Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, Yoshua Bengio. *ICML 2015*

Presented By: Sai Krishna Bollam

Outline

- Introduction
- Model Overview
- Model Details
 - Encoder
 - Decoder
 - Attention
- Experiments
- Results
- Conclusion

Introduction

- Multimodal Machine Learning
 - Relate information from multiple modalities: speech, image, language etc.
- Scene understanding
 - Automatic caption generation
- Task: Given an image, generate a sentence describing it
 - Object Detection and Machine Translation
 - Image to Language translation

A woman throwing a frisbee in a park.

A bird flying over a body of water.

Model Overview

Encoder-Decoder framework

Analogous to translation but.. Encoder output is not a single vector

Learn alignments from scratch

Using Attention over low level feature maps Instead of joint object-text embedding Bahdanau et al. (2014)

Model Details: Encoder

- Model:
 - Input: Raw image
 - Output: Sequence of C words from vocabulary of size K

$$\mathbf{y} = \{y_1, \dots, y_C\}, y_i \in \mathbb{R}^K$$

- Encoder: Convolutional Neural Network
 - Input: Raw image
 - Output: multiple feature vectors (annotation vectors) from lower conv layers

$$\mathbf{a} = \{\mathbf{a}_1, \dots, \mathbf{a}_L\}, \mathbf{a}_i \in \mathbb{R}^D$$

Model Details: Decoder

• LSTM Network

$$\begin{pmatrix} \mathbf{i}_{t} \\ \mathbf{f}_{t} \\ \mathbf{o}_{t} \\ \mathbf{g}_{t} \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} T_{D+m+n,n} \begin{pmatrix} \mathbf{E} \mathbf{y}_{t-1} \\ \mathbf{h}_{t-1} \\ \hat{\mathbf{z}}_{t} \end{pmatrix}$$

$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \mathbf{g}_{t}$$

$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \tanh(\mathbf{c}_{t}).$$

 $\widehat{\mathbf{z}}_t$: Context vector

Model Details: Decoder – Context Vector

Context Vector $(\hat{\mathbf{z}}_t)$: A dynamic representation of relevant part of image at time t

 f_{att} : Attention Model, an MLP conditioned on previous hidden state

$$e_{ti} = f_{att}(\mathbf{a}_i, \mathbf{h}_{t-1})$$

$$\alpha_{ti} = \frac{\exp(e_{ti})}{\sum_{k=1}^{L} \exp(e_{tk})}$$

Model Representation

Attention Mechanism: Stochastic Attention

Stochastic "Hard" Attention

At every time step, focus on exactly 1 location (a_i) $s_{t.i} = 1$ iff i^{th} location is used to extract visual features

$$p(s_{t,i} = 1 \mid s_{j < t}, \mathbf{a}) = \alpha_{t,i} = \operatorname{softmax}(f_{att}(a_i, \mathbf{h}_{t-1}))$$

$$\hat{\mathbf{z}}_t = \sum_i s_{t,i} \mathbf{a}_i$$
 Sample \mathbf{a}_i based on Multinoulli distribution

$$L_s = \sum_{s} p(s \mid \mathbf{a}) \log p(\mathbf{y} \mid s, \mathbf{a}) \le \log[p(s \mid \mathbf{a})p(\mathbf{y} \mid s, \mathbf{a})]$$
$$= \log p(\mathbf{y} \mid \mathbf{a})$$

Attention Mechanism: Stochastic Attention

$$\frac{\partial L_s}{\partial W} = \sum_s p(s \mid \mathbf{a}) \left[\frac{\partial \log p(\mathbf{y} \mid s, \mathbf{a})}{\partial W} + \log p(\mathbf{y} \mid s, \mathbf{a}) \frac{\partial \log p(s \mid \mathbf{a})}{\partial W} \right]$$

$$\frac{\partial L_s}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\partial \log p(\mathbf{y} \mid \tilde{s}^n, \mathbf{a})}{\partial W} + \frac{\partial \log p(\mathbf{y} \mid \tilde{s}^n, \mathbf{a})}{\partial W} \right]$$

$$\log p(\mathbf{y} \mid \tilde{s}^n, \mathbf{a}) \frac{\partial \log p(\tilde{s}^n \mid \mathbf{a})}{\partial W}$$

$$b_k = 0.9 \times b_{k-1} + 0.1 \times \log p(\mathbf{y} \mid \tilde{s}_k, \mathbf{a})$$

$$b_k = 0.9 \times b_{k-1} + 0.1 \times \log p(\mathbf{y} \mid \tilde{s}_k, \mathbf{a})$$

