K-means og PageRank

FYS-2021, 18.10.24

Bakgrunn for algoritme

k "gjennomsnitt" ved
start (i dette tilfellet k =
3) blir tilfeldig generert
innenfor data-domenet
(vist i fargene rød, grønn
og blå).

k grupper lages ved å
assosiere hver
observasjon med det
nærmeste
gjennomsnittet.
Partisjonene her
representerer Voronoidiagrammet generert av
gjennomsnittene.

Sentroiden av hvert av de *k* gruppene blir det nye gjennomsnittet.

Steg 2 og 3 repeteres til konvergens har blitt nådd (sentroidene flytter seg ikke).

Animasjon

NB: Legg merke til sentroide-punktet som er plassert i tyngdepunketet til hver cluster For hver bluster k, definer in binor maske kluste -D

bi = { 1, x filhører lehister k 0, de som i htre.

1) Initialiser Emus to Krandom x' punhtur

Hererer til 2a) For alle xi i datasett:
"lik" unding a) l'nitialiser bi = 0

eller mat iterasjones

a) l'nitialiser b'=0 b) Finn h slik at min || xi-mn || c) Sett || tk = 1

2b) For able m_k , h = 1, ..., K oppdater however sentre (centroider) $k = 1, 2, 3 \qquad m_k = \sum_{i=0}^{N} b_i x^i / \sum_{i=1}^{N} b_i x^i = \sum_{i=0}^{N} b_i x^i / \sum_{i=1}^{N} b_i x^i = \sum_{i=1}^{N} b_i x^i + \sum_{i=1}^{N} b_i x^i = \sum_{i=1}^{N} b_i$

Pagerank algorithm

- Agents follow hyperlinks randomly $Y_{t+1} = GY_t$
 - Add +1 when a page is visited
- To avoid being stuck with pages without links -> Add a probability to randomly jump to another page
 - $G = (1 \alpha)H + \alpha B$

$$\bullet \ B = \frac{1}{n} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$

- *H* is the transition matrix
- α is the "weight" of random walk. Small value means little probability of visiting a random page

Problem 2: Adjacency matrix

Problem 2: transition matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 6 & 1 & 0 \end{bmatrix}$$

$$H = \begin{pmatrix} 0 & 1/3 & 1/3 \\ 0 & 0 & 6 & 1 \\ 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \end{pmatrix}$$

$$G = (1 - \alpha)H + \alpha B$$

Power method

- Take an initial vector Y_0 , also called π (can be random generated)
- Apply the Google matrix G n times (follows from $Y_{m+1} = GY_m$)
 - After each iteration, normalize Y $(Y_{n+1} = \frac{GY_m}{\|GY_m\|})$
 - Then this will converge: $Y_m \to S$, where S = GS (steady state)
 - S is then the eigenvector with eigenvalue 1
- The entries in the S vector will rank the various pages!