Regular Grammars

$$G = \{V, T, S, P\}$$

V - is a finite non empty set of variable symbols

T - is a finite set of terminal (input) symbols

S – is a starting symbol (special variable)

P – production rules

Regular Grammars Generate Regular Languages

Theorem Languages

Languages
Generated by
Regular Grammars

Theorem - Part 1

Any regular grammar generates a regular language

Theorem - Part 2

Any regular language is generated by a regular grammar

Left-Linear Grammars

All productions have form:

$$A \rightarrow Bx$$

$$A \rightarrow x$$

string of terminals

$$S \rightarrow Aab$$

Example:

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

Right-Linear Grammars

All productions have form:

$$\begin{array}{c} A \longrightarrow xB \\ A \longrightarrow x \\ & \\ & \\ \end{array}$$

string of terminals

$$S \rightarrow abS$$

Example:

$$S \rightarrow a$$

Regular Grammars

A regular grammar is any right-linear or left-linear grammar

Examples: G_1 G_2 S o abS S o Aab $S o Aab \mid B$ B o a

Write regular grammar for all strings with any number of a's ended by one b over \sum (a, b).

$$L = \{ a^n b \mid n > 0 \}$$

All strings over $\{a, b\}$ that begin and end with the b over $\sum (a, b)$.

L = { b W b | W
$$\in$$
 {a, b}* } OR
L = { b W b | W \in \sum * }

Write Regular grammars for given Regular languages

$$L(G_1) = (ab) * a$$
 $L(G_2) = aab(ab) *$
 G_1 G_2 $S \to Aab$ $S \to abS$ $A \to Aab \mid B$ $B \to a$

Example:

Following grammars are regular grammar?

$$G$$
 $S \rightarrow aA \mid B$ $G2$ $A \rightarrow aa \mid B$ $S \rightarrow SA \mid ab$ $B \rightarrow b \mid B \mid a$ $A \rightarrow aa \mid B$ $B \rightarrow b \mid B \mid a$ G_1 $S \rightarrow aSb \mid ab$

Write RE for all strings with even number of a's followed by odd number of b's over \sum (a b).

Write a regular grammar for $L = \{a^{2n} b^{2m+1} \mid n \ge 0, m \ge 0\}$