ANALIZĂ MATEMATICĂ clasa a XI-a 1.Limite de șiruri

Să se calculeze limitele:

1.	$\lim_{n\to\infty} n^3 = \infty$	$\lim_{n\to\infty}(-n^2+n-1)$
2.	$\lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{1}{2\sqrt{n}} = 0$	$\lim_{n \to \infty} \frac{n}{\sqrt{4n^2 + 1}}$
3.	$\lim_{n \to \infty} \frac{(n-1)^3}{2n^3} = \frac{\infty}{\infty} = \lim_{n \to \infty} \frac{n^3}{2n^3} = \frac{1}{2}$	$\lim_{n\to\infty}\frac{n^2}{(1-2n)^2}$
4.	$\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n^2} = \frac{\infty}{\infty} = \lim_{n \to \infty} \frac{n(n+1)}{2n^2} = \frac{1}{2}$	$\lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{n^3}$
5.	$\lim_{n \to \infty} \left(\sqrt{n^2 + 5n + 1} - n \right) = \infty - \infty$	$\lim_{n\to\infty} \left(n - \sqrt{n^2 - 4n + 1}\right)$
	$a - b = \frac{a^2 - b^2}{a + b}$	
	$= \lim_{n \to \infty} \frac{n^2 + 5n + 1 - n^2}{\sqrt{n^2 + 5n + 1} + n} = \lim_{n \to \infty} \frac{5n}{2n} = \frac{5}{2}$	
6.	$\lim_{n \to \infty} \left(\sqrt{n^2 + 5n + 1} - \sqrt{n^2 - 7n + 3} \right) = \infty - \infty$	$\lim_{n\to\infty} \left(\sqrt{n^2 - 1} - \sqrt{n^2 + 9n} \right)$
	$= \lim_{n \to \infty} \frac{n^2 + 5n + 1 - n^2 + 7n - 3}{n + n} = \lim_{n \to \infty} \frac{12n}{2n} = 6$	
7	(3/	(3/)
7.	$\lim_{n \to \infty} \left(\sqrt[3]{n^3 + 5n^2 + 1} - n \right) = \infty - \infty$	$\lim_{n\to\infty} \left(n - \sqrt[3]{n^3 - 6n^2 + 1}\right)$
	$a - b = \frac{a^3 - b^3}{a^2 + ab + b^2}$	
	$= \lim_{n \to \infty} \frac{n^3 + 5n^2 + 1 - n^3}{\sqrt[3]{(n^3 + 5n^2 + 1)^2} + n\sqrt[3]{n^3 + 5n^2 + 1} + n^2}$	
	$= \lim_{n \to \infty} \frac{5n^2 + 1}{n^2 + n^2 + n^2} = \lim_{n \to \infty} \frac{5n^2}{3n^2} = \frac{5}{3}$	
8.	$\lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = 1^\infty =$	$\lim_{n\to\infty} \left(\frac{n-1}{n}\right)^n$

_		
	$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$	
	$= \lim_{n \to \infty} \left(1 + \frac{n}{n+1} - 1 \right)^n = \lim_{n \to \infty} \left(1 + \frac{-1}{n+1} \right)^n =$	
	$= \lim_{n \to \infty} \left[\left(1 + \frac{-1}{n+1} \right)^{\frac{n+1}{-1}} \right]^{\frac{-1}{n+1}n} = e^{\lim_{n \to \infty} \frac{-n}{n+1}} = e^{-1}$	
9.	$\lim_{n \to \infty} \left(\frac{n^2 - 1}{n^2 + n + 1} \right)^{\frac{(3n-1)^2}{n}} = 1^{\infty} =$	$\lim_{n \to \infty} \left(\frac{3n^2 + 1}{n^2 + n + 1} \right)^n$
	$= \lim_{n \to \infty} \left(1 + \frac{n^2 - 1}{n^2 + n + 1} - 1 \right)^{\frac{(3n-1)^2}{n}}$	
	$= \lim_{n \to \infty} \left(1 + \frac{-n-2}{n^2 + n + 1} \right)^{\frac{(3n-1)^2}{n}}$	
	$= \lim_{n \to \infty} \left[\left(1 + \frac{-n-2}{n^2 + n + 1} \right)^{\frac{n^2 + n + 1}{-n-2}} \right]^{\frac{-n-2}{n^2 + n + 1} \frac{(3n-1)^2}{n}}$	
	$= e^{\lim_{n \to \infty} \frac{-n}{n^2} \frac{9n^2}{n}} = e^{-9}$	
10.	$\lim_{n \to \infty} (1 + 2^n + 3^n) = \lim_{n \to \infty} 3^n = \infty, 3 > 1$	$\lim_{n\to\infty} \left(1 + \left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^n\right)$
	$\lim_{n \to \infty} a^n = \begin{cases} \infty, a > 1 \\ 1, a = 1 \\ 0, a < 1 \end{cases}$	
11.	$\lim_{n \to \infty} a^n = \begin{cases} \infty, a > 1 \\ 1, a = 1 \\ 0, a < 1 \\ \frac{1}{2}, a \le -1 \end{cases}$ $\lim_{n \to \infty} \frac{3^n + 2^n}{\left(\frac{2}{3}\right)^n + 2^n + 3^{n-1}} = \lim_{n \to \infty} \frac{3^n}{3^{n-1}} = 3$	$\lim_{n \to \infty} \frac{3^n - 5^n}{4^n + 3^n + 2^n}$
12.	$\lim_{n \to \infty} \frac{1 + 2 + 2^2 + \dots + 2^{n-1}}{1 + 3 + 3^2 + \dots + 3^{n-1}}$	$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^{n-1}}{1 + \frac{1}{3} + \left(\frac{1}{3}\right)^2 + \dots + \left(\frac{1}{3}\right)^{n-1}}$
	$1 + q + q^{2} + \dots + q^{n-1} = \frac{q^{n} - 1}{q - 1}$	$1 + \frac{1}{3} + \left(\frac{1}{3}\right) + \dots + \left(\frac{1}{3}\right)$

