Cours 5 – Méthodes simples pour l'optimisation multicritère

Master ANDROIDE - Décision et Jeux

PATRICE PERNY

LIP6 - Sorbonne Université

La méthode ε -contrainte

 $\emph{Id\'ee}$: se ramener à un problème d'optimisation classique en mettant n-1 critères en contraintes.

$$\max_{x \in x} \{ f_k(x), f_i(x) \ge \varepsilon_i, \forall i \ne k \}$$

Exemple:

Heuristique pour engendrer des solutions Pareto optimales. Peut servir à approcher le front de Pareto dans le cas bi-critère mais devient impraticable lorsque le nombre de critère augmente.

Facile à implanter en PL. Plus difficile pour les algorithmes combinatoire (e.g., NP-difficile pour plus court chemin).

1) Méthodes de scalarisation

2/20

Quelques autres exemples simples de scalarisations

Exemples donnés dans le cas de critères à maximiser.

- scalarisation par somme pondérée : $\max_{x \in x} \sum_{i=1}^{n} w_i f_i(x)$ mais laisse les solutions non-supportées hors d'atteinte.
- scalarisation par regret minimax : $\min_{x \in X} \max_i \{f_i^* f_i(x)\}$ avec $f_i^* = \max_{x \in X} f_i(x)$

$$\min z \\ z \geq f_i^* - f_i(x), \forall i = 1, \dots, n$$

3/20 4/20

Scalarisation appliquée à la programmation linéaire

Retour sur l'exemple du cours 4

$$\max z_1 = x_1 + x_2 \quad \min z_2 = x_1 + 3x_2$$

$$s.c. \begin{cases} 2x_1 + 3x_2 & \leq & 30\\ 3x_1 + 2x_2 & \leq & 30\\ x_1 & \leq & 8\\ x_1 \geq 0, x_2 \geq 0 \end{cases}$$

Représentation dans l'espace des solutions et dans l'espace des critères :

On peut remplacer la minimisation de l'objectif z_2 par la maximisation de l'objectif $-z_2$.

5 / 20

Calcul de la solution du minimax regret

Comme on a deux critères on peut résoudre graphiquement. Il faut intersecter le segment $[z_O, z_D]$ d'équation $z_1 - z_2 = 0$ avec la droite d'équation $z_1 + z_2 = 12$ ce qui donne le point (6, 6) dans l'espace des critères, soit encore le point (6, 0) dans l'espace des solutions.

On peut retrouver cette solution en résolvant le PL suivant :

$$s.c. \begin{cases} z & \geq 12 - x_1 - x_2 \\ z & \geq x_1 + 3x_2 \\ 2x_1 + 3x_2 & \leq 30 \\ 3x_1 + 2x_2 & \leq 30 \\ x_1 & \leq 8 \\ z \in \mathbb{R}, x_1 \geq 0, x_2 \geq 0 \end{cases}$$

Solution du minimax regret

Les points efficaces sont : $[z_B, z_C] \cup [z_C, z_D] \cup [z_D, z_O]$

Les solutions Pareto optimales sont : $[B, C] \cup [C, D] \cup [D, O]$

 $z_1^*=12$ et $-z_2^*=0$. La solution du minimax regret est sur la droite d'équation $z_1^*-z_1=-z_2^*-(-z_2)$ c'est-à-dire $z_1+z_2=12$ qui, dans l'espace $(z_1,-z_2)$, passe par les points (12,0) et (0,-12).

6/20

Une méthode combinant ε -contrainte et somme pondérée

On peut combiner la scalarisation par somme pondérée et la méthode ε -contrainte pour tester si une solution réalisable $x_0 \in X$ est Pareto-optimale. Pour cela, on peut résoudre le problème suivant :

$$\max \sum_{i=1}^n w_i f_i(x)$$
 s.c. $f_i(x) \geq f_i(x_0), i = 1, \dots, n$ $x \in X$

Proposition

Si les poids w_i sont strictement positifs, alors $x_0 \in X$ est une solution optimale du problème ci-dessus si et seulement si elle est Pareto optimale.

