SISTEMAS LINEARES E MATRIZES

Henrique Furia Silva (henrique.furia@fatec.sp.gov.br)

1 Sistemas lineares

Vamos começar com um exemplo

(i)	$3 \cdot x + 5 \cdot y = 13$	
(ii)	$7 \cdot x - 2 \cdot y = 3$	

1.1 Método da substituição

Neste método, isolamos uma das variáveis e substituímos na outra equação

(i)	$3 \cdot x + 5 \cdot y = 13$	\Rightarrow	$3 \cdot x = 13 - 5 \cdot y$
(ii)	$7 \cdot x - 2 \cdot y = 3$		$x = \frac{13 - 5 \cdot y}{3}$

Substituindo-se na outra equação:

(ii)
$$7 \cdot \left(\frac{13 - 5 \cdot y}{3}\right) - 2 \cdot y = 3 \qquad \Longrightarrow \qquad \frac{7 \cdot 13 - 7 \cdot 5 \cdot y}{3} - 2 \cdot y = 3$$

Exercício de estudo: concluir esta resolução.

1.2 Método do escalonamento

Vamos efetuar uma combinação linear das equações para eliminar uma das variáveis. Para eliminar (y) e encontrar (x), escolhemos:

$2 \cdot (i)$	$6 \cdot x + 10 \cdot y = 26$		
5 · (ii)	$35 \cdot x - 10 \cdot y = 15$		
(+)	$41 \cdot x = 41$	\Rightarrow	x = 1

Para eliminar (x) e encontrar (y) de maneira independente, escolhemos:

7 · (i)	$21 \cdot x + 35 \cdot y = 91$		
3 · (ii)	$21 \cdot x - 6 \cdot y = 9$		
(-)	$41 \cdot y = 91 - 9$	\Rightarrow	y = 2

Vamos verificar o resultado substituindo no sistema de equações a solução obtida.

(i)	$3 \cdot 1 + 5 \cdot 2 = 13$	\Rightarrow	3 + 10 = 13
(ii)	$7 \cdot 1 - 2 \cdot 2 = 3$	\Rightarrow	7 - 4 = 3

Obtivemos sentenças verdadeiras, o que nos permite concluir que o cálculo pretérito está correto.

1.3 Resolvendo usando o computador para operar com matrizes

O sistema original pode ser escrito utilizando matrizes:

(i)	$3 \cdot x + 5 \cdot y = 13$	۲3	5] (^x) _ (13)
(ii)	$7 \cdot x - 2 \cdot y = 3$	L ₇	-2] $\{y\} = \{3\}$

A matriz dos coeficientes lineares, o vetor das variáveis e o vetor dos termos independentes são representados por:

,			 	 	
	$A \stackrel{\text{def}}{=} \begin{bmatrix} 3 \\ 7 \end{bmatrix}$	$\begin{bmatrix} 5 \\ -2 \end{bmatrix}$	$X \stackrel{\text{\tiny def}}{=} {\scriptsize egin{pmatrix} \chi \ \psi \end{matrix}}$	$B \stackrel{\text{def}}{=} \begin{Bmatrix} 13 \\ 3 \end{Bmatrix}$	

O sistema pode ser representado pela seguinte equação matricial:

$$[A] \cdot \{X\} = \{B\}$$

Para resolvê-la no caso em que a matriz possui inversa, basta multiplicar à esquerda

$[A^{-1}] \cdot [A] \cdot \{X\} = [A^{-1}] \cdot \{B\}$	\Rightarrow	$[\mathbb{I}]_{2\times 2} \cdot \{X\}_{2\times 1} = [A^{-1}]_{2\times 2} \cdot \{B\}_{2\times 1}$
	\Rightarrow	${X}_{2\times 1} = [A^{-1}]_{2\times 2} \cdot {B}_{2\times 1}$

Vamos usar o computador para obter a matriz inversa:

$$[A^{-1}] = \begin{bmatrix} \frac{2}{41} & \frac{5}{41} \\ \frac{7}{41} & \frac{-3}{41} \end{bmatrix}$$

A solução é encontrada efetuando-se o produto de matrizes:

$\{X\} = \begin{bmatrix} \frac{2}{41} & \frac{5}{41} \\ \frac{7}{41} & \frac{-3}{41} \end{bmatrix} \cdot \begin{Bmatrix} 13 \\ 3 \end{Bmatrix}$	\Rightarrow	$\{X\} = \frac{1}{41} \cdot \begin{bmatrix} 2 & 5 \\ 7 & -3 \end{bmatrix} \cdot \begin{Bmatrix} 13 \\ 3 \end{Bmatrix}$
$\{X\} = \frac{1}{41} \cdot \begin{bmatrix} 2 & 5 \\ 7 & -3 \end{bmatrix} \cdot \begin{Bmatrix} 13 \\ 3 \end{Bmatrix}$	\Rightarrow	$\{X\} = \frac{1}{41} \cdot {41 \choose 82}$
$\{x\} - \{1\}$	\rightarrow	x = 1
(A) = \(\lambda\)		y = 2

Observamos que:

$$D = a \cdot d - b \cdot c = (3) \cdot (-2) - (5) \cdot (7) = -41 \neq 0$$

1.4 Teorema de Cramer para sistemas bidimensionais

(i)	$a \cdot x + b \cdot y = m$		$\begin{bmatrix} a & b \end{bmatrix} \begin{pmatrix} x \end{pmatrix} = \begin{pmatrix} m \end{pmatrix}$
(ii)	$c \cdot x + d \cdot y = n$	\rightarrow	$\begin{bmatrix} c & d \end{bmatrix} \cdot \{y\} = \{n\}$

Vamos efetuar uma combinação linear das equações para eliminar (y) e encontrar (x):

d ⋅ (i)	$\mathbf{d} \cdot a \cdot x + \mathbf{d} \cdot \mathbf{b} \cdot y = \mathbf{d} \cdot \mathbf{m}$		
<mark>b</mark> ⋅ (ii)	$b \cdot c \cdot x + b \cdot d \cdot y = b \cdot n$		
$\frac{\mathbf{d}}{\mathbf{d}} \cdot (i) - \frac{\mathbf{b}}{\mathbf{b}} \cdot (ii)$	$d \cdot a \cdot \overline{\mathbf{x}} - b \cdot c \cdot \overline{\mathbf{x}} = d \cdot m - b \cdot n$		
	$(\mathbf{d} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{c}) \cdot \mathbf{x} = \mathbf{d} \cdot \mathbf{m} - \mathbf{b} \cdot \mathbf{n}$	\Rightarrow	$x = \frac{d \cdot m - b \cdot n}{d \cdot a - b \cdot c}$

Este quociente só pode ser escrito se o denominador for diferente de zero:

$$\mathbf{d} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{c} \neq 0$$

Vamos efetuar uma combinação linear das equações para eliminar (x) e encontrar (y):

<i>c</i> ⋅ (<i>i</i>)	$c \cdot a \cdot x + c \cdot b \cdot y = c \cdot m$		
a · (ii)	$a \cdot c \cdot x + a \cdot d \cdot y = a \cdot n$		
$a \cdot (ii) - c \cdot (i)$	$a \cdot d \cdot y - c \cdot b \cdot y = a \cdot n - c \cdot m$		
	$(a \cdot d - c \cdot b) \cdot y = a \cdot n - c \cdot m$	\Rightarrow	$y = \frac{a \cdot n - c \cdot m}{a \cdot d - c \cdot b}$

Conclusão: quando

$$D \stackrel{\text{def}}{=} \mathbf{d} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{c} \neq 0$$

É possível resolver o sistema:

(i)	$a \cdot x + b \cdot y = m$		$x = \frac{d \cdot m - b \cdot n}{d \cdot a - b \cdot c}$
(ii)	$c \cdot x + d \cdot y = n$	→	$y = \frac{a \cdot n - c \cdot m}{a \cdot d - c \cdot b}$

Vamos definir o determinante de uma matriz quadrada de ordem (2) pela fórmula:

$A \stackrel{\text{def}}{=} \begin{bmatrix} a & b \\ c & d \end{bmatrix} =$	$\Rightarrow D = \det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$	$\stackrel{\text{\tiny def}}{=} \qquad \qquad a \cdot d - c \cdot b$
---	--	--