	$= \lim_{n \to \infty} \frac{\frac{2^n - 1}{2 - 1}}{\frac{3^n - 1}{3 - 1}} = \lim_{n \to \infty} \frac{2 \cdot 2^n}{3^n} = \lim_{n \to \infty} 2 \cdot \left(\frac{2}{3}\right)^n = 0,$	
	$\frac{2}{3} \in (-1,1)$ atunci $\left(\frac{2}{3}\right)^n \to 0$	
13.	$\lim_{n\to\infty} \left(\ln(8n-1) - \ln(n+8) \right) = \infty - \infty =$	$\lim_{n\to\infty} (\ln(e^{2n}+4)-n)$
	$= \lim_{n \to \infty} \ln \frac{8n-1}{n+8} = \lim_{n \to \infty} \ln \frac{8n}{n} = \ln 8$	
14.	$\lim_{n\to\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) =$	$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right)$
	utilizăm șirul remarcabil	
	$\lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right) = c,$	
	c = 0,57 constanta lui Euler	
	$= \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n + \ln n \right) =$	
	$=\lim_{n\to\infty}(c+\ln n)=\infty$	
	Lema Stolz-Cesaro	
	Dacă șirurile (a_n) , (b_n) au proprietățile: 1) (b_n) are termeni nenuli și este crescător și nemărginit, 2) $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}=a$, atunci $\lim_{n\to\infty} \frac{a_n}{b_n}=a$. $1+\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}$	
15.	$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}}{n} = \frac{\infty}{\infty} = Stolz - Cesaro$	$\lim_{n \to \infty} \frac{1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}}{\sqrt{n}}$
	$= \lim_{n \to \infty} \frac{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)}{n+1-n}$	
	$=\lim_{n\to\infty}\frac{1}{n+1}=0$	
	Criteriul raportului Fie şirul (a_n) de numere strict pozitive	
	a. î. $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a. Atunci:$	
	$1)dacă\ a<1\Rightarrow \lim_{n\to\infty}a_n=0,$	
1	$2)dacă a > 1 \Rightarrow \lim_{n \to \infty} a_n = \infty$	