Preuve

- \Rightarrow Si x^0 est Pareto-optimale dans X, il n'existe pas de solution $x \in X$ telle que $f_i(x) \ge f_i(x_0)$ pour tout i avec $f_k(x) > f_k(x_0)$ pour au moins un k. Ainsi, toute solution réalisable du problème ci-dessus satisfait $f_i(x) = f_i(x_0)$, $i = 1, \ldots, n$ et est optimale.
- Si x⁰ est une solution optimale du problème ci-dessus. Alors, s'il existait une solution x qui la domine au sens de Pareto elle aurait une meilleure somme pondérée que x⁰ (comme on l'a déjà vu, car les poids positifs) ce qui contredit l'optimalité de x⁰. Donc x⁰ est Pareto-optimale dans X.

7/20 8/20

Un exemple d'utilisation de la méthode hybride

Considérons le problème de sac-à-dos bi-critère suivant :

$$\begin{aligned} & \max z_1 = 18x_1 + 12x_2 + 17x_3 + 2x_4 \\ & \max z_2 = 3x_1 + 11x_2 + 7x_3 + 15x_4 \\ & \text{s.c. } 4x_1 + 5x_2 + 6x_3 + 5x_4 \leq 10 \\ & x_1, x_2, x_3, x_4 \in \{0, 1\} \end{aligned}$$

Si $x^0 = (1, 0, 0, 1)$ et que l'on résout le problème :

$$\max z_1 + z_2 = 21x_1 + 23x_2 + 24x_3 + 17x_4$$
 s.c.
$$\begin{cases} 18x_1 + 12x_2 + 17x_3 + 2x_4 & \geq & 20\\ 3x_1 + 11x_2 + 7x_3 + 15x_4 & \geq & 18 \end{cases}$$

$$x_1, x_2, x_3, x_4 \in \{0, 1\}$$

On trouve comme solution x^0 ce qui montre que c'est une solution Pareto-optimale. Cette solution est introuvable en maximisant simplement une somme pondérée des critères...

II) Algorithme pour le calcul de chemins Pareto Optimaux

Explication

Il s'agit d'une solution Pareto-optimale non supportée comme le montre l'image des solutions du problème dans l'espace des critères.

max
$$z_1 = 18x_1 + 12x_2 + 17x_3 + 2x_4$$

max $z_2 = 3x_1 + 11x_2 + 7x_3 + 15x_4$
s.t. $4x_1 + 5x_2 + 6x_3 + 5x_4 \le 10$
 $x_i \in \{0, 1\}, i = 1, \dots, 4$

10 / 20

Formulation du problème

9 / 20

Soit G = (V, E) un graphe orienté (V ens. des somments, E ensemble des arcs) de racine v_1 .

On pose n = |V| et m = |E|. Les arcs sont munis de poids vectoriels :

$$w: E \rightarrow \mathbb{Z}^q$$

 $e \mapsto (w_1(e), \ldots, w_q(e))$

 $w_i(e)$ est le poids de l'arc e selon le critère i. Le vecteur poids d'un chemin P est donné par $w(P) = \sum_{e \in P} w(e)$

Le Problème des chemins Pareto-optimaux

Déterminer les points efficaces dans l'ensemble des vecteurs associés aux chemins du graphe de v_1 vers les autres sommets v_i de $V \setminus \{v_1\}$, et pour chacun de ces points un chemin associé (chemin Pareto-optimal).

11/20 12/20

Problème NP-difficile et "intraitable" même pour q=2

Proposition

Même dans le cas bi-critère et pour un graphe sans circuit, le problème de décision suivant est NP-complet : étant donné $(b_1,b_2) \in \mathbb{Z}^2$, existe t-il un chemin P de v_1 à v_n dans G tel que $w_1(P) \leq b_1$ et $w_2(P) \leq b_2$?

Preuve. Réduction à partir de Partition.

Définition

Un problème d'optimisation multicritère est dit intraitable si la taille de l'ensemble des vecteur optimaux peut être exponentielle en la taille de l'instance.

Proposition

Le problème des chemins Pareto-optimaux est intraitable même pour le cas de deux critères.

Preuve. On construit une instance de taille n où le cardinal de l'ensemble des points efficaces est expontentiel en n.

13 / 20

Calcul des points efficaces associés aux chemins

Soit G = (V, E) un graphe tel qu'il n'existe pas de circuit de valeur strictement négative sur un critère, i.e.,

$$\forall C \text{ un circuit}, \forall i=1,\ldots,q, \sum_{e\in C} w_i(e)>0$$

Alors on a le résultat suivant :

Proposition

Soit P_{st} un chemin Pareto-optimal de s à t dans G. Soit i un sommet de P_{st} différent de s et t, alors le sous-chemin P_{si} de P_{st} est Pareto-optimal dans l'ensemble des chemins de s à i.

