Projekt

Sterowniki robotów

Założenia projektowe

Humanistycznie upośledzony robot akrobatyczny

HURA

Skład grupy: Albert Lis, 235534 Michał Moruń, 235986

Termin: sr TP15

 $\frac{Prowadzący:}{\text{mgr inż. Wojciech Domski}}$

Spis treści

1	Opis projektu	2
2	Założenia projektowe	
	2.1 Mechanika	
	2.2 Elektronika	
	2.3 Komunikacja	
3	Konfiguracja mikrokontrolera	
	3.1 Konfiguracja pinów	
4	Harmonogram pracy	
	4.1 Zakres prac	
	4.2 Kamienie milowe	
	4.3 Wykres Gantta	
	4.4 Podział pracy	

To musi się znaleźć:

k1 in [0,1.0] — poprawne opracowanie dokumentu w systemie składania tekstu LaTeX, wykorzystanie dostarczonego szablonu

k2 in [0,0.5] — przynajmniej dwie pozycje literaturowe traktujące o problematyce projektu

k3 in [0,0.5] — przynajmniej 2 pozycje ściśle związane z wykorzystanym sprzętem, układami elektronicznymi, modułami, itp.

k4 in [0,1.5] — merytoryczna część założeń projektowych

k5 in [0,0.5] — podział prac w projekcie na zadania.

1 Opis projektu

Celem projektu jest zbudowanie zdalnie sterowanego robota jezdnego. Robot będzie sterowany za pomocą akcelerometru w telefonie. Dane będą przesyłanie za pomocą Wi-Fi lub Bluetooth. Regulacja prędkości będzie się odbywać za pomocą regulatora PID. Dane o prędkości będą pobierane z enkoderów znajdujących się w kołach robota. Opcjonalnie robot będzie wyświetlał szczegółowe dane o swoim stanie wewnętrznym za pomocą wbudowanego w płytkę z mikrokontrolerem wyświetlacza LCD.

Rysunek 1: Architektura systemu

2 Założenia projektowe

2.1 Mechanika

1. Naped

Napęd będzie realizowany na tylną oś za pomocą silnika szczotkowego DC. Regulacja prędkości oparta o regulator PID oraz sterowanie PWM.

2. Sterowanie

Skręcanie będzie oparte o serwomechanizm. Serwomechanizm realizuje skręt przednich kół za pomocą poprzecznej belki przymocowanej do kół.

3. Rama

Rama zbudowana z klocków lego. Posiada duże możliwości dopasowania do zmian w trakcie projektu.

2.2 Elektronika

1. Mikrokontroler

Sterownik dostarczony przez prowadzącego STM32L476GDiscovery.

2. Pomiar prędkości

Realizowany za pomocą enkoderów znajdujących się w kołach robota.

3. Zasilanie

Oparte o akumulatory li-ion 18650 lub powerbank. Dopasowanie napięcia za pomocą przetwornicy step-up MT3608 do napędu kół oraz step-down do zasilania mikrokontrolera i modułu Wi-Fi w standardzie 3.3V.

2.3 Komunikacja

- 1. Połączenie ze smartfonem Realizowane za pomocą modułu Wi-Fi ESP8266. W telefonie do komunikacji posłuży aplikacja RoboRemo.
- 2. Połączenie modułu Wi-Fi z mikrokontrolerem Realizowane za pomocą portu szeregowego.

3 Konfiguracja mikrokontrolera

Rysunek 2: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX

Rysunek 3: Konfiguracja zegarów mikrokontrolera

3.1 Konfiguracja pinów

PIN	Tryb pracy	Funkcja/etykieta
PC14	OSC32_IN* RCC_OSC32_IN	
PC15	OSC32_OUT* RCC_OSC32_OUT	
PH0	OSC_IN* RCC_OSC_IN	
PH1	OSC_OUT*	RCC_OSC_OUT
PD	USART2_TX	$USART_TX$
PD6	USART2_RX	$USART_RX$
PE11	TIM1_CH2	PWM1_Skręt
PE14	TIM1_CH4	PWM2_Silnik
PA1	GPIO_Input	JOY_LEFT
PA2	GPIO_Input	JOY_RIGHT
PA3	GPIO_Input	JOY_UP
PA4	GPIO_Input	JOY_DOWN

Tabela 1: Konfiguracja pinów mikrokontrolera

4 Harmonogram pracy

4.1 Zakres prac

1. Zapoznanie się z mikrokontrolerem Wykorzystane to tego celu zostaną poradniki ze strony www.forbot.pl. [1–3]

4.2 Kamienie milowe

- 1. Implementacja działającego prototypu sterowanego joystickiem na płytce.
- 2. Implementacja regulacji prędkości w oparciu o regulator PID.
- 3. Implementacja sterowania smartfonem.

4.3 Wykres Gantta

Należy wstawić diagram Gantta oraz określić ścieżkę krytyczną. Ponadto zaznaczyć i opisać kamienie milowe.

Rysunek 4: Diagram Gantta

4.4 Podział pracy

Każdy z członków grupy powinien w każdym etapie mieć wymienione od 2 do 4 zadań. Przykładowa tabele podziału zadań dla etapu II (Tab. 2) oraz dla etapu III (Tab. 3) zostały przedstawione poniżej. Przy podziale prac nie uwzględniamy tworzenia dokumentacji projektu!

Przykładowy podział prac:

Albert Lis	%	Michał Moruń	%
Schemat elektryczny i elektroniczny		Schemat mechaniczny	
Budowanie odpowiednich algorytmów		Budowanie odpowiednich algorytmów	
Budowa modułu elektronicznego		Budowa modułu mechanicznego	
Integracja części mechanicznej oraz		Integracja części mechanicznej oraz	
elektronicznej		elektronicznej	

Tabela 2: Podział pracy – Etap II

Albert Lis	%	Michał Moruń	%
Utworzenie modułu integrującego robota z		Utworzenie modułu integrującego robota z	
telefonem		telefonem	
Integracja ze sobą wszystkich modułów		Integracja ze sobą wszystkich modułów	
Stworzenie interfejsu użytkownika		Stworzenie interfejsu użytkownika	

Tabela 3: Podział pracy – Etap III

Literatura

- $[1]\ {\rm Kurs\ STM32\ F4}$ z wykorzystaniem HAL oraz Cube
- $[2]~{\rm Kurs}~{\rm STM}32~{\rm F1}$ z wykorzystaniem bibliotek STD Periph
- $[3]~{\rm Kurs~STM32~F1}$ z wykorzystaniem bibliotek ${\rm HAL}$
- [4] ESP8266 Arduino Core Documentation
- $[5]\ {\it Teoria}$ sterowania w ćwiczeniach