SYDE 533 Conflict Resolution Basics of 2-DM Conflicts

Amanda Garcia

Department of Systems Design Engineering University of Waterloo

September 14, 2016

Learning Objectives

By the end of this lesson, you will be able to:

- List and explain the steps in modelling
- Conduct stability analysis and calculations using the tableau form of a conflict
- Identify several types of stable outcomes and explain their relation to human behaviour

Steps in Modelling

- ► Select a point in time
- Choose players and options
- ► Remove infeasible outcomes
- Develop preference rankings for each player
- Carry out stability analysis

Select a Point in Time

- ▶ 1959: Castro overthrows Batista regime in Cuba
- American property in Cuba is nationalized
- ▶ 1961: American-sponsored Bay of Pigs invasion fails
- ▶ 1962: USSR installs nuclear missiles in Cuba
- Americans want USSR missiles out of Cuba

We will analyse the conflict situation in October 1962

Choose Players and Options

Cuban Missile Crisis

U.S.		
Air strike	1	American
Blockade	0	Strategy
U.S.S.R.		
Withdraw	1	Russian
Escalate	0	Strategy

How many possible states are there?

Remove Infeasible States

Cuban Missile Crisis

The Russians will not withdraw their missiles and escalate at the same time.

U.S.							
Air strike	0	1	0	1	\rightarrow	-	
Blockade	0	0	1	1	\rightarrow	-	
U.S.S.R.							
Withdraw	1	1	1	1	\rightarrow	1	
Escalate	1	1	1	1	\rightarrow	1	

In the compact notation, a dash " - " means a 1 or a 0 $\,$

Remove Infeasible States

Cuban Missile Crisis

After removing the infeasible options, we are left with 12 feasible states:

U.S.												
Air strike	0	1	0	1	0	1	0	1	0	1	0	1
Blockade	0	0	1	1	0	0	1	1	0	0	1	1
U.S.S.R.												
Withdraw	0	0	0	0	1	1	1	1	0	0	0	0
Escalate	0	0	0	0	0	0	0	0	1	1	1	1
Decimal	0	1	2	3	4	5	6	7	8	9	10	11

Decimal Conversion for states

Example: State 11

U.S.		
Air strike	1	
Blockade	1	
U.S.S.R.		
Withdraw	0	
Escalate	1	

Read from top to bottom:

$$(1 \cdot 2^0) + (1 \cdot 2^1) + (0 \cdot 2^2) + (1 \cdot 2^3) = 1 + 2 + 8 = 11$$

What is the decimal expression of state (0 1 1 1)?

Preference Rankings for U.S.

Cuban Missile Crisis

Preferences for US from most to least preferred (left to right):

U.S.												
Air strike	0	0	1	1	0	1	1	0	1	1	0	0
Blockade	0	1	0	1	1	0	1	0	1	0	1	0
U.S.S.R.												
Withdraw	1	1	1	1	0	0	0	0	0	0	0	0
Escalate	0	0	0	0	0	0	0	0	1	1	1	1
Decimal	4	6	5	7	2	1	3	0	11	9	10	8

Preference Rankings for U.S.S.R.

Cuban Missile Crisis

Preferences for USSR from most to least preferred (left to right):

U.S.												
Air strike	0	0	0	0	1	1	1	1	1	1	0	0
Blockade	0	0	1	1	0	0	1	1	1	0	1	0
U.S.S.R.												
Withdraw	0	1	1	0	1	0	1	0	0	0	0	0
Escalate	0	0	0	0	0	0	0	0	1	1	1	1
Decimal	0	4	6	2	5	1	7	3	11	9	10	8

Stability analysis checks for individual stability and equilibria

- A state is stable for a DM if the DM has no incentive to move away
- A state which is stable for all DMs (under a particular definition of stability) is an equilibrium
- Solution concepts define how stability is caused

Stability Analysis Cuban Missile Crisis

In this type of analysis, we will determine 4 possible outcomes:

- ► Rational (r)
- Sequentially sanctioned (s)
- ▶ Unstable (u)
- ► Simultaneously sanctioned (+)

Rational outcome

A state s is rational (r) for a DM if the DM has no unilateral improvements (UIs) from s.

- ► A UI is a move made only by the DM fix opponent strategies
 - which results in a more preferred state
- ▶ From state 5, the US has UIs to states 4 and 6:

U.S.				
Air strike	0	0	1	
Blockade	0	1	0	
U.S.S.R.				
Withdraw	1	1	1	
Escalate	0	0	0	
Decimal	4	6	5	

Rational outcome

A state s is **rational** (r) for a DM if the DM has no unilateral improvements (UIs) from s.

