MATHEMATICS II (MA150)

MCQs (ODE, Laplace Transformation and Linear Algebra)

* Required

1.	Email *				

2. Upload your response sheets in PDF for with file name as your Enrolment number with in stipulated time. [Max file size is 10 MB.]

Files submitted:

3. Answer the following question, its about columns of A matrix :-

1 point

which of the following is/are perpendicular to the columns of A, where $A = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \end{bmatrix}$

- (a) (1, -1, 1, 0, 0)
- (b) (1, -1, 0, 1, 1)
- (c) (0,0,2,-2,2)
- (d) (-3, 3, -2, -1, 1)

- a,b,c
- a,c,d
- b,c,d
- a,d

4. 1 point

The determinant of the matrix

2022	2021	2021	2021
2022	2022	2021	2021
2022	2022	2022	2021
2022	2022	2022	2022

Mark only one oval.

- 2021
- 2022
- 4043

5. 1 point

Let
$$M=\begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ 0 & 1 \end{bmatrix}$$
 and $x=\begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Then $\lim_{n\to\infty} M^n x$

- odoes not exist
- (1,2)
- (2,4)
- (3,4)

What is the projection of $b = \begin{bmatrix} 4 \\ 4 \\ 6 \end{bmatrix}$ onto the column space of $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Mark only one oval.

- (2,4,6)
- (2,2,4)
- (1,3,4)
- (1,1,2)
- 7. 1 point

Which of the following is/are orthogonal matrices.

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}. C = \begin{bmatrix} -1 & 4 & 2 \\ 4 & -1 & 4 \\ 2 & 4 & -1 \end{bmatrix}, D = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- ____ A,B
- A,C
- B,C,D
- ____ A,D

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Mark only one oval.

- 0,1,2,1
- 0,0,0,4
- 0,0,2,2
- 0,0,1,3
- 9. State True or False:

Laplace transform of
$$x^{\frac{7}{2}}$$
 is $\frac{105}{16}s^{-\frac{9}{2}}$.

- True
- False

Laplace transform of f(x) given in the following graph

exists and is equal to $\frac{1}{s} \tanh \frac{s}{2}$.

Mark only one oval.

$\overline{}$		
	- 1	Truc
(- /	Hue

		— - 1	١
()	rа	ISE

11. 1 point

Let V be the subspace of 11 – dimensional vector space R^{11} and dim(V) = 7. How many different size(dimensional) of orthogonal subspace for V is/are possible?

Mark only one oval.

()	-

$$\bigcirc$$
 2

12. What is your Name? *

13. What is your Enrolment number? *

14. The determinant of I+A is I+det(A)

1 point

True	е
------	---

15.	The volume of a box that has edges $(0, 0, 0)$, $(3, 1, 1)$, $(1, 3, 1)$ and $(1, 1, 3)$.	1 point
	Mark only one oval.	
	9 15 5 20	
16.	(More than one option may be correct. Mark will be awarded only if all the correct options are selected.) Suppose the matrix X has columns which are eigenvectors of A. If the columns are linearly independent, then	1 point
	Check all that apply.	
	A is diagonalizable	
	X is diagonalizable A is invertible	
	X is invertible	
17.		1 point
	$\mathbb{L}^{-1}\left(\frac{1}{s(s^2+4)}\right) \text{ is } \frac{1}{4} - \cos 2x.$	
	Mark only one oval.	

True False

$$\mathbb{L}^{-1}\left(\frac{s+1}{s^2-9}\right) \text{ is } \frac{3\cosh 3x+\sinh 3x}{3}.$$

Mark only one oval.

_	_		
		_	
()	l rı	10
\	/	111	שכ

False

19. 1 point

Does $\int_0^x te^t f(x-t)dt$ unique soluton of the initial value ODE y''-2y'+y=f(x) with $y(0)=0,\quad y'(0)=0.$

Mark only one oval.

/) T	
1	/	LIIG

False

20. 1 point

If the differential equation $(2x^2+by^2)dx+cxydy=0$ is made exact by multiplying the integrating factor $\frac{1}{x^2}$. Then the relation between b and c is

Mark only one oval.

2c=b

C=b

2b+c=0

____ b+2c=0

If $y=3e^{2x}+e^{-2x}-\alpha x$ is the solution of the initial value problem $\frac{d^2y}{dx^2}+\beta y=4\alpha x,\ y(0)=4$ and y'(0)=1, where $\alpha,\ \beta\in\mathbf{R}$. Then

Mark only one oval.

$$\alpha=3,\beta=4$$

 $\alpha=-3,\beta=4$

Option 1

Option 2

$$\alpha=3,\beta=-4$$

 $\alpha=-3,\beta=-4$

Option 3

Option 4

22.

1 point

The solution of $x \log x \frac{dy}{dx} = y, y(e) = 1$ is

Mark only one oval.

none

defined for all x in R
positive for all x in (1, infinity)
negative for all x in (1, infinity)

Let $y_1,\ y_2$ be two solutions of $\frac{d^2y}{dx^2}+y\sin x=0,\ 0\leq x\leq 1.$ Let $g(x)=W(y_1,y_2)$ (wronskain of y_1 and y_2). Then

Mark only one oval.

$$g'(x) > 0 \forall x \in [0, 1]$$

 $g'(x) < 0 \forall x \in [0,1]$

Option 1

Option 2

$$g'(x) = 0 \forall x \in [0, 1]$$

 $g'(x) \neq 0 \forall x \in [0,1]$

Option 3

Option 4

Let $y_1,\ y_2$ defined on [0,1] be two solutions of $\frac{d^2y}{dx^2}+\frac{dy}{dx}+y=0$. Let W(x) be the wronskain of y_1 and y_2 and satisfying $W\left(\frac{1}{2}\right)=0$. Then

Mark only one oval.

$$W(x) > 0 \forall x \in [0, 1]$$

$$W(x) < 0 \forall x \in [0, 1]$$

Option 1

Option 2

$$W(x) = 0 \forall x \in [0,1]$$

$$W(x) \neq 0 \forall x \in [0, 1]$$

Option 3

Option 4

This content is neither created nor endorsed by Google.

Google Forms