Flujo de trabajo y métricas de evaluación para clasificación

Germán Rosati

IDAES/UNSAM - CONICET - PIMSA

12 de Noviembre de 2020

Introducción

- Momento de pasar en limpio
- ¿Cuáles son las etapas básicas del flujo de trabajo de un proceso de entrenamiento de un modelo?

 El flujo que vamos a ver es uno de los múltiples posibles

Esquema general

Evaluando modelos de clasificación

Evaluando modelos de clasificación

	True condition					
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\sum Condition positive}{\sum Total population}$	Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Predicted condition positive}}$	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma}{\Gamma}$ True negative $\frac{\Sigma}{\Gamma}$ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma}{\Sigma}$ False positive $\frac{\Sigma}{\Sigma}$ Condition negative	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate $(TNR) = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	ratio (DOR) = $\frac{LR+}{LR-}$	2 · Precision · Recall Precision + Recall

Evaluando modelos de clasificación