- Write r above these states
- For states with UIs, write the UIs below from most to least preferred

Rational outcome - US

Check for rational states:

US preferences:

U.S.												
Air strike Blockade	0	0 1	1	1 1	0 1	1	1 1	0	1 1	1	0 1	0
U.S.S.R.												
Withdraw Escalate	1 0	1 0	1 0	1 0	0 0	0 0	0 0	0 0	0 1	0 1	0 1	0
Decimal	4	6	5	7	2	1	3	0	11	9	10	8
		4	4 6	4 6 5		2	2 1	2 1 3		11	11 9	11 9 10

Stability Analysis Rational outcome - US

In tableau form:

r				r				r			
4	6	5	7	2	1	3	0	11	9	10	8
	4	4	4		2	2	2		11	11	11
		6	6			1	1			9	9
			5				3				10

Stability Analysis Rational outcome - USSR

Check for rational states: USSR preferences:

U.S.												
Air strike Blockade	0 0	0 0	0 1	0 1	_	1 0	1 1	1 1	1 1	1 0	0 1	0 0
U.S.S.R.												
Withdraw Escalate	0	1 0	1 0	0 0	1 0	0 0	1 0	0 0	0 1	0 1	0 1	0 1
Decimal	0	4	6	2	5	1	7	3	11	9	10	8

Stability Analysis Rational outcome - USSR

In tableau form:

r		r		r		r					
0	4	6	2	5	1	7	3	11	9	10	8
	0		6		5		7	7	5	6	0
								3	1	2	4

Stability Analysis Sequentially Sanctioned Outcome

A state s is **sequentially sanctioned** (s) for a DM if for each UI from s, a credible action can be taken by the opponent to stop the DM from taking advantage of the UI.

- ► Check all UIs for the DM from a given state
- ▶ UI for the DM leaves open a UI for the opponent which is less preferred to DM
- Write s above these states

Sequentially Sanctioned Outcome

▶ The US has a UI from state 6 to state 4

r				r				r			
4	6	5	7	2	1	3	0	11	9	10	8
	4	4	4		2	2	2		11	11	11
		6	6			1	1			9	9
			5				3				10

▶ The USSR has a UI from state 4 to state 0

r		r		r		r					
0	4	6	2	5	1	7	3	11	9	10	8
	0		6		5		7	7	5	6	0
								3	1	2	4

State 0 is less preferred to state 6 by the US

r				r				r			
4	6	5	7	2	1	3	0	11	9	10	8

► Therefore state 6 is sequentially sanctioned for the US

Stability Analysis Sequentially Sanctioned Outcome - US

In tableau form:

r	S			r				r			
4	6	5	7	2	1	3	0	11	9	10	8
	4	4	4		2	2	2		11	11	11
		6	6			1	1			9	9
			5				3				10

Stability Analysis Unstable Outcome

A state s is **unstable** (u) for a DM if the DM has at least one UI from s for which the opponent has no credible deterrent.

- ► If a state is unstable, the DM will take advantage of any undeterred UI
- Write u above these states

Unstable Outcome

▶ The US has a two UIs from state 5: to state 4 and to state 6

r				r				r			
4	6	5	7	2	1	3	0	11	9	10	8
	4	4	4		2	2	2		11	11	11
		6	6			1	1			9	9
			5				3				10

- ▶ If the US moves to state 4, the USSR has a UI to state 0 which is less preferred to state 5 by the US so state 4 is sanctioned
- ▶ If the US moves to state 6, then the USSR will stay since state 6 is rational for the USSR

r		r		r		r						
0	4	6	2	5	1	7	3	11	9	10	8	
	0		6		5		7	7	5	6	0	_
								3	1	2	4	

► There is at least one UI for the US from state 5 which is not sanctioned, therefore state 5 is unstable for the US

Stability Analysis Unstable Outcome - US

In tableau form:

r	S	u		r				r			
4	6	5	7	2	1	3	0	11	9	10	8
	4	4	4		2	2	2		11	11	11
		6	6			1	1			9	9
			5				3				10

Let's fill out the rest of the table

r, s, and u - US

In tableau form:

r	S	u	u	r	u	u	u	r	u	u	u
4	6	5	7	2	1	3	0	11	9	10	8
	4	4	4		2	2	2		11	11	11
		6	6			1	1			9	9
			5				3				10

r, s, and u - USSR

Take a few minutes to perform stability calculations for the USSR.