Com isto, a solução do sistema pode ser escrita como quocientes de determinantes:

$x = \frac{d \cdot m - b \cdot n}{d \cdot a - b \cdot c}$	\Rightarrow	$x = \frac{\begin{vmatrix} m & b \\ n & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}$
$y = \frac{a \cdot n - c \cdot m}{a \cdot d - c \cdot b}$		$y = \frac{\begin{vmatrix} a & m \\ c & n \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}$

Quanto à permutação de equações:

(ii)	$d \cdot y + c \cdot x = n$		[<mark>d c</mark>] (y) _ (n)
(i)	$b \cdot y + a \cdot x = m$	\Rightarrow	$\begin{bmatrix} b & a \end{bmatrix} \cdot \{x\} = \{m\}$

A solução obtida para o sistema é a mesma.

$y = \frac{\begin{vmatrix} n & c \\ m & a \end{vmatrix}}{\begin{vmatrix} d & c \\ b & a \end{vmatrix}}$	⇒	$y = \frac{n \cdot a - m \cdot c}{d \cdot a - b \cdot c}$
$x = \frac{\begin{vmatrix} d & n \\ b & m \end{vmatrix}}{\begin{vmatrix} d & c \\ b & a \end{vmatrix}}$	⇒	$x = \frac{d \cdot m - b \cdot n}{d \cdot a - b \cdot c}$

2 Sistemas tridimensionais

(i)	$x + 2 \cdot y - 2 \cdot z = 7$
(ii)	$-3 \cdot x + 7 \cdot y + 6 \cdot z = 5$
(iii)	$2 \cdot x + y + 2 \cdot z = 2$

2.1 Métodos de escalonamento

Vamos fazer uma combinação linear de equações:

(i)	$3 \cdot x + 3 \cdot 2 \cdot y - 3 \cdot 2 \cdot z = 3 \cdot 7$	
(ii)	$-3 \cdot x + 7 \cdot y + 6 \cdot z = 5$	

(i)	$3 \cdot x + 6 \cdot y - 6 \cdot z = 21$		
(ii)	$-3 \cdot x + 7 \cdot y + 6 \cdot z = 5$		
(i) + (ii)	$13 \cdot y = 26$	\Rightarrow	y = 2

Vamos substituir o valor da variável encontrada nas equações do sistema:

(i)	$x + 2 \cdot 2 - 2 \cdot z = 7$
(ii)	$-3 \cdot x + 7 \cdot 2 + 6 \cdot z = 5$
(iii)	$2 \cdot x + 2 + 2 \cdot z = 2$

(i)	$x + 4 - 2 \cdot z = 7$
(ii)	$-3 \cdot x + 14 + 6 \cdot z = 5$
(iii)	$2 \cdot x + 2 + 2 \cdot z = 2$

São (3) equações para (2) incógnitas:

(i)	$x-2\cdot z=3$
(ii)	$-3 \cdot x + 6 \cdot z = -9$
(iii)	$2 \cdot x + 2 \cdot z = 0$

Isto significa que uma das equações é redundante. As equações $\{(i);(ii)\}$ são linearmente dependentes; percebemos que:

$$(ii) = (-3) \cdot (i)$$

Neste caso, qualquer uma delas pode ser descartada.

Vou descartar a equação que facilitar nas contas, ou seja, a equação (ii). Assim, o problema é reduzido a um sistema bidimensional.

(i)	$x-2\cdot z=3$		
(iii)	$2 \cdot x + 2 \cdot z = 0$		
(i) + (iii)	$3 \cdot x = 3$	\Rightarrow	x = 1

Vamos substituir em uma das equações para obter:

(i)	$1 - 2 \cdot z = 3$		
	$-2 = 2 \cdot z$	\Rightarrow	z = -1

Do ponto de vista computacional, ajuda escrever o sistema com notação matricial:

(i)	$x + 2 \cdot y - 2 \cdot z = 7$		Г 1	2	-21 (x) (7)
(ii)	$-3 \cdot x + 7 \cdot y + 6 \cdot z = 5$	⇔	-3	7	$6 \cdot \{y\} = \{5\}$
(iii)	$2 \cdot x + y + 2 \cdot z = 2$		L 2	1	$2 \mid \langle z \rangle (2)$

Para que a multiplicação de matrizes resulte no sistema linear que a gerou, é necessário que a multiplicação de matrizes seja definida de forma a executar o produto de elementos da linha da primeira matriz por elementos da coluna da segunda matriz.