Preuve.

Supposons que P_{si} ne soit pas Pareto-optimal. Alors il existe un autre chemin P'_{si} de s à i tel que $w(P'_{si}) \succ_P w(P_{si})$ et donc $w(P'_{si}) + w(P_{it}) \succ_P w(P_{si}) + w(P_{it}) = w(P_{st})$ où P_{it} est le sous-chemin de P_{st} de i à t. On aurait alors un autre chemin de s à i qui domine P_{st} ce qui contredit sa Pareto-optimalité

Une instance avec un ensemble efficace exponentiel en n

Noter que pour tout chemin P de ce graphe on a :

$$w_1(P) + w_2(P) = \sum_{e \in P} (w_1(e) + w_2(e)) = \sum_{i=1,3,5,...}^{n-2} 2^{\frac{i-1}{2}} = \sum_{i=0}^{(n-3)/2} 2^i = 2^{\frac{n-1}{2}} - 1$$

Les vecteurs images des chemins sont donc tous alignés sur une droite d'équation x + y = cte normale au vecteur (1, 1). Ils sont donc tous efficients.

Pour tout $z \in \{0,\ldots,2^{\frac{n-1}{2}}-1\}$ il y a un chemin distinct de v_1 à v_n de coût $(z,2^{\frac{n-1}{2}}-1-z)$. Tous les vecteurs images sont donc distincts et ils sont en nombre $2^{\frac{n-1}{2}}$. On obtient donc un ensemble de points efficaces de taille exponentielle en n.

14 / 20

Calcul des points efficaces associés aux chemins

La proposition précédente montre que la dominance de Pareto est une préférence qui vérifie le principe de Bellman : "tout sous-chemin d'un chemin (Pareto-)optimal est (Pareto-)optimal."

Cela suggère qu'une extension multicritère de l'algorithme de Bellman peut être envisagée. Mais attention, il y a quelques différences avec le cas monocritère!

 Concaténer deux chemins Pareto-optimaux ne produit pas nécessairement un chemin Pareto-optimal

 Plusieurs chemins optimaux incomparables peuvent exister pour joindre deux sommets s et i. Ces chemins correspondent à plusieurs façons "optimales mais non équivalentes" d'arriver en i. Il faudra donc toutes les mémoriser.

Labels et principe du marquage

Principe de l'algorithme de Ford-Bellman adapté au cas multicritère.

Le label attaché à un sommet (marque) est un ensemble de vecteurs et non plus un scalaire.

EXEMPLE:

En k (5, 7) est dominé par (2, 6) et doit être éliminé (un sous-chemin dominé ne peut mener à un chemin Pareto-optimal).

17 / 20

Un exemple d'execution

Algorithme de Corley et Moon (1985)

Calcule les points efficaces associés aux chemins du graphe.

$$c_{ii} = (0, \dots, 0)$$

$$c_{ij} = (\infty, \dots, \infty) \text{ si } i \neq j \text{ et } (i, j) \notin E$$

$$= (w_{ij}^1, \dots, w_{ij}^q) \text{ sinon}$$

$$k \leftarrow 1; L_i^1 \leftarrow \{c_{1i}\}, \forall i = 1, \dots, n$$
for all $i = 1 \dots n$ do
$$L_i^{k+1} = M(\bigcup_{j=1}^n \{c_{ji} + I_j^k \mid I_j^k \in L_j^k\}, \succsim)$$
end for
if $(k = n - 1)$ ou $(L_j^{k+1} = L_j^k, \forall j = 1, \dots, n)$ then STOP
else
$$k \leftarrow k + 1$$
aller en 2
end if

Lorsque l'algorithme est stoppé par k=n-1 et non par la stabilité des labels c'est qu'il existe un circuit absorbant.

18 / 20

Un autre exemple : le sac-à-dos multicritère

Un problème de selection de comité (voir Exemple 3 du cours précédent).

$$\max z_1 = 7x_1 + 9x_2 + 4x_3 + 3x_4 + 4x_5$$

$$\max z_2 = 6x_1 + 3x_2 + 4x_3 + 7x_4 + 3x_5$$

$$x_1 + x_2 + x_3 + x_4 + x_5 = 2$$

$$x_i \in \{0, 1\}, i = 1, \dots, 5$$

3 solutions: $\{1,2\},\{1,4\}$ et $\{2,4\}$ de coûts (16,9),(10,13) et (12,10)

19 / 20 20 / 20