HOME CHAPTERS LOGIN

14. Conclusion

Site selection projects like the ones discussed in this chapter require the integration of diverse geographic data. The ability to integrate and analyze data organized in multiple thematic layers is a hallmark of geographic information systems. To contribute to GIS analyses like these, you need to be both a knowledgeable and skillful GIS user. The objective of this text, and the associated Penn State course, has been to help you become more knowledgeable about geographic data.

Knowledgeable users are well versed in the properties of geographic data that need to be taken into account to make data integration possible. Knowledgeable users understand the distinction between vector and raster data, and know something about how features, topological relationships among features, attributes, and time can be represented within the two approaches. Knowledgeable users understand that in order for geographic data to be organized and analyzed as layers, the data must be both orthorectified and georegistered. Knowledgeable users look out for differences in coordinate systems, map projections, and datums that can confound efforts to georegister data layers. Knowledgeable users know that the information needed to register data layers is found in metadata.

Knowledgeable users understand that all geographic data are generalized, and that the level of detail preserved depends upon the scale and resolution at which the data were originally produced. Knowledgeable users are prepared to convince their bosses that small-scale, low resolution data should not be used for large-scale analyses that require high resolution results. Knowledgeable users never forget that the composition of the Earth's surface is constantly changing, and that unlike fine wine, the quality of geographic data does not improve over time.

Knowledgeable users are familiar with the characteristics of the "framework" data that make up the U.S. National Spatial Data Infrastructure, and are able to determine whether these data are available for a particular location. Knowledgeable users recognize situations in which existing data are inadequate, and when new data must be produced. They are familiar enough with geographic information technologies such as GPS, aerial imaging, and satellite remote sensing that they can judge which technology is best suited to a particular mapping problem.

And knowledgeable users know what kinds of questions GIS is, and is not, suited to answer.

This textbook is used as a resource in Penn State's Online Geospatial Education online degree and certificate programs. If this topic is interesting to you and you want to learn more about online GIS and GEOINT education at Penn State, check out

our Geospatial Education Program Office.

The Nature of Geographic Information

Chapters

- ► Chapter 1: Data and Information
- Chapter 2: Scales and Transformations
- Chapter 3: Census Data and Thematic Maps
- ► Chapter 4: TIGER, Topology and Geocoding
- Chapter 5: Land Surveying and GPS
- Chapter 6: National Spatial Data Infrastructure I
- Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ▼ Chapter 9: Integrating Geographic Data
 - 1. Overview
 - 2. Context
 - 3. Low Level Radioactive Waste
 - 4. Siting LLRW Storage Facilities
 - 5. Map Overlay Concept
 - 6. Pennsylvania
 Case Study
 - 7. Vector
 Approach
 - 8. Stage One: Statewide Screening

- 9. Stage Two: Regional Screening
- 10. Stage Three: Local Disqualification
- 11. Buffering
- 12. New York Case Study
- 13. Outcomes
- 14. Conclusion
- 15.
 Bibliography

Navigation

- login
- Search

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

Navigation

- Home
- News
- About
- Contact Us
- PeopleResources
- Services
- Login

EMS

- College of Earth and Mineral Sciences
- Department of Energy and Mineral Engineering
- Department of Geography
- Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric Science
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

Programs

- Online Geospatial Education Programs
- iMPS in Renewable Energy and Sustainability Policy Program Office
- BA in Energy and Sustainability Policy Program Office

Related Links

- Penn State Digital Learning Cooperative
- Cooperative
 Penn State
 World Campus
- Web Learning
 Penn State

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