2.2 Solução por inversão de matrizes

$$[A]_{3\times 3} \cdot \{X\}_{3\times 1} = \{B\}_{3\times 1}$$
 \Longrightarrow $\{X\}_{3\times 1} = [A^{-1}]_{3\times 3} \cdot \{B\}_{3\times 1}$

$$A = \begin{bmatrix} 1 & 2 & -2 \\ -3 & 7 & 6 \\ 2 & 1 & 2 \end{bmatrix} \implies A^{-1} = \begin{bmatrix} \frac{4}{39} & -\frac{1}{13} & \frac{1}{3} \\ \frac{3}{13} & \frac{1}{13} & 0 \\ -\frac{17}{78} & \frac{1}{26} & \frac{1}{6} \end{bmatrix}$$

Vamos efetuar a decomposição dos denominadores das frações em potências de números primos:

$$39 = 2^{0} \cdot 3^{1} \cdot 13^{1}$$
 $6 = 2^{1} \cdot 3^{1} \cdot 13^{0}$ $26 = 2^{1} \cdot 3^{0} \cdot 13^{1}$ $78 = 2^{1} \cdot 3^{1} \cdot 13^{1}$

Assim, o maior múltiplo que é comum a todos permitirá desaparecer com todas as frações:

$$2^1 \cdot 3^1 \cdot 13^1 = 78$$

78 · [A ⁻¹]	——————————————————————————————————————	$78 \cdot \begin{bmatrix} \frac{4}{39} & -\frac{1}{13} & \frac{1}{3} \\ \frac{3}{13} & \frac{1}{13} & 0 \\ -\frac{17}{78} & \frac{1}{26} & \frac{1}{6} \end{bmatrix}$	=	$\begin{bmatrix} 8 & -6 & 26 \\ 18 & 6 & 0 \\ -17 & 3 & 13 \end{bmatrix}$
$[A^{-1}]$	=		=	$\frac{1}{78} \cdot \begin{bmatrix} 8 & -6 & 26 \\ 18 & 6 & 0 \\ -17 & 3 & 13 \end{bmatrix}$

A solução é encontrada efetuando-se o produto de matrizes:

$\{X\} = [A^{-1}] \cdot \{B\}$	=	$\frac{1}{78} \cdot \begin{bmatrix} 8 & -6 & 26 \\ 18 & 6 & 0 \\ -17 & 3 & 13 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 5 \\ 2 \end{bmatrix}$		
$\frac{1}{78} \cdot \begin{pmatrix} 78\\156\\-78 \end{pmatrix}$	=	$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$		
		x = 1		
	\Rightarrow	y = 2		
		z = -1		

2.3 Teorema de Cramer para sistemas tridimensionais

(i)	$x + 2 \cdot y - 2 \cdot z = 7$		Г 1	2	-21	(x) (7)
(ii)	$-3 \cdot x + 7 \cdot y + 6 \cdot z = 5$	\Leftrightarrow	-3	7	6	$\left\{y\right\} = \left\{5\right\}$
(iii)	$2 \cdot x + y + 2 \cdot z = 2$		L 2	1	2]	$\binom{z}{z}$ (2)

Calcular o determinante da matriz de coeficientes:

		D	_	det(A)	=		1 -3 2	2 7 1	-2 6 2	=	78	
--	--	---	---	--------	---	--	----------------	-------------	--------------	---	----	--

Como $(D \neq 0)$, posso utilizar o teorema de Cramer:

x	_	$ \begin{array}{c cccc} $	=	78 78	=	1
y	_	$ \begin{bmatrix} 1 & 7 & -2 \\ -3 & 5 & 6 \\ 2 & 2 & 2 \end{bmatrix} $	=	156 78	=	2
Z	_	$ \begin{array}{c cccc} & 1 & 2 & 7 \\ -3 & 7 & 5 \\ \hline & 2 & 1 & 2 \\ & D \end{array} $	=	<u>-78</u> 78	=	-1

3 Cálculo de Determinantes

Precisamos apresentar técnicas de cálculo de determinantes, de modo a obter uma definição por recorrência.

3.1 Matrizes quadradas bidimensionais

$A \stackrel{\text{def}}{=} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	\Rightarrow	$D = \det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$	def ==	$a \cdot d - c \cdot b$
---	---------------	--	-----------	-------------------------

3.2 Matrizes quadradas tridimensionais

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \cdot \begin{Bmatrix} x \\ y \\ z \end{Bmatrix} = \begin{Bmatrix} m \\ n \\ p \end{Bmatrix} \qquad \Longrightarrow \qquad A \stackrel{\text{def}}{=} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$\det(A) \qquad \stackrel{\text{def}}{=} \qquad a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - c \cdot e \cdot g - f \cdot h \cdot a - i \cdot d \cdot b$$

3.2.1 Regra de Sarrus

$$\det(A) = [a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h] - [c \cdot e \cdot g + f \cdot h \cdot a + i \cdot d \cdot b]$$

3.2.2 Teorema de Laplace para matrizes tridimensionais

Posso fatorar os termos comuns:

det(A)	=	$a \cdot (e \cdot i - f \cdot h) - b \cdot (d \cdot i - f \cdot g) + c \cdot (d \cdot h - e \cdot g)$
det(A)	_	$a \cdot \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \cdot \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \cdot \begin{vmatrix} d & e \\ g & h \end{vmatrix}$
det(A)	=	$egin{array}{c cccc} a \cdot & e & f & -b \cdot & d & f & +c \cdot & d & e \ h & i & & i & +c \cdot & d & e \ g & h & & & \end{array}$

3.2.3 Teorema de Laplace para determinantes definidos por recorrência

É conveniente mudar a notação, usando índices no lugar de letras sequenciais:

$\lceil a b c \rceil$		$a_{(1)(1)}$ a	$a_{[1][2]} a_{(1;3)}$		$\begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix}$
d e f	\Rightarrow		$a_{22} a_{23}$	\Rightarrow	$\begin{bmatrix} a_{21} & a_{22} & a_{23} \end{bmatrix}$
$\lfloor g \mid h \mid i \rfloor$		[a ₃₁	$a_{32} a_{33}$		$[a_{31} a_{32} a_{33}]$

$$\det(A) = \begin{vmatrix} a_{11} \cdot & a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\det(A) = \begin{vmatrix} (-1)^{1+1} \cdot a_{11} \cdot & a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} \cdot a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + (-1)^{1+3} \cdot a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

4 Operações entre matrizes

Escolhendo-se duas matrizes para diversão:

$$a = \begin{bmatrix} 2 & 5 \\ 11 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 3 & 8 \\ 7 & 6 \end{bmatrix}$$

Vamos efetuar as multiplicações de matrizes:

$[a] \cdot [b] =$	$\begin{bmatrix} 2 & 5 \\ 11 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 8 \\ 7 & 6 \end{bmatrix}$	=	$\begin{bmatrix} 41 & 46 \\ 40 & 94 \end{bmatrix}$
$[b] \cdot [a] =$	$\begin{bmatrix} 3 & 8 \\ 7 & 6 \end{bmatrix} \cdot \begin{bmatrix} 2 & 5 \\ 11 & 1 \end{bmatrix}$	=	[94 23] [80 41]

Claramente o produto de matrizes quadradas não é uma operação comutativa.

$$a = \begin{bmatrix} 3 & 9 & 7 \\ 4 & 1 & 5 \\ 2 & -3 & 6 \end{bmatrix} \qquad \qquad b = \begin{bmatrix} 1 & -1 & -5 \\ -2 & 2 & -3 \\ -11 & 7 & 3 \end{bmatrix}$$

5 Referências

5.1 Livros e artigos

Álgebra linear com aplicações | Howard Anton, Chris Rorres | download (b-ok.lat)

5.2 Ferramentas online

Symbolab Math Solver - Step by Step calculator

Matrix Calculator - Symbolab

Matrix Inverse Calculator - Symbolab

<u>Matrix Determinant Calculator - Symbolab</u>