		- 00
<i>16.</i>	5 ⁿ	3^n
	$\lim_{n\to\infty}{n!}=$	$\lim_{n\to\infty}{n!}$
		n 700 /t.
	utilizăm Criteriul raportului	
	5^{n+1}	
	$\lim_{n \to \infty} \frac{\overline{(n+1)!}}{\underline{5^n}} = \lim_{n \to \infty} \frac{5}{n+1} = 0 < 1 \Rightarrow \lim_{n \to \infty} \frac{5^n}{n!} = 0$	
	$\lim_{n\to\infty}\frac{1}{5^n} - \lim_{n\to\infty}\frac{1}{n+1} = 0 < 1 \to \lim_{n\to\infty}\frac{1}{n!} = 0$	
	$\frac{1}{n!}$	
	,,,	
	Criteriul radicalului.Cauchy-d'Alembert	
	Fie şirul (a_n) de numere strict pozitive.	
	Dac ă $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = a$, $atunci \lim_{n\to\infty} \sqrt[n]{a_n} = a$.	
17.	$\lim \sqrt[n]{n^2 + n + 1}$	$\lim \sqrt[n]{n!}$
-, -	$\begin{array}{c} \prod_{n\to\infty} \sqrt{n^2 + n + 1} \\ n\to \infty \end{array}$	$n \to \infty$
	utilizăm Criteriul radicalului	
	$(n+1)^2 + (n+1) + 1$ n^2	
	$\lim_{n \to \infty} \frac{(n+1)^2 + (n+1) + 1}{n^2 + n + 1} = \lim_{n \to \infty} \frac{n^2}{n^2} = 1 \Rightarrow$	
	$n \to \infty$ $n^2 + n + 1$ $n \to \infty n^2$	
	$n\sqrt{2}$	
	$\lim_{n\to\infty} \sqrt[n]{n^2 + n + 1} = 1$	
	$n \rightarrow \infty$	
	1	
	Criteriu de convergență	
	Criteriu de convergență	
18.	$(a_n) \underset{\text{sin } n}{\text{mărginit, } b_n \to 0} \Rightarrow a_n \cdot b_n \to 0$	$(1)^n$
18.	$(a_n) \underset{\text{sin } n}{\text{mărginit, } b_n \to 0} \Rightarrow a_n \cdot b_n \to 0$	$\lim \left(\frac{1}{2}\right)^n \cos n^2$
18.	(a_n) măr $ginit, b_n o 0 \Rightarrow a_n \cdot b_n o 0$	$\lim_{n\to\infty} \left(\frac{1}{2}\right)^n \cos n^2$
18.	$\lim_{n \to \infty} \frac{\sin n}{n} = 0$	$\lim_{n\to\infty} \left(\frac{1}{2}\right)^n \cos n^2$
18.	$(a_n) \underset{\text{sin } n}{\text{mărginit, } b_n \to 0} \Rightarrow a_n \cdot b_n \to 0$	$\lim_{n\to\infty} \left(\frac{1}{2}\right)^n \cos n^2$
18.	$(a_n) \underset{n \to \infty}{\text{m\"{a}rginit}}, b_n \to 0 \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $\text{utiliz\^{a}nd Criteriul de convergen} \breve{a}$	$\lim_{n\to\infty} \left(\frac{1}{2}\right)^n \cos n^2$
18.	$\lim_{n \to \infty} \frac{\sin n}{n} = 0$	$\lim_{n\to\infty} \left(\frac{1}{2}\right)^n \cos n^2$
	$(a_n) \underset{n \to \infty}{\text{mărginit, } b_n \to 0} \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $\text{utilizând Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$	$n \rightarrow \infty \setminus 2$
18.	$(a_n) \underset{n \to \infty}{\text{mărginit, } b_n \to 0} \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $\text{utilizând Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$	$n \rightarrow \infty \setminus 2$
	$(a_n) \underset{n \to \infty}{\text{mărginit, } b_n \to 0} \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $\text{utilizând Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$	$n \rightarrow \infty \setminus 2$
	$(a_n) \underset{n \to \infty}{\text{mărginit, } b_n \to 0} \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $\text{utilizând Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$	$n \rightarrow \infty \setminus 2$
	$(a_n) \underset{n \to \infty}{\text{mărginit, } b_n \to 0} \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $\text{utilizând Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$	$\lim_{n \to \infty} \left(\frac{1}{2}\right)^n \cos n^2$ $\lim_{n \to \infty} \frac{\sin \frac{n+1}{n^2}}{\frac{n+1}{n^2}}$
	$(a_n) \underset{n \to \infty}{\text{mărginit, } b_n \to 0} \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $\text{utilizând Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$	$n \rightarrow \infty \setminus 2$
	$(a_n) \underset{n \to \infty}{\text{mărginit, } b_n \to 0} \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $\text{utilizând Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$ $\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{x_n} = 1$	$n \rightarrow \infty \setminus 2$
	$(a_n) \underset{n \to \infty}{\text{mărginit, } b_n \to 0} \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $\text{utilizând Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$	$n \rightarrow \infty \setminus 2$
19.	$(a_n) \underbrace{\min_{n \to \infty} \frac{\sin n}{n}}_{n} = 0$ $\underbrace{\lim_{n \to \infty} \frac{\sin n}{n}}_{n} = 0$ $\underbrace{\text{utilizând Criteriul de convergență}}_{n}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\underbrace{\lim_{n \to \infty} \frac{\sin x_n}{x_n}}_{n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$ $\underbrace{\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{x_n}}_{n} = 1$	$\lim_{n \to \infty} \frac{\sin \frac{n+1}{n^2}}{\frac{n+1}{n^2}}$
	$(a_n) \underbrace{\min_{n \to \infty} \frac{\sin n}{n}}_{n} = 0$ $\underbrace{\lim_{n \to \infty} \frac{\sin n}{n}}_{n} = 0$ $\underbrace{\text{utilizând Criteriul de convergență}}_{n}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\underbrace{\lim_{n \to \infty} \frac{\sin x_n}{x_n}}_{n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$ $\underbrace{\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{x_n}}_{n} = 1$	$\lim_{n \to \infty} \frac{\sin \frac{n+1}{n^2}}{\frac{n+1}{n^2}}$
19.	$(a_n) \underset{n \to \infty}{\text{mărginit}}, b_n \to 0 \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $utiliz \hat{a}nd \text{ Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$ $\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1$ $\lim_{n \to \infty} \frac{tgx_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$	$\lim_{n \to \infty} \frac{\sin \frac{n+1}{n^2}}{\frac{n+1}{n^2}}$
19.	$(a_n) \underset{n \to \infty}{\text{mărginit}}, b_n \to 0 \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $utiliz \hat{a}nd \text{ Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$ $\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1$ $\lim_{n \to \infty} \frac{tgx_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$	$n \rightarrow \infty \setminus 2$
19.	$(a_n) \underset{n \to \infty}{\text{mărginit}}, b_n \to 0 \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $utiliz \hat{a}nd \text{ Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$ $\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1$ $\lim_{n \to \infty} \frac{tgx_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$	$\lim_{n \to \infty} \frac{\sin \frac{n+1}{n^2}}{\frac{n+1}{n^2}}$
19.	$(a_n) \underset{n \to \infty}{\text{mărginit}}, b_n \to 0 \Rightarrow a_n \cdot b_n \to 0$ $\lim_{n \to \infty} \frac{\sin n}{n} = 0$ $utiliz \hat{a}nd \text{ Criteriul de convergență}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$ $\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1$ $\lim_{n \to \infty} \frac{tgx_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$	$\lim_{n \to \infty} \frac{\sin \frac{n+1}{n^2}}{\frac{n+1}{n^2}}$
19.	$(a_n) \underbrace{\min_{n \to \infty} \frac{\sin n}{n}}_{n} = 0$ $\underbrace{\lim_{n \to \infty} \frac{\sin n}{n}}_{n} = 0$ $\underbrace{\text{utilizând Criteriul de convergență}}_{n}$ $a_n = \sin n \in [-1,1] \text{ și } b_n = \frac{1}{n} \to 0$ $\underbrace{\lim_{n \to \infty} \frac{\sin x_n}{x_n}}_{n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$ $\underbrace{\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{x_n}}_{n} = 1$	$\lim_{n \to \infty} \frac{\sin \frac{n+1}{n^2}}{\frac{n+1}{n^2}}$

