Physically-Based Simulation Proseminar

MEng. Quang Ha Van

Winter semester 2017

First Programming Assignment

Simulation of simple mass-spring examples

Hanging triangle

Falling triangle

First Programming Assignment

Main tasks:

- Implement basic numerical solvers for equations of motion
- 2. Test behavior for different settings and test scene
- 3. Compare numerical with exact solution

Analytic Solution

- In simple cases analytic solution available for ODEs
- Equation of motion with damping

$$m\frac{d^2\mathbf{x}(t)}{dt^2} + \gamma \frac{d\mathbf{x}(t)}{dt} + k\mathbf{x}(t) = 0$$

In 1D case equivalent to harmonic oscillator

$$m\ddot{x}(t) + \gamma \dot{x}(t) + kx(t) = 0$$

Disregard damping

$$m\ddot{x}(t) + kx(t) = 0$$

Disregard damping

$$m\ddot{x}(t) + kx(t) = 0$$

$$\ddot{x}(t) + \frac{k}{m}x(t) = 0$$

Disregard damping

$$m\ddot{x}(t) + kx(t) = 0$$

$$\ddot{x}(t) + \omega^2 x(t) = 0$$

$$\omega = \sqrt{\frac{k}{m}}$$

Disregard damping

$$m\ddot{x}(t) + kx(t) = 0$$

$$\ddot{x}(t) + \omega^2 x(t) = 0$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$x(t) = \sin \omega t$$

Disregard damping

$$m\ddot{x}(t) + kx(t) = 0$$

$$\ddot{x}(t) + \omega^2 x(t) = 0$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$x(t) = \sin \omega t$$

$$\dot{x}(t) = \omega \cdot \cos \omega t$$

Disregard damping

$$m\ddot{x}(t) + kx(t) = 0$$

$$\ddot{x}(t) + \omega^2 x(t) = 0$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$x(t) = \sin \omega t$$

$$\dot{x}(t) = \omega \cdot \cos \omega t$$

$$\ddot{x}(t) = -\omega^2 \cdot \sin \omega t$$

Disregard damping

$$m\ddot{x}(t) + kx(t) = 0$$

$$\ddot{x}(t) + \omega^2 x(t) = 0$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$x(t) = \cos \omega t$$

$$\dot{x}(t) = -\omega \cdot \sin \omega t$$

$$\ddot{x}(t) = -\omega^2 \cdot \cos \omega t$$

Disregard damping

$$m\ddot{x}(t) + kx(t) = 0$$

$$\ddot{x}(t) + \omega^2 x(t) = 0$$

$$\omega = \sqrt{\frac{k}{m}}$$

General solution

$$x(t) = A\cos\omega t + B\sin\omega t$$

Consider damping in equation

$$m\ddot{x}(t) + \gamma \dot{x}(t) + kx(t) = 0$$

Consider damping in equation

$$m\ddot{x}(t) + \gamma \dot{x}(t) + kx(t) = 0$$

General solution (underdamped system)

$$x(t) = e^{-\omega_r t} \left(A \cos \overline{\omega} t + B \sin \overline{\omega} t \right)$$

$$\omega_r = \frac{\gamma}{2m}$$

$$\overline{\omega} = \sqrt{\omega^2 - \omega_r^2}$$

$$\omega = \sqrt{\frac{k}{m}}$$

Consider damping in equation

$$m\ddot{x}(t) + \gamma \dot{x}(t) + kx(t) = 0$$

General solution (underdamped system)

$$x(t) = e^{-\omega_r t} \left(A \cos \overline{\omega} t + B \sin \overline{\omega} t \right)$$

$$\omega_r = \frac{\gamma}{2m}$$

$$\overline{\omega} = \sqrt{\omega^2 - \omega_r^2}$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$0.2$$

$$0.4$$

$$0.6$$

Consider damping in equation

$$m\ddot{x}(t) + \gamma \dot{x}(t) + kx(t) = 0$$

• General solution (underdamped system) $\gamma < 2\sqrt{mk}$

$$x(t) = e^{-\omega_r t} \left(A \cos \overline{\omega} t + B \sin \overline{\omega} t \right)$$

$$\omega_r = \frac{\gamma}{2m}$$

$$\overline{\omega} = \sqrt{\omega^2 - \omega_r^2}$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$0.2$$

$$0.4$$

$$0.6$$

Consider damping in equation

$$m\ddot{x}(t) + \gamma \dot{x}(t) + kx(t) = 0$$

Consider damping in equation

$$m\ddot{x}(t) + \gamma \dot{x}(t) + kx(t) = 0$$

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

Consider damping in equation

$$m\ddot{x}(t) + \gamma \dot{x}(t) + kx(t) = 0$$

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

Assume solution

$$x(t) = e^{\alpha t}$$

Consider damping in equation

$$m\ddot{x}(t) + \gamma \dot{x}(t) + kx(t) = 0$$

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

Assume solution

$$x(t) = e^{\alpha t}$$

$$x(t) = e^{\alpha t}$$
$$\dot{x}(t) = \alpha e^{\alpha t}$$

$$\ddot{x}(t) = \alpha^2 e^{\alpha t}$$

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0$$
 $\omega = \sqrt{\frac{k}{m}}$ $\omega_r = \frac{\gamma}{2m}$

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

$$\alpha^2 e^{\alpha t} + 2\omega_r \alpha e^{\alpha t} + \omega^2 e^{\alpha t} = 0$$

