネート、ボリアセタール、ボリエーテル、ポリエステルボリウレタン、ボリエーテルボリウレタン又はボリエステルボリウレアであることを特徴とする上記 2 項に記載のインキジェットインキ。

【0084】5. イオン的修飾が-SO,及び/又は-COO 基を含むことを特徴とする上記1項に記載のインキジェットインキ。

【0085】6. イオン的に修飾されたポリマーに対して2~200重量%の量で色素を用いることを特徴とする上記1項に記載のインキジェットインキ。

【0086】7.分散粒子が150nm未満の平均粒度 (直径)を有することを特徴とする上記1項に記載のインキジェットインキ。

【0087】8. 写真的カラーカプラー及びカラー写真 現像薬から色素が生成することを特徴とする上記1項に 記載のインキジェットインキ。

【0088】9. 色素が式

[0089] 【化12】

$$K = N - R^{3}$$

「式中、Kは写真的カラーカプラー、特にイエロー、シアン又はマゼンタカプラーの残基を意味し、R,は水素 原子又はメチル基を意味し、R,は炭素数が1~4のアルキル基を意味し、R,は場合によりスルホ、ヒドロキシ、アルキルスルホニルアミノ又はアルコキシにより置換されていることができる炭素数が1~4のアルキル基を意味する」で示されるものであることを特徴とする上記1項に記載のインキジェットインキ。

【0090】10. イオン的に修飾された色素配合ポリマーの粒子の分散液でコーティングされた支持体材料。

フロントページの続き

(72)発明者 シユテフアン・ヘルマン ドイツ53123ポン・フエルデイナント ーポルシエーシュトラーセ40アー