用到的公式

haodayizhia

2023年9月13日

目录

1	二体	问题	1	
	1.1	核心公式	1	
	1.2	推导用到的向量公式	1	
	1.3	能量 E 守恒	2	
	1.4	角动量 $ec{h}$ 守恒	2	
	1.5	近地点方向 $ec{B}=\muec{e}$	2	
	1.6	运动轨迹	2	
	1.7	活力公式	3	
	1.8	anomaly 转换	3	
	1.9	Conversion between rv and classical orbit elements	3	
1 二体问题				
1 — 四月月度				
1.1 核心公式				
		$$ μ $$. \	
		$\ddot{\vec{r}} = -\frac{\mu}{r^3}\vec{r} \tag{1}$.1)	
1	o +/	作导用到的向量公式		
	1. T	H →+ HI +		

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} \tag{1.3}$$

1 二体问题 2

1.3 能量 E 守恒

$$\dot{\vec{r}} \cdot \ddot{\vec{r}} + \dot{\vec{r}} \cdot \frac{\mu}{r^3} \vec{r} = 0$$

$$\rightarrow E = \frac{v^2}{2} + (c - \frac{\mu}{r}) = \text{const}$$
(1.4)

1.4 角动量 \vec{h} 守恒

$$\vec{h} = \vec{r} \times \dot{\vec{r}} \tag{1.5}$$

1.5 近地点方向 $\vec{B} = \mu \vec{e}$

$$\dot{\vec{r}} \times \vec{h} = \frac{\mu}{r} \vec{r} + \vec{B} \tag{1.6}$$

1.6 运动轨迹¹

$$r = \frac{h^2/\mu}{1 + B/\mu \cos \theta} = \frac{p}{1 + e \cos \theta} \tag{1.7}$$

$$r = \begin{cases} a & e = 0, \\ \frac{a(1-e^2)}{1+e\cos\theta} & 0 < e < 1, \\ \frac{p}{1+\cos\theta} & e = 1, \\ \frac{a(e^2-1)}{1+e\cos\theta} & 1 < e, \\ \frac{a(e^2-1)}{1+e\cos\theta} & \frac{a(e^2-1)}{1+e\cos\theta} &$$

以椭圆为例

¹不包含指向质心的直线降落

1 二体问题 3

F: prime focus, 代表中心天体 F': secondary/vacant focus AB: major axis, 长度为 2a F': focal distance, 焦距, 长度为 2c CD: latus rectum, 长度为 2p

A: apoapsis(apogee/aphelion/aposelenium)
B: periapsis(perigee/perihelion/periselenium)

1.7 活力公式

取近地点代入能量积分中

$$\frac{1}{2}v^2 - \frac{\mu}{r} = -\frac{\mu}{2a} \tag{1.9}$$

1.8 anomaly 转换

 θ : True anomaly(真近点角), E: Eccentric anomaly(偏近点角), M: Mean anomaly(平近点角).

$$a - r = ae\cos E \tag{1.10}$$

$$M = n(t - \tau) = E - e\sin E \tag{1.11}$$

1.9 Conversion between rv and classical orbit elements

rv to σ (注意 arccos)

参考文献 4

 σ to rv

$$\begin{cases} A = \begin{bmatrix} \cos(-\Omega) & \sin(-\Omega) \\ -\sin(-\Omega) & \cos(-\Omega) \end{bmatrix} \begin{bmatrix} 1 & & \\ & \cos(-i) & \sin(-i) \\ -\sin(-i) & \cos(-i) \end{bmatrix} \begin{bmatrix} \cos(\omega + \theta) & \sin(\omega + \theta) \\ -\sin(\omega + \theta) & \cos(\omega + \theta) \end{bmatrix} \\ \vec{r} = A \begin{bmatrix} \frac{p}{1 + e \cos \theta} \\ 0 \\ 0 \end{bmatrix} \\ \vec{v} = A \begin{bmatrix} \frac{he \sin \theta}{p} \\ \frac{h(1 + e \cos \theta)}{p} \\ 0 \end{bmatrix} \end{cases}$$

(1.13)

参考文献