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

$$\alpha^2 e^{\alpha t} + 2\omega_r \alpha e^{\alpha t} + \omega^2 e^{\alpha t} = 0$$

$$e^{\alpha t} (\alpha^2 + 2\omega_r \alpha + \omega^2) = 0$$

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

$$\alpha^2 e^{\alpha t} + 2\omega_r \alpha e^{\alpha t} + \omega^2 e^{\alpha t} = 0$$

$$e^{\alpha t} (\alpha^2 + 2\omega_r \alpha + \omega^2) = 0$$

$$\Leftrightarrow \alpha^2 + 2\omega_r \alpha + \omega^2 = 0$$

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

$$\alpha^2 e^{\alpha t} + 2\omega_r \alpha e^{\alpha t} + \omega^2 e^{\alpha t} = 0$$

$$e^{\alpha t} (\alpha^2 + 2\omega_r \alpha + \omega^2) = 0$$

$$\Leftrightarrow \alpha^2 + 2\omega_r \alpha + \omega^2 = 0 \qquad x^2 + px + q = 0$$

$$x = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

$$\alpha^2 e^{\alpha t} + 2\omega_r \alpha e^{\alpha t} + \omega^2 e^{\alpha t} = 0$$

$$e^{\alpha t} (\alpha^2 + 2\omega_r \alpha + \omega^2) = 0$$

$$\Leftrightarrow \alpha^2 + 2\omega_r \alpha + \omega^2 = 0$$

$$\alpha = \omega_r \pm \sqrt{\omega_r^2 - \omega^2}$$

Insert into equation

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

$$\alpha^2 e^{\alpha t} + 2\omega_r \alpha e^{\alpha t} + \omega^2 e^{\alpha t} = 0$$

$$e^{\alpha t} (\alpha^2 + 2\omega_r \alpha + \omega^2) = 0$$

$$\Leftrightarrow \alpha^2 + 2\omega_r \alpha + \omega^2 = 0$$

$$\alpha = \omega_r \pm \sqrt{\omega_r^2 - \omega^2}$$

$$\omega_r^2 < \omega^2$$

Insert into equation

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

$$\alpha^2 e^{\alpha t} + 2\omega_r \alpha e^{\alpha t} + \omega^2 e^{\alpha t} = 0$$

$$e^{\alpha t} (\alpha^2 + 2\omega_r \alpha + \omega^2) = 0$$

$$\Leftrightarrow \alpha^2 + 2\omega_r \alpha + \omega^2 = 0$$

$$\alpha = \omega_r \pm \sqrt{\omega_r^2 - \omega^2}$$

Insert into equation

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

$$\alpha^2 e^{\alpha t} + 2\omega_r \alpha e^{\alpha t} + \omega^2 e^{\alpha t} = 0$$

$$e^{\alpha t} (\alpha^2 + 2\omega_r \alpha + \omega^2) = 0$$

$$\Leftrightarrow \alpha^2 + 2\omega_r \alpha + \omega^2 = 0$$

$$\alpha = \omega_r \pm \sqrt{\omega_r^2 - \omega^2}$$

Insert into equation

$$\ddot{x}(t) + 2\omega_r \dot{x}(t) + \omega^2 x(t) = 0 \qquad \omega = \sqrt{\frac{k}{m}} \qquad \omega_r = \frac{\gamma}{2m}$$

$$\alpha^2 e^{\alpha t} + 2\omega_r \alpha e^{\alpha t} + \omega^2 e^{\alpha t} = 0$$

$$e^{\alpha t} (\alpha^2 + 2\omega_r \alpha + \omega^2) = 0$$

$$\Leftrightarrow \alpha^2 + 2\omega_r \alpha + \omega^2 = 0$$

$$\alpha = \omega_r \pm \sqrt{\omega_r^2 - \omega^2}$$

$$\omega_r^2 < \omega^2$$

$$\gamma < 2\sqrt{mk}$$

Extend solution with gravity forces and initial length

Extend solution with gravity forces and initial length

$$x(t) = e^{-\omega_r t} \left(A \cos \overline{\omega} t + B \sin \overline{\omega} t \right) - \frac{mg}{k} - L$$

$$x(0) = -L$$

Extend solution with gravity forces and initial length

$$x(t) = e^{-\omega_r t} \left(A \cos \overline{\omega} t + B \sin \overline{\omega} t \right) - \frac{mg}{k} - L$$

Determine parameters A and B based on initial values

$$x(0) = -L$$
$$\dot{x}(0) = 0$$

$$\dot{x}(0) = 0$$

Extend solution with gravity forces and initial length

$$x(t) = e^{-\omega_r t} \left(A \cos \overline{\omega} t + B \sin \overline{\omega} t \right) - \frac{mg}{k} - L$$

 Determine parameters A and B based on initial values

$$\dot{x}(0) = 0$$
 No kinetic energy (mass at rest)

$$x(0) = -L$$

 \mathbf{p}_0

Proseminar Schedule

Date	Topic	Remark
5.10.	Introduction	Programming assignment 1
12.10.	Programming support and advice	
19.10.	Programming support and advice	
26.10	(No Proseminar)	Hand-in PA1
2.11	(No Proseminar)	
9.11.	Presentation of solutions	Programming assignment 2
16.11.	Programming support and advice	
23.11.	Programming support and advice	
30.11.	Presentation of solutions	Programming assignment 3, Hand-in PA2
7.12.	Programming support and advice	
14.12.	Programming support and advice	
Christmas break		
11.1.	Presentation of solutions	Project proposal, Hand-in PA3
18.1.	Programming support and advice	
25.1.	Programming support and advice	
1.2.	Project presentations	Submission final project

