STOCHASTIC PROCESSES

TOPICS:

- Definitions: poth, filtnotion, stopping time, finite dimension distribution
- Conditional expectation
- Existence of processes with given finite distribution
- Hartugales
- Horkov chaus
- Stationary and exchangeable sequences
- Raudou walks
- Brownian motion
- Painson process

DEFINITIONS

STOCHASTIC = ANY collection of RVs PROCESS

Given:

· Probability space: (I , et, P) · Measurable space: (S, B) · S is a set and B is a 6-3ield

· T: any set

A SP is ANY collection of RV, namely

Beury a RV, X+ should be unessenable, which means that the set

$$X_{\epsilon}^{-1}(B) \in A + B \in B$$

where $X_{\epsilon}^{-1}(B) = \{ \omega \in \Omega : X_{\epsilon}(\omega) \in B \}$

Also S in said to be she STATE SPACE of the process, and the most imp. cose is when S=R and B = Bonel o-field on 1R 4

I is an arbitrary set, usually called the INDEXING

SET on the PARAMETER SPACE of the process. The unterst choice is TIME. X t in RV at time t

Let juite on countable -> X DISCRETE time process

A process is actually a function of 2 voniables

and so we write $X(w,t) = X_{t}(w)$. For instance, fix $t \in T$, X_{t} is a RV, i.e. a measurable function on Ω , then we have

$$X^{f}(m)$$
 A $m \in \mathcal{T}$

Fixing w \in \inz , we obtain a function of t, namely

PATH = the function of tobtained by fixing WED

EXAMPLE

If S = IR and $T = [0, \infty)$, a PATH would be a function from $[0, \infty)$ to IR

A procen con le always resorded or a <u>roudour</u> function. It suffices to think of X as the map

$$w \leftarrow b$$
 poth onoccioted to $w = X(w, \bullet)$
 $t \leftarrow b \times (\omega, t)$

A RV in line drawing balls from an uru, a stochastic process entoil drawing FUNCTIONS!

EXAMPLE

D={W,,w,w, w,}

You pick on object from D

PROCESS: result of drowing

EQUALITY OF THE PROCESS

Two process X and I can be equal on different in several senses

$$\forall \ X \sim Y \quad \bullet \quad (X_{t_1} \dots X_{t_n}) \sim (Y_{t_i} \dots Y_{t_n})$$

3) X indishunguible from Y provided

 $X_{\pm}(\omega) = Y_{\pm}(\omega)$ $\forall \xi \in T$ $\forall \omega \in A$ where $A \in eA$ is such that P(A) = 1

theu

$$3 \stackrel{\sim}{\rightleftharpoons} 1$$

EXAMPLE

X = Y according to (2) but $X \neq Y$ acc. to (3)

Let V le a RV s.t. V>0 and P(V=v) = 0 V V>0

Jon instance V = 121 where 2 ~ N (0, 1)

Define $X(t, \omega) = 0$ $\forall t \geq 0$ $\forall \omega \in \mathbb{R}$ $Y(t, \omega) = 0$ $\forall t \geq 0$ $\forall \omega \in \mathbb{R}$

Then X and Y one not indishunguible, in fact for t = V(w), we get

$$Y(\omega, \epsilon) = 1 \neq 0 = X(\epsilon, \omega)$$

flowever

$$b(X^{\epsilon} + \lambda^{\epsilon}) = b(\lambda^{\epsilon} = 0) = b(\Lambda^{\epsilon} + 1) = 0$$

heuce X and Y one equivalent

STOPPING TIMES

Let $T = \{0, 1, 2, ...\}$. A FILTRATION is au increasing sequence of sub- σ -fields of eA, that is

A STOPPING TIME is a map which takes

$$T: \Omega \longrightarrow \{+\infty, 0, 1, 2, \dots\}$$
s.t. $\{T=n\} \in \mathcal{I}_n \ \forall n \geqslant 0$

In general a σ -field G c et may be used to describe our state of information. It suffices to ossesse that an event A is known to be true or false $\forall A \in G$

EXAMPLE

$$g = \{ \emptyset, \Delta \} - \emptyset$$
 our sufo is sull
 $g = \{ \emptyset, \Delta, A, A^{-1} \} - \emptyset$ we usew if event A happened
 $g = eA - \emptyset$ we have sufo for all events

t usual enterpretation of filtration is time. A summand we were excessed and the sound of the summand of the su

uso time 2

To a Di a Di a como a como di me 2

mso time 1

The stopping time T should be regarded as the 1st time when something happens

T= n → happened at time n T= +∞ - on += T

EXAMPLE

$$(X_n)$$
 begueux of real RV $A \in \mathcal{B}(R)$
 $T = \sup \{ n : X_n \in A \} = \begin{cases} \text{sind time } n \text{ s.t.} \\ \text{X} n \in A \end{cases}$

EXAMPLE interpretation of {T=n} ∈ In ∀n

T=n ← I stop playing at time n

o depend only on info available at time n

Namely the event {T=n} ∈ In

FINITE DIMENSIONAL DISTRIBUTIONS

Let X_b the process indexed by T. $\forall \ n > 1 \ \forall \ t, ... \ t_n \in T$ we have an n-dimensional random vector

$$(X^{f'}, X^{f'}, \cdots, X^{f'})$$

The distribution of such RV (X_t,... X_t,) \(\text{N} \gamma 1 \text{V} \text{T} \dots 1 \

EXAMPLE

X, ~ Binsmial) count be or if the joint X2 ~ Poisson) is U, also the marginals should be

In our appication we choose the finite dimensional distribution and we look for a process having such a finite dimensional distribution. But, as the previous example shows, such a process

does not exist. However, there are some theorems, called consistency theorems which provide conditions on the fide. under which the process with such finite dimensional distribution exists.

CONDITIONAL EXPECTATIONS

In order to define conditional expectation 3 things are required:

DEFINITION

By definition, a conditional expectation of X given G in ANY near RV V: ____ IR s.t.

I)
$$E |V| < +\infty$$
II) V in G-measurable
III) $E [1_A \times] = E [1_A V]$ $\forall A \in G$

Remarks:

- On ± 1 since $\pm 2 \in G$, we obtain $EX = E[X \perp_{\Delta}] = E[V \perp_{\Delta}] = EV$

Hence, if $G = \{ \emptyset, \Omega \}$ the only G-measur. RV are the constants.

At the opposite extremes, if G = eA every RV is G - weasurable.

EXAMPLE

Fix $A \in eA$ and define $G = \{\emptyset, \Sigma, A, A^c\}$

$$X = 3 1_A - 2 1_{A^c} = \begin{cases} 3 & \text{on } A \\ -2 & \text{on } A^c \end{cases}$$

$$X^{-1}(B) = \begin{cases} \Omega & \text{if } -2,3 \in B \\ O & \text{if } -2,3 \notin B \\ A & \text{if } 3 \in B, -2 \notin B \\ A^{c} & \text{if } 3 \notin B, -2 \in B \end{cases}$$

But under info g we know whether A is True or false, and thus X becames a constant

IMPORTANT THEOREM

A committional expectation V always exists and it is almost surely unique, namely, if V_1 and V_2 are both conditional expectation, then $P(V_1 \neq V_2) = 0$

From now on to denote the conditional exp of X given G, we adopt notation V = E[X | G]

Interpretation: E[XIG] = our prediction of X muder the info G

ofui tuantiu X g. terq ruo = [X] =

The requirement that E[XIG] should be G- measurable is now clear since any prediction of X moder the info G should be something which only depends on the info G