REINFORCE learning rule

$$\frac{\partial L_s}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\partial \log p(\mathbf{y} \mid \tilde{s}^n, \mathbf{a})}{\partial W} + \lambda_r \left(\log p(\mathbf{y} \mid \tilde{s}^n, \mathbf{a}) - b \right) \frac{\partial \log p(\tilde{s}^n \mid \mathbf{a})}{\partial W} + \lambda_e \frac{\partial H \left[\tilde{s}^n \right]}{\partial W} \right]$$

Attention Mechanisms: Deterministic Attention

Deterministic "Soft" Attention

Expectation of context vector, instead of sampling. Differentiable!

$$\begin{split} \mathbb{E}_{p(S_t|\mathbf{a})}[\hat{\mathbf{z}}_t] &= \sum_{i=1}^L \alpha_{t,i} \mathbf{a}_i \\ \phi(\{\mathbf{a}_i\}, \{\alpha_i\}) &= \sum_{i}^L \alpha_i \mathbf{a}_i \end{split}$$
 Soft attention weighted vector

Normalized Weighted Geometric Mean

$$NWGM[p(y_t = k \mid \mathbf{a})] = \frac{\prod_i \exp(n_{t,k,i})^{p(s_{t,i}=1\mid a)}}{\sum_j \prod_i \exp(n_{t,j,i})^{p(s_{t,i}=1\mid a)}}$$
$$= \frac{\exp(\mathbb{E}_{p(s_t\mid a)}[n_{t,k}])}{\sum_i \exp(\mathbb{E}_{p(s_t\mid a)}[n_{t,j}])}$$

$$NWGM[p(y_t = k \mid \mathbf{a})] \approx \mathbb{E}[p(y_t = k \mid \mathbf{a})]$$

Attention Mechanisms: Deterministic Attention

Doubly Stochastic Attention

Introduce regularization:

$$\sum_{t} \alpha_{t,i} \approx 1$$

Encourages model to pay equal attention to every part of image over time

$$\beta_t = \sigma(f_{\beta}(\mathbf{h}_{t-1}))$$

$$\phi(\{a_i\},\{\alpha_i\}) = \beta \sum_{i=1}^{L} \alpha_i a_i$$

$$L_d = -\log(P(\mathbf{y}|\mathbf{x})) + \lambda \sum_{i}^{L} (1 - \sum_{t}^{C} \alpha_{ti})^2$$

Attention Mechanisms

Visualizing Attention

Soft attention

A bird flying over a body of water

Hard attention

Experiments

Encoder:

Oxford VGGnet

- pretrained on ImageNet
- Feature maps from 4th conv layer before pooling. 14x14x512 flattened to 196 x 512 (L x D)

<u>Datasets</u>:

Flickr8k : 8,000

Flickr30k : 30,000

MS COCO : 82,783

Vocabulary : 10,000 words

5 reference sentences per image

Training:

Flickr8k: RMSProp

Flickr30k/MS COCO: Adam

Dropout

Early stopping on BLEU

Batching by sentence lengths

Metrics:

BLEU-1, 2, 3, 4

- No brevity penalty

METEOR

Results

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, \dagger indicates a different split, (—) indicates an unknown metric, \circ indicates the authors kindly provided missing metrics by personal communication, Σ indicates an ensemble, a indicates using AlexNet

		BLEU				
Dataset	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR
Flickr8k	Google NIC(Vinyals et al., 2014) ^{†Σ}	63	41	27		
	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
	Soft-Attention	67	44.8	29.9	19.5	18.93
	Hard-Attention	67	45.7	31.4	21.3	20.30
Flickr30k	Google NIC [†] °Σ	66.3	42.3	27.7	18.3	_
	Log Bilinear	60.0	38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
	Hard-Attention	66.9	43.9	29.6	19.9	18.46
COCO	CMU/MS Research (Chen & Zitnick, 2014) ^a	_	_	_	_	20.41
	MS Research (Fang et al., 2014) ^{† a}	_	_	_	_	20.71
	BRNN (Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	
	Google NIC $^{\dagger \circ \Sigma}$	66.6	46.1	32.9	24.6	_
	Log Bilinear°	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

Key Points

- Learn latent alignments from scratch
 - Better context to decoder
 - Attends to non object regions
 - Joint representation
- Visualizing attention to interpret functioning
 - Stochastic Attention
 - Deterministic Attention

Thank you

Questions?