

DESCRIPTIVE STATISTICS

TOPIC OUTLINE

Measures of Variability

Range and Interquartile Range

Variance and Standard Deviation

Coefficient of Variation

Measures of variability (or dispersion) describe how spread out or scattered the data points relative to the central tendency (mean, median, or mode).

Dartboard Analogy

Measures of variability (or dispersion) describe how spread out or scattered the data points relative to the central tendency (mean, median, or mode).

Normal Distribution

RANGE AND INTERQUARTILE RANGE

RANGE

<u>Boxplot</u>

Range is the simplest measure of variability and is calculated as the difference between the maximum and minimum values in a dataset.

Formula

range = maximum value – minimum value

INTERQUARTILE RANGE

The <u>interquartile range (IQR)</u> measures the spread of the middle 50% of the data, reducing the influence of outliers.

Formula

$$IQR = Q_3 - Q_1$$

<u>where</u>

 Q_1 (first quartile) is the median of the lower half of the data (25%).

 Q_3 (third quartile) is the median of the upper half of the data (75%).

<u>Boxplot</u>

OUTLIERS

Outliers are data points that lie significantly outside the typical range of the rest of the dataset.

<u>Formula</u>

Lower limit =
$$Q_1 - 1.5 IQR$$

Upper limit =
$$Q_3 + 1.5 IQR$$

Boxplot

The dataset provided contains the exam grades of 12 students. Calculate the <u>range</u> and <u>interquartile range</u> (IQR) to analyze the spread and variability of the grades.

solution

Exam Performance

Student	Grade	
1	3.5	
2	6.7	
3	7	
4	7.4	
5	7.8	
6	8.2	
7	8.5	
8	8.8	
9	9	
10	9.1	
11	9.4	
12	9.8	

VARIANCE AND STANDARD DEVIATION

VARIANCE

Population Variance

$$\sigma^2 = \frac{\sum_{i=1}^N (x_i - \mu)^2}{N}$$

<u>Variance</u> measures the <u>average squared deviation</u> of each data point from the mean.

Sample Variance

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

STANDARD DEVIATION

Population Standard Deviation

$$\sigma = \sqrt{\sigma^2}$$

The **standard deviation** is the **square root** of variance.

Sample Standard Deviation

$$s = \sqrt{s^2}$$

The dataset provided contains the sugar content (in grams) per serving for 10 popular breakfast cereals.

Calculate the <u>variance</u> and <u>standard deviation</u> to measure the spread or variability in the sugar content across these cereals.

Breakfast Cereal

Brand	Sugar		
A	12		
В	9		
С	15		
D	8		
E	10		
F	11		
G	13		
Н	7		
I	14		
J	6		

solution

POOLED STANDARD DEVIATION

Pooled standard deviation is a weighted **average** of the standard deviations from two or more groups.

Formula

$$\overline{\sigma}_{pooled} = \sqrt{\frac{\sigma_1^2 + \sigma_2^2 + \cdots \sigma_k^2}{k}}$$

where

k = number of groups

Variances add

$$\sigma_{total}^2 = \sigma_1^2 + \sigma_2^2 + \cdots \sigma_k^2$$

Standard deviations do not

$$\sigma_{total} \neq \sigma_1 + \sigma_2 + \cdots \sigma_k$$

The dataset provided contains the battery life (in hours) for smartphones from different models.

Calculate the **pooled standard deviation** to measure the combined variability in battery life across these models.

solution

Battery Life

Model	Hours		
A	12.5		
A	12.8		
A	12.7		
A	13.3		
A	12.6		
В	13.5		
В	14.1		
В	13.9		
В	14.3		
В	13.7		
С	11.8		
С	11.9		
С	12.1		
С	12.2		
С	11.6		

COEFFICIENT OF VARIATION

COEFFICIENT OF VARIATION

Population Coefficient of Variation

$$c_v = \frac{\sigma}{\mu}$$

Coefficient of variation (c_v) is a relative measure of variability, expressed as the <u>ratio</u> of the standard deviation to the mean.

Sample Coefficient of Variation

$$\hat{c}_v = \frac{s}{\overline{x}}$$

The provided dataset includes ice cream prices listed in both USD and PHP. Calculate the <u>standard</u> <u>deviation</u> and <u>coefficient of variation</u> for each currency to analyze the variability in prices.

<u>solution</u>

Ice Cream Price List

Brand	Price	(USD)	Price	(PHP)
Brand A	3.5		203	
Brand B	4		232	
Brand C	3.75		217.5	
Brand D	4.25		246.5	
Brand E	3.9		226.2	
Brand F	4.1		237.8	
Brand G	3.6		208.8	
Brand H	4.5		261	
Brand I	3.8		220.4	
Brand J	4.15		240.7	

LABORATORY

