e1-6 Electron Fiducial Cuts

M. Ungaro, K. Joo

June 22, 2023

Abstract

This document describes the identification and removal of CLAS regions of low/zero efficiency and of border effects not reproducible by GSIM.

Contents

1	Fid	Fiducial Cuts							
	1.1	Introduction	2						
		Cuts on the lab coordinates ϕ, θ, p							

e1-6 analysis 1 Fiducial Cuts

TODO: SC Cuts and some DC sectors still show L/R asymmetries!

1 Fiducial Cuts

1.1 Introduction

Some Detector inefficiencies are not perfectly reproduced with GSIM and need to be removed with fiducial cuts. We consider two different approaches to identify fiducial regions:

- Cuts on the lab coordinates ϕ, θ, p
- Cuts on Detector Coordinates

1.2 Cuts on the lab coordinates ϕ, θ, p

The fiducial cut in the lab coordinates has been determined during the π^0 analysis in the $\Delta(1232)$ region [2]. For each sector, an empirical cut on ϕ is introduced as a function of theta and momentum:

$$\phi \leq \Delta \phi (\theta, p)$$

which is aimed to define regions of phase space whose distributions are flat in ϕ . After careful study [1], the mathematical form of the cut depends on 6 parameters C_i and assumes the form:

$$\Delta \phi = C_4 \left(\sin(\theta - \theta_{cut}) \right)^E$$

$$E = C_3 p^{C_5}$$

$$\theta_{cut} = C_1 + \frac{C_2}{p + C_6}$$

The ϕ vs θ distribution was plotted for 10 different momentum bins from 1.6 to 4.6 GeV. Fig. 1 shows one example (p = 1.9 - 2.2 GeV) of such distributions. The ϕ distributions are also plotted for θ slices one degree wide as in Fig. 2 and the C_i parameters are adjusted empirically.

Figure 1: ϕ versus θ for sector 1 and p = 1.6 - 1.9 GeV after the electron ID. Left: before fiducial cut. Right: before fiducial cut (box/gray) and after fiducial cut (color contour).

Figure 2: ϕ distributions (sector 3) for different θ and p = 1.9 - 2.2 GeV. Black: before fiducial cut. Red: after fiducial cut. Čerenkov inefficiency (section ??) is responsible for some irregularities at $\phi = 0$ (for example at $\theta = 35.5^{0} - 36.5^{0}$) while drift chambers and time of flight inefficiency (section ??) causes other irregularities (for example at $\theta = 42.5^{0} - 43.5^{0}$).

Table 1 shows the 6 parameters obtained. Fig. 3 shows the fiducial cut as a function of p, θ and ϕ for sector 1.

Sector	C_1	C_2	C_3	C_4	C_5	C_6	
1	12.0	20.0	0.32	32.0	0.416667	0.14	
2	//	20.7	0.36	34.0	//	//	
3	//	20.2	0.32	32.0	//	//	1
4	//	20.5	0.32	32.0	//	//	1
5	//	20.5	0.29	32.0	//	//	1
6	//	20.0	0.32	32.0	//	//	

Table 1: The 6 parameters for electron fiducial cut for each of the 6 sectors. Only C_2 , C_3 , C_4 are sector dependent.

Figure 3: The electron fiducial cut for sector 1. The cut starting point moves back as the momentum increases (and θ decreases). This causes the cut to narrow up with momentum because electrons are detected near the lower edges of the detectors.

e1-6 analysis REFERENCES

References

- $[1] \;\; \text{K. Park, Volker Burkert, } \textit{Private Communication}.$
- [2] M.Ungaro, π^0 electroproduction from $\Delta(1232)$ at high momentum transferred with CLAS