Profesor Blaga Mirela-Gabriela

21.	$\lim_{n \to \infty} \frac{\arcsin x_n}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0$ $\lim_{n \to \infty} \frac{\arcsin \frac{3}{n}}{\frac{3}{n}} = 1$	$\lim_{n \to \infty} \frac{\arcsin \frac{\sqrt{2}}{n}}{\frac{1}{n}}$
22.	$\frac{n\to\infty}{n}$ $\frac{1}{n}$ $\frac{n\to\infty}{\sqrt{2}\frac{1}{n}}$	$\lim_{n \to \infty} \frac{\arctan \frac{1}{2\sqrt{n}}}{\frac{1}{\sqrt{n}}}$
23.	$\lim_{n \to \infty} \frac{\ln(1+x_n)}{x_n} = 1, x_n \in \mathbb{R}^*, x_n \to 0, 1+x_n > 0$ $\lim_{n \to \infty} \frac{\ln(1+\frac{1}{\sqrt{n}})}{\frac{1}{\sqrt{n}}} = 1$	$\lim_{n \to \infty} \frac{\ln\left(\frac{n+1}{n}\right)}{\frac{1}{n}}$
24.	$\lim_{n\to\infty} \frac{a^{x_n} - 1}{x_n} = \ln a, x_n \in \mathbb{R}^*, x_n \to 0, a > 0, a \neq 1$ $\lim_{n\to\infty} n\left(2^{\frac{1}{n}} - 1\right) = \ln 2$	$\lim_{n\to\infty} \frac{\sqrt[n]{5}-1}{\frac{1}{n}}$
25.	$\lim_{n \to \infty} \frac{(1+x_n)^r - 1}{x_n} = r, x_n \in \mathbb{R}^*, x_n \to 0, r \in \mathbb{R}$ $\lim_{n \to \infty} \frac{\left(\frac{n+3}{n}\right)^7 - 1}{\frac{3}{n}} = 7$	$\lim_{n\to\infty} n^2 \left(\sqrt[21]{\frac{n^2+7}{n^2}} - 1 \right)$