TMA4315: Compulsory exercise 2 Logistic regression and Poisson regression

Group XX: Henrik Syversveen Lie, Mikal Stapnes, Oliver Byhring 10.10.2018

Contents

Part 1: Logistic regression	1
a)	1
Part 2: Poisson regression - Eliteserien 2018	1
a)	1
b)	2

Part 1: Logistic regression

a)

We let y_i be the number of successfull ascents, and n_i be the total number of attempts (success + fail) of the i'th mountain. We then do binary regression with the logit link to model the probability of success. This gives

- 1. Model for response: $Y_i \sim \text{Bin}(n_i, \pi_i)$, for i = 1, ..., 113
- 2. Linear predictor: $\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$ 3. Link function: $\eta_i = \ln(\frac{\pi_i}{1-\pi_i})$

where x_i is a p dimensional column vector of covariates for observation i, and β is the vector of regression parameters.

Part 2: Poisson regression - Eliteserien 2018

a)

We want to test if the assumption of independence between the goals made by the home and away teams is reasonable. To do this, we first load the data set and make a contingency table of all the results, with the goals of the home team on the rows, and goals of the away team on the columns. We get the following contingency table.

```
0 1 2 3 4+
## 0
      8 18 3 1
     19 26 15 5
     10 14 13 4
     13 10 7 2
     8
           3 1
```

We then want to test if the number of goals for home and away team are independent. We do this by conducting Pearson's χ^2 test on the contingency table. The test poses the following hypotheses

 H_0 : The sampling distributions are independently chi-squared distributed, H_1 : They are not independently chi-squared distributed.

```
##
## Pearson's Chi-squared test
##
## data: contingency
## X-squared = 14.156, df = 16, p-value = 0.5871
```

We get a value of 14.146 for the test statistic, with a corresponding p-value of 0.5871. As this p-value is above any reasonable significance level, we keep the null hypothesis, and confirm that the goals scored by the home and away team are independent.

b)

We now make the current standings in the Eliteserie based on all the results in our data set, and get the following table.

##		Team	Played	Won	Drawn	Lost	For	Against	GD	Points
##	1	Rosenborg	24	16	4	4	43	20	23	52
##	2	Brann	24	14	6	4	36	23	13	48
##	3	Molde	24	13	4	7	48	30	18	43
##	4	Haugesund	24	12	5	7	36	28	8	41
##	5	Ranheim_TF	24	11	5	8	38	40	-2	38
##	6	Vaalerenga	24	10	6	8	35	37	-2	36
##	7	Odd	24	9	7	8	35	29	6	34
##	8	Tromsoe	24	10	3	11	35	33	2	33
##	9	Sarpsborg08	24	9	5	10	39	34	5	32
##	10	Kristiansund	24	8	7	9	32	35	-3	31
##	11	${\tt BodoeGlimt}$	24	6	9	9	28	30	-2	27
##	12	Stroemsgodset	24	6	8	10	38	38	0	26
##	13	Lillestroem	24	6	7	11	26	37	-11	25
##	14	Stabaek	24	5	8	11	29	43	-14	23
##	15	Start	24	6	5	13	24	42	-18	23
##	16	Sandefjord_Fotball	24	2	9	13	24	47	-23	15