USSR preferences:

r		r		r		r					
0	4	6	2	5	1	7	3	11	9	10	8
	0		6		5		7	7	5	6	0
								3	1	2	4

US preferences:

r	S	u	u	r	u	u	u	r	u	u	u
4	6	5	7	2	1	3	0	11	9	10	8
	4	4	4		2	2	2		11	11	11
		6	6			1	1			9	9
			5				3				10

r, s, and u - USSR

In tableau form:

r	S	r	u	r	u	r	u	u	u	u	u
0	4	6	2	5	1	7	3	11	9	10	8
	0		6		5		7	7	5	6	0
								3	1	2	4

Stability Analysis Simultaneously Sanctioned Outcome

A state s which is unstable for both DMs is **simultaneously** sanctioned (θ) for a DM if both players moving together could result in an outcome which is less preferred to s by the DM.

- Only check states which are unstable for both players
- ► For 2-DM games, calculate as follows: outcome = UI for DM 1 + UI for DM 2 - unstable outcome
- ▶ If there are several UIs, check all combinations. For the state to be simultaneously sanctioned, all of the movements must be sanctioned.

Simultaneously Sanctioned Outcome

US:

r	s	u	u	r	u	u	u	r	u	u	u
4	6	5	7	2	1	3	0	11	9	10	8
	4	4	4		2	2	2		11	11	11
		6	6			1	1			9	9
			5				3				10

USSR:

r	S	r	u	r	u	r	u	u	u	u	u	_
0	4	6	2	5	1	7	3	11	9	10	8	
	0		6		5		7	7	5	6	0	_
								3	1	2	4	

- State 1 is unstable for both the US and the USSR
- US has a UI to state 2; USSR has a UI to state 5
- outcome = UI for US + UI for USSR unstable outcome
- outcome = 2 + 5 1 = 6
- ➤ State 6 is more preferred than state 1 for both players, so state 1 remains unstable

Simultaneous Sanctioning

Take a few minutes to check for simultaneous sanctioning.

USSR preferences:

r	S	r	u	r	u	r	u	u	u	u	u
0	4	6	2	5	1	7	3	11	9	10	8
	0		6		5		7	7	5	6	0
								3	1	2	4

US preferences:

r	S	u	u	r	u	u	u	r	u	u	u
4	6	5	7	2	1	3	0	11	9	10	8
	4	4	4		2	2	2		11	11	11
		6	6			1	1			9	9
			5				3				10

Simultaneously Sanctioned Outcomes

Simultaneous stability calculations:

- \triangleright 2 + 5 1 = 6, preferred by both DMs over state 1
- \triangleright 2 + 7 3 = 6, preferred by both DMs over state 3
- ▶ 11 + 0 8 = 3, preferred by both DMs over state 8
- ▶ 11 + 5 9 = 7, preferred by both DMs over state 9
- ▶ 11 + 6 10 = 7, preferred by both DMs over state 10

None of the states are simultaneously sanctioned for either DM

Stability Analysis Equilibria

A state which is stable for all DMs (under a particular definition of stability) is an **equilibrium**.

- Mark each equilibrium with an E
- Any outcome which is unstable for at least one player is indicated by an X
- ► Three possible types of equilibria:
 - Rational: state is r for all DMs
 - Sequentially sanctioned: state is s for at least one DM
 - Simultaneously sanctioned: state is # for all DMs

Equilibria

Overall equilibria:

E	Е	Х	Χ	Χ	Х	Χ	Х	Х	Х	Х	Χ
IIC.											

US:

r	S	u	u	r	u	u	u	r	u	u	u
4	6	5	7	2	1	3	0	11	9	10	8
	4	4	4		2	2	2		11	11	11
		6	6			1	1			9	9
			5				3				10

USSR:

r	S	r	u	r	u	r	u	u	u	u	u
0	4	6	2	5	1	7	3	11	9	10	8
	0		6		5		7	7	5	6	0
								3	1	2	4

Two sequentially stable equilibria: state 4 and state 6

Historical Outcome

- ► From state 0 (status quo), the US has a UI to state 2 (blockade)
- Russia has a UI from state 2 to state 6 (withdraw) which occurred historically
- State 4 could have occurred is the USSR had been certain that the US would impose a blockade if the missiles remained in Cuba (hypergame - we will see this later)

U.S.						
Air strike	0		0		0	
Blockade	0	\longrightarrow	1		1	
U.S.S.R.						
Withdraw	0		0	\longrightarrow	1	
Escalate	0		0		0	
Decimal	0		2		6	

Analysis of 2-DM Games in Chart Form

Solution Concepts and Human Behaviour

Solution Concept	Stability Descrip- tion	Foresight	Knowledge of Prefer- ences	Disimpro- vement	Strategic Risk
Rational	Focal DM cannot move unilaterally to a more preferred state	Low	Own	Never	Ignores risk
Sequential	All focal DM's UIs are sanc- tioned by opponent UIs	Medium	All	Never	Takes some risks; satisfies

Next Lecture

- Basics of n-DM models
- Project groups